4. VECTOR SPACE

A **vector space** is a nonempty set V of objects, called *vectors*, on which are defined two operations, called *addition* and *multiplication by scalars* (real numbers), subject to the ten axioms (or rules) listed below. The axioms must hold for all vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in V and for all scalars c and d.

- 1. The sum of \mathbf{u} and \mathbf{v} , denoted by $\mathbf{u} + \mathbf{v}$, is in V.
- 2. u + v = v + u.
- 3. (u + v) + w = u + (v + w).
- **4.** There is a zero vector **0** in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- **5.** For each **u** in V, there is a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- **6.** The scalar multiple of \mathbf{u} by c, denoted by $c\mathbf{u}$, is in V.
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$.
- **8.** $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$.
- **9.** $c(d\mathbf{u}) = (cd)\mathbf{u}$.
- 10. 1u = u.

1. The sum of \mathbf{u} and \mathbf{v} , denoted by $\mathbf{u} + \mathbf{v}$, is in V.

2.
$$u + v = v + u$$
.

3.
$$(u + v) + w = u + (v + w)$$
.

4. There is a **zero** vector **0** in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.

5. For each **u** in V, there is a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.

unique

unique

6. The scalar multiple of \mathbf{u} by c, denoted by $c\mathbf{u}$, is in V.

7.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$
.

8.
$$(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$
.

9.
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$
.

10. 1u = u.

For each \mathbf{u} in V and scalar c,

$$0\mathbf{u} = \mathbf{0} \tag{1}$$

$$c\mathbf{0} = \mathbf{0} \tag{2}$$

$$-\mathbf{u} = (-1)\mathbf{u} \tag{3}$$

Examples

The spaces \mathbb{R}^n , where $n \geq 1$

EXAMPLE 4 For $n \ge 0$, the set \mathbb{P}_n of polynomials of degree at most n consists of all polynomials of the form

$$\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n \tag{4}$$

where the coefficients a_0, \ldots, a_n and the variable t are real numbers.

EXAMPLE 4 For $n \ge 0$, the set \mathbb{P}_n of polynomials of degree at most n consists of all polynomials of the form

$$\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n \tag{4}$$

where the coefficients a_0, \ldots, a_n and the variable t are real numbers.

If **p** is given by (4) and if $\mathbf{q}(t) = b_0 + b_1 t + \cdots + b_n t^n$, then the sum $\mathbf{p} + \mathbf{q}$ is defined by

$$(\mathbf{p} + \mathbf{q})(t) = \mathbf{p}(t) + \mathbf{q}(t)$$

= $(a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n$

The scalar multiple $c\mathbf{p}$ is the polynomial defined by

$$(c\mathbf{p})(t) = c\mathbf{p}(t) = ca_0 + (ca_1)t + \dots + (ca_n)t^n$$

EXAMPLE 5 Let V be the set of all real-valued functions defined on a set \mathbb{D} .

EXAMPLE 5 Let V be the set of all real-valued functions defined on a set \mathbb{D} .

 $\mathbf{f} + \mathbf{g}$ is the function whose value at t in the domain \mathbb{D} is $\mathbf{f}(t) + \mathbf{g}(t)$.

Likewise, for a scalar c and an \mathbf{f} in V, the scalar multiple $c\mathbf{f}$ is the function whose value at t is $c\mathbf{f}(t)$. For instance, if $\mathbb{D} = \mathbb{R}$, $\mathbf{f}(t) = 1 + \sin 2t$, and $\mathbf{g}(t) = 2 + .5t$, then $(\mathbf{f} + \mathbf{g})(t) = 3 + \sin 2t + .5t$ and $(2\mathbf{g})(t) = 4 + t$

subspaces

In many problems, a vector space consists of an appropriate subset of vectors from some larger vector space.

subspaces

In many problems, a vector space consists of an appropriate subset of vectors from some larger vector space.

A **subspace** of a vector space V is a subset H of V that has three properties:

- a. The zero vector of V is in H.
- b. H is closed under vector addition. That is, for each \mathbf{u} and \mathbf{v} in H, the sum $\mathbf{u} + \mathbf{v}$ is in H.
- c. H is closed under multiplication by scalars. That is, for each \mathbf{u} in H and each scalar c, the vector $c\mathbf{u}$ is in H.

EXAMPLE 6 The set consisting of only the zero vector in a vector space V is a subspace of V, called the **zero subspace** and written as $\{0\}$.

