

Introduction to High Performance Computing and its impact on life

by: Tassadaq Hussain
Director Centre for AI and BigData
Professor Department of Electrical Engineering
Namal University Mianwali

Collaborations:

Barcelona Supercomputing Center, Spain

European Network on High Performance and Embedded Architecture and Compilation

Pakistan Supercomputing Center

Introduction

Education:

PhD. Barcelona-Tech Microsoft Research, Infineon Technologies France, Microsoft Research Cambridge, IBM

Suspenseful record of academic management as Professor and Dean

Enhanced Education Quality by Inculcating Outcome Based Education by Applied and Sustainable Projects

Experience:

20+ year's versatile experience in the area of Computer Architecture, AI, Software Architecture, Big-Data Architecture Served National and International Academia, Industry and Government

- Barcelona Science Park Spain
- Cambridge Science Park UK
- Technopolis Of Sofia-Antipolis, France

Innovation, Research and Commercialization

Innovation and Research

• 110+ Million Pkr National and Int'l Funding.

Supercomputing and Artificial Intelligence Smart Electric Motor Controllers Biomedical Applications

- 100+ Publications
- 10 Patents
- 10 MVPs
- 5 Int'l Collaborations

Development & Commercialization

60+ Million of Industrial Investments.

Developed Digital Systems for Industry. Transform Idea into product. Innovation and Commercialization for Sustainable economic and industrial development.

Capacity Building:

Conducted more than 50 national and international workshops and training on Commercializable research, Writing successful grant proposal, and research and innovation.

Provides Consultancy and Support for Entrepreneurship, Start-ups, Business Innovation and Technology transfer.

- Mankind's Progress & Revolutions
- The Age of Big Data and Al
- The Role of High-Performance Computing (HPC)
- Namal Knowledge City & Supercomputing Facility

Human Progress: From the Stone Age to the Data Age

From Age of Empirical Science to Computational-Science

From Mainframe to Cloud Computing

Ecosystem of Modern Industry

Earth Science

Social Science

Science

175 ZByte @2025

80% Data-Sciences

Data

100 ExaFLOPS @2020

87.04 B\$

234.6 B\$ @2025

AI

Top500 List 8 PetaFLOPS @2022

uProcessor 100 B\$ @2020

30% Cell Phone 20% Embedded App 50 Servers, PCs etc.

Computing

Digital Industrial Age 5.5 Trillion \$ Revenue@2021

Industrial Revolutions and Sustainable Developments

Mechanical production, railroads, and steam power

FIRST [1784]

Mass production, electrical power, and the advent of the assembly line

SECOND [1870]

THIRD (1969)

Automated production, electronics, and computers FOURTH (NOW)

Artificial intelligence, big data, robotics, and more to come

- Mankind's Progress & Revolutions
- The Age of Big Data and Al
- The Role of High-Performance Computing (HPC)
- Namal Knowledge City & Supercomputing Facility

Understand Hype Cycle

Evolution of Connectivity

Global Data Creation is About to Explode

Actual and forecast amount of data created worldwide 2010-2035 (in zettabytes)

Types of Data and its Challenges

Terabytes to zettabytes of data to process

structured

Volume

Variety

Velocity

Uncertainty due to data inconsistency, ambiguities, deception, and model approximations

Data in doubt

Veracity

From Computing to Intelligence: The Evolution of the Digital Era

Era of Computing \rightarrow Era of Data \rightarrow Era of Information \rightarrow Era of Intelligence

AI: The Only Solution for BigData

Past Present and Future

N AGI

Artificial General Intelligence

Artificial Narrow Intelligence

Information/Big Data

Complex Adaptive Algorithms

Computing Resources

Lenardo da Vinci

BigData and Al Algorithms

- Performance
 - Execution Time
 - Accuracy "The accuracy of the model is inherently tied to the quality, diversity, and representativeness of the data used for training and evaluation."
 - Scalability "Methods that scale with computation are the future of Artificial Intelligence" — Rich Sutton,

Exponential growth of computation in the training of notable AI systems

Computation is measured in total petaFLOP, which is 1015 floating-point operations1.

