

El valor del PNV obtenido también servirá para determinar si a la estructura se le deberá de calcular la FUERZA TOP, ya que si PNV>0.25 debe de calcularse.

Análisis en el eje X
$$\text{PNV} = \frac{0.0906*H_{total}}{\sqrt{D_x}}$$

hn (m)	10.25
Dx (m)	11
PNV	0.28

EXISTE FUERZATOP

Cálculo de coeficiente de vibración

C debe de ser menor o igual a 0.12. Si C es mayor a 0.12 se debe de utilizar el valor 0.12 para C. USAR 0.12

K= Coeficiente estructural

C

Depende del tipo de estructura seleccionado, hay 4 sistemas estructurales, K no debe de ser menor que los valores que se darán a continuación.

TIPO	ARREGLO RESISTENTE	VALOR DE K
1	Edificios tipo cajón donde la paredes o muros de corte cargan el 80% del peso, tales como viviendas, piscinas, puentes, todas las edificaciones de mampostería.	
2	Edifícios con marcos dúctiles sin contra venteo, cuando el 90% de los cortes y momentos son soportados por las vigas y columnas,	0.67
3	Edificios con marcos dúctiles y muros de corte o de carga, o cuando el sistema estructural no absorba más del 25% de la fuerza lateral del mismo. Generalmente son sistemas a base de marcos con breizas, muro de corte, estructura metálica, mampostería, etc. Más de 75% del sismo lo absorben lo muros (sistemas con arriostramientos)	
4	Edificios o diseños especiales, sistemas estructurales tipo péndulo invertido, tales como tanques elevados	2.50

La estructura es un edificio con marcos dúctiles sin contraventeo

	0.7
K	0.67

S= Coeficiente de suelo

El valor de S depende de la transmisibilidad que tiene el

suelo, es decir la resistibilidad del suelo, coeficiente que ya puede ser dado por un laboratorio.

en este caso el valor de S será:

S 1.5

S se considera 1.5 siempre que el producto C*S sea menor a 0.14.

Si el valor del producto C*S es mayor a 0.14 se debe de usar 0.14

C*S	0.1

C*S	0.14
-----	------

Cálculo de coeficiente ZICKS

Z	1
I	1.3
K	0.67
C*S	0.14
ZICKS	0.12

Cálculo corte basal Vb

Se hace uso de la siguiente ecuación:

CORTE BASAL = ZICKS * W sismico total

ZICKS	0.12
Wsism.total	326.71
Corte basal	39.84
(Ton)	

Fuerza Top

	0.28
PNV	39.84
Vb	
Fuerza Top (Ton)	0.78

Distribución de fuerza por piso

Peso sísmico: Se utiliza el peso sísmico total del nivel a analizar.

Altura hacum: La altura acumulada es la altura que hay del suelo al nivel a analizar.

<u>Factor de Distribución:</u> El factor de distribución Cx equivale al producto del peso sísmico * la altura acumulada, esto dividido entre la sumatoria total del producto peso sismico * altura acum.

$$C_x = \frac{W_{sism} * h_{acum}}{\sum (W_{sism} * h_{acum})}$$

Fuerza en cada piso:

La fuerza por piso será el producto entre (Cortante Basal - fuerza top) * Cx. Sólo al último piso se le suma la fuerza top.

Fuerza top: Fuerza que se le suma únicamente al último nivel.

Fuerza top(ton)	0.78
-----------------	------

Corte Basal Vb:

Vb (ton)	39.84
V U (tOH)	37.04

Nivel	peso sísmico	h acumulada	Wsismico*hacum	Cx	Fp (Ton)
1	126.49	4	505.96	0.23	9.15
2	116.40	7	814.80	0.38	14.74
3	83.82	10	838.16	0.39	15.77
			2158.92	Vb	39.66

La sumatoria de todas las fuerzas de piso debe de ser igual al Corte Basal menos la fuerza top

SI CUMPLE

Rigidez por piso

Para la determinacion de la Rigidez haremos uso de las siguientes expresiones

Modulo de elasticidad del Concreto: se determina según ACI318S-14, con la siguiente expresión

$$E_C = 15100 * \sqrt{f'c}$$

Modulo de cortante del concreto: El modulo del cortante de concreto sera igual al 40% de su modulo de elasticidad, según lo indica el codigo ACI318S-14

