- Azure Networking vNext -How to build modern connectivity for laaS, PaaS and SaaS

Eric Berg – Microsoft MVP Vice President @ CGI

Eric Berg

- Vice President Expert @ CGI
- Cloud, Datacenter and Management
- Azure, AWS, GCP
- info@ericberg.de
- @ericberg_de | @GeekZeugs
- www.ericberg.de | www.geekzeugs.de

Agenda

Networking Overview

Networking Recap

Connectivity

Integration

DNS

Build it

Q&A

Networking Overview

Connecting Azure regions to the global network

The Azure Network Edge

Internet and private network

Microsoft Global Network (WAN)

Networking Recap

Virtual Network

Isolated, logical network that provides connectivity for Azure Resources

User-defined address space (can be one or more IP ranges, not necessarily RFC1918)

- Connectivity for VMs in the same VNET
- Connectivity to external networks/on-prem DC's
- Internet connectivity

Subnet

Provides full layer-3 semantics and partial layer-2 semantics (DHCP, ARP, no broadcast / multicast)

Subnets can span only one range of contigous IP addresses

VMs can be deployed only to subnets (not VNETs)

Network Interface

Virtual NIC that connects a VM to a Subnet

One private IP address (private == included in the subnet's IP range, not necessarily RFC1918)

Private IP address always assigned via Azure DHCP

Switching/Routing in Azure VNETs

A VNET provides a switching/routing functionality that allows VMs to talk to each other

Please note that, in an Azure VNet, packets can flow between two different subnets without explicitly traversing any layer-3 device. Azure's network virtualization stack effectively works as a layer-3 switch

Connectivity

Connecting to Azure

Corniceting to 7 (2010				
Cloud		Customer	Characteristics	
	Internet Connectivity		 Internet facing with public IP addresses in Azure VPN connectivity with virtual appliances (Marketplace) 	
	Remote access point- to-site connectivity		 Remote Access to VNet/On-prem Connect from anywhere Mac, Linux, Windows Radius/AD authentication 	
	Site-to-site VPN connectivity	•	 High throughput, secure cross- premises connectivity BGP, active-active for high availability & transit routing 	
	ExpressRoute private connectivity	•	Private connectivity to Microsoft servicesMission critical workloads	

Connecting in Azure

Cloud		Cloud	Characteristics
	VNet Peering		 Same-/cross-region direct, private VM-to-VM connectivity NSG & UDR across VNets GatewayTransit for hub-and-spoke
	VNet-to-VNet via Gateways	• 📤	 Transitive routing via BGP and VPN gateways Secure connectivity via IPsec/IKE across Azure WAN links
	VNet-to-VNet via ExpressRoute circuit	• 📤	 Traverse ("hairpin") through ExpressRoute circuit & gateways Traffic is not encrypted

Azure Virtual WAN

NextGen Cloud Networking

Azure Bastion

Secure and seamless RDP and SSH access to your virtual machines

RDP/SSH to your workload using HTML5 standards-based web-browser, directly in Azure Portal

Resources can be accessed without public IP addresses

Supported Azure resources include VMs, VM Scale Sets, Dev-Test Labs

Azure Load Balancer

Azure Load Balancer

Allows you to scale your applications and create **high availability** and **resiliency** for your services and applications

Public

 A public Load Balancer maps the public IP address and port number of incoming traffic to the private IP address and port number of the VM and vice versa.

Internal

 An internal Load Balancer directs traffic only to resources that are inside a virtual network or that use a VPN to access Azure infrastructure.

Public Load Balancer

A public Load Balancer maps the public IP address and port number of incoming traffic to the private IP address and port number of the VM

Automatic reconfiguration

Instantly reconfigures itself as you scale instance up or down

Outbound connections (SNAT)

 All outbound flows from private IP addresses inside your virtual network to public IP addresses on the internet can be translated to a frontend IP address of the Load Balancer

Default Distribution Mode

 Azure Load Balancer distributes traffic evenly amongst multiple VM instance

Internal Load Balancer

An internal Load Balancer directs traffic only to resources inside a virtual network or that use a VPN to access Azure infrastructure