Data source: Epoch (2025)

OurWorldinData.org/artificial-intelligence | CC BY

Note: Estimated from Al literature, accurate within a factor of 2, or 5 for recent models like GPT-4. The regression lines show a sharp rise in computation since 2010, driven by the success of deep learning methods that leverage neural networks and massive datasets.

Time

Floating-point operation A floating-point operation (FLOP) is a type of computer operation. One FLOP represents a single arithmetic operation involving floating-point numbers, such as addition, subtraction, multiplication, or division.

Al Computational Requirements

- Mankind's Progress & Revolutions
- The Age of Big Data and Al
- The Role of High-Performance Computing (HPC)
- Namal Knowledge City & Supercomputing Facility

High Performance Computing

- Basics
- Hardware Stack
- Software Stack
- Programming Model

High Performance Computing?

HPC perform Scientific discovery, engineering simulations, AI/ML, and research that require massive numerical computation.

- Parallel processing across thousands of CPUs/GPUs.
- Optimized for floating-point operations per second (FLOPS), not just transactions.
- Used for simulations (climate, nuclear physics, genomics, aerospace), AI model training, and big data analytics.

Pillars of Science

Fermi National Accelerator Laboratory

Includes particle physics and accelerators

Includes all of cosmology, astrophysics

Data, Connectivity, AI & Processing

All about biology

Space

Particle Physics

Cosmology

HPC

(SITTE)

TITE

BIG BANG MicroElectronics

DNA

SPACE

QUARKS

OTTO

Criteria of HPC (in FLOPS)

Traditional Definition (1990s–2000s):

- HPC was defined as performance beyond what a typical desktop/workstation could achieve.
- Roughly > 1 GFLOP (109 FLOPS) was considered HPC in the 1990s.

Cluster Era (~2000s):

- Systems with sustained > 1 TFLOP (10¹² FLOPS) entered the HPC category.
- Example: In 2000, IBM's ASCI White supercomputer reached 12.3 TFLOPS.

Modern Minimum (2020s):

- Today, a single GPU (e.g., NVIDIA A100) can exceed 10–20 TFLOPS, so the bar is much higher.
- For a cluster/system to be considered HPC, it generally should sustain at least 1 PFLOP (10¹⁵ FLOPS).
- Example: The TOP500 list (global supercomputer ranking) includes systems above
 21.2 PFLOPS (as of 2025).

Cost Vs Performance: Electromechanical to ICs

SOURCE: RAY KURZWEIL, "THE SINGULARITY IS NEAR: WHEN HUMANS TRANSCEND BIOLOGY", P.67, THE VIKING PRESS, 2006. DATAPOINTS BETWEEN 2000 AND 2012 REPRESENT BCA ESTIMATES.

Human Computational Capabalities and HPC

calculation power of a human brain.

Compute Vs Intellectual Capability

- Perform around 1 exaFLOP (10¹8 FLOP/s) with just ~20 watts of power.
- The adult human brain's memory capacity is often estimated at approximately ~2.5 petabytes.
- Aurora Supercoputer gives 1.012 exaFLOP (Rmax) @ ~38.7 MW

The Evolution of Computing: From Hardware Foundations to Supercomputing Power

- Microprocessors (Proprietary Era): Revolutionized automation and digital control, laying the foundation for modern computing.
- GCC (GNU Compiler Collection): Transformed software development by introducing open-source compilers.
- Linux: Made open-source operating systems mainstream, reshaping the computing industry.
- Open-Source Internet & Networking Protocols (TCP/IP, DNS, HTTP, 5G): Enabled global digital connectivity.
- Mathematical Models, Development Frameworks, and Open Datasets: Are revolutionizing AI and computational intellectuality.
- Cloud Computing: Democratized access to computing resources, making them available on demand.
- Supercomputing: Pushed the boundaries of scalable performance, powering advanced research and innovation.

High Performance Computing

- Basics
- Hardware Stack
- Software Stack
- Programming Model

Basics of Data Processing

High Performance Computing

34

Offloading Acceleration

High Performance Computing

Core Components of HPC

Compute Nodes

- Individual servers machines designed to perform calculations.
- Interconnected through a cluster that allows them to work in sync on larger problems.

Storage Systems

- Robust storage solution to handle the massive data generated and processed.
- High-speed storage systems such as parallel file systems allow efficient access and retrieval of data.

