

MATEMÁTICA

Pregunta 01

Si el número $(\overline{ab})!$ es múltiplo de 8, 10 y 111, y, además, $(\overline{ab})! = \overline{(2b)c(c+2)dda(3b)dd}$, determine (5a+4b-c).

- A) 2
- B) 4
- C) 6
- D) 8
- E) 10

Resolución 01

Divisibilidad (criterios de la divisibilidad)

$$\overline{ab!} = \overline{(2b)c(c+2)dda(3b)dd}$$

Como:

•
$$\overline{ab}! = \overset{\circ}{10} \rightarrow d = 0$$

•
$$\overline{ab}! = \overset{\circ}{8} \rightarrow \overline{(3b)00} = \overset{\circ}{8}$$

$$b=2$$

$$\overline{ab!} = \overset{\circ}{11} \rightarrow \overline{4c(c+2)00a600} = \overset{\circ}{11}$$

$$4 + & + 2 + 6 - & -a = \overset{\circ}{11}$$

$$12 - a = \overset{\circ}{11}$$

$$\underline{a = 1}$$

Pero:
$$\overline{ab}! = \overset{\circ}{9} \rightarrow \overline{4c(c+2)001600} = \overset{\circ}{9}$$

$$2c + 13 = \overset{\circ}{9}$$

$$\underline{c = 7}$$

Luego:
$$5a + 4b - c = 5 + 8 - 7 = 6$$

Dado que a, b, c, d y e son cifras distintas entre sí, además:

$$805\ 527 = \overline{abcd} \times \overline{eee}$$

calcule el valor de a + b + c + d + e.

- A) 19
- B) 20
- C) 21
- D) 22
- E) 23

Resolución 02

Cuatro operaciones (multiplicación)

$$805\ 527 = \overline{abcd} \times \overline{eee}$$

$$805\ 527 = \overline{abcd} \times (111 \cdot e)$$

$$7257 = \overline{abcd} \times e$$

$$2419 \times 3 = \overline{abcd} \times e$$

$$\rightarrow \overline{abcd} = 2419 \land e = 3$$

a + b + c + d + e = 2 + 4 + 1 + 9 + 3 = 19

Rpta.: 19

Pregunta 03

La tabla de distribución de frecuencias muestra la cantidad de obreros con defectos visuales según su edad:

Edad	Frecuencia
18-19	40
20-29	70
30-39	80
40-49	100
50-59	110

Determine si las siguientes proposiciones son verdaderas (V) o falsas (F):

- Los obreros con defectos visuales comprendidos de 30 a 39 años representan el 20 % del total de obreros con defectos visuales.
- II. La cantidad de obreros de 40 o más años son más de la mitad del total de obreros.
- III. La cantidad de obreros con defectos visuales es 500.

Señale la secuencia correcta.

- A) VFF
- B) FFF
- C) VFV
- D) VVF
- E) VVV

Resolución 03

Estadística (distribución de frecuencias)

Edad	Frecuencia
18 - 19	40
20 - 29	70
30 - 39	80
40 - 49	100
50 - 59	110
	400

I.
$$h_3 = \frac{f_3}{n} \rightarrow f_3 = \frac{80}{400} = 0,20 = 20 \% ... (V)$$

II.
$$f_4 + f_5 = 100 + 110 = 210 > 200 \dots (V)$$

III.
$$n = 400 \neq 500 \dots (F)$$

: VVF

Rpta.: VVF

Pregunta 04

El espacio muestral de cierto experimento aleatorio es equiprobable y la probabilidad de cada suceso elemental es $\frac{1}{4}$.

Un experimento aleatorio con estas características es

- A) lanzar un dado cargado.
- B) lanzar una moneda normal 4 veces.
- C) extraer una bolilla de una urna en donde hay solo 4 bolillas idénticas numeradas del 1 al 4.
- D) lanzar dos dados y dos monedas que sean ambas normales.
- E) extraer dos bolillas sin reposición de una urna que contiene 4 rojas, 2 blancas y 2 verdes.

Probabilidades

E: Experimento aleatorio

Extraemos una bolilla de una urna en donde hay solo 4 bolillas idénticas numeradas del 1 al 4.

$$\Omega = \{ (1); (2); (3); (4) \}$$

Espacio muestral equiprobable

$$p(1) = p(2) = p(3) = p(4)$$

$$p(1) + p(2) + p(3) + p(4) = 1$$

$$\underbrace{p} + \underbrace{p} + \underbrace{p} + \underbrace{p} + \underbrace{p} = 1$$

$$4p = 1 \longrightarrow p = \frac{1}{4}$$

$$p(1) = p(2) = p(3) = p(4) = \frac{1}{4}$$

Rpta.: extraer una bolilla de una urna en donde hay solo 4 bolillas idénticas numeradas del 1 al 4.

Pregunta 05

Se tiene un número natural N tal que, al extraer su raíz cuadrada, el residuo por defecto es 125. Si la diferencia de los cuadrados de sus raíces por exceso y por defecto es 189, determine el número N.

- A) 8951
- B) 8961
- C) 8971
- D) 8981
- E) 8991

Resolución 05

Radicación (raíz cuadrada)

$$k^2 < N < (k+1)^2$$

$$k < \sqrt{N} < (k+1)$$

Raíz por defecto Raíz por exceso

prohibida su venta

$$(k+1)^{2} - k^{2} = 189$$

$$2k+1 = 189$$

$$k = 94$$
∴ N = k² + 125
$$N = 94^{2} + 125 = 8961$$

Rpta.: 8961

Pregunta 06

Determine si las siguientes proposiciones son verdaderas (V) o falsas (F):

- Existe una cantidad finita de números primos.
- Un número entero positivo y primo escrito en cualquier otra base distinta a la decimal sigue siendo primo.
- III. La cantidad de divisores de un entero positivo y primo en cualquier sistema de numeración es la misma.

Marque la secuencia correcta.

- A) FVV
- B) VVF
- C) VFV
- D) FFF
- E) VVV

Resolución 06

Números primos (definición)

Falsa (F)

La sucesión de números primos es infinita (Euclides).

II. Verdadera (V)

Un número primo en base 10 es primo en cualquier sistema de numeración; solo cambia su representación.

