Consider each of the following as subsets of appropriate vector spaces over the real numbers. Identify if the set is linearly dependent or independent.

$$A = \left\{ \begin{bmatrix} 1\\2\\1\\-1 \end{bmatrix}, \begin{bmatrix} 4\\3\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\0\\1\\3 \end{bmatrix} \right\}, \quad B = \left\{ \sin^2 \theta, \cos^2 \theta, 4 \right\}$$

$$C = \left\{ \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix}, \begin{bmatrix} 5\\0\\5 \end{bmatrix} \right\}$$

Set A: The corresponding system matrix is

$$\begin{bmatrix} 1 & 4 & 2 \\ 2 & 3 & 0 \\ 1 & 1 & 1 \\ -1 & 0 & 3 \end{bmatrix}$$

Set A: The corresponding system matrix is

$$\begin{bmatrix} 1 & 4 & 2 \\ 2 & 3 & 0 \\ 1 & 1 & 1 \\ -1 & 0 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 2 \\ 0 & 1 & 4/5 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Set A: The corresponding system matrix is

$$\begin{bmatrix} 1 & 4 & 2 \\ 2 & 3 & 0 \\ 1 & 1 & 1 \\ -1 & 0 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 2 \\ 0 & 1 & 4/5 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

So the only solution to

$$a\begin{bmatrix}1\\2\\1\\-1\end{bmatrix}+b\begin{bmatrix}4\\3\\1\\0\end{bmatrix}+c\begin{bmatrix}2\\0\\1\\3\end{bmatrix}=\begin{bmatrix}0\\0\\0\\0\end{bmatrix}$$

is
$$a = b = c = 0$$
.

Set A: The corresponding system matrix is

$$\begin{bmatrix} 1 & 4 & 2 \\ 2 & 3 & 0 \\ 1 & 1 & 1 \\ -1 & 0 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 2 \\ 0 & 1 & 4/5 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

So the only solution to

$$a \begin{bmatrix} 1 \\ 2 \\ 1 \\ -1 \end{bmatrix} + b \begin{bmatrix} 4 \\ 3 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 2 \\ 0 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

is a = b = c = 0. So the set is linearly independent.

Set B: Note that

$$\sin^2\theta + \cos^2\theta = 1.$$

Set B: Note that

$$\sin^2\theta + \cos^2\theta = 1.$$

Therefore

$$4\sin^2\theta + 4\cos^2\theta + (-1)4 = 0$$

$$\sin^2\theta + \cos^2\theta = 1.$$

Therefore

$$4\sin^2\theta + 4\cos^2\theta + (-1)4 = 0$$

and the set is linearly dependent.

Set B: Note that

$$\sin^2\theta + \cos^2\theta = 1.$$

Therefore

$$4\sin^2\theta + 4\cos^2\theta + (-1)4 = 0$$

and the set is linearly dependent.

Set C: Again, examine the system matrix:

$$\begin{bmatrix} -1 & 0 & 5 \\ 1 & 1 & 0 \\ 1 & 2 & 5 \end{bmatrix}$$

Set B: Note that

$$\sin^2\theta + \cos^2\theta = 1.$$

Therefore

$$4\sin^2\theta + 4\cos^2\theta + (-1)4 = 0$$

and the set is linearly dependent.

Set C: Again, examine the system matrix:

$$\begin{bmatrix} -1 & 0 & 5 \\ 1 & 1 & 0 \\ 1 & 2 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & 5 \\ 0 & 0 & 0 \end{bmatrix}.$$

So a = 5c and b = -5c. Set c = 1 to find

$$5\begin{bmatrix} -1\\1\\1\end{bmatrix} - 5\begin{bmatrix} 0\\1\\2\end{bmatrix} + \begin{bmatrix} 5\\0\\5\end{bmatrix} = \begin{bmatrix} 0\\0\\0\end{bmatrix}.$$

So *C* is linearly dependent.

Let $S = \{v_1, \dots, v_n\}$ be a nonempty finite collection of vectors in V.

▶ $w \in \text{span}(S)$

Let $S = \{v_1, \dots, v_n\}$ be a nonempty finite collection of vectors in V.

▶ $w \in \text{span}(S) \leftrightarrow \text{``Can I write } w \text{ as a linear combination of vectors in } S?$

Let $S = \{v_1, \dots, v_n\}$ be a nonempty finite collection of vectors in V.

w ∈ span(S) ↔ "Can I write w as a linear combination of vectors in S?" ↔ "Is the corresponding linear system consistent?"

- w ∈ span(S) ↔ "Can I write w as a linear combination of vectors in S?" ↔ "Is the corresponding linear system consistent?"
- ► S linearly independent

- w ∈ span(S) ↔ "Can I write w as a linear combination of vectors in S?" ↔ "Is the corresponding linear system consistent?"
- \triangleright S linearly independent \leftrightarrow "Is the representation unique?"

- w ∈ span(S) ↔ "Can I write w as a linear combination of vectors in S?" ↔ "Is the corresponding linear system consistent?"
- ▶ S linearly independent \leftrightarrow "Is the representation unique?" \leftrightarrow "Is the solution to the linear system unique?"

