

ALGORITMA

PENANGGALAN MASEHI DAN
HIJRIAH BERBASIS
PEMROGRAMAN ARDUINO

Rizky Dermawan, S.Si Founder Rizky Project

Sabtu, 30 Juli 2022 19:30 WIB - Selesai

Nama : Rizky Dermawan

Asal : Makassar, Sulawesi Selatan

Profesi : - Laboratory Officer Bosowa School

- Owner Rizky Project

Pendidikan: S1 Kimia FMIPA UNHAS (2010 - 2015)

SISTEM PENANGGALAN SYAMSIAH

- Merupakan sistem penanggalan yang didasarkan pada revolusi bumi terhadap matahari. Satu kali bumi menggitari matahari dihitung sebagai satu tahun
- Tahun Sideris adalah waktu yang dibutuhkan bumi untuk menggitari matahari dalam sekali putaran (360°) bersama bintang tetap
- ❖ Tahun Tropis adalah waktu yang dibutuhkan bumi untuk menggitari matahari dari titik musim semi kembali ke titik musim semi (vernal equinox). Titik vernal equinox bergeser sekitar 50,2° per tahun
- ❖ 1 Tahun Tropis = 365,2522 Hari atau 365 hari 5 jam 48 menit 46 detik

KALENDER JULIAN

- Pertamakali digagas oleh Julius Caesar sejak 1 Januari 45 SM
- ❖ Dalam 1 tahun terdiri dari **365,25 hari** yang dapat dituliskan:

$$365,25 = \frac{(365 \times 3) + (366 \times 1)}{4}$$

- Setiap 4 tahun terdapat 3 tahun Basit (Common Year) dan
 1 tahun Kabisat (Leap Year)
- ❖ Tahun Kabisat adalah jumlah tahun yang habis dibagi 4 dimana terdapat kelebihan 1 hari (365 + 1) yang diletakkan di akhir Februari (29 Februari)

❖ 1 Tahun Julian = 365 hari 6 jam
1 Tahun Tropik = 365 hari 5 jam 48 menit 46 detik ___

Selisih Waktu = 11 menit 14 detik (per 1 tahun)

- - Setiap **128 tahun** akan terdapat selisih 1 hari
- Kalender Julian berakhir pada 4 Oktober 1582 M

KALENDER GREGORIAN

- Pertama kali digagas oleh Paus Gregorius pada 24 Februari 1582 M dan mulai diberlakukan pada 15 Oktober 1582 M
- Kalender Julian dianggap tidak akurat karena awal Musim Semi (21 Maret) menjadi semakin maju sehingga sehingga waktu paskah yang telah disepakati pada Konsili Nicea 325 M menjadi tidak tepat lagi
- ❖ Dalam 1 tahun terdiri dari 365,22425 hari
- ❖ Selisih dengan kalender Julian 365,25 365,22425 = 0,02575 hari atau selisih 37 menit

Algoritma Tahun Kabisat Kalender GREGORIAN

Tahun Kabisat adalah jumlah tahun yang <u>habis</u> **dibagi 4 dan** <u>tidak habis</u> **dibagi 100 atau** jumlah tahun yang <u>habis</u> **dibagi 400**

```
void setup() {
 Serial.begin(9600);
void loop() {
 Serial.print("Masukkan Tahun: ");
 while(Serial.available() == 0){};
 String tahun_str = Serial.readString();
 Serial.println(tahun_str);
 int tahun = tahun_str.toInt();
 if(tahun%4 == 0 \& tahun%100 != 0 || tahun%400 == 0){
    Serial.println("Tahun "+tahun_str+" adalah tahun kabisat");
 else{
   Serial.println("Tahun "+tahun_str+" adalah BUKAN tahun kabisat");
 Serial.println("-----");
 delay(1000);
```


CON PRIVILEGIO DEL SOM MO Pontefice, del Senato Venete, e d'altri Prencipi.

radotto dal Larino nell'Italiano idioma dal Couerendo M. Bartholomeo Dionigi da Fano.

