Class 13

Courtney Cameron PID:A69028599

```
library(BiocManager)
Warning: package 'BiocManager' was built under R version 4.2.3
Bioconductor version '3.15' is out-of-date; the current release version '3.18'
  is available with R version '4.3'; see https://bioconductor.org/install
  library(DESeq2)
Loading required package: S4Vectors
Loading required package: stats4
Loading required package: BiocGenerics
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':
    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
    anyDuplicated, append, as.data.frame, basename, cbind, colnames,
    dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
    grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
    order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
    rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
    union, unique, unsplit, which.max, which.min
```

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Attaching package: 'IRanges'

The following object is masked from 'package:grDevices':

windows

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Warning: package 'matrixStats' was built under R version 4.2.3

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,

colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.

Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

rowMedians

The following objects are masked from 'package:matrixStats':

anyMissing, rowMedians

```
counts <- read.csv('airway_scaledcounts.csv', row.names=1)
metadata <- read.csv('airway_metadata.csv')</pre>
```

head(counts)

	SRR1039508	SRR1039509	SRR1039512	SRR1039513	SRR1039516
ENSG0000000003	723	486	904	445	1170
ENSG00000000005	0	0	0	0	0
ENSG00000000419	467	523	616	371	582
ENSG00000000457	347	258	364	237	318

ENSG00000000460	96	81	73	66	118
ENSG00000000938	0	0	1	0	2
	SRR1039517	SRR1039520	SRR1039521		
ENSG0000000003	1097	806	604		
ENSG0000000005	0	0	0		
ENSG00000000419	781	417	509		
ENSG00000000457	447	330	324		
ENSG00000000460	94	102	74		
ENSG00000000938	0	0	0		

head(metadata)

```
id dex celltype geo_id
1 SRR1039508 control N61311 GSM1275862
2 SRR1039509 treated N61311 GSM1275863
3 SRR1039512 control N052611 GSM1275866
4 SRR1039513 treated N052611 GSM1275867
5 SRR1039516 control N080611 GSM1275870
6 SRR1039517 treated N080611 GSM1275871
```

Q1. How many genes are in this dataset?

38694 genes in the data set

```
nrow(counts)
```

[1] 38694

Q how many samples are there

8 differnt samples

```
ncol(counts)
```

[1] 8

Q2 How many 'control' cell lines do we have?

4 control cell lines were used

```
sum(metadata$dex =='control')
```

[1] 4

make sure the id's in the metadata match those in the counts

```
all(metadata$id == colnames(counts))

[1] TRUE

control mean

control.inds <- metadata$dex == 'control'
   control.counts <- counts[,control.inds]
   control.mean<- apply(control.counts,1,mean)</pre>
```

```
ENSG0000000003 ENSG0000000005 ENSG00000000419 ENSG00000000457 ENSG00000000460 900.75 0.00 520.50 339.75 97.25 ENSG00000000938
```

Q3. How would you make the above code in either approach more robust? Is there a function that could help here?

Writing this process into a function would be more robust as opposed to copying where there is more room for error. if there were more treatmets it would save time and leave less space for mistakes.

Q4. Follow the same procedure for the treated samples (i.e. calculate the mean per gene across drug treated samples and assign to a labeled vector called treated mean)

treated mean

head(control.mean)

```
treated.inds <- metadata$dex == 'treated'
treated.counts <- counts[,treated.inds]
treated.mean<- apply(treated.counts,1,mean)
head(treated.mean)</pre>
```

```
ENSG00000000003 ENSG0000000005 ENSG000000000419 ENSG00000000457 ENSG00000000460 658.00 0.00 546.00 316.50 78.75 ENSG00000000938 0.00
```

combining the treated and control means into one data frame

meancounts <- data.frame(control.mean, treated.mean)
head(meancounts)</pre>

	control.mean	treated.mean
ENSG0000000003	900.75	658.00
ENSG0000000005	0.00	0.00
ENSG00000000419	520.50	546.00
ENSG00000000457	339.75	316.50
ENSG00000000460	97.25	78.75
ENSG00000000938	0.75	0.00

Q5 (a). Create a scatter plot showing the mean of the treated samples against the mean of the control samples. Your plot should look something like the following

plot(meancounts\$control.mean,meancounts\$treated.mean)

Q5 (b). You could also use the ggplot2 package to make this figure producing the plot below. What geom_?() function would you use for this plot?

library(ggplot2)

Warning: package 'ggplot2' was built under R version 4.2.3

```
ggplot(meancounts, aes(control.mean, treated.mean))+
  geom_point()
```


Q6. Try plotting both axes on a log scale. What is the argument to plot() that allows you to do this?

```
ggplot(meancounts, aes(control.mean, treated.mean))+
  geom_point()+
  scale_x_continuous(trans="log2")+
  scale_y_continuous(trans='log2')
```

