PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-043226

(43) Date of publication of application: 08.02.2002

(51)Int.CI.

H01L 21/205 C23C 16/46 F27D 11/02 H01L 21/22 H01L 21/31 // F27B 5/14

(21)Application number: 2000-222051

(71)Applicant: TOKYO ELECTRON LTD

(22)Date of filing:

24.07.2000

(72)Inventor: EJIMA MUTSUHITO

SAKAMOTO KOICHI

(54) METHOD AND DEVICE FOR HEAT TREATMENT

(57) Abstract:

PROBLEM TO BE SOLVED: To prevent slip by reducing temperature difference on a surface of a workpiece. SOLUTION: A first heater 10 for heating and raising the temperature of a workpiece w from a circumferential edge is provided to a circumference of a treatment container 2 wherein a plurality of workpieces w are stored with a prescribed interval in a height direction, and a second heater 20 for heating and raising the temperature of the workpiece w from a central part thereof is provided at least inside the treatment container 2.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-43226 (P2002-43226A)

(43)公開日 平成14年2月8日(2002.2.8)

(51) Int.Cl.7		識別記号		FI				テーマコード(参考)		
HO1L	21/205			H01	L	21/205			4K030	
C 2 3 C	16/46			C 2 3	С	16/46			4K061	
F 2 7 D	11/02			F 2 7	D	11/02		В	4K063.	
H01L	21/22	5 1 1		H01	L	21/22		5 1 1 A	5 F 0 4 5	
	21/31	**.				21/31		E		
			審査請求	未請求	請求	項の数3	OL	(全 6 頁)	最終頁に続く	
(21) 出願番号		特願2000-222051(P2000-222051)		(71)出	願人	. 000219	967			
						東京エレクトロン株式会社				
(22)出願日		平成12年7月24日(2000.7.24) 東京都港区赤坂5丁目3番6号						6号		
			(72)発明者 江嶋 睦仁							
				神奈川県津久井郡城山町町屋1丁目2番41						
					号 東京エレクトロン東北株					
						業所内				
				(72)発明者 坂本 浩			告—			
						神奈川」	具津久	片郡城山町町	屋1丁目2番41	
									株式会社相模事	
					業所内					
	•			(74)代理人 100093883						
						弁理士	金坂	憲幸		
									最終頁に続く	

(54) 【発明の名称】 熱処理装置および熱処理方法

(57)【要約】

【課題】 被処理体の面内温度差を低減し、スリップを 防止する。

【解決手段】 複数枚の被処理体wを高さ方向に所定間隔で収容する処理容器2の周囲に被処理体wを周縁部から加熱昇温させる第1のヒータ10を設け、少なくも前記処理容器2内に被処理体wを中心部から加熱昇温させる第2のヒータ20を設けてなる。

【特許請求の範囲】

【請求項1】 複数枚の被処理体を高さ方向に所定間隔 で収容する処理容器の周囲に被処理体を周縁部から加熱 昇温させる第1のヒータを設け、少なくとも前記処理室 内に被処理体を中心部から加熱昇温させる第2のヒータ を設けてなることを特徴とする熱処理装置。

【請求項2】 前記第2のヒータは、被処理体と平行な 面状に形成されており、少なくとも処理容器内の下方に 設けられていることを特徴とする請求項1記載の熱処理 装置。

【請求項3】 複数枚の被処理体を高さ方向に所定間隔 で収容する処理容器の周囲に被処理体を周縁部から加熱 昇温させる第1のヒータを配置し、少なくとも前記処理 室内に被処理体を中心部から加熱昇温させる第2のヒー タを配置し、これら第1のヒータおよび第2のヒータに より、被処理体を周縁部および中心部から加熱昇温させ て所定の熱処理を施すことを特徴とする熱処理方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、熱処理装置および 熱処理方法に関する。

[0002]

【従来の技術】半導体デバイスの製造においては、被処 理体例えば半導体ウエハに、酸化、拡散、CVD(Chem ical Vapor Deposition) などの処理を行うために、 各種の熱処理装置が用いられている。そして、その一つ として、一度に複数枚の被処理体の熱処理が可能な縦型 の熱処理装置が知られている。

