NP-Completeness, part II

Christian Wulff-Nilsen

Department of Computer Science
University of Copenhagen
Denmark

NP-completeness and reductions

- NP-completeness and reductions
- NP-completeness of:

- NP-completeness and reductions
- NP-completeness of:
 - SAT

- NP-completeness and reductions
- NP-completeness of:
 - SAT
 - 3-CNF-SAT

- NP-completeness and reductions
- NP-completeness of:
 - SAT
 - 3-CNF-SAT
 - CLIQUE

- NP-completeness and reductions
- NP-completeness of:
 - SAT
 - 3-CNF-SAT
 - CLIQUE
 - VERTEX-COVER

- NP-completeness and reductions
- NP-completeness of:
 - SAT
 - 3-CNF-SAT
 - CLIQUE
 - VERTEX-COVER
 - (HAM-CYCLE)

- NP-completeness and reductions
- NP-completeness of:
 - SAT
 - 3-CNF-SAT
 - CLIQUE
 - VERTEX-COVER
 - (HAM-CYCLE)
 - TSP

- NP-completeness and reductions
- NP-completeness of:
 - SAT
 - 3-CNF-SAT
 - CLIQUE
 - VERTEX-COVER
 - (HAM-CYCLE)
 - TSP
 - SUBSET-SUM

Alphabet: finite set Σ of symbols.

- Alphabet: finite set Σ of symbols.
- Language L over alphabet Σ : a set of strings of symbols from Σ .

- Alphabet: finite set Σ of symbols.
- Language L over alphabet Σ : a set of strings of symbols from Σ .
- We let $\Sigma = \{0, 1\}$ so L is a set of binary strings.

- Alphabet: finite set Σ of symbols.
- Language L over alphabet Σ : a set of strings of symbols from Σ .
- We let $\Sigma = \{0, 1\}$ so L is a set of binary strings.
- **Example:** $L = \{0, 10, 11001, 11101, \ldots\}$.

- Alphabet: finite set Σ of symbols.
- Language L over alphabet Σ : a set of strings of symbols from Σ .
- We let $\Sigma = \{0, 1\}$ so L is a set of binary strings.
- **Example:** $L = \{0, 10, 11001, 11101, \ldots\}$.
- $\{0,1\}^*$: set of all binary strings.

A *decision problem Q* consists of yes-instances and no-instances.

- A *decision problem* Q consists of yes-instances and no-instances.
- Example, Q = HAM-CYCLE: $\langle G \rangle$ is a yes-instance if G contains a simple cycle containing all vertices of G; otherwise $\langle G \rangle$ is a no-instance.

- A *decision problem* Q consists of yes-instances and no-instances.
- Example, Q = HAM-CYCLE: $\langle G \rangle$ is a yes-instance if G contains a simple cycle containing all vertices of G; otherwise $\langle G \rangle$ is a no-instance.
- We can view a problem Q as a mapping of yes-instances to 1 and no-instances to 0.

- A *decision problem* Q consists of yes-instances and no-instances.
- Example, Q = HAM-CYCLE: $\langle G \rangle$ is a yes-instance if G contains a simple cycle containing all vertices of G; otherwise $\langle G \rangle$ is a no-instance.
- We can view a problem Q as a mapping of yes-instances to 1 and no-instances to 0.
- We can also view Q as a language L:

$$L = \{x \in \{0, 1\}^* | Q(x) = 1\}.$$

Verifying a language

A *verification algorithm* is an algorithm A taking two arguments, $x, y \in \{0, 1\}^*$, where y is the *certificate*.

Verifying a language

- A *verification algorithm* is an algorithm A taking two arguments, $x, y \in \{0, 1\}^*$, where y is the *certificate*.
- A verifies a string x if there is a certificate y such that A(x,y)=1.

Verifying a language

- A *verification algorithm* is an algorithm A taking two arguments, $x, y \in \{0, 1\}^*$, where y is the *certificate*.
- A verifies a string x if there is a certificate y such that A(x,y)=1.
- \blacksquare The language verified by A is

$$L = \{x \in \{0,1\}^* | \text{there is a } y \in \{0,1\}^* \text{ such}$$
 that $A(x,y) = 1\}.$

NP is the class of languages that can be verified in polynomial time.

- NP is the class of languages that can be verified in polynomial time.
- In other words, $L \in \mathsf{NP}$ if and only if there is a polynomial-time verification algorithm A and a constant c such that

$$L = \{x \in \{0,1\}^* | \text{there is a } y \in \{0,1\}^* \text{ with }$$
 $|y| = O(|x|^c) \text{ such that } A(x,y) = 1\}.$

- NP is the class of languages that can be verified in polynomial time.
- In other words, $L \in \mathsf{NP}$ if and only if there is a polynomial-time verification algorithm A and a constant c such that

$$L = \{x \in \{0,1\}^* | \text{there is a } y \in \{0,1\}^* \text{ with }$$
 $|y| = O(|x|^c) \text{ such that } A(x,y) = 1\}.$

• We saw that $P \subseteq NP$.

- NP is the class of languages that can be verified in polynomial time.
- In other words, $L \in \mathsf{NP}$ if and only if there is a polynomial-time verification algorithm A and a constant c such that

$$L = \{x \in \{0,1\}^* | \text{there is a } y \in \{0,1\}^* \text{ with }$$
 $|y| = O(|x|^c) \text{ such that } A(x,y) = 1\}.$

- We saw that $P \subseteq NP$.
- Big open problem: is P = NP?

Reducibility

Language L_1 is polynomial-time *reducible* to language L_2 if there is a polynomial-time computible function $f: \{0,1\}^* \to \{0,1\}^*$ such that

$$x \in L_1 \Leftrightarrow f(x) \in L_2.$$

Reducibility

Language L_1 is polynomial-time *reducible* to language L_2 if there is a polynomial-time computible function $f: \{0,1\}^* \to \{0,1\}^*$ such that

$$x \in L_1 \Leftrightarrow f(x) \in L_2$$
.

We saw that

$$L_1 \leq_P L_2 \land L_2 \in P \Rightarrow L_1 \in P$$
.

Language L is NP-complete if

- Language *L* is *NP-complete* if
 - 1. $L \in NP$ and

- Language L is NP-complete if
 - 1. $L \in NP$ and
 - 2. $L' \leq_P L$ for every $L' \in NP$.

- Language L is NP-complete if
 - 1. $L \in NP$ and
 - 2. $L' \leq_P L$ for every $L' \in NP$.
- $lue{L}$ is NP-hard if L satisfies property 2 (and possibly not property 1).

