arepsilon 計算とクラスの導入による具体的で直観的な集合論の構築

関根深澤研 百合川尚学 学籍番号:29C17095

February 5, 2020

Contents

- 4 導入
- 言語
- ③ 式の書き換え
- 証明

εについて

- 量化 3, ∀ を使う証明を命題論理の証明に埋め込むために Hilbert が 開始.
- 式 φ(x) に対して

導入

$$\varepsilon x \varphi(x)$$

という形のオブジェクトを作り、 ε 項と呼ぶ、また命題論理の証明に 埋め込む際には、∃や∀の付いた式を

$$\varphi(x/\varepsilon x \varphi(x)) \stackrel{\text{def}}{\longleftrightarrow} \exists x \varphi(x),$$
$$\varphi(x/\varepsilon x \to x \varphi(x)) \stackrel{\text{def}}{\longleftrightarrow} \forall x \varphi(x)$$

によって変換すればよい.

εについて

- 今回 ε 項を導入したのは「存在」と「実在」を同義とするため。
- Hilbert の ε 計算ではなく、 ε 項を用いて一種の Henkin 拡大を行う。
- つまり、導入の意図は存在文に対して証人を与えること:

$$\exists x \varphi(x) \rightarrow \varphi(\varepsilon x \varphi(x)).$$

この式は 引に関する主要な公理.

- 「 φ である集合が存在すれば,その一つは $\varepsilon x \varphi(x)$ である.」
- 「 $\rightarrow \forall x \varphi(x) \rightarrow \exists x \rightarrow \varphi(x)$ 」と組み合わせると

$$\varphi(\varepsilon x \to \varphi(x)) \to \forall x \varphi(x)$$

が出る。

導入

ε について

■ ZF 集合論では集合というオブジェクトが用意されていないため、「存 在」は「実在」ではない。たとえば

$$\exists x \, \forall y \, (y \notin x)$$

は定理であり「空集合は存在する」と読むが、空集合を "実際に取ってくる"ことは不可能.

$$\forall y (y \notin \varepsilon x \forall y (y \notin x))$$

が成り立つ.

ε 項を使うメリット

導入

- 証明で用いる推論規則は三段論法のみで済む。
- 証明が容易になる場合がある。

クラスについて

- Bourbaki[] や島内 [] でも ε 項を使った集合論を展開.
- ところで、「φである集合の全体」の意味の

$$\{x \mid \varphi(x)\}$$

というオブジェクトも取り入れたい.

- ZF 集合論では「定義による拡大」 or インフォーマルな導入.
- Bourbaki[] や島内 [] では

$$\{x \mid \varphi(x)\} \stackrel{\text{def}}{=} \varepsilon y \, \forall x \, (\varphi(x) \leftrightarrow x \in y)$$

と定めるが.

導入

$$\exists y \, \forall x \, (\varphi(x) \leftrightarrow x \in y)$$

が成立しない場合は「 φ である集合の全体」という意味を持たない。

• 式 φ から直接 $\{x \mid \varphi(x)\}$ の形のオブジェクトを作ればよい.

クラスについて

クラス

導入

式 φ に x のみが自由に現れているとき, $\varepsilon x \varphi(x)$, $\{x \mid \varphi(x)\}$ の形のオブ ジェクトをクラス (class) と呼ぶ.

- クラスである ε 項は集合である.
- 集合でないクラスもある. たとえば $\{x \mid x = x\}$ や $\{x \mid x \notin x\}$ は集合 ではない.

集合の定義は竹内 []に倣う、定義により集合はクラスである、

集合

クラスでが

$$\exists x (c = x)$$

を満たすとき c を集合 (set) と呼び、そうでない場合は真クラス (proper class) と呼ぶ.

言語

- クラスという新しいオブジェクトを導入したら、この導入操作が "妥当" であるかどうかが問題になる.
- ullet 妥当性は,**ZF** 集合論の命題 ψ に対して

ZF 集合論で ψ が証明可能 \iff 新しい集合論で ψ が証明可能 が成り立つかどうかで検証する.

