1 PERFORMANCE

1.1 Precision-Score vs. #Data

Figure 1: Performance on the Reddit dataset (noisy scoring function with 0.5% of malicious data) .

Figure 2: Performance on the Reddit dataset (noisy scoring function with 1% of malicious data) .

Figure 3: Performance on the Reddit dataset (noisy scoring function with 2% of malicious data) .

Figure 4: Performance on the Reddit dataset (noisy scoring function with 3% of malicious data) .

Figure 5: Performance on the Reddit dataset (noisy scoring function with 4% of malicious data).

1

Figure 6: Performance on the Reddit dataset (noisy scoring function with 5% of malicious data) .

Figure 7: Performance on the Reddit dataset (noisy scoring function with 10% of malicious data).

Figure 8: Performance on the Reddit dataset (noisy scoring function with 20% of malicious data) .

Figure 9: Performance on the Reddit dataset (noisy scoring function with 30% of malicious data) .

Figure 10: Performance on the Reddit dataset (noisy scoring function with 50% of malicious data) .

1.2 Precision-Score vs. λ

Figure 11: Performance on the Reddit dataset (noisy scoring function with 0.5% of malicious data) .

Figure 12: Performance on the Reddit dataset (noisy scoring function with 1.0% of malicious data) .

Figure 13: Performance on the Reddit dataset (noisy scoring function with 2.0% of malicious data) .

Figure 14: Performance on the Reddit dataset (noisy scoring function with 3.0% of malicious data) .

Figure 15: Performance on the Reddit dataset (noisy scoring function with 4.0% of malicious data) .

Figure 16: Performance on the Reddit dataset (noisy scoring function with 5.0% of malicious data) .

Figure 17: Performance on the Reddit dataset (noisy scoring function with 10.0% of malicious data) .

Figure 18: Performance on the Reddit dataset (noisy scoring function with 20.0% of malicious data) .

Figure 19: Performance on the Reddit dataset (noisy scoring function with 30.0% of malicious data) .

Figure 20: Performance on the Reddit dataset (noisy scoring function with 50.0% of malicious data) .

1.3 Precision-Score vs. Rate of positive data

Figure 21: Performance on the Reddit dataset (noisy scoring function with #data= 10).

Figure 22: Performance on the Reddit dataset (noisy scoring function with #data= 20).

Figure 23: Performance on the Reddit dataset (noisy scoring function with #data= 30).

Figure 24: Performance on the Reddit dataset (noisy scoring function with #data= 50).

Figure 25: Performance on the Reddit dataset (noisy scoring function with #data= 100).

Figure 26: Performance on the Reddit dataset (noisy scoring function with #data= 150).

1.4 Recall-Score vs. #Data

Figure 27: Performance on the Reddit dataset (noisy scoring function with 0.5% of malicious data).

Figure 28: Performance on the Reddit dataset (noisy scoring function with 1% of malicious data) .

Figure 29: Performance on the Reddit dataset (noisy scoring function with 2% of malicious data) .

Figure 30: Performance on the Reddit dataset (noisy scoring function with 3% of malicious data) .

Figure 31: Performance on the Reddit dataset (noisy scoring function with 4% of malicious data) .

Figure 32: Performance on the Reddit dataset (noisy scoring function with 5% of malicious data) .

Figure 33: Performance on the Reddit dataset (noisy scoring function with 10% of malicious data).

Figure 34: Performance on the Reddit dataset (noisy scoring function with 20% of malicious data).

Figure 35: Performance on the Reddit dataset (noisy scoring function with 30% of malicious data) .

Figure 36: Performance on the Reddit dataset (noisy scoring function with 50% of malicious data) .

1.5 Recall-Score vs. λ

Figure 37: Performance on the Reddit dataset (noisy scoring function with 0.5% of malicious data).

Figure 38: Performance on the Reddit dataset (noisy scoring function with 1.0% of malicious data) .

Figure 39: Performance on the Reddit dataset (noisy scoring function with 2.0% of malicious data) .

Figure 40: Performance on the Reddit dataset (noisy scoring function with 3.0% of malicious data) .

Figure 41: Performance on the Reddit dataset (noisy scoring function with 4.0% of malicious data).

Figure 42: Performance on the Reddit dataset (noisy scoring function with 5.0% of malicious data) .

Figure 43: Performance on the Reddit dataset (noisy scoring function with 10.0% of malicious data) .