【0003】との熱処理装置は、図7に示すように、処 理容器2内に複数枚のウエハwを高さ方向に所定間隔で 収容し、との処理容器2の周囲に設けられたヒータ(加 熱源)10によりウエハwを加熱して所定の熱処理を施 すように構成されている。なお、12は複数枚のウェハ wを高さ方向に所定間隔で搭載する石英製のボート、1 3は処理容器2の開口部を閉塞する蓋体である。

【発明が解決しようとする課題】しかしながら、前記熱 処理装置においては、ウエハwの周縁部 (エッジ) の延 長方向すなわち周側にヒータ10が存在しているため、 加熱時に、ウエハの周縁部が先に昇温し、遅れてウエハ 40 外管2bのみからなっていてもよい。 の中心部が昇温する。との昇温の遅れがウェハの面内温 度差となり、ウエハにスリップ(結晶ずれ)が発生する 原因になっている。なお、このスリップを防止するため に、従来の熱処理装置や熱処理方法においては、温度帯 毎に昇温・降温レートを調整していたが、温度帯毎に昇 温・降温レートの最適化が必要であり、また、レートを 下げるため、ウエハ周辺部のヒータの性能を出し切ると とが困難であった。

【0005】本発明は、前記事情を考慮してなされたも

リップを防止することができる熱処理装置および熱処理 方法を提供することを目的とする。

[0006]

【課題を解決するための手段】本発明のうち、請求項1 の発明は、複数枚の被処理体を高さ方向に所定間隔で収 容する処理容器の周囲に被処理体を周縁部から加熱昇温 させる第1のヒータを設け、少なくも前記処理容器内に 被処理体を中心部から加熱昇温させる第2のヒータを設 けてなることを特徴とする。

10 【0007】請求項2の発明は、請求項1の熱処理装置 において、前記第2のヒータが被処理体と平行な面状に 形成されており、少なくとも処理容器内の下方に設けら れていることを特徴とする。

【0008】請求項3の発明は、複数枚の被処理体を高 さ方向に所定間隔で収容する処理容器の周囲に被処理体 を周縁部から加熱昇温させる第1のヒータを配置し、少 なくも前記処理容器内に被処理体を中心部から加熱昇温 させる第2のヒータを配置し、これら第1のヒータおよ び第2のヒータにより、被処理体を周縁部および中心部 20 から加熱昇温させて所定の熱処理を施すことを特徴とす る。

[0009]

【発明の実施の形態】以下に、本発明の実施の形態を添 付図面に基いて詳述する。図1は本発明の実施の形態を 示す熱処理装置の縦断面図、図2は第1のヒータによる ウエハ面内温度差を示すグラフ、図3は第2のヒータに よるウエハ面内温度差を示すグラフ、図4は本発明の実 施の形態を概略的に示す図である。

【0010】図1ないし図4において、1は縦型の熱処 30 理装置で、この熱処理装置1は複数枚の被処理体例えば 半導体ウエハwを高さ方向に所定間隔で収容して所定の 熱処理例えばCVD処理を施す処理容器(プロセスチュ ーブ)2を備えている。との処理容器2は、耐熱性およ び耐食性を有する材料例えば石英ガラスにより形成され ている。

【0011】処理容器2は、本実施の形態では、内管2 aと外管2bの二重管構造になっている。内管2aは上 端および下端が開放されている。外管2bは、上端が閉 塞され、下端が開放されている。なお、処理容器2は、

【0012】処理容器2の下部には、本実施の形態で は、処理容器2内に処理ガスや不活性ガスを導入するガ ス導入部(導入ポート)3と、処理容器2内を排気する 排気部(排気ボート)4とを有する短円筒状のマニホー ルド5が設けられている。とのマニホールド5は、耐熱 性および耐食性を有する材料例えばステンレス鋼により 形成されている。

【0013】ガス導入部3には、ガス源に通じるガス供 給系の配管が接続される。排気部4には、真空ポンプお ので、被処理体の面内温度差を低減することができ、ス 50 よび圧力制御機構を有する排気系が接続され、処理容器

2内を所定の処理圧力に制御し得るようになっている。 との処理圧力に制御された状態で、ガス導入部3から導 入された処理ガスが処理容器2の内管2a内を上昇して ウエハwの所定の熱処理に供された後、内管2aと外管 2 b との間の環状通路を下降して排気部4 から排気され るようになっている。

