TAI avril 2014

Exercice 1. Soit la matrice
$$A = \begin{pmatrix} 1 & 5 & 3 & 0 \\ -1 & 1 & 3 & 0 \\ 3 & -2 & -8 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
.

- a. Déterminer si elle est inversible
- b. Si A est inversible déterminer son inverse.
- c. Si A n'est pas inversible, déterminer une matrice B, non nulle, appartenant à $\mathcal{M}_4(\mathbb{R})$ telle que AB=(0).
- d. Est-ce que l'application linéaire f, de \mathbb{R}^4 vers \mathbb{R}^4 , dont la matrice standard est A, est une surjection de \mathbb{R}^4 sur \mathbb{R}^3 ? Justifier.
- e. Déterminer une base et la dimension de Ker(A).
- f. Déterminer la dimension et une base de col(A).
- g. On concatène cette base de Ker(A) et cette base de col(A); vérifier si cela donne une base de \mathbb{R}^4 .

Exercice 2. Soit la matrice
$$M = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$
.

- a. Déterminer si elle est inversible.
- b. On pose $V = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$; calculer MV.
- c. Déterminer le noyau de M et une base de Ker(M).
- d. Déterminer la dimension de l'espace des colonnes de M et une base de celui-ci.
- e. Montrer que la concaténation de cette base de Ker(M) et de cette base de col(M) crée une base de \mathbb{R}^4 ; on la désignera par B' et on désigne la base standard de \mathbb{R}^4 par B.
- f. Déterminer la matrice $P_{\mathbb{B}B'}$.

Exercice 3. Soit l'ensemble E des polynômes à coefficients réels et de degré inférieur ou égal à 3; on admettra que c'est un espace vectoriel de dimension 4 et qu'il possède comme base $\mathcal{B} = (1, X, X^2, X^3)$.

- a. Montrer que les polynômes $Q_0(X)=(X-1)(X-2)(X-3)$, $Q_1(X)=X(X-2)(X-3)$, $Q_2(X)=X(X-1)(X-3)$, $Q_3(X)=X(X-1)(X-2)$ forment une base de E que l'on désignera par B'.
- b. Déterminer la matrice de passage $P_{\rm BB'}$.
- c. On considère désormais E avec la base B', exprimer Q(0),Q(1),Q(2),Q(3) en fonction des coordonnées $x_0,\,x_1,\,x_2,\,x_3$ d'un polynôme Q(X) dans cette base.
- d. On définit l'application linéaire f de E vers \mathbb{R}^3 pour tout polynôme Q par $f(Q) = \begin{pmatrix} Q(1) \\ Q(2) \\ Q(3) \end{pmatrix}$; déterminer une base et la dimension de l'espace vectoriel $\left\{P(X) \in E, f(P) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}\right\}$.
- e. Montrer que f est une surjection de E sur \mathbb{R}^3 .

- a. Déterminer si N est inversible.
- b. Si N est inversible, déterminer son inverse.
- c. Montrer que l'application linéaire f \mathbb{R}^4 vers \mathbb{R}^4 , dont la matrice standard est N, est une bijection.

1

- d. Déterminer les solutions du système d'équations NX = $\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$
- e. Déterminer le noyau de N-2I et le noyau de N+2I (bases et dimensions).
- f. Montrer si on concatène des bases de chacun de ces noyaux on obtient une base de \mathbb{R}^4 .

Exercice 5. On désigne par U la matrice $\begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & -1 \end{pmatrix}$.

- a. Déterminer si U est inversible.
- b. Si U n'est pas inversible déterminer son noyau et une base de celui-ci.
- c. Déterminer une base de l'espace des colonnes de U.
- d. Montrer que la réunion des deux bases trouvées (dans l'ordre suivant: d'abord la base trouvée pour Ker(U), puis celle trouvée pour col(U)) est une base B' de \mathbb{R}^4 .
- e. Déterminer la matrice de passage de la base standard B de \mathbb{R}^4 à la base B'.
- f. Un vecteur v de \mathbb{R}^4 a pour coordonnées dans la base standard (1,1,1,1) déterminer ses coordonnées dans la base B'.

Exercice 6. On désigne par V la matrice $\begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$.