III. Verdadera (V)

La cantidad de divisores de un entero positivo y primo es siempre la misma (2 divisores).

Rpta.: FVV

Considere la siguiente igualdad:

$$N = \overline{abc}_{(9)} = \overline{cab}_{(7)} + 48$$

Exprese el número N en base 10.

Dé como respuesta la suma de cifras de N.

- A) 10
- B) 12
- C) 14
- D) 15
- E) 18

Resolución 07

Numeración (cambios de bases)

$$N = \overline{abc}_{(9)} = \overline{cab}_{(7)} + 48$$

Aplicamos el criterio de divisibilidad por 8:

$$\overset{\circ}{8} + \overset{\circ}{a} + \overset{\circ}{b} + \overset{\circ}{b} = \overset{\circ}{8} + \overset{\circ}{b} - \overset{\circ}{a} + \overset{\circ}{b} + \overset{\circ}{8}$$

$$2a = \overset{\circ}{8}$$

$$a = \overset{\circ}{4} \rightarrow \underbrace{a = 4}_{\downarrow}$$

Luego:
$$\overline{4bc}_{(9)} = \overline{c4b}_{(7)} + 48$$

$$4 \cdot 9^2 + b \cdot 9 + c = c \cdot 7^2 + 4 \cdot 7 + b + 48$$

$$324 + 9b + c = 49c + 28 + b + 48$$

$$248 + 8b = 48c$$

$$31 + b = 6c$$

$$5 \quad 6$$

Reemplazamos:
$$N = 456_{(9)}$$

 $N = 4 \cdot 9^2 + 5 \cdot 9 + 6$
 $N = 375$

.. Suma de cifras = 3 + 7 + 5 = 15

Rpta.: 15

Se mezclan cantidades diferentes de dos tipos de arroz (tipo 1 y tipo 2). El de tipo 1 es de S/3,80 el kilogramo, mientras que el de tipo 2 es de S/2,30 el kilogramo. De ello se obtiene 100 kg de arroz de S/2,90 el kilogramo como precio de mezcla. Determine la cantidad (en kilogramos) del tipo 1 y del tipo 2 que se debe mezclar.

- A) 25 y 75
- B) 20 y 80
- C) 40 y 60
- D) 60 y 40
- E) 80 y 20

Resolución 08

Regla de mezcla (precio medio)

Cantidad Precio

Tipo 1: a kg
$$3.8 - 2.9 \rightarrow 0.9$$

Tipo 2:
$$\frac{b \text{ kg}}{100 \text{ kg}}$$
 2,3 -2,9 \rightarrow -0,6

Ganancia aparente = Pérdida aparente

$$0.9 a = 0.6 b$$

$$\frac{a}{b} = \frac{2K}{3K}$$

$$2K + 3K = 100$$

$$K = 100$$

 $K = 20 < a = 40$
 $b = 60$

Rpta.: 40 y 60

Pregunta 09

Sean cuatro números que son proporcionales a 2, 3, 5 y 7. Si cada uno se eleva al cubo, la suma de los resultados es 13 581. Calcule la media aritmética de los números iniciales.

- A) 11,75
- B) 12,25
- C) 12,75
- D) 24,50
- E) 25,50

8

Promedios (media aritmética)

$$\frac{a}{2} = \frac{b}{3} = \frac{c}{5} = \frac{d}{7} = K$$

$$a^3 + b^3 + c^3 + d^3 = 13581$$

$$\frac{a^3}{8} = \frac{b^3}{27} = \frac{c^3}{125} = \frac{d^3}{343} = K^3$$

$$\frac{13\,581}{503} = K^3$$

$$27 = K^3$$

$$K = 3$$

M. A. =
$$\frac{2K + 3K + 5K + 7K}{4}$$

M. A. =
$$\frac{17K}{4}$$

M. A. =
$$\frac{17(3)}{4} = \frac{51}{4} = 12,75$$

Rpta.: 12,75

Pregunta 10

Existe una fracción $\frac{a}{b}$ tal que satisface:

$$\frac{a}{b} = 0, \widehat{bcdefa},$$

donde a, b, c, d, e y f son números naturales de una cifra.

Si
$$M = a + \frac{1}{b + \frac{1}{c}}$$
 $y N = d + \frac{1}{e + \frac{1}{f}}$,

determine (8M + 17N).

- A) 57
- B) 87
- C) 97
- D) 107
- E) 117

Números racionales (números decimales)

$$\frac{a}{b} = 0$$
, bcdefa

$$\frac{a}{b} = \frac{bcdefa}{999999}$$

$$\frac{a}{b} = \frac{\overline{bcdefa}}{3^3 \times 7 \times 11 \times 13 \times 37}$$

Única posibilidad:
$$b = 7 \longrightarrow a = \frac{\overline{7cdefa}}{3^3 \times 11 \times 13 \times 37} = \frac{\overline{7cdefa}}{142857}$$

$$142857 \times a = \overline{7c def a}$$
 $a = 5, b = 7, c = 1, d = 4, e = 2, f = 8$

Luego:
$$M = 5 + \frac{1}{7 + \frac{1}{1}}$$

$$M = 5 + \frac{1}{8}$$

$$M = 5 + \frac{1}{8}$$

$$M = \frac{41}{8}$$

$$8M = 41$$

$$N = 4 + \frac{1}{2 + \frac{1}{8}}$$

$$N = 4 + \frac{8}{17}$$

$$N = \frac{76}{17}$$

$$17N = 76$$

Entonces: 8M + 17N = 41 + 76 = 117

Rpta.: 117

Pregunta 11

En las gráficas mostradas, escriba "h" en función de "x", "l" en función de "y".

Indique el valor de verdad (V) o falsedad (F) de las siguientes proposiciones:

- I. "h" es máximo para $x = \frac{3}{2}$
- II. $h + \ell = -3 + 3x x^2 + \frac{y}{3} + \sqrt{9 y}$
- III. "h" es una función inyectiva.

Marque la secuencia correcta.