EXAMPLE 6 The set consisting of only the zero vector in a vector space V is a subspace of V, called the **zero subspace** and written as $\{0\}$.

EXAMPLE 7 Let \mathbb{P} be the set of all polynomials with real coefficients, with operations in \mathbb{P} defined as for functions. Then \mathbb{P} is a subspace of the space of all real-valued

R2 and R3

EXAMPLE 6 The set consisting of only the zero vector in a vector space V is a subspace of V, called the **zero subspace** and written as $\{0\}$.

EXAMPLE 7 Let \mathbb{P} be the set of all polynomials with real coefficients, with operations in \mathbb{P} defined as for functions. Then \mathbb{P} is a subspace of the space of all real-valued

R2 and R3

R₂ is not even a subset of R₃

$$H = \left\{ \begin{bmatrix} s \\ t \\ 0 \end{bmatrix} : s \text{ and } t \text{ are real} \right\}$$

A plane in \mathbb{R}^3

a line in $\ensuremath{\mathbb{R}}^2$

EXAMPLE 10 Given \mathbf{v}_1 and \mathbf{v}_2 in a vector space V, let $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$. Show that H is a subspace of V.

EXAMPLE 10 Given \mathbf{v}_1 and \mathbf{v}_2 in a vector space V, let $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$. Show that H is a subspace of V.

The zero vector is in H

take two arbitrary vectors in H, say,

$$\mathbf{u} = s_1 \mathbf{v}_1 + s_2 \mathbf{v}_2$$
 and $\mathbf{w} = t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2$

$$\mathbf{u} + \mathbf{w} = (s_1 \mathbf{v}_1 + s_2 \mathbf{v}_2) + (t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2)$$

= $(s_1 + t_1)\mathbf{v}_1 + (s_2 + t_2)\mathbf{v}_2$

$$c\mathbf{u} = c(s_1\mathbf{v}_1 + s_2\mathbf{v}_2) = (cs_1)\mathbf{v}_1 + (cs_2)\mathbf{v}_2$$

THEOREM 1

If $\mathbf{v}_1, \dots, \mathbf{v}_p$ are in a vector space V, then $\mathrm{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a subspace of V.

THEOREM 1

If $\mathbf{v}_1, \dots, \mathbf{v}_p$ are in a vector space V, then Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a subspace of V.

We call Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ the subspace spanned (or generated) by $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$. Given any subspace H of V, a spanning (or generating) set for H is a set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in H such that $H = \operatorname{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.

EXAMPLE 11 Let H be the set of all vectors of the form (a-3b,b-a,a,b), where a and b are arbitrary scalars. That is, let $H = \{(a-3b,b-a,a,b) : a \text{ and } b \text{ in } \mathbb{R} \}$. Show that H is a subspace of \mathbb{R}^4 .

EXAMPLE 11 Let H be the set of all vectors of the form (a-3b,b-a,a,b), where a and b are arbitrary scalars. That is, let $H = \{(a-3b,b-a,a,b) : a \text{ and } b \text{ in } \mathbb{R} \}$. Show that H is a subspace of \mathbb{R}^4 .

$$\begin{bmatrix} a - 3b \\ b - a \\ a \\ b \end{bmatrix} = a \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} -3 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

An $n \times n$ matrix A is said to be symmetric if $A^T = A$. Let S be the set of all 3×3 symmetric matrices. Show that S is a subspace of $M_{3\times 3}$, the vector space of 3×3 matrices.

An $n \times n$ matrix A is said to be symmetric if $A^T = A$. Let S be the set of all 3×3 symmetric matrices. Show that S is a subspace of $M_{3\times3}$, the vector space of 3×3 matrices.

- a. Observe that the $\mathbf{0}$ in $M_{3\times 3}$ is the 3×3 zero matrix and since $\mathbf{0}^{I}=\mathbf{0}$, the matrix $\mathbf{0}$ is symmetric and hence $\mathbf{0}$ is in S.
- b. Let A and B in S. Notice that A and B are 3×3 symmetric matrices so $A^T = A$ and $B^T = B$. By the properties of transposes of matrices, $(A + B)^T = A^T + B^T = A + B$. Thus A + B is symmetric and hence A + B is in S.
- c. Let A be in S and let c be a scalar. Since A is symmetric, by the properties of symmetric matrices, $(cA)^T = c(A^T) = cA$. Thus cA is also a symmetric matrix and hence cA is in S.

