Anharmonic Enhancement of Interfacial Phonon-Phonon Coupling in Twisted TMD Bilayers

JOHNATHAN D. GEORGARAS & FELIPE H. DA JORNADA

Electrons, Phonons, Electron-Phonon Scattering, and Phononics II Room: 205D 3/4/2024, 3:00 PM – 6:00 PM

Heat Management in Layered Transition Metal Dichalcogenide (TMD) Devices

[3] Georgaras, J. D. & da Jornada, F. H. In Preparation (2024)

[2] Johnson, A.*, **Georgaras, J. D**.*, Shen, X., Sood, A., Zeng, H., Saunders, P., Kim, H., Yao, H., Heinz, T. F., Lindenberg, A., da Jornada, F. H., Luo, D. and Liu, F. Science Advances **10** (2024).

"Hidden" Phonons Highways: Distribution of Remaining Phonons after Quasi-particle Relaxation

Electron-phonon scattering produces a non-thermal, highly polarized distribution of near-K wavevector phonons [1]

"Hidden" Phonons Highways: Phonon-Phonon Interlayer Scattering Lifetimes from Perturbation Theory

Scattering Rate $\Gamma(\omega)$ from Imaginary Part of Self-Energy

$$\Gamma_{q}(\omega_{q}) = \frac{\pi}{2N} \sum_{q',q''} \frac{\hbar |\Phi_{3}(-q,q',q'')|^{2}}{8\omega_{q}\omega_{q'}\omega_{q''}} \Delta(-q+q'+q'')$$

$$\times \underbrace{\left(n_{q'}+n_{q''}+1\right)\delta(\omega_{q}+\omega_{q'}-\omega_{q''})}_{q''} - \underbrace{\left(n_{q'}-n_{q''}\right)\delta(\omega_{q}-\omega_{q'}-\omega_{q''})}_{q''}$$
Fusion-like

Explicitly calculate phonon-phonon scattering matrix elements Φ_3

- Requires <u>3rd order force constant</u>
- Expensive: $O(N^3)$ calculations, one for each triple atom set

Interlayer scattering: non-trivial to distinguish layer quality of phonon

• Novel approach: rotate from bilayer basis to monolayer basis $\Phi_3^{\rm BL} \to \Phi_3^{\rm ML}$

Example Scattering Process

Initial phonon q_{Mo} ~K originating in Mo layer scattering to the W layer

Phonon Interlayer Scattering Lifetimes in TMD Heterostructures

Heat Management in Layered Transition Metal Dichalcogenide (TMD) Devices

[3] Georgaras, J. D. & da Jornada, F. H. In Preparation (2024)

[2] Johnson, A.*, **Georgaras, J. D**.*, Shen, X., Sood, A., Zeng, H., Saunders, P., Kim, H., Yao, H., Heinz, T. F., Lindenberg, A., da Jornada, F. H., Luo, D. and Liu, F. Science Advances **10** (2024).

Layer Selection for Interlayer Phonon – Phonon Coupling

Useful Heuristic:

• For a $K_{Mo} \rightarrow K_W + \Gamma_{Mo}$, interlayer energy transfer is highest near band overlap due to a conservation of energy and momentum

Homo-chalcogen

Hetero-chalcogen

Beyond layer selection:

can we further
engineer and
dynamically control
band overlap to
increase interlayer
coupling?

125 100 (sd) 125 Lifetime (bs)

Layer Engineering: Phase Transition in Transition Metal Dichalcogenides

Three metastable phases of TMDs [1]

Can we leverage increased anharmonicity from a phase change to enhance interlayer phonon coupling?

Layer Engineering: Phase Transition in Monolayer MoTe₂ by Charge Doping

Softening Phonon Modes in Monolayer MoTe₂

- Method to induce 2H → 1T' phase change in MoTe₂:
 - Electrostatic gating [1]
 - Ionic liquid gating [2]
 - Photo-induced phase transition [3]
- DFT: Ab initio relaxation and forces for charged monolayer MoTe₂ to determine phonons by finite displacement method.

Charge doping allows for dynamic control of phonon band structure and interatomic anharmonicity

[1] Li, Reed et al, Nature Comm. **7** (2016) [2] Zakhidov et al, ACS Nano **14** (2020)

[3] Guan et al, PRL **128** (2022)

Twisted Bilayer MoTe₂/MoSe₂

Softening Phonon Modes in MoTe₂/MoSe₂

 Interatomic bonds weaken, increasing bond anharmonicity and allowing more favorable stacking

Softening Phonon Modes in MoTe₂/MoSe₂

- Interatomic bonds weaken, increasing bond anharmonicity and allowing more favorable stacking
- Phonons in MoTe₂ layer soften as layer approaches phase transition

Softening Phonon Modes in MoTe₂/MoSe₂

- A bonds weaken, increasing bond anharmonicity and allowing more favorable stacking
- Phonons in MoTe₂ layer soften as layer approaches phase transition
- Greater overlap seen in lowest optical and acoustic branches as phonons frequency decreases

Softening Phonon Modes in MoTe₂/MoSe₂

Looking Forward

- Explicit calculation of interlayer phonon scattering lifetimes at different chargedoping.
- Figure-of-merit for band overlap and "inter-phase anharmonicity"
- Understanding local moiré reconstruction upon charge-doping

Summary: Charge-Doping Tuned Interlayer Phonon-Phonon Coupling

- Non-thermal distributions of phonons scatter heat in TMD heterostructures an order of magnitude faster than thermalized conduction [1]
- Devised method to accurately calculate interlayer phonon-phonon scattering via <u>basis</u> <u>rotation</u>. [1]
- 3. <u>Band overlap heuristic</u> for enhancing interlayer 3-phonon processes involving layer-hybridized $q \sim \Gamma$ phonons. [2]
- **4. Electrostatic charge-doping of MoTe**₂ shows dynamic control of resonant overlap to efficiently extract heat from adjacent layer. [2]

[1] Johnson, A.*, <u>Georgaras, J. D</u>.*, Shen, X., Sood, A., Zeng, H., Saunders, P., Kim, H., Yao, H., Heinz, T. F., Lindenberg, A., da Jornada, F. H., Luo, D. and Liu, F. Science Advances **10** (2024).

[2] Georgaras, J. D. & da Jornada, F. H. In Preparation (2024)

Acknowledgements and Thanks

Natural Sciences and Engineering Research Council of Canada Conseil de recherches en sciences naturelles et en génie du Canada Canada

Fang Liu (Stanford)

Amalya Johnson

Tony Heinz (Stanford)

Felipe Jornada (Stanford)

Aditya Sood (Stanford)

Aaron Lindenberg (Stanford)

Duan Luo (SLAC)