

Schletter, Inc.		20° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eight Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, P_g =
(ASCE 7-10, Eq. 7.4-1)	20.62 psf	Sloped Roof Snow Load, P_s =
	1.00	I _s =
	0.91	$C_s =$
	0.90	$C_e =$

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V = 140 mph Exposure Category = C
Height < 15 ft Importance Category = II

Peak Velocity Pressure, $q_z = 30.77$ psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

2.4 Seismic Loads

$S_S =$ $S_{DS} =$ $S_1 =$ $S_{DS} =$	1.67 1.00	R = 1.25 $C_S = 0.8$ $\rho = 1.3$ O = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5 may be used to calculate the base shear, C_s , of structures under five stories and with a period, T_s , of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
S _{D1} =	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S $_{\rm ds}$ of 1.0 was used to
T _a =	0.39	$C_d = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>1106.82</u>	6042.06	k
Compressive Load =	4238.35	<u>4809.68</u>	k
Lateral Load =	321.34	<u>2695.81</u>	k
Moment (Weak Axis) =	0.65	0.35	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 316586.4 in-lbs Resisting Force Required = 3638.92 lbs A minimum 174in long x 35in wide x S.F. = 1.67 12in tall ballast foundation is required Weight Required = 6064 87 lbs to resist overturning. Minimum Width = 35 in Weight Provided = 6132.29 lbs Sliding Force = 1244.03 lbs Friction = Use a 174in long x 35in wide x 12in tall 0.4ballast foundation to resist sliding. Weight Required = 3110.06 lbs Resisting Weight = 6132.29 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 1244 03 lbs Cohesion = 130 psf Use a 174in long x 35in wide x 12in tall Area = 42.29 ft² ballast foundation. Cohesion is OK. Resisting = 3066.15 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. f'c = 2500 psi Length = 8 in

Bearing Pressure (Meyerhof, 1953)

 $P_{ftg} = (145 \text{ pcf})(14.5 \text{ ft})(1 \text{ ft})(2.92 \text{ ft}) =$

ASD LC		1.0D + 1.0S 1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			S	0.6D + 0.6W							
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
F _A	1404 lbs	1404 lbs	1404 lbs	1404 lbs	1561 lbs	1561 lbs	1561 lbs	1561 lbs	2108 lbs	2108 lbs	2108 lbs	2108 lbs	-502 lbs	-502 lbs	-502 lbs	-502 lbs
FB	1504 lbs	1504 lbs	1504 lbs	1504 lbs	1911 lbs	1911 lbs	1911 lbs	1911 lbs	2438 lbs	2438 lbs	2438 lbs	2438 lbs	-2780 lbs	-2780 lbs	-2780 lbs	-2780 lbs
F _V	142 lbs	142 lbs	142 lbs	142 lbs	1104 lbs	1104 lbs	1104 lbs	1104 lbs	925 lbs	925 lbs	925 lbs	925 lbs	-1244 lbs	-1244 lbs	-1244 lbs	-1244 lbs
P _{total}	9041 lbs	9216 lbs	9391 lbs	9566 lbs	9604 lbs	9780 lbs	9955 lbs	10130 lbs	10679 lbs	10854 lbs	11029 lbs	11204 lbs	397 lbs	502 lbs	608 lbs	713 lbs
M	6599 lbs-ft	6599 lbs-ft	6599 lbs-ft	6599 lbs-ft	5993 lbs-ft	5993 lbs-ft	5993 lbs-ft	5993 lbs-ft	8897 lbs-ft	8897 lbs-ft	8897 lbs-ft	8897 lbs-ft	2587 lbs-ft	2587 lbs-ft	2587 lbs-ft	2587 lbs-ft
е	0.73 ft	0.72 ft	0.70 ft	0.69 ft	0.62 ft	0.61 ft	0.60 ft	0.59 ft	0.83 ft	0.82 ft	0.81 ft	0.79 ft	6.51 ft	5.15 ft	4.26 ft	3.63 ft
L'	13.04 ft	13.07 ft	13.09 ft	13.12 ft	13.25 ft	13.27 ft	13.30 ft	13.32 ft	12.83 ft	12.86 ft	12.89 ft	12.91 ft	1.48 ft	4.20 ft	5.98 ft	7.24 ft
A'	38.0 sqft	39.2 sqft	40.4 sqft	41.5 sqft	38.7 sqft	39.8 sqft	41.0 sqft	42.2 sqft	37.4 sqft	38.6 sqft	39.7 sqft	40.9 sqft	4.3 sqft	12.6 sqft	18.4 sqft	22.9 sqft
f _{mey erhof}	237.7 psf	235.1 psf	232.6 psf	230.2 psf	248.5 psf	245.6 psf	242.8 psf	240.2 psf	285.3 psf	281.3 psf	277.6 psf	274.0 psf	92.3 psf	39.9 psf	32.9 psf	31.1 psf

<u>36 in</u>

35 in

Ballast Width

6132 lbs 6308 lbs 6483 lbs 6658 lbs

37 in

38 in

Maximum Bearing Pressure = 285 psf Allowable Bearing Pressure = 1500 psf Use a 174in long x 35in wide x 12in tall ballast foundation for an acceptable bearing pressure.

Seismic Design

Overturning Check

 $M_O = 2946.1 \text{ ft-lbs}$

Resisting Force Required = 2020.16 lbs S.F. = 1.67

Weight Required = 3366.93 lbs Minimum Width = 35 in in Weight Provided = 6132.29 lbs A minimum 174in long x 35in wide x 12in tall ballast foundation is required to resist

overturning.

Bearing Pressure (Meyerhof, 1953)

ASD LC	1.238D + 0.875E			1.1785	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		35 in			35 in			35 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	271 lbs	592 lbs	202 lbs	866 lbs	2386 lbs	812 lbs	104 lbs	173 lbs	35 lbs		
F _V	201 lbs	197 lbs	204 lbs	149 lbs	144 lbs	158 lbs	202 lbs	198 lbs	203 lbs		
P _{total}	7863 lbs	8184 lbs	7793 lbs	8093 lbs	9613 lbs	8039 lbs	2323 lbs	2393 lbs	2255 lbs		
М	710 lbs-ft	701 lbs-ft	717 lbs-ft	535 lbs-ft	534 lbs-ft	561 lbs-ft	708 lbs-ft	698 lbs-ft	711 lbs-ft		
е	0.09 ft	0.09 ft	0.09 ft	0.07 ft	0.06 ft	0.07 ft	0.30 ft	0.29 ft	0.32 ft		
B'	2.74 ft	2.75 ft	2.73 ft	2.78 ft	2.81 ft	2.78 ft	2.31 ft	2.33 ft	2.29 ft		
A'	39.7 sqft	39.8 sqft	39.6 sqft	40.4 sqft	40.7 sqft	40.3 sqft	33.5 sqft	33.8 sqft	33.2 sqft		
f _{mey erhof}	198.2 psf	205.6 psf	196.7 psf	200.4 psf	236.3 psf	199.7 psf	69.4 psf	70.7 psf	68.0 psf		

Maximum Bearing Pressure = 236 psf Allowable Bearing Pressure = 1500 psf

Use a 174in long x 35in wide x 12in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 174in long x 35in wide x 12in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the front end of girder to a center section of the steel post. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load =	3.260 k	Rear Strut Maximum Axial Load = 4 158 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>44%</u>	Utilization = <u>56%</u>
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	2.066 k 12.808 k 7.421 k <u>28%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)
	**	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ll} \text{Mean Height, h}_{\text{sx}} = & 51.89 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & 0.020 \text{h}_{\text{sx}} \\ \text{1.038 in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.601 \text{ in} \\ & 0.601 \leq 1.038, \text{ OK.} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_b = 96 \text{ in}$$

$$J = 0.432$$

$$265.581$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

S1 = 0.51461

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
S2 = 1701.56

$$\phi$$
F_L= ϕ b[Bc-1.6Dc* $\sqrt{(\text{LbSc})/(\text{Cb*}\sqrt{(\text{lyJ})/2}))}$

$$\phi F_1 = 28.0 \text{ ksi}$$

3.4.16

b/t = 32.195

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{aligned} \phi F_L St &= & 25.1 \text{ ksi} \\ lx &= & 897074 \text{ mm}^4 \\ & & 2.155 \text{ in}^4 \\ y &= & 41.015 \text{ mm} \\ Sx &= & 1.335 \text{ in}^3 \end{aligned}$$

2.788 k-ft

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= 96 \\ \mathsf{J} &= 0.432 \\ &= 168.894 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \varphi \mathsf{F_L} &= \varphi b [\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F_L} &= 29.1 \end{split}$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$x = 45.5 \text{ mm}$$

Sy=

 $M_{max}Wk =$

0.599 in³

1.152 k-ft

 $M_{max}St =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14 $L_{b} = 104.56 \text{ in}$ J = 1.08 179.85 $S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$ S1 = 0.51461 $S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$ S2 = 1701.56

 $\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

Weak Axis:

$L_b = 104.56$ J = 1.08 190.335

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

28.9

 $\phi F_1 =$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))]}$$

3.4.16

 $\phi F_1 = 29.0 \text{ ksi}$

b/t = 16.2

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

b/t = 7.4

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi \varphi Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

 $\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$

31.1 ksi

 $\phi F_L =$

3.4.16.1 N/A for Weak Direction

16.2

36.9

 $\frac{\theta_y}{2}$ 1.3Fcy

3.4.18

h/t =

S1 =

Bbr -

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.0 \text{ ksi}$$

 $lx = 984962 \text{ mm}^4$

y = 43.717 mm

2.366 in⁴

1.375 in³

3.323 k-ft

$$\begin{array}{rcl} m = & 0.65 \\ C_0 = & 40 \\ C_0 = & 40 \\ S2 = & 40 \\ S2 = & 77.3 \\ \varphi F_L = & 1.3 \varphi Y F C Y \\ \varphi F_L = & 43.2 \text{ ksi} \\ \\ \varphi F_L W k = & 33.3 \text{ ksi} \\ y = & 923544 \text{ mm}^4 \\ & & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{\text{max}} W k = & 3.904 \text{ k-ft} \\ \end{array}$$

Compression

 $M_{max}St =$

Sx =

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c [Bt - Dt^* \sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
A = 1215.13 mm²
1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

S.4.18
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

27.5 mm

0.621 in³

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$C_0 = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

$$V = 0.621 \text{ in}^3$$

 $M_{max}Wk = 1.460 \text{ k-ft}$

y = Sx =

 $M_{max}St = 1.460 \text{ k-ft}$

SCHLETTER

Compression

3.4.7 $\lambda = 0.57371$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.87952$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_L = 28.0279 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

0.0

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 98.03 in 98.03 0.942 0.942 J = J = 152.985 152.985 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.4 ksi $\phi F_1 =$ 29.4

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Not Used 0.0 3.4.16.1

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$\begin{aligned} \text{h/t} &= & 24.5 \\ S1 &= & \frac{Bbr - \frac{\theta_y}{\theta_b} \, 1.3Fcy}{mDbr} \\ \text{S1} &= & 36.9 \\ \text{m} &= & 0.65 \\ \text{C}_0 &= & 27.5 \\ \text{Cc} &= & 27.5 \\ S2 &= & \frac{k_1Bbr}{mDbr} \\ \text{S2} &= & 77.3 \\ \text{\phiF}_L &= & 1.3\text{\phiyFcy} \\ \text{\phiF}_L &= & 43.2 \text{ ksi} \end{aligned}$$

$$\begin{array}{ccc} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \end{array}$$

$$M_{max}St = 1.460 \text{ k-ft}$$

Compression

3.4.7
$$\lambda = 2.26776$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.89749$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 6.10803 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\phi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 6.29 \text{ kips}$$

28.2 ksi

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: Weak Axis: 3.4.14 $L_b =$ 61.10 in $L_b =$ 61.1 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ $\phi F_L = 30.2 \text{ ksi}$ 30.2

3.4.16
 3.4.16

 b/t = 24.5
 b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$
 $S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$

 S1 = 12.2
 S1 = 12.2

 $S2 = \frac{k_1 Bp}{1.6Dp}$
 $S2 = \frac{k_1 Bp}{1.6Dp}$

 S2 = 46.7
 $S2 = 46.7$
 $\varphi F_L = \varphi b [Bp-1.6Dp^*b/t]$
 $\varphi F_L = \varphi b [Bp-1.6Dp^*b/t]$
 $\varphi F_L = 28.2 \text{ ksi}$
 $\varphi F_L = 28.2 \text{ ksi}$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

 $φF_L$ = 1.17φyFcy $φF_L$ = 38.9 ksi

3.4.16.1 N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

 $\phi F_L = 43.2 \text{ ksi}$

 $\phi F_L St = 28.2 \text{ ksi}$

 $M_{max}St = 1.460 \text{ k-ft}$

 $lx = 279836 \text{ mm}^4$

0.672 in⁴

0.621 in³

27.5 mm

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\psi = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

 $M_{max}Wk =$

1.460 k-ft

Compression

y = Sx =

3.4.7

$$\begin{array}{lll} \lambda = & 1.41345 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.77788 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 13.6277 \text{ ksi} \end{array}$$

$$\begin{array}{lll} \textbf{.9} \\ \text{b/t} = & 24.5 \\ \text{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \text{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi \textbf{F}_L = \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \phi \textbf{F}_L = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \text{S1} = & 12.21 \\ \text{S2} = & 32.70 \\ \phi \textbf{F}_L = \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \phi \textbf{F}_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF$Cy} \\ \text{$\phi$F}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 13.63 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 14.03 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

: Schletter, Inc.: HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-63.565	-63.565	0	0
2	M14	Υ	-63.565	-63.565	0	0
3	M15	Υ	-63.565	-63.565	0	0
4	M16	Υ	-63 565	-63 565	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-106.012	-106.012	0	0
2	M14	٧	-106.012	-106.012	0	0
3	M15	ý	-166.591	-166.591	0	0
4	M16	V	-166.591	-166.591	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	242.314	242.314	0	0
2	M14	٧	185.774	185.774	0	0
3	M15	V	100.964	100.964	0	0
4	M16	V	100.964	100.964	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	7.874	7.874	0	0
2	M14	Ζ	7.874	7.874	0	0
3	M15	Ζ	7.874	7.874	0	0
4	M16	Ζ	7.874	7.874	0	0
5	M13	Z	0	0	0	0
6	M14	Ζ	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:___

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	<u>Fa</u>
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	546.708	2	1200.059	2	.731	1	.003	1	0	1	0	1
2		min	-686.554	3	-1475.337	3	-58.528	5	27	4	0	1	0	1
3	N7	max	.025	9	1172.262	1	56	12	001	12	0	1	0	1
4		min	205	2	-250.659	3	-247.184	4	501	4	0	1	0	1
5	N15	max	0	15	3260.267	1	0	1	0	1	0	1	0	1
6		min	-2.159	2	-851.399	3	-235.438	4	484	4	0	1	0	1
7	N16	max	1892.697	2	3699.75	2	0	3	0	12	0	1	0	1
8		min	-2073.703	3	-4647.739	3	-58.513	5	272	4	0	1	0	1
9	N23	max	.035	14	1172.262	1	9.461	1	.019	1	0	1	0	1
10		min	205	2	-250.659	3	-240.671	4	491	4	0	1	0	1
11	N24	max	546.708	2	1200.059	2	06	12	0	12	0	1	0	1
12		min	-686.554	3	-1475.337	3	-59.141	5	272	4	0	1	0	1
13	Totals:	max	2983.543	2	11639.689	1	0	2						
14		min	-3447.651	3	-8951.13	3	-894.388	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	69.213	4	473.247	1	-6.72	12	0	15	.164	1	0	4
2			min	3.897	12	-711.935	3	-148.792	1	015	2	.011	12	0	3
3		2	max	58.842	1	329.806	1	-5.451	12	0	15	.093	4	.539	3
4			min	3.897	12	-501.775	3	-113.732	1	015	2	.002	10	357	1
5		3	max	58.842	1	186.364	1	-4.182	12	0	15	.055	5	.892	3
6			min	3.897	12	-291.616	3	-78.673	1	015	2	038	1	586	1
7		4	max	58.842	1	42.922	1	-2.912	12	0	15	.031	5	1.058	3
8			min	3.897	12	-81.456	3	-43.613	1	015	2	093	1	688	1
9		5	max	58.842	1	128.703	3	.002	10	0	15	.009	5	1.037	3
10			min	3.897	12	-100.52	1	-26.451	4	015	2	116	1	663	1
11		6	max	58.842	1	338.862	3	26.506	1	0	15	005	12	.829	3
12			min	2.556	15	-243.961	1	-22.075	5	015	2	108	1	51	1
13		7	max	58.842	1	549.022	3	61.565	1	0	15	005	12	.434	3
14			min	-6.541	5	-387.403	1	-20.144	5	015	2	069	1	229	1
15		8	max	58.842	1	759.181	3	96.625	1	0	15	.004	2	.179	1
16			min	-17.03	5	-530.845	1	-18.212	5	015	2	048	4	147	3
17		9	max	58.842	1	969.341	3	131.684	1	0	15	.103	1	.715	1
18			min	-27.52	5	-674.286	1	-16.28	5	015	2	063	5	915	3

