

Article

# Modeling of Combined Lead Fast Reactor and Concentrating Solar Power Supercritical Carbon Dioxide Cycles to Demonstrate Feasibility, Efficiency Gains, and Cost Reductions

Brian White <sup>1</sup>, Michael Wagner <sup>1</sup>, <sup>1</sup>, Ty Neises <sup>3</sup>, Cory Stansbury <sup>4</sup>, and Ben Lindley <sup>2</sup>\* <sup>1</sup>

- Department of Mechanical Engineering, University of Wisconsin Madison, 1415 University Drive, Madison, WI 53706, United States; dept@me.engr.wisc.edu
- Department of Engineering Physics, University of Wisconsin Madison, 1500 Engineering Drive, Madison, WI 53706, United States; EMAIL
- National Renewable Energy Laboratory, Thermal Systems Group, 15013 Denver West Parkway, Golden, CO 80401, United States; EMAIL
- Westinghouse Electric Company, Lead Fast Reactor Systems Development, ADDRESS United States; FMAII
- \* Correspondence: lindely2@wisc.edu (B.L.); Tel.: +1-608-265-2001 (B.L.)
- Abstract: Separate cycles for solar concentrating power and lead fast reactors, which innately
- 2 have issues with weather, grid demand, and time of day, have potential to benefit when coupled
- 3 together in a supercritical CO2 Brayton cycle. Combining these cycles could allow for the lead fast
- 4 reactor cycle to thermally charge the salt storage in the solar concentrating power cycle during
- 5 low demand periods and be utilized when grid demand increases. The implementation of the
- 6 independent cycles into one cycle is modeled to find the preferred location of the lead fast reactor
- 7 heat exchanger, concentrating solar power heat exchanger, salt charging heat exchanger, turbines,
- ${\mathfrak s}_{-}$  and recuperators within the supercritical CO2 Brayton cycle. Three cycle configurations have been
- studied: a two-cycle configuration which uses CSP and LFR heat for dedicated turbocompressors,
- combined cycle with two high temperature recuperators for both the CSP and LFR, and a combined
- cycle with CSP and LFR heat sources in parallel. [CONCLUSION]
- Keywords: Supercritical carbon dioxide Brayton Cycle; Concentrating Solar Power (CSP); Lead
- Fast Reactor (LFR), Cogeneration, Combined Cycle, Thermal Energy Storage (TES)

Citation: White, B.; Lindley, B.; Wagner, M. Modeling of Combined Lead Fast Reactor and Concentrating Solar Power Supercritical Carbon Dioxide Cycles to Demonstrate Feasibility, Efficiency Gains, and Cost Reductions. Sustainability 2021, 1, 0. https://doi.org/

Received: Accepted: Published:

**Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Submitted to *Sustainability* for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

- 14 1. Introduction
- 2. Materials and Methods
- 2.1. Cycle Component Modeling
- 2.1.1. Heat Exchangers
- 18 2.1.2. Turbines
- 2.1.3. Compressors
- 20 2.1.4. Concentrating Solar Power Cycle
- 2.2. Cycle Models
- 22 3. Results
- 3.1. Cycle Configurations

**Table 1.** Constant cycle parameters with definition, variable and set value. The variables with (\*) have changing labels depending on the specific cycle diagram.

