Experiment V

AIM:

Design and study of Half and Full Adder

Theory:

Combinational Circuits:

Combinational circuit is a circuit in which we combine the different gates in the circuit. Some of the characteristics of combinational circuits are following –

- 1. The output of combinational circuit at any instant of time, depends only on the levels present at input terminals.
- 2. The previous state of input doesn't have any effect on the present state of the circuit.
- 3. A combinational circuit can have an n number of inputs and m number of outputs.

Half Adder:

Half adder is a combinational logic circuit with two inputs and two outputs. The half adder circuit is designed to add two single bit binary number A and B. It is the basic building block for addition of two single bit numbers. This circuit has two outputs **Carry** and **Sum**.

Basic Binary Additions:

$$0 + 0 = 0$$

$$1 + 0 = 1$$

$$0 + 1 = 1$$

$$1 + 1 = 0$$
 (1 Carry)

Inputs		Outputs		
Α	В	Sum	Carry	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

Truth Table for Half Adder

The SOP(Sum of Products) form of the Sum and Carry are as follows:

$$Sum = A'B+AB'$$

$$Carry = AB$$

Full Adder:

Full adder is developed to overcome the drawback of Half Adder circuit. It can add two one-bit numbers A and B, and carry c.

The full adder is a three input and two output combinational circuit.

How to perform Operation:

$$A + B + C = (A + B) + C = A + (B + C)$$

Inputs			Outputs	
Α	В	C _{in}	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Logic Table for Full Adder

The SOP(Sum of Products) form can be obtained with the help of K(Karnaught)-map as:

Sum =
$$x'y'z + x'yz + xy'z' + xyz$$

Carry = $xy + xz + yz$

For the above Logic Table, Sum = A'B'C + A'BC + AB'C' + ABC Carry = AB + BC + AC

Observations:

When A = 0, B = 0 and C = 0:

Half Adder: Sum = 0, Carry = 0 Full Adder: Sum = 0, Carry = 0

When A = 0, B = 0 and C = 1:

Half Adder: Sum = 0, Carry = 0 Full Adder: Sum = 1, Carry = 0

When A = 1, B = 0 and C = 0:

Half Adder: Sum = 1, Carry = 0 Full Adder: Sum = 1, Carry = 0

When A = 1, B = 0 and C = 1:

Half Adder: Sum = 1, Carry = 0 Full Adder: Sum = 0, Carry = 1

When A = 0, B = 1 and C = 0:

Half Adder: Sum = 1, Carry = 0 Full Adder: Sum = 1, Carry = 0

When A = 0, B = 1 and C = 1:

Half Adder: Sum = 1, Carry = 0 Full Adder: Sum = 0, Carry = 1

When A = 1, B = 1 and C = 0:

Half Adder: Sum = 0, Carry = 1 Full Adder: Sum = 0, Carry = 1

When A = 1, B = 1 and C = 1:

Half Adder: Sum = 0, Carry = 1 Full Adder: Sum = 1, Carry = 1