Classification objectives

COMS 4721 Spring 2022 Daniel Hsu

Motivation

- ▶ Different types of classification errors may have different practical consequences
- ▶ When errors are inevitable, how does one manage trade-offs?

Types of mistakes:

- ▶ False positive: Predict $f(\vec{x}) = 1$ but true label is y = 0
- ▶ False negative: Predict $f(\vec{x}) = 0$ but true label is y = 1

Types of mistakes:

- ▶ False positive: Predict $f(\vec{x}) = 1$ but true label is y = 0
- ▶ False negative: Predict $f(\vec{x}) = 0$ but true label is y = 1

Statistical model for future data tells us how often these mistakes are committed

- lacktriangle Outcome/label is a Bernoulli random variable Y
- lacktriangledown Feature vector is a vector of d random variables $ec{X} \coloneqq (X_1, \dots, X_d)$
- lacktriangle Joint distribution of (\vec{X},Y) reflects the population of examples we anticipate encountering in the future for the present application

Types of mistakes:

- ▶ False positive: Predict $f(\vec{x}) = 1$ but true label is y = 0
- **False negative:** Predict $f(\vec{x}) = 0$ but true label is y = 1

Statistical model for future data tells us how often these mistakes are committed

- ightharpoonup Outcome/label is a Bernoulli random variable Y
- lacktriangledown Feature vector is a vector of d random variables $ec{X} \coloneqq (X_1, \dots, X_d)$
- lacktriangle Joint distribution of (\vec{X},Y) reflects the population of examples we anticipate encountering in the future for the present application
- ▶ False positive rate: $FPR(f) := Pr(f(\vec{X}) = 1 \mid Y = 0)$
- ▶ False negative rate: $FNR(f) := Pr(f(\vec{X}) = 0 \mid Y = 1)$

Types of mistakes:

- **False positive:** Predict $f(\vec{x}) = 1$ but true label is y = 0
- **False negative:** Predict $f(\vec{x}) = 0$ but true label is y = 1

Statistical model for future data tells us how often these mistakes are committed

- Outcome/label is a Bernoulli random variable Y
- lacktriangledown Feature vector is a vector of d random variables $ec{X} \coloneqq (X_1, \dots, X_d)$
- lacktriangle Joint distribution of (\vec{X},Y) reflects the population of examples we anticipate encountering in the future for the present application
- ▶ False positive rate: $FPR(f) := Pr(f(\vec{X}) = 1 \mid Y = 0)$
- ▶ False negative rate: $FNR(f) := Pr(f(\vec{X}) = 0 \mid Y = 1)$

Error rate:
$$\operatorname{err}(f) := \operatorname{Pr}(f(\vec{X}) \neq Y) = \operatorname{Pr}(Y = 0) \cdot \operatorname{FPR}(f) + \operatorname{Pr}(Y = 1) \cdot \operatorname{FNR}(f)$$

Expected cost

Cost structure:
$$\begin{array}{c|c|c|c} & & |f(\vec{X})=0 & f(\vec{X})=1 \\ \hline Y=0 & 0 & c_{\mathrm{FP}} \\ \hline Y=1 & c_{\mathrm{FN}} & 0 \\ \end{array}$$

for some $c_{\mathrm{FP}}>0$ and $c_{\mathrm{FN}}>0$

Expected cost

Cost structure:
$$\begin{array}{c|c|c|c} & \parallel f(\vec{X}) = 0 & \mid f(\vec{X}) = 1 \\ \hline Y = 0 & 0 & c_{\mathrm{FP}} \\ \hline Y = 1 & c_{\mathrm{FN}} & 0 \\ \end{array}$$

for some $c_{\rm FP}>0$ and $c_{\rm FN}>0$

So expected cost of f in statistical model is

$$\begin{split} \mathbb{E}[\mathrm{cost}(f)] \; &=\; \Pr(f(\vec{X}) = 1 \text{ and } Y = 0) \cdot c_{\mathrm{FP}} \; + \; \Pr(f(\vec{X}) = 0 \text{ and } Y = 1) \cdot c_{\mathrm{FN}} \\ &=\; \Pr(Y = 0) \cdot \mathrm{FPR}(f) \cdot c_{\mathrm{FP}} \; + \; \Pr(Y = 1) \cdot \mathrm{FNR}(f) \cdot c_{\mathrm{FN}} \end{split}$$

Question: What are the predictions made by the classifier of smallest expected cost (according to cost structure on previous slide)?

