MEXICAN ASTROCOSMO STATISTICS SCHOOL LISTA DE EJERCICIOS DEL TALLER DE ESTADÍSTICA BAYESIANA

Instructor: Mario Carranza Lunes, 10 de junio de 2019.

Ejercicios

1. Para los siguientes modelos identifique las distribuciones posteriores basadas en una muestra aleatoria de tamaño n. Muestre que se tratan de previas conjugadas y explicite/ verifique la actualización de los hipérparametros.

Distribución Gama Inversa: Si $X \sim \text{Gama}(a,b)$ entonces $1/X \sim \text{GamaInv}(a,b)$.

La función de densidad de una gama inversa es

$$p(\theta; a, b) = \frac{b^a}{\Gamma(a)} \theta^{-(a+1)} \exp\left(-\frac{b}{\theta}\right)$$

$$\operatorname{Beta}(a,b) \xrightarrow{\theta} \operatorname{Geom}(\theta)$$

$$\theta | \vec{x} \sim \text{Beta}\left(a + n, b + \sum x_i\right)$$

$$\operatorname{Beta}(a,b) \xrightarrow{\theta} \operatorname{Binom}(m,\theta)$$

$$\theta | \vec{x} \sim \text{Beta}(a + \sum x_i, b + mn - \sum x_i)$$

c)

$$\operatorname{Beta}(a,b) \xrightarrow{\theta} \operatorname{Bern}(\theta)$$

$$\theta | \vec{x} \sim \text{Beta}\left(a + \sum x_i, b + n - \sum x_i\right)$$

$$\theta | \vec{x} \sim \text{GamaInv}\left(a + n, b + \sum x_i\right)$$

d)

$$\operatorname{GamaInv}(a,b) \xrightarrow{\theta} \operatorname{Gama}(\alpha,\theta)$$

$$\theta | \vec{x} \sim \text{GamaInv}\left(a + n\alpha, b + \sum x_i\right)$$

e)

$$\operatorname{GamaInv}(a,b) \xrightarrow{\theta} \operatorname{Normal}(\mu,\theta)$$

$$\theta | \vec{x} \sim \text{GamaInv}\left(a + \frac{n}{2}, b + \frac{1}{2}\sum_{i}(x_i - \mu)^2\right)$$

f)

$$\operatorname{Normal}(\mu_0, \theta_0) \xrightarrow{\mu} \operatorname{Normal}(\mu, \theta)$$

$$\mu | \vec{x} \sim \text{Normal}\left(\frac{\frac{\sum x_i}{\theta} + \frac{\mu_0}{\theta_0}}{\frac{n}{1} + \frac{\theta}{\theta_0}}, \frac{1}{\frac{n}{1} + \frac{\theta}{\theta_0}}\right)$$

g)
$$\operatorname{Gama}(a,b) \xrightarrow{\theta} \operatorname{GamaInv}(\alpha,\theta)$$

$$\theta | \vec{x} \sim \operatorname{Gama}\left(a+n\alpha,\frac{1}{b}+\sum \frac{1}{x_i}\right)$$
 h)
$$\operatorname{Gama}(a,b) \xrightarrow{\alpha} \operatorname{Pareto}(\alpha,\theta)$$

$$\theta | \vec{x} \sim \text{Gama}\left(a + n, \frac{b}{1 + b(\sum \log x_i - n \log \theta)}\right)$$

