《基础物理实验》实验报告

1 实验目的

- 1. 观察简谐振动现象,测定简谐振动的周期。
- 2. 求弹簧的劲度系数 k 和有效质量 m_0 。
- 3. 观察简谐振动的运动学特征。
- 4. 验证机械能守恒定律。
- 5. 用极限法测定瞬时速度。
- 6. 深入了解平均速度和瞬时速度的关系。

2 实验仪器

气垫导轨、滑块、附加砝码、弹簧、U型挡光片、平板挡光片、数字毫秒计、天平等

3 实验原理

3.1 简谐振动中 k, m_0 的测量

图 1: 简谐运动原理图

如图,设滑块的位置为x,每个弹簧的伸长量为 x_0 。以右侧为x轴正向,左侧弹簧给滑块施加的力为 $-k_1(x+x_0)$,右侧为 $k_1(x_0-x)$,滑块所受合力为

$$m\ddot{x} = -k_1(x+x_0) + k_1(x_0-x) = -2k_1(x-x_0)$$

令 $k = 2k_1$, 则方程的解为

$$x = A\sin(\omega_0 t + \varphi_0)$$

其中 A 为振幅, φ_0 为初相位,

$$\omega_0 = \sqrt{\frac{k}{m}}$$

 ω_0 为系统的固有频率,其中 $m=m_0+m_1$, m_1 为滑块质量, m_0 为弹簧的有效质量,于是振动周期 T 可以写成

$$T = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{m_0 + m_1}{k}}$$

等价于

$$T^2 = 4\pi^2 \frac{m_0 + m_1}{k}$$

在实验操作中,我们将通过向滑块上添加骑码,改变 m_1 ,作出 T^2-m 的图线,通过斜率 $\frac{4\pi^2}{k}$ 得出 k,通过其截距 $\frac{4\pi^2}{k}m_0$ 得出 m_0

3.2 瞬时速度的测量

图 2: 测量瞬时速度

瞬时速度定义为

$$v_0 = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t}$$

,但是在真实实验中显然无法使 $\Delta t=0$,于是,我们采用一个长度为 Δs 的挡光片,此时通过测量 $\frac{\Delta s}{\Delta t}$ 得出滑块的平均速度,

$$\bar{x} = \frac{\Delta s}{\Delta t} = v_0 + \frac{a}{2} \Delta t$$

其中 a 为滑块通过光电门时的加速度, v_0 为瞬时速度。通过改变挡光片的宽度 Δs ,可以改变 Δt ,再通过做图取截距得出瞬时速度。

3.3 机械能守恒

当测量出瞬时速度 v_0 之后,我们就可以计算总能量并验证机械能守恒。

$$E = E_k + E_p = \frac{1}{2}mv_0^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2$$

通过此式,就可以验证弹性势能和动能之间的相互转化,并验证机械能守恒。

3.4 $x^2 - v^2$ 关系

通过对x求导,可得v的表达式

$$v = A\omega_0 \cos(\omega_0 t + \varphi_0)$$

结合 v, x 的表达式,通过 $\sin(x)^2 + \cos(x)^2 = 1$ 消去 t,得

$$v^2 = \omega_0^2 (A^2 - x^2)$$

通过此式,即可描述运动学特征, $x^2 - v^2$ 关系。

4 实验内容

- 1. 学会使用光电门测速度和测周期。
- 2. 调节气垫导轨至水平状态,通过测量任意两点的速度变化,验证气垫导轨是否处于水平状态。
- 3. 测量弹簧振子的振动周期并考察振动周期和振幅的关系。滑块的振幅 A 分别取 10.0, 20.0, 30.0, 40.0cm 时,测量其相应振动周期。分析和讨论实验结果(证明周期和振幅无关)。
- 4. 利用实验原理 (a) 中的方法, 测出 k, m_0
- 5. 将滑块装上 U 型挡光片,可测得速度,并得出速度和位移的关系。作出 v^2-x^2 的图线,并验证斜率和截 距满足实验原理 (d) 中的表达式。
- 6. 证明系统的机械能守恒。固定 A 为定值,改变测量速度的位置 x,测出不同 x 处的速度,计算并验证各个位置的机械能守恒。
- 7. 利用实验原理 (b),中的方法测量瞬时速度,并改变倾角 θ 和距离 L,重复实验。

