# МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ Кафедра нанофотоники

Когерентный контроль распространения света с помощью микродифракционных решёток

курсовая работа студента 204 группы Нецветаева А. А.

<u>научный руководитель:</u> м.н.с. Фролов А. Ю.

# Введение

## Обзор литературы

#### 1. Когерентный контроль

Метод когерентного контроля в общем случае заключается в изучении зависимости интерференционной картины, полученной после взаимодействия двух когерентных пучков, распространяющихся в противоположных направлениях, с оптически неоднородной средой (структурой), от разности фаз этих пучков. При таком взаимодействии в пространстве образуется стоячая электромагнитная волна, и степень влияния неоднородности на интерференционную картину определяется положениями пучностей и узлов относительно структуры. При рассмотрении сред, линейные размеры которых по направлению распространения излучения (толщина) значительно меньше длины волны, можно выделить два предельных случая:

- 1. Когерентное полное пропускание (СРТ, англ. "coherent perfect transmission"). Структура находится в узле стоячей волны. Тогда неоднородность становится «выключенной» и практически не влияет на распространение излучения.
- 2. Когерентное полное поглощение (CPA, англ. "coherent perfect absorption"). Структура находится в пучности. Тогда влияние неоднородности максимально.

За счёт этих двух состояний можно реализовывать полностью оптическое переключение, а рассмотрев другие предельные случаи, даже реализовать базовые логические операции (Рис. 1) [1]. Также когерентный контроль позволяет модулировать интенсивность в широких пределах [2], создавать оптические транзисторы [3], измерять поглощение и другие характеристики материалов неразрушающим путем [4] и многое другое.

Теоретически метод когерентного контроля можно описать с помощью комплексной матрицы рассеяния. Пусть два когерентных оптических пучка  $E_{\alpha}$  и  $E_{\beta}$ , распространяющихся в противоположных направлениях, падают по нормали на некоторый слой материала с линейными оптическими характеристиками и пусть при взаимодействии с материалом сохраняется поляризация излучения. Две результирующие волны (по обе стороны от плоскости материала) обозначим  $E_{\delta}$  и  $E_{\gamma}$ . Тогда соответствующие напряженности электрических полей связаны матрицей рассеяния  $\mathbf{S}$ :

$$\begin{bmatrix} E_{\delta} \\ E_{\gamma} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} E_{\alpha} \\ E_{\beta} \end{bmatrix}. \tag{1}$$

Аналитические выражения для коэффициентов  $S_{ij}$ , которые зависят от характеристик материала, приводятся в [5].



Рис. 1: Оптические базовые логические операции. Изображения метаповерхности, (**A**) освещенной только лучом A, (**B**) только лучом B и (**B**-Д) обоими лучами A и B. Разным относительным фазам лучей A и B соответствуют разные логические операции: (**B**) A И B ( $\Theta = \pi$ ), ( $\Gamma$ ) A «ИСКЛЮЧАЮЩЕЕ ИЛИ» B ( $\Theta = 0$ ) и (Д) A ИЛИ B ( $\Theta = \pm \pi/3$ ). На графиках показан профиль интенсивности вдоль соответствующей пунктирной синей линии. Уровни интенсивности показаны в одинаковых оттенках серого на всех изображениях и в одном вертикальном масштабе на всех графиках. [1, Fig. 3]

#### 2. Обобщенный закон Снелла

Пусть каждой точке M(x) границы раздела соответствует значение фазы, равное  $\Phi(x)$  и пусть падающая на границу раздела волна, проходящая через заданную точку M(x), претерпевает фазовый разрыв  $\Phi(x)$ . Для такой границы мы вынуждены пересмотреть классический закон Снелла, описываемый формулой

$$n_i \sin \Theta_i = n_t \sin \Theta_t \tag{2}$$

в соответствии с принципом Ферма.