Rigidez:Los ultimos niveles se asumen en voladizo, mientras que los entre pisos se toman como empotrados

Voladizo $\delta = \frac{h^3}{3E_cI} + \frac{1.2h}{A*G_c}$ Rigidez $K = \frac{1}{\delta}$ $\delta = \frac{h^3}{12E_cI} + \frac{1.2h}{A*G_c}$

Se debe de determinar los elementos que soportan el sismo en cada uno de los ejes en cada sentidos, X y Y, teniendo los elementos determinados se cálcula la rigidez de cada uno

Módulo de elasticidad

Columna

Ec (kg/cm^2)	248118.32
Eg(Kg/cm^2)	99247.33

30.00 cm

60.00 cm

M	· /	Altura de todos los	300.00
Long. M1	150.00	elementos (cm)	
Long. M2	180.00		
Espe t	30.00		

Elevador (cm)				
Lado Largo	354.00			
Lado corto 1	95.00			
Lado corto 2	98.00			
Lado inter 1	183.00			
Lado inter 2	183.00			
Espesor t	30.00			

	EN SENTIDO Y						
						Inercia	
EJE	ELEMENTO	NIVEL	volad/empo	b (cm)	h (cm)	(cm4)	Área (cm2)
Α	columna	3	voladizo	60.00	30.00	135000	1800
Α	muro M1	3	voladizo	30.00	150.00	8437500	4500
Α	columna	3	voladizo	60.00	30.00	135000	1800
В	Muro elevador Lado L	3	voladizo	30.00	354.00	110904660	10620
В	Muro 2	3	voladizo	180.00	30.00	405000	5400
С	columna	3	voladizo	60.00	30.00	135000	1800
С	columna	3	voladizo	60.00	30.00	135000	1800
С	columna	3	voladizo	60.00	30.00	135000	1800

				Área	Ec	Gc	
EJE	ELEMENTO	NIVEL	Inercia (cm4)	(cm2)	(kg/cm2)	(kg/cm2)	delta
Α	columna	3	135000	1800	248118.32	99247.328	0.000270704
Α	muro M1	3	8437500	4500	248118.32	99247.328	5.10509E-06
Α	columna	3	135000	1800	248118.32	99247.328	0.000270704
В	Muro elevador Lado L	3	110904660	10620	248118.32	99247.328	6.68619E-07
В	Muro 2	3	405000	5400	248118.32	99247.328	9.02347E-05
С	columna	3	135000	1800	248118.32	99247.328	0.000270704
С	columna	3	135000	1800	248118.32	99247.328	0.000270704
С	columna	3	135000	1800	248118.32	99247.328	0.000270704

EJE	ELEMENTO	RIGIDEZ K	K TOTAL DE EJE
Α	columna	3694.06928	
Α	muro M1	195882.8842	
Α	columna	3694.06928	203271.0228
В	Muro elevador Lado L	1495620.773	
В	Muro 2	11082.20784	1506702.981
С	columna	3694.06928	
С	columna	3694.06928	
С	columna	3694.06928	11082.20784
		k TOTAL EN Y	1721056.212

	EN SENTIDO X						
EJE	ELEMENTO	NIVEL	volad/empo	b (cm)	h (cm)	Inercia (cm4)	Area (cm2)
1	columna	3	voladizo	30.00	60.00	540000	1800
1	muro elev lado corto	3	voladizo	30.00	183.00	15321217.5	5490
1	columna	3	voladizo	30.00	60.00	540000	1800
2	Muro M1	3	voladizo	150.00	30.00	337500	4500
2	muro elev lado corto	3	voladizo	30.00	183.00	15321217.5	5490
2	columna	3	voladizo	30.00	60.00	540000	1800
3	columna	3	voladizo	30.00	60.00	540000	1800
3	Muro M2	3	voladizo	30.00	180.00	14580000	5400
3	columna	3	voladizo	30.00	60.00	540000	1800

