

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика, искусственный интеллект и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе № 3 по курсу «Защита Информации» на тему: «Шифрование симметричным алгоритмом AES» Вариант № 3

Студент <u>ИУ7-71Б</u> (Группа)	(Подпись, дата)	Корниенко К. Ю. (И. О. Фамилия)
Преподаватель	(Подпись, дата)	<u>Чиж И. С.</u> (И. О. Фамилия)

СОДЕРЖАНИЕ

\mathbf{B}	ВЕД	ЕНИЕ	3
1	Ана	алитический раздел	4
	1.1	Алгоритм шифрования «AES»	4
2	Кон	нструкторская часть	5
	2.1	Разработка алгоритма	5
3	Tex	нологическая часть	6
	3.1	Средства реализации	6
	3.2	Реализация алгоритма	6
	3.3	Тестирование ПО	7
3	АК Л	ЮЧЕНИЕ	10
\mathbf{C}	ПИС	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	11

ВВЕДЕНИЕ

Цель лабораторной работы — разработать программу, осуществляющую шифрование в соответствии с алгоритмом «AES»

Задачи лабораторной работы:

- 1. провести анализ алгоритма шифрования «AES»;
- 2. описать алгоритм шифрования;
- 3. релизовать описанный алгоритм.

1 Аналитический раздел

1.1 Алгоритм шифрования «AES»

AES (Advanced Encryption Standard) — симметричный алгоритм блочного шифрования (размер блока 128 бит, ключ 128/192/256 бит), принятый в качестве стандарта шифрования правительством США по результатам конкурса AES.

Раунды шифрования:

- **Деление на блоки**:в AES элементы организованы в матрицы 4 на 4 по 128 бит. Получается, нас есть сообщение размером 128 бит или 16 байтов в виде матрицы 4 на 4.
- **Наложение фрагмента ключа через XOR**: Сначала функция SubBytes подставляет на место одних байтов другие из таблицы замены (S-блока). Затем ShiftRows сдвигает элементы в каждом ряду матрицы. После этого MixColumns перемешивает элементы в каждом столбце. Первый шаг это подстановка, второй и третий перестановка. В конце каждого раунда мы добавляем раундовый ключ (Round Key).

Алгоритм шифрования AES может использоваться в следующих режимах.

- 1. **PCBC** (Cipher Block Chaining) режим сцепления блоков;
- 2. **CBC** (Cipher Block Chaining) режим сцепления блоков;
- 3. **CFB** (Cipher Feed Back) режим обратной связи по шифротексту;
- 4. **OFB** (Output Feed Back) режим обратной связи по выходу.

2 Конструкторская часть

2.1 Разработка алгоритма

На рисунке 2.1 представлена схема алгоритма шифрования AES.

Рисунок 2.1 – Схемы алгоритма AES

3 Технологическая часть

3.1 Средства реализации

Для реализации ПО был выбран язык C++[1]. В данном языке есть все требующиеся инструменты для данной лабораторной работы. В качестве среды разработки была выбрана среда VS code [2].

3.2 Реализация алгоритма

На листинге ниже приведены алгоритмы шифрования/дешифрования блока, а также методы шифрования и дешифрования текста.

Листинг 3.1 – Алгоритм шифрования блока

```
uint128_t cipher_block(const std::array<uint128_t, 11> &keys,
  uint128_t block)
{
    block ^= keys[0];
    for (int i = 1; i \le 9; i++)
        block = sub_bytes128(block);
        block = shift_rows(block);
        block = mix_columns(block);
        block ^= keys[i];
    block = sub_bytes128(block);
    block = shift_rows(block);
    block ^= keys[10];
    return block:
}
uint128_t decipher_block(const std::array<uint128_t, 11> &keys,
  uint128_t block)
{
    block ^= keys[10];
    block = inv_shift_rows(block);
    block = inv_sub_bytes128(block);
    for (int i = 9; i >= 1; i--)
    {
        block ^= keys[i];
        block = inv_mix_columns(block);
        block = inv_shift_rows(block);
        block = inv_sub_bytes128(block);
```

```
}
block ^= keys[0];
return block;
}

uint128_t AESCryptor::encrypt(uint128_t data)
{
   auto keys = expand_key(key);
   return cipher_block(keys, data);
}

uint128_t AESCryptor::decrypt(uint128_t data)
{
   auto keys = expand_key(key);
   return decipher_block(keys, data);
}
```

3.3 Тестирование ПО

В таблице 3.1 представлены тестовые данные, для проверки корректности работы программы. Применена методология черного ящика. Тесты пройдены *успешно*.

