Computer Networks

(SCC.203)

Autonomous Systems and Interdomain Routing

Muhammad Bilal

Autonomous Systems

Inter and Intra domain routing

The scale of the Internet is massive for routing algorithms

- With billions of destinations can't store all destinations in routing tables
- Routing table exchange will swamp links
- Each network admin may want to control routing in its own network

Inter-AS routing: routing within an AS

most common intra-AS routing protocols:

- RIP: Routing Information Protocol [RFC 1723]
 - classic DV: DVs exchanged every 30 secs
 - no longer widely used
- EIGRP: Enhanced Interior Gateway Routing Protocol
 - DV based
 - formerly Cisco-proprietary for decades (became open in 2013 [RFC 7868])
- OSPF: Open Shortest Path First [RFC 2328]
 - link-state routing
 - IS-IS protocol (ISO standard, not RFC standard) essentially same as OSPF

Coping with scale using intra-domain Hierarchy

- OSPF two-level hierarchy: local area, backbone.
 - link-state advertisements flooded only in area, or backbone
 - each node has detailed area topology; only knows direction to reach other destinations

Internet approach to scalable routing

aggregate routers into regions known as "autonomous systems" (AS) (a.k.a. "domains")

All routers in AS must run same intra-domain protocol

Gateways perform inter-domain routing (as well as intradomain routing)

Interconnected ASes

forwarding table configured by intra- and inter-AS routing algorithms

- intra-AS routing determine entries for destinations within AS
- inter-AS & intra-AS determine entries for external destinations

Inter-AS routing: a role in intradomain forwarding

- suppose router in AS1 receives datagram destined outside of AS1:
- router should forward packet to gateway router in AS1, but which one?

AS1 inter-domain routing must:

- 1. learn which destinations reachable through AS2, which through AS3
- 2. propagate this reachability info to all routers in AS1

AS Numbers

- Each AS identified by an ASN number
 - 32-bit values (original protocol supports only 16-bit ones)
 - 64512 65535 are reserved
- Currently, there are ~ 70000 ASNs
 - AT&T: 5074, 6341, 7018, ...
 - Sprint: 1239, 1240, 6211, 6242, ...
 - Google 15169, 36561 (formerly YT), + others
 - Facebook 32934
 - Lancaster University: 786, 30847
 - https://bgp.he.net/net/148.88.0.0/16

Inter-domain Routing

- What are the requirements?
 - Scalability
 - Flexibility in choosing routes
 - Cost
 - Routing around failures
- BGP (Border Gateway Protocol): the de facto inter-domain routing protocol
 - "glue that holds the Internet together"

Internet inter-AS routing: BGP

- Border Gateway Protocol (BGP)
 - Policy based routing protocol
 - Uses a path vector protocol
- allows subnet (AS) to advertise its existence, and the destinations it can reach, to rest of Internet: "I am here, here is who I can reach, and how"
- Relatively simple protocol, but...
 - Entire world sees advertisements
 - Errors can screw up traffic globally
 - Policies driven by economics
 - How much \$\$\$ does it cost to route along a given path?
 - Not by performance (e.g. shortest paths)
- BGP provides each AS a means to:
 - eBGP: obtain subnet reachability information from neighboring ASes
 - iBGP: propagate reachability information to all AS-internal routers.
 - determine "good" routes to other networks based on reachability information and policy

eBGP, iBGP connections

gateway routers run both eBGP and iBGP protocols

BGP basics

- BGP session: two BGP routers ("peers") exchange BGP messages over semi-permanent TCP connection:
 - advertising paths to different destination network prefixes (BGP is a "path vector" protocol)
- when AS3 gateway 3a advertises path AS3,X to AS2 gateway 2c:
 - AS3 promises to AS2 it will forward datagrams towards X

Path attributes and BGP routes

- BGP advertised route: prefix + attributes
 - prefix: destination being advertised
 - two important attributes:
 - AS-PATH: list of ASes through which prefix advertisement has passed
 - NEXT-HOP: indicates specific internal-AS router to next-hop AS

policy-based routing:

- gateway receiving route advertisement uses *import policy* to accept/decline path (e.g., never route through AS Y).
- AS policy also determines whether to advertise path to other other neighboring ASes

BGP path advertisement

- AS2 router 2c receives path advertisement AS3,X (via eBGP) from AS3 router/3a
- based on AS2 policy, AS2 router 2c accepts path AS3,X, propagates (via iBGP)
 to all AS2 routers
- based on AS2 policy, AS2 router 2a advertises (via eBGP) path AS2, AS3, X
 to AS1 router 1c

BGP path advertisement (more)

gateway router may learn about multiple paths to destination:

- AS1 gateway router 1c learns path AS2, AS3, X from 2a
- AS1 gateway router 1c learns path AS3,X from 3a
- based on policy, AS1 gateway router 1c chooses path AS3,X and advertises
 path within AS1 via iBGP, if policy states otherwise, it will choose AS2,AS3,X

BGP messages

- BGP messages exchanged between peers over TCP connection
- BGP messages:
 - OPEN: opens TCP connection to remote BGP peer and authenticates sending BGP peer
 - UPDATE: advertises new path (or withdraws old)
 - KEEPALIVE: keeps connection alive in absence of UPDATES; also ACKs OPEN request
 - NOTIFICATION: reports errors in previous msg; also used to close connection
- iBGP relies on the IGP (Interior Gateway Protocol) metrics (such as OSPF cost or RIP hop count) for path selection within the AS.

BGP path advertisement

dest	interface
1c	1
X	1
	•••

- recall: 1a, 1b, 1d learn via iBGP from 1c: "path to X goes through 1c"
- at 1d: OSPF intra-domain routing: to get to 1c, use interface 1
- at 1d: to get to X, use interface 1

BGP path advertisement

interface
2
2

- recall: 1a, 1b, 1d learn via iBGP from 1c: "path to X goes through 1c"
- at 1d: OSPF intra-domain routing: to get to 1c, use interface 1
- at 1d: to get to X, use interface 1
- at 1a: OSPF intra-domain routing: to get to 1c, use interface 2
- at 1a: to get to X, use interface 2

Why different Intra-, Inter-AS routing?

scale:

 hierarchical routing saves table size, reduced update traffic performance:

• intra-AS: can focus on performance

• inter-AS: policy dominates over performance

Hot potato routing

- 2d learns (via iBGP) it can route to X via 2a or 2c
- hot potato routing: choose local gateway that has least intradomain cost (e.g., 2d chooses 2a, even though more AS hops to X): don't worry about inter-domain cost!

BGP: achieving policy via advertisements

ISP only wants to route traffic to/from its customer networks (does not want to carry transit traffic between other ISPs – a typical "real world" policy)

- A advertises path Aw to B and to C
- B chooses not to advertise BAw to C!
 - B gets no "revenue" for routing CBAw, since none of C, A, w are B's customers
 - C does not learn about CBAw path
- C will route CAw (not using B) to get to w

BGP: achieving policy via advertisements (more)

ISP only wants to route traffic to/from its customer networks (does not want to carry transit traffic between other ISPs – a typical "real world" policy)

- A,B,C are provider networks
- x,w,y are customer (of provider networks)
- x is dual-homed: attached to two networks
- policy to enforce: x does not want to route from B to C via x
 - .. so x will not advertise to B a route to C

BGP route selection

- router may learn about more than one route to destination AS, selects route based on:
 - 1. local preference value attribute: policy decision
 - 2. shortest AS-PATH
 - 3. closest NEXT-HOP router: hot potato routing
 - 4. additional criteria

Remember: Shortest AS Path != Shortest Path

Network layer: Summary

we've learned a lot!

- approaches to network control plane
 - per-router control (traditional)
 - logically centralized control (software defined networking)
- traditional routing algorithms
 - implementation in Internet: OSPF, BGP
- SDN controllers
 - implementation in practice: ODL, ONOS
- Internet Control Message Protocol
- network management

next stop: link layer!

Thanks for listening! Any questions?

Acknowledgment

- James F. Kurose University of Massachusetts, Amherst
- Keith W. Ross NYU and NYU Shanghai