Lösungsvorschläge zu Aufgabenblatt 1

(Allgemeinen Relationen und deren Darstellung)

Aufgabe 1.1

Berechnen Sie die kartesischen Produkte:

- 1. $\{1, 2\} \times \{a, b, c\}$
- 2. $\{1,\{1\}\} \times \{1,\{2\},\{1,2\}\}$
- 3. $(\{1,2\} \times \{a,b\}) \times \{a,b\}$
- 4. $\{1,2\} \times (\{a,b\} \times \{a,b\})$
- 5. $\{1,2\} \times \{a,b\} \times \{a,b\}$
- 6. $\{\emptyset\} \times \{\emptyset\}$

Lösung

- 1. $\{1,2\} \times \{a,b,c\} = \{(1,a),(1,b),(1,c),(2,a),(2,b),(2,c)\}$
- 2. $\{1,\{1\}\} \times \{1,\{2\},\{1,2\}\} = \{(1,1),(1,\{2\}),(1,\{1,2\}),(\{1\},1),(\{1\},\{2\}),(\{1\},\{1,2\})\}$
- 3. $(\{1,2\} \times \{a,b\}) \times \{a,b\}$ = $\{((1,a),a),((1,a),b),((1,b),a),((1,b),b),((2,a),a),((2,a),b),$ $((2,b),a),((2,b),b)\}$
- 4. $\{1,2\} \times (\{a,b\} \times \{a,b\})$ = $\{(1,(a,a)),(1,(a,b)),(1,(b,a)),(1,(b,b)),(2,(a,a)),(2,(a,b)),(2,(b,a)),(2,(b,b))\}$
- 5. $\{1,2\} \times \{a,b\} \times \{a,b\}$ = $\{(1,a,a), (1,a,b), (1,b,a), (1,b,b), (2,a,a), (2,a,b), (2,b,a), (2,b,b)\}$
- 6. $\{\emptyset\} \times \{\emptyset\} = \{(\emptyset, \emptyset)\}$

Aufgabe 1.2

Definiere $M := \{1, 2\}$. Geben Sie alle Relationen auf der Menge M an.

Lösung

Es ist |M| = 2, es gibt also $2^{2 \cdot 2} = 16$ Relationen auf M. Diese sind:

$$\varnothing, \{(1,1)\}, \{(1,2)\}, \{(2,1)\}, \{(2,2)\}, \\ \{(1,1), (1,2)\}, \{(1,1), (2,1)\}, \{(1,1), (2,2)\}, \{(1,2), (2,1)\}, \{(1,2), (2,2)\}, \{(2,1), (2,2)\}, \\ \{(1,1), (1,2), (2,1)\}, \{(1,1), (1,2), (2,2)\}, \{(1,1), (2,1), (2,2)\}, \{(1,2), (2,1), (2,2)\}, \\ \{(1,1), (1,2), (2,1), (2,2)\} (= M \times M).$$

Aufgabe 1.3

Es seien M, N endliche Mengen und $R, S \subseteq M \times N$ Relationen zwischen M und N. Wie ergibt sich die Matrixdarstellung von $R \cup S$ (resp. $R \cap S$) aus den Matrixdarstellungen von R und S?

Lösungsskizze

Anschaulich erhält man die Matrixdarstellung folgendermaßen:

An jeder Stelle steht bei der Matrixdarstellung von $R \cup S$ genau dann eine 1, wenn bei mindestens einer der Matrixdarstellungen von R oder S an der entsprechenden Stelle eine 1 steht. Ansonsten steht an der jeweiligen Stelle eine 0.

An jeder Stelle steht bei der Matrixdarstellung von $R \cap S$ genau dann eine 1, wenn sowohl in der Matrixdarstellung von R als auch in der Matrixdarstellung von S an der entsprechenden Stelle eine 1 steht. Ansonsten steht an der jeweiligen Stelle eine 0.

Formal lässt sich dies folgendermaßen ausdrücken:

Schreibe die endlichen Mengen M,N als $M=\{x_1,\ldots,x_m\}$ und $N=\{y_1,\ldots,y_n\}$. Die Matrixdarstellung von R ist dann

M/N	y_1	y_2	• • •	y_n
x_1	r_{11}	r_{12}	• • •	r_{1n}
x_2	r_{21}	r_{22}	• • •	r_{2n}
:	:			:
x_m	r_{m1}	r_{m2}		r_{mn}

mit

$$r_{ij} := \begin{cases} 1 & \text{falls } (x_i, y_j) \in R \\ 0 & \text{falls } (x_i, y_j) \notin R \end{cases} \quad \text{für alle } i \in \{1, \dots, m\}, \ j \in \{1, \dots, n\}.$$

Analog erhalten wir die Matrixdarstellung von S mit den Matrixeinträgen

$$s_{ij} := \begin{cases} 1 & \text{falls } (x_i, y_j) \in S \\ 0 & \text{falls } (x_i, y_j) \notin S \end{cases} \quad \text{für alle } i \in \{1, \dots, m\}, \ j \in \{1, \dots, n\}.$$

Die Matrixdarstellung von $R \cup S$ hat dann die Einträge $a_{ij} := \max\{r_{ij}, s_{ij}\}$ für alle $i \in \{1, \ldots, m\}$, $j \in \{1, \ldots, n\}$, und die Matrixdarstellung von $R \cap S$ hat die Einträge $b_{ij} := \min\{r_{ij}, s_{ij}\}$ für alle $i \in \{1, \ldots, m\}$, $j \in \{1, \ldots, n\}$.

