

## Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Unidade Acadêmica de Matemática Disciplina: Álgebra Linear I – 2020.2



## Lista 6 – Transformações Lineares (Parte 2)

1. Seja  $T: \mathbb{R}^3 \to \mathbb{R}^2$  a transformação linear definida por

$$T(x, y, z) = (2x + y - z, 3x - 2y + 4z).$$

Sejam  $\alpha = \{(1,1,1), (1,1,0), (1,0,0)\}$  e  $\beta = \{(1,3), (1,4)\}$  bases ordenadas de  $\mathbb{R}^3$  e  $\mathbb{R}^2$ , respectivamente. Determine  $[T]^{\alpha}_{\beta}$ .

2. Seja  $T:\mathbb{R}^2 \to \mathbb{R}^3$ a transformação linear definida por

$$T(x,y) = (2y, x - y, x).$$

Sejam  $\alpha = \{(0,2), (1,-1)\}$  e  $\beta = \{(1,0,-1), (0,1,2), (1,2,0)\}$  bases ordenadas de  $\mathbb{R}^2$  e  $\mathbb{R}^3$  respectivamente. Determine  $[T]^{\alpha}_{\beta}$ .

3. Seja  $T: \mathbf{M}(2,2) \to \mathbb{R}^2$ , definida por

$$T\left(\left[\begin{array}{cc} x & y \\ z & w \end{array}\right]\right) = (x+w,y+z).$$

Sejam  $\alpha$  e  $\beta$  as bases canônicas de  $\mathbb{R}^2$  e  $\mathbf{M}(2,2)$ , respectivamente, e  $\gamma = \{(1,-1),(1,2)\}$ . Encontre  $[T]^{\beta}_{\alpha}$  e  $[T]^{\beta}_{\gamma}$ .

4. Considere o operador linear  $T: \mathbb{R}^3 \to \mathbb{R}^3$  definido por

$$T(x,y,z) = (x-y,2y,y+z).$$

- (a) Mostre que T é um isomorfismo.
- (b) Encontre a matriz  $[T^{-1}]^{\alpha}_{\alpha}$  onde  $\alpha$  é a base canônica de  $\mathbb{R}^3$ .
- (c) Determine  $T^{-1}(x, y, z)$ .
- 5. Considere o operador linear  $T: \mathbb{R}^3 \to \mathbb{R}^3$  definido por

$$T(x, y, z) = (2x, 4x - y, 2x + 3y - z).$$

(a) Mostre que T é um isomorfismo.

- (b) Encontre a matriz  $[T^{-1}]^{\alpha}_{\alpha}$  onde  $\alpha$  é a base canônica de  $\mathbb{R}^3$ .
- (c) Determine  $T^{-1}(x, y, z)$ .
- 6. Seja  $T: \mathbb{R}^3 \to \mathbb{R}^2$  a transformação linear definida por

$$T(x, y, z) = (x - y + z, 3x + y - 2z).$$

Considere as bases ordenadas  $\alpha = \{(1,1,1), (0,1,1), (0,0,1)\}$  de  $\mathbb{R}^3$  e  $\beta = \{(1,2), (0,1)\}$  de  $\mathbb{R}^2$ . Determine:

- (a)  $[T]^{\alpha}_{\beta}$ .
- (b)  $[T(3,4,2)]_{\beta}$ .
- (c)  $\dim(\operatorname{Im}(T)) \in \dim(\operatorname{Ker}(T))$ .
- 7. Seja  $T: \mathbb{R}^2 \to \mathbb{R}^3$  a transformação linear tal que

$$[T]^{\alpha}_{\beta} = \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & -2 \end{bmatrix},$$

onde  $\alpha = \{(2, -1), (0, 2)\}$  e  $\beta = \{(1, 1, 0), (0, 0, -1), (1, 0, 1)\}$  são bases ordenadas de  $\mathbb{R}^2$  e  $\mathbb{R}^3$  respectivamente. Determine T(x, y).

8. Seja  $T:\mathbb{R}^2\to \mathbf{M}(2,2)$ a transformação linear tal que

$$[T]^{\alpha}_{\beta} = \begin{bmatrix} 2 & 1 \\ 1 & -1 \\ -1 & 0 \\ 0 & 1 \end{bmatrix},$$

onde  $\alpha$  e  $\beta$  são as bases canônicas de  $\mathbb{R}^2$  e  $\mathbf{M}(2,2)$ , respectivamente. Determine T(x,y).

