Conversion between cgs and SI units for magnetic measurements

A. T. Boothroyd¹

¹Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, United Kingdom (Dated: February 9, 2018)

This note gives the cgs to SI conversion factors (without derivation) for magnetization and magnetic susceptibility, and the formula for the Curie constant.

I. MAGNETIZATION

The conversion to $\mu_{\rm B}$ for magnetization is:

$$M(\mu_{\rm B}/{\rm f.u.}) = \frac{M({\rm emu\,mol}^{-1})}{10^3 \mu_{\rm B} N_{\rm A}}$$

= $\frac{M({\rm emu\,mol}^{-1})}{5,585}$, (1)

where $\mu_{\rm B}=9.274\times 10^{-24}\,{\rm JT^{-1}}$ is the Bohr magneton and $N_{\rm A}=6.022\times 10^{23}$ is Avagadro's number, and f.u. stands for *formula unit*, i.e. the atom or group of atoms to which the data were normalised. The conversion to SI units is

$$M(A \,\mathrm{m}^{-1}) = 10^3 \rho M (\mathrm{emu \,g}^{-1})$$
 (2)

$$= \frac{10^3 \rho}{M_r} M(\text{emu mol}^{-1}), \tag{3}$$

where ρ is the density in g cm⁻³ and $M_{\rm r}$ is the relative formula mass (which is effectively in units of g mol⁻¹).

II. SUSCEPTIBILITY

The magnetic susceptibility in SI and cgs units is defined by

$$\chi(SI) = \frac{M(Am^{-1})}{H(Am^{-1})}$$
 (dimensionless)

$$\chi(\text{emu/(mol Oe)}) = \frac{M(\text{emu mol}^{-1})}{H(\text{Oe})}$$
(4)

The conversion between units is:

$$\chi(\text{emu/(mol Oe)}) = \frac{N_{\text{A}}}{10\mu_0 n} \chi(\text{SI}), \tag{5}$$

where n is the number density of magnetic ions (i.e. the number of magnetic ions per unit volume, in units of m^{-3}).

The Curie-Weiss law for the magnetic susceptibility is

usually written

$$\chi(SI) = \frac{n\mu_0 \mu_{\text{eff}}^2}{3k_{\text{B}}(T - T_c)} \tag{6}$$

$$=\frac{C}{(T-T_{\rm c})},\tag{7}$$

where μ_{eff} is the so-called effective moment, and T_{c} is the magnetic ordering transition temperature which is a positive for ferromagnetism and negative for antiferromagnetism. The factor C in the numerator of eqn (7) is called the Curie constant and is given by

$$C = \frac{n\mu_0 \mu_{\text{eff}}^2}{3k_{\text{B}}}. (8)$$

If the magnetic ion is in a ground state with total angular momentum quantum number J and associated Landé q-factor q_J then the effective moment is given by

$$\mu_{\text{eff}}^2 = g_J^2 J(J+1)\mu_{\text{B}}^2. \tag{9}$$

By combining eqs (5) and (6) we may write

$$\chi(\text{emu/(mol Oe)}) = \frac{N_{\text{A}}\mu_{\text{eff}}^2}{30k_{\text{B}}(T - T_{\text{c}})}$$
$$= \frac{C'}{(T - T_{\text{c}})}, \tag{10}$$

with

$$C' = \frac{N_{\rm A}\mu_{\rm eff}^2}{30k_{\rm B}},\tag{11}$$

so that

$$\frac{\mu_{\text{eff}}^2}{\mu_{\text{B}}^2} = \frac{30k_{\text{B}}C'}{N_{\text{A}}\mu_{\text{B}}^2} \tag{12}$$

$$= 8.00 \times C' \tag{13}$$

Expressions (10)–(13) for the Curie–Weiss law can be used directly to analyse paramagnetic data measured in cgs units in order to determine μ_{eff} and T_{c} from a plot of $\chi^{-1}(\text{emu}/(\text{mol Oe}))$ vs T.