Exam 1(100 points)

1. (15 points) Prove the following:

Let \mathcal{M} be a vector space, and let \mathcal{N} be a subspace of \mathcal{M} . The orthogonal complement of \mathcal{N} with respect to \mathcal{M} is a subspace of \mathcal{M} ; and if $x \in \mathcal{M}$, x can be written uniquely as $x = x_0 + x_1$ with $x_0 \in \mathcal{N}$ and $x_1 \in \mathcal{N}_{\mathcal{M}}^{\perp}$. The ranks of these spaces satisfy the relation $\operatorname{rank}(\mathcal{M}) = \operatorname{rank}(\mathcal{N}) + \operatorname{rank}(\mathcal{N}_{\mathcal{M}}^{\perp})$.

- **2.** (15 points) Let X be an $n \times p$ matrix. Prove or disprove that every vector in \mathbb{R}^n is in either $\mathcal{C}(X)$ or $\mathcal{C}(X)^{\perp}$ or both.
- **3.** (15 points) Let M_1 and M_2 be perpendicular projection matrices on \mathbb{R}^n . $(M_1 + M_2)$ is the perpendicular projection matrix onto $\mathcal{C}(M_1, M_2)$ if and only if $\mathcal{C}(M_1) \perp \mathcal{C}(M_2)$.
- **4.** (15 points) Let M_1 and M_2 be perpendicular projection matrices, and let M_0 be a perpendicular projection operator onto $\mathcal{C}(M_1) \cap \mathcal{C}(M_2)$. Show that the following are equivalent:
- (a) $M_1M_2 = M_2M_1$
- (b) $M_1M_2 = M_0$
- (c) $C(M_1 M_0) \perp C(M_2 M_0)$
- **5.** (40 points) Consider $X = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 0 \end{pmatrix}$.
- (a) (10 points) Perform the Singular Value Decomposition (SVD) of X.
- (b) (10 points) Find the eigenvalues of X^TX , $M = X(X^TX)^-X^T$ and I-M respectively.
- (c) (10 points) Find $\mathcal{C}(M)$, $\mathcal{C}\left((X^TX)^{-1}\right)$, $\mathcal{N}(XX^T)$ and $\mathcal{N}(X^TX)$.
- (d) (10 points) Prove or disprove that $C(I M) = C(X^T)^{\perp}$.