ECE 3030 Spring 2025 HOMEWORK ASSIGNMENT NO. 5 Due: Friday, February 26th 11:59 pm upload to Carmen 3030 SpeedGrader Please complete the following exercises:

1. (20 pts) A Si sample with 10^{16} cm⁻³ donors is optically excited such that 10^{19} cm⁻³ EHPs are generated per second uniformly. The laser used causes the Si to heat up to 450 K. Find F_n and F_p and the change in conductivity σ upon shining the light. τ_e and $\tau_h = 10 \ \mu s$. $D_p = 12 \ cm^2/s$; $D_n = 36 \ cm^2/s$ at 450 K. What is the change in σ upon shining the light?

Electrons

Holes

Mobility (cm²/V sec)

- 2. (15 pts) A Si bar 0.1 cm long and 100 μm² (10⁻⁶ cm²) in cross sectional area is doped with 10¹⁷ cm⁻³ antimony. (a) Find the current at 300K with 10V applied. Repeat for a Si bar 1 μm long. (b) How long does it take an average electron to drift 1 μm in *pure* Si at an electric field of 50 V/cm? Repeat for 5x10⁵ V/cm.
- 3. (15 pts) For a hypothetical semiconductor, we have $\mu_n = \mu_p = 1000 \text{ cm}^2/\text{V-s} \text{ and } N_C = N_V = 10^{19} \text{ cm}^{-3}. \text{ If}$ the conductivity of the intrinsic semiconductor at 300 K is $4 \times 10^{-6} \ (\Omega \text{-cm})^{-1}$, what is the conductivity at 600 K? Assume that N_C , N_V , and E_G do not vary with T.
- 4. (20 pts) Referring to S&B Fig. 3-25, consider a semiconductor bar with w = 0.01 cm, $t = 10 \ \mu m$, and $L = 5 \ mm$. For $B = 10 \ kG$ in the direction shown (1 kG = 10^{-5} Wb/cm²) and a current of 1 mA, we have $V_{AB} = -2 \ mV$, $V_{CD} = 100 \ mV$. Find the type, concentration, and mobility of the majority carrier.
- 5. (15 pts) Boron is diffused into an intrinsic Si sample such that $N_a=N_0\exp(-ax)$, where x=0 at the surface. (a) Find an expression for $\mathcal{E}(x)$ at equilibrium over the range for which $N_a>>n_i$. (b) Evaluate $\mathcal{E}(x)$ when a=2 (μm)⁻¹. Sketch the equilibrium band diagram to show the direction and slope of the resulting electric field, for $N_a(x)>>n_i$. Repeat for phosphorus with $N_d(x)>n_i$. Note: kT/q=0.0259. (q cancels e.)
- 6. (15 pts) In Fig. 4-17, the steady state excess hole concentration at x = 0 is $\Delta p = 10^{17} \text{cm}^{-3}$. The semi-infinite Si bar has a cross section $A = 10^{-3} \text{ cm}^2$. The hole diffusion length L_p is 10^{-3} cm, and the hole lifetime is 10^{-7} s.
 - (a) What is the steady state stored charge Q_p in the exponential excess hole distribution?
 - (b) What is the hole current $I_p(x = 0)$ feeding this steady state distribution?
 - (c) What is the slope of the distribution (in cm⁻⁴) at x = 0?
- 7. Bonus (20 Pts) Design and sketch a photoconductor using a 5- μ m-thick film of CdS, assuming that $\tau_n = \tau_p = 10^{-6}$ s and $N_d = 10^{14}$ cm⁻³. The dark resistance (with $g_{op} = 0$) should be 10 M Ω , and the device must fit in a square 0.5 cm on a side; therefore, some sort of folded or zigzag pattern is in order. With an excitation of $g_{op} = 10^{20}$ EHP/cm²-s, what is the resistance change?