Question: What are the predictions made by the classifier of $\underline{\text{smallest expected cost}}$ (according to cost structure on previous slide)?

For each possible feature vector \vec{x} , conditional distribution of Y given $\vec{X} = \vec{x}$ is Bernoulli with "success probability" parameter that may be specific to \vec{x} :

$$(Y \mid \vec{X} = \vec{x}) \sim \text{Bernoulli}(\eta(\vec{x}))$$

The $\vec{x}\text{-specific parameter }\eta(\vec{x})$ is a number between 0 and 1

Question: What are the predictions made by the classifier of $\underline{\text{smallest expected cost}}$ (according to cost structure on previous slide)?

For each possible feature vector \vec{x} , conditional distribution of Y given $\vec{X} = \vec{x}$ is Bernoulli with "success probability" parameter that may be specific to \vec{x} :

$$(Y \mid \vec{X} = \vec{x}) \sim \text{Bernoulli}(\eta(\vec{x}))$$

The \vec{x} -specific parameter $\eta(\vec{x})$ is a number between 0 and 1

▶ Reasoning based on each possible prediction:

Prediction upon $\vec{X} = \vec{x}$	Conditional expected cost
1	$(1-\eta(ec{x}))\cdot c_{ ext{FP}}$
0	$\eta(ec{x}) \cdot c_{ ext{FN}}$

Question: What are the predictions made by the classifier of $\underline{\text{smallest expected cost}}$ (according to cost structure on previous slide)?

For each possible feature vector \vec{x} , conditional distribution of Y given $\vec{X} = \vec{x}$ is Bernoulli with "success probability" parameter that may be specific to \vec{x} :

$$(Y \mid \vec{X} = \vec{x}) \sim \text{Bernoulli}(\eta(\vec{x}))$$

The \vec{x} -specific parameter $\eta(\vec{x})$ is a number between 0 and 1

▶ Reasoning based on each possible prediction:

Prediction upon $\vec{X} = \vec{x}$	Conditional expected cost
1	$(1-\eta(ec{x}))\cdot c_{ ext{FP}}$
0	$\eta(ec{x}) \cdot c_{ ext{FN}}$

lacktriangle So, prediction that minimizes conditional expected cost given $\vec{X}=\vec{x}$ is:

$$f^{\star}(\vec{x}) := \mathbb{1}\{\eta(\vec{x}) > \alpha\}$$
 where $\alpha := \frac{c_{\mathrm{FP}}}{c_{\mathrm{FP}} + c_{\mathrm{FN}}}$

Plug-in approach

▶ Directly estimate $\eta(\vec{x}) = \Pr(Y = 1 \mid \vec{X} = \vec{x})$ (denote the estimate by $\hat{\eta}$) (This is a kind of *regression* problem!)

Plug-in approach

- ▶ Directly estimate $\eta(\vec{x}) = \Pr(Y = 1 \mid \vec{X} = \vec{x})$ (denote the estimate by $\hat{\eta}$) (This is a kind of *regression* problem!)
- ightharpoonup Construct classifier that thresholds the estimate $\hat{\eta}$ at α

$$f(\vec{x}) := \mathbb{1}\{\hat{\eta}(\vec{x}) > \alpha\} \qquad \text{where } \alpha := \frac{c_{\mathrm{FP}}}{c_{\mathrm{FP}} + c_{\mathrm{FN}}}$$

Plug-in approach

- ▶ Directly estimate $\eta(\vec{x}) = \Pr(Y = 1 \mid \vec{X} = \vec{x})$ (denote the estimate by $\hat{\eta}$) (This is a kind of *regression* problem!)
- ightharpoonup Construct classifier that thresholds the estimate $\hat{\eta}$ at α

$$f(ec{x}) := \mathbb{1}\{\hat{\eta}(ec{x}) > lpha\} \qquad ext{where } lpha := rac{c_{ ext{FP}}}{c_{ ext{FP}} + c_{ ext{FN}}}$$

Modify training objective

Example:

Original sum of logarithmic losses

$$J(\vec{w}) = \sum_{(\vec{x}, y) \in \mathbb{S}} \ell_{\log}(y, p_{\vec{w}}(\vec{x}))$$

Plug-in approach

- ▶ Directly estimate $\eta(\vec{x}) = \Pr(Y = 1 \mid \vec{X} = \vec{x})$ (denote the estimate by $\hat{\eta}$) (This is a kind of *regression* problem!)
- lacktriangle Construct classifier that thresholds the estimate $\hat{\eta}$ at α

$$f(ec{x}) := \mathbb{1}\{\hat{\eta}(ec{x}) > lpha\} \qquad ext{where } lpha := rac{c_{ ext{FP}}}{c_{ ext{FP}} + c_{ ext{FN}}}$$

Modify training objective

Example:

Original sum of logarithmic losses

$$J(\vec{w}) = \sum_{(\vec{x}, y) \in \mathcal{S}} \ell_{\log}(y, p_{\vec{w}}(\vec{x}))$$

Instead, minimize weighted sum of logarithmic losses

$$\widetilde{J}(\vec{w}) = \sum_{(\vec{x}, y) \in \mathbb{S}} c(y) \, \ell_{\log}(y, p_{\vec{w}}(\vec{x}))$$

where $c(0) := c_{\text{FP}}$ and $c(1) := c_{\text{FN}}$, and construct classifier $f(\vec{x}) := \mathbb{1}\{p_{\vec{w}}(\vec{x}) > 1/2\}$

Probability calibration

What are semantics of the weather forecast "70% chance of rain"?

Probability calibration

What are semantics of the weather forecast "70% chance of rain"?

- ▶ Ideally, among all days where forecaster says "70% chance of rain", should have:
 - ightharpoonup pprox 70% with rain
 - $\blacktriangleright~\approx~30\%$ with no rain

Probability calibration

What are semantics of the weather forecast "70% chance of rain"?

- ▶ Ideally, among all days where forecaster says "70% chance of rain", should have:
 - $ightharpoonup \approx 70\%$ with rain
 - ho \approx 30% with no rain

This property is called calibration

$$\Pr(Y = 1 \mid p(\vec{X})) \approx p(\vec{X})$$

How to get calibrated probability predictions?

Direct approach

▶ Directly estimate $\eta(\vec{x}) = \Pr(Y = 1 \mid \vec{X} = \vec{x})$ (This is a kind of *regression* problem!)

How to get calibrated probability predictions?

Direct approach

▶ Directly estimate $\eta(\vec{x}) = \Pr(Y = 1 \mid \vec{X} = \vec{x})$ (This is a kind of *regression* problem!)

Post-processing approach

▶ Start with (possibly un-calibrated) scoring function $s(\vec{x})$. . . (e.g., $s(\vec{x}) = \vec{x} \cdot \vec{w}$) Then apply *calibration procedure*

Calibration example

Example from Foster & Stine, JASA 2004

- ► Horizontal axis: predicted probability of bankruptcy
- ► Vertical axis: actual proportion of bankruptcy

Starting with (possibly un-calibrated) scoring function $s(\vec{x})$... estimate $\Pr(Y=1 \mid s(\vec{X})=s(\vec{x}))$ (!)

Starting with (possibly un-calibrated) scoring function $s(\vec{x})$... estimate $\Pr(Y=1 \mid s(\vec{X})=s(\vec{x}))$ (!)

- Platt scaling
 - Estimate parameters (m,θ) of logistic regression model (with affine expansion) using $s(\vec{x})$ as scalar feature:

$$\Pr_{(m,\theta)}(Y = 1 \mid s(\vec{X}) = s(\vec{x})) = \operatorname{logistic}(m \times s(\vec{x}) + \theta)$$

$$\rightarrow (\hat{m}, \hat{\theta})$$

► Return $\hat{p}(\vec{x}) := \text{logistic}(\hat{m} \times s(\vec{x}) + \hat{\theta})$

Starting with (possibly un-calibrated) scoring function $s(\vec{x})$... estimate $\Pr(Y=1 \mid s(\vec{X})=s(\vec{x}))$ (!)

