Más sobre pronunciación de copias y orden de palabras

Carlos Muñoz Pérez
Universidad de Buenos Aires & CONICET

cmunozperez@filo.uba.ar

Cuando se incorporan *huellas* o *copias no pronunciadas* a la teoría es necesario *explicar su distribución*.

Hay un contraste evidente entre (1a) y (1b), a pesar de que ambas Cadenas conectan las mismas posiciones estructurales.

- (1) a. ¿Qué dijo Cosmo hⁱ?
 - b. *¿h¹ dijo Cosmo qué?

¿Qué tipo de regla, principio, restricción, ley, lo que sea, establece que la *dependencia filler-gap* de (1b) es anómala?

Respuesta unánime del campo: el filler tiene que *mandar-c* a sus gaps de movimiento.

- Principio de Categorías Vacías (Chomsky 1981).
- Condición del Ligamiento Propio (e.g., Lasnik & Saito 1992).
- Condición de Extensión (e.g., Müller 1998).

Esta idea calza muy bien con las huellas: (i) son elementos creados durante la computación sintáctica, y (ii) su funcionamiento se asimila a principios de Binding.

Chomsky (1995) extiende la explicación estructural a la Teoría de la Copia; Nunes (1995, 2004) la justifica.

P-Highest

Dada una Cadena C = $\{\alpha^1, ..., \alpha^n\}$, pronuncie la copia de α que *manda-c* (asimétricamente) a las demás.

P-Highest introduce una "tensión" a nivel explicativo.

La Teoría de la Copia dice que *el movimiento sintáctico es un epifenómeno de cómo PF borra elementos de Cadenas formadas por constituyentes indistinguibles*.

Esperaríamos, entonces, que la decisión de qué copia se va a borrar se haga *en términos de relaciones y operaciones primitivas de PF*.

Las relaciones de mando-c entre las copias se determinan en la sintaxis estricta. O sea que es en este punto en donde se decide qué copia se va a pronunciar. PF termina teniendo relativamente "poco peso" en esta decisión.

Vamos a explorar la idea de que la pronunciación de copias se determina a partir de una relación sintáctica exclusiva de PF: la *linealidad* (siguiendo supuestos de Chomsky 1995).

P-Leftmost

Dada una Cadena C = $\{\alpha^1, ..., \alpha^n\}$, pronuncie la copia de α que *precede linealmente* a las demás.

De acuerdo con P-Leftmost, las relaciones jerárquicas que se establecen en la sintaxis estricta tienen *una relación "indirecta"* con la pronunciación de Cadenas.

Marcador de frase → Linealización → Pronunciación de Cadenas

En definitiva, vamos a estar comparando dos tipos de teoría:

P-Highest

Dada una Cadena C = $\{\alpha^1, ..., \alpha^n\}$, pronuncie la copia de α que *manda-c* (asimétricamente) a las demás.

P-Leftmost

Dada una Cadena C = $\{\alpha^1, ..., \alpha^n\}$, pronuncie la copia de α que *precede linealmente* a las demás.

Estas teorías son equivalentes bajo el ACL.

ACL (versión de Nunes & Uriagereka 2000)

Si α manda-c asimétricamente a β , entonces α precede a β .

O sea que para obtener predicciones distintas a partir de P-Highest y P-Leftmost vamos a tener que dejar de lado el ACL.

Vamos a ver qué tal nos las arreglamos con P-Leftmost y sin el ACL para dar cuenta de algunos fenómenos empíricos.

Sin el ACL, hay dos formas en las que podemos *linealizar* un constituyente SX formado por un núcleo X y un SY.

Vamos con la alternativa de núcleo inicial [_{sx} X → SY]. Supongan que a este constituyente le agregamos (i) un núcleo Z, y (ii) generamos una copia de SY en Spec, Z. Otra vez dos opciones:

P-Highest
$$[_{SZ} SY [_{Z'} Z [_{SX} X \frac{SY}{SY}]]]$$

$$[_{SZ}[_{Z'}Z[_{SX}X\frac{SY}]]SY]$$

P-Leftmost
$$[_{SZ} SY [_{Z'} Z [_{SX} X \frac{SY}{SY}]]]$$

$$[_{SZ}[_{Z'}Z[_{SX}XSY]]$$

P-Leftmost hace *dos predicciones complementarias* a partir de especificadores derivados que se linealizan a la derecha de la estructura principal.

