第 9 章 g: 多元函数的极值

数学系 梁卓滨

2016-2017 **学年** II

Outline

1. 多元函数的极值点

2. 条件极值

3. 求解多元函数的最值

We are here now...

1. 多元函数的极值点

2. 条件极值

3. 求解多元函数的最值

		极值点	驻点	最值点
	а			
	x_1			
X	<i>x</i> ₂			
	X 3			
	X 4			
	b			

		极值点	驻点	最值点
	а			
	<i>x</i> ₁	极小值点		
(<i>x</i> ₂			
	<i>X</i> ₃			
	X4			
	b			

		极值点	驻点	最值点
	а			
	<i>x</i> ₁	极小值点		
	<i>x</i> ₂	极大值点		
	<i>X</i> ₃			
	X 4			
	b			

		极值点	驻点	最值点
	а			
	<i>x</i> ₁	极小值点		
	<i>x</i> ₂	极大值点		
	<i>X</i> ₃	极小值点		
	X 4			
	b			

		极值点	驻点	最值点
	а			
	<i>x</i> ₁	极小值点		
	<i>x</i> ₂	极大值点		
	X 3	极小值点		
	X4	极大值点		
	b			

		极值点	驻点	最值点
	а			
	<i>x</i> ₁	极小值点	√	
X	<i>x</i> ₂	极大值点		
	X 3	极小值点		
	X 4	极大值点		
	b			

		极值点	驻点	最值点
	а			
	<i>x</i> ₁	极小值点	√	
X	<i>x</i> ₂	极大值点	×(不可导)	
	X 3	极小值点		
	X 4	极大值点		
	b			

		极值点	驻点	最值点
	а			
	<i>x</i> ₁	极小值点	√	
X	<i>x</i> ₂	极大值点	×(不可导)	
	X 3	极小值点	√	
	X 4	极大值点		
	b			

		极值点	驻点	最值点
	а			
	<i>x</i> ₁	极小值点	√	
	<i>x</i> ₂	极大值点	×(不可导)	
X	X 3	极小值点	✓	
^	X4	极大值点	✓	
	b			

		极值点	驻点	最值点
	а			×
	<i>x</i> ₁	极小值点	√	
X	<i>x</i> ₂	极大值点	×(不可导)	
	X 3	极小值点	✓	
~	X 4	极大值点	✓	
	b			

		极值点	驻点	最值点
	а			×
	x_1	极小值点	√	×
	<i>x</i> ₂	极大值点	×(不可导)	
X	X 3	极小值点	✓	
,,	X 4	极大值点	√	
	b			

		极值点	驻点	最值点
	а			×
	<i>x</i> ₁	极小值点	√	×
	<i>x</i> ₂	极大值点	×(不可导)	×
X	X 3	极小值点	✓	
7.	X4	极大值点	√	
	b			

		极值点	驻点	最值点
X	а			×
	<i>x</i> ₁	极小值点	√	×
	<i>x</i> ₂	极大值点	×(不可导)	×
	X 3	极小值点	√	×
	X 4	极大值点	√	
	b			

		极值点	驻点	最值点
	а		<u></u>	X
	x_1	极小值点	√	×
X	x ₂	极大值点	×(不可导)	×
	X 3	极小值点	√	×
	X4	极大值点	√	最大值点
	b			

		极值点	驻点	最值点
	а			×
X	<i>x</i> ₁	极小值点	√	×
	x_2	极大值点	×(不可导)	×
	X 3	极小值点	✓	×
	X 4	极大值点	√	最大值点
	b			最小值点

定义 在点 (x_0, y_0) 的某个邻域内

f(x,y) 定义域 (x_0,y_0) (x,y)

• 如果总是成立

$$f(x, y) \le f(x_0, y_0), \quad \text{ } \sharp h(x, y) \ne (x_0, y_0)$$

定义 在点 (x_0, y_0) 的某个邻域内

f(x,y) 定义域 (x_0,y_0) (x,y)

• 如果总是成立

$$f(x, y) \le f(x_0, y_0), \quad \sharp h(x, y) \ne (x_0, y_0)$$

则称点 (x_0, y_0) 是函数 f(x, y) 极大值点,

定义 在点 (x_0, y_0) 的某个邻域内

f(x,y) 定义域 (x_0,y_0) (x,y)

• 如果总是成立

$$f(x, y) \le f(x_0, y_0), \quad \sharp h(x, y) \ne (x_0, y_0)$$

则称点 (x_0, y_0) 是函数 f(x, y) 极大值点, $f(x_0, y_0)$ 是极大值

定义 在点 (x_0, y_0) 的某个邻域内

• 如果总是成立

$$f(x, y) \leq f(x_0, y_0)$$
, 其中 $(x, y) \neq (x_0, y_0)$
则称点 (x_0, y_0) 是函数 $f(x, y)$ 极大值点, $f(x_0, y_0)$ 是极大值

• 如果总是成立

$$f(x, y) \ge f(x_0, y_0), \quad \sharp h(x, y) \ne (x_0, y_0)$$

定义 在点 (x_0, y_0) 的某个邻域内

• 如果总是成立

$$f(x, y) \leq f(x_0, y_0)$$
, 其中 $(x, y) \neq (x_0, y_0)$
则称点 (x_0, y_0) 是函数 $f(x, y)$ 极大值点, $f(x_0, y_0)$ 是极大值

• 如果总是成立

$$f(x, y) \ge f(x_0, y_0), \quad \text{\'et}(x, y) \ne (x_0, y_0)$$

则称点 (x_0, y_0) 是函数 f(x, y) 极小值点,

定义 在点 (x_0, y_0) 的某个邻域内

• 如果总是成立

$$f(x, y) \le f(x_0, y_0)$$
, 其中 $(x, y) \ne (x_0, y_0)$
则称点 (x_0, y_0) 是函数 $f(x, y)$ 极大值点, $f(x_0, y_0)$ 是极大值

• 如果总是成立

$$f(x, y) \ge f(x_0, y_0), \quad \sharp h(x, y) \ne (x_0, y_0)$$

则称点 (x_0, y_0) 是函数 f(x, y) 极小值点, $f(x_0, y_0)$ 是极小值

定义 在点 (x_0, y_0) 的某个邻域内

• 如果总是成立

$$f(x, y) \le f(x_0, y_0)$$
, 其中 $(x, y) \ne (x_0, y_0)$
则称点 (x_0, y_0) 是函数 $f(x, y)$ 极大值点, $f(x_0, y_0)$ 是极大值

• 如果总是成立

$$f(x, y) \ge f(x_0, y_0), \quad \text{Ḥ} \Phi(x, y) \ne (x_0, y_0)$$

则称点 (x_0, y_0) 是函数 f(x, y) 极小值点, $f(x_0, y_0)$ 是极小值

• 极大、极小值点统称极值点; 极大、极小值统称极值。

• $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是

• $z = -\sqrt{x^2 + y^2}$ 点 $p_0(0, 0)$ 是

• *z* = *xy* 点 *p*₀(0, 0) 是

• $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;

• $z = -\sqrt{x^2 + y^2}$ 点 $p_0(0, 0)$ 是

• *z* = *xy* 点 *p*₀(0, 0) 是

• $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;

•
$$z = -\sqrt{x^2 + y^2}$$

点 $p_0(0, 0)$ 是

• $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;

•
$$z = -\sqrt{x^2 + y^2}$$

点 $p_0(0, 0)$ 是极大值点;

• $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;

• $z = -\sqrt{x^2 + y^2}$ 点 $p_0(0, 0)$ 是极大值点;

• *z* = *xy* 点 *p*₀(0, 0) 是

• $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;

• z = xy 点 $p_0(0, 0)$ 不是极值点。

• $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;

• $z = -\sqrt{x^2 + y^2}$ 点 $p_0(0, 0)$ 是极大值点;

• z = xy点 $p_0(0, 0)$ 不是极值点。

例

- $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;
- $z = -\sqrt{x^2 + y^2}$ 点 $p_0(0, 0)$ 是极大值点;

z = xy
 点 p₀(0, 0) 不是极值点。

问题

• z = xy 是否有极值点?

