信用卡詐欺偵測 Credit Card Fraud Detection

Credit Card Fraud Detection

Using the Machine Learning Classification Algorithms to detect Credit Card Fraudulent Activities

dataaspirant.com

製作人: 甯文駿

摘要

本作品旨在透過機器學習模型偵測高度不平衡的信用卡詐欺交易資料,該資料集包含 284,807 筆交易,其中僅有 492 筆為詐欺交易(佔 0.172%)。考量資料不平衡,模型主要以精確度-召回率曲線下面積(AUPRC)進行評估。經過初始模型訓練後,XGBoost 展現最佳表現,在 ROC 曲線下面積(AUC)達 0.974,平均精確率(AP)達 0.878。為進一步優化少數類別的偵測能力,使用了多種SMOTE 採樣技術,其中 SMOTEENN 表現最佳,成功將 XGBoost 模型的 AUC 從 0.9743 提升至 0.9873,並將詐欺交易的召回率從 0.81 提高到 0.86,雖然精確率略有下降,但顯著提升了模型對詐欺的捕捉能力。最終,透過 SHAP 特徵重要性分析,發現 V14 是區分詐欺樣本的關鍵特徵,其對詐欺樣本的平均影響力(SHAP值)顯著高於非詐欺樣本,其次為 V4。

後續研究方向可從模型超參數調優、探索其他進階的採樣或不平衡處理技術、 採用 Ensemble 方法等等,來進一步優化模型的性能。

資料來源

Credit Card Fraud Detection

連結:

https://storage.googleapis.com/download.tensorflow.org/data/creditcar d.csv

此資料集包含歐洲持卡人在 2013 年 9 月使用信用卡進行的交易。 該資料集 呈現了兩天內發生的交易,在 284,807 筆交易中,我們發現了 492 筆詐欺交 易。此資料集高度不平衡,正類(詐欺)交易占所有交易的 0.172%。

特徵 V1、V2、…V28 是透過 PCA 獲得的主成分,唯一未經過 PCA 轉換的特徵是「時間」和「金額」。特徵「時間」包含資料集中每筆交易與第一筆交易之間相隔的秒數。特徵「金額」是交易金額,此特徵可用於依賴範例的成本敏感學習。特徵「類別」是回應變量,在有詐欺的情況下取值為 1,否則取值為 0。

考慮到類別不平衡率,建議使用精確度-召回率曲線下面積(AUPRC)來衡量準確率。對於不平衡的分類,混淆矩陣準確率意義不大。

Credit Card Fraud Detection.ipynb

1. 讀取與確認資料

先讀取資料可看到資料集的內容為 284807 rows × 30 columns, 檔案大小約為 67.4 MB, 且資料完整並無缺失值的存在。

Data	columns	(total	31 column:	e)·
#	Column		ll Count	
				Drype
	Time	284807	non-nul1	float64
ĭ	V1		non-null	
2	V2		non-nul1	
3	V3		non-null	
$\overline{4}$	V4		non-nu11	
5	V5		non-nul1	
6	V6	284807		
	V7	284807		
8	V8	284807		
	V9	284807	non-nu11	float64
10	V10	284807	non-nu11	float64
11	V11	284807	non-nu11	float64
12	V12	284807	non-nu11	float64
13	V13	284807	non-nu11	float64
14	V14	284807	non-nu11	float64
15	V15	284807	non-nu11	float64
16	V16	284807	non-nu11	float64
17	V17	284807	non-nu11	float64
18	V18	284807	non-nu11	float64
19	V19	284807	non-nu11	float64
20	V20	284807	non-nu11	float64
21	V21	284807	non-nu11	float64
22	V22	284807	non-nu11	float64
23	V23	284807	non-nu11	float64
24	V24	284807	non-nu11	float64
25	V25	284807	non-nu11	float64
26	V26	284807	non-nu11	float64
	V27	284807	non-nu11	float64
28	V28	284807	non-nu11	float64
29	Amount	284807	non-nu11	float64
30	Class	284807	non-nu11	int64
dtype	es: float	t64(30),	int64(1)	
memoi	ry usage:	: 67.4 J	(B	

