Analysis of Variance

Cathy Maugis-Rabusseau

INSA Toulouse / IMT GMM 116 cathy.maugis@insa-toulouse.fr

2023-2024

- Introduction
- One-way ANOVA
- Two-way ANOVA
- 4 Conclusion

Context - Notation

- ANOVA = analysis of variance
- Aim: Explain a **quantitative variable** *Y* using **qualitative** explanatory variables called **factors**
- The modalities of a factor = **levels** (sub-groups in the sample)

Context - Notation

 Here we will not address the issue of experimental design, just this vocabulary:

Definition

- ① A **block** of an experimental design = group of observations associated to a combination of controlled factors
- An experimental design is called **full** if there is at least one observation in each block
- An experimental design is called **repeated** if there are several observations per block
- An experimental design is called **balanced** if there is the same number of observations per block

- Introduction
- 2 One-way ANOVA
- Two-way ANOVA
- 4 Conclusion

- 2 One-way ANOVA
 - Context and Example
 - Regular model
 - Singular model
 - Predictions, residuals and variance
 - Confidence interval
 - Test: effect of the factor?

Context

- Data: One quantitative response variable Y and one factor having I levels
- Notation:
 - $\underline{Y_{ij}}$ = value for individual j in group \underline{i} (level of the factor)
 - Group i has n_i individuals
 - $Y_{i.}$ is the mean value for group i: $Y_{i.} = \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij}$
 - $n = \sum_{i=1}^{I} n_i$ is the total number of individuals
- Question: potential effect of the factor on the response Y? \Leftrightarrow Difference of the average response per group

Example

- We are interested in the marks obtained by students in an oral examination.
- Is there a potential effect of the examiner on the mark obtained?

Examiner (i)		А		В		С	I=3
Mark Y_{ij}		10, 11, 11 12, 13, 15		8, 10, 11, 12 14, 15, 16, 16		10, 13, 15, 16,	
Number <i>n</i> ;		6		8	/	7	
Average Y_{i}	П	12	T	12.75	1	14	

Example

- 2 One-way ANOVA
 - Context and Example
 - Regular model
 - Singular model
 - Predictions, residuals and variance
 - Confidence interval
 - Test: effect of the factor?

Regular model

$$\begin{array}{c} \text{Regular model:} \\ & \begin{array}{c} \text{II} \\ \\ \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots I, \ \forall j = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots I, \ \forall j = 1, \cdots, n_i $} \\ \\ \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots I, \ \forall j = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots I, \ \forall j = 1, \cdots, n_i $} \\ \\ \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots I, \ \forall j = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots I, \ \forall j = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots I, \ \forall j = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots I, \ \forall j = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots I, \ \forall j = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots I, \ \forall j = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots I, \ \forall j = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots I, \ \forall j = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots I, \ \forall j = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots I, \ \forall j = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots I, \ \forall j = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots I, \ \forall j = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots I, \ \forall i = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots I, \ \forall i = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i + \varepsilon_{ij}, \ \forall i = 1, \cdots, n_i $} \\ \\ & \begin{array}{c} \text{$\mathcal{Y}_{ij} = m_i$$

• Unknown parameters: $\theta = (m_1, \dots, m_I)'$ [k = I] and σ^2 .

$$\hat{\Theta} = (XX)^{-1} \times y$$

$$X = \begin{pmatrix} x - 1 & -1 & -1 & -1 \\ x - 1 & -1 & -1 \\ x - 1 & -1 & -1 \\ x - 1 & -1 & -1 \\ x -$$

Estimation of θ

- $X'X = diag(n_1, ..., n_l)$ is invertible \Rightarrow regular model
- $\hat{ heta}=(X'X)^{-1}X'Y$ thus $\widehat{m}_i=Y_{i.}=rac{1}{n_i}\sum_{j=1}^{n_i}Y_{ij}$

```
anReg <-lm (Marks~Exam -1)
summary (anReg)
                     pas d'intercept
Call:
lm(formula = Marks ~ Exam - 1)
Residuals:
  Min
         1Q Median 3Q
                            Max
-4.75 -1.00 0.00 2.00
                           3.25
Coefficients:
     Estimate Std. Error t value Pr(>|t|)
               0.9789 12.26 3.58e-10 ***
ExamA 12.0000
ExamB 12.7500
              0.8478 15.04 1.23e-11 ***
ExamC 14.0000
                 0.9063 15.45 7.88e-12 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.398 on 18 degrees of freedom
Multiple R-squared: 0.9716, Adjusted R-squared: 0.9668
F-statistic: 205 on 3 and 18 DF, p-value: 4.226e-14
```

Estimation of θ

import statsmodels.api as sm
from statsmodels.formula.api import ols
anRegpy = ols('Marks - Exam-1', data=Datapy).fit();
anRegpy, summary()

<class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable	:	1	Marks	R-sq	lared:		0.115	
Model:			OLS	Adj.	R-squared:		0.017	
Method:		Least Sq	ıares	F-sta	atistic:		1.170	
Date:	1	Mar, 22 aoû	2023	Prob	(F-statistic)	:	0.333	
Time:		09:	29:59	Log-I	Likelihood:		-46.546	
No. Observati	ons:		21	AIC:			99.09	
Df Residuals:			18	BIC:			102.2	
Df Model:			2					
Covariance Type: nonrobust								
					P> t			
					0.000			
Exam[B]	12.7500	0.848	1	5.039	0.000	10.969	14.531	
Exam[C]	14.0000	0.906	1	5.447	0.000	12.096	15.904	
Omnibus:			0.750	Durb:	in-Watson:		1.388	
Prob(Omnibus)	:		0.687	Jarqı	ie-Bera (JB):		0.773	
Skew:			356	Prob	(JB):		0.679	
Kurtosis:		:	2.386	Cond	. No.		1.15	

Notes:

- 2 One-way ANOVA
 - Context and Example
 - Regular model
 - Singular model
 - Predictions, residuals and variance
 - Confidence interval
 - Test: effect of the factor?