- Language L is NP-complete if
 - 1. $L \in NP$ and
 - 2. $L' \leq_P L$ for every $L' \in NP$.
- L is NP-hard if L satisfies property 2 (and possibly not property 1).
- We saw that if any language of NPC belongs to P then P = NP.

- Language L is NP-complete if
 - 1. $L \in NP$ and
 - 2. $L' \leq_P L$ for every $L' \in NP$.
- $lue{L}$ is NP-hard if L satisfies property 2 (and possibly not property 1).
- We saw that if any language of NPC belongs to P then P = NP.
- We also saw that CIRCUIT-SAT is NP-complete.

NP-completeness of other problems via reduction

Let L and L' be two languages with $L' \in NPC$.

NP-completeness of other problems via reduction

- Let L and L' be two languages with $L' \in NPC$.
- If $L' \leq_P L$ then L is NP-hard.

- Let L and L' be two languages with $L' \in NPC$.
- If $L' \leq_P L$ then L is NP-hard.
- If in addition $L \in \mathsf{NP}$ then L is NP -complete.

- Let L and L' be two languages with $L' \in NPC$.
- If $L' \leq_P L$ then L is NP-hard.
- If in addition $L \in \mathsf{NP}$ then L is $\mathsf{NP}\text{-}\mathsf{complete}$.
- General technique for showing NP-completeness of a language L:

- Let L and L' be two languages with $L' \in \mathsf{NPC}$.
- If $L' \leq_P L$ then L is NP-hard.
- If in addition $L \in \mathsf{NP}$ then L is NP -complete.
- General technique for showing NP-completeness of a language L:
 - Show that $L \in NP$.

- Let L and L' be two languages with $L' \in \mathsf{NPC}$.
- If $L' \leq_P L$ then L is NP-hard.
- If in addition $L \in \mathsf{NP}$ then L is $\mathsf{NP}\text{-}\mathsf{complete}$.
- General technique for showing NP-completeness of a language L:
 - Show that $L \in NP$.
 - Pick another language L' known to be NP-complete (for instance, CIRCUIT-SAT).

- Let L and L' be two languages with $L' \in \mathsf{NPC}$.
- If $L' \leq_P L$ then L is NP-hard.
- If in addition $L \in \mathsf{NP}$ then L is $\mathsf{NP}\text{-}\mathsf{complete}$.
- General technique for showing NP-completeness of a language L:
 - Show that $L \in NP$.
 - Pick another language L' known to be NP-complete (for instance, CIRCUIT-SAT).
 - Show that $L' \leq_P L$, i.e., show that there is a polynomial-time computible function $f: \{0,1\}^* \to \{0,1\}^*$ such that

$$x \in L' \Leftrightarrow f(x) \in L.$$

A boolean formula ϕ consists of boolean variables x_1, \ldots, x_n , boolean connectives \wedge , \vee and \neg , \rightarrow , \leftrightarrow , and parentheses (and).

- A boolean formula ϕ consists of boolean variables x_1, \ldots, x_n , boolean connectives \wedge , \vee and \neg , \rightarrow , \leftrightarrow , and parentheses (and).
- **Example:** $\phi = (x_1 \lor x_2) \land (x_2 \lor x_3 \lor \neg x_4)$.

- A boolean formula ϕ consists of boolean variables x_1, \ldots, x_n , boolean connectives \wedge , \vee and \neg , \rightarrow , \leftrightarrow , and parentheses (and).
- **Example:** $\phi = (x_1 \lor x_2) \land (x_2 \lor x_3 \lor \neg x_4)$.
- A satisfying assignment for a boolean formula ϕ is an assignment of 0/1-values to variables that makes ϕ evaluate to 1.

- A boolean formula ϕ consists of boolean variables x_1, \ldots, x_n , boolean connectives \wedge , \vee and \neg , \rightarrow , \leftrightarrow , and parentheses (and).
- **Example:** $\phi = (x_1 \lor x_2) \land (x_2 \lor x_3 \lor \neg x_4)$.
- A satisfying assignment for a boolean formula ϕ is an assignment of 0/1-values to variables that makes ϕ evaluate to 1.
- ϕ is *satisfiable* if there exists a satisfying assignment for ϕ .

- A boolean formula ϕ consists of boolean variables x_1, \ldots, x_n , boolean connectives \wedge , \vee and \neg , \rightarrow , \leftrightarrow , and parentheses (and).
- **Example:** $\phi = (x_1 \lor x_2) \land (x_2 \lor x_3 \lor \neg x_4)$.
- A satisfying assignment for a boolean formula ϕ is an assignment of 0/1-values to variables that makes ϕ evaluate to 1.
- ϕ is *satisfiable* if there exists a satisfying assignment for ϕ .
- We can now define the problem SAT:

SAT = $\{\langle \phi \rangle | \phi \text{ is a satisfiable boolean formula} \}$.

■ To show SAT ∈ NPC, we follow our recipe:

- To show SAT ∈ NPC, we follow our recipe:
 - Show that $SAT \in NP$.

- To show SAT \in NPC, we follow our recipe:
 - Show that $SAT \in NP$.
 - Show that CIRCUIT-SAT \leq_P SAT.

- To show SAT ∈ NPC, we follow our recipe:
 - Show that $SAT \in NP$.
 - Show that CIRCUIT-SAT \leq_P SAT.
- To show that $SAT \in NP$, we construct a verification algorithm A taking inputs x and y.

- To show SAT \in NPC, we follow our recipe:
 - Show that $SAT \in NP$.
 - Show that CIRCUIT-SAT \leq_P SAT.
- To show that $SAT \in NP$, we construct a verification algorithm A taking inputs x and y.
- It regards x as a boolean formula ϕ and y as an assignment of values to variables of ϕ .

- To show SAT ∈ NPC, we follow our recipe:
 - Show that $SAT \in NP$.
 - Show that CIRCUIT-SAT \leq_P SAT.
- To show that $SAT \in NP$, we construct a verification algorithm A taking inputs x and y.
- It regards x as a boolean formula ϕ and y as an assignment of values to variables of ϕ .
- A returns 1 if y defines a satisfying assignment for ϕ ; otherwise, A returns 0.

- To show SAT \in NPC, we follow our recipe:
 - Show that $SAT \in NP$.
 - Show that CIRCUIT-SAT \leq_P SAT.
- To show that $SAT \in NP$, we construct a verification algorithm A taking inputs x and y.
- It regards x as a boolean formula ϕ and y as an assignment of values to variables of ϕ .
- A returns 1 if y defines a satisfying assignment for ϕ ; otherwise, A returns 0.
- We can easily make A run in polynomial time.

