

(19)

Europäisches Patentamt
European Patent Office
Office uropé n d s brevets

(11)

EP 0 893 158 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
27.01.1999 Patentblatt 1999/04

(51) Int. Cl.⁶: B01J 29/04, C01B 37/00

(21) Anmeldenummer: 98110481.3

(22) Anmeldetag: 08.06.1998

(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

- Markowz, Georg
64791 Karlstein (DE)
- Viandt, Mathias
55131 Mainz (DE)
- Roland, Eckehart, Dr.
10530 Hartsdale, NY (US)
- Thiele, Georg, Dr.
63452 Hanau (DE)
- Goor, Gustaaf, Dr.
63457 Hanau (DE)
- Möller, Alexander, Dr.
63571 Gelnhausen (DE)

(30) Priorität: 23.07.1997 DE 19731627

(71) Anmelder:
Degussa Aktiengesellschaft
60311 Frankfurt (DE)

(72) Erfinder:
• Hasenzahl, Steffen, Dr.
63477 Maintal (DE)

(54) **Granulate, enthaltend Titansilikat-1**

(57) Granulate, enthaltend Titansilikat-1, sind aus Siliciumdioxid, Titandioxid und Titansilikat-1-Kristallen zusammengesetzt.

Die Granulate können hergestellt werden, indem man die Kristallisationssuspension sprühtrocknet oder

sprühgranuliert.

Die Granulate können als Suspensions-Katalysatoren, z. B. bei der Epoxidierung von Olefinen mittels Wasserstoffperoxid verwendet werden.

Fig. 3

Beschreibung

Die Erfindung betrifft Granulate, enthaltend Titansilikat-1, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung als Katalysator.

5 Titansilikat-1 ist aus dem US-Patent 4,410,501 bekannt. Er ist ein effizienter Katalysator bei der Oxidation verschiedener organischer Substrate mit Wasserstoffperoxid, wie zum Beispiel bei der Epoxidierung von Olefinen (EP 1 100119), der Ammoniumierung von Carbonylverbindungen (EP 0 267 362) und der Hydroxilierung von Aromaten (US 4,396,783). Die katalytische Aktivität verschiedener Titansilikat-1-Proben hängt neben dem Titangehalt auch von der Größe der Primärkristalle ab (A. J. H. P. van der Pol, Appl. Cat. A 92 (1992) 113). So wird eine Abnahme der katalytischen Aktivität mit zunehmender Größe der Primärkristalle beobachtet.

10 Um eine möglichst hohe katalytische Aktivität in der flüssigen Phase zu erzielen, ist es daher vorteilhaft, Titansilikat-1 mit kleinen Primärkristallen einzusetzen. Auf der anderen Seite ist die Fest-Flüssig-Trennung von kleinen Partikeln, die Durchmesser von wenigen Mikrometern und kleiner aufweisen, in technischen Prozessen relativ aufwendig. Eine Abtrennung und die damit mögliche Wiedergewinnung der Katalysatorpartikel ist wegen ihrer hohen Herstellkosten 15 und des damit verbundenen Wertes erwünscht.

Es ist bekannt, Titansilikat-1 zu agglomerieren, um die Fest-Flüssig-Trennung zu verbessern.

Ein Verfahren zur Agglomeration von Titansilikat-1 bzw. zur Herstellung eines Titansilikat-1-Granulats wird in EP-A 0 200 260, EP-A 0 265 018 und US 5,500,199 beschrieben. Dazu wird zunächst durch Hydrolyse eines Tetraalkylorthosilikats mit einer wäßrigen Lösung von Tetra-n-propylammoniumhydroxid eine wäßrige Lösung von oligomerem Siliciumdioxid und Tetra-n-propylammoniumhydroxid hergestellt. In dieser Lösung werden die Titansilikat-1-Kristalle 20 suspendiert und die erhaltenen Suspensionen anschließend sprühgetrocknet. Dabei sollen kugelförmige Agglomerate mit einem Durchmesser von 5 bis 1000 µm entstehen. Sie setzen sich aus Titansilikat-1-Kristallen und oligomerem Siliciumdioxid zusammen, wobei die Zeolithkristalle "mittels Si-O-Si-Bindungen eingeschlossen" sein sollen. Andere Siliciumdioxid-Quellen als Tetraalkylorthosilikate, wie kolloidales Siliciumdioxid oder Natriumsilikate, führen zu Produkten 25 geringerer Qualität (EP-A 0 200 260). Für die Zusammensetzung des Katalysators wird in EP-A 0 200 260 ein Molverhältnis von oligomerem Siliciumdioxid zu Titansilikat-1 von 0,05 bis 0,11 angegeben. In EP-A 0 265 018 und US-A 5,500,199 wird ein Masserverhältnis des oligomeren Siliciumdioxids zu Titansilikat-1 von 5 : 95 bis 20 : 80 angegeben, entsprechend einem SiO₂-Gehalt von 5 bis 20 Gew.-%.

30 Die gemäß dem bekannten Verfahren hergestellten Titansilikat-1-Granulate weisen schwerwiegende Nachteile auf. So zeigen gemäß US-A 5,500,199, Beispiel 8 hergestellte Titansilikat-1-Granulate (siehe Beispiel 1 dieser Anmeldung) in Oxidationsreaktionen mit Wasserstoffperoxid, wie zum Beispiel der Epoxidierung von Propen, eine im Vergleich zum nicht granulierten Titansilikat-1-Pulver deutlich geringere Aktivität (siehe Beispiel 2 dieser Anmeldung). Auf 35 den REM-Aufnahmen dieses Materials (siehe Figur 1) ist zu erkennen, daß die agglomerierten Titansilikat-1-Kristalle von einer relativ kompakten katalytisch inaktiven Schicht überzogen sind. Dadurch ist die Zugänglichkeit der Zeolithkristalle für die Reaktanten herabgesetzt. Die Folge ist eine verminderte katalytische Aktivität. Außerdem liegen beträchtliche Anteile der Agglomerate in Form von schalenartigen oder kugelförmigen Bruchstücken vor. An den jeweiligen Bruchkanten findet ein deutlich erhöhter mechanischer Abrieb statt.

40 Das bekannte Verfahren zur Herstellung von Titansilikat-1-Granulaten weist zusätzlich eine Reihe von Nachteilen auf:

- Die Abtrennung der bei der Kristallisation gebildeten Titansilikat-1-Kristalle von der Mutterlauge ist wegen ihrer geringen mittleren Größe von kleiner als einem Mikrometer sehr aufwendig.
- Die Mutterlauge enthält Reste an nicht umgesetztem Tetrapropylammoniumhydroxid und muß entsorgt werden. Dies ist mit hohen Kosten verbunden.
- Für die Herstellung der Suspension des als Binder wirkenden „oligomeren Siliciumdioxids“ werden zusätzliche Mengen der teuren Rohstoffe Tetraethylorthosilikat und Tetrapropylammoniumhydroxid benötigt.

