ENGINEERING TEST REPORT

InReach Model: DeLorme inReach for DeLorme GPS **FCC ID: UTNINRCHZB3**

Applicant:

DeLorme

Two DeLorme Drive P.O. Box 298 Yarmouth, Maine 04096

In Accordance With

Federal Communications Commission (FCC) Part 15, Subpart C, Section 15.249 Low Power Transmitters Operating in the Frequency Band 2400 – 2483.5 MHz

UltraTech's File No.: DELO-004QF15C249

This Test report is Issued under the Authority of

Tri M. Luu

Vice President of Engineering UltraTech Group of Labs

Date: September 16, 2011

Report Prepared by: Dan Huynh Tested by: Hung Trinh

Issued Date: September 16, 2011 Test Dates: August 17, 2011

- The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.
- This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Tel.: (905) 829-1570 Fax.: (905) 829-8050 Website: www.ultratech-labs.com, Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com

FCC

91038

46390-2049

NvLap Lab Code 200093-0

SL2-IN-E-1119R

TABLE OF CONTENTS

EXHIBIT	1.	INTRODUCTION	1
1.1. 1.2. 1.3.	SCOPE RELATE NORMA	ED SUBMITTAL(S)/GRANT(S)	1 1 1
EXHIBIT	· 2.	PERFORMANCE ASSESSMENT	2
2.1. 2.2. 2.3. 2.4. 2.5. 2.6.	EQUIPM EUT'S T ASSOC LIST OF	INFORMATION MENT UNDER TEST (EUT) INFORMATION FECHNICAL SPECIFICATIONS	2 3 3
EXHIBIT	· 3.	EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	4
3.1. 3.2.		E TEST CONDITIONSTIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS	
EXHIBIT	4.	SUMMARY OF TEST RESULTS	5
4.1. 4.2. 4.3.	APPLIC	ION OF TESTSABILITY & SUMMARY OF EMC EMISSION TEST RESULTSCATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	5
EXHIBIT	· 5.	MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	6
5.1. 5.2. 5.3. 5.4. 5.5. 5.6.	MEASU MEASU ESSEN 20 dB B FUNDA	ROCEDURES IREMENT UNCERTAINTIES IREMENT EQUIPMENT USED TIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER ANDWIDTH [§ 15.215(c)] METAL FIELD STRENGTH AND HAROMIC EMISSIONS (RADIATED AT 3m) [47 CFR §§ 15.249(a), & 15.205]	6 6 7
EXHIBIT	6.	TEST EQUIPMENT LIST	18
EXHIBIT	· 7.	MEASUREMENT UNCERTAINTY	19
7.1. 7.2.		ONDUCTED EMISSION MEASUREMENT UNCERTAINTY	

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	FCC Part 15, Subpart C, Section 15.249
Title:	Code of Federal Regulations (CFR), Title 47 – Telecommunication, Part 15
Purpose of Test:	Equipment Certification for for Low Power Licensed-Exempt Transmitters operating in the Frequency Band 400–2483.5 MHz.
Test Procedures:	American National Standards Institute ANSI C63.10 - American National Standard for Testing Unlicensed Wireless Devices
Environmental Classification:	[x] Commercial, industrial or business environment [x] Residential environment

1.2. RELATED SUBMITTAL(S)/GRANT(S)

None.

1.3. NORMATIVE REFERENCES

Publication	Year	Title
47 CFR Parts 0-19	2010	Code of Federal Regulations (CFR), Title 47 – Telecommunication, Parts 0 to 15
ANSI C63.10	2009	American National Standard for Testing Unlicensed Wireless Devices
CISPR 22 & EN 55022	2008-09, Edition 6.0 2006	Information Technology Equipment - Radio Disturbance Characteristics - Limits and Methods of Measurement
CISPR 16-1-1 +A1 +A2	2006 2006 2007	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus
CISPR 16-1-2 +A1 +A2	2003 2004 2006	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-2: Conducted disturbances

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

APPLICANT		
Name:	DeLorme	
Address: Two DeLorme Drive P.O. Box 298 Yarmouth, Maine 04096 USA		
Contact Person:	Noah Dionne Phone #: 207-846-7044 Fax #: 207-847-5044 Email Address: Noah.dionne@delorme.com	

MANUFACTURER			
Name: GlobalSat Technology Corporation			
Address: 16F., No. 186, Jian-Yi Road, Chung-Ho City, Taipei Hsien 235, Taiwan			
Contact Person:	Donald Tseng Phone #: 02-8226-3799 Fax #: 02-8226-3899 Email Address: donald.tseng@globalsat.com.tw		

2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	DeLorme	
Product Name:	InReach	
Model Name or Number:	DeLorme inReach for DeLorme GPS	
Serial Number:	Test Sample	
Type of Equipment:	Low Power Communication Device Transmitter	
Input Power Supply Type:	3V (2) AA Lithium batteries	
Primary User Functions of EUT:	Provide wireless communication to ZigBee devices.	

