REMARKS

Summary of the Office Action

Claims 17 and 18 were objected to because of informalities.

Claims 1-20 were rejected under 35 U.S.C. § 112, first paragraph, as failing to comply with the enablement requirement.

Summary of Applicant's Response

Applicant has amended claims 17 and 18 to correct for the informalities.

Applicant respectfully traverses the rejections under 35 U.S.C. § 112, first paragraph.

Reply to Rejections Under 35 U.S.C. § 112, First Paragraph

Applicant respectfully traverses the Examiner's rejection of claims 1-20 under 35 U.S.C. § 112, first paragraph, as failure to comply with the enablement requirement. Applicant submits that the claimed invention is described in the specification in such full, clear, concise and exact terms as to enable persons skilled in the art to make and use the claimed inventions.

First, applicant respectfully traverses the statement in the Office action that "the specification does not explain what circuit includes the sourcing circuit with a substantially inductive impedance characteristic" (Office action, page 2). Such circuit is illustrated in FIG. 1 as "inductive sourcing circuit 110" (specification, page 5, line 27) that "may include

any circuit configuration that exhibits a substantially inductive frequency characteristic (*i.e.*, impedance that increases as frequency increases) and is suitable for providing current (e.g., such as the circuitry shown in FIG. 2)" (specification, page 6, lines 9-13).

Furthermore, applicant directs the Examiner to FIG. 2, which shows one embodiment of such an inductive sourcing circuit. In particular, "resistor 211 and transistor 212 form a well known drain load that acts as a sourcing circuit with an inductive impedance" (specification, page 9, lines 31-33). The combination of resistor 211 and transistor 212 forms a "synthetic circuit element" (specification, page 10, line 8) that mimics an inductor.

As an example of what was known in the prior art, applicant directs the Examiner's attention to the illustrative sourcing circuit with a substantially inductive impedance characteristic discussed by Sackinger et al. in "A 3GHz, 32dB CMOS Limiting Amplifier for SONET OC-48 Receivers", IEEE International Solid-State Circuits Conference, 2000 (hereinafter "the Sackinger article"). The Sackinger article was previously identified by the applicant in the Information Disclosure Statement submitted on October 29, 2003 and a copy is attached herewith in Appendix A for the Examiner's convenience. In particular, applicant directs the Examiner's attention to the first full paragraph in column two of page 158 and FIG. 9.5.4(b) on page 159 of the Sackinger article. principles of the sourcing circuit discussed in the Sackinger article are well-known to those skilled in the art. As such, those skilled in the art would be able to make and/or use a

sourcing circuit with a substantially inductive impedance characteristic without undue experimentation.

Applicant notes that independent claim 1 of U.S. Patent Application No. 10/172,874 (hereinafter "the '874 application"), which issued as U.S. Patent No. 6,670,850 (hereinafter "the '850 patent") on December 30, 2003 and from which the present application claims priority, also recites "a sourcing circuit with a substantially inductive impedance characteristic". Since the present application is a continuation of the '874 application, the specification of the '874 application is identical to that of the present application.

As discussed in the specification, "actual inductors may be used in sourcing circuit 110 if desired" (specification, page 10, lines 5-6) but "as is well known in the art, actual inductors are somewhat difficult to fabricate and tend to use relatively large amounts of die space" (specification, page 10, lines 11-13). By using the combination of resistor 211 and transistor 212 as illustrated in FIG. 2 to form "a sourcing circuit with a substantially inductive impedance characteristic" (claims 1, 13, and 19), "it is possible to reduce die size, power consumption, and manufacturing time" (specification, page 10, lines 14-16).

As such, "inductive sourcing circuit 110 provides at least two important benefits" (specification, page 6, lines 28-29) to amplifier circuit 100. First, "it acts as a high impedance element at high frequencies causing an increasing portion of the output signal produced by amplifier 100 to pass through the load" (specification, page 6, lines 29-32). And

second, "it prevents high frequency signals generated by modulation circuit 130 from being introduced onto a power plane (not shown) coupled to inductive sourcing circuit 110" (specification, page 7, lines 7-10).

Accordingly, applicant submits that the claim limitation reciting "a sourcing circuit with a substantially inductive impedance characteristic" in claims 1, 13, and 19 is described in the specification as filed, and respectfully requests that the §112, first paragraph, rejections be withdrawn.

Conclusion

In view of the above amendments and remarks, applicant respectfully submits that the present application is in condition for allowance.

Respectfully submitted,

Chi-Hsin Chang Reg. No. 52,717

Agent for Applicant

FISH & NEAVE

Customer No. 1473

1251 Avenue of the America

New York, New York 10020

Tel.: (650) 617-4000

FAX: (212) 596-9090

2000 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE

DIGEST OF TECHNICAL PAPERS

First Edition

February 2000

IEEE Catalog Number 00CH37056

Publisher: John H. Wuorinen, Castine, ME 04421

2000 IEEE International Solid-State Circuits Conference

DIGEST OF TECHNICAL PAPERS

Copyright and Reprint Permission:

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limits of U.S. Copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA, 01923. For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ, 08855-1331. All rights reserved. Copyright © 2000 by the Institute of Electrical and Electronics Engineers, Inc.

