Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise

ANÁLISE MATEMÁTICA IV FICHA 1 – NÚMEROS E FUNÇÕES COMPLEXAS

(1) Calcule \sqrt{i} , $\sqrt[3]{i}$ e $\sqrt[4]{i}$ e represente estes números geometricamente.

Resolução: As coordenadas polares de i são |i|=1 e $\arg i=\frac{\pi}{2}$, logo, em termos da exponencial complexa, $i=e^{\frac{\pi}{2}i}$. O símbolo $\sqrt[n]{i}$ representa o conjunto dos números da forma

$$e^{\frac{(1+4k)\pi}{2n}i}\;,\qquad {\it com}\; k=0,1,\ldots,n-1\;.$$

Deduz-se que \sqrt{i} simboliza

$$e^{\frac{\pi}{4}i} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$
 $e^{-\frac{5\pi}{4}i} = -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$,

 $\sqrt[3]{i}$ simboliza

$$e^{\frac{\pi}{6}i} = \frac{\sqrt{3}}{2} + \frac{1}{2}i \; , \qquad e^{\frac{5\pi}{6}i} = -\frac{\sqrt{3}}{2} + \frac{1}{2}i \qquad \text{ e} \qquad e^{\frac{3\pi}{2}i} = -i \; ,$$

 $e\sqrt[4]{i}$ simboliza

$$e^{\frac{\pi}{8}i}$$
, $e^{\frac{5\pi}{8}i}$, $e^{\frac{9\pi}{8}i}$ e $e^{\frac{13\pi}{8}i}$.

Os números \sqrt{i} , $\sqrt[3]{i}$ e $\sqrt[4]{i}$ têm o seguinte aspecto geométrico, onde a circunferência tracejada tem raio 1.

(2) Esboce os seguintes conjuntos e diga quais deles são regiões:

- (a) $|z-2+i| \leq 1$;
- (b) |2z+3|>4;
- (c) Im z > 1;
- (d) Im z = 1;
- (e) $0 \le \arg z \le \frac{\pi}{4}$ $(z \ne 0)$; (f) $|z 4| \ge |z|$.

Resolução: Os conjuntos (b) e (c) são regiões (i.e., são abertos conexos e não-vazios).

(3) Resolva a seguinte equação

$$1 + 3z + 3z^{2} + z^{3} = 3\sqrt{3} \left(e^{-i\pi} + \sqrt{2}e^{-i\frac{\pi}{4}} \right) .$$

Resolução: Simplificando a equação, obtém-se

$$(1+z)^3 = 3\sqrt{3}(-i) ,$$

ou seja,

$$(1+z)^3 = (\sqrt{3})^3 e^{i\frac{3\pi}{2}} .$$

As soluções da equação são da forma $z=-1+\sqrt{3}e^{i\frac{3\pi+4k\pi}{6}}$, com $k\in\{0,1,2\}$, ou seja, são

$$z=-1+\sqrt{3}i$$
 ou $z=-rac{5}{2}-rac{\sqrt{3}}{2}i$ ou $z=rac{1}{2}-rac{\sqrt{3}}{2}i$.

- (4) Seja $u: \mathbb{R}^2 \to \mathbb{R}$ a função definida por $u(x,y) = x^3 3xy^2$.
 - (a) Mostre que u é harmónica.
 - (b) Exiba uma função $v:\mathbb{R}^2 o \mathbb{R}$ tal que a função $f:\mathbb{C} o \mathbb{C}$ definida por

$$f(x+iy) = u(x,y) + iv(x,y)$$

seja analítica e satisfaça f(0) = 0.

Resolução:

(a)

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 6x - 6x = 0.$$

(b) Para que f seja analítica em \mathbb{C} , a função v tem que ser tal que o par u,v satisfaça as equações de Cauchy-Riemann:

$$\begin{cases} \frac{\partial v}{\partial x} &= -\frac{\partial u}{\partial y} &= 6xy \\ \frac{\partial v}{\partial y} &= \frac{\partial u}{\partial x} &= 3x^2 - 3y^2 \ . \end{cases}$$

Primitivando cada uma das duas equações, obtém-se

$$v(x,y) = \int (6xy) \ dx = 3x^2y + F(y) \qquad \epsilon$$

$$v(x,y) = \int (3x^2 - 3y^2) dy = 3x^2y - y^3 + G(x)$$

onde F,G são funções correspondentes às constantes de integração. Compatibilizando as duas condições, conclui-se que,

$$v(x,y) = 3x^2y - y^3 + c$$

onde c é uma constante complexa arbitrária. Escolhe-se c=0, de maneira que v(0,0)=0. Conclui-se que, se se tomar $v(x,y)=3x^2y-y^3$, a função definida por f(x+iy)=u(x,y)+iv(x,y) é analítica (porque u e v têm derivadas parciais contínuas e satisfazem as equações de Cauchy-Riemann em $\mathbb C$) e além disso f(0)=0.

