

Makroökonomik (AVWL II) SoSe 2022 Wiederholungs- und Fragestunde

Tutoriumswoche 13

Solow-Modell: Produktionsfunktion

$$Y = F(K, AN)$$

- Positive Grenzerträge: $\frac{dF}{dK} > 0$ und $\frac{dF}{dN} > 0$ (1. Ableitungen > 0)
 - Eine weitere Einheit Kapital/Arbeit erhöht das Produktionsniveau.
- Fallende Grenzerträge: $\frac{d^2F}{dK^2} < 0$ und $\frac{d^2F}{dN^2} < 0$ (2. Ableitungen < 0)
 - Die mit einer weiteren Einheit Kapital/Arbeit zusätzlich produzierte Menge Y wird mit jeder weiteren Einheit kleiner (wenn der andere Produktionsfaktor konstant gehalten wird).
- Konstante Skalenerträge: $F(\lambda K, \lambda AN) = \lambda F(K, AN) \quad \forall \lambda > 0$
 - Eine Erhöhung aller Produktionsfaktoren um x% erhöht die Produktion ebenfalls um x%.
- Beispiel für eine Produktionsfunktion: $F(K, AN) = K^{\alpha}(AN)^{1-\alpha}$ (Cobb-Douglas Funktion)

Solow-Modell: Variablen

	In absoluten Größen	Intensitätsgrößen (pro Arbeitseffizienzeinheit)
BIP	$Y_t = F(K_t, A_t N_t)$	$y_t = \frac{Y_t}{A_t N_t} = f(k_t)$
Kapital	K_t	$k_t = \frac{K_t}{A_t N_t}$
Bruttoinvestitionen = Ersparnis	sY_t	sy_t
Konsum	$C_t = (1 - s)Y_t$	$c_t = (1 - s)y_t$
Abschreibungen	δK_t	δk_t
Veränderung des Kapitalstocks im Zeitverlauf	$K_{t+1} - K_t = sY_t - \delta K_t$	$k_{t+1} - k_t \approx \frac{sy_t - (\delta + g + n)k_t}{(1+g)(1+n)}$
Bevölkerungswachstum	$N_{t+1} = (1+n)N_t$	
Technischer Fortschritt	$A_{t+1} = (1+g)A_t$	

Solow-Modell: Steady State Bedingung

Steady state Bedingung im Solow-Modell mit Bevölkerungswachstum und technischem Fortschritt:

$$sf(k^*) = (\delta + g + n)k^*$$

Solow-Modell: Wachstumsraten

 Wachstumsraten von Kapital K, Output Y, Konsum C und Ersparnis bzw. Investition sY im Steady State:

absolute Größen z.B. $Y_t = A_t N_t y^*$	Pro-Kopf-Größen z.B. $\frac{Y_t}{N_t} = A_t y^*$	Intensitätsgrößen (pro Arbeitseffizienzeinheit) z.B. $y^* = \frac{Y_t}{A_t N_t}$
n + g	g	Wachsen nicht

Solow-Modell: Goldene Regel

Fragestellung: Mit welcher Sparquote s wird der Konsum pro Kopf $\frac{C}{N}$ im **Steady State maximiert?**

- Golden Rule: $\max_{k,k} c^* = f(k^*) sf(k^*)$
- Steady State Bedingung: $sf(k^*) = (\delta + g + n)k^*$

$$\rightarrow \max_{\mathbf{k}^*} \mathbf{c}^* = \mathbf{f}(\mathbf{k}^*) - (\delta + \mathbf{g} + \mathbf{n})\mathbf{k}^*$$

$$\Rightarrow \max_{\mathbf{k}^*} \mathbf{c}^* = \mathbf{f}(\mathbf{k}^*) - (\delta + \mathbf{g} + \mathbf{n})\mathbf{k}^*$$

$$\Rightarrow \text{Optimalitätsbedingung: } \mathbf{f}'(\mathbf{k}^{**}) = \delta + \mathbf{g} + \mathbf{n}$$

Solow-Modell: Cobb-Douglas-Funktion

$$F(K,AN) = K^{\alpha}(AN)^{1-\alpha}$$

- Intensitätsform (= in Arbeitseffizienzeinheiten): $f(k) = k^{\alpha}$
- Steady state bei geg. Investitions- bzw. Sparquote s:

$$sk^{\alpha} = (\delta + g + n)k \Rightarrow k^* = \left(\frac{s}{\delta + g + n}\right)^{\frac{1}{1 - \alpha}}$$