9. Sejam  $\alpha = \{(1, -1), (0, 2)\}$  e  $\beta = \{(1, 0, -1), (0, 1, 2), (1, 2, 0)\}$  bases ordenadas de  $\mathbb{R}^2$  e  $\mathbb{R}^3$ , respectivamente, e seja  $T : \mathbb{R}^2 \to \mathbb{R}^3$  a transformação linear tal que

$$[T]^{\alpha}_{\beta} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & -1 \end{bmatrix}.$$

2

- (a) Encontre T(x, y).
- (b) Determine uma base  $\gamma$  de  $\mathbb{R}^3$ , tal que  $[T]_{\gamma}^{\alpha} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$ .

10. Sejam  $T: \mathbb{R}^3 \to \mathbb{R}^2$  e  $S: \mathbb{R}^2 \to \mathbb{R}^3$  transformações lineares, dadas por

$$T(x, y, z) = (x + y + 2z, 2x + y)$$
 e  $S(x, y) = (-x + y, 2x - y, 0)$ .

Determine  $[T \circ S]^{\alpha}_{\alpha}$  onde  $\alpha$  é a base canônica de  $\mathbb{R}^2$ .

11. Sejam  $T: \mathbb{R}^2 \to \mathbb{R}^3$  e  $S: \mathbb{R}^3 \to \mathbb{R}^2$  transformações lineares, dadas por

$$T(x,y) = (2x, x - y, y) \in S(x, y, z) = (y - z, z - x).$$

Determine:

- (a)  $[S \circ T]^{\alpha}_{\alpha}$  onde  $\alpha$  é a base canônica de  $\mathbb{R}^2$ .
- (b)  $[T \circ S]^{\beta}_{\beta}$  onde  $\beta$  é a base canônica de  $\mathbb{R}^3$ .
- 12. Sejam R, S e T três transformações lineares de  $\mathbb{R}^3$  em  $\mathbb{R}^3$  tais que  $R = S \circ T$ . Se

$$[R]^{\alpha}_{\alpha} = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix} \quad \text{e} \quad [S]^{\alpha}_{\alpha} = \begin{bmatrix} -2 & 1 & -1 \\ 3 & 1 & 2 \\ 1 & -2 & 0 \end{bmatrix},$$

onde  $\alpha$  é a base canônica de  $\mathbb{R}^3$ , determine  $[T]^{\alpha}_{\alpha}$ .

13. Seja  $T: \mathbb{R}^3 \to \mathbb{R}^3$  a transformação linear definida por

$$T(x, y, z) = (2x - y - z, 2y - x - z, 2z - x - y).$$

Sejam  $\alpha$  a base canônica de  $\mathbb{R}^3$  e  $\beta = \{(1,1,0),(1,0,1),(0,1,1)\}$  uma base ordenada de  $\mathbb{R}^3$ . Determine:

- (a)  $[T]^{\alpha}_{\alpha}$ .
- (b)  $[T]_{\beta}^{\beta}$ .
- (c) Uma matriz P tal que  $[T]^{\beta}_{\beta} = P \cdot [T]^{\alpha}_{\alpha} \cdot P^{-1}$ .
- 14. Seja  $T:\mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear tal que

$$[T]^{\alpha}_{\alpha} = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & -1 & -1 \end{bmatrix},$$

onde  $\alpha$  é a base canônica de  $\mathbb{R}^3$ .

- (a) T é um isomorfismo? Justifique.
- (b) Determine  $\dim(\operatorname{Im}(T))$  e  $\dim(\operatorname{Ker}(T))$ .
- (c) Seja  $\beta = \{(1,1,1), (1,2,0), (0,-2,1)\}$  uma base ordenada de  $\mathbb{R}^3$ . Calcule  $[T]_{\beta}^{\beta}$ .

3

15. Seja  $T:\mathcal{P}_2\to\mathcal{P}_2$ a transformação linear definida por

$$T(x + yt + zt^{2}) = 2x + 2y + (x + y + 2z)t + (x + y + 2z)t^{2}.$$

Sejam  $\alpha = \{1, t, t^2\}$  e  $\beta = \{1 - t, -2 + t + t^2, 1 + t + t^2\}$  bases ordenadas de  $\mathcal{P}_2$ .

- (a) Determine  $[T]^{\alpha}_{\alpha}$  e  $[T]^{\beta}_{\beta}$ .
- (b) T é um isomorfismo? Justifique.
- (c) Calcule  $\dim(\operatorname{Im}(T))$  e  $\dim(\operatorname{Ker}(T))$ .