Foundations of Modern Networking

SDN, NFV, QoE, IoT, and Cloud

By: William Stallings

Chapter 2

Requirements and Technology

Categories of explicit congestion signaling approaches:

Binary

 A bit is set in a data packet as it is forwarded by the congested node; when a source receives a binary indication of congestion on a logical connection, it may reduce its traffic flow

Credit based

- These schemes are based on providing an explicit credit to a source over a logical connection; the credit indicates how many octets or how many packets the source may transmit
- Common for end-to-end flow control, in which a destination system uses credit to prevent the source from overflowing the destination buffers
- Defined in Frame Relay and Asynchronous Transfer Mode networks

Rate based

- These schemes are based on providing an explicit data rate limit to the source over a logical connection
- The source may transmit data at a rate up to the set limit
- To control congestion, any node along the path of the connection can reduce the data rate limit in a control message to the source

Figure 2.15 Software-Defined Networking

Software-Defined Networking (SDN)

- A driving factor for SDN is the increasingly widespread use of server virtualization
- In essence, server virtualization masks server resources from server users, making it possible to partition a single machine into multiple, independent servers, conserving hardware resources
- It also makes it possible to quickly migrate a server from one machine to another for load balancing or for dynamic switchover in the case of machine failure
- Server virtualization has become a central element in dealing with big data applications and in implementing cloud computing infrastructures

Separate network device platforms

IDS/IPS

Virtualized platform

Switch logic	Router logic	Firewall logic	IDS/IPS logic
OS 1	OS 2	OS 3	OS 4
Virtual machine 1	Virtual machine 2	Virtual machine 3	Virtual machine 4
machine 1	machine 2		machine 4

Figure 2.16 Network Functions Virtualization

Figure 2.17 Modern Networking Schema

End of Chapter 2

Foundations of Modern Networking

SDN, NFV, QoE, IoT, and Cloud

By: William Stallings

Chapter 3

SDN: Background and Motivation

Evolving Network Requirements

- A number of trends are driving network providers and users to reevaluate traditional approaches to network architecture
 - Demand is increasing
 - Cloud computing
 - Big data
 - Mobile traffic
 - The Internet of Things (IoT)
 - Supply is increasing
 - Traffic

Traditional Network Architectures are Inadequate

- As QoS and QoE requirements imposed on the network are expanded as a result of the variety of applications, the traffic load must be handled in an increasingly sophisticated and agile fashion
- The traditional internetworking approach is based on the TCP/IP protocol architecture; characteristics of this approach are:
 - Two-level end system addressing
 - Routing based on destination
 - Distributed, autonomous control

Limitations

- The Open Networking Foundation (ONF) cites four general limitations of traditional network architectures:
 - Static, complex architecture
 - Inconsistent policies
 - Inability to scale
 - Vendor dependence

The SDN Approach

• Requirements:

Adaptability

 Networks must adjust and respond dynamically, based on application needs, business policy, and network conditions

Automation

•Policy changes must be automatically propagated so that manual work and errors can be reduced

Maintainability

•Introduction of new features and capabilities must be seamless with minimal disruption of operations

Model management

•Network management software must allow management of the network at a model level, rather than implementing conceptual changes by reconfiguring individual network elements

Mobility

 Control functionality must accommodate mobility, including mobile user devices and virtual servers

Integrated security

•Network applications must integrate seamless security as a core service instead of as an add-on solution

On-demand scaling

•Implementations must have the ability to scale up or scale down the network and its services to support on-demand requests

Figure 3.1 The Modern Approach to Computing and Networking

Figure 3.2 Control and Data Planes

Figure 3.3 SDN Architecture

Characteristics of Software-Defined Networking

- The control plane is separated from the data plane; data plane devices become simple packet-forwarding devices
- The control plane is implemented in a centralized controller or set of coordinated centralized controllers
 - The SDN controller has a centralized view of the network or networks under its control
 - The controller is portable software that can run on commodity servers and is capable of programming the forwarding devices based on a centralized view of the network
- Open interfaces are defined between the devices in the control plane (controllers) and those in the data plane
- The network is programmable by applications running on top of the SDN controllers; the SDN controllers present an abstract view of network resources to the applications

