Conseguenze semantiche

Tabella dei contenuti

agionamento ipotetico deduttivo
Conseguenze semantiche
Tautologie notevoli
Stringhe ed occorrenze
Sostituzione
Definizione iterativa
Definizione ricorsiva
Lemma
Relazioni di equivalenza
Lemma

Ragionamento ipotetico deduttivo

Il ragionamento tipico della matematica è il ragionamento ipotetico-deduttivo, rappresentato in logica dalle conseguenze semantiche.

Conseguenze semantiche

Notazione

- Γ, Σ, Δ rappresentano insiemi arbitrari di proposizioni
- $\alpha, \beta, \varphi, \psi$ rappresentano generiche proposizioni

Quindi per indicare che da un'ipotesi segue una proposizione si adotta la scrittura $\Gamma \vDash \psi$, che si legge come "Da Γ segue ψ ".

Possiamo affermare che la valutazione di un insieme di proposizioni è uguale ad uno se e solamente se la valutazione di tutti i suoi elementi è tale, infatti, dato un insieme Γ ed una valutazione v:

$$[\![\Gamma]\!]_v = 1 \iff \forall \varphi \in \Gamma, [\![\varphi]\!]_v = 1$$

L'espressione $\Gamma \models \psi$ si dice conseguenza semantica se e solamente se ψ è verificata da ogni valutazione v che verificha anche Γ , per cui scriviamo:

$$\forall v \llbracket \Gamma \rrbracket_v = 1 \implies \llbracket \psi \rrbracket_v = 1 \tag{1}$$

Esempio Vogliamo provare che se α ed $\alpha \to \beta$ sono vere, allora lo è anche β , cioè che $\alpha \to \beta, \alpha \models \beta$.

Svolgimento:

Esercizio Vogliamo dimostrare che $(\Gamma, \alpha \models \beta) \implies (\Gamma \models \alpha \rightarrow \beta)$.

Svolgimento:

$$\forall v \llbracket \Gamma, \alpha \rrbracket_v = 1 \implies \llbracket \beta \rrbracket_v = 1 \iff (\llbracket \Gamma \rrbracket_v = 1 \text{ and } \llbracket \alpha \rrbracket_v = 1) \implies \llbracket \beta \rrbracket_v = 1$$

$$\iff (\llbracket \Gamma \rrbracket_v \neq 1 \text{ or } \llbracket \alpha \rrbracket_v = 0) \text{ or } \llbracket \beta \rrbracket_v = 1$$

$$\iff \llbracket \Gamma \rrbracket_v \neq 1 \text{ or } \llbracket \alpha \rightarrow \beta \rrbracket_v = 1$$

$$\implies \Gamma \models \alpha \rightarrow \beta$$

Tautologie notevoli

A livello teorico esistono infinite tautologie, ma tra le più importanti citiamo:

- Leggi di De Morgan: $\begin{cases} \neg(\varphi \wedge \psi) \longleftrightarrow (\neg \varphi \vee \neg \psi) \\ \neg(\varphi \vee \psi) \longleftrightarrow (\neg \varphi \wedge \neg \psi) \end{cases}$
- Involutività della negazione: $\{\neg(\neg \alpha) \longleftrightarrow \alpha\}$
- Commutatività: $\begin{cases} (\varphi \wedge \psi) \longleftrightarrow (\psi \wedge \varphi) \\ (\varphi \vee \psi) \longleftrightarrow (\psi \vee \varphi) \end{cases}$
- Distributività: $\begin{cases} \varphi \wedge (\psi \vee \sigma) \longleftrightarrow (\varphi \wedge \psi) \vee (\varphi \wedge \sigma) \\ \varphi \vee (\psi \wedge \sigma) \longleftrightarrow (\varphi \vee \psi) \wedge (\varphi \vee \sigma) \end{cases}$
- Associatività: $\begin{cases} \varphi \wedge (\psi \wedge \sigma) \longleftrightarrow (\varphi \wedge \psi) \wedge \sigma \\ \varphi \vee (\psi \vee \sigma) \longleftrightarrow (\varphi \vee \psi) \vee \sigma \end{cases}$

Stringhe ed occorrenze

Dato un insieme di simboli generici Ω , una stringa su questo insieme è una sequenza di finita lunghezza n, della forma:

$$s = c_1 c_2 \dots c_n \tag{2}$$

dove per ogni indice i appartenente all'intervallo (1, n) il simbolo c_i , si trova in Ω .

Di conseguenza, dato un simbolo $a \in \Omega$ si dice occorrenza della stringa s, ogni coppia (a, i) tale per cui il simbolo di partenza $a = c_i$.

Sostituzione

Siano quindi $\varphi, \psi \in PROP$ e $p \in \varphi$, si scrive $\varphi[\psi / p]$ per indicare che il simbolo p viene rimpiazzato dalla proposizione ψ .

Definizione iterativa

Per applicare la sostituzione in modo iterativo, si scorre una proposizione per individuare tutte le occorrenze e si rimpiazza il valore.

Esempio Data $\varphi = ((p_1 \to (p_5 \lor p_1)) \land p_3)$, vogliamo sostituire p_1 con φ . Svolgimento:

Le occorrenze di p_1 sono $(p_1,3),(p_1,8)$, sostituendo p_1 con ψ otteniamo: $((\psi \to (p_5 \lor \psi)) \land p_3)$.

Definizione ricorsiva

Sia * un connettivo tra $\{\land, \lor, \rightarrow\}$, allora:

1.
$$\varphi[\psi / p] = \begin{cases} \bot \text{ iff } & \varphi = \bot \\ \varphi \text{ iff } & \varphi \in AT, \ \varphi \neq p \\ \psi \text{ iff } & \varphi \in AT, \ \varphi = p \end{cases}$$

$$2. \ (\neg \varphi)[\ \psi\ /\ p\] = \neg(\ [\ \psi\ /\ p\]\)$$

3.
$$(\varphi_1 * \varphi_2)[\psi / p] = (\varphi_1[\psi / p] * \varphi_2[\psi / p])$$

Lemma

Sia $\psi_1 \longleftrightarrow \psi_2 = (\psi_1 \to \psi_2) \land (\psi_2 \to \psi_1)$, allora dato $\vDash \psi_1 \longleftrightarrow \psi_2$, vale: $\vDash \varphi[\psi/p] \longleftrightarrow \varphi[\psi/p]$

Relazioni di equivalenza

Sia A un insieme e sia $R\subseteq A\times A$, quest'ultima viene chiamata relazione di equivalenza se e solamente:

• È riflessiva: $\forall a \in A, aRa$

• È transitiva: $\forall a, b, c \in a, (aRb, bRc) \implies aRc$

• E simmetrica: $\forall a, b \in A, (aRb, bRa)$

Nota bene

Un esempio di relazione di equivalenza è la similitudine tra triangoli.

Lemma

Si dice che φ è equivalente a ψ se e solamente se $\varphi \longleftrightarrow \psi$ è una tautologia, infatti scriviamo che:

$$\varphi \approx \psi \iff \vDash \varphi \longleftrightarrow \psi$$

 $\operatorname{Con} \approx \subset PROP \times PROP$.