MTH 9831. LECTURE 11

ELENA KOSYGINA

ABSTRACT. After a brief discussion of a finite expiration American put we shall turn to processes with jumps.

- 1. Two words about a finite expiration American put.
- 2. Poisson process (see Lecture 6 of the summer probability course).
- 3. Compound Poisson process.
- 4. Jump processes as integrators.
- 5. Quadratic and cross variation of jump process.
- 6. Itô-Doeblin formula for jump process (d = 1).

1. FINITE EXPIRATION AMERICAN PUT.

Return for a moment to a perpetual American put option. Its price v(x) when S(0) = x, does not depend on t and the optimal exercise time is the hitting time τ_{L_*} of level L_* , where L_* is given explicitly and depends only on K, σ , and r.

Continuation set: $C = \{(t,x) : t \ge 0, x \ge 0, v(x) > (K-x)_+\},$ where v(x) satisfies the equation

(1)
$$rv(x) - rxv'(x) - \frac{1}{2}\sigma^2 x^2 v''(x) = 0.$$

Stopping set: $S = \{(t,x) : t \ge 0, x \ge 0, v(x) = (K-x)_+\}$, where v(x) statisfies the equation

(2)
$$rv(x) - rxv'(x) - \frac{1}{2}\sigma^2 x^2 v''(x) = rK.$$

The inclusion of the time variable in the description of S and C is superficial, as everything is determined by the value of x. But for the finite expiration American put option, the price v(t,x) and both S and C, will depend on t. The equations (1) and (2) will be replaced by parabolic equations, and L_* will depend on the time to expiration.

We shall continue to work within BSM framework and now consider an American put with strike K and expiration T.

Definition 1.1. Let $t \in [0,T]$ and $x \ge 0$ be given and S(t) = x. For each $u \in [t,T]$ denote by $\mathcal{F}_u^{(t)}$ the σ -algebra generated by the price process $(S(v))_{t \le v \le u}$ and let $\mathcal{T}_{t,T}$ be the set of all stopping times for the filtration $\{\mathcal{F}_u^{(t)}\}_{t \le u \le T}$ taking values in $[t,T] \cup \{\infty\}$. The time t price oan American put option with strike K and expiration T is defined to be

$$v(t,x) = \max_{\tau \in \mathcal{T}_{t,T}} \widetilde{\mathbb{E}}^{t,x} \left[e^{-r(\tau-t)} (K - S(\tau)) \mathbb{1}_{\{\tau < \infty\}} \right].$$

Analytical characterization of v(t, x). It is not difficult to believe (by the analogy with the perpetual American put) that the following statement holds.

Theorem 1.2. Let v(t,x) be the time t price of the American put with strike K and expiration T. Then v(t,x) satisfies the linear complementary conditions.

(3)
$$v(t,x) \ge (K-x)_+, \quad t \in [0,T], \ x \ge 0$$

(4)
$$rv(t,x) - v_t(t,x) - rxv_x(t,x) - \frac{1}{2}\sigma^2 x^2 v_{xx}(t,x) \ge 0, \quad t \in [0,T], \ x \ge 0$$

(5) for each
$$t \in [0,T]$$
 and $x \ge 0$, equality holds in either (3) or (4).

We shall not give a proof (see Section 8.4.1 of the textbook for more details). The idea is that the holder of the put option has to wait until the stock price falls to a certain level below K. This level L, will now depend on the time left to expiration, i.e. L = L(T - t). Clearly,

$$\lim_{T \to \infty} L(T) = L_* \quad \text{and} \quad L(0) = K.$$

It is also plausible that L(T-t) should be non-decreasing in t: the less time is left, the higher is the level at which the owner should be willling to exercise. No formula for L(T-t) is known.

Let us define a stopping set

$$S = \{(t, x) : t \in [0, T], x \ge 0, v(t, x) = (K - x)_+\},\$$

and a continuation set

$$C = \{(t, x) : t \in [0, T], x > 0, v(t, x) > (K - x)_{+}\}.$$

Smooth pasting conditions are:

- (6) $v(t, L(T-t)_+) = v(t, L(T-t)_-)$ (v is continuous across x = L(T-t))
- (7) $v_x(t, L(T-t)_+) = v_x(t, L(T-t)_-) = -1$ (v_x is continuous across x = L(T-t) for $0 \le t < T$)

We note that v_t and v_{xx} are not continuous across the free boundary.