PRINTED IN THE UNITED STATES OF AMERICA by The J. S. McCarthy Co. Augusta, Maine

VOLUME 43

IEEE Cat. No. 00CH37056
ISBN 0-7803-5853-8 Softbound
ISBN 0-7803-5854-6 Casebound
ISBN 0-7803-5855-4 Microfiche
ISBN 0-7803-5856-2 CD-ROM
Library of Congress Number 81-644810
ISSN 0193-6530

Executive Editor: John H. Wuorinen Associate Editor: J. Normand Martin, Jr. Assistant Editor: Brian A. Olivari

•	Foreword Section 1	1	MP 3.6	and 40Gb/s 1:4 High-Sensitivity Demultiplexer	
	Session 1			with Decision Circuit using SiGe HBTs for 40Gb/s Optical Receiver	60
	Plenary Session	•		400B/0 Option Housivel	. 60
	Session Overview and Abstracts	10	MP 3.7	A 10Gb/s Demultiplexer IC in 0.18µm CMOS using Current Mode Logic with Tolerance to the	
, MA 1.1	21st Century Cars and ICs	12		Threshold Voltage Fluctuation	62
888 4 6	The Many Millians to the Millians Technology		MP 3.8	A 1:4 Demultiplexer for 40Gb/s	
MA 1.2	? The New Millennium: Wireless Technologies for a Truly Mobile Society	20		Fiber-Optic Applications	64
MA 1.3	Atoms To Applets:			Session 4	
	Building Systems ICs in the 21st Century	26	5	Signal Processing for Communications	
	Session 2			Session Overview and Abstracts	66
	Nyquist-Rate Data Converters		MP 4.1	A 1V Heterogeneous Reconfigurable Processor	
	Session Overview and Abstracts	32		IC for Baseband Wireless Applications	68
MP 2,1	A 14b 100MSample/s 3-Stage A/D Converter	34	MP 4.2	A 3.2GOPS Multiprocessor DSP for Communication Applications	70
MP 2.2	A 13b 40MSample/s CMOS Pipelined Folding ADC with Background Offset Trimming	36	MP 4.3	A Dynamically Configurable Multiformat PSK Demodulator for Digital HDTV using	
	1 401 0FM9			Broadcasting-Satellite	72
MP 2.3	A 12b 65MSample/s CMOS ADC with 82dB SFDR at 120MHz	38	MP 4.4	A Digital 80Mb/s OFDM Transceiver IC for	
MP 2.4	A 3.3V 12b 50MSample/s A/D Converter In			Wireless LAN in the 5GHz Band	74
	0.6µm CMOS with over 80dB SFDR	40	MP 4.5	0.35µm CMOS COFDM Receiver Chip for	
MP 2.5	An 8b 80MSample/s Pipelined ADC with			Terrestrial Digital Video Broadcasting	76
	Background Calibration	42	MP 4.6	A 500Mb/s Disk Drive Read Channel in 0.25µm	
MP 2.6	A Self-Trimming 14b 100MSample/s CMOS DAC	44		CMOS Incorporating Programmable Noise Predictive Viterbi Detection and Trellis Coding	ve 78 [.]
MP 2.7	A 14b 20MSample/s CMOS Pipelined ADC	46	MP 4.7	A 550MSample/s 8-tap FIR Digital Filter for	
	Session 3			Magnetic Recording Read Channels	80
	Gigabit-Rate Communications		MP 4.8	A Configurable 5-D Packet Classification Engine with 4Mpacket/s Throughput for	
٠.	Session Overview and Abstracts	48		High-Speed Data Networking	82
MP 3.1	A 10Gb/s Eye Opening Monitor IC for Decision-			Session 5	
0.1	Guided Optimization of the Frequency Response			High-Frequency Microprocessors	
	of an Optical Receiver	50		man 1 reduced miniohinge22012	
MP 3.2	A Fully Integrated SiGe Receiver IC for			Session Overview and Abstracts	84
0.2	10Gb/s Data Rate	52	MP 5.1	A 1GHz Alpha Microprocessor	86
MP 3.3	A 0.6W 10Gb/s SONET/SDH			· ·	•
0.0	Bit-Error-Monitoring LSI	54	MP 5.2	A 660MHz 64b SOI Processor with Cu Interconnects	88
MP 3.4		•	MP 5.3	A 780MHz PowerPC™ Microprocessor with	
	Circuits for 10Gb/s Serial Transmission Systems	56		Integrated L2 Cache	90
		00	MP 5.4	A 1GHz Single-Issue 64b PowerPC Processor	
MP 3.5	A Single-Chip 3.5-Gb/s CMOS/SIMOX			V 19115 OHIBIG-19986 DAN LOMELLC ALGGESZOL	92
	Transcelver with Automatic-Gain-Control and Automatic-Power-Control Circuits	58	MP 5.5	A 600MHz 64b PA-RISC Microprocessor	94 .

