Sailing Through Data: Discoveries and Mirages

Emmanuel Candès, Stanford University

2018 Machine Learning Summer School, Buenos Aires, June 2018

Figure: Covariates are AR(1) with autocorrelation coefficient 0.3. n=800, p=1500, and target FDR is 10%. $Y \mid X$ follows logistic model with 50 nonzero entries

Figure: Covariates are AR(1) with autocorrelation coefficient 0.3. n=800, p=1500, and target FDR is 10%. $Y \mid X$ follows logistic model with 50 nonzero entries

Figure: Covariates are AR(1) with autocorrelation coefficient 0.3. n=800, p=1500, and target FDR is 10%. $Y \mid X$ follows logistic model with 50 nonzero entries

Figure: Covariates are AR(1) with autocorrelation coefficient 0.3. n=800, p=1500, and target FDR is 10%. $Y \mid X$ follows logistic model with 50 nonzero entries

Figure: Covariates are AR(1) with autocorrelation coefficient 0.3. n=800, p=1500, and target FDR is 10%. $Y \mid X$ follows logistic model with 50 nonzero entries

Figure: Covariates are AR(1) with autocorrelation coefficient 0.3. $n=800,\ p=1500,$ and target FDR is 10%. $Y\mid X$ follows logistic model with 50 nonzero entries

Figure: Covariates are AR(1) with autocorrelation coefficient 0.3. n=800, p=1500, and target FDR is 10%. $Y \mid X$ follows logistic model with 50 nonzero entries

Simulations with synthetic Markov chain

Markov chain covariates with 5 hidden states. Binomial response

Figure: Power and FDP over 100 repetitions (true F_X) n=1000, p=1000, target FDR: $\alpha=0.1$ $Z_i=|\hat{\beta}_i(\hat{\lambda}_{\text{CV}})|, W_i=Z_i-\tilde{Z}_i$

Markov chain covariates with 5 hidden states. Binomial response

Figure: Power and FDP over 100 repetitions (estimated F_X) n=1000, p=1000, target FDR: $\alpha=0.1$ $Z_j=|\hat{\beta}_j(\hat{\lambda}_{\text{CV}})|, \ W_j=Z_j-\tilde{Z}_j$

Simulations with synthetic HMM

HMM covariates with latent "clockwise" Markov chain. Binomial response

Figure: Power and FDP over 100 repetitions (true F_X) n=1000, p=1000, target FDR: $\alpha=0.1$ $Z_i=|\hat{\beta}_i(\hat{\lambda}_{\text{CV}})|, W_i=Z_i-\tilde{Z}_i$

HMM covariates with latent "clockwise" Markov chain. Binomial response

Figure: Power and FDP over 100 repetitions (estimated F_X) n=1000, p=1000, target FDR: $\alpha=0.1$ $Z_j=|\hat{\beta}_j(\hat{\lambda}_{\text{CV}})|, \ W_j=Z_j-\tilde{Z}_j$

Out-of-sample parameter estimation

Inhomogeneous Markov chain covariates with 5 hidden states. Binomial response

Figure: Power and FDP over 100 repetitions (estimated F_X from independent dataset) n=1000, p=1000, target FDR: $\alpha=0.1$ $Z_i=|\hat{\beta}_i(\hat{\lambda}_{\text{CV}})|, W_i=Z_i-\tilde{Z}_i$

i.i.d. samples from P_{XY}

- ullet Distr. P_X of X only 'approx' known
- Distr. $P_{Y|X}$ of Y|X completely unknown

i.i.d. samples from P_{XY}

- Distr. P_X of X only 'approx' known
- ullet Distr. $P_{Y|X}$ of Y|X completely unknown

Knockoffs wrt. to user input Q_X (Barber, C. and Samworth, '18)

ullet Originals $X=(X_1,\ldots,X_p)$ ullet Knockoffs $ilde{X}=(ilde{X}_1,\ldots, ilde{X}_p)$

i.i.d. samples from P_{XY}

• Distr. P_X of X only 'approx' known

• Originals $X = (X_1, \dots, X_n)$

• Distr. $P_{Y|X}$ of Y|X completely unknown

Knockoffs wrt. to user input Q_X (Barber, C. and Samworth, '18)