| Parameter                                | Variable                  | Design Point Value |
|------------------------------------------|---------------------------|--------------------|
| Efficiencies                             |                           |                    |
| Main Compressor                          | $\eta_{MC}$               | 0.91 (-)           |
| Re-Compressor                            | $\eta_{RC}$               | 0.89 (-)           |
| Turbine                                  | $\eta_T$                  | 0.90 (-)           |
| Pump                                     | $\eta_P$                  | 0.90 (-)           |
| Approach Temperatures                    |                           |                    |
| Low Temperature Recuperator              | $\delta_{LTR}$            | 10 (K)             |
| High Temperature Recuperator             | $\delta_{HTR}$            | 10 (K)             |
| Concentrating Solar Power Heat Exchanger | $\delta_{CSPHX}$          | 10 (K)             |
| Pressures                                |                           |                    |
| Pressure Ratio                           | PR                        | 3.27 (-)           |
| High Side Pressure                       | (*)                       | 2.88e7 (Pa)        |
| Heat Into System                         |                           |                    |
| Lead-Fast Reactor Heat Transfer          | Qlfrhx                    | 9.5e8 (W)          |
| Concentrating Solar Power Heat Transfer  | $\dot{\mathcal{Q}}_{CSP}$ | 7.5e8 (W)          |
| Temperature                              |                           |                    |
| Main Compressor Inlet                    | (*)                       | 313.2 (K)          |
| Lead-Fast Reactor Low Temperature        | (*)                       | 673.2 (K)          |
| Pumps                                    |                           |                    |
| Pressure Rise Across Pump                | $\Delta_P$                | 3.726e6 (Pa)       |
| Pump Low Side Pressure                   | (*)                       | 3.0e6 (Pa)         |

#### 24 3.1.1. C-LFR-ON



Figure 1. Diagram for C-LFR-ON with focus on electricity generation

**Table 2.** State points calculated at steady state operation and LFR low temperature constrained to 673.2 K for C-LFR-ON cycle.

| Diagram<br>Label | Temperature<br>(K) | Pressure<br>(Pa) | Mass Flow<br>(kg/s) | Enthalpy<br>(J/kg) |
|------------------|--------------------|------------------|---------------------|--------------------|
| 1a-A             | 313.2              | 8.807e6          | 3029                | -149660            |
| 1b-A             | 313.2              | 8.807e6          | 3029                | -149660            |
| 2a-A             | 374.2              | 2.88e7           | 3029                | -110393            |
| 2b-A             | 374.2              | 2.88e7           | 3029                | -110393            |
| 3a-A             | 438.2              | 2.88e7           | 3029                | 10618              |
| За-В             | 506.4              | 2.88e7           | 832.4               | 114847             |
| 3b               | 451.9              | 2.88e7           | 3861                | 33089              |
| 3b-A             | 451.9              | 2.88e7           | 3861                | 33089              |
| 4a-A             | 673.2              | 2.88e7           | 3861                | 333669             |
| 4b               | 673.2              | 2.88e7           | 3861                | 333669             |
| 5a               | 868.2              | 2.88e7           | 3861                | 579720             |
| 5b               | 868.2              | 2.88e7           | 3861                | 579720             |
| 6a               | 722.8              | 8.807e6          | 3861                | 417482             |
| 6b               | 722.8              | 8.807e6          | 3861                | 417482             |
| 7a               | 722.8              | 8.807e6          | 3861                | 417482             |
| 7b               | 722.8              | 8.807e6          | 3861                | 417482             |
| 8a               | 461.9              | 8.807e6          | 3861                | 116902             |
| 8b               | 461.9              | 8.807e6          | 3861                | 116902             |
| 9a               | 384.2              | 8.807e6          | 3861                | 21981              |
| 9b-A             | 384.2              | 8.807e6          | 3029                | 21981              |
| 9b-B             | 384.2              | 8.807e6          | 834.2               | 21981              |

