Dinámica Molecular regida por el paso temporal Trabajo Practico Nro. 4

Badi Leonel, Buchhalter Nicolás Demián y Meola Franco Román

2 de mayo de 2016

Grupo 3

Fundamentos Introducción

- Vamos a comparar los errores cometidos por distintos sistemas de integración
- Oscilador amortiguado: Sistema con sólo una partícula puntual cuya solución analítica es conocida
- Se implementaron:
 - Beeman
 - Velocity Verlet
 - Gear Predictor Corrector de orden 5

Fundamentos

Variables relevantes del oscilador

Parámetros

•
$$m = 70$$

•
$$k = 10000$$

•
$$\gamma = 100$$

•
$$t_f = 5$$

Condiciones iniciales

•
$$r(t=0)=1$$

•
$$v(t=0) = -\frac{2\gamma}{m}$$

Implementación Cálculo Numérico

```
void simulateGear(double time, double deltaT) {
    double simTime = 0:
    Oscilator oscilator = new Oscilator();
    oscilator.writePositionAndError();
    oscilator.makeEulerStep(deltaT);
    simTime += deltaT:
    oscilator.writePositionAndError();
    while (simTime < time) {</pre>
        oscilator.makeGearStep(deltaT);
        simTime += deltaT:
        oscilator.writePositionAndError();
```

Código 1: Método de Gear Predictor Corrector.

Implementación Detalles de precisión

- Todas las operaciones se realizan en double
- Se utilizan cinco cifras decimales como output en los archivos de salida de resultados y errores.

Error total normalizado por el número total de pasos para distintos valores de Δt

Δt	Método	E
0.01	Beeman	0,00471
0.01	Verlet	0,00663
0.01	Gear	0,33624
0.001	Beeman	0,00235
0.001	Verlet	0,00225
0.001	Gear	-0,00199
0.0001	Beeman	0,00225
0.0001	Verlet	0,00224
0.0001	Gear	0,00228

Tabla: Suma de las diferencias al cuadrado para todos los pasos temporales normalizado por el número total de pasos

Gráfico de x(t) para el oscilador puntual amortiguado con $\Delta t = 0.01$

Gráfico de x(t) para el oscilador puntual amortiguado con $\Delta t = 0{,}001$

Gráfico de E para el oscilador puntual amortiguado con $\Delta t = 0.01$

Gráfico de E para el oscilador puntual amortiguado con $\Delta t = 0{,}001$

Conclusiones

- Para una cantidad de pasos baja (500 pasos, $\Delta t = 0.01$), el error de *Gear Predictor-Corrector* aumenta, simulando un oscilador no amortiguado.
- Con un $\Delta t = 0.001$ obtuvimos resultados con errores muy bajos para los tres métodos.
- Con 50000 pasos ($\Delta t=0.0001$), los tres métodos tienen un error que varía recíen en la quinta cifra decimal.
- El esquema de integración que mejor resulta para este sistema es Gear Predictor-Corrector para $\Delta t=0.001$, es decir, 5000 pasos.

Gracias