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19		10	max	58.842	1	817.728	1	-4.703	12	.004	14	.236	1	1.378	1
20			min	3.897	12	-1179.5	3	-166.744	1	015	2	.003	12	-1.87	3
21		11	max	58.842	1	674.286	1	-3.434	12	.015	2	.103	1	.715	1
22			min	3.897	12	-969.341	3	-131.684	1	0	15	002	3	915	3
23		12	max	58.842	1	530.845	1	-2.164	12	.015	2	.048	4	.179	1
24			min	3.897	12	-759.181	3	-96.625	1	0	15	005	3	147	3
25		13	max	58.842	1	387.403	1	895	12	.015	2	.023	5	.434	3
26			min	3.897	12	-549.022	3	-61.565	1	0	15	069	1	229	1
27		14	max	58.842	1	243.961	1	.775	3	.015	2	0	15	.829	3
28			min	1.66	15	-338.862	3	-30.744	4	0	15	108	1	51	1
29		15	max	58.842	1	100.52	1	8.554	1	.015	2	004	12	1.037	3
30		10	min	-7.951	5	-128.703	3	-22.979	5	0	15	116	1	663	1
31		16	max	58.842	1	81.456	3	43.613	1	.015	2	002	12	1.058	3
32		10	min	-18.44	5	-42.922	1	-21.047	5	0	15	093	1	688	1
33		17		58.842	1	291.616	3	78.673	1	.015	2	.002	3	.892	3
34		17	max	-28.93	5	-186.364	1	-19.116	5	0	15	068	4	586	1
		10			_										3
35		18	max	58.842	1	501.775	3	113.732	1	.015	2	.047	1	.539	
36		40	min	-39.419	5	-329.806	1	-17.184	5	0	15	075	5	357	1
37		19	max	58.842	1	711.935	3	148.792	1	.015	2	.164	1	0	1
38	D. 4.4		min	-49.908	5	-473.247	1	-15.252	5	0	15	09	5	0	3
39	M14	1_	max	47.664	4	541.606	1	-6.974	12	.013	3	.209	4	0	1
40			min	2.071	12	-580.551	3	-155.114	1	016	1	.013	12	0	3
41		2	max	37.175	4	398.165	1	-5.705	12	.013	3	.143	4	.445	3
42			min	2.071	12	-420.649	3	-120.055	1	016	1	.005	10	418	1
43		3	max	36.795	1_	254.723	1_	-4.436	12	.013	3	.085	5	.748	3
44			min	2.071	12	-260.748	3	-84.995	1	016	1	016	1_	708	1
45		4	max	36.795	1_	111.281	1	-3.166	12	.013	3	.048	5	.909	3
46			min	2.071	12	-100.846	3	-52.108	4	016	1	076	1	871	1
47		5	max	36.795	1	59.055	3	579	10	.013	3	.013	5	.927	3
48			min	-1.951	5	-32.16	1	-42.931	4	016	1	105	1	906	1
49		6	max	36.795	1	218.957	3	20.183	1	.013	3	004	12	.804	3
50			min	-12.44	5	-175.602	1	-36.89	5	016	1	102	1	813	1
51		7	max	36.795	1	378.859	3	55.243	1	.013	3	004	12	.538	3
52			min	-22.929	5	-319.044	1	-34.958	5	016	1	069	1	593	1
53		8	max	36.795	1	538.76	3	90.302	1	.013	3	.002	10	.13	3
54			min	-33.419	5	-462.485	1	-33.026	5	016	1	086	4	255	2
55		9	max	36.795	1	698.662	3	125.362	1	.013	3	.092	1	.229	1
56			min	-43.908	5	-605.927	1	-31.094	5	016	1	112	5	42	3
57		10	max	65.868	4	749.369	1	-4.449	12	.013	3	.219	1	.831	1
58			min	2.071	12	-858.564	3	-160.421	1	016	1	.002	12	-1.112	3
59		11	max		4	605.927	1	-3.18	12	.016	1	.143	4	.229	1
60			min	2.071	12	-698.662	3	-125.362	1	013	3	002	3	42	3
61		12	max	44.889	4	462.485	1	-1.911	12	.016	1	.083	4	.13	3
62		12	min	2.071	12	-538.76	3	-90.302	1	013	3	005	3	255	2
63		13			1	319.044	1	641	12	.016	1	.045	5	.538	3
64		10	min	2.071	12	-378.859		-55.243	1	013	3	069	1	593	1
65		14	max		1	175.602	1	1.16	3	.016	1	.01	5	.804	3
66		14	min	2.071	12	-218.957	3	-43.899	4	013	3	102	1	813	1
67		15				32.16				.016		003	12	.927	
		15	max		1	-59.055	1	14.876	1		1		1		3
68		16	min	2.071	12		3	-37.095	5	013	3	105	_	906	_
69		16	max		1	100.846	3	49.936	1	.016	1	0	12	.909	3
70		47	min	-4.853	5	-111.281	1	-35.163	5	013	3	076	1	871	1
71		17	max	36.795	1	260.748	3	84.995	1	.016	1	.004	3	.748	3
72		4.0	min	-15.342	5	-254.723	1	-33.232	5	013	3	092	4	708	1
73		18		36.795	1	420.649	3	120.055	1	.016	1	.075	1	.445	3
74			min		5	-398.165		-31.3	5	013	3	115	5	418	1
75		19	max	36.795	1	580.551	3	155.114	1	.016	1	.198	_ 1_	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
76			min	-36.321	5	-541.606	1	-29.368	5	013	3	142	5	0	3
77	M15	1	max	80.563	5	685.458	2	-6.86	12	.016	2	.274	4	0	2
78			min	-38.822	1	-326.998	3	-155.102	1	011	3	.012	12	0	3
79		2	max	70.074	5	499.456	2	-5.591	12	.016	2	.194	4	.253	3
80			min	-38.822	1	-242.483	3	-120.043	1	011	3	.005	10	527	2
81		3	max	59.585	5	313.454	2	-4.322	12	.016	2	.122	5	.431	3
82			min	-38.822	1	-157.968	3	-84.983	1	011	3	016	1	888	2
83		4	max	49.095	5	127.452	2	-3.053	12	.016	2	.071	5	.534	3
84			min	-38.822	1	-73.453	3	-67.961	4	011	3	076	1	-1.084	2
85		5	max	38.606	5	11.062	3	634	10	.016	2	.021	5	.562	3
86			min	-38.822	1	-58.55	2	-58.784	4	011	3	105	1	-1.114	2
87		6	max	28.117	5	95.577	3	20.195	1	.016	2	004	12	.514	3
88			min	-38.822	1	-244.552	2	-52.725	5	011	3	102	1	98	2
89		7	max	17.627	5	180.092	3	55.255	1	.016	2	004	12	.392	3
90			min	-38.822	1	-430.554	2	-50.793	5	011	3	088	4	68	2
91		8	max	7.138	5	264.607	3	90.314	1	.016	2	.001	10	.194	3
92			min	-38.822	1	-616.556	2	-48.861	5	011	3	12	4	225	1
93		9	max	-2.189	15	349.122	3	125.374	1	.016	2	.092	1	.416	2
94			min	-38.822	1	-802.558	2	-46.929	5	011	3	159	5	079	3
95		10	max	-2.627	12	900.828	1	64.371	2	.016	2	.272	4	1.212	2
96			min	-38.822	1	-988.56	2	-160.434	1	011	3	.003	12	427	3
97		11	max	827	15	802.558	2	-3.294	12	.011	3	.19	4	.416	2
98			min	-38.822	1	-349.122	3	-125.374	1	016	2	002	3	079	3
99		12	max	-2.627	12	616.556	2	-2.024	12	.011	3	.117	4	.194	3
100		12	min	-38.822	1	-264.607	3	-90.314	1	016	2	005	3	225	1
101		13	max	-2.627	12	430.554	2	755	12	.011	3	.065	5	.392	3
102		13	min	-38.822	1	-180.092	3	-68.956	4	016	2	069	1	68	2
103		14	max	-2.627	12	244.552	2	.971	3	.011	3	.015	5	.514	3
104		17	min	-41.701	4	-95.577	3	-59.778	4	016	2	102	1	98	2
105		15	max	-2.627	12	58.55	2	14.864	1	.011	3	003	12	.562	3
106		13	min	-52.19	4	-11.062	3	-52.93	5	016	2	105	1	-1.114	2
107		16	max	-2.627	12	73.453	3	49.924	1	.011	3	001	12	.534	3
108		10	min	-62.679	4	-127.452	2	-50.998	5	016	2	096	4	-1.084	2
109		17	max	-02.079 -2.627	12	157.968	3	84.983	1	.011	3	.004	3	.431	3
110		17			4	-313.454	2		5	016	2	128	4	888	2
111		18	min	-73.169 -2.627	12	242.483	3	-49.066 120.043	1	016 .011	3	126 .075	1	000 .253	3
112		10	max												2
		10	min	-83.658	4	-499.456	2	-47.134	5	016	2	166	5	527	-
113		19	max	-2.627	12	326.998	3	155.102	1	.011	3	.197	1	0	2
114	MAC	1	min	-94.147	4	-685.458	2	-45.203	5	016	2	207	5	0	5
115	M16	1	max	76.165 -65.544	5	619.494 -274.986	2	-6.362	12	.011	3	.192	12	0	3
116		2								013		.01			
117		2	max		5	433.492	2	-5.093	12	.011	1	.129	4	.207	3
118		2		-65.544	1	-190.471	3	-114.259		<u>013</u>	3	.003	10	<u>468</u>	2
119		3	max	55.186	5	247.49	2	-3.824	12	.011	1	.081	5	.339	3
120		1	min	-65.544	1	-105.956	3	-79.2	1	013	3	037	1	771	2
121		4	max	44.697	5	61.488	2	-2.555	12	.011	1	.048	5	.395	3
122		_	min	-65.544	1	-21.441	3	-46.917	4	013	3	092	1	908	2
123		5	max	34.208	5	63.073	3_	231	10	.011	1	.016	5	.377	3
124			min		1	-124.514	2	-37.74	4	013	3	11 <u>5</u>	1	88	2
125		6	max	23.718	5	147.588	3	25.979	1	.011	1	005	12	.283	3
126			min		1	-310.516	2	-33.221	5	013	3	108	1	687	2
127		7	max	13.229	5	232.103	3	61.039	1	.011	1	004	12	.114	3
128				<u>-65.544</u>	1	-496.518	2	-31.29	5	<u>013</u>	3	069	1	328	2
129		8	max	2.74	5	316.618	3	96.098	1	.011	1	.003	2	.196	2
130			min	-65.544	1	-682.52	2	-29.358	5	013	3	072	4	13	3
131		9	max	-3.841	12	401.133	3	131.158	1	.011	1	.102	1	.885	2
132			min	-65.544	1	-868.522	2	-27.426	5	013	3	096	5	449	3

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
133		10	max	-3.841	12	967.838	1	66.404	2	.011	1	.234	1	1.74	2
134			min	-65.544	1	-1054.524	2	-166.217	1	013	3	.004	12	843	3
135		11	max	.578	5	868.522	2	-3.792	12	.013	3	.129	4	.885	2
136			min	-65.544	1	-401.133	3	-131.158	1	011	1	0	3	449	3
137		12	max	-3.841	12	682.52	2	-2.522	12	.013	3	.072	4	.196	2
138			min	-65.544	1	-316.618	3	-96.098	1	011	1	004	3	13	3
139		13	max	-3.841	12	496.518	2	-1.253	12	.013	3	.036	5	.114	3
140			min	-65.544	1	-232.103	3	-61.039	1	011	1	069	1	328	2
141		14	max	-3.841	12	310.516	2	.177	3	.013	3	.003	5	.283	3
142			min	-65.544	1	-147.588	3	-41.862	4	011	1	108	1	687	2
143		15	max	-3.841	12	124.514	2	9.081	1	.013	3	004	12	.377	3
144			min	-65.544	1	-63.073	3	-34.103	5	011	1	115	1	88	2
145		16	max	-3.841	12	21.441	3	44.14	1	.013	3	002	12	.395	3
146			min	-66.384	4	-61.488	2	-32.171	5	011	1	092	1	908	2
147		17	max	-3.841	12	105.956	3	79.2	1	.013	3	.001	3	.339	3
148			min	-76.873	4	-247.49	2	-30.239	5	011	1	094	4	771	2
149		18	max	-3.841	12	190.471	3	114.259	1	.013	3	.049	1	.207	3
150			min	-87.363	4	-433.492	2	-28.307	5	011	1	111	5	468	2
151		19	max	-3.841	12	274.986	3	149.319	1	.013	3	.166	1	0	2
152			min	-97.852	4	-619.494	2	-26.376	5	011	1	136	5	0	5
153	M2	1	max	1112.639	1_	2.214	4	.693	1	0	3	0	3	0	1
154			min	-1319.969	3	.545	15	-50.432	4	0	1	0	1	0	1
155		2		1113.055	1	2.205	4	.693	1	0	3	0	1	0	15
156			min	-1319.657	3	.543	15	-50.792	4	0	1	014	4	0	4
157		3		1113.471	1	2.197	4	.693	1	0	3	0	1	0	15
158			min	-1319.345	3	.541	15	-51.153	4	0	1	028	4	001	4
159		4	max	1113.887	1	2.188	4	.693	1	0	3	0	1	0	15
160			min	-1319.033	3	.538	15	-51.513	4	0	1	043	4	002	4
161		5	max	1114.303	1	2.179	4	.693	1	0	3	0	1	0	15
162			min	-1318.721	3	.536	15	-51.874	4	0	1	057	4	002	4
163		6	max	1114.719	1	2.171	4	.693	1	0	3	0	1	0	15
164			min	-1318.409	3	.534	15	-52.234	4	0	1	072	4	003	4
165		7		1115.134	1	2.162	4	.693	1	0	3	.001	1	0	15
166			min	-1318.097	3	.532	15	-52.595	4	0	1	087	4	004	4
167		8	max	1115.55	1	2.153	4	.693	1	0	3	.001	1_	001	15
168			min	-1317.785	3	.53	15	-52.955	4	0	1	101	4	004	4
169		9		1115.966	1	2.144	4	.693	1	0	3	.002	1	001	15
170			min	-1317.474	3	.528	15	-53.316	4	0	1	116	4	005	4
171		10	max		1	2.136	4	.693	1	0	3	.002	1	001	15
172			min	-1317.162	3	.526	15	-53.676	4	0	1	131	4	005	4
173		11		1116.798	1	2.127	4	.693	1_	0	3	.002	1	001	15
174				-1316.85	3	.524	15	-54.037	4	0	1	146	4	006	4
175		12		1117.214	1	2.118	4	.693	1	0	3	.002	1	002	15
176			min	-1316.538	3	.522	15	-54.397	4	0	1	162	4	007	4
177		13		1117.63	1	2.11	4	.693	1	0	3	.002	1	002	15
178			min	-1316.226	3	.52	15	-54.758	4	0	1	177	4	007	4
179		14		1118.046	1_	2.101	4	.693	1	0	3	.003	1	002	15
180			min		3	.518	15	-55.118	4	0	1	192	4	008	4
181		15		1118.461	1	2.092	4	.693	1	0	3	.003	1	002	15
182		4.0	min	-1315.602	3	.516	15	-55.479	4	0	1	208	4	008	4
183		16		1118.877	1	2.083	4	.693	1	0	3	.003	1	002	15
184				-1315.29	3	.514	15	-55.839	4	0	1	223	4	009	4
185		17		1119.293	1	2.075	4	.693	1	0	3	.003	1	002	15
186			min	-1314.978	3	.512	15	-56.2	4	0	1	239	4	01	4
187		18		1119.709	1	2.066	4	.693	1	0	3	.003	1	003	15
188			min	-1314.666	3	.51	15	<u>-56.56</u>	4	0	1	255	4	01	4
189		19	max	1120.125	1	2.057	4	.693	1	0	3	.003	1	003	15

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
190			min	-1314.354	3	.508	15	-56.92	4	0	1	271	4	011	4
191	M3	1	max	545.735	2	9.135	4	.167	1	0	3	0	1	.011	4
192			min	-684.834	3	2.162	15	-3.112	5	0	4	005	4	.003	15
193		2	max	545.564	2	8.26	4	.167	1	0	3	0	1_	.007	4
194			min	-684.961	3	1.956	15	-2.504	5	0	4	006	4	.001	12
195		3	max	545.394	2	7.386	4	.167	1	0	3	0	1	.003	2
196			min	-685.089	3	1.75	15	-1.895	5	0	4	007	4	0	3
197		4	max	545.224	2	6.511	4	.167	1	0	3	0	1	0	2
198			min	-685.217	3	1.545	15	-1.286	5	0	4	008	5	002	3
199		5	max	545.053	2	5.637	4	.167	1	0	3	0	1	0	15
200			min	-685.345	3	1.339	15	677	5	0	4	008	5	004	3
201		6	max	544.883	2	4.763	4	.167	1	0	3	0	1	001	15
202			min	-685.472	3	1.134	15	069	5	0	4	008	5	006	6
203		7	max	544.713	2	3.888	4	.598	4	0	3	0	1	002	15
204			min	-685.6	3	.928	15	.01	12	0	4	008	5	008	6
205		8	max	544.542	2	3.014	4	1.207	4	0	3	0	1	002	15
206			min	-685.728	3	.723	15	.01	12	0	4	008	5	009	6
207		9	max	544.372	2	2.139	4	1.815	4	0	3	0	1	002	15
208			min	-685.856	3	.517	15	.01	12	0	4	007	5	011	6
209		10	max	544.201	2	1.265	4	2.424	4	0	3	0	1	003	15
210			min	-685.984	3	.312	15	.01	12	0	4	006	5	011	6
211		11	max	544.031	2	.441	2	3.033	4	0	3	0	1	003	15
212			min	-686.111	3	017	3	.01	12	0	4	005	5	012	6
213		12	max	543.861	2	099	15	3.642	4	0	3	0	1	003	15
214			min	-686.239	3	528	3	.01	12	0	4	003	5	012	6
215		13	max	543.69	2	305	15	4.25	4	0	3	.001	1	003	15
216			min	-686.367	3	-1.36	6	.01	12	0	4	001	5	011	6
217		14	max	543.52	2	511	15	4.859	4	0	3	.001	1	002	15
218			min	-686.495	3	-2.234	6	.01	12	0	4	0	12	01	6
219		15	max	543.35	2	716	15	5.468	4	0	3	.003	4	002	15
220			min	-686.622	3	-3.109	6	.01	12	0	4	0	12	009	6
221		16	max	543.179	2	922	15	6.076	4	0	3	.006	4	002	15
222			min	-686.75	3	-3.983	6	.01	12	0	4	0	12	008	6
223		17	max	543.009	2	-1.127	15	6.685	4	0	3	.009	4	001	15
224			min	-686.878	3	-4.858	6	.01	12	0	4	0	12	005	6
225		18	max	542.839	2	-1.333	15	7.294	4	0	3	.013	4	0	15
226			min	-687.006	3	-5.732	6	.01	12	0	4	0	12	003	6
227		19	max	542.668	2	-1.538	15	7.903	4	0	3	.016	4	0	1
228			min	-687.133	3	-6.607	6	.01	12	0	4	0	12	0	1
229	M4	1		1169.195	1	0	1	557	12	0	1	.01	4	0	1
230				-252.959	3	0	1	-245.662	4	0	1	0	12	0	1
231		2		1169.366	1	0	1	557	12	0	1	0	12	0	1
232			min		3	0	1	-245.81	4	0	1	019	4	0	1
233		3	1	1169.536	1	0	1	557	12	0	1	0	12	0	1
234			min	-252.704	3	0	1	-245.957	4	0	1	047	4	0	1
235		4		1169.706	1	0	1	557	12	0	1	0	12	0	1
236				-252.576		0	1	-246.105		0	1	075	4	0	1
237		5		1169.877	1	0	1	557	12	0	1	0	12	0	1
238			min	-252.448	3	0	1	-246.253		0	1	103	4	0	1
239		6	1	1170.047	1	0	1	557	12	0	1	0	12	0	1
240			min	-252.32	3	0	1	-246.4	4	0	1	132	4	0	1
241		7		1170.218	1	0	1	557	12	0	1	0	12	0	1
242				-252.193		0	1	-246.548		0	1	16	4	0	1
243		8		1170.388	1	0	1	557	12	0	1	0	12	0	1
244			min	-252.065	3	0	1	-246.696		0	1	188	4	0	1
245		9		1170.558	1	0	1	557	12	0	1	0	12	0	1
246				-251.937	3	0	1	-246.843		0	1	217	4	0	1
240			1111111	201.307	J	U		240.043	7	U		217	1 4	U	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

