The Sieve of Erastothenes

Parallel and Distributed Computing

Department of Computer Science and Engineering (DEI) Instituto Superior Técnico

October 26, 2011

Outline

The Sieve of Eratosthenes

- Data decomposition options
- Parallel algorithm development, analysis
- Benchmarking
- Optimizations

The Sieve of Eratosthenes

The Sieve of Eratosthenes

Algorithm for finding all primes up to n, proposed by Greek mathematician Erastothenes (276-194 BC).

- 1. Create list of unmarked natural numbers $2, 3, \ldots, n$
- 2. $k \leftarrow 2$
- 3. Repeat
 - (a) Mark all multiples of k between k^2 and n
 - (b) $k \leftarrow \text{smallest unmarked number} > k$
 - until $k^2 > n$
- 4. The unmarked numbers are primes

The Sieve of Eratosthenes

The Sieve of Eratosthenes

Algorithm for finding all primes up to n, proposed by Greek mathematician Erastothenes (276-194 BC).

- 1. Create list of unmarked natural numbers $2, 3, \ldots, n$
- $2. k \leftarrow 2$
- 3. Repeat
 - (a) Mark all multiples of k between k^2 and n
 - (b) $k \leftarrow \text{smallest unmarked number} > k$ until $k^2 > n$
- 1. The company lead necessary are
- 4. The unmarked numbers are primes

Complexity?

The Sieve of Eratosthenes

The Sieve of Eratosthenes

Algorithm for finding all primes up to n, proposed by Greek mathematician Erastothenes (276-194 BC).

- 1. Create list of unmarked natural numbers $2, 3, \ldots, n$
- $2. k \leftarrow 2$
- 3. Repeat
 - (a) Mark all multiples of k between k^2 and n
 - (b) $k \leftarrow \text{smallest unmarked number} > k$
 - until $k^2 > n$
- 4. The unmarked numbers are primes

Complexity: $\Theta(n \log \log n)$

- 1. Create list of unmarked natural numbers $2, 3, \ldots, n$
- 2. $k \leftarrow 2$
- 3. Repeat
 - (a) Mark all multiples of k between k^2 and n
 - (b) $k \leftarrow \text{smallest unmarked number} > k$

until
$$k^2 > n$$

	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60

- 1. Create list of unmarked natural numbers $2, 3, \ldots, n$
- 2. $k \leftarrow 2$
- 3. Repeat
 - (a) Mark all multiples of k between k^2 and n
 - (b) $k \leftarrow \text{smallest unmarked number} > k$

until
$$k^2 > n$$

		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
I	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
I	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60

- 1. Create list of unmarked natural numbers $2, 3, \ldots, n$
- 2. $k \leftarrow 2$
- 3. Repeat
 - (a) Mark all multiples of k between k^2 and n
 - (b) $k \leftarrow \text{smallest unmarked number} > k$

until
$$k^2 > n$$

	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29		31	32	33	34	35		37	38	39	40
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	

- 1. Create list of unmarked natural numbers $2, 3, \ldots, n$
- 2. $k \leftarrow 2$
- 3. Repeat
 - (a) Mark all multiples of k between k^2 and n
 - (b) $k \leftarrow \text{smallest unmarked number} > k$

until
$$k^2 > n$$

	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29		31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49		51	52	53	54	55	56	57	58	59	60

- 1. Create list of unmarked natural numbers $2, 3, \ldots, n$
- 2. $k \leftarrow 2$
- 3. Repeat
 - (a) Mark all multiples of k between k^2 and n
 - (b) $k \leftarrow \text{smallest unmarked number} > k$

until
$$k^2 > n$$

	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29		31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55		57	58	59	60

- 1. Create list of unmarked natural numbers $2, 3, \ldots, n$
- 2. $k \leftarrow 2$
- 3. Repeat
 - (a) Mark all multiples of k between k^2 and n
 - (b) $k \leftarrow \text{smallest unmarked number} > k$

until
$$k^2 > n$$

	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29		31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60

Partitioning:

Partitioning:

Make the computation of each element of the list $2, 3, \ldots, n$ a primitive task.

Communication:

Partitioning:

Make the computation of each element of the list 2, 3, ..., n a primitive task.

Communication:

Need to send value of k to all tasks.

Agglomeration + Mapping:

What's the best way to partition the list?

Partitioning:

Make the computation of each element of the list 2, 3, ..., n a primitive task.

Communication:

Need to send value of k to all tasks.

Agglomeration + Mapping:

What's the best way to partition the list?

