1. Suprema and infima

Definition 1.1. Suppose $\Omega \subset \mathbb{F}$ where \mathbb{F} is an ordered field. Then $b \in \mathbb{F}$ is an upper bound of Ω if $b \geq x$ for all $x \in \Omega$.

Definition 1.2. Suppose $\Omega \subset \mathbb{F}$ where \mathbb{F} is an ordered field. Then $b \in \mathbb{F}$ is a lower bound of Ω if $b \leq x$ for all $x \in \Omega$.

Definition 1.3. Suppose $\Omega \subset \mathbb{F}$ where \mathbb{F} is an ordered field. Then $b \in \mathbb{F}$ is the *least upper bound*, or *supremum*, if $b \leq c$ for every upper bound c.

Definition 1.4. Suppose $\Omega \subset \mathbb{F}$ where \mathbb{F} is an ordered field. Then $b \in \mathbb{F}$ is the *greatest lower bound*, or *infimum*, if $b \geq c$ for every lower bound c.

Proposition 1.1. The supremum of a set is unique.

Proposition 1.2. The infimum of a set is unique.

Proposition 1.3. If $\sup \Omega = \inf \Omega$ then Ω has only one point.

Proposition 1.4. Suppose $\Omega \subset \mathbb{R}$ and $\Omega \neq \emptyset$. Then $S = \sup \Omega$ if and only if

- (1) For all $x \in \Omega, s \geq X$.
- (2) For all $\epsilon > 0$, there exists $x \in \Omega$ such that $s \epsilon < x$.

2. Elements of analysis

Definition 2.1. An ordered field \mathbb{F} possess' the *least* upper bound property if and only if every non-empty bounded set in \mathbb{F} has a least upper bound in \mathbb{F} .

Proposition 2.1. Every ordered field with the least upper bound property is isomorphic to \mathbb{R} .

Definition 2.2 (Metric space). A set X is a metric space iff there is a function $d: X \times X \to \mathbb{R}$ such that for any *points* $p, q \in X$

- (1) d(p,q) = d(q,p),
- (2) d(p,q) > 0 if $p \neq 0$,
- (3) d(p,p) = 0, and
- (4) $d(p,q) \le d(p,r) + d(r,q)$ for any $r \in X$.

Lemma 2.2 (Triangle inequality). If $a, b \in \mathbb{R}$, then $||a| - |b|| \le |a + b| \le |a| + |b|$.

Proposition 2.3. The set \mathbb{R} is a metric space.

Definition 2.3. We say two sets Ω_1 and Ω_2 have the same *cardinality*, that is $|\Omega_1| = |\Omega_2|$, iff there is a bijection between Ω_1 and Ω_2 .

Definition 2.4. A set Ω is *countable* if it has the same cardinality as \mathbb{N} .

Proposition 2.4. The set \mathbb{Z} is countable.

Proposition 2.5. The set \mathbb{Q} is countable, but \mathbb{R} is not.

Proposition 2.6 (Axiom of choice). Suppose we have a family of sets S(w) indexed by $w \in W$. Then there is a choice function

$$f:W \to \bigcup_{w \in W} S(w)$$

such that $f(w) \in S(w)$ for all $w \in W$.

3. Sequential limits

Definition 3.1. A sequence is a mapping from \mathbb{N} to a set.

Definition 3.2. Let $(a_n)_{n=1}^{\infty}$ be a sequence of reals. We write $\lim_{n\to\infty} a_n = a$, or $a_n \to a$ as $n \to \infty$, if and only if for every $\epsilon > 0$ there is some $N \in \mathbb{N}$ such that if $n \geq N$ then $|a_n - a| < \epsilon$.

Definition 3.3. If $(a_n)_{n=1}^{\infty}$ has a limit then it *converges*. Otherwise, it diverges.

Proposition 3.1. All limits are unique. Suppose the sequence $a_n \to L$ and $a_n \to M$ as $n \to \infty$. Then L = M.

Proposition 3.2 (Squeeze theorem). Suppose the sequences $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$, and $(c_n)_{n=1}^{\infty}$ satisfy

- (1) $a_n \leq b_n \leq c_n$ for all $n \in \mathbb{N}$, and
- (2) $a_n \to L$ and $b_n \to L$ as $n \to \infty$.

Then $b_n \to L$ as $n \to \infty$.

Definition 3.4. The sequence $(a_n)_{n=1}^{\infty}$ is monotone increasing if and only if $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$.

Definition 3.5. The sequence $(a_n)_{n=1}^{\infty}$ is *strictly monotone increasing* if and only if $a_n < a_{n+1}$ for all $n \in \mathbb{N}$.

Definition 3.6. The sequence $(a_n)_{n=1}^{\infty}$ is monotone decreasing if and only if $a_n \geq a_{n+1}$ for all $n \in \mathbb{N}$.

Definition 3.7. The sequence $(a_n)_{n=1}^{\infty}$ is strictly monotone increasing if and only if $a_n > a_{n+1}$ for all $n \in \mathbb{N}$.

Lemma 3.3 (Convergent sequences are bounded). If $(a_n)_{n=1}^{\infty}$ converges then there exists M > 0 such that $|a_n| \leq M$ for all n.

Proposition 3.4. Let $(a_n)_{n=1}^{\infty}$ be a monotone sequence. This sequence converges iff it is bounded.

