Homework #3.1

```
In []: %matplotlib inline
   import math
   import pandas as pd
   import matplotlib.pyplot as plt
   import statsmodels.api as sm

   from sklearn.metrics import r2_score

In []: # read data
   securities = pd.read_excel('data/hw_3_1_data.xlsx', sheet_name='security return
   portfolio = pd.read_excel('data/hw_3_1_data.xlsx', sheet_name='portfolio return
   data = pd.merge(securities, portfolio, on='Date')
```

1. Regression

1. Estimation of regression of the portfolio return on SPY

```
In []: # Define and train model
    y = data.portfolio
    X = data.SPY
    model = sm.OLS(y, sm.add_constant(X))
    results = model.fit()
    results.summary()
```

0.745	R-squared:	portfo l io	Dep. Variable:
0.743	Adj. R-squared:	OLS	Model:
455.5	F-statistic:	Least Squares	Method:
3.93e-48	Prob (F-statistic):	Sat, 18 Jun 2022	Date:
443.21	Log-Likelihood:	22:42:52	Time:
-882.4	AIC:	158	No. Observations:
-876.3	BIC:	156	Df Residuals:
		1	Df Model:

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.0]	25	0.975	
const	-0.0006	0.001	-0.479	0.633	-0.0	003	0.002	2
SPY	0.6142	0.029	21.342	0.000	0.5	557	0.67	1
	Omnibus:	21.658	Durb	in-Wats	on:	1	.946	
Prob(C)mnibus):	0.000	Jarque	-Bera (、	JB):	65	5.437	
	Skew:	0.448		Prob(JB):	6.17	'e-15	
	Kurtosis:	6.023		Cond.	No.		24.6	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

From the summary we have: </br> $\alpha = -6*10^{-4}$ </br> $\beta = 0.6142$ </br> $R^2 = 0.745$ </br>

2. Estimation of regression of portfolio on SPY and HYG

```
In []: # Define and train model
    X = data[['SPY', 'HYG']]
    model = sm.OLS(y, sm.add_constant(X))
    results = model.fit()
    results.summary()
```

Dep. Variable:	portfolio	R-squared:	0.832
Model:	OLS	Adj. R-squared:	0.830
Method:	Least Squares	F-statistic:	384.2
Date:	Sat, 18 Jun 2022	Prob (F-statistic):	8.57e-61
Time:	22:42:52	Log-Likelihood:	476.28
No. Observations:	158	AIC:	-946.6
Df Residuals:	155	BIC:	-937.4
Df Model:	2		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	-0.0009	0.001	-0.915	0.362	-0.003	0.001
SPY	0.3843	0.035	11.072	0.000	0.316	0.453
HYG	0.5166	0.058	8.977	0.000	0.403	0.630

 Omnibus:
 1.294
 Durbin-Watson:
 2.246

 Prob(Omnibus):
 0.524
 Jarque-Bera (JB):
 1.296

 Skew:
 0.214
 Prob(JB):
 0.523

 Kurtosis:
 2.886
 Cond. No.
 66.9

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
From the summary we have: </br> \alpha=-9*10^{-4} </br> \tilde{\beta}^{spy}=0.3843 </br> \tilde{\beta}^{hyg}=0.5166 </br> <br/> R^2=0.832 </br>
```

3. Time series of fitted regression

Correlation between \hat{r}_t^p and r_t^p

```
In []: fitted.corr()['fitted'].iloc[0]
Out[]: 0.9122188135325914
```

The r-squared of the regression in equation (2) is **0.832**, which is squared correlation. $R^2=corr(\hat{r}_t^p,r_t^p)^2$ $0.912^2=0.832$

4.

```
In []: data[['SPY', 'HYG']].corr()['SPY'].iloc[1]
Out[]: 0.7380170112481026
```

 $\beta^{spy}=0.6142$ in (1) and $\tilde{\beta}^{spy}=0.3843$ in (2). Hence, β^{spy} is greater than $\tilde{\beta}^{spy}$ </br> The correlation between SPY and HYG is 0.738, which is fairly high. This means that the addition of HYG as a regressor "dilutes" the contribution of SPY given the high correlation between both regressors.

5.

 ϵ_t should have higher correlation with r_t^{hyg} because the contribution of HYG isn't accounted for in equation (1)

2. Decomposing and Replicating

Let's first fit our model with all the assets.