50 Aufgabe der Erfindung sind Granulate, die Titansilikat-1 enthalten und die Nachteile der bekannten Granulate nicht aufweisen, sowie ein einfaches und wirtschaftliches Verfahren zur Herstellung der Titansilikat-1 enthaltenden Granulate.

Gegenstand der Erfindung sind Granulate, enthaltend Titansilikat-1, welche dadurch gekennzeichnet sind, daß 55 sie aus Titansilikat-1-Kristallen, Siliciumdioxid und Titan dioxide zusammengesetzt sind.

Der Gehalt an Siliciumdioxid kann von 1 bis 50 Gew.-%, bevorzugt von 1 bis 20 Gew.-% und der Gehalt an Titan dioxide von 0,01 bis 5 Gew.-%, bevorzugt von 0,05 bis 1 Gew.-% betragen. Sowohl das Siliciumdioxid als auch das Titan dioxide können amorph oder kristallin sein.

In einer Ausführungsform der Erfindung können die Titansilikat-1 enthaltenden Granulate mittels Sprühtrocknung hergestellt werden.

Die durch Sprühtrocknung hergestellten Titansilikat-1-Granulate sind aus Titansilikat-1-Kristallen, Siliciumdioxid und Titandioxid zusammengesetzt, wobei der Gehalt an Siliciumdioxid zwischen 1 und 5 Gew.-% und der Gehalt an Titandioxid zwischen 0,05 und 1 Gew.-% liegen kann. Die mittels Sprühtrocknung hergestellten Granulate können einen Durchmesser zwischen 5 - 300 µm aufweisen und teilweise hohl sein.

In einer weiteren Ausführungsform können die erfindungsgemäßen Granulate mittels Wirbelschicht-Sprühgranulationstrocknung hergestellt werden.

Die durch Wirbelschicht-Sprühgranulationstrocknung hergestellten Titansilikat-1-Granulate sind aus Titansilikat-1-Kristallen, Siliciumdioxid und Titandioxid zusammengesetzt, wobei der Gehalt an SiO₂ zwischen 1 und 20 Gew.-% und der Gehalt an TiO₂ zwischen 0,05 und 1 Gew.-% liegen kann. Die mittels Wirbelschicht-Sprühgranulationstrocknung hergestellten Granulate können einen Durchmesser von 5 - 500 µm aufweisen und überwiegend kompakt sein.

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Titansilikat-1 enthaltenden Granulaten, welches dadurch gekennzeichnet ist, daß man ein Synthesegel, welches eine SiO₂-Quelle, eine TiO₂-Quelle, eine Tetra-n-propylammoniumionen enthaltende Verbindung, eine Base und Wasser enthält, unter hydrothermalen Bedingungen kristallisiert, die dabei entstehende Titansilikat-1-Suspension, gegebenenfalls nach Aufkonzentrieren und/oder Zusatz weiterer Stoffe, einer Sprühtrocknung oder einer Wirbelschicht-Sprühgranulationstrocknung unterzieht und das so gebildete Titansilikat-1-Granulat bei einer Temperatur zwischen 400 und 1000°C, vorzugsweise von 500 und 750°C kalziniert.

Als Rohstoffe für die Herstellung des Synthesegels, aus dem unter hydrothermalen Bedingungen Titansilikat-1 kristallisiert, können beispielsweise verwendet werden: Tetraalkylorthosilikat (US 4,410,501; DE-A 196 23 972.9), Aerosil (DE-A 196 23 972.9) als SiO₂-Quelle;

Tetraalkylorthotitanat (US 4,410,501; DE-A 196 41 782.1), Titan(III)chlorid (Gao, J. Chem. Soc., Chem. Commun. 1995, 835; DE-A 196 23 972.9), Titan(IV)fluorid (Tuel, EP 0 665 188), Titan(IV)oxychlorid (EP 0 200 260) als TiO₂-Quelle;

SiO₂-TiO₂-Kopräzipitate (EP 0 311 983), pyrogenen Si-Ti Mischoxide (DE-A 196 24 340.8) als kombinierte SiO₂- und TiO₂-Quelle;

Tetra-n-propylammoniumhydroxid (US 4,410,501), Tetra-n-propylammoniumbromid (Müller, stud. Surf. Sci. Catal. 84 (1994) 203) als Templat;

Tetra-n-propylammoniumhydroxid (US 4,410,501), Ammoniak (Müller, stud. Surf. Sci. Catal. 84 (1994) 203), 1,6-Diaminohexan (Tuel, Zeolithes 16 (1996) 108) als Base.

Bei der Herstellung des Synthesegels kann eine SiO₂-Quelle, eine TiO₂-Quelle, eine Tetra-n-propyl-ammoniumionen enthaltende Verbindung und eine Base in Wasser gelöst, suspendiert bzw. zur Reaktion gebracht werden, wobei dieser Schritt bei einer Temperatur zwischen -10°C und 100°C, vorzugsweise jedoch zwischen 0 und 60°C durchgeführt werden kann. Die bei der Verwendung von Tetraalkylorthosilikaten und/oder Tetraalkylorthotitanaten freiwerdenden Alkohole können anschließend destillativ abgetrennt werden. Nach einer gegebenenfalls durchzuführenden Alterung des Gels kann die Kristallisation bei einer Temperatur zwischen 100 und 200°C, vorzugsweise zwischen 160 und 185°C, unter autogenem Druck erfolgen. Die Kristallisationsdauer kann zwischen 1 Stunde und 10 Tagen, vorzugsweise zwischen 1 und 24 Stunden betragen.

In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens kann man den Feststoffgehalt der Titansilikat-1-Suspension vor der Sprühtrocknung oder der Wirbelschicht-Sprühgranulationstrocknung erhöhen. Dazu kann man beispielsweise die nach der Kristallisation erhaltene Titansilikat-1-Suspension teilen und aus einem Teil der Suspension den Feststoff durch kuchenbildende Filtration, Zentrifugation oder andere geeignete Verfahren abtrennen. Den Filterkuchen oder das Sediment kann man anschließend, gegebenenfalls nach einem Waschschnitt, in dem verbliebenen Teil der Titansilikat-1-Suspension suspendieren. Um die Abtrennung des Feststoffes zu erleichtern, kann man der Titansilikat-1-Suspension geeignete Flockungshilfsmittel, wie z. B. Praestol 187 K (Fa. Stockhausen GmbH & Co. KG), oder Säuren, wie z. B. Salzsäure oder Essigsäure, zusetzen. Den Feststoffgehalt der Titansilikat-1-Suspension kann man auch durch Eindampfung, vorzugsweise unter verminderterem Druck, oder Cross-Flow-Filtration erhöhen.

