I. PROBABILITY AND RANDOM VARIABLES

• Conditional probability:

$$P(A|B) = P(A \cap B)/P(B) = P(B|A)P(A)/P(B)$$

- Random variable: A mapping from sample space to real numbers.
- Cumulative distribution function (CDF):

$$F_X(x) = P(X < x)$$

- Probability density function (PDF): $f_X(x) \ge 0 \ \forall x$ and $\int_{-\infty}^{\infty} f_X(x) dx = 1$.
- Scalar Gaussian PDF: $X \sim \mathcal{N}(\mu, \sigma^2)$, for $x \in \mathbf{R}$ $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$ Jointly Gaussian PDF: $\mathbf{X} \sim \mathcal{N}(\mu, \Sigma)$, for $\mathbf{x} \in \mathbf{R}^n$
- Jointly Gaussian PDF: $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, for $\mathbf{x} \in \mathbf{R}^n$ $f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} |\mathbf{\Sigma}|^{0.5}} \exp\left\{-\frac{1}{2} (\mathbf{x} \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} \boldsymbol{\mu})\right\}$
- **Q-function:** $Q(x) = \frac{1}{\sqrt{2\pi}} \int_x^{\infty} e^{-t^2/2} dt$ (i.e., probability that $\mathcal{N}(0,1)$ is larger than x)
- $E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$
- Variance: $Var(X) = E[X^2] (E[X])^2$
- Covariance: Cov(X, Y) = E[XY] E[X]E[Y]
- X and Y are uncorrelated if E[XY] = E[X]E[Y]
- X and Y are independent if $f_{X,Y}(x,y) = f_X(x)f_Y(y)$
- $f_{Y|X}(y|x) = f_{X,Y}(x,y)/f_X(x)$

II. SOURCE CODING

- **Discrete Memoryless Source (DMS):** Discrete-time and discrete amplitude source with i.i.d. outputs.
- Entropy: $H(X) = -\sum_{i=1}^{N} p_i \log_2(p_i)$, where X takes N values with probabilities p_1, \ldots, p_N .
- Source Coding Theorem: A DMS with entropy H(X) can be encoded in a lossless manner by using $\bar{R} \geq H(X)$ bits per source output, where \bar{R} is the average codeword length, $\bar{R} = \sum p(x) \, l(x)$.
- **Huffman Coding:** Sort outputs in decreasing order of probabilities and start combining from the least probable two outputs...
- Lempel-Ziv Coding: Does not need output probabilities, variable to fixed length coding...

III. ANALOG TO DIGITAL CONVERSION

• Fourier Transform (F.T.):

$$X(f)=\int_{-\infty}^{\infty}x(t)e^{-j2\pi ft}dt,\ x(t)=\int_{-\infty}^{\infty}X(f)e^{j2\pi ft}df$$

- Sampling Theorem: Suppose x(t) is bandlimited to W Hz (i.e., X(f)=0 for $|f|\geq W$). Then, x(t) can perfectly be reconstructed from its samples $\{x(nT_s)\}_{n\in\mathbb{Z}}$ if $T_s\leq 1/(2W)$, where 2W is the Nyquist rate.
- Quantization: A scalar N-level ($\log_2 N$ -bit) quantizer maps each input into one of N possible outputs,

 $\hat{x}_1, \dots, \hat{x}_N$ (called reconstruction/quantization levels). An N-level quantizer has N-1 decision boundaries (thresholds), a_1, \dots, a_{N-1} .

- Mean Squared Error (MSE) Distortion: $D = E[(X Q(X))^2]$, where X is quantizer input and Q(X) is quantizer output.
- **SQNR:** $SQNR = E[X^2]/E[(X Q(X))^2]$
- $D = E[(X Q(X))^2] = \int_{-\infty}^{\infty} (x Q(x))^2 f_X(x) dx$ $= \sum_{i=0}^{N-1} \int_{a_i}^{a_{i+1}} (x - \hat{x}_{i+1})^2 f_X(x) dx$ where $a_0 \triangleq -\infty$ and $a_N \triangleq \infty$.
- Lloyd-Max quantizer: Iteratively optimize reconstruction levels and decision boundaries (equating partial derivatives of D to zero).

IV. PULSE CODE MODULATION (PCM)

Sample, quantize and encode an analog message signal.

