#### Entrenamiento a la Red - Servicio



## Electricidad Básica

Programa de Entrenamiento en Concesionaria.

#### Manual del Instructor



#### Contenido

| Recomendaciones                                             | <b>2</b> |
|-------------------------------------------------------------|----------|
| Introducción                                                | 3        |
| Capítulo 🚹 El electrón y las cargas eléctricas              | <b>4</b> |
| Capítulo Circuitos en Serie y Paralelo                      | 10       |
| Capítulo 🕄 Amperaje, Voltaje y Resistencia                  | 17       |
| Capítulo 2 Uso del Multímetro                               | 33       |
| Capítulo 6 Leyes de Ohm y Watt                              | 38       |
| Capítulo 6 Localización de fallas en un Circuito Elèctrico. | - 45     |
| Capítulo 7 Magnetismo                                       | 53       |
| Capítulo 🕄 Lectura de Diagramas                             | 62       |

#### Recomendaciones

**MANUAL DEL INSTRUCTOR:** Este contiene toda la información que usted deberá presentar, asegurese de leer y comprender los conceptos con suficiente anticipación.

**OBJETIVOS:** Recuerde que los objetivos de aprendizaje, están expresados en función de lo que el participante debe alcanzar, los objetivos así como el contenido de cada capitulo debe ser explicado al inicio de este.

**DESARROLLO:** La forma de presentar cada capítulo esta descrita aquí, sin embargo esto no lo debe limitar, ya que representa el mínimo, cualquier ejemplo, caso real, o experiencia debe ser aprovechada para enriquecer cada exposición, aplique los conocimientos adquiridos durante el curso instructor habilitado

**EJERCICIOS:** En cada sesión, usted deberá entregar el folleto electricidad principios fundamentales, en el cuál se deberán ir contestando las preguntas relacionadas con cada capítulo, vigile que se respeten las instrucciones del mismo, al final de cada sesión deberá recogerlo para evitar que se copien las respuestas.

**PRACTICAS:** En la mayoría de los capítulos, están contenidas una serie de prácticas, es muy importante que no se omitan, sino que deberán repetirse tantas veces como usted considere necesario para que los conceptos teóricos, hayan sido comprendidos a través de la demostración. aplique aquí la técnica de los cuatro pasos vista durante el curso de instructor habilitado.

**MATERIAL:** Asegure de contar con todo lo necesario antes de iniciar cada sesión, en cada practica se enlista el material correspondiente.

**EVALUACIONES:** Estas, están contenidas en la serie de preguntas al final de cada capítulo, sugerimos que al inicio de cada sesión usted seleccione de 4 a 6 preguntas del o de los capítulos anteriores, de forma que aún en el último capítulo usted podría hacer alguna pregunta del primero. además, en el folleto electricidad hay mas preguntas en las pag.37 y 38.

**ACETATOS:** Todos los gráficos que usted necesita, están en el CD del curso, solo tendrá que hacer las correspondientes impresiones, use para ello el programa Power Point.

**MANUAL DEL PARTICIPANTE:** Este es el folleto electricidad principios fundamentales, cuide que se respeten las instrucciones tanto de éste, como las contenidas en la descripción del desarrollo.

**VIDEO:** El programa contiene un video, el cuál se deberá de presentar en sesiones con duración de 15 a 20 minutos como máximo, usted deberá regresarlo, en caso de que algún aspecto no se haya entendido o bien, para resaltar un dato importante, bajo ningún concepto deje solo al grupo viendo el programa, los ejercicios indicados en éste, están contenidos en el manual del instructor, cuide que los ejercicios sean realizados tal como se indica.

#### INTRODUCCIÓN

Todos hemos experimentado o visto en algún momento los efectos en los cuerpos electrizados o cargados eléctricamente. Después de caminar sobre una alfombra se experimenta una pequeña descarga al tocar un objeto metálico. Si se frota un globo y luego se coloca en una pared o en el techo, se mantendrá adherido, aparentemente por la acción de una fuerza extraña. Si frotamos un peine o una regla de plástico en el cabello y después la acercamos a unos pedacitos de papel, éstos se adhieren.

Estos son unos cuantos ejemplos sencillos que demuestran que en el proceso de frotar dos objetos, existe una transferencia de "algo" entre dichos objetos; lo que se transfiere, se conoce como electricidad o carga eléctrica.

El conocimiento de éste fenómeno data del año 600 A. C.cuando los griegos observaban que al frotar el ámbar con un trozo de lana, se podían atraer pedacitos de paja o tela.

En este programa se pretende explicar el fenómeno de la electricidad de una forma práctica y sencilla, así como sus características y aplicaciones en el automóvil.

# **Capítulo**

# El electrón y las cargas eléctricas

El Electrón

# **Capítulo**

# El electrón y las cargas eléctricas

#### **CONTENIDO**

Estados de la materia El átomo, los protones y electrones Atracción y Repulsión de cargas Circuito eléctrico básico

#### **OBJETIVO**

Conocerá la relación entre las estructuras de los átomos y la corriente eléctrica

#### **DESARROLLO**

Lectura: Pida que cada participante lea de 4 a 5 renglones de la introducción

Exposición: Explique el contenido del capítulo

EJERCICIO: Vea que se lean las instrucciones y conteste de las preguntas al final del capítulo

#### **MATERIAL:**

Vaso con agua Porción de sal Tramo de cable eléctrico Trozo de papel

#### El Electrón

#### **Materia**

A nuestro alrededor existen muchas cosas, plantas, animales, agua, aire, etc. Todo ello presenta diferentes aspectos en su forma, tamaño y color.

¿De qué está hecho todo lo que nos rodea?. Todo lo que nos rodea está formado por **ALGO**.

Este ALGO es la MATERIA.

Cualquier cosa que pueda medirse y pesarse es materia.

La materia existe en tres estados, que son: **SÓLIDO, LÍQUIDO Y GAS.** 

**SÓLIDO.**Estado en el cual una sustancia tiene forma y volumen fijos, por ejemplo: un hielo.

LÍQUIDO. Estado en el que las sustancias tienen volumen propio y adoptan la forma del recipien te que las contiene, por ejemplo: el agua.

GAS. Estado en el cual la sustancias toman la forma del recipiente que las contiene, sea grande o pequeño, es decir, no tienen forma ni volumen fijos, por ejemplo: el vapor de agua.



# MATERIA es todo aquello que ocupa un lugar en el espacio.

Toda la materia está formada por **ELEMENTOS QUÍMICOS**, por ejemplo: el cobre, la plata, el oxígeno, el aluminio, el oro y otros.

Los **ELEMENTOS QUÍMICOS** son las sustancias más simples que existen en la naturaleza y forman cualquier tipo de materia.

#### **Átomos y Moléculas**

Los cuerpos cualquiera que sea su estado, están formados por partículas muy pequeñas llamadas MOI ÉCUI AS.

Una MOLÉCULA es la partícula más pequeña de una sustancia que conserva las propiedades de la misma. Las moléculas pueden estar constituidas por átomos iguales o diferentes. Figuras A y B.

Las moléculas a su vez están formadas por otras partes más pequeñas que llamamos átomos.

El ÁTOMO es la parte más pequeña de la materia.

Los átomos caracterizan a los cuerpos simples que la química designa como **ELEMENTOS QUÍMICOS** y de los cuales el hombre ha encontrado más de 90 en la naturaleza.

Las partes fundamentales del átomo son: El **PROTÓN** (carga positiva), **NEUTRÓN** el (sin carga) y el **ELECTRÓN** (carga negativa).

Los protones y neutrones se encuentran en el núcleo del átomo, mientras que los electrones están girando alrededor del núcleo.

Se dice que un átomo está Eléctricamente Balanceado, sin Carga o Neutro, cuando tiene la misma cantidad de protones que de electrones.



Una molécula de Monóxido de Carbono está formada por átomos diferentes.



El ÁTOMO de hidrógeno es el más pequeño que existe en la naturaleza ya que tienen solo un electrón girando alrededor del su núcleo.



#### El Electrón

#### **Átomos y Moléculas**

#### Recuerde que:

La materia está formada por moléculas.

Las moléculas son conjuntos de átomos.

Las partes fundamentales de un átomo son el Protón, el Neutrón y el Electrón.

Un átomo eléctricamente balanceado es aquel que tiene el mismo número de protones que de electrones.

Los electrones están ligados a sus núcleos por fuerzas muy intensas y sin embargo, pueden ser separados. Por lo tanto, los electrones pueden pasar de un cuerpo a otro cuando se ponen dos sustancias en contacto estrecho. Es por ello que al frotar dos cuerpos es posible transferir una gran cantidad de electrones de un objeto a otro. Cuando esto ocurre, uno tendrá exceso de electrones y el otro tendrá una falta de electrones.

Entonces, el objeto que tiene un exceso de electrones queda cargado **Negativamente**, y el que tiene una falta de electrones queda cargado **Positivamente**.

#### ÁTOMO CARGADO POSITIVAMENTE



#### ÁTOMO CARGADO NEGATIVAMENTE



#### Atracción y Repulsión de Cargas

Uno de los principios fundamentales del estudio de la electricidad es el hecho de que dos cargas iguales se rechazan mutuamente así como dos cargas diferentes serán atraídas entre sí.

Los átomos por naturaleza siempre buscan mantener un equilibrio eléctrico, es decir: Un átomo cargado positivamente atraerá a electrones libres de otros átomos en un intento por recuperar su equilibrio eléctrico.

Esto provoca que en una situación desbalanceada, los electrones puedan fluir de un átomo a otro. Este flujo se conoce como CORRIENTE ELÉCTRICA.





Atomo cargado positivamente atrae electrones (un protón de más).

Atomo cargado negativamente cede electrones (un electrón de más).

Cuando un átomo tiene un exceso de electrones se dice que está cargado negativamente.

Cuando a un átomo le faltan electrones se dice que está cargado positivamente.

CORRIENTE ELÉCTRICA es un flujo de electrones de un átomo a otro.

#### Circuitos Eléctricos

#### Componentes de un circuito el éctrico.

FUENTE: Aporta la energía eléctrica dentro del circuito, por ejemplo la batería.

**CONDUCTOR:** Cable por medio del cual unimos la fuente con los consumidores.

**CONSUMIDOR:** Elemento del circuito que utilizan la energía eléctrica y la transforman en luz, trabajo, calor, etc. Por ejemplo: los focos, resistencias, motores, electroválvulas, etc.

