Introduction to Spectral Graph Theory and Graph Clustering

Chengming Jiang

ECS 231 Spring 2016 University of California, Davis

Motivation

Image partitioning in computer vision

Motivation

Community detection in network analysis

Outline

- I. Graph and graph Laplacian
 - Graph
 - Weighted graph
 - Graph Laplacian
- II. Graph clustering
 - Graph clustering
 - Normalized cut
 - Spectral clustering

An (undirected) **graph** is a pair G = (V, E), where

- $ightharpoonup \{v_i\}$ is a set of vertices;
- ightharpoonup E is a subset of $V \times V$.

- ▶ An edge is a pair $\{u, v\}$ with $u \neq v$ (no self-loop);
- ▶ There is at most one edge from u to v (simple graph).

▶ For every vertex $v \in V$, the **degree** d(v) of v is the number of edges adjacent to v:

$$d(v) = |\{u \in V | \{u, v\} \in E\}|.$$

▶ Let $d_i = d(v_i)$, the **degree matrix**

$$D = D(G) = \mathsf{diag}(d_1, \ldots, d_n).$$

$$D = \left(\begin{array}{cccc} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{array}\right).$$

▶ Given a graph G = (V, E), with |V| = n and |E| = m, the incidence matrix $\tilde{D}(G)$ of G is an $n \times m$ matrix with

$$\tilde{d}_{ij} = \left\{ \begin{array}{ll} 1, & \text{if } \exists k \text{ s.t. } e_j = \{v_i, v_k\} \\ 0, & \text{otherwise} \end{array} \right).$$

$$\tilde{D}(G) = \begin{pmatrix} v_1 & e_2 & e_3 & e_4 & e_5 \\ v_2 & 1 & 1 & 0 & 0 & 0 \\ v_2 & v_3 & 1 & 0 & 1 & 0 \\ v_4 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

▶ Given a graph G = (V, E), with |V| = n and |E| = m, the adjacency matrix A(G) of G is a symmetric $n \times n$ matrix with

$$a_{ij} = \begin{cases} 1, & \text{if } \{v_i, v_j\} \in E \\ 0, & \text{otherwise} \end{cases}.$$

$$A(G) = \left(\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array}\right)$$

A weighted graph is a pair G = (V, W) where

- $V = \{v_i\}$ is a set of vertices and |V| = n;
- $W \in \mathbb{R}^{n \times n}$ is called *weight matrix* with

$$w_{ij} = \left\{ \begin{array}{ll} w_{ji} \ge 0 & i \ne j \\ 0 & i = j \end{array} \right..$$

The underlying graph of G is $\widehat{G} = (V, E)$ with

$$E = \{\{v_i, v_j\} | w_{ij} > 0\}.$$

- ▶ If $w_{ij} \in \{0,1\}$, W = A, the adjacency matrix of \widehat{G} .
- ▶ Since $w_{ii} = 0$, there is no self-loops in \widehat{G} .

▶ For every vertex $v_i \in V$, the **degree** $d(v_i)$ of v_i is the sum of the weights of the edges adjacent to v_i :

$$d(v_i) = \sum_{j=1}^n w_{ij}.$$

▶ Let $d_i = d(v_i)$, the **degree matrix**

$$D = D(G) = \operatorname{diag}(d_1, \dots, d_n).$$

Remark:

Let d = diag(D) and denote $\mathbf{1} = (1, \dots, 1)^T$, then $d = W\mathbf{1}$.

▶ Given a subset of vertices $A \subseteq V$, we define the **volume** $\operatorname{vol}(A)$ by

$$vol(A) = \sum_{v_i \in A} d(v_i) = \sum_{v_i \in A} \sum_{j=1}^{n} w_{ij}.$$

- ▶ If vol(A) = 0, all the vertices in A are isolated.
- Example:

If
$$A=\{v_1,v_3\}$$
, then
$$\operatorname{vol}(A)=d(v_1)+d(v_3)$$

$$=(w_{12}+w_{13})+ (w_{31}+w_{32}+w_{34})$$

▶ Given two subsets of vertices $A, B \subseteq V$, we define the **links** links(A, B) by

$$\operatorname{links}(A,B) = \sum_{v_i \in A, v_j \in B} w_{ij}.$$

- ► A and B are not necessarily distinct;
- ▶ Since W is symmetric, links(A, B) = links(B, A);
- $ightharpoonup \operatorname{vol}(A) = \operatorname{links}(A, V).$

