الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2009

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: العلوم التجريبية

المُدة: 3 ساعات ونصف

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التالبين:

الموضوع الأول

التمرين الأول: (03.5 نقطة)

$$u_0=1$$
 و $u_1=2$ و $u_{n+2}=\frac{4}{3}u_{n+1}-\frac{1}{3}u_n$ و $u_0=1$ و $u_1=2$ و $u_1=2$

$$v_n = u_{n+1} - u_n$$
 :المنتالية (v_n) معرفة على $\mathbb N$ كما يلي

- ا) أحسب v_0 و v_1 .
- 2) برهن أن (٧,) منتالية هندسية يطلب تعيين أساسها.

$$S_n = v_0 + v_1 + \dots + v_{n-1} : S_n$$
 المجموع n المجموع (1) (3)

$$u_n = \frac{3}{2} \left(1 - \left(\frac{1}{3} \right)^n \right) + 1 : n$$
 بر هن أنه من أجل كل عدد طبيعي

بين أن (u_n) متقاربة.

التمرين الثاني: (05 نقاط)

و
$$\mathbf{Z}$$
 عدد مرکب $P(Z) = (Z-1-i)(Z^2-2Z+4)$ و $P(Z)$

$$P(Z)=0$$
 المعادلة المجموعة \mathbb{C}

$$Z_2 = 1 - \sqrt{3}i + Z_1 = 1 + i$$
 نضع: (2

أ) أكتب
$$Z_1$$
 و Z_2 على الشكل الأسى.

ب) أكتب
$$\frac{Z_1}{Z_2}$$
 على الشكل الجبري ثم الشكل الأسي.

$$\sin\left(\frac{7\pi}{12}\right) = \cos\left(\frac{7\pi}{12}\right)$$
 or $\cos\left(\frac{7\pi}{12}\right)$

عدد طبیعی.عین قیم
$$n$$
 بحیث یکون العدد $\left(\frac{Z_1}{Z_2}\right)^n$ عدد n (أ (3

$$\left(rac{Z_1}{Z_2}
ight)^{456}$$
 عبد أيمة العدد (ب

التمرين الثالث: (04 نقاط)

 $(o\,;ec{i}\;;ec{j}\;;ec{k})$ الفضاء مزود بمعلم متعامد و متجانس

$$C\left(2\,;1\,;\,3
ight)$$
 ، $B\left(0\,;2\,;1
ight)$ ، $A\left(1\,;\,0\,;\,2
ight)$: نعتبر النقط

$$\cdot \, \, {\sf X-Z+l=0} \,$$
 مستو معادلة له من الشكل (P) (1 . (ABC) مستوي (P) هو المستوي (أن المستوي (P) هو المستوي

ب) ما طبيعة المثلث ABC.

$$D(2;3;4)$$
 اً) تحقّق من أن النقطة $D(2;3;4)$ لا تنتمي إلى $D(2;3;4)$. ب) ما طبيعة $ABCD$.

$$(ABC)$$
 أحسب المسافة بين (ABC) و المستوي (ABC) .

التمرين الرابع: (07.5 نقطة)

$$f(x) = -x + \frac{4}{x+1}$$
 :... $I =]-\infty; -1[\cup]-1;0]$ class and $f(x) = -x + \frac{4}{x+1}$ (I

نمثیلها البیانی فی مستوی منسوب إلی معلم متعامد ومتجانس
$$(c_f)$$
 کما هو مبین فی الشکل.

$$g(x)=x+rac{4}{x+1}$$
 كما يلي: $g(x)=x+rac{4}{x+1}$ كما يلي: $g(x)=x+rac{4}{x+1}$

. تمثیلها البیاني في مستوي منسوب إلى معلم متعامد تجانس
$$\left(c_{g}
ight)$$

$$(\Delta)$$
 المائل مستقیما مقاربا مائل (c_g) بقبل مستقیما مقاربا مائل $+\infty$ عند $+\infty$ بطلب تعیین معادله له.

$$k(x) = \left|x\right| + \frac{4}{x+1}$$
 کما یلی: $\mathbb{R} - \{-1\}$ کما یلی k (Π

$$\frac{1}{h}$$
 ماذا تستنج $\frac{k(h)-k(0)}{h}$ ، $\lim_{h\to 0} \frac{k(h)-k(0)}{h}$ ماذا تستنج $\frac{h}{h}$

ب) أعط تفسيرا هندسيا لهذه النتيجة.

$$\mathbf{x}_{0}$$
 =0 اكتب معادلتي المماسين (Δ_{1}) و (Δ_{2}) عند النقطة التي فاصلتها

$$\cdot(C_k)$$
 و $\cdot(\Delta)$ ، $\cdot(\Delta)$ ارسم (3

4) أحسب مساحة الحيز المستوي المحدد بالمنحنى
$$(C_k)$$
 و المستقيمات التي معاد لاتها:

$$x = -\frac{1}{2} \cdot x = \frac{1}{2} \cdot y = 0$$

الموضوع الثاتي

التمرين (لأول: (44) نقاط)

في الفضاء المنسوب إلى معلم متعامد و متجانس $\left(0;\overrightarrow{i};\overrightarrow{j};\overrightarrow{k}\right)$ نعتبر النقط:

D(1;-1;-2) + C(3;0;-2) + B(1;-2;4) + A(2;3;-1)

