(a)
$$d=70$$
 miles, $d=15$ miles total d=85 miles
 $5=15\frac{\text{miles}}{\text{hour}}$, $s=20\frac{\text{miles}}{\text{hour}}$

(b)
$$S = \frac{d}{d}$$

$$3 = \frac{85 \text{ miles}}{5.42 \text{ hours}}$$

$$S = \frac{d}{t} + \frac{70}{15} = 4.67 \text{ hours}$$

$$S = \frac{85 \text{ miles}}{5.42 \text{ hours}} + \frac{15}{20} = \frac{4.67 \text{ hours}}{15} = \frac{15}{20} = \frac{4.75 \text{ hours}}{15} = \frac{15}{20} = \frac{4.75 \text{ hours}}{15} = \frac{15}{20} = \frac{4.67 \text{ hours}}{15} = \frac{15}{20} = \frac{15}{2$$

$$5 = \frac{85}{5.42}$$

$$5 = \frac{15.7}{hour}$$

$$5) 5 = \frac{d}{t}$$

$$t \cdot 15.7 = 85$$

$$t \cdot 15.7 = 85$$

$$15.7 = 5.41$$

Velocity Problems 1:

displacement, not distance
direction (make up if there
is not a direction in the problem)
Velocity = displacement
time

U = d

t

(i) (b)
$$t = 11m$$
, $t = 63s$ A more gore meters in a line. It to seconds.

(3) $t = \frac{d}{t}$ Seconds.

(4) $t = \frac{11}{63s}$

(5) $t = \frac{d}{t}$

(6) $t = \frac{d}{t}$

(7) $t = \frac{d}{t}$

(8) $t = 17$

(9) $t = 17$

(1) $t = 17$

(1) $t = 17$

(2) $t = 17$

(3) $t = 17$

(4) $t = 17$

(5) $t = 17$

(6) $t = 17$

(7) $t = 17$

(8) $t = 17$

(9) $t = 17$

(1) $t = 17$

(1) $t = 17$

(2) $t = 17$

(3) $t = 17$

(4) $t = 17$

(5) $t = 17$

(6) $t = 17$

(7) $t = 17$

(8) $t = 17$

(9) $t = 17$

(1) $t = 17$

(1) $t = 17$

(2) $t = 17$

(3) $t = 17$

(4) $t = 17$

(5) $t = 17$

(6) $t = 17$

(7) $t = 17$

(8) $t = 17$

(9) $t = 17$

(1) $t = 17$

(1) $t = 17$

(2) $t = 17$

(3) $t = 17$

(4) $t = 17$

(5) $t = 17$

(6) $t = 17$

(7) $t = 17$

(8) $t = 17$

(9) $t = 17$

(10) $t = 17$

(11) $t = 17$

(12) $t = 17$

(13) $t = 17$

(14) $t = 17$

(15) $t = 17$

(17) $t = 17$

(18) $t = 17$

(19) $t = 17$