19 BUNDESREPUBLIK

DEUTSCHLAND

® Offenlegungsschrift

₀ DE 3129329 A1

H01J61/34

H 01 J 61/22 H 01 J 61/82

DEUTSCHES PATENTAMT

Aktenzeichen:

2 Annieldetag:

Offenlegungstag:

P 31 29 329.

24. 7.81

10. 2.83

Anmelder:

Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München, DE

? Frfinder

Dobrusskin, Alexander, Dipl.-Ing., 8028 Taufkirchen, DE; Marsen, Georg, Dr., Dipl.-Chem., 8012 Ottobrunn, DE

Matriumdampf-Hochdruckentiadungslampe

Das Entladungsgefäß (1), bestehend aus gegen Natrium beständigem Material, wie Al₂O₃, weist als Umhüllung zwei Kolben oder einen Doppelkolben (4, 5) auf. Es wird ein erhöhter Nätriumdampfdruck erreicht, wodurch der Farbwiedergabeindex R₃ der Lampe auf über 50 angehoben wird. Bei rohrförmig ausgebildetem Entladungsgefäß (1) ist dieses von den beiden, jeweils beidseitig verschlossenen Hüllkolben (4, 5) konzentrisch umgeben. In einer anderen Ausführungsform ist das glockenförmige, einseitig verschlossene Entladungsgefäß – mit an diesem Ende angeordneten Elektroden – von zwei ebenfalls einseitig verschlossenen Hüllkolben umgeben. Der innere Hüllkolben (4) kann aus Quarzglas oder aus gegen Natrium resistentem Material, wie Aluminium- oder Yttnium-oxid, und der äußere Hüllkolben (5) aus Quarzglas oder Hartglas bestehen. Je nach Gefäßmaterial des inneren Hüllkolbens (4) enthätt der Raum zwischen diesem und dem Entladungsgefäß (1) als Füllung Stickstoff oder eine Mischung aus Stickstoff und Edelgasen oder nur Edelgase (bei Quarzglas) bzw. Natrium und Stickstoff oder Natrium und Edelgas oder Natrium, Stickstoff und Edelgas (bei gegen Natrium Fasistentem Material). Der Raum zwischen innerem (4) und äußerem (5) Hüllkolben ist vorzugsweise evakuiert.

(31 29 329)

- 11-

Patentansprüche

- 1. Natriumdampf-Hochdruckentladungslampe, die ein aus gegen Natrium beständigem Material wie Al₂O₃ bestehendes, mit Elektroden versehenes Entladungsgefäß und eine um das Entladungsgefäß angeordnete Umhüllung aufweist, dadurch gekennzeichnet, daß die Umhüllung aus zwei Kolben oder einem Doppelkolben besteht.
- 2. Natriumdampf-Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß das Entladungsgefäß rohrförmig mit an beiden Enden angeordneten Elektroden ausgebildet und konzentrisch in geringem Abstand von zwei beidseitig verschlossenen Hüllkolben bzw. einem beidseitig verschlossenen Doppelkolben umgeben ist.
- Natriumdampf-Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß das Entladungsgefäß einseitig verschlossen mit an diesem Ende angeordneten Elektroden ausgebildet und in geringem Abstand von zwei ebenfalls einseitig verschlossenen Hüllkolben bzw. von einem einseitig verschlossenen Doppelkolben umgeben ist.
- 4. Natriumdampf-Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß der dem Entladungsgefäß nahe liegende Hüllkolben dieses eng, in einer dem Entladungsgefäß angepaßten Form umgibt und der äußere Hüllkolben als Reflektorkolben,
 Ellipsoidkolben oder einseitig gesockelter Röhrenkolben ausgebildet ist.

- Natriumdampf-Hochdruckentladungslampe nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß beide Hüllkolben aus Quarzglas bestehen.
- 5 6. Natriumdampf-Hochdruckentladungslampe nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß der dem Entladungsgefäß nahe Hüllkolben aus gegen Natrium resistentem Material wie polykristallinem Aluminiumoxid oder Yttriumoxid besteht.

7. Natriumdampf-Hochdruckentladungslampe nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß der dem Entladungsgefäß nahe Hüllkolben mit einer infrarotreflektierenden Schicht versehen ist.

