CPSC 413 Cheatsheet

Summations —		
Summation	Formula	
$\frac{\sum_{k=1}^{m} k}{\sum_{k=1}^{m} k^2}$	$\frac{m(m+1)}{2}$	
$\sum_{k=1}^{m} k^2$	$\frac{m(m+1)(2m+1)}{6}$	
$\sum^m k^3$	$\left(\frac{m(m+1)}{2}\right)^2$	
$\sum_{k=0}^{n} z^k$	$ \begin{array}{c} \frac{1-z^{n+1}}{1-z} \\ \frac{1}{1-z} \\ e^z \end{array} $	
$\sum_{k=0}^{\infty} z^k$	$\frac{1}{1-z}$	
$\sum_{k=0}^{\infty} \frac{z^k}{k!}$	e^z	
$\sum_{k=0}^{n} z^{k}$ $\sum_{k=0}^{\infty} z^{k}$ $\sum_{k=0}^{\infty} \frac{z^{k}}{k!}$ $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$	$\ln 2$	
$\sum_{k=0}^{\infty} \frac{1}{k!}$	e	
$\sum_{k=1}^{\infty} \frac{1}{k^2}$	$\frac{\frac{\pi^2}{6}}{\frac{\pi^4}{90}}$	
$\sum_{k=1}^{\infty} \frac{1}{k^4}$	$\frac{\pi^4}{90}$	
$\sum_{k=0}^{\infty} \binom{\alpha}{k} z^k$	$(1+z)^{\alpha}, z < 1$	
$\sum_{k=0}^{n} \binom{n}{k}$	2^n	
$\sum_{k=0}^{\infty} \frac{(-1)^k z^{2k+1}}{(2k+1)!}$	$\sin z$	
$\sum_{k=0}^{\infty} \frac{(-1)^k z^{2k}}{(2k)!}$	$\cos z$	
<u> </u>		