Zusammenfassung Höhere Mathematik

Paul Nykiel

16. Juli 2017

Schlagzahl erhöhen.

Inhaltsverzeichnis

Ι	\mathbf{H}	M 1 -	– Zusammenfassung	11
1	Vor	kurs		12
	1.1	Aussag	genlogik	12
		1.1.1	Definition Aussage	12
		1.1.2	Verknüpfungen	12
		1.1.3	Mehr zu Implikationen	13
		1.1.4	Bezeichnung von Aussagen	13
		1.1.5	Satz der Identität	13
	1.2	Menge	en	14
		1.2.1	Defintion: Mengen nach Cantor	14
		1.2.2	Begrifflichkeiten und Schreibweise	14
		1.2.3	Leere Menge, Teilmengen	14
		1.2.4	Transitivität u.a	14
		1.2.5	Verknüpfung von Mengen	15
		1.2.6	Potenzmenge	15
		1.2.7	Rechenregeln für Mengen	15
		1.2.8	Komplement	16
		1.2.9	Bemerkung	16
		1.2.10		16
		1.2.11	Wichtige Zusammenhänge	16
	1.3	Vollstä	ändige Induktion	16
		1.3.1	Summen und Produktzeichen	16
		1.3.2	Prinzip der Vollständigen Induktion	17
		1.3.3	Rechenregeln für Summen	17
		1.3.4	Doppelsummen	18
		1.3.5	Fakultät und Binomialkoeffizient	18
		1.3.6	Rechenregeln für den Binomialkoeffizienten	18
		1.3.7	Binomischer Lehrsatz	18
		1.3.8	Definition Betrag	18
		1.3.9	Dreiecksungleichung	19
	1.4	Funkti	ion und Differentiation	19
		1.4.1	Injektivität, Surjektivität, Bijektivität	19
		1.4.2	Verknüpfung von Funktionen	20
		1.4.3	Verkettung von Funktionen	20

		1.4.4	Stetigkeit und Differenzierbarkeit			20
		1.4.5	Zusammenhang Differentierbarkeit — Stetigkeit			20
		1.4.6	Verkettung differentierbarer Funktionen			21
		1.4.7	Differentiation von Monomen			21
		1.4.8	Kettenregel			21
		1.4.9	Ableitung der Umkehrfunktion			21
	1.5	Elemen	ntare Funktionen			21
	1.6	Integra	alrechnung			21
	1.7	_	lexe Zahlen			21
	1.8		ntare Differentialgleichungen			21
		1.8.1	Definition Rechteck			21
		1.8.2	Lineare DGL 1. Ordnung			22
2	Gre	nzwert	te			23
_	2.1		en und Körper			23
		2.1.1	Gruppen			23
		2.1.2	Körper			23
		2.1.3	Angeordnete Körper			$\frac{23}{24}$
		2.1.4	Minimum und Maximum			25
		2.1.4 $2.1.5$	Obere und untere Schranke			26
		2.1.6	Supremum und Infimum			26
	2.2	Folgen				26
	2.2	2.2.1				26
		2.2.1 $2.2.2$	Konvergenz			
			Bestimmte Divergenz			27
		2.2.3	Beschränktheit			27
		2.2.4	Zusammenhang Konvergenz — Beschränktheit			27
		2.2.5	Grenzwertrechenregeln			27
		2.2.6	Sandwich Theorem u.a			28
		2.2.7	Monotonie			28
	2.0	2.2.8	Zusammenhang Monotonie und Beschränktheit			28
	2.3		ngswerte			28
		2.3.1	Teilfolgen			28
		2.3.2	Teilfolgen einer Konvergenten Folge			28
		2.3.3	Häufungswerte			28
		2.3.4	Limes superior/inferior			29
		2.3.5	Charakterisierung limsup/liminf			29
		2.3.6	Konvergenz und limsup/liminf			29
		2.3.7	Satz von Bolzano-Weierstraß			29
		2.3.8	Cauchy-Kriterium			29
	2.4		lliche Reihen			30
		2.4.1	Definition			30
		2.4.2	Cauchy-Kriterium für unendliche Reihen			30
		2.4.3	Grenzwertrechenregeln für unendliche Reihen $% \left(1\right) =\left(1\right) \left(1\right) \left($			30
		2.4.4	Positive Folgen			31
		2.4.5	Leibniz-Kriterium			31
		2.4.6	Absolute Konvergenz			31

		2.4.7	Majorantenkriterium
		2.4.8	Minorantenkriterium
		2.4.9	Wurzel- und Quotientenkriterium
			Umordnung einer Reihe
			Cauchy-Produkt
	0.5		Cauchy-Verdichtungssatz
	2.5		rreihen
		2.5.1	Definition
		2.5.2	Hadamard (Konvergenzradius mit Wurzelkriterium)
		$2.5.3 \\ 2.5.4$	Konvergenzradius mit Quotientenkriterium
		2.5.4 $2.5.5$	Integration und Differentiation von Potenzreihen
		2.5.6	Cauchy-Produkt für Potenzreihen
		2.5.0 $2.5.7$	Wichtige Potenzreihen
		2.5.7 $2.5.8$	Alternative Definition der Exponentialfunktion
	2.6		onsgrenzwerte
	2.0	2.6.1	Bemerkung
		2.6.1	Epsilon-Umgebung
		2.6.2 $2.6.3$	Funktionsgrenzwerte (über Delta-Epsilon-Kriterium)
		2.6.4	Folgenkriterium
		2.6.4 $2.6.5$	Rechenregeln für Funktionsgrenzwerte
		2.6.6	Cauchy-Kriterium für Funktionsgrenzwerte
		2.6.7	Bestimmte Divergenz
		2.6.8	Monotone Funktionen
		2.6.9	Grenzwerte an Intervallgrenzen
	2.7		eit
	2.1	2.7.1	Anschaulich
		2.7.1 $2.7.2$	Stetigkeit: Delta-Epsilon-Kriterium
		2.7.2 $2.7.3$	Bemerkungen
		2.7.4	Rechenregeln für Stetigkeit
		2.7.5	Stetigkeit von Potenzreihen
		2.7.6	Umgebung positiver Funktionswerte
		2.7.7	Zwischenwertsatz
		2.7.8	Existenz des Logarithmus
		2.7.9	Maximum/Minimum/Infimum/Supremum einer Funktion
			Beschränktheit einer stetigen Funktion
			Weierstraß: Existenz von Min und Max
			Zusammenhang Injektivität — Stetigkeit
			Existenz und Monotonie der Umkehrfunktion
			Gleichmäßige Stetigkeit
3	Diff	erentia	drechnung
	3.1	Ableiti	ung
		3.1.1	Definition Differenzen-Quotient
		3.1.2	Rechtsseitige und linksseitige Ableitung
		3.1.3	Ableitungsrechenregeln

		3.1.4	Alternative Definition der Ableitung	42
		3.1.5	Zusammenhang Differentierbarkeit — Stetigkeit	42
		3.1.6	Differentiation von Potenzreihen	42
		3.1.7	Ableitung der Umkehrfunktion	42
		3.1.8	Ketternregel	42
	3.2	Mittel	wertsätze	42
		3.2.1	Satz von Rolle	42
		3.2.2	Definition lokaler Extrempunkt	43
		3.2.3	Notwendige Bedingung für lokale Extrema	43
		3.2.4	2. Mittelwertsatz	43
		3.2.5	1. Mittelwertsatz (Folgerung aus 2. Mittelwertsatz)	43
		3.2.6	L'Hospital	43
		3.2.7	Satz von Taylor	44
II	н	М2-	— Zusammenfassung	45
		141 2	Zusammemassung	10
4	Inte	gratio		46
	4.1	Integra		46
		4.1.1	Definition Zerlegung, Zwischenwerte	46
		4.1.2	Definition Riemannsumme	46
		4.1.3	Definition Riemann-Integral	47
		4.1.4	Menge der Riemann-Integrierbaren Funktionen	48
		4.1.5	Kriterien für Riemann-Integrierbarkeit	48
		4.1.6	Änderung von Funktionen	49
		4.1.7	Zusammenhang Stetigkeit und Integrierbarkeit	49
		4.1.8	Stückweise Integration	49
		4.1.9	1. Mittelwertsatz der Integralrechnung	49
			Existenz der Stammfunktion	50
			Definition Stammfunktion	50
			Eindeutigkeit der Stammfunktion	50
			Hauptsatz der Differential und Integralrechnung	50
			Zusammenhang Monotonie und Riemann-Integrierbarkeit Zweiter Mittelwertsatz der Integralrechnung	50 50
	4.2			50 51
	4.2	4.2.1	entliche Integrale	51 51
		4.2.1 $4.2.2$	Definition uneigentliches Integral	51 51
		4.2.2	Majorantenkriterium	52
		4.2.4	Absolute Konvergenz	$\frac{52}{52}$
		4.2.5	Minorantenkriterium	52
		4.2.6	Integralkriterium für Reihen	52
		1.2.0		02

5	Glei	ichmäß	Bige Konvergenz			53
	5.1	Gleich	mäßige Konvergenz			53
		5.1.1	Definition Funktionenfolge und Funktionenreihe			53
		5.1.2	Gleichmäßige Konvergenz			53
		5.1.3	Stetigkeit der Grenzfunktion			54
		5.1.4	Integration der Grenzfunktion			54
		5.1.5	Cauchy Kriterium für gleichmäßige Konvergenz			54
		5.1.6	Differentiation der Grenzfunktion			54
		5.1.7	Majorantenkriterium auf Potenzreihen anwenden .			55
		5.1.8	Majorantenkriterium für Funktionenreihen			55
6	Diff	erentia	drechung mit mehreren Variablen			56
	6.1		dimensionale Euklidische Raum			56
		6.1.1	Definitionen			56
		6.1.2	Folgerungen			56
		6.1.3	Konventionen			57
		6.1.4	Definition Epsilon-Umgebung			57
		6.1.5	Definition Topologische Begriffe	•	 •	57
		6.1.6	Definition offene und abgeschlossene Menge			58
	6.2	Folgen				59
	0.2	6.2.1	Definition			59
		6.2.1	Bolzano-Weierstraß			59
		6.2.2	Grenzwertrechenregeln			59
		6.2.4				60
	6.3		Weitere Bemerkungen	•	 •	60
	0.5		onsgrenzwerte und Stetigkeit	•	 •	60
		6.3.1 $6.3.2$	Definition Funktion			60
		6.3.2	Definition Funktionsgrenzwert			
			Definitionen aus HM 1 im Mehrdimensionalen			60
		6.3.4	Definition Stetigkeit			61
		6.3.5	Grenzwerte von verketteten Funktionen			61
		6.3.6	Grenzwertrechenregeln			61
		6.3.7	Maximum und Minimum Kompakter Mengen			62
		6.3.8	Weierstraß			62
	6.4		lle Ableitungen und Richtungsableitungen			62
		6.4.1	Definition partielle Ableitung			62
		6.4.2	Definition Umgebung eines Punktes			63
		6.4.3	Definition Richtungsableitung			63
	6.5		tale Ableitung			63
		6.5.1	Definition totale Ableitung			63
		6.5.2	Zusammenhang Stetigkeit und Differenzierbarkeit .			64
		6.5.3	Zusammenhang partielle und totale Diffbarkeit			64
		6.5.4	Kettenregel			65
		6.5.5	Matrix-Produkt			65
	6.6		nwerte, Mittelwertsatz			65
		6.6.1	Definition lokales Extrema			65
		6.6.2	Notwendige Bedingung für lokale Extrema			65

		6.6.3	Mittelwertsatz	66
		6.6.4	Gebiete bzw. kurvenweise zusammenhängende Gebiete	66
		6.6.5	Partielle Ableitung r-ter Ordnung	66
		6.6.6		67
		6.6.7		67
		6.6.8		67
		6.6.9		68
		6.6.10		68
	6.7	Impliz		68
		6.7.1		68
		6.7.2		68
		6.7.3		68
		6.7.4		69
		6.7.5	U V	69
		6.7.6		69
		6.7.7		69
		6.7.8	Hauptsatz über implizite Funktionen	70
		6.7.9	Extrema unter Nebenbedingungen	70
				71
			Definition Linear Unabhängig	71
			Satz von Lagrange	72
			Lagrange Funktion	72
		0.1.10	Dogramge Lameton	
7	Inte	gratio	n in mehreren Veränderlichen	73
	7.1	Param	eterintegrale	73
		7.1.1	Eigentliche Parameterintegrale	73
		7.1.2	Leibniz Regel	73
		7.1.3	Uneigentliche Parameterintegrale	74
		7.1.4	Majorantenkriterium	74
		7.1.5	Fubini für uneigentliche Parameterintegrale	74
		7.1.6	Konvergenzkriterien	74
	7.2	Kurvei		75
		7.2.1	Äquivalenz für Kurven	75
		7.2.2	Kurven im \mathbb{R}^n	75
		7.2.3	Eigenschaften von Parameterdarstellungen	76
		7.2.4	Weitere Definitionen zu Kurven	77
		7.2.5	Kurventintegrale 2. Art	77
		7.2.6	Substitutionsregel	78
		7.2.7	Definition Wegunabhängigkeit	78
		7.2.8	1. Hauptsatz für Kurvenintegral	79
			1. Hadpisaiz für Rufvellingfär	10
				70
		7.2.9	Äquivalente Aussagen zu Stammfunktionen	79 70
		7.2.9 $7.2.10$	Äquivalente Aussagen zu Stammfunktionen Definition einfach zusammenhängende Gebiete	79
		7.2.9 7.2.10 7.2.11	Äquivalente Aussagen zu Stammfunktionen	79 79
		7.2.9 7.2.10 7.2.11 7.2.12	Äquivalente Aussagen zu Stammfunktionen Definition einfach zusammenhängende Gebiete Sternförmige Gebiete	79 79 80
		7.2.9 7.2.10 7.2.11 7.2.12 7.2.13	Äquivalente Aussagen zu Stammfunktionen	79 79

		7.2.15 Definition Linienintegral/Kurven	integral 1. Art		 81
	7.3	Bereichsintegrale			82
		7.3.1 Intervalle im \mathbb{R}^n			82
		7.3.2 Definition Zerlegung			82
		7.3.3 Definition Riemann-Summe			 83
		7.3.4 Riemann integrierbare Bereichsin	tegrale		 83
		7.3.5 Bereichsintegrale über beschränk	te Mengen		 83
		7.3.6 Cavalieri			 84
		7.3.7 Fubini			 84
		7.3.8 Definition Meßbare-Mengen			 84
		7.3.9 Definition 2×2 Determinante.			 84
		7.3.10 Mehrdimensionale Substitutonsre	egel		 85
	7.4	Integralsätze in der Ebene			 85
		7.4.1 Positiv berandete Menge			85
		7.4.2 Satz von Green			 85
		7.4.3 Definition Normalbereiche			 85
		7.4.4 Gauß'sche Integralsätze in der E			85
	7.5	Oberflächenintegrale und Integralsätze i	m \mathbb{R}^3		 86
		7.5.1 Definition Reguläre Flächen			 86
		7.5.2 Defintion Oberflächenintegral			 86
		7.5.3 Satz von Stokes			 87
		7.5.4 Divergenzsatz von Gauß			 87
8	Line	eare Algebra			88
	8.1	Der Begriff Vektorraum			 88
		8.1.1 Definition Vektorraum			88
		8.1.2 Rechenregeln			88
	8.2	Unterräume			89
		8.2.1 Definition Unterraum			89
		8.2.2 Unterraumkriterien			 89
		8.2.3 Durchschnitt von Unterräumen			89
		8.2.4 Defintion lineare Hülle			 89
		8.2.5 Definition Linearkombination			90
		8.2.6 Zusammenhang lineare Hülle —			90
	8.3	Lineare Unabhängigkeit			90
		8.3.1 Definition Lineare Unabhängigke			90
		8.3.2 Rechenregeln für lineare Unabhä			90
	8.4	Basis und Dimension			91
		8.4.1 Definition Hamel-Basis			 91
II	I I	Beweisansätze			93
9	$_{ m HM}$	f 1			94
_	9.1	Grenzwerte			 94
		9.1.1 Eindeutigkeit des Grenzwert eine			

	9.1.2	Konvergente Folgen sind beschränkt	94
	9.1.3		94
	9.1.4	Monotoniekriterium	94
	9.1.5	Grenzwert einer konv. Folge = Grenzwert jeder Teilfolge	94
	9.1.6	<u> </u>	94
	9.1.7	<u> </u>	94
	9.1.8		95
	9.1.9	v	95
		S S	95
			95
			95
			95
			95
		v	95
			95
			95
		•	95
			96
		, 0	96
	9.1.21		96
	9.1.22	′ e~	96
	9.1.23	Pythagoras	96
			96
	9.1.25		96
		0	96
	9.1.27	Folgenkriterium	96
		v	96
		9	96
		1 0 0	96
			97
		0 01	97
			97
		9	97
		9	97
	9.1.36	Weierstraß existenz min bzw. max	97
10 TTN/	0		30
10 HM			98
10.1	_		98
			98
		0	98
		0 (0)	98
			98
	10.1.5		98
	10.1.6	1	99
	10.1.7	Gauß'sche Integralsätze in der Ebene	99

IV	/ Appendix	100
11	Grenzwerte 11.1 Konvergenzkriterien	101 101
12	Integration 12.1 Riemann-Integrierbarkeit	102 102

Kapitel 1

Vorkurs

1.1 Aussagenlogik

1.1.1 Definition Aussage

Eine Aussage ist ein Satz, der entweder wahr oder falsch ist.

Bemerkung

Wir beschäftigen uns mit der klassischen zweiwertigen Logik. Es gibt auch Logiken mit 3 bzw. 4 Werten.

1.1.2 Verknüpfungen

Formal kann eine Oder-Verknüfung mit dem \vee -Zeichen durch eine Wahrheitstabelle definiert werden:

\overline{A}	В	$A \lor B$
1	1	1
1	0	1
0	1	1
0	0	0

Analog kann eine Und-Verknüpfung mit dem \land -Zeichen durch eine Wahrheitstabelle definiert werden:

\overline{A}	В	$A \wedge B$
1	1	1
1	0	0
0	1	0
0	0	0

Und eine Negation wird definiert durch:

A	$\neg A$
1	0
0	1

Eine sog. Implikation wird durch das \Rightarrow -Zeichen dargestellt und ist definiert durch:

\overline{A}	В	$A \Rightarrow B$
1	1	1
1	0	0
0	1	1
0	0	1

Bemerkung

Bei mehr als einer Verknüpfung muss klar sein welche Verknüpfung als erstes ausgewerted werden muss, hierfür werden Klammern verwendet.

1.1.3 Mehr zu Implikationen

Bei der Aussage $A \Rightarrow B$ bezeichnet man A als hinreichende Bedingung und B als notwendige Bedingung.

Die Aussage $A \Rightarrow B$ ist äquivalent zu $\neg B \Rightarrow \neg A$.

1.1.4 Bezeichnung von Aussagen

Eine Aussageform heißt:

- (a) Allgemeingültig (oder Tautologie), wenn sie als Wahrheitswert stets den Wert wahr annimmt.
- (b) Erfüllbar, wenn die Wahrheitstabelle mindestens einmal den Wert wahr enthält.
- (c) Unerfüllbar (oder Kontradiction), wenn die Wahrheitstabelle nur falsch-Einträge enthält.

1.1.5 Satz der Identität

Mit $A \Leftrightarrow B$ kürzen wir die Aussage:

$$(A \Rightarrow B) \land (B \Rightarrow A)$$

ab.

Bemerkung

Für den allg. Fall sagt man zu $A \Leftrightarrow B$: A ist äquivalent zu B. Das heißt aber nicht, dass A=B ist.

1.2 Mengen

1.2.1 Defintion: Mengen nach Cantor

Unter einer Menge versteht man eine Zusammenfassung bestimmter wohlunterscheidbarer Objekte unsere Anschauung oder unseres Denkens zu einem Ganzen.

1.2.2 Begrifflichkeiten und Schreibweise

Objekte einer Menge bezeichnet man als Elemente einer Menge. Schreibweise:

- (a) $x \in M$ oder $x \notin M$
- (b) Mengen können durch Aufzählen der Elemente beschrieben werden: $M = \{a,b,c\}$
- (c) Mengen können durch Eigenschaften der Elemente beschrieben werden: $M = \{x: x \text{ hat Eigenschaft}...\}$

1.2.3 Leere Menge, Teilmengen

- (a) Die Menge, die kein Element enthält, heißt leere Menge. Wir bezeichnen diese mit \emptyset .
- (b) Eine Menge M_1 heißt Teilmenge einer Menge M_2 (Schreibweise $M_1\subseteq M_2$) falls jedes Element von M_1 auch Element von M_2 ist. D.h. es gilt:

$$x \in M_1 \Rightarrow x \in M_2$$

(c) Zwei Mengen sind gleich wenn gilt:

$$M_1 = M_2 \Leftrightarrow M_1 \subseteq M_2 \land M_2 \subseteq M_1$$

(d) M_1 heißt echte Teilmenge von M_2 wenn gilt:

$$M_1 \subseteq M_2 \land M_1 \neq M_2$$

Schreibweise: $M_1 \subset M_2$ oder $M_1 \subsetneq M_2$.

1.2.4 Transitivität u.a.

Für Mengen M, M_1, M_2, M_3 gilt stets:

- (a) Aus $M_1 \subseteq M_2$ und $M_2 \subseteq M_3$ folgt stets: $M_1 \subseteq M_3$
- (b) $M_1 = M_2 \Leftrightarrow M_1 \subseteq M_2 \land M_2 \subseteq M_1$
- (c) $M \subseteq M$ und $\emptyset \subseteq M$

1.2.5 Verknüpfung von Mengen

Für Mengen M_1 und M_2 definiert man:

(a) Die Vereinigung von M_1 und M_2 durch:

$$M_1 \cup M_2 := \{x : x \in M_1 \lor x \in M_2\}$$

(b) Den Schnitt von M_1 und M_2 durch:

$$M_1 \cap M_2 := \{x : x \in M_1 \land x \in M_2\}$$

(c) Die Differenz von M_1 und M_2 durch:

$$M_1 \backslash M_2 := \{x : x \in M_1 \land x \notin M_2\}$$

(d) Das Kartesische Produkt von M_1 und M_2 durch:

$$M_1 \times M_2 := \{(a, b) : a \in M_1 \land b \in M_2\}$$

(e) Das Kartesische Produkt von M_1 und M_1 durch;

$$(M_1)^2 := M_1 \times M_1$$

1.2.6 Potenzmenge

Für eine Menge M ist durch

$$P(M) := \{A : A \subseteq M\}$$

die Potenzmenge definiert (Menge aller Teilmengen von M).

Bemerkung

Hier gilt $\emptyset \in P(M)$.

1.2.7 Rechenregeln für Mengen

Für bel. Mengen M_1, M_2, M_3 gilt:

(a) Kommutativität:

$$M_1 \cup M_2 = M_2 \cup M_1$$
 und $M_1 \cap M_2 = M_2 \cap M_1$

(b) Assoziativität:

$$(M_1 \cup M_2) \cup M_3 = M_1 \cup (M_2 \cup M_3)$$
 und $(M_1 \cap M_2) \cap M_3 = M_1 \cap (M_2 \cap M_3)$

(c) Distributivgesetz:

$$M_1 \cap (M_2 \cup M_3) = (M_1 \cap M_2) \cup (M_1 \cap M_3)$$
 und $M_1 \cup (M_2 \cap M_3) = (M_1 \cup M_2) \cap (M_1 \cup M_3)$

1.2.8 Komplement

Ist X eine feste Menge und $M \subseteq X$ beliebig, so heißt

$$M^c := X \backslash M$$

das Komplement von M (bzgl, X).

