BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Võ Tuấn Kiệt

Ngày 22 tháng 5 năm 2024

Pretraining in NLP

• Word embeddings are the basic of NLP deep learning

• Problem : Word embeddings (word2vec, GloVe) are often pre-trained on text corpus from co-occurrence statistics

Contextual Representation

• Problem : Word embeddings are applied in a context-free manner

• Solution: Train contextual representations on text corpus

Apply pre-trained language respresentations

- Feature-based: include pre-trained representations as additional features (eg. ELMo)
- Fine-tunning: introduce task-specific parameters and fine-tune the pretrained parameters (eg. OpenAI GPT)

ELMo

ELMo: Deep Contextual Word Embeddings, Al2 University of Washington, 2017

Train Separate Left-to-Right and Right-to-Left LMs

Apply as "Pre-trained Embeddings"

GPT

Improving Language Understanding by Generative Pre-Training, OpenAI, 2018

Train Deep (12-layer) Transformer LM

Fine-tune on Classification Task

Limitations of previous method

Standard language models are unidirectional and this limits the choice of architectures that can be used during pre-training.

- OpenAl GPT use left-to-right architecture
- ElMo concatenates forward and backward language models

BERT : Pre-training of Deep Bidirectional Transformers for Language Understanding

- Main idea :
 - Jointly condition on both left and right context in all layers.
 - Alleviates unidirectionality constraint by using :
 - Masked language model(MLM) pre-training objective.
 - Next sentence prediction task that jointly pretrains text-pair representation
- Advantages: BERT model can be finetuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task specific architecture modifications.

Input Respresentaion

- Token embeddings: Use pretrained WordPiece embeddings
- Positional embeddings: User learned positional embeddings
- Sentence embeddings: Add sentence embeddings for every tokens of each sentence
- Place the [CLS] token at the beginning of each sentence
- Seperate each sentence using [SEP] token

Model Architecture

BERT model's architecture are multi-layer bidirectional Transformer encoder :

- Multi-headed self attention
- Feed-forward layers
- Layer norm and residuals
- Positional embeddings

Two model with different size were investigated :

- BERT-Base: 12-layer, 768-hidden, 12-head
- BERT-Large: 24-layer, 1024-hidden, 16-head

Transformer Encoder And Multi-Head Attention

BERT, GPT, ELMo

Hình: Differences in pre-training model architectures

Training Details

- Data: Wikipedia (2.5B words) + BookCorpus (800M words)
- Batch Size: 131,072 words (1024 sequence * 128 length or 256 sequences * 512 length)
- Training Time: 1M steps (40 epochs)
- Optimizer: AdamW, 1e-4 learning rate, linear decay
- Trained on 4x4 or 8x8 TPU slice for 4 days

Pretraining BERT: Masked LM

Mask out 15% of the input words, and then predict the masked words. Not all tokens were masked in the same way :

- 80% of the time: Replace the word with the [MASK] token, e.g., my dog is hairy \rightarrow my dog is [MASK]
- ullet 10% of the time: Replace the word with a random word, e.g. my dog is hairy ightarrow my dog is apple
- \bullet 10% of the time: Keep the word unchanged, e.g., my dog is hairy \to my dog is hairy

Pretraining BERT: Next Sentence Prediction

To learn relationships between sentences, predict whether Sentence B is actual sentence that proceeds Sentence A, or a random sentence, e.g :

- Input = [CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK] milk [SEP]
 Label = IsNext
- Input = [CLS] the man [MASK] to the store [SEP] penguin [MASK] are flight less birds [SEP]
 Label = NotNext

Fine-Tuning Proceduce

Fine-Tuning Proceduce

- Sequence-level classification : Use the final hidden state of [CLS] token $C \in \mathbb{R}^H$, add a classification layer and use softmax to calculate label probabilities.
- Token tagging task : Feed the final hidden $T_i \in \mathbb{R}^H$ for each token i into a classification layer for the tagset.
- Span-level task : Represent the input question and paragraph as single packed sequence. Learn the start vector $S \in \mathbb{R}^H$ and end vector $E \in \mathbb{R}^H$ by calculating the probability of word i being the start of the anwser span $P_i = \frac{e^{S \times T_i}}{\sum_i e^{S \times T_j}}$

