Национальный исследовательский университет «МЭИ» Институт Радиотехники и электроники им. В.А. Котельникова

Занятие №3

«Воздействие сигнала и шума на ЧД»

Группа: ЭР-15-15

Студент: Жеребин В. Р.

Преподаватель: Наумова Ю.Д.

Москва 2019

Лабораторная работа

П.1 «Комплексная огибающая и мгновенная частота квазигармонического колебания»

Пронаблюдаем, при увеличении амплитуды от 0 до 0,5 B, типичные реализации процессов:

 $Puc. 1.1. \ Pезультат моделирования при \ a = 0$

На интервале времени от 40 до 50 мкс наблюдается сильный аномальный выброс мгновенной частоты.

 $Puc. 1.2. \ Peзультат моделирования при <math>a=1$

 $Puc. 1.3. \ Peзультат моделирования при \ a=2$

 $Puc. 1.4. \ Peзультат моделирования при \ a = 3$

 $Puc. 1.5. \ Peзультат моделирования при <math>a=4$

 $Puc. 1.6. \ Peзультат моделирования при <math>a=5$

Выводы: при малом отношении сигнал-шум наблюдаются аномальные выбросы мгновенной частоты. Установлено, что, чем меньше отношение сигнал-шум, тем сильнее аномальные выбросы мгновенной частоты. Эти выбросы обуславливаются резким скачком нормированной полной фазы. При малых отношениях сигнал-шум нормированная полная фаза сильно отличается от синусной составляющей шума, а при больших – их реализации совпадают. При прохождении годографа комплексной огибающей через 0, наблюдается аномальный выброс мгновенной частоты. Соответственно, при увеличении амплитуды сигнала, годограф смещается вправо (добавляется косинусная составляющая сигнала) и реже проходит через 0, уменьшая тем самым аномальные выбросы мгновенной частоты.

Puc.1.7. Peзультат моделирования при <math>a=2 на интервале от 10 до 20 мкс

На Рис.1.7. видно, что при прохождении годографа комплексной огибающей через 0, происходит выброс мгновенной частоты, что подтверждает выводы.

П.2 «Статистические характеристики мгновенной частоты шума»

Зависимость среднего абсолютного отклонения (САО) мгновенной частоты от отношения сигнал-шум показана на Рис.2.1. Зависимость имеет монотонно убывающий характер. Можно сказать, что при увеличении отношения сигнал-шум, САО мгновенной частоты уменьшается, что свидетельствует о снижении уровня аномальных выбросов.

 $Puc. 2.1.\ 3 a в u c u м c c p e д него абсолютного отклонения (CAO) м г новенной частоты (в к <math>\Gamma$ μ) от отношения с u г нал-шум

Влияние отношения сигнал-шум на статистические характеристики мгновенной частоты смеси сигнала и шума:

Рис.2.2. Семейство энергетических спектров мгновенной частоты при разных значениях амплитуды сигнала

Рис.2.3. Гистограммы мгновенной частоты для различных отношений сигнал-шум

Выводы: при отношении сигнал-шум, примерно больше 3, энергетический спектр имеет параболическую зависимость до $\frac{\Pi_{\rm m}}{2}$, а гистограмма мгновенной частоты имеет более узкую форму. При меньших отношениях сигнал-шум гистограмма расширяется, а на энергетическом спектре определяется больше энергии, что свидетельствует о наличии аномальных выбросов.

П.3 «Отношение сигнал-шум на выходе БНЧ»

Рис.3.1. Результат моделирования «отношение сигнал-шум на выходе БНЧ» для двух AЧXБНЧ при $\beta_{\scriptscriptstyle ext{\tiny ЧМ}}=15$

Зависимость $q_{\rm вых}(q_{\rm вx})$ имеет две области: подпороговая область, где $q_{\rm вx} < q_{\rm порог}$, и надпороговая область, где $q_{\rm вx} > q_{\rm порог}$. Анализируя Рис.3.1., можно сделать вывод, что $q_{\rm порог} = 10$ дБ, и что оно не зависит от АЧХ БНЧ.

Асимптотическая формула $q_{\text{вых}}(q_{\text{вх}}) = 3\beta_{\text{чм}}{}^3 q_{\text{вх}}$ справедлива для надпороговой области. С учетом определения логарифма запишем как

$$q_{\text{BMX}}(q_{\text{BX}}) = 10 \log(3\beta_{\text{YM}}^{3}) + q_{\text{BX}}$$

При индексе частотной модуляции $\beta_{\scriptscriptstyle \rm ЧM}=15,\,10\log(3\beta_{\scriptscriptstyle \rm ЧM}^{})=10\log(3\cdot15^3)=40$ дБ, получим

$$q_{\text{вых}}(q_{\text{вх}}) = 40 \text{ дБ} + q_{\text{вх}}$$

Для каждого значения отношения сигнал-шум на входе для надпороговой области, отношение сигнал шум на выходе будет на 40 дБ больше.

При использовании АЧХ БНЧ не прямоугольной формы, проигрыш составляет порядка 2-3 дБ.

Puc.3.2. Peзультат моделирования «отношение сигнал-шум на выходе БНЧ» для двух <math>AЧXБНЧ ppu $eta_{\scriptscriptstyle \mathrm{ЧM}}=10$

Изменяя индекс частотной модуляции, меняется асимптота для надпороговой области $10\log(3{\beta_{_{\rm YM}}}^3)=10\log(3\cdot 10^3)=34,8$ дБ

$$q_{\text{вых}}(q_{\text{вх}}) = 34.8 \text{ дБ} + q_{\text{вх}}$$

При уменьшении индекса частотной модуляции с 15 до 10, уменьшится и выходное отношение сигнал-шум на 5,2 дБ для всех входных отношений сигнал-шум больше порогового уровня.