

Introduction

Active Contour Segmentation with Level Sets

- Goal: Detect object boundaries in images
- Traditional methods (snakes): Explicit contour representation with points
- Level Set approach: Implicit representation via function φ(x, y)
 - Contour defined as zero-level set of φ
 - Naturally handles topological changes (splitting/merging)
 - Evolution governed by partial differential equations (PDEs)

Traditional active contours

Level set contour

Fundamental Level Set Method

Principles

- Contour C defined where $\phi(x, y, t) = 0$
- φ is a signed distance function
- Evolution: $\partial \phi / \partial t = -F |\nabla \phi|$
- Speed function: $F = g \cdot \kappa + \nabla g \cdot \nabla \phi$
 - g = edge detector function
 - ∘ K = curvature

Key Challenge

- Level set function loses its signed distance property ($|\nabla \phi| = 1$)
- Results in:
 - Numerical instabilities
 - Irregular, unwanted contours
 - Computational inefficiency

|∇φ| after 100 iterations

Reinitialization

The Approach

- Periodically reshape φ to restore signed distance property → Improved numerical stability, Prevents development of irregularities
- Solves: $\partial \phi / \partial \tau = \text{sign}(\phi 0)(1 |\nabla \phi|)$
- Preserves zero-level set location while regularizing function

Disadvantages

- Computationally expensive additional step
- LSF struggles to transform into accurate distance function
- Disrupts the natural evolution process

DRLSE

Distance Regularized Level Set Evolution (Li et al., 2010)

• Key Innovation: Incorporate distance regularization directly into the energy functional

$$E(φ) = μRp(φ) + λLg(φ) + αAg(φ)$$

Where:

- Rp (φ): Distance regularization term → maintains signed distance property
- Lg (φ): Length term weighted by edge indicator → smooths the contour
- Ag (φ): Area term weighted by edge indicator → apply shrinking (balloon force)

How DRLSE Fixes Prior Issues

- Eliminates re-initialization: Distance regularization term intrinsically maintains |∇φ| ≈ 1 near the contour
- Improves stability: Allows larger time steps
- Reduces computational cost: No separate re-initialization step
- Prevents contour shifts: No arbitrary perturbations to zero level set
- Better accuracy: More consistent evolution behavior

DRLSE - Iterative algorithm

The evolution equation becomes: $\partial \phi / \partial t = -\partial E / \partial \phi$

Converting the continuous equation to a discrete update scheme:

$$\phi^{n+1} = \phi^n + \Delta t \cdot \left(-\frac{\partial E}{\partial \phi} \right)$$

The Distance Regularization Term

$$R_p(\phi) = \iint p(|\nabla \phi|) dxdy$$

Double-Well Potential Function

$$p_2(s) = egin{cases} rac{\sin(2\pi s)}{2\pi} & ext{if } s \leq 1 \ (s-1) & ext{if } s > 1 \end{cases}$$

- ullet Has two minima: $|
 abla \phi| = 0$ and $|
 abla \phi| = 1$
- Maintains distance property near zero level set
- Keeps LSF constant farther away

DRLSE - Distance Regularization Term

Its evolution equation : $\frac{\partial \phi}{\partial t} = \mu \operatorname{div}(d_p(|\nabla \phi|)\nabla \phi)$ Where dp(s) = p'(s)/s

Effects of regularization term:

- High positive values at inner edges (LSF negative) → LSF increases
- Negative values at outer edges (LSF positive) → LSF decreases
- Smooths abrupt jumps into gradual ramps
- Automatically maintains signed distance property near the contour

DRLSE - Testing

DRLSE Evolution after 500 iterations

Improvements:

- Signed distance property ($|\nabla \phi| = 1$): we can see its being maintained all over the contour even after 500 iterations -> Great stability
- Computational efficiency: Elimination of reinitialization reduces computation time by 60%
- Numerical stability: Larger time steps possible (5-10x larger than basic level sets)

Conclusion

Conclusions:

- Level set methods provide powerful framework for image segmentation
- significant improvement : from basic level sets → reinitialization → DRLSE
- DRLSE effectively addresses fundamental challenges:
 - Eliminates reinitialization requirement
 - Maintains signed distance property intrinsically
 - Improves computational efficiency and stability

References:

- C. Li, C. Xu, C. Gui, and M. D. Fox, "Distance regularized level set evolution and its application to image segmentation", 2010.
- Claude 3.7 sonnet