例

• $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;

• $z = -\sqrt{x^2 + y^2}$ 点 $p_0(0, 0)$ 是极大值点;

• z = xy点 $p_0(0, 0)$ 不是极值点。

问题

- z = xy 是否有极值点?
- 是否有一般方法求出函数的极值点? 如:

$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,

$$f_x(x_0,\,y_0)=0,\quad f_y(x_0,\,y_0)=0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$\frac{d}{dx}[f(x,y_0)]\Big|_{x=x_0}=0$$

$$f_x(x_0,\,y_0)=0,\quad f_y(x_0,\,y_0)=0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$f_x(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \Big|_{x=x_0} = 0$$

$$f_x(x_0,\,y_0)=0,\quad f_y(x_0,\,y_0)=0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$f_x(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \big|_{x=x_0} = 0$$

2. 一元函数 $y \mapsto f(x_0, y)$ 具有极值点 $y = y_0$,

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$f_x(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \big|_{x=x_0} = 0$$

2. 一元函数 $y \mapsto f(x_0, y)$ 具有极值点 $y = y_0$,所以

$$\frac{d}{dy}\left[f(x_0,y)\right]\Big|_{y=y_0}=0$$

$$f_x(x_0,\,y_0)=0,\quad f_y(x_0,\,y_0)=0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$f_x(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \big|_{x=x_0} = 0$$

2. 一元函数 $y \mapsto f(x_0, y)$ 具有极值点 $y = y_0$,所以

$$f_y(x_0, y_0) = \frac{d}{dy} [f(x_0, y)] \Big|_{y=y_0} = 0$$

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$f_x(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \big|_{x=x_0} = 0$$

2. 一元函数 $y \mapsto f(x_0, y)$ 具有极值点 $y = y_0$,所以

$$f_y(x_0, y_0) = \frac{d}{dy} [f(x_0, y)] \big|_{y=y_0} = 0$$

定义 使偏导数为零的点, 称为驻点

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$f_x(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \big|_{x=x_0} = 0$$

2. 一元函数 $y \mapsto f(x_0, y)$ 具有极值点 $y = y_0$,所以

$$f_y(x_0, y_0) = \frac{d}{dy} [f(x_0, y)] \big|_{y=y_0} = 0$$

定义 使偏导数为零的点, 称为驻点

注 如果函数存在偏导数,则 {极值点} ⊂ {驻点}

例 1 点 (0,0) 是 $z = x^2 + y^2$ 的极小值点,从而也是驻点。

$$z_x = z_y =$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases}$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点 (0,0) 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例
$$2$$
 点 $(0,0)$ 是 $z=-\sqrt{x^2+y^2}$ 的极大值点,但不是驻点:一阶偏导
$$z_X(0,0),\quad z_Y(0,0)$$

不存在。

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例
$$2$$
 点 $(0,0)$ 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导
$$z_x(0,0), \quad z_y(0,0)$$

不存在。

例 3(驻点不一定是极值点) 设 z = xy。

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例
$$2$$
 点 $(0,0)$ 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导
$$z_X(0,0), \quad z_Y(0,0)$$

不存在。

例 3(驻点不一定是极值点) 设 z = xy。点 (0, 0) 是驻点:

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例
$$2$$
 点 $(0,0)$ 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导
$$z_x(0,0), \quad z_y(0,0)$$

不存在。

例 3(驻点不一定是极值点) 设 z = xy。点 (0, 0) 是驻点:

$$\begin{cases} z_X = y \\ z_y = x \end{cases}$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例
$$2$$
 点 $(0,0)$ 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导
$$z_X(0,0), \quad z_Y(0,0)$$

不存在。

例 3(驻点不一定是极值点) 设 z = xy。点 (0,0) 是驻点:

$$\begin{cases} z_x = y \\ z_y = x \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例
$$2$$
 点 $(0,0)$ 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导 $z_x(0,0)$, $z_y(0,0)$

不存在。

例 3(驻点不一定是极值点) 设 z = xy。点 (0,0) 是驻点:

$$\begin{cases} z_x = y \\ z_y = x \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

但点 (0,0) 不是极值点。

解 求一阶偏导

$$\begin{cases} z_X = \\ z_Y = \end{cases}$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = \end{cases}$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

例 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases}$$

例 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases}$$

例 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \end{cases}$$

例 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases}$$

例 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = 0 \\ y = 0 \end{cases}$$

例 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
,求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0 \end{cases}$$

例 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
,求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

所以驻点为

y = 2		
y = 0		
	x = -3	x = 1

例 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

所以驻点为

<i>y</i> = 2		
y = 0	(-3, 0)	
	x = -3	x = 1

例 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_X = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

所以驻点为

y = 2	(-3, 2)	
y = 0	(-3, 0)	
	x = -3	x = 1

例 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

所以驻点为

$$y = 2$$
 (-3, 2)
 $y = 0$ (-3, 0) (1, 0)
 $x = -3$ $x = 1$

例 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_X = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

所以驻点为

$$y = 2$$
 (-3, 2) (1, 2)
 $y = 0$ (-3, 0) (1, 0)
 $x = -3$ $x = 1$

例 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_X = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

所以驻点为

$$y = 2$$
 (-3, 2) (1, 2)
 $y = 0$ (-3, 0) (1, 0)
 $x = -3$ $x = 1$

例 求 $z = x^3 + y^3 - 3xy$,求驻点。

$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$

例 设
$$z = x^3 + y^3 - 3xy$$
, 求驻点。

$$z_X = z_y =$$

例 设
$$z = x^3 + y^3 - 3xy$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = \end{cases}$$

例 设
$$z = x^3 + y^3 - 3xy$$
,求驻点。

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases}$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases}$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \end{cases}$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases}$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases} \implies x^4 = x$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases} \implies x^4 = x \implies x = 0, 1$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases} \implies x^4 = x \implies x = 0, 1$$
$$\implies \begin{cases} x = 1 \\ y = 1 \end{cases}$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases} \implies x^4 = x \implies x = 0, 1$$
$$\implies \begin{cases} x = 1 \\ y = 1 \end{cases} \implies \begin{cases} x = 0 \\ y = 0 \end{cases}$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases} \implies x^4 = x \implies x = 0, 1$$
$$\implies \begin{cases} x = 1 \\ y = 1 \end{cases} \implies \begin{cases} x = 0 \\ y = 0 \end{cases}$$

所以驻点为 (1, 1), (0, 0)

$$z = x^3 + y^3 - 3xy$$

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

结论是:

3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$, 则此判定法失效, 结论不确定。

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

- 1. 若 $P(x_0, y_0) > 0$,
- 2. 若 $P(x_0, y_0) > 0$,
- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$, 则此判定法失效, 结论不确定。

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

- 1 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) < 0$, 则 (x_0, y_0) 是极大值点;
- 2. 若 $P(x_0, y_0) > 0$,
- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定。

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

- 1 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) < 0$, 则 (x_0, y_0) 是极大值点;
- 2. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) > 0$, 则 (x_0, y_0) 是极小值点;
- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定。

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

- 1 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) < 0$, 则 (x_0, y_0) 是极大值点;
- 2. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) > 0$, 则 (x_0, y_0) 是极小值点;
- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定。
- 总结 求 z = f(x, y) 极值点的步骤:
 - 1. 求驻点:

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

- 1. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) < 0$, 则 (x_0, y_0) 是极大值点;
- 2. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) > 0$, 则 (x_0, y_0) 是极小值点;
- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定。
- 总结 求 z = f(x, y) 极值点的步骤:
 - 1. 求驻点: 解方程 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$, 设解为 (x_0, y_0)

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^{2}$$

- 1. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) < 0$, 则 (x_0, y_0) 是极大值点;
- 2. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) > 0$, 则 (x_0, y_0) 是极小值点;
- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定。
 - 总结 求 z = f(x, y) 极值点的步骤:
 - 1. 求驻点: 解方程 $\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$, 设解为 (x_0, y_0)
 - 2. 通过 $P(x_0, y_0)$ 辨别驻点 (x_0, y_0) 是否极值点

$$z_X =$$
 , $z_Y =$

$$z_x = 3x^2 + 6x - 9, z_y =$$

$$z_x = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$ 得: $(-3, 0), (-3, 2), (1, 0), (1, 2)$

解 1. 求一阶偏导

$$z_x = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组
$$\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$P(x, y) =$$

解 1. 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = \\ z_{xy} = \\ z_{yy} = \end{cases} \Longrightarrow P(x, y) =$$

解 1. 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$ 得: $(-3, 0), (-3, 2), (1, 0), (1, 2)$

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = \\ z_{yy} = \end{cases} \Longrightarrow P(x, y) =$$

解 1. 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = \end{cases} \Longrightarrow P(x, y) =$$

解 1. 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) =$$

解 1. 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$

解 1 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$
 得: $(-3, 0), (-3, 2), (1, 0), (1, 2)$

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \Longrightarrow P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$				
$Z_{xx}(x_0, y_0)$				
是否极值点				

解 1 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$
 得: $(-3, 0), (-3, 2), (1, 0), (1, 2)$

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \Longrightarrow P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0			
$z_{xx}(x_0, y_0)$				
是否极值点				

解 1 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$
 得: $(-3, 0), (-3, 2), (1, 0), (1, 2)$

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \Longrightarrow P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0			
$Z_{xx}(x_0, y_0)$				
是否极值点	×			

