

Okoliš, održivi razvoj i ublažavanje klimatskih promjena

ZEMLJINA ATMOSFERA I OZONSKI OMOTAČ

Prof. dr. sc. Željko Tomšić

Sadržaj predavanja

- Zemljina atmosfera
- Ozon i ozonske "rupe"
- Tvari koje oštećuju ozonski omotač
- Povezanost ozonskog omotača i klimatskih promjena
- Montrealski protokol
- EU i zaštita ozonskog omotača

Zemljina atmosfera

- skoro prozirni omotač od plinova, snabdijeva nas zrakom koji udišemo
- regulira temperaturu našeg planeta
- filtrira opasni dio Sunčevog zračenja

Zemljina atmosfera (nastavak)

- oblik atmosfere je sličan obliku Zemlje i s njom se neprekidno okreće
- ima **masu** od oko 5,15 × 10¹⁵ tona držeći se za zemlju gravitacijskom privlačnošću, masa atmosfere je približno milijunti dio mase Zemlje
- oko 99.9% ukupne atmosferske mase nalazi se u sloju do 50 km iznad
 tla (! ekvatorijalni polumjer Zemlje 6370 km), a 50% u sloju do 5 km
- atmosferu čine temeljni sastavni plinovi (kisik i dušik) i mnoštvo plinova s bitno nižim udjelom u masi atmosfere od kojih su neki, bez obzira na malenu koncentraciju, presudni za odvijanje mnogih procesa od značaja za okoliš
- tlak zraka opada s porastom nadmorske visine (niža gustoća zraka na višim nadmorskim visinama)

4

/Zavod za visoki n i energetiku

Zemljina atmosfera (nastavak)

 volumni sadržaj suhog zraka na površini i u unutrašnjosti kontinentalnog dijela Zemlje je približno slijedeći

Plin	Volumni sadržaj %
• N ₂	78,1) 99,9%
• O ₂	20.9
• Ar	0,93
• CO ₂	0,035 (350 ppm)
• Ne	0,0018
• CH ₄	0,00017 "plinovi u tragovima"
• Kr	0,00011
• H ₂	0,00005
• O ₃	0,000001-0,000004

- kao posljedica vertikalnih strujanja u atmosferi, taj sastav zraka ostaje gotovo nepromijenjen sve do gornje granice troposfere
- niži slojevi atmosfere (troposfera) sadrže stanovit postotak vodene pare te čestice soli i prašine te razne organske i neorganske sastojke

Podjela atmosfere na slojeve

Podjela atmosfere na slojeve

- ako promatramo promjenu temperature prema visini, u vertikalnom smjeru atmosfera se dijeli na nekoliko slojeva;
 - troposfera (najniži sloj, do 11 km)
 Sve se vremenske pojave događaju u troposferi
 - stratosfera (11 do 50 km)
 - mezosfera (50 do 85 km)
 - termosfera (od 85 do 800 km) i
 - najviši sloj iznad 800 km, egzosfera (njezina granica nije točno određena), je prijelazna zona između Zemljine atmosfere i međuplanetarnog prostora

Profil temperature

- troposfera najveći dio Sunčevog zračenja u troposferi je apsorbiran na površini Zemlje, hlađenje Zemljine površine, apsorpcija zračenja u plinovima atmosfere (CO₂, H₂O)
- stratosfera ozon apsorbira UV zračenje
- mezosfera velika udaljenost od Zemljine površine, mala gustoća zraka i koncentracija čestica koje apsorbiraju toplinsko zračenje, gubitak topline zračenjem (CO₂ koji prima toplinu iz nižih slojeva)
- termosfera direktna posljedica Sunčevog zračenja i apsorpcije na molekulama O₂ i N₂, temperatura je ovdje relativan pojam zbog male koncentracije molekula

prosječan pad temperature u troposferi je 6,5
 K/km

8

/Zavod za visoki na i energetiku

ATMOSFERA: Troposfera

- Visina troposfere je različita.
 - na ekvatoru 18-20 km,
 - iznad umjerenih širina 11-14 km, a
 - na polovima samo 8-10 km.
- Obuhvaća oko 90% atmosferske mase.
- Temperatura u troposferi pada s visinom prosječno 6,5°C po kilometru tako da na gornjoj granici iznosi oko -45°C nad polom, a do -80°C nad ekvatorom.
- Sve vremenske pojave se događaju u troposferi
- Debljina tropopauze je različita i iznosi od nekoliko stotina metara do dva kilometra.
 - U njoj prestaje pad temperature s visinom (izotermija), a dolazi i do porasta temperature (inverzija).

ATMOSFERA: Stratosfera

- Gornji dio u granicama 10 50 km
- Temperatura zraka se povećava s visinom do oko -3 °C
- Ozon ima glavnu ulogu u reguliranju temperaturnog režima stratosfere, jer je koncentracija vodene pare vrlo mala
- Temperatura zraka raste s koncentracijom ozona
- Sunčeva energija se pretvara u kinetičku energiju kada molekule ozona apsorbiraju UV zračenje što rezultira zagrijavanjem stratosfere

Sunčevo zračenje

- spektar Sunčevog zračenja obuhvaća valne duljine od 100 nm do 10 000 nm:
 - ultraljubičasto (UV) zračenje od 100 do 380 nm
 - vidljivo zračenje (svjetlost) od 380 do 780 nm i
 - infracrveno (IC) zračenje veće od 780 nm
- najveći dio energije Sunčevog zračenja odnosi se na IC zračenje (50%) i na vidljivo svjetlo (40%), a ultraljubičasto zračenje (UV) pridonosi s 10% ukupne energije koja dolazi do površine Zemlje

VIDLJIVO

ultraljubičasto se zračenje dijeli u tri spektralna područja:

Sunčevo zračenje - pozitivne strane

- Sunčevo zračenje je važan prirodni čimbenik zato jer stvara Zemljinu klimu i ima značajan učinak na čitav okoliš.
- ultraljubičasti dio Sunčevog spektra ima vrlo važnu ulogu u mnogim procesima u biosferi.
- ima nekoliko korisnih učinaka, ali može biti i vrlo štetno ukoliko prijeđe određenu "sigurnu" razinu
 - stvaranje D vitamina, važnog za pravilan rast kostiju

UV zračenje

UV zračenje

- Ako je iznos UV zračenja dovoljno visok, sposobnost samozaštite pojedinih bioloških jedinki nije dovoljna i jedinka može biti znatno oštećena.
- To se odnosi i na ljudski organizam, pogotovo na kožu i oči.
- Da bi se izbjegla štetnost izloženosti UV zračenju, uvedena je veličina UV indeks, koja bi trebala upozoravati ljude o stupnju štetnosti UV zračenja i načinu poduzimanja određenih zaštitnih mjera.

