Al1110: Assignment 9

Aryan Sharan Reddy BT21BTECH11002

June 13, 2022

Outline

- Question
- Solution

Solution(Contd..)

Question

The input to the system

$$H(s) = \frac{1}{s^2 + 2s + 5}$$

is a WSS process x(t) with $E\{x^2(t)\}=10$. Find $S_x(\omega)$ such that the average power $E\{y^2(t)\}$ of the resulting output y(t) is maximum. (*Hint:* $|H(j\omega)|$ is maximum for $\omega=\sqrt{3}$)

Solution

In general

$$E\{y^{2}(t)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{x}(\omega) |H(\omega)|^{2} d\omega$$
 (1)

$$\leq |H(\omega_m)|^2 \frac{1}{2\pi} \int_{-\infty}^{\infty} S_x(\omega) d\omega$$
 (2)

$$= E\{x^{2}(t)\}|H(\omega_{m})|^{2}$$
 (3)

where $|H(\omega_m)|$ is the maximum of $|H(\omega)|$. In our case,

$$|H(\omega)|^2 = \frac{1}{(5-\omega)^2 + (2\omega)^2}$$
 (4)

From the hint, $|H(\omega)|$ is maximum at $\omega = \sqrt{3}$

Solution(Contd..)

Also
$$|H(\omega_m)|^2=\frac{1}{16}$$
. Hence $E\{y^2(t)\}\leq \frac{10}{16}$ with the equality if $R_X(10)=10\cos\sqrt{3}\tau$

