

Intro and Exam Focus

- Calculating portfolio return and variance (for two or three assets)
- Using conditional probabilities in probability trees
- Bayes' formula

© Kaplan, Inc

Portfolio Expected Return and Variance

Expected return of a portfolio of two assets, A and B:

$$E(R_D) = W_A E(R_A) + W_B E(R_B)$$

Portfolio variance:
$$Var(R_p) = w_A^2 \sigma_A^2 + w_B^2 \sigma_B^2 + 2w_A w_B Cov_{AB}$$

Note link to correlation (p): $Cov_{AB} = \rho_{AB}\sigma_{A}\sigma_{B}$

$$Var(R_p) = W_A^2 \sigma_A^2 + W_B^2 \sigma_B^2 + 2W_A W_B \rho_{AB} \sigma_A^2 \sigma_B^2$$

Portfolio Expected Return & Variance: CFA Institute Example

Key information about a three-asset portfolio is presented below:

Asset Class	Weight	Expected Return (%)
S&P 500	0.5	13
U.S. long-term corporate bonds	0.25	6
MSCI EAFE	0.25	15

Compute the portfolio's expected return:

$$\mathsf{E}(\mathsf{R}_{\mathsf{P}}) = \qquad \qquad + \qquad \qquad = \qquad \qquad = \qquad \qquad \qquad + \qquad \qquad = \qquad \qquad \qquad = \qquad \qquad \qquad = \qquad \qquad \qquad = \qquad = \qquad = \qquad \qquad = \qquad =$$

© Copyright CFA Institute

© Kaplan, Inc.

Portfolio Expected Return & Variance: CFA Institute Example

Key information about a three-asset portfolio is presented below:

Covariance Matrix	S&P 500	U.S. Long-Term Corporate Bonds	MSCI EAFE
S&P 500	400	45	189
U.S. long-term corporate bonds	45	81	38
MSCI EAFE	189	38	441

Compute the portfolio's variance:

$$\sigma_{P}^{2} = (0.5^{2} \times 400) + (0.25^{2} \times 81) + (0.25^{2} \times 441) + (2 \times 0.5 \times 0.25 \times 45) + (2 \times 0.5 \times 0.25 \times 189) + (2 \times 0.25 \times 0.25 \times 38) =$$

$$\sigma_{P} = 0$$
or

Covariance Based on Joint Probability:

CFA Institute Example

Joint probability function of BankCorp and NewBank returns:

$$E(R_A) = 0.20(25\%) + 0.50(12\%) + 0.30(10\%) = 14\%$$

$$E(R_B) = 0.20(20\%) + 0.50(16\%) + 0.30(10\%) = 15\%$$

$$Cov_{AB} = \Sigma_A \Sigma_B P(R_A, R_B)[R_A - E(R_A)][(R_B - E(R_B)]$$

© Copyright CFA Institute

© Kaplan, Inc.

Covariance Based on Joint Probability: Solution

Returns
$$R_B = 20\%$$
 $R_B = 16\%$ $R_B = 10\%$ $E(R_B) = 15\%$ $R_A = 25\%$ 0.20 $R_A = 12\%$ 0.50 $R_A = 10\%$ 0.30

$$E(R_{\Delta}) = 14\%$$

More precisely (if decimal returns had been used)

© Copyright CFA Institute

The Normal Distribution

- Completely described by **mean and variance**
- **Symmetric** about the mean (skewness = 0)
- **Kurtosis** (a measure of peakedness/fat tails) = 3

© Kaplan, Inc.

Normal Distribution: Key Distances

Normal Distribution: Key Distances (cont.)

Number of Standard Deviations	Area in One Tail	Two-Tailed Confidence Level
1.65	5%	90%
1.96	2.5%	95%
2.33	1%	98%
2.58	0.5%	99%

Normal Distribution: Example

The mean annual return (normally distributed) on a portfolio is estimated to be 11%, with a standard deviation of 8%.

Calculate a 95% confidence interval for the next year's return.

$$11\% \pm = to$$

$$-1.96\sigma + 1.96\sigma$$

$$-4.7\% 11.0\% 26.7\%$$

© Kaplan, Inc.

Standard Normal Distribution

A normal distribution that has been standardized so that **mean = 0 and standard deviation = 1**

To standardize a random variable, calculate the z-value

Subtract the mean (so mean = 0) and divide by standard deviation (so σ = 1):

$$z = \frac{X - \mu}{\sigma}$$

Z is the number of standard deviations of a value, *X*, from the mean

Using z-Tables: Example

• A z-table gives cumulative probabilities for the standard normal distribution.

Example: The EPS for a large group of firms is normally distributed and has $\mu = \$4.00$ and $\sigma = \$1.50$. Find the probability that a randomly selected firm's earnings are less than \$3.70.

Z	0.00	0.01		
0.0	0.5000	0.4960		
-0.1		0.4562		
-0.2	0.4207	0.4168		

The table shows CDF for std. normal distribution, =

© Kaplan, Inc.

Using z-Tables (cont.)

