Domande per verificare la comprensione del significato di errori del II tipo e di potenza.

N.B. Le domande potrebbero contenere informazioni irrilevanti.

Quesito 1. Consideriamo una popolazione normale con $\sigma = 6$ e media $\mu \in \{2, 5, 9\}$ ignota.

Vogliamo testare $H_0: \mu = 5$ contro $H_A: \mu \in \{2, 9\}$. Preleviamo un campione di rango n = 16 e decidiamo di rifiutare H_0 se la media campionaria \bar{x} non appartiene all'intervallo [4, 6].

- 1. Qual è la significatività del test?
- 2. Qual è la potenza del test?

Esprimere il risutato numerico tramite (solo) le funzioni elencate in calce.

Risposta

$$\alpha = 1 - \Pr\left(4 \le \bar{X} \le 6\right) \text{ dove } \bar{X} \sim N(\mu, \frac{\sigma^2}{n}) \text{ con } \mu = 5 \text{ e } \frac{\sigma^2}{n} = \frac{9}{4}$$

$$= 1 - \Pr\left(-\frac{2}{3} \le Z \le \frac{2}{3}\right) = 2 * \text{norm.cdf(-2/3)} = 0.505$$
Risposta 1

Per calcolare la potenza assumo H_A valga nel caso più sfaforevole $\mu=2$

$$\begin{split} 1 - \beta &= 1 - \Pr\left(4 \le \bar{X} \le 6\right) \text{ dove } \bar{X} \sim N(\mu, \frac{\sigma^2}{n}) \text{ con } \mu = 2 \text{ e } \frac{\sigma^2}{n} = \frac{9}{4} \\ &= 1 - \Pr\left(\frac{4}{3} \le Z \le \frac{8}{3}\right) \text{ = norm.cdf(4/3) + norm.cdf(-8/3) = 0.9126} \end{split}$$
 Risposta 2

Quesito 2. Preleviamo un campione di rango n=9 da una popolazione con distribuzione $N(\mu, \sigma^2)$. Sappiamo che la deviazione standard è $\sigma=3$. La media μ invece potrebbe avere uno qualsiasi valori dei nell'intervallo [1, 4].

Vogliamo testare $H_0: \mu = 1$ contro $H_A: \mu \in (1,4]$. Fissiamo come significatività $\alpha = 0.1$ otteniamo che per uno z-test a coda superiore la zona di rifiuto per la media campionaria è $[2.282, +\infty)$.

- 1. Nel caso $H_A: \mu \in [3, 4]$ qual'è la massima probabilità β di non rigettare H_0 (errore II tipo)?
- 2. Calcolare la potenza del test con l'effect-size suggerito nel punto precedente.

Esprimere il risutato numerico tramite (solo) le funzioni elencate in calce.

Risposta

Il caso più sfavorevole si ottiene quando $\mu = 3$. Sia $\bar{X} \sim N(3, \sigma^2/n)$

$$\beta = \Pr\left(\bar{X} < 2.282\right) = \Pr\left(\frac{\bar{X} - 3}{\sigma/\sqrt{n}} < \frac{-0.718}{\sigma/\sqrt{n}}\right) = \Pr\left(Z < -0.718\right)$$

$$\beta = \operatorname{norm.cdf}(-0.718) = 0.2364$$
Risposta 1

Con un effect size $\delta=2$ la potenza del test è $1-\beta=1$ - norm.cdf(-0.718) = 0.7636 Risposta 2

Quesito 3. Vogliamo testare $H_0: \mu = \mu_0$ contro $H_A: \mu > \mu_0$ per una popolazione distribuita normalmente con deviazione standard nota σ . Fissiamo una significatività α e una potenza $1 - \beta$. L'effect-size che ci interessa è δ . Esprimere, in funzione dei parametri che assumiamo noti, le condizioni cui deve soddisfare il rango n del campione.

Risposta

Il rango necessario è il minimo ntale che $\Pr\left(Z<\frac{x_\alpha-\mu_0-\delta}{\sigma/\sqrt{n}}\right)\leq \beta$

dove
$$x_{\alpha}$$
 tale che $\Pr\left(Z \geq \frac{x_{\alpha} - \mu_0}{\sigma/\sqrt{n}}\right) = \alpha$

Risposta

Si assuma noto il valore delle seguenti funzioni della libreria scipy.stats

$$\mathtt{norm.cdf(z)} = \Pr \left(Z < \mathtt{z} \right) \, \mathrm{per} \, \, Z \sim N(0,1)$$

 $\operatorname{\mathtt{norm.ppf}}(lpha) = z_lpha \ \operatorname{dove} z_lpha \ \operatorname{\grave{e}} \ \operatorname{tale} \ \operatorname{che} \Pr ig(Z < z_lpha ig) = lpha \ \operatorname{per} \, Z \sim N(0,1)$