- To show SAT ∈ NPC, we follow our recipe:
 - Show that $SAT \in NP$.
 - Show that CIRCUIT-SAT \leq_P SAT.
- To show that $SAT \in NP$, we construct a verification algorithm A taking inputs x and y.
- It regards x as a boolean formula ϕ and y as an assignment of values to variables of ϕ .
- A returns 1 if y defines a satisfying assignment for ϕ ; otherwise, A returns 0.
- We can easily make A run in polynomial time.
- Thus, $SAT \in NP$.

Given a circuit C, we transform it into a boolean function ϕ as follows.

- Given a circuit C, we transform it into a boolean function ϕ as follows.
- Associate a variable x_i with each wire of C; let x_m be the output wire variable.

- Given a circuit C, we transform it into a boolean function ϕ as follows.
- Associate a variable x_i with each wire of C; let x_m be the output wire variable.
- Construct a sub-formula for each gate of *C* so that the output wire variables are a function of the input wire variables.

Example:

$$\phi_1 = (x_4 \leftrightarrow \neg x_3)$$

$$\phi_2 = (x_5 \leftrightarrow (x_1 \lor x_2))$$

$$\phi_3 = (x_6 \leftrightarrow \neg x_4)$$

$$\phi_4 = (x_7 \leftrightarrow (x_1 \land x_2 \land x_4))$$

$$\phi_5 = (x_8 \leftrightarrow (x_5 \lor x_6))$$

$$\phi_6 = (x_9 \leftrightarrow (x_6 \lor x_7))$$

$$\phi_7 = (x_{10} \leftrightarrow (x_7 \land x_8 \land x_9)).$$

If ϕ_1, \ldots, ϕ_k are the sub-formulas, we define ϕ to be $x_m \wedge \phi_1 \wedge \phi_2 \wedge \ldots \wedge \phi_k$.

- If ϕ_1, \ldots, ϕ_k are the sub-formulas, we define ϕ to be $x_m \wedge \phi_1 \wedge \phi_2 \wedge \ldots \wedge \phi_k$.
- Example:

$$\phi = x_{10} \wedge (x_4 \leftrightarrow \neg x_3) \wedge (x_5 \leftrightarrow (x_1 \lor x_2))$$

$$\wedge (x_6 \leftrightarrow \neg x_4) \wedge (x_7 \leftrightarrow (x_1 \land x_2 \land x_4))$$

$$\wedge (x_8 \leftrightarrow (x_5 \lor x_6)) \wedge (x_9 \leftrightarrow (x_6 \lor x_7))$$

$$\wedge (x_{10} \leftrightarrow (x_7 \land x_8 \land x_9)).$$

- If ϕ_1, \ldots, ϕ_k are the sub-formulas, we define ϕ to be $x_m \wedge \phi_1 \wedge \phi_2 \wedge \ldots \wedge \phi_k$.
- Example:

$$\phi = x_{10} \wedge (x_4 \leftrightarrow \neg x_3) \wedge (x_5 \leftrightarrow (x_1 \vee x_2))$$

$$\wedge (x_6 \leftrightarrow \neg x_4) \wedge (x_7 \leftrightarrow (x_1 \wedge x_2 \wedge x_4))$$

$$\wedge (x_8 \leftrightarrow (x_5 \vee x_6)) \wedge (x_9 \leftrightarrow (x_6 \vee x_7))$$

$$\wedge (x_{10} \leftrightarrow (x_7 \wedge x_8 \wedge x_9)).$$

 ϕ can be constructed in polynomial time.

- If ϕ_1, \ldots, ϕ_k are the sub-formulas, we define ϕ to be $x_m \wedge \phi_1 \wedge \phi_2 \wedge \ldots \wedge \phi_k$.
- Example:

$$\phi = x_{10} \wedge (x_4 \leftrightarrow \neg x_3) \wedge (x_5 \leftrightarrow (x_1 \lor x_2))$$

$$\wedge (x_6 \leftrightarrow \neg x_4) \wedge (x_7 \leftrightarrow (x_1 \land x_2 \land x_4))$$

$$\wedge (x_8 \leftrightarrow (x_5 \lor x_6)) \wedge (x_9 \leftrightarrow (x_6 \lor x_7))$$

$$\wedge (x_{10} \leftrightarrow (x_7 \land x_8 \land x_9)).$$

- ϕ can be constructed in polynomial time.
- luepsilon C is satisfiable if and only if ϕ is satisfiable:

$$\langle C \rangle \in \texttt{CIRCUIT-SAT} \Leftrightarrow \langle \phi \rangle \in \texttt{SAT}.$$

Let ϕ be a boolean formula.

- Let ϕ be a boolean formula.
- A *literal* in ϕ is an occurrence of a variable or its negation.

- Let ϕ be a boolean formula.
- A *literal* in ϕ is an occurrence of a variable or its negation.
- Suppose ϕ is the AND of sub-formulas, called *clauses*.

- Let ϕ be a boolean formula.
- A *literal* in ϕ is an occurrence of a variable or its negation.
- Suppose ϕ is the AND of sub-formulas, called *clauses*.
- Furthermore, suppose that each clause is the OR of exactly 3 literals.

- Let ϕ be a boolean formula.
- A *literal* in ϕ is an occurrence of a variable or its negation.
- Suppose ϕ is the AND of sub-formulas, called *clauses*.
- Furthermore, suppose that each clause is the OR of exactly 3 literals.
- Then we say that ϕ is in 3-conjunctive normal form, or 3-CNF.

- Let ϕ be a boolean formula.
- A *literal* in ϕ is an occurrence of a variable or its negation.
- Suppose ϕ is the AND of sub-formulas, called *clauses*.
- Furthermore, suppose that each clause is the OR of exactly 3 literals.
- Then we say that ϕ is in 3-conjunctive normal form, or 3-CNF.
- Example:

$$\phi = (x_1 \vee \neg x_1 \vee \neg x_2) \wedge (x_3 \vee x_2 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee \neg x_4).$$

We define the language 3-CNF-SAT by

3-CNF-SAT = $\{\langle \phi \rangle | \phi \text{ is in 3-CNF and satisfiable} \}$.

We define the language 3-CNF-SAT by

3-CNF-SAT = $\{\langle \phi \rangle | \phi \text{ is in 3-CNF and satisfiable} \}$.

