ZhdanovDS 29112024-141139

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.4	0.331	-165.9	9.800	85.0	0.049	66.9	0.285	-65.0
1.5	0.332	-169.3	9.118	82.7	0.052	66.6	0.269	-66.6
1.6	0.335	-171.5	8.475	81.1	0.055	66.3	0.256	-68.8
1.7	0.338	-173.9	7.988	79.7	0.058	66.1	0.243	-70.7
1.8	0.342	-176.0	7.561	78.3	0.061	66.0	0.232	-72.8
1.9	0.344	-178.6	7.147	76.2	0.064	65.5	0.222	-74.8
2.0	0.345	179.6	6.714	75.0	0.067	65.1	0.214	-77.1
2.2	0.350	176.3	6.119	72.6	0.073	64.5	0.200	-81.3
2.4	0.350	172.9	5.544	69.8	0.079	63.5	0.190	-85.2
2.6	0.355	170.0	5.114	67.8	0.084	62.7	0.181	-89.0
2.8	0.356	167.0	4.738	65.3	0.090	61.7	0.176	-92.5

и частоты $f_{\mbox{\tiny H}}=1.7$ ГГц, $f_{\mbox{\tiny B}}=2.4$ ГГц.

Найти неравномерность усиления в полосе $f_{\text{\tiny H}}...f_{\text{\tiny B}},$ используя рисунок 1.

Рисунок 1 — Частотная характеристика усиления

- 1) 1.8 дБ
- 2) 1.6 дБ
- 3) 6.3 дБ
- 4) 3.2 дБ

Найти точку (см. рисунок 2), соответствующую коэффициенту отражения от нормированного импеданса z=0.66-0.21 i .

Рисунок2— Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.557	164.3	5.587	74.3	0.050	58.2	0.270	-42.2
1.6	0.579	144.0	3.515	58.3	0.074	56.2	0.253	-50.0
2.2	0.616	127.5	2.526	43.8	0.098	51.5	0.238	-62.4
2.8	0.661	113.0	1.958	30.1	0.119	45.7	0.226	-78.0
3.4	0.700	101.2	1.584	18.4	0.139	40.2	0.217	-96.2
4.0	0.738	91.4	1.317	6.9	0.157	34.5	0.222	-116.1
4.6	0.768	82.9	1.110	-3.3	0.173	29.1	0.237	-135.2

Найти точку (см. рисунок 3), соответствующую s_{22} на частоте 4 $\Gamma\Gamma$ ц.

Рисунок 3 — Кривые s_{11} и s_{22}

- 1) A
- 2) B
- 3) C
- 4) D

Задан двухполюсник на рисунке 4, причём R1 = 40.38 Om.

Рисунок 4 – Двухполюсник

Найти полуокружность (см. рисунок 5), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 5 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
$_{ m GHz}$	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.2	0.564	156.8	4.666	68.8	0.058	58.1	0.263	-44.1
1.5	0.578	147.3	3.740	60.7	0.070	57.0	0.254	-48.4
1.8	0.594	138.0	3.104	53.2	0.082	54.8	0.246	-53.9
2.1	0.608	130.0	2.651	46.3	0.094	52.3	0.241	-60.1
2.4	0.629	122.1	2.313	39.3	0.105	49.7	0.234	-67.3
2.7	0.653	115.2	2.038	32.5	0.116	46.7	0.227	-75.2
3.0	0.674	108.9	1.818	26.1	0.126	43.9	0.220	-83.8
3.3	0.692	103.1	1.640	20.5	0.135	41.1	0.217	-93.1
3.6	0.713	97.7	1.485	14.5	0.145	38.3	0.217	-102.7

и частоты $f_{\mbox{\tiny H}}=1.2$ ГГц, $f_{\mbox{\tiny B}}=3.3$ ГГц.

Найти усиление на $f_{\scriptscriptstyle \mathrm{H}}.$

- 1) 13.4 дБ
- 2) 26.8 дБ
- 3) 4.3 дБ
- 4) 2.1 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.2	0.328	-164.0	11.236	88.0	0.043	68.4	0.309	-60.4
1.3	0.332	-167.1	10.393	86.1	0.046	68.3	0.292	-62.1
1.4	0.338	-169.8	9.669	84.3	0.049	68.2	0.276	-64.1
1.5	0.339	-173.0	8.997	82.0	0.052	67.9	0.261	-65.7
1.6	0.343	-174.9	8.358	80.5	0.055	67.5	0.248	-67.9
1.7	0.346	-177.1	7.877	79.1	0.057	67.3	0.235	-69.7
1.8	0.350	-179.0	7.456	77.7	0.060	67.1	0.225	-71.8
1.9	0.352	178.5	7.048	75.7	0.064	66.6	0.215	-73.7
2.0	0.354	177.1	6.620	74.5	0.066	66.1	0.207	-76.1
2.2	0.360	173.8	6.033	72.1	0.072	65.5	0.194	-80.2
2.4	0.359	170.7	5.465	69.5	0.078	64.4	0.185	-84.2

и частоты $f_{\scriptscriptstyle {
m H}}=1.4$ $\Gamma\Gamma$ ц, $f_{\scriptscriptstyle {
m B}}=2$ $\Gamma\Gamma$ ц. **Найти** модуль s_{21} в д ${
m B}$ на частоте $f_{\scriptscriptstyle {
m B}}.$

- 1) -9 дБ
- 2) -13.7 дБ
- 3) 16.4 дБ
- 4) -23.6 дБ