Chapter 6 Notes - LA

John Yang

April 19, 2022

Contents

;	Vect	or Spaces]
	6.1	Vector Spaces and Subspaces	1
	6.2	Linear Independence, Basis, and Dimension	6
	6.3	Change of Basis	
		Linear Transformations	
		The Kernel and Range of a Linear Transformation	
		The Matrix of a Linear Transformation	
	6.7	Applications	(

6 Vector Spaces

6.1 Vector Spaces and Subspaces

- In the past, we studied vectors in a concrete situation, \mathbb{R}^n . Now, we generalize "vectors" by abstracting them into a general setting.
- Let V be a set on which two operations, called addition and scalar multiplication, have been defined. If \mathbf{u} and \mathbf{v} are in V, the sum of \mathbf{u} and \mathbf{v} is denoted by $\mathbf{u} + \mathbf{v}$, and if c is a scalar, the scalar multiple of \mathbf{u} by c is denoted by $c\mathbf{u}$. If the following axioms hold for all \mathbf{u} , \mathbf{v} , and \mathbf{w} in V and for all scalars c and d, then V is called a vector space and its elements are vectors.
- 1. $\mathbf{u} + \mathbf{v}$ is in V.
- $2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- 4. There exists an element **0** in V, called a zero vector, such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$
- 5. For each **u** in V, there is an element $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- 6. $c\mathbf{u}$ is in V.
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$
- 10. 1**u**=**u**
 - Let V be a vector space \mathbf{u} a vector in V, and c a scalar.

$$-0u = 0$$

$$-c0 = 0$$

 $-(-1)u = -u$
 $- \text{If } cu = 0, \text{ then } c = 0 \text{ or } u = 0$

- A subset W of a vector space V is called a subspace of V if W is itself a vector space with the same scalars, addition, and scalar multiplication as V.
- Let V be a vector space and let W be a nonempty subset of V. Then W is a subspace of V IFF the following conditions hold:
 - If \mathbf{u} and \mathbf{v} are in W, then $\mathbf{u} + \mathbf{v}$ is in W
 - If \mathbf{u} is in W and c is a scalar, then $c\mathbf{u}$ is in W.
- If W is a subspace of a vector space V, then W contains the zero vector $\mathbf{0}$ of V.
- If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a set of vectors in a vector space V, then the set of all linear combinations of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is called the span of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ and is denoted by $\operatorname{span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$ or $\operatorname{span}(S)$. If $V = \operatorname{span}(S)$, then S is called a spanning set of V and V is said to be spanned by S.
- Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ be vectors in a vector space V.
 - span($\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$) is a subspace of V.
 - span($\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$) is the smallest subspace of V that contains $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$

6.2 Linear Independence, Basis, and Dimension

• A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ in a vector space V is linearly dependent if there are scalars c_1, c_2, \dots, c_k , at least one of which is not zero, such that

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k = \mathbf{0}$$

A set of vectors that is not linearly dependent is said to be linearly independent.

- A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ in a vector space V is linearly dependent IFF at least one of the vectors can be expressed as a linear combination of the others.
- A set S of vectors in a vector space V is linearly dependent if it contains finitely many linearly dependent vectors. A set of vectors that is not linearly dependent is said to be linearly independent.
- A subset \mathcal{B} of a vector space V is a basis for V if
 - $-\mathcal{B}$ spans V and
 - $-\mathcal{B}$ is linearly independent.
- Let V be a vector space and let \mathcal{B} be a basis for V. For every vector \mathbf{v} in V, there is exactly one way to write \mathbf{v} as a linear combination of the basis vectors in \mathcal{B}
- Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a basis for the vector space V. Let \mathbf{v} be a vector in V, and write $\mathbf{v} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n$. Then c_1, c_2, \dots, c_n are called the coordinates of \mathbf{v} with respect to \mathcal{B} , and the column vector

$$[\mathbf{v}]_{\mathcal{B}} = egin{bmatrix} c_1 \ c_2 \ dots \ c_n \end{bmatrix}$$

is called the coordinate vector of \mathbf{v} with respect to \mathcal{B} .

• Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a basis for a vector space V. Let \mathbf{u} and \mathbf{v} be vectors in V and let c be a scalar. Then

$$-\ [\mathbf{u} + \mathbf{v}]_{\mathcal{B}} = [\mathbf{u}]_{\mathcal{B}} + [\mathbf{v}]_{\mathcal{B}}$$

$$- [c\mathbf{u}]_{\mathcal{B}} = c[\mathbf{u}]_{\mathcal{B}}$$

$$[c_1\mathbf{u}_1 + \dots + c_k\mathbf{u}_k]_{\mathcal{B}} = c_1[\mathbf{u}_1]_{\mathcal{B}} + \dots + c_k[\mathbf{u}_k]_{\mathcal{B}}$$

- Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a basis for a vector space V and let $\mathbf{u}_1, \dots, \mathbf{u}_k$ be vectors in V. Then $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ is linearly independent in V IFF $\{[\mathbf{u}_1]_{\mathcal{B}}, \dots, [\mathbf{u}_k]_{\mathcal{B}}\}$ is linearly independent in \mathbb{R}^n .
- Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a basis for a vector space V.
 - Any set of more than n vectors in V must be linearly dependent.
 - Any set of fewer than n vectors in V cannot span V.
- The Basis Theorem: If a vector space V has a basis with n vectors, then every basis for V has exactly n vectors.
- A vector space V is called finite-dimensional if it has a basis consisting of finitely many vectors. The dimension of V, denoted by dim V, is the number of vectors in a basis for V. The dimension of the zero vector space $\{\mathbf{0}\}$ is defined to be zero. A vector space that has no finite basis is called infinite-dimensional.
- Let V be a vector space with dim V = n. Then:
 - Any linearly independent set in V contains at most n vectors.
 - Any spanning set for V contains at least n vectors.
 - Any linearly independent set of exactly n vectors in V is a basis for V.
 - Any spanning set for V consisting of exactly n vectors is a basis for V.
 - Any linearly independent set in V can be extended to a basis for V.
 - Any spanning set for V can be reduced to a basis for V.
- Let W be a subspace of a finite-dimensional vector space V. Then:
 - -W is finite-dimensional and dim $W \leq \dim V$.
 - $-\dim W = \dim V \text{ IFF } W = V$

6.3 Change of Basis

• Let $\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ and $\mathcal{C} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be bases for a vector space V. The $n \times n$ matrix whose columns are the coordinate vectors $[\mathbf{u}_1]_{\mathcal{C}}, \dots, [\mathbf{u}_n]_{\mathcal{C}}$ of the vectors in \mathcal{B} with respect to \mathcal{C} is denoted by $P_{\mathcal{C} \leftarrow \mathcal{B}}$ and is called the change-of-basis matrix from \mathcal{B} to \mathcal{C} . That is,

$$P_{\mathcal{C}\leftarrow\mathcal{B}} = [[\mathbf{u}_1]_{\mathcal{C}}[\mathbf{u}_2]_{\mathcal{C}}\cdots[\mathbf{u}_n]_{\mathcal{C}}]$$

- Let $\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ and $\mathcal{C} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be bases for a vector space V and let $P_{\mathcal{C} \leftarrow \mathcal{B}}$ be the change-of-basis matrix from \mathcal{B} to \mathcal{C} . Then
 - $-P_{\mathcal{C}\leftarrow\mathcal{B}[\mathbf{x}]_{\mathcal{B}}=[\mathbf{x}]_{\mathcal{C}}}$ for all \mathbf{x} in V.
 - $-P_{\mathcal{C}\leftarrow\mathcal{B}}$ is the unique matrix P with the property that $P[\mathbf{x}]_{\mathcal{B}} = [\mathbf{x}]_{\mathcal{C}}$ for all \mathbf{x} in V.
 - $P_{\mathcal{C} \leftarrow \mathcal{B}}$ is invertible and $(P_{\mathcal{C} \leftarrow \mathcal{B}})^{-1} = P_{\mathcal{B} \leftarrow \mathcal{C}}$.
- Let $\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ and $\mathcal{C} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be bases for a vector space V. Let $B = [[\mathbf{u}_1]_{\mathcal{E}} \cdots [\mathbf{u}_n]_{\mathcal{E}}]$ and $C = [[\mathbf{v}_1]_{\mathcal{E}} \cdots [\mathbf{v}_n]_{\mathcal{E}}]$, where \mathcal{E} is any basis for V. Then the row reduction applied to the $n \times 2n$ augmented matrix [C|B] produces

$$[C|B] \to [I|P_{\mathcal{C} \leftarrow \mathcal{B}}]$$

6.4 Linear Transformations

- A linear transformation from a vector space V to a vector space W is a mapping $T: V \to W$ such that, for all \mathbf{u} and \mathbf{v} in V and for all scalars c,
 - $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$
 - $-T(c\mathbf{u}) = cT(\mathbf{u})$
- $T: V \to W$ is a linear transformation IFF

$$T(c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k) = c_1T(\mathbf{v}_1) + c_2T(\mathbf{v}_2) + \dots + c_kT(\mathbf{v}_k)$$

for all $\mathbf{v}_1, \dots, \mathbf{v}_k$ in V and scalars c_1, \dots, c_k .

