Orthogonality

Definition

Let \mathcal{H} be a Hilbert space and let $f,g\in\mathcal{H}$. To say that f is orthogonal (perpendicular) to g, denoted $f\perp g$, means that $\langle f,g\rangle=0$.

Lemma

$$f \perp q \iff q \perp f$$

Proof

$$f \perp g \iff \langle f, g \rangle = 0 \iff \overline{\langle g, f \rangle} = 0 \iff \langle g, f \rangle = 0 \iff g \perp f$$

Theorem

$$f \perp g \implies ||f + g||^2 = ||f||^2 + ||g||^2$$

Proof

Assume
$$f \perp g$$

 $\langle f, g \rangle = \langle g, f \rangle = 0$

$$||f + g||^{2} = \langle f + g, f + g \rangle$$

$$= \langle f, f \rangle + \langle f, g \rangle + \langle g, f \rangle + \langle g, g \rangle$$

$$= ||f||^{2} + 0 + 0 + ||g||^{2}$$

$$= ||f||^{2} + ||g||^{2}$$

Definition

Let $\mathcal H$ be a Hilbert space. To say that $\{e_1,e_2,\ldots\}\subset\mathcal H$ is orthonormal means:

$$\langle e_j, e_k \rangle = \begin{cases} 1, & j = k \\ 0, & j \neq k \end{cases}$$

In other words, every element has a norm of 1 and is orthogonal to every other element.

Theorem

Let \mathcal{H} be a Hilbert space, $\{e_k\}_{k=1}^{\infty}\subset\mathcal{H}$ be orthonormal, and $f=\sum a_ke_k\in\mathcal{H}$ be a finite sum.

$$||f||^2 = \sum |a_k|^2$$

Proof

$$||f||^2 = \langle f, f \rangle = \langle \sum a_j e_j, \sum a_k e_k \rangle$$

Each term in the linear expansion is one of the following two forms:

1).
$$j=k$$

$$\langle a_ke_k,a_ke_k\rangle=|a_k|^2\,\langle e_k,e_k\rangle=|a_k|^2\cdot 1=|a_k|^2$$

2).
$$j \neq k$$

$$\langle a_j e_j, a_k e_k \rangle = a_j \overline{a_k} \langle e_j, e_k \rangle = a_j \overline{a_k} \cdot 0 = 0$$

$$\therefore \|f\|^2 = \sum |a_k|^2$$