ISYE 6420 Fall 2020 Final

Xiao Nan

GT Account: nxiao30

GT ID: 903472104

1. Vasoconstriction. The data give the presence or absence $(y_i = 1 \text{ or } 0)$ of vasoconstriction in the skin of the fingers following inhalation of a certain volume of air (v_i) at a certain average rate (r_i) . Total number of records is 39. The candidate models for analyzing the relationship are the usual logit, probit, cloglog, loglog, and cauchyit models.

Data are given as follows.

y:1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,1

v:3.7, 3.5, 1.25, 0.75, 0.8, 0.7, 0.6, 1.1, 0.9, 0.9, 0.8, 0.55, 0.6, 1.4, 0.75, 2.3, 3.2, 0.85, 1.7, 1.8, 0.4, 0.95, 1.35, 1.5, 1.6, 0.6, 1.8, 0.95, 1.9, 1.6, 2.7, 2.35, 1.1, 1.1, 1.2, 0.8, 0.95, 0.75, 1.3

r: 0.825, 1.09, 2.5, 1.5, 3.2, 3.5, 0.75, 1.7, 0.75, 0.45, 0.57, 2.75, 3, 2.33, 3.75, 1.64, 1.6, 1.415, 1.06, 1.8, 2, 1.36, 1.35, 1.36, 1.78, 1.5, 1.5, 1.9, 0.95, 0.4, 0.75, 0.3, 1.83, 2.2, 2, 3.33, 1.9, 1.9, 1.625

(a) Transform covariates v and r as

$$x_1 = log(10 \times v), x_2 = log(10 \times r).$$

- (b) Estimate posterior means for coefficients in the logit model. Use noninformative priors on all coefficients.
- (c) For a subject with v = r = 1.5, find the probability of vasoconstriction.
- (d) Compare with the result of probit model. Which has smaller deviance?

ANSWER

(b)

Logit:

$$\log \frac{p}{1-p} = F^{-1}(p) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

F is logistic cdf.

From the matlab code attached, we can find that

$$\beta_0 = -25.6083, \beta_1 = 5.2205, \beta_2 = 4.6312$$

So

$$F^{-1}(p) = -25.6083 + 5.2205 \times x_1 + 4.6312 \times x_2$$

(c)

$$ypred = \frac{1}{1 + \exp\left\{-(\beta_0 + \beta_1 \times x_1^* + \beta_2 \times x_2^*)\right\}}$$

$$= \frac{1}{1 + \exp\left\{-(-25.6083 + 5.2205 \times \log(10 \times 1.5) + 4.6312 \times \log(10 \times 1.5)\right\}}$$

$$= 0.7447$$

(d)

Probit:

$$F^{-1}(p) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

F is normal cdf

Deviance

$$D = -2log \frac{likelihood\ of\ the\ fitted\ model}{likelihood\ of\ the\ saturated\ model} = -2\sum_{i=1}^k [y_ilog\widehat{p_i} + (1-y_i)log\ (1-\widehat{p_i})]$$

From the attached matlab code,

Logit Deviance = 29.2640 Probit Deviance = 29.3215

Logit model has a smaller deviance.

Matlab code

```
%%% problem 1
v = [3.7, 3.5, 1.25, 0.75, 0.8, 0.7, 0.6, 1.1, 0.9, 0.9, 0.8, 0.55, 0.6,
1.4, 0.75, 2.3, 3.2, 0.85, 1.7, 1.8, 0.4, 0.95, 1.35, 1.5, 1.6, 0.6, 1.8,
0.95, 1.9, 1.6, 2.7, 2.35, 1.1, 1.1, 1.2, 0.8, 0.95, 0.75, 1.3];
r=[0.825, 1.09, 2.5, 1.5, 3.2, 3.5, 0.75, 1.7, 0.75, 0.45, 0.57, 2.75,
3, 2.33, 3.75, 1.64, 1.6, 1.415, 1.06, 1.8, 2, 1.36, 1.35, 1.36, 1.78,
1.5, 1.5, 1.9, 0.95, 0.4, 0.75, 0.3, 1.83, 2.2, 2, 3.33, 1.9, 1.9,
1.6251;
x1 = \log(10*v);
x2 = \log(10*r);
X = [x1' x2'];
Xdes = [ones(size(y')) x1' x2'];
n = length(y');
[b,dev,stats] = glmfit(X,y','binomial','logit');
logitFit = glmval(b, X, 'logit');
% (b) get betas
% (c) prediction
xnew = [log(10*1.5) log(10*1.5)];
ypred = 1 / (1 + exp(-(b(1)+b(2)*xnew(1)+b(3)*xnew(2))))
% (d) probit
[bp,devp,statsp] = glmfit(X,y','binomial','probit');
dev
devp
```

