

construction engineering research laboratory

MA07560

orps of Engineers

SPECIAL REPORT M-273 September 1979

SHOCK RESISTANCE OF AIR-CONDITIONING UNITS TEST REPORT FOR ELLIS AND WATTS CO. CINCINNATI, OHIO

> James B. Gambill Walter E. Fisher

HIS DOCUMENT IS BEST QUALITY FRACTICA DO NOT

Approved for public release; distribution unlimited.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official indorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED DO NOT RETURN IT TO THE ORIGINATOR

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) **READ INSTRUCTIONS** REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER REPORT NUMBER CERL-SR-M-273 5. TYPE OF REPORT & PERIOD COVERED TITLE (and Subtitle) SHOCK RESISTANCE OF AIR-CONDITIONING UNITS LEST REPORT FOR ELLIS AND WATTS Com Day CINCINNATI, OHIO, 8. CONTRACT OR GRANT NUMBER(+) AUTHOR() lames B. Gambill E. Tisher Walter 77K33-820916 10. PROGRAM ELEMENT, PROJECT, TASK PERFORMING ORGANIZATION NAME AND ADDRESS U.S. ARMY CONSTRUCTION ENGINEERING RESEARCH LABORATORY 92 P.O. Box 4005, Champaign, IL 61820 11. CONTROLLING OFFICE NAME AND ADDRESS 2. REPORT DATE September 79 NUMBER OF PAGES 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Information Service Springfield, VA 22151 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) air-conditioning equipment earthquake engineering test and evaluation 26. ABSTRACT (Continue on reverse slide If necessary and identity by block number) This report presents the results of seismic qualification tests performed on air-conditioner units manufactured by the Ellis and Watts Company, Cincinnati, Ohio, to evaluate the units' capability to meet Tennessee Valley Authority seismic design requirements. Two units were tested on the CERL Biaxial Shock Test Machine. Functional performance remained normal for all units during the test UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

FOREWORD

This study was performed by the Engineering and Materials Division (EM) of the U.S. Army Construction Engineering Research Laboratory (CERL) for the Ellis and Watts Company, Cincinnati, Ohio, under contract 77K33-820916.

Tests were conducted by Dr. W. E. Fisher, James B. Gambill, and William Gordon of EM.

Dr. G. R. Williamson is Chief of EM. COL J. E. Hays is Commander and Director of CERL, and Dr. L. R. Shaffer is Technical Director.

CONTENTS

	,				Page
	DD FORM 1473 FOREWORD LIST OF FIGUR	RES AND TABLES			1 3 5
1	Purpose Test Criter Test Item I Test Condit	RMATIONria Documents Description and Montions and Test Equipock Test Machine	unting		7
2	TEST PROGRAM. Receiving Test Ident Test Descri Instrumenta Test Schedu	ification iption ation			12
3	Resonance S Shock Tests	Search Tests s Test Results			23
	APPENDIX A: APPENDIX B: APPENDIX C: APPENDIX D: APPENDIX E:	Response Accelera Functional Data S	onse Spectra tion Test Record	ls	25 33 49 63 67
	DISTRIBUTION				

FIGURES

Number		<u>Page</u>
1	Simplified Representation of Single-Actuator Feedback Control System	10
2	Functional Representation of the BSTM	11
3	Receiving Inspection Data Sheet for MOAC-2500	13
4	Receiving Inspection Data Sheet for MOAC-2500	14
5	Platform Displacement	15
6	MOAC-2010 Accelerometer Locations	19
7	MOAC-2500 Accelerometer Locations	20
	TABLES	
1	Test Item Identification Information	7
2	MOAC-2010 Accelerometer Locations	17
3	MOAC-2500 Accelerometer Locations	18
4	Test Schedule	22

SHOCK RESISTANCE OF AIR-CONDITIONING UNITS
TEST REPORT FOR ELLIS AND WATTS CO., CINCINNATI, OHIO

1 GENERAL INFORMATION

Purpose

This report presents the results of seismic qualification tests conducted on air-conditioner units manufactured by the Ellis and Watts Company, Cincinnati, OH. The tests were performed by the U.S. Army Construction Engineering Research Laboratory (CERL) to evaluate the units' ability to meet Tennessee Valley Authority (TVA) seismic design requirements for a safe shutdown earthquake (SSE).

Test Criteria Documents

Tennessee Valley Authority Document No. N4-50-D710 (Reissue No. 33-820915), Appendix B, Design Criteria for Seismic Qualification of Category I Fluid System Components and Electrical or Mechanical Equipment, Bellefonte Nuclear Plant (July 11, 1974).

Test Item Description and Mounting

The two air-conditioner units (numbered MOAC-2010 and MOAC-2500 by the Ellis and Watts Company) were tested on the CERL Biaxial Shock Test Machine (BSTM). Table 1 lists pertinent data for each test item. Each air-conditioner unit was tested in an operating mode with the fan and compressor running, the cooling coils charged with refrigerant, and the condenser connected to the cold water main.

Table 1
Test Item Identification Information

Model Number	Serial Number	Dimensions L x W x H (in.)	Weight (1b)
MOAC-2010	7396	94 x 79 x 108	6600
MOAC-2500	7395	94 x 79 x 108	5800

PRECEDING PAGE NOT FILMED BLANK The test items were attached to the BSTM test platform by mounting 3-in. x 8-in. steel plates to the test platform and drilling and tapping 16 threaded holes into the plates to match the test item attachment points. Grade 8, high-strength steel bolts (1/2 in. to 13 threads/in.), torqued to 100 ft-lb were used to connect the test items to the steel plates. New bolts were used each time the test items were attached to the test platform.

Power was supplied from a fused power line compatible with each air conditioner's motor current requirements.

Test Conditions and Test Equipment

Test Conditions

All tests were performed at an atmospheric pressure of 29.0 ± 2.0 in. of mercury absolute, a temperature of $70 \pm 20^{\circ}$ F, and a relative humidity of 90 percent or less.

Instrumentation and Equipment Certification

Measurement and test equipment for all tests was calibrated with reference and test equipment whose calibration has been certified by the National Bureau of Standards. (All reference standards used for calibration are supported by certificates, reports, or data sheets attesting to the date, accuracy, and conditions under which the results were furnished. Test equipment is supported by similar data when such information is essential to achieve the accuracy control required.)

Certification and reports of all calibration are retained in CERL files and are available for inspection upon request.

Test Equipment

Table E3 of Appendix E lists the test equipment or equivalents used in this testing program.

Biaxial Shock Test Machine

The test items were mounted on the test platform of the BSTM and subjected to the seismic environments defined in the test plan.

