12-3 Classical Error-Correcting Codes

Hamming distance

bit string $x = x_1 x_2 ... x_n$

Hamming weight w(x) = # of ones in x

ex)
$$w(010101) = 3$$

$$x = x_1 x_2 ... x_n, y = y_1 y_2 ... y_n$$

Hamming distance d(x, y) = # of bits with different values $= w(x \oplus y) = \sum_{i} x_i \oplus y_i$

ex)
$$d(010101, 110011) = 3$$

Big picture

codewords: encoded bit messages

ex)
$$x^0 = 000$$
, $x^1 = 111$

Codeword 000 represents bit message 0.

Codeword 111 represents bit message 1.

[n,k] codes encode k-bit messages into n-bit codewords.

This error-correcting code can correct d_0 errors.

$$\underbrace{[n,k,d] \ \text{code } C}_{x\neq y} \qquad d = d(C) \equiv \min_{\substack{x,y \in C \\ x \neq y}} d(x,y) \qquad \text{distance of code } C$$
 (minimum distance bewteen codewords)

If error-correcting code C can correct up to d_0 errors, $2d_0 < d$.

ex)
$$x^0 = 000$$
, $x^1 = 111$

[3, 1, 3] error-correcting code, correcting up to one error.

Classical linear codes

[n, k] linear code

generator matrix $G: n \times k$ matrix with $G_{ij} \in \{0, 1\}$

k-bit message $m: k \times 1$ matrix (column vector)

codeword $x^m = Gm$ (matrix multiplication)

parity check matrix $H: (n-k) \times n$ matrix with $H_{ij} \in \{0, 1\}$

HG = 0

codewords: all column vector x satisfying Hx = 0

 \bigcirc If you choose H, G is automatically determined, and vice versa.

ex)
$$x^0 = 000$$
, $x^1 = 111$: [3, 1] code

$$G = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad x^0 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} (0) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad x^1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} (1) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$H = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

[7, 4, 3] **Hamming code**

$$H = \begin{pmatrix} 1 & 2 & 4 & 3 & 5 & 6 & 7 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

$$P_1 \quad P_2 \quad P_3 \quad P_4 \quad P_4$$

$$H = \begin{pmatrix} 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0$$

$$G_{T} = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

error correction

codeword $x \xrightarrow{\text{error}} x' = x + e$

$$Hx' = Hx + He = He$$
 error syndrome

ex) [7,4,3] Hamming code

$$e = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \leftarrow i\text{-th row} \implies He = (i\text{-th column of } H) \qquad \text{All columns in } H \text{ are different!}$$