«Разделяй и властвуй»: сортировка слиянием

Александр Куликов

Онлайн-курс «Алгоритмы: теория и практика. Методы» http://stepic.org/217

Постановка задачи

Сортировка

```
\mathsf{Bxog}: массив A[1 \dots n].
```

Выход: перестановка $A'[1\dots n]$ элементов массива

 $A[1\ldots n]$, в которой элементы упорядочены по

неубыванию: $A'[1] \leq A'[2] \leq \cdots \leq A'[n]$.

Замечания

- Алгоритм имеет доступ к оракулу сравнения.
 Считаем, что сравнение занимает константное время.
- Если A = A', то алгоритм сортирует на месте.

Сортировка вставками

Процедура INSERTIONSORT(A[1...n])

```
для i от 2 до n: j \leftarrow i пока j > 1 и A[j] < A[j-1]: обменять A[j] и A[j-1] j \leftarrow j-1
```

Корректность и время работы

- Корректность следует из выполнения следующего инварианта: после i итераций внешнего цикла подмассив $A[1 \dots i]$ упорядочен (по неубыванию).
- lacksquare Время работы: $1+2+\cdots+(n-1)=\Theta(n^2)$.
- Массив сортируется на месте.

Сумма арифметической прогрессии

Лемма

$$1+2+\cdots+n=\frac{n(n+1)}{2}$$

Сумма арифметической прогрессии

Лемма

$$1+2+\cdots+n=\frac{n(n+1)}{2}$$

Альтернативное доказательство

Сортировка слиянием

Процедура $\texttt{MERGESORT}(A,\ell,r)$

если
$$\ell < r$$
: $m \leftarrow \lfloor \frac{\ell + r}{2} \rfloor$ MERGE(MERGESORT (A, ℓ, m) , MERGESORT $(A, m + 1, r)$)

Сортировка слиянием

Процедура $MERGESORT(A,\ell,r)$

```
если \ell < r: m \leftarrow \lfloor \frac{\ell+r}{2} \rfloor MERGE(MERGESORT(A, \ell, m), MERGESORT(A, m+1, r))
```

Процедура MERGE

- Сливает два упорядоченных массива в один.
- Работает за линейное время от суммы размеров данных двух массивов: первым элементом результирующего массива будет меньший из первых элементов данных массивов, оставшаяся часть может быть заполнена рекурсивно.

Время работы

Лемма

Время работы алгоритма сортировки слиянием — $O(n \log n)$.

- Рекуррентное соотношение на время работы: T(n) = 2T(n/2) + O(n).
- В дереве рекурсии будет $\log_2 n$ уровней. Суммарный размер задач на каждом уровне n, работа на каждом уровне O(n).

Пример

Итеративная сортировка слиянием

```
Функция ITERATIVEMERGESORT (A[1 \dots n])
Q \leftarrow [] \text{ {пустая очередь} }
для i от 1 до n:
   PUSHBACK (Q, [A[i]])
пока |Q| > 1:
   PUSHBACK (Q, MERGE (POPFRONT (Q), POPFRONT (Q)))
вернуть POPFRONT (Q)
```

Нижняя оценка для сортировки сравнениями

Лемма

Любой корректный алгоритм сортировки, основанный на сравнениях элементов, делает $\Omega(n\log n)$ сравнений в худшем случае на массиве размера n.

Дерево сравнений

lacktriangle число листьев ℓ в дереве $\geq n!$ (число перестановок)

- lacktriangle число листьев ℓ в дереве $\geq n!$ (число перестановок)
- время работы алгоритма (число сделанных сравнений) в худшем случае не меньше глубины дерева d

- lacktriangle число листьев ℓ в дереве $\geq n!$ (число перестановок)
- время работы алгоритма (число сделанных сравнений)
 в худшем случае не меньше глубины дерева d
- $lacksymbol{\bullet} d \geq \log_2 \ell$ (или, что то же самое, $2^d \geq \ell$)

- lacktriangle число листьев ℓ в дереве $\geq n!$ (число перестановок)
- время работы алгоритма (число сделанных сравнений)
 в худшем случае не меньше глубины дерева d
- $lacksquare d \geq \log_2 \ell$ (или, что то же самое, $2^d \geq \ell$)
- таким образом, время работы не меньше

$$\log_2(n!) = \Omega(n \log n)$$

- lacktriangle число листьев ℓ в дереве $\geq n!$ (число перестановок)
- время работы алгоритма (число сделанных сравнений)
 в худшем случае не меньше глубины дерева d
- $lacksquare d \geq \log_2 \ell$ (или, что то же самое, $2^d \geq \ell$)
- таким образом, время работы не меньше

$$\log_2(n!) = \Omega(n \log n)$$

lacksquare формула Стирлинга: $n! \sim \sqrt{2\pi n} \left(rac{n}{e}
ight)^n$

- lacktriangle число листьев ℓ в дереве $\geq n!$ (число перестановок)
- время работы алгоритма (число сделанных сравнений)
 в худшем случае не меньше глубины дерева d
- $lacksquare d \geq \log_2 \ell$ (или, что то же самое, $2^d \geq \ell$)
- таким образом, время работы не меньше

$$\log_2(n!) = \Omega(n \log n)$$

- lacksquare формула Стирлинга: $n! \sim \sqrt{2\pi n} \left(rac{n}{e}
 ight)^n$
- $n! > \left(\frac{n}{2}\right)^{n/2}$, поэтому $\log(n!) = \Omega(n \log n)$

Заключение

- Наивный алгоритм сортировки имеет время работы $O(n^2)$.
- Алгоритм сортировки слиянием, основанный на методе «разделяй и властвуй», работает за время $O(n \log n)$. Использует O(n) дополнительной памяти (для слияния массивов).
- Любой алгоритм, сортирующий сравнениями, в худшем случае делает $\Omega(n \log n)$ сравнений. Поэтому алгоритм сортировки слиянием асимптотически оптимален.