Kurs:Mathematik für Anwender/Teil I/52/Klausur mit Lösungen

Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 \sum

Punkte 3322523253 4 2 5 0 1 5 1 3 5 56

Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

- 1. Eine streng wachsende Funktion $f: \mathbb{R} \to \mathbb{R}$.
- 2. Eine Reihe $\sum_{k=0}^{\infty} a_k$ von reellen Zahlen a_k .
- 3. Der natürliche Logarithmus

$$\ln: \mathbb{R}_+ \longrightarrow \mathbb{R}.$$

- 4. Eine stetig differenzierbare Funktion $f: \mathbb{R} \to \mathbb{R}$.
- 5. Das Oberintegral einer nach oben beschränkten Funktion

$$f:I\longrightarrow \mathbb{R}$$

auf einem beschränkten Intervall $I \subseteq \mathbb{R}$.

6. Die Determinante eines Endomorphismus

$$\varphi : V \longrightarrow V$$

auf einem endlichdimensionalen Vektorraum $oldsymbol{V}$.

Lösung

1. Die Funktion

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

heißt streng wachsend, wenn

$$f(x') > f(x)$$
 für alle $x, x' \in I$ mit $x' > x$ gilt.

2. Unter der Reihe $\sum_{k=0}^{\infty} a_k$ versteht man die Folge $(s_n)_{n\in\mathbb{N}}$ der Partialsummen

$$s_n = \sum_{k=0}^n a_k$$
 .

3. Der natürliche Logarithmus

$$\ln: \mathbb{R}_+ \longrightarrow \mathbb{R}, \ x \longmapsto \ln x,$$

ist als die Umkehrfunktion der reellen Exponentialfunktion definiert.

- 4. Man sagt, dass f stetig differenzierbar ist, wenn f differenzierbar ist und die Ableitung f' stetig ist.
- 5. Das Oberintegral ist definiert als das Infimum von sämtlichen Obersummen von oberen Treppenfunktionen von f.
- 6. Die Abbildung $oldsymbol{arphi}$ werde bezüglich einer Basis durch die Matrix $oldsymbol{M}$ beschrieben. Dann nennt man

$$\det \varphi := \det M$$

die *Determinante* der linearen Abbildung φ .

Aufgabe (3 Punkte)

Formuliere die folgenden Sätze.

- 1. Der Satz über die algebraische Struktur der komplexen Zahlen.
- 2. Die *Kettenregel* für differenzierbare Funktionen $f,g:\mathbb{R} \to \mathbb{R}$.
- 3. Der Satz über die mathematische Struktur der Lösungsmenge eines homogenen linearen Gleichungssystems.

Lösung

- 1. Die komplexen Zahlen bilden einen Körper.
- 2. Seien

$$D,E\subseteq \mathbb{R}$$

Teilmengen und seien

$$f:D\longrightarrow \mathbb{R}$$

und

$$g:E\longrightarrow \mathbb{R}$$

Funktionen mit $f(D)\subseteq E$. Es sei f in a differenzierbar und g sei in b:=f(a) differenzierbar. Dann ist auch die Hintereinanderschaltung

$$g \circ f: D \longrightarrow \mathbb{R}$$

in a differenzierbar mit der Ableitung

$$(g \circ f)'(a) = g'(f(a)) \cdot f'(a).$$

3. Die Menge aller Lösungen eines homogenen linearen Gleichungssystems

$$egin{array}{lll} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n&=&0 \ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n&=&0 \ &\vdots&\vdots&\vdots&\vdots \ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n&=&0 \end{array}$$

über einem Körper $oldsymbol{K}$ ist ein Untervektorraum des $oldsymbol{K}^n$

(mit komponentenweiser Addition und Skalarmultiplikation).

Aufgabe (2 Punkte)

Ein Flugzeug soll von Osnabrück aus zu einem Zielort auf der Südhalbkugel fliegen. Kann es kürzer sein, in Richtung Norden zu fliegen?

Lösung Flugzeug/Osnabrück/Südhalbkugel/Aufgabe/Lösung

Aufgabe (2 (1+1) Punkte)

Wir betrachten auf der Menge

$$M = \{a, b, c, d\}$$

die durch die Tabelle

 $\star abcd$

abaca

bdabb

cabcc

dbddd

gegebene Verknüpfung *.