1.2.9 Bemerkung

Die Schreibweise erfordert das X aus dem Kontext bekannt sein muss.

1.2.10 Verknüpfungen über mehrere Elemente

Für Mengen M_1, M_2, \dots, M_n mit $n \in \mathbb{N}$ definieren wir die Notation:

(a)

$$\bigcup_{k=1}^{n} M_k = M_1 \cup M_2 \cup \ldots \cup M_n$$

(b)

$$\bigcap_{k=1}^{n} M_k = M_1 \cap M_2 \cap \ldots \cap M_n$$

(c)

$$\underset{k=1}{\overset{n}{\times}} M_k = M_1 \times M_2 \times \dots \times M_n$$

1.2.11 Wichtige Zusammenhänge

- (a) $(M^c)^c = M$
- (b) $M_1 \subseteq M_2 \Rightarrow M_2^c \subseteq M_1^c$
- (c) $(M_1 \cup M_2)^c = M_1^c \cap M_2^c$

1.3 Vollständige Induktion

1.3.1 Summen und Produktzeichen

Für $m, n \in \mathbb{Z}, m \leq n$ und $a_m, a_{m+1}, \dots a_n \in \mathbb{R}$ definieren wir:

$$\sum_{k=n}^{n} a_k := a_m + a_{m+1} + \ldots + a_n$$

und

$$\prod_{k=m}^{n} a_k := a_m \cdot a_{m+1} \cdot \ldots \cdot a_n$$

Falls m>n ist definieren wir $\sum_{k=m}^n a_k:=0$ und $\prod_{k=m}^n a_k:=1$

1.3.2 Prinzip der Vollständigen Induktion

Gegen seien Aussagen A(n) für $n \geq n_0$ mit $n_0, n \in \mathbb{Z}$ (n_0 beliebig aber fest). Und es gelte:

- (a) $A(n_0)$ ist wahr
- (b) Für alle $n \ge n_0$ gilt: $A(n) \Rightarrow A(n+1)$

Bemerkung

- (a) n_0 wird als Induktionsanfang, n als Induktionsschritt bezeichnet
- (b) Nachteil: wir wissen nicht wieso etwas gilt, nur dass es gilt

1.3.3 Rechenregeln für Summen

Für $m, n \in \mathbb{Z}$ und $a_k, b_k, c \in \mathbb{R}$ gilt:

(a) Indexverschiebung:

$$\sum_{k=m}^{n} a_k = \sum_{k=m+l}^{n+l} a_{k-l}$$

für beliebiges $l \in \mathbb{Z}$

(b) Trennen von Summen:

$$\sum_{k=m}^{n} (a_k + b_k) = \sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k$$

(c) Konstante Faktoren können aus der Summe "gezogen" werden:

$$\sum_{k=m}^{n} c \cdot a_k = c \cdot \sum_{k=m}^{n} a_k$$

(d) "Teleskopsummen":

$$\sum_{k=m}^{n} (a_k - a_{k+1}) = a_m - a_{n+1}$$

(e) Summe über Konstanten:

$$\sum_{k=m}^{n} c = c \cdot (n-m+1)$$

1.3.4 Doppelsummen

Für $n \in \mathbb{N}$ und $a_{ij} \in \mathbb{R}$, $1 \le i \le j \le n$ gilt:

$$\sum_{i=1}^{n} \sum_{j=i}^{n} a_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{j} a_{ij}$$

1.3.5 Fakultät und Binomialkoeffizient

Für $n \in \mathbb{N}_0$ und ein $\alpha \in \mathbb{R}$ heißt

(a) die Fakultät von n

$$n! := \begin{cases} n \cdot (n-1)! & ; n \neq 0 \\ 1 & ; n = 0 \end{cases}$$

(b) den Binomielkoeffizienten

$$\binom{\alpha}{n} := \frac{\prod\limits_{k=1}^{n} (\alpha - k + 1)}{n!}$$

1.3.6 Rechenregeln für den Binomialkoeffizienten

Für $n, m \in \mathbb{N}_0$ mit $m \ge n$ und $\alpha \in \mathbb{R}$ gilt:

(a)

$$\binom{\alpha}{n} + \binom{\alpha}{n+1} = \binom{\alpha+1}{n+1}$$

(b)

$$\binom{m}{n} = \frac{m!}{n!(m-n)!}$$

1.3.7 Binomischer Lehrsatz

Für $a, b \in \mathbb{R}$ und $n \in \mathbb{N}_0$ gilt:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

1.3.8 Definition Betrag

Für $x \in \mathbb{R}$ heißt

$$|x| := \begin{cases} x & , x \ge 0 \\ -x & , x < 0 \end{cases}$$

 $\mathrm{der}\;\mathrm{Betrag}\;\mathrm{von}\;x$

Bemerkung

Es gilt:

- (a) $|x| \ge 0 \ \forall x \in \mathbb{R}$
- (b) $|x \cdot y| = |x| \cdot |y| \ \forall x, y \in \mathbb{R}$
- (c) $|x a| < \varepsilon \Leftrightarrow a \varepsilon < x < a + \varepsilon$
- (d) $|x| = \max\{x, -x\} \ \forall x \in \mathbb{R}$

1.3.9 Dreiecksungleichung

Für alle $x, y \in \mathbb{R}$ gilt:

- (a) $|x + y| \le |x| + |y|$ (obere Dreiecksungleichung)
- (b) $|x + y| \ge ||x| |y||$ (unter Dreiecksungleichung)

Bemerkung

Es gilt $x \leq |x| \ \forall x \in \mathbb{R}$.

1.4 Funktion und Differentiation

Eine Funktion (bzw. Abbildung, Operator) f von X nach Y ist eine Vorschrift, die jedem $x \in X$ ein eindeutig bestimmtes $y \in Y$ zuordnet. Das $x \in X$ zugeordnete Element aus Y wird mit f(x) bezeichnet.

Schreibweise

$$f: X \to Y, \quad x \mapsto f(x)$$

Bemerkung

X heißt Definitionsbereich, $Y := \{y \in Y : \exists x \in X \text{ mit } y = f(x)\}$ die Zielmenge.

1.4.1 Injektivität, Surjektivität, Bijektivität

(a) Eine Funktion heißt injektiv, falls gilt:

$$x \neq y \Rightarrow f(x) \neq f(y) \ forall x, y \in X$$

(b) Eine Funktion heißt surjektiv, falls gilt:

$$\forall y \in Y \ \exists x \in X : y = f(x)$$

(c) Eine Funktion heißt bijektiv, wenn sie injektiv und surjektiv ist.

1.4.2 Verknüpfung von Funktionen

Gegeben seien $f,g:X\to Y$ und $c\in\mathbb{R}.$ Dann definieren wir die Funktionen

$$\begin{split} c\cdot f: & X\to Y, \quad x\mapsto (cf)(x):=c\cdot f(x)\\ f+g: & X\to Y, \quad x\mapsto (f+g)(x):=f(x)+g(x)\\ f\cdot g: & X\to Y, \quad x\mapsto (fg)(x):=f(x)\cdot g(x)\\ \frac{f}{g}: & X\to Y, \quad x\mapsto (\frac{f}{g})(x):=\frac{f(x)}{g(x)} \text{ für } x \text{ mit } g(x)\neq 0 \end{split}$$

1.4.3 Verkettung von Funktionen

Seien $f: X \to Y$ und $g: Y \to Z$ gegeben, dann heißt die Funktion

$$g \circ f : X \to Z, x \mapsto (g \circ f)(x) := g(f(x))$$

die Verkettung von g mitt f oder das Kompositum von g mit f

1.4.4 Stetigkeit und Differenzierbarkeit

Sei $I \subseteq \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$

- (a) f heißt stetig in x_0 , wenn $\lim_{x\to x_0} f(x) = f(x_0)$ gilt
- (b) f heißt stetig auf I, wenn f in jedem $x_0 \in I$ stetig ist.
- (c) f heißt differenzierbar in x_0 , wenn der Grenzwert $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ existiert.

Bemerkung

Im Fall der Differenzierbarkeit bezeichnen wir den Grenzwert mit $f'(x_0)$ (Newton Notation) oder $\frac{\mathrm{d}}{\mathrm{d}x}f(x_0)$ (Leibniz Notation).

1.4.5 Zusammenhang Differentierbarkeit — Stetigkeit

Eine differentierbare Funktion ist stets stetig.

Bemerkung

Die Ableitung einer differentierbaren Funktion muss hingegen nicht stetig sein.

1.4.6 Verkettung differentierbarer Funktionen

Seien $g, f: I \to \mathbb{R}$ differentierbar, dann sind cf, f+g, $f\cdot g$ und im Fall $g(x) \neq 0 \forall x \in I$ auch $\frac{f}{g}$ differentierbare Funktionen, und es gilt:

$$\frac{\mathrm{d}}{\mathrm{d}x}(c \cdot f)(x) = (c \cdot f)'(x) = c \cdot f'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(f+g)(x) = (f+g)'(x) = f'(x) + g'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(f \cdot g)(x) = (f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{f}{g}\right)(x) = \left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - g'(x)f(x)}{(g(x))^2}$$

1.4.7 Differentiation von Monomen

Es sei $f: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto x^n = f(x)$ und $n \in \mathbb{Z}$. Dann ist f differentierbar mit $f'(x) = n \cdot x^{n-1}$.

1.4.8 Kettenregel

Gegeben seien Intervalle $I, J \subseteq \mathbb{R}$ und differentierbare Funktionen $f: I \to J, g: J \to \mathbb{R}$. Dann ist auch $g \circ f$ differentierbar und es gilt:

$$\frac{\mathrm{d}}{\mathrm{d}x}(g \circ f)(x) = \frac{\mathrm{d}}{\mathrm{d}x}g(f(x)) = (g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$

1.4.9 Ableitung der Umkehrfunktion

Sei $f:I\to J$ bijektiv und differentierbar dann ist die Umkehrfunktion $f^{-1}:J\to I$ ebenfalls differentierbar und es gilt:

$$\frac{\mathrm{d}}{\mathrm{d}x}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

1.5 Elementare Funktionen

1.6 Integral rechnung

1.7 Komplexe Zahlen

1.8 Elementare Differentialgleichungen

1.8.1 Definition Rechteck

(a) $I_1, I_2, \ldots, I_n \subseteq \mathbb{R}^n$ seien nicht leeren Intervalle. Dann heißt die Menge $M = I_1 \times I_2 \times \ldots \times I_n$ ein (n-Dimensionales) Rechteck.

(b) Sei $M \subseteq \mathbb{R}^n$ ein Rechteck und $\varphi: M \to R$ stetig. Dann heißt eine Funktion $y: I \to \mathbb{R}$ die Lösung der Differentialgleichung (1. Ordnung)

$$y' = \varphi(t; y)$$

wenn gilt:

i y ist stetig differentierbar

ii
$$(t, y(t)) \in M \forall t \in I$$

iii
$$y'(t) = \varphi(t, y(t)) \forall t \in I$$

(c) Sei $M \subseteq \mathbb{R}^2$ ein Rechteck, $\varphi : M \to \mathbb{R}$ stetig und $(t_0, y_0) \in M$. Dann heißt $\varphi : I \to \mathbb{R}$ eine Lösung des Anfangswertproblems (AWP)

$$y' = \varphi(t, y); \ y(t_0) = y_0$$

wenn y eine Lösung von y' = f(t, y) ist und $y(t_0) = y_0$ gilt.

Bemerkung

Eine DGL n-ter Ordnung mit $n \geq 2$ ist nicht direkt durch die Definition beschrieben.

Wenn wir aber eine Funktion $\vec{y}: I \subseteq \mathbb{R} \to \mathbb{R}^2$ definiert mit:

$$\begin{array}{rcl} y(t) & = & \left(\begin{array}{c} y_1(t) \\ y_2(t) \end{array}\right) \\ y_1(t) & = & x(t) \\ y_2(t) & = & \dot{y}_1(t) - \dot{x}(t) \\ \dot{y}_2(t) & = & \ddot{x}(t) = -\frac{a_1}{a_2} \dot{x}(t) - \frac{a_0}{a_2} x(t) = -\frac{a_1}{a_2} y_2(t) - \frac{a_0}{a_2} y_1(t) \end{array}$$

1.8.2 Lineare DGL 1. Ordnung

Sei $I \subseteq R$ ein Interval und t_0 ein Punkt in I mit $t_0 - \delta; t_0 + \delta) \subseteq I$ (d.h. nicht auf dem Rand von I). Weiter seien $f, g: I \to \mathbb{R}$ stetig. Definiere

$$y_0 : I \to \mathbb{R}$$

$$y_0(t) = \exp\left(\int_{t_0}^t f(u) du\right)$$

$$y : I \to \mathbb{R}$$

$$y(t) = \left(y_0 \cdot \int_{t_0}^t \frac{g(u)}{y_0(u)} du\right) \cdot y_0(t)$$

Dann ist:

- (a) y_0 eine Lösung von y' = f(t)y; $y(t_0) = 1$
- (b) y eine Lösung von y' = f(t)y + g(t); $y(t_0) = y_0$

Kapitel 2

Grenzwerte

2.1 Gruppen und Körper

2.1.1 Gruppen

Eine Gruppe ist definiert als ein Tuppel aus einer (nicht-leeren) Menge und einer Verknüpfung. Eine Gruppe erfüllt die folgenden Axiome (seien $a,b,c\in\mathbb{G}$):

$$a \circ (b \circ c) = (a \circ b) \circ c$$
 (Assoziativität)
 $a \circ \varepsilon = a$ (Rechtsneutrales Element)
 $a \circ a' = \varepsilon$ (Rechtsinverses Element)

Eine abelsche Gruppe erfüllt des weiteren:

$$a \circ b = b \circ a$$
 (Kommutativität)

2.1.2 Körper

Ein Körper ist definiert als eine Menge mit mindestens zwei Elementen (0 und 1) und zwei Verknüfungen.

$$\begin{array}{cccc} +: \mathbb{K} \times \mathbb{K} & \to & \mathbb{K} \\ \cdot: \mathbb{K} \times \mathbb{K} & \to & \mathbb{K} \end{array}$$

 \mathbb{K} ist bezüglich der Addition und der Multiplikation (genauer: $\mathbb{K}\setminus\{0\}$) ein abelscher Körper, das heißt es gilt (seien $a,b,c\in\mathbb{K}$):

$$a+(b+c)=(a+b)+c \quad \text{(Assoziativität bez. der Addition)}$$

$$a+0=a \quad \text{(Existenz einer 0)}$$

$$a+(-a)=0 \quad \text{(Existenz eines Inversen bez. der Addition)}$$

$$a+b=b+a \quad \text{(Kommutativität bez. der Addition)}$$

$$a\cdot(b\cdot c)=(a\cdot b)\cdot c \quad \text{(Assoziativität bez. der Multiplikation)}$$

$$a\cdot 1=a \quad \text{(Existenz einer 1)}$$

$$a\cdot a^{-1}=1 \quad \forall a\neq 0 \quad \text{(Existenz eines Inversen bez. der Multiplikation)}$$

$$a\cdot b=b\cdot a \quad \text{(Kommutativität bezüglich der Multiplikation)}$$

außerdem gilt:

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
 (Distributivgesetz)

Bemerkung

 \mathbb{Q} , \mathbb{R} und \mathbb{C} sind Körper. \mathbb{Z} und \mathbb{N} nicht (kein additiv inverses bei \mathbb{N} , kein multiplikativ inverses bei beiden).

2.1.3 Angeordnete Körper

Ein Körper heißt angeordent wenn folgende Axiome erfüllt sind (seien $a,b,c\in\mathbb{K}$):

$$\begin{array}{cccc} a < b \lor & b < a & \lor a = b \\ \\ a < b \land b < c & \Rightarrow & a < c \\ \\ a < b & \Rightarrow & a + c < b + c \\ \\ a < b \land c > 0 & \Rightarrow & a * c < b * c \end{array}$$

Bemerkung

 $\mathbb Q$ und $\mathbb R$ sind angeordnete Körper. Für $\mathbb C$ kann keine Ordnungsrelation definiert werden so das alle Axiome erfüllt sind.

Gebräuchliche Definition zu angeordenten Körpern

Es gilt 0 < 1, sonst Widerspruch in (O3). Die Ordnungsrelation wird dann definiert durch:

Die Natürlichen Zahlen werden Induktiv definiert:

- 1. $1 \in \mathbb{N}$
- 2. $n \in \mathbb{N} \Rightarrow (n+1) \in \mathbb{N}$

Bemerkung

Aus 2. lässt sich direkt ableiten das \mathbb{N} nach oben unbeschränkt ist (Archimedisches Prinzip).

Vollständig Angeordnete Körper

Ein Körper heißt Vollständig, falls jede nach oben beschränkte, nicht-leere Teilmenge ein Supremum besitzt.

 $\Rightarrow \mathbb{R}$ ist der einzige Vollständig angeordnete Körper.

Bemerkung

 \mathbb{Q} ist nicht vollständig angeordnet, da $A:=\{x|x^2\leq 2\}\subset \mathbb{Q}$ kein Supremum besitzt (Supremum ist $\sqrt{2}\notin \mathbb{Q}$).

2.1.4 Minimum und Maximum

Sei $\mathbb K$ ein angeord
nter Körper und $A\subset \mathbb K$ dann heißt m Minimum falls gilt:

- 1. $m \in \mathbb{K}$
- 2. $a \ge m \ \forall a \in A$

Analog ist das Maximum definiert: Sei $\mathbb K$ ein angeord
nter Körper und $A\subset \mathbb K$ dann heißt m Maximum falls gilt:

- 1. $m \in \mathbb{K}$
- 2. $a \le m \ \forall a \in A$

Schreibweisen: $m = \min(A)$ bzw. $m = \max(A)$

Bemerkung

Minimum und Maximum exisitieren nicht immer.

Beispiel: $A:=\{x|x>0\}\subset\mathbb{R}$ hat nicht 0 als Minimum da $0\notin A$ und kein beliebiges m da $\tilde{m}:=\frac{m}{2}< m\ \forall m\in A$

2.1.5 Obere und untere Schranke

Sei \mathbb{K} ein angeordenter Körper und $A \subset \mathbb{K}$ dann ist s untere Schranke falls gilt:

• $s \le a \ \forall a \in A$

Analog ist die obere Schranke definiert: Sei $\mathbb K$ ein angeordenter Körper und $A\subset \mathbb K$ dann ist s obere Schranke falls gilt:

• $s \ge a \ \forall a \in A$

Bemerkung

Hat eine Menge eine obere (bzw. untere) Schranke heißt er nach oben (bzw. unten) beschränkt. Ist eine Menge nach unten und oben beschränkt bezeichnet man sie als beschränkt.

2.1.6 Supremum und Infimum

s heißt Infimum (größte untere Schranke) falls gilt:

- \bullet s ist untere Schranke
- Falls \tilde{s} ebenfalls untere Schranke ist gilt $s \geq \tilde{s}$

Analog ist das Supremum definiert: s heißt Supremum (kleinste obere Schranke) falls gilt:

- \bullet s ist obere Schranke
- \bullet Falls \tilde{s} ebenfalls obere Schranke ist gilt $s \leq \tilde{s}$

Schreibweise: $s = \inf(A)$ bzw. $s = \sup(A)$

Bemerkung

Wenn Minimum (bzw. Maximum) existieren sind diese gleich dem Infimum (bzw. Supremum).

2.2 Folgen

Eine Folge a_n ist definiert als eine Funktion:

$$a_n := \varphi : \mathbb{N} \to \mathbb{M} \subset \mathbb{R}$$

oder auch $(a_n)_{n=1}^{\infty}$.

2.2.1 Konvergenz

Eine Folge a_n heißt konvergent wenn gilt:

$$\forall \varepsilon > 0 \ \exists \ n_0(\varepsilon) : |a_n - a| < \varepsilon \ \forall n > n_0(\varepsilon)$$

Bemerkung

Der Grenzwert ist eindeutig, d.h. es existiert nur ein Grenzwert.

Schreibweise

Falls a_n gegen a konvergiert schreibt man:

$$\lim_{n \to \infty} a_n = a$$

2.2.2 Bestimmte Divergenz

Eine Folge a_n heißt bestimmt Divergent wenn gilt

$$\forall x \in \mathbb{R} \ \exists n(x) : \ a_n > x \text{ bzw. } a_n < x$$

Schreibweise:

$$\lim_{n \to \infty} a_n = \infty \text{ bzw. } -\infty$$

2.2.3 Beschränktheit

Eine Folge heißt beschränkt wenn gilt:

$$|a_n| < c \ \forall n$$

Beschränktheit nach oben/unten

Eine Folge heißt nach oben (bzw. unten) beschränkt wenn gilt:

$$a_n < c \ \forall n \in \mathbb{N}$$
 bzw. $a_n > c \ \forall n \in \mathbb{N}$

2.2.4 Zusammenhang Konvergenz — Beschränktheit

Jede konvergente Folge ist beschränkt.

2.2.5 Grenzwertrechenregeln

Seien $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$, $(c_n)_{n=1}^{\infty}$ Folgen in $\mathbb C$ mit:

$$\lim_{n \to \infty} a_n = a \text{ und } \lim_{n \to \infty} b_n = b$$

Dann gilt:

- $\lim_{n\to\infty} |a_n| = |a|$
- $\bullet \lim_{n \to \infty} (a_n + b_n) = a + b$
- $\lim_{n\to\infty} (a_n \cdot b_n) = a \cdot b$
- Falls $b \neq 0$: $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$

2.2.6 Sandwich Theorem u.a.

Seien $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$, $(c_n)_{n=1}^{\infty}$ Folgen in \mathbb{R} mit:

$$\lim_{n \to \infty} a_n = a, \lim_{n \to \infty} b_n = b \text{ und } \gamma \in \mathbb{R}$$

Dann gilt:

- $a_n \le \gamma \ \forall n \in \mathbb{N} \Rightarrow a \le \gamma$
- $a_n \ge \gamma \ \forall n \in \mathbb{N} \Rightarrow a \ge \gamma$
- $a_n \le b_n \ \forall n \in \mathbb{N} \Rightarrow a \le b$
- $a_n \le c_n \le b_n \ \forall n \in \mathbb{N} \land a = b \Rightarrow c = \lim_{n \to \infty} c_n = a = b$

2.2.7 Monotonie

Eine Folge $(a_n)_{n=1}^{\infty}$ in \mathbb{R} heißt:

- Monoton wachsend falls: $a_{n+1} \ge a_n \ \forall n \in \mathbb{N}$ (Schreibweise: $a_n \nearrow$)
- Monoton fallend falls: $a_{n+1} \leq a_n \ \forall n \in \mathbb{N}$ (Schreibweise: $a_n \searrow$)
- Streng monoton wachsend falls: $a_{n+1} > a_n \ \forall n \in \mathbb{N}$ (Schreibweise: $a_n \uparrow$)
- Streng monoton fallend falls: $a_{n+1} < a_n \ \forall n \in \mathbb{N}$ (Schreibweise: $a_n \downarrow$)

2.2.8 Zusammenhang Monotonie und Beschränktheit

Jede Monotone und beschränkte Folge konvergiert.

2.3 Häufungswerte

Häufungswerte sind Grenzwerte einer Teilfolge.

2.3.1 Teilfolgen

Eine Folge $(b_n)_{n=1}^{\infty}$ heißt Teilfolge von $(a_n)_{n=1}^{\infty}$, wenn eine streng monotone Funktion $\varphi: \mathbb{N} \to \mathbb{N}$ exisitiert mit $b_n = a_{\varphi(n)}$.

2.3.2 Teilfolgen einer Konvergenten Folge

Sei $(a_n)_{n=1}^{\infty}$ eine konvergente Folge in \mathbb{C} mit: $\lim_{n\to\infty} a_n = a$ und $(b_n)_{n=1}^{\infty}$ sei eine Teilfolge. Dann gilt $\lim_{n\to\infty} b_n = a$.

2.3.3 Häufungswerte

Sei $(a_n)_{n=1}^{\infty}$ eine Folge in \mathbb{C} . Dann heißt $a \in \mathbb{C}$ ein Häufungswert einer Folge, falls eine Teilfolge gegen a konvergiert.

2.3.4 Limes superior/inferior

Sei $(a_n)_{n=1}^{\infty}$ eine reele Folge, dann heißt:

$$\lim_{n \to \infty} \sup a_n := \overline{\lim}_{n \to \infty} a_n := \sup \{ x \in \mathbb{R}, a_n > x \text{ } \infty\text{-oft} \}$$

der Limes superior von $(a_n)_{n=1}^{\infty}$ und

$$\lim_{n \to \infty} \inf a_n := \underline{\lim}_{n \to \infty} a_n := \inf \{ x \in \mathbb{R}, a_n < x \text{ } \infty\text{-oft} \}$$

der Limes inferior von $(a_n)_{n=1}^{\infty}$.

2.3.5 Charakterisierung limsup/liminf

Sei $(a_n)_{n=1}^{\infty}$ eine reelle Folge und $s \in \mathbb{R}$. Dann gilt:

(a)
$$s = \overline{\lim}_{n \to \infty} a_n \Leftrightarrow \forall \varepsilon > 0 \text{ gilt:}$$

i $a_n < s + \varepsilon$ für fast alle n

ii $a_n > s - \varepsilon$ für ∞ -viele n

(b)
$$s = \varliminf_{n \to \infty} a_n \Leftrightarrow \forall \varepsilon > 0 \text{ gilt:}$$

i $a_n > s - \varepsilon$ für fast alle n

ii $a_n < s + \varepsilon$ für ∞ -viele n

2.3.6 Konvergenz und limsup/liminf

Eine beschränkte Folge $(a_n)_{n=1}^{\infty}$ in \mathbb{R} konvergiert \Leftrightarrow

$$\overline{\lim}_{n \to \infty} a_n = \underline{\lim}_{n \to \infty} a_n$$

2.3.7 Satz von Bolzano-Weierstraß

Jede beschränkte Folge in $\mathbb C$ besitzt eine konvergente Teilfolge.

2.3.8 Cauchy-Kriterium

Sei $(a_n)_{n=1}^{\infty}$ eine Folge in \mathbb{C} , dann gilt

$$(a_n)_{n=1}^{\infty}$$
 konv. $\Leftrightarrow \forall \varepsilon > 0 \ \exists n_0(\varepsilon) : |a_n - a_m| < \varepsilon \ \forall n, m > n_0(\varepsilon)$

Bemerkung

Im Gegensatz zur Definition der Folgenkonvergenz muss der Grenzwert nicht bekannt sein.

2.4 Unendliche Reihen

2.4.1 Definition

Sei $(a_n)_{n=1}^{\infty}$ eine Folge in \mathbb{C} , dan heißt die durch

$$s_n = \sum_{k=1}^n a_k$$

definiert Folge $(s_n)_{n=1}^\infty$ eine Folge von Partialsummen der unendlichen Reihe:

$$\sum_{k=1}^{\infty} a_k$$

Falls die Folge $(s_n)_{n=1}^{\infty}$ konvergiert setzten wir:

$$\lim_{n \to \infty} s_n =: \sum_{k=1}^{\infty} a_k$$

2.4.2 Cauchy-Kriterium für unendliche Reihen

Sei $\sum_{k=1}^{\infty} a_k$ eine
 ∞-Reihe, dann gilt:

$$\sum_{k=1}^{\infty} a_k \text{ konv.} \Leftrightarrow \forall \varepsilon > 0 \ \exists n_0(\varepsilon) : \left| \sum_{k=m}^n a_k \right| < \varepsilon \ \forall n, m > n_0(\varepsilon)$$

und:

$$\sum_{k=1}^{\infty} a_k \text{ konv.} \Rightarrow \lim_{n \to \infty} a_n = 0$$

2.4.3 Grenzwertrechenregeln für unendliche Reihen

Seien

$$\sum_{k=1}^{\infty} a_k \text{ und } \sum_{k=1}^{\infty} b_k \text{ gegeben und } \alpha, \beta \in \mathbb{C}$$

dann gilt:

(a)

$$\sum_{n=1}^{\infty} a_k \text{ und } \sum_{n=1}^{\infty} b_k \text{ konv.:}$$

$$\Rightarrow \sum_{k=1}^{\infty} (\alpha a_k + \beta b_k) \text{ konv.}$$

$$\text{und: } \sum_{k=1}^{\infty} (\alpha a_k + \beta b_k) = \alpha \sum_{n=1}^{\infty} a_k + \beta \sum_{n=1}^{\infty} b_k$$

(b)
$$\sum_{k=1}^{\infty} a_k \text{ konv.} \Leftrightarrow \sum_{k=1}^{\infty} \operatorname{Re}(a_k) \text{ und } \sum_{k=1}^{\infty} \operatorname{Im}(a_k) \text{ konv.}$$

(c)
$$\sum_{k=1}^\infty a_k \text{ konv.} \Leftrightarrow \text{ die Restreihe } R_n := \sum_{k=n}^\infty a_k \text{ konv. gegen } 0 \Rightarrow \lim_{n\to\infty} R_n = 0$$

2.4.4 Positive Folgen

Es sei $(a_n)_{n=1}^{\infty}$ eine Folge mit $(a_n)_{n=1}^{\infty} \in [0, \infty)$ dann gilt:

$$\sum_{k=1}^{\infty} a_k$$
konv. \Leftrightarrow Folge der Partialsummen $\sum_{k=1}^n a_k$ ist beschr.

2.4.5 Leibniz-Kriterium

Sei $(a_n)_{n=1}^{\infty}$ eine monoton fallende, reele Folge. Dann gilt falls $\lim_{n\to\infty} a_n = 0$ ist, konv. die sogennante alternierende Reihe

$$\sum_{k=1}^{\infty} \left(-1\right)^k a_k$$

2.4.6 Absolute Konvergenz

Eine Reihe $\sum_{k=1}^{\infty} a_k$ heißt absolut konvergent, wenn

$$\sum_{k=1}^{\infty} |a_k|$$

konvergiert.

Bemerkung

Jede absolut konvergente Reihe ist auch konvergent.

2.4.7 Majorantenkriterium

Seien $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ mit $b_k \ge 0$ gegeben. Wenn $\sum_{k=1}^{\infty} b_k$ konv. und ein c > 0 ex. mit

$$|a_k| \le c \cdot |b_k|$$

für fast alle k
, dann konv. $\sum_{k=1}^{\infty}a_k$ absolut.

2.4.8 Minorantenkriterium

Falls ein c>0 ex. mit $a_k\geq c\cdot b_k>0$ für fast alle k, dann:

$$\sum_{k=1}^{\infty} b_k \text{ div. } \Rightarrow \sum_{k=1}^{\infty} a_k \text{ div.}$$

2.4.9 Wurzel- und Quotientenkriterium

Sei $\sum_{k=1}^{\infty} a_k$ gegeben. Dann gilt:

(a) Wenn

$$\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} < 1$$

gilt, dann konv. $\sum_{k=1}^{\infty}a_k$ absolut.

Wenn

$$\overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|} > 1$$

gilt, dann div. $\sum_{k=1}^{\infty} a_k$.

(b) Wenn $a_n \neq 0 \ \forall n \text{ und}$

$$\overline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$$

gilt, dann konv. $\sum_{k=1}^{\infty} a_k$ absolut.

Wenn $a_n \neq 0 \ \forall n \ \text{und}$

$$\overline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$$

gilt, dann divergiert. $\sum_{k=1}^{\infty} a_k$.

Bemerkung

Wenn das Wurzelkriterium keine Aussage macht, kann das Quotientenkriterium trotzdem eine Aussage machen.

2.4.10 Umordnung einer Reihe

Eine Reihe $\sum_{k=1}^{\infty} b_k$ heißt Umordnung der Reihe $\sum_{k=1}^{\infty} a_k$, wenn eine bij. Abb $\varphi: \mathbb{N} \to \mathbb{N}$ ex. mit $b_k = a_{\varphi(k)}$.

Bemerkung

Die Reihe konvergiert nur gegen den selben Wert, wenn $\sum_{k=1}^\infty a_k$ absolut konvergent ist.

2.4.11 Cauchy-Produkt

Die Reihen $\sum_{k=1}^\infty b_k$ und $\sum_{k=1}^\infty a_k$ seien absolut konv.. Dann gilt:

$$\left(\sum_{k=0}^{\infty} a_k\right) \cdot \left(\sum_{k=0}^{\infty} b_k\right) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} a_j \cdot b_{k-j}\right) = \sum_{k=0}^{\infty} c_k$$

und $\sum_{k=0}^{\infty} c_k$ konv. ebenfalls absolut.

2.4.12 Cauchy-Verdichtungssatz

$$\sum_{n=1}^{\infty} a_n \text{ konv. } \Leftrightarrow \sum_{k=1}^{\infty} 2^k a_{2^k} \text{ konv.}$$

2.5 Potenzreihen

2.5.1 Definition

Sei $(a_n)_{n=1}^{\infty}$ eine Folge in $\mathbb C$ und $z_0 \in \mathbb C$. Dann heißt

$$\sum_{k=0}^{\infty} a_k \cdot (z - z_0)^k$$

eine Potenzreihe mit Entwicklungspunkt z_0 und Koeffizienten a_n .

Bemerkung

Viele wichtige Funktionen können als Potenzreihen dargestellt werden.

2.5.2 Hadamard (Konvergenzradius mit Wurzelkriterium)

Sei $\sum_{k=0}^{\infty} a_k (z-z_o)^k$ eine PR. Definiere

$$R := \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|a_n|}}}$$

Dabei sei $R := \infty$, falls $\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 0$ und R = 0 falls $\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = \infty$. Dann konv. die PR absolut, falls $|z - z_0| < R$ und divergiert falls $|z - z_0| > R$.

Bemerkung I

Für $|z - z_0| = R$ wird keine Aussage gemacht.

Bemerkung II

R heißt der Konvergenzradius der Potenzreihe.

2.5.3 Konvergenzradius mit Quotientenkriterium

Sei $\sum_{k=0}^{\infty}a_k(z-z_0)^k$ eine PR. Der Potenzradius kann ebenfalls berechnet werden durch:

$$R = \overline{\lim}_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

2.5.4 Hinweis

Es gilt:

$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$

2.5.5 Integration und Differentiation von Potenzreihen

Sei $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ mit Konvergenzradius R. Dann besitzen auch die Potenzreihen

$$\sum_{k=0}^{\infty} k \, a_k (z - z_0)^{k-1} \text{ und } \sum_{k=0}^{\infty} \frac{a_k}{k+1} (z - z_0)^{k+1}$$

den Konvergenzradius R.

2.5.6 Cauchy-Produkt für Potenzreihen

Seien $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ und $\sum_{k=0}^{\infty} b_k (z-z_0)^k$ Potenzreihen, die den Konvergenzradius R_1 bzw. R_2 besitzen. Dann besitzt

$$\sum_{k=0}^{\infty} c_k (z - z_0)^k \text{ mit } c_k = \sum_{l=0}^{k} a_l \cdot b_{k-l}$$

den Konvergenzradius $R = \min\{R_1, R_2\}.$

2.5.7 Wichtige Potenzreihen

(a) Die Expontentialfunktion ist definiert durch:

$$\exp: \mathbb{C} \to \mathbb{C} \quad z \mapsto \exp(z) := \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

(b) Die Trigonometrischen Funktionen sind definiert durch:

$$\sin: \mathbb{C} \to \mathbb{C} \quad z \mapsto \sin(z) \quad := \quad \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{2k+1}$$

$$\cos: \mathbb{C} \to \mathbb{C} \quad z \mapsto \cos(z) \quad := \quad \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{2k}$$

$$\cos: \mathbb{C} \to \mathbb{C} \quad z \mapsto \cos(z) \quad := \quad \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k}$$

(c) Tangens und Cotangens sind dann definiert als:

$$\tan: \{z \in \mathbb{C}: \cos(z) \neq 0\} \to \mathbb{C} \quad z \mapsto \tan(z) := \frac{\sin(z)}{\cos(z)}$$
$$\cot: \{z \in \mathbb{C}: \sin(z) \neq 0\} \to \mathbb{C} \quad z \mapsto \cot(z) := \frac{\cos(z)}{\sin(z)}$$

2.5.8 Alternative Definition der Exponentialfunktion

$$\forall z \in \mathbb{C} \text{ gilt } \lim_{n \to \infty} \left(1 + \frac{z}{n}\right)^n = \exp(z)$$

2.6 Funktionsgrenzwerte

2.6.1 Bemerkung

In diesem Intervall bezeichnet I stets ein offenes Intervall und \overline{I} dessen sog. Abschluss z.B.:

- (a) I = (a, b) und $\overline{I} = [a, b]$
- (b) $I = (-\infty, b)$ und $\overline{I} = (-\infty, b]$
- (c) $I = (a, \infty)$ und $\overline{I} = [a, \infty)$
- (d) $I = (\infty, \infty)$ und $\overline{I} = (\infty, \infty)$

2.6.2 Epsilon-Umgebung

Für $x_0 \in \mathbb{R}$ und $\varepsilon > 0$ heißt

$$U_e(x_0) := \{x \in \mathbb{R} : |x - x_0| < \varepsilon\} = (x_0 - \varepsilon, x_0 + \varepsilon)$$

die ε -Umgebung von x_0 . Und

$$\dot{U}_e(x_0) := U_e(x_0) \setminus \{0\} = (x_0 - \varepsilon, x_0) \cup (x_0, x_0 + \varepsilon)$$

die punktierte ε -Umgebung von x_0 .

2.6.3 Funktionsgrenzwerte (über Delta-Epsilon-Kriterium)

Sei $f: I \to \mathbb{R}$ und $x_0 \in I$

(a) fkonv. gegen ein $a\in\mathbb{R}$ für $x\to x_0$ (kurz: $\lim_{x\to x_0}f(x)=a)$ wenn gilt

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : \ \left| f(x) - a \right| < \varepsilon \ \forall x \ \mathrm{mit} \ \left| x - x_0 \right| < \delta(\varepsilon) \ \mathrm{und} \ x \neq x_0$$

Schreibweise:

$$\lim_{x \to x_0} f(x) = a \text{ oder } f(x) = a \text{ für } x \to x_0$$

(b) Sei $x_o \in I$, dann konv. f einseitig von links gegen $a \in \mathbb{R}$ wenn gilt:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : |f(x) - a| < \varepsilon \ \forall x \in (x_0 - \delta\varepsilon, x_0)$$

Schreibweise:

$$\lim_{x \to x_0^-} f(x) = a$$

(c) Sei $x_o \in I$, dann konv. f einseitig von rechts gegen $a \in \mathbb{R}$ wenn gilt:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : |f(x) - a| < \varepsilon \ \forall x \in (x_0, x_0 + \delta \varepsilon)$$

Schreibweise:

$$\lim_{x \to x_{0^+}} f(x) = a$$

(d) Sei $I=(\alpha,\infty)$ (bzw. $I=(-\infty,\beta)$) dann konv. f gegen a für $x\to\infty$ (bzw. $x\to-\infty$) wenn gilt:

$$\forall \varepsilon > 0 \ \exists x_1(\varepsilon) : \ |f(x) - a| < \varepsilon \ \forall x \in I : \ x > x_1(\varepsilon) \ (\text{bzw. } x < x_1(\varepsilon))$$

2.6.4 Folgenkriterium

Sei $f: I \to \mathbb{R}$ und $x_0 \in \overline{I}, u \in \mathbb{R}$ dann gilt $\lim_{x \to \infty} f(x) = a \Leftrightarrow$

Für eine beliebe Folge
$$(x_n)_{n=1}^{\infty}$$
 mit $(i)x_n \neq x_0 \forall n$ $(ii) \lim_{n \to \infty} x_n = x_0$ gilt stets: $\lim_{n \to \infty} f(x_n) = a$

2.6.5 Rechenregeln für Funktionsgrenzwerte

Seien $f, g: I \to \mathbb{R}$ und $x_0 \in I$ und gelte

$$\lim_{x \to x_0} f(x) = a, \ \lim_{x \to x_0} g(x) = b$$

Dann gilt:

$$\lim_{x \to x_0} (\alpha \cdot f(x)) = \alpha \cdot a$$

$$\lim_{x \to x_0} (g(x) + f(x)) = a + b$$

(c)
$$\lim_{x \to x_0} (g(x) \cdot f(x)) = a \cdot b$$

(d)
$$\lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) = \frac{a}{b} \quad \text{falls } b \neq 0$$

2.6.6 Cauchy-Kriterium für Funktionsgrenzwerte

Sei $f: I \to \mathbb{R}$ und $x_0 \in I$ dann ex. $\lim_{x \to x_0} f(x) \Leftrightarrow$

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : \left| f(x) - f(y) \right| < \varepsilon \ \forall x, y \in I \ \text{mit} \ 0 < |x - x_o| < \delta(\varepsilon) \ \text{und} \ 0 < |y - x_0| < \delta(\varepsilon)$$

2.6.7 Bestimmte Divergenz

Sei $f: I \to \mathbb{R}, x_0 \in I$ dann definieren wir die bestimmte Divergenz (uneigentliche Konvergenz) von $(f \to \infty)$ durch

$$\lim_{x \to x_0} f(x) = \infty \Leftrightarrow \forall c > 0 \ \exists \delta(c) : f(x) > c \ \forall x \ \text{mit} \ 0 < |x - x_0| < \delta(c)$$

Analog definieren man links- und rechtsseitig Divergenz gegen ∞ bzw. $-\infty$.

2.6.8 Monotone Funktionen

Sei $f: I \to \mathbb{R}$ dann heißt (auf I)

(a) monoton wachsend $(f \nearrow)$, falls gilt

$$x < y \Rightarrow f(x) \le f(y)$$

(b) streng monoton wachsend $(f \uparrow)$, falls gilt

$$x < y \Rightarrow f(x) < f(y)$$

(c) monoton fallend $(f \searrow)$, falls gilt

$$x < y \Rightarrow f(x) \ge f(y)$$

(d) streng monoton fallend $(f \downarrow)$

$$x < y \Rightarrow f(x) > f(y)$$

- (e) monoton falls f monoton fallend oder monoton steigend ist
- (f) streng monoton falls f streng monoton fallend oder streng monoton steigend ist
- (g) Beschränkt falls gilt:

$$\exists c : |f(x)| < c \ \forall x \in I$$

2.6.9 Grenzwerte an Intervallgrenzen

Sei $a \leq b$ und $f:(a,b) \to \mathbb{R}$ monoton und beschränkt, dann ex.

$$\lim_{x \to b^-} f(x) \text{ und } \lim_{x \to a^+} f(x)$$

2.7 Stetigkeit

2.7.1 Anschaulich

Graph einer Funktion kann ohne Absetzen gezeichnet werden \Leftrightarrow Es gibt keine Sprünge \Leftrightarrow $f:I\to\mathbb{R}$ an keiner Stelle $x_0\in I$ ist ein Sprung \Leftrightarrow $\forall x_0\in I: \lim_{x\to x_0}f(x)=f(x_0)$

2.7.2 Stetigkeit: Delta-Epsilon-Kriterium

Sei $f: I \to \mathbb{R}$ und $x_0 \in I$, dann ist f in x_0 stetig falls gilt:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : |f(x) - f(x_0)| < \varepsilon \ \forall x \in I \ \text{mit} \ |x - x_0| < \delta(\varepsilon)$$

Und f ist stetig (auf I), wenn f in jedem $x_0 \in I$ stetig ist.

2.7.3 Bemerkungen

(a) f ist stetig in $x_0 \Leftrightarrow$

$$\lim_{x \to x_0} f(x) = f(x_0)$$

gilt.

(b) f ist stetig in x_0 dann gilt:

$$\lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = f(x_0)$$

2.7.4 Rechenregeln für Stetigkeit

Sind $f, g: I \to \mathbb{R}$ stetig, dann sind auch die Funktionen

- (a) $c \cdot f$ (für $c \in \mathbb{R}$)
- (b) f + q
- (c) $f \cdot g$
- (d) und falls $g(x) \neq 0 \forall x \in I_{\frac{f}{g}}$

stetig

Ist $f: I \to J, g: I \to \mathbb{R}$ und beide stetig dann ist auch $g \circ f$ stetig.

2.7.5 Stetigkeit von Potenzreihen

Sei $f(x) = \sum_{k=0}^{\infty} a_k (x-x_0)^k$ eine Potenzereihe mit Konvergenzradius R>0, dann gilt für $x_1\in U_R(x_0)$, dass $\lim_{x\to x_1} f(x)=f(x_1)$ (d.h. Potenzreihen sind innerhalb des Konvergenzradius stetig).

2.7.6 Umgebung positiver Funktionswerte

Sei $f: I \to \mathbb{R}$ stetig in x_0 , dann gilt:

$$f(x_0) > 0 \Rightarrow \exists \delta > 0: \ f(x) > 0 \ \forall x \in I \ \text{mit} \ |x - x_0| < \delta$$

2.7.7 Zwischenwertsatz

Sei D=[a,b] (also abgeschlossen) und $f:D\to\mathbb{R}$ stetig dann ex. zu jedem y zwischen f(a) und f(b) ein $x\in[a,b]$ mit f(x)=y.

Genauer:

$$\forall y \in [m, M] \ \exists x \in [a, b] \ \text{mit} \ f(x) = y$$

Wobei $m = \min\{f(a), f(b)\}\$ und $M = \max\{f(a), f(b)\}.$

Bemerkung

Bei einer Funktion ist das Bild eines Intervals wieder ein Interval. D.h.

$$f([a,b]) = [c,d]$$

2.7.8 Existenz des Logarithmus

Die Exponentialfunktion exp : $\mathbb{R} \to (0, \infty)$ ist bijektiv. Das heißt es existiert eine Umkehrfunktion, diese wird log : $(0, \infty) \to \mathbb{R}$ genannt.

2.7.9 Maximum/Minimum/Infimum/Supremum einer Funktion

Sei $f: D \to \mathbb{R}$ mit $D \subseteq \mathbb{R}$, dann heißt im Fall der Existenz:

(a)
$$\max_{x \in D} f(x) \coloneqq \max_{D} f(x) \coloneqq \max\{f(x) \mid x \in D\}$$

das Maximum von f auf D.