Omeniantian	Mindon	CDN and to display the
Organization	Mission	SDN-related effort
Open Networking Foundation	An industry consortium	OpenFlow
(ONF)	dedicated to the promotion	
	and adoption of SDN through	
Total Projection Total	open standards development. The Internet's technical	Interference Booting Control
Internet Engineering Task		Interface to Routing Systems
Force (IETF)	standards body. Produces	(I2RS)
E	RFCs and Internet Standards.	Service Function Chaining NFV Architecture
European Telecommunications	An EU-sponsored standards	NFV Architecture
	organization that produces	
Standards Institute (ETSI)	globally-applicable standards	
	for information and	
OBI'-l-	communications technologies.	O
OpenDaylight	A collaborative project under	OpenDaylight
	the auspices of the Linux Foundation	
International		CDM 6
	United Nations agency that	SDN functional requirements and architecture
Telecommunication Union—	produces Recommendations	and architecture
Telecommunication	with a view to standardizing telecommunications on a	
Standardization Sector (ITU-	worldwide basis.	
T) Internet Research Task Force	TO COLOR TO COLOR	SDN architecture
(IRTF) Software Defined	Research group within IRTF. Produces SDN-related RFCs.	SDN architecture
	Froduces SDN-related RFCs.	
Networking Research Group (SDNRG)		
Broadband Forum (BBF)	Industry consortium	Requirements and framework
Broadband Forum (BBF)	developing broadband packet	for SDN in
	networking specifications.	telecommunications
	networking specifications.	broadband networks
Metro Ethernet Forum (MEF)	Industry consortium that	Defining APIs for service
Metro Ethernee Forum (MEF)	promotes the use of Ethernet	orchestration over SDN and
	for metropolitan and wide area	NFV
	applications.	
IEEE 802	An IEEE committee	Standardize SDN capabilities
	responsible for developing	on access networks.
	standards for local area	
	networks (LANs)	
Optical Internetworking	Industry consortium	Requirements on Transport
Forum (OIF)	promoting development and	Networks in SDN
	deployment of interoperable	Architectures
	networking solutions and	
	services) for optical	
	networking products	

Organization	Mission	SDN-related effort
Open Data Center Alliance	Consortium of leading IT	SDN Usage Model
(ODCA)	organizations developing	
	interoperable solutions and	
	services for cloud computing.	
Alliance for	A standards organization that	Operational Opportunities and
Telecommunications Industry	develops standards for the	Challenges of SDN/NFV
Solutions (ATIS)	unified communications (UC)	Programmable Infrastructure
	industry.	
Open Platform for NFV	An open source project	NFV intrastructure
(OPNFV)	focused on accelerating the	
	evolution of NFV.	

Table 3.1

SDN and NFV Standards Activities

Standards-Developing Organizations

- Internet Society (ISOC)
 - The coordinating committee for Internet design, engineering, and management
 - Areas covered include the operation of the Internet itself and the standardization of protocols used by end systems on the Internet for interoperability
 - Various organizations under the ISOC are responsible for the actual work of standards development and publication

Internet Engineering Task Force (IETF)

 Has working groups developing SDN-related specifications in the following areas:

Interface to routing systems (I2RS)

Develop capabilities to interact with routers and routing protocols to apply routing policies

Service function chaining

Develop an architecture and capabilities for controllers to direct subsets of traffic across the network in such a way that each virtual service platform sees only the traffic it must work with

Figure 3.3 SDN Architecture

International Telecommunications Union - Telecommunication Standardization (ITU-T)

- A UN agency that issues standards, called recommendations, in the telecommunications area
 - So far, their only published contribution to SDN is Recommendation Y.3300 (*Framework of Software-Defined Networking*, June 2014)
- Has established a Joint Coordination Activity on Software-Defined Networking (JCA-SDN) and began work on developing SDN-related activities
- Four ITU-T study groups are involved in SDN-related activities:
 - SG 13 (Future networks, including cloud computing, mobile, and next-generation networks)
 - SG 11 (Signaling requirements, protocols, and test specifications)
 - SG 15 (Transport, access, and home)
 - SG 16 (Multimedia)

European Telecommunications Standards Institute (ETSI)

- Recognized by the European Union as a European Standards Organization
- Not-for-profit Standards Development Organization (SDO) has member organizations worldwide and its standards have international impact
- Has taken the lead role in defining standards for NFV
- ETSI's Network Functions Virtualization (NFV) Industry
 Specification Group (ISG) began work in January 2013 and produced a first set of specifications in January 2015
- The 11 specifications include an NFV's architecture, infrastructure, service quality metrics, management and orchestration, resiliency requirements, and security guidance