Package 'SafeQuant'

April 8, 2016

Type Package
Title A Toolbox for the Analysis of Proteomics Data
Version 2.3
Date 2016-04-08
Author Erik Ahrne
Maintainer Erik Ahrne <erik.ahrne@unibas.ch></erik.ahrne@unibas.ch>
Description Tools for the statistical analysis and visualization of (relative and absolute) quantitative (LFQ,TMT,HRM) Proteomics data.
Imports limma, gplots, seqinr, corrplot, optparse, data.table, epiR, Biobase
License GPL-3
R topics documented:
addIdQvalues addScaffoldPTMFAnnotations barplotMSSignal calibrationCurve COLORS createExpDesign createExpressionDataset createPairedExpDesign cvBoxplot expDesignTagToExpDesign export getAAProteinCoordinates getAllCV getAllEBayes getBaselineIntensity getCV getExpDesignProgenesisCov

getGlobalNormFactors	6
getIBAQEset	7
getIdLevelQvals	8
getImpuritiesMatrix	8
getIntSumPerProtein	9
getLoocvFoldError	0
getMaxIndex	1
getMeanCenteredRange	1
-	2
getMotifX	
getNbDetectablePeptides	
getNbMisCleavages	
getNbPeptidesPerProtein	
getNbSpectraPerProtein	
getPeptides	
getRatioCorrectionFactorModel	
getRTNormFactors	
getScoreCutOff	
getSignalPerCondition	
getTopX	_
getUserOptions	
globalNormalize	
hClustHeatMap	
isCon	
isDecoy	5
isStrippedACs	6
missinValueBarplot	7
option_list	7
pairsAnnot	.2
parseMaxQuantProteinGroupTxt	.3
parseProgenesisFeatureCsv	4
parseProgenesisPeptideMeasurementCsv	5
parseProgenesisProteinCsv	6
parseScaffoldPTMReport	7
parseScaffoldRawFile	
perFeatureNormalization	
plotAbsEstCalibrationCurve	_
plotExpDesign	
plotIdScoreVsFDR	
plotMSSignalDistributions	
plotNbIdentificationsVsRT	
plotNbValidDeFeaturesPerFDR	
plotPrecMassErrorDistrib	
plotPrecMassErrorVsScore	
plotQValueVsPValue	
plotROC	
plotRTNorm	
plotRTNormSummary	
plotScoreDistrib	9
plotVolcano	
plotXYDensity	0

244140	Ovalues	
auuiu	yvalues	·

	purityCorrectTMT			 		 													61
	removeOutliers .			 		 													62
	rollUp			 		 													62
	rtNormalize			 		 													63
	safeQuantAnalysis	s		 		 													64
	setNbPeptidesPerI	Protein .		 		 													65
	setNbSpectraPerPr	rotein		 		 													65
	sqNormalize			 		 													66
	standardise																		
	stripACs																		
Index																			69
addIc	dQvalues	Add id	J		1		to E	Ехр	res	sior	ıSe	t (c	alo	cul	ate	d b	pase	ed o	n

Description

Add identification leve q-values to ExpressionSet (calculated based on target-decoy score distribution)

Usage

```
addIdQvalues(eset = eset)
```

Arguments

eset

ExpressionSet

Details

if ptm column is part if the ExpressionSet q-values are calculated seperately for modified and non-modified features

Value

ExpressionSet object

Note

No note

See Also

 ${\tt getIdLevelQvals}$

```
print("No examples")
```

4 barplotMSSignal

```
{\it addScaffoldPTMFAnnotations}\\
```

Add scaffold ptm annotaitons to tmt experiment

Description

Add scaffold ptm annotaitons to tmt experiment

Usage

```
addScaffoldPTMFAnnotations(eset, file)
```

Arguments

eset ExpressionSet

file path to Scaffold file

Value

ExpressionSet object

Note

No note

References

No references

Examples

```
print("No examples")
```

barplotMSSignal

Barplot of ms-signal per column

Description

Barplot of ms-signal per column

Usage

```
barplotMSSignal(eset,
  col = as.character(.getConditionColors(eset)[pData(eset)$condition, ]),
  method = c("sum", "sharedSignal"), cex.lab = 1.25, cex.axis = 1.25,
  cex.names = 0.9, labels = rownames(pData(eset)), ...)
```

calibrationCurve 5

Arguments

eset expressionSet

col default condition colors

method c("median", "sum", "sharedSignal")

cex.lab default 1.25
cex.axis default 1.25
cex.names default 0.9
labels labels
... see plot

Details

No details

Note

No note

References

NA

Examples

print("No examples")

calibrationCurve

S3 class object describing a calibration curve and storing some figures of merit

Description

S3 class object describing a calibration curve and storing some figures of merit

Usage

```
calibrationCurve(eset, method = "blank")
```

Arguments

eset ExpressionSet

method to calculate Limit of Detection / Limit of Quantification. c("blank","low")

Details

No details

Value

calibrationCurve object

6 createExpDesign

Note

No note

References

Statistical characterization of multiple-reaction monitoring mass spectrometry (MRM-MS) assays for quantitative proteomics, Mani et al. (2012), http://www.ncbi.nlm.nih.gov/pubmed/23176545

Examples

```
print("No examples")
```

COLORS

color vector

Description

color vector

Usage

COLORS

Format

```
chr [1:668] "red" "darkgreen" "blue" "darkmagenta" "darkorange" ...
```

createExpDesign

Create Experimental Design

Description

Create Experimental Design

Usage

```
createExpDesign(tag, nbPlex)
```

Arguments

tag user input tag e.g. 1,2,3:4,5,6 indicating two condition with 3 reps each

nbPlex tmt 6 or 10 plex

Details

The first listed condition is always the control condition

Value

expDesign data.frame

Note

No note

References

NA

Examples

```
print("No examples")
```

 ${\tt createExpressionDataset}$

Create ExpressionSet object

Description

Create ExpressionSet object

Usage

```
createExpressionDataset(expressionMatrix = expressionMatrix,
  expDesign = expDesign, featureAnnotations = featureAnnotations)
```

Arguments

expressionMatrix

matrix of expression signals per feature and sample

expDesign

experimental design data.frame

 $feature {\tt Annotations}$

data.frame including e.g: Protein Description, Id score etc.

Details

No details

Value

ExpressionSet object

Note

No note

References

NA

See Also

ExpressionSet

Examples

```
print("No examples")
```

createPairedExpDesign Create Paired Expdesign

Description

Create Paired Expdesign

Usage

```
createPairedExpDesign(eset)
```

Arguments

eset

ExpressionSet

Details

Add subject colum to phenoData design data.frame

Value

ExpressionSet object

Note

No note

References

NA

See Also

ExpressionSet

```
print("No examples")
```

cvBoxplot 9

cvBoxplot	C.V. boxplot
CVDOXPIOL	C. v. boxpioi

Description

C.V. boxplot

Usage

```
cvBoxplot(eset,
  col = as.character(.getConditionColors(eset)[unique(pData(eset)$condition),
  ]), cex.names = 0.9, cex.axis = 1.25, cex.lab = 1.25,
  ylab = "C.V. (%)", ...)
```

Arguments

eset	ExpressionSet
col	col
cex.names	default 0.9
cex.axis	default 1.25
cex.lab	default 1.25
ylab	C.V.
	see plot

Details

No details

Note

No note

References

NA

```
print("No examples")
```

 ${\tt expDesignTagToExpDesign}$

Create experimental design data.frame from user input string

Description

Create experimental design data.frame from user input string

Usage

```
expDesignTagToExpDesign(tag, expDesignDefault)
```

Arguments

```
\begin{array}{c} {\rm tag} & {\rm tag} \\ {\rm expDesignDefault} \\ & {\rm data.frame} \end{array}
```