1. Berechne

$$b \star (a \star (d \star a)).$$

2. Besitzt die Verknüpfung ★ ein neutrales Element?

Lösung

1. Es ist

$$b\star(a\star(d\star a))=b\star(a\star b)=b\star a=d\,.$$

2. Es gibt kein neutrales Element, da dann eine Zeile eine Wiederholung der Leitzeile sein müsste, was nicht der Fall ist.

Aufgabe (5 Punkte)

Vergleiche

$$\sqrt{3} + \sqrt{10}$$
 und $\sqrt{5} + \sqrt{7}$.

Lösung

Wir fragen uns, ob

$$\sqrt{3} + \sqrt{10} > \sqrt{5} + \sqrt{7}$$

ist. Dies ist, da das Quadrieren von positiven Zahlen eine Äquivalenzumformung für die Größenbeziehung ist, äquivalent zu

$$3+10+2\sqrt{30}=\left(\sqrt{3}+\sqrt{10}
ight)^2>\left(\sqrt{5}+\sqrt{7}
ight)^2=5+7+2\sqrt{35}\,.$$

Dies ist durch Subtraktion mit 12 äquivalent zu

$$1 + 2\sqrt{30} > 2\sqrt{35}$$
 .

Durch Quadrieren ist dies äquivalent zu

$$1 + 4 \cdot 30 + 4 \cdot \sqrt{30} = (1 + 2\sqrt{30})^2 > 4 \cdot 35 = 140$$
.

Dies ist äquivalent zu

$$4\sqrt{30} > 19$$
.

Quadrieren liefert

$$480 = 16 \cdot 30 > 19^2 = 361,$$

was stimmt. Also ist

$$\sqrt{3} + \sqrt{10} > \sqrt{5} + \sqrt{7}$$
.

Aufgabe (2 Punkte)

Es sei $z=a+b\mathbf{i}$ eine komplexe Zahl mit b<0. Zeige, dass

$$v=rac{1}{\sqrt{2}}\Bigl(-\sqrt{|z|+a}+\mathrm{i}\sqrt{|z|-a}\Bigr)$$

eine Quadratwurzel von z ist.

Lösung

Es ist

$$egin{aligned} v^2 &= \left(rac{1}{\sqrt{2}}\Big(-\sqrt{|z|+a}+\mathrm{i}\sqrt{|z|-a}\Big)
ight)^2 \ &= rac{1}{2}\Big(|z|+a-(|z|-a)-2\mathrm{i}\sqrt{(|z|+a)(|z|-a)}\Big) \ &= rac{1}{2}\Big(2a-2\mathrm{i}\sqrt{|z|^2-a^2}\Big) \ &= rac{1}{2}\Big(2a-2\mathrm{i}\sqrt{b^2}\Big) \ &= rac{1}{2}(2a-2\mathrm{i}(-b)) \ &= a+b\mathrm{i}. \end{aligned}$$

Aufgabe (3 (1+2) Punkte)

1. Berechne das Produkt

$$\left(2-3X+X^2\right)\cdot\left(-5+4X-3X^2\right)$$

im Polynomring $\mathbb{Q}[X]$.

2. Berechne das Produkt

$$\left(2-3\sqrt{2}+\sqrt{2}^2
ight)\cdot\left(-5+4\sqrt{2}-3\sqrt{2}^2
ight)$$

in \mathbb{R} auf zwei verschiedene Arten.

Lösung

1. Es ist

$$(2-3X+X^2)\cdot (-5+4X-3X^2) = -10+8X+15X-6X^2-5X^2-12X^2+4X^3+9X^3-3X^4 = -10+23X-23X^2+13X^3-3X^4.$$

2. Es ist einerseits direkt

$$egin{aligned} (2-3\sqrt{2}+\sqrt{2}^2)\cdot(-5+4\sqrt{2}-3\sqrt{2}^2) &= \left(4-3\sqrt{2}
ight)\left(-11+4\sqrt{2}
ight) \ &= -44-12\cdot 2+(16+33)\sqrt{2} \ &= -68+49\sqrt{2}. \end{aligned}$$

Andererseits kann man im Ergebnis von Teil 1 die Variable X durch $\sqrt{2}$ ersetzen und erhält

$$-10 + 23\sqrt{2} - 23\sqrt{2}^2 + 13\sqrt{2}^3 - 3\sqrt{2}^4 = -10 + 23\sqrt{2} - 23\cdot 2 + 13\cdot 2\sqrt{2} - 3\cdot 4 = -68 + 49\sqrt{2}.$$

Aufgabe (2 Punkte)

Bestimme eine Symmetrieachse für den Graphen der Funktion

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \ x \longmapsto x^2 - 5x - 9.$$

Lösung

Wir schreiben

$$f(x) = x^2 - 5x - 9$$

$$= \left(x - \frac{5}{2}\right)^2 - \frac{25}{4} - 9$$

$$= \left(x - \frac{5}{2}\right)^2 - \frac{61}{4}.$$

Daher ist die durch $oldsymbol{x}=rac{\mathbf{5}}{\mathbf{2}}$ gegebene Gerade eine Spiegelungsachse für den Graphen.

Aufgabe (5 Punkte)

Es seien $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ und $(z_n)_{n\in\mathbb{N}}$ drei reelle Folgen. Es gelte $x_n \leq y_n \leq z_n$ fü**r** alle $n \in \mathbb{N}$ und $(x_n)_{n\in\mathbb{N}}$ und $(z_n)_{n\in\mathbb{N}}$ konvergieren beide gegen den gleichen Grenzwert a. Zeige, dass dann auch $(y_n)_{n\in\mathbb{N}}$ gegen diesen Grenzwert a konvergiert.

Lösung

Es ist

$$x_n-a\leq y_n-a\leq z_n-a$$
.

Bei $y_n-a\geq 0$ ist somit

$$|y_n-a|\leq |z_n-a|$$

und bei $y_n-a\leq 0$ ist

$$|y_n-a|\leq |x_n-a|$$
.

Daher ist stets

$$|y_n-a|\leq \max\left(|x_n-a|,|z_n-a|\right).$$

Für ein vorgegebenes $\epsilon>0$ gibt es aufgrund der Konvergenz der beiden äußeren Folgen gegen a natürliche Zahlen n_1 und n_2 derart, dass

$$|x_n-a|\leq \epsilon$$

für $n \geq n_1$ und

$$|z_n-a|\leq \epsilon$$

für $n \geq n_2$ gilt. Für $n \geq n_0 = \max{(n_1, n_2)}$ gilt daher

$$|y_n-a|\leq \epsilon$$
.

Dies bedeutet die Konvergenz von y_n gegen a.

Aufgabe (3 Punkte)

Eine reelle Folge $(x_n)_{n\in\mathbb{N}}$ sei durch einen Anfangswert $x_0\in\mathbb{R}$ und durch die Rekursionsvorschrift

$$x_{n+1} = -x_n$$

gegeben. Bestimme die Anfangswerte, für die diese Folge konvergiert.

Lösung

Bei $x_0=0$ ist die Folge konstant gleich 0. Diese Folge konvergiert gegen 0. Für jeden anderen Startwert $x_0 \neq 0$ konvergiert die Folge nicht. Wegen

$$-\left(-x
ight) =x$$

wechseln sich in der Folge x_0 und $-x_0$ ab, so dass abwechselnd eine feste positive und eine feste negative Zahl auftreten. Eine solche Folge kann aber nicht konvergieren.

Aufgabe (4 Punkte)

Man gebe ein quadratisches Polynom an, dessen Graph die Diagonale und die Gegendiagonale bei y=1 jeweils tangential schneidet.

Lösung

Das gesuchte Polynom sei

$$f(x) = ax^2 + bx + c.$$

Dann ist

$$f'(x)=2ax+b.$$

Die Bedingung, dass der Graph zu $m{f}$ die Diagonale und die Gegendiagonale bei $m{y}=m{1}$ schneidet, bedeutet

$$a + b + c = 1$$
 und $a - b + c = 1$.

Die Steigung der Diagonale ist 1. Da der Schnitt tangential sein soll, bedeutet dies

$$2a + b = 1$$
.

Die Steigung der Gegendiagonale ist -1. Dies bedeutet somit

$$-2a+b=-1.$$

Die Summe der beiden letzten Gleichungen ergibt direkt

$$b = 0$$

und somit

$$a=rac{1}{2}$$
 .

Daraus ergibt sich mit der ersten (oder der zweiten) Gleichung

$$c=rac{1}{2}$$
 .

Das gesuchte Polynom ist also

$$f(x) = \frac{1}{2}x^2 + \frac{1}{2}$$
.

Aufgabe (2 Punkte)

Bestimme die Ableitung der Funktion

$$\mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto \sin^2(\cos x).$$

Lösung

Die Ableitung von $\sin^2(\cos x)$ ist

$$-2\sin(\cos x)(\cos(\cos x))\sin x.$$

Aufgabe (5 Punkte)

Beweise den Satz über die Ableitung in einem Extremum.

Lösung

Wir können annehmen, dass f ein lokales Maximum in c besitzt. Es gibt also ein $\epsilon>0$ mit $f(x)\leq f(c)$ für alle $x\in [c-\epsilon,c+\epsilon]$. Es sei $(s_n)_{n\in\mathbb{N}}$ eine Folge mit $c-\epsilon\leq s_n< c$, die gegen c ("von unten") konvergiere. Dann ist $s_n-c<0$ und $f(s_n)-f(c)\leq 0$ und somit ist der Differenzenquotient

$$\frac{f(s_n)-f(c)}{s_n-c}\geq 0\,,$$

was sich dann nach Lemma 7.11 (Mathematik für Anwender (Osnabrück 2019-2020)) auf den Limes, also den Differentialquotienten, überträgt. Also ist $f'(c) \geq 0$. Für eine Folge $(t_n)_{n \in \mathbb{N}}$ mit $c+\epsilon \geq t_n > c$ gilt andererseits

$$\frac{f(t_n)-f(c)}{t_n-c}\leq 0.$$

Daher ist auch $f'(c) \leq 0$ und somit ist insgesamt f'(c) = 0.

Aufgabe (0 Punkte)

Lösung / Aufgabe / Lösung

Aufgabe (1 Punkt)

Bestimme (ohne Begründung), welche der folgenden skizzierten geometrischen Objekte im \mathbb{R}^2 als Lösungsmenge eines linearen (inhomogenen) Gleichungssystems auftreten können (man denke sich die Objekte ins Unendliche fortgesetzt).

1.

MWWM

2.

3.

4.

5.

•

Lösung

2 (Gerade) und 5 (Punkt) können als Lösungsmenge eines Gleichungssystems auftreten, die anderen nicht.

Aufgabe (5 (1+1+1+1+1) Punkte)

Es sei $\mathfrak{v}=v_1,v_2,v_3$ eine Basis eines dreidimensionalen K-Vektorraumes V.

- a) Zeige, dass $\mathfrak{w}=v_1,v_1+v_2,v_2+v_3$ ebenfalls eine Basis von V ist.
- b) Bestimme die Übergangsmatrix $M_{\mathfrak{v}}^{\mathfrak{w}}$.
- c) Bestimme die Übergangsmatrix $oldsymbol{M_{\mathrm{m}}^{\mathfrak{v}}}$
- d) Berechne die Koordinaten bezüglich der Basis $\mathfrak v$ für denjenigen Vektor, der bezüglich der Basis $\mathfrak w$ die Koordinaten $\begin{pmatrix} 4 \\ 8 \\ -9 \end{pmatrix}$ besitzt.
- e) Berechne die Koordinaten bezüglich der Basis $\mathfrak w$ für denjenigen Vektor, der bezüglich der Basis $\mathfrak v$ die Koordinaten $\begin{pmatrix} 3 \\ -7 \\ 5 \end{pmatrix}$ besitzt.

Lösung

a) Es ist

$$v_2=w_2-w_1$$

und

$$v_3 = w_3 - w_2 + w_1$$
.

Daher ist w_1, w_2, w_3 ebenfalls ein Erzeugendensystem von V und somit eine Basis, da die Dimension 3 ist.

b) In den Spalten von $M_{\mathfrak{v}}^{\mathsf{tv}}$ müssen die Koordinaten der Vektoren w_j bezüglich der Basis v_i stehen, also ist

$$M_{\mathfrak{v}}^{\mathfrak{w}} = egin{pmatrix} 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{pmatrix}.$$

c) Nach a) ist

$$M_{\mathfrak{w}}^{\mathfrak{v}} = egin{pmatrix} 1 & -1 & 1 \ 0 & 1 & -1 \ 0 & 0 & 1 \end{pmatrix}.$$

