	В	С
1	Source Description	
2		
3	Phase I ID No.	311
4	EPA ID No.	VAD046970521
5	Facility Name	Solite Corp
6	Facility Location	
7	City	Cascade
8	State	Virginia
_	Unit ID Name/No.	Kiln #2
10	Other Sister Facilities	Kiln #1(336) for CoC(metals) only
	Number of Sister Facilities	1
	Combustor Class	Lightweight Aggregate Kiln (LWAK)
	Combustor Type	
	Combustor Characteristics	
	Capacity (MMBtu/hr)	
	Soot Blowing	
	APCS Detailed Acronym	QS/FF
18	APCS General Class	FF
	APCS Characteristics	BHA, Quench system (air and water). Baghouse (reverse air cleaning, 580 bags,
19		cloth area = 29,155 ft2, net air to cloth ratio = 2.23:1, design operating temp < 450 °F at inlet), fiberglass cloth material
	l Hazardous Wastes	Liq
	Haz Waste Description	The raw material was excavated from the Virginia Solite quarry
	Supplemental Fuel	The law material was excavated from the Virginia Solite quality
23	Cuppiementai i dei	
	Stack Characteristics	
25	4	4.3
26	` /	80
27	Gas Velocity (ft/sec)	17.8
28	Gas Temperature (°F)	346.4
29		
	Permitting Status	
31	HWC Burn Status (Date if Term	ninated)

	В	С
1	Condition Description	on
2	·	
3	311C10	
4		
5	Report Name/Date	RCRA Testing, Kilns 1,2,3,4, Certification of Compliance, August 1999
	Report Preparation	Solite/Entropy/Blue Ridge
	Testing Firm	Entropy
8	Testing Dates	May 25-26, 1999
	Cond Dates	May-99
10	Condition Descr	COC, Metals SRE
	Content	CO, PM, HCI/Cl2, Metals, Cr ⁺⁶
12		
	311C11	
14	_	
	Report Name/Date	Trial Burn Report, Solite Corp, Virginia Solite Div., March 2000
	Report Preparation	Solite/Entropy/Blue Ridge
	Testing Firm	Entropy
	Testing Dates	November 8-19, 1999
	Cond Dates	Nov-99
	Condition Descr	Trial Burn, organics DRE, HCI/Cl2 emissions limits
	Content	CO, PM, HCI/Cl2, POHC DRE, PCCD/F
22	311C12	
24	311012	
24	Report Name/Date	Trial Burn Report, Kiln 1 DRE Retest, Kilns 1-4 D/F. Solite Corp, Virginia Solite
25	Report Hame/Date	Div., July 2000
	Report Preparation	Solite/Entropy/B3 Systems
	Testing Firm	Entropy
	Testing Dates	May 9-19, 2000
	Cond Dates	May-00
	Condition Descr	Trial Burn, D/F Retest
31	Content	D/F, CO
32	1	
33	311C1	
34		
	Report Name/Date	Emission Test Report for No. 4 Aggregate Kiln Solite Corporation, Leaksville
35		Plant, Cascade, Virginia, Prepared by IEA, August 8, 1992
	Report Prepare	IEA
	Testing Firm	IEA
	Cond Descr	CoC, MAX HW FEED,MAX RAW MATERIAL
	Testing Dates	June 18, 1992
40	Cond Dates	Jun-92

	В	С	D	E	F	G H	ı J	K L	М
	Stack Gas Emissions				1 - 1	- 1 1			
2									
3								_	
	311C10	CoC				R1	R2	R3	Cond Avg
5	PM	Г1	ar/doof	.,		0.0045	0.0011	0.0011	0.0010
	CO (RA)	E1 E1	gr/dscf ppmv	У		0.0015 18.4	0.0011 19.8	0.0011 65.3	0.0012 34.5
	CO (MHRA)	E1	ppmv	y y		31.7	60.5	75.4	55.9
	HCI	E1	ppmv	y		1421	1423	816	1220
	Cl2	E1	ppmv	y		0.46	0.63	43.30	15
	Total Chlorine	E1	ppmv	y		1422	1424	903	1250
12				•					
13									
	Antimony		lb/hr			5.54E-04	1.94E-04	5.49E-05	
	Arsenic		lb/hr			1.16E-04	1.15E-04	2.47E-04	
	Barium		lb/hr			4.49E-05	6.19E-05	2.37E-05	
	Beryllium		lb/hr		nd	4.01E-06 nd	3.95E-06 nd	3.95E-06	
	Cadmium Chromium		lb/hr lb/hr			5.17E-05 nd 7.62E-04	1.58E-05 2.85E-04	5.13E-05 4.50E-04	
	Chromium (Hex)		lb/hr		nd	6.37E-05 nd	5.67E-05 nd	5.13E-05	
	Cobalt		lb/hr		iiu	4.73E-05 nd	3.95E-05 nd	1.42E-04	
	Copper		lb/hr			2.17E-04	2.83E-05	3.01E-04	
	Lead		lb/hr			2.06E-04	4.03E-05	8.29E-05	