**INTERRUPTOR:** Elemento que se encarga de abrir (no deja pasar la corriente), o cerrar (si deja pasar la corrierte)





### **Evaluación Capítulo 1**

| 1. ¿Qué es la materia?                                                 |
|------------------------------------------------------------------------|
| 2. ¿ Qué es un elemento químico?                                       |
| 3.¿Qué es un átomo?                                                    |
| 4. ¿Cuáles son las partes fundamentales del átomo?                     |
| 5. ¿Qué son las moléculas?                                             |
| 6. ¿Què es un àtomo elèctricamente balanceado?                         |
| 7. Cuando un átomo tiene exceso de electrones se dice que está cargado |
| 8. ¿Qué es la corriente eléctrica ?                                    |
| 9. Dos cargas positivas: ¿se atraen o se repelen?                      |
| 10. Dos cargas, una positiva y otra negativa: ¿se atraen o se repelen? |
| 11. ¿Que es un circuito eléctrico?                                     |
| 12. Escribe los cuatro componentes de un circuito eléctrico            |
| <u></u>                                                                |

# **Capítulo**

# Circuitos en Série y Paralelo

# Circuitos en Série y Paralelo

# Capítulo 2

# Circuitos en Serie y Paralelo

#### **CONTENIDO**

Circuitos en serie, paralelo y combinados

#### **OBJETIVO**

Conocerá la forma de conexión de los circuitos eléctricos

#### **DESARROLLO**

Explique el contenido del capítulo

#### **EJERCICIO**

Vea que se conteste de la pregunta número 55 a la 67

#### **PRACTICAS**

Vea que se realice la indicada

#### **Corriente Directa**

Corriente directa quiere decir que la corriente **circula en un sólo sentido**, es decir, no cambia de polaridad positiva a negativa.

La corriente directa puede ser CONTINUA o PULSANTE.

La continua es aquella que todo el tiempo mantiene un sólo valor de voltaje, por ejemplo la batería, o una pila.



#### Circuitos en Serie y Paralelo

#### Circuitos en serie

Cuando se conectan extremo con extremo dos consumidores o más, de manera que **pase a través** de cada uno de ellos la misma corriente, se dice que están conectados en Serie.

Pueden ser focos u otros dispositivos eléctricos. En éste tipo de circuitos, existe el mismo amperaje en todos los elementos consumidores.



#### Circuitos en paralelo

Si los consumidores se conectan de modo que la corriente de la fuente se divida en las diferentes ramas del circuito, como en la figura, se dice que los consumidores están conectados en Paralelo. En éste tipo de circuitos el amperaje se divide en dos.



#### Circuitos en Serie y Paralelo

#### Circuitos Combinados en Serie - Paralelo

Como su nombre lo dice, son una combinación de los dos anteriores circuitos, es decir, en un mismo circuito están conectados algunos consumidores en serie y otros en paralelo. Los consumidores que estén en serie tendrán la misma corriente y los que estén en paralelo tendrán el mismo voltaje.



Los focos 2 y 3 están en paralelo, pero al mismo tiempo están en serie con el foco 1,

En el circuito de la parte inferior se muestra otra forma de circuito serie-paralelo; el circuito se divide en dos ramas que están en paralelo pero, cada rama tiene dos focos en serie; en este caso, los focos 1 y 2 están en serie; lo mismo que los focos 3 y 4. Sin embargo, los focos 1 y 2 están en paralelo con los focos 3 y 4;



#### Circuitos en Serie y Paralelo

#### **Práctica**



#### **Evaluación Capítulo 2**

Los siguientes dibujos deben ser diferentes a los mostrados en el capítulo.

1. Dibuja un circuito en serie.

2. Dibuja un circuito en paralelo.

# Capítulo [8]

# Amperaje, Voltaje y Resistencia

# Amperaje, Voltaje y Resistencia

## **Capítulo**

## Amperaje, Voltaje y Resistencia

#### **CONTENIDO**

Flujo real y teórico de la corriente Amperaje, Voltaje y Resistencia Factores que afectan la resistencia Medición con multímetro Caídas de tensión

#### **OBJETIVO**

Conocerá las características del flujo de corriente eléctrica, la forma de medirlas y los factores que la afectan

#### **DESARROLLO**

Exposición: Explique el contenido del capítulo

#### **EJERCICIO**

Conteste las preguntas al final del capítulo

#### **PRÁCTICAS**

Realice las indicadas

#### Flujo Teórico y Real de los Electrones

#### Flujo Real

Recordemos que la electricidad es un flujo de electrones y como son de carga negativa, por lo que su sentido "real" de flujo en una batería es de negativo (-) a positivo(+).

Cuando se conecta un consumidor a las terminales de una pila como en la figura.

.

La realidad es que los electrones de la terminal negativa "empujan" (repelen) a los electrònes de la batería y del conductor hacia la terminal positiva, iniciando así el flujo de corriente



#### Flujo Teórico

Hace más de dos siglos no se conocía lo que producía la electricidad y los científicos en sus experimentos determinaron "convencionalmente" que la corriente fluía del polo positivo (+) al polo negativo(-), por ello se le conoce como "corriente convencional", que es la que utilizamos en nuestros días. Este tipo de flujo es el que utilizamos en nuestros diagramas eléctricos.



#### Unidades de Medida de la Electricidad

En un circuito eléctrico existen tres variables que describen la electricidad.

## Amperaje

Es la cantidad de corriente eléctrica (electrones) que pasa por un circuito eléctrico en un segundo.

La unidad de medida es el Amper o Amperio (A), se mide con un amperímetro.



Amperaje es la cantidad de electrones que pasan en un segundo por un conductor.



#### Voltaje

También llamado Tensión eléctrica o Diferencia de potencial es el valor medido entre dos puntos diferentes de un circuito eléctrico.

La unidad de medida es el Volt o Voltio (V), se mide con un voltímetro.



#### Unidades de Medida de la Electricidad

#### C. Resistencia eléctrica

La Resistencia Eléctrica es la oposición al paso de la corriente.

La corriente eléctrica solo fluirá cuando sea suficiente para vencer la resistencia del conductor y de los consumidores.

La unidad de medida de la resistencia es el OHM  $(\Omega)$ . Podemos verificar la resistencia con un multímetro en la posición de Óhmetro.

El comportamiento de la resistencia eléctrica en un conductor depende de 4 factores:

#### **Factores**

1.- MATERIAL, existen 3 tipos de materiales ver DIBUJOS A, B, C, D:

AISLANTES.- materiales que no conducen la electricidad, tales como la parafina, la madera, el hule, el vidrio, cerámicos, el cuarzo y otros.

CONDUCTORES.- materiales que conducen muy bien las electricidad, por ejemplo, el oro, la plata, el cobre y otros metales.

SEMICONDUCTORES.- materiales que según las condiciones eléctricas de funcionamiento se comporta como conductor o como aislante. Algunos son: el silicio, el germanio, el selenio, el grafito entre otros.

#### Resistencia Eléctrica



DIBUJO A

Los cables de bujía presentan diferente resistencia según el material de que estén hechos, por ejemplo:

Los cables de Seda, tienen 1000  $\Omega$  por cada 2.5 cm de longitud que tenga el cable.



Los cables de Grafito, tienen 450  $\Omega$  por cada centímetro del cable.



Los cables de cobre, debido a que están hechos con un material conductor, podemos decir que no presentan resistencia.



Como usted sabe, los conductores y los aisladores difieren en su resistencia al flujo deelectrones. Del mismo modo, ya que no hay dos materiales iguales, los conductores difieren en su resistencia al flujo del electrón.

Ciertos factores determinan la resistencia que ofrece el conductor al flujo de corriente eléctrica

1). El material del conductor. El mayor número de electrones fácil de liberar



2). La longitud del conductor. Mientras más largo es el conductor, mayor es la resistencia al flujo de la corriente.



3). El diámetro del conductor. Cuanto mayor es el diámetro, menor es la resistencia al flujo de la corriente.



Los metales aumentan su resistencia a mas alta temperatura.





Para medir AMPERAJE, el circuito debe estar CERRADO y el amperímetro en SERIE



Para medir RESISTENCIA, el circuito debe estar ABIERTO y el óhmetro en PARALELO



#### **Mediciones**

#### **VOLTAJE**



#### **AMPERAJE**



#### **RESISTENCIA**



#### **Prácticas**

Con base en lo que has leído anteriormente acerca de la resistencia di: ¿cuál de los dos filamentos tiene mayor resistencia? y mide con tu multímetro para comprobar que sea cierto .

MATERIAL

1 foco de doble filamento.
1 multímetro.

Filamento Delgado Grueso

Resistencia \_\_\_\_\_ Ohms \_\_\_\_ Ohms

En cuanto a los otros tres factores que implica la resistencia, tenemos:

- -El diámetro es mayor en el filamento grueso.
- -La longitud es mayor en el filamento delgado.
- -El material es el mismo.



#### **Prácticas**

#### MATERIAL

- \*50 cm. de cable calibre No. 20
- \*50 cm. de cable calibre No.12
- \*Un motor de limpiadores
- \*Una batería
- \*Un Interruptor

- 1. Mida la resistencia de los cables
- Construya un circuito básico, conectando el lado positivo al cable de calibre No.20 y el negativo al cable calibre No.12
- 3. Dejelo funcionando por un minuto
- 4. Desconecte el motor, y mida ahora la resistencia de los cables
- 5. Describa cuál es la razón de los valores obtenidos.

#### **Prácticas**

#### MATERIAL

- \*Batería con cables
- \*Focos de un polo
- \*Interruptor
- \*Multimetro
- 1. Mida la resistencia del filamento de un foco de un polo y anote el valor
- 2. Construya un circuito básico y conectelo a la batería, dejelo prendido por 30 Seg., ahora desconectelo.
- 3. Inmediatamente vuelva a medir la resistencia del filamento y anote el valor

| 4. | Describa cuál es la razón de los valores obtenidos |
|----|----------------------------------------------------|
|    |                                                    |
|    |                                                    |

#### **Prácticas**

MATERIAL

Identifica las unidades de resistencia, voltaje y amperaje que tienes disponible en tu multímetro, con su respectiva simbología.

- 1 Multímetro.
- 1 Batería.
- 1 Foco.

Cable conductor.

1 Interruptor.

Construye los circuitos eléctricos 1, 2, 3 y 4 que se presentan a continuación y verifica el correcto funcionamiento de tu multímetro midiendo las tres variables que se presentan en un circuito. De ser posible realiza esta práctica con algún elemento eléctrico en un vehículo; por ejemplo: probar el voltaje y amperaje de la luz de freno de la calavera derecha o de la luz interior del auto.

Mide el voltaje en los circuitos 1 y 2 , y verifica que el voltaje sea el mismo en los dos focos del circuito número 2.

Anota tus respuestas después de cada medición.



En los circuitos 3 y 4 mide el amperaje, haciéndolo tal como se muestra. Anota tus repuestas después de cada medición.





$$A_1 = A_2$$
  $SI_{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{N}}}}}}}}$   $NO_{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{N}}}}}}}}$ 



$$A_1 = A_2 + A_3 SI_{NO}$$

#### Caída de Tensión

CAÍDA DE TENSIÓN es la pérdida de voltaje en un circuito eléctrico debido a la resistencia que presenta el circuito en diferentes formas, tales como:

La longitud del circuito: Imagina que tenemos un cable conductor que mide 500 metros; que en uno de los extremos conectamos una batería con 12 voltios y que al otro lado del conductor, conectamos un foco de 2 ohms. El voltaje de la batería va a disminuir conforme se acerca al foco, puesto que un conductor mientras más largo es, presenta más resistencia al flujo de la corriente. El foco no va a prender ya que el voltaje que le va a llegar, no va a ser suficiente, es decir, va a llegarle una mínima parte de los 12 volts.



El voltaje va de más a menos en dirección de la batería al foco

Calibre del cable: Recuerda que a un diámetro mayor del cable, la resistencia es menor. Ahora imagina que tenemos nuestra batería de 12 voltios; que nuestro cable mide 10 metros y que es muy delgado; la corriente, no va a poder atravesar el conductor con facilidad por ser tan estrecha su área de sección transversal ( mayor resistencia), lo que no pasaría si el diámetro del conductor fuera mayor.