- 集合論の言語と証明のルールを明らかにしなくてはならない。
- 言語 (の語彙) とは「変項」、「述語記号」、「論理記号」とその他もろもろの記号からなる。「式 (formula)」は言語の語彙を用いて作られる。名詞の役を担うのが「項 (term)」であり、文字は最もよく使われる項である。たとえば

 $s \in t$

と書けば一つの式が出来上がる.

まず **ZF** 集合論の言語 *L*_← を明示する.

言語 \mathcal{L}_{\in}

言語 \mathcal{L}_{C} の語彙

矛盾記号 丄

論理記号 →, ∨, ∧, →

量化子 ∀,∃

述語記号 =, ∈

変項 x, y, z, \cdots .

言語 \mathcal{L}_{C} の項と式

 \mathcal{L}_{F} の項と式は次の規則で生成する.

\mathcal{L}_{F} の項と式

項 変項は項であり、またこれらのみが項である.

- 式 ⊥ は式である.
 - 項τと項σに対してτ∈σとτ=σは式である.
 - 式 φ に対して $\rightarrow \varphi$ は式である.
 - 式 φ と式 ψ に対して $\varphi \lor \psi$ と $\varphi \land \psi$ と $\varphi \to \psi$ はいずれも式である.
 - 式 φ と項xに対して $\exists x\varphi$ と $\forall x\varphi$ は式である.
 - これらのみが式である.

言語の拡張

- クラスを正式に導入するには言語を拡張しなくてはならない。
- ullet 拡張は二段階に分けて行う、始めに arepsilon 項のために拡張し、次に $\{x \mid \varphi(x)\}$ の形の項のために拡張する.
- 始めの拡張により得る言語を £_ε と名付ける.

言語 $\mathcal{L}_{\mathcal{E}}$ の語彙

矛盾記号 丄 論理記号 →, ∨, ∧, →

量化子 ∀, ∃, ε

述語記号 =, €

変項 x,y,z,\cdots .

$\mathcal{L}_{\mathcal{E}}$ の項と式

$\mathcal{L}_{\mathcal{E}}$ の項と式の定義

- 変項は項である.
- 」は式である。
- 項τと項σに対してτ∈σとτ=σは式である.
- 式 φ に対して →φ は式である.
- 式 φ と式 ψ に対して $\varphi \lor \psi$ と $\varphi \land \psi$ と $\varphi \rightarrow \psi$ はいずれも式で ある
- 式 φ と変項 x に対して $\exists x \varphi$ と $\forall x \varphi$ は式である.
- 式 φ と変項xに対して $\epsilon x \varphi$ は項である.
- これらのみが項と式である。
- \bullet \mathcal{L}_{C} との大きな違いは項と式の生成が循環している点.
- $\mathcal{L}_{\varepsilon}$ の式が $\mathcal{L}_{\varepsilon}$ の項を用いて作られるのは当然ながら,その逆に $\mathcal{L}_{\varepsilon}$ の項もまた $\mathcal{L}_{\mathcal{E}}$ の式から作られる.
- $\mathcal{L}_{\mathcal{L}}$ の式は $\mathcal{L}_{\mathcal{E}}$ の式でもある.

言語 £

- $\mathcal{L}_{\mathcal{E}}$ の式 φ と変項 x に対して, $\varepsilon x \varphi$ なる項を ε 項 (epsilon term) と いう.
- $\mathcal{L}_{\mathcal{E}}$ の式 φ と変項 x に対して, $\{x \mid \varphi\}$ なる項を内包項ということに する.

言語 £ の語彙

矛盾記号 丄

論理記号 →, ∨, ∧, →

量化子 ∀, ∃

述語記号 =, €

変項 x,y,z,\cdots .

ε項と内包項 上記のもの

∫ の項と式

上の項と式の定義

項 変項, ε 項, 内包項は項である。 またこれらのみが項で ある。

式 ● 」は式である.