There is a 42.07% probability that the EPS of a randomly selected firm will be more than 0.20 standard deviations **below** the mean (i.e., < \$3.70):

Shortfall Risk and Safety-First Ratio

Shortfall risk: probability that a portfolio return or value will be below a target return or value

Roy's safety-first ratio: number of std. dev. target is below the expected return/value

SF ratio =
$$\frac{\left[E(R_P) - R_L\right]}{\sigma_P}$$
, where R_L = threshold/target return

If R_L = risk-free rate, SF ratio is the same as Sharpe ratio

© Kaplan, Inc.

Shortfall Risk and Safety-First Ratio: CFA Institute Example

Which of the following portfolios has the lowest probability of earning less than 2%?

Portfolio	1	2
Expected annual return (%)	12	14
Standard deviation of return	15	16

$$SFRatio_1 = SFRatio_2 = =$$

-3

© Copyright CFA Institute

Safety-First Ratio: Solution

CUMULATIVE Z-TABLE (CONT.)

Standard Normal Distribution

 $P(Z \le z) = N(z)$ for $z \ge 0$

Portfolio 1 ≈

Portfolio 2 =

© Copyright CFA Institute

© Kaplan, Inc.

<u>Portfolio 1 ≈ 0.2514</u>

Portfolio $2 \approx 0.2266$

-2

© Copyright CFA Institute

Solutions

Portfolio Expected Return & Variance: CFA Institute Example

Key information about a three-asset portfolio is presented below:

Asset Class	Weight	Expected Return (%)
S&P 500	0.5	13
U.S. long-term corporate bonds	0.25	6
MSCI EAFE	0.25	15

Compute the portfolio's expected return:

$$E(R_P) = (0.5 \times 13\%) + (0.25 \times 6\%) + (0.25 \times 15\%) = 11.75\%$$

-1

© Copyright CFA Institute

Portfolio Expected Return & Variance: CFA Institute Example

Key information about a three-asset portfolio is presented below:

Covariance Matrix	S&P 500	U.S. Long-Term Corporate Bonds	MSCI EAFE
S&P 500	400	45	189
U.S. long-term corporate bonds	45	81	38
MSCI EAFE	189	38	441

Compute the portfolio's variance:

$$\begin{split} &\sigma_P^2 = \left(0.5^2 \!\times\! 400\right) + \left(0.25^2 \times 81\right) + \left(0.25^2 \times 441\right) \! + \! \left(2 \times 0.5 \times 0.25 \times 45\right) \\ &+ \! \left(2 \times 0.5 \times 0.25 \times 189\right) \! + \! \left(2 \times 0.25 \times 0.25 \times 38\right) = 195.875 \\ &\sigma_P \! = \sqrt{195.875} = 0.14 \text{ or } 14\% \end{split}$$

© Copyright CFA Institute

© Kaplan, Inc.

Covariance Based on Joint Probability: Solution

Returns
$$R_B = 20\%$$
 $R_B = 16\%$ $R_B = 10\%$ $E(R_B) = 15\%$ $R_A = 25\%$ 0.20 $R_A = 12\%$ 0.50 $R_A = 10\%$ 0.30

$$E(R_A) = 14\%$$

More precisely (if decimal returns had been used)

16 / 10,000 = 0.0016

-4

© Copyright CFA Institute

Normal Distribution: Example

The mean annual return (normally distributed) on a portfolio is estimated to be 11%, with a standard deviation of 8%.

Calculate a 95% confidence interval for the next year's return.

© Kaplan, Inc.

Using z-Tables: Example

• A z-table gives cumulative probabilities for the standard normal distribution.

Example: The EPS for a large group of firms are normally distributed and have μ = \$4.00 and σ = \$1.50. Find the probability that a randomly selected firm's earnings are less than \$3.70.

$$z = \frac{3.70 - 4.00}{1.50} = -0.20\sigma$$

Z	0.00	0.01
0.0	0.5000	0.4960
-0.1	0.4602	0.4562
-0.2	0.4207	0.4168

The table shows CDF for std. normal distribution, N(-0.2) = 42.07%.

-3

Shortfall Risk and Safety-First Ratio: CFA Institute Example

Which of the following portfolios has the lowest probability of earning less than 2%?

Portfolio	1	2
Expected annual return (%)	12	14
Standard deviation of return	15	16

SFRatio₁=
$$\frac{12-2}{15}$$
 = 0.6670

SFRatio₁=
$$\frac{12-2}{15} = 0.667\sigma$$
 SFRatio₂= $\frac{14-2}{16} = 0.75\sigma$

© Copyright CFA Institute

© Kaplan, Inc.

Safety-First Ratio: Solution

CUMULATIVE Z-TABLE (CONT.)

Standard Normal Distribution

 $P(Z \le z) = N(z)$ for $z \ge 0$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.7	0.2420	0.2389	0.2358	0.2327	0.2297	0.2266	0.2236	0.2207	0.2177	0.2148
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611

Portfolio 1 ≈ 0.2514

Portfolio 2 = 0.2266

© Copyright CFA Institute