第三章 多维随机变量及其分布

- 3.1 多维随机变量 $(X_1, X_2, ..., X_n)$
- 3.2 条件分布
- 3.3 随机变量的独立性
- 3.4 多维随机变量函数的分布

注: 此章是第二章维数的提升,注意联系。

3.1 多维随机变量

一 多维R.V.

- 1. 多维R.V.定义 3. 二维R.V.的分布函数的性质
- 2. 二维R.V.的分布函数及边缘分布的概念

二 二维D.R.V.

1. 二维**D.R.V.**及分布列定义

2. 分布列性质

三二维C.R.V.

- 1. 二维C.R.V.及密度函数定义
- 2. 密度函数性质
- 3. 常见二维C.R.V.(均匀分布,正态分布)

四 边缘分布的计算

3.1 多维随机变量

一多维随机变量

1. 定义 (Ω,F) 为可测空间。 $X_1,X_2,...,X_n$ 为R.V., 若对任意实数 $x_1, x_2, ..., x_n, \{X_1 \leq x_1, ..., X_n \leq x_n\} \in F$, 则称 $(X_1, X_2, ..., X_n)$ 为n维随机变量(向量)。

注 若F为最大 σ 域, $X_1, X_2, ..., X_n$ 为 Ω 上的R.V., 则有序组 $(X_1, X_2, ..., X_n)$ 为n维随机变量。

2 二维R.V.的分布函数及边缘分布

设有R.V.(X, Y). 称

$$F(x, y) = P(\{X \leq x, Y \leq y\}, x, y \in \mathbb{R}$$

为R.V.(X, Y) 的(联合)分布函数。称X(Y)的分布函数 $F_X(x)(F_Y(y))$ 为(X, Y) 关于X(Y)的边缘分布函数。

3 分布函数的性质

- (1) F(x, y)关于x或y单调不减性;
- (2) 有界性: $0 \le F(x, y) \le 1$, 且

$$F(+\infty, +\infty) = 1$$
. $F(-\infty, y) = 0 = F(x, -\infty)$,

- (3) 关于x或y右连续性;
- (4) 对 $x_1 \leq x_2$, $y_1 \leq y_2$, 有

$$F(x_2, y_2) - F(x_1, y_2) - F(x_2, y_1) + F(x_1, y_1)$$

$$= P(x_1 < X \le x_2, y_1 < Y \le y_2) \ge \mathbf{0}$$

注:上述性质也是鉴别一个二元实函数是否是某个二维R.V. 的分布函数的充分条件.

二二维离散型随机变量

1.定义 若二维R.V.(X,Y)只取有限对或可数对实数值,则称(X,Y)是二维离散型随机变量。

设 (X, Y) 所有可能取值为 (x_i, y_j) , $i, j = 1, 2, \cdots$

$$P(X = x_i, Y = y_j) = p_{ij}, i, j = 1, 2, \dots$$

为(X,Y)的联合概率分布或分布列。

注1 分布列的表格形式:

注2
$$F(x,y) = P(X \le x, Y \le y)$$

= $\sum_{x_i \le x, y_j \le y} p_{ij}$.

6

2 分布列的性质

(1) 非负性:
$$p_{ij} \ge 0$$
, $i,j = 1,2,\cdots$;

(2) 规范性:
$$\sum_{i} \sum_{j} p_{ij} = 1$$
.

例 设X等可能地在1,2,3,4中取值,另一整数Y等

可能地在1~X中取值,求(X, Y)的联合分布列。

$$P(X = 1, Y = 1) = P(X = 1)P(Y = 1 | X = 1)) = \frac{1}{4} \times \frac{1}{i} = \frac{1}{4}$$

$$P(X = 2, Y = 1) = P(X = 2)P(Y \neq 1 | X = 12) = \frac{1}{4} \times \frac{1}{i} = \frac{1}{4}$$

_ (- <i>yy</i>	- (-	/-	(- J
X	1	2	3	4
1	$\frac{1}{4}$	0	0	0
2	$\frac{1}{8}$	$\frac{1}{8}$	0	0
3	$\frac{1}{4} \times \frac{1}{3}$	$\frac{1}{12}$	$\frac{1}{12}$	0
4	$\frac{1}{4} \times \frac{1}{4}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$

三 二维连续型随机变量

1.定义 R.V.(X,Y)的分布函数为F(x,y). 若存在非负函数f(x,y),对任意实数x,y,有

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv,$$

则称(X,Y)为二维(X,Y)为其(联合)概率密度。

注1 若
$$f(x,y)$$
连续,则 $f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$.