- (1) Pairwise exchangeability wrt Q_X : If $X \sim Q_X$

$$(X, \tilde{X})_{\mathsf{swap}(S)} \stackrel{d}{=} (X, \tilde{X})$$

• Knockoffs $\tilde{X} = (\tilde{X}_1, \dots, \tilde{X}_n)$

e.g.

$$(X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)_{\mathsf{swap}(\{2,3\})} \quad \stackrel{d}{=} \quad (X_1, \tilde{X}_2, \tilde{X}_3, \tilde{X}_1, X_2, X_3)$$

i.i.d. samples from P_{XY}

- Distr. P_X of X only 'approx' known
- Distr. $P_{Y|X}$ of Y|X completely unknown

Knockoffs wrt. to user input Q_X (Barber, C. and Samworth, '18)

- ullet Originals $X=(X_1,\ldots,X_p)$ ullet Knockoffs $ilde{X}=(ilde{X}_1,\ldots, ilde{X}_p)$
- (1) Pairwise exchangeability wrt Q_X : If $X \sim Q_X$

$$(X, \tilde{X})_{\mathsf{swap}(S)} \stackrel{d}{=} (X, \tilde{X})$$

e.g.

$$(X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)_{\mathsf{swap}(\{2,3\})} \quad \overset{d}{=} \quad (X_1, \tilde{X}_2, \tilde{X}_3, \tilde{X}_1, X_2, X_3)$$

(2) Ignore Y when constructing knockoffs: $X \perp Y \mid X$

i.i.d. samples from P_{XY}

• Distr. P_X of X only 'approx' known

• Originals $X = (X_1, \dots, X_n)$

• Distr. $P_{Y|X}$ of Y|X completely unknown

Knockoffs wrt. to user input Q_X (Barber, C. and Samworth, '18)

- (1) Pairwise exchangeability wrt Q_X : If $X \sim Q_X$
 - $(X, \tilde{X})_{\mathsf{swap}(S)} \stackrel{d}{=} (X, \tilde{X})$

• Knockoffs $\tilde{X} = (\tilde{X}_1, \dots, \tilde{X}_n)$

- e.g.
- $(X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)_{\mathsf{swap}(\{2,3\})} \stackrel{d}{=} (X_1, \tilde{X}_2, \tilde{X}_3, \tilde{X}_1, X_2, X_3)$
- (2) Ignore Y when constructing knockoffs: $\tilde{X} \perp \!\!\! \perp Y \mid X$

Only require conditionals $Q(X_j | X_{-j})$ which do not have to be compatible

FDR control

$$\begin{split} \hat{\mathcal{S}} &= \{W_j \geq \tau\} \\ \tau &= \min \Big\{ t : \underbrace{\frac{1 + |\{j : W_j \leq -t\}|}{1 \vee |\{j : W_j \geq t\}|}}_{\widehat{\mathsf{FDP}}(t)} \leq q \Big\} \end{split}$$

FDR control

$$\begin{split} \hat{\mathcal{S}} &= \{W_j \geq \tau\} \\ \tau &= \min \Big\{ t : \underbrace{\frac{1 + |\{j : W_j \leq -t\}|}{1 \vee |\{j : W_j \geq t\}|}}_{\widehat{\mathsf{FDP}}(t)} \leq q \Big\} \end{split}$$

Theorem (Barber and C. ('15))

If user-input Q_X is correct $(Q_X = P_X)$, then for knockoff+

$$\mathbb{E}\left[\frac{\text{\# false positives}}{\text{\# selections}}\right] \le q$$

Robustness of knockoffs?

Does exchangeability hold approx. when $Q_X \neq P_X$?

If $P_X = Q_X$, coins are

- unbiased
- independent

Problem: if $P_X \neq Q_X$, coins may be

- (slighltly) biased
- (slightly) dependent

KL divergence condition

The KL condition

$$\widehat{\mathsf{KL}}_j := \sum_i \log \left(\frac{P_j(X_{ij}|X_{i,-j}) \, Q_j(\widetilde{X}_{ij}|X_{i,-j})}{Q_j(X_{ij}|X_{i,-j}) \, P_j(\widetilde{X}_{ij}|X_{i,-j})} \right) \le \epsilon$$

ullet $\mathbb{E}[\widehat{\mathsf{KL}}_j] = \mathsf{KL}$ divergence between distributions of

$$(X_j, \widetilde{X}_j, X_{-j}, \widetilde{X}_{-j})$$
 & $(\widetilde{X}_j, X_j, X_{-j}, \widetilde{X}_{-j})$