La demanda de corriente es excesiva para un cable tan delgado, por eso se dificulta el flujo de la corriente y el voltaje cae.

#### Caída de Tensión

**Temperatura:** Si continuamos con el ejemplo anterior, a la corriente le va a costar mucho trabajo atravesar por el conductor; esto va a provocar que aumente la temperatura en el interior del cable. En ocasiones los cables no se calientan por el flujo de la corriente, sino por la temperatura exterior, debida a elementos cercanos al circuito que están muy calientes.



Alta resistencia: Básicamente, ésta incluye a las anteriores; pero, cuando hablamos de que un "circuito tiene alta resistencia", nos podemos estar enfrentando a diferentes causas que la provocan, por ejemplo: que tengamos un exceso en la cantidad de consumidores dentro del circuito; algunas ocasiones los cables tienen fallas internas (en ocasiones se trozan), que provocan una alta resistencia. La causa más frecuente de alta resistencia en un circuito son los falsos contactos, es decir, contactos flojos o sucios.

En todos los casos el voltaje se va a ir dividiendo para poder alimentar a todos los elementos del circuito, y puesto que va a ser el mismo voltaje para alimentar a todos, al irse dividiendo, va a ir disminuyendo.



#### **Práctica**

**MATERIAL** 

1 Batería.

3 focos.

1 multímetro.

Cable conductor.

1 Interruptor.

Primero construye el circuito tal como se te presenta, a continuación; debes de colocar el multímetro en las posiciones 1, para medir el voltaje de la batería y 2, para medir el voltaje que tenemos en el foco; te puedes dar cuenta de que el voltaje en el foco es menor, por lo tanto, existe una diferencia en el voltaje; a ésta diferencia en el voltaje la llamamos CAÍDA DE TENSIÓN.

Voltaje de la Batería= v sin foco.

Voltaje del foco = \_\_\_\_\_v con foco.

Hay una diferencia entre ambos voltajes, esta diferencia es la caída de tensión.

Para saber la magnitud de la caída de tensión, restamos el voltaje menor del voltaje mayor.



Recuerde que a mayor cantidad de consumidores en el circuito, la caída de tensión va a ser mayor. Esto lo puede comprobar, aumentando un foco más al circuito anterior y midiendo nuevamente los voltajes en la batería, en el foco 1 y en el foco 2.

Lo mismo sucederá si tenemos falsos contactos por suciedad o simplemente por estar mal conectadas las terminales de los circuitos así como los conectores.

En este segundo circuito tenemos un consumidor de más; mida nuevamente los voltajes y compruebe que la caída de tensión es mayor.

Voltaje de la batería = \_\_\_\_v sin focos.

Voltaje del foco 1 = \_\_\_\_v con 1 foco.

Voltaje del foco 2 = \_\_\_\_v con 2 focos





## **Evaluación Capítulo 3**

| 1. ¿Porqué el flujo real es de negativo a positivo?                           |
|-------------------------------------------------------------------------------|
|                                                                               |
| 2. ¿Cuál es el sentido de flujo que utilizamos comúnmente?                    |
| 3. ¿ Qué es el amperaje?                                                      |
| 4. ¿Qué es el voltaje?                                                        |
| 5. ¿Cuáles son los 4 factores que determinan la resistencia de un conductor?. |
| 6. ¿Entre mas consumidores se conecten en un circuito, la caída de tensión es |
| 7. ¿Cómo se conecta el multímetro para medir amperaje?                        |
|                                                                               |
| 8. ¿Cómo se conecta el multímetro para medir resistencia?                     |
| 9. ¿Cuando se mide voltaje el circuito debe estar cerrado o abierto?          |
|                                                                               |
| 10. ¿Qué es la caída de tensión?                                              |
|                                                                               |
|                                                                               |
|                                                                               |

# Capítulo 4!



# Uso del Multímetro

# Capítulo 41

### Uso del Multímetro

#### **CONTENIDO**

Tipos de corriente eléctrica Conexión y selección del multímetro

#### **OBJETIVO**

Podrá medir correctamente el voltaje, el amperaje y la resistencia en un circuito eléctrico, así como tres tipos básicos de corriente

#### **DESARROLLO**

Exposición: Explique el contenido del capítulo

#### **EJERCICIO**

#### **PRÁCTICAS**

Realice las indicadas

# **Tipos de Corriente**

# **Corriente Directa**

Corriente Directa quiere decir que la corriente circula en un solo sentido, es decir, no cambia de polaridad positiva a negativa.

La corriente directa puede ser CONTINUA o PULSANTE.

La continua es aquella que todo el tiempo mantiene un solo valor de voltaje, por ejemplo la batería, o una pila.

La pulsante es aquella que presenta el mismo valor en el voltaje pero con caídas del voltaje a cero en intervalos de tiempo.





# **Corriente Alterna**

Es aquella que periódicamente ambia de magnitud y sentido alternativamente entre los puntos positivo y negativo en la escala del voltaje por ejemplo: la energía eléctrica de las casas, talleres, etc.



# **Uso del Multímetro**

# **Conocimiento General**

#### Multímetro

Es un instrum ento de m edicióon m uy útil que nos sirve en gran medida para hacer un diagnóstico acertado sobre las fallas que presentan los circuitos eléctricos en un automóvil.

Con el multímetro podemos medir las tres variables principales de un circuito eléctrico, ya que funciona como Voltímetro, Amperímetro y como Óhmetro; además de que podemos probar diodos, medir corriente directa y corriente alterna.

Éste es un aparato muy delicado por lo que debemos tener mucho cuidado al hacer una medición y tomar en cuenta las siguientes sugerencias para evitar que se dañe.

#### **Indicaciones**

- 1.-El multímetro debe estar siempre libre depolvo v suciedad.
- 2.-Antes de hacer una medición, seleccionar las unidades adecuadas.
- 3.-Para medir voltaje, se deben conectar las terminales del multímetro en paralelo.

El circuito debe estar cerrado.

- 4.-Para medir amperaje, debemos intercalar el multímetro dentro del circuito, conectándolo en serie. El circuito debe estar cerrado.
- 5.-Para medir resistencia, el circuito debe estar abierto, es decir, no debe pasar ningún voltaje o amperaje a través del circuito.

**NOTA:** Antes de hacer una medición, debe medirse la resistencia de los cables del propio multímetro y después restarla a la medición del cable o componente medido.



| SIMBOLOGÍA |                        |  |
|------------|------------------------|--|
| Α          | AMPERAJE.              |  |
| COM        | COMÚN O NEGATIVO.      |  |
| V          | VOLTAJE.               |  |
| Ω          | RESISTENCIA.           |  |
| <b>→</b>   | DIODO.                 |  |
| ~          | CORRIENTE ALTERNA.     |  |
|            | CORRIENTE DIRECTA      |  |
|            | (contínua y pulsante). |  |

# **Uso del Multímetro**

# **Prácticas**

# **MATERIAL**

- \*Una batería
- \*Cables
- \*Un foco
- \*Un relé de intermitentes
- \*Un sensor inductivo (Motor ó ABS)

Conecte los elementos conforme a los dibujos, compruebe el voltaje y dibuje en cada caso la gráfica de la corriente a que corresponda.

- \*Mida la resistencia del foco y del sensor inductivo
- \*Mida la corriente del foco
- \*Recuerde la forma de conexión indicada en la pag.24

# **Gráficas**



# Capítulo 6

Leyes de Ohm y Watt

# Leyes de Ohm y Watt

# Capítulo 6

# Leyes de Ohm y Watt

# **CONTENIDO**

Ley de OHM Ley de WATT

# **OBJETIVO**

Conocerá la relación entre el voltaje, el amperaje y la resistencia por medio por medio de las leyes de Ohm y Watt

# **DESARROLLO**

Exposición: Explique el contenido del capítulo

# **EJERCICIO**

# **PRÁCTICAS**

Conteste las preguntas alfinaldelcapítub

# Ley de Ohm

George Simon Ohm (1787-1854), un científico alemán, al realizar varios experimentos en 1827 comprobó que la corriente que fluye en un circuito, es directamente proporcional al voltaje que se le aplica, e inversamente proporcional a la resistencia del circuito, es decir, que a mayor resistencia, habrá menor intensidad en la corriente.

La ley de ohm permite calcular el valor teórico de alguna de las medidas fundamentales conociendo las otras dos. De éste modo es posible comprobar si son correctos los valores medidos en un circuito.



Con la ley de ohm es posible calcular el Voltaje, el Amperaje y la Resistencia dentro de un circuito.

Existe una forma muy sencilla para poder calcular las tres variables de la ley de ohm.

Sobre la base de este triángulo podemos establecer la fórmula con la que se calcula una de las tres medidas.

Si tapamos con el dedo la medida desconocida, podemos ver como las otras dos medidas han de dividirse o multiplicarse.





# **Prácticas**

MATERIAL

¿Cómo calculamos el amperaje en un circuito?.

- 1 Batería.
- 1 Foco.
- 1 Multimetro.
- 1 Interruptor.
- 1. Construya el circuito eléctrico que se muestra.
- 2. Obtenga el valor del voltaje de la batería.
- 3. Obtenga el valor de la resistencia del foco.

Anota los resultados y sustitúyelos después en las fórmulas de la ley de Ohm.

# **FÓRMULAS**

$$I = \frac{V}{R}$$

$$V = I \times R$$

$$R = \frac{V}{I}$$





Por ejemplo: si en un foco de faro hay una tensión de 12 volts y la resistencia del foco es de 3 ohms. ¿Cuál es el amperaje?.

Para resolver debemos seguir los pasos ya mencionados:

- 1. Obtenemos el voltaje de la batería: 12 volts.
- 2. Medimos la resistencia del foco: 3 ohms.

Para calcular el valor de la intensidad, resolvemos con la fórmula:

$$I = \frac{V}{R} = \frac{12 V}{3 \Omega} = 4 \text{ Amperes}$$

# Ley de Ohm

# **Prácticas**

Ahora mida el amperaje en el circuito



Si su ejercicio es correcto la medición debe aproximarse al valor calculado.

# Potencia eléctrica

Es la cantidad de energía eléctrica que consum e un circuito eléctrico.

En el recibo de luz se encuentra un ejemplo del consumo de energía en Kilowatts por hora, es decir, la cantidad que consumen todos nuestros aparatos eléctricos ( radio, televisión, focos, electrodomésticos, etc ) en una hora

En el recibo, también podemos ver cómo se calcula su costo, ya que nosotros pagamos por la cantidad de Kilowatts que utilizamos en nuestras casas.

Las unidades en que se mide la potencia eléctrica es el Watt (W) y es el resultado de multiplicar la magnitud del voltaje (V) por la del amperaje (A) de un circuito eléctrico.