1582		OUTUBRO 1582 Têr Qua Qui Sex Sáb				
Dom	Seg	Têr	Qua	Qui	Sex	Sáb
	1	2	3	4	15	16
17	7-17-7					Street of the Street Street or St.
24	25	26	27	28	29	30
31	CHILD !		E SS		Ve A	

Ao ser o calendário Juliano corrigido pelo Papa Gregório, em 1582, foram dele eliminados dez dias, como aí se vê. O dia que teria sido sexta-feira, 5, ficou sendo sexta-feira, 15. A continuidade dos dias da semana não foi alterada nem interrompida, nem o foi em alteração nenhuma do calendário.

Koreksi Tahun KABISAT

* Koreksi 1 Concil di Nicea pada tahun 325 M

Koreksi pada rentang 45 SM – 325 M
$$\frac{325 - (-44)}{128} = 2,8828$$

Koreksi tahun kabisat sebanyak 2,8828 atau 3 hari

* Koreksi 2 Paus Gregorius pada tahun 1582 M

Koreksi pada rentang 325 M – 1582 M
$$\frac{1582 - 325}{128} = 9,8203$$

Koreksi tahun kabisat sebanyak 9,8203 atau **10 hari** sehingga **Tanggal 5 – 14 Oktober 1582 M dihapuskan dari kalender**

Selisih Tahun Gregorian dan Tahun Tropik

```
    ❖ 1 Tahun Gregorian = 365,2425 Hari
    1 Tahun Tropik = 365,2422 Hari
    Selisih Waktu = 0,0003 Hari (per 1 tahun)
```

Jadi selisih antara tahun Gregorian dengan tahun tropik adalah sebesar 0,0003 hari atau **25,92 detik** per tahunnya

Jadi setiap **3333 tahun** akan terdapat selisih 1 hari

Masalah:

Perubahan dari kalender Julian ke Gregorian mengakibatkan sulitnya membandingkan dua peristiwa astronomis yang terpisah jangka waktu lama

Solusi:

Julian Day

Julian Day (JD) adalah banyaknya hari yang telah dilalui sejak tanggal 1 Januari 4713 SM pukul 12:00:00 UT atau GMT

Fungsi Julian Day

- Menghitung posisi benda-benda langit
- Penentuan awal bulan baru
- Penentuan waktu sholat
- Penentuan fenomena alam, dll.

Algoritma Perhitungan Julian Day (JD)

JD = 1720994.5 + int(365.25*T) + int(30.6001*(B+1)) + B2 + H

Dimana **H**, **B**, dan **T** adalah **Tanggal**, **Bulan**, dan **Tahun** yang akan dikonversi ke Julian Day

Jika tanggal, bulan, dan tahun yang diinput masuk dalam periode kalender **Julian** maka nilai **B2 =0**

Namun jika masuk dalam **Gregorian** maka nilai B2 mengikuti persaman:

$$T2 = int(T/100)$$

 $B2 = 2 - T2 + int(T2/4)$

Periode Kalender Julian: 1 Januari 45 SM s/d 4 Oktober 1582 M

Periode Kalender Gregorian: 15 Oktober 1582 M s/d Sekarang

Perhitungan Julian Day (JD) dalam Program Arduino

```
float julianDay(int tgl, int bln, int thn){
   if (bln < 3){
         bln = bln+12;
         thn = thn-1;
   if(thn < 1582){
     B2 = 0;
   else if( thn == 1582 \&\& bln < 10){
     B2 = 0:
   else if(thn == 1582 && bln == 10 && tgl <= 4)
     B2 = 0; //Julian
   else{
     unsigned long T2 = thn/100;
     B2 = 2-T2+(T2/4); //Gregorian
   unsigned long JHT = 365.25*thn;
   unsigned long JHB = (30.6001*(bln+1));
   float JD = 1720994.5 + JHT + JHB + B2 + tgl;
    return JD;
```

Khusus inputan bulan **ke 1** dan **ke 2** akan dianggap sebagai bulan **ke 13** dan **ke 14** dari **tahun sebelumnya**

Khusus penulisan tahun **Sebelum Masehi** dikurangi 1 dan diubah ke bentuk negatif. Contoh: **4713 SM** ditulis menjadi **-4712**

TANGGAL MASEHI	JAM (UT)	JULIAN DAY (JD)
1 Januari 4713 SM	12:00:00	0,0
2 Januari 4713 SM	00:00:00	0,5
2 Januari 4713 SM	12:00:00	1,0
4 Oktober 1582 M	00:00:00	2299159,5
15 Oktober 1582 M	00:00:00	2299160,5
30 Juli 2022 M	12:00:00	2459790.0