Details

tag: 1,2:3:4,5,6 condition is Control 1 Condition 1 TRUE 2 Condition 1 TRUE 3 Condition 1 TRUE 4 Condition 2 FALSE 5 Condition 2 FALSE 6 Condition 2 FALSE

Value

data.frame describing experimental design

Note

No note

References

NA

```
print("No examples")
```

export 11

export

Export content of safeQuantAnalysis object

Description

Export content of safeQuantAnalysis object

Usage

```
export(sqa, nbRows = nrow(sqa$pValue), file = NA)
```

Arguments

sqa safeQuantAnalysis object

nbRows Number of rows to export. Features are ordred by increasing minimal p.value

file file path

Details

NA

Note

No note

References

NA

See Also

```
{\it safeQuantAnalysis}
```

Examples

```
print("No examples")
```

```
getAAProteinCoordinates
```

Get amino acid coordinates on protein

Description

Get amino acid coordinates on protein

Usage

```
getAAProteinCoordinates(peptideSeq, proteinSeq, aaRegExpr = "[STY]")
```

12 getAllCV

Arguments

peptideSeq peptide sequence proteinSeq protein sequence aaRegExpr target AA reg exp

Details

NA

Value

vector of protein coordinates (mmodification residue number)

Note

No note

References

NA

Examples

```
print("No examples")
```

getAllCV

Calculate Coefficiant of Variance per feature (Relative standard Deviation) per Condition

Description

Calculate Coefficiant of Variance per feature (Relative standard Deviation) per Condition

Usage

```
getAllCV(eset)
```

Arguments

eset

ExpressionSet

Details

CV = sd / mean

Value

data.frame of CVs per condition

Note

No note

getAllEBayes 13

References

NA

See Also

getCV

Examples

```
print("No examples")
```

getAllEBayes

Perform statistical test (mderated t-test), comparing all case to control

Description

Perform statistical test (mderated t-test), comparing all case to control

Usage

```
getAllEBayes(eset = eset, adjust = F, log = T, method = "pairwise",
   adjustFilter = matrix(F, nrow = nrow(eset), ncol =
   length(levels(pData(eset)$condition)) - 1))
```

Arguments

eset ExpressionSet

adjust TRUE/FALSE adjust for multiple testing using Benjamini & Hochberg (1995)

method

log T/F log-transform expression values

method c("all", "pairwise")

Details

No details

Value

ExpressionSet object

Note

No note

References

Empirical Bayes method, Smyth (2004), http://www.ncbi.nlm.nih.gov/pubmed/16646809

See Also

eBayes

14 getCV

Examples

```
print("No examples")
```

getBaselineIntensity

Get signal at zscore x (x standard deviations below mean)

Description

Get signal at zscore x (x standard deviations below mean)

Usage

```
getBaselineIntensity(intensities, promille = 5)
```

Arguments

intensities

refrence run signals

promille

baseline value set as specified promille

Value

baseline value

Note

No note

References

NA

Examples

```
print("No examples")
```

getCV

Calculate Coefficiant of Variance per feature (Relative standard Deviation)

Description

Calculate Coefficiant of Variance per feature (Relative standard Deviation)

Usage

```
getCV(data)
```

Arguments

data

data.frame of replicate signals

Details

CV = sd / mean

Value

vector of CVs

Note

No note

References

NA

Examples

```
print("No examples")
```

 ${\tt getExpDesignProgenesisCsv}$

Parse Experimental Design from Progenesis Csv Export

Description

Parse Experimental Design from Progenesis Csv Export

Usage

```
getExpDesignProgenesisCsv(file,
  expressionColIndices = .getProgenesisCsvExpressionColIndices(file))
```

Arguments

```
\begin{tabular}{ll} file & path to progenesis csv file \\ expressionColIndices \\ & default .getProgenesisCsvExpressionColIndices(file) \\ \end{tabular}
```

Details

No details

Value

data.frame describing experimental design

Note

No note

References

NA

Examples

```
print("No examples")
```

 ${\tt getGlobalNormFactors}$

Get normalization factors. calculated as summed/median signal per run (column) over summed/median of first run.

Description

Get normalization factors. calculated as summed/median signal per run (column) over summed/median of first run.

Usage

```
getGlobalNormFactors(eset, method = "sum")
```

Arguments

eset

ExpressionSet

method

c("sum", "median)

Details

No details

Value

vector of normalization factors

Note

No note

References

NA

```
print("No examples")
```

getIBAQEset 17

absolute-protein-quantification (iBAQ) met-

Description

Calculate intensity-based absolute-protein-quantification (iBAQ) metric per protein

Usage

```
getIBAQEset(eset, proteinDB = NA, peptideLength = c(5, 36),
   nbMiscleavages = 0, proteaseRegExp = .getProteaseRegExp("trypsin"))
```

Arguments

eset protein level ExpressionSet

proteinDB list protein sequneces

peptideLength peptide length interval (to get number of peptides used for normalization)

nbMiscleavages number of mis-cleavages allowed when digesting protein sequences in silico (to

get number of peptides used for normalization)

proteaseRegExp protease Reg Exp cleavage rule

Details

No details

Value

ExpressionSet

Note

No note

References

Global quantification of mammalian gene expression control, Schwanhausser (2011), http://www.ncbi.nlm.nih.gov/pubmed/21593866, Critical assessment of proteome-wide label-free absolute abundance estimation strategies. Ahrne (2013), http://www.ncbi.nlm.nih.gov/pubmed/23794183

```
print("No examples")
```

18 getImpuritiesMatrix

 ${\tt getIdLevelQvals}$

Calculates identification level q-values based on target-decoy score distributions

Description

Calculates identification level q-values based on target-decoy score distributions

Usage

```
getIdLevelQvals(scores, isDecoy)
```

Arguments

scores peptide/protein identficationscore

isDecoy vector of TRUE/FALSE

Details

```
q-value = (Nb. Decoy Entries at idScore Threshold S^*) / (Nb. Target Entries at idScore Threshold S). (* idScore >= S)
```

Value

vector of q.values

Note

No note

References

NA

Examples

```
print("No examples")
```

getImpuritiesMatrix

Get Thermo TMT impurity matrix

Description

Get Thermo TMT impurity matrix

Usage

```
getImpuritiesMatrix(plexNb = 6)
```

getIntSumPerProtein 19

Arguments

plexNb integer, 6 or 10 plex

Details

No details

Value

impurity matrix matrix

Note

No note

References

NA

Examples

```
print("No examples")
```

getIntSumPerProtein

Sum up raw intensities per protein and channel. keep track of number of summed spectra and unique peptides

Description

Sum up raw intensities per protein and channel. keep track of number of summed spectra and unique peptides

Usage

```
getIntSumPerProtein(intData, proteinACs, peptides, minNbPeptPerProt = 1)
```

Arguments

intData data.frame of intensities per channel proteinACs vector of protein accession numbers

peptides vector of peptide sequneces

minNbPeptPerProt

minimal number of peptides per protein

Details

NA

Value

list containing 3 objects 1) data.frame of channel intensities per protein ac, 2) vector listing number of summed spectra per protein, 3) vector listing number of summed peptides per protein

