MATH 245 Homework 1

Ruby Krasnow and Tommy Thach

2024-01-29

Question 1

Show the function is a solution of the PDE:

- (a) $u_{xx} + u_{yy} = 0$
- (i) $u(x,y) = e^x \sin(y)$

$$u_x = e^x \sin(y), u_{xx} = e^x \sin(y), u_y = e^x \cos(y), u_{yy} = -e^x \sin(y)$$

Which means that $u_{xx} + u_{yy} = e^x \sin(y) + (-e^x \sin(y)) = 0$ and so $u(x,y) = e^x \sin(y)$ is a solution to the PDE.

(ii)
$$u(x, y) = \log \sqrt{x^2 + y^2}$$

Assuming this is meant to be $u(x,y) = \ln \sqrt{x^2 + y^2}$,

$$u_x = (x^2 + y^2)^{-1/2} \left(\frac{1}{2}\right) (x^2 + y^2)^{-1/2} (2x) = x (x^2 + y^2)^{-1}$$
$$u_{xx} = x(-1) (x^2 + y^2)^{-2} (2x) + (x^2 + y^2)^{-1}$$

$$u_y = (x^2 + y^2)^{-1/2} \left(\frac{1}{2}\right) (x^2 + y^2)^{-1/2} (2y) = y (x^2 + y^2)^{-1}$$

$$u_{yy} = y(-1)(x^2 + y^2)^{-2}(2y) + (x^2 + y^2)^{-1}$$

$$u_{xx} + u_{yy} = \frac{-2x^2}{(x^2 + y^2)^2} + \frac{-2y^2}{(x^2 + y^2)^2} + \frac{2}{(x^2 + y^2)} = \frac{-2(x^2 + y^2)}{(x^2 + y^2)^2} + \frac{2}{(x^2 + y^2)} = 0$$

Which means that $u(x,y) = \log \sqrt{x^2 + y^2}$ is a solution to the PDE.

(b) $bu_x + au_y + u = 0$, $u(x,y) = \exp\left(\frac{-x}{b}\right) f(ax - by)$ for arbitrary differentiable function f.

$$u_x = e^{\frac{-x}{b}} \left(\frac{-1}{b}\right) f(ax - by) + f'(ax - by)(a)e^{\frac{-x}{b}}$$
$$u_y = e^{\frac{-x}{b}} f'(ax - by)(-b)$$

Then,

$$bu_x + au_y + u = -e^{\frac{-x}{b}}f(ax - by) + (ab)\left(e^{\frac{-x}{b}}\right)f'(ax - by) + e^{\frac{-x}{b}}f'(ax - by)(-ab) + e^{\frac{-x}{b}}f(ax - by) = 0$$

So $u(x,y) = \exp\left(\frac{-x}{b}\right) f(ax - by)$ is a solution to the PDE for an arbitrary differentiable function f.

(c) $u_{xx} - \frac{1}{x}u_x - x^2u_{yy} = 0$, $u(x,y) = f(2y + x^2) + g(2y - x^2)$ for arbitrary twice-differentiable functions f and g.

$$u_x = (f'(2y + x^2))(2x) + (g'(2y - x^2))(-2x)$$

$$u_y = 2(f'(2y + x^2)) + 2(g'(2y - x^2))$$

$$u_{xx} = 2f' + (f'')(4x^2) - 2g' + (g'')(4x^2)$$

$$u_{yy} = 4f'' + 4g''$$

$$u_{xx} - \frac{1}{x}u_x - x^2u_{yy} =$$

$$2f' + 4x^2f'' - 2g' + 4x^2g'' - \frac{1}{x}(2xf' - 2xg') - x^2(4f'' + 4g'') =$$

$$2f' - 2f' + 4x^2f'' - 4x^2f'' - 2g' + 2g' + 4x^2g'' - 4x^2g'' = 0$$

So $u(x,y) = f(2y + x^2) + g(2y - x^2)$ is a solution to the PDE for arbitrary twice-differentiable functions f and g.

Question 2

- (a) 2nd-order linear homogeneous
- (b) 4th-order linear inhomogeneous
- (c) 2nd-order quasi-linear homogeneous
- (d) We can rewrite this as $u_{xx} + u_{yy} + f(x,y)u g(x,y)u^5 = 0$, making it clear that this is a 2nd-order semi-linear homogeneous PDE.