- a. Déterminer le noyau de V et l'espace des colonnes de V.
- b. Montrer que Ker(V) est inclus dans col(V); sont-ils égaux ?
- c. Montrer qu'il existe un entier n_0 tel que $\forall n \ge n_0 \ V^n = (0)$.
- d. Déterminer la dimension du sous-espace suivant de $\mathcal{M}_4(\mathbb{R})$: Vect (I_4, V, V^2, V^3, V^4) .
- e. Montrer que $J = -I_4 + V$ est inversible et déterminer son inverse.
- f. Déterminer l'ensemble des vecteurs colonnes $X \in \mathcal{M}_{4,1}(\mathbb{R})$ tels que VX = X.

Exercice 7. On considère l'espace vectoriel \mathbb{R}^4 et sa base standard $\mathcal{B} = (\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)$ et les vecteurs $v_1 = \varepsilon_1 - \varepsilon_2 + \varepsilon_3 - \varepsilon_4, v_2 = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_4$.

- a. Déterminer si la famille (v_1, v_2) est libre.
- b. Déterminer le rang de la matrice $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & -1 & 1 \\ 1 & 1 & 1 & 1 \\ -1 & 1 & -1 & 1 \end{pmatrix}$.
- c. Montrer que $Ker(A^2)=Ker(A)$ et déterminer leur dimension commune..
- d. Déterminer les dimensions de col(A) et de $col(A^2)$ et montrer que ces deux sous-espaces vectoriels sont égaux.
- e. On considère les vecteurs $v_3 = \varepsilon_1 \varepsilon_3$, $v_4 = \varepsilon_2 + \varepsilon_4$; montrer que (v_1, v_2, v_3, v_4) est une base de \mathbb{R}^4 que l'on désignera par \mathcal{B}' .
- f. Déterminer la matrice de passage $P_{\mathcal{BB}'}$.

Exercice 8. Soit f l'application linéaire de \mathbb{R}^3 vers \mathbb{R}^4 , de matrice standard $W = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ -1 & 4 & 1 \\ 2 & -8 & -2 \end{pmatrix}$.

- a. Déterminer $\mathrm{Ker}(\mathbf{W})$, sa dimension et une base.
- b. Déterminer l'espace des colonnes col(W) et une base.
- c. On désigne par F l'ensemble des $y \in \mathbb{R}^4$ pour lesquels l'équation f(x)=y possède des solutions; montrer que F est un espace vectoriel dont on déterminera une base.
- d. Montrer que quel que soit $y \in F$ l'ensemble des solutions de l'équation f(x)=y possède PLUS qu'une solution.
- e. On considère l'application g de $\mathcal{M}_3(\mathbb{R})$ vers $\mathcal{M}_{4,3}(\mathbb{R})$ définie par $M \longmapsto WM$; on admet qu'elle est linéaire et on désigne par $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ la base standard de \mathbb{R}^3 .

Montrer que si $v = v_1 \varepsilon_1 + v_2 \varepsilon_2 + v_3 \varepsilon_3$ appartient à Ker(g) alors, pour tout (a,b,c) de \mathbb{R}^3 la matrice $\begin{pmatrix} av_1 & bv_1 & cv_1 \\ av_2 & bv_2 & cv_2 \\ av_3 & bv_3 & cv_3 \end{pmatrix}$ appartient à Ker(g).

2

f. Montrer que Ker(g) est un espace vectoriel de dimension 3.

Exercice 9. Soit f l'application linéaire de \mathbb{R}^3 vers \mathbb{R}^3 , de matrice standard $Z = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$.

- a.. Déterminer une base et la dimension de Ker(Z).
- b. Déterminer la dimension et une base de l'espace des colonnes col(Z).
- c. Montrer que $Ker(Z^2)=Ker(Z)$.
- d. Montrer que $col(Z^2)=col(Z)$.
- e. Déterminer si les matrices I,Z,Z^2 sont liées.
- f. Montrer que si n est impair \mathbb{Z}^n est liée à \mathbb{Z} et si n est pair \mathbb{Z}^n est liée à \mathbb{Z}^2 .

Exercice 10. Soit la matrice $A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$.

- a. Calculer A^2 .
- b. On désigne par E l'ensemble des matrices de la forme $xI_4 + yA$; montrer que E un espace vectoriel dont on déterminera la dimension.
- c. Déterminer si I+A, I-A, sont inversibles.
- d. Montrer que si $x^2 \neq y^2$ xI+yA est inversible.
- e. Montrer que l'ensemble $\mathcal{F} = \{V \in \mathbb{R}^4, \mathcal{A} \mathcal{V} = V\}$ est un sous-espace vectoriel dont on déterminera une base et la dimension.
- f. Montrer que l'ensemble $G = \{V \in \mathbb{R}^4, AV = -V\}$ est un sous-espace vectoriel dont on déterminera une base et la dimension.
- g. Montrer que tout vecteur W de \mathbb{R}^4 s'écrit comme une somme V_1+V_2 où $V_1\in F, V_2\in G.$

Exercice 11. Soit $B = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}$.

