SOURCE WATER MONITORING

ENGINEER 2PX3 Team: : Water-48

Prepared by: Antheus Aldridge, Darshini Coore, Yasmine El Khouly, Wenrui He, Syed Ali Zaidi

Introduction

- Climate change → more algal blooms
- Cyanobacteria release cyanotoxins
- Important to detect blooms early

Solution Parameters

 Focus on the Hamilton-Halton region of Lake Ontario

- Our solution should:
 - Alert water treatment facilities when a bloom is detected
 - Have a minimal impact on environment
 - Small socio-cultural impact
 - Comply with local and Federal regulations

Stakeholders

• Stakeholders relate to constraints and parameters of our solution

Primary:

- Water treatment plants → performance constraints
- Wildlife and environmental activists → environmental constraints
- Nearby citizens \rightarrow socio-cultural and performance constraints

Secondary:

- Tourism Industry
- Fishing Industry
- Drone Manufacturers
- Media Corporations

Drone captures pictures aerially Pictures are fed into multiple algorithms If algal bloom is detected, send professional to check

Our solution

Use a drone to aerially monitor the lake and capture pictures

 Pictures go through multiple algorithms to detect algal blooms

• If there is a detection, alert water treatment facilities who send out a professional

PERSEID Framework

Performance Constraints

- Acquires large number of high resolution images
- Rechargeable battery and accessible charging station
- Low battery consumption
- Withstand severe weather conditions
- Need to avoid false negatives

$$FP = \frac{1 - 2 \cdot FN}{4 \cdot FN + 2}$$

Selected FN = 5% = 0.05

Environmental Constraints

- Noise Pollution
- · Speed limit set when flying over environmentally sensitive areas
- Protects safety of wildlife in instance of collision
- Avoids flying and gliding animals

Regulatory Constraints

- Fly within the height limit
- Must not break any privacy law
- Away from emergency operations and advertised events
- Away from airports and heliports
- Far away from other aircraft
- Survey the area where drone will be flown

Socio-Cultural Constraints

- Flies away from bystanders and residential areas
- Privacy and Data Protection
- Community Surveying and Acceptance
- Protects Safety of People in instance of collision

Conflicting Points raised by PERSEID

Conflicting Design Choices (Drone)

- Pulsing Light on the Drone (Avoid Bird Collision) vs.
 Maneuverability
- Cage (Avoid Drone Accident) vs. Speed, Maneuverability, Battery life
- Noise Pollution (Silent propellers, Brushless motor, and Noise reduction shrouds and Sand Down the Surface of the Propellers) vs. Speed, Maneuverability, Durability
- Wet Suit vs. Speed, Maneuverability, Battery life
- Weather vs. Speed, Maneuverability

Conflicting Design Choices (Operations and Algorithm)

- Number of Images vs. Storage Capacity/Security (SIM/ SD card)
- Number of Images vs. Privacy Concern
- Number of Images vs. Battery Life
- Number of Images/Image Resolution vs. Accuracy, processing time
- · Weather vs. Image Resolution
- Speed vs. Image Resolution
- Flight Path/Height vs. Privacy Concern
- Flight Path vs. Battery Life

Design Choices and Decisions

Design 1

Design 2

Design 3

Technical Decision Matrix

	WEIGHT (1-10)		Design 1		Design 2	Design 3	
Requirements Criteria/Constr.		Rating	Weighted Score	Rating	Weighted Score	Rating	Weighted Score
Data Transfer Ease and Security	8	2	16	2	16	5	40
Low Battery Consumption	7	1	7	3	21	4	28
Maneuverability Preformance to Avoid Obstacles	6	2	12	2	12	5	30
Ability to Travel At Hight Speed	5	2	10	3	15	5	25
Close Proximity to Flight Path from Charging Station	7	5	35	3	21	3	21
Quality and Number of Images Obtained	9	5	45	4	36	5	45
Easily Installed Charging Station	4	3	12	3	12	5	20
Area of Lake Covered by Flight Path	10	4	40	5	50	4	40
TOTAL			177		183		219

Environmental Performance

	WEIGHT (1-10)	Design 1			Design z	2000	Design 5
Requirements Criteria/Constr.		Rating	Weighted Score	Rating	Weighted Score	Rating	Weighted Score
Flight Path Avoids Environementally Sensitive Areas	7	1	7	2	14	5	35
Reduces Noise Pollution due to Drone System Modifications	9	4	36	4	36	2	18
Reduces Damage to Environment in Case of A Collision	7	4	28	4	28	2	14
Conspicuousy of Drone to Flying Animals due to Drone System Modifications	8	5	40	5	40	2	16
Reduces Likelihood of Crashing Due to Flight Path and Reduced Maneuverability	9	1	9	1	9	5	45
TOTAL			120		127		128