- Bandwidth requirement for PCM: $vf_s/2$ Hz, where v is the number of bits of the quantizer and f_s is the sampling rate of the sampler.
- **SQNR of Uniform PCM:** For large N (number of levels in quantizer), quantization error $\tilde{X} = X Q(X)$ is approximately uniform r.v. over $[-\Delta/2, \Delta/2]$, where $\Delta = 2x_{\rm max}/N$ (signal is in $[-x_{\rm max}, x_{\rm max}]$). Then, $E[(X-Q(X))^2] = \Delta^2/12 = x_{\rm max}^2/(3N^2)$. $SQNR = 3E[X^2]4^v/x_{\rm max}^2$, where $N = 2^v$.
- Non-uniform Quantizer: A compressor and a uniform quantizer can be used to realize a non-uniform quantizer.
- Differential PCM (DPCM): Quantize the difference between consecutive samples for improved quantization performance.
- **Delta Modulation:** DPCM with two-level (one-bit) quantizer. Either increase or decrease signal level to get close to the message signal.
- Adaptive Delta Modulation: Delta modulation with adaptive delta parameter to reduce granular noise and slope overload distortion.

V. ANALOG MODULATION

Consider analog message signal m(t) and insert that directly (without sampling and quantization) into a signal.

- Full (conventional) amplitude modulation (AM): $x(t) = (1 + k_a m(t)) A_c \cos(2\pi f_c t)$
- Double sideband suppressed carrier (DSB-SC) AM: $x(t) = m(t)A_c\cos(2\pi f_c t)$
- **Single sideband (SSB) AM:** Filter a DSB-SC AM signal to keep only upper (or, lower) sidebands.
- Phase modulation (PM): $x(t) = A_c \cos(2\pi f_c t + k_p m(t))$
- Frequency modulation (FM): $x(t) = A_c \cos \left(2\pi f_c t + 2\pi k_f \int_0^t m(\tau) d\tau \right)$

VI. RANDOM PROCESSES

An indexed family (ensemble) of random variables (equivalently, mapping from sample space to set of functions).

- Mean (expectation) of a random process (r.p.): $\mu_X(t) = E[X(t)] = \int_{-\infty}^{\infty} x f_{X(t)}(x) dx$
- Autocorrelation function of a r.p.: $R_X(t_1,t_2) = E[X(t_1)X^*(t_2)]$ $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2^* f_{X(t_1),X(t_1)}(x_1,x_2) dx_1 dx_2$
- Autocovariance function of a r.p.: $C_X(t_1,t_2) = E[(X(t_1) \mu_X(t_1))(X(t_2) \mu_X(t_2))^*] = R_X(t_1,t_2) \mu_X(t_1)\mu_X^*(t_2)$
- Strict Sense Stationary (SSS) r.p.: $X(t) \text{ is SSS if } f_{X(t_1+\tau),\dots,X(t_k+\tau)}(x_1,\dots,x_k) = f_{X(t_1),\dots,X(t_k)}(x_1,\dots,x_k) \text{ for all } \tau,\,k,\,t_1,\dots,t_k.$
- Wide Sense Stationary (WSS) r.p.: X(t) is WSS if (i) $\mu_X(t) = \mu_X$ (i.e., constant) and (ii) $R_X(t_1,t_2) = R_X(t_1-t_2)$.
- Cyclostationary r.p. if (i) $\mu_X(t) = \mu_X(t+T_0)$ and (ii) $R_X(t_1,t_2) = R_X(t_1+T_0,t_2+T_0)$. (T_0 is period.)
- For WSS X(t), $R_X(\tau) = E[X(t+\tau)X^*(t)] = R_X^*(-\tau)$
- Crosscorrelation function: $R_{XY}(t_1, t_2) = E[X(t_1)Y^*(t_2)]$
- Jointly WSS r.p.s: X(t) and Y(t) are jointly WSS if (i) X(t) is WSS, (ii) Y(t) is WSS, and (iii) $R_{XY}(t_1,t_2) = R_{XY}(t_1-t_2)$.
- X(t) and Y(t) are independent r.p.s if $(X(t_1), \ldots, X(t_k))$ and $(Y(u_1), \ldots, Y(u_l))$ are independent for all $k, l, (t_1, \ldots, t_k)$ and (u_1, \ldots, u_l) .
- X(t) and Y(t) are uncorrelated r.p.s if $X(t_1)$ and $Y(t_2)$ are uncorrelated r.v.s for all t_1 and t_2 .
- A SSS r.p. is *ergodic* if time averages are equal to ensemble everages (expectations).
- Filtering of a WSS r.p.: If a WSS r.p. X(t) passes through an LTI filter with impulse response h(t), output Y(t) is also WSS and E[Y(t)] = H(0)E[X(t)], where $H(0) = \int_{-\infty}^{\infty} h(t)dt$.
- Power Spectral Density (PSD): Indicates distribution of average power among different frequencies. It is the Fourier transform (F.T.) of the autocorrelation function. $S_X(f) = \int_{-\infty}^{\infty} R_X(\tau) e^{-j2\pi f \tau} d\tau$ $R_X(\tau) = \int_{-\infty}^{\infty} S_X(f) e^{j2\pi f \tau} df$
- If a WSS r.p. X(t) passes through an LTI filter with frequency response H(f), output Y(t) has the following PSD: $S_Y(f) = S_X(f)|H(f)|^2$
- $E[|X(t)|^2] = R_X(0) = \int_{-\infty}^{\infty} S_X(f) df$
- Cross-Spectral Density: $S_{XY}(f)$ is F.T. of $R_{XY}(\tau)$.
- Gaussian r.p.: X(t) is Gaussian r.p. if $\int_0^T g(t)X(t)dt$ is a Gaussian r.v. for all $g(\cdot)$.
- Gaussian r.p.: X(t) is Gaussian r.p. if $X(t_1), \ldots, X(t_n)$