#### $W = V \times A$

En la práctica de la electricidad, la potencia eléctrica se expresa en Kilowatts (KW), donde:

1 KW = 1000 W





100 VOLTIOS x 5 AMPERIOS = 500 WATTS

| PRÁCTICA                          | Construya un circuito con el mate obtenga la potencia del mismo, si |               | <del></del> |            |
|-----------------------------------|---------------------------------------------------------------------|---------------|-------------|------------|
| MATERIAL                          | 1. Mida el voltaje en el foco.                                      | V_            | <u> </u> +  | $\bigcirc$ |
| 1 Mult ímetro.<br>1 Foco.         | 2. Mida el amperaje del circuito.                                   | A             | 臺<br>〒_     |            |
| 1 Cable conductor.<br>1 Bater ía. | 3. Haga la multiplicaci ó n.                                        |               |             |            |
| 1 Interruptor.                    | v x                                                                 | _A = <b>W</b> |             |            |

# Evaluación Capítulo 5

| 1. ¿Entre más consumidores se conecten en un circuito, ¿േര്ത o es la caída de tensión mayor o menor?       |
|------------------------------------------------------------------------------------------------------------|
| 2. Usando la ley de Ohm calcula el amperaje si tenemos una batería de 12 v y una resistencia de 5 ohm.     |
|                                                                                                            |
|                                                                                                            |
| 3. Usando la ley de Ohm calcula la resistencia si tenemos un voltaje de 14 v y una corriente de 2 amperes. |
|                                                                                                            |
| 4. Calcula el voltaje usando la ley de Ohm, si tenemos una corriente de 5 amperes y una                    |
| resistencia de 2 ohm.                                                                                      |
| 5. Calcula la matancia alfatrica ci tampa una maiatancia da 4. C. como comiento da 5.                      |
| 5. Calcule la potencia eléctrica si tengo una resistencia de 4 $\Omega$ y una corriente de 5 amperes.      |

# Capítulo 6

Localización de Fallas en un Circuito Básico

# Localización de Fallas en un Circuito Básico

# Capítulo 6

# Localización de Fallas en un Circuito Básico

# **CONTENIDO**

Interrupción Corto circuito Corto a positivo Corto a negativo

# **OBJETIVO**

Conocerá las principales causas de fallas en un circuito eléctrico básico

# **DESARROLLO**

Exposición: Explique el contenido del capítulo

# **EJERCICIO**

# **PRÁCTICAS**

Conteste las preguntas alfinaldelcapítub

# Cortocircuito

# Localización de Fallas

Las fallas más comunes que se pueden presentar en un circuito son:

Cortocircuito: se presenta cuando la corriente pasa de la terminal positiva a la negativa sin pasar por el consumidor; provoca que se queme el fusible o el arnés.



# Cortocircuito a negativo o puente a negativo:

Cuando la corriente que entra en el consumidor "sale" por una línea de masa que no es la que originalmente estaba designada para hacer dicho trabajo, es decir, que la masa del circuito está "puenteada" hacia otra línea que también es de masa pero que pertenece a otro circuito. En éste caso el consumidor permanecerá trabajando, mientras apliquemos corriente al consumidor y no tengamos control sobre la línea de masa.



# Cortocircuito a positivo o puente a positivo:

Es la unión no deseada (puente) entre dos líneas de corriente que alimentan a un consumidor, siendo que sólo una de esas líneas debe alimentarlo normalmente.



# **Tipos de Fallas**

**Circuito abierto o interrumpido.**- Como su nombre lo dice, es cuando tenemos "interrumpido" o "abierto" nuestro circuito ya sea en la línea de corriente o en la de masa.

En este caso, nuestro consumidor no funcionará de ninguna forma, puesto que no se cierra el circuito; condición normal para el funcionamiento de un consumidor.





Alta resistencia.- Recordemos que una alta resistencia provoca una caída de tensión, que puede dejar sin voltaje al consumidor haciendo que éste no funcione, o que sí le llegue algo de voltaje pero no el suficiente para hacerlo funcionar.

En un cable la resistencia máxima es de 0.5 Ohm a menos que se indique lo contrario.

El ejemplo más simple es con un foco:

Si no le llega el suficiente voltaje al foco, probablemente prenda muy bajo o definitivamente no prenda.

El efecto de la resistencia es igual si se ubica en la parte negativa del circuito.



# **Práctica**

Construye un circuito como el de la figura y verifica los efectos de un cortocircuito a negativo:

1 Batería. 1.-Mida el voltaje en el foco con el interruptor abierto.

1 Foco. ¿Qué voltaje le da? = \_\_\_\_\_v

1 Interruptor.

1 Fusible. 2.-Conecte el puente y mida el voltaje entre las terminales 15 y 31

Cable conductor. ¿Qué voltaje le da? = \_\_\_\_v

3.-¿Se funde el fusible? SI \_\_\_\_ NO\_\_\_\_

4.-Vuelva a medir el voltaje en el foco.

¿Qué voltaje le da? = \_\_\_\_v

5.-Antes de conectar el interruptor:

¿Prende el foco? SI \_\_\_ NO\_\_\_

5.-Después de conectar el interruptor:

¿Prende el foco? SI \_\_\_ NO\_\_\_



# **Práctica**

Construye un circuito como el de la figura y verifica los efectos de un **MATERIAL** cortocircuito a positivo: 1 Batería. Conecte la batería a las líneas 15, 30 y 31. 1 Foco. 1 Interruptor. 1.-Mida el voltaje entre las terminales 15 y 31. 1 Fusible. ¿Qué voltaje le da? = \_\_\_\_v Cable conductor. 2.-Mida el voltaje entre las terminales 30 y 31. ¿Qué voltaje le da? = \_\_\_\_v Antes de conectar el puente y con el interruptor abierto: ¿Prende el foco? SI \_\_\_\_ NO\_\_\_ Haga un puente entre las líneas 30 y 15. Después de conectar el puente y con el interruptor abierto: ¿Prende el foco? SI \_\_\_ NO\_\_\_

Recuerde que en ésta segunda parte del ejercicio, ya no tenemos corriente15, por lo que el foco no debe prender. Sin embargo, el foco prende porque la línea de corriente 30 alimenta el circuito.



# Prácticas

# MATERIAL

Batería con cables Un foco Un interruptor Un fusible) Construya un circuito como el de la figura y siga las instrucciones, en cada caso, registre los valores obtenidos y dibuje con flechas el camino que sigue la corriente en cada caso al pasar por el voltímetro.



 Con el interruptor abierto mida el voltaje entre los puntos A y B

Resultado\_\_\_\_V



Retire el foco y vuelva a medir entre A y B

Resultado\_\_\_\_V



- 3. Con el interruptor abierto haga el puente
  - \*Cierre ahora el interruptor
  - \*Fusible fundido SÍ NO
  - \*Con el foco conectado mida entre

A y B

Resultado\_\_\_\_V

\*Con el foco desconectado mida entre A y B

Resultado\_\_\_\_V

# Evaluación Capítulo 6

| 1. ¿Cuál es la resistencia máxima que debe tener un cable? |  |  |
|------------------------------------------------------------|--|--|
| 2. ¿Qué es un cortocircuito?                               |  |  |
| 3. Escribe la falla que tiene cada circuito.               |  |  |
|                                                            |  |  |
| 4. ¿Qué es un cortocircuito a positivo?                    |  |  |
|                                                            |  |  |
| 5. ¿Qué es un cortocircuito a negativo?                    |  |  |

# Capítulo 1/4



# Magnetismo

# Capítulo 14

# Magnetismo

# **CONTENIDO**

Imanes naturales
Electroimanes
Campo magnético
Polaridad de los imanes

# **OBJETIVO**

Conocerá la aplicación de los electroimanes en el automóvil

#### **DESARROLLO**

EXPOSICIÓN: Explique el contenido del capitulo

# **EJERCICIO**

Aplique una serie de preguntas delcapítub anterior com o repaso

# **PRÁCTICAS**

Conteste las preguntas alfinaldelcapítub

# **Campo Magnético**

El magnetismo es una fuerza invisible que atrae algunos metales y es generado por cuerpos llamados imanes.

Cualquier imán en forma de barra o de herradura, tiene dos extremos o caras llamados POLOS, en los cuales el efecto magnético es más intenso.

Hace muchos siglos, el hombre descubrió que si colocaba una aguja imantada sobre una paja flotando en agua, la aguja oscilaría hasta señalar aproximadamente la dirección NORTE-SUR. Al extremo que apuntaba hacia el norte, lo llamaron POLO NORTE (N) y al otro extremo POLO SUR. dichas agujas se utilizaron a menudo como brújulas en los barcos.

Cuando acercamos dos imanes entre sí, notamos que cada uno ejerce una fuerza sobre el otro. Esa fuerza, puede ser de atracción o repulsión y se puede sentir aún cuando los imanes no se toquen. Si marcamos a los polos de los imanes como N y S, se encontrará que los polos N atraen a los polos S, pero que dos polos N se repelen entre sí al igual que dos polos S.

De la experiencia con los imanes se ha observado que no es necesario tocar a los objetos para atraerlos. La atracción magnética actúa a través de materiales como el aire, vidrio, aluminio y agua.

En torno al cuerpo de un imán existe un espacio en que se nota el efecto de ésta fuerza; a éste "espaciode influencia magnética" se le llama: CAMPO MAGNÉTICO (Fig 2), es mucho más intenso cerca del imán y decrece con la distancia.





Este campo para fines prácticos lo representamos como "Líneas de Fuerza", las cuales se dirigen del polo norte al polo sur.

La intensidad del campo magnético está determinada por el número de líneas de fuerza que contiene.

# **Práctica**

MATERIAL

Verifica la atracción y repulsión que hay entre los dos imanes, colocando uno frente al otro.

2 Imanes.

1 Tramo de hilo.

Toma un imán y cuélgalo de un hilo, acércale otro imán al que se encuentra colgado y ve lo que sucede. Tal como se ve en la figura 1.

Las líneas de fuerza magnética pueden verse, si rociamos la limadura de fierro sobre una hoja y debajo colocamos un imán.



Polos diferentes se atraen





Polos iguales se repelen

# **Imanes y Electroimanes**

Los imanes se clasifican en NATURALES y ARTIFICIALES

Los naturales son aquellos que se obtienen en forma directa de la naturaleza como es el caso de la piedra llamada MAGNETITA (mineral de hierro); y los artificiales se obtienen mediante procedimientos como frotamiento con un imán natural o por medio de cargas eléctricas, ya que en un flujo de corriente se genera magnetismo.

# El magnetismo por una corriente eléctrica es llamado ELECTROMAGNETISMO

Un buen ejemplo de un electroimán es un SOLENOIDE es un alambre conductor al cual se le hace pasar una corriente eléctrica.

Se puede considerar que un extremo es el polo norte y el otro el polo sur, dependiendo de la dirección de la corriente en el alambre magneto enrollado (espira). Si se coloca un trozo de hierro duro en el solenoide, aumenta en gran medida el campo magnético porque los átomos del hierro se alinean debido al campo magnético que produce la corriente. Entonces el Campo Magnético resultante es la suma del que produce la corriente y el debido al hierro; además, éste puede ser cientos o miles de veces mayor que el que produce tan solo la corriente.

A éste conjunto se le llama ELECTROIMÁN



La fuerza del campo magnético se puede incrementar de tres formas:

- 1. Aumentando el número de vueltas de alambre magneto (espiras).
- 2. Aumentando la cantidad de corriente.
- 3. Aumentando el tamaño del núcleo de hierro

# **PRÁCTICA**

**MATERIAL** 

Batería.