- (5) Seja $f(z)=(x^2-y^2)+2i|xy|$ para $z=x+iy\in\mathbb{C}$.
 - (a) Estude a analiticidade de f(z).
 - (b) Calcule f'(z) nos pontos onde f(z) é analítica.

Resolução:

(a) Primeiro estuda-se as equações de Cauchy-Riemann. Escrevendo f na forma u(x,y) + iv(x,y) temos

$$\begin{array}{rcl} u(x,y) & = & x^2-y^2 \\ \\ v(x,y) & = & 2|xy| = \left\{ \begin{array}{ll} 2xy & \text{se } xy>0 \\ 0 & \text{se } xy=0 \\ -2xy & \text{se } xy<0 \end{array} \right. \end{array}$$

Quando xy > 0, o par u, v satisfaz as equações de Cauchy-Riemann:

$$\begin{cases} \frac{\partial u}{\partial x} = 2x = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -2y = -\frac{\partial v}{\partial x} \end{cases}$$

Quando xy=0, a função v(x,y) só tem ambas as derivadas parciais no ponto (0,0). De facto, nos pontos da forma (0,y) com $y\neq 0$, não existe $\frac{\partial v}{\partial x}$ já que

$$\lim_{x \to 0^+} \frac{v(x,y)}{x} = 2y \neq -2y = \lim_{x \to 0^-} \frac{v(x,y)}{x}$$

Da mesma maneira se vê que não existe $\frac{\partial v}{\partial y}$ nos pontos da forma (x,0) com $x \neq 0$. Por outro lado temos

$$\frac{\partial v}{\partial x}(0,0) = \frac{\partial v}{\partial y}(0,0) = 0$$

pelo que as condições de Cauchy-Riemann se verificam no ponto (0,0).

Quando xy < 0, o par u, v viola as equações de Cauchy-Riemann já que

$$\frac{\partial u}{\partial x} = 2x \neq -2x = \frac{\partial v}{\partial y}$$

Conclusões quanto à diferenciabilidade.

Como u e v têm derivadas parciais contínuas em $\{z=x+iy\in\mathbb{C}\mid xy>0\}\cup\{(0,0)\}$, conclui-se que a função f é diferenciável em todos esses pontos. (Recorde-se que, se uma função complexa f=u+iv é tal que o par u,v satisfaz as equações de Cauchy-Riemann no ponto (x,y) e u e v têm derivadas parciais contínuas em (x,y), então f é diferenciável no ponto z=x+iy.)

Em qualquer outro ponto, isto é, para $z \in \{z = x + iy \in \mathbb{C} \mid xy \leq 0\} \setminus \{(0,0)\}$, a função f não é diferenciável porque não satisfaz as equações de Cauchy-Riemann. (Recorde-se que, se uma função complexa f = u + iv é diferenciável no ponto z = x + iy, então o par u,v satisfaz as equações de Cauchy-Riemann em (x,y).) Conclusões quanto à analiticidade – resposta ao exercício.

A função f é analítica no aberto $\{z=x+iy\in\mathbb{C}\mid xy>0\}$, formado pelos primeiro e terceiro quadrantes, e em mais parte nenhuma. (Na origem, a função f é diferenciável com derivada f'(0)=0, mas não é analítica pois z=0 não admite qualquer vizinhança aberta onde f seja diferenciável.)

(b) $Em\{z=x+iy\in\mathbb{C}\mid xy>0\}$ (que é onde f(z) é analítica), a derivada de f é dada, por exemplo, pela fórmula

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} .$$

Como, neste domínio,

$$\frac{\partial u}{\partial x} = 2x$$

$$\frac{\partial v}{\partial x} = \frac{\partial}{\partial x}(2xy) = 2y$$

conclui-se que

$$f'(z) = 2x + 2yi = 2z.$$

Comentário: O resultado f'(z)=2z da alínea (b), poderia ter sido equivalentemente obtido se se tivesse inicialmente observado que a função dada coincide com a função $g(z)=z^2$ no domínio de analiticidade.