Proposition 3.5. If the sequences $a_n \to a$ and $b_n \to b$ as $n \to \infty$, then as $n \to \infty$,

- (1) $a_n + b_n \to a + b, \ a_n b_n \to a b,$
- (2) $\lambda a_n \to \lambda a \text{ for constant } \lambda$,
- (3) $a_n b_n \to ab$, and
- (4) $1/a_n \to 1/a \text{ for } a \neq 0.$

Lemma 3.6 (Bernoulli inequality).

(1) Assuming $x \ge -1$ and $n \in \mathbb{N} \cup \{0\}$ but x = -1 and n = 0 do not hold at the same time,

$$(1+x)^n \ge 1 + nx.$$

(2) We have a strict inequality in the above formula if and only if n > 1 and $x \neq 0$.

Proposition 3.7. Define $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ by

$$a_n = \left(1 + \frac{1}{n}\right)^n$$

and

$$b_n = \left(1 + \frac{1}{n}\right)^{n+1}.$$

Then a_n is strictly increasing, b_n is strictly decreasing and

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n.$$

Definition 3.8 (Euler's number). Euler's number e is given by

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

which converges, as per the previous proposition.

4. Subsequential limits

Definition 4.1. Suppose $(x_n)_{n=1}^{\infty} \subset \mathbb{R}$. The point $x \in \mathbb{R}$ is a *cluster point* of $(x_n)_{n=1}^{\infty}$ iff for all $\epsilon > 0$

$$\left| \left\{ n \in \mathbb{N} \mid |x_n - x| < \epsilon \right\} \right| = |\mathbb{N}|.$$

Proposition 4.1. Assume $(x_n)_{n=1}^{\infty} \subset \mathbb{R}$ and $x \in \mathbb{R}$. Then x is a cluster point of $(x_n)_{n=1}^{\infty}$ iff for all $\epsilon > 0$ and $N \in \mathbb{N}$ there exists a natural $n \geq N$ such that $|x_n - x| < \epsilon$.

Proposition 4.2. Assume $(x_n)_{n=1}^{\infty} \subset \mathbb{R}$ and $x \in \mathbb{R}$. Then x is a cluster point iff there exists a subsequence $(x_{n_k})_{k=1}^{\infty}$ such that

$$\lim_{n \to \infty} x_{n_k} = x.$$

Proposition 4.3. Assume $(x_n)_{n=1}^{\infty} \subset \mathbb{R}$ and $x \in \mathbb{R}$. Then

$$\lim_{n \to \infty} x_n = x$$

iff every subsequence of $(x_n)_{n=1}^{\infty}$ converges to x.

Proposition 4.4. Assume $(x_n)_{n=1}^{\infty} \subset \mathbb{R}$ and $x \in \mathbb{R}$. Then $(x_n)_{n=1}^{\infty}$ converges iff $(x_n)_{n=1}^{\infty}$ is bounded and has exactly one cluster point.

Definition 4.2. Suppose $(a_n)_{n=1}^{\infty}$ is a sequence and $n : \mathbb{N} \to \mathbb{N}$. Then $(a_{n_k})_{k=1}^{\infty}$ is a *subsequence* of $(a_n)_{n=1}^{\infty}$.

Definition 4.3 (Limit supremum and infimum). For the sequence $(a_n)_{n=1}^{\infty}$,

$$\limsup_{n \to \infty} a_n = \lim_{N \to \infty} \sup_{n \ge N} a_n$$

and

$$\liminf_{n \to \infty} a_n = \lim_{N \to \infty} \inf_{n \ge N} a_n.$$

Proposition 4.5. We have

$$x = \limsup_{n \to \infty} a_n$$

iff x is the greatest cluster point of the sequence. Similarly

$$x = \liminf_{n \to \infty} a_n$$

iff x is the least cluster point of $(a_n)_{n=1}^{\infty}$.

Proposition 4.6. If $(a_n)_{n=1}^{\infty}$ converges, then

$$\limsup_{n \to \infty} (a_n)_{n=1}^{\infty}$$

and

$$\liminf_{n \to \infty} (a_n)_{n=1}^{\infty}$$

exist.

5. The completeness of the reals

Definition 5.1. Suppose $\Omega \neq \emptyset$ then the diameter of Ω is

$$\operatorname{diam} \Omega = \sup_{x,y \in \Omega} |x - y|.$$

Definition 5.2. The sequence $(a_n)_{n=1}^{\infty} \subset \mathbb{R}$ is a Cauchy sequence iff for all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $m, n \geq N$ implies $|a_m - a_n| < \epsilon$.

Definition 5.3. We say $k \in \mathbb{N}$ is a *peak point* of the sequence $(a_n)_{n=1}^{\infty}$ iff for all n > k we have $a_n < a_k$.

Lemma 5.1. Any sequence $(a_n)_{n=1}^{\infty}$ contains a subsequence which is either non-decreasing or non-increasing.

Proposition 5.2 (Bolzano-Weierstass Theorem). *Every bounded sequence has a convergent subsequence.*

Definition 5.4. Let X be a metric space. Suppose that given any Cauchy sequence $(a_n)_{n=1}^{\infty} \subset X$, $a_n \to L$ where $L \in X$. Then we say that X is *complete*.

Lemma 5.3. If $(a_n)_{n=1}^{\infty}$ is Cauchy then it converges.

Lemma 5.4. If $(a_n)_{n=1}^{\infty}$ converges then it is Cauchy.

