UML Class Diagrams: Inheritance, Composition, and Aggregation

1. Introduction

UML class diagrams model the static structure of object-oriented systems, showing classes and relationships like inheritance, composition, and aggregation. They are vital for software design.

Objective: The purpose of this assignment is to demonstrate a comprehensive understanding of UML class diagrams by designing and illustrating the five types of inheritance (single, multiple, multilevel, hierarchical, and hybrid), composition, and aggregation, and to implement these relationships in C++ code, showcasing their application in object-oriented system design.

Notation Guide:

- \rightarrow : Inheritance (empty head)
- • : Composition (filled diamond)
- \diamondsuit : Aggregation (empty diamond)

2. Five Types of Inheritance

Inheritance represents "is-a" relationship where subclasses inherit from parents.s

2.1 Single Inheritance

Definition: A class inherits from one parent. **Example**: Class Car inherits from Vehicle.

Figure 1: Single Inheritance Diagram

2.2 Multiple Inheritance

Definition: A class inherits from multiple parents.

Example: Class Smartphone inherits from Phone and Camera.

Figure 2: Multiple Inheritance Diagram

2.3 Multilevel Inheritance

Definition: A class inherits from a parent that inherits from another.

Example: Class SportsCar inherits from Car, which inherits from Vehicle.

Figure 3: Multilevel Inheritance Diagram

2.4 Hierarchical Inheritance

Definition: Multiple classes inherit from one parent.

Example: Classes Car and Truck inherit from Vehicle.

Figure 4: Hierarchical Inheritance Diagram

2.5 Hybrid Inheritance

Definition: Combines multiple and multilevel inheritance.

Example: Class Amphibious Vehicle inherits from Car and Boat, where Car inherits

UML Class Diagrams: Inheritance, Composition, and Aggregation

from Vehicle.

Figure 5: Hybrid Inheritance Diagram

3. Composition and Aggregation

Composition and aggregation model "has-a" relationships, differing in ownership.

3.1 Composition

Definition: Whole-part relationship; parts cannot exist without the whole.

Example: A House contains Rooms.

Figure 6: Composition Diagram

3.2 Aggregation

Definition: Whole-part relationship; parts can exist independently.

Example: A University contains Students.

Figure 7: Aggregation Diagram

Comparison:

Aspect	Composition	Aggregation
Ownership	Strong	Weak
Part Lifespan	Tied to Whole	Independent

5. Key Takeaways

- UML class diagrams are essential for object-oriented design.
- Inheritance models "is-a" relationships (e.g., single, multiple).
- Composition and aggregation model "has-a" relationships.
- Practical applications include libraries, apps, and more.