Die für die Sprühtrocknung oder Wirbelschicht-Sprühgranulationstrocknung eingesetzte Titansilikat-1-Suspension, die gegebenenfalls nach einem der zuvor beschriebenen Verfahren aufkonzentriert werden kann, kann einen Feststoffgehalt zwischen 5 und 600 g/l, vorzugsweise zwischen 100 und 500 g/l aufweisen, wobei sich der Feststoffgehalt auf das bei 550°C kalzinierte Material bezieht. Der Gehalt an gelösten Silikaten kann zwischen 0,05 und 150 g/l, vorzugsweise zwischen 5 und 60 g/l, und der pH-Wert über 7,0 liegen. Die Suspension kann außerdem zwischen 0,05 und 15 g/l gelöste Titanate enthalten. Der Titansilikat-1-Suspension können außerdem Bindehilfsstoffe oder Porenbildner, wie zum Beispiel Tetraalkylorthosilikat, Kieselgel, pyrogene Kieselsäure (Aerosil), Tetra-n-propylammoniumhydroxid, Tylose, Pentaerythrit usw. zugesetzt werden.

Zur erfindungsgemäßen Herstellung von Titansilikat-1-Granulaten aus Suspensionen kommen insbesondere die Sprühtrocknung (R. Herbener, Chem.-Ing.-Tech. 59 (1987) 112) und die Wirbelschicht-Sprühgranulationstrocknung,

die gegebenenfalls kontinuierlich durchgeführt werden kann, in Betracht (H. Uhlemann, Chem.-Ing.-Tech. 62 (1990) 822). Diesen Methoden gemeinsam ist die Verdampfung der Suspensionsflüssigkeit und die Formgebung in einem Verfahrensschritt unter Ausnutzung eines intensiven Wärme- und Stoffaustauschs. Die für die Verdampfung erforderliche Energiezufuhr erfolgt dabei jeweils über einen heißen Luft- oder Inertgasstrom.

5 Beim erfindungsgemäßen Verfahren kann die nach der Hydrothermalsynthese gebildete Titansilikat-1-Suspension, vorzugsweise nach Aufkonzentrieren des Feststoffes, versprührt werden. Als Bindemittel wirken in der Titansilikat-1-Suspension enthaltene echt oder kolloidal gelöste Silikate und Titanate. Die Titansilikat-1-Kristalle liegen dabei in einer reaktiven Form vor, da ihre Oberfläche reich an Si-OH-Gruppen ist. Dies begünstigt die Bildung stabiler chemischer Bindungen mit den Silikaten und Titanaten nach der Eliminierung von Wasser.

10 Bei der Sprühtrocknung wird die Suspension zunächst in feine Tröpfchen, die anschließend im Trocknungsgasstrom fluidisiert und getrocknet werden, zerteilt. Die während der Trocknung entstehenden Kugeln sind oftmals hohl, da die Verfestigung der Partikeln von außen nach innen erfolgt. Die Partikelbemessungen variieren insbesondere mit der Größe der gebildeten Sprühtröpfen und dem Feststoffanteil in der Suspension. Als Zerstäubungsvorrichtung eignen sich beispielsweise 1-Stoff-Druckdüsen, 2-Stoff-Zerstäuberdüsen oder Rotationszerstäuber. Die Eintrittstemperatur 15 des Trägergases kann zwischen 200 und 700°C, vorzugsweise zwischen 300 und 500°C, die Austrittstemperatur des Trägergases kann zwischen 50 und 200°C, vorzugsweise zwischen 90 und 160°C liegen. Das Trocknungsgas und die Sprühtrocknung können im Gleich- oder Gegenstrom geführt werden.

20 Bei der Wirbelschicht-Sprühgranulationstrocknung, die auch kontinuierlich betrieben werden kann, werden die erzeugten Sprühtröpfen in eine Wirbelschicht aus bereits weitgehend getrockneten Partikeln eingebbracht. Trifft ein Sprühtröpfen auf ein Partikel, dann verteilt sich die Flüssigkeit und mit ihr der suspendierte und/oder gelöste Feststoff 25 auf der Partikeloberfläche. Anschließend verdampft die Tropfenflüssigkeit und zurückbleibt eine dünne Feststoffsicht auf der Oberfläche. Durch Wiederholung dieser Vorgänge werden die Partikel in der Wirbelschicht schalenartig aufgebaut. Anders als bei der Sprühtrocknung bilden die mittels der Wirbelschicht-Sprühgranulationstrocknung auf kompakten Keimvorlagen aufgebauten Partikel Vollkörper. Als Keimvorlage können bevorzugt nach dem erfindungsgemäßen 30 Verfahren hergestellte Titansilikat-1-Granulate, die vorher auf eine geeignete Korngröße vermahlen werden können, eingesetzt werden. Als Keimvorlage können auch andere Materialien, wie z. B. SiO_2 , Al_2O_3 , TiO_2 , ZrO_2 oder die entsprechenden Mischoxide sowie Mischungen dieser Substanzen, Tone und natürliche Silikate, Zeolithe, wie z. B. ZSM-5, dealuminierter Y-Zeolith usw. eingesetzt werden. Ein- und Austrittstemperaturen des Trocknungsgases liegen in den selben Bereichen wie bei der Sprühtrocknung.

35 Die nach einem der erfindungsgemäßen Trocknungsverfahren enthaltenen Granulate können anschließend bei einer Temperatur zwischen 400 und 1000°C, vorzugsweise zwischen 500 und 750°C, kalziniert werden. Die Kalzination kann in einer Inertgas-Atmosphäre, vorzugsweise in einer Stickstoff-Atmosphäre, oder in Luftatmosphäre durchgeführt werden. In einer bevorzugten Ausführungsform können die Granulate zunächst in einer Stickstoffatmosphäre kalziniert werden. Es kann dann graduell auf Luftatmosphäre umgeschaltet werden. Die mechanische Stabilität der Titansilikat-1-Granulate nimmt im bevorzugten Temperaturbereich zwischen 500 und 750°C mit steigender Temperatur zu, während die katalytische Aktivität nicht nachteilig beeinflußt wird.