- A) VVV
- B) VVF
- C) FVV
- D) FVF
- E) VFV

Resolución 11

Funciones

i. Para hallar "h":

$$y_1 = 6x - x^2$$

$$y_2 = 3x$$

Entonces: $h = y_1 - y_2$

$$h = (6x - x^2) - (3x)$$

$$h = -x^2 + 3x; x \in [0; 3]$$

ii. Para hallar "ℓ":

$$y = 6x_1 - x_1^2 \longrightarrow x_1^2 - 6x_1 + y = 0$$

Para hallar:
$$x_1 = \frac{6 - \sqrt{36 - 4y}}{2(1)}$$
$$= 3 - \sqrt{9 - y}$$
$$y = 3x_2 \rightarrow x_2 = \frac{y}{3}$$

Entonces:

$$\ell = x_2 - x_1$$

$$\ell = \frac{y}{3} - 3 + \sqrt{9 - y}$$

- iii. Analizando las proposiciones:
 - I. Verdadero

$$h = -x^2 + 3x$$

$$x = -\frac{3}{2(-1)} \rightarrow \text{"h" es máximo para } x = \frac{3}{2}$$

II. Verdadero

Sumamos "h" y "ℓ":

$$h + \ell = -3 + 3x - x^2 + \frac{y}{3} + \sqrt{9 - y}$$

III. Falso

$$h = -x + 3x$$
; $x \in [0; 3]$

Nótese que "h" no es una función inyectiva.

Rpta.: VVF

La expresión z = 3x - 4y es la función objetivo de un problema de programación lineal (minimización), donde la región sombreada representa la región factible.

 ξ Cuál de las siguientes expresiones puede reemplazar a z=3x-4y para obtener la misma solución óptima?

- A) z = -6x + y
- B) z = -3x + 3y
- C) z = 6x + 6y
- D) z = -6x y
- E) z = 6x 6y

Resolución 12

Programación lineal

Del problema:

$$z = 3x - 4y$$

$$z(0; 0) = 0$$

$$z(0; 2) = -8 \text{ (mínimo)}$$

$$z(3; 0) = 9$$

prohibida su venta

• Para
$$z = -6x + y$$

$$z(0; 0) = 0$$

$$z(0; 2) = 2$$

$$z(3; 0) = -18$$
 (mínimo)

Solución óptima: (3; 0)

• Para z = -3x + 3y

$$z(0; 0) = 0$$

$$z(0; 2) = 6$$

$$z(3; 0) = -9 \text{ (mínimo)}$$

Solución óptima: (3; 0)

• Para z = 6x + 6y

$$z(0; 0) = 0$$
 (mínimo)

$$z(0; 2) = 12$$

$$z(3; 0) = 18$$

Solución óptima: (0; 0)

• Para z = -6x - y

$$z(0; 0) = 0$$

$$z(0; 2) = -2$$

$$z(3; 0) = -18$$
 (mínimo)

Solución óptima: (3; 0)

• Para z = 6x - 6y

$$z(0; 0) = 0$$

$$z(0; 2) = -12$$
 (mínimo)

$$z(3; 0) = 18$$

Solución óptima: (0; 2)

Nótese que con z = 6x - 6y se consigue la misma solución óptima.

$$\therefore$$
 z = 6x - 6y

Rpta.: z = 6x - 6y

Pregunta 13

Sean los conjuntos A y B diferentes del vacío, de manera que exista $b \in B$, tal que a < b, $\forall a \in A$.

Determine el valor de verdad (V) o falsedad (F) de las siguientes proposiciones:

I. $\forall b \in B, \exists a \in A, \text{ tal que } b < a$

II.
$$\forall a \in A, \forall b \in B, b \le a$$

III. $B \subseteq A$

prohibida su venta

Marque la secuencia correcta.

- A) VVV
- B) VFF
- C) VVF
- D) FFV
- E) FFF

Resolución 13

Conjuntos

Por condición del problema: $\exists b \in B / a < b, \forall a \in A$.

- I. Para ningún valor de B existe algún $a \in B$ con a > b.
 - (I) es falsa.
- II. Se verifica que b > a, $\forall a \in A$.
 - (II) es falsa.
- III. Sea A = $\{1; 2\}$, B = $\{4\}$ que verifican la condición del problema; sin embargo, B $\not\subseteq$ A.
 - (III) es falsa.

∴ FFF

Rpta.: FFF

Pregunta 14

Determine el conjunto solución de la inecuación:

$$\sqrt{x^2 + 4x + 15} < x + 1$$

- A) $\langle -1; 4]$
- B) (-1; 5]
- C) $\langle 1; 6 \rangle$
- D) Ø
- E) [-2; 2]

Desigualdades

I. Analizando las restricciones de la inecuación irracional:

$$\begin{array}{cccc} \underline{x^2+4x+15} \geqslant 0 & \wedge & x+1>0 & \wedge & x^2+4x+15 < (x+1)^2 \\ \text{Trinomio positivo} & x>-1 & x^2+4x+15 < x^2+2x+1 \\ x \in \mathbb{R} & x \in \langle -1; +\infty \rangle & 2x < -14 \\ CS_1 = \mathbb{R} & CS_2 = \langle -1; +\infty \rangle & x < -7 \\ & x \in \langle -\infty; -7 \rangle \\ CS_3 = \langle -\infty; -7 \rangle \end{array}$$

II. Intersecando las restricciones:

$$CS = CS_1 \cap CS_2 \cap CS_3$$
$$\therefore CS = \emptyset$$

Rpta.: Ø

Pregunta 15

Sean las funciones:

$$\begin{split} f \colon \langle 0; +\infty \rangle &\to \mathbb{R}, \, f(x) = lnx \ y \\ g \colon \mathbb{R} &\to \mathbb{R}, \, g(x) = \frac{1}{e^{|x|}} \end{split}$$

Determine el rango de la función compuesta g o f.

