Homework 5

- 1. (Independence of quadratic forms) Suppose $Y \sim N_n(\mu, \sigma^2 I_n)$ for some mean vector $\mu \in \mathbb{R}^n$ and let $A, B \in \mathbb{R}^{n \times n}$.
 - (a) Show that if $AB^T = \mathbf{0}_{n \times n}$, then AY and BY are independent.
 - (b) Now suppose A, B are symmetric and idempotent matrices, where $AB = 0_{n \times n}$. Use part (a) to show that the quadratic forms Y^TAY and Y^TBY are independent.
- 2. (General F-tests) Let $X \in \mathbb{R}^{n \times p}$ with $p \le n$. Suppose

$$\begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} = \mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim N_n (\mathbf{0}_n, \sigma^2 I_n)$$

for some non-random $\beta \in \mathbb{R}^p$. After thinking about the the above model, you construct a second non-random, full rank design matrix $L \in \mathbb{R}^{n \times s}$, where s < p and $\operatorname{Im}(L) \subset \operatorname{Im}(X)$, and have reason to believe that $\mathbb{E}(Y) = L\gamma$ for some $\gamma \in \mathbb{R}^s$. You wish to formally test the null hypothesis $H_0 : \mathbb{E}(Y) = L\gamma$ for some $\gamma \in \mathbb{R}^s$.

- (a) Suppose p = 3 and $\mathbb{E}(Y_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2}$. Find the design matrices X and L, and show that $\text{Im}(L) \subset \text{Im}(X)$, when the null hypothesis is
 - (i) $H_0: \beta_2 = 0$.
 - **(ii)** $H_0: \beta_1 + \beta_2 = 0.$
- (b) Let $H_X = X (X^T X)^{-1} X^T$ and $H_L = L (L^T L)^{-1} L^T$ and define

 $SSE_X = SSE$ when the design matrix is X $SSE_L = SSE$ when the design matrix is L

and let the F-statistic be

$$f = \frac{(SSE_L - SSE_X)/(p-s)}{SSE_X/(n-p)}.$$

Show that we can write f as

$$f = \frac{\mathbf{Y}^T (\mathbf{H}_X - \mathbf{H}_L) \mathbf{Y}/(p-s)}{\mathbf{Y}^T (I_n - \mathbf{H}_X) \mathbf{Y}/(n-p)}.$$

- (c) Show that $H_X H_L$ is symmetric and idempotent, and that $(I_n H_X)(H_X H_L) = 0_{n \times n}$.
- (d) Use problem 1 to prove that $f \sim F_{(p-s),(n-p)}$ when then null hypothesis $H_0 : \mathbb{E}(Y) = L\gamma$ for some $\gamma \in \mathbb{R}^s$ is true.

3. (Interpretation of R^2) Let $\mathbf{Y} \in \mathbb{R}^n$, $\mathbf{X} \in \mathbb{R}^{n \times p}$ be a full rank design matrix and $R^2 = 1 - \frac{SSE}{SSTO}$ be the coefficient of determination from the regression of \mathbf{Y} onto \mathbf{X} . Finally, let $\hat{\bar{Y}} = n^{-1} \mathbf{1}_n^T \hat{\mathbf{Y}}$, $\bar{Y} = n^{-1} \mathbf{1}_n^T \mathbf{Y}$ and

$$r_{\hat{Y},Y} = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - \bar{\hat{Y}}) (Y_{i} - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (\hat{Y}_{i} - \bar{\hat{Y}})^{2}} \sqrt{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}}$$

be the empirical correlation between \hat{Y} and Y. We will assume throughout this problem that X contains the intercept, i.e. $\mathbf{1}_n \in \text{Im}(X)$.

- (a) Use the assumption that $\mathbf{1}_n \in \text{Im}(\mathbf{X})$ to show that $\bar{Y} = \bar{Y}$.
- **(b)** Use part (a) to show that $\sum_{i=1}^{n} (\hat{Y}_i \bar{Y})(Y_i \bar{Y}) = \mathbf{Y}^T (\mathbf{H} n^{-1} \mathbf{1}_n \mathbf{1}_n^T) \mathbf{Y}$. Will $r_{\hat{Y},Y}$ ever be smaller than 0? Why or why not?
- (c) Show that $R^2 = r_{\hat{Y},Y}^2$.
- 4. Answer the following questions using the data from "steam_text.txt".
 - (a) Suppose you regress steam (Y) onto fat (X_1) and glycerine (X_2) .
 - (i) Write down the model you are assuming when performing this regression (i.e. what is the mean and variance model). Provide an interpretation for the coefficients in the mean model.
 - (ii) In separate plots, plot $\hat{\epsilon}$ as a function of \hat{Y} , fat and glycerine. Do you see any evidence that the mean or variance model is incorrect?
 - (iii) Consider the null hypothesis that the coefficients for both fat and glycerine are 0. At a significance level of $\alpha = 0.05$, what do you conclude about these coefficients?
 - (iv) Plot the variable "temp" against the residuals from this regression. What can you conclude from this plot?
 - (b) Now regress steam (Y) onto fat (X_1) , glycerine (X_2) and temp (X_3) .
 - (i) Consider the null hypothesis that the coefficients for both fat and glycerine are 0. At a significance level of $\alpha = 0.05$, what do you conclude about these coefficients?
 - (ii) Why are the P values from this test so much smaller than those from part (a)?