Exploring Movie Recommendations with Apache Spark

Andres Rocha, Andrew Chan, Sophia Chung, Yohan Sofian June 3, 2024

Abstract

This report details the development and functioning of a movie recommendation system built using Apache Spark. The system preprocesses data, computes feature vectors, and applies machine learning techniques to recommend movies based on textual and numerical data.

1 High-Level Overview

Introduction

The objective of this project is to build a scalable movie recommendation system using Apache Spark. This system leverages text processing and machine learning to suggest movies similar to a given query.

Setup

The project is implemented in Scala and uses Apache Spark, an open-source unified analytics engine for large-scale data processing. The environment is set up as follows:

```
val spark = SparkSession.builder()
  .appName("MovieRecommendation")
  .master("local[*]")
  .getOrCreate()
```

```
Logger.getLogger("org").setLevel(Level.OFF)
Logger.getLogger("akka").setLevel(Level.OFF)
```

Data Loading and Preprocessing

Data is loaded from a CSV file containing top-rated movies. Each movie's 'overview' is preprocessed to replace nulls with a default string. Here, text preprocessing involves tokenization and removal of stop words to clean the data for further analysis.

Feature Engineering

The system creates feature vectors using several techniques:

- **TF-IDF:** Converts text data into a numeric form, reflecting the importance of words within the dataset.
- Vector Assembler: Combines features from different sources (TF-IDF vectors and numerical attributes like ratings and popularity) into a single feature vector.
- Standard Scaler: Standardizes features by scaling to unit variance.

Machine Learning Pipeline

A pipeline is constructed with various stages from tokenization to scaling. This pipeline automates the workflow of transforming and assembling data:

```
val pipeline = new Pipeline()
   .setStages(Array(tokenizer, remover, hashingTF, idf, assembler, scaler))
```

Recommendation Engine

The system uses cosine similarity to find movies that are most similar to a given query. This measure helps identify movies with similar feature vectors, hence likely to be of interest to the user.

Example Query and Results

An example query is processed through the system to find movies similar to "Spider-Man: Across the Spider-Verse", demonstrating the effectiveness of the system.

+			+-	+-	+	+
title	overview vot	e_average vo	te_count p	opularity	runtime	similarity
+						
Spider-Man: Acros After reuni	ting w	8.8	1160.0	2859.047	140.0	1.0
Midnight Cowboy "Joe Buck i	s a wi	7.5	1151.0	17.437 4	.4785053E7 0.	.29027100842634684
Giant Spider In a myster	ious l	7.2	57.0	18.372	84.0 0.	. 19111307153145093
Eight Legged Freaks The residen	ts of	5.7	1059.0	346.156	99.0 0.	.18455005708099004
The Amazing Spide For Peter P	arker,	6.5	12057.0	163.998	141.0 0.	.17653226359680757
+						+

Conclusion

This movie recommendation system showcases the power of Apache Spark in handling and analyzing large datasets. Through effective preprocessing and feature engineering, it offers a robust platform for movie recommendations.

2 In-Depth Analysis of Code

Introduction

The provided Scala code implements a movie recommendation system using Apache Spark and its machine learning library (MLlib). This document provides an in-depth analysis of each part of the code to explain its functionality and purpose.

Imports

The code begins with several import statements:

These imports bring in the necessary libraries for logging, Spark SQL, and MLlib features. Specifically, they include components for text processing, feature transformation, and vector operations.

Main Object and Method

The main object MovieRecommendation contains the entry point of the program:

```
object MovieRecommendation {
  def main(args: Array[String]): Unit = {
   val spark = SparkSession.builder()
        .appName("MovieRecommendation")
        .master("local[*]")
        .getOrCreate()
```

This initializes a Spark session named MovieRecommendation and sets it to run locally on all available cores.

Logging Configuration

The logging configuration is set to suppress unnecessary logs and configure logging properties:

```
Logger.getLogger("org").setLevel(Level.OFF)

Logger.getLogger("akka").setLevel(Level.OFF)

PropertyConfigurator.configure("/Users/

andresrocha/Downloads/CSC369/Lab6/src/main/

resources/log4j.properties")
```

This suppresses logs from org and akka packages and sets the logging configuration file.

Data Loading and Preprocessing

The dataset is loaded and preprocessed:

The dataset is read from a CSV file, and specific columns are cast to double data types for further processing.