5 实验结果与数据处理

5.1 气垫导轨调平

将两个光电门放置在相隔至少 80cm 处,放置 1cm 的挡光片。调试结果如下表所示,其中 $\eta = |\frac{v_2 - v_1}{v_1}| \times 100 \%$ 。

表 1: 气垫导轨调试数据

v_1 (cm/s)	v2 (cm/s)	误差 η
26.50	26.43	0.26 %
23.90	23.82	0.34 %
23.98	24.03	0.21 %

注意: 此处速度不可过快或过慢,以 $15 {
m cm/s} \le v \le 30 {
m cm/s}$ 为宜,否则调平数据不准;并且需要使误差 $\eta < 0.5\%$ 。

5.2 测量弹簧振子的振动周期并考察振动周期和振幅的关系

滑块的振幅 A 分别取 10.0, 20.0, 30.0, 40.0 cm 时, 测量其振动周期:

表 2: 振子振动周期与振幅的关系

振幅 A (cm)	10	20	30	40
T_1 (ms)	1604.64	1602.69	1601.43	1600.87
T_2 (ms)	1604.85	1602.09	1601.26	1600.87
T_3 (ms)	1605.54	1602.11	1601.42	1601.08
T_4 (ms)	1605.98	1601.88	1601.61	1600.99
T_5 (ms)	1605.68	1602.51	1601.60	1601.10
\overline{T} (ms)	1605.34	1602.14	1601.47	1600.99

尽管随着振幅的增加,振动周期有所下降,但是最大相对差值

$$\frac{1605.34-1600.99}{1600.99}\times100\%=0.27\%$$

可见这是一个高阶小量,可忽略。但是推测由于弹簧老化,导致振幅较小时的劲度系数大于振幅较大时,因此振幅较大时的周期相对更小。

5.3 研究弹簧振子振动周期与振子质量之间的关系

振子的振幅 A 取 40.0 cm, 得到数据如下:

表 3: 振子周期与质量的关系表

m(g)	216.98	229.44	241.85	254.36	266.79
T_1 (ms)	1600.59	1646.99	1687.85	1729.80	1774.53
T_2 (ms)	1600.77	1647.48	1688.02	1730.01	1774.72
T_3 (ms)	1601.05	1647.93	1688.01	1730.10	1774.98
T_4 (ms)	1601.17	1647.77	1687.92	1730.29	1775.07
T_5 (ms)	1601.28	1647.91	1687.97	1730.22	1774.93
T_6 (ms)	1601.31	1647.69	1687.95	1730.16	1775.17
T_7 (ms)	1601.56	1647.76	1688.02	1730.24	1775.09
T_8 (ms)	1601.46	1647.88	1688.23	1730.34	1774.96
T_9 (ms)	1601.49	1647.89	1688.12	1730.39	1775.24
T_{10} (ms)	1601.38	1647.90	1688.22	1730.50	1775.10
\overline{T} (ms)	1601.21	1647.72	1688.04	1730.20	1774.98

作 $m-\overline{T}^2$ 图,如图 3

图 3: 振子周期与质量的关系图

其中相关系数 $r^2=0.999407$,斜率 a=11658.7,截距 b=34438.6。代入公式:

$$a = \frac{4\pi^2}{k}$$
$$b = \frac{4\pi^2 m_0}{k}$$

解得

$$k = 3.386 \mathrm{N/m}$$

$$m_0 = 10.17g$$

也即弹簧的劲度系数为 3.386N/m, 有效质量为 10.17g。

5.4 研究速度与位移的关系

振子的振幅 A 取 40.0 cm, 得到数据如下:

表 4: 速度与位移的关系表

位移 x (cm)	10	15	20	25	30
v_1 (cm/s)	148.15	143.47	134.59	121.95	103.73
v_2 (cm/s)	149.25	143.60	134.59	122.40	104.93
v_3 (cm/s)	149.70	142.65	134.23	122.25	104.06
\overline{v} (cm/s)	149.03	143.24	134.47	122.20	104.24

作 $v^2 - x^2$ 图,如图 4

图 4: 速度与位移的关系图

其中相关系数 $r^2=0.999727$,斜率 a=-14.168,截距 b=23697.3。代入公式

$$\omega_0 = \sqrt{-a} = 3.764 \,\mathrm{s}^{-1}$$
 $T = \frac{2\pi}{\omega_0} = 1669.2 \,\mathrm{ms}$