Рассмотрим плоскую волну, падающую под углом  $\Theta_i$ . Если предположить, что два пути бесконечно близки к реальному пути света (Рис. 2A), то разность фаз между ними равна нулю

$$[k_0 n_i \sin \Theta_i dx + (\Phi + d\Phi)] - [k_0 n_t \sin \Theta_t dx + \Phi] = 0, \tag{3}$$

где  $\Theta_t$  — угол преломления;  $\Phi$  и  $\Phi+d\Phi$  — разрывы фаз в местах пересечения границы раздела синим и красным путями соответственно; dx — расстояние между точками пересечения;  $n_i$  и  $n_t$  — показатели преломления двух сред;  $k_0=2\pi/\lambda_0$  — волновое число, где  $\lambda_0$  — длина волны в вакууме. Если градиент фазы  $d\Phi/dx$  создан постоянным, предыдущее уравнение (3) приводит к обобщенному закону преломления Снелла

$$n_t \sin \Theta_t - n_i \sin \Theta_i = \frac{\lambda_0}{2\pi} \frac{d\Phi}{dx}.$$
 (4)

Уравнение (4) показывает, что преломленный луч может иметь произвольное направление при условии, что создан подходящий постоянный градиент фазы



Рис. 2: (**A**) Рисунок, используемый для вывода обобщенного закона преломления Снелла. Граница между двумя средами искусственно структурирована так, чтобы внести резкий фазовый сдвиг на пути света, который зависит от положения на границе раздела.  $\Phi$  и  $\Phi + d\Phi$  — фазовые сдвиги, при которых два луча (синий и красный) пересекают границу. [6, Fig. 1] (**B**) Схема экспериментальной установки, демонстрирующей обобщенный закон Снелла. [6, Fig. 3B]

 $d\Phi/dx$  вдоль границы раздела (Рис. 2Б) [6]. Более того, при ненулевом градиенте фазы два угла падения  $\pm\Theta_i$  соответствуют различным углам преломления. Как следствие, существуют два угла полного внутреннего отражения

$$\Theta_c = \arcsin\left(\pm \frac{n_t}{n_i} - \frac{\lambda_0}{2\pi} \frac{d\Phi}{dx}\right) \tag{5}$$

Аналогично, для отражения имеем

$$\sin \Theta_r - \sin \Theta_i = \frac{\lambda_0}{2\pi n_i} \frac{d\Phi}{dx},\tag{6}$$

где  $\Theta_r$  — угол отражения. Между  $\Theta_r$  и  $\Theta_i$  существует нелинейная связь, которая заметно отличается от известного закона геометрической оптики. Уравнение (6) показывает, что всегда существует критический угол падения

$$\Theta_c' = \arcsin\left(1 - \frac{\lambda_0}{2\pi n_i} \left| \frac{d\Phi}{dx} \right| \right),$$
 (7)

при котором отраженная волна становится эванесцентной.

Обобщенный закон Снелла открывает широкие возможности для управления распространением света.

#### 3. Управление распространением света

Способность направлять оптические лучи имеет решающее значение для современных технологий. Среди них — лидар (англ. LiDAR, Light Detection and Ranging, «обнаружение и определение дальности с помощью света») [7], лазерная визуализация [8], атмосферная оптическая линия связи (АОЛС) [9] и однопиксельная визуализация [10]. Ранние методы предполагали механическое и электрическое управление оптическими элементами: повороты и перемещения зеркал и линз, изменение показателя преломления жидкого кристалла под действием приложенного напряжения и т. д. [11]. Однако такие устройства были громоздкими и ограниченными в скорости и надежности. Развитие технологий изготовления структур нанометровых масштабов и успехи в исследовании взаимодействия света с ними позволяют создавать более эффективные и производительные полностью оптические системы.

Характеристики способов управления. Для достижения параметров, необходимых для реальных приложений, системы управления должны обладать определенными характеристиками. А именно, пучок должен быть достаточно узким и подчиняться управлению в большом диапазоне углов, называемом полем зрения (FOV, field of view): вплоть до 180° для одномерного сканирования и до полусферы для двухмерного сканирования. Кроме того, угол излучения должен перенастраиваться в реальном времени на высокой скорости с минимальными потерями интенсивности. В настоящее время существует несколько способов управления пучком, основанных на методе когерентного контроля: активные метаповерхности, медленное световое сканирование и оптические фазовые антенные решетки (ФАР). Рассмотрим их подробнее.

