7. Übung Statistische Mechanik und Thermodynamik

Bitte laden Sie Ihre Lösungen bis Donnerstag, den 05.12.2024 um 16:00 Uhr auf WueCampus hoch.

Die Blätter dürfen Sie dabei in Zweiergruppen abgeben.

Aufgabe 1 Beispiele für Dichteoperatoren

4 P.

In einem 2- bzw. 3-dimensionalen Hilbertraum seien folgende Operatoren in Matrixdarstellung bzgl. einer beliebigen Orthonormal-Basis vorgegeben:

$$\hat{\rho}_{1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}, \qquad \hat{\rho}_{2} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \tanh(\beta t) \\ -\frac{1}{2} \tanh(\beta t) & \frac{1}{2} \end{pmatrix} \text{ mit } t, \beta \in \mathbb{R},$$

$$\hat{\rho}_{3} = \begin{pmatrix} \frac{1}{2} & 0 & i \\ 1 & \frac{1}{4} & 0 \\ -i & 0 & \frac{1}{4} \end{pmatrix}, \quad \hat{\rho}_{4} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

Kann es sich um Dichteoperatoren handeln? Wenn ja, beschreiben diese einen reinen oder gemischten Zustand?

Aufgabe 2 Dichteoperator eines reinen und gemischten Zustands Betrachten Sie einen allgemeinen Dichteoperator 7 P.

$$\hat{\rho} = \sum_{n=1}^{N} p_n |\psi_n\rangle\langle\psi_n|, \qquad (1)$$

wobei die Zustände $|\psi_n\rangle$ eine Orthonormalbasis des N dimensionalen Hilbertraums bilden. Für einen gemischten Zustand gilt $0 \le p_n < 1$, während für einen reinen Zustand $p_n = \delta_{in}$ für ein festes $i \in \{1,...,N\}$ gilt.

- a) Zeigen Sie, dass für einen gemischten Zustand $\hat{\rho}^2 \neq \hat{\rho}$ gilt, indem Sie $\hat{\rho}^2$ explizit 2P. berechnen. Argumentieren Sie, dass die Bedingung, dass $\hat{\rho}$ rein ist, äquivalent dazu ist, dass $\hat{\rho}^2 = \hat{\rho}$ gilt.
- b) Zeigen Sie, dass für einen beliebigen Dichteoperator $\operatorname{tr}(\hat{\rho}^2) \leq 1$ gilt. Begründen 2 P. Sie, dass $\hat{\rho}$ genau dann rein ist, wenn $\operatorname{tr}(\hat{\rho}^2) = 1$ erfüllt ist.
- c) Berechnen Sie explizit $S(\hat{\rho}) = -\text{tr}(\hat{\rho} \ln(\hat{\rho})), \qquad (2)$

für einen allgemeinen Dichteoperator. Zeigen Sie, dass $\hat{\rho}$ genau dann rein ist, wenn $S(\hat{\rho}) = 0$ gilt.

Bitte wenden!

Aufgabe 3 Dichteoperator eines Zwei-Niveau-Systems

4 P.

Betrachten Sie ein quantenmechanisches Zwei-Niveau-System (ZNS) mit Zuständen $|0\rangle$ und $|1\rangle$. Gegeben sei ein allgemeiner Dichteoperator des ZNS in Matrixdarstellung

$$\hat{\rho} = \begin{pmatrix} \rho_{11} & \rho_{10} \\ \rho_{01} & \rho_{00} \end{pmatrix}, \tag{3}$$

wobei $\rho_{ij} = \langle i | \hat{\rho} | j \rangle$.

- a) Wie viele unabhängige reele Parameter sind zur Bestimmung eines beliebigen 1 P. Dichteoperators für ein ZNS nötig? Begründen Sie Ihre Antwort mit den allgemeinen Eigenschaften von Dichteoperatoren.
- b) Berechnen Sie den Vektor $\vec{S} = (\langle \hat{\sigma}_x \rangle, \langle \hat{\sigma}_y \rangle, \langle \hat{\sigma}_z \rangle)^T$, der sich aus den Erwartungswerten der drei Pauli-Matrizen $\hat{\sigma}_{x,y,z}$ für einen allgemeinen Dichteoperator ergibt. Drücken Sie die Dichtematrix in Gleichung (3) durch die Erwartungswerte S_x , S_y und S_z aus.
- c) Drücken Sie \vec{S} in Polarkoordinaten aus und bestimmen Sie die Beziehung zwischen 1 P. (r, θ, ϕ) und den Elementen ρ_{ij} .
- d) Berechnen Sie die Reinheit $R = \operatorname{tr}\{\hat{\rho}^2\}$ von $\hat{\rho}$ und drücken Sie das Resultat als 1 P. Funktion der Matrixelemente ρ_{ij} und mithilfe der Polarkoordinatendarstellung von \vec{S} aus.