The Riemann-Siegel Formula for Computing the Hardy Z-Function: Theory and Exact Implementation

BY COMPREHENSIVE MATHEMATICAL ANALYSIS

April 17, 2025

1 Introduction and Fundamental Definitions

Definition 1. [Riemann Zeta Function] For $\Re(s) > 1$, the Riemann zeta function is defined by the absolutely convergent series:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

It can be analytically continued to the entire complex plane except for a simple pole at s = 1.

Definition 2. [Hardy Z-Function] For $t \in \mathbb{R}$, the Hardy Z-function is defined as:

$$Z(t) = e^{i\theta(t)} \zeta\left(\frac{1}{2} + it\right)$$

where $\theta(t)$ is given by:

$$\theta(t) = \arg \Gamma\left(\frac{1}{4} + \frac{it}{2}\right) - \frac{t}{2}\log \pi$$

This function is real-valued for real t and $|Z(t)| = \left| \zeta\left(\frac{1}{2} + it\right) \right|$.

Theorem 3. [Reality of Z-Function] For all $t \in \mathbb{R}$, the function Z(t) is real-valued.

Proof. From the functional equation of the Riemann zeta function:

$$\zeta(s) = \chi(s) \zeta(1-s)$$

where

$$\chi(s) = \pi^{s - \frac{1}{2}} \frac{\Gamma\left(\frac{1 - s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}$$

For $s = \frac{1}{2} + it$, we have $1 - s = \frac{1}{2} - it$, and:

$$\zeta\left(\frac{1}{2}+it\right) = \chi\left(\frac{1}{2}+it\right)\zeta\left(\frac{1}{2}-it\right)$$

Computing $\chi\left(\frac{1}{2}+it\right)$:

$$\chi\left(\frac{1}{2} + it\right) = \pi^{it} \frac{\Gamma\left(\frac{1}{4} - \frac{it}{2}\right)}{\Gamma\left(\frac{1}{4} + \frac{it}{2}\right)}$$

It can be shown that $|\chi\left(\frac{1}{2}+i\,t\right)|=1$ and $\chi\left(\frac{1}{2}+i\,t\right)=e^{-2i\theta(t)}$.

Therefore:

$$\zeta\left(\frac{1}{2}+it\right) = e^{-2i\theta(t)}\overline{\zeta\left(\frac{1}{2}+it\right)}$$

Multiplying both sides by $e^{i\theta(t)}$:

$$Z(t) = e^{i\theta(t)} \, \zeta\left(\frac{1}{2} + i\,t\right) = e^{-i\theta(t)} \overline{\zeta\left(\frac{1}{2} + i\,t\right)} = \overline{e^{i\theta(t)} \, \zeta\left(\frac{1}{2} + i\,t\right)} = \overline{Z(t)}$$

Since $Z(t) = \overline{Z(t)}$, it follows that Z(t) is real-valued.

2 The Riemann-Siegel Formula

Theorem 4. [Riemann-Siegel Formula] For t > 0, let $N = \lfloor \sqrt{t/(2\pi)} \rfloor$ and $\tau = \sqrt{t/(2\pi)} - N$. Then:

$$Z(t) = 2\sum_{n=1}^{N} \frac{\cos(\theta(t) - t \log n)}{\sqrt{n}} + (-1)^{N-1} \frac{2}{\sqrt{N}} \Re(e^{-i\theta(t)} e^{it \log N} \Phi(\tau, N))$$

where $\Phi(\tau, N)$ is the Riemann-Siegel integral:

$$\Phi(\tau, N) = \int_0^\infty \frac{e^{-2\pi i \tau x - i\pi x^2}}{\sqrt{x + N}} dx$$

Proof. We begin with Riemann's integral representation for the zeta function:

$$\zeta(s) = \frac{\Gamma(1-s)}{2\pi i} \int_C \frac{(-z)^s}{e^z - 1} \frac{dz}{z}$$

where C is a contour that encircles the positive real axis.