Warning: Transformation introduced infinite values in continuous x-axis

Warning: Transformation introduced infinite values in continuous y-axis

Determining fold change between control and treated

meancounts\$log2fc <- log2(meancounts\$treated.mean/meancounts\$control.mean)
head(meancounts)</pre>

log2fc	${\tt treated.mean}$	${\tt control.mean}$	
-0.45303916	658.00	900.75	ENSG0000000003
NaN	0.00	0.00	ENSG0000000005
0.06900279	546.00	520.50	ENSG00000000419
-0.10226805	316.50	339.75	ENSG00000000457
-0.30441833	78.75	97.25	ENSG00000000460
-Inf	0.00	0.75	ENSG00000000938

removing the zero values from the data set

```
zero.sum <- rowSums(meancounts[,1:2] == 0)
to.rm.idn <-zero.sum>0
mycounts <- meancounts[!to.rm.idn,]
nrow(mycounts)</pre>
```

[1] 21817

a common threshold for calling domething differently expressed is a log2FC of +2 or -2 > Q8. Using the up.ind vector above can you determine how many up regulated genes we have at the greater than 2 fc level? how many of the genes are "up regulated"

```
sum(mycounts$log2fc >= 2)
```

[1] 314

Q9. Using the down.ind vector above can you determine how many down regulated genes we have at the greater than 2 fc level?

```
sum(mycounts$log2fc <= -2)</pre>
```

[1] 485

Q10. Do you trust these results? Why or why not?

this is only looking at the difference of the means, so we are only looking at the change between two values without knowing if there is variance in the values put into the means and we don't know the expression change is significant

Doing the analysis with DESeq2

```
library(DESeq2)
```

setup for DESeq analysis

converting counts to integer mode

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds<-DESeq(dds)
```

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

```
res<- results(dds)
res</pre>
```

ENSG00000283120

ENSG00000283123

log2 fold change (MLE): dex treated vs control

NA

NA

Wald test p-value: dex treated vs control DataFrame with 38694 rows and 6 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG0000000003	747.1942	-0.3507030	0.168246	-2.084470	0.0371175
ENSG00000000005	0.0000	NA	NA	NA	NA
ENSG00000000419	520.1342	0.2061078	0.101059	2.039475	0.0414026
ENSG00000000457	322.6648	0.0245269	0.145145	0.168982	0.8658106
ENSG00000000460	87.6826	-0.1471420	0.257007	-0.572521	0.5669691
• • •					
ENSG00000283115	0.000000	NA	NA	NA	NA
ENSG00000283116	0.000000	NA	NA	NA	NA
ENSG00000283119	0.000000	NA	NA	NA	NA
ENSG00000283120	0.974916	-0.668258	1.69456	-0.394354	0.693319
ENSG00000283123	0.000000	NA	NA	NA	NA
	padj				
	<numeric></numeric>				
ENSG00000000003	0.163035				
ENSG00000000005	NA				
ENSG00000000419	0.176032				
ENSG00000000457	0.961694				
ENSG00000000460	0.815849				
ENSG00000283115	NA				
ENSG00000283116	NA				
ENSG00000283119	NA				

visualization of differential expression is a volcano plot, plotting fold change by pvalue

Save the results

```
write.csv(res, file='myresults.csv')
Adding annotation data
library("AnnotationDbi")
library("org.Hs.eg.db")
```

```
columns(org.Hs.eg.db)
```

```
[1] "ACCNUM"
                    "ALIAS"
                                   "ENSEMBL"
                                                  "ENSEMBLPROT"
                                                                 "ENSEMBLTRANS"
 [6] "ENTREZID"
                    "ENZYME"
                                   "EVIDENCE"
                                                  "EVIDENCEALL"
                                                                 "GENENAME"
                    "GO"
                                                  "IPI"
[11] "GENETYPE"
                                   "GOALL"
                                                                 "MAP"
[16] "OMIM"
                    "ONTOLOGY"
                                   "ONTOLOGYALL" "PATH"
                                                                 "PFAM"
[21] "PMID"
                    "PROSITE"
                                   "REFSEQ"
                                                                 "UCSCKG"
                                                  "SYMBOL"
[26] "UNIPROT"
```

The results has ensemble gene ids but we want to convert them to gene symbol names

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

multivals=first is the default value, maps to only the first hit(most common)

```
head(res)
```

```
log2 fold change (MLE): dex treated vs control
Wald test p-value: dex treated vs control
DataFrame with 6 rows and 8 columns
```

	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG0000000003	747.194195	-0.3507030	0.168246	-2.084470	0.0371175
ENSG0000000005	0.000000	NA	NA	NA	NA
ENSG00000000419	520.134160	0.2061078	0.101059	2.039475	0.0414026
ENSG00000000457	322.664844	0.0245269	0.145145	0.168982	0.8658106
ENSG00000000460	87.682625	-0.1471420	0.257007	-0.572521	0.5669691

ENSG00000000938	0.319167	7 -1.7322	890 3.493601	-0.495846	0.6200029
	padj	symbol	entrez		
	<numeric></numeric>	<character></character>	<character></character>		
ENSG0000000003	0.163035	TSPAN6	7105		
ENSG0000000005	NA	TNMD	64102		
ENSG00000000419	0.176032	DPM1	8813		
ENSG00000000457	0.961694	SCYL3	57147		
ENSG00000000460	0.815849	Clorf112	55732		
ENSG00000000938	NA	FGR	2268		

overwriting the csv file to include the new id columns

```
write.csv(res, file='myresults.csv')
```