

Algorisme Perceptró¹

Alfons Juan Jorge Civera Albert Sanchis

Departament de Sistemes Informàtics i Computació

¹Per a una correcta visualització, es requereix l'Acrobat Reader v. 7.0 o superior

Objectius formatius

- Aplicar l'algorisme Perceptró a una tasca de classificació
- Explicar el comportament de l'algorisme Perceptró en funció dels seus paràmetres

Índex

1	Funcions discriminants lineals	3
2	Algorisme Perceptró	4
3	Exemple	5
4	Convergència i qualitat de la solució	6

1 Funcions discriminants lineals

Tot classificador pot representar-se com ara:

$$c(x) = \underset{c}{\operatorname{arg\,max}} \ g_c(x)$$

on, per a cada classe c, s'utilitza una *funció discriminant* $g_c(\cdot)$ que mesura el grau de pertinença dels objectes a c.

Les funcions discriminants més utilitzades són *lineals* (amb x):

$$g_c(m{x}) = m{w}_c^t m{x} + w_{c0}$$
 on $m{x} = egin{pmatrix} x_1 \ dots \ x_D \end{pmatrix}$ i $m{w_c} = egin{pmatrix} w_{c1} \ dots \ w_{cD} \end{pmatrix}$

Amb notació *homogènia*:

$$g_c(\mathbf{x}) = \mathbf{w}_c^t \mathbf{x}$$
 on $\mathbf{x} = \begin{pmatrix} 1 \\ \boldsymbol{x} \end{pmatrix}$ i $\mathbf{w}_c = \begin{pmatrix} w_{c0} \\ \boldsymbol{w}_c \end{pmatrix}$

2 Algorisme Perceptró

Entrada:
$$\{(\mathbf{x}_n, c_n)\}_{n=1}^N$$
, $\{\mathbf{w}_c\}_{c=0}^C$, $\alpha \in \mathbb{R}^{>0}$ i $b \in \mathbb{R}$

Eixida:
$$\{\mathbf{w}_c\}^* = \underset{\{\mathbf{w}_c\}}{\operatorname{arg\,min}} \sum_n \left[\underset{c \neq c_n}{\max} \mathbf{w}_c^t \mathbf{x}_n + b > \mathbf{w}_{c_n}^t \mathbf{x}_n \right]$$
Mètode:
$$[P] = \begin{cases} 1 & \text{si } P = \text{cert} \\ 0 & \text{si } P = \text{fals} \end{cases}$$

repetir

per a tota dada \mathbf{x}_n

$$err = fals$$

per a tota classe c distinta de c_n

si
$$\mathbf{w}_c^t \mathbf{x}_n + b > \mathbf{w}_{c_n}^t \mathbf{x}_n$$
: $\mathbf{w}_c = \mathbf{w}_c - \alpha \cdot \mathbf{x}_n$; $err = \text{cert}$

si
$$err$$
: $\mathbf{w}_{c_n} = \mathbf{w}_{c_n} + \alpha \cdot \mathbf{x}_n$

fins que no queden mostres mal classificades

3 Exemple

4 Convergència i qualitat de la solució

Convergeix si les dades són linealment separables i $b \le 0$.

Convé implementar-lo amb un màxim nombre d'iteracions.

Quan $\alpha \to 0$, la convergència és més suau, però més lenta.

Qualitat de la solució:

Linealment	$h \in H$	b > 0	
separables	<u> </u>	0 / 0	
SI	Fronteres amb	Fronteres	
SI	poca folgança	centrades	
NO	Fronteres	Fronteres	
INO	baixa qualitat	quasi òptimes	

