The Magnus Effect

Flow Around a Rotating Sphere

Contents

- Model Definition
- Laminar Flow
 - The influence of spin
 - Analogy with cylinder: 2D
 - Steady and unsteady flow
- Turbulent Flow
 - Laminar and turbulent boundary layer and the soccer ball
- Concluding remarks

Model Definition

- 2D case, cylinder
 - Upper and lower boundary conditions:
 - Open or analytic solution for potential flow
 - Cylinder boundary:
 - Rotating sliding wall
- 3D case, sphere
 - Top, bottom, and side boundary conditions:
 - Open
 - Sphere boundary:
 - Rotating sliding wall

Laminar Flow: The Influence of Spin

2D cylinder, laminar flow

$$S_p = \frac{r\omega}{v}$$
 Spin

r = Radius

 ω = Angular velocity

v =Flow velocity or velocity of a moving cylinder at the center

$$v=$$
 1 (m/s) $S_p=$ 1 (dim. less)

No stationary solution found!

Laminar Flow: The Influence of Spin

- 2D cylinder, laminar flow
 - Boundary conditions, top and bottom, obtained from the analytical solution for potential flow

$$v=1$$
 (m/s) $S_p=5$ (dim. less)
Higher spin yields stationary solution

Laminar Flow: The Influence of Spin

- 3D sphere, laminar flow
 - The rotational velocity at the surface of the ball decreases from the equator to the poles: No stationary solution

$$v=$$
 1 (m/s) $S_p=$ 5 (dim. less)

Turbulent Flow

- In the case of turbulent flow, we can have laminar or turbulent boundary layers:
 - Example soccer ball: Large wake causes large drag

Turbulent Flow: Adidas® World Cup™ Ball

Measurements of drag with no spin:

http://www.nature.com/srep/2014/140529/srep05068/full/srep05068.html

Turbulent Flow and Turbulent Boundary Layer

- 3D sphere
 - Turbulence model: k-ε model
 - Wall functions and rough surface to mimic a soccer ball

$$v=$$
 5 (m/s) $S_p=$ 1 (dim. less)

Concluding Remarks

- Accurate model requires the description of the transition of the flow from laminar to turbulent, and vice versa, in the boundary layer:
 - Transition models may work
- The geometry of the seams has an influence on both transition and drag and has to be accounted for in accurate models
- However, experiments on the soccer field show that curling the ball has a stabilizing effect on its flight

Enjoy The Magnus Effect!

http://www.youtube.com/watch?v=rEKGTq3onlo