- A) $\langle 0; \frac{1}{2} \rangle$
- B) $\left\langle 0; \frac{1}{2} \right|$
- C) $\left[\frac{1}{2};1\right]$
- D) $\langle 0; 1 \rangle$
- E) $\langle 0; 1]$

Funciones

Del problema:

$$f: \langle 0; +\infty \rangle \to \mathbb{R}; f(x) = \ln x$$

$$g: \mathbb{R} \to \mathbb{R}; \ g(x) = \frac{1}{e^{|x|}}$$

I. Analizamos el dominio de g o f:

$$\begin{split} D_{g \text{ o } f} &= \{x/x \in D_f \land f(x) \in D_g\} \\ &x \in <0; +\infty > \wedge \ln(x) \in \mathbb{R} \\ &x \in <0; +\infty > \wedge x > 0 \end{split}$$

$$D_{g \ o \ f} = <0;+\infty>$$

II. Calculamos la regla de correspondencia de g o f:

$$(g \circ f)_{(x)} = g(f_{(x)})$$

$$(g \circ f)_{(x)} = g(\ln x)$$

$$(g \circ f)_{(x)} = \frac{1}{e^{|\ln x|}}$$

Como
$$D_{f \circ g} = \langle 0; +\infty \rangle$$

$$|\ln x| \ge 0$$

$$e^{|lnx|} > 1$$

$$0 < \frac{1}{e^{|\ln x|}} \le 1$$

$$(g \circ f)_{(x)}$$

$$\therefore R_{g \circ f} = <0;1]$$

Rpta.: <0;1]

Pregunta 16

La gráfica del polinomio P con regla de correspondencia:

$$P(x) = ax^2 + bx + c$$

pasa por los puntos (0; 4), (1; 5) y (2; 12). Determine v, si (3; v) pertenece a la gráfica del polinomio.

- A) 25
- B) 26
- C) 27
- D) 28
- E) 29

prohibida su venta

Funciones

Del polinomio: $P(x) = ax^2 + bx + c$,

se tiene que:

$$(0; 4) \in P: 4 = a(0)^2 + b(0) + c \rightarrow \boxed{c = 4}$$

$$(1; 5) \in P: 5 = a(1)^2 + b(1) + 4 \rightarrow \boxed{a+b=1}$$

$$(2; 12) \in P: 12 = a(2)^2 + b(2) + 4 \rightarrow \boxed{2a + b = 4}$$

Al resolver: $a = 3 \land b = -2$

Luego:
$$P(x) = 3x^2 - 2x + 4$$

Nos piden
$$v \operatorname{si}(3; v) \in P$$

$$v = 3(3)^2 - 2(3) + 4$$

$$v = 25$$

Rpta.: 25

Pregunta 17

En la figura existen infinitos círculos que se aproximan a los vértices de un triángulo equilátero. Cada círculo es tangente a otros círculos y a los lados del triángulo. Si el triángulo tiene lados que miden una unidad de longitud, determine el área total de los círculos.

- A) $\frac{\pi}{12}$
- B) $\frac{11\pi}{96}$
- C) $\frac{\pi}{8}$
- D) $\frac{9\pi}{12}$
- E) $\frac{11\pi}{12}$

Series

Calculemos el radio de la circunferencia más grande:

$$R = \frac{1}{2} \cdot \frac{1}{\sqrt{3}} \rightarrow R = \frac{\sqrt{3}}{6}$$

Calculemos ahora el radio de las demás circunferencias:

De forma análoga, los demás radios serán $\frac{\sqrt{3}}{54}$; $\frac{\sqrt{3}}{162}$; ...

$$A_T = \pi \, \cdot \, \left(\frac{\sqrt{3}}{6}\right)^2 + 3\left[\pi \left(\frac{\sqrt{3}}{18}\right)^2 + \pi \left(\frac{\sqrt{3}}{54}\right)^2 + \pi \left(\frac{\sqrt{3}}{162}\right)^2 + \ldots\right]$$

$$A_{T} = \frac{\pi}{12} + 3 \cdot \left(\frac{\frac{\pi}{108}}{1 - \frac{1}{9}} \right)$$

$$A_T = \frac{\pi}{12} + 3 \cdot \frac{\pi}{96} \longrightarrow A_T = \frac{11\pi}{96} u^2$$

Rpta.: $\frac{11\pi}{96}$

Se tiene la ecuación matricial:

 $A^{-1} X A^{-1} = I$, I matriz identidad;

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$

Calcule $X + 9X^{-1}$.

Dé como respuesta la suma de sus elementos.

- A) 15
- B) 16
- C) 18
- D) 19
- E) 20

Resolución 18

Matrices

De la ecuación matricial:

$$\mathbf{A}^{-1} \cdot \mathbf{X} \cdot \mathbf{A}^{-1} = \mathbf{I}$$

$$\underbrace{\mathbf{A} \cdot \mathbf{A}^{-1}}_{\mathbf{I}} \cdot \mathbf{X} \cdot \underbrace{\mathbf{A}^{-1} \cdot \mathbf{A}}_{\mathbf{I}} = \mathbf{A} \cdot \mathbf{I} \cdot \mathbf{A}$$

$$X = A^2$$

Como:
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \rightarrow A^2 \begin{pmatrix} 1 & 8 \\ 0 & 9 \end{pmatrix} \Rightarrow X = \begin{pmatrix} 1 & 8 \\ 0 & 9 \end{pmatrix}$$

Como: $A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \rightarrow A^2 \begin{pmatrix} 1 & 8 \\ 0 & 9 \end{pmatrix} \Rightarrow X = \begin{pmatrix} 1 & 8 \\ 0 & 9 \end{pmatrix}$ Entonces la matriz inversa: $X^{-1} = \frac{1}{9} \cdot \begin{pmatrix} 9 & -8 \\ 0 & 1 \end{pmatrix}$

$$\begin{aligned} \mathbf{X} + \mathbf{9} \cdot \mathbf{X}^{-1} &= \begin{pmatrix} 1 & 8 \\ 0 & 9 \end{pmatrix} + \begin{pmatrix} 9 & -8 \\ 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 10 & 0 \\ 0 & 10 \end{pmatrix}$$

.. Nos piden la suma de sus elementos: 20

Rpta.: 20

Dado el sistema:

$$2x_1 + 3x_2 + 10x_3 = 1$$

 $-2x_1 + 2x_2 + 12x_3 = 2$
 $4x_1 + x_2 - 2x_3 = -1$

Determine cuál de las siguientes expresiones paramétricas representa al conjunto solución:

I.
$$x_1 = -\frac{2}{5} - t$$

 $x_2 = -\frac{13}{5} + 2t$
 $x_3 = -5t, t \in \mathbb{R}$

II.
$$x_1 = -\frac{2}{5} + t$$

 $x_2 = \frac{8}{5} - t$
 $x_3 = -5t + 1, t \in \mathbb{R}$

III.
$$x_1 = -\frac{2}{5} + \frac{8}{5} t$$

 $x_2 = \frac{3}{5} - \frac{22}{5} t$
 $x_3 = t, t \in \mathbb{R}$

Indique la alternativa correcta.