4.2 NULL SPACE, COLUMN SPACE AND LINEAR TRANSFORMATION

Null space

The **null space** of an $m \times n$ matrix A, written as Nul A, is the set of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. In set notation,

Nul
$$A = \{ \mathbf{x} : \mathbf{x} \text{ is in } \mathbb{R}^n \text{ and } A\mathbf{x} = \mathbf{0} \}$$

Null space

The **null space** of an $m \times n$ matrix A, written as Nul A, is the set of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. In set notation,

Nul
$$A = \{ \mathbf{x} : \mathbf{x} \text{ is in } \mathbb{R}^n \text{ and } A\mathbf{x} = \mathbf{0} \}$$

$$A = \begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix} \quad \mathbf{u} = \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix}$$

Determine if **u** belongs to the null space of A

$$A = \begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix} \quad \mathbf{u} = \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix}$$

Determine if **u** belongs to the null space of A

$$A\mathbf{u} = \begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix} = \begin{bmatrix} 5 - 9 + 4 \\ -25 + 27 - 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

THEOREM 2

The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n . Equivalently, the set of all solutions to a system $A\mathbf{x} = \mathbf{0}$ of m homogeneous linear equations in n unknowns is a subspace of \mathbb{R}^n .

EXAMPLE 2 Let H be the set of all vectors in \mathbb{R}^4 whose coordinates a, b, c, d satisfy the equations a - 2b + 5c = d and c - a = b. Show that H is a subspace of \mathbb{R}^4 .

An Explicit Description of Nul A

There is no obvious relation between vectors in Nul A and the entries in A. We say that Nul A is defined *implicitly*, because it is defined by a condition that must be checked.

EXAMPLE 3 Find a spanning set for the null space of the matrix

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

An Explicit Description of Nul A

There is no obvious relation between vectors in Nul A and the entries in A. We say that Nul A is defined *implicitly*, because it is defined by a condition that must be checked.

EXAMPLE 3 Find a spanning set for the null space of the matrix

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 0 & -1 & 3 & 0 \\ 0 & 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \qquad \begin{aligned} x_1 - 2x_2 & - & x_4 + 3x_5 = 0 \\ x_3 + 2x_4 - 2x_5 = 0 \\ 0 = 0 \end{aligned}$$

$$x_1 = 2x_2 + x_4 - 3x_5$$
, $x_3 = -2x_4 + 2x_5$, with x_2 , x_4 , and x_5

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2x_2 + x_4 - 3x_5 \\ x_2 \\ -2x_4 + 2x_5 \\ x_4 \\ x_5 \end{bmatrix}$$

$$x_1 = 2x_2 + x_4 - 3x_5$$
, $x_3 = -2x_4 + 2x_5$, with x_2 , x_4 , and x_5

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2x_2 + x_4 - 3x_5 \\ x_2 \\ -2x_4 + 2x_5 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$

$$= x_2\mathbf{u} + x_4\mathbf{v} + x_5\mathbf{w}$$

 $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a spanning set for Nul A.

$$x_1 = 2x_2 + x_4 - 3x_5$$
, $x_3 = -2x_4 + 2x_5$, with x_2 , x_4 , and x_5

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2x_2 + x_4 - 3x_5 \\ x_2 \\ -2x_4 + 2x_5 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$

$$= x_2\mathbf{u} + x_4\mathbf{v} + x_5\mathbf{w}$$

Linearly independent
 Number of free variables

Column Space of a Matrix

DEFINITION

The **column space** of an $m \times n$ matrix A, written as Col A, is the set of all linear combinations of the columns of A. If $A = [\mathbf{a}_1 \ \cdots \ \mathbf{a}_n]$, then

$$\operatorname{Col} A = \operatorname{Span} \{\mathbf{a}_1, \dots, \mathbf{a}_n\}$$

THEOREM 3

The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m .

Column Space of a Matrix

DEFINITION

The **column space** of an $m \times n$ matrix A, written as Col A, is the set of all linear combinations of the columns of A. If $A = [\mathbf{a}_1 \ \cdots \ \mathbf{a}_n]$, then

$$\operatorname{Col} A = \operatorname{Span} \{\mathbf{a}_1, \dots, \mathbf{a}_n\}$$

THEOREM 3

The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m .

