Имя, фамилия и номер группы:

Ответы на тест внесите в таблицу:

Вопрос теста	1	2	3	4	5	6	7	8	9	10
Ответ										

Удачи! :)

Таблица заполняется проверяющим работу:

Тест	1	2	3	4	5	Итого

Имя, фамилия и номер группы:

Тест

Вопрос 1. (1 балл) Исследователь Феофан оценил с помощью МНК модель $Y = \beta_0 I + \beta_1 Z + \beta_2 W + u$, где I- столбец из единиц. Для матрицы факторов, X=(IZW), известно, что

$$(X'X)^{-1} = \begin{pmatrix} 0.04 & 0.012 & -0.008 \\ 0.012 & 0.03 & -0.007 \\ -0.008 & -0.007 & 0.02 \end{pmatrix}$$

Предпосылки теоремы Гаусса-Маркова выполнены. Отношение дисперсии оценки \hat{eta}_0 к дисперсии оценки β_2 равно

 $A \mid 2$

C | 10/3

 $|E| \ 3/2$

B - 5/1

 \overline{F} нет верного ответа

Вопрос 2. (2 балла) Исследовательница Клеопатра оценила модель $\ln Y_i = \beta_0 + \beta_1 \ln X_i + \beta_2 \ln Z_i + \beta_3 \ln W_i + \beta_3 \ln X_i + \beta_4 \ln X_i + \beta_5 \ln X_$ u_i . Клеопатра хочет протестировать гипотезу H_0 : $eta_3 + 2eta_1 = 1$. Для этой цели можно оценить вспомогательную регрессию

 $A \ln(Y_i \cdot W_i) = \gamma_0 + \gamma_1 \ln(X_i \cdot W_i^2) + \gamma_2 \ln Z_i + u_i$

 $D \ln(Y_i/W_i) = \gamma_0 + \gamma_1 \ln(X_i/W_i^2) + \gamma_2 \ln Z_i + u_i$

 $\boxed{B} \ln(Y_i \cdot W_i) = \gamma_0 + \gamma_1 \ln(X_i/W_i^2) + \gamma_2 \ln Z_i + u_i \qquad \boxed{E} \ln(Y_i/W_i^2) = \gamma_0 + \gamma_1 \ln(X_i/W_i) + \gamma_2 \ln Z_i + u_i$

 $C \ln(Y_i/W_i) = \gamma_0 + \gamma_1 \ln(X_i \cdot W_i^2) + \gamma_2 \ln Z_i + u_i$

|F| нет верного ответа

Вопрос 3. (1 балл) Какое условие НЕ требуется в теореме Гаусса-Маркова?

A матрица регрессоров X имеет полный ранг

D случайные ошибки ε_i имеют одинаковые дисперсии

модель $Y = X\beta + \varepsilon$ правильно специфицирована

E случайные ошибки ε_i нормально распределены

C случайные ошибки ε_i не коррелированы

F нет верного ответа

Вопрос 4. (1 балл) Выборочная корреляция между регрессорами X и Z равна 0.5. В регрессии $\hat{Y}_i = \hat{\beta}_0 +$ $\beta_1 X_i + \beta_2 Z_i$ показатель VIF для регрессора X равен

A | 1/4

C | 1/2

 $|E| \ 3/4$

 $|B| \ 4/3$

F нет верного ответа

Вопрос 5. (2 балла) Для регрессии $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 W_i$, оценённой по 24 наблюдениям, $R^2 = 0.9$. При проверке гипотезы о неадекватности модели F-статистика равна

A 200.27

C 45

|E| 60

B = 5/9

D | 189/2

F нет верного ответа

Вопрос 6. (2 балла) Для регрессионной модели со свободным членом известно, что

$$X'X = \begin{pmatrix} 20 & 0 & 0 \\ 0 & 4 & 3 \\ 0 & 3 & 5 \end{pmatrix}, \quad X'Y = \begin{pmatrix} 40 \\ 10 \\ 13 \end{pmatrix}, \quad \sum_{i=1}^{n} Y_i^2 = 140.$$

