CENG 223

Discrete Computational Structures

Fall 2020-2021

Take Home Exam 2 - Solutions

Answer 1

a.

- i) This is a topology.
- ii) This is not a topology since it misses the unions $\{a, b\}$ and such.
- iii) This is a topology.
- iv) This is not a topology since it misses the unions $\{a, b, c\}$ and $\{b, c, d\}$.
- **b.** First note that for all of the sets A and \emptyset are in the given sets. Hence we will check for the second and third criteria. We will do this by considering arbitrary elements U_1 and U_2 of the given sets.
 - i) This is a topology.

We have that $A-U_1$ and $A-U_2$ are finite or all of A. Intersection: $A-(U_1\cap U_2)=(A-U_1)\cup (A-U_2)$. As by taking the union of two finite sets, we end up again with such sets, $A-(U_1\cap U_2)$ is in the given set as well.

Union: $A - (U_1 \cup U_2) = (A - U_1) \cap (A - U_2)$. Similar reasoning.

ii) This is a topology.

Similar reasoning as in i).

Since sets are countable, we have injective functions $f_1:(A-U_1)\to\mathbb{Z}^+$ and $f_2:(A-U_2)\to\mathbb{Z}^+$. **Intersection:** $A-(U_1\cap U_2)=(A-U_1)\cup(A-U_2)$. In this case, we can construct a new injection using $f_1:(A-U_1)\to\mathbb{Z}^+$ and $f_2:(A-U_2)\to\mathbb{Z}^+$ where each element $a\in A-(U_1\cap U_2)$ is mapped to $2\,f_1(a)$ if $a\in(A-U_1)$ and $2\,f_2(a)+1$ if $a\in(A-U_2)-(A-U_1)$.

Union: $A - (U_1 \cup U_2) = (A - U_1) \cap (A - U_2)$. we can choose either of the functions as the new injective function $f_i\Big|_{A - (U_1 \cup U_2)} : A - (U_1 \cup U_2) \to \mathbb{Z}^+$ (such acquired functions are called the **restriction of** f_i).

iii) This is not a topology.

Consider $A = \mathbb{Z}^+$, $U_1 = \{2x + 1 \in \mathbb{Z}^+ | x \in \mathbb{Z}^+\}$ and $U_2 = \{2x \in \mathbb{Z}^+ | x \in \mathbb{Z}^+\}$. Note that since $(A - U_1)$ and $(A - U_2)$ are both infinite they are in the given set. However, $A - (U_1 \cup U_2) = \{1\}$ is not in the given set because it is neither infinite nor is \emptyset or A. So this set does not qualify to be a topology.

Answer 2

- **a.** Let (n,p) and (m,q) be elements of $A \times (0,1)$. Assume that f(n,p) = f(m,q). Then we have that n+p=m+q and so n-m=q-p. Since n and m are integers, so is n-m. Since 0 < p, q < 1, we have -1 < q-p=n-m < 1 which implies n-m=0 and hence n=m. Consequently, p=q and (n,p)=(m,q). Hence f is injective.
- **b.** For all (n, p) in $A \times (0, 1)$, we have $n \ge 0$ and p > 0 which implies f(n, p) = n + p > 0. Hence 0 is not mapped to by any input to the function f. Thus f is not surjective.
- **c** Since we have an injection from $A \times (0,1)$ to $[0,\infty)$ and an injection from $[0,\infty)$ to $A \times (0,1)$ to $[0,\infty)$, by the Schröder-Bernstein theorem there is a one-to-one correspondence between these two sets. As a result the two sets are of the same cardinality.