From KL condition to FDR control

Theorem (Barber, C. and Samworth (2018))

For any $\epsilon \geq 0$

$$\mathbb{E}\left[\frac{\text{\# false positives } j \text{ with } \widehat{\mathsf{KL}}_j \leq \epsilon}{\text{\# selections}}\right] \leq q \exp(\epsilon)$$

From KL condition to FDR control

Theorem (Barber, C. and Samworth (2018))

For any $\epsilon \geq 0$

$$\mathbb{E}\left[\frac{\# \text{ false positives } j \text{ with } \widehat{\mathsf{KL}}_j \leq \epsilon}{\# \text{ selections}}\right] \leq q \exp(\epsilon)$$

Corollary

$$\mathsf{FDR} \leq \min_{\epsilon \geq 0} \left\{ q \, \exp(\epsilon) + \mathbb{P}\left(\max_{\mathsf{null} \ j} \, \widehat{\mathsf{KL}}_j > \epsilon \right) \right\}$$

Information theoretically optimal

ML inspired knockoffs

Joint with S. Bates, Y. Romano, M. Sesia and J. Zhou

- Knockoffs for graphical models
- Knockoffs via restricted Boltzmann machines
- Knockoffs via variational auto-encoders?
- Knockoffs via generative adversarial networks?

Improving power?

Joint with Z. Ren and M. Sesia

Derandomization

Combine information from mutiple knockoffs: who's consistently showing up?

Figure: Cartoon representation of W's from different sample realizations of knockoffs

Knockoffs for Fixed Features

Joint with Barber

Linear model

$$y = \overbrace{X\beta}_{n \times 1} \xrightarrow{\sum_{j} \beta_{j} X_{j}} + z \qquad y \sim \mathcal{N}(X\beta, \sigma^{2}I)$$

$$n \times 1 \qquad n \times p \quad p \times 1 \qquad n \times 1$$

- ullet Fixed design X
- Noise level σ unknown
- Multiple testing: $H_j: \beta_j = 0$ (is jth variable in the model?)
- $\bullet \ \ \mathsf{Identifiability} \quad \Longrightarrow \quad p \leq n$

Inference (FDR control) will hold conditionally on X

Knockoff features (fixed X)

Knockoff features (fixed X)

Originals Knockoffs

$$\begin{split} \tilde{X}_j' \tilde{X}_k &= X_j' X_k & \text{for all } j, k \\ \tilde{X}_j' X_k &= X_j' X_k & \text{for all } j \neq k \end{split}$$

Knockoff features (fixed X)

- No need for new data or experiment
- \bullet No knowledge of response y

Knockoff construction $(n \ge 2p)$

Problem: given $X \in \mathbb{R}^{n \times p}$, find $\tilde{X} \in \mathbb{R}^{n \times p}$ s.t.

$$\begin{bmatrix} X & \tilde{X} \end{bmatrix}' \begin{bmatrix} X & \tilde{X} \end{bmatrix} = \begin{bmatrix} \Sigma & \Sigma - \operatorname{diag}\{s\} \\ \Sigma - \operatorname{diag}\{s\} & \Sigma \end{bmatrix} := G$$

Knockoff construction $(n \ge 2p)$

Problem: given $X \in \mathbb{R}^{n \times p}$, find $\tilde{X} \in \mathbb{R}^{n \times p}$ s.t.

$$\begin{bmatrix} X & \tilde{X} \end{bmatrix}' \begin{bmatrix} X & \tilde{X} \end{bmatrix} = \begin{bmatrix} \Sigma & \Sigma - \operatorname{diag}\{s\} \\ \Sigma - \operatorname{diag}\{s\} & \Sigma \end{bmatrix} := G \succeq \mathbf{0}$$

Problem: given $X \in \mathbb{R}^{n \times p}$, find $\tilde{X} \in \mathbb{R}^{n \times p}$ s.t.