Networking Infrastructure:

- A high-speed network for connecting the compute nodes and storage systems in an HPC cluster.
- Technologies like InfiniBand and Ethernet play a critical role in minimizing latency and maximizing data transfer rates.

Working Example

BigData: Shared File System

High Performance Computing

- Basics
- Hardware Stack
- Software Stack
- Programming Model

Software Stack

1) Operating system & base

- Linux (RHEL/CentOS/Alma, Rocky, Ubuntu, SLES) with NUMA, hugepages, cpufreq governor=performance.

2) Network stack (fabric + comms)

- Fabric/NIC drivers: Mellanox/NVIDIA OFED (InfiniBand), RoCEv2, or high-speed Ethernet.
- RDMA stack: rdma-core, verbs, SR-IOV (if virtualized), PFC/ECN (for RoCE).

3) Resource & job management

Scheduler/Resource manager: SLURM (or PBS Pro, LSF).

4) Storage & filesystems

- Parallel FS: Lustre, BeeGFS, (or Spectrum Scale), plus NFS for home.
- Client tuning: read-ahead, RPC credits, MDT MDT-striping for metadata-heavy jobs.
- Burst buffers/SSD cache if available.

5) Parallel Programming Models

- Compilers and Libraries
- Shared and Distributed Programming Models

HPC Infrastructure

Al and Specialized Accelerators Performance Gap

High Performance Computing

- Basics
- Hardware Stack
- Software Stack
- Programming Model

Programming in the Early Mainframe Era

Before keyboards and screens: Early mainframes were programmed by toggling switches and monitoring lights.

Programming HPC

Mainframe Era (1940s–1960s)

• Programming via switches, punched cards, assembly language

Vector & Scientific Supercomputers (1970s–1980s)

Programming with Fortran, vectorization

Cluster & Parallel Era (1990s–2000s)

MPI (Message Passing Interface) and OpenMP became standard

Petascale & Specialized Acceleration (2010s)

Programming models expanded: CUDA, OpenACC, SYCL, OpenMP offload

Exascale & Heterogeneous Era (2020s-present)

 Programming Models= managing heterogeneous nodes (CPUs, GPUs, Al accelerators)

Data Processing Stack: Distributed Programming Models

Open-Source Software: Compilers, Mathematical Algorithms and Data-sets

Mathematical Algorithms, Big datasets, and open-source DL framework, play an important role to create "big" algorithms.

Meeting Computational Demand: Solutions in Parallel Processing

Acceleration by using Distributed and Parallel Computing

Google Multilingual translation Model 600 Billion parameters takes 22 Years to get trained on 1TPU Machine.

While using Google distributed the training over 2048 TPUs and achieved results in only 4 days.

Jordi: https://towardsdatascience.com/artificial-intelligence-is-a-supercomputing-problem-4b0edbc2888d

- Mankind Progress, Industrial and Academic Revolution
- Age of Big Data and Al
- Supercomputing! Revolutionizing the World
- Namal Centre for AI and BigData: Supercomputing Facility

HPC Applications in Pakistan

Representative application domains requiring more than a Desktop PC Performance (50+ Workshops and Seminars)

Biomedical [Alpha Genomic]

Aerodynamics

Mechanical Systems Modeling and Simulation

Brain Computer Interface [Riphah NewZeland College of Chiropractic]

Earth Sciences

(QAU)

Artificial Intelligence

Centre for AI and BigData

The mission of the Centre for AI & Big Data is to solve local challenges for complex and compute intensive data, using cutting-edge smart solutions and state-of-the-art high-performance computing technologies that drive sustainable industrial development and economic growth.

The center holds infrastructure and capabilities that are only available in Pakistan:

Indigenous Supercomputing Cluster capable of providing 1120 TeraFLOPS performance.

High-Performance Computing, Cloud Computing, and Data Center **Experts.**

Distributed Artificial Intelligence and Parallel Programming Developers. Secure Processor-based Systems and computer architecture expertise.

Heterogeneous Parallel Programming Framework for Artificial Intelligent Applications.

