

MEK 4600 Experimental methods in Fluid Mechanics

Scope of focus

Multiphase flow in pipes

(6 March 2018)

- Flow patterns
- Effect on oil industry
- Measurement technology

(7 Mar 2018)

- Turbulence with HWA
- Holdup and phase distributions with gamma/X-rays
- Hand-on experience in hydrodynamics lab

- Stratified flow (13 Mar 2018)

- Slug flow (14 Mar 2018)

MEK 4600 Introduction to multiphase flow in pipes

Goals of today

Gain necessary knowledge on

- Flow patterns
- Characteristics

Impact on oil production

What is multiphase flow?

Flows involving interactions of multiple fluids (or phases)

Breaking waves

Horizontal pipe

Flow

3/4/18

7

Severely braking waves

Upward inclined pipe

Flow

Intermittent flow

• Slug flow in horizontal pipe

High turbulence in large diameter pipe

What parameters needed to define such flows?

Answer:

Terminology and definitions

Fluids (or phases)

- Phases can be gas, oil, water and particle
- Physical properties of phases are given by
 - Density (kg/m3)
 - Dynamic viscosity (Pa s)
 - Surface tension (N/m)
 - Sizes for particles (m)
 - **–** ...

UiO • Department of Mathematics

University of Oslo

Superficial velocity

- A hypothetical (artificial) flow velocity calculated as if the given phase or fluid were the only one flowing or present in a given cross sectional area – Wikipedia
- $U_{SL} = Q_L/A$ for liquid and USG = ...
 - A is the cross-sectional area of the geometry (e.g. pipe)
 - Q is the volumetric flowrate
- Mixture velocity $U_{Mix} = U_{SL} + U_{SG} = U_{SO} + U_{SW} + U_{SG}$

Cross-section of a pipe

In-situ phase velocity (true velocity)

 The velocity of a phase in multiphase flow based on the area of the pipe occupied by that phase

- Liquid velocity
$$U_L = U_{SL}/\alpha_L$$

- Gas velocity
$$U_G = ...$$

UiO • Department of Mathematics

University of Oslo

Slip velocity

- Slip velocity is the difference between the actual phases, e.g.
 - $U_{slip} = U_G U_L$
 - Slip ratio $S = U_G/U_L$
- No slip \rightarrow S = 1 and U_G = U_L

Holdup of phases (α_i)

- The volume fraction of fluid in a control volume
- Sum of phase holdups equals 1
- Can be time averaged or instantaneous

Classification of multiphase flows

- By the number of phases present
 - Two-phase flow, Three-phase flow etc.
- By the type of phases
 - Gas-liquid, liquid-liquid, liquid-solid, gas-liquid-liquid etc
- By flow patterns or regimes
 - Stratified
 - Intermittent (slug, churn, elongated bubble)
 - Dispersed flows (with droplets, bubbles, emulsions, particles)
 - Annular flow
- By pipeline orientation
 - Horizontal, near horizontal, upward inclined, vertical flow etc.

Flow regimes (1): Gas-liquid in horizontal pipe

- Segregated flow
 - Stratified
 - Annular
 - Wavy
- Intermittent
 - Slug flow
 - Plug flow
- Distributive flow
 - Bubble/mist flow
 - Froth flow

Flow regime map (gas-liquid horizontal flow)

Flows in vertical pipes

- Risers
- Nuclear reactors
- Power plant
- Process plant

Vertical bubbly flow

Slug flow in vertical pipe

Flow regimes (2): Gas-liquid in vertical pipe

Bubble flow

 Continuous liquid phase with dispersed bubbles of gas

Slug flow

- Large gas bubbles
- Slugs of liquid (with small bubbles) in between

Churn flow

- Bubbles start to coalesce
- Up and down motion of liquid

Annular flow

- Gas becomes the continuous phase
- Droplets in the gas phase

Flow regime map (vertical upwards)

Oil-water horizontal flows

Oil-water vertical flows

Phase inversion: $O/W \leftarrow \rightarrow W/O$

During phase inversion, complex droplet structures formed

Phase inversion: $O/W \leftarrow \rightarrow W/O$

When phase inversion occurs

- Emulsion viscosity increases dramatically
- Pressure drop increases
- Catastrophic change of emulsion properties

Three-phase flow

Three-phase large wave flow

X-ray imaging

Three-phase slug flow

Summary

- Flow patterns
 - Gas-liquid
 - Oil-water
 - Gas-oil-water
- Horizontal and vertical
- Characteristics of each flow pattern

Multiphase flow and flow assurance in oil production

Multiphase Transport Solutions

The Asgard field: Floating production platform

Sea depth

Norwegian Sea
1500 meter

• Gulf of Mexico **2500** meter

West Africa 1500 meter

Brazil
300 meter

Caspian Sea
600 meter

Venezuela 300 meter

Typical flow assurance challenges

Fluid and flow control

- Fluids
 - Hydrate, sand, wax/paraffin, scale
 - Viscosity
- Flow control
 - Emulsion, separation
 - Slugging
 - Water accumulation
 - Sand

Gas condensate pipeline

- Hydrate control
- MEG injection
- Corrosion inhibitor
- Liquid management
- Ramp up/down

Summary

- Long distance, deep water subsea pipeline is of importance in oil production
- Know-how and reliable measurement of multiphase flows are crucial to ensure safe and smooth transportations
- Laboratory work and experimental studies are invaluable!