248		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
2549			10	max		_1_	0	1			0	_1_			0	1
250						3					0					1
1251			11	max				_								
252						3	0	1		4	0	1	273		0	1
13 max 1171.24			12	max		1_	0	1		12	0	_1_	0	12	0	1
254	252			min	-251.554	3	0	1	-247.286	4	0	1	302	4	0	1
255	253		13	max	1171.24	1_	0	1	557	12	0	1	0	12	0	1
256	254			min	-251.426	3	0	1	-247.434	4	0	1	33	4	0	1
15	255		14	max	1171.41	1	0	1	557	12	0	1	0	12	0	1
258	256			min	-251.298	3	0	1	-247.581	4	0	1	359	4	0	1
259			15		1171.58	1	0	1		12	0	1		12	0	1
259	258			min	-251.17	3	0	1	-247.729	4	0	1	387	4	0	1
260			16			1	0	1	557	12	0	1		12	0	1
261						3		1			0	1	415			
262			17					1				1				1
263																
266			18					1				1				1
266																_
266			19													
267 M6 1 max 3416.573 1 2.612 2 0 1			'													
268		M6	1			_	_	_			_	_			_	_
268		IVIO	<u> </u>							_		_			_	_
270			2													
271																
272			2									_				
273			3													
274			1													
275			4													
276			E			_										
277			5							_					_	
278			6								_	_				
279			Ь							_					_	
280			-													
281			/									_			_	
282 min -4155.738 3 .062 3 -53.482 4 0 1 102 4 005 2 283 9 max 3419.9 1 2.558 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 3 3 288 10 max 3420.316 1 2.551 2 0 1												_				
283 9 max 3419.9 1 2.558 2 0 1 0 1 0 1 0 3 284 min -4155.426 3 .057 3 -53.842 4 0 1 -118 4 006 2 285 10 max 3420.316 1 2.551 2 0 1 0 1 0 1 0 1 0 1 0 3 286 min -4155.114 3 .052 3 -54.203 4 0 1 -133 4 -007 2 287 111 max 3420.732 1 2.544 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 </td <td></td> <td></td> <td>8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			8						_							
284																
285 10 max 3420.316 1 2.551 2 0 1 0 1 0 1 0 3 286 min -4155.114 3 .052 3 -54.203 4 0 1 133 4 007 2 287 11 max 3420.732 1 2.544 2 0 1 <td></td> <td></td> <td>9</td> <td></td> <td>-</td> <td></td>			9												-	
286 min -4155.114 3 .052 3 -54.203 4 0 1 133 4 007 2 287 11 max 3420.732 1 2.544 2 0 1 0 1 0 1 0 1 0 1 0 3 3 288 min -4154.802 3 .047 3 -54.563 4 0 1 148 4 007 2 289 12 max 3421.148 1 2.537 2 0 1 0 1 0 1 0 3 290 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1			1.0			_										
287 11 max 3420.732 1 2.544 2 0 1 0 1 0 1 0 3 288 min -4154.802 3 .047 3 -54.563 4 0 1 -1.48 4 007 2 289 12 max 3421.148 1 2.537 2 0 1 0 1 0 1 0 1 0 1 0 1 0 3 -292 0 1 0<			10							_						
288 min -4154.802 3 .047 3 -54.563 4 0 1 148 4 007 2 289 12 max 3421.148 1 2.537 2 0 1 0 1 0 1 0 1 0 1 0 3 3 290 1 0						3_				4		1				
289 12 max 3421.148 1 2.537 2 0 1 0 1 0 1 0 1 0 3 290 min -4154.491 3 .041 3 -54.924 4 0 1 163 4 008 2 291 13 max 3421.563 1 2.531 2 0 1 0 1 0 1 0 3 292 min -4154.179 3 .036 3 -55.284 4 0 1 -179 4 009 2 293 14 max 3421.979 1 2.524 2 0 1 0 1 0 1 0 3 294 min -4153.867 3 .031 3 -55.645 4 0 1 194 4 009 2 295 15 max 3422.395 1 2.517 2 0 1 0 1 0 1 0 3 296 min -4153.243 3 .026			11			1			_	1		1				
290 min -4154.491 3 .041 3 -54.924 4 0 1 163 4 008 2 291 13 max 3421.563 1 2.531 2 0 1 0 1 0 1 0 3 292 min -4154.179 3 .036 3 -55.284 4 0 1 179 4 009 2 293 14 max 3421.979 1 2.524 2 0 1 0 1 0 1 0 3 294 min -4153.867 3 .031 3 -55.645 4 0 1 194 4 009 2 295 15 max 3422.395 1 2.517 2 0 1 0 1 0 1 0 3 296 min -4153.555 3 .026 3									_							
291 13 max 3421.563 1 2.531 2 0 1 0 1 0 1 0 3 292 min -4154.179 3 .036 3 -55.284 4 0 1 179 4 009 2 293 14 max 3421.979 1 2.524 2 0 1 0 1 0 3 294 min -4153.867 3 .031 3 -55.645 4 0 1 194 4 009 2 295 15 max 3422.395 1 2.517 2 0 1 0 1 0 1 0 3 296 min -4153.555 3 .026 3 -56.005 4 0 1 21 4 01 2 297 16 max 3422.811 1 2.51 2 0 1 0 1 0 1 0 3 298 min			12												_	
292 min -4154.179 3 .036 3 -55.284 4 0 1 179 4 009 2 293 14 max 3421.979 1 2.524 2 0 1 0 1 0 1 0 3 294 min -4153.867 3 .031 3 -55.645 4 0 1 194 4 009 2 295 15 max 3422.395 1 2.517 2 0 1 0 1 194 4 009 2 296 min -4153.555 3 .026 3 -56.005 4 0 1 21 4 01 2 297 16 max 3422.811 1 2.51 2 0 1 0 1 0 3 298 min -4153.243 3 .021 3 -56.366				1												
293 14 max 3421.979 1 2.524 2 0 1 0 1 0 1 0 1 0 3 294 min -4153.867 3 .031 3 -55.645 4 0 1194 4009 2 295 15 max 3422.395 1 2.517 2 0 1 0 1 0 1 0 1 0 3 296 min -4153.555 3 .026 3 -56.005 4 0 121 401 2 297 16 max 3422.811 1 2.51 2 0 1 0 1 0 1 0 1 0 3 298 min -4153.243 3 .021 3 -56.366 4 0 1226 4011 2 299 17 max 3423.227 1 2.503 2 0 1 0 1 0 1 0 1 0 3 0 3 0 3 300 min -4152.931 3 .016 3 -56.726 4 0 1242 4011 2 301 18 max 3423.643 1 2.497 2 0 1 0 1 0 1 0 1 0 3 0 1 0 1 0 3 0 3 302 min -4152.619 3 .011 3 -57.087 4 0 1257 4012 2			13						_			_				
294 min -4153.867 3 .031 3 -55.645 4 0 1 194 4 009 2 295 15 max 3422.395 1 2.517 2 0 1 0 1 0 1 0 3 296 min -4153.555 3 .026 3 -56.005 4 0 1 21 4 01 2 297 16 max 3422.811 1 2.51 2 0 1 0 1 0 1 0 3 298 min -4153.243 3 .021 3 -56.366 4 0 1 226 4 011 2 299 17 max 3423.227 1 2.503 2 0 1 0 1 0 3 300 min -4152.931 3 .016 3 -56.726 4						3			-55.284	4					009	
295 15 max 3422.395 1 2.517 2 0 1 0 1 0 1 0 1 0 3 296 min -4153.555 3 .026 3 -56.005 4 0 1 21 4 01 2 297 16 max 3422.811 1 2.51 2 0 1 0 1 0 1 0 3 298 min -4153.243 3 .021 3 -56.366 4 0 1 226 4 011 2 299 17 max 3423.227 1 2.503 2 0 1 0 1 0 1 0 3 300 min -4152.931 3 .016 3 -56.726 4 0 1 242 4 011 2 301 18 max 3423.643 1 2.497 2 0 1 0 1 0 3 012 2 302 min -4152.619 3 .0			14			1_									_	
296 min -4153.555 3 .026 3 -56.005 4 0 1 21 4 01 2 297 16 max 3422.811 1 2.51 2 0 1 0 1 0 3 298 min -4153.243 3 .021 3 -56.366 4 0 1 226 4 011 2 299 17 max 3423.227 1 2.503 2 0 1 0 1 0 1 0 3 300 min -4152.931 3 .016 3 -56.726 4 0 1 242 4 011 2 301 18 max 3423.643 1 2.497 2 0 1 0 1 257 4 012 2 302 min -4152.619 3 .011 3 -57.087									-55.645							
297 16 max 3422.811 1 2.51 2 0 1 0 1 0 1 0 3 298 min -4153.243 3 .021 3 -56.366 4 0 1226 4011 2 299 17 max 3423.227 1 2.503 2 0 1 0 1 0 1 0 1 0 3 300 min -4152.931 3 .016 3 -56.726 4 0 1242 4011 2 301 18 max 3423.643 1 2.497 2 0 1 0 1 0 1 0 3 302 min -4152.619 3 .011 3 -57.087 4 0 1257 4012 2			15			1_				1	0	1		1		
298 min -4153.243 3 .021 3 -56.366 4 0 1 226 4 011 2 299 17 max 3423.227 1 2.503 2 0 1 0 1 0 1 0 3 300 min -4152.931 3 .016 3 -56.726 4 0 1 242 4 011 2 301 18 max 3423.643 1 2.497 2 0 1 0 1 0 3 302 min -4152.619 3 .011 3 -57.087 4 0 1 257 4 012 2						3	.026		-56.005	4	0	1	21	4	01	
299 17 max 3423.227 1 2.503 2 0 1 0 1 0 1 0 3 300 min -4152.931 3 .016 3 -56.726 4 0 1 242 4 011 2 301 18 max 3423.643 1 2.497 2 0 1 0 1 0 1 0 3 302 min -4152.619 3 .011 3 -57.087 4 0 1 257 4 012 2	297		16	max		1	2.51	2	0	1	0	1	0	1	0	
299 17 max 3423.227 1 2.503 2 0 1 0 1 0 1 0 3 300 min -4152.931 3 .016 3 -56.726 4 0 1242 4011 2 301 18 max 3423.643 1 2.497 2 0 1 0 1 0 1 0 3 302 min -4152.619 3 .011 3 -57.087 4 0 1257 4012 2	298			min	-4153.243	3	.021	3	-56.366	4	0	1	226	4	011	2
300 min -4152.931 3 .016 3 -56.726 4 0 1 242 4 011 2 301 18 max 3423.643 1 2.497 2 0 1 0 1 0 1 0 3 302 min -4152.619 3 .011 3 -57.087 4 0 1 257 4 012 2			17	max	3423.227	1		2	_	1	0	1		1	0	3
301						3			-56.726	4		1	242	4	011	
302 min -4152.619 3 .011 3 -57.087 4 0 1257 4012 2			18	1						1		1		1		
						3										
			19	_		1						1				

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

304	Member	Sec	min	Axial[lb]	LC 3	y Shear[lb]	LC 3	z Shear[lb]	LC 4	Torque[k-ft]	LC 1	y-y Mome	LC 4	z-z Mome	LC 2
305	M7	1	_	1897.284	2	9.136	6	0	1	0	1	0	1	.013	2
306	1017		min	-2063.927	3	2.144	15	-3.315	5	0	4	005	4	0	3
307		2		1897.114	2	8.261	6	0.010	1	0	1	0	1	.009	2
308			min	-2064.055	3	1.939	15	-2.706	5	0	4	006	4	002	3
309		3	max		2	7.387	6	0	1	0	1	0	1	.006	2
310			min	-2064.183	3	1.733	15	-2.097	5	0	4	007	4	004	3
311		4		1896.773	2	6.512	6	0	1	0	1	0	1	.003	2
312			min	-2064.311	3	1.527	15	-1.489	5	0	4	008	4	005	3
313		5	max		2	5.638	6	0	1	0	1	0	1	0	2
314			min	-2064.438	3	1.322	15	88	5	0	4	009	4	007	3
315		6		1896.433	2	4.764	6	0	1	0	1	0	1	001	2
316			min	-2064.566	3	1.116	15	271	5	0	4	009	4	008	3
317		7		1896.262	2	3.889	6	.355	4	0	1	0	1	002	15
318			min	-2064.694	3	.911	15	0	1	0	4	009	4	009	3
319		8	max		2	3.015	6	.964	4	Ö	1	0	1	002	15
320			min	-2064.822	3	.705	15	0	1	0	4	008	4	009	4
321		9		1895.922	2	2.192	2	1.572	4	0	1	0	1	003	15
322		Ŭ	min	-2064.949	3	.407	12	0	1	0	4	008	4	011	4
323		10	max		2	1.511	2	2.181	4	0	1	0	1	003	15
324		- 10	min	-2065.077	3	.031	3	0	1	0	4	007	4	011	4
325		11	_	1895.581	2	.829	2	2.79	4	0	1	0	1	003	15
326			min	-2065.205	3	48	3	0	1	0	4	006	4	012	4
327		12		1895.411	2	.148	2	3.398	4	0	1	0	1	003	15
328		- '-	min	-2065.333	3	992	3	0	1	0	4	004	5	012	4
329		13	max	1895.24	2	323	15	4.007	4	Ö	1	0	1	003	15
330			min	-2065.46	3	-1.503	3	0	1	0	4	003	5	011	4
331		14	max	1895.07	2	528	15	4.616	4	0	1	0	1	002	15
332			min	-2065.588	3	-2.232	4	0	1	0	4	0	5	01	4
333		15	max	1894.9	2	734	15	5.224	4	0	1	.002	4	002	15
334			min	-2065.716	3	-3.106	4	0	1	0	4	0	1	009	4
335		16	max	1894.729	2	939	15	5.833	4	0	1	.004	4	002	15
336			min	-2065.844	3	-3.981	4	0	1	0	4	0	1	008	4
337		17		1894.559	2	-1.145	15	6.442	4	0	1	.007	4	001	15
338			min	-2065.971	3	-4.855	4	0	1	0	4	0	1	005	4
339		18	max		2	-1.35	15	7.051	4	0	1	.011	4	0	15
340			min	-2066.099	3	-5.73	4	0	1	0	4	0	1	003	4
341		19	max		2	-1.556	15	7.659	4	0	1	.014	4	0	1
342			min	-2066.227	3	-6.604	4	0	1	0	4	0	1	0	1
343	M8	1	max	3257.2	1	0	1	0	1	0	1	.008	4	0	1
344				-853.698	3	0	1	-237.074	4	0	1	0	1	0	1
345		2		3257.371	1	0	1	0	1	0	1	0	1	0	1
346			min	-853.571	3	0	1	-237.222	4	0	1	019	4	0	1
347		3		3257.541	1	0	1	0	1	0	1	0	1	0	1
348				-853.443	3	0	1	-237.37	4	0	1	046	4	0	1
349		4		3257.711	1	0	1	0	1	0	1	0	1	0	1
350			min	-853.315	3	0	1	-237.517	4	0	1	073	4	0	1
351		5		3257.882	1	0	1	0	1	0	1	0	1	0	1
352				-853.187	3	0	1	-237.665	4	0	1	101	4	0	1
353		6		3258.052	1	0	1	0	1	0	1	0	1	0	1
354				-853.06	3	0	1	-237.812	4	0	1	128	4	0	1
355		7		3258.222	1	0	1	0	1	0	1	0	1	0	1
356				-852.932	3	0	1	-237.96	4	0	1	155	4	0	1
357		8		3258.393	1	0	1	0	1	0	1	0	1	0	1
358				-852.804	3	0	1	-238.108	4	0	1	183	4	0	1
359		9		3258.563	1	0	1	0	1	0	1	0	1	0	1
360				-852.676	3	0	1	-238.255	4	0	1	21	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