Theorem 1.3. There is a unique bounded function v(t, x) on $t \in [0, T]$, $x \ge 0$, and a curve x = L(T-t), $t \in [0, T]$, that satisfy the equations

$$\begin{cases} rv - v_t - rxv_x - \frac{1}{2}\sigma^2 x^2 v_{xx} = 0, & x \ge L(T - t) \\ v(t, x) = (K - x), & 0 \le x \le L(T - t) \end{cases}$$

the smooth pasting conditions (6) and (7), the terminal conditions L(0) = K and $v(T, x) = (K - x)_+$, and the asymptotic condition

$$\lim_{x \to \infty} v(t, x) = 0.$$

Probabilistic characterization of v(t,x). We shall only state the main result. See Section 8.4.2 for more details.

Theorem 1.4. Let $(S(u))_{t\leq u\leq T}$ be the stock price process starting at S(t)=x with the stopping set

$$S := \{(t, x) : t \in [0, T], x \ge 0, v(t, x) = (K - x)_{+}\}.$$

Let $\tau_* = \min\{u \in [t,T] : (u,S(u)) \in S\}$, where $\tau_* = \infty$ if (u,S(u)) does not enter \mathcal{S} for any $u \in [t,T]$. Then $(e^{-ru}v(u,S(u)))_{t\leq u\leq T}$ is a supermartingale under $\widetilde{\mathbb{P}}$ relative to $(\mathcal{F}_u^{(t)})_{t\leq u\leq T}$ and the stopped process $(e^{-r(u\wedge \tau_*)}v(u\wedge \tau_*,S(u\wedge \tau_*)))_{t\leq u\leq T}$ is a martingale.

2. Poisson process.

Review refresher Lecture 6 or textbook section 11.2.

3. Compound Poisson process.

Definition 3.1. Let $(N(t))_{t\geq 0}$ be a Poisson process and Y_1, Y_2, \ldots be i.i.d. random variables independent of $(N(t))_{t\geq 0}$. The compound Poisson process $(Q(t))_{t\geq 0}$ is defined as follows:

$$Q(t) = 0$$
, if $N(t) = 0$; $Q(t) = \sum_{i=1}^{N(t)} Y_i$, if $N(t) \ge 1$.

A compound Poisson process has stationary and independent increments, but the distribution of Q(t+s) - Q(t) is not Poisson, it depends on the distribution of Y_1 . The following theorem generalizes Lemma 4 of the summer Lecture 6 to compound Poisson processes.

Theorem 3.2. Let $(Q(t))_{t\geq 0}$ be a compound Poisson process and assume that all quantities below are well-defined. Set $\beta = \mathbb{E}Y_1$; $\sigma^2 = VarY_1$, and $M_{Y_1}(u) = \mathbb{E}(e^{uY_1})$. Then

- (i) $\mathbb{E}(Q(t)) = \beta \lambda t$;
- (ii) $Var(Q(t)) = (\sigma^2 + \beta^2)\lambda t = \lambda t(\mathbb{E}Y_1)^2;$
- (iii) $M_{Q(t)}(u) = \exp(\lambda t(\mu_Y(u) 1));$
- (iv) The compensated compound Poisson process $Q(t) \beta \lambda t$, $t \ge 0$ is a martingale (w.r.t its natural filtration).

The proof is done by conditioning on the value of N(t) and is left as an exercise.

Theorems 6 and 7 from the summer Lecture 6 have the following generalizations.

Theorem 3.3. Let $y_1, ..., y_M \in \mathbb{R} \setminus \{0\}$ and $p_1, ..., p_M > 0$ such that $\sum_{i=1}^M p_i = 1$. Let $\lambda > 0$ be given and $N_1(t), ..., N_M(t)$ be independent Poisson processes with intensities $\lambda p_1, ..., \lambda p_M$ respectively. Then $Q(t) := \sum_{m=1}^M y_m N_m(t), t \geq 0$, is a compound Poisson process whose jump size distribution is given by $P(Y_1 = y_i) = p_i$ and the times of jumps coincide with those of $N(t) := \sum_{m=1}^M N_m(t)$.

In other words, the process Q has the same law as $\bar{Q}(t) := \sum_{i=1}^{N(t)} \bar{Y}_i$, $t \geq 0$, where $\bar{Y}_1, \bar{Y}_2, \ldots$ are i.i.d. and $P(\bar{Y}_1 = y_m) = p_m$, $m = 1, 2, \ldots, M$. For a proof see Theorem 11.3.3 of the textbook.