注2 几何意义: F(x,y)为以f(x,y)为曲顶, $(-\infty,x] \times (-\infty,y]$ 为底的体积.

 x_{9}

注3
$$P(x_1 < X \le x_2, y_1 < Y \le y_2) = \int_{x_1}^{x_2} \int_{y_1}^{y_2} f(u, v) du dv$$

$$= F(x_2, y_2) - P((X, Y) \in B) = \iint_{B_x, y} f(x, y) dx dy.$$

$$= (\int_{-\infty}^{x_2} \int_{-\infty}^{y_2} - \int_{-\infty}^{x_2} - \int_{$$

2 概率密度的性质

(1) 非负性:
$$f(x,y) \geq 0$$
;

(2) 规范性:
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = 1.$$

例 设二维随机变量(X, Y)的概率密度为 $f(x,y) = \begin{cases} ke^{-(2x+3y)}, & x \ge 0, y \ge 0, \\ 0, & \text{其它.} \end{cases}$

(1)求k; (2)求分布函数F(x,y); (3)求 $P\{X > Y\}$.

解 (1)由
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = 1$$

$$1 = \int_0^{+\infty} \int_0^{+\infty} k e^{-(2x+3y)} dx dy = k \int_0^{+\infty} e^{-2x} dx \int_0^{+\infty} e^{-3y} dy = \frac{k}{6} \implies k = 6.$$

(2)
$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$$

$$= \begin{cases} \int_0^x \int_0^y 6e^{-(2u+3v)} du dv = (1-e^{-2x})(1-e^{3y}), & x \ge 0, y \ge 0, \\ 0, & \text{ \sharp $\stackrel{\sim}{\text{$\lor$}}$.} \end{cases}$$

$$f(x,y) = \begin{cases} 6e^{-(2x+3y)}, & x \ge 0, y \ge 0, \\ 0, & \sharp \dot{\Xi}. \end{cases}$$

(3) 以G表示区域 $\{(x,y)|x>y\}$,则有

$$P{X > Y} = P{(X,Y) \in G}$$

$$= \iint_G f(x,y) dxdy = \iint_{G_1} \mathcal{G}(x,y) dxdy$$

$$= \int_0^\infty dx \int_0^x 6e^{-(2x+3y)} dy = \frac{3}{5}$$

例 设随机变量(X,Y)的联合密度函数为

$$f(x,y) = \begin{cases} Ax, & 0 < x < 1, & 0 < y < x, \\ 0, & \text{ 其它.} \end{cases}$$

求 (1)常数A; (2)
$$P(X > \frac{3}{4})$$
; (3) $P(Y < \frac{1}{2})$; (4) $P(X < \frac{1}{4}, Y < \frac{1}{2})$; (5) $P(X = Y)$; (6) $P(X + Y < 1)$.

解(6)
$$P(X + Y < 1) = \int_0^{\frac{1}{2}} \left[\int_y^{1-y} 3x dx \right] dy = \int_0^{\frac{1}{2}} \frac{3}{2} (1 - 2y) dy = \frac{3}{4} - \frac{3}{8} = \frac{3}{8}$$

(2)
$$P(X > \frac{3}{4}) = \int_{\frac{3}{4}}^{1} \left[\int_{0}^{x} 3x dy \right] dx = 1 - \left(\frac{3}{4}\right)^{3} = \frac{37}{64}$$

(3)
$$P(Y < \frac{1}{2}) = \int_0^{\frac{1}{2}} \left[\int_y^1 3x dx \right] dy = \frac{3}{4} - \frac{1}{16} = \frac{11}{16}$$

(4)
$$P(X < \frac{1}{4}, Y < \frac{1}{2}) = \int_0^{\frac{1}{4}} \left[\int_0^x 3x dy \right] dx = \frac{1}{64}$$

(5)
$$P(X = Y) = 0$$

3 常见的二维C.R.V

(1) 均匀分布 设G为平面上的有界区域,其面积为S. 若R.V.(X, Y) 有概率密度

$$f(x,y) = \begin{cases} \frac{1}{S}, & (x,y) \in G, \\ 0, &$$
其它.

