

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 4, 2016 Электронный эсурнал,

Электронный экурнал, per. Эл. N ФС77-39410 om 15.04.2010 ISSN 1817-2172

 $http://www.math.spbu.ru/diffjournal\\ e-mail: jodiff@mail.ru$

Новые книги

Обыкновенные дифференциальные уравнения. Практикум

А. В. Пантелеев, А. С. Якимова, К. А. Рыбаков

В учебном пособии «Обыкновенные дифференциальные уравнения. Практикум» изложены аналитические, приближенно-аналитические и численные методы и алгоритмы решения обыкновенных дифференциальных уравнений. Применение каждого метода продемонстрировано на решении типовых и нетиповых примеров, охватывающих различные приложения к задачам механики, экономики, расчета электрических цепей и биологических систем. Особое внимание уделено специфике решения задач анализа выходных процессов и устойчивости одномерных и многомерных динамических систем, исследуемых в теории управления. Учебное пособие

предназначено для студентов высших учебных заведений, получающих образование по направлениям (специальностям) естественных наук, техники и технологий, информатики и экономики на квалификацию специалиста, степени бакалавра и магистра [1]. Книга «Обыкновенные дифференциальные уравнения. Практикум» продолжает серию издательства «Инфра-М» [2–6]. Предыдущее издание было выпущено в 2010 г. издательством «Логос» [7].

Учебное пособие состоит из введения, 8 глав основной части, предметного указателя и списка литературы.

Во введении дано неформальное определение дифференциальных уравнений, сформулированы физические задачи, приводящие к дифференциальным уравнениям. Глава 1 содержит основные понятия и определения, связанные с решением дифференциальных уравнений и систем. В главе 2 изложены методы интегрирования дифференциальных уравнений первого порядка (с разделяющимися переменными, однородных, линейных, в полных дифференциалах и т.д.), рассмотрены уравнения высшего порядка, допускающие его понижение. В главах 3 и 4 достаточно подробно рассмотрено решение линейных однородных и неоднородных дифференциальных уравнений и систем соответственно, включая приложения к анализу выходных процессов и устойчивости динамических систем. Глава 5 посвящена применению операционного исчисления, а именно преобразования Лапласа, к решению линейных дифференциальных уравнений и систем, анализу выходных процессов динамических систем. В главе 6 рассматривается анализ автономных динамических систем методом фазовой плоскости, рассмотрены как линейные, так и нелинейные динамические системы, часто встречающиеся в приложениях. Глава 7 содержит некоторые приближенно-аналитические методы решения дифференциальных уравнений и систем, описаны методы, построенные на применении степенных и ортогональных рядов, метод последовательных приближений, методы Чаплыгина и Ньютона-Канторовича. В главе 8 изложены численные методы решения дифференциальных уравнений и систем, причем наряду с классическими методами Эйлера и его модификациями, а также методом Рунге – Кутты описано большое количество различных явных и неявных методов, необходимых для решения прикладных задач.

Все описанные методы решения дифференциальных уравнений и систем проиллюстрированы многочисленными примерами их применения. Использование ряда методов изложено в виде пошаговых алгоритмов. В конце каждой главы даны задачи для самостоятельного решения с ответами. Часть задач для самостоятельного решения содержит параметры, что позволяет формировать на их основе индивидуальные задания для студентов, зависящие от номера варианта.

Более подробно содержание учебного пособия отражено ниже.

Глава 1. Общие теоретические положения.

- 1.1. Основные определения.
 - 1.1.1. Дифференциальные уравнения.
 - 1.1.2. Системы дифференциальных уравнений.
- 1.2. Основные понятия, связанные с исследованием и решением дифференциальных уравнений.
 - 1.2.1. Интегрирование обыкновенных дифференциальных уравнений.
 - 1.2.2. Сведение дифференциального уравнения высшего порядка к системе дифференциальных уравнений.
 - 1.2.3. Поле направлений. Приближенное решение уравнений методом изоклин.
 - 1.2.4. Свойства решений линейных дифференциальных уравнений и систем.
 - 1.2.5. Анализ выходных процессов.
 - 1.2.6. Анализ устойчивости.

Глава 2. Дифференциальные уравнения первого порядка.

- 2.1. Уравнения с разделяющимися переменными.
 - 2.1.1. Метод решения.
 - 2.1.2. Уравнения, приводящиеся к уравнениям с разделяющимися переменными.
- 2.2. Однородные уравнения.
 - 2.2.1. Метод решения.
 - 2.2.2. Уравнения, приводящиеся к однородным.
- 2.3. Линейные уравнения.
 - 2.3.1. Метод решения.
 - 2.3.2. Уравнения, приводящиеся к линейным.
- 2.4. Уравнение Риккати.
 - 2.4.1. Случаи интегрируемости уравнения Риккати.
 - 2.4.2. Метод вспомогательных переменных.
- 2.5. Уравнения в полных дифференциалах.
 - 2.5.1. Метод решения.
 - 2.5.2. Уравнения, приводящиеся к уравнениям в полных дифференциалах.
- 2.6. Уравнения, не разрешенные относительно производной.
 - 2.6.1. Постановка задачи.

