

2023~2024 学年秋季学期《大学物理实验》

预习报告

得 分	评阅人		

题	目:	实验九 RLC 串联电路的暂态过程研究
学	院 :	先进制造学院
专业场	压级:	智能制造工程 221 班
学生如	生名:	<u>朱紫华</u>
学	号:	5908122030
指导者	岁师:	全祖赐老师

二〇二三年九月制

RLC串联电路的暂态过程

一、 实验目的

- 1、研究当方波电源加于 RC、RL 串联电路时产生的暂态放电曲线及用示波器测量电路半衰期的方法,加深对电容充、放电规律的认识。
- 2、了解当方波电源加于 RLC 串联电路时产生的阻尼衰减振荡的特性及测量 方法。

二、 实验仪器

信号发生器、双踪数字存储示波器、电阻、电感、电容、面包板、导线若干。

图 1 示波器

图 2 函数信号发生器

三、实验原理

1、RC 串联电路暂态过程(描述电容两端加电源后,其两个极板上分别聚集起等量异号的电荷,在介质中建立起电场,并储存电场能量的性质)

图 3 RC 电路

充电过程:

$$RC\frac{dU_C}{dt} + U_C = E$$

再根据初始条件t=0, $U_c=0$,解得:

$$\begin{split} iR + U_C &= E & i = \frac{dq}{dt} \\ R \frac{dq}{dt} + \frac{q}{C} &= E & U_C &= \frac{q}{C} \\ U_R &= E e^{-\frac{t}{RC}} \end{split}$$

放电过程:

图 4 RC 电路

$$RC\frac{dU_C}{dt} + U_C = 0$$

再根据初始条件t=0, $U_c=E$ 解得

$$\begin{cases} U_C = Ee^{-\frac{t}{RC}} \\ U_R = -Ee^{-\frac{t}{RC}} \end{cases}$$

$$E \rightarrow Ee^{-1}$$
 时间常数 $\tau = RC$

$$E \rightarrow \frac{E}{2}$$
 $+ \approx \pi$ $T_{1/2} = \tau \ln 2$

图 5 放电曲线

不同 τ 值的 RC 电路电容充放电示意图如上所示 。

2. RL 串联电路暂态过程(描述线圈通有电流时产生磁场、储存磁场能量的性质。)

图 6 RL 电路
充电过程
$$iR + L\frac{di}{dt} = E$$
 放电过程 $iR + L\frac{di}{dt} = 0$

$$U_L = L \frac{di}{dt}$$

时间常数
$$\tau = L/R$$

半衰期

$$T_{1/2} = \tau \ln 2$$

图 7 示波器示意图

3. RLC 串联电路暂态过程

图 8 RLC 串联电路

$$iR + L\frac{di}{dt} + U_C = 0$$
 $i = \frac{dq}{dt} = C\frac{dU_C}{dt}$

$$LC\frac{d^2U_C}{dt^2} + RC\frac{dU_C}{dt} + U_C = E$$

令
$$eta$$
 = $R/2L$, ω_0 = $1/\sqrt{LC}$, 则有

$$\frac{d^2U_C}{dt^2} + 2\beta \frac{dU_C}{dt} + \omega_0^2 U_C = E$$

图 9 解的情况

解分为三种情况,即图中1、2、3分别对应欠阻尼、过阻尼和临界阻尼状态。

当 $R < 2\sqrt{L/C}$ 时,为欠阻尼状态;当 $R = 2\sqrt{L/C}$ 时,为临界状态;当 $R > 2\sqrt{\frac{L}{C}}$ 时,为过阻尼状态。 $U_C = \frac{1}{\sqrt{1 - \frac{C}{4L} \cdot R^2}} \cdot E \cdot e^{-\frac{t}{\tau}} \cdot \sin(\omega t + \varphi)$

$$U_C = \frac{1}{\sqrt{1 - \frac{C}{4L} \cdot R^2}} \cdot E \cdot e^{-\frac{t}{\tau}} \cdot \sin(\omega t + \varphi)$$

$$U_{C} = \frac{1}{\sqrt{\frac{C}{4L} \cdot R^{2} - 1}} \cdot E \cdot e^{-\frac{t}{\tau}} \cdot ch(\omega t + \varphi)$$

$$U_{C} = (1 + \frac{t}{\tau})E \cdot e^{-\frac{t}{\tau}}$$

$$\tau = \frac{L}{R}$$

图 10 实验结果

四、实验内容

- 1. RC 电路暂态过程的观测
- (1) 选择合适的 R 和 C 值,根据时间常数 τ ,选择合适的方波频率,
- 一般要求方波的周期 T $>10\tau$,这样能较完整地反映暂态过程,并且选用合适的示波器扫描速度,以完整地显示暂态过程。
 - (2) 把方波信号发生器、电阻 R、电容 C, 示波器按图 1 接线。
- (3)选取不同的电阻 R,观察 Uc的波形。并记录二组电阻和电容取不同值时 Uc的波形(可拍照反映其差别)。
- (4) 测量相应的二组半衰期 $T_{1/2}$, 求出 τ 和 R 的实验值, 并与理论值 R 进行比较。

图 11 实验接线图

图 12 实验接线图

图 13 实验接线图

图 14 实验接线图

- 2. RL 电路暂态过程的观测(选做)
- (1) 把方波信号发生器(选取恰当频率使得波形合适)、电阻 R、电感 L, 示波器按图接线。
 - (2) 选取不同的电阻 R, 观察 UL 的波形。
 - (3) 记录一组电阻和电感的 U_L的波形(拍照)。
- (4) 测量相应的一组半衰期 $T_{1/2}$,求出 τ 和 R 的实验值,并与理论值 R 进行比较。

图 15 实验接线图

图 16 实验接线图

- 3. RLC 电路暂态过程的观测
 - (1) 根据实验选用的电容和电感的值,算出临界电阻的阻值 $\emph{\textbf{R}}_{0}$ 。
- (2)按图 3 接线,电阻取小于和大于 R_0 ,观测欠阻尼状态和过阻尼状态下电容上 Uc 的波形。(拍照)

图 17 实验接线图

图 18 实验接线图

图 19 实验接线图