

Latar Belakang

Gerak parabola: Fenomena penting dalam fisika.

Siswa sering kesulitan membayangkan konsep ini.

Teknologi memungkinkan pengembangan alat bantu pembelajaran yang lebih interaktif.

Tujuan: Mengembangkan aplikasi berbasis Python yang membantu memahami gerak parabola.

Bagaimana menyajikan informasi gerak parabola secara menarik dan interaktif?

Rumusan Masalah

Apa saja faktor yang memengaruhi jarak dan ketinggian maksimum proyektil?

Bagaimana efektivitas aplikasi ini dibandingkan metode pembelajaran tradisional?

Tujuan Penelitian

Menghitung jarak dan ketinggian maksimum proyektil.

Menyediakan visualisasi interaktif dari gerak parabola.

Meningkatkan
pemahaman siswa
tentang gerak
parabola.

Input Parameter:

Kecepatan awal, sudut peluncuran.

Output:

Jarak maksimum, ketinggian maksimum, grafik lintasan proyektil.

Metode Penelitian

Mulai Penelitian

Studi Literatur - Konsep Gerak Rumus Parabola

Rancangan Aplikasi - Desain Antarmuka

- Desain Jungsional

Pengujian Aplikasi - Uji Coba Feedback Pengguna

> Analisis Data - Evaluasi Pembelajaran

Laporan Penelitian

Pengembangan Aplikasi Interaktif

Selesai


```
def hitung parabola():
   global entry_kecepatan, entry_sudut, result_label, canvas
                                                                              # Add button for "Perhitungan Gerak Parabola" in the center
   try:
                                                                               tk.Button(home frame, text="Perhitungan Gerak Parabola", command=show calculation).grid(
       kecepatan = float(entry kecepatan.get())
                                                                                                                                                                      reak
                                                                                  row=0, column=0, columnspan=2, padx=10, pady=10)
                                                                         311
       sudut = float(entry sudut.get())
                                                                         312
                                                                         313
                                                                               # Add button for "Simulasi Gerak Parabola" in the center
       # Convert angle to radians
                                                                               tk.Button(home frame, text="Simulasi Gerak Parabola", command=show simulasi).grid(
                                                                                  row=1, column=0, columnspan=2, padx=10, pady=10)
       sudut rad = np.radians(sudut)
       # Calculate maximum distance and height
       g = 9.81 # gravitational acceleration
       jarak maksimum = (kecepatan**2 * np.sin(2 * sudut rad)) / g
       ketinggian_maksimum = (kecepatan**2 * (np.sin(sudut_rad)**2)) / (2 * g)
       # Display results
       result text = f"Jarak Maksimum: {jarak maksimum:.2f} m\nKetinggian Maksimum: {ketinggian maksimum:.2f} m"
       result label.config(text=result text)
                                                                                        def draw_graph(kecepatan, sudut_rad, jarak_maksimum, ketinggian_maksimum):
                                                                                  53
       # Draw the graph in the same window
                                                                                             t = np.linspace(0, 2 * jarak_maksimum / kecepatan, num=500)
                                                                                  54
       draw graph(kecepatan, sudut rad, jarak maksimum, ketinggian maksimum)
                                                                                             x = kecepatan * np.cos(sudut_rad) * t
                                                                                  55
                                                                                             y = kecepatan * np.sin(sudut rad) * t - 0.5 * 9.81 * t**2
                                                                                  56
       # Hide and clear input fields and labels
                                                                                  57
       entry kecepatan.delete(0, tk.END)
                                                                                             # Clear previous plot
       entry sudut.delete(0, tk.END)
                                                                                  58
       entry kecepatan.grid forget()
                                                                                             ax.clear()
                                                                                  59
       entry sudut.grid forget()
                                                                                  60
       label kecepatan.grid forget()
                                                                                  61
                                                                                             # Plot the graph
       label_sudut.grid_forget()
                                                                                             ax.plot(x, y)
                                                                                  62
       # Hide input buttons
                                                                                             ax.set_title('Grafik Gerak Parabola')
                                                                                  63
       calculate button.grid forget()
                                                                                             ax.set xlabel('Jarak (m)')
                                                                                  64
       home_button.grid_forget()
                                                                                             ax.set ylabel('Ketinggian (m)')
                                                                                  65
                                                                                             ax.set xlim(0, jarak maksimum * 1.1)
                                                                                  66
       # Show navigation buttons and the graph
       back button.grid(row=6, column=1, padx=5, pady=10)
                                                                                  67
                                                                                             ax.set_ylim(0, ketinggian maksimum * 1.1)
       home button display.grid(row=6, column=0, padx=5, pady=10)
                                                                                  68
                                                                                             ax.grid()
       canvas widget.grid(row=5, columnspan=2) # Display the graph
                                                                                  69
                                                                                  70
                                                                                             # Draw the new figure
   except ValueError:
                                                                                             canvas.draw()
       messagebox.showerror("Input Error", "Silakan masukkan nilai yang valid.")
                                                                                  71
```

```
running = True
176 🗸
          while running:
 177
              win.fill(BLACK)
 178
 179 ~
              for event in pygame.event.get():
180 🗸
                  if event.type == pygame.QUIT:
                      running = False
 181
 182
183 🗸
                  if event.type == pygame.KEYDOWN:
 184 ~
                      if event.key == pygame.K_ESCAPE or event.key == pygame.K_q:
                          running = False
 186
 187 🗸
                      if event.key == pygame.K_r:
                                                                              218
                          projectile_group.empty()
                                                                              219
 189
                          currentp = None
                                                                              220
190
                                                                              221
191 🗸
                  if event.type == pygame.MOUSEBUTTONDOWN:
                                                                              222
                      clicked = True
                                                                              223
 193
                                                                              224
                  if event.type == pygame.MOUSEBUTTONUP:
                                                                              225
                      clicked = False
                                                                              226
                                                                              227
 197
                      pos = event.pos
                                                                              228
198
                      theta = getAngle(pos, origin)
                                                                              229
 199 🗸
                      if -90 < theta <= 0:
                                                                              230
200
                          projectile = Projectile(u, theta)
                                                                              231
                          projectile_group.add(projectile)
                                                                              232
202
                          currentp = projectile
                                                                              233
203
                                                                              234
204 🗸
                  if event.type == pygame.MOUSEMOTION:
                      if clicked:
                                                                              236
206
                          pos = event.pos
                                                                              237
                          theta = getAngle(pos, origin)
                                                                              238
                          if -90 < theta <= 0:
                                                                              239
                              end = getPosOnCircumeference(theta, origin)
                              arct = toRadian(theta)
                                                                              241
                                                                               242
```

