Graphs (Part 1)

Definition of a graphs, different types of graphs and their properties

Connor Baker

Graphs (Part 1)

Graphs

- A graph is defined as the set G = (V, E), where
 - V is a set of vertices or nodes
 - E is a set of edges, where each edge is pair (v,w) and $v,w\in V$
- · We checked trees before
 - Trees are DAGs (directed acyclic graphs)
 - General graphs usually have edges with more features

Edge Features

- · Edge direction
 - Directed graphs: (u, v) and (v, u) are not the same
- · Edge weight
 - There can be a cost associated with the edge. When we think of edges as tuples, we can think of the cost c as making a coordinate pair a triplet (u, v, c).

Types of Graphs

- Directed vs. Undirected
 - Presence or absence of weighted edges
- Weighted vs. Unweighted
 - Presence or absence of edge weights
- Cyclic vs. Acyclic
 - Presence or absence of cycles
- · Dense vs. Sparse
 - Presence or absence of a large number of edges relative to the number of vertices
- · Connected vs. Disconnected
 - Presence or absence of the property that there is a path from every vertex to every other vertex (when a graph has this property, we call it *strongly connected*)

Connor Baker 1 of 5

Dense/Sparse Graphs

Figure 1: A visual comparison between a sparse and dense graph (V=50) Sedgewick et. al's Algorithms, 4th ed. Chp. 4.1

Terms

- Nodes (also called vertices when specifically talking about graphs)
 - |V| is the number of vertices
- Edges
 - |E| is the number of edges
 - It is always true that $|E| \leq |V|^2$
- Connection
 - Vertex w is adjacent to vertex v iff. $(v,w) \in E$
 - * Directed graph: w is adjacent to $v \neq v$ is adjacent to w
 - A path is a sequence of vertices connected by edges
 - * A sequence of edges w_1, w_2, \dots, w_n is a path iff. $(w_i, w_{i+1}) \in E$ for all i
 - * Path length: the length of a path is defined by the number of edges divided by the sum of the edge weights

Connor Baker 2 of 5

Graph Example

Figure 2: Example 1

- · Directed, weighted graph
- |V| = 7
- |E| = 12
- Which vertices are adjacent to V_3 ?
 - V_2, V_4, V_5, V_6
- List a path from V_3 to V_1
 - V_3, V_2, V_0, V_1
 - Unweighted path length: 3
 - Weighted path length: 2 + 4 + 2 = 8

Review: Graphs

General Graph Terms

- |V| and |E|
- · Adjacent vertices
- Simple path
- Cycle
- Degree (of a vertex)

Types of Graphs

· Directed vs. Undirected

Connor Baker 3 of 5

- · Weighted vs. Unweighted
- Cyclic vs. Acyclic
- Dense vs. Sparse
- · Connected vs. Disconnected
- DAG

More Terms

- Simple path: a path where all the vertices are distinct except the first and last, which can be the same
- Cycle: a path that begins and ends at the same vertex and contains at least one edge
 - Simple cycle follows from the definition of simple path above
- Vertex \boldsymbol{v} is reachable from vertex 2 if there is a path from \boldsymbol{w} to \boldsymbol{v}
- Degree of a vertex: the number of edges incident to it
 - *Indegree of* v: the number of incoming edges (u, v)
 - Outdegree of v: the number of outgoing edges (v, w)

Graph Example

Figure 3: Example 2

- List a path
 - $V_3, V_2, V_0, V_3, V_6, V_5$
- List a simple path
 - V_3, V_2, V_0, V_1, V_3
- List a cycle

Connor Baker 4 of 5

- $V_3, V_2, V_0, V_3, V_2, V_0, V_3$
- List a simple cycle
 - V_3, V_2, V_0, V_1, V_3
- Is V_0 reachable from V_5 ?
 - No it is not (V_5 has outdegree zero)
- Is V_0 reachable from V_1 ?
 - Yes, we have the path V_1, V_3, V_2, V_0
- Degree of V_3 : 6
 - Indegree: 2
 - Outdegree: 4

Graphs Everywhere

- They can represent a wide variety of data or relations
 - Genetic distances
 - Airline flights and costs
 - Migration patterns
 - Function call graphs

Road Map

- · Graph basics
 - Definitions and terms
 - Applications
- Graph representations
 - Adjacency matrix
 - Adjacency list
- · Graph algorithms
 - Graph traversal
 - Shortest path problem
 - Many more

Connor Baker 5 of 5