CS 7545: Machine Learning Theory

Fall 2019

Lecture 21: Massart's Lemma and Sauer's Lemma

Lecturer: Jacob Abernethy Scribes: Dongliang Zheng, Hao Zhou

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

21.1 Review

• Let G be a class of functions: $z \to [0, 1]$.

- Let $s \subseteq Z, s = \{x_1, x_2, ..., x_n\}.$
- Let $\hat{E}_s g = \frac{1}{m} \sum_{i=1}^m g(x_i)$ donate empirical mean, and $Eg = E_{Z \sim D[g(Z)]}$ true mean. Where distribution $D \in \Delta(Z)$.
- Hoeffding: fix function g, assume a set of samples $s \sim D$ i.i.d. Then $\hat{E}_s g Eg \leq \sqrt{\frac{\log 1/\delta}{m}}$, with probability $\geq 1 - \delta$.
- Now, want to find a upper bound for $\sup_{g \in G} \hat{E}_s g Eg$, for $\forall g \in G$.

Last time showed $\Phi(s) \leq 2\mathcal{R}_m(G) + \sqrt{\frac{\log 1/\delta}{m}}$, where $\mathcal{R}_m(G) = E_{s \sim D} E_{\sigma_1, \sigma_2, \dots, \sigma_m} [\sup_{g \in G} \frac{1}{m} \sum_{i=1}^m g(x_i) \delta_i]$. Given $s \subseteq Z$, $s = \{x_1, x_2, \dots, x_n\}$, write $G|_s$ as $G|_s = \{(g(x_1), g(x_2), \dots, g(x_n)) : g \in G\}$. Recall the growth function $\Pi_G(m) = \max_{s \subseteq Z, |s| = m} |G|_s|$, where G is assumed to be binary class of

function.

21.2Massart's Lemma

Lemma 21.1 Let $A \subseteq \mathbb{R}^m$, a finite set, and $\max_{a \in A} ||a||_2 \leq r$, then

$$E_{\sigma_1,\sigma_2,\dots,\sigma_m}[sup_{a\in A}\sum_{i=1}^m a_i\sigma_i] \le r\sqrt{log2|A|}$$

(Note that the left term is Rademacher complexity-like and the right side is bounded by its size)

Proof: For any $\lambda > 0$,

$$\begin{split} \exp(\lambda E_{\sigma_1,\dots,\sigma_m}[\sup_{a\in A} a\sigma]) &\leq E_{\sigma_1,\dots,\sigma_m}[\exp(\lambda \sup_{a\in A} a\sigma]) \\ &\leq E_{\sigma_1,\dots,\sigma_m}[\sup_{a\in A} \exp(\lambda a\sigma]] \\ &\leq E_{\sigma_1,\dots,\sigma_m}[\sum_{a\in A} \exp(\lambda \sum_{i=1}^m (a_i\sigma_i))] \\ &= E_{\sigma_1,\dots,\sigma_m}[\sum_{a\in A} \exp(\lambda \sum_{i=1}^m (a_i\sigma_i))] \\ &= \sum_{a\in A} E_{\sigma_1,\dots,\sigma_m}[\prod_{i=1}^m \exp(\lambda a_i\sigma_i)] \\ &= \sum_{a\in A} \prod_{i=1}^m E_{\sigma_1,\dots,\sigma_m}[\exp(\lambda a_i\sigma_i)] \\ &\leq \sum_{a\in A} \prod_{i=1}^m \exp\left(\frac{\lambda^2(2a_i)^2}{8}\right) \quad (Hoeffding's\ lemma) \\ &= \sum_{a\in A} \exp(\frac{\lambda^2}{2} \sum_{i=1}^m a_i^2) \\ &\leq |A| \exp(\frac{\lambda^2}{2} r^2) \end{split}$$

Take log of both side of the above inequality, and multiply by $1/\lambda$, we get

$$E_{\sigma_1,...,\sigma_m}[sup_{a\in A}a\sigma] \le \frac{log|A|}{\lambda} + \frac{r^2\lambda}{2}$$

Set $\lambda = \sqrt{\frac{2log|A|}{r^2}}$, we get the inequality in the lemma.

Notice that:

$$\begin{split} \hat{R}_S(G) &:= E_{\sigma_{1:m}} \big[\frac{1}{m} \sup_{g \in G} \Sigma_{i=0}^m g(x_i) \sigma_i \big] \\ &= E_{\sigma_{1:m}} \big[\frac{1}{m} \sup_{a \in G|s} a \sigma \big] \\ &\leq \frac{1}{m} \sqrt{m} \sqrt{2log|G|s|} \\ &\leq \sqrt{\frac{2log\Pi_G(m)}{m}} \end{split}$$

note that \sqrt{m} is the r in lemma.

21.3 Sauer's Lemma

Lemma 21.2 If binary function class G has VC-dim=d, then: $\Pi_G(m) \leq \sum_{i=1}^d {m \choose i} \leq m^d$

Proof: Let $M_{S,G}$ be the matrix whose unique rows are $\{g(x_1), g(x_2)...g(x_m)\}$, delete repeated rows. Fact: $\Pi_G(m) = \max_{S \subseteq R, |S| = m} \#rows(M_{S,G})$

Fact: if all rows of $M_{S,G}$ had $\leq d$ 1's, then:# rows $(M_{S,G}) \leq \sum_{i=0}^{d} {m \choose i}$

Trick: modify $M_{S,G}$ so that every row has \leq d 1s and vc-dim does not increase, and no row has duplicates

in process.

Procedure: change the $\mathbbm{1}$ to 0 in matrix $M_{S,G}$ Proof continued in next lecture.