- i. Una Cadena que se linealiza de este modo no puede alterar el orden de constituyentes, i.e., la representación de PF se mantiene constante se aplique este movimiento o no.
- ii. Estos especificadores pueden interpretarse en la interfaz semántica a pesar de no recibir manifestación fonológica.

P-Highest

$$[_{SZ}[_{Z'}Z[_{SX}X\frac{SY}{SY}]]SY]$$

P-Leftmost

$$[_{SZ}[_{Z'}Z[_{SX}XSY]] \stackrel{SY}{SY}]$$

No existe el "alemán inverso"

Recordarán el fenómeno de V2 en, por ejemplo, alemán:

- (2) Die Kinder spielten vor der Schule im Park Fußball. los chicos jugaron antes la escuela en parque fútbol.
- (3) Vor der Schule spielten die Kinder im Park Fußball. antes la escuela jugaron los chicos en parque fútbol

Vimos el tratamiento clásico de den Besten (1977).

No existe el "alemán inverso"

Kayne (1994, 2003): si el movimiento a la derecha fuera posible, esperaríamos que existan *lenguas de verbo penúltimo*. Esto muestra que el ACL es necesario.

Este argumento sólo se sigue bajo P-Highest. La inexistencia de este tipo de lengua se sigue de P-Leftmost sin otros supuestos.

$$[_{SC} \dots [_{C'} \dots [_{SV} \dots SX \dots V] [_{C^{\circ}} C+lambda]] \xrightarrow{SX}]$$

Asumo que no olvidaron a Joseph Greenberg.

Universal 20 (Greenberg 1963: 87)

Cuando todos o algunos de los elementos (demostrativo, numeral, adjetivo descriptivo) precede al nombre, estos siempre se hayan en ese orden. Si siguen al nombre, el orden es el mismo o el exactamente opuesto.

Hawkins (1983): "la definición de Greenberg es muy estricta; cualquier orden es posible en contexto postnominal".

Cinque (2005): "la definición de Hawkins es muy irrestricta; *no todo orden postnominal se atestigua a nivel tipológico*".

Cinque (2005) se revisó la bibliografía. *De los 24 órdenes* posibles, sólo 14 se atestiguan a través de las lenguas.

- (4) a. Dem-Num-A-N
 - b. Dem-Num-N-A
 - c. Dem-N-Num-A
 - d. N-Dem-Num-A
 - e. *Num-Dem-A-N
 - f. *Num-Dem-N-A
 - g. *Num-N-Dem-A
 - h. *N-Num-Dem-A
 - i. *A-Dem-Num-N
 - j. *A-Dem-N-Num
 - k. A-N-Dem-Num
 - l. N-A-Dem-Num

- m. *Dem-A-Num-N
- n. Dem-A-N-Num
- o. Dem-N-A-Num
- p. N-Dem-A-Num
- q. *Num-A-Dem-N
- r. Num-A-N-Dem
- s. Num-N-A-Dem
- t. N-Num-A-Dem
- u. *A-Num-Dem-N
- v. *A-Num-N-Dem
- w. A-N-Num-Dem
- x. N-A-Num-Dem

Cinque propone un análisis que deriva los 14 patrones atestiguados interlingüisticamente. Adopta cinco supuestos.

- i. ACL: ON.
- ii. La cartografía universal del nominal es **Dem-Num-A-N** (4a).
- iii. Dem, Num y A *ocupan posiciones de especificador de categorías funcionales*.
- iv. Cada categoría funcional está precedida por un nodo de concordancia.
- v. Los constituyentes que se mueven *incluyen siempre a N*.

Ya saben como funciona el ACL: todos los órdenes "no-básicos" deben derivarse por movimiento sintáctico.

Dem-Num-N-A (4b)

 N se mueve a la posición de especificador de la proyección de concordancia correspondiente al núcleo Y, i.e., ConcY, justo por encima de la posición del adjetivo.

N-A-Num-Dem (4x). Roll-up-Movement. (i) N se mueve a Spec,ConcY. (ii) SConcY se mueve a Spec,ConcX. (iii) SConcX debe moverse a Spec,ConcW.

De las mismas premisas se deriva *la inaceptabilidad* de los 10 patrones restantes.