- 2. Sea $X_1, ..., X_n$ una muestra aleatoria con $X_i \sim \text{Beta}(\theta)$. Supongamos una previa para θ tal que $\theta \sim \text{Beta}(\alpha, \beta)$. Obtenga la predictiva posterior para X_{n+1} . No se preocupe si no logra identificar de que distribución se trata.
- 3. Supongamos que queremos obtener el estimador óptimo Bayesiano con una función de perdida $L(a,\theta) = (a-\theta)^2$. Demuestre que el valor a^* que minimiza la función $E[(a-\theta)^2]$ es $a^* = E[\theta]$.
- 4. Obtenga la previa objetiva bajo el criterio de Jeffreys para el modelo Exponencial(λ).
- 5. Obtenga la forma del factor de Bayes cuando contamos con una muestra $X_1, ..., X_n \sim Bern(\theta)$ con una previa Beta (α, β) y queremos contrastar las hipótesis

$$H_0: \theta < 0.5 \text{ vs. } H_0: \theta > 0.5.$$

- 6. ¿Qué puede decir del algoritmo Metropolis-Hastings cuando $Q(\theta|\theta^*) = Q(\theta)$, es decir, no depende del estado actual?
- 7. ¿Qué puede decir del algoritmo Metropolis-Hastings cuando $Q(\theta|\theta^*) = Q(\theta^*|\theta)$, es decir, Q es simétrica?
- 8. Supongamos que usted quiere obtener observaciones simuladas de una normal bivariada con vector de medias $\boldsymbol{\mu} = (\mu_1, \mu_2)$ y matriz de covarianzas

$$\Sigma = \left[\begin{array}{cc} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{12} & \Sigma_{22} \end{array} \right].$$

Suponga que sólo sabe simular de normales univariadas $N(\mu, \sigma^2)$. Implemente un Muestreador de Gibbs para simular de esta normal bivariada. Pista: Use el conocimiento que existe de las condicionales de las normales multivariadas.

9. Recordemos que la función de probabilidad de una Binomial Negativa es

$$P(x|\lambda, m) = {m+x-1 \choose x} \lambda^x (1-\lambda)^m$$

Suponga se cuenta con una muestra aleatoria $X_1,...,X_n$ de la distribución Binomial-Negativa $(x|\lambda,m)$, con $0<\lambda<1$ (desconocida) y m conocida. La inicial de λ es

$$p(\lambda) \propto \lambda^{-1} (1 - \lambda)^{-1}$$

La distribución Binomial-Negativa se puede expresar como una distribución marginal de la distribución Poisson-Gamma.

$$\mathrm{P}_{\mathrm{Bin\text{-}Neg}}(x|\lambda,m) = \int_0^\infty \mathrm{P}_{\mathrm{Poisson}}(x|\theta) \mathrm{P}_{\mathrm{Gamma}}\left(\theta \Big| m, \frac{1-\lambda}{\lambda}\right) d\theta.$$

Podemos plantear este problema de inferencia como un modelo jerárquico de tres niveles.

Nivel I. (Observaciones)

$$X_i | \theta_i \sim \text{Poisson}(\theta_i) \text{ con } X_i \perp \!\!\! \perp X_j \text{ si } i \neq j.$$

Nivel II. (Parámetros)

$$\Theta_i|m, \lambda \sim \operatorname{Gamma}\left(m, \frac{1-\lambda}{\lambda}\right) \operatorname{con} \Theta_i \perp \!\!\! \perp \!\!\! \Theta_j \operatorname{si} i \neq j.$$

Nivel III. (Hiperparámetros)

$$p(\lambda) \propto \lambda^{-1} (1 - \lambda)^{-1}$$

Implemente el algoritmo de muestreador de Gibbs para simular tanto λ como de cada Θ_i . Note que el algoritmo debe tener n+1 pasos pero n de ellos son muy similares.

Pregunta adicional: ¿Qué pasaría si m es también desconocida? Si ya tenemos el algoritmo para m conocida, ¿basta agregar un paso más al algoritmo?

Referencias

- Bernardo J, Smith A (2000). Bayesian Theory. John Wiley & Sons, West Sussex, England.
- 2. Gelman A, Carlin J, Stern H, Rubin D (2004). Bayesian Data Analysis. 2nd edition. Chapman & Hall, Boca Raton, FL.
- 3. George Casella & Edward I. George (1992) Explaining the Gibbs Sampler, The American Statistician, 46:3, 167-174