Test of Planck.jl, EmPoint type from BandPyrometry.jl and JDXreader.jl

Contents

8/20/24, 6:19 PM

- Planck functions
- Optimization of BB temperature with and without the EmPoint type
- JDXreader test

Testing main functionality of Planck module functions

Plotting blackbody spectrum and its derivarives

Set wavelength region:

Table of fraction of total power within spectral range 0.1 ... 10.1

Temperature	Fractional power
1353.15	0.9302
1563.15	0.939883
1773.15	0.94567

BB temperature fitting using Planck module and EmPoint type from BandPyrometry module

Least square discrepancy:

$$r(T) = \sum_i (I_{bb}(\lambda_i, T) - I_{bb}(\lambda_i, T_{real}))^2$$

 $I_{bb}(\lambda,T)$ is the blackbody spectrum

Blackbody real temperature T_{real} to be fitted (Celsius)

500.0

Submit

Set the value of T_{try} to calculate $r(T_{try}), \nabla_T r(T_{try}), \nabla_T^2 r(T_{try})$ manually (Celsius) 500.5

8/20/24, 6:19 PM Planck test git

Table of discrepancy and its derivatives values, calculated for T=773.65,K

calculated using:	discrepancy	gradient	hessian
Direct	1.72071e7	2.31088e5	2578.94
EmPoint	1.72071e7	2.31088e5	2578.94
AutoDiff	-	2.31088e5	2578.94

Try zero order method fitting = **☑** Submit

Zero order optimizer ("NelderMead", Optim.NelderMead)

Tres direct = 499.99997019579797

Tres EmPoint = 500.0000028729439

show zero order output = ✓

- * Status: success
- * Candidate solution

Final objective value: 3.291167e-08

* Found with

Algorithm: Fminbox with Nelder-Mead

* Convergence measures

$$\begin{vmatrix} x - x' \\ x - x' \\ / | x' | \\ = 0.00e+00 \le 0.0e+00 \\ = 2.33e+02 \nleq 1.0e-08$$

* Work counters

Seconds run: 0 (vs limit Inf)

Iterations: 4 f(x) calls: 107 $\nabla f(x)$ calls: 1

- * Status: success
- * Candidate solution

Final objective value: 3.058084e-10

* Found with

Algorithm: Nelder-Mead

* Convergence measures $\sqrt{(\Sigma(y_i-\bar{y})^2)/n} \le 1.0e-08$

* Work counters

Seconds run: 0 (vs limit Inf)

Iterations: 16 f(x) calls: 35

run zero order benchmark = ✓

```
BenchmarkTools.Trial: 498 samples with 1 evaluation.
                      6.621 ms ... 62.741 ms
                                                   GC (min ... max): 0.00% ... 0.00%
Range
      (min ... max):
Time
       (median):
                       9.555 ms
                                                   GC
                                                      (median):
                                                                     0.00%
Time
                       9.980 \text{ ms} \pm
                                                                     0.47\% \pm 3.18\%
       (mean ± o):
                                    3.727 ms
                                                  GC (mean \pm \sigma):
                  Histogram: frequency by time
```

Memory estimate: 208.50 KiB, allocs estimate: 2335.

```
BenchmarkTools.Trial: 1978 samples with 1 evaluation.
                      1.583 ms ... 32.151 ms
Range
      (min ... max):
                                                 GC
                                                     (min ... max): 0.00% ... 93.67%
Time
                      1.820 ms
                                                 GC
                                                     (median):
                                                                   0.00%
       (median):
                      2.471 ms ±
Time
       (mean ± σ):
                                                 GC
                                                     (mean \pm \sigma):
                                                                   0.62\% \pm
                                    1.428 ms
```


Memory estimate: 39.00 KiB, allocs estimate: 546.

Try first order method fitting = **☑** Submit

("LBFGS",	Optim.LBFGS	>	

SciMLBase.OptimizationSolution{Float64, 1, Vector{Float64}, OptimizationBase.OptimizationCach

•

Tres direct implementation= 500.0

Tres EmPoint= 500.0

show first order output = **☑**

- * Status: success
- * Candidate solution

Final objective value: 0.000000e+00

* Found with

Algorithm: L-BFGS

* Convergence measures

```
 \begin{vmatrix} x - x' \\ x - x' \end{vmatrix} = 6.48e-06 \nleq 0.0e+00 
\begin{vmatrix} x - x' \\ x - x' \end{vmatrix} / \begin{vmatrix} x' \\ \end{vmatrix} = 1.30e-08 \nleq 0.0e+00 
\begin{vmatrix} f(x) - f(x') \\ f(x) - f(x') \end{vmatrix} / \begin{vmatrix} f(x') \\ \end{vmatrix} = 1.56e-09 \nleq 0.0e+00 
\begin{vmatrix} g(x) \\ \end{vmatrix} = 8.17e-13 \le 1.0e-08
```

* Work counters

Seconds run: 1 (vs limit Inf)

Iterations: 5 f(x) calls: 17 $\nabla f(x)$ calls: 17

- * Status: success
- * Candidate solution

Final objective value: 7.973466e-26

* Found with

Algorithm: L-BFGS

* Convergence measures

```
 \begin{vmatrix} x - x' \\ x - x' \\ x - x' \\ \end{vmatrix} / \begin{vmatrix} x' \\ x - x' \\ \end{vmatrix} / \begin{vmatrix} x' \\ x' \\ \end{vmatrix} = 2.45e-09 \nleq 0.0e+00 \\ = 4.90e-12 \nleq 0.0e+00 \\ = 2.22e-16 \nleq 0.0e+00 \\ = 2.79e+09 \nleq 0.0e+00 \\ = 8.17e-13 \le 1.0e-08
```

