

| Nombre                        | Matrícula |
|-------------------------------|-----------|
| Oscar Andrade Villalpando     | A00574123 |
| Gabriel Jiménez Malacara      | A00574115 |
| Miguel Iván Rodríguez Zamudio | A00573044 |

27/10/2025

### Reglamento



Tamaño y peso limitado

**Autónomo** 

## Implicación técnica



Diseño compacto



Evaluar en tiempo real

# Decisión de diseño



**Arduino Nano** 



Sensores y motores

| Tabla de parámetros clave |                                               |                        |
|---------------------------|-----------------------------------------------|------------------------|
| Parámetro                 | Valor                                         | Unidad / Observaciones |
| Dimensiones<br>máximas    | $10\times10\times10$                          | cm                     |
| Peso máximo               | 500                                           | g                      |
| Controlador               | Arduino Nano                                  | Fijo por reglamento    |
| Autonomía                 | Completa (sin control remoto)                 | 100% autónomo          |
| Movimiento                | Diferencial (2<br>ruedas motrices<br>+ apoyo) |                        |
| Voltaje<br>máximo         | 9                                             | V (batería recargable) |
| Sensores<br>obligatorios  | Línea (borde) +<br>Infrarrojos<br>(oponente)  |                        |
| Sensores opcionales       | ToF / Giroscopio<br>MPU6050                   | complementarios        |
| Actuadores                | Motores DC con<br>PWM                         | control individual     |
| Sistemas<br>prohibidos    | Imanes, succión<br>o adherencia<br>artificial |                        |

Requisito de Interruptor seguridad accesible

### obligatorio

#### Análisis de impacto de cada regla en el diseño

#### 1. Dimensiones 10×10×10 cm

Impacto: limita drásticamente el espacio para componentes, cables y baterías.

Diseño: estructura compacta con distribución por niveles; uso de Arduino Nano y módulos

miniatura.

#### 2. Peso máximo 500 g

Impacto: exige materiales ultraligeros y diseño sin redundancias.

Diseño: chasis en PLA o acrílico con refuerzos mínimos, batería LiPo 7.4V de baja capacidad, priorizando centro de masa bajo.

#### 3. Centro de masa bajo y tracción

Impacto: mejora estabilidad pero limita posición de componentes.

Diseño: motores en la parte inferior, batería centrada y ruedas de silicón con alto agarre.

#### 4. Autonomía total

Impacto: el robot debe reaccionar sin intervención humana.

Diseño: programación con decisiones lógicas (detección IR  $\rightarrow$  avance, detección línea  $\rightarrow$  retroceso y giro).

#### 5. Movimiento diferencial

Impacto: el control de dirección depende de la velocidad de cada rueda.

Diseño: control PWM independiente; pruebas de calibración para mantener trayectoria recta.

#### 6. Sensores de línea

Impacto: evitan que el robot salga del dojo, críticos para la supervivencia.

Diseño: colocación de sensores frontales y ajuste fino de umbral según color del tapete.

#### 7. Sensores infrarrojos

Impacto: detección dependiente de distancia y luz ambiental.

Diseño: ubicar sensores bajos y frontales; filtrar lecturas erráticas en código.

#### 8. Sin imanes o succión

Impacto: menor adherencia, posible deslizamiento.

Diseño: usar llantas con caucho de alta fricción y diseño dentado; optimizar peso frontal.

#### 9. Batería ≤ 9V

Impacto: limita torque y velocidad.

Diseño: seleccionar motores eficientes y ajustar relación potencia/tiempo; uso de control PWM

para ahorro de energía.

#### 10. Interruptor de seguridad

Impacto: requisito obligatorio de seguridad.

Diseño: switch principal accesible desde la parte superior, integrado al chasis.

#### Reflexión grupal: Regla que define la estrategia

La regla que más define nuestra estrategia es el límite de peso máximo de 500 g. Este parámetro condiciona todos los aspectos del diseño: materiales, tamaño de batería, potencia de motores y ubicación de componentes. Nos obliga a crear un robot ligero, compacto y eficiente, priorizando la maniobrabilidad sobre la fuerza bruta.

Por esta razón, nuestra estrategia se enfoca en movimientos rápidos y precisos, detectando al oponente mediante sensores infrarrojos y evitando el borde con los sensores de línea. Al mantener el peso bajo y el centro de masa cercano al suelo, obtenemos mayor estabilidad y capacidad de respuesta, lo que se convierte en una ventaja frente a robots más pesados y lentos.