Entrega 1 - Notebook Reproducible

[Integrantes del Grupo]

19 Sep 2025

Contents

0.1 1. Carga y diagnóstico inicial

```
ruta_datos <- if (file.exists("data/health_lifestyle_classification.csv")) {
   "data/health_lifestyle_classification.csv"
} else {
   file.path("..", "data", "health_lifestyle_classification.csv")
}

datos <- readr::read_csv(ruta_datos, show_col_types = FALSE) |>
   janitor::clean_names()

datos_resumen <- tibble(
   registros = nrow(datos),
   variables = ncol(datos),
   categ = sum(map_chr(datos, ~ class(.x)[1]) %in% c("character", "factor", "ordered")),
   cuant = sum(map_chr(datos, ~ class(.x)[1]) %in% c("numeric", "integer", "double"))
)

render_table(datos_resumen, caption = "Dimensión y tipología de la base")</pre>
```

Table 1: Dimensión y tipología de la base

registros	variables	categ	cuant
1e+05	48	18	30

```
missing_tbl <- datos |>
   summarise(across(everything(), ~ sum(is.na(.)))) |>
   pivot_longer(everything(), names_to = "variable", values_to = "faltantes") |>
   mutate(pct = round(faltantes / nrow(datos), 4)) |>
   arrange(desc(faltantes))

render_table(head(missing_tbl, 15), caption = "Variables con mayor cantidad de NA")
```

Table 2: Variables con mayor cantidad de NA

	variable	faltantes	pct	
insulin		15	5836	0.1584

variable faltar	ntes pct	
heart_rate	14003	0.1400
alcohol_consumption	13910	0.1391
gene_marker_flag	10474	0.1047
income	8470	0.0847
daily_steps	8329	0.0833
blood_pressure	7669	0.0767
survey_code	0	0.0000
age	0	0.0000
gender	0	0.0000
height	0	0.0000
weight	0	0.0000
bmi	0	0.0000
bmi_estimated	0	0.0000
bmi_scaled	0	0.0000

Insight: la mayoría de las variables no tiene valores faltantes; los mayores porcentajes se concentran en insulin, daily_steps, exercise_type y alcohol_consumption, por lo que cualquier modelado futuro debe considerar imputación o análisis segmentado.

0.2 2. Variables categóricas

```
cat_vars <- datos |> select(where(~ is.character(.x) || inherits(.x, "factor") || inherits(.x, "ordered
cat_vars_principales <- intersect(c("gender", "target", "education_level", "diet_type"), cat_vars)</pre>
```

0.2.1 2.1 Tablas de frecuencia

```
frecuencias_cat <- datos |>
    select(all_of(cat_vars_principales)) |>
    pivot_longer(everything(), names_to = "variable", values_to = "categoria") |>
    filter(!is.na(categoria)) |>
    count(variable, categoria) |>
    group_by(variable) |>
    mutate(pct = round(n / sum(n), 3))

render_table(frecuencias_cat, caption = "Frecuencias y proporciones por categoria")
```

Table 3: Frecuencias y proporciones por categoría

categoria n	pct	
Keto	24764	0.248
Omnivore	25089	0.251
Vegan	25122	0.251
Vegetarian	25025	0.250
Bachelor	25363	0.254
High School	25028	0.250
Master	24992	0.250
PhD	24617	0.246
Female	49868	0.499
Male	50132	0.501
diseased	29903	0.299
	Keto Omnivore Vegan Vegetarian Bachelor High School Master PhD Female Male	Keto 24764 Omnivore 25089 Vegan 25122 Vegetarian 25025 Bachelor 25363 High School 25028 Master 24992 PhD 24617 Female 49868 Male 50132

	variable	categoria	n	pct	
target		healthy		70097	0.701

Insight: target muestra distribución 70% healthy vs. 30% diseased; gender y education_level están relativamente balanceadas con ligera concentración en niveles altos de educación.