2.3. EUT'S TECHNICAL SPECIFICATIONS

TRANSMITTER		
Equipment Type:	Portable	
Intended Operating Environment:	Residential Commercial, industrial or business	
Power Supply Requirement:	1.8 Vdc	
RF Output Power Rating:	60.01 dBµV/m at 3m distance	
Operating Frequency Range:	2405 – 2480 MHz	
RF Output Impedance:	50 Ω	
Channel Spacing:	5 MHz	
Duty Cycle:	100%	
Modulation Type:	OQPSK	
Antenna Connector Types:	SMT	

2.4. ASSOCIATED ANTENNA DESCRIPTION

Antenna:		
Manufacturer:	Pulse	
Type:	Ceramic Chip	
Model:	W3008	
Frequency Range:	2400 – 2483.5 MHz	
Impedance:	50 Ohm	
Gain (dBi):	1.7 (peak)	

2.5. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non-shielded)
1	Micro-USB	1	Micro-USB	Shielded

2.6. ANCILLARY EQUIPMENT

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

None.

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21 to 23 °C
Humidity:	45 to 58%
Pressure:	102 kPa
Power Input Source:	3V (2) AA Lithium batteries

3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

Operating Modes:	EUT was configured to transmit continuously for emissions measurements at of lowest, middle and highest channel frequencies.
Special Test Software:	Test software provided by the Applicant to operate the EUT at each channel frequency continuously. For example, the transmitter will be operated at each of the lowest, middle and highest frequencies individually continuously during testing.
Special Hardware Used:	None.
Transmitter Test Antenna:	The EUT is tested with the antenna fitted in a manner typical of normal intended use.

Transmitter Test Signals				
Frequency Band(s):	2405 - 2480 MHz			
Frequency(ies) Tested: (Near lowest, near middle & near highest frequencies in the frequency range of operation.)	2405, 2445 and 2480 MHz			
RF Power Output: (measured maximum output power):	60.01 dBμV/m at 3m distance			
Normal Test Modulation:	OQPSK			
Modulating Signal Source:	Internal			

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Power Line Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the
 Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and
 found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site
 measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC
 File No.: 31040/SIT 1300B3) and Industry Canada office (Industry Canada Site No.: 2049A-3, Expiry Date:
 May 1, 2011)

4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC Section(s)	on(s) Test Requirements	
15.203	Antenna requirements	Yes
15.207(a)	AC Power Line Conducted Emissions	N/A
15.215(c)	20 dB Bandwidth	Yes
15.249(a), 15.209, 15.205	Transmitter Radiated Emissions, Harmonic Emissions	Yes

4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None.

EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

5.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in ANSI C63.10.

5.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document NIS 81 with a confidence level of 95%. Please refer to Exhibit 7 for Measurement Uncertainties.

5.3. MEASUREMENT EQUIPMENT USED

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4 and CISPR 16-1-1.

5.4. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER

Provide wireless communication to ZigBee devices.

5.5. 20 dB BANDWIDTH [§ 15.215(c)]

5.5.1. Limit(s)

The fundamental emission must be in the authorized bandwidth.

5.5.2. Method of Measurements

ANSI C63.10.

5.5.3. Test Arrangement

5.5.4. Test Data

Frequency (MHz)	20 dB Bandwidth (MHz)
2405	2.59
2445	2.63
2480	2.63

See the following plots for detailed measurements.

Plot 5.5.4.1. 20 dB Bandwidth Test Frequency: 2405 MHz

Plot 5.5.4.2. 20 dB Bandwidth Test Frequency: 2445 MHz

Plot 5.5.4.3. 20 dB Bandwidth Test Frequency: 2480 MHz

5.6. FUNDAMETAL FIELD STRENGTH AND HAROMIC EMISSIONS (RADIATED AT 3m) [47 CFR §§ 15.249(a), 15.209 & 15.205]

5.6.1. Limits

(a) The Field Strength of emissions from intentional radiators operated within 2400–2483.5 MHz band shall comply with the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental (mV/m)	Field Strength of Harmonics (μV/m)
2400-2483.5 MHz	50	500

- (c) Field strength limits are specified at a distance of 3 meters.
- (d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.
- (e) As shown in § 15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.
- The fundamental frequency shall not fall within any restricted frequency band specified in 15.205. All rf other emissions that fall in the restricted bands shall not exceed the general radiated emission limits specified in at 15.209(a).

