

A brief introduction on HSPICE

Siavash Kananian

Sharif University of Technology

Electronics III

What is Spice?

- Simulation Program with Integrated Circuit Emphasis
- General purpose analog circuit simulator
- Used in IC and board-level design for check of integrity of circuit designs and prediction of circuit behavior
- Developed at Electronics Research Laboratory of the University of California, Berkeley
- SPICE simulation is industry-standard for verification of circuit operation at transistor level before manufacturing
- Description of circuit elements (transistors, resistors, capacitors, etc.) and connections by netlists
- Netlists translated into nonlinear differential algebraic equations
- Solving by implicit integration methods, Newton's method and sparse matrix techniques

HSpice features

- Superior convergence
- Accurate modeling, including many foundry models
- Hierarchical node naming and reference
- Circuit optimization for models and cells, with incremental or simultaneous Multiparameter optimizations in AC, DC, and transient simulations
- Monte Carlo and worst-case design support
- Input, output, and behavioral algebraics for cells with parameters
- Cell characterization tools to characterize standard cell libraries
- Geometric lossy-coupled transmission lines for PCB, multichip, package, and IC technologies

Examples of Multipoint Experiments

- Process variation Monte Carlo or worst-case model parameter variation
- Element variation Monte Carlo or element parameter sweeps
- Voltage variation VCC, VDD, or substrate supply variation
- Temperature variation design temperature sensitivity.
- Timing analysis basic timing, jitter, and signal integrity analysis
- Parameter optimization balancing complex constraints, such as speed versus power, or frequency versus slew rate versus offset (analog circuits)

Circuit Analysis Types

Modeling Technologies

Input file

Contains:

- Design netlist (subcircuits, macros, power supplies, and so on).
- Statement naming the library to use (optional).
- Specifies the type of analysis to run (optional).
- Specifies the type of output desired (optional).
- Can be from texteditor or schematic tool (Cadence Virtuoso, MMI, ...)

Input reader accept input token, such as:

- - a statement name
 - a node name
 - a parameter name or value
- No differences between upper and lower case (except in quoted filenames)
- Continuation of statement on next line by plus (+) sign as first nonnumeric, non-blank character in the next line
- Indication of "to the power of" by two asterisks (**)
 - E.g. $2^{**}5 == two to the fifth power (2^5)$
- All characters after the listed statement lines will be ignored:
 - include 'filename'
 - .lib 'filename' corner
 - enddata, .end, .endl, .ends and .eom
 - For example:
 - .include 'biasckt.inc'; \$ semicolon ignored
 - .lib 'mos25l.l' tt, \$ comma ignored

First Character

- First character in every line specifies how HSPICE interprets the remaining line
- First line of a netlist:
 - Any character
 - Title or comment line
- Subsequent lines of netlist, and all lines of included files:
 - .(XXXX): Netlist keyword (e.g.: .TRAN 0.5ns 20ns)
 - C, D, E, F, G, H, I, J, K, L, M, Q, R, S, V, W: Element instantiation
 - * (asterisk): Comment line (HSPICE)
 - + (plus): Continues previous line

Numbers

- Numbers can be
 - Integer
 - Floating point
 - Floating point with integer exponent
 - Integer or floating point with one scale factor
- Numbers can use:
 - Exponential format
 - Engineering key letter format
 - Not both (1e-12 or 1p, but not 1e-6u)

Prefix	Scale Factor	Multiplying Factor
Tera	Т	1e+12
Giga	G	1e+9
Mega	MEG or X	1e+6
Kilo	K	1e+3
Milli	M	1e-3
Micro	U	1e-6
Nano	N	1e-9
Pico	Р	1e-12
Femto	F	1e-15
Atto	А	1e-18

Simulation Program Structure

Comments

```
* *** Parameters *****
```

- Comments:
 - First letter of line is asterisk (*) → whole line is comment
 - Dollar sign (\$) anywhere on the line → text after is comment
- For example:
 - * <comment_on_a_line_by_itself>
 -or-
 - <HSPICE_statement> \$ <comment_following_HSPICE_input>
- Comment statements can be placed anywhere in circuit description

Parameters and Expressions

```
.param Wn=2u L=0.6u
.param Wp='2*Wn'
```

- Definition of netlist parameters
- Parameter can be defined with expressions
- Definition can occur after use in elements
- Parameter names must begin with alphabetic character
- At redefinition last parameter's definition is used
- Expressions cannot exceed 1024 characters

Sources and Stimulis

```
* ***** Define power supplies and sources *****
V1 VDD 0 5
VPULSE VIN 0 PULSE 0 5 2N 2N 2N 98N 200N
```

- Source element statements to specify DC, AC, transient, and mixed voltage and current sources
- Grounding of voltage sources not necessary
 - Hspice assumes: positive current flows from positive node, through the source, to negative node
- Independent and dependent voltage/current sources

Simple Sources: Syntax

Vxx n+ n- DC=dcval tranfun AC=acmag acphase Ixx n+ n- DC=dcval tranfun AC=acmag acphase M=val

Vxx: Voltage source element name, must begin with V

lxx: Current source element name, must begin with I

n+, n-: Positive and negative node

DC=dcval: DC source keyword and value (in volts)

tranfun: Transient source function

» One or more of: AM, DC, EXP, PAT, PE, PL, PU, PULSE, PWL, SFFM, SIN

» Specification of characteristics of a time-varying source

AC: AC source keyword for use in AC small-signal analysis

acmag: Magnitude (RMS) of the AC source (in volts)

acphase: Phase of the AC source (in degrees)

M: Multiplier:

» Multiplies all values with val

» For simulation of parallel current sources

Simple Sources: Examples

- VX 1 0 5V
 - Voltage source VX has 5-volt DC bias
 - Positive terminal connects to node 1
 - Negative terminal is grounded
- VH 3 6 DC=2 AC=1,90
 - Voltage source VH has 2-volt DC bias, 1-volt RMS AC bias, with 90 degree phase offset
 - Positive terminal connects to node 3
 - Negative terminal connects to node 6.
- IG 8 7 PL(1mA 0s 5mA 25ms)
 - Current source IG
 - Piecewise-linear relationship, which is 1 mA at time=0, and 5 mA at 25 ms
 - Positive terminal connects to node 8
 - Negative terminal connects to node 7
- VMEAS 12 9
 - Voltage source VMEAS has 0-volt DC bias
 - Positive terminal connects to node 12
 - Negative terminal connects to node 9

Source Functions

- For transient analysis
- Types:
 - Trapezoidal pulse (PULSE)
 - Sinusoidal (SIN)
 - Exponential (EXP)
 - Piecewise linear (PWL)
 - Single-frequency frequency-modeled (SFFM)
 - Single-frequency amplitude-modeled (AM)
 - Pattern (PAT)
 - Pseudo Random-Bit Generator Source (PRBS)

Trapezoidal Pulse

- Vxx/lxx n+ n- PULSE v1 v2 td tr tf pw per
 - PULSE: Keyword
 - v1: Initial value of the voltage or current
 - v2: Pulse plateau value
 - td: Delay to the first ramp
 - tr: Duration of the rising ramp
 - tf: Duration of the falling ramp
 - pw: Pulse width
 - per: Pulse repetition period

Sinusoidal Pulse

- Vxx/lxx n+ n- SIN vo va freq td q j
 - SIN: Keyword
 - vo: Voltage or current offset
 - va: Voltage or current peak value
 - freq: Source frequency
 - td: Delay to the first sinus
 - q: Damping factor (in Hz)
 - j: Phase delay (in degrees)

0 to td:
$$v(t) = vo + va \cdot \sin\left(\frac{2\pi \cdot j}{360}\right)$$

from td:
$$v(t) = vo + va \cdot \exp([-t - td] \cdot q) \cdot \sin\left(2\pi f[t - td] + \frac{2\pi \cdot j}{360}\right)$$

Element Names

- Names begin with the element key letter (exception: subcircuits)
- Maximum name length: 1024 characters
- Some element key letters:
 - C: Capacitor
 - D: Diode
 - J: JFET or MESFET
 - L: Linear inductor
 - M: MOS transistor
 - Q: Bipolar transistor
 - R: Resistor
 - T,U,W: Transmission Line
 - X: Subcircuit call

Elements examples

R1 n1 n2 20k M=2

Type: Resistor

- Name: R1

Connected nodes: n1, n2

– Value: 20kΩ * 2= 40kΩ

M1 ADDR SIG1 GND SBS nch 'w1+w' 'l1+l'

Type: MOSFET

- Name: M1

Drain node: ADDR

Gate node: SIG1

Source node: GND

Substrate nodes: SBS

Model: nch

MOSFET dimensions: algebraic expressions (width=w1+w, length=l1+l)

Node Names

- Nodes connect elements
- Maximum node name length: 1024 characters
- Can be only numbers
 - Range of 0 to 10^{16} -1
 - Leading zeros are ignored
 - Characters are ignored if 1. character is number (e.g.: 1 == 1A)
- .GLOBAL statement to make node names global across all subcircuits
- 0, GND, GND!, GROUND: refer to the global ground

Subcircuit node names

- Access of nodes in subcircuits over (.) extension
- Concatenation of circuit path name with the node name

- Path name of the sig25 node in X4 subcircuit is: X1.X4.sig25
- E.g. can be used to print: .PRINT v(X1.X4.sig25)

Analysis

* **** Analysis statement ****
.TRAN 1n 300n

- Definition of analysis type (DC, transient, AC, ...)
- At begin of analysis: Determination of DC operating point values for all nodes and sources:
 - 1. Calculation of all values
 - 2. Setting values specified in .NODESET and .IC statements
 - 3. Setting of values stored in an initial conditions file
- Then: Iteratively searching of exact solution
- At transient analysis: resulting DC operating point is initial estimate to solve the next timepoint
- Initial estimates close to exact solution increase likelihood of convergent solution and lower simulation time