(b)
$$\min_{x \in D} f(x) := \min_{D} f(x) := \min\{f(x) \mid x \in D\}$$

das Minimum von f auf D.

(c)
$$\sup_{x \in D} f(x) \coloneqq \sup_{D} f(x) \coloneqq \sup\{f(x) \mid x \in D\}$$

das Supremum von f auf D.

(d)
$$\inf_{x \in D} f(x) := \inf_{D} f(x) := \inf_{D} \{f(x) \mid x \in D\}$$

das Infimum von f auf D.

2.7.10 Beschränktheit einer stetigen Funktion

Seien $a,b \in \mathbb{R}$ mit a < b und eine stetige Funktion $f:[a,b] \to \mathbb{R}$ gegeben, dann ist f beschränkt. (d.h. $\sup_{[a,b]} (f) < \infty$ und $\inf_{[a,b]} (f) > \infty$).

2.7.11 Weierstraß: Existenz von Min und Max

Seien $a, b \in \mathbb{R}$ mit a < b und $f : [a, b] \to \mathbb{R}$ stetig, dann ex.:

$$\min_{[a,b]} f$$
 und $\max_{[a,b]} f$

2.7.12 Zusammenhang Injektivität — Stetigkeit

Sei $f: I \to \mathbb{R}$ stetig auf einem Intervall $I \subseteq \mathbb{R}$. Dann gilt:

f inj. auf $I \Leftrightarrow f$ ist streng monoton

2.7.13 Existenz und Monotonie der Umkehrfunktion

Sei $f:I\to\mathbb{R}$ stetig und streng monoton auf einem Intervall I. Dann ex. auf J:=f(I) die Umkehrfunktion $f^{-1}:J\to I$ und diese ist im gleichen Sinn wie f streng Monoton und stetig.

2.7.14 Gleichmäßige Stetigkeit

Eine Funktion $f: I \to \mathbb{R}$ heißt gleichmäßig stetig auf I, wenn gilt:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) \ |f(x_1) - f(x_2)| < \varepsilon \ \forall x_1, x_2 \in I \ \text{mit} \ |x_1 - x_2| < \delta(\varepsilon)$$

Bemerkung

Im Gegensatz zur normalen Stetigkeit wird bei der gleichmäßigen Stetigkeit eine Funktion $\delta(\varepsilon)$ für die ganze Funktion bestimmt und nicht nur für jeden Punkt einzeln (also $\delta(x_0,\varepsilon)$). Es wird also zwischen Stetigkeit in einem Punkt und Stetigkeit auf einem Intervall unterschieden.

Kapitel 3

Differentialrechnung

3.1 Ableitung

3.1.1 Definition Differenzen-Quotient

Sei $f:D\subseteq\mathbb{R}\to\mathbb{R}$. Dann heißt f in $x_0\in D$ differentierbar, falls

$$f'(x_0) := \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

für alle $x_0 \in D$ existiert.

3.1.2 Rechtsseitige und linksseitige Ableitung

Im Fall der Existenz heißen

$$f'(x_0^+) := \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \text{ bzw.}$$

 $f'(x_0^-) := \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$

die rechts- bzw. linksseitige Ableitung in x_0

Bemerkung

$$f'(x_0)$$
 ex. $\Leftrightarrow f'(x_0^+)$ und $f(x_0^-)$ ex. und $f'(x_0^+) = f'(x_0^-)$

3.1.3 Ableitungsrechenregeln

Seien $f, g: D \to \mathbb{R}$ differentierbar in $x_0 \in D$, dann gilt:

(a)
$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

(b)
$$(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0)$$

(c) Falls
$$g(x_0) \neq 0$$
: $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}$

3.1.4 Alternative Definition der Ableitung

Sei $f:D\subseteq\mathbb{R}\to\mathbb{R}$ und $x_0\in D$. Dann gilt: f differenzierbar in $x_0\Leftrightarrow$

$$\exists A \in \mathbb{R} \text{ und } r: D \to \mathbb{R} \text{ mit } \lim_{x \to x_0} r(x) = 0 \text{ so dass gilt: } f(x) = f(x_0) + A \cdot (x - x_0) + r(x) \cdot (x - x_0)$$

3.1.5 Zusammenhang Differentierbarkeit — Stetigkeit

Ist $f: D \to \mathbb{R}$ differentierbar in $x_0 \in D \Rightarrow f$ stetig in x_0

3.1.6 Differentiation von Potenzreihen

Sei $f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$ eine Potenzreihe mit R > 0, dann ist f für x mit $|x - x_0| < R$ differentierbar, und es gilt:

$$f'(x) = \sum_{k=1}^{\infty} a_k \cdot k \cdot (x - x_0)^{k-1}$$

Bemerkung

Der Konvergenzradius von f'(x) ist ebenfalls R.

3.1.7 Ableitung der Umkehrfunktion

Seien $I, J \subseteq \mathbb{R}$ Intervalle und $f: I \to J$ sei differentiarbar und bijektiv, dann ist auch $f^{-1}: J \to I$ differentierbar und es gilt:

$$(f^{-1})'(y_0) = \frac{d}{dx}f^{-1}(y_0) = \frac{1}{f'(f^{-1}(y_0))} \forall y_0 \in J \text{ für ein } y_0 = f(x_0) \text{ und } f'(y_0) \neq 0$$

3.1.8 Ketternregel

Seien $f:A\to B,\,g:B\to\mathbb{R}$ mit $A,B\subseteq\mathbb{R}$ differentierbar auf A bzw. B, dann ist auch $g\circ f$ auf A differentierbar und es gilt:

$$(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0) \ \forall x_0 \in A$$

3.2 Mittelwertsätze

3.2.1 Satz von Rolle

Sei $f:[a,b] \to \mathbb{R}$ stetig und auf (a,b) differentierbar. Falls f(a)=f(b) gilt, existiert ein $x_0 \in (a,b)$ mit $f'(x_0)=0$

3.2.2 Definition lokaler Extrempunkt

Sei $f:D\to\mathbb{R}$ und $x_0\in D$. Dann besitztf in x_0 ein lokales Maximum (bzw. Minimum): \Leftrightarrow

$$\exists \delta > 0 : f(x) \leq f(x_0) \text{ (bzw. } f(x) \geq f(x_0)) \ \forall x \in D \cap U_{\delta}(x_0)$$

3.2.3 Notwendige Bedingung für lokale Extrema

Sei $f: D \to \mathbb{R}$ differentierbar in $x_0 \in D$ und x_0 sei kein Randpunkt, dann gilt: Liegt bei x_0 ein lokales Maximum/Minimum $\Rightarrow f'(x_0) = 0$.

3.2.4 2. Mittelwertsatz

Seien $f,g:[a,b]\to\mathbb{R}$ stetig und auf (a,b) differentierbar dann existiert ein $x_0\in(a,b)$ mit

$$f'(x_0) \cdot (g(b) - g(a)) = g'(x_0) \cdot (f(b) - f(a))$$

Bzw. falls nicht durch Null geteilt wird:

$$\frac{f'(x_0)}{g'(x_0)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

3.2.5 1. Mittelwertsatz (Folgerung aus 2. Mittelwertsatz)

Sei $f:[a,b]\to\mathbb{R}$ stetig und auf (a,b) differentierbar

$$\Rightarrow \exists x_0 \in (a,b) \text{ mit } f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

3.2.6 L'Hospital

Seien $f,g:[a,b) \to \mathbb{R}(a < b,b \in (\mathbb{R} \cup \infty))$ differentierbar auf (a,b) mit $g'(x) \neq 0 \ \forall x \in (a,b)$. Falls der Grenzwert $\alpha = \lim_{n \to b^-} \frac{f'(x)}{g'(x)}$ ex. und:

(a)
$$\lim_{n \to b^{-}} f(x) = \lim_{n \to b^{-}} g(x) = 0$$
 oder

(b)
$$\lim_{x \to b^-} g(x) = \infty$$

dann gilt:

$$\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = \lim_{x \to b^{-}} \frac{f'(x)}{g'(x)}$$

3.2.7 Satz von Taylor

Sei $f:[a,b]\to\mathbb{R}$ n+1 mal differentierbar auf (a,b) und $x_0\in(a,b)$. Dann gilt für ein $\xi\in(x_0,x)$:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} \cdot (x - x_0)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} \cdot (x - x_0)^{n+1}$$

${\bf Teil~II} \\ {\bf HM~2-Zusammen fassung}$

Kapitel 4

Integration

4.1 Integration

4.1.1 Definition Zerlegung, Zwischenwerte

Eine Teilmenge T von [a, b] mit $a, b \in T$ nennt man eine Unterteilung, Zerlegung oder Partitionierung von [a, b] wenn gilt:

$$T = \{x_0, x_1, \dots, x_n\}$$
 mit $a = x_0 < x_1 < \dots < x_n = b$

Schreibweise für diese Menge T sei:

$$T: a = x_0 < x_1 < \ldots < x_n = b$$

Ist T eine Zerlegung, dann heißt:

- (a) Die Zahl $\mu(T) := \max\{ |x_{k-1} x_k|, k = 0, ..., n \}$ das Feinheitsmaß von T.
- (b) Ein Vektor $\xi=(\xi_1,\ldots,\xi_n)\in\mathbb{R}^n$ heißt ein Zwischenwertvektor zu T, wenn gilt

$$x_{k-1} \le \xi_k \le x_k$$
 für $k = 1, \dots, n$

Dann heißt die Komponente ξ_k ein Zwischenwert von x_{k-1} und x_k .

4.1.2 Definition Riemannsumme

Ist $f:[a,b]\to\mathbb{R}$ eine Funktion, $T:a=x_0<\ldots< x_n=b$ eine Zerlegung von [a,b] und $\xi=(\xi_1,\ldots,\xi_n)$ ein Zwischenwertevektor zu T, dann nennen wir die Summe

$$S(f;T,\xi) = S_f(T,\xi) = \sum_{k=1}^n f(\xi_k)(x_k - x_{k-1})$$

die Riemansumme von f bezüglich T und ξ .

4.1.3 Definition Riemann-Integral

Eine Funktion $f:[a,b]\to\mathbb{R}$ heißt Riemann-Integrierbar unter [a,b] wenn für jede Folge $(T_N)_{N=1}^\infty$ von Zerlegungen von [a,b] mit $\mu(T_N)\to 0$ für $N\to\infty$ und jede Folge $(\xi_N)_{N=1}^\infty$ von Zwischenpunktvektoren der Grenzwert

$$\lim_{N\to\infty} S(f;T_N,\xi_N) \text{ existiert.}$$

Behauptung

Der Grenzwert ist im Fall der Existenz für jede Folge identisch.

Bemerkung

(a) Im Fall der Existenz bezeichnet man den Grenzwert durch:

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \lim_{N \to \infty} S(f; T_N, \xi_N)$$

(b) Zu $(T_N)_{N=1}^{\infty}$, also $T_1, T_2, T_3, ...$:

$$T_1: \quad a = x_0^{(1)} < \dots < x_n^{(1)} = b$$

$$T_2: \quad a = x_0^{(2)} < \dots < x_n^{(2)} = b$$

$$T_3: \quad a = x_0^{(3)} < \dots < x_n^{(3)} = b$$

$$\vdots$$

$$T_l: \quad a = x_0^{(l)} < \dots < x_n^{(l)} = b$$

(c) Zu $(\xi_N)_{N=1}^{\infty}$, also $\xi_1, \xi_2, \xi_3, ...$:

$$\xi_1 = (\xi_1^{(1)}, \dots, \xi_n^{(1)}) \text{ mit } x_{k-1}^{(1)} \le \xi_k^{(2)} \le x_k^{(1)} \text{ mit } 1 \le k \le n_1$$

$$\xi_2 = (\xi_1^{(2)}, \dots, \xi_n^{(2)}) \text{ mit } x_{k-1}^{(2)} \le \xi_k^{(2)} \le x_k^{(2)} \text{ mit } 1 \le k \le n_2$$

$$\xi_3 = (\xi_1^{(3)}, \dots, \xi_n^{(3)}) \text{ mit } x_{k-1}^{(3)} \le \xi_k^{(3)} \le x_k^{(3)} \text{ mit } 1 \le k \le n_3$$

$$\vdots$$

$$\xi_l = (\xi_1^{(l)}, \dots, \xi_n^{(l)}) \text{ mit } x_{k-1}^{(l)} \le \xi_k^{(l)} \le x_k^{(l)} \text{ mit } 1 \le k \le n_l$$

(d) Sei f integrierbar und $(T_N)_{N=1}^{\infty}$ und $(\xi_N)_{N=1}^{\infty}$ sowie $(\tilde{T}_N)_{N=1}^{\infty}$ und $(\tilde{\xi}_N)_{N=1}^{\infty}$ entsprechende Folgen, d.h. $\mu(T_N) \to 0, \mu(\tilde{T}_N) \to 0$ für $N \to \infty$. Dann gilt gilt für $(\hat{T}_N)_{N=1}^{\infty}$ und $(\hat{\xi}_N)_{N=1}^{\infty}$ mit

$$\hat{T}_N := \begin{cases} T_N & \text{ für } N \text{ gerade} \\ \tilde{T}_N & \text{ für } N \text{ ungerade} \end{cases}$$

und

$$\hat{\xi}_N := \begin{cases} \xi_N & \text{für } N \text{ gerade} \\ \tilde{\xi}_N & \text{für } N \text{ ungerade} \end{cases}$$

dass

$$\lim_{N\to\infty} S(f; \hat{T}_N, \hat{S}_N)$$

existiert, da \boldsymbol{f} integrier
bar ist.

Dann stimmt der Grenzwert von $\lim_{N\to\infty} S(f;\tilde{T}_N,\tilde{S}_N)$ und $\lim_{N\to\infty} S(f;T_N,S_N)$ überein.

4.1.4 Menge der Riemann-Integrierbaren Funktionen

Mit R[a,b] oder R([a,b]) bezeichnen wir die Menge von Funktionen $f:[a,b]\to\mathbb{R}$ die auf [a,b] Riemann integrierbar sind.

4.1.5 Kriterien für Riemann-Integrierbarkeit

(a)

$$f \in R[a,b] \Rightarrow f$$
 ist auf $[a,b]$ beschränkt

(b) Ist $f,g\in R[a,b]$ und $c\in\mathbb{R}$ dann sind auch die Funktionen

$$\begin{array}{cccc}
f & + & g \\
f & - & g \\
c & \cdot & f
\end{array}$$

Riemann integrierbar auf [a, b].

(c) Ist $f, g \in R[a, b]$, dann ist auch

$$f \cdot g \in R[a, b]$$

(d) Ist $f, g \in R[a, b]$ und falls $|g(x)| > \delta > 0 \ \forall x \in [a, b]$ dann ist auch

$$\frac{f}{a} \in R[a,b]$$

(e) Für beliebiges $c \in [a, b]$ gilt:

$$f \in R[a, b] \Leftrightarrow f \in R[a, c] \land f \in R[c, b]$$

und weiter gilt:

$$\int_a^b f(x) \ \mathrm{d}x = \int_a^c f(x) \ \mathrm{d}x + \int_c^b f(x) \ \mathrm{d}x$$

(f)

$$f \in R[a, b] \Rightarrow |f| \in R[a, bv]$$

und

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x \right| \le \int_{a}^{b} \left| f(x) \right| \, \mathrm{d}x$$

4.1.6 Änderung von Funktionen

Wenn $f \in R[a,b]$ ist und durch endlich viele Änderungen daraus $g:[a,b] \to \mathbb{R}$ konstruiert werden kann, d.h.

$$g(x) = \begin{cases} f(x) & \text{falls } x \notin \{x_1, \dots, x_n\} \\ y_1 & \text{falls } x = x_1 \\ \vdots & & \end{cases}$$

dann gilt $g \in R[a, b]$ und

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \int_{a}^{b} g(x) \, \mathrm{d}x$$

4.1.7 Zusammenhang Stetigkeit und Integrierbarkeit

Es gilt:

$$f \in C[a,b] \Rightarrow f \in R[a,b]$$

4.1.8 Stückweise Integration

Falls $f:[a,b]\to\mathbb{R}$ stückweise stetig ist, d.h. es existieren endlich viele Intervall-Stücke auf denen f stetig ist, dann ist $f\in R[a,b]$ und es gilt:

$$\int_{a}^{b} f(x) \, dx = \int_{x_0}^{x_1} f(x) \, dx + \int_{x_1}^{x_2} f(x) + \dots + \int_{x_{n-1}}^{x_n} f(x)$$

4.1.9 1. Mittelwertsatz der Integralrechnung

Seien $f, g \in R[a, b]$ und $g \ge 0$ auf [a, b]. Dann gibt es ein $\mu \in \mathbb{R}$ mit $\inf_{[a, b]} f(x) \le \mu \le \sup_{[a, b]} f(x)$ sodass gilt:

$$\int_{a}^{b} f(x)g(x) dx = \mu \int_{a}^{b} g(x) dx$$

Ist f stetig auf [a, b], dann existiert ein $\xi \in [a, b]$ mit

$$\int_a^b f(x)g(x) \, \mathrm{d}x = f(\xi) \int_a^b g(x) \, \mathrm{d}x$$

Bemerkung

Für g(x) = 1 und f stetig lautet die Aussage also:

$$\int_{a}^{b} f(x) \, \mathrm{d}x = f(\xi) \cdot (b - a)$$

4.1.10 Existenz der Stammfunktion

Sei $f \in R[a, b]$, dann ist für jedes $c \in [a, b]$ durch:

$$F(x) := \int_{c}^{x} f(t)dt$$

eine stetige Funktion definiert. Und für jedes $x_0 \in (a, b)$ gilt:

f stetig in $x_0 \Rightarrow F$ ist differentierbar in $x_0 \wedge F'(x_0) = f(x_0)$

4.1.11 Definition Stammfunktion

Gilt $F'(x) = f(x) \ \forall x \in [a, b]$ dann wird F als Stammfunktion von f bezeichnet.

4.1.12 Eindeutigkeit der Stammfunktion

Sind F und G Stammfunktionen von f, dann existiert ein $c \in \mathbb{R}$ mit

$$F(x) = G(x) + c \ \forall x \in [a, b]$$

4.1.13 Hauptsatz der Differential und Integralrechnung

Sei $f:[a,b]\to\mathbb{R}$ gegeben dann gilt:

(a) Ist $f \in R[a, b]$ und F eine Stammfunktion, dann gilt:

$$\int_{a}^{b} f(t)dt = F(b) - F(a) =: [F(x)]_{a}^{b}$$

(b) Ist $f \in C[a, b]$ dann existiert eine Stammfunktion und zwar

$$F(x) := \int_{c}^{x} f(t)dt$$

Bemerkung

Aus dem Hauptsatz folgen Integrationstechniken wie partielles Integrieren oder die Subsitutionsregel.

4.1.14 Zusammenhang Monotonie und Riemann-Integrierbarkeit

Ist $f:[a,b]\to\mathbb{R}$ auf [a,b] monoton, dann ist $f\in R[a,b]$.

4.1.15 Zweiter Mittelwertsatz der Integralrechnung

Ist f monoton auf $[a,b],\ g$ integrierbar auf [a,b], dann exisitiert ein $\xi\in[a,b]$ mit:

$$\int_{a}^{b} f(x)g(x) \, dx = f(a) \int_{a}^{\xi} g(x) \, dx + f(b) \int_{\xi}^{b} g(x) \, dx$$

4.2 Uneigentliche Integrale

4.2.1 Definition uneigentliches Integral

Eine Funktion $f:[a,b)\to\mathbb{R}$ mit $a< b\leq \infty$ heißt über [a,b) uneigentlich Riemann integrierbar, wenn gilt:

- (a) $\forall c \text{ mit } a \leq c < b \text{ ist } f \in R[a, c]$
- (b) Der Grenzwert

$$\alpha = \lim_{c \to b^{-}} \int_{a}^{c} f(x) \, \mathrm{d}x$$

existiert. In dem Fall schreiben wir

$$\alpha = \int_a^b f(x) \, \mathrm{d}x$$

und sagen das uneigentliche Integral

$$\int_a^b f(x) \, \mathrm{d}x$$

konvergiert gegen α oder hat den Wert α .

Andernfalls divergiert das uneigentliche Integral. Analog geht man für Funktionen

- $f:(a,b] \to \mathbb{R} \text{ mit } -\infty \leq a < b \text{ und}$
- $f:(a,b) \to \mathbb{R} \text{ mit } -\infty \le a < b \le \infty$

vor.

4.2.2 Cauchy-Kriterium

Sei $f \in R[a, b] \ \forall c \in (a, b), a < c < \infty$ Dann konv.

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

(a) Im Fall $b < \infty$ genau dann, wenn gilt:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \left| \int_{T_1}^{T_2} f(x) \ dx \right| < \varepsilon \ \forall \ T_1, T_2 \in [b - \delta, b)$$

(b) Im Fall $b = \infty$, wenn gilt:

$$\forall \varepsilon > 0 \ \exists K \ge a : \left| \int_{T_1}^{T_2} f(x) \ dx \right| < \varepsilon \ \forall \ T_1, T_2 \ge K$$

4.2.3 Majorantenkriterium

Seien $f,g \in R[a,c] \ \forall c \in (a,b), a < b \le \infty$ oder $f,g \in R[c,b] \ \forall c \in (a,b) - \infty \le a < b$. Außerdem $|f(x)| \le g(x)$. Und

$$\int_a^b g(x) \, \mathrm{d}x$$

konvergiert, dann konvergiert auch

$$\int_a^b f(x) \, \mathrm{d}x$$

4.2.4 Absolute Konvergenz

Ist $f \in R[T_1, T_2]$ für $a < T_1 \le T_2 < b \le \infty$ so heißt

$$\int_a^b f(x) \, \mathrm{d}x$$

absolut konvergent, wenn

$$\int_{a}^{b} |f(x)| \, \mathrm{d}x$$

konvergent ist.

4.2.5 Minorantenkriterium

$$f(x) \ge g(x) \ge 0 \land \int_a^b g(x) \, dx = \infty \Rightarrow \int_a^\infty f(x) \, dx = \infty$$

4.2.6 Integralkriterium für Reihen

Sei $f:[a,\infty)\to [0,\infty)$ und $f\searrow (a\in\mathbb{Z}).$ Dann gilt:

$$\sum_{n=m}^{\infty} f(n) < \infty \Leftrightarrow \int_{a}^{\infty} f(x) \, dx < \infty$$

Kapitel 5

Gleichmäßige Konvergenz

5.1 Gleichmäßige Konvergenz

5.1.1 Definition Funktionenfolge und Funktionenreihe

Sei M eine Menge und $m \in \mathbb{Z}$. Ist jedem $n \in \{m, m+1, \ldots\}$ eine Funktion $f_n : M \to \mathbb{R}$ zugeordnet, so nennt man:

- (a) Die Folge $(f_n)_{n=m}^{\infty}$ eine Funktionenfolge auf M
- (b) Die Reihe $\sum_{n=m}^{\infty} f_n(x)$ eine Funktionenreihe auf M

konvergiert $(f_n)_{n\geq m}$ (bzw. $\sum_{n=m}^{\infty} f_n(x)$) für alle $x\in \tilde{M}\subseteq M$ so heißt die durch $f(x)=\lim_{n\to\infty} f_n(x)$ (bzw. $f(x)=\sum_{n=m}^{\infty} f_n(x)$) definierte Funktion $f:\tilde{M}\to\mathbb{R}$ die Grenzfunktion von $(f_n)_{n=m}^{\infty}$ (bzw. $\sum_{n=m}^{\infty} f_n$).