Коэффициент \mathbb{R}^2 в этой модели равен

A 9/35

C 13/14

E 0.6

- В недостаточно информации
- \boxed{D} 0.5

 \overline{F} нет верного ответа

Вопрос 7. (1 балл) Портос построил регрессию по 66 наблюдениям, $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 W_i + \hat{\beta}_3 Z_i$, RSS = 140. Затем Портос оценил вспомогательную регрессию, $\hat{\hat{Y}}_i = \hat{\gamma}_0 + \hat{\gamma}_1 X_i + \hat{\gamma}_2 W_i + \hat{\gamma}_3 Z_i + \hat{\delta}_2 \hat{Y}_i^2 + \hat{\delta}_3 \hat{Y}_i^3$, RSS = 120. При проверке гипотезы о правильной спецификации модели в тесте Рамсея F-статистика равна

A 5

 $C \mid 6$

E 11/3

 $B \ 10/3$

 $D \ 30/7$

F нет верного ответа

Вопрос 8. (2 балла) Арамис построил регрессию по 66 наблюдениям:

$$\hat{Y}_i = \underset{(0.4)}{4} + \underset{(5)}{6} X_i + \underset{(2)}{4.4} Z_i - \underset{(2)}{3} Q_i - \underset{(3)}{9} R_i + \underset{(10)}{16} S_i.$$

В скобках указаны стандартные ошибки. Показатель R^2_{adj} может увеличиться при удалении из модели группы факторов

A S

C X, S

E Q, S

 $B \mid X, Q$

 $D \mid X, Q, S$

 \overline{F} нет верного ответа

Вопрос 9. (1 балл) Чудо-швабры производятся на разных заводах по одной из двух технологий, A или B. Исследователь оценил две модели зависимости выпуска, Y, от количества сырья, X, и технологии:

$$\hat{Y}_{i} = \hat{\alpha}_{0} + \hat{\alpha}_{1} A_{i} + \hat{\alpha}_{2} X_{i} + \hat{\alpha}_{3} A_{i} X_{i};
\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} B_{i} + \hat{\beta}_{2} X_{i} + \hat{\beta}_{3} B_{i} X_{i}.$$

Переменная A_i равна единице для заводов с технологией A и нулю иначе, а переменная B_i равна единице для заводов с технологией B и нулю иначе.

Оценки коэффициентов связаны соотношением

 $A \hat{\alpha}_1 = \hat{\beta}_0$

 $\boxed{C} \hat{\alpha}_0 = \hat{\beta}_0$

 $\boxed{E} \ \hat{\alpha}_0 + \hat{\alpha}_1 = \hat{\beta}_0$

 $\boxed{B} \hat{\alpha}_0 = \hat{\beta}_0 + \hat{\beta}_1$

 $\boxed{D} \hat{\alpha}_2 = \hat{\beta}_2$

 \boxed{F} нет верного ответа

Вопрос 10. (1 балл) Исследовательница Надежда оценила регрессию в отклонениях, $\hat{y}_i=x_i+2z_i$ с помощью МНК. Известно, что $\bar{Y}=5, \, \bar{X}=6, \, \bar{Z}=-2$. В регрессии нецентрированных переменных, $\hat{Y}_i=\hat{\beta}_0+\hat{\beta}_1X_i+\hat{\beta}_2Z_i$, оценка коэффициента $\hat{\beta}_0$ равна

A 1

 $C \mid 2$

|E| 3

B 4

D | 5

 \boxed{F} нет верного ответа

Задачи

- 1. (5 баллов) Рассмотрим алгоритм LASSO с параметром регуляризации λ для модели $Y=X\beta+\varepsilon$, где все переменные центрированы.
 - а) Выпишите целевую функцию алгоритма.
 - б) Что произойдет с оценками \hat{eta}_{LASSO} при $\lambda o \infty$?
 - в) Что произойдет с оценками \hat{eta}_{LASSO} при $\lambda o 0$?

