Série 12 du mardi 6 décembre 2016

Exercice 1.

On définit $tg(x) = \sin(x)/\cos(x)$. Montrez qu'il existe un voisinage de 0 où c'est une fonction croissante (et bien définie).

Exercice 2.

Soit $(\alpha_n)_{n=0}^{\infty}$, $(\beta_n)_{n=0}^{\infty}$ deux suites numériques bornées telles que $\alpha_n, \beta_n \geq 0$, $\forall n \in \mathbb{N}$. Démontrer que

$$\limsup_{n \to \infty} (\alpha_n \beta_n) \le \left(\limsup_{n \to \infty} \alpha_n \right) \left(\limsup_{n \to \infty} \beta_n \right).$$

Exercice 3(à rendre).

On définit la fonction f par

$$f(x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}.$$

- (1) Calculer le rayon de convergence de cette série.
- (2) Montrer que sur le domaine de convergence, on a $f(x) = \ln(1+x)$. *Indication:* dériver...

Exercice 4.

Soit F_n la suite de Fibonacci $0,1,1,2,3,5,8,\ldots$ définie par la relation $F_{n+2}=F_{n+1}+F_n, \forall n\geq 0$ et $F_0=0,\,F_1=1.$ Soit $F(x)=\sum_{n=0}^\infty F_nx^n.$

- 1.) Montrer que F a un rayon de convergence au moins 1/2. (indication: montrer que $F_n \leq 2^n$)
- 2.) Montrer que $F(x) = xF(x) + x^2F(x) + x$.
- 3.) Déduire que $F(x) = \frac{x}{1-x-x^2}$.
- 4.) Errire $F(x) = \frac{A}{x+\varphi} + \frac{B}{x+\psi}$ avec $\varphi > \psi$, $A, B \in \mathbb{R}$.
- 5.) En déduire une formule générale pour F_n en termes de φ et ψ .
- 6.) Montrer que $\frac{F_{n+1}}{F_n} \to \varphi$ lorsque n tend vers l'infini.