Atmosferski ozon i UV zračenje

- UV-C zračenje je potpuno apsorbirano u gornjoj atmosferi na molekulama kisika i ozona
- većinski dio UV-B zračenja je apsorbiran u stratosferi na molekulama ozona i samo nekoliko postotaka dolazi do Zemljine površine
- na površini Zemlje je Sunčevo UV zračenje sastavljeno od velikog iznosa
 UV-A zračenja i malog iznosa UV-B zračenja.
- UV-B zračenje ima štetno djelovanje na ljudsko zdravlje; UV-A je manje štetno (manja energija)
- s obzirom da je ozon glavni apsorber UV-B zračenja, intenzitet UV-B zračenja na Zemljinoj površini jako zavisi o ukupnoj koncentraciji ozona u atmosferi i o debljini ozonskog sloja

UV zračenje

- UV-C zračenje iznimno štetno je za živi svijet ali ga kisik i ozon u potpunosti apsorbiraju u višim slojevima atmosfere
- Do površine planete dopire najviše UV-A koje je ljudima potrebno za sintezu D vitamina
- Prevelike količine UV-A zračenja imaju učinak na potkožno tkivo te mogu prouzročiti prerano starenje kože
- **UV-B** zračenje je u velikoj mjeri apsorbirano na molekulama ozona, a i preostali i dio koji dolazi do tla može izazvati najprije **crvenilo i plikove** na koži, a kasnije i teže **bolesti** te razna oštećenja

Zavod za visoki napon i energetiku

17

Ozonski omotač: Značaj za život na Zemlji

- Kod **životinja**, baš kao kod ljudi, povećana izloženost može uzrokovati rak kože.
- Također pojačana izloženost UV-B zrakama može imati utjecaj na rane stadije razvitka mnogih vrsta (mutacija).
- Kod gotovo svih predstavnika biljnog svijeta, od najsitnijeg planktona do najvećeg stabla, pretjerana izloženost UV-B zrakama može usporiti proces rasta.
- Posljedice ovih gubitaka vidljive su na smanjenju prinosa usjeva (pšenice za 1%, kukuruza za 1,4%, soje za 2,8%), poremećajem u morskom lancu prehrane i smanjenju prirodnih bogatstava.
- Oštećenja morskog života povećane količine UV zraka uzrokuju povećanu brigu o zdravlju morskog planktona koji gusto naseljava 2 gornja metra oceana
- Stanjenje ozonskog omotača i prodiranje UV zraka ima utjecaj i na globalno zagrijavanje, zajedno sa drugim uzročnicima zagrijavanja atmosfere: ugljičnim dioksidom, metanom, dušičnim oksidima, klorofluorougljikovodicima

Ozon

- ozon je relativno nestabilna molekula koja se sastoji od 3 atoma kisika
- ozon je otkriven 1839. Godine njemački znanstvenik Christian F. Schonbein
- nastaje reakcijom molekule kisika O₂ sa slobodnim kisikovim atomom nastalim razbijanjem molekule kisika pod djelovanjem UV zračenja (λ < 200 nm)
- karakterizira ga jedinstveni miris koji se često osjeća tokom munji i izboja električne opreme.

Ozone Molecule

■ Ime je nastalo od grčke riječi ozein = mirisati

Nastajanje ozona

- stratosferski ozon nastaje i uništava se primarno UV zračenjem
- zrak u stratosferi je kontinuirano izložen UV zračenju sa Sunca
- kada visokoenergetska UV zraka udari molekulu običnog kisika O₂
 ona se podijeli u dva pojedinačna atoma kisika
- slobodni atom kisika tada može reagirati s molekulom kisika O₂ i formirati molekulu ozona O₃

Ozon u atmosferi

- ima ga vrlo malo u sloju zraka koji se nalazi uz površinu Zemlje.
- najveći dio ozona (oko 90%) nalazi se u stratosferskom sloju (ozonosfera), a poznat je pod nazivom ozonski omotač
- ozonski sloj se proteže od 15-50 km visine, ali je najkoncentriraniji između 20 i
 25 km.
- sav ozon iz atmosfere tvorio bi na morskoj razini sloj debeo samo 3-4 mm.
- uloga ozona O₃ u atmosferi je dvojaka:
 - dok njegovo prisustvo u troposferi predstavlja problem (izaziva bolesti dišnog sustava itd.),
 - u stratosferi je neophodan za održavanje zdravlja i života na Zemlji.

