A Guide to Bayesian Model Selection

Mevin Hooten

Colorado Cooperative Fish and Wildlife Research Unit U.S. Geological Survey

Department of Fish, Wildlife, and Conservation Biology Department of Statistics Colorado State University

Bayes and Model Selection

Overview

Bayesian Model Averaging

Average Posterior Distribution

$$[g|\mathbf{y}] = \sum_{l=1}^{L} [g|\mathbf{y}, M_l] P(M_l|\mathbf{y})$$

- Models: $M_1, \ldots, M_l, \ldots, M_L$.
- Quantity of Interest: $g \equiv g(\theta, \tilde{\mathbf{y}})$, function of parameters or data.

Marginal Data Distribution

· Bayes Rule:

$$[oldsymbol{ heta}|\mathbf{y}] = rac{[\mathbf{y}|oldsymbol{ heta}][oldsymbol{ heta}]}{[\mathbf{y}]}$$

Evidence:

$$[\mathbf{y}] \equiv [\mathbf{y}|M_l] = \int [\mathbf{y}, \boldsymbol{\theta}|M_l] d\boldsymbol{\theta}$$

Posterior Model Probabilities

$$P(M_l|\mathbf{y}) = \frac{[\mathbf{y}|M_l]P(M_l)}{\sum_{l=1}^{L} [\mathbf{y}|M_l]P(M_l)}$$

Prior Model Probabilities:

$$P(M_l)$$
 for $l=1,\ldots,L$

Bayes Factors:

$$B_{l,l'} = \frac{[\mathbf{y}|M_l]}{[\mathbf{y}|M_{l'}]}$$

Bayesian Model Averaging

Advantages:

- Natural and rigorous framework for model averaging.
- Averaged quantities are less biased with higher precision.
- Can use prior model probabilities.

Disadvantages:

- The marginal data distribution is hard to calculate!
- Must have proper priors (and a few other caveats).
- Must choose prior probabilities (can't be lazy).

Out-of-Sample Validation

Prediction

<u>Validation</u>: Out-of-sample data (training and test sets).

<u>Cross-Validation</u>: Cycle through training and test sets.

Validation

1 2 3 4 5

Train Train Validation Train Train

Validation (regression)

Scoring Rules

Out-of-sample deviance:

$$D(\mathbf{y}_{\mathsf{oos}}, \boldsymbol{\theta}, M_l) = -2\log[\mathbf{y}_{\mathsf{oos}}|\boldsymbol{\theta}, M_l]$$

Posterior mean of deviance:

$$ar{D}(\mathbf{y}_{\mathsf{oos}}, M_l) = \int -2\log[\mathbf{y}_{\mathsf{oos}}|oldsymbol{ heta}, M_l][oldsymbol{ heta}|\mathbf{y}, M_l]doldsymbol{ heta}$$

Posterior Predictive Score

· Log Posterior Predictive Score:

$$\log[\mathbf{y}_{\mathsf{oos}}|\mathbf{y}] = \log \int [\mathbf{y}_{\mathsf{oos}}|\mathbf{y}, \boldsymbol{\theta}][\boldsymbol{\theta}|\mathbf{y}]d\boldsymbol{\theta}$$
$$\approx \log \left(\frac{\sum_{t=1}^{T} [\mathbf{y}_{\mathsf{oos}}|\mathbf{y}, \boldsymbol{\theta}^{(t)}]}{T}\right)$$

Using cross-validation:

$$\sum_{k=1}^{K} \log \left(\frac{\sum_{t=1}^{T} [\mathbf{y}_{k} | \mathbf{y}_{-k}, \boldsymbol{\theta}^{(t)}]}{T} \right)$$

Regularization

Traditional Regularization

· Linear Regression Model:

$$y_i \sim \mathsf{N}(\beta_0 + \mathbf{x}_i'\boldsymbol{\beta}, \sigma^2)$$

Add Penalty to Likelihood:

$$\sum_{i=1}^{n} (y_i - \beta_0 - \mathbf{x}_i' \boldsymbol{\beta})^2 + \gamma_1 \sum_{j=1}^{p} |\beta_j|^{\gamma_2}$$

