CHAPTER 2

Boolean Algebra

Contents

- 2.1 Introduction
- 2.2 Basic Operation
- 2.3 Boolean Expression and Truth Table
- 2.4 Basic Theorem
- 2.5 Commutative, Associative and Distributive Laws
- 2.6 Simplification Theorem
- 2.7 Multiplying Out and Factoring
- 2.8 DeMorgan's Laws Problems

Objectives

Topics introduced in this chapter:

- Understand the basic operations and laws of Boolean algebra
- Relate these operations and laws to AND, OR, NOT gates and switches
- Prove these laws using a truth table
- Manipulation of algebraic expression using
 - Multiplying out
 - Factoring
 - Simplifying
 - Finding the complement of an expression

2.1 Introduction

- Basic mathematics for logic design: Boolean algebra
- Restrict to switching circuits (Two state values 0, 1) Switching algebra
- Boolean Variable: X, Y, ... can only have two state values (0, 1)
 - representing True(1) False (0)

NOT(Inverter)

$$0' = 1$$

and
$$1' = 0$$

$$X'=1 \text{ if } X=0$$

and

$$X' = 0$$
 if $X = 1$

Gate Symbol

$$X \longrightarrow X' \quad X = \text{Not } X$$

AND

$$0 \cdot 0 = 0$$

$$0 \cdot 1 = 0$$

$$0 \cdot 0 = 0$$
 $0 \cdot 1 = 0$ $1 \cdot 0 = 0$ $1 \cdot 1 = 1$

$$1 \cdot 1 = 1$$

Truth Table

A B	$C = A \cdot B$
0 0	0
0 1	0
1 0	0
1 1	1

Gate Symbol

$$A \longrightarrow C = A \cdot B$$

OR

$$0+0=0$$
 $0+1=1$ $1+0=1$ $1+1=1$

$$0+1=1$$

$$1 + 0 = 1$$

$$1 + 1 = 1$$

Truth Table

C = A + B
0
1
1
1

Gate Symbol

$$A \longrightarrow C = A + B$$

Apply to Switch

• $X = 0 \rightarrow$ switch open $X = 1 \rightarrow$ switch closed

AND

 $T = 0 \rightarrow$ open circuit between terminals 1 and 2

 $T=1 \rightarrow$ closed circuit between terminals 1 and 2

T = 0: switch A or switch B is open: A=0 or B=0

T = 1 : switch A and switch B is closed : A=1 and B=1

T = A + BOR

T = 0: switch A and switch B is open: A=0 and B=0

T = 1 : switch A or switch B is closed : A=1 or B=1

Logic Expression:
$$[A(C+D)]'+BE$$

Circuit of logic gates:

$$B \xrightarrow{AB'} (AB' + C)$$
(a)

Logic Expression: AB' + C

Logic Expression:

$$[A(C+D)]'+BE$$

Circuit of logic gates:

Logic Evaluation : A=B=C=1, D=E=0

$$[A(C + D)]' + BE = [1(1 + 0)] + 1 \cdot 0 = [1(1)]' + 0 = 0 + 0 = 0$$

Literal: a variable or its complement in a logic expression

$$ab'c + a'b + a'bc' + b'c'$$

10 literals

2-Input Circuit and Truth Table

Truth table is specifies the values of a Boolean expression for <u>every possible</u> <u>combination</u> of values in the expression.

Proof using Truth Table
$$AB'+C = (A+C)(B'+C)$$

n variable needs

$$2 \times 2 \times 2 \times \dots = 2^n$$
 rows

TABLE 2.1

A B C	В'	AB'	AB' + C	A+C	B' + C	(A+C)(B'+C)
0 0 0	1	0	0	0	1	0
0 0 1	1	0	1	1	1	1
0 1 0	0	0	0	0	0	0
0 1 1	0	0	1	1	1	1
1 0 0	1	1	1	1	1	1
1 0 1	1	1	1	1	1	1
1 1 0	0	0	0	1	0	0
1 1 1	0	0	1	1	1	1

2.4 Basic Theorems

Operations with 0, 1

$$X + 0 = X$$

$$X \cdot 1 = X$$

$$X + 1 = 1$$

$$X \cdot 0 = 0$$

Idempotent Laws

$$X + X = X$$

$$X \cdot X = X$$

Involution Laws

$$(X')'=X$$

$$X + X' = 1$$

$$X \cdot X' = 0$$

Proof

$$X=0$$
.

$$0 + 0' = 0 + 1$$

and if
$$X = 1$$
.

