

Institutt for matematiske fag

Eksamensoppgave i TMA4115 Matematikk 3
Faglig kontakt under eksamen: Antoine Julien ^a , Alexander Schmeding ^b , Gereon Quick ^c Tlf: ^a 73 59 77 82, ^b 40 53 99 12, ^c 48 50 14 12
Eksamensdato: 31. mai 2016 Eksamenstid (fra–til): 09:00–13:00
Hjelpemiddelkode/Tillatte hjelpemidler: C: Enkel kalkulator (Casio fx-82ES PLUS, Citizen SR-270X, Citizen SR-270X College, eller Hewlett Packard HP30S), Rottmann: Matematiske formelsamling.
Annen informasjon: Alle svar skal begrunnes og det skal gå klart frem hvordan svarene er oppnådd. Hver av de 10 oppgavene har samme vekt.
Målform/språk: bokmål Antall sider: 4 Antall sider vedlegg: 0
Kontrollert av:

- a) For $z = (-1 + i\sqrt{3})$, kalkuler z^3 og $|z|^6$.
- **b)** Finn alle komplekse tall $z \mod z^3 = 8i$ og tegn dem i det komplekse planet.

Oppgave 2

Se på den følgende inhomogene differensialligningen

$$y'' + 6y' + 9y = \cos t. (1)$$

- a) Finn den generelle løsningen av den tilhørende homogene ligningen.
- b) Finn en bestemt løsning av (1).
- c) Finn den unike løsningen av (1) som tilfredsstiller y(0) = y'(0) = 0.

Oppgave 3 La a være et reelt tall og A være matrisen $\begin{bmatrix} 0 & a \\ -a & 0 \end{bmatrix}$.

- a) Finn en fundamental mengde av reelle løsninger av differensialligningen $\mathbf{x}' = \mathbf{A}\mathbf{x}$.
- **b)** Løs initialverdiproblemet $\mathbf{x}' = A\mathbf{x}$, hvor $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

La
$$\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$ og $\mathbf{w} = \begin{bmatrix} 3 \\ 6 \\ -1 \end{bmatrix}$ være vektorer i \mathbb{R}^3 .

- a) Skriv vektoren $\mathbf{p} = \begin{bmatrix} 2 \\ 4 \\ -10 \end{bmatrix}$ som en lineærkombinasjon av \mathbf{u} , \mathbf{v} , og \mathbf{w} .
- **b)** Kan man skrive vektoren $\mathbf{q} = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$ som en lineærkombinasjon av \mathbf{u} , \mathbf{v} , og \mathbf{w} ?
- c) Er u, v, w lineært uavhengig?
- **d)** Hva er determinanten av matrisen $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 6 & -1 \end{bmatrix}$?

Oppgave 5

- a) Finn den inverse av matrisen $A = \begin{bmatrix} 2 & 2 & 0 \\ 0 & 0 & 1 \\ 4 & 2 & 0 \end{bmatrix}$.
- b) La $T: \mathbb{R}^3 \to \mathbb{R}^3$ være lineær transformasjonen definert av

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 + 2x_2 \\ x_3 \\ 4x_1 + 2x_2 \end{bmatrix}.$$

Er T en-til-en?

La A være matrisen

$$A = \begin{bmatrix} 1 & 2 & 0 & 3 & 1 \\ 2 & 4 & -1 & 5 & 4 \\ 3 & 6 & -1 & 8 & 5 \\ 5 & 4 & 8 & -1 & 1 \end{bmatrix}.$$

- a) Omskriv A til trappeform.
- **b)** Finn en basis for Col(A) og bestem rangen av A.
- c) Bestem dimensjonen av Nul(A).
- **d)** Bestem dimensjonen av Row(A) og av $Nul(A^T)$.

Oppgave 7

Temperaturen i Bymarka i løpet av vintersesongen kan enten være over, lik, eller under 0° Celsius. Trondheims skiklubb observerte de følgende svinginger i temperatur fra den ene dagen til den neste:

- Hvis temperaturen har vært over 0°, er det en 70% sjanse for at den vil være over og en 10% sjanse for at den vil være under 0° neste dag.
- Hvis temperaturen har vært lik 0° , er det en 10% sjanse for at den vil være over og en 10% sjanse for at den vil være under 0° neste dag.
- Hvis temperaturen har vært under 0° , er det en 10% sjanse for at den vil være over og en 70% sjanse for at den vil være under 0° neste dag.

Etter mange dager med dette mønsteret i vinter, for hvilken temperatur bør en skiløper forberede hans/hennes ski? (Gi sannsynlighetene for de tre mulige temperaturene.)

Oppgave 8

Finn ligningen y = mx + c av linjen som passer best til datapunktene (0,4), (1,-1), (2,1), (3,-3) og (4,-1).

La
$$A$$
 være matrisen $\begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix}$ og $\mathbf u$ være vektoren $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

- a) Kontroller at 2 er en egenverdi av A og at \mathbf{u} er en egenvektor for A (muligens med en egenverdi forskjellig fra 2).
- b) Finn alle egenverdiene til A og en basis for hvert egenrom til A.
- c) Er A ortogonalt diagonaliserbar? Hvis ja, ortogonal diagonaliser A.

Oppgave 10

La $W \subseteq \mathbb{R}^n$ være et underrom og W^{\perp} være dens ortogonale komplement.

- a) Vis at W^{\perp} er et underrom av \mathbb{R}^n .
- b) La **w** være en vektor som ligger både i W og i W^{\perp} (dvs. $\mathbf{w} \in W \cap W^{\perp}$). Vis at dette impliserer $\mathbf{w} = \mathbf{0}$.
- c) La $\{\mathbf{w}_1, \dots, \mathbf{w}_r\}$ være en basis for W og la $\{\mathbf{v}_1, \dots, \mathbf{v}_s\}$ være en basis for W^{\perp} . Vis at $\{\mathbf{w}_1, \dots, \mathbf{w}_r, \mathbf{v}_1, \dots, \mathbf{v}_s\}$ er en basis for \mathbb{R}^n .