Метаповерхности. Метаповерхности представляют собой структуры субволновых оптических элементов — антенн, реализующих пространственно изменяющийся фазовый разрыв для падающей плоской волны. Градиент фазы взаимодействующего света определяется геометрией антенн и характеристиками материала изготовления метаповерхности. В соответствии с обобщенным законом Снелла, за счёт наличия градиента фазы наблюдается как нормальный прошедший пучок, так и аномальный (Рис. 3А), отклоняющийся на угол, определяемый (6). Так, в работе [12] экспериментально осуществлялась «перекачка» интенсивности между нулевым и ±1 порядками дифракции, распространяющихся под углом 40° к нормали [12].

#### Медленное световое сканирование.



Рис. 3: **(A)** [12, Fig. 1A] **(Б)** [12, Fig. 4B]

# Оригинальная часть

Оригинальная часть

## Заключение

Заключение

## Список литературы

- [1] Maria Papaioannou, Eric Plum, João Valente, Edward TF Rogers, and Nikolay I Zheludev. Two-dimensional control of light with light on metasurfaces. *Light: Science & Applications*, 5(4):e16070–e16070, 2016.
- [2] Jianfa Zhang, Kevin F MacDonald, and Nikolay I Zheludev. Controlling light-with-light without nonlinearity. *Light: Science & Applications*, 1(7):e18–e18, 2012.
- [3] Xu Fang, Kevin F MacDonald, and Nikolay I Zheludev. Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor. Light: Science & Applications, 4(5):e292-e292, 2015.
- [4] Simone Zanotto, F Bianco, V Miseikis, D Convertino, C Coletti, and Alessandro Tredicucci. Coherent absorption of light by graphene and other optically conducting surfaces in realistic on-substrate configurations. *APL Photonics*, 2(1), 2017.
- [5] L Baldacci, S Zanotto, G Biasiol, L Sorba, and Alessandro Tredicucci. Interferometric control of absorption in thin plasmonic metamaterials: general two port theory and broadband operation. Optics Express, 23(7):9202–9210, 2015.
- [6] Nanfang Yu, Patrice Genevet, Mikhail A Kats, Francesco Aieta, Jean-Philippe Tetienne, Federico Capasso, and Zeno Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. *science*, 334(6054):333–337, 2011.
- [7] Michel Jaboyedoff, Thierry Oppikofer, Antonio Abellán, Marc-Henri Derron, Alex Loye, Richard Metzger, and Andrea Pedrazzini. Use of lidar in landslide investigations: a review. *Natural hazards*, 61:5–28, 2012.
- [8] Sven TS Holmström, Utku Baran, and Hakan Urey. Mems laser scanners: a review. Journal of Microelectromechanical Systems, 23(2):259–275, 2014.
- [9] Mohammad Ali Khalighi and Murat Uysal. Survey on free space optical communication: A communication theory perspective. *IEEE communications* surveys & tutorials, 16(4):2231–2258, 2014.
- [10] Matthew P Edgar, Graham M Gibson, and Miles J Padgett. Principles and prospects for single-pixel imaging. *Nature photonics*, 13(1):13–20, 2019.
- [11] Hans Dieter Tholl. Novel laser beam steering techniques. In *Technologies for Optical Countermeasures III*, volume 6397, pages 51–64. SPIE, 2006.

[12] Yao-Wei Huang, Ho Wai Howard Lee, Ruzan Sokhoyan, Ragip A Pala, Krishnan Thyagarajan, Seunghoon Han, Din Ping Tsai, and Harry A Atwater. Gate-tunable conducting oxide metasurfaces. *Nano letters*, 16(9):5319–5325, 2016.