这与前文计算得到的 $T=1600.99\,\mathrm{ms}$ 相差在误差允许范围内,猜测两者不同是由于振子并非在做严格的简谐运动,故 $T=\frac{2\pi}{\omega_0}$ 不完全成立。

5.5 研究机械能是否守恒

振子的振幅 A 取 40.0 cm,数据如下表所示,其中 $m=m_0+m_1=227.15$ g。

表 5: 不同位置的机械能情况

x (m)	0.10	0.15	0.20	0.25	0.30
v (m/s)	1.4903	1.4324	1.3447	1.2220	1.0424
E_k (J)	0.252	0.233	0.205	0.170	0.123
$E_p(J)$	0.017	0.038	0.068	0.106	0.152
E(J)	0.269	0.271	0.273	0.276	0.275

尽管总体上机械能 E 的变化在误差允许范围内,但是呈现上升的趋势,说明存在系统误差,例如弹簧的有效质量 m_0 计算较小或劲度系数 k 计算过大。

5.6 改变振幅 A , 测出相应的 v_{max} , 由 v_{max}^2 - A^2 图像求 \mathbf{k}

不同振幅 A 下的最大速度如下:

表 6: 振幅与最大速度的关系

A (cm)	10	15	20	25	30
$v_{ m max,1}~{ m (cm/s)}$	38.49	56.34	76.39	95.97	113.64
$v_{ m max,2}$ (cm/s)	38.80	56.40	76.51	96.43	114.81
$v_{ m max,3}$ (cm/s)	38.28	57.31	77.10	96.06	114.16
$\overline{v_{ m max}}$ (cm/s)	38.52	56.68	76.67	96.15	114.20

作 $\overline{v_{\text{max}}}^2$ - A^2 图,如图 5

图 5: 最大速度与振幅的关系图

其中相关系数 $r^2 = 0.999647$,斜率 a = 13.558,截距 b = 21.223。代入式

$$k' = ma = 3.080 \,\mathrm{N/m}$$

这小于前文求出的 k = 3.386 N/m,也反映出在 5.3 中计算的结果可能出现弹簧的有效质量 m_0 计算较小或劲度 系数 k 计算过大的情况,与 5.5 中得出的推测一致。

5.7 测定瞬时速度与不同 U 型挡光片通过光电门所用的时间(A_p =50cm),计算平均速度

此小节我们设定 Ap = 50 cm, 并添加一块垫片以改变倾斜角度, 得到数据如下:

表 7: 第一组瞬时速度求解

挡光片宽度 Δs	$\Delta t_1 (\mathrm{ms})$	$\Delta t_2 (\mathrm{ms})$	$\Delta t_3 (\mathrm{ms})$	$\Delta t_4 (\mathrm{ms})$	$\Delta t_5 (\mathrm{ms})$	$\Delta t \text{ (ms)}$	\overline{v} (m/s)
1 cm	27.68	27.57	27.71	27.61	27.85	27.68	0.361
3 cm	81.19	81.76	81.38	81.68	81.51	81.59	0.368
5 cm	135.10	135.29	135.75	135.57	135.69	135.22	0.369
10 cm	262.81	262.51	263.52	262.48	263.28	262.70	0.380

画出 $\overline{v} - \Delta s$ 图以及 $\overline{v} - \Delta t$ 图,如图 6

图 6: 线性外推图像

两种外推方式得出的均为v = 0.360 m/s,说明与理论符合的较好。

5.8 改变导轨倾角,测定瞬时速度与不同 U 型挡光片通过光电门所用的时间(A_p =50cm),计算平均速度

在上一小节的基础上,再添加一块垫片以增加倾斜角度,得到数据如下:

表 8: 第二组瞬时速度求解

挡光片宽度	$\Delta t_1 (\mathrm{ms})$	$\Delta t_2 (\mathrm{ms})$	$\Delta t_3 \ (\mathrm{ms})$	$\Delta t_4 \ (\mathrm{ms})$	$\Delta t_5 \ (\mathrm{ms})$	$\Delta t (\mathrm{ms})$	<u>v</u> (m/s)
1 cm	20.43	20.47	20.28	20.38	20.38	20.39	0.490
3 cm	59.93	60.21	60.05	60.32	60.06	60.11	0.499
5 cm	100.01	100.09	99.86	100.00	99.99	99.99	0.500
10 cm	195.18	195.01	195.67	195.85	195.03	195.35	0.512

