Logical Aspects of Multi-Agent Systems Homework set F

s3974537

May 29, 2023

2.22

We have a new logic $Epist_{(m)}$ for m agents. It comprises of the axiom and rules of $S5_{(m)}$ for the knowledge operators K_i , the axiom and rules $KD45_{(m)}$ for the belief operators B_i and a new mixed axiom $K_i\varphi \to B_i\varphi$. The Kripke models are furthermore defined as $M = \langle S, \pi, R_1^K, ..., R_m^K, R_1^B, ..., R_k^B \rangle$, with S being the set of states, π the valuation and K and B representing knowledge and belief respectively.

b.

We have the following structure: $\langle S, R_1^K, ..., R_m^K, R_1^B, ..., R_m^B \rangle$ for which for some $i \leq m$ and some $v, w \in S$ one has $vR_i^B w$ and $\neg vR_i^K w$.

In order to find the valuation π' such that for $M' = \langle S, \pi', R_1^K, ..., R_m^K, R_1^B, ..., R_k^B \rangle$ we have $(M', v) \nvDash K_i p \to B_i p$, we evaluate $K_i p \to B_i p$ in M'.

Because $vR_i^B w$ holds, then $(M', v) \models R_i^B w$ is true. Assuming that $(M', v) \models K_i p \to B_i p$ is true, $(M', w) \models K_i p$ also implies that $(M', w) \models B_i p$.

However, we also know that $\neg vR_i^K w$, and this means that we in fact have $(M', w) \nvDash K_i p$. This means that $K_i p \to B_i p$ is false in (M', v). In conclusion, $(M', v) \nvDash K_i p \to B_i p$.

c.

For this exercise, I have chosen the following mixed theorem of $Epist_{(m)}$: $(K_i\varphi \wedge K_i\psi) \to (B_i\varphi \wedge B_i\psi)$.

- 1. $K_i \varphi \wedge K_i \psi$
- 2. $K_i \varphi$ (From: 1)
- 3. $K_i \psi$ (From: 1)
- 4. $K_i \varphi \to B_i \varphi$ (Mixed theory of $Epist_{(m)}, K_i \varphi \to B_i \varphi$)
- 5. $K_i \psi \to B_i \psi$ (Mixed theory of $Epist_{(m)}, K_i \varphi \to B_i \varphi$)
- 6. $B_i\varphi$ (From: 2, 4)

7. $B_i \psi$ (From: 3, 5) 8. $B_i \varphi \wedge B_i \psi$ (From: 6, 7) 9. $(K_i \varphi \wedge K_i \psi) \rightarrow (B_i \varphi \wedge B_i \psi)$ (From: 1, 8)

We can therefore conclude that $(K_i\varphi \wedge K_i\psi) \to (B_i\varphi \wedge B_i\psi)$ is a valid mixed theorem in $Epist_{(m)}$.