Class

0:284315

• 1:492

2. 資料分割

● 訓練集:80%

● 測試集:20%

● random_state=42:設定隨機種子以便結果可重現

● stratify=y:表示在拆分時保持標籤的比例與原始資料一致

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42 ,stratify=y)
print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
print(pd.Series(y_train).value_counts())
print(pd.Series(y_train).value_counts())
print(pd.Series(y_test).value_counts())
print(pd.Series(y_test).value_counts(normalize=True))
```

3. 設計評估指標 def() 函式

def plot_combined_roc_pr_curves(models, X_test, y_test)

作用:

對多個已訓練好的分類模型,在同一圖中繪製其測試集上的 ROC 曲線與 Precision-Recall 曲線,用以比較各模型在二元分類問題中的性能表現 (AUC 和 AUPRC)。

def evaluate_model(model, X_train, y_train, X_test, y_test)

作用:

對輸入的分類模型在**訓練集**與**測試集**上進行評估,輸出**分類報告**(Precision, Recall, F1)、AUC 分數,並繪製**混淆矩陣**,快速了解模型性能與預測表現。

```
# 分類報告和混淆矩阵

def evaluate_model(model, X_train, y_train, X_test, y_test):
    y_train_pred = model.predict(X_train)
    y_test_pred = model.predict(X_test)
    print("Train Set:")
    print(classification_report(y_train, y_train_pred))
    print(classification_report(y_test, y_test_pred))

# 計算 AUC (二元分類)
    train_auc = roc_auc_score(y_test, model.predict_proba(X_train)[:, 1])

print(f"Train AUC: (train_auc:.6f)")

plt.figure(figsize=(12, 6))
    plt.subplot(1, 2, 1)
    sns.heatmap(confusion_matrix(y_train, y_train_pred), annot=True, cmap='Blues', fmt='d', cbar=False)
    plt.title('Confusion Matrix (Train Set)')
    plt.ylabel('Predicted Label')
    plt.ylabel('True Label')
    plt.title('Confusion_matrix(y_test, y_test_pred), annot=True, cmap='Blues', fmt='d', cbar=False)
    plt.title('Confusion Matrix (Test Set)')
    plt.xlabel('Predicted Label')
    plt.xlabel('True Label')
```

def plot_learning_curve(estimator, X, y, cv=5, train

sizes=np.linspace(0.1, 1.0, 10))

作用:

根據模型的訓練結果,繪製學習曲線圖,展示模型在不同訓練樣本數下的訓練 與交叉驗證表現,藉此評估模型是否欠擬合或過擬合,並協助調整模型結構與 資料大小。

```
# 學習曲錄

def plot_learning_curve(estimator, X, y, cv=5, train_sizes=np.linspace(0.1, train_sizes, train_scores, test_scores = learning_curve(estimator, X, y, cv=cv, train_sizes=train_sizes, n_jobs=-1)

# Calculate the mean and standard deviation of training and test scores

train_scores_mean = np.mean(train_scores, axis=1)

train_scores_std = np.std(train_scores, axis=1)

test_scores_mean = np.mean(train_scores, axis=1)