d) Die Koordinaten ergeben sich aus

$$M_{\mathfrak{v}}^{\mathfrak{w}} \left(egin{array}{c} 4 \ 8 \ -9 \end{array}
ight) = \left(egin{array}{ccc} 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{array}
ight) \left(egin{array}{c} 4 \ 8 \ -9 \end{array}
ight) = \left(egin{array}{c} 12 \ -1 \ -9 \end{array}
ight).$$

e) Die Koordinaten ergeben sich aus

$$M^{\mathfrak{v}}_{\mathfrak{w}} \left(egin{array}{c} 3 \ -7 \ 5 \end{array}
ight) = \left(egin{array}{ccc} 1 & -1 & 1 \ 0 & 1 & -1 \ 0 & 0 & 1 \end{array}
ight) \left(egin{array}{c} 3 \ -7 \ 5 \end{array}
ight) = \left(egin{array}{c} 15 \ -12 \ 5 \end{array}
ight).$$

Aufgabe (1 Punkt)

Bestimme den Rang der Matrix

$$\left(egin{array}{cccc} 1 & x & x^2 \ x & x^2 & x^3 \ x^2 & x^3 & x^4 \end{array}
ight)$$

zu $x \in K$.

Lösung

Die zweite Zeile ergibt sich aus der ersten Zeile durch Multiplikation mit x, die dritte Zeile ergibt sich aus der ersten Zeile durch Multiplikation mit x^2 . Somit ist der Rang maximal x. Wegen der x links oben ist der Rang genau x.

Aufgabe (3 Punkte)

Bestimme die inverse Matrix zu

$$\begin{pmatrix} 1 & 12 & 0 \\ 3 & 0 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

Lösung

$$\begin{pmatrix} 1 & 12 & 0 \\ 3 & 0 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 12 & 0 \\ 0 & -36 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix}$$

$$\begin{pmatrix} 1 & 12 & 0 \\ 0 & -36 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -3 & 1 & -\frac{1}{2} \\ 0 & 0 & \frac{1}{2} \end{pmatrix}$$

$$\begin{pmatrix} 1 & 12 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{12} & -\frac{1}{36} & \frac{1}{72} \\ 0 & 0 & \frac{1}{2} \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & \frac{1}{3} & -\frac{1}{6} \\ \frac{1}{12} & -\frac{1}{36} & \frac{1}{72} \\ 0 & 0 & \frac{1}{2} \end{pmatrix}$$

Aufgabe (5 (4+1) Punkte)

Es seien M,N quadratische Matrizen über einem Körper K, die zueinander in der Beziehung

$$N = BMB^{-1}$$

mit einer invertierbaren Matrix $m{B}$ stehen. Zeige, dass die Eigenwerte von $m{M}$ mit den Eigenwerten zu $m{N}$ übereinstimmen, und zwar

- 1. direkt,
- 2. mit Hilfe des charakteristischen Polynoms.

Lösung

1. Es sei λ ein Eigenwert zu M. Dann gibt es ein von 0 verschiedenes Koordinatentupel

$$egin{pmatrix} x_1 \ dots \ x_n \end{pmatrix}$$
 mit

$$Megin{pmatrix} x_1 \ dots \ x_n \end{pmatrix} = \lambda egin{pmatrix} x_1 \ dots \ x_n \end{pmatrix}.$$

Es sei

$$egin{pmatrix} x_1' \ dots \ x_n' \end{pmatrix} = B egin{pmatrix} x_1 \ dots \ x_n \end{pmatrix},$$

was ebenfalls nicht 0 ist. Dann ist

$$N \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix} = (BMB^{-1}) \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix}$$

$$= (BMB^{-1})B \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$= BM \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$= B\lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$= \lambda B \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$= \lambda \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix}$$

$$= \lambda \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix}$$

d.h. λ ist auch ein Eigenwert von N. Wegen

$$M = B^{-1}NB$$

ist die Situation symmetrisch, daher sind Eigenwerte von $oldsymbol{N}$ auch Eigenwerte von $oldsymbol{M}$.

2. Aufgrund des Determinantenmultiplikationssatzes besitzen M und N das gleiche charakteristische Polynom. Da die Eigenwerte genau die Nullstellen des charakteristischen Polynoms sind, stimmen die Eigenwerte überein.

Kurs:Ma	thematik für Anwender/Teil I/52/Klausur mit Lösungen – Wik	https://de.m.wikiversity.org/wiki/Kurs:Mathematik_für_Anwender/	Teil