Modelos não Paramétricos

Ricardo Accioly

Nesta apresentação vamos ver passo a passo como obter comparar as curvas de sobrevivência utilizando o teste de log-rank.

Nesta apresentação vamos ver passo a passo como obter comparar as curvas de sobrevivência utilizando o teste de log-rank.

Vamos utilizar o pacote survival que é a principal referência em modelos de análise de sobrevivência.

Nesta apresentação vamos ver passo a passo como obter comparar as curvas de sobrevivência utilizando o teste de log-rank.

Vamos utilizar o pacote survival que é a principal referência em modelos de análise de sobrevivência.

Vamos usar neste exemplo dados de pacientes com leucemia.

Nesta apresentação vamos ver passo a passo como obter comparar as curvas de sobrevivência utilizando o teste de log-rank.

Vamos utilizar o pacote survival que é a principal referência em modelos de análise de sobrevivência.

Vamos usar neste exemplo dados de pacientes com leucemia.

O objetivo é verificar se o tratamento proposto, 6MP, tem efeito sobre a doença.

Nesta apresentação vamos ver passo a passo como obter comparar as curvas de sobrevivência utilizando o teste de log-rank.

Vamos utilizar o pacote survival que é a principal referência em modelos de análise de sobrevivência.

Vamos usar neste exemplo dados de pacientes com leucemia.

O objetivo é verificar se o tratamento proposto, 6MP, tem efeito sobre a doença.

Existem dois grupos de pacientes. 21 receberam 6MP que é um medicamento para tratar leucemia e os outros 21 receberam placebo.

Nesta apresentação vamos ver passo a passo como obter comparar as curvas de sobrevivência utilizando o teste de log-rank.

Vamos utilizar o pacote survival que é a principal referência em modelos de análise de sobrevivência.

Vamos usar neste exemplo dados de pacientes com leucemia.

O objetivo é verificar se o tratamento proposto, 6MP, tem efeito sobre a doença.

Existem dois grupos de pacientes. 21 receberam 6MP que é um medicamento para tratar leucemia e os outros 21 receberam placebo.

O evento falha aqui é ocorrer uma recaída na doença.

library(survival)

```
library(survival)
tempo← c(6,6,6,6,7,9,10,10,11,13,16,17,19,20,22,23,25,3
```


dados ← data.frame(tempos=tempo2g, status=status2g, gru

```
dados ← data.frame(tempos=tempo2g, status=status2g, gru
ajusteKM ← survfit(Surv(tempos, status) ~ grupos, data=
```

dados ← data.frame(tempos=tempo2g, status=status2g, gru
ajusteKM ← survfit(Surv(tempos, status) ~ grupos, data=
summary(ajusteKM)

Call:	survfi	t(formula	a = Surv(1	tempos,	status) ~ grup	oos, data = da	idos)
		grupo	os=1				
time	n.risk	n.event	survival	std.err	lower 95% CI	upper 95% CI	
6	21	3	0.857	0.0764	0.720	1.000	
7	17	1	0.807	0.0869	0.653	0.996	
10	15	1	0.753	0.0963	0.586	0.968	
13	12	1	0.690	0.1068	0.510	0.935	
16	11	1	0.627	0.1141	0.439	0.896	
22	7	1	0.538	0.1282	0.337	0.858	
23	6	1	0.448	0.1346	0.249	0.807	
		grupo	ns=2				
time	n risk			std err	lower 95% CI	unner 95% CT	
1	21	2	0.9048	0.0641	0.78754	1.000	
2	19	2	0.8095	0.0857		0.996	
3	17	1	0.7619	0.0929		0.968	
4	16	2	0.6667	0.1029		0.902	
5	14	2	0.5714	0.1080	0.39455	0.828	
8	12	4	0.3810	0.1060	0.22085	0.657	
11	8	2	0.2857	0.0986	0.14529	0.562	
12	6	2	0.1905	0.0857	0.07887	0.460	
15	4	1	0.1429	0.0764	0.05011	0.407	
17	3	1	0.0952	0.0641	0.02549	0.356	
22	2	1	0.0476	0.0465	0.00703	0.322	
23	1	1	0.0000	NaN	NA	NA	