10

30

- 8. Natriumdampf-Hochdruckentladungslampe nach Anspruch 1 bis 4, 6 und 7, dadurch gekennzeichnet, daß der äußere Hüllkolben aus Hartglas besteht.
- 9. Natriumdampf-Hochdruckentladungslampe nach Anspruch 1 bis 8, dadurch gekennzeichnet, daß das Entladungsgefäß als Füllung Natrium, Edelgas, z.B. Xenon, und Quecksilber enthält.
- 25 10. Natriumdampf-Hochdruckentladungslampe nach Anspruch 5 und 7 bis 9, dadurch gekennzeichnet, daß der Raum zwischen Entladungsgefäß und innerem Hüllkolben als Füllung Stickstoff oder eine Mischung aus Stickstoff und Edelgasen oder Edelgase enthält.
- 11. Natriumdampf-Hochdruckentladungslampe nach Anspruch 6, 8 und 9, dadurch gekennzeichnet, daß der Raum zwischen Entladungsgefäß und innerem Hüllkolben als Füllung Natrium und Stickstoff oder Natrium und Edelgas oder Natrium, Stickstoff und Edelgas enthält.

- 3 -

12. Natriumdampf-Hochdruckentladungslampe nach Anspruch 1 bis 11, dadurch gekennzeichnet, daß der Raum zwischen innerem und äußerem Hüllkolben evakuiert ist.

5

13. Natriumdampf-Hochdruckentladungslampe nach Anspruch 12, dadurch gekennzeichnet, daß der Raum zwischen innerem und äußerem Hüllkolben ein Getter enthält.

10

14. Natriumdampf-Hochdruckentladungslampe nach Anspruch 1 bis 13, dadurch gekennzeichnet, daß der äußere Hüllkolben eine infrarotreflektierende Schicht aufweist.

15

15. Natriumdampf-Hochdruckentladungslampe nach Anspruch 1 bis 5 und 7 bis 14, dadurch gekennzeichnet, daß außen auf den Enden des inneren Hüllkolbens eine wärmereflektierende Schicht, z.B. ZrO2, aufgebracht ist.

20

- 4 -

Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH., München

Natriumdampf-Hochdruckentladungslampe *)

Die Erfindung betrifft eine Natriumdampf-Hochdruckentladungslampe, die ein aus gegen Natrium beständigem Material wie Al₂O₃ bestehendes, mit Elektroden versehenes Entladungsgefäß und eine um das Entladungsgefäß angeordnete Umhüllung aufweist.

Natriumdampf-Hochdrucklampen sind aus vielen Veröffentlichungen bekannt (US-PS 3 248 590; DE-PS 1 957 978). Üblicherweise weisen die Natriumdampf-Hochdrucklampen 10 cinen Farbwiedergabeindex R von 20, eine Lichtausbeute bis 120 lm/W und eine Farbtemperatur von ungefähr 2100 K auf (IEE Proceedings-A, Vol. 127, Nr. 3 (1980), S. 162, Z. 8 und 9). Bekannt sind auch Versuche, durch Erhöhen des Natriumdampfdruckes mittels höherer Umge-15 bungstemperatur und größerer elektrischer Belastung einen Farbwiedergabeindex R_a von 85 zu erreichen (Kühl, Paper No 3, Conf. Assoc. of Public Lighting Engineers, Scarborough (1973), S. 2 und 3); die Lichtausbeute beträgt dabei 92 lm/W, die Farbtemperatur 2400 K. Doch ist die Herstellung einer solchen Lampe für den praktischen Gebrauch bisher noch nicht möglich, weil die Widerstandsfähigkeit des Gefäßmaterials (meist ${
m Al}_2{
m O}_3$) bei erhöhter thermischer Wandbelastung und dadurch die Lebensdauer der Lampe abnimmt (IEE. 25 Proceedings-A, Vol. 127, Nr. 3 (1980), S. 167, 3.4). Es ist auch bekannt, den Farbwiedergabeindex durch Erwärmung der Enden des Entladungsgefäßes mittels Wärmereflektoren in Form von Metallkappen zu erhöhen (DE-OS 29 28 067).