Figure 44: Performance on the Reddit dataset (noisy scoring function with 20.0% of malicious data) .

Figure 45: Performance on the Reddit dataset (noisy scoring function with 30.0% of malicious data) .

Figure 46: Performance on the Reddit dataset (noisy scoring function with 50.0% of malicious data) .

1.6 Recall-Score vs. Rate of positive data

Figure 47: Performance on the Reddit dataset (noisy scoring function with #data= 10).

Figure 48: Performance on the Reddit dataset (noisy scoring function with #data= 20).

Figure 49: Performance on the Reddit dataset (noisy scoring function with #data= 30).

Figure 50: Performance on the Reddit dataset (noisy scoring function with #data= 50).

Figure 51: Performance on the Reddit dataset (noisy scoring function with #data= 100).

Figure 52: Performance on the Reddit dataset (noisy scoring function with #data= 150).

1.7 F1-Score vs. #Data

Figure 53: Performance on the Reddit dataset (noisy scoring function with 0.5% of malicious data).

Figure 54: Performance on the Reddit dataset (noisy scoring function with 1% of malicious data) .

Figure 55: Performance on the Reddit dataset (noisy scoring function with 2% of malicious data) .

Figure 56: Performance on the Reddit dataset (noisy scoring function with 3% of malicious data) .

Figure 57: Performance on the Reddit dataset (noisy scoring function with 4% of malicious data) .

Figure 58: Performance on the Reddit dataset (noisy scoring function with 5% of malicious data) .

Figure 59: Performance on the Reddit dataset (noisy scoring function with 10% of malicious data).

Figure 60: Performance on the Reddit dataset (noisy scoring function with 20% of malicious data).

Figure 61: Performance on the Reddit dataset (noisy scoring function with 30% of malicious data) .

Figure 62: Performance on the Reddit dataset (noisy scoring function with 50% of malicious data) .

1.8 F1-Score vs. λ

Figure 63: Performance on the Reddit dataset (noisy scoring function with 0.5% of malicious data).

Figure 64: Performance on the Reddit dataset (noisy scoring function with 1.0% of malicious data) .

Figure 65: Performance on the Reddit dataset (noisy scoring function with 2.0% of malicious data) .

Figure 66: Performance on the Reddit dataset (noisy scoring function with 3.0% of malicious data) .

Figure 67: Performance on the Reddit dataset (noisy scoring function with 4.0% of malicious data).

Figure 68: Performance on the Reddit dataset (noisy scoring function with 5.0% of malicious data) .

Figure 69: Performance on the Reddit dataset (noisy scoring function with 10.0% of malicious data) .

Figure 70: Performance on the Reddit dataset (noisy scoring function with 20.0% of malicious data) .

Figure 71: Performance on the Reddit dataset (noisy scoring function with 30.0% of malicious data).

Figure 72: Performance on the Reddit dataset (noisy scoring function with 50.0% of malicious data) .

1.9 F1-Score vs. Rate of positive data

Figure 73: Performance on the Reddit dataset (noisy scoring function with #data= 10).

Figure 74: Performance on the Reddit dataset (noisy scoring function with #data= 20).

Figure 75: Performance on the Reddit dataset (noisy scoring function with #data= 30).

Figure 76: Performance on the Reddit dataset (noisy scoring function with #data= 50).

Figure 77: Performance on the Reddit dataset (noisy scoring function with #data= 100).

Figure 78: Performance on the Reddit dataset (noisy scoring function with #data= 150).

1.10 EF1-Score vs. #Data

Figure 79: Performance on the Reddit dataset (noisy scoring function with 0.5% of malicious data).

Figure 80: Performance on the Reddit dataset (noisy scoring function with 1% of malicious data) .

Figure 81: Performance on the Reddit dataset (noisy scoring function with 2% of malicious data) .

Figure 82: Performance on the Reddit dataset (noisy scoring function with 3% of malicious data) .

Figure 83: Performance on the Reddit dataset (noisy scoring function with 4% of malicious data) .

Figure 84: Performance on the Reddit dataset (noisy scoring function with 5% of malicious data) .

Figure 85: Performance on the Reddit dataset (noisy scoring function with 10% of malicious data).

Figure 86: Performance on the Reddit dataset (noisy scoring function with 20% of malicious data).

Figure 87: Performance on the Reddit dataset (noisy scoring function with 30% of malicious data) .

Figure 88: Performance on the Reddit dataset (noisy scoring function with 50% of malicious data) .