# Plot the learning curve

plt.figure(figsize=(8, 4))

plt.title("Learning Curve")

plt.ylabel("Training Examples")

plt.ylabel("Score")

plt.plot(train_sizes, train_scores_mean - train_scores_std, test_scores_mean + train_scores_std, alpha=0.1, color="r")

plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training Score")

plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training Score")

plt.plesend(loc="best")

plt.spand(loc="best")

plt.spand(loc="best")

plt.spand(loc="best")

plt.scores_Mean:', train_scores_mean)

print("Train_Sizes:', train_scores_mean)

print("Train_Scores_Mean:', train_scores_mean)
```

4. 設計迴圈,個別模型訓練

使用 XGBoost、RandomForest、LogisticRegression、LightGBM、DecisionTree 來做**初始模型**的訓練,並針做表現最好的模型,做後續的採樣、特徵分析等等。

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
import lightgbm as lgb
import xgboost as xgb
models = {
       "RandomForest": RandomForestClassifier(random_state=42),
       "LightGBM": 1gb.LGBMC1assifier(random_state=42, verbose=-1),
       "XGBoost": xgb. XGBClassifier(random_state=42),
       "LogisticRegression": LogisticRegression(),
       "DecisionTree": DecisionTreeClassifier(random_state=42),
for name, model in models.items():
       print(f"\n===== 訓練 {name} 模型
       model.fit(X_train, y_train)
       evaluate_model(model, X_train,
                                                X_test, y_test)
print('='*50)
plot_combined_roc_pr_curves(models, X_test, y_test)
```


左圖:ROC Curve

● 横軸: False Positive Rate (偽陽性率)

● 縱軸: True Positive Rate (真正率)

意義: 越接近左上角的曲線表示模型表現越好。

● AUC (曲線下面積): 值越接近 1 越好,代表模型越能區分正負類。

各模型 AUC 表現:

● XGBoost: 0.974(表現最佳)

• RandomForest: 0.963

LogisticRegression: 0.936

DecisionTree : 0.872

● LightGBM: 0.820 (表現最差)

右圖:Precision-Recall Curve

● 横軸: Recall (召回率 / 真陽性率)

● **縱軸:** Precision (精確率)

意義: 曲線越往右上方延伸,代表在召回更多正樣本的同時仍維持高精確率,模型越優秀。

AP (平均精確率): 越高越好。

各模型 AP 表現:

● XGBoost: 0.878 (表現最佳)

• RandomForest: 0.873

• LogisticRegression: 0.610

• DecisionTree: 0.561

● LightGBM: 0.353(表現最差)

總結:

● 最佳整體表現模型:XGBoost(在 ROC 和 PR 曲線都表現最佳)

● 次佳模型:RandomForest

● 表現較差模型:LightGBM

XGBoost 的分類報告、混淆矩陣、學習曲線

Train Set:				
	precision	recall	f1-score	support
0	1.00	1.00	1.00	227451
1	1.00	1.00	1.00	394
accuracy			1.00	227845
macro avg	1.00	1.00	1.00	227845
weighted avg	1.00	1.00	1.00	227845
Test Set:				
	precision	recall	f1-score	support
0	1.00	1.00	1.00	56864
1	0.92	0.81	0.86	98
accuracy			1.00	56962
macro avg	0.96	0.90	0.93	56962
weighted avg	1.00	1.00	1.00	56962
Train AUC: 1.	000000			
Test AUC: 0.9				

5 折交叉驗證

使用 Stratified KFold 搭配 XGBoost 模型對二分類資料進行交叉驗證,並計算每個 fold 的準確率和 AUC 分數,再平均匯總結果。

Fold 1				
roiu i	precision	maca11	f1-score	support
	precision	Tecall	II SCOLE	suppor t
0	1.00	1.00	1.00	56863
1	0.95	0.76	0.84	99
accuracy			1.00	56962
macro avg	0.97	0.88	0.92	56962
weighted avg	1.00	1.00	1.00	56962
AUC: 0.9798				
=========				
Fold 2				
	precision	recal1	fl-score	support
^				E0000
0	1.00	1.00 0.84	1.00 0.91	56863
1	1.00	0.84	0.91	99
accuracy			1.00	56962
macro avg	1.00	0. 92	0.96	56962
weighted avg		1.00		56962
weighteed avg	1.00	1.00	1.00	20002
AUC: 0.9752				
=========				
Fold 3				
	precision	recal1	fl-score	support
0	1.00	1.00	1.00	56863
1	0.96	0.82	0.88	98
accuracy			1.00	56961
macro avg		0.91	0.94	
weighted avg	1.00	1.00	1.00	56961
MIG A SOCIA				
AUC: 0.9926				