The BSTM is a unique shock test system developed under joint sponsorship of the U.S. Army Engineer Division, Huntsville (HND) and CERL. The major components of the BSTM are: (1) a 12- x 12-ft, 12,000-lb aluminum weldment test platform; (2) a closed-loop electrohydraulic excitation system consisting of nine vertical and six horizontal hydraulic actuator assemblies with a total force of 810,000 lb and 450,000 lb,

respectively, thirty-six 50-gal hydraulic accumulators, and four 70-gpm high-pressure pumps; (3) a computerized control and data acquisition/reduction system; and (4) a massive post-tensioned reinforced concrete reaction system consisting of a vertical and a horizontal mass to react the vertical and horizontal actuators, respectively. Stable, forcebalanced, position control of the hydraulic actuators is assured by the analog electronic control system using multiple feedback parameters from each of the 15 actuators. The computer system synthesizes the test platform displacement waveforms, controls test initiation, and computes shock spectra from horizontal and vertical response accelerometers mounted below the test platform surface. The computer system compares the response shock spectra to the required spectra and corrects the displacement waveforms prior to the next test run. The control system also executes a pre-programmed shutdown when the BSTM's response exceeds its design limits. The BSTM is controllable over a frequency range of O to 200 Hz.

Shock excitation can be applied to a specimen along its vertical and horizontal axes independently or simultaneously. Figure 1 is a simplified representation of a single actuator assembly feedback control system. Identical feedback control systems are provided for each of the 15 actuator assemblies so that all vertical and horizontal actuator assemblies respond together. Figure 2 is a functional representation of the machine.

The test shock spectra are defined and described in the test plan. The test platform input command signals were synthesized by a digital computer program (WAVSYN)* to produce table motion that would result in the desired response acceleration shock spectra.

^{*} Safeguard BMD System Modification of the WAVSYN Computer Program, Document No. SAF-82 (Ralph M. Parsons Co., May 1973).

Simplified representation of single-actuator feedback control system. Figure 1.

Figure 2. Functional representation of the BSTM.

2 TEST PROGRAM

Receiving Inspection

The two test items were received and receiving inspections performed on 5 October 1978. Receiving Inspection Reports (Figures 3 and 4) were written in accordance with identification information on the name plates attached to each test item. The inspections revealed no shipping damage.

Test Identification

The following conventions were used for test identification and $\operatorname{documentation}$.

- 1. Longitudinal Orientation. The longest dimension of each test aligned parallel to the axis of horizontal input motion of the test platform.
- 2. Transverse Orientation. The shorter dimension of each test item aligned parallel to the axis of horizontal motion of the test platform.

Test Description

Test Item MOAC-2010

Test item MOAC-2010 was mounted on the test platform in the longitudinal orientation on 9 November 1978. Ellis and Watts personnel conducted functional checks of the test item before and after each major test. A calibration test was conducted at 100 percent of the full test level, using a single 5-second pulse for the control waveform. Three test runs were conducted at 100 percent of the full test level, using waveforms that consisted of five repetitions of the 5-second pulse separated by 15-second null periods (Figure 5). This produced 16 repetitions of the shock pulse. All test response data were recorded on analog magnetic tape and displayed on oscillographic strip chart recorders. Vertical and horizontal shock spectra were computed from the test platform response accelerometers for comparison to the required spectra. No functional problems occurred during the tests.

Resonance tests were performed on MOAC-2010 in the longitudinal orientation by applying a small-amplitude sinusoidal motion to the test platform first in the vertical axis and then in the longitudinal horizontal axis. During these tests, the test platform input acceleration was maintained at or below 0.1 g peak while the frequency was swept from 1 to 35 to 1 Hz at a sweep rate no greater than 1 octave per minute.

DATA SHEET Receiving Inspection

Specimen MOAC-2500 Date 5 Oct 78	Job No. 3rd Ellis & Watts Test Program
No. of specimens received _	1
RECORD IDENTIFICATION INFOR	MATION EXACTLY AS IT APPEARS ON THE SPECIMEN
Shipped by	
Manufacturer Ellis	& Watts Co.
Air Condi	tioner - Model No. MOAC-2500
Part numbers 27R Ma	rk 3AW0910-2
Contrac	t No. 77K33-820916
Refrige	rant R22-45 lbs.
Serial No.	460 volts 3 pH 60 Hz
7396	48 Amp Max
defects, and completeness of Inspection Results: There specimen unless noted below	was no visible evidence of damage to the
Inspected byJim Gambill	Date 5 Oct 78
Approved by	Date
Sheet $\underline{1}$ of $\underline{1}$	
Figure 3. Receiv	ing Inspection Data Sheet for MOAC-2500.

DATA SHEET Receiving Inspection

Specimen MOAC-2500 Job	No Ellis & Watts Test Program
Date 5 Oct 78 No. of specimens received 1	
RECORD IDENTIFICATION INFORMATION EXACTL	
Shipped by	
ManufacturerEllis & Watts Co.	
Air Conditioner - Mode	1 No. MOAC-2500
Part numbers 27Q Mark 3AW0910-2	
Contract No. 77K33-8	20916
Refrigerant R22-55	lbs.
Serial No	
	O volt -3 Phase - 60 Hz
58	Amp Max
Examination: Visual, for evidence of dar defects, and completeness of identificat	mage, poor workmanship, or other ion.
Inspection Results: There was no visible specimen unless noted below:	e evidence of damage to the
· · · · · · · · · · · · · · · · · · ·	
Inspected by Jim Gambill	Date 5 Oct 78
Approved by	
Sheet <u>1</u> of <u>1</u>	

Figure 4. Receiving Inspection Data Sheet for MOAC-2500.

Figure 5. Platform displacement.

Two complete sweeps were conducted in each axis, and the output of all test platform and test item accelerometers was recorded on analog magnetic tape.

Test item MOAC-2010 was rotated 90 degrees clockwise to the transverse orientation on 13 November 1978. Ellis and Watts personnel conducted pre-test and post-test functional checks for each major test. Resonance search tests were conducted in the transverse horizontal axis in accordance with the procedure discussed above.

One biaxial shock test was conducted in the transverse orientation at 100 percent of the required test levels, using one 5-second pulse. Three test runs were conducted at the 100 percent test level, using five repetitions of the 5-second pulse for a total of 16 pulse repetitions. Each 5-second pulse was separated by a 15-second null period. No functional problems occurred.

Test Item MOAC-2500

Test item MOAC-2500 was mounted on the test platform in the transverse orientation on 14 November 1978. Ellis and Watts personnel conducted pre-test and post-test functional checks for each major shock test. Resonance search tests were conducted in the transverse orientation as described in the previous section.

