Generell informasjon

- ☐ Faglærer: Torunn Gjester
- ☐ Nås på torunngj@oslomet.no
- Eksamensform: skriftlig, digital 3 timer uten hjelpemidler
- ☐ Undervisning mandag 10.30-12.15
 - > 2 timer teori
 - ➤ 4 timer lab, mandag 12.30-16.15
 - Pensumlitteratur: Databasesystemer Bjørn Kristoffersen
- Alle ukeoppgaver er obligatoriske. Kan leveres som ett stort dokument i uke 6 12 og (18), eller godkjennes før innleveringsfrist på lab.
- Anbefaler å komme på lab gjøre oppgavene, få anledning til å stille spørsmål og få tilbakemelding ved godkjenning av hver ukeoppgave.

Innhold i kurset

- ☐ Få kunnskap om hva et database system er
- ☐ Lære SQL
- ☐ Lære ER-modellering
- ☐ Teori:
 - Indeksering
 - > Transaksjoner
 - ➤ Lagrede prosedyrer
 - ➤ NoSQL databaser
- ☐ Verktøy:
 - > MySql
 - MySQL Workbench

Hva kan dere fra før?

- ☐ Hva er data?
- ☐ Hva er informasjon?
- Hva er bestanddelene i et databasesystem?
- Hvilke databasesystemer kjenner dere til?

Dagens tema: Tabeller og enkle spørringer

- ☐ Database, relasjonsdatabase
- ☐ Databasehåndteringssystem (DBHS)
- Databasesystem
- Tabell, kolonne, rad, datatype, verdi, primærnøkkel
- Utvalgsspørringer i SQL
 - Velge ut rader
 - Velge ut kolonner
 - Kalkulerte kolonner
 - Sortering
 - Gruppering og mengdefunksjoner
 - Jokernotasjon og intervallsøk

Pensum: Kapittel 1 og 2

DIK(W)-pyramiden

- □ Databaser lagrer store mengder informasjon som er nødvendige i daglig drift av virksomheten.
- ☐ Men databaser brukes også mer **strategisk** som grunnlag for beslutninger.

Hvor starter man?

Fysisk er en datamaskin komplisert. Logisk er den enkel:

- ☐ En datamaskin kan to ting: Lagre data og utføre programmer.
- Vi tar utgangspunkt i datamaskinen som <u>lagringsenhet</u>.
- ☐ Hvilke data må en virksomhet lagre for å fungere?
- ☐ Eksempler: Varehandel, bibliotek, kommune, sykehus, skole,...

Måleenheter for datamengder

Måleenhet	Verdi	IT-bruk	Binær måleenhet	Verdi
kilobyte (kB)	10 ³	2 ¹⁰	kibibyte (KiB)	210
megabyte (MB)	10 ⁶	2 ²⁰	mebibyte (MiB)	2 ²⁰
gigabyte (GB)	10 ⁹	2 ³⁰	gibibyte (GiB)	2 ³⁰
terabyte (TB)	10 ¹²	2 ⁴⁰	tebibyte (TiB)	2 ⁴⁰
petabyte (PB)	10 ¹⁵	2 ⁵⁰	pebibyte (PiB)	2 ⁵⁰
exabyte (EB)	10 ¹⁸	2 ⁶⁰	exbibyte (EiB)	2 ⁶⁰
zettabyte (ZB)	10 ²¹	2 ⁷⁰	zebibyte (ZiB)	2 ⁷⁰
yottabyte (YB)	10 ²⁴	2 ⁸⁰	yobibyte (YiB)	2 ⁸⁰

Biter og byter

- Også nyttig å lage seg en forenklet tankemodell av lagringsmedier.
- ☐ Både disk og minne kan betraktes som en nummerert sekvens av byter.

- □ 1 bit kan lagre 2 alternative verdier
- \square 2 biter kan lagre $2^2 = 4$ verdier
- **.**..
- \square 8 biter kan lagre $2^8 = 256$ verdier

1	1	0	0	1	1	0	1	0
2	0	0	1	1	1	0	1	1
3	1 0 1 0 1	1	1	0	1	1	1	0
5	0	0	0	0	0	1	1	0
6	1	0	0	0	0	0	1	1

Representere tall

- □ 1 byte = 256 forskjellige **bitmønstre**
- □ 1 byte kan **tolkes** som heltallene [0..255]
- □ 2 byter kan tolkes som heltallene [0..65 535]
- □ Hvis vi bruker første bit som **fortegnsbit**, så kan vi representere [-32 768..+32 767]
- ☐ Ethvert desimaltall kan representeres som to heltall:
 - \triangleright Tallet 486.229 kan skrives som 0.486229×10³.
 - Lar seg representere ved heltallene 486229 og 3.
 - > Samme teknikk kan brukes på alle desimaltall.