dados ← data.frame(tempos=tempo2g, status=status2g, gru

```
dados ← data.frame(tempos=tempo2g, status=status2g, gru
survdiff(Surv(tempo2g, status2g) ~ grupos, data=dados)
```

dados ← data.frame(tempos=tempo2g, status=status2g, gru

```
dados \leftarrow data.frame(tempos=tempo2g, status=status2g, gru # rho=0 é o teste de log-rank survdiff(Surv(tempos, status) ~ grupos, rho=0, data=dado
```

dados ← data.frame(tempos=tempo2g, status=status2g, gru

```
dados ← data.frame(tempos=tempo2g, status=status2g, gru
# rho=1 é o teste de Harrigton-Fleming
survdiff(Surv(tempos, status) ~ grupos, rho=1, data=dado
```

Vamos usar neste exemplo os dados de um estudo experimental com camundongos conduzido no Centro de Pesquisas René Rachou, FioCruz, MG.

44 camundongos foram infectados pela malaria (Plasmodium berguei) e aleatoriamente alocados em três grupos:

Grupo 1: Imunizados 30 dias antes da infecção pela malária. Foram infetados também por esquistossomose.

Grupo 2: Controle (Somente infectado pela malária)

Grupo 3: Infectado pela malária e ela esquistossomose.

A resposta foi o tempo decorrido desde a infecção pela malária até a morte do camundongo.

O tempo foi medido em dias e o estudo foi acompanhado por 30 dias

Vamos adotar um nível de significância de 0,05 para avaliar a diferença entre as curvas, ou seja, se a estatística de log-rank tiver um valor menor que 0,05, vamos rejeitar a hipótese nula.

tempos \leftarrow c(7,8,8,8,8,12,12,17,18,22,30,30,30,30,30,30,8 10,10,14,15,15,18,19,21,22,22,23,25,8,8,8,8,8,8,8,9,10,10,11,17,19)

```
tempos \leftarrow c(7,8,8,8,8,12,12,17,18,22,30,30,30,30,30,30,8) 10,10,14,15,15,18,19,21,22,22,23,25,8,8,8,8,8,8,9,10,10,10,11,17,19) status \leftarrow c(rep(1,10), rep(0,6), rep(1,15), rep(1,13))
```

```
tempos \leftarrow c(7,8,8,8,8,12,12,17,18,22,30,30,30,30,30,30,8 10,10,14,15,15,18,19,21,22,22,23,25,8,8,8,8,8,8,9,10,10,10,11,17,19) status \leftarrow c(rep(1,10), rep(0,6), rep(1,15), rep(1,13)) grupos \leftarrow c(rep(1,16), rep(2,15), rep(3,13))
```

```
tempos \leftarrow c(7,8,8,8,8,12,12,17,18,22,30,30,30,30,30,30,8) 10,10,14,15,15,18,19,21,22,22,23,25,8,8,8,8,8,8,9,10,10,10,11,17,19) status \leftarrow c(rep(1,10), rep(0,6), rep(1,15), rep(1,13)) grupos \leftarrow c(rep(1,16), rep(2,15), rep(3,13)) dados2 \leftarrow data.frame(tempos, status, grupos)
```

```
tempos \leftarrow c(7,8,8,8,8,12,12,17,18,22,30,30,30,30,30,30,8 10,10,14,15,15,18,19,21,22,22,23,25,8,8,8,8,8,8,9,10,10,10,11,17,19) status \leftarrow c(rep(1,10), rep(0,6), rep(1,15), rep(1,13)) grupos \leftarrow c(rep(1,16), rep(2,15), rep(3,13)) dados2 \leftarrow data.frame(tempos, status, grupos) ajusteKM2\leftarrow survfit(Surv(tempos, status) \sim grupos, data
```

```
tempos \leftarrow c(7,8,8,8,8,12,12,17,18,22,30,30,30,30,30,30,8 10,10,14,15,15,18,19,21,22,22,23,25,8,8,8,8,8,8,9,10,10,10,11,17,19) status \leftarrow c(rep(1,10), rep(0,6), rep(1,15), rep(1,13)) grupos \leftarrow c(rep(1,16), rep(2,15), rep(3,13)) dados2 \leftarrow data.frame(tempos, status, grupos) ajusteKM2\leftarrow survfit(Surv(tempos, status) \sim grupos, data plot(ajusteKM2, xlab="T(dias)",ylab="S(t)", lty=1:3)
```



```
tempos \leftarrow c(7,8,8,8,8,12,12,17,18,22,30,30,30,30,30,30,8,10,10,14,15,15,18,19,21,22,22,23,25,8,8,8,8,8,8,9,10,10,10,11,17,19) status \leftarrow c(rep(1,10), rep(0,6), rep(1,15), rep(1,13)) grupos \leftarrow c(rep(1,16), rep(2,15), rep(3,13)) dados2 \leftarrow data.frame(tempos, status, grupos) ajusteKM2\leftarrow survfit(Surv(tempos, status) \sim grupos, data plot(ajusteKM2, xlab="T(dias)",ylab="S(t)", lty=1:3) legend("topright",c("G 1","G 2", "G 3"), lty = 1:3)
```