Proposition 5.5. The set \mathbb{R} is a complete metric space.

Lemma 5.6. For any sequence $(a_n)_{n=1}^{\infty}$,

diam
$$(a_n)_{n=1}^{\infty} = \sup (a_n)_{n=1}^{\infty} - \inf (a_n)_{n=1}^{\infty}$$
.

Proposition 5.7. For any bounded sequence $(a_n)_{n=1}^{\infty}$, $(a_n)_{n=1}^{\infty}$ is Cauchy iff

$$\lim_{N \to \infty} \operatorname{diam} (a_n)_N^{\infty} = 0.$$

6. Infinite sums

Definition 6.1. Consider the sequence

$$S_n = \sum_{k=1}^n a_n$$

where $(a_n)_{n=1}^{\infty} \subset \mathbb{R}$. We define the following sum thus:

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n.$$

Proposition 6.1. If $\sum_{n=1}^{\infty} a_n$ converges, then

$$\lim_{n\to\infty} a_n = 0.$$

Proposition 6.2 (Cauchy criterion).

The series $\sum_{n=1}^{\infty} a_n$ converges iff for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that if $q > p \ge N$ then

$$\left| \sum_{n=p+1}^{q} a_n \right| < \epsilon.$$

Proposition 6.3 (Convergence laws for series). Assume $\sum_{n=1}^{\infty} a_n = a$ and $\sum_{n=1}^{\infty} b_n = b$.

$$\sum_{n=1}^{\infty} (a_n + b_n) = a + b$$

(2) for constant $\lambda \in \mathbb{R}$

$$\sum_{n=1}^{\infty} (\lambda a_n) = \lambda a$$

However, though, by definition of the product of these sequence,

$$\left(\sum_{n=1}^{\infty} a_n\right) \left(\sum_{n=1}^{\infty} b_n\right) = ab,$$

it could be the case that

$$\sum_{n=1}^{\infty} (a_n b_n) \neq ab.$$

Proposition 6.4 (Comparison theorem). If $\sum_{n=1}^{\infty} b_n$ converges and $0 \le a_n \le b_n$ then $\sum_{n=1}^{\infty} a_n$ converges.

Lemma 6.5.

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$

Proposition 6.6. The series

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

converges.

Proposition 6.7. If $\sum_{n=1}^{\infty} |a_n|$ converges then $\sum_{n=1}^{\infty} a_n$

Proposition 6.8 (Leibniz test). If the series a_n is a non-negative non-increasing sequence which converges to zero, then

$$\sum_{n=1}^{\infty} (-1)^n a_n$$

converges.

Definition 6.2. If $\sum_{n=1}^{\infty} |a_n|$ converges then we say $\sum_{n=1}^{\infty} a_n \text{ converges } absolutely. \text{ If it converges, but } \sum_{n=1}^{\infty} |a_n| \text{ does not converge - we say it converges}$ conditionally. Absolute convergence implies conditional convergence however the converse is not true.

Proposition 6.9 (Ratio test). The series $\sum a_n$

(1) converges if

$$\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$$

(2) diverges if

$$\liminf_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$$

(3) has uncertain convergence if

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$$

(could go either way.)

Proposition 6.10 (Root test). Set

$$a = \limsup_{n \to \infty} \sqrt[n]{|a_n|}.$$

- (1) If a < 1, then $\sum_{n=1}^{\infty} a_n$ converges. (2) If a > 1, then $\sum_{n=1}^{\infty} a_n$ diverges.
- (3) If a = 1, test is inconclusive.

7. Functional limits

Definition 7.1. We write

$$\lim_{x \to \infty} f(x) = \infty$$

if and only if for every $M \in \mathbb{R}$ there exists $N \in \mathbb{N}$ such that $n \geq N$ implies $a_n > M$.

Definition 7.2. We write

$$\lim_{x \to \infty} f(x) = -\infty$$

if and only if for every $M \in \mathbb{R}$ there exists $N \in \mathbb{N}$ such that $n \geq N$ implies $a_n < M$.

Definition 7.3. We write

$$\lim_{x \to \infty} f(x) = L$$

iff for every $\epsilon > 0$ there exists M such that x > Mimplies $|f(x) - L| < \epsilon$.

Definition 7.4. We write

$$\lim_{x \to -\infty} f(x) = L$$

iff for every $\epsilon > 0$ there exists M such that x < Mimplies $|f(x) - L| < \epsilon$.

Definition 7.5. Assume X is a subset of \mathbb{R} . The point $a \in \mathbb{R}$ is called a *limit point* of X if every neighbourhood of a contains another point $A \neq a$ such that $A \in X$. That is, for all $\epsilon > 0$ there exists $x \in X$ such that $x \in (a - \epsilon, a + \epsilon) \setminus \{a\}.$

Definition 7.6. The r-neighbourhood of a is the set of all $x \in \mathbb{R}$ such that $x \in (a - r, a + r)$.

Definition 7.7. The deleted r-neighbourhood of a is the set of all $x \in \mathbb{R}$ such that $x \in (a - r, a + r) \setminus a$.

Definition 7.8. Assume a is a limit point and f is a function from $\Omega \subset \mathbb{R}$ to \mathbb{R} . We write

$$\lim_{x \to a} f(x) = L$$

iff for all $\epsilon > 0$ there exists a $\delta > 0$ such that for all x, $|f(x) - L| < \epsilon$ if $0 < |x - a| < \delta$.