$$\begin{bmatrix} X & \tilde{X} \end{bmatrix}' \begin{bmatrix} X & \tilde{X} \end{bmatrix} = \begin{bmatrix} \Sigma & \Sigma - \operatorname{diag}\{s\} \\ \Sigma - \operatorname{diag}\{s\} & \Sigma \end{bmatrix} := G \succeq \mathbf{0}$$

$$G \succeq 0 \quad \Longleftrightarrow \quad \begin{array}{l} \operatorname{diag}\{s\} \succeq 0 \\ 2\Sigma - \operatorname{diag}\{s\} \succeq 0 \end{array}$$

Problem: given $X \in \mathbb{R}^{n \times p}$, find $\tilde{X} \in \mathbb{R}^{n \times p}$ s.t.

$$\begin{bmatrix} X & \tilde{X} \end{bmatrix}' \begin{bmatrix} X & \tilde{X} \end{bmatrix} = \begin{bmatrix} \Sigma & \Sigma - \operatorname{diag}\{s\} \\ \Sigma - \operatorname{diag}\{s\} & \Sigma \end{bmatrix} := G \succeq \mathbf{0}$$

$$G\succeq 0 \quad \Longleftrightarrow \quad \begin{array}{ll} \operatorname{diag}\{s\}\succeq 0 \\ 2\Sigma - \operatorname{diag}\{s\}\succeq 0 \end{array}$$

Solution

$$\tilde{X} = X(I - \Sigma^{-1}\operatorname{diag}\{s\}) + \tilde{U}C$$

- $m{ ilde{U}} \in \mathbb{R}^{n imes p}$ with col. space orthogonal to that of X
- C'C Cholevsky factorization of $2\operatorname{diag}\{s\}-\operatorname{diag}\{s\}\Sigma^{-1}\operatorname{diag}\{s\}\succeq 0$

$$\tilde{X}'_j X_j = 1 - s_j$$
 (Standardized columns)

Equi-correlated knockoffs

$$s_j = 2\lambda_{\mathsf{min}}(\Sigma) \wedge 1$$

Under equivariance, minimizes the value of $|\langle X_j, \tilde{X}_j
angle|$

$$\tilde{X}'_j X_j = 1 - s_j$$
 (Standardized columns)

Equi-correlated knockoffs

$$s_j = 2\lambda_{\mathsf{min}}(\Sigma) \wedge 1$$

Under equivariance, minimizes the value of $|\langle X_j, \tilde{X}_j
angle|$

SDP knockoffs

$$\begin{array}{ll} \text{minimize} & \sum_{j} |1-s_{j}| \\ \text{subject to} & s_{j} \geq 0 \\ & \operatorname{diag}\{s\} \preceq 2\Sigma \end{array}$$

Highly structured semidefinite program (SDP)

$$\tilde{X}_{j}'X_{j} = 1 - s_{j}$$
 (Standardized columns)

Equi-correlated knockoffs

$$s_j = 2\lambda_{\min}(\Sigma) \wedge 1$$

Under equivariance, minimizes the value of $|\langle X_j, \tilde{X}_j \rangle|$

SDP knockoffs

$$\begin{array}{ll} \text{minimize} & \sum_{j} |1-s_{j}| \\ \text{subject to} & s_{j} \geq 0 \\ & \operatorname{diag}\{s\} \preceq 2\Sigma \end{array}$$

Highly structured semidefinite program (SDP)

Other possibilities ...

Why?

For null feature X_j

$$X'_{j}y = X'_{j}X\beta + X'_{j}z \stackrel{d}{=} \tilde{X}'_{j}X\beta + \tilde{X}'_{j}z = \tilde{X}'_{j}y$$

Why?

For null feature X_j

$$X'_{j}y = X'_{j}X\beta + X'_{j}z \stackrel{d}{=} \tilde{X}'_{j}X\beta + \tilde{X}'_{j}z = \tilde{X}'_{j}y$$

Why?

