Tutorial 9: 3SAT and NP-completeness

1 3SAT and INDEPSET

We know that INDEPSET is **NP**-complete since in lectures we saw that

- 1. IndepSet $\in \mathbf{NP}$, and
- 2. $3SAT \leq_{\mathbf{P}} CLIQUE \leq_{\mathbf{P}} INDEPSET$.

Show (directly) that $3SAT \leq_{\mathbf{P}} INDEPSET$.

2 3SAT and DOMSET

A dominating set in a graph G = (V, E) is a set $S \subseteq V$ of vertices such that every vertex in V is adjacent to at least one vertex in S in the graph G.

In the DomSet problem, we are given as input a graph G = (V, E) and a positive integer k and we must determine whether G has a dominating set of size at most k. For this question, you will show that DomSet is **NP**-complete.

- (i) Prove that DomSet $\in \mathbf{NP}$.
- (ii) Prove that $3SAT \leq_{\mathbf{P}} DomSET$.

3 SAT and 3COL

In the 3Col problem, we are given as input a graph G = (V, E) and we must determine if there is a way to colour the vertices in V using at most 3 colours so that each edge $(u, v) \in E$ connects vertices that have different colours. For this question, you will show that 3Col is **NP**-complete.

- (i) Prove that $3Col \in \mathbf{NP}$.
- (ii) Prove that 3SAT $\leq_{\mathbf{P}}$ 3COL.

 $^{^{1}}$ Is this the same as a *vertex cover* of G? You should be able to construct a small example that convinces you the two notions are quite different.