Col
$$A = {\mathbf{b} : \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \text{ in } \mathbb{R}^n}$$

range of the linear transformation Ax.

example

EXAMPLE 4 Find a matrix A such that W = Col A.

$$W = \left\{ \begin{bmatrix} 6a - b \\ a + b \\ -7a \end{bmatrix} : a, b \text{ in } \mathbb{R} \right\}$$

$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}$$

let
$$\mathbf{u} = \begin{bmatrix} 3 \\ -2 \\ -1 \\ 0 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix}$.

a. Determine if \mathbf{u} is in Nul A. Could \mathbf{u} be in Col A?

b. Determine if \mathbf{v} is in Col A. Could \mathbf{v} be in Nul A?

$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}$$

let
$$\mathbf{u} = \begin{bmatrix} 3 \\ -2 \\ -1 \\ 0 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix}$.

a. Determine if \mathbf{u} is in Nul A. Could \mathbf{u} be in Col A?

b. Determine if \mathbf{v} is in Col A. Could \mathbf{v} be in Nul A?

$$A\mathbf{u} = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix} \begin{vmatrix} 3 \\ -2 \\ -1 \\ 0 \end{vmatrix} = \begin{bmatrix} 0 \\ -3 \\ 3 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}$$

let
$$\mathbf{u} = \begin{bmatrix} 3 \\ -2 \\ -1 \\ 0 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix}$.

a. Determine if \mathbf{u} is in Nul A. Could \mathbf{u} be in Col A?

b. Determine if \mathbf{v} is in Col A. Could \mathbf{v} be in Nul A?

$$\begin{bmatrix} A & \mathbf{v} \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 & 1 & 3 \\ -2 & -5 & 7 & 3 & -1 \\ 3 & 7 & -8 & 6 & 3 \end{bmatrix} \sim \begin{bmatrix} 2 & 4 & -2 & 1 & 3 \\ 0 & 1 & -5 & -4 & -2 \\ 0 & 0 & 0 & 17 & 1 \end{bmatrix}$$

Contrast Between Nul A and Col A for an m x n Matrix A

Nul A	Col A
1 . Nul <i>A</i> is a subspace of \mathbb{R}^n .	1 . Col <i>A</i> is a subspace of \mathbb{R}^m .
 Nul A is implicitly defined; that is, you are given only a condition (Ax = 0) that vectors in Nul A must satisfy. 	Col A is explicitly defined; that is, you are told how to build vectors in Col A.
 It takes time to find vectors in Nul A. Row operations on [A 0] are required. 	 It is easy to find vectors in Col A. The columns of A are displayed; others are formed from them.
4 . There is no obvious relation between Nul <i>A</i> and the entries in <i>A</i> .	 There is an obvious relation between Col A and the entries in A, since each column of A is in Col A.

Contrast Between Nul A and Col A for an m x n Matrix A

Nul A Col A

- 5. A typical vector \mathbf{v} in Nul A has the property that $A\mathbf{v} = \mathbf{0}$.
- Given a specific vector v, it is easy to tell if v is in Nul A. Just compute Av.
- 7. Nul $A = \{0\}$ if and only if the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 8. Nul $A = \{0\}$ if and only if the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.

- 5. A typical vector \mathbf{v} in Col A has the property that the equation $A\mathbf{x} = \mathbf{v}$ is consistent.
- Given a specific vector v, it may take time to tell if v is in Col A. Row operations on [A v] are required.
- 7. Col $A = \mathbb{R}^m$ if and only if the equation $A\mathbf{x} = \mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^m .
- **8**. Col $A = \mathbb{R}^m$ if and only if the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^m .

Linear transformation

DEFINITION

A linear transformation T from a vector space V into a vector space W is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W, such that

- (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u} , \mathbf{v} in V, and
- (ii) $T(c\mathbf{u}) = cT(\mathbf{u})$

for all \mathbf{u} in V and all scalars c.

The **kernel** (or **null space**) of such a T is the set of all \mathbf{u} in V such that $T(\mathbf{u}) = \mathbf{0}$ (the zero vector in W). The **range** of T is the set of all vectors in W of the form $T(\mathbf{x})$

for some \mathbf{x} in V

example

EXAMPLE 8 (Calculus required) Let V be the vector space of all real-valued functions f defined on an interval [a,b] with the property that they are differentiable and their derivatives are continuous functions on [a,b]. Let W be the vector space C[a,b] of all continuous functions on [a,b], and let $D:V\to W$ be the transformation that changes f in V into its derivative f'. In calculus, two simple differentiation rules are

$$D(f+g) = D(f) + D(g)$$
 and $D(cf) = cD(f)$

That is, D is a linear transformation. It can be shown that the kernel of D is the set of constant functions on [a,b] and the range of D is the set W of all continuous functions on [a,b].