Let $S = \{v_1, \dots, v_n\}$ be a nonempty finite collection of vectors in V.

- w ∈ span(S) ↔ "Can I write w as a linear combination of vectors in S?" ↔ "Is the corresponding linear system consistent?"
- ▶ S linearly independent \leftrightarrow "Is the representation unique?" \leftrightarrow "Is the solution to the linear system unique?"

In an ideal world, we want unique solutions to things.

Let $S = \{v_1, \dots, v_n\}$ be a nonempty finite collection of vectors in V.

- w ∈ span(S) ↔ "Can I write w as a linear combination of vectors in S?" ↔ "Is the corresponding linear system consistent?"
- ▶ S linearly independent \leftrightarrow "Is the representation unique?" \leftrightarrow "Is the solution to the linear system unique?"

In an ideal world, we want unique solutions to things. So we combine the two concepts together!

Definition

Let V be a vector space. A set β is called a **basis** for V if

1.
$$\operatorname{span}(\beta) = V$$
.

Definition

Let V be a vector space. A set β is called a **basis** for V if

- 1. span(β) = V.
- 2. β is linearly independent.

Definition

Let V be a vector space. A set β is called a **basis** for V if

- 1. span(β) = V.
- 2. β is linearly independent.

Note that (for us) we will always assume that β is a finite and non-empty set, unless otherwise specified.

Definition

Let V be a vector space. A set β is called a **basis** for V if

- 1. span(β) = V.
- 2. β is linearly independent.

Note that (for us) we will always assume that β is a finite and non-empty set, unless otherwise specified. So we could write

$$\beta = \{v_1, \ldots, v_n\}, \quad n \in \mathbb{N}.$$

Examples: Standard basis

1. The "standard basis" for \mathbb{R}^n is the set:

$$\left\{ \begin{bmatrix} 1\\0\\0\\0\\0\\\vdots\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0\\1\\\vdots\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\\vdots\\0\\0 \end{bmatrix}, \dots \begin{bmatrix} 0\\0\\0\\0\\\vdots\\1 \end{bmatrix} \right\}.$$

Examples: Standard basis

1. The "standard basis" for \mathbb{R}^n is the set:

$$\left\{ \begin{bmatrix} 1\\0\\0\\0\\\vdots\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0\\\vdots\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\\vdots\\0\\0 \end{bmatrix}, \dots \begin{bmatrix} 0\\0\\0\\\vdots\\1 \end{bmatrix} \right\}.$$

These are usually written as e_1, e_2, \ldots, e_n where e_i is a vector of all zeros except for a 1 in the *i*th position.

Guess the standard basis for 1) $n \times m$ matrices and 2) polynomials of degree n.

Guess the standard basis for 1) $n \times m$ matrices and 2) polynomials of degree n.

▶ For $\mathbb{R}^{n \times m}$ we have matrices of the form $[a_{ij}]$ where $a_{ij} = 0$ in all positions except for a single 1.

Guess the standard basis for 1) $n \times m$ matrices and 2) polynomials of degree n.

- ▶ For $\mathbb{R}^{n \times m}$ we have matrices of the form $[a_{ij}]$ where $a_{ij} = 0$ in all positions except for a single 1.
- ▶ For $P_n(\mathbb{R})$ we have

$$\{x^n, x^{n-1}, \dots, x^2, x, 1\}$$

$$A = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}, \quad B = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}, \quad C = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ -2 \end{bmatrix} \right\}$$

Which of the following sets is a basis for \mathbb{R}^2 ?

$$A = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}, \quad B = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}, \quad C = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ -2 \end{bmatrix} \right\}$$

► A is not.

Which of the following sets is a basis for \mathbb{R}^2 ?

$$A = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}, \quad B = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}, \quad C = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ -2 \end{bmatrix} \right\}$$

• A is not. Does not span \mathbb{R}^2 .

$$A = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}, \quad B = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}, \quad C = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ -2 \end{bmatrix} \right\}$$

- A is not. Does not span \mathbb{R}^2 .
- ▶ B is.

$$A = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}, \quad B = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}, \quad C = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ -2 \end{bmatrix} \right\}$$

- A is not. Does not span \mathbb{R}^2 .
- ► *B* is.
- ▶ C is not.

$$A = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}, \quad B = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}, \quad C = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ -2 \end{bmatrix} \right\}$$

- A is not. Does not span \mathbb{R}^2 .
- ▶ B is.
- C is not. Is not linearly independent.

Some Comments

▶ In general, a vector space can have lots of different bases.

Some Comments

- ▶ In general, a vector space can have lots of different bases.
- ► There seems to be some sort of "sweet spot" where a set of vectors becomes a basis.

Some Comments

- ▶ In general, a vector space can have lots of different bases.
- ► There seems to be some sort of "sweet spot" where a set of vectors becomes a basis. Roughly speaking:
 - Not spanning ↔ Not enough vectors.
 - Not linearly independent ↔ Too many vectors.

