PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2001357483 A

(43) Date of publication of application: 26.12.01

(51) Int. CI

G08C 19/00 G08C 15/00 H04B 7/24

(21) Application number: 2000174631

(22) Date of filing: 12.06.00

(71) Applicant:

OMRON CORP

(72) Inventor:

KAWASHIMA YASUSHI SHIBA TAKESHI

(54) RADIO EQUIPMENT AND RADIO METER **READING SYSTEM**

(57) Abstract:

PROBLEM TO BE SOLVED: To provide radio equipment for reducing power consumption by eliminating useless power consumption and a radio meter reading system using it.

SOLUTION: A slave unit or a secondary slave unit manages predetermined time slots S0-S4, performs transmission and reception in an allocated time slot and is in a low power consumption mode for performing only an operation required for the management of the time slots and stopping the operation of a transmission/reception circuit in the ones other than the allocated time slot.

COPYRIGHT: (C)2001,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-357483 (P2001-357483A)

(43)公開日 平成13年12月26日(2001.12.26)

(51) Int.Cl.7		酸別記号	FΙ			テーマコード(参考)
G08C	19/00	301	G08C 1	19/00	301D	2 F 0 7 3
	15/00		1	15/00	. С	5 K 0 6 7
H 0 4 B	7/24		H 0 4 B	7/24	D	
			審查請求	未請求	請求項の数 6	OL (全 15 頁)
(21)出願番号	}	特顧2000-174631(P2000-174	331) (71)出顧人	0000029	45	
				オムロン	ン株式会社	
(22)出顧日		平成12年6月12日(2000.6.12)				川東入南不動堂町
				801番地		•
			(72)発明者	川島		
				京都府第	京都市右京区花園	土堂町10番地 オ
				ムロンを	株式会社内	
			(72)発明者	芝 武	ŧ	
				京都府第	都市右京区花園	土堂町10番地 オ
				ムロン村	朱式会社内	
			(74)代理人	1000867	37	
					岡田 和秀	

最終頁に続く

(54) 【発明の名称】 無線装置および無線検針システム

(57)【要約】

【課題】 無駄な電力消費をなくして低消費電力を図った無線装置およびそれを用いた無線検針システムを提供する。

【解決手段】 子機あるいは孫機は、予め定められたタイムスロットS0~S4を管理し、割り当てられたタイムスロットで送受信を行う一方、割り当てられたタイムスロット以外では、タイムスロットの管理に必要な動作のみを行って送受信回路の動作を停止させる低消費電力モードとしている。

【特許請求の範囲】

【請求項1】 電池電源を内蔵するとともに、メータに 接続されて該メータの検針データを、親機からの検針要 求に応答して送信する無線装置であって、

予め定められたタイムスロットを管理し、所要のタイム スロットで送受信を行う一方、前記所要のタイムスロッ ト以外では、少なくとも受信回路の動作を停止させると とを特徴とする無線装置。

【請求項2】 前記所要のタイムスロットが、当該無線 装置に割り当てられたタイムスロットである請求項1記 10 載の無線装置。

【請求項3】 前記親機からの信号によって同期をとっ て前記タイムスロットを管理するとともに、送信回路お よび前記受信回路に対する電源の供給遮断を制御する制 御手段を備える請求項1または2記載の無線装置。

【請求項4】 前記割り当てられたタイムスロットと共 通のタイムスロットが割り当てられた他の無線装置と前 記親機との間の通信を中継する機能を備える請求項2ま たは3記載の無線装置。

【請求項5】 当該無線装置からの発呼によって前記親 20 機にデータを送信する請求項1ないし4のいずれかに記 載の無線装置。

【請求項6】 請求項1ないし5のいずれかに記載の無 線装置の複数と親機とを備え、前記親機からの検針要求 に応答して、各無線装置が該無線装置に個別的に対応す るメータの検針データを前記親機にそれぞれ送信すると とを特徴とする無線検針システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、例えば、ガスメー 30 タ、水道メータ、電力計などのメータの検針を無線で行 う無線検針システムおよびそれに好適な無線装置に関す る。

[0002]

【従来の技術】との種の無線検針システムは、例えば、 マンションのような集合住宅の各戸別のガスメータに、 無線装置の子機をそれぞれ接続設置し、集合住宅の、例 えば一カ所に無線装置の親機を設置し、この親機を、携 帯電話網などを介して監視センタに接続して構成され る。