Ozonski omotač: Dobar i loš ozon

- Kada je blizu površine Zemlje u zraku koji dišemo ozon je štetan polutant koji uzrokuje oštećenja pluća, tkiva i nasada i razmatra se kao "loš ozon"
- Ozon je snažan fotokemijski oksidant koji oštećuje gumu, plastiku i sav biljni i životinjski svijet.
- Reagira sa automobilskim ispušnim plinovima i benzinskim parama i stvara sekundarne polutante kao što su aldehidi i ketoni
- Ozonska zagađenja nastala u urbanim sredinama mogu se proširiti na okolna ruralna i šumska područja koja su stotinama km uz vjetar

Troposferski ozon (loš)

- količina ozona u troposferi povećala se unazad 50 godina dvostruko što je posljedica emisija ispušnih plinova vozila te drugih antropogenih izvora (izgaranje fosilnih goriva)
- troposferski ozon dolazi u neposredan dodir sa živim organizmima i tu do izražaja dolazi njegova štetnost:
 - snažno reagira s drugim molekulama,
 - u visokim koncentracijama je toksičan,
 - može oštetiti površinsko tkivo biljaka i životinja.
- dokazan je štetan učinak ozona na prinos usjeva, rast šuma i ljudsko zdravlje.
- zbog svojih snažnih oksidativnih svojstava u industriji se ozon upotrebljava za pročišćavanje vode i zraka te kao sredstvo za izbjeljivanje.

Stratosferski ozon (dobar)

- **stratosferski sloj ozona upija** najveći dio (77%) štetnog ultraljubičastog UV-B zračenja.
- upijajući UV zrake ozon predstavlja izvor topline u stratosferi (u ovom sloju porastom visine temperatura raste) čime ozon igra i važnu ulogu u temperaturnoj strukturi same atmosfere
- bez filterske uloge ozonskog sloja, život na Zemlji ne bi bio moguć zbog prodiranja UV-B zraka

Raspodjela ozona u atmosferi

24

Zavod za visoki nap energetiku –

Ozonski omotač: Najvažniji čimbenici koji utječu na UV zračenje koje dolazi do tla

- Visina Sunca kut između horizonta i smjera prema Suncu.
- Za velike visine Sunca UV zračenje je puno intenzivnije jer zrake sa Sunca prolaze kraći put kroz atmosferu i zato prolaze kroz manje područje apsorpcijskih tvari.
- UV ozračenje ovisi jako o visini Sunca, ono se mijenja sa:
 - geografskom širinom,
 - dobom godine
 - dobom dana
 - nadmorskom visinom.
- UV zračenje najjače u tropskom području, ljeti, u vrijeme podneva.

Z:

Antropogeno uništavanje ozona

• **klor** (Cl) ispušten iz freona i **brom** (Br) iz halona su dvije najvažnije tvari koje uzrokuju uništenje ozona

atom klora je pravi katalizator za uništenje ozona, nastaje u procesu

fotodisocijacije

26

zavod za visoki nap energetiku

■ 1 atom klora može prevesti 100 000 molekula ozona O₃ u kisik O₂

Tvari koje oštećuju ozonski omotač

- tvari koje sadrže u različitim kombinacijama kemijske elemente: klor, fluor, brom, ugljik i vodik
 - Klorofluorougljici-CFC (CFCl₃, CF₂Cl₂, CClF₃, C₂F₃Cl₃, C₂F₄Cl₂, C₂F₅Cl)
 - ugljikov tetraklori (CCl₄)
 - metilni kloroform (CH₃CCl₃)
 - klorofluorougljikovodici-HCFC (C₂H₃FCl₂, C₂H₃F₂Cl)
 - haloni (CCIF₂Br, CF₃Br)

28

/Zavod za visoki n i energetiku

Namjena tvari koje oštećuju ozonski omotač

- U tvari koje oštećuju ozonski omotač se ubrajaju i:
 - haloni (CClF₂Br i CF₃Br) koji se koriste prvenstveno u uređajima za gašenje požara i u protupožarnim instalacijama
 - freoni (klorofluorougljici, CFC) koji se nalaze i koriste u:
 - aerosolima gdje služe kao potisni plin deodoranta, parfema, lakova za kosu, medicinskih preparata, insekticida i sl.,
 - industriji namještaja kao sredstvo za pjenjenje pri proizvodnji pjenastih guma,
 - industriji fleksibilnih i krutih poliuretanskih pjena za termoizolaciju
 - proizvodnji plastičnih masa
 - sredstvima za čišćenje i odmašćivanje u elektroindustriji i u domaćinstvima kao otapala,
 - hladnjacima i ledenicama, hladnjačama, klima uređajima i toplinskim pumpama *

^{*} CFC-ovi zamijenjeni s HFC-ovima, npr. HFC-134A (R-134A); iako ne oštećuju ozonski omotač zbog velikog potencijala stakleničkog plina HFC-134A se u rashladnim uređajima prvo zamijenio s HFC-410A (R-410A) i konačno Uredbom EU CE517/2014 sve radne tvari obvezno se zamjenjuju radnom tvari HFC-32 (R32) difluorometan CH₂F₂ (popis svih radnih tvari s najvažnijim svojstvima)

vod za visoki napon nergetiku

Ozonska rupa

- prve pretpostavke o tome što sve ljudska djelatnost može nanijeti ozonskom omotaču objavljene su početkom 70.-ih god. prošloga stoljeća
- ranih osamdesetih dokazano je oštećenje ozonskog omotača nad Antarktikom
 - Antarktička "ozonska rupa" je područje antarktičke stratosfere u kojem je od 1975. god. koncentracija ozona pala na 33% vrijednosti prije 1975.
 - najizraženija su oštećenja nad Antarktikom vidljiva svako antarktičko proljeće (rujan-listopad)
- u posljednje vrijeme ozonska rupa javlja se i iznad Arktika tj.
 sjevernog pola

Mjerenje ozona u atmosferi (DU)

 Dobson unit (100 DU=1 mm za STP-standard conditions for temperature and pressure)

30

/Zavod za visok i energetiku

smanjenje koncentracije ozona iznosi 30-40%, a u najgorim slučajevima do 95% Ovdje se najveći povijesni obim ozonske rupe – 28,4 miliona km² – dogodio u rujnu 2000. Ova površina je šest puta veća od teritorije EU.

Ozonska rupa 2023. bila je veća u usporedbi s 2022.

