# Gradient Descent for Linear Regression

Parameter Learning

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

(for 
$$j = 1$$
 and  $j = 0$ )

#### **Linear Regression Model**

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$





repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

(for 
$$j = 1$$
 and  $j = 0$ )

ļ

#### **Linear Regression Model**

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$





$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} = \frac{m}{2} \left( h_0(x^{(i)}) - y^{(i)} \right)^2$$

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.



1:21 / 10:20

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \frac{\partial}{\partial \theta_{0}} \cdot \frac{1}{2m} \cdot \sum_{i=1}^{m} \left( \frac{h_{0}(x^{(i)}) - y^{(i)}}{h_{0}(x^{(i)}) - y^{(i)}} \right)^{2}$$

$$= \frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \cdot \sum_{i=1}^{m} \left( 0_{0} + 0_{1} \times x^{(i)} - y^{(i)} \right)^{2}$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \frac{\partial}{\partial \theta_{0}} \cdot \frac{1}{2m} \sum_{i=1}^{m} \left( \frac{h_{0}(x^{(i)}) - y^{(i)}}{h_{0}(x^{(i)}) - y^{(i)}} \right)^{2}$$

$$= \frac{2}{\partial \theta_{0}} \frac{1}{2m} \sum_{i=1}^{m} \left( 0_{0} + 0_{1} x^{(i)} - y^{(i)} \right)^{2}$$

$$\Theta_{\circ} j = 0 : \frac{\partial}{\partial \theta_{0}} J(\theta_{0}, \theta_{1}) = \frac{1}{m} \underbrace{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{i=1}{\overset{m}{\underset{m}}{\overset{m}{\underset{i=1}{\overset{m}{\underset{m}{\underset{i=1}{\overset{m}{\underset{m}}{\overset{m}{\underset{m}}{\overset{m}{\underset{m}}{\overset{m}{\underset{m}}{\overset{m}{\underset{m}}{\overset{m}{\underset{m}}{\overset{m}{\underset{m}}{\overset{m}{\underset{m}}{\overset{m}}{\underset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}$$

repeat until convergence {  $\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)$   $\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$ }

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \prod_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} \left( h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

}

2 7(0,0)

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \prod_{i=1}^m \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \prod_{i=1}^{m} \sum_{i=1}^{m} \left( h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

(10,0) Z 300 J (00,0)

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

update  $\theta_0$  and  $\theta_1$  simultaneously

Recall that the initial points are important!

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.



10:20





## Cost function of the LR

- Convex function.
- It's a bowl shaped function.
- Always converges to global optimum.





(function of the parameters  $\theta_0, \theta_1$ )



Windows'u Etkinlestir Windows'u etkinleştirmek için Ayarlar'a gidin.

1500





2000



Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

 $h_{ heta}(x)$  (for fixed  $heta_0, heta_1$ , this is a function of x)







Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.









Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

 $h_{ heta}(x)$  (for fixed  $heta_0, heta_1$ , this is a function of x)







Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

 $h_{\theta}(x)$ 

(for fixed  $\theta_0$ ,  $\theta_1$ , this is a function of x)



## $J(\theta_0, \theta_1)$

(function of the parameters  $\theta_0, \theta_1$ )





Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

4



 $h_{\theta}(x)$ 

(for fixed  $\theta_0$ ,  $\theta_1$ , this is a function of x)





(function of the parameters  $\theta_0, \theta_1$ )





Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.



 $h_{ heta}(x)$  (for fixed  $heta_0, heta_1$ , this is a function of x)







Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

7023









Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

(for fixed  $\theta_0$ ,  $\theta_1$ , this is a function of x)



Training data

4000

3000



(function of the parameters  $\theta_0, \theta_1$ )



Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.





1000

2000

Size (feet<sup>2</sup>)

700

600

500

400

300

200

100

Price \$ (in 1000s)

### Gradient Descent for LR

- Batch Gradient Descent:
- Batch: Each step of gradient descent uses all training examples.

Which of the following are true statements? Select all that apply.

- $\square$  To make gradient descent converge, we must slowly decrease  $\alpha$  over time.
- $\square$  Gradient descent is guaranteed to find the global minimum for any function  $J(\theta_0,\theta_1)$ .
- $\square$  Gradient descent can converge even if  $\alpha$  is kept fixed. (But  $\alpha$  cannot be too large, or else it may fail to converge.)
- $\blacksquare$  For the specific choice of cost function  $J(\theta_0, \theta_1)$  used in linear regression, there are no local optima (other than the global optimum).