

TITULO

Nativa Roya

PROYECTO DE INVESTIGACIÓN CUANTITATIVO

Influencia del nivel de inundación en el crecimiento inicial de una plantación de

Calvcophyllum spruceanum (Benth) Hook f ex Schum (capirona) en la Comunidad

anual de 4 mm a 6 mm en diametro (Otárola y Martínez, 2016). Por estas razones

el objetivo general es determinar la influencia del nivel de inundación en el

crecimiento inicial de plantaciones de Calycophyllum spruceanum (Benth) Hook f

ex Schum (capirona) en la Comunidad Nativa Roya. Los resultados de las

mediciones serán analizados mediante un análisis de correlación entre el nivel de

inundación y cada una de las variables estudiadas como es el diámetro al cuello

de la raíz (DCR) y la altura total, determinándose el coeficiente de determinación

respectivo para evaluar el grado de influencia de la variable independiente en la

Altura total, crecimiento inicial, diámetro al cuello de la raíz, plantación forestal,

4

1 2

3

5

6

7

8

9

RESUMEN En la Amazonia Peruana, particularmente en la Región Ucayali, y en áreas

10 inundables, se puede observar emprendimientos productivos para la instalación 11 de plantaciones forestales con fines maderables, empleando especies nativas y exóticas como por ejemplo Calycophyllum spruceanum (Benth) Hook f ex Schum 12 (capirona), que es una especie nativa promisoria para plantaciones que crece en 13 14 suelos de fertilidad relativamente baja, zonas inundables con un incremento medio

16 17

15

18 19

20

21 22

23

24

25

26

27

28

29 30

Abstract

dependiente.

Palabras claves

zona inundable.

In the Peruvian Amazon, particularly in the Ucayali Region, and in flooded areas,

productive undertakings can be observed for the installation of forest plantations for timber purposes, using native and exotic species such as Calycophyllum spruceanum (Benth) Hook f ex Schum (capirona), which is a promising native species for plantations that grows in soils of relatively low fertility, floodplains with a mean annual increase of 4 mm to 6 mm in diameter (Otárola y Martínez, 2016). For these reasons, the general objective is to determine the influence of the flood level on the initial growth of Calycophyllum spruceanum (Benth) Hook f ex Schum (capirona) plantations in the Roya Native Community. The results of the measurements will be analyzed through a correlation analysis between the level of flooding and each of the variables studied, such as the diameter at the root neck (DCR) and the total height, determining the respective determination coefficient to evaluate the degree of influence of the independent variable on the dependent variable.

Keywords

Total height, initial growth, root neck diameter, forest plantation, flood zone.

I. PLANTEAMIENTO DEL PROBLEMA.

En los últimos años, las plantaciones forestales se están considerando como una actividad económica de importancia nacional, debido a su capacidad para producir diferentes productos y servicios ambientales, resaltando la producción de madera para cercos, muebles, construcción, leña, etc., y su uso como un medio de conservación del agua y protección de suelos (Castro 2013)

Pero, para el éxito de las plantaciones forestales, es necesario generar conocimiento científico y tecnológico sobre varios aspectos, uno de ellos es el silvicultural; por esta razón es necesario reconocer que las plantaciones, desde su etapa inicial, presentan cambios cuantitativos y cualitativos notorios

de acuerdo a la calidad de sitio u otros factores que intervienen en su 59 60 desarrollo (Flores 2015), siendo relevante en las áreas inundables de la Amazonía determinar cómo influye el nivel de inundación en el crecimiento de 61 las especies que se pueden implantar en esas áreas. 62 63 En la Amazonia Peruana, particularmente en la Región Ucayali, y en áreas inundables, se puede observar emprendimientos productivos para la 64 65 instalación de plantaciones forestales con fines maderables, empleando especies nativas y exóticas como por ejemplo Calycophyllum spruceanum 66 (Benth) Hook f ex Schum (capirona), que es una especie nativa promisoria 67 68 para plantaciones que crece en suelos de fertilidad relativamente baja, zonas 69 inundables con un incremento medio anual de 4 mm a 6 mm en diametro (Otárola y Martínez 2016). 70 71 Los principales problemas por resolver son los siguientes: Problema general: 72 ¿Cuál es la influencia del nivel de inundación en el desarrollo inicial de 73 plantaciones de Calycophyllum spruceanum (Benth) Hook f ex Schum 74 (capirona) en la Comunidad Nativa Roya? 75 76 Problemas específicos: 77 ¿Cuál es la influencia del nivel de inundación en la supervivencia inicial de plantaciones de Calycophyllum spruceanum (Benth) Hook f ex Schum 78 79 (capirona) en la Comunidad Nativa Roya? ¿Cuál es la influencia del nivel de inundación en el crecimiento en diámetro al 80 cuello de la raíz (DCR) y en la altura total inicial de plantaciones de 81 Calycophyllum spruceanum (Benth) Hook f ex Schum (capirona) en la 82 Comunidad Nativa Roya? 83 84 ¿Cuál es la influencia del nivel de inundación en el estado fitosanitario de

plantaciones de Calycophyllum spruceanum (Benth) Hook f ex Schum (capirona) en la Comunidad Nativa Roya?