解 1 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$ 得: $(-3, 0), (-3, 2), (1, 0), (1, 2)$

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0		
$z_{xx}(x_0, y_0)$				
是否极值点	×			

解 1 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0		
$z_{xx}(x_0, y_0)$		-12 < 0		
是否极值点	×			

解 1 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$
 得: $(-3, 0), (-3, 2), (1, 0), (1, 2)$

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \Longrightarrow P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0		
$z_{xx}(x_0, y_0)$		-12 < 0		
是否极值点	×	极大值点		

解 1 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$
 得: $(-3, 0), (-3, 2), (1, 0), (1, 2)$

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \Longrightarrow P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0	72 > 0	
$z_{xx}(x_0, y_0)$		-12 < 0		
是否极值点	×	极大值点		

解 1 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$
 得: $(-3, 0), (-3, 2), (1, 0), (1, 2)$

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \Longrightarrow P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0	72 > 0	
$z_{xx}(x_0, y_0)$		-12 < 0	12 > 0	
是否极值点	×	极大值点		

解 1 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \Longrightarrow P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0	72 > 0	
$z_{xx}(x_0, y_0)$		-12 < 0	12 > 0	
是否极值点	×	极大值点	极小值点	

解 1 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$ 得: $(-3, 0), (-3, 2), (1, 0), (1, 2)$

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0	72 > 0	-72 < 0
$z_{xx}(x_0, y_0)$		-12 < 0	12 > 0	
是否极值点	×	极大值点	极小值点	

解 1 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$
 得: $(-3, 0), (-3, 2), (1, 0), (1, 2)$

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \Longrightarrow P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0	72 > 0	-72 < 0
$z_{xx}(x_0, y_0)$		-12 < 0	12 > 0	
是否极值点	×	极大值点	极小值点	×

$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$

$$z_X =$$
 , $z_y =$

解 1. 求一阶偏导

$$z_x = 3x^2 - 3y, \qquad z_y =$$

解 1 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

解 1. 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$

解 1 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

解 1 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_X(x,y) = 0 \\ z_Y(x,y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

$$P(x, y) =$$

解 1 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

$$\begin{cases} z_{xx} = \\ z_{xy} = \\ z_{yy} = \end{cases} \Longrightarrow P(x, y) =$$

解 1. 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = \Longrightarrow P(x, y) = \\ z_{yy} = \end{cases}$$

解 1. 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \implies P(x, y) = \\ z_{yy} = \end{cases}$$

解 1. 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 & \Longrightarrow P(x, y) = \\ z_{yy} = 6y \end{cases}$$

解 1 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$ 得: (1, 1), (0, 0)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 & \Longrightarrow P(x, y) = 36xy - 9 \\ z_{yy} = 6y \end{cases}$$

解 1 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \implies P(x, y) = 36xy - 9 \\ z_{yy} = 6y \end{cases}$$

	(1, 1)	(0, 0)
$P(x_0, y_0)$		
$z_{xx}(x_0, y_0)$		
是否极值点		

解 1 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \implies P(x, y) = 36xy - 9 \\ z_{yy} = 6y \end{cases}$$

	(1, 1)	(0, 0)
$P(x_0, y_0)$	27 > 0	
$z_{xx}(x_0, y_0)$		
是否极值点		

解 1 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 & \Longrightarrow P(x, y) = 36xy - 9 \\ z_{yy} = 6y \end{cases}$$

	(1, 1)	(0, 0)
$P(x_0, y_0)$	27 > 0	
$z_{xx}(x_0, y_0)$	6 > 0	
是否极值点		

解 1 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 & \Longrightarrow P(x, y) = 36xy - 9 \\ z_{yy} = 6y \end{cases}$$

	(1, 1)	(0, 0)
$P(x_0, y_0)$	27 > 0	
$z_{xx}(x_0, y_0)$	6 > 0	
是否极值点	极小值点	

解 1 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \\ z_{yy} = 6y \end{cases} \implies P(x, y) = 36xy - 9$$

	(1, 1)	(0, 0)
$P(x_0, y_0)$	27 > 0	-9 < 0
$z_{xx}(x_0, y_0)$	6 > 0	
是否极值点	极小值点	

解 1 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \implies P(x, y) = 36xy - 9 \\ z_{yy} = 6y \end{cases}$$

	(1, 1)	(0, 0)
$P(x_0, y_0)$	27 > 0	-9 < 0
$z_{xx}(x_0, y_0)$	6 > 0	
是否极值点	极小值点	×

$$z = x^3 + y^3 - 3xy$$

- 设 u = f(x, y, z)。
- (x₀, y₀, z₀) 是驻点指在该点处偏导数全为零:

$$f_x(x_0, y_0, z_0) = 0$$
, $f_y(x_0, y_0, z_0) = 0$, $f_z(x_0, y_0, z_0) = 0$

- 设 u = f(x, y, z)。
- (x₀, y₀, z₀) 是驻点指在该点处偏导数全为零:

$$f_x(x_0, y_0, z_0) = 0$$
, $f_y(x_0, y_0, z_0) = 0$, $f_z(x_0, y_0, z_0) = 0$

• 设 (x_0, y_0, z_0) 是 u = f(x, y, z) 的极值点,则 (x_0, y_0, z_0) 一定 是驻点

- 设 u = f(x, y, z)。
- (x₀, y₀, z₀) 是驻点指在该点处偏导数全为零:

$$f_x(x_0, y_0, z_0) = 0$$
, $f_y(x_0, y_0, z_0) = 0$, $f_z(x_0, y_0, z_0) = 0$

- 设 (x_0, y_0, z_0) 是 u = f(x, y, z) 的极值点,则 (x_0, y_0, z_0) 一定是驻点
- 如何进一步判别哪些驻点为极值点?

- 设 u = f(x, y, z)。
- (x₀, y₀, z₀) 是驻点指在该点处偏导数全为零:

$$f_x(x_0, y_0, z_0) = 0$$
, $f_y(x_0, y_0, z_0) = 0$, $f_z(x_0, y_0, z_0) = 0$

- 设 (x_0, y_0, z_0) 是 u = f(x, y, z) 的极值点,则 (x_0, y_0, z_0) 一定 是驻点
- 如何进一步判别哪些驻点为极值点? 考虑矩阵

$$\begin{pmatrix} f_{xx} & f_{xy} & f_{xz} \\ f_{yx} & f_{yy} & f_{yz} \\ f_{zx} & f_{zy} & f_{zz} \end{pmatrix}_{(x_0, y_0, z_0)}$$

- 设 u = f(x, y, z)。
- (x₀, y₀, z₀) 是驻点指在该点处偏导数全为零:

$$f_X(x_0, y_0, z_0) = 0, \quad f_Y(x_0, y_0, z_0) = 0, \quad f_Z(x_0, y_0, z_0) = 0$$

- 设 (x_0, y_0, z_0) 是 u = f(x, y, z) 的极值点,则 (x_0, y_0, z_0) 一定 是驻点
- 如何进一步判别哪些驻点为极值点? 考虑矩阵

$$\begin{pmatrix}
f_{xx} & f_{xy} & f_{xz} \\
f_{yx} & f_{yy} & f_{yz} \\
f_{zx} & f_{zy} & f_{zz}
\end{pmatrix}_{(x_0, y_0, z_0)}$$

- 如果是正定矩阵,则 (x₀, y₀, z₀) 是极小值点
- 如果是负定矩阵,则 (x₀, y₀, z₀) 是极大值点

We are here now...

1. 多元函数的极值点

2. 条件极值

3. 求解多元函数的最值

$$(x_0, y_0)$$
是条件极值点 $\Rightarrow \nabla f(x_0, y_0) \perp \overrightarrow{s}$

$$(x_0, y_0)$$
是条件极值点 $\Rightarrow \nabla f(x_0, y_0) \perp \overrightarrow{s}$

问题 求解二元函数 u = f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极值点。

$$(x_0, y_0)$$
是条件极值点 $\Rightarrow \nabla f(x_0, y_0) \perp \overrightarrow{s}$

$$(x(0), y(0)) = (x_0, y_0)$$
 $(x(t), y(t))$
 $\varphi(x, y) = 0$

问题 求解二元函数 u = f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极值点。

$$\Rightarrow \nabla f(x_0, y_0) \perp \overrightarrow{s}$$

问题 求解二元函数 u = f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极值点。

$$(x_0, y_0)$$
是条件极值点 $\Rightarrow \nabla f(x_0, y_0) \perp \overrightarrow{s}$ $(x(0), y_0)$

$$(x(0), y(0)) = (x_0, y_0)$$

$$(x(t), y(t))$$

$$x(x, y) = 0$$

$$0 = f(x(t), y(t))$$

问题 求解二元函数 u = f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极值点。

$$(x_0, y_0)$$
是条件极值点 $\Rightarrow \nabla f(x_0, y_0) \perp \overrightarrow{s}$

$$(x(0), y(0)) = (x_0, y_0)$$

$$(x(t), y(t))$$

$$\varphi(x, y) = 0$$

$$0 = \frac{d}{dt} f(x(t), y(t)) \bigg|_{t=0}$$

$$(x_0, y_0)$$
是条件极值点 $\Rightarrow \nabla f(x_0, y_0) \perp \overrightarrow{s}$

$$(x(0), y(0)) = (x_0, y_0)$$

$$(x(t), y(t))$$

$$\varphi(x, y) = 0$$

$$0 = \frac{d}{dt}f(x(t), y(t))\Big|_{t=0} = f_x(x_0, y_0)x'(0) + f_y(x_0, y_0)y'(0)$$