	Manganese		lb/hr			9.83E-04	2.75E-04	1.13E-03	
	Mercury		lb/hr		nd	1.02E-04	1.67E-04 nd	1.01E-04	
	Nickel		lb/hr			3.13E-03	2.99E-04	8.71E-03	
	Selenium		lb/hr			5.05E-04	3.24E-04	2.11E-04	
	Silver		lb/hr			2.40E-05 nd	1.58E-05	1.89E-05	
	Thallium		lb/hr		nd	4.01E-05 nd	3.95E-05 nd	3.95E-05	
	Zinc		lb/hr			1.43E-03	1.40E-04	6.53E-04	
31									
	Sampling Train	PM, HCI							
33	Stack Gas Flowrate		dscfm			25002	25700	26989	25897
34	O2 Moisture		% %			15.7 15.3	15.9	15.3	15.6 15.7
35			% °F			15.3 271	15.4 274	16.4 277	15.7 274
36 37	Temperature		F			2/1	2/4	211	2/4
	Sampling Train	Metals	E2						
39	Stack Gas Flowrate	Wictais	dscfm			24685	25746	26011	
40	O2		%			15.7	15.9	15.3	
41	Moisture		%			15.6	16	16.4	
42	Temperature		°F			266	269	271	
43	'								
44									
45	Antimony	E2	ug/dscm	У		15.9	5.5	1.4	7.59
	Arsenic	E2	ug/dscm	у		3.3	3.3	6.2	4.28
	Barium	E2	ug/dscm	У		1.3	1.8	0.6	1.22
	Beryllium	E2	ug/dscm	У	nd	0.1 nd	0.1 nd	0.1 100	0.11
	Cadmium	E2	ug/dscm ug/dscm	У		1.5 nd	0.5 8.1	1.3	1.07
	Chromium (Hex)	E2 E2	ug/ascm ug/dscm	У	nd	21.8 1.8 nd	8.1 1.6 nd	11.4 1.3 100	13.76 1.58
	Chromium (Hex) Cobalt	E2 E2	ug/ascm ug/dscm	У	nd	1.8 nd 1.4 nd	1.6 nd 1.1	3.6	2.02
	Copper	E2 E2	ug/dscm	y y		6.2	0.8	3.6 7.6	4.87
	Lead	E2	ug/dscm	y y		5.9	1.1	2.1	3.05
	Manganese	E2	ug/dscm	y		28.1	7.8	28.5	21.50
	Mercury	E2	ug/dscm	y	nd	2.9	4.8 nd	2.5 53	3.41
	Nickel	E2	ug/dscm	y	-	89.6	8.5	219.9	105.99
	Selenium	E2	ug/dscm	y		14.4	9.2	5.3	9.67
	Silver	E2	ug/dscm	ý		0.7 nd	0.5	0.5	0.54
	Thallium	E2	ug/dscm	у	nd	1.1 nd	1.1 nd	1.0 100	1.09
	Zinc	E2	ug/dscm	у		40.9	4.0	16.5	20.46
	LVM	E2	ug/dscm	У	0	25.2 1	11.5 1	17.7 0.6	18.15
	SVM	E2	ug/dscm	У		7.4 28	1.6	3.4 3.6	4.12
64		- · · -				D.4	Do	D.o.	
	311C11	Trial Bur	n			R1	R2	R3	Cond Avg
66									
67	PM	⊑ 1	ar/doof			0.0047	0.0015	0.0019	0.0017
	HCI	E1 E1	gr/dscf	У		0.0017 1623	0.0015 1606	0.0018 1497	1575
	I I I	⊏ I	ppmv	У					
	CIO	□1	nnmv			3 E3	በማን	2 15	വവ
70	CI2 Total Chlorine	E1 E1	ppmv ppmv	y V		2.52 1628	0.72 1607	3.45 1504	2.23 1580

	D			_	F	0			1 . 1	1/	-	
70	В	С	D	Е	F	G	Н	<u> </u>	J	K	L	M
72	DOLLO DDE	D l . l										
	POHC DRE	Perchioi	oethylene			45.54		45.54		45.54		45.54
	POHC Feedrate	- 0	lb/hr			45.54		45.54		45.54		45.54
	Emission Rate	E2	lb/hr			0.000628		0.00076		0.000958		0.000782
76	DRE	E2	%			99.99862		99.99833		99.99790		
	POHC DRE	1,2,4 Tri	chlorobenze	ene								
79	POHC Feedrate		lb/hr			45.59		45.59		45.59		45.59
80	Emission Rate	E2	lb/hr			0.0013		0.00155		0.00121		0.001353
81	DRE	E2	%			99.99715		99.99660		99.99735		
82												
83	Sampling Train	PM, HC	l/ E1									
84	Stack Gas Flowrate		dscfm			25358		25673		26765		25932
85	O2		%			16.0		16.0		15.8		15.9
86	Moisture		%			10.6		12.5		12.4		11.8
87	Temperature		°F			331		361		304		332
88												
89	Sampling Train	D/F	E2									
90	Stack Gas Flowrate		dscfm			25995		25675		25620		25763
91	O2		%			16		16		15.8		15.9
92	Moisture		%			11.6		11.5		10		11.0
93	Temperature		°F			364		358		334		352
94	·											
95												
96	311C12	Trial Bu	m			R1		R2		R3		Cond Avg
97												
98												
99	CO (RA)	E1	ppmv	У		30.7		26.0		32.0		30
100	, ,			-								
101												
102	Sampling Train	D/F	E1									
103	Stack Gas Flowrate		dscfm			20012		20050		21358		20473
104	O2		%			16.0		14.4		17.6		16.0
105	Moisture		%			12.4		10.2		9.6		10.7
106	Temperature		°F			295		291		299		295