则称(X, Y)在区域G上服从均匀分布.

注 设 $G_1 \subset G$, G_1 的面积为 S_1 ,则 $P((X,Y) \in G_1) = \iint_{G_1 \setminus S} \mathbf{d}x dy$ 这正是几何概型的情形。

(2)正态分布

若R.V.(X, Y)的概率密度为

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{\frac{-1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right]\right\}$$

 $-\infty < x < +\infty, -\infty < y < +\infty$

其中参数 $\mu_1, \mu_2 \in \mathbb{R}, \sigma_1, \sigma_2 > 0, |\rho| < 1.$

则称(X,Y)服从参数为 $\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho$ 的二维正态

分布,记作 $(X, Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$.

二维正态分布概率密度图

小结

了解多维随机变量的概念

▶ 深入理解二维R.V.的分布函数的定义和性质

- ▶ 深入理解D.R.V.及分布列的概念和性质, C.R.V. 及联合概率密度的概念和性质, 会熟练求解相关参数, 事件的概率和分布函数(分布列)等
- ▶ 熟记二维均匀分布定义及二维正态分布的性质

四. 边缘分布的计算

设R.V.(X,Y) 的概率分布为

$$P{X = x_i, Y = y_j} = p_{ij}, i, j = 1, 2, \cdots$$

 $P(X=x_{i}) = P(X_{ij} = x_{i} P_{ii}) = P(X_{ij} = y_{i}) P_{1j} \cdots P_{1j} \cdots P_{1j}$ $= P(X_{ij} = x_{i} P_{ii}) P(X_{ij} = y_{i}) P(X_{ij} = y_{i}) P(X_{ij} = y_{i}) P_{1j} \cdots P_{1j$

例 设X,Y的分布列分别为

且P(XY=0)=1. 求(X,Y)的联合分布列。

解

XY	0	1	
-1	1/4	0	1/4
0	0	1/2	1/2
1	1/4	0	1/4
	1/2	1/2	

2 二维C.R.V的边缘分布

设C.R.V.(X,Y)的概率密度为f(x,y),则

$$F_{X}(x) = F(x,+\infty) = \int_{-\infty}^{x} \int_{-\infty}^{+\infty} f(u,v) du dv = \int_{-\infty}^{x} \left[\int_{-\infty}^{+\infty} f(u,v) dv \right] du$$

故X的边缘密度

$$f_{X}(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

同理Y的边缘密度

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x,y) dx$$

例设 $(X,Y) \sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$,求X和Y的边缘密度。

注 联合分布可以导出边缘分布,但反之不然。

$$f(x,y) = \frac{\exp\{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho\frac{(x-\mu_1)}{\sigma_1}\frac{(y-\mu_2)}{\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right]\}}{2\pi\sqrt{1-\rho^2}\sigma_1\sigma_2}$$

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{-\infty}^{+\infty} \frac{1}{2\pi\sigma_1 \sqrt{1 - \rho^2}} \exp\left[-\frac{u^2 - 2\rho uv + v^2}{2(1 - \rho^2)}\right] dv$$

$$= \frac{1}{\sqrt{2\pi}\sigma_1} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\sqrt{1-\rho^2}} \exp\left[-\frac{(v-\rho u)^2}{2(\sqrt{1-\rho^2})^2}\right] dv \exp\left[-\frac{(1-\rho^2)u^2}{2(1-\rho^2)}\right]$$

$$=\frac{1}{\sqrt{2\pi}\sigma_{1}}e^{-\frac{(x-\mu_{1})^{2}}{2\sigma_{1}^{2}}}.\quad \mathbb{P}X \sim N(\mu_{1},\sigma_{1}^{2}), \quad Y \sim N(\mu_{2},\sigma_{2}^{2})^{21}$$

例设(X,Y)在如图的区域G上服从均匀分布,求

X和Y的边缘密度。

$$Matheboxepsilon Matheboxepsilon Matheboxep$$

$$f_{X}(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

$$= \begin{cases} \int_{0}^{2-2x} 1 dy = 2 - 2x, & 0 \le x \le 1, \\ 0, &$$
其它.