Answer 3

- **a.** f is a relation given by $f = \{(0, n), (1, m)\}$ for $n, m \in \mathbb{Z}^+$. Hence, we can represent f as the ordered pair $(n, m) \in \mathbb{Z}^+ \times \mathbb{Z}^+$. As a result we acquire a bijection A and $\mathbb{Z}^+ \times \mathbb{Z}^+$. Since the latter is a finite Cartesian product of two countable sets it is countable. Therefore, A is countable as well.
- **b.** Similar to the case in **a.**, where instead of $\mathbb{Z}^+ \times \mathbb{Z}^+$ we now have $\mathbb{Z}^+ \times \cdots \times \mathbb{Z}^+$, which is again a finite Cartesian product of countable sets. As a result B is countable.
- **d.** Let us consider $[0,1] = \{x \in \mathbb{R} \mid 0 \le x \le 1\}$ which we know is uncountably infinite. We can represent all $x \in [0,1]$ in binary as (d,i) where $d \in \mathbb{Z}$ indicates the dth digit after the decimal point and $i \in \{0,1\}$ is the value of that digit. Note that the same representation (d,i) defines a specific $f \in D$. Thus, we have a bijection between the set D and [0,1]. Since the latter is uncountable, so is the former.
- **c.** Since $D \subset C$ and D is uncountable, so is C.
- **e.** Let $f_n: \mathbb{Z}^+ \to \{0,1\}$ be the functions such that f_n is zero after the nth digit. Then we can define a bijection between $g: \{1, \ldots, n\} \to \{0,1\}$ and f_n . Since the set of all such gs are countable (it is a subset of B) the set E_n of all f_n are countable. Finally, remark that $E = \bigcup_{n \in \mathbb{Z}^+} E_n$ which is a countable union of countable sets. So E is countable as well.

Answer 4

a. By Stirling's approximation we have $n! \approx \frac{n^n \sqrt{2\pi n}}{e^n}$. Then we can calculate the limit $\lim_{n\to\infty} \frac{n!}{n^n}$ as

$$\lim_{n\to\infty} \frac{n!}{n^n} = \frac{n^n \sqrt{2\pi n}}{n^n e^n} = \frac{\sqrt{2\pi n}}{e^n} = 0.$$

Hence n! is not $\Theta(n^n)$ — it grows slower than $\Theta(n^n)$

b. By the Binomial theorem we have

$$(n+a)^b = \sum_{k=0}^b C(n,k)n^k a^{n-k},$$

where C(n,k) is the (k+1)th entry of the nth row of Pascal's triangle given by $C(n,k) = \frac{n!}{(n-k)!k!}$. The limit $\lim_{n\to\infty} \frac{(n+a)^b}{n^b}$ converges to a non-zero real number. Hence, we conclude that $(n+a)^b = \Theta(n^b)$.

Answer 5

a. Let $x \mod y = a$. Then x = ky + a. So

$$(2^x - 1) \mod (2^y - 1) = ((2^y)^k 2^a - 1) \mod (2^y - 1) = (2^a - 1) \mod (2^y - 1)$$

In the last step we applied $2^y \mod 2^y - 1 = 1$. Since a is defined as some number modulo y it is lesser than y and greater than 0. Hence we can write $(2^a - 1) \mod (2^y - 1)$ as simply $(2^a - 1)$. Yet, this is nothing but $2^x \mod y - 1$

b. Note that the given equality in **a.** can be applied recursively. Starting by x and y in the LHS we have

$$(2^{x} - 1) \bmod (2^{y} - 1) = 2^{x \bmod y} - 1 = 2^{r_0} - 1$$

$$(2^{y} - 1) \bmod (2^{r_0} - 1) = 2^{y \bmod r_0} - 1 = 2^{r_1} - 1$$

$$\vdots$$

$$(2^{r_{n-1}} - 1) \bmod (2^{r_n} - 1) = 2^{r_{n-1} \bmod r_n} - 1 = 2^{0} - 1 = 0$$

Now we are ready to compute $gcd(2^x - 1, 2^y - 1)$.

$$\gcd(2^{x}-1,2^{y}-1) = \gcd(2^{y}-1,2^{r_{0}}-1) = \cdots = \gcd(2^{r_{n-1}}-1,2^{r_{n}}-1) = \gcd(2^{r_{n}}-1,0) = 2^{r_{n}}-1$$

$$= 2^{\gcd(r_{n},r_{n})}-1 = 2^{\gcd(r_{n-1},r_{n})}-1 = \cdots = 2^{\gcd(y,r_{0})}-1 = 2^{\gcd(x,y)}-1$$