· 1988年,1986年,1987年,1987年,1987年,1987年,1987年,1987年,1987年,1987年,1987年,1987年,1987年,1987年,1987年,1987年,1987年,1987年

MP 5.6	760MHz G6 S/390 Microprocessor Exploiting Multiple Vt and Copper Interconnects	96.		Phase-state Low Electron-number Drive Random Access Memory (PLEDM)	132
MP 5.7	A GHz IA-32 Architecture Microprocessor Implemented on 0.18 m Technology with Aluminum Interconnect	98		The Vertical Replacement-Gate (VRG) Process for Scalable, General-purpose Complementary Logic	134
	Session 6 Image Sensors			Session 8 Wireless RX / TX	
	Session Overview and Abstracts	100		Session Overview and Abstracts	136
MP 6.1	A CMOS Image Sensor with a Simple FPN-Reduction	on 400	TA 8.1	A Fully-Integrated Zero-IF DECT Transceiver	138
	Technology and a Hole Accumulated Diode A CMOS Image Sensor for High-Speed Imaging	102	TA 8.2	A Fully Integrated Broadband Direct- Conversion Receiver for DBS Applications	140
MP 6.2	A 256 x 256 CMOS Differential Passive Pixel	104	TA 8.3	A 2V CMOS Cellular Transceiver Front-End	142
MP 6.3	Imager with FPN Reduction Techniques	106	TA 8.4	A RF Transceiver for Digital Wireless Communicati	
MP 6.4	A 60mW 10b CMOS Image Sensor with	108	IN 0.4	in a 25GHz SI Bipolar Technology	144
MP 6.5	A Progressive Scan CCD Imager for	100	TA 8.5	An Adaptive 2.4GHz Low-IF Receiver in 0.6µm CMOS for Wideband Wireless LAN	146
	DSC Applications	110		Session 9	
MP 6.6	A 1/3-inch 1.3MPixel Single-Layer Electrode CCD with a High-Frame-Rate Skip Mode	112		Filters and Amplifiers	
MP 6.7	A 1.2V Micropower CMOS Active Pixel Image	444	·	Session Overview and Abstracts	148
	Sensor for Portable Applications	114	TA 9.1	30-100MHz npn-Only Variable-Gain Class AB Companding-Based Filters for 1.2V Applications	150
	Monday Evening				
	Discussion Sessions		TA 9.2	A 10.7MHz CMOS SC Radio IF Filter with Variable Gain and a Q of 55	152
ME 1	"When Can I Buy a Dick Tracy Watch for Christmas?"	116	TA 9.3	A 1V CMOS Switched-Opamp Switched- Capacitor Pseudo-2-Path Filter	154
ME 2	Where Will Processor Performance Come From In the Next Ten Years?	118	TA 9.4	A CMOS Nested Chopper Instrumentation Amplifier with 100nV Offset	156
ME 3	Engineering Resources: Train, Buy, Rent, or Steal?	120	TA 9.5	A 3GHz, 32dB CMOS Limiting Amplifier for SONET OC-48 Receivers	158
ME 4	Memory Designer: Survivor or Dinosaur?	122	TA 9.6	A 12GHz 30dB Modular BICMOS Limiting	
	Session 7			Amplifier for 10Gb SONET Receiver	160
En	Technology Directions: nerging Memory & Device Technologies	S	TA 9.7	A 622Mb/s 4.5pA/√Hz CMOS Transimpedance Amplifier	. 162
	Session Overview and Abstracts	124		Session 10	
TA 7.1	Millipede - A Highly-Parallel Dense Scanning-	405		Clock Generation and Distribution	
	Probe-Based Data-Storage System	126		Session Overview and Abstracts	164
TA 7.2	A 10ns Read and Write Non-Volatile Memory Array Using a Magnetic Tunnel Junction and FET Switch In Each Cell	128	TA 10.1	A 1.3 Cycle Lock Time Non-PLL/DLL Jitter Suppression Clock Multiplier Based on Direct Clock Cycle Interpolation for	100
TA 7.3	Nonvolatile RAM based on Magnetic Tunnel Junction Elements	130		"Clock on Demand"	166