(2)

$$\lim_{x \to a^+} f(x) = L$$

iff for all $\epsilon > 0$ there exists a $\delta > 0$ such that for all x > a, $|f(x) - L| < \epsilon$ if $0 < |x - a| < \delta$.

(3)

$$\lim_{x \to a^{-}} f(x) = L$$

iff for all $\epsilon > 0$ there exists a $\delta > 0$ such that for all x < a, $|f(x) - L| < \epsilon$ if $0 < |x - a| < \delta$.

Lemma 7.1. Given a function $f: \Omega \to \mathbb{R}$ and a limit point $a \in \Omega$,

$$\lim_{x \to a} f(x) = L \tag{1}$$

implies

$$\lim_{n \to \infty} f(a_n) = L.$$

for any sequence $(a_n)_{n=1}^{\infty} \in S$ with

$$S = \left\{ (a_n)_{n=1}^{\infty} \in \Omega^{\mathbb{N}} \mid \lim_{n \to \infty} a_n = a, a_n \neq a \right\}.$$

 $(\Omega^{\mathbb{N}} \text{ is the set of functions from } \mathbb{N} \text{ to } \Omega)$

Lemma 7.2. Given a function $f: \Omega \to \mathbb{R}$ and a limit point $a \in \Omega$,

$$\lim_{x \to a} f(x) = L \tag{2}$$

if

$$\lim_{n \to \infty} f(a_n) = L. \tag{3}$$

for any sequence $(a_n)_{n=1}^{\infty} \in S$ with

$$S = \left\{ (a_n)_{n=1}^{\infty} \in \Omega^{\mathbb{N}} \mid \lim_{n \to \infty} a_n = a, a_n \neq a \right\}.$$

 $(\Omega^{\mathbb{N}} \text{ is the set of functions from } \mathbb{N} \text{ to } \Omega)$

Proposition 7.3 (Sequential criterion for functional convergence). Given a function $f: \Omega \to \mathbb{R}$ and a limit point $a \in \Omega$,

$$\lim_{x \to a} f(x) = L \tag{4}$$

iff

$$\lim_{n \to \infty} f(a_n) = L. \tag{5}$$

for any sequence $(a_n)_{n=1}^{\infty} \in S$ with

$$S = \left\{ (a_n)_{n=1}^{\infty} \in \Omega^{\mathbb{N}} \mid \lim_{n \to \infty} a_n = a, a_n \neq a \right\}.$$

 $(\Omega^{\mathbb{N}} \text{ is the set of functions from } \mathbb{N} \text{ to } \Omega)$

Proposition 7.4. Suppose

$$\lim_{x \to a} f(x) = L$$

and

$$\lim_{x \to a} g(x) = M.$$

Then the following holds

(1)
$$\lim_{x \to a} (f+g)(x) = L + M,$$

(2)

$$\lim_{x \to a} (fg)(x) = LM,$$

(3) if $m \neq 0$,

$$\lim_{x \to a} \left(\frac{f}{g}\right)(x) = \frac{L}{M}.$$

Proposition 7.5 (Squeeze theorem). Define three functions: $f: X \to \mathbb{R}, g: X \to \mathbb{R}, \text{ and } h: X \to \mathbb{R}$. If

$$f(x) \le h(x) \le g(x)$$

for all $x \in X$ and if

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$$

then

$$\lim_{x \to a} f(x) = \lim_{x \to a} f(x) = \lim_{x \to a} g(x).$$

8. Continuity

Definition 8.1 (Continuity). The function f from $\Omega \subset \mathbb{R}$ to \mathbb{R} is *continuous* at $x_0 \in \Omega$ iff

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Definition 8.2 (Continuity on an open interval). The function f from $\Omega \subset \mathbb{R}$ is continuous on $(a,b) \subset \Omega$ iff

$$\lim_{x \to x_0} = f(x_0).$$

for all $x_0 \in (a, b)$.

Definition 8.3 (Continuity on a closed interval). The function f from $\Omega \subset \mathbb{R}$ is continuous on $[a,b] \subset \Omega$ iff it is continuous on (a,b),

$$\lim_{x \to a^{-}} f(x) = f(a),$$

and

$$\lim_{x \to b^+} f(x) = f(b).$$

Proposition 8.1. If $f:(a,b) \to \mathbb{R}$ and $g:(a,b) \to \mathbb{R}$ are continuous at $x_0 \in (a,b)$ then

- (1) f + g is continuous at x_0
- (2) fg is continuous at x_0
- (3) f/g is continuous at x_0 if $g(x_0) \neq 0$.

Corollary 8.2. Any polynomial or rational function is continuous where defined.

Proposition 8.3 (Intermediate Value Theorem). Suppose f is a function from $\Omega \subset \mathbb{R}$ to \mathbb{R} that is continuous on $[a,b] \subset \Omega$. If $f(a) < \lambda < f(b)$ then there exists $c \in [a,b]$ such that $f(c) = \lambda$.

Definition 8.4. Suppose f is a function from $\Omega \subset \mathbb{R}$ to \mathbb{R} . Then f is uniformly continuous on Ω iff given any $\epsilon > 0$ there exists $\delta > 0$ such that for all $x, y \in \Omega$, $f(x) - f(y) < \epsilon$ if $|x - y| < \delta$.