* Work counters

Seconds run: 0 (vs limit Inf)

Iterations: 6 f(x) calls: 17 $\nabla f(x)$ calls: 17

8/20/24, 6:19 PM Planck_test_git

First order method LBFGS

run first order benchmark =

```
BenchmarkTools.Trial: 1777 samples with 1 evaluation.
                      1.776 ms ... 16.881 ms
                                                  GC (min ... max): 0.00% ... 87.14%
      (min ... max):
Time
       (median):
                       2.098 ms
                                                  GC
                                                      (median):
                                                                     0.00%
Time
       (mean ± σ):
                       2.767 \text{ ms} \pm
                                    1.464 ms
                                                  GC
                                                      (mean \pm \sigma):
                                                                     1.11\% \pm 4.04\%
 1.78 ms
                Histogram: log(frequency) by time
```

Memory estimate: 171.72 KiB, allocs estimate: 637.

```
BenchmarkTools.Trial: 3170 samples with 1 evaluation.
       (min ... max): 993.800 μs ... 39.195 ms
                                                     GC
Range
                                                         (min ... max): 0.00% ... 96.44%
Time
                         1.145 ms
                                                     GC
                                                         (median):
                                                                        0.00%
       (median):
                         1.529 \text{ ms} \pm
                                                     GC (mean \pm \sigma):
                                                                        0.78\% \pm 1.71\%
Time
       (mean ± σ):
                                       1.110 ms
```

Memory estimate: 29.23 KiB, allocs estimate: 423.

Try second order method fitting = ☑ Submit

Histogram: log(frequency) by

("NewtonTrustRegion", Optim.NewtonTrustRegion) ➤

SciMLBase.OptimizationSolution{Float64, 1, Vector{Float64}, OptimizationBase.OptimizationCach

Tres direct implementation= 500.0

Tres EmPoint= 500.0

show second order output =

- * Status: success
- * Candidate solution

Final objective value: 0.000000e+00

* Found with

Algorithm: Newton's Method (Trust Region)

* Convergence measures

```
 \begin{vmatrix} x - x' \\ x - x' \end{vmatrix} / |x'| = 3.74e - 08 \nleq 0.0e + 00 
|x - x'| / |x'| = 7.47e - 11 \nleq 0.0e + 00 
|x - x'| / |x'| = 5.18e - 14 \nleq 0.0e + 00 
|x - x'| / |x'| = 5.18e - 14 \nleq 0.0e + 00 
|x - x'| / |x'| = 10e - 10e + 10e
```

* Work counters

Seconds run: 0 (vs limit Inf) Iterations: 15

f(x) calls: 16 $\nabla f(x)$ calls: 16 $\nabla^2 f(x)$ calls: 15

- * Status: success
- * Candidate solution

Final objective value: 7.973466e-26

* Found with

Algorithm: Newton's Method (Trust Region)

* Convergence measures

```
 \begin{vmatrix} x - x' \\ x - x' \end{vmatrix} = 2.98e - 08 \nleq 0.0e + 00 
\begin{vmatrix} x - x' \\ x - x' \end{vmatrix} / \begin{vmatrix} x' \\ \end{vmatrix} = 5.97e - 11 \nleq 0.0e + 00 
\begin{vmatrix} f(x) - f(x') \\ f(x) - f(x') \end{vmatrix} / \begin{vmatrix} f(x') \\ \end{vmatrix} = 4.14e + 11 \nleq 0.0e + 00 
\begin{vmatrix} g(x) \\ \end{vmatrix} = 8.17e - 13 \leq 1.0e - 08
```

* Work counters

Seconds run: 0 (vs limit Inf)

Iterations: 15 f(x) calls: 16 $\nabla f(x)$ calls: 16 $\nabla^2 f(x)$ calls: 16

8/20/24, 6:19 PM Planck_test_git

First order method NewtonTrustRegion

run second order benchmark = ✓

```
BenchmarkTools.Trial: 920 samples with 1 evaluation.
```

3.163 ms ... 27.577 ms GC (min ... max): 0.00% ... 72.91% Range (min ... max): Time (median): 4.500 ms (median): 0.00% GC GC (mean $\pm \sigma$): Time $(mean \pm \sigma)$: $5.371 \text{ ms} \pm$ $1.15\% \pm 4.22\%$ 2.346 ms

Memory estimate: 247.06 KiB, allocs estimate: 1228.

BenchmarkTools.Trial: 1936 samples with 1 evaluation.

1.557 ms ... 59.662 ms (min ... max): 0.00% ... 96.62% Range (min ... max): GC 0.00% Time 1.889 ms (median): GC (median): $2.525 \text{ ms} \pm$ GC (mean $\pm \sigma$): Time (mean ± σ): $1.18\% \pm$ 2.20% 1.850 ms

Memory estimate: 57.47 KiB, allocs estimate: 869.

Optimizer	time Direct, ms	time EmPoint, ms
LBFGS	2.76654	1.52919
Newton	2.95612	1.14428
NelderMead	9.9801	2.47128
GradientDescent	1.88965	1.65879
NewtonTrustRegion	5.37063	2.52511
BFGS	2.79822	1.52813
ParticleSwarm	342.364	188.184

8/20/24, 6:19 PM Planck_test_git

Select benchmarks to compare

Load jdx file? <a>Submit

This figure show measured spectrum loaded using JDXreader

INFRARED SPECTRUM