Singular model

where

 For interpretation reasons, we may be interested in an other parametrization mi

- $\alpha_i = m_i \mu = \text{differential effect of group } i$.
- But this model is over-parameterized [I+1 parameters]
 - ⇒ one constraint is required to have an identifiable model
 - Orthogonal constraint : $\sum_{i=1}^{I} n_i \alpha_i = 0$
 - By default in R: $\alpha_1 = 0$

Contraintes d'orthogonalité

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} \\
1 & \text{In}_{3} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} \\
1 & \text{In}_{3} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} \\
1 & \text{In}_{3} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} \\
1 & \text{In}_{3} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{3} \\
1 & \text{In}_{4} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{3} \\
1 & \text{In}_{4} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{3} \\
1 & \text{In}_{4} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{4} \\
1 & \text{In}_{4} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{4}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{2}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{2}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{2}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In}_{2}
\end{cases}$$

$$X = \begin{cases}
1 & \text{In}_{1} & \text{In}_{2} & \text{In$$

$$\underbrace{\epsilon_1 \perp \epsilon_2}_{:} : \forall \mu \quad \forall (\beta_i - \beta_1)$$
 $< \mu \cdot \beta_0, \quad \xi \cdot \beta_i \cdot \chi^{(i)} > 0$

Estimation of θ - Orthogonal constraints

Model:

$$Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}, \qquad \theta = (\mu, \alpha_1, \dots, \alpha_l)'$$

- The orthogonal constraint $\sum_{i=1}^{I} n_i \alpha_i = 0$
- Estimators: $\left\{ \begin{array}{l} \widehat{\mu} = Y_{..} \\ \widehat{\alpha}_i = Y_{i.} Y_{..} \end{array} \right.$

$$\frac{\sum_{i=1}^{T} n_i \alpha_i = 0}{q_i (\mu_i, \alpha_i, --\alpha_{\pm})} \xrightarrow{\longrightarrow} \frac{\|Y - X \otimes \|^2 - \lambda}{\sum_{i=1}^{T} n_i \alpha_i} = \sum_{i=1}^{T} \frac{\sum_{j=1}^{T} (Y_{ij} - \mu_j - \alpha_i)^2 - \lambda}{\sum_{i=1}^{T} n_i \alpha_i}$$

$$\frac{\partial h}{\partial a} = -5 \sum_{i=1}^{2} \frac{1}{2} (Ai! - 4r - 9i) = 0$$

$$\frac{\partial h}{\partial a} = -5 \sum_{i=1}^{2} \frac{1}{2} (Ai! - 4r - 9i) = 0$$

$$\Rightarrow H = Y \cdot \cdot \cdot (x)$$

$$\Rightarrow H = Y \cdot \cdot \cdot (x)$$

$$\Rightarrow X \cdot \Rightarrow Y \cdot \Rightarrow Y \cdot \cdot \Rightarrow Y \cdot \Rightarrow Y \cdot \cdot \Rightarrow Y \cdot \Rightarrow$$

$$= \sum_{i=1}^{\infty} Y_{ij} - n_i \mu - n_i d_i = \frac{1}{2} n_i$$

$$= \sum_{i=1}^{\infty} (n_i x_i) = \frac{1}{2} n_i d_i = \frac{1}{2} n_i$$

$$= \sum_{i=1}^{\infty} (n_i x_i) = \frac{1}{2} n_i d_i = \frac{1}{2} n_i$$

$$= \sum_{i=1}^{\infty} (n_i x_i) = \frac{1}{2} n_i d_i = \frac{1}{2} n_i$$

$$= \sum_{i=1}^{\infty} (n_i x_i) = \frac{1}{2} n_i d_i = \frac{1}{2} n_i$$

$$(x): \Rightarrow \forall i - \mu = \forall i - \forall \dots$$

$$(x): \Rightarrow \forall i - \mu = \forall i - \forall \dots$$

Estimation of θ - By default in R

Model:

$$Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}, \qquad \theta = (\mu, \alpha_1, \dots, \alpha_l)'$$

- The constraint by default in R: $\alpha_1=0$
- Estimators: $\begin{cases} \widehat{\mu} = Y_1, \\ \widehat{\alpha}_i = Y_i, -Y_1, \end{cases}$

Estimation de 8 sous contrainte x,20. Modèle régulier:

$$Y:j = m: + E:j$$
 $\hat{m}: = Y:$

$$x_1 = 0$$

$$x_1 = 1 + \infty, + \infty$$

$$\begin{cases} m_1 = \mu + \lambda_1 & \forall i \end{cases}$$

$$donc \int \hat{\mu} = \hat{m}_1 = 41.$$

$$d\hat{\alpha} = \hat{m}_1 - \hat{m}_2 = 41. - 41.$$

$$(\alpha i - m_i - m_1 = 4i - m_2)$$

Example 😱

```
anSing <- lm(Notes~Exam, data=Data)</pre>
summary(anSing)
                                                                                                                                                             Yif= \upper + \ai + \varepsilon \upper \uppe
Call:
lm(formula = Notes ~ Exam, data = Data)
Residuals:
            Min 10 Median 30 Max
    -4.75 -1.00 0.00 2.00 3.25
Coefficients:
                                                   Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.0000 0.9789 12.258 3.58e-10 ***
ExamB
                                                           0.7500 1.2950 0.579 0.570
ExamC
                                                      2,0000
                                                                                             1.3341 1.499 0.151
                                                                                                -43 - - Ya.
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.398 on 18 degrees of freedom
Multiple R-squared: 0.115, Adjusted R-squared: 0.01669
F-statistic: 1.17 on 2 and 18 DF, p-value: 0.333
```


anSingpy = ols('Marks ~ Exam', data=Datapy).fit() anSingpy.summary()

<class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	Marks	R-squared:	0.115
Model:	OLS	Adj. R-squared:	0.017
Method:	Least Squares	F-statistic:	1.170
Date:	Mar, 22 aoû 2023	Prob (F-statistic):	0.333
Time:	09:30:00	Log-Likelihood:	-46.546
No. Observations:	21	AIC:	99.09
Df Residuals:	18	BIC:	102.2
Df Model:	2		
Covariance Type:	nonrobust		

oovarramoo rypo.		110111000	200					
	coef	std err	t	P> t	[0.025	0.975]		
Intercept	12.0000	0.979	12.258	0.000	9.943	14.057		
Exam[T.B]	0.7500	1.295	0.579	0.570	-1.971	3.471		
Exam[T.C]	2.0000	1.334	1.499	0.151	-0.803	4.803		
Omnibus:		0.7	750 Durbin	-Watson:		1.388		
Prob(Omnibus):	0.6	387 Jarque	-Bera (JB):		0.773		
Skew:		-0.3	356 Prob(J	B):		0.679		
Kurtosis:		2.3	386 Cond.	No.		4.00		

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

- 2 One-way ANOVA
 - Context and Example
 - Regular model
 - Singular model
 - Predictions, residuals and variance
 - Confidence interval
 - Test: effect of the factor?

Predictions, residuals and variance

• Predicted values:
$$\hat{Y} = X\hat{\theta}$$

$$\Leftrightarrow \forall i, \ \forall j, \ \hat{Y}_{ij} = \hat{m}_i = \hat{\mu} + \hat{\alpha}_i = Y_i.$$

• Residuals: $\hat{\varepsilon} = Y - \hat{Y}$

$$\Leftrightarrow \forall i, \ \forall j, \ \widehat{\varepsilon}_{ij} = Y_{ij} - \widehat{Y}_{ij} = Y_{ij} - Y_{i.}$$

• Estimator of the variance σ^2 :

$$\widehat{\sigma^2} = \frac{\|Y - \widehat{Y}\|^2}{n - I} = \frac{1}{n - I} \sum_{i=1}^{I} \sum_{j=1}^{n_i} (Y_{ij} - \widehat{Y}_{ij})^2$$
$$= \frac{1}{n - I} \sum_{i=1}^{I} \sum_{j=1}^{n_i} (\widehat{\varepsilon}_{ij})^2 = \frac{SSR}{n - I}$$

Properties

Proposition

- The mean of residuals per block is null: $\forall i=1,\cdots,I,\, \frac{1}{n_i}\sum_{j=1}^{n_i}\widehat{\varepsilon}_{ij}=0.$
- The mean of residuals is null: $\frac{1}{n} \sum_{i=1}^{l} \sum_{j=1}^{n_i} \hat{\varepsilon}_{ij} = 0$.
- $\frac{1}{n} \sum_{i=1}^{l} \sum_{j=1}^{n_i} \widehat{Y}_{ij} = \frac{1}{n} \sum_{i=1}^{l} \sum_{j=1}^{n_i} Y_{ij}$.
- $cov(\widehat{\varepsilon}, \widehat{Y}) = 0.$
- $var(Y) = var(\widehat{Y}) + var(\widehat{\varepsilon})$.

Proof in exercise

Decomposition of the variance

• Between-group variance : $var(\widehat{Y}) = \sum_{i=1}^{I} \frac{|\widehat{n}_{i}|}{n} (Y_{i.} - Y_{..})^{2}$

• Within-group variance (or residual variance):

$$var(\widehat{\varepsilon}) = \frac{1}{n} \sum_{i=1}^{l} \sum_{j=1}^{n_i} (Y_{ij} - Y_{i.})^2 = \frac{1}{n} \sum_{i=1}^{l} n_i var_i(Y)$$

• The equality $var(Y) = var(\widehat{Y}) + var(\widehat{\varepsilon})$: Total Variance = Between Variance + Within Variance.

Coefficient of determination R^2

The coefficient of determination R^2 is the ratio of the between-group variance on the total variance:

$$R^2 = \frac{var(\widehat{Y})}{var(Y)} = 1 - \frac{var(\widehat{\varepsilon})}{var(Y)}. = 1 - \frac{SSR}{SST}$$

It is a measure of connection between a quantitative variable and a qualitative variable.

Remarks:

$$2 R^2 = 0 \leftrightarrow var(\widehat{Y}) = 0 \leftrightarrow \forall i = 1, \cdots, I, Y_{i.} = Y_{..}$$

- 2 One-way ANOVA
 - Context and Example
 - Regular model
 - Singular model
 - Predictions, residuals and variance
 - Confidence interval
 - Test: effect of the factor?

Confidence interval for m_i

• m_i is estimated by $\widehat{m}_i = Y_{i.} \sim \mathcal{N}(m_i, \sigma^2/n_i)$ (* \longrightarrow)

since
$$Y_{ij}$$
 i.i.d $\mathcal{N}(m_i, \sigma^2)$ $(j = 1, ..., n_i)$ $\longrightarrow M_i - M_i$

- By Cochran's theorem, $\frac{(n-l)\widehat{\sigma}^2}{\sigma^2} \sim \chi^2(n-l)$ and $\widehat{m}_i \perp \perp \widehat{\sigma}^2$ $\widehat{\nabla}^2 = \frac{1}{n-1} \sum_{i=1}^{n} \sum_{j=1}^{n} (Y_{i,j} Y_{i,j})^2$
- We deduce that

$$\sqrt{n_i} \frac{\widehat{m_i} - m_i}{\widehat{\sigma}} \sim \mathcal{T}(n-1).$$

• Let $t_{n-l,1-\alpha/2}$ be the $(1-\alpha/2)$ quantile of $\mathcal{T}(n-l)$. Then,

$$\mathbb{P}\left(m_i \in \left[\widehat{m}_i \pm t_{n-l,1-\alpha/2}\sqrt{\frac{\widehat{\sigma}^2}{n_i}}\right]\right) = 1 - \alpha.$$

$$\widehat{M}_i = Y_i = \underbrace{1}_{n_i} \underbrace{\sum_{i=1}^{n_i} Y_{ij}}_{Y_{ij}}$$

$$\frac{1}{\hat{n}} = \frac{1}{1} \cdot \frac$$

$$\frac{1 - \text{methode}}{\hat{\Theta} = \begin{pmatrix} \hat{m_1} \\ \hat{m_I} \end{pmatrix}} \sim \mathcal{N}_{I} \left(\Theta, \sigma^2 (X'X)^{-1}\right)$$

donc
$$\hat{m}$$
; $\sim W(\underline{m}; \frac{\sigma^2}{n})$

$$cau(X'X)^{-1} = \begin{pmatrix} 1/n_1 & 0 \\ 0 & 1/n_1 \end{pmatrix}$$

Ai fixé
$$Y_{ij} \sim W(m_i, \sigma^2) \forall j=1-n_i$$

With R:

```
anReg<-lm(Marks-Exam -1)
confint(anReg)

2.5 % 97.5 %

ExamA 9.943313 14.05669

ExamB 10.968857 14.53114
```

• With python:

ExamC 12.095878 15.90412

```
anRegpy.conf_int(alpha=0.05)

0 1

Exam[A] 9.943313 14.056687

Exam[B] 10.968875 14.531143

Exam[C] 12.095878 15.904122
```

Exercise

Build the following confidence intervals:

```
anSing<-lm(Marks~Exam)
confint(anSing)
                2.5 % 97.5 %
(Intercept) 9.9433129 14.056687
ExamB
           -1.9707414 3.470741
ExamC
           -0.8027921 4.802792
anSingpy.conf_int(alpha=0.05)
Intercept 9.943313 14.056687
Exam[T.B] -1.970741 3.470741
Exam[T.C] -0.802792
                   4.802792
```

Indications: determine the law of $\hat{\mu} = Y_1$ and $\hat{\alpha}_i = Y_i - Y_1$

$$\hat{\mu} \sim \mathcal{N}\left(m_1, \frac{\sigma^2}{n_1}\right) \qquad \hat{\alpha_i} \sim \mathcal{N}\left(\underbrace{m_i - m_i}_{=\alpha_i}, \sigma^2\left(\frac{\lambda}{n_i} + \frac{\lambda}{n_i}\right)\right)$$

- 2 One-way ANOVA
 - Context and Example
 - Regular model
 - Singular model
 - Predictions, residuals and variance
 - Confidence interval
 - Test: effect of the factor?

Test: effect of the factor?

Testing procedure:

$$\mathcal{H}_0: m_1 = m_2 = \cdots = m_I = m \Longleftrightarrow \forall i = 1, \cdots, I, \ \alpha_i = 0$$

against

$$\mathcal{H}_1: \exists (i,i') \text{ such that } m_i \neq m_{i'}.$$

• Fisher's test of the sub-model:

$$k_0 = 1(M_0)$$
: $Y_{ij} = m + \varepsilon_{ij}$ with $\hat{m} = Y_{..} = \frac{1}{n} \sum_{i=1}^{l} \sum_{j=1}^{n_i} Y_{ij}$

$$(M_1): Y_{ij} = m_i + \varepsilon_{ij} = \mu + \alpha_i + \varepsilon_{ij}$$

Test: effect of the factor?

F=
$$\frac{SSR_0 - SSR_1/J-1}{SSR_0 - SSR_1/J-1}$$

SSR_0 = $\|Y-Y.J_0\|^2$ $SSR_1 = \|Y-X\widehat{\Theta}\|^2 - \|Y-Y_0J_0\|^2$
• Fisher's statistics: $\frac{SSR_0 - SSR_1 - SSR_1}{SSR_0 - SSR_1} = \frac{SSE_1}{Y_{\text{s.}}J_{\text{n.s.}}}$
• Fisher's statistics: $\frac{\sum_{i=1}^{I} n_i(Y_{i.}-Y_{i.})^2/(I-1)}{\sum_{i=1}^{I} \sum_{j=1}^{I} (Y_{ij}-Y_{i.})^2/(n-I)} = \frac{SSE/(I-1)}{SSR/(n-I)} \approx \mathcal{F}(I-1,n-I),$

• We reject \mathcal{H}_0 if $F > f_{1-\alpha,I-1,n-I}$.

$$R_{\alpha} = ?F_{>}f_{\downarrow}$$
 avec $f+q$ $P_{Ho}(F_{>}f_{\downarrow}) = \alpha$
 $F_{Ho}(F_{\leq}f_{\downarrow}) = 1$
 f eat le $1-\alpha$ quantile d'une $F(I-1, n-I)$.

With R:

Res Df

```
anmequal<-lm(Marks-1) (Ne)
anova(anmequal,anReg)

Analysis of Variance Table

Model 1: Marks - 1
Model 2: Marks - Exam-1
```

20 116.95 2 18 103.50 2 13.452 1.1698 0.333

RSS Dr Sum of Sq

donc pas d'effet d'examin.

• With Python:

```
from statsmodels.stats.anova import anova_lm
anmequalpy = ols('Marks ~1', data=Datapy).fit();
anova_lm(anmequalpy,anRegpy)
```

```
df_resid ssr df_diff ss_diff F Pr(>F)
0 20.0 116.952381 0.0 NaN NaN NaN
1 18.0 103.500000 2.0 13.452381 1.169772 0.332952
```

F Pr(>F)

Summary table of one-way anova

	df	Sum of squares	Average of squares	F	$f_{1-\alpha}$
Factor	<i>l</i> – 1	$SSE = \sum_{i=1}^{I} n_i (Y_{i.} - Y_{})^2$	$\frac{SSE}{I-1} = MSE$	$\frac{MSE}{\widehat{\sigma}^2}$	$f_{1-\alpha,I-1,n-I}$
Residual	n – I	$SSR = \sum_{i=1}^{I} \sum_{j=1}^{n_i} (Y_{ij} - Y_{i.})^2$	$\frac{SSR}{n-I} = \widehat{\sigma}^2$		
Total	n – 1	$SST = \sum_{i=1}^{I} \sum_{j=1}^{n_i} (Y_{ij} - Y_{})^2$			

- Introduction
- One-way ANOVA
- Two-way ANOVA
- 4 Conclusion

- Two-way ANOVA
 - Introduction
 - Models
 - ullet Estimation of heta
 - Predicted values, residuals and variance
 - Decomposition of the variability
 - Interaction plot
 - Testing procedures
 - Summary table of two-way anova

Example (Husson et Pagès, 2013)

In a study of factors influencing wheat yield, three varieties of wheat (L, N and NF) and two nitrogen inputs were compared (normal supply = dose 1, intensive supply = dose 2).

Three repetitions for each couple (variety, dose) were performed and the yield (in q / ha) was measured.

We are interested in the differences that could exist from one variety to another, and in the possible interactions of varieties with nitrogen inputs.

```
summary(Ble)
```

```
Variety
                  Yield
Dose
1:9
      I.:6
              Min.
                     :55.65
2.9
              1st Qu.:62.82
      NF:6
              Median :65.50
              Mean
                    :66.58
              3rd Qu.:69.75
                     .79.83
              Max
```

Notation

•	Two factors	(qualitative e	explanatory	variables):	:
---	-------------	----------------	-------------	-------------	---

- i = 1 i = 2 Yijk
- First factor = factor A [Dose] with I [=2] levels
- Second factor = factor B [Variety] with J [=3] levels
- Y = quantitative response variable [wheat yield]
 - Y_{ijk} = measure of the k-th individual for level i of factor A and level j of Trapekt . factor B
 - $n_{ij} = nb$ of obs. for level i of factor A and level j of factor B
 - Y_{ij} = mean of observations for block (i,j) = $\frac{1}{n_{ij}}$ $\frac{1}{n_{ij$
- Notation:

$$Y_{i..} = \frac{1}{n_{i+}} \sum_{j=1}^{J} \sum_{k=1}^{n_{ij}} Y_{ijk} \text{ with } n_{i+} = \sum_{j=1}^{J} n_{ij}$$

$$Y_{.j.} = \frac{1}{n_{+i}} \sum_{i=1}^{l} \sum_{k=1}^{n_{ij}} Y_{ijk}$$
 with $n_{+j} = \sum_{i=1}^{l} n_{ij}$

$$Y_{...} = \frac{1}{n} \sum_{i=1}^{J} \sum_{i=1}^{J} \sum_{k=1}^{n_{ij}} Y_{ijk}$$
 with $n = \sum_{i=1}^{J} n_{i+} = \sum_{i=1}^{J} n_{+j}$