*SConcW

*Dem-A-Num-N (4m)

- Se seguiría de mover el sintagma adjetivo SA por sobre el numeral.
- Sin embargo, esto viola el supuesto de que todo constituyente que se mueve dentro del nominal debe contener a N.

Abels & Neeleman (2012) ofrecen una alternativa simplificadora al análisis de Cinque a partir de supuestos diferentes.

- i. ACL: OFF.
- ii. La jerarquía básica sigue siendo Dem > Num > A > N, pero...
- iii. Sin categorías funcionales en particular.
- iv. Sin proyecciones de concordancia.
- v. Los constituyentes que se mueven *incluyen siempre a N*.

Dem-Num-A-N (4a)

N-A-Num-Dem (4x)

Abels & Neeleman derivan a partir de diversos ordenamientos seis de los catorce patrones atestiguados.

Dem-Num-N-A (4b)

Num-N-A-Dem (4s)

Los seis patrones restantes se derivan por movimiento.

Dem-N-Num-A (4c)

N-Num-A-Dem (4t)

Al igual que en el sistema de Cinque (2005), la inaceptabilidad de varios de los patrones no atestiguados se deriva a partir de la condición que establece que el *constituyente que se mueve dentro del SD debe contener a N*.

*A-Dem-Num-N (4i)

*Num-Dem-A-N (4e)

Existe, sin embargo, un conjunto de ordenamientos no atestiguados que el sistema de Abels & Neeleman no puede descartar a partir de los supuestos hasta aquí presentados.

*Num-A-Dem-N (4q)

Los autores simplemente *asumen que no hay movimiento a la derecha*. Sin embargo, *este resultado se sigue de P-Leftmost*.

$$A < N < Num < Dem < N$$
 (cf. 4w)

Num
$$<$$
A $<$ N $<$ Dem $<$ $\frac{N}{4}$ (cf. 4r)

*Final-Inicial

*SB

FOFC es una generalización descriptiva propuesta por Biberauer, Holmberg & Roberts (2014).

Condición de Final-sobre-Final (FOFC)

Si $S\beta$ es un sintagma de núcleo final, $S\alpha$ es un sintagma dominado por $S\beta$, y ambos pertenecen a la misma proyección extendida, entonces $S\alpha$ debe ser un sintagma de núcleo final.

Biberauer, Sheehan & Newton (2010): en las lenguas germánicas se registran diversos órdenes entre auxiliar, verbo y objeto a nivel diacrónico y sincrónico.

- a. O-V-Aux German and dialects of German, Dutch and its dialects, Afrikaans; Old English, Old Norse
- b. O-Aux-V or so-called verb-raising/VR structures: Swiss German dialects, Dutch and its dialects, Afrikaans; Old English, Old Norse
- c. Aux-O-V or so-called *verb-projection raising/VPR* structures which involves a head-initial TP and a head-final VP: Swiss German dialects, Dutch dialects, spoken Afrikaans; Middle Dutch, Old High German, Old English, Old Norse
- d. V-Aux-O: required for CP complements in German, Dutch, Afrikaans, and their dialects; possible with PP complements in Dutch and Afrikaans and, to a lesser extent, German; possible with DPs in Old English and Old Norse
- e. Aux-V-O: English, Mainland Scandinavian, Icelandic; Old English
- f. *V-O-Aux: unattested⁸ (summary based on BHR 2008a: 97)

*Final-Inicial

Biberauer, Sheehan & Newton (2010): la coaparición de complementantes en posición final y de núcleos de polaridad en posición inicial está fuertemente restringida a nivel tipológico.

Posición de C	Posición de Pol	Número de lenguas:
		genus: familia
Inicial	Inicial	78: 35: 13
Final	Final	46: 33: 20
Inicial	Final	82: 40: 16
Final	Inicial	4: 3: 3

Biberauer, Holmberg & Roberts (2014) ofrecen una explicación a FOFC *a partir del ACL*.

De acuerdo con ellos, una proyección extendida se define a partir de una secuencia ininterrumpida de núcleos que portan un mismo tipo de rasgo categorial [± V].

Por ejemplo, los núcleos C, T y v pertenecen a la proyección extendida del verbo por portar un rasgo [+ V].

El ACL linealiza esta estructura como la secuencia C-T-v-V-SX.

Para derivar otros ordenamientos es necesario que se muevan constituyentes. Con el fin de motivar estas operaciones, los autores postulan una propiedad formal simbolizada ^.

