Propositional Logic

Narges Khakpour

Department of Computer Science, Linnaeus University

Table of Content

- Propositional Logic: Syntax
- 2 Propositional Logic: Semantics
- Truth Table-based Proof
- 4 Deductive Proof
- Conclusion

Basics

 Proposition (declarative sentence): a statement that's either true or false

- It is sunny today
- 2+2=5
- The sun is made of sunflower oil
- X + Y < 50
- The sum of two prime numbers is a prime number.
- Not a proposition
 - Are you happy?
 - What a nice sunny day!

Basics

 Proposition (declarative sentence): a statement that's either true or false

- It is sunny today
- 2+2=5
- The sun is made of sunflower oil
- X + Y < 50
- The sum of two prime numbers is a prime number.
- Not a proposition
 - Are you happy?
 - What a nice sunny day!

Propositional Variable

- In general, variables are placeholders of values
- Meaning: what the variable symbol means
- Value: is value that the variable takes from its domain

Example

A: The age of Bob (meaning of A)

23: the value of A from the domain D=[0..150]

- Propositional variable represents an arbitrary proposition
- Normally represented by Boolean variables
- The domain of a Propositional variable is True, False

Propositional Logic: Syntax

- Propositional logic deals with well-formed propositional expressions
- Constants true and false are propositional expressions
- Propositional variables are propositional expressions
- If A and B are well-formed propositional expressions, then so are
 - A ∨ B
 - A ∧ B
 - ¬A
 - $A \rightarrow B$ (If A holds then B holds as well)

Example

$$(A \lor B) \land (\neg A)$$

• Operators precedence order: \neg (tightest), \land , \lor , \rightarrow

Propositional Logic: Syntax

- Operators precedence order: \neg (tightest), \land , \lor , \rightarrow
- We can check if a formula is well-formed using its parse tree in a recursive way

Figure: [1]

Formalizing Sentences in Propositional Logic

- Decompose the set of sentences into a set of atomic or indecomposable ones (look for the connectors such as if, then, therefore ect)
- Specify each with a propositional variable
- Use the operators to compose them

- It rains whenever the wind blows from the southeast.
- The peach tree will bloom if it stays warm for a week.

Examples

- Trains run late on exactly those days that I take the train.
- BP To get an A in this course, it is necessary for you to get an A on both parts.
- BP Getting an A on the final and doing all the assignment perfectly is sufficient for getting an A in this course.
 - You will get an A in this course if and only if you either do every assignment or you get an A on the final.
- BP The results are not posted unless the exam has been graded.
- BP The exam has not been graded, or it has been graded but the results are not (yet) posted.

Table of Content

- Propositional Logic: Syntax
- Propositional Logic: Semantics
- Truth Table-based Proof
- 4 Deductive Proof
- Conclusion

Semantics

What does an expression E in propositional logic mean?

- A declarative sentence expresses a fact about something, e.g. a program, a physical system, our thoughts, the real world etc.
- Such factual statements either are true or false.

Definition

A model or valuation of a propositional expression ϕ is a function from its propositional variables to their corresponding truth values.

Definition

The semantics (meaning) of a propositional expression ϕ is a function from a model to a truth value.

Semantics

- Meaning of a logical operator is a function from its operands values to a truth value.
- We use a truth table to represent this function.
- Semantics of ∧

р	q	$p \wedge q$
Т	Т	T
T	上	上
\perp	T	
\perp	1	

Semantics

- A truth table to describe the semantics of an expressions
- Let ϕ be an expression with k variables and n operators
- 2^k rows (each captures one possible valuations of variables)
- n columns for each operator
- Exponential order: $O(2^k \times n)$

	\boldsymbol{q}	$\neg p$	$\neg q$	p ightarrow eg q	$q \lor \neg p$	$(p \to \neg q) \to (q \vee \neg p)$
T	Т	F	F	F	T	T
T	F	F	T	T	F	F
F	Т	T	F	T	T	T
F	F	T	T	T	T	T

Table of Content

- Propositional Logic: Syntax
- Propositional Logic: Semantics
- Truth Table-based Proof
- 4 Deductive Proof
- Conclusion

Tautologies

 Tautology is an expression that is true under all possible truth assignments.

- $p \lor (\neg p)$
- $p \lor q \equiv q \lor p$
- $p \lor True \equiv True$
- $p \land False \equiv False$
- Tautology problem: Checking if a propositional expression is true or not.

Truth Table-based Proof

Definition

If, for all valuation in which all the formulas ϕ_1, ϕ_2,ϕ_n evaluate to true, then ψ evaluates to true, we say $\phi_1, \phi_2,\phi_n \models \psi$ holds.

- |= is called the semantic entailment relation.
- \bullet $\phi_1, \phi_2,, \phi_n \models \psi$
 - equals to $\models (\phi_1 \land \phi_2 \land \dots \land \phi_n) \rightarrow \psi$ or,
 - it means $(\phi_1 \wedge \phi_2 \wedge \wedge \phi_n) \rightarrow \psi$ is a tautology

$$\models p \lor q \equiv q \lor p$$
?