▶ The quantity cut(A) is defined by

$$\operatorname{cut}(A) = \operatorname{links}(A, V - A).$$

▶ The quantity assoc(A) is defined by

$$\operatorname{assoc}(A) = \operatorname{links}(A, A).$$

- ightharpoonup cut(A) measures how many links escape from A;
- ▶ assoc(A) measures how many links stay within A;
- $ightharpoonup \operatorname{cut}(A) + \operatorname{assoc}(A) = \operatorname{vol}(A).$

1.3 Graph Laplacian

Given a weighted graph G=(V,W), the (graph) Laplacian L of G is defined by

$$L = D - W$$
.

where D is the degree matrix of G.

Remark

 $D = \mathsf{diag}(W \cdot \mathbf{1}).$

I.3 Graph Laplacian

Properties of Laplacian

- 1. $x^T L x = \frac{1}{2} \sum_{i,j=1}^n w_{ij} (x_i x_j)^2$ for $\forall x \in \mathbb{R}^n$.
- 2. $L \geq 0$ if $w_{ij} \geq 0$ for all i, j;
- 3. $L \cdot 1 = 0$;
- 4. If the underlying graph of G is connected, then

$$0 = \lambda_1 < \lambda_2 \le \lambda_3 \le \ldots \le \lambda_n;$$

5. If the underlying graph of G is connected, then the dimension of the nullspace of L is 1.

I.3 Graph Laplacian

Proofs:

Property 1. Since L = D - W, we have

$$x^{T}Lx = x^{T}Dx - x^{T}Wx$$

$$= \sum_{i=1}^{n} d_{i}x_{i}^{2} - \sum_{i,j=1}^{n} w_{ij}x_{i}x_{j}$$

$$= \frac{1}{2} \left(\sum_{i}^{n} d_{i}x_{i}^{2} - 2\sum_{i,j=1}^{n} w_{ij}x_{i}x_{j} + \sum_{j=1}^{n} d_{j}x_{j}^{2}\right)$$

$$= \frac{1}{2} \left(\sum_{i,j=1}^{n} w_{ij}x_{i}^{2} - 2\sum_{i,j=1}^{n} w_{ij}x_{i}x_{j} + \sum_{i,j=1}^{n} w_{ij}x_{j}^{2}\right)$$

$$= \frac{1}{2} \sum_{i=1}^{n} w_{ij}(x_{i} - x_{j})^{2}.$$

I.3 Graph Laplacian

Property 2.

- ▶ Since $L^T = D W^T = D W = L$, L is symmetric.
- ▶ Since $x^T L x = \frac{1}{2} \sum_{i,j=1}^n w_{ij} (x_i x_j)^2$ and $w_{ij} \ge 0$ for all i, j, we have $x^T L x \ge 0$.

Property 3.

$$L \cdot 1 = (D - W)1 = D1 - W1 = d - d = 0.$$

Property 4 and **Property 5** skip for now, see §2.2 of [Gallier'14].

Outline

- I. Graph and graph Laplacian
 - ► Graph
 - Weighted graph
 - ► Graph Laplacian
- II. Graph clustering
 - Graph clustering
 - Normalized cut
 - Spectral clustering

II.1 Graph clustering

k-way partitioning: given a weighted graph G=(V,W), find a partition A_1,A_2,\ldots,A_k of V, such that

- $A_1 \cup A_2 \cup \ldots \cup A_k = V;$
- $A_1 \cap A_2 \cap \ldots \cap A_k = \varnothing;$
- ▶ for any i and j, the edges between (A_i, A_j) have low weight and the edges within A_i have high weight.

If k = 2, it is a two-way partitioning.

II.1 Graph clustering

► Recall: (two-way) cut:

$$\mathsf{cut}(A) = \mathsf{links}(A, \bar{A}) = \sum_{v_i \in A, v_i \in \bar{A}} w_{i,i}$$

where
$$\bar{A} = V - A$$
.