1 Desarmador.
Tachuelas.

Alambre magneto. (Material para em-

bobinado)

- 1.Enrolla el alambre alrededor del desarmador como se ve en la figura.
- 2. Conecta las puntas del alambre a las dos terminales de la batería.
- 3. Acerca el desarmador a las tachuelas; ¿que pasa?.



# Regla de la Mano Derecha

Hay un modo sencillo de recordar la dirección de las líneas del campo magnético en un conductor que es La Regla de la Mano Derecha.

Consiste en tomar el cable conductor con la mano derecha de tal modo que el pulgar apunte en la dirección de la corriente convencional (de + a - ); entonces, los dedos rodearán al conductor apuntando en dirección del campo magnético.

Las líneas de campo magnético debidas a una espira circular de alambre portador de corriente ( como en un solenoide ), se pueden determinar de igual modo, usando la regla de la mano derecha.

Un aparato que utiliza como principio de funcionamiento el campo magnético y la regla de la mano derecha, consiste en un solenoide dentro del cual se introduce parcialmente una barra de hierro.

Uno de sus usos más comunes y sencillos es el TIMBRE de una casa.

Cuando se cierra el circuito al oprimir el botón, la bobina se convierte en imán y ejerce una fuerza sobre la barra de hierro.



# **PRÁCTICA**

Conforme a los dibujos que a continuación te presentan, di hacia dónde se dirigen las líneas del campo magnético.

Para guiarse puede usted hacer primero el ejercicio con un cable conductor.



# Relevadores

RELEVADOR : Es un ELECTROIMÁN que se utiliza como dispositivo de ayuda para cerrar los circuitos eléctricos.

#### Estos constan de:

ELECTROIMÁN (circuito de mando: 1) Es una bobina con núcleo de hierro. En éste se conecta el interruptor de mando.

INTERRUPTOR (circuito de trabajo : 2)

Contacto de cierre (aquí montado como contacto de trabajo) en el circuito de alimentación. En este circuito se conecta el consumidor.

#### **FUNCIONAMIENTO:**

- a) Cuando circula corriente por la bobina actúa como imán. El flujo magnético de la bobina, atrae al contacto móvil. Al cerrar el contacto, ya puede pasar por él la corriente de trabajo. En éste se conecta el interruptor de control.
- b) Cuando se desconecta la corriente de la bobina, ya no hay flujo magnético. Se abre el contacto y queda interrumpida la corriente de trabajo, desconectando al consumidor.

#### FUNCIONES DE LOS RELEVADORES.

- 1. Controla una corriente grande por medio de una pequeña (que pasa por el circuito de mando), evitando que los interruptores se sobrecarguen.
- 2. Los relevadores electrónicos funcionan como temporizadores por ejemplo: intermitentes de luces, intervalos de limpiadores, etc.
- 3. Sirven para evitar mayores caídas de tensión.





# **Práctica**

# MATERIAL:

Batería

Interruptor

Relevador (P/ejemp. de cláxon)

Focos

Cables

Multímetro



Construya el circuito según el dibujo y mida el amperaje en los circuitos de mando y de trabajo.

Registre los valores

A- Circuito de mando \_\_\_\_ Amp.

B- Circuito de trabajo — Amp.





# Evaluación Capítulo 7

| 1. ¿Qué es el magnetismo?                                                                   |
|---------------------------------------------------------------------------------------------|
|                                                                                             |
|                                                                                             |
|                                                                                             |
| 2. ¿Cuáles son los dos tipos de imanes que existen ?                                        |
|                                                                                             |
| 3. ¿Qué es un electroimán?                                                                  |
|                                                                                             |
|                                                                                             |
|                                                                                             |
| 4. ¿Cuáles son los factores que determinan la fuerza del campo magnético de un electroimán? |
|                                                                                             |
|                                                                                             |
|                                                                                             |
|                                                                                             |
| 5. ¿Cuáles son las funciones de un relevador?                                               |
|                                                                                             |
|                                                                                             |

# Capítulo [3]

# Lectura de Diagramas

# Lectura de Diagramas

# Capítulo[3]

# Lectura de Diagramas

#### **CONTENIDO**

Simbología según DIN
Identificación de relés
Portafusibles
Conectores múltiples
Código de colores
Corrientes,30,15,50,X,S
Vías de corriente
Continuación de cables
Identificación del flujo de corriente en un diagrama

#### **OBJETIVO**

Será capaz de identificar los componentes, su circuito y el flujo de corriente de estos, en un diagrama de corriente Será capaz se identificar un circuito eléctrico en un vehiculo con ayuda del diagrama de corriente correspondiente

#### **DESARROLLO**

Video: presentar el video lectura de diagramas conforme a las recomendaciones descritas al inicio del manual del instructor

#### **EJERCICIOS**

En cada sección del video, se van indicando los ejercicios correspondientes, para ello, apoyese de la información contenida en el manual del instructor.

En la parte de simbología se describe un juego memoráma,el cual se podrá realizar con ayuda de las tarjetas contenidas en el propio manual, realice este juego tantas veces como considere necesario para que los participantes memoricen los símbolos.

recuerde que usted puede enriquecer este juego incorporando mas tarjetas con otras informaciones.

#### **PRACTICAS**

Estas, primordialmente están orientadas a la identificación de circuitos en vehículos y su descripción, la encontrara en cada ejercicio, no las omita ya que es la mejor forma de reforzar lo visto en aula, y de que los técnicos aprecien su aplicación.

# Lectura de Diagramas

# **Norma DIN**

| DEUTCH        | ( Alemania )    |
|---------------|-----------------|
| INTERNATIONAL | (Internacional) |
| NORM(         | Norma)          |

La norma DIN 72552, establece los standares en materia de Electricidad Automotriz para vehículos de fabricación Alemana, misma que aplica para otros países de Europa.

Tales standares incluyen entre otros:

- \* Designación de lineas de corriente
- \* Simbología de Componentes
- \* Código de colores
- \* Valores de medición

# Lectura de Diagramas Elèctricos

# Simbología

Todos hemos visto un mapa de carreteras. Las diversas carreteras, ríos, y montañas tienen una imagen confusa.

Para poder leer un mapa de éstos, se establece lo que representan cada uno de los signos; a ésta representación se le llama simbología.

Si conocemos la simbología, entonces la lectura de los mapas será más fácil.

En forma similar se procede para leer un esquema de circuitos de corriente, es decir, primero debemos estudiar la simbología para poder interpretar los diagramas.

Los cables conductores son siempre de distintos colores para poder identificarlos tanto en los esquema así como en el mismo automóvil.

La NOMENCLATURA de los componentes eléctricos (simbología) Y EL CÓDIGO DE COLORES (para los conductores), han sido adoptados de la Norma Oficial Alemana (Norma DIN).

La Norma DIN y se lee de la siguiente forma:

Si tomamos como ejemplo el cable de corriente de descarga X, veremos que es Negro/Amarillo, esto quiere decir que el cable es negro con una línea am arilla.





# Interpretación de Símbolos



# Interpretación de Símbolos

#### 1.- Designación de Fusible

p.ej.: fusible núm. 18 (20 amperios) en el portafusibles

# 2.- Flecha. (rellena)

La flecha indica la continuación del diagram a en la siguiente página del esquema de circuitos de corriente.

# 3.- Designación de la conexión relé/unidad de control en la placa de relés.

Indicación de los contactos individuales de un conector múltiple, p.ej: 6/30 corriente 30 en la tem inal6 del relé.

# 4.- Conexión interna (raya delgada)

Esta conexión no existe como cable. Sin embago, las conexiones internas son conexiones conductoras de electridad, permiten el seguimiento de la corriente en componentes y mazos de cables.

#### 5.- Designación de la conexión en el mazo de cables

En la leyenda encontrará información sobre en que mazo de cablae se encuentra esta conexión inseparable.

# 6.- Referencia sobre la continuación de la conducción.

El número de la casilla indica la vía de corriente, en el cual continúa la línea de corriente.

#### 7.- Designación de un borne.

Designa un borne que se encuentra en la pieza original y/o el número de contacto de un conector múltiple según nom a D IN.

# 8.- Punto de medición para el programa de localización de averías

El número del circulo negro se encuentra en una figura o en un Esquema de circuito de corriente del Programa

de localización de averías.

# 9.- Designación de un punto de masa de una conexión a masa en el mazo de cables.

En la leyenda se encuentra información con respecto a la posición del punto de masa en el vehículo o en que mazo de cables se ubica esta conexión inseparable.

# 10.- Designación del componente.

En la leyenda se encuentra el nombre del componente.

# 11.- Símbolo del componente.

Véase simbología.

#### 12.- Flecha

La flecha indica la continuación del componente en la siguiente página

# 13.- Referencia sobre la continuación del cable hacia un componente.

P. ej.:unidad de control para inmovilizador J362 con conector de 6 polos, contacto 2.

# 14.- Designación de un conector de la central eléctrica

Indica la dotación de un conector múltiple o individual de un cable, p. ej.: G2/5 - conector múltiple G2, contacto 5

# 15.- Sección de área transversaldelcable en $mm^2$ y color del cable

Las abreviaturas se explican por medio de la clave del color al lado del esquema de circuitos de corriente.

#### 16.- Referencia sobre la continuación de una conexión interna

La letra indica que la línea de corriente continúa en la página anterioro posterior

#### 17.- Número de posición del relé.

Designa la colocación del relé en o al lado de la placa de relés.

# Símbolos de los esquemas de circuitos de corriente

| ф           | Fusible                                       |
|-------------|-----------------------------------------------|
| <b>\$</b> * | Fusible térmico                               |
| 喜           | Batería                                       |
|             | Motor de<br>arranque                          |
|             | Alternador                                    |
|             | Bobina de<br>encendido                        |
|             | Distribuidor<br>de encendido<br>(electrónico) |
| *           | Clavija de bujía y<br>bujía de encendido      |
| 弘           | Bujía de<br>incandescencia<br>Reóstato        |

| ₽Ţ                    | Conmutador<br>accionado<br>manualmente            |
|-----------------------|---------------------------------------------------|
| <b>0</b> ↓            | Termoconmutador                                   |
| M→<br>T               | Interruptor de tecla accionado manualmente        |
| o <b>≠</b> †          | Conmutador accionado mecánicamente                |
| <b>□</b> <sup>†</sup> | Manoconmutador                                    |
| ाप गो                 | Conmutador<br>multipolar accionado<br>manualmente |
| ф                     | Resistencia                                       |
| *                     | Potenciómetro                                     |
| <b>₽</b> 0            | Resistencia en<br>función de la<br>temperatura.   |
| \$ .                  | Reóstato en función<br>de la temperatura          |
| <b>十</b> 中            | Relevador                                         |