| Definition                             | Variable                 | Calculated Value |
|----------------------------------------|--------------------------|------------------|
| Cycle Efficiency (%)                   | $\eta_{cycle}$           | 45.28            |
| Alternator Power (W)                   | $W_A$                    | 4.302e8          |
| PreCooler Heat Transfer (W)            | $\dot{\mathcal{Q}}_{PC}$ | 5.198e8          |
| Main Compressor Power (W)              | $\dot{W}_{MC}$           | 1.189e8          |
| ReCompressor Power (W)                 | $\dot{W}_{RC}$           | 7.730e7          |
| Turbine Power (W)                      | $\dot{\mathcal{W}}_T$    | 6.264e8          |
| Main Compressor Mass Flow Fraction (-) | $y_1$                    | 0.7844           |
| LTR UA Value (W/K)                     | $UA_{LTR}$               | 2.284e7          |
| LTR Capacitance Ratio (-)              | $CR_{LTR}$               | 0.8473           |
| LTR Heat Transfer Rate (W)             | $\dot{Q}_{LTR}$          | 3.665e8          |
| LTR Effectiveness (-)                  | $arepsilon_{LTR}$        | 0.8742           |
| HTR UA Value (W/K)                     | $UA_{HTR}$               | 4.271e7          |
| HTR Capacitance Ratio (-)              | $CR_{HTR}$               | 0.9627           |
| HTR Heat Transfer Rate (W)             | Żнтк                     | 1.161e9          |
| HTR Effectiveness (-)                  | $\varepsilon_{HTR}$      | 0.9627           |

**Table 3.** State points calculated at steady state operation with LFR low temperature unconstrained and cycle efficiency maximized for C-LFR-ON cycle.

| Diagram<br>Label | Temperature<br>(K) | Pressure<br>(Pa) | Mass Flow<br>(kg/s) | Enthalpy<br>(J/kg) |
|------------------|--------------------|------------------|---------------------|--------------------|
| 1a-A             | 313.2              | 8.807e6          | 2929                | -149660            |
| 1b-A             | 313.2              | 8.807e6          | 2929                | -149660            |
| 2a-A             | 374.2              | 2.88e7           | 2929                | -110393            |
| 2b-A             | 374.2              | 2.88e7           | 2929                | -110393            |
| 3a-A             | 505.7              | 2.88e7           | 2929                | 113832             |
| 3a-B             | 506.4              | 2.88e7           | 1255                | 114847             |
| 3b               | 505.9              | 2.88e7           | 4184                | 114137             |
| 3b-A             | 505.9              | 2.88e7           | 4184                | 114137             |
| 4a-A             | 688.3              | 2.88e7           | 4184                | 352679             |
| 4b               | 688.3              | 2.88e7           | 4184                | 352679             |
| 5a               | 868.2              | 2.88e7           | 4184                | 579720             |
| 5b               | 868.2              | 2.88e7           | 4184                | 579720             |
| 6a               | 722.8              | 8.807e6          | 4184                | 417482             |
| 6b               | 722.8              | 8.807e6          | 4184                | 417482             |
| 7a               | 722.8              | 8.807e6          | 4184                | 417482             |
| 7b               | 722.8              | 8.807e6          | 4184                | 417482             |
| 8a               | 515.9              | 8.807e6          | 4184                | 178939             |
| 8b               | 515.9              | 8.807e6          | 4184                | 178939             |
| 9a               | 384.2              | 8.807e6          | 4184                | 21981              |
| 9b-A             | 384.2              | 8.807e6          | 2929                | 21981              |
| 9b-B             | 384.2              | 8.807e6          | 1255                | 21981              |

| Definition                             | Variable              | Calculated Value |
|----------------------------------------|-----------------------|------------------|
| Cycle Efficiency (%)                   | $\eta_{cycle}$        | 47.08            |
| Alternator Power (W)                   | $W_A$                 | 4.473e8          |
| PreCooler Heat Transfer (W)            | $\dot{Q}_{PC}$        | 5.027e8          |
| Main Compressor Power (W)              | $\dot{W}_{MC}$        | 1.150e8          |
| ReCompressor Power (W)                 | $\dot{W}_{RC}$        | 1.166e8          |
| Turbine Power (W)                      | $\dot{\mathcal{W}}_T$ | 6.789e8          |
| Main Compressor Mass Flow Fraction (-) | $y_1$                 | 0.7000           |
| LTR UA Value (W/K)                     | $UA_{LTR}$            | 5.468e7          |
| LTR Capacitance Ratio (-)              | $CR_{LTR}$            | 0.9867           |
| LTR Heat Transfer Rate (W)             | $\dot{Q}_{LTR}$       | 6.568e8          |
| LTR Effectiveness (-)                  | $arepsilon_{LTR}$     | 0.92             |
| HTR UA Value (W/K)                     | $UA_{HTR}$            | 4.829e7          |
| HTR Capacitance Ratio (-)              | $CR_{HTR}$            | 0.8657           |
| HTR Heat Transfer Rate (W)             | Żнтк                  | 9.981e8          |
| HTR Effectiveness (-)                  | $\varepsilon_{HTR}$   | 0.9544           |

