Teorema 1 (Formula delle probabilità totali). Sia $(\Omega, \mathcal{F}, \mathbb{P})$ uno spazio di probabilità, e siano $F_1, F_2, \ldots, F_n \in \mathcal{F}$ eventi che formano una partizione di Ω , cioè tali che

(a) $F_i \cap F_j = \emptyset$ se $i \neq j$;

(b)
$$\bigcup_{i=1}^n F_i = \Omega$$
.

Supponiamo inoltre che $\mathbb{P}(F_i) > 0$ per ogni i = 1, 2, ..., n. Allora per ogni evento $E \in \mathcal{F}$ si ha

$$\mathbb{P}(E) = \sum_{i=1}^{n} \mathbb{P}(E \mid F_i) \mathbb{P}(F_i).$$

Teorema 2 (Formula di Bayes). Supponiamo che $F_1, F_2, \ldots, F_n \in \mathcal{F}$ sia una partizone di Ω , e che $\mathbb{P}(F_i) > 0$ per ogni $i = 1, 2, \ldots, n$. Allora per ogni $E \in \mathcal{F}$ con $\mathbb{P}(E) > 0$ si ha

$$\mathbb{P}(F_k \mid E) = \frac{\mathbb{P}(E \mid F_k) \mathbb{P}(F_k)}{\sum_{i=1}^n \mathbb{P}(E \mid F_i) \mathbb{P}(F_i)} \quad per \ ogni \ k \in \{1, 2, \dots, n\}.$$

Teorema 3 (Formula del prodotto). Supponiamo che $E_1, E_2, \ldots, E_n \in \mathcal{F}$ siano eventi qualsiasi. Allora

 $\mathbb{P}\left(E_{1} \cap E_{2} \cap \ldots \cap E_{n}\right) = \mathbb{P}\left(E_{n} \mid E_{n-1} \cap E_{n-2} \cap \ldots \cap E_{1}\right) \mathbb{P}\left(E_{n-1} \mid E_{n-2} \cap E_{n-3} \cap \ldots \cap E_{1}\right) \ldots \cdot \mathbb{P}\left(E_{1}\right).$

Teorema 4 (Legge dei Grandi Numeri). Supponiamo che X_1, X_2, \ldots sia un campione aleatorio. Allora per ogni $\epsilon > 0$ si ha

 $\lim_{n\to\infty} \mathbb{P}\left(\left|\bar{X}_n - \mathbb{E}\left[X_1\right]\right| > \epsilon\right) = 0.$

Teorema 5 (Teorema del Limite Centrale). $Sia X_1, X_2, \ldots un \ campione \ aleatorio \ qualsiasi. Allora$

$$\lim_{n\to\infty} \mathbb{P}\left(\frac{\bar{X}_n - \mathbb{E}\left[X_1\right]}{\sqrt{\operatorname{Var}\left(X_1\right)}} \sqrt{n} \le x\right) = \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{z^2}{2}} dz \qquad per \ ogni \ x \in \mathbb{R}.$$

Teorema 6 (Non dimostrato). Se X_1, \ldots, X_n è un campione aleatorio gaussiano, con $X_i \sim N(\mu, \sigma^2)$, allora

$$\frac{\bar{X}_n - \mu}{S_n} \sqrt{n} \sim t(n-1),$$

dove t(n-1) è la densità t di Student con n-1 gradi di libertà.

Per il quantile destro di ordine α della densità di Student t(n) si usa la notazione $t_{\alpha,n}$. In altre parole, $t_{\alpha,n}$ è il numero reale definito dalla relazione

$$F_{t(n)}(t_{\alpha,n}) = 1 - \alpha,$$

dove $F_{t(n)}$ è la funzione di ripartizione della densità t(n). I quantili $t_{\alpha,n}$ per i valori più comuni di α (p.es., $\alpha = 0.1$, $\alpha = 0.05$ e $\alpha = 0.025$) e i valori di n non troppo grandi (p.es., $n \le 40$) si trovano tabulati su tutti i libri di Statistica.

Teorema 7. Se X_1, \ldots, X_n e Y_1, \ldots, Y_m sono due campioni normali e indipendenti, con

$$X_i \sim N(\mu_X, \sigma_X^2)$$
 $Y_i \sim N(\mu_Y, \sigma_Y^2)$

allora:

(i) si ha sempre

$$\frac{\bar{X}_n - \bar{Y}_m - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \sim N(0, 1);$$

(ii) (non dimostrato) se vale in più la condizione $\sigma_X \equiv \sigma_Y$, definita la varianza pooled

$$S_p^2 := \frac{(n-1)S_X^2 + (m-1)S_Y^2}{n+m-2},$$

in cui S_X^2 e S_Y^2 sono la varianza campionaria del primo e del secondo campione, rispettivamente, si ha

$$\frac{\bar{X}_n - \bar{Y}_m - (\mu_X - \mu_Y)}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t(n + m - 2).$$

Teorema 8 (Non dimostrato). Sia X_1, \ldots, X_n un campione aleatorio, con X_i variabili aleatorie discrete a valori nell'insieme $\{1, \ldots, k\}$ (cioè $X_i : \Omega \to \{1, \ldots, k\}$ per ogni i). Sia $p : \{1, \ldots, k\} \to [0, 1]$ la densità di una qualsiasi delle X_i . Per ogni $l \in \{1, \ldots, k\}$, definiamo le variabili aleatorie

$$O_l = |\{i \in \{1, \dots, n\} : X_i = l\}|.$$

Sia inoltre T la statistica

$$T = \sum_{l=1}^{k} \frac{O_l^2}{np(l)} - n.$$

Allora, se $n \gg 1$, la statistica T ha approssimativamente densità chi-quadrato con k-1 gradi di libertà:

$$T \approx \chi^2(k-1)$$
.

Teorema 9 (Non dimostrato). $Sia(X_1, Y_1), \ldots, (X_n, Y_n)$ un campione costituito da vettori aleatori discreti a due componenti, con

$$(X_i, Y_i): \Omega \to \{1, \ldots, r\} \times \{1, \ldots, s\}.$$

Definiamo le statistiche

$$O_{l,m} = |\{i \in \{1, \dots, n\} : (X_i, Y_i) = (l, m)\}|$$

$$O_l = \sum_{m=1}^s O_{l,m} \qquad O_{m} = \sum_{l=1}^r O_{l,m}.$$

Allora, se vale l'ipotesi nulla

 $H_0: X_i \ e \ Y_i \ sono \ indipendenti \ per \ ogni \ i,$

la statistica test

$$T = n \left(\sum_{l=1}^{r} \sum_{m=1}^{s} \frac{O_{l,m}^{2}}{O_{l}.O_{m}} - 1 \right)$$

 $per \ n \gg 1$ ha approssimativamente densità chi-quadrato con (r-1)(s-1) gradi di libertà:

$$T \approx \chi^2((r-1)(s-1))$$
 se è vera H_0 .