For any subset of nulls ${\mathcal T}$

$$[X \, \tilde{X}]'_{\mathsf{swap}(\mathcal{T})} \, y \, \stackrel{d}{=} \, [X \, \tilde{X}]' \, y$$

Exchangeability of feature importance statistics

• Sufficiency:

$$(Z, \tilde{Z}) = z \left(\begin{bmatrix} X & \tilde{X} \end{bmatrix}' \begin{bmatrix} X & \tilde{X} \end{bmatrix}, \begin{bmatrix} X & \tilde{X} \end{bmatrix}' y \right)$$

ullet Knockoff-agnostic: swapping originals and knockoffs \Longrightarrow swaps Z's

$$z(\begin{bmatrix} X & \tilde{X} \end{bmatrix}_{\mathsf{swap}(\mathcal{T})}, y) = (Z, \tilde{Z})_{\mathsf{swap}(\mathcal{T})}$$

Exchangeability of feature importance statistics

• Sufficiency:

$$(Z, \tilde{Z}) = z \left(\begin{bmatrix} X & \tilde{X} \end{bmatrix}' \begin{bmatrix} X & \tilde{X} \end{bmatrix}, \begin{bmatrix} X & \tilde{X} \end{bmatrix}' y \right)$$

ullet Knockoff-agnostic: swapping originals and knockoffs \Longrightarrow swaps Z's

$$z(\begin{bmatrix} X & \tilde{X} \end{bmatrix}_{\mathsf{swap}(\mathcal{T})}, y) = (Z, \tilde{Z})_{\mathsf{swap}(\mathcal{T})}$$

Theorem (Barber and C. (15))

For any subset \mathcal{T} of nulls

$$(Z,Z)_{\mathit{swap}(\mathcal{T})} \stackrel{d}{=} (Z,\tilde{Z})$$

 \Longrightarrow FDR control (conditional on X)

Telling the effect direction

[...] in classical statistics, the significance of comparisons (e. g., $\theta_1 - \theta_2$) is calibrated using Type I error rate, relying on the assumption that the true difference is zero, which makes no sense in many applications. [...] a more relevant framework in which a true comparison can be positive or negative, and, based on the data, you can state " $\theta_1 > \theta_2$ with confidence". " $\theta_2 > \theta_1$ with confidence", or "no claim with confidence".

A. Gelman & F. Tuerlinckx

Directional FDR

Are any effects exactly zero?

- Directional FDR (Benjamini & Yekutieli, '05)
- Sign errors (Type-S) (Gelman & Tuerlinckx, '00)

Important for misspecified models — exact sparsity unlikely

$$(X_j - \tilde{X}_j)'y \stackrel{\text{ind}}{\sim} \mathcal{N}(s_j \cdot \beta_j, 2\sigma^2 \cdot s_j) \qquad s_j \ge 0$$

Sign estimate $\leadsto \operatorname{sgn}((X_j - \tilde{X}_j)'y)$

$$(X_j - \tilde{X}_j)'y \stackrel{\text{ind}}{\sim} \mathcal{N}(s_j \cdot \beta_j, 2\sigma^2 \cdot s_j) \qquad s_j \ge 0$$

Sign estimate $\iff \operatorname{sgn}((X_j - \tilde{X}_j)'y)$

Theorem (Barber and C., '16)

Exact same knockoff selection + sign estimate

$$FDR \leq FDR_{dir} \leq q$$

$$(X_j - \tilde{X}_j)'y \stackrel{\text{ind}}{\sim} \mathcal{N}(s_j \cdot \beta_j, 2\sigma^2 \cdot s_j) \qquad s_j \ge 0$$

Sign estimate $\iff \operatorname{sgn}((X_j - \tilde{X}_j)'y)$

Theorem (Barber and C., '16)

Exact same knockoff selection + sign estimate

$$FDR \leq FDR_{dir} \leq q$$

Null coin flips are unbiased

$$(X_j - \tilde{X}_j)'y \stackrel{\text{ind}}{\sim} \mathcal{N}(s_j \cdot \beta_j, \, 2\sigma^2 \cdot s_j) \qquad s_j \geq 0$$
 Sign estimate $\iff \operatorname{sgn}((X_j - \tilde{X}_j)'y)$

Theorem (Barber and C. (16))

Exact same knockoff selection + sign estimate

$$FDR \leq FDR_{dir} \leq q$$

Great subtlety: coin flips are now biased

Empirical results

- Features $\mathcal{N}(0, I_n)$, n = 3000, p = 1000
- ullet k=30 variables with regression coefficients of magnitude 3.5