T_[+V^] = ponga una copia del complemento de T en Spec,T.

Si todos los núcleos en la proyección extendida portan un rasgo [+V^], esto implica que todos ellos tienen una copia de su nodo hermano como especificador.

Esto genera roll-up-movement.

Supuesto que deriva FOFC: *la propiedad ^ se determina al nivel del núcleo léxico y se extiende "de abajo hacia arriba"* en la proyección extendida.

Para generar el patrón de Final-sobre-Inicial, la propiedad ^ debería saltearse un núcleo en la proyección extendida.

Problema. Se observa que existe una clase homogénea de objetos sintácticos que parece servir de contraejemplo para FOFC: *las partículas*.

- (5) Partícula interrogativa en Mandarín (Erlewine 2015)
 Nǐ xiǎng chī mùguā ma?
 2.SG querer comer papaya Q
 ¿Querés comer papaya?'
- (6) Marcador de aspecto completivo en Bagirmi (Philip 2013)
 bis sa ja tebire ga.
 perro comer carne ayer COMP
 'El perro comió la carne ayer'.

Zeijlstra (2015) propone *una explicación alternativa para FOFC* que no se basa en el LCA y busca capturar el comportamiento excepcional de las partículas.

Altero algunos supuestos de Zeijlstra (2015) e introduzco *P-Leftmost*.

Supongamos que en los siguientes ejemplos α y β se tienen que afijar.

Supuesto clave: la afijación se da en relación de adyacencia a través de *Morphological Merger*.

INICIAL SOBRE INICIAL
MOVIMIENTO NUCLEAR
P-LEFTMOST
M-MERGER

INICIAL SOBRE FINAL
MOVIMIENTO NUCLEAR
P-LEFTMOST
M-MERGER

 $\begin{bmatrix} S_{\beta} & \beta & [S_{\alpha} & \alpha & SX] \end{bmatrix}$ $\begin{bmatrix} S_{\beta} & [\alpha & \alpha & \beta] & [S_{\alpha} & \alpha & SX] \end{bmatrix}$ $\begin{bmatrix} S_{\beta} & [\alpha & \alpha & \beta] & [S_{\alpha} & \Xi & SX] \end{bmatrix}$ $\begin{bmatrix} S_{\beta} & \alpha + \beta & [S_{\alpha} & \Xi & SX] \end{bmatrix}$

 $\begin{bmatrix} S_{\beta} & \beta & [S_{\alpha} & SX & \alpha] \end{bmatrix}$ $\begin{bmatrix} S_{\beta} & [\alpha & \alpha & \beta] & [S_{\alpha} & SX & \alpha] \end{bmatrix}$ $\begin{bmatrix} S_{\beta} & [\alpha & \alpha & \beta] & [S_{\alpha} & SX & \alpha] \end{bmatrix}$ $\begin{bmatrix} S_{\beta} & \alpha + \beta & [S_{\alpha} & SX & \alpha] \end{bmatrix}$

Zeijlstra (2015) propone *una explicación alternativa para FOFC* que no se basa en el LCA y busca capturar el comportamiento excepcional de las partículas.

Altero algunos supuestos de Zeijlstra (2015) e introduzco *P-Leftmost*.

FINAL SOBRE FINAL $[S_{\beta} [S_{\alpha} SX \alpha] \beta]$ M-MERGER $[S_{\beta} [S_{\alpha} SX] \alpha + \beta]$

Supongamos que en los siguientes ejemplos α y β se tienen que afijar.

Supuesto clave: la afijación se da en relación de adyacencia a través de *Morphological Merger*.

Zeijlstra (2015): una lengua en la que exista una construcción que requiera aplicar una operación basada en adyacencia a los núcleos β y α *va a tender a no linealizar Sβ y Sα en términos de "final sobre inicial"*.

Hay una excepción: *las partículas*. Dado que se trata de elementos invariables y autónomos, *una lengua que manifiesta a partir de partículas un determinado tipo de núcleo funcional β no requiere que este establezca ningún tipo de relación de adyacencia con respecto al núcleo inferior α. Se sigue que las excepciones a FOFC involucren partículas y elementos de similar comportamiento morfo-fonológico.*

Como dijimos, P-Leftmost predice que los especificadores derivados que se linealizan a la derecha (i) no alteran el orden de palabras previo al movimiento, pero (ii) deben poder interpretarse semánticamente en FL.