004	Member	Sec		Axial[lb]						Torque[k-ft]		1 -	LC	_	
361		10		3258.733	1	0	1	0	1	0	1	0	1	0	1
362		4.4	min	-852.549	3	0	1	-238.403	4	0	1_1	237	4	0	1
363		11		3258.904	1	0	1	0	11	0	1	0	1	0	1
364		40		-852.421	3	0	1	-238.551	4	0		265	4	0	
365		12		3259.074	1	0	1	0 -238.698	4	0	<u>1</u> 1	0	1	0	1
366		12		-852.293	3	0	•			0		292	4	0	-
367		13		3259.244	1	0	1	0	11	0	1	0	1	0	1
368		4.4	min	-852.165	3_	0	1	-238.846	4	0	1_	32	4	0	1
369		14		3259.415	1	0	1	0	1	0	1_	0	1	0	1
370		4.5	min	-852.037	3	0	1	-238.994	4	0	1_	347	4	0	1
371		15		3259.585	1_	0	1	0	11	0	1_	0	1	0	1
372		40	min	-851.91	3	0	1	-239.141	4	0	1_	374	4	0	1
373		16		3259.756	1_	0	1	0	1	0	1	0	1	0	1
374				-851.782	3	0	1	-239.289	4	0	1	402	4	0	1
375		17		3259.926	1_	0	1	0	1	0	1	0	1	0	1
376				-851.654	3_	0	1	-239.436	4	0	1	429	4	0	1
377		18		3260.096	_1_	0	1	0	1	0	1	0	1	0	1
378			min	-851.526	3	0	1	-239.584	4	0	1_	457	4	0	1
379		19		3260.267	_1_	0	1	0	1	0	_1_	0	1	0	1
380				-851.399	3	0	1	-239.732	4	0	1	484	4	0	1
381	M10	1	max	1112.639	_1_	2.102	6	045	12	0	_1_	0	4	0	1
382			min	-1319.969	3	.47	15	-50.801	4	0	3	0	3	0	1
383		2		1113.055	1_	2.094	6	045	12	0	_1_	0	10	0	15
384			min	-1319.657	3	.468	15	-51.161	4	0	3	014	4	0	6
385		3		1113.471	1	2.085	6	045	12	0	1	0	10	0	15
386			min	-1319.345	3	.465	15	-51.522	4	0	3	029	4	001	6
387		4	max	1113.887	1	2.076	6	045	12	0	1	0	10	0	15
388			min	-1319.033	3	.463	15	-51.882	4	0	3	043	4	002	6
389		5	max	1114.303	1	2.068	6	045	12	0	1	0	10	0	15
390			min	-1318.721	3	.461	15	-52.243	4	0	3	058	4	002	6
391		6	max	1114.719	1	2.059	6	045	12	0	1	0	12	0	15
392			min	-1318.409	3	.459	15	-52.603	4	0	3	072	4	003	6
393		7	max	1115.134	1	2.05	6	045	12	0	1	0	12	0	15
394				-1318.097	3	.457	15	-52.963	4	0	3	087	4	003	6
395		8	max		1	2.041	6	045	12	0	1	0	12	0	15
396			min	-1317.785	3	.455	15	-53.324	4	0	3	102	4	004	6
397		9		1115.966	1	2.033	6	045	12	0	1	0	12	001	15
398				-1317.474	3	.453	15	-53.684	4	0	3	117	4	005	6
399		10		1116.382	1	2.024	6	045	12	0	1	0	12	001	15
400				-1317.162	3	.451	15	-54.045	4	0	3	132	4	005	6
401		11		1116.798	1	2.015	6	045	12	0	1	0	12	001	15
402				-1316.85	3	.449	15	-54.405	4	0	3	147	4	006	6
403		12		1117.214	1	2.007	6	045	12	0	1	0	12	001	15
404		12		-1316.538	3	.447	15	-54.766	4	0	3	163	4	006	6
405		13		1117.63	<u> </u>	1.998	6	045	12	0	<u> </u>	0	12	002	15
406		13		-1316.226	3	.445	15	-55.126	4	0	3	178	4	002	6
407		14		1118.046	1	1.989	6	045	12	0	1	0	12	007	15
408		14		-1315.914	3	.443	15	-55.487	4	0	3	194	4	002	6
409		15		1118.461	<u> </u>	1.98		045	12	0	<u>ာ</u> 1	194 0	12	007	15
		10					6 15								
410		10		-1315.602	3	.441	15	-55.847	4	0	3	209	4	008	15
411		16		1118.877	1	1.972	6	045	12	0	1	0	12	002	15
412		4 7		-1315.29	3_	.439	15	-56.208	4	0	3	225	4	009	6
413		17		1119.293	1_	1.963	6	045	12	0	1	0	12	002	15
414				-1314.978	3	.437	15	-56.568	4	0	3	241	4	009	6
415		18		1119.709	1_	1.954	6	045	12	0	1	0	12	002	15
416				-1314.666	3	.435	15	-56.929	4	0	3	257	4	01	6
417		19	max	1120.125	_1_	1.946	6	045	12	0	_1_	0	12	002	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
418			min	-1314.354	3	.433	15	-57.289	4	0	3	273	4	01	6
419	M11	1	max	545.735	2	9.069	6	01	12	0	1	0	12	.01	6
420			min	-684.834	3	2.117	15	-3.142	4	0	4	005	4	.002	15
421		2	max	545.564	2	8.194	6	01	12	0	1	0	12	.006	2
422			min	-684.961	3	1.912	15	-2.534	4	0	4	006	4	.001	15
423		3	max	545.394	2	7.32	6	01	12	0	1	0	12	.003	2
424			min	-685.089	3	1.706	15	-1.925	4	0	4	007	4	0	3
425		4	max	545.224	2	6.445	6	01	12	0	1	0	12	0	2
426			min	-685.217	3	1.5	15	-1.316	4	0	4	008	4	002	3
427		5	max	545.053	2	5.571	6	01	12	0	1	0	12	0	15
428			min	-685.345	3	1.295	15	708	4	0	4	008	4	004	4
429		6	max		2	4.696	6	01	12	0	1	0	12	002	15
430			min	-685.472	3	1.089	15	167	1	0	4	008	4	006	4
431		7	max	544.713	2	3.822	6	.522	5	0	1	0	12	002	15
432			min	-685.6	3	.884	15	167	1	0	4	008	4	008	4
433		8	max	544.542	2	2.947	6	1.131	5	0	1	0	12	002	15
434			min	-685.728	3	.678	15	167	1	0	4	008	4	01	4
435		9	max		2	2.073	6	1.739	5	0	1	0	12	003	15
436			min	-685.856	3	.473	15	167	1	0	4	007	4	011	4
437		10	max	544.201	2	1.199	6	2.348	5	0	1	0	12	003	15
438			min	-685.984	3	.267	15	167	1	0	4	006	4	012	4
439		11	max		2	.441	2	2.957	5	0	1	0	12	003	15
440			min	-686.111	3	017	3	167	1	0	4	005	4	012	4
441		12	max	543.861	2	144	15	3.565	5	0	1	0	12	003	15
442		'-	min	-686.239	3	552	4	167	1	0	4	004	4	012	4
443		13	max	543.69	2	349	15	4.174	5	0	1	0	12	003	15
444		10	min	-686.367	3	-1.426	4	167	1	0	4	002	4	012	4
445		14	max	543.52	2	555	15	4.783	5	0	1	0	5	003	15
446		17	min	-686.495	3	-2.3	4	167	1	0	4	001	1	011	4
447		15	max	543.35	2	761	15	5.392	5	0	1	.003	5	002	15
448		13	min	-686.622	3	-3.175	4	167	1	0	4	001	1	009	4
449		16	max		2	966	15	6	5	0	1	.006	5	002	15
450		10	min	-686.75	3	-4.049	4	167	1	0	4	001	1	002	4
451		17	max	543.009	2	-1.172	15	6.609	5	0	1	.009	5	001	15
452		11/	min	-686.878	3	-4.924	4	167	1	0	4	001	1	005	4
453		18	max	542.839	2	-1.377	15	7.218	5	0	1	.012	5	0	15
454		10	min	-687.006	3	-5.798	4	167	1	0	4	001	1	003	4
455		19	max		2	-1.583	15	7.826	5	0	1	.016	5	0	1
456		19	min	-687.133	3	-6.673	4	167	1	0	4	001	1	0	1
457	M12	1	max		<u></u>	0	1	9.799	1	0	1	.009	5	0	1
458	IVITZ	<u> </u>		-252.959		0	1	-240.427		0	1	0	1	0	1
459		2		1169.366	<u> </u>	0	1	9.799	1	0	1	0	1	0	1
460				-252.831	3	0	1	-240.575		0	1	018	4	0	1
461		3		1169.536	<u>ა</u> 1	0	1	9.799	1	0	1	.001	1	0	1
462		٥		-252.704		0	1	-240.722		0	1		4		1
463		4		1169.706	<u> </u>		1	9.799	1	0	1	046 .003	1	0	1
464		4	min		3	0	1	-240.87	4	0	1	074	4	0	1
465							1		1		1			_	1
		5		1169.877	1	0		9.799		0		.004	1	0	
466		_		-252.448		0	1	-241.018		0	1	101	4	0	1
467		6		1170.047	1	0	1	9.799	1	0	1	.005	1	0	1
468		7	min		3	0	1	-241.165		0	1	129	4	0	1
469		7		1170.218	1	0	1	9.799	1	0	1	.006	1	0	1
470				-252.193	3	0	1_	-241.313		0	1	157	4	0	1
471		8		1170.388	1_	0	1	9.799	1	0	1	.007	1	0	1
472				-252.065		0	1	-241.46	4	0	1	185	4	0	1
473		9		1170.558		0	1	9.799	1_	0	1	.008	1	0	1
474			min	-251.937	3	0	1	-241.608	4	0	1	212	4	0	1

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	1170.729	1	0	1	9.799	1	0	1	.009	1	0	1
476			min	-251.809	3	0	1	-241.756	4	0	1	24	4	0	1
477		11	max	1170.899	1	0	1	9.799	1	0	1	.01	1	0	1
478			min	-251.682	3	0	1	-241.903	4	0	1	268	4	0	1
479		12	max	1171.069	1	0	1	9.799	1	0	1	.012	1	0	1
480			min	-251.554	3	0	1	-242.051	4	0	1	296	4	0	1
481		13	max	1171.24	1	0	1	9.799	1	0	1	.013	1	0	1
482			min	-251.426	3	0	1	-242.199	4	0	1	323	4	0	1
483		14	max	1171.41	1	0	1	9.799	1	0	1	.014	1	0	1
484			min	-251.298	3	0	1	-242.346	4	0	1	351	4	0	1
485		15	max	1171.58	1	0	1	9.799	1	0	1	.015	1	0	1
486			min	-251.17	3	0	1	-242.494	4	0	1	379	4	0	1
487		16	max	1171.751	1	0	1	9.799	1	0	1	.016	1	0	1
488			min	-251.043	3	0	1	-242.641	4	0	1	407	4	0	1
489		17		1171.921	1	0	1	9.799	1	0	1	.017	1	0	1
490			min	-250.915	3	0	1	-242.789	4	0	1	435	4	0	1
491		18		1172.091	1	0	1	9.799	1	0	1	.018	1	0	1
492			min	-250.787	3	0	1	-242.937	4	0	1	463	4	0	1
493		19		1172.262	1	0	1	9.799	1	0	1	.019	1	0	1
494			min	-250.659	3	0	1	-243.084	4	0	1	491	4	0	1
495	M1	1	max	148.797	1	711.884	3	49.874	5	0	1	.164	1	0	15
496			min	-15.252	5	-471.172	1	-58.76	1	0	3	09	5	015	2
497		2	max		1	710.697	3	51.334	5	0	1	.128	1	.279	1
498			min	-14.983	5	-472.755	1	-58.76	1	0	3	058	5	445	3
499		3	max	442.889	3	572.465	1	3.579	5	0	3	.091	1	.562	1
500		T .	min	-283.833	2	-542.042	3	-58.248	1	0	1	026	5	872	3
501		4	max		3	570.882	1	5.039	5	0	3	.055	1	.207	1
502			min	-283.257	2	-543.229	3	-58.248	1	0	1	024	5	536	3
503		5	max	443.753	3	569.299	1	6.499	5	0	3	.019	1	005	15
504		T -	min	-282.68	2	-544.417	3	-58.248	1	0	1	02	5	198	3
505		6	max	444.185	3	567.716	1	7.96	5	0	3	001	12	.14	3
506			min	-282.104	2	-545.604	3	-58.248	1	0	1	019	4	513	2
507		7	max	444.617	3	566.132	1	9.42	5	0	3	003	12	.479	3
508		-	min	-281.528	2	-546.792	3	-58.248	1	0	1	054	1	854	2
509		8	max	445.05	3	564.549	1	10.88	5	0	3	003	15	.819	3
510			min	-280.952	2	-547.979	3	-58.248	1	0	1	003	1	-1.202	1
511		9	max	456.16	3	45.641	2	48.537	5	0	9	.058	1	.955	3
512		1 3	min	-220.602	2	.475	15	-95.085	1	0	3	126	5	-1.368	1
513		10	max	456.592	3	44.058	2	49.997	5	0	9	0	10	.933	3
514		10	min	-220.026	2	007	5	-95.085	1	0	3	096	4	-1.39	2
515		11		457.025	3	42.475	2	51.458	5	0	9	004	12	.913	3
516			min		2	-1.995	4	-95.085	1	0	3	076	4	-1.417	2
517		12	max		3	363.735	3	137.965	5	0	2	.088	1	.799	3
518		14	min	-159.027	2	-642.255	2	-56.281	1	0	3	217	5	-1.256	2
519		13			3	362.547	3	139.425	5	0	2	.053	1	.574	3
520		13	min		2	-643.838	2	-56.281	1	0	3	131	5	857	2
		1.1													
521		14		468.812	3	361.36 -645.421	3	140.885	<u>5</u>	0	2	.018 044	1	.349	3
522		4.5		-157.874	2		2	-56.281		0	3		5	471	
523		15	max		3	360.173	3	142.345	5	0	2	.044	5	.125	3
524		10	min		2	-647.004	2	-56.281	1	0	3	017	1	088	1
525		16		469.676	3	358.985	3	143.805	5	0	2	.132	5	.346	2
526		4-	min		2	-648.587	2	-56.281	1	0	3	052	1	098	3
527		17		470.108	3_	357.798	3	145.266	5	0	2	.222	5	.749	2
528		4.0	min	-156.146	2	-650.171	2	-56.281	1	0	3	087	1	32	3
529		18			_5_	621.814	2	-3.841	12	0	5	.188	5	.376	2
530		4.0	min		<u>1</u>	-273.89	3	-99.33	4	0	2	126	1	158	3
531		19	max	26.375	5_	620.23	2	-3.841	12	0	5	.136	5	.013	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

500	Member	Sec		Axial[lb]						Torque[k-ft]					
532	N.15	4		-149.315	1_	-275.078	3	-97.87	4	0	2	166	1	011	1
533	<u>M5</u>	1	max		_1_	2358.948	3	82.542	5	0	1_	0	1	.03	2
534			min	9.407	12	-1626.629	1_	0	1_	0	4_	182	4	0	15
535		2	max		_1_	2357.761	3	84.002	5	0	_1_	0	1	1.037	1
536		_	min	9.695	12	-1628.212	1	0	1	0	4	131	4	-1.456	3
537		3	max		3	1564.64	1	39.247	4	0	4	0	1	2.013	1
538			min	-917.376	2	-1605.006	3	0	1	0	1_	079	4	-2.876	3
539		4		1370.845	3_	1563.056	_1_	40.707	4	0	_4_	0	1	1.043	1
540			min	-916.8	2	-1606.193	3	0	1	0	1	054	4	-1.879	3
541		5	max	1371.277	3_	1561.473	1_	42.168	4	0	4	0	1	.073	1
542			min	-916.224	2	-1607.38	3	0	1	0	1	029	4	882	3
543		6	max	1371.71	3	1559.89	1	43.628	4	0	4	0	1	.116	3
544			min	-915.647	2	-1608.568	3	0	1	0	1	002	5	928	2
545		7	max	1372.142	3	1558.307	1	45.088	4	0	4	.025	4	1.115	3
546			min	-915.071	2	-1609.755	3	0	1	0	1	0	1	-1.863	1
547		8	max	1372.574	3	1556.724	1	46.548	4	0	4	.054	4	2.114	3
548			min	-914.495	2	-1610.943	3	0	1	0	1	0	1	-2.83	1
549		9	_	1385.918	3	154.266	2	160.851	4	0	1	0	1	2.439	3
550				-785.027	2	.478	15	0	1	0	1	182	4	-3.216	1
551		10		1386.351	3	152.683	2	162.312	4	0	1	0	1	2.355	3
552		10		-784.451	2	0	15	0	1	0	1	082	5	-3.281	2
553		11		1386.783	3	151.1	2	163.772	4	0	1	.019	4	2.273	3
554		11		-783.875	2	-1.803	6	0	1	0	1	0	1	-3.375	2
		40						187.361		_	1		1		
555		12		1400.503	3_	1033.06	3		4	0		0	i i	1.989	3
556		40	min	-654.553	2	-1804.856	2	0	1	0	4	304	4	-3.014	2
557		13		1400.935	3_	1031.873	3	188.821	4	0	1	0	1	1.348	3
558			min	-653.977	2	-1806.439	2	0	1	0	4_	188	4	-1.894	2
559		14		1401.367	3	1030.685	3	190.281	4	0	_1_	0	1	.708	3
560			min	-653.401	2	-1808.023	2	0	1	0	4	07	4	815	1
561		15	max	1401.8	3_	1029.498	3	191.741	4	0	_1_	.049	4	.35	2
562			min	-652.824	2	-1809.606	2	0	1	0	4	0	1_	0	15
563		16	max	1402.232	3_	1028.311	3	193.202	4	0	<u>1</u>	.168	4	1.474	2
564			min	-652.248	2	-1811.189	2	0	1	0	4	0	1	57	3
565		17	max	1402.664	3	1027.123	3	194.662	4	0	1	.288	4	2.599	2
566			min	-651.672	2	-1812.772	2	0	1	0	4	0	1	-1.208	3
567		18	max	-10.409	12	2113.569	2	0	1	0	4	.287	4	1.329	2
568			min	-333.018	1	-970.431	3	-30.826	5	0	1	0	1	628	3
569		19	max	-10.121	12	2111.986	2	0	1	0	4	.269	4	.021	1
570			min	-332.442	1	-971.618	3	-29.366	5	0	1	0	1	025	3
571	M9	1		148.797	1	711.884	3	69.351	4	0	3	011	12	0	15
572			min	0 -0	12	-471.172	1	3.897	12	0	4	164	1	015	2
573		2	max		1	710.697	3	70.811	4	0	3	009	12	.279	1
574			min		12	-472.755	1	3.897	12	0	4	128	1	445	3
575		3		442.889	3	572.465	1	58.248	1	0	1	006	12	.562	1
576				-283.833	2	-542.042	3	3.849	12	0	3	091	1	872	3
577		4		443.321	3	570.882	1	58.248	1	0	1	004	12	.207	1
578				-283.257	2	-543.229	3	3.849	12	0	3	055	1	536	3
579		5		443.753		569.299	1	58.248	1	0	<u> </u>	001	12	005	
		5		-282.68	3				12						15
580		_			2	-544.417	3	3.849		0	3	027	4	198	3
581		6		444.185	3	567.716	1	58.248	1	0	1	.017	1	.14	3
582		_		-282.104	2	-545.604	3	3.849	12	0	3	014	5	513	2
583		7		444.617	3_	566.132	1_	58.248	1	0	1	.054	1	.479	3
584				-281.528	2	-546.792	3	3.849	12	0	3	004	5	854	2
585		8		445.05	3	564.549	1	58.248	1	0	1_	.09	1	.819	3
586			min	-280.952	2	-547.979	3	3.849	12	0	3	.004	15	-1.202	1
587		9	max		3_	45.641	2	95.085	1	0	3	004	12	.955	3
588			min	-220.602	2	.489	15	5.916	12	0	9	145	4	-1.368	1