- 2.6.2. Уравнения первого порядка *п*-й степени.
- 2.6.3. Неполные уравнения.
- 2.6.4. Полные уравнения.
- 2.7. Уравнения высшего порядка, приводящиеся к уравнениям первого порядка. Понижение порядка дифференциальных уравнений.
- 2.8. Простейшие краевые задачи.
- Глава 3. Линейные дифференциальные уравнения высшего порядка.
 - 3.1. Линейные дифференциальные уравнения
 - с постоянными коэффициентами.
 - 3.1.1. Линейные однородные уравнения с постоянными коэффициентами.
 - 3.1.2. Линейные неоднородные уравнения с постоянными коэффициентами.
 - 3.2. Решение задачи Коши.
 - 3.3. Анализ выходных процессов.
 - 3.4. Анализ устойчивости.
 - 3.5. Линейные дифференциальные уравнения высшего порядка с переменными коэффициентами.
 - 3.5.1. Уравнение Эйлера.
 - 3.5.2. Линейные дифференциальные уравнения второго порядка с переменными коэффициентами.
- **Глава 4.** Системы линейных дифференциальных уравнений с постоянными коэффициентами.
 - 4.1. Методы нахождения и исследования общего решения однородной системы.
 - 4.1.1. Метод приведения системы линейных уравнений к одному уравнению высшего порядка.
 - 4.1.2. Метод сведения решения системы к задаче отыскания собственных значений и собственных векторов матрицы системы.
 - 4.1.3. Метод неопределенных коэффициентов.
 - 4.2. Методы нахождения общего решения неоднородных систем.
 - 4.2.1. Метод приведения системы линейных уравнений к одному уравнению высшего порядка.
 - 4.2.2. Метод вариации произвольных постоянных.
 - 4.2.3. Метод подбора частного решения.

- 4.3. Решение задачи Коши.
- 4.4. Анализ выходных процессов.
- 4.5. Анализ устойчивости линейных многомерных стационарных динамических систем.
- **Глава 5.** Применение операционного исчисления для решения линейных дифференциальных уравнений и систем.
 - 5.1. Преобразование Лапласа.
 - 5.1.1. Основные определения.
 - 5.1.2. Свойства преобразования Лапласа.
 - 5.1.3. Нахождение изображения по оригиналу.
 - 5.1.4. Нахождение оригинала по изображению.
 - 5.2. Применение преобразования Лапласа.
 - 5.2.1. Решение линейных дифференциальных уравнений и систем.
 - 5.2.2. Применение передаточных функций для анализа выходных процессов.
- Глава 6. Анализ поведения динамических систем на фазовой плоскости.
 - 6.1. Динамические системы и их исследование в фазовом пространстве. Основные положения.
 - 6.2. Анализ поведения линейных динамических систем второго порядка на фазовой плоскости.
 - 6.3. Анализ поведения нелинейных автономных динамических систем второго порядка.
- **Глава 7.** Приближенно-аналитические методы решения дифференциальных уравнений и систем.
 - 7.1. Интегрирование дифференциальных уравнений с помощью степенных рядов.
 - 7.1.1. Постановка задачи.
 - 7.1.2. Метод неопределенных коэффициентов.
 - 7.1.3. Метод последовательного дифференцирования.
 - 7.2. Метод последовательных приближений.
 - 7.3. Спектральный метод.
 - 7.4. Метод Чаплыгина.
 - 7.5. Метод Ньютона Канторовича.
- Глава 8. Численные методы решения дифференциальных уравнений и систем.
 - 8.1. Постановка задачи. Основные понятия.

- 8.2. Явные методы решения дифференциальных уравнений и систем.
 - 8.2.1. Явный метод Эйлера.
 - 8.2.2. Метод Эйлера-Коши.
 - 8.2.3. Модифицированный метод Эйлера.
 - 8.2.4. Явные методы Рунге-Кутты.
 - 8.2.5. Метод Рунге Кутты Мерсона.
 - 8.2.6. Методы Адамса Башфорта.
 - 8.2.7. Методы Фельберга.
 - 8.2.8. Методы Ингленда.
 - 8.2.9. Методы Нюстрема.
 - 8.2.10. Явные методы Милна.
 - 8.2.11. Явные методы Хемминга.
 - 8.2.12. Методы прогноза и коррекции.
- 8.3. Неявные методы решения дифференциальных уравнений и систем.
 - 8.3.1. Неявный метод Эйлера.
 - 8.3.2. Метод трапеций.
 - 8.3.3. Методы Адамса Мултона.
 - 8.3.4. Неявные методы Милна.
 - 8.3.5. Неявные методы Хемминга.
 - 8.3.6. Методы Гира.
 - 8.3.7. Неявные методы Рунге-Кутты.

Список литературы

- [1] Пантелеев А.В., Якимова А.С., Рыбаков К.А. Обыкновенные дифференциальные уравнения. Практикум. М.: Инфра-М, 2016.
- [2] Бортаковский А.С., Пантелеев А.В. Линейная алгебра в примерах и задачах. М.: Инфра-М, 2015.
- [3] Бортаковский А.С., Пантелеев А.В. Аналитическая геометрия в примерах и задачах. М.: Инфра-М, 2016.
- [4] Бортаковский А.С., Пантелеев А.В. Линейная алгебра и аналитическая геометрия. Практикум. М.: Инфра-М, 2015.
- [5] *Пантелеев А.В.*, *Бортаковский А.С.* Теория управления в примерах и задачах. М.: Инфра-М, 2016.
- [6] Пантелеев А.В., $Ky\partial pявцева~ И.А.$ Численные методы. Практикум. М.: Инфра-М, 2017.
- [7] Пантелеев А.В., Якимова А.С., Рыбаков К.А. Обыкновенные дифференциальные уравнения. Практический курс. М.: Логос, 2010.