Appl. No. Unassigned; Docket No. DE03 0189 US Amdt. dated Dec. 16th, 2005 Preliminary Amendment

Amendments to the Claims

- 1. (CURRENTLY AMENDED)

 A punch-through diode realized as a monolithic ally integrated circuit based an a silicon dice or chip, comprising an n⁺-doped substrate (7) covered with an n-doped epilayer (8); a first p-well (9) and a second p-well (10)-implanted into the n-doped epilayer (8) with a distance between the two wells; an n-well (11) penetrating through the n-doped epilayer (8) and into the n⁺ -substrate (7); a first p⁺ -doped well (13) which connects both the first and the second p-doped wells (9, 10); a polysilicon area (14) on the n-epilayer (8) between the first and the second n-doped wells (9, 10) overlapping the edges of an oxide layer (17); characterized in that a Schottky-metal area (16) is deposited onto at least part of the first p-doped well's (9) surface thus forming a metal (16) semiconductor (9)— transition and that a second p⁺-doped well (12) is implanted into the first p-doped well (9).
- 2. (ORIGINAL) A punch-through diode realized as a monolithic ally integrated circuit based an a silicon dice or chip, comprising a p⁺ -doped substrate covered with a p-doped epilayer; a first n-well and a second n-well implanted into the p-doped epilayer with a distance between the two wells; a p-well penetrating through the p-doped epilayer and into the p⁺ -substrate; a first n⁺ -doped well which connects both the first and the second n-doped wells; a polysilicon area on the p-epilayer between the first and the second p-doped wells overlapping the edges of an oxide layer; characterized in that a Schottky-metal area is deposited onto at least part of the first n-doped well's surface thus forming a metal -semiconductor -transition and that a second n⁺ -doped well is implanted into the first n-doped well.
- 3. (CURRENTLY AMENDED) A punch-through diode according to any of the foregoing claims, claim 2 characterized in that the monolithic integrated circuit is built on a wafer.
- 4. (CURRENTLY AMENDED) A punch-through diode according to any of the foregoing claims, claim 2 characterized in that the Schottky-metal (16) overlaps the edges of the ambient oxide layer (17).
- 5. (CURRENTLY AMENDED) A punch-through diode as claimed in any of the foregoing claims, claim 2 characterized in that the Schottky-metal area (16) is made of a

Appl. No. Unassigned; Docket No. DE03 0189 US Amdt. dated Dec. 16th, 2005 Preliminary Amendment

material from the group comprising aluminum (AI), titanium (Ti), iron (Fe), chrome (Cr), nickel (Ni), molybdenum (Mo), palladium (Pd).

- 6. (CURRENTLY AMENDED) A punch-through diode according to any of the foregoing claims claim 2 characterized in that the punch-through diode comprises a layer of aluminum on the surface of the n⁺-substrate (7) or p⁺-substrate to enable the contact of a first terminal point of the punch-through diode.
- 7. (CURRENTLY AMENDED) A punch-through diode according to any—of—the foregoingclaim 2 claims characterized in that the punch-through diode comprises a metallized layer above the Schottky-metal area and the polysilicon area that enables the contact to a second terminal point.
- 8. (CURRENTLY AMENDED) A punch-through diode as claimed in one of the foregoing claims claim 2 characterized in that it is realized as a thick film circuit.
- 9. (CURRENTLY AMENDED) An electronic appliance, comprising a punch-through diode according to any of the former claimsclaim 2.
- 10. (CURRENTLY AMENDED) Use a punch-through diode according to any of the claims 1 to 8claim 1 for over voltage protection in an integrated circuit.
- 11. (CURRENTLY AMENDED)

 A method of processing a punchthrough diode, comprising the steps of providing an n+-substrate (7); generating an n-epilayer (8); forming a first p-doped well (9) in the n-epilayer (8); forming a second p-doped well (10) in the n-epilayer (8); forming an n-doped well (11) penetrating through the epilayer (8) and into the n +-substrate (7); forming a p + -doped well (13) in the epilayer (8) between the first and the second p-doped wells (9, 10); forming a polysilicon layer (14) between the first and the second p-doped wells (9, 10) overlapping their opposite margin edges; forming an n-doped well (15) under the surface of the epilayer (8) between the first and the second p-doped wells (9, 10); forming a Schottky-metal area (16) on the first p-doped well (9).
- 12. (ORIGINAL) A method of processing a punch-through diode, comprising the steps of providing a p^+ -substrate; generating a p-epilayer; forming a first and a second n-doped well in the p-epilayer; forming a p-doped well penetrating through the epilayer and into the p +-substrate; forming an n^+ -doped well in the epilayer between the first and the second

Appl. No. Unassigned; Docket No. DE03 0189 US Amdt. dated Dec. 16th, 2005 Preliminary Amendment

n-doped wells; forming a polysilicon layer between the first and the second n-doped wells overlapping their opposite margin edges; forming a p-doped well under the surface of the epilayer between the first and the second n-doped wells; forming a Schottky-metal area on the first n-doped well.