Práctica 1: Representación de números enteros

Gustavo Hurovich

Organización del Computador I DC - UBA

2do. Cuatimestre 2017

¿Qué entendemos?/¿Qué queremos decir?

¿Qué entendemos?/¿Qué queremos decir?

Pensaron en	Escribieron
of a	
6	II
	2

Sistema decimal

Sistema decimal

Sistema decimal

¿Qué estamos queriendo representar con la siguiente tira de símbolos?:

Los símbolos y el valor que representan:

0	1	2	3	4	5	6	7	8	9
ZWZ ZWZ									

Los símbolos y el valor que representan:

0	1	2	3	4	5	6	7	8	9
ZWZ ZWZ									

En el ejemplo anterior, cada posición representa a una potencia de 10

10 ²	10^{1}	10 ⁰

Los símbolos y el valor que representan:

0	1	2	3	4	5	6	7	8	9
ZWZ WZ								₩	

En el ejemplo anterior, cada posición representa a una potencia de 10.

10^{2}	10^{1}	10 ⁰

Los símbolos y el valor que representan:

0	1	2	3	4	5	6	7	8	9
ZWZ ZWZ					\bigcirc			X	

En el ejemplo anterior, cada posición representa a una potencia de 10.

10 ²	10^{1}	10 ⁰
4 × 100	7 × 10	6 × 1

► En base 2, usamos los símbolos 0 y 1 y escribimos los naturales: 0, 1, 10, 11, 100, 101, 110...

- ► En base 2, usamos los símbolos 0 y 1 y escribimos los naturales: 0, 1, 10, 11, 100, 101, 110...
- ► En base 3, usamos los símbolos 0, 1 y 2 y escribimos los naturales: 0, 1, 2, 10, 11, 12, 20...

- ► En base 2, usamos los símbolos 0 y 1 y escribimos los naturales: 0, 1, 10, 11, 100, 101, 110...
- ► En base 3, usamos los símbolos 0, 1 y 2 y escribimos los naturales: 0, 1, 2, 10, 11, 12, 20...
- ...y así...

- ► En base 2, usamos los símbolos 0 y 1 y escribimos los naturales: 0, 1, 10, 11, 100, 101, 110...
- ► En base 3, usamos los símbolos 0, 1 y 2 y escribimos los naturales: 0, 1, 2, 10, 11, 12, 20...
- ...y así...

- ► En base 2, usamos los símbolos 0 y 1 y escribimos los naturales: 0, 1, 10, 11, 100, 101, 110...
- ► En base 3, usamos los símbolos 0, 1 y 2 y escribimos los naturales: 0, 1, 2, 10, 11, 12, 20...
- ...y así...

Base	Símbolos usados
2 (binario)	0, 1

- ► En base 2, usamos los símbolos 0 y 1 y escribimos los naturales: 0, 1, 10, 11, 100, 101, 110...
- ► En base 3, usamos los símbolos 0, 1 y 2 y escribimos los naturales: 0, 1, 2, 10, 11, 12, 20...
- ...y así...

Base	Símbolos usados
2 (binario)	0, 1
8 (octal)	0, 1, 2, 3, 4, 5, 6, 7

- ► En base 2, usamos los símbolos 0 y 1 y escribimos los naturales: 0, 1, 10, 11, 100, 101, 110...
- ► En base 3, usamos los símbolos 0, 1 y 2 y escribimos los naturales: 0, 1, 2, 10, 11, 12, 20...
- ...y así...

Base	Símbolos usados
2 (binario)	0, 1
8 (octal)	0, 1, 2, 3, 4, 5, 6, 7
10	0, 1, 2, 3, 4, 5, 6, 7, 8, 9

- ► En base 2, usamos los símbolos 0 y 1 y escribimos los naturales: 0, 1, 10, 11, 100, 101, 110...
- ► En base 3, usamos los símbolos 0, 1 y 2 y escribimos los naturales: 0, 1, 2, 10, 11, 12, 20...
- ...y así...

Base	Símbolos usados
2 (binario)	0, 1
8 (octal)	0, 1, 2, 3, 4, 5, 6, 7
10	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
16 (hexadecimal)	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

¡Al pizarrón!

¡Al pizarrón!

Posta, no mires más acá.

¡Al pizarrón!

Posta, no mires más acá.

Qué vimos hoy

- Diferencia entre número y numeral
- Cómo interpretar números en distintas bases de numeración posicional
- Cómo expresar un número en distintas bases
- Precisión fija y overflow
- Distintas formas de representación de enteros con bits

La práctica...

Con lo visto hoy pueden realizar la práctica 1.

¿Cómo seguimos?

- ► En unos instantes... clase práctica de Lógica Digital.
- ▶ Martes 29 de agosto 17hs. ¡Primer taller de la materia!

Curiosidad

¿Por qué los programadores ingleses confunden siempre navidad con Halloween?

Curiosidad

¿Por qué los programadores ingleses confunden siempre navidad con Halloween?

Porque $25 \ Dec = 31 \ Oct$