【0003】とのシステムでは、監視センタからの検針 要求に基づいて、親機が各子機に検針要求信号を送信 し、各子機は、各ガスメータの検針データを取り込んで 親機に送信し、親機は、受信収集した検針データを、監 視センタに送信するものであり、また、ガス漏れ等の異 常がガスメータで検知されると、端末発呼によって子機 が親機を介して監視センタに通報するものである。ま た、サービスエリアによっては、子機に中継機能を持た せて該子機を介して親機と孫機とを無線接続する場合も ある。

[0004]

【発明が解決しようとする課題】各戸別に設置される無 線装置の子機は、各家庭からAC100Vの商用電源を 供給してもらうことは困難であるので、動作電源として 電池を内蔵しており、このため、低消費電力化を図って 電池の交換時期を可及的に延ばすことが望まれている。 【0005】しかしながら、従来例では、例えば、子機 の無線装置は、親機からの検針要求や孫機の無線装置か らのガス漏れ異常の発呼などを受信する必要があるため に、常時あるいは断続的に、受信回路を動作させてお り、また、当該子機以外の他の子機や孫機に対する通信 を受信してしまう不要なキャリアセンスを行ってしま い、電池を無駄に消費してしまうという課題があり、特 にシステムを構成する無線装置の数が多くなると、その 課題が顕著となる。

2

【0006】本発明は、上述の点に鑑みて為されたもの であって、無駄な電力消費をなくして低消費電力を図っ た無線装置およびそれを用いた無線検針システムを提供 することを目的とする。

[0007]

【課題を解決するための手段】本発明では、上記目的を 達成するために、次のように構成している。

【0008】すなわち、本発明の無線装置は、電池電源 を内蔵するとともに、メータに接続されて該メータの検 針データを、親機からの検針要求に応答して送信する無 線装置であって、予め定められたタイムスロットを管理 し、所要のタイムスロットで送受信を行う一方、前記所 要のタイムスロット以外では、少なくとも受信回路の動 作を停止させるものである。

【0009】ここで、メータとは、ガスメータ、水道メ ータ、電力計などの検針を行う各種の計量器をいう。 【0010】本発明によると、所要のタイムスロット以 外は、少なくとも受信回路の動作を停止させるので、従 来例のように不必要なキャリアセンスを行うこともな く、消費電力を低減して内蔵の電池の消耗を低減でき

【0011】本発明の好ましい実施態様においては、前 記所要のタイムスロットが、当該無線装置に割り当てら れたタイムスロットである。

40 【0012】本発明によると、当該無線装置に割り当て られたタイムスロット以外は、少なくとも受信回路の動 作を停止させるので、従来例のように不必要なキャリア センスを行うこともなく、消費電力を低減して内蔵の電 池の消耗を低減できる。

【0013】本発明の好ましい実施態様においては、前 記親機からの信号によって同期をとって前記タイムスロ ットを管理するとともに、送信回路および受信回路に対 する電源の供給遮断を制御する制御手段を備えるもので

50 【0014】本発明によると、親機からの信号によって

同期をとって正確にタイムスロットを管理することができるとともに、割り当てられたタイムスロット以外では、送信回路および受信回路への電源の供給を遮断して消費電力を低減できる。

【0015】本発明の他の実施態様においては、前記割り当てられたタイムスロットと共通のタイムスロットが割り当てられた他の無線装置と前記親機との間の通信を中継する機能を備えるものである。

【0016】本発明によると、親機からの検針要求を他の無線装置に中継し、他の無線装置からの検針データを 10 親機に中継できるので、無線検針を行えるエリアを拡大 することができる。

【0017】また、本発明の好ましい実施態様においては、当該無線装置から発呼によって前記親機にデータを送信するものである。

【0018】本発明によると、メータで異常が検知されたような場合には、該メータに接続されている当該無線装置から親機に発呼して異常を通報することができる。

【0019】本発明の無線検針システムは、本発明に係る無線装置の複数と親機とを備え、前記親機からの検針 20要求に応答して、各無線装置が該無線装置に個別的に対応するメータの検針データを前記親機にそれぞれ送信するものである。

【0020】本発明によると、各無線装置は、割り当てられたタイムスロット以外は、少なくとも受信回路の動作を停止させるので、従来例のように不必要なキャリアセンスを行うこともなく、消費電力を低減することができる。

[0021]

【発明の実施の形態】以下、図面によって本発明の実施 30 の形態について、詳細に説明する。

【0022】図1は、本発明の一つの実施の形態に係る ガスメータの無線検針システムの構成図である。

【0023】この実施の形態の無線検針システムでは、図示しない携帯電話網を介して監視センタに無線接続される親機1と、この親機1と直接無線通信を行う4台の第1~第4の子機2、2、と、第1の子機2、と直接無線通信を行う第1、第2の孫機3、3、と、第2の子機2、と直接無線通信を行う第3の孫機3、と、第3の子機2、と直接無線通信を行う第4、第5の孫機3、3、とを備えており、各子機2、2、および各孫機3、3、とを備えており、各子機2、2、および各孫機3、2、は、各家庭にそれぞれ設置されて各家庭のガスメータ4にそれぞれ接続されている。親機1、各子機2、2、および各孫機3、2、には、ID番号#0~#9が予めディップスイッチなどで設定されている。