- are jointly Gaussian for all n, t_1, \ldots, t_n .
- If a Gaussian r.p. is WSS, it is also SSS.
- Linear (stable) filtering of a Gaussian r.p. leads to another Gaussian r.p.
- White Noise: Zero-mean WSS r.p. with $S_W(f) = N_0/2$ for all f (i.e., $R_W(\tau) = 0.5N_0\delta(\tau)$).
- Baseband Representation of *Deterministic* Bandpass Signals: $x(t) = Re\{\tilde{x}(t)e^{j2\pi f_c t}\}\$ $x(t) = x_I(t)\cos(2\pi f_c t) x_Q(t)\sin(2\pi f_c t)$
- One can also have baseband representation for bandpass random (noise) processes.

VII. DIGITAL MODULATION AND DEMODULATION

- M-ary communication system: We have M different messages, m_1, \ldots, m_M . Transmitter modulates them as $s_1(t), \ldots, s_M(t)$ and receiver observes $r(t) = s_i(t) + n(t)$ for $t \in [0,T)$, where T is symbol duration and n(t) is zero-mean additive white Gaussian noise (AWGN) with PSD of $S_n(f) = N_0/2$ for all f.
- Basis function representation of $s_1(t),\ldots,s_M(t)$: $s_i(t) = \sum_{j=1}^N s_{ij} \psi_j(t)$ with $s_{ij} = \int_0^T s_i(t) \psi_j(t) dt$, where $\psi_1(t),\ldots,\psi_N(t)$ are orthonormal basis functions that span the signals.

Then, $s_i = [s_{i1} \cdots s_{iN}]^T$ is vector representation of $s_i(t)$.

- Properties: $\int_0^T s_i^2(t)dt = ||s_i||^2$, $\int_0^T s_i(t)s_j(t)dt = s_i^T s_j$.
- Angle between two signals: $\cos(\theta_{ij}) = \int_0^T s_i(t) s_j(t) dt / \sqrt{\int_0^T s_i^2(t) dt \int_0^T s_j^2(t) dt}$
- Two ways to find orthonormal basis functions: (1) Gram-Schmidt, (2) Intuition, trial and error.

VIII. MISCELLANEOUS FORMULAS

- $\operatorname{sinc}(x) = \sin(\pi x)/(\pi x)$
- F.T. of sinc(t) is a rectangular pulse of amplitude 1 between -0.5 and 0.5.
- F.T. of $sinc^2(t)$ is a triangular pulse between -1 and 1 with maximum amplitude of 1 at zero.
- $\sin(2x) = 2\sin(x)\cos(x)$
- $\cos(2x) = 1 2\sin^2(x) = 2\cos^2(x) 1$
- cos(x + y) = cos(x)cos(y) sin(x)sin(y)
- $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$
- $\sin(x)\cos(y) = 0.5\sin(x+y) + 0.5\sin(x-y)$
- $\cos(x)\cos(y) = 0.5\cos(x+y) + 0.5\cos(x-y)$
- $\sin(x)\sin(y) = 0.5\cos(x-y) 0.5\cos(x+y)$
- $\cos(\pi/3) = \sin(\pi/6) = 1/2$
- $\cos(\pi/6) = \sin(\pi/3) = \sqrt{3}/2$
- $\cos(\pi/4) = \sin(\pi/4) = 1/\sqrt{2}$