Optimization of string transducers

PhD Defense

Gaëtan Douéneau-Tabot

Under the supervision of **Olivier Carton** and **Emmanuel Filiot** November 23rd, 2023

Summer "holidays" activities

- ► finishing PhD manuscript
- ▶ biking from Prague to Verona

Summer "holidays" activities

- finishing PhD manuscript
- ▶ biking from Prague to Verona

<u>Problem:</u> using a phone as a GPS viewer, without reaching

Solution A: more battery \implies more space + more weight.

Summer "holidays" activities

- finishing PhD manuscript
- ▶ biking from Prague to Verona

<u>Problem:</u> using a phone as a GPS viewer, without reaching

 $\underline{Solution \ A:} \ more \ battery \implies more \ space + more \ weight.$

Solution B: more energy efficient GPS program.

Summer "holidays" activities

- finishing PhD manuscript
- ▶ biking from Prague to Verona

Problem: using a phone as a GPS viewer, without reaching

Solution A: more battery ⇒ more space + more weight.

Solution B: more energy efficient GPS program.

Motivation of this thesis: program optimization

Given a program, automatically build a more efficient (with respect to resources consumption) equivalent program.

→ Useful for systems with limited resources (bike?, satellite, etc.).

Example: optimization of nested loops

- ► Input: a 0/1 sequence denoted list.
- ▶ Output: number of pairs $i \ge j$ such that list[i] = list[j] = 0.

Computing pairs

```
\begin{array}{l} n := 0 \\ \text{for i from 1 to length(list) do} \\ & \mid \text{for j from 1 to i do} \\ & \mid \text{if list[i]} = \text{list[j]} = 0 \text{ then} \\ & \mid n := n+1 \\ & \mid \text{end} \\ & \mid \text{end} \\ & \mid \text{return n} \\ & \mid \text{Execution time} \sim \text{length(list)}^2 \end{array}
```

Example: optimization of nested loops

- ► Input: a 0/1 sequence denoted list.
- ▶ Output: number of pairs $i \ge j$ such that list[i] = list[j] = 0.

Computing pairs	Doing a product
n := 0 for i from 1 to length(list) do for j from 1 to i do if list[i] = list[j] = 0 then n := n+1 end end return n	$\begin{array}{l} n:=0\\ \mbox{for i from 1 to length(list) do}\\ \mid \mbox{if list[i]}=0 \mbox{ then } n:=n+1\\ \mbox{end}\\ \mbox{return } n(n+1)/2 \end{array}$
Execution time $\sim length(list)^2$	Execution time ~ length(list)

Example: optimization of nested loops

- ► Input: a 0/1 sequence denoted list.
- ▶ Output: number of pairs $i \ge j$ such that list[i] = list[j] = 0.

Computing pairs	Doing a product	
n := 0 for i from 1 to length(list) do for j from 1 to i do if list[i] = list[j] = 0 then n := n+1 end end return n	$\begin{array}{l} n:=0\\ \mbox{for i from 1 to length(list) do}\\ \mid \mbox{if list[i]}=0 \mbox{ then } n:=n+1\\ \mbox{end}\\ \mbox{return } n(n+1)/2 \end{array}$	
Execution time $\sim length(list)^2$	Execution time ~ length(list)	
Pebble transducer Optimization procedure [Manuscript, Chapter 6]		

Formalization: class membership problems

Class membership problem from P to P'

- ▶ Input: Program from *P*.
- ▶ Question: Does an equivalent program from P' exist ?
 + Effectively build this program.

Example: Removing nested loops

P programs with 2 nested loops, P' programs without nested loops.

Formalization: class membership problems for transducers

Class membership problems are often challenging

- ▶ Depend on the semantic and not to the syntax of programs.
- ▶ Quickly undecidable for classes of expressive programs.
- ▶ Heuristic approaches are used to avoid undecidability/complexity.
- → In this thesis: optimal results for classes of restricted programs.

