Fenómenos de Transferência I

1º Teste de treino

- 1) Marque a alternativa em que são citadas apenas grandezas derivadas.
 - a) Força, velocidade, aceleração e distância;
 - b) Energia, aceleração e tempo;
 - c) potência, velocidade, e trabalho;
 - d) Energia, massa, potência e tempo.
 - e) Energia, distância e força
 - c) potência, velocidade, e trabalho;
- 2) Marque a alternativa em que são citadas apenas grandezas fundamentais.
 - a) Tempo, distância, força e energia ,;
 - b) Temperatura, velocidade e comprimento;
 - c) Distância, massa e velocidade;
 - d) Massa, força e tempo;
 - e) Massa, distância e temperatura
 - e) Massa, distância e temperatura
- 3) Quais as unidades fundamentais de tensão?
- A) M.L.T
- B) M.L².T
- C) $M.L^2.T^2$
- D) M.L.⁻¹.T⁻²
- E) M.L².T⁻³

M L ⁻¹ T⁻²

- 5) No Sistema Internacional, a pressão é dada em unidades de
- A) kg.m¹.s⁻²
- B) kg.m⁻².s³
- C) kg.m⁻¹.s⁻²
- D) kg.m⁻¹.s⁻³
 - A) kg.m⁻¹.s⁻²

- 6) 1 Newton representa:
- A) 1 kg.m.s⁻²
- B) 1 kg.m⁻².s³
- C) 1 kg.m⁻¹.s⁻²
- D) 1 kg.m.s⁻¹

D) kg.m.s⁻²

- **7)** A viscosidade de um líquido é de 1.3 cP (P = Poise, unidade de viscosidade no sistema c.g.s).Qual a viscosidade do líquido em unidades do sistema internacional.
- A) 13 x10 $^{-3}$ Kg m $^{-1}$ s $^{-1}$
- B) 1.3 x10 $^{-5}$ Kg m $^{-1}$ s $^{-1}$
- C) 1.3 x10 $^{-3}$ Kg m $^{-1}$ s $^{-1}$
- D) 1.3 $\times 10^{-2}$ Kg m s ⁻¹
- **E)** 1.3 x10 ⁻³ Kg m⁻¹ s ⁻¹

8)Na expressão $A = F/B^2$, F representa força e B um comprimento. No sistema internacional de unidades (SI) a constante A é expressa em:

- a) kg m³
- b) adimensional
- c) kg m⁻¹ s⁻²
- d) kg m⁻¹ s⁻¹
- e) kg m⁻³ s

c) expressa em kg m⁻¹ s⁻²

9) A queda de pressão devido ao alargamento súbito de um tubo pode ser calculada através da expressão abaixo.

$$(-\Delta P)^{al \arg amento} = \rho^b \frac{(v_1 - v_2)^a}{2}$$

onde ρ é a densidade do fluido, V1 e V2 velocidadades do fluido antes e depois do alargamento do tubo.

Calcule os valores de a e b para que a equação seja dimensionalmente correta.

- A) a = 1, b = 2
- B) a = 1, b = 1
- C) a = 2, b = 1
- D) a = 3, b = 1
- E) não sei

10) A velocidade, V, de uma partícula esferica caindo lentamente num líquido muito viscoso pode ser expressa por V = f (d, μ , γ , γ s) onde d é o diâmetro da partícula, μ a viscosidade do líquido e γ e γ s sao as densidades do líquido e da partícula, respectivamente.

Aplicando o teorema pi de Buckingham assinale qual o conjunto de recurso que deveria utilizar se pretender obter uma relação entre V e as outras variáveis.

- A) d, γ, γs
- B) D, V, μ
- C) d, μ, γ
- D) d, μ
- B) d, μ, γ

- 11) Calcular o caudal de um fluido em cm³ s⁻¹ se a velocidade média de passagem do fluido por um tubo com 1.27 cm de diâmetro for de 3.59 m s⁻¹.
- A) 45.5 cm³ s⁻¹ B) 455 cm³ s⁻¹ C) 8743 cm³ s⁻¹ D) 4.55 cm³ E) não sei
 - B) 455 cm³ s⁻¹
 - 12) A velocidade média de um fluido através de uma tubo com 10 m de comprimento e 1,27 cm de diametro é 3,59 m/s. A queda de pressão através do tubo é de 21.36 × 10⁵ N/m2. Usando a equação de Hagen-Poiseiulle calcule a viscosidade do fluido assumindo um fluxo laminar?

$$\overline{v} = \frac{D^2}{32.\mu} \frac{\left(-\Delta P\right)}{L}$$

- A) $0.3 \text{ kg m}^{-1} \text{ s}^{-1}$ B) $1.2 \text{ kg m}^{-1} \text{ s}^{-1}$ C) $0.025 \text{ kg m}^{-1} \text{ s}^{-1}$ D) $0.3 \text{ kg m}^{-2} \text{ s}^{-2}$

- A) 0.3 kg m⁻¹ s⁻¹
- 13) Considere duas placas planas paralelas (1 e 2), com um fluido entre elas, que estão separadas entre si de 1 mm (vêr figura). A placa inferior movimenta-se segundo y à velocidade de A ms-1. A tensão de corte exercida sobre as placas é de 0.5 kg m⁻¹s⁻² e a viscosidade do fluido entre as placas é 1 x 10⁻³ kg m⁻¹s⁻¹

$$V_2 = 0 \text{ m s}^{-1}$$

$$V_1 = A \text{ m s}^{-1}$$

Calcule o valor de A. Assinale a opção correcta:

- A) $0.5 \text{ (m s}^{-1})$ B) $5 \text{ (m s}^{-1})$ C) $50 \text{ (m s}^{-1})$ D) $0.05 \text{ (m s}^{-1})$

A) 0.5 (m s⁻¹)

14)Considere o escoamento laminar de um fluido através de um tubo estacionário de raio 0.635 cm e comprimento 8 m,representado na figura abaixo.

O perfil de velocidade para este escoamento é dado pela seguinte expressão:

$$v_r = \frac{1}{4 \cdot \mu} \left(-\frac{\Delta P}{\Delta y} \right) (R1^2 - r^2)$$

em que P é a pressão e μ = 4 g cm⁻¹ s⁻¹ a viscosidade do fluido.

Neste escoamento, a velocidade média do fluido é igual a 1/2 da sua velocidade máxima. Se a velocidade média do fluido for 3.59 m/s, qual a queda de pressão no tubo?

- A) 2.28 x 10⁵ Pa
- B) $2.28 \times 10^6 \text{ Pa}$
- C) $4.56 \times 10^6 \text{ Pa}$
- D) 1.14 x 10⁵ Pa
- E) Não sei

C)4.56 x 10⁶ Pa