Four biaxial shock tests were conducted in the transverse orientation on 14 November 1978. One test was conducted at 100 percent of the required test levels using one 5-second pulse. Three test runs were conducted at the 100 percent test level, using waveforms with 5-second pulse repetitions for a total of 16 pulse repetitions. No functional problems occurred.

The test item was rotated 90 degrees counter-clockwise to the lon-gitudinal orientation on 15 November 1978. Ellis and Watts personnel conducted functional checks on the test item before and after each major shock test. The resonance tests were conducted in the longitudinal horizontal axis as described in the previous section.

Three biaxial shock tests were conducted in the longitudinal orientation at the 100 percent test level, using waveforms with five 5-second pulse repetitions for a total of 15 pulse repetitions at the 100 percent test level. No functional problems occurred.

Instrumentation

Table E1 of Appendix E lists the instrumentation and associated equipment used during the test program. Biaxial acceleration measurements were made at six locations on each unit. The locations are tabulated in Tables 2 and 3 and are depicted in Figures 6 and 7,

Table 2 * MOAC-2010 -- Accelerometer Locations

Accelerometer	Orientation	Location
Al	Vertical	Center of the top
A2	Horizontal	panel of the unit
A3	Vertical	Center of the top
A4	Horizontal	of the cooling coil
A5	Vertical	Side, above access panel at
A6	Horizontal	structural member support
A7	Vertical	Center of bottom
8A	Horizonta1	fan motor mount
A9	Vertical	Top of condenser
A10	Horizontal	near water inlet
A11	Vertical	Center of compressor
A12	Horizontal	mount near access panel

Table 3

MOAC-2500 -- Accelerometer Locations

Accelerometer	Orientation	Location
A1	Vertical	Center of the top
A2	Horizontal	panel of the unit
А3	Vertical	Center of the top
A4	Horizontal	of the cooling coil
A5	Vertical	Side, above access panel at
A6	Horizontal	structural member support
A7	Vertical	Center of bottom
A8	Horizontal	fan motor mount
A9	Vertical	Top of condenser
A10	Horizontal	near water inlet
A11	Vertical	Center of compressor
A12	Horizontal	mount near access panel

Figure 6. MOAC-2010 accelerometer locations.

Figure 7. MOAC-2500 accelerometer locations.

respectively. The output signals from all test item and test platform response accelerometers and the horizontal and vertical average test platform displacement were recorded on analog magnetic tape for all resonance and shock tests.

Test Schedule

Table 4 lists the schedule of tests conducted on the three test items.

Table 4
Test Schedule

Tost Dun	Oniontation	Took Laws	No. of	Б.
est Run	Orientation	Test Level	Shock Pulses	Date
	Т	est Item MOAC-2	2010	
1	Longitudinal	100%	1	9 Nov 78
2 3 4 5 6 7	Longitudinal	100%	5	9 Nov 78
3	Longitudinal	100%	5 5 1 5 5 5	9 Nov 78
4	Longitudinal	100%	5	9 Nov 78
5	Transverse	100%	1	13 Nov 78
6	Transverse	100%	5	13 Nov 78
7	Transverse	100%	5	13 Nov 78
8	Transverse	100%	5	13 Nov 78
	<u> I</u>	est Item MOAC-2	2500	
1	Transverse	100%	1	14 Nov 78
2	Transverse	100%	5	14 Nov 78
1 2 3 4 5	Transverse	100%	5 5 5 5	14 Nov 78
4	Transverse	100%	5	14 Nov 78
5	Longitudinal	100%	5	15 Nov 78
6	Longitudinal	100%	Š	15 Nov 78
7	Longitudinal	100%	5	15 Nov 78

3 TEST RESULTS

Resonance Search Tests

Appendix A contains a tabulation of all resonant frequencies found for each test item and the ratio of the response acceleration to the test platform acceleration.

Shock Tests

Fifteen shock tests were conducted on the two test items at the 100 percent test level; 63 shock pulses were applied. All tests were monitored by the Quality Control Engineer of the Libertyville TVA Office.

Test Item MOAC-2010

No damage, drive belt loss, or other functional failures occurred during the test series. Appendix B provides the shock spectra for all tests. Test runs 1 through 4 were performed in the longitudinal orientation, and test runs 5 through 8 in the transverse orientation. In the longitudinal orientation, run 1 consisted of one 5-second pulse series at the 100 percent test level. Runs 2 through 4 each consisted of five 5-second pulse series at the 100 percent test level for a total of 16 test pulses. In the longitudinal orientation, three of the vertical spectra fell below the requirements. During run 2, one spectrum was approximately 6 percent below the requirement (from 16.5 Hz to 18 Hz), and the other spectrum was below by approximately 6 percent (18 Hz). During run 4, one vertical spectrum was below the requirement by approximately 6.5 percent (16 Hz). In the transverse orientation, run 5 consisted of one 5-second pulse series at the 100 percent test level, and runs 6 through 8 were five 5-second pulse series at the 100 percent test level for a total of 16 test pulses. None of the shock spectra were below the requirements for the 16 test pulses.

For both test orientations, the test item was subjected to more than ten 100 percent test pulses for which the computed shock spectra satisfied the TVA criteria; the test results were accepted as completely satisfying the TVA test criteria. Appendix C contains copies of typical test item response data for one shock pulse for both test orientations.

Test Item MOAC-2500

No damage, drive belt loss, or other functional failures occurred during the entire test series. Appendix B contains the shock spectra for all tests. Test runs 1 through 4 were performed in the transverse orientation, and test runs 5 through 7 in the longitudinal orientation. In the transverse orientation, run 1 consisted of one 5-second pulse

series at the 100 percent test level, and runs 3 and 4 each consisted of five 5-second pulse series at the 100 percent test level for a total of 16 test pulses. During run 1, the vertical spectra fell below the requirements by 11 percent (14 Hz). During run 2, one vertical spectrum fell below the requirements by approximately 2 percent (13 Hz). In the longitudinal orientation, runs 5 through 7 each consisted of five 5-second pulse series at the 100 percent test level for a total of 15 test pulses. None of the shock spectra were below the requirements for the 15 test pulses.

For both test orientations, the test item was subjected to more than ten 100 percent test pulses for which the computed shock spectra satisfied the TVA criteria. Appendix C contains copies of typical test item response data for one shock pulse for both test orientations.

Functional Test Results

Appendix D contains the functional test data sheets. No functional problems were experienced during any of the tests on the two test items.

