Cerione giovedi 19 10 h 30 - 12 h 30

tuto rato -> grov. pomeniggio

venerdi 20 8930- 10930 ONLINE

ricevimento 11900- 12900

8 CALWO DIFFERENZIALE

Nicordiamo $f: [a,b] \rightarrow \mathbb{R}$ continua $f: [a,b] \rightarrow \mathbb{R}$ continua $f: [a,b] \rightarrow \mathbb{R}$ weienstran.

?) Come determinare?

Introduciamo la derivata:

def Sia f:]a,b[→ R e 210 € Ja,b[Diciamo che fè derivable in 20 se $\exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \in \mathbb{R}.$ scrive $x = x_0 + h$ $h \to 0$ $\frac{f(x_0 + h) - f(x_0)}{h}$ $\frac{df}{dx}(x_0)$ 1 pendenza f(x,+h) -f(x,) $x_0 + h = x$ Oss se f derivabile in z_0 allora / esiste.

lim $r(z) = \lim_{x \to x_0} \left(\frac{f(x) - f(z_0)}{x - z_0} - f'(z_0) \right) = 0$. Allora posso scrivere dove $\frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) = r(x)$ $f(z) \longrightarrow 0$ 2-)20 ovveno $f(x) = f(x_0) + f'(x_0)(x-x_0) + r(x)(x-x_0)$ $-dove r(x) \longrightarrow 0$

Esemp: (1)
$$f: \mathbb{R} \rightarrow \mathbb{R}$$
 $f(x) = C$

allowa $\forall x_0 \in \mathbb{R}$ $f(x_0 + h) - f(x_0) = C - C = 0$
 $e h \neq 0$

Allowa $\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = 0$.

Dunque $he f(x) = C$ contante $=$ $f'(x_0) = 0$ $\forall x_0 \in \mathbb{R}$.

(2) $f: \mathbb{R} \rightarrow \mathbb{R}$ $f(x) = x^m$ $he n \in \mathbb{N}$.

Voghio vedere $\lim_{h \to 0} \frac{f(x_0 + h)^m - x_0^m}{h} = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m-1}$
 $\lim_{h \to 0} \frac{1}{h} \left[(x_0 + h)^m - x_0^m \right] = n x_0^{m$

(3)
$$f: \mathbb{R} \to \mathbb{R}$$
 $f(x) = \sin(x)$
Vo glio veder $f'(x_0) = \cos(x_0)$ $\forall x_0 \in \mathbb{R}$
 $\lim_{h \to 0} \frac{\sin(x_0 + h) - \sin(x_0)}{h}$
 $\lim_{h \to 0} \frac{\sin(x_0) \cos(h) + \sin(h) \cos(x_0) - \sin(x_0)}{h}$
 $\lim_{h \to 0} \frac{\sin(x_0) \cos(h) - 1}{h} + \cos(x_0) \frac{\sin(h)}{h}$
 $\lim_{h \to 0} \frac{1}{h} \cos(x_0)$
 $\lim_{h \to 0} \frac{1}{h} \left(\log(x_0 + h) - \log(x_0)\right)$
 $\lim_{h \to 0} \frac{1}{h} \log\left(\frac{x_0 + h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \log\left(1 + \frac{h}{x_0}\right)$
 $\lim_{h \to 0} \log\left(1 + \frac{h}{x_0}\right) = \log\left(\lim_{h \to 0} \left(1 + \frac{h}{x_0}\right)\right)$
 $\lim_{h \to 0} \log\left(1 + \frac{h}{x_0}\right) = \log\left(\lim_{h \to 0} \left(1 + \frac{h}{x_0}\right)\right)$

lum
$$(1 + \frac{h}{x_0})^{\frac{1}{h}} = \lim_{h \to 0} \left(\left(1 + \frac{h}{x_0} \right)^{\frac{2}{h}} \right)^{\frac{1}{2}} = \lim_{h \to 0} \left(\left(1 + \frac{h}{x_0} \right)^{\frac{2}{h}} \right)^{\frac{1}{2}} = \lim_{h \to 0} \frac{1}{h} = \lim_{h \to 0} \frac{1}{h$$

Esempi (di f. non derivabili)

(i)
$$f: \mathbb{R} \rightarrow \mathbb{R}$$
 $f(x) = |x|$.

$$\int_{-1}^{1} x_{0} > 0$$

$$\int_{-1}^{1} x_{0} > 0$$

$$\int_{-1}^{1} x_{0} > 0$$

$$\int_{-1}^{1} x_{0} > 0$$

$$\int_{-1}^{1} x_{0} + h - f(x_{0})$$

$$\int_{-1}^{1} h - \int_{-1}^{1} h - \int_{-1}^{1$$

Quind:
$$(fon x_0=0)$$

Inm
$$f(x_0+h) - f(x_0) = \lim_{h \to 0} segno(h) \frac{1}{\sqrt{161}}$$
ora
$$\lim_{h \to 0} segno(h) \frac{1}{\sqrt{161}} = +\infty$$
Inm
$$\lim_{h \to 0^{-}} segno(h) \frac{1}{\sqrt{161}} = -\infty$$
Inm
$$\lim_{h \to 0^{-}} segno(h) \frac{1}{\sqrt{161}} = -\infty$$
Per $x_0 \neq 0$ \(\text{e} \) derivabile \(\text{!} \)
$$\int_{0}^{1} (x_0) = \frac{1}{2\sqrt{x_0}}$$

$$\chi_0 < 0 \qquad \qquad \int_{0}^{1} (x_0) = -\frac{1}{2\sqrt{x_0}}$$
Inm
$$\int_{0}^{1} (x_0) = \int_{0}^{1} (x_0) = \frac{1}{2\sqrt{x_0}}$$
Esercizio
$$\int_{0}^{1} (x_0) = \int_{0}^{1} (x_0) = \frac{1}{2\sqrt{x_0}}$$
Esercizio
$$\int_{0}^{1} (x_0) = \int_{0}^{1} (x_0) = \frac{1}{2\sqrt{x_0}}$$