II.1 Graph clustering problems

The mincut is defined by

$$\min \mathsf{cut}(A) = \min \sum_{v_i \in A, v_i \in \bar{A}} w_{ij}$$

In practice, the mincut easily yields unbalanced partitions.

$$\min \mathsf{cut}(A) = 1 + 2 = 3;$$

The **normalized cut**¹ is defined by

$$\operatorname{Ncut}(A) = \frac{\operatorname{cut}(A)}{\operatorname{vol}(A)} + \frac{\operatorname{cut}(\bar{A})}{\operatorname{vol}(\bar{A})}.$$

¹Jianbo Shi and Jitendra Malik, 2000

Minimal Ncut:

$\min \mathsf{Ncut}(A)$.

$$\min \mathsf{Ncut}(A) = \tfrac{4}{3+6+6+3} + \tfrac{4}{3+6+6+3} = \tfrac{4}{9}.$$

1. Let $x = (x_1, \dots, x_n)$ be the *indicator vector*, such that

$$x_i = \left\{ \begin{array}{ll} 1 & \text{if } v_i \in A \\ -1 & \text{if } v_i \in \bar{A} \end{array} \right..$$

2. Then

$$\begin{array}{l} (\mathbf{1} + x)^T D(\mathbf{1} + x) = 4 \sum_{v_i \in A} d_i = 4 \cdot \text{vol}(A); \\ (\mathbf{1} + x)^T W(\mathbf{1} + x) = 4 \sum_{v_i \in A, v_j \in A} w_{ij} = 4 \cdot \operatorname{assoc}(A). \\ (\mathbf{1} + x)^T L(\mathbf{1} + x) = 4 \cdot (\operatorname{vol}(A) - \operatorname{assoc}(A)) = 4 \cdot \operatorname{cut}(A); \\ \text{and} \\ (\mathbf{1} - x)^T D(\mathbf{1} - x) = 4 \sum_{v_i \in \bar{A}} d_i = 4 \cdot \operatorname{vol}(\bar{A}); \\ (\mathbf{1} - x)^T W(\mathbf{1} - x) = 4 \sum_{v_i \in \bar{A}, v_j \in \bar{A}} w_{ij} = 4 \cdot \operatorname{assoc}(\bar{A}). \\ (\mathbf{1} - x)^T L(\mathbf{1} - x) = 4 \cdot (\operatorname{vol}(\bar{A}) - \operatorname{assoc}(\bar{A})) = 4 \cdot \operatorname{cut}(\bar{A}). \\ \text{(Please verify it after class.)} \end{array}$$

3. Ncut(A) can now be written as

$$\begin{aligned} \mathsf{Ncut}(A) &= \frac{1}{4} \left(\frac{(\mathbf{1} + x)^T L (\mathbf{1} + x)}{k \mathbf{1}^T D \mathbf{1}} + \frac{(\mathbf{1} - x)^T L (\mathbf{1} - x)}{(1 - k) \mathbf{1}^T D \mathbf{1}} \right) \\ &= \frac{1}{4} \cdot \frac{((\mathbf{1} + x) - b(\mathbf{1} - x))^T L ((\mathbf{1} + x) - b(\mathbf{1} - x))}{b \mathbf{1}^T D \mathbf{1}}. \end{aligned}$$

where k = vol(A)/vol(V), b = k/(1-k) and $\text{vol}(V) = \mathbf{1}^T D \mathbf{1}$.

4. Let y = (1 + x) - b(1 - x), we have

$$Ncut(A) = \frac{1}{4} \cdot \frac{y^T L y}{b \mathbf{1}^T D \mathbf{1}}$$

where

$$y_i = \left\{ \begin{array}{ll} 2 & \text{if } v_i \in A \\ -2b & \text{if } v_i \in \bar{A} \end{array} \right..$$

5. Since
$$b = k/(1-k) = \operatorname{vol}(A)/\operatorname{vol}(\bar{A})$$
, we have

$$\begin{split} \frac{1}{4}y^TDy &= \sum_{v_i \in A} d_i + b^2 \sum_{v_i \in \bar{A}} d_i = \operatorname{vol}(A) + b^2 \operatorname{vol}(\bar{A}) \\ &= b(\operatorname{vol}(\bar{A}) + \operatorname{vol}(A)) = b\mathbf{1}^T D\mathbf{1}. \end{split}$$