- Let $T: V \to W$ be a linear transformation. Then:
 - -T(0) = 0
 - $-T(-\mathbf{v}) = -T(\mathbf{v})$ for all \mathbf{v} in V.
 - $-T(\mathbf{u} \mathbf{v}) = T(\mathbf{u}) T(\mathbf{v})$ for all \mathbf{u} and \mathbf{v} in V.
- Let $T: V \to W$ be a linear transformation and let $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be a spanning set for V. Then $T(\mathcal{B}) = \{T(\mathbf{v}_1), \dots, T(\mathbf{v}_n)\}$ spans the range of T.
- If $T:U\to V$ and $S:V\to W$ are linear transformations, then the composition of S with T is the mapping $S\circ T$, defined by

$$(S \circ T)(\mathbf{u}) = S(T(\mathbf{u}))$$

where \mathbf{u} is in U.

- If $T:U\to V$ and $S:V\to W$ are linear transformations, then $S\circ T:U\to W$ is a linear transformation.
- $R \circ (S \circ T) = (R \circ S) \circ T$
- A linear transformation $T:V\to W$ is invertible if there is a linear transformation $T':W\to V$ such that

$$T' \circ T = I_V$$
 and $T \circ T' = I_W$

In this case, T' is called an inverse for T.

• If T is an invertible linear transformation, then its inverse is unique.

6.5 The Kernel and Range of a Linear Transformation

• Let $T: V \to W$ be a linear transformation. The kernel of T, denoted $\ker(T)$, is the set of all vectors in V that are mapped by T to $\mathbf{0}$ in W. That is,

$$\ker(T) = \{ \mathbf{v} \text{ in } V : T(\mathbf{v}) = \mathbf{0} \}$$

The range of T, denoted range(T), is the set of all vectors in W that are images of vectors in V under T. That is,

range
$$(T) = \{T(\mathbf{v}) : \mathbf{v} \text{ in } V\} = \{\mathbf{w} \text{ in } W : \mathbf{w} = T(\mathbf{v}) \text{ for some } \mathbf{v} \text{ in } V\}$$

- Let $T: V \to W$ be a linear transformation. Then:
 - The kernel of T is a subspace of V.
 - The range of T is a subspace of W.
- Let $T: V \to W$ be a linear transformation. The rank of T is the dimension of the range of T and is denoted by rank(T). The nullity of T is the dimension of the kernel of T and is denoted by nullity(T).

• The rank theorem: Let $T: V \to W$ be a linear transformation from a finite-dimensional vector space V into a vector space W. Then

$$rank(T) + nullity(T) = \dim V$$

- A linear transformation $T: V \to W$ is called one-to-one if T maps distinct vectors in V to distinct vectors in W. If $\operatorname{range}(T) = W$, then T is called onto.
- $T: V \to W$ is one-to cloftone if, for all ${\bf u}$ and ${\bf v}$ in V,

$$\mathbf{u} \neq \mathbf{v}$$
 implies that $T(\mathbf{u}) \neq T(\mathbf{v})$

• Which is to say, if $T: V \to W$ is one-to-one if, for all **u** and **v** in V,

$$T(\mathbf{u}) = T(\mathbf{v})$$
 implies that $\mathbf{u} = \mathbf{v}$

• $T: V \to W$ is onto if, for all w in W, there is at leeast one v in V such that

$$\mathbf{w} = T(\mathbf{v})$$

- A linear transformation $T: V \to W$ is one-to-one IFF $\ker(T) = \{0\}$.
- Let dim $V = \dim W = n$. Then a linear transformation $T: V \to W$ is one-to-one IFF it is onto
- Let $T: V \to W$ be a one-to-one linear transformation. If $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is a linearly independent set in V, then $T(S) = \{T(\mathbf{v}_1), \dots, T(\mathbf{v}_k)\}$ is a linearly independent set in W.
- Let dim $V = \dim W = n$. Then a one-to-one linear transformation $T: V \to W$ maps a basis for V to a basis for W.
- A linear transformation $T: V \to W$ is invertible IFF it is one-to-one and onto.
- A lineart transformation $T:V\to W$ is called an isomorphism if it is one-to-one and onto. If V and W are two vector spaces such that there is an isomorphism from V to W, then we say that V is isomorphic to W and write $V\cong W$.
- Let V and W be two finite-dimensional vector spaces (over the same field of scalars). Then V is isomorphic to W IFF dim $V = \dim W$.