1.11 EF1-Score vs. λ

Figure 89: Performance on the Reddit dataset (noisy scoring function with 0.5% of malicious data) .

Figure 90: Performance on the Reddit dataset (noisy scoring function with 1.0% of malicious data) .

Figure 91: Performance on the Reddit dataset (noisy scoring function with 2.0% of malicious data) .

Figure 92: Performance on the Reddit dataset (noisy scoring function with 3.0% of malicious data) .

Figure 93: Performance on the Reddit dataset (noisy scoring function with 4.0% of malicious data).

Figure 94: Performance on the Reddit dataset (noisy scoring function with 5.0% of malicious data) .

Figure 95: Performance on the Reddit dataset (noisy scoring function with 10.0% of malicious data) .

Figure 96: Performance on the Reddit dataset (noisy scoring function with 20.0% of malicious data) .

Figure 97: Performance on the Reddit dataset (noisy scoring function with 30.0% of malicious data) .

Figure 98: Performance on the Reddit dataset (noisy scoring function with 50.0% of malicious data) .

1.12 EF1-Score vs. Rate of positive data

Figure 99: Performance on the Reddit dataset (noisy scoring function with #data= 10).

Figure 100: Performance on the Reddit dataset (noisy scoring function with #data= 20).

Figure 101: Performance on the Reddit dataset (noisy scoring function with #data= 30).

Figure 102: Performance on the Reddit dataset (noisy scoring function with #data= 50).

Figure 103: Performance on the Reddit dataset (noisy scoring function with #data= 100).

Figure 104: Performance on the Reddit dataset (noisy scoring function with #data= 150).

2 COMPUTATIONAL TIME COMPLEXITY

2.1 Time vs. #Data

Figure 105: Time complexity on the Reddit dataset (noisy scoring function with 0.5% of malicious data) .

Figure 106: Time complexity on the Reddit dataset (noisy scoring function with 1% of malicious data) .

Figure 107: Time complexity on the Reddit dataset (noisy scoring function with 2% of malicious data) .

Figure 108: Time complexity on the Reddit dataset (noisy scoring function with 3% of malicious data) .

Figure 109: Time complexity on the Reddit dataset (noisy scoring function with 4% of malicious data) .

Figure 110: Time complexity on the Reddit dataset (noisy scoring function with 5% of malicious data) .

Figure 111: Time complexity on the Reddit dataset (noisy scoring function with 10% of malicious data) .

Figure 112: Time complexity on the Reddit dataset (noisy scoring function with 20% of malicious data) .

Figure 113: Time complexity on the Reddit dataset (noisy scoring function with 30% of malicious data) .

Figure 114: Time complexity on the Reddit dataset (noisy scoring function with 50% of malicious data) .

2.2 Time vs. λ

Figure 115: Time complexity on the Reddit dataset (noisy scoring function with 0.5% of malicious data) .

Figure 116: Time complexity on the Reddit dataset (noisy scoring function with 1% of malicious data).

Figure 117: Time complexity on the Reddit dataset (noisy scoring function with 2% of malicious data) .

Figure 118: Time complexity on the Reddit dataset (noisy scoring function with 3.0% of malicious data) .

Figure 119: Time complexity on the Reddit dataset (noisy scoring function with 4.0% of malicious data) .

Figure 120: Time complexity on the Reddit dataset (noisy scoring function with 5.0% of malicious data) .

Figure 121: Time complexity on the Reddit dataset (noisy scoring function with 10.0% of malicious data) .

Figure 122: Time complexity on the Reddit dataset (noisy scoring function with 20.0% of malicious data) .

Figure 123: Time complexity on the Reddit dataset (noisy scoring function with 30.0% of malicious data) .

Figure 124: Time complexity on the Reddit dataset (noisy scoring function with 50.0% of malicious data) .

2.3 Time vs. Rate of positive data

Figure 125: Time complexity on the Reddit dataset (noisy scoring function with #data= 10).

Figure 126: Time complexity on the Reddit dataset (noisy scoring function with #data= 20).

Figure 127: Time complexity on the Reddit dataset (noisy scoring function with #data= 30).

Figure 128: Time complexity on the Reddit dataset (noisy scoring function with #data= 50).

Figure 129: Time complexity on the Reddit dataset (noisy scoring function with #data= 100).

Figure 130: Time complexity on the Reddit dataset (noisy scoring function with #data= 150).