Penetapan hari berdasarkan Julian Day (JD)

```
p = JD + 1.5
ss = p/7 - int(p/7)
ss = ss * 7
NH = round(ss + 1)
الأحَدُ NH = 1 -> Ahad الأحَدُ
الإثْنَيْن NH = 2 -> Senin
الثَّلَاثَاءُ NH = 3 -> Selasa
NH = 4 -> Rabu
الخَميْسُ NH = 5 -> Kamis
الحُمْعَةُ NH = 6 -> Jum'at
السَّنْتُ NH = 7 -> Sabtu السَّنْتُ
```

```
• • •
String namaHari (float JD){
 String Hari;
 float p = JD + 1.5;
 float ss = (p/7) - int(p/7); //sisa
hass = ss*7;
  int nomorHari = round(ss+1);
  if (nomorHari == 1){
    Hari = "Ahad";
  else if(nomorHari == 2){
    Hari = "Senin";
  else if(nomorHari == 3){
    Hari = "Selasa";
  else if(nomorHari == 4){
    Hari = "Rabu";
  else if(nomorHari == 5){
    Hari = "Kamis";
  else if(nomorHari == 6){
    Hari = "Jumat";
  else if(nomorHari == 7){
    Hari = "Sabtu";
  else{
   Hari = "Tidak Diketahui";
  return Hari;
```

SISTEM PENANGGALAN QOMARIAH

- Merupakan sistem penanggalan yang didasarkan pada revolusi bulan terhadap bumi. Satu kali bulan menggitari bumi dihitung sebagai satu bulan
- ❖ **Satu bulan sinodis** = 29,530589 Hari = 29 Hari 12 Jam 44 menit 2,9 detik
- ❖ Tahun Kabisat ditentukan dalam siklus 30 tahun dimana terdapat 11 tahun kabisat yakni pada tahun ke 2, 5, 7, 10, 13, 16, 18, 21, 24, 26, 29

Contoh Tahun Kabisat pada rentang 1444 H – 1473 H

1	1444	11	1454	21	1464
2	1445	12	1455	22	1465
3	1446	13	1456	23	1466
4	1447	14	1457	24	1467
5	1448	15	1458	25	1468
6	1449	16	1459	26	1469
7	1450	17	1460	27	1470
8	1451	18	1461	28	1471
9	1452	19	1462	29	1472
10	1453	20	1463	30	1473

NOTE:

Ini hanya contoh sebagai ilustrasi bukan data sebenarnya

- * Kelebihan 1 hari pada tahun kabisat diletakkan pada akhir Dzulhijjah
- \clubsuit Jumlah hari dalam siklus 30 tahun (30 × 354) + 11 = 10631 Hari

Rata rata hari dalam sebulan
$$\frac{10631}{(30 \times 12)} = 29,530556$$
 hari

Selisih dengan bulan sinodik 29,530589 - 29,530556 = 0,000033 hari

$$\frac{1 \, hari}{0,000033 \, hari/bulan} = 30303,0303 \, bulan \, atau \, sekitar \, 2525 \, tahun$$

❖ 1 Muharram 1 H bertepatan dengan 16 Juli 672 M

Bulan Ke	KALENDE	R MASEHI	KALENDER HIJRIAH		
	Nama Bulan	Jumlah Hari	Nama Bulan	Jumlah Hari	
1	Januari	31	Muharram	30	
2	Februari	28 (29)	Shafar	29	
3	Maret	31	Rabiul Awal	30	
4	April	30	Rabiul Akhir	29	
5	Mei	31	Jumadil Awal	30	
6	Juni	30	Jumadil Akhir	29	
7	Juli	31	Rajab	30	
8	Agustus	31	Sya'ban	29	
9	September	30	Ramadhan	30	
10	Oktober	31	Syawal	29	
11	November	30	Dzulqa'dah	30	
12	Desember	31	Dzulhijjah	29 (30)	
		365 (366)		354 (355)	

Fase – fase Bulan

Konversi Hijriah - Masehi (Algoritma Jeen - Meus)