# Reinforcement Learning with Policy Gradient

# **Contents**

- 1. Popular application of RL
- 2. Human Vs RL agent
- 3. The basic RL with PG algorithm
- 4. RL rescues non-differentiable computation
- 5. Conclusion

#### Popular application of RL (1/5)



ATARI games



AlphaGo

#### Human:

• Learn from experience

• Learn from rules

• Learn from knowledge base

Vs

### RL agent:

• Learn from experience

#### Overall Structure of RL with PG





# **Detailed Back Propagation**





Reward for winning is +1 Reward for losing is -1 Otherwise is 0

# **Detailed Back Propagation**





Reward for winning is +1 Reward for losing is -1 Otherwise is 0

How to combine the reward into the gradients in NN???

# Supervised Learning Vs Reinforcement Learning



The gradient from loss to probability

# Supervised Learning Vs Reinforcement Learning



The fake gradient (reward) from reward function to probability

# Mathematical backup of "fake gradient"

Some notations:

f(x): Reward function

p(x): The probability of taking an action

The goal is to:

 $Max{E_{x \sim p(x)}[f(x)]}$ 

#### basic RL with PG (3/5)

Calculate the partial derivation of f(x) on  $\theta$ 

$$\nabla_{\theta} E_x[f(x)] = \nabla_{\theta} \sum_{x} p(x) f(x)$$

definition of expectation

$$\nabla_{\theta} E_x[f(x)] = \nabla_{\theta} \sum_{x} p(x) f(x)$$

definition of expectation

#### basic RL with PG (3/5)

$$\nabla_{\theta} E_x[f(x)] = \nabla_{\theta} \sum_{x} p(x) f(x)$$
 definition of expectation  
$$= \sum_{x} \nabla_{\theta} p(x) f(x)$$
 swap sum and gradient



definition of expectation

swap sum and gradient

$$\nabla_{\theta} E_x[f(x)] = \nabla_{\theta} \sum_{x} p(x) f(x)$$
 definition of expectation  

$$= \sum_{x} \nabla_{\theta} p(x) f(x)$$
 swap sum and gradient  

$$= \sum_{x} p(x) \frac{\nabla_{\theta} p(x)}{p(x)} f(x)$$
 both multiply and divide by  $p(x)$ 

$$\nabla_{\theta} E_x[f(x)] = \nabla_{\theta} \sum_{x} p(x) f(x)$$
 definition of expectation 
$$= \sum_{x} \nabla_{\theta} p(x) f(x)$$
 swap sum and gradient 
$$= \sum_{x} p(x) \frac{\nabla_{\theta} p(x)}{p(x)} f(x)$$
 both multiply and divide by  $p(x)$  
$$\nabla_{\theta} \log[p(x)]$$

$$\nabla_{\theta} E_x[f(x)] = \nabla_{\theta} \sum_{x} p(x) f(x)$$
 definition of expectation 
$$= \sum_{x} \nabla_{\theta} p(x) f(x)$$
 swap sum and gradient 
$$= \sum_{x} p(x) \frac{\nabla_{\theta} p(x)}{p(x)} f(x)$$
 both multiply and divide by  $p(x)$  
$$= \sum_{x} p(x) \nabla_{\theta} \log p(x) f(x)$$
 use the fact that  $\nabla_{\theta} \log(z) = \frac{1}{z} \nabla_{\theta} z$ 

$$\nabla_{\theta} E_x[f(x)] = \nabla_{\theta} \sum_{x} p(x) f(x)$$
 definition of expectation  

$$= \sum_{x} \nabla_{\theta} p(x) f(x)$$
 swap sum and gradient  

$$= \sum_{x} p(x) \frac{\nabla_{\theta} p(x)}{p(x)} f(x)$$
 both multiply and divide by  $p(x)$   

$$= \sum_{x} p(x) \frac{\nabla_{\theta} \log p(x) f(x)}{p(x)}$$
 use the fact that  $\nabla_{\theta} \log(z) = \frac{1}{z} \nabla_{\theta} z$ 

$$\nabla_{\theta} E_x[f(x)] = \nabla_{\theta} \sum_{x} p(x) f(x)$$
 definition of expectation
$$= \sum_{x} \nabla_{\theta} p(x) f(x)$$
 swap sum and gradient
$$= \sum_{x} p(x) \frac{\nabla_{\theta} p(x)}{p(x)} f(x)$$
 both multiply and divide by  $p(x)$ 

$$= \sum_{x} p(x) \nabla_{\theta} \log p(x) f(x)$$
 use the fact that  $\nabla_{\theta} \log(z) = \frac{1}{z} \nabla_{\theta} z$ 

$$= E_x[f(x) \nabla_{\theta} \log p(x)]$$
 definition of expectation

The gradient of f(x) on  $\theta \approx f(x)$  \* the gradient of log probability

Partial derivation of f(x) on  $\theta$ :

$$\nabla_{\theta} E_{x}[f(x)] = E_{x}[f(x)\nabla_{\theta} \log p(x)]$$

The loss function:

$$L(\theta) = \sum f(x) \log p(x; \theta)$$

# Supervised Learning Vs Reinforcement Learning



The reward could be regarded as gradient from loss to log probability

#### Calculate rewards manually



What are the rewards for these four sets of policies?

Reward for winning is +1 Reward for losing is -1 Otherwise is 0

# Calculate rewards manually



















# Congratulations!!!

We have finished the basic RL with PG

Hope I have made it clear ©



No care whether it is differentiable or not

# Sequence Level Training With Recurrent Neural Networks

Marc'Aurelio Ranzato, Sumit Chopra, Michael Auli, Wojciech Zaremba

# Existing limitations in text generation

## Existing limitations in text generation

- 1. The input data distribution in training is different from that in testing
- 2. The evaluation metric in training is different from that in testing
- 3. The evaluation metric in training is word-level based

## Input data distribution

#### In training:



#### In testing:



#### **Evaluation Metric**

In training:

In testing:

- 1. Cross entropy loss
- 2. Word-level based

- 1. BLEU or ROUGE-2...
- 2. Sequence-level based

#### **Evaluation Metric**

In training:

In testing:

1. Cross entropy loss

1. BLEU or ROUGE-2...

2. Word-level based

2. Sequence-level based

The longer you trained, the more this kind of errors accumulated 😊

#### MIXER here to rescue

(Mixed Incremental Cross-Entropy Reinforce)



The unfolded normal RNN for text generation





Generated words in previous time step



BP with RL



First s steps trained with normal RNN

Next T - s steps trained with RNN-RL

#### Partial derivation of f(x) on $\theta$ :

$$\nabla_{\theta} E_{x}[f(x)] = E_{x}[f(x)\nabla_{\theta} \log p(x)]$$

The loss function:

$$L(\theta) = \sum f(x) \log p(x; \theta)$$

### RL gradient details

Objective function:

$$L( heta) = -\mathbb{E}_{w^s \sim p_ heta}[r(w^s)]$$

Partial derivation:

$$abla_{ heta} L( heta) = -\mathbb{E}_{w_s \sim p_{ heta}}[r(w^s) 
abla_{ heta} \log p_{ heta}(w^s)]$$

$$abla_{ heta} L( heta) = -\mathbb{E}_{w_s \sim p_{ heta}}[(r(w^s) - b) 
abla_{ heta} \log p_{ heta}(w^s)]$$

Chain rule:

$$abla_{ heta}L( heta) = \sum_{t=1}^{T} rac{\partial L( heta)}{\partial s_t} rac{\partial s_t}{\partial heta}$$

$$rac{\partial L( heta)}{\partial s_t}pprox (r(w^s)-b)(p_ heta(w_t|h_t)-1_{w_t^s})$$

Normal multi-class derivation

### RL gradient details

Objective function:

$$L( heta) = -\mathbb{E}_{w^s \sim p_ heta}[r(w^s)]$$

Partial derivation:

$$abla_{ heta} L( heta) = -\mathbb{E}_{w_s \sim p_{ heta}}[r(w^s) 
abla_{ heta} \log p_{ heta}(w^s)]$$

$$abla_{ heta} L( heta) = -\mathbb{E}_{w_s \sim p_{ heta}}[(r(w^s) - b) 
abla_{ heta} \log p_{ heta}(w^s)]$$

Chain rule:

$$abla_{ heta}L( heta) = \sum_{t=1}^{T} rac{\partial L( heta)}{\partial s_t} rac{\partial s_t}{\partial heta}$$

$$rac{\partial L( heta)}{\partial s_t}pprox (r(w^s)-b)(p_ heta(w_t|h_t)-1_{w_t^s})$$
 Average reward at time t+1

#### Tricks in MIXER

The search space for RL agent is too large in text generation.

Therefore the RNN is initialized with optimal parameters, which means

it is pre-trained using normal RNN structures

# **Existing limitations** in text generation

- The input data distribution in training is different from that in testing
- 2. The evaluation metric in training is different from that in testing
- 3. The evaluation metric in training is word-level based

## Addressed by MIXER

- 1. The input data distribution in training is similar to that in testing
- 2. The evaluation metric in training is the same to that in testing, BLEU...
- 3. The evaluation metric in training is sequence-level based, BLEU...

#### **Conclusions**

- 1. Reinforcement learning agent learns from experience with interacting with reward function;
- 2. The reward function is no need to be differentiable;
- 3. Reinforcement learning has applied in lots of tasks in text generation

## Thank you ©