Preliminary migrate analysis of M. californianus

MIGRATION RATE AND POPULATION SIZE ESTIMATION using the coalescent and maximum likelihood or Bayesian inference Migrate-n version 3.7.2 [April-12-18]

Program started at Fri May 28 15:36:32 2021 Program finished at Fri May 28 23:21:36 2021

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 2675007803

Start parameters:

Theta values were generated from guessed values

Theta = 0.01000

M values were generated from guessed values

M-matrix:

100000.00 [all are the same]

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population	1	2	3	4	5	6	7	8	9	10	11	12
1 ElfinCo	*	*	0	0	0	0	0	0	0	0	0	0
2 Bamfiel	*	*	*	0	0	0	0	0	0	0	0	0
3 PortRen	0	*	*	*	0	0	0	0	0	0	0	0
4 WalkOnB	0	0	*	*	*	0	0	0	0	0	0	0
5 BodegaH	0	0	0	*	*	*	0	0	0	0	0	0
6 Davenpo	0	0	0	0	*	*	*	0	0	0	0	0
7 VistaDe	0	0	0	0	0	*	*	*	0	0	0	0
8 HazardR	0	0	0	0	0	0	*	*	*	0	0	0
9 Refugio	0	0	0	0	0	0	0	*	*	*	0	0
10 Carpint	0	0	0	0	0	0	0	0	*	*	*	0

11 WhitePo		0	0	0	0	0	0	0	0	0	*	*	*	
11 WhitePo		0	0	0	0	0	0	0	0	0	0	*	*	
12	,	U	U	U	U	U	U	U	U	U	U			
Order of param	otore:													
	eleis. A							~d	ienla	yed:				
1 2	Θ_1									iyed: iyed:				
3	Θ_2									iyed: iyed:				
4	Θ_3^2									iyed: iyed:				
5	$\Theta_4 \\ \Theta_5$									iyed: iyed:				
6	Θ_6									iyed: iyed:				
7	Θ_6									iyed: iyed:				
8	Θ_7									iyed: iyed:				
9	Θ_8 Θ_9									iyed: iyed:				
10	Θ_9									iyed: iyed:				
11	$\Theta_{10}^{'}$									iyed: iyed:				
12	Θ_{11}^{10}									yed:				
13	Θ_{12}^{11} M_{23}									yed:				
24	N/I									yed:				
25	N //									yed:				
36	3->									yed:				
37	N / 2->									yed:				
48	4-> N/I									yed:				
49	5->									yed:				
60	N/I									yed:				
61	4->									yed:				
72	N / O->									yed:				
73	N / 3->									yed:				
84	\									yed:				
85	M _{8->}									yed:				
96	$M_{7->}^{8->}$									yed:				
97	M _{9->}									yed:				
108	M _{8->}									yed:				
109	$M_{10-}^{8->}$									yed:				
120	$M_{9->}^{10-}$									yed:				
121	M 11-									yed:				
132	M ₁₀₋									yed:				
133	M ₁₂₋									yed:				
144	M 11-									yed:				
	11-	->12	•						•	•				
Mutation rate an	nong loci:													Mutation rate is constant
Analysis strategy	y:													Bayesian inference

Proposal distributions for parameter

Parameter Proposal
Theta Metropolis sampling
M Slice sampling

Prior distribution for parameter

Parameter Prior Delta Bins Minimum Mean* Maximum Theta Exp window 0.000010 0.010000 10.000000 1.000000 500 0.000100 100000.000000 1000000.000000 100000.000000 Μ Exp window 500

Markov chain settings: Long chain

Number of chains

Recorded steps [a]1000Increment (record every x step [b]100Number of concurrent chains (replicates) [c]3Visited (sampled) parameter values [a*b*c]300000Number of discard trees per chain (burn-in)1000

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

100000.00 3.00 1.50 1.00

Swapping interval is 1

Print options:

Data file: ../../mcalifornianus_210528.mig

Output file:

Posterior distribution raw histogram file:

bayesfile

Print data:

No

Print genealogies [only some for some data type]:

Data summary

Datatype: Sequence data
Number of loci: 1

Population	Locus	Gene copies
1 ElfinCo	1	19
2 Bamfiel	1	23
3 PortRen	1	15
4 WalkOnB	1	16
5 BodegaH	1	7
6 Davenpo	1	17
7 VistaDe	1	19
8 HazardR	1	23
9 Refugio	1	16
10 Carpint	1	19
11 WhitePo	1	10
12	1	0
Total of all populations	1	184