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	456.592	3	44.058	2	95.085	1	0	3	0	1	.933	3
590			min	-220.026	2	.011	15	5.916	12	0	9	095	4	-1.39	2
591		11	max	457.025	3	42.475	2	95.085	1	0	3	.06	1	.913	3
592			min	-219.45	2	-1.883	6	5.916	12	0	9	057	5	-1.417	2
593		12	max	467.947	3	363.735	3	158.12	4	0	3	005	12	.799	3
594			min	-159.027	2	-642.255	2	3.292	12	0	2	248	4	-1.256	2
595		13	max	468.38	3	362.547	3	159.58	4	0	3	003	12	.574	3
596			min	-158.451	2	-643.838	2	3.292	12	0	2	15	4	857	2
597		14	max	468.812	3	361.36	3	161.04	4	0	3	001	12	.349	3
598			min	-157.874	2	-645.421	2	3.292	12	0	2	05	4	471	1
599		15	max	469.244	3	360.173	3	162.5	4	0	3	.05	4	.125	3
600			min	-157.298	2	-647.004	2	3.292	12	0	2	0	12	088	1
601		16	max	469.676	3	358.985	3	163.96	4	0	3	.151	4	.346	2
602			min	-156.722	2	-648.587	2	3.292	12	0	2	.003	12	098	3
603		17	max	470.108	3	357.798	3	165.42	4	0	3	.254	4	.749	2
604			min	-156.146	2	-650.171	2	3.292	12	0	2	.005	12	32	3
605		18	max	-6.651	12	621.814	2	65.622	1	0	2	.231	4	.376	2
606			min	-149.891	1	-273.89	3	-77.775	5	0	3	.007	12	158	3
607		19	max	-6.363	12	620.23	2	65.622	1	0	2	.192	4	.013	3
608			min	-149.315	1	-275.078	3	-76.315	5	0	3	.01	12	011	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.213	2	.009	3	1.443e-2	2	NC	1	NC	1
2			min	625	4	055	3	005	2	-3.506e-3	3	NC	1	NC	1
3		2	max	0	1	.131	2	.019	1	1.56e-2	2	NC	4	NC	2
4			min	625	4	.004	15	012	5	-3.204e-3	3	1083.472	3	9834.508	1
5		3	max	0	1	.266	3	.045	1	1.676e-2	2	NC	5	NC	2
6			min	625	4	.002	15	015	5	-2.901e-3	3	597.07	3	4234.827	1
7		4	max	0	1	.356	3	.066	1	1.793e-2	2	NC	5	NC	3
8			min	625	4	007	9	012	5	-2.599e-3	3	467.178	3	2879.754	1
9		5	max	0	1	.38	3	.076	1	1.91e-2	2	NC	5	NC	3
10			min	625	4	005	9	005	5	-2.296e-3	3	441.344	3	2503.977	1
11		6	max	0	1	.34	3	.072	1	2.026e-2	2	NC	5	NC	3
12			min	625	4	.002	15	0	10	-1.994e-3	3	486.005	3	2650.677	1
13		7	max	0	1	.249	3	.055	1	2.143e-2	2	NC	4	NC	2
14			min	625	4	.004	15	003	10	-1.691e-3	3	631.423	3	3494.311	1
15		8	max	0	1	.264	2	.029	1	2.26e-2	2	NC	4	NC	2
16			min	625	4	.006	15	006	10	-1.389e-3	3	1027.671	3	6587.57	1
17		9	max	0	1	.34	2	.026	3	2.376e-2	2	NC	4	NC	1
18			min	625	4	.008	15	013	2	-1.086e-3	3	1507.701	2	NC	1
19		10	max	0	1	.374	2	.026	3	2.493e-2	2	NC	5	NC	1
20			min	625	4	024	3	018	2	-7.836e-4	3	1190.971	2	NC	1
21		11	max	0	12	.34	2	.026	3	2.376e-2	2	NC	4	NC	1
22			min	625	4	.008	15	013	2	-1.086e-3	3	1507.701	2	NC	1
23		12	max	0	12	.264	2	.029	1	2.26e-2	2	NC	4	NC	2
24			min	625	4	.006	15	009	5	-1.389e-3	3	1027.671	3	6587.57	1
25		13	max	0	12	.249	3	.055	1	2.143e-2	2	NC	4	NC	2
26			min	625	4	.004	15	004	5	-1.691e-3	3	631.423	3	3494.311	1
27		14	max	0	12	.34	3	.072	1	2.026e-2	2	NC	5	NC	3
28			min	625	4	.002	15	0	10	-1.994e-3	3	486.005	3	2650.677	1
29		15	max	0	12	.38	3	.076	1	1.91e-2	2	NC	5	NC	3
30			min	625	4	005	9	.001	10	-2.296e-3	3	441.344	3	2503.977	1
31		16	max	0	12	.356	3	.066	1	1.793e-2	2	NC	5	NC	3
32			min	625	4	007	9	.001	10	-2.599e-3	3	467.178	3	2879.754	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	1	x Rotate [r					
33		17	max	0	12	.266	3	.045	1	1.676e-2	2	NC 507.07	5_	NC 1004 007	2
34		10	min	625	4	.002	15	0	10	-2.901e-3	3	597.07	3	4234.827	1
35		18	max	0	12	.131	2	.019	4	1.56e-2	2	NC	4_	NC 000000000	2
36		40	min	<u>625</u>	4	.003	15	002	10	-3.204e-3		1083.472	3_	9366.349	4
37		19	max	0	12	.213	2	.009	3	1.443e-2	2	NC	1_	NC NC	1
38	N444	1	min	<u>625</u>	4	0 <u>55</u>	3	005	2	-3.506e-3	3	NC NC	1_	NC NC	1
39	M14	1_	max	0	1	.396	3	.008	3	8.117e-3	1_	NC	1_	NC NC	1
40		_	min	479	4	629	2	004	2	-6.014e-3		NC	_1_	NC NC	1
41		2	max	0	1	.618	3	.012	1	9.341e-3	1_	NC 770 004	_5_	NC NC	1
42			min	<u>479</u>	4	871	1	018	5	-7.038e-3	3	779.691	<u>1</u>	NC NC	1
43		3	max	0	1	.813	3	.034	1	1.057e-2	1_	NC 444.450	5	NC 5010.751	2
44		-	min	479	4	-1.092	1	023	5	-8.062e-3	3	411.152	1_	5618.754	1
45		4	max	0	1	.962	3	.055	1	1.179e-2	1_	NC	<u>15</u>	NC	2
46		_	min	479	4	-1.269	1	016	5	-9.086e-3		298.139	_1_	3523.62	1
47		5	max	0	1	1.055	3	.066	1	1.302e-2	1_	NC	<u>15</u>	NC Trans	3
48			min	479	4	-1.392	1	004	5	-1.011e-2	3	250.295	_1_	2927.713	1
49		6	max	0	1	1.09	3	.064	1	1.424e-2	1_	NC	15	NC	3
50			min	479	4	-1.459	1	0		-1.113e-2	3_	230.196	_1_	3008.714	1
51		7	max	0	1	1.076	3	.05	1	1.547e-2	_1_	9953.375	15	NC	2
52			min	479	4	-1.476	1	003	10	-1.216e-2	3	225.691	1_	3879.581	1
53		8	max	0	1	1.029	3	.034	4	1.669e-2	_1_	NC	15	NC	2
54			min	479	4	-1.456	1	006	10	-1.318e-2	3	231.096	<u>1</u>	5552.334	4
55		9	max	0	1	.974	3	.023	3	1.792e-2	_1_	NC	15	NC	1_
56			min	479	4	-1.423	2	012	2	-1.421e-2	3	241.158	1_	7984.891	4
57		10	max	0	1	.947	3	.023	3	1.914e-2	_1_	NC	15	NC	1_
58			min	479	4	-1.406	2	016	2	-1.523e-2	3	246.815	2	NC	1
59		11	max	0	12	.974	3	.023	3	1.792e-2	1_	NC	15	NC	1
60			min	479	4	-1.423	2	019	5	-1.421e-2	3	241.158	1_	NC	1
61		12	max	0	12	1.029	3	.027	1	1.669e-2	1_	NC	15	NC	2
62			min	479	4	-1.456	1	022	5	-1.318e-2	3	231.096	1_	7156.36	1
63		13	max	0	12	1.076	3	.05	1	1.547e-2	_1_	9953.203	15	NC	2
64			min	479	4	-1.476	1	01 <u>5</u>	5	-1.216e-2	3	225.691	1_	3879.581	1
65		14	max	0	12	1.09	3	.064	1	1.424e-2	1_	NC	15	NC	3
66			min	479	4	-1.459	1	002	5	-1.113e-2	3	230.196	1_	3008.714	1
67		15	max	0	12	1.055	3	.066	1	1.302e-2	<u>1</u>	NC	<u> 15</u>	NC	3
68			min	479	4	-1.392	1	0	10	-1.011e-2	3	250.295	1_	2927.713	1
69		16	max	0	12	.962	3	.055	1	1.179e-2	<u>1</u>	NC	<u>15</u>	NC	2
70			min	479	4	-1.269	1	0	10	-9.086e-3	3	298.139	1_	3523.62	1
71		17	max	0	12	.813	3	.035	4	1.057e-2	1_	NC	5_	NC	2
72			min	479	4	-1.092	1	0	10	-8.062e-3	3	411.152	1	5288.841	4
73		18	max	0	12	.618	3	.024	4	9.341e-3		NC	5	NC	1
74			min	479	4	871	1	002	10	-7.038e-3	3	779.691	1_	7825.715	4
75		19	max	0	12	.396	3	.008	3	8.117e-3	1_	NC	1_	NC	1
76			min	479	4	629	2	004	2	-6.014e-3	3	NC	1	NC	1
77	M15	1	max	0	12	.405	3	.007	3	5.066e-3	3	NC	1_	NC	1_
78			min	394	4	628	2	004	2	-8.38e-3	2	NC	1	NC	1
79		2	max	0	12	.568	3	.013	1	5.917e-3	3	NC	5	NC	1
80			min	394	4	909	2	027	5	-9.649e-3	2	682.29	2	7472.185	5
81		3	max	0	12	.716	3	.035	1	6.767e-3	3	NC	5	NC	2
82			min	394	4	-1.158	2	034	5	-1.092e-2	2	361.817	2	5582.597	1
83		4	max	0	12	.836	3	.055	1	7.618e-3	3	NC	15	NC	3
84			min	394	4	-1.353	2	026	5	-1.219e-2	2	264.792	2	3504.04	1
85		5	max	0	12	.924	3	.066	1	8.469e-3	3	NC	15	NC	3
86			min	394	4	-1.48	2	009	5	-1.346e-2	2	225.235		2911.237	1
87		6	max	0	12	.977	3	.064	1	9.319e-3	3	NC	15	NC	3
88			min	394	4	-1.538	2	0	10	-1.473e-2	2	210.81	2	2988.919	1
89		7	max	0	12	.998	3	.05	1	1.017e-2	3	9976.556	15	NC	2
		•						_	_					_	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					LC
90			min	394	4	<u>-1.536</u>	2	002	10 -1.6e-2	2	211.329	2	3843.83	1
91		8	max	0	12	.994	3	.042	4 1.102e-2	3	NC	<u>15</u>	NC	2
92			min	394	4	<u>-1.492</u>	2	005	10 -1.727e-2	2	222.083	2	4417.26	4
93		9	max	0	12	.979	3	.03	4 1.187e-2	3	NC 007.000	<u>15</u>	NC cooo oc	1
94		40	min	394	4	<u>-1.435</u>	2	011	2 -1.854e-2	2	237.632	2	6099.26	4
95		10	max	0	1	.97	3	.021	3 1.272e-2 2 -1.981e-2	3	NC 246 669	<u>15</u>	NC NC	1
96		11	min	394 0	1	<u>-1.406</u> .979	3	015 .022	2 -1.981e-2 3 1.187e-2	3	246.668 NC	<u>2</u> 15	NC NC	1
98			max	394	4	-1.435	2	026	5 -1.854e-2	2	237.632	2	7849.732	
99		12		394 0	1	<u>-1.435</u> .994	3	.028	1 1.102e-2	3	NC	15	NC	
100		12	max min	394	4	-1.492	2	031	5 -1.727e-2	2	222.083	2	6558.584	5
101		13	max	0	1	.998	3	.05	1 1.017e-2	3	9976.43	15	NC	2
102		13	min	394	4	-1.536	2	021	5 -1.6e-2	2	211.329	2	3843.83	1
103		14	max	0	1	.977	3	.064	1 9.319e-3	3	NC	15	NC	3
104		17	min	394	4	-1.538	2	003	5 -1.473e-2	2	210.81	2	2988.919	1
105		15	max	0	1	.924	3	.066	1 8.469e-3	3	NC	15	NC	3
106		10	min	394	4	-1.48	2	.001	10 -1.346e-2	2	225.235	2	2911.237	1
107		16	max	0	1	.836	3	.055	1 7.618e-3	3	NC	15	NC	3
108			min	394	4	-1.353	2	0	10 -1.219e-2	2	264.792	2	3504.04	1
109		17	max	0	1	.716	3	.047	4 6.767e-3	3	NC	5	NC	2
110			min	394	4	-1.158	2	0	10 -1.092e-2	2	361.817	2	3989.317	4
111		18	max	0	1	.568	3	.033	4 5.917e-3	3	NC	5	NC	1
112			min	394	4	909	2	002	10 -9.649e-3	2	682.29	2	5703.507	4
113		19	max	0	1	.405	3	.007	3 5.066e-3	3	NC	1	NC	1
114			min	394	4	628	2	004	2 -8.38e-3	2	NC	1	NC	1
115	M16	1	max	0	12	.198	1	.006	3 9.562e-3	3	NC	1_	NC	1
116			min	133	4	143	3	004	2 -1.287e-2	1	NC	1	NC	1
117		2	max	0	12	.081	1	.019	1 1.055e-2	3	NC	4	NC	2
118			min	133	4	097	3	019	5 -1.371e-2	1_	1443.879	2	9919.082	1
119		3	max	0	12	.013	9	.045	1 1.153e-2	3	NC	_5_	NC	2
120			min	133	4	064	3	024	5 -1.454e-2	1	808.518	2	4243.459	
121		4	max	0	12	.004	13	.067	1 1.252e-2	3	NC	5	NC NC	3
122			min	133	4	105	2	02	5 -1.538e-2	1_	651.926	2	2872.7	1
123		5	max	0	12	.005	4	.077	1 1.35e-2	3_	NC 040.770	5_	NC 0400 004	3
124			min	133	4	106	2	009	5 -1.622e-2	1_	649.776	2	2486.391	1
125		6	max	0	12	.021	9	.074	1 1.449e-2	3	NC 702.002	5	NC	3
126		7	min	133	12	099	3	.001	10 -1.705e-2	3	792.892 NC	2	2615.129	2
127		/	max	0	4	.086	3	.056	1 1.547e-2 10 -1.789e-2	<u> </u>	1309.417	2	NC 3405.58	4
128 129		8	min	133 0	12	152 .194	1	001 .031	1 1.646e-2	3	NC	1	NC	2
130		0	max min		4	211	3	004	10 -1.872e-2		2832.482			
131		9	max	_	12	.289	1	.019	3 1.744e-2	3	NC	4	NC	1
132		-	min	133	4	262	3	009	2 -1.956e-2	1	1618.35	3	9781.676	_
133		10	max	0	1	.331	1	.019	3 1.843e-2	3	NC	5	NC	1
134		10	min	133	4	284	3	014	2 -2.04e-2	1	1361.909	3	NC	1
135		11	max	0	1	.289	1	.019	3 1.744e-2	3	NC	4	NC	1
136			min	133	4	262	3	014	5 -1.956e-2	1	1618.35	3	NC	1
137		12	max	0	1	.194	1	.031	1 1.646e-2	3	NC	1	NC	2
138		i -	min	133	4	211	3	015	5 -1.872e-2	1	2832.482	3	6199.531	1
139		13	max	0	1	.086	1	.056	1 1.547e-2	3	NC	3	NC	2
140			min	133	4	152	3	007	5 -1.789e-2	1	1309.417	2	3405.58	1
141		14	max	0	1	.021	9	.074	1 1.449e-2	3	NC	5	NC	3
142			min	133	4	099	3	.001	10 -1.705e-2	1	792.892	2	2615.129	
143		15	max	0	1	.005	6	.077	1 1.35e-2	3	NC	5	NC	3
144			min	133	4	106	2	.003	10 -1.622e-2	1	649.776	2	2486.391	1
145		16	max	0	1	.004	13	.067	1 1.252e-2	3	NC	5	NC	3
146			min	133	4	105	2	.002	10 -1.538e-2	1	651.926	2	2872.7	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	1 C	(n) I /v Ratio	LC	(n) I /z Ratio	
147		17	max	0	1	.013	9	.045	1	1.153e-2	3	NC	5	NC	2
148			min	133	4	064	3	.001	10	-1.454e-2	1	808.518	2	4243.459	
149		18	max	0	1	.081	1	.026	4	1.055e-2	3	NC	4	NC	2
150			min	133	4	097	3	0	10	-1.371e-2	1	1443.879	2	7104.855	4
151		19	max	0	1	.198	1	.006	3	9.562e-3	3	NC	1	NC	1
152			min	133	4	143	3	004	2	-1.287e-2	1	NC	1	NC	1
153	M2	1	max	.007	1	.007	2	.008	1	2.295e-3	5	NC	1	NC	2
154			min	008	3	012	3	589	4	-1.683e-4	1	8205.023	2	102.842	4
155		2	max	.006	1	.006	2	.007	1	2.297e-3	5	NC	1	NC	2
156			min	007	3	011	3	54	4	-1.577e-4	1	9481.121	2	112.069	4
157		3	max	.006	1	.005	2	.006	1	2.299e-3	5	NC	1_	NC	2
158			min	007	3	011	3	492	4	-1.471e-4	1	NC	1	123.045	4
159		4	max	.005	1	.004	2	.006	1	2.301e-3	5_	NC	<u>1</u>	NC	1
160			min	006	3	011	3	445	4	-1.364e-4	1_	NC	1	136.228	4
161		5	max	.005	1	.004	2	.005	1	2.303e-3	5_	NC	1_	NC	1
162			min	006	3	01	3	398	4	-1.258e-4	1_	NC	1_	152.245	4
163		6	max	.005	1	.003	2	.005	1	2.305e-3	5	NC	1	NC	1
164			min	006	3	01	3	352	4	-1.152e-4	1	NC	1_	171.966	4
165		7	max	.004	1	.002	2	.004	1	2.309e-3	4_	NC	1	NC	1
166			min	005	3	009	3	308	4	-1.046e-4	1_	NC	1_	196.63	4
167		8	max	.004	1	.001	2	.003	1	2.313e-3	4	NC	1	NC	1
168			min	005	3	009	3	266	4	-9.397e-5	_1_	NC	_1_	228.049	4
169		9	max	.004	1	0	2	.003	1	2.318e-3	4_	NC	1	NC	1
170			min	004	3	008	3	225	4	-8.335e-5	_1_	NC	1_	268.964	4
171		10	max	.003	1	0	2	.002	1	2.323e-3	_4_	NC	1	NC_	1
172			min	004	3	008	3	187	4	-7.273e-5	1_	NC	1_	323.679	4
173		11	max	.003	1	0	15	.002	1	2.328e-3	_4_	NC	1	NC NC	1
174		10	min	003	3	007	3	<u>152</u>	4	-6.211e-5	_1_	NC	1_	399.276	4
175		12	max	.003	1	0	15	.002	1	2.332e-3	4	NC	1_	NC	1
176		40	min	003	3	006	3	119	4	-5.149e-5	1_	NC	1_	508.097	4
177		13	max	.002	1	0	15	.001	1	2.337e-3	4	NC	1	NC 070,000	1
178		4.4	min	003	3	006	3	09	4	-4.087e-5	1_	NC NC	1	673.262	4
179		14	max	.002	1	0	15	0	1	2.342e-3	4_	NC NC	1	NC 040,000	1
180		4.5	min	002	3	005	3	064	4	-3.025e-5	1_	NC NC	1_	942.383	4
181		15	max	.001 002	3	0 004	15	0 042	1 4	2.347e-3	<u>4</u> 1	NC NC	1	NC 1427.077	1 4
182		16	min			004 0				-1.963e-5 2.351e-3		NC NC	_	NC	
183 184		16	max	.001	3	003	15	0 025	4		4	NC NC	1	2443.633	4
185		17	min	001	1	<u>003</u> 0	15	<u>025</u> 0	1	-9.013e-6 2.356e-3	<u>1</u> 4	NC NC	+	NC	1
186		17	max	0	3	002	3	012	4	-7.225e-7	3	NC NC	1	5213.961	4
187		18	max	0	1	002 0	15	<u>012</u> 0	1	2.361e-3	4	NC NC	1	NC	1
188		10	min	0	3	001	3	003	4	2.976e-7	12	NC	1	NC	1
189		19	max	0	1	<u>001</u> 0	1	<u>003</u> 0	1	2.366e-3	4	NC	+	NC	1
190		13	min	0	1	0	1	0	1	1.025e-6	12	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-3.49e-7	12	NC	1	NC	1
192	IVIO		min	0	1	0	1	0	1	-4.571e-4	4	NC	1	NC	1
193		2	max	0	3	0	15	.013	4	1.715e-4	4	NC	-	NC	1
194			min	0	2	002	6	0	12	8.723e-7	12	NC	1	NC	1
195		3	max	0	3	001	15	.026	4	8.001e-4	4	NC	1	NC	1
196			min	0	2	005	6	0	12	2.094e-6	12	NC	1	NC	1
197		4	max	.001	3	002	15	.038	4	1.429e-3	4	NC	1	NC	1
198			min	0	2	008	6	0	12	3.315e-6	12	NC	1	NC	1
199		5	max	.002	3	002	15	.05	4	2.057e-3	4	NC	1	NC	1
200			min	001	2	011	6	0	12	4.536e-6	12	9481.517	6	NC	1
201		6	max	.002	3	003	15	.062	4	2.686e-3	4	NC	1	NC	1
202			min	001	2	013	6	0	12	5.757e-6	12	7593.352	6	NC	1
203		7	max	.002	3	003	15	.073	4	3.314e-3	4	NC	5	NC	1
															=