Fold 4				
	precision	recal1	fl-score	support
0	1.00	1.00	1.00	56863
1	0.96	0.80	0.87	98
accuracy			1.00	56961
macro avg	0.98	0.90	0.94	56961
weighted avg	1.00	1.00	1.00	56961
AUC: 0.9695				
Fold 5	:======	=======	:=======	=====
roiu 5	precision	recal1	f1-ecore	support
	precision	Iccali	11 50016	Suppor c
0	1.00	1.00	1.00	56863
1	0.92	0.82	0.86	98
			1.00	56961
accuracy macro avg	0.96	0.91	0.93	56961
weighted avg	1.00	1.00	1.00	56961
AUC: 0.9760				
========	=======================================	=======	=======	=====
平均準確率(A 平均 AUC: 0.9		9996		

XGBoost 模型在五折交叉驗證中表現非常**穩定**,平均 AUC 高達 0.9786,平均準確率也接近 1.0,說明模型能有效辨識少數類別;但 f1-score 在少數類別(1類)仍略低於 1,代表模型在少數類別上有小幅漏判的空間。

5. 採樣方法

def run_smote_pipeline(smote_method, X_train, y_train, X_test,
y_test, model_dict, random_state=42)

作用:

對訓練資料使用不同的 SMOTE 技術進行資料平衡,再用 XGBoost 訓練模型, 並透過分類報告與 ROC/PR 曲線,比較不同資料增強方法下的模型表現。

```
lef run_smote_pipeline(smote_method, X_train, y_train, X_test, y_test, model_dict, random_state=42):
     if smote_method == 'smote'
           sampler = BorderlineSMOTE(kind='borderline-1', random state=random state)
     sampler = BorderlineSMOTE(kind='borderline=2', random_state=random_state)
elif smote_method == 'smoteenn':
            sampler = SMOTEENN(random_state=random_state)
     elif smote method ==
            sampler = SMOTETomek(random_state=random_state)
            raise ValueError("Invalid SMOTE method. Choose from: 'smote', 'borderline-1', 'borderline-2', 'smoteenn', 'smotetomek'")
     # 執行重抽樣
     建立並訓練模型
            xgb. XGBClassifier (random_state=42)
     evaluate_model(model, X_resampled, y_resampled, X_test, y_test)
     # plot learning curve(model, X resampled, v resampled)
     # 儲存模型以供畫圖
     model_dict[smote_method.upper()] = model
run_smote_pipeline(method, X_train, y_train, X_test, y_test, all_models)
lot_combined_roc_pr_curves(all_models, X_test, y_test)
```


總結:

● **最佳整體表現模型:SMOTEENN**(在 ROC 和 PR 曲線都表現最佳)

XGBoost + SMOTEENN 的分類報告、混淆矩陣、學習曲線

Train Set:				
	precision	recall	f1-score	support
ø	1.00	1.00	1.00	209282
_				
1	1.00	1.00	1.00	218370
accuracy			1.00	427652
_				
macro avg	1.00	1.00	1.00	427652
weighted avg	1.00	1.00	1.00	427652
Test Set:				
lest Set:				
	precision	recall	f1-score	support
9	1.00	1.00	1.00	56864
1				
1	0.76	0.86	0.80	98
accuracy			1.00	56962
macro avg	0.88	0.93		
_				
weighted avg	1.00	1.00	1.00	56962
Train AUC: 1.	999999			
Test AUC: 0.9	87259			

6. 採樣前後分析

模型效能比較 (XGBoost)

指標	採樣前 (原始資料)	採樣後 (SMOTEENN)
Precision (Class 1)	0.92	0.76
Recall (Class 1)	0.81	0.86
F1-Score (Class 1)	0.86	0.80
Test AUC	0.9743	0.9873
PR Curve AP	0.8777	0.8728