	В	С	D	Е	F	G I	нΤ	ı	J	K	1 1	М	N
1	Stack Gas Emiss				<u> </u>	<u> </u>	'''	'	•	- '	- 1	101	- '\
2													
3													
4	311C1					R1		R2		R3		Cond Avg	
5												J	
6	PM	E1	gr/dscf	у		0.00400		0.00700		0.00600		0.00567	
7	CO (MHRA)	E1	ppmv	y		54.48		92.22		66.79		71.16	
8	CO (RA)	E1	ppmv	y		50.50		70.30		58.90		59.90	
9	HC (MHRA)	E1	ppmv	y		5.23		5.71		4.94		5.29	
10	HC (RA)	E1	ppmv	у		4.50		5.10		4.60		4.73	
11	HCI	E1	ppmv	у		1293.82		1147.52		1257.15		1232.83	
12	CI2	E1	ppmv	у		30.34		3.87		7.57		13.93	
13	Total Chlorine	E1	ppmv	У		1354.51		1155.26		1272.28		1260.68	
14	Antimony	E2	ug/dscm	У	nd	3.82		5.56		1.98		3.79	
15	Arsenic	E2	ug/dscm	У		6.83		10.81		4.16		7.26	
	Barium	E2	ug/dscm	У	nd	51.45 no	d	38.41	nd	26.34		38.73	
17	Beryllium	E2	ug/dscm	У	nd	1.48 no	d	2.34	nd	1.69	100	1.83	
18	Cadmium	E2	ug/dscm	У		16.98		131.03		412.63		186.88	
_	Chromium	E2	ug/dscm	У	nd	24.05 no		30.84	nd	28.88		27.92	high nds?
	Chromium (Hex)	E3	ug/dscm	У	nd	3.23 no		2.40	nd	1.81		2.48	
	Lead	E2	ug/dscm	У		162.40 no	d	291.85		534.21		329.49	
	Mercury	E2	ug/dscm	У	nd	11.06 no		18.49		15.51		15.02	
23	Silver	E2	ug/dscm	У	nd	3.75 no		76.46		3.79		28.00	
24	Thallium	E2	ug/dscm	У	nd	1.32 no		2.84	nd	1.04		1.74	
	SVM	E2	ug/dscm	У			70	422.87		946.84	19	516.36	
26	LVM	E2	ug/dscm	У	79	32.35	75	43.98	88	34.73	80	37.02	
27													
28	Sampling Train	Halogens	E1										
29	Stack Gas Flow	rate	dscfm			32800		31000		29700			
30	02		%			17		17.2		17.2			
31	Moisture		%			6.1		6.3		6.9			
32	Temperature		°F			339.5		340.9		339.6			
33	Camalia a Tasia	Matala	F0										
34 35	Sampling Train Stack Gas Flow	Metals	E2 dscfm			32000		33200		20700			
		rate								30700			
36 37	O2 Moisture		% %			17 5.4		17.1 6		17.2 6.7			
38			% °F			5.4 355		349		_			
39	Temperature		Г			300		349		344.3			
40	Sampling Train	Cr Hex	E3										
41	Stack Gas Flow		dscfm			32600		33000		30700			
42	O2	IUIC	%			16.9		17.5		17			
43	Moisture		% %			4.6		6.2		6.1			
44	Temperature		°F			356.1		342.4		350.5			

	В	C D	E	F G	Н І	J K	L M	N O	Р (Q R S	T	U V V	V X	Y Z A	A AB	AC AD
1	Feedstream 1															•
2	1															
3	1															
4	311C10	CoC		R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3	Cond Avg
5	1					11.5		112	113		112	113		112	113	00114 1113
6	Feedstream Number			F1	F1	F1	F2	F2	F2	F3	F3	F3	F4	F4	F4	F4
7	Feed Class		D							Spike	Spike	Spike	Total	Total	Total	
					Raw Materiall		_	Liq HW	Liq HW							Total
8	Feed Class 2		RM					HW	HW	Spike	Spike	Spike	Total	Total	Total	Total
9	Feedstream Description		Raw		Raw Materiall			LBM	LBM	Spike	Spike	Spike	Total	Total	Total	Total
		lb/hr		29340	28940	29280	2358	2239.2	2331.6	198	194.1	210.7	31896	31373	31822	31697.2
	Density	g/cc					0.89	0.866	0.904							
	Heating Value	Btu/lb					12148	11165	11045							
13																
14	Ash	%					2.47	1.77	1.59							
15	Chlorine	g/hr	nd	332.7 nd	328.2 nd	332.0	6663.41	4812.17	3795.43	22731.98	21761.04	26901.45	29728	26901	31029	
16	1	J														
	Antimony	g/hr	nd	3.327 nd	3.282 nd	3.320	8.620	4.570	2.310				11.9	7.9	5.6	
		g/hr		274.6	141.770	176.160	1.21	0.60	0.26	437.37	466.14	425.34	713.1	608.5	601.8	
		g/hr		1777.3	1627.8	1390.7	229.26	178.84	205.19	131.31	400.14	123.34	2007	1807	1596	
20										70 0	70 07	70 1				
	Beryllium	g/hr		27.060	26.120	30.070	0.027	0.025	0.026	78.9	78.97	79.1	106.0	105.1	109.2	