0.2.2 2.2 Gráficos univariados

```
plot_gender <- datos |>
  filter(!is.na(gender)) |>
  count(gender) |>
  ggplot(aes(x = gender, y = n, fill = gender)) +
  geom_col(show.legend = FALSE) +
  geom_text(aes(label = n), vjust = -0.2) +
  labs(title = "Distribución de género", x = NULL, y = "Frecuencia") +
  theme_minimal()
plot_gender
```

Distribución de género


```
plot_target <- datos |>
  count(target) |>
  ggplot(aes(x = target, y = n, fill = target)) +
  geom_col(show.legend = FALSE) +
  geom_text(aes(label = n), vjust = -0.2) +
  labs(title = "Distribución de target", x = NULL, y = "Frecuencia") +
  theme_minimal()
plot_target
```

Distribución de target


```
plot_education <- datos |>
  filter(!is.na(education_level)) |>
  count(education_level) |>
  ggplot(aes(x = education_level, y = n)) +
  geom_col(fill = "#2A9D8F") +
  geom_text(aes(label = n), vjust = -0.2) +
  labs(title = "Niveles educativos declarados", x = NULL, y = "Frecuencia") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 30, hjust = 1))
plot_education
```

Niveles educativos declarados


```
plot_diet <- datos |>
  filter(!is.na(diet_type)) |>
  count(diet_type) |>
  ggplot(aes(x = diet_type, y = n)) +
  geom_col(fill = "#F4A261") +
  geom_text(aes(label = n), vjust = -0.2) +
  labs(title = "Tipo de dieta reportada", x = NULL, y = "Frecuencia") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 30, hjust = 1))
plot_diet
```

Tipo de dieta reportada

0.2.3 2.3 Cruces categóricos

```
ct_gender_target <- datos |>
  filter(!is.na(gender), !is.na(target)) |>
  count(gender, target) |>
  group_by(gender) |>
  mutate(prop = n / sum(n))

render_table(ct_gender_target, caption = "Tabla gender x target", html_font_size = 9)
```

Table 4: Tabla gender x target

	gender	targe	t i	n j	prop	
Femal	e disea	ased	149	33	0.29	94505
Femal	e heal	thy	3493	35	0.70	05495
Male	disea	ased	149'	70	0.298	86117
Male	heal	thy	3516	62	0.70	13883

```
plot_gender_target <- ct_gender_target |>
    ggplot(aes(x = gender, y = prop, fill = target)) +
    geom_col(position = "fill") +
    scale_y_continuous(labels = scales::percent) +
    labs(title = "Proporciones de target por género", x = NULL, y = "Proporción") +
    theme_minimal()
plot_gender_target
```

Proporciones de target por género


```
if ("education_level" %in% names(datos)) {
  ct_edu_target <- datos |>
    filter(!is.na(education_level), !is.na(target)) |>
    count(education_level, target) |>
    group_by(education_level) |>
    mutate(prop = n / sum(n))

render_table(ct_edu_target, caption = "Tabla education_level x target", html_font_size = 9)
}
```

Table 5: Tabla education_level x target

education	_level	targe	t n	prop
Bachelor	disea	ased	7516	0.29
Bachelor	heal	$_{ m thy}$	17847	0.70
High School	disea	ased	7530	0.30
High School	heal	$_{ m thy}$	17498	0.69
Master	disea	ased	7507	0.30
Master	heal	$_{ m thy}$	17485	0.69
PhD	disea	ased	7350	0.29
PhD	heal	$_{ m thy}$	17267	0.70

```
if (exists("ct_edu_target")) {
  plot_edu_target <- ct_edu_target |>
    ggplot(aes(x = education_level, y = prop, fill = target)) +
    geom_col() +
```

```
scale_y_continuous(labels = scales::percent) +
labs(title = "Proporciones de target por nivel educativo", x = "Nivel educativo", y = "Proporción")
theme_minimal() +
theme(axis.text.x = element_text(angle = 30, hjust = 1))
plot_edu_target
}
```

Proporciones de target por nivel educativo

Insight: las proporciones de target varían poco entre géneros, pero aumentan ligeramente las etiquetas healthy en niveles educativos superiores.

0.3 3. Variables cuantitativas

```
num_vars <- datos |> select(where(is.numeric)) |> names()
num_clave <- intersect(c("age", "bmi", "sleep_hours", "daily_steps", "stress_level", "mