当然可以! 损失函数是训练神经网络的核心,它衡量模型预测与真实标签之间的差距,是模型学习的"方向标"。

下面我们按照任务类型分类,系统性介绍常用的损失函数,包括适用场景、公式、直觉解释等。

@ 一、分类任务常用损失函数

1. 交叉熵损失 (Cross Entropy Loss)

任务场景: 多类分类 (softmax 输出)

• 公式 (单个样本):

 $\$ \mathcal{L} = - \sum_{i=1}^{C} y_i \log(\hat{y}_i) \$\$

○ \$y_i\$: 真实标签的 one-hot 编码

○ \$\hat{y}_i\$: 模型输出的 softmax 概率

- 解释:预测越接近真实标签,损失越小。
- ☑ **PyTorch 实现**: nn.CrossEntropyLoss() (注意: 自动集成 LogSoftmax + NLLLoss)

2. 负对数似然损失 (Negative Log Likelihood, NLLLoss)

任务场景:分类任务,要求输入是 log-softmax 的输出。

公式:

\$\$ \mathcal{L} = -\log(\hat{y}_{\text{true class}}) \$\$

• 通常不直接使用,而是作为 CrossEntropyLoss 的一部分。

3. Focal Loss (聚焦损失)

任务场景: 类别不平衡的分类 (如目标检测中背景多、目标少)

• 公式 (二分类):

 $\$ \mathcal{L} = -\alpha(1 - \hat{y})^{\gamma} \log(\hat{y}) \$\$

○ \$\gamma\$:聚焦参数,抑制容易分类的样本

○ \$\alpha\$: 平衡正负样本

• 直觉:对难样本给予更大权重,对易样本降低惩罚。

■ 二、回归任务常用损失函数

1. 均方误差 (Mean Squared Error, MSELoss)

任务场景:连续数值预测(如房价、温度)

• 公式:

 $\$ \mathcal{L} = \frac{1}{N} \sum (y - \hat{y})^2 \$\$

- 特点: 对大误差敏感 (放大离群点影响)
- ✓ nn.MSELoss()/F.mse_loss()

2. 平均绝对误差 (Mean Absolute Error, MAE)

任务场景: 抗离群点更强的回归任务

• 公式:

 $\ \$ \mathcal{L} = \frac{1}{N} \sum |y - \hat{y}| \$\$

• 特点: 更稳健, 不容易被大误差主导

3. Huber Loss (平滑 L1 损失)

任务场景: 结合 MSE 和 MAE 的优势,常用于目标检测中的边框回归

公式:

 $\$ \mathcal{L}(x) = \begin{cases} \frac{1}{2}(x)^2 & \text{if } |x| \leq (|x| - \frac{1}{2} \cdot x)^2 & \text{otherwise} \

• ☑ nn.SmoothL1Loss(): PyTorch 实现

♂ 三、对比学习 / 序列学习类损失

1. Triplet Loss (三元组损失)

任务场景:表示学习(如人脸识别)

- 核心思想:
 - 使 Anchor 与 Positive 更接近,远离 Negative。
- 公式:

 $\$ \mathcal{L} = \max(0, d(a, p) - d(a, n) + \text{margin}) \$\$

2. Contrastive Loss

任务场景:对比学习 (如 SimCLR、Siamese Network)

目标:

。 相似样本距离小, 非相似距离大。

3. CTC Loss (Connectionist Temporal Classification)

任务场景: 语音识别、手写识别 (输入输出对齐长度不一致)

• PyTorch 提供 nn.CTCLoss(), 需特殊输入格式 (log_probs + input_lengths + target_lengths)

@ 四、生成类任务损失函数

1. 对抗损失 (GAN 的两部分)

• Generator Loss:

 $\ \$ \mathcal{L}_G = -\log(D(G(z))) \$\$

• Discriminator Loss:

 $\ \$ \mathcal{L}_D = -[\log(D(x)) + \log(1 - D(G(z)))] \$\$

2. **感知损失 (Perceptual Loss)**

用于图像重建、超分辨率

• 比较高层语义 (如 VGG 网络某一层的输出) 而不是像素

五、其他任务中的损失 (精选)

任务	损失函数	简介
语义分割	Dice Loss	衡量预测区域与真实区域的重叠
多标签分类	BCEWithLogitsLoss	每个类独立二分类
序列生成	Label Smoothing	在目标分布中引入平滑项防过拟合
语言建模	KL Divergence Loss	衡量两个分布间的距离

☑ 总结:按任务分类速查表

任务类型	常用损失函数
多类分类	CrossEntropyLoss, Focal Loss
回归任务	MSELoss, MAE, Huber Loss
序列学习	CTC Loss, Label Smoothing
对比学习	Triplet Loss, Contrastive Loss

任务类型	常用损失函数
图像生成	GAN Loss, Perceptual Loss
多标签分类	BCEWithLogitsLoss
 分割任务	Dice Loss, IoU Loss