

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА — Российский технологический университет»

РТУ МИРЭА

Институт информационных технологий (ИИТ) Кафедра инструментального и прикладного программного обеспечения (ИиППО)

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ

по дисциплине «Технологии передачи данных»

Лабораторная работа № 4

Студент группы	ИВБО-07-21, Стока Иван Павлович	
		(подпись)
Преподаватель	Рогов И.Е.	
•		(подпись)
Отчет представлен	« <u>»</u> 2023 г.	

СОДЕРЖАНИЕ

ХОД РАБОТЫ
Часть 1. Преобразование IPv4-адресов из десятичной системы
счисления с точкой -разделителем в двоичный формат
Часть 2. Определение сетевых адресов на основе адреса хоста и маски
сети
Часть 3. Применение расчетов сетевых адресов
Часть 4. Расчет основных характеристик сети
Часть 5. Расчет подсетей
Часть 6 Разделение на подсети топологий сети
ЗАКЛЮЧЕНИЕ
СПИСОК ИСТОЧНИКОВ11

ХОД РАБОТЫ

Часть 1. Преобразование IPv4-адресов из десятичной системы счисления с точкой -разделителем в двоичный формат

Шаг 1 Преобразование чисел в двоичную систему счисления

Преобразование чисел в десятичном формате в двоичную систему счисления (Таблица 1).

Tаблица $1 - \Pi$ реобразование числе в двоичную систему счисления

Десятичные	Двоичные
192	11000000
160	10100000
168	10101000
10	00001010
255	11111111
2	00000010

Шаг 2 Преобразование IPv4 адресов из десятичного формата в двоичный

Преобразование IPv4 адреса в двоичный формат (Таблица 2).

Таблица 2 – Преобразование IPv4 в двоичный формат

Десятичный формат	Двоичный формат
192.168.1.10	11000000.10101000.00000001.00001010
209.165.200.229	11010001.10100101.11001000.11100101
172.16.18.183	10101100.00010000.00010010.10110111
255.255.255.0	11111111.11111111111111111100000000
255.255.192.0	11111111.11111111.11000000.0000000

Часть 2. Определение сетевых адресов на основе адреса хоста и маски сети

Шаг 1 Определение сетевого адреса

Определение сетевого адреса (Таблица 3 - 7).

Таблица 3 – Определение сетевого адреса

Описание	Десятичный формат	Двоичный формат
ІР-адрес	172.16.145.29	10101100.00010000.10010001.00011101
Маска подсети	255.255.0.0	11111111.11111111.00000000.00000000
Сетевой адрес	172.16.0.0	10101100.00010000.00000000.00000000

Таблица 4 – Определение сетевого адреса

Описание	Десятичный формат	Двоичный формат
ІР-адрес	192.168.68.210	11000000.10101000.01000100.11010010
Маска подсети	255.255.255.128	11111111.11111111.11111111.10000000
Сетевой адрес	192.168.68.128	11000000.10101000.01000100.10000000

Таблица 5 – Определение сетевого адреса

Описание	Десятичный формат	Двоичный формат
ІР-адрес	192.168.10.10	11000000.10101000.00001010.00001010
Маска подсети	255.255.255.0	11111111.11111111.11111111.00000000
Сетевой адрес	192.168.10.0	11000000.10101000.00001010.00000000

Таблица 6 – Определение сетевого адреса

Описание	Десятичный формат	Двоичный формат
ІР-адрес	172.16.188.15	10101100.00010000.10111100.00001111
Маска подсети	255.255.240.0	11111111.11111111.11110000.00000000
Сетевой адрес	172.16.176.0	10101100.00010000.10110000.00000000

Таблица 7 – Определение сетевого адреса

Ormonius	Поодтуууууй формот	Thousand the market
Описание	Десятичный формат	Двоичный формат
ІР-адрес	10.172.2.8	00001010.10101100.00000010.00001000
Маска подсети	255.224.0.0	11111111.11100000.00000000.00000000
Сетевой адрес	10.160.0.0	00001010.10100000.00000000.00000000

Часть 3. Применение расчетов сетевых адресов

Шаг 1 Определение нахождения компьютеров в одной сети

Ситуация А. Вы настраиваете два ПК для своей сети. Компьютеру РС-А присвоен IP-адрес 192.168.1.18, а компьютеру РС-В — IP-адрес 192.168.1.33. Маска подсети обоих компьютеров — 255.255.255.240 (Таблица 8).

Таблица 8 — Ситуация А

Сетевой адрес РС-А	192.168.1.16
Сетевой адрес РС-В	192.168.1.32
Смогут ли компьютеры друг с другом	Нет, т.к. они находятся в разных
взаимодействовать напрямую?	подсетях
Какой наибольший адрес, присвоенный компьютеру	192.168.1.30
РС-В, позволит ему находиться в одной сети с РС-А?	

Ситуация Б. Вы настраиваете два ПК для своей сети. Компьютеру РС-А присвоен IP-адрес 10.0.0.16, а компьютеру РС-В — IP-адрес 10.1.14.68. Маска подсети обоих компьютеров — 255.254.0.0 (Таблица 9).

Таблица 9 – Ситуация Б

, , ,	
Сетевой адрес РС-А	10.0.0.0
Сетевой адрес РС-В	10.0.0.0
Смогут ли компьютеры друг с другом	Да, т.к. находятся в одной подсети
взаимодействовать напрямую?	
Какой наибольший адрес, присвоенный компьютеру	10.1.255.254
РС-В, позволит ему находиться в одной сети с РС-А?	

Шаг 2 Определение шлюза по умолчанию

Ситуация А. В вашей компании действует политика использования первого IP-адреса в сети в качестве адреса шлюза по умолчанию. Узел в локальной сети (LAN) имеет IP-адрес 172.16.140.24 и маску подсети 255.255.192.0 (Таблица 10).

Таблица 10 – Ситуация А

Сетевой адрес	172.16.128.0
Адрес шлюза по умолчанию	172.16.128.1

Ситуация Б. В вашей компании действует политика использования первого IP-адреса в сети в качестве адреса шлюза по умолчанию. Вы получили указание настроить новый сервер с IP-адресом 192.168.184.227 и маской подсети 255.255.255.248 (Таблица 11).

Таблица 11 – Ситуация Б

Сетевой адрес	192.168.184.224
Адрес шлюза по умолчанию	192.168.184.225

Часть 4. Расчет основных характеристик сети

Шаг 1 Расчет основных характеристик сети

Определение сетевого и широковещательного адресов и количество бит узлов для IPv4-адресов и префиксов (Таблица 12).

Таблица 12 – Определение характеристик подсетей

IPv4-	Сетевой адрес	Широковещательный	Общее	Общее
адрес/префикс		адрес	количество бит	количество
			узлов	узлов
192.168.100.25/28	192.168.100.16	192.168.100.31	32 - 8 = 4	$2^4 - 2 = 14$
172.30.10.130/30	172.30.10.128	172.30.10.131	2	2
10.1.113.75/19	10.1.96.0	10.1.127.255	13	8190
198.133.219.250/24	198.133.219.0	198.133.219.255	8	254
128.107.14.191/22	128.107.12.0	128.107.15.255	10	1022
172.16.104.99/27	172.16.104.96	172.16.104.127	5	30

Часть 5. Расчет подсетей

Определение основных характеристик подсетей (Таблица 13 - 15).

Таблица 13 – Определение основных характеристик подсетей

IPv4-адрес узла	192.135.250.180
Исходная маска подсети	255.255.255.0 /24
Новая маска подсети	255.255.255.248 / 29
Количество бит подсети	29 - 24 = 5
Количество созданных подсетей	2^5 = 32

Продолжение Таблица 13

Количество бит узлов в подсети	32 - 29 = 3
Количество узлов в подсети	$2^3 - 2 = 6$
Сетевой адрес этой подсети	192.135.250.176
IPv4-адрес первого узла в этой подсети	192.135.250.177
IPv4-адрес последнего узла в этой подсети	192.135.250.182
Широковещательный IPv4-адрес в этой	192.135.250.183
подсети	

Таблица 14 – Определение основных характеристик подсетей

IPv4-адрес узла	192.168.200.139
Исходная маска подсети	255.255.255.0 /24
Новая маска подсети	255.255.255.224 /27
Количество бит подсети	3
Количество созданных подсетей	8
Количество бит узлов в подсети	5
Количество узлов в подсети	30
Сетевой адрес этой подсети	192.168.200.128
IPv4-адрес первого узла в этой подсети	192.168.200.129
IPv4-адрес последнего узла в этой подсети	192.168.200.157
Широковещательный IPv4-адрес в этой	192.168.200.158
подсети	

Таблица 15 – Определение основных характеристик подсетей

IPv4-адрес узла	10.101.99.228
Исходная маска подсети	255.0.0.0 /8
Новая маска подсети	255.255.128.0 /17
Количество бит подсети	9
Количество созданных подсетей	512
Количество бит узлов в подсети	15
Количество узлов в подсети	32766
Сетевой адрес этой подсети	10.101.0.0
IPv4-адрес первого узла в этой подсети	10.101.0.1
IPv4-адрес последнего узла в этой подсети	10.101.127.254
Широковещательный IPv4-адрес в этой	10.101.127.255
подсети	

Часть 6 Разделение на подсети топологий сети

Разделение на подсети топологии А

В варианте А дается сетевой адрес 192.168.10.0/24 для разделения на подсети с указанной топологией. Определите необходимое количество сетей и составьте соответствующую схему адресации (Таблица 16).