20 getLoocvFoldError

Note

No note

References

NA

Examples

```
print("No examples")
```

getLoocvFoldError

Leave-One-Out Cross Validate Qunatification Model

Description

Leave-One-Out Cross Validate Qunatification Model

Usage

```
getLoocvFoldError(df)
```

Arguments

df

data.frame of two columns 1) "signal" - ms metric 2) "cpc" absolute quantity

Details

No details

Value

data.frame of fold errors per (left-out) protein

Note

No note

References

NA

See Also

NA

```
print("No examples")
```

getMaxIndex 21

getMaxIndex

get index of max in vecotr of numeric values

Description

get index of max in vecotr of numeric values

Usage

```
getMaxIndex(v)
```

Arguments

٧

vector

getMeanCenteredRange

Get modification coordinates on protein

Description

Get modification coordinates on protein

Usage

```
getMeanCenteredRange(d, nbSd = 4)
```

Arguments

d numeric vector

nbSd range spanning number of sd frmo mean

Details

NA

Value

vector range boundries

Note

No note

References

NA

```
print("No examples")
```

getModifProteinCoordinates

Get modification coordinates on protein

Description

Get modification coordinates on protein

Usage

```
getModifProteinCoordinates(modifAnnot, peptideSeq, proteinSeq, format = 1)
```

Arguments

modifannot modification as annotated by progenesis. E.g. '[15] Phospho (ST)|[30] Phospho

(ST)

peptideSeq peptide sequence proteinSeq protein sequence

format c(1,2) 1. progenesis 2. scaffold

Details

NA

Value

vector of protein coordinates (mmodification residue number)

Note

No note

References

NA

```
print("No examples")
```

getMotifX 23

getMotifX

Create motif-x peptide annotation

Description

Create motif-x peptide annotation

Usage

```
getMotifX(modifPos, peptide, proteinSeq, motifLength = 4)
```

Arguments

modifPos vector positions

peptide peptide sequence

proteinSeq protein sequence

motifLength motif flanking sequence

Details

motif-x example PGDYS*TTPG

Value

vector of motifs

Note

No note

References

NA

```
print("No examples")
```

24 getNbMisCleavages

```
getNbDetectablePeptides
```

Get number peptides passing defined length criteria

Description

Get number peptides passing defined length criteria

Usage

```
getNbDetectablePeptides(peptides, peptideLength = c(5, 36))
```

Arguments

peptides list of peptides

peptideLength vector of two integers defining peptide length range

Details

No details

Value

integer corresponding to number of detectable peptides

Note

No note

Examples

```
print("No examples")
```

getNbMisCleavages

Get number of mis-cleavages perp peptide

Description

Get number of mis-cleavages perp peptide

Usage

```
getNbMisCleavages(peptide, protease = "trypsin")
```

Arguments

peptide character vector protease regular expression

Details

NA

Value

vector ofintegers

Note

No note

References

NA

Examples

```
print("No examples")
```

getNbPeptidesPerProtein

Get number of peptides per protein

Description

Get number of peptides per protein

Usage

```
getNbPeptidesPerProtein(eset)
```

Arguments

eset

ExpressionSet

Details

NA

Value

table

Note

No note

References

NA

```
print("No examples")
```

26 getPeptides

```
{\tt getNbSpectraPerProtein}
```

Get number of spectra per protein

Description

Get number of spectra per protein

Usage

```
getNbSpectraPerProtein(eset)
```

Arguments

eset

ExpressionSet

Details

NA

Value

table

Note

No note

References

NA

Examples

```
print("No examples")
```

getPeptides

Digest protein

Description

Digest protein

Usage

```
getPeptides(proteinSeq, proteaseRegExp = .getProteaseRegExp("trypsin"),
    nbMiscleavages = 0)
```

Arguments

```
\begin{array}{ll} {\rm proteinSeq} & {\rm protein\ sequence} \\ {\rm proteaseRegExp} & {\rm protease\ Regular\ Expression} \\ {\rm nbMiscleavages} & {\rm default\ 0} \\ \end{array}
```

Details

No details

Value

vector of peptides

Note

No note

Examples

```
print("No examples")
```

 ${\tt getRatioCorrectionFactorModel}$

Get linear model explaning log2 ratio as a function of log2 tmt ratio

Description

Get linear model explaning log2 ratio as a function of log2 tmt ratio

Usage

```
getRatioCorrectionFactorModel(eset)
```

Arguments

eset paired calibration mix

Details

Uses linear model of log tmt ratio vs log ref ratio

Value

linear model

Note

No note

References

NA

28 getRatios

Examples

```
print("No examples")
```

getRatios

Calculate ratios, comparing all case to control

Description

Calculate ratios, comparing all case to control

Usage

```
getRatios(eset, method = "median", log2 = T)
```

Arguments

eset ExpressionSet

method median, mean, paired

log2 transform

Details

No details

Value

ExpressionSet object

Note

No note

References

NA

```
print("No examples")
```

getRTNormFactors 29

getRTNormFactors

Get retentiontime base normalization factors

Description

Get retentiontime base normalization factors

Usage

```
getRTNormFactors(eset, minFeaturesPerBin = 100)
```

Arguments

eset

ExpressionSet

minFeaturesPerBin

minumum number of features per bin. If nb. features are < minFeaturesPerBin -> include neighbouring bins.

Details

No details

Value

data.frame normalization factors per retention time bin (minute)

Note

No note

References

In Silico Instrumental Response Correction Improves Precision of Label-free Proteomics and Accuracy of Proteomics-based Predictive Models, Lyutvinskiy et al. (2013), http://www.ncbi.nlm.nih.gov/pubmed/23589346

```
print("No examples")
```

30 getSignalPerCondition

getScoreCutOff

Get score cutoff for a given fdr cut-off

Description

Get score cutoff for a given fdr cut-off

Usage

```
getScoreCutOff(scores, isDecoy, fdrCutOff = 0.01)
```

Arguments

scores

peptide/protein identficationscore

isDecoy

vector of TRUE/FALSE

fdrCutOff [0,1]

Details

NA

Value

scoreCutoff

Note

No note

References

NA

Examples

```
print("No examples")
```

getSignalPerCondition Summarize replicate signal per condition (min)

Description

Summarize replicate signal per condition (min)

Usage

```
getSignalPerCondition(eset, method = "median")
```

getTopX 31

Arguments

eset ExpressionSet

method median (default), mean, max, min, sd

Details

No details

Value

data.frame of per condition signals

Note

No note

References

NA

Examples

```
print("No examples")
```

getTopX

Calculate Mean of X most intense features

Description

Calculate Mean of X most intense features

Usage

```
getTopX(entryData, topX = 3)
```

Arguments

entryData data.frame listing feature intensities of one entry. Typically rows corresponds to

Peptide entries of one protein

topX best X flyers

Details

No details

Value

vector of topX intensities per column (sample)

Note

No note

32 getUserOptions

References

Absolute quantification of proteins by LCMSE: A virtue of parallel MS acquisition, Silva (2006), http://www.ncbi.nlm.nih.gov/pubmed/16219938, Critical assessment of proteome-wide label-free absolute abundance estimation strategies. Ahrne (2013), http://www.ncbi.nlm.nih.gov/pubmed/23794183

Examples

```
print("No examples")
```

getUserOptions

Read User Specified Command Line Options

Description

Read User Specified Command Line Options

Usage

```
getUserOptions(version = version)
```

Arguments

version

Safequant version number

Details

No details

Value

user options list

Note

No note

References

NA

```
print("No examples")
```

globalNormalize 33

globalNormalize	Normalize, Norm factors calculated as median signal per run (col- umn) over median of first run.

Description

Normalize, Norm factors calculated as median signal per run (column) over median of first run.