21	Cadmium	g/hr		2.730 nd	1.313 nd	1.328	3.03	1.51	1.01	212.06	218.14	224.72	217.8	221.0	227.1	
	Chromium	g/hr		736.110	734.47	802.65	22.34	17.50	16.37	752.32	764.59	1051.42	1511	1517	1870	
23	Lead	g/hr		180.38	156.87	198.68	28.40	14.82	10.22	5650	5473	5535	5859	5645	5744	
24		g/hr		11725	11841	11788	75.33	35.93	37.48				11800	11877	11826	
25	Mercury	g/hr	nd	0.126 nd	0.131 nd	0.133 nd	0.010 nd	0.010 nd	0.010				0.137	0.141	0.143	
		g/hr		449.62	458.80	505.96	2.61	1.55	2.29				452.2	460.4	508.3	
		g/hr		2.690	2.630	2.990	3.37	0.60	0.63				6.06	3.23	3.62	
28		g/hr		7.230	6.800	6.760 nd	0.267 nd	0.254 nd	0.264				7.50	7.05	7.02	
29	1	J														
30	1															
31	Stack Gas Flowrate	dscfm		24685	25746	26011	24685	25746	26011	24685	25746	26011	24685	25746	26011	25481
32																
	Oxygen	%		15.7	15.9	15.3	15.7	15.9	15.3	15.7	15.9	15.3	15.7	15.9	15.3	15.6
33		MANADA A														
34	Thermal Feedrate	MMBtu/hr					28.6	25.0	25.8				28.6	25.0	25.8	26.5
35	Estimated Firing Rate	MMBtu/hr											41.53	41.68	47.07	43.4
36]															
37																
38	Feedrate MTEC Calcula	ntions														
39	Ash	mg/dscm					1666	1130	936							
	Chlorine	ug/dscm		20968	20607	18465	419931	302170	211067	1432579	1366438	1496009	#######	#######	#######	#######
41	1	J					-	-								
42	Antimony	ug/dscm		210	206	185	543	287	128	0	0	0	753	493	313	520
43	Arsenic	ug/dscm		17302	8902	9796	76	38	15	27563	29270	23653	44942	38210	33465	38,872
	Barium	ug/dscm		112005	102212	77340	14448	11230	11411	27303	29270	23033	126453	113442	88751	#######
	Beryllium	ug/dscm		1705	1640	1672	2	2	11411	4972	4959	4399	6679	6600	6072	6,451
		-														_
46	Cadmium	ug/dscm		172	82	74	191	95	56	13364	13698	12497	13727	13875	12627	13,410
47	Chromium	ug/dscm		46390	46119	44636	1408	1099	910	47412	48011	58470	95209	95229	104016	98,152
48		ug/dscm		11368	9850	11049	1790	931	568	356063	343691	307799	369220	354472	319416	######
49	Manganese	ug/dscm		738898	743513	655548	4747	2256	2084	0	0	0	743645	745769	657632	#######
50	Mercury	ug/dscm		8	8	7 nd	1 nd	1 nd	1	0	0	0	8.6	8.8	7.9	8
51	Nickel	ug/dscm		28335	28809	28137	164	97	127	0	0	0	28500	28907	28264	28,557
52	Silver	ug/dscm		170	165	166	212	38	35	0	0	0	382	203	201	262
	Thallium	ug/dscm		456	427	376	17	16	15	0	0	0	472	443	391	435
54		. 3								3		,				
55	SVM	ug/dscm		11540	9933	11123	1981	1025	625	369427	357389	320295	382947	368347	332043	361112
56	LVM	ug/dscm		65398	56662	56105	1486	1138	927	79947	82240	86522	146830	140040	143554	143475
57	- v 1VI	ug/uscill		03390	J000Z	20102	T400	1130	941	1224/	02240	00322	T-40020	T40040	143334	1434/5
5/	-															
58	311C11	T: 11														
	1377(*11	Trial burn		R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3	Cond Avg
59 60		mar bann			112	113	101	102	113	***	102	103	11.1	102	1(3	cond my

	В	C D	Е	F	G		Н І	J	K	L	M	N	0 P	Q	R	S	Т	U '	/	W	Х	Υ	Z	AA	AB	ΑC	AD
	Feedstream Number			F1			F1	F1		F2		F2	F2		F3		F3	F	'3		F4		F4		F4		F4
62	Feed Class		Rav	w Mat	erial 1	Raw	Material R	aw Mat	terial	Liq HW	Li	d HM	Liq H	M	Spike		Spike	Sp	ike		Total	7	rotal		Total		Total
63	Feed Class 2		RM		1	RM	F	M		HW	HW		HW		Spike		Spike	Sp	ike		Total	7	rotal		Total		Total
64	Feedstream Description		Rav	w Mat	erial 1	Raw	Material R	aw Mat	terial	LBM		LBM	LBN	1	Spike		Spike	Sp	ike		Total	7	rotal		Total		Total
