WORKSHEET 2 PROBABILITY SPACES

- 1. In each of the following experiments, define the sample space Ω .
 - (a) A two-sided coin is tossed, with heads on one side and tails on the other.
 - (b) You can choose a color for your new car's exterior (choices: red, black, silver, blue) and interior (choices: beige, black).
 - (c) A customer is asked for the month and day-of-week on which her birthday lies.
 - (d) A coin is tossed 100 times in a row.

Solution:

- (a) $\Omega = \{H, T\}$, H and T stands for heads and tails respectively. $|\Omega| = 2$.
- (b) $\Omega = \{(\{\text{red}, \text{black}, \text{silver}, \text{blue}\}, \{\text{beige}, \text{black}\})\}, |\Omega| = 4 \times 2 = 8$
- (c) $\Omega = \{(\{12\text{months}\}, \{7\text{daysofweek}\})\}, |\Omega| = 12 \times 7 = 84$
- (d) $\Omega = \{\mathbf{H}, \mathbf{T}\}^{100}$, $|\Omega| = 2^{100}$, H and T stands for heads and tails respectively.
- 2. Let A, B, C be events defined on a sample space Ω . Use notation for union, intersection, and set difference to write expressions for each of the following combinations.
 - (a) All three events occur.
 - (b) At least one of the events occurs.
 - (c) A and B occur, but not C.

Solution:

- (a) All three events occur: $\mathbf{A} \cap \mathbf{B} \cap \mathbf{C}$
- (b) At least one of the events occurs: $A \cup B \cup C$
- (c) A and B occur, but not C: $\mathbf{A} \cap \mathbf{B} \cap \mathbf{C}^{\mathbf{c}}$
- **5**. Let A and B be events defined on a sample space Ω such that $Pr(A \cap B) = 1/4$, $Pr(A^c) = 1/3$, and Pr(B) = 1/2. Here $A^c = \Omega \setminus A$ is the event that A doesn't happen. What is $Pr(A \mid B)$?

Solution:

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B) = (1 - 1/3) + 1/2 - 1/4 = 11/12$$

6. A pair of dice are rolled. What is the probability that they show the same value?

Solution:

The sample space $\Omega = \{(\{1, 2, 3, 4, 5, 6\}, \{1, 2, 3, 4, 5, 6\})\}, |\Omega| = 36$, there are 6 same values, hence the probability they show the same value is $\mathbf{6}/|\Omega| = 1/6$

7. Recall that a chessboard has 64 squares arranged in an 8 x 8 grid. A rook is a particular chess piece that is said to attack anything that shares either the same row or the same column. Suppose two rooks are placed at random on a chessboard(in distinct locations). What is the chance that they are attacking each other?

Solution:

The size of sample space is $|\Omega| = {64 \choose 2} = 2016$, there are 64 ways to place one rook on a random grid, and 14 ways to place another rook so that they attacking each other, and hence the chance that they are attacking each other is $64 \times 14/2016 = 896/2016 = 28/63 \approx 0.444$.

9. A die is loaded in such a way that the probability of each face turning up is proportional to the number of dots on that face (for instance, a six is three times as probable as a two). What is the probability of getting an even number in one throw?

Solution:

Assume the probability of getting a one is Pr(1), then Pr(1) + 2Pr(1) + 3Pr(1) + 4Pr(1) + 5Pr(1) + 6Pr(1) = 1, hence Pr(1) = 1/21, Pr(2) = 2Pr(1), Pr(4) = 4Pr(1), Pr(6) = 6Pr(1), Pr(even) = Pr(2) + Pr(4) + Pr(6) = 2Pr(1) + 4Pr(1) + 6Pr(1) = 12 * 1/21 = 4/7

10. Five people of different heights are lined up against a wall in random order. What is the probability that they just happen to be in increasing order of height (left-to-right)?

Solution:

The size of sample space is $|\Omega| = 5!$, and there is only one way to line up 5 people in increasing order of height, hence the probability is 1/5! = 1/120

11. A deck of ordinary cards is shuffled and a hand of 13 cards are dealt. What is the probab -ility that the first and second cards are of the same suit?

Solution:

The size of sample space is $|\Omega| = {52 \choose 13}$, there are 4 ways to select a suit for the first and second cards, and within that suit, the first draw has 13 ways, and the second draw has 12 ways, then ${50 \choose 11}$ ways for the rest of 11 draws. Hence the probability is $4*13*12*{50 \choose 11}/{52 \choose 13}$

13. Assume that whenever a child is born, it is equally likely to be a girl or boy. What is the probability that a randomly-chosen family with six children has exactly three girls and three boys?

Solution:

The sample space is $\Omega = \{Boy, Girl\}^6$, $|\Omega| = 2^6$, and there are $\binom{6}{3}$ ways with six children has exactly three girls and three boys, hence the probability is $\binom{6}{3}/2^6$.

15. How long does a sequence of random decimal digits (i.e. each digit is equally likely to be 0, 1, 2,..., 9) have to be in order for the probability of the digit 7 appearing to be at least 0.9?

Solution:

Suppose the length of the sequence is N, the probability of the digit 7 appearing to be at least 0.9 can be translated to the probability of the digit 7 not appearing to be at most 0.1, for the sequence of length N, the probability of single digit that 7 not showing up is 9/10, hence we need to find out N in $(9/10)^N < 0.1$, the answer is 22. Hence, the sequence has to be length of 22 digits in order for the probability of the digit 7 appearing to be at least 0.9.