Exercise

Using an autoencoder to pre-train an image classifier: split the MNIST data to training and test sets. 1) Train a deep denoising autoencoder on the full training set. Check that the autoencoder works well (i.e. check if the images are fairly well reconstructed), and visualize the low-level features. Visualize images that most activate each neuron in the coding layer. 2) Build a classification deep neural network, by reusing the lower layers of the autoencoder. Train it using only 10% of the training set. How does the performance of this classifier compare to the same classifier trained on the full training set?

Approach:

- Developed Encoder-Decoder model
- Trained the model with MNIST data
 - For this, we don't need labelled data as we only want to project the higher dimensional image to non-linear lower-dimensional data
- And the error matrix we can use can be MSE
- Lower level filters are visualized
 - o conv2D 1
 - o conv2D 2
- CNN based supervised model is trained with using the Autoencoder model's early layers
 - Using only 10% of the training dataset
- The same model was trained with the full dataset
- The accuracy and other evaluation matrix are compared

Results:

Structure of Encoder-Decoder model:

Model: "encoder"

Layer (type)	Output	Shape	Param #
encoder_input (InputLayer)	(None,	28, 28, 1)	0
conv2d_1 (Conv2D)	(None,	14, 14, 32)	320
conv2d_2 (Conv2D)	(None,	7, 7, 64)	18496
flatten_1 (Flatten)	(None,	3136)	0
latent_vector (Dense)	(None,	32)	100384

Total params: 119,200 Trainable params: 119,200 Non-trainable params: 0

Model	:	"dec	oder"

Layer (type)	Output Shape (None, 32)		Param # 0
decoder_input (InputLayer)			
dense_1 (Dense)	(None,	3136)	103488
reshape_1 (Reshape)	(None,	7, 7, 64)	0
conv2d_transpose_1 (Conv2DTr	(None,	14, 14, 64)	36928
conv2d_transpose_2 (Conv2DTr	(None,	28, 28, 32)	18464
conv2d_transpose_3 (Conv2DTr	(None,	28, 28, 1)	289
decoder output (Activation)	(None,	28, 28, 1)	0

Total params: 159,169 Trainable params: 159,169 Non-trainable params: 0

Denoising on "noisy" test images:

Original images in top rows, Corrupted Input in middle rows, Denoised Input in third rows

 Visualize images that most activate each neuron in the encoding layer Conv2D_1 output:

Conv2D_2 output:

Part 2 : Using the Encoder model as a lower level feature detector and train the model:

Layer (type)	Output Shape	Param #
encoder (Model)	(None, 32)	119200
dense_5 (Dense)	(None, 16)	528
dense_6 (Dense)	(None, 16)	272
dense_7 (Dense)	(None, 10)	170

Total params: 120,170 Trainable params: 970

Model: "sequential 2"

Non-trainable params: 119,200

Result with 10% of data:

	precision	recall	f1-score	support	0 -	1000
0	0.92	0.95	0.93	980	2-	
1	0.97	0.97	0.97	1135		800
2	0.91	0.87	0.89	1032		
3	0.92	0.89	0.90	1010		
4	0.88	0.95	0.92	982	4-	600
5	0.85	0.88	0.86	892		
6	0.93	0.92	0.92	958		400
7	0.91	0.90	0.91	1028	6 -	400
8	0.90	0.88	0.89	974		
9	0.93	0.88	0.90	1009		200
					8 -	
accuracy			0.91	10000		
macro avg	0.91	0.91	0.91	10000		0
weighted avg	0.91	0.91	0.91	10000	0 2 4 6 8	

Result with 100% of data:

Conclusion:

- We can say that just by using the initial layers of AE, the model is able to fit the dataset with really very fewer data without losing accuracy.
- AE is able to denoise the images very effectively
 - The images contain salt and pepper noise the extent to which humans are not able to recognize the digit, yet AE performs well.