40 Die erfindungsgemäßen Titansilikat-1-Granulate bestehen aus Titansilikat-1-Kristallen, Siliciumdioxid und Titandioxid. Dabei wirken Siliciumdioxid und Titandioxid, die sowohl amorph als auch in kristalliner Form vorliegen können, als Bindemittel zwischen den Titansilikat-1-Kristallen. Siliciumdioxid und Titandioxid entstehen während des Granulationsprozesses und dem darauffolgenden Kalzinerschritt aus den Silikaten und Titanaten, die in der eingesetzten Titansilikat-1-Suspension echt oder kolloidal gelöst sind. Die Zusammensetzung der Titansilikat-1-Granulate kann bei Kenntnis der Zusammensetzung der für die Granulation eingesetzten Titansilikat-1-Suspension leicht berechnet werden. Werden für die durch Wirbelschicht-Sprühgranulationstrocknung hergestellten Titansilikat-1-Granulate 45 andere Materialien als Titansilikat-1 als Keimvorlage verwendet, so können die Granulate noch weitere Elemente, wie zum Beispiel Aluminium, Zirkon, Alkali- oder Erdalkalimetalle, enthalten.

Der Durchmesser der erfindungsgemäßen Titansilikat-1-Granulate liegt zwischen 5 und 500 µm. Durch Sprühtrocknung hergestellte Granulate können dabei teilweise hohl sein, während durch Wirbelschicht-Sprühgranulations-trocknung hergestellte Granulate überwiegend kompakt sind.

50 Die erfindungsgemäßen Granulate zeichnen sich, auch bei geringem Gehalt an Siliciumdioxid und Titandioxid (kleiner als 5 Gew.-%), durch eine hohe mechanische Stabilität aus. So zeigen die REM-Aufnahmen erfindungsgemäßiger Titansilikat-1-Granulate (Figuren 2,4 und 6) vorwiegend intakte Agglomerate, während man bei den nach dem Stand der Technik hergestellten Granulaten überwiegend stark beschädigte Agglomerate beobachtet (Figur 1). Mechanisch besonders stabil sind solche Granulate, die aus dickwandigen oder kompakten Agglomeraten bestehen. Auf Grund 55 der im Vergleich zum Siliciumdioxid geringen Löslichkeit des Titandioxids in Wasser, ist die Stabilität der erfindungsgemäßen Titansilikat-1-Granulate in wasserhaltigen Reaktionsmedien deutlich höher als die von Granulaten nach dem Stand der Technik, bei denen nur oligomeres Siliciumdioxid als Binder wirkt. Im Widerspruch zur Literatur (vgl. z.B. Notari, Advances in Catalysis, 41 (1995) 253) haben wir dabei keinen nachteiligen Einfluß des Titandioxids auf die katalytische Aktivität der Titansilikat-1-Granulate festgestellt.

Die erfindungsgemäßen Titansilikat-1-Granulate besitzen eine hohe katalytische Aktivität. Der Grund dafür ist, daß die agglomerierten Titansilikat-1-Kristalle nur von einer dünnen Schicht von katalytisch inaktivem Siliciumdioxid und Titandioxid überzogen sind, wie auf den REM-Aufnahmen solcher Materialien zu erkennen ist. Enthalten die Granulate weniger als 5 Gew.-% Siliciumdioxid- und Titandioxidegehalt, so lassen die REM-Aufnahmen überhaupt keine solche Schicht auf den Titansilikat-1-Kristallen erkennen. Im Unterschied zu den Granulaten nach dem Stand der Technik ist bei den erfindungsgemäßen Granulaten die Zugänglichkeit der Titansilikat-1-Kristalle für die Reaktanden daher nicht oder nur geringfügig herabgesetzt.

Die erfindungsgemäßen Titansilikat-1-Granulate sind insbesondere als Suspensionskatalysatoren geeignet. Sie können beispielsweise bei der Epoxidierung von Olefinen mittels Wasserstoffperoxid, vorzugsweise der Epoxidierung von Propen mittels Wasserstoffperoxid, der Hydroxilierung von Aromaten mittels Wasserstoffperoxid, der Ammoniumierung von Carbonylverbindungen mittels Wasserstoffperoxid und Ammoniak und bei der Oxidation von sekundären Alkoholen mittels Wasserstoffperoxid zu Ketonen eingesetzt werden.

Das erfindungsgemäße Verfahren zur Herstellung von Titansilikat-1-Granulaten hat gegenüber dem Stand der Technik den Vorteil, daß sich eine Abtrennung der Titansilikat-1-Kristalle aus der bei der Hydrothermalsynthese gebildeten Suspension, beispielsweise durch Filtration oder Zentrifugation, erübrigt. Außerdem fällt keine Mutterlauge, die noch Reste an nicht umgesetztem Tetra-n-propylammonium-hydroxid enthält, an. Die kostenaufwendige Entsorgung ist daher nicht mehr notwendig. Weiterhin entfallen die folgenden Verfahrensschritte: die Herstellung einer Lösung von oligomerem Siliciumdioxid und Tetra-n-propylammoniumhydroxid aus Tetraalkylorthosilikat und einer wäßrigen Lösung von Tetra-n-propylammoniumhydroxid sowie die anschließende Suspendierung des Titansilikat-1-pulvers in dieser Lösung. Außerdem wird kein zusätzliches Tetraethylorthosilikat und Tetrapropylammoniumhydroxid für den Granulationsgeschritt verbraucht. Aus diesen Gründen ist das erfindungsgemäße Verfahren erheblich einfacher, effizienter und kostengünstiger.

Beispiele:

25 Beispiel 1: Herstellung eines Titansilikat-1-Sprühgranulats (Vergleichsbeispiel)

Ein Titansilikat-1-Sprühgranulat wird, wie in US-Patent 5.500.199, Beispiel 8 beschrieben, hergestellt:

Es werden in einem Becherglas zu 35,6 g einer Tetrapropylammoniumhydroxid-Lösung (40 Gew.-%) und 83,1 g 30 entionisiertem Wasser unter kräftigem Rühren 111,2 g Tetraethylorthosilikat zugegeben. Diese Mischung wird eine Stunde bei 60°C gerührt. Nach Zugabe von 487,0 g entionisiertem Wasser wird eine weitere Stunde gerührt. In die klare Lösung werden dann 300 g eines zentrifugierten, gewaschenen und bei 550°C kalzinierten Titansilikat-1-Pulvers (chemische Zusammensetzung: 97,2 Gew.% SiO₂ und 2,7 Gew.% TiO₂) dispergiert. Die so hergestellte Titansilikat-1-Suspension wird über einen Sprühtrockner (NIRO-Atomizer Modell 1638; Eintrittstemperatur 380°C; Austrittstemperatur 103°C; Rotationsgeschwindigkeit der Zerstäuberscheibe 16000 min⁻¹) getrocknet. Der erhaltene Feststoff wird bei 550°C zwei Stunden in Stickstoff-Atmosphäre und anschließend zwei Stunden in Luftatmosphäre kalziniert. Die Ausbeute beträgt 259,2 g, wobei die Verluste durch Anbackungen an den Wänden des Sprühtrockners und Austrag nicht berücksichtigt werden.