AUC 提升

● SMOTEENN 的 AUC 從 **0.9743 → 0.9873**,顯示模型對整體分類能力的提升 (模型區分能力更好)

Recall 提升

● 在少數類別(1)的 Recall 從 0.81 → 0.86,表示模型在測試集中更擅 長抓到正類別的樣本(更少漏判)

Precision 下降

Precision 降到了 0.76(從 0.92),說明有更多的誤報(False Positive)被引入。這是使用 SMOTEENN 的常見現象:它透過混合欠抽樣 把資料分佈平衡化,但同時也可能導致邊界更模糊,容易多預測一些假陽 性

◆ 混淆矩陣比較

	0 (TN)	1 (FP)
採樣前	56857	7
採樣後	56837	27
	0 (FN)	1 (TP)
採樣前	0 (FN) 19	1 (TP) 79

True Positive 增加了 (79 → 84), 模型對 Class 1 的敏感度提升。

False Positive 也明顯增加了 $(7 \rightarrow 27)$,表示多預測了一些 1,但實際上是 0。

5 折交叉驗證

				54.4				
precision	recal1	fl-score	support	Fold 4				
					precision	recal1	fl-score	supp
0.80	0.83	0.81	99	0	1.00	1.00	1.00	56
		1 00	Ecoco	1	0.81	0.84	0, 82	
0.90	0 01			_				
				0.001770.017			1 00	56
1.00	1.00	1. 00	00002		0.01	0.00		
				-				56
=======	=======		=====	weighted avg	1.00	1.00	1.00	56
precision	recal1	fl-score	support	AUC: 0.9767				
1, 00	1. 00	1, 00	56863	=========		======	=======	=====
0.89	0.85	0.87	99	Fold 5				
					precision	recal1	fl-score	supp
		1.00	56962					
				n	1.00	1.00	1.00	56
1.00	1.00	1.00	56962					•
				1	V. 0V	0.01	0.02	
=======	======		=====	accuracy			1.00	56
				-	n an	n 92		56
precision	recal1	fl-score	support	_				56
1.00	1 00	1 00	F6969	weighted avg	1.00	1.00	1.00	- 50
0. 81	0.65	0. 65	90	AUC: 0.9865				
		1.00	56961	=========		======		=====
0.91	0.92	0.91	56961					
1.00	1.00	1.00	56961	平均準確率(A	ocuracy): 0.	9994		
				平均 AUC: 0.9	782			
				1				
	1.00 0.80 0.90 1.00 1.00 precision 1.00 0.89 0.95 1.00 precision 1.00 0.81	1.00 1.00 0.83 0.83 0.90 0.91 1.00 1.00 1.00 1.00 1.00 0.89 0.85 0.95 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00 0.80 0.91 0.91 1.00 1.00 1.00 0.90 0.91 0.91 1.00 1.00 1.00 precision recall f1-score 1.00 1.00 1.00 0.89 0.85 0.87 1.00 0.95 0.92 0.94 1.00 1.00 1.00 0.95 0.92 0.94 1.00 1.00 1.00 0.95 0.92 0.94 1.00 1.00 1.00 0.95 0.92 0.94 1.00 1.00 1.00	1.00 1.00 1.00 56863 0.80 0.83 0.81 99 1.00 56962 0.90 0.91 0.91 56962 1.00 1.00 1.00 56863 0.89 0.85 0.87 99 1.00 56962 0.95 0.92 0.94 56962 1.00 1.00 1.00 56962 precision recall f1-score support 1.00 56962 0.95 0.92 0.94 56962 1.00 1.00 1.00 56962 precision recall f1-score support 1.00 56962 1.00 1.00 56962	1.00 1.00 1.00 56863 0.80 0.83 0.81 99 0 1.00 56962 0.90 0.91 0.91 56962 1.00 1.00 1.00 56962 precision recall f1-score support 1.00 1.00 1.00 56863 0.89 0.85 0.87 99 Fold 5 1.00 1.00 1.00 56962 0.95 0.92 0.94 56962 1.00 1.00 1.00 56962 1.00 1.00 1.00 56962 1.00 1.00 56962 1.00 56961 1.00 56961 0.91 0.92 0.91 56961 1.00 56961 1.00 56961 1.00 56961 1.00 56961 1.00 56961 1.00 56961 1.00 56961 1.00 56961 1.00 56961	1.00	1.00	Precision Pre