Question 3

Use separation of variables to solve the following problems:

(a)
$$u_x + u = u_y$$
, $u(x,0) = 4x^{-3x}$, use $u(x,y) = f(x)g(y)$

(b)
$$x^2u_{xy} + 9y^2u = 0$$
, $u(x,0) = \exp\left(\frac{1}{x}\right)$, use $u(x,y) = f(x)g(y)$

(c)
$$u_x^2 + u_y^2 = 1$$
, use $u(x, y) = f(x) + g(y)$

(d)
$$x^2u_x^2 + y^2u_y^2 = u^2$$
, use $u(x,y) = e^{f(x)}e^{g(y)}$

Question 4

For each of the following IVPs, (i) find and plot the characteristic lines (curves), (ii) solve the IVP, and (iii) plot the solution of (a)-(b) for indicated time.

(a) $u_t + (1+x^2)u_x = 0$, $u(0,x) = \arctan(x)$, t = 1, 2, 3, and what is $\lim_{t \to \infty} u(t,x)$?

$$\frac{dx}{dt} = 1 + x^2$$
$$\frac{1}{1 + x^2} dx = dt$$

$$\arctan(x) = t + C$$

So $x = \tan(t + C)$ are the characteristic curves of $u_t + (1 + x^2) u_x = 0$. On each of the curves, u(x,t) is constant because

$$\frac{d}{dt}u(t,\tan{(t+C)}) = \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x}\sec^2{(t+c)}$$

And since $1 + \tan^2 \theta = \sec^2 \theta$, this means $\frac{d}{dt}u(t, \tan(t+C)) = \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} \left(1 + \tan^2(t+c)\right) = u_t + \left(1 + x^2\right)u_x$, which we know is 0.

Thus $u(t, \tan(t+C)) = u(0, \tan(0+C)) = u(0, C)$ is independent of t. Putting $x = \tan(t+C)$ and $C = \arctan(x) - t$, we have

$$u(t,x) = u(0,\arctan(x) - t)$$

It follows that $u(t, x) = f(\arctan(x) - t)$.

And since we are given that $u(0,x) = \arctan(x)$, we have $f(\arctan(x) - 0) = \arctan(x)$ so that f(w) = w for any w, yielding our solution of

$$u(t, x) = \arctan(x) - t$$

Characteristic curves for Problem 4a

with C=1

Since the range of arctan is limited to $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$, as $\lim_{t \to \infty}$ that means $u(t, x) = \arctan(x) - t$ will go to $-\infty$.

Solution curves for Problem 4a

We can check our solution of $u(t,x) = \arctan(x) - t$ by differentiating, since $u_t = -1$, $u_x = \frac{1}{1+x^2}$, that means $u_t + (1+x^2) u_x = -1 + 1 = 0.$

(b)
$$u_t - xu_x = 0$$
, $u(0, x) = \frac{1}{1+x^2}$, $t = 1, 2, 3$, and what is $\lim_{t \to \infty} u(t, x)$?

The directional derivative of u in the direction of the vector (1, -x) is zero. The curves in the tx plane with (1, -x) as a tangent vector have slopes -x:

$$\frac{dx}{dt} = -x$$
$$\frac{1}{x}dx = -dt$$

$$\frac{1}{x}dx = -dx$$

Solving this ODE gives the equations for the characteristic lines:

$$x = Ce^{-t}$$

Characteristic curves for Problem 4b

On each of the curves, u(x,t) is constant because

$$\frac{d}{dt}u(t, Ce^{-t}) = \frac{\partial u}{\partial t} - Ce^{-t}\frac{\partial u}{\partial x} = u_t - xu_x$$

and we know that $u_t - xu_x = 0$.

Set $\xi = xe^t$ and $\eta = x$. Then by the chain rule,

$$u_x = \frac{\partial u}{\partial x} = \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial x} + \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x} = \frac{\partial u}{\partial \eta} + \frac{\partial u}{\partial \xi} e^t$$

and similarly

$$u_t = \frac{\partial u}{\partial t} = \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial t} + \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial t} = \frac{\partial u}{\partial \xi} x e^t$$

Which means that

$$u_t - xu_x = \frac{\partial u}{\partial \xi} x e^t - x \left(\frac{\partial u}{\partial \eta} + \frac{\partial u}{\partial \xi} e^t \right) = 0$$

Assuming $x \neq 0$, this means

$$u_{\eta} = 0$$

$$u = \int u_{\eta} d\eta + f(\xi) = 0 + f(\xi)$$

So we have $u(t,x)=f(\xi)=f(xe^t)$ and we know that $u(0,x)=\frac{1}{1+x^2}$, which means $f(xe^0)=f(x)=\frac{1}{1+x^2}$ and therefore $u(t,x)=\frac{1}{1+(xe^t)^2}$.