- A) Solo I
- B) Solo II
- C) Solo III
- D) IyII
- E) II y III

Resolución 19

Sistema de ecuaciones

Del sistema:

$$\begin{cases} 2x_1 + 3x_2 + 10x_3 = 1...(I) \\ -2x_1 + 2x_2 + 12x_3 = 2...(II) \\ 4x_1 + x_2 - 2x_3 = -1...(III) \end{cases}$$

Sumamos (I) y (II):

$$5x_2 + 22x_3 = 3$$

Multiplicamos por 2 a la ecuación (I) y la restamos con (III):

$$4x_1 + 6x_2 + 20x_3 = 2$$

$$4x_1 + x_2 - 2x_3 = -1$$

$$5x_2 + 22x_3 = 3$$

i) Hacemos:
$$x_3 = t$$
; $t \in \mathbb{R}$

Como:
$$5x_2 + 22x_3 = 3$$

$$5x_2 + 22t = 3$$

$$x_2 = \frac{3}{5} - \frac{22}{5}t$$

En (I):

$$2x_1 + 3\left(\frac{3}{5} - \frac{22}{5}t\right) + 10t = 1$$

$$x_1 = -\frac{2}{5} + \frac{8}{5}t$$

Entonces:
$$x_1 = -\frac{2}{5} + \frac{8}{5}t$$

$$x_2 = \frac{3}{5} - \frac{22}{5}t$$

$$x_3 = t; t \in \mathbb{R}$$

$$x_3 = -5t$$
; $t \in \mathbb{R}$

Como:
$$5x_2 + 22x_3 = 3$$

$$5x_2 - 110t = 3$$

$$x_2 = \frac{3}{5} + 22t$$

En (I):

$$2x_1 + 3\left(\frac{3}{5} + 22t\right) + 10(-5t) = 1$$

$$x_1 = -\frac{2}{5} - 8t$$

Entonces:
$$x_1 = -\frac{2}{5} - 8t$$

$$x_2 = \frac{3}{5} + 22t$$

$$x_3 = -5t; t \in \mathbb{R}$$

iii) Hacemos:
$$x_3 = -5t + 1$$
; $t \in \mathbb{R}$

Como:
$$5x_2 + 22x_3 = 3$$

$$5x_2 + 22(-5t + 1) = 3$$

$$x_2 = 22t - \frac{19}{5}$$

En (I):

$$2x_1 + 3\left(22t - \frac{19}{5}\right) + 10(-5t + 1) = 1$$

$$x_1 = \frac{6}{5} - 8t$$

Finalmente:

- I. Incorrecto
- II. Incorrecto
- III. Correcto
- .: Solo III

Rpta.: Solo III

Pregunta 20

Encuentre los pares ordenados $(x, y) \in \mathbb{R}^2$ que son solución del sistema de ecuaciones:

$$x^2 + y^2 = 16 \land y = \frac{x^2}{6}$$

- A) $(\sqrt{3}; 4) y (-\sqrt{3}; 4)$
- B) $(\sqrt{3}; 2\sqrt{3}) y (-\sqrt{3}; 2\sqrt{3})$
- C) $(3\sqrt{3}; 4)$ y $(-3\sqrt{3}; 4)$
- D) (2; 8) y (-2; 8)
- E) $(2\sqrt{3}; 2)$ y $(-2\sqrt{3}; 2)$

Resolución 20

Sistema de ecuaciones

Del problema:

$$\begin{cases} x^2 + y^2 = 16 \dots (I) \\ y = \frac{x^2}{6} \dots (II) \end{cases}$$

De (II):
$$x^2 = 6y ... (III)$$

Nótese que: $y \ge 0$

En (I):
$$6y + y^{2} = 16$$
$$y^{2} + 6y - 16 = 0$$
$$(y + 8)(y - 2) = 0$$
$$y = -8 \lor y = 2$$

Como
$$y \ge 0$$
, entonces $y = 2$

En (III):
$$x^2 = 6(2)$$

 $x^2 = 12$
 $x = 2\sqrt{3} \lor x = -2\sqrt{3}$

Finalmente: C. S. =
$$\{(2\sqrt{3}; 2), (-2\sqrt{3}; 2)\}$$

Rpta.:
$$(2\sqrt{3}; 2)$$
 y $(-2\sqrt{3}; 2)$

Un poliedro convexo está formado por seis regiones cuadrangulares y doce regiones triangulares. ¿Cuál es el número de vértices de este poliedro?

- A) 10
- B) 11
- C) 12
- D) 13
- E) 14

Resolución 21

Poliedros regulares

Sea C: número de caras

V: vértices

A: aristas

$$C = 6 + 12 = 18$$

$$A = \frac{6 \times 4 + 12 \times 3}{2} = 30$$

$$\rightarrow C + V = A + 2$$

$$18 + V = 30 + 2$$

$$\therefore V = 14$$

Rpta.: 14

Sean " α " y " β " las medidas de dos ángulos, tal que la suma de sus complementos es el doble del suplemento del ángulo cuya medida es " α ". Indique cuáles de las siguientes proposiciones son verdaderas.

- I. $\alpha + \beta = 180^{\circ}$
- II. $\alpha > \beta$
- III. $\alpha \beta > 90^{\circ}$

Marque la alternativa correcta.

- A) Solo I
- B) Solo II
- C) Solo III
- D) IyIII
- E) II y III

Resolución 22

Ángulos

Indique cuáles de las siguientes proposiciones son verdaderas.