5.1.2 Gleichmäßige Konvergenz

Sei Meine Menge und sei $f:M\to\mathbb{R}$ eine Funktion.

(a) Eine Funktionenfolge $(f_n)_{n=1}^{\infty}$ heißt auf M gleichmäßig konvergent gegen f wenn gilt:

$$\forall \varepsilon > 0 \ \exists \ n_0(\varepsilon) : |f_n(x) - f(x)| < \varepsilon \ \forall x \in M \ \text{und} \ n \geq n_0(\varepsilon)$$

(b) Eine Funktionenfolge $\sum_{n=m}^{\infty} f_n$ konvergiert gleichmäßig auf M wenn gilt:

$$\forall \varepsilon > 0 \ \exists \ n_0(\varepsilon) : \left| \sum_{k=m}^n f_k(x) - f(x) \right| < \varepsilon \ \forall x \in M \ \text{und} \ n \ge n_0(\varepsilon)$$

Bemerkung

Offensichtlich gilt:

Gleichmäßig konvergent ⇒ Punktweise Konvergent

5.1.3 Stetigkeit der Grenzfunktion

Sei $(f_n)_{n=1}^{\infty}$ (bzw. $\sum_{n=1}^{\infty} f_n(x)$) gleichmäßig konvergent gegen f auf einem Intervall I und alle f_n stetig auf I. Dann ist auch die Grenzfunktion f stetig.

5.1.4 Integration der Grenzfunktion

Sei $(f_n)_{n=1}^{\infty}$ eine Folge von integrierbaren Funktionen auf [a,b]

(a) Falls $(f_n)_{n=1}^{\infty}$ gleichmäßig gegn f konvergiert, dann ist auch f auf [a,b] integrierbar und es gilt:

$$\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b \lim_{n \to \infty} f_n(x) \, dx$$

(b) Analog für Funktionenreihen

5.1.5 Cauchy Kriterium für gleichmäßige Konvergenz

(a) Eine Funktionenfolge $(f_n)_{n=1}^{\infty}$ konvergiert genau dann gleichmäßig auf einer Menge M (\subseteq Definitionsbereich), wenn gilt:

$$\forall \varepsilon > 0 \ \exists n(\varepsilon) : |f_n(x) - f_m(x)| < \varepsilon \ \forall n \ge n(\varepsilon) \forall x \in M$$

(b) Analog für Funktionenreihen

5.1.6 Differentiation der Grenzfunktion

Sei $(f_n)_{n=1}^{\infty}$ eine auf dem Intervall I differentierbare Folge von Funktionen.

(a) Konvergiert die Folge $(f'_n)_{n=1}^{\infty}$ gleichmäßig auf I und konvergiert für ein beliebiges, festes $x_0 \in I$ die reele Folge $(f_n(x_0))_{n=1}^{\infty}$ dann ist auch die Grenzfunktion f von $(f_n)_{n=1}^{\infty}$ differentierbar und es gilt:

$$\lim_{n \to \infty} \frac{\mathrm{d}}{\mathrm{d}x} f_n(x) = \frac{\mathrm{d}}{\mathrm{d}x} \lim_{n \to \infty} f_n(x)$$

(b) Analog für Funktionenreihen

Bemerkung

Außerdem gilt dass $(f_n)_{n=1}^{\infty}$ (bzw. $\sum_{n=1}^{\infty} f_n$) auf jedem beschränkten Teilintervall von I gleichmäßig konvergiert.

5.1.7 Majorantenkriterium auf Potenzreihen anwenden

Für eine reele Potenzreihe $f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$ mit Konvergenzradius R > 0 gilt:

- (a) f ist stetig auf $(x_0 R, x_0 + R) =: I$
- (b) f ist differentierbar auf I und

$$f'(x) = \sum_{k=0}^{\infty} a_k \cdot k \cdot (x - x_0)^{k-1}$$

(c) f ist integrierbar auf I und hat die Stammfunktion

$$F(x) = \sum_{k=0}^{\infty} \frac{a_k}{k+1} (x - x_0)^{k+1}$$

Bemerkung

Wurde alles schon in HM1 gezeigt aber mühsam.

5.1.8 Majorantenkriterium für Funktionenreihen

Falls $|f_n(x)| \le a_n$ und $\sum_{n=1}^{\infty} f_n(x)$ konvergiert $\Rightarrow \sum_{n=1}^{\infty} f_n(x)$ ist gleichmäßig konvergent.

Kapitel 6

Differentialrechung mit mehreren Variablen

6.1 Der n-dimensionale Euklidische Raum

6.1.1 Definitionen

Sind $n, m \in \mathbb{N}$, so gelten folgende Bezeichungen:

$$\mathbb{R}^{n} := \left\{ \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} \text{ für } x_{1}, \dots, x_{n} \in \mathbb{R}^{n} \right\}$$

$$\mathbb{R}^{m \times n} := \left\{ \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \text{ für } a_{ij} \in \mathbb{R}, 1 \leq i \leq m, 1 \leq j \leq n \right\}$$

$$\langle x, y \rangle := x \cdot y := x^{T} y := \sum_{k=1}^{n} x_{k} y_{k} \text{ (Skalarprodukt)}$$

$$\|x\| := \|x\|_{2} := |x| := \sqrt{\sum_{k=1}^{n} x_{k}^{2}} \text{ euklidische Norm des } \mathbb{R}^{n}/\text{Betrag in } \mathbb{R}^{n}$$

6.1.2 Folgerungen

1.
$$\|x\|_{\infty} = \max_{k=1...n} |x_k| \le \|x\|_2 \le \sqrt{n} \max_{k=1...n} |x_k| \ \forall x \in \mathbb{R}^n$$
 2.
$$\|x\|_1 = \sum_{k=1}^n |x_k|$$

und

$$||x||_2 \le ||x||_1$$

3. $\|x\|_1, \|x\|_2, \|x\|_{\infty}$ sind drei mögliche Festlegungen für Vektornormen. Allgemein hat eine Norm $\|\cdot\|_2$ $(\|\cdot\|_2: \mathbb{R}^2 \to \mathbb{R})$ folgende Eigenschaften:

$$||x|| \ge 0 \qquad \forall x \in \mathbb{R}^n \land ||x|| = 0 \Leftrightarrow x = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \vec{0}$$
$$||\alpha \cdot x|| = |\alpha| \cdot ||x|| \qquad \forall \alpha \in \mathbb{R} \land \forall x \in \mathbb{R}^n$$
$$||x + y|| \le ||x|| + ||y|| \qquad \forall x, y \in \mathbb{R}^n$$

- 4. Der Einheitskreis ist bezüglich verschiedener Normen nicht immer ein Kreis
- 5. p-Norm:

$$||x||_p = \sqrt[p]{\sum_{k=1}^n |x_k|^p}$$

6. $x \cdot y$ im \mathbb{R}^2 hat die anschauliche Bedeutung

$$< x, y > = x \cdot y = ||x||_2 \cdot ||y||_2 \cdot \cos(\alpha)$$

Daraus folgt die Cauchy-Schwarzsche-Ungleichung (CSU)

$$< x, y > \le ||x||_2 \cdot ||y||_2$$

6.1.3 Konventionen

- (a) In \mathbb{R}^n sei stets $A^c := \mathbb{R}^n \backslash A$ für eine Menge $A \subseteq \mathbb{R}^n$
- (b) Mit $\|\cdot\|$ bezeichnen wir die euklidische Norm $\|\cdot\|_2$. Außer es wird explizit gesagt, dass $\|\cdot\|$ eine allgemeine Norm ist (z.B. "Sei $\|\cdot\|$ eine Norm auf \mathbb{R}^n)

6.1.4 Definition Epsilon-Umgebung

Sei $a \in \mathbb{R}^n, \varepsilon > 0$ dann heißt

$$U_\varepsilon(a) \ := \ \{x \in \mathbb{R}^n | \ \|x-a\| < \varepsilon \} \ \mathrm{die} \ \varepsilon\text{-Umgebung von} \ a$$

$$\dot{U}_{\varepsilon}(a) := U_{\varepsilon}(a) \setminus \{a\} \ (= \{x \in \mathbb{R}^n | 0 < \|x - a\| < \varepsilon\})$$
 die punktierte ε -Umgebung von a

6.1.5 Definition Topologische Begriffe

Sei $A \subseteq \mathbb{R}^n$. Ein Punkt $a \in \mathbb{R}^n$ heißt:

(a) Innerer Punkt von A, falls ein $\varepsilon > 0$ existiert, sodass $U_{\varepsilon}(a) \subseteq A$ Kurz:

$$a$$
innerer Punkt von $A:\Leftrightarrow \exists \varepsilon>0: U_\varepsilon(a)\subseteq A$

Die Menge $\overset{\circ}{A}$ ist die Menge aller innerer Punkte von A

$$\overset{\circ}{A}:=\{a\in\mathbb{R}^n|\exists\varepsilon>0\text{ mit }U_\varepsilon(a)\subseteq A\}$$

(b) Berührungspunkt von A, wenn jede ε -Umgebung von a mindestens einen Punkt aus A enthält. Kurz:

$$a \in \mathbb{R}^n$$
 ist Berührpunkt von $A :\Leftrightarrow \forall \varepsilon > 0 : U_{\varepsilon}(a) \cap A \neq \emptyset$

Die Menge aller Berührpunkte von

$$\bar{A} := \{ x \in \mathbb{R}^n | \forall \varepsilon > 0 \text{ ist } U_{\varepsilon}(a) \cap A \neq \emptyset \}$$

heißt der Abschluss oder abgeschlossene Hülle von A.

(c) Häufungspunkt von A, wenn jede punktierte ε -Umgebung von a ein Element von A enthält. Kurz:

$$a \in \mathbb{R}^n$$
 ist Häufungspunkt : $\Leftrightarrow \forall \ \varepsilon > 0 : \dot{U}_{\varepsilon}(a) \cap A \neq \emptyset$

(d) Randpunkt von A, wenn jede ε -Umgebung Elemente aus A und A^c enthält. Kurz:

$$a \in \mathbb{R}^n$$
 ist Randpunkt von $A : \Leftrightarrow \forall \varepsilon > 0 \ (U_{\varepsilon}(a)\hat{A} \neq \emptyset) \land (U_{\varepsilon}(a)\hat{A}^c \neq \emptyset)$

Die Menge

$$\partial A := \{ a \in \mathbb{R}^n | a \text{ ist Randpunkt von } A \}$$

heißt der Rand von A.

Bemerkung

Man kann zeigen:

$$\bar{A} = A \cup \partial A = \mathring{A} \cup \partial A$$

6.1.6 Definition offene und abgeschlossene Menge

Eine Menge $A \subseteq \mathbb{R}^n$ heißt:

- (a) offen, wenn $A = \overset{\circ}{A}$ gilt (also A besteht nur aus innerern Punkten)
- (b) abgeschlossen, wenn $\partial A \subseteq A$ (Rand gehört zu A)

6.2 Folgen

6.2.1 Definition

Eine Folge

$$a_k = \begin{pmatrix} a_1^{(k)} \\ \vdots \\ a_n^{(k)} \end{pmatrix}$$

in \mathbb{R}^n heißt:

(a) Konvegent gegen einen Grenzwert a, wenn gilt:

$$\forall \varepsilon > 0 \ \exists n(\varepsilon) : ||a_k - a|| < \varepsilon \ \forall k \ge n(\varepsilon)$$

Schreibweise:

$$\lim_{k \to \infty} a_k = a \text{ oder } a_k \to a \ (k \to \infty)$$

(b) Beschränkt, wenn gilt:

$$\exists c > 0: \|a_k\| < c \ \forall k \in \mathbb{N}$$

Bemerkung

- (a) Die Norm $\|\cdot\|$ sei hier die euklidische Norm $\|\cdot\|_2$. Wir werden aber sehen: Jede Norm auf \mathbb{R}^n wäre ok.
- (b)

 $a_k \to a \ (k \to \infty) \Rightarrow \text{ Jede Komponente von } a_k \text{ konvergiert gegen entsprechende Komponente von } a$

(c) Cauchy-Kriterium:

$$(a_k)_{k=1}^{\infty}$$
 konv. $\Leftrightarrow \forall \varepsilon > 0 \ \exists n(\varepsilon) : ||a_k - a_l|| < \varepsilon \forall k, l \ge n(\varepsilon)$

6.2.2 Bolzano-Weierstraß

Jede beschränkte Folge im \mathbb{R}^n hat eine konvergente Teilfolge.

6.2.3 Grenzwertrechenregeln

Die Grenzwertrechenregeln übertragen sich auch auf Folgen im \mathbb{R}^n .

6.2.4 Weitere Bemerkungen

Sei $A \subseteq \mathbb{R}^n$ und $a \in \mathbb{R}^n$, dann gilt:

(a) $a \in \bar{A} \Leftrightarrow \exists (a_k)_{k=1}^{\infty} \text{ mit } a_k \in A \ \forall k \text{ mit } \lim_{k \to \infty} a_k = a$

(b) a ist ein Häufungspunkt von A

$$\exists (a_k)_{k=1}^{\infty} \text{ mit } a_k \in A \setminus \{a\} \text{ mit } \lim_{k \to \infty} a_k = a$$

- (c) A ist abgeschlossen \Leftrightarrow für jede konvergente Folge $(a_k)_{k=1}^{\infty}$ mit $a_k \in A \ \forall k$ gilt $\lim_{k \to \infty} a_k \in A$.
- (d) A ist kompakt \Leftrightarrow Jede Folge in A besitzt einen Häufungspunt in A.

6.3 Funktionsgrenzwerte und Stetigkeit

6.3.1 Definition Funktion

Eine Funktione $f:A\subseteq\mathbb{R}^n\to\mathbb{R}^m$ nennt man eine Funktion in n Veränderlichen (oder Vektorfeld). Im Fall m=1 nennt man f eine reele Funktion (oder Skalarfeld).

Schreibweise

$$f(x_1, x_2, \dots, x_n) := f\left(\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}\right) := \begin{pmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_n(x_1, \dots, x_n) \end{pmatrix}$$

6.3.2 Definition Funktionsgrenzwert

Sei $f:A\subseteq\mathbb{R}^n\to\mathbb{R}^m$ und $a\in\bar{A}$ dann heißt ein $b\in\mathbb{R}^m$ mit:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : ||f(x) - b|| < \varepsilon \ \forall x \in \dot{U}_{\delta(\varepsilon)}(a) \cap A$$

der Grenzwert von f für x gegen a. Kurz:

$$\lim_{x \to a} f(x) = b$$

6.3.3 Definitionen aus HM 1 im Mehrdimensionalen

Sei $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$, $a \in \bar{A}$ und $b \in \mathbb{R}^m$

(a) Folgende Aussagen sind äquivalent:

(a)
$$f(x) \to b \ (x \to a)$$

- (b) $||f(x) b|| \to 0 \ (x \to a, x \in A)$
- (c) Für jede Komponente

$$f_l(x)$$
 von $f(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{pmatrix}$ gilt $f_l(x) \to b_l$ $(x \to a)$

(d) Für eine Folge $(x_k)_{k=1}^{\infty}$ in A mit $\lim_{k\to\infty}$ und $x_k\neq a\ \forall k$ folgt:

$$f(x_k) \to b \ (k \to \infty)$$

- (b) Falls $\lim_{x \to a} f(x)$ existiert ist dieser Eindeutig.
- (c) Cauchy-Kriterium:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : ||f(x) - f(y)|| < \varepsilon \ \forall x, y \in \dot{U}_{\delta\varepsilon}(a) \cap A$$

- (d) Grenzwertrechenregeln gelten analog zu HM 1
- (e) Sei $B \subseteq A$ mit $a \in \bar{B}$ dann gilt:

$$\lim_{x \to a \text{ mit } x \in B} f(x) = b \Leftrightarrow \lim_{x \to a \text{ mit } x \in A} f(x) = b$$

6.3.4 Definition Stetigkeit

Sei $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ und $a \in A$, dann ist f in a stetig wenn gilt $\lim_{x \to a} f(x) = f(a)$. Das heißt:

$$\forall \varepsilon \ \exists \delta(\varepsilon) : ||f(x) - f(a)|| < \varepsilon \ \forall x \in U_{\delta(\varepsilon)}(a) \cap A$$

6.3.5 Grenzwerte von verketteten Funktionen

Sei $A\subseteq\mathbb{R}^n, B\subseteq\mathbb{R}^m, a\in\bar{A}$ und $f:A\to B, g:B\to\mathbb{R}^l$. Existiert $\lim_{x\to a}f(x)=b$ so gilt $b\in\bar{B}$ und es gilt:

$$\lim_{x \to a} g(f(x)) = \lim_{y \to b} g(y)$$

sofern der Grenzwert $\lim_{y\to b} g(y)$ existiert.

6.3.6 Grenzwertrechenregeln

Für $f,g:A\to\mathbb{R}^n$ gilt: Falls $\lim_{x\to a}f(x)=\alpha$ und $\lim_{x\to a}g(x)=\beta$ existiert, dann gilt:

$$\lim_{x \to a} f(x) + g(x) = \alpha + \beta$$

$$\lim_{x \to a} f(x)^T g(x) = \alpha^T \beta$$

6.3.7 Maximum und Minimum Kompakter Mengen

- (a) Ist $\emptyset \neq A \subseteq \mathbb{R}$ kompakt, so existiert max A und min A.
- (b) Ist $A \subseteq \mathbb{R}^n$, A kompakt und $f : \mathbb{R}^m \to \mathbb{R}^n$ stetig auf A, dann ist f(A) kompakt.

6.3.8 Weierstraß

Falls $A \subseteq \mathbb{R}^m$ und $f: A \to \mathbb{R}$ stetig ist dann gilt:

$$A \text{ kompakt } \Rightarrow \min_{x \in A} f(x), \max_{x \in A} f(x) \text{ existient}$$

6.4 Partielle Ableitungen und Richtungsableitungen

6.4.1 Definition partielle Ableitung

Eine Funktion $f:A\subseteq\mathbb{R}^m\to\mathbb{R}^n$ heißt in einem Punkt $a\in\mathbb{R}^m$ partiell differentierbar nach seiner k-ten Variable $x_k(k\in\{1,\ldots,m\})$ wenn $f(a+h\cdot e_k)$ mit

$$e_k = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \text{ (k-te Komponente)} \\ \vdots \\ 0 \end{pmatrix}$$

für ein festes $\delta>0$ und alle h mit $|h|<\delta$ existiert:

$$\frac{\partial}{\partial x_k} f(a) := f_{x_k}(a) := \lim_{h \to 0} \frac{f(a + h \cdot e_k) - f(a)}{h}$$

Dieser Grenzwert heißt partielle Ableitung von f nach x_k bei a.

Exisitiert bei a die partiellen Ableitungen $f_{x_1}(a), \ldots, f_{x_m}(a)$ so heißt f (einmal) partiell differentierbar bei a und nennt man im Fall n=1 den Spaltenvektor

$$\nabla f(a) := \operatorname{grad} f(a) := \begin{pmatrix} f_{x_1}(a) \\ \vdots \\ f_{x_m}(a) \end{pmatrix}$$

den Gradienten von f bei a.

Falls alle partiellen Ableitungen stetig sind nennt man f stetig partiell differentierbar.

Schreibweise

 $C^k(G,\mathbb{R}^n) := \{f : G \to \mathbb{R}^n | \text{ alle } k\text{-ten partiellen Ableitungen existieren und sind stetig} \}$

6.4.2 Definition Umgebung eines Punktes

Eine Umgebung eines Punktes $a \in \mathbb{R}^n$ ist eine Menge $U \subseteq \mathbb{R}^n$ für die ein $\varepsilon > 0$ existiert, so dass $U_{\varepsilon}(a) \subseteq U$. Eine offene Umgebung U ist eine Umgebung, die zusätzlich eine offene Menge ist.

Bemerkung

Ist $f: G \subseteq \mathbb{R}^n \to \mathbb{R}$ partiell differentierbar und sind in einer Umgebung von $a \in G$ alle partiellen Ableitungen beschränkt, dann ist f stetig in a.

6.4.3 Definition Richtungsableitung

Seien $a, r \in \mathbb{R}^n$ und r eine Richtung, d.h. ||r|| = 1. Eine Funktion $f : G \subseteq \mathbb{R}^n \to \mathbb{R}^m$ heißt bei a in Richtung r differentierbar, wenn der Grenzwert

$$\frac{\partial}{\partial r}f(a) := \lim_{h \to 0} \frac{f(a+h \cdot r) - f(a)}{h}$$

existiert. Dieser Grenzwert heißt dann die Richtungsableitung von f bei a in Richtung r.

6.5 Die totale Ableitung

6.5.1 Definition totale Ableitung

Sei $f: G \subseteq \mathbb{R}^n \to \mathbb{R}^m$ und $a \in G \subseteq \mathbb{R}^n$

(a) Man nennt f total differentierbar bei a, wenn es eine Matrix $A \in \mathbb{R}^{m \times n}$ gibt, dass bei einer Umgebung U von a gilt:

$$f(x) = f(a) + A(x - a) + r(x)$$

mit

$$\frac{r(x)}{\|x-a\|} \to \vec{0} \ (x \to a)$$

In dem Fall nennen wir A die (totale) Ableitung von f bei a und wir schreiben f'(a) = A

(b) Ist
$$f = \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix}$$
 partiell differentierbar bei a , so heißt

$$\begin{pmatrix} \frac{\partial}{\partial x_1} f_1(a) & \cdots & \frac{\partial}{\partial x_n} f_1(a) \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_1} f_m(a) & \cdots & \frac{\partial}{\partial x_n} f_m(a) \end{pmatrix} = \begin{pmatrix} \nabla f_1(a)^T \\ \vdots \\ \nabla f_n(a)^T \end{pmatrix} = \frac{\partial}{\partial x} f(a) = J_f(a)$$

die Jacobi-Matrix von f bei a.

Bemerkung

(a) Wir werden sehen, dass gilt:

f ist in a total differentierbar $\Leftrightarrow f'(a) = J_f(a)$

(b) Im Fall m = 1 gilt also:

$$J_f(a) = \nabla f(a)^T$$

und falls f total differentierbar ist gilt:

$$f'(a) = \nabla f(a)^T$$

(c) Bedeutung des Skalarprodukts $x, y \in \mathbb{R}^n$

$$x \cdot y := x^T y := \sum_{k=1}^n x_k y_k = ||x||_2 ||y||_2 \cos \alpha$$

(d) Definition des Matrix-Vektor-Produktes:

$$A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n, b \in \mathbb{R}^m$$

$$A \cdot x = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + \cdots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \cdots + a_{mn}x_n \end{pmatrix}$$

6.5.2 Zusammenhang Stetigkeit und Differenzierbarkeit

Ist $f:G\subseteq\mathbb{R}^n\to\mathbb{R}^m$ differentier bar in $a\in G\Rightarrow f$ stetig in a.