243

```
projectile group.update()
   title = font.render("Projectile Motion", True, WHITE)
   fpstext = font.render(f"FPS : {int(clock.get_fps())}", True, WHITE)
   thetatext = font.render(f"Angle : {int(abs(theta))}", True, WHITE)
   degreetext = font.render(f"{int(abs(theta))}", True, YELLOW)
   win.blit(title, (80, 30))
   win.blit(fpstext, (20, 400))
   win.blit(thetatext, (20, 420))
   win.blit(degreetext, (origin[0]+38, origin[1]-20))
   if currentp:
       veltext = font.render(f"Velocity : {currentp.u}m/s", True, WHITE)
       timetext = font.render(f"Time : {currentp.timeOfFlight()}s", True, WHITE)
       rangetext = font.render(f"Range : {currentp.getRange()}m", True, WHITE)
       heighttext = font.render(f"Max Height : {currentp.getMaxHeight()}m", True, WHITE)
       win.blit(veltext, (WIDTH-150, 400))
       win.blit(timetext, (WIDTH-150, 420))
       win.blit(rangetext, (WIDTH-150, 440))
       win.blit(heighttext, (WIDTH-150, 460))
   pygame.draw.rect(win, (0,0,0), (0, 0, WIDTH, HEIGHT), 5)
   clock.tick(FPS)
   pygame.display.update()
pygame.quit()
```


Kesimpulan

Aplikasi simulasi gerak parabola berhasil dikembangkan dengan akurasi tinggi.

Simulasi interaktif membantu meningkatkan pemahaman siswa.

Aplikasi ini dapat digunakan sebagai alat bantu pembelajaran fisika.

Terima Kasih **Majesty Gracia E.R** Pengembangan Simulasi dan Perhitungan Gerak Parabola Berbasis Python dengan Integrasi Visualisasi Pygame dan Matplotlib