Introduction to Machine Learning

Pseudo-residuals and Gradient Descent

Learning goals

- Know the concept of pseudo-residuals
- Understand the relationship between pseudo-residuals and gradient descent

PSEUDO-RESIDUALS

- In regression, residuals are defined as $r := y f(\mathbf{x})$.
- We further define pseudo-residuals as the negative first derivatives of loss functions w.r.t. f(x)

$$\tilde{r} := -\frac{\partial L(y, f(\mathbf{x}))}{\partial f(\mathbf{x})}.$$

• Note that pseudo-residuals are actually functions of y and $f(\mathbf{x})$ and depend on the loss function L.

BEST POINT-WISE UPDATE

Assume we have fitted a model $f(\mathbf{x})$ to data \mathcal{D} .

Assume we could update $f(\mathbf{x})$ point-wise as we like. For a fixed $\mathbf{x} \in \mathcal{X}$, the best point-wise update is the direction of the residual $r = y - f(\mathbf{x})$

BEST POINT-WISE UPDATE

Assume we have fitted a model $f(\mathbf{x})$ to data \mathcal{D} .

Assume we could update $f(\mathbf{x})$ point-wise as we like. For a fixed $\mathbf{x} \in \mathcal{X}$, the best point-wise update is the direction of the residual $r = y - f(\mathbf{x})$

$$f(\mathbf{x}) \leftarrow f(\mathbf{x}) + r$$

The point-wise error at this specific \mathbf{x} becomes 0.

APPROXIMATE BEST POINT-WISE UPDATE

When applying gradient descent to compute a point-wise update of $f(\mathbf{x})$, we would go a step into the direction of the negative gradient

$$f(\mathbf{x}) \leftarrow f(\mathbf{x}) - \frac{\partial L(y, f(\mathbf{x}))}{\partial f(\mathbf{x})}.$$

which is the direction of the pseudo-residual

$$f(\mathbf{x}) \leftarrow f(\mathbf{x}) + \tilde{r}$$

Iteratively stepping towards the direction of the pseudo-residuals is the underlying idea of gradient boosting, which is a learning algorithm that will be covered in a later chapter.

GD IN ML AND PSEUDO-RESIDUALS

 In gradient descent, we try to move in the direction of the negative gradient in each step by updating the model accordingly

$$\boldsymbol{\theta}^{[t+1]} = \boldsymbol{\theta}^{[t]} - \alpha^{[t]} \cdot \nabla_{\boldsymbol{\theta}} \left. \mathcal{R}_{\mathsf{emp}}(\boldsymbol{\theta}) \right|_{\boldsymbol{\theta} = \boldsymbol{\theta}^{[t]}}$$

with step size $\alpha^{[t]}$.

• This can be seen as approximating the unexplained information (measured by the loss) through a model update.

GD IN ML AND PSEUDO-RESIDUALS

 By using the chain rule we see that the pseudo-residuals are input to the update direction

$$\nabla_{\boldsymbol{\theta}} \mathcal{R}_{emp}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \underbrace{\frac{\partial L\left(\boldsymbol{y}^{(i)}, f\right)}{\partial f}}_{=-\tilde{r}^{(i)}} \cdot \nabla_{\boldsymbol{\theta}} f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)$$
$$= -\sum_{i=1}^{n} \tilde{r}^{(i)} \cdot \nabla_{\boldsymbol{\theta}} f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right).$$

 The unexplained information - the negative gradient - can be thought of as residuals, which is therefore also called pseudo-residuals.