



(43) Internationales Veröffentlichungsdatum 12. Mai 2005 (12.05.2005)

PCT

(10) Internationale Veröffentlichungsnummer WO 2005/043482 A3

(51) Internationale Patentklassifikation<sup>7</sup>: H01L 23/48

H04B 5/00,

(21) Internationales Aktenzeichen: PCT/EP2004/012351

(22) Internationales Anmeldedatum:

28. Oktober 2004 (28.10.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

103 51 719.7 31. Oktober 2003 (31.10.2003) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): IHP GMBH-INNOVATIONS FOR HIGH PERFORMANCE MICROELECTRONICS / INSTI-TUT FÜR INNOVATIVE MIKROELEKTRONIK [DE/DE]; Im Technologiepark 25, 15236 Frankfurt (Oder) (DE).

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): GUSTAT, Hans [DE/DE]; Am Ziestsee 4, 15752 Prieros (DE).
- (74) Anwalt: EISENFÜHR, SPEISER & PARTNER; Anna-Louisa-Karsch-Str. 2, 10178 Berlin (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,

[Fortsetzung auf der nächsten Seite]

- (54) Title: PROCESSOR COMPONENT FOR CONTACTLESS SIGNAL TRANSMISSION
- (54) Bezeichnung: PROZESSORBAUSTEIN ZUR KONTAKTLOSEN SIGNALÜBERTRAGUNG



(57) Abstract: The invention relates to a chip arrangement comprising a first chip (10) having at least one first signal interface (18) with first coupling elements (20-30) disposed along a first line (11) in a first number density, and at least one second chip (12) having at least one second signal interface (32) with second coupling elements (34-36) disposed along a second line (13) in a second number density. The first and second coupling elements are adapted to allow contactless signal transmission between the first and second signal interface. The first and the second chip are arranged relative to each other in such a way that coupling elements of the first and the second signal interface are enabled to cooperate to transmit signals in a contactless manner. The longitudinal extension (11) of at least one of the signal interfaces along the line associated therewith is longer than the length of the overlap of the two longitudinal extensions (12). One of the signal interfaces has a higher number density of

coupling elements than the other one.

WO 2005/04348

(57) Zusammenfassung: Chip-Anordnung mit einem ersten Chip (10), der mindestens eine erste Signalschnittstelle (18) mit längs einer ersten Linie (11) in einer ersten Anzahldichte angeordneten ersten Kopplungselementen (20-30) aufweist, und mit mindestens einem zweiten Chip (12), der mindestens eine zweite Signalschnittstelle (32) mit längs einer zweiten Linie (13) in einer zweiten Anzahldichte angeordneten zweiten Kopplungselementen (34-36) aufweist: bei der die ersten und zweiten Kopplungselemente ausgebildet sind, eine kontaktlose Signalübertragung zwischen der ersten und der zweiten Signalschnittstelle zu ermöglichen, bei der der erste und der zweite Chip relativ zueinander so angeordnet sind, dass Kopplungselemente der ersten und der zweiten Signalschnittstelle miteinander kontaktlos Signale übertragen können, bei der die Längserstreckung (11) mindestens einer der Signalschnittstellen längs der ihr zugeordneten Linie größer ist als die Länge der Überlappung beider Längserstreckungen (12), und bei der eine der Signalschnittstellen eine größere Anzahldichte an Kopplungselementen aufweist als die andere.

## WO 2005/043482 A3



TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

## Veröffentlicht:

mit internationalem Recherchenbericht

## (88) Veröffentlichungsdatum des internationalen Recherchenberichts: 25. August 2005

s und der anderen Ah

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.