画出 $\overline{v} - \Delta s$ 图以及 $\overline{v} - \Delta t$ 图,如图 7

图 7: 线性外推图像

通过截距值,大致可以推断出瞬时速度为v=0.490 m/s。

5.9 测定瞬时速度与不同 U 型挡光片通过光电门所用的时间(A_p =60cm),计算平均速度

在上一小节的基础上,保持倾斜角度不变,调 A_p 距离为 $60 \, \mathrm{cm}$,得到数据如下

表 9: 第三组瞬时速度求解

挡光片宽度	$\Delta t_1 (\mathrm{ms})$	$\Delta t_2 (\mathrm{ms})$	$\Delta t_3 (\mathrm{ms})$	$\Delta t_4 (\mathrm{ms})$	$\Delta t_5 (\mathrm{ms})$	$\Delta t (\mathrm{ms})$	\overline{v} (m/s)
1 cm	18.50	18.63	18.55	18.44	18.58	18.54	0.539
3 cm	54.75	55.13	54.94	54.84	54.76	54.89	0.547
5 cm	91.47	91.49	91.38	91.19	91.29	91.36	0.547
10 cm	179.07	179.51	179.39	179.72	179.07	179.35	0.558

画出 $\overline{v} - \Delta s$ 图以及 $\overline{v} - \Delta t$ 图, 如图 8

图 8: 线性外推图像

两种外推方式都得出瞬时速度为v = 0.538m/s。

6 思考题

6.1 仔细观察,可以发现滑块的振幅是不断减小的,那么为什么还可以认为滑块是做简谐振动?实验中应如何尽量保证滑块做简谐振动?

因为减少量相对振幅本身为小量,且阻尼情况可视为欠阻尼,因此简谐运动受影响的部分仅为不断衰减的 振幅,对正弦部分影响较小。

实验中,我们首先利用气垫导轨减小摩擦的影响;再通过调水平减小重力的影响。

6.2 试说明弹簧的等效质量的物理意义,如不考虑弹簧的等效质量,对实验结果有什么影响?

由于气垫导轨本身的限制,无法加上过重的物体,因此弹簧的质量相对物块来说已不再是高阶小量,因此需要考虑弹簧的等效质量。同时,等效质量可作为修正参量加入理论中,修正一些由于实验情况不完全理想带来的误差。

若不考虑弹簧的等效质量,则计算时会出现机械能不守恒等情况。

6.3 测量周期时, 光电门是否必须在平衡位置上? 如不在平衡位置会产生什么不同的效果?

理论上并不需要,这对我们的测量结果并没有影响。

不过,在实际操作的过程中,由于存在能量耗散,导致振幅减小,如果不在平衡位置将会不便测量,造成较大的误差。此外,不在平衡位置导致每次测量的时候不处于周期的同一位置,这也势必会很不方便测量。

6.4 气垫导轨如果不水平,是否能进行该实验?

理论上可以进行,因为考虑重力修正后滑块简谐运动影响仅限于平衡点的移动,但是对于实验来说则会引入过多的不确定量,使得实验操作和数据处理变得更加复杂,因此需要将气垫导轨调水平。

6.5 使用平板形挡光片和两个光电门,如何测量滑块通过倾斜气轨上某一点的瞬时速度?

设该点的速度为 v_0 ,加速度为a,则物块通过给该点后的速度及位移为

$$v = v_0 + at$$
$$x = v_0 t + \frac{1}{2}at^2$$

将一个光电门的前端对准待测点,使物块通过两个光电门,分别测得通过两个光电门的平均速度速度 $v_i = \frac{\Delta a}{\Delta t_i}$,设 Δt_i 物块通过两点的时长, δt 为两次光电门响应的时间差, t_i 为物块刚到达两点的时间,其中 $t_1 = 0$, $t_2 = \Delta t$,于是

$$v_1 = v_0 + \frac{a}{2}\Delta t_1$$

$$v_2 = v_0 + a(\Delta t + \frac{1}{2}\Delta t_2)$$

联立方程组即可解得该点速度 v_0 。

6.6 气垫导轨如果不水平,对瞬时速度的测定有什么影响?

并不影响。事实上,测定瞬时速度的实验,还会要求我们的气垫导轨不水平。

6.7 每次测量滑块和 U 型挡光片总质量不同是否对瞬时速度测定有影响?