APPENDIX A
RESONANCE TEST DATA

TABLES

Number		Page
A1	Resonance Search MOAC-2010 Longitudinal Orientation Vertical Sweep	27
A2	Resonance Search MOAC-2010 Longitudinal Orientation Horizontal Sweep	28
A3	Resonance Search MOAC-2010 Transverse Orientation Horizontal Sweep	29
A4	Resonance Search MOAC-2500 Transverse Orientation Vertical Sweep	30
A5	Resonance Search MOAC-2500 Transverse Orientation Horizontal Sweep	31
A6	Resonance Search MOAC-2500 Transverse Orientation Horizontal Sweep	32

Table Al

Resonance Search -- MOAC-2010

Longitudinal Orientation -- Vertical Sweep

Accelerometer	Frequency	Amplification Factor
A1	8 - 8.5 Hz 16 - 17 Hz 30 - 35 Hz	2.5 2.0 2.5
А3	None Found	
A5	8.8 Hz 31.5 - 33 Hz	1.67 1.33
A7	8.8 Hz 13 Hz 17 Hz 23.5 Hz	1.75 1.75 2.25 2.0
A9	16 - 17 Hz 31 - 33 Hz	1.75 1.25
A11	None Found	

Table A2

Resonance Search -- MOAC-2010

Longitudinal Orientation -- Horizontal Sweep

Accelerometer	Frequency	Amplification Factor
A2	10.5 - 11.5 Hz 14 - 20 Hz	2.0 3.0
A4	10.5 - 13 Hz 14.5 - 20.5 Hz	2.0 5.0
A6	14 - 22 Hz	2.3
A8	11 Hz 19.5 Hz	6.0 4.0
A10	17.5 - 20 Hz	2.4
A12	None Found	

Table A3

Resonance Search -- MOAC-2010

Transverse Orientation -- Horizontal Sweep

Accelerometer	Frequency	Amplification Ratio
A2	17 - 20 Hz 34 Hz	3.33 2.0
A4	18 - 19.5 Hz 33 Hz	2.08 1.25
A6	17 - 19 Hz 25 - 27 Hz 33 - 34 Hz	2.33 1.67 1.67
A8	18 - 20 Hz 33 Hz	7.5 2.5
A10	None Found	
A12	None Found	

Table A4

Resonance Search -- MOAC-2500

Transverse Orientation -- Vertical Sweep

Accelerometer	Frequency	Amplification Factor
Al	6 Hz 10 Hz 17 Hz 29 - 31 Hz	2.3 2.3 3.3 8.3
А3	None Found	
A5	2.6 Hz 28 - 35 Hz	1.3 1.5
А7	10 Hz 18 - 21 Hz	1.67 2.67
A9	29 - 31 Hz	2.71
A11	None Found	

Table A5

Resonance Sweep -- MOAC-2500

Transverse Orientation -- Horizontal Sweep

Accelerometer	Frequency	Amplification Factor
A2	18 - 23 Hz 24 - 35 Hz	2.7 1.7
A4	12 Hz 18 - 26 Hz 27 - 29 Hz 30 Hz 31 - 35 Hz	1.4 1.5 2.5 5.5 2.0
A6	17 - 35 Hz	1.7
A8	15.5 Hz 18 - 30 Hz 31 - 35 Hz	1.2 2.0 1.5
A10	27 - 31 Hz 32 - 35 Hz	2.5 1.4
A12	None Found	

Table A6

Resonance Sweep -- MOAC-2500

Transverse Orientation -- Horizontal Sweep

Accelerometer	Frequency	Amplification Factor
A2	16 - 18 Hz 19 Hz	1.7 2.5
A4	15 - 22 Hz	2.5
A6	18 - 22 Hz 28 - 30 Hz	1.75 1.50
A8	15 - 18 Hz 18.5 - 19.5 Hz 20 - 22 Hz	1.8 2.4 1.8
A10	15.5 - 17 Hz	1.33
A12	None Found	

APPENDIX B
TEST MACHINE RESPONSE SPECTRA

THIS PACE IS BEST QUALITY ELACTICABLE FROM COPY PURBISHED DO DOC

35 THIS PACE IS BEST QUALITY PRACTICABLE FROM COPY PURNISHED TO DDC

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY PURMISHED TO DDC

THIS PACE IS BEST QUALITY PRACTICABLE 37 TROM COPY FURBISHED TO DDC

THIS PAGE IS BEST QUALITY PRAGTIGABLE FROM COPY FURBISHED TO DDG

The state of the s

Jan.

The state of the s

39 THIS PACE IS BEST QUALITY PRAQFIGABLE FROM COPY PURMISHED TO DDC

THIS PAGE IS BEST QUALITY PRAGRIGABLE TROM COPY PURSISHED TO DDC

The state of the s

41 THIS PACE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

The test of the second of the

THIS PAGE IS BEST QUALITY FRAGE IGABLE

42

The state of the s

The property of the second of

THIS PAGE IS BEST QUALITY FRAGRIGABLE FROM COPY PUMBISHED TO DDC

The property of the second

45 THIS PAGE IS BEST QUALITY PRAGRIGABLE FROM SOFY PURESHED TO DDG

THIS PACE IS BEST QUALITY PRACTICABLE 46

2500

47 MIS PAGE IS BEST QUALITY PRAGRIGABLE PROM GOPY PURMISHED TO DDC

The property of the second of

THIS PACE IS BEST QUALITY PRACTICABLE

APPENDIX C
RESPONSE ACCELERATION TEST RECORDS

FIGURES

Number		Page
C1	Longitudinal Orientation Typical Pulse Series	51
C2	Longitudinal Orientation Typical Pulse Series	52
C3	Longitudinal Orientation Typical Pulse Series	53
C4	Transverse Orientation Typical Pulse Series	54
C5	Transverse Orientation Typical Pulse Series	55
C6	Transverse Orientation Typical Pulse Series	56
C7	Longitudinal Orientation Typical Pulse Series	57
C8	Longitudinal Orientation Typical Pulse Series	58
C9	Longitudinal Orientation Typical Pulse Series	59
C10	Transverse Orientation Typical Pulse Series	60
C11	Transverse Orientation Typical Pulse Series	61
C12	Transverse Orientation Typical Pulse Series	62

Figure C1. MOAC-2010: longitudinal orientation -- typical 100 percent pulse series.

Figure C2. MOAC-2010: longitudinal orientation -- typical 100 percent series.

Figure C3. MOAC-2010: longitudinal orientation -- typical 100 percent pulse series.

Figure C4. MOAC-2010: transverse orientation -- typical 100 percent pulse series.