87 88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

85

86

II. JUSTIFICACIÓN DEL PROYECTO

Muchas especies inhiben su crecimiento en condiciones de anegamiento temporal, lo que implica problemas de sobrevivencia y una menor producción de biomasa. Además, en condiciones de anegamiento los árboles pierden vigor y aumenta su susceptibilidad al ataque de agentes patógenos causando su senescencia y abscisión debilitando la vitalidad del árbol (Baluarte y Álvarez 2018) Las relaciones morfométricas sirven para las intervenciones silviculturales, especialmente cuando no se conoce la edad de los árboles, pues da a conocer las relaciones interdimensionales como el espacio vertical ocupado por cada árbol, el grado de competencia, la estabilidad, la vitalidad y la productividad de cada individuo. Con el presente estudio se pretende contribuir a enriquecer los estudios silviculturales de Calycophyllum spruceanum (capirona), especie nativa de la Amazonia peruana, llenando el vacío de conocimiento referido a influencia que tiene el grado de inundación en las relaciones morfométricas de esta especie en zonas inundables (Pérez et al. 2019) Además, permitirá caracterizar las plantaciones, sobre las relaciones morfométricas en un suelo aluvial. El estudio favorecerá, a todas las personas, naturales o jurídicas, que se dediguen al establecimiento de plantaciones y la producción de madera con Calycophyllum spruceanum (capirona), permitiendo mejorar la toma de decisiones en relación al lugar donde se debe plantar esta especie (Pérez et al. 2019)

110111

112

III.HIPOTESIS

Hipótesis general:

A mayor nivel de inundación, menor crecimiento inicial de la especie Calycophyllum spruceanum (Benth) Hook f ex Schum (capirona) en la Comunidad Nativa Roya.

Hipótesis específicas:

A mayor nivel de inundación, menor supervivencia inicial de plantaciones de Calycophyllum spruceanum (Benth) Hook f ex Schum (capirona) en la Comunidad Nativa Roya.

A mayor nivel de inundación, menor crecimiento inicial en diámetro al cuello de la raíz (DCR) y en altura total inicial de la plantación de Calycophyllum spruceanum (Benth) Hook f ex Schum (capirona) en la Comunidad Nativa Roya.

A mayor nivel de inundación, mayor cantidad de plantas en mal estado fitosanitario en las plantaciones de Calycophyllum spruceanum (Benth) Hook f ex Schum (capirona) en la Comunidad Nativa Roya.

IV. OBJETIVOS

4.1. Objetivo General

Determinar la influencia del nivel de inundación en el crecimiento inicial de plantaciones de Calycophyllum spruceanum (Benth) Hook f ex Schum (capirona) en la Comunidad Nativa Roya

4.2. Objetivos Específicos

Evaluar la influencia del nivel de inundación en la supervivencia inicial de plantaciones de Calycophyllum spruceanum (Benth) Hook f ex Schum en la Comunidad Nativa Roya.

Evaluar la influencia del nivel de inundación en el crecimiento en diámetro al cuello de la raíz (DCR) y en la altura total inicial de plantaciones de Calycophyllum spruceanum (Benth) Hook f ex Schum (capirona) en la

141 Comunidad Nativa Roya.

Evaluar la influencia del nivel de inundación en el estado fitosanitario de plantaciones de Calycophyllum spruceanum (Benth) Hook f ex Schum (capirona) en la Comunidad Nativa Roya.