Ozonska rupa

- Ozonskom rupom naziva se izrazito niska koncentracija ozona u stratosferi koja se pojavljuje prvenstveno nad polarnim krajevima.
- Razaranje ozonskog sloja odvija se na površini polarnih stratosferskih oblaka uz prisutnost UV zračenja.
- Ovi oblaci nastaju pri ekstremno niskim temperaturama (cca. 80 °C) nad polarnim krajevima.
- Sadrže ledene kristaliće u kojima su zarobljene tvari/plinovi koje oštećuju ozonski sloj, a koje su ovdje dospjele emisijama iz prizemnog sloja gdje su to inertni spojevi.
- Nakon oslobađanja na površini oblaka oni ulaze u prirodni ciklus nastanka stratosferskog ozona i na taj način smanjuju njegovu koncentraciju te dolazi do stvaranja ozonske rupe.
- Stalna prisutnost štetnih tvari u atmosferi i vrlo hladna zima u stratosferi utjecali su na ovaj fenomen.

Ozonski omotač

- Antarktička ozonska rupa je područje antarktičke stratosfere u kojem je relativno odnedavno (od 1975. god) nivo ozona pao na 33% vrijednosti prije 1975.
- Područje s manje od 220 DU ozona
- To zapravo nije "rupa" već je to stvarno znatno stanjenje ili smanjenje koncentracije ozona
- Ozonska rupa nastaje tijekom antarktičkog proljeća od rujna do prosinca kada jaki zapadni vjetrovi počnu kružiti oko kontinenta i tu je preko 50% niskog stratosferskog ozona uništeno

/Zavod za visoki napor i energetiku

Ozonski omotač: Ozonska rupa

Ozonski omotač: Najveća ozonska rupa: 24. 09. 2006.

2021 Antarctic Ozone Hole 13th-Largest

Ozonska rupa se oporavlja zbog Montrealskog protokola i naknadnih amandmana koji zabranjuju ispuštanje štetnih kemikalija koje oštećuju ozonski omotač zvanih klorofluorougljikovodici ili CFC. Da je razina atmosferskog klora iz CFC-a danas toliko visoka kao početkom 2000-ih, ovogodišnja ozonska rupa bila bi veća za oko četiri milijuna četvornih kilometara pod istim vremenskim uvjetima. 2023/24.

2000

2005

2010

Stanje ozona-južna hemisfera

CAMS Director Vincent-Henri Peuch comments: "Since the signing of the Montreal Protocol, we have drastically reduced the emission of ozone depleting substances, giving space to the atmosphere to start its recovery. This is a lengthy process that involves many fluctuating factors that should be monitored to have a proper understanding of how the ozone layer is developing. The success of the Montreal Protocol is a testament to how effective actions to protect the global climate can be."

Listopad 2020. - Ozonska rupa nad Antarktikom dosegnula rekordnu veličinu

- OZONSKA rupa nad Antarktikom jedna je od najvećih i najdubljih u posljednjih nekoliko godina, a analize su pokazale da je dosegnula maksimalnu veličinu, ozonska rupa bez sumnje među najvećima u posljednjih 15 godina
- Postoji velika varijabilnost u tomu na koji se način ozonske rupe razvijaju svake godine.
- Ozonska rupa 2020. nalikuje onoj iz 2018., koja je bila prilično velika, no ova je definitivno jedna od najvećih u posljednjih petnaest godina
- Stručnjaci i dalje vjeruju da se ozonski omotač postupno oporavlja nakon usvajanja Montrealskog protokola, potpisanog 1987. godine, čiji je cilj postupno ukidanje supstancija koje oštećuju ozon.
- Klimatske projekcije ukazuju na to da bi se ozonski omotač mogao vratiti na razinu iz 1980. do 2060. godine.

Oštećenje ozona na sjevernoj hemisferi

- Na sjevernoj hemisferi oštećenje ozona obično je mnogo ograničenije u usporedbi s južnom hemisferom.
- Međutim, u arktičko proljeće 2020. mjerenja ozonske sonde pokazala su oštećenje ozona za koje je objašnjeno da se događa zbog neobično jakih, dugotrajnih niskih temperatura u stratosferi.
- Ozonska rupa 2019. bila je vrlo mala i kratkotrajna, čemu su najviše pridonijeli posebni meteorološki uvjeti.
- Konkretno, kolovoz i rujan 2019. pokazali su iznimno visoke temperature na visinama između 20 i 30 km iznad tla Antarktika, zaustavljajući stvaranje ledenih oblaka koji obično zarobljavaju molekule koje oštećuju ozonski omotač i koje, kada se oslobode tijekom proljeća na južnoj hemisferi, pokreću uništavanje ozona .

Ozonski omotač: Stanje nad Europom

- Ozonski sloj atmosfere iznad europskoga kontinenta tanji je čak 30 posto.
- Periodična stanjivanja ozona nisu ništa novo, no zabrinjava što su se počela događati češće nego prethodnih godina.
- Ozonski omotač iznad Europe motri se pomoću GOME-a (Global
 Ozone Monitoring Experiment), sustava montiranog na satelit ERS-
 - 2, koji ima ugrađen spektrometar što mjeri snagu ultraljubičastog zračenja na valnim duljinama od 240 do 790 nanometara.