问题 求解二元函数 u = f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极值点。

$$(x_0, y_0)$$
是条件极值点
$$\Rightarrow \nabla f(x_0, y_0) \perp \overrightarrow{s}$$

 $(x(0), y(0)) = (x_0, y_0)$

 $\overrightarrow{s} = (x'(0), y'(0))$

 $0 = \frac{d}{dt} f(x(t), y(t)) \Big|_{t=0} = f_X(x_0, y_0) x'(0) + f_Y(x_0, y_0) y'(0)$

问题 求解二元函数 u = f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极值点。

$$(x_0, y_0)$$
是条件极值点

$$\Rightarrow \nabla f(x_0, y_0) \perp \overrightarrow{s}$$

$$\Rightarrow \nabla f(x_0, y_0) \perp S$$

$$\Rightarrow \nabla f(x_0, y_0) \parallel \nabla \phi$$

 $\Rightarrow \nabla f(x_0, y_0) \perp \overrightarrow{s}$ $\Rightarrow \nabla f(x_0, y_0) \parallel \nabla \varphi(x_0, y_0)$ $(x(0), y(0)) = (x_0, y_0)$

$$0 = \frac{d}{dt} f(x(t), y(t)) \Big|_{t=0} = f_x(x_0, y_0) x'(0) + f_y(x_0, y_0) y'(0)$$
$$= \nabla f(x_0, y_0) \cdot (x'(0), y'(0))$$

问题 求解二元函数 u = f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极值点。

回题 水解二元函数
$$u = f(x, y)$$
 在附加条件 $\varphi(x, y) = 0$ 下的极恒点。
$$(x_0, y_0)$$
是条件极值点
$$\overrightarrow{\nabla} f(x_0, y_0)$$

$$\Rightarrow \nabla f(x_0, y_0) \perp \overrightarrow{s}$$

$$\Rightarrow \nabla f(x_0, y_0) \parallel \nabla \varphi(x_0, y_0)$$

$$(x(0), y(0)) = (x_0, y_0)$$

$$\Rightarrow \nabla f(x_0, y_0) \perp S$$

$$\Rightarrow \nabla f(x_0, y_0) \parallel \nabla \varphi(x_0, y_0) \| \nabla \varphi(x_0, y_0) \| \nabla \varphi(x_0, y_0) \| \nabla \varphi(x_0, y_0) \| \nabla \varphi($$

$$\Rightarrow \nabla f(x_0, y_0) \| \nabla \varphi(x_0, y_0)$$

$$\xrightarrow{\partial \nabla \varphi \neq 0} \exists \lambda \ \text{使得} : \ \lambda \nabla \varphi(x_0, y_0) + \nabla f(x_0, y_0) = 0$$

 $0 = \frac{d}{dt} f(x(t), y(t)) \Big|_{t=0} = f_x(x_0, y_0) x'(0) + f_y(x_0, y_0) y'(0)$

 $= \nabla f(x_0, y_0) \cdot (x'(0), y'(0))$

问题 求解二元函数 u = f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极值点。

$$\Rightarrow \nabla f(x_0, y_0) \perp \overrightarrow{s}$$

$$\|\nabla\varphi(x_0,y_0)\|$$

$$\|\nabla \varphi(x_0, y_0)\|$$

$$\nabla \varphi(x_0, y_0)$$

$$\Rightarrow$$
 $\forall f(x_0, y_0) \parallel \forall \phi(x_0, y_0)$ $\Rightarrow \exists \lambda$ 使得: $\lambda \nabla \phi(x_0, y_0) + \nabla f(x_0, y_0) = 0$

 $\Rightarrow \exists \lambda$ 使得: $\nabla (f + \lambda \varphi)(x_0, y_0) = 0$

$$\Rightarrow \nabla f(x_0, y_0) \perp \overline{s}$$

$$\Rightarrow \nabla f(x_0, y_0) \parallel \nabla \varphi(x_0, y_0)$$

$$\neq 0$$

$$\Rightarrow \nabla f(x_0, y_0) \parallel \nabla \varphi(x_0, y_0) + \nabla f(x_0, y_0) = 0$$

$$\nabla \psi(x_0, y_0)$$
 $\nabla \phi(x_0, y_0) + \nabla f(x_0, y_0)$

$$(x(0), y(0)) = (x_0, y_0)$$

$$=(x_0,y_0)$$
 $\overrightarrow{s}=0$

$$\vec{s} = (x'(0), y'(0))$$

$$\varphi(x,y)=$$

设∇*φ≠*0

 $0 = \frac{d}{dt} f(x(t), y(t)) \Big|_{t=0} = f_x(x_0, y_0) x'(0) + f_y(x_0, y_0) y'(0)$

问题 求解二元函数 u = f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极值点。

$$\Rightarrow \nabla f(x_0, y_0) \perp \overrightarrow{s}$$

$$\Rightarrow \nabla f(x_0, y_0) \perp \overline{s}$$

$$\Rightarrow \nabla f(x_0, y_0) \parallel \nabla \varphi(x_0, y_0)$$

$$\Rightarrow \forall f(x_0, y_0) \parallel \nabla \varphi(x_0, y_0)$$

$$\Rightarrow \exists \lambda \ \text{使得} : \lambda \nabla \varphi(x_0, y_0) + \nabla f(x_0, y_0) = 0$$

 $\Rightarrow \exists \lambda$ 使得: $\nabla (f + \lambda \varphi)(x_0, y_0) = 0$

注 $L := f + \lambda \varphi$ 称为拉格朗日函数。

$$0 = \frac{d}{dt} f(x(t), y(t)) \Big|_{t=0} = f_x(x_0, y_0) x'(0) + f_y(x_0, y_0) y'(0)$$
$$= \nabla f(x_0, y_0) \cdot (x'(0), y'(0))$$

 $\overrightarrow{s} = (x'(0), y'(0))$

问题 求解二元函数 u = f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极值点。

$$(x_0, y_0)$$
是条件极值点

$$\Rightarrow \nabla f(x_0, y_0) \perp \overrightarrow{s}$$

$$\Rightarrow \nabla f(x_0, y_0) \parallel \nabla \varphi(x_0, y_0)$$
 $(x_0, y_0) \parallel \nabla \varphi(x_0, y_0)$

$$\Rightarrow \nabla f(x_0, y_0) \| \nabla \varphi(x_0, y_0)$$

$$\xrightarrow{\partial \nabla \varphi \neq 0} \exists \lambda \ \text{使得} : \ \lambda \nabla \varphi(x_0, y_0) + \nabla f(x_0, y_0) = 0$$

 $\Rightarrow \exists \lambda$ 使得: $\nabla (f + \lambda \varphi)(x_0, y_0) = 0$

注 $L := f + \lambda \varphi$ 称为拉格朗日函数。条件极值点蕴含在 $\begin{cases} \nabla L = 0 \\ \varphi = 0 \end{cases}$ 的解中

$$0 = \frac{d}{dt}f(x(t), y(t))\Big|_{t=0} = f_x(x_0, y_0)x'(0) + f_y(x_0, y_0)y'(0)$$

 $= \nabla f(x_0, y_0) \cdot (x'(0), y'(0))$

问题 求解二元函数 u = f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极值点。

求解 步骤 (拉格朗 日乘数法)

- 1 构造拉格朗日函数 $L = f + \lambda \sigma$, 其中 λ 是待定常数。
- 2. 求解方程组

$$\begin{cases}
\nabla L = 0 \\
\varphi = 0
\end{cases}$$

 条件极值点(如果存在的话)包含在上述解 {(x, v)}中。 (至于如何判断解是否条件极值点,需具体问题具体分析。)

问题 求解二元函数 u = f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极值点。

求解步骤(拉格朗日乘数法)

- 1. 构造拉格朗日函数 $L = f + \lambda \varphi$, 其中 λ 是待定常数。
- 2. 求解方程组

$$\left\{ \begin{array}{l} \nabla L = 0 \\ \varphi = 0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} L_{x} = f_{x} + \lambda \varphi_{x} = 0 \\ L_{y} = f_{y} + \lambda \varphi_{y} = 0 \\ \varphi = 0 \end{array} \right.$$

