Machine Learning Worksheet 06

Optimization

1 Convexity

Problem 1: Prove or disprove whether the following functions are convex on the given set D:

i)
$$f(x, y, z) = 3x + e^{y+z} - min\{-x^2, log(y)\}\$$
and $D = (-100, 100) \times (1, 50) \times (10, 20)$

ii)
$$f(x,y) = y \cdot x^3 - 2 \cdot y \cdot x^2 + y + 4$$
 and $D = (-10,10) \times (-10,10)$

iii)
$$f(x) = log(x) + x^3$$
 and $D = (1, \infty)$

iv)
$$f(x) = -\min(2\log(2x), -x^2 + 4x - 32)$$
 and $D = \mathbb{R}^+$

Problem 2: Prove the following statement: Let $f_1 : \mathbb{R}^d \to \mathbb{R}$ and $f_2 : \mathbb{R}^d \to \mathbb{R}$ be convex functions, then $h(x) := f_1(x) + f_2(x)$ is a also convex function.

Problem 3: Given two convex functions $f_1 : \mathbb{R} \to \mathbb{R}$ and $f_2 : \mathbb{R} \to \mathbb{R}$, prove or disprove that the function $g(x) = f_1(x) \cdot f_2(x)$ is also convex.

2 Minimization of convex functions

Problem 4: Prove that for convex functions each local minimum is a global minimum. More specifically, given a convex function $f: \mathbb{R}^N \to \mathbb{R}$, prove that if $\nabla f(\theta^*) = 0$ then θ^* is a global minimum.

3 Gradient Descent

Problem 5: Load the notebook 06_hw_optimization_logistic_regression.ipynb from Piazza. Fill in the missing code and run the notebook. Convert the evaluated notebook to pdf and add it to the printout of your homework.