We will show that $3-CNF-SAT \in NPC$ in two steps:

■ We define the language 3-CNF-SAT by

3-CNF-SAT = $\{\langle \phi \rangle | \phi \text{ is in 3-CNF and satisfiable} \}$.

- We will show that $3-CNF-SAT \in NPC$ in two steps:
 - 3-CNF-SAT \in NP,

We define the language 3-CNF-SAT by

 $\overline{3}$ -CNF-SAT = $\{\langle \phi \rangle | \phi \text{ is in } 3$ -CNF and satisfiable}.

- We will show that $3-CNF-SAT \in NPC$ in two steps:
 - 3-CNF-SAT \in NP,
 - \bullet SAT $\leq_P 3$ -CNF-SAT.

We define the language 3-CNF-SAT by

3-CNF-SAT = $\{\langle \phi \rangle | \phi \text{ is in 3-CNF and satisfiable} \}$.

- We will show that $3-CNF-SAT \in NPC$ in two steps:
 - 3-CNF-SAT \in NP,
 - < SAT $\leq_P 3$ -CNF-SAT.
- Showing 3-CNF-SAT \in NP is done using the same argument as for SAT.

Remains to show SAT $\leq_P 3$ -CNF-SAT.

- Remains to show SAT $\leq_P 3$ -CNF-SAT.
- Let $\langle \phi \rangle \in SAT$.

- Remains to show SAT $\leq_P 3$ -CNF-SAT.
- Let $\langle \phi \rangle \in SAT$.
- We construct a *parse tree* for ϕ where leaves are literals and internal nodes are connectives.

- Remains to show SAT $\leq_P 3$ -CNF-SAT.
- Let $\langle \phi \rangle \in SAT$.
- We construct a *parse tree* for ϕ where leaves are literals and internal nodes are connectives.
- Regard the tree as a circuit with internal nodes as gates.

- Remains to show SAT $\leq_P 3$ -CNF-SAT.
- Let $\langle \phi \rangle \in SAT$.
- We construct a *parse tree* for ϕ where leaves are literals and internal nodes are connectives.
- Regard the tree as a circuit with internal nodes as gates.
- We can construct formulas ϕ'_1, \ldots, ϕ'_k for each of these gates, as before.

- Remains to show SAT $\leq_P 3$ -CNF-SAT.
- Let $\langle \phi \rangle \in SAT$.
- We construct a *parse tree* for ϕ where leaves are literals and internal nodes are connectives.
- Regard the tree as a circuit with internal nodes as gates.
- We can construct formulas ϕ'_1, \ldots, ϕ'_k for each of these gates, as before.
- Let $\phi' = x_m \wedge \phi'_1 \wedge \phi'_2 \wedge \ldots \wedge \phi'_k$.

- Remains to show SAT $\leq_P 3$ -CNF-SAT.
- Let $\langle \phi \rangle \in SAT$.
- We construct a *parse tree* for ϕ where leaves are literals and internal nodes are connectives.
- Regard the tree as a circuit with internal nodes as gates.
- We can construct formulas ϕ'_1, \ldots, ϕ'_k for each of these gates, as before.
- Let $\phi' = x_m \wedge \phi'_1 \wedge \phi'_2 \wedge \ldots \wedge \phi'_k$.
- ϕ' is the same formula as ϕ but written in a different form where each clause ϕ'_i has at most 3 literals.

Consider one clause ϕ'_i .

- Consider one clause ϕ'_i .
- Example: $\phi_i' = y_1 \leftrightarrow (y_2 \land \neg x_2)$.

- Consider one clause ϕ'_i .
- Example: $\phi_i' = y_1 \leftrightarrow (y_2 \land \neg x_2)$.

y_1	y_2	x_2	$\mid \phi_i' \mid$	$\phi_i'' = \neg \phi_i'$
0	0	0	1	0
0	0	1	1	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	1
1	$\boxed{1}$	0	1	0
1	1	1	0	1

- Consider one clause ϕ'_i .
- **Example:** $\phi_i' = y_1 \leftrightarrow (y_2 \land \neg x_2)$.

$$\phi_i'' = (\neg y_1 \land y_2 \land \neg x_2) \lor (y_1 \land \neg y_2 \land \neg x_2)$$
$$\lor (y_1 \land \neg y_2 \land x_2) \lor (y_1 \land y_2 \land x_2).$$

 ϕ_i'' is in *disjunctive normal form*:

$$\phi_i'' = (\neg y_1 \land y_2 \land \neg x_2) \lor (y_1 \land \neg y_2 \land \neg x_2)$$
$$\lor (y_1 \land \neg y_2 \land x_2) \lor (y_1 \land y_2 \land x_2).$$

 ϕ_i'' is in *disjunctive normal form*:

$$\phi_i'' = (\neg y_1 \land y_2 \land \neg x_2) \lor (y_1 \land \neg y_2 \land \neg x_2)$$
$$\lor (y_1 \land \neg y_2 \land x_2) \lor (y_1 \land y_2 \land x_2).$$

Negating and applying DeMorgan's laws converts ϕ_i'' into 3-CNF:

$$\neg \phi_i'' = (y_1 \lor \neg y_2 \lor x_2) \land (\neg y_1 \lor y_2 \lor x_2)$$
$$\land (\neg y_1 \lor y_2 \lor \neg x_2) \land (\neg y_1 \lor \neg y_2 \lor \neg x_2).$$

 ϕ_i'' is in *disjunctive normal form*:

$$\phi_i'' = (\neg y_1 \land y_2 \land \neg x_2) \lor (y_1 \land \neg y_2 \land \neg x_2)$$
$$\lor (y_1 \land \neg y_2 \land x_2) \lor (y_1 \land y_2 \land x_2).$$

Negating and applying DeMorgan's laws converts ϕ_i'' into 3-CNF:

$$\neg \phi_i'' = (y_1 \lor \neg y_2 \lor x_2) \land (\neg y_1 \lor y_2 \lor x_2)$$
$$\land (\neg y_1 \lor y_2 \lor \neg x_2) \land (\neg y_1 \lor \neg y_2 \lor \neg x_2).$$

This formula is equivalent to the original ϕ'_i .

Applying this technique to each clause converts ϕ' into a formula which is almost in 3-CNF.

- Applying this technique to each clause converts ϕ' into a formula which is almost in 3-CNF.
- Each clause has at most 3 literals.

- Applying this technique to each clause converts ϕ' into a formula which is almost in 3-CNF.
- Each clause has at most 3 literals.
- We can easily extend this to exactly 3 literals.