Sean "\alpha" y "\beta" las medidas de dos ángulos:

$$C(\alpha) + C(\beta) = 2S(\alpha)$$

$$90^{\circ} - \alpha + 90^{\circ} - \beta = 2(180^{\circ} - \alpha)$$

$$180^{\circ} - \alpha - \beta = 360^{\circ} - 2\alpha$$

$$\alpha - \beta = 180^{\circ}$$

I.
$$\alpha + \beta = 180^{\circ} ... (F)$$

II.
$$\alpha > \beta \dots (V)$$

III.
$$\alpha - \beta \ge 90^{\circ}$$
 ... (V)

Las proposiciones verdaderas son II y III.

Observación:

Tener en cuenta que en este problema, como se va a utilizar el complemento, las medidas " α " y " β " deben ser menores a 90°.

Rpta.: II y III

prohibida su venta

En un segmento esférico de dos bases cuya altura mide "h", se traza un plano equidistante a las bases que determina una sección cuyo radio mide "r". Calcule el volumen del segmento esférico.

- $\begin{array}{ll} A) & \frac{\pi r^2 h}{4} \frac{\pi h^3}{48} \\ B) & \frac{\pi r^2 h}{2} \frac{\pi h^3}{24} \\ C) & \pi r^2 h \frac{\pi h^3}{12} \end{array}$

- D) $2\pi r^2 h \frac{\pi h^3}{6}$ E) $4\pi r^2 h \frac{\pi h^3}{3}$

Resolución 23

Esfera

Por el teorema de Pitágoras:

I.
$$R^2 = a^2 + \left(\frac{h}{2} + k\right)^2$$

II.
$$R^2 = b^2 + \left(\frac{h}{2} - k\right)^2$$

III.
$$R^2 = r^2 + k^2$$

Sumando I y II:

$$2R^2 = a^2 + b^2 + 2\left(\frac{h^2}{4} + k^2\right) \dots IV$$

Reemplazando III en IV:

$$2(r^2 + k^2) = a^2 + b^2 + 2\left(\frac{h^2}{4} + k^2\right)$$
$$2r^2 - \frac{h^2}{2} = a^2 + b^2$$

Volumen del segmento esférico = $\frac{\pi h^3}{6} + \frac{\pi h}{2} (a^2 + b^2)$

Volumen del segmento esférico = $\frac{\pi h^3}{6} + \frac{\pi}{2} h \left(2r^2 - \frac{h^2}{2} \right)$

Volumen del segmento esférico = $\pi r^2 h - \frac{\pi h^3}{12}$

Rpta.: $\pi r^2 h - \frac{\pi h^3}{12}$

Pregunta 24

En una circunferencia C, se inscribe un polígono regular ABCDEF. Por el punto A, se traza una recta tangente \mathcal{L} a la circunferencia C. Las proyecciones ortogonales de los puntos B y E sobre la recta \mathcal{L} son B' y E', respectivamente. Calcule el valor de $\frac{BB'}{EE'}$.

- A) $\frac{1}{6}$
- B) $\frac{1}{5}$
- C) $\frac{1}{4}$
- D) $\frac{1}{3}$
- E) $\frac{1}{2}$

Resolución 24

Polígonos regulares

Del gráfico:

 $\overline{OA} // \overline{BC} // \overline{FE}$

- $\rightarrow \overrightarrow{BC} \xrightarrow{L} \overrightarrow{L}$
- → EF L C

Sea BB' = a

 \rightarrow m \triangleleft BAB' = 30°

Por notable:

$$\rightarrow$$
 BA = $2a$

$$m \angle FAE' = 30^{\circ}$$

$$\rightarrow$$
 E'F = a

$$\therefore \frac{BB'}{EE'} = \frac{a}{3a} = \frac{1}{3}$$

Rpta.: $\frac{1}{3}$

Pregunta 25

En un triángulo rectángulo, la mediana relativa a un cateto interseca perpendicularmente a la mediana relativa a la hipotenusa. Si la longitud de la hipotenusa es $5\sqrt{3}$ u, entonces la longitud (en u) de uno de los catetos es:

- A) 2
- B) 3
- C) 5
- D) 6
- E) 10

Resolución 25

Relaciones métricas en el triángulo rectángulo

Piden "x":

- G: baricentro del ΔABC
- ABM: BM² = (a) · (3a)

$$BM = a \sqrt{3}$$

• BGM ~ CBA

$$\frac{a}{x} = \frac{a\sqrt{3}}{5\sqrt{3}}$$

$$x = 5$$

Rpta.: 5

En la figura AB, A_1B_1 , A_2B_2 ..., A_nB_n son arcos de circunferencia, con centro en el punto O, cuyas longitudes son L, $\frac{L}{2}$, $\frac{L}{4}$,..., $\frac{L}{2^n}$, respectivamente. Además, la suma de las longitudes de dichos arcos es 63π u y $\frac{r}{R} = \frac{1}{32}$.

Calcule el valor de L (en u).

- A) 30π
- B) 32π
- C) 60π
- D) 64π
- E) 80π

Resolución 26

Longitud de la circunferencia

Piden L:

$$\frac{L}{R} = \frac{\frac{L}{2^n}}{r} \rightarrow \frac{r}{R} = \frac{1}{2^n}$$

$$\frac{1}{32} = \frac{1}{2^n} \rightarrow n = 5$$

•
$$L + \frac{L}{2} + \frac{L}{4} + ... \frac{L}{2^5} = 63\pi$$

$$L\left(1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^5}\right) = 63\pi$$

$$L\left(\frac{1 - \frac{1}{2^6}}{1 - \frac{1}{2}}\right) = 63\pi$$

$$L \cdot \frac{63}{32} = 63\pi$$

$$L = 32\pi$$

Rpta.: 32π

Pregunta 27

En un cilindro oblicuo, su sección recta tiene área 2 m² y el área de la base es 4 m². Calcule (en grados sexagesimales) la medida del ángulo que forman la generatriz y la altura.

- A) 20
- B) 30
- C) 40
- D) 60
- E) 80

Resolución 27

Cilindro

Datos:
$$A = 4$$

Piden "x":

Área proyectada

$$S = A \cos x$$

$$2 = 4 \cos x$$

$$\frac{1}{2} = \cos x$$

x = 60°

Rpta.: 60

Pregunta 28

En la figura P y Q son puntos de tangencia, el punto O es el centro de la circunferencia y la medida del arco menor MN es 40° .

