

Matemática II Semejanza y Congruencia

Departamento de Matemática Preuniversitario Futuro

Contenidos

Matemática 1 PAES y PDT

Figuras geométricas

Problemas que involucren el Teorema de Pitágoras en diversos contextos.

Semejanza y proporcionalidad de figuras planas

- Concepto y propiedades de semejanza.
- Modelos a escala.
- Problemas que involucren propiedades de semejanza en diverso contextos.
- Problemas que involucren el Teorema de Thales en diversos contextos.

Definición de Polígonos Congruentes:

Dos polígonos son congruentes cuando tienen la misma forma y el mismo tamaño; es decir; cuando al sobreponer una figura sobre otra, ambas coinciden.

Triángulos Congruentes

Dos triángulos son congruentes si tienen todos sus elementos homólogos respectivos de igual medida; es decir:

Ejemplo:

Los triángulos PQR y STW son isósceles congruentes de base QR y base ST respectivamente ¿Cuál (es) de las siguientes relaciones es son verdaderas?

- I. $\triangle PRQ \cong \triangle WST$
- II. $\triangle RPQ \cong \triangle WST$
- III. $\triangle RQP \cong \triangle TWS$
- A) Sólo I
- B) Sólo II
- C) Sólo III
- D) Sólo I y II
- E) Sólo I y III

Respuesta: A

Criterio de congruencia de triángulos

Para verificar la congruencia de dos triángulos basta con probar sólo **tres** elementos siendo al menos uno de ellos un lado.

a) Criterio Lado - Lado (LLL)

Dos triángulos son congruentes si y sólo si tienen sus tres lados respectivos congruentes.

$$\triangle ABC \cong \triangle DEF \Leftrightarrow egin{array}{c} \overline{AB} \cong \overline{DE} \\ \overline{BC} \cong \overline{EF} \\ \overline{AC} \cong \overline{DF} \end{array}$$

b) Criterio Lado – Ángulo – Lado (LAL)

Dos triángulos son congruentes si y sólo si tienen dos lados y el ángulo correspondientes entre ellos respectivamente congruentes.

Criterio de congruencia de triángulos

c) Criterio Ángulo – Lado – Ángulo (ALA)

Dos triángulos son congruentes si y sólo si
tienen un lado y dos ángulos adyacentes a
él respectivamente congruentes.

d) Criterio Lado – Lado – Ángulo (LLA> o LLA)

Dos triángulos son congruentes cuando tienen dos lados y el ángulo opuesto al mayor de estos lados respectivamente congruentes.

$$\Delta ABC \cong \Delta DEF \Leftrightarrow \overline{AC} \cong \overline{DF}$$
 $\Delta C \cong \Delta F$

Ejemplo:

En la figura, \angle EAC \cong \angle BED, B es el punto de intersección de los CD y AE. Si B es punto medio del AE, entonces ¿Cuál criterio permite demostrar que los \triangle ABC y \triangle EBD son congruentes?

- A) ALA
- B) LAL
- C) AAA
- D) LLL
- E) LLA

Respuesta: A

Polígonos Semejantes

Son aquellos que tienen sus ángulos interiores correspondientes congruentes y la razón entre los lados homólogos son iguales.

✓ Ángulos correspondientes congruentes

✓ Razón de los lados homólogos iguales

$$\frac{\overline{DC}}{\overline{HG}} = \frac{\overline{AD}}{\overline{EH}} = \frac{\overline{AB}}{\overline{EF}} = \frac{\overline{BC}}{\overline{FG}}$$

$$\frac{3}{2} = \frac{4,5}{3} = \frac{9}{6} = \frac{6}{4} = 1,5 = k$$

Cuadrilátero ABCD ~ Cuadrilátero EFGH ⇔

Observación:

✓ Todos los polígonos regulares de igual número de lados son semejantes

Por ejemplo: Los Triángulos equiláteros de las figura son semejantes, uno tiene lado 4cm y el otro de lado 12 cm, siendo su razón 3.

F

SEMEJANZAS Y CONGRUENCIAS

Propiedades de los Polígonos Semejantes

a) La razón entre los perímetros de dos polígonos semejantes es la misma que sus lados homólogos (los lados homólogos son los que se oponen a los ángulos congruentes).