47 CFR 15.205 - Restricted Bands of Operation

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
¹ 0.495–0.505	16.69475–16.69525	608–614	5.35–5.46
2.1735–2.1905	16.80425–16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025–8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291–8.294	149.9–150.05	2310–2390	15.35–16.2
8.362-8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2690–2900	22.01–23.12
8.41425–8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
.51975–12.52025	240–285	3345.8–3358	36.43–36.5
12.57675–12.57725	322–335.4	3600–4400	(2)
13.36–13.41.			

¹Until February 1, 1999, this restricted band shall be 0.490–0.510 MHz.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

File #: DELO-004QF15C249 September 16, 2011

²Above 38.6

47 CFR 15.209(a) - Field Strength Limits within Restricted Frequency Bands					
Frequency (MHz) Field Strength Limits (μV/m) Distance (Meter					
0.009 - 0.490	2,400 / F (KHz)	300			
0.490 - 1.705	24,000 / F (KHz)	30			
1.705 - 30.0	30	30			
30 – 88	100	3			
88 – 216	150	3			
216 – 960	200	3			
Above 960	500	3			

5.6.2. Method of Measurements

ANSI C63.10 and ANSI C63.4 for measurement methods.

5.6.3. Test Arrangement

5.6.4. Test Data

Remarks:

- All spurious emissions that are in excess of 20 dB below the specified limit shall be recorded.
- EUT shall be tested in three orthogonal positions.
- The following test results are the worst-case measurements.

Test Frequency:: 2405 MHz Test Frequency Range: 30 MHz – 25 GHz Average Field Strength Limit of Field Strength Peak **Antenna Frequency** E-Field @3m E-Field @3m **Plane** Fundamental/Harmonic Limit of § 15.209 Margin (MHz) (dBµV/m) (dBµV/m) (H/V) (dBµV/m) (dBµV/m) (dB) ٧ 2405 94.0 -37.1 95.91 56.92 2405 98.87 60.01 Н 94.0 -34.0٧ 4810 54.57 34.56 54.0 54.0 -19.44810 52.13 34.34 Н 54.0 54.0 -19.6

Test Frequency:: 2445 MHz

Test Frequency Range: 30 MHz – 25 GHz

	1 , 0								
Frequer (MHz	•	Peak E-Field @3m (dBµV/m)	Average E-Field @3m (dBµV/m)	Antenna Plane (H/V)	Field Strength Limit of Fundamental/Harmonic (dBµV/m)	Field Strength Limit of § 15.209 (dBµV/m)	Margin (dB)		
2445	5	97.14	57.79	V	94.0		-36.2		
2445	5	98.55	58.58	Н	94.0		-35.4		
4890)	55.41	34.18	V	54.0	54.0	-19.8		
4890	0	52.39	35.04	Н	54.0	54.0	-18.9		

Test Frequency:: 2480 MHz

Test Frequency Range: 30 MHz – 25 GHz

rest riequent	Test i requericy rearige. So will 2 – 25 GHz							
Frequency (MHz)	Peak E-Field @3m (dBµV/m)	Average E-Field @3m (dBµV/m)	Antenna Plane (H/V)	Field Strength Limit of Fundamental/Harmonic (dBµV/m)	Field Strength Limit of § 15.209 (dBµV/m)	Margin (dB)		
2480	94.58	57.26	V	94.0		-36.7		
2480	98.42	59.88	Н	94.0		-34.1		
4960	52.85	34.74	V	54.0	54.0	-19.2		
4960	52.81	34.21	Н	54.0	54.0	-19.8		

See the following test data plots for band-edge emissions.