Calcule el valor de "x" (en grados sexagesimales).

- A) 10
- B) 20
- C) 25
- D) 30
- E) 40

Resolución 28

Circunferencia

prohibida su venta

Piden "x":

∠ Exterior

$$80^{\circ} = \frac{\alpha - 40^{\circ}}{2}$$
$$\alpha = 200^{\circ} \Rightarrow m \widehat{PQ} = 160^{\circ}$$

∠ Exterior

$$x=\,\frac{\widehat{mPAQ}-\widehat{mPQ}}{2}$$

$$x = \frac{200^{\circ} - 160^{\circ}}{2}$$

$$x = 20^{\circ}$$

Rpta.: 20

Pregunta 29

Las longitudes de los lados de un triángulo forman una progresión aritmética cuya razón es 1 u. Si el área de la región limitada por el triángulo es 6 u 2 , entonces, la distancia (en u) entre su incentro y circuncentro es:

- A) 1
- B) $\frac{\sqrt{5}}{2}$
- C) $\frac{\sqrt{6}}{2}$
- D) $\frac{\sqrt{7}}{2}$
- E) $\sqrt{2}$

Resolución 29

Áreas

$$A = 6$$

$$P = \frac{a-1+a+a+1}{2}$$
 $P = \frac{3a}{2}$

Teorema de Herón

$$A = 6 = \sqrt{\frac{3a}{2} \left(\frac{a}{2}\right) \! \left(\frac{a}{2} + 1\right) \! \left(\frac{a}{2} - 1\right)}$$

Resolviendo: a = 4

El triángulo es rectángulo.

Piden "x":

Teorema de Poncelet

$$3+4=5+2r \Rightarrow r=1$$

I: Incentro

O: Circuncentro

$$x^2 = 1^2 + \left(\frac{1}{2}\right)^2$$

$$X = \frac{\sqrt{5}}{2}$$

Rpta.: $\frac{\sqrt{5}}{2}$

Pregunta 30

En un paralelepípedo rectangular, las diagonales de sus caras miden $\sqrt{34}$ cm, $\sqrt{58}$ cm y $\sqrt{74}$ cm, respectivamente. Calcule (en cm³) el volumen del sólido determinado por dicho paralelepípedo.

- A) 75
- B) 85
- C) 95
- D) 100
- E) 105

33

Prisma

$$\left. \begin{array}{l} a^2 + b^2 = 58 \\ b^2 + c^2 = 74 \\ a^2 + c^2 = 34 \end{array} \right\} \quad \begin{array}{l} \text{Resolviendo:} \\ a = 3 \\ b = 7 \\ c = 5 \end{array}$$

$$V = a \cdot b \cdot c = 3 \times 7 \times 5$$

$$V = 105$$

Rpta.: 105

Pregunta 31

En un trapecio circular, los arcos que lo limitan miden "x" e "y" (en cm), con x > y. Si el área (en cm²) de su región correspondiente es:

$$\frac{x^2-y^2}{2},$$

calcule la medida del ángulo central (en radianes) del sector circular al que pertenece.

- A) 1/4
- B) 1/2
- C) 1
- D) 3/2
- E) 2

Área del sector circular

Condición:

$$S = \frac{x^2 - y^2}{2}$$

Del gráfico:

$$S = S_{COD} - S_{AOB}$$

$$S = \frac{x^2}{2\theta} - \frac{y^2}{2\theta}$$

Luego:

$$\frac{x^2 - y^2}{2} = \frac{x^2 - y^2}{2\theta} \Longrightarrow \theta = 1$$

Rpta.: 1

Pregunta 32

Determine el dominio de la función "f" definida por:

$$f(x) = \frac{1}{2} \arcsin(x - 3)$$

- A) [-1; 1]
- B) [2; 4]
- C) [0; 2]
- D) [1; 3]
- E) [3; 5]

Resolución 32

Funciones trigonométricas inversas

$$f(x) = \frac{1}{2} arcsen(x-3)$$

Por teoría:
$$-1 \le x - 3 \le 1$$

$$2 \le x \le 4$$

$$\therefore$$
 Domf = [2; 4]

prohibida su ven

Rpta.: [2; 4]

En la figura, se presenta una circunferencia trigonométrica. Calcule el área (en u^2) de la región triangular sombreada.

- A) $\frac{1}{4}$
- B) $\frac{1}{3}$
- C) $\frac{1}{2}$
- D) $\frac{2}{3}$
- E) 1

Resolución 33

Circunferencia trigonométrica

Graficando:

Notamos:

$$S_{NRT} = S_{NB'T} - S_{NB'R}$$

$$S_{NRT} = \frac{\cot\theta(1+\tan\theta)}{2} - \frac{\cot\theta(1)}{2}$$

$$S_{NRT} = \frac{\cot \theta + 1}{2} - \frac{\cot \theta}{2}$$
 $\therefore S_{NRT} = \frac{1}{2}$

Rpta.: $\frac{1}{2}$

Pregunta 34

Dada la hipérbola de ecuación:

$$4x^2 - 24x - y^2 - 4y + 41 = 0,$$

calcule las coordenadas del vértice que se encuentra más cerca al origen de coordenadas.

- A) (-3; 1)
- B) (3; -2)
- C) (3; 2)
- D) (3; 0)
- E) (3; 1)

Resolución 34

Secciones cónicas

Hipérbola: $4(x^2 - 6x) - (y^2 + 4y) = -41$

Completando cuadrados:

$$4(x^2-6x+3^2)-(y^2+4y+2^2)=-41+4(3)^2-2^2$$

$$4(x-3)^2 - (y+2)^2 = -9$$

$$\frac{(y+2)^2}{9} - \frac{(x-3)^2}{\frac{9}{4}} = 1$$

Donde: Vértice V(3; -2)

$$a = 3$$

$$b = \frac{3}{2}$$

Graficando:

Vértice más cerca al origen

$$V_1(3; 1)$$

Rpta.: (3; 1)

Pregunta 35

Sean "a", $r \in \mathbb{R} \setminus \{0\}$, tal que:

$$a\cos(72^\circ) + rsen(72^\circ) = 0$$

Calcule el valor aproximado de:

$$\frac{a \tan(19^\circ) - r}{a + r \tan(19^\circ)}$$

- A) tan(18°)
- B) tan(19°)
- C) $\frac{3}{4}$
- D) $\frac{4}{3}$
- E) $\frac{27}{7}$