- a. Déterminer une base et la dimension de Ker(B).
- b. Déterminer la dimension et une base de l'espace des colonnes col(B).
- c. Montrer que $Ker(B^2)=Ker(B)$.
- d. Montrer que $col(B^2)=col(B)$
- e. Déterminer si les matrices I,B,B² sont liées
- f. Montrer que si n
 est impair B^n est liée à B et si n
 est pair \mathbf{B}^n est liée à \mathbf{B}^2

Exercice 12. Soit $C = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

- a. Déterminer si C est inversible.
- b. Déterminer des matrices élémentaires dont le produit est égal à C.
- c. Déterminer la dimension et une base de l'espace des colonnes col(C).
- d. Montrer que les matrices I_4, C, C^2, C^3, C^4 sont liées.
- e. Quelle est la dimension du plus petit espace vectoriel qui contienne toutes les puissances de C?

Exercice 13. Soit $M = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$.

- a. Déterminer si M est inversible.
- b. Déterminer des matrices élémentaires dont le produit est égal à M.
- c. Déterminer la dimension et une base de l'espace des colonnes col(M).
- d. Montrer que les matrices I_4, M, M^2 sont liées.
- e. Quelle est la dimension du plus petit sous-espace vectoriel qui contienne toutes les puissssances de M ?

Exercice 14. Soit E=R₃[X], l'espace vectoriel des polynômes de degré inférieur ou égal à 3, qui possède la base $B = (1, X, X^2, X^3)$

3

- a. Montrer que les polynômes X^3 , $X^2(X-1)$, $X(X-1)^2$, $(X-1)^3$ forment une base de E, que l'on désignera
- b. Déterminer la matrice de passage $P_{\rm BB'}$ ainsi que le matrice de passage $P_{B'B}$.
- c. On s'intéresse aux polynômes qui ont exactement les mêmes coodonnées dans la base B et dans la base B'; en étudiant la matrice $P_{\rm BB'} - I_4$, déterminer ces polynômes.
- d. On considère l'application f de $R_3[X]$ vers lui-même qui, à tout polynôme P(X) associe le reste de sa division euclidienne par $X^2 - X$; montrer que f est une application linéaire, déterminer son noyau et une base $\mathcal C$ de celui-ci.
- e. Montrer que quel que soit le polynôme R(X) de degré inférieur ou égal à 1 il existe (au moins) un polynôme P(X) de $R_3[X]$ tel que R(X)=f(P(X)).
- f. Déterminer une base \mathcal{C}' de E qui contienne $\mathcal{C}.$

- **Exercice 15.** On considère une suite réelle $(U_n)_{n\in\mathbb{N}}$ définie par $\left\{ \begin{array}{l} U_0=1, U_1=2, U_2=-1\\ \forall n\in\mathbb{N}, U_{n+3}=-2U_{n+2}+U_{n+1}+2U_n \end{array} \right.$ a. On pose pour chaque n $V_n=\left(\begin{array}{l} U_{n+2}\\ U_{n+1}\\ U_n \end{array} \right)$, déterminer une matrice A telle que $\forall n\in\mathbb{N}, V_{n+1}=\mathrm{AV}_n$.
- b. En vous inspirant d'exercices traités en classe déterminer les réels x tels que det(A-xI)=0, puis pour chacun de ces réels le noyau, une base et la dimension de Ker(A-xI).
- c. Montrer que la concaténation de ces bases fournit une base B' de \mathbb{R}^3 .
- d. On appelle B la base standard de \mathbb{R}^3 , déterminer $P_{BB'}$.
- e. Montrer en vous inspirant d'exercices traités en classe que $P_{\rm BB}^{-1}$ /AP $_{\rm BB}$, est une matrice diagonale, que l'on pourra désigner par D.
- f. Déterminer en vous inspirant d'exercices traités en classe la valeur de V_{20} , puis de U_{20} .