Example

Variety	L(j=1)	N (j = 2)	NF $(j = 3)$
Dose 1 $(i = 1)$			
$(Y_{1,j,k})$	70.35 63.59	62.56 58.89	69.45 64.84
• •	79.83	55.65	66.12
$n_{1j} = 3$	$Y_{11.} = 71.26$	$Y_{12.} = 59.03$	$Y_{13.} = 66.80$
Dose 2 ($i = 2$)			
$(Y_{2,j,k})$	74.97 69.12	58.78 64.39	69.85 64.89
-	77.18	60.83	67.15
$n_{2j} = 3$	$Y_{21.} = 73.76$	$Y_{22.} = 61.33$	$Y_{23.} = 67.30$

• We are interested in the effect of **Variety** and **Dose** on **wheat yield** with a possible interaction between the two factors.

- Two-way ANOVA
 - Introduction
 - Models
 - Estimation of θ
 - Predicted values, residuals and variance
 - Decomposition of the variability
 - Interaction plot
 - Testing procedures
 - Summary table of two-way anova

Regular model vs Singular model

• **Regular** model:

$$Y_{ijk} = \frac{\mathbf{m}_{ij}}{\mathbf{m}_{ij}} + \varepsilon_{ijk}, \ \varepsilon_{ijk} \sim \mathcal{N}(0, \sigma^2)$$
so are included in m_{ij}
with interaction):

but all the effects are included in m_{ii}

• Singular model (with interaction):

$$Y_{ijk} = \frac{\mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}, \ \varepsilon_{ijk} \sim_{i.i.d} \mathcal{N}(0, \sigma^2)}{\varepsilon_{ijk}}$$

distinction of effects ... but constraints are required for parameter estimation.

1+I+J+IJ parameters and IJ df thus 1+I+J constraints

Parameters of the singular model

The IJ parameters m_{ii} are thus decomposed into:

- $\mu = \text{centering parameter (intercept)},$
- α_i , I-1 parameters (main effect of factor A),
- β_i , J-1 parameters (main effect of factor B),
- γ_{ij} , (I-1)(J-1) parameters (interaction effects of factors).

Orthogonal design

$$X = \left[X_{(h)} \mid X_{(k)} \mid X_{(h)} \mid X_{(h)} \mid X_{(h)} \right]$$

Proposition

In the two-way anova framework with interaction, there exist some constraints such that the model is orthogonal if and only if

$$n_{ij}=\frac{n_{i+}n_{+j}}{n}.$$

In this case, the constraints (called Type I) are

$$\sum_{i=1}^{I} n_{i+} \alpha_{i} = 0; \sum_{j=1}^{J} n_{+j} \beta_{j} = 0; \forall i, \sum_{j=1}^{J} n_{ij} \gamma_{ij} = 0; \forall j, \sum_{i=1}^{I} n_{ij} \gamma_{ij} = 0.$$

Other constraints

In practice, the following constraints (Type III) may be used:

$$\sum_{i} \alpha_{i} = 0, \, \sum_{j} \beta_{j} = 0, \, \forall i, \, \sum_{j} \gamma_{ij} = 0 \, \, \text{et} \, \, \forall j, \, \sum_{j} \gamma_{ij} = 0$$

With these constraints, the model is orthogonal only if n_{ii} are constant.

With R, the constraints by default are

$$\alpha_1 = \beta_1 = 0, \ \gamma_{1j} = 0 \ \forall j, \ \gamma_{i1} = 0 \ \forall i$$

1 + 1 + J + I - 1

In the sequel, the model is assumed to be orthogonal. The pas complex 2 8055 This

Additive two-way ANOVA

 The additive two-way ANOVA model = two-way ANOVA model without interaction

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \varepsilon_{ijk}.$$

• Exercise : Determine the constraints such that this model is orthogonal.

Two-way ANOVA

- Introduction
- Models
- Estimation of θ
- Predicted values, residuals and variance
- Decomposition of the variability
- Interaction plot
- Testing procedures
- Summary table of two-way anova

Estimation - Regular model

Model:

$$\begin{cases} Y_{ijk} = m_{ij} + \varepsilon_{ijk} \\ \varepsilon_{ijk} \text{ i.i.d } \mathcal{N}(0, \sigma^2) \end{cases} \Leftrightarrow Y = X\theta + \varepsilon \text{ with } \varepsilon \sim \mathcal{N}_n(0_n, \sigma^2 I_n)$$

$$\bullet \ \theta = (m_{11}, \dots, m_{IJ})' \text{ is estimated by } \hat{\theta} = (X'X)^{-1}X'Y = \begin{pmatrix} Y_{AA} \\ Y_{AE} \end{pmatrix}$$

Proposition

$$\widehat{m}_{ij} = \frac{1}{n_{ij}} \sum_{k=1}^{n_{ij}} Y_{ijk} = Y_{ij.} \sim \mathcal{N}\left(m_{ij}, \frac{\sigma^2}{n_{ij}}\right).$$

Estimation - Singular model

- Model: $Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}$
- Orthogonal constraints: If $n_{ij} = \frac{n_{i+}n_{+j}}{n}$, the orthogonal constraints (type I) are

$$\sum_{i=1}^{I} n_{i+} \alpha_{i} = 0; \ \sum_{j=1}^{J} n_{+j} \beta_{j} = 0; \ \forall i, \ \sum_{j=1}^{J} n_{ij} \gamma_{ij} = 0; \ \forall j, \ \sum_{i=1}^{I} n_{ij} \gamma_{ij} = 0.$$

Proposition

Under the orthogonal constraints,

constraints,
$$\begin{cases} \widehat{\mu} = Y_{...} & \text{paire} \\ \widehat{\alpha}_i = Y_{i..} - Y_{...} \\ \widehat{\beta}_j = Y_{j.} - Y_{...} \\ \widehat{\gamma}_{ij} = Y_{ij.} - Y_{i..} - Y_{.j.} + Y_{...} \end{cases}$$