【0024】との実施の形態では、親機1、子機21~ は、所要の2. および孫機31~3,は、例えば小電力無線通信を行った。 ロットで送受う無線装置でそれぞれ構成されており、無線通信可能な には、上述のエリアは、例えば半径100m程度の範囲である。な トを管理する お、図1では、各機1, 21~21、31~3, に主として 50 図っている。

割り当てられている後述のタイムスロットSO~S4を 併せて示している。

【0025】この無線検針システムでは、親機1は、監視センタからの検針要求を受けて子機2、~2、に対して検針要求信号を送信し、各子機2、~2、は、検針要求信号を受信して孫機のない第4の子機2、は、ガスメータ4の検針データを取り込んで親機1に送信する。孫機3、~3、を有する第1~第3の子機2、~2、は、検針要求信号を孫機3、~3、に対して中継し、各孫機3、~3、は、検針要求信号を受信してガスメータ4の検針データを取り込んで子機2、~2、を中継して該子機2、~2、の検針データと共に親機1に送信し、親機1は、収集した検針データを監視センタに携帯電話網を介して送信するものである。

【0026】また、ガスメータ側でガス漏れなどの異常が検知されると、対応する子機あるいは孫機は、その検知信号を受けて親機に直接あるいは子機を介して異常を通報し、親機は、それを監視センタに送信するものである

【0027】図2は、図1の子機2,~2,あるいは孫機3,~3,としての本発明に係る無線装置5の概略ブロック図である。

【0028】との無線装置5は、アンテナスイッチ6、送信回路7、受信回路8、内蔵電池に基づく電源回路9、電源スイッチ10および前記電源スイッチ10を制御するCPU11を備えおり、このCPU11は、タイマを内蔵しており、後述のようにタイムスロット(時間帯)を管理して各部を制御するものである。送信回路7は、図3に示されるように、変調器12、混合器13、局部発振器14、バンドバスフィルタ15および増幅器16を備えており、受信回路8は、図4に示されるように、増幅器17、混合器18、局部発振器19、バンドバスフィルタ20、検波器21および復調器22を備えている。

【0029】従来では、内蔵の電池で駆動される子機や孫機は、常時あるいは断続的に、受信回路を動作させており、また、当該子機以外の他の子機や孫機に対する通信を受信してしまう不要なキャリアセンスを行って電池を無駄に消費していたのに対して、この実施の形態では、低消費電力を図るために次のように構成している。【0030】すなわち、この実施の形態では、図5の検針要求のボーリング動作のタイムチャートに示されるように、親機1および子機2,~2,の台数に基づいて、予めタイムスロット(時間帯)を定めており、このタイムスロットを管理して子機2,~2,および孫機3,~3,は、所要のスロットとしての割り当てられたタイムスロットで送受信を行う一方、それ以外のタイムスロットでは、上述のCPU11のみを動作させてタイムスロットを管理する一方、他の動作を停止させて低消費電力を50図っている。

【0031】との実施の形態では、子機21~2.の台数が4台であるので、親機1を含めて5つのタイムスロットS0~S4を設けており、との5つのタイムスロットS0~S4によって1サイクルが構成されている。第1のタイムスロットS0は、親機1に割り当てられるともに、親機1からの信号を受信するために各子機21~2.にも割り当てられており、第2のタイムスロットS1は、第1の子機21および該第1の子機21と直接無線通信する第1,第2の孫機31、31に割り当てられており、第3のタイムスロットS2は、第2の子機22と直接無線通信する第3の孫機31に割り当てられており、第4のタイムスロットS3は、第3の子機21および該子機21と直接無線通信する第4、第3の子機21および該子機21と直接無線通信する第4、第5の孫機31、31に割り当てられており、第5の存機21に割り当てられている。

【0032】図5は、親機1、子機2、~2、および孫機3、~3、の送信(T) および受信(R) の動作状態(アクティブハイ)を示しており、この図5では、主として割り当てられているタイムスロットS0~S4および上20述のID番号#0~#9を、親機1、子機2、~2、および孫機3、~3、に対応させて示している。

