4. 제어유니트1.md 2025-10-02

주제/단락	내용
학습 목표	CPU 제어 유니트의 구조와 동작 원리를 분석하고, 마이크로프로그래밍을 이용한 명령어 설계 방법을 이해한다.
학습 내용	제어 유니트의 기능과 구조, 마이크로명령어 형식, 마이크로프로그래밍 및 순서제 어에 대해 학습한다.
제어 유니트 (CU)	컴퓨터의 모든 장치 동작을 지시하고 제어하는 CPU의 핵심적인 장치이다.
제어 유니트 기능 (명 령어 해독)	주기억장치로부터 가져온 프로그램 명령어를 해독하는 기능을 수행한다.
제어 유니트 기능 (제 어 신호 발생)	해독된 명령에 따라 연산이 수행되도록 각 장치에 필요한 제어 신호를 생성하여 전달한다.
하드와이어 제어 장치	논리 게이트와 플립플롭 같은 논리 회로를 이용하여 제어 신호를 발생시키는 방식의 제어 장치이다.
마이크로프로그램 제 어 장치	제어용 소형 컴퓨터 개념으로, 마이크로명령어를 제어 기억장치에 저장하고 실행 하여 제어 신호를 발생시킨다.
마이크로프로그램 제 어 방식	명령어의 각 마이크로 연산을 제어 기억장치의 특정 주소에 마이크로코드로 작성 하여 실행한다.
마이크로명령어	명령어 사이클의 각 단계에서 실행될 마이크로 연산을 지정하는 2진 비트 패턴으로, 제어 단어라고도 한다.
마이크로프로그램	특정 기능을 수행하기 위해 순서대로 배열된 마이크로명령어들의 집합이다.
루틴	CPU의 특정 기능(인출, 간접, 인터럽트 등)을 수행하기 위한 마이크로명령어들의 그룹이다.
CU 구성요소 (명령어 해독기)	명령어 레지스터(IR)의 연산 코드를 해독하여 해당 루틴의 시작 주소를 결정한다.
CU 구성요소 (CAR)	제어 주소 레지스터(Control Address Register)로, 다음에 실행할 마이크로명령어 의 주소를 저장한다.
CU 구성요소 (제어 기 억장치)	마이크로프로그램을 저장하는 내부 기억장치로, 주로 ROM으로 구성된다.
CU 구성요소 (CBR)	제어 버퍼 레지스터(Control Buffer Register)로, 제어 기억장치에서 읽은 마이크로 명령어를 일시 저장한다.
CU 구성요소 (SBR)	서브루틴 레지스터(Subroutine Register)로, 서브루틴 호출 시 현재 CAR의 내용을 임시 저장하여 복귀 주소로 사용한다.
CU 구성요소 (순서제 어 모듈)	마이크로명령어의 실행 순서를 결정하는 회로들의 집합이다.
마이크로프로그래밍 1 단계	CPU에서 사용할 명령어의 종류와 비트 패턴을 정의한다.

4. 제어유니트1.md 2025-10-02

주제/단락	내용
마이크로프로그래밍 2 단계	정의된 명령어 실행에 필요한 하드웨어를 설계한다.
마이크로프로그래밍 3 단계	각 명령어를 위한 실행 사이클 루틴을 작성하며, 인출/간접/인터럽트 사이클은 공 통 루틴으로 사용한다.
마이크로프로그래밍 4 단계	작성된 모든 마이크로프로그램 코드를 제어 기억장치(ROM)에 저장한다.
제어 기억장치 구성 예 시	128 단어 용량의 기억장치에서 전반부(0-63)는 공통 루틴, 후반부(64-127)는 실행 사이클 루틴을 저장한다.
마이크로명령어 길이 예시	주소 필드가 7비트이고 명령어 길이가 17비트일 경우, 제어 기억장치의 크기는 2^7 × 17 비트가 된다.
명령어 해독	명령어의 연산 코드를 분석하여 해당 연산을 수행할 실행 사이클 루틴의 시작 주 소를 결정하는 동작이다.
사상 (Mapping)	명령어의 연산 코드와 특정 비트 패턴을 조합하여 실행 사이클 루틴의 시작 주소 를 결정하는 해독 방법이다.
사상 방식 주소 결정 예시	연산 코드가 0001이면 시작 주소는 1000100(68)이 되고, 0110이면 1011000(88)이 된다.
다중 연산 필드	연산 필드가 두 개 이상일 경우, 두 개의 마이크로 연산을 동시에 수행할 수 있다.
조건(CD) 필드	분기 명령에 사용될 조건 플래그(부호, 제로 등)를 지정하는 필드이다.
분기(BR) 필드	분기의 종류(JUMP, CALL 등)와 다음 마이크로명령어의 주소를 결정하는 방법을 명시한다.
주소(ADF) 필드	분기가 발생할 경우 목적지 마이크로명령어의 주소를 저장하는 필드이다.
연산필드 1 예시	MAR에 PC 값 적재, AC에 MBR 값 적재 등의 마이크로 연산이 위치할 수 있다.
연산필드 2 예시	PC 값 증가, MBR에 AC 값 적재 등의 마이크로 연산이 위치할 수 있다.
연산필드 간의 관계	'None'을 제외하고 연산필드 1과 연산필드 2에 정의된 마이크로 연산들은 서로 중 복되지 않는다.
조건 필드 종류	U(무조건), I(간접 주소 지정), S(부호 비트), Z(제로 비트) 조건으로 구성된다.
분기 필드 종류	JUMP, CALL, RET, MAP 네 가지 유형으로 분기 방식을 지정한다.
JUMP 및 CALL 동작	조건 필드의 조건이 만족되면 ADF 필드의 주소로 분기하며, CALL은 서브루틴 호 출에 사용된다.
RET 동작	서브루틴으로부터 복귀하는 명령으로, SBR에 저장된 복귀 주소를 CAR로 적재한 다.
MAP 동작	사상(Mapping) 방식에 의해 분기할 목적지 주소를 결정한다.