# Símbolos de los esquemas de circuitos de corriente

| *           | Diodo                            |
|-------------|----------------------------------|
| *           | Diodo Zener                      |
| *           | Diodo Fotoesténico               |
| \$          | Lámpara                          |
| . 🗱         | Lámpara de doble<br>filamento    |
| \$          | Diodo luminoso                   |
| \&          | Luzinterior                      |
| \$          | Indicador                        |
|             | Unidad de control<br>electrónica |
| \$          | Luneta térmica                   |
| <b>₩</b> /̄ | Encendedor                       |

| X- | Válvula<br>electromagnética          |
|----|--------------------------------------|
| 14 | Acoplamiento electromagnético        |
|    | Distribuidor de cables               |
| þ  | Conector                             |
| Ì  | Conector múltiple en el componente   |
| 1  | Conexión interna<br>en el componente |
| ķ  | Conexión separable                   |
| ł  | Conexión inseparable                 |
| H  | Conexión en el maso<br>de cables     |
|    | Cable de resistencia                 |
| 本  | Sonda lambda                         |

# Símbolos de los esquemas de circuitos de corriente

| <b>®</b>      | Servomotor de la regulación de alcance de los faros |
|---------------|-----------------------------------------------------|
| •             | Motor eléctrico                                     |
| ₩-F           | Motor de limpiacristal dos velocidades              |
|               | Transmisor inductivo                                |
|               | Sensor de picado                                    |
| \$            | Reloj analógico                                     |
| 80            | Reloj digital                                       |
| <b>(8888)</b> | Indicador multifunción                              |
| 6             | Muelle para Airbag                                  |
| •             | Velocímetro                                         |
|               | Bocina                                              |

| 日   | Altavoz<br>zumbador                       |
|-----|-------------------------------------------|
| Š   | Antena con<br>amplificador<br>electrónico |
| 0 0 | Radio                                     |

### Localización de componentes

#### Localización de los relés inferior de 6 cavidades

- 1 Relé bocina doble tono (53)/J4
- 2 Relé de reducción de carga (100)/J59
- 3 Libre
- Relé bomba de combustible (167), (103)/J17
- Relé del autom. limpia-lava intervalos (377)/J31
- Relé del autom. limpia-lava intervalos (377)/J31

# 7 8 9 10 11 12 13 © 1 2 3 4 5 6 7 8 9 10 11 12 13

97-M20676

#### Fusibles en la parte inferior del porta relés

- A Fusible de 30A para asientos, con conector rojo
- B Posición cerrada
- Fusible de 30A para elevadores, conector negro

#### Localización de los relés en el panel superior de 13 cavidades

- Relé faros antiniebla (53)/J5
- 2 Relé para motor desbloqueo a distancia tapa trasera (53), (79)/J398
- Relé de bloqueo para motor arranque (185)/J226
- 4 Libre
- 5 Libre
- 6 Libre
- Libre
- 8 Relé para conducción luz diurna (173)/J89
- 9 Libre
- Relé de bujías de incandescencia (180)/J52
- Relé para bloqueo de arrangue y luz de marcha atrás (175)/J226
- Relé para alimentación de tensión borneo 30 (109)/J317
- Relé ventilador líquido refrigerante (53)/J26



97-M20676

### Localización de componentes

#### Localización de fusibles, a la izquierda del tablero en el porta fusibles

#### Colores de los fusibles

30 A \_ verde

25 A \_ blanco

20 A \_ amarillo

15 A \_ azul

10A \_ rojo

75A \_ café

5 A \_ beige

3 A \_ lila



## En los Esquemas de Circuitos los fusibles apartir del S23 se les adiciona un 2 al iniciar: por ejemplo S40 se llama S240

#### Fusibles pequeños del 1 al 23:

| 1.  | Eyectores y espejos calentables    | 10A  |
|-----|------------------------------------|------|
| 2.  | Direccionales                      | 10A  |
| 3.  | Luces de faros                     | 5A   |
| 4.  | Iluminación del portaplacas        | 5A   |
| 5.  | Confort eléctrico                  | 7.5A |
| 6.  | Central de cerraduras              | 5A   |
| 7.  | Luces de reversa                   | 10A  |
| 8.  | Teléfono                           | 5A   |
| 9.  | ABS                                | 5A   |
| 10. | Unidad de Control para gasolina    | 10A  |
| 11. | Instrumento combinado, Shiftlock   | 5A   |
|     | Diagnóstico de abordo (OBD)        | 7.5A |
| 13. | Luces de freno                     | 10A  |
| 14. | Luces de cortesia, cierre central, | 10A  |
|     | luces interiores.                  | 5A   |
| 15. | Instrumento combinado,             |      |
|     | cambio automático.                 | 5A   |
| 16. | Desconexión del clima              |      |
|     | bomba de agua                      | 10A  |
|     | Cerradura de cierre, calentable    | 7.5A |
| 18. | Luz de faro, alta derecha          | 10A  |
|     | Luz de faro, alta izquierda        | 10A  |
|     | Luz de faro, baja derecha          | 10A  |
| 21. | Luz de faro, baja izquierda        | 10A  |
| 22. | Luz de aparcamiento, derecha       | 5A   |

| 23. | Luz de aparcamiento, izquierda        | 5A   |
|-----|---------------------------------------|------|
| 24. | Sistema de limpiaparabrisas, bomba    |      |
|     | deposito de agua                      | 20A  |
| 25. | Calefacción, clima                    | 25A  |
| 26. | Desempañante de medallón              | 25A  |
| 27. | Sistema limpia-medallón               | 10A  |
| 28. | Bomba de combustible                  | 15A  |
| 29. | Unidad de control, Gasolina           | 15A  |
|     | Unidad de control, Diesel             | 10A  |
| 30. | Techo corredizo                       | 20A  |
| 31. | Cabio automático                      | 20A  |
| 32. | Inyectores para gasolina              | 10A  |
|     | Unidad de control, diesel             | 15A  |
| 33. | Limpiadores de faros                  | 20A  |
| 34. | Unidad de control Gasolina/Diesel     | 7.5A |
| 35. | Conector para remolque                | 30A  |
| 36. | Faros antiniebla delanteras y tras.   | 15A  |
| 37. | Contacto S                            | 10A  |
| 38. | Luz interior maletero, cierre central | 15A  |
| 39. | Intermitentes de emergencia           | 15A  |
| 40. | Bocina de doble tono (claxón)         | 20A  |
| 41. | Encendedor                            | 15A  |
| 42. | Radio                                 | 15A  |
| 43. | Unidad de control, Gasolina/Diesel    | 10A  |
| 44. | Asientos térmicos                     | 15A  |
|     |                                       |      |

### Identificación de Conectores y Contactos en Central Electrica



#### **Estructura General**

En el esquema de circuitos de corriente, el LADO POSITIVO está en la parte de arriba y el LADO NEGATIVO está generalmente en la parte de abajo, aunque en la central eléctrica (parte de arriba), tenemos conexiones de masa.

En la placa de relés con porta fusibles tenemos .líneas de corriente X ó 75, 15,30,50 y 31 de masa

En algunos diagramas estas líneas pueden estar enmarcadas con una casilla color gris como en los diagramas del A3, o pueden estar solas las lineas como en los diagramas del Passat.

Entre los lados Positivo y Negativo de todos los diagramas eléctricos se encuentran representados los conductores, elementos y consumidores de los diferentes circuitos.

El Lado Negativo se representa por medio de una recta horizontal dibujada en la parte inferior del diagrama y es el conductor de retorno que va desde el consumidor a la masa de la batería. Debajo de ésta se encuentra el número de la vía de corriente.



#### **Circuitos de Corriente**



En los esquemas de circuitos de corriente en blanco y negro, para reconocer los colores de los conductores, se simbolizan con abreviaturas en algún punto del conductor (código de colores).

Por lo general, éste CÓDIGO DE COLORES, se encuentra a un lado del mismo diagrama; además, los componentes eléctricos se representan con su respectiva simbología y se identifican con LETRAS INDICADORAS, las cuales se encuentran en la .parte inferior del diagrama. Repase lo que ha aprendido con el siguiente diagrama.



#### Circuitos de Corriente

Los números que se encuentran debajo de la línea de masas en la parte inferior de los esquemas, son los números de las vías de corriente. Según la extensión de la instalación eléctrica, habrá un número mayor o menor de circuitos.



Se designa como CIRCUITO DE CORRIENTE, el camino de la corriente eléctrica que va desde el polo positivo ( toma de corriente) al polo negativo (masa del vehículo).



Todas las líneas negras delgadas, son uniones conductoras que NO están constituidas por cables sino por conexiones internas, por ejemplo:

- 1. Uniones entre fusibles.
- 2. Uniones entre contactos.
- 3. Contactos con la masa.



En un circuito de corriente, todos los componentes siempre están dispuestos de arriba hacia abajo.

NOTA: En un esquema de circuitos de corriente, NO siempre se pueden representar todas las partes y sus funciones en forma vertical, es por eso que hay que trabajar con estas lineas negras delgadas.



#### Interruptor de encendido

Permite conectar y desconectar las siguientes corrientes:

#### **NORMA DIN 72552**

| Tipos de corriente | Reposo | 1a. Pos | 2a. Pos |
|--------------------|--------|---------|---------|
| 30                 | SI     | SI      | SI      |
| 15                 |        | SI      | SI      |
| X                  |        | SI      | NO      |
| 50                 |        |         | SI      |
| S                  | SI     | NO      | NO      |
|                    |        |         |         |
|                    |        |         |         |



- X ó 75 : Corriente para consumidores que se desconectan al arrancar el auto.
- 15 : Corriente al abrir el interruptor de encendido.
- 30 : Corriente directa de la batería.
- 50 : Corriente al solenoide del motor de arranque.
- 31 : Negativo de la batería "Masa o Tierra".
- S: Corriente para el estéreo, el cinturón de seguridad y el sistema de confort. En algunos autos A3 se activa sólo con introducir la llave en el interruptor de encendido. En algunos A3 y actualmente en los A4, para activar ésta corriente, giramos la llave hacia el primer paso (prenden testigos del cuadro de instrumentos), después giramos de regreso a la posición de apagado, y sin sacar la llave, continuamos teniendo corriente S. Si sacamos la llave, se pierde la corriente S. Se apaga el radio, se prende la luz interior y suben los seguros de las puertas (opcional). En los modelos como por ejemplo: Beetle y A4



### **Inyectores**

### **Ejercicios:**

NOTA: Siempre anotar los resultados

Verificar alimentacion de (+) 12 volts

Verificar alimentación de (-)

Conectar la lampara de diodos y verificar los pulsos

Dirección 08 V.A.S 5051 Mod. 93 a 99

GRUPO CAMPO INDICACIÓN UNIDADES
01 4 Tiempo de inyección ms

Dirección 08 V.A.S 5051 con U.M terminación C/D

GRUPO CAMPO INDICACIÓN UNIDADES
02 2 Tiempo de inyección ms

### Motor Digifant 2.0 Lts.

#### CONTINUACIÓN DE VÍAS DE CORRIENTE

Si localizamos ahora el cable en la vía de corriente 49, no notaremos que aparece un 39

Lo que significa que este cable está conectado con el cable de la vía. 39



- G 2 \_\_Transmisor para indicador de temperatura de líquido refrigerante
- G62 \_\_Transmisor para temperatura del líquido refrigerante
- G69 Potenciómetro de la válvula de mariposa
- J 17 \_\_ Relé bomba combustible
- J169 \_ Unidad de control
- J217 \_ Inyector cilindro 2
- K \_\_Inyector cilindro 3T3a \_\_Inyector cilindro 4
- T10a Válvula para estabilización del régimen de ralentí
- T16 Válvula magnética 1 para sistema de dep. Carbón Activo
- T28a Conector, de 10 polos en el distribuidor de combustible

- T 28a \_ Conector de 2B polos circular en compaitmierto matar próximo al distribuidor de encendido
- T45 \_ Conector, de 45 polos, en Unidad de control Digifait
- G3 Conexión positiva en la conducción de cables de los inyectores
- (G4) Conexión positiva en la conducción de cables de los inyectores

<sup>-</sup>Sólo transmisión automática

Esta es la información de un relevador que se obtiene de un diagrama de corriente



Además recuerde que cada relé tiene impreso el numero de producción que le corresponde por ejemplo: (18)

- 3 Relé para la unidad de Control Digifant
- 4 Relé de descarga para contacto x (18)
- 12 Relé de bomba de combustible (67, 167

## EJERCICIOS:

#### NOTA PARA EL INSTRUCTOR:

Con la serie de tarjetas "símbolos eléctricos" hacer que el grupo realice el juego de MEMORAMA y construya un tríptico o tarjetas para cada técnico participante alcurso. \*Recuerde que este material lo encontrará tanto en el manual del instructorcomo en el CD de gráficos

Realizar este juego tantas sesiones como usted considere necesarias como para que los participantes memoricen la simbología de los componentes.