Theorem 3.4. Let $y_1, ..., y_M \in \mathbb{R} \setminus \{0\}$ and $p_1, ..., p_M > 0$ such that $\sum_{i=1}^M p_i = 1$. Let $Y_1, Y_2, ...$ be i.i.d. and $P(\bar{Y}_1 = y_m) = p_m, m = 1, 2, ..., M$, and N(t) be a Poisson process with intensity λ . Define

$$Q(t) := \sum_{i=1}^{N(t)} Y_i, \quad t \ge 0.$$

For m = 1, 2, ..., M, denote by $N_m(t)$ the number of jumps of Q of size y_m up to time t inclusively. Then,

$$N(t) = \sum_{m=1}^{M} N_m(t)$$
 and $Q(t) = \sum_{m=1}^{M} y_m N_m(y)$.

Moreover, the processes N_1, \ldots, N_M are independent Poisson processes with intensities $\lambda p_1, \ldots, \lambda p_M$ respectively.

See Corollary 11.3.4 of the textbook.

4. Jump processes as integrators

Definition 4.1. Let (Ω, \mathcal{F}, P) be a probability space and let $(\mathcal{F}(t))_{t\geq 0}$, be a filtration on it. We say that

- (i) Brownian motion B is a Brownian motion relative to $(\mathcal{F}(t))_{t\geq 0}$ if B(t) is $\mathcal{F}(t)$ -measurable $\forall t\geq 0$ and for $0\leq s< t$, B(t)-B(s) is independent of $\mathcal{F}(s)$.
- (i) Poisson process N is a Poisson process relative to $(\mathcal{F}(t))_{t\geq 0}$ if N(t) is $\mathcal{F}(t)$ -measurable $\forall t\geq 0$ and for $0\leq s < t$, N(t)-N(s) is independent of $\mathcal{F}(s)$.
- (ii) Compound Poisson process Q is a compound Poisson process relative to $(\mathcal{F}(t))_{t\geq 0}$ if Q(t) is $\mathcal{F}(t)$ -measurable $\forall t\geq 0$ and for $0\leq s< t$, Q(t)-Q(s) is independent of $\mathcal{F}(s)$.

Definition 4.2. A jump process with starting point X(0) is a process of the form

$$X(t) = X(0) + I(t) + R(t) + J(t),$$

where X(0) is a constant, I is an Itô integral, $I(t) = \int_0^t \Gamma(s)dB(s)$, $\Gamma(\cdot)$ is adapted to $\mathcal{F}(\cdot)$, R is a Riemann integral, $R(t) = \int_0^t \theta(s)ds$, $\theta(\cdot)$ is adapted to $\mathcal{F}(\cdot)$, and J is a pure jump process¹ such that $\mathcal{J}(0) = 0$. We shall assume that J is right continuous with left limits, i.e.

$$\mathcal{J}(t) = \lim_{s \downarrow t} \mathcal{J}(s)$$
 and $\mathcal{J}(t_{-}) = \lim_{s \uparrow t} \mathcal{J}(s)$,

that there is no jump at time 0, and that in any finite time interval (0,T], there are only finitely many jumps.

The process $X^c(t) := X(0) + I(t) + R(t)$ is called a continuous part of X(t). It is just an Itô process. J(t) is a pure jump part of X(t). We shall denote by $\delta \mathcal{J}(t) = \mathcal{J}(t) - \mathcal{J}(t_-)$ the jump size at time t. Then

$$\Delta X(t) = X(t) - X(t-) = J(t) - J(t-) = \Delta J(t).$$

Note that when there is no jump at time t we have X(0-) = X(0) and $\Delta X(t) = 0$.

 $^{^{1}}$ this means that the process is constant between jumps.

Definition 4.3. Let X be a jump process and Φ be a process adapted to $(\mathcal{F}(t))_{t>0}$. Then

$$\int_0^t \Phi(s) dX(s) := \int_0^t \Phi(s) \Gamma(s) dB(s) + \int_0^t \Phi(s) \theta(s) ds + \sum_{0 < s < t} \Phi(s) \Delta J(s),$$

or, in the differential form,

$$\Phi(t)dX(t) = \underbrace{\Phi(t)\Gamma(t)dB(t) + \Phi(t)\theta(t)dt}_{\Phi(t)dX^c(t)} + \Phi(t)dJ(t).$$

Example 4.4. Let $\Phi(t) = \Delta N(t)$ and $X(t) = N(t) - \lambda t$.

$$\int_0^t \Phi(s)dX(s) = -\lambda \int_0^t \Delta N(s)ds + \int_0^t \Delta N(s)dN(s)$$
$$= 0 + \sum_{0 \le s \le t} (\Delta N(s))^2 = N(t).$$

The integrator X(t) is a martingale but the integral is not a martingale!

