Adaptation of Palmer amaranth to croppins systems

Maxwel C Oliveira ¹, Amit J Jhala ², Mark Bernards ³, Chris Proctor ², Strahinja Stepanovic ², Rodrigo Werle ^{1*}

- ¹ Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin, United States
- ² Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
- ³ Department of Agronomy, Western Illinois University, Macomb, Illnois, United States

Correspondence*:
Rodrigo Werle
rwerle@uwisc.edu

2 ABSTRACT

- 3 Abstract length and content varies depending on article type. Refer to http://
- 4 www.frontiersin.org/about/AuthorGuidelines for abstract requirement and length
- 5 according to article type.
- 6 Keywords: Text Text Text Text Text Text Evolution Weed

INTRODUCTION

- 7 Palmer amaranth (Amaranthus palmeri) is an indigenous species from southwestern United States and
- 8 northern Mexico. Palmer amaranth is a C4 annual broadleaf forb within the **Amarantacea** family. Palmer
- 9 amaranth is currently considered one of the most troublesome weed species in the United States.

MATERIAL AND METHODS

10 Plant material and growing conditions

- 11 The study was performed with a A. palmeri accession (Per1) from Perkins County, Nebraska. Per1
- 12 accession collection is documented in (Oliveira et al., 2021), with no reported herbicide resistance. Three
- 13 weeks prior to the field experiment, seeds were planted in plastic trays containing potting-mix. Emerged
- seedlings (1 cm) were transplanted into 200 cm-3 plastic pots (a plant pot-1). Palmer amaranth seedlings
- 15 were supplied with adequate water and kept under greenhouse conditions at Arlington, Clay Center, Lincoln,
- and Macomb; and kept outdoors in Grant. Palmer amaranth seedlings were kept under greenhouse/outdoors
- 17 until the onset of the experiment (7 to 10 cm height).

18 Field study

- 19 The experiment was conducted in 2018 and 2019 under field conditions at five locations: Arlington
- 20 (Washington County, Wisconsin), Clay Center (Clay County, Nebraska), Grant (Perkins County, Nebraska),
- 21 Lincoln (Lancaster County, Nebraska), and Macomb (McDonough County, Illinois).
- The experimental unit were adjacent 9.1 m wide (12 rows at 72.2 cm row spacing) by 10.7 m long.
- 23 Each experimental unit was planted with corn or soybean, or left fallow. Palmer amaranth seedlings were

Oliveira et al. Short Title

- 24 transplanted to the field experiment by making a whole in the soil (6 cm deep and 8 cm wide); and gently
- 25 transferring in the ground (potting mix + two seedlings). After a week, if both plants were alive, one was
- 26 eliminated. There were two transplant timing: early (June 1st) and late (July 1st). There were 24 Palmer
- 27 amaranth plants in each crop/fallow and timing, with a total of 144 plants. The study was repeated twice.
- 28 After transplanting, Palmer amaranth flowering was monitored until the end of the study. When a plant
- 29 started flowering, the day was recorded, plant sex was identified as male or female, and plant height was
- 30 measured from soil surface to the plant top. Then, aboveground plant biomass was harvest near soil surface
- and oven dried at 65 C until reaching constant weight before the weight of biomass (g plant⁻¹) was recorded.

32 Statistical analyses

- The statistical analyses were performed using R statistical software version 4.0.1.
- 34 The cumulative Palmer amaranth flowering estimation was determined using a asymmetrical three
- 35 parameter log logistic Weibull model of the drc package (Ritz et al., 2015).

$$Y(x) = 0 + (d-0)exp(-exp(b(log(x) - e)))$$

- In this model, Y is the Palmer amaranth cumulative flowering, d is the upper limit (set to 100), and e is the
- 37 XXX, and x day of year (doy).
- 38 The doy for 10, 50, and 90% Palmer amaranth cumulative flowering were determined using the ED
- 39 function of drc package. Also, the 10, 50, and 90% Palmer amaranth cumulative flowering were compared
- 40 among crop/fallow and timings using the *EDcomp* function of drc package. The EDcomp function compares
- 41 the ratio of cumulative flowering using t-statistics, where P-value < 0.05 indicates that we fail to reject the
- 42 null hypothesis.

RESULTS

43 Subsection 1

44 You can use R chunks directly to plot graphs.

45 Subsection 2

- 46 Frontiers requires figures to be submitted individually, in the same order as they are referred to in the
- 47 manuscript. Figures will then be automatically embedded at the bottom of the submitted manuscript. Kindly
- 48 ensure that each table and figure is mentioned in the text and in numerical order. Permission must be
- 49 obtained for use of copyrighted material from other sources (including the web). Please note that it is
- 50 compulsory to follow figure instructions. Figures which are not according to the guidelines will cause
- 51 substantial delay during the production process.

1 DISCUSSION

DISCLOSURE/CONFLICT-OF-INTEREST STATEMENT

- 52 The authors declare that the research was conducted in the absence of any commercial or financial
- 53 relationships that could be construed as a potential conflict of interest.

AUTHOR CONTRIBUTIONS

- 54 The statement about the authors and contributors can be up to several sentences long, describing the tasks
- of individual authors referred to by their initials and should be included at the end of the manuscript before
- 56 the References section.

Oliveira et al. Short Title

Figure 1. Mean average temperature (C) and montly sum precipitation (mm) at Arlington, WI, Clay Center, NE, Grant, NE, Lincoln, NE and Macomb, IL

ACKNOWLEDGMENTS

57 Funding:

2 SUPPLEMENTAL DATA

- Supplementary Material should be uploaded separately on submission, if there are Supplementary Figures,
- 59 please include the caption in the same file as the figure. LaTeX Supplementary Material templates can be
- 60 found in the Frontiers LaTeX folder

3 REFERENCES

- 61 A reference list should be automatically created here. However it won't. Pandoc will place the list of
- 62 references at the end of the document instead. There are no convenient solution for now to force Pandoc to
- 63 do otherwise. The easiest way to get around this problem is to edit the LaTeX file created by Pandoc before
- compiling it again using the traditional LaTeX commands.

FIGURES

- 65 Oliveira, M. C., Giacomini, D. A., Arsenijevic, N., Vieira, G., Tranel, P. J., and Werle, R. (2021).
- Distribution and validation of genotypic and phenotypic glyphosate and PPO-inhibitor resistance in
- Palmer amaranth (Amaranthus palmeri) from southwestern Nebraska. Weed Technology 35, 65–76.
- 68 doi:10.1017/wet.2020.74.
- Ritz, C., Baty, F., Streibig, J. C., and Gerhard, D. (2015). Dose-Response Analysis Using R. *PLOS ONE* 10, e0146021. doi:10.1371/journal.pone.0146021.

Frontiers 3

Oliveira et al. Short Title

Figure 2. Figure caption