tempos \leftarrow c(7,8,8,8,8,12,12,17,18,22,30,30,30,30,30,30,8 10,10,14,15,15,18,19,21,22,22,23,25,8,8,8,8,8,8,8,9,10,10,11,17,19)

```
tempos \leftarrow c(7,8,8,8,8,12,12,17,18,22,30,30,30,30,30,30,8) 10,10,14,15,15,18,19,21,22,22,23,25,8,8,8,8,8,8,9,10,10,10,11,17,19) status \leftarrow c(rep(1,10), rep(0,6), rep(1,15), rep(1,13))
```

```
tempos \leftarrow c(7,8,8,8,8,12,12,17,18,22,30,30,30,30,30,30,8 10,10,14,15,15,18,19,21,22,22,23,25,8,8,8,8,8,8,9,10,10,10,11,17,19) status \leftarrow c(rep(1,10), rep(0,6), rep(1,15), rep(1,13)) grupos \leftarrow c(rep(1,16), rep(2,15), rep(3,13))
```

```
tempos \leftarrow c(7,8,8,8,8,12,12,17,18,22,30,30,30,30,30,30,8) 10,10,14,15,15,18,19,21,22,22,23,25,8,8,8,8,8,8,9,10,10,10,11,17,19) status \leftarrow c(rep(1,10), rep(0,6), rep(1,15), rep(1,13)) grupos \leftarrow c(rep(1,16), rep(2,15), rep(3,13)) dados2 \leftarrow data.frame(tempos, status, grupos)
```

```
tempos \leftarrow c(7,8,8,8,8,12,12,17,18,22,30,30,30,30,30,30,8,10,10,14,15,15,18,19,21,22,22,23,25,8,8,8,8,8,8,9,10,10,10,11,17,19) status \leftarrow c(rep(1,10), rep(0,6), rep(1,15), rep(1,13)) grupos \leftarrow c(rep(1,16), rep(2,15), rep(3,13)) dados2 \leftarrow data.frame(tempos, status, grupos) survdiff(Surv(tempos, status) \sim grupos, data = dados2,
```

```
Call:
survdiff(formula = Surv(tempos, status) ~ grupos, data = dados2,
   rho = 0
         N Observed Expected (0-E)^2/E (0-E)^2/V
grupos=1 16
                     17.00
                              2.8816
                                        6.4111
grupos=2 15
                     14.51
                              0.0167
                                        0.0317
               15
grupos=3 13
                     6.49
                              6.5190
                                       10.4447
             13
 Chisq= 12.6 on 2 degrees of freedom, p= 0.002
```