V. ANTECEDENTES

En la Plantación de Calycophyllum spruceanum (Benth.) Hook. F. ex K. Schum
en laderas degradadas de selva alta en la región San Martin fue determinado
un IMA del diámetro normal de fuste (cm/año) de 1,2 a 1,3 y un IMA altura total
(m/año) de 1 (Instituto Nacional de Innovación Agraria 2018)
Por otro lado, en la investigación sobre crecimiento de Ocotea cernua
(Lauraceae) en bosques aluviales inundables de la Amazonía peruana. Este
estudio, proporciona información sobre su crecimiento, y que puede utilizarse
en el manejo de la especie. Basado en factores de competencia entre árboles,
el modelo de crecimiento ajustado estima que la tasa máxima de crecimiento
en diámetro anual es 2,10 cm; 1,28 cm y 0,50 cm para árboles con baja, media
y alta competencia. Esta tasa máxima de crecimiento ocurre cuando los árboles
cuentan con DAP que oscilan entre 21,10 cm; 20,28 cm y 20,50 cm, para baja,
media y alta competencia, respectivamente (Baluarte y Álvarez 2018).
Así mismo, (Cuellar y Reyes, 2016) en la investigación Calycophyllum
spruceanum una opción rentable para la promoción de plantaciones forestales
en la amazonia determinaron un IMA diámetro normal de fuste (cm/año) de 2,9
y un IMA altura total (m/año) de 2,7.
A su vez en la evaluación de sobrevivencia e incremento de seis especies
forestales maderables en plantaciones de la finca Eco forestal, San Juan del
Sur, Rivas. 2010; la especie que presentó mayor porcentaje de sobrevivencia
fue Khaya senegalensis (Desv.) A.Juss. con un promedio general de 87,04%

193

con categoría de Muy Bueno; Tectona grandis L.F. presentó un porcentaje de sobrevivencia promedio de 77,91% con categoría de Bueno: Swietenia humilis Zucc presentó un promedio general de 77,35% de sobrevivencia con categoría de Bueno: Tabebuia rosea (Bertol) DC presentó un promedio general de 77,24% de sobrevivencia con categoría de Bueno; Dalbergia retusa Hemsl presentó un promedio general de 75% de sobrevivencia con categoría de Bueno y Pachira quinata (Jacq.) presentó el promedio más bajo de sobrevivencia en la plantación el cual fue de 66,59% con categoría de Bueno (Lopez 2015) Por su parte en la investigación del Índice de sitio de Calycophyllum spruceanum Benth. en relación con la altura dominante del rodal en ensayos de plantación en la cuenca del Aquaytía fue determinado un IMA diámetro normal de fuste (cm/año) de 0,6 a 1,9 y un IMA altura total (m/año) de 0,7 a 2,2 (Ugarte y Dominguez 2010) Se ha determinado el comportamiento de la regeneración natural de Ocotea marmellensi; Caraipa densifolia y Virola sebifera, en periodos de inundación. Para la evaluación se utilizó treinta unidades muestrales de 10 x 10 m (100 m2) con las siguientes categorías: Brinzales (plantas de 30 cm a 150 cm de altura); Latizales (de > 150 cm de altura y no más de 5 cm de DAP) y Fustales (DAP ≥ 5 cm- 40 cm); con registro de datos antes, durante y al final del periodo de inundación. Hecho los análisis se encontró que Caraipa densifolia de la categoría Brinzal tiene la mayor sobrevivencia (83%); en Latizal, Ocotea marmellensi con 89% y, en la de Fustal, Virola sebifera con el 87% de sobrevivencia, Igualmente se determinó que la altura promedio de inundación fue de 177 cm y que la calidad de las plántulas sobrevivientes, con 86% del total, al final del periodo de inundación, le confiere la categoría de Buena (Alván

194	2008).
195	Capirona
196	Calycophyllum spruceanum (Capirona)
197	Taxonomía.
198	(Legia. et. al. 2010) afirma:
199	Reino: Plantae
200	División: Tracheobionta - Tracheophyta
201	Grupo/Phylum: Angiospermas - Magnoliophyta
202	Clase: Dicotiledoneas - Magnoliopsida
203	Orden: Rubiales
204	Familia: Rubiaceae
205	Género: Calycophyllum
206	Nombre científico: Calycophyllum spruceanum
207	Nombre común: "Capirona"
208	Reynel (2013) describe como árbol de 50 cm a 120 cm de diámetro y 20 m - 35
209	m de alto, con el fuste muy recto, cilíndrico, regular, la copa en el último tercio,
210	la base del fuste recta; Corteza externa lisa, color verde, muy característica,
211	homogénea, tersa y lustrosa, dando la impresión de un poste bien pulido,
212	provista de ritidoma papiráceo rojizo que se desprende en placas grandes,
213	irregulares, revelando la superficie verdusca de la corteza. Corteza interna
214	homogénea, muy delgada, de 1 mm - 2 mm espesor, color crema verdusco.
215	Ramitas terminales con sección circular o aplanadas en las zonas terminales,
216	de 5 mm - 6 .mm de diámetro, color marrón rojizo cuando secas, lisas, lustrosas,
217	provistas de lenticelas blanquecinas.
218	Distribución y hábitat
219	En toda la Amazonía, hasta el sur de Brasil y Bolivia, debajo de los 1200 msnm.
	8