Estimation - Singular model

- Model: $Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}$
- By default in R: $\alpha_1 = \beta_1 = \gamma_{1j} = \gamma_{i1} = 0, \ \forall i, \ \forall j$

Proposition

$$\begin{cases} \widehat{\mu} = Y_{11.} \\ \widehat{\alpha}_i = Y_{i1.} - Y_{11.} \\ \widehat{\beta}_j = Y_{1j.} - Y_{11.} \\ \widehat{\gamma}_{ij} = Y_{ij.} - Y_{i1.} - Y_{1j.} + Y_{11.} \end{cases}$$

Yijk = Mij + Eijk

$$= \mu + \alpha i + \beta j + \delta ij + Eijk$$
Contraintes: $\alpha_1 = \beta_1 = \delta_4 j = \delta i i = 0$.

$$\hat{m}_{ij} = \gamma_{ij}.$$

$$\begin{pmatrix} m_{14} = \mu \\ m_{2j} = \mu + \beta_{j} \\ m_{13} = \mu + \alpha i \end{pmatrix}$$

$$\begin{pmatrix} m_{14} = \mu \\ m_{2j} = \mu + \alpha i \end{pmatrix}$$

$$\begin{pmatrix} m_{14} = \mu \\ m_{2j} = \mu + \alpha i \end{pmatrix}$$

$$\begin{pmatrix} m_{14} = \mu \\ m_{2j} = \mu + \alpha i \end{pmatrix}$$

$$\begin{pmatrix} m_{14} = \mu \\ m_{2j} = \mu + \alpha i \end{pmatrix}$$

$$\begin{pmatrix} m_{14} = \mu \\ m_{2j} = \mu + \alpha i \end{pmatrix}$$

$$\begin{pmatrix} m_{14} = \mu \\ m_{2j} = \mu + \alpha i \end{pmatrix}$$

$$\begin{pmatrix} m_{14} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{14} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{14} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{14} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{14} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{14} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_{2j} = \mu \\ m_{2j} = \mu \end{pmatrix}$$

$$\begin{pmatrix} m_{15} = \mu \\ m_$$

effet d'interaction.

anov2 = lm(Yield~Dose*Variety,data=Ble) summary(anov2)

```
Call:
```

```
lm(formula = Yield ~ Dose * Variety, data = Ble)
```

Residuals:

```
Min 10 Median 30
                         Max
-7.667 -2.296 -0.325 2.623 8.573
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
              71.257
                          2.536 28.101 2.55e-12 ***
              2.500
Dose2
       d.
                          3.586 0.697 0.49899
             -12.223 3.586 -3.409 0.00519 **
VarietyN 62
VarietyNF 3 -4.453 3.586 -1.242 0.23801
Dose2: VarietyN 122-0.200
                          5.071 -0.039 0.96919
                          5.071 -0.396 0.69928
Dose2:VarietyNF 12-2.007
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 4.392 on 12 degrees of freedom Multiple R-squared: 0.6725. Adjusted R-squared: 0.536 F-statistic: 4.928 on 5 and 12 DF, p-value: 0.01105

k=IxJ=2x3=6.

....

