Exercices de probabilités

Martin Andrieux, Nathan Maillet

Variable aléatoire

Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires indépendantes définies sur un espace probabilisé (Ω,A,P) à valeurs dans $\{-1;1\}$, telles que, pour $n\geqslant 1$:

$$P(X_n = 1) = P(X_n = -1) = \frac{1}{2}$$

Pour $n \geqslant 1$, on pose $S_n = \sum_{k=1}^n X_k$.

- $1. \quad (a) \ \ \text{D\'emontrer que, pour tout } n \ \text{dans } \mathbb{N}, \ \frac{1}{(2n)!} \leqslant \frac{1}{2^n n!}.$
 - (b) Calculer, pour $\mathfrak n$ dans $\mathbb N$ et $\mathfrak t$ réel $\mathsf E \left(e^{tX_{\mathfrak n}} \right)$; en déduire $\mathsf E(e^{tX_{\mathfrak n}}) \leqslant e^{t^2/2}$.
- 2. Soit a un nombre réel strictement positif.
 - (a) Montrer que pour tout réel t positif : $P(S_n\geqslant a)\leqslant e^{-t\alpha}E(e^{tS_n}).$
 - (b) En déduire que $P(S_n\geqslant\alpha)\leqslant e^{-\alpha^2/2n}.$
 - (c) En déduire un majorant de $P(|S_n| \geqslant a)$.

Inégalités

Soit X une variable aléatoire suivant la loi de Poisson de paramètre $\lambda>0$. On note G_X sa série génératrice.

- 1. Montrer que $P(|X \lambda| \geqslant \lambda) \leqslant \frac{1}{\lambda}$; en déduire l'inégalité $P(X \geqslant 2\lambda) \leqslant \frac{1}{\lambda}$.
- 2. Montrer que, pour tout t dans $]1;+\infty[$ et pour tout $\mathfrak a$ réel positif non nul, $P(X\geqslant \mathfrak a)\geqslant \frac{G_{\chi}(t)}{t^{\mathfrak a}}.$
- 3. Déterminer le minimum sur $[1\,;+\infty[$ de la fonction $g:x\mapsto \frac{e^{t-1}}{t^2}.$
- 4. Calculer $G_{x}(t)$; en déduire $P(X\geqslant 2\lambda)\leqslant \left(\frac{e}{4}\right)^{\lambda}$.
- 5. Montrer que cette inégalité est meilleure que la première dès que λ prend des valeurs assez grandes.

1