• interleaved (cyclic) data decomposition

block data decomposition

Partitioning:

Make the computation of each element of the list 2, 3, ..., n a primitive task.

Communication:

Need to send value of k to all tasks.

Agglomeration + Mapping:

What's the best way to partition the list?

- interleaved (cyclic) data decomposition
 - easy to determine "owner" of each index
 - leads to load imbalance for this problem
- block data decomposition
 - balances loads
 - ullet more complicated to determine owner if n not a multiple of p

"The devil is in the details"

What's the best way to distribute n elements over p tasks?

"The devil is in the details"

What's the best way to distribute n elements over p tasks?

Some tasks get $\left\lceil \frac{n}{p} \right\rceil$ elements, other get $\left\lfloor \frac{n}{p} \right\rfloor$.

Which task gets which size?

"The devil is in the details"

What's the best way to distribute n elements over p tasks?

Some tasks get
$$\left\lceil \frac{n}{p} \right\rceil$$
 elements, other get $\left\lfloor \frac{n}{p} \right\rfloor$.

Which task gets which size?

One approach: group larger blocks at lower index tasks.

Let
$$r = n \mod p$$
.

if r = 0, assign $\frac{n}{p}$ elements per task.

Otherwise,

first
$$r$$
 tasks get $\left\lceil \frac{n}{p} \right\rceil$ remaining tasks get $\left\lceil \frac{n}{p} \right\rceil$

Range of elements that each task gets?

First element of task i:

Range of elements that each task gets?

First element of task
$$i$$
: $i \left\lfloor \frac{n}{p} \right\rfloor + \min(i, r)$

Last element of task i:

Range of elements that each task gets?

First element of task
$$i$$
: $i \left\lfloor \frac{n}{p} \right\rfloor + \min(i, r)$

Last element of task
$$i$$
: $(i+1) \left\lfloor \frac{n}{p} \right\rfloor + \min(i+1,r) - 1$

Task owner of element j:

Range of elements that each task gets?

First element of task
$$i$$
: $i \left\lfloor \frac{n}{p} \right\rfloor + \min(i, r)$

Last element of task
$$i$$
: $(i+1) \left| \frac{n}{p} \right| + \min(i+1,r) - 1$

Task owner of element
$$j$$
: $\max\left(\left\lfloor j/\left\lceil\frac{n}{p}\right\rceil\right\rfloor,\left\lfloor (j-r)/\left\lfloor\frac{n}{p}\right\rfloor\right\rfloor\right)$

Grouped approach: group larger blocks at lower index tasks.

First element of task
$$i$$
: $i \left\lfloor \frac{n}{p} \right\rfloor + \min(i, r)$

Last element of task
$$i$$
: $(i+1) \left\lfloor \frac{n}{p} \right\rfloor + \min(i+1,r) - 1$

Task owner of element
$$j$$
: $\max\left(\left\lfloor j/\left\lceil\frac{n}{p}\right\rceil\right\rfloor,\left\lfloor (j-r)/\left\lfloor\frac{n}{p}\right\rfloor\right\rfloor\right)$

Distributed approach: distribute larger blocks evenly.

Grouped approach: group larger blocks at lower index tasks.

First element of task
$$i$$
: $i \left\lfloor \frac{n}{p} \right\rfloor + \min(i, r)$

Last element of task
$$i$$
: $(i+1) \left\lfloor \frac{n}{p} \right\rfloor + \min(i+1,r) - 1$

Task owner of element
$$j$$
: $\max\left(\left\lfloor j/\left\lceil\frac{n}{p}\right\rceil\right\rfloor,\left\lfloor (j-r)/\left\lfloor\frac{n}{p}\right\rfloor\right\rfloor\right)$

Distributed approach: distribute larger blocks evenly.

First element of task
$$i$$
: $\left[i\frac{n}{p}\right]$

Last element of task i:

Grouped approach: group larger blocks at lower index tasks.

First element of task
$$i$$
: $i \left\lfloor \frac{n}{p} \right\rfloor + \min(i, r)$

Last element of task
$$i$$
: $(i+1) \left\lfloor \frac{n}{p} \right\rfloor + \min(i+1,r) - 1$

Task owner of element
$$j$$
: $\max\left(\left\lfloor j/\left\lceil\frac{n}{p}\right\rceil\right\rfloor,\left\lfloor (j-r)/\left\lfloor\frac{n}{p}\right\rfloor\right\rfloor\right)$

Distributed approach: distribute larger blocks evenly.

