

OpenShift Operations

Tobias Derksen

⊜ codecentric

Agenda

- Cluster Konzeption
- Installation
- Authentication
- Networking / SDN
- Persistent Storage
- Backup & Restore
- Best Practice Operations

Cluster Konzeption

Verschiedene Node Typen

Master Nodes

API - Server

ETCD

Web Console

Compute Nodes

Applikationen

Services

Datenbanken

Builds

Andere Workloads

Storage Nodes

Nur beim Elnsatz von Gluster

Nodes mit physischem Speicher

Fällt mit OpenShift 4 weg

Minimum Cluster Sizing

Master Nodes	Infrastructure Nodes	Compute Nodes		
 Fedora, CentOS oder RHEL 4 (v)CPU 16GB RAM 50GB disk 	 Fedora, CentOS oder RHEL 2 (v)CPU 8 GB RAM 50GB disk 	 Fedora, CentOS oder RHEL 1 (v)CPU 8 GB RAM 35GB disk 		

Recommended Cluster Sizing

Master Nodes	Infrastructure Nodes	Compute Nodes		
 Fedora, CentOS oder RHEL 4 (v)CPU 16GB RAM 100GB disk 	 Fedora, CentOS oder RHEL 4 (v)CPU 16GB RAM 100GB root disk >= 250GB registry storage 	 Fedora, CentOS oder RHEL >= 2 (v)CPU >= 8GB RAM >= 50GB disk 		

Mehr RAM => mehr disk (+25GB disk / 8GB RAM)

Anzahl der Nodes

	Minimal	Development	Production	Production (HA)
Master		4	1	3
Infrastructure	1	1	1+	2+
Compute		2+	3+	6+

Und wie viele Nodes brauche ich jetzt genau?

<u>Einzelfall abhängig!</u>

Kriterien:

- Erwarteter Workload der Applikationen
- Fest allokierte Ressourcen der Applikationen
- Gewünschte Pods per Node
- Hochverfügbarkeit (HA)
- Cluster Reserven
- Automatische Skalierung
- Mehr Ressourcen sind besser als mehr Nodes

Installation vorbereiten OpenShift 3.11

Bastion Host

- Sprung-Host f

 ür SSH
- Zentrale Verwaltung der Konfiguration
- Zentrale Verwaltung der OpenShift-Version
- Keine Ansible / Python Versionsprobleme
- Installer benötigt Abhängigkeiten

Schritt für Schritt zur Installation

- 1. Infrastruktur provisionieren
- 2. System Updates und Abhängigkeiten installieren
- 3. DNS Einträge erstellen und prüfen
- 4. Inventory erstellen
- Playbook: prerequisites.yml
- Playbook: deploy_cluster.yml
- 7. Zusätzliche Aufgaben nach der Installation

Besonderheiten & Abhängigkeiten

- x86_64 Architecture
- Kein Support für IPv6 cluster-intern
- SELinux benötigt (enforcing)
- NetworkManager
- firewalld (recommended)
- rngd (rng-tools)

DNS Einträge

Eintrag	Master (extern)	Master (intern)	Routes
Beispiel	master.openshift.com	internal.openshift.com	*.apps.openshift.com
Ziel	Master Nodes (8443)	Master Nodes (8443)	Infra Nodes (80, 443)
Benutzung	Externer Zugriff auf Master für CLI und Web Oberfläche.	Interne Kommunikation der Nodes mit dem Master	Eintrittspunkt für externen Traffic. Konkrete Routen werden von OpenShift generiert.


```
[OSEv3:children]
masters
nodes
etcd
[OSEv3:vars]
ansible user=centos
ansible become=true
ansible ssh common args='-o StrictHostKeyChecking=no'
deployment type=origin
openshift deployment type=origin
openshift disable check=docker storage, memory availability
openshift clock enable=true
openshift use dnsmasg=true
os firewall use firewalld=true
osm use cockpit=true
openshift release='v3.11'
openshift master default subdomain='apps.training0.cc-openshift.de'
openshift master cluster hostname='master0.training0.cc-openshift.de'
openshift master cluster public hostname='master0.training0.cc-openshift.de'
openshift master identity providers=[{'name': 'htpasswd auth', 'login': 'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider'}]
openshift master htpasswd users={'admin': '$apr1$zqSjCrLt$1KSuj66CqqeWSv.D.BXOA1', 'user': '$apr1$.qw8w9i1$ln9bfTRiD6OwuNTG5LvW50'}
[masters]
master0.training0.cc-openshift.de openshift node group name='node-config-master-infra' openshift schedulable=true
[etcd]
master0.training0.cc-openshift.de
[nodes]
master0.training0.cc-openshift.de openshift node group name='node-config-master-infra' openshift schedulable=true
app0.training0.cc-openshift.de openshift node group name='node-config-compute' openshift schedulable=true
appl.training0.cc-openshift.de openshift node group name='node-config-compute' openshift schedulable=true
app2.training0.cc-openshift.de openshift node group name='node-config-compute' openshift schedulable=true
```

Node Group Config

- node-config-master
- node-config-infra
- node-config-compute
- node-config-master-infra
- node-config-all-in-one

Nach der Installation

• Cluster Administrator ernennen

oc adm policy add-cluster-role-to-user cluster-admin <username>

Wichtige Cluster Komponenten

- Master API
- etcd
- Web Console
- Router
- Registry
- Metrics
- Logging

Zertifikate

- OpenShift Root CA wird bei Installation generiert
- Zertifikate werden erstellt für:
 - Nodes
 - etcd
 - Router
 - Services (Metriken, Logging, etc)

Achtet auf das Ablaufdatum!!!!!!

