TEXT EXTRACTION TROW INVESTIGATION

Nathalia Gómez

Javier Chacón

OBJETIVO

- Facilitar el manejo de gran cantidad de documentos
- Digitalizar información contenida en imágenes de textos escritos a mano

MOTIVACIÓN

- Crecimiento de una empresa
- Mejor Organización
- Facilidad en la búsqueda de información

IMPLEMENTACIÓN

```
012345678
012345678
0123456789
01234567
0105557843
```

 Análisis y cargue de los datasets utilizados:

- nist: 62 clases 700000 imágenes
- Iam: 10000 imágenes

		MODELO 1	
	Input 32x32	C1: feature maps 80@3x3	
Sides C		MaxPooling1 (2x2)	
		C2: feature maps 80@3x3	
		MaxPooling2 (2x2)	
		DropOut1 (0.1)	
		C3: feature maps 60@5x5	
		MaxPooling3 (2x2)	
		C4: feature maps 40@5x5	
		MaxPooling4 (2x2)	
		C5: feature maps 20@5x5	
		MaxPooling5 (2x2)	
		DropOut2 (0.1)	
		C6: feature maps 20@7x7	
		MaxPooling6 (2x2)	
		C7: feature maps 10@9x9	
		MaxPooling7 (1x1)	
		Flatten ()	
		Dense1: layer 2048	
		Dense2: layer 1024	
		Dense3: layer 512	
		Dense4: layer 256	
9.545°		Dense5: layer 128	i. įs
		Output: 62	

DEFINICIÓN MODELOS CNN

Primer modelo

Segundo Modelo:
 Inspirado en modelo
 ResNet50, duplicando una parte de la arquitectura de este modelo, añadiendo capas de Dropout luego de cada capa de BatchNormalization.

RESULTADOS DE LOS MODELOS

Modelo	Accuracy Obtenido
Modelo 1	83.7%
Modelo 2	85%

Gráfica modelo 2

Gráfica modelo 1

 Segmentación de la imagen a evaluar

Primer Método:Segmentación rígida

EVALUACIÓN DEL MODELO

 Segundo método: Cultivo de bacterias.

| 0/5 [00:00<?, ?it/s]

081

RESULTADO

REFERENCIAS

• R.Agrawal, V.S.Rathore, S.Maheshwari. (2020). Segmentation of Handwritten Text Using Bacterian Foraign Optimization (pp. 471-4979). New York, USA: Springel editorial.