Zašto ozonske "rupe" iznad polova

- atmosferska strujanja transportiraju plinove (freoni, haloni) prema polovima
- niske temperature uzrokuju stvaranje polarnih stratosferskih oblaka (PSC-polar stratospheric clouds) na čijoj površini dolazi do naglog porasta koncentracija štetnih plinova klora i broma i njihovih spojeva

HLADNIJA ANTARKTIČKA ZIMA TJERA Formaciju rupe prema jugu

Polarni vrtlog zraka

Zaštita ozonskog omotača

- 1973. godine znanstvenici Mario Molina i Sherwood Rowland prvi otkrivaju da klorofluorougljici (CFC) imaju veliku ulogu u uništavanju ozona
- od tada su se države širom svijeta složile da stvore međunarodne propise u nadi da će zaštititi ozonski omotač
- Međunarodni dogovori
 - Bečka konvencija o zaštiti ozonskog omotača 1985. godine.
 - Međunarodnom suradnjom znanstvenika, vladinih institucija i nevladinih udruga, donesen je 1987. godine Montrealski protokol o tvarima koje oštećuju ozonski omotač, o ograničenju proizvodnje štetnih plinova, kasnije pooštren brojnim revizijama o potpunoj zabrani proizvodnje istih
 - ratificiran od strane 197 zemalja

44

/Zavod za visoki na i energetiku

Ozonski omotač: Kontrola TOOO

- Bez kontrole tvari koje uništavaju ozon posljedice po cjelokupan život bile bi katastrofalne:
- količina UV-B zračenja pristiglog na Zemlju bila bi
 - dvostruko veća na srednjim širinama sjeverne hemisfere i
 - četverostruko veća na južnoj hemisferi –
 - melanomi kože, katarakti očiju i druga oboljenja zahvatili bi milijune

smatraju znanstvenici

Ozonski omotač: Kontrola TOOO

- Bez sustavne kontrole tvari koje oštećuju ozonski omotač stanje bi za pedeset godina moglo biti i do deset puta gore od sadašnjega, a razna oboljenja zahvatila bi milijune ljudi, predviđaju znanstvenici.
- Oštećenje ozonskog omotača obuhvatilo bi do 2050. najmanje 50% površine srednjih širina sjeverne hemisfere i 70% površine srednjih širina južne hemisfere.

Oporavak ozonske rupe

- Zahvaljujući smanjenoj i kontroliranoj upotrebi štetnih tvari, ozonska se rupa na nekim dijelovima smanjila.
- Ozonski sloj u dijelovima stratosfere oporavlja se za 1-3 % svakih deset godina od 2000. godine.
- Očekuje se da će se stratosferski ozon u srednjoj geografskoj širini iznad Arktika i sjeverne hemisfere oporaviti prije sredine 21. stoljeća (do 2035.), u južnoj hemisferi oko polovice stoljeća, a u arktičkom području do 2060. godine.
- Znanstvenici također ističu, ukoliko se nastavi sa smanjenjem upotrebe navedenih kemikalija, ozon bi se mogao potpuno oporaviti do 2070. godine
- Dobra je vijest da se situacija ipak poboljšava te da svatko od nas može učiniti nešto za zaštitu ozonskog sloja primjerice odabirom proizvoda koji ne sadrže štetne tvari i odlaganjem opasnog otpada na za to predviđena odlagališta.

Projekcija oporavka ozonskog omotača

48

Zavod za visoki nap energetiku

Koncentracija atoma Cl i Br (ppb) kao posljedica Montrealskog protokola

49

Zavod za visoki napo energetiku

EU i zaštita ozonskog omotača

- Zakonodavstvo EU o tvarima koje oštećuju ozon je jedno od najstrožih i najnaprednijih na svijetu.
- Kroz niz propisa, EU nije samo implementirala Montrealski protokol, već je često postupno ukidala opasne tvari brže nego što je međunarodna obveza.
- Trenutačna EU Uredba o ozonu (*Uredba (EZ) 1005/2009*) sadrži niz mjera kojima se osigurava viši stupanj ambicija.
- lako Montrealski protokol regulira proizvodnju tih tvari i njihovu trgovinu u rasutom stanju, Uredba o ozonu u većini slučajeva zabranjuje njihovu uporabu (određene su uporabe još uvijek dopuštene u EU-u).
- Nadalje, *Uredba regulira ne samo tvari u rasutom stanju, već i one sadržane u* proizvodima i opremi.

51

/Zavod za visoki nap i energetiku

Propisi Europske Unije o tvarima koje oštećuju ozonski sloj

- Propisi Europske Unije o tvarima koje oštećuju ozonski sloj i fluoriranim stakleničkim plinovima koji se primjenjuju u Hrvatskoj od 1. srpnja 2013.
 - 1. UREDBA (EZ) BR. 1005/2009 EUROPSKOG PARLAMENTA I VIJEĆA O TVARIMA KOJE OŠTEĆUJU OZONSKI SLOJ
 - Tvari koje oštećuju ozonski sloj (TOOS) kontrolirane tvari: tvari koje u različitim kombinacijama sadrže sljedeće kemijske elemente: klor, fluor, brom, ugljik i vodik
 - **CFC** (klorofluorougljici, npr. R11, R12) osnovna primjena u rashladnoj tehnici, klimatizaciji i dizalicama topline, dopuštena primjena za posebne namjene
 - HCFC (klorofluorougljikovodici, npr. R22, R406a) osnovna primjena u rashladnoj tehnici, klimatizaciji i dizalicama topline
 - haloni (1301 i 1211) primjena u protupožarnim aparatima i nepokretnim sustavima za gašenje požara dopušteno je samo za kritične primjene u iznimnim, strogo ograničenim slučajevima
 - ugljik tetraklorid (CCl4) dopušteno korištenje za neophodnu laboratorijsku i analitičku primjenu
 - metil bromid primjena u karanteni i prije otpreme te u izvanrednim okolnostima (u slučaju neočekivane pojave određenih štetnih organizama ili bolesti)

Propisi Europske Unije o tvarima koje oštećuju ozonski sloj

- Danom pristupanja Republike Hrvatske Europskoj uniji zabranjeno je:
 - stavljanje na tržište i korištenje kontroliranih tvari;
 - stavljanje na tržište kontroliranih tvari u nepovratnim spremnicima;
 - stavljanje na tržište proizvoda i opreme koji sadrže kontrolirane tvari ili o njima ovise;
 - uvoz i izvoz kontroliranih tvari ili proizvoda i opreme koji sadrže kontrolirane tvari;