Theoretical Result

Theorem

Let S be a nonempty finite subset of a vector space V. Then there is a set β in S with β a basis for span(S).

Theoretical Result

Theorem

Let S be a nonempty finite subset of a vector space V. Then there is a set β in S with β a basis for span(S).

Idea: We can remove vectors from a finite set until we get to a linearly independent case WITHOUT losing the spanning property!

Let β be the largest linearly independent subset of S.

Let β be the largest linearly independent subset of S. Write

$$\beta = \{v_1, \ldots, v_n\}.$$

Let β be the largest linearly independent subset of S. Write

$$\beta = \{v_1, \ldots, v_n\}.$$

Suppose that $w \in S - \beta$ and consider the set

$$\beta \cup \{w\} = \{v_1, v_2, \ldots, v_n, w\}.$$

Let β be the largest linearly independent subset of S. Write

$$\beta = \{v_1, \ldots, v_n\}.$$

Suppose that $w \in S - \beta$ and consider the set

$$\beta \cup \{w\} = \{v_1, v_2, \ldots, v_n, w\}.$$

This set cannot be linearly independent (why?)

Let β be the largest linearly independent subset of S. Write

$$\beta = \{v_1, \ldots, v_n\}.$$

Suppose that $w \in S - \beta$ and consider the set

$$\beta \cup \{w\} = \{v_1, v_2, \ldots, v_n, w\}.$$

This set cannot be linearly independent (why?) So there is nontrivial solution to

$$\sum_{i=1}^n a_i v_i + bw = 0.$$

Let β be the largest linearly independent subset of S. Write

$$\beta = \{v_1, \ldots, v_n\}.$$

Suppose that $w \in S - \beta$ and consider the set

$$\beta \cup \{w\} = \{v_1, v_2, \ldots, v_n, w\}.$$

This set cannot be linearly independent (why?) So there is nontrivial solution to

$$\sum_{i=1}^n a_i v_i + bw = 0.$$

 $b \neq 0$ (why?).

Let β be the largest linearly independent subset of S. Write

$$\beta = \{v_1, \ldots, v_n\}.$$

Suppose that $w \in S - \beta$ and consider the set

$$\beta \cup \{w\} = \{v_1, v_2, \dots, v_n, w\}.$$

This set cannot be linearly independent (why?) So there is nontrivial solution to

$$\sum_{i=1}^n a_i v_i + bw = 0.$$

 $b \neq 0$ (why?). So

$$w = \sum_{i=1}^{n} \frac{a_i}{b} v_i$$

Let β be the largest linearly independent subset of S. Write

$$\beta = \{v_1, \ldots, v_n\}.$$

Suppose that $w \in S - \beta$ and consider the set

$$\beta \cup \{w\} = \{v_1, v_2, \ldots, v_n, w\}.$$

This set cannot be linearly independent (why?) So there is nontrivial solution to

$$\sum_{i=1}^n a_i v_i + bw = 0.$$

 $b \neq 0$ (why?). So

$$w = \sum_{i=1}^{n} \frac{a_i}{b} v_i \Rightarrow w \in \operatorname{span}(\beta).$$

Let β be the largest linearly independent subset of S. Write

$$\beta = \{v_1, \ldots, v_n\}.$$

Suppose that $w \in S - \beta$ and consider the set

$$\beta \cup \{w\} = \{v_1, v_2, \ldots, v_n, w\}.$$

This set cannot be linearly independent (why?) So there is nontrivial solution to

$$\sum_{i=1}^n a_i v_i + bw = 0.$$

 $b \neq 0$ (why?). So

$$w = \sum_{i=1}^{n} \frac{a_i}{b} v_i \Rightarrow w \in \operatorname{span}(\beta).$$

So $S \subset \text{span}(\beta)$ and therefore $\text{span}(S) = \text{span}(\beta)$.

An example

Find a basis for span(S) where

$$S = \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix} \right\}.$$

An example

Find a basis for span(S) where

$$S = \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix} \right\}.$$

We need to find the largest LI subset.

An example

Find a basis for span(S) where

$$S = \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix} \right\}.$$

We need to find the largest LI subset. To find it, consider the homogeneous problem.

$$\begin{bmatrix} 1 & 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & 2 & 1 \\ 1 & 1 & 2 & 1 & -2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ e \end{bmatrix} = 0$$

```
\begin{bmatrix} 1 & 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & 2 & 1 \\ 1 & 1 & 2 & 1 & -2 \end{bmatrix}
```

$$\begin{bmatrix} 1 & 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & 2 & 1 \\ 1 & 1 & 2 & 1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & 2 & 1 \\ 1 & 1 & 2 & 1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Examine the "leading ones". It appears that the third and fifth columns depend on the first, second, and fourth.

$$\begin{bmatrix} 1 & 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & 2 & 1 \\ 1 & 1 & 2 & 1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Examine the "leading ones". It appears that the third and fifth columns depend on the first, second, and fourth. So

$$\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix} \right\}$$

is the basis for span(S).