EE25BTECH11033 - Kavin

Question:

Let $\mathbf{P} = (a_{ij})$ be a 3×3 matrix and let $\mathbf{Q} = (b_{ij})$, where $b_{ij} = 2^{i+j}a_{ij}$ for $1 \le i, j \le 3$. If the determinant of \mathbf{P} is 2, then the determinant of the matrix \mathbf{Q} is

1) 2^{10}

2) 2¹¹

 $3) 2^{12}$

4) 2^{13}

1

Solution:

Let the matrix **P** be,

$$\mathbf{P} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \tag{1}$$

also,

$$|\mathbf{P}| = |a_{ij}| = 2 \tag{2}$$

and the matrix \mathbf{Q} be,

$$\mathbf{Q} = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix}$$
(3)

Given that.

$$b_{ij} = 2^{i+j} a_{ij} \tag{4}$$

The determinant of the matrix \mathbf{Q} is given by:

$$\left|\mathbf{Q}\right| = \left|b_{ij}\right| = \left|2^{i+j}a_{ij}\right| \tag{5}$$

Split the exponent using the property $2^{i+j} = 2^i \cdot 2^j$:

$$|\mathbf{Q}| = |2^i \cdot 2^j \cdot a_{ij}| \tag{6}$$

First, for each row i (from i = 1 to 3), factor out the common term 2^{i} :

$$|\mathbf{Q}| = (2^1)(2^2)(2^3) \cdot |2^j a_{ij}|$$
 (7)

The product of these factors is:

$$\prod_{i=1}^{3} 2^{i} = 2^{\sum_{i=1}^{3} i} = 2^{\frac{3(3+1)}{2}} = 2^{6}$$
 (8)

This simplifies the expression for the determinant to:

$$|\mathbf{Q}| = 2^6 \left| 2^j a_{ij} \right| \tag{9}$$

Now, look at the remaining determinant, $|2^j a_{ij}|$. For each column j (from j = 1 to 3), factor out the common term 2^j :

$$|2^{j}a_{ij}| = (2^{1})(2^{2})(2^{3}) \cdot |a_{ij}| = 2^{6} |\mathbf{P}|$$
 (10)

Substituting this back into our expression for $|\mathbf{Q}|$:

$$\left|\mathbf{Q}\right| = 2^6 \cdot \left(2^6 \left|\mathbf{P}\right|\right) \tag{11}$$

$$|\mathbf{Q}| = 2^{12} |\mathbf{P}| \tag{12}$$

$$\implies |\mathbf{Q}| = 2^{12} \cdot 2 \tag{13}$$

$$\implies |\mathbf{Q}| = 2^{13} \tag{14}$$