Physique – Optique Chapitre 2 – Dioptres sphériques

SOMMAIRE

- Introduction
- Images et conditions de Gauss
- Dioptres sphériques
- Foyers objet et images
- Construction d'une image

Introduction

Formation des images

1ier exemple lentille

sens de propagation de la lumière

S' = image réelle Image formée par l'intersection des rayons physique Observable sur un écran

Formation des images

sens de propagation de la lumière

S' = image virtuelle Image formée par l'intersection des prolongement de rayons Non observable sur un écran

Formation des images

Formation des images :

Objet réel Avant la face d'entrée

Objet virtuel Après la face d'entrée

Image réelle Après la face de sortie

Image virtuelle Avant la face de sortie

Stigmatisme

Tous les faisceaux issus de A ne se rencontrent pas tous en A'

Stigmatisme

Notion de stigmatisme et d'astigmatisme d'un système optique

Système stigmatique

Image S' ponctuelle (nette)

Système astigmatique

Ensemble d'images L'image est floue

Conditions de Gauss

Réduction de l'angle d'incidence :

Utilisation d'un diaphragme On ne conserve que les angles voisins de l'axe optique

Conditions de Gauss

On obtient une image sur l'écran si :

- Rayons proches de l'axe optique
- Rayons peu inclinés par rapport à l'axe optique

Conditions de Gauss

Importance de se placer dans les conditions de Gauss pour obtenir une image ! Par exemple, utilisation de diaphragme dans les systèmes optiques

Distances orientées

Conventions:

- Sens de la lumière de la gauche vers la droite
- Distances orientées
 - * Axe positif = sens de la lumière
- Angles orientés
 - * Positif = sens trigonométrique

Définition d'un dioptre sphérique

Dioptre = surface de séparation entre deux milieux d'indices différents **Dioptre sphérique** = surface de séparation courbée

Caractéristiques:

- centre C
- rayon de courbure r
- axe principal == axe parallèle au sens
 de propagation passant par C

4 configurations

n'>nn' < nDioptre convexe \boldsymbol{n} n n Dioptre concave S n n'>nn' < n

Relation de conjugaison

Relation de conjugaison :

$$\frac{n'}{p'} - \frac{n}{p} = \frac{n'-n}{r}$$

r = rayon du dioptre

Vergence du dioptre :

$$\Phi = \frac{n'-n}{r}$$

Unité : la dioptrie $(1\delta=1m^{-1})$

Dioptre convergent

Dioptre divergent

Etudes des foyers

Définitions

- F est le foyer objet Objet en F → Image à l'infini $\overline{SF} = f$
- F' est le foyer image Objet à l'infini → Image en F' $\overline{SF'} = f'$
- f et f' sont les distances focales objet et images

Calcul des distances focales

- Objet
$$f = \frac{-n}{\phi}$$

- Image
$$f' = \frac{n'}{\phi}$$

F et F' ne sont jamais symétriques par rapport au sommet du dioptre

Lois de conjugaison

1ière forme

$$\frac{n'}{p'} - \frac{n}{p} = \frac{n' - n}{r}$$

2e forme

$$\frac{n'}{f'} = -\frac{n}{f}$$

3e forme

$$\frac{f'}{p'} + \frac{f}{p} = 1$$

Relation de Newton

$$ff'=(p-f)(p'-f')$$

Image d'un objet à travers un dioptre convergent

Image d'un objet à travers un dioptre divergent