ST Fr	· 1987年中的1987年(1988年)(1987年)(1987年)	Politika (M	BY BACK	设定是政府是经济企业的企业的基本企业	1994年代
TA 10:2	A Digitally-Controlled PLL with Fast Locking Scheme for Clock Synthesis Application	168	TP 12.5	A 1.4GHz Differential Low-Noise CMOS Frequency Synthesizer using a Wideband PLL Architecture	204
TA 10.3	An Eight Channel 36GSample/s CMOS Timing Analyzer	170	TP 12.6	53GHz Static Frequency Divider in a SI/SiGe Bipolar Technology	206
A 10.4	On-Chip Inductance Modeling of VLSI Interconnects	172	TP 12.7	A 79GHz Dynamic Frequency Divider in SiGe Bipolar Technology	208
A 10.5	Active GHz Clock Network using Distributed PLLs	174	TP 12.8	82GHz Dynamic Frequency Divider in 5.5ps ECL SiGe HBTs	210
A 10.6	Clock Generation and Distribution for the First IA-64 Microprocessor	176		Session 13	210
	Session 11			Technology Directions:	
łn	tegrated Sensors and Display Circuits			Low-Temperature Circuits and	
111	tegrated sensors and Display Citcuits		Dia	gnostic Techniques for Microprocessor	s
	Session Overview and Abstracts	178		Session Overview and Abstracts	212
A 11.1	A CMOS Ultrasound Range Finder Microsystem	180	TP 13.1	CMOS Circuit Technology for Sub-Ambient Temperature Operation	214
A 11.2	An Opto-Electronic 18b/revolution Absolute Angle and Torque Sensor for Automotive Steering Applications	182	TP 13.2	Refrigeration Technologies for Sub-Ambient Temperature Operation of Computing Systems	216
A 11.3	Integrated Circuits for Particle Physics Experiments	184	TP 13.3	Threshold Canceling Logic (TCL): A Post-CMOS Logic Family Scalable Down to 0.02µm	218
A 11.4	Remote CMOS Pressure Sensor Chlp with Wireless Power and Data Transmission	186	TP 13.4	Optical Probling of Flip-Chip-Packaged Microprocessors	220
A 11.5	A 3.8inch QVGA Reflective Color LCD with Integrated 3b DAC Driver	188	TP 13.5	Non-Invasive Timing Analysis of IBM G6 Microprocessor L1 Cache using Backside Time-Resolved Hot Electron Luminescence	222
A 11.6	A CMOS Analog Front-End Chip-Set for Mega Pixel Camcorders	190	TP 13.6	Reduced Substrate Noise Digital Design for Improving Embedded Analog Performance	224
A 11.7	An Embeddable Low-Power SIMD Processor Bank	192	TP 13.7	Accurate In-situ Measurement of Peak Noise and Signal Delay Induced by Interconnect Coupling	226
	Session 12			Session 14	
Ę	requency Synthesizers and Dividers			Signal Processing for Multimedia	
	Session Overview and Abstracts	194		Session Overview and Abstracts	228
	A 1.8V 3mW 16.8GHz Frequency Divider in 0.25µm CMOS	196	TP 14.1	A 60MHz 240mW MPEG-4 Video-Phone LSI with 16Mb Embedded DRAM	230
12.2	A 1.1GHz CMOS Fractional-N Frequency Synthesizer with a 3b 3rd-Order ΔΣ Modulator	198	TP 14.2	A 30Frames/s Megapixel Real-Time CMOS Image Processor	232
	An integrated 2.5GHz SA Frequency Synthesizer with 5µs Settling and 2Mb/s Closed Loop Modulation	200	TP 14.3	A Parallel Vector Quantization Processor Eliminating Redundant Calculations for Real-time Motion Picture Compression	234
	A 900MHz Local Oscillator using a DLL-based Frequency Multiplier Technique for PCS Applications	202	TP 14.4	A 200MHz 0.25W Packet Audio Terminal Processor for Voice-over-Internet Protocol Applications	236
		•		A 720µW 50MOPs 1V DSP for a Hearing Ald Chip Set	238