理论上应该是没有的,因为加速度与具体的质量值无关,进而,速度值也与具体的质量值无关。但是,总质量不同可能导致阻力的大小不同,因此可能会有可以忽略影响。

7 实验总结与心得体会

这个实验还是比较轻松的。在实验中,我认识到理论和实验的差距,理论上的假设并不能在实验上完美的呈现,这时就需要利用数据处理方法来尽量逼近理论上的理想情况。具体来说,我学会了利用外推法以及来逼近某个数值。

同时,我还意识到在以后真正的实验中,并没有提前预设的标准答案。当完成结果后,需要通过别的方法来检验结果的正确性,例如在本实验中用两种方法来测量 k; 或者通过分析来检验,例如在本实验中检验数据是否满足能量守恒定律。

附录

A 绘图 mathematica 代码

A.1 图 3

```
ClearAll["Global`*"]
 (*Define the data*)
 data = \{\{216.98, 1601.21^2\}, \{229.44, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\}, \{241.85, 1647.72^2\},
                   1688.04^2}, {254.36, 1730.20^2}, {266.79, 1774.98^2}};
 (*Perform the linear fit using LinearModelFit*)
lm = LinearModelFit[data, x, x];
 (*Extract the fitted function*)
 fitted = lm[x];
 (*Extract the slope and intercept*)
 {intercept, slope} = lm["BestFitParameters"];
 (*Extract the R-squared value*)
rsquared = lm["RSquared"];
 (*Print the slope,intercept,and R-squared value*)
Print["Slope: ", slope];
Print["Intercept: ", intercept];
Print["R-squared value: ", rsquared];
 (*Plot the fitted function and the data points*)
 Show[Plot[fitted, \{x, 200, 275\},
AxesLabel -> {"m/g",
          "\!\(\*SuperscriptBox[\(T\), \
         (2)))/!(*SuperscriptBox[(ms\), (2\)]\)"}, PlotStyle -> Red,
PlotLabel -> "振子周期与质量的关系"], ListPlot[data, PlotStyle -> Blue]]
```

A.2 图 4

```
ClearAll["Global`*"]

(*Define the data*)
data = {{10^2, 149.03^2}, {15^2, 143.24^2}, {20^2, 134.47^2}, {25^2, 122.2^2}, {30^2, 104.24^2}};

(*Perform the linear fit using LinearModelFit*)
lm = LinearModelFit[data, x, x];
```

```
(*Extract the fitted function*)
fitted = lm[x];
(*Extract the slope and intercept*)
{intercept, slope} = lm["BestFitParameters"];
(*Extract the R-squared value*)
rsquared = lm["RSquared"];
(*Print the slope,intercept,and R-squared value*)
Print["Slope: ", slope];
Print["Intercept: ", intercept];
Print["R-squared value: ", rsquared];
(*Plot the fitted function and the data points*)
Show[Plot[fitted, \{x, 5^2, 35^2\},
AxesLabel \rightarrow {"\!\(\*SuperscriptBox[\(x\), \
  \(2\)\)/\!\(\*SuperscriptBox[\(cm\), \(2\)]\)",
  "\!\(\*SuperscriptBox[\(v\),\ \
  (2)))/(cm/s!((*SuperscriptBox[(()\), \(2\)]))"},
PlotStyle -> Red, PlotLabel -> "速度与位移的关系"],
ListPlot[data, PlotStyle -> Blue]]
```

A.3 图 5

```
ClearAll["Global`*"]
 (*Define the data*)
 data = \{\{10^2, 38.52^2\}, \{15^2, 56.68^2\}, \{20^2, 76.67^2\}, \{25^2, 60.68^2\}, \{20^2, 76.67^2\}, \{20^2, 60.68^2\}, \{20^2, 76.67^2\}, \{20^2, 60.68^2\}, \{20^2, 76.67^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^2\}, \{20^2, 60.68^
                          96.15^2}, {30^2, 114.20^2}};
 (*Perform the linear fit using LinearModelFit*)
lm = LinearModelFit[data, x, x];
 (*Extract the fitted function*)
 fitted = lm[x];
 (*Extract the slope and intercept*)
 {intercept, slope} = lm["BestFitParameters"];
 (*Extract the R-squared value*)
rsquared = lm["RSquared"];
 (*Print the slope,intercept,and R-squared value*)
Print["Slope: ", slope];
Print["Intercept: ", intercept];
Print["R-squared value: ", rsquared];
```

```
(*Plot the fitted function and the data points*)
Show[Plot[fitted, {x, 5^2, 32^2},
AxesLabel -> {"\!\(\*SuperscriptBox[\(A\), \
    \((2\)]\)/\!\(\*SuperscriptBox[\(cm\), \((2\)]\)",
    "\!\(\*SuperscriptBox[SubscriptBox[\(v\), \(max\)], \
    \((2\)]\)/(cm/s\!\(\*SuperscriptBox[\(()\)), \((2\)]\)"},
PlotStyle -> Red, PlotLabel -> "最大速度与振幅的关系"],
ListPlot[data, PlotStyle -> Blue]]
```