4.3. LINEARLY INDEPENDENT SET, BASES

subsets that span a vector space V or a subspace H as "efficiently" as possible.

subsets that span a vector space V or a subspace H as "efficiently" as possible.

An indexed set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in V is said to be **linearly independent** if the vector equation

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p = \mathbf{0} \tag{1}$$

has *only* the trivial solution, $c_1 = 0, ..., c_p = 0.1$

subsets that span a vector space V or a subspace H as "efficiently" as possible.

An indexed set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in V is said to be **linearly independent** if the vector equation

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p = \mathbf{0} \tag{1}$$

has *only* the trivial solution, $c_1 = 0, ..., c_p = 0.1$

THEOREM 4

An indexed set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ of two or more vectors, with $\mathbf{v}_1 \neq \mathbf{0}$, is linearly dependent if and only if some \mathbf{v}_j (with j > 1) is a linear combination of the preceding vectors, $\mathbf{v}_1, \dots, \mathbf{v}_{j-1}$.

EXAMPLE 1 Let $\mathbf{p}_1(t) = 1$, $\mathbf{p}_2(t) = t$, and $\mathbf{p}_3(t) = 4 - t$.

EXAMPLE 1 Let $\mathbf{p}_1(t) = 1$, $\mathbf{p}_2(t) = t$, and $\mathbf{p}_3(t) = 4 - t$.

EXAMPLE 2 The set $\{\sin t, \cos t\}$ is linearly independent in C[0, 1]

EXAMPLE 1 Let $\mathbf{p}_1(t) = 1$, $\mathbf{p}_2(t) = t$, and $\mathbf{p}_3(t) = 4 - t$.

EXAMPLE 2 The set $\{\sin t, \cos t\}$ is linearly independent in C[0, 1]

 $\{\sin t \cos t, \sin 2t\}$

EXAMPLE 7 Let

$$\mathbf{v}_1 = \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 6 \\ 16 \\ -5 \end{bmatrix}, \quad \text{and} \quad H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}.$$

Note that $\mathbf{v}_3 = 5\mathbf{v}_1 + 3\mathbf{v}_2$, and show that $\mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$.

EXAMPLE 7 Let

$$\mathbf{v}_1 = \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 6 \\ 16 \\ -5 \end{bmatrix}, \quad \text{and} \quad H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}.$$

Note that $\mathbf{v}_3 = 5\mathbf{v}_1 + 3\mathbf{v}_2$, and show that $\mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$.

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3$$

Not efficient

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 (5 \mathbf{v}_1 + 3 \mathbf{v}_2)$$

= $(c_1 + 5c_3) \mathbf{v}_1 + (c_2 + 3c_3) \mathbf{v}_2$

Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ in V is a **basis** for H if

- (i) \mathcal{B} is a linearly independent set, and
- (ii) the subspace spanned by \mathcal{B} coincides with H; that is,

$$H = \operatorname{Span}\{\mathbf{b}_1, \dots, \mathbf{b}_p\}$$

Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ in V is a **basis** for H if

- (i) \mathcal{B} is a linearly independent set, and
- (ii) the subspace spanned by \mathcal{B} coincides with H; that is,

$$H = \operatorname{Span}\{\mathbf{b}_1, \dots, \mathbf{b}_p\}$$

EXAMPLE 4 Let $\mathbf{e}_1, \dots, \mathbf{e}_n$ be the columns of the $n \times n$ identity matrix, I_n . That is,

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \quad \dots, \quad \mathbf{e}_n = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

EXAMPLE 3 Let A be an invertible $n \times n$ matrix—say, $A = [\mathbf{a}_1 \ \cdots \ \mathbf{a}_n]$.

EXAMPLE 3 Let A be an invertible $n \times n$ matrix—say, $A = [\mathbf{a}_1 \ \cdots \ \mathbf{a}_n]$.

the columns of A form a basis for \mathbb{R}^n because they are linearly independent and they span \mathbb{R}^n , by the Invertible Matrix Theorem.

EXAMPLE 6 Let $S = \{1, t, t^2, \dots, t^n\}$. Verify that S is a basis for \mathbb{P}_n . This basis is called the **standard basis** for \mathbb{P}_n .