			Inercia	Area			
EJE	ELEMENTO	NIVEL	(cm4)	(cm2)	Ec (kg/cm2)	Gc (kg/cm2)	delta
1	columna	3	540000	1800	248118.32	99247.328	6.9187E-05
1	muro elev lado corto	3	15321217.5	5490	248118.32	99247.328	3.0282E-06
1	columna	3	540000	1800	248118.32	99247.328	6.9187E-05
2	Muro M1	3	337500	4500	248118.32	99247.328	0.00010828
2	muro elev lado corto	3	15321217.5	5490	248118.32	99247.328	3.0282E-06
2	columna	3	540000	1800	248118.32	99247.328	6.9187E-05
3	columna	3	540000	1800	248118.32	99247.328	6.9187E-05
3	Muro M2	3	14580000	5400	248118.32	99247.328	3.1596E-06
3	columna	3	540000	1800	248118.32	99247.328	6.9187E-05

EJE	ELEMENTO	RIGIDEZ K	K TOTAL DE EJE
1	columna	14453.4944	
1	muro elev lado corto	330227.768	359134.7572

1	columna	14453.4944	
2	Muro M1	9235.1732	
2	muro elev lado corto	330227.768	
2	columna	14453.4944	353916.436
3	columna	14453.4944	
3	Muro M2	316497.385	
3	columna	14453.4944	345404.3733
		k TOTAL EN X	1 058 455.57

CENTRO DE RIGIDEZ

Centro de Rigidez. Planta de distancia de Rigidez

EJE	Dy	K	K * Dy
Α	0.22	203271.023	44042.0549
В	6.28	1506702.98	9462094.72
С	10.88	11082.2078	120574.421
	SUMAS	1721056.21	9626711.2

EJE	Dx	K	K * Dx
1	0.15	359134.7572	53870.21358
2	4.88	353916.436	1727112.208
3	8.12	345404.3733	2804683.511
	SUMAS	1058455.567	4585665.933

$$X_{CR} = \frac{\sum K * Dx}{\sum K}$$
 $Y_{CR} = \frac{\sum K * Dy}{\sum K}$

$$Y_{CR} = \frac{\sum K * Dy}{\sum K}$$

ey = CM - CR, ex = CM - CR, EN SU RESPECTIVO EJE.

X CR	4.33 m
Y CR	5.59 m

CM X	5.49 m
CM Y	3.95 m

Exentricidad				
Lx	11			
Ly	8.27			
ex = 0.05*Lx	0.55			
ey = 0.05*Ly	0.41			
ex (m)	1.158			
ey (m)	-1.643			

DSTRIBUCIÓN DE FUERZA POR EJE

	FUERZA DE	PISO	
NIVEL	W sismico	h acum	Fp
1	126.49	4	9.15
2	116.4	7	14.74
3	83.82	10	15.94

DISTRIBUCIÓN DE LA FUERZA DE PISO POR EJE

Se utiliza la siguiente ecuación

$$FR \ eje = \frac{K_{eje}}{\Sigma K_{PISO}} * F_{piso}$$

EJE	NIVEL	K	Fp (ton)	FR eje(ton)
1	3	359134.757	15.94	5.41
2	3	353916.436	15.94	5.33
3	3	345404.373	15.94	5.20
	SUMA K	1058455.57	F TOT	15.94

EJE	NIVEL	K	Fp (ton)	FReje (ton)
Α	3	203271.023	15.94	1.88
В	3	1506702.98	15.94	13.95
С	3	11082.2078	15.94	0.10
	SUMA K	1721056.21	F TOT	15.94

FUERZA POR EJE DEBIDO AL MOMENTO TORSOR

$$Ei = \frac{K * d'^{2}}{K * d'}$$

$$FMt = \frac{e_{y-y} * F_{piso}}{Fi}$$

Cuando FRm y FMt tienen el mismo signo, entonces se suman para obtener la fuerza por marco FM.

Cuando FRm y FMt no tienen el mismo signo, entonces hay que restarlos para obtener la fuerza por marco FM.

INGRESO DE SISMO EN X-X

El sismo ingresa en el centro de masa CM.

