Modern Sampling Methods

Class 5: Multi-Wave Experiments

January 10, 2022

Outline

- Choice of Propensity Score
- ► Two-Stage Experiment
- ► Adaptive Choice of Propensity Score (based on Hahn, Hirano, & Karlan 2011)

Choice of Propensity Score

Consider a 1-stage experiment or observational study with:

- 1. Unconfoundness: $T_i \perp Y_i(0), Y_i(1) \mid X_i$.
- 2. Overlap: $0 < P(T_i = 1 \mid X_i) < 1 \quad \forall X_i$.

Assume X_i is discrete or discretized.

In experiments, 1 & 2 can be guaranteed by design.

Propensity score: $p(x) = P(T_i = 1 \mid X_i = x)$.

Semiparametric Efficiency Bound

Theorem

(Hahn, 1998) Suppose that \hat{eta} satisfies

$$\sqrt{n}(\hat{\beta}-\beta) \stackrel{d}{\longrightarrow} N(0,V),$$

and is regular. Then its variance satisfies

$$V \geq E\left[\frac{\sigma_1^2(X_i)}{\rho(X_i)} + \frac{\sigma_0^2(X_i)}{1 - \rho(X_i)} + (\beta(X_i) - \beta)^2\right],$$

where

$$\beta(x) = E[Y_i(1) - Y_i(0) | X_i = x],$$

$$\sigma_0^2(x) = Var[Y_i(0) | X_i = x],$$

$$\sigma_1^2(x) = Var[Y_i(1) | X_i = x].$$

An efficient estimator:

Hahn (1998):

$$\hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} (\hat{r}_1(X_i) - \hat{r}_0(X_i)),$$

where $\hat{r}_0(x)$ and $\hat{r}_1(x)$ are nonparametric estimators of

$$r_1(x) = E[Y_i \mid T_i = 1, X_i = x],$$

$$r_0(x) = E[Y_i \mid T_i = 0, X_i = x].$$

Another efficient estimator:

Hirano, Imbens, and Ridder (HIR, 2003):

$$\hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{T_i Y_i}{\hat{p}(X_i)} - \frac{(1-T_i) Y_i}{1-\hat{p}(X_i)} \right),$$

where $\hat{p}(x)$ is a nonparametric estimator of the propensity score.

When X_i is discrete: Hahn and HIR estimators are identical.

Now suppose we can choose p(x) based on knowledge of $\sigma_0(x)$ and $\sigma_1(x)$.

$$\min_{p(\cdot)} E\left[\frac{\sigma_1^2(X_i)}{p(X_i)} + \frac{\sigma_0^2(X_i)}{1 - p(X_i)} + (\beta(X_i) - \beta)^2\right]$$

First order conditions for a minimum imply:

$$p^*(x) = \frac{\sigma_1(x)}{\sigma_0(x)} \left(1 + \frac{\sigma_1(x)}{\sigma_0(x)} \right)^{-1}.$$

Constrained version: minimize variance subject to:

$$E[p(X_i)] = p.$$

Interior solution satisfies:

$$\lambda = -\frac{\sigma_1^2(x)}{p(x)^2} + \frac{\sigma_0^2(x)}{(1 - p(x))^2},$$

where λ is the Lagrange multiplier.

(Can be solved by numerical methods).

Intuition

- Efficiency bound involves conditional variances.
- ightharpoonup Suppose X_i binary, and

$$\sigma_0^2(0) = \sigma_0^2(1) = \sigma_1^2(0) = \sigma_1^2(1) = 1.$$

(Homoskedasticity)

▶ Then optimal propensity score is p(x) = p.

Intuition

- Now suppose same setup, except that $\sigma_1^2(0) = 10$.
- This means $Var[Y_i \mid X_i = 0, T_i = 1]$ high. (*Heteroskedasticity*)
- ▶ ⇒ Hard to estimate $E[Y_i(1) \mid X_i = 0]$.
- ▶ ⇒ Want more observations with $X_i = 0$, $T_i = 1$.
- ightharpoonup
 ightharpoonup
 ho(0) should be relatively large

- So if we knew $\sigma_0(x)$ and $\sigma_1(x)$, we could pick p(x) to minimize the variance bound.
- Not feasible in one-stage experiments.
- ▶ But in a two-stage experiment, we could try to estimate $\sigma_0(x)$ and $\sigma_1(x)$ from first-round data.
- We cannot change π_1 , but we can <u>choose</u> $\pi_2(x)$ to make <u>overall</u> propensity score optimal.

Two-Stage Experiment

Stage 1:

- ▶ Draw n_1 subjects from population.
- Assign to treatment 1 with probability π_1 (**fixed**).
- ightharpoonup Observe outcome Y (and T and X).

Stage 2:

- ▶ Draw n_2 subjects from population.
- Assign treatment 1 with probability $\hat{\pi}_2(X)$. ("hat": can use Stage 1 data to determine the rule.)
- ightharpoonup Observe outcome Y (and T and X).

Finally, use <u>all data</u> to estimate effect of treatment 1 vs 0.

Two-Stage Experiment

Budget Constraint: overall treatment probability fixed at *p*.

