CS2040 Data Structures and Algorithms Lecture Note #9

Trees

An introduction

Recall

Linked list

Recall

Stack

- A Stack is a collection of data that is accessed in a last-in-first-out (LIFO) manner.
- Two operations: 'push' and 'pop'.

Recall

Queue

- A Queue is a collection of data that is accessed in a first-in-first-out (FIFO) manner.
- Two operators: 'enqueue' and 'dequeue'

Tree

Tree

Definitions

Definitions

Data objects (the circles) in a tree are called nodes (or vertices). Links between nodes are called edges.

Relationships

A is a parent of B and C

B and C are children of A

B and C are siblings

(with the same parent A)

Relationships

- D is an ancestor of B.
- B is a descendant of A and D.
- Definition: A is an ancestor of B if A is a parent of B, or A is a parent of some C and C is an ancestor of B.

Tree Nodes

Every node (except the root) of a tree has one parent.

A node with no children is a leaf node.

Tree is recursive!

subtree

A node and all of its descendants form a subtree

Level of a node

Number of nodes on the path from the root to the node (excl. the root)

level of root is 0

level of A is 1

Height of a tree

- Maximum level of the nodes in the tree is the **height** of the tree
 - \blacksquare height = 3

What is the height of a tree that has only a root node?

• height = 0

Other books might give you definitions different from what you see here.

What is the height of a tree that is empty?

height = -1

(see slide 34)

Size of a tree

Number of nodes in the tree is the size of the tree

The size of this tree is 10.

■ The size of the subtree rooted

at A is 4.

Applications of Trees

A tree can be used to represent data that is hierarchical in Nature.

File systems

A file system can be represented as a tree, with the top-most directory as the root (in Operating System term, this is called the "root" directory).

Arithmetic Expressions

$$(a+b) * (a-b) + 2$$

Q: How do we construct such a tree from a given arithmetic expression?

Organization Chart

Each employee (except the president) has one and only one immediate superior.

Family Tree

Binary Trees

Each node has at most 2 ordered children

Q: What is the meaning of "ordered children"?

Binary Tree - each node has at most 2 ordered children.

Binary Tree is Recursive

Q: What is the meaning of "recursive" here?

Full Binary Tree

□ All nodes at a level < h have two children, where h is the height of the tree.

Question: Is this definition the same as "all nodes except the leaf nodes have 2 children"?

Ans: No! Why? All leaf nodes may not be of the same level.

CS1102

Complete Binary Tree

■ Full down to level h-1, with level h filled in from left to right.

Property

Question: How many nodes in a full binary tree of height h?

Ans: Number of nodes is $2^{h+1} - 1$. Therefore the height of a full binary tree with N nodes is $\log N$.

Q: How do you prove these 2 results?

Q: What are the **maximum** and **minimum** numbers of nodes in a **complete** binary tree of height h?

Most operations take O(h) time

Lower bound: $\mathbf{h} \geq |\log_2(\mathbf{N})|$ $2^0 = 1$ 41 Remember this tree structure? $2^1 = 2$ 65 Perfect Binary Tree 20 $2^2 = 4$ 91 29 $2^3 = 8$ 99 32 22 $N = 1 + 2 + 4 + ... + 2^h = 2^0 + 2^1 + 2^2 + ... + 2^h$

$$N = 1 + 2 + 4 + ... + 2^{h} = 2^{0} + 2^{1} + 2^{2} + ... + 2^{h}$$

= $2^{h+1} - 1 < 2^{h+1}$ (sum of geometric progression)
 $log_{2}(N) < log_{2}(2^{h+1})$

- $\rightarrow \log_2(N) < (h+1) * \log_2(2)$
- → h > \log_2 (N)-1
- \rightarrow h $\geq \lfloor \log_2(\mathbf{N}) \rfloor$

Implementation

A tree can be implemented using reference based representation or array based representation

Reference Based Implementation

```
class TreeNode
  Object item;
  TreeNode left;
  TreeNode right;
  // Methods..
class BinaryTree
  TreeNode root;
  // Methods
```

Array Based implementation

```
class TreeNode
  Object item;
  int left;
  int right;
  // Methods..
class BinaryTree
  int root;
  int free;
  TreeNode tree[];
  // Methods
```

index	0	1	2	3	4	5
item	ш	Ι	Α	S	~	O
left	-1	-1	0	1	-1	-1
right	-1	5	3	-1	-1	-1

Q: How to handle free space in an array?

