6. Упорядоченные множества. Отношения порядка.

Опр. Множество с заданным на нём отношением порядка называется упорядоченным **Обоз.** (A,R)

Пример: (A, \leq)

Каждому отношению порядка на множестве A можно сопоставить следующие отношения:

- 1. Отношение строго порядка: <
 - ullet удалить id_A из классического \leq
 - $ullet \ \forall x,y \in A \ x < y \Leftrightarrow x \leq y, x \equiv y$
- 2. Отношение, двойственное классическому порядку: \geq
 - $\forall x, y \in A \ x \leq y \Leftrightarrow y \leq x$
- 3. Отношение, двойственное к строгому порядку: <
 - $\forall x,y \in A \ x > y \Leftrightarrow y \leq x, x \equiv y$
- 4. Доминирование: x < y (y доминирует над x)
 - ullet x < y если x < y и $\overline{\exists} z \in A : x < z < y$
 - Не существует элемента, который можно встроить между x и y по отношению строго меньше
 - Доминирование иррефлексивно, антисимметрично и нетранзитивно

Опр. 2 элемента x,y называются сравнимыми по отношению порядка "не больше", если $x \leq y$ или $y \leq x$, иначе - несравнимыми элементами по отношению порядка "не больше"

Опр. Упорядоченное множество (A, \leq) , все элементы которого попарно сравнимы, называется линейно упорядоченным, а соответствующее отношение называется линейным порядком

- ullet Линейный порядок на множестве A может быть перенесён на любое непустое подмножество A
- Если порядок на A линейный, то порядок на $B\subset A$ тоже линейный

Опр. Любое подмножество попарно несравнимых элементов множества A называется антицепью

Опр. Элемент $a \in (A, \leq)$ называется наибольшим элементом множества A, если $\forall x \in A \ x \leq a$

Опр. Элемент $b\in (A,\leq)$ называется максимальным элементом множества A, если $\forall x\in A\ x\leq b$ или x и a несравнимы

Теорема. Наибольший (наименьший) элемент упорядоченного множества, если он существует, является единственным

Доказательство. Пусть (A, \leq) . Предположим, что в нём 2 максимальных элемента a_1, a_2 . Тогда $\forall x \in A \ x \leq a_1, x \leq a_2$

Так как $a_1,a_2\in A$, то $a_1\leq a_2$ и $a_2\leq a_1\Rightarrow a_1=a_2\Rightarrow$ наибольший элемент единственный \blacksquare

Опр. Пусть $(A, \leq), B \subset A$. Элемент $a \in A$ называется верхней (нижней) гранью множества B, если $\forall x \in B \ x \leq a \ (x \geq a)$

Опр. Наименьший элемент множества всех верхних граней множества B называется точной верхней гранью множества B

Обоз. $\sup B$ - supremum

Опр. Наибольший элемент множества всех нижних граней множества B называется точной нижней гранью множества B

Обоз. $\inf B$ - infinum

Теорема. Всякое ограниченное сверху непустое множество имеет верхнюю грань, а всякое ограниченное снизу непустое множество имеет нижнюю грань

Опр. (A, \leq) называется вполне упорядоченным, если любое его непустое подмножество имеет

наименьший элемент

Если есть (A, \leq) и есть свойство, доказанное для этого порядка, то это свойство будет справедливо для двойственного порядка, если:

- 1. заменить \leq на \geq и наоборот
- 2. максимальный элемент заменить минимальным
- 3. inf заменить на \sup и наоборот

Конечное упорядоченное множество малой мощности удобно показать с помощью диаграммы Хассе

 $\{x_i\}, i\in\mathbb{N}$ - последовательность элементов

Опр. Последовательность элементов (A,\leq) $\{x_i\}, i\in\mathbb{N}$ называется неубывающей, если $orall i\in\mathbb{N}$ $x_i\leq x_{i+1}$

Опр. Элемент $x \in (A, \leq)$ называется точной верхней гранью последовательности $\{x_i\}$, если он является точной верхней гранью множества всех членов последовательности.

Опр. Упорядоченное множество (A, \leq) называется индуктивным, если:

- 1. оно содержит наименьший элемент
- 2. всякая неубывающая последовательность $\{x_i\}$ элементов этого множества имеет точную верхнюю грань

Опр. Пусть имеется 2 индуктивных упорядоченных множества (A_1, \leq) и (A_2, \leq) . Отображение $f: A_1 \to A_2$ называется непрерывным, если для любой неубывающей последовательности элементов множества $A_1: a_1, a_2, \ldots, a_n, \ldots$ образ её точной верхней грани равен точной верхней грани последовfтельности $f(a_1), f(a_2), \ldots, f(a_n), \ldots$

$$f(\sup\{a_n\}) = \sup\{f(a_n)\}$$

Опр. Отображение $f:A_1 o A_2$ называется монотонным, если $orall a,b\in A_1\quad a\le b:f(a)\le f(b)$

Теорема. Всякое непрерывное отображение одного индуктивного упорядоченного множества в другое является монотонным

Опр. Элемент $a\in (A,\leq)$ называется неподвижной точкой отображения f:A o A, если f(a)=a

Теорема о неподвижной точке.

Любое непрерывное отображение $f:A \to A$ индуктивного упорядоченного множества A в себя имеет наименьшую неподвижную точку

Уравнение f(x)=x имеет решение $x_0\in A$ $x_0=f(x_0)$

Множество всех решений уравнения образует множество всех неподвижных точек и оно имеет наименьший элемент.

Пример:

Множество (A, \leq) : A = [0, 1] - индуктивно

Отображение: f:A o A

$$f(x) = \frac{1}{2}x + \frac{1}{4}$$

$$x_0 = f(x_0), x_0 = 0$$

$$f^0(0) = 0$$

$$f^1(0) = \frac{1}{4}$$

$$f^2\left(\frac{1}{4}\right) = \frac{3}{8}$$

$$f^3\left(\frac{3}{8}\right) = \frac{7}{16}$$

$$f^4\left(rac{7}{16}
ight) = rac{15}{32}$$

$$0 \le \frac{1}{4} \le \frac{3}{8} \le \frac{7}{16} \le \frac{15}{32}$$

Путём бесконечного числа итераций получается неубывающая последовательность

$$\lim_{n o\infty}rac{2^n-1}{2^{n+1}}=rac{1}{2}=x_{{\scriptscriptstyle HAUM}}$$

 $x_{{\scriptscriptstyle HAUM}}=f(x_{{\scriptscriptstyle HAUM}}) \ rac{1}{2}=f\left(rac{1}{2}
ight)=rac{1}{2}rac{1}{2}+rac{1}{4}=rac{1}{2}$ - верно Наименьшая неподвижная точка - $rac{1}{2}$