```
import statsmodels.api as sm
from statsmodels.formula.api import ols
Blepy=r.Ble
Blepy['Dose']=Blepy['Dose'].astype(str)
Blepy['Variety']=Blepy['Variety'].astype(str)
anov2Singpy = ols('Yield ~ Dose * Variety', data=Blepy).fit();
anov2Singpy.summary()
<class 'statsmodels.iolib.summary.Summary'>
```

OLS Regression Results

	-		
===========			
Dep. Variable:	Yield	R-squared:	0.672
Model:	OLS	Adj. R-squared:	0.536
Method:	Least Squares	F-statistic:	4.928
Date:	Mar, 22 aoû 2023	Prob (F-statistic):	0.0111
Time:	09:30:01	Log-Likelihood:	-48.528
No. Observations:	18	AIC:	109.1
Df Residuals:	12	BIC:	114.4
Df Model:	5		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	71.2567	2.536	28.101	0.000	65.732	76.781
Dose[T.2]	2.5000	3.586	0.697	0.499	-5.313	10.313
Variety[T.N]	-12.2233	3.586	-3.409	0.005	-20.037	-4.410
Variety[T.NF]	-4.4533	3.586	-1.242	0.238	-12.267	3.360
Dose[T.2]:Variety[T.N]	-0.2000	5.071	-0.039	0.969	-11.250	10.850
Dose[T.2]:Variety[T.NF]	-2.0067	5.071	-0.396	0.699	-13.056	9.043
Omnibus:	1.202	Durbin-	Watson:		2.764	

- Two-way ANOVA
 - Introduction
 - Models
 - Estimation of θ
 - Predicted values, residuals and variance
 - Decomposition of the variability
 - Interaction plot
 - Testing procedures
 - Summary table of two-way anova

Predicted values, residuals and variance

• Predicted values:

$$\widehat{Y}_{ijk} = \widehat{m}_{ij} = Y_{ij.} = \widehat{\mu} + \widehat{\alpha}_i + \widehat{\beta}_j + \widehat{\gamma}_{ij}$$

Residuals:

$$\widehat{\varepsilon}_{ijk} = Y_{ijk} - Y_{ij}.$$

• Estimator of the variance σ^2 :

$$\widehat{\sigma}^2 = \frac{1}{n - IJ} \sum_{ijk} (\widehat{\varepsilon}_{ijk})^2 = \frac{1}{n - IJ} \sum_{ijk} (Y_{ijk} - Y_{ij.})^2 = \frac{SSR}{n - IJ}$$

and

$$\frac{(n-IJ) \hat{\sigma}^2}{\sigma^2} \sim \chi^2(n-IJ)$$

Two-way ANOVA

- Introduction
- Models
- Estimation of θ
- Predicted values, residuals and variance
- Decomposition of the variability
- Interaction plot
- Testing procedures
- Summary table of two-way anova

Decomposition of the variability

Decomposition of SST:

$$\underbrace{\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{n_{ij}} (Y_{ijk} - Y_{...})^{2}}_{SST} = \underbrace{\sum_{i=1}^{I} \sum_{j=1}^{J} n_{ij} (Y_{ij.} - Y_{...})^{2}}_{SSE} + \underbrace{\sum_{i=1}^{I} \sum_{j=1}^{J} n_{ij} var_{ij} (Y)}_{SSR}$$
with $var_{ij}(Y) = \frac{1}{n_{ii}} \sum_{k=1}^{n_{ij}} (Y_{ijk} - Y_{ij.})^{2}$.

• Under the orthogonal constraints, SSE = SSA + SSB + SSI

$$SSA = \sum_{i=1}^{I} n_{i+} (Y_{i..} - Y_{...})^2 = \sum_{i=1}^{I} n_{i+} (\widehat{\alpha}_i)^2$$

$$SSB = \sum_{j=1}^{J} n_{+j} (Y_{.j.} - Y_{...})^2 = \sum_{j=1}^{J} n_{+j} (\widehat{\beta}_j)^2$$

$$SSI = \sum_{i=1}^{I} \sum_{j=1}^{J} n_{ij} (Y_{ij.} - Y_{i..} - Y_{.j.} + Y_{...})^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} n_{ij} (\widehat{\gamma}_{ij})^2$$

$$SSE = \sum_{i=1}^{T} \sum_{j=1}^{J} (Y_{ij} - Y_{i-1})^{2}$$

$$= \sum_{i=1}^{T} \sum_{j=1}^{J} n_{ij} (Y_{ij} - Y_{i-1})^{2}$$

$$= \sum_{i=1}^{T} \sum_{j=1}^{J} n_{ij} (X_{i}^{2} + X_{i}^{2} + Y_{ij}^{2} - Y_{i}^{2})$$

$$= \sum_{i=1}^{T} \sum_{j=1}^{J} n_{ij} (X_{i}^{2} + X_{i}^{2} + Y_{ij}^{2} + Y_{ij}^{2})$$

$$= \sum_{i=1}^{T} n_{i+1} \hat{X}_{i}^{2} + \sum_{j=1}^{J} n_{ij} \hat{X}_{ij}^{2}$$

$$= \sum_{i=1}^{T} n_{i+1} \hat{X}_{i}^{2} + \sum_{j=1}^{J} n_{ij} \hat{X}_{ij}^{2} + \sum_{j=1}^{J} n_{ij} \hat{X}_{ij}^{2}$$

$$= \sum_{i=1}^{T} n_{i+1} \hat{X}_{i}^{2} + \sum_{j=1}^{J} n_{i+1} \hat{X}_{ij}^{2} + \sum_{j=1}^{J} n_{ij} \hat{X}_{ij}^{2} + \sum_{j=1}^{J} n_{i+1} \hat{X}_{ij}^{2} +$$

Two-way ANOVA

- Introduction
- Models
- Estimation of θ
- Predicted values, residuals and variance
- Decomposition of the variability
- Interaction plot
- Testing procedures
- Summary table of two-way anova

Interaction plot

Graphical control of the possible interaction

attach(Ble)
interaction.plot(Variety,Dose,Yield,col=c(2,4),pch=c(18,24),main="Interaction plot",type="b")

Interaction plot

from statsmodels.graphics.factorplots import interaction_plot fig=interaction_plot(Blepy['Variety'],Blepy['Dose'],Blepy['Yield']);

58 / 71

Two-way ANOVA

- Introduction
- Models
- Estimation of θ
- Predicted values, residuals and variance
- Decomposition of the variability
- Interaction plot
- Testing procedures
- Summary table of two-way anova

Testing procedures

- Warning: If there is an interaction between two factors, then the principal effect of each factor must be integrated into the model.
- In order to simplify the model, it is necessary to
 - firstly test if there is an interaction effect,
 - if we retain the model without interaction, we can then test the effect of each factor

Non-interaction testing

• Hypothesis:

$$\mathcal{H}_I: \gamma_{ij} = 0, \ \forall i = 1, \cdots, I, \ \forall j = 1, \cdots, J$$

• Fisher's test of sub-model:

- $[M_1]$ $Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}$ (model with interaction)
- $[M_0] Y_{ijk} = \mu + \alpha_i + \beta_j + \varepsilon_{ijk}$ (additive model) $k_o = 1 + T 1$
- Test statistics:

$$F = \frac{SSI/(I-1)(J-1)}{SSR/(n-IJ)} \underset{\mathcal{H}_0}{\sim} \mathcal{F}((I-1)(J-1), n-IJ).$$

 $k_1 - k_2 = II - I - I + 1 = I(2 - 1) - (2 - 1) = (I - 1)(2 - 1)$

SSRo =
$$\sum_{i} \sum_{j} \left(Y_{ijk} - \hat{\mu} - \hat{\lambda}_i - \hat{\beta}_j \right)^2$$

$$SSR_1 = \sum_{i=1}^{n} \sum_{k=1}^{n} (Y_{ijk} - \hat{\mu} - \hat{\alpha}_i - \hat{\beta}_j - \hat{\delta}_{ij})^2$$

sous les contraintes L:

$$\begin{bmatrix} \times_{(h_j)} \end{bmatrix} T \begin{bmatrix} \times_{(\kappa_j)} \end{bmatrix} T \begin{bmatrix} \times_{(h_j)} \end{bmatrix} T \begin{bmatrix} \times_{(k_j)} \end{bmatrix}$$

$$X = \begin{pmatrix} \times_{(h_j)} \end{bmatrix} X_{(\kappa_j)} & X_{(k_j)} & X_{(k_$$

$$SSR_{1} = \| P_{(x)} Y \|^{2}$$

$$SSR_{0} = \| P_{(x^{(\mu)} X^{(\mu)} X^{(\mu)})} Y \|^{2}$$

$$[x^{(\mu)}, x^{(\mu)}, x^{(\mu)}]^{\perp} = (x)^{\perp} \oplus [x^{(\mu)}]$$

$$55R_{0} = \|P_{(x)}^{\perp} Y + P_{(x^{(\mu)})} Y\|^{2}$$

$$= ||P_{(\times 3^{\perp})}||^2 + ||P_{(\times 3)}||^2$$

$$= \sum_{i,j} n_{ij} \hat{\mathcal{T}}_{i,j}^2$$

With R:

```
anov2add = lm(Yield -Variety + Dose, data=Ble) _ modele additif .
anova(anov2add,anov2)
```

Analysis of Variance Table

With python:

```
from statsmodels.stats.anova import anova_lm
anov2addpy = ols('Yield-Dose + Variety', data=Blepy).fit()
anovaResults = anova_lm(anov2addpy,anov2Singpy)
print(anovaResults)
```