EU i globalna potrošnja kontroliranih tvari koje oštećuju ozonski omotač

54

/Zavod za visoki napo i energetiku

Povezanost ozonskih rupa i klimatskih promjena

- smanjenje ozonskog omotača i klimatske promjene dva su različita problema, ali dok oboje mijenjaju globalne cikluse, ne mogu se promatrati odvojeno.
- Još uvijek postoje mnoge neizvjesnosti u vezi odnosa dvaju procesa.
- utvrđeno je nekoliko veza, posebno:
 - 1. Oba su procesa posljedica emisija koju uzrokuju ljudi.
 - 2. Mnoge tvari koje oštećuju ozon su također staklenički plinovi, poput CFC-11 i CFC-12.
 - 3. HFC-ovi, promovirani u zamjenu CFC-a, ponekad su jači staklenički plinovi od CFC-a koje zamjenjuju, ali ne oštećuju ozonski sloj. Te činjenice su uzete u obzir u pregovorima i odlukama i u Montrealskom i u Kyotskom protokolu.
 - 4. Sam ozon je staklenički plin. Stoga, njegovo uništavanje u stratosferi posredno pomaže hladiti klimu, ali samo u manjem obimu.
 - **5. Globalna promjena atmosferske cirkulacije** mogla bi biti uzrok nedavno primijećenog hlađenja stratosferske temperature. Ove niske temperature zimi stvaraju polarne stratosferske oblake iznad polova Zemlje, uvelike poboljšavajući kemijsko uništavanje ozona i stvaranje "rupa".
 - 6. Ljudska ranjivost na UV-B zračenje povezana je s albedom. U kontekstu globalnog zagrijavanja smanjuju se bijele površine i veća je vjerojatnost da će nam takvi procesi naštetiti.

Ozonski omotač: UV indeks

- Povećane količine UV zračenja koje stižu do tla i modni trend lijepoga tena, čine prijeko potrebnim da se javnost izvijesti jednostavnim, svima razumljivim informacijama o stupnju opasnosti od UV zračenja.
- Zajedničkim djelovanjem Svjetske zdravstvene organizacije (World Health Organization WHO), Svjetske meteorološke organizacije (World Meteorological Organization WMO), Programa Ujedinjenih naroda za okoliš (United Nations Environment Programme UNEP) i Međunarodne komisije za zaštitu od neionizirajućeg zračenja (International Commission on Non-Ionizing Radiation Protection ICNIRP) stvorena je nova veličina UV INDEKS.

Ozonski omotač: UV indeks

- UV indeks je broj koji pokazuje stupanj opasnosti od UV zračenja.
- Što je on veći, veća je i opasnost od štetnog djelovanja UV zračenja.

UV indeks:

- stupanj opasnosti od UV zračenja
- povezan je s učincima na kožu
- prognozira se za sutrašnji dan
- potrebno je poduzeti zaštitne mjere
- veći uv indeks, veća opasnost

/Zavod za visoki napon i energetiku

57

UV indeks

- UV indeks je parametar koji se izračunava pomoću kompjutorskih modela.
- Za izračun je ponajprije potrebno poznavati akcijski spektar.
- Akcijski spektar je funkcija koja opisuje relativnu djelotvornost UV zračenja za pojedine valne duljine u izazivanju određene biološke reakcije.
- Budući da su opekline najčešći štetni učinak na ljudskoj koži, za izračun UV indeksa koristi se eritemalni akcijski spektar CIE, koji opisuje reakcije kože na UV zračenje.
- Zatim je potrebno odrediti energiju UV zračenja po valnim duljinama, da se dobije energetski spektar.

UV indeks

- Izračunava se umnožak akcijskog i energetskog spektra i integrira (sumira) za sve valne duljine.
- Tako se dobiva biološki djelotvorno ozračenje.
- Biološki djelotvorno ozračenje se integrira (sumira) za određeni vremenski period izlaganja suncu kako bi se dobila djelotvorna UV doza.
- Djelotvorna UV doza se usrednji za promatrani vremenski interval i pomnoži s faktorom 40 kako bi se dobila brojčana vrijednost koja predstavlja UV indeks.

UV indeks

- Kao i UV zračenje, UV indeks se mijenja i tokom dana i tokom godine.
- Procjene UV indeksa za sredinu ljeta, za vedar dan, pokazuju da od 12 do 14 sati postoji vrlo visoka opasnost od UV zračenja.
- Sat vremena prije i sat nakon toga kritičnog perioda opasnost je visoka.
- Ujutro u 9 i 10 sati, te poslijepodne u 16 i 17 sati opasnost je umjerena, dok rano ujutro i kasno poslijepodne ne postoji gotovo nikakva opasnost od UV zračenja.
- Promatranjem vedrih dana tokom cijele godine utvrđeno je da najveća opasnost prijeti u svibnju, lipnju, srpnju i kolovozu, kada je UV indeks vrlo visok.
- Visoke vrijednosti su u travnju i rujnu, a umjerene u ožujku i listopadu.
- Tijekom zimskih mjeseci UV indeks je minimalan i nije potrebna posebna zaštita, osim za skijaše i ljude koji borave u planinama.

UV indeks kroz i kroz mjesece

60

avod za visoki nap energetiku UV index kroz dan

UV index kroz mjesece

UV indeks

- Osim vremenski, UV indeks se mijenja i s geografskom širinom.
- Ljudi koji putuju u različita klimatska područja, trebaju biti posebno na oprezu.
- UV indeks općenito je viši ako putujemo na jug, a niži idemo li prema sjeveru, no ima i iznimaka.
- Radi primjerene zaštite, najbolje se je prije putovanja informirati o UV indeksu na željenoj destinaciji i pratiti medijske prognoze kako bi boravak ondje bio siguran i ugodan.