【0014】前記マニホールド5の上端には、フランジ 部5 fが形成されており、この上端フランジ部5 fの上 面には、外管2 bの下端フランジ部2 fが載置され、フ ランジ押え6により接合固定されている。マニホールド 10 5の上端フランジ部5fと外管2bの下端フランジ部2 fとの間には、シール手段である例えばOリングが介設 されている(図示省略)。マニホールド5の中心部に は、内管2aを支持するための内管支持部7が設けられ

【0015】前記マニホールド5は、ベースプレート8 の下部に取付けられており、このベースプレート8の上 方であって、処理容器2の周囲には、処理容器2内のウ エハwを周縁部から所定の熱処理温度に加熱昇温させる ための第1のヒータ10が配置されている。図示例の第 1のヒータ10は、例えば棒状の抵抗発熱体もしくはカ ーボンファイバ束を縦長形状に編み込み、これを石英ガ ラス製もしくはアルミナ製の密封形部材内に封入したカ ーボンヒータからなり、これらが垂直状態で処理容器2 の周囲を取囲むように筒状に配設されている。第1のヒ ータ10は、処理容器2の周囲を加熱するメインヒータ 10 a と、処理容器3の上端側および下端側の周囲を加 熱するサブヒータ10bからなり、これらメインヒータ 10 a とサブヒータ10 b が周方向に交互に配置されて いることが好ましい。

【0016】また、前記ベースプレート8の上方には、 第1のヒータ10の外側、処理容器2の周囲および上方 を覆う、上端が閉塞された円筒状の水冷構造の覆い体1 1が設けられ、との覆い体11に前記第1のヒータ10 が取付けられている。なお、第1のヒータとしては、図 示例のものが好ましいが、処理容器2の周囲を取囲む筒 状(円筒状)の断熱材を備え、との筒状断熱材の内周に 抵抗発熱線が螺旋状または蛇行状に配設してなるもであ ってもよく、また、高さ方向に複数の領域(ゾーン)に 分けて温度制御が可能に構成されていてもよい。

【0017】処理容器2内に複数枚例えば50枚程度の 半導体ウエハwを高さ方向に所定間隔で搭載保持するた めに、ウエハwは保持具である例えば石英ガラス製のボ ート12保持され、このボート12はマニホールド5の 下端開口部(炉口)を密閉する例えばステンレス鋼製の 蓋体13の上部に回転テーブル14を介して載置されて いる。

【0018】との回転テーブル14は、ボート12を処 理容器2内の熱処理領域に保持すべく蓋体13の上部中 央より起立した回転支柱15を有し、蓋体13の下部に 50 は前記回転支柱15を回転駆動する駆動部16が設けら れている。また、蓋体 I 3の上部には、炉口断熱保温手 段として、複数枚の石英ガラス製の遮熱板17を上下方 向に適宜間隔で有する円筒状の石英ガラス製の保温筒] 8が設置され、この保温筒18の軸心に前記回転テーブ ル14の回転支柱15が回転可能に貫通されている。

【0019】そして、少なくも前記処理容器2内には、 ウエハwを中心部から加熱昇温させる第2のヒータ20 が設けられている。第2のヒータ20は、ウェハwを中 心部から加熱昇温させるために、ウエハwの中心線上に 設けられている。この第2のヒータ20は、ウエハwと 平行な面状に形成されており、少なくとも処理容器2内 の下方に下面ヒータ20aとして設けられていることが 好ましい。

【0020】なお、図示例では、処理容器2外の上方に も第2のヒータとしての上面ヒータ20 bが設けられて いる。第2のヒータ20は、例えばカーボンファイバ束 を縦長形状に編み込み、これを平面状に配線して石英ガ ラス製もしくはアルミナ製の密封形部材内に封入したカ ーボンヒータからなっていることが好ましい。

【0021】第2のヒータ20は、図示例のように、処 理容器2内の下方すなわち保温筒18の上部に設置され た下面ヒータ20 a と、処理容器2外の上方すなわち覆 い体13の天井部に設けられた上面ヒータ20bとから なっていることが好ましい。なお、上面ヒータ20b は、処理容器2内の上方例えばボート12の上部に設け られていてもよい。