3)
$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x = 0 \end{cases}$$

$$\lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0$$

f non è derivable in
$$x_0=0$$

$$\frac{1}{R}(f(x_0+h)-f(x_0))$$

$$= \frac{1}{h} \left(\frac{h}{h} \sin \left(\frac{1}{h} \right) - 0 \right) = \sin \left(\frac{1}{h} \right)$$

$$f(h) \qquad f(o) \qquad \text{Non the Limits}$$

$$f(h) \qquad f(o) \qquad \text{ter } h \to 0$$

Esercino
$$f(x) = \begin{cases} \chi^2 \sin\left(\frac{1}{x}\right) & \chi \neq 0 \\ 0 & \chi = 0 \end{cases}$$

$$e$$
 derivable in $\chi_0=0$ e $f^1(\chi_0)=0$.

PROPRIETA DEUE F. DERIVABILI. Prop Se $f: Ja, bE \rightarrow IR$ devivable in x_0 Allora f e continua in x_0 . (!) non vale il viceversa. din Dero dimostrare lini $f(x) = f(x_0)$ over $\lim_{x\to n_0} \left(f(x) - f(x_0) \right) = 0$. Ma abbiamo $f(x) - f(x_0) = \frac{f(x_0) - f(x_0)}{x - x_0}$. $x - x_0$ per $x \neq x_0$. $f'(x_0)$ for $x \rightarrow x_0$ Quind' lim $f(x) - f(x_0) = 0$ come volevamo. Prop Siano fig: Ja, bt - JR derivabili in xo. ① f+g derivabile in x_0 $(f+g)'(x_0) = f'(x_0) + g'(x_0)$ ② fg derivable in 20 $(fg)'(x_0) = f(x_0)g'(x_0)$ (3) se $g(x_0) \neq 0$ allora $\frac{1}{9} derivabile in <math>x_0$ $\left(\frac{1}{9}\right)(x_0) = -\frac{g'(x_0)}{g(x_0)^2}$

Nota che nella 3 g der in 20 tes preced.

g continua in 20

Allora $g(x_0) \neq 0 \implies g(x) \neq 0$ in m interno di xo perman. del segno.

Ne deduciamo la formula

$$\left(\frac{f}{g}\right)'(\chi_0) = \left(f \cdot \frac{1}{g}\right)'(\chi_0) = f'(\chi_0) \frac{1}{g(\chi_0)} + f(\chi_0) \left(-\frac{g'(\chi_0)}{g(\chi_0)^2}\right)$$

$$= \frac{\int_{-\infty}^{\infty} (x_0) g(x_0) - \int_{-\infty}^{\infty} (x_0) g'(x_0)}{g(x_0)^2}$$

Esempil () $f(x) = x \log x$ (def per x>0)

$$D(x \log x) = (Dx) \cdot \log x + x \cdot D \log x$$

$$= \log x + x \cdot \frac{1}{x} = \log x + 1.$$

2
$$f(x) = \tan(x)$$

$$f(x) = \frac{\sin(x)}{\cos(x)}$$

$$\int \tan(x) = \frac{\cos x \cdot \cos x - \sin x \cdot (-\sin x)}{(\cos x)^2}$$

$$\int \tan(x) = \frac{\cos^2 x + \sin^2 x}{(\cos^2 x)} = \frac{1}{(\cos^2 x)}$$

$$\int \tan(x) = \frac{\cos^2 x + \sin^2 x}{(\cos^2 x)} = \frac{1}{(\cos^2 x)}$$

$$\int \tan(x) = \frac{\cos^2 x + \sin^2 x}{(\cos^2 x)} = \frac{1}{(\cos^2 x)}$$

$$\int \tan(x) = \frac{\cos^2 x + \sin^2 x}{(\cos^2 x)} = \frac{1}{(\cos^2 x)}$$

$$\int \tan(x) = \frac{\cos^2 x}{(\cos^2 x)^2} = \frac{1}{(\cos^2 x)}$$

$$\int \tan(x) = \frac{\cos^2 x}{(\cos^2 x)^2} = \frac{1}{(\cos^2 x)}$$

$$\int \tan(x) = \frac{1}{(\cos^2 x)^2} = \frac{1}{(\cos^2 x)^2}$$

$$\int \tan(x) = \frac{1}{(\cos^2 x)^2} = \frac{1}{(\cos^2 x)^2} = \frac{1}{(\cos^2 x)^2}$$

$$\int \tan(x) = \frac{1}{(\cos^2 x)^2} = \frac{1}$$

Esempio
$$h(x) = \sin(x^3)$$
 $h'(x) = ?$

Vedo $h = g \circ f$ dove $f(x) = x^3$
 $g(y) = \sin y$.

Infatt: $g(f(x)) = \sin(f(x)) = \sin(x^3)$.

Allora $h'(x) = g'(f(x)) \cdot f'(x)$

$$= \cos(f(x)) \cdot f'(x)$$

$$h'(x) = \cos(x^3) \cdot 3x^2$$
.

Nella pratica $\sin(x^3) \rightarrow \sin(y)$

$$(\sin(y))' = \cos(y) \cdot y'$$

Esercizio $f(x) = \log(\tan x)$

Per quali $x \in \text{defmito } ? \in \text{derivabile } ?$

D log $(\tan x) = \frac{1}{\tan x}$. $(1 + \tan^2 x)$