- Applying this technique to each clause converts ϕ' into a formula which is almost in 3-CNF.
- Each clause has at most 3 literals.
- We can easily extend this to exactly 3 literals.
- In polynomial time, we convert ϕ' into a formula ϕ''' in 3-CNF.

- Applying this technique to each clause converts ϕ' into a formula which is almost in 3-CNF.
- Each clause has at most 3 literals.
- We can easily extend this to exactly 3 literals.
- In polynomial time, we convert ϕ' into a formula ϕ''' in 3-CNF.
- We have

$$\langle \phi \rangle \in \text{SAT} \Leftrightarrow \langle \phi''' \rangle \in 3\text{-CNF-SAT}.$$

- Applying this technique to each clause converts ϕ' into a formula which is almost in 3-CNF.
- Each clause has at most 3 literals.
- We can easily extend this to exactly 3 literals.
- In polynomial time, we convert ϕ' into a formula ϕ''' in 3-CNF.
- We have

$$\langle \phi \rangle \in \text{SAT} \Leftrightarrow \langle \phi''' \rangle \in 3\text{-CNF-SAT}.$$

Thus, SAT $\leq_P 3$ -CNF-SAT.

Given a set S of positive integers and given integer target t > 0.

- Given a set S of positive integers and given integer target t>0.
- Is there a subset S' of S summing to t?

- Given a set S of positive integers and given integer target t>0.
- Is there a subset S' of S summing to t?
- As a language:

$$\text{SUBSET-SUM} = \{\langle S, t \rangle | \exists S' \subseteq S \text{ so that } t = \sum_{s \in S'} s \}.$$

- Given a set S of positive integers and given integer target t>0.
- Is there a subset S' of S summing to t?
- As a language:

$$\text{SUBSET-SUM} = \{\langle S, t \rangle | \exists S' \subseteq S \text{ so that } t = \sum_{s \in S'} s \}.$$

■ We will show that SUBSET-SUM is NP-complete.

- Given a set S of positive integers and given integer target t>0.
- Is there a subset S' of S summing to t?
- As a language:

$$\text{SUBSET-SUM} = \{\langle S, t \rangle | \exists S' \subseteq S \text{ so that } t = \sum_{s \in S'} s \}.$$

- We will show that SUBSET-SUM is NP-complete.
- Clearly, SUBSET-SUM \in NP.

- Given a set S of positive integers and given integer target t > 0.
- Is there a subset S' of S summing to t?
- As a language:

$$\text{SUBSET-SUM} = \{\langle S, t \rangle | \exists S' \subseteq S \text{ so that } t = \sum_{s \in S'} s \}.$$

- We will show that SUBSET-SUM is NP-complete.
- Clearly, SUBSET-SUM ∈ NP.
- To show NP-hardness, we reduce from 3-CNF-SAT:

$$3$$
-CNF-SAT \leq_P SUBSET-SUM.

Showing 3-CNF-SAT \leq_P SUBSET-SUM

Consider a 3-CNF-formula ϕ with n variables x_1, \ldots, x_n and k clauses C_1, \ldots, C_k .

Showing 3-CNF-SAT \leq_P SUBSET-SUM

- Consider a 3-CNF-formula ϕ with n variables x_1, \ldots, x_n and k clauses C_1, \ldots, C_k .
- We will construct an instance $\langle S, t \rangle$ such that:

$$\phi \in 3$$
-CNF-SAT $\Leftrightarrow \langle S, t \rangle \in \text{SUBSET-SUM}$.

Showing 3-CNF-SAT \leq_P SUBSET-SUM

- Consider a 3-CNF-formula ϕ with n variables x_1, \ldots, x_n and k clauses C_1, \ldots, C_k .
- We will construct an instance $\langle S, t \rangle$ such that:

$$\phi \in 3$$
-CNF-SAT $\Leftrightarrow \langle S, t \rangle \in \text{SUBSET-SUM}$.

In other words, we want that ϕ is satisfiable if and only if S has a subset summing to t.

For each variable x_i , create two decimal numbers v_i and v_i' .

- For each variable x_i , create two decimal numbers v_i and v_i' .
- For each clause C_j , create two decimal numbers s_j and s_j' .

- For each variable x_i , create two decimal numbers v_i and v_i' .
- For each clause C_j , create two decimal numbers s_j and s_j^\prime .
- Finally, create a decimal number t.

- For each variable x_i , create two decimal numbers v_i and v_i' .
- For each clause C_j , create two decimal numbers s_j and s_j' .
- Finally, create a decimal number t.
- Each number has n + k digits.

- For each variable x_i , create two decimal numbers v_i and v_i' .
- For each clause C_j , create two decimal numbers s_j and s_j^\prime .
- Finally, create a decimal number t.
- Each number has n + k digits.
- The n most significant digits are associated with x_1, \ldots, x_n .

- For each variable x_i , create two decimal numbers v_i and v_i' .
- For each clause C_j , create two decimal numbers s_j and s_j^\prime .
- Finally, create a decimal number t.
- Each number has n + k digits.
- The n most significant digits are associated with x_1, \ldots, x_n .
- The k least significant digits are associated with C_1, \ldots, C_k .

- For each variable x_i , create two decimal numbers v_i and v_i' .
- For each clause C_j , create two decimal numbers s_j and s_j^\prime .
- Finally, create a decimal number t.
- Each number has n + k digits.
- The n most significant digits are associated with x_1, \ldots, x_n .
- The k least significant digits are associated with C_1, \ldots, C_k .
- S consists of numbers $v_1,v_1',v_2,v_2',\ldots,v_n,v_n'$ and $s_1,s_1',s_2,s_2',\ldots,s_k,s_k'$.

Digit x_i of v_i and digit x_i of v'_i is 1.

- Digit x_i of v_i and digit x_i of v_i' is 1.
- Digit C_j of v_i is 1 if $x_i \in C_j$.

- Digit x_i of v_i and digit x_i of v_i' is 1.
- Digit C_j of v_i is 1 if $x_i \in C_j$.
- Digit C_j of v_i' is 1 if $\neg x_i \in C_j$.

- Digit x_i of v_i and digit x_i of v_i' is 1.
- Digit C_j of v_i is 1 if $x_i \in C_j$.
- Digit C_j of v_i' is 1 if $\neg x_i \in C_j$.
- Digit C_i of s_i is 1 and digit C_i of s'_i is 2.