Transient Analysis

Transient Analysis Cont'd

- Transient analysis simulates circuit in a specific time
- Simple syntax: .TRAN <Tstep> <Tstop>
 - <Tstep>: time step
 - <Tstop>: End time (duration) of simulation
- Also more complex commands possible
- E.g.: .TRAN 200P 20N SWEEP TEMP -55 75 10
 - Time step: 200 ps, Duration: 20 ns
 - Multipoint simulation: temperature is swept from -55 to 70°C by 10°C steps

AC Simulations

Output Files

- *.st# Output Status File
 - # is 0-9999
 - Start and end times for each CPU phase
 - Options
 - Status of preprocessing checks for licensing
 - Input syntax
 - Models
 - Circuit topology
 - Convergence strategies that for difficult circuits
- *.mt# Transient Analysis Measurement Results File
 - If .MEASURE TRAN statement
- *.tr# Transient Analysis Results File
 - Numerical results of transient analysis
 - If .TRAN and .OPTION POST statements

Output Files cont'd

- *.lis Output Listing File
 - Name and version of the simulator
 - Synopsys message block and License details
 - Input filename
 - Copy of the input netlist file and node count
 - Operating point parameters
 - Details of the volt drop, current, and power for each source and subcircuit
 - Low-resolution ASCII plots, originating from a .PLOT statement
- *.ac# AC Analysis Results File
- *.ma# AC Analysis Measurement Results File
 - If .MEASURE AC statement

Output Files cont'd

- *.sw# DC Analysis Results File
 - If .DC statement
 - Results of applied stepped or swept DC parameters
 - Results can include noise, distortion, or network analysis
- *.ms# DC Analysis Measurement Results File
 - If .MEASURE DC statement
- *.ft# FFT Analysis Graph Data File
 - Graphical data needed to display the FFT analysis waveforms
- *.ic# Operating Point Node Voltages File
 - If .SAVE statement
 - DC operating point initial conditions

Noise Analysis Example

* A Common Source NMOS amplifier

.options list post

.model n_tran nmos level=49 version=3.22

+AF=.826 KF=4e-29

vdd vdd 0 DC=5

p1 in 0 port=1 ac=0.1 dc=2.1 z0=50 p2 out vdd port=2 z0=20k rs in g1 50 m1 out g1 0 0 n_tran l=1.5u w=40u

.ac dec 10 10Meg 10G

.lin noisecalc=1

.print ac v(out) onoise

.end

Noise Analysis Example cont'd

First step: all the signal voltage and current sources set to 0

Next step: each resistor, diode, and transistor modeled with its noise model

- Then: calculation of output voltage resulting from the noise signal (one element at a time)
- Here:
 - 1. Replacement of Rs with its noise model
 - 2. Calculation of PSD of the noise voltage (PSD_{Rs}) as seen at output port for one frequency

-∘ Output

PSD: Power Spectral Density

Noise Analysis Example cont'd

- Here:
 - 3. Replacement of M1 with its noise model
 - 4. Calculation of PSD of the noise voltage (PSD_{M1}) as seen at output port for same frequency
- Total PSD (PSD_{total}) at observed frequency is sum of all PSD [V²/Hz]

$$\ \ \ \mathsf{PSD}_{\mathsf{total}} = \mathsf{PSD}_{\mathsf{Rs}} + \mathsf{PSD}_{\mathsf{M1}}$$

Example: Operating Point & Gain


```
spice test
vcc 100 0 2.5
vee 200 0 -2.5
q1 2 3 4 n
q2 6 0 4 n
q3 2 2 100 p
q4 6 2 100 p
vi 3 0 ac
i1 4 200 100u
```

```
r1 4 200 1meg
.model n npn bf=200
va=130 rb=200 is=5f
.model p pnp bf=50
va=50 rb=300 is=2f
.op
.tf v(6) vi
.end
```

Examples: Find Freq. Response

 $r_b = 300 \ \Omega$, $I_C = 0.5 \ \text{mA}$, $\beta = 200$, $f_T = 500 \ \text{MHz}$ (at $I_C = 0.5 \ \text{mA}$), $C_{\mu} = 0.3 \ \text{pF}$, $C_{cs} = 0$, and $V_A = \infty$.

- test 2 CE Freq. Response •
- vcc 5 0 5v
- rs 4 2 5k
- rl 153k
- q1 1 2 0 npn
- vi 47 ac
- vdc 7 0 0.8
- .tf v(1) vi

- .model npn npn is=1e-16a bf=200 rb=300 cjc=0.3pf cjs=0 tf=302pf
- .ac dec 10 100k 1000meg
- .plot ac vdb(1)
- .plot ac vp(1)
- .pz v(1) vi
- .op
- .end

DC Characteristic of an NPN

- DC
- vce 1 0 0
- q1120n
- vbe 2 0 0
- .dc vce 0 50 0.5 vbe 0.5 1 0.05
- .model n npn is=1.26e-015 bf=290 rb=670 rc=300 tf=1.15n br=2.5 cje=0.65p cjc=0.36p cjs=3.2p vaf=172.5
- .op
- .end