TP555 - AI/ML

Lista de Exercícios #10

Redes Neurais Artificiais (Parte 1)

 Usando-se o modelo do neurônio de McCulloch e Pitts, qual seria o valor do limiar de ativação, θ, para classificar a função booleana dada pela tabela abaixo? Desenhe a função de ativação e o neurônio, indicando quais entradas são inibitórias, caso haja alguma.

Dicas: Você pode precisar ter uma ou mais entradas inibitórias para encontrar o valor de θ .

- Entradas inibitórias são entradas que têm seus valores negados.
- o Para negar um valor de entrada, você pode, por exemplo, multiplicá-lo por -1.
- Os atributos de entrada são x1, x2 e x3 e o valor esperado, ou seja, a saída do neurônio, é dado por y.

x 1	x2	х3	у
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

- Baseado no que você aprendeu até aqui sobre o modelo do neurônio de McCulloch e
 Pitts e do modelo perceptron. Seria possível classificar a função booleana XOR com
 algum desses dois modelos? Explique os motivos pelos quais pode-se ou não realizar
 tal classificação.
- 3. Por que geralmente é preferível usar um *classificador de regressão logística* em vez de um *perceptron*? Quais modificações você deve aplicar a um *perceptron* para torná-lo equivalente a um *classificador de regressão logística*?
- 4. Implemente um *perceptron* que classifique com 100% de precisão os dados das funções lógicas dadas a seguir utilizando a *regra de aprendizado do perceptron*. Em seguida, para cada uma das funções lógicas, plote uma figura mostrando:
 - a. A *fronteira de decisão* que separa as 2 classes.
 - b. O número de épocas versus o erro quadrático médio (MSE) por época.

(**Dica**: Não se esqueça que um **perceptron** tem uma entrada **x0**, que é sempre feita igual a 1 para que o peso referente ao **bias** seja ajustado juntamente com os outros pesos sinápticos.

(**Dica**: Encontre o valor ótimo do passo de aprendizagem, α)

(**Dica**: Use np.random.permutation para embaralhar os dados a cada nova época)

(**Dica**: Execute a **regra de aprendizagem** por um número predefinido de épocas, e.g, 2000, e sempre armazene o **vetor de pesos sinápticos**, **w**, que resulte no menor **erro quadrático médio** (MSE))

a) AND			b) OR						
x1	x2	у	,				x1	x2	у
0	0	0	-				0	0	0
0	1	0	\exists				0	1	1
1	0	0	,				1	0	1
1	1	1					1	1	1

5. Neste exercício você irá comparar a performance de classificação de um *perceptron* com a de um *regressor logístico*. Use o código abaixo para gerar os dados pertencentes a duas classes

```
# Number of examples.
N = 1000
```

centers = [[-0.5, 0], [0, 1.5]]

X, y = make_blobs(n_samples=N, centers=centers, random_state=42)

Em seguida, faça o seguinte

- A. Plote os dados do conjunto de treinamento em relação às classes a que pertencem. Ou seja, defina marcadores diferentes para identificar cada um das classes na figura. Por exemplo, use círculos para denotar exemplos que pertencem à classe 0 e quadrados para denotar exemplos que pertencem à classe 1.
- B. Instancie um objeto da classe *Perceptron*, use a linha abaixo para realizar a instanciação.

```
per = Perceptron(random_state=42)
```

Em seguida treine o modelo, faça a predição com X e calcule a precisão deste modelo como mostrado abaixo.

Calculate and return the accuracy on the test data accuracy = accuracy_score(y, y_pred)

print('accuracy: ',accuracy)

- C. Plote a matriz de confusão e a figura com a fronteira de decisão para a classificação com o *Perceptron*.
- D. Instancie um objeto da classe *LogisticRegression*, use a linha abaixo para realizar a instanciação.

per = LogisticRegression(solver='lbfgs', random_state=42)

Em seguida treine o modelo, faça a predição com X e calcule a precisão deste modelo como mostrado abaixo.

Calculate and return the accuracy on the test data accuracy = accuracy_score(y, y_pred)

print('accuracy: ',accuracy)

- E. Plote a matriz de confusão e a figura com a fronteira de decisão para a classificação com o *regressor logístico*.
- F. Baseado nos resultados obtidos, qual dos 2 classificadores apresenta melhor performance? Você conseguiria explicar porque ele apresenta melhor performance?