【0033】この図5に示されるように、ボーリング開 始のサイクル(Cyclel)では、先ず、親機1が、 第1のタイムスロットSOで、従来と同様のID番号を 含んだ検針要求電文を、例えば2秒間送信する。この第 1のタイムスロットS0は、各子機2,~2,にも割り当 てられており、各子機21~21は、受信回路8を、例え ば500mょ動作させているので、この検針要求電文を 受信し、各子機2,~2,に接続されているガスメータ4 と通信して検針データをバッファに蓄積する。 第2のタ イムスロットS1では、このタイムスロットS1が割り 当てられているとともに、孫機31,32を有する第1の 子機2,が、検針要求電文を、例えば2秒間送信し、同 じくタイムスロットS1が割り当てられている第1、第 2の孫機31、31がその検針要求電文を受信して各孫機 31、32に接続されているガスメータ4とそれぞれ通信 して検針データをバッファにそれぞれ蓄積する。なお、 親機1は、電池駆動ではないために、常時駆動されてお り、検針要求電文を送信した後は、受信状態を継続して 40

【0034】第3のタイムスロットS2では、このタイムスロットS2が割り当てられているとともに、孫機3」を有する第2の子機2、が、検針要求電文を送信し、同じくタイムスロットS2が割り当てられている第3の孫機3、がその検針要求電文を受信して孫機3、に接続されているガスメータ4と通信して検針データをバッファに蓄積する。第4のタイムスロットS3では、このタイムスロットS3が割り当てられているとともに、孫機3、3、を有する第3の子機2、が、検針要求電文を送

信し、同じくタイムスロットS3が割り当てられている 第4、第5の孫機3、3、がその検針要求電文を受信し て各孫機3、3、に接続されているガスメータ4とそれ ぞれ通信して検針データをバッファにそれぞれ蓄積す る。さらに、第5のタイムスロットS4では、このタイムスロットS4が割り当てられている孫機を有しない第 4の子機2、が、親機1からの検針要求電文に応答して ガスメータ4の検針データを親機1に送信し、この第4 の子機2、は、ポーリングに対する動作が完了すること になる。

【0035】次に、ポーリング中の第2のサイクル(C ycle2)における第1のタイムスロットSOでは、 親機1は、受信状態を継続しており、第2のタイムスロ ットS1では、このタイムスロットS1が割り当てられ ている第1の孫機31が、ガスメータ4の検針データを 第1の子機21に送信し、同じくタイムスロットS1が 割り当てられている第1の子機2、がその検針データを 受信する。第3のタイムスロットS2では、このタイム スロットS2が割り当てられている第3の孫機3,が、 ガスメータ4の検針データを第2の子機2,に送信し、 同じくタイムスロットS2が割り当てられている第2の 子機2,がその検針データを受信する。また、第4のタ イムスロットS3では、このタイムスロットS3が割り 当てられている第4の孫機3」が、ガスメータ4の検針 データを第3の子機2』に送信し、同じくタイムスロッ トS3が割り当てられている第3の子機2,がその検針 データを受信する。

【0036】次に、ボーリング中の第3のサイクル(Cycle3)における第2のタイムスロットS1では、このタイムスロットS1が割り当てられている第2の孫機3,が、ガスメータ4の検針データを第1の子機2,に送信し、同じくタイムスロットS1が割り当てられている第1の子機2,がその検針データを受信する。第3のタイムスロットS2では、このタイムスロットS2が割り当てられている第2の子機2,が、孫機3,および当該子機2,の検針データを親機1に送信してボーリングに対する動作を完了する。また、第4のタイムスロットS3では、このタイムスロットS3が割り当てられている第5の孫機3,が、ガスメータ4の検針データを第3の子機2,に送信し、同じくタイムスロットS3が割り当てられている第3の子機2,に送信し、同じくタイムスロットS3が割り当てられている第3の子機2,がその検針データを受信する。また、第4の検針データを第3の子機2,に送信し、同じくタイムスロットS3が割り当てられている第3の子機2,がその検針データを受信する。また、第4の対針での検針データを受信する。また、第4の対針での検針データを受信する。また、第4の対針での検針データを受信する。また、第4の対針での検針データを受信する。

【0037】さらに、ポーリング中の第4のサイクル (Cycle4)における第2のタイムスロットS1では、このタイムスロットS1が割り当てられている第1 の子機2,が、第1,第2の孫機3,3,および当該子 機2,の検針データを親機1に送信してポーリングに対 する動作を完了する。また、第4のタイムスロットS3 では、このタイムスロットS3が割り当てられている第 50 3の子機2,が、第4,第5の孫機3,3,および当該 子機2,の検針データを親機1に送信してポーリングに 対する動作を完了する。