For $s = \frac{1}{2} + it$, we deform this contour and split the integration into two parts, obtaining:

$$\zeta\left(\frac{1}{2} + it\right) = \sum_{n=1}^{N} \frac{1}{n^{1/2 + it}} + \chi\left(\frac{1}{2} + it\right) \sum_{n=1}^{M} \frac{1}{n^{1/2 - it}} + R_N(t)$$

Setting M = N and using the fact that $\chi\left(\frac{1}{2} + it\right) = e^{-2i\theta(t)}$:

$$\zeta\left(\frac{1}{2}+it\right) = \sum_{n=1}^{N} \frac{1}{n^{1/2+it}} + e^{-2i\theta(t)} \sum_{n=1}^{N} \frac{1}{n^{1/2-it}} + R_N(t)$$

Multiplying by $e^{i\theta(t)}$ and using the reality of Z(t):

$$Z(t) = 2\sum_{n=1}^{N} \frac{\cos(\theta(t) - t\log n)}{\sqrt{n}} + e^{i\theta(t)} R_N(t)$$

The remainder term $R_N(t)$ can be expressed as a contour integral:

$$R_N(t) = \frac{1}{2\pi i} \int_{C_N} \frac{\pi^{-z/2} \Gamma(z/2)}{(z-1/2-it)(z-1/2+it)} \frac{x^{z-1}}{e^x - 1} dx dz$$

Through saddle point analysis and contour deformation, this can be expressed in terms of the Riemann-Siegel integral $\Phi(\tau, N)$:

$$e^{i\theta(t)} R_N(t) = (-1)^{N-1} \frac{2}{\sqrt{N}} \Re \left(e^{-i\theta(t)} e^{it\log N} \Phi(\tau, N) \right)$$

Combining these results yields the Riemann-Siegel formula.

3 Saddle Point Analysis of the Remainder Term

Theorem 5. [Saddle Point for Riemann-Siegel Integral] For the integral:

$$\Phi(\tau, N) = \int_0^\infty \frac{e^{-2\pi i \tau x - i\pi x^2}}{\sqrt{x + N}} dx$$

the saddle point of the exponential term occurs at:

$$x = -\tau$$

where the derivative of the phase function vanishes.

Proof. We analyze the phase function in the exponential:

$$\phi(x) = -2\pi \tau x - \pi x^2$$

The saddle point occurs where $\phi'(x) = 0$:

$$\phi'(x) = -2 \pi \tau - 2 \pi x = 0$$

Thus, $x = -\tau$ is the saddle point. This is the critical point where the oscillatory behavior of the integrand changes character, and it plays a key role in the asymptotic analysis of the Riemann-Siegel integral.

Theorem 6. [Steepest Descent Path] The path of steepest descent through the saddle point $x = -\tau$ is along the line with slope -1 (i.e., at 45° angle to the negative real axis).

Proof. At the saddle point, the derivatives of the phase function determine the directions of steepest ascent and descent. For the exponential term in $\Phi(\tau, N)$, the steepest descent is along the line:

$$z = -\tau + x e^{-i\pi/4}$$

where x is a real parameter. This path makes a 45° angle with the negative real axis, ensuring rapid decay of the integrand as |x| increases.

4 Exact Evaluation of the Riemann-Siegel Integral

Theorem 7. [Series Expansion of $\Phi(\tau, N)$] The Riemann-Siegel integral has the exact series representation:

$$\Phi(\tau, N) = \sum_{k=0}^{\infty} \frac{C_k(\tau)}{N^{k+1/2}}$$

where the coefficients $C_k(\tau)$ are:

$$C_k(\tau) = \frac{1}{k!} \frac{d^k}{dx^k} [e^{-2\pi i \tau x - i \pi x^2}] \Big|_{x=0}$$

Proof. We expand the denominator of the integrand using the binomial theorem:

$$\frac{1}{\sqrt{x+N}} = \frac{1}{\sqrt{N}} \left(1 + \frac{x}{N} \right)^{-1/2} = \frac{1}{\sqrt{N}} \sum_{m=0}^{\infty} {\binom{-1/2}{m}} \left(\frac{x}{N} \right)^m$$

Substituting into the integral:

$$\Phi(\tau, N) = \frac{1}{\sqrt{N}} \sum_{m=0}^{\infty} {\binom{-1/2}{m}} \frac{1}{N^m} \int_{0}^{\infty} x^m e^{-2\pi i \tau x - i \pi x^2} dx$$

Evaluating these integrals and rearranging terms yields the desired series expansion.

