Chapter 3

Energy and Angular Momentum

3.1 Energy and Conservative Forces in 3D; Angular Momentum

10/6: • Recap.

- If $F(x, \dot{x}, t) = F(x)$, then we can define V(x).
- A bit more on kinetic, potential, and total energy in 1D.
- Question: Is $\vec{F}(\vec{r}, \dot{\vec{r}}, t) = F(\vec{r})$ sufficient for the force to be conservative?
 - Answer: No, it is not.
- What is a necessary and sufficient condition, then?
 - If T + V = E, a constant, then we should have d/dt (T + V) = 0.
 - Since

$$\dot{T} = m(\dot{x}\ddot{x} + \dot{y}\ddot{y} + \dot{z}\ddot{z}) = m\dot{\vec{r}} \cdot \ddot{\vec{r}} = \dot{\vec{r}} \cdot \vec{F} \qquad \qquad \dot{V} = \frac{\partial V}{\partial x}\dot{x} + \frac{\partial V}{\partial y}\dot{y} + \frac{\partial V}{\partial z}\dot{z} = \dot{r} \cdot \vec{\nabla}V$$

stating that $\dot{T} + \dot{V} = d/dt$ (T + V) = 0 is equivalent to stating that

$$\dot{\vec{r}} \cdot (\vec{F} + \vec{\nabla} V)$$

- But from here, it follows that we must have $\vec{F} = -\vec{\nabla}V$.
- Takeaway: Conservative forces depend on \vec{r} and can be written as $-\vec{\nabla}V$ for some scalar function V.
- Can we express this condition more nicely? Yes!
 - Claim: curl $(\vec{F}) = \vec{\nabla} \times \vec{F} = 0$ iff $\vec{F} = -\vec{\nabla} V$ for some scalar function V.
 - Suppose $F = -\vec{\nabla}V$ for some scalar function V.
 - Then since the curl of a gradient field is zero,

$$\vec{\nabla} \times \vec{F} = \vec{\nabla} \times \vec{\nabla} V = 0$$

- Suppose $\vec{\nabla} \times \vec{F} = 0$.
 - To prove that $\vec{F} = -\vec{\nabla}V$ for some V, it will suffice to show that

$$V(\vec{r}) = -\int_{\vec{r}_0}^{\vec{r}} \vec{F} \cdot d\vec{r'}$$

- In particular, it will suffice to show that the function above is well defined. To do so, we will need to prove that the line integral on the right-hand side above is **path-independent**.
- But then by the equivalent path independence condition below, we need

$$\oint_C \vec{F} \cdot d\vec{r} = 0$$

for all C.

■ Applying **Stokes' theorem**, we obtain the equivalent condition

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_S (\vec{\nabla} \times \vec{F}) \cdot d\vec{S} = \iint_S 0 \cdot d\vec{S} = 0$$

as desired.

• Path-independent (line integral): A line integral $\int_{\vec{r}_0}^{\vec{r}_1} \vec{A} \cdot d\vec{r}$ over some vector field \vec{A} such that if C_1, C_2 are any two curves connecting \vec{r}_0 and \vec{r}_1 , then

$$\int_{C_1} \vec{A} \cdot d\vec{r} = \int_{C_2} \vec{A} \cdot d\vec{r}$$

Figure 3.1: Path independent line integral.

- An equivalent path independence condition may be obtained via inspection of Figure 3.1.
- Indeed, saying that the path integral along C_1 (from $\vec{r_0}$ to $\vec{r_1}$) equals that along C_2 (from $\vec{r_0}$ to $\vec{r_1}$) is equivalent to saying that the difference of the path integrals is equal to zero. Equivalently, the path integral along C_1 (from $\vec{r_0}$ to $\vec{r_1}$) plus the path integral along C_2 (from $\vec{r_1}$ to $\vec{r_0}$) equals zero. But this sum of path integrals is just the closed loop integral \oint_C around the oriented curve $C = C_1 C_2$.
- Thus, equivalently,

$$\int_C \vec{A} \cdot d\vec{r} = 0$$

for all C containing $\vec{r_0}$ and $\vec{r_1}$.