Figure C5. MOAC-2010: transverse orientation -- typical 100 percent pulse series.

Figure C6. MOAC-2010: transverse orientation -- typical 100 percent pulse series.

Figure C7. MOAC-2500: longitudinal orientation -- typical 100 percent pulse series.

Figure C8. MOAC-2500: longitudinal orientation -- typical 100 percent pulse series.

Figure C9. MOAC-2500: longitudinal orientation -- typical 100 percent pulse series.

Figure C10. MOAC-2500: transverse orientation -- typical 100 percent pulse series.

Figure C11. MOAC-2500: transverse orientation -- typical 100 percent pulse series.

Figure C12. MOAC-2500: transverse orientation -- typical 100 percent pulse series.

APPENDIX D
FUNCTIONAL TEST DATA

FIGURES

Number	<u></u>	Page
D1	Sample Functional Data Sheet	65
D2	Sample Functional Data Sheet	66

EWC MODEL NO. MOAC 2010 DA	TE 11-9-78		SERIAL N	0. 7396	
			11/13		
TEST (NOTE I)	Δ.	В	c		
TIME	9:45 A.M		4:30 P.M.		
FAN R.P.M.	1190	1190	1190		
UNIT AMPS PHASE A	40	40	40		
UNIT AMPS PHASE B	38	38	39		
UNIT AMPS PHASE C	37	37	38		
UNIT VOLTS PHASE A	498	498	495		
UNIT VOLTS PHASE B	498	498	495		
UNIT VOLTS PHASE C	498	497	495		
AMBIENT *F	72	70	70		
FAN & MOTOR OPERATION	ОК	ОК	OK		
	8ulb 70.5		70 58.5		+-
Dry	y Bulb 48	47.5	48		
SUPPLY AIR *F We		5 45.5			+-
STRUCTURAL DAMAGE	NON	NONE	NONE		
DISCHARGE PSIG	212	210	212		
SUCTION PSIG	62	61	65		
rested By: Paul J. Cunningham	DATE	11-13	-78		
WITNESSED BY: Thomas E. Day	DATE	11-15	-78		
All Controls Functioning Properly After Test					
NOTE II					
TEST A - BEFORE SEISMIC TEST					
TEST B - AFTER FIRST SEISMIC TEST Ist HO	PRIZONTAL DIR	ECTION			
TEST C - AFTER FIRST SEISMIC TEST 2nd F	ORIZONTAL DI	RECTION	V		

ELLIS AND WATTS COMPANY	
CINCINNATI, OHIO 45244	TEST DATA SHEET NO. I

Unit Mounted To Test Table With 16 1/2-13 Grade 8 Bolts Torqued To 100 Ft/Lbs

Figure D1. Sample functional data sheet.

EWC MODEL NO. MOAC 2500	DATE II	14-78	s	ERIAL N	0. 739	15
				11/15		
TEST (NOTE I)		_ A	8	c		
TIME		4:00 PM	6:00 PM	9:30 P.M.		
FAN R.P.M.		930	930	930		
UNIT AMPS PHASE A		42	40	39		
UNIT AMPS PHASE B		43	41	41		
UNIT AMPS PHASE C		42	42	42		
UNIT VOLTS PHASE A		500	500	500		
UNIT VOLTS PHASE B		500	500	500		
UNIT VOLTS PHASE C		500	500	500		
AMBIENT *F		72.5	71	72	_	
FAN & MOTOR OPERATION		OK	OK 71	72		
RETURN AIR *F	Dry Bulb Wet Bulb	72.5 56.5	54.5	55.5		
SUPPLY AIR *F	Dry Bulb Wet Bulb	60.5 50	59.5 49.5	59 49.5	-	
STRUCTURAL DAMAGE		and the second second	NONE			
DISCHARGE PSIG		220	220	210		
SUCTION PSIG		58	60	60		
TESTED BY: Paul J. Cunningham		DATE	11-15	-78		
WITNESSED BY Thomas E. Day		DATE	11-15	-78		
All Controls Functioning Properly After Test						
NOTE 11						
TEST A - BEFORE SEISMIC TEST						

TEST B - AFTER FIRST SEISMIC TEST IST HORIZONTAL DIRECTION

TEST C - AFTER FIRST SEISMIC TEST 2nd HORIZONTAL DIRECTION

Unit Mounted To Test Table With 16 1/2-13 Grade 8 Bolts Torqued To 100 Ft/Lbs

ELLIS AND WATTS COMPANY	
CINCINNATI, OHIO 45244	TEST DATA SHEET NO. I

Figure D2. Sample functional data sheet.

APPENDIX E:

TEST PLAN

TEST PLAN for Seismic Qualification of Air-Conditioner Units

MOAC-2010, Contract 77K33-820916 Mark No. 3AW0910-2

MOAC-2500, Contract 77K33-820916 Mark No. 3AW0910-1

for the

Ellis and Watts Company Cincinnati, Ohio

by

Construction Engineering Research Laboratory

9 December 1977

CONTENTS

1.	Purpose	71
2.	Test Criteria Documents	71
3.	Description of Test Specimens	71
4.	Customer Technical Representatives	71
5.	Test Package Mounting	72
6.	Receiving Inspection	72
7.	Test Conditions and Test Equipment	72
	a. Ambient Conditionsb. Instrumentation and Equipmentc. Test Equipment	
8.	Biaxial Shock Test Machine Description	78
9.	Instrumentation	78
10.	Test Procedures	78
	a. Resonance Searchb. Full-Scale Qualification Tests	
11.	Development of the Qualification Test Shock Spectra	79
12.	Pre-Test and Post-Test Functional Inspection	84
13.	Notice of Deviation	84
14.	Test Sequence Steps	84
15.	Test Data	84
16.	Reports	91

PRECEDING PAGE NOT FILMED BLANK

TABLES

Number		Page
E1	Equipment and Instrumentation	74
E2	Equipment and Instrumentation	77
E3	Sequence of Test Events	90
	FIGURES	
E1	Sample Receiving Inspection Data Sheet	73
E2	Typical Test Platform Displacement Waveform	80
E3	Horizontal Spectra for MOAC-2010	81
E4	Horizontal Spectra for MOAC-2500	82
E5	Vertical Spectra for MOAC-2010 and MOAC-2500	83
E6	Horizontal Data Envelope Spectra and Proposed BSTM Envelope for Testing MOAC-2010	85
E7	Horizontal Data Envelope Spectra and BSTM Envelope Testing MOAC-2500	86
E8	Vertical Data Envelope Spectra and Proposed BSTM Envelope for Testing MOAC-2010 and MOAC-2500	87
E9	Sample Functional Data Sheet	88
E10	Sample Notice of Deviation Data Sheet	89

1. Purpose.

The purpose of this test plan is to present the procedures by which the U.S. Army Construction Engineering Research Laboratory (CERL) will test two air-conditioner units. All tests will be performed to verify that the units meet the Tennessee Valley Authority (TVA) performance requirements for operation during and following a safe shutdown earthquake. The two units will be supplied by the Ellis and Watts Company, Cincinnati, Ohio, and all testing will be performed by CERL at Champaign, Illinois.

