Computational botany for invasive species decision support, risk analysis, and policy

- John M. Drake & John Paul Schmidt (University of Georgia)
- David Finnoff (University of Wyoming)
- Mike Springborn (University of California Davis)

Invasive plants

Estimated Annual Cost of Invasive Plant Work in California

Invasive plants cost the state of California >\$82m annually

Image: California Invasive Plant Council

Civilian Conservation Corps workers planting Kudzu

25,000 non-indigenous plant species introduced in USA

- Only ~20% (n=5000) naturalized
- Only ~4.5% (n=1,110) are recognized as weeds
- only \sim 1.7% (n=435) become pests

Leafy spurge (Euphorbia esula)

Pimental, D. et al. 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics 52:273-288.

Overview

Problem

- Costs of invasive species are \$US billions per year
- Risk analysis and policy mechanisms in place or under development ("Quarantine 37")
- Ecological risk assessment procedures inadequate
 Objective
- Develop <u>cost-sensitive</u> <u>decision support tools</u> to aid <u>risk analysis</u> for species proposed for introduction and rapidly evaluate new non-indigenous species concerning potential for further spread

Scientific workflow

Construction of the database

Species classes

	Species	Weeds	State listed	Federally listed
total	5954	1110	435	46
present in >1 state	3076	974	373	31
ornamental	1292	394	143	10

^{*}Includes Alaska, Hawaii, Puerto Rico, and the Virgin Islands

145 Variables

- ~10% relate to native distribution
- ~15% relate to introduced distribútion
- ~70% relate to biological traits

Large datasets

Seed mass (>2000)

Chromosome number (>1000)

Maximum height (>500)

Biological traits

Growth form

Life history

Wetland habitat association

Maximum height

Maximum chromosome number/species

Seed mass

Leaf traits

Native latitudinal and longitudinal range

Machine learning with boosted regression trees

SPECIES CLASSIFIED CORRECTLY: 64%

Pattern recognition algorithms based on ideas about human cognition

Image: Han, B. 2015. The algorithm that's hunting Ebola. IEEE Spectrum.

Species classification on a balanced dataset: Maximal performance

- Facultative wetland association
- Key biological traits

- Obligate wetland association
- Maximum height
- Seed mass
- Maximum chromosome number
- Leaf traits: evergreen-ness, C:N ratio, leaf specific area

Performance Summary

	Weeds		State-listed		
	prediction on 20% holdout (95% CI)	sample size (test set)	prediction on 20% holdout (95% CI)	sample size (test set)	
all species	0.74 (0.69,0.78)	447	0.69 (0.62, 0.76)	174	
species present in > 1 state	0.78 (0.73,0.82)	385	0.78 (0.70,0.84)	149	
ornamentals	0.85 (0.79,0.9)	160	0.75 (0.62,0.86)	56	

Permutation methods facilitate visualization of partial dependence

Computational methods diagnose <u>how</u> learned models make predictions

Schmidt, J.P., M. Springborn & J.M. Drake. 2012. Bioeconomic forecasting of invasive species by ecological syndrome. Ecosphere 3:46.

Construction of Decision Boundaries

3-variable model

Variables

- seed mass
- chromosome number
- facultative wetland affinity

Performance on balanced withheld test dataset (n=385)

- Absolute accuracy: 72%
- 95% confidence interval: (66%,80%)

2-variable model

Variables

- seed mass
- chromosome number

Performance on balanced withheld test dataset (n=151):

- Absolute accuracy: 74% 95% confidence interval: (62%,86%)

Economic data

Expected net benefits per species assessed

$$ENB = \underbrace{\pi}_{Prob. \ that \ a} \cdot \underbrace{TPR}_{Prob. \ that \ a} \cdot \underbrace{\left(V_L - V_T\right)}_{Benefit} - \underbrace{\left(1 - \pi\right)}_{Prob. \ that \ a} \cdot \underbrace{FPR}_{Prob. \ that \ a} \cdot \underbrace{V_T}_{Cost \ of \ excluding \ an \ invasive}$$

$$\propto \pi \cdot TPR \cdot \left[\frac{V_L - V_T}{V_T}\right] - (1 - \pi) \cdot FPR.$$

 $V_{\rm t}$ > 0: Per species expected benefit of traded import

 $V_1 > 0$: Per species expected losses conditional on the species truly belonging to the invasive class

 π : Base frequency of invasive species

TPR: True positive rate of proposed policy

FPR: False positive rate of proposed policy

Estimates

- π =4.40% (weeds)
- π =1.74% (noxious)
- V_t =\$281,200 (low)
- V_t =\$410,100 (high)

Estimated as fraction of introduced species (~25,000)

Following Feenstra (2004), calculated from import demand estimated from US Dept.

Commerce Global Ag. Trade System (GATS) data on 8 sub-groups within the plants-for-planting collection of goods

Benchmarked at value where decision-maker indifferent to randomly selected species

- V_I= ranges from \$6m to \$24m (conservative)
- V_{l} = ranges from \$630m to \$1.6b (pub'd)

Based on controversial published tallies

Expected net benefits under different modeling assumptions

			$V_{\mathcal{T}}$	V_L (minimal)	π	φ	TPR	FPR	ENB
	Noxious	High	\$410,100	\$23,568,966	0.0174	56	0.94	0.66	\$110,000
	Noxious	Low	\$281,200	\$16,160,920	0.0174	56	0.94	0.66	\$80,000
	Weed	High	\$410,100	\$9,320,455	0.044	22	0.59	0.23	\$140,000
	Weed	Low	\$281,200	\$6,390,909	0.044	22	0.59	0.23	\$100,000
			$V_{\mathcal{T}}$	V_L (pub'd)	π	φ	TPR	FPR	ENB
Upper bound →	Noxious	High	\$410,100	\$1,593,563,218	0.0174	5666	1	0.98	\$27,000,000
	Noxious	Low	\$281,200	\$1,593,563,218	0.0174	3885	1	0.98	\$27,000,000
	Weed	High	\$410,100	\$630,181,818	0.044	2240	0.99	0.58	\$27,000,000
	Weed	Low	\$281,200	\$630,181,818	0.044	1536	0.99	0.58	\$27,000,000

Schmidt, J.P., M. Springborn & J.M. Drake. 2012. Bioeconomic forecasting of invasive species by ecological syndrome. Ecosphere 3:46.

Main result

Schmidt et al. (2015)

Time since Introduction, Seed Mass, and Genome Size Predict Successful Invaders among the Cultivated Vascular Plants of Hawaii

John Paul Schmidt*, John M. Drake

Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America

Minimum time since introduction

	1840-1999	1840-1930
Total introduced	7,866	815
Naturalized	420 (5.3%)	252 (31%)
Weed	141 (1.8%)	90 (11%)
Noxious (HI)	39 (0.5%)	22 (3%)

Table 1. Model performance measured by area under the ROC curve (AUC) values for models of the invader classes as a function of key predictors.

model	model performance (AUC)			num. species	
	naturalized	weed	noxious		
full model	0.92	0.91	0.88	4861	
years since introduction	0.82	0.80	0.76	3460	
seed mass + HCNSG	0.76	0.75	0.82	3180* (864)	
HCNSG	0.69	0.68	0.80	2009	
seed mass	0.71	0.71	0.74	2077	

*species for which data contains values for either term, number of species with values for both in parentheses.

doi:10.1371/journal.pone.0017391.t001

Summary

- Findings
 - Some genera disproportionately represented in invasive species (rationale for regulation at higher taxonomic levels)
 - Species specific rapid screening protocol now available with conservatively estimated benefits of \$80,000 to \$140,000 per species assessed

http://daphnia.ecology.uga.edu/drakelab/?p=306

- Lag times of 10-100 years between introduction and realization of costs
- Next Steps
 - Development of an iPad app for rapid risk screening
 - The genomics of invasiveness