Finite-state transducer

- ▶ finite state program;
- ▶ input: string, output: string.

→ In this thesis: restricted programs = extended transducers.

Outline

- 1. Background: transducers of finite strings
- 2. Nesting optimization within subclasses of pebble transducers
- 3. Pebble transducers with commutative output
- 4. Determinization for transducers of infinite strings
- 5. Outlook

Background: transducers of

finite strings

One-way transducers

Definition: one-way deterministic transducer

→ Compute the class of sequential functions from strings to strings.

Example: first letter to last position $12345 \rightarrow 23451$

Definition: (functional) one-way non-deterministic transducer

→ Compute the class of rational functions from strings to strings.

Example: last letter to first position $12345 \rightarrow 51234$

Two-way transducers

Definition: two-way deterministic transducer

→ Compute the class of regular functions from strings to strings.

Example: duplicating the input $12345 \rightarrow 12345 \# 12345$

Example: reversing the input 12345 → 54321

Remark: non-determinism does not increase expressive power.

Pebble transducers

Definition: *k*-pebble transducers

- \blacktriangleright Nested two-way transducers with nesting depth k.
- ▶ A pebble is added to the input when doing a nested call.
- → Compute the class of polyregular functions.

Behavior of a 3-pebble transducer

Pebble transducers

Example: square $1234 \mapsto 1234 \# 1234 \# 1234 \# 1234$ can be computed by a 2-pebble transducer.

Example: unary product $\underbrace{1...1}_{n} \# \underbrace{1...1}_{n'} \# \underbrace{1...1}_{n''} \mapsto \underbrace{1...1}_{n \times n' \times n''}$ can be computed by a 3-pebble transducer.

Asymptotic growth of the output

- ► A k-pebble transducer can be understood...
 - ▶ either a program with functions calls of nesting depth k;
 - \blacktriangleright or as a program with k nested (two-way) for loops.
- ▶ If a k-pebble transducer computes a function f, then:

$$|f(u)| = \mathcal{O}(|u|^k).$$

Known membership results

- ► All the statements are decidable + effective.
- ▶ The proofs are rather technical and use disparate methods.

Membership and output growth

Theorem: [Engelfriet et al., 2021, Bojańczyk, 2022]

Let f be a polyregular function, then $|f(u)| = \mathcal{O}(|u|) \iff f$ is regular.

ightarrow More generally, do we (effectively) have:

 $|f(u)| = \mathcal{O}(|u|^k) \iff f$ can be computed by a k-pebble transducer?

Counterexample [Bojańczyk, 2023]

For all $k \ge 3$, there exists a polyregular function f such that $|f(u)| = \mathcal{O}(|u|^2)$ but cannot be computed with less than k pebbles.

- \rightarrow First part of this thesis: subclasses of pebble transducers where:
- $|f(u)| = \mathcal{O}(|u|^k) \iff f$ can be computed by with k nested layers.
- + Decidable + Effective (nested loop optimization).

Nesting optimization within

subclasses of pebble transducers

Blind pebble transducers [Nguyên et al., 2021]

Definition: blind *k*-pebble transducer

Submachines have no information about the positions of the calls.

Behavior of a blind 3-pebble transducer

Example: square $1234 \mapsto 1234 \# 1234 \# 1234 \# 1234$

Last pebble transducers [Engelfriet et al., 2007]

Definition: last k-pebble transducer

Submachines can only see the position in which they are called.

Behavior of a last 3-pebble transducer

Example: marked square $1234 \rightarrow \underline{1}234 \# 1\underline{2}34 \# 12\underline{3}4 \# 123\underline{4}$

Marble transducers [Engelfriet et al., 1999]

Definition: k-marble transducer

Submachines are called on a prefix of the input.