```
In []: # Define and train model
    X = data.drop(columns=['Date', 'portfolio'])
    y = data.portfolio
    model = sm.OLS(y, sm.add_constant(X))
    results = model.fit()
    results.summary()
```

		0 = 0	9				
De	ep. Variable:	рс	ortfolio	R	-squared:		1.000
	Model:		OLS	Adj. R	-squared:		1.000
	Method:	Least So	quares	F	-statistic:	7	.609e+28
	Date:	Sat, 18 Jur	n 2022 P	rob (F-	statistic):		0.00
	Time:	22	:42:53	Log-L	ikelihood:		5392.1
No. Ok	servations:		158		AIC:	-1	.076e+04
D	f Residuals:		145		BIC:	-1	.072e+04
	Df Model:		12				
Covar	iance Type:	non	robust				
	coef	std err	1	t P>	t [0.0	25	0.975]
const	3.526e-16	3.94e-17	8.960	0.00	0 2.75e	-16	4.3e-16
SPY	-5.274e-16	2.12e-15	-0.248	0.80	4 -4.72e	-15	3.67e-15
EFA	-8.361e-16	2.04e-15	-0.410	0.68	3 -4.87e	-15	3.2e-15
EEM	-5.794e-16	1.23e-15	-0.47	0.63	8 -3.01e	-15	1.85e-15
PSP	0.2500	1.53e-15	1.64e+14	0.00	0 0.2	250	0.250
QAI	0.2500	5.48e-15	4.56e+13	0.00	0 0.2	250	0.250
HYG	-3.539e-16	2.46e-15	-0.144	0.88	6 -5.22e	-15	4.52e-15
DBC	-6.713e-16	8.6e-16	-0.780	0.43	6 -2.37e	-15	1.03e-15
IYR	0.2500	1.03e-15	2.42e+14	0.00	0 0.2	250	0.250
IEF	0.2500	3.97e-15	6.3e+13	0.00	0 0.2	250	0.250
BWX	-1.527e-16	2.44e-15	-0.062	0.95	0 -4.98e	-15	4.68e-15
TIP	-1.388e-16	4.2e-15	-0.033	0.97	4 -8.44e	-15	8.16e-15
SHV	-2.019e-15	4.31e-14	-0.047	0.96	3 -8.72e	-14	8.32e-14
	Omnibus:	13.115 D	urbin-Wa	tson:	0.533		
Prob(0	Omnibus):	0.001 Jar	que-Bera	(JB):	30.155		
	-	0.262		(JB):	2.83e-07		
	Kurtosis:	5.075	Conc	l. No.	1.42e+03		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.42e+03. This might indicate that there are strong multicollinearity or other numerical problems.

We get $R^2=1$ but by looking at the t-stats PSP, QAI, IYR and IEF seem to be the most important regressors. </br>

variable we can see that these securities have strong correlations with other assets such as SPY, EFA and EEM for instance. </br>
Let's run the regression by only keeping PSP, QAI, IYR, IEF and see if we can replicate the R^2

In []: # Correlation accross dependant variables
 X.corr()

Out[]:		SPY	EFA	EEM	PSP	QAI	HYG	DBC	IYR
	SPY	1.000000	0.870442	0.745782	0.898231	0.824195	0.738017	0.494877	0.729380
	EFA	0.870442	1.000000	0.851419	0.904901	0.830989	0.754130	0.578556	0.669529
	EEM	0.745782	0.851419	1.000000	0.796636	0.800203	0.745496	0.558936	0.602920
	PSP	0.898231	0.904901	0.796636	1.000000	0.816837	0.811428	0.485034	0.735933
	QAI	0.824195	0.830989	0.800203	0.816837	1.000000	0.747440	0.528369	0.609705
	HYG	0.738017	0.754130	0.745496	0.811428	0.747440	1.000000	0.460296	0.736794
	DBC	0.494877	0.578556	0.558936	0.485034	0.528369	0.460296	1.000000	0.282182
	IYR	0.729380	0.669529	0.602920	0.735933	0.609705	0.736794	0.282182	1.000000
	IEF	-0.328991	-0.311078	-0.253117	-0.304326	-0.076174	-0.154525	-0.414037	-0.060927
	BWX	0.396519	0.555328	0.605680	0.479873	0.627331	0.506193	0.325511	0.384560
	TIP	0.133462	0.150721	0.227128	0.166647	0.362915	0.228485	0.064877	0.284087
	SHV	-0.188703	-0.164626	-0.108666	-0.197424	-0.111890	-0.127904	-0.186239	-0.136566

