Lecture 3.5 : Decision Tree / SVM Fastcampus Math Camp

신승우

Sunday 10th June, 2018

Outline

1 Introduction to Machine Learing

3 / 19

인공지능의 발전과정 I

초창기 인공지능은

- rule-based : 수많은 사람이 넣은 규칙을 이용해서 판단
- logical AI : 논리적인 규칙을 만들고 연역을 이용해서 판단

하는 등, 대부분 deterministic하고 white-box 모델이였다. 이런 모델의 경우 장점이

- 얻어낸 결과를 설명 가능하며, 디버깅도 가능하다.
- 많은 계산양을 요구하지 않는다.
- 도메인 지식을 바로 적용할 수 있다.

였으나, 인간이 명확한 규칙을 만들기 어려운 일(이미지 인식, 바둑 등)들에서는 위와 같은 인공지능을 구현하기 어려웠다. 그래서 통계적인 방법을 이용한 Machine Learning이 대두하였다.

Machine Learning

머신 러닝이란 통계적인 추론을 통해서 알고리즘을 학습시켜, 결과물을 얻어내는 방법이다. Mitchell의 정의가 눈여겨볼만하다.

Machine Learning

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E

Machine Learning의 분류

머신 러닝은 학습 데이터의 유무와 결과물의 종류에 따라서 분류된다.

- 학습 데이터의 유무에 따른 분류
 - 지도학습 : 인간이 라벨을 달아준 데이터가 있는 경우.
 - 비지도학습: 그러한 데이터가 없는 경우
- 결과물의 종류에 따른 분류
 - 분류 : 결과물이 이산적인 라벨일 경우.
 - 회귀 : 결과물이 연속적인 실수일 경우.

오늘은 위 분류 중 지도학습/분류학습에 해당되는 알고리즘 2개를 살펴볼 것입니다.

Basic Assumption

오늘 배우는 알고리즘은 의사결정나무와 svm이며, 이 두 경우에 모두 다음을 가정한다.

- 데이터 D는 각 데이터의 feature $\vec{x_i}$ 와 라벨 y_i 로 구성된다. 오늘은 라벨이 0 혹은 1인 경우만 다룰 것이다.
- 학습의 목적은 새로운 데이터 \vec{z} 가 들어왓을 때, 적절한 라벨을 골라 주는 것이다. 이를 위해서 데이터를 test와 train 두 개의 셋으로 나눈다.

각 데이터마다 feature이 n개가 있다고 할 때, 데이터 각각은 n차원 공간의점 하나로 볼 수 있다. 이 때 오늘 우리가 다룰 것은 결국 n차원 공간에서두 가지 유형의 점을 잘 나누는 평면을 찾는 것으로 볼 수 있다. 곡면의경우는 추후 다룰 것이다.

Decision Tree

의사결정나무는 트리의 일종으로, leaf node가 아닌 노드에는 predicate를 가지고 있고 leaf node에는 결과 라벨을 담고 있다. 의사결정나무를 이용한 결정은 root에서 시작해서, 각 노드들의 predicate를 거치는 것으로 결정된다.

Decision Tree

Training Decision Tree

의사결정나무를 학습시키는 것은 주어진 데이터 상에서 가장 적절한 predicate들을 추출하는 것이다. 여기서 **적절함**이란, 가장 많은 정보를 얻을 수 있는 기준을 말한다. 그 기준을 information gain이라 하며, 엔트로피의 차이로 정한다.

What is Entropy?

엔트로피는 물리학에서 나온 개념으로, 어떤 계의 혼잡한 정도를 나타내는 개념이며 $p_i log(p_i)$ 로 정의된다. 예를 들어서 위 계에서, 분할 전과 분할 후의 엔트로피를 계산해 보자.

$$Entropy(A) = -\sum_{k=1}^{m} p_k \log_2{(p_k)}$$

$$Entropy(A) = -\frac{10}{16} \mathrm{log_2}\left(\frac{10}{16}\right) - \frac{6}{16} \mathrm{log_2}\left(\frac{6}{16}\right) \approx 0.95$$

$$Entropy(A) = \sum_{i=1}^{d} R_i \left(-\sum_{k=1}^{m} p_k \log_2(p_k) \right)$$

$$Entropy(A) = 0.5 \times \left(-\frac{7}{8}\log_2\left(\frac{7}{8}\right) - \frac{1}{8}\log_2\left(\frac{1}{8}\right) \right) + 0.5 \times \left(-\frac{3}{8}\log_2\left(\frac{3}{8}\right) - \frac{5}{8}\log_2\left(\frac{5}{8}\right) \right) \approx 0.75$$

이 때, 이 엔트로피의 차이를 information gain이라고 정의하고, information gain을 최대화하는 threshold를 찾는 것을 목표로 한다.

적절한 threshold의 탐색

다음과 같은 방법으로 threshold를 탐색한다.

- 각 feature을 기준으로 모든 데이터를 정렬한다.
- 정렬된 데이터를 기준으로, 각 데이터의 feature을 threshold를 기준으로 information gain을 계산한다.
- 최대값을 주는 feature을 리턴한다.

Decision Tree의 학습

위와 같이 threshold를 탐색하는 방식을 재귀적으로 적용한다. 알고리즘은 다음과 같다.

- feature들 중 하나를 고른다.
- 위와 같은 방법으로 고른 feature에 대한 threshold를 기준으로 데이터셋을 나눈다.
 - 트리의 노드에 고른 feature과 threshold를 저장한다.
 - 나눠진 데이터셋에 대해서 각자 feature을 골라서, 위 과정을 반복한다.
- 모든 feature을 다 쓰면 학습을 종료한다.

Code Review/Evaluation

중고차 거래 데이터를 decision tree를 이용하여 분류해보자. decision tree 폴더 안에 data/에 있는 데이터를 이용하여, 주어진 차에 대한 데이터를 기반으로 중고차의 상태를 예측하는 의사결정나무를 학습시킨다.

Support Vector Machine

SVM은 위 의사결정트리 알고리즘과 사실상 거의 같다. 다만 다른 점은, 꼭 축에 수직한 평면으로 나누지 않는다는 점과 필요한 경우 kernel function을 이용하여 곡면을 만든다는 점이다.

Concept of SVM

Concept of SVM I

데이터셋 $\{(\vec{x_i},y_i)|i=1,2,...,n\}$ 에 대해서, y_i 를 잘 분리하는 평면을 찾기 위해서는 $\vec{w} \bullet \vec{x} - \vec{b} = 0$ 인 평면을 찾고자 한다. 이 때, 수식적인 편의를 위해서 y_i 를 1 혹은 -1이라고 하자. 그러면, 앞에서 정의한 평면에 대해서 다음의 두 식이 성립하도록 normalization을 할 수 있다.

$$\vec{w} \bullet \vec{x_i} - \vec{b} > 1, y_i = 1$$

$$\vec{w} \bullet \vec{x_i} - \vec{b} < -1, y_i = -1$$

Concept of SVM II

위 두 식을 합치면, $y_i(\vec{w} \bullet \vec{x_i} - \vec{b}) > 1$ 이라고 볼 수 있다. 즉, 이 식을 만족하는 \vec{w} 와 \vec{b} 를 찾으면 된다.

Concept of SVM - nonlinear case