Usage

```
globalNormalize(eset, globalNormFactors)
```

Arguments

```
eset ExpressionSet
globalNormFactors
globalNormFactors
```

Details

No details

Value

eset ExpressionSet

Note

No note

References

NA

See Also

getGlobalNormFactors

```
print("No examples")
```

34 hClustHeatMap

hClustlestMon	Hispanshical alustoning heat man aluston by must intensity features by
hClustHeatMap	Hierarchical clustering heat map, cluster by runs intensity, features by
	ratio and display log2 ratios to control median

Description

Hierarchical clustering heat map, cluster by runs intensity, features by ratio and display log2 ratios to control median

Usage

```
hClustHeatMap(eset, conditionColors = .getConditionColors(eset),
  breaks = seq(-2, 2, length = 20), dendogram = "column",
  legendPos = "left", ...)
```

Arguments

eset ExpressionSet conditionColors data.frame of colors per condition breaks default seq(-2,2,length=20) dendogram see heatmap.2 gplots legendPos see legend see plot

Details

. . .

No details

Note

No note

References

NA

```
print("No examples")
```

isCon 35

isCon

Check if protein is a contaminant entry

Description

Check if protein is a contaminant entry

Usage

isCon(ac)

Arguments

ac

vector of protein accession numbers

Details

contanminants proteins are typically annotated as: CON_P0000

Value

vector TRUE/FALSE

Note

No note

References

NA

Examples

```
print("No examples")
```

isDecoy

Check if protein is a decoy entry

Description

Check if protein is a decoy entry

Usage

```
isDecoy(ac)
```

Arguments

ac

vector of protein accession numbers

isStrippedACs

Details

decoy proteins are typically annotated as: REV_P0000

Value

vector TRUE/FALSE

Note

No note

References

NA

Examples

print("No examples")

isStrippedACs

Check if ACs are in "non-stripped" uniprot format e.g. "sp\Q8CHJ2\AQP12_MOUSE"

Description

Check if ACs are in "non-stripped" uniprot format e.g. "splQ8CHJ2|AQP12_MOUSE"

Usage

isStrippedACs(acs)

Arguments

acs

accession numbers

Details

TRUE if less than 10

Value

boolean TRUE/FALSE

Note

No note

References

NA

```
print("No examples")
```

missinValueBarplot 37

missinValueBarplot

Plot Percentage of Features with with missing values

Description

Plot Percentage of Features with with missing values

Usage

```
missinValueBarplot(eset,
  col = as.character(.getConditionColors(eset)[pData(eset)$condition, ]),
  cex.axis = 1.25, cex.lab = 1.25, ...)
```

Arguments

eset	ExpressionSet
col	col
cex.axis	cex.axis
cex.lab	cex.lab
	see plot

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

 ${\tt option_list}$

Command Line Option List

Description

Command Line Option List

Usage

```
option_list
```

Format

```
List of 27
 $: Formal class 'OptionParserOption' [package "optparse"] with 8 slots
  .. ..@ short_flag: chr "-i"
  .. ..@ long_flag : chr "--inputFile"
  .. ..@ action : chr "store"
  .. ..@ type : chr "character"
.. ..@ dest : chr "inputFile"
  .. ..@ default : chr ""
 ....@ help : chr "I/O: Input file: Progenesis (Feature, Protein or Peptide) .csv,\n\t\tor
  .. ..@ metavar : chr "inputFile"
 $ :Formal class 'OptionParserOption' [package "optparse"] with 8 slots
  .. ..@ short_flag: chr "-o"
  .. ..@ long_flag : chr "--outputDir"
  .. ..@ action : chr "store"
  .. ..@ type
                 : chr "character"
  ....@ type : chr character : ....@ dest : chr "outputDir"
  ....@ default : chr NA
 ....@ help : chr "I/O: Results Output Directory [default FOLDER OF INPUTFILE]"
  ....@ metavar : chr "outputDir"
 $ :Formal class 'OptionParserOption' [package "optparse"] with 8 slots
  .. ..@ short_flag: chr "-1"
  .. ..@ long_flag : chr "--resultsFileLabel"
  ....@ action : chr "store"
  ....@ type : chr "character"
  .. ..@ dest
                  : chr "resultsFileLabel"
  ....@ default : chr "SQ_Results"
  ....@ help : chr "I/O: results file directory [default %default]"
  ....@ metavar : chr "resultsFileLabel"
 $ :Formal class 'OptionParserOption' [package "optparse"] with 8 slots
  .. ..@ short_flag: chr "-f"
  .. ..@ long_flag : chr "--fastaFile"
  .. ..@ action : chr "store"
  .. ..@ type : chr "character"
.. ..@ dest : chr "fastaFile"
  .. ..@ default : chr ""
  ....@ help : chr "I/O: Protein DB .fasta file [default ./]"
  ....@ metavar : chr "fastaFile"
 $ :Formal class 'OptionParserOption' [package "optparse"] with 8 slots
  .. ..@ short_flag: chr "-p"
  ....@ long_flag : chr "--scaffoldPTMSpectrumReportFile"
  ....@ action : chr "store"
  ....@ type : chr "character"
                 : chr "scaffoldPTMSpectrumReportFile"
  .. ..@ dest
  .. ..@ default : chr ""
  .. ..@ help
                 : chr "I/O: Scaffold PTM Spectrum Report File [default ./]"
  ....@ metavar : chr "scaffoldPTMSpectrumReportFile"
 $ :Formal class 'OptionParserOption' [package "optparse"] with 8 slots
  .. ..@ short_flag: chr NA
  ....@ long_flag : chr "--FProteinAccessionSelection"
  ....@ action : chr "store"
  ....@ type : chr "character"
```

```
....@ dest : chr "FProteinAccessionSelection"
.. ..@ default : chr "."
....@ help : chr "FILTER: --FP Filter features by Accession Regular Expression [default %def
 ....@ metavar : chr "Protein Accession Reg. expr."
$ :Formal class 'OptionParserOption' [package "optparse"] with 8 slots
 .. ..@ short_flag: chr NA
 ....@ long_flag : chr "--FModificationSelection"
 .. ..@ action : chr "store"
             : chr "character"
 .. ..@ type
                : chr "FModificationSelection"
 .. ..@ dest
 ....@ default : chr ""
....@ help : chr "FILTER (LFQ PEP ONLY): --FM Only keep Peptides with modifications matching
 ....@ metavar : chr "modification name Reg. expr."
$ :Formal class 'OptionParserOption' [package "optparse"] with 8 slots
 .. ..@ short_flag: chr NA
 .. ..@ long_flag : chr "--FFdrCutoff"
 ....@ action : chr "store"
....@ type : chr "double"
....@ dest : chr "FFdrCut
                : chr "FFdrCutoff"
.. ..@ default : num 0.01
....@ help : chr "FILTER (LFQ ONLY): --FF Identification level False Discovery Rate Cutoff.
  . ..@ metavar : chr "Peptide/Protein FDR cutoff"
$ :Formal class 'OptionParserOption' [package "optparse"] with 8 slots
 .. ..@ short_flag: chr NA
 ....@ long_flag : chr "--FDeltaMassTolerancePrecursor"
 ....@ action : chr "store"
 ....@ type : chr "character"
               : chr "FDeltaMassTolerancePrecursor"
 .. ..@ dest
 ....@ default : chr "AUTO SET"
....@ help : chr "FILTER (LFQ PEP ONLY): --FD Precursor mass Error Range filter (ppm) [defaul
 ....@ metavar : chr "Mass Range [x,y]"
$ :Formal class 'OptionParserOption' [package "optparse"] with 8 slots
.. ..@ short_flag: chr NA
 ....@ long_flag : chr "--FNumberOfPeptidesPerProteinMin"
 .. ..@ action : chr "store"
 ....@ type : chr "integer"
 .. ..@ dest
                : chr "FNumberOfPeptidesPerProteinMin"
 .. ..@ default : int 1
....@ help : chr "FILTER: --FN Only include those proteins with at least x identified peptide
 ....@ metavar : chr "Number of peptides"
$ :Formal class 'OptionParserOption' [package "optparse"] with 8 slots
 .. ..@ short_flag: chr NA
 .. ..@ long_flag : chr "--FSitesPerPeptide"
 .. ..@ action : chr "store"
                : chr "integer"
 .. ..@ type
            : chr "FSitesPerPeptide"
 .. ..@ dest
 .. ..@ default : int 99999
....@ help : chr "FILTER: --FS Max Nb. Modifications Per Peptide [default Inf]\n\t\t\t\t\t
....@ metavar : chr "Max Number of PTM sites Per Petptide"
$ :Formal class 'OptionParserOption' [package "optparse"] with 8 slots
.. ..@ short_flag: chr NA
 ....@ long_flag : chr "--FLengthPeptide"
```

```
: chr "store"
 .. ..@ action
....@ type : chr "integer"
....@ dest : chr "FLengthPeptide"
.. ..@ default : int 1
....@ help : chr "FILTER: --FL Min Peptide Length (Nb. AA's) [default Inf]\n\t\t\t\t\t\tPept
 ....@ metavar : chr "Min Peptide Length (>=)"
$ :Formal class 'OptionParserOption' [package "optparse"] with 8 slots
 .. ..@ short_flag: chr NA
 .. ..@ long_flag : chr "--FUniquePeptides"
 ....@ action : chr "store_true"
....@ type : chr "logical"
                : chr "FUniquePeptides"
 .. ..@ dest
 .. ..@ default : logi FALSE
.. ..@ help
             : chr "FILTER: --FU Discard all peptides mapping to multiple protein entries [def
 ....@ metavar : chr(0)
$ :Formal class 'OptionParserOption' [package "optparse"] with 8 slots
 .. ..@ short_flag: chr NA
.. ..@ long_flag : chr "--FRatioCutOff"
 .. ..@ action : chr "store"
 ....@ type : chr "double"
                : chr "FRatioCutOff"
 .. ..@ dest
 ....@ default : num 1
....@ help : chr "FILTER: --FR Intensity ratio (fold change) cut-off used for graphics expor
 .. ..@ metavar
                : chr "Intensity ratio cutoff"
$ :Formal class 'OptionParserOption' [package "optparse"] with 8 slots
 .. ..@ short_flag: chr NA
 .. ..@ long_flag : chr "--TAdjustRatios"
 .. ..@ action : chr "store_true"
                : chr "logical"
 .. ..@ type
 ....@ dest : chr "TAdjustRatios"
 ....@ default : logi FALSE
....@ help : chr "TMT: --TA Adjust TMT ratios using calibration mix proteins [default %defau
.. ..@ metavar : chr(0)
$ :Formal class 'OptionParserOption' [package "optparse"] with 8 slots
.. ..@ short_flag: chr NA
 .. ..@ long_flag : chr "--SAnchorProtein"
 ....@ action : chr "store"
...@ type : chr Characce.
@ dest : chr "SAnchorProtein"
 .. ..@ default : chr "."
....@ help : chr "STATISTICS: --SA Normalize Intensities by selected protein(s) Regular Expr
 ....@ metavar : chr "Protein Accession Reg. expr."
$:Formal class 'OptionParserOption' [package "optparse"] with 8 slots
 .. ..@ short_flag: chr NA
 .. ..@ long_flag : chr "--SPvalueInclude"
 ....@ action : chr "store_true"
                 : chr "logical"
 .. ..@ type
.. ..@ dest
                : chr "SPvalueInclude"
 ....@ default : logi FALSE
....@ help : chr "STATISTICS: --SP output eBayes moderated t-statistic p-values [default %de
 ....@ metavar : chr(0)
$ :Formal class 'OptionParserOption' [package "optparse"] with 8 slots
```