• Steady state der goldenen Regel (bei optimaler Investitions- bzw. Sparquote s*):

$$f'(k) = \delta + g + n \Leftrightarrow \alpha k^{\alpha - 1} = \delta + g + n \Rightarrow k^{**} = \left(\frac{\alpha}{\delta + g + n}\right)^{\frac{1}{1 - \alpha}}$$

- Optimale Sparquote: $s^* = \alpha$
- **Lohnquote** = Anteil der Löhne am BIP = $\frac{\frac{w}{P}*N}{Y} = \frac{\frac{\partial Y}{\partial N}*N}{Y} = \mathbf{1} \alpha$
- **Kapitaleinkommensquote** = Anteil der Bruttokapitaleinkommen am BIP = $\frac{\frac{\partial Y}{\partial K}*K}{Y} = \alpha$

Solow-Modell: Technischer Fortschritt

- Hicks-neutraler technischer Fortschritt:
 Bei konstanter Kapitalintensität bleibt auch die Lohnquote konstant
- Arbeitssparender technischer Fortschritt:
 Bei konstanter Kapitalintensität sinkt die Lohnquote
 - Grenzprodukt des Kapitals steigt relativ zum Grenzprodukt der Arbeit
 - Lohn könnte trotzdem steigen! (Nur nicht so stark wie die Bruttokapitalrendite)
- Kapitalsparender technischer Fortschritt:
 Bei konstanter Kapitalintensität steigt die Lohnquote
 - Grenzprodukt der Arbeit steigt relativ zum Grenzprodukt des Kapitals

IS-LM-Modell: IS-Kurve

- Kurzfristiges Gleichgewicht auf dem Gütermarkt
 - Produktion (Y) = Güternachfrage (Z)

$$Y = Z = C(Y - T) + I(i) + G + NX$$

- In geschlossener Volkswirtschaft gilt: NX = 0
- Investitionsnachfrage I hängt negativ vom Nominalzinssatz i ab
 - Erinnerung: Fisher-Gleichung: $i = r + \pi^e$
 - Genau genommen hängt I negativ vom Realzins r ab, aber da wird konstante Inflationserwartungen annehmen, können wir schreiben, dass I von i abhängt
 - → IS-Kurve stellt negativen Zusammenhang zwischen Y und i dar

IS-LM-Modell: LM-Kurve

- Kurzfristiges Gleichgewicht auf dem Geldmarkt
 - Reales Geldangebot = Reale Geldnachfrage $\Leftrightarrow \frac{M}{P} = L(Y, i)$
 - Geldangebot $\frac{M}{P}$: Wird von Zentralbank kontrolliert (bei Geldmengensteuerung)
 - Geldnachfrage L(Y,i): hängt positiv von Y ab (Transaktionsmotiv) und negativ von i (Zinsen sind Opportunitätskosten der Geldhaltung)
- → LM-Kurve stellt **positiven Zusammenhang** zwischen **Y** und **i** dar

IS-LM-Modell: kurzfristiges Gleichgewicht

Klassische LM-Kurve mit Geldmengensteuerung

> Horizontale LM-"Kurve" unter **Zinssteuerung**

IS-LM-Modell: Expansive & kontraktive Geldpolitik

- Expansive Geldpolitik: Erhöhung der Geldmenge M
 - > verschiebt die LM-Kurve nach rechts
- Wirkungskette: $\mathbf{M} \uparrow \rightarrow \mathbf{G}$ Geldmarkt ist im Ungleichgewicht $(\frac{M}{P} > L(Y, i)) \rightarrow \mathbf{i} \downarrow (\mathbf{d}$ damit Geldnachfrage steigt) → Investitionsnachfrage I ↑ → Y ↑
 - sog. Zinskanal der Geldpolitik
- Kontraktive Geldpolitik: Verknappung der Geldmenge M
 - > verschiebt die LM-Kurve nach links
- Wirkungskette genau in die andere Richtung İ

IS-LM-Modell: Expansive Fiskalpolitik

- Expansive Fiskalpolitik: Erhöhung der Staatsausgaben G oder Senkung der Steuern T
 - → verschiebt die IS-Kurve nach rechts
- Wirkungskette bei konstanter Geldmenge: G↑→ Y↑→ Geldnachfrage ↑→ Geldmarkt ist im Ungleichgewicht (Nachfrage ist höher als Angebot) → i↑ (damit Geldnachfrage wieder sinkt) → Investitionsnachfrage I↓→ Y↓ wieder ein wenig ("Crowding-Out")

IS-LM-Modell: Multiplikatoreffekte

Staatsausgabenmultiplikator:

- Um wie viel steigt Y, wenn G um 1 Einheit steigt?
- Berechnung durch partielle Ableitung der IS-Kurve nach G $\Rightarrow \frac{dY}{dG}$
- Multiplikator im Keynesianischen Konsummodell, falls Investitionsnachfrage unabhängig von Y ist: 1/(1-c) > 1

Multiplikator bei Steuererhöhungen:

- Um wie viel sinkt Y, wenn T um 1 Einheit steigt?
- Berechnung durch partielle Ableitung der IS-Kurve nach T $ightarrow rac{dY}{dT}$
- Multiplikator im Keynesianischen Konsummodell, falls Investitionsnachfrage unabhängig von Y ist: -c/(1-c)

IS-LM-Modell: Policy Mix

IS-LM-Modell: Liquiditätsfalle

- Nominalzinsen i können nicht negativ werden
- Sobald i = 0 kann eine Erhöhung der Geldmenge die Zinsen nicht weiter senken
 - → Expansive Geldpolitik wirkungslos

- Lösungen:
 - Expansive Fiskalpolitik ist in der Liquiditätsfalle wirksamer als außerhalb
 - Denn: In der LF gibt es keinen Crowding-Out-Effekt
 - Inflationserwartungen π^e steigern (z.B. durch Forward Guidance)
 - Denn: $r = i \pi^e$ (Fisher Gleichung) und Investitionsnachfrage hängt von r und nicht i ab

AD-AS-Modell: kurze, mittlere und lange Frist

- Kurze Frist: IS-LM-Modell
 - Produktionsmenge Y wird komplett von Nachfrage bestimmt
 - Produktionsmenge Y und Zinssatz i passen sich an, sodass gilt:
 IS = LM
 - Preise und Löhne sind starr
- Mittlere Frist: Gleichgewicht auf dem Gütermarkt
 - Preise sind flexibel und passen sich an, sodass gilt: Güternachfrage (Y^{AD}) = Güterangebot (Y^{AS})
 - Löhne sind starr
- Lange Frist: Gleichgewicht auf dem Arbeitsmarkt
 - Löhne sind flexibel und passen sich an, sodass gilt: Arbeitsnachfrage (L^D) = Arbeitsangebot (L^S)
 - Löhne und Preise passen sich so lange an bis gilt: Güternachfrage (Y^{AD}) = Güterangebot (Y^{AS}) = natürliches Outputniveau (Y^*)

AD-AS-Modell: AD-Kurve

- AD = "Aggregate Demand" = Aggregierte Nachfrage
- Herleitung aus dem IS-LM-Modell:
 - AD-Kurve stellt alle P-Y-Kombinationen dar, bei denen das IS-LM-Modell im Gleichgewicht ist
 - Mechanismus: P → reales Geldangebot M/P ↑, aber Geldnachfrage L(Y,i)
 unverändert → Ungleichgewicht auf dem Geldmarkt → i ↓ (damit Geldnachfrage ebenfalls steigt) → I ↑ → Y^{AD} ↑
 - AD-Kurve stellt negativen Zusammenhang zwischen P und Y dar
- Grundsätzlich gilt: Alles, was die Kurven im IS-LM-Modell verschiebt (außer Preisveränderungen), verschiebt die AD Kurve in die gleiche Richtung!

AD-AS-Modell: AD-Kurve

AD-AS-Modell: AS-Kurve

- AS = "Aggregate Supply" = Aggregiertes Angebot
- Hat nichts mehr mit dem IS-LM-Modell zu tun!
- Herleitung aus Gewinnmaximierungsproblem der Firmen:
 - Produktionsfunktion: Y = F(L,K) (wie beim Solow-Modell)
 - Annahme: Kapitalbestand K ist konstant
 - max Gewinn = Umsatz Kosten = $P * F(K, L) wL (r + \delta)PK$
 - Durch Maximierung ergibt sich die Bedingung: $\frac{\partial F}{\partial L} = \frac{w}{P}$ (Grenzprodukt der Arbeit = Reallohn)
 - Grenzprodukt der Arbeit ist positiv und abnehmend (siehe Folie 2)
 - → Je niedriger der Reallohn desto mehr Arbeit wird von Unternehmen nachgefragt
 - \rightarrow **P** \uparrow $\rightarrow \frac{w}{P}$ \downarrow (in der mittleren Frist, da w konstant) \rightarrow L^D \uparrow \rightarrow **Y**^{AS} \uparrow
 - → AS-Kurve stellt einen positiven Zusammenhang zwischen P und Y dar
- AS-Kurve verläuft nur in der mittleren Frist positiv!
 - Langfristiges Angebot = Natürliches Outputniveau *Y** → <u>senkrechte</u> Gerade im Diagramm