Representere tekst

- ☐ Et **tegnsett** tilordner et tall til hvert symbol.
 - Bokstaver, siffer, spesialtegn kan representeres som tall.
 - ➤ Med 2 byter kan vi representere 65 535 symboler.
 - En tekststreng er en sekvens av tegn.
 - > ASCII og Unicode er to eksempler på tegnsett.

Tegn	Kode	Tegn	Kode
A	65	æ	145
Z	90	Æ	146
a	97	!	33
Z	122	=	61
0	60	?	63
9	71	(a)	64

- ☐ Hvordan lagres 97?
- ☐ Hvordan lagres HEI?
- ☐ Hvordan lagres et blått punkt i et bilde?

- ☐ Vi benytter 2 tall systemet.
- ☐ Her er plassene: 2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0
- Dvs: 64 32 16 8 4 2 1
- □ 97 vil være 64 +32 + 1 dvs: 1100001
- ☐ For å lagre bokstaver benyttes ASCII-koding eller UTF-8

	4 5 6 7 8 9 10 11 12 13 14 15	4 5 6 7 8 9 A B C D E F	ENQ ACK BEL BS TAB LF VT FF CR SI	20 21 22 23 24 25 26 27 28 29 30 31	14 15 16 17 18 19 1A 1B 1C 1D 1E 1F	NAK SYN ETB CAN EM SUB ESC FS GS RS US	36 37 38 39 40 41 42 43 44 45 46 47	24 25 26 27 28 29 2A 2B 2C 2D 2E 2F	% & ' () * + , - /	52 53 54 55 56 57 58 59 60 61 62 63	34 35 36 37 38 39 3A 3B 3C 3D 3E 3F	456789:;<=>?
ı	ASCII	Hex	Symbol	ASCII	Hex	Symbol	ASCII	Hex	Symbol	ASCII	Hex	Symbol
	64 65 66 67 68 69 70 71 72 73	40 41 42 43 44 45 46 47 48 49	@ABCDEFGH-	80 81 82 83 84 85 86 87 88 89	50 51 52 53 54 55 56 57 58 59	P Q R S T U V W X Y	96 97 98 99 100 101 102 103 104 105	60 61 62 63 64 65 66 67 68 69	a b c d e f gh i	112 113 114 115 116 117 118 119 120 121	70 71 72 73 74 75 76 77 78 79	p q r s t u v w x

Databaser

Leksjon 1: Tabeller og enkle spørringer - 13

- ☐ For å skrive hei skriver man 72 69 73
- ☐ Et bilde består av pixler. Hver pixel har en farge som er representert med hvor mye rødt, grønt og blått som er I den. Benyttes 3 byte til å lagre en pixel vil et blått punkt være representert slik:
- **00000000 00000000 11111111**

SQL og databasesystemer

DBHS = DataBaseHåndteringsSystem

(engelsk: DBMS = DataBase Management System)

Viktige begreper

- ☐ En <u>database</u> er en samling strukturerte data som blir brukt til et bestemt formål.
- ☐ Et <u>databasehåndteringssystem</u> (DBHS) er et verktøy for å lagre og gjenfinne store mengder delte data over lang tid på en sikker og effektiv måte for mange samtidige brukere.
 - Eksempler: MySQL, Access, SQL Server, Oracle, DB2, ...
- ☐ <u>Databasesystem</u> = DBHS + database
- SQL er et språk for å kommunisere med databasesystemer.
- ☐ <u>Databaseadministrator</u> (DBA) har ansvaret for den daglige driften av et databasesystem.