Proposition 8.4. Suppose f is continuous on a closed and bounded interval [a, b]. Then f is uniformly continuous on [a, b].

9. Sequences and series of functions

Definition 9.1. A sequence of functions is a function $f: \mathbb{N} \times \Omega \to \mathbb{R}$ where $\Omega \subset \mathbb{R}$. We say that the sequence of functions f_n converge pointwise to f on Ω iff for all $x \in \Omega$, $f_n(x) \to f(x)$.

Definition 9.2. We say f_n converges to f uniformly on Ω if for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $|f(x)-f_n(x)|<\epsilon \text{ for all } n\geq N \text{ and } x\in\Omega.$

Proposition 9.1. If $f_n:[a,b]\to\mathbb{R}$ are continuous functions and f_n uniformly converges to f then f is also continuous.

Proposition 9.2. The functions f_n converge uniformly to f iff for all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that for all k, l > N for all $x, |f_k(x) - f_l(x)| < \epsilon$.

Proposition 9.3. Suppose $(a_n)_{n=1}^{\infty}$ is Cauchy. Then for any uniformly continuous function f, $(f(a_n))_{n=1}^{\infty}$ is Cauchy.

Definition 9.3. A series of functions is sequence $s: \mathbb{N} \times \Omega \to \mathbb{R}$ of the form

$$s_n(x) = \sum_{i=1}^n f_n(x)$$

where $f: \mathbb{N} \times \Omega \to \mathbb{R}$ is a function and $\Omega \subset \mathbb{R}$. We say that

$$\sum_{n=1}^{\infty} f_n(x) = f(x)$$

converges pointwise on Ω to the uniform sum f(x) iff $s_n \to s$ pointwise. Additionally, we say that the series converges pointwise on Ω to the uniform sum f(x) iff s_n converges uniformly iff $s_n \to s$ uniformly.

Proposition 9.4 (Weierstrass M-test). Suppose $(f_n(x))_n^{\infty}$ is defined for all $x \in \Omega$ where $\Omega \subset \mathbb{R}$ such that for all $n \in \mathbb{N}$ $|f_n(x)| < M_n$ where $(M_n)_{n=1}^{\infty}$ is a sequence. Then $\sum_{n=1}^{\infty}$ converges uniformly on Ω if $\sum_{n=1}^{\infty} M_n$ converges.

10. Differentiation

Definition 10.1. Suppose $x_0 \in [a, b)$ and $f : [a, b) \rightarrow$ \mathbb{R} . The right derivative of f at x_0 is

$$\lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}.$$

If these limits exist, then f is right differentiable at x_0 .

Definition 10.2. Suppose $x_0 \in (a,b)$ and $f:(a,b) \rightarrow$ \mathbb{R} . The *left derivative* of f at x_0 is

$$\lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0}.$$

If these limits exist, then f is left differentiable at x_0 .

Definition 10.3. Suppose $x_0 \in (a,b)$ and $f:(a,b) \rightarrow$ \mathbb{R} . If the left derivative of f at x_0 is equal to the right derivative of f at x_0 , then the common value these limits is called the *derivative* of f at x_0 and f is said to be differentiable at x_0 .

Definition 10.4. Define differentiability on open and closed intervals, analogously to how continuity was defined for open and closed intervals.

Proposition 10.1. Suppose $x_0 \in (ab)$ and $f:(a,b) \rightarrow$ \mathbb{R} . If f is differentiable at x_0 then its derivative is given by

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Proposition 10.2. If f is differentiable at x_0 then f is continuous at x_0 .

Lemma 10.3. Suppose

- (1) the intervals $I \subset \mathbb{R}$ and $J \subset \mathbb{R}$ are open,
- (2) the function $g: I \to J$ is differentiable at $x_0 \in I$, and
- (3) the function $f: J \to \mathbb{R}$ is differentiable at $q(x) \in J$

then $f' \circ g(x_0)$ is given by

$$\lim_{h \to 0} \frac{f[g(x_0) + h] - f \circ g(x_0)}{h}$$

$$= \lim_{h \to 0} \frac{f \circ g(x_0 + h) - f \circ g(x_0)}{g(x_0 + h) - g(x_0)}.$$
 (6)

Proposition 10.4 (Chain rule). Suppose

- (1) the intervals $I \subset \mathbb{R}$ and $J \subset \mathbb{R}$ are open,
- (2) the function $g: I \to J$ is differentiable at $x_0 \in I$, and
- (3) the function $f: J \to \mathbb{R}$ is differentiable at $q(x) \in J$

Then the function $f \circ g: I \to \mathbb{R}$ is differentiable at x_0

$$(f \circ g)'(x_0) = f' \circ g(x_0) \cdot g'(x_0).$$
 (7)

Proposition 10.5. Take $f: I \to \mathbb{R}$, and $g: I \to \mathbb{R}$ where $I \subset R$ is open and assume they are differentiable at $x \in I$. Then f + g, fg are differentiable. Similarly f/g is differentiable if $g \neq 0$ for all values of q. Further

- (1) (f+g)' = f' + g' and (2) fg = fg' + gf'.

Definition 10.5. The function f from $E \subset \mathbb{R}$ to \mathbb{R} has a local maximum at $c \in E$ iff there exists an open interval $U \subset R$ such that $c \in U$ and $f(c) \geq f(x)$ for all $x \in U \cap E$.