Die chemische Zusammensetzung des so erhaltenen Produktes ist 97,4 Gew.% SiO₂ und 2,65 Gew.% TiO₂.

Aus den eingesetzten Mengen an Titansilikat-1 und Tetraethylorthosilikat (TEOS) kann die Zusammensetzung des so hergestellten TS-1-Granulats berechnet werden:

Gehalt an Titansilikat-1 :

90,3 Gew.-%

45 Gehalt an Siliciumdioxid:

9,7 Gew.-%

Daraus kann die erwartete chemische Zusammensetzung des Granulats berechnet werden:

$$50 \quad \text{SiO}_2\text{-Gehalt} = [m(\text{SiO}_2) + m(\text{TS-1}) \times y(\text{SiO}_2)] / [m(\text{SiO}_2) + m(\text{TS-1})] \\ = [32,1g + (300,0g \times 0,972)] / [(32,1 + 300,0 g)] = 97,47 \%$$

$$55 \quad \text{TiO}_2\text{-Gehalt} = [m(\text{TS-1}) \times y(\text{TiO}_2)] / [m(\text{SiO}_2) + m(\text{TS-1})] \\ = (300,0 g \times 0,027) / (32,1 g + 300,0g) = 2,44 \%$$

Es bedeuten:

m(SiO₂)= Masse an oligomerem SiO₂ in g, gebildet durch die Hydrolyse von TEOS.
 m(TS-1)= Masse Titansilikat-1 in g.
 y(SiO₂)= SiO₂-Gehalt des Titansilikat-1-Pulvers in Gew.-%,
 y(TiO₂)= TiO₂-Gehalt des Titansilikat-1-Pulvers in Gew.-%

5 Die so berechneten Erwartungswerte stimmen mit den experimentell bestimmten recht gut überein.

Die Rasterelektronenmikroskop-Aufnahme des Titansilikat-1-Sprühgranulats (Figur 1) zeigt, daß dieses aus 10 bis 75 µm großen Hohlkugeln, von denen ein erheblicher Teil zerbrochen ist, besteht. Bei 10 000 facher Vergrößerung erkennt man, daß die etwa 0,3 µm großen Titansilikat-1-Kristalle von einer kompakten, amorphen Schicht überzogen sind.

Beispiel 2: Anwendungsbeispiel zur Epoxidierung von Propylen mit Wasserstoffperoxid

10 g des gemäß Beispiel 1 hergestellten Titansilikat-1-Granulats werden zwei Stunden mit 100 ml einer 1,0 N Ammoniumacetatlösung bei 80°C behandelt, anschließend mit entionisiertem Wasser gewaschen, getrocknet und fünf Stunden bei 550°C in Luftatmosphäre kalziniert. In einem thermostatisierten Laborautoklav mit Begasungsrührer werden dann 1,0 g dieses so behandelten Materials in 300 ml Methanol bei 40°C unter Propylenatmosphäre vorgelegt und das Lösungsmittel bei 3 bar Überdruck mit Propylen gesättigt. Dann werden unter Rühren 13,1 g 30 Gew.% wäßrige Wasserstoffperoxidlösung in einer Portion zugegeben und die Reaktionsmischung bei 40°C und 3 bar gehalten, wobei über einen Druckregler Propylen nachdosiert wird, um den Verbrauch durch die Reaktion auszugleichen. In regelmäßigen Abständen werden über ein Filter Proben entnommen und der Wasserstoffperoxidgehalt der Reaktionsmischung durch Redoxtitration mit Cer(IV)sulfat-Lösung bestimmt. Die Auftragung von ln(c/c₀) gegen die Zeit t, wobei c die gemessene H₂O₂-Konzentration zum Zeitpunkt t und c₀ die berechnete H₂O₂-Konzentration zu Beginn der Reaktion ist, ergibt eine Gerade. Aus der Steigung der Geraden wird mit der Beziehung

25

$$\frac{dc}{dt} = k \cdot c \cdot c_{\text{kat}}$$

30 worin c_{kat} für die

Katalysatorkonzentration in kg Katalysator je kg Reaktionsmischung steht, die Aktivitätskennzahl k zu 26,0 min⁻¹ bestimmt.

In einem zweiten Experiment wird die Aktivitätskennzahl des gemäß Beispiel 1 hergestellten unverformten Titansilikat-1-Pulvers bestimmt. Sie beträgt 31,3 min⁻¹. Der Aktivitätsverlust durch die Granulation beträgt somit 17,0 %.

35

Beispiel 3: Herstellung eines Titansilikat-1-Sprühgranulats

Ein Gel zur Synthese von Titansilikat-1 wird in Anlehnung an US-Patent 4,410,501, Beispiel 1, hergestellt und drei Stunden bei 175°C unter autogenem Druck kristallisiert. Die nach der Hydrothermalsynthese erhaltenen Suspension wird geteilt.

Durch Zentrifugieren wird von 3,0 l dieser Suspension der Feststoff abgetrennt, mit entionisiertem Wasser gewaschen, bei 105°C über Nacht getrocknet und in Luftatmosphäre fünf Stunden bei 550°C kalziniert. Die Ausbeute an Titansilikat-1 beträgt 334,7 g, entsprechend einem Feststoffgehalt in der Suspension von 111,6 g/l. Die chemische Zusammensetzung des Produktes ist 2,7 Gew.% TiO₂ und 97,3 Gew.% SiO₂. Um den Gehalt an gelöstem SiO₂ und TiO₂ in der Mutterlauge zu bestimmen, wird das noch schwach trübe Zentrifugat über einen 0,2 µm Membranfilter filtriert. Die anschließende Analyse des Filtrats ergibt einen SiO₂-Gehalt von 12,8 g/l und einen TiO₂-Gehalt von 0,70 g/l.

Weitere drei Liter der oben genannten Titansilikat-1-Suspension werden über einen Sprührohr (NIRO-Atomizer Modell 1638; Eintrittstemperatur 380°C; Austrittstemperatur 95 - 98°C; Rotationsgeschwindigkeit der Zerstäuberscheibe 13000 - 14800 min⁻¹) getrocknet. Der erhaltene Feststoff wird zunächst bei 550°C zwei Stunden in Stickstoff-Atmosphäre und anschließend zwei Stunden in Luftatmosphäre kalziniert. Die Ausbeute an Feststoff beträgt 259,2 g, wobei die Verluste durch Anbackungen an den Wänden des Sprührohrs oder Austrag nicht berücksichtigt werden. Die chemische Zusammensetzung des so hergestellten Produktes beträgt 97,0 Gew.% SiO₂ und 2,95 Gew.% TiO₂.

