Unless otherwise noted, vector spaces are over  $\mathbb{F}$  and with finite dimensions, where  $\mathbb{F} = \mathbb{R}$  or

U1= {(X,X)}. (30 points, 6 points each) Label the following statements as True or False. Along with your answer, provide an informal proof, counterexample, or other explanation.

- (a) Suppose  $U_1, U_2, U_3$  are subspaces of V and  $U_1 \cap U_2 = \{0\}, \ U_2 \cap U_3 = \{0\}, \ U_1 \cap U_3 = \{0\}, \ U_1 \cap U_3 = \{0\}, \ U_2 \cap U_3 = \{0\}, \ U_3 \cap U_4 \cap U_3 = \{0\}, \ U_4 \cap U_4 \cap U_4 = \{0\}, \ U_4 \cap U_4 \cap U_4 \cap U_4 = \{0\}, \ U_4 \cap U_4 \cap U_4 = \{0\}, \ U_4 \cap U_4 \cap U_4 \cap U_4 = \{0\}, \ U_4 \cap U_4 \cap U_4 \cap U_4 = \{0\}, \ U_4 \cap U_4 = \{0\}, \ U_4 \cap U_4 \cap$ then  $U_1 \cap (U_2 + U_3) = \{0\}.$
- then  $U_1 \cap (U_2 + U_3) = \{0\}$ .

  (b) Suppose  $V = \text{null } T \oplus \text{range } T$ , then T is diagonalizable (1.3) (1.3) (1.5)  $V = U_1 \oplus U_2$  and  $V = U_2 \oplus U_3$ , then  $U_1 = U_2$ .
- (d) Suppose U and W are subsets of V with  $U \subset W$ . Then  $W^{\circ} \subset U^{\circ}$ .
- Suppose the dual basis of  $1, x, x^2, x^3$  for  $\mathcal{P}_3(\mathbb{R})$  is  $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ . Then  $\varphi_j(p) = \frac{p^{(j)}(0)}{i!}, j = 0$
- 2. (10 points) Let  $\mathbb{R}^{2\times 2}$  be the set of all real  $2\times 2$  matrices and

$$V_1 = \left\{ \left[ \begin{array}{cc} a & -a \\ b & c \end{array} \right] : a,b,c \in \mathbb{R} \right\}, \ V_2 = \left\{ \left[ \begin{array}{cc} y & x \\ -y & z \end{array} \right] : x,y,z \in \mathbb{R} \right\}.$$

- (a) Show that  $V_1$  and  $V_2$  are subspaces of  $\mathbb{R}^{2\times 2}$ . (b) Find dim  $V_1$ , dim  $V_2$ , dim  $(V_1 \to V_2)$ , and dim  $(V_1 \cap V_2)$ .  $\longrightarrow$  [-a-a]
- (c) Is  $V_1 + V_2$  a direct sum? Provide an explanation.  $\bigvee_1 \bigcap \bigvee_2 \neq \{0\}$
- 3. (10 points) Let  $V = \mathbb{R}^2$  and

$$v_1 = (1, -1), v_2 = (2, -1), v_3 = (-3, 1)$$
 $w_1 = (1, 0), w_2 = (0, 1), w_3 = (1, 1)$ 
 $-3 = 2 + 2$ 
 $-3 = 2 + 2$ 

Is there a linear map  $T \in \mathcal{L}(V)$  such that  $T(v_i) = w_i, i = 1, 2, 3$ ? Explain.

考试科目: 线性代数精讲

## TV=0. TV=72

- 4. (10 points) Let V be a 2-dimensional complex vector space and  $v_1, v_2$  be a basis of V. Suppose  $\mathfrak{F}$  $T \in \mathcal{L}(V)$  and the matrix of T with respect to  $v_1, v_2$  is  $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ . Find all the invariant subspaces of V under T. V. span( $V_1$ ), span( $V_2$ )  $= (O_1, O_2) \in \mathbb{F}^2$ ,  $V_1, V_2 \in V_1$
- 5. (10 points) Show that  $V \times V$  and  $\mathcal{L}(\mathbb{F}^2, V)$  are isomorphic vector spaces. Where V ma  $T(y_i, y_k)(a) = a_i y_i + a_k y_k$ infinite-dimensional vector space.
- (10 points) In a triangle with sides of length a, b, and c, let d be the length of the line segment from the midpoint of the side of length c to the opposite vertex. Prove that  $a^2 + b^2 = \frac{1}{2}c^2 + 2d^2$ . The identity is called the Apollonius's identity.

