ΛΥΣΗ

- α) Είναι $P(1) = 1^3 1^2 + 1 1 = 0$, άρα το 1 είναι μία ρίζα του πολυωνύμου.
- β) Επιπλέον ισχύει ότι

1 ρίζα του
$$P(x) \Leftrightarrow x - 1$$
 παράγοντας του $P(x)$

Εφαρμογή του σχήματος Horner:

1	-1	1	-1	ρ=1
	1	0	1	
1	0	1	0	

Επομένως ισχύει: $P(x) = (x - 1) \cdot (x^2 + 1)$.

Εναλλακτική απάντηση:

$$P(x) = x^3 - x^2 + x - 1 = x^2(x - 1) + (x - 1) = (x - 1) \cdot (x^2 + 1)$$

γ) Είναι λοιπόν

$$P(x) = 0 \Leftrightarrow (x-1) \cdot (x^2+1) = 0 \stackrel{x^2+1 \neq 0}{\Longleftrightarrow} x = 1.$$