.. ..@ short_flag: chr NA

```
....@ long_flag : chr "--SNonPairWiseStatTest"
 ....@ action : chr "store_true"
....@ type : chr "logical"
....@ dest : chr "SNonPair"
                : chr "SNonPairWiseStatTest"
 ....@ default : logi FALSE
....@ help : chr "STATISTICS: --SN non pairwise eBayes moderated t-statistic p-values.\n\t\
 .. ..@ metavar : chr(0)
$ :Formal class 'OptionParserOption' [package "optparse"] with 8 slots
.. ..@ short_flag: chr NA
 ....@ long_flag : chr "--EXperimentalDesign"
 .. ..@ action : chr "store"
.. ..@ default : chr NA
....@ help : chr "EXPERIMENTAL DESIGN: --EX \",\" seperated samples, \":\" separated conditi
....@ metavar : chr "EXperimentalDesign"
$ :Formal class 'OptionParserOption' [package "optparse"] with 8 slots
.. ..@ short_flag: chr NA
 .. ..@ long_flag : chr "--EProteinQuantOff"
 .. ..@ action : chr "store_false"
 .. ..@ type : chr "logical"
.. ..@ dest : chr "EProteinQuantOff"
 .. ..@ default : logi TRUE
....@ help : chr "EXPERIMENTAL DESIGN: --EP Disable Protein Level Quantification [default %c
 ....@ metavar : chr(0)
$ :Formal class 'OptionParserOption' [package "optparse"] with 8 slots
 .. ..@ short_flag: chr NA
 ....@ long_flag : chr "--ECorrelatedSamples "
 ....@ action : chr "store_true"
                : chr "logical"
....@ type : chr "logical"
....@ dest : chr "ECorrelatedSamples "
....@ default : logi FALSE
            : chr "EXPERIMENTAL DESIGN: --EC Apply \"paired\" statistical tests [default %def
.. ..@ help
 ....@ metavar : chr(0)
$ :Formal class 'OptionParserOption' [package "optparse"] with 8 slots
 .. ..@ short_flag: chr NA
 .. ..@ long_flag : chr "--PQvalueCutOff"
 ....@ action : chr "store"
....@ type : chr "double"
.. ..@ dest
                : chr "PQvalueCutOff"
 .. ..@ default : num 0.01
....@ help : chr "PDF-REPORT: --PQ Qvalue cut-off used for graphics. \n\t\tHigh-lighting f
 ....@ metavar : chr "Differential expression qvalue cutOff"
\ :Formal class 'OptionParserOption' [package "optparse"] with 8 slots
 .. ..@ short_flag: chr NA
 ....@ long_flag : chr "--ARDataFile"
 ....@ action : chr "store_true"
....@ type : chr "logical"
....@ dest : chr "ARDataFile"
.. ..@ default : logi FALSE
....@ help : chr "ADDITIONAL-REPORTS: --AR Save R objects in 'label'.RData file [default %de
```