```
In []: # Fitting with only 'PSP', 'QAI', 'IYR', 'IEF'
model = sm.OLS(y, sm.add_constant(X[['PSP', 'QAI', 'IYR', 'IEF']]))
results = model.fit()
results.summary()
```

Dep. Variable:	portfo l io	R-squared:	1.000
Model:	OLS	Adj. R-squared:	1.000
Method:	Least Squares	F-statistic:	2.195e+31
Date:	Sat, 18 Jun 2022	Prob (F-statistic):	0.00
Time:	22:42:53	Log-Likelihood:	5748.5
No. Observations:	158	AIC:	-1.149e+04
Df Residuals:	153	BIC:	-1.147e+04
Df Model:	4		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	-7.806e-18	3.24e-18	-2.411	0.017	-1.42e-17	-1.41e-18
PSP	0.2500	1.15e-16	2.18e+15	0.000	0.250	0.250
QAI	0.2500	4.09e-16	6.11e+14	0.000	0.250	0.250
IYR	0.2500	9.01e-17	2.77e+15	0.000	0.250	0.250
IEF	0.2500	2.07e-16	1.21e+15	0.000	0.250	0.250

2.049	Durbin-Watson:	42.870	Omnibus:
246.405	Jarque-Bera (JB):	0.000	Prob(Omnibus):
3.12e-54	Prob(JB):	0.787	Skew:
138.	Cond. No.	8.912	Kurtosis:

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

With only the four assets PSP, QAI, IYR and IEF we are able to perfectly capture the variations in the portfolio with $R^2=1$ and very small p-values. </br> The weights are: </br> $\beta^{PSP}=0.25$ </br> $\beta^{QAI}=0.25$ </br>

2. Regression on TIP using 2018 data

```
In []: data_2018 = data.loc[data.Date.dt.year < 2019]
    X = data_2018.drop(columns=['Date', 'TIP', 'portfolio'])
    y = data_2018.TIP

model = sm.OLS(y, sm.add_constant(X))
    results = model.fit()
    results.summary()</pre>
```

Dep. Variable:	TIP	R-squared:	0.699
Model:	OLS	Adj. R-squared:	0.667
Method:	Least Squares	F-statistic:	22.16
Date:	Sat, 18 Jun 2022	Prob (F-statistic):	1.17e-22
Time:	22:42:54	Log-Likelihood:	410.59
No. Observations:	117	AIC:	-797.2
Df Residuals:	105	BIC:	-764.0
Df Model:	11		

Covariance Type:	nonrobust
------------------	-----------

	coef	std err	t	P> t	[0.025	0.975]
const	0.0012	0.001	1.199	0.233	-0.001	0.003
SPY	-0.0385	0.057	-0.670	0.505	-0.152	0.075
EFA	-0.0213	0.048	-0.442	0.660	-0.117	0.074
EEM	0.0676	0.028	2.424	0.017	0.012	0.123
PSP	0.0291	0.038	0.769	0.444	-0.046	0.104
QAI	0.0880	0.127	0.695	0.489	-0.163	0.339
HYG	-0.0805	0.060	-1.347	0.181	-0.199	0.038
DBC	0.0759	0.021	3.600	0.000	0.034	0.118
IYR	0.0250	0.026	0.950	0.344	-0.027	0.077
IEF	0.6629	0.072	9.201	0.000	0.520	0.806
BWX	-4.003e-05	0.056	-0.001	0.999	-0.111	0.111
SHV	-1.8066	1.448	-1.248	0.215	-4.677	1.064

Ollillibus:	4.571	Dui biii=watsoii:	2.100
Prob(Omnibus):	0.102	Jarque-Bera (JB):	4.120
Skew:	-0.342	Prob(JB):	0.127
Kurtosis:	3.614	Cond. No.	2.05e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.05e+03. This might indicate that there are strong multicollinearity or other numerical problems.
- (a) $R^2=0.669$ </br> β is the **coef** column (except const) in the OLS summary above. </br> (b) t-stats can be seen in the t column in the summary. The ones with an absolute value greater than 2 are: EEM, DBC and IEF. </br>

```
In [ ]: replication = pd.concat([y, pd.DataFrame(data=results.predict(sm.add_constant()
    replication.plot(title='Replicated time series', figsize=(20, 10), marker='.')
    plt.show()
```


3. out-of-sample replication on 2019-2020

(b) From the R^2 from the 2018 regression we can derive the correlation which is: </br> $corr_{2018} = \sqrt(R^2) = 0.818$ </br>
This is slightly above the 0.780 correlation obtained on the out-of-sample replication. This is reasonable and makes a lot of sense since the out-of-sample is data not observed during fitting.