Vacances de Pâques

Mercredi 09 avril 2025

Exercices de révisions

Terminale Maths groupe 1

Exercice 1.

On considère le cube ABCDEFGH d'arête 1. On appelle I le point d'intersection du plan (GBD) avec la droite (EC).

L'espace est rapporté au repère orthonormé $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$.

- 1. Donner dans ce repère les coordonnées des points E, C, G.
- 2. Déterminer une représentation paramétrique de la droite (EC).
- 3. Démontrer que la droite (EC) est orthogonale au plan (GBD).
- **4. a.** Justifier qu'une équation cartésienne du plan (GBD) est :

$$x + y - z - 1 = 0$$
.

- **b.** Montrer que le point I a pour coordonnées $\left(\frac{2}{3}; \frac{2}{3}; \frac{1}{3}\right)$.
- **c.** En déduire que la distance du point E au plan (GBD) est égale à $\frac{2\sqrt{3}}{3}$.
- **5. a.** Démontrer que le triangle BDG est équilatéral.
 - **b.** Calculer l'aire du triangle BDG. On pourra utiliser le point J, milieu du segment [BD].
- **6.** Justifier que le volume du tétraèdre EGBD est égal à $\frac{1}{3}$.

On rappelle que le volume d'un tétraèdre est donné par $V = \frac{1}{3}Bh$ où B est l'aire d'une base du tétraèdre et h est la hauteur relative à cette base.

Exercice 2.

1. Partie A - Résolution d'une équation différentielle

On considère l'équation différentielle :

$$y' - 2y = e^{2x}$$
, (E).

- **1.** Démontrer que la fonction u définie sur \mathbb{R} par $u(x) = xe^{2x}$ est une solution de (E).
- **2.** Résoudre l'équation différentielle : y' 2y = 0 (E₀).
- **3.** Démontrer qu'une fonction v définie sur \mathbb{R} est solution de (E) si et seulement si v-u est solution de (E₀).
- 4. En déduire toutes les solutions de l'équation (E).
- **5.** Déterminer la fonction, solution de (E), qui prend la valeur 1 en 0.

2. Étude d'une fonction

Le plan est rapporté au repère orthonormé $(0, \vec{i}, \vec{j})$. Soit la fonction f définie sur \mathbb{R} par

$$f(x) = (x+1)e^{2x}.$$

On note $\mathscr C$ la courbe représentative de f dans le repère $\left(\mathbf{O},\ \overrightarrow{\iota}\ ,\ \overrightarrow{\jmath}\ \right)$.

- 1. Étudier la limite de f en $+\infty$ puis la limite de f en $-\infty$.
- **2.** Soit x un nombre réel. Calculer f'(x).

Étudier les variations de f puis dresser son tableau de variations.

Préciser le signe de f(x) pour tout réel x.

- **3.** Soit un réel α strictement inférieur à -1. On considère le domaine plan \mathcal{D} limité par \mathscr{C} , les droites d'équation $x = \alpha$, x = -1 et l'axe des abscisses.
 - **a.** À l'aide d'une intégration par parties, calculer l'aire $\mathcal{D}(\alpha)$ du domaine \mathcal{D} .
 - **b.** Déterminer la limite de $\mathcal{D}(\alpha)$ lorsque α tend vers $-\infty$.

Exercice 3.

Partie I.

Lors de la préparation d'un concours, un élève n'a étudié que 50 des 100 leçons.

On a mis 100 papiers contenant chacun une question dans une urne, ces questions portant sur des leçons différentes. Le candidat tire simultanément au hasard 2 papiers.

On donnera les réponses sous forme de fractions irréductibles.

- 1. Dénombrer le nombre total d'issues possibles.
- 2. Calculer la probabilité qu'il ne connaisse aucun de ces sujets.
- 3. Calculer la probabilité qu'il connaisse les deux sujets?
- 4. Calculer la probabilité qu'il connaisse un et un seul de ces sujets.
- 5. Calculer la probabilité qu'il connaisse au moins un de ces sujets.

Partie II.

On considère maintenant que l'élève a étudié n des 100 leçons (n étant un entier naturel inférieur ou égal à 100).

- 1. Quelle est la probabilité p_n qu'il connaisse au moins un de ces sujets?
- **2.** Déterminer les entiers n tels que p_n soit supérieur ou égal à 0,95.

