Generalized Roy Model

Philipp Eisenhauer

- ▶ Does the pursuit of comparative advantage increase or decrease earnings in equality within sectors and in the overall economy?
- ▶ Do the people with the highest *i* skill actually work in sector *i*?
- As people enter a sector in response to an increase in the demand for its services, does the average skill level employed there rise or fall?

Roy (1951) Model

- ▶ Individuals are income maximizing, act under perfect information, and possess skills S_1 and S_2 .
- ▶ The economy offers two employment opportunities associated with skill prices π_1 and π_2 and skill i is only useful in sector i.

An individual chooses sector one if earnings are greater there:

$$w_1 > w_2 \iff \pi_1 S_1 > \pi_2 S_2$$

Econometric Problems

- ► Evaluation Problem We only observe an individual's wage in the sector they are working in.
- ▶ **Selection Problem** As individuals pursue their comparative advantage, we only observe selected samples from the latent skill distribution in either sector.

Key Questions

- ▶ What economic concepts are accounted for, which are not?
- ▶ What does the individual, what does the econometrician know?
- What gives rise to heterogeneity in skills?

▶ Skills follow a bivariate normal distribution denoted by $F(s_1, s_2)$.

$$\begin{pmatrix} \ln S_1 \\ \ln S_2 \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{pmatrix} \right)$$

Figure: Joint Distribution of Skills

Figure: Marginal Distribution of Skill

The proportion of the population working in sector one P_1

$$P_1 = \int_0^\infty \int_0^{\pi_1 s_1/\pi_2} f(s_1, s_s) ds_1 ds_2$$

The density of skills employed in sector one differs from the population density of skills.

$$f(s_1) = \int_0^\infty f(s_1, s_2) ds_2$$
 $g_1(s_1 \mid \pi_1 S_1 > \pi_2 S_2) = \frac{1}{P} \int_0^{\pi_1 s_1 / \pi_2} f(s_1, s_2) ds_2$

The distribution of skills employed in sector *i* differs from the population distribution of skills due to comparative advantage.

Figure: Latent and Observed Distribution of Skill

Wage Equations

$$\ln W_1 = \ln \pi_1 + \mu_1 + U_1$$
$$\ln W_2 = \ln \pi_2 + \mu_2 + U_2,$$

where $U_i = \ln S_i - \mu_i$.

Sorting

$$E[\ln S_1 \mid \ln W_1 > \ln W_2] = \mu_1 + \frac{\sigma_{11} - \sigma_{12}}{\sigma^*} \lambda(-c_1)$$

$$E[\ln S_2 \mid \ln W_2 > \ln W_1] = \mu_2 + \frac{\sigma_{22} - \sigma_{12}}{\sigma^*} \lambda(-c_2)$$

We know the following:

$$\sigma^2 = (\sigma_{11} - \sigma_{12}) - (\sigma_{22} - \sigma_{12}) > 0$$

▶ There must be positive selection into one of the occupations and there can be positive selection into both.

Figure: Marginal Distributions of Skills

What do we know?

► There is positive selection in Sector 2, because there cannot be negative selection in both and $\sigma_{22} > \sigma_{11}$.

How about Sector 1?

- ▶ If σ_{12} < 0, then there is also positive selection in Sector 1.
- ▶ If $\rho_{12}=1$, then there is negative selection into Sector 1 as $\sigma_{12}>\sigma_{11}$

Importance of Assignment Mechanism

Heckman and Honore (1990) show that ...

For a log normal Roy economy, any random assignment of persons to sectors with the same proportion of persons in each sector as in the Roy economy has higher variance of log earnings provided the proportions lie strictly in the unit interval. This is true whether or not skill prices in the two economies are the same.

Choices over Time

Incarnations of the Roy Model

The Generalized Roy Model

Potential Outcomes Cost
$$Y_1 = \mu_1(X) + U_1$$
 $C = \mu_D(Z) + U_C$ $Y_0 = \mu_0(X) + U_0$

Observed Outcomes Choice
$$Y = DY_1 + (1-D)Y_0$$
 $S = Y_1 - Y_0 - C$ $D = I[S > 0]$

Figure: Occupational Sorting in the Generalized Roy Model

Extended Roy Model

Potential Outcomes Cost
$$Y_1 = \mu_1(X) + U_1$$
 $C = \mu_D(Z)$ $Y_0 = \mu_0(X) + U_0$

Observed Outcomes Choice
$$Y = DY_1 + (1-D)Y_0$$
 $S = Y_1 - Y_0 - C$ $D = I[S > 0]$

Figure: Occupational Sorting in the Extended Roy Model

Mapping Notation to original Roy Model

Potential Outcomes Cost
$$W_1=\pi_1S_1$$
 $C=0$ $W_2=\pi_2S_2$

Observed Outcomes Choice
$$W=DW_1+(1-D)W_2$$
 $S=W_1-W_2$ $D=\mathrm{I}[S>0]$

Figure: Occupational Sorting in the Original Roy Model

Appendix

References

- Carneiro, P., Heckman, J. J., and Vytlacil, E. J. (2011). Estimating marginal returns to education. *American Economic Review*, 101(6):2754–2781.
- Heckman, J. J. (1990). Selection bias and self-selection. In Eatwell, J., Milgate, M., and Newman, P., editors, *Econometrics*, The New Palgrave Economics Collection, pages 201–224. Palgrave Macmillan, London.
- Heckman, J. J. and Honore, B. E. (1990). The empirical content of the Roy model. *Econometrica*, 58(5):1121–1149.

Heckman, J. J. and Taber, C. (2010). Roy model. In Blume, L. E. and Durlauf, S. N., editors, *Microeconometrics*, The New Palgrave Economics Collection, pages 221–228. Palgrave Macmillan, London.

Roy, A. D. (1951). Some thoughts on the distribution of earnings. *Oxford Economic Papers*, 3(2):135–146.

Marginal Probability Density Function (PDF) of $\ln S_1$, $\ln S_2$

Graph of $\ln S_1 = f(\ln S_2)$

Graph of $\ln S_1 = f(\ln S_2)$