$$X = 0$$
, $0 + 0' = 0 + 1$, and if $X = 1$, $1 + 1' = 1 + 0 = 1$

Example

$$(AB'+D)E+1=1$$

$$(AB'+D)(AB'+D)'=0$$

2.4 Basic Theorems with Switch Circuits

Logic expression:

$$A \cdot A = A$$

Logic expression:

$$A + A = A$$

2.4 Basic Theorems with Switch Circuits

2.5 Commutative, Associative, and Distributive Laws

Commutative Laws:

$$XY = YX$$

$$X+Y=Y+X$$

Associative Laws:

$$(XY)Z = X(YZ) = XYZ$$

$$(X + Y) + Z = X + (Y + Z) = X + Y + Z$$

Proof of Associate Law for AND

XYZ	XY YZ	(XY)Z X(YZ)
0 0 0	0 0	0 0
0 0 1	0 0	0 0
0 1 0	0 0	0 0
0 1 1	0 1	0 0
1 0 0	0 0	0 0
1 0 1	0 0	0 0
1 1 0	1 0	0 0
1 1 1	1 1	1 1

Associative Laws for AND and OR

2.5 Commutative, Associative, and Distributive Laws

AND

$$XYZ = 1 \text{ iff } X = Y = Z = 1$$

OR

$$X + Y + Z = 0$$
 iff $X = Y = Z = 0$

Distributive Laws:

$$X(Y+Z) = XY + XZ$$

$$X + YZ = (X + Y)(X + Z)$$

Valid only Boolean algebra not for ordinary algebra

Proof

$$(X + Y)(X + Z) = X(X + Z) + Y(X + Z) = XX = XZ + YX + YZ$$

= $X + XZ + XY + YZ = X \cdot 1 + XZ + XY + YZ$
= $X(1 + Z + Y) + YZ = X \cdot 1 + YZ = X + YZ$

2.6 Simplification Theorems

Useful Theorems for Simplification

$$XY + XY' = X$$
 $(X + Y)(X + Y') = X$
 $X + XY = X$ $X(X + Y) = X$
 $(X + Y')Y = XY$ $XY' + Y = X + Y$

Proof

$$X + XY = X \cdot 1 + XY = X(1+Y) = X \cdot 1 = X$$

 $X(X+Y) = XX + XY = X + XY = X$
 $Y + XY' = (Y+X)(Y+Y') = (Y+X)1 = Y + X$

Proof with Switch

2.6 Simplification Theorems

Equivalent Gate Circuits

$$F = A(A'+B) = AB$$

Proof A(A' + B) = AA' + AB : Distributive Law

= AB : AA' = 0

2.7 Multiplying Out and Factoring

To obtain a sum-of-product form → Multiplying out using distributive laws

Sum of product form:

$$AB'+CD'E+AC'E$$

Still considered to be in sum of product form:

$$ABC'+DEFG+H$$

 $A+B'+C+D'E$

Not in Sum of product form:

$$(A+B)CD+EF$$

Multiplying out and eliminating redundant terms

$$(A+BC)(A+D+E) = A + AD + AE + ABC + BCD + BCE$$
$$= A(1+D+E+BC) + BCD + BCE$$
$$= A + BCD + BCE$$

2.7 Multiplying Out and Factoring

To obtain a product of sum form → all sums are the sum of single variable

Product of sum form:

Still considered to be in product of sum form:

$$(A+B'(C+D'+E)(A+C'+E')$$

$$(A+B)(C+D+E)F$$

$$AB'C(D'+E)$$

Circuits for SOP and POS form

2.8 DeMorgan's Laws

DeMorgan's Laws

$$(X+Y)'=X'Y'$$

$$(XY)' = X' + Y'$$

Proof

ΧΥ	X' Y'	X + Y	(X+Y)'	X' Y'	XY	(XY)'	X' + Y'
0 0	1 1	0	1	1	0	1	1
0 1	1 0	1	0	0	0	1	1
1 0	0 1	1	0	0	0	1	1
1 1	0 0	1	0	0	1	0	0

DeMorgan's Laws for *n* **variables**

$$(X_1 + X_2 + X_3 + \dots + X_n)' = X_1' X_2' X_3' \dots X_n'$$

 $(X_1 X_2 X_3 \dots X_n)' = X_1' + X_2' + X_3' + \dots + X_n'$

Example

$$(X_1 + X_2 + X_3)' = (X_1 + X_2)' X_3' = X_1' X_2' X_3'$$

2.8 DeMorgan's Laws

$$F' = (A'B + AB')' = (A'B)'(AB')' = (A + B')(A' + B)$$

= $AA' + AB + B'A' + BB' = A'B' + AB$

АВ	A' B	A B'	F = A'B + AB'	A' B'	АВ	F' = A'B' + AB
0 0	0	0	0	1	0	1
0 1	1	0	1	0	0	0
1 0	0	1	1	0	0	0
1 1	0	0	0	0	1	1

Dual: 'dual' is formed by replacing AND with OR, OR with AND, 0 with 1, 1 with 0

$$(XYZ...)^D = X + Y + Z + ...$$
 $(X + Y + Z + ...)^D = XYZ...$

$$(AB'+C)'=(AB')'C'=(A'B)C',$$
 so $(AB'+C)^D=(A+B')C$