42 pairsAnnot

```
....@ metavar : chr(0)
$ :Formal class 'OptionParserOption' [package "optparse"] with 8 slots
.. ..@ short_flag: chr NA
 .. ..@ long_flag : chr "--AIbaq"
 .. ..@ action : chr "store_true"
 ....@ type : chr "logical" ....@ dest : chr "Albag"
                : chr "AIbaq"
 .. ..@ dest
 .. ..@ default : logi FALSE
....@ help : chr "ADDITIONAL-REPORTS (LFQ PROT): --AI creates .tsv output file\n\t\t\t\t\t\
....@ metavar : chr(0)
$ :Formal class 'OptionParserOption' [package "optparse"] with 8 slots
 .. ..@ short_flag: chr NA
 .. ..@ long_flag : chr "--ATop3"
 ....@ action : chr "store_true"
                : chr "logical"
 .. ..@ type
             : chr "ATop3"
 .. ..@ dest
 .. ..@ default : logi FALSE
.. ..@ help
             : chr "ADDITIONAL-REPORTS (LFQ PEP): --AT creates .tsv output file\n\t\t\t\tinc
....@ metavar : chr(0)
$ :Formal class 'OptionParserOption' [package "optparse"] with 8 slots
 .. ..@ short_flag: chr "-t"
 .. ..@ long_flag : chr "--test"
 ....@ action : chr "store_true"
                 : chr "logical"
 .. ..@ type
 .. ..@ dest
                : chr "test"
 ....@ default : logi FALSE
             : chr "TEST: test option, include first 2000 entries only [default %default]\n\t\
.. ..@ help
 ....@ metavar : chr(0)
$ :Formal class 'OptionParserOption' [package "optparse"] with 8 slots
 .. ..@ short_flag: chr "-v"
 .. ..@ long_flag : chr "--verbose"
 .. ..@ action : chr "store_true"
.. ..@ type
.. ..@ dest
                 : chr "logical"
                : chr "verbose"
 ....@ default : logi FALSE
 .. ..@ help
             : chr "Print extra output [default %default]"
 ....@ metavar : chr(0)
```

Plot lower triangle Pearsons R^2. Diagonal text, upper triangle all

Description

pairsAnnot

Plot lower triangle Pearsons R^2. Diagonal text, upper triangle all against all scatter plots with lm abline

Usage

```
pairsAnnot(data, textCol = rep(1, ncol(data)), diagText = colnames(data),
  col = rgb(0, 100, 0, 50, maxColorValue = 255), isHeatCol = F,
  cexTxt = 2, ...)
```

against all scatter plots with lm abline

Arguments

data data.frame
textCol text color
diagText diagnoal text
col dot col
isHeatCol heat colors
cexTxt cex txt
... see plot

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

```
\verb"parseMaxQuantProteinGroupTxt"
```

Parse MaxQuant Protein Group Txt

Description

Parse MaxQuant Protein Group Txt

Usage

```
parseMaxQuantProteinGroupTxt(file = file, expDesign = expDesign,
  method = "auc")
```

Arguments

file path to MaxQuant Protein txt file expDesign experimental design data.frame

method auc (area under curve) or spc (spectral count)

Details

No details

Value

ExpressionSet object

Note

No note

References

NA

See Also

ExpressionSet

Examples

```
print("No examples")
```

parseProgenesisFeatureCsv

Parse Progenesis Feature Csv Export

Description

Parse Progenesis Feature Csv Export

Usage

```
parseProgenesisFeatureCsv(file = file,
  expDesign = getExpDesignProgenesisCsv(file), method = "auc")
```

Arguments

file path to Progenesis Feature csv file expDesign experimental design data.frame

method auc (area under curve) or spc (spectral count)

Details

No details

Value

ExpressionSet object

Note

No note

References

NA

See Also

ExpressionSet

Examples

```
print("No examples")
```

parseProgenesisPeptideMeasurementCsv

Parse Progenesis Peptide Measurement Csv Export

Description

Parse Progenesis Peptide Measurement Csv Export

Usage

```
parseProgenesisPeptideMeasurementCsv(file, expDesign = expDesign,
  method = "auc",
  expressionColIndices = .getProgenesisCsvExpressionColIndices(file, method =
  method), uniqueProteins = F)
```

Arguments

file path to Progenesis Peptide Measurement csv file

expDesign experimental design data.frame

method auc (area under curve) or spc (spectral count)

expressionColIndices

default .getProgenesisCsvExpressionColIndices()

uniqueProteins T/F keep unique peptides only

Details

No details

Value

ExpressionSet object

Note

No note

References

NA

See Also

ExpressionSet

Examples

```
print("No examples")
```

 ${\tt parseProgenesisProteinCsv}$

Parse Progenesis Protein Csv

Description

Parse Progenesis Protein Csv

Usage

```
parseProgenesisProteinCsv(file = file, expDesign = expDesign,
  method = "auc")
```

Arguments

file path to Progenesis Protein csv file expDesign experimental design data.frame

method auc (area under curve) or spc (spectral count)

Details

No details

Value

ExpressionSet object

Note

No note

References

NA

See Also

ExpressionSet

```
print("No examples")
```

```
{\tt parseScaffoldPTMReport}
```

Parse scaffold PTM Spectrum Report

Description

Parse scaffold PTM Spectrum Report

Usage

```
parseScaffoldPTMReport(file)
```

Arguments

file

path to Scaffold file

Details

No details

Value

data.frame

Note

No note

References

NA

Examples

```
print("No examples")
```

parseScaffoldRawFile Parse scaffold output .xls file (RAW export)

Description

Parse scaffold output .xls file (RAW export)

Usage

```
parseScaffoldRawFile(file, expDesign = expDesign, keepFirstAcOnly = FALSE,
  isPurityCorrect = T)
```

Arguments

file path to Scaffold file

expDesign experimental design data.frame

keepFirstAcOnly

TRUE/FALSE If multiple ACs in Accession. Numbers filed. Then keep the first

one only

isPurityCorrect

do purity correction

Details

No details

Value

ExpressionSet object

Note

No note

References

NA

See Also

ExpressionSet

Examples

```
print("No examples")
```

perFeatureNormalization

Per Feature Normalization

Description

Per Feature Normalization

Usage

```
perFeatureNormalization(eset, normFactors)
```

Arguments

eset ExpressionSet

normFactors matrix normalization factors (logged) (row names are proteins)

Details

Example Usage: Normalize phospho peptide signals for Protein Changes

Value

ExpressionSet object

Note

No note

References

No references

Examples

```
print("No examples")
```

```
plotAbsEstCalibrationCurve
```

Plot absolut Estimation calibration Curve

Description

Plot absolut Estimation calibration Curve

Usage

```
plotAbsEstCalibrationCurve(fit, dispElements = c("formula", "lowess",
   "stats"), xlab = "Conc. (CPC) ", ylab = "Pred. Conc. (CPC) ",
   predictorName = paste("log10(", names(coef(fit))[2], ")", sep = ""),
   text = F, cex.lab = 1, cex.axis = 1, cex.text = 1, cex.dot = 1,
   main = "", ...)
```

Arguments fit

```
c("formula", "lowess", "stats")
dispElements
xlab
                  xlab
ylab
                  ylab
predictorName
                  predictorName
text
                  add names beside each dot
                  expansion factor for axis labels
cex.lab
                  expansion factor for axis
cex.axis
                  expansion factor for legend
cex.text
cex.dot
                  expansion factor for plotted dots
main
                  main
                  see plot
. . .
```

simple log-linear model

50 plotExpDesign

Note

No note

References

NA

Examples

```
print("No examples")
```

plotExpDesign

Display experimental design, high-lighting the control condition

Description

Display experimental design, high-lighting the control condition

Usage

```
plotExpDesign(eset, condColors = .getConditionColors(eset), version = "X")
```

Arguments

eset ExpressionSet condColors condition colors version version number

Details

No details

Note

No note

References

NA

```
print("No examples")
```

plotIdScoreVsFDR 51

plotIdScoreVsFDR Plot FDR vs. identification score

Description

Plot FDR vs. identification score

Usage

```
plotIdScoreVsFDR(idScore, qvals, qvalueThrs = 0.01,
  ylab = "False Discovery Rate", xlab = "Identification Score", ...)
```

Arguments

idScore vector of identification scores

qvals vector of q-valres

qvalueThrs threshold indicated by horizontal line

ylab default False Discovery Rate xlab default Identification Score

... see plot

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

 ${\tt plotMSSignalDistributions}$

Plot ms.signal distributions

Description

Plot ms.signal distributions

Usage

```
plotMSSignalDistributions(d, col = 1:100, ylab = "Frequnecy",
    xlab = "MS-Signal", ...)
```

Arguments

d	matrix of ms-signals
col	color
ylab	default "Frequnecy"
xlab	default "MS-Signal"
	see plot

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

plotNbIdentificationsVsRT

Plot the number of identified Features per Reteintion Time minute.

