Relatività

Marco Militello

Indice

1	Richiami meccanica classica ed elettromagnetismo	2
	1.1 Trasformazioni galileiane	2

Capitolo 1

Richiami meccanica classica ed elettromagnetismo

La meccanica di Newton si basa su 3 principi:

- 1. In assenza di moto \Rightarrow quiete o moto rettilineo uniforme
- 2. $\frac{d}{dt}\vec{p} = F \operatorname{con} \vec{p} = m\vec{v}$
- 3. Principio di azione e reazione

Se in un sistema S ho un moto rettilineo uniforme descritto da $\vec{x}(t) = \vec{x}_0 + \vec{u}t$ ed applico una trasformazione del tipo

$$\vec{x}' = \vec{x} + \vec{w}t^2$$

allora nel sistema S' avrò un moto accelerato descritto da $\vec{x}' = \vec{x}_0 + \vec{u}t + \vec{w}t^2$

SISTEMI DI RIFERMENTO INERZIALI (SDRI): sistemi in cui una particella di "test" (particella con massa e dimensioni trascurabili rispetto a quello a che sta intorno; non c'è perturbazione della misura) non soggetta a forza permane in stato di quiete o moto rettilineo uniforme

Dato S che è SDRI e S' tale che

$$\vec{x}' = \vec{x} - \vec{u}t$$

dove \vec{v} è la velocità relativa tra S e S', allora anche S' è SDRI

Se faccio rotazione (che non dipenda dal tempo) allora permane il moto rettilineo

PRINICIPIO DI RELATIVITÁ: le leggi fisiche devono avere la stessa forma (es. F=ma deve diventare F'=ma') in tutti i SDRI; questo principio si basa su osservazioni empiriche. Enunciato in questo modo vale sia in meccanica classica, sia in relatività \rightarrow cambia solo la trasformazione che uso

COVARIANZA LEGGI FISICHE: significa invarianza in forma

Sistema di rifermento \rightarrow terna di assi cartesiasi e orologio (in fisica classica sono tutti sincronizzati) SDRI \rightarrow empiricamente sarà sistema inerziale in una certa regione di spazio, in un certo intervallo di tempo ed entro accuratezza delle misure che faccio

1.1 Trasformazioni galileiane

Costruite a partire da principio relatività con ipotesi del tempo unitario (t=t') Voglio trovare trasformazioni per passare da SDRI a SDRI del tipo

$$\begin{cases} t' = t'(t, x, y, z) \\ x' = x'(t, x, y, z) \\ y' = y'(t, x, y, z) \\ z' = z'(t, x, y, z) \end{cases}$$

Nel sistema S descrivo con $\vec{x}_p(t) = \vec{x}_0 + \vec{u}t$: nello spazio è una retta \Rightarrow in S' deve rimanere una retta, quindi deve essere una trasformazione lineare

$$\begin{cases} x' = a_{11}x + a_{12}y + a_{13}z + a_{14}t \\ x' = a_{21}x + a_{22}y + a_{23}z + a_{24}t \\ x' = a_{31}x + a_{32}y + a_{33}z + a_{34}t \\ x' = a_{41}x + a_{42}y + a_{43}z + a_{44}t \end{cases}$$

 $a_{ij}(\vec{v})$ dipende da \vec{v} , ma non può dipendere da x,y,z,t altrimenti non sabbero trasformazioni lineari

- asse \hat{x} coincide con $\hat{x}' \to y=z=0 \Rightarrow y'=z'=0$. Quindi: $a_{21}=a_{24}=a_{31}=a_{34}=0$
- piano xy deve coincidere con piano x'y' $\rightarrow z = 0 \Rightarrow z' = 0$ Quindi: $a_{32} = 0$
- piano xz deve coincidere con piano x'z' $\rightarrow y = 0 \Rightarrow y' = 0$ Quindi: $a_{23} = 0$
- Se ruoto asse x di $180^{\circ} \Rightarrow$ y va in -y e z in -z. Allora

$$x' = a_{11}x + a_{12}(-y) + a_{13}(-z) + a_{14}t$$

ma coordinata su x non deve cambiare su x'. Quindi $a_{12}=a_{13}=0$

- per simmetria cilindrica niente di particolare lungo asse y e z. Quindi $a_{22} = a_{33}$; di conseguenza anche $a_{43} = a_{42}$
- t non può dipendere da y e z perchè niente di speciale lungo y e z. Quindi $a_{42} = 0$

Ottengo:

$$\begin{cases} x' = a_{11}x + a_{14}t \\ y' = a_{22}y \\ z' = a_{22}z \\ t' = a_{41}x + a_{44}t \end{cases}$$

Trasformazioni devono dipendere al massimo da direzione moto \rightarrow ISOTROPIA DELLO SPAZIO Riscrivendo:

$$\begin{cases} x' = Ax + Bt \\ y' = Cy \\ z' = Cz \\ t' = \dots \end{cases}$$

Moto in O'
$$\rightarrow$$
 se
$$\begin{cases} x' = 0 \\ y' = 0 \\ z' = 0 \end{cases} \Rightarrow \begin{cases} 0 = Ax + Bt \Rightarrow x = -\frac{B}{A}t \\ x = vt \end{cases}$$

Allora x' = Ax + Bt diventa x' = A(x - vt) [perchè Bt = -Avt] Usando ipotesi aggiuntiva del tempo assoluto ottengo:

$$\begin{cases} x' = A(v)(x - vt) \\ y' = C(v)y \\ z' = C(v)z \\ t' = t \end{cases}$$

- se $v=0 \Rightarrow A(v=0) = C(v=0) = 1$
- per simmetria cilindrica $\Rightarrow C(v) = C(-v)$

• $S \to S$ deve coincidere a $S \to S'$ se mando v in -v: $S \to S'$ stessa forma trasformazione, ma con velocità -v

$$\begin{cases} x = \frac{1}{A(v)}(x' + vt) \\ y = \frac{1}{C(v)}y' \\ z = \frac{1}{C(v)}z' \\ t = t' \end{cases}$$

$$\begin{cases} x = A(-v)(x' + vt) \\ y = C(-v)y' \\ z = C(-v)z' \\ t = t' \end{cases}$$

Allora ottengo:

$$\frac{1}{A(v)} = A(-v) \qquad \frac{1}{C(v)} = C(-v) \qquad v = A(-v)v$$

Quindi: A(v) = 1 e C(v) = 1

Per un moto lungo asse x le trasformazioni di Galilei sono:

$$\begin{cases} x' = x - vt \\ y' = y \\ z' = z \\ t' = t \end{cases}$$

In generale le trasformazioni di Galilei sono:

$$\begin{cases} \vec{x}' = \vec{x} - \vec{v}t \\ t' = t \end{cases}$$

GRUPPO DI GALILEI: insieme trasformazioni di cui trasformazioni di Galilei fanno parte

- traslazione rigida $\rightarrow \vec{x}' = \vec{x} + \vec{x}_0 \ t' = t + t_0$
- traslazione asse (no nel tempo) $\rightarrow \vec{x}' = R\vec{x}$ con R matrice di rotazione tale che $RR^T = R^TR = \mathbb{K}$