2. Test Criteria Documents.

Tennessee Valley Authority Document No. N4-50-D710 (Reissue No. 33-820916) Appendix B, Design Criteria for Seismic Qualification of Category I Fluid System Components and Electrical or Mechanical Equipment, Bellefonte Nuclear Plant, July 11, 1974.

Description of Test Specimens.

Each of the two test specimens is a self-contained air-conditioning unit and is numbered by the Ellis and Watts Company as MOAC 2500 and MOAC 2010.

4. Customer Technical Representatives.

Technical representatives from the Ellis and Watts Company shall be present during all tests. They shall verify the functional setup and the proper operation of each air-conditioner unit before testing begins. They shall perform all functional tests and record all functional data for each air-conditioner unit after each test to show that no abnormalities exist due to the seismic test. They shall perform all necessary functional inspections, e.g.: (a) inspect for visible structural damage; (b) monitor operation of motor, fan, and compressor; (c) monitor cycling of dampers; and (d) test for leakage of the coil at operating pressure.

Instrumentation for functionality checks will be properly calibrated as indicated by section 7.b of the test plan.

The results of all functionality checks will be documented.

Review and concurrence with all functional data shall be made by the CERL test engineers.

Test Package Mounting.

The test items shall be attached to the test platform of the CERL Biaxial Shock Test Machine (BSTM) by normal in-service mounting means. Three-inch-thick steel plates will be used to adapt the test specimen attachment points to the bolt hole pattern on the test platform.

Power shall be supplied by CERL from a suitable fused power line compatible with each air-conditioner unit's motor current requirements.

All materials needed to functionally operate and monitor the air-conditioner units shall be supplied by the Ellis and Watts Company.

6. Receiving Inspection.

Upon receipt of each air-conditioner unit, an inspection shall be performed and a Receiving Inspection Data Sheet (Figure E1) shall be completed. If any physical damage is found, the Ellis and Watts Company representative shall be notified.

7. Test Conditions and Test Equipment.

- a. Ambient Conditions. Unless otherwise specified herein, all tests required by the specification shall be performed at an atmospheric pressure of 29 + 2 in. of mercury absolute, a temperature of $70 \pm 20^{\circ}$ F, and a relative humidity of 90 percent or less.
- b. Instrumentation and Equipment. Measurement and test equipment to be used in the performance of these tests shall be calibrated with reference and test equipment whose calibration has been certified as being traceable to the National Bureau of Standards. All reference standards used in the above calibration system shall be supported by certificates, reports, or data sheets attesting to the date, accuracy, and conditions under which the results were furnished. The test equipment shall be supported by like data when such information is essential to achieve the accuracy control required by the subject contract.

Certifications and reports of all calibrations performed shall be retained in CERL files and are available for inspection upon request.

c. Test Equipment. The test equipment or equivalents that will be used in the performance of these tests are listed in Table E1, with the exception of equipment used to perform functional tests which are listed in Table E2. Certification of calibration of functional test equipment shall be retained in EWC files and be available for inspection upon request.

DATA SHEET

Receiving Inspection

Specimen	Job No
Date	
No. of specimens received	
RECORD IDENTIFICATION INFORMATION	EXACTLY AS IT APPEARS ON THE SPECIMEN
Shipped by	
Manufacturer	
Part numbers	
defects, and completeness of ident	e of damage, poor workmanship, or other tification.
Inspection Results: There was not specimen unless noted below:	t visible evidence of damage to the
	Inspected byDate
	Approved byDate
	Sheetof

Table El

Equipment and Instrumentation

ממושות	2001/2018008	in indicates	
Biaxial Shock Test Machine	9		±20% to ±5% of shock spectrum values from 1 to 9 Hz, respectively; ±5% at shock
			spectrum values from 8 to 20 Hz; ±5% to ±30% at shock spectrum values from 20 to
			200 Hz, respectively
Vertical Reaction	Schless Construction	Reinforced concrete octa-	
Mass	Company	hedral-shaped parallele-	
		piped 30 ft across the	
		flats and 16 ft deep	
Horizontal Reaction	Schless Construction	Reinforced concrete hol-	
Mass	Company	low rectangular-shaped	
		parallelepiped 30 ft	
		wide, 80 ft long, 8 ft	
		deep with 14-ft-wide	
		by 22-ft-long opening	
Vertical Hydraulic	MTS/204.705	2 3/4-in., double-amplitude-	•
Actuators		stroke, 90,000-1b force	
Horizontal Hydraulic	MTS/204.725	5 1/2-in., double-amplitude-	
Actuators		stroke, 75,000-1b force	
Vertical & Horizontal	MTS/251.53	300 gpm	
Servovalves			
Test Platform	MTS	Aluminum weldment, 12 ft	
		by 12 ft in plan, 4 ft	
		thick over the control	
		area, and weighs	
		12,000 lb	
Vertical Analog	MTS/449	Controlled with independent	
Control System		gain rate controls for ver-	
		tical, roll, and pitch motions	SL
Horizontal Analog	MTS/449	Controlled with independent	
Control System		rate controls for horizontal	
		and yaw motions	
Computer	Digital Equipment	16,000 words of memory	
	בין והוים מהוסון החו		

Table El (Cont'd.)

- 1	T: D-+-/00/	AOOO DOM momowy
form Unit	IIME Data/ 30A	4000 Moras of Roy Helioty
Control Unit	Time Data/1923-3000	Allows wide range of oper- ations to be performed by pushbutton
Teletype	Digital Equipment Corporation ASR-33	10 characters/sec
Paper Tape Reader/ Punch	Digital Equipment Corporation	300 characters/sec
Disc File	Digital Equipment Corporation RK-11	1.2 million storage words
Magnetic Type Unit	Digital Equipment Corporation TU-10	9 channel 800 bits/inch
Line Printer	Digital Equipment Corporation LP-11	80 columns 356 lines/min
A/D Converter	MTS	12-bit two's component word code
Programmable Clock	MTS	Frequency at 1 MHz
X-Y Recorder	Hewlett Packard/ 700413	0.5 mx to 10x/in.
Hydraulic Pumps		Variable displacement
		pressure pumps with maximum 70 opm outbut
Acrimilator Tank	MTC	36 30-ft niston accumu-
		lators providing 1800-
		gallon total oil and gas
Reservoir	MTS	2000-gal capacity
Vertical Accelerometers	Kistler/515	Servo accelerometers
Horizontal Acceler-	Kistler/515	Servo accelerometers
Accelerometer Condi- tioning Unit	Kistler/515	0.1 to 50 g/V
Computer/Analyzer System	Time/Data/904	
Signal Conditioning		
Amplified Resistance Bridge Conditioner	Endevco/4476.2	DC to 10 kHz ±5%

Table El (Cont'd.)