2. Magnesium Ammonium Phosphate and Chrysanthemums. Walpole et al. (2007) provide data from a study on the effect of magnesium ammonium phosphate on the height of chrysanthemums, which was conducted at George Mason University in order to determine a possible optimum level of fertilization, based on the enhanced vertical growth response of the chrysanthemums. Forty chrysanthemum seedlings were assigned to 4 groups, each containing 10 plants. Each was planted in a similar pot containing a uniform growth medium. An increasing concentration of MgNH₄PO₄, measured in grams per bushel, was added to each plant. The 4 groups of plants were grown under uniform conditions in a greenhouse for a period of 4 weeks. The treatments and the respective changes in heights, measured in centimeters, are given in the following table:

Solve the problem as a Bayesian one-way ANOVA. Use STZ constraints on treatment effects.

50g/bu	100g/bu	200g/bu	400g/bu	
13.2	16	7.8	21	
12.4	12.6	14.4	14.8	
12.8	14.8	20	19.1	
17.2	13	15.8	15.8	
13	14	17	18	
14	23.6	27	26	
14.2	14	19.6	21.1	
21.6	17	18	22	
15	22.2	20.2	25	
20	24.4	23.2	18.2	

- (a) Do different concentrations of MgNH₄PO₄ affect the average attained height of chrysanthemums? Look at the 95% credible sets for the differences between treatment effects.
- (b) Find the 95% credible set for the contrast $\mu_1 \mu_2 \mu_3 + \mu_4$.

ANSWER

Null hypothesis: H_0 : all population means μ_i are equal, different concentrations have no

$$\mu_1 = \mu_2 = \mu_3 = \mu_4$$

 $\mu_1 = \mu_2 = \mu_3 = \mu_4$ H1: (H₀)^c (or $\mu_i \not\models \mu_j$, for at least one pair i, j). Since the sample sizes are the same, the ANOVA is balanced.

Using STZ,

$$H_0: \alpha_1 = \alpha_2 = \cdots = \alpha_k = 0, \ \mu_i = \mu + \alpha_i$$

$$\sum_{i} \alpha_{i} = 0$$

Using matlab code we get,

Source	SS	df	MS	F	Prob>F	
Groups	119.787	3	39.929	2.25	0.0989	
Error	638.248	36	17.7291			
Total	758.035	39				

The observed F = 2.25 < critical value finv(0.95,3,36) = 2.8863. And the p value is 0.0989 > 0.05, we failed to reject null hypothesis. Thus different concentrations of MgNH₄PO₄ does not affect the average attained height of chrysanthemums.

(b) The test for a contrast,

$$H_0: \sum_{i=1}^k c_i \mu_i = 0 \text{ versus } H_1: \sum_{i=1}^k c_i \mu_i <, \neq, > 0$$

 $(1 - \alpha)100\%$ confidence interval,

$$\left[\sum_{i=1}^{k} c_{i} \bar{y}_{i} - t_{N-k,1-\alpha/2} \cdot s \cdot \sqrt{\sum_{i=1}^{k} \frac{c_{i}^{2}}{n_{i}}}, \sum_{i=1}^{k} c_{i} \bar{y}_{i} + t_{N-k,1-\alpha/2} \cdot s \cdot \sqrt{\sum_{i=1}^{k} \frac{c_{i}^{2}}{n_{i}}} \right]$$

From the matlab code we have,

 H_0 : $\mu_1 - \mu_2 - \mu_3 + \mu_4 = 0$ is not rejected, and the p-value is 0.4970. The 95% creditable set for contrast $\mu_1 - \mu_2 - \mu_3 + \mu_4$ is [-5.5750 5.5350].