6.5.3 Zusammenhang partielle und totale Diffbarkeit

Sei $f:G\subseteq\mathbb{R}^n\to\mathbb{R}^m$ und $a\in G$

(a) Ist f total differentierbar bei a, so gilt:

(a) f ist bei a partiell differentierbar und

$$f'(a) = \frac{\partial}{\partial x} f(a)$$

(b) f ist bei a in jede Richtung r differentierbar und

$$\frac{\partial}{\partial r}f(a) = J_f(a) \cdot r$$

(b) Wenn f partiell differentierbar in a ist und alle partiellen Ableitungen in a stetig sind, so ist f in a differentierbar.

$$\frac{\partial}{\partial x_n} f(x_n)$$
 stetig in $a \Leftrightarrow f$ difference in a

6.5.4 Kettenregel

Ist $f: A \subseteq \mathbb{R}^n \to B \subseteq \mathbb{R}^m$ total differentierbar in $a \in A$ und $g: B \to R^l$ total differentierbar in a. Dann gilt $g \circ f$ ist in a differentierbar und

$$(g \circ f)' = g'(f(a)) \cdot f'(a)$$

6.5.5 Matrix-Produkt

Für $A \in \mathbb{R}^{m \times k}, B \in \mathbb{R}^{k \times n}$ und $C \in \mathbb{R}^{m \times n}$ ist das Matrix-Produkt $C = A \cdot B$ definiert durch:

$$c_{ij} = \sum_{l=1}^{k} a_{il} b_{lj}$$

6.6 Extremwerte, Mittelwertsatz

6.6.1 Definition lokales Extrema

(a) Eine Funktion $f: G \subseteq \mathbb{R}^n \to \mathbb{R}$ besitzt in $x_0 \in G$ ein lokales Minimum (bzw. Maximum), wenn in einer Umgebung von U von x_0 gilt:

$$f(x) \ge f(x_0)$$
 (bzw. $f(x) \le f(x_0)$) $\forall x \in U$

unter einem lokalen Extrema versteht man ein lokales Minimum oder Maximum

(b) f besitzt in x_0 ein globales Minimum (bzw. Maximum), wenn

$$f(x) \ge f(x_0)$$
 (bzw. $f(x) \le f(x_0)$) $\forall x \in G$

6.6.2 Notwendige Bedingung für lokale Extrema

Besitzt $f: G \subseteq \mathbb{R}^n \to \mathbb{R}, f \in C^1(G, \mathbb{R})$ in $x_0 \in \overset{\circ}{G}$ ein lokales Extrema, so gilt:

$$\nabla f(x_0) = 0$$

Bemerkung

Einen Punkt $x_0 \in G$ mit $\nabla f(x_0) = 0$ nennen wir kritischen Punkt oder stationären Punkt.

6.6.3 Mittelwertsatz

Sei $f:G\subseteq\mathbb{R}^n\to\mathbb{R}$ mit G offen differentierbar und G enthalte die Menge

$$L(a,b) := \overline{ab} := \{a + t \cdot (b-a) \mid t \in [0,1]\}$$

für $a, b \in G$. Dann exisitiert ein $\xi \in (0, 1)$ mit

$$f(b) = f(a) + \nabla f(a + \xi(b - a))^{T}(b - a)$$

6.6.4 Gebiete bzw. kurvenweise zusammenhängende Gebiete

(a) Eine Menge

$$\overline{a_0, a_1, \dots, a_n} := \bigcup_{k=0}^{n-1} \overline{a_k, a_{k+1}}$$

für $a_0,\ldots,a_n\in\mathbb{R}^m$ heißt Polygonzug

- (b) Eine Menge $M \subseteq \mathbb{R}^n$ heißt kurvenweise zuammenhängend, wenn zu $a, b \in M$ stets eine stetige Funktion $\gamma : [0,1] \to M$ exisitiert mit $\gamma(0) = a$ und $\gamma(1) = b$ (dann ist γ) eine Kurve von a nach b.
- (c) Eine Menge $G \subseteq \mathbb{R}^n$ heißt Gebiet, wenn G offen und kurvenweise zusammenhängend ist (keine Inseln).

Bemerkung

Ist G ein Gebiet und $a,b \in G$ dann existiert stets ein Polynomzug, der a und b verbindet und durch G verläuft.

6.6.5 Partielle Ableitung r-ter Ordnung

Für $f: G \subseteq \mathbb{R}^n \to \mathbb{R}^m$ definiert man (falls existent) für $x_0 \in G$ und $k_1, \ldots, k_r \in \{1, \ldots, n\}$ die partielle Ableitung r-ter Ordnung indirekt durch:

$$\frac{\partial^r}{\partial x_{k_1} \dots \partial x_{k_r}} f(x_0) := f_{x_{k_1} \dots x_{k_r}}(x_0) := \begin{cases} \frac{\partial}{\partial x_{k_1}} f(x_0) & \text{falls } r = 1\\ \frac{\partial}{\partial x_{k_1}} \left(\frac{\partial^{r-1}}{\partial x_{k_2} \dots \partial x_{k_r}} f(x_0) \right) & \text{sonst} \end{cases}$$

existieren alle partiellen Ableitungen der Ordnung r, dann ist f r-mal partiell differentierbar sind diese außerdem stetig, so ist f r-mal stetig partiell differentierbar.

Schreibweise

 $C^r(G,\mathbb{R}^m) := \{ f : G \to \mathbb{R}^m \mid f \text{ r-mal stetig partial differentierbar} \} \text{ und } C^r(G) := C^r(G,\mathbb{R}^1)$

6.6.6 Hessematrix

Ist $f:G\subseteq\mathbb{R}^n\to\mathbb{R}$ 2-mal partiell differentierbar bei $a\in G$ so heißt

$$H_f(a) := \begin{pmatrix} f_{x_1 x_1}(a) & \cdots & f_{x_1 x_n}(a) \\ \vdots & \ddots & \vdots \\ f_{x_n x_1}(a) & \cdots & f_{x_n x_n}(a) \end{pmatrix} = (\nabla f_{x_1}(a) & \cdots & \nabla f_{x_n}(a))$$

die Hesse-Matrix von f bei a.

6.6.7 Definitheit

Sei $A \in \mathbb{R}^{n \times n}$

- (a) Die durch $Q_A(x) := x^T \cdot A \cdot x$ definierte Funktion $Q_A : \mathbb{R}^n \to \mathbb{R}$ heißt die Quadratische Form von A.
- (b) Die Matrix und die Quadratische Form heißen:
 - (a) positiv definit

$$:\Leftrightarrow Q_A(x) > 0 \ \forall x \in \mathbb{R}^n \setminus \{0\}$$

(b) positiv semidefinit

$$:\Leftrightarrow Q_A(x) \ge 0 \ \forall x \in \mathbb{R}^n$$

(c) negativ definit

$$:\Leftrightarrow Q_A(x)<0 \ \forall x\in\mathbb{R}^n\backslash\{0\}$$

(d) negativ semidefinit

$$\Leftrightarrow Q_A(x) \leq 0 \ \forall x \in \mathbb{R}^n$$

(e) indefinit

$$: \Leftrightarrow \exists x, y \in \mathbb{R}^n : \ Q_A(x) < 0, Q_A(y) > 0$$

6.6.8 Satz von Schwarz

Ist $G \neq \emptyset, f: G \subseteq \mathbb{R}^n \to \mathbb{R}$ 2-mal stetig partiell differentier bar, dann gilt:

$$H_f(x,y) = H_f(x,y)^T$$

6.6.9 Satz von Taylor

Seien $a, b \in G$ (G eine Gebiet mit $G \neq \emptyset$), $f : G \subseteq \mathbb{R}^n \to \mathbb{R}$ zweimal stetig differentierbar und $\overline{ab} \subseteq G$. Dann existiert eine $\xi \in (0,1)$ mit

$$f(b) = f(a) + \nabla f(a)^{T} (b - a) + \frac{1}{2} (b - a)^{T} H_{f}(a + \xi(b - a))(b - a)$$

6.6.10 Hinreichende Bedinung für lokale Extrema

Sei $f \in C^2(U, \mathbb{R})$ mit U eine Umgebung von a und $\nabla f(a) = \vec{0}$ dann gilt:

- (a) Ist $H_f(a)$ positiv definit, so ist bei a ein lokales Minimum
- (b) Ist $H_f(a)$ negativ definit, so ist bei a ein lokales Maximum

6.7 Implizit definierte Funktionen

6.7.1 Bemerkung

Wir betrachten zunächst lineare Funktionen $f: \mathbb{R}^n \to \mathbb{R}^m$ dann lässt sich f(x) darstellen als:

$$f(x) = Ax + b$$

mit $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$

6.7.2 Vorläufige Definition Rang einer Matrix

Wir definieren für eine Matrix $A \in \mathbb{R}^{m \times n}$ den Rang vorläufig als die Anzahl der Stufen nachdem mit dem Gauss-Algorithmus die Matrix in Zeilen-Stufenform überführt wurde.

Bemerkung

Allgemein werden wir sehen, dass Ax = b lösbar ist \Leftrightarrow Rang von A gleich Rang von (A|b) gilt. Eindeutig lösbar ist das LGS wenn in der Zeilen-Stufen Form in jeder Zeile eine Stufe anfängt und A quadratisch ist.

6.7.3 Einheitsmatrix und Inverse eine Matrix

Ist $A \in \mathbb{R}^{n \times n}$ und $B \in \mathbb{R}^{n \times n}$ mit

$$B \cdot A = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \ddots & & & \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix} I \text{ (Einheitsmatrix)}$$

dann nennt man B die zu A inverse Matrix und schreibt $A^{-1} := B$. Dann gilt:

$$\begin{array}{rcl} Ax & = & b \\ \Leftrightarrow A^{-1} \cdot A \cdot x & = & A^{-1} \cdot b \\ \Leftrightarrow I \cdot x & = & A^{-1} \cdot b \\ \Leftrightarrow x & = & A^{-1} \cdot b \end{array}$$

Falls zu einer Matrix $A \in \mathbb{R}^{n \times n}$ die Inverse A^{-1} existiert nennt man A regulär.

Bemerkung

Die Menge $G := \{A \in \mathbb{R}^n : A \text{ ist regulär}\}$ ist bezüglich der Matrixmultiplikation eine nicht abelsche Gruppe mit I als neutrales Element und A^{-1} als das zu A (links-) inverse Element.

6.7.4 Zusammenhang Bijektivität und reguläre Matrizen

Für $f: \mathbb{R}^n \to \mathbb{R}^n$ mit $f(x) = A \cdot x + b$ gilt:

f ist bijektiv $\Leftrightarrow A$ ist regulär

6.7.5 Satz über die Umkehrfunktion

Sei $f \in C^1(G, \mathbb{R}^n)$ für ein Gebiet $G \subseteq \mathbb{R}^n$ und $x_0 \in G$. Weiter gelte, dass $f'(x_0)$ regulär ist. Dann gibt es eine offene Umgebung U von x_0 ($U \subseteq G$), dass gilt:

- (a) f(U) ist offen und f'(x) ist regulär
- (b) $f: U \to V$ ist bijektiv und $f^{-1}: V \to U$ ist aus $C^1(V, U)$

(c) $\frac{\mathrm{d}}{\mathrm{d}y}f^{-1}(y) = \left(f'(f^{-1}(y))\right)^{-1} \, \forall y \in V$

6.7.6 Satz über die Gebietstreue

Ist G eine offene Menge in \mathbb{R}^n und $f \in C^1(G, \mathbb{R}^n)$ mit f'(x) ist regulär auf G, so ist auch f(G) ein Gebiet.

6.7.7 Definition Auflösbarkeit

Sei $g:\mathbb{R}^{m+n}\to\mathbb{R}^m$ $(n,m\in\mathbb{N})$ und $b\in\mathbb{R}^m.$ Man nennt die Gleichung

$$g(x,y) = b \text{ mit } x \in \mathbb{R}^n \text{ und } y \in \mathbb{R}^m$$

(a) Auf $G \in \mathbb{R}^n$ (global) nach y auflösbar, wenn es eine Funktion $f:G\subseteq \mathbb{R}^n \to \mathbb{R}^m$ gibt mit $g(x,f(x))=b \ \forall x\in G$

(b) Bei $x_0 \in \mathbb{R}^n$ lokal nach y auflösbar, wenn g(x,y) = b in einer Umgebung von x_0 nach y (global) auflösbar ist.

D.h mit $y_0 := f(x_0)$ existiert die Auflösung y = f(x) mit g(x, f(x)) = b und $y_0 = f(x_0)$ in einer Umgebung von x_0 .

Bemerkung

Allgemein soll auch für nichtline
are Funktionen einfach geprüft werden können ob eine lokale Auflösung nach x oder
 y existiert.

Wir werden sehen es gilt:

$$\frac{\partial}{\partial x}g|_{x=x_0}$$
 regulär \Leftrightarrow Es existiert eine lokale Auflösung nach x (6.1)

(Analog für Auflösungen nach y).

6.7.8 Hauptsatz über implizite Funktionen

Sei $x_0 \in \mathbb{R}^n$ und $y_0, b \in \mathbb{R}^m$. Für eine offene Umgebung G von $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$. Sei $g \in C^1(G, \mathbb{R}^m)$ (d.h $g : G \subseteq \mathbb{R}^{m+n} \to \mathbb{R}^m$ und stetig differentierbar) ist $g(x_0, y_0) = b$ und $\frac{\partial}{\partial y}g(x_0, y_0)$ regulär, so gibt es eine Umgebung U von x_0 und V von y_0 , so dass:

(a) $\frac{\partial}{\partial y}g(x,y) \text{ ist regul\"ar } \forall x \in U \text{ und } \forall y \in V$

(b) Die Gleichung g(x,y)=b besitzt eine eindeutige Auflösung $f:U\to V$ mit $y_0=f(x_0)$ und es gilt:

$$f'(x) = \left(\frac{\partial}{\partial y}g(x, f(x))\right)^{-1} \cdot \frac{\partial}{\partial x}g(x, f(x)) \forall x \in U$$

(die Auflösung ist also differentierbar)

(c) Ist $g \in C^r(g, \mathbb{R}^m)$ dann ist $f \in C^r(U, \mathbb{R}^m)$

6.7.9 Extrema unter Nebenbedingungen

$$\begin{cases} x+y & \to \text{max oder min} \\ x^2+y^2=1 \end{cases}$$

 ${f Idee}$ Nebenbedingung nach y auflösen und in Zielfunktion einsetzten

1.
$$y = \pm \sqrt{1 - x^2}$$

$$\Rightarrow f(x,y) = f(x, \pm \sqrt{1 - x^2}) = \tilde{f}(x) \tag{6.2}$$

2.

$$\tilde{f}(x) \stackrel{!}{=}, \tilde{f}^{(k)}(x) \stackrel{!}{=}, \dots, \tilde{f}^{2l}(x) \stackrel{!}{=} 0 \ k = 1, \dots, 2 \cdot l - 1$$

 ${\bf Beobachtung}~$ Bei den gesuchten Extrema berühren sich die Höhenlinien von f und g

$$\overset{\text{Formaler}}{\Rightarrow} \exists \lambda \in \mathbb{R} : \nabla f(x, y) = \lambda \nabla g(x, y)$$

Aber die Bedingung ist ist nicht hinreichend, sondern nur notwendig. Trotzdem: Die notwendige Bedingung liefert (hoffentlich) einen Endliche Anzahl Kandidaten, diese können einzeln überprüft werden.

6.7.10 Definition lokale Minima/Maxima unter Nebenbedingungen

Seien $f, g_1, \ldots g_m : G \subseteq \mathbb{R}^n \to \mathbb{R}$ mit G offen gegeben sowie $b_1, \ldots, b_m \in \mathbb{R}$. Dann nennt man ein $x_0 \in G$ ein lokales Minimum (bzw. Maximum) von f unter der Nebenbedingung $g_1(x) = b_1 \ldots g_m(x) = b_m$ wenn es eine offene Umgebung $U \subseteq G$ von x_0 gibt mit $f(x) \geq f(x_0) \forall x \in U$ und $g_k(x) = b_k$ für $k = 1 \ldots m$ (bzw. $f(x) \leq f(x_0) \forall x \in U$).

6.7.11 Definition Linear Unabhängig

Seien $a_1, \ldots, a_m \in \mathbb{R}^n$ mit $m \in \mathbb{N}$. Dann heißen diese Vektoren linear unabhängig, wenn das lineare Gleichungssystem

$$\alpha_1 a_1 + \dots + \alpha_n a_n = \vec{0}$$

nur die Lösung $\alpha_1 = \cdots = \alpha_m = 0$ besitzt.

$$\Leftrightarrow (a_1 \quad \dots \quad a_m) \cdot \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

Ansonsten sind die Vektoren linear abhängig.

Bemerkung

Sind $a_1, \dots a_k$ nicht linear abhängig:

$$\stackrel{\text{Def.}}{\Rightarrow} \exists \ k \in \{1, \dots m\} \text{ und L\"osung } \alpha_1, \dots \alpha_m \text{ mit}$$

$$\alpha_1 a_1 + \dots + \alpha_k a_k + \dots \alpha_m a_m = 0 \ a_k \neq 0$$

$$\Rightarrow a_k = -\frac{\alpha_1}{\alpha_k} a_1 \dots - \frac{\alpha_1}{\alpha_k} a_{k-1} - \frac{\alpha_1}{\alpha_k} a_{k+1} \dots$$

d.h. a_k lässt sich aus durch $a_1, \ldots, a_{k-1}, a_{k+1}, \ldots, a_m$ bestimmen.

6.7.12 Satz von Lagrange

Seien $f, g_1, \ldots g_m \in C^1(U)$ für eine offene Umgebung U von $x_0 \in \mathbb{R}$ (wie oben $f, g_1, \ldots : G \subseteq \mathbb{R}^n \to \mathbb{R}$) und seien $b_1, \ldots b_m \in \mathbb{R}$. Ist x_0 ein lokales Extrema unter der Nebenbedinung $g_k(x) = b_k k = 1, \ldots m$ und die Vektoren $\nabla g_1(x_0), \ldots \nabla g_m(x_0)$ linear unabhängig.

$$\exists \lambda_1, \dots, \lambda_m \in \mathbb{R} \quad \text{mit} \quad \nabla f(x_1) + \lambda_1 \nabla g_1(x_0) + \dots + \lambda_m \nabla g(x_0) = \vec{0}$$

$$\Leftrightarrow \quad f'(x_0)^T + J_g(x_0)^T \cdot \lambda = \vec{0}$$

$$\Leftrightarrow \quad f'(x_0) = \nabla^T J_g(x_0)$$

Zudem muss x_0 die Nebenbedingung erfüllen.

6.7.13 Lagrange Funktion

$$L(x,\lambda) = L(x_1,\dots,x_m,\lambda_1,\dots,\lambda_m) := f(x) + \lambda^T(g(x) - b)$$

$$\Leftrightarrow L'(x,\lambda) = \left(f'(x) + \lambda^T g'(x), g(x) - b\right) \stackrel{!}{=} \vec{0}$$

Kapitel 7

Integration in mehreren Veränderlichen

7.1 Parameterintegrale

7.1.1 Eigentliche Parameterintegrale

Sei f(x,t) reel und stetig in $[\alpha,\beta] \times [a,b]$ (also $x \in [\alpha,\beta], t \in [a,b]$). Dann gilt für

$$F(x) := \int_{a}^{b} f(x, t) \, \mathrm{d}t$$

- (a) F ist stetig auf $[\alpha, \beta]$
- (b) Ist f_x stetig in $[\alpha, \beta] \times [a, b]$, so ist $F \in C^1([\alpha, \beta])$ und $F'(x) = \int_a^b f_x(x, t) dt$
- (c) Satz von Fubini:

$$\int_{\alpha}^{\beta} F(x) \, \mathrm{d}x = \int_{\alpha}^{\beta} \int_{a}^{b} f(x,t) \, \mathrm{d}t \, \mathrm{d}x = \int_{a}^{b} \int_{\alpha}^{\beta} f(x,t) \, \mathrm{d}x \, \mathrm{d}t$$

7.1.2 Leibniz Regel

Seien $f(x,t), f_x(x,t)$ stetig in $[\alpha,\beta] \times [a,b]$ und $u,v \in C^1([a,b])$. Dann ist

$$F(x) = \int_{u(x)}^{v(x)} f(x,t) \, dt \in C^{1}([a,b])$$

und

$$F'(x) = \int_{u(x)}^{v(x)} f_x(x,t) dt + f(x,v(x))v'(x) - f(x,u(x))u'(x)$$

7.1.3 Uneigentliche Parameterintegrale

Ist für jedes $x \in M \subseteq \mathbb{R}$ ein uneigentliches Integral

$$\int_{a}^{b} f(x,t) \, \mathrm{d}t$$

mit kritischem Punkt a oder b gegeben, so heißt dieses gleichmäßig konvergent in M, wenn gilt:

$$\forall \varepsilon > 0 \,\exists L \in (a,b) : \left| \int_{T_1}^{T_2} f(x,t) \, \, \mathrm{d}t \right| < \varepsilon \, \forall x \in M \forall T_1, T_2 \in (a,L) (\mathrm{bzw.} \forall T_1, T_2 \in (L,b))$$

7.1.4 Majorantenkriterium

Ein uneigentliches Integral $\int_a^b f(x,t) \; \mathrm{d}t$ konvergiert gleichmäßig in M wenn ein konvergentes Integral

$$\int_{a}^{b} g(t) dt \text{ ex. mit} |f(x,t)| \leq g(t)$$

7.1.5 Fubini für uneigentliche Parameterintegrale

Ist f(x,t) stetig in $[\alpha,\beta] \times [a,b]$ und konvergiert

$$F(x) = \int_a^b f(x,t) \, \mathrm{d}t$$

gleichmäßig auf $[\alpha, \beta]$ dann ist F stetig und

$$\int_{\alpha}^{\beta} \int_{a}^{b} f(x,t) dt dx = \int_{a}^{b} \int_{\alpha}^{\beta} f(x,t) dx dt$$

7.1.6 Konvergenzkriterien

Sind $f(x,t), f_x(x,t)$ stetig auf $[\alpha, \beta] \times [a,b]$ und ist

$$\int_{a}^{b} f(x,t) \, \mathrm{d}t$$

für ein $x_0 \in [\alpha, \beta]$ konvergent und ist

$$\int_a^b f_x(x,t) \, dt$$

gleichmäßig konvergent. Dann gilt:

$$F(x) = \int_{a}^{b} f(x,t) dt \ \forall x \in [\alpha, \beta]$$

und

$$F'(x) = \int_a^b f_x(x,t) \, dt \, \forall x \in (\alpha, \beta)$$

existiert und ist stetig.