Behavior of a 3-marble transducer

Example: prefixes $1234 \mapsto 1 \# 12 \# 123 \# 1234$

Nesting optimization [Chapters 3 and 4]

Theorem: nesting optimization

Let $1 \le \ell \le k$. The following are (effectively) equivalent:

- 1. f is computed by a blind k-pebble / last k-pebble / k-marble transducer and $|f(u)| = \mathcal{O}(|u|^{\ell})$;
- 2. f is computed by a blind ℓ -pebble / last ℓ -pebble / ℓ -marble.
- + Decidable membership problem.

Main proof ideas

- ► For blind pebble / last pebble transducers: transition monoids + factorization forests + pumping arguments.
- ► For marble transducers: correspondence with *streaming string transducers* + classical techniques for *weighted automata*.

Overview: nesting optimization [Chapters 3 and 4]

Overview: nesting optimization [Chapters 3 and 4]

Can we go beyond using output growth?

▶ No for other subclasses of pebble transducers.

Overview: nesting optimization [Chapters 3 and 4]

Can we go beyond using output growth?

- ▶ No for other subclasses of pebble transducers.
- ➤ Yes for models with unbounded nesting depth (≡ recursion): shown for marbles + conjectured for last pebbles.

Pebble transducers with

commutative output

Pebble transducers with output in \mathbb{N} / \mathbb{Z} [Chapter 5]

Definition: transducers with outputs in \mathbb{N} / \mathbb{Z}

- ▶ case of N: output alphabet is {1}, result is the length/sum;
- ▶ case of \mathbb{Z} : output alphabet is $\{\pm 1\}$, result is the sum.

Examples: pebble transducers with output in $\ensuremath{\mathbb{Z}}$

- ▶ $u \mapsto (|u|_0 |u|_1)^2$ is computed by a (blind) 2-pebble transducer;
- ▶ $u \mapsto (-1)^{|u|} |u|^3$ is computed by a (blind) 3-pebble transducer.

Theorem: pebble ≡ last pebble ≡ marble

For $k \ge 1$, <u>k-pebble</u>, <u>last k-pebble</u> and <u>k-marble</u> transducers with output in \mathbb{N} / \mathbb{Z} (effectively) compute the same classes of functions.

Pebble transducers with output in \mathbb{N} / \mathbb{Z} [Chapter 5]

Theorem: subclass of rational series [implicit in folklore]

The following are (effectively) equivalent:

- 1. f is a \mathbb{N} $/\mathbb{Z}$ -rational series and $|f(u)| = \mathcal{O}(|u|^k)$ for some $k \ge 1$;
- 2. f is computed by a pebble transducer with output in \mathbb{N} / \mathbb{Z} .
- + Decidable membership problem.

Theorem: nesting optimization

Let $1 \le \ell \le k$. The following are (effectively) equivalent:

- 1. f is computed by a $\underline{k\text{-pebble transducer}}$ in \mathbb{N}/\mathbb{Z} and $|f(u)| = \mathcal{O}(|u|^{\ell})$;
- 2. f is computed by an ℓ -pebble transducer in \mathbb{N}/\mathbb{Z} .
- + Decidable membership problem.

Main proof ideas

For \mathbb{Z} : tuples in factorization forests + multivariate polynomials.

Blind pebble transducers with output in \mathbb{N} / \mathbb{Z} [Chapter 6]

Example: squaring blocks
$$1^{n_1} \# 1^{n_2} \# \cdots \# 1^{n_m} \mapsto \sum_{i=1}^m n_i^2$$
 cannot be computed by a blind pebble transducer.

 \rightarrow Blind are less expressive than pebble \equiv last pebble \equiv marble.

Theorem: blind membership

The following are (effectively) equivalent:

- 1. f is computed by a pebble transducer in \mathbb{N}/\mathbb{Z} and is repetitive;
- 2. f is computed by a blind pebble transducer in \mathbb{N}/\mathbb{Z} .
- + Decidable membership problem + Commutes with optimization.

