Problema 1

Definimos a sequência $(a_n)_n$ de forma recursiva, onde os termos iniciais são $a_1 = 12$ e $a_2 = 24$, e para $n \ge 3$, temos

$$a_n = a_{n-2} + 14.$$

- (a) O número 2023 aparece na sequência?
- (b) Mostre que não existem quadrados perfeitos nessa sequência.

Resposta

- (a) Não, já que não existem números ímpares nesta sequência. Basta perceber que a_1 e a_2 são pares, logo a_{n-2} nunca será ímpar.
- (b) Digamos que existem quadrados perfeitos na sequência, logo, podemos dizer que $x^2=12+14y$ ou $x^2=24+14y \Rightarrow y=\frac{x^2-12}{14}$ ou $y=\frac{x^2-24}{14} \Rightarrow x^2\equiv 12 \pmod{14}$. A tabela abaixo mostra que isso é um absurdo, já que $\forall x\in\{k\in\mathbb{Z}^+\mid k<14\},\quad x\not\equiv 12\pmod{14}$

1.
$$x^2 = 1 \Rightarrow 1 \equiv 1 \pmod{14}$$

8.
$$x^2 = 64 \Rightarrow 64 \equiv 8 \pmod{14}$$

2.
$$x^2 = 4 \Rightarrow 4 \equiv 4 \pmod{14}$$

9.
$$x^2 = 81 \Rightarrow 81 \equiv 11 \pmod{14}$$

3.
$$x^2 = 9 \Rightarrow 9 \equiv 9 \pmod{14}$$

10.
$$x^2 = 100 \Rightarrow 100 \equiv 2 \pmod{14}$$

4.
$$x^2 = 16 \Rightarrow 16 \equiv 2 \pmod{14}$$

11.
$$x^2 = 121 \Rightarrow 121 \equiv 9 \pmod{14}$$

5.
$$x^2 = 25 \Rightarrow 25 \equiv 11 \pmod{14}$$

6. $x^2 = 36 \Rightarrow 36 \equiv 8 \pmod{14}$

12.
$$x^2 = 144 \Rightarrow 144 \equiv 4 \pmod{14}$$

7.
$$x^2 = 49 \Rightarrow 49 \equiv 7 \pmod{14}$$

13.
$$x^2 = 169 \Rightarrow 169 \equiv 1 \pmod{14}$$

Problema 2

Sejam a, b, c números reais tais que $a^n + b^n = c^n$ para três valores inteiros positivos consecutivos de n. Prove que abc = 0.

Resposta

Dado:

$$a^{n} + b^{n} = c^{n}, a^{n+1} + b^{n+1} = c^{n+1}, a^{n+2} + b^{n+2} = c^{n+2}$$

Pode-se afirmar que

$$c = \frac{a^{n+1} + b^{n+1}}{a^n + b^n}$$
 e $c = \frac{a^{n+2} + b^{n+2}}{a^{n+1} + b^{n+1}}$

Isso resulta em:

$$(a^{n+1} + b^{n+1})^2 = (a^{n+2} + b^{n+2})(a^n + b^n)$$

Logo,

$$2ab = a^{2} + b^{2} \implies a^{2} - 2ab - b^{2} = 0 \implies (a - b)^{2} = 0 \implies a = b$$

Para finalizar, veja abaixo que pelo menos um dentre $a, b, c \in 0$

$$c^n = 2a^n \quad \Rightarrow \quad c = \frac{2a^{n+1}}{2a^n} \quad \Rightarrow \quad c = a \quad \Rightarrow \quad a^n = 2a^n \quad \Rightarrow \quad a^n = 0$$

Problema 3

Em um triângulo acutângulo ABC, sejam D e E os pés das alturas relativas aos vértices A e B, respectivamente, e seja M o ponto médio de AC. O círculo que passa por D e é tangente à reta BE em B intersecta a reta BM em um ponto F, com $F \neq B$. Mostre que FM é bissetriz de $\angle AFD$.

Resposta

Dado:

$$\angle DAC = \angle EBC = 90^{\circ} - \angle C$$
 e $\angle EBC = \angle EBM + \angle MBC$.

Pelo teorema do segmento alterno:

$$\angle EBM = \angle FDB \Rightarrow \angle MFD = \angle FDB + \angle FBD = 90^{\circ} - \angle C$$

Figure 1: Uma ilustração da solução do terceiro problema. Fonte

portanto, AFDM é um quadrilátero cíclico.

Além disso:

$$\angle DFM = \angle DAM$$
 e $\angle AFM = \angle ADM$.

Como MD é mediana de $\triangle ADC$, tem-se:

$$MA = MD = MC \Rightarrow \triangle ADC$$
 é isósceles $\Rightarrow \angle MAD = \angle ADM$.

Problema 4

Determine todos os inteiros positivos n para os quais existe um tabuleiro $n \times n$, onde podemos escrever n vezes cada um dos números de 1 a n (um número em cada casa), de modo que as n somas dos números em cada linha deixem n restos distintos na divisão por n, e as n somas dos números em cada coluna deixem n restos distintos na divisão por n.

Resposta

Deve-se perceber que para todo n ímpar, a configuração abaixo satisfaz o enunciado, mas nenhum n par satisfaz tal.

n-1	n-1	n-1	 n-1	n
n-2	n-2	n-2	 n-2	n
:	:	:	 :	:
2	2	2	 2	n
1	1	1	 1	n
1	2	3	 n-1	n

Figure 2: Uma ilustração da solução do quarto problema. Fonte

Para provar que todas as linhas têm somas diferentes \pmod{n} , deve-se perceber que, para quaisquer duas linhas distintas entre si e distintas entre a última linha, é possível achar este absurdo:

$$x(n-1) + n \equiv y(n-1) + n \pmod{n} \Rightarrow x \equiv y \pmod{n}$$

Já para qualquer linha distinta da última linha, é possível encontrar este outro absurdo, já que n é um número ímpar e $\frac{n}{2}$ não é um inteiro:

$$x(n-1) + n \equiv \frac{n(n+1)}{2} \pmod{n} \Rightarrow x \equiv \frac{n}{2} \pmod{n}$$

Já para n igual a um número par, a soma de todos os números no tabuleiro é igual a $\frac{n^2(n+1)}{2}$ e a soma de todos os números (mod n) é igual a $0+1+2+\ldots+(n-1)=\frac{n(n-1)}{2}$, logo:

$$\frac{n^2(n+1)}{2} \equiv \frac{n(n-1)}{2} \pmod{n} \Rightarrow \frac{n(n^2+1)}{2} \equiv 0 \pmod{n}$$

né par, logo $\frac{n}{2}\in\mathbb{Z}.$ Logo, pode-se encontrar o absurdo abaixo, que anula a existência de um número n par:

$$\frac{n(n^2+1)}{2} \equiv \frac{n}{2} \equiv 0 \pmod{n}$$