^{*)} H O1 J 61/22

- 5 -

Der Erfindung liegt die Aufgabe zugrunde, eine Lampe zu schaffen, bei der der Natriumdampfdruck erhöht und somit der Farbwiedergabeindex sowie die Farbtemperatur angehoben werden.

5

Die Natriumdampf-Hochdruckentladungslampe, die ein aus gegen Natrium beständigem Material wie Al₂0, bestehendes, mit Elektroden versehenes Entladungsgefäß und eine um das Entladungsgefäß angeordnete Umhüllung aufweist, ist dadurch gekennzeichnet, daß die Umhüllung aus zwei Kolben oder einem Doppelkolben besteht. Dabei kann das Entladungsgefäß rohrförmig mit an beiden Enden angeordneten Elektroden ausgebildet und konzentrisch in geringem Abstand von zwei beidseitig verschlossenen Hüllkolben bzw. einem beidseitig verschlossenen Doppelkolben umgeben sein oder das Entladungsgefäß einseitig verschlossen mit an diesem Ende angeordneten Elektroden ausgebildet und in geringem Abstand von zwei ebenfalls einseitig verschlossenen Hüllkolben bzw. von einem einseitig verschlossenen Doppelkolben umgeben sein. Für bestimmte Anwendungszwecke kann die Lampe auch derartig konstruiert sein, daß das Entladungsgefäß von einem inneren, der Form des Entladungsgefäßes angepaßtem Hüllkolben eng umgeben ist und der äußere Hüllkolben als Reflektorkolben, Ellipsoidkolben oder einseitig gesokkelter Röhrenkolben ausgebildet ist. Bei Verwendung eines Doppelkolbens als Umhüllung werden vorzugsweise beide Hüllkolben aus Quarzglas bestehen, wobei der dem Entladungsgefäß nahe Hüllkolben mit einer infrarot-30 reflektierenden Schicht oder/und mit außen auf seinen Enden aufgebrachter wärmereflektierender Schicht, z.B. ZrO2, versehen sein kann. Es ist aber auch möglich, den äußeren Hüllkolben aus Hartglas herzustellen. Auch beim äußeren Hüllkolben kann unabhängig vom Material vorzugs-35 weise eine infrarotreflektierende Schicht aufgebracht

sein. In einigen Fällen ist es zweckmäßig, den dem Entladungsgefäß nahen Hüllkolben aus Natrium resistentem Material wie polykristallinem Aluminiumoxid oder Yttriumoxid auszuführen. Während bei allen Ausführungen im Entladungsgefäß als Füllung Natrium, Edelgas, z.B. Xenon, und Quecksilber enthalten ist, wird für den Raum zwischen dem Entladungesgefäß und innerem Hüllkolben, wenn dieser aus Quarzglas besteht, als Füllung Stickstoff . oder eine Mischung aus Stickstoff und Edelgasen oder 10 auch Edelgase allein bevorzugt. Wenn der innere Hüllkolben aus gegen Natrium widerstandsfähigem Material, z.B. Al₂O₃, besteht, wird dieser Zwischenraum mit Natrium und Stickstoff oder Natrium und Edelgas oder Natrium, Stickstoff und Edelgas gefüllt. Es hat sich nämlich ergeben, daß die bei höherer Temperatur - wie sie zur Er-15 höhung des Natriumdampfdruckes zwecks besserer Farbwiedergabe erforderlich ist - auftretende Diffusion des Natriums aus dem Entladungsgefäß verhindert wird, indem man erfindungsgemäß Natrium in den inneren Hüllkolben 20 in einer solchen Menge einbringt, daß sich beim Lampenbetrieb innerhalb und außerhalb des Entladungsgefäßes ein Gleichgewicht des Natriumdampfdruckes einstellt. Durch das Einfüllen eines inerten Gases mit möglichst hohem Druck, z.B. von Stickstoff oder von Edelgas, vorzugsweise hohen Atomgewichts, in den inneren Hüllkolben wird die Verdampfung des Entladungsgefäßmaterials herabgesetzt.