Aus dem Feststoffgehalt sowie dem Gehalt an gelöstem SiO₂ und TiO₂ der für die Sprührohrung eingesetzten Titansilikat-1-Suspension folgt für die Zusammensetzung des daraus hergestellten Titansilikat-1-Sprühgranulats:

55

Gehalt an Titansilikat-1 : 89,2 Gew.-%
 Gehalt an Siliciumdioxid : 10,2 Gew.-%
 Gehalt an Titandioxid : 0,6 Gew.-%

EP 0 893 158 A1

Die erwartete chemische Zusammensetzung des Titansilikat-1-Granulats kann folgendermaßen berechnet werden:

$$\begin{aligned} \text{SiO}_2\text{-Gehalt} &= [m(\text{SiO}_2) + m(\text{TS-1}) \times y(\text{SiO}_2)]/[m(\text{SiO}_2) + m(\text{TS-1})] \\ &= [38,4 \text{ g} + (334,7 \text{ g} \times 0,972)]/(38,4 \text{ g} + 334,7 \text{ g}) = 96,94\% \end{aligned}$$

$$\begin{aligned} \text{TiO}_2\text{-Gehalt} &= [m(\text{TiO}_2) + m(\text{TS-1}) \times y(\text{TiO}_2)]/[m(\text{SiO}_2) + m(\text{TiO}_2) + m(\text{TS-1})] \\ &= [2,1 \text{ g} + (334,7 \text{ g} \times 0,027)]/(38,4 \text{ g} + 2,1 \text{ g} + 334,7 \text{ g}) = 2,97\% \end{aligned}$$

10

Es bedeuten:

m(SiO₂) = Masse an SiO₂ in g
m(TiO₂) = Masse an TiO₂ in g,
15 m(TS-1) = Masse Titansilikat-1 in g
y(SiO₂) = SiO₂-Gehalt des Titansilikat-1-Pulvers in Gew.-%
y(TiO₂) = TiO₂-Gehalt des Titansilikat-1-Pulvers in Gew.-%

Die berechneten Werte stimmen gut mit den experimentell bestimmten Werten überein.

20 Die Rasterelektronenmikroskop-Aufnahme des Titansilikat-1-Sprühgranulats (Figur 2) zeigt, daß dieses aus 5-60 µm großen, überwiegend kugelförmigen Agglomeraten besteht. Nur ein kleiner Teil der Agglomerate ist nicht intakt. Bei 10 000 facher Vergrößerung erkennt man, daß die etwa 0,3 µm großen Titansilikat-1-Kristalle von einer dünnen amorphen Schicht überzogen sind. Eine Dünnschnitt-Aufnahme (Figur 3) zeigt, daß die meisten Partikel hohl sind.

25 Beispiel 4: Anwendungsbeispiel zur Epoxidierung von Propylen mit Wasserstoffperoxid

Beispiel 2 wird mit dem gemäß Beispiel 3 hergestellten Titansilikat-1-Granulat durchgeführt. Die Aktivitätskennzahl beträgt 30,9 min⁻¹. In einem zweiten Experiment wird die Aktivitätskennzahl des in Beispiel 3 hergestellten unverformten Titansilikat-1-Pulvers bestimmt. Sie beträgt 31,3 min⁻¹. Der Aktivitätsverlust durch die Granulation beträgt somit 1,3 %.

Beispiel 5: Herstellung eines Titansilikat-1-Sprühgranulats mit angereicherter Titansilikat-1-Suspension

Der Feststoff von 6,0 l einer gemäß Beispiel 3 hergestellten Titansilikat-1-Suspension wird durch Zentrifugieren abgetrennt. Der noch feuchte Filterkuchen wird dann in 2,05 l dieser Titansilikat-1-Suspension suspendiert. Der Gehalt an Titansilikat-1 in der so hergestellten Suspension wird wie in Beispiel 3 bestimmt und beträgt 403,6 g/l (bezogen auf den kalzinierten Feststoff). Der SiO₂- und TiO₂-Gehalt der über ein 0,2 µm Membranfilter filtrierten Mutterlauge betragen 12,6 g/l SiO₂ und 0,69 g/l TiO₂. 2,25 l der so hergestellten Titansilikat-1-Suspension werden, wie in Beispiel 3 beschrieben, über einen Sprühtrockner getrocknet und anschließen kalziniert.

40 Die chemische Zusammensetzung des so hergestellten Produktes beträgt 97,1 Gew.% SiO₂ und 2,83 Gew.% TiO₂. Aus dem Feststoffgehalt sowie dem Gehalt an gelöstem SiO₂ der für die Sprühtrocknung eingesetzten Titansilikat-1-Suspension ergibt sich für die Zusammensetzung des daraus hergestellten Titansilikat-1-Sprühgranulats:

Gehalt an Titansilikat-1 : 96,8 Gew.-%
45 Gehalt an Siliciumdioxid : 3,0 Gew.-%
Gehalt an Titandioxid : 0,2 Gew.-%

50 Die Rasterelektronenmikroskop-Aufnahme des Titansilikat-1-Sprühgranulats (Figur 4) zeigt, daß dieses aus 5-65 µm großen kugelförmigen, überwiegend intakten Agglomeraten besteht. Bei 10 000 facher Vergrößerung erkennt man keine amorphe Schicht auf den etwa 0,3 µm großen Titansilikat-1-Kristallen. Die Dünnschnitt-Aufnahme (Figur 5) zeigt außerdem, daß die Agglomerate überwiegend kompakt sind.

Beispiel 6: Anwendungsbeispiel zur Epoxidierung von Propylen mit Wasserstoffperoxid

55 Beispiel 2 wird mit dem gemäß Beispiel 5 hergestellten Titansilikat-1-Granulat wiederholt. Die Aktivitätskennzahl des Titansilikat-1-Granulats beträgt 29,0 min⁻¹, die des unverformten Titansilikat-1-Pulvers 29,6 min⁻¹. Der Aktivitätsverlust durch die Granulation beträgt somit 2 %.

Beispiel 7: Herstellung eines Titansilikat-1-Sprühgranulats mit sngereicherter Titansilikat-1-Suspensi n

30 kg einer in Anlehnung an Beispiel 3 im 300 l-Maßstab hergestellten Titansilikat-1-Suspension werden durch Zugabe von 105 g Flockungsmittel Praestol 187 K (Fa. Stockhausen, Krefeld) geflockt. Anschließend erfolgt eine Abtrennung des Feststoffs mittels Zentrifugation. Das noch feuchte Sediment wird dann in 33 kg der Original-Suspension suspendiert. Der Feststoffgehalt der so hergestellten Suspension wird wie in Beispiel 3 bestimmt und beträgt 182,5 g/l. Der SiO_2 - und TiO_2 -Gehalt der über ein 0,2 μm Membranfilter filtrierten Mutterlauge betragen 13,7 g/l SiO_2 und 0,22 g/l TiO_2 .