tempos \leftarrow c(7,8,8,8,8,12,12,17,18,22,30,30,30,30,30,30,8 10,10,14,15,15,18,19,21,22,22,23,25,8,8,8,8,8,8,8,9,10,10,11,17,19)

```
tempos \leftarrow c(7,8,8,8,8,12,12,17,18,22,30,30,30,30,30,30,8) 10,10,14,15,15,18,19,21,22,22,23,25,8,8,8,8,8,8,9,10,10,10,11,17,19) status \leftarrow c(rep(1,10), rep(0,6), rep(1,15), rep(1,13))
```

```
tempos \leftarrow c(7,8,8,8,8,12,12,17,18,22,30,30,30,30,30,30,8 10,10,14,15,15,18,19,21,22,22,23,25,8,8,8,8,8,8,9,10,10,10,11,17,19) status \leftarrow c(rep(1,10), rep(0,6), rep(1,15), rep(1,13)) grupos \leftarrow c(rep(1,16), rep(2,15), rep(3,13))
```

```
tempos \leftarrow c(7,8,8,8,8,12,12,17,18,22,30,30,30,30,30,30,8) 10,10,14,15,15,18,19,21,22,22,23,25,8,8,8,8,8,8,9,10,10,10,11,17,19) status \leftarrow c(rep(1,10), rep(0,6), rep(1,15), rep(1,13)) grupos \leftarrow c(rep(1,16), rep(2,15), rep(3,13)) dados2 \leftarrow data.frame(tempos, status, grupos)
```

```
tempos \leftarrow c(7,8,8,8,8,12,12,17,18,22,30,30,30,30,30,30,8 10,10,14,15,15,18,19,21,22,22,23,25,8,8,8,8,8,8,9,10,10,10,11,17,19) status \leftarrow c(rep(1,10), rep(0,6), rep(1,15), rep(1,13)) grupos \leftarrow c(rep(1,16), rep(2,15), rep(3,13)) dados2 \leftarrow data.frame(tempos, status, grupos) teste_lr \leftarrow survdiff(Surv(tempos, status) \sim grupos, data
```

```
tempos \leftarrow c(7,8,8,8,8,12,12,17,18,22,30,30,30,30,30,30,8,8,10,10,14,15,15,18,19,21,22,22,23,25,8,8,8,8,8,8,8,9,10,10,10,11,17,19) status \leftarrow c(rep(1,10), rep(0,6), rep(1,15), rep(1,13)) grupos \leftarrow c(rep(1,16), rep(2,15), rep(3,13)) dados2 \leftarrow data.frame(tempos, status, grupos) teste_lr \leftarrow survdiff(Surv(tempos, status) \sim grupos, data w \leftarrow teste_lr$obs[1:2] - teste_lr$exp[1:2]
```

```
tempos \leftarrow c(7,8,8,8,8,12,12,17,18,22,30,30,30,30,30,30,8,10,10,14,15,15,18,19,21,22,22,23,25,8,8,8,8,8,8,9,10,10,10,11,17,19) status \leftarrow c(rep(1,10), rep(0,6), rep(1,15), rep(1,13)) grupos \leftarrow c(rep(1,16), rep(2,15), rep(3,13)) dados2 \leftarrow data.frame(tempos, status, grupos) teste_lr \leftarrow survdiff(Surv(tempos, status) \sim grupos, data w \leftarrow teste_lr$obs[1:2] - teste_lr$exp[1:2] \lor \lor teste_lr$var[1:2,1:2]
```

```
tempos \leftarrow c(7,8,8,8,8,12,12,17,18,22,30,30,30,30,30,30,8 10,10,14,15,15,18,19,21,22,22,23,25,8,8,8,8,8,8,8,9,10,10,10,11,17,19) status \leftarrow c(rep(1,10), rep(0,6), rep(1,15), rep(1,13)) grupos \leftarrow c(rep(1,16), rep(2,15), rep(3,13)) dados2 \leftarrow data.frame(tempos, status, grupos) teste_lr \leftarrow survdiff(Surv(tempos, status) \sim grupos, data w \leftarrow teste_lr$obs[1:2] - teste_lr$exp[1:2] \lor \lor teste_lr$var[1:2,1:2] \lor teste_lr$var[1:2,1:2]
```

Como a hipótese nula foi rejeitada precisamos avaliar se todas as curvas de sobrevivência são diferentes.