65	Feed Rate	lb/min								40.5	2	40.54	38	.18													
66	Density	g/cc								0.89	9	0.913	0.	908													
67	•	· ·																									
	Heating Value	Btu/lb								1263	5	11549	11	586													
69	J																										
	Ash	%								1.7	4	2.77	2	.88													
	Chlorine	%		0.	.02		0.02	0.0	18	0.3		0.39		0.7													
72																											
	Chlorine	g/hr																									35161
74	0111011110	3/																									33101
	Stack Gas Flowrate	dscfm		253	358		25673	267	765	25358	8	25673	26	765	25358		25673	2	6765		25358	3	25673	3	26765		25932
	Oxygen	%			5.0		16.0		5.8	10		16		5.8	16		16		15.8		16		16		15.8		15.9
77	on, gon	,,,					20.0				_		-	3.0											15.0		13.7
	Thermal Feedrate	MMBtu/h	r							30.	7	28.1	2	6.5							30.7	7	28.3	1	26.5		28.5
	Estimated Firing Rate	MMBtu/h								50.	,	20.1	2	0.5							40.25		40.7		44.18		41.7
80	Loumatou i iiiig i tato	WIIWIDta/11	•																		10.20		10.7	•	11.10		11.7
	Feedrate MTEC Calcula	tions																									
82	Chlorine	ug/dscm	n																							2	.21E+06
83		3.																									
84																											
	311C12	Trial burn		R1			R2	R3		R1		R2	R3		R1		R2	F	.3		R1		R2		R3	Co	ond Avg
86																											
	Feedstream Number			F1			F1	F1		F2		F2	F2		F3		F3	F	'3		F4		F4		F4		F4
88	Feed Class		Rav	w Mat	erial 1	Raw	Material R	aw Mat	terial	Liq HW	Li	q HW	Liq H	M	Spike		Spike	Sp	ike		Total	7	rotal		Total		Total
89	Feed Class 2		RM		1	RM	F	M		HW	HW		HW		Spike		Spike	Sp	ike		Total	5	Total		Total		Total
	Feedstream Description		Rav	w Mat	erial 1	Raw	Material R	aw Mat	terial	LBM		LBM	LBN	1	Spike		Spike	Sp	ike		Total	5	Total		Total		Total
91	Feed Rate	lb/min		8.	. 84		8.76	8.	. 69	35.4	4	33	33	.36				_									
92	Density	g/cc								0.9	7	0.972	0.	968													
93	•	J																									
94	Heating Value	Btu/lb								1235	3	11920	11	742													
95	-																										
96	Ash	%								6.2	1	6.54	3	.73													
97	Chlorine	%		0.00	095	(0.0095	0.00	95	2.63	3	2.7	2	.85													
98																											
99																											
100	Stack Gas Flowrate	dscfm		200	012		20050	213	358	2001	2	20050	21	358	20012		20050	2	1358		20012	2	20050	0	21358		20473
	Oxygen	%			5.0		14.4		7.6	10		14.4		7.6	16		14.4		17.6		16		14.4		17.6		16.0
102																											
103	Thermal Feedrate	MMBtu/h	r							26.3	3	23.6	2	3.5							26.3	3	23.6	6	23.5		24.5
	Estimated Firing Rate	MMBtu/h																			31.77		42.0		23.05		32.3
	,																										

	В С	D	Е	F G	Н І	J K	L M	N C) P	Q R	S T	UV	W X	Y	Z	A AB	AC	AD
1	Feedstream 2			•		•	•			•	•		•		•			
2																		
3																		
4	311C1			R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R	2	R3		Cond Avg
5																		
6	Feedstream Numbe	r		F1	F1	F1	F2	F2	F2	F3	F3	F3	F4	F	4	F4		F4
7	Feed Class			Raw Material	Raw Material	Raw Material	Liq HW	Liq HW	Liq HW	Spike	Spike	Spike	Total	Total		Total	-	Total
8	Feed Class 2			RM	RM	RM	HW	HW	HW	Spike	Spike	Spike	Total	Total		Total		Total
9	Feedstream Descrip	tion			Raw material	Raw material s	Liq waste	Liq waste	Liq waste	Spike	Spike	Spike	Total	Total		Total	-	Total
10	Feed Rate	lb/hr		23832	28417	28417	2733	2654	2558	12.975		13.184						
11	Heating Value	Btu/lb					12100	10000	10700	C	0	0						
12	Thermal Feedrate	MMBtu/h	ır				33.07	26.54	27.37				33.0	7	26.54	27.37		29.0