. 2x - y + 2z + 1 = 0 : المستوي المعرف بمعادلته الديكارتية

المطلوب: أجب بصحيح أو خطأ مع تبرير الإجابة في كل حالة من الحالات التالية:

- 1. النقط C ، B ، A في استقامية.
- 25 x 6 y z 33 = 0 . مستوي معائلة ديكارنية له : 0 (ABD) مستوي معائلة ديكارنية اله : 0
 - π) عمودي على المستقيم (CD) عمودي على المستوي (π).
 - +4. المسقط العمودي للنقطة +3 على +3 هو النقطة +3 المسقط العمودي النقطة +3

التمرين الثاني: (04 نقاط)

 $\left(0; \hat{i}; \hat{j}\right)$ المستوي منسوب إلى معلم متعامد و متجانس

 $z^2 - 2z + 4 = 0$ | المعادلة: C المعادلة الأعداد المركبة

2. نسمى 21 ؛ 22 طبى هذه المعادلة.

- أ) أكتب العددين 21 و 22 على الشكل الأسى.
- ب) C ، B، A هي النقط من المستوي التي لواحقها على الترتيب:

$$z_{c} = \frac{1}{2} (5 + i\sqrt{3})$$
 ; $z_{B} = 1 + i\sqrt{3}$; $z_{A} = 1 - i\sqrt{3}$

($i^2 = -1$ يرمز إلى العدد المركب الذي يحقق ($i^2 = -1$)

أحسب الأطوال BC، AC ، AB ثم استنتج طبيعة المثلث ABC

$$Z = \frac{Z_{\rm C} - Z_{\rm B}}{Z_{\rm A} - Z_{\rm B}}$$
: حيث $Z_{\rm C} = \frac{Z_{\rm C} - Z_{\rm B}}{Z_{\rm A} - Z_{\rm B}}$

د) أحسب Z^3 و Z^6 ثم استنج أن Z^{3k} عدد حقيقي من أجل كل عدد طبيعي Z^3

التمرين الثالث: (05 نقط)

- 1. أ) أحسب 12 و الأساس q لهذه المنتالية و استنتج الحد الأول u1.
 - . n بدلالة u_n بدلالة u_n
- جــ) أحسب $S_n = u_1 + u_2 + ... + u_n$ بحيث يكون: $S_n = u_1 + u_2 + ... + u_n$ عين العدد الطبيعي $S_n = 728$

2. (v_n) متتالية عددية معرفة من اجل كل عدد طبيعي غير معدوم n كما يلي:

$$v_{n+1} = \frac{3}{2}v_n + u_n$$
 $v_1 = 2$

ا) أحسب ٧٥ و ٧٥.

$$\cdot_{\mathbf{W}_n} = \frac{\mathbf{V}_n}{\mathbf{u}_n} = \frac{2}{3}$$
: معدوم غير معدوم عدد طبيعي n با عدد طبيعي

 $\frac{1}{2}$ بين أن (w_n) متثالية هندسية أساسها

. n بدلالهٔ v_n بدلالهٔ v_n بدلالهٔ v_n بدلالهٔ ا

التمرين (الرابع: (07 نقاط)

الجزء الأولى:

 $h(x) = x^2 + 2x + \ln(x+1)$ دالة عددية معرفة على -1; + ∞ كما يلي: h

- $\lim_{x \to +\infty} h(x) = \lim_{x \to -1} h(x)$ 1.
- $h'(x) = \frac{1+2(x+1)^2}{x+1}$:]- 1; + ∞ [من المجال x من المجال عدد حقیقی x من المجال x من المجال x من الدالمة x المجال x من الدالمة x المجال x من المجال تغیر الدالمة x المجال x من المجال تغیر الدالمة x من المجال x
 - a_{x} مسب فيم h(x) مسب فيم h(0) مسب فيم 3.

 $f(x) = x - 1 - \frac{\ln(x+1)}{x+1}$: لتكن f دالة معرفة على $f(x) = x - 1 - \frac{\ln(x+1)}{x+1}$ كما يلي:

نسمي (C_f) المنحنى الممثل للدالة f في مستوي منسوب إلى معلم متعامد و متجانس $(C_i;i;j)$

- اً. أ) احسب f(x) ثم فسر هذه النتيجة بيانيا . احسب $x = \frac{1}{1 x}$
- $-\lim_{u\to+\infty}\frac{\ln u}{u}=0$ برهن أن $\lim_{t\to+\infty}\frac{e^t}{t}=+\infty$ برهن أن (ب
 - $\lim_{x\to +\infty} f(x)$
- د) أحسب $\lim_{x\to +\infty} [f(x)-(x-1)]$ و استنتج وجود مستقيم مقارب مائل للمنحنى (Cf) .
 - هـ) أدرس وضعية المنحنى (C_f) بالنسبة إلى المستقيم المقارب المائل.
- f الدالة $f'(x) = \frac{h(x)}{(x+1)^2} + -1$ بين أنه من أجل كل $f(x) = \frac{h(x)}{(x+1)^2}$ عن المجال تغير الت الدالة 2.
 - y=2 عند نقطة فاصلتها محصورة بين (C_f) يقطع المستقيم ذو المعادلة y=2 عند نقطة فاصلتها محصورة بين
 - 4. أرسم (C_f).
 - 5. أحسب مساحة الحيز المستوي المحدود بالمنحني (C_f) و المستقيمات التي معادلاتلها :

$$x = 1$$
 $y = x-1$