Die so hergestellte Titansilikat-1-Suspension wird über einen Sprühtrockner (Modell Anhydro, Typ Lab. 3, Firma APV; Lufteintrittstemperatur 440°C, Luftvolumenstrom 250 m³/h, Luftaustrittstemperatur 140°C, Zerstäuberdruck 3,5 bar; Zweistoffdüse Spraying Systems, Flüssigkeitsdüse Nr. 100 105, Luftpumpe 200 278, 45°) getrocknet. Eine geringe Probenmenge des dabei erzielten Produkts wird anschließend kalziniert.

Die chemisches Zusammensetzung des so hergestellten Produktes beträgt 96,9 Gew.% SiO_2 und 3,1 Gew.% TiO_2 . Aus dem Feststoffgehalt sowie dem Gehalt an gelöstem SiO_2 der für die Sprühtrocknung eingesetzten Titansilikat-1-Suspension ergibt sich für die Zusammensetzung des daraus hergestellten Gehalt anTitansilikat-1-Sprühgranulat:

Gehalt an Titansilikat-1 : 92,9 Gew.-%

Gehalt an Siliciumdioxid : 7,0 Gew.-%

Gehalt an Titandioxid : 0,1 Gew.-%

Die Rasterelektronenmikroskop-Aufnahme des Titansilikat-1-Sprühgranulats (Figur 6) zeigt, daß dieses aus 50 - 70 μm großen Agglomeraten besteht. Bei 10 000 facher Vergrößerung erkennt man, daß die circa 0,3 μm großen Primärkristalle mit einer amorphen Schicht überzogen sind

Beispiel 8: Anwendungsbeispiel zur Epoxidierung von Propylen mit Wasserstoffperoxid

Beispiel 2 wird mit dem in Beispiel 7 hergestellten Granulat wiederholt. Die Aktivitätskennzahl des Titansilikat-1-Granulats beträgt 24,2 min⁻¹, die des unverformten Titansilikat-1-Pulvers 26,9 min⁻¹. Der Aktivitätsverlust durch die Granulation beträgt somit 10,0 %.

Beispiel 9: Herstellung eines Titsnsilikat-1-Wirbelschicht-Sprühgranulats

600 g eines auf eine d_{50} -Wert von 30 μm gemahlenen Titansilikat-1-Granulats mit einem Titansilikat-1-Gehalt von 87,7 Gew.-%, einem SiO_2 -Gehalt von 11,3 Gew.-% und einem TiO_2 -Gehalt von 1,0 Gew.-% werden in einem Laborwirbelschichttrockner mit einer Anströmfläche von 0,027 m² vorgelegt. Der Feststoff wird mit Stickstoff (Eintrittstemperatur 300°C, Austrittstemperatur 120°C, Volumenstrom im Laufe der Granulation zunehmend von 30 bis 37 Normkubikmeter/h) fluidisiert. Eine wie in Beispiel 3 hergestellte Titansilikat-1-Suspension mit einem Feststoffgehalt von 111,6 g/l (bezogen auf das kalzinierte Material), einen SiO_2 -Gehalt von 12,8 g/l und einem TiO_2 -Gehalt von 0,70g/l wird mittels einer 2-Stoffdüse (Schlick Mod. 970/0, Düsenbohrung 0,8 mm, Zerstäubungsluft-Druck 1,8 bar, Suspensionsstrom im Laufe der Granulation zunehmend von ca. 15 bis ca 45 g/min) von oben auf die Wirbelschicht versprüht. Die batchweise betriebenen Wirbelschicht-Sprühgranulationstrocknung wird so lange durchgeführt, bis die Wirbelschichtmenge ca. 530 g beträgt. Verluste an Feststoff durch Austrag aus der Wirbelschicht werden dabei nicht berücksichtigt. Das erhaltene Wirbelschicht-Sprühgranulat wird bei 550°C zwei Stunden in Stickstoff-Atmosphäre und anschließend zwei Stunden in Luftatmosphäre kalziniert.

Die chemische Zusammensetzung des so hergestellten Produktes beträgt 97,1 Gew.% SiO_2 und 3,03 Gew.% TiO_2 . Aus dem Feststoffgehalt sowie dem Gehalt an gelöstem SiO_2 der für die Wirbelschicht-Sprühgranulationstrocknung eingesetzten Titansilikat-1-Suspension folgt für die Zusammensetzung der Schale des daraus hergestellten TS-1-Granulats:

Gehalt an Titansilikat-1 : 89,2 Gew.-%

Gehalt an Siliciumdioxid : 10,2 Gew.-%

Gehalt an Titandioxid : 0,6 Gew.-%

Beispiel 10: Anwendungsbeispiel zur Epoxidierung von Propylen mit Wass rstoffperoxid

Beispiel 2 wird mit dem in Beispiel 9 hergestellten Granulat wiederholt. Die Aktivitätskennzahl des Titansilikat-1-Granulats beträgt 19,4 min⁻¹, die des unverformten Titansilikat-1-Pulvers 19,9 min⁻¹. Der Aktivitätsverlust durch die

Granulation beträgt somit 2,5 %.

Beispiel 11. Herstellung eines Titansilikat-1-Wirbelschicht-Sprühgranulats

Ein Teil des gemäß Beispiel 7 hergestellten, unkalkinierten Titansilikat-Sprühgranulats wird durch Windsichtung und Trockensiebung klassiert. Von der Fraktion mit einem d_{50} -Wert von 45 µm werden 610 g in einem Laborwirbelschichttrockner mit einer Anströmfläche von 0,027 m² vorgelegt. Der Feststoff wird mit Luft (Eintrittstemperatur 300°C, Austrittstemperatur 120°C, Volumenstrom im Laufe der Granulation zunehmend von 32 bis 41 Normkubikmeter/h) fluidisiert. Eine wie in Beispiel 7 aufkonzentrierte Titansilikat-1-Suspension wird mittels einer 2-Stoffdüse (Schlick Mod. 970/0, Düsenbohrung 0,8 mm, Zerstäubungsluft-Druck 1,8 bar, Suspensionsstrom im Laufe der Granulation zunehmend von ca. 18 bis 50 g/min) von oben auf die Wirbelschicht versprüht. Das erhaltene Wirbelschicht-Sprühgranulat wird bei 550°C zwei Stunden in Stickstoff-Atmosphäre und anschließend zwei Stunden in Luftatmosphäre kalziniert. Aus dem Feststoffgehalt sowie dem Gehalt an gelöstem SiO₂ der für die Sprühtrocknung eingesetzten Titansilikat-1-Suspension ergibt sich für die Zusammensetzung des daraus hergestellten Titansilikat-1-Granulats:

Gehalt an Titansilikat-1 : 92,9 Gew.-%
 Gehalt an Siliciumdioxid : 7,0 Gew.-%
 Gehalt an TiO₂ : 0,1 Gew.-%

Beispiel 12: Anwendungsbeispiel zur Epoxidierung von Propylen mit Wasserstoffperoxid

Beispiel 2 wird mit dem in Beispiel 11 hergestellten Granulat wiederholt. Die Aktivitätskennzahl des Titansilikat-1-Granulats beträgt 23,9 min⁻¹, die des unverformten Titansilikat-1-Pulvers 26,9 min⁻¹. Der Aktivitätsverlust durch die Granulation beträgt somit 11 %.