Exercice 4.

Partie A

 \star Étude d'une fonction f et de sa courbe représentative $\mathscr C$ On considère la fonction f, définie sur]0; $+\infty$ [par

$$f(x) = \left(1 - \frac{1}{x}\right)(\ln x - 2)$$

et on désigne par \mathscr{C} sa courbe représentative relativement au repère $(0, \overrightarrow{\iota}, \overrightarrow{\jmath})$.

- 1. Déterminer les limites de f en $+\infty$ et 0.
- **2.** Montrer que f est dérivable sur]0; $+\infty[$ et calculer f'(x).
- **3.** Soit *u* la fonction définie sur]0; $+\infty[$ par $u(x) = \ln x + x 3$.
 - **a.** Étudier les variations de *u*.
 - **b.** Montrer que l'équation u(x) = 0 possède une solution unique α dans l'intervalle [2; 3]. Montrer que 2,20 < α < 2,21.
 - **c.** Étudier le signe de u(x) sur $[0; +\infty[$.
- **4. a.** Étudier les variations de f.
 - **b.** Exprimer $\ln \alpha$ comme polynôme en α .

Montrer que
$$f(\alpha) = -\frac{(\alpha - 1)^2}{\alpha}$$
.

Partie B.

 \star Étude d'une primitive de f sur]0; $+\infty$ [.

Soit F la primitive de f sur $[0; +\infty[$ qui s'annule pour x=1.

On appelle (Γ) la courbe représentative de F relativement au repère $\left(0, \overrightarrow{i}, \overrightarrow{j}\right)$.

- **1. a.** Sans calculer F(x), étudier les variations de F sur]0; $+\infty[$.
 - **b.** Que peut-on dire des tangentes à (Γ) en ses points d'abscisses 1 et e^2 ?
- **2.** Calcul de F(x).
 - **a.** x étant un réel strictement positif, calculer l'intégrale $\int_1^x \ln t \, dt$ (on pourra faire une intégration par parties).
 - **b.** Montrer que, pour tout *x* strictement positif :

$$f(x) = \ln x - \frac{\ln x}{x} + \frac{2}{x} - 2.$$

c. En déduire l'expression de F(x) en fonction de x.

Exercice 5.

Dans tout le texte e désigne le nombre réel qui vérifie ln e = 1. On considère la fonction f définie sur]0; $+\infty[$ par :

$$f(x) = \frac{\ln x + xe}{x^2}.$$

On note Γ sa courbe représentative dans un repère orthonormal $(0, \vec{u}, \vec{v})$, unité graphique : 2 cm.

Partie A: étude d'une fonction auxiliaire

On considère la fonction g définie sur]0; $+\infty[$ par

$$g(x) = -2\ln x - xe + 1.$$

- 1. Déterminer les limites de g en 0 et en + ∞ .
- **2.** Étudier le sens de variation de *g*.
- **3.** Montrer que dans [0,5;1] l'équation g(x)=0 admet une solution et une seule notée α . Déterminer un encadrement de α à 0,1 près.
- **4.** En déduire le signe de g(x) selon les valeurs de x.

Partie B : étude de la fonction f

- 1. Calculer les limites de f aux bornes de son ensemble de définition.
- 2. Soit f' la fonction dérivée de f. Vérifier que $f'(x) = \frac{g(x)}{x^3}$ puis étudier le sens de variation de f sur]0; $+\infty[$.
- 3. Montrer que $f(\alpha) = \frac{1 + \alpha e}{2\alpha^2}$.
- **4.** Donner le tableau de variations de f.
- **5.** Construire Γ .

Partie C: intégrale et suite

Soit $I_n = \int_{e^n}^{e^{n+1}} \frac{\ln t}{t^2} dt$ et $A_n = \int_{e^n}^{e^{n+1}} f(t) dt$ pour tout entier naturel n.

1. Montrer à l'aide d'une intégration par parties que :

$$I_n = \frac{n+1}{e^n} - \frac{n+2}{e^{n+1}}.$$

- **2. a.** Montrer que $A_n = I_n + e$.
 - **b.** Calculer I_0 et A_0 .
 - **c.** Donner une interprétation géométrique de A_0 .
- **3.** Montrer que la suite (A_n) converge vers e.

Exercice 6.