Es común en zonas de bosques secundarios, aunque se le encuentra también en los bosques primarios. Se le observa en ámbitos con pluviosidad elevada y constante, pero también en zonas con una estación seca marcada. Es una especie heliófita, frecuente en bosques secundarios pioneros y tardíos, en suelos mayormente limosos a arenosos, aluviales, fértiles, a veces temporalmente inundables y en las zonas ribereñas; tolera la pluviosidad elevada. Se observan que se trata de un árbol característico en bosques ribereños temporalmente inundables por aguas claras ("Várzeas") (Orrego 2010)

Zona de vida.

Bosque muy Húmedo Premontano Tropical (bmh-PT) y bosque húmedo Tropical (bh-T). Biotemperatura media anual es 25.6° Ca 26.5° C. Promedio de precipitación total anual es de 4376 mm. Abrupto susceptible a la erosión, con suelos medianamente profundos a superficiales y pH ácido (Organismo de Supervisión de los Recursos Forestales y de Fauna Silvestre 2013).

VI. MARCO TEÓRICO

Tolerancia a la inundación

La tolerancia a la inundación de una planta leñosa se define como la capacidad de sobrevivir en condiciones de anoxia y depende de la especie (Glenz et al. 2006). Especies de zonas con marcados episodios estacionales de inundación, como los árboles que crecen en la planicie de inundación del Río Amazonas, están adaptadas a soportar períodos de completa inmersión que duran varios meses (Parolin 2009).

Desde el punto de vista productivo, resulta más conveniente definir al estrés como una situación que reduce el crecimiento de una planta en relación al potencial que puede alcanzar genéticamente en ausencia de estrés (Taiz et al.

2015). De acuerdo a esta definición, las especies con mayor sensibilidad a la 247 248 inundación son aquellas que manifiestan una mayor reducción del crecimiento 249 bajo condiciones de estrés que creciendo en condiciones no estresantes. La inundación puede ocasionar el cambio en los patrones de crecimiento 250 haciendo que, en algunos casos, se detenga el crecimiento de la parte superior 251 252 de la planta o que se acelere o sea mayor en otros, gracias a los múltiples 253 mecanismos de respuesta de los que disponen ciertas plantas (Blom y 254 Voesenek 1996) 255 Anoxia. Nada de oxígeno en el suelo por encharcamiento prolongado todas las 256 plantas morirán eventualmente de anoxia, encharcamiento temporal debido a 257 un drenaje pobre o lento del suelo (Schaffer 2006). Factores que intervienen en el crecimiento 258 259 El crecimiento vegetal, el desarrollo, el aumento de biomasa y la productividad dependen, de la capacidad del metabolismo y la fisiología vegetal para 260 261 adaptarse y aclimatarse a las condiciones ambientales en cambio constante. Las condiciones ambientales son percibidas por los distintos órganos de la 262 planta, y esta información se transmite internamente mediante la modulación 263 264 de la síntesis de señales, fundamentalmente hormonas, que activan las 265 respuestas de desarrollo y crecimiento vegetativo. Las respuestas de la planta 266 dependen del genotipo y del estado de desarrollo de la misma en el momento 267 del estrés, de la duración y la severidad del mismo y de los factores ambientales que lo provoquen. Una vez activadas estas respuestas, el crecimiento 268 269 propiamente dicho, se verá limitado por el aporte de nutrientes, elementos minerales y carbohidratos (Monteliu 2010). 270 Crecimiento de un árbol 271 El árbol es aquella planta perenne de tronco generalmente leñoso, con la