Definition 10.6. The function f from $E \subset \mathbb{R}$ to \mathbb{R} has a local minimum at $c \in E$ iff there exists an open interval $U \subset R$ such that $c \in U$ and $f(c) \leq f(x)$ for all $x \in U \cap E$.

Definition 10.7. Suppose that the function f from and $x \in [x_i, x_{i-1}]$. Similarly, the upper sum of P is $E \subset \mathbb{R}$ to \mathbb{R} and there exists $c \in E$ such that f(c) > 0f(x) for all $x \in E$. Then f is said to have an absolute maximum at c.

Definition 10.8. Suppose that the function f from $E \subset \mathbb{R}$ to \mathbb{R} and there exists $c \in E$ such that f(c) < Cf(x) for all $x \in E$. Then f is said to have an absolute minimum at c.

Proposition 10.6. Suppose $f:[a,b] \to \mathbb{R}$ is a function and $c \in (a,b)$. If f has a local extremum at c and f'(c) exists then f'(c) = 0.

Proposition 10.7 (Rolle's theorem). Suppose f is a function from $\Omega \subset \mathbb{R}$ to \mathbb{R} that is continuous on $[a,b] \subset \Omega$ and differentiable on (a,b). If f(a)=f(b)then there exists $\xi \in (a,b)$ such that $f'(\xi) = 0$.

Proposition 10.8 (Mean value theorem). Suppose $f:[a,b]\to\mathbb{R}$ is continuous on [a,b] and differentiable on (a,b). Then there exists $c \in (a,b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Proposition 10.9. Assume $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b). If f'(x)=0for all $x \in (a, b)$ then f = a for $a \in [a, b]$.

Proposition 10.10. Assume $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b). Also assume $|f'(x)| \leq M$ for all $x \in (a,b)$. Then $|f(x) - f(y)| \leq$ M|x-y| for all $x,y \in (a,b)$.

Proposition 10.11. Assume f is continuous on [a, b]and differentiable on (a,b).

- (1) if $f' \geq 0$ on (a, b) then f is non-decreasing.
- (2) If $f' \leq 0$ on (a,b) then f is non-increasing.
- (3) if f' > 0 then f is strictly increasing
- (4) f' < 0 then f is strictly decreasing.

Proposition 10.12. Assume f is continuous on [a, b]and differentiable on (a,b). Assume f is twice differentiable on (a,b). Let $x_0 \in (a,b)$. Then

- (1) If $f'(x_0) = 0$ and $f''(x_0) > 0$, then x_0 is a local minimum.
- (2) If $f'(x_0) = 0$ and $f'(x_0) < 0$, then x_0 is a local maximum.

11. RIEMANN INTEGRATION

Definition 11.1 (Partition). A partition P of [a, b]is a set of points $\{x_0,\ldots,x_n\}$ such that

$$a = x_0 < x_1 < \ldots < x_n = b.$$

Assume $f:[a,b]\to\mathbb{R}$ is bounded, but not necessarily continuous. Then lower sum of P is

$$L(f, P) = \sum_{i=1}^{n} m_i (x_i - x_{i-1})$$

where

$$m_i = \inf f(x)$$

$$U(f, P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$$

where

$$M_i = \sup f(x)$$

and $x \in [x_i, x_{i-1}].$

Definition 11.2. The partition P' is a refinement of $P \text{ if } P' \supset P.$

Lemma 11.1. *If* $P' \supset P$, *then*

$$L(f, P) \le L(f, P')$$

and

$$U(f, P) \ge U(f, P').$$

Definition 11.3. The number

$$\int_{a}^{b} f(x) dx = \sup \{ L(f, P) \mid P \text{ is a partition of } [a, b] \}$$

is called the *lower integral* of f over [a, b]. Similarly, the number

$$\overline{\int_a^b} f(x) dx = \inf \{ U(f, P) | P \text{ is a partition of } [a, b] \}$$

is called the *upper integral* of f over [a, b].

Definition 11.4. If

$$\underline{\int_{a}^{b}} f(x) \, \mathrm{d}x = \overline{\int_{a}^{b}} f(x) \, \mathrm{d}x$$

then f is called integrable and

$$\int_a^b f(x) \, \mathrm{d}x = \int_a^b f(x) \, \mathrm{d}x = \overline{\int_a^b} f(x) \, \mathrm{d}x.$$

Proposition 11.2. The function $f:[a,b] \to \mathbb{R}$ is integrable iff for every $\epsilon > 0$ there is some P such that

$$U(f, P) - L(f, P) < \epsilon$$
.

Proposition 11.3. If $f[a,b] \to \mathbb{R}$ is bounded and continuous at all but finitely many points, then f is integrable on [a,b].

Proposition 11.4. If f is increasing or decreasing, then it's integrable.

Proposition 11.5.