1. Une urne contient deux boules blanches et *n* noires, indiscernables au toucher.

Un joueur tire simultanément deux boules de l'urne et on note A_2 l'évènement : « le joueur a tiré deux boules blanches ».

Déterminer n pour que la probabilité $p(A_2)$ de l'évènement A_2 soit égale à $\frac{1}{15}$?

- **2.** Dans **toute la suite du problème** on prend n = 4.
 - A Un joueur tire simultanément deux boules de l'urne et on note :

 A_0 l'évènement : « le joueur a tiré deux boules noires » ;

 A_1 l'évènement : « le joueur a tiré une boule noire et une blanche » ;

A₂ l'évènement : « le joueur a tiré deux boules blanches ».

- **a.** Calculer la probabilité des évènements A_0 et A_1 .
- **b.** Lors de ce tirage, le joueur marque trois points pour chaque boule blanche tirée et marque deux points pour chaque boule noire tirée.

Soit *X* le nombre de points marqués.

Déterminer la loi de probabilité de la variable aléatoire X.

Déterminer E(X).

Exercice 7.

On considère l'équation différentielle

$$(E_0): y' = y$$

où y est une fonction dérivable de la variable réelle x.

- **1.** Démontrer que l'unique fonction constante solution de l'équation différentielle (E_0) est la fonction nulle.
- **2.** Déterminer toutes les solutions de l'équation différentielle (E_0) . On considère l'équation différentielle

(E):
$$y' = y - \cos(x) - 3\sin(x)$$

où y est une fonction dérivable de la variable réelle x.

- **3.** La fonction h est définie sur \mathbb{R} par $h(x) = 2\cos(x) + \sin(x)$. On admet qu'elle est dérivable sur \mathbb{R} . Démontrer que la fonction h est solution de l'équation différentielle (E).
- **4.** On considère une fonction f définie et dérivable sur \mathbb{R} . Démontrer que : « f est solution de (E) » est équivalent à « f-h est solution de (E_0) ».
- **5.** En déduire toutes les solutions de l'équation différentielle (*E*).
- **6.** Déterminer l'unique solution g de l'équation différentielle (E) telle que g(0) = 0.
- 7. Calculer:

$$\int_0^{\frac{\pi}{2}} \left[-2e^x + \sin(x) + 2\cos(x) \right] dx.$$

Exercice 8.

Dans l'espace rapporté à un repère orthonormé $(0, \vec{i}, \vec{j}, \vec{k})$, on considère :

- le plan \mathcal{P}_1 dont une équation cartésienne est 2x + y z + 2 = 0,
- le plan \mathscr{P}_2 passant par le point B(1; 1; 2) et dont un vecteur normal est $\overrightarrow{n_2} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$.
- 1. **a.** Donner les coordonnées d'un vecteur $\overrightarrow{n_1}$ normal au plan \mathscr{P}_1 .
 - **b.** On rappelle que deux plans sont perpendiculaires si un vecteur normal à l'un des plans est orthogonal à un vecteur normal à l'autre plan.

Montrer que les plans \mathcal{P}_1 et \mathcal{P}_2 sont perpendiculaires.

- **2.** a. Déterminer une équation cartésienne du plan \mathcal{P}_2 .
 - **b.** On note Δ la droite dont une représentation paramétrique est : $\begin{cases} x = 0 \\ y = -2 + t , & t \in \mathbb{R}. \\ z = t \end{cases}$

Montrer que la droite Δ est l'intersection des plans \mathscr{P}_1 et \mathscr{P}_2 .

On considère le point A(1; 1; 1) et on admet que le point A n'appartient ni à \mathcal{P}_1 ni à \mathcal{P}_2 .

On note H le projeté orthogonal du point A sur la droite Δ .

- **3.** On rappelle que, d'après la question 2. b, la droite Δ est l'ensemble des points M_t de coordonnées (0; -2+t; t), où t désigne un nombre réel quelconque.
 - **a.** Montrer que, pour tout réel t, $AM_t = \sqrt{2t^2 8t + 11}$.
 - **b.** En déduire que AH = $\sqrt{3}$.
- **4.** On note \mathcal{D}_1 la droite orthogonale au plan \mathcal{P}_1 passant par le point A et H_1 le projeté orthogonal du point A sur le plan \mathcal{P}_1 .
 - **a.** Déterminer une représentation paramétrique de la droite \mathcal{D}_1 .
 - **b.** En déduire que le point H_1 a pour coordonnées $\left(-\frac{1}{3}; \frac{1}{3}; \frac{5}{3}\right)$.
- 5. Soit H_2 le projeté orthogonal de A sur le plan \mathscr{P}_2 .