同理,
$$f_{Y}(y) = \begin{cases} 1 - y/2, & 0 \le y \le 2, \\ 0, &$$
其它.

注 均匀分布的边缘分布不一定是均匀分布。

3.2 条件分布

身高 $X\sim N$ (170, 4^2),体重 $Y\sim N$ (59, 2^2). $X/Y=50\sim N$ (?,?)

<u>条件分布</u> X, Y 为R.V., B 为事件.

 $F(x|B) = P(X \le x|B)$,称为X在B下的条件分布函数。特别,称

F(x|y) = F(x|Y=y) 为Y=y时,X的条件分布函数。

$$F_{X|Y}(x|y) = \lim_{\Delta y \to 0} P(X \le x | y < Y \le y + \Delta y) = \cdots$$

$$= \lim_{\Delta y \to 0} \frac{F(x, y + \Delta y) - F(x, y)}{F_{Y}(y + \Delta y) - F_{Y}(y)} = \lim_{\Delta y \to 0} \frac{[F(x, y + \Delta y) - F(x, y)]/\Delta y}{[F_{Y}(y + \Delta y) - F_{Y}(y)]/\Delta y} = \frac{\partial F(x, y)}{\partial y}$$

三 离散情形

定义设(X,Y)的联合分布列为 $P(X=x_i,Y=y_j)=p_{ij},i,j=1,2,...$

$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{P_{ij}}{P_{\bullet j}}, i = 1, 2 \cdots$$

称为在 $Y=y_i$ 条件下X的条件分布列。

$$P(Y = y_j | X = x_i) = \frac{P(X = x_i, Y = y_j)}{P(X = x_i)} = \frac{p_{ij}}{p_{i\bullet}}, j = 1, 2 \cdots$$

称为在 $X=x_i$ 条件下Y的条件分布列。

例 设某医院一天出生的婴儿数为X,其中男婴数为Y,已知(X,Y)的联合分布列为:

$$P(X = n, Y = m) = e^{-14} \frac{7.14^m}{m!} \cdot \frac{6.86^{n-m}}{(n-m)!} \qquad n = 0,1,\dots, n$$

求X与Y的边缘分布和条件分布。

解
$$P(X = n) = \sum_{m=0}^{n} \frac{n!}{m!(n-m)!} 7.14^{m} 6.86^{n-m} \frac{e^{-14}}{n!} = \frac{(7.14+6.86)^{n}}{n!} e^{-14}$$

$$X \sim P(14) \qquad n = 0,1,\cdots$$

$$P(Y=m) = \sum_{n=m}^{\infty} \frac{6.86^{n-m}}{(n-m)!} e^{-6.86} \times \frac{7.14^{m}}{m!} e^{-7.14} = \frac{7.14^{m}}{m!} e^{-7.14}, m = 0,1,... Y \sim P(7.14)$$

$$P(Y = m \mid X = n) = \frac{e^{-14} \frac{7.14^{m}}{m!} \cdot \frac{6.86^{n-m}}{(n-m)!}}{\frac{14^{n}}{n!} e^{-14}} = C_{n}^{m} (\frac{7.14}{14})^{m} (\frac{6.86}{14})^{n-m} \frac{m = 0,1, \dots n}{(n \boxplus \Xi)}$$

$$Y \mid X = n \sim B(n, 0.51)$$

四连续情形

定义 设(X,Y)的联合密度,边缘密度分别为 $f(x,y),f_X(x),f_Y(y)$

$$f_{X|Y}(x \mid y) = \frac{f(x,y)}{f_{Y}(y)}$$

称为在Y=y条件下X的条件概率密度。

$$f(y \mid x) = \frac{f(x,y)}{f_X(x)}$$

称为在X=x条件下Y的条件概率密度。

例 $(X,Y) \sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$, 求f(x|y)和f(y|x).