Within a virtual network

Cross-premises virtual network

Multi-tier applications

Line-of-business applications

Routing Preference

Routing via Microsoft-Network

Routing via Internet

Cross-Region Load Balancer

Challenge with Load Balancers

- Bound to a VNET
- Bound to a region
- Global Deployments have different Frontend IPs
- Manual changes required in case of a disaster

Cross-Region Load Balancer

- Load Balancer of Load Balancers
- Backends are regional public LBs
- No private / internal LBs, no UDP

Gateway Load Balancer

Gateway Load Balancer allow to easily deploy, scale, and manage NVAs

Benefits

- integrate NVA transparently
- Easy add or remove scaling
- Improve NVA availability
- Chain applications across regions and subscriptions

DEMO – LOAD BALANCERS

Azure Traffic Manager (TM) Azure Front Door (AFD)

Azure Traffic Manager

Azure Traffic Manager is a DNS-based traffic load balancer that enables you to distribute traffic optimally to services across global Azure regions

- Global DNS load balancing
- Automatic failover when an endpoint goes down
- Combine with hybrid applications
 Supports external, non-Azure endpoints so that it can be used with hybrid cloud and on-premises deployments
- Distribute traffic for complex deployments
 Use nested Traffic Manager profiles for
 sophisticated, flexible rules for complex
 deployments

Azure Front Door

Azure Front Door Service provides a scalable and secure entry point for fast delivery of your global web applications

- SSL offload and application acceleration
- Global HTTP load balancing with instant failover
- Application Firewall and DDoS protection
- Centralized traffic orchestration view

Single or multi-region app and API acceleration

Improve HTTP performance and reduce page load times

Load balancing at the Edge and fastfailover

Build always-on application experiencés that fail-fast (safely)

Integrated SSL, WAF and DDoS

Protect and scale your application to global users, devices, traffic and attacks

Traffic Manager or Front Door?

Traffic Manager	Front Door
Any protocol: Because Traffic Manager works at the DNS layer, you can route any type of network traffic; HTTP, TCP, UDP, etc.	HTTP acceleration: With Front Door traffic is proxied at the Edge of Microsoft's network. Because of this, HTTP(S) requests see latency and throughput improvements reducing latency for SSL negotiation and using hot connections from AFD to your application
On-premise routing: With routing at a DNS layer, traffic always goes from point to point. Routing from your branch office to your on-premises datacenter can take a direct path; even on your own network using Traffic Manager	Independent scalability: Because Front Door works with the HTTP request, requests to different URL paths can be routed to different backend/regional service pools (microservices) based on rules and the health of each application microservice
Billing format: DNS-based billing scales with your users and for services with more users, plateaus to reduce cost at higher usage	Inline security: Front Door enables rules such as rate limiting and IP ACL-ing to let you protect your backends before traffic reaches your application

Traffic Manager or Front Door?

What to use?

DEMO – LOAD BALANCING

OK ...

... but that's only outside networks

Service Endpoints and Private Link

PaaS Services and Networking

PaaS Services are designed to be accessed via public endpoints

Two main challenges

- Access "internal" data sources from PaaS (e.g. present SAP data in Azure WebApp)
- Access PaaS Services from "internal" Systems (e.g. use Azure SQL DB with an app running in a VM with no Internet access)

Ways to integrate PaaS into networks

PaaS Services and Networking

Deploy a dedicated service	Use Service Endpoints	Utilize Private Links / Endpoints
Deploy customer specific service instance into own VNET – also for 3 rd Party Integrate PaaS Services into VNET	Access to public endpoints via MS Backbone Private IP –> Public IP allowed	Private Endpoint (NIC) for your PaaS providing private IP addresses
PaaS → VNET (VNET → PaaS)	VNET → PaaS	VNET → PaaS
App Service VNET Integration Integration Service Environments App Service Environment Azure Kubernetes Service (AKS) 	Azure Storage Azure Databases Azure KeyVault Azure Cognitive Services 	Azure Automation Azure Data Factory Azure IoT Hub Azure Migrate
Azure NetApp Files Dedicated HSM	Azure Container Registry (Preview)	Azure Private Link Services (own)

- VNet to PaaS service via the Microsoft backbone
- Destination is still a public IP address. NSG opened to Service Tags
- Need to pass NVA/Firewall for exfiltration protection