- Digit x_i of v_i and digit x_i of v'_i is 1.
- Digit C_j of v_i is 1 if $x_i \in C_j$.
- Digit C_j of v_i' is 1 if $\neg x_i \in C_j$.
- Digit C_i of s_i is 1 and digit C_i of s'_i is 2.
- Target t is defined to be:

$$t = \overbrace{11 \dots 1}^{n} \underbrace{44 \dots 4}^{k}.$$

- Digit x_i of v_i and digit x_i of v_i' is 1.
- Digit C_j of v_i is 1 if $x_i \in C_j$.
- Digit C_j of v_i' is 1 if $\neg x_i \in C_j$.
- Digit C_i of s_i is 1 and digit C_i of s'_i is 2.
- Target t is defined to be:

$$t = \overbrace{11 \dots 1}^{n} \underbrace{44 \dots 4}^{k}.$$

All digits not specified above are 0.

- Digit x_i of v_i and digit x_i of v_i' is 1.
- Digit C_j of v_i is 1 if $x_i \in C_j$.
- Digit C_j of v_i' is 1 if $\neg x_i \in C_j$.
- Digit C_i of s_i is 1 and digit C_i of s'_i is 2.
- Target t is defined to be:

$$t = \overbrace{11 \dots 1}^{n} \underbrace{44 \dots 4}^{k}.$$

- All digits not specified above are 0.
- Simplifying assumptions: no clause contains both a variable and its negation and each variable appears somewhere. This ensures unique numbers.

Assume $\phi \in 3$ -CNF-SAT.

- Assume $\phi \in 3$ -CNF-SAT.
- In other words, assume that ϕ is in 3-CNF and satisfiable.

- Assume $\phi \in 3$ -CNF-SAT.
- In other words, assume that ϕ is in 3-CNF and satisfiable.
- We will find subset S' of S with $\sum_{s \in S'} s = t$.

- Assume $\phi \in 3$ -CNF-SAT.
- In other words, assume that ϕ is in 3-CNF and satisfiable.
- We will find subset S' of S with $\sum_{s \in S'} s = t$.
- Assign values to x_1,\ldots,x_n that satisfy ϕ .

- Assume $\phi \in 3$ -CNF-SAT.
- In other words, assume that ϕ is in 3-CNF and satisfiable.
- We will find subset S' of S with $\sum_{s \in S'} s = t$.
- Assign values to x_1,\ldots,x_n that satisfy ϕ .
- For i = 1, ..., n, if $x_i = 1$ then include v_i in S'; otherwise include v_i' .

- Assume $\phi \in 3$ -CNF-SAT.
- In other words, assume that ϕ is in 3-CNF and satisfiable.
- We will find subset S' of S with $\sum_{s \in S'} s = t$.
- Assign values to x_1,\ldots,x_n that satisfy ϕ_{ullet}
- For i = 1, ..., n, if $x_i = 1$ then include v_i in S'; otherwise include v_i' .
- Include additional numbers from $\{s_1, s_1', s_2, s_2', \dots, s_k, s_k'\}$ to reach target t.

- Assume $\phi \in 3$ -CNF-SAT.
- In other words, assume that ϕ is in 3-CNF and satisfiable.
- We will find subset S' of S with $\sum_{s \in S'} s = t$.
- Assign values to x_1,\ldots,x_n that satisfy ϕ .
- For i = 1, ..., n, if $x_i = 1$ then include v_i in S'; otherwise include v_i' .
- Include additional numbers from $\{s_1, s_1', s_2, s_2', \dots, s_k, s_k'\}$ to reach target t.
- Why is this possible?

Let S' be a subset of S summing to t.

- Let S' be a subset of S summing to t.
- We need to find a satisfying assignment for ϕ .

- Let S' be a subset of S summing to t.
- We need to find a satisfying assignment for ϕ .
- We set x_i to 1 if and only if $v_i \in S'$.

- Let S' be a subset of S summing to t.
- We need to find a satisfying assignment for ϕ .
- We set x_i to 1 if and only if $v_i \in S'$.
- Why is this a satisfying assignment?

Let G = (V, E) be an undirected graph.

- Let G = (V, E) be an undirected graph.
- A *clique* in G is a subset $V' \subseteq V$ such that $(u, v) \in E$ for all distinct $u, v \in V'$.

- Let G = (V, E) be an undirected graph.
- A *clique* in G is a subset $V' \subseteq V$ such that $(u,v) \in E$ for all distinct $u,v \in V'$.
- The size of the clique is |V'|.

- Let G = (V, E) be an undirected graph.
- A *clique* in G is a subset $V' \subseteq V$ such that $(u, v) \in E$ for all distinct $u, v \in V'$.
- The size of the clique is |V'|.
- The CLIQUE problem is the problem of determining if *G* contains a clique of a given size *k*:

CLIQUE = $\{\langle G, k \rangle | G \text{ is a graph containing a clique of size } k \}$.

We will show that CLIQUE is NP-complete as follows:

- We will show that CLIQUE is NP-complete as follows:
 - CLIQUE $\in NP$,

- We will show that CLIQUE is NP-complete as follows:
 - \bullet CLIQUE $\in NP$,
 - $3-\overline{\text{CNF-SAT}} \leq_P \overline{\text{CLIQUE.}}$

- We will show that CLIQUE is NP-complete as follows:
 - CLIQUE $\in \mathsf{NP}$,
 - 3-CNF-SAT \leq_P CLIQUE.
- To show CLIQUE \in NP, consider an algorithm A taking two inputs, $\langle G, k \rangle$ and a certificate y.

- We will show that CLIQUE is NP-complete as follows:
 - CLIQUE $\in \mathsf{NP}$,
 - 3-CNF-SAT \leq_P CLIQUE.
- To show CLIQUE \in NP, consider an algorithm A taking two inputs, $\langle G, k \rangle$ and a certificate y.
- y specifies a subset V' of vertices of G.

- We will show that CLIQUE is NP-complete as follows:
 - \bullet CLIQUE $\in \mathsf{NP}$,
 - 3-CNF-SAT \leq_P CLIQUE.
- To show CLIQUE \in NP, consider an algorithm A taking two inputs, $\langle G, k \rangle$ and a certificate y.
- y specifies a subset V' of vertices of G.
- ho A checks that |V'|=k and that V' is a clique in G.

- We will show that CLIQUE is NP-complete as follows:
 - \bullet CLIQUE $\in \mathsf{NP}$,
 - 3-CNF-SAT \leq_P CLIQUE.
- To show CLIQUE \in NP, consider an algorithm A taking two inputs, $\langle G, k \rangle$ and a certificate y.
- y specifies a subset V' of vertices of G.
- A checks that |V'| = k and that V' is a clique in G.
- This can easily be done in polynomial time.