Et papirskjema

Etternavn: Hansen Fornavn: Hans

Ansatt dato: 23.08.2003

Stilling: Programmerer Lønn: 325.000

Prosjektdeltakelse siste år:

 Prosjektkode
 Timer

 P1002
 44

 P1007
 25

 P1012
 10

Tabellen Ansatt

AnsattNr	Etternavn	Fornavn	AnsattDato	Stilling	Lønn
1	Veum	Varg	01.01.1989	Løpegutt	kr 183 000.00
2	Stein	Trude	10.10.1997	DBA	kr 270 700.00
3	Dudal	Inger-Lise	24.12.1985	Sekretær	kr 299 000.00
4	Hansen	Hans	23.08.2003	Programmerer	kr 325 000.00
5	Bjørnsen	Henrik	01.01.1997	Tekstforfatter	kr 375 000.00
6	Gredelin	Sofie	18.05.1995	Underdirektør	kr 625 850.00
7	Zimmermann	Robert	17.05.1992	Regnskapsfører	kr 375 000.00
8	Nilsen	Lise	03.04.1999	Direktør	kr 675 340.00
11	Fosheim	Katinka	13.09.1998	Selger	kr 420 000.00
13	Lovløs	Ada	12.08.2002	Programmerer	kr 384 250.00
16	Ibsen	Bjørnstjerne	02.01.2005	Tekstforfatter	kr 346 000.00
17	Fleksnes	Marve	17.05.2006	Lagerleder	kr 320 120.00
20	Felgen	Reodor	12.12.1998	Sykkelreparatør	kr 279 500.00
23	Karius	Jens	13.12.1998	Salgssekretær	kr 280 390.00
29	Wirkola	Gabriel	21.04.2006	Sekretær	kr 255 000.00

Tabellen Prosjekt

ProsjektNr	Budsjett	Leder	Start	Slutt
1001	kr 15 000.00	20	12.01.2005	12.03.2005
1002	kr 750 000.00	8	23.06.2005	23.07.2005
1007	kr 125 000.00	2	12.06.2006	
1009	kr 500 000.00	20	01.01.2006	
1012	kr 10 000.00	4	10.07.2006	
1020	kr 900 000.00	8	23.07.2005	01.09.2006

Tabellen ProsjektDeltakelse

Hvilke ansatte har jobbet på hvilke prosjekter – og hvor mange timer har de jobbet?

ProsjektDeltakelse er en koblingstabell.

ProsjektNr	AnsattNr	AntTimer
1001	1	12
1002	4	44
1002	8	20
1002	13	125
1002	20	2
1007	4	25
1007	11	20
1009	2	5
1009	17	10
1009	20	23
1012	4	10
1020	1	20
1020	8	35
1020	17	125

Nullmerker

- ☐ Legg merke til at det mangler noen verdier i tabellen Prosjekt. Vi kaller dette for <u>nullmerker</u>.
- □ Nullmerker kan skyldes at vi har glemt å registrere data, at vi ennå ikke kjenner til den korrekte verdien, eller at det ikke gir mening å registrere data.
- □ Nullmerker er *ikke* verdier.
- Nullmerker kan skape problemer!

Relasjonsdatabase

- ☐ En databasetabell kan betraktes som en matematisk relasjon (mer om dette i kapittel 6).
- ☐ En <u>relasjonsdatabase</u> består (logisk sett) av en samling tabeller (relasjoner).
- ☐ Andre typer av databaser:
 - ➤ Hierarkiske databaser
 - ➤ Nettverksdatabaser
 - Objektorienterte databaser
 - Objektrelasjonelle databaser
 - ➤ Logiske databaser

SQL

□ SQL er et «abstrakt» programmeringsspråk - vi sier <u>hva</u> vi ønsker mer enn <u>hvordan</u> det skal beregnes. En <u>utvalgsspørring</u>:

SELECT AnsattNr, Etternavn, Lønn FROM Ansatt
WHERE Lønn < 280000

- ☐ Hva må DBHS gjøre? Hva må DBHS vite?
- □ SELECT, FROM og WHERE er <u>reserverte ord</u> i SQL: De har en spesiell betydning.

Spørreresultat

AnsattNr	Etternavn	Lønn
1	Veum	kr 183 000.00
2	Stein	kr 270 700.00
20	Felgen	kr 279 500.00
29	Wirkola	kr 255 000.00

☐ En utvalgsspørring tar tabeller som "inndata" og gir som "utdata" et <u>spørreresultat</u> som også er på "tabellform".