presencia de un solo tallo dominante en la base, que en su estado adulto y 273 274 condiciones normales de hábitat puede alcanzar al menos unos cinco metros de altura, mientras que su ramificación inferior está por encima de dos metros 275 sobre el nivel del suelo (Alván 2008) 276 Es aquel fenómeno de desarrollo del árbol o masa observado en ellos 277 íntegramente. El crecimiento de un árbol o de una masa está representado por 278 279 su respectivo desarrollo; de aquí que se habló del desarrollo del árbol en altura, diámetro y del desarrollo en volumen de un árbol o de una masa, al referirnos 280 al crecimiento (Esaú 2015). El Crecimiento primario se origina en el meristemo 281 282 apical de los vástagos y raíces, este crecimiento se manifiesta en el fuste, 283 ramas de los árboles y las puntas de las raíces, esto da lugar a la ramificación (Vargas 2019) 284 285 En muchas plantas vasculares, el crecimiento secundario es el resultado de la actividad de los meristemos laterales, el felógeno y el cambium vascular, a 286 287 partir de los meristemos laterales el crecimiento secundario incrementa el diámetro de la planta en la raíz o el tallo más que en su longitud, siempre que 288 los meristemos laterales produzcan nuevas células el tallo o la raíz continuara 289 290 creciendo en diámetro, en plantas leñosas esto conduce a la formación en 291 madera (Gadow et al. 2018) Nutrientes. - Las plantas necesitan para su crecimiento y desarrollo contar con 292 293 diversos nutrientes del suelo. La tierra que se usa para llenar los envases y almácigos tiene que cumplir varías funciones: dejar entrar y retener el agua; ser 294 295 rica en nutrientes; blanda para que la raíz pueda crecer y no desarmarse cuando se saque el envase. Se considera que un suelo o sustrato es fértil 296 cuando cumplen las condiciones de dotación y abastecimiento para ese mismo 297 298 suelo (Ansonera 1994).

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

Calidad de la planta.

Se define como aquella que es capaz de alcanzar un desarrollo (supervivencia y crecimiento) óptimo en un medio determinado (Villar 2003); es uno de los factores más importantes que condicionan el éxito de una plantación forestal. No existe un único modelo de calidad ideal para cada especie. Una calidad de planta determinada puede ser válida para los objetivos que se determinen. Según (Prieto et al. 2009) la clasificación de calidad de planta se realiza en base a características o atributos morfológicos y fisiológicos como la altura de la planta, el diámetro del tallo, tamaño, forma y volumen del sistema radicular. Estos atributos pueden ser determinados física o visualmente y son los más utilizados en la determinación de la calidad de la planta.

Parámetros biométricos.

Altura:

Es un buen predictor de la altura futura en campo, pero no para la supervivencia; este parámetro, se ha utilizado por mucho tiempo como un indicador de la calidad, aunque se considera insuficiente y es conveniente relacionarlo con otros criterios para que refleje su real utilidad. La altura de las plántulas puede ser manipulada en vivero a través de la fertilización y el riego. (Sáenz et al. 2010)

Diámetro al nivel del cuello de la raíz. Es un indicador de la capacidad de transporte de agua hacia la parte aérea, de la resistencia mecánica y de la capacidad relativa de tolerar altas temperaturas de la planta. Esta variable se expresa generalmente en milímetros (mm) (Gadow et al. 2018)

Biomasa.

Vera (1995) afirma que tiene gran correlación con la supervivencia en campo. con la misma consistencia que el diámetro del tallo, por lo que se tendría, en

325	algunas de las especies una baja supervivencia de las plantaciones, dado su
326	bajo peso.
327	Es la cantidad de materia orgánica seca total en un momento determinado de
328	organismos vivos de una o más especies por unidad de área (Otárola y
329	Martínez 2016)
330	El Estado fitosanitario
331	Se evalúa teniendo en cuenta las características morfológicas y fisiológicas de
332	la planta en función del suelo y el medio en el que se desarrolla. Es de
333	característica cualitativa, se expresa mediante tres (03) categorías, según
334	(Quevedo 1992)
335	Bueno (b) = Cuando la planta es vigorosa con follaje verde y el tallo fuerte)
336	Regular (r) = Cuando presenta problema de coloración de las hojas, tallo débil
337	a un 40% o 70% de planta.
338	Malo (m) = Cuando la planta está enferma y presenta decoloración y caída de
339	hojas mayor al 70% de la planta sin eje dominante.
340	Sobrevivencia.
341	Tabla 1.
342	Categoría para la evaluación de la sobrevivencia de las plantas.
343	Categoría Porcentaje de sobrevivencia
344	Muy bueno 80% - 100%
345	Bueno 60% - 79%
346	Regular 40% - 59%
347	Malo < 40%
348	Fuente: Centeno (1993)
	1

