Session 17: Introduction to Linear Programming (LP)

Example: Production Planning

(DMD Ex 7.2) The Gemstone Tool Company (GTC) produces wrenches and pliers. Each product is made of steel, and requires using a Molding Machine and an Assembly Machine. The daily availability of each resource, as well as the resources required to produce one units of each tool, are shown below.

	Wrench (1 unit)	Plier (1 unit)	Daily Availability
Steel	1.5 lbs	1.0 lbs	27,000 lbs
Molding Machine	1.0 hours	1.0 hours	21,000 hours
Assembly Machine	0.3 hours	0.5 hours	9,000 hours

There is demand for 16,000 wrenches and 15,000 pliers per day. Each wrench earns a profit of .10 dollars and each plier earns a profit of .13 dollars.

- **a)** How much of each product should GTC produce each day and what is the maximum possible profit?
- **b)** How much additional profit can the company obtain if it had one additional unit of each of the three resources?

Step 1. Identify the decision, objective, and constraints in English
Decision:
Objective:
Constraints:
Step 2. Formulate the optimization as linear expressions of decision variables
Decision Variables:
Objective:
Constraints:

Step 3. Numerically solve using Gurobi

```
[1]: import gurobipy as grb
     mod=grb.Model()
     W=mod.addVar(lb=0)
     P=mod.addVar(lb=0)
     mod.setObjective(.1*W+.13*P,sense=grb.GRB.MAXIMIZE)
     steel=mod.addConstr(1.5*W+P <= 27000)</pre>
     molding=mod.addConstr(W+P <=21000)</pre>
     assembly=mod.addConstr(.3*W+.5*P \le 9000)
     mod.addConstr(W<=16000)</pre>
     mod.addConstr(P<=15000)</pre>
     mod.optimize()
Academic license - for non-commercial use only
Optimize a model with 5 rows, 2 columns and 8 nonzeros
Coefficient statistics:
                   [3e-01, 2e+00]
  Matrix range
  Objective range [1e-01, 1e-01]
 Bounds range
                   [0e+00, 0e+00]
                   [9e+03, 3e+04]
 RHS range
Presolve removed 2 rows and 0 columns
Presolve time: 0.00s
Presolved: 3 rows, 2 columns, 6 nonzeros
                                                            Time
Iteration
             Objective
                            Primal Inf.
                                            Dual Inf.
            3.5100000e+03
                            3.375000e+03
                                            0.000000e+00
       0
                                                              0s
            2.5050000e+03
       3
                            0.000000e+00
                                            0.000000e+00
                                                              0s
Solved in 3 iterations and 0.00 seconds
Optimal objective 2.505000000e+03
[2]: print('Optimal profit:',mod.objval)
     print('W:',W.x)
     print('P:',P.x)
     print('\nShadow prices:')
     print(f'Steel {steel.pi} \t valid RHS: {steel.sarhslow} to {steel.sarhsup}')
     print(f'Molding {molding.pi :.3f} \t valid RHS: {molding.sarhslow} to {molding.sarhsup}'
     print(f'Assembly {assembly.pi :.3f} \t valid RHS: {assembly.sarhslow} to {assembly.sarhs
Optimal profit: 2505.0
W: 7500.0
P: 13500.0
Shadow prices:
Steel 0.0
                  valid RHS: 24750.0 to 1e+100
                      valid RHS: 20000.0 to 22000.0
Molding 0.055
Assembly 0.150
                        valid RHS: 8100.0 to 9300.0
```

Debugging by Outputing Formulation

```
[3]: mod.write('GTC.lp')
     !cat GTC.lp
\ LP format - for model browsing. Use MPS format to capture full model detail.
Maximize
  0.1 C0 + 0.13 C1
Subject To
 RO: 1.5 CO + C1 <= 27000
 R1: C0 + C1 <= 21000
 R2: 0.3 C0 + 0.5 C1 \le 9000
 R3: C0 <= 16000
 R4: C1 <= 15000
Bounds
End
[4]: # Naming variables and constraints
     import gurobipy as grb
     mod=grb.Model()
     W=mod.addVar(lb=0,name='W')
     P=mod.addVar(lb=0,name='P')
     mod.setObjective(.1*W+.13*P,sense=grb.GRB.MAXIMIZE)
     steel=mod.addConstr(1.5*W+P <= 27000,name='Steel')</pre>
     molding=mod.addConstr(W+P <=21000,name='Molding')</pre>
     assembly=mod.addConstr(.3*W+.5*P<=9000,name='Assembly')
     mod.addConstr(W<=16000,name='Demand-W')</pre>
     mod.addConstr(P<=15000,name='Demand-P')</pre>
     mod.write('GTC.lp')
     !cat GTC.lp
\ LP format - for model browsing. Use MPS format to capture full model detail.
Maximize
  0.1 W + 0.13 P
Subject To
 Steel: 1.5 \text{ W} + P \le 27000
 Molding: W + P <= 21000
 Assembly: 0.3 \text{ W} + 0.5 \text{ P} \le 9000
 Demand-W: W <= 16000
 Demand-P: P <= 15000
Bounds
End
```

Exercise:	Transportation	Planning
Exc. cisc.	Transportation	

Objective and Constraints:

There are 2 production plants, A and B, with capacities 20 and 15 respectively. There are 3 demand centers, 1, 2, 3, with demand of 10 each. The cost of transporting each unit of good from each plant to each demand center is shown below.

	1	2	3
A	3	7	5
В	5	3	3

- **a)** What is the minimum transportation cost needed to satisfy all demand while respecting plant capacities, and how would you achieve this cost?
 - b) How would increasing one unit of capacity at each plant affect the optimal cost?
 - c) How would increasing one unit of demand at each center affect the optimal cost?

Step 1. Identify the decision, objective, and constraints in English
Decision:
Objective:
Constraints:
Step 2. Formulate the optimization as linear expressions of decision variables
Decision variables:

Step 3. Numerically solve using Gurobi

[6]:

A) Minimal cost: 100.0 Optimal transportation plan: A1: 10.0

A2: 0.0 A3: 5.0 B1: 0.0 B2: 10.0 B3: 5.0

[7]:

B) Effect of adding 1 unit of plant capacity

Plant A: 0.0 Valid RHS: 15.0 to 1e+100 Plant B: -2.0 Valid RHS: 10.0 to 20.0

[8]:

C) Effect of demand increase by 1 unit

Center 1: 3.0 Valid RHS: -0.0 to 15.0 Center 2: 5.0 Valid RHS: 5.0 to 15.0 Center 3: 5.0 Valid RHS: 5.0 to 15.0