An Unknown Signal

Symbols, Patterns and Signals

Jacob Daniel Halsey

March 2020

1 Least Squares Regression

The least squares calculations have been implemented in the Segment methods lsr_polynomial and lsr_fn. They both use the matrix formula: [1]

$$\boldsymbol{A} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

Where in the case of the polynomial regression:

$$\boldsymbol{X} = \begin{bmatrix} 1 & x_0 & (x_0)^2 & \dots & (x_0)^k \\ 1 & x_1 & (x_1)^2 & \dots & (x_1)^k \\ \dots & \dots & \dots & \dots \\ 1 & x_k & (x_k)^2 & \dots & (x_k)^k \end{bmatrix}$$

Or in the case of the arbitrary function (f) regression:

$$\boldsymbol{X} = \begin{bmatrix} 1 & f(x_0) \\ 1 & f(x_1) \\ \vdots & \vdots \\ 1 & f(x_k) \end{bmatrix}$$

Y is a vector containing the y values y_0 through to y_k

And the result **A** is the list of coefficients, in the order $a_0 + a_1x + ... + a_kx^k$ or $a_0 + a_1f(x)$.

Calculating the Error

The Sum Squared Error (SSE) is a method of measuring how well a fitted function (f) fits a dataset of n points, by calculating the difference between the predicted and actual data. [2]

$$SSE = \sum_{i=0}^{n} (y_i - f(x_i))^2$$

This has been implemented in the ss_error function, which is called with an array of predicted y values, and array of actual y values.

2 K-Fold Validation

3 Testing

4 Training Data

References

- [1] E. W. Weisstein, Least squares fitting-polynomial. [Online]. Available: http://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html.
- [2] —, Least squares fitting. [Online]. Available: https://mathworld.wolfram.com/LeastSquaresFitting. html.