Description

Plot the number of identified Features per Reteintion Time minute.

Usage

```
plotNbIdentificationsVsRT(eset, cex.axis = 1.25, cex.lab = 1.25,
  col = "blue", lwd = 2, ...)
```

Arguments

eset	ExpressionSet
cex.axis	default 1.25
cex.lab	default 1.25
col	default "blue"
lwd	default 2

... see plot see plot

Note

No note

References

NA

Examples

```
print("No examples")
```

plotNbValidDeFeaturesPerFDR

Plot Total Number of diffrentially Abundant Features (applying ratio cutoff) vs. qValue/pValue for all conditions

Description

Plot Total Number of diffrentially Abundant Features (applying ratio cutoff) vs. qValue/pValue for all conditions

Usage

```
plotNbValidDeFeaturesPerFDR(sqa, upRegulated = T, log2RatioCufOff = log2(1), pvalRange = c(0, 0.3), pvalCutOff = 1, isLegend = T, isAdjusted = T, ylab = "Nb. Features", ...)
```

Arguments

sqa SafeQuantAnalysis Object

upRegulated TRUE/FALSE select for upregulated features

log2RatioCufOff

log2 ratio cut-off

pvalRange pValue/qValue range
pvalCutOff pValue/qValue cut-off

isLegend TRUE/FALSE display legend

isAdjusted TRUE/FALSE qValues/pValue on x-axis

ylab default Nb. Features

... see plot

Details

No details

Note

No note

References

NA

```
print("No examples")
```

```
plotPrecMassErrorDistrib
```

Plot Precursor Mass Error Distribution

Description

Plot Precursor Mass Error Distribution

Usage

```
plotPrecMassErrorDistrib(eset, pMassTolWindow = c(-10, 10), ...)
```

Arguments

```
eset ExpressionSet

pMassTolWindow Precursor Mass Error Tolerance Window

see plot
```

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

plotPrecMassErrorVsScore

Plot precursorMass error v.s score highlighting decoy and displaying user specified user specified precursor mass filter

Description

Plot precursorMass error v.s score highlighting decoy and displaying user specified user specified precursor mass filter

Usage

```
plotPrecMassErrorVsScore(eset, pMassTolWindow = c(-10, 10), ...)
```

plotQValueVsPValue 55

Arguments

eset ExpressionSet

pMassTolWindow Precursor Mass Error Tolerance Window

... see plot

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

plotQValueVsPValue

Plot qValue vs pValue

Description

Plot qValue vs pValue

Usage

```
plotQValueVsPValue(sqa, lim = c(0, 1), ...)
```

Arguments

sqa SafeQuantAnalysis Object 1im x-axis and y-axis range

... see plot

Details

No details

Note

No note

References

NA

```
print("No examples")
```

56 plotROC

_			
pl	~ t	·Dr	\sim
DT	υı	.πu	л.

Plot Number of Identifications vs. FDR

Description

Plot Number of Identifications vs. FDR

Usage

```
plotROC(qvals, qvalueThrs = 0.01, xlab = "False Discovery Rate",
  ylab = "Nb. Valid Identifications", xlim = c(0, 0.1), breaks = 100,
  col = "blue", lwd = 1.5, ...)
```

Arguments

qvals	vector of q-values
qvalueThrs	threshold indicated by vertical line
xlab	default "False Discovery Rate"
ylab	default "Nb. Valid Identifications"
xlim	default $c(0,0.1)$
breaks	see breaks for hist function
col	default blue
lwd	default 1.5

see plot

Details

. . .

No details

Note

No note

References

NA

```
print("No examples")
```

plotRTNorm 57

_			
nΙ	\cap tR	TNorm	

Plot all retention time profile overalying ratios

Description

Plot all retention time profile overalying ratios

Usage

```
plotRTNorm(rtNormFactors, eset, samples = 1:ncol(rtNormFactors), main = "",
...)
```

Arguments

rtNormFactors data.frame of normalization factor per r.t bin and sample, obtained by getRT-

NormFactors

eset ExprsssionSet

samples specify samples (sample numbers) to be plotted

main main

... see plot see plot

Details

No details

Note

No note

References

In Silico Instrumental Response Correction Improves Precision of Label-free Proteomics and Accuracy of Proteomics-based Predictive Models, Lyutvinskiy et al. (2013), http://www.ncbi.nlm.nih.gov/pubmed/23589346

See Also

```
getRTNormFactors
```

```
print("No examples")
```

plotRTNormSummary

Plot all retention time normalization profiles

Description

Plot all retention time normalization profiles

Usage

```
plotRTNormSummary(eset,
  col = as.character(.getConditionColors(eset)[pData(eset)$condition, 1]),
  ...)
```

Arguments

eset ExpressionSet
col condition colors
... see plot

Details

No details

Note

No note

References

In Silico Instrumental Response Correction Improves Precision of Label-free Proteomics and Accuracy of Proteomics-based Predictive Models, Lyutvinskiy et al. (2013), http://www.ncbi.nlm.nih.gov/pubmed/23589346

See Also

```
getRTNormFactors
```

```
print("No examples")
```

plotScoreDistrib 59

plotScoreDistrib	Plot identifications target decoy distribution
p=00000. 00=00. =0	1 tot tacinifications tanger accept ansi-totinion

Description

Plot identifications target decoy distribution

Usage

```
plotScoreDistrib(targetScores, decoyScores, xlab = "Identification Score",
  ylab = "Counts", ...)
```

Arguments

```
targetScores target Scores decoyScores decoy Scores
```

xlab default "Identification Score"

ylab default "Counts"

... see plot

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

plotVolcano Plots volcano, data points colored by max cv of the 2 compared con-

ditions

Description

Plots volcano, data points colored by max cv of the 2 compared conditions

Usage

```
plotVolcano(obj, ratioThrs = 1, pValueThreshold = 0.01, adjusted = T, ...)
```

60 plotXYDensity

Arguments

obj safeQuantAnalysis object or data.frame

 $\begin{array}{ll} {\sf ratioThrs} & {\sf default} \ 1 \\ {\sf pValueThreshold} \end{array}$

default 0.01

adjusted TRUE/FALSE plot qValues or pValues on y-axis

... see plot

Details

data.frame input object should contain 3 columns (ratio,qValue,cv)

Note

No note

References

NA

Examples

```
print("No examples")
```

 ${\tt plotXYDensity}$

Scatter plot with density coloring

Description

Scatter plot with density coloring

Usage

```
plotXYDensity(x, y, isFitLm = T, legendPos = "bottomright",
  disp = c("abline", "R", "Rc"), ...)
```

Arguments

x number vector
y number vector
isFitLm fit linear model
legendPos see legend

disp c("abline","R","Rc") display options

... see plot

Note

No note

purityCorrectTMT 61

References

NA

Examples

```
print("No examples")
```

purityCorrectTMT

Correct channel intensities based on Reporter ion Isotopic Distribu-

Description

Correct channel intensities based on Reporter ion Isotopic Distributions

Usage

```
purityCorrectTMT(tmtData, impurityMatrix = impurityMatrix)
```

Arguments

```
tmtData data.frame containing tmt channel intensities impurityMatrix correction matrix
```

Details

Same method as MSnbase, and described in Breitwieser et al. 2012 (Book Chapter)

Value

data.frame of corrected tmt intensities

Note

No note

References

NA

```
print("No examples")
```

62 rollUp

removeOutliers

Set value to NA if it deviatves with more than 1.5 * IQR from lower/upper quantile

Description

Set value to NA if it deviatves with more than 1.5 * IQR from lower/upper quantile

Usage

```
removeOutliers(x, na.rm = TRUE, ...)
```

Arguments

x vector numeric

na.rm logical indicating whether missing values should be removed.