Resolución 35

Identidad trigonométrica de la suma o resta de dos ángulos

Dato: rsen $72^{\circ} = -a\cos 72^{\circ}$

$$\tan 72^\circ = -\frac{a}{r}$$

Notamos:

$$\tan(72^{\circ} - 19^{\circ}) = \tan 53^{\circ}$$

$$\frac{\tan 72^{\circ} - \tan 19^{\circ}}{1 + \tan 72^{\circ} \cdot \tan 19^{\circ}} = \frac{4}{3}$$

Reemplazando:

$$\frac{-\frac{a}{r} - \tan 19^{\circ}}{1 - \frac{a}{r} \tan 19^{\circ}} = \frac{4}{3}$$

$$\frac{-a-r\tan 19^{\circ}}{r-a\tan 19^{\circ}} = \frac{4}{3}$$

$$\frac{a \tan 19^{\circ} - r}{a + r \tan 19^{\circ}} = \frac{3}{4}$$

Rpta.: $\frac{3}{4}$

Pregunta 36

La recta L de ecuación:

$$3x + 4y - 24 = 0$$

intersecta a los ejes coordenados en los puntos A y B.

Determine la ecuación de la recta que pase por el punto medio de \overline{AB} y sea perpendicular a la recta \mathcal{L} .

A)
$$4x - 3y + 7 = 0$$

B)
$$4x - 3y - 14 = 0$$

C)
$$4x - 3y - 7 = 0$$

D)
$$4x + 3y - 25 = 0$$

E)
$$3x - 4y = 0$$

Resolución 36

Ecuación de la recta

Hallando los interceptos de:

$$\mathcal{L}$$
: $3x + 4y - 24 = 0$

$$x = 0 \Rightarrow y = 6 \Rightarrow (0; 6)$$

$$y = 0 \Rightarrow x = 8 \Rightarrow (8; 0)$$

Graficando:

ohibida su venta

Por punto medio:

$$M = \frac{A+B}{2} \quad M = (4;3)$$

Como la pendiente de:

$$\mathcal{L}: \ m = \frac{-3}{4}$$

Además, $\mathcal{L} \perp L_1$.

Se cumple: $m \cdot m_1 = -1$

$$m_1 = \frac{4}{3}$$

Ecuación punto-pendiente:

$$y-3=\frac{4}{3}(x-4)$$

$$3y - 9 = 4x - 16$$

$$\therefore L_1: 4x - 3y - 7 = 0$$

Rpta.: 4x - 3y - 7 = 0

Pregunta 37

Resuelva la ecuación:

$$\sqrt{\operatorname{sen}^2\left(\frac{x}{2}\right)} - \operatorname{sen}\left(\frac{x}{4}\right) = 0$$

Calcule la suma de las soluciones pertenecientes a $\langle 0; 8\pi \rangle$.

- A) 8π
- B) 9π
- C) 10π
- D) 11π
- E) 12π

Resolución 37

Ecuaciones trigonométricas

De la ecuación:

$$\sqrt{\sin^2 \frac{x}{2}} = \sin \frac{x}{4}$$

$$\left| \operatorname{sen} \frac{x}{2} \right| = \operatorname{sen} \frac{x}{4}$$

Sean las funciones:

$$f(x) = \left| \sin \frac{x}{2} \right| \Rightarrow T = 2\pi$$

$$g(x) = \operatorname{sen} \frac{X}{4} \Rightarrow T = 8\pi$$

Graficando las funciones: $(0 \le x \le 8\pi)$

Las soluciones son puntos de intersección:

$$x = \pi + \alpha$$
, $3\pi - \alpha$, 4π

Suma de soluciones = 8π

Rpta.: 8π

Pregunta 38

En la figura, ABCD-OB'C'D' es un hexaedro regular y M es punto medio de la arista $\overline{DD'}$. Si " θ " es la medida del ángulo BMC', calcule $\sec(\theta)$.

- A) $\sqrt{5}$
- B) $2\sqrt{2}$
- C) 3
- D) $2\sqrt{3}$
- E) $\sqrt{15}$

Resolución de triángulos oblicuángulos

En el ∆BMC' por teorema de cosenos:

$$(2\sqrt{2})^2 = (3)^2 + (\sqrt{5})^2 - 2(3)(\sqrt{5})\cos\theta$$

$$8 = 14 - 6\sqrt{5}\cos\theta$$

$$6\sqrt{5}\cos\theta = 6$$

$$\therefore \sec\theta = \sqrt{5}$$

Rpta.: $\sqrt{5}$

Pregunta 39

Sea "f" la función definida por:

$$f(x) = 1 + \cos(x), x \in \langle 0; \pi \rangle$$

Respecto a las características de "f", determine el valor de verdad (V) o falsedad (F) de las siguientes proposiciones:

- Es continua y decreciente.
- II. Es par y continua.
- III. Tiene rango [0; 2] y es creciente.

Marque la secuencia correcta.

- A) VFF
- B) VVF
- C) FVF
- D) FFV
- E) VVV

Funciones trigonométricas

Sea:

 $f(x) = 1 + \cos x$

Graficando para: $0 \le x \le \pi$

- I. Es continua y decreciente
- II. No es f. par.
- III. Rangf = <0; 2>

Rpta.: VFF

Pregunta 40

En un triángulo rectángulo, su perímetro es 168 cm. Si el coseno de uno de sus ángulos agudos es 0,96, calcule la longitud (en cm) del menor cateto.

- A) 21
- B) 23
- C) 25
- D) 27
- E) 29

Resolución 40

Razones trigonométricas de un ángulo agudo

Graficando:

prohibida su venta

Dato 1:

$$\cos A = 0.96 = \frac{24}{25}$$

$$\frac{c}{b} = \frac{24}{25}$$

$$c = 24K b = 25K$$
 a = 7K

Dato 2:

$$a + b + c = 168 \text{ cm}$$

$$56K = 168$$

$$K = 3$$

El menor cateto:

$$a = 7(3)$$

Rpta.: 21