CONJUNTO DE EJERCICIOS

- 1) Dados los puntos (0,1), (1,5), (2,3), determine el *spline* cúbico.
- 2) Dados los puntos (-1,1), (1,3), determine el *spline* cúbico sabiendo que $f'(x_0) = 1$, $f'(x_n) = 2$.
- 3) Diríjase al pseudocódigo del *spline* cúbico con frontera natural provisto en clase, en base a ese pseudocódigo complete la siguiente función:

```
def cubic_spline(xs: list[float], ys: list[float]) -> list[sym.Symbol]:
       Cubic spline interpolation ``S``. Every two points are interpolated by a cubic polynomial
       ``S_{j}`` of the form ``S_{j}(x) = a_{j} + b_{j}(x - x_{j}) + c_{j}(x - x_{j})^2 + d_{j}(x - x_{j})^3.`
     xs must be different but not necessarily ordered nor equally spaced.
      ## Parameters
     ···- xs, ys: points to be interpolated
     ## Return
       - List of symbolic expressions for the cubic spline interpolation.
     points = sorted(zip(xs, ys), key=lambda x: x[0]) # sort points by x
     \cdotsxs = [x for x, _ in points]
       ys = [y for _, y in points]
     n = len(points) - 1 # number of splines
     h = [xs[i + 1] - xs[i] for i in range(n)] # distances between contiguous xs
       for i in range(1, n):
           alpha[i] = 3 / h[i] * (ys[i + 1] - ys[i]) - 3 / h[i - 1] * (ys[i] - ys[i - 1])
```

https://github.com/ztjona/EPN-numerical-analysis/blob/main/cubic splines.ipynb

4) Usando la función anterior, encuentre el spline cúbico para:

```
xs = [1, 2, 3]

ys = [2, 3, 5]
```

5) Usando la función anterior, encuentre el spline cúbico para:

```
xs = [0, 1, 2, 3]

ys = [-1, 1, 5, 2]
```

6) Use la función cubic_spline_clamped, provista en el enlace de Github, para graficar los datos de la siguiente tabla.

		Curva 1	Curva 2					Curva 3			
i	x_i	$f(x_i)$	$f'(x_i)$	i	x_i	$f(x_i)$	$f'(x_i)$	i	x_i	$f(x_i)$	$f'(x_i)$
0	1	3.0	1.0	0	17	4.5	3.0	0	27.7	4.1	0.33
1	2	3.7		1	20	7.0		1	28	4.3	
2	5	3.9		2	23	6.1		2	29	4.1	
3	6	4.2		3	24	5.6		3	30	3.0	-1.5
4	7	5.7		4	25	5.8					
5	8	6.6		5	27	5.2					
6	10	7.1		6	27.7	4.1	-4.0				
7	13	6.7									
8	17	4.5	-0.67								