Math Guide

Jonah Benedicto¹

September 2025

¹The University of Queensland

Contents

Ι	\mathbf{M}	ATH1051 Calculus & Linear Algebra I	5
1	1.1 1.2	Eigenvalue Equation	
	N bra	IATH1052 Multivariable Calculus & Linear Al- I	9
II	I I	MATH2001 Calculus & Linear Algebra II	11
IV	/ <u>[</u>	MATH1061 Discrete Mathematics I	13
${f V}$	${f N}$	IATH2302 Discrete Mathematics II	15

4 CONTENTS

Preface

This is a math guide for The University of Queensland's MATH1051, MATH1052, MATH2001, MATH1061, and MATH2302 courses. It is intended to be a quick reference for students studying these subjects.

Part I MATH1051 Calculus & Linear Algebra I

Chapter 1

Eigenvalues and Eigenvectors

Consider a linear transformation represented by a square matrix, denoted A. When a vector is transformed by the matrix, its direction and magnitude can change. **Eigenvectors**, denoted \underline{x} , are special vectors that only change in magnitude (not direction) under this transformation. The magnitude by which the eigenvector is scaled is called the **eigenvalue**, denoted λ .

The relationship between a matrix A, its eigenvalues λ , and eigenvectors \underline{x} is given by the equation:

$$Ax = \lambda x$$

This is known as the definition of eigenvalues and eigenvectors.

1.1 Eigenvalue Equation

To find the eigenvalues λ of a matrix A, we solve the equation:

$$|A - \lambda I| = 0$$

1.2 Eigenvector Equation

To find the eigenvectors \underline{x} corresponding to a specific eigenvalue λ , we solve the equation:

$$(A - \lambda I)x = 0$$

1.3 Derivation of Eigenvalue and Eigenvector Equations

To find the eigenvector equation, we can rearrange the definition of eigenvalues and eigenvectors.

$$A\underline{x} = \lambda \underline{x}$$

$$\iff A\underline{x} = \lambda I\underline{x}$$

$$\iff A\underline{x} - \lambda \underline{x} = \underline{0}$$

$$\iff (A - \lambda I)\underline{x} = \underline{0}$$

To find the eigenvalue equation, note that eigenvectors are non-zero vectors. Therefore, the equation $(A - \lambda I)\underline{x} = \underline{0}$ must have non-trivial solutions. This occurs when the matrix $(A - \lambda I)$ is singular, when its determinant is zero:

$$|A - \lambda I| = 0$$

Therefore, we have derived both the eigenvalue and eigenvector equations from the definition of eigenvalues and eigenvectors.

Part II

MATH1052 Multivariable Calculus & Linear Algebra I

Part III MATH2001 Calculus & Linear Algebra II

Part IV MATH1061 Discrete Mathematics I

$\begin{array}{c} {\rm Part~V} \\ {\rm MATH2302~Discrete} \\ {\rm Mathematics~II} \end{array}$