## 25 3.1.2. C-CSP-ON



### 26 3.1.3. C-1HTR1T-ON



Figure 3. Diagram for C-1HTR1T-ON with focus on electricity generation

## 27 3.1.4. C-2HTR3T-ON



Figure 4. Diagram for C-2HTR3T-ON with focus on electricity generation

- <sup>28</sup> 3.2. Thermal Energy Storage Charging Techniques
- 3.2.1. C-LFR-PRE



Figure 5. Diagram for C-LFR-PRE thermal energy storage charging orientation

3.2.2. C-LFR-POST



Figure 6. Diagram for C-LFR-POST thermal energy storage charging orientation

3.2.3. C-LFR-PAR



Figure 7. Diagram for C-LFR-PAR thermal energy storage charging orientation

#### 3.2.4. C-LFR-CIRC



Figure 8. Full diagram for C-LFR-CIRC thermal energy storage charging orientation



Figure 9. Diagram for C-LFR-CIRC subcycle thermal energy storage charging orientation

## 33 4. Discussion

- Authors should discuss the results and how they can be interpreted from the
- perspective of previous studies and of the working hypotheses. The findings and their
- 36 implications should be discussed in the broadest context possible. Future research
- 37 directions may also be highlighted.

#### 5. Conclusions

This section is not mandatory, but can be added to the manuscript if the discussion is unusually long or complex.

#### 6. how to use

- 42 6.1. Subsection
- Citing a journal paper [1]. Now citing a book reference [2] or other reference types
- 44 [3]. [4]
- 6.1.1. Subsubsection
- Bulleted lists look like this:
- First bullet;
- Second bullet;
- Third bullet.
- Numbered lists can be added as follows:
- 1. First item;
- 52 2. Second item;
- 3. Third item.
- The text continues here.
- 6.2. Figures, Tables and Schemes
- All figures and tables should be cited in the main text as Figure 10, Table 4, etc.



**Figure 10.** This is a figure. Schemes follow the same formatting. If there are multiple panels, they should be listed as: (a) Description of what is contained in the first panel. (b) Description of what is contained in the second panel. Figures should be placed in the main text near to the first time they are cited. A caption on a single line should be centered.

**Table 4.** This is a table caption. Tables should be placed in the main text near to the first time they are cited.

| Title 1 | Title 2 | Title 3 |
|---------|---------|---------|
| Entry 1 | Data    | Data    |
| Entry 2 | Data    | Data    |

- 57 Text.
- Text.

6.3. Formatting of Mathematical Components

This is the example 1 of equation:

$$a = 1, (1)$$

- the text following an equation need not be a new paragraph. Please punctuate equations
- 61 as regular text.
- This is the example 2 of equation:

$$a = b+c+d+e+f+g+h+i+j+k+l + m+n+o+p+q+r+s+t+u+v+w+x+y+z$$
 (2)

- Please punctuate equations as regular text. Theorem-type environments (including
- propositions, lemmas, corollaries etc.) can be formatted as follows:
- Theorem 1. Example text of a theorem.
- The text continues here. Proofs must be formatted as follows:
- **Proof of Theorem 1.** Text of the proof. Note that the phrase "of Theorem 1" is optional
- if it is clear which theorem is being referred to.  $\Box$
- The text continues here.