Socio-Cultural Performance

WEIGHT (1-10)	Design 1		Design 1		Design 1		Design 1		Design 1		Design 1		Design 1		Design 3	
	Rating	Weighted Score	Rating	Weighted Score	Rating	Weighted Score										
9	1	9	2	18	5	45										
7	4	28	4	28	2	14										
10	1	10	3	30	5	50										
	5	50	5	50	2	20 129										
	9 7	9 1 7 4 10 1	9 1 9 7 4 28 10 1 10 10 5 50	9 1 9 2 7 4 28 4 10 1 10 3 10 5 50 5	b b b c	9 1 9 2 18 5 7 4 28 4 28 2 10 1 10 3 30 5 10 5 50 5 50 2										

Regulatory Performance

	WEIGHT (1-10)	Design 1			Design 2		Design 3
Requirements Criteria/Constr.		Rating	Weighted Score	Rating	Weighted Score	Rating	Weighted Score
Drone is Visibille at All Times Given the Flight Path	8	3	24	2	16	2	16
Drone can Easily Maintain a Minimum Horizontal Distance of 30 Metres from Bystanders	9	1	9	3	27	4	36
Reduces Requirment to Survey Area (to take note of any obstacles or concerns)	5	1	5	3	15	4	20
Reduces Flight Height (is not Required to Fly Close to 122 metres)	7	4	28	2	14	1	7
Flight Path Avoids Municipal Areas, Airports and Heliports.	8	2	16	5	40	5	40
TOTAL			77		97		99

Overall Performance

	WEIGHT (1-10)	Design 1		Design 2		Design 3	
Requirements Criteria/Constr.		Rating	Weighted Score	Rating	Weighted Score	Rating	Weighted Score
Technical Performance	5	177	885	183	915	219	1095
Envionmental Performance	3	120	360	127	381	128	384
Socio-Cultural Performance	4	97	388	126	504	129	516
Regulatory Performance TOTAL	4	77	308 1941	97	388 2188	99	396 2391

Design 3 Ranks Highest Overall

Model Validation

Inputs

NUMBER OF ITERATIONS

NUMBER OF IMAGES

IMAGE RESOLUTION

Quality Checks

Loss

Testing/Validation
Training

Accuracy

Testing/Validation
Training

Results

Number of Iterations — Training vs Validation Loss

Increased iterations \rightarrow Decreased loss

Number of Iterations — Training vs Validation Accuracy

Increased iterations → **Increased accuracy**

Number of Images — Training vs Validation Loss

Fewer images \rightarrow Higher loss

Number of Images — Training vs Validation Accuracy

Fewer images → Lower accuracy

Image Resolution — Training vs Validation Loss

Higher Resolution \rightarrow **Lower loss**

Image Resolution – Training vs Validation Accuracy

Increased Resolution

Higher Resolution → **Higher accuracy**

Final Design

Design $2 + Design 3 + \dots$

- Bright coloured drone
- Blinking light
- Silent propellers (sanding)
- Brushless motors
- Noise reduction shrouds around propellers
- Compliant mesh cage
- Survey of communities in surrounding area

References

- [1] "Project Module Source Water Monitoring ENGINEER 2PX3: Integrated Engineering Design Project 2." https://avenue.cllmcmaster.ca/d2l/le/content/430517/viewContent/3560652/View? ou=430517 (accessed Feb. 05, 2022).
- [2] "Phantom 4 Pro V2.0 Specifications DJI." https://www.dji.com/ca/phantom-4-pro-v2/specs (accessed Feb. 04, 2022).
- [3] "Ready for Take-Off? Integrating Drones into the Transport System", Accessed: Mar. 12, 2022. [Online]. Available: www.itf-oecd.org
- [4] "Canadian Aviation Regulations (SOR/96-433)." https://tc.canada.ca/en/corporate-services/acts-regulations/list-regulations/canadian-aviation-regulations-sor-96-433 (accessed Mar. 12, 2022).
- [5] "Drones in Canada Office of the Privacy Commissioner of Canada." https://www.priv.gc.ca/en/opc-actions-and-decisions/research/explore-privacy-research/2013/drones_201303/ (accessed Mar. 12, 2022).
- [6] "Flying your drone safely and legally." https://tc.canada.ca/en/aviation/drone-safety/learn-rules-you-fly-your-drone/flying-your-drone-safely-legally (accessed Mar. 12, 2022).

Questions?