【0022】第2のヒータとしては、ウエハwの処理枚 数が例えば150枚程度と多い場合には、図4に示すよ うに、ウエハ列の中間部すなわちボート12の高さ方向 中間部に中間ヒータ20cとして設けられていることが 好ましい。前記上面ヒータ20bおよび下面ヒータ20 aは、ウエハwの加熱だけでなく、処理容器2の上方か らの放熱および下方からの放熱をそれぞれ抑制する機能 をも有している。

【0023】処理容器2の下方には、蓋体13を昇降さ せて蓋体13の開閉および処理容器2に対するボート1 2の搬入搬出を行うための図示しない昇降機構が設けら れていると共にその作業領域であるローディングエリア 40 21が設けられている。マニホールド5の下端(開口 端)と蓋体13との接合部には、シール手段である例え ばOリングが設けられている(図示省略)。

【0024】以上の構成において、図4に示すようにボ ート12に温度センサ (例えば熱電対) 付のウェハws を搭載し、第1のヒータ10のみによる加熱(側面加熱 ないし横面加熱)によって昇温させた場合と、第2のヒ ータ20の特に下面ヒータ20aのみによる加熱(下面 加熱)によって昇温させた場合の昇温試験を行った結果 を、図2と図3にグラフで示す。側面加熱の場合には、 図2のグラフに示すように、ウエハの周縁部から昇温

し、下面加熱の場合には、図3のグラフに示すように、 ウエハの中心部から昇温していることが分かる。

【0025】従って、実際の運用においては、これら第1のヒータ10と第2のヒータ20の昇温データを採取し、その昇温データに基づいて第1のヒータ10と第2のヒータ20をコントローラにより制御し、第1のヒータ10と第2のヒータ20の加熱のバランスによりウェハwの面内温度差を低減ないし無くすようにすればよい。

【0026】次に、以上の構成からなる熱処理装置の作 10 用を述べる。先ず、ウエハwの移載が終了したボート 1 2 は、ローディングエリア21において、蓋体13上の回転テーブル14上に載置される。次に、昇降機構による蓋体13の上昇によってボート12を処理容器2内にその下端開口(マニホールド5の下端開口部)から搬入し、その開口を蓋体13で気密に閉塞する。

【0027】そして、処理容器2内を、排気部4からの排気系による減圧排気により所定の圧力ないし真空度に制御すると共に第1のヒータ10および第2のヒータ20により所定の処理温度に制御し、回転テーブル14によりボート12を回転させながらガス導入部3より処理ガスを処理容器2内に導入してウエハwに所定の熱処理例えばCVD処理を開始する。特に、第1のヒータ10および第2のヒータ20の出力をバランス制御することにより、ウエハwを周縁部および中心部から加熱昇温させ、ウエハwの面内温度差を低減ないし無くし、ウエハwを面内均一に熱処理する。

【0028】所定の熱処理が終了したなら、先ず、第1 および第2のヒータ10,20の電源を切り、また、処理ガスの導入を停止して不活性ガスの導入により処理容器2内をバージする。次に、回転テーブル14を停止し、蓋体13を下降させて処理容器2内を開放すると共にボート2をローディングエリア21に搬出すればよい。

【0029】このように前記熱処理装置1によれば、複数枚のウェハwを商さ方向に所定間隔で収容する処理容器2の周囲にウエハwを周縁部から加熱昇温させる第1のヒータ10を設け、少なくも前記処理容器2内にウェハwを中心部から加熱昇温させる第2のヒータ20を設けてなるため、ウエハwを周縁部および中心部から加熱昇温させてウエハwの面内温度差を低減することができ、スリップを防止することが可能となる。

【0030】また、前記第2のヒータ20がウエハwと平行な面状に形成されており、少なくとも処理容器2内の下方に設けられているため、ウエハを効率よく中心部から加熱昇温させることが可能となる。更に、第2のヒータ20がカーボンヒータからなるため、処理容器2内に設けてもウエハwを汚染しにくく、ウエハwを所望の高温に迅速に昇温させることができる。また、第1のヒータ10は、断熱材を採用せず、水冷構造の覆い体11 50

