Vector autoregression

Cholesky decomposition

Slide 65

decomposes a symmetric positive definite matrix A into the product of a lower triangular matrix L and its transpose:

Example:

· A is symmetric: A = AT · A is positive definite:

XTAX>O for any non-zero vector

$$A = \begin{vmatrix} 4 & 12 & -16 \\ 12 & 37 & -43 \\ -16 & -43 & 98 \end{vmatrix}$$

Cholesky decomposition produces:

$$L = \begin{bmatrix} 2 & 0 & 0 \\ 6 & 1 & 0 \\ -8 & 5 & 3 \end{bmatrix}$$
 and $L^{T} = \begin{bmatrix} 2 & 6 & -8 \\ 0 & 1 & 5 \\ 0 & 0 & 3 \end{bmatrix}$

Short-run	SVAR	model	Slide 69
For $g=3$: • at most 3.4 in marrices • at least 2.3 needed.	12 = 6, A and 32 - 6 =	parameter 13 combi 12 restric	rs are estimated ned; tions are
Long-run			Slide 71
For $q = 3$: • at most 3.1 in matrix • at least 3	1/2=6p C· 2-6=3	arameter restriction	s are estimated on s are needed.

Example 2	
Ada)	PDF, pp. 18-19.
Granger causality Wald	
Ho: "excluded" variable doe the "equation" variable H1: "excluded" variable Gran "equation" variable	es not Granger cause sle nger causes the
Scheme of Granger can	
reve	r _{GBP}
rjpy	

Consequently, the pound-dollar rate (rgsp) reacts the gastest.