CS4495/6495 Introduction to Computer Vision

2A-L4 Filters as templates

1D (nx)correlation

1D (nx)correlation

Filter

1D (nx)correlation

Filter

Normalized cross-correlation

Matlab cross-correlation doc

```
onion = rgb2gray(imread('onion.png'));
peppers = rgb2gray(imread('peppers.png'));
imshowpair(peppers,onion,'montage')
```


Matlab cross-correlation doc

```
c = normxcorr2(onion,peppers);
figure, surf(c), shading flat;
```


Scene

A toy example

Template (mask)

Detected template

Detected template

Correlation map

Where's Waldo?

Scene

Template

Where's Waldo?

Template

Detected Template

Where's Waldo?

Detected template

Correlation map

Quiz

Would this method work for finding Waldo in most situations?

- Yes normalized correlation is powerful.
- No we don't have the right template.
- Partially explain how?

What if the template is not identical to some subimage in the scene?

Template

Scene

Match can be meaningful, if scale, orientation, and general appearance is right.

Template

Detected template

Summary

 We can use filters to localize "interesting" areas in an image by looking at how well a filter responds at different locations.

 Going forward we will use filters both to compute functions (like the smoothing) and to find strong responses to those functions (like templates).