р	q	$p \lor q$	$q \lor p$	$p \vee q \equiv q \vee p$
Т	Т	Т	Т	Т
Т	上	Τ	T	Т
\perp	Т	Τ	T	Т
\perp	1	_	\perp	T

Table of Content

- Propositional Logic: Syntax
- Propositional Logic: Semantics
- Truth Table-based Proof
- 4 Deductive Proof
- Conclusion

Natural Deduction

- Need a set of rules each of which allows us to draw a conclusion from a certain set of premises.
- The proof rules in natural deduction that allow us to infer formulas from other formulas!
- If we apply these rules in succession, a conclusion may be inferred from a set of premises.

Natural Deduction

- Let $\phi_1, \phi_2, \dots, \phi_n$ be a set of formulas called premises
- ullet Let ψ be another formula which we call conclusion.
- By applying proof rules to the premises, we can get some more formulas.
- If we repeat this process considering the new derived formulas as well, we hope to obtain the conclusion ψ eventually.
- This is denoted by $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$ and called a sequent.

Deductive Proof

- A sequence of steps
- Each step (line) is either a given hypothesis or is a formula driven from its previous lines using inference rules
 - (1) ϕ_1 (2) ϕ_2 ... (k) β_1 (k+1) β_2 ... (m) ψ

Deductive Proof

• The following notation means that if $\phi_1, \dots \phi_n$ are in the previous lines, we can add ψ to the proof as well!

$$\frac{\phi_1 \dots \phi_n}{\psi}$$

Basic Inference Rules- Conjunction Rules

Conjunctive introduction

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \wedge \mu$$

Conjunctive elimination

$$rac{\phi \wedge \psi}{\phi} \wedge e1$$

$$\frac{\phi \wedge \psi}{\psi} \wedge e^2$$

Basic Inference Rules- Conjunction Rules

Prove
$$(A \land B) \land C \vdash B \land C$$

1.
$$(A \wedge B) \wedge C$$
 Premise

2.
$$(A \wedge B) \wedge e11$$

5.
$$B \wedge C \wedge i 3, 4$$

Basic Inference Rules- Double Negation Rules

Double Negation introduction

$$\frac{\phi}{\neg \neg \phi} \neg \neg \mu$$

Double Negation elimination

$$\frac{\neg \neg \phi}{\phi} \neg \neg e$$

Prove
$$p, \neg\neg(q \land r) \vdash \neg\neg p \land r$$

1	p	premise
2	$\neg\neg(q\wedge r)$	premise
3	$\neg \neg p$	$\neg \neg i \ 1$
4	$q\wedge r$	$\neg \neg e \ 2$
5	r	$\wedge e_2 \; 4$
6	$\neg\neg p\wedge r$	$\wedge i\ 3, 5$

Modus Tollens and Modus Ponens Rules

Implication elimination (or Modus Ponens Rule)

$$\frac{\phi \quad \phi \to \psi}{\psi} \to \epsilon$$

Modus Tollens Rule

$$\frac{\phi \to \psi \qquad \neg \psi}{\neg \phi} MT$$

Prove
$$p \rightarrow (q \rightarrow r), p, \neg r \vdash \neg q$$

$$\begin{array}{ccccc} 1 & & p \rightarrow (q \rightarrow r) & \text{premise} \\ 2 & & p & \text{premise} \\ 3 & & \neg r & \text{premise} \\ 4 & & q \rightarrow r & \rightarrow \text{e } 1, 2 \\ 5 & & \neg q & \text{MT } 4, 3 \end{array}$$

Basic Inference Rules- Implication Rule and Assumption Introduction

 We can add the new assumptions that are not in the premises, but it should be placed in a box.

- We use specific rules to use the conclusions derived from an assumption in a box.
- The formulas inside a box cannot always be used outside of that box. Why?

Basic Inference Rules- Implication Rules and Assumption Introduction

• Implication introduction

Example

Prove $p \rightarrow q \vdash \neg q \rightarrow \neg p$

1	$p \rightarrow q$	premise
2	$\neg q$	assumption
3	$\neg p$	MT 1, 2
4	$\neg q \rightarrow \neg p$	\rightarrow i 2-3

Basic Inference Rules- Copying

• This rule allows us to repeat something we already know

$$\mathsf{Prove} \vdash p \to (q \to p)$$

1	p	assumption
2	q	assumption
3	p	copy 1
4	$q \rightarrow p$	ightarrowi 2 -3

$$5 p \to (q \to p) \to i 1-4$$

Basic Inference Rules- Negation Rules (and Contradiction)