Bayesian Analysis: Posterior distribution table

ocus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00001	0.00001	0.01001	0.08001	0.18001	0.09001	0.03053
1	Θ_2	0.00001	0.00001	0.01001	0.08001	0.18001	0.09001	0.03169
1	Θ_3	0.00001	0.00001	0.01001	0.08001	0.18001	0.09001	0.03091
1	Θ_4	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01717
1	Θ_5	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01778
1	Θ_6	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01231
1	Θ_{7}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01862
1	Θ_8	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01662
1	Θ_9	0.00001	0.00001	0.01001	0.06001	0.18001	0.07001	0.02699
1	Θ_{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01863
1	Θ_{11}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00597
1	Θ_{12}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01275
1	M _{2->1}	0.0	4000.0	25000.0	44000.0	142000.0	39000.0	49797.9
1	M _{1->2}	0.0	26000.0	35000.0	42000.0	56000.0	29000.0	23994.6
1	$M_{3->2}$	70000.0	78000.0	93000.0	106000.0	116000.0	87000.0	71611.7
1	$M_{2->3}$	26000.0	42000.0	53000.0	66000.0	86000.0	57000.0	56506.1
1	$M_{4->3}$	0.0	4000.0	15000.0	22000.0	40000.0	19000.0	15534.0
1	$M_{3->4}$	0.0	10000.0	19000.0	28000.0	40000.0	21000.0	19357.1
1	$M_{5->4}$	56000.0	70000.0	85000.0	100000.0	114000.0	79000.0	60899.8
1	$M_{4->5}$	0.0	0.0	1000.0	12000.0	20000.0	83000.0	64387.5
1	M _{6->5}	18000.0	28000.0	37000.0	46000.0	56000.0	91000.0	81814.8
1	$M_{5->6}$	62000.0	70000.0	85000.0	100000.0	110000.0	79000.0	68878.2
1	M _{7->6}	20000.0	34000.0	45000.0	54000.0	70000.0	47000.0	44965.7
1	M _{6->7}	34000.0	44000.0	57000.0	68000.0	78000.0	53000.0	39663.3
1	M _{8->7}	32000.0	42000.0	59000.0	76000.0	0.00088	71000.0	76430.3
1	M _{7->8}	0.0	10000.0	21000.0	36000.0	62000.0	31000.0	30855.1
1	$M_{9->8}$	0.0	28000.0	43000.0	54000.0	60000.0	39000.0	32568.9
1	M _{8->9}	0.0	0.0	1000.0	12000.0	52000.0	39000.0	36397.5
1	M _{10->9}	0.0	12000.0	21000.0	30000.0	40000.0	23000.0	21437.8
1	M _{9->10}	12000.0	22000.0	45000.0	64000.0	74000.0	57000.0	86091.2
1	M _{11->10}	0.0	26000.0	41000.0	52000.0	60000.0	35000.0	29774.1
1	M _{10->11}	0.0	0.0	9000.0	22000.0	48000.0	35000.0	45430.1
1	M _{12->11}	2000.0	12000.0	21000.0	30000.0	40000.0	63000.0	61995.4
1	M _{11->12}	24000.0	36000.0	51000.0	66000.0	80000.0	139000.0	170308.0

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 15:36:32]

Citation suggestions:

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 15:36:32]

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-2151.281687	(1a)
	-2068.775343	(1b)
Harmonic mean	-1818.290896	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	1311/4431	0.29587
Θ_2	813/4502	0.18059
θ_3^-	753/4370	0.17231
$\Theta_{arDelta}$	1698/4422	0.38399
) ₅	1769/4375	0.40434
06	966/4472	0.21601
) ₇	1537/4343	0.35390
) ₈	1016/4441	0.22878
$\mathbf{p}_{\mathbf{q}}$	681/4414	0.15428
) ₁₀	1840/4527	0.40645
) ₁₁	1214/4487	0.27056
12	2583/4361	0.59230
1 2->1	4488/4488	1.00000
1 1−>2	4403/4403	1.00000
$M_{3->2}$	4453/4453	1.00000
1 2->3	4308/4308	1.00000
1 4->3	4379/4379	1.00000
1 3->4	4480/4480	1.00000
1 5->4	4448/4448	1.00000
1 4->5	4431/4431	1.00000
1 6->5	4412/4412	1.00000
1 5->6	4447/4447	1.00000
1 7->6	4538/4538	1.00000
1 6->7	4325/4325	1.00000
1 8->7	4432/4432	1.00000
1 7->8	4384/4384	1.00000
1 _{9->8}	4413/4413	1.00000
1 8->9	4486/4486	1.00000
1 10->9	4378/4378	1.00000
A 9->10	4417/4417	1.00000
11->10	4426/4426	1.00000
10->11	4372/4372	1.00000
10->11 12->11	4321/4321	1.00000
11->12	4347/4347	1.00000
Genealogies	37095/149767	0.24768

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.75075	514.59
Θ_2	0.85169	259.70
Θ_3^2	0.87770	197.49
Θ_4	0.74849	440.06
) ₅	0.73800	461.74
06	0.81241	355.68
) ₇	0.78983	360.09
) ₈	0.86991	215.19
O_{0}	0.91215	141.97
010	0.74547	446.11
) ₁₁	0.78630	398.84
12	0.60015	881.02
1 2->1	0.74630	452.25
1 1−>2	0.69138	558.17
$M_{3->2}$	0.77894	377.64
1 2->3	0.77556	388.73
1 4->3	0.73292	469.35
1 3->4	0.63956	663.27
1 5->4	0.78262	367.89
1 4->5	0.75644	434.86
1 6->5	0.81263	311.75
1 5->6	0.65016	644.85
7->6	0.90414	151.68
1 6->7	0.83558	273.28
1 8->7	0.75807	417.46
1 7->8	0.67853	579.16
1 9->8	0.76616	397.36
1 8->9	0.80050	339.25
10->9	0.81612	313.82
10=>9	0.78507	364.49
11->10	0.88978	174.85
10->11	0.79766	340.85
10->11	0.71600	501.64
11->12	0.83097	276.80
n[Prob(D G)]	0.97120	43.81

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very

informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.
No warning was recorded during the run