

3. Using CPUs for Neural Networks

Philipp Holzinger

Content

CPU Architecture

- 1. Overview of Architecture
- 2. Optimizations useful for NNs
 - Memory optimizations
 - Vectorization
 - Threading

Platforms for RADL

CPU Architecture

Pseudocode to be Executed

Fully connected layer

```
for (b = 0 to B-1) // batch
for (n = 0 to N-1) // neuron
for (i = 0 to I-1) // input
```

Convolutional layer

```
for (b = 0 to B-1) // batch for (k = 0 to K-1) // output channels for (c = 0 to C-1) // input channels for (x = 0 to X-1) // input columns for (y = 0 to Y-1) // input rows for (fx = 0 to FX-1) // filter columns for (fy = 0 to FY-1) // filter rows
```


CPU RAW Performance Evolution

There are some Restrictions

42 Years of Microprocessor Trend Data

Chip Area
Data Transport

Dissipated Power Physical Limits

Chip Area

Data Transport

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp

The Memory Gap

Vectorization

Scalar

Z

add r1,r2,r3

SIMD

X ₀	X ₁	X ₂	Хз
-	4	+	•
Y ₀	Y ₁	Y ₂	Y 3
Zo	Z ₁	Z 2	Z 3

vadd v1,v2,v3

Threading

CPU Memory Hierarchy

Latency:

Data Layout and Access

Data Layout and Access

Data Layout and Access

The faster the memory, the more it is limited in size!

- Choose which data to keep in memory ("Cache Blocking")
 - Data Stationarity / Parallelism
- Consider smaller or fixed point data types ("Quantization")
 - More values per memory access and area
 - Performance vs accuracy!
- Consider sparse matrices ("Pruning")
 - Set close to 0 weights to 0 (do retraining if needed)
 - Use optimized matrix format (e.g. CSR) and only calcualte needed operations
 - Performance vs accuracy!

Platforms for RADL

X86 CPU - AMD Ryzen Threadripper 1900X

AMD Ryzen Threadripper 1900X

- 8 Cores / 16 Threads
- 3.8 GHz Base-Clock / 4.0 GHz Turbo
- 768 KB L1 Cache
- 4 MB L2 Cache
- 16 MB L3 Cache

180 W TDP

RasberryPI (ARM)

Broadcom BCM2711 (Cortex-A72 64-bit SoC)

- 4 Cores / 4 Threads
- 1.5GHz Clock
- 32 KB + 48 KB * 4 L1 Cache
- 1 MB L2 Cache
- Up to 4GB LPDDR4

4 W TDP

RasberryPI (ARM)

Arduino (AVR)

ATmega328P 8Bit AVR

- 1 Core /1 Thread
- 16 MHz Clock (depends on occilator used)
- 2 KB RAM

~4 mW TDP (heavily depending on peripherals!)

Sources

- https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristicsover-time/
- https://www.amd.com/de/products/cpu/amd-ryzen-threadripper-1900x
- https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2711/R EADME.md
- https://www.heise.de/ct/artikel/Raspberry-Pi-4-Model-B-Blockschaltbild-des-Broadcom-BCM2711-4514399.html
- https://store.arduino.cc/arduino-uno-rev3
- http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
- https://learn.sparkfun.com/tutorials/reducing-arduino-power-consumption/all