Bluishness Incubation Center

Science and Technology Park and Research Center

Entrepreneurial Education

User Interaction, Behavioral Analysis, Counseling Center

Community Needs and Problems

Entrepreneurial Teaching Methodologies and State-of-the-Art Technologies

Problem

Digital

Data Software Hardware Front-end

Low-Performance

Technology

High-Performance

Embedded/Edge

Cloud

Bare-Metal

Sensors Netowrk, IoT, Automation Fields, Farms, Processing Units and Research Labs

Baremetal: ssh namal-hpc@hpc.computingpark.com Cloud Application: http://cloud.computingpark.com/ Data Center: https://data.computingpark.com

Edge

AI and BigData Applications

- Bare-Metal and Containerized Cluster Infrastructure:
 - Distributed Hardware Interfacing, Network Configuration and Distributed Computing Software Deployment
- Data Center and Cloud Infrastructure:
 - Storage systems, networking equipment, and software configuration
- Al Applications for Scientific and Engineering Problems
 - Distributed AI applications for multi-node bare-metal system
- HPC Application Parallel Programming
 - Heterogeneous multi-node parallel processing using parallel programming models

Developing Supercomputing for Al

Cluster 5 Server Node (Up To 76 TFLOPS) Infini Band

Server Node (upto 20 TFLOPS): 48 cores

48 cores 96 GB RAM 1 TB Disk

CentOS Linux

Chip

4 cores

Boundary Interaction	- Remote access: X2Oo, Apache Guscamote,		
Services	OpenIVNC - Visualization: Paraview, Visit (via X11. forwarding or browser) - Secure accept: OpenSSL, SSH with key- based login User codals: Codest Sturm Web	- Model serving: FastAPt, Gradio, Streamit (self-hosted) - Web access: Jupytenhue, VS Code Server - Authoritication: OpenSSL/TLS, OAuthoritication: OpenSSL/TLS, OAuthoritication: OpenSSL/TLS, OAuthoritication: OpenSSL/TLS,	Dashboards: Grafana, Superset. Apache ECharts Remote data access: WebHDFS. OpenNMS Visualization tools: Apache Zeppelin, D3 s. Posty Dash Secure access: CompSSI, SSH
Processing Services	Domain Specific frameworks [e.g. PETSc]. Batch processing of large tightly coordinated parallel jobs [300s - 30000s of processes communicating frequently with each other]	DNN training & interference frameworks (e.g. Caffe, Terroritore, Theano, Neon, Torch), DNN numerical libraries (e.g. derse LA)	Machine Learning (traditional) (e.g. Mahour, Scholaleam, BigOL), Analytics/ Statistics (e.g. Python, ROOT, R. Matlab, SAS, SPSS, Sci Pyl, Berathve (e.g. Apache Hama), Interactive (e.g. Apache Hama), Interactive (e.g. Demicil, Drill, Tec. Impola, Shark, Presto, BenkDB, Spark), Basich / Map Reducte (e.g. MapReduce, YARN, Spoop, Spark), Red-time / streaming (e.g. Pink, YARN, Drust, Peor, Storm, Samus, Spark)
Model / Infromation Management Services	Data Storage: Parallel File Systems (e.g. Lister, GPFS, BooGFS, Parif'S, PVFS), WO libraries (e.g. HDFS, PretCDF, ADIOS)	Data Storage (e.g. HDFS, Hbase, Amazon S3, GlusterFS, Cassandra, MongoBD, Hana, Voraj	Serialization (e.g. Auro), Meta data (e.g. HCatalog), Data Ingestion & Integration (e.g. Flume, Squop, Apache NS, Elastic Logistam, Kafka, Island, Pentaho), Data Storage (e.g. HDFS, Hasse, Amazon SJ, GlusterFS, Cassardra, MongoSD, Hana, Vora), Chuster Mgmt (e.g. YARN, MESO)
Communication Services	Messaging & Coordination (e.g. MPSPGAS, direct labric access), Threading (e.g. OpenMP, bask-based models)	Messaging & Coordination [e.g. Machine Learning Scaling Strary(MLSL)]	Messaging (e.g. Apoche Kalka (otreaming))
Workflow / Task Services	Conventional compiled languages (e.g. CrC++Fortun). Scripting languages (e.g. Python, Julia)	Scripting languages (in p. Python)	Workflow & Scheduling (e.g. Occe). Scripting languages (e.g. Lerzo, Mocha, Pig. JAQL, Python, Java, Scala
System Management & Security Services	Domain numerical libraries [e.g. PETSc. ScalLAPACK, BLAS, FFTW], Performance & debugging [e.g. DDT, Vampreg, Accelerator APIS [e.g. CUDA, OpenCL. OpenACC] Data Protection [e.g. System SSS, OS/PFS file access control] Batch scheduling [e.g. Stuffid], Cluster management [e.g. OpenHPC], Container Virtualization [e.g. Docker], Operating System [e.g. Linux OS Variant]	Batching for training (built into Ct. frameworks). Reduced precision (e.g. insertenence engines). Load distribution layer (e.g. Round sotimized balancing for intertenence). Accelerator APRs (e.g. CUDA, OpenCL). Hardware Optimization Libraries (e.g. cuDNA, MCL-DNA, etc.) Virtualisation (e.g. Dockers, Kubethetes, Vilhace, Xen, KVM, HigherX). Operating System (e.g. Linux (fied-tal, Ubuntu, etc.). Windows).	Distributed Coordination [e.g. ZooKiersper, Chuban Paroni]. Provisioning, Marraging & Monitoring (e.g. Anthur, Whin, BigTop, Chubani). SVM systems (e.g. Google Sotia, IESVM, symptoms (e.g. Google Sotia, IESVM, etc.) Vitualization [e.g. Google Sotia, Kubernetes, VPware, Xen, KVM, HyperXI, Gperating System(e.g. Lines (PedHat, Uburni, etc.), Windows)
Infrastructure	Serversie g Local CPU & Network storage je.g. Memory (Gen storage & 800 Purpose CPU Storage & 800 rodes. codes, NAS GPUs. OPA Isoccal EPGAs	Services Local le.g. CPU 8. Storage (Sen Reported) Je.g. Local Purpose (P.g. Sen Reported) MAS/SAN GPU/FPSA, TPU	Local CPU & Natwork Storage Memory, [Gen [e.g. Direct Attached Ingress CPU Internet Indirect] Storage Convergent Indirect Indir
	Model / Infromation Management Services Communication Services Workflow / Task Services System Management & Security Services	Processing Demain Specific frameworks e.g. PETSG Batch processing of large tightly coordinated perallel jobs 2000- 20000s of processes communicating frequently with each other]	Processing Services Demain Specific frameworks [e.g. PETS4] Batch processing of large tighty coordinated parattel jobs [3:00 - 50000 of processes communication processes p

High Performance Computing	Cloud Computing	Big Data, Edge Computing			
Access & Security					
X2Go, Guacamole, OpenVNC, SSH, Cockpit, Slurm-Web	FastAPI, Gradio, Triton, JupyterHub, Keycloak (OAuth2), VS Code Server	Grafana, Superset, Zeppelin, WebHDFS, SSH + Keycloak			
Frameworks and Libraries					
PETSc, OpenHPC, Spack, SLURM, OpenMPI	PyTorch, TensorFlow, ONNX, JAX, MLFlow, HuggingFace, Kubeflow	Spark, Flink, Mahout, MLlib, H2O.ai, Scikit-learn, Druid			
Storage and Messaging					
Lustre, BeeGFS, GlusterFS, CephFS, HDF5, ADIOS2, NetCDF	HDFS, MinIO, MongoDB, Redis, Ceph, DVC, Weights & Biases	HDFS, Iceberg, Delta Lake, MinIO, Kafka, Pulsar, Zookeeper			
Programming & Languages					
C, C++, Fortran, Python, Julia, OpenMP, Spack	Python, Julia, R, YAML (Kube), TensorBoard, Torch Profiler	Java, Scala, Python, Pig, HiveQL, Airflow DAGs			
DevOps, MLOps & CI/CD					
Spack, EasyBuild, Singularity, Ansible, Warewulf, Podman	Kubeflow, MLFlow, Metaflow, DVC, Docker, K3s, KServe	Jenkins, ArgoCD, GitLab CI, NiFi, StreamSets, Airflow			
Containerization & Orchestration					
Podman, Singularity, Apptainer, KVM, SLURM	Docker, Kubernetes, K3s, Kubeflow Pipelines	Docker, Kubernetes, Helm, MicroK8s, Oozie			
OS, Virtualization, Networking					
Rocky Linux 9.x, AlmaLinux, KVM, Infiniband, RoCEv2	Ubuntu 22.04+, Debian 12+, KVM, K3s, RDMA, Ethernet	Ubuntu, Debian, Kubernetes CNI (Calico, Flannel), Ethernet			
Monitoring & Performance					
Prometheus, DCGM, Ganglia, Grafana, Valgrind, Vampir, DDT	Prometheus, Grafana, TensorBoard, PyTorch Profiler	Prometheus, Grafana, Alertmanager, Kafka Monitor			
Hardware & Services					
CPU, GPU, FPGA, NAS/SAN, NVMe, High-speed fabrics	CPU, GPU, TPU, Edge Devices (Jetson), NVMe, Ceph	CPU, GPU, Hyper-converged nodes, MinIO, Ceph, HDFS			