M TORSOR= ey * Fp =	26.197
M TORSOR= ey * Fp =	-26.197

EJE	d'		(d')2	K	K*(d')2	K*d'	Ei	FMT
	1	4.17 m	17.39	359134.76	6244958.4	1497591.9	7.7048	3.40 Ton
	2	0.93 m	0.86	353916.44	306102.3	329142.3	35.0569	0.75 Ton
	3	3.80 m	14.44	345404.37	4987639.2	1312536.6	8.7911	2.98 Ton
				Z(K*(4,75)	11538699 9			

EJE	F eje	FMT	FM DISEÑO
1	5.41 Ton	3.40 Ton	5.41
2	5.33 Ton	0.75 Ton	6.08
3	5.20 Ton	2.98 Ton	8.18
	15.94		19.67

INGRESO DE SISMO EN X - X.

<u>INGRESO DE SISMO EN Y - Y</u>

59400.6

102.9439

0.25 Ton

				M TORSOR=	ex * Fp=	18.452		
					ex * Fp=	18.452		
'		(d')2		K	K*(d')2	K*d'	Ei	FMT
	5.34 m		28.52	203271.02	5796395.2	1085467.3	5.6335	4.65 Ton
	0.01 m		0.00	1506702.98	150.7	15067.0	405.8486	0.06 Ton

318387.4

 $\sum (K^*(d')2)$ 6114933.2

11082.21

EJE	F eje	FMT	FM DISEÑO
А	1.88 Ton	4.65 Ton	4.65
В	13.95 Ton	0.06 Ton	14.02
С	0.10 Ton	0.25 Ton	0.36
	15.94		19.03

28.73

INGRESO DE SISMO EN Y - Y.

EJE

A B C d'

5.36 m

METODO AGIES

DISEÑO ESTRUCTURAL DEL COLEGIO DE INGENIEROS CONSIDERACIONES INICIALES DE LA EDIFICACIÓN

Ubicación: Municipio de San Marcos, San Marcos, Guatemala Uso: Colegio

Pisos: 3 Niveles

La estructura será diseñada con un sistema de marcos estructurales

El método para realizar el análisis símico será el establecido por la normativa SEAOC

Carga	Viva	Sobre losa	Bajo losa	Sobre
(kg/m^2)				Carga
Techo	150.00	60.00	25.00	185.00
Entre piso	250.00	60.00	25.00	295.00
	Vigas			
	Dirección	Υ	X	
	Tipo	V-A	V-1	
	Base (m)	0.25	0.25	
	Altura (m)	0.50	0.50	
	Area (m^2)	0.125	0.125	

Muros				
W (kg/m^2)	180.00			
Espesor t (m)	0.30			
Longitud M1 (m)	1.50			
Longitud M2 (m)	1.80			
Area M1 (m^2)	0.45			
Area M2 (m^2)	0.54			
Elevad	or			
lado corto 1 (m)	0.95			
Lado corto 2 (m)	0.98			
Lado interno 1 (m)	1.53			
Lado interno 2 (m)	1.53			
Lado Largo (m)	3.54			
Espesor (m)	0.30			
Area (m^2)	2.56			

	Losas	5
t critico (m)		0.12

Columnas		
C-A		
0.30		
0.60		
0.18		

Datos de concreto		
f'c (kg/cm^2)	270.00	
Peso concreto W (kg)	2400.00	
Modulo de elasticidad del concreto EC (kg/m^2)	248118.32	
Modulo de corte EG= 40%EC (kg/m^2)	99247.33	
	2.40	

PLANOS DE PLANTA Y ELEVACIÓN

PLANTA

CÁLCULO NIVEL 3

Las áreas tributarias determinaran la altura de las columnas, para los pisos inferiores, como piso 1 y 2, se considera la mitad de la columna del piso anterior y la mitad del piso en análisis.

Para el último piso: debido a que los muros de corte y elevadores llegan hasta la parte más alta de la estructura, se debe de considerar la mitad faltante de la viga del último piso; ya que las áreas tributarias toman como referencia el eje de la viga.

