

RETE MUSICALE 2.0

¿CUÁL ES EL PROBLEMA?

REESTRUCTURACIÓN

¿QUÉ SE HA HECHO AL RESPECTO? (LIMITACIONES)

PRIMERA VERSIÓN DE LA RETE MUSICALE

CUÁL FUE LA IDEA DE SOLUCIÓN?

REDUCCIÓN DE LAS ENTRADAS POR MEDIO DE REINGENIERÍA

CUÁL FUE LA IDEA DE SOLUCIÓN?

INGENIERIA DE SELECCION

```
1 import pandas as pd
2 from sklearn.ensemble import RandomForestClassifier
 4 # toad your dataset (replace 'your_dataset.csv' with your actual file name)
 5 df = pd.read_csv('/content/sample_data/spotify_songs.csv')
7 # Separate features and target variable
 8 X = df.drop(['track_id', 'track_name', 'track_artist', 'track_popularity', 'track_album_id', 'track_album_name',
 9 y = df['playlist genre'] # Target variable column
11 # Create a random forest classifier
12 clf = RandomForestClassifier(random_state=42)
14 # Fit the classifier to your data
15 clf.fit(X, y)
17 # Get feature importances from the trained model
18 feature importances = clf.feature importances
20 # Create a DataFrame to display feature importances
21 feature_importance_df = pd.DataFrame({
      'Feature': X.columns,
       'Importance': feature_importances
26 # Sort the DataFrame by importance in descending order
27 feature importance df = feature importance df.sort values(by='Importance', ascending=False)
29 # Print the feature importance DataFrame
30 print("Feature Importance:")
31 print(feature importance df)
```

SKLEAR

Fea	ture Importance:	
	Feature	Importance
10	tempo	0.122339
5	speechiness	0.117409
0	danceability	0.113161
1	energy	0.096658
11	duration_ms	0.090055
9	valence	0.089920
6	acousticness	0.089616
3	loudness	0.084848
7	instrumentalness	0.073664
8	liveness	0.065454
2	key	0.043470
4	mode	0.013405

¿CUÁL FUE LA SOLUCIÓN?

CON RESPECTO A LOS RESULTADOS DE LA INGENIERIA DE SELECCION:

Fea	ture Importance:	
	Feature	Importance
10	tempo	0.122339
5	speechiness	0.117409
0	danceability	0.113161
1	energy	0.096658
11	duration_ms	0.090055
9	valence	0.089920
6	acousticness	0.089616
3	loudness	0.084848
7	instrumentalness	0.073664
8	liveness	0.065454
2	key	0.043470
4	mode	0.013405

SE SELECCIONARON LAS 3 ENTRADAS MÁS IMPORTANTES Y SE IMPLEMENTO LA RED NEURONAL

¿QUÉ RESULTADOS HAN OBTENIDO?

```
38 parameters1=train(allGenresInput, Y, [3,4,3], 0.1, 10000, 5000)
(3, 12715)
(3, 12715)
Cost after iteration 0: 2.0824554538748408
Cost after iteration 5000: 1.9078366035720582
Cost after iteration 10000: 1.907916996442692
 38 parameters1=train(allGenresInput, Y, [3,4,3], 0.1, 10000, 5000)
 (3, 12715)
 (3, 12715)
 Cost after iteration 0: 2.0824554538748408
 Cost after iteration 5000: 1.9078366035720582
 Cost after iteration 10000: 1.907916996442692
  38 parameters1=train(allGenresInput, Y, [3,2,4,2,5,3], 0.1, 10000, 5000)
(3, 12715)
Cost after iteration 0: 2.086466593154675
Cost after iteration 5000: 1.9079136286867258
38 parameters1=train(allGenresInput, Y, [3,12,3], 0.1, 10000, 5000)
(3, 12715)
(3, 12715)
Cost after iteration 0: 2.0815460917848605
Cost after iteration 5000: 1.9060936679529776
Cost after iteration 10000: 1.9073687277981004
```


ERROR: 65%

¿QUÉ PODEMOS APRENDER DE LOS RESULTADOS?

Ya que ninguna de las redes tuvo alguna mejora significativa con respecto a nuestro anterior proyecto y abandonamos la posibilidad de generar redes independientes para cada género. Creemos que deberíamos darle es un enfoque a lo que se aprendió sobre la ingeniería de selección de datos y a identificar problemas para una red. En este caso fueron de selección de entrada, arquitectura e incluso en la elección misma de la base de datos de nuestra red.

CUÁLES SON LAS CONTRIBUCIONES PRINCIPALES?

Clasificación de géneros musicales.

Investigación en música computacional.

Análisis musical.

¿CUÁLES SON LAS LINEAS DE TRABAJO FUTURO?

Aplicación para más géneros de música

Recomendación de música personalizada

* D * • Análisis de tendencias musicales

Mejora en la organización de bibliotecas de música