Таблица 16 – Вариант А

Tea	
Количество подсетей	2
Количество дополнительных битов для новой	1
маски подсети	
Сколько имеется полезных адресов узла в	2^(32-25) -2 = 126
подсети в данной структуре адресации?	
Как будет выглядеть новая маска подсети в	255.255.255.128 /25
десятичном формате с точкой-разделителем?	
Сколько подсетей останутся свободны для	0
использования в будущем?	

Таблица 17 информации о подсетях.

Таблица 17 – Информация о подсетях

Номер подсети	Адрес подсети	Первый	Последний	Широковещательный
		используемый	используемый	адрес
		адрес узла	адрес узла	
0	192.168.10.0	192.168.10.1	192.168.10.126	192.168.10.127
1	192.168.10.128	192.168.10.129	192.168.10.254	192.168.10.255

Разделение на подсети топологии Б

В варианте Б дается сетевой адрес 192.168.10.0/24 для разделения на подсети с указанной топологией. Данная топология является расширением топологии А. Определите необходимое количество сетей и составьте соответствующую схему адресации (Таблица 18).

Таблица 18 – Вариант Б

Количество подсетей	4
Количество дополнительных битов для новой	2
маски подсети	

Продолжение Таблицы 18

I	
Сколько имеется полезных адресов узла в	62
подсети в данной структуре адресации?	
Как будет выглядеть новая маска подсети в	255.255.255.192/26
десятичном формате с точкой-разделителем?	
Сколько подсетей останутся свободны для	0
использования в будущем?	

Таблица 19 информации о подсетях.

Таблица 19 – Информация о подсетях

	1 1 ,			
Номер подсети	Адрес подсети	Первый	Последний	Широковещательный
		используемый	используемый	адрес
		адрес узла	адрес узла	
0	192.168.10.0	192.168.10.1	192.168.10.62	192.168.10.63
1	192.168.10.64	192.168.10.65	192.168.10.126	192.168.10.127
2	192.168.10.128	192.168.10.129	192.168.10.190	192.168.10.191
3	192.168.10.192	192.168.10.193	192.168.10.154	192.168.10.255

Разделение на подсети топологии В

У компании имеется сетевой адрес 172.16.128.0/17, который нужно разделить в соответствии с приведённой ниже топологией. Необходимо выбрать схему адресации, в которой можно разместить такое количество сетей и узлов (Таблица 20).

Таблица 20 – Вариант В

, 1	
Количество подсетей	9
Количество дополнительных битов для новой	4
маски подсети	
Сколько имеется полезных адресов узла в	2046
подсети в данной структуре адресации?	
Как будет выглядеть новая маска подсети в	255.255.248.0/21
десятичном формате с точкой-разделителем?	
Сколько подсетей останутся свободны для	7
использования в будущем?	

Таблица информации о подсетях (Таблица 21).

Таблица 21 – Информация о подсетях

Номер подсети	Адрес подсети	Первый	Последний	Широковещательный
помер подести	парес подести	используемый	используемый	адрес
		адрес узла	адрес узла	
0	172.16.128.0	172.16.128.1	172.16.135.254	172.16.135.255
1	172.16.136.0	172.16.136.1	172.16.143.254	172.16.143.255
2	172.16.144.0	172.16.144.1	172.16.151.254	172.16.151.255
3	172.16.152.0	172.16.152.1	172.16.159.254	172.16.159.255
4	172.16.160.0	172.16.160.1	172.16.167.254	172.16.167.255
5	172.16.168.0	172.16.168.1	172.16.175.254	172.16.175.255
6	172.16.176.0	172.16.176.1	172.16.183.254	172.16.183.255
7	172.16.184.0	172.16.184.1	172.16.191.254	172.16.191.255
8	172.16.192.0	172.16.192.1	172.16.199.254	172.16.199.255
9	172.16.200.0	172.16.200.1	172.16.207.254	172.16.207.255
10	172.16.208.0	172.16.208.1	172.16.215.254	172.16.215.255
11	172.16.216.0	172.16.216.1	172.16.223.254	172.16.223.255
12	172.16.224.0	172.16.224.1	172.16.231.254	172.16.231.255
13	172.16.232.0	172.16.232.1	172.16.239.254	172.16.239.255
14	172.16.240.0	172.16.240.1	172.16.247.254	172.16.247.255
15	172.16.248.0	172.16.248.1	172.16.255.254	172.16.255.255

ЗАКЛЮЧЕНИЕ

В данной практической работе были разобраны характеристики подсетей, на примере разных топологий.

СПИСОК ИСТОЧНИКОВ

- 1. Олифер В.Г., Олифер В.А. Компьютерной сети. 2-е изд. Санкт-Петербург: Питер, 2021.-1008 с.
- 2. Мастер класс по использованию Wireshark // youtube URL: https://www.youtube.com/watch?v=OU-

A2EmVrKQ&list=PLW8bTPfXNGdC5Co0VnBK1yVzAwSSphzpJ (дата обращения: 01.03.2023).