PESO DE COLUMNAS

Elemento	Área (m^2)	Altura (m)		No
Columnas	0.18	1.75	2.40	5.00
Muro 1	0.45	1.75	2.40	1.00
Muro 2	0.54	1.75	2.40	1.00
Elevadores	2.56	1.75	2.40	1.00

Para el cálculo del peso de los elementos se utilizará la siguiente formula

 $W = volumen \; del \; elemento * \gamma * No \; de \; elementos$

<u>Columnas</u>			
Wcol. (Ton)			3.78

<u>Muros</u>		
WM1 (Ton)	1.89	
WM2 (Ton)	2.27	

<u>Elevadores</u>			
Welev. (Ton)			10.75

W total de columnas		
Wcol total (Ton)	18.69	

Eje Y				
Eje	Base de viga (m)	Altura de viga (m)	Longitud (m)	
A	0.25	0.5	2.35	
A	0.25	0.5	3.82	
В	0.25	0.5	4.43	
С	0.25	0.5	2.94	
С	0.25	0.5	4.43	
		Longitud total (m)	17.97	

		Area de viga (m^2)	0.13]
		Eje 🛚	(i
Eje		Base de viga (m)	Altura de viga (m)	Longitud (m)
	1	0.25	0.5	4
	1	0.25	0.5	3.97
	2	0.25	0.5	4.3
	2	0.25	0.5	3.97
	3	0.25	0.5	4.78
	3	0.25	0.5	3.22
			Longitud total (m)	24.2

Area de viga (m^2)	0.13
	2.40

El peso total de las vigas se calcula utilizando la siguiente fórmula

 $W = volumen \ del \ elemento * \gamma$

Peso por carga muerta:

El peso por carga muerta es igual a la suma de los siguientes pesos

$$W_{MUERTA\ TOTAL} = W_{PROPIO} + W_{S/LOSA} + W_{B/LOSA} + W_{S/C}$$

Wpropio = peso propio

Ws/losa = peso sobre losa

Wb/losa = peso bajo losa

Ws/c =peso por sobre carga

W peso propio: el peso propio se cálcula utilizando la siguiente ecuación:

$$W_{Propio} = \gamma * área total de la losa * espesor$$

Ws/losa: es todo el peso que se encuentre sobre la losa como: piso, relleno, ducteria

$$W_{S/Losa} = carga sobre losa * área total de la losa$$

Wb/losa: es todo el peso que se encuentra bajo la losa como: lamparas, repello, cernido, cielo falso

$$W_{B/Losa} = carga \ bajo \ losa * área total de la losa$$

Ws/c: el peso por sobre carga se cálcula utilizando la ecuacion:

$$W_{s/c} = sobre \ carga * \'area \ total \ de \ la \ losa$$

Peso por carga viva: Será el equivalente al producto de la carga viva por el area donde se aplica

$$W_V = carga \ viva * área \ total \ de la losa$$

Peso por sismo:

será la suma del 100% de la carga muerta más el 25% de la carga viva

$$W_{\text{sigmo}} = 100\%WM + 25\%WV$$

Planta de losas

Losa	Longitud Y (m)	Longitud X (m)	Área (m^2)
1	3.02	4.30	12.99
2	3.02	4.32	13.05
3	4.50	5.90	26.55
4	4.50	4.35	19.58
		total areas (m^2)	72.1574

			Espesor de losa (m)	0.12
Carga (kg/m^2	Viva	Sobre losa	Bajo losa	Sobre Carga
Techo	150.00	60.00	25.00	185.00
Carga (Ton/m	` Viva	Sobre losa	Bajo losa	Sobre Carga
Techo	0.15	0.06	0.025	0.185
				2.40

Peso muerto total

Peso carga viva

$$W_V = carga\ viva * área\ total\ de\ la\ losa$$

Peso por sismo

$$W_{sismo} = 100\%WM + 25\%WV$$

Wsismo (Ton) 42.97

W total losa (Ton)	42.97
--------------------	-------

PESO POR MUROS

Para entrepisos: La altura de los muros de relleno se determina por áreas tributarias, es decir, se considera la mitad de la columna del piso anterior y la mitad del piso en análisis. Además, se le restará el alto de la viga del piso en análisis.

Para último piso: La altura de los muros de relleno se determina por áreas tributarias, es decir, se considera la mitad de la columna del piso en análisis. Además, se le restará el alto de la viga del piso en análisis.