Regulators

$$\gamma_2 = 4$$

$$\gamma_2 = 2$$

$$\gamma_2 = 1$$

$$\gamma_2 = 0.5$$

$$\gamma_2 = 0.1$$

Ridge Regression

Ridge Regression

• Let $\gamma_2 = 2$.

$$\sum_{i=1}^{n} (y_i - \beta_0 - \mathbf{x}_i' \boldsymbol{\beta})^2 + \gamma_1 \sum_{j=1}^{p} \beta_j^2$$

• Notice: as $\gamma_1 \to \infty$, the constraint gets stronger, and $\beta \to \mathbf{0}$

Lasso

Lasso

• Let $\gamma_2 = 1$.

$$\sum_{i=1}^{n} (y_i - \beta_0 - \mathbf{x}_i'\boldsymbol{\beta})^2 + \gamma_1 \sum_{j=1}^{p} |\beta_j|$$

• Notice: as $\gamma_1 \to \infty$, the constraint gets stronger, and $\beta \to \mathbf{0}$

How to get γ_1 ?

- Parameter estimates are found for a range of shrinkage parameter values (i.e., penalties). In the example at left, there are two parameters in the model.
- Ridge and Lasso provide different shrinkage trajectories due to their different penalty functions.
- Lasso estimates shrink to zero exactly at higher penalties; ridge estimates are asymptotic.
- Out-of-sample predictions are obtained for the model fit at each shrinkage value.
- The parameter estimates at the best predictive "score" are retained for inference.
- Scores are typically presented in terms of deviance, where smaller values are better.

Information Criteria

No out-of-sample data?

• AIC: $\gamma_1 = 2$ and $\gamma_2 = 0$

$$\text{penalty} = 2\sum_{j=1}^p |\beta_j|^0$$

• BIC: $\gamma_1 = \log(n)$ and $\gamma_2 = 0$

$$\mathsf{penalty} = \log(n) \sum_{j=1}^p |\beta_j|^0$$

Bayesian Regularization

How is this Bayesian?

· Linear Regression Model:

$$y_i \sim \mathsf{N}(\beta_0 + \mathbf{x}_i'\boldsymbol{\beta}, \sigma^2)$$
$$\beta_0 \sim \mathsf{N}(\mu_0, \sigma_0^2)$$
$$\boldsymbol{\beta} \sim \mathsf{N}(\mathbf{0}, \sigma_\beta^2 \mathbf{I})$$
$$\sigma^2 \sim \mathsf{IG}(q, r)$$

Posterior:

$$\begin{split} [\beta_0, \boldsymbol{\beta}, \sigma^2 | \mathbf{y}] &\propto [\mathbf{y} | \beta_0, \boldsymbol{\beta}, \sigma^2] [\beta_0] [\boldsymbol{\beta}] [\sigma^2] \\ &\propto \prod_{i=1}^n \mathsf{N}(y_i | \beta_0 + \mathbf{x}_i' \boldsymbol{\beta}, \sigma^2) \mathsf{N}(\beta_0 | \mu_0, \sigma_0^2) \prod_{i=1}^p \mathsf{N}(\beta_i | \mu_j, \sigma_\beta^2) \mathsf{IG}(\sigma^2 | q, r) \end{split}$$

Bayesian Regularization

Full-Conditional for β:

$$[\boldsymbol{\beta}|\cdot] \propto \exp\left(-\frac{1}{2\sigma^2}\left(\sum_{i=1}^n (y_i - \beta_0 - \mathbf{x}_i'\boldsymbol{\beta})^2 + \frac{\sigma^2}{\sigma_\beta^2}\sum_{j=1}^p |\beta_j|^2\right)\right)$$

Bayesian Regularization

• Full-Conditional for β :

$$[\boldsymbol{\beta}|\cdot] \propto \exp\left(-\frac{1}{2\sigma^2}\left(\sum_{i=1}^n(y_i - \beta_0 - \mathbf{x}_i'\boldsymbol{\beta})^2 + \frac{\sigma^2}{\sigma_\beta^2}\sum_{j=1}^p|\beta_j|^2\right)\right)$$

•
$$\gamma_1 = \sigma^2/\sigma_\beta^2$$

•
$$\gamma_2 = 2$$

Don't like the penalty?