For the coefficients, we use the Taylor expansion of the numerator around x = 0:

$$e^{-2\pi i \tau x - i\pi x^2} = \sum_{j=0}^{\infty} \frac{1}{j!} \frac{d^j}{dx^j} e^{-2\pi i \tau x - i\pi x^2} \bigg|_{x=0} x^j$$

Combining with the binomial expansion and matching powers of 1/N gives us the formula for $C_k(\tau)$.

Theorem 8. [Explicit Formula for $C_k(\tau)$] The coefficients $C_k(\tau)$ can be computed explicitly as:

$$C_k(\tau) = \sum_{j=0}^{\lfloor k/2 \rfloor} \frac{(-i\pi)^j}{j!} \frac{(-2\pi i\tau)^{k-2j}}{(k-2j)!}$$

Proof. Let's denote $f(x) = e^{-2\pi i \tau x - i\pi x^2}$ and analyze its derivatives at x = 0.

For the derivatives, we use the fact that for $f(x) = e^{g(x)}$ where $g(x) = -2 \pi i \tau x - i \pi x^2$:

$$\frac{d^k}{dx^k} f(x) = f(x) \sum_{m=0}^k \sum_{\substack{j_1 + j_2 + \dots + j_k = m \\ j_1 + 2j_2 + \dots + kj_k = k}} \frac{k!}{j_1! j_2! \dots j_k!} \prod_{i=1}^k \left(\frac{g^{(i)}(x)}{i!} \right)^{j_i}$$

where $g^{(i)}(x)$ is the *i*-th derivative of g(x).

For our function $g(x) = -2 \pi i \tau x - i \pi x^2$:

$$g^{(1)}(x) = -2\pi i \tau - 2i\pi x$$

$$g^{(2)}(x) = -2i\pi$$

$$g^{(i)}(x) = 0 \text{ for } i \ge 3$$

Evaluating at x = 0:

$$g^{(1)}(0) = -2 \pi i \tau$$

$$g^{(2)}(0) = -2 i \pi$$

$$g^{(i)}(0) = 0 \text{ for } i \ge 3$$

Since $g^{(i)}(0) = 0$ for $i \ge 3$, we're only interested in partitions involving j_1 and j_2 such that $j_1 + 2 j_2 = k$. For such partitions, we have $j_1 = k - 2 j_2$ and $m = j_1 + j_2 = k - j_2$. The formula simplifies to:

$$\left. \frac{d^k}{d \, x^k} \, f(x) \right|_{x=0} = \sum_{j=0}^{\lfloor k/2 \rfloor} \frac{k!}{(k-2 \, j)! \, j!} \, (-2 \, \pi \, i \, \tau)^{k-2j} \, (-i \, \pi)^j$$

Dividing by k! to get $C_k(\tau)$:

$$C_k(\tau) = \sum_{j=0}^{\lfloor k/2 \rfloor} \frac{(-i\pi)^j}{j!} \frac{(-2\pi i\tau)^{k-2j}}{(k-2j)!}$$

5 Practical Implementation and Error Analysis

Theorem 9. [Truncation Error Bound] When truncating the series for $\Phi(\tau, N)$ to K terms:

$$\Phi_K(\tau, N) = \sum_{k=0}^{K-1} \frac{C_k(\tau)}{N^{k+1/2}}$$

the absolute error is bounded by:

$$|\Phi(\tau,N) - \Phi_K(\tau,N)| < \frac{C}{N^{K+1/2}}$$

where C is a constant that depends on τ but not on N.

Proof. The error in truncating the series is:

$$E_K = \sum_{k=K}^{\infty} \frac{C_k(\tau)}{N^{k+1/2}}$$

It can be shown that $|C_k(\tau)|$ is bounded by $(2\pi)^k \max(1, |\tau|^k)$. Thus:

$$|E_K| \le \sum_{k=K}^{\infty} \frac{(2\pi)^k \max(1, |\tau|^k)}{k! \cdot N^{k+1/2}}$$

For sufficiently large N, this sum converges rapidly and is dominated by its first term, giving us the desired bound.

