Week 2 Note

Gradient Descent

- Local Minima and Learning Rate
 - o Gradient descent can get stuck in local minima
 - But this is not an issue in the case of Logistic Regression using Cross-Entropy
 Loss, because the function being optimised is strictly convex
 - Too large learning rate The algorithm may jump across the optimum
 - Too small learning rate It may take a long time to find the optimum
- Differential Curvature

$$E(\vec{w}) = w_1^2 + w_2^2$$
 for example

o Contour plots(等高线图) of the loss function, where each line corresponds to points in the input space where the loss is the same

Steepest descent forms a 90 degree angle with the line

$$E(\vec{w}) = w_1^2 + 4w_2^2$$

 \circ In the elliptical bowl function, the gradients along the w_1 and w_2 axis have different magnitudes

$$rac{\partial E}{\partial w_2} > rac{\partial E}{\partial w_1}$$
 depending on the location

- The path of the steepest descent in most loss functions is only an instantaneous direction of best movement, and is not eh best direction in the longer term
- Standardisation
 - Different partial dervatives with respect to different weights can be a result of different input variables having different scales and variances affecting the loss function to different extents
 - Standardising input variables (e.g., by deducting the mean from each input variable and then dividing by the standard deviation) can help with this
- Difficult Topologies(可能存在的, GD非最优解的情况)

- Smaller gradient, slow due to small steps
- Big gradient, likely to overshoot

Newton-Raphson

$$w=w-rac{E'(w)}{E''(w)}$$

• Taylor Polynomial of degree n can be used to approximate a function E(w) at w_0 :

$$f(x) = \sin(x) + \cos(x)$$

$$T_n(w) = \sum_{k=0}^n rac{E^k(w_0)}{k!} (w-w_0)^k$$

where $E^{(k)}(w_0)$ is the k-th order derivative of E at w_0

在知道函数在 w_0 处的所有信息(即其值及其所有导数的值)的情况下,如何在该点附近近似函数的值

ullet Taylor polynomial of degree 2 to approximate our loss function at w_0

$$rac{d}{dw}(E(w_0)+(w-w_0)E'(w_0)+rac{(w-w_0)^2}{w}E''(w_0))=0$$

this will lead to the following weight update rule:

$$w:=w-rac{E'(w)}{E''(w)}$$

Newton-Raphson Method: Multivariate Case

• The Hessian matix

$$egin{aligned} rac{\partial}{\partial x_i}(rac{\partial f}{\partial x_i}) &= rac{\partial^2 f}{\partial x_i^2}, rac{\partial}{\partial x_i}(rac{\partial f}{\partial x_j}) = rac{\partial^2 f}{\partial x_i \partial x_j} \ H(f(ec{x})) &= H_f(ec{x}) &= egin{bmatrix} rac{\partial^2 f}{\partial x_0^2} & rac{\partial^2 f}{\partial x_0 \partial x_1} & \cdots & rac{\partial^2 f}{\partial x_0 \partial x_n} \ rac{\partial^2 f}{\partial x_1 \partial x_0} & rac{\partial^2 f}{\partial x_1^2} & \cdots & rac{\partial^2 f}{\partial x_1 \partial x_n} \ dots & dots & \ddots & dots \ rac{\partial^2 f}{\partial x_d \partial x_1} & rac{\partial^2 f}{\partial x_d \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_d^2} \ \end{pmatrix} \end{aligned}$$

- Weight Update Rule
 - Univariate update rule:

$$w=w-rac{E'(w)}{E''(w)}$$

Multivariate update rule:

$$ec{w} = ec{w} - H_E^{-1}(ec{w}) orall E(ec{w})$$

where $H_E^{-1}(\vec{w})$ is the inverse of the Hessian at the old \vec{w} and $\nabla E(\vec{w})$ is the gradient at the old w

• Logistic Regression - Iterative Reweighted Least Squares

$$ec{w} = ec{w} - H_E^{-1}(ec{w}) orall E(ec{w}) \ H_E(ec{w}) = \sum_{i=1}^N p(1|ec{x}^{(i)},ec{w}) (1-p(1|ec{x}^{(i)},ec{w})) ec{x}^{(i)} ec{x}^{(i)^T} \
onumber \ orall_E(ec{w}) = \sum_{i=1}^N (p(1|ec{x}^{(i)},ec{w}) - y^{(i)}) ec{x}^{(i)}$$

Summary - Gradient Descent

Gradient descent may require a large number of iterations depending on the shape of the loss function.