3. 条件极值点(如果存在的话)包含在上述解 {(x, y)} 中。 (至于如何判断解是否条件极值点,需具体问题具体分析。)

解 等价求: $z = f(x, y) = x^2 + y^2$ 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

1 构造拉格朗日函数:

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) =$$

2. 求解方程组:
$$\begin{cases} L_x = 0 \\ L_y = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases}$$

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

1 构造拉格朗日函数:

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 0 \\ L_y = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases}$$

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

 $\phi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值

$$L(x, y, \lambda) = \int (x, y) + \lambda \psi(x, y) = x + y + \lambda(x^2 + y^2 - 1)$$

$$\int \int (x, y) + \lambda \psi(x, y) = x + y + \lambda(x^2 + y^2 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases}$$

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

1. 构造拉格朗日函数:

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases}$$

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

1. 构造拉格朗日函数:

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

1 构造拉格朗日函数:

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \\ y^6 - 1 = 0 \end{cases}$$

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

1. 构造拉格朗日函数:

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \\ y^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \\ x^6 - 1 = 0 \end{cases}$$

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

1. 构造拉格朗日函数:

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \\ y^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \\ x^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ 1 + 3\lambda y^4 = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

1. 构造拉格朗日函数:

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \\ y^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \\ x^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ 1 + 3\lambda y^4 = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

解 (x, y)

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

1. 构造拉格朗日函数:

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \\ y^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \\ x^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ 1 + 3\lambda y^4 = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

解 (x, y)	(0, ±1)		
		6	

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

1 构造拉格朗日函数:

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \\ y^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \\ x^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ 1 + 3\lambda y^4 = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

解 (x, y)	(0, ±1)	(±1, 0)	

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

1 构造拉格朗日函数:

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \\ y^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \\ x^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ 1 + 3\lambda y^4 = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

解 (x, y) $(0, \pm 1)$ $(\pm 1, 0)$ $(\pm \sqrt[6]{1/2}, \pm \sqrt[6]{1/2})$

解 等价求: $z = f(x, y) = x^2 + y^2$ 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

 $(-1,0) \qquad 0 \qquad (1,0) \times \\ (-\sqrt[6]{\frac{1}{2}}, -\sqrt[6]{\frac{1}{2}}) \qquad (0,-1) \qquad (\sqrt[6]{\frac{1}{2}}, -\sqrt[6]{\frac{1}{2}}) \\ (2,-2) \qquad (3,-2) \qquad (6,-2) \qquad (6,-2) \qquad (7,0) \times \\ (1,0) \times ($

(0,1)

 $(\sqrt[6]{\frac{1}{2}}, \sqrt[6]{\frac{1}{2}})$

 $(-\sqrt[6]{\frac{1}{2}}, \sqrt[6]{\frac{1}{2}})$

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ 1 + 3\lambda y^4 = 0 \end{cases}$$

$$x^6 - 1 = 0$$

解 (x, y) $(0, \pm 1)$ $(\pm 1, 0)$ $(\pm \sqrt[6]{1/2}, \pm \sqrt[6]{1/2})$

解 等价求: $z = f(x, y) = x^2 + y^2$ 在条 件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

例 求平面曲线 $x^6 + y^6 = 1$ 上的点,到

 $(-6\sqrt{\frac{1}{2}},-6\sqrt{\frac{1}{2}})$ (0,-1) $(6\sqrt{\frac{1}{2}},-6\sqrt{\frac{1}{2}})$

(0,1)

 $(\sqrt[6]{\frac{1}{2}}, \sqrt[6]{\frac{1}{2}})$

原点的距离分别是最远和最近。

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$
$$\int L_x = 2x + 6\lambda x^5 = 0 \qquad \int x(1 + 3\lambda x^4) = 0$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ 1 + 3\lambda y^4 = 0 \\ x^6 - 1 = 0 \end{cases}$$

 $(-\sqrt[6]{\frac{1}{2}}, \sqrt[6]{\frac{1}{2}})$

解
$$(x, y)$$
 $(0, \pm 1)$
 $(\pm 1, 0)$
 $(\pm \sqrt[6]{1/2}, \pm \sqrt[6]{1/2})$

 函数值 $f(x, y)$
 1
 1
 $2\sqrt[3]{1/2}$

$$\begin{array}{c} \pm \sqrt[6]{1/2}, \pm \sqrt[6]{1/2} \\ 2\sqrt[3]{1/2} \end{array}$$

解 等价求: $z = f(x, y) = x^2 + y^2$ 在条 件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

例 求平面曲线 $x^6 + y^6 = 1$ 上的点,到

原点的距离分别是最远和最近。

$$(-\frac{6\sqrt{\frac{1}{2}}}{\sqrt{\frac{1}{2}}}, \frac{6\sqrt{\frac{1}{2}}}{\sqrt{\frac{1}{2}}})$$

$$(-\frac{1,0)}{\sqrt{\frac{1}{2}}}, -\frac{6\sqrt{\frac{1}{2}}}{\sqrt{\frac{1}{2}}})$$

$$(-\frac{6\sqrt{\frac{1}{2}}}{\sqrt{\frac{1}{2}}}, -\frac{6\sqrt{\frac{1}{2}}}{\sqrt{\frac{1}{2}}})$$

$$(-\frac{6\sqrt{\frac{1}{2}}}{\sqrt{\frac{1}{2}}}, -\frac{6\sqrt{\frac{1}{2}}}{\sqrt{\frac{1}{2}}})$$

$$(-\frac{6\sqrt{\frac{1}{2}}}{\sqrt{\frac{1}{2}}}, -\frac{6\sqrt{\frac{1}{2}}}{\sqrt{\frac{1}{2}}})$$

$$(-\frac{6\sqrt{\frac{1}{2}}}{\sqrt{\frac{1}{2}}}, -\frac{6\sqrt{\frac{1}{2}}}{\sqrt{\frac{1}{2}}})$$

$$(-\frac{6\sqrt{\frac{1}{2}}}{\sqrt{\frac{1}{2}}}, -\frac{6\sqrt{\frac{1}{2}}}{\sqrt{\frac{1}{2}}})$$

$$(-\frac{6\sqrt{\frac{1}{2}}}{\sqrt{\frac{1}{2}}}, -\frac{6\sqrt{\frac{1}{2}}}{\sqrt{\frac{1}{2}}})$$

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^{2} + y^{2} + \lambda (x^{6} + y^{6} - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \\ y^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \\ x^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ 1 + 3\lambda y^4 = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$
 解 (x, y) $(0, \pm 1)$ $(\pm 1, 0)$ $(\pm \sqrt[6]{1/2}, \pm \sqrt[6]{1/2})$ 函数值 $f(x, y)$ 1 1 $2\sqrt[3]{1/2} \approx 1.59$

9 章 g: 多元函数的极值

条件极值(三元函数 + 一个附加条件)

问题 求解三元函数 u = f(x, y, z) 在附加条件 $\varphi(x, y, z) = 0$ 下的极值点。

求解步骤(拉格朗日乘数法)

- 1. 构造拉格朗日函数 $L = f + \lambda \varphi$, 其中 λ 是待定常数。
- 2. 求解方程组

$$\begin{cases} L_X = f_X + \lambda \varphi_X = 0 \\ L_Y = f_Y + \lambda \varphi_Y = 0 \\ L_Z = f_Z + \lambda \varphi_Z = 0 \\ \varphi = 0 \end{cases}$$

3. 条件极值点(如果存在的话)包含在上述解 {(x, y, z)} 中。

(至于如何判断解是否条件极值点, 需具体问题具体分析。)

解 求: $\rho(x, y) = 3 + xz + y^2$ 在条件 $\varphi(x, y) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

解 求:
$$\rho(x, y) = 3 + xz + y^2$$
 在条件 $\varphi(x, y) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

1. 拉格朗日函数: $L = \rho + \lambda \varphi =$

2. 求解:
$$\begin{cases} L_x &= 0 \\ L_y &= 0 \\ L_z &= 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases}$$

解 求:
$$\rho(x, y) = 3 + xz + y^2$$
 在条件 $\varphi(x, y) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

2. 求解:
$$\begin{cases} L_x &= 0 \\ L_y &= 0 \\ L_z &= 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases}$$

解 求:
$$\rho(x, y) = 3 + xz + y^2$$
 在条件 $\varphi(x, y) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

2. 求解:
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 0 \\ L_z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases}$$

解 求:
$$\rho(x, y) = 3 + xz + y^2$$
 在条件 $\varphi(x, y) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

2. 求解:
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases}$$

解 求:
$$\rho(x, y) = 3 + xz + y^2$$
 在条件 $\varphi(x, y) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