6.6 The Matrix of a Linear Transformation

• Let V and W be two finite-dimensional vector spaces with bases \mathcal{B} and \mathcal{C} , respectively, where $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$. If $T: V \to W$ is a linear transformation, then the $m \times n$ matrix A defined by

$$A = [[T(\mathbf{v}_1)]_{\mathcal{C}}|[T(\mathbf{v}_2)]_{\mathcal{C}}|\cdots|[T(\mathbf{v}_n)]_{\mathcal{C}}]$$

satisfies

$$A[\mathbf{v}]_{\mathcal{B}} = [T(\mathbf{v})]_{\mathcal{C}}$$

for every vector \mathbf{v} in V.

- $[T]_{\mathcal{C} \leftarrow \mathcal{B}}[\mathbf{v}]_{\mathcal{B}} = [T(\mathbf{v})]_{\mathcal{C}}$
- $[T]_{\mathcal{B}}[\mathbf{v}]_{\mathcal{B}} = [T(\mathbf{v})]_{\mathcal{B}}$
- Let U, V, and W be finite-dimensional vector spaces with bases \mathcal{B}, \mathcal{C} , and \mathcal{D} , respectively. Let $T: U \to V$ and $S: V \to W$ be linear transformations. Then

$$[S \circ T]_{\mathcal{D} \leftarrow \mathcal{B}} = [S]_{\mathcal{D} \leftarrow \mathcal{C}}[T]_{\mathcal{C} \leftarrow \mathcal{B}}$$

• Let $T: V \to W$ be a linear transformation between n-dimensional vector spaces V and W and let \mathcal{B} and \mathcal{C} be bases for V and W, respectively. Then T is invertible IFF the matrix $[T]_{\mathcal{C} \leftarrow \mathcal{B}}$ is invertible. In this case,

$$([T]_{\mathcal{C} \leftarrow \mathcal{B}})^{-1} = [T^{-1}]_{\mathcal{B} \leftarrow \mathcal{C}}$$

• Let V be a finite dimensional vector space with bases $\mathcal B$ and $\mathcal C$ and let $T:V\to V$ be a linear transformation. Then

$$[T]_{\mathcal{C}} = P^{-1}[T]_{\mathcal{B}}P$$

where P is the change-of-basis matrix from \mathcal{C} to \mathcal{B} .

- Let V be a finite-dimensional vector space and let $T:V\to V$ be a linear transformation. Then T is called diagonalizable if there is a basis $\mathcal C$ for V such that the matrix $[T]_{\mathcal C}$ is a diagonal matrix.
- The Fundamental Theorem of invertible matrices: version 4.
 - A is invertible
 - $-A\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} in \mathbb{R}^n
 - $-A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
 - The reduced row echelon form of A is I_n .
 - -A is the product of elementary matrices.
 - $-\operatorname{rank}(A) = n$
 - nullity(A) = 0
 - The column vectors of A are linearly independent
 - The column vectors of A span \mathbb{R}^n
 - The column vectors of A form a basis for \mathbb{R}^n
 - The row vectors of A are linearly independent
 - The row vectors of A span \mathbb{R}^n
 - The row vectors of A form a basis for \mathbb{R}^n
 - $-\det A \neq 0$
 - 0 is not an eigenvalue of A
 - T is invertible.
 - -T is one-to-one.
 - -T is onto.
 - $\ker(T) = \{\mathbf{0}\}\$
 - $-\operatorname{range}(T) = W$

6.7 Applications

- The set S of all solutions to y' + ay = 0 is a subspace of \mathscr{F}
- If S is the solution space of y' + ay = 0, then dim S = 1 and $\{e^{-at}\}$ is a basis for S.
- ullet Let S be the solution space of

$$y'' + ay' + by = 0$$

and let λ_1 and λ_2 be the roots of the characteristic equation $\lambda^2 + a\lambda + b = 0$.

- If $\lambda_1 \neq \lambda_2$, then $\{e^{\lambda_1 t}, e^{\lambda_2 t}\}$ is a basis for S.
- If $\lambda_1 = \lambda_2$, then $\{e^{\lambda_1 t}, te^{\lambda_1 t}\}$ is a basis for S.