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

205		Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
206	204			min	002	2	016	6	0	12	6.979e-6			<u>6</u>	9847.687	
207			8													_
208														_		5
209			9													1_
210			40													
11			10													
212			44													
12 max			11													
214			40											_		
215			12													
216			40													-
14			13													
18			4.4									-				
219			14													
220			15								1.5538-5					
221			15													
222			16													
223			10													
224			17													
18 max .006 3 0 15 .177 4 1.023e-2 4 NC 1 NC 1			17													
226			10											_		-
19			10													
228			10													
229 M4			19													
230		MA	1			_										
231		IVI TI														
232			2			_								•		
233 3 max .002 1 .004 2 0 12 6.256e-5 1 NC 1 NC 2 234 min 0 3 .006 3 157 4 .7.343e-4 5 NC 1 158.14 4 235 4 max .002 1 .004 2 0 12 6.256e-5 1 NC 1 NC 2 236 min 0 3 .006 3 142 4 .7.343e-4 5 NC 1 174.909 4 237 5 max .002 1 .004 2 0 12 6.256e-5 1 NC 1 NC 2 238 min 0 3 .005 3 127 4 .7.343e-4 5 NC 1 195.267 4 239 6 max .002 1 .004 2 0 12 6.256e-5 1 NC 1 NC 2 240 min 0 3 .005 3 113 4 .7.343e-4 5 NC 1 195.267 4 241 7 max .002 1 .003 2 0 12 6.256e-5 1 NC 1 NC 2 2 2 2 2 2 2 2 2									-							
234			3									-				
235						-										
236			1											•		
237			_													
238			5													
239						-			-							
240 min 0 3 005 3 113 4 -7.343e-4 5 NC 1 220.306 4 241 7 max .002 1 .003 2 0 12 6.256e-5 1 NC 1 NC 2 242 min 0 3 005 3 099 4 -7.343e-4 5 NC 1 251.573 4 243 8 max .002 1 .003 2 0 12 6.256e-5 1 NC 1 NC 2 244 min 0 3 004 3 085 4 -7.343e-4 5 NC 1 291.329 4 245 9 max .002 1 .003 2 0 12 6.256e-5 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC <			6		•											
241 7 max .002 1 .003 2 0 12 6.256e-5 1 NC 1 NC 2 242 min 0 3 005 3 099 4 -7.343e-4 5 NC 1 251.573 4 243 8 max .002 1 .003 2 0 12 6.256e-5 1 NC 1 NC 2 244 min 0 3 004 3 085 4 -7.343e-4 5 NC 1 291.329 4 245 9 max .002 1 .003 2 0 12 6.256e-5 1 NC 1 NC 1 NC 2 246 min 0 3 004 3 072 4 -7.343e-4 5 NC 1 342.976 4 247 10 max .001																
242 min 0 3 005 3 099 4 -7.343e-4 5 NC 1 251.573 4 243 8 max .002 1 .003 2 0 12 6.256e-5 1 NC 1 NC 2 244 min 0 3 004 3 085 4 -7.343e-4 5 NC 1 291.329 4 245 9 max .002 1 .003 2 0 12 6.256e-5 1 NC 1 NC 2 246 min 0 3 004 3 072 4 -7.343e-4 5 NC 1 342.976 4 247 10 max .001 1 .002 2 0 12 6.256e-5 1 NC 1 NIX.2976 4 249 11 max .001 1 .002<			7			_										
243 8 max .002 1 .003 2 0 12 6.256e-5 1 NC 1 NC 2 244 min 0 3 004 3 085 4 -7.343e-4 5 NC 1 291.329 4 245 9 max .002 1 .003 2 0 12 6.256e-5 1 NC 1 NC 2 246 min 0 3 004 3 072 4 -7.343e-4 5 NC 1 342.976 4 247 10 max .001 1 .002 2 0 12 6.256e-5 1 NC 1 NC 1 248 min 0 3 003 3 06 4 -7.343e-4 5 NC 1 411.832 4 249 11 max .001 1 .002 2 0 12 6.256e-5 1 NC 1 </td <td></td>																
244 min 0 3 004 3 085 4 -7.343e-4 5 NC 1 291.329 4 245 9 max .002 1 .003 2 0 12 6.256e-5 1 NC 1 NC 2 246 min 0 3 004 3 072 4 -7.343e-4 5 NC 1 342.976 4 247 10 max .001 1 .002 2 0 12 6.256e-5 1 NC 1 NC 1 248 min 0 3 003 3 06 4 -7.343e-4 5 NC 1 411.832 4 249 11 max .001 1 .002 2 0 12 6.256e-5 1 NC 1 NC 1 250 min 0 3 003 3			8		_									1		
245 9 max .002 1 .003 2 0 12 6.256e-5 1 NC 1 NC 2 246 min 0 3 004 3 072 4 -7.343e-4 5 NC 1 342.976 4 247 10 max .001 1 .002 2 0 12 6.256e-5 1 NC 1 NC 1 248 min 0 3 003 3 06 4 -7.343e-4 5 NC 1 411.832 4 249 11 max .001 1 .002 2 0 12 6.256e-5 1 NC 1 NC 1 250 min 0 3 003 3 049 4 -7.343e-4 5 NC 1 506.599 4 251 12 max .001 1 .002										4				1		
246 min 0 3 004 3 072 4 -7.343e-4 5 NC 1 342.976 4 247 10 max .001 1 .002 2 0 12 6.256e-5 1 NC 1 NC 1 248 min 0 3 003 3 06 4 -7.343e-4 5 NC 1 411.832 4 249 11 max .001 1 .002 2 0 12 6.256e-5 1 NC 1 NC 1 250 min 0 3 003 3 049 4 -7.343e-4 5 NC 1 506.599 4 251 12 max .001 1 .002 2 0 12 6.256e-5 1 NC 1 NC 1 252 min 0 3 003 3			9													
247 10 max .001 1 .002 2 0 12 6.256e-5 1 NC 1 NC 1 248 min 0 3 003 3 06 4 -7.343e-4 5 NC 1 411.832 4 249 11 max .001 1 .002 2 0 12 6.256e-5 1 NC 1 NC 1 250 min 0 3 003 3 049 4 -7.343e-4 5 NC 1 506.599 4 251 12 max .001 1 .002 2 0 12 6.256e-5 1 NC 1 NC 1 252 min 0 3 003 3 039 4 -7.343e-4 5 NC 1 642.33 4 253 13 max 0 1 .002					_				072					1		_
248 min 0 3 003 3 06 4 -7.343e-4 5 NC 1 411.832 4 249 11 max .001 1 .002 2 0 12 6.256e-5 1 NC 1 NC 1 250 min 0 3 003 3 049 4 -7.343e-4 5 NC 1 506.599 4 251 12 max .001 1 .002 2 0 12 6.256e-5 1 NC 1 NC 1 252 min 0 3 003 3 039 4 -7.343e-4 5 NC 1 642.33 4 253 13 max 0 1 .002 2 0 12 6.256e-5 1 NC 1 NC 1 254 min 0 3 002 3			10		.001					12		1		1		1
249 11 max .001 1 .002 2 0 12 6.256e-5 1 NC 1 NC 1 250 min 0 3 003 3 049 4 -7.343e-4 5 NC 1 506.599 4 251 12 max .001 1 .002 2 0 12 6.256e-5 1 NC 1 NC 1 252 min 0 3 003 3 039 4 -7.343e-4 5 NC 1 642.33 4 253 13 max 0 1 .002 2 0 12 6.256e-5 1 NC 1 NC 1 254 min 0 3 002 3 029 4 -7.343e-4 5 NC 1 846.973 4 255 14 max 0 1 .001												5		1		4
250 min 0 3 003 3 049 4 -7.343e-4 5 NC 1 506.599 4 251 12 max .001 1 .002 2 0 12 6.256e-5 1 NC 1 NC 1 252 min 0 3 003 3 039 4 -7.343e-4 5 NC 1 642.33 4 253 13 max 0 1 .002 2 0 12 6.256e-5 1 NC 1 NC 1 254 min 0 3 002 3 029 4 -7.343e-4 5 NC 1 846.973 4 255 14 max 0 1 .001 2 0 12 6.256e-5 1 NC 1 NC 1 256 min 0 3 002 3 <			11		.001	1				12		1		1		1
251 12 max .001 1 .002 2 0 12 6.256e-5 1 NC 1 NC 1 252 min 0 3 003 3 039 4 -7.343e-4 5 NC 1 642.33 4 253 13 max 0 1 .002 2 0 12 6.256e-5 1 NC 1 NC 1 254 min 0 3 002 3 029 4 -7.343e-4 5 NC 1 846.973 4 255 14 max 0 1 .001 2 0 12 6.256e-5 1 NC 1 NC 1 256 min 0 3 002 3 021 4 -7.343e-4 5 NC 1 1177.392 4 257 15 max 0 1 .001	250				0	3	003	3	049	4		5	NC	1	506.599	4
252 min 0 3 003 3 039 4 -7.343e-4 5 NC 1 642.33 4 253 13 max 0 1 .002 2 0 12 6.256e-5 1 NC 1 NC 1 254 min 0 3 002 3 029 4 -7.343e-4 5 NC 1 846.973 4 255 14 max 0 1 .001 2 0 12 6.256e-5 1 NC 1 NC 1 256 min 0 3 002 3 021 4 -7.343e-4 5 NC 1 1177.392 4 257 15 max 0 1 .001 2 0 12 6.256e-5 1 NC 1 NC 1 258 min 0 3 002 3 <td< td=""><td></td><td></td><td>12</td><td>max</td><td>.001</td><td>1</td><td>.002</td><td></td><td>0</td><td>12</td><td></td><td>1</td><td>NC</td><td>1</td><td>NC</td><td>1</td></td<>			12	max	.001	1	.002		0	12		1	NC	1	NC	1
253 13 max 0 1 .002 2 0 12 6.256e-5 1 NC 1 NC 1 254 min 0 3 002 3 029 4 -7.343e-4 5 NC 1 846.973 4 255 14 max 0 1 .001 2 0 12 6.256e-5 1 NC 1 NC 1 256 min 0 3 002 3 021 4 -7.343e-4 5 NC 1 1177.392 4 257 15 max 0 1 .001 2 0 12 6.256e-5 1 NC 1 NC 1 258 min 0 3 002 3 014 4 -7.343e-4 5 NC 1 1764.697 4 259 16 max 0 1 0 2 0 12 6.256e-5 1 NC 1 NC 1						3	003		039	4		5	NC	1	642.33	4
254 min 0 3 002 3 029 4 -7.343e-4 5 NC 1 846.973 4 255 14 max 0 1 .001 2 0 12 6.256e-5 1 NC 1 NC 1 256 min 0 3 002 3 021 4 -7.343e-4 5 NC 1 1177.392 4 257 15 max 0 1 .001 2 0 12 6.256e-5 1 NC 1 NC 1 258 min 0 3 002 3 014 4 -7.343e-4 5 NC 1 1764.697 4 259 16 max 0 1 0 2 0 12 6.256e-5 1 NC 1 NC 1			13		0					12		1		1		1
255 14 max 0 1 .001 2 0 12 6.256e-5 1 NC 1 NC 1 256 min 0 3 002 3 021 4 -7.343e-4 5 NC 1 11777.392 4 257 15 max 0 1 .001 2 0 12 6.256e-5 1 NC 1 NC 1 258 min 0 3 002 3 014 4 -7.343e-4 5 NC 1 1764.697 4 259 16 max 0 1 0 2 0 12 6.256e-5 1 NC 1 NC 1						3			029	4		5		1		4
256 min 0 3 002 3 021 4 -7.343e-4 5 NC 1 1177.392 4 257 15 max 0 1 .001 2 0 12 6.256e-5 1 NC 1 NC 1 258 min 0 3 002 3 014 4 -7.343e-4 5 NC 1 1764.697 4 259 16 max 0 1 0 2 0 12 6.256e-5 1 NC 1 NC 1			14		0	1	.001		0	12		1	NC	1		1
257 15 max 0 1 .001 2 0 12 6.256e-5 1 NC 1 NC 1 258 min 0 3 002 3 014 4 -7.343e-4 5 NC 1 1764.697 4 259 16 max 0 1 0 2 0 12 6.256e-5 1 NC 1 NC 1				min		3			021			5		1		4
258 min 0 3 002 3 014 4 -7.343e-4 5 NC 1 1764.697 4 259 16 max 0 1 0 2 0 12 6.256e-5 1 NC 1 NC 1			15		0					12		1		1		
259 16 max 0 1 0 2 0 12 6.256e-5 1 NC 1 NC 1					0	3		3	014	4		5		1		4
			16		0	1		2		12		1		1		
	260				0	3	001	3	008	4		5	NC	1	2971.422	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