7.2 Kurvenintegrale

7.2.1 Äquivalenz für Kurven

Zwei stetige Funktionen $x:[a,b]\subseteq\mathbb{R}\to\mathbb{R}^n,y:[\alpha,\beta]\subseteq\mathbb{R}\to\mathbb{R}^n$ heißen Äquivalent (schreibweise $x\sim y$), wenn eine streng monoton wachsende Funktion

$$\phi: [a,b] \to [\alpha,\beta]$$

gibt mit

$$x(t) = y(\phi(t)) \ \forall t \in [a, b]$$

Bemerkung

Es gilt:

- (a) $x \sim x$ (Reflexivität)
- (b) $x \sim y \Rightarrow y \sim x$ (Symmetrie)
- (c) $x \sim y \land y \sim z \Rightarrow x \sim z$ (Transitivität)

7.2.2 Kurven im \mathbb{R}^n

Ist $x:[a,b]\subseteq\mathbb{R}\to\mathbb{R}^n$ stetig, so nennt man die Menge

$$\mathbb{K} := \{ y : [\alpha, \beta] \subseteq \mathbb{R} \to \mathbb{R}^n \text{ mit } x \sim y \}$$

die Kurve \mathbb{K} mit Parameterdarstellung x und den Punkt x(a) Anfangspunkt und x(b) Endpunkt.

Schreibweise

$$\mathbb{K}: x(t), a \leq t \leq b$$

Die Menge

$$T(\mathbb{K}) := \{x(t) : t \in [a, b]\} = x([a, b])$$

nennt man den Träger der Kurve \mathbb{K} .

Bemerkung

Verschieden Kurven können also den gleichen Träger haben. Man nennt K:

- (a) Geschlossen, wenn x(a) = x(b)
- (b) Einfach oder Jordankurve, wenn $x(t) \neq x(s) \ \forall t, s : a \leq t < s < b$

7.2.3 Eigenschaften von Parameterdarstellungen

(a) Eine Parameterdarstellung $x:[a,b]\to\mathbb{R}^n$ einer Kurve heißt stückweise stetig differentierbar, wenn eine Zerlegung

$$T: a = t_0 < \dots < t_k = b \tag{7.1}$$

existiert und x auf (t_l, t_{l+1}) $l \in \{0, \dots, k-1\}$ differentierbar ist.

- (b) Besitzt eine Kurve \mathbb{K} eine (stückweise) stetig differentierbare Parameter-darstellung $x(t), t \in [a, b]$ mit $\dot{x}(t) \neq \vec{0}$ für $t \in [a, b]$ so heißt \mathbb{K} stückweise glatt oder stückweise regulär.
- (c) Ist eine Parameterdarstellung x von \mathbb{K} differentierbar und glatt, so heißt

$$T(t) := \frac{\dot{x}(t)}{\|\dot{x}(t)\|}$$

der Tangential (einheits) vektor von x und \mathbb{K}

(d) Ist auch T differentierbar und glatt (also $\dot{T}(k) \neq \vec{0}$) so heißt

$$N(t) := \frac{\dot{T}(t)}{\left\|\dot{T}(t)\right\|}$$

der (Haupt-) Normalen (einheits) vektor von $\mathbb K$ und x bei t

(e) Und falls n=3

$$B(t) = T(t) \times N(t)$$

der Binormalen (einheits) vektor von \mathbb{K} und x bei t (Man nennt dann T(t), N(t), B(t) ein begleitendes Dreibein von \mathbb{K})

(f) Existiert T(t), so nennt man die Gerade

$$\{x(t) + \lambda \dot{x}(t) : \lambda \in \mathbb{R}\}$$

die Tangente von \mathbb{K} bei t

(g) Existiert auch N(t) so nennt man die Ebene

$$\{x(t) + \lambda \dot{x}(t) + \mu \ddot{x}(t) : \lambda, \mu \in \mathbb{R}\}$$

die Schmiegeebene von \mathbb{K} bei t.

Bemerkung

Sei $x(t) = y(\phi(t))$ mit $a \le t \le b$ zwei Parameterdarstellungen von x. Dann gilt:

$$T(t) = \frac{\dot{x}(t)}{\|\dot{x}(t)\|} = \frac{\dot{y}(\varphi(t)) \cdot \dot{\varphi}(t)}{\|\dot{y}(\phi(t)) \cdot \dot{\varphi}(t)\|} = \frac{\dot{y}(\varphi(t))}{\|\dot{y}(\varphi(t))\|}$$

Das heißt die Berechnung von T ist unabhängig von der konkreten Parameterdarstellung

Existiert N(t) dann gilt:

$$N(t) \perp T(t)$$

Existiert auch B(t) (im \mathbb{R}^3), dann gilt: N(t), T(t), B(t) sind paarweise Orthogonal.

7.2.4 Weitere Definitionen zu Kurven

(a) Ist $\mathbb{K}: x(t), a \leq t \leq b$ eine Kurve, so heißt:

$$-\mathbb{K} : y(t), a < t < b \text{ mit } y(t) = x(a+b-1)$$

die zu \mathbb{K} entgegengesetzte Kurve

(b) Sind $\mathbb{K}: x(t), a \leq t \leq b$ und $\mathbb{L}: y(t), \alpha \leq t \leq \beta$ zwei Kurven und gilt $x(b) = y(\alpha)$ dann ist

$$\mathbb{K} + \mathbb{L} : z(t), a < t < (\beta - \alpha) + b$$

und

$$z(t) = \begin{cases} x(t) &, a \le t \le b \\ y(t - b + \alpha) &, b \le t \le (\beta - \alpha) + b \end{cases}$$

die Aus \mathbb{K} und \mathbb{L} zusammengesetzte Kurve.

7.2.5 Kurventintegrale 2. Art

Sei \mathbb{K} eine Kurve im \mathbb{R}^n und

$$f:T(\mathbb{K})\to\mathbb{R}^n$$

- (a) Sei $x:[a,b]\to\mathbb{R}^n$ eine Parameterdarstellung von \mathbb{K}
 - (i) Für eine Zerlegung $T:a=t_0<\cdots< t_n=b,$ Zwischenpunte $Z:(\xi_1,\ldots,\xi_n)$ mit $t_{k-1}\leq \xi_k\leq t_k$ heißt

$$S(f, x, T, Z) := \sum_{k=1}^{n} f(x(\xi_k)) \cdot (x(t_k) - x(t_{k-1}))$$

die Riemann-Summe von f, T, Z bezüglich x.

(ii) Exitiert eine Zahl $I\in\mathbb{R}$ derart, dass für jede Folge von Zerlegungen T_n mit

$$\lim_{n \to \infty} \mu(T_n) = 0$$

stets

$$\lim_{n \to \infty} S(f, x, T_n, Z_n) = I$$

folgt, so heißt I das Kurvenintegral (2. Art) von f längs \mathbb{K} bzgl. x.

(b) Gibt es stets ein I wie in (a) so heißt f längs $\mathbb K$ (Riemann-) integrierbar und man nennt I das (unbestimmte) Kurvenintegral von f längs $\mathbb K$ und schreibt:

$$I = \int_{\mathbb{K}} f = \int_{\mathbb{K}} f(x) \cdot dx = \int_{\mathbb{K}} f_1(x) dx_1 + \dots + f_n(x) dx_n$$

7.2.6 Substitutionsregel

Ist $\mathbb{K}: x(t), a \leq t \leq b$ eine Kurve im \mathbb{R}^n und x(t) stückweise differentierbar, sowie $f: T(\mathbb{K}) \to \mathbb{R}^n$ stetig, so ist f längs \mathbb{K} integrierbar und es gilt:

$$\int_{\mathbb{K}} f(x) \, \mathrm{d}x = \int_{a}^{b} f(x(t)) \mathrm{d}x(t) = \int_{a}^{b} f(x(t)) \cdot \dot{x}(t) \, \mathrm{d}t$$

7.2.7 Definition Wegunabhängigkeit

Sei $f \in C(G, \mathbb{R}^n)$ mit $G \subseteq \mathbb{R}^n$ ein Gebiet:

(a) Gilt für zwei Wege $\mathbb K$ und $\mathbb L$ mit gleichem Anfangs- und Endpunkt stets

$$\int_{\mathbb{K}} f = \int_{\mathbb{T}} f$$

dann heißen die Kurvenintegrale Wegunabängig in G.

(b) Eine Funktion $F \in C^1(G, \mathbb{R})$ heißt Stammfunktion von f in G, wenn

$$\nabla F(x) = f(x) \ \forall x \in G$$

gilt.

(c) Man nennt

$$P := -F$$

das Potential von f.

(d) Man nennt f konservativ in G oder ein Potentialfeld oder Gradienentenfeld in G, wenn f eine Stammfunktion hat.

7.2.8 1. Hauptsatz für Kurvenintegral

Sei f konservativ in G mit Stammfunktion F und Potential P dann gilt für jeden Weg \mathbb{K} in G mit Anfangspunkt $A \in G$ und Endpunkt $B \in G$:

$$\int_{\mathbb{K}} f = F(B) - F(A) = P(A) - P(B)$$

insbesondere ist also das Integral wegunabhängig.

7.2.9 Äquivalente Aussagen zu Stammfunktionen

(a) $\int_{\mathbb{K}} f \text{ ist wegunabhängig in } G$

(b) f besitzt eine Stammfunktion

(c) $\int_{\mathbb{K}} f = 0 \text{ für jede geschlossene Kurve } \mathbb{K}$

Bemerkung

Rechenregeln für zwei Kurven \mathbb{K} und \mathbb{L} :

(a) $\int_{\mathbb{K}+\mathbb{L}} f = \int_{\mathbb{K}} f + \int_{\mathbb{L}} f$

(b) $\int_{-\mathbb{K}} f = -\int_{\mathbb{K}} f$

7.2.10 Definition einfach zusammenhängende Gebiete

Ein Gebiet $G \subseteq \mathbb{R}^n$ heißt einfach zusammenhängend, wenn sich jede geschlossene Kurve in G innerhalb von G "auf einen beliebigen Punkt zusammenziehen lässt".

7.2.11 Sternförmige Gebiete

Eine Menge $G \subseteq \mathbb{R}^n$ heißt Sternförmig bezüglich $x_0 \in G$, wenn für alle $x \in G$ gilt, dass $\overline{x_0x} \subseteq G$ (d.h. jedes x ist von x_0 durch einen Streckenzug erreichbar). G ist ein sternförmiges Gebiet, wenn G offen und sternförmig ist.

Bemerkung

Gsternförmig $\Rightarrow G$ einfach zusammenhängend

7.2.12 2. Hauptsatz für Kurvenintegrale

Sei $f \in C^1(G, \mathbb{R}^n), G \subseteq \mathbb{R}^n$ ein Gebiet, dann gilt:

(a) Besitzt f eine Stammmfunktion in G, so erfüllt f in G die Integrabilitätsbedingung:

 $\frac{\partial f_l}{\partial x_k} = \frac{\partial f_k}{\partial x_l} \ k, l \in \{1, \dots, n\}$

D.h. die Jacobi-Matrix von f ist symetrisch.

Kurz:

f hat Stammfunktion $\Rightarrow f' = (f')^T$

(b) Ist G einfach zusammenhängend und erfüllt f die Integrabilitätsbedingung dann besitzt f eine Stammfunktion.

Kurz:

G einfach zusammenhängend $\wedge f' = (f')^T \Rightarrow \exists F : \nabla F = f$

7.2.13 Definition Rotation

Sei $G\subseteq\mathbb{R}^3$ offen und $f:G\to R^3$ partiell differentierbar, dann heißt die Funktion rot $f:G\to\mathbb{R}$ mit

$$\operatorname{rot} f(x) := \begin{pmatrix} \frac{\partial f_3}{\partial x_2} - \frac{\partial f_2}{\partial x_3} \\ \frac{\partial f_1}{\partial x_3} - \frac{\partial f_3}{\partial x_1} \\ \frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2} \end{pmatrix}$$

die Rotation von f in G.

Bemerkung

Im Fall $f:G\subseteq\mathbb{R}^2\to\mathbb{R}^2$ definiert man

$$\operatorname{rot} f(x_1, x_2) = \frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2}$$

Formal betrachtet man die Hilfsfunktion

$$\tilde{f}(x,y,z) := \begin{pmatrix} f_1(x,y) \\ f_2(x,y) \\ 0 \end{pmatrix}$$

7.2.14 Zusammenhang Rotation und Integrabilitätsbedingung

Ist $f \in C^1(G, \mathbb{R}^3), G$ ein Gebiet, dann gilt

- (a) f besitzt eine Stammfunktion \Rightarrow rot $f = \vec{0}$
- (b) G einfach zusammenhängend und rot $f = \vec{0} \Rightarrow f$ hat Stammfunktion.

7.2.15 Definition Linienintegral/Kurvenintegral 1. Art

Sei $\mathbb{K}: x(t), a \leq t \leq b$ ein Weg, und x stückweise differentierbar. Für ein $\phi \in C(T(\mathbb{R}), \mathbb{R})$ heißt

$$\int_{\mathbb{K}} \phi \ \mathrm{d}s := \int_a^b \phi(x(t)) \big\| \dot{x}(t) \big\| \ \mathrm{d}t$$

ein Linienintegral oder Kurvenintegral 1. Art von ϕ längs \mathbb{K} .

Bemerkung

(a) Mit $\phi \equiv 1$:

$$\int_{\mathbb{K}} 1 \, \mathrm{d}s = \int_{a}^{b} \phi(x, t) \|\dot{x}(t)\| \, \mathrm{d}t \int_{a}^{b} \|\dot{x}(t)\| \, \mathrm{d}t = l(\mathbb{K})$$

d.h. mit Linienintegralen können auch Weglängen berechnet werden, bzw. Weglängen berechnet man mit $\phi=1.$

(b) $\phi: [a, b] \to \mathbb{R}$ wähle $\mathbb{K}: x(t) = a + t \cdot (b - a)$ $t \in [0, 1]$:

$$\int_{\mathbb{K}} \phi \, \mathrm{d}s = \int_0^1 \phi(a + t \cdot (b - a)) \|b - a\| \, \mathrm{d}t = \int_a^b \phi(t) \, \mathrm{d}t$$

- (c) Linienintegrale hängen nicht von der Parameterdarstellung ab.
- (d) Man schreibt (falls Parameter-Darstellung bekannt ist) oft

$$\mathrm{d}s = ||\dot{x}(t)|| \ \mathrm{d}t$$

und nennt ds Bogensegment oder Liniensegment.

(e) Ist $f \in C(T(\mathbb{K}), \mathbb{R}^n)$ und $\dot{x}(t) \neq \vec{0} \ \forall t \in [a, b]$, dann ist:

$$\int_{\mathbb{K}} f = \int_{\mathbb{K}} f(x) \, dx = \int_{a}^{b} f(x(t))\dot{x}(t) \, dt$$

$$= \int_{a}^{b} \frac{f(x(t))\dot{x}(t)}{\|\dot{x}(t)\|} \|\dot{x}(t)\| \, dt$$

$$= \int_{a}^{b} f(x(t)) \cdot T(t) \|\dot{x}(t)\| \, dt$$

$$= \int_{\mathbb{K}} \phi \, ds \, \text{mit } \phi(t) = f(x(t)) \cdot T(t)$$

7.3 Bereichsintegrale

Hier: $f:G\subseteq\mathbb{R}^n\to\mathbb{R}$ und

$$\int_G f = \int_G f(x_1, \dots, x_n) \ d(x_1, \dots x_n)$$

sollen anschaulich bedeuten:

Welches Volumen schließt der Graph von f mit der Grundfläche G ein.

7.3.1 Intervalle im \mathbb{R}^n

Für $a,b \in \mathbb{R}^n$ bezeichnet die Menge

$$[a,b] := [a_1,b_1] \times \cdots \times [a_n,b_n]$$

einen (kompakten) Quader oder (kompaktes) Intervall im \mathbb{R}^n . Die Zahl

$$V([a,b]) = \begin{cases} \prod_{k=1}^{n} (b_k - a_k) & \text{, falls } b_k > a_k \text{ für } k = 1, \dots \\ 0 & \text{, sonst} \end{cases}$$

bezeichnet das Volumen, und die Zahlen $b_1 - a_1, \dots b_n - a_n$ als Kantenlängen.

7.3.2 Definition Zerlegung

Ist $[a,b] = [a_1,b_1] \times \cdots \times [a_n,b_n]$ und ist für jedes $k \in \{1,\ldots,n\}$ mit

$$T^{(k)}: a_k = x_0 < \dots < x_{l_k} = b_k$$

eine Zerlegung von $[a_k, b_k]$ dann heißt die Menge

$$I_{l_1,\dots,l_n} = [x_{l_1-1}^{(1)} - x_{l_1}^{(1)}] \times \dots \times [x_{l_1-1}^{(n)} - x_{l_1}^{(n)}]$$

mit $l_k \in \{1, \dots, l_k\}$ für $k \in \{1, \dots, n\}$ eine Zerlegung T von [a, b]. Das Feinheitsmaß von T ist

$$\mu(T) = \max_{l_1, \dots, l_n} V(I_{l_1, \dots, l_n})$$

Allgemein ist ein Intervall von der Form

$$[x_i^{(1)}, x_{i+1}^{(1)}] \times [x_j^{(2)}, x_{j+1}^{(2)}]$$

mit $i \in \{0, \dots, l_1 - 1\}$ und $j \in \{0, \dots l_2 - 1\}$.

7.3.3 Definition Riemann-Summe

Sei T eine Zerlegung eines kompakten Quaders $I \subseteq \mathbb{R}^n$ mit Teilquadern I_1, \ldots, I_l mit $l = l_1 \cdot \cdots \cdot l_n$ (entstehen indem man die Zerlegungsintervalle fortlaufend durchnummeriert) und Zwischenpunkte $\xi = (\xi_1, \ldots, \xi_l)$ mit $\xi_i \in I_i (i \in \{l, \ldots, n\})$ und $f: I \to \mathbb{R}$ (d.h. Skalarwertige Funktion). Dann heißt

$$S(f, T, \xi) = \sum_{i=1}^{l} f(\xi_i) f(\xi_i) \mu(I_1)$$

die Riemann-Summe von f bezüglich T und ξ .

7.3.4 Riemann integrierbare Bereichsintegrale

Sei $f:I\to\mathbb{R}$ eine Funktion, $I\subseteq\mathbb{R}^n$ ein Quader. Gibt es eine Zahl $\alpha\in\mathbb{R}$, so dass für jede Folge von Zerlegungen $(T_k)_{k=1}^\infty$ mit Zwischenpunkten $(\xi_k)_{k=1}^\infty$ mit lim $\mu(T_k)=0$ die Riemann-Summe $S(f,T_k,\xi_k)$ gegen α konvergiert für $k\to\infty$ dann heißt f Riemann integrierbar über I und α nennen wir das Bereichsintegral von f über I.

Schreibweise

$$\alpha = \int_{I} f(x) \, \mathrm{d}x$$

Zur Schreibweise: z.B. n = 2 auch:

$$\alpha = \iint_I f(x, y) \ \mathrm{d}(x, y) := \int_I f(x, y) \ \mathrm{d}(x, y)$$

oder Angabe von I an dem Integral:

$$\alpha = \int_{[a_1,b_1]\times[a_2,b_2]} f(x,y) \ d(x,y)$$

7.3.5 Bereichsintegrale über beschränkte Mengen

Sei $M \subseteq \mathbb{R}^n$ beschränkt und $I = [a_1, b_1] \times \cdots \times [a_n, b_n]$ ein Quader mit $M \subseteq I$. Dann heißt $f: M \to \mathbb{R}$ über M integrierbar wenn die Funktion

$$\tilde{f}: I \to \mathbb{R} \text{ mit } \tilde{f}(x) = \begin{cases} f(x) &, x \in M \\ 0 &, \text{ sonst} \end{cases}$$

über I Bereichs-Riemann integrierbar ist. Wir definieren:

$$\int_{M} f(x) \, \mathrm{d}x = \int_{I} \tilde{f}(x) \, \mathrm{d}x$$

7.3.6 Cavalieri

Sei $M \subseteq \mathbb{R}^n (n > 1)$ und bezeichne

$$M' = \{x \in \mathbb{R} : (x, y)^T \in M \text{ für ein } y \in \mathbb{R}^{n-1}\}\$$

und für $x \in M'$

$$M(x) = \{ y \in \mathbb{R}^{n-1} : (x, y)^{\in} M \}$$

dann gilt für $f \in C(\bar{M})$ (falls M, M', M(x) sogenannte messbare Mengen sind, d.h $\mu(M), \mu(M', \mu(X))$ sind definiert)

$$\int_{M} f(x,y) d(x,y) = \int_{M'} \left[\int_{M(x)} f(x,y) dy \right] dx$$

 $mit \ x \in \mathbb{R} \ und \ y \in \mathbb{R}^{n-1}.$

7.3.7 Fubini

Im Fall n=2 steht nach Cavalieri ein Parameterintegral und mit Fubini gilt:

$$\int_{M'} \int_{M(x)} f(x, y) \, dy \, dx = \int_{\tilde{M}'} \int \tilde{M}(y) f(x, y) \, dx \, dy$$

wobei $\tilde{M}', \tilde{M}(y)$ analog zu M', M(x) bezüglich y definiert sind.

7.3.8 Definition Meßbare-Mengen

Eine beschränkte Menge $M \subseteq \mathbb{R}^n$ heißt (Jordan-) meßbar, wenn

$$\int_{M} 1 \, \mathrm{d}x$$

existiert, in diesem Fall nennt man

$$\mu(M) := \int_M 1 \, \mathrm{d}x$$

das Volumen von M. Ist $\mu M = 0$, so nenntn man M eine Nullmenge.

7.3.9 Definition 2×2 Determinante

Für

$$A = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$

definieren wir die Funktion

$$\det: \mathbb{R}^{2\times 2} \to \mathbb{R}$$

durch $A\mapsto \det(A)=a\cdot d-c\cdot b$ und nennen die Funktionsauswertung die Determinante von A.