First element of task
$$i$$
: $\left[i\frac{n}{p}\right]$

Last element of task
$$i$$
: $\left\lfloor (i+1)\frac{n}{p}\right\rfloor -1$

Task owner of element j:

Grouped approach: group larger blocks at lower index tasks.

First element of task
$$i$$
: $i \left\lfloor \frac{n}{p} \right\rfloor + \min(i, r)$

Last element of task
$$i$$
: $(i+1) \left\lfloor \frac{n}{p} \right\rfloor + \min(i+1,r) - 1$

Task owner of element
$$j$$
: $\max\left(\left\lfloor j/\left\lceil\frac{n}{p}\right\rceil\right\rfloor,\left\lfloor (j-r)/\left\lfloor\frac{n}{p}\right\rfloor\right\rfloor\right)$

Distributed approach: distribute larger blocks evenly.

First element of task
$$i$$
: $\left[i\frac{n}{p}\right]$

Last element of task
$$i$$
: $\left| (i+1)\frac{n}{p} \right| - 1$

Task owner of element
$$j$$
: $|(p(j+1)-1)/n|$

Block Decomposition Macros

```
#define BLOCK_LOW(id,p,n) ((id)*(n)/(p))
#define BLOCK_HIGH(id,p,n) (BLOCK_LOW((id)+1,p,n)-1)
#define BLOCK_SIZE(id,p,n) (BLOCK_HIGH(id,p,n)-BLOCK_LOW(id,p,n)+1)
#define BLOCK_OWNER(index,p,n) (((p)*((index)+1)-1)/(n))
```

Local vs Global Indexes

Local vs Global Indexes

Sequential program

```
for (i = 0; i < n; i++) {
...
}
```

Parallel program

```
size = BLOCK_SIZE (id, p, n);
for (i = 0; i < size; i++) {
    gi = i + BLOCK_LOW(id,p,n);
}</pre>
```

• use distributed block decomposition

• use distributed block decomposition

- first task responsible for selecting next sieving prime
 - broadcast new sieving prime at end of each iteration
 - first task has first $\lfloor n/p \rfloor$ elements, make sure it includes the largest prime used to sieve, \sqrt{n}

• use distributed block decomposition

- first task responsible for selecting next sieving prime
 - broadcast new sieving prime at end of each iteration
 - first task has first $\lfloor n/p \rfloor$ elements, make sure it includes the largest prime used to sieve, \sqrt{n}

• to simplify, our program will return the number of primes up to n

1. Create list of unmarked natural numbers $2, 3, \ldots, n$

- 1. Create list of unmarked natural numbers $2, 3, \ldots, n$ each process creates its share of the list
- 2. $k \leftarrow 2$

- 1. Create list of unmarked natural numbers $2, 3, \ldots, n$ each process creates its share of the list
- 2. $k \leftarrow 2$ all processes perform this
- 3. Repeat
 - (a) Mark all multiples of k between k^2 and n

Parallel Implementation

- 1. Create list of unmarked natural numbers $2, 3, \ldots, n$ each process creates its share of the list
- 2. $k \leftarrow 2$ all processes perform this
- 3. Repeat
 - (a) Mark all multiples of k between k^2 and n each process marks its share of the list
 - (b) $k \leftarrow \text{smallest unmarked number} > k$

Parallel Implementation

- 1. Create list of unmarked natural numbers $2, 3, \ldots, n$ each process creates its share of the list
- 2. $k \leftarrow 2$ all processes perform this
- 3. Repeat
 - (a) Mark all multiples of k between k^2 and n each process marks its share of the list
 - (b) $k \leftarrow \text{smallest unmarked number} > k$ process 0 only and broadcasts it

until
$$k^2 > n$$

- 4. The unmarked numbers are primes
- 5. Reduction to compute number of primes

Function MPI_Bcast

```
MPI_Bcast (&k, 1, MPI_INT, 0, MPI_COMM_WORLD);
```

Task / Channel Model

Let α be the time to mark a cell.

Sequential execution time?

Let α be the time to mark a cell.

Sequential execution time: $\alpha n \log \log n$

Computation time of parallel program?

Let α be the time to mark a cell.

Sequential execution time: $\alpha n \log \log n$

Computation time of parallel program: $\alpha n \log \log n/p$

Number of broadcasts?

Let α be the time to mark a cell.

Sequential execution time: $\alpha n \log \log n$

Computation time of parallel program: $\alpha n \log \log n/p$

Number of broadcasts: $\sqrt{n}/\log\sqrt{n}$

Broadcast time?

Let α be the time to mark a cell.

