Direct Collisions. Collisions that occur on a sligle straight line
$ \begin{array}{c c} M_1 & M_2 \\ \hline U_1 & D > U_2 \end{array} $ $ \begin{array}{c c} M_1 & M_2 \\ \hline V_1 & D > V_2 \end{array} $
Since everything is on one line, momentum conservation & 'n 13 Mu, + MzUz = M,V, + MzVz (note: U,5Uz,V,,Vz can be
Often Q + 0, but hard toknow a priori; also, Q will 1/Kely depend on the strength of the collision (e.g. heat generated). Therefore, it is convenient to introduce E, the coefficient of
restitution, which depends on the relative speeds of the particles $E = \frac{ V_2 - V_1 }{ U_2 - U_1 } \Rightarrow \left((u_2 - u_1) \in = (v_2 - v_1) \right)$
E depends on the composition of the 2 bedies i is approx, constant for a wide range of velocities
Ex: Show that for an elastic collision $E = 1$. In an elastic collision $\frac{1}{2} m_1 w_1^2 + \frac{1}{2} m_2 v_2^2 = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2$
$Cons. of. mom. is m_2u_2 - m_2v_2 = m_1v_1^2 - m_1u_1^2 Cons. of. mom. is m_2u_2 - m_2v_2 = m_1v_1 - m_1u_1$
$ \frac{1}{2} \text{ the first egn. by the 2} \frac{1}{2} \frac{1}{2} \text{ get} $ $ \frac{1}{2} 1$

$$V_{2}-V_{1}=-(u_{2}-u_{1})$$
Sub. into $E=\frac{|V_{2}-V_{1}|}{|u_{2}-u_{1}|}=\frac{|-(u_{2}-u_{1})|}{|u_{2}-u_{1}|}=\frac{|u_{2}-u_{1}|}{|u_{2}-u_{1}|}=\frac{|u_{2}-u_{1}|}{|u_{2}-u_{1}|}$

In the case of an melastic collision, the 2 bodies stick together so $V_2=V_1$; E=0, So, $0 \le E \le 1$.

So, in the general case, start from mom-consu.

$$M_1V_1 = M_2U_2 + M_1U_1 - M_2V_2$$

$$V_1 = \left(\frac{m_2}{m_1}\right)U_2 + U_1 - \left(\frac{m_2}{m_1}\right)V_2$$

Sub. this into $C = \frac{V_2 - V_1}{-(u_2 - u_1)} = \frac{V_2 - (\frac{m_2}{m_1})u_2 - u_1 + (\frac{m_2}{m_1})v_2}{-(u_2 - u_1)}$

$$\begin{aligned}
& = \left(-u_{2} + u_{1}\right) = V_{2}\left(1 + \frac{m_{2}}{m_{1}}\right) - \left(\frac{m_{2}}{m_{1}}\right)u_{2} - u_{1} \\
& = \left(-u_{2} + u_{1}\right) + \left(\frac{m_{2}}{m_{1}}\right)u_{2} + u_{1} \\
& = \left(-u_{2} + u_{1}\right) + \left(\frac{m_{2}}{m_{1}}\right)u_{2} + u_{1} \\
& = \left(-u_{2} + u_{1}\right) + \left(\frac{m_{2}}{m_{1}}\right)u_{2} + u_{1}
\end{aligned}$$

$$V_{2} = -\frac{Eu_{2} + Eu_{1} + \binom{m_{2}}{m_{1}}u_{2} + u_{1}}{\left(1 + \frac{m_{2}}{m_{1}}\right)}$$

$$V_2 = -E_{M_1}u_2 + M_1 \in U_1 + M_2 u_2 + M_1 u_1$$
 $M_1 + M_2$

$$V_2 = (m_1 + Cm_1)u_1 + (m_2 - Cm_1)u_2$$
 $m_1 + m_2$

Similarly,
$$V_1 = (m_1 - \epsilon m_2) u_1 + (m_2 + \epsilon m_2) u_2$$

$$M_1 + m_2$$

Limitary cases: if collision is perfectly elastic, E=1; $M_1=M_2$, $U_2=0$ $V_1=0$; $V_2=U_1$

First particle is brought to rest i velocity is completely transferred. - If collision is perfectly inelastic, E=0 V₁ = M₁U₁, V₂ = M₁U₁ (M₁+M₂) M₁+M₂ Same velocity as expected - if 2nd body is mitially at rest (uz=0) $V_{1} = (m_{1} - \epsilon m_{2})u_{1}$, $V_{2} = (m_{1} + \epsilon m_{1})u_{1}$ $m_{1} + m_{2}$, $m_{1} + m_{2}$ Exercise: Show that for a general, non-elastic collision $Q = \frac{1}{2} \left(\frac{m_1 m_2}{m_1 + m_2} \right) \left(V_2 - V_1 \right)^2 \left(1 - \epsilon^2 \right)$ Consider a situation where $u_z = 0$, so the initial KE is $T = \frac{1}{2}mu_1^2$ free final KE is $T = \frac{1}{2}mv_1^2 + \frac{1}{2}mzv_2^2$. The fractional loss of KE in the collision T-T' = 2 m, u, 2 - 2 m, v, 2 - 2 m, v, 2 T = 2 m, u, 2 - 2 m, v, $= m_1 y_1^2 - m_1 \frac{(m_1 - \epsilon m_2)^2 y_1^2}{(m_1 + m_2)^2} - \frac{m_2 (m_1 + \epsilon m_2)^2 y_1^2}{(m_1 + m_2)^2}$ = ASA = --. $\frac{T-T'-(1-\epsilon^2)m_2}{(m_1+m_2)}$ For Oblique Collisions, its ofteneasier to work in center-of-mass coordinates since $\bar{\rho}_1 + \bar{\rho}_2 = \bar{q}_1 + \bar{q}_2$ leads to many complications. Definitions: Consider 2 particles of positions \vec{r} , \vec{r} \vec{r} masses

M, \vec{r} M_2 . If the internal force is \vec{F} \vec{r} The particles are in a uniform grave field

then the e.o., in are \vec{r} \vec{r}

Define the center of mass position vector $\vec{R} = M_1\vec{r}_1 + M_2\vec{r}_2$ $m_1 + m_2$ and, as normal, the relative position $\vec{r} = \vec{r}_1 - \vec{r}_2$