【0038】 これによって、検針要求のポーリングに対する子機21~2. および孫機31~3. の動作が完了し、以後は、割り当てられたタイムスロットでそれぞれ受信動作を行う一方、それ以外のタイムスロットでは、送受信回路7. 8の電源を断ってCPU11によるタイムスロットの管理のを行うスリーブモードとするアイドリング状態に移行する。

【0039】なお、タイムスロットの管理を正確に行え 10 るように、親機1は、適当な周期で、例えば、1日に4回、同期をとるための時刻合わせの信号を子機2,~2, に送信し、孫機3,~3,のある子機2,~2,は、次のサイクルで孫機3,~3,に対して同期をとるための時刻合わせの信号を送信し、これによって、子機2,~2,および孫機3,~3,の同期をとるようにしている。また、この同期合わせは、キャリア信号のエッジを利用して行うようにしてもよい。

【0040】なお、無線通信が正常に行われず、応答時間のタイムオーバーが生じたような場合には、指定回数 20 のリトライを繰り返し、正常な通信が行えなかった場合には、親機1は、最初からボーリング動作をやり直す。【0041】図6は、例えば、ガス漏れなどの異常時に子機21~2.あるいは孫機31~3,から発呼する場合の図5に対応するタイムチャートであり、この図6では、第3の子機2,と直接無線通信する第4の孫機3,が発呼する場合を示している。

【0042】先ず、アイドリング状態における第1のタイムスロットS0では、各子機21~2.は、受信動作を行い、第2のタイムスロットS1では、このタイムスロットS1が割り当てられている第1の子機2.および第1、第2の孫機31~3.が受信動作を行い、第3のタイムスロットS2では、このタイムスロットS2が割り当てられている第2の子機2.および第3の孫機3,が受信動作を行い、第4のタイムスロットS3では、このタイムスロットS3が割り当てられている第3の子機2,および第4,第5の孫機3.、3,が受信動作を行う。

【0043】例えば、次のサイクル(Cyclel)の第4のタイムスロットS3において、このタイムスロットS3において、このタイムスロットS3が割り当てられている第3の子機2」と直接無線通信する第4の孫機3、が発呼すると、それが第3の子機2」で受信され、次のサイクル(Cycle2)の第4のタイムスロットS3において、第3の子機2」が、第4の孫機3、からの発呼データを親機1に送信して完了する。親機1は、受信状態にあるので、第3の子機2」からの発呼データを受信して携帯電話網を介して監視センタに、第4の孫機3、のガス漏れ等の異常を通報する。

【0044】以上のような親機1、子機2,~2,および テップn206)。ステップn202において、受信し 孫機3,~3,の動作をフローチャートに基づいてさらに 50 た発呼データに誤りがあると判断したときには、発呼デ

詳細に説明する。

(5)

30

【0045】図7は、親機1の検針要求のポーリング動 作を示すフローチャートであり、上述のアイドリング状 態では、受信待機状態にあって(ステップn100)、 上位の監視センタからの検針要求を認識すると(ステッ プn101)、親機1に割り当てられている通信スロッ トである第1のタイムスロットS0において、検針要求 電文を送信し(ステップn102)、受信状態に切り替 えて待機し(ステップn103)、子機2,~2,からそ の子機に割り当てられたタイムスロットS1~S4で検 針データを受信すると(ステップn104)、CRCチ ェックなどを行って誤りのないデータであるか否かを判 断し(ステップnl05)、誤りがないときには、その 検針データをメモリに蓄積し(ステップ n 106) 検 針データを送信した子機に対してアクノリッジ(AC K) 信号を送信する(ステップn107)。上述のタイ ムチャートでは、説明を省略したけれども、このアクノ リッジ信号の送信は、検針データを受信したタイムスロ ットと同一のタイムスロットで行われる。すなわち、同 一サイクルの検針データを受信したタイムスロット内で アクノリッジ信号の送信も行われる。また、同一サイク ルの同一のタイムスロット内で子機によるこのアクノリ ッジ信号の受信も行われる。

【0046】次に、全ての子機2、~2、からの検針データの受信を完了したか否かを判断し(ステップn108)、完了していないときには、ステップn103に戻り、完了したときには、収集した検針データを上位の監視センタに送信してステップn100に戻る(ステップn109)。ステップn105において、受信した検針データに誤りがあると判断したときには、検針データを送信した子機に対して再送要求信号を送信してステップn103に戻る(ステップn110)。との再送要求信号の送信も、アクノリッジ信号の場合と同様に検針データを受信したタイムスロットと同一のタイムスロットで行われる。

