Постановка задачи

Необходимо промоделировать шестизвенный манипулятор KR3 R540 (рисунок 1).

Рисунок 1 – Шестизвенный манипулятор *KR3 R540*

Для решения поставленной задачи воспользуемся библиотекой Simscape Multibody.

В данном файле содержатся параметры, необходимые для моделирования всех звеньев манипулятора, а также достаточно подробно описан процесс создания модели одного звена манипулятора.

Создание звена манипулятора

В данном разделе описан принцип создания звена манипулятора на примере первого звена манипулятора из *DemoManipulator*.

Для начала создадим подсистему *FirstLink*, в которой разместим все блоки, относящиеся к моделируемому звену (рисунок 2), внутреннее наполнение подсистемы представлено на рисунке 3.

FirstLink

Рисунок 2 – Подсистема моделируемого звена

Рисунок 3 — Внутреннее наполнение подсистемы

В подсистеме *FirstLinkPhysics* разместим все блоки библиотеки *Simscape Multibody* следующим образом (рисунок 4).

Рисунок 4 — Внутренне наполнение подсистемы FirstLinkPhysics

Первым делом механическая связь проходит через блок *Rigid Transform*, с помощью которого выполняется преобразование координат добавляемого блока по отношению к системе координат предыдущего блока. В общем случае необходимо выставить смещение и углы поворота для системы координат добавляемого звена такие, чтобы это звено было правильно ориентировано и спозиционировано по отношению к предыдущему. Эти параметры определяются ориентацией осей в 3D модели и геометрическими параметрами самой модели. В случае первого звена необходимо только изменить направление оси Z добавляемого звена на противоположное.

Список требуемых преобразований представлен в таблице 1.

Таблица 1 – Параметры для смещения систем координат

№ звена	Смещение,	Поворот 1,	Поворот 2,
ло звена	[x, y, z], mm	Ось = градусы	Ось = градусы
1	-	X = 180	-
2	[3.8, -20, -160]	Y = -90	Z = 90
3	[-260, 0, 3.5]	Z = 180	-
4	[123.2, -20, 0]	Y = -90	-
5	[0, 0, -135] $Y = 90$		-
6	[64, 0, 0]	Y = -90 -	
End Effector	[0, 0, -11]	-	-

Блок *FirstLinkJoint*, который в библиотеке называется *Revolute Joint*, отвечает за возможность вращения одного тела относительно другого. В нем можно выставить начальное положение, пределы поворота, измеряемые параметры и т.д. Выберем в качестве измеряемых параметров угол, скорость и ускорение, а также зададим предельные углы согласно документации, которую можно найти в файле *KR3 R450 Documentation.pdf*

Последним шагом является добавление 3D модели звена. Сделать это можно с помощью блока *FirstLinkBody*, который в библиотеке называется *File Solid*, отвечает за подгрузку 3D модели тела и настройку инерционных параметров. Рекомендуем использовать модели в формате *step*. Так как имеющиеся у нас 3D модели не отражают реальных характеристик звеньев, то настроим инерционные параметры вручную (рисунок 5).

Рисунок 5 – Окно настройки параметров блока File Solid

Массу, положение центра масс и моменты инерции предлагаем взять согласно таблице 2. Данные значения не являются абсолютно точными, но достаточно сильно отражают реальные параметры манипулятора.

Таблица 2 – Массовые и инерционные параметры звеньев манипулятора

№ звена	Масса,	Положение центра масс, [x, y, z], мм	Моменты инерции, $[I_{xx}, I_{yy}, I_{zz}], \ \kappa \Gamma^* M^2$
1	5.3	[0, 0, -90]	[15.3, 20.5, 5.7]
2	4.4	[-100, 0, 0]	[13.4, 18.7, 6.4]
3	3.6	[75, 0, 0]	[10.9, 17.2, 5.6]
4	3.2	[0, 0, -50]	[5.7, 15.3, 4.1]
5	2.8	[35, 0, 0]	[3.5, 4.2, 0.8]
6	1.1	[0, 0, -5]	[0.9, 0.9, 0.1]
End Effector	0.5	[0, 0, -25]	[0.1 0.1 0.1]

На этом создание подсистемы FirstLinkPhysics завершено.

Далее создадим модель привода, управляющего звеном. Представим его в следующем виде (рисунок 6).

Рисунок 6 – Модель привода

Мы не ставили перед собой задачи сделать привод, физические параметры которого приближены к реальным, поэтому параметры были просто подобраны таким образом, чтобы привод мог поворачивать звено на требуемый угол достаточно быстро и не уходить в колебания.

Для первого звена можно принять параметры привода следующими:

$$\begin{cases} K = 10 \\ K1 = 0.05 \\ K2 = 10 \\ K3 = 300 \\ Kv = 10 \end{cases}$$

Осталось соединить все блоки и модель звена готова.