Laboratorio Hoja de comprobación.

Luis Felipe Chutá Ortiz [1320016] Andres Sebastian Gálvez Arriaz [1024718]

Marcelo Guillermo Rosales Taque [1140518] Rodrigo Alejandro Villacinda Aguilar [1205917]

Walter Alexander Osoy Véliz [1126017]

Monday 15^{th} March, 2021

Contents

1	Ejer	icios	3
	1.1	Ejercicio 1	3
	1.2	Ejercicio 2	7
	1.3	Ejercicio 3	8
	1.4	Ejercicio 4	8
	1.5	Ejercicio 5	0

1 Ejercicios

1.1 Ejercicio 1

Para cada una de las estrategias de búsqueda mencionadas a continuación, trabaje un grafo de búsqueda en formato (graph-search) y enumere el orden en el que son expandidos los nodos, resuelva los desempates tomando como prioridad el orden alfabético de los nodos:

1. DFS Ş S->BS->D $S \rightarrow A$ $S \rightarrow A \rightarrow C$ S->A->S $S \rightarrow A \rightarrow C \rightarrow D$ $S \rightarrow A \rightarrow C \rightarrow A$ S->A->C->G $S \rightarrow A \rightarrow C \rightarrow D \rightarrow C$ S->A->C->D->S $S \rightarrow A \rightarrow C \rightarrow D \rightarrow B$ S->A->C->D->G $S \rightarrow A \rightarrow C \rightarrow D \rightarrow B \rightarrow S$ $S \rightarrow A \rightarrow C \rightarrow D \rightarrow B \rightarrow D$

Figure 1.1: DFS

- 2. BFS
 - S
 - $S \rightarrow B$
 - $S \rightarrow D$
 - $S \rightarrow A$
 - $S \rightarrow A \rightarrow S$
 - $S \rightarrow A \rightarrow C$
 - $S \rightarrow B \rightarrow S$
 - $S \rightarrow B \rightarrow D$
 - $S \rightarrow D \rightarrow C$ $S \rightarrow D \rightarrow S$

 - $S \rightarrow D \rightarrow B$
 - S->D->G

Figure 1.2: BFS

- 3. Uniform cost
 - $S \to B (3)$
 - $S \to D(5)$
 - $S \to A (2)$
 - S > A > S(2+2) = 4
 - S > A > C(2+4) = 6
 - $S \rightarrow B \rightarrow S (3+3) = 6$
 - S > B > D (3+4) = 7
 - $S \to D \to C (5+1) = 6$
 - S > D > S (5+5) = 10
 - S > D > B (5 + 4) = 9
 - S->D->G (5+5) = 10
 - S->A->C->A (2+4+4) = 10
 - S->A->C->D(2+4+1)=7
 - S->A->C->G(2+4+2)=8

Figure 1.3: Uniform Cost

- 4. Greedy search
 - S-(0)
 - S->B(5)
 - $S \to D (1)$
 - S->A(2)
 - S->D->B (5)
 - S->D->C (2)
 - S->D->G(0)
 - S->D->S

Figure 1.4: Greedy Search

- 5. A*
 - S
 - S->B
 - S->D
 - $S \rightarrow A$
 - $S \rightarrow A \rightarrow C$
 - S->A->C->D

S->A->C->G

Figure 1.5: A*

1.2 Ejercicio 2

- 1. Llene el valor en los nodos faltantes y aplique pruning, si no es posible, justifique su decisión.
 - El ejercicio no puede ser resuelto por pruning debido a los nodos probabilísticos.

Figure 1.6: Respuesta al ejercicio 2

1.3 Ejercicio 3

El siguiente diagrama representa un CSP con restricciones binarias y variables con dominio D donde D > 100

Figure 1.7: Diagrama Ejercicio 3

Para cada uno de los escenarios descritos, enumere todas las variables para las cuales una operación de filtering alteraría el dominio de las variables.

• Un valor es asignado a A. ¿Cuales dominios se verán impactados si se ejecuta forward checking B?

Figure 1.8: Dominios impactados

• Un valor es asignado a A, luego se ejecuta forward checking en A. Luego, un valor es asignado a B. ¿Cuales dominios se verán impactados si se ejecuta forward checking para B?

Figure 1.9: Dominios impactados

• Un valor es asignado a A. ¿Cuales dominios se verán impactados si se ejecuta arc consistency?

Figure 1.10: Dominios impactados

• Un valor es asignado a A y luego de ejecuta arc consistency. Luego, un valor es asignado a B ¿Cuales dominios se verán impactados si se ejecuta arc consistency luego de la asignación de B?

Figure 1.11: Dominios impactados

1.4 Ejercicio 4

1. Llene en el gráfico los valores que no sean dependientes de X y Y .

Figure 1.12: Respuesta al Inciso 1

2. ¿Cuales valores de X harían que el papá seleccione siempre Emeryville sin importar el valor de Y?

Figure 1.13: Respuesta al Inciso 2

3. Si sabemos que el valor máximo de Y es 30 ¿Cuales valores de X resultaran en un juguete de "Games of Berkley" sin importar el valor exacto de Y ?

Figure 1.14: Respuesta al Inciso 3

1.5 Ejercicio 5

Se estima que de una población de 100 personas, 99 estarán libres de una variante de cancer

y una persona sera afectada (C).

En observaciones anteriores se ha determinado que las pruebas tienen un 90%(P(+|C) = 0.9)

de efectividad al detectar un positivo, y un 20% de posibilidad de detectar un falso positivo

$$(P(+|-C) = 0,2).$$

¿Cual es la probabilidad de que una persona tenga cancer si la prueba dío positivo? P(C|+)

Resultado	Estado	Probabilidad
Positivo	Con Cáncer	0.90%
Positivo	Sin Cáncer	19.80%
Negativo	Con Cancer	0.10%
Negativo	Sin Cancer	79.20%

$$p(c|+) = p(c,+)/(p(+,+c) + p(+,-c)) = 0.8$$

$$p(+|c) = 0.9\%/1\% = 0.90\%$$

$$p(c|+) = p(c,+)/(p(+c,+) + p(-c,+)) = 0.90\%/20.70\% = 4.35\%$$