3.3 随机变量的独立性

一 随机变量独立的定义

 (X_1, \dots, X_n) 为n维随机变量。 其联合分布函数 $F(x_1, \dots, x_n) = P(X_1 \le x_1, \dots, X_n \le x_n)$, 边缘分布函数 $F_{x_i}(x_i) = P(X_i \le x_i)$. 若

$$F(x_1,\dots,x_n)=\prod_{i=1}^n F_{x_i}(x_i)$$
,任意 $x_1,\dots,x_n\in\mathbb{R}$,

则称 $X_1,...,X_n$ 相互独立。

二 随机变量独立的性质

(1) **D.R.V.**(X,Y). 设其所有取值为 $(x_i, y_i), i, j = 1, 2, \cdots$

$$X,Y$$
独立 $\Leftrightarrow P(X=x_i,Y=y_j)=P(X=x_i)P(Y=y_j),i,j=1,2\cdots$

即
$$p_{ij} = p_{i\bullet}p_{\bullet j}, i, j = 1, 2, \cdots$$

(2) C.R.V.(X,Y).

$$X,Y$$
独立 $\Leftrightarrow f(x,y) = f_{X}(x)f_{Y}(y)$, 任意 $x,y \in \mathbb{R}$.

注 X,Y独立 $\Leftrightarrow f(x|y) = f_x(x)$, 任意 $x,y \in \mathbb{R}$.

- (3) X_1, \dots, X_n 独立 ⇒ 其中任意 $k(1 < k \le n)$ 个也独立。
- (4) X_1, \dots, X_n 独立 \Rightarrow 它们的函数 $g_1(X_1), \dots, g_n(X_n)$ 也独立。

例设 $(X,Y) \sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$,则X,Y相互独立 $\Leftrightarrow \rho = 0$

证明:" \Leftarrow " 若 ρ = 0. 下证 $f(x,y) = f_X(x)f_Y(y)$.

$$f(x,y) = \frac{\exp\{-\frac{1}{2}\left[\frac{(x-\mu_1)^2}{\sigma_1^2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right]\}}{2\pi\sigma_1\sigma_2} = \frac{1}{\sqrt{2\pi}\sigma_1}e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}\frac{1}{\sqrt{2\pi}\sigma_2}e^{-\frac{(y-\mu_2)^2}{2\sigma_2^2}}$$

"⇒" 若
$$f(x,y) = f_X(x)f_Y(y)$$
. 则 $f(\mu_1,\mu_2) = f_X(\mu_1)f_Y(\mu_2)$.

$$\Rightarrow \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}} = \frac{1}{\sqrt{2\pi}\sigma_{1}} \frac{1}{\sqrt{2\pi}\sigma_{2}} \Rightarrow \sqrt{1-\rho^{2}} = 1 \Rightarrow \rho = 0$$

例 讨论下面D.R.V.(X,Y)的独立性.

X	-1	0	2	$p_{i\bullet}$
1/2	<mark>2/20</mark>	1/20	2/20	1/4
1	2/20	1/20	2/20	1/4
2	4/20	2/20	4/20	1/2
$p_{{ullet}_{j}}$	2/5	1/5	2/5	

 $: p_{ij} = p_{i \cdot} p_{\cdot j} \ i, j = 1, 2, 3$ 故 X 与 Y 独立.

