

$\overline{\mathrm{E}}$ stadística 1

1. Probabilidad

1.1. Probabilidad Clásica

$$P(A) = \frac{|A|}{|\Omega|} \tag{1}$$

¿Qué problemas tiene la probabilidad clásica? La definición conocida de probabilidad clásica puede aplicarse cuando:

- El espacio meustral es finito.
- Todos los elementos del espacio muestral tienen el mismo peso.

Propiedades de la Probabilidad Clásica

- $P(\Omega) = 1$.
- $P(A) \ge 0$ para cualquier evento A.
- $P(A \cup B) = P(A) + P(B)$ si A y B son disjuntos.

1.2. Probabilidad Geométrica

Si un experimento aleatorio tiene como espacio muestral $\Omega \subset \mathbb{R}^2$ cuya área está bien definida y es finita, entonces se define la probabilidad geométrica de un evento $A \subseteq \Omega$ como

$$P(A) = \frac{\text{Área de } A}{\text{Área de } \Omega} \tag{2}$$

Propiedades de la Probabilidad Geométrica

- $P(\Omega) = 1$.
- $P(A) \ge 0$ para cualquier evento A.
- $P(A \cup B) = P(A) + P(B)$ si A y B son disjuntos.

1.3. Probabilidad Frecuentista

Sea n_A el número de ocurrencias de un evento A en n realizaciones de un experimento aleatorio. La probabilidad frecuentista del evento A se define como el límite

$$P(A) = \lim_{n \to \infty} \frac{n_A}{n} \tag{3}$$

En estadística, a diferencia del análisis matemático, el infinito no tiene sentido; por lo que utilizar el límite es un abuso de notación. Para efectos prácticos se tomará el concepto de "infinito" como una cantidad grande en repeticiones del experimento.

1.4. Espacios de Probabilidad

Definición 1

Un espacio de probabilidad es una terna (Ω, \mathcal{F}, P) , donde Ω es un conjunto arbitrario, \mathcal{F} es una σ -álgebra de subconjuntos de Ω , y P es una medida de probabilidad sobre \mathcal{F} .

Para entender de mejor manera esta definición, es necesario introducir otros conceptos antes, tomaremos a \mathscr{F} como una colección se subconjuntos de Ω .

Definición 2

MEDIDA DE PROBABILIDAD. Una función P definida sobre una σ -álgebra \mathscr{F} y con valores en el interbalo [0,1] es una medida de probabilidad si $P(\Omega)=1$ y es σ -aditiva, es decir, si cumple que

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n),$$

cuando $A_1, A_2,...$ son elementos de \mathscr{F} que cumplen con la condición de ser ajenos dos a dos, esto es, $A_i \cap A_j \neq \emptyset$ para valores de i y j distintos.

Definición 3

SIGMA ÁLGEBRA. Una colección de \mathscr{F} de subonjuntos de Ω es una σ -álgebra si

- a) $\emptyset \in \mathscr{F}$.
- b) $\Omega \in \mathscr{F}$.
- c) Si $A \in \mathscr{F}$ entonces $A^c \in \mathscr{F}$.
- d) Si $A_1, A_2, \ldots \in \mathscr{F}$ entonces

$$\bigcup_{n=1}^{\infty} A_n \in \mathscr{F}.$$

Ejemplo 1 1.
$$\mathscr{F} = \{\emptyset, \Omega\}.$$

La primera y segunda condición se cumplen. El tercer axioma, dado que tomamos el conjunto universo como Ω , entonces los complementos pertenecen a la σ -álgebra. El cuarto axioma también se cumple. Entonces $\mathscr F$ es una σ -álgebra.

Estadística 1 Notas de Clase 3

2.
$$\mathscr{F} = \{\emptyset, \Omega, A, A^c\}.$$

Haciendo la analogía, Ω es el espacio muestral, \mathscr{F} son los eventos.

Teorema 1

Si A y $B \in \mathscr{F}$ y \mathscr{F} es σ -álgebra entonces $A \cap B \in \mathscr{F}$.

Demostración. Tomando $(A \cap B)^c$, por leyes de DeMorgan, $= A^c \cup B^c$, lo que concluye la prueba.

¿La intersección infinita de conjuntos está en la σ -álgebra?

Teorema 2

Si S es una colección de subconjuntos de Ω y cada uno de los elementos de S pertenecen a una σ -álgebra \mathscr{F} , entonces la intersección de todos los elementos de S pertenece a \mathscr{F} .

Demostraci'on. Para el caso contable, se utiliza la idea de la demostraci\'on anterior, apliandola por inducci\'on.

Definición 4

Sea S una colección de subconjuntos de Ω , entonces la σ -álgebra generada por S es la menor σ -álgebra que contiene a S.

Definición 5

Sea $\mathscr C$ una colección no vacía de subconjuntos de Ω . La σ -álgebra generada por $\mathscr C$, denotada por $\sigma(\mathscr C)$, es la colección

$$\sigma(\mathscr{C}) = \{\mathscr{F} : \mathscr{F} \quad \sigma - \text{álgebra con } \mathscr{C} \subseteq \mathscr{F}\}$$

Definición 6

ÁLGEBRA. Una colección \mathscr{A} de subconjuntos de Ω es una álgebra si cumple las siguientes condiciones:

- 1. $\Omega \in \mathscr{A}$.
- 2. Si $A \in \mathcal{A}$, entonces $A^c \in \mathcal{A}$.
- 3. Si $A_1, \ldots, A_n \in \mathscr{A}$, entonces $\bigcup_{k=1}^n A_k \in \mathscr{A}$.

Las σ -álgebra son subconjuntos de las álgebras.

Definición 7

Semiálgebra. Una colección ${\mathscr S}$ de subconjuntos de Ω es una semiálgebra si cumple las siguientes condiciones:

- 1. $\Omega \in \mathscr{S}$.
- 2. Si $A, B \in \mathcal{S}$, entonces $A \cap B \in \mathcal{S}$.

3. Si $A, A_1 \in \mathscr{S}$ son tales que $A_1 \subseteq A$, entonces existen $A_2, \ldots, A_n \in \mathscr{S}$ tales que los subconjuntos A_1, \ldots, A_n son ajenos dos a dos y se cumple que

$$A = \bigcup_{k=1}^{n} A_k.$$