Lista 1

- 1. Seja Δ_1 , Δ_2 , ... uma é sequência de coleções de subconjuntos de Ω , tal que $\Delta_n \subset \Delta_{n+1}$ para cada n.
 - (a) Suponha que cada Δ_i é uma algebra. Prove que $\bigcup_{i=1}^{\infty} \Delta_i$ também é uma algebra.
 - (b) Suponha que cada Δ_i é uma σ -algebra. Prove (por contra-exemplo) que $\bigcup_{i=1}^{\infty} \Delta_i$ talvez não seja uma σ -algebra.
- 2. Sejam A, B, C e D eventos de um espaço amostral $\Omega,$ com P(A)=P(B)=0.01, e P(C)=P(D)=0.99
 - (a) Prove que $P(A \cup B) \leq 0.02$.
 - (b) Prove que $P(C \cap D) \ge 0.98$.
 - (c) O que você pode dizer sobre $P(A \cap B)$ e $P(C \cup D)$?
- 3. Sejam $A, B \in A_1, A_2, \ldots$ eventos num espaço amostral, com $A_n \nearrow A$, e P(A) = 1. Prove que $P(A_n \cap B) \to P(B)$.
- 4. Considere a seguinte sequência de eventos sobre o espaço amostral $\Omega = \{0, 1, 1/2, 1/3, 1/4, \ldots\}$:

$$A_1 = \{1, 1/2, 1/3, 1/4, \ldots\},$$
 $A_2 = \{0, 1/2, 1/3, 1/4, \ldots\},$ $A_3 = \{1/3, 1/4, \ldots\},$ $A_4 = \{0, 1/4, \ldots\}, \ldots$

(formalmente, $A_n = \{1/k : k \ge n\}$ se n for impar, e se n for par, $A_n = \{1/k : k \ge n\} \cup \{0\}$).

- (a) Essa sequência de eventos quase converge monotonicamente...: mostre que $\bigcap_n A_n = \emptyset$, mas não $A_n \searrow \emptyset$.
- (b) ... mas quase não basta para convergência no vazio: prove, por meio de um exemplo, que não necessariamente $P(A_n) \to 0$. (Dica: quase qualquer exemplo funciona.)

- 5. Considere o espaço amostral $\Omega = [0,1]$ (ou seja, ω é um número real entre zero e um). Para intervalos fechados $A = [a,b] \subset \Omega$, definimos P(A) = b a.
 - (a) Você acredita que uma função definida dessa forma pode ser um probabilidade? (Ela pode atender os axiomas de Kolmogorov?)
 - (b) Qual deve ser o valor de P((a,b)) (ou seja, a probabilidade de um intervalo aberto) para respeitar os axiomas?
 - (c) Eu fiquei confuso: eu achava que a resposta do item a era "sim", mas estudando melhor essa função, descobri que $P(\{a\}) = 0$, para todo ponto a; como todo conjunto é a união (disjunta) de seus pontos, P(A) deveria ser uma soma de zeros, que dá 0! Esclareça essa situação: Conclua que P não é uma probabilidade OU aponte o erro no raciocínio do parágrafo anterior.
- 6. Mostre que para um evento B dado com P(B) > 0, a função Q: $\mathcal{A} \to \mathbb{R}$ definida como Q(A) = P(A|B) satisfaz todos os axiomas de probabilidade.
 - Mostre que, para um evento A dado, a função $R: \mathcal{A} \to \mathbb{R}$ definida como R(B) = P(A|B) não os satisfaz.
- 7. Em sala, vimos um exemplo em que 3 eventos A, B e C são independentes 2 a 2, mas não mutuamente independentes.
 - (a) Apresente um exemplo em que P(A) = P(B) = P(C) = 1/2, $P(A \cap B \cap C) = 1/8$, mas A e B não são independentes. (Portanto, independência "3 a 3" não implica 2 a 2.)
 - (b) No exemplo visto em classe, $P(A \cap B \cap C) > P(A)P(B)P(C)$. Apresente um outro exemplo em que A, B e C são independentes 2 a 2, mas não mutuamente independentes por que $P(A \cap B \cap C) < P(A)P(B)P(C)$.
- 8. Seja $\delta, \epsilon > 0$, e seja X_1, X_2, \ldots uma sequência de variáveis aleatórias não-negativas tal que $P(X_i \geq \delta) \geq \epsilon$ para todo i. Prove que, com probabilidade $1, \sum_{i=1}^{\infty} X_i = \infty$.
- 9. (Nessa questão você pode supor que a probabilidade de uma criança ser do sexo masculino é 50% e que a determinação do sexo de dois irmãos são eventos independentes.)

- (a) Eu sou pai de duas crianças. Meu filho mais velho é um menino. Com base nessas informações, qual a probabilidade dos dois serem meninos?
- (b) Eu sou pai de duas crianças. Um deles é um menino. Com base nessas informações, qual a probabilidade dos dois serem meninos?