模型對正常樣本的判別非常好,對異常樣本的辨識能力也很強,但仍可努力提高 recall (減少漏判)。

7. 特徵重要性分析

使用 SHAP 套件,對 xgb_model_smoteenn (XGBoost 模型),創建一個專門用於解釋樹模型的 SHAP 解釋器。

```
# 建立 SHAP Explainer (針對樹模型使用 TreeExplainer)
explainer = shap.TreeExplainer(xgb_model_smoteenn)
# 計算 SHAP 值
shap_values = explainer(X_train_resampled)
|
print("X_train_resampled shape:", X_train_resampled.shape)
print("SHAP values shape:", shap_values.shape) # (x, y, z), x: 樣本數,

X_train_resampled shape: (429712, 30)
SHAP values shape: (429712, 30)
```

SHAP Summary Plot

SHAP Summary Plot shap.summary_plot(shap_values.values, X_train_resampled)

● 縱軸:各個特徵 (Feature),上方是影響最大的特徵,越往下影響力越小

● 顏色:特徵值的大小(藍色 = 低,紅色 = 高)

● 橫軸:SHAP 值(對模型預測的影響,左邊負向影響,右邊正向影響)

- V14 越大,對於預測值的貢獻度越高,反之
- V4 越大,具有更大的總體模型影響
- Time 的大小,某種程度都會影響預測值

Global bar plot

Global bar plot shap.plots.bar(shap_values)

● 縱軸:各個特徵 (Feature),上方是影響最大的特徵,越往下影響力越小

● 横軸:mean(|SHAP value|),表示每個特徵對預測的重要程度(取絕對值 後平均),值越大表示對模型貢獻越大

- V14:平均 SHAP 值最高 (+4.49),對模型解釋力最大
- 其次是 V4、V12、V10、V17 等

Cohort bar plot

```
# Cohort bar plot
# 使用 SMOTE 後的 y_resampled 對應的分類標籤
cohorts = ["Class 0" if y_train_resampled.iloc[i] == 0 else "Class 1" for i in range(len(y_train_resampled))]
shap_cohorts = shap_values.cohorts(cohorts)
shap.plots.bar(shap_cohorts.abs.mean(0))
```

- 縱軸:各個特徵 (Feature),上方是影響最大的特徵,越往下影響力越小
- 横軸: mean(|SHAP value|),表示每個特徵對預測的重要程度(取絕對值 後平均),值越大表示對模型貢獻越大

紅色條形:

實心條: Class 0 (正常樣本)

● 斜線條:Class 1(詐欺樣本)

這表示對於不同類別,該特徵的平均影響力(SHAP值)是否存在差異。

V14:

● 對 Class 1 (詐欺樣本) 的平均影響力明顯高於 Class 0

• Class 0: +3.24

• Class 1: +5.68

V14 是區分詐欺樣本的關鍵特徵,它的平均影響力在詐欺樣本上更大,V10, V12, V3, V7, V17, V8,這些特徵也有一定的重要性,但影響不如 V14 和 V4。

GitHub

連結: https://github.com/c110156247/Credit-card-
Detection/blob/main/Credit_Card_Fraud_Detection.ipynb

參考連結

https://www.cnblogs.com/massquantity/p/8592091.html

https://www.cnblogs.com/massquantity/p/9382710.html