On admet que H_2 a pour coordonnées $\left(\frac{4}{3};\frac{2}{3};\frac{4}{3}\right)$ et que H a pour coordonnées (0;0;2).

Sur le schéma ci-contre, les plans \mathcal{P}_1 et \mathcal{P}_2 sont représentés, ainsi que les points A, H₁, H₂, H.

Montrer que AH_1HH_2 est un rectangle.

Exercice 9.

Partie A

Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = x - \ln(x^2 + 1)$$
.

- **1.** Résoudre dans \mathbb{R} l'équation : f(x) = x.
- **2.** Justifier tous les éléments du tableau de variations ci-dessous à l'exception de la limite de la fonction f en $+\infty$ que l'on admet :

X	$-\infty$	1		+∞
Signe de $f'(x)$	+	0	+	
Variations de f	-∞			→ +∞

- **3.** Montrer que, pour tout réel x appartenant à [0; 1], f(x) appartient à [0; 1].
- 4. On considère le script suivant écrit en langage Python :

def seuil ():
$$n=0$$
 while $n-\ln(n**2+1) < A$:
$$n=n+1$$
 return n

- a. Que fait ce programme?
- **b.** Déterminer la valeur *n* fournie par l'algorithme lorsque la valeur saisie pour *A* est 100.

Partie B

Soit (u_n) la suite définie par $u_0 = 1$ et, pour tout entier naturel n, $u_{n+1} = u_n - \ln(u_n^2 + 1)$.

- 1. Montrer par récurrence que, pour tout entier naturel n, u_n appartient à [0; 1].
- **2.** Étudier les variations de la suite (u_n) .
- **3.** Montrer que la suite (u_n) est convergente.
- **4.** On note ℓ la limite de la suite (u_n) .
 - **a.** Démontrer que $f(\ell) = \ell$.
 - **b.** En déduire la valeur de ℓ .

Exercice 10.

Une entreprise appelle des personnes par téléphone pour leur vendre un produit.

- L'entreprise appelle chaque personne une première fois :
 - la probabilité que la personne ne décroche pas est égale à 0,6;
 - si la personne décroche, la probabilité qu'elle achète le produit est égale à 0,3.
- Si la personne n'a pas décroché au premier appel, on procède à un second appel :
 - la probabilité que la personne ne décroche pas est égale à 0,3;
 - si la personne décroche, la probabilité qu'elle achète le produit est égale à 0,2.
- Si une personne ne décroche pas au second appel, on cesse de la contacter.

On choisit une personne au hasard et on considère les évènements suivants :

 D_1 : « la personne décroche au premier appel »;

 D_2 : « la personne décroche au deuxième appel »;

A : « la personne achète le produit ».

Les deux parties peuvent être traitées de manière indépendante

Partie A

- 1. Compléter l'arbre pondéré ci-contre.
- **2.** En utilisant l'arbre pondéré, montrer que la probabilité de l'évènement A est P(A) = 0.204.
- **3.** On sait que la personne a acheté le produit. Quelle est la probabilité qu'elle ait décroché au premier appel?

Partie B

On rappelle que, pour une personne donnée, la probabilité qu'elle achète le produit est égale à 0,204.

- 1. On considère un échantillon aléatoire de 30 personnes.
 - On note X la variable aléatoire qui donne le nombre de personnes de l'échantillon qui achètent le produit.
 - a. On admet que X suit une loi binomiale. Donner, sans justifier, ses paramètres.
 - **b.** Déterminer la probabilité qu'exactement 6 personnes de l'échantillon achètent le produit. Arrondir le résultat au millième.
 - **c.** Calculer l'espérance de la variable aléatoire *X*.

Interpréter le résultat.

- **2.** Soit *n* un entier naturel non nul.
 - On considère désormais un échantillon de *n* personnes.

Déterminer la plus petite valeur de n telle que la probabilité qu'au moins l'une des personnes de l'échantillon achète le produit soit supérieure ou égale à 0,99.