Aufgabe 1.4

Beweisen Sie die fehlenden Inklusionen des Assoziativgesetz für die Verkettung von Relationen (Folie 23) und Rechenregeln für die inverse Relation (Folie 24):

Es seien $R_1 \subseteq M_1 \times M_2, R_2 \subseteq M_2 \times M_3$ und $R_3 \subseteq M_3 \times M_4$ Relationen, dann gilt:

$$R_1(R_2R_3) \subseteq (R_1R_2)R_3$$
 und $R_2^{-1}R_1^{-1} \subseteq (R_1R_2)^{-1}$

Beweis von $R_1(R_2R_3) \subseteq (R_1R_2)R_3$:

Es sei $(x_1, x_4) \in R_1(R_2R_3)$. Zu zeigen: $(x_1, x_4) \in (R_1R_2)R_3$.

Nach Definition der Verkettung existiert ein $x_2 \in M_2$ mit $(x_1, x_2) \in R_1$ und $(x_2, x_4) \in R_2R_3$. Aus dem letzteren folgt, wiederum mit der Definition der Verkettung, dass ein $x_3 \in M_3$ existiert mit $(x_2, x_3) \in R_2$ und $(x_3, x_4) \in R_3$.

Da somit $(x_1, x_2) \in R_1$ und $(x_2, x_3) \in R_2$ ist, folgt mit der Definition der Verkettung $(x_1, x_3) \in R_1R_2$, und zusammen mit $(x_3, x_4) \in R_3$ folgt schließlich – wiederum mit der Definition der Verkettung – $(x_1, x_4) \in (R_1R_2)R_3$.

Beweis von $R_2^{-1}R_1^{-1} \subseteq (R_1R_2)^{-1}$:

Es sei $(z, x) \in R_2^{-1} R_1^{-1}$. Zu zeigen: $(z, x) \in (R_1 R_2)^{-1}$.

Nach Definition der Verkettung existiert ein $y \in M_2$ mit $(z,y) \in R_2^{-1}$ und $(y,x) \in R_1^{-1}$. Nach Definition der inversen Relation folgt hieraus $(x,y) \in R_1$ und $(y,z) \in R_2$. Nach Definition der Verkettung folgt damit $(x,z) \in R_1R_2$, und wiederum mit der Definition der inversen Relation folgt damit schließlich $(z,x) \in (R_1R_2)^{-1}$.

Aufgabe 1.5

Definiere $M := \{1, 2, 3, 4\}$ und $N := \{5, 6, 7, 8\}$ sowie die Relationen

 $R := \{(n, n+4) \mid n \in M\} \subseteq M \times N,$

 $S := \{(5,2), (5,3), (6,3), (7,2), (8,2)\} \subseteq N \times M,$

 $T := \{(1,1), (1,2), (1,3), (3,1)\} \subseteq M \times M.$

- (a) Stellen Sie die Relation R als Pfeildiagramm und die Relation T als vereinfachtes Pfeildiagramm dar.
- (b) Stellen Sie die Relation S in der Matrixschreibweise dar.
- (c) Geben Sie die Relationen $RS,\,R\circ S$ und $T\circ T$ an.
- (d) Geben Sie die Relationen R^{-1} , S^{-1} und $(RS)^{-1}$ an.

Lösung

Wir stellen zunächst fest, dass nach Definition gilt $R = \{(1,5), (2,6), (3,7), (4,8)\}.$

(a) Pfeildiagramm für R

vereinfachtes Pfeildiagramm für T

4

(b) Matrixdarstellung von S:

(c) Es gilt:

$$RS = \{(1,2), (1,3), (2,3), (3,2), (4,2)\} \subseteq M \times M,$$

$$R \circ S = SR = \{(5,6), (5,7), (6,7), (7,6), (8,6)\} \subseteq N \times N,$$

$$T \circ T = \{(1,1), (1,2), (1,3), (3,1), (3,2), (3,3)\} \subseteq M \times M.$$

(d) Es gilt:

$$\begin{split} R^{-1} &= \{(n,n-4) \,|\, n \in N\} = \{(5,1),(6,2),(7,3),(8,4)\} \subseteq N \times M, \\ S^{-1} &= \{(2,5),(3,5),(3,6),(2,7),(2,8)\} \subseteq M \times N, \\ (RS)^{-1} &= \{(2,1),(3,1),(3,2),(2,3),(2,4)\} \subseteq M \times M. \end{split}$$