Max-flow and Circulation Comparison

Max-flow

- G = (V, E) = directed graph,
- Two distinguished nodes:
 - s = source, t = sink.
- c(e) = capacity of edge e.
- $0 \le f(e) \le c(e)$ $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$
- max flow = min cut
- Algorithms:
- Generic augmenting path:
 - O(m val(f*)).
- Capacity scaling:
 - O(m2 log C)
- *Shortest augmenting path:
 - O(m²n).
- * Preflow-Push:
 - $O(m n^2)$ or $O(n^3)$.

Circulation with demands

- Node supply and demands d(v), $v \in V$.
- demand if d(v) > 0;
- $\int \cdot \sup |\operatorname{supply} if d(v) < 0;$
 - transshipment if d(v) = 0
 - Conservation

$$\sum_{e \text{ in to } v} f(e) - \sum_{e \text{ out of } v} f(e) = d(v)$$

•Necessary condition to have a circulation

$$\sum_{v:d(v)>0} d(v) = \sum_{v:d(v)<0} -d(v) =: D$$

- Convert to network flow:
- Add new source s and sink t.
- For each v with d(v) < 0, add edge (s, v) with capacity -d(v).
- For each v with d(v) > 0, add edge (v, t) with capacity d(v).
- Claim: G has circulation iff G' has max flow of value D (saturates all edges leaving s and entering t) $\triangle \Leftrightarrow B$
- with Demands and Lower Bound:

$$\ell$$
 (e) \leq f(e) \leq c(e)

Transfer each edge e: (v, w):

d(v)=d(v)+l(e); d(w)=d(w)-l(e); c(e)=c(e)-l(e)

Survey Design Example

Survey design.

- Design survey asking 4 consumers about 3 products.
- Can only survey consumer i about product j if they own it, see table below.
- Ask consumer 1, consumer 2 each between 2 and 3 questions.
- * Ask consumer 3, consumer 4 each 1 question only.
 - Ask between 2 and 4 consumers about product 1.
 - Ask 3 consumers about product 2.
 - Ask between 2 and 4 consumers about product 3.

link: possible asking flow: actual question

Goal. Design a survey that meets these specs, if possible.

	P1	P2	P3
C1	1	1	1
C2		1	1
<i>C</i> 3	1	1	
C4	1	1	1

Project Selection

Projects with prerequisites.

can be positive or negative

- Set P of possible projects. Project v has associated revenue pv.
 - some projects generate money: create interactive e-commerce interface, redesign web page
 - others cost money: upgrade computers, get site license
- Set of prerequisites E. If $(v, w) \in E$, can't do project v and unless also do project w.
- A subset of projects $A \subseteq P$ is <u>feasible</u> if the prerequisite of every project in A also belongs to A. \times $A \cdot BW$

90 C. UC. BW V

Project selection. Choose a feasible subset of projects to maximize

revenue.

Project	Prerequisites	Profit
P1		-10
P2	P1	15 -
P3	P1, P2	-5
P4	P2	10 -
P5	P3	20