UV indeks

- Na internet stranicama Državnog hidrometereološkog zavoda (http://prognoza.hr/prognoze_uvi_e.html) svakodnevno se objavljuje UVindeks za područje Hrvatske i Europe na temelju podataka prognostičkog modela njemačke meteorološke službe.
- Državni hidrometeorološki zavod za prognozu UV indeksa koristi model DM4
 Njemačke službe za prognozu vremena:
 http://www.dwd.de/DE/Home/home_node.html

■ Taj model pokriva područje Europe, a koristi satelitske podatke o količini ozona i temperaturi, te uz pomoć regresijskih jednadžbi izračunava vrijednosti UV indeksa.

63

/Zavod za visoki i energetiku	
----------------------------------	--

UV indeks

PUT svijetla	UV I	NDEKS	PREVENTIVNA ZAŠTITA	VRIJEME BORAVKA NA SUNCU, BEZ PREVENTIVE ZAŠTITE
	>9	Veoma velik		<15 min
	7 - 9	Velik		20 min
	4 - 7	Srednji		30 min
	2 - 4	Niski		30-60 min
	0 - 2	Minimalan		>60 min
PUT tamna	UV I	NDEKS	PREVENTIVNA ZAŠTITA	VRIJEME BORAVKA NA SUNCU, BEZ PREVENTIVE ZAŠTITE
			m M N	
	>9	Veoma velik		<30 min
	>9 7 - 9	Veoma velik Velik		<30 min 40 min
All nature			- 4	
All Harvey	7 - 9	Velik		40 min

UV index

- Vrijednosti UV indeksa 1 i 2 označuju nisku opasnost od UV zračenja.
- Većina ljudi može biti izložena suncu i više od sat vremena a da ne dobije opekline.
- Za zaštitu se preporuča korištenje sunčanih naočala.
- Za ljude koji imaju vrlo osjetljivu kožu i za novorođenčad nalaže se stalan oprez.
- Ukoliko moraju boraviti na suncu sredinom dana, dobro je upotrijebiti sunčane naočale i zaštitnu kremu.

Zbog odbijenog zračenja posebno oprezni moraju biti skijaši, planinari, plivači i jedriličari.

/Zavod za visoki napo i energetiku

UV index

- Vrijednosti UV indeksa 8, 9 i 10 označuju vrlo visoku opasnost od UV zračenja.
- Za zaštitu se preporuča nošenje šešira sa širokim obodom, sunčanih naočala i odjeće s dugih rukavima, te korištenje zaštitnih krema.
- Maksimalno valja smanjiti boravak na suncu u doba dana između 11 i 16 sati.
- Djeca mogu dobiti opekline za manje od 10 minuta.

UV zračenje može prodrijeti kroz odjeću od rijetkog tkanja i naštetiti koži.

UV index

- Vrijednosti UV indeksa 11 i iznad označuju ekstremnu opasnost od UV zračenja.
- Za zaštitu se preporuča boravak u zatvorenom prostoru u doba dana između 11 i 16 sati.
- Ukoliko je izlazak neizbježan, potrebno je nositi šešir sa širokim obodom, sunčane naočale i odjeću dugih rukava od gustog tkanja, koristiti zaštitne kreme i izbjegavati boravak na izravnom suncu.
- Djeca mogu dobiti opekline za manje od 5 minuta.

Film ili knjiga uz osvježenje u kući puno su zdraviji od ležanja na plaži

Međunarodni ugovori i propisi

- Kada su postali svjesni činjenice o štetnosti ovih tvari na ozonski omotač, znanstvenici su kroz Ujedinjene narode potaknuli inicijativu kako bi spriječili daljnja oštećenja. Prvi korak u definiranju ovih aktivnosti bila je <u>Bečka konvencija o zaštiti ozonskog omotača</u> kojoj je 1985. godine pristupila 21 država Europe obvezujući se da će štiti ljudsko zdravlje i okoliš od štetnih utjecaja koji mogu nastati uslijed oštećenja ozonskog omotača.
- Nakon Bečke konvencije, znanstvenici su dugotrajnim istraživanjima utvrdili koje ljudskim aktivnostima proizvedene tvari oštećuju ozonski omotač, i koliki im je faktor oštećenja ozonskog omotača (ODP faktor).
- Daljnjom međunarodnom suradnjom znanstvenika, vladinih institucija i nevladinih udruga, 1987. godine u Montrealu je rođen Montrealski protokol o tvarima koje oštećuju ozonski omotač.
- Tada su Protokol potpisale 22 zemlje svijeta.

/Zavod za visoki napor i energetiku

68

Međunarodni ugovori i propisi

- Bečka konvencija o zaštiti ozonskog omotača (Beč, 1985.)
 Na temelju notifikacije o sukcesiji Republika Hrvatska stranka je Konvencije od 8. listopada 1991. NN-MU br. 12/93.
- Montrealski protokol o tvarima koje oštećuju ozonski omotač (Montreal, 1987.)
 Na temelju notifikacije o sukcesiji Republika Hrvatska stranka je Konvencije od 8. listopada 1991. NN-MU br. 12/93.
- Dopuna Montrealskog protokola o tvarima koje oštećuju ozonski omotač (London, 1990.)
 Objavljena je u NN-MU br. 11/93, stupila je na snagu u odnosu na Republiku Hrvatsku 13. siječnja 1994.
- Izmjena Montrealskog protokola o tvarima koje oštećuju ozonski omotač (Copenhagen, 1992.)
 Objavljena je u NN-MU br. 8/96, stupila je na snagu u odnosu na Republiku Hrvatsku 12. svibnja 1996.
- Izmjena Montrealskog protokola o tvarima koje oštećuju ozonski omotač (Montreal, 1997.)
 Objavljena je u NN-MU br. 10/00, stupila je na snagu u odnosu na Republiku Hrvatsku 7. prosinca 2000., a taj je datum objavljen u NN-MU br. 14/00.
- Izmjena Montrealskog protokola o tvarima koje oštećuju ozonski omotač (Peking, 1999.)
 Objavljena je u NN-MU br. 12/01, stupila je na snagu u odnosu na Republiku Hrvatsku 24. srpnja 2004.
- Izmjena Montrealskog protokola o tvarima koje oštećuju ozonski omotač (Kigali, 2016.)
 Objavljena je u NN-MU br. 7/18.