Außerdem bildet sich durch die Gasfüllung im inneren 30 lüllkolben ein Konvektionsstrom aus, der so groß ist, daß die heißen Teile des Entladungsgefäßes abgekühlt und die kühleren Teile merkbar aufgeheizt werden. So wird durch die erfindungsgemäße Ausgestaltung der Lampe die Temperatur an der heißesten Stelle in der Mitte des 35 Entladungsgefäßes gesenkt (um mindestens 30 °C) und

- 7 -

die Enden des Entladungsgefäßes aufgeheizt (um ctwa 100 °C). Durch die heißeren Enden des Entladungsgefäßes wird der Dampfdruck der Füllung im Entladungsgefäß (Natriumamalgam) so weit erhöht, daß der Farbwiedergabeindex R_a von üblicherweise 20 auf über 50 angehoben wird.

Der Raum zwischen innerem und äußerem Hüllkolben ist vorzugsweise evakuiert, wobei noch ein Getter vorhanden 10 sein kann. Ein Getter im äußeren Raum dient zur Absorption von Wasserstoff und Verunreinigungen und ermöglicht die Erhaltung eines guten Vakuums bzw. eines geringen Restgasdruckes.

- 15 In den Figuren 1 bis 5 sind Ausführungsbeispiele der Lampe gemäß der Erfindung schematisch wiedergegeben und werden die Zusammenhänge an Hand von Kurven näher erläutert.
- 20 Figur 1 zeigt eine rohrförmige Lampe mit an beiden Enden angeordneten Elektroden und einer Umhüllung aus einem Doppelkolben;
- Figur 2 zeigt eine rohrförmige Lampe mit an beiden Enden 25 angeordneten Elektroden und einer Umhüllung aus zwei Kolben;
 - Figur 3 zeigt eine Lampe mit an einem Ende angeordneten Elektroden und einer Umhüllung aus zwei Kolben.

30

35

In Figur 4 ist für eine 250-W-Natriumdampf-Hochdrucklampe die Abhängigkeit der Lichtausbeute in lm/W, des Farbwiedergabeindexes R_a, der Farbtemperatur in K und der Wandbelastung in W/cm² von der Leistungsaufnahme der Lampe in Watt dargestellt.

- 8 -

Figur 5 gibt den Zusammenhang zwischen der Farbtemperatur in K, der Lichtausbeute in lm/W und dem Farbwiedergabeindex R, wieder.

In der Figur 1 ist das Entladungsgefäß 1 aus Al₂O₃-Keramik an seinen Enden mit den Elektroden 2, 3 versehen. Um das Entladungsgefäß 1 befindet sich ein Doppelkolben, der aus einem inneren Kolben 4 aus Quarzglas und einem äußeren Kolben 5 aus Quarz- bzw. Hartglas besteht. Die Kolben 4 und 5 sind an ihren Enden mit je einer Quetschung 6 bzw. 7 verschlossen, durch die die Stromzuführungen 8, 9 vakuumdicht geführt sind. Die Enden des inneren Kolbens 4 sind mit einem wärmereflektierenden Belag 10 aus ZrO₂ versehen. Einige Daten der Lampe sind für eine Leistungsaufnahme von 70 W, 150 W, 250 W und 400 W in der folgenden Tabelle wiedergegeben:

: , ·	Leistung	Elektroden- abstand	Lampen- Gesamtlänge	Entladungs- gefäß-Ø
20	70 W	39 mm	200 mm	5,5 mm
	150 W	58 mm	238 mm	7,0 mm
	250 W	65 mm	245 mm	6,0 mm
	400 W	82 mm	. 267 mm	10,0 mm

25

	Innerer Kolben-Ø	Äußerer Kolben-Ø	Füllung Entladungsgefäß Na Hg Xe	
	. 10 mm	19 mm	10 mg	90 mbar
	13 mm	22 mm .	25 mg	80 mbar
30	14 mm	2.3 mm.	25 mg	50 mbar
•	15 mm	23 mm	25 mg	50 mbar

Dabei enthält das Natriumamalgam 21,6 Gew.-% Natrium.

Der Raum zwischen dem Entladungsgefäß 1 und dem inneren

Kolben 4 ist mit Stickstoff von 960 mbar gefüllt.