	•				
TP 14.6	A 4-Way VLIW Embedded Multimedia Processor	240		Tuesday Evening	
	a z appratus Posses on Posses in Footballs			Discussion Sessions	
TP 14.7	A 7.1GB/s Low-Power 3D Rendering Engine in 2D Array Embedded Memory Logic CMOS	242	TE 5	Can System LSI be a Technology Driver	
TP 14.8	Heterogeneous Multi-processor for the Manageme of Real-time Video & Graphics Streams	nt 244		for the Coming Ten Years?	278
	Session 15		TE 6	RF and High-Speed Interfaces: 50Ω or Freedom? Low-Differential or Custom?	280
	High-Speed I / O		TE 7	Home Networking: Wired or Wireless?	282
	Session Overview and Abstracts	246 .	TE 8	Nostradamus II: Technology's Impact on the Next Millennium	284
TP 15.1	Dynamic Termination Output Driver for		•		
	a 600MHz Microprocessor	248		Session 17	
				Logic and Systems	
TP 15.2	Embedded Low-Cost 1.2Gb/s Inter-IC Serial			Logic and ojecomo	
	Data Link in 0.35µm CMOS	250		Session Overview and Abstracts	286
TD 45 2	A 90mW 4Gb/s Equalized I/O Circuit with .				
17 13.3	Input Offset Cancellation	252	WA 17.1	A 2nd Generation 440ps SOI 64b Adder	288
			WA 17 2	Conditional-Capture Flip-Flop Technique	
TP 15.4	A 1.25Gh/s CMOS Receiver Core with	•	.,,,,,,	for Statistical Power Reduction	290
	Plesiochronous Clocking Capability for			101 01211011021 01101 11022011011	
	Asynchronous Burst Data Acquisition	254	188 47 2	Asymphysical Interlooked Disclined	
	•		WA 17.3	Asynchronous Interlocked Pipelined	. 202
TP 15.5	A 2.4Gb/s/pin Simultaneous Bidirectional			CMOS Circuits Operating at 3.3-4.5GHz	292
	Parallel Link with Per Pin Skew Compensation	256	•		
	I didnot Ellik triki i di vili dice de		WA 17.4	A Dynamic Voltage Scaled Microprocessor System	294
TO 15 6	A Scalable 32Gb/s Parallel Data Transceiver				
17 10.0	with On-chip Timing Calibration Circuits	258	WA 17.5	Clock-Powered CMOS VLSI Graphics Processor for	
	With Director Thinning Cambration Circuits	200		Embedded Display Controller Application	296
TD 45 7	A 20Gb/s CMOS Multi-Channel Transmitter and				
IP 15.7	A 2000/S CMOS Multi-Chaliner Hansintter and		WA 17.6	A Variable Frequency Parallel I/O Interface	
	Receiver Chip Set for Ultra-High Resolution	000		with Adaptive Power Supply Regulation	298
	Digital Display	260			
	Cassian 46			Session 18	
	Session 16				
	Non-Volatile and SRAM			Wireline Communications	
		000		Session Overview and Abstracts	300
	Session Overview and Abstracts	262			
TD 40 4	A 16Mb 400MHz Loadless CMOS		WA 18.1	A CMOS HDSL2 Analog Front-End	302
TP 16.1	Four-Transistor SRAM Macro	264		•	
	LONI-Mansieror Surviu merro	204	WA 18.2	A Broadband High-Voltage SLIC for a	
	A . ODONUL 4 EWI 40MB CMAC CDAM			Splitter- and Transformer-less Combined	
IP 16.2	An 833MHz 1.5W 18Mb CMOS SRAM	200		ADSL-Lite/POTS Linecard	304
	with 1.67Gb/s/pin	266		•	
			WA 18.3	A Gigabit Transceiver Chip Set for UTP CAT-6	
TP 16.3	The Future of Ferroelectric Memories	268		Cables in Digital CMOS Technology	306
				Cautes in Digital Cine Commoney	000
TP 16.4	A 128kb FeRAM Macro for a Contact/		WA 10 A	A 3V Low-Power 0.25µm CMOS 100Mb/s	•
	Contactless Smart Card Microcontroller	270	WA 10.4		200
	•			Receiver for Fast Ethernet	308
TP 16 5	A 0.4µm 3.3V 1T1C 4Mb Nonvolatile Ferroelectric				
,	RAM with Fixed Bit-line Reference Voltage Schem	e	WA 18.5	A Mixed-Signal DFE/FFE Receiver for	
	and Data Protection Circuit	272		100Base-TX Applications	310
	and Data Flotoscon Chebit				
TD 4C C	A 40mm² 3V 50MHz 64Mb 4-level Cell		WA 18.6	CMOS 125MHz Fiber/TP Media Converter	
IP 10.0		274		with Auto Offset Cancellation Post Amplifier	
	NOR Type Flash Memory	274		and Pre-Emphasis LED Driver	312
TP 16.7	A Channel-Erasing 1.8V Only 32Mb NOR Flash		WA 18 7	A Combined 10/125Mbaud Twisted-Pair	
	EEPROM with a Bit-Line Direct-Sensing Scheme	276	i û. î	Line Driver with Programmable	
				Performance/Power Features	314
				i citatitidiirett awei i cafate)	014

Te	Session 19 ch. Directions: High-Frequency Wireless	•	WA 21.2	A 1GHz Portable Digital Delay-Locked Loop with Infinite Phase Capture Ranges	350
	Session Overview and Abstracts	316	WA 21.3	A 330MHz Low-Jitter and Fast-Locking Direct Skew Compensation DLL	352
WA 19.1	Chip-package Co-design of a 5GHz RF Front-end for WLAN	318	WA 21.4	A 23mW 256-Tap 8MSample/s QPSK Matched Filter for DS-COMA Cellular Telephony Using	
WA 19.2	5GHz CMOS Radio Transceiver Front-End Chipset	320		Recycling Integrator Correlators	354
WA 19.3	A 2V 5.1-5.8GHz Image-Reject Receiver with Wide Dynamic Range	322	WA 21.5	An Analog 0.25µm BICMOS Tailbiting MAP Decoder	356
WA 19.4	Low-Cost 60GHz-Band Antenna-Integrated Transmitter/Receiver Modules Utilizing		WA 21.6	A 550Mb/s GMR Read/Write Amplifier using 0.5µm 5V CMOS Process	358
	Multi-Layer Low-Temperature Co-Fired	224		Session 22	
	Ceramic Technology	324		Technology Directions:	
WA 19.5	76GHz Automotive Radar Chipset with Stabilizing Method for Face-Down			Low-Power & Digital Techniques	
	High-Frequency Circuits	326		Session Overview and Abstracts	360
	Wireless Interconnection In a CMOS IC with Integrated Antennas	328	WP 22.1	A Micropower Programmable DSP Powered using a MEMS-based Vibration-to-Electric Energy Converter	362
WA 19.7	Electromagnetically Shielded High-Q CMOS Compatible Copper Inductors	330	WP 22.2	Two Phase Non-Overlapping Clock Adiabatic Differential Cascode Voltage Switch Logic	,
	Session 20			(ADCVSL)	364
	Oversampling Converters		mu sa s	On Chin Multi CUa Clocking with	
	Session Overview and Abstracts	332	WP 22.3	On-Chip Multi-GHz Clocking with Transmission Lines	366
WA 20.1	A DC Measurement IC with 130nV _{pp} Noise in 10Hz	334		Delay Variability: Sources, Impacts and Trends DS-CDMA Wired Bus with Simple	368
WA 20.2	A 2.5 MSample/s Mutti-Bit $\Delta\Sigma$ CMOS ADC with 95dB SNR	336	*** 22.0	Interconnection Topology for Parallel Processing System LSIs	370
WA 20.3	A 90dB SNR, 2.5MHz Output Rate ADC using Cascaded Multibit ΔΣ Modulation at 8x		WP 22.6	IC Identification Circuit using Device Mismatch	372
	Oversampling Ratio	338		Session 23	
				Wireless Building Blocks	
WA 20.4	A 10.7MHz IF-to-Baseband ∑∆ A/D Conversion System for AM/FM Radio Receivers	340		Session Overview and Abstracts	374
WA 20.5	A Two-Path Bandpass ∑∆ Modulator with Extended Noise Shaping	342		Improved Mixer IIP2 Through Dynamic Matching	376
WA 20.6	A 120dB Multi-bit SC Audio DAC with Second-Order Noise Shaping	344	WP 23.2	0.5-1V 2GHz RF.Front-end Circuits In CMOS/SIMOX	378
	Session 21		WP 23.3	Ultra-Wide Dynamic Range 1.75dB	
	•			Nolse-Figure 900MHz CMOS LNA	380
	Mixed-Signal Techniques		WP 23.4	A 900MHz SOI Fully-Integrated RF Power	000
	Session Overview and Abstracts	346 .		Amplifier for Wireless Transceivers	382 _
WA 21.1	A Mixed Digital-Analog 16b Microcontroller with 0.5Mb Flash Memory, On-Chip Power Supply, Physical Network Interface, and 40V I/O for		WP 23.5	3 to 5GHz Quadrature Modulator and Demodulator using a Wideband Frequency- Doubling Phase Shifter	384
	Automotive Signle-Chip Mechatropies	240	1.		