- 項τと項σに対してτ \in σとτ \in σは式である.
- 式 φ に対して $\rightarrow \varphi$ は式である.
- 式 φ と式 ψ に対して $\varphi \lor \psi$ と $\varphi \land \psi$ と $\varphi \rightarrow \psi$ はい ずれも式である。
- 式 φ と変項xに対して $\exists x \varphi$ と $\forall x \varphi$ は式である.
- これらのみが式である。

扱う式の制限

上で作った項や式の中には

$$\varepsilon x (y = y), \{x \mid z \neq z\}, \forall x (u \in v)$$

のような意味の通らないものが氾濫しているので、排除する.

- $\varepsilon x \varphi(x)$ なる形の ε 項は, φ に x "のみ" 自由に現れているとき主要 ε 項と呼ぶことにする.
- ullet $\{x \mid \varphi\}$ なる形の内包項は, φ に x "が" 自由に現れているとき,正則 内包項と呼ぶことにする.
- ullet 以降扱う式に現れる arepsilon 項は全て主要 arepsilon 項,内包項は全て正則内包項で あるとし、 $\forall x \varphi$ や $\exists x \varphi$ なる式は φ に x が自由に現れているとする.

クラス

クラス

 $\varepsilon x \varphi(x)$ なる形の ε 項,及び $\{x \mid \varphi(x)\}$ なる形の内包項は, φ に x "のみ" 自由に現れているときクラス (class) と呼ぶ. またこれらのみがクラスで ある.

主要 ε 項はクラスであるが、実際は集合である (後述).

なぜ書き換えるか

ε 項を導入したのは、存在文に対して証人を付けるため:

$$\exists x \varphi(x) \rightarrow \varphi(\varepsilon x \varphi(x)).$$

- しかし φ に内包項が使われているとき、 $\epsilon x \varphi(x)$ は使えない (作られ ていない).
- ullet そのときは, φ を "同値" な $\mathcal{L}_{\mathcal{E}}$ の式 $\hat{\varphi}$ に書き換えて

$$\exists x \varphi(x) \rightarrow \varphi(\varepsilon x \hat{\varphi}(x))$$

を公理とすればよい.

式の書き換え

 φ の部分式のうち原子式であるところを表に従って直したものを「 φ の書 き換え」と呼ぶ.

	元の式	書き換え後
(1)	$a = \{z \mid \psi\}$	$\forall v (v \in a \leftrightarrow \psi(z/v))$
(2)	$\{y \mid \varphi\} = b$	$\forall u (\varphi(y/u) \leftrightarrow u \in b)$
(3)	$\{y \mid \varphi\} = \{z \mid \psi\}$	$\forall u (\varphi(y/u) \leftrightarrow \psi(z/u))$
(4)	$a \in \{z \mid \psi\}$	$\psi(z/a)$
(5)	$\{y \mid \varphi\} \in b$	$\exists s (\forall u (\varphi(y/u) \leftrightarrow u \in s) \land s \in b)$
(6)	$\{y \mid \varphi\} \in \{z \mid \psi\}$	$\exists s (\forall u (\varphi(y/u) \leftrightarrow u \in s) \land \psi(z/s))$

ここで,

- a,b は変項か主要 ε 項.
- $\psi(z/v)$ は ψ に自由に現れている z に v を代入した式.

主結果

本論文の主結果は

ZF 集合論で ψ が証明可能 \Longleftrightarrow 本論文の集合論で ψ が証明可能 であるが、より精密に書くと

主結果

 \mathcal{L}_{C} の任意の文 (自由な変項が現れない式) ψ に対して、「 Γ から ψ への **HK** の証明で \mathcal{L}_{C} の式の列であるものが取れる」ことと「 Σ から ψ への **HE** の証明で \mathcal{L} の文の列であるものが取れる」ことは同値.

ここで.

- Γは L_C の文で書かれた ZF 集合論の公理系.
- ∑ は £ の文で書かれた本論文の公理系.
- HK と HE は証明体系 (論理的公理+推論規則).

以下詳細.