- (7) ¿Qué libro leyó Eliana hⁱ? Para qué x, x un libro, Eliana leyó x.
- (8) Eliana leyó todo libro.

 Para todo x, x un libro, Eliana leyó x.

Se propuso que el constituyente *todo libro* se mueve de forma encubierta. De este modo se explica el paralelismo semántico entre ambas oraciones.

Bajo la Teoría de la Copia y asumiendo P-Leftmost, podríamos suponer que este movimiento encubierto involucra la siguiente estructura.

Dado que la copia de *todo libro* que es hermana de V precede a su contraparte más alta, el movimiento "no se ve".

Fox & Nissenbaum (1999) ofrecen un análisis del fenómeno de extraposición de adjuntos en inglés a partir de este tipo de supuestos.

- (9) We saw [_{SD} a photograph [_{SP} by Cosmo]] yesterday.
- (10) We saw [SD a photograph] yesterday [SD by Cosmo].

El problema es explicar cómo es que el adverbio yesterday aparece entre el nombre *photograph* y el SP *by Cosmo* en (10) si la interpretación es la de un único constituyente como se ve en (9).

El análisis de Fox & Nissenbaum involucra dos pasos. Primero, el SD *a photograph* se mueve encubiertamente hacia el SV.

En segundo lugar, se aplica *Late Merger* (Lebeaux 1988) del SP *by Cosmo* a la copia más alta del nombre *photograph*.

[SV [SV [SV we [V] saw [SD a photograph]] yesterday] [SD a photograph [SP by Cosmo]]]

Un elemento como *any* debe aparecer dentro del alcance (i.e., mando-c) de un verbo modal como *look for* o *would*.

(11) Newman looked very intensely for anything that would help him against Jerry.

La oración resulta inaceptable si se extrapone el adjunto, a pesar de que *any* pareciera estar dentro del alcance de *looked for*.

(12) *Newman looked for anything very intensely that would help him against Jerry.

Esta propiedad se sigue del análisis de Fox & Nissenbaum de forma directa.

En la estructura con extraposición, *anything* está fuera del dominio de mando-c de *look for.*

Para mayor corroboración:

- (12) a. ??/*I gave himi a photograph from Cosmo'si collection yesterday.
 - b. I gave himi a photograph yesterday from Cosmo'si collection.

Remnant movement

Una *aparente excepción* a P-Leftmost está dada por el fenómeno conocido como *movimiento de remanente*.

A pesar de lo que parezca a simple vista, *el filler precede al gap* en ambos casos.

Remnant movement

Vamos primero con el ejemplo del inglés.

Estamentos de linealización

$$[_{SC} SV \rightarrow C']$$

$$[_{C'} C \rightarrow ST]$$

$$[_{ST} SD \rightarrow T']$$

$$[_{T'} T \rightarrow SV]$$

$$[_{SV} V \rightarrow SD]$$

De acuerdo a los estamentos, el SD en Spec,T precede al SD en la posición de complemento del verbo.

Remnant movement

Idem en alemán. La estructura es un tanto más compleja.

Estamentos de linealización

$$\begin{bmatrix} _{SC} \text{ SV}^j \rightarrow \text{ C'} \end{bmatrix} \quad \begin{bmatrix} _{T'} \text{ Sv} \rightarrow \text{T} \end{bmatrix}$$

$$\begin{bmatrix} _{C'} \text{ C} \rightarrow \text{ST} \end{bmatrix} \quad \begin{bmatrix} _{Sv} \text{ SD}^k \rightarrow \text{v'} \end{bmatrix}$$

$$\begin{bmatrix} _{ST} \text{ SD}^i \rightarrow \text{ST} \end{bmatrix} \quad \begin{bmatrix} _{v'} \text{ SV} \rightarrow \text{v} \end{bmatrix}$$

$$\begin{bmatrix} _{ST} \text{ SD}^k \rightarrow \text{T'} \end{bmatrix} \quad \begin{bmatrix} _{SV} \text{ SD}^i \rightarrow \text{V} \end{bmatrix}$$

$$\begin{bmatrix} _{SD} \text{ D} \rightarrow \text{N} \end{bmatrix}$$

Nuevamente, el SD en Spec,T precede al SD dentro del SV.