A.4 图 8

```
ClearAll["Global`*"]
(*Define the data*)
data = \{\{1, 0.539\}, \{3, 0.547\}, \{5, 0.547\}, \{10, 0.558\}\};
(*Perform the linear fit using LinearModelFit*)
lm = LinearModelFit[data, x, x];
(*Extract the fitted function*)
fitted = lm[x];
(*Extract the slope and intercept*)
{intercept, slope} = lm["BestFitParameters"];
(*Extract the R-squared value*)
rsquared = lm["RSquared"];
(*Print the slope,intercept,and R-squared value*)
Print["Slope: ", slope];
Print["Intercept: ", intercept];
Print["R-squared value: ", rsquared];
(*Plot the fitted function and the data points*)
Show[Plot[fitted, {x, 0, 11},
AxesLabel -> {"挡光片宽度 \!\(\*TemplateBox[<|\"boxes\" -> FormBox[\n\
  TraditionalForm], \"errors\" -> {}, \"input\" -> \"\\\Delta s\", \
  \"state\" -> \"Boxes\"|>,\n\"TeXAssistantTemplate\"]\)/cm",
  "平均速度 v (m/s)"}, PlotStyle -> Red,
PlotLabel ->
OverscriptBox[\nStyleBox[\"v\", \"TI\"], \"_\"], \"-\", \"\
  \[CapitalDelta]\", \nStyleBox[\"s\", \"TI\"]}], TraditionalForm], \
\"errors\" -> {}, \"input\" -> \"\\\overline{v}-\\\Delta s\", \
\"state\" -> \"Boxes\"|>,\n\"TeXAssistantTemplate\"]\) 图"],
ListPlot[data, PlotStyle -> Blue]]
```

B 原始数据

基础物理实验原始数据记录

实验名称	气轨上弹簧振子的简谐振动及脚	舜时速度的测定 地点	教学楼 716
学生姓名_	学号	分班分组座号	号(例: 11-04-5 最)
实验日期_	年月日	成绩评定	号(例: 1-04-5 号 教师签字

1. 试验仪器的调试 顺时针调高, 逆时针调低

V1 (cm/s)	V2 (cm/s)	误差
26.50	26.43	0.0026
23.90	23.82	0.0034
23.98	24.03	0.0021

2. 测量弹簧振子的振动周期并考察振动周期和振幅的关系

滑块的振幅 A 分别取 10.0, 20.0, 30.0, 40.0cm 时, 测量其相应振动周期

	10cm	20cm	30cm	40cm
T1 (ms)	1604.64	1602.69	1601.43	1600.87
T2 (ms)	1604.85	1602.09	1601.26	1600.87
T3 (ms)	1605.54	1602.11	1601.42	1601.08
T4 (ms)	1605.98	1601.88	1601.61	1600.99
`T5 (ms)	1605.68	1602.51	1601.60	1601.10
T (ms)	1605.34	1602.14	1601.47	1600.99

3. 研究振动周期和振子质量之间的关系

滑块的振幅 A 取 40.0cm

m (g)	216.98	229.44	241.85	254.36	266.79
T1 (ms)	1600.59	1646.99	1687.85	1729.80	1774.53
T2 (ms)	1600.77	1647.48	1688.02	1730.01	1774.72
T3 (ms)	1601.05	1647.93	1688.01	1730.10	1774.98
T4 (ms)	1601.17	1647.77	1687.92	1730.29	1775.07
T5 (ms)	1601.28	1647.91	1687.97	1730.22	1774.93
T6 (ms)	1601.31	1647.69	1687.95	1730.16	1775.17
T7 (ms)	1601.56	1647.76	1688.02	1730.24	1775.09
T8 (ms)	1601.46	1647.88	1688.23	1730.34	1774.96
T9 (ms)	1601.49	1647.89	1688.12	1730.39	1775.24
T10 (ms)	1601.38	1647.90	1688.22	1730.50	1775.10
T (ms)	1601.21	1647.72	1688.04	1730.20	1774.98