Entregue el tríptico al final de la primera sesión de MEMORAMA

### Ejercicio No. 1

Golf/Jetta- Equipo Básico, a partir de septiembre de 1998

#### ¿Que indica éste número?

Para la localización de relés, posición de fusibles y localización de conectores múltiples, ver sección. Localización de componentes.



Localización de los relés en el panel de 13 cavidades:

Relé de bloqueo para motor de arranque

Panel de relés:

Relé bocina de doble tono (53)

Relé de reducción de carga (18)

Relé del automático limpia/lava a intervalos

NOTA: El número dentro del paréntesis indica el número de control de producción impreso en el relé.

#### Colores de los

30A-verde

25A- blanco

20A- amarillo

15A- azul

10A-rojo

7.5A- café

5A-beige

3A- violeta

¿Que indica éste número?

| 1. ¿ De qué color es el fusible que protege a nuestros circuitos hasta 15 amperes? |                   |                |              |
|------------------------------------------------------------------------------------|-------------------|----------------|--------------|
| 2. ¿ En qué modelos de autos encon                                                 | tramos la caja de | fusibles sobre | la batería ? |
| 3. Dibuja los símbolos que se te pide<br>Sonda lambda                              | en                |                |              |
| Relevador                                                                          |                   |                |              |
| Bobina de encendido                                                                |                   |                |              |
| Fusible térmico                                                                    |                   |                |              |
| 4. ¿ Qué significan los símbolos ?                                                 |                   | <b>→</b>       | -            |

| 5. ¿Cuáles son los tipos de corriente que manejamos con el interruptor de encendido ? |
|---------------------------------------------------------------------------------------|
|                                                                                       |
| 6. ¿Qué es la corriente 15 ?                                                          |
| 7. ¿Qué es la corriente 50 ?                                                          |
| 8. ¿Qué es la corriente 31 ?                                                          |
| 9. ¿Que indica el siguiente número en un diagrama de corriente ?  0.5                 |
| 10. ¿Qué indica la clave sw/ro en un diagrama de corrriente ?                         |
|                                                                                       |
| 11. ¿Cómo se representan las lineas conductoras que no son porcables ?                |

| 12. En un diagrama en blanco y negro, ¿Cuál es el código para identificar el color de los cables ? |  |
|----------------------------------------------------------------------------------------------------|--|
|                                                                                                    |  |
|                                                                                                    |  |
| 13. ¿Qué principal com ponente es alimentado con + 50 ?                                            |  |
|                                                                                                    |  |
| I4. ¿Para que se utiliza la corriente S?                                                           |  |
|                                                                                                    |  |
|                                                                                                    |  |



- J234 Unidad de control para airbag
- N153 Detonador -1- p. tensor cinturón lado conductor
- N154 Detonador -1- p. tensor cinturón lado acompañante
- N199 Detonador para airbag lateral, lado del conductor
- N200 Detonador para airbag lateral, lado del acompañante
- T2 Conector de 2 polos, abajo asiento del conductor
- T2a Conector de 2 polos, abajo asiento del acompañante
- T3 Conector de 3 polos, abajo asiento del conductor
- T3a Conector de 3 polos, abajo asiento del acompañante

| T75 - |  |
|-------|--|
|       |  |

O- Conexión a a masa, en el mazo de cables del Airbag

\_Esas son las \_\_\_\_\_ del diagrama



- D Conmutador de encendido y arranque
- F138 Muelle para Airbag/anillo de retroceso con anillo de contacto
- G179 Sensor de choque para Airbag lateral lado conductor
- G180 Sensor de choque para Airbag lateral lado acompañante
  - Accionamiento de vocina
- J4 Relé bocina doble tono
- J234 Unidad de control para Airbag
- N95 Detonador para Airbag lado del conductor
- N131 Detonador para Airbag lado del acompañante
- T5b Conector de 5 polos, junto a la columna de dirección.
- T75j Conector de 5 polos, detrás Airbag lateral, lado conductor
- T75 -

- 42) Punto de masa, junto a la columna de dirección
- 81 Conexión a masa -1-,en el mazo de cables del tablero de instrumentos
- (109) Conexión a masa, en el mazo de cables del Airbag
- (135) Conexión a masa -2-, en el mazo de cables del tablero de instrumentos
- (A2) Conexión positiva (15) en el mazo de cables del tablero de instrumentos





- E24 Conmutador de cinturón lado del conductor
- H3 Avisador acústico
- J17 Relé bomba combustible
- J234 Unidad de control para Airbag
- J285 Unidad de control con testigos luminosos en cuadro de instrumentos
- J379 Unidad de control para cierre centralizado y alarma antirrobo
- J393 Unidad de control central para sistema deconfort
- J533 Bus de datos de diagnóstico de abordo
- K19 Testigo luminoso para sistema de advertencia cinturones de seguridad
- K75 Testigo luminoso del Airbag
- T16 Conector de 16 polos, para Autodiagnóstico (OBD), debajo del tablero, izq.
- T23 Conector de 23 polos
- T24 Conector de 24 polos

- T32 Conector de 32 polos azul
- T32A Conector de 32 polos verde
- T75 Conector de 75 polos
- (A76)- Conexión (cable de diagnóstico k), en mazo de cables tablero de instrumentos.
- (A121) Conexión (High-Bus), en mazo de cables tablero de instrumentos.
- (A122)- Conexión (Low-Bus), en mazo de cables tablero de instrumentos.
- Conexión (señal de impacto), en mazo de cables tablero de instrumentos.

### Esquema de circuitos de Corriente





 Escriba el código de corriente desde el punto donde recibe alimentación el circuito de freno

No. 1/9

- 2. Coloree según el código, las lineas de alimentación y masas.
- 3. Indique con flechas el flujo de la corriente.
- En un vehiculo, sigue el flujo de la corriente con una lámpara de diodos o multímetro

| CÓDIGO DE |          |  |
|-----------|----------|--|
|           | COLOR    |  |
| WS        | BLANCO   |  |
| SW        | NEGRO    |  |
| ro        | ROJO     |  |
| br        | CAFÉ     |  |
| gn        | VERDE    |  |
| bl        | AZUL     |  |
| gr        | GRIS     |  |
| li        | LILA     |  |
| ge        | AMARILLO |  |
|           |          |  |

- F Conmutador luz freno
- F4 Conmutador para luces de marcha atrás
- F47 Conmutador de pedal de freno para GRA/ sistema de inyección directa diesel
- J248 Unidad de control para sistema de inyección directa diesel
- M6 Lámpara luz intermitente trasera izquierda
- M16 Lámpara luz marcha atrás izquierda
- M21 Lámpara para luces de parte trasera izquierdas
- M25 Lámpara de la luz de freno alta
- M37 Lampara para luz marcador lateral, trasera izquierda
- T3a Conector de 3 polos
- T5 Conector de 5 polos, negro, en poste C, Izq.
- T10 Conector de 10 polos, blanco, detrás de tablero de instrumentos lado izquierdo
- T80 Conector de 80 polos, en J220

Conmutador luz de freno, comnutador luces marcha atrás, luz de freno

- (50) Punto de masa, maletero, a la izquierda
- Conexión a masa -3-, en mazo de cables tablero de instrumentos
- 218 Conexión a masa -1-, en mazo de cables portón trasero
- (A6) Conexión positiva (intermitente izquierdo) en el mazo de cables del tablero de instrum.
- (A18) Conexión (54), en el mazo de cables del tablero de instrumentos
- Conexión (luz marcha atrás), mazo cables tablero de instrumentos
- (A100) Conexión -2- (87), en mazo de cables tablero de instrumentos
  - \*\* Sólo diesel
  - \*\*\* Sólo gasolina

### Esquema de circuitos de Corriente No. 1/10



| C  | ÓDIGO DE |
|----|----------|
|    | COLOR    |
| WS | BLANCO   |
| SW | NEGRO    |
| ro | ROJO     |
| br | CAFÉ     |
| gn | VERDE    |
| bl | AZUL     |
| gr | GRIS     |
| li | LILA     |
| ge | AMARILLO |

- F5 Conmutador alumbrado maletero
- J393 Unidad de control central para sistema confort
- M8 Lámpara luz intermitente trasera derecha
- M17 Lámpara luz marcha atrás derecha
- M22 Lámpara para luces de pare y trasera derecha
- M38 Lámpara para luz marcadora lateral, tras. der
- S14 Fusibles en el portafusibles/placa de relés
- S15 Fusibles en el portafusibles/placa de relés
- T3b Conector de 3 polos
- T5 Conector de 5 polos, negro, en el poste C, izq.
- T5a Conector de 5 polos, negro, en tapa trasera
- T523 Conector de 32 polos, en J393
- W3 Luz de maletero

- 98 Conexión a masa, en el mazo de cables en tapa trasera
- (199) Conexión a masa -3-, en mazo de cables tablero de instrumentos
- 218 Conexión a masa -1-, en mazo de cables portón trasero
- (A5) Conexión positiva (intermitente derecho) en el mazo de cables del tablero de instrum.
- (A18) Conexión (54), en el mazo de cables del tablero de instrumentos
- (A40) Conexión positiva -1-(30), en mazo de cables de instrumentos
- (A87) Conexión (luz marcha atrás), mazo cables tablero de instrumentos

Luz maletero, lámpara luz intermitente, luces traseras

### Esquema de circuitos de Corriente





| CÓDIGO DE |          |  |
|-----------|----------|--|
|           | COLOR    |  |
| WS        | BLANCO   |  |
| SW        | NEGRO    |  |
| ro        | ROJO     |  |
| br        | CAFÉ     |  |
| gn        | VERDE    |  |
| bl        | AZUL     |  |
| gr        | GRIS     |  |
| li        | LILA     |  |
| ge        | AMARILLO |  |
|           |          |  |