Velge ut kolonner

□ Når vi kun er interessert i noen av kolonnene:

SELECT AnsattNr, Etternavn FROM Ansatt

☐ Når vi vil ha alle kolonnene:

SELECT *

FROM Ansatt

Utplukk av kolonner kan gi like rader. For å fjerne duplikater:

SELECT DISTINCT Stilling FROM Ansatt

Velge ut rader

☐ Når vi vil plukke ut rader som oppfyller en gitt betingelse.

SELECT *
FROM Ansatt
WHERE Lønn < 280000

☐ En <u>betingelse</u> er et uttrykk som er sant eller galt.

Sortering

☐ Sortert navneliste:

SELECT AnsattNr, Etternavn FROM Ansatt ORDER BY Etternavn

☐ Flere sorteringskriterier:

SELECT Etternavn, Stilling, Lønn FROM Ansatt ORDER BY Stilling ASC, Lønn DESC

□ ASC gir stigende sortering (standard) og DESC synkende.

Bruk parenteser!

☐ Vi ønsker å finne sekretærer/selgere som tjener mer enn 280.000 kroner i året.

SELECT *
FROM Ansatt
WHERE Lønn > 280000 AND
Stilling = 'Sekretær' OR Stilling = 'Selger'

- ☐ Kan spørringen tolkes på flere måter?
- □ Oppnår vi det vi vil?

Logiske operatorer AND, OR og NOT

☐ Brukes for å bygge sammensatte betingelser:

```
(Lønn > 280000) AND
(Stilling = 'Sekretær')
```

```
AND true false true false false false
```

```
(Lønn < 300000) OR (Lønn > 500000)
```

NOT (Lønn
$$<= 300000$$
)

OR	true	false
true	true	true
false	true	false

NOT	true	false
	false	true

Operatorprioritet

- 1. (unær minus, f.eks. -3)
- 2. * / %
- 3. + (binære operatorer, f.eks. 2+2)
- 4. < <= > >= = <>
- 5. **NOT**
- 6. **AND**
- 7. **OR**

Jokernotasjon og intervallsøk

☐ Finn alle med etternavn som begynner på F:

```
SELECT *
FROM Ansatt
WHERE Etternavn>='F'AND Etternavn<'G'
```

☐ <u>Jokernotasjon</u> er mer elegant her:

```
SELECT *
FROM Ansatt
WHERE Etternavn LIKE 'F%'
```

- \square Hva med Etternavn = 'F%'?
- ☐ Finn alle som har etternavn som slutter på 'sen'!

Kalkulerte kolonner

☐ Det er lov å bruke <u>uttrykk</u> i SELECT-delen:

SELECT AnsattNr, Etternavn,

Lønn/12 AS [Lønn pr måned]

FROM Ansatt

- Det er ikke nødvendig å <u>lagre</u> både årslønn og månedslønn!
- □ Lønn/12 er et uttrykk. For å få en meningsfull overskrift i utskriften gir vi denne kolonnen et <u>navn</u>.

Funksjoner

☐ Kommatall kan konverteres til valuta:

SELECT AnsattNr, Etternavn,
CCur(Lønn/12) AS [Lønn pr måned]
FROM Ansatt

☐ CCur (Convert to Currency) er et eksempel på en <u>funksjon</u> (Access)

En funksjon kan ha flere argumenter, men bare én <u>returverdi</u>.

☐ Til hver <u>datatype</u> finnes det mange funksjoner.

Dato og tid

□ Varighet i ansettelsesforhold (antall dager):
SELECT Etternavn,
YEAR(AnsattDato),
AnsattDato - CURDATE() AS AntDager
FROM Ansatt

- □ Nå-tid: **CURDATE**
- Trekke ut deler av en dato: YEAR, MONTH, HOUR
- \square Sammenligne datoer: <, >, <=, >=, =
- □ Navn på funksjoner varierer noe fra system til system.

Operatorer og uttrykk

Operatorer:

Aritmetiske: *, /, +, -

Sammenligning: >,<, =, >=, <=, <, <>

Jokernotasjon: LIKE

Test for nullmerke: IS NULL

Boolske: NOT, AND, OR

Intervalltest: BETWEEN ... AND ...