Method	FDR (%) (nominal level $q=20\%$)	Power (%)	Theor. FDR control?
Knockoff+ (equivariant)	14.40	60.99	Yes
Knockoff (equivariant)	17.82	66.73	No
Knockoff+ (SDP)	15.05	61.54	Yes
Knockoff (SDP)	18.72	67.50	No
BHq	18.70	48.88	No
BHq + log-factor correction	2.20	19.09	Yes
BHq with whitened noise	18.79	2.33	Yes

Effect of signal amplitude

Same setup with k = 30 (q = 0.2)

Effect of feature correlation

Features
$$\sim \mathcal{N}(0,\Theta)$$
 $\Theta_{jk} = \rho^{|j-k|}$

n=3000, p=1000, and k=30 and amplitude =3.5

Fixed Design Knockoff Data Analysis

HIV drug resistance

Drug type	# drugs	Sample size	# protease or RT	# mutations appearing
			positions genotyped	≥ 3 times in sample
PI	6	848	99	209
NRTI	6	639	240	294
NNRTI	3	747	240	319

- ullet response y: log-fold-increase of lab-tested drug resistance
- covariate X_j : presence or absence of mutation #j

Data from R. Shafer (Stanford) available at:

http://hivdb.stanford.edu/pages/published_analysis/genophenoPNAS2006/

HIV data

TSM list: mutations associated with the PI class of drugs in general, and is not specialized to the individual drugs in the class

Results for PI type drugs

HIV data

Results for NNRTI type drugs

High-dimensional setting

- $n \approx 5,000$ subjects
- $p \approx 330,000 \text{ SNPs/vars to test}$

 $p > n \longrightarrow {\sf cannot} \ {\sf construct} \ {\sf knockoffs} \ {\sf as} \ {\sf before}$

$$\begin{array}{ccc} \tilde{X}_j'\tilde{X}_k = X_j'X_k & & \forall \, j,k \\ \tilde{X}_j'X_k = X_j'X_k & & \forall \, j \neq k \end{array} \quad \Longrightarrow \quad \tilde{X}_j = X_j \quad \forall j$$

- Theory (Barber and C., '16)
- Safe data re-use to improve power (Barber and C., '16)

Some extensions

$$y = \underbrace{\left(X_1\right)}_{n \times p_1} \cdot \beta_1 + \underbrace{\left(X_2\right)}_{n \times p_2} \cdot \beta_2 + \dots + \mathcal{N}(0, \sigma^2 I_n)$$

- Group sparsity build knockoffs at the group-wise level
 Dai & Barber 2015
- Identify key groups with PCA build knockoffs only for the top PC in each group

Chen, Hou, Hou 2017

- Build knockoffs only for prototypes selected from each group
 Reid & Tibshirani 2015
- Multilayer knockoffs to control FDR at the individual and group levels simultaneously

Katsevich & Sabatti 2017

Learning from data is not trivial

'Wrapper' around black-box algorithm rigorously addresses reproducibility issue

How to make valid knockoffs (controls)?

Importance of correct statistical reasoning

Which level of significance is appropriate?

Importance of mathematics (martingale theory)

Sensitivity to modeling assumptions

Importance of mathematics

Beyond replicability: grand challenges in data-driven science

Beyond replicability: grand challenges in data-driven science

In some cases, variables with the property

 $p(\text{response} | \text{variable}, \text{ others}) \neq p(\text{response} | \text{ others})$

are 'causal'

Beyond replicability: grand challenges in data-driven science

In some cases, variables with the property

$$p(\mathsf{response} \,|\, \mathsf{variable}, \, \mathsf{others}) \neq p(\mathsf{response} \,|\, \mathsf{others})$$

are 'causal'

If predictive algorithm uses causal variables, then it is likely to be fair

This is not just about not being wrong (irreproducibility)

Technology

Liking curly fries on Facebook reveals your high IQ

What you Like on Facebook could reveal your race, age, IQ, sexuality and other personal data, even if you've set that information to "private".

Robustness?

Would want predictions to be valid in different samples collected in different circumstances

"Constant conjunction" is a property of causal effects (Hume)

Fairness: can computer programs be racist and sexist?

Blind application of machine learning runs risk of amplifying biases and prejudices

Guido Rosa/Getty Images/Ikon Images

Identifying variables \leadsto chance to scrutinize model built from one sample:

- Do we believe these variables are "structurally" important, or are they just reflecting a spurious association in this sample?
- Are we learning something about the world or reifying our prejudices?