- We will show that CLIQUE is NP-complete as follows:
 - \bullet CLIQUE $\in \mathsf{NP}$,
 - 3-CNF-SAT \leq_P CLIQUE.
- To show CLIQUE \in NP, consider an algorithm A taking two inputs, $\langle G, k \rangle$ and a certificate y.
- y specifies a subset V' of vertices of G.
- A checks that |V'| = k and that V' is a clique in G.
- This can easily be done in polynomial time.
- Thus, CLIQUE ∈ NP.

Given a formula $\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_k$ in 3-CNF.

- Given a formula $\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_k$ in 3-CNF.
- We will construct a graph G such that ϕ is satisfiable if and only if G has a clique of size k.

- Given a formula $\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_k$ in 3-CNF.
- We will construct a graph G such that ϕ is satisfiable if and only if G has a clique of size k.
- For each $C_r=\ell_1^r\vee\ell_2^r\vee\ell_3^r$, we include three vertices $v_1^r,\,v_2^r,\,$ and v_3^r to G.

- Given a formula $\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_k$ in 3-CNF.
- We will construct a graph G such that ϕ is satisfiable if and only if G has a clique of size k.
- For each $C_r=\ell_1^r\vee\ell_2^r\vee\ell_3^r$, we include three vertices $v_1^r,\,v_2^r,\,$ and v_3^r to G.
- There is an edge (v_i^r, v_j^s) in G if and only if $r \neq s$ and ℓ_i^r is not the negation of ℓ_j^s .

- Given a formula $\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_k$ in 3-CNF.
- We will construct a graph G such that ϕ is satisfiable if and only if G has a clique of size k.
- For each $C_r=\ell_1^r\vee\ell_2^r\vee\ell_3^r$, we include three vertices v_1^r , v_2^r , and v_3^r to G.
- There is an edge (v_i^r, v_j^s) in G if and only if $r \neq s$ and ℓ_i^r is not the negation of ℓ_j^s .
- $lue{}$ G can be constructed in polynomial time from ϕ .

- Given a formula $\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_k$ in 3-CNF.
- We will construct a graph G such that ϕ is satisfiable if and only if G has a clique of size k.
- For each $C_r=\ell_1^r\vee\ell_2^r\vee\ell_3^r$, we include three vertices $v_1^r,\,v_2^r,\,$ and v_3^r to G.
- There is an edge (v_i^r,v_j^s) in G if and only if r
 eq s and ℓ_i^r is not the negation of ℓ_j^s .
- $lue{lue}G$ can be constructed in polynomial time from ϕ .
- We will show:

$$\langle \phi \rangle \in 3$$
-CNF-SAT $\Leftrightarrow \langle G, k \rangle \in \texttt{CLIQUE}$.

Need to show that ϕ is satisfiable if and only if G has a clique of size k.

- Need to show that ϕ is satisfiable if and only if G has a clique of size k.
- Assume first that $\langle \phi \rangle \in 3$ -CNF-SAT.

- Need to show that ϕ is satisfiable if and only if G has a clique of size k.
- Assume first that $\langle \phi \rangle \in 3$ -CNF-SAT.
- In a satisfying assignment for ϕ , each clause C_i of ϕ has at least one true literal.

- Need to show that ϕ is satisfiable if and only if G has a clique of size k.
- Assume first that $\langle \phi \rangle \in 3$ -CNF-SAT.
- In a satisfying assignment for ϕ , each clause C_i of ϕ has at least one true literal.
- \blacksquare Pick the corresponding vertex in G.

- Need to show that ϕ is satisfiable if and only if G has a clique of size k.
- Assume first that $\langle \phi \rangle \in 3$ -CNF-SAT.
- In a satisfying assignment for ϕ , each clause C_i of ϕ has at least one true literal.
- $lue{}$ Pick the corresponding vertex in G.
- This gives a total of k vertices.

- Need to show that ϕ is satisfiable if and only if G has a clique of size k.
- Assume first that $\langle \phi \rangle \in 3$ -CNF-SAT.
- In a satisfying assignment for ϕ , each clause C_i of ϕ has at least one true literal.
- $lue{}$ Pick the corresponding vertex in G.
- This gives a total of k vertices.
- There must be an edge between each pair of these vertices since no picked literal can be the negation of another picked literal.

- Need to show that ϕ is satisfiable if and only if G has a clique of size k.
- Assume first that $\langle \phi \rangle \in 3$ -CNF-SAT.
- In a satisfying assignment for ϕ , each clause C_i of ϕ has at least one true literal.
- $lue{}$ Pick the corresponding vertex in G.
- This gives a total of k vertices.
- There must be an edge between each pair of these vertices since no picked literal can be the negation of another picked literal.
- Hence, G has a clique of size k so $\langle G, k \rangle \in CLIQUE$.

Remains to show that if G has a clique of size k then ϕ is satisfiable.

- Remains to show that if G has a clique of size k then ϕ is satisfiable.
- Let V' be a clique of G of size k.

- Remains to show that if G has a clique of size k then ϕ is satisfiable.
- Let V' be a clique of G of size k.
- Each vertex triple of G has exactly one vertex in V'.

- Remains to show that if G has a clique of size k then ϕ is satisfiable.
- Let V' be a clique of G of size k.
- Each vertex triple of G has exactly one vertex in V'.
- We assign 1 to the literal of ϕ corresponding to that vertex.

- Remains to show that if G has a clique of size k then ϕ is satisfiable.
- Let V' be a clique of G of size k.
- Each vertex triple of G has exactly one vertex in V'.
- We assign 1 to the literal of ϕ corresponding to that vertex.
- No variable of ϕ is assigned both 0 and 1 in this way since there is no edge between a variable and its negation in G.

- Remains to show that if G has a clique of size k then ϕ is satisfiable.
- Let V' be a clique of G of size k.
- Each vertex triple of G has exactly one vertex in V'.
- We assign 1 to the literal of ϕ corresponding to that vertex.
- No variable of ϕ is assigned both 0 and 1 in this way since there is no edge between a variable and its negation in G.
- This gives a legal assignment of values to variables.

- Remains to show that if G has a clique of size k then ϕ is satisfiable.
- Let V' be a clique of G of size k.
- Each vertex triple of G has exactly one vertex in V'.
- We assign 1 to the literal of ϕ corresponding to that vertex.
- No variable of ϕ is assigned both 0 and 1 in this way since there is no edge between a variable and its negation in G.
- This gives a legal assignment of values to variables.
- This assignment satisfies ϕ as it makes each clause true.