- J220 Unidad de control para Motronic
- J248 Unidad de control para sistema de inyección directa diesel
- R Radio
- S12 Fusibles en el portafusibles/placa de relés
- S13 Fusibles en el portafusibles/placa de relés
- S237- Fusibles en portafusibles
- S242- Fuse 42 in fuse holder
- T8 Conector de 8 polos, en radio
- T10a Conector de 10 polos, naranja, detrás del tablero de instrumentos, izq.
- T16 Conector de 10 polos, de Autodiagnóstico, bajo tablero al centro
- T80 Conector de 80 polos, en J220

- 45 Punto de masa, detrás del tablero de instrumentos- centro
- en mazo de cables portón trasero
- (A4) Conexión positiva (58b) en el mazo de cables del tablero de instrumentos.
- (A21) Conexión (86s), en el mazo de cables del tablero de instrumentos
- (A23) Conexión (30al), en el mazo de cables del tablero de instrumentos
- (A76) Conexión (cable del diagnóstico k), en mazo de cables tablero de instrumentos
  - \*\* Sólo diesel
- \*\*\* Sólo gasolina

Conector de autodiagnóstico, conexión a radio

### Esquema de circuitos de Corriente

#### **Reloj Digital**

a partir de Enero 1998

1. Escriba el código de corriente desde el punto donde recibe alimentaciones.

No. 12/1

- 2. Coloree según código las lineas de alimentación y masas
- Indique con flechas el flujo de la corriente con ayuda de lámpara de diodos o multímetro

Para la localización de los relés, posición de fusibles y localización de conectores múltiples, ver sección "Localización de Componentes"



Colores de los fusibles

30A Verde

25A Blanco

20A Amarillo

15A Azul

10A Rojo

7.5A Café

5A Beige

### Esquema de circuitos de Corriente



| CÓDIGO DE |          |  |
|-----------|----------|--|
|           | COLOR    |  |
| WS        | BLANCO   |  |
| SW        | NEGRO    |  |
| ro        | ROJO     |  |
| br        | CAFÉ     |  |
| gn        | VERDE    |  |
| bl        | AZUL     |  |
| gr        | GRIS     |  |
| li        | LILA     |  |
| ge        | AMARILLO |  |

No. 12/2

- D Conmutador de encendido y arranque
- E1 Conmutador luz
- E20 Regulador alumbrado conmutadores e instrumentos
- J59 Relé de descarga para contacto X
- L75 Iluminación para display digital
- S10 Fusibles en el portafusibles/placa de relés
- S176-Fusible -4- (30), en portafusibles/batería
- Y2 Reloj digital
  - A2 Conexión positiva (15) en el mazo de cables del tablero de instrumentos
  - A4 Conexión positiva (58b) en el mazo de cables del tablero de instrumentos
  - Conexión positiva (30), en mazo de cables del tablero de instrumentos

- (A52) Conexión positiva (30), en mazo de cables tablero de instrumentos
- Conexión a masa -1-, en mazo de cables portón trasero
- Conexión a masa -2-, en el mazo de cables del tablero de instrumentos
- (500) Conexión a rosca -1- (30), en placa portarrelés
- (501)- Conexión a rosca -2- (30), en placa portarrelés

Reloj digital, luz de visualizador digital

#### Golf/Jetta

### Esquema de circuitos de Corriente

### Motor de Inyección 2.0 ltr. DIGIFANT, 85 kw Letras distintivas de motor ADC (Ed. 94-95) a partir de Febrero 1994

#### Dotación de relés

Dotación de relés y de conectores múltiples, ver también "Lugares de posicionamiento"



Colores de los fusibles

30A Verde

25A Blanco

20A Amarillo

15A Azul

10A Rojo

- 1. Anote el código de corriente desde el punto donde recibe alimentaciones.
- 2. Coloree según código las alimentaciones y masas.

No. 28

Haga lo anterior para los siguientes circuitos:

- A- Relé de descarga X
- B- Relé de alimentación a la U.M
- C- Circuito de bomba de combustible
- 3. En un vehículo, siga el flujo de corriente utilizando lampara de diodos o multímetro

### Golf/Jetta Esquema de circuitos de Corriente



- A Batería
- D Conmutador de encendido y arranque
- J59 Relé de descarga X
- T2 Conector doble, detrás de la placa de relés
- T2a Conector doble, en motor de arranque

Sólo transmisión automática

- 1 Cinta a masa, batería carrocería
- 119 Conexión a masa -1- en el ramal de cables de los faros.

**Motor Digifant 2.0 Lts. ADC** 

No. 28/1

#### Golf/Jetta

### Esquema de circuitos de Corriente No. 28/2



| CÓDIGO DE |          |  |  |
|-----------|----------|--|--|
|           | COLOR    |  |  |
| WS        | BLANCO   |  |  |
| SW        | NEGRO    |  |  |
| ro        | ROJO     |  |  |
| br        | CAFÉ     |  |  |
| gn        | VERDE    |  |  |
| bl        | AZUL     |  |  |
| gr        | GRIS     |  |  |
| li        | LILA     |  |  |
| ae        | AMARILLO |  |  |

- G22 Transmisor para velocímetro
- G39 Sonda lambda (00525-2342)
- G40 Transmisor Hall
- J169 Unidad de control del Digifant
- J217 Unidad de control para transmisión automática
- J226 Relé de bloqueo de arranque y luz de marcha atrás
- K Inserto de instrumentos
- N152- Transformador de encendido
- N157- Etapa final para transformador de encendido
- O Distribuidor de encendido
- P Conector de bujías
- Q Bujías
- T3a Conector de 3 polos, para la etapa final de potencia

Sólo transmisión automática

T4 - Conector de 4 polos a la sonda lambda

T10a - Conector de 10 polos para transmisión aut

T28 - Conector de 28 polos en inserto de instrumentos

T28a - Conector de 28 polos circular en compartimento motor próximo al distribuidor de encendido

T45 - Conector de 45 polos en unidad de control

1 -)Cinta a masa, batería - carrocería

### Golf/Jetta Esquema de circuitos de Corriente No. 28/3



- G42 I ransmisor de la temperatura del aire aspirado (00523-2322)
- J169 Unidad de control del Digifant
- J176 Relé de alimentación de corriente para unidau de control Digifant
- J217 Unidad de control para transmisión automática
- N30 Inyector cilindro 1
- N31 Inyector cilindro 2
- N32 Inyector cilindro 3
- N33 Inyector cilindro 4
- N71 Válvula para estabilización del régimen de ralentí
- N80 Válvula magnética 1 para sistema de dep. Carbón Activado
- T2d Conector de 2 polos, en el distribuidor de combustible
- T10a- Conector de polos, para transmisión automática

Sólo transmisión automática

- T28a Conector de 28 polos circular en compartimiento motor próximo al distribuidor de encendido
- T45 Conector de 45 polos, en unidad de control Digifant
- G3 Conexión positiva en la conducción de cables de los inyectores.
- (G4) Conexión positiva en la conducción de cables de los inyectores.

#### Golf/Jetta

### Esquema de circuitos de Corriente No. 28/4



| CÓDIGO DE |          |  |
|-----------|----------|--|
| COLOR     |          |  |
| WS        | BLANCO   |  |
| SW        | NEGRO    |  |
| ro        | ROJO     |  |
| br        | CAFÉ     |  |
| gn        | VERDE    |  |
| bl        | AZUL     |  |
| gr        | GRIS     |  |
| li        | LILA     |  |
| ge        | AMARILLO |  |

- G2 Transmisor para indicador de temperatura del líquido refrigerante
- G62 Transmisor para temperatura del líquido refrigerante
- G69 Potenciometro de la válvula de mariposa
- J17 Relé bomba combustible
- J169 Unidad de control del Digifant
- J217 Unidad de control para transmisión automática
- Inserto de instrumentos
- T3a Conector de 3 polos, en potenciometro de de mariposa de aceleración
- T10a Conector de 10 polos, para transmisión automática
- T16 Conector de 16 polos, de autodiagnóstico
- T28a Conector de 28 polos circular, en compartimiento motor próximo al distribuidor de encendido

Sólo transmisión automática

- T45 Conector de 45 polos, en unidad de control Digifant
- Tv2 Distribuidor de cables para borneo 30
- Tv13- Distribuidor de cables para señal de velocidad
- (18) Punto de masa, en el bloque motor
- Conexión a masa -1-, en el ramal de cables Digifant (94)

**Motor Digifant 2.0 Lts. ADC** 

#### Golf/Jetta

### Esquema de circuitos de Corriente No. 28/5



- F1 Conmutador de presión aceite de alta (1.8 bares)
- F22 Conmutador de presión aceite de baja (0.3 bares)
- G61 Sensor de cascabeleo
- J169 Unidad de control del Digifant
- J217 Unidad de control para transmisión atomatica
- J226 Relé de bloque de arranque y luz de marcha atrás
- K Inserto de instrumentos
- N25 Acoplamiento magnético del aire acondicionado
- T1x Conector simple, en el distribuidor de señales del autodiagnóstico
- T2 Conector de 2 polos, al compresor de aire acondicionado
- T2a Conector de 2 polos, en el distribuidor de señales de autodiagnóstico.

Sólo transmisión automática

- T10a Conector de 10 polos, para la transmisión automática
- T16 Conector de 16 polos, para autodiagnóstico
- T28 Conector de 28 polos, en el inserto de instrumentos
- T28a Conector de 28 polos circular, en compartimiento motor próximo al distribuidor de encendido
- T45 Conector de 45 polos, de la unidad de control del Digifat
- Tv14 Distribuidor de cables para autodiagnóstico
- K- Terminales de la Unidad de mando a memorias de averías
- L-Terminales de la Unidad de mando a memoria de averías

#### **Motor Digifant 2.0 Lts. ADC**

### Esquema de circuitos de Corriente No. 28/6



| CÓDIGO DE |          |  |
|-----------|----------|--|
| COLOR     |          |  |
| WS        | BLANCO   |  |
| SW        | NEGRO    |  |
| ro        | ROJO     |  |
| br        | CAFÉ     |  |
| gn        | VERDE    |  |
| bl        | AZUL     |  |
| gr        | GRIS     |  |
| li        | LILA     |  |
| ge        | AMARILLO |  |

- G Transmisor para el nivel de combustible
- G6 Bomba de combustible
- J217 Unidad de control para transmisión automática
- J226 Relé de bloqueo de arranque y luz de marcha atrás
- T4 Conector de 4 polos, en bomba de combustible
- T10a Conector de 10 polos, para transmisión aut.
- T28a Conector de 28 polos circular, en compartimiento motor próximo al distribuidor de encendido
- (18)- Punto de masa en el bloque motor

Sólo transmisión automática

#### **Motor Digifant 2.0 Lts. ADC**



Volkswagen de México. Desarrollo de Personal / Entrenamiento a la Red / Servicio. Para uso exclusivo de Entrenamiento de Volkswagen de México y su Red de Concesionarios Autorizados. La información técnica es válida a la fecha de la impresión. Volkswagen de México se reserva el derecho de hacer cualquier modificación de acuerdo a su conveniencia sin previo aviso.

© Copyright 2000 Prohibida su reproducción total o parcial GIB/VMOH 09/2000 "Volkswagen de México, S.A. de C.V. es una persona moral distinta de cada uno de los Concesionarios Autorizados Volkswagen y por tanto cada uno de ellos es responsable por los servicios, productos, precios, ofertas, información y demás condiciones que por sí mismos ofrezcan a través de este medio u otros medios publicitarios."