EXAMPLE 6 Let $S = \{1, t, t^2, ..., t^n\}$. Verify that S is a basis for \mathbb{P}_n . This basis is called the **standard basis** for \mathbb{P}_n .

SOLUTION Certainly S spans \mathbb{P}_n . To show that S is linearly independent, suppose that c_0, \ldots, c_n satisfy

$$c_0 \cdot 1 + c_1 t + c_2 t^2 + \dots + c_n t^n = \mathbf{0}(t)$$
 (2)

THEOREM 5

The Spanning Set Theorem

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ be a set in V, and let $H = \operatorname{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.

- a. If one of the vectors in S—say, \mathbf{v}_k —is a linear combination of the remaining vectors in S, then the set formed from S by removing \mathbf{v}_k still spans H.
- b. If $H \neq \{0\}$, some subset of S is a basis for H.

THEOREM 5

The Spanning Set Theorem

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ be a set in V, and let $H = \operatorname{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.

- a. If one of the vectors in S—say, \mathbf{v}_k —is a linear combination of the remaining vectors in S, then the set formed from S by removing \mathbf{v}_k still spans H.
- b. If $H \neq \{0\}$, some subset of S is a basis for H.

$$\mathbf{v}_p = a_1 \mathbf{v}_1 + \dots + a_{p-1} \mathbf{v}_{p-1} \tag{3}$$

Given any \mathbf{x} in H, we may write

$$\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_{p-1} \mathbf{v}_{p-1} + c_p \mathbf{v}_p \tag{4}$$

for suitable scalars c_1, \ldots, c_p . Substituting the expression for \mathbf{v}_p from (3) into (4), it is easy to see that \mathbf{x} is a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_{p-1}$. Thus $\{\mathbf{v}_1, \ldots, \mathbf{v}_{p-1}\}$ spans H, because \mathbf{x} was an arbitrary element of H.

b. If the original spanning set S is linearly independent, then it is already a basis for H. Otherwise, one of the vectors in S depends on the others and can be deleted, by part (a). So long as there are two or more vectors in the spanning set, we can repeat this process until the spanning set is linearly independent and hence is a basis for H. If the spanning set is eventually reduced to one vector, that vector will be nonzero (and hence linearly independent) because $H \neq \{0\}$.

Bases for Nul A and Col A

Bases for Nul A?

Bases for Nul A and Col A

Bases for Nul A?

Bases for Col A?

EXAMPLE 8 Find a basis for Col B, where

$$B = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_5 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Bases for Nul A and Col A

Bases for Nul A?

Bases for Col A?

EXAMPLE 8 Find a basis for Col B, where

$$B = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_5 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

SOLUTION Each nonpivot column of B is a linear combination of the pivot columns. In fact, $\mathbf{b}_2 = 4\mathbf{b}_1$ and $\mathbf{b}_4 = 2\mathbf{b}_1 - \mathbf{b}_3$. By the Spanning Set Theorem, we may discard \mathbf{b}_2 and \mathbf{b}_4 , and $\{\mathbf{b}_1, \mathbf{b}_3, \mathbf{b}_5\}$ will still span Col B. Let

$$S = \{\mathbf{b}_1, \mathbf{b}_3, \mathbf{b}_5\} = \left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \right\}$$

- \clubsuit Any linear dependence relationship among the columns of A can be expressed in the form Ax =0, where x is a column of weights
- ❖ When A is row reduced to a matrix B, the columns of B are often totally different from the columns of A
- \clubsuit However, the equations Ax = 0 and Bx = 0 have exactly the same set of solutions.

Any linear dependence relationship among the columns of A can be expressed in the form Ax = 0, where x is a column of weights

When A is row reduced to a matrix B, the columns of B are often totally different from the columns of A

However, the equations Ax = 0 and Bx = 0 have exactly the same set of solutions.

$$A = [\mathbf{a}_1 \cdots \mathbf{a}_n]$$
 and $B = [\mathbf{b}_1 \cdots \mathbf{b}_n]$, then the vector equations $x_1\mathbf{a}_1 + \cdots + x_n\mathbf{a}_n = \mathbf{0}$ and $x_1\mathbf{b}_1 + \cdots + x_n\mathbf{b}_n = \mathbf{0}$

also have the same set of solutions. That is, the columns of A have exactly the same linear dependence relationships as the columns of B.