Servo Accelerometer	Endevco/4479.2		
Current Amplifier	Endevco/4478.1A	DC to 300 Hz (-2db)	+2%
Current-Regulated	Endevco/4471.2A	Limited only by Transducer	
Bridge Conditioner			
Potentiometer	Endevco/4471.3	Limited only by Transducer	
Voltage-Regulated	Endevco/4471.1A	Limited only by Transducer	
Bridge Conditioner			
Universal Signal	Endevco/4470	0-30 Vdc or 0.5 to 5 madc	±0.1%
Conditioner			
Master Module			
FM Multiplex and Dis-	Vidar/71099	DC to 100 Hz, 70 channels	±2%
criminator System			
Tape Recorder	Bell and Howell	14-channel, 400 to	±2%
	V12-3700	2,000,000 Hz	
Oscillograph	Bell & Howell/5-133	Bell & Howell/5-133 24-channel DC to 5,000 Hz	+5%
0scilloscope	Tektronix/556		
Digital Voltmeter	Dana/5900-1		±0.003%

Table E2

Equipment and Instrumentation

Equipment	Manufacturer/Model	Description	Accuracy
Thermometer	Brooklyn Thermometer Co ASTM57F	Glass -5 to +122°F	± 1/2°
Clamp-on Ammeter	Weston - Model 749		2% of full scale
Voltmeter	Triplett - Model 630NA		3% meter
Strobatac	General Radio - Type 1531		5 percent of full scale
Pressure Gauges	Marsh	0-500 PSIG	3 percent of full scale

8. Biaxial Shock Test Machine Description.

Each air-conditioner unit shall be mounted on the test platform of the BSTM and subjected to the seismic environments defined in this test plan.

Excitation shall be provided by nine vertical and six horizontal electrohydraulic actuators. Four 70-gpm pumps provide pressurized fluid that is stored in thirty-six 50-gal accumulators at a pressure of 3150 psi. A servovalve mounted on each actuator delivers the stored energy to the actuators that provide a total maximum force output in the vertical and horizontal (longitudinal) directions of 810,000-force lb and 450,000-force lb, respectively. Pitch, roll, yaw, and translation will be minimized.

The test platform excitation is controlled by an electronic control system that provides input command signals to each servovalve. A combination of digital and analog electronics is used in the control system. Stable position control under dynamic conditions is assured by the analog control system using a combination of force, rate, and position feedback information from each of the 15 actuators. The digital computer system is used to synthesize the test platform input commands required to produce the specified shock environments and to compute the test platform response shock spectra from accelerometers mounted below the platform's surface.

9. Instrumentation.

Each air-conditioner unit shall be instrumented with biaxial accelerometers positioned at locations acceptable to the Ellis and Watts Company technical personnel. Various functional parameters, as directed by Ellis and Watts, shall be measured to determine each unit's functional performance. All test item and test platform response data shall be recorded on an analog magnetic tape recorder as a permanent record. All test data shall be displayed on multi-channel oscillographic recorders immediately after each test for visual observation.

10. Test Procedures.

a. Resonance Search. Prior to the full-scale qualification test, an exploratory resonance search shall be performed. Each air-conditioner unit will be individually mounted on the test platform and subjected to a low-amplitude sinewave motion in one axis. The test will include at least two continuous sinewave sweeps from 1 to 35 to 1 Hz at a frequency sweep rate of not greater than 1 octave per minute. The test will be performed separately on the horizontal and vertical axes. The air-conditioner unit shall then be rotated 90 degrees and the test repeated for the other horizontal axis.

b. Full-Scale Qualification Tests. Multi-frequency testing shall be used for the full-scale qualification tests. The command signals used to drive the test platform shall consist of a superposition of amplitude modulated sinewave components, covering the frequency range from 1 to 40 Hz, and a time span of approximately 5 seconds. This 5-second waveform shall be repeated 10 times with a null period between each waveform to produce the total command signal (Figure E2). The multi-frequency command signal shall be generated by a computerized synthesis procedure which generates a time history that will produce shock spectra meeting or exceeding the required qualification spectra supplied by the Ellis and Watts Company in compliance with TVA test requirements.

The qualification test shall be performed by mounting the first air-conditioner unit on the test platform, making all necessary functional connections and putting the unit into operation. The vertical and horizontal command signals, consisting of one of the 10-pulse repetitions described previously, shall then be applied to the test platform simultaneously, but with the amplitudes reduced to 25 percent of their full-scale values. Shock spectra shall be computed from the test platform's accelerometers' response data and compared to 25 percent of the required spectra. Adjustments will be made to compensate for regions of the shock spectra which are below the required values and the input command signals recomputed. The test will then be repeated with amplitudes set to 50 percent of their full-scale values. The above process will then be repeated for 75 percent of the full-scale values. The final test shall be conducted using the 10 pulse repetitions described previously with the amplitudes set to 100 percent of the required values. Horizontal and vertical shock spectra shall be computed for each of the 10 pulse repetitions and compared to the required spectra.

After completion of the 100 percent test run and all specimen functional tests, the air-conditioner unit will be rotated 90 degrees to the other horizontal orientation and the process repeated.

The entire test procedure will be repeated for the second air-conditioner unit.

During the qualification tests, each unit's response data and the test platform response data shall be recorded on analog magnetic tape and displayed on oscillographic strip chart recorders for visual observation.

11. Development of the Qualification Test Shock Spectra.

Shock spectra supplied to CERL consisted of two horizontal and one vertical spectra for unit MOAC-2010 and two horizontal and one vertical spectra for unit MOAC-2500. The spectra are plotted at 5 percent damping in Figures E3, E4, and E5.

Figure E2. Typical test platform displacement waveform.