ZF の公理系

Γの公理

外延性 「同一の要素を持つ集合同士は等しい」

$$\forall x \, \forall y \, (\forall z \, (z \in x \leftrightarrow z \in y) \rightarrow x = y)$$

相等性 「等しい集合同士の服属関係は一致する」

$$\forall x \forall y (x = y \rightarrow y = x),$$

$$\forall x \forall y \forall z (x = y \rightarrow (x \in z \rightarrow y \in z)),$$

$$\forall x \forall y \forall z (x = y \rightarrow (z \in x \rightarrow z \in y)).$$

置換 「集合を写像で写した像は集合」次の式の全称閉包:

$$\forall x \, \forall y \, \forall z \, (\varphi(x, y) \land \varphi(x, z) \rightarrow y = z)$$

$$\rightarrow \forall a \, \exists z \, \forall y \, (y \in z \leftrightarrow \exists x \, (x \in a \land \varphi(x, y))).$$

置換公理は式 φ ごとに公理となるので図式 (schema) と呼ばれる.

ZF の公理系

Γの公理

対 「対集合が存在する」

$$\forall x \, \forall y \, \exists p \, \forall z \, (x = z \vee y = z \leftrightarrow z \in p)$$

合併 「合併集合が存在する」

$$\forall x \exists u \, \forall y \, (\exists z \, (z \in x \land y \in z) \leftrightarrow y \in u)$$

「冪集合が存在する」

$$\forall x \exists p \forall y (\forall z (z \in y \rightarrow z \in x) \leftrightarrow y \in p)$$

これらの公理によって既存の集合から新しい集合が作られる.

ZF の公理系

Γ の公理

正則性 「空でない集合は自分自身と交わらない要素を持つ」

$$\forall r (\exists x (x \in r) \rightarrow \exists y (y \in r \land \forall z (z \in r \rightarrow z \notin y)))$$

「自然数の全体を含む集合が存在する」 無限

$$\exists x (\exists s (\forall t (t \notin s) \land s \in x) \land \forall y (y \in x \rightarrow \exists u (\forall v (v \in u \leftrightarrow v \in y \lor v = y) \land u \in x)))$$

正則性公理によって集合の範囲が決定する (整礎集合). また無限公理は唯 一「集合の存在」に言及している.

古典論理

HK とは古典論理 (classical logic) の Hilbert 流証明体系である.

HK の論理的公理 (命題論理)

含意の分配 $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi)).$

含意の導入 $\varphi \to (\psi \to \varphi)$.

矛盾の導入 1 $\varphi \rightarrow (\neg \varphi \rightarrow \bot)$.

矛盾の導入 2 $\rightarrow \varphi \rightarrow (\varphi \rightarrow \bot)$.

否定の導入 $(\varphi \rightarrow \bot) \rightarrow \neg \varphi$.

論理和の導入 1 $\varphi \rightarrow \varphi \lor \psi$.

論理和の導入 2 $\psi \rightarrow \varphi \lor \psi$.

論理和の除去 $(\varphi \to \chi) \to ((\psi \to \chi) \to (\varphi \lor \psi \to \chi)).$

論理積の導入 $\varphi \rightarrow (\psi \rightarrow (\varphi \land \psi))$.

論理積の除去 1 $\varphi \wedge \psi \rightarrow \varphi$.

論理積の除去 2 $\varphi \wedge \psi \rightarrow \psi$.

二重否定の除去 $\rightarrow \varphi$ $\rightarrow \varphi$.

古典論理

HK の論理的公理 (量化)

全称の導入 $\forall y (\psi \rightarrow \varphi(x/y)) \rightarrow (\psi \rightarrow \forall x \varphi).$

全称の除去 $\forall x \varphi \rightarrow \varphi(x/t)$.

存在の導入 $\varphi(x/t) \rightarrow \exists x \varphi$.

存在の除去 $\forall y (\varphi(x/y) \rightarrow \psi) \rightarrow (\exists x \varphi \rightarrow \psi).$

HK の証明

「 Γ からの **HK** の証明で \mathcal{L}_{C} の式の列であるもの」とは、 \mathcal{L}_{C} の式の列 $\varphi_1, \dots, \varphi_n$ で、各 φ_i が次のいずれかであるもの:

- HK の公理である
- □ Γ の公理である
- $\varphi_i, \varphi_k(j, k < i)$ から三段論法で得られる
- φ_i (i < i) から汎化で得られる.