Altura de muros

Se suman todas las longitudes de los muros tanto en x como en y

Ltotal (m)	42.2
------------	------

Wm = peso superficial de mamposteria

Para determinar el peso total de muros se utiliza la ecuación:

 $W_m = Altura \; de \; muros * longitud \; total \; de \; muros * peso \; superficial \; de \; la \; mamposteria$

Altura de muro	1.25	m
Long. de muro	42.21	m
Wm	0.18	Ton/m^2

El cálculo del peso sismico del nivel en analisis es igual a la suma de todos los pesos obtenidos

$$W_{total\;nivel\;de\;analisis} = W_{total\;col} + W_{total\;viga} + W_{total\;losa} \, + \, W_{total\;muro}$$

Peso sismico del nivel en analisis	83.82	Ton
---------------------------------------	-------	-----

CÁLCULO NIVEL 2

Las áreas tributarias determinaran la altura de las columnas, para los pisos inferiores, como piso 1 y 2, se considera la mitad de la columna del piso anterior y la mitad del piso en análisis.

Para el último piso: debido a que los muros de corte y elevadores llegan hasta la parte más alta de la estructura, se debe de considerar la mitad faltante de la viga del último piso; ya que las áreas tributarias toman como referencia el eje de la viga.

PESO DE COLUMNAS

Elemento	Área (m^2)	Altura (m)	W (ton/m3)	No
Columnas	0.18	3.00	2.40	5.00
Muro 1	0.45	3.00	2.40	1.00
Muro 2	0.54	3.00	2.40	1.00
Elevadores	2.56	3.00	2.40	1.00

Para el cálculo del peso de los elementos se utilizará la siguiente formula

 $W = volumen del elemento * \gamma * No. de elementos$

Column	<u>nas</u>		
Wcol. (Ton)	6.48		
Muro	<u>)</u>		
WM1 (Ton)	3.24		
WM2 (Ton)	3.89		
<u>Elevadores</u>			
Welev. (Ton)	18.42		

W total de col	umnas
Wcol total (Ton)	32.03

	Eje Y				
Eje	Base de viga (m)	Altura de viga	Longitud (m)		
A	0.25	0.5	2.35		
A	0.25	0.5	3.82		
В	0.25	0.5	4.43		
С	0.25	0.5	2.94		
C 0.25		0.5	4.43		
		Longitud total	17.97		
	Area de viga (m^2)	0.13			
	Eje X				
Eje	Base de viga (m)	Altura de viga	Longitud (m)		
1	0.25	0.5	4		
1	0.25	0.5	3.97		
2	0.25	0.5	4.3		
2	0.25	0.5	3.97		
3	0.25	0.5	4.78		
3	0.25	0.5	3.22		
		Longitud total	24.24		

Area de viga (m^2)	0.13
	2.40

El peso total de las vigas se calcula utilizando la siguiente formula

 $W = volumen \ del \ elemento * \gamma$

W de viga e	n eje Y	W de viga en eje X		eje X
Wvy (Ton)	5.39		Wvx (Ton)	7.27
		W To	tal de vigas	
		Wviga total (Ton)	12.66	

PESO POR LOSA

El peso por losa está compuesto por los siguientes pesos

Peso por carga muerta:

El peso por carga muerta es igual a la suma de los siguientes pesos

$$W_{MUERTA\ TOTAL} = W_{PROPIO} + W_{S/LOSA} + W_{B/LOSA} + W_{S/C}$$

Wpropio = peso propio

Ws/losa = peso sobre losa

Wb/losa = peso bajo losa

Ws/c =peso por sobre carga

W peso propio: el peso propio se cálcula utilizando la siguiente ecuación:

$$W_{Propio} = \gamma * área total de la losa * espesor$$

Ws/losa: es todo el peso que se encuentre sobre la losa como: piso, relleno, ducteria

$$W_{S/Losa} = carga sobre losa * área total de la losa$$

Wb/losa: es todo el peso que se encuentra bajo la losa como: lamparas, repello, cernido, cielo falso

$$W_{B/Losa} = carga \ bajo \ losa * área \ total \ de \ la \ losa$$

Ws/c: el peso por sobre carga se cálcula utilizando la ecuacion:

$$W_{s/c} = sobre \ carga * área \ total \ de \ la \ losa$$

Peso por carga viva: Será el equivalente al producto de la carga viva por el area donde se aplica