In addition,

$$y^T D \mathbf{1} = y^T \mathbf{d} = 2 \cdot \sum_{v_i \in A} d_i - 2b \cdot \sum_{v_i \in \bar{A}} d_i$$
$$= 2 \cdot \text{vol}(A) - 2b \cdot \text{vol}(\bar{A}) = 0$$

6. The minimal normalized cut is to solve the following binary optimization:

$$y = \arg\min_{y} \quad \frac{y^{T}Ly}{y^{T}Dy}$$

$$s.t. \quad y(i) \in \{2, -2b\}$$

$$y^{T}D\mathbf{1} = 0$$

$$(1)$$

7. Relaxation

$$y = \arg\min_{y} \quad \frac{y^{T}Ly}{y^{T}Dy}$$

$$s.t. \quad \mathbf{y} \in \mathbb{R}^{n}$$

$$y^{T}D\mathbf{1} = 0$$
(2)

Variational principle

- ▶ Let $A, B \in \mathbb{R}^{n \times n}$, $A^T = A$, $B^T = B > 0$ and $\lambda_1 \le \lambda_2 \le \dots \lambda_n$ be the eigenvalues of $Au = \lambda Bu$ with corresponding eigenvectors u_1, u_2, \dots, u_n ,
- ▶ then

$$\min_{x} \frac{x^{T} A x}{x^{T} B x} = \lambda_{1} , \quad \arg \min_{x} \frac{x^{T} A x}{x^{T} B x} = u_{1}$$

and

$$\min_{x^TBu_1=0}\frac{x^TAx}{x^TBx}=\lambda_2 \text{ , } \quad \arg\min_{x^TBu_1=0}\frac{x^TAx}{x^TBx}=u_2.$$

More general form exists.

- For the matrix pair (L,D), it is known that $(\lambda_1,y_1)=(0,\mathbf{1})$.
- ► Therefore, by the variational principle, the relaxed minimal Ncut problem (2) is equivalent to finding the second smallest eigenpair (λ_2, y_2) of

$$Ly = \lambda Dy \tag{3}$$

- ▶ *L* is extremely sparse and *D* is diagonal;
- ▶ Precision requirement for eigenvectors is low, say $\mathcal{O}(10^{-4})$.

Image segmentation: original graph

Image segmentation: heatmap of eigenvectors

Image segmentation $\min \mathsf{Ncut}$

Ncut remaining issues

- ➤ Once the indicator vector is computed, how to search the splitting point that the resulting partition has the minimal Ncut(A) value?
- ► How to use the extreme eigenvectors to do the *k*-way partitioning?

The above two problems are addressed in spectral clustering algorithm.

Spectral clustering algorithm [Ng et al, 2002]

Given a weighted graph G = (V, W),

- 1. compute the normalized Laplacian $L=D^{-\frac{1}{2}}(D-W)D^{-\frac{1}{2}};$
- 2. find k eigenvectors $X = [x_1, \ldots, x_k]$ corresponding to the k smallest eigenvalues of L;
- 3. form $Y \in \mathbb{R}^{n \times k}$ by normalizing each row of X such that $Y(i,:) = X(i,:)/\|X(i,:)\|$;
- 4. treat each Y(i,:) as a point, cluster them into k clusters via K-means with label $c_i = \{1, ..., k\}$.

The label c_i indicates the cluster that v_i belongs to.

Synthetic example: original data

Synthetic example: computed eigenvectors

Synthetic example: 2-way clustering

Synthetic example: 3-way clustering

Synthetic example: 4-way clustering

Further reading

- 1. Jean Gallier, Notes on elementary spectral graph theory applications to graph clustering using normalized cuts, 2013.
- 2. Jianbo Shi and Jitendra Malik, *Normalized cuts and image segmentation*, 2000.
- 3. Andrew Y Ng, Michael I. Jordan and Yair Weiss, *On spectral clustering: Analysis and an algorithm*, 2001