を備えているため、急速昇温および急速降温が可能であ る。

6

【0031】更に、前記熱処理方法によれば、複数枚のウエハwを高さ方向に所定間隔で収容する処理容器2の周囲にウエハwを周縁部から加熱昇温させる第1のヒータ10を配置し、少なくも前記処理容器2内にウエハwを中心部から加熱昇温させる第2のヒータ20を配置し、これら第1のヒータ10および第2のヒータ20により、ウエハwを周縁部および中心部から同時に加熱昇温させて所定の熱処理を施すようにしたので、ウエハwの面内温度差を低減することができ、スリップを防止することが可能となる。

【0032】以上、本発明の実施の形態を図面により詳述してきたが、本発明は前記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲での種々の設計変更等が可能である。例えば、前記実施の形態では、熱処理の一例としてCVD処理が例示されているが、本発明の熱処理装置は、CVD処理以外に、例えば拡散処理、酸化処理、アニール処理等を行うことが可能である。また、前記実施の形態では、処理容器にマニホールドを備えた熱処理装置が例示されているが、本発明の熱処理装置は、処理容器にマニホールドを備えていなくてもよい。また、被処理体としては、半導体ウエハ以外に、例えばしてD基板やガラス基板等であってもよい。

【0033】第2のヒータ20は、図5に示すように、 同心円状に複数の領域(ゾーン)に分けて温度制御可能 に構成されていてもよく、あるいは、図6に示すよう に、周方向に複数の領域(ゾーン)に分けて温度制御可 能に構成されていてもよく、あるいは、これらの組み合 わせであってもよい。

[0034]

【発明の効果】以上要するに本発明によれば、次のような効果を奏することができる。

【0035】(1)請求項1の発明によれば、複数枚の被処理体を商さ方向に所定間隔で収容する処理容器の周囲に被処理体を周縁部から加熱昇温させる第1のヒータを設け、少なくも前記処理容器内に被処理体を中心部から加熱昇温させる第2のヒータを設けてなるため、被処理体を周縁部および中心部から加熱昇温させて被処理体の面内温度差を低減することができ、スリップを防止することができる。

【0036】(2)請求項2の発明によれば、前記第2のヒータが被処理体と平行な面状に形成されており、少なくとも処理容器内の下方に設けられているため、被処理体を効率よく中心部から加熱昇温させるととができる。

【0037】(3) 請求項3の発明によれば、複数枚の 被処理体を高さ方向に所定間隔で収容する処理容器の周 囲に被処理体を周縁部から加熱昇温させる第1のヒータ

を配置し、少なくも前記処理容器内に被処理体を中心部から加熱昇温させる第2のヒータを配置し、これら第1のヒータおよび第2のヒータにより、被処理体を周縁部および中心部から加熱昇温させて所定の熱処理を施すようにしたので、被処理体の面内温度差を低減することができ、スリップを防止することができる。

【図面の簡単な説明】

【図1】本発明の実施の形態を示す熱処理装置の縦断面図である。

【図2】第1のヒータによるウェハ面内温度差を示すグ 10 ラフである。

【図3】第2のヒータによるウェハ面内温度差を示すグラフである。

*【図4】本発明の実施の形態を概略的に示す図である。

【図5】第2のヒータのゾーン分割例を示す概略的平面図である。

【図6】第2のヒータの他のゾーン分割例を示す概略的平面図である。

【図7】従来の熱処理装置を概略的に示す図である。 【符号の説明】

w 被処理体

1 熱処理装置

.0 2 処理容器

10 第1のヒータ

20 第2のヒータ

【図2】

【図1】

【図3】

【図4】

【図5】

20

【図6】

【図7】

フロントページの続き

(51)Int.Cl.⁷

識別記号

FI F27B 5/14

テーマコード(参考)

// F 2 7 B 5/14

F ターム(参考) 4K030 CA04 CA06 CA12 FA10 GA02

GA05 KA04 KA23 KA46 LA15

4K061 AA01 BA11 CA08 DA05

4K063 AA05 BA12 CA03 FA04 FA07

5F045 AA03 AA20 AB32 AF03 BB13

DP19 DQ05 EK06 EK07 EK22

EM08