- Iterative Reweighted Least Squares / Newton-Raphson can be used in an attempt to reach the minimum with less steps.
- It does so by creating a quadratic approximation of the loss function and finding the minimum of this quadratic approximation.
- This results in making use of information about the curvature of the loss function to:
- avoid large steps in directions where the gradient is changing too much or
- increase the size of the steps in directions where the gradient is not changing much

Nonlinear Transformations

Higher dimensional embedding/feature space:

:
$$\phi(ec{x}) = \underbrace{(x_1, x_1^2)^T}_{ ext{feature transform/basis expansion}}$$
 basis functions

- Example for polynomial
 - o of order 2 and a problem with 1 input variables:

$$ec{x} = (1, x_1) o \phi(ec{x}) = (1, x_1, x_1^2)^T$$

o of order 2 and a problem with 2 input variables:

$$ec{x} = (1, x_1, x_2)^T o \phi(ec{x}) = (1, x_1, x_2, x_1^2, x_2^2, x_1 x_2)^T$$

If we follow this idea, any decision boundary that is a polynomial of order p in \vec{x} is linear in $\phi(\vec{x})$

So, we can adopt linear models in the higher dimensional embedding formed by $\phi(\vec{x})$, to learn decision boundaries corresponding to polynomials of order p in x

Adopting Nonlinear Transformations in Logistic Regression

$$egin{aligned} logit(p_1) &= ec{w}^T \phi(ec{x}) \ p_1 &= p(1|\phi(ec{x}), ec{w}) = rac{e^{ec{w}^T \phi(ec{x})}}{1 + e^{ec{w}^T \phi(ec{x})}} \
m{Given} \ J &= \{(\phi(ec{x}^{(1)}, y^1), (\phi(ec{x}^{(2)}, y^2), ..., (\phi(ec{x}^{(N)}, y^N)), rg \min_{ec{w}} E(ec{w}) \ E(ec{w}) &= -\sum_{i=1}^N y^i \ln p(1|\phi(ec{x}^{(i)}, ec{w}) + (1 - y^i) \ln (1 - p(1|\phi(ec{x}^{(i)}, ec{w})) \
m{}
abla E(ec{w}) &= \sum_{i=1}^N (p(1|\phi(ec{x}^{(i)}), ec{w}) - y^i) \phi(ec{x}^{(i)} \
m{}
abla E(ec{w}) &= \sum_{i=1}^N p(1|\phi(ec{x})^i, ec{w}) (1 - p(1|\phi(ec{x}^{(i)}), ec{w})) \phi(ec{x}^{(i)})^T \end{aligned}$$

- 1. Choose a nonlinear transformation.
- 2. Apply it to the training examples so that they have the format $(\phi(\vec{x}),y)$
- 3. Create a linear model $h'(\phi(\vec{x}))$ based on the transformed training examples
- 4. Determine the (nonlinear) model $h(\vec{x})$ by replacing $\phi_I(\vec{x})$ with the corresponding value that depends on \vec{x}
 - Advantages of Linear Models
 - o Linear models are often associated to relatively efficient learning algorithms
 - They can be robust and have good generalisation properties
 - Caveats of Nonlinear Transforms
 - The number of dimensions may become very high
 - Choosing a nonlinear transformation that fits the training examples well does not necessarily mean that there will be good generalisation

Summary - Nonlinear Transformations

- We can create nonlinear transformations to obtain a higher dimensional embedding where our problems become linearly separable, even if they were not linearly separable in the original space
- We can then adopt our original logistic regression to create a linear decision boundary in this higher dimensional embedding
- This idea can is also applicable to other linear models