Međunarodni ugovori i propisi

- Danas Montrealski protokol broji 197 zemalja članica, od čega su 146 zemlje, s niskom potrošnjom freona i halona, obuhvaćene člankom 5. Protokola.
- Zemlje s velikom potrošnjom ovih tvari, pretežno razvijene zemlje, ukinule su potrošnju freona i halona – tvari iz Dodatka A Protokola, no uzmemo li u obzir da razvijene zemlje čine svega 20% svjetske potrošnje tvari koje oštećuju ozonski omotač, vidljivo je kako je ukidanje preostalih 80% ključno za osiguranje očuvanja i oporavka ozonskog omotača.
- Zemlje iz članka 5. Protokola imaju odgodu od deset godina za ispunjenje obveza Montrealskog protokola.
- Republika Hrvatska se ubrajala u zemlje iz članka 5. Montrealskog protokola, obzirom na potrošnju manju od 0,3 kg po stanovniku tvari iz Dodatka A i potrošnjom manjom od 0,2 kg po stanovniku tvari iz Dodatka B Montrealskog protokola.
- Ulaskom u Europsku uniju Hrvatska je postala zemljom članka 2. Montrealskog protokola.

- Notifikacijom o sukcesiji Republika Hrvatska je od 8. listopada 1991. godine stranka Bečke konvencije o zaštiti ozonskog omotača i Montrealskog protokola o tvarima koje oštećuju ozonski omotač.
- Dopunu Montrealskog protokola usvojenu u Londonu 29. lipnja 1990. godine potvrdio je Sabor Republike Hrvatske Zakonom o potvrđivanju dopune Montrealskog protokola o tvarima koje oštećuju ozonski omotač (Narodne novine, Međunarodni ugovori, broj 11/93).
- Dopunu Montrealskog protokola usvojenu u Kopenhagenu u studenom 1992. godine potvrdio je Sabor Republike Hrvatske Zakonom o potvrđivanju izmjene Montrealskog protokola o tvarima koje oštećuju ozonski omotač (Narodne novine, Međunarodni ugovori, broj 1/8/96).

- Ministarstvo gospodarstva i održivog razvoja zaduženo je za provedbu Montrealskog protokola u Republici Hrvatskoj.
- Prihvaćanjem Montrealskog protokola te njegovih izmjena i dopuna, ostvareni su preduvjeti u Republici Hrvatskoj za daljnje djelovanje glede postupnog ukidanja potrošnje tvari koje oštećuju ozonski omotač.
- U suradnji s jednom od četiri provedbene agencije Montrealskog protokola, Programom zaštite okoliša Ujedinjenih naroda, Industrija i okoliš (UNEP IE), 1996. godine izrađen je Nacionalni program za postupno ukidanje tvari koje oštećuju ozonski omotač.

71

/Zavod za visok i energetiku

- Nacionalnim programom utvrđena je potrošnja tvari koje oštećuju ozonski omotač, te su predložene mjere i projekti ukidanja potrošnje tvari koje oštećuju ozonski omotač u Republici Hrvatskoj.
- Utvrđeno je kako Republika Hrvatska ima preduvjete za provedbu ubrzanog ukidanja potrošnje tvari koje oštećuju ozonski omotač, uz odgovarajuću stručnu i financijsku pomoć provedbenih agencija Montrealskog protokola.

- Od 1. srpnja 1999. godine zabranjen je uvoz proizvoda koji sadrže tvari koje oštećuju ozonski omotač (Uredba o tvarima koje oštećuju ozonski omotač, NN 7/99 i 20/99)
- Uredbom je propisano prikupljanje tvari koje oštećuju ozonski omotač pri obavljanju djelatnosti održavanja i popravljanja rashladnih i klimatizacijskih uređaja
- Kako emisije freona razorno djeluju na molekule ozona, logična je potreba za njihovim kontroliranim prikupljanjem i zbrinjavanjem
- U Hrvatskoj je zabranjen uvoz freona od 1. siječnja 2006.

- PROPISI REPUBLIKE HRVATSKE VEZANO ZA TVARI KOJE OŠTEĆUJU OZONSKI SLOJ I FLUORIRANE STAKLENIČKE PLINOVE
 - Zakon o zaštiti zraka (Narodne novine, broj: 130/2011, 47/2014)
 - Uredba o tvarima koje oštećuju ozonski sloj i fluoriranim stakleničkim plinovima (Narodne novine, broj: 90/2014)
 - Pravilnik o izobrazbi osoba koje obavljaju djelatnost prikupljanja, provjere propuštanja, ugradnje i održavanja ili servisiranja opreme i uređaja koji sadrže tvari koje oštećuju ozonski sloj ili fluorirane stakleničke plinove ili o njima ovise (Narodne novine, broj: 3/2013)

od za visoki napon rgetiku

Hrvatska: Pet milijuna eura projektima za zaštitu ozonskog omotača

- Fond za zaštitu okoliša i energetsku učinkovitost s pet milijuna eura sufinancirat će projekte jedinica lokalne uprave, tijela državne uprave, javnih i privatnih trgovačkih društava te obrtnika, kojima se štiti ozonski omotač.
- Sredstva će se odobravati za zamjenu klorofluorougljika (CFC), klorofluorougljikovodika (HCHC) te fluoriranih ugljikovodika (HFC) koji se nalaze u više od 14 godina starim rashladnim i klimatizacijskim sustavima te dizalicama topline s punjenjem radne tvari više od 10 tona CO₂ ekvivalenta.
- Sufinancirat će se i zamjena nepokretnih rashladnih sustava u hladnjačama koji sadrže fluorirane stakleničke plinove.

/Zavod za visoki nap i energetiku

Hvala na pozornosti

e-pošta:

zeljko.tomsic@fer.hr