- a. Déterminer Ker(A³), une base et sa dimension.
- b. Déterminer col(A³), une base et sa dimension.
- c. Montrer que l'intersection de $Ker(A^3)$ et de $col(A^3)$ est égale à $\{0\}$.
- d. Montrer que la concaténation de cette base de $Ker(A^3)$ et de cette base de $col(A^3)$ fournit une base B' de \mathbb{R}^5 .
- e. En vous aidant de la base de $\operatorname{col}(A^3)$ montrer que le seul vecteur $v \in \operatorname{col}(A^3)$ tel que f(v) = 0 est 0.
- f. En vous aidant de la base de $col(A^3)$ montrer que $\forall w \in col(A^3) \exists ! v \in col(A^3)$ tel que f(v) = w.

Exercice 17. On considère une suite réelle $(U_n)_{n\in\mathbb{N}}$ définie par $\left\{ \begin{array}{l} U_0=1, U_1=2, U_2=-1\\ \forall n\in\mathbb{N}, U_{n+3}=U_{n+2}+4U_{n+1}-4U_n \end{array} \right.$ a. On pose pour chaque n $V_n=\left(\begin{array}{l} U_{n+2}\\ U_{n+1}\\ U_n \end{array} \right)$, déterminer une matrice A telle que $\forall n\in\mathbb{N}, V_{n+1}=\mathrm{AV}_n$.

- b. En vous inspirant d'exercices traités en classe déterminer les réels x tels que det(A-xI)=0, puis pour chacun de ces réels le noyau, une base et la dimension de Ker(A-xI).
- c. Montrer que la concaténation de ces bases fournit une base B' de \mathbb{R}^3 .
- d. On appelle B la base standard de \mathbb{R}^3 , déterminer $P_{BB'}$.
- e. Montrer en vous inspirant d'exercices traités en classe que $P_{\rm BB}^{-1}$, $AP_{\rm BB}$, est une matrice diagonale, que l'on pourra désigner par D.
- f. Déterminer en vous inspirant d'exercices traités en classe la valeur de V_{15} , puis de U_{15}

a. Déterminer Ker(A³), une base et sa dimension.

- b. Déterminer col(A³), une base et sa dimension.
- c. Montrer que l'intersection de $Ker(A^3)$ et de $col(A^3)$ est égale à $\{0\}$.
- d. Montrer que la concaténation de cette base de $\mathrm{Ker}(\mathbf{A}^3)$ et de cette base de $\mathrm{col}(\mathbf{A}^3)$ fournit une base B' de \mathbb{R}^5 .
- e. En vous aidant de la base de $\operatorname{col}(A^3)$ montrer que le seul vecteur $v \in \operatorname{col}(A^3)$ tel que f(v)=0 est 0.
- f. En vous aidant de la base de $\operatorname{col}(\mathbf{A}^3)$ montrer que $\forall w \in \operatorname{col}(\mathbf{A}^3) \ \exists \ ! v \in \operatorname{col}(\mathbf{A}^3)$ tel que $\operatorname{f}(\mathbf{v}) = \mathbf{w}$.

Exercice 19. Soit la matrice $A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$; on désigne par \mathcal{B} la base standard de \mathbb{R}^5 .

- a. Montrer que A est inversible.
- b. Trouver un entier $p \in \mathbb{N} \setminus \{0,1\}$, $A^p = A$; déterminer $\mathbf{t} = \min\{p \in \mathbb{N} \setminus \{0,1\}$, $A^p = A\}$.
- c. Déterminer le noyau de A-I, une base et la dimension de celui-ci.
- d. Déterminer le noyau de A+I, une base et la dimension de celui-ci.
- e. Montrer que la concaténation de ces deux bases fournit une famille libre, est-ce une base de \mathbb{R}^5 ?
- f. Décomposer A en la somme d'une matrice symétrique S et d'une matrice antisymétrique T; déterminer parmi S et T celle qui a le plus grand rang.

Exercice 20. Soit la matrice $S = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$; on désigne par \mathcal{B} la base standard de \mathbb{R}^5 .

- a. Calculer S^2 , S^3 ; déterminer si I_5, S, S^2, S^3 sont liées.
- b. Déterminer les réels x tels que $\det(S-xI_5)=0$.
- c. Déterminer le rang de A, la dimension de Ker(A) et une base de celui-ci.
- d. Déterminer une base de col(A).
- e. Montrer que la concaténation de ces deux bases fournit une base $\mathcal{B}'\;$ de $\;\mathbb{R}^5.$
- f. Déterminer la matrice de passage $P_{B'B}$.