(1) If f is integrable on [a,b] and $k \in \mathbb{R}$, then kfis integrable and

$$\int_{a}^{b} kf \, \mathrm{d}x = k \int_{a}^{b} f \, \mathrm{d}x.$$

(2) If f, g are integrable on [a, b] then so is f + g

$$\int_a^b (f+g) \, \mathrm{d}x = \int_a^b f \, \mathrm{d}x + \int_a^b g \, \mathrm{d}x.$$

(3) If f, g are integrable and $f \leq g$ on [a, b] then

$$\int_{a}^{b} f \, \mathrm{d}x \le \int_{a}^{b} g \, \mathrm{d}x.$$

(4) If f is integrable on [a,b] and [b,c] then it is integrable on [a,c] and

$$\int_a^c f \, \mathrm{d}x = \int_a^b f \, \mathrm{d}x + \int_b^c$$

(5) If f is integrable on [a,b] then so is |f| and

$$\left| \int_{a}^{c} f \, \mathrm{d}x \le \int_{a}^{b} |f| \, \mathrm{d}x \right|$$

Proposition 11.6 (Mean value theorem for integrals). If f is continuous on [a,b] then there exists $c \in [a,b]$ such that

$$\int_{a}^{b} f(x) dx = f(c)(b-a).$$

Definition 11.5. The function F is an antiderivative of f iff F' = f.

Proposition 11.7 (Fundamental theorem of calculus). Assume $f:[a,b] \to \mathbb{R}$ is continuous and let

$$F(x) = \int_{a}^{x} f(x) \, \mathrm{d}x.$$

Then F is an antiderivative of f and

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Proposition 11.8 (Integral test). Assume f is continuous, non-negative and non-increasing on $[1, \infty)$. Then $\int_1^\infty f(x) dx$ converges iff $\sum_{n=1}^\infty f(n)$ converges.

Proposition 11.9 (Integration by parts). If $u, v : [a,b] \to \mathbb{R}$ are differentiable on (a,b) and u', v' are continuous on (a,b) then

$$\int_{a}^{b} uv' \, \mathrm{d}x = uv \bigg|_{a}^{b} - \int_{a}^{b} u'v \, \mathrm{d}x$$

Definition 11.6 (Improper integral). Consider a function $f:(a,b]\to\mathbb{R}$ which is not necessarily bounded. Assume f is integrable on $[a+\epsilon,b]$ for all $\epsilon\in(0,b-a)$. Then

$$\lim_{\epsilon \to 0^+} \int_{a+\epsilon}^b f(x) \, \mathrm{d}x$$

is called the *improper integral* of the first kind of f on [a, b].

Definition 11.7. Assume $f:[a,\infty)\to\mathbb{R}$ is integrable on [a,b] for all b>a. Then

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$$

is called the *improper integral* of the second kind of f on $[a, \infty)$. We also define

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{0} f(x) dx + \int_{0}^{\infty} f(x) dx,$$

provided both integrals on the right exist.

12. The trigonometric, exponential, and logarithmic functions

Definition 12.1. The well known constant π is defined thus:

$$\pi = 2 \int_{-1}^{1} \sqrt{1 - x^2}$$

Definition 12.2. Let

$$A(x) = (A_1 + A_2)(x)$$

where

$$A_1 = \frac{x\sqrt{1-x^2}}{2}$$

and

$$A_2 = \int_r^1 \sqrt{1 - s^2} \, \mathrm{d}s.$$

Definition 12.3. If $x \in [0, \pi]$, then $\cos(x)$ is defined as the unique number such that

$$A(\cos(x)) = \frac{x}{2}.$$

Definition 12.4. Given $x \in [0, \pi]$ define

$$\sin(x) = \sqrt{1 - \cos^2 x}.$$

Proposition 12.1. If $x \in (0, \pi)$ then

- $(1) \cos'(x) = -\sin x$
- $(2) \sin'(x) = \cos x.$

Definition 12.5. We extend the definition of sin and cos to $[0, 2\pi]$ by setting

$$\sin x = -\sin(2\pi - x)$$

if $x \in [\pi, 2\pi]$, and

$$\cos x = \cos(2\pi - x).$$

It is also trivial to extend \cos and \sin periodically to \mathbb{R} .

Definition 12.6. Define the logarithmic function so

$$\log x = \int_{1}^{x} \frac{1}{t} \, \mathrm{d}t.$$

Proposition 12.2. If x, y > 0, then

$$\log(xy) = \log(x) + \log(y).$$

Definition 12.7. The exponential function exp is defined as the inverse function of log.

Proposition 12.3. We have that $\exp'(x) = \exp(x)$ for all $x \in \mathbb{R}$.

Proposition 12.4. We have that

$$\exp(x+y) = \exp(x) \cdot \exp(y)$$
.

Definition 12.8. Define

$$a^x = \exp(x \log(a))$$

for a > 0.

Definition 13.1. Suppose Suppose f is a function from $\Omega \subset \mathbb{R}$ to \mathbb{R} . Then f is n-times differentiable on $(a,b) \subset \Omega$ iff $f^{(n+1)}(t)$ exists for any $t \in (a,b)$.

Lemma 13.1 (Rolle's theorem for (n+1)-times differentiable functions). Suppose f is a function from $\Omega \subset \mathbb{R}$ to \mathbb{R} that is continuous on $[a,b] \subset \Omega$ and (n+1)-times differentiable on (a,b). Assume, that

$$f(a) = f'(a) = f''(a) = \dots = f^{(n)}(a) = 0 = f(b).$$

Then for some $\xi \in (a,b)$, $f^{(n+1)}(\xi) = 0$.