261	Member	Sec 17	max	x [in]	LC 1	y [in] 0	LC 2	z [in]	LC 12	x Rotate [r 6.256e-5	LC 1	(n) L/y Ratio	LC 1	(n) L/z Ratio	LC 1
262		17	min	0	3	0	3	004	4	-7.343e-4	5	NC	1	6142.237	4
263		18	max	0	1	0	2	<u>004</u>	12	6.256e-5	1	NC	1	NC	1
264		10	min	0	3	0	3	001	4	-7.343e-4	5	NC	1	NC	1
265		19	max	0	1	0	1	0	1	6.256e-5	1	NC	1	NC	1
266		13	min	0	1	0	1	0	1	-7.343e-4	5	NC	1	NC	1
267	M6	1	max	.02	1	.026	2	0	1	2.389e-3	4	NC	3	NC	1
268	IVIO		min	024	3	036	3	595	4	0	1	2356.854	2	101.831	4
269		2	max	.019	1	.023	2	<u>.555</u>	1	2.388e-3	4	NC	3	NC	1
270			min	023	3	034	3	546	4	0	1	2578.601	2	110.969	4
271		3	max	.018	1	.021	2	<u>.540</u>	1	2.387e-3	4	NC	3	NC	1
272		T .	min	022	3	032	3	497	4	0	1	2844.445	2	121.837	4
273		4	max	.017	1	.019	2	0	1	2.386e-3	4	NC	3	NC	1
274		1 7	min	02	3	03	3	449	4	0	1	3166.543	2	134.892	4
275		5	max	.016	1	.017	2	443	1	2.385e-3	4	NC	3	NC	1
276		5	min	019	3	028	3	402	4	0	1	3561.678	2	150.753	4
277		6	max	.014	1	.015	2	402	1	2.385e-3	4	NC	3	NC	1
278		-	min	017	3	026	3	356	4	0	1	4053.552	2	170.282	4
279		7	max	.013	1	.013	2	- <u>350</u> 0	1	2.384e-3	4	NC	3	NC	1
280		+ ′	min	016	3	024	3	311	4	0	1	4676.529	2	194.706	4
281		8		.012	1	<u>024</u> .011	2	<u>311</u> 0	1	2.383e-3	4	NC	1	NC	1
282		-	max	015	3	022	3	268	4	0	1	5481.99	2	225.82	4
		9	min		1		2		1	2.382e-3	•	NC	1	NC	1
283		9	max	.011	3	.009		0			4				
284		40	min	013		02	3	227	4	0	1_	6549.601	2	266.338	4
285		10	max	.01	1	.008	2	0	1	2.381e-3	4	NC	1_	NC 200 F00	1
286		44	min	012	3	018	3	189	4	0	1_	8008.429	2	320.522	4
287		11	max	.009	1	.006	2	0	1	2.38e-3	4	NC	1	NC	1
288		10	min	011	3	016	3	<u>153</u>	4	0	1_	NC	1_	395.387	4
289		12	max	.008	1	.005	2	0	1	2.38e-3	4	NC	1_	NC 500.455	1
290		40	min	009	3	014	3	12	4	0	1_	NC NC	1_	503.155	4
291		13	max	.007	1	.003	2	0	1	2.379e-3	4	NC	1	NC	1
292		4.4	min	008	3	012	3	091	4	0	_1_	NC	1_	666.723	4
293		14	max	.006	1	.002	2	0	1	2.378e-3	4	NC	1	NC 000,040	1
294		4.5	min	007	3	01	3	065	4	0	1_	NC	1_	933.249	4
295		15	max	.004	1	.001	2	0	1	2.377e-3	4_	NC NC	1_	NC 4.440.077	1
296		40	min	005	3	008	3	043	4	0	1_	NC NC	1_	1413.277	4
297		16	max	.003	1	0	2	0	1	2.376e-3	4_	NC	1	NC	1
298		-	min	004	3	006	3	025	4	0	_1_	NC	1_	2420.081	4
299		17	max	.002	1	0	2	0	1	2.375e-3	4	NC	1	NC	1
300		10	min	003	3	004	3	012	4	0	_1_	NC	1_	5163.982	4
301		18	max		1	0	2	0	1	2.374e-3	4	NC	1_	NC NC	1
302		10	min	<u>001</u>	3	002	3	003	4	0	1_	NC	1_	NC	1
303		19	max	0	1	0	1	0	1	2.374e-3	4	NC	1_	NC NC	1
304			min	0	1	0	1	0	1	0	1_	NC	1_	NC	1
305	<u>M7</u>	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306			min	0	1	0	1	0	1	-4.579e-4	4	NC	1_	NC	1
307		2	max	.001	3	0	2	.013	4	1.538e-4	_4_	NC	_1_	NC	1
308			min	001	2	003	3	0	1	0	_1_	NC	1_	NC	1
309		3	max	.002	3	001	15	.026	4	7.654e-4	4	NC	1_	NC	1
310			min	002	2	007	3	0	1	0	_1_	NC	1_	NC	1
311		4	max	.003	3	002	15	.038	4	1.377e-3	4	NC	1	NC	1
312			min	003	2	01	3	0	1	0	1_	NC	1_	NC	1
313		5	max	.005	3	003	15	.05	4	1.989e-3	4	NC	1_	NC	1
314			min	004	2	013	3	0	1	0	1_	8499.191	3	NC	1
315		6	max	.006	3	003	15	.062	4	2.6e-3	4	NC	1_	NC	1
316			min	005	2	015	3	0	1	0	1_	7145.084	3	9117.441	4
317		7	max	.007	3	004	15	.072	4	3.212e-3	4	NC	1	NC	_1_

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
318			min	006	2	017	3	0	1	0	1_	6330.327	3	8478.626	
319		8	max	.008	3	004	15	.083	4	3.824e-3	4	NC	_1_	NC	1
320			min	007	2	<u>019</u>	3	0	1	0	1_	5770.692		8243.699	_
321		9	max	.009	3	005	15	.093	4	4.435e-3	4_	NC	2	NC	1
322		40	min	008	2	02	4	0	1	0	1_	5352.437	<u>4</u>	8337.641	4
323		10	max	.01	3	005 021	15	.102	4	5.047e-3	4	NC 5142.006	<u>5</u>	NC 8758.156	1
324 325		11	min	009 .011	3	021 005	15	<u> </u>	4	0 5 6500 2	<u>1</u> 4	5142.006 NC	_4 5	NC	1
326			max		2	005 021	4	0	1	5.659e-3	1	5107.884	4	9567.002	4
327		12	max	01 .012	3	021 005	15	.12	4	6.27e-3	4	NC	5	NC	1
328		12	min	011	2	005	4	0	1	0.276-3	1	5249.107	4	NC NC	1
329		13	max	.014	3	004	15	.129	4	6.882e-3	4	NC	2	NC	1
330		13	min	012	2	019	4	0	1	0.0026-3	1	5596.371	4	NC	1
331		14	max	.015	3	004	15	.137	4	7.493e-3	4	NC	2	NC	1
332		17	min	013	2	017	4	0	1	0	1	6228.373	4	NC	1
333		15	max	.016	3	003	15	.145	4	8.105e-3	4	NC	1	NC	1
334		10	min	015	2	015	4	0	1	0	1	7321.22	4	NC	1
335		16	max	.017	3	003	15	.154	4	8.717e-3	4	NC	1	NC	1
336			min	016	2	012	4	0	1	0	1	9302.705	4	NC	1
337		17	max	.018	3	002	15	.162	4	9.328e-3	4	NC	1	NC	1
338			min	017	2	01	1	0	1	0	1	NC	1	NC	1
339		18	max	.019	3	001	15	.172	4	9.94e-3	4	NC	1	NC	1
340			min	018	2	008	1	0	1	0	1	NC	1	NC	1
341		19	max	.02	3	0	15	.181	4	1.055e-2	4	NC	1	NC	1
342			min	019	2	005	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.008	1	.017	2	0	1	0	1_	NC	1_	NC	1
344			min	002	3	02	3	181	4	-8.383e-4	4	NC	1_	136.814	4
345		2	max	.007	1	.016	2	0	1	0	_1_	NC	1_	NC	1
346			min	002	3	019	3	167	4	-8.383e-4	4	NC	1_	148.96	4
347		3	max	.007	1	.015	2	0	1	0	_1_	NC	_1_	NC	1
348			min	002	3	018	3	152	4	-8.383e-4	4	NC	1_	163.403	4
349		4	max	.006	1	.014	2	0	1	0	1	NC	_1_	NC 100 T 10	1
350			min	002	3	<u>017</u>	3	137	4	-8.383e-4	4_	NC	1_	180.743	4
351		5	max	.006	1	.014	2	0	1	0	1	NC NC	1_	NC	1
352			min	002	3	016	3	123	4	-8.383e-4	4_	NC NC	1_	201.793	4
353		6	max	.006	1	.013	2	0	1	0	1_1	NC NC	1_1	NC 227 C02	1
354		7	min	001	3	015	2	109	1	-8.383e-4	4	NC NC	1_1	227.683 NC	4
355		/	max	.005	3	.012	3	0	4	0 -8.383e-4	<u>1</u> 4	NC NC	1_1	260.012	4
356 357		8	min	001 .005	1	014 .011	2	<u>095</u> 0	1	0	_ 4 _	NC NC	1	NC	1
358		0	max min		3	012	3	082		-8.383e-4		NC NC	1	301.119	
359		9	max	.004	1	.012	2	<u>002</u> 0	1	0	1	NC	1	NC	1
360		3	min	001	3	011	3	07	4	-8.383e-4	4	NC	1	354.521	4
361		10	max	.004	1	.009	2	<u>07</u>	1	0.3036-4	1	NC	1	NC	1
362		10	min	001	3	01	3	058	4	-8.383e-4	4	NC	1	425.717	4
363		11	max	.003	1	.008	2	0	1	0	1	NC	1	NC	1
364			min	0	3	009	3	047	4	-8.383e-4	4	NC	1	523.704	4
365		12	max	.003	1	.007	2	0	1	0	1	NC	1	NC	1
366			min	0	3	008	3	037	4	-8.383e-4	4	NC	1	664.05	4
367		13	max	.003	1	.006	2	0	1	0	1	NC	1	NC	1
368			min	0	3	007	3	028	4	-8.383e-4	4	NC	1	875.654	4
369		14	max	.002	1	.005	2	0	1	0	1	NC	1	NC	1
370			min	0	3	006	3	02	4	-8.383e-4	4	NC	1	1217.318	
371		15	max	.002	1	.004	2	0	1	0	1	NC	1	NC	1
372			min	0	3	005	3	014	4	-8.383e-4	4	NC	1	1824.625	4
373		16	max	.001	1	.003	2	0	1	0	1	NC	1	NC	1
374				0	3					-8.383e-4					

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
375		17	max	Ö	1	.002	2	0	1	0	1	NC	1	NC	1
376			min	0	3	002	3	004	4	-8.383e-4	4	NC	1	6351.504	4
377		18	max	0	1	0	2	0	1	0	1	NC	1	NC	1
378			min	0	3	001	3	001	4	-8.383e-4	4	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380			min	0	1	0	1	0	1	-8.383e-4	4	NC	1	NC	1
381	M10	1	max	.007	1	.007	2	0	12	2.37e-3	4	NC	1	NC	2
382			min	008	3	012	3	593	4	1.206e-5	12	8205.023	2	102.136	4
383		2	max	.006	1	.006	2	0	12	2.369e-3	4	NC	1	NC	2
384			min	007	3	011	3	544	4	1.134e-5	12	9481.121	2	111.301	4
385		3	max	.006	1	.005	2	0	12	2.368e-3	4	NC	1	NC	2
386			min	007	3	011	3	496	4	1.061e-5	12	NC	1	122.202	4
387		4	max	.005	1	.004	2	0	12	2.367e-3	4	NC	1	NC	1
388			min	006	3	011	3	448	4	9.883e-6	12	NC	1	135.295	4
389		5	max	.005	1	.004	2	0	12	2.366e-3	4	NC	1	NC	1
390			min	006	3	01	3	401	4	9.155e-6	12	NC	1	151.204	4
391		6	max	.005	1	.003	2	0	12	2.365e-3	4	NC	1_	NC	1
392			min	006	3	01	3	355	4	8.428e-6	12	NC	1	170.791	4
393		7	max	.004	1	.002	2	0	12	2.364e-3	4	NC	1	NC	1
394			min	005	3	009	3	31	4	7.701e-6	12	NC	1	195.288	4
395		8	max	.004	1	.001	2	0	12	2.363e-3	4	NC	_1_	NC	1
396			min	005	3	009	3	267	4	6.974e-6	12	NC	1_	226.495	4
397		9	max	.004	1	0	2	0	12	2.362e-3	4	NC	1_	NC	1
398			min	004	3	008	3	227	4	6.241e-6	10	NC	1_	267.134	4
399		10	max	.003	1	0	2	0	12	2.361e-3	4	NC	1_	NC	1_
400			min	004	3	008	3	188	4	5.415e-6	10	NC	1_	321.48	4
401		11	max	.003	1	0	2	0	12	2.361e-3	4	NC	_1_	NC	1_
402			min	003	3	007	3	1 <u>53</u>	4	4.589e-6	10	NC	1_	396.569	4
403		12	max	.003	1	001	2	0	12	2.36e-3	4	NC	1	NC	1
404			min	003	3	006	3	12	4	3.763e-6	10	NC	1	504.66	4
405		13	max	.002	1	001	15	00	12	2.359e-3	4	NC	_1_	NC	1
406			min	003	3	006	3	091	4	2.936e-6	10	NC	1_	668.72	4
407		14	max	.002	1	001	15	0	12	2.358e-3	_4_	NC	_1_	NC	1
408			min	002	3	005	3	065	4	2.11e-6	10	NC	1_	936.049	4
409		15	max	.001	1	001	15	0	12	2.357e-3	_4_	NC	1_	NC	1
410			min	002	3	004	3	043	4	1.284e-6	10	NC	1_	1417.53	4
411		16	max	.001	1	0	15	0	12	2.356e-3	4	NC	1_	NC	1
412			min	001	3	003	4	025	4	4.573e-7	10	NC	1_	2427.404	4
413		17	max	0	1	0	15	0	12	2.355e-3	4	NC	1_	NC	1
414			min	0	3	002	4	012	4	-1.607e-6	_1_	NC	1_	5179.784	4
415		18	max	0	1	0	15	0	12		4_	NC	_1_	NC	1
416		40	min	0	3	001	4	003	4	-1.223e-5	_1_	NC NC	1_	NC NC	1
417		19	max	0	1	0	1	0	1	2.353e-3	4_	NC	1_	NC	1
418			min	0	1	0	1	0	1	-2.284e-5		NC	1_	NC	1
419	<u>M11</u>	1	max	0	1	0	1	0	1	7.044e-6		NC	1_	NC	1
420			min	0	1	0	1	0	1	-4.533e-4		NC NC	1_	NC NC	1
421		2	max	0	3	0	15	.013	4	1.635e-4	4_	NC	1	NC	1
422			min	0	2	003	4	0	1	-1.491e-5		NC NC	1_	NC NC	1
423		3	max	0	3	001	15	.026	4	7.804e-4	4	NC NC	1_1	NC NC	1
424		4	min	0	2	006	4	0	1	-3.687e-5		NC NC	1	NC NC	1
425		4	max	.001	3	002	15	.038	4	1.397e-3	4	NC NC	1_	NC NC	1
426		_	min	0	2	009	4	0	1	-5.882e-5		NC NC	1_	NC NC	1
427		5	max	.002	3	003	15	.05	4	2.014e-3	4_	NC	1_4	NC NC	1
428		_	min	001	2	012	4	0	1	-8.078e-5		9033.107	4	NC NC	1
429		6	max	.002	3	004	15	.061	4	2.631e-3	4	NC 7269 426	1_4	NC NC	1
430		7	min	001	2	014	4	0.72	1	-1.027e-4		7268.436	4	NC NC	1
431		7	max	.002	3	004	15	.072	4	3.248e-3	4	NC	5	NC	1

Model Name

Schletter, Inc.HCV

....