```
df_resid ssr df_diff ss_diff F Pr(>F)
0 14.0 235.137778 0.0 NaN NaN NaN
1 12.0 231.477400 2.0 3.665378 0.09501 0.910041
```

Test for the effect of factor A

- Hypothesis: \mathcal{H}_A : $\alpha_i = 0$, $\forall i = 1, \dots, I$
- Fisher's testing of sub-model:
 - $[M_1]$ $Y_{ijk} = \mu + \alpha_i + \beta_j + \varepsilon_{ijk}$ (additive model)
 - $[M_0]$ $Y_{ijk} = \mu + \beta_j + \varepsilon_{ijk}$ (one-way ANOVA) $k_0 = 4 + 5 1 = 5$
- Test statistics:

$$F = \frac{SSA/(\overline{l-1)}}{SSRAB/(n-(l+J-1))} \underset{\mathcal{H}_0}{\sim} \mathcal{F}(l-1,n-(l+J-1)),$$

where SSRAB = residual sum of squares for the additive model.

k .- k-

$$SSR_1 = \sum_{ijk} (4ijk - \hat{\mu} - \hat{\chi}_i - \hat{\beta}_i)^2 = SSRAB$$

$$SSR_0 = SSR_1 = \sum_{ijk} \hat{\chi}_i^2$$

$$SSR_{0} - SSR_{1} = \sum_{i \neq k} \hat{A}_{i}^{2}$$

$$= \sum_{i=1}^{T} \sum_{j=1}^{T} \hat{A}_{i}^{i} \hat{A}_{i}^{2}$$

$$= \sum_{i=1}^{T} \sum_{j=1}^{N_{i,j}} A_{i} = \sum_{k=1}^{N_{i,j}} A_{i}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} = \sum_{i=1}^{n} \alpha_{i}$$

With R:

With python:

```
anovApy = ols('Yield-Variety', data=Blepy).fit()
print(anovApy,anov2addpy))
```

```
        df_resid
        ssr
        df_diff
        s_diff
        F
        Pr(>F)

        0
        15.0
        249.147467
        0.0
        NaN
        NaN
        NaN

        1
        14.0
        235.137778
        1.0
        14.009689
        0.834131
        0.376541
```

Test for the effect of factor B

- Hypothesis: $\mathcal{H}_B: \beta_j = 0, \ \forall j = 1, \cdots, J$
- Fisher's testing of sub-model:
 - $[M_1]$ $Y_{ijk} = \mu + \alpha_i + \beta_j + \varepsilon_{ijk}$ (additive model)
 - $[M_0] Y_{ijk} = \mu + \alpha_i + \varepsilon_{ijk}$ (one-way ANOVA)
- Test statistics:

$$F = \frac{SSB/(J-1)}{SSRAB/(n-(I+J-1))} \underset{\mathcal{H}_0}{\sim} \mathcal{F}(J-1, n-(I+J-1)),$$

where SSRAB = residual sum of squares for the additive model.

With R:

16 692.72

```
anovB = lm(Yield-Dose,data=Ble)
anova(anovB,anov2add)

Analysis of Variance Table

Model 1: Yield ~ Dose
Model 2: Yield ~ Variety + Dose
Res.Df RSS Df Sum of Sq F Pr(>F)
```

With python:

```
anovBpy = ols('Yield-Dose', data=Blepy).fit()
print(anova_lm(anovBpy,anov2addpy))
```

```
df_resid ssr df_diff ss_diff F Pr(>F)
0 16.0 692.719511 0.0 NaN NaN NaN
1 14.0 235.137778 2.0 457.581733 13.622108 0.000519
```

2 14 235.14 2 457.58 13.622 0.0005192 ***
--Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Two-way ANOVA

- Introduction
- Models
- Estimation of θ
- Predicted values, residuals and variance
- Decomposition of the variability
- Interaction plot
- Testing procedures
- Summary table of two-way anova

Summary table

- ullet Two-way Anova with interaction + Orthogonal design
- Decomposition of the variance

$$SST = SSE + SSR = SSA + SSB + SSI + SSR.$$

Source	df	Sum of	Average of	F	$f_{1-\alpha}$
		squares	squares		
Factor A	<i>I</i> – 1	SSA	$MSA = \frac{SSA}{I-1}$	$MSA/\widehat{\sigma}^2$	$f_{1-lpha,I-1,n-IJ}$
Factor B	J-1	SSB	$MSB = \frac{SSB}{J-1}$	$MSB/\widehat{\sigma}^2$	$f_{1-lpha,J-1,n-IJ}$
Interaction	(I-1)(J-1)	SSI	$MSI = \frac{SSI}{(I-1)(J-1)}$	$MSI/\widehat{\sigma}^2$	$f_{1-lpha,(I-1)(J-1),n-IJ}$
Residual Total	n – IJ n – 1	SSR SST	$\widehat{\sigma}^2 = \frac{SSR}{n - IJ}$		

- Introduction
- One-way ANOVA
- Two-way ANOVA
- 4 Conclusion

Conclusion

Summary

- Know how to write an ANOVA model with one and two factors (individually and matrix), regular and singular
- Know how to distinguish a regular model from a singular model
- Know how to estimate the parameters of the ANOVA model in the regular case and in the singular case (by adapting to the chosen constraint (s))
- Know how to construct a confidence interval for a parameter of the ANOVA model
- Know how to build a procedure to test the effect of a factor, the interaction effect between factors, ... and know how to organize these tests
- Know how to interpret an interaction plot
- Know how to handle SSA, SSB, SSI, SSE, SSR in the case of an orthogonal design.

References I

- [1] Jean-Marc Azais and Jean-Marc Bardet. Le modèle linéaire par l'exemple-2e éd.: Régression, analyse de la variance et plans d'expérience illustrés avec R et SAS. Dunod, 2012.
- [2] Jean-Jacques Daudin. Le modèle linéaire et ses extensions-Modèle linéaire général, modèle linéaire généralisé, modèle mixte, plans d'expériences (Niveau C). 2015.
- [3] Jean-Jacques Droesbeke, Michel Lejeune, and Gilbert Saporta. Modèles statistiques pour données qualitatives. Editions Technip, 2005.
- [4] X Guyon. "Modele linéaire et économétrie". In: Ellipse, Paris (2001).
- [5] Bernard Prum. Modèle linéaire: Comparaison de groupes et régression. INSERM, 1996.
- [6] Nalini Ravishanker, Zhiyi Chi, and Dipak K Dey. A first course in linear model theory. CRC Press, 2021.
- [7] Alvin C Rencher and G Bruce Schaalje. *Linear models in statistics*. John Wiley & Sons, 2008.