Physiklabor für Anfänger*innen Ferienpraktikum im Sommersemester 2018

Versuch 8: Viskosität aus dem Durchströmen einer Kapillare

(durchgeführt am 26.09.2018 bei Pascal Wunderlin) Andréz Gockel, Patrick Münnich 26. September 2018

Inhaltsverzeichnis

1	Ziel des Versuchs	2
2	Teil 1 2.1 Theorie 2.2 Aufbau 2.3 Durchführung 2.4 Auswertung	2
3	Diskussion	2
4	Anhang: Tabellen und Diagramme	3
\mathbf{T}	abellenverzeichnis	
	1 XXXX	3

Abbildungsverzeichnis

1 Ziel des Versuchs

Das Ziel des Versuchs ist es, den Zusammenhang zwischen Strömungsgeschwindigkeit, Viskosität, Druckdifferenz und geometrischen Parametern darzustellen. Hierzu wird erstmal das Hagen-Poiseuille'sche Gesetz durch Messung der Volumenstromstärke durch verschiedene Kapillare überprüft, und dann die Viskosität von Wasser bestimmt.

2 Teil 1

2.1 Theorie

Ist eine Laminarströmung vorhanden, also sind keine Turbulenzen zwischen den einzelnen infitesimalen Wasserschichten vorhanden, so gilt für die Volumenstromstärke I_V das Hagen-Poiseuille'sche Gesetz:

$$I_V = \frac{V}{t} = \frac{\pi R^4 \Delta p}{8\eta l} \tag{1}$$

Zur Herleitung dessen wird die Definition der Viskosität genutzt:

$$F = \eta A \frac{\mathrm{d}v}{\mathrm{d}x} \tag{2}$$

Um die Druckdifferenz Δp zu berechnen, benötigt man die Steighöhe h und die Dichte von Wasser ρ_w . Aus

$$F_G = mg = \rho_w Vg = \rho_w Ahg = F_2$$

Wobei V das Volumen des Wassers im Steigrohr mit A die Querfläche des Steigrohrs mal h ist. Mit $p = \frac{(F2-F1)}{A}$ und $F_1 = 0$, da der Aussendruck durch das Loch ausgeglichen wird, bekommt man für Δp :

$$\Delta p = \frac{\rho_w A h g}{A} = \rho_w h \boldsymbol{g}$$

2.2 Aufbau

2.3 Durchführung

XXXX

2.4 Auswertung

XXXX

3 Diskussion

XXXX

4 Anhang: Tabellen und Diagramme

Tabelle 1: XXXX

XXXX/XX	XXXX/XX	XXXX/XX
2	0.26	0.23
4	0.33	0.25
5		0.3
6	1.25	0.83
8	3.9	0.83
9	4.75	4.6
10	4.7	

Literatur

Unsicherheiten: $XXXX: \pm XXXX$

- [1] "Correlations between variables are automatically handled, which sets this module apart from many existing error propagation codes." https://pythonhosted.org/uncertainties/
- [2] Physikalisches Institut der Albert-Ludwigs-Universität Freiburg (Hrsg.) (08/2018): Versuchsanleitungen zum Physiklabor für Anfänger*innen, Teil 1, Ferienpraktikum im Sommersemester 2018.