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC				
432			min	002	2	017	4	0	1	-1.247e-4	1_	6208.43	4	9448.407	_
433		8	max	.003	3	005	15	.082	4	3.865e-3	4_	NC	5	NC	1
434			min	002	2	<u>019</u>	4	001	1	-1.466e-4	_1_	5554.138	<u>4</u>	9273.767	4
435		9	max	.003	3	005	15	.092	4	4.481e-3	4_	NC 5405.004	5	NC	1
436		40	min	002	2	02	4	001	1	-1.686e-4	1_	5165.064	4_	9488.439	4
437		10	max	.003	3	005	15	.102	4	5.098e-3	4	NC 4070.0	5_	NC NC	1
438		44	min	003	2	021	4	002	1	-1.906e-4	1_	4972.8	4_	NC NC	1
439		11	max	.004	3	005	15	.111	1	5.715e-3	<u>4</u> 1	NC	<u>5</u> 4	NC NC	1
440		12	min	003	3	021		002	4	-2.125e-4	_	4948.797 NC		NC NC	1
441		12	max	.004 003	2	005 021	15 4	.12 003	1	6.332e-3 -2.345e-4	<u>4</u> 1	5093.384	<u>5</u> 4	NC NC	1
443		13	min max	.005	3	021 005	15	<u>003</u> .129	4	6.949e-3	4	NC	5	NC NC	1
444		13	min	004	2	005 02	4	003	1	-2.564e-4	1	5437.274	4	NC	1
445		14	max	.005	3	004	15	.137	4	7.566e-3	4	NC	5	NC	1
446		14	min	004	2	018	4	004	1	-2.784e-4	1	6057.704	4	NC	1
447		15	max	.005	3	004	15	.146	4	8.182e-3	4	NC	2	NC	1
448		10	min	004	2	015	4	004	1	-3.003e-4	1	7126.722	4	NC	1
449		16	max	.006	3	003	15	.155	4	8.799e-3	4	NC	1	NC	1
450		· ·	min	004	2	012	4	005	1	-3.223e-4	1	9061.67	4	NC	1
451		17	max	.006	3	002	15	.164	4	9.416e-3	4	NC	1	NC	1
452			min	005	2	009	4	005	1	-3.443e-4	1	NC	1	NC	1
453		18	max	.006	3	001	15	.173	4	1.003e-2	4	NC	1	NC	1
454			min	005	2	005	1	006	1	-3.662e-4	1	NC	1	NC	1
455		19	max	.007	3	0	10	.183	4	1.065e-2	4	NC	1	NC	1
456			min	005	2	002	1	007	1	-3.882e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.005	2	.007	1	-4.018e-6	12	NC	1	NC	3
458			min	0	3	007	3	183	4	-7.627e-4	4	NC	1	135.193	4
459		2	max	.003	1	.005	2	.007	1	-4.018e-6	12	NC	1_	NC	2
460			min	0	3	006	3	169	4	-7.627e-4	4	NC	1_	147.186	4
461		3	max	.002	1	.004	2	.006	1	-4.018e-6	12	NC	_1_	NC	2
462			min	0	3	006	3	154	4	-7.627e-4	4	NC	1	161.448	4
463		4	max	.002	1	.004	2	.005	1	-4.018e-6	12	NC	_1_	NC	2
464		_	min	0	3	006	3	139	4	-7.627e-4	4_	NC	_1_	178.572	4
465		5	max	.002	1	.004	2	.005	1	-4.018e-6	12	NC	_1_	NC	2
466			min	0	3	005	3	124	4	-7.627e-4	4_	NC	1_	199.36	4
467		6	max	.002	1	.004	2	.004	1	-4.018e-6	12	NC	1	NC	2
468		-	min	0	3	005	3	11	4	-7.627e-4	4	NC	1_	224.926	4
469		7	max	.002	1	.003	2	.004	1	-4.018e-6	12	NC	1	NC OFFI OF 4	2
470			min	0	3	005	3	097	4	-7.627e-4	4	NC NC	1_	256.854	4
471 472		8	max	.002	3	.003	3	.003	1	-4.018e-6 -7.627e-4	12	NC NC	1	NC	2
			min			004	2	083						297.449	2
473 474		9	max min	.002 0	3	.003 004	3	.003 071	4	-4.018e-6 -7.627e-4		NC NC	<u>1</u> 1	NC 350.186	4
475		10		.001	1	.002	2	.002	1	-4.018e-6	12	NC NC	1	NC	1
476		10	max min	0	3	003	3	059	4	-7.627e-4	4	NC	1	420.495	4
477		11	max	.001	1	.002	2	.002	1	-4.018e-6		NC	1	NC	1
478			min	0	3	003	3	048	4	-7.627e-4	4	NC	1	517.261	4
479		12	max	.001	1	.002	2	.001	1	-4.018e-6		NC	1	NC	1
480		12	min	0	3	003	3	038	4	-7.627e-4	4	NC	1	655.857	4
481		13	max	0	1	.002	2	.001	1	-4.018e-6	12	NC	1	NC	1
482		13	min	0	3	002	3	029	4	-7.627e-4	4	NC	1	864.82	4
483		14	max	0	1	.002	2	0	1	-4.018e-6		NC	1	NC	1
484		1,7	min	0	3	002	3	021	4	-7.627e-4		NC	1	1202.216	
485		15	max	0	1	.002	2	0	1	-4.018e-6		NC	1	NC	1
486		10	min	0	3	002	3	014	4	-7.627e-4	4	NC	1	1801.925	4
487		16	max	0	1	0	2	0	1	-4.018e-6		NC	1	NC	1
488		1.5	min	0	3	001	3	008	4	-7.627e-4		NC	1	3034.145	-
100			111111			.001	U	.000		1.0210 4		110		JUUT. 17U	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
489		17	max	0	1	0	2	0	1	-4.018e-6	12	NC	1	NC	1
490			min	0	3	0	3	004	4	-7.627e-4	4	NC	1	6271.984	4
491		18	max	0	1	0	2	0	1	-4.018e-6	12	NC	1	NC	1
492			min	0	3	0	3	001	4	-7.627e-4	4	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-4.018e-6	12	NC	1	NC	1
494			min	0	1	0	1	0	1	-7.627e-4	4	NC	1	NC	1
495	M1	1	max	.009	3	.213	2	.625	4	9.083e-3	1	NC	1	NC	1
496			min	005	2	055	3	0	12	-1.724e-2	3	NC	1	NC	1
497		2	max	.009	3	.105	2	.607	4	8.06e-3	4	NC	5	NC	1
498		_	min	005	2	028	3	005	1	-8.555e-3	3	1255.544	2	NC	1
499		3	max	.009	3	.012	3	.589	4	1.433e-2	4	NC	5	NC	1
500		Ŭ	min	005	2	01	2	008	1	-1.553e-4	1	607.68	2	6833.868	
501		4	max	.009	3	.074	3	.569	4	1.242e-2	4	NC	15	NC	1
502		Ė	min	005	2	138	2	007	1	-4.029e-3	3	386.368	2	4842.513	
503		5	max	.008	3	.15	3	.55	4	1.05e-2	4	NC	15	NC	1
504			min	005	2	27	2	005	1	-7.962e-3	3	280.423	2	3824.96	5
505		6	max	.008	3	.232	3	.53	4	1.301e-2	1	8003.101	15	NC	1
506			min	005	2	398	2	002	1	-1.19e-2	3	221.802	2	3205.774	_
507		7	max	.008	3	.311	3	.509	4	1.74e-2	1	6763.747	15	NC	1
508			min	005	2	511	2	0	3	-1.583e-2	3	187.084	2	2779.473	4
509		8	max	.008	3	.376	3	.488	4	2.179e-2	1	6029.34	15	NC	1
510		Ŭ	min	004	2	601	2	0	12	-1.976e-2	3	166.503	2	2464.679	
511		9	max	.008	3	.418	3	.466	4	2.395e-2	1	5644.617	15	NC	1
512		Ŭ	min	004	2	658	2	0	1	-2.025e-2	3	155.76	2	2258.137	4
513		10	max	.007	3	.434	3	.44	4	2.482e-2	2	5526.918	15	NC	1
514		10	min	004	2	677	2	0	10	-1.844e-2	3	152.603	2	2191.202	4
515		11	max	.007	3	.423	3	.412	4	2.616e-2	2	5644.388	15	NC	1
516			min	004	2	658	2	0	12	-1.663e-2	3	156.268	2	2228.669	
517		12	max	.007	3	.388	3	.381	4	2.499e-2	2	6028.791	15	NC	1
518		12	min	004	2	599	2	0	1	-1.439e-2	3	167.995	2	2375.282	4
519		13	max	.007	3	.331	3	.344	4	2.004e-2	2	6762.668	15	NC	1
520		10	min	004	2	506	2	0	1	-1.152e-2	3	190.137	1	2813.214	-
521		14	max	.007	3	.257	3	.305	4	1.509e-2	2	8001.119	15	NC	1
522		17	min	004	2	389	2	0	12	-8.64e-3	3	227.708	1	3801.775	
523		15	max	.007	3	.174	3	.264	4	1.014e-2	2	NC	15	NC	1
524		10	min	004	2	259	1	0	12	-5.765e-3	3	291.832	1	6187.29	4
525		16	max	.006	3	.088	3	.224	4	8.948e-3	4	NC	15	NC	1
526		10	min	004	2	128	1	0	12	-2.89e-3	3	409.236	1	NC	1
527		17	max	.006	3	.004	3	.188	4	1.008e-2	4	NC	5	NC	1
528		- 17	min	004	2	006	2	0	12	-1.442e-5	3	657.131	1	NC	1
529		18	max	.006	3	.101	1	.158	4	6.525e-3	2	NC	5	NC	1
530		10	min	004	2	072	3	0	12	-2.23e-3	3	1378.299	1	NC	1
531		19	max	.006	3	.198	1	.133	4	1.301e-2	2	NC	1	NC	1
532		13	min	004	2	143	3	0	1	-4.537e-3	3	NC	1	NC	1
533	M5	1	max	.026	3	.374	2	.625	4	0	1	NC	1	NC	1
534	IVIO		min	018	2	024	3	0	1	-8.777e-6	4	NC	1	NC	1
535		2	max	.026	3	.185	2	.612	4	7.329e-3	4	NC	5	NC	1
536			min	018	2	014	3	0	1	0	1	724.379	2	9622.033	_
537		3	max	.026	3	.036	3	.594	4	1.449e-2	4	NC	15	NC	1
538			min	018	2	03	2	<u>.594</u>	1	0	1	337.783	2	5589.864	_
539		4	max	.026	3	.159	3	.575	4	1.181e-2	4	8301.05	15	NC	1
540		_	min	018	2	293	2	<u>.575</u>	1	0	1	204.604	2	4243.304	
541		5	max	.025	3	.334	3	.553	4	9.123e-3	4	5766.53	15	NC	1
542		J	min	017	2	58	2	<u>.::::::::::::::::::::::::::::::::::</u>	1	0	1	142.706	2	3566.312	4
543		6		.025	3	.534	3	.531	4	6.44e-3	4	4415.686	15	NC	1
544		O	max min	025 017	2	869	2	<u></u> 0	1	0.446-3	1	109.552	2	3136.657	
		7							-						
545		7	max	.024	3	.73	3	.509	4	3.757e-3	4	3639.868	<u> 15</u>	NC	_1_

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC	(n) L/y Ratio			LC
546			min	017	2	-1.131	2	0	1	0	1_	90.437	2	2802.801	4
547		8	max	.023	3	.895	3	.487	4	1.073e-3	_4_	3190.771	15	NC	1
548			min	016	2	-1.342	2	0	1	0	1_	79.34	2	2497.331	4
549		9	max	.023	3	1.002	3	.466	4	3.533e-8	14	2960.934	15	NC	1
550			min	016	2	-1.476	2	0	1	-4.636e-6	5	73.652	2	2253.276	4
551		10	max	.022	3	1.041	3	.44	4	1.683e-7	14	2891.694	15	NC	1
552			min	016	2	-1.522	2	0	1	-4.397e-6	5	71.989	2	2211.941	4
553		11	max	.022	3	1.016	3	.411	4	3.013e-7	14	2961.073	15	NC	1
554			min	015	2	-1.477	2	0	1	-4.157e-6	5	73.905	1	2261.209	4
555		12	max	.021	3	.927	3	.382	4	7.187e-4	4	3191.098	15	NC	1
556			min	015	2	-1.339	2	0	1	0	1	80.035	1	2331.506	4
557		13	max	.021	3	.783	3	.346	4	2.516e-3	4	3640.521	15	NC	1
558			min	015	2	-1.117	2	0	1	0	1	92.155	1	2737.247	4
559		14	max	.02	3	.602	3	.305	4	4.313e-3	4	4416.94	15	NC	1
560			min	015	2	844	1	0	1	0	1	113.381	1	3843.036	4
561		15	max	.02	3	.401	3	.261	4	6.111e-3	4	5768.983	15	NC	1
562			min	014	2	55	1	0	1	0	1	151.048	1	7151.612	5
563		16	max	.019	3	.199	3	.219	4	7.908e-3	4	8306.168	15	NC	1
564			min	014	2	264	1	0	1	0	1	223.544	1	NC	1
565		17	max	.019	3	.012	3	.182	4	9.705e-3	4	NC	15	NC	1
566			min	014	2	017	2	0	1	0	1	384.695	1	NC	1
567		18	max	.019	3	.175	1	.153	4	4.91e-3	4	NC	5	NC	1
568			min	014	2	145	3	0	1	0	1	852.638	1	NC	1
569		19	max	.019	3	.331	1	.133	4	0	1	NC	1	NC	1
570			min	014	2	284	3	0	1	-4.215e-6	4	NC	1	NC	1
571	M9	1	max	.009	3	.213	2	.625	4	1.724e-2	3	NC	1	NC	1
572			min	005	2	055	3	0	1	-9.083e-3	1	NC	1	NC	1
573		2	max	.009	3	.105	2	.61	4	8.555e-3	3	NC	5	NC	1
574			min	005	2	028	3	0	12	-4.384e-3	1	1255.544	2	NC	1
575		3	max	.009	3	.012	3	.593	4	1.443e-2	4	NC	5	NC	1
576			min	005	2	01	2	0	12	-1.984e-5	10	607.68	2	5993.457	4
577		4	max	.009	3	.074	3	.573	4	1.137e-2	5	NC	15	NC	1
578			min	005	2	138	2	0	12	-4.234e-3	1	386.368	2	4431.683	4
579		5	max	.008	3	.15	3	.552	4	8.591e-3	5	NC	15	NC	1
580			min	005	2	27	2	0	12	-8.622e-3	1	280.423	2	3635.504	4
581		6	max	.008	3	.232	3	.531	4	1.19e-2	3	7973.377	15	NC	1
582			min	005	2	398	2	0	12	-1.301e-2	1	221.802	2	3138.463	4
583		7	max	.008	3	.311	3	.509	4	1.583e-2	3	6739.316	15	NC	1
584			min	005	2	511	2	0	1	-1.74e-2	1	187.084	2	2777.389	4
585		8	max	.008	3	.376	3	.488	4	1.976e-2	3	6007.978	15	NC	1
586			min	004	2	601	2	0	1	-2.179e-2	1	166.503		2479.716	5
587		9	max	.008	3	.418	3	.466	4	2.025e-2	3		15	NC	1
588			min	004	2	658	2	0	12	-2.395e-2	1	155.76	2	2252.154	_
589		10	max	.007	3	.434	3	.44	4	1.844e-2	3	5507.56	15	NC	1
590			min	004	2	677	2	0	1	-2.482e-2	2	152.603	2	2192.005	-
591		11	max	.007	3	.423	3	.411	4	1.663e-2	3	5624.542	15	NC	1
592			min	004	2	658	2	0	1	-2.616e-2	2	156.268	2	2235.7	4
593		12	max	.007	3	.388	3	.381	4	1.439e-2	3	6007.443	15	NC	1
594			min	004	2	599	2	0	12	-2.499e-2	2	167.995	2	2361.023	_
595		13	max	.007	3	.331	3	.345	4	1.152e-2	3	6738.478	15	NC	1
596			min	004	2	506	2	0	10	-2.004e-2	2	190.137	1	2811.052	_
597		14	max	.007	3	.257	3	.304	4	8.64e-3	3	7972.096	15	NC	1
598			min	004	2	389	2	002	1	-1.509e-2	2	227.708	1	3876.683	_
599		15	max	.007	3	.174	3	.261	4	5.84e-3	5	NC	15	NC	1
600		'	min	004	2	259	1	004	1	-1.014e-2	2	291.832	1	6626.801	5
601		16	max	.006	3	.088	3	.22	4	7.805e-3	5	NC	15	NC	1
602			min	004	2	128	1	007	1	-5.19e-3	2	409.236	1	NC	1
002										0000	_	.00.200			

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.006	3	.004	3	.184	4	9.83e-3	4	NC	5	NC	1
604			min	004	2	006	2	007	1	-4.943e-4	1	657.131	1	NC	1
605		18	max	.006	3	.101	1	.155	4	4.776e-3	5	NC	5	NC	1
606			min	004	2	072	3	005	1	-6.525e-3	2	1378.299	1	NC	1
607		19	max	.006	3	.198	1	.133	4	4.537e-3	3	NC	1	NC	1
608			min	004	2	143	3	0	12	-1.301e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{\text{ed},Na}$ $\Psi_{\text{p},Na}$

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)								
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)				
4.00	0.50	1.00	2500	7.87				

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	2/(NVC) / NVCO) I ed, v I C, v I II, v v by (OCO. D.4.1, D.O.Z. NO) & Eq. D Z 1)						
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:			_		

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	1/5		
Project:	Standard PVMax - Worst Case, 32-40 Inch Width				
Address:					
Phone:					
E-mail:					

1.Project information

Customer company: Customer contact name: Customer e-mail:

Comment:

Project description:

Location:

Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 32-	40 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 32	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2732.0	1650.0	0.0	1650.0
2	2732.0	1650.0	0.0	1650.0
Sum	5464.0	3300.0	0.0	3300.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5464 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	ť _c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_I)$	$_{ m Nc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$	I,N $\Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\mathscr{V}_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408.24	324.00	1.000	1.000	1.00	1.000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	$f_{ extit{short-term}}$	K _{sat}	τ _{k,cr} (psi)	
1035	1.00	1.00	1035	_
$N_{a0} = \tau_{k,cr} \pi d_{a}$	hef (Eq. D-16f)			
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	<i>N</i> _{a0} (lb)	
1035	0.50	6.000	9755	_
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ	$Y_{g,Na} \Psi_{ec,Na} \Psi_{p,Na} N$	ao (Sec. D.4.1 & Eq.	D-16b)

A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)	
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093	

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 32-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc/Avco) Yec, v Ye	$_{ed,V} arPsi_{c,V} arPsi_{h,V} arV_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
576.00	648.00	1.000	0.928	1.000	1.000	15593	0.70	9001

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.66	18939		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
737.64	839.68	1.000	1.000	1.000	18939	0.70	23292

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\textit{Cpg}} = \phi \min |\textit{KcpNag}\;;\; \textit{KcpNcbg}| = \phi \min |\textit{Kcp}(\textit{A}_\textit{Na} / \textit{A}_\textit{Na0}) \, \Psi_{\textit{ed},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, N_{\textit{a0}}\;;\; \textit{Kcp}(\textit{A}_\textit{Nc} / \textit{A}_\textit{Nco}) \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, N_{\textit{b}}|\; (\text{Eq. D-30b})$

, ,,,	1 1 3 7 1		(3,	r, , , , , , , ,	, ,		
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2732	6071	0.45	Pass
Concrete breakout	5464	10231	0.53	Pass
Adhesive	5464	8093	0.68	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1650	3156	0.52	Pass (Governs)
T Concrete breakout x+	3300	9001	0.37	Pass

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 32-40 Inch Width				
Address:					
Phone:					
E-mail:					

Concrete breako	ut y- 1650	23292	2 0.0	07	Pass	
Pryout	3300	20601	0.1	16	Pass	
					-	
Interaction check	$N_{ua}/\phi N_n$	$V_{ua}/\phi V_n$	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.68	0.52	119.8 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.