- Platt scaling
 - Estimate parameters (m,θ) of logistic regression model (with affine expansion) using $s(\vec{x})$ as scalar feature:

$$\Pr_{(m,\theta)}(Y=1 \mid s(\vec{X}) = s(\vec{x})) = \operatorname{logistic}(m \times s(\vec{x}) + \theta)$$

$$ightarrow (\hat{m},\hat{ heta})$$

- ▶ Return $\hat{p}(\vec{x}) := \text{logistic}(\hat{m} \times s(\vec{x}) + \hat{\theta})$
- **▶** Binning
 - ▶ Divide range of $s(\vec{x})$ into several bins B_1, B_2, \ldots (how many???)
 - ► Estimate $\Pr(Y = 1 \mid s(\vec{X}) \in B_i)$ for each $i \rightarrow (\hat{p}_1, \hat{p}_2, \dots)$

Return
$$\hat{p}(\vec{x}) := \begin{cases} \hat{p}_1 & \text{if } s(\vec{x}) \in B_1 \\ \hat{p}_2 & \text{if } s(\vec{x}) \in B_2 \\ \vdots & \vdots \end{cases}$$

Starting with (possibly un-calibrated) scoring function $s(\vec{x})$... estimate $\Pr(Y=1 \mid s(\vec{X})=s(\vec{x}))$ (!)

- Platt scaling
 - lacktriangle Estimate parameters (m, θ) of logistic regression model (with affine expansion) using $s(\vec{x})$ as scalar feature:

$$\Pr_{(m,\theta)}(Y=1 \mid s(\vec{X})=s(\vec{x})) = \operatorname{logistic}(m \times s(\vec{x}) + \theta)$$

- $\rightarrow (\hat{m}, \hat{\theta})$
- Return $\hat{p}(\vec{x}) := \operatorname{logistic}(\hat{m} \times s(\vec{x}) + \hat{\theta})$
- **▶** Binning
 - ▶ Divide range of $s(\vec{x})$ into several bins B_1, B_2, \ldots (how many???)
 - ► Estimate $\Pr(Y = 1 \mid s(\vec{X}) \in B_i)$ for each $i \to (\hat{p}_1, \hat{p}_2, \dots)$

...and many others

Typically, use separate data for training $s(\vec{x})$ and for post-processing calibration

Estimating $\eta(\vec{x}) = \Pr(Y = 1 \mid \vec{X} = \vec{x})$ can be harder than learning good classifier!

Estimating $\eta(\vec{x}) = \Pr(Y = 1 \mid \vec{X} = \vec{x})$ can be harder than learning good classifier!

E.g., even if affine expansion is good enough for linear classifier, may need higher-degree polynomial expansion for good estimate of $\eta(\vec{x})$

- Estimating $\eta(\vec{x}) = \Pr(Y = 1 \mid \vec{X} = \vec{x})$ can be harder than learning good classifier!

 E.g., even if affine expansion is good enough for linear classifier, may need higher-degree polynomial expansion for good estimate of $\eta(\vec{x})$
- ► Good calibration does not imply good classification!

- \blacktriangleright Estimating $\eta(\vec{x}) = \Pr(Y = 1 \mid \vec{X} = \vec{x})$ can be harder than learning good classifier!
 - E.g., even if affine expansion is good enough for linear classifier, may need higher-degree polynomial expansion for good estimate of $\eta(\vec{x})$
- Good calibration does not imply good classification!

Easiest way to get calibration: Ignore \vec{x} ; just always output your estimate \hat{p}_0 of $\Pr(Y=1)$

$$\hat{p}(\vec{x}) \equiv \hat{p}_0$$

Ignoring \vec{x} is usually a bad idea if you care about classification accuracy

Fairness in ML

Use of ML models in decision-making: "data-driven solutions"

Fairness in ML

Use of ML models in decision-making: "data-driven solutions"

Why study "fairness"?

Fairness in ML

Use of ML models in decision-making: "data-driven solutions"

Why study "fairness"?