【0047】図8は、親機1のアイドリング動作およびアイドリング中の子機発呼があったときの動作を示すフローチャートであり、先ず、受信待機状態にあり(ステップn200)、子機21~2.から該子機21~2.の割り当てられているタイムスロットS1~S4で発呼データを受信すると(ステップn201)、CRCチェック等を行って誤りのないデータであるか否かを判断して、その発呼デークステップn202)、誤りがないときには、その発呼データをメモリに蓄積し(ステップn203)、発呼データを送信して、発呼データを受信し(ステップn204)、発呼データを上位の監視センタに送信ステップn204)、発呼データを上位の監視センタに送信ステップn204)、ステップn200に戻る(ステップn206)。ステップn202において、受信が発呼データに誤りがあると判断したときには、発呼データに誤りがあると判断したときには、発呼データに誤りがあると判断したときには

ータを送信した子機に対して、発呼データを受信したと同一のタイムスロットで再送要求信号を送信してステップn200に戻る(ステップn207)。

【0048】図9は、子機2,~2,のポーリング時の動 作を示すフローチャートであり、先ず、送受信回路7. 8の電源を断ってCPU11によるタイムスロットの管 理のみのスリープモード (低消費電力モード) にあり (ステップn300)、親機1に割り当てられた第1の タイムスロットS0は、各子機2,~2,にも共通に割り 当てられたタイムスロットであるので、との第1のタイ 10 ムスロットS0において、受信回路8の電源を投入して 受信動作を行い (ステップn301)、親機1から検針 要求信号を受信したか否かを判断し(ステップn30 2)、受信したときには、スリープモードとし(ステッ プn303)、自局に孫機が無線接続されているか否か を判断し(ステップn304)、接続されているときに は、自局に割り当てられているタイムスロットで送信回 路7の電源を投入して孫機に検針要求信号を送信し(ス テップn305)、その後スリープモードとし(ステッ プn306)、自局に割り当てられたタイムスロットで 20 受信回路8に電源を投入して受信動作を行って孫機から の検針データを受信し(ステップn307)、誤りのな いデータであるか否かを判断し(ステップn308)、 誤りのないデータであるときには、受信回路8の電源を 断って受信した検針データをメモリに蓄積し(ステップ n309)、送信回路7に電源を投入して検針データを 受信したと同一のタイムスロットで孫機にアクノリッジ 信号を送信し(ステップn310)、その後スリープモ ードとし(ステップn311)、自局に無線接続されて いる全ての孫機の検針データを得たか否かを判断し(ス 30 テップn312)、得ていないときには、ステップn3 07に戻り、得たときには、自局に割り当てられたタイ ムスロットで送信回路7に電源を投入して親機1に当該 子機および孫機の検針データを送信し(ステップn31 3)、送信回路7の電源を断って受信回路8の電源を投 入して受信動作を行い (ステップn314)、検針デー タを送信したと同一のタイムスロットで親機1からのア クノリッジ信号を受信すると(ステップn315)、親 機1のタイムスロットを含む自局に割り当てられている タイムスロットで受信回路8の電源を投入して受信動作 40 を行い、それ以外では、スリープモードにするアイドリ ング動作に移行してステップn302に戻る(ステップ n316).

【0049】ステップn308において、受信した検針 4)、高いときには、自局に割り当てられたタイムスロットで送信回路7の電源を投入にして検針データを受信したと同一のタイムスロットで孫機に対して再送要求信号を 送信し(ステップn317)、送信回路7の電源を断って受信回路8の電源を投入して受信動作を行い(ステップn506)、親機1からアクノリッジ信号を、検針デて受信回路8の電源を投入して受信動作を行って孫機か 「クタを送信したと同一のタイムスロットで受信して(ス ちの検針データを受信してステップn308に戻る(ス 50 デップn507)アイドリング動作に移行する(ステッ

テップn318)。

(6)

【0050】図10は、子機のアイドリング動作および アイドリング中の子機発呼時の動作を示すフローチャー トであり、親機1のタイムスロットS0を含む自局に割 り当てられているタイムスロットで受信回路8の電源を 投入して受信し、それ以外では、スリープモードにする アイドリング動作を行い(ステップn400)、自局か らの発呼データはあるか否かを判断し(ステップn40 1)、あるときには、自局に割り当てられたタイムスロ ットで送信回路7の電源を投入して親機1に発呼データ を送信し(ステップn402)、送信回路7の電源を断 って受信回路8の電源を投入して受信動作を行い (ステ ップn403)、発呼データを送信した同一のタイムス ロットで親機1からのアクノリッジ信号を受信したか否 かを判断し(ステップn404)、受信したときには、 アイドリング動作に移行してステップ n 401に戻る (ステップn405)。

【0051】ステップn401において、自局からの発呼データがないときには、自局に割り当てられているタイムスロットで孫機から発呼データを受信したか否かを判断し(ステップn406)、受信したときには、誤りのないデータであるか否かを判断し(ステップn407)、誤りのないデータであるときには、受信回路8の電源を断って受信した発呼データをメモリに蓄積し(ステップn408)、送信回路7に電源を投入して発呼データを受信したと同一のタイムスロットで孫機にアクノリッジ信号を送信してステップn402に移る(ステップn409)。

【0052】ステップn407において、データに誤りがあるときには、受信回路8の電源を断って送信回路7の電源を投入して発呼データを受信したと同一のタイムスロットで孫機に対して再送要求信号を送信し(ステップn410)、送信回路7の電源を断って受信回路8の電源を投入して受信動作を行ってステップn406に移る(ステップn411)。

る(スナッノ II 4 I I)。 【0053】図11は、孫機のポーリング時の動作を示すフローチャートであり、先ず、スリープモードにおいて(ステップ n 5 0 0)、割り当てられたタイムスロットで受信回路8に電源を投入して受信動作を行い(ステップ n 5 0 1)、子機から検針要求信号を受信したか否かを判断し(ステップ n 5 0 3)、自局のプライオリティは高いか否かを判断し(ステップ n 5 0 3)、自局のプライオリティは高いか否かを判断し(ステップ n 5 0 6)、送信回路7の電源を投入して子機に検針データを送信したと同一のタイムスロットで受信したと同一のタイムスロットで受信してステップ n 5 0 6)、親機1からアクノリッジ信号を、検針データを送信したと同一のタイムスロットで受信してステップ n 5 0 7)アイドリング動作に投行する(ファップ n 5 0 7)アイドリング動作に投行する(ファック n 5 0 7)アイドリング動作に投行する。 プn508)。

【0054】ステップn504において、自局のプライオリティが高くないときには、プライオリティの高い他の孫機を優先させるために、スリーブモードにして1サイクル待ってステップn505に移る(ステップn509)。

11

【0055】との実施の形態では、子機には、2台まで 孫機を無線接続でき、その2台の孫機は、予めプライオ リティが設定されており、とのプライオリティを、上述 のステップn504で判断するのである。

【0056】図12は、孫機のアイドリング動作および アイドリング中の孫機発呼の動作を示すフローチャート であり、親機1のタイムスロットS0を含む自局に割り 当てられているタイムスロットで受信回路8の電源を投 入して受信し、それ以外では、スリープモードにするア イドリング動作を行い(ステップn600)、自局から の発呼データはあるか否かを判断し(ステップn60 1)、あるときには、自局に割り当てられたタイムスロ ットで送信回路7の電源を投入して子機に発呼データを 送信し(ステップn602)、送信回路7の電源を断っ 20 て受信回路8の電源を投入して受信動作を行い (ステッ プn603)、子機からのアクノリッジ信号を、発呼デ ータを送信したと同一のタイムスロットで受信したか否 かを判断し(ステップn604)、受信したときには、 アイドリング動作に移行してステップn601に戻る (ステップn605)。ステップn601において、自 局からの発呼データがないときには、ステップn600 に戻り、また、ステップn604で、アクノリッジ信号 が受信されなかったときには、ステップn602に戻

【0057】次に、この実施の形態における消費電力低減の効果についての試算の一例を示す。

【0058】この実施の形態で電流消費が最も多くなるのは、孫機を2台有する子機である。この子機の場合について、ガスメータの交換時期である10年に亘って内蔵の電池で駆動するとして試算する。

【0059】子機に搭載する電池を、2000 [mA・H] (公称2700 [mA・H]) 2個とすると、 2000×2=4000 [mA・H] ……A

(1) スリープ時

消費電流: 0.005 [mA·H] × 87600 [H] = 438 [mA·H]

但し、24 [H]×365 [days]×10 [years] = 87600 [H]

438+38.2+29.4+854=1359.6 [mA·H]B

となる。

(5)アイドリング時

上述のA-B=4000-1359.6≒2640[m A・H]をアイドリングに割り当てる場合の受信可能時間は、 *(2)発呼時

子機発呼:50回/年(500回/10年)とし、送信は、2台の孫機の分を含めて 1500/1 0年

受信は、孫機2台の1000回/10年

送信時間: 2 s /回なので、1500×2 s = 0.84 [H]

受信時間:500ms/回なので、1000×500m s=0.14[H]

10 送信時消費電流: 40 [mA·H] × 0.84 [H] = 34 [mA·H]