Para isto vamos fazer comparações, duas a duas, utilizando o método de Bonferroni. Como existem três grupos, são três as comparações duas a duas.

O nível de significância a ser adotado nestas comparações é de α = 0,05/3 = 0,017.

Isto vai garantir uma conclusão geral ao nível máximo de 0,05.

Grupos 1 e 2

Grupos 1 e 2

dados2 ← data.frame(tempos, status, grupos)

```
Call:
dados2 ← data.frame(tempos, status, grupos)
                                                        survdiff(formula = Surv(tempos, status) ~ grupos, data = subset(dados2,
survdiff(Surv(tempos, status) ~ grupos, data = subset(da
                                                            grupos \neq 3), rho = 0)
                                                                  N Observed Expected (0-E)^2/E (0-E)^2/V
                                                        grupos=1 16
                                                                                13.7
                                                                                          1.01
                                                                                                    2.53
                                                        grupos=2 15
                                                                        15
                                                                              11.3
                                                                                          1.23
                                                                                                    2.53
                                                         Chisq= 2.5 on 1 degrees of freedom, p= 0.1
```

Grupos 1 e 3

Grupos 1 e 3

dados2 ← data.frame(tempos, status, grupos)

Chisq= 7.9 on 1 degrees of freedom, p= 0.005

Grupos 2 e 3

Grupos 2 e 3

dados2 ← data.frame(tempos, status, grupos)

```
Call:
dados2 ← data.frame(tempos, status, grupos)
                                                        survdiff(formula = Surv(tempos, status) ~ grupos, data = subset(dados2,
survdiff(Surv(tempos, status) ~ grupos, data = subset(da
                                                            grupos \neq 1), rho = 0)
                                                                 N Observed Expected (0-E)^2/E (0-E)^2/V
                                                        grupos=2 15
                                                                               20.53
                                                                                          1.49
                                                                                                    7.98
                                                        grupos=3 13
                                                                         13
                                                                              7.47
                                                                                          4.08
                                                                                                   7.98
                                                         Chisq= 8 on 1 degrees of freedom, p= 0.005
```

Neste exemplo temos 2 tratamentos, mas queremos controlar os resultados considerando uma variável categórica (sexo).

O evento estudado é o tempo até a recaída de leucemia.

O conjunto de dados tem os seguintes informação:

- tempo (semanas)
- status (0 = censura e 1 = falha)
- sexo (0 = mulher e 1 = homem)
- logwbc = log do número de células brancas
- Rx (0 = Novo tratamento e 1 = Placebo)

Vamos ver como isto pode ser feito na função survfit.

library(readxl)

```
library(readxl)
dados_a ← read_xlsx("anderson.xlsx", col_names=T)
```

```
library(readxl)
dados_a ← read_xlsx("anderson.xlsx", col_names=T)
ajusteKM_S ← survfit(Surv(tempo, status) ~ Rx + strata(
```

```
library(readxl)
dados_a 

read_xlsx("anderson.xlsx", col_names=T)
ajusteKM_S 

survfit(Surv(tempo, status) 

Rx + strata(
plot(ajusteKM_S, xlab="T(semanas)",ylab="S(t)", lty=1:4)
```


Vamos obter uma aproximação da função taxa de falhas usando a função density

Posteriormente vamos obter o quantil usando uma função do pacote survey

tempo← c(6,6,6,6,7,9,10,10,11,13,16,17,19,20,22,23,25,3

tempo2 \leftarrow c(1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,17,2

library(survey)

```
library(survey)
tempo2← c(1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,17,2
```

```
library(survey) tempo2 \leftarrow c(1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,17,2 status2 \leftarrow c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) dados \leftarrow data.frame(tempos=tempo2, status=status2)
```

```
0.5

8

attr(,"ci")

0.025 0.975

0.5 5 12
```