VII. METODOLOGÍA

352	7.1. L	ugar de estudio.
353		l lugar de estudio será ubicado en la Comunidad Nativa Roya en el distrito
354	de	e Iparía, provincia de coronel Portillo en la región Ucayali.
355	70.0	
356 357	7.2. P	oblación y tamaño de muestra
358	Ро	blación.
359	Se	e trabajará con un total de 11,088 plantas de capirona ubicadas y
360	dis	stribuidas en 21 hectáreas.
361 362	Mu	lestra
363		olicada la fórmula se determinó que la muestra estará conformada por 371
364	pla	antas.
365		
366		scripción detallada de los métodos, uso de materiales, equipos o
367		umos.
368	a)	Diseño de muestreo Doro coloulor el tempão de muestre co utilizá la férmula para determinar
369		Para calcular el tamaño de muestra se utilizó la fórmula para determinar
370		tamaño de muestra en el caso de poblaciones finitas ya que se conoce
371		el número de plantas existentes en el área. La fórmula para calcular el
372		tamaño de muestra es la siguiente:
		$n = \frac{N \times Z_a^2 \times p \times q}{d^2 \times (N-1) + Z_a^2 \times p \times q}$
373 374		
375		Donde:
376		N = tamaño de la población = 11 088
377		Z = nivel de confianza = 1,96
378		p = probabilidad de éxito, o proporción esperada = 0,5
379		q = probabilidad de fracaso = 0,5
380		d = precisión (Error máximo admisible en términos de proporción) = 0,05.

382 n: $\frac{11\,088\,x\,(1,96)^2\,x\,(0,5)(0,5)}{(0,05)^2x\,(\,11\,088-1)+(1,96)^2\,x\,(0,5)(0,5)}$

n: $\frac{10.648,9152}{27,7175+0,9604}$

n: $\frac{10.648,9152}{28,6779}$

n: 371

Cuya selección se realizará por el método probabilístico aleatorio simple, de este modo todos los individuos tendrán la misma probabilidad de ser elegidos para formar parte de la muestra, para la selección de la muestra se utilizó la hoja de cálculo Microsoft Excel activando la opción (análisis de datos) que se activa de la siguiente forma: se inicia desde archivo, opciones, complementos, ir a complementos y hacer clic en el cuadro vacío donde que dice "herramientas para análisis" finalmente dando clic en aceptar, después en el comando de datos se selecciona análisis de datos, luego la opción de muestra agregando el rango de la población (11,088 plantas) y el número de muestras en aleatorio (371 plantas), teniendo como resultado el número de planta a evaluar.

b) Descripción detallada del uso de materiales, equipos, insumos, entre otros.

Para determinar la ubicación y el área de la plantación se utilizará un GPS, luego se realizará un recorrido por la plantación ubicando el número de planta que ingreso a la muestra, el cual será marcado con pintura roja y numerado colocándole una etiqueta.

La altura a su vez será evaluada desde el nivel del suelo y el punto más alto del ápice de la planta, esta medición se efectuará con aproximación al centímetro utilizando regla telescópica 5 metros.

410	El diámetro al cuello de la raíz de la planta se utilizará como material la
411	cinta diamétrica.
412	Para observar la calidad de los individuos en estudio (estado
413	fitosanitario) será considerado los indicadores:
414	Bueno (b) = Cuando la planta es vigorosa con follaje verde y el tallo
415	fuerte)
416	Regular (r) = Cuando presenta problema de coloración de las hojas, tallo
417	débil a un 40% o 70% de planta.
418	Malo (m) = Cuando la planta está enferma y presenta decoloración y
419	caída de hojas mayor al 70% de la planta sin eje dominante.
420	Considerando como principal variable la evaluación de los daños
421	ocasionados por algún agente patógeno o ataque de insectos, esto será
422	mediante el método de observación directa.
423	Toda esta información será registrada en un formato de evaluación,
424	cuaderno de notas, cámara fotográfica y una plantilla de datos en
425	formato Excel para el ordenamiento y la sistematización de datos
426	También se utilizará, guantes, lápiz o lapiceros, machete, GPS, entre
427	otros.
428	
•	Descripción de variables a ser analizados en el objetivo específico
430	Operacionalización de las variables.
431	Variable independiente
432	Inundación
433	Con una dimensión en altura con indicador en metros (m)
434	Variable Dependiente
435	Crecimiento
436	Con dimensiones en supervivencia (% vivo y % muerto), en diámetro

(cm) y altura (m)
 Fitosanidad
 Con una dimensión según el estado e indicador de Bueno, Regular y
 Malo

d) Aplicación de prueba estadística inferencial.

Los resultados de las mediciones serán analizados mediante un análisis de correlación entre el nivel de inundación y cada una de las variables estudiadas como es el diámetro al cuello de la raíz (DCR) y la altura total, determinándose el coeficiente de determinación respectivo para evaluar el grado de influencia de la variable independiente en la dependiente.

