

WHAT IS CLAIMED IS:

1. A strain measurement system, comprising:

a tunable light generator comprising a Super Luminescent
5 light emission Diode (SLD), and a tunable Fabry-Perrot (FP) filter
cascaded to an output terminal of the SLD to convert light having
a wideband spectrum, which is generated in the SLD, into discrete
optical signals having central wavelengths at regular intervals;

10 a coupler for receiving and distributing the optical signals
output from the tunable light generator;

wavelength compensation means for receiving the optical
signals from the tunable light generator through the coupler and
detecting wavelengths of an optical signal output from the tunable
light generator and passed through the FP filter;

15 a fiberoptic sensor unit for receiving the optical signals
from the tunable light generator through the coupler and
transmitting a response signal corresponding to a variation of
strain attributable to load; and

20 an optical detector for detecting the response signal output
from the fiberoptic sensor through the coupler.

25 2. The strain measurement system as set forth in claim 1,
wherein the FP filter is provided with a thermistor and a
thermoelectric element to allow temperature of the FP filter to be
controlled.

3. The strain measurement system as set forth in claim 1,
wherein the SLD is provided with a thermistor and a thermoelectric
element to allow temperature of the SLD to be controlled.

4. The strain measurement system as set forth in claim 1,
wherein the fiberoptic sensor unit is a Fiber Bragg Grating (FBG)
sensor unit.

5

5. The strain measurement system as set forth in claim 4,
further comprising a reference FBG sensor between the coupler and
the FBG sensor unit to provide a reference value used for
wavelength calculation of the FBG sensor unit.

10

6. The strain measurement system as set forth in claim 1,
wherein the wavelength compensation means comprises an Ethalon
filter and a second optical detector.

15

7. A strain measurement system, comprising:

a tunable light generator comprising a SLD, and a tunable FP
filter cascaded to an output terminal of the SLD to convert light
having a wideband spectrum, which is generated in the SLD, into
discrete optical signals having central wavelengths at regular
20 intervals;

a first coupler for receiving and distributing the optical
signals output from the tunable light generator;

a wavelength compensation means for receiving the optical
signals from the tunable light generator through the first coupler
25 and detecting wavelengths of an optical signal output from the
tunable light generator and passed through the FP filter;

a plurality of second couplers for receiving and distributing
the optical signal output from the tunable light generator and
passed through the first coupler;

a plurality of fiberoptic sensor units connected to the plurality of second couplers to receive the optical signals output from the tunable light generator and transmitting response signals corresponding to variations of strain attributable to load; and

5 a plurality of first optical detectors connected to the plurality of second couplers to detect the response signals output from the fiberoptic sensors.

8. The strain measurement system as set forth in claim 7,
10 wherein the FP filter is provided with a thermistor and a thermoelectric element to allow temperature of the FP filter to be controlled.

9. The strain measurement system as set forth in claim 7,
15 wherein the wavelength compensation means comprises an Ethalon filter and a second optical detector.

10. A strain measurement module for detecting signals relating to strain, which a plurality of external fiberoptic
20 sensors experience, output from the plurality of external fiberoptic sensors, comprising:

a tunable light generator comprising a SLD, and a tunable FP filter cascaded to an output terminal of the SLD to convert light having a wideband spectrum, which is generated in the SLD, into
25 discrete optical signals having central wavelengths at regular intervals;

a coupler for receiving and distributing the optical signals output from the tunable light generator;

a wavelength compensation means for receiving the optical

signals from the tunable light generator through the coupler and detecting wavelengths of an optical signal output from the tunable light generator and passed through the FP filter; and

an optical detector connected to the coupler to detect a response signal corresponding to a variation of strain attributable to load from the plurality of external fiberoptic sensors as response to the optical signal output from the tunable light generator.

10 11. The strain measurement system as set forth in claim 10, wherein the FP filter is provided with a thermistor and a thermoelectric element to allow temperature of the FP filter to be controlled.

15 12. The strain measurement system as set forth in claim 10, wherein the SLD is provided with a thermistor and a thermoelectric element to allow temperature of the SLD to be controlled.

13. The strain measurement system as set forth in claim 10,
20 wherein the fiberoptic sensor unit is a FBG sensor unit.

14. The strain measurement system as set forth in claim 13, further comprising a reference FBG sensor between the coupler and the FBG sensor unit to provide a reference value used for
25 wavelength calculation of the FBG sensor unit.

15. The strain measurement system as set forth in claim 10, wherein the wavelength compensation means comprises an Ethalon filter and a second optical detector.

16. A strain measurement module for detecting signals relating to strain, which a plurality of external fiberoptic sensors experience, output from the plurality of external
5 fiberoptic sensors, comprising:

a tunable light generator comprising a SLD, and a tunable FP filter cascaded to an output terminal of the SLD to convert light having a wideband spectrum, which is generated in the SLD, into discrete optical signals having central wavelengths at regular
10 intervals;

a first coupler for receiving and distributing the optical signals output from the tunable light generator;

wavelength compensation means for receiving the optical signals from the tunable light generator through the first coupler
15 and detecting wavelengths of an optical signal output from the tunable light generator and passed through the FP filter;

a plurality of second couplers for receiving and distributing the optical signal output from the tunable light generator and passed through the first coupler; and

20 a plurality of first optical detectors connected to the plurality of second couplers to detect response signals corresponding to variations of strain attributable to load from the plurality of external fiberoptic sensors.

25 17. The strain measurement system as set forth in claim 16, wherein the FP filter is provided with a thermistor and a thermoelectric element to allow temperature of the FP filter to be controlled.

18. The strain measurement system as set forth in claim 17,
wherein the wavelength compensation means comprises an Ethalon
filter and a second optical detector.