West Service (2000) He explain about Solid State Quantity Contemporary (2002) 18 18 18 18 18 18 18 18 18 18 18

				·	
	WP 23.6	A Low-Power Low-Noise Accurate Linear-in-dB Variable Gain Amplifier with 500MHz Bandwidth	385	WP 25.7 The First IA-64 Microprocessor: A Design for Highly-Parallel Execution 4	22
	WP 23.7	Integrated Adaptive Channel Selectivity		Session 26	
		for FM Receivers	388	Analog Techniques	
		Session 24			
		DRAM		Session Overview and Abstracts 4	24
				WP 26.1 A 700MSample/s 6b Read Channel A/D	•
		Session Overview and Abstracts	390	Converter with 7b Servo Mode 4	26
	WP 24.1	A 8ns Random Cycle Embedded RAM Macro with		WP 26.2 A 6b 80DMSample/s CMOS A/D Converter 4	28
		Dual-port Interleaved DRAM Architecture (D²RAM)	392	MODES OF A Law Dhara Naisa CMOS LC Carillata	
	WP 24 2	A 56.8GB/s 0.18µm Embedded DRAM Macro		WP 26.3 A Low-Phase-Noise CMOS LC Oscillator with a Ring Structure 4	30
	111 24.2	with Dual Port Sense Ampilifier for			
		3D Graphics Controller	394	WP 26.4 An Integrated Low-Phase-Noise Voltage Controlled Oscillator for Base Station Applications 4	32
	WP 24.3	1GHz Fully Pipelined 3.7ns Address Access		decinated for base station Applications 4	IJŁ.
		Time 8kx1024 Embedded DRAM Macro	396	WP 26.5 A 3V Mixed-Signal Baseband	
	WD 24 4	A 16MB Cache DRAM LSI with Internal		Processor IC for IS-95	34
	WF 24.4	35.8GB/s Memory Bandwidth for		WP 26.6 A Differential 160MHz Self-Terminating	
		Simultaneous Read and Write Operation	398	Adaptive CMOS Line Driver 4	136
	WP 24 5	New Architecture for Cost-Efficient		WP 26.7 An On-chip Voltage Regulator using	
	111 24.0	High-Performance Multiple-Bank RDRAM	400		138
	WD 24 6	A 0.18µm 256Mb DDR-SDRAM with Low Cost		WP 26.8 An On-chip USB-powered Three-Phase	
	WI 24.0	Post-Mold-Tuning Method for DLL Replica	402	Up/down DC/DC Converter in	
		a COSSE /s /s la Ouadrupla Data Data CDDAM		a Standard 3.3V CMOS Process 4	140
	WP 24.7	A 500Mb/s/pin Quadruple Data Rate SDRAM Interface using a Skew Cancellation Technique	404	WP 26.9 A CMOS Bandgap Reference without Resistors 4	142
				• .	
	WP 24.8	Antifuse EPROM Circuit for Field Programmable DRAM	406		•
				Conference Information:	
		Session 25			
		Next-Generation Microprocessors			144
		Session Overview and Abstracts	408		180 182
		98221011 DAGLAICM GUR MD2119012	400 .	Index to Authors	184
	WP 25.1	UltraSPARC-III: a 3rd Generation 64b	440		190 193
		SPARC Microprocessor	410		195
	WP 25.2	Implementation of a 3rd-Generation		Conference Timetable	196
		SPARC V9 64b Microprocessor	412	·	
	WP 25.3	A 450MHz 64b RISC Processor using		•	
		Multiple Threshold Voltage CMOS	414		
	WP 25.4	A 200MHz Digital Communications Processor	416	·	
•	WP 25.5	A 1GIPS 1W Single-Chip Tightly-Coupled Four-Way			
		Multiprocessor with Architecture Support for			
	•	Multiple Control Flow Execution	418		
	WP 25.6	A 1000-MIPS/W Microprocessor using		·	
		Speed-Adaptive Threshold-Voltage CMOS with Forward Bias	420		
		MINI LAIMQIA DIG2	440		

