

University of Minnesota

QARTA: An ML-based System for Accurate Map Services

جامعة حمدين خليفة

Mashaal Musleh, Sofiane Abbar, Rade Stanojevic, and Mohamed Mokbel

Supervised Learning Problem

Doha 250K 1 Month

426K 3 Months

NYC 1.5M 6 Months 250K 644K

- Step 1: Feature Engineering, e.g. road curvature, avg speed, No. of junctions.
- **Step 2**: Find the best models that maps road features to certain metadata
- Step 3: Use models to predict the missing metadata values

Query Calibration Layer

Evaluation

Deployment – QARTA in Numbers

Deployed in all Taxis in Qatar ~4Kvehicles

A local food delivery company ~3 Kmotorbiks

- QARTA receives every day:
 - $\sim 235K$ API calls
 - ~1 Million GPS tracks
- APIs & Services:
 - In-traffic routes
 - Travel time estimation
 - Complex route planning
 - **OD** matrices
 - Search & addresses

UBER DIDI

Fare estimation & Taxi dispatching

Data Layer

- Rule based cleaning. Rules deployed in QARTA:
- Trajectories with a stop: Split
- Unrealistic points: Remove
- Missing points: Split

Map Making Layer – Edge Weights

■ Challenges:

- Zero or negative weights
- Scalability.
 - Over-fitting for unreliable edges

Solution:

- Heavy Edge inference
- Heavy Edge detection
- Physical Constraints

64K 148K

35K

Parameter setting

KNN Precision

Error distribution per trip distance

Performance: Training & Response Time