Plaint or Tweet

Tommaso Battistini Edoardo De Matteis Leonardo Emili Mirko Giacchini Alessio Luciani

The Problem

- Sentiment analysis on tweets.
- A good dataset with annotated tweets: <u>Sentiment140</u> (about 1.6M of tweets).
- Motivation: interesting in research, and used in industry.

d	f.head	()					
	lab	el	id	date	query	username	text
)	0	1467810369	Mon Apr 06 22:19:45 PDT 2009	NO_QUERY	_TheSpecialOne_	@switchfoot http://twitpic.com/2y1zl - Awww, t
	1	0	1467810672	Mon Apr 06 22:19:49 PDT 2009	NO_QUERY	scotthamilton	is upset that he can't update his Facebook by
	2	0	1467810917	Mon Apr 06 22:19:53 PDT 2009	NO_QUERY	mattycus	@Kenichan I dived many times for the ball. Man
	3	0	1467811184	Mon Apr 06 22:19:57 PDT 2009	NO_QUERY	ElleCTF	my whole body feels itchy and like its on fire
	4	0	1467811193	Mon Apr 06 22:19:57 PDT 2009	NO_QUERY	Karoli	@nationwideclass no, it's not behaving at all

The Models - Naïve Bayes

Bernoulli Event Model:

'i love love pizza'

pizza	i	love		
1	1	1	0	 0

Multinomial Event Model:

occurrences count

pizza	i	love		
1	1	2	0	 0

Tf-Idf score

pizza	i	love		
0.64	0.25	0.72	0	 0

The Models - Naïve Bayes on embeddings

Word embeddings: using Word2Vec/FastText

Tweet embeddings: average of words embeddings

'i love love pizza'

- 0.2 | 0.14 | 5.2 | - 1.7 | ... | 0.55

We tried:

- Multinomial NB (discretizing and not)
- Gaussian NB

Preprocessing... or not?

- Common user typo correction.
- We used lemmatization, stopwords removal (from spaCy).

```
wellnow day thing want 10 Veglad need thing want 10 Veglad need was better wa
```

Preprocessing... or not?

ROC curve with 80% training 20% testing

Preprocessing... or not?

Predefined stopwords lists include useful words

Our Bernoulli model:

preprocessing	accuracy
complete	0.7690
none	0.7828
ad-hoc stopwords removal	0.7834

Classic NB vs Embeddings

80% training 20% testing without preprocessing

Classic NB vs Embeddings

- Classical approaches work better
- Tuning hyperparameters (i.e. ngram), 60% training, 20% validation, 20% test:

model	accuracy	f1-score	auroc
Bernoulli	0.797	0.799	0.880
Multinomial	0.802	0.802	0.884
Multinomial TF-IDF	0.805	0.804	0.886

Comparison with Kaggle notebooks

Twitter, Modelling with Naive Bayes + Streamlit

uses Multinomial Naive Bayes with Tf-Idf

We replicated their dataset split:

model	AUROC
From Notebook	0.839
Our Tf-Idf	0.841
From Notebook, removing some preprocessing	0.849

Comparison with Kaggle notebooks

Sentiment Analyzer

Uses LSTM network on word embeddings

They run only one test, we averaged over different seeds:

model	Accuracy
From Notebook	0.779
Our Tf-Idf	0.799
From Notebook, leaving stopwords	0.816

A curious test...

- We trained our model on Twitter's dataset and tested it against the <u>IMDB</u> one.
- The distributions of IMDB and Twitter are very different.

Test	Accuracy
Train: Twitter Test: IMDB	0.732
Train: IMDB Test: IMDB	0.891
Train: IMDB Test: Twitter	0.549
Train: Twitter Test: Twitter	0.797

Conclusions

- Preprocessing might decrease performance, a careful ad-hoc preprocessing can boost performances.
- Naive Bayes works better with simpler representations.
- Multinomial Naive Bayes with Tf-Idf gives competitive results.

Thank you.