▶ Automated decisions ⇒ potential for high rate of harm

Fairness in ML

Use of ML models in decision-making: "data-driven solutions"

Why study "fairness"?

- ► Automated decisions ⇒ potential for high rate of harm
- ► Metrics-driven ⇒ potential for measurement / testing for harms

Fairness in ML

Use of ML models in decision-making: "data-driven solutions"

Why study "fairness"?

- ► Automated decisions ⇒ potential for high rate of harm
- ► Metrics-driven ⇒ potential for measurement / testing for harms
- ▶ Metrics-driven ⇒ potential to delude about non-harm

 $\mathsf{ML}\ \mathsf{classifiers}\ \mathsf{in}\ \mathsf{high}\text{-stakes}\ \mathsf{applications} \Rightarrow \mathsf{Potential}\ \mathsf{for}\ \mathsf{(harmful)}\ \mathsf{disparate}\ \mathsf{treatment}\ \mathsf{of}\ \mathsf{subgroups}$

ML classifiers in high-stakes applications \Rightarrow Potential for (harmful) disparate treatment of subgroups

ProPublica study of ML classifier used in pre-trial detention (Angwin, Larson, Mattu, Kirchner, 2016)

▶ Judge must decide whether an arrested defendant should be released while awaiting trial

ML classifiers in high-stakes applications ⇒ Potential for (harmful) disparate treatment of subgroups

ProPublica study of ML classifier used in pre-trial detention (Angwin, Larson, Mattu, Kirchner, 2016)

- ▶ Judge must decide whether an arrested defendant should be released while awaiting trial
- ► Binary classification problem:
 - $lackbox{ } ec{X} = ext{ ``features'' of defendant, available at time of judge's decision }$
 - $Y = \begin{cases} 1 & \text{if defendant will commit (violent) crime if released} \\ 0 & \text{otherwise} \end{cases}$

ML classifiers in high-stakes applications \Rightarrow Potential for (harmful) disparate treatment of subgroups

ProPublica study of ML classifier used in pre-trial detention (Angwin, Larson, Mattu, Kirchner, 2016)

- Judge must decide whether an arrested defendant should be released while awaiting trial
- ► Binary classification problem:
 - $lackbox{ } ec{X} =$ "features" of defendant, available at time of judge's decision
 - $Y = \begin{cases} 1 & \text{if defendant will commit (violent) crime if released} \\ 0 & \text{otherwise} \end{cases}$
- lacktriangle Studied classifier $f_{
 m COMPAS}$ developed by company called Northpointe

ML classifiers in high-stakes applications \Rightarrow Potential for (harmful) disparate treatment of subgroups

ProPublica study of ML classifier used in pre-trial detention (Angwin, Larson, Mattu, Kirchner, 2016)

- Judge must decide whether an arrested defendant should be released while awaiting trial
- Binary classification problem:
 - $lackbox{ } ec{X} =$ "features" of defendant, available at time of judge's decision
 - $Y = \begin{cases} 1 & \text{if defendant will commit (violent) crime if released} \\ 0 & \text{otherwise} \end{cases}$
- ightharpoonup Studied classifier f_{COMPAS} developed by company called Northpointe
- ▶ Finding: Very different false positive rates for different subgroups defined by race

$$\mathrm{FPR}_0(f) = \Pr(f_{\mathrm{COMPAS}}(\vec{X}) = 1 \mid Y = 0, A = 0)$$

$$FPR_1(f) = Pr(f_{COMPAS}(\vec{X}) = 1 \mid Y = 0, A = 1)$$

where A is race attribute (Black = 0, White = 1)

ProPublica's analysis

Let
$$\hat{Y} := f_{\text{COMPAS}}(\vec{X})$$

$\begin{tabular}{l|l} Black defendants \\ \hline $(A=0) \parallel \hat{Y}=0 \parallel \hat{Y}=1$ \\ \hline $Y=0 \parallel 0.27 \quad 0.22$ \\ \hline $Y=1 \parallel 0.14 \quad 0.37$ \\ \hline \end{tabular}$