TENNESSEE VALLEY AUTHORITY 11/28/73 RESPONSE ACCELERATION SPECTRUM BELLEFONTE AUXILIARY BUILDING MASS POINT NO. 6
DAMPING RATIO 0.050
SAFE SHUTDOWN EARTHQUAKE ELEVATION 668 HORIZONTAL ACCELERATION

Figure E3. Horizontal spectra for MOAC-2010.

Figure E4. Horizontal spectra for MOAC-2500.

The input test levels to the BSTM are defined in terms of 0 percent damped shock spectra. Figures E6, E7, and E8 are the 0 percent damped spectra obtained from the 5 percent damped spectra. These figures also show smoothed spectra which will be used to develop the command signals for the required tests.

The command signals are developed using a digital synthesis procedure* which superimposes 13 amplitude-modulated sinewave components covering the frequency range of 1 to 40 Hz. The resultant command signals have the general form of Figure E2.

12. Pre-Test and Post-Test Functional Inspection.

Ellis and Watts Company technical representatives shall conduct a pre-test functional and visual inspection of each test item before the start of the test program. They shall conduct a post-test functional and visual inspection after each complete test. The data shall be recorded on functional data sheets as shown in Figure E9.

13. Notice of Deviation.

If any damage or other problems occur to the test specimens during the test program, a Notice of Deviation Form (Figure E10) will be filled out and logged as a part of the permanent test data, and Ellis and Watts and TVA representatives shall be consulted before proceeding with further tests.

14. Test Sequence Steps.

The steps listed in Table E3 shall comprise the main steps of the test program for each air-conditioner unit.

15. Test Data.

The following items shall form the permanent data file for the test program:

- (a) All inspection data sheets, functional test data sheets, and Notice of Deviation sheets.
- (b) Analog magnetic tapes of the test data for all tests performed.

^{*} Development of Waveform Synthesis Technique and Modification of the WAVSYN Computer Program, HNDTR-73-8-ED-R (U.S. Army Corps of Engineers, Huntsville Division, 1 May 1973).

Figure E6. Horizontal envelope spectra and proposed BSTM envelope for testing MOAC-2010.

Figure E7. Horizontal envelope spectra and proposed BSTM envelope for testing MOAC-2500.

Figure E8. Vertical envelope spectra and proposed BSTM envelope for testing MOAC-2010 and MOAC-2500.

EWC MODEL NO.	_DATE		SERIA	L NO	
TEST (NOTE 1)		A	В	С	
TIME					
FAN R.P.M.					
UNIT AMPS PHASE A					
UNIT AMPS PHASE B					
UNIT AMPS PHASE C					
UNIT VOLTS PHASE A					
UNIT VOLTS PHASE B					
UNIT VOLTS PHASE C					
AMBIENT °F					
FAN & MOTOR OPERATION					
RETURN AIR °F	Wet	Bulb			
SUPPLY AIR °F	Dry Wet	Bulb Bulb			
STRUCTURAL DAMAGE					
DISCHARGE PSIG					
SUCTION PSIG					
TESTED BY:			_ DAT	E	
WITNESSED BY:					
NOTE 1:					
TEST A - BEFORE SEISMIC TEST					
TEST B - AFTER FIRST SEISMIC TEST	1ST HORIZONTAL	DIRECTION			
TEST C - AFTER FIRST SEISMIC TEST	2ND HORIZONTAL	DIRECTION			
ELLIS AND WATTS COMPANY CINCINNATI, OHIO 45244	ТЕ	ST DATA S	HEET	NO. 1	

Figure E9. Sample Functional Data Sheet.

NOTICE OF DEVIATION

	Job no.
	Nod. no.
	Date
То	
Part name	
Part no.	S/N
Test	
	Para. no
Notification made to	
Date By	NIA
	:
Specimen disposition:	
Comments/Recommendations:	
Test Monitor	
Approved by CERL FORM 80 25 Jan 74	

Figure E10. Sample Notice of Deviation Data Sheet.

Table E3

Sequence of Test Events

- Receive the two air-conditioner units and perform a receiving inspection.
- 2. Assemble and instrument the first air-conditioner unit.
- 3. Perform pre-test functional checks.
- 4. Mount the air-conditioner unit on the test platform.
- 5. Perform resonance search tests.
- 6. Perform pre-test functional checks.
- 7. Conduct a seismic multi-frequency test at 25 percent of the fullscale amplitude, using one of the 10 pulse repetitions.
- 8. Perform the post-test functional checks.
- Repeat steps 6 through 8 for 50 percent and 75 percent of fullscale amplitude.
- 10. Repeat steps 6 through 8 for 100 percent of full-scale amplitude using 10 pulse repetitions.
- 11. Rotate the unit 90 degrees on the test platform and repeat steps 5 through 10.
- 12. Repeat steps 2 through 11 for the remaining air-conditioner unit.
- 13. Reduce all test data.
- 14. Analyze all test data.
- 15. Notify Ellis and Watts and TVA by letter of successful completion of testing.
- 16. Disassemble all test items and prepare for shipment.

- (c) Acceleration response versus frequency for all resonance search tests.
- (d) Shock spectrum plots from the test platform response acceleration data obtained during all multi-frequency tests.

Immediately after each test, copies of all test data shall be made available to the Ellis and Watts Company technical representatives.

16. Reports.

A formal test report shall be submitted in accordance with the sequence presented in Table E3. The test report shall include all shock spectrum plots, resonance search plots, and analog test records from selected accelerometers. The report shall also include copies of all inspection data sheets, functional data sheets, and Notice of Deviation sheets. Diagrams of test setups and transducer locations and photographs of the actual test setups and the test equipment used shall be included in this report.

CERL DISTRIBUTION

Chief of Engineers ATTN: DAEN-ASI-L (2) Dept of the Army WASH DC 20314

Ellis and Watts Company (6) ATTN: Mr. Paul Cunningham P.O. Box 44010 Cincinnati OH 45244

US Govt Printing Office ATTN: Mr. J. Livsey (2) Receiving Section Depository Copies 5236 Eisenhower Avenue Alexandria VA 22304

Defense Documentation Center ATTN: DDA (12) Cameron Station Alexandria VA 22314 Gambill, James B
Shock resistance of air-conditioning units: test report for Ellis and Watts Co., Cincinnati, Ohio / by James B. Gambill, Walter E. Fisher. -- Champaign, IL: Construction Engineering Research Laboratory; Springfield, VA: available from NTIS, 1979.
91 p.; 27 cm. (Special report; M-273)

Air conditioning -- equipment and supplies -- testing.
 Earthquakes -- testing.
 Fisher, Walter E. II. Title.
 Series: U.S. Army Construction Engineering Research Laboratory.
 Special report; M-273.

the property of the state of th