Theorem 10. [Computational Complexity] Computing Z(t) using the Riemann-Siegel formula requires $O(\sqrt{t})$ arithmetic operations.

Proof. The main sum in the Riemann-Siegel formula has $N = O(\sqrt{t})$ terms. Each term requires a constant number of operations.

For the remainder term, computing the coefficients $C_k(\tau)$ requires a fixed number of operations for each k, and typically only a small number of terms (e.g., K=4 or K=8) are needed for high precision.

Therefore, the total computational complexity is dominated by the main sum, which is $O(\sqrt{t})$.

6 Advanced Topics: Uniform Asymptotic Expansions

Theorem 11. [Uniform Asymptotic Expansion of $\Phi(\tau, N)$] For fixed $\tau \in [0, 1)$ and large N, the Riemann-Siegel integral has the uniform asymptotic expansion:

$$\Phi(\tau, N) = \frac{e^{\pi i/8}}{\sqrt{2}} \sum_{k=0}^{\infty} \frac{A_k(\tau)}{(2\pi N)^{k/2}}$$

The coefficients $A_k(\tau)$ are given by the explicit formula:

$$A_k(\tau) = \frac{1}{2^k \, k!} \, H_k \left(\sqrt{2 \, \pi} \, \tau \right)$$

where $H_k(x)$ are the Hermite polynomials defined by:

$$H_k(x) = (-1)^k e^{x^2} \frac{d^k}{dx^k} e^{-x^2}$$

These coefficients can be computed recursively using the Hermite polynomial recurrence relation:

$$A_{k+1}(\tau) = \frac{\sqrt{2\pi} \tau}{k+1} A_k(\tau) - \frac{k}{(k+1)} A_{k-1}(\tau)$$

Proof. The uniform asymptotic expansion is derived using a refined saddle point method. The key steps are:

1. Scale the variables to focus on the behavior near the saddle point:

$$x = -\tau + \frac{u}{\sqrt{2\pi N}}$$

2. Expand the integrand in powers of $1/\sqrt{N}$:

$$\frac{e^{-2\pi i \tau x - i\pi x^2}}{\sqrt{x+N}} = \frac{e^{i\pi \tau^2}}{\sqrt{N}} e^{-\frac{u^2}{2}} \sum_{j=0}^{\infty} \frac{B_j(u,\tau)}{N^{j/2}}$$

3. Integrate term by term using:

$$\int_{-\infty}^{\infty} u^k e^{-\frac{u^2}{2}} du = \begin{cases} 0 & \text{if } k \text{is odd} \\ \sqrt{2\pi} (k-1)!! & \text{if } k \text{is even} \end{cases}$$

4. Relate the coefficients to Hermite polynomials via their generating function:

$$e^{2xt-t^2} = \sum_{k=0}^{\infty} \frac{H_k(x)}{k!} t^k$$

The recurrence relation follows from the standard Hermite polynomial recurrence:

$$H_{k+1}(x) = 2 x H_k(x) - 2 k H_{k-1}(x)$$

Appendix: Hermite Polynomials in the Riemann-Siegel Formula

Theorem 12. [Hermite Polynomial Representation] The asymptotic expansion coefficients $A_k(\tau)$ satisfy:

$$A_k(\tau) = \frac{1}{2^k \, k!} \, H_k \left(\sqrt{2 \, \pi} \, \tau \right)$$

Corollary 13. [Recurrence Relation] The coefficients $A_k(\tau)$ obey the recurrence:

$$A_{k+1}(\tau) = \frac{\sqrt{2\pi} \tau}{k+1} A_k(\tau) - \frac{k}{(k+1)} A_{k-1}(\tau)$$

with initial conditions $A_0(\tau) = 1$ and $A_1(\tau) = -\frac{\tau}{2}$.

Proof. Substitute $A_k(\tau) = \frac{1}{2^k k!} H_k(\sqrt{2\pi} \tau)$ into the Hermite recurrence:

$$H_{k+1}(x) = 2 x H_k(x) - 2 k H_{k-1}(x)$$

and simplify to obtain the stated recurrence relation.