UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in MAT4410 — Advanced linear analysis.

Day of examination: Monday, December 3, 2018.

Examination hours: 9:00-13:00.

This problem set consists of 3 pages.

Appendices: None.

Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Note: You must justify all your answers.

Problem 1

1a

(10 points) Let Ω be a nonempty set and \mathcal{C} a countable set of pairwise disjoint subsets of Ω such that $\Omega = \bigcup_{E \in \mathcal{C}} E$. Form the σ -algebra $\sigma(\mathcal{C})$ generated by \mathcal{C} . Suppose that $f: \Omega \to \mathbb{R}$ is $\sigma(\mathcal{C})$ -measurable. Prove that

$$f = \sum_{E \in \mathcal{C}} a_E \chi_E$$

for suitable real numbers a_E , $E \in \mathcal{C}$.

1b

(15 points) Assume now that (Ω, \mathcal{A}, P) is a probability space and F_1, \ldots, F_n are pairwise disjoint sets in \mathcal{A} such that

$$\Omega = \bigcup_{j=1}^{n} F_j$$

and $P(F_j) > 0$ for all j = 1, ..., n. Let $\mathcal{G} = \sigma(\{F_1, ..., F_n\})$ and let $f \in \mathcal{L}^1(\Omega, \mathcal{A}, P)$ be a real valued function. Prove that $\mathcal{E}(f|\mathcal{G})$, the conditional expectation of f given \mathcal{G} , has the form

$$\mathcal{E}(f|\mathcal{G}) = \sum_{j=1}^{n} a_j \chi_{F_j}$$

for suitable $a_j \in \mathbb{R}$, j = 1, ..., n. Show moreover that $a_j = P(F_j)^{-1} \int_{F_j} f \, dP$ for every j = 1, ..., n.

(Continued on page 2.)

Problem 2

Let $(\Omega, \mathcal{A}, \mu)$ be a σ -finite measure space and $(\mathbb{R}, \mathcal{M}, \lambda)$ be the Lebesgue measurable sets with the Lebesgue measure on \mathbb{R} . Let $f: \Omega \to [0, \infty)$ be \mathcal{A} -measurable and let $A \in \mathcal{A}$. Define a function $g: \Omega \times \mathbb{R} \to \mathbb{R}$ by g(x,t) = f(x) - t and sets

$$B = \{(x,t) \in \Omega \times \mathbb{R} \mid 0 \le t \le f(x), x \in A\},\$$

$$C = \{(x,t) \in \Omega \times \mathbb{R} \mid t = f(x), x \in A\}.$$

2a

(10 points) Show that g is measurable with respect to the product σ -algebra $\mathcal{A} \times \mathcal{M}$ on $\Omega \times \mathbb{R}$ and that $B, C \in \mathcal{A} \times \mathcal{M}$.

2b

(15 points) Show that $(\mu \times \lambda)(B) = \int_A f d\mu$ and $(\mu \times \lambda)(C) = 0$.

Problem 3

(10 points) Let $(\Omega, \mathcal{A}, \mu)$ be a σ -finite measure space and $1 . Let <math>\mathcal{S}$ denote the space of \mathcal{A} -measurable simple complex valued functions s on Ω such that $\mu(\{x \in \Omega \mid s(x) \neq 0\}) < \infty$. Suppose that $\varphi : \mathcal{S} \to \mathbb{C}$ is a linear functional satisfying that $|\varphi(s)| \leq M||s||_p$ for some positive constant M and all s in \mathcal{S} . Prove that there exists $g \in L^q(\Omega, \mathcal{A}, \mu)$, where $q = \frac{p}{p-1}$, such that

$$\varphi(s) = \int_{\Omega} sg \, d\mu$$

for all $s \in \mathcal{S}$.

Problem 4

4a

(5 points) Formulate the principle of uniform boundedness for a sequence of bounded linear operators between two Banach spaces.

4b

(10 points) Let $\{A_n\}_{n\in\mathbb{N}}$ be a sequence of bounded linear operators from the Banach space Ω to the Banach space Λ such that for each $y \in \Omega$ the sequence $\{A_ny\}_n$ converges in Λ . Define $A:\Omega\to\Lambda$ by $Ay=\lim_n(A_ny)$ for each $y\in\Omega$. Show that A is a bounded linear operator with $||A|| \leq \sup_{n>1} ||A_n||$.

Let $c_0(\mathbb{N})$ denote the Banach space of complex sequences converging to zero, equipped with the supremum norm $\|\cdot\|_{\infty}$. Suppose that $x=\{x_j\}_{j\geq 1}$ is a sequence of complex numbers such that $\sum_{j=1}^{\infty} x_j y_j$ is a convergent series for every $\{y_j\}_{j\geq 1}\in c_0(\mathbb{N})$. For every $n\geq 1$, define $\phi_n:c_0(\mathbb{N})\to\mathbb{C}$ by $\phi_n(y)=\sum_{j=1}^n x_j y_j$ for $y=\{y_j\}_{j\geq 1}$ in $c_0(\mathbb{N})$.

4c

(15 points) Show that ϕ_n is a bounded linear functional for every $n \geq 1$.

4d

(10 points) Conclude that $x \in l^1(\mathbb{N})$.

END