- 9 -

Der Raum zwischen dem inneren Kolben 4 und dem äußeren Kolben 5 ist evakuiert auf mindestens 10⁻⁵ mbar. Bei 11 ist ein Getter aus Zirkon oder einer üblichen Zirkonlegierung vorgesehen.

In der Figur 2 besteht das Entladungsgefäß 12 aus Al₂0₃. Als Umhüllung dienen der innerer Kolben 13, ebenfalls aus Al₂0₃, und der äußere Kolben 14 aus Quarz- bzw. Hartglas. Die Kolben 12 und 13 sind an ihrem jeweiligen Ende mit einem Abschlußstück 15, 16 aus Al₂0₃ verschmolzen. Der äußere Kolben 14 ist an seinen Enden mit

einer Quetschung 17, 18 verschlossen. Die Elektroden 2, 3 sind in bekannter Weise angeordnet. Der Raum zwischen dem Entladungsgefäß 12 und dem inneren Kolben 13 ist mit einer im Betriebszustand nicht völlig verdampfenden Menge Natrium, z.B. von 5 - 10 mg, und Stickstoff von 960 mbar gefüllt.

Bei der in Figur 3 dargestellten einsockeligen Lampe

20 sind beide Elektroden 2, 3 von einer Seite eingeführt,
wobei die Stromzuführungen 8, 9 durch die Quetschung 19
des aus Quarz- bzw. Hartglas bestehenden äußeren gebogenen Kolbens 20 vakuumdicht geführt sind. Auch der
innere, aus Al₂O₃ bestehende Kolben 21 ist gebogen und

25 der Form des aus Al₂O₃ bestehenden Entladungsgefäßes 22
angepaßt. Das Entladungsgefäß 22 ist in Form einer
Glocke ausgebildet und an seinem Ende mit dem Abschlußstück 23 aus Al₂O₃-Keramik verschmolzen, mit dem auch
der innere Kolben 21 verschlossen ist. Auch bei dieser

30 Lampe besteht die Füllung zwischen Entladungsgefäß 22
und Kolben 21 aus z.B. 5 - 10 mg Natrium und 960 mbar
Stickstoff und/oder Xenon.

Aus der Figur 4 ergibt sich, daß der Farbwiedergabe-35 index R_a oberhalb einer bestimmten Temperatur (gegeben 1.5

durch die Leistungsaufnahme der Lampe) wieder abnimmt, obwohl die Farbtemperatur weiter ansteigt. Die Wiederabnahme des R bei steigender Farbtemperatur T entsteht durch die mit zunehmendem Natriumdampfdruck immer breiter werdende Lücke der durch Selbstabsorption umgekehrten Na-D-Linie, die schließlich so breit wird, daß das in diesem Bereich um 590 nm fehlende gelbe Licht den allgemeinen Farbwiedergabeindex R wieder senkt. Durch die starke Verbreiterung des kurzwelligen Flügels der umgekehrten Na-D-Linienstrahlung wird die Farbtemperatur erhöht. Der verbreiterte langwellige Flügel dagegen reicht schon ins Infrarot und trägt damit nicht mehr zur Senkung der Farbtemperatur bei, ergibt aber ein im Verhältnis zur Farbtemperatur hohen Anteil gesättigten Rots. 15

Aus der Figur 5 ist zu erkennen, daß gemäß der Erfindung z.B. eine Natriumdampf-Hochdrucklampe zu erhalten ist, die bei 400 W-Leistungsaufnahme und einer Wandbe20 lastung von 22 W/cm² eine Farbtemperatur T_n von etwa 2400 bis 2700 K, einen allgemeinen Farbwiedergabeindex R_a ≥ 85 und eine Lichtausbeute von 60 lm/W aufweist.

Dabei wird eine Lebensdauer erreicht, die mit einigen 1000 Stunden nicht wesentlich niedriger ist als bei den bekannten Natriumdampf-Hochdruckentladungslampen.

Dr.Hz/Mg

3129329

10. Februar 1983 🕠

31 29 329 H 01 J 61/34 24. Juli 1981

FIG. 3

FIG. 4

FIG. 5