- VNet Paas via the Microsoft backbone
- PaaS resource mapped to Private IP Address. NSGs restricted to VNet space
- Built-in data exfiltration protection

Data Exfiltration Protection

- Private Endpoint maps specific PaaS resource to an IP address, not the entire service
- Access only to mapped PaaS resource
- Data exfiltration protection is in-built

Secure connectivity from on-premises

Internet
Public
Internet

PUBLIC IP ACL

SQL

On-premises

Storage

SQL

Good

- Traffic traverses the Internet
- Secured using ACLs on Public Ips
- Corporate firewall open to Azure Public IPs

Better

- Traffic stays within Microsoft and partner network
- MS Peering draws Microsoft Public IP traffic
- Corporate Firewall open to Azure Public IPs

- Traffic is fully private traversing the Microsoft network
- No exposure of public IPs on either side
- Corporate Firewall open only to private

Azure Private Link

Private Link for Azure Storage, SQL DB and customer own service

Private access from Virtual Network resources, peered networks and on-premise networks

In-built Data Exfiltration Protection Predictable private IP addresses for PaaS resources Unified experience across PaaS, Customer Owned and marketplace Services

There is even more ...

Your Own Private Link Service

- Create or Convert your existing services into Private Link Service
- VNet-VNet Connectivity without worrying about overlapping IP Space
- No regional, tenant, subscription or RBAC restrictions
- Easily Scale and manage your service

Private Link Service

Create Private Link Service

- Application running behind Standard Load Balancer can be converted into Private Link service with one click of a button/one API call
- Private Link Service tied to Frontend IP configuration of Standard Load Balancer
- Frontend IP Configuration can be either Public or Private

Consume Private Link Service

 Create a Private Endpoint in your VNet linking to Private Link Service.

 Multiple consumers can connect to same service. No RBAC restrictions.

Approval Workflow

Create your application behind a standard Load Balancer.

Create a Private Link
Service attached to SLB FE
IP.

Subnet

- 3 Share the private link service ID (Alias/ARM URI) with consumers. You can either do it offline or advertise publicly.
- <ServiceName>. <GUID>.
 <region>.azure.privatelinkservice

6 Act on the request – Accept/Reject It.

- Create a Private endpoint in any subnet by specifying a private Link service URI/Alias.
- Configure your DNS record for easy access using the private IP address (CA).
 - 7 Connection Succeeded/Rejected.

Complete Picture

(10.0.0.0/16)

Virtual Network (10.0.0.0/16)

DNS for PaaS?!

What about DNS?

Public DNS is "no longer working" when using Azure Private Endpoints! E.g. Storage Account:

https://demostordus2021.blob.core.windows.net

C:\Users\EricBerg>nslookup demostordus2021.blob.core.windows.net
Server: unifi.localdomain

Address: 192.168.1.1

Non-authoritative answer:

Name: blob.ams07prdstr05a.store.core.windows.net

Address: 52.239.143.36

Aliases: demostordus2021.blob.core.windows.net

https://demostordus2021pep.blob.core.windows.net

C:\Users\EricBerg>nslookup demostordus2021pep.blob.core.windows.net

Server: unifi.localdomain Address: 192.168.1.1

Non-authoritative answer:

Name: blob.ams07prdstr02a.store.core.windows.net

Address: 20.150.37.228

Aliases: demostordus2021pep.blob.core.windows.net

demostordus2021pep.privatelink.blob.core.windows.net

Azure Private DNS

Create Private DNS zones for your services (can be done at creation !!! ATTENTION)

DEMO – Private Link / Endpoint

Azure Private DNS at Scale

Consider Enterprise CAF Solution

- Prepare central private DNS zones
- Deny creation of Private DNS zones in spokes via policy
- Create Azure Policy to "DeployIfNotExisits" a DNS Zone Group to Private Endpoints

Solution will take care of everything

BUT

- bound to one tenant, as policy resides in one tenant
- Only one DNS Zone supported per policy

How are things built?

WestUS WestEurope

WestUS

WestEurope

WestEurope

techtask

» Leading through the sea of clouds »

Want to dive deeper?!

Azure PaaS, but as private as possible...

Stephan Graber – 14:25

Azure Virtual Network Manager: The future of network management?

Marcel Zehner – 15:40