Representing a Complete Tree

- using an array

Q: Given that a node is stored in index position i, what are the index positions of its **parent**, **left child**, and **right child**?

Height of a binary tree

Maximum level of the nodes in the tree is called the height of the tree

■ height = 3

Height of a binary tree (cont.)

height(T)

```
if T is empty
  return -1
else
  return 1 + max (height(T.left), height(T.right))
```

Where T.left and T.right represent the left and right subtrees of the node T respectively

This is a recursive solution, divide and conquer.

Size of a binary tree

Number of nodes in the tree

The size of the subtree rooted at A is 4.

Size of a binary tree (cont.)

```
size(T)
if T is empty
    return 0
else
    return 1 + size(T.left) + size(T.right)
```

Binary Tree Traversal

Traversing a Binary Tree

- Post-order traversal
- Pre-order traversal
- In-order traversal
- Level-order Traversal

Post-order Traversal

Traverse the **root after** traversing the left and right subtrees.

```
postorder(T)

if T is not empty then
   postorder(T.left)
   postorder(T.right)
   print T.item
```

Note: This is a recursive solution. Can you give an iterative solution?

Traversal Example

Post-order: 4 8 9 5 2 0 6 7 3 1

Pre-order traversal

Traverse the **root before** traversing the left and right subtrees.

```
preorder(T)
  if T is not empty then
    print T.item
    preorder(T.left)
    preorder(T.right)
```

Traversal Example

Pre-order: 1 2 4 5 8 9 3 6 0 7

In-order Traversal

Traverse the **root in between** the traversals of left and right subtrees.

```
inorder(T)
if T is not empty then
  inorder(T.left)
  print T.item
  inorder(T.right)
```

Traversal Example

In-order: 4 2 8 5 9 1 6 0 3 7

Traversal Example

In-order: 4 2 8 5 9 1 6 0 3 7

Level-order Traversal

Traverse the tree level by level and from left to right.

Level-order: 1 2 3 4 5 6 7 8 9 0

levelOrder(T)

- using a queue

if T is empty return

Q = new Queue //create an empty queue

Q.enqueue(T) //insert T into Q

while Q is not empty

curr = Q.dequeue()

print curr.item

if curr.left is not empty

Q.enqueue(curr.left)

if curr.right is not empty

Q.enqueue(curr.right)

Q: Why do we use a queue instead of a stack?

levelOrder(T) - Example using a queue

Queue	curr	print
1 empty	1	1
2,3		
3	2	2
3,4,5 4,5	3	<i>3</i>
4,5,6,7		
5,6,7	4	4
5,6,7 6,7	5	5
<i>6,7,8,9</i>	<i>-</i>	<i>3</i>
7,8,9	6	6
7,8,9,0	7	7
8,9,0 8,9,0	,	
9,0	8	8
9,0	•	•
0	9	9
empty	0	0
empty	end	

Note: The data in the queue are references to the nodes

Q: What is the maximum no of nodes in the queue?

Q: What is the main implementation problem of

level-order traversal?

Ans: Size of the queue!

Expression Trees

Evaluating Expression Tree

Leaf nodes (or leaves) store operands. Internal nodes and root store operators

Traversing Expression Tree

Q2: What is the arithmetic expression of this expression tree?

Post-order traversal: a b + a b - * 2 +

Note: This is the **postfix** expression of the expression tree.

Q1: What are the infix and prefix expressions of this tree?

Evaluation of Expression Tree

```
eval(T)
  if T is empty
    return 0
  if T is a leaf
    return value of T
  else if T.item is "+"
        return eval(T.left) + eval(T.right)
        else if T.item is "*"
        return eval(T.left) * eval(T.right)
```

```
Q1: How to handle other arithmetic operators such as /, -, @, ^ and unary -?
```

Q2: Do we need to consider the **priorities** of the operators in expression trees ?

Binary Search Tree (BST)

Definition

BST organizes data in a binary tree such that:

- all keys smaller than the root are stored in the left subtree, and
- all keys larger than the root are stored in the right subtree.

Q: Can we have nodes with same key values in a BST?

Recall

Tables

- Phone books
- Street directories
- Dictionaries
- Class schedule
- □ ...