2. 求解:
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases}$$

解 求: $\rho(x, y) = 3 + xz + y^2$ 在条件 $\varphi(x, y) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

2. 求解:
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

解 求: $\rho(x, y) = 3 + xz + y^2$ 在条件 $\varphi(x, y) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

2.
$$\vec{x}$$
 \vec{x} :
$$\begin{cases}
L_x = z + 2\lambda x = 0 \\
L_y = 2y + 2\lambda y = 0 \\
L_z = x + 2\lambda z = 0 \\
\varphi = x^2 + y^2 + z^2 - 4 = 0
\end{cases}
\Rightarrow
\begin{cases}
z = -2\lambda x \implies z = 4\lambda^2 z \\
y(1 + \lambda) = 0 \\
x = -2\lambda z \\
x^2 + y^2 + z^2 = 4
\end{cases}$$

解 求: $\rho(x, y) = 3 + xz + y^2$ 在条件 $\varphi(x, y) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

1. 拉格朗日函数: $L = \rho + \lambda \varphi = 3 + xz + y^2 + \lambda(x^2 + y^2 + z^2 - 4)$

2.
$$\vec{x}$$
 \vec{x} :
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^2 z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

若 z = 0,则

解 求: $\rho(x, y) = 3 + xz + y^2$ 在条件 $\varphi(x, y) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

1. 拉格朗日函数: $L = \rho + \lambda \varphi = 3 + xz + y^2 + \lambda(x^2 + y^2 + z^2 - 4)$

2.
$$\vec{x}$$
 \vec{x} :
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^2 z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

若 z = 0, 则x = 0,

解 求: $\rho(x, y) = 3 + xz + y^2$ 在条件 $\varphi(x, y) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

1. 拉格朗日函数: $L = \rho + \lambda \varphi = 3 + xz + y^2 + \lambda(x^2 + y^2 + z^2 - 4)$

2.
$$\vec{x}$$
 \vec{m} :
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^2 z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

若 z = 0, 则x = 0, y = ±2,

解 求: $\rho(x, y) = 3 + xz + y^2$ 在条件 $\varphi(x, y) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

1. 拉格朗日函数: $L = \rho + \lambda \varphi = 3 + xz + y^2 + \lambda(x^2 + y^2 + z^2 - 4)$

2. 求解:
$$\begin{cases} L_{x} = z + 2\lambda x = 0 \\ L_{y} = 2y + 2\lambda y = 0 \\ L_{z} = x + 2\lambda z = 0 \\ \varphi = x^{2} + y^{2} + z^{2} - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^{2}z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^{2} + y^{2} + z^{2} = 4 \end{cases}$$

• 若 z = 0, 则x = 0, $y = \pm 2$, 所以此时 $(x, y, z) = (0, \pm 2, 0)$

解 求: $\rho(x, y) = 3 + xz + y^2$ 在条件 $\varphi(x, y) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

2.
$$\vec{x}$$
 \vec{x} :
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^2 z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

- 若 z = 0, 则x = 0, $y = \pm 2$, 所以此时 $(x, y, z) = (0, \pm 2, 0)$
- 若 z ≠ 0, 则

解 求: $\rho(x, y) = 3 + xz + y^2$ 在条件 $\varphi(x, y) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

2. 求解:
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^2 z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

- 若 z = 0, 则x = 0, $y = \pm 2$, 所以此时 $(x, y, z) = (0, \pm 2, 0)$
- 若 $z \neq 0$,则 $\lambda = \pm \frac{1}{2}$,

解 求: $\rho(x, y) = 3 + xz + y^2$ 在条件 $\varphi(x, y) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

2. 求解:
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^2 z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

- 若 z = 0, 则x = 0, $y = \pm 2$, 所以此时 $(x, y, z) = (0, \pm 2, 0)$
- 若 $z \neq 0$, 则 $\lambda = \pm \frac{1}{2}$, y = 0,

2.
$$\vec{x}$$
 \vec{m} :
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^2 z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

- 若 z = 0, 则x = 0, $y = \pm 2$, 所以此时 $(x, y, z) = (0, \pm 2, 0)$
- 若 $z \neq 0$, 则 $\lambda = \pm \frac{1}{2}$, y = 0, $x = \mp z$, 所以此时 $(x, y, z) = (\pm \sqrt{2}, 0, \pm \sqrt{2}), (\pm \sqrt{2}, 0, \mp \sqrt{2})$

$$\mathbf{m}$$
 求: $\rho(x, y) = 3 + xz + y^2$ 在条件 $\varphi(x, y) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

2.
$$\vec{x}$$
 \vec{x} :
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^2 z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

- 若 z = 0, 则x = 0, $y = \pm 2$, 所以此时 $(x, y, z) = (0, \pm 2, 0)$
- 若 $z \neq 0$, 则 $\lambda = \pm \frac{1}{2}$, y = 0, $x = \mp z$, 所以此时 $(x, y, z) = (\pm \sqrt{2}, 0, \pm \sqrt{2}), (\pm \sqrt{2}, 0, \mp \sqrt{2})$

解
$$(x, y, z)$$
 $(0, \pm 2, 0)$ $(\pm \sqrt{2}, 0, \pm \sqrt{2})$ $(\pm \sqrt{2}, 0, \mp \sqrt{2})$ $\rho(x, y, z)$

$$\mathbf{m}$$
 求: $\rho(x, y) = 3 + xz + y^2$ 在条件 $\varphi(x, y) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

2.
$$\vec{x}$$
 \vec{x} :
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^2 z \\ y(1+\lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

- 若 z = 0, 则x = 0, $y = \pm 2$, 所以此时 $(x, y, z) = (0, \pm 2, 0)$
- 若 $z \neq 0$, 则 $\lambda = \pm \frac{1}{2}$, y = 0, $x = \mp z$, 所以此时 $(x, y, z) = (\pm \sqrt{2}, 0, \pm \sqrt{2}), (\pm \sqrt{2}, 0, \mp \sqrt{2})$

解
$$(x, y, z)$$
 $(0, \pm 2, 0)$
 $(\pm \sqrt{2}, 0, \pm \sqrt{2})$
 $(\pm \sqrt{2}, 0, \mp \sqrt{2})$
 $\rho(x, y, z)$
 7

解 求:
$$\rho(x, y) = 3 + xz + y^2$$
 在条件 $\varphi(x, y) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

2.
$$\vec{x}$$
 \vec{x} :
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^2 z \\ y(1+\lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

- 若 z = 0, 则x = 0, $y = \pm 2$, 所以此时 $(x, y, z) = (0, \pm 2, 0)$
- 若 $z \neq 0$, 则 $\lambda = \pm \frac{1}{2}$, y = 0, $x = \mp z$, 所以此时 $(x, y, z) = (\pm \sqrt{2}, 0, \pm \sqrt{2}), (\pm \sqrt{2}, 0, \mp \sqrt{2})$

$$m(x, y, z)$$
 $(0, \pm 2, 0)$
 $(\pm \sqrt{2}, 0, \pm \sqrt{2})$
 $(\pm \sqrt{2}, 0, \mp \sqrt{2})$
 $\rho(x, y, z)$
 7
 5

解 求: $\rho(x, y) = 3 + xz + y^2$ 在条件 $\varphi(x, y) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

2.
$$\vec{x}$$
 \vec{x} :
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^2 z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

- 若 z = 0, 则x = 0, $y = \pm 2$, 所以此时 $(x, y, z) = (0, \pm 2, 0)$
- 若 $z \neq 0$, 则 $\lambda = \pm \frac{1}{2}$, y = 0, $x = \mp z$, 所以此时 $(x, y, z) = (\pm \sqrt{2}, 0, \pm \sqrt{2})$, $(\pm \sqrt{2}, 0, \mp \sqrt{2})$

$$m(x, y, z)$$
 $(0, \pm 2, 0)$
 $(\pm \sqrt{2}, 0, \pm \sqrt{2})$
 $(\pm \sqrt{2}, 0, \mp \sqrt{2})$
 $\rho(x, y, z)$
 7
 5
 1

条件极值(三元函数 + 两个附加条件)

问题 求解三元函数 u = f(x, y, z) 在附加条件 $\begin{cases} \varphi(x, y, z) = 0 \\ \psi(x, y, z) = 0 \end{cases}$ 下的

求解步骤(拉格朗日乘数法)

- 1. 构造拉格朗日函数 $L = f + \lambda \varphi + \mu \psi$, 其中 λ , μ 是待定常数。
- 2. 求解方程组 $\begin{cases} L_X = f_X + \lambda \varphi_X + \mu \psi_X = 0 \\ L_Y = f_Y + \lambda \varphi_Y + \mu \psi_Y = 0 \\ L_Z = f_Z + \lambda \varphi_Z + \mu \psi_Z = 0 \\ \varphi = 0 \\ \psi = 0 \end{cases}$
- 3. 条件极值点(如果存在的话)包含在上述解 {(x, y, z)} 中。 (至于如何判断解是否条件极值点,需具体问题具体分析。)

极值点。

We are here now...