7.4. Tabla de recolección de datos por objetivos específicos.

	R	EGISTRO Y EVA	LUACIÓN DEL (CRECIMIENTO D	E UNA PLANTA	CIÓN DE CAPIR	ONA
UNIDAD DE MANEJO]	UTM ESTE			UTM NORTE	
COMUNIDAD NATIVA]			
EVALUADOR DE CAMPO						FECHA DE EVALUACION	
Nº Planta	Diámetro DAP (cm)	Diámetro al cuello de la raíz DCR (cm)	Altura planta (m)	Altura inundación (m)	Supervivencia	Estado fitosanitario	Observaciones
OBSERVACIO	NES GENERALES						
		SUPERVIVENCIA	l			ESTADO FIT	TOSANITARIO
. vivo					B. bueno		
/l. muerto					M. malo		
					R. regular		

VIII. CRONOGRAMA DE ACTIVIDADES

A ativida d		Trimestres										
Actividad	Feb	Mar	Abr	May	Jun	Jul	Ago	Set	Oct	Nov	Dic	Ene
Elección de tema							X					
Revisión Bibliográfica							Х					
Elaboración de Proyecto							Х	Х				
Aprobación de								Χ				

Proyecto							
Marco Teórico				Χ			
Evaluación in				Х			
situ				^			
Evaluación de				Х			
parámetros				^			
Levantamiento				Χ	Х		
de datos					^		
Tratamiento de					Х		
datos							
Procesamiento					Х	Х	
de datos					, ,	1	
Análisis e					\ \		
interpretación					X	X	
de datos							
Sistematización						X	
final del informe						^	X
Conclusiones y sugerencias						Χ	
Presentación							
del informe							Χ
final							
Aprobación de							
la Tesis							X
Sustentación							
del Informe							X
Final							

VII. PRESUPUESTO

Descripción		Unidad de medida	Costo Unitario (S/.)	Cantidad	Costo total (S/.)	
Compra materiales escritorio	de de	Unidad	600,00	1	600,00	
Pasajes	Pasajes		100,00	5	500,00	
Compra materiales campo	materiales de		100,00	1	100,00	
Alimentación		Ración	50,00	10	500,00	
Levantamiento de datos		Jornal	200,00	8	1600,00	
Ayudante		Jornal	100,00	8	800,00	

VIII. BIBLIOGRAFÍA

Alván Ruiz, J. E. (2008). Comportamiento de la regeneración natural de especies forestales de Áreas Inundables para establecer Planes de Manejo en cuencas

461	nidrograficas, Loreto, Peru. QUITOS – PERU 2008. Iquitos.
462	Ansonera, J. (1994). Sustratos: propiedades y caracterización. Madrid, España:
463	Mundi Prensa.
464	Baluarte Vásquez, J. R., & Álvarez Gonzáles, J. G. (2018). Crecimiento de
465	Ocotea cernua (Lauraceae) en bosques aluviales inundables de la Amazonía
466	peruana. Lima: Revista peruana de biología.
467	Castro, D. (2013). Diagnóstico y caracterización de la enfermedad causada por
468	Phytophthora sp. en una plantación de Calycophyllum spruceanum en el Codo
469	del Pozuzo. Lima: UNALM.
470	Flores, Y. (2002). Semilla de especies forestales de importancia económica en
471	la Región Ucayali. Ucayali - Perú: Instituto Nacional de Investigación Agraria
472	(INIA).
473	Flores, Y. (2015). Manual de semillas de especies forestales de importancia
474	económica en la región Ucayali. Pucallpa: INIA.
475	Lopez, C. (2015). Evaluación de sobrevivencia e incremento de seis especies
476	forestales maderables en plantaciones de la finca Eco forestal, San Juan del Sur,
477	Rivas. 2010. Managua, Nicaragua : Universidad Nacional Agraria.
478	Monteliu, P. (2010). A taxonomic revision of the genus Ceiba Mill. (Bombacacea).
479	Madrid, España.
480	Organismo de Supervisión de los Recursos Forestales y de Fauna Silvestre.
481	(2013). Modelamiento Espacial de Nichos Ecológicos para la Evaluación de
482	Presencia de Especies Forestales Maderables en la Amazonía Peruana. Serie
483	Tècnica-OSINFOR, 82.
484	Orrego, M. (2010). "Trabajabilidad de la madera de Capirona (Calycophyllum
485	spruceanum) procedente de plantaciones de la Cuenca del rio Aguaytia en la
486	region de Ucayali - Perú" . Lima: UNIVERSIDAD NACIONAL AGRARIA LA