受信時消費電流:30 [mA·H]×0.14 [H] = 4.2 [mA·H]

合計: 34 [mA·H] +4.2 [mA·H] = 38.2 [mA·H]

(3) ポーリング実行時(アクティブ時)

ポーリング:1ポーリング/週,4サイクル/ポーリングがので

521ポーリング/10年=2084サイクル/10年 20 送信時間:2s/回,2回/ポーリングなので、

 $521 \times 2 \times 2 \times 2 = 0.57$ [H]

受信時間: 500ms/回, 3回/ポーリングなので、 $521 \times 3 = 0.22$ [H]

送信時消費電流: 40 [mA·H] × 0.57 [H] = 22.8 [mA·H]

受信時消費電流: 30 [mA·H] × 0.22 [H] = 6.6 [mA·H]

合計: 22.8 [mA·H] +6.6 [mA·H] = <u>2</u> 9.4 [mA·H]

30 (4) 時刻合わせ時

時刻合わせ周期: 4回/日(14600回/10年) 送信時間: 3 s/回 14600×3 s = 12.2 [H]

受信時間:3 s /回 14600×3 s = 12.2 [H]

送信時消費電流: 40 [mA·H] × 12.2 [H] = 488 [mA·H]

受信時消費電流:30 [mA·H]×12.2 [H] = 366 [mA·H]

40 合計: 488 [mA·H] +366 [mA·H] = <u>85</u> 4 [mA·H]

したがって、スリープ、発呼、ボーリングおよび時刻合わせの合計は、

13

サイクル

315360000 s / 5280000 = 59.7 s すなわち、1サイクルが約60秒で10年間駆動できる ことになり、この実施の形態によれば、ガスメータの交換と同時に子機や孫機の電池を交換すればよい。

【0060】(その他の実施の形態)上述の実施の形態
では、子機および孫機は、割り当てられたタイムスロット以外では、送受信を行わなかったけれども、本発明の トである。
他の実施の形態として、割り当てられたタイムスロット 以外でも送受信を行ってもよい。例えば、ガス漏れ等の 10 チャートである。
異常時の子機発呼は、割り当てられたタイムスロットに 図8】親機のブ向わらず、直ちに親機に送信するようにしてもよい。

【0061】なお、無線検針システムを構成する子機や 孫機の台数は、上述の実施の形態に限らないのは勿論で あり、また、孫機にさらにひ孫機等を順次無線接続する ようにしてもよい。

【0062】上述の実施の形態では、子機は、孫機と親 機との中継を行うとともに、ガスメータに接続されてい たけれども、本発明の他の実施の形態として、中継のみ を行うようにしてもよい。

[0063]

【発明の効果】以上のよう本発明によれば、、所要のタイムスロット、例えば割り当てられたタイムスロット以外は、少なくとも受信回路の動作を停止させるので、従来例のように不必要なキャリアセンスを行うこともなく、消費電力を低減して内蔵の電池の消耗を低減でき、電池の交換時期を延ばすことができる。

【図面の簡単な説明】

【図1】本発明の一つの実施の形態の無線検針システム の構成図である。 *【図2】図1の子機あるいは孫機としての無線装置のブロック図である。

【図3】図2の送信回路のブロック図である。

【図4】図2の受信回路のブロック図である。

【図5】検針要求のボーリング動作を説明するためのタ イムチャートである。

【図6】孫機発呼の動作を説明するためのタイムチャートである。

【図7】親機のボーリング動作を説明するためのフロー 0 チャートである。

【図8】親機のアイドリング動作を説明するためのフローチャートである。

【図9】子機のポーリング動作を説明するためのフロー チャートである。

【図10】子機のアイドリング動作を説明するためのフローチャートである。

【図11】孫機のボーリング動作を説明するためのフローチャートである。

【図12】孫機のアイドリング動作を説明するためのフ 20 ローチャートである。

【符号の説明】

	1	親機
Į	2,~2,	子機
<u> </u>	$3_1 \sim 3_1$	孫機
	4	ガスメータ
	7	送信回路
	8	受信回路
	9	電源回路
	10 .	電源スイッチ
* 30	11	CPU

【図1】

(8)

【図5】

【図6】

【図7】

【図8】

【図10】

【図9】

【図11】

フロントページの続き

F ターム(参考) 2F073 AA07 AA08 AA09 AB01 BB01 BC02 CC03 CC08 CC10 CC12 CD00 DD07 DE07 DE13 DE16 DE17 EE11 EF09 FF01 FG01 FG02 FG14 GG01 GG07 GG08 5K067 BB27 EE02 EE10 EE71 GG01

GG11