Ejemplo:

✓ Razón de los perímetros de los dos cuadriláteros es la misma que sus lados homólogos
 22.5.3.4.5.6.0

Perímetro ABCD = 22,5 cm

Perímetro EFGH = 15 cm

$$\frac{22,5}{15} = \frac{3}{2} = \frac{4,5}{3} = \frac{6}{4} = \frac{9}{6} = 1,5 = k$$

F

SEMEJANZAS Y CONGRUENCIAS

Propiedades de los Polígonos Semejantes

b) En polígonos semejantes las trasversales homólogas son proporcionales a los lados homólogos.

Ejemplo: Alturas, bisectrices, transversales y simetrales de un triángulo y su lado respectivo

Propiedades de los Polígonos Semejantes

c) Las áreas de polígonos semejantes son proporcionales a los cuadrados de las medidas de los lados homólogos, a las transversales homólogas,..., etc. En general, proporcionales al cuadrado de la razón de sus líneas. (Ejemplo: La razón de las áreas de los triángulos semejantes es igual al cuadrado de la razón o constante de semejanza)

Ejemplo: $\triangle ABC \sim \triangle DEF$

$$\frac{\text{A}\triangle \text{ABC}}{\text{A}\triangle \text{DEF}} = \left(\frac{\overline{\text{BC}}}{\overline{\text{EF}}}\right)^2 = \left(\frac{\overline{\text{CA}}}{\overline{\text{FD}}}\right)^2 = \left(\frac{\overline{\text{AB}}}{\overline{\text{DE}}}\right)^2 = k^2$$

$$\frac{6 cm^2}{24 cm^2} = \left(\frac{5}{10}\right)^2 = \left(\frac{4}{8}\right)^2 = \left(\frac{3}{6}\right)^2 = 0,25 = k^2$$

F

SEMEJANZAS Y CONGRUENCIAS

Triángulos Semejantes

Si dos triángulos son semejantes se cumplen las siguientes condiciones:

Ángulos correspondientes congruentes

$$AA \cong AD$$

$$\triangle ABC \sim \triangle DEF \Leftrightarrow$$

Lados correspondientes homólogos proporcionales

$$\frac{\overline{AB}}{\overline{DE}} = \frac{\overline{BC}}{\overline{EF}} = \frac{\overline{AC}}{\overline{DF}} = k$$

Criterios de Semejanza de Triángulos

Para establecer la semejanza de dos triángulos basta con verificar algunas de las condiciones antes señaladas.

a) Criterio Ángulo – Ángulo (AA)

Dos triángulos son semejantes si y sólo dos de sus ángulos interiores son congruentes con sus respectivos correspondientes.

$$\Delta \mathsf{ABC} \sim \Delta \mathsf{DEF} \Leftrightarrow \ \, \not \Delta \mathsf{A} \cong \not \Delta \mathsf{D} \ \, \not \Delta \mathsf{B} \cong \not \Delta \mathsf{E}$$

b) Criterio Lado – Ángulo – Lado (LAL)

Dos triángulos son semejantes si y sólo tiene un ángulo congruente correspondiente entre lados proporcionales.

Criterios de Semejanza de Triángulos

c) Criterio Lado – Lado (LLL)

Dos triángulos son semejantes si y sólo tiene sus tres lados correspondientes proporcionales.

$$\Delta ABC \sim \Delta DEF \Leftrightarrow \frac{\overline{AC}}{\overline{DF}} = \frac{\overline{AB}}{\overline{DE}} = \frac{\overline{CB}}{\overline{FE}}$$

d) Criterio Lado - Lado - Ángulo (LLA> o LLA)

Dos triángulos son semejantes si y sólo tiene lados respectivamente proporcionales y los ángulos opuestos al lado mayor congruentes.

Observación: Si dos polígonos son semejantes y su razón de proporcionalidad es 1, entonces los polígonos son congruentes.

Teorema General de Thales

Si tres o más rectas paralelas son intersecan por dos transversales, entonces ellas determinan segmentos proporcionales

$$\frac{\overline{AB}}{\overline{AC}} = \frac{\overline{DE}}{\overline{DF}}$$

$$\frac{\overline{BC}}{\overline{AC}} = \frac{\overline{EF}}{\overline{DF}}$$

Teorema General de Thales

Si los lados de dos ángulos opuestos por el vértice son intersecadas por un par de rectas paralelas, los segmentos determinados son proporcionales.