AD-AS-Modell: langfristiges Gleichgewicht

- Produktionsniveau Y wird in der langen Frist allein vom Angebot Y = F(K,L) bestimmt und ist unabhängig vom Preisniveau P
 - → Langfristige AS-Kurve ist senkrecht
- Gleichgewichtsbedingung in der langen Frist: Arbeitsangebot = Arbeitsnachfrage
 - Arbeitsangebot L^S ist exogen gegeben
 - Arbeitsnachfrage L^D ergibt sich aus Gewinnmaximierung der Firmen
- Nominallohn w passt sich langfristig so an, dass ein Gleichgewicht auf dem Arbeitsmarkt herrscht

•
$$L^S > L^D \rightarrow \mathbf{w} \downarrow \rightarrow L^D \uparrow$$

•
$$L^S < L^D \rightarrow \mathbf{w} \uparrow \rightarrow L^D \downarrow$$

höhere Arbeitsnachfrage führt zu steigenden

AD-AS-Modell: negativer Nachfrageschock

Kurze Frist:

 $Y^{AD} \downarrow \rightarrow$ IS und AD nach links \rightarrow Geldnachfrage L(Y, i) \downarrow (aufgrund des Transaktionsmotivs der Geldhaltung) \rightarrow i \downarrow (damit Geldmarkt wieder im GGW) \rightarrow I \uparrow (= Crowding-Out)

Mittlere Frist:

 $Y^{AS} > Y^{AD} = \ddot{\mathsf{U}}$ berschussangebot $\Rightarrow P \downarrow$

Nachfrageseite: \rightarrow Realkasse $\frac{M}{P} \uparrow \rightarrow i \downarrow \rightarrow I \uparrow \rightarrow Y^{AD} \uparrow$

Angebotsseite: \rightarrow Reallohn $\frac{w}{P}$ \uparrow \rightarrow Arbeitsnachfrage $L^D \downarrow \rightarrow Y^{AS} \downarrow$ \Rightarrow P sinkt so lange bis $Y^{AD} = Y^{AS}$

Lange Frist:

 $Y_2 < Y^* \rightarrow \text{Arbeitsnachfrage L}^D < \text{Arbeitsangebot L}^S$ $\Rightarrow w \downarrow \Rightarrow L^D \uparrow \Rightarrow Y^{AS} \uparrow \Rightarrow Y^{AS} > Y^{AD} \Rightarrow P \downarrow \Rightarrow \text{s. mittlere Frist}$ $\Rightarrow \text{Preise und L\"ohne sinken so lange, bis } Y_3 = Y^* \ bzw. Y_0$

AD-AS-Modell: positiver Angebotsschock

Hier: Permanenter Angebotsschock

Kurze Frist:

 $Y^{AS} \uparrow \rightarrow AS$ nach rechts, AD unverändert $\rightarrow Y^{AS} > Y^{AD}$

= Überschussangebot

Beachte: Produktion Y richtet sich in der kurzen Frist nach der Nachfrage, deswegen bleibt sie trotz des höheren Angebots erstmal konstant!

Mittlere Frist:

Überschussangebot $\rightarrow P \downarrow$

Nachfrageseite: \rightarrow Realkasse $\frac{M}{P} \uparrow \rightarrow i \downarrow \rightarrow I \uparrow \rightarrow Y^{AD} \uparrow$

Angebotsseite: \rightarrow Reallohn $\frac{w}{P}$ \uparrow \rightarrow Arbeitsnachfrage $L^D \downarrow \rightarrow Y^{AS} \downarrow$

 \Rightarrow P sinkt so lange bis $Y^{AD} = Y^{AS}$

AD-AS-Modell: positiver Angebotsschock

Hier: Permanenter Angebotsschock

Lange Frist:

 $Y_1 < Y^{*neu} \rightarrow \text{Arbeitsnachfrage L}^D < \text{Arbeitsangebot L}^S$ $\Rightarrow w \downarrow \Rightarrow L^D \uparrow \Rightarrow Y^{AS} \uparrow \Rightarrow Y^{AS} > Y^{AD} \Rightarrow P \downarrow \Rightarrow \text{s. mittlere Frist}$ $\Rightarrow \text{Preise und L\"{o}hne sinken so lange, bis } Y_2 = Y^{*neu}$

Sinnvolle geldpolitische Maßnahme:

Expansive Geldpolitik (= $M \uparrow$), um die Nachfrage zu stimulieren und so das neue langfristige Produktionsniveau bei keiner oder geringerer Deflation zu erreichen