ProPublica's analysis

Let
$$\hat{Y} := f_{\text{COMPAS}}(\vec{X})$$

$$\begin{tabular}{l|l} Black defendants \\ \hline $(A=0) \parallel \hat{Y}=0 \parallel \hat{Y}=1$ \\ \hline $Y=0 \parallel 0.27 \parallel 0.22$ \\ \hline $Y=1 \parallel 0.14 \parallel 0.37$ \\ \hline \end{tabular}$$

False positive rates for each subgroup:

$$FPR_0(f) = Pr(\hat{Y} = 1 \mid Y = 0, A = 0) = \frac{0.22}{0.27 + 0.22} = 45\%$$

$$FPR_1(f) = Pr(\hat{Y} = 1 \mid Y = 0, A = 1) = \frac{0.14}{0.14 + 0.46} = 23\%$$

ProPublica's analysis

Let
$$\hat{Y} := f_{\text{COMPAS}}(\vec{X})$$

False positive rates for each subgroup:

$$FPR_0(f) = Pr(\hat{Y} = 1 \mid Y = 0, A = 0) = \frac{0.22}{0.27 + 0.22} = 45\%$$

$$FPR_1(f) = Pr(\hat{Y} = 1 \mid Y = 0, A = 1) = \frac{0.14}{0.14 + 0.46} = 23\%$$

Also rather unequal false negative rates between subgroups (27% vs 48%)

Northpointe's analysis

Northpointe's COMPAS classifier is based on thresholding a "riskiness score"

$$f_{\text{COMPAS}}(\vec{x}) = \mathbb{1}\{\text{riskiness}(\vec{x}) > t\}$$

where $\mathrm{riskiness}(\vec{x}) \in [0,1]$ is intended to estimate $\Pr(Y=1 \mid \vec{X}=\vec{x})$

Northpointe's analysis

Northpointe's COMPAS classifier is based on thresholding a "riskiness score"

$$f_{\text{COMPAS}}(\vec{x}) = \mathbb{1}\{\text{riskiness}(\vec{x}) > t\}$$

where $\mathrm{riskiness}(\vec{x}) \in [0,1]$ is intended to estimate $\Pr(Y=1 \mid \vec{X}=\vec{x})$

Northpointe shows that riskiness scores are (roughly) calibrated for each subgroup: For each $r \in [0,1]$,

$$\Pr(Y=1\mid \mathrm{riskiness}(\vec{X})=r, A=0)=r$$

$$\text{ and } \quad \Pr(Y=1 \mid \mathrm{riskiness}(\vec{X}) = r, A=1) = r$$

(i.e., riskiness scores have same probabilistic interpretation for both subgroups)

Impossibility

Theorem (Chouldechova, 2016; Kleinberg, Mullainathan, Raghavan, 2017). Unless

$$Pr(Y = 1 \mid A = 0) = Pr(Y = 1 \mid A = 1),$$

or $f(\vec{x}) := \mathbb{1}\{\text{riskiness}(\vec{x}) > t\}$ satisfies

$$FPR(f) = FNR(f) = 0,$$

it is impossible to satisfy all of the following:

- 1. $FPR_0(f) = FPR_1(f)$
- 2. $FNR_0(f) = FNR_1(f)$
- 3. riskiness is calibrated for group A=0
- 4. riskiness is calibrated for group $A=1\,$

Impossibility

Theorem (Chouldechova, 2016; Kleinberg, Mullainathan, Raghavan, 2017). Unless

$$Pr(Y = 1 \mid A = 0) = Pr(Y = 1 \mid A = 1),$$

or $f(\vec{x}) := \mathbb{1}\{\text{riskiness}(\vec{x}) > t\}$ satisfies

$$FPR(f) = FNR(f) = 0,$$

it is impossible to satisfy all of the following:

- 1. $FPR_0(f) = FPR_1(f)$
- 2. $FNR_0(f) = FNR_1(f)$
- 3. riskiness is calibrated for group A=0
- 4. riskiness is calibrated for group A=1

Even this narrow interpretation of the pre-trial detention decision problem reveals how domain expertise is **required** to evaluate a potential ML-based solution

Recap

- ► Concerns in classification problems often go beyond error rate
- Potential for disparate treatment across subgroups is hazard of classification systems