

planetmath.org

Math for the people, by the people.

μ -operator

Canonical name muoperator

Date of creation 2013-03-22 19:05:47 Last modified on 2013-03-22 19:05:47

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 12

Author CWoo (3771) Entry type Definition Classification msc 03D20

Synonym minimization operator Synonym minimization-operator

Synonym search operator Synonym search-operator

μ on predicates

Let a property on non-negative integers be given. Informally, the μ -operator looks for the smallest number satisfying the given property. The μ -operator is also known as the (unbounded) minimization operator or the (unbounded) search operator. Formally,

Definition. Let $\Phi(\boldsymbol{x}, y)$ be an (m+1)-ary predicate (property) over \mathbb{N} , the set of natural numbers (0 included here), with m a non-negative integer (\boldsymbol{x} is m-ary). Define

$$A_{\Phi}(\boldsymbol{x}) := \{ y \in \mathbb{N} \mid \Phi(\boldsymbol{x}, y) \},$$

The μ -operator on Φ is given by

$$\mu y \Phi(\boldsymbol{x}, y) := \begin{cases} \min A_{\Phi}(\boldsymbol{x}) & \text{if } A_{\Phi}(\boldsymbol{x}) \neq \emptyset, \\ \text{undefined} & \text{otherwise.} \end{cases}$$

The notation $\mu y \Phi(x, y)$ reads "the smallest y such that $\Phi(x, y)$ is satisfied". Note that y is used both as a variable and a number that the variable y represents.

Note that $\mu y \Phi(\boldsymbol{x}, y)$ is a partial function on \boldsymbol{x} (y is a bounded variable). In other words, the μ -operator is a function that takes an m+1-ary predicate to an m-ary partial function. When m=0, μ is either an integer, or \varnothing .

For example, suppose $\Phi(x,y)$ is the property $(x-y)(x+y) \ge 10$. Then $\mu y \Phi(x,y) = 0$ iff $x \ge 4$, and undefined otherwise.

The reason why the μ -operator is called the search operator comes from recursive function theory. The search for the smallest y such that $\Phi(\boldsymbol{x},y)$ begins with testing for $\Phi(\boldsymbol{x},0)$. If the test fails $(\Phi(\boldsymbol{x},0)$ is false), then testing for $\Phi(\boldsymbol{x},1), \Phi(\boldsymbol{x},2), \Phi(\boldsymbol{x},3), \cdots$ are successively performed. The testing stops when a y with $\Phi(\boldsymbol{x},y)$ is found. This y is also the smallest y satisfying Φ . Nevertheless, the testing can conceivably go on indefinitely, hence the name unbounded. There is also a bounded version of μ -operation:

Definition. Let $\Phi(x, y)$ be given as above. Define

$$A_{\Phi}(\boldsymbol{x}, y) := \{ z \in \mathbb{N} \mid \Phi(\boldsymbol{x}, z) \text{ and } z \leq y \}.$$

The bounded μ -operator on Φ is given by

$$\mu z \leq y \Phi(\boldsymbol{x}, z) := \begin{cases} \min A_{\Phi}(\boldsymbol{x}, y) & \text{if } A_{\Phi}(\boldsymbol{x}, y) \neq \emptyset, \\ y + 1 & \text{otherwise.} \end{cases}$$

Thus the bounded μ -operator takes an (m+1)-ary predicate (on (\boldsymbol{x}, z) , where z is a free variable) to an (m+1)-ary total function (on (\boldsymbol{x}, y) , as z is now bounded by μ).

μ on total functions

The μ operator can also be defined on functions. We first discuss the case of μ on total functions.

Definition. Given a total (m+1)-ary function $f: \mathbb{N}^{m+1} \to \mathbb{N}$, define

$$A_f(\boldsymbol{x}) := \{ y \in \mathbb{N} \mid f(\boldsymbol{x}, y) = 0 \},$$

The μ -operator on f is given by

$$\mu y f(\boldsymbol{x}, y) := \begin{cases} \min A_f(\boldsymbol{x}) & \text{if } A_f(\boldsymbol{x}) \neq \emptyset, \\ \text{undefined} & \text{otherwise.} \end{cases}$$

This definition is actually equivalent to the one regarding predicates, in the following sense: given a total function f with arity m+1, define predicate $\Phi_f(\mathbf{x}, y)$ of arity m+1, as " $f(\mathbf{x}, y) = 0$ ". Then

$$\mu y f(\boldsymbol{x}, y) = \mu y \Phi_f(\boldsymbol{x}, y).$$

Conversely, given an (m+1)-ary predicate $\Phi(\boldsymbol{x},y)$, define an (m+1)-ary function $f_{\Phi}(\boldsymbol{x},y) := 1 - \chi_{\Phi}(\boldsymbol{x},y)$, where χ_{Φ} is the characteristic function of Φ . Then

$$\mu y \Phi(\boldsymbol{x}, y) = \mu y f_{\Phi}(\boldsymbol{x}, y).$$

Note also that μf may be partial even if f is total, since it is possible $f(x,y) \neq 0$ for all y, and the search will go on indefinitely. For example, let $f(x,z,y) = x^2 + z^2 - y^2$ if $x^2 + z^2 \geq y^2$, and 1 otherwise. Clearly, f is a total function. It is easy to see that $\mu y f(3,4,y) = 5$, while $\mu y f(1,2,y)$ is undefined.

μ on partial functions

The definition of the μ -operator on total functions can be generalized to partial functions. However, in recursive functions theory, an additional condition is imposed in order to make the generalization.

Definition. Given a partial (m+1)-ary function $f: \mathbb{N}^{m+1} \to \mathbb{N}$, define

$$A_f(\boldsymbol{x}) := \{ y \in \mathbb{N} \mid f(\boldsymbol{x}, y) = 0 \text{ and } (\boldsymbol{x}, z) \in \text{dom}(f) \text{ for all } z \leq y \},$$

The μ -operator on f is given by

$$\mu y f(\boldsymbol{x}, y) := \begin{cases} \min A_f(\boldsymbol{x}) & \text{if } A_f(\boldsymbol{x}) \neq \emptyset, \\ \text{undefined} & \text{otherwise.} \end{cases}$$

The extra condition that $f(\boldsymbol{x}, z)$ be defined for all $z \leq y$ is needed in order to avoid situations where testing for $f(\boldsymbol{x}, z) = 0$ gets stuck in an infinite loop (in a Turing machine or a URM) because $f(\boldsymbol{x}, z)$ is undefined, before y is ever reached for testing. If we drop this extra condition, then it is possible to find a partial recursive function f such that μf is not recursive.

Remarks.

• Bounded μ -operator may also be defined on functions. In the case of partial functions, the definition can be given as follows: let $f(\boldsymbol{x}, y)$ be an (m+1)-ary partial function, with

$$A_f(\boldsymbol{x}, y) := \{ z \in \mathbb{N} \mid f(\boldsymbol{x}, z) = 0, z \leq y, \text{ and } (\boldsymbol{x}, t) \in \text{dom}(f) \text{ for all } t \leq z \},$$

then

$$\mu z \leq y f(\boldsymbol{x}, z) := \begin{cases} \min A_f(\boldsymbol{x}, y) & \text{if } A_f(\boldsymbol{x}, y) \neq \varnothing, \\ y + 1 & \text{if } A_f(\boldsymbol{x}, y) = \varnothing \text{ and } (\boldsymbol{x}, t) \in \text{dom}(f) \text{ for all } t \leq y \\ \text{undefined} & \text{otherwise.} \end{cases}$$

- Given the set \mathcal{PR} of primitive recursive functions, one obtains the set \mathcal{R} of recursive functions by taking the closure of \mathcal{PR} with respect to the application of the μ -operator. Furthermore, if $f \in \mathcal{R}$, so is $\mu f \in \mathcal{R}$, and it can be shown that any recursive function can be obtained from primitive recursive functions by no more than one application of the μ -operator. This is known as the Kleene normal form theorem.
- With respect to the bounded μ -operator, any primitive recursive function (or predicate) stays primitive recursive after an application of the bounded μ , and any total recursive function stays total after an application of the bounded μ .