4. 研究速度和位移的关系

滑块的振幅 A 取 40.0cm

	10cm	15cm	20cm	25cm	30cm
V1 (cm/s)	148.15	143.47	134.59	121.95	103.73
V2 (cm/s)	149.25	143.60	134.59	122.40	104.93
V3 (cm/s)	149.70	142.65	134.23	122.25	104.06
V (cm/s)	149.03	143.24	134.47	122.20	104.24

5. 研究振动系统的机械能是否守恒

滑块的振幅 A 取 40.0cm

2413W/H 11-W 10.00H							
	10cm	15cm	20cm	25cm	30cm		
V (cm/s)	149.03	143.24	134.47	122.20	104.24		
Ek (J)	0.252	0.233	0.205	0.170	0.123		
Ep (J)	0.017	0.038	0.068	0.106	0.152		
E (J)	0.269	0.271	0.273	0.276	0.275		

6. 改变弹簧振子的振幅 A,测相应的 V_{max} ,由 V_{max}^2 - A^2 关系求 k,与实验内容 3 的结果进行比较

	10cm	15cm	20cm	25cm	30cm
V _{max1} (cm/s)	38.49	56.34	76.39	95.97	113.64
V _{max2} (cm/s)	38.80	56.40	76.51	96.43	114.81
V _{max3} (cm/s)	38.28	57.31	77.10	96.06	114.16
V _{max} (cm/s)	38.52	56.68	76.67	96.15	114.20

7. 实验中可能用到的其他相关参数

滑块的质量:

条型挡光片质量:

U 型挡光片质量:

8. 测定瞬时速度,测量不同 U 挡光片通过光电门所用的时间(AP 距离为 50cm),计算平均速度。

挡光片宽 度(cm)	$\Delta t_1 (\mathrm{ms})$	$\Delta t_2 (\mathrm{ms})$	$\Delta t_3 (ext{ms})$	$\Delta t_4(\mathrm{ms})$	$\Delta t_{5}(\mathrm{ms})$	Δt (ms)
1 (cm)	27. 68	27. 57	27. 71	27. 61	27. 85	27. 68
3 (cm)	81. 19	81. 76	81. 38	81. 68	81. 51	81. 59
5 (cm)	135. 10	135. 29	135. 75	135. 57	135. 69	135. 22
10 (cm)	262. 81	262. 51	263. 52	262. 48	263. 28	262. 70

9. 测定瞬时速度,改变导轨倾斜角度,测量不同 U 挡光片通过光电门所用的时间(AP 距离为 50cm),计算平均速度。

挡光片宽 度(cm)	$\Delta t_1 (\mathrm{ms})$	$\Delta t_2 (\mathrm{ms})$	$\Delta t_3 (ext{ms})$	$\Delta t_4(\mathrm{ms})$	$\Delta t_{5}(\mathrm{ms})$	Δt (ms)
1 (cm)	20. 43	20. 47	20. 28	20. 38	20. 38	20. 39
3 (cm)	59. 93	60. 21	60. 05	60. 32	60.06	60. 11
5 (cm)	100. 01	100. 09	99. 86	100.00	99. 99	99. 99
10 (cm)	195. 18	195. 01	195. 67	195. 85	195. 03	195. 35

10. 测定瞬时速度,改变 AP 距离为 60cm,测量不同 U 挡光片通过光电门所用的时间,计算平均速度。

挡光片宽 度(cm)	$\Delta t_1 (\mathrm{ms})$	$\Delta t_2 (\mathrm{ms})$	$\Delta t_3 (ext{ms})$	$\Delta t_4(\mathrm{ms})$	$\Delta t_{5}(\mathrm{ms})$	$\Delta t (exttt{ms})$
1 (cm)	18. 50	18. 63	18. 55	18. 44	18. 58	18. 54
3 (cm)	54, 75	55. 13	54. 94	54. 84	54. 76	54. 89
5 (cm)	91. 47	91. 49	91. 38	91. 19	91. 29	91. 36
10 (cm)	179. 07	179. 51	179. 39	179. 22	179. 07	179. 35