1. 多元函数的极值点

2. 条件极值

3. 求解多元函数的最值

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点。

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点。

分析

● 连续函数在有界闭区域上一定能取到最大、最小值。所以最大、最小值点一定存在。

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点。

分析

• 连续函数在有界闭区域上一定能取到最大、最小值。所以最大、最小值点一定存在。记 $p \in D$ 为最值点。

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点。

分析

- 连续函数在有界闭区域上一定能取到最大、最小值。所以最大、最小值点一定存在。记 $p \in D$ 为最值点。
- 若 p 是 D 的内点,
- 若 *p* 是 *D* 的边界点,

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点。

分析

- 连续函数在有界闭区域上一定能取到最大、最小值。所以最大、最小值点一定存在。记 $p \in D$ 为最值点。
- 若 p 是 D 的内点,
- 若 *p* 是 *D* 的边界点,

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点。

- 连续函数在有界闭区域上一定能取到最大、最小值。所以最大、最小值点一定存在。记 $p \in D$ 为最值点。
- 若 $p \in D$ 的内点,则 $p \in z = f(x, y)$ 的极值点,
- 若 *p* 是 *D* 的边界点,

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点。

- 连续函数在有界闭区域上一定能取到最大、最小值。所以最大、最小值点一定存在。记 $p \in D$ 为最值点。
- 若 p 是 D 的内点,则 p 是 z = f(x, y) 的极值点,从而是驻点: $f_x(p) = f_y(p) = 0$
- 若 *p* 是 *D* 的边界点,

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点。

- 连续函数在有界闭区域上一定能取到最大、最小值。所以最大、最小值点一定存在。记 $p \in D$ 为最值点。
- 若 p 是 D 的内点,则 p 是 z = f(x, y) 的极值点,从而是驻点: $f_x(p) = f_y(p) = 0$
- 若 *p* 是 *D* 的边界点,

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点。

- 连续函数在有界闭区域上一定能取到最大、最小值。所以最大、最小值点一定存在。记 $p \in D$ 为最值点。
- 若 p 是 D 的内点,则 p 是 z = f(x, y) 的极值点,从而是驻点: $f_x(p) = f_y(p) = 0$
- 若 $p \in D$ 的边界点,则 $p \in z = f(x, y)$ 在条件 $\varphi(x, y) = 0$ 下的条件极值点

求解步骤

1. 求驻点:

2. 求条件极值:

- 1. 求驻点: 在 D 内部求解方程组 $\begin{cases} f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases}$
- 2. 求条件极值:

- 1. 求驻点: 在 D 内部求解方程组 $\begin{cases} f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases}$ 。设驻点为 p_1, p_2, \ldots, p_m
- 2. 求条件极值:

- 1. 求驻点: 在 D 内部求解方程组 $\begin{cases} f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases}$ 。设驻点为 p_1, p_2, \ldots, p_m
- 2. 求条件极值: z = f(x, y) 在条件 $\varphi(x, y) = 0$ 下的条件极值。

- 1. 求驻点: 在 D 内部求解方程组 $\begin{cases} f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases}$ 。设驻点为 p_1, p_2, \ldots, p_m
- 2. 求条件极值: z = f(x, y) 在条件 $\varphi(x, y) = 0$ 下的条件极值。设条件极值点为 q_1, q_2, \ldots, q_n

求解步骤

- 1. 求驻点: 在 D 内部求解方程组 $\begin{cases} f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases}$ 。设驻点为 p_1, p_2, \ldots, p_m
- 2. 求条件极值: z = f(x, y) 在条件 $\varphi(x, y) = 0$ 下的条件极值。设条件极值点为 q_1, q_2, \ldots, q_n
- 3. 比较 $p_1, p_2, \ldots, p_m; q_1, q_2, \ldots, q_n$ 的函数值,最大者对应最大

值点,最小者对应最小值点。

例 求函数 $f(x,y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$ 在区域 $D = \{(x,y) | x^2 + y^2 \le 3\}$ 内的最值。

例 求函数
$$f(x, y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 在区域 $D = \{(x, y) | x^2 + y^2 \le 3\}$ 内的最值。

2. 求
$$f = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$

 $\varphi(x, y) = x^2 + y^2 - 3 = 0$ 下的条件极值:

在条件

例 求函数
$$f(x,y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 在区域 $D = \{(x,y) | x^2 + y^2 \le 3\}$ 内的最值。

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases}$$

2. 求
$$f = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$

 $\varphi(x, y) = x^2 + y^2 - 3 = 0$ 下的条件极值:

在条件

例 求函数 $f(x, y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$ 在区域 $D = \{(x, y) | x^2 + y^2 < 3\}$ 内的最值。

解 1. 求驻点:

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Rightarrow (x, y) = (1, 0), (1, 2), (-3, 0), (-3, 2)$$

2. 求 $f = x^3 - y^3 + 3x^2 + 3y^2 - 9x$ $\varphi(x, y) = x^2 + y^2 - 3 = 0$ 下的条件极值:

例 求函数
$$f(x, y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 在区域 $D = \{(x, y) | x^2 + y^2 \le 3\}$ 内的最值。

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Rightarrow (x, y) = (1, 0), (1, 2), (-3, 0), (-3, 2)$$

只有驻点 (1,0) 是 D 的内点。

2. 求
$$f = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$

 $\varphi(x, y) = x^2 + y^2 - 3 = 0$ 下的条件极值:

在条件

例 求函数
$$f(x,y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 在区域 $D = \{(x,y) | x^2 + y^2 \le 3\}$ 内的最值。

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Rightarrow (x, y) = (1, 0), (1, 2), (-3, 0), (-3, 2)$$

只有驻点 (1,0) 是 D 的内点。

2. 求
$$f = x^3 - y^3 + 3x^2 + 3y^2 - 9x = x^3 - y^3 - 9x + 9$$
在条件 $\varphi(x, y) = x^2 + y^2 - 3 = 0$ 下的条件极值:

例 求函数
$$f(x,y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 在区域 $D = \{(x,y) | x^2 + y^2 \le 3\}$ 内的最值。

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Rightarrow (x, y) = (1, 0), (1, 2), (-3, 0), (-3, 2)$$

只有驻点 (1,0) 是 D 的内点。

2. 求
$$f = x^3 - y^3 + 3x^2 + 3y^2 - 9x = x^3 - y^3 - 9x + 9$$
在条件 $\varphi(x, y) = x^2 + y^2 - 3 = 0$ 下的条件极值: 令 $L = f + \lambda \varphi$, 求解

例 求函数 $f(x,y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$ 在区域 $D = \{(x,y) | x^2 + y^2 \le 3\}$ 内的最值。

解 1. 求驻点:

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Rightarrow (x, y) = (1, 0), (1, 2), (-3, 0), (-3, 2)$$

2. 求 $f = x^3 - v^3 + 3x^2 + 3v^2 - 9x = x^3 - v^3 - 9x + 9$ 在条件

只有驻点 (1,0) 是 D 的内点。

 $φ(x,y) = x^2 + y^2 - 3 = 0$ 下的条件极值: $φ(L_x = 3x^2 - 9 + 2λx = 0$

$$\begin{cases} L_x = 3x^2 - 9 + 2\lambda x = 0 \\ L_y = -3y^2 + 2\lambda y = 0 \\ \varphi = x^2 + y^2 - 3 = 0 \end{cases}$$

例 求函数 $f(x, y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$ 在区域 $D = \{(x, v) | x^2 + v^2 < 3\}$ 内的最值。

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Rightarrow (x, y) = (1, 0), (1, 2), (-3, 0), (-3, 2)$$

只有驻点 (1,0) 是 D 的内点。

只有驻点 (1,0) 是
$$D$$
 的内点。
2. 求 $f = x^3 - y^3 + 3x^2 + 3y^2 - 9x = x^3 - y^3 - 9x + 9在条件$

 $\varphi(x,y) = x^2 + y^2 - 3 = 0$ 下的条件极值: 令 $L = f + \lambda \varphi$, 求解 $\begin{cases} L_x = 3x^2 - 9 + 2\lambda x = 0 \\ L_y = -3y^2 + 2\lambda y = 0 \\ \varphi = x^2 + y^2 - 3 = 0 \end{cases} \Rightarrow (x, y) = (\pm \sqrt{3}, 0), (\sqrt{3/2}, \sqrt{3/2}), (-\sqrt{3/2}, -\sqrt{3/2})$

比较函数值:

例 求函数 $f(x, y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$ 在区域 $D = \{(x, y) | x^2 + y^2 < 3\}$ 内的最值。

