Resilience in Transportation Networks

Yihui Ren, Saket Vishwasrao

October 22, 2015

Problem Definition

Given a graph G(V,E) and a set of paths $P=\{(s_1,t_1),(s_2,t_2),\ldots,(s_k,t_k)\}$, where each $p_i\equiv(s_i,t_i)\in P$ represents the source and destination node for a path p_i , find a set $E'\subseteq E$ consisting of all edges which when removed from the graph, maximum number of paths are affected. Let a path be represented by an ordered list of edges $p_i=(e_1,e_2,\ldots,e_j)$. It is assumed that a path connecting the nodes (s_i,t_i) is affected if atleast one of the edge $e\in p_i$ is attacked. Also p_i is the only path connecting the nodes (s_i,t_i) , and there is no other path connecting (s_i,t_i) . Further, $\sum_{e_i\in E'}b(e_i)\leq B$, where B is the budget of the adversary and $b(e_i)$ is the cost of removing edge e_i .

Proposed Solution

Let us assume the graph has n nodes and m edges.

We construct a $m \times 1$ matrix **C** such that *ith* element in **C** represents the number of paths in set P passing through the i^{th} edge. This can be found by iterating over all the paths in P.

Let b be a $m \times 1$ matrix where b_i represents the cost of removing the i^{th} edge.

Let **X** be a $m \times 1$ matrix such that $x_i = 1$ if i^{th} edge belongs to E', otherwise it is 0.

The solution to the above problem is equivalent to solving a linear program

$$\arg\max_{\mathbf{Y}} \mathbf{C}^{\mathbf{T}} \cdot \mathbf{X} \tag{1}$$

such that $\mathbf{b^T} \cdot \mathbf{X} \leq B$ and $x_i \in \{0, 1\}$

which is equivalent to

$$\underset{X}{\operatorname{arg\,min}} - \mathbf{C}^{\mathbf{T}} \cdot \mathbf{X} \tag{2}$$

such that $\mathbf{b^T} \cdot \mathbf{X} \leq B$ and $x_i \in \{0, 1\}$

Proposed solution 2

Let us assume the graph has n nodes, m edges and k paths. Let each path $p_i \in P$ have a weight $w_i \in W$, where the weight represents the importance of the path. Thus if $w_i < w_j; w_i, w_j \in W$ implies that it is beneficial to destroy path p_j over p_i .

We create a $k \times m$ matrix **A** whose entry $a_{ij} = 1$ if $e_j \in p_i$, else it is zero.

Let \mathbf{X}' represent the $m \times 1$ uint vector $\vec{1}$.

Let **X** be a $m \times 1$ matrix such that $x_i = 1$ if $e_i \in \mathbf{E}'$, otherwise it is 0.

Let **W** be a vector such that each element $w_i \in \mathbf{W}$ represents weight of path p_i .

Then the above problem is equivalent to solving a linear program

$$\underset{X}{\operatorname{arg\,max}} f(\mathbf{A} \cdot (\mathbf{X}' - \mathbf{X}))^{\mathbf{T}} \cdot \mathbf{W}$$
(3)

such that $\mathbf{b^T} \cdot \mathbf{X} \leq B$ and $x_i \in \{0, 1\}$

where we define function f for every element $z_i \in \mathbf{Z}$ in any vector \mathbf{Z} as $f(z_i) = \begin{cases} 0, & \text{if } z_i = 0 \\ 1, & \text{otherwise} \end{cases}$ Basically, $f(\mathbf{A} \cdot (\mathbf{X}' - \mathbf{X}))$ is k dimensional vector whose i^{th} entry is 1 if the path $p_i \in P$ is affected.