갈루아체(Galois Field)

https://youtu.be/uH-ZMunbrBM

Contents

군(Group)과 체(Fields)

갈루아체=유한체(Finite Fields)

소체(Prime Fields)

확대체(Extension Fields)

AES에서 GF(2⁸) 적용

군(Group)과 체(Fields)

- 군(Group): 원소 G와 G의 두 원소를 결합하는 연산 o의 집합이다.
 - 군 연산은 닫혀있다. $a,b \in G \rightarrow a \circ b = c \in G$
 - 결합법칙 성립
 - 모든 $a \in G$ 에 대해 $a \circ e = e \circ a = a$ 인 항등원 $e \in G$
 - $a \in G$ 에 대해 $a^{-1} \circ a = a \circ a^{-1} = e$ 인 a의 역원 $a^{-1} \in G$ 존재
- 체(Fileds): 덧셈군(additive group)과 곱셈군(multiplicative group)을 포함하는 집합
 - F의 모든원소는 군 연산 '+'과 항등원 0이 존재하고 교환법칙이 성립하는 덧셈군 구성
 - F의 모든원소는 군 연산 'x'과 항등원 1이 존재하고 교환법칙이 성립하는 곱셈군 구성
 - 두 군연산이 결합되면 분배법칙 성립.

유한체(Finite Field)=갈루아체(Galois Field)

- 유한체 = 갈루아체(Galois Field)
 :거의 항상 유한의 원소를 갖는 체
 GF(m)
- 위수(order) : 체의 원소의 수
 - ex) p(prime number):소수 n():양의 정수 $m=p^n$ 일 때만 order가 m인 유한체 존재.
 - ex)81(= 3^4)개의 원소를 갖는 유한체 존재 $12(=2^3x\ 3)$ 개의 원소를 갖는 유한체 존재 x

소체(Prime Fields)

- Order이 소수인 체 = GF(p)
- GF(p)의 원소 : GF(p)={0,1, p-1}
- GF(p)의 연산은 모듈러 p에서 수행. (mod p)

+	0	1	2	3	4		X	0	1	2	3	4
		1					0	0	0	0	0	0
1	1	2	3	4	0		1	0	1	2	3	4
2	2	3	4	O	2	2	2	0	2	4	1	3
3	3	4	0	1	2	,	3	0	3	1	4	2
4	4	O	1	2	3	4	4	0	4	3	2	1

ex)GF(5)={1,2,3,4} 모듈러 5에서의 연산

확대체(Extension Fields - $(GF(2^m))$

- 유한체의 order \neq prime number or 2^m 이 명확하게 소수 x -> 덧셈,곱셈 연산이 mod 2^m 의 정수의 덧셈과 곱셈으로 표현 x
- M>1인 GF(2^m) =확대체
- GF(2)의 계수를 갖는 다항식으로 표현하여 계산 (즉 0과 1,차수는 m-1) ex)GF(2^8) $a_7x^7 + a_6x^6 + \dots + a_1x^1 + a_0$

$$0110010 = x^6 + x^5 + x$$

$GF(2^m)$ 에서 덧셈과 뺄셈

- GF(2)에서의 수행
 - mod 2에서의 덧셈과 뺄셈은 동일
 - XOR 와 동일

Ex)
$$GF(2^8)$$

$$A(x) = x^{7} + x^{5} + x^{4} + 1$$

$$\pm B(x) = x^{7} + x^{4} + x^{2} + 1$$

$$C(x) = x^{5} + x^{2}$$

$GF(2^m)$ 에서 곱셈

AES MixColumn 의 핵심

$$Ex) m=8$$

$$A(x) = a_7 x^7 + a_6 x^6 + \dots + a_1 x^1 + a_0$$

$$B(x) = b_7 x^7 + b_6 x^6 + \dots + b_1 x^1 + b_0$$

$$C(x) = c_{14}x^{14} + c_{13}x^{13} + \dots + c_1x^1 + c_0$$
 -15bit ->8bit 축소

모듈러 축소 필요 -> <mark>기약다항식</mark> P(x) 필요

$$C(x) = A(x) \cdot B(x) \mod P(x)$$

Ex)m=8,
$$P(x)=x^8+x^4+x^3+x+1$$

$$A(x)=x^7 + x^4 + x^1$$

$$x B(x)=x^3+1$$

$$C'(x)=x^{10}+x^4+x^3+1$$

$$C(x) \equiv x^{10} + x^4 + x^3 + 1 \mod x^8 + x^4 + x^3 + x + 1$$

= $x^6 + x^5 + x^4 + x^3 + x^2 + 1$

$GF(2^m)$ 에서 역원

AES S-Box를 포함하는 바이트 대체 변형의 핵심 연산.

Ex)
$$P(x)=x^8 + x^4 + x^3 + x + 1$$

 $x^7 + x^6 + x = (11000010)_2 = (C2)_{hex}$
 $(C2)_{hex}$ 의 역원 $x^5 + x^3 + x^2 + x + 1 = (00101111)_2 = (2F)_{hex}$

$$(x^7+x^6+x)(x^5+x^3+x^2+x+1) \equiv 1 \bmod P(x)$$

AES에서 GF(2⁸) 적용

S_BOX

$$A_i$$
 \longrightarrow GF(2 8) 역원 \longrightarrow 아파인 대응 \longrightarrow B_i

• MixColumn GF(28)

$$\begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \end{pmatrix} \equiv \begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \begin{pmatrix} B_0 \\ B_5 \\ B_{10} \\ B_{15} \end{pmatrix}$$

Q&A