Erneuerung der Zertifikate mit Playbook

Nachinstallation von Komponenten

- Einige Komponenten lassen sich einfach nachinstallieren
- Man kann das "deploy_cluster" Playbook nochmal laufen lassen
- Man kann das entsprechende Komponentenplaybook starten

```
openshift_logging_install_logging=true
openshift_metrics_install_metrics=true
openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra":"true"}
```

Skalierung & HA

Skalierung

- Master hinzufügen
- Node hinzufügen
- Node entfernen
- Node updaten (System updates)
- Cluster updaten

Hochverfügbarkeit

- min. 3 Master Nodes
- min. 2 Infrastructure Nodes
- Genug Compute Nodes um die Workload zu übernehmen
- Loadbalancer f
 ür Infrastructure Nodes
- Loadbalancer f
 ür Master API
- Vorsicht vor DNS Problemen
- HA im DNS
- HA im Storage System
- HA im Netzwerk / Rechenzentrum

Zones & Region

- /etc/origin/master/scheduler.json
- Zone: Anti-Affinität
- Region: Affinität
- Custom Configuration:
 - Racks
 - Build Nodes
 - Enforce Labeling

[root@ip-10-1-5-240 master]# oc label node master-1 zone="zone-1" region="frankfurt"

```
"argument": {
        "serviceAntiAffinity":{
           "label": "zone"
        "name": "Zone",
        "weight":2
     "argument":{
        "serviceAffinity":{
           "label": "region"
        "name": "Region",
        "weight":2
```

User Management

OpenShift Identity Provider

Möglichkeiten zur User Verwaltung

Н	т	D	۸	C	C	M	D
п		г/	н.	0	o	٧V	ע

Hard-coded Passwörter im htpasswd Format welche lokal auf den Mastern liegen.

LDAP

Generischer LDAP Authenticator. Kann mit jedem handelsüblichen LDAP Server verbunden werden.

Social Logins

Github

Gitlab

Google

OpenID Connect

Generischer OpenID Connect Authenticator. Kann jeden OAuth2 oder OIDC Provider anbinden.

LDAP Anbindung im Inventory

LDAP Gruppen synchronisieren

- Mapping von LDAP Gruppen auf OpenShift Rollen
- Manuelle Konfiguration
- Manuelles Synchronisieren
- https://docs.okd.io/3.11/install_config/syncing_groups_with_ldap.html

oc adm groups sync --sync-config=config.yaml --confirm

OpenShift SDN

Network Plugins

- ovs-subnet
- ovs-networkpolicy
- ovs-multitenant
- Unterschiede in Isolationsgrade

os_sdn_network_plugin_name='redhat/openshift-ovs-networkpolicy'

Ingress Network Policy

- Objekttyp: NetworkPolicy
- Kontrolliert eingehenden Traffic per Pod
- Kann einzelne Pods im selben Namespace freischalten
- Kann **ganze** externe Namespaces freischalten

```
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
    name: allow-http-and-https
spec:
    podSelector:
        matchLabels:
        role: frontend
ingress:
    - ports:
        - protocol: TCP
        port: 80
        - protocol: TCP
        port: 443
```

Egress Network Policy

- Objekttyp: EgressNetworkPolicy
- Kontrolliert cluster-externen Traffic
- Ein Policy Objekt pro Namespace
- Kann mit einigen Techniken umgangen werden

```
kind: EgressNetworkPolicy
apiVersion: v1
metadata:
   name: default
spec:
   egress:
   - type: Allow
        to:
        cidrSelector: 1.2.3.0/24
   - type: Allow
        to:
        dnsName: www.foo.com
   - type: Deny
        to:
        cidrSelector: 0.0.0.0/0
```

Third-Party-Plugins

• https://docs.okd.io/3.11/architecture/networking/network_plugins.html

Backup & Restore

Backup Möglichkeiten

- 1. Snapshot der Maschinen
- 2. Backup der Konfigurationen und wichtigen Daten
- 3. etcd Backup
- Objekt-Export als YAML oder JSON
- **5**. Infrastructure-as-Code

https://github.com/lukeelten/openshift-backup

https://velero.io

etcd Backup

- Backup der etcd Datenbank
- Bringt den Cluster in den exakt selben Zustand wie zur Zeit des Backups

DR Szenarien

- 1. Node(s) fällt aus
- 2. Master fällt aus
- 3. Projekt(e) wird gelöscht / verschwindet
- 4. Rechenzentrum fällt aus (mit HA)
- **5.** Cluster fällt aus
- 6. etcd fehlerhaft

Persistent Storage

Persistent Storage Provider

- HostPath
- EmptyDir (Ephemeral Storage)
- GlusterFS / OpenShift Container Storage
- NFS (unsupported)
- iSCSI
- Ceph
- Diverse Cloud Mechanismen (AWS, GCE, Azure, etc)
- Dynamic Provisioning

Access Modes

- Read Only (ROX)
- Read Write Once (RWO)
- Read Write Many (RWX)

Best Practices

Externe Image Registry

Vorteile:

- Keine Abhängigkeiten an die interne Registry
- Hochverfügbarkeit wird ausgelagert

Nachteile:

- Wartung
- evt. Lizenzkosten
- Hardware

Best Practices - Cluster betreiben

- Nicht alle Applikationen eignen sich dafür
 - Monolithen -> schlechte Skalierung
 - Datenbanken -> von schneller Storage abhängig
 - Nicht HTTP basierter Traffic
- Infrastructure-as-Code
- "/var/log" läuft schnell voll
- Monitoring der Ressourcen und Kapazitäten
- RedHat Subscription
- Trennen von Development und Production