Note-se ainda que, em $\{z=x+iy\in\mathbb{C}\mid xy<0\}$, a função dada coincide com a função $h(z)=\overline{z}^2$, a qual não é analítica em qualquer ponto.

(6) Exprima $\cos 3\varphi$ e $\sin 4\varphi$ em termos de $\cos \varphi$ e $\sin \varphi$.

Resolução: Para um ângulo φ real, temos

$$(\cos 3\varphi + i\sin 3\varphi) = e^{3\varphi i} = (e^{\varphi i})^3 = (\cos \varphi + i\sin \varphi)^3.$$

Como

$$(\cos\varphi + i\sin\varphi)^3 = \cos^3\varphi + 3i\cos^2\varphi\sin\varphi - 3\cos\varphi\sin^2\varphi - i\sin^3\varphi,$$

extraindo as partes imaginárias, obtém-se

$$\sin 3\varphi = 3\cos^2\varphi\sin\varphi - \sin^3\varphi \ .$$

Temos
$$(\cos 4\varphi + i\sin 4\varphi) = e^{4\varphi i} = (e^{\varphi i})^4 = (\cos \varphi + i\sin \varphi)^4$$
. Como
$$(\cos \varphi + i\sin \varphi)^4 = \cos^4 \varphi + 4i\cos^3 \varphi \sin \varphi - 6\cos^2 \varphi \sin^2 \varphi - 4i\cos \varphi \sin^3 \varphi + \sin^4 \varphi$$

extraindo as partes reais, obtém-se

$$\cos 4\varphi = \cos^4 \varphi - 6\cos^2 \varphi \sin^2 \varphi + \sin^4 \varphi .$$

(7) Mostre que, para z = x + yi, se tem

$$|\cos z|^2 = \sinh^2 y + \cos^2 x = \cosh^2 y - \sin^2 x$$
.

Resolução: Para simplificar as contas, vamos usar o seguinte facto muito útil:

$$\overline{e^z} = e^{\overline{z}}$$

Este facto é uma consequência da definição da exponencial

$$e^z = 1 + z + \frac{z^2}{2!} + \dots$$

já que a conjugação comuta com somas, produtos e limites. Para z=x+yi, tem-se

$$|\cos z|^2 = \cos z \cdot \overline{\cos z} = \frac{e^{iz} + e^{-iz}}{2} \cdot \frac{e^{-i\overline{z}} + e^{i\overline{z}}}{2}$$

$$= \frac{e^{i(z-\overline{z})} + e^{i(z+\overline{z})} + e^{-i(z+\overline{z})} + e^{-i(z-\overline{z})}}{4}$$

$$= \frac{e^{-2y} + e^{2ix} + e^{-2ix} + e^{2y}}{4}$$

$$\sinh^2 y = \left(\frac{e^y - e^{-y}}{2}\right)^2 = \frac{e^{2y} + e^{-2y} - 2}{4}$$

$$\cos^2 x = \left(\frac{e^{ix} + e^{-ix}}{2}\right)^2 = \frac{e^{2ix} + e^{-2ix} + 2}{4}$$

$$\cosh^2 y = \left(\frac{e^y + e^{-y}}{2}\right)^2 = \frac{e^{2y} + e^{-2y} + 2}{4}$$

$$\sin^2 x = \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^2 = -\frac{e^{2ix} + e^{-2ix} - 2}{4}$$

donde se verifica o resultado.

(8) Escreva todos os valores de i^i na forma a + bi.

Resolução: O símbolo i^i representa o conjunto dos números complexos s que têm logaritmo da forma $i\alpha$, para algum logaritmo α de i. Os logaritmos de i são as soluções da equação $e^{\alpha}=i$, ou seja, são os números da forma $\alpha=\ln|i|+(\arg i+2k\pi)i$ para algum $k\in\mathbb{Z}$, ou seja, são

$$\alpha = (\frac{\pi}{2} + 2k\pi)i$$
, $k \in \mathbb{Z}$.

Conclui-se que os números $e^{i\alpha}$ que formam o conjunto i^i são

$$e^{-\frac{\pi}{2}+2k\pi}$$
, $k \in \mathbb{Z}$.