· Lasso:

$$\gamma_2 = 1$$

Implies the prior:

$$eta_j \sim \mathsf{Laplace}(\mu = 0, \sigma_{eta}^2) \propto \exp\left(-rac{|eta_j|}{\sqrt{\sigma_{eta}^2}}
ight)$$

DIC

A "Bayesian" information criterion

$$\begin{aligned}
\mathsf{DIC} &= -2\log[\mathbf{y}|E(\boldsymbol{\theta}|\mathbf{y})] + 2p_D \\
&= \hat{D} + 2p_D
\end{aligned}$$

•
$$p_D = \bar{D} - \hat{D}$$

•
$$\bar{D} = E_{\theta|\mathbf{y}}(-2\log[\mathbf{y}|\boldsymbol{\theta}])$$

Notes on DIC

- $^{\circ}\ p_{D}<0$ may occur when the mean does not represent the posterior.
- DIC is not consistent (like AIC).
- DIC is not good when $p_D > n$.
- DIC seems to be ok for the same models AIC works with.
- No theoretical basis for use with BMA.
- Doesn't use the posterior predictive distribution.

WAIC

A real Bayesian information criterion

WAIC =
$$-2\sum_{i=1}^{n} \log \int [y_i|\boldsymbol{\theta}][\boldsymbol{\theta}|\mathbf{y}]d\boldsymbol{\theta} + 2p_D$$

•
$$p_D = \sum_{i=1}^n \mathsf{var}_{\boldsymbol{\theta}|\mathbf{y}}(\log[y_i|\boldsymbol{\theta}])$$

•
$$\sum_{i=1}^{n} \log \int [y_i|\boldsymbol{\theta}][\boldsymbol{\theta}|\mathbf{y}] d\boldsymbol{\theta} = \log \prod_{i=1}^{n} [y_i|\mathbf{y}]$$

Computing WAIC using MCMC

$$\sum_{i=1}^{n} \log \int [y_i | \boldsymbol{\theta}] [\boldsymbol{\theta} | \mathbf{y}] d\boldsymbol{\theta} \approx \sum_{i=1}^{n} \log \frac{\sum_{t=1}^{T} [y_i | \boldsymbol{\theta}^{(t)}]}{T}$$

$$\sum_{i=1}^n \mathsf{var}_{\boldsymbol{\theta}|\mathbf{y}}(\log[y_i|\boldsymbol{\theta}]) \approx \sum_{i=1}^n \frac{\sum_{t=1}^T (\log[y_i|\boldsymbol{\theta}^{(t)}] - \sum_{t=1}^T \log[y_i|\boldsymbol{\theta}^{(t)}]/T)^2}{T}$$

Notes on WAIC

- Based on posterior predictive distribution.
- $p_D > 0$.
- Works for hierarchical models.
- Product PPD assumes independence.

PPL

Posterior predictive risk

General:

$$D_w = \sum_{i=1}^n \min_{\hat{y}_i} \int (L(\tilde{y}_i, \hat{y}_i) + wL(y_i, \hat{y}_i)) [\tilde{y}_i | \mathbf{y}] d\tilde{y}_i$$

• Using squared error loss and $w \to \infty$:

$$D_{\infty,\text{sel}} = \sum_{i=1}^{n} (y_i - \mathsf{E}(\tilde{y}_i|\mathbf{y}))^2 + \sum_{i=1}^{n} \mathsf{Var}(\tilde{y}_i|\mathbf{y})$$

MBMS

Automatic model selection

- Indicator Variable Selection
- Gibbs Variable Selection
- Stochastic Search Variable Selection
- Reversible-Jump MCMC

Indicator Variable Selection

$$y_i \sim \mathsf{N}(\beta_0 + \mathbf{x}_i'\boldsymbol{\beta}, \sigma^2)$$

•
$$eta_j = z_j \cdot heta_j$$
 for $j=1,\dots,p$.
$$z_j \sim \mathsf{Bern}(\phi)$$
 $heta_j \sim \mathsf{N}(0, au^2)$

Indicator Variable Selection

$$y_i \sim \mathsf{N}(\beta_0 + \mathbf{x}_i'\boldsymbol{\beta}, \sigma^2)$$

•
$$eta_j = z_j \cdot heta_j$$
 for $j=1,\ldots,p$.
$$z_j \sim \mathsf{Bern}(\phi)$$
 $heta_j \sim \mathsf{N}(0, au^2)$

- When $z_j = 0$ in MCMC, sample θ_j from its prior.
- Future $z_j=1$ will be unlikely if τ^2 is large (try GVS or SSVS).

Reversible-Jump MCMC

- For model M_l , we have parameters β_l , with varying dimensions p_l .
- RJMCMC puts prior on model index l or model dimension p_l .

$$[\boldsymbol{\theta}_l|\mathbf{y}] \propto [\mathbf{y}|\boldsymbol{\beta}_l, l][\boldsymbol{\beta}_l|l][l]$$

Reversible-Jump MCMC

- For model M_l , we have parameters β_l , with varying dimensions p_l .
- RJMCMC puts prior on model index l or model dimension p_l .

$$[\boldsymbol{\theta}_l|\mathbf{y}] \propto [\mathbf{y}|\boldsymbol{\beta}_l, l][\boldsymbol{\beta}_l|l][l]$$

- MCMC is complicated because the model dimension p_l changes on each iteration.
- RJMCMC is "reversible" because the M-H ratio is modified to allow for moves back to certain model dimensions.

RJMCMC and $P(M_l|\mathbf{y})$

- $P(M_l|\mathbf{y})$ proportional to number of visits to each model in the RJMCMC algorithm.
- RJMCMC can be tricky to program.
- Gibbs and stochastic search variable selection are related but sidestep the transdimensional issue.
- Barker and Link (2013) describe a method that yields RJMCMC results using a two stage process:
 - Fit models individually.
 - ② $P(M_l|\mathbf{y})$ using a second MCMC algorithm and results from individual model fits.

Summary

Planning a new study?

- Collect two sets of data:
 - Training.
 - 2 Validation.
- When prediction is important, there is no substitute for out-of-sample data.
- · Time for a paradigm shift in study design?

Historical data set?

- If n is large and you have plenty of time:
 - K-fold cross-validation.
 - Try parallel computing.
- If n is small:
 - Leave-one-out cross-validation.
 - All methods have problems when $n \to 0$.

Want to predict, but not much time?

- If non-hierarchical, consider DIC:
 - DIC is similar to AIC, but for Bayesian models.
 - DIC is not good for multimodal posteriors.
 - $p_D << n$.
- If hierarchical, consider WAIC:
 - WAIC is similar to DIC and AIC for Bayesian models.
 - WAIC works with multimodal posteriors.
 - If data are dependent, try posterior predictive loss or ask for an extension (then do cross-validation).

Want to do model averaging?

- Compute Bayes factors directly:
 - Can be computationally difficult.
 - Allows you to specify $P(M_l)$.
 - Watch out for collinearity and improper priors on parameters (Cade, 2015).

Use BIC:

- Only if using the posterior mode with uniform priors on parameters.
- Assumes prior model probabilities are equal.

Use RJMCMC:

- · Assumes prior model probabilities are equal.
- Good luck with the programming!
- Could try Barker and Link (2013) method.

Want automatic procedure?

- Indicator variable selection:
 - Independent priors require no tuning.
 - MCMC mixing could be poor.
- Gibbs variable selection:
 - · Requires tuning, but improved mixing.
 - Tuning doesn't influence posterior.
- Stochastic search variable selection:
 - · Requires tuning.
 - Tuning influences posterior, but MCMC may mix better.

References

 Hooten, M.B. and N.T. Hobbs. (2015). A guide to Bayesian model selection for ecologists. Ecological Monographs, 85: 3-28.

 Hobbs, N.T. and M.B. Hooten (2015). Bayesian Models: A Statistical Primer for Ecologists. Princeton University Press.