487	MOLINA/Facultad de Ciencias Forestales.
488	Otárola, E., & Martínez, P. (2016). Análisis de rentabilidad económica y
489	desarrollo de las ecuaciones alometricas de los bosques aluviales de
490	Calycophyllum spruceanum para determinación del valor maderable. IIAP.
491	Parolin, P. (2009). Submerged in darkness: adaption to prolonged submergence
492	by woody species of the Amazonian floodplains. Annals of Botany , 359-376.
493	Pérez, Y., Ríos, C., & Díaz, I. (2019). Relaciones morfométricas en plantaciones
494	jóvenes de Acacia mangium. Centro agrícola.
495	Prieto, A., García, L., Mejía, M., Huchín, S., & Aguilar, L. (2009). Producción de
496	planta del género Pinus en vivero en clima templado frío. Durango, México.
497	Reynel, C. (2013). Árboles útiles de la Amazonía Peruana. Manual con apuntes
498	de identificación, ecología y propagación de las especies.
499	Sáenz, T., Muñoz, J., Villaseñor, F., Prieto, A., & Rueda, A. (2010). Calidad de
500	planta en viveros forestales de clima templado en Michoacán. Uruapan, Mich.
501	México: Campo Experimental Uruapan.
502	Torres, A. (1989). Ensayos de tres especies latifoliadas en la unidad de reserva
503	nacional del Capro. Mérida – Venezuela: Universidad de los Andes.
504	Vera, C. (1995). The influence of antidesiccants on field perfomance and
505	physiologya of 2+0 ponderosa pine (Pinus ponderosa Dougl.) seedlings. Ph. D,
506	Thesis. Oregon: Oregon State University
507	Villar, P. (2003). Importancia de la calidad de planta en los proyectos de
508	revegetación. Guadalajara, España: Centro Nacional de Mejora Forestal "El
509	Serranillo".
510	

IX. ANEXO

Problema general	Objetivos general	Hipótesis general	Variables Independiente	Dimensión	Indicadores
¿Cuál es la influencia del nivel de inunda- ción en el desarrollo inicial de plantacio- nes de calycophyllum spruceanum (benth) hook f ex schum (ca- pirona) en la Comuni- dad Nativa Roya?	Determinar la influencia del nivel de inundación en el crecimiento inicial de plantaciones de Calycophyllum spruceanum (Benth) Hook f ex Schum (capirona) en la Comunidad Nativa Roya	A mayor nivel de inun- dación, mayor creci- miento inicial de la es- pecie calycophyllum spruceanum (benth) hook f ex schum (ca- pirona) en la Comuni- dad Nativa Roya.	Inundación	Altura	Metros
Especifico	Especifico	Especifico	Dependiente		
¿cuál es la influencia del nivel de inunda- ción en la supervi- vencia inicial de plan- taciones de calycop- hyllum spruceanum (benth) hook f ex schum (capirona) en la Comunidad Nativa Roya?	Evaluar la influencia del nivel de inundación en la supervivencia inicial de plantaciones de Calycophyllum spruceanum (Benth) Hook f ex Schum en la Comunidad Nativa Roya.	A mayor nivel de inundación, menor supervivencia inicial de plantaciones de Calycophyllum spruceanum (Benth) Hook f ex Schum (capirona) en la Comunidad Nativa Roya.	Crecimiento	Supervivencia	% vivo % muerto
¿Cuál es la influencia del nivel de inunda- ción en el crecimiento en diámetro al cuello de la raíz (DCR) y en la altura total inicial	Evaluar la influencia del nivel de inunda- ción en el crecimiento en diámetro al cuello de la raíz (DCR) y en la altura total inicial de	A mayor nivel de inun- dación, menor creci- miento inicial en diá- metro al cuello de la raíz (DCR) y en altura		Diámetro	Cm

de plantaciones de Calycophyllum spru- ceanum (Benth) Hook f ex Schum (ca- pirona) en la Comuni- dad Nativa Roya?	plantaciones de Caly- cophyllum sprucea- num (Benth) Hook f ex Schum (capirona) en la Comunidad Na- tiva Roya.	tación de Calycophy- llum spruceanum
¿Cuál es la influencia del nivel de inunda- ción en el estado fito- sanitario de planta- ciones de <i>Calycophy-</i> <i>llum spruceanum</i> (Benth) Hook f ex Schum (capirona) en la Comunidad Nativa Roya?	Evaluar la influencia del nivel de inundación en el estado fitosanitario de plantaciones de <i>Calycophyllum spruceanum</i> (Benth) Hook f ex Schum (capirona) en la Comunidad Nativa Roya.	dación, mayor cantidad de plantas en mal estado fitosanitario en las plantaciones de Calycophyllum spruceanum (Benth) Hook