7.3.10 Mehrdimensionale Substitutonsregel

Sei $M \subseteq \mathbb{R}^n$ meßbar und $G \supseteq M$ ein Gebiet. Ist $T \in C^1(G, \mathbb{R}^m)$ und gilt $\det(T'(x)) \neq 0 \ \forall x \in M \setminus N$ für eine Nullmenge N, dann gilt:

$$\int_{T(M)} f(x_1, \dots, x_n) \, d(x_1, \dots, x_n) = \int_M f(T(u_1, \dots, u_n)) | \det(T'(u_1, \dots, u_n)) | \, d(u_1, \dots, u_n)$$

7.4 Integralsätze in der Ebene

7.4.1 Positiv berandete Menge

Eine beschränkte Menge $B \subseteq \mathbb{R}^2$ heißt positiv berandet durch einen Weg, (Randkurve) \mathbb{K} , wenn $T(\mathbb{K}) = \partial B$ ist und wenn \mathbb{K} eine stückweise stetig differentierbare Parameterdarstellung $x : [a, b] \to \mathbb{R}^2$ hat mit:

- (i) $\dot{x}(t) \neq 0$ für fast alle $t \in [a, b]$
- (ii) der Normalenvektor von x(t) zeigt nach außen

7.4.2 Satz von Green

Ist $B \subseteq \mathbb{R}^2$ positiv berandet, dann gilt für alle $f \in C^1(B, \mathbb{R}^2)$

$$\iint_{B} \frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \ \mathrm{d}(x,y) = \int_{\partial B} f(x,y) \ \mathrm{d}(x,y)$$

7.4.3 Definition Normalbereiche

Eine Menge $B \subseteq \mathbb{R}^2$ heißt Normalbereich bezüglich der x-Achse (bzw. y-Achse), wenn es ein Intervall [a, b] gibt und die Funktion φ, ψ mit

$$B = \{(x, y)^T : a \le x \le b, \phi(x) \le y \le \psi(x)\}\$$

7.4.4 Gauß'sche Integralsätze in der Ebene

Sei $B \subseteq \mathbb{R}^2$ ein positiv berandeter Bereich und $f \in C^1(B, \mathbb{R}^2)$ bzw. $f \in C^2(B, \mathbb{R}^2)$ und bezeichne ν die nach außen gerichtete Normale auf ∂B . Dann gelten die Integralsätze:

(i)
$$\iint_{B} (\operatorname{div} f)(x,y) \ \mathrm{d}(x,y) = \int_{\partial B} f \cdot \nu \ \mathrm{d}s$$

(ii)
$$\iint_{B} f_{1}(x,y)\Delta f_{2}(x,y) - f_{2}(x,y)\Delta f_{1}(x,y) \ d(x,y) = \int_{\partial B} f_{1}\frac{\partial f_{2}}{\partial \nu} - f_{2}\frac{\partial f_{1}}{\partial \nu}$$

7.5 Oberflächen
integrale und Integralsätze im \mathbb{R}^3

7.5.1 Definition Reguläre Flächen

Sei $B \subseteq \mathbb{R}^2$ und $x : B \to \mathbb{R}^3$,

$$x(u,v) = \begin{pmatrix} x_1(u,v) \\ x_2(u,v) \\ x_3(u,v) \end{pmatrix}$$

eine stetig diffbare Funktion, für die $x_u = \frac{\partial x}{\partial u}$ und $x_v = \frac{\partial x}{\partial v}$ linear unabhängig sind (d.h. die Vektoren x_u und x_v zeigen nicht in die gleiche oder entgegengesetzte Richtung) (für fast alle $(u,v)^T \in B$) die Menge der Ausnahmen muss $\tilde{B} \subset B$ muss $\mu \tilde{B} = 0$ erfüllen.

Das Bild einer solchen Funktion, d.h. die Menge

$$A = x(B) := \{x(u, v) | (u, v)^T \in B\}$$

heißt dann eine reguläre Fläche im \mathbb{R}^3 und die Funktion x heißt die Parametrisierung von A.

Man nennt

- (i) $x_u(u, v), x_v(u, v)$ die Tangentialvektoren in $(u, v)^T$
- (ii) $n(u,v) := \frac{(x_u \times x_v)(u,v)}{\|(x_u \times x_v)\|(u,v)}$
 - Vektor mit Länge 1 der Senkrecht auf den Tangentialvektoren steht
 - Rechnerisch zu enthalten durch das Kreuzprodukt der Tangentialvektoren

der (Flächen-) Normalenvektor in $(u,v)^T$ falls $x_u(u,v)$ und $x_v(u,v)$ linear unabhängig sind.

Ist B positiv berandet durch $\mathbb{K}: y(t), a \leq t \leq b$ so nennt man A positiv berandet durch Kurve mit Parameterdarstellung $x(y(t)), a \leq t \leq b$.

7.5.2 Defintion Oberflächenintegral

Sei A eine reguläre Fläche im \mathbb{R}^3 mit Parameterdarstellung $x:B\to\mathbb{R}^3, B\subseteq\mathbb{R}^2$ meßbar und x injektiv auf $B\setminus N$ für eine Nullmenge N.

(a) Für jedes $f \in C(A, \mathbb{R})$ heißt

$$\iint_A f \cdot do = \iint_B f(x(u,v)) \cdot \left\| (x_u \times x_v)(u,v) \right\| d(u,v)$$

das Oberflächen
integral von füber A und man nennt

$$do = ||(x_u \times x_v)(u, v)|| d(u, v)$$

das Oberflächenelement.

(b) $O(A) := \iint_A 1$ heißt Oberflächen
inhalt von A.

Bemerkung

- 1. Das Oberflächenintegral hängt nicht von der Parameterdarstellung ab.
- 2. Ein Summand des Obeflöchenintegrals sieht so aus:

$$f(x(u,v)) \cdot ||(x_u \times x_v)(u,v)|| \cdot \Delta u \Delta v$$

7.5.3 Satz von Stokes

Sei A eine reguläre Fläche im \mathbb{R}^3 und ∂A positiv berandet. Dann gilt für $f\in C^1(A,\mathbb{R}^3)$

$$\iint_A \operatorname{rot} f \cdot n \, do = \int_{\partial A} f$$

Mit n:

- (i) Normalenvektor
- (ii) Länge 1
- (iii) Senkrecht auf Fläche
- (iv) Immer auf der gleichen Seite von A

also

$$\iint_{B} \operatorname{rot}(f(x(u,v))) \cdot n(x(u,v)) \cdot \|(x_{u} \times x_{v})(u,v)\| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d}(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ \mathrm{d$$

mit

$$n(x(u,v)) = \pm \frac{(x_u \times x_v)(u,v)}{\|(x_u \times x_v)(u,v)\|}$$

7.5.4 Divergenzsatz von Gauß

Sei $M\subseteq\mathbb{R}^3$ kompakt und ∂M ergebe sich als endliche Vereinigung von regulären Flächen, deren Normale n (normiert) nach Außen zeigt. Dann gilt für jedes $f\in C^1(M,\mathbb{R}^3)$

$$\iiint_M \operatorname{div} f = \iint_{\partial M} f \cdot n \, \operatorname{d}\! o$$

Kapitel 8

Lineare Algebra

8.1 Der Begriff Vektorraum

8.1.1 Definition Vektorraum

Gegeben sei eine abelsche Gruppe V und ein Körper \mathbb{K} (bei uns wird $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$ gelten) und eine Abbildung:

$$\cdot : \mathbb{K} \times V \to V, \cdot (\alpha, x) \mapsto \alpha \cdot x =: \alpha x \text{ (Skalierung)}$$

Dann nennt man V einen Vektorraum über \mathbb{K} , wenn die folgenden Vektorraumaxiome erfüllt sind:

(V1)
$$\alpha \cdot (\beta \cdot v) = (\alpha \cdot \beta) \cdot v$$
 (Assoziativgesetz)

(V2)
$$\alpha \cdot (x+y) = (\alpha \cdot x) + (\alpha \cdot y) = \alpha x + \alpha y$$

 $(\alpha + \beta) \cdot x = \alpha x + \beta x$ (Distributivgesetzte)

(V3)
$$1 \cdot x = x$$
 für die $1 \in \mathbb{K}$ (Gesetz der Eins)

In einem Vektorraum V über \mathbb{K} nennt man Elemente aus V Vektoren, die Elemente aus \mathbb{K} Skalare, \mathbb{K} den Skalarkörper und "·" die Multiplikation mit Skalaren. Die "+" Verknüpfung in V die V die Vektoraddition und das neutrale Element $\vec{0} \in V$ den Nullvektor.

8.1.2 Rechenregeln

Ist V ein Vektorraum über \mathbb{K} , so gilt für $\alpha, \beta \in \mathbb{K}$ und $x, y \in V$:

1. (a)
$$0 \cdot x = \vec{0} = \alpha \vec{0}$$

(b)
$$\alpha \cdot x = \vec{0} \Rightarrow \alpha = 0 \lor x = \vec{0}$$

2.

$$\alpha(-x) = (-\alpha)x = -(\alpha x)$$

8.2 Unterräume

8.2.1 Definition Unterraum

Eine Teilmenge U eines Vektorraums V über $\mathbb K$ heißt Unterraum von V, wenn U bezüglich der in V definierten Vektoraddition und Skalierung ein Vektorraum ist.

8.2.2 Unterraumkriterien

Für $U\subseteq V$ und $U\neq\emptyset$ sind folgende Aussagen äquivalent

- (a) U ist ein Unterraum von V
- (b)

$$x, y \in U, \alpha, \beta \in \mathbb{K} \Rightarrow \alpha x + \beta y \in U$$

(c)
$$(x, y \in U \Rightarrow x + y \in U) \land (\alpha \in K, x \in U \Rightarrow \alpha x \in U)$$

8.2.3 Durchschnitt von Unterräumen

Der Durchschnitt von Unterräumen ist wieder ein Unterraum, d.h.:

$$U_i \ i \in J \ (J \ \text{eine Indexmenge})$$
sind Unterräume $\Rightarrow \bigcap_{i \in J} U_i$ ist Unterraum

8.2.4 Defintion lineare Hülle

 \bullet Ist M eine beliebige Teilemenge eines Vektorraums. Dann heißt

$$\mathrm{span}(M) := \bigcap_{U \in S} U \text{ mit } S := \{U \subseteq V : U \text{ ist Unterraum}, U \supseteq M\}$$

der von M aufgespannte Unterraum oder die lineare Hülle von M.

 \bullet Ist Uein Unterraum und $M\subseteq V$ mit $\operatorname{span}(M)=U,$ dann heißt Mein erzeugendes System von U.

Bemerkung

- 1. $\operatorname{span}(M)$ ist der kleinste Unterraum, der M enthält
- 2. $\operatorname{span}(\emptyset) = \vec{0}$
- 3. $M \subseteq N \Rightarrow \operatorname{span}(M) \subseteq \operatorname{span}(N)$
- 4. Ist U ein Unterraum, dann gilt $U = \operatorname{span}(U) = \operatorname{span}(U \setminus \{\vec{0}\})$

8.2.5 Definition Linearkombination

Ist V ein Vektorraum über \mathbb{K} und $x_1, \ldots, x_n \in V, \alpha_1, \ldots, \alpha_n \in \mathbb{K}$ dann heißt

$$\sum_{k=1}^{n} a_k x_k \in V$$

eine Linearkombination von x_1, \ldots, x_n (mit Koeffizienten $\alpha_1, \ldots, \alpha_n$).

8.2.6 Zusammenhang lineare Hülle — Linearkombination

Sei V ein Vektorraum über \mathbb{K} und $M\subseteq V$, dann gilt span M ist die Menge aller Linearkombinationen, d.h.

$$\mathrm{span}(M) = \{\alpha_1 x_1 + \dots + \alpha_n x_n | x \in \mathbb{N}, x_1, \dots, x_n \in M, \alpha_1, \dots, \alpha_n \in \mathbb{K}\}\$$

im Fall $M = \{x_1, \ldots, x_n\}$ gilt:

$$\mathrm{span}(M) = \{\alpha_1 x_1 + \dots + \alpha_n x_n | \alpha_1, \dots \alpha_n \in \mathbb{K}\}\$$

8.3 Lineare Unabhängigkeit

8.3.1 Definition Lineare Unabhängigkeit

Sei V ein Vektorraum über \mathbb{K}

(a) Eine endliche Liste $a_1, \ldots, a_n \in V$ heißt linear unabhängig (l.u.), wenn gilt

$$\alpha_1 a_1 + \dots + \alpha_n a_n = \vec{0} \Rightarrow \alpha_1 = \dots = \alpha_n = 0$$

Andernfalls heißen a_1, \ldots, a_n linear abhängig (l.a.).

(b) Eine beliebige Teilmenge $M \subseteq V$ heißt linear unabhängig, wenn für eine beliebige endliche Liste $a_1, \ldots, a_n \in M$ gilt, dass diese linear unabhängig sind. Andernfalls ist M linear abhängig.

8.3.2 Rechenregeln für lineare Unabhängigkeit

Für Vektoren $a, a_1, \ldots, a_n, b_1, \ldots, b_n$ eines Vektorraumes V gilt:

(a) $al.u. \Leftrightarrow \{a\} l.u. \Leftrightarrow a \neq \vec{0}$

Bemerkung:

 a_1, a_2 mit $a_1 = a_2$ ist linear unabhängig, aber $M = \{a, a\} = \{a\}$ ist nur dann linear abhängig wenn $a = \vec{0}$.

(b) a_1, \ldots, a_n linear abhängig $\Rightarrow a_1, \ldots, a_n, b_1, \ldots, b_k$ sind linear abhängig für $k \geq 0$.

- (c) a_1, \ldots, a_n linear unabhängig $\Rightarrow a_1, \ldots, a_k$ linear unabhängig für $k \leq n$
- (d) a_1, \ldots, a_n linear unabhängig $\Rightarrow a_1, \ldots a_n$ sind paarweise verschieden
- (e) Für $n \geq 2$ sind a_1, \ldots, a_n genau dann linear abhängig, wenn ein Vektor als Linearkombination darstellbar ist. D.h.:

$$\exists i \in \{1, \dots, n\} : a_i = \sum_{k=1, k \neq i}^n \alpha_k a_k \text{ für } \alpha_1, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_n \in \mathbb{K}$$

- (f) Sind a_1, \ldots, a_n linear unabhängig und a_1, \ldots, a_n, a linear abhängig, so ist a die linear Kombination von a_1, \ldots, a_n und die Koeffizienten sind eindeutig.
- (g) Ist a eine Linearkombination von a_1, \ldots, a_n und jeder Vektor a_k eine Linearkombination von b_1, \ldots, b_m so ist a eine Linearkombination von b_1, \ldots, b_m

Bemerkung

Für Teilmengen M, N eines Vektorraums V gilt:

- (a) M l.a. $M \subseteq N \Rightarrow N$ l.a.
- (b) $M = \emptyset \Rightarrow M$ l.u.
- (c) $\vec{0} \in M \Rightarrow M$ l.a.

Für $V = \mathbb{R}^3$

- (a) a_1, a_2, a_3 seien linear abhängig und a_1, a_2 linear unabhängig
 - \Leftrightarrow also a_3 ist in der von a_1 und a_2 aufgespannten Ebene
 - \Rightarrow Spat mit Kanten a_1, a_2, a_3 hat Volumen 0
 - $\Leftrightarrow \det(a_1, a_2, a_3) = 0$
- (b) a_1, a_2 linear abhängig $\Rightarrow a_2$ ist auf der von a_1 aufgespannten Gerade

$$\Rightarrow \det(a_1, a_2) = 0$$

8.4 Basis und Dimension

8.4.1 Definition Hamel-Basis

- (a) Eine Teilmenge B eines Vektorraums V heißt (Hamel-) Basis von V, wenn gilt
 - (i) B ist linear unabhängig
 - (ii) $V = \operatorname{span}(B)$

Kurz:

 \boldsymbol{B} ist ein linear unabhängiges Erzeuger-System von \boldsymbol{V}

(b) Man sagt Vektoren b_1,\dots,b_n bilden eine Basis von V, wenn gilt $B=\{b_1,\dots,b_n\}$ ist eine Basis von V.

Teil III Beweisansätze

Kapitel 9

HM 1

9.1 Grenzwerte

9.1.1 Eindeutigkeit des Grenzwert einer Folge

Zeige, dass Grenzwert a = Grenzwert b, nahrhafte 0

9.1.2 Konvergente Folgen sind beschränkt

Nahrhafte 0, Dreiecks-ugl.

9.1.3 Grenzwertrechenregeln

Nahrhafte 0, Dreiecks-ugl. $a_n \leq \gamma \ \forall n \Rightarrow a \leq \gamma$ Ausgehend von a über nahrh. 0 zu Def Konvergenz $a_n \leq b_n \ \forall n \Rightarrow a \leq b$ Definiere Hilfsfolge, argumentiere nach s.o Sandwich-Theorem Zeige, dass $-\varepsilon < c_n < \varepsilon$ (Quasi Epsilon-Schlauch)

9.1.4 Monotoniekriterium

 $\mathrm{Da}\,|a_n| < c \, \forall n,$ argumentiere über das Supremum der Menge, die aus a_n besteht

9.1.5 Grenzwert einer konv. Folge = Grenzwert jeder Teilfolge

Def. Konvergenz + Def Teilfolge

9.1.6 Charakterisierung lim und lim

Argumentiere über Eigneschaften sup und inf

9.1.7 Folge konv. $\overline{\lim} = \underline{\lim}$

Hin: Eindeutigkeit des Grenzwert; Rück: Charakterisierung lim Sup und lim Inf

9.1.8 Bolzano-Weierstraß

Zunächst für reelle Folge (trivial), dann für komplex: Realteil ist klar, Imaginärteil: Teilfolge konstruieren

9.1.9 Cauchykriterium

Hin: nahrhafte 0; Rück: zeige Beschränktheit, dann folge daraus, dass ein Häufungswert existiert und benutze diesen als Grenzwert-Kandidat

9.1.10 Reihe konv. Folge ist Nullfolge

Cauchy für Reihen

9.1.11 GrenzwertRR für Reihen

GrenzwertRR für Folgen

9.1.12 Reihe konv g. 0

Restreihe als Differenz darstellen

9.1.13 Leibniz

Cauchy für Reihen

9.1.14 Absolut konv. \Rightarrow konv.

Cauchy und Dreiecks-ugl.

9.1.15 Majorantenkriterium

Cauchy

9.1.16 Minorantenkriterium

 ${\bf Kontradiktion\ von\ Majorantenkriterium}$

9.1.17 Wurzelkriterium

Majorantenkrit: geom. Summe über $Q:=q+\varepsilon<1,$ in q das Wurzelkriteriumeinsetzen, Charakterisierung \varlimsup

9.1.18 Quotientenkriterium

Majorantenkrit: setze in q das Quotientenkriteriumein und Argumentation über $\overline{\lim}$

9.1.19 Hadamard

Wurzelkriterium+ Fallunterscheidung für Sonderfälle

9.1.20 Differenzieren / Integrieren von Potenzreihen

Wurzelkriterium

9.1.21 Lemma zu sin, cos und exp

Cauchy-Produkt + Definitionen

9.1.22
$$e^z \neq 0$$
 und $e^{-z} = \frac{1}{e^z}$

Inverses Element der Multiplikation

9.1.23 Pythagoras

3. binomische Formel

9.1.24
$$e^x > 0 \ \forall x \in \mathbb{R}$$

Betrachte $x \geq 0$, angeordneter Körper

$$9.1.25 \quad 1 + x \le e^x \ \forall x \in \mathbb{R}$$

Bernoulli

9.1.26
$$x < y \Rightarrow e^x < e^y$$

nahrhafte 0

9.1.27 Folgenkriterium

Hin: Def. Folgenkonv. und dann Def Funktionsgrenzwert einsetzen; Rück: Wähle versch. δ und zeige Widerspruch

9.1.28 Cauchy für Funktionen

 Hin: Def. Funktions Grenzwert +nahrhafte
 0; Rück: Cauchy für Folgen

9.1.29 Grenzwerte an Intervallgrenzen

Argumentiere über Supremum / Infimum

9.1.30 Verknüpfungen stetiger Funktionen stetig

Folgenkriterium

9.1.31 Potenzreihen sind innerhalb des Konvergenzradius stetig

Abschätzung: $\exists r>0: |x-x_0$ bzw. $x_1|\leq r,$ dann einfach $\left|f(x)-f(x_1)\right|$ nach oben abschätzen

9.1.32 Umgebung pos. Funktionswerte

Wähle $\varepsilon = \frac{f(x_0)}{2}$, Def. Stetigkeit

9.1.33 Zwischenwertsatz

Definiere $x_0 := \sup\{x \in [a,b] : f(x) \leq y\}$ und zwei Hilfsfolgen, die gegen x_0 konvergieren

9.1.34 Existenz \log

Zeigen exp ist bijektiv (Zwischenwertsatz)

9.1.35 Beschränktheit stetiger Funktionen

Annahme f nicht beschränkt Folgenkriterium

9.1.36 Weierstraß existenz min bzw. max

Zeigen das $\sup = \max$

Kapitel 10

HM 2

10.1 Integration in mehreren Veränderlichen

10.1.1 Fubini

Hilfsfunktion:

$$g(u) = \int_{\alpha}^{\beta} \int_{a}^{b} f(x,t) dt dx - \int_{a}^{b} \int_{\alpha}^{\beta} f(x,t) dx dt$$

zeigen dass $g'(u) \equiv 0$ und g(x) = g(a) = 0.

10.1.2 Leibniz Regel

Hilfsfunktion:

$$G(x, a, b) = \int_{a}^{b} f(x, t) dt$$

 ∇G berechenen, innere Ableitung.

10.1.3 Beweis-Idee Kurvenintegrale (Substitutionsregel)

Riemann Summe, Mittelwertsatz, Abschätzung für verschiedene ξ , da f stetig.

10.1.4 1. Hauptsatz für Kurvenintegrale

Kurvenintegral mit Parametrisierung, integrant als Ableitung darstellen.

10.1.5 Äquivalente Aussagen für Kurvenintegrale

Kurven kombinieren/aufteilen um aus mehreren Kurven eine geschlossene bzw. aus einer geschlossenen Kurven mehrer mit gleichem Anfangs-/Endpunkt zu erzeugen.

10.1.6 2. Hauptsatz für Kurvenintegrale

- 1. f stetig, $F \in \mathbb{C}^2$, Satz von Schwarz
- 2. Nur für Sternförmiges Gebiet.

 ${\cal F}$ als Integral von x_0 (Mittelpunkt von Sternförmigem Gebiet) zu xdarstellen und Weg Parametrisieren.

Ableitung von F nach x_k berechnen, Skalarprodukt als Summe schreiben, Produktregel, Integrabilitätsbedinung anwenden, als Ableitung nach t darstellen.

10.1.7 Gauß'sche Integralsätze in der Ebene

1. Hilfsfunktion:

$$h(x,y) = \begin{pmatrix} -f_2(x,y) \\ f_1(x,y) \end{pmatrix}$$

zeigen dass $\iint \operatorname{div} h = -\iint \operatorname{rot} f$, Stokes anwenden, f durch h darstellen, Normalenvektor normieren, Linienintegral.

2. Hilfsfunktion:

$$h(x,y) = f_1(x,y)\nabla f_2(x,y) - f_2(x,y)\nabla f_1(x,y)$$

 $\operatorname{div} h$ und $h\nu$ ausrechnen und Gleichheit über ersten Teil von Gauß

$egin{aligned} ext{Teil IV} \ ext{\bf Appendix} \end{aligned}$

Kapitel 11

Grenzwerte

11.1 Konvergenzkriterien

Zusammenfassung verschiedener Konvergenzkriterien nach Wikipedia (Seite: Konvergenzkriterium):

Kriterium	nur f. mon. F.	Konv.	Div.	abs. Konv.	Absch.	Fehlerabsch.
Nullfolgenkriterium			X			
Monotoniekriterium		X		X		
Leibniz-Kriterium	X	X			X	X
Cauchy-Kriterium		X	X			
Abel-Kriterium	X	X				
Dirichlet-Kriterium	X	X				
Majorantenkriterium		X		X		
Minorantenkriterium			X			
Wurzelkriterium		X	X	X		X
Integralkriterium	X	X	X	X	X	
Cauchy-Kriterium	X	X	X	X		
Grenzwertkriterium		X	X			
Quotientenkriterium		X	X	X		X
Gauß-Kriterium		X	X	X		
Raabe-Kriterium		X	X	X		
Kummer-Kriterium		X	X	X		
Bertrand-Kriterium		X	X	X		
Ermakoff-Kriterium	X	X	X	X		

Kapitel 12

Integration

$12.1 \quad \hbox{Riemann-Integrier barkeit}$

Kriterium	Integrierbar	Nicht Integrierbar
Funktion nicht beschränkt		X
Verknüpfung Riemann-Integrierbarer Funktionen	X	
Stetige Funktion	X	
Endliche vielen Änderungen zu Riemann-Int.barer Funktion	X	
Monotone Funktion	X	