We check by differentiating:

$$u_{t} = -\left(1 + (xe^{t})^{2}\right)^{-2} (2xe^{t}) xe^{t}$$
$$u_{x} = -\left(1 + (xe^{t})^{2}\right)^{-2} (2xe^{t}) e^{t}$$

And we see that $u_t - xe_t$ indeed equals zero. Plotting the solution $u(t, x) = \frac{1}{1 + (xe^t)^2}$ as a function of x for t = 1, 2, 3, we get:

Solution curves for Problem 4b

We can see that u(t,x) will equal 1 at x=0 regardless of the value of t, but at all other values of x, $\lim_{t\to\infty}u(t,x)=0$. This can be written as

$$\lim_{t \to \infty} u(t, x) = \begin{cases} 1 & \text{if } x = 0\\ 0 & \text{if } x \neq 0 \end{cases} \tag{1}$$

(c)
$$u_x + xu_y = \left(y - \frac{x^2}{2}\right)^2$$
, $u(0, y) = e^y$

 $\frac{dy}{dx}=x$ Solving this ODE yields the equation for the characteristic curves: $y=\frac{x^2}{2}+C$

Characteristic curves for Problem 4c

Now we define our new coordinate system as $\xi = y - \frac{x^2}{2}, \, \eta = x$

Then by the chain rule,

$$u_x = \frac{\partial u}{\partial x} = \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial x} + \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x} = \frac{\partial u}{\partial \eta} - x \frac{\partial u}{\partial \xi}$$

and similarly

$$u_y = \frac{\partial u}{\partial y} = \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial y} + \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial y} = \frac{\partial u}{\partial \xi}$$

$$u_x + xu_y = \frac{\partial u}{\partial \eta} - x\frac{\partial u}{\partial \xi} + x\frac{\partial u}{\partial \xi} = \frac{\partial u}{\partial \eta}$$

And since we know $u_x + xu_y = \left(y - \frac{x^2}{2}\right)^2$, this means we have

$$\frac{\partial u}{\partial \eta} = \left(y - \frac{x^2}{2}\right)^2 = \xi^2$$

Now we integrate with respect to η to find

$$u = \eta \xi^2 + F(\xi)$$

At u(0,y), this becomes $u=0y^2+F(y)$, or u(0,y)=F(y). On the other hand, we are told that $u(0,y)=e^y$, which means that $F(y)=e^y$.

$$u = \eta \xi^2 + e^{\xi}$$

Substitute back in x and y:

$$u(x,y) = x\left(y - \frac{x^2}{2}\right)^2 + \exp\left(y - \frac{x^2}{2}\right)$$

We can check by differentiating:

$$u_x = -2x^2 \left(y - \frac{x^2}{2} \right) + \left(y - \frac{x^2}{2} \right)^2 + \exp\left(y - \frac{x^2}{2} \right) (-x)$$
$$u_y = 2x \left(y - \frac{x^2}{2} \right) + \exp\left(y - \frac{x^2}{2} \right)$$

Which means that $u_x + xu_y = \left(y - \frac{x^2}{2}\right)^2$, as we wanted.

(d)
$$2xu_x + (x+1)u_y = y$$
, for $x > 0$, $u = 2y$ on $x = 1$

$$\frac{dx}{dy}=\frac{x+1}{2x}=\frac{1}{2}+\frac{1}{2x}$$

Solving this ODE yields the characteristic curves:

$$y = \frac{x}{2} + \frac{\ln(x)}{2} + C$$
$$C = 2y - x - \ln(x)$$

Characteristic curves for Problem 4d

Now we define our new coordinate system as $2y - x - \ln(x)$, $\eta = x$

Then by the chain rule,

$$u_x = \frac{\partial u}{\partial x} = \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial x} + \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x} =$$

$$\frac{\partial u}{\partial \eta} + \frac{\partial u}{\partial \xi} \left(-1 - \frac{1}{x} \right)$$

Similarly,

$$u_y = \frac{\partial u}{\partial y} = 2\frac{\partial u}{\partial \xi}$$

Plugging into our initial PDE,

$$2xu_x + (x+1)u_y = 2x\frac{\partial u}{\partial \eta} + \frac{\partial u}{\partial \xi}2x\left(-1 - \frac{1}{x}\right) + 2(x+1)\frac{\partial u}{\partial \xi}$$