Таблица 3.1 – Функциональные тесты для текстовых файлов

Файл	16-ричный дамп файла	
Ключ	TODO	
Входной	00000000: 7365 6372 6574 206d	secret m
файл 1	00000008: 6573 7361 6765	essage
Зашифрованный	00000000: 327b 33f9 248f 9d39	2{3.\$9
файл 1	00000008: 655d 73df 265b	e]s.&.
Дешифрованный	00000000: 7365 6372 6574 206d	secret m
файл 1	00000008: 6573 7361 6765	essage
Ключ	TODO	
Входной	00000000: 3131 3131 3131 3131	11111111
файл 2	00000008: 3131 3131 3131 3131	11111111
	00000010: 3131 3131 3131 3131	11111111
	00000018: 3131 3131 3131 310a	1111111.
Зашифрованный	00000000: d072 b537 61bd e940	.r.7a@
файл 2	00000008: 0e2b 9179 3144 1265	.+.y1D.e
	00000010: 31bc 879b cfb7 2268	1"h
	00000018: 98e6 3535 67f1 2d0a	55g
Дешифрованный	00000000: 3131 3131 3131 3131	11111111
файл 2	00000008: 3131 3131 3131 3131	11111111
	00000010: 3131 3131 3131 3131	11111111
	00000018: 3131 3131 3131 310a	1111111.

Таблица 3.2 – Функциональные тесты для бинарных файлов

Файл	16-ричный дамп начала файла	
Ключ	TODO	
Входной	00000000: 8950 4e47 0d0a 1a0a	.PNG
файл 3	00000008: 0000 000d 4948 4452	IHDR
	00000010: 0000 02c9 0000 02c7	
	00000018: 0806 0000 007c 3fdf	?.
Зашифрованный	00000000: 113d 4afc 85b4 3982	.=J9.
файл 3	00000008: a449 000d d9d8 fb52	.IR
	00000010: 9b78 a44c a200 027f	.x.L
	00000018: 27dd 70aa 0026 4cdf	'.p&L.
Дешифрованный	00000000: 8950 4e47 0d0a 1a0a	.PNG
файл 3	00000008: 0000 000d 4948 4452	IHDR
	00000010: 0000 02c9 0000 02c7	
	00000018: 0806 0000 007c 3fdf	?.
Ключ	TODO	
Входной	00000000: 7f45 4c46 0201 0100	.ELF
файл 4	00000008: 0000 0000 0000 0000	
	00000010: 0300 3e00 0100 0000	>
	00000010, 4011 0000 0000 0000	
	00000018: 4011 0000 0000 0000	@
n 1		w
Зашифрованный	000000018: 4011 0000 0000 0000 000000000: 48cb 0cad d4d3 0100	Н
Зашифрованный файл 4		
	00000000: 48cb 0cad d4d3 0100 00000008: a449 00f0 0000 40aa 00000010: 0378 3a00 0100 2300	Н
	00000000: 48cb 0cad d4d3 0100 00000008: a449 00f0 0000 40aa	H .I@.
	00000000: 48cb 0cad d4d3 0100 00000008: a449 00f0 0000 40aa 00000010: 0378 3a00 0100 2300 00000018: 40c4 70aa 0000 d2d7	H .I@. .x:#. @.p
файл 4 Дешифрованный	00000000: 48cb 0cad d4d3 0100 00000008: a449 00f0 0000 40aa 00000010: 0378 3a00 0100 2300 00000018: 40c4 70aa 0000 d2d7 000000000: 7f45 4c46 0201 0100	H .I@. .x:#.
файл 4	00000000: 48cb 0cad d4d3 0100 00000008: a449 00f0 0000 40aa 00000010: 0378 3a00 0100 2300 00000018: 40c4 70aa 0000 d2d7 00000000: 7f45 4c46 0201 0100 00000008: 0000 0000 0000 0000	H I@. .x:#. @.p
файл 4 Дешифрованный	00000000: 48cb 0cad d4d3 0100 00000008: a449 00f0 0000 40aa 00000010: 0378 3a00 0100 2300 00000018: 40c4 70aa 0000 d2d7 00000000: 7f45 4c46 0201 0100 00000008: 0000 0000 0000 0000 00000010: 0300 3e00 0100 0000	H .I@. .x:#. @.p
файл 4 Дешифрованный	00000000: 48cb 0cad d4d3 0100 00000008: a449 00f0 0000 40aa 00000010: 0378 3a00 0100 2300 00000018: 40c4 70aa 0000 d2d7 00000000: 7f45 4c46 0201 0100 00000008: 0000 0000 0000 0000	H I@. .x:#. @.p

ЗАКЛЮЧЕНИЕ

В данной лабораторной работе:

- проведен анализ работы алгоритма «AES»;
- описан алгоритм шифрования;
- реализован описанный алгоритм.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Josuttis N. M. The C++ standard library: a tutorial and reference. 2012.
- 2. $Code\ V.\ S.$ Visual studio code // línea]. Available: https://code. visualstudio. com. 2019.