A vertex cover of G = (V, E) is a subset $V' \subseteq V$ such that every edge of E has at least one endpoint in V'.

- A vertex cover of G = (V, E) is a subset $V' \subseteq V$ such that every edge of E has at least one endpoint in V'.
- Vertex cover problem: find a minimum-size vertex cover of *G*.

- A vertex cover of G = (V, E) is a subset $V' \subseteq V$ such that every edge of E has at least one endpoint in V'.
- Vertex cover problem: find a minimum-size vertex cover of *G*.
- Restating as a decision problem: does *G* have a vertex cover of a given size *k*?

- A vertex cover of G = (V, E) is a subset $V' \subseteq V$ such that every edge of E has at least one endpoint in V'.
- Vertex cover problem: find a minimum-size vertex cover of G.
- Restating as a decision problem: does *G* have a vertex cover of a given size *k*?
- Stated as a language:

VERTEX-COVER = $\{\langle G, k \rangle | G \text{ has a vertex cover} \}$ of size $k \}$.

- A vertex cover of G = (V, E) is a subset $V' \subseteq V$ such that every edge of E has at least one endpoint in V'.
- Vertex cover problem: find a minimum-size vertex cover of G.
- Restating as a decision problem: does *G* have a vertex cover of a given size *k*?
- Stated as a language:

We will show that VERTEX-COVER is NP-complete.

Verification algorithm takes an instance $\langle G, k \rangle$ and a certificate denoting a subset V' of vertices of G.

- Verification algorithm takes an instance $\langle G, k \rangle$ and a certificate denoting a subset V' of vertices of G.
- It checks that V' has size k and that every edge of G is incident to at least one vertex of V'.

- Verification algorithm takes an instance $\langle G, k \rangle$ and a certificate denoting a subset V' of vertices of G.
- It checks that V' has size k and that every edge of G is incident to at least one vertex of V'.
- Can easily be done in polynomial time.

- Verification algorithm takes an instance $\langle G, k \rangle$ and a certificate denoting a subset V' of vertices of G.
- It checks that V' has size k and that every edge of G is incident to at least one vertex of V'.
- Can easily be done in polynomial time.
- Hence, VERTEX-COVER ∈ NP.

We show CLIQUE \leq_P VERTEX-COVER.

- We show CLIQUE \leq_P VERTEX-COVER.
- Given instance $\langle G, k \rangle$ of the clique problem.

- We show CLIQUE \leq_P VERTEX-COVER.
- Given instance $\langle G, k \rangle$ of the clique problem.
- Let n denote the number of vertices of G.

- We show CLIQUE \leq_P VERTEX-COVER.
- Given instance $\langle G, k \rangle$ of the clique problem.
- Let n denote the number of vertices of G.
- We transform it in polynomial time to the instance $\langle \overline{G}, n-k \rangle$ of the vertex cover problem.

- We show CLIQUE \leq_P VERTEX-COVER.
- Given instance $\langle G, k \rangle$ of the clique problem.
- Let n denote the number of vertices of G.
- We transform it in polynomial time to the instance $\langle \overline{G}, n-k \rangle$ of the vertex cover problem.
- Here, \overline{G} is the *complement* of G which has an edge between two vertices u and v if and only if there is no edge between u and v in G.

- We show CLIQUE \leq_P VERTEX-COVER.
- Given instance $\langle G, k \rangle$ of the clique problem.
- Let n denote the number of vertices of G.
- We transform it in polynomial time to the instance $\langle \overline{G}, n-k \rangle$ of the vertex cover problem.
- Here, \overline{G} is the *complement* of G which has an edge between two vertices u and v if and only if there is no edge between u and v in G.
- Need to show:

$$\langle G, k \rangle \in \mathtt{CLIQUE} \Leftrightarrow \langle \overline{G}, n-k \rangle \in \mathtt{VERTEX-COVER}.$$

Let G = (V, E) be a complete graph and let c be a non-negative integer cost function on the edge set of G.

- Let G = (V, E) be a complete graph and let c be a non-negative integer cost function on the edge set of G.
- A tour of G is a Hamilton cycle of G.

- Let G = (V, E) be a complete graph and let c be a non-negative integer cost function on the edge set of G.
- \blacksquare A *tour* of G is a Hamilton cycle of G.
- The travelling salesman problem is that of finding a minimum-cost tour of G.

- Let G = (V, E) be a complete graph and let c be a non-negative integer cost function on the edge set of G.
- A tour of G is a Hamilton cycle of G.
- The travelling salesman problem is that of finding a minimum-cost tour of *G*.
- Stated as a language:

TSP = $\{\langle G, c, k \rangle | G \text{ has a tour of cost at most } k \}$.

- Let G = (V, E) be a complete graph and let c be a non-negative integer cost function on the edge set of G.
- A tour of G is a Hamilton cycle of G.
- The travelling salesman problem is that of finding a minimum-cost tour of *G*.
- Stated as a language:

TSP = $\{\langle G, c, k \rangle | G \text{ has a tour of cost at most } k \}$.

Clearly, TSP ∈ NP.

- Let G = (V, E) be a complete graph and let c be a non-negative integer cost function on the edge set of G.
- A tour of G is a Hamilton cycle of G.
- The travelling salesman problem is that of finding a minimum-cost tour of *G*.
- Stated as a language:

TSP = $\{\langle G, c, k \rangle | G \text{ has a tour of cost at most } k \}$.

- Clearly, TSP ∈ NP.
- We show that TSP is NP-complete by:

HAM-CYCLE
$$\leq_P$$
 TSP.

Let G = (V, E) be an instance of the Hamilton-cycle problem.

- Let G = (V, E) be an instance of the Hamilton-cycle problem.
- We construct a complete graph G' = (V, E') on vertex set V.

- Let G = (V, E) be an instance of the Hamilton-cycle problem.
- We construct a complete graph G' = (V, E') on vertex set V.
- $lue{}$ Define a cost function c on E' by

$$c(u,v) = \begin{cases} 0 & \text{if } (u,v) \in E, \\ 1 & \text{if } (u,v) \notin E. \end{cases}$$

- Let G = (V, E) be an instance of the Hamilton-cycle problem.
- We construct a complete graph G' = (V, E') on vertex set V.
- $lue{}$ Define a cost function c on E' by

$$c(u,v) = \begin{cases} 0 & \text{if } (u,v) \in E, \\ 1 & \text{if } (u,v) \notin E. \end{cases}$$

Show that:

$$\langle G \rangle \in \text{HAM-CYCLE} \Leftrightarrow \langle G', c, 0 \rangle \in \text{TSP}.$$