Theorem 4.5. Assume that X(t) is a martingale and $\Phi(t)$ is left-continuous and adapted, and

$$\mathbb{E} \int_0^t \Gamma^2(s) \Phi^2(s) ds < \infty, \quad \forall t \ge 0$$

Then $\int_0^t \Phi(s)dX(s)$, $t \ge 0$, is a martingale with respect to $(\mathcal{F}(t))_{t\ge 0}$.

Remark 4.6. Left-continuity is not really necessary, but it is easy to check. Left-continuity can be replaced by <u>predictability</u>: $\Phi(t)$ is $\mathcal{F}(t-)$ -measurable, where $\mathcal{F}(t-)$ is the σ -algebra generated by $\bigcup_{s < t} \mathcal{F}(s)$.

5. Quadratic and cross variation of Jump Processes.

Let Π be a finite partition of [0, t]: $0 = t_0 < t_1 < \cdots < t_n = t$ and

$$Q_{\Pi}(x) := \sum_{i=0}^{n-1} (X(t_{j+1}) - X(t_j))^2.$$

If this quantity has (an L^2) limit for all $t \geq 0$ as $\|\Pi\| \to 0$, then the limiting process is denoted [X, X](t), $t \geq 0$, and is called a quadratic variation process. We state without a proof the following fact.

Theorem 5.1. Let $X_i(t)$, $t \ge 0$, i = 1, 2, be jump processes as defined above. Then

$$[X_i, X_j](t) = [X_i^c, X_j^c](t) + [J_i, J_j](t)$$

$$= \int_0^t \Gamma_i(s) \Gamma_j(s) ds + \sum_{0 < s < t} \Delta J_i(s) \Delta J_j(s) \quad (i, j = 1, 2).$$

The important new developments are:

- the quadratic variation of a pure jump process on (0, t] is the sum of the squares of jumps up to time t inclusively.
- the cross-variation of a continuous process X_i^c and a pure jump process J_i (subject to all conditions we imposed on it) is zero (i, j = 1, 2).

Corollary 5.2. Let X be a jump process and Φ be a left-continuous adapted process. Set $Y(t) = \int_0^t \Phi(s) dX(s) + Y(0)$, where Y(0) is a constant. Then

$$[Y,Y](t) = \int_0^t \Phi^2(s)d[X,X](s)$$

= $\int_0^t \Phi^2(s)\Gamma^2(s)ds + \sum_{0 < s < t} \Phi^2(s)(\Delta J(s))^2.$

6. Itô-Doeblin formula for jump processes.

Theorem 6.1. Let X(t) be a jump process and $f \in C^2(\mathbb{R})$. Then

$$f(X(t)) = f(X(0)) + \int_0^t f'(X(s))dX^c(s) + \frac{1}{2} \int_0^t f''(X(s))d[X^c, X^c](s) + \sum_{0 < s < t} (f(X(s)) - f(X(s-))).$$

Read the proof of Theorem 11.5.1 in the textbook.

Remark 6.2. $\int_0^t f'(X(s))dX^c(s)$ can be replaced with $\int_0^t f'(X(s-))dX^c(s)$ and $\int_0^t f''(X(s))d[X^c, X^c](s)$ with $\int_0^t f''(X(s-))d[X^c, X^c](s)$.

Example 6.3 (Geometric Poisson process).

$$S(t) = S(0)e^{-\lambda\sigma t}(1+\sigma)^{N(t)}, \quad t \ge 0,$$

where $\sigma > -1$ is a constant. If $\sigma > 0$ then the process jumps up and moves down between the jumps; if $\sigma \in [-1,0)$, the process jumps down and moves up between the jumps; if $\sigma = 0$, then $S(t) \equiv S(0)$.