EXAMPLE 9 It can be shown that the matrix

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8 \end{bmatrix}$$

is row equivalent to the matrix B in Example 8. Find a basis for Col A.

$$B = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_5 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

EXAMPLE 9 It can be shown that the matrix

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8 \end{bmatrix}$$

is row equivalent to the matrix B in Example 8. Find a basis for Col A.

$$B = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_5 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

SOLUTION In Example 8 we saw that

$$\mathbf{b}_2 = 4\mathbf{b}_1$$
 and $\mathbf{b}_4 = 2\mathbf{b}_1 - \mathbf{b}_3$

so we can expect that

$$a_2 = 4a_1$$
 and $a_4 = 2a_1 - a_3$

EXAMPLE 9 It can be shown that the matrix

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8 \end{bmatrix}$$

is row equivalent to the matrix B in Example 8. Find a basis for Col A.

$$B = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_5 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

SOLUTION In Example 8 we saw that

$$\mathbf{b}_2 = 4\mathbf{b}_1$$
 and $\mathbf{b}_4 = 2\mathbf{b}_1 - \mathbf{b}_3$

 $\{\mathbf{a}_1, \mathbf{a}_3, \mathbf{a}_5\}$

so we can expect that

$$a_2 = 4a_1$$
 and $a_4 = 2a_1 - a_3$

THEOREM 6

The pivot columns of a matrix A form a basis for Col A.

Two Views of a Basis

a basis is a spanning set that is as small as possible

A basis is also a linearly independent set that is as large as possible.

3. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, and $H = \left\{ \begin{bmatrix} s \\ s \\ 0 \end{bmatrix} : s \text{ in } \mathbb{R} \right\}$. Then every vector in H is

a linear combination of \mathbf{v}_1 and \mathbf{v}_2 because

$$\begin{bmatrix} s \\ s \\ 0 \end{bmatrix} = s \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Is $\{\mathbf{v}_1, \mathbf{v}_2\}$ a basis for H?

4. Let V and W be vector spaces, let $T: V \to W$ and $U: V \to W$ be linear transformations, and let $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ be a basis for V. If $T(\mathbf{v}_j) = U(\mathbf{v}_j)$ for every value of j between 1 and p, show that $T(\mathbf{x}) = U(\mathbf{x})$ for every vector \mathbf{x} in V.

4. Let V and W be vector spaces, let $T: V \to W$ and $U: V \to W$ be linear transformations, and let $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ be a basis for V. If $T(\mathbf{v}_j) = U(\mathbf{v}_j)$ for every value of j between 1 and p, show that $T(\mathbf{x}) = U(\mathbf{x})$ for every vector \mathbf{x} in V.

4. Since $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a basis for V, for any vector \mathbf{x} in V, there exist scalars c_1, \dots, c_p such that $\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p$. Then since T and U are linear transformations

$$T(\mathbf{x}) = T(c_1\mathbf{v}_1 + \dots + c_p\mathbf{v}_p) = c_1T(\mathbf{v}_1) + \dots + c_pT(\mathbf{v}_p)$$

= $c_1U(\mathbf{v}_1) + \dots + c_pU(\mathbf{v}_p) = U(c_1\mathbf{v}_1 + \dots + c_p\mathbf{v}_p)$
= $U(\mathbf{x})$

4.4 COORDINATE SYSTEMS

THEOREM 7

The Unique Representation Theorem

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars c_1, \dots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n \tag{1}$$

DEFINITION

Suppose $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is a basis for V and \mathbf{x} is in V. The **coordinates of \mathbf{x}** relative to the basis \mathcal{B} (or the \mathcal{B} -coordinates of \mathbf{x}) are the weights c_1, \dots, c_n such that $\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n$.

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

is the coordinate vector of x (relative to \mathcal{B}), or the \mathcal{B} -coordinate vector of x. The mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is the coordinate mapping (determined by \mathcal{B}).¹

EXAMPLE 1 Consider a basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ for \mathbb{R}^2 , where $\mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Suppose an \mathbf{x} in \mathbb{R}^2 has the coordinate vector $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$. Find \mathbf{x} .

EXAMPLE 1 Consider a basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ for \mathbb{R}^2 , where $\mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Suppose an \mathbf{x} in \mathbb{R}^2 has the coordinate vector $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$. Find \mathbf{x} .

