読書ノート:線形代数の半歩先

tomixy

2025年3月17日

目次		記述ともつながる…と話は続く
		* * *
はじめに	1	半歩先から見える景色を
数式を眺める視点を、いろいろと	1	線形代数は便利な道具でもあり、世界を捉えるた
半歩先から見える景色を	1	めの思考方法でもある
「数の集まり」に「演算」を追加	1	入力に対して出力を対応させるという少し抽象的
集まるだけでは面白くないので	1	いな「コト」を、数値がならんだベクトルや行列と
足し算が豊かさを与えてくれる	2	いう具体的な「モノ」で表現する、それを可能にす
線形空間の定義	2	るのが線形代数
1,400 = 1,400 = 7,500	_	関数という「曲がってうねる形」を、具体的な数値
一次結合がすべての基本	2	のならびに書き下せること、さらには、一つの対
組み合わせるという視点	2	象をさまざまに表現できること、線形代数が教え
一次結合の係数を求める方法	2	てくれるこれらは、現実世界の問題をどのように
分解するという視点	2	数学の言葉で記述して、どのように計算機で処理
空間を生成するという視点	2	していくのかを考えるうえで、とても役立つ
		「数の集まり」に「演算」を追加
はじめに		集まるだけでは面白くないので
		数学では、要素が集まった <mark>集合</mark> を考えるのが基本
数式を眺める視点を、いろいろと		そこにたとえば足し算の <mark>演算</mark> を入れると、要素間
行列にはベクトルをうまく操作するための装置と しての役割もあるベクトルを別のベクトルに変換するものとしての 行列、という見方もできる		
		を行き来できるようになる
		実数の集合を考えたとき、 $7.4 + 6.4 = 13.8$ のよう
		に、二つの要素を足すことで別の要素に移れる
その先に、関数を別の関数に変換するものを考え	;	また、関係性まで考えるとさらに応用の幅が広がる

関係性の一つの例は「距離」

これが行列とつながり、さらに時間発展する系の

ベクトルや行列と同じような「集合・演算・関係 性」をもつ対象なら、その類似性を使ってベクト ルや行列で扱える

* * *

足し算が豊かさを与えてくれる

ベクトルに演算を導入すると、別のベクトルと行き来できるようになる

この演算を入れたものを線形空間という

* * *

線形空間の定義

空間

たとえば和を計算したときに、結果として得られ た要素が考えている集合からはみ出てしまっては 困る

演算で集合の要素を行き来でき、その演算の結果 が想定外にならない安全な場所、というのが<mark>線形</mark>

実際には、線形空間 V は以下の性質を満たすものとして定義できる

- 1. $cx \in V$ (スカラー倍しても V からはみ出ません)
- 2. $x + y \in V$ (足し算でもはみ出ません)
- 3. $(c_1c_2)x = c_1(c_2x)$ (スカラー倍は分離できます)
- 4. 1x = x (1 というスカラー倍は要素を変えません)
- 5. x + y = y + x (足し算の順番は交換できます)
- 6. x + (y + z) = (x + y) + z (前半、後半、どちらを先に計算しても同じ)
- 7. x + 0 = x となるベクトル 0 が存在する (零元 があります)
- 8. x + u = 0 となるベクトル u が存在し、このベクトル u を -x と書く、すなわち x x = 0 (逆元、つまり負符号もあります)

- 9. $c_1(x + y) = c_1x + c_1y$ (足してからスカラー倍、スカラー倍してから足す、が同じ)
- 10. $c_1 \mathbf{x} + c_2 \mathbf{x} = (c_1 + c_2) \mathbf{x}$ (スカラー倍だけ先に計算も可能)

一次結合がすべての基本

組み合わせるという視点

演算によってベクトル同士を行き来できるように なると、あるベクトルをほかのベクトルを使って 表現できる

スカラー倍と和のみを使った形を**一次結合**もしく は<mark>線形結合</mark>という

* * *

一次結合の係数を求める方法

a と b によって c を書き表すときの係数は、一般には連立方程式を使って求める

$$\boldsymbol{c} = \lambda_1 \boldsymbol{a} + \lambda_2 \boldsymbol{b}$$

から、c の各要素 c_i に対して以下が成り立つ

$$c_i = \lambda_1 a_i + \lambda_2 b_i$$

ただし、連立方程式の解がない場合もある

* * *

分解するという視点

分解できる場合もあれば、できない場合もある これは、先ほどの「組み合わせる」という視点にお いて、一次結合を作っても一部のベクトルしか再 現できない、ということ

* * *

空間を生成するという視点

r と s は実数から自由に選べるとすると、 $x = ra_1 + sa_2$ でさまざまなベクトル x を表現できる

それらを集めると平面が形作られていき、実はこの平面も線形空間になっている このように一次結合で線形空間を作ることができ、 その「もと」となるベクトルのことを生成元という