TA 9.5 A 3GHz, 32dB CMOS Limiting Amplifier for SONET OC-48 Receivers

Eduard Säckinger, Wilhelm C. Fischer¹

Bell Labs, Lucent Technologies, Holmdel, NJ / Murray Hill, NJ

Figure 9.5.1 shows an optical receiver front-end for SONET OC-48 (2.5Gb/s). The limiting amplifier (LA) receives a small non-return to zero (NRZ) voltage signal (e.g., $8mV_{pp}$) from the transimpedance amplifier (TIA) and amplifies it to a level (e.g. $250mV_{pp}$) sufficient for the reliable operation of the clock and data recovery (CDR) circuit. The noise contribution of the LA must be small compared to that of the TIA so that the overall bit error rate and sensitivity are not affected adversely. Currently, commercial 2.5Gb/s SONET systems are composed of several discrete chips (TIA, LA, CDR, demultiplexer. clock synthesizer, multiplexer, laser driver, etc.) implemented in GaAs and more recently silicon bipolar technology. The future trend, however, is to integrate most of the front-end together with the digital framer on a single CMOS chip. Furthermore, the integration of multiple 2.5Gb/s channels on a single CMOS chip is desirable for wavelength division multiplexing (WDM) application. CMOS amplifiers for optical receivers and related applications with bandwidths up to 2.1GHz are recently reported [1,2,3]. This CMOS limiting amplifier with improved bandwidth (3GHz) and noise figure (16dB) is suitable for 2.5Gb/s SONET receivers. Power dissipation is 53mW and the chip is fabricated in a standard 2.5V, 0.25µm CMOS technology. This result is achieved with: (i) Inverse scaling to increase gain-bandwidth and reduce power dissipation while keeping noise and offset voltage low and (ii) active inductors to increase gain-bandwidth and improve gain stability. The active area of the amplifier is 0.03mm², less than 10% that of a comparable design with spiral inductors.

Figure 9.5.2 shows the block diagram of the CMOS limiting amplifier. It consists of four gain stages (A₁ - A₂) which provide a total gain of 34dB and a buffer stage (gain = -2dB) to drive the on-chip CDR load of 0.1pF. The gain stages are scaled so the transistor widths in the driven stage are half the size of those in the driving stage. The relative transistor sizes are marked as 1x, ..., 8x in Figure 9.5.2. Figure 9.5.3 shows circuit details of the individual stages. The first stage (A1) is a common-gate differential pair providing low impedance input. Its bias currents (In) are controlled so the input impedance is 50Ω . Stages A_3 , A_4 , A_5 are common-source differential pairs, and the buffer stage is implemented with two source followers. An offset compensation circuit controls the current Ios in the input stage so the dc amplifier output voltage is zero. This paper discusses the implementation of the amplifier core drawn with solid lines in Figure 9.5.2.

The gain-bandwidth of each stage is given by the ratio g_m/C_{tot} where g_m is the transconductance and C_{tet} is the total load capacitance of the stage. The latter consists of the stage output capacitance, the wiring capacitance, and the next-stage input capacitance. In the absence of scaling, these capacitances for the first stage (A1) are 100fF, 20fF, and 180fF, respectively, i.e., a substantial fraction is due to the next-stage input capacitance which includes a Miller component. If the second stage is scaled down by a factor 2, the total capacitive load reduces to (100+20+180/2)fF = 210fF and the bandwidth of the first stage increases by about 43%. Successive downscaling, as shown in Figure 9.5.2, increases the bandwidth of all stages. Note that inverse scaling is applicable here because only a small on-chip capacitance of the CDR needs to be driven, while a large input capacitance can be tolerated at the 50Ω input. The output load capacitance of the 4th stage is 14fF given by the CDR load and the capacitance transformation ratio of the source follower (=1:7). The maximum input capacitance of the amplifier is limited to about 250fF to meet the input return loss (S_{11}) specifications. The

WITCH: This material may be protected by copyright law (Title 17, U.S. Code)

capacitance ratio of 250fF: 14fF leads to the optimum scale factor of 1/2 per stage used in this design. Furthermore, as a result of inverse scaling the power consumption of stages A2 - A4 is reduced significantly without compromising the low noise and low offset of the amplifier, which are determined primarily by the large input stage A.,