... qunatile args

Details

No details

Note

No note

References

NA

See Also

NA

Examples

```
print("No examples")
```

rollUp

Roll up feature intensites per unique colum combination

Description

Roll up feature intensites per unique colum combination

Usage

```
rollUp(eset, method = "sum", featureDataColumnName = c("proteinName"))
```

rtNormalize 63

Arguments

eset ExpressionSet

method "sum", "mean" or "top3"

 $feature {\tt Data} {\tt ColumnName}$

vector of column names e.g. peptide or proteinName

Details

 $feature Data Column Name = c("peptide", "charge", "ptm"), \ method = c("sum"), \ sums \ up \ intensities per peptie modification charge state$

Value

ExpressionSet object

Note

No note

References

No references

Examples

```
print("No examples")
```

rtNormalize

Normalization data per retention time bin

Description

Normalization data per retention time bin

Usage

```
rtNormalize(eset, rtNormFactors)
```

Arguments

eset ExpressionSet

 $\verb"rtNormFactors" obtained using getRTNormFactors"$

Details

Normalize for variations in elelctrospray ionization current.

Value

data.frame normalization factors per retention time bin (minute)

64 safeQuantAnalysis

Note

No note

References

In Silico Instrumental Response Correction Improves Precision of Label-free Proteomics and Accuracy of Proteomics-based Predictive Models, Lyutvinskiy et al. (2013), http://www.ncbi.nlm.nih.gov/pubmed/23589346

See Also

```
getRTNormFactors
```

Examples

```
print("No examples")
```

 ${\tt safeQuantAnalysis}$

safeQunat s3 class

Description

```
safeQunat s3 class
```

Usage

```
safeQuantAnalysis(eset = eset, method = c("global", "naRep", "pairwise"),
  ratioCorrectionModel = NA, fcThrs = 1)
```

Arguments

```
eset ExpressionSet
```

method c("global","naRep","rt","quantile","pairwise","all)

 ${\tt ratioCorrectionModel}$

lm (linear model object)

fcThrs fold change threshold

 ${\tt setNbPeptidesPerProtein}$

Set nbPeptides coulmn of featureData

Description

Set nbPeptides coulmn of featureData

Usage

```
setNbPeptidesPerProtein(eset)
```

Arguments

eset

ExpressionSet

Details

NA

Value

eset

Note

No note

References

NA

Examples

```
print("No examples")
```

setNbSpectraPerProtein

Set nbPeptides coulmn of featureData

Description

Set nbPeptides coulmn of featureData

Usage

```
setNbSpectraPerProtein(eset)
```

Arguments

eset

ExpressionSet

66 sqNormalize

Details

NA

Value

eset

Note

No note

References

NA

Examples

```
print("No examples")
```

sqNormalize

Normalize

Description

Normalize

Usage

```
sqNormalize(eset, method = "global")
```

Arguments

eset

ExpressionSet

 ${\tt method}$

c("global","rt","quantile")

Details

No details

Value

eset ExpressionSet

Note

No note

References

NA

standardise 67

See Also

getGlobalNormFactors, getRTNormFactors

Examples

```
print("No examples")
```

standardise

Standardise data

Description

Standardise data

Usage

standardise(d)

Arguments

d

vector or data.frame or matrix

Details

No details

Value

vector or data.frame or matrix

Note

No note

```
print("No examples")
```

68 stripACs

stripACs

strip uniprot format e.g. "sp\Q8CHJ2\AQP12_MOUSE" -> Q8CHJ2

Description

```
strip uniprot format e.g. "splQ8CHJ2lAQP12_MOUSE" -> Q8CHJ2
```

Usage

stripACs(acs)

Arguments

acs

accession numbers

Details

TRUE if less than 10

Value

vector character

Note

No note

References

NA

Examples

print("No examples")

Index

*Topic datasets	${\tt getNbPeptidesPerProtein}, 25$
COLORS, 6	getNbSpectraPerProtein, 26
option_list, 37	getPeptides, 26
*Topic normalization	<pre>getRatioCorrectionFactorModel, 27</pre>
${\tt getGlobalNormFactors}, 16$	getRatios, 28
getLoocvFoldError, 20	getRTNormFactors, 29, 57, 58, 64
globalNormalize, 33	getScoreCutOff, 30
removeOutliers, 62	${\tt getSignalPerCondition}, 30$
sqNormalize, 66	getTopX, 31
1.17.10 1 0	getUserOptions, 32
addIdQvalues, 3	globalNormalize, 33
${\it addScaffoldPTMFAnnotations}, 4$	
hammlatMCC: mmal 4	hClustHeatMap, 34
barplotMSSignal,4	1.0.m. 25
calibrationCurve, 5	isCon, 35
COLORS, 6	isDecoy, 35
createExpDesign, 6	isStrippedACs, 36
createExpressionDataset, 7	missinValueBarplot, 37
createPairedExpDesign, 8	iii1331iiva1debai p10t, 37
cvBoxplot, 9	option_list, 37
CVBOXPIOL, 9	
eBayes, <i>13</i>	pairsAnnot, 42
${\tt expDesignTagToExpDesign}, 10$	parseMaxQuantProteinGroupTxt, 43
export, 11	parseProgenesisFeatureCsv,44
ExpressionSet, 7, 8, 44-46, 48	<pre>parseProgenesisPeptideMeasurementCsv,</pre>
getAAProteinCoordinates, 11	parseProgenesisProteinCsv,46
getAllCV, 12	parseScaffoldPTMReport, 47
getAllEBayes, 13	parseScaffoldRawFile,47
<pre>getBaselineIntensity, 14</pre>	perFeatureNormalization, 48
getCV, 13, 14	<pre>plotAbsEstCalibrationCurve, 49</pre>
getExpDesignProgenesisCsv, 15	plotExpDesign, 50
getGlobalNormFactors, 16	plotIdScoreVsFDR, 51
getIBAQEset, 17	plotMSSignalDistributions, 51
getIdLevelQvals, 3, 18	plotNbIdentificationsVsRT, 52
getImpuritiesMatrix, 18	plotNbValidDeFeaturesPerFDR, 53
getIntSumPerProtein, 19	plotPrecMassErrorDistrib, 54
getLoocvFoldError, 20	plotPrecMassErrorVsScore, 54
<pre>getMaxIndex, 21</pre>	plotQValueVsPValue, 55
getMeanCenteredRange, 21	plotROC, 56
getModifProteinCoordinates, 22	plotRTNorm, 57
getMotifX, 23	plotRTNormSummary, 58
getNbDetectablePeptides, 24	plotScoreDistrib, 59
<pre>getNbMisCleavages, 24</pre>	plotVolcano, 59

70 INDEX

```
plotXYDensity, 60
purityCorrectTMT, 61
removeOutliers, 62
rollUp, 62
rtNormalize, 63
safeQuantAnalysis, 11, 64
setNbPeptidesPerProtein, 65
setNbSpectraPerProtein, 65
sqNormalize, 66
standardise, 67
stripACs, 68
```