Handling Missing Data

Null or empty 'overview' values are replaced with a default value:

Median values are calculated for numerical columns, and missing values are filled:

```
val voteAverageMedian = cleanedDF.stat.
        → approxQuantile("vote_average", Array(0.5),
        → 0.001).head
      val voteCountMedian = cleanedDF.stat.
        → approxQuantile("vote_count", Array(0.5),
        \hookrightarrow 0.001).head
     val popularityMedian = cleanedDF.stat.
        → approxQuantile("popularity", Array(0.5),
        → 0.001).head
      val runtimeMedian = cleanedDF.stat.
        → approxQuantile("runtime", Array(0.5),
        → 0.001).head
      val filledDF = cleanedDF.na.fill(Map(
        "vote_average" -> voteAverageMedian,
        "vote_count" -> voteCountMedian,
        "popularity" -> popularityMedian,
        "runtime" -> runtimeMedian
10
      ))
```

Text Preprocessing

The text in the 'overview' column is tokenized, stop words are removed, and features are hashed and transformed using TF-IDF:

```
val tokenizer = new RegexTokenizer()
        .setInputCol("overview")
        .setOutputCol("tokens")
        .setPattern("\\W")
      val remover = new StopWordsRemover()
        .setInputCol("tokens")
        .setOutputCol("filtered_tokens")
      val hashingTF = new HashingTF()
10
        .setInputCol("filtered_tokens")
11
        .setOutputCol("raw_features")
12
        .setNumFeatures(10000)
14
      val idf = new IDF()
15
        .setInputCol("raw_features")
16
        .setOutputCol("tfidf_features")
```

Feature Combination and Scaling

Features are combined and scaled:

Pipeline and Model Fitting

A pipeline is created to streamline the preprocessing steps, and the model is fitted:

Cosine Similarity Calculation

Cosine similarity is calculated between feature vectors:

Finding Nearest Neighbors

The function findNearestNeighbors finds the most similar movies based on a query and numerical data:

```
def findNearestNeighbors(query: String,
         → numericalData: Array[Double], k: Int = 5):
         → DataFrame = {
        val queryDF = Seq((query, numericalData(0),
           → numericalData(1), numericalData(2),
           → numericalData(3))).toDF("overview",
           ⇔ vote_average", "vote_count", "popularity"
           \hookrightarrow , "runtime")
        val queryProcessedDF = model.transform(queryDF
3
           \hookrightarrow )
        val queryFeatures = queryProcessedDF.select("

    scaled_features").first().getAs[Vector]("

           ⇔ scaled features")
        val similarities = processedDF.select("title",
           → "overview", "vote_average", "vote_count"
           \hookrightarrow , "popularity", "runtime", "
           ⇔ scaled_features").as[(String, String,
           → Double, Double, Double, Vector)].
           \hookrightarrow map {
          case (title, overview, voteAvg, voteCount,
7
             → popularity, runtime, features) =>
            val similarity = cosineSimilarity(
               → queryFeatures, features)
             (title, overview, voteAvg, voteCount,
9
               → popularity, runtime, similarity)
        }
10
11
        val nearestNeighbors = similarities.sort($"_7"
12
           \hookrightarrow .desc).take(k)
        spark.createDataFrame(nearestNeighbors).toDF("
13

    title", "overview", "vote_average", "

           \hookrightarrow vote_count", "popularity", "runtime", "
           ⇔ similarity")
```

14 }

Example Query and Execution

An example query is executed to find similar movies:

```
val query = "After reuniting with Gwen Stacy,
         \hookrightarrow Brooklyn's full-time, friendly neighborhood
         \hookrightarrow Spider-Man is catapulted across the
         \hookrightarrow Multiverse, where he encounters the Spider
         \hookrightarrow Society, a team of Spider-People charged
         \hookrightarrow with protecting the Multiverse's very
         \hookrightarrow existence. But when the heroes clash on how
         \hookrightarrow to handle a new threat, Miles finds
         \hookrightarrow himself pitted against the other Spiders
         \hookrightarrow and must set out on his own to save those
         \hookrightarrow he loves most."
      val numericalData = Array(8.8, 1160, 2859.047,
2
         \hookrightarrow 140)
      val nearestNeighbors = findNearestNeighbors(
         → query, numericalData)
      nearestNeighbors.show()
      spark.stop()
    }
 }
```