Matlab code:

```
%% problem2
% (a)
400 400 400 400 400 400];
[p,table,stats] = anoval(heights, gbu, 'on');
stats
   gnames: \{4\sqrt{61} \text{ cell}\}
   n: [10 10 10 10]
용
용
  source: 'anova1'
    means: [15.3400 17.1600 18.3000 20.1000]
용
용
     df: 36
        s: 4.2106
fcrit = finv(0.95, 3, 36)
% fcrit = 2.8663
%(b)
m = stats.means
% 15.3400 17.1600 18.3000
                          20.1000
c = [1 -1 -1 1];
L = c(1)*m(1) + c(2)*m(2)+c(3)*m(3) + c(4)*m(4)
% L = -0.02
LL= m * c'
% LL = -0.02
stdL = stats.s * sqrt(c(1)^2/10+c(2)^2/10+c(3)^2/10+c(4)^2/10)
% stdL = 2.6630
t = LL/stdL
% t = -0.0075
% p-value
tcdf(t, 36)
% 0.4970
% 95% confidence interval for population contrast
[LL - tinv(0.975, 20)*stdL, LL + tinv(0.975, 20)*stdL]
% -5.5750
         5.5350
```

- 3. Hocking–Pendleton Data. This popular data set was constructed by Hocking and Pendelton (1982) to illustrate influential and outlier observations in regression. The data are organized as a matrix of size 26×4 ; the predictors x_1 , x_2 , and x_3 are the first three columns, and the response y is the fourth column. The data are given in hockpend.dat.
- (a) Fit the linear regression model with the three covariates, report the parameter estimates and Bayesian R^2
- (b) Is any of the 26 observations influential or outlier (in the sense of CPO and cumulative)?

(c) Find the mean response and prediction response for a new observation with covariates $x_1^* = 10$, $x_2^* = 5$, and $x_3^* = 5$. Report the corresponding 95% credible sets

ANSWER

(a)

Linear Regression,

 $y = X\beta + \epsilon$

From dataset,

$$n = 43, p = 2$$

Least square estimator,

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

Let

$$C = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}_{n \times 1}$$

We have

$$SSE = \sum (y - X\hat{\beta})^{2}$$
$$SST = \sum (y - \bar{y}C)^{2}$$

From the Matlab code we have,

$$\beta = [8.855, 3.420, -1.451, 0.334]$$

Thus,

$$y = 8.855 + 3.42x_1 - 1.451x_2 + 0.334x_3$$
$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} = 0.8628$$

(b) CPO

$$(CPO)_{i} = f(y_{i} \mid y_{-i})$$

$$= \int f(y_{i} \mid \theta) \pi(\theta \mid y_{-i}) d\theta$$

$$(CPO)_{i}^{-1} = \frac{1}{B} \sum_{b=1}^{B} \frac{1}{f(y_{i} \mid \theta^{b})}$$

$$(CPO)_{i} < 0.02 \rightarrow potential outlier$$

Cumulative

If F is correct distribution for y_i , then $F(y_i) \sim \text{Uniform}(0,1)$

Potential outlier

$$F(y_i) < \frac{c}{n}$$
 and $F(y_i) > 1 - \frac{c}{n}$

Using the OpenBUGS code attached, we can find

	mean	sd	sample	СРО	CPO < 0.02	
icpo[1]	9.252	4.814	100000	0.108084738	0	
icpo[2]	10.43	3.618	100000	0.095877277	0	
icpo[3]	6.465	1.006	100000	0.154679041	0	
icpo[4]	6.662	1.035	100000	0.150105074	0	
icpo[5]	6.481	1.016	100000	0.154297176	0	
icpo[6]	8.859	3.388	100000	0.112879558	0	
icpo[7]	7.819	1.724	100000	0.127893593	0	

