Stochastik I

14. Übung

Aufgabe 53 (4 Punkte)

Es seien X_1, X_2, \ldots identisch verteilte Zufallsvariablen auf einem W-Raum $(\Omega, \mathcal{F}, \mathbb{P})$ und $k \in \mathbb{N}$. Verifizieren Sie sie folgenden Aussagen:

- (i) Im Fall von $\mathbb{E}[|X_1|] < \infty$ konvergiert $\frac{1}{n} \min_{1 \le i \le n} |X_i|$ in Wahrscheinlichkeit gegen 0. Daraus kann man zudem schließen, dass auch \mathbb{P} -fast sichere Konvergenz gegen 0 gilt.
- (ii) Sind die X_1, X_2, \ldots unabhängig, dann gilt $\mathbb{E}[|X_1|^k] < \infty$ genau dann, wenn $\frac{1}{n^{1/k}} X_n$ \mathbb{P} -fast sicher gegen 0 konvergiert.

Hinweis für (ii): Verwenden Sie Lemma 3.11.6.

Aufgabe 54 (4 Punkte)

Es seien $\lambda \in \mathbb{R}$ und $(X_i)_{i \in \mathbb{N}}$ eine Folge von unabhängigen Zufallsvariablen auf einem W-Raum $(\Omega, \mathcal{F}, \mathbb{P})$ mit $\mathbb{P}[X_i = i^{\lambda}] = \mathbb{P}[X_i = -i^{\lambda}] = \frac{1}{2}$ für alle $i \in \mathbb{N}$. Ferner sei $\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i, n \in \mathbb{N}$. Geben Sie eine Bedingung für λ an, unter der

- (i) das starke Gesetz der großen Zahlen für (X_i) erfüllt ist, d. h. $\overline{X}_n \longrightarrow \mathbb{E}[X_1]$ \mathbb{P} -f.s.
- (ii) das schwache Gesetz der großen Zahlen für (X_i) nicht erfüllt ist, d.h. \overline{X}_n nicht in Wahrscheinlichkeit gegen $\mathbb{E}[X_1]$ konvergiert.

Hinweis für (i): Schauen Sie sich den Beweis des starken Gesetzes der großen Zahlen (Satz 3.11.7) an, um eine hinreichende Bedingung für $\overline{X}_n \longrightarrow \mathbb{E}[X_1]$ \mathbb{P} -f.s. zu finden.

Aufgabe 55 (4 Punkte)

Es sei $(X_i)_{i\in\mathbb{N}}$ eine Folge von unabhängig identisch verteilten Zufallsvariablen auf einem W-Raum $(\Omega, \mathcal{F}, \mathbb{P})$ mit $\mathbb{E}[X_1] = 0$ und \mathbb{V} ar $[X_1] = 1$. Ferner seien $S_n := \sum_{i=1}^n X_i$, $n \in \mathbb{N}$, und Z eine standardnormalverteilte Zufallsvariable. Zeigen Sie:

(i)
$$\sqrt{n} \frac{S_n}{\sum_{i=1}^n X_i^2} \stackrel{\mathsf{d}}{\longrightarrow} Z$$
.

(ii)
$$\frac{S_n}{\sqrt{\sum_{i=1}^n X_i^2}} \stackrel{\mathsf{d}}{\longrightarrow} Z$$
.

Aufgabe 56 (4 Punkte)

Eine faire Münze werde 10000-Mal unabhängig voneinander geworfen.

- (i) Approximieren Sie mit Hilfe des zentralen Grenzwertsatzes die Wahrscheinlichkeit, dass sich die Anzahl von "Kopf" um höchstens 50 von 5 000 unterscheidet.
- (ii) Approximieren Sie mit Hilfe des zentralen Grenzwertsatzes die Wahrscheinlichkeit, dass die Anzahl von ,Kopf' mindestens 5 100 beträgt.

Hilfsmittel: Anlage 5.