PCA: Genomic

Import data and library

```
library(ggplot2)
data <- read.table("p4dataset2023.txt", header = FALSE, stringsAsFactors = FALSE)</pre>
```

Define data matrix X

```
meta <- data[,c(1:3)] # The first three columns are metadata
raw_data <- data[,-c(1:3)]

# Define a function to find the mode of each column
find_modes <- function(col){
    count <- table(col)
    max_count <- max(count)
    mode <- names(count[count ==max_count])
    return(mode)
}

modes <- sapply(raw_data,find_modes)

# Create a binary matrix X
X <- matrix(0, nrow = nrow(raw_data), ncol = ncol(raw_data))
for(i in 1:ncol(raw_data)){
    X[,i] <- ifelse(raw_data[,i] == modes[i], 0, 1)
}
X <- as.data.frame(X)</pre>
```

Perform PCA on sample covariance matrix of X

```
pca <- prcomp(X, center = TRUE, scale = FALSE)</pre>
```

Plot of PC1 and PC2

Scatter Plot of PC1 and PC2

Interpretation

• From the above scatter plot, the first two principal components PC1 and PC2 preserve the information of geographical location and the proximity of the populations.

Plot of PC1 and PC3

Scatter Plot of PC1 and PC3

Interpretation

• From the above scatter plot, the third principal component PC3 preserve the information related to gender.

Plot of nucleobase index and PC3

Scatter Plot of Nucleobase Index and PC3

Interpretation

- The absolute value of the third principal component PC3 is significantly larger in the latter part of the nucleobase index
- It is possibly because of differences in the number and type of genes on the X and Y chromosomes, and PC3 captures this difference