icpo[8]	7.996	4.349	100000	0.125062531	0
icpo[9]	7.868	2.413	100000	0.127097102	0
icpo[10]	8.265	2.705	100000	0.120992136	0
icpo[11]	10.88	6.148	100000	0.091911765	0
icpo[12]	6.501	1.021	100000	0.153822489	0
icpo[13]	7.418	2.005	100000	0.134807226	0
icpo[14]	7.485	2.152	100000	0.133600534	0
icpo[15]	20830	951200	100000	4.80077E-05	1
icpo[16]	7.568	2.247	100000	0.132135307	0
icpo[17]	34.41	21.55	100000	0.029061319	0
icpo[18]	124.7	324.5	100000	0.008019246	1
icpo[19]	8.28	2.858	100000	0.120772947	0
icpo[20]	9.869	3.589	100000	0.101327389	0
icpo[21]	6.757	1.25	100000	0.147994672	0
icpo[22]	7.499	1.336	100000	0.133351113	0
icpo[23]	6.603	1.057	100000	0.151446312	0
icpo[24]	27.81	927.4	100000	0.035958288	0
icpo[25]	6.879	1.432	100000	0.145369967	0
icpo[26]	6.859	1.278	100000	0.145793847	0

So sample 15 and 18 are outliers.

(c)

For new data point,

$$x_n = [1, 10, 5, 5]$$

$$\hat{y}_n = x_n \times \beta$$

$$\hat{\sigma}^2 = MSE = \frac{SSE}{n - p}$$

$$SE\{\hat{y}_n\} = \sqrt{MSE} \times \sqrt{1 + x_n^T(X^TX)x_n}$$

$$(1 - \alpha)100\% CI: \hat{y}_n \pm t_{\alpha/2, n-p}SE\{\hat{y}_n\}$$

From the Matlab code, the 95% credible set is:

[30.1487, 44.7874]

Matlab Code

```
% problem 3
%(a)
data = importdata('hockpend.dat');
x1 = data(:,1);
x2 = data(:,2);
x3 = data(:,3);
Y = data(:,4);

vecones = ones(size(Y));
X = [vecones x1 x2 x3];
```

```
[n, p] = size(X);
b = inv(X' * X) * X'* Y; % [8.855;3.420;-1.451;0.334]
H = X * inv(X' * X) * X';
Yhat=H*Y; %or Yhat =X*b;
J=ones(n); I = eye(n);
SSR = Y' * (H - 1/n * J) * Y;
SSE = Y' * (I - H) * Y;
SST = Y' * (I - 1/n * J) * Y;
MSR = SSR/(p-1);
MSE = SSE/(n-p);
F = MSR/MSE;
pval = 1-fcdf(F, p-1, n-p);
Rsq = 1 - SSE/SST; % 0.8628
Rsqadj = 1 - (n-1)/(n-p) * SSE/SST;
s = sqrt(MSE);
용(C)
Xh=[1, 10, 5, 5];
Yh=Xh*b; % 37.4681
sig2h=MSE* Xh *inv(X'*X) *Xh';
sig2hpre=MSE*(1+Xh *inv(X'*X) *Xh');
sigh = sqrt(sig2h);
sighpre = sqrt(sig2hpre);
%95% CI,Äôs on the individual responses
[Yh-tinv(0.975, n-p)*sighpre, Yh+tinv(0.975, n-p)*sighpre]
           44.7874
% 30.1487
```

OpenBUGS code

```
A: Model
model {
for (i in 1:26) {
y[i] \sim dnorm(m[i],tau)
m[i] <- b[1]+b[2]*x1[i]+b[3]*x2[i]+b[4]*x3[i]
r[i] <- y[i]-m[i]
f[i] <- sqrt(tau/6.2832)*exp(-0.5*tau*r[i]*r[i]) #2*pi approx 6.2832
icpo[i] <- 1/f[i]}
# take inverses of average (over a smulation run) of icpo
# to get estimate of CPO (outside WinBUGS)
for (j in 1:4) \{b[j] \sim dnorm(0,0.00001)\}
tau \sim dgamma(1,0.001)
s2 <- 1/tau}
A: Data
list(x1=c(12.98,14.295,15.531,15.133,15.342,17.149,15.462,12.801,17.039,13.172,16.125,14.34,1
2.923,14.231,15.222,15.74,14.958,14.125,16.391,16.452,13.535,14.199,15.837,16.565,13.322,15.
949),
x2=c(0.317,2.028,5.305,4.738,7.038,5.982,2.737,10.663,5.132,2.039,2.271,4.077,2.643,10.401,1.
22,10.612,4.815,3.153,9.698,3.912,7.625,4.474,5.753,8.546,8.598,8.29),
x3=c(9.998,6.776,2.947,4.201,2.053,-
0.055,4.657,3.048,0.257,8.738,2.101,5.545,9.331,1.041,6.149,-1.691,4.111,8.453,-
1.714,2.145,3.851,5.112,2.087,8.974,4.011,-0.248),
y=c(57.702,59.295,55.166,55.767,51.722,60.446,60.715,37.447,60.974,55.27,59.289,54.027,53.1
99,41.896,53.254,45.798,58.699,50.086,48.89,62.213,45.625,53.923,55.799,56.741,43.145,50.706
))
A: Inits
list(tau=1,b=c(0,0,0,0))
```

	r	nean	sd	MC_erro	or	val2.5pc	median	val97.5p	С	start
sample										
icpo[1]	9.252	4.814	0.06426	5.395	7.961	20.98	1	100000		
icpo[2]	10.43	3.618	0.0404	6.338	9.556	19.65	1	100000		
icpo[3]	6.465	1.006	0.00997	4	4.852	6.343	8.787	1	100000	
icpo[4]	6.662	1.035	0.00969	7	5.008	6.533	9.043	1	100000	
icpo[5]	6.481	1.016	0.00972	7	4.858	6.357	8.824	1	100000	
icpo[6]	8.859	3.388	0.06029	5.497	8.006	17.39	1	100000		
icpo[7]	7.819	1.724	0.01708	5.466	7.494	12.03	1	100000		
11.11.11	7.996	4.349	0.0699	5.087	7.122	16.26	1	100000		
icpo[9]	7.868	2.413	0.03552	5.235	7.31	13.84	1	100000		
icpo[10]		2.705	0.04222	5.371	7.605	15.15	1	100000		
icpo[11]	10.88	6.148	0.06737	5.83	9.204	25.93	1	100000		
icpo[12]		1.021	0.0107		6.375	8.855	1	100000		
icpo[13]		2.005	0.02481		6.981	12.4	1	100000		
icpo[14]		2.152	0.03093		7.008	12.76	1	100000		
		951200.0		2997.0	72.81	1110.0	79330.0		100000	
icpo[16]		2.247	0.01504		7.054	13.26	1	100000		
icpo[17]	34.41	21.55	0.1405	14.3	28.58	89.96	1	100000		
icpo[18]		324.5	1.544	16.6	64.09	586.7	1	100000		
icpo[19]		2.858	0.01832		7.566	15.68	1	100000		
icpo[20]		3.589	0.05312		8.973	19.02	1	100000		
icpo[21]		1.25	0.02085		6.563	9.71	1	100000		
icpo[22]		1.336	0.02375		7.298	10.68	1	100000		
icpo[23]		1.057	0.01065		6.47	9.055	1	100000		
icpo[24]		927.4	8.06	5.214	8.171	84.66	1	100000		
icpo[25]	6.879	1.432	0.02106	4.954	6.631	10.28	1	100000		
icpo[26]	6.859	1.278	0.01049	4.992	6.656	9.899	1	100000		

 $\label{eq:cpo} \begin{aligned} \text{CPO=c}(0.108084738, 0.095877277, 0.154679041, 0.150105074, 0.154297176, 0.112879558, 0.12789\\ 3593, 0.125062531, 0.127097102, 0.120992136, 0.091911765, 0.153822489, 0.134807226, 0.1336005\\ 34, 4.80077\text{E-} \end{aligned}$

05, 0.132135307, 0.029061319, 0.008019246, 0.120772947, 0.101327389, 0.147994672, 0.133351113, 0.151446312, 0.035958288, 0.145369967, 0.145793847)

Reference:

Textbook: ENGINEERING BIOSTATISTICS by Brani Vidakovic