2. (5 баллов) По 200 фирмам была оценена зависимость выпуска Y от труда L и капитала K с помощью двух моделей:

Модель Кобба-Дугласа: $\ln Y_i = \beta_0 + \beta_1 \ln L_i + \beta_2 \ln K_i + \varepsilon_i$

Транслоговая модель: $\ln Y_i = \gamma_0 + \gamma_1 \ln L_i + \gamma_2 \ln K_i + \gamma_3 (0.5 \ln^2 L_i) + \gamma_4 (0.5 \ln^2 K_i) + \gamma_5 \ln K_i \ln L_i + \varepsilon_i$

Оценки коэффициентов обеих моделей (в скобках приведены стандартные ошибки):

Переменная	Модель Кобба-Дугласа	Транслоговая модель
константа	1.1706 (0.326)	0.9441 (2.911)
$\ln L$	0.6029 (0.125)	3.613 (1.548)
$\ln K$	0.375 (0.085)	-1.893 (1.016)
$0.5 \ln^2 L$		-0.964 (0.707)
$0.5 \ln^2 K$		0.0852 (0.2922)
$\ln L \ln K$		0.3123 (0.4389)
R^2	0.9	0.954

В модели Кобба-Дугласа $\widehat{\text{Cov}}(\hat{\beta}_1,\hat{\beta}_2) = -0.0096$.

На уровне значимости $\alpha=0.05$ проверьте следующие гипотезы:

- а) В модели Кобба-Дугласа эластичность выпуска по капиталу равна единице.
- б) В модели Кобба-Дугласа эластичности выпуска по труду и капиталу одинаковы.
- в) В транслоговой модели $\gamma_3 = 0$.
- г) В транслоговой модели $\gamma_3 = \gamma_4 = \gamma_5 = 0$.

3. (4 балла) Исследователь оценил зависимость продолжительности жизни Y от концентрации промышленных выбросов в атмосфере X и ежегодных частных расходов на медицинскую помощь Z.

Для 300 жителей индустриальных центров,
$$\hat{Y}_i = 65.91 - 0.03 \atop (10.43) \atop (0.0001) X_i - 0.036 Z_i, \ RSS = 300.$$

Для 200 сельских жителей,
$$\hat{Y}_i = \underset{(15.3)}{58.4} - \underset{(0.006)}{0.017} X_i - \underset{(0.007)}{0.024} Z_i, \ RSS = 200.$$

А также по общей выборке,
$$\hat{Y}_i = 63.2 - \underset{(12.4)}{0.02} X_i - \underset{(0.001)}{0.031} Z_i, \ RSS = 900.$$

В скобках приведены стандартные ошибки.

Можно ли считать, что зависимость едина для городских и сельских жителей? Ответ обоснуйте подходящим тестом, аккуратно выписав тестируемую гипотезу.

4. (5 баллов) Исследователь Д'Артаньян стандартизировал (центрировал и нормировал) все имеющиеся регрессоры и поместил их в столбцы матрицы \tilde{X} . Выборочная корреляционная матрица регрессоров равна:

$$\begin{pmatrix} 1 & 0.85 & 0 \\ 0.85 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- а) Найдите параметр обусловленности (condition number) матрицы $\tilde{X}^T \tilde{X}.$
- б) Вычислите одну или две главные компоненты, объясняющие не менее 70% суммарной дисперсии стандартизированных регрессоров. Выпишите найденные компоненты как линейные комбинации столбцов матрицы \tilde{X} .

- 5. (6 баллов) Для 400 голландских магазинов модной одежды с помощью трёх моделей оценили зависимость продаж в расчете на квадратный метр в гульденах, Sales, от:
 - общей площади магазина, Size, в м 2 ;
 - количества сотрудников, работающих целый день, Nfull;
 - количества временных рабочих, Ntemp;
 - дамми-переменной Owner, равной единице, если собственник один, и нулю иначе.

В скобках приведены стандартные ошибки.

- а) Дайте интерпретацию коэффициента при переменной Size в каждой из трёх моделей;
- б) Подробно опишите, как выбрать наилучшую из этих моделей.