例设(X,Y)在下列区域上服从均匀分布, X,Y是否独立?

$$(1)G_0 = \{(x,y) : 0 \le x \le 1, 0 \le y \le 1\}.$$

$$(2)G = \{(x,y): 2x + y \le 2, x \ge 0, y \ge 0\}.$$

$$f(x,y) = \begin{cases} 1, & (x,y) \in G_0, \\ 0 &$$
其它.

$$\begin{array}{c|c}
G_0 \\
\hline
1 \\
\hline
0 \\
x \\
1
\end{array}$$

$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy = \begin{cases} \int_0^1 1 dy = 1, & 0 \le x \le 1, \\ 0, & 其它. \end{cases}$$

同理,
$$f_{Y}(y) = \begin{cases} 1, & 0 \le y \le 1, \\ 0, & 其它. \end{cases}$$

$$\therefore f(x,y) = f_X(x) f_Y(y)$$
, 故X,Y相互独立。

思考 什么时候均匀分布的边缘分布是均匀分布?

小结

- ▶ 熟练掌握二维**D.R.V.**(**C.R.V.**)的边缘分布列(边缘密度)的计算
- → 会根据定义式求二维D.R.V.(C.R.V.)的条件分布
- → 深入理解R.V.独立的定义和性质,据此熟练证明 随机变量独立与否

3.4 多维R.V.的函数的分布

设z=g(x,y)为一函数,令Z=g(X,Y),其中X,Y为R.V., 若Z也为R.V.,称 Z为R.V. (X,Y)的函数。

问题:已知(X,Y)的分布或X和Y的分布,如何求Z的分布?

3.4 多维R.V.的函数的分布

一多维离散情形

二多维连续情形

- 1. 分布函数法
- 2. 公式法(和,商,最大(小)值分布公式)

三一般情形 (混合)

1. 分布函数法

一多维离散情形

例 已知(X,Y)的分布列如表,求X+Y,XY的分布。

$\frac{\lambda}{\lambda}$	Y	0	2	-2
1	l	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{2}{10}$
-]	L	$\frac{3}{10}$	$\frac{2}{10}$	$\frac{1}{10}$

解

P	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{2}{10}$	$\frac{3}{10}$	$\frac{2}{10}$	$\frac{1}{10}$
	(1.0)	(1.2)	(1 2)	(10)		(1.2)
						(-1,-2)
X+Y	1	3	-1	-1	1	-3
				-0		

例 设 $X\sim P(\lambda_1)$, $Y\sim P(\lambda_2)$ 且相互独立,求 Z=X+Y的分布。

$$\begin{aligned}
& P(Z = k) = P(X + Y = k) \\
&= \sum_{i=0}^{k} P(X = i) P(Y = k - i) \\
&= \sum_{i=0}^{k} \frac{\lambda_{1}^{i} e^{-\lambda_{1}}}{i!} \frac{\lambda_{2}^{k-i} e^{-\lambda_{2}}}{(k-i)!} \\
&= \left[\sum_{i=0}^{k} \frac{k!}{i!(k-i)!} \lambda_{1}^{i} \lambda_{2}^{k-i} \right] \frac{e^{-(\lambda_{1} + \lambda_{2})}}{k!} \\
&= (\lambda_{1} + \lambda_{2})^{k} \frac{e^{-(\lambda_{1} + \lambda_{2})}}{k!} \\
&X + Y \sim P(\lambda_{1} + \lambda_{2}).
\end{aligned}$$

二多维连续情形

1. 分布函数法

例 设(X,Y)的概率密度为f(x,y),求Z=X+Y的概率密度。

解
$$F_z(z) = P(Z \le z) = P(X + Y \le z)$$

$$= \iint_{x+y \le z} f(x,y) dx dy$$

$$= \int_{-\infty}^{+\infty} dx \int_{-\infty}^{z-x} f(x,y) dy$$

$$= \int_{-\infty}^{+\infty} dx \int_{-\infty}^{z} f(x,t-x) dt = \int_{-\infty}^{z} \left[\int_{-\infty}^{+\infty} f(x,t-x) dx \right] dt$$

$$\therefore f_z(z) = F'(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx.$$

1. 公式法 设(X,Y)的概率密度为f(x,y).

(1)和的分布 Z=X+Y的概率密度为

$$f_{z}(z) = \int_{-\infty}^{+\infty} f(x,z-x) dx = \int_{-\infty}^{+\infty} f(z-y,y) dy.$$

特别,若X,Y相互独立,则

$$f_{z}(z) = \int_{-\infty}^{+\infty} f_{x}(x) f_{y}(z-x) dx = \int_{-\infty}^{+\infty} f_{x}(z-y) f_{y}(y) dy.$$

(2)商的分布 Z=X/Y的概率密度为

$$f_z(z) = \int_{-\infty}^{+\infty} |y| f(zy, y) dy.$$

例 设 $X\sim N(0,1)$ 与 $Y\sim N(0,1)$ 独立,求Z=X+Y的分布。

$$f_{z}(z) = \int_{-\infty}^{+\infty} f_{x}(z - y) f_{y}(y) dy$$

$$= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(z - y)^{2}}{2}} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^{2}}{2}} dy$$

$$= \frac{\frac{(1/\sqrt{2})}{\sqrt{2\pi}} \left[\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi} (1/\sqrt{2})} \exp\left[-\frac{(y-\frac{7}{2})^{2}}{2(1/\sqrt{2})^{2}}\right] dy \right] e^{-\frac{z^{2}}{4}}$$

$$= \frac{1}{\sqrt{2\pi} \sqrt{2}} e^{-\frac{z^{2}}{2(\sqrt{2})^{2}}}, \quad X+Y \sim N(0, 2).$$

一般的,若 $X_i \sim N(\mu_i, \sigma_i^2)$, i=1,2,...n,相互独立,则对任何

实数
$$a_1, ..., a_n, \sum_{i=1}^n a_i X_i \sim N(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \sigma_i^2)$$

例 设 $X\sim U[0,1]$, $Y\sim U[0,1]$, 且X与Y相互独立, 求Z=X+Y的密度函数。

解
$$f_x(x) = \begin{cases} 1, & 0 \le x \le 1, \\ 0, &$$
其它.

$$f_{Y}(y) = \begin{cases} 1, & 0 \le y \le 1, \\ 0, & 其它. \end{cases}$$

$$f_{z}(z) = \int_{-\infty}^{+\infty} f_{x}(x) f_{y}(z-x) dx$$

$$= \begin{cases} \int_0^z dx = z, & 0 \le z < 1 \\ \int_{z-1}^1 dx = 2 - z, & 1 \le z < 2 \\ 0, & 其它. \end{cases}$$

注意到被积函数的非零区域为:

例 设(X,Y)的联合概率密度如下,求Z=X/Y的分布.

$$f(x,y) = \begin{cases} 3x, & 0 < x < 1, 0 < y < x, \\ 0, & \sharp \dot{\Xi}. \end{cases}$$

$$= \begin{cases} 0, & z \le 1, \\ \int_0^{1/z} y \cdot 3zy dy = z^{-2}, & z > 1. \end{cases}$$

(3) $\max\{X_1,...,X_n\}$, $\min\{X_1,...,X_n\}$ 的分布

设 X_1, \dots, X_n 为相互独立的随机变量,分布函数分别为 $F_1(x_1), \dots, F_n(x_n)$.

$$F_{\max}(x) = P\{\max\{X_1, \dots, X_n\} \le x\} = F_1(x) \dots F_n(x).$$

$$= P\{X_1 \le x, \dots, X_n \le x\} = P(X_1 \le x) \dots P(X_n \le x)$$

$$F_{\min}(x) = P\{\min\{X_1, \dots, X_n\} \le x\} = 1 - [1 - F_1(x)] \dots [1 - F_n(x)].$$

$$= 1 - P\{\min\{X_1, \dots, X_n\} > x\} = 1 - P(X_1 > x, \dots, X_n > x)$$

$$= 1 - P\{X_1 \ne (x) \dots P(X_n > x)$$

三 一般情形

—分布函数法

解
$$F_{z}(z) = P(Z \le z) = P(XY \le z)$$

 $= P(XY \le z \mid Y = -1)P(Y = -1) + P(XY \le z \mid Y = 1)P(Y = 1)$
 $= P(-X \le z \mid Y = -1) \cdot 1/3 + P(X \le z \mid Y = 1) \cdot 2/3$
 $= 1/3 \cdot P(X \ge -z) + 2/3P(X \le z)$
 $= \frac{1}{3} \cdot (1 - \Phi(\frac{-z - \mu}{\sigma})) + \frac{2}{3} \cdot \Phi(\frac{z - \mu}{\sigma}) = \frac{1}{3} \cdot \Phi(\frac{z + \mu}{\sigma}) + \frac{2}{3} \cdot \Phi(\frac{z - \mu}{\sigma})$
 $\therefore f_{z}(z) = F'(z) = \frac{1}{3\sigma} \cdot \varphi(\frac{z + \mu}{\sigma}) + \frac{2}{3\sigma} \cdot \varphi(\frac{z - \mu}{\sigma}).$

小结

- ▶ 熟练求解二维D.R.V.函数的分布列
- ▶ 熟练掌握二维C.R.V.函数的概率密度求解方法
 - 1. 分布函数法(万能方法)
 - 2.公式法(和,商,最大最小的分布)
- → 掌握一般二维R.V.函数的分布(分布函数法与 全概率公式的结合)

练

1.(14')设二维随机变量(X,Y)的密度函数为

$$f(x,y) =$$
{24 $y(1-x)$ 0 ≤ x ≤ 1, 0 ≤ y ≤ x ,
ψ \overline{z} .

- (1)求关于X及Y的边缘密度函数;
- (2)判断X与Y是否独立,并说明理由;
- (3)求Z=X+Y的密度函数。

习

(提示: C.R.V.的边缘密度,独立,和的分布计算和证明)

练

2.(8')某箱装有100件产品,其中一,二和三等品分别为80,10和10件,现从中随机地抽取一件,记

试求随机变量Z1和Z的联合概率分布。

(提示:二维离散型随机变量分布列的计算)

练

3.(10') 设随机变量(X,Y)在矩形 $G=\{(x,y): 0 < x < 2, 0 < y < 1\}$ 上服从均匀分布,记

$$U = \{ egin{aligned} 0, & \ddot{\Xi}X \leq Y, \\ 1, & \ddot{\Xi}X > Y, \end{aligned} & V = \{ egin{aligned} 0, & \ddot{\Xi}X \leq 2Y, \\ 1, & \ddot{\Xi}X > 2Y, \end{aligned} \end{cases}$$

(1)求(U,V)的联合分布; (2)求U与V的相关系数。

(提示: D.R.V.的分布的计算,相 关系数的计算)

练

4.(10')设随机变量(X,Y)的联合密度函数为

$$f(x,y) = \{ (3/2)x, 0 < x < 1, -x < y < x, \\ 0,$$
 其它。

- (1)求关于X及Y的边缘密度函数;
- (2)X与Y是否独立?
- (3)求Z=X+Y的密度函数。

(提示:二维C.R.V.的边缘密度,和的分布的 计算,独立性的证明)

练

5.(8')设随机变量(X,Y)的联合密度函数为

$$f(x,y) = \{ e^{-(x+y)}, x > 0, y > 0, \\ 0,$$
 其它。

习

求(1)Z=X+Y的密度函数;

$$(2)W=(1/2)(X+Y)$$
的密度函数。

(提示: C.R.V.函数的分布)

练

N

6.(8')设随机变量(X,Y)的联合概率密度函数为

$$f(x,y) = \{ \begin{cases} 1/\pi, \ x^2 + y^2 \le 1, \\ 0, \ \ \$$
其它。

问X与Y是否相互独立,是否不相关?并说明理由。

(提示:二维C.R.V.的边缘密度的计算,独立性的证明)

解答题(2010考研数一)

练

7.(11')设随机变量(X,Y)的联合概率密度函数为

$$f(x,y) = Ae^{-2x^2+2xy-y^2}, -\infty < x, y < +\infty,$$

求常数A及条件密度 $f_{Y|X}(y|x)$.

Key:
$$A = \pi^{-1}, f(y \mid x) = \frac{1}{\sqrt{\pi}} e^{-x^2 + 2xy - y^2}$$

(提示:二维C.R.V.的边缘密度的计算,密度函数的规范性)

第三章结束

P.K.