1. INPUTS

Model

- Neural Network Architecture
- Computation Graph
- Model Parameters
- Layer Definitions

Data

- · Training Datasets
- Data Batches
- Input Streams
- Feature Vectors

2. DEPENDENCY EXTRACTION & PARTITIONING

Analysis Engine

- Dependency Analysis
- Branch Identification
- Parameter Papping
- Task Decomposition
- Data Alignment

3. AVAILABLE RESOURCES

Processing Units

- · CPUs Multi-core
- GPUs CUDA/OpenCL
- FPGAs Reconfigurable
- Custom Accelerators

Memory Systems

- Main MemoryVRAM
- GPU Memory
- Cache Hierarchies
- Storage Systems

4. EXECUTION APPROACHES

Bitstream-Level

- FPGA Configuration
- Custom Chip Setup
- Hardware Optimization

Task Parallelism

- Task Scheduling
- Load Balancing
- Resource Allocation

Data Parallelism

- Batch Processing
- Data Distribution
- Synchronization

Model Parallelism

- Layer Distribution
- Pipeline Parallelism
- Model Sharding

5. RESULT AGGREGATION

Gradient Unit

- Gradient Collection
- Result Aggregation
- Parameter Updates
- Synchronization Control
- Final output Generation

Parallel Processing

Model Parallelism

Different layers of the network distributed across different devices

Data Parallelism

Same model in every one of the GPUs, each processing a separate piece of the data, a separate portion of the mini-batch.

Visit us: ssh username@hpc.pakistansupercomputing.com

Pakistan's Number One High Performance Computing Facility:

The hardware architecture includes: 20 Nodes, 1600 Processor Core, 5 Tera Byte Main Memory, 40 TeraByte SSD, 10 Gigabit Fast Ethernet, Low Latency Switch, 40 4070TI GPU for Distributed Acceleration. The Supercomputer is build on Rocky Linux 9.4 and features an advanced software stack including RoCE-enabled networking, Lustre parallel file system, Slurm workload manager, distributed AI and parallel programming models, with Grafana and Prometheus for real-time monitoring, and Ansible for automated deployment and management.

On-Going Projects of Relevance

1. Supercomputing for Artificial Intelligence Applications

Partner: Barcelona Supercomputing Center Spain Pakistan Supercomputing Center

2. Virtual Reality Platform for Rehabilitation

Partner: New Zealand Chiropractic Center Riphah Rehab Center

3. Real-time Cattle Breed Identification System using Image Features

Partner: Ministry of Livestock

4. Smart Rice Sorting Machine System

Partner: Alkaram Rice Engineering

5. Secure Processor-based chip design

Partner: AQL Technologies PakASIC

6. Smart Motor Controller

Partner: Khursheed Fan Gujrat PakASIC

7. Footweight Analytics

FootAnalytic

8. Soil Analytics

Center of Excellence:

Supercomputing for

Role and Importance of Supercompuing in Entrepreneurial Universities

by: Tassadaq Hussain
Director Centre for AI and BigData
Professor Department of Electrical Engineering
Namal University Mianwali

Collaborations:

Barcelona Supercomputing Center, Spain

European Network on High Performance and Embedded Architecture and Compilation

Pakistan Supercomputing Center