Übungen zur Vorlesung Graphischer Mittlerer Kümmungsfluss

Blatt 6

Aufgabe 17. (2+4+2 Punkte)

Sei $M_0 \subset \mathbb{R}^{n+1}$ eine geschlossene n-dimesionale Hyperfläche mit H > 0. Sei $(M_t)_{t \in [0,T)}$ eine Lösung des mittleren Krümmungsflusses mit Startfläche M_0 .

- (i) Zeige, dass H > 0 für alle $t \in (0, T)$.
- (ii) Zeige, dass

$$t \mapsto \max_{M_t} \frac{|A|^2}{H^2}$$

monoton fallend ist.

Hinweis: Benutze Katos Ungleichung $|\nabla |A||^2 \le |\nabla A|^2$.

(iii) Sei n=2. Folgere aus (ii), dass λ_1/λ_2 beschränkt bleibt. Hinweis: Drücke $\frac{(\lambda_1-\lambda_2)^2}{(\lambda_1+\lambda_2)^2}$ mit Hilfe von $|A|^2$ und H aus und betrachte die Funktion $x\mapsto 1-x$.

Aufgabe 18. (8 Punkte)

Sei $M_0 \subset \mathbb{R}^{n+1}$ eine geschlossene n-dimesionale Hyperfläche mit H > 0. Sei $(M_t)_{t \in [0,T)}$ eine Lösung des Gaußkrümmungsflusses mit Startfläche M_0 .

- (i) Berechne die Evolutionsgleihungen von g_{ij} , h_{ij} , H und K.
- (ii) Sei n=2. Zeige, dass

$$t \mapsto \max_{M_t} (\lambda_1 - \lambda_2)^2$$

monoton fallend ist.

Abgabe: Bis Donnerstag, 12.07.2018, 10.00 Uhr, in die Mappe vor Büro F 402.