**Author Contributions:** For research articles with several authors, a short paragraph specifying their individual contributions must be provided. The following statements should be used "Conceptualization, X.X. and Y.Y.; methodology, X.X.; software, X.X.; validation, X.X., Y.Y. and Z.Z.; formal analysis, X.X.; investigation, X.X.; resources, X.X.; data curation, X.X.; writing—original draft preparation, X.X.; writing—review and editing, X.X.; visualization, X.X.; supervision, X.X.; project administration, X.X.; funding acquisition, Y.Y. All authors have read and agreed to the published version of the manuscript.", please turn to the CRediT taxonomy for the term explanation. Authorship must be limited to those who have contributed substantially to the work reported.

**Funding:** Please add: "This research received no external funding" or "This research was funded by NAME OF FUNDER grant number XXX." and and "The APC was funded by XXX". Check carefully that the details given are accurate and use the standard spelling of funding agency names at <a href="https://search.crossref.org/funding">https://search.crossref.org/funding</a>, any errors may affect your future funding.

**Data Availability Statement:** In this section, please provide details regarding where data supporting reported results can be found, including links to publicly archived datasets analyzed or generated during the study. Please refer to suggested Data Availability Statements in section "MDPI Research Data Policies" at <a href="https://www.mdpi.com/ethics">https://www.mdpi.com/ethics</a>. You might choose to exclude this statement if the study did not report any data.

**Acknowledgments:** In this section you can acknowledge any support given which is not covered by the author contribution or funding sections. This may include administrative and technical support, or donations in kind (e.g., materials used for experiments).

Conflicts of Interest: Declare conflicts of interest or state "The authors declare no conflict of interest." Authors must identify and declare any personal circumstances or interest that may be perceived as inappropriately influencing the representation or interpretation of reported research results. Any role of the funders in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript, or in the decision to publish the results must be declared in this section. If there is no role, please state "The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results".

#### Nomenclature

The following abbreviations and variables are used in this manuscript:

#### Abbreviations:

CSP Concentrating solar power
EES Engineering Equation Solver
HTR High temperature recuperator

HX Heat exchanger LFR Lead-fast reactor

LTR Low temperature recuperator

MC Main compressor

NREL National Renewable Energy Laboratory

P Pump PC Pre-cooler RC Re-compressor

sCO<sub>2</sub> supercritical carbon dioxide

T Turbine

TES Thermal energy storage

#### Variables [Units]:

| CR | Capacitance Ratio [-]      |
|----|----------------------------|
| Ċ  | Capacitance Rate [W/K]     |
| Δ  | Temperature difference [K] |

 $\delta$  Approach temperature of heat exchanger [K]

 $\varepsilon$  Effectiveness of heat exchanger [-]

 $\eta$  Isentropic efficiency [-] h Enthalpy [J/kg]  $\dot{m}$  Mass flow rate [kg/s] NTU Number of transfer units [-]

P Pressure [Pa]

 $\dot{Q}$  Heat transfer rate [W] T Temperature [K]

UA Conductivity of heat exchanger [W/K]

v Volumetric flow rate  $[m^3/kg]$ 

 $\dot{W}$  Power [W] y Splitter Fraction [-]

#My ees file
def myfunc():
 return x
x = y
f = 8\*y^2

$$a^2 + b^2 = c^2 (3)$$

#### References

- 1. Wagner, M.J. Optimization of stored energy dispatch for concentrating solar power systems. PhD thesis, Colorado School of Mines, 2017.
- 2. Blair, N.; Dobos, A.; Freeman, J.; Gilman, P.; Janzou, P.; Wagner, M.; Neises, T.; Mehos, M. SAM five year solar technologies roadmap. *Applied energy* **2005**, 231, 1109–1121.
- 3. Hirsch, T.; Eck, M.; Blanco, M.J.; Wagner, M.; Feldhoff, J.F. Standardization of CSP Performance Model Projection: Latest Results From the guiSmo Project. Energy Sustainability, 2011, Vol. 54686, pp. 737–742.
- 4. Nellis, G.; Klein, S. Heat Transfer; Cambridge University Press, 2008. doi:10.1017/CBO9780511841606.