

Ministério da Educação

Universidade Federal dos Vales do Jequitinhonha e Mucuri Faculdade de Ciências Sociais, Aplicadas e Exatas - FACSAE

Disciplina: Cálculo Numérico Prof.: Luiz C. M. de Aquino

Lista de Exercícios III

- 1. Utilize o Método de Newnton para determinar uma aproximação para a raiz da função polinomial definida por $p(x) = 2x^4 2x^3 22x^2 10x + 8$ no intervalo [0; 1] (considere uma tolerância de 10^{-5}).
- 2. Use o Método da Falsa Posição para encontrar a raiz aproximada da equação $e^x e^{-x} = 2\cos x$ no intervalo [0, 1] (considere uma tolerância de 10^{-5}).
- 3. A cada passo no Método da Falsa Posição, escolhemos $x_k = \frac{a_k |f(b_k)| + b_k |f(a_k)|}{|f(a_k)| + |f(b_k)|}$, sendo que no intervalo $[a_k; b_k]$ temos $f(a_k)f(b_k) < 0$. Prove que esta escolha de x_k coincide com a abscissa do ponto de interseção entre o eixo x e a reta passando por $(a_k, f(a_k))$ e $(b_k, f(b_k))$.
- 4. Considere o problema de encontrar uma raiz aproximada da equação $e^{-x^2} = \frac{1}{2}$ no intervalo $\left[\frac{1}{2}; 1\right]$. Determine uma função de iteração e resolva este problema pelo Método do Ponto Fixo.
- 5. Seja ϕ uma função de iteração da equação f(x) = 0 no intervalo [a; b]. Prove que se ϕ é contínua em [a; b] e $\phi(x) \in [a; b]$ para todo $x \in [a; b]$, então ϕ possui algum ponto fixo em [a; b].
- 6. Seja x um número natural qualquer. Considere que n seja um quadrado perfeito mais próximo de x. Prove que $\sqrt{x} \approx \frac{x+n}{2\sqrt{n}}$. (Observação: dizemos que n é um quadrado perfeito se existe um natural m tal que $n=m^2$.)

Gabarito

[1] $x \approx 0.41421$. [2] $x \approx 0,70329$. [3] Sugestão: como $f(a_k)f(b_k) < 0$, note que $|f(a_k)| + |f(b_k)| = \begin{cases} f(a_k) - f(b_k)$, se $f(a_k) > 0$ e $f(b_k) < 0 \\ -f(a_k) + f(b_k)$, se $f(a_k) < 0$ e $f(b_k) > 0$. A partir disso, note que $x_k = \frac{a_k f(b_k) - b_k f(a_k)}{f(a_k) - f(b_k)}$. Em seguida, determine a interseção entre o eixo x e a reta passando por $(a_k, f(a_k))$ e $(b_k, f(b_k))$. Por fim, compare a abscissa deste ponto de interseção com a expressão anterior obtida para x_k . [4] Considere $\phi(x) = x + e^{-x^2} - \frac{1}{2}$. Note que $|\phi'(x)| < 1$ para $x \in \left[\frac{1}{2}; 1\right]$. Deste modo, a sequência $x_{n+1} = \phi(x_n)$ é convergente e teremos $x \approx 0,832438$ como solução aproximada da equação dada. [5] Sugestão: Usando que ϕ é contínua em [a; b], justifique que a função definida por $g(x) = \phi(x) - x$ é contínua em [a; b]. Já usando que $\phi(x) \in [a; b]$ para todo $x \in [a; b]$, justifique que g(a)g(b) < 0. Aplicando então o Teorema do Valor Intermediário, conclua que existe $\alpha \in [a; b]$ tal que $g(\alpha) = 0$. A partir disso, conclua que ϕ possui algum ponto fixo em [a; b]. [6] Sugestão: Aplique o Método de Newton na resolução aproximada (em u) da equação $u^2 - x = 0$. Use como valor inicial $u_0 = \sqrt{n}$.