Negation introduction

Negation elimination (or contradiction)

$$\frac{\phi \quad \neg \phi}{\mid} \neg e$$

• False elimination (can deduce anything from a false statement)

$$\frac{\perp}{\phi} \perp \epsilon$$

Basic Inference Rules- Negation Rules (and Contradiction)

Prove
$$\neg p \lor q \vdash p \rightarrow q$$

1	$\neg p \vee q$			
2	$\neg p$	premise	q	premise
3	p	assumption	p	assumption
4		¬e 3, 2	q	copy 2
5	q	⊥e 4	$p \rightarrow q$	→i 3-4
6	$p \rightarrow q$	\rightarrow i 3 -5		
7	$p \rightarrow q$			$\forall \mathrm{e}\ 1, 2{-}6$

Proof By Contradiction

Assume that the conclusion holds and then derive its opposite.

Proof.

Basic Inference Rules- Disjunction Rules

Disjunctive introduction

$$\frac{\phi}{\phi \vee \psi} \vee i1$$

$$\frac{\psi}{\phi \vee \psi} \vee i2$$

BP Disjunctive elimination. Why?

Basic Inference Rules- Disjunction Rules

Prove
$$(A \wedge B) \vee (C \wedge A) \vdash A$$

- 1. $(A \land B) \lor (C \land A)$ Premise
- 2. $(A \wedge B)$ Assumption
- 3. *A* ∧*e*1 2
- 4. $(C \wedge A)$ Assumption
- 5. *A* ∧*e*2 4
- 6. *A* ∨*e* 1-5

Compound Inference Rules

Modus tollens

$$\frac{\phi \to \psi \quad \neg \psi}{\neg \phi}$$

Syllogism

$$\frac{\phi \to \psi \quad \psi \to \alpha}{\phi \to \alpha}$$

Disjunctive syllogism

$$\frac{\neg \phi \quad \phi \lor \psi}{\psi}$$

Compound Inference Rules

Resolution

$$\frac{\phi \vee \psi \quad \neg \phi \vee \alpha}{\psi \vee \alpha}$$

Contradiction

$$\frac{\neg \phi \to \bot}{\phi}$$

Equivalence

$$\frac{\phi \equiv \alpha \quad \phi}{\alpha}$$

$$\phi \to \psi \quad \psi \to \phi$$

$$\phi \equiv \psi$$

More on basic rules in the book

Compound Inference Rules- Algebraic Laws

Associativity

$$\overline{(\phi \lor \psi) \lor \gamma \equiv \phi \lor (\psi \lor \gamma)}$$

$$\overline{(\phi \wedge \psi) \wedge \gamma \equiv \phi \wedge (\psi \wedge \gamma)}$$

Distributivity

$$\phi \vee (\psi \wedge \gamma) \equiv (\phi \vee \psi) \wedge (\phi \vee \gamma)$$

$$\overline{\phi \wedge (\psi \vee \gamma) \equiv (\phi \wedge \psi) \vee (\phi \wedge \gamma)}$$

Commutativity

$$\overline{(\psi \wedge \phi) \equiv (\phi \wedge \psi)}$$

$$\overline{(\psi \vee \phi) \equiv (\phi \vee \psi)}$$

Compound Inference Rules- Algebraic Laws

DeMorgan's laws:

$$\frac{\neg(\phi \lor \psi) \equiv \neg\phi \land \neg\psi}{\neg(\phi \land \psi) \equiv \neg\phi \lor \neg\psi}$$

• Implication laws:

$$\overline{(\phi \to \psi) \land (\psi \to \phi) \equiv (\phi \equiv \psi)}$$
$$\overline{(\phi \to \psi) \equiv \neg \phi \lor \psi}$$

How to construct the proof?

- Add all the premises at the top of proof
- Add the conclusion (with a question mark) at the bottom of proof
- Try to fill in the between by applying inference rules
- If several rules can be applied, choose the most promising one
- Try to shape a proof strategy in mind first.
- If the formula to be proven (e.g. the conclusion) is an implication, use the implication introduction rule, i.e. you should do a new sub-proof first.

Example 2

Prove
$$(E \lor F) \to G, G \to H, \neg H \vdash \neg F$$

- 1. $(E \vee F) \rightarrow G$ Premise
- 2. $G \rightarrow H$ Premise
- 3. $\neg H$ Premise
- 4. $(E \lor F) \rightarrow H$ Syllogism: 1&2
- 5. $\neg (E \lor F)$ Modus tollens: 3&4
- 6. $\neg E \land \neg F$ DeMorgan: 5
- 8. $\neg F \wedge e2:6$

Table of Content

- Propositional Logic: Syntax
- Propositional Logic: Semantics
- Truth Table-based Proof
- 4 Deductive Proof
- Conclusion

Summary

- Propositions and proposition logic
- Syntax of propositional logic
- Semantics of propositional logic
- Truth-table -based level (the notation ⊨)
- Inference rules (entailment ⊢)
- Next lecture on predicate logic