Key	Data
Alice	3849-3843
Carl	9493-9349
John	8934-3784

Recall

ADT Table operations

ADT table provides operations to maintain a set of data, each can be uniquely identified by a **key**. Examples include dictionary, and phonebook.

data = search (key)
insert (key, data)
delete (key)

Running Times of operations

	Unsorted Array/List	Sorted Array	Sorted LinkedList
Search			
Insert			
Delete			

Running Times of operations

	Unsorted Array/List	Sorted Array	Sorted LinkedList
Search	O(N)	O(log ₂ N)	O(N)
Insert	O(1)	O(N)	O(N)
Delete	O(N)	O(N)	O(N)

Q1: Are unsorted Array/List implementations better than sorted Array?

Q2: Are unsorted Array/List implementations better than sorted LinkedList?

Q3: Can we use a stack or an queue to implement table ADT? Why?

Binary Search Tree (BST)

insert, delete, and search can be done in

O(H)

where H is the height of the BST.

Q1: What is H with respective to N, the no of nodes?

Q2: Are the performances of update operations of BST better than unsorted and sorted array?

Q3: What are the worst cases?

BST Property

BST organizes data in a binary tree such that:
all keys **smaller** than the root are stored in the **left** subtree, and
all keys **larger** than the root are stored in the **right** subtree.

Example

NOT a BST Q: Why?

Example

A BST? NO. Why?

Example

Q: What do you get when you traverse a BST in in-order? Ans: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (in increasing order). Why?

Operations on BST

Find Minimum Element in a BST

If X has a left subtree then the minimum element should be in the left subtree, otherwise the minimum element is X.

Finding Minimum Element (cont.)

while T.left is not empty T = T.leftreturn T.item

Q1: How to find **maximum** values?

Q2: How to find top-k (or bottom-k) values? e.g. find top-3 values.

Searching x in T (iterative solution)

```
while T is not empty
  if T.item == x then
     return T
  else if T.item > x then
          T = T.left
        else
          T = T.right
return null // T is empty, so X is not in T
```

Searching x in T (recursive solution)

```
Search (x, T)
 if T is empty
  return null // x is not in T
 if x == T.item then
   return T
 else if x < T.item
        return search(x, T.left)
       else
        return search(x, T.right)
```

Q: Which solution is faster? Iterative or recursive solution?

Insertions

How to Insert 6?

After Inserting 6

insert(x,T)

```
if T is empty
  return new TreeNode(x) // a tree with only node x
else if x < T.item
       T.left = insert(x,T.left)
     else if x > T.item
           T.right = insert(x, T.right)
          else
            return ERROR!
               // X already in T, x=T.item
return T // return the new tree T
```

This method assumes that we **don't allow duplicate key values** in the BST.

Q: If we allow duplicated key values in the BST, how do you modify the method?

Where to insert it? Before or after the duplicate keys?

Deletions

Figure 1. A BST

if T has no children
if x == T.item
 return empty tree
else
 return NOT FOUND

E.g: Delete 4 or 3 or 7 in the left figure which only contains a node 4?

delete(x,T): Case 2 (A)

```
if T has only 1 child (left child)
  if x == T.item
    return T.left
  else if x < T.item
    T.left = delete(x,T.left)
    else return NOT fOUND</pre>
```

return T

E.g. delete **4** in the left figure **E.g.** delete **10**? **5**?

delete(x,T): Case 2 (B)

```
if T has only 1 child (right child)
  if x == T.item
    return T.right
  else if x > T.item
    T.right = delete(x, T.right)
    else return NOT FOUND
  return T
```


E.g. delete 6 in the left figure.E.g. delete 5? 3?

Figure. A BST

Node to be deleted has 2 children

Node to be deleted has 2 children

move the smallest node in the right subtree to the position of the deleted node.

Node 5 is deleted

Another way is to move the **largest** node in the left subtree to the position of the deleted node also.


```
if T has two children
  if x == T.item
     T.item = findMin(T.right)
               // replace T.item by the minimum item of the right subtree
     T.right = delete(T.item, T.right)
               // delete the original copy of minimum item from the right substree
  else if x < T.item
            T.left = delete(x, T.left)
         else // case: x > T.item
            T.right = delete(x, T.right)
return T
```

Running Time of BST

- \Box findMin O(h) where h is the height of the BST
- search O(h)
- □ insert O(h)
- delete O(h)

Running time of BST (cont.)

But h is not always O(log₂ N)

where N is the total number of nodes in the BST.

Good! A "balanced" tree. h = O(log N)

Bad! A skewed tree. h = O(N)

When you insert nodes in increasing or decreasing order, you get a **skewed** tree and the height h is O(N).