13	Chlorine	lb/hr	nd	11.1 nd	11.2 nd	11.3	44.73834	24.96976	18.8343									
14	Antimony	lb/hr	nd	0.0107 nd	0.0109 nd	0.0105	0.00816	0.00728	0.00639									
15	Arsenic	lb/hr		0.181	0.129	0.189	0.00088	0.00044	0.00816	0.7006	0.7586	0.6462						
16	Barium	lb/hr		2.99	2.72	3.03	0.39661	0.30291	0.45569									
17	•	lb/hr		0.0952	0.0468	0.033 nd	0.00022	0.00022 nd		0.1556		0.2321						
18	Cadmium	lb/hr	nd	0.0123 nd	0.0126 nd	0.0121	0.00992	0.00838	0.00728	1.1579		1.2628						
19	Chromium	lb/hr		2.07	3.26	2.35	0.06041	0.04497	0.06724	0.3554		0.3887						
20	Chromium (Hex)	lb/hr								0.3554		0.3887						
21	Lead	lb/hr		0.57 nd	0.0589 nd	0.0563	0.38029	0.28682	0.40719	10.617	10.683	10.666						
22	Mercury	lb/hr	nd	0.0011 nd	0.00112 nd	0.00108	0.00044	0.00110	0.00088									
23	Silver	lb/hr	nd	0.0192 nd	0.0196 nd	0.0188 nd	0.00198 nd	0.00176 nd										
24	Thallium	lb/hr	nd	0.0477	0.0401	0.0397 nd	0.00110 nd	0.00110 nd	0.00110									
25	OtI. O Fl	-lf		20200	00000	00700	20000	00000	20700	20000	22200	00700						
26 27	Stack Gas Flowrate			32000 17	33200 17.1	30700 17.2	32000 17	33200 17.1	30700 17.2	32000 17		30700 17.2						
28	Oxygen	%		17	17.1	17.2	17	17.1	17.2	17	17.1	17.2						
29	Feedrate MTEC Ca	loulations																
30	Chlorine	ug/dscm	100	162304 100	161894 100	181290	1308327	721868	604330	C	0	0	11 147063	1 18 88	3763	23 785619	16	1046671
31	Antimony	ug/dscm				337	239	210	205	0		0	57 55			62 542		540
32	Arsenic	ug/dscm		5293	3729	6064	26	13	262	20489		20733	2580		25673	27059		26180
33	Barium	ug/dscm		87439	78634	97223	11598	8757	14622	20400	0	0	9903		37391	111844		99424
34	Beryllium	ug/dscm		2784	1353	1059 100	6	6 10		4552		7449	734		6044	8515		7300
35	Cadmium	ug/dscm		180 100		194	290	242	233	33860		40519	1 3433		7868	40946		37715
36	Chromium	ug/dscm		60535	94246	75404	1767	1300	2158	10393		12471	7269		6591	90032		89772
37	Chromium (Hex)	ug/dscm		0	0	0	0	0	0	10393		12471	1039		1045	12471		11303
38	Lead	ug/dscm		16669	851	903	11121	8292	13065	310481	308831	342246	33827		7974	356214		337486
39	Mercury	ug/dscm		16 100			13	32	28	0.0.0.	0	0	56 2		48 :			41
40	Silver	ug/dscm		561 100		603 100	58 100	51 10		Č	0			0 100	618 10		100	632
41	Thallium	ug/dscm		1395 100		1274 100	32 100	32 10		Č	0			7 100	1191 1		100	1309
	SVM	ug/dscm		16849 18		1097	11411	8534	13299	344341		382764	37260		5842	397161		375201
43	LVM	ug/dscm		68612	99328	82527	1799	1319	2426	35433		40653	10584		8088	125606		123253
		- g, 000111			000=0	J=0=.			0	00 100	0.001	.0000				0000		0_00

В	CD	Е	F	G	Н
1 Process Information 1	 		<u> </u>		
2	Units	R1	R2	R3	Cond Avg
3					_
4 311C10	CoC				
5					
6 Max comb chamber temp	°F	2870	2795	2500	2863.3
7 Max baghouse inlet temperature	°F	432.9	430.6	441.4	432
8 Min baghouse pressure drop	in. w.c.	3.78	4.41	3.69	4.22
9					
10 311C11	Trial burn				
11					
12 Combustion zone temperature	°F	1847	1832	1832	1837
13 Min mid kiln temperature	°F	961	1002	929	959
14 Max kiln exit temperature	°F	470	482	480	477.3
15 Max baghouse inlet temperature	°F	447	442	451	447
16 Kiln maximum negative pressure	in. w.c.				-4.37
17					
18 311C12	Trial burn				
19					
20 Combustion zone temperature	°F	1840	2032	1997	1956
21 Mid kiln temperature	°F	1108	1052	1081	1080
Kiln exit temperature	°F	392	376	372	380
23 Baghouse inlet temperature	°F	358	359	364	352