SOLUTION The \mathcal{B} -coordinates of x tell how to build x from the vectors in \mathcal{B} . That is,

$$\mathbf{x} = (-2)\mathbf{b}_1 + 3\mathbf{b}_2 = (-2)\begin{bmatrix} 1 \\ 0 \end{bmatrix} + 3\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$$

EXAMPLE 1 Consider a basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ for \mathbb{R}^2 , where $\mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Suppose an \mathbf{x} in \mathbb{R}^2 has the coordinate vector $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$. Find \mathbf{x} .

SOLUTION The \mathcal{B} -coordinates of x tell how to build x from the vectors in \mathcal{B} . That is,

$$\mathbf{x} = (-2)\mathbf{b}_1 + 3\mathbf{b}_2 = (-2)\begin{bmatrix} 1 \\ 0 \end{bmatrix} + 3\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$$

EXAMPLE 2 The entries in the vector $\mathbf{x} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$ are the coordinates of \mathbf{x} relative to the *standard basis* $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2\}$, since

EXAMPLE 4 Let $\mathbf{b}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$, and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$. Find the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$ of \mathbf{x} relative to \mathcal{B} .

EXAMPLE 4 Let $\mathbf{b}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$, and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$. Find the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$ of \mathbf{x} relative to \mathcal{B} .

SOLUTION The \mathcal{B} -coordinates c_1, c_2 of **x** satisfy

$$c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

$$\mathbf{b_1} \qquad \mathbf{b_2} \qquad \mathbf{x}$$

or

$$\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

$$\begin{array}{c} \mathbf{b_1} & \mathbf{b_2} \\ \end{array}$$

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

EXAMPLE 4 Let $\mathbf{b}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$, and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$. Find the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$ of \mathbf{x} relative to \mathcal{B} .

SOLUTION The \mathcal{B} -coordinates c_1, c_2 of **x** satisfy

$$c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

$$\mathbf{b_1} \qquad \mathbf{b_2} \qquad \mathbf{x}$$

or

$$\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

$$\mathbf{b}_1 \quad \mathbf{b}_2 \qquad \mathbf{x}$$

General case Rn

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$.

$$\mathbf{x} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \dots + c_n \mathbf{b}_n$$

a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}.$

$$\mathbf{x} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \dots + c_n \mathbf{b}_n$$

$$P_{\mathcal{B}} = [\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_n]$$

change-of-coordinates matrix from \mathcal{B} to the standard basis in \mathbb{R}^n

a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$.

$$\mathbf{x} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \dots + c_n \mathbf{b}_n$$

$$P_{\mathcal{B}} = [\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_n]$$

$$\mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

change-of-coordinates matrix from \mathcal{B} to the standard basis in \mathbb{R}^n

$$P_{\mathcal{B}}^{-1}\mathbf{x} = \left[\mathbf{x}\right]_{\mathcal{B}}$$

correspondence $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$, produced here by $P_{\mathcal{B}}^{-1}$, is the coordinate mapping

Coordinate Mapping

Choosing a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ for a vector space V introduces a coordinate system in V. The coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ connects the possibly unfamiliar space V to the familiar space \mathbb{R}^n .

THEOREM 8

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then the coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is a one-to-one linear transformation from V onto \mathbb{R}^n .

Coordinate Mapping

Choosing a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ for a vector space V introduces a coordinate system in V. The coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ connects the possibly unfamiliar space V to the familiar space \mathbb{R}^n .

THEOREM 8

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then the coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is a one-to-one linear transformation from V onto \mathbb{R}^n .

$$\mathbf{u} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n$$

$$\mathbf{w} = d_1 \mathbf{b}_1 + \dots + d_n \mathbf{b}_n$$

$$[\mathbf{u} + \mathbf{w}]_{\mathcal{B}} = \begin{bmatrix} c_1 + d_1 \\ \vdots \\ c_n + d_n \end{bmatrix} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} + \begin{bmatrix} d_1 \\ \vdots \\ d_n \end{bmatrix} = [\mathbf{u}]_{\mathcal{B}} + [\mathbf{w}]_{\mathcal{B}}$$

$$r\mathbf{u} = r(c_1\mathbf{b}_1 + \dots + c_n\mathbf{b}_n) = (rc_1)\mathbf{b}_1 + \dots + (rc_n)\mathbf{b}_n$$
 $[r\mathbf{u}]_{\mathcal{B}} = \begin{bmatrix} rc_1 \\ \vdots \\ rc_n \end{bmatrix} = r \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = r[\mathbf{u}]_{\mathcal{B}}$