Proposition 13.2 (The mean value theorem for (n+1)-times differentiable functions, otherwise known by the unenlightened as Taylor's theorem). Suppose f is a function from $\Omega \subset \mathbb{R}$ to \mathbb{R} that is continuous on $[\alpha, \beta] \subset \Omega$ and (n+1)-times differentiable on (α, β) . Then for all distinct $a, b \in [\alpha, \beta]$ and $n \in \mathbb{N}$ there exists $\xi \in (\min\{a, b\}, \max\{a, b\})$ such that

$$f(b) = (P_n + R_n)(b)$$

where

$$P_n(b) = \sum_{k=0}^{n} \frac{f^{(n)}(a)}{k!} (b-a)^k$$

is defined to be the nth Taylor polynomial of f centred at a and

$$R_n(b) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (b-a)^{n+1}$$

is defined to be the Lagrange form of the nth Taylor remainder.

Proposition 13.3. If the Taylor remainder of f, $R_n(x) \to 0$ as $n \to \infty$ for some x, then

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n.$$

Definition 13.2. If the Taylor remainder of f, $R_n(x) - 0$ as $n \to \infty$ for some x, then,

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

is called the *Taylor series* of f at a. If a=0, it is also called a *Maclaurin series*.

Definition 13.3. We say that the radius of convergence of a power series

$$f(x) = \sum_{n=0}^{\infty} a_n (x - a)^n$$

is r iff f converges for all $x \in (a-r, a+r)$ and diverges for all $x \in \mathbb{R} \setminus [a-r, a+r]$.

Proposition 13.4. If $f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n$ then the series is the Taylor series of f.

14. Elements of multivariable analysis

Definition 14.1. Suppose $x, y \in \mathbb{R}^m$. Then

$$|x| = \sqrt{\sum_{i=1}^{m} x_i^2}$$

Proposition 14.1. If $x, y \in \mathbb{R}^m$ then the Cauchy-Schwarz inequality holds: $|(x, y)| \leq |x||y|$

Proposition 14.2. If $x, y \in \mathbb{R}^m$ then the triangle inequality holds $|x + y| \le |x| + |y|$.

Definition 14.2. A vector function is a function $f: \Omega \to \mathbb{R}^m$ where $\Omega \subset \mathbb{R}^n$.

15. Multivariable functional limits

Definition 15.1. Suppose $\Omega \subset \mathbb{R}^n$. The point $a \in \Omega$ is called a *limit point* of Ω if for every $\epsilon > 0$ there exists $y \in \Omega$ such that $0 < |y - a| < \epsilon$.

Definition 15.2. Let $f: \Omega \to \mathbb{R}^m$ be a function where $\Omega \subset \mathbb{R}^n$. Also let \mathbf{x}_0 be a limit point of Ω and $\mathbf{y}_0 \in \mathbb{R}^m$. Then

$$\lim_{\mathbf{x}\to\mathbf{x}_0}\mathbf{f}(\mathbf{x})=\mathbf{y}_0$$

iff for every $\epsilon > 0$ there exists $\delta > 0$ such that if $0 < |\mathbf{x} - \mathbf{x_0}| < \delta$ and $x \in \Omega$ then $|\mathbf{f}(x) - \mathbf{y_0}| < \epsilon$.

Definition 15.3. The function $f: \Omega \to \mathbb{R}^m$ be a function where $\Omega \subset \mathbb{R}^n$ is continuous at \mathbf{x}_0 iff

$$\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = f(\mathbf{x}_0)$$

16. Multivariable implicit and inverse function theorems

Definition 16.1 (Interior points). For $S \subset \mathbb{R}^n$, x is an interior point of S if there exists an open ball centered at x which is completely contained in S.

Definition 16.2 (Open sets). A set S is open iff every point within it is an interior point.

Definition 16.3 (Closed sets). Let X be a metric space. A set is $S \subset X$ closed iff its complement $X \setminus S$ is open.

Definition 16.4. Let $f: \Omega \to \mathbb{R}^m$ where $\Omega \subset \mathbb{R}^n$ and Ω be open. The *Jacobian matrix* of $f(x_1, \ldots, x_n)$ is

$$J_f(x_1, \dots, x_n) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

The determinant of the Jacobian matrix is called the Jacobian of f.

Proposition 16.1 (Inverse function theorem). Consider $f: \Omega \to \mathbb{R}^m$ where $\Omega \subset \mathbb{R}^n$ and $f^{-1}: f(\Omega) \to \Omega$ such that $f(f^{-1}(x)) = x$ for all $x \in \Omega$. Suppose the function $f(x_1, \ldots, x_m)$ from \mathbb{R}^n to \mathbb{R}^m . If

- (1) for all $i, j \in \mathbb{N}$ if $1 \le i \le m$ and $1 \le j \le n$ then $\partial f_i/\partial x_j$ is continuous.
- (2) there exists $\mathbf{x_0}$ such that the Jacobian J of f is such that $J(x_0) \neq 0$,

then

- (1) The Jacobian J^* of f^{-1} is such that $J^*(f(\mathbf{x}_0))$ is the inverse of $J(\mathbf{x}_0)$.
- (2) there exists an open set Ω such that $x_0 \in \Omega$ and f has a continuous inverse.

Proposition 16.2 (Implicit function theorem). Let $\Omega \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set and let $F: \Omega \to \mathbb{R}^m$ be a function with continuous first derivatives. Assume that $(x_0, y_0) \in \Omega$, $F(x_0, y_0) = 0$, and $\det J(x_0, y_0) \neq 0$. Then there are open sets $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ such that $x_0 \in U$, $y_0 \in V$ and there is a unique function $f: U \to V$ such that F(x, f(x)) = 0 for $x \in U$.