FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Světelná tabule Mikroprocesorové a vestavěné systémy

1 Úvod

Cieľ om projektu bol výpis pohyblivého textu na maticový displej, pričom text sa dá prepínať stláčaním tlačítok na platforme FITkit3.

2 Maticový displej

Maticový displej sa skladá z 8 riadkov, a 16 stĺpcov. Každý riadok je namapovaný na vlastný PIN a aktivuje sa prívodom log. 1. Stĺpce sú riadené cez multiplexor 4-16 a rozsvietené pri binárnej kombinácii pinov A0-A3 dávajúce výsledku hodnotu log. 0. (0V napatie, L) ako je zobrazené na obrázku 1.

Input				Output																	
E0	E1	A0	A1	A2	А3	Y0	<u>Y1</u>	Y2	Y3	Y4	Y5	Y6	Y7	Y8	<u>Y9</u>	Y10	<u>Y11</u>	Y12	Y13	Y14	Y15
Н	Н	X	X	X	X	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	X	X	Χ	X	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	Н	X	X	X	X	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
		Н	L	L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
		L	Н	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
		Н	Н	L	L	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
		L	L	Н	L	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
		Н	L	Н	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
		L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н
		Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н
		L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н
		Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н
		L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н
		Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
		L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н
		Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н
		L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
		Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

Obrázek 1: Multiplex 4-16 [2]

3 Zapojenie

Jednotlivé piny sú namapované na register PTA (tabuľ ka 1) portu A a PTE (tabuľ ka 2) portu E následovne. Jednotlivé čísla reprezentujú, na ktorom bite v registri je daný pin obsadený. Na základe týchto čísiel sa vytvoria masky, ktoré sa používajú na menenie hodnoty daného bitu, a teda riadenie pinu.

		A0	A1	A2	A3	R0	R1	R2	R3	R4	R5	R6	R7
P	IN	PTA8	PTA10	PTA6	PTA11	PTA26	PTA24	PTA9	PTA25	PTA28	PTA7	PTA27	PTA29

Tabulka 1: Namapovanie výstupov v registri PTA

	SW2	SW3	SW4	SW5
PIN	PTE10	PTE12	PTE27	PTE26

Tabulka 2: Namapovanie výstupov tlačítok v registri PTE [3]

4 Časovač

4.1 PIT- Periodic Interval Timer

V projekte bol použitý časovač PIT s hodnotou intervalu nastavenou na 6719999, čo odpovedá obnovovacej frekvencii 280ms.

Na výpočet bol použitý vzorec [1] s hodnotou f=24MHz:

$$TSV = round(T * f - 1)$$

5 Spôsob riešenia

Program začína nastavením MCU, namapovaním príslušných pinov na bity daných registrov a nastavením príslušných portov matice na výstup a nastavením PIT časovača. V nekonečnej smyčke sa následne volá funkcia print_text, ktorá zabezpečuje výstup textu. V prípade stlačenia tlačítok SW2-SW5 sa text dá zmeniť. Text je implicitne nastavení na login XNOSKO05. Jednotlivé písmená sú reprezentované v 1 rozmernom poli o veľkosti 6 binárnych čísiel v súbore alfabet.h. Jedno číslo reprezentuje jeden stĺpec, pričom log. 1 znamená, že LED bude svietiť. MSB reprezentuje riadok 0 a LSB riadok 7.

Text sa vypisuje postupne v cykle po jednotlivých stĺpcoch. Pre každý stĺpec je zavolaná funkcia print_char s parametrom aktuálneho písmena a číslom stĺpca. V spomínanej funkcii sa vyberie príslušná matica, označí sa príslušný stĺpec a pomocou funkcie led_rows sa rozsvietia príslušné ledky. Pred zavolaním led_rows sa všetky riadky nastavia na log. O pomocou súčinu doplňku danej masky odpovedajúceho riadku vo funkcii nul_rows.

Funkcii led_rows je predané vždy jedno číslo z matice reprezentujúcej daný znak a pomocou bitového súčinu sa overí, či je na danej pozícii log. 0 alebo log. 1. V prípade ak ide o log. 1, na príslušný port riadku je privedená log. 1 pomocou bitovej operácie **OR** a masky daného riadku.

5.1 Posúvanie textu

Posúvanie textu je riešené pomocou offsetu. Pri každom prerušení od časovača PIT, sa premenná offset zvýši o 1, čím je vo funkcii print_text docieľený posun. Funkcia set_letter nastaví podľa offsetu vždy písmeno, ktoré bude vypísané ako prvé. Implementácia sa opiera o fakt, že jednotlivé znaky sú reprezentované maticou o veľkosti 6. Premenná offset sa využíva ďalej aj vo funkcii print_char k výberu príslušného stĺpca z matice daného znaku. Integer actual sleduje pozíciu stĺpca daného znaku. V programe sú znaky reprezentované maticou s veľkostou 6, z toho vyplýva, že vždy keď premenná actual presiahne túto hodnotu, tak sa program posunie na nasledujúce písmeno.

6 Tlačítka

Pri stlačení tlačítok SW2-SW5 sa text zmení následovne:

	SW2	SW3	SW4	SW5
TEXT	XNOSKO05	IMP	2020	FITVUT

7 Záver

Základný cieľ programu bol splnený. Program avšak vypisuje iba veľké písmená a nepodporuje biele a iné špeciálne znaky. Chýbajú aj matice rezprezentujúce čísla 3,4,6-9, nakoľko na demonštráciu funkčnosti projektu neboli potrebné. Odkaz na demonštračné video: https://nextcloud.fit.vutbr.cz/s/apfi7yeTx4JrXSJ

Zdroje

- [1] Richard Růžička. online. URL: https://wis.fit.vutbr.cz/FIT/st/cfs.php.cs?file= %2Fcourse%2FIMP-IT%2Flectures%2F06-IMP-Casovace.pdf&cid=13997.
- [2] Ing. Václav Šimek. online. URL: http://www.fit.vutbr.cz/~simekv/IMP_projekt%20-%20svetelna_tabule.pdf.
- [3] FIT VUT. online. URL: http://www.fit.vutbr.cz/~simekv/schematics%20-%20FITkit%20v3.0.pdf.