 $\Delta DEC \sim \Delta BAC$

Teorema Particular de Thales

Si una recta es paralela a un lado de un triángulo, intersecando en dos puntos diferentes a los otros lados, entonces determina sobre ellos segmentos proporcionales.

Relaciones Métricas en el Triángulo Rectángulo

<u>Semejanza en el Triángulo Rectángulo:</u> La altura correspondiente a la hipotenusa determina dos triángulos semejantes entre sí y semejantes al triángulo inicial.

 $\triangle ACD \sim \triangle CBD \sim \triangle ABC$

Teorema de Euclides

La altura correspondiente a la hipotenusa en un Δ rectángulo y sus catetos cumplen las siguientes propiedades:

$$a^{2} = c \cdot q$$

$$b^{2} = c \cdot p$$

$$h^{2} = p \cdot q$$

$$h = \underline{a \cdot b}$$

$$c$$

 $\Delta ACD \sim \Delta CBD \sim \Delta ABC$

Teorema de la razón de los Cuadrados de los catetos

En un triángulo rectángulo, la razón entre los cuadrados de los catetos es igual a la razón entre las medidas de las proyecciones de ellos sobre la hipotenusa.

$$\frac{a^2}{b^2} = \frac{q}{p}$$

Teorema de Pitágoras

El cuadrado construido sobre la hipotenusa de un triángulo rectángulo es equivalente a la suma de los cuadrados construidos sobre los catetos.

$$C^2 = a^2 + b^2$$

Números Pitagóricos

Los catetos del triángulo rectángulo están representados por **a** y **b**, y la hipotenusa por **c**.

La tabla que se muestra a continuación contiene los números pitagóricos de más frecuente uso en la práctica.

а	b	С
3	4	5
5	12	13
8	15	17
7	24	25
20	21	29
12	35	37

Teorema de Pitágoras

Para los lados a, b y c de un triángulo cualquiera si se cumple que:

 ${\bf a^2 + b^2 = c^2}$, siendo c el lado mayor del triángulo, entonces el triángulo es Rectángulo.

 ${\bf a^2 + b^2 < c^2}$, siendo c el lado mayor del triángulo, entonces el triángulo es Obtusángulo.

 ${\sf a^2+\ b^2>c^2}$, siendo c el lado mayor del triángulo, entonces el triángulo es Acutángulo

División entre trazos

<u>Definición:</u> Llamamos razón de trazos AB y CD a la razón entre medidas de dichos trazos expresados en la misma unidad de longitud.

División Interior: Dados dos números reales positivos m y n, interiormente un trazo AB en la razón m : n; significa encontrar, en el interior del trazo AB, un punto P tal que:

$$\frac{\overline{AP}}{\overline{PB}} = \frac{m}{n}$$

División entre trazos

Ejemplo División Interior

Un punto P divide interiormente al trazo AB = 42 cm en la razón AP : PB = 2 : 5. Calcular AP y PB

$$AB = 42 \text{ cm}$$

$$K = 42 / 7 = 6 cm$$

$$AP = 2 \cdot 6 \text{ cm} = 12 \text{ cm}$$

$$PB = 5 \cdot 6 \text{ cm} = 30 \text{ cm}$$

Relaciones métricas en la circunferencia:

a) Teorema de las cuerdas:

$$\overline{AP} \cdot \overline{PC} = \overline{BP} \cdot \overline{PD}$$

$$\triangle PDC \sim \triangle PAB$$
 (AA)

$$\frac{PD}{PA} = \frac{PC}{PB} = \frac{DC}{AB} \longrightarrow \overline{PD} \cdot \overline{PB} = \overline{PA} \cdot \overline{PC}$$

F

SEMEJANZAS Y CONGRUENCIAS

Relaciones métricas en la circunferencia:

b) Teorema de las secantes:

F

SEMEJANZAS Y CONGRUENCIAS

Relaciones métricas en la circunferencia:

c) Teorema de la tangente y la secante:

