

Licenciatura em Engenharia Informática

1º Ano, 2º Semestre

Eletrónica (2022/2023)

Ficha Prática Nº 7

22. Considere que o amp-op da figura seguinte (Fig. 1) é ideal.

- a) Determine a equação da tensão de saída (V_{out}) em função da fonte de tensão de entrada V_{in} .
- b) Determine o valor de V_{out} quando $V_{in} = 5 V$.
- c) Simule o circuito da Fig. 1 em Pspice.
- d) Determine a gama de valores que V_{in} pode assumir sem que se verifique a saturação do *amp-op*.

23. Considere que o *Amp op* da figura seguinte (Fig. 2) é ideal.

$$V^{+} = +15 V$$
 ; $V^{-} = -15 V$; $R_{1} = 2 k\Omega$; $R_{2} = 2 k\Omega$

 $R_4 = 2 k\Omega$;

Fig. 2

- a) Determine o valor de V_{out} , para $V_1 = 1$ $V \in V_2 = 2$ V.
- b) Simule o circuito da Fig. 2 em Pspice.
- c) Considere que o valor de V_2 foi alterado para -2 V, calcule o valor de V_{out} .
- d) Suponha que as fontes V_1 e V_2 foram substituídas por fontes de tensão AC com as seguintes características:

$$\checkmark$$
 $v_1 = 2 \times \sin(2 \times \pi \times 50 \times t)$.
 \checkmark $v_2 = 4 \times \sin(2 \times \pi \times 50 \times t + \pi)$.

Represente as formas de onda de v_1 , v_2 e v_{out} (tensão de saída).

- e) Simule as formas de onda anteriores (v_1 , v_2 e v_{out}) em *python* (utilize a biblioteca *matplotlib*).
- f) Simule o circuito em *Pspice*.
- g) Suponha que V_1 = 5 V. Determine a gama de valores que V_2 pode assumir sem que se verifique a saturação do $Amp\ op$.
- h) Efetue as modificações que considere apropriadas para que o circuito anterior possa operar como um conversor digital-analógico de dois *bits*:

$$\checkmark$$
 V₁ = 0 V e V₂ = 0 V → V_{out} = 0 V
 \checkmark V₁ = 0 V e V₂ = 1 V → V_{out} = -1 V
 \checkmark V₁ = 1 V e V₂ = 0 V → V_{out} = -2 V
 \checkmark V₁ = 1 V e V₂ = 1 V → V_{out} = -3 V

 Suponha que se pretendem valores de tensão positivos na saída. Que solução propunha. Represente o circuito, justifique analiticamente a solução proposta e simule o circuito e *Pspice*. 24. Considere que o Amp op da figura seguinte (Fig. 3) é ideal.

- a) Determine o valor de V_{out} , para $V_1 = 1 \ V \ e \ V_2 = -4 \ V$.
- b) Considere que o valor de V_2 foi alterado para 2 V, calcule o valor de V_{out} .
- c) Simule o circuito em Pspice.
- d) Suponha que V_2 = 3 V. Determine a gama de valores que V_1 pode assumir sem que se verifique a saturação do $Amp\ op$.
- e) Suponha que as fontes V_1 e V_2 foram substituídas por fontes de tensão AC com as seguintes características:

$$\checkmark$$
 $v_1 = 2 \times \sin(2 \times \pi \times 50 \times t)$.
 \checkmark $v_2 = \cos(2 \times \pi \times 50 \times t)$.

Represente as formas de onda de v_1 , v_2 e v_{out} (tensão de saída).

- f) Simule as formas de onda anteriores (v_1 , v_2 e v_{out}) em *python* (utilize a biblioteca *matplotlib*).
- j) Simule o circuito em Pspice.

25. Considere que o *amp-op* da figura seguinte (Fig. 4) é ideal.

$$R_1 = 1 \ k\Omega$$
 ; $R_2 = 1 \ k\Omega$; $R_3 = 1 \ k\Omega$; $V_1 = 2 \ V$
 $V^+ = +15 \ V$; $V^- = -15 \ V$

Fig. 4

- a) Calcule o valor de V_{out} (considere que ambos os interruptores estão ligados a V_1).
- b) Considere que pretende implementar um conversor digital analógico de 2 *bits* e em que $R_2 = 2 k\Omega$ e $R_1 = 4 k\Omega$. Efetue as modificações necessárias ao circuito e calcule o valor de V_{out} para todas as combinações possíveis de S_1 e S_2 .
- c) Complemente o circuito da figura anterior, de forma a garantir uma tensão de saída positiva e de valor igual ao dobro do valor obtido na alínea anterior. Justifique a solução proposta.
- d) A resolução é a menor quantidade que pode ser convertida dentro da faixa dinâmica do sinal de entrada. Calcule a resolução do conversor digital-analógico (*CDA*) concebido na alínea anterior.
- e) Simule o circuito anterior para a 4 situações possíveis:
 - a. $S_1 = S_2 = OFF$.
 - b. $S_1 = OFF e S_2 = ON$.
 - c. $S_1 = ON e S_2 = OFF$.
 - d. $S_1 = S_2 = ON$.

26. Considere que o *Amp op* da figura seguinte (Fig. 5) é ideal.

$$R_1 = 5 k\Omega$$
 ; $R_5 = 10 k\Omega$; $R_6 = ? k\Omega$; $R_7 = 1 k\Omega$

$$V^{+} = + 15 V$$
 ; $V^{-} = -15 V$; $V_{1} = 2 V$; $V_{2} = 10 V$

Fig. 5

- a) Suponha que a resistência variável foi ajustada para a sua posição intermédia ($R_6 = 5 \text{ k}\Omega$). Determine o valor de V_{out} .
- b) Suponha que a fonte V_2 é ajustada para 5 V. Determine o valor de V_{out} .
- c) Qual o valor máximo e mínimo que V_2 pode assumir para que o $Amp\ op$ não sature.
- d) Suponha que as fontes V_1 e V_2 foram substituídas por fontes de tensão AC com as seguintes características:

$$\checkmark$$
 $v_1 = 2 \times \text{square}(2 \times \pi \times 50 \times t)^1$.

$$\checkmark$$
 $v_2 = 4 \times \text{square}(2 \times \pi \times 100 \times t).$

Represente a forma de onda da tensão de saída.

e) Determine qual o valor máximo que R_6 pode assumir para que o $Amp\ op$ não sature.

 $^{^{\}rm 1}$ Square – representa uma onda quadrada com um $\it duty\ cycle\ de\ 50\%.$

[©] Acácio Amaral - 2021

27. Considere que o *Amp op* da figura seguinte (Fig. 6) é ideal.

$$R_5 = 2 k\Omega$$
 ; $R_8 = 2 k\Omega$; $R_9 = 4 k\Omega$; $R_{17} = 2 k\Omega$

$$R_{18} = 0.5 \, k\Omega$$
 ; $R_{15} = 2.5 \, k\Omega$; $R_{19} = 5 \, k\Omega$; $R_{20} = 5 \, k\Omega$

$$V^{+} = + 15 V$$
 ; $V^{-} = -15 V$; $V_{1} = -1.25 V$; $V_{2} = 2 V$

Fig. 6

a) Identifique o sistema de equações que o circuito anterior permite resolver $(a_{11}, a_{12}, a_{21}, a_{22}, b_1 e b_2)$.

$$\begin{bmatrix} a_{11} & a_{21} \\ a_{21} & a_{22} \end{bmatrix} \times \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

b) Simule o circuito em *Pspice* e efetue a resolução do sistema anterior recorrendo ao *IDLE*. Que conclusões pode retirar dos resultados obtidos.

Bibliografia:

[1] Amaral, Acácio (2021), Eletrónica Aplicada, Edições Silabo, Lisboa, Portugal.