Домашняя работа к занятию 12

1.1 Используя матричную экспоненту, решите матричные задачи Ко- ши ($\mathbf{Y} = \mathbf{Y}(t)$ — искомая матрица, $\mathbf{A}, \, \mathbf{B}$ — числовые матрицы)

a)
$$\begin{cases} \dot{\mathbf{Y}} = \mathbf{A}\mathbf{Y}(t) \\ \mathbf{Y}(0) = \mathbf{B} \end{cases}$$
 6)
$$\begin{cases} \dot{\mathbf{Y}} = \mathbf{Y}(t)\mathbf{A} \\ \mathbf{Y}(0) = \mathbf{B} \end{cases}$$

- **1.2** Известно, что $\dot{\mathbf{Y}} = \mathbf{A}\mathbf{Y}(t)$ и $\det\mathbf{Y}(0) \neq 0$. Какому уравнению удовлетворяет матрица $\mathbf{Y}^{-1}(t)$?
- **1.3** Решите матричную задачу Коши $\begin{cases} \dot{\mathbf{Y}} = \mathbf{A}\mathbf{Y}(t) + \mathbf{B} \\ \mathbf{Y}(0) = \mathbf{C} \end{cases}$ при условии, что матрица **A** невырождена (**A**, **B**, **C** числовые матрицы).
 - ${f 2.1}$ Найдите матричную экспоненту для матрицы ${f A}_arepsilon=egin{pmatrix}1+arepsilon&arepsilon&-arepsilon\ 0&2&0\ 1&2&0 \end{pmatrix}$

Найдите предел $\exp(\mathbf{A}_{\varepsilon}t)$ при $\varepsilon \to 1$ и убедитесь, что $\exp(\mathbf{A}_{\varepsilon}t)$ непрерывно зависит от ε .

- $\mathbf{2.2}$ Матрица \mathbf{A} размера $(2n \times 2n)$ имеет следующую блочную структуру: $\mathbf{A} = \begin{pmatrix} \mathbf{0} & \mathbf{B} \\ \mathbf{B} & \mathbf{0} \end{pmatrix}$, где \mathbf{B} матрица размера $(n \times n)$. Найдите $\exp(\mathbf{A}t)$.
 - $\mathbf{2.3} \text{ Решите матричную задачу Коши} \begin{cases} \mathbf{\ddot{Y}} = \mathbf{A}^2 \ \mathbf{Y} \\ \mathbf{Y}(0) = \mathbf{E}, \ \mathbf{\dot{Y}}(0) = \mathbf{0} \end{cases}$
- ${f 3.1}$ Докажите, что если ${f A}$ кососимметрическая матрица (то есть ${f A}^T=-{f A}$), то $\exp{f A}$ ортогональная матрица.
- **3.2** Пусть все собственные числа матрицы \mathbf{A} имеют отрицательную вещественную часть. Докажите, что интеграл $\int\limits_0^{+\infty} \exp(\mathbf{A}t) dt$ сходится и

$$\mathbf{A}^{-1} = -\int_{0}^{+\infty} \exp(\mathbf{A}t) dt.$$

Предложите аналогичную формулу для вычисления ${\bf A}^{-1}$, если все собственные числа матрицы ${\bf A}$ имеют положительную вещественную часть.

Используя эти формулы, найдите ${\bf A}^{-1}$ в случае, когда матрица ${\bf A}$ является жордановой клеткой с собственным значением $\lambda_0 \neq 0$.

Ответы и указания

1.1 a)
$$\mathbf{Y} = \exp(\mathbf{A}t) \cdot \mathbf{B}$$
, 6) $\mathbf{Y} = \mathbf{B} \cdot \exp(\mathbf{A}t)$

1.2 Указание: матрица $\mathbf{Y}(t)$ невырождена во всех точках t, если $\det \mathbf{Y}(t_0) \neq 0$ хотя бы в одной точке t_0 .

Other:
$$\frac{d}{dt}(\mathbf{Y}^{-1}) = -\mathbf{Y}^{-1} \cdot \mathbf{A}$$

1.3
$$Y(t) = \exp(At)(A^{-1}B + C) - A^{-1}B$$

2.1 Указание: $\lambda_1 = 1, \ \lambda_2 = \varepsilon, \ \lambda_3 = 2.$

$$Othetherefore \exp(\mathbf{A}_{\varepsilon}t) = \begin{pmatrix} \frac{e^{t} - \varepsilon e^{\varepsilon t}}{1 - \varepsilon} & \frac{\varepsilon(e^{t} - e^{\varepsilon t})}{1 - \varepsilon} & \frac{\varepsilon(e^{\varepsilon t} - e^{t})}{1 - \varepsilon} \\ 0 & e^{2t} & 0 \\ \frac{e^{t} - e^{\varepsilon t}}{1 - \varepsilon} & \frac{\varepsilon e^{t} - e^{\varepsilon t}}{1 - \varepsilon} + e^{2t} & \frac{e^{\varepsilon t} - \varepsilon e^{t}}{1 - \varepsilon} \end{pmatrix}$$

$$\lim_{\varepsilon \to 1} \exp(\mathbf{A}_{\varepsilon}t) = \begin{pmatrix} e^t + te^t & te^t & -te^t \\ 0 & e^{2t} & 0 \\ te^t & -e^t + te^t + e^{2t} & e^t - te^t \end{pmatrix}$$

$$\mathbf{2.2} \exp(\mathbf{A}t) = \begin{pmatrix} \operatorname{ch}(\mathbf{B}t) & \operatorname{sh}(\mathbf{B}t) \\ \operatorname{sh}(\mathbf{B}t) & \operatorname{ch}(\mathbf{B}t) \end{pmatrix}$$

2.3
$$\mathbf{Y}(t) = \operatorname{ch}(\mathbf{A}t) = \frac{1}{2} (\exp(\mathbf{A}t) + \exp(-\mathbf{A}t))$$

 ${\bf 3.1}$ Указание: воспользуйтесь представлением $\exp {\bf A}$ в виде «степенного» ряда.