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Rightarrow (x, y) = (1, 0), (1, 2), (-3, 0), (-3, 2)$$

只有驻点 (1,0) 是 D 的内点。

2. 求 $f = x^3 - y^3 + 3x^2 + 3y^2 - 9x = x^3 - y^3 - 9x + 9在条件$

$$\varphi(x,y) = x^2 + y^2 - 3 = 0 \text{ 下的条件极值: } \diamondsuit L = f + \lambda \varphi, \text{ 求解}$$

$$\begin{cases} L_x = 3x^2 - 9 + 2\lambda x = 0 \\ L_y = -3y^2 + 2\lambda y = 0 \\ \varphi = x^2 + y^2 - 3 = 0 \end{cases} \Rightarrow (x,y) = (\pm \sqrt{3},0), (\sqrt{3/2}, \sqrt{3/2}), (-\sqrt{3/2}, -\sqrt{3/2})$$

TO KILL THE TENTON TO THE TENTON THE TENTON TO THE TENTON THE TENTON THE TENTON THE TENTON THE TENTO						
	(x,y)	(1,0)	(√3,0)	(-√3,0)	$(\sqrt{1.5}, \sqrt{1.5})$	$(-\sqrt{1.5}, -\sqrt{1.5})$
	f(x,y)	-5	≈-1.4	≈ 19.4	≈20.0	≈-2.0

例 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

第 9 章 g: 多元函数的极值

例 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} \\ z_y = \end{cases}$$

例 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} \end{cases}$$

例 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0\\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases}$$

例 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

$$\frac{M}{D}$$
 求 $z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$ 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

例 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x = 0 & \begin{cases} x = 0 & \begin{cases} 1 - 2x^2 - 3y^2 = 0 \end{cases} \\ y = 0 & \end{cases} \begin{cases} 2 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 2 - 2x^2 - 3y^2 = 0 \end{cases}$$

例 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x = 0 & \{x = 0 \\ y = 0 \end{cases} \begin{cases} x = 0 & \{1 - 2x^2 - 3y^2 = 0 \\ 2 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ 2 - 2x^2 - 3y^2 = 0 \end{cases}$$

$$(x, y) = (0, 0)$$

例 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x = 0 \\ y = 0 \end{cases} \begin{cases} x = 0 \\ 2 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ y = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ 2 - 2x^2 - 3y^2 = 0 \end{cases}$$

$$(x, y) = (0, 0)$$
 或 $(0, \pm \sqrt{2/3})$

$$\frac{M}{D}$$
 求 $z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$ 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x = 0 & x = 0 \\ y = 0 & 2 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ y = 0 & 2 - 2x^2 - 3y^2 = 0 \end{cases}$$

$$(x, y) = (0, 0)$$
 或 $(0, \pm \sqrt{2/3})$ 或 $(\pm \sqrt{1/2}, 0)$

解 1 求驻点:

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$
 所以有如下四种情况

$$\begin{cases} x = 0 & x = 0 \\ y = 0 & 2 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ y = 0 & 2 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ 2 - 2x^2 - 3y^2 = 0 \end{cases}$$

##特
$$(x,y) = (0,0)$$
 或 $(0,\pm\sqrt{2/3})$ 或 $(\pm\sqrt{1/2},0)$

驻点
$$(x, y)$$
 $(0, 0)$ $(0, \pm \sqrt{2/3})$ $(\pm \sqrt{1/2}, 0)$ 函数值 $z(x, y)$

解 1 求驻点:

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$
 所以有如下四种情况

$$\begin{cases} x = 0 & x = 0 \\ y = 0 & 2 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ y = 0 & 2 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ 2 - 2x^2 - 3y^2 = 0 \end{cases}$$

$$(x,y) = (0,0)$$
 或 $(0,\pm\sqrt{2/3})$ 或 $(\pm\sqrt{1/2},0)$

驻点
$$(x, y)$$
 $(0, 0)$ $(0, \pm \sqrt{2/3})$ $(\pm \sqrt{1/2}, 0)$ 函数值 $z(x, y)$ $e \approx 2.72$

解 1 求驻点:

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$
 所以有如下四种情况

$$\begin{cases} x = 0 & \{x = 0 \\ y = 0 \ ' \ \{2 - 2x^2 - 3y^2 = 0 \ ' \ \{y = 0 \ ' \ \{2 - 2x^2 - 3y^2 = 0 \ ' \ \{x = 0 \$$

解得

$$(x,y) = (0,0)$$
 或 $(0,\pm\sqrt{2/3})$ 或 $(\pm\sqrt{1/2},0)$

 $(0, \pm \sqrt{2/3}) \mid (\pm \sqrt{1/2}, 0)$ 驻点 (x, y) (0, 0) $e \approx 2.72 \mid 3e^{\frac{1}{3}} \approx 4.19$ 函数值 *z(x, y)*

解 1 求驻点:

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x = 0 & x = 0 \\ y = 0 & 2 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ y = 0 & 2 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ 2 - 2x^2 - 3y^2 = 0 \end{cases}$$

解得

$$(x,y) = (0,0)$$
 或 $(0,\pm\sqrt{2/3})$ 或 $(\pm\sqrt{1/2},0)$

 $(0, \pm \sqrt{2/3}) \mid (\pm \sqrt{1/2}, 0)$ 驻点 (x, y) (0, 0) $e \approx 2.72 \mid 3e^{\frac{1}{3}} \approx 4.19 \mid 2e^{\frac{1}{2}} \approx 3.30$ 函数值 *z(x, y)*

$$\frac{M}{D}$$
 求 $z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$ 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x = 0 & x = 0 \\ y = 0 & 2 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ y = 0 & 2 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ 2 - 2x^2 - 3y^2 = 0 \end{cases}$$

解得

$$(x,y) = (0,0)$$
 或 $(0,\pm\sqrt{2/3})$ 或 $(\pm\sqrt{1/2},0)$

驻点
$$(x, y)$$
 $(0, 0)$ $(0, \pm \sqrt{2/3})$ $(\pm \sqrt{1/2}, 0)$ 函数值 $z(x, y)$ $e \approx 2.72$ $3e^{\frac{1}{3}} \approx 4.19$ $2e^{\frac{1}{2}} \approx 3.30$

f 9 草 g: 多元函数的极值

$$\frac{M}{D}$$
 求 $z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$ 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x = 0 & x = 0 \\ y = 0 & 2 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ y = 0 & 2 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ 2 - 2x^2 - 3y^2 = 0 \end{cases}$$

解得

$$(x,y) = (0,0)$$
 或 $(0,\pm\sqrt{2/3})$ 或 $(\pm\sqrt{1/2},0)$

 $(0, \pm \sqrt{2/3}) \mid (\pm \sqrt{1/2}, 0)$ 驻点 (x, y) (0, 0) $e \approx 2.72 \mid 3e^{\frac{1}{3}} \approx 4.19 \mid 2e^{\frac{1}{2}} \approx 3.30$ 函数值 *z(x, y)*

例 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

例 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

2. 求在边界 $x^2 + y^2 = 1$ 上的最值

例 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

2. 求在边界 $x^2 + y^2 = 1$ 上的最值: 此时

$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$

例 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

2. 求在边界 $x^2 + y^2 = 1$ 上的最值: 此时

$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2} = 3 + y^2$$

例 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

2. 求在边界 $x^2 + y^2 = 1$ 上的最值: 此时

$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2} = 3 + y^2 \implies 3 \le z \le 4$$

例 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

2. 求在边界 $x^2 + v^2 = 1$ 上的最值: 此时

$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2} = 3 + y^2 \implies 3 \le z \le 4$$

可见在边界上,在 $(\pm 1,0)$ 处取得最小值 z=3;

例 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

2. 求在边界 $x^2 + y^2 = 1$ 上的最值: 此时

$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2} = 3 + y^2 \implies 3 \le z \le 4$$

可见在边界上,在 $(\pm 1, 0)$ 处取得最小值 z = 3; 在 $(0, \pm 1)$ 处取得最

大值
$$z=4$$

例 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

2. 求在边界 $x^2 + y^2 = 1$ 上的最值: 此时

$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2} = 3 + y^2 \implies 3 \le z \le 4$$

可见在边界上,在 $(\pm 1, 0)$ 处取得最小值 z = 3; 在 $(0, \pm 1)$ 处取得最大值 z = 4

3. 点 (0,0) 处得最小值 z=e,点 (0, $\pm\sqrt{2/3}$) 处得最大值 $z=3e^{\frac{1}{3}}$

$$z=(1+2x^2+3y^2)e^{1-x^2-y^2}$$

$$z=(1+2x^2+3y^2)e^{1-x^2-y^2}$$

$$z=(1+2x^2+3y^2)e^{1-x^2-y^2}$$

