

MITx 6.86x

Machine Learning with Python-From Linear Models to Deep Learning

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Resources</u>

☆ Course / Unit 4. Unsupervised Learning (2 weeks) / Lecture 14. Clustering 2

✓ Previous
✓ ✓ ✓ ✓

3. Introduction to the K-Medoids Algorithm

 \square Bookmark this page

Exercises due Apr 19, 2023 08:59 -03 Completed

Introduction to the K-Medoids Algorithm

- -

Video

♣ Download video file

Transcripts

- ▲ Download SubRip (.srt) file
- **▲** Download Text (.txt) file

K-Medoids Algorithm as a Variation of K-Means

1/1 point (graded)

As explained in the lecture video, the K-Medoids algorithm is a variation of the K-Means addresses some of the K-Means algorithm's limitations. The K-Medoids algorithm is given

- 1. Randomly select $\{z_1,\ldots,z_K\}\subseteq \{x_1,\ldots,x_n\}$
- 2. Iterate
 - 1. Given z_1, \dots, z_K , assign each $x^{(i)}$ to the closest z_j , so that

$$\operatorname{Cost}\left(z_{1}, \ldots z_{K}
ight) = \sum_{i=1}^{n} \min_{j=1,...,k} \operatorname{dist}\left(x^{(i)}, z_{j}
ight)$$

Submit

You have used 1 of 1 attempt

Previous

Next >

Concept Check: K-Medoids Algorithm

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

Sitemap

Cookie Policy

Do Not Sell My Personal Information

Connect

Blog

Contact Us

Help Center

Security

Media Kit