Plot 5.6.4.1. Band-Edge RF Radiated Emissions @ 3 m Low End of Frequency Band, 2405 MHz, Rx Antenna Orientation: Horizontal

Plot 5.6.4.2. Band-Edge RF Radiated Emissions @ 3 m Low End of Frequency Band, 2405 MHz, Rx Antenna Orientation: Horizontal

Trace 1: RBW = 1 MHz, VBW = 3 MHz

Trace 2: RBW = 200 kHz, VBW = 300 kHz, Delta (Peak to Band-Edge): 36.16 dB

Trace 3: RBW = 1 MHz, VBW = 10 Hz

Peak Band-Edge at 2400 MHz: Peak = $98.87 \text{ dB}\mu\text{V/m} - 36.16\text{dB} = 62.71 \text{ dB}\mu\text{V/m}$

Plot 5.6.4.3. Band-Edge RF Radiated Emissions @ 3 m Low End of Frequency Band, 2405 MHz Rx Antenna Orientation: Vertical

Trace 1: RBW = 1 MHz, VBW = 3 MHz Trace 2: RBW = 1 MHz, VBW = 10 Hz

Plot 5.6.4.4. Band-Edge RF Radiated Emissions @ 3 m High End of Frequency Band, 2480 MHz, Rx Antenna Orientation: Horizontal

Plot 5.6.4.5. Band-Edge RF Radiated Emissions @ 3 m High End of Frequency Band, 2480 MHz, Rx Antenna Orientation: Horizontal

Trace 1: RBW = 1 MHz, VBW = 3 MHz

Trace 2: RBW = 100 kHz, VBW = 300 kHz, Delta (Peak to Band-Edge): 34.36 dB

Trace 3: RBW = 1 MHz, VBW = 10 Hz

Peak Band-Edge at 2483.5 MHz: Peak = $98.42 \text{ dB}\mu\text{V/m} - 34.36 \text{ dB} = 64.06 \text{ dB}\mu\text{V}/\text{m}$

Plot 5.6.4.6. Band-Edge RF Radiated Emissions @ 3 m High End of Frequency Band, 2480 MHz Rx Antenna Orientation: Vertical

Trace 1: RBW = 1 MHz, VBW = 3 MHz Trace 2: RBW = 1 MHz, VBW = 10 Hz

EXHIBIT 6. TEST EQUIPMENT LIST

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	ESU40	100037	20 Hz – 40 GHz	15 Mar 2012
Spectrum Analyzer	Rohde & Schwarz	FSEK20/B4/B2	834157/005	9 kHz – 40 GHz	18 Jul 2012
RF Amplifier	Hewlett Packard	84498	3008A00769	1 – 26.5 GHz	4 Aug 2012
RF Amplifier	AH System	PAM-0118	225	20 MHz – 18 GHz	15 Mar 2012
RF Amplifier	Com-Power	PA-103A	161243	10 MHz – 1 GHz	23 Feb. 2012
Signal Generator	Hewlett Packard	8648C	3443U00391	100 kHz – 3200 MHz	16 Dec, 2011
Signal Generator	Hewlett Packard	83752B	3610A00457	0.01 – 20 GHz	19 Oct , 2011
Horn Antenna	ETS-Lindgren	360-09	00118385	18 – 26.5 GHz	30 May 2012
Horn Antenna	Emco	3115	5955	1 – 18 GHz	09 Jan 2012
Horn Antenna	Emco	3115	6570	1 – 18 GHz	22 Feb 2012
Biconi-Log Antenna	Emco	3142C	00034792	26 – 3000 MHz	26 April 2012
Log Periodic	ETS-Lindgren	93148	1101	200 – 2000 MHz	04 Jan 2012
Attenuator	Narda	4768-20	-	DC – 40 GHz (2w)	Cal. on use
Attenuator	Narda	4768-10	-	DC – 40 GHz (2w)	Cal. on use
DC-Block	Hewlett Packard	11742A	12460	0.045-26.5 GHz	Cal. on use
High Pass Filter	K&L	11SH10- 3000/T18000	4	Cut off 1600 MHz	Cal. on use
High Pass Filter	K&L	11SH10- 4000/1200	4	Cut off 2400 MHz	Cal. on use

File #: DELO-004QF15C249 September 16, 2011

EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement.

7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

	Line Conducted Emission Measurement Uncertainty (150 kHz – 30 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 1.57	<u>+</u> 1.8
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 3.14	<u>+</u> 3.6

7.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

	Radiated Emission Measurement Uncertainty @ 3m, Horizontal (30-1000 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 2.15	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.30	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3m, Vertical (30-1000 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{l=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 2.39	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.78	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3 m, Horizontal & Vertical (1 – 18 GHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{m} u_i^2(y)}$	<u>+</u> 1.87	Under consideration
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 3.75	Under consideration