Experiments : GLUE

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard). The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set. BERT and OpenAI GPT are single-model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

Experiments : SQuaAD v1.1

System	D	ev	Test	
•	EM	F1	EM	F1
Top Leaderboard Systems	s (Dec	10th,	2018)	
Human	-	-	82.3	91.2
#1 Ensemble - nlnet	-	-	86.0	91.7
#2 Ensemble - QANet	-	-	84.5	90.5
Publishe	d			
BiDAF+ELMo (Single)	-	85.6	-	85.8
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5
Ours				
BERT _{BASE} (Single)	80.8	88.5	-	-
BERT _{LARGE} (Single)	84.1	90.9	-	-
BERT _{LARGE} (Ensemble)	85.8	91.8	-	-
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93.2

Experiments : SQaAD v2.0

System	D	Dev		Test	
•	EM	F1	EM	F1	
Top Leaderboard Systems	(Dec	10th,	2018)		
Human	86.3	89.0	86.9	89.5	
#1 Single - MIR-MRC (F-Net)	-	-	74.8	78.0	
#2 Single - nlnet	-	-	74.2	77.1	
Publishe	d				
unet (Ensemble)	_	_	71.4	74.9	
SLQA+ (Single)	-		71.4	74.4	
Ours					
BERT _{LARGE} (Single)	78.7	81.9	80.0	83.1	

Table 3: SQuAD 2.0 results. We exclude entries that use BERT as one of their components.

Experiments: SWAG

System	Dev	Test
ESIM+GloVe ESIM+ELMo OpenAI GPT		52.7 59.2 78.0
BERT _{BASE} BERT _{LARGE}	81.6 86.6	86.3
Human (expert) [†] Human (5 annotations) [†]	-	85.0 88.0

Table 4: SWAG Dev and Test accuracies. †Human performance is measured with 100 samples, as reported in the SWAG paper.

Experiments: Name Entity Recognition

System	Dev F1	Test F1
ELMo (Peters et al., 2018a)	95.7	92.2
CVT (Clark et al., 2018)	-	92.6
CSE (Akbik et al., 2018)	-	93.1
Fine-tuning approach		
BERT _{LARGE}	96.6	92.8
$BERT_{BASE}$	96.4	92.4
Feature-based approach (BERT _{BASE})		
Embeddings	91.0	-
Second-to-Last Hidden	95.6	-
Last Hidden	94.9	-
Weighted Sum Last Four Hidden	95.9	-
Concat Last Four Hidden	96.1	-
Weighted Sum All 12 Layers	95.5	-

Table 7: CoNLL-2003 Named Entity Recognition results. Hyperparameters were selected using the Dev set. The reported Dev and Test scores are averaged over 5 random restarts using those hyperparameters.

Ablation Studies: Effect Of Pre-training Tasks

	Dev Set						
Tasks	MNLI-m	QNLI	MRPC	SST-2	SQuAD		
	(Acc)	(Acc)	(Acc)	(Acc)	(F1)		
BERTBASE	84.4	88.4	86.7	92.7	88.5		
No NSP	83.9	84.9	86.5	92.6	87.9		
LTR & No NSP	82.1	84.3	77.5	92.1	77.8		
+ BiLSTM	82.1	84.1	75.7	91.6	84.9		

Table 5: Ablation over the pre-training tasks using the BERT_{BASE} architecture. "No NSP" is trained without the next sentence prediction task. "LTR & No NSP" is trained as a left-to-right LM without the next sentence prediction, like OpenAI GPT. "+ BiLSTM" adds a randomly initialized BiLSTM on top of the "LTR + No NSP" model during fine-tuning.

Ablation Studies: Effect Of Model Size

Hyperparams				Dev Set Accuracy				
#L #H #A		LM (ppl)	MNLI-m	MRPC	SST-2			
3	768	12	5.84	77.9	79.8	88.4		
6	768	3	5.24	80.6	82.2	90.7		
6	768	12	4.68	81.9	84.8	91.3		
12	768	12	3.99	84.4	86.7	92.9		
12	1024	16	3.54	85.7	86.9	93.3		
24	1024	16	3.23	86.6	87.8	93.7		

Table 6: Ablation over BERT model size. #L = the number of layers; #H = hidden size; #A = number of attention heads. "LM (ppl)" is the masked LM perplexity of held-out training data.