Sequential execution time: $\alpha n \log \log n$

Computation time of parallel program: $\alpha n \log \log n/p$

Number of broadcasts: $\sqrt{n}/\log\sqrt{n}$

Broadcast time: $\lambda \lceil \log p \rceil$

Reduction time?

Let α be the time to mark a cell.

Sequential execution time: $\alpha n \log \log n$

Computation time of parallel program: $\alpha n \log \log n/p$

Number of broadcasts: $\sqrt{n}/\log\sqrt{n}$

Broadcast time: $\lambda \lceil \log p \rceil$

Reduction time: $\lambda \lceil \log p \rceil$

Expected parallel execution time?

Let α be the time to mark a cell.

Sequential execution time: $\alpha n \log \log n$

Computation time of parallel program: $\alpha n \log \log n/p$

Number of broadcasts: $\sqrt{n}/\log\sqrt{n}$

Broadcast time: $\lambda \lceil \log p \rceil$

Reduction time: $\lambda \lceil \log p \rceil$

$$\alpha \frac{n \log \log n}{p} + \lambda \frac{\sqrt{n} \lceil \log p \rceil}{\log \sqrt{n}} + \lambda \lceil \log p \rceil$$

Code (1/4)

```
#include <mpi.h>
#include <math.h>
#include <stdio.h>
#define BLOCK_LOW(id,p,n) ((i)*(n)/(p))
#define BLOCK_HIGH(id,p,n) (BLOCK_LOW((id)+1,p,n)-1)
#define BLOCK_SIZE(id,p,n) (BLOCK_LOW((id)+1)-BLOCK_LOW(id))
int main (int argc, char *argv[])
{
  MPI_Init (&argc, &argv);
  MPI_Barrier(MPI_COMM_WORLD);
   elapsed_time = -MPI_Wtime();
  MPI_Comm_rank (MPI_COMM_WORLD, &id);
  MPI_Comm_size (MPI_COMM_WORLD, &p);
   if (argc != 2) {
      if (!id) printf ("Command line: %s <m>\n", argv[0]);
      MPI_Finalize(); exit (1);
   }
```

Code (2/4)

```
n = atoi(argv[1]);
low_value = 2 + BLOCK_LOW(id,p,n-1);
high_value = 2 + BLOCK_HIGH(id,p,n-1);
size = BLOCK_SIZE(id,p,n-1);
proc0_size = (n-1)/p;
if ((2 + proc0_size) < (int) sqrt((double) n)) {</pre>
   if (!id) printf ("Too many processes\n");
   MPI_Finalize(); exit (1);
}
marked = (char *) malloc (size);
if (marked == NULL) {
   printf ("Cannot allocate enough memory\n");
   MPI_Finalize(); exit (1);
}
for (i = 0; i < size; i++) marked[i] = 0;
```

Code (3/4)

```
if (!id) index = 0;
prime = 2;
do {
   if (prime * prime > low_value)
      first = prime * prime - low_value;
   else {
      if (!(low_value % prime)) first = 0;
      else first = prime - (low_value % prime);
   for (i = first; i < size; i += prime) marked[i] = 1;</pre>
   if (!id) {
      while (marked[++index]);
      prime = index + 2;
   MPI_Bcast (&prime, 1, MPI_INT, 0, MPI_COMM_WORLD);
} while (prime * prime <= n);</pre>
```

Code (4/4)

```
count = 0:
for (i = 0: i < size: i++)
   if (!marked[i]) count++;
MPI_Reduce (&count, &global_count, 1, MPI_INT, MPI_SUM,
            O. MPI COMM WORLD):
elapsed_time += MPI_Wtime();
if (!id) {
   printf ("%d primes are less than or equal to %d\n",
            global_count, n);
   printf ("Total elapsed time: %10.6f\n", elapsed_time);
MPI_Finalize ();
return 0;
```

Benchmarking

$$\alpha \frac{n \log \log n}{p} + \lambda \frac{\sqrt{n} \lceil \log p \rceil}{\log \sqrt{n}} + \lambda \lceil \log p \rceil$$

Benchmarking

Expected parallel execution time:

$$\alpha \, \frac{n \log \log n}{p} + \lambda \, \frac{\sqrt{n} \lceil \log p \rceil}{\log \sqrt{n}} + \lambda \, \lceil \log p \rceil$$

Experimental estimation of α : with $n = 10^8$, runtime= 24, 9s

$$\alpha = \frac{24,9}{10^8 \log 10^8} = 85,47 ns$$

Benchmarking

Expected parallel execution time:

$$\alpha \, \frac{n \log \log n}{p} + \lambda \, \frac{\sqrt{n} \, \lceil \log p \rceil}{\log \sqrt{n}} + \lambda \, \lceil \log p \rceil$$

Experimental estimation of α : with $n = 10^8$, runtime= 24, 9s

$$\alpha = \frac{24,9}{10^8 \log 10^8} = 85,47 ns$$

Experimental estimation of λ : sequence of broadcasts using $p=2,3,\ldots,8$ processors.

$$\lambda = 250 \mu s$$

Using $n=10^8$, execution times of the algorithm were measured and compared against the above formula, for $p=2,3,\ldots,8$ processors.