Main proof ideas

Previous tools + inductive techniques on polyregular functions.

Overview: transducers with output in \mathbb{N} / \mathbb{Z} [Chapters 5 and 6]

+ Multiple characterizations as subclasses of rational series.

Aperiodic automata and transducers

Definition: aperiodic automata/transducer

An automaton/transducer is aperiodic if its transition monoid is so.

 \rightarrow Motivated by strong connections to logics/expressions since the study of star-free expressions [Schützenberger, 1965].

Generic question: aperiodic class membership

Given a function, can it be computed by an aperiodic transducer?

 \rightarrow Results for string-to-string sequential or rational functions [Filiot et al., 2019], partial results for regular [Bojańczyk, 2014].

Example: pebble transducers $u \mapsto (-1)^{|u|} \times |u|$ cannot be computed by an aperiodic pebble transducer.

Aperiodic pebble transducers with output in \mathbb{Z} [Chapter 7]

Definition: smooth function

f is smooth if $X \mapsto f(uv^X w)$ is a polynomial for X large enough.

Example: $u \mapsto (-1)^{|u|} \times |u|$ is not smooth.

Theorem: aperiodic membership

The following conditions are (effectively) equivalent:

- 1. f is computed by a pebble transducer with output in \mathbb{Z} and smooth;
- 2. f is computed by an aperiodic pebble transducer with output in \mathbb{Z} .
- + Decidable membership problem + Commutes with optimization.

Main proof ideas

Build by residuation (crucial: \mathbb{Z} is a group) a nested canonical object + inductively translate smoothness into an aperiodicity property.

Determinization for transducers

of infinite strings

Transducers of infinite strings

Definition: transducers of infinite strings

- ► Input: infinite string, output: infinite string.
- ► Infinite execution + Büchi/Muller/parity acceptance conditions.
- \rightarrow Motivation: transducers of infinite strings \equiv streaming algorithms.

Transducers of infinite strings

Definition: deterministic regular functions

Computed by two-way deterministic transducers.

Example: normalization in base 10

 $09999 \cdots \mapsto 100000 \cdots$ is rational but not deterministic regular.

Two-way determinization of rational functions [Chapter 10]

Theorem: two-way determinization

The following are (effectively) equivalent:

- 1. f is rational and continuous;
- 2. f is rational and deterministic regular.
- + Decidable membership problem.

Main proof arguments

Composition of deterministic regular functions + Equivalence with *streaming string transducers* + Original tree-based constructions.

Theorem: Continuity = computability [Dave et al., 2020]

Regular \cap computable = regular \cap continuous.

- \rightarrow Rational \cap deterministic regular = rational \cap computable/continuous.
- \rightarrow Conjecture: deterministic regular = regular \cap computable/continuous.

Overview: transducers of infinite strings [Chapters 9 and 10]

+ Multiple characterizations of deterministic regular functions.

Outlook

Overview of contributions

Finite strings		Infinite strings
Nesting optimization for models of nested two-way transducers	Membership problems for nested transducers with output in \mathbb{N} or \mathbb{Z}	Determinization result + study of deterministic two-way transducers
[Manuscript, Part I]	[Manuscript, Part II]	[Manuscript, Part III]
[D-T, Filiot, Gastin,	[D-T, 2021] [D-T,	[Carton, D-T, 2022]
2020], [D-T, 2023]	2022] [Colcombet, D-T, Lopez, 2023]	[Carton, D-T, Filiot, Winter, 2023]

- + Semantic and syntactic characterizations of the classes.
- + Effective translations between several transducer models.

Present and future

Present: a toolbox for solving membership problems

- ► High-level strategies (syntax vs semantics).
- ► Low-level techniques (factorization forests, inductive methods for polyregular functions, determinization constructions, etc.).

Future: research directions

- ► Are canonical models really necessary for solving class membership problems? In particular to study aperiodicity.
- + Multiple low-hanging conjectures available.

Thank you!