Die REM (Raster Elektronen Mikroskop)-Aufnahmen der in gemäß den Beispielen hergestellten Granulate sind in den Zeichnungen dargestellt.

Es zeigen

Figur 1 das Titansilikat-1-Sprühgranulat gemäß Beispiel 1

Figur 2 das Titansilikat-1-Sprühgranulat gemäß Beispiel 3

Figur 3 eine Dünnschnitt-Aufnahme des Titansilikat-1-Sprühgranulat gemäß Beispiel 3

Figur 4 das Titansilikat-1-Sprühgranulat gemäß Beispiel 5

Figur 5 eine Dünnschnitt-Aufnahme des Titansilikat-1-Sprühgranulat gemäß Beispiel 5

Figur 6 das Titansilikat-1-Sprühgranulat gemäß Beispiel 7

Patentansprüche

1. Granulate, enthaltend Titansilikat-1, dadurch gekennzeichnet, daß sie aus Titansilikat-1-Kristallen, Siliciumdioxid und Titandioxid zusammengesetzt sind.
2. Granulate, enthaltend Titansilikat-1, gemäß Anspruch 1, dadurch gekennzeichnet, daß sie einen Gehalt an Siliciumdioxid von 1 bis 50 Gew.-% und einen Gehalt an Titandioxid von 0,01 bis 5 Gew.-% aufweisen.
3. Granulate, enthaltend Titansilikat-1 gemäß den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß sie mittels Sprühtrocknung hergestellt werden.
4. Granulate, enthaltend Titansilikat-1 gemäß den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß sie mittels Wirbelschicht-Sprühgranulationstrocknung hergestellt werden.
5. Granulate, enthaltend Titansilikat-1, gemäß Anspruch 4, dadurch gekennzeichnet, daß sie Vollkörper darstellen und aus einem Kern und einer Schale bestehen.
6. Granulate, enthaltend Titansilikat-1, gemäß Anspruch 4, dadurch gekennzeichnet, daß der Kern und/oder die

Schale aus Titansilikat-1 besteht.

7. Granulate, enthaltend Titansilikat-1, gemäß Anspruch 4, dadurch gekennzeichnet, daß der Kern aus mindestens einem Stoff aus der Gruppe SiO₂, Al₂O₃, TiO₂, ZrO₂, deren Mischoxide sowie Mischungen dieser Stoffe (Substanzen), Tone, natürliche Silikate, Zeolithe, wie z. B. ZSM-5, dealuminierter Y-Zeolith usw. besteht.
5
8. Granulate, enthaltend Titansilikat-1, gemäß Anspruch 4, dadurch gekennzeichnet, daß der Kern aus sprühgetrockneten und vermahlenen Titansilikat-1-Granulat besteht.
- 10 9. Verfahren zur Herstellung der Titansilikat-1-Granulate gemäß Anspruch 1, dadurch gekennzeichnet, daß man ein Synthesegel, welches eine SiO₂-Quelle, eine TiO₂-Quelle, ein Tetra-n-propylammoniumionen enthaltende Verbindung, eine Base und Wasser enthält, unter hydrothermalen Bedingungen kristallisiert, die dabei entstehende Titan-silikat-1-Suspension, gegebenenfalls nach Aufkonzentrieren und/oder Zusatz weiterer Stoffe, einer Sprühtrocknung oder einer Wirbelschicht-Sprühgranulations-trocknung unterzieht und das so gebildete Titan-silikat-1-Granulat bei einer Temperatur von 400 bis 1000°C, vorzugsweise von 500 bis 750°C kalziniert.
15
10. Verwendung der Granulate gemäß den Ansprüchen 1 bis 8 als Suspensions-Katalysatoren.
11. Verwendung der Granulate gemäß Anspruch 10 bei der Epoxidierung von Olefinen mittels Wasserstoffperoxid.
20
12. Verwendung gemäß Anspruch 10 bei der Hydroxilierung von Aromaten mittels Wasserstoffperoxid.
13. Verwendung gemäß Anspruch 10 bei der Ammoximierung von Carbonylverbindungen mittels Ammoniak und Wasserstoffperoxid.
25
14. Verwendung gemäß Anspruch 10 bei der Oxidation von sekundären Alkoholen mittels Wasserstoff zu Ketonen.

30

35

40

45

50

55

— 100 µm

— 100 µm

Fig. 1a

Fig. 1b

Fig. 2a

Fig. 2b

Fig. 3

Fig. 4-a

Fig. 4b

EP 0 893 158 A1

Fig. 5

X 100

— 100 μm

X 1000

— 10 μm

Fig. 6a

Fig. 6b

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 98 11 0481

EINSCHLÄGIGE DOKUMENTE			
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betrift Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.6)
A	FR 2 471 950 A (SNAM PROGETTI) 26. Juni 1981 * Beispiel 1 * & US 4 410 501 A ---	1,9	B01J29/04 C01B37/00
A,D	EP 0 200 260 A (ENICHEM SINTESI) 5. November 1986 * Beispiel 1 * ---	1,9	
A	DATABASE WPI Section Ch, Week 9239 Derwent Publications Ltd., London, GB: Class B07, AN 92-319278 XP002082780 & JP 04 222627 A (PAURREK KK) , 12. August 1992 * Zusammenfassung * -----	9	
RECHERCHIERTE SACHGEBiete (Int.Cl.6)			
B01J C01B			
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt			
Recherchenart BERLIN	Abschlußdatum der Recherche 30. Oktober 1998	Prüfer Clement, J-P	
KATEGORIE DER GENANNTEN DOKUMENTE			
<input type="checkbox"/> von besonderer Bedeutung allein betrachtet <input type="checkbox"/> von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie <input type="checkbox"/> technologischer Hintergrund <input type="checkbox"/> nichtschriftliche Offenbarung <input type="checkbox"/> Zwischenliteratur		T der Erfindung zugrunde liegende Theorien oder Grundsätze E älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D in der Anmeldung angeführtes Dokument L aus anderen Gründen angeführtes Dokument & Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument	
EPO FORM 1503 03 82 (P04/C03)			