- Lastly, note that we do not need to constrain the curves to \vec{r}_0 and \vec{r}_1 but can let them freely range over the whole space. Thus, we can check the closed loop integral over all loops C in the space.
- Stokes' theorem: The following integral equality, where C is a closed curve bounding the curved surface S and \vec{A} is a vector field. Given by

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_S (\vec{\nabla} \times \vec{A}) \cdot d\vec{S}$$

- How do we find V from F?
 - First, we need an integral theorem.

– Theorem: For all scalar functions $\phi: \mathbb{R}^3 \to \mathbb{R}$ defining conservative forces and all points $\vec{r}_0, \vec{r}_1 \in \mathbb{R}^3$, the **line integral**

$$\int_{\vec{r}_0}^{\vec{r}_1} \vec{\nabla} \phi \cdot d\vec{r} = \phi(\vec{r}_1) - \phi(\vec{r}_0)$$

– It follows that if $F = -\nabla V$, then

$$V(\vec{r}_1) - V(\vec{r}_0) = -\int_{\vec{r}_0}^{\vec{r}_1} \vec{\nabla} V \cdot d\vec{r}$$

- We now move onto rotation.
 - We describe rotation in polar coordinates.
 - Let ℓ_r be the length in the radial direction, and let ℓ_{θ} be the length in the angular direction.
 - Then

$$d\ell_r = dr d\ell_\theta = rd\theta$$

where

$$\hat{r} = \hat{\imath}\cos\theta + \hat{\jmath}\sin\theta \qquad \qquad \hat{\theta} = -\hat{\imath}\sin\theta + \hat{\jmath}\cos\theta$$

- Coordinate-wise, we have

$$x = r\cos\theta$$
 $y = r\sin\theta$

- Velocity-wise, we have $\vec{v} = v_x \hat{\imath} + v_y \hat{\jmath}$ where

$$v_x = \dot{r}\cos\theta - r\dot{\theta}\sin\theta$$
 $v_y = \dot{r}\sin\theta + r\dot{\theta}\cos\theta$ $v_r = \vec{v}\cdot\hat{r} = \dot{r} = \frac{\mathrm{d}\ell_r}{\mathrm{d}t}$ $v_\theta = \vec{v}\cdot\hat{\theta} = r\dot{\theta} = \frac{\mathrm{d}\ell_\theta}{\mathrm{d}t}$

- The analogy of force under rotation is **torque**.
- Torque: A twisting force that tends to cause rotation, quantified as follows. Also known as moment of force. Denoted by \vec{g} . Given by

$$\vec{G} = \vec{r} \times \vec{F}$$

- Componentwise, we have

$$G_x = yF_z - zF_y$$
 $G_y = zF_x - xF_z$ $G_z = xF_y - yF_x$

- We also have $\|\vec{G}\| = rF \sin \theta$.
- Momentum under rotation: Angular momentum.
- Angular momentum: The quantity of rotation of a body, quantified as follows. Denoted by \vec{J} . Given by

$$\vec{J} = \vec{r} \times \vec{p} = m\vec{r} \times \vec{r}$$

- Derivative:

$$\dot{\vec{J}} = \vec{G}$$

- Central force: A force that flows toward or away from the origin, i.e., is in the \hat{r} direction.
 - Identify with $\vec{r} \times \vec{F} = 0$.
- Under central forces, angular momentum is conserved.

- We have

$$\vec{J} = mr^2 \dot{\theta} \hat{z}$$

- Sweeping out equal areas (Kepler's 2nd law): We have

$$dA = \frac{1}{2}r^2 d\theta = \pi r^2 \frac{d\theta}{2\pi}$$
$$\frac{dA}{dt} = \frac{1}{2}r^2 \dot{\theta}$$