Geometric Poisson process is a martingale. It satisfies $dS(t) = \sigma S(t-)dM(t)$, where $M(t) = N(t) - \lambda t$. Let us derive this formula. We write

$$S(t) = S(0)f(X(t))$$
, where $f(x) = f'(x) = e^x$ and $X(t) = -\lambda \sigma t + N(t) \ln(1+\sigma)$ ($X(t)$ has no Itô part!). Then

$$dX(t) = -\lambda \sigma dt + \ln(1+\delta)dN(t)$$

and applying Itô's formula we get

$$S(t) = S(0) - \lambda \sigma \int_0^t S(u) du + \sum_{0 < u \le t} (S(u) - S(u)).$$

Looking at one term of a jump sum we find that

$$\begin{split} S(u) - S(u-) &= S(0)e^{-\lambda\sigma u}((1+\sigma)^{N(u)} - (1+\sigma)^{N(u-)}) \\ &= S(0)e^{-\lambda\sigma u}(1+\sigma)^{N(u-)}((1+\sigma)^{N(u)-N(u-)} - 1) \\ &= S(u-)\sigma(N(u) - N(u-)) = S(u-)\sigma\Delta N(u). \end{split}$$

Summing over all jumps up to time t we get

$$\sum_{0 < u < t} (S(u) - S(u-)) = \sigma \sum_{0 < u < t} S(u-)\Delta N(u) = \sigma \int_0^t S(u-)dN(u).$$

Putting everything together we conclude that

$$S(t) = S(0) - \lambda \sigma \int_0^t S(u-)du + \sigma \int_0^t S(u-)dN(u);$$

= $S(0) + \sigma \int_0^t S(u-)dM(u)$, or $dS(t) = \sigma S(t-)dM(t)$

as claimed.

Example 6.4 (Doléans-Dade exponential). Let X(t) be a jump process. The Doléans-Dade exponential of X(t) is

(8)
$$Z(t) := e^{X^c(t) - \frac{1}{2}[X^c, X^c](t)} \prod_{0 < s \le t} (1 + \Delta X(s)).$$

This is a generalization of previous example:

$$\begin{split} X(t) &= \sigma M(t) = -\sigma \lambda t + \sigma N(t) = X^c(t) + J(t); \\ (1 + \Delta X(s)) &= (1 + \Delta J(s)) = (1 + \sigma \Delta N(s)); \\ \prod_{0 < s \le t} (1 + \Delta X(s)) &= \prod_{0 < s \le t} (1 + \sigma \Delta N(s)) = (1 + \sigma)^{N(t)}; \\ \frac{S(t)}{S(0)} &= e^{-\lambda \sigma t} (1 + \sigma)^{N(t)}. \end{split}$$

We shall show that if Z satisfies

(9)
$$dZ(t) = Z(t-)dX(t)$$

then it is given by (8). Indeed, we have

$$Z(t) = \underbrace{Z(0) + \int_0^t Z(s-)dX^c(s)}_{Z^c(t)} + \underbrace{\sum_{0 < s \le t} Z(s-)\Delta X(s)}_{J_z(t)}.$$

Applying Itô's formula for jump processes we get

$$\begin{split} \log Z(t) &= \log Z(0) + \int_0^t \frac{1}{Z(s-)} dZ^c(s) - \frac{1}{2} \int_0^t \frac{1}{Z^2(s-)} d[Z^c, Z^c](s) + \sum_{0 < s \le t} (\log Z(s) - \log Z(s-)) \\ &= \log Z(0) + \int_0^t dX^c(s) - \frac{1}{2} \int_0^t d[X^c, X^c](s) + \sum_{0 < s \le t} \log(1 + \Delta X(s)), \end{split}$$

since $\log Z(s) - \log Z(s-) = \log \frac{Z(s)}{Z(s-)} = \log(1+\Delta X(s))$. Therefore,

$$\log Z(t) = \log Z(0) + X^{c}(t) - \frac{1}{2}[X^{c}, X^{c}](t) + \sum_{0 < t} \log(1 + \Delta X(s)).$$

Exponentiating, we see that

$$Z(t) = Z(0)e^{X^c(t) - \frac{1}{2}[X^c, X^c](t)} \prod_{0 < s \le t} (1 + \Delta X(s)).$$

If X(t) is a martingale, then by theorem Theorem 4.5

$$Z(t) = Z(0) + \int_0^t Z(s-)dX(t)$$

is also a martingale since the integrand is left-continuous.

Example 6.5 (Merton's jump diffusion model). Let $X(t) = \mu t + \sigma B(t) + Q(t)$, where Q(t) is a compound Poisson process $Q(t) = \sum_{i=1}^{N(t)} Y_i$. The stock price dynamics is

$$S(t) = S(0) + \int_0^t S(u)dX^c(u) + \sum_{0 < u \le t} S(u) \Delta X(u).$$