Let

$$n = n_1 + n_2,$$

$$\kappa = \frac{n_1}{n}.$$

We require

$$p = \kappa \pi_1 + (1 - \kappa) E_X[\hat{\pi}_2(X_i)].$$

 $(E_X[\cdot] = \text{expectation WRT distribution of } X_i.)$

Adaptive Procedure

1. Using data from Stage 1, estimate conditional variances:

$$\widehat{\sigma}_0^2(x), \quad \widehat{\sigma}_1^2(x).$$

2. Choose $\hat{\pi}_2(x)$ to minimize:

$$E\left[\frac{\widehat{\sigma}_1^2(X_i)}{p(X_i)} + \frac{\widehat{\sigma}_0^2(X_i)}{1 - p(X_i)} + (\beta(X_i) - \beta)^2\right]$$

where

$$p(x) = \kappa \pi_1 + (1 - \kappa) \hat{\pi}_2(x).$$

possibly subject to:

$$E[p(X_i)] = p.$$

Adaptive Procedure

- 3. Use solution $\hat{\pi}_2(x)$ to determine assignment probabilities in second stage.
- 4. After collecting all data, pool the two stages and estimate with Hahn/HIR:

$$\hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{T_i Y_i}{\hat{p}(X_i)} - \frac{(1-T_i) Y_i}{1-\hat{p}(X_i)} \right).$$

Note:

 $\hat{\pi}_2(x)$: the "true" assignment probability in stage 2.

 $\hat{p}(x)$: nonparametric estimate using pooled data.

Asymptotic Theory for Adaptive Procedure

Suppose that:

- ▶ $n_1 \to \infty$ and $n_2 \to \infty$, with $n_1/n \to \kappa$.
- $\hat{\sigma}_0^2(x)$ and $\hat{\sigma}_1^2(x)$ are sample analogs based on first-stage data.
- ► Let

$$\pi_2^*(x) \equiv \operatorname{plim} \, \hat{\pi}_2(x).$$

Then

$$\sqrt{n}\left(\hat{\beta}-\beta\right)\stackrel{d}{
ightarrow}N(0,V^*),$$

where

$$V^* = E\left[\frac{\sigma_1^2(X_i)}{\pi^*(X_i)} + \frac{\sigma_0^2(X_i)}{1 - \pi^*(X_i)} + (\beta(X_i) - \beta)^2\right].$$

Example 1: Karlan and List (2007)

"Does Price Matter in Charitable Giving? Evidence from a Large-scale Natural Field Experiment," AER

- ► Political non-profit organization
- Mailed solicitations for donations to 50,000 prior donors
- Treatment:
 - T=1: donation will be matched by someone else
 - T=0: no matching donation
- Outcome:
 - Y = donation amount

- **Covariate**: X = 1 ("Red State")
- In the field experiment: T randomly assigned, Pr(T = 1) = 2/3.
- We suppose this is the first of two stages of an experiment (with $\kappa = .5$).
- ► How would we want to assign treatment in second stage to best estimate average treatment effect?

Example 1: Karlan-List

Table: Karlan-List Experiment

	$\hat{\mu}_0$	$\hat{\sigma}_0^2$	$\hat{\mu}_1$	$\hat{\sigma}_1^2$	π^*
Blue State					
(X = 0)	0.90	73.44	0.89	67.74	0.49
Red State					
(X = 1)	0.69	57.01	1.06	97.67	0.57

▶ Variance using adaptive rule: 291

► Variance using nonadaptive rule: 320

► Can achieve same precision with 4558 fewer observations.

Example 2: Progresa

- Large-scale randomized experiment in Mexico
- Randomly allocated cash and nutritional supplements to families (with conditions)
- Similar experiments conducted or begun in Colombia, Ecuador, Honduras, Nicaragua
- ► Gertler, Martinez, and Rubio-Codina (2006) report conditional means and variances and sample sizes
- So we can apply our procedure without access to raw data.

Table: Progresa Experiment, Number of Draft Animals

	$\hat{\mu}_0$	$\hat{\sigma}_0^2$	$\hat{\mu}_1$	$\hat{\sigma}_1^2$	p _{orig}	π^*
NoAgAssets						
(X = 0)	0.41	0.34	0.34	0.07	0.55	0.69
Landless						
(X = 1)	0.49	0.79	0.44	0.37	0.67	0.59
SmallerFarm						
(X = 2)	0.68	1.3	0.58	0.63	0.68	0.59
BiggerFarm						
(X = 3)	0.83	1.2	0.87	1.83	0.62	0.45

Recommended probabilities differ from those used, but reduction in variance is quite small.

Karlan and Wood (2017)

As discussed in Class 1.

First Wave: 2/3 control, 1/3 treatment

Second Wave: 2 treatments and 1 control arm.

- Prob. of treatment conditional on prior donation, etc.
- Overall 1/3 proportions in each arm.

Discussion

- ▶ These approach requires discrete X_i .
- ► If X_i is continuous (or discrete and taking many values), could stratify, but it's not clear how best to choose stratification scheme.
- See Tabord-Meehan (2021) for one data-driven stratification procedure.
- Analysis depends on a specific objective (estimation of ATE); other objectives may lead to quite different solutions.