The amplifier bandwidth is further extended by the use of inductive loads in every gain stage. This technique moves each stage pole to a higher frequency by partly tuning out its capacitive load. For large inductances, undesired peaking occurs in the frequency response. The bandwidth can be extended by about 70% before peaking occurs. Inductive loads can be implemented with spiral inductors or active inductors [4] (Figure 9.5.4). It is difficult to design spiral inductors with high inductance (e.g. 20nH) and keep the self-resonance well outside the passband (>> 3GHz). Furthermore, eight spiral inductors consume a large area and prevent a compact floorplan. In contrast, active inductors are small and operate up to about f_/2 (f_x=25GHz at V_{os}=0.9V in this technology). However, the large dc voltage drop across the conventional active inductor presents a problem at low supply voltages. Our solution is to bias the resistors of the active inductors one nMOS threshold voltage (note that this threshold voltage is increased by the back-gate effect) above $V_{\mathtt{nD}}$ reducing the voltage drop across the inductor by about half (Figure 9.5.4). Since no current is drawn from this bias voltage ($V_{\rm BH}$), it can be generated on-chip with a capacitive voltage converter. A further advantage of the active inductor load is that the amplifier dc gain becomes process insensitive, because the geometrical ratio of nMOS transistors M1 and M2 determines the gain (Figure 9.5.3).

The chip micrograph shows the inversely scaled stages (Figure 9.5.5). Some of the biasing transistors and poly resistors are covered by metal and are not visible. The ouput of the LA drives a 50Ω test buffer which presents the same capacitive load as the CDR and can drive a 50Ω load for testing purposes. This 50Ω test buffer was also integrated separately to determine its dc gain (-5.3dB) and verify its bandwidth. An eye diagram measured at 2.5Gb/s and a 2mV_m, 2³¹-1 PRBS input signal is shown in Figure 9.5.6. The eye is measured single-endedly through the 50Ω test buffer. The available inputreferred rms noise is 155µV corresponding to 2.2mV sensitivity at 10.12 bit error rate (BER). Additional performance data is listed in Figure 9.5.7.

Acknowledgments:

The authors thank P. Kinget, H. Kim, P. Larsson, and M. Loinaz for

References:

[1] Tanabe, A. et al., "A Single Chip 2.4Gb/s CMOS Optical Receiver IC with Low Substrate Crosstalk Preamplifier," ISSCC Digest of Technical Papers, 204-205. Each logical Papers.

Low Substrate Crosstalk Preamplifier," ISSCC Digest of Technical Papers, pp. 304—305, Feb. 1998.
[2] Savoy, J. and Razavi, B., "A CMOS Interface Circuit for Detection of 1.2 Gb/s RZ Data," ISSCC Digest of Technical Papers, pp. 278—279, Feb. 1999.
[3] Yoon, T. and Jalali, B., "Front-End CMOS Chipset for Fiber-Bassed Gigabit Ethernet," Symposium on VLSI Circuits Digest of Technical Papers, pp. 188—191, June 1998.
[4] Hara, S. et al., "Broad-Band Monolithic Microwave Active Inductor and its Application to Miniaturized Wide-Band Amplifiers," IEEE Trans. on Microwave Theory and Techniques, pp. 1920—1924, Dec. 1988.

Figure 9.5.1: 2.5Gb/s SONET receiver front-end block diagram.

Figure 9.5.3: Amplifier circuits: a) first gain stage, b) gain stages 2-4, c) buffer stage.

Figure 9.5.2: 3GHz CMOS limiting amplifier block diagram.

Figure 9.5.4: Inductive loads: a) spiral inductor and resistor, b) conventional active inductor, c) low voltage-drop active inductor.

是一种种的一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们 第一个一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就是

Figure 9.5.5: Chip micrograph.

Parameter	Value
CMOS Technology	$2.5 \mathrm{V},0.25 \mathrm{\mu m}$
Active area	0.03 mm ²
Bandwidth (-3dB)	3 GHz
DC Gain (differential)	32 dB
Group Delay (1 GHz)	125 ps
Group Delay Variation (1 - 3 GHz)	15 ps
Rise/Fall Time (20 % - 80 %)	106 ps
Input Dynamic Range (p-p)	2 mV - 2 V
AM to PM Conv. $(5 \mathrm{mV_{pp}} - 2 \mathrm{V_{pp}})$	< 10 ps
Available Input Noise (rms)	155 μV
Noise Figure (1 GHz)	`16 dB
Input Return Loss (2 GHz)	19 dB
Input Return Loss (3 GHz)	17 dB
Power Dissipation	53 mW

Figure 9.5.7: Measured performance.

Figure 9.5.6: Eye diagram with a 2.5Gb/s, 2mVpp PRBS input signal.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:			
☐ BLACK BORDERS			
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES			
☐ FADED TEXT OR DRAWING			
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING			
☐ SKEWED/SLANTED IMAGES			
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS			
☐ GRAY SCALE DOCUMENTS			
LINES OR MARKS ON ORIGINAL DOCUMENT			
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY			
Потиер.			

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.