Experimental Results

р	Predicted	Actual
1	24,9	24,9
2	12,7	13,0
3	8,8	9,0
4	6,8	7,1
5	5,8	6,0
6	5,0	5,2
7	4,4	4,7
8	3,9	4,2

Every other mark is on an even number:

Every other mark is on an even number:

⇒ delete them!

Every other mark is on an even number:

⇒ delete them!

$$\alpha \frac{n \log \log n}{2p} + \lambda \frac{\sqrt{n} \lceil \log p \rceil}{\log \sqrt{n}} + \lambda \lceil \log p \rceil$$

Every other mark is on an even number:

⇒ delete them!

$$\alpha \frac{n \log \log n}{2p} + \lambda \frac{\sqrt{n} \lceil \log p \rceil}{\log \sqrt{n}} + \lambda \lceil \log p \rceil$$

р	Original	Optimized
1	24,9	12,2
2	13,0	6,6
3	9,0	5,0
4	7,1	4,1
5	6,9	3,7
6	5,2	3,3
7	4,7	3,1
8	4,2	2,9

Minimize communication:

Minimize communication:

duplicate sieve computation on all tasks to avoid broadcast

$$\Rightarrow$$
 replace $\lambda \lceil \log p \rceil \sqrt{n} / \log \sqrt{n}$ by $\alpha \sqrt{n} \log \log \sqrt{n}$

$$\alpha \left(\frac{n \log \log n}{2p} + \sqrt{n} \log \log \sqrt{n} \right) + \lambda \left\lceil \log p \right\rceil$$

Minimize communication:

duplicate sieve computation on all tasks to avoid broadcast

 \Rightarrow replace $\lambda \lceil \log p \rceil \sqrt{n} / \log \sqrt{n}$ by $\alpha \sqrt{n} \log \log \sqrt{n}$

$$\alpha \left(\frac{n \log \log n}{2p} + \sqrt{n} \log \log \sqrt{n} \right) + \lambda \lceil \log p \rceil$$

р	Original	Optimized
1	24,9	12,5
2	13,0	6,4
3	9,0	4,3
4	7,1	3,2
5	6,0	2,6
6	5,2	2,1
7	4,7	1,8
8	4,2	1,6

3	5	7	9
11	13	15	17
19	21	23	25
27	29	31	33
35	37	39	41
43	45	47	49
51	53	55	57
59	61	63	65
67	69	71	73
75	77	79	81

3	5	7	9
11	13	15	17
19	21	23	25
27	29	31	33
35	37	39	41
43	45	47	49
51	53	55	57
59	61	63	65
67	69	71	73
75	77	79	81

19	21	23	25
35	37	39	41
43	45	47	49
51	53	55	57
59	61	63	65
75	77	79	81

19	21	23	25
35	37	39	41
43	45	47	49
51	53	55	57
59	61	63	65
75	77	79	81

43	45	47	49
59	61	63	65
75	77	79	81

Solution?

Solution: reorganize loops

 \Rightarrow mark each element of the array for all sieves between 3 and \sqrt{n}

3	5	7	9
11	13	15	17
19	21	23	25
27	29	31	33
35	37	39	41
43	45	47	49
51	53	55	57
59	61	63	65
67	69	71	73
75	77	79	81

р	Original	Opt.I	Opt.II	Opt.III
1	24,9	12,2	12,5	2,5
2	13,0	6,6	6,4	1,3
3	9,0	5,0	4,3	0,9
4	7,1	4,1	3,2	0,7
5	6,0	3,7	2,6	0,5
6	5,2	3,3	2,1	0,5
7	4,7	3,1	1,8	0,4
8	4,2	2,9	1,6	0,3

Review

- The Sieve of Eratosthenes
- Data decomposition options
 - interleaved
 - block
 - grouped
 - distributed
- Parallel algorithm development, analysis
- Benchmarking
- Optimizations

Next Class

• A shortest path algorithm