☐ Vi kan bygge opp <u>uttrykk</u> fra literaler (konstanter), kolonnenavn, funksjoner og operatorer:

(Stilling LIKE 'S*') AND ((Lønn/12)>15000)

Sammensatte navn

- ☐ Vi har ofte kolonner med samme navn i to tabeller.
 - Eksempel: AnsattNr i tabellen Ansatt og AnsattNr i tabellen ProsjektDeltakelse.
- □ Når vi jobber med flere tabeller *må* vi av og til bruke sammensatte navn. Det er *alltid* lov å bruke sammensatte navn:

SELECT Ansatt.AnsattNr
FROM Ansatt
WHERE Ansatt.Lønn > 280000

Zooming og aggregerte data

Ola Nordmann bor i Hansegata 3, Andebu og tjener 320.000 kr. pr. år.

- ☐ Zoomer vi langt nok <u>inn</u> i kartet kan vi vise egenskaper ved Ola.
- Zoomer vi <u>ut</u> ønsker vi <u>aggregerte data</u>:

AVG, MIN, MAX, SUM, ...

Dette blidet kall inke vises akkulat lid.

Funksjoner

- Operasjoner på enkeltverdier:
 - > Eksempel: strengfunksjoner

- ☐ Operasjoner på <u>verdisamlinger</u>:
 - > AVG(kolnavn) gjennomsnitt
 - > SUM(kolnavn) sum
 - ➤ COUNT(*) antall
 - ➤ MIN(kolnavn) minimum
 - > MAX(kolnavn) maksimum

Mengdefunksjoner

☐ Gjennomsnittslønn:

SELECT AVG(Lønn) AS Gjennomsnittslønn FROM Ansatt

- Hvordan finner vi samlede lønnsutgifter?
- ☐ Hvordan finner vi gjennomsnittslønn for sekretærer?
- ☐ Antall ansatte: **SELECT COUNT(*) FROM Ansatt**
- Hva blir resultatet av denne spørringen:

SELECT SUM(Lønn) / COUNT(*) FROM Ansatt

☐ Hva om vi har nullmerker i kolonnen Lønn?

SELECT SUM(Lønn) / COUNT(Lønn) FROM Ansatt

Gruppering

☐ Finn gjennomsnittlønn for hver stillingskategori.

SELECT Stilling, AVG(Lønn)
FROM Ansatt
GROUP BY Stilling

- ☐ Stilling har kun <u>få ulike verdier</u>!
- ☐ Grupperingskolonner må være med i resultatet.
- ☐ Gruppering brukes ofte sammen med mengdefunksjoner.

Spørreresultat

- ☐ For å finne gjennomsnittslønn fordelt på stilling må vi først danne grupper: selgerne, programmererne, ...
- ☐ Så må vi beregne gjennomsnittslønn for hver gruppe.
- ☐ Resultatet får 4 rader fordi det er 4 forskjellige verdier i Stilling.

Stilling	Lønn
Sekretær	300 000
Programmerer	500 000
Selger	400 000
Direktør	800 000

Gruppebetingelse (HAVING)

☐ Hva blir resultatet her?

```
SELECT Stilling, AVG(Lønn), COUNT(*)
FROM Ansatt
GROUP BY Stilling
HAVING AVG(Lønn) > 280000
```

- ☐ HAVING på grupper svarer til WHERE på rader.
- ☐ Merk: Det er ikke lov å bruke mengdefunksjoner i WHERE-betingelser.

Gruppebetingelser og radbetingelser

☐ Betingelser på rader og på grupper:

```
SELECT Stilling, AVG(Lønn), COUNT(*)
FROM Ansatt
WHERE Year(AnsattDato) > 1990
GROUP BY Stilling
HAVING AVG(Lønn) > 280000
```

- ☐ Hvorfor kan ikke de to betingelsene slås sammen?
- ☐ Hvordan kan DBHS utføre spørringen?

Oppbygging av utvalgsspørringer

☐ Utvalgsspørringer (SELECT-spørringer) mot 1 tabell følger dette «mønsteret»:

SELECT Hvilke kolonner skal med?

FROM Hva heter tabellen?

WHERE Hvilke rader skal med?

GROUP BY Gruppere på hvilke kolonner?

HAVING Hvilke grupper skal med?

ORDER BY Sortere på hvilke kolonner?

- ☐ Ikke alle delene må være med i alle spørringer.
- ☐ Vi skal legge på flere reserverte ord.
- □ **SELECT** er én blant mange SQL-kommandoer...

Les kap 1 og 2 og ta quiz

http://dbsys.info/Databasesystemer/quiz/