24 Kiln maximum negative pressure	in. w.c.				-7.29

	С	D	E	F	G
1	Process Information 2	•	·		
2					
3	311C1		1	2	3
4					
5	Combustion Temperature	F	2473	2448	2425
6	FF Temperature	F	423	401	412
7	FF Pressure Drop	in H2O	3.2	5.2	6.1

	АВ	С	D	Е	F	G	H I	J	K	L	M N	0	Р	Q	R
	PCDD/PCDF														
	N														
3	Facility Name and ID:	Solite Corp			egate Kiln #2	2									
4	Condition ID:	311C11	Trial E	Burn											
5	Condition/Test Date:	Nov 8-19,	1999												
6															
7		I-TEF			Run	1			Run	12			Rur	3	
8		Wght Fact	t	Total	TEQ	Total	TEQ	Total	TEQ	Total	TEQ	Total	TEQ	Total	TEQ
9		· ·		Full ND	Full ND	1/2 ND	1/2 ND	Full ND	Full ND	1/2 ND	1/2 ND	Full ND	Full ND	1/2 ND	1/2 ND
10	Detected in sample volum	ne (ng)													
11	2,3,7,8-TCDD	1		1.410	1.410	1.410	1.410	0.760	0.760	0.760	0.760	0.200	0.200	0.200	0.200
12	1,2,3,7,8-PCDD	0.5		3.220	1.610	3.220	1.610	2.590	1.295	2.590	1.295	0.650	0.325	0.650	0.325
13	1,2,3,4,7,8-HxCDD	0.1		2.830	0.283	2.830	0.283	1.690	0.169	1.690	0.169	0.390	0.039	0.390	0.039
14	1,2,3,6,7,8-HxCDD	0.1		14.990	1.499	14.990	1.499	12.020	1.202	12.020	1.202	1.770	0.177	1.770	0.177
15	1,2,3,7,8,9-HxCDD	0.1		11.480	1.148	11.480	1.148	7.320	0.732	7.320	0.732	1.370	0.137	1.370	0.137
16	1,2,3,4,6,7,8-HpCDD	0.01		51.410	0.514	51.410	0.514	38.940	0.389	38.940	0.389	6.130	0.061	6.130	0.061
17	OCDD	0.001		21.530	0.022	21.530	0.022	16.700	0.017	16.700	0.017	3.370	0.003	3.370	0.003
18	2,3,7,8-TCDF	0.1		32.510	3.251	32.510	3.251	26.760	2.676	26.760	2.676	5.800	0.580	5.800	0.580
19	1,2,3,7,8-PCDF	0.05		25.830	1.292	25.830	1.292	18.010	0.901	18.010	0.901	4.030	0.202	4.030	0.202
20	2,3,4,7,8-PCDF	0.5		49.450	24.725	49.450	24.725	33.400	16.700	33.400	16.700	6.920	3.460	6.920	3.460
21	1,2,3,4,7,8-HxCDF	0.1		35.540	3.554	35.540	3.554	32.060	3.206	32.060	3.206	6.650	0.665	6.650	0.665
22	1,2,3,6,7,8-HxCDF	0.1		20.390	2.039	20.390	2.039	17.000	1.700	17.000	1.700	3.530	0.353	3.530	0.353
23	2,3,4,6,7,8-HxCDF	0.1		2.340	0.234	2.340	0.234	21.490	2.149	21.490	2.149	0.300	0.030	0.300	0.030
24	1,2,3,7,8,9-HxCDF	0.1		22.710	2.271	22.710	2.271	2.080	0.208	2.080	0.208	3.590	0.359	3.590	0.359
25	1,2,3,4,6,7,8-HpCDF	0.01		25.450	0.255	25.450	0.255	23.800	0.238	23.800	0.238	4.340	0.043	4.340	0.043
26	1,2,3,4,7,8,9-HpCDF	0.01		4.920	0.049	4.920	0.049	5.960	0.060	5.960	0.060	0.730	0.007	0.730	0.007
27	OCDF	0.001		4.320	0.004	4.320	0.004	3.800	0.004	3.800	0.004	0.610	0.001	0.610	0.001
28	Total TCDD	0		75.480	0.000	75.480	0.000	47.310	0.000	47.310	0.000	17.590	0.000	17.590	0.000
29	Total PCDD	0		117.640	0.000	117.640	0.000	100.150	0.000	100.150	0.000	23.250	0.000	23.250	0.000
30	Total HxCDD	0		168.220	0.000	168.220	0.000	114.390	0.000	114.390	0.000	19.660	0.000	19.660	0.000
31	Total HpCDD	0		106.170	0.000	106.170	0.000	78.210	0.000	78.210	0.000	12.010	0.000	12.010	0.000
32	Total TCDF	0		357.31	0.000	357.310	0.000	510.71	0.000	510.710	0.000	201.690	0.000	201.690	0.000
33	Total PCDF	0		361.340	0.000	361.340	0.000	300.880	0.000	300.880	0.000	73.750	0.000	73.750	0.000
34	Total HxCDF	0		174.220	0.000	174.220	0.000	151.370	0.000	151.370	0.000	32.290	0.000	32.290	0.000
35	Total HpCDF	0		43.550	0.000	43.550	0.000	43.940	0.000	43.940	0.000	7.110	0.000	7.110	0.000
36															
37	Gas sample volume (ds	scf)			119.68	119.68	119.68		118.13	118.13	118.13		115.33	115.33	115.33
38	O2 (%)				16.00	16.00	16.00		16.0	16.0	16.0		15.80	15.80	15.80
39															
40	PCDD/PCDF (ng in sar				44.159	1429.8	44.159		32.405	1367.5	32.405		6.642	391.3	6.642
41	PCDD/PCDF (ng/dscm	@ 7% O2)	0.0		36.508	1182.04	36.508 0.0		27.141	1145.32	27.141 0.0		5.479	322.80	5.479
42															
43	TEQ Cond Avg	23.043	3												
44	Total Cond Avg	883.39)												

								•								
	A B	С	D	E	F	G	H I	J	K	L	М	Ν	0	Р	Q	R
	PCDD/PCDF															
2	N															
3	Facility Name and ID:				egate Kiln #2	2										
	Condition ID:		Trial B	Burn												
5	Condition/Test Date:	May 11-19	, 2000													
6					_				_					_		
7		I-TEF			Run				Rur					Rur	-	
8		Wght Fact		Total	TEQ	Total	TEQ	Total	TEQ	Total	TEQ		Total	TEQ	Total	TEQ
9				Full ND	Full ND	1/2 ND	1/2 ND	Full ND	Full ND	1/2 ND	1/2 ND		Full ND	Full ND	1/2 ND	1/2 ND
	Detected in sample volum	•,		000	000	000	000	0.57	057	0.57	0.57		070	070	070	070
11	2,3,7,8-TCDD	1		228	228	228	228	257	257	257	257		278	278	278	278
12	1,2,3,7,8-PCDD	0.5		387	194	387	194	557	279	557	279		696	348	696	348
13	1,2,3,4,7,8-HxCDD	0.1		150	15	150	15	210	21	210	21		277	28	277	28
14	1,2,3,6,7,8-HxCDD	0.1		279	28	279	28	413	41	413	41		488	49	488	49
15	1,2,3,7,8,9-HxCDD	0.1		124	12	124	12	173	17	173	17		209	21	209	21
16	1,2,3,4,6,7,8-HpCDD	0.01		361	4	361	4	1070	11	1070	11		462	5	462	5
17	OCDD	0.001		491	0	491	0	5920	6	5920	6		559	1	559	1
18	2,3,7,8-TCDF	0.1		4900	490	4900	490	5160	516	5160	516		5440	544	5440	544
19	1,2,3,7,8-PCDF	0.05		3980	199	3980	199	5000	250	5000	250		5760	288	5760	288
20	2,3,4,7,8-PCDF	0.5		7200	3600	7200	3600	8840	4420	8840	4420		10300	5150	10300	5150
21	1,2,3,4,7,8-HxCDF	0.1		2620	262	2620	262	3530	353	3530	353		4800	480	4800	480
22	1,2,3,6,7,8-HxCDF	0.1		2350	235	2350	235	3110	311	3110	311		4140	414	4140	414
23	2,3,4,6,7,8-HxCDF	0.1		408	41	408	41	567	57	567	57		733	73	733	73
24 25	1,2,3,7,8,9-HxCDF	0.1		1340	134	1340	134	1850 2790	185	1850 2790	185		2370	237 31	2370 3060	237 31
26	1,2,3,4,6,7,8-HpCDF	0.01		1910 191	19 2	1910	19 2	2790	28 3	283	28 3		3060	_		
27	1,2,3,4,7,8,9-HpCDF OCDF	0.01 0.001		224	0	191 224	0	263 1170	ა 1	203 1170	ა 1		295 266	3 0	295 266	3
28	Total TCDD	0.001		15300	0	15300	0	12100	0	12100	0		11800	0	11800	0
29	Total PCDD	0		14200	0	14200	0	13600	0	13600	0		13000	0	13000	0
30	Total HxCDD	0		4500	0	4500	0	6080	0	6080	0		7200	0	7200	0
31	Total HpCDD	0		738	0	738	0	1990	0	1990	0		976	0	976	0
32	Total TCDF	0		246920	0	246920	0	243000	0	243000	0		224000	0	224000	0
33	Total PCDF	0		126000	0	126000	0	144000	0	144000	0		158000	0	158000	0
34	Total HxCDF	0		26800	0	26800	0	35600	0	35600	0		44000	0	44000	0
35	Total HpCDF	0		20000	0	2970	0	4350	0	4350	0		4950	0	4950	0
36	τοιαι προυπ	U		2310	U	2910	U	4550	U	4550	U		4530	U	4930	U
37	Gas sample volume (ds	scf)			117.81	117.81	117.81		116.04	116.04	116.04			122.16	122.16	122.16
38	O2 (%)	501)			16.00	16.00	16.00		14.4	14.4	14.4			17.60	17.60	17.60
39	02 (70)				10.00	10.00	10.00		14.4	17.4	17.4			17.00	17.00	17.00
40	PCDD/PCDF (ng in sar	mple)			5.463	438.1	5.463		6.755	467.8	6.755			7.949	464.8	7.949
41	PCDD/PCDF (ng/dscm		0.0		4.588	367.95	4.588 0.0		4.364	302.19	4.364	0.0		9.467	553.55	9.467
42	. 555/1 551 (11g/d56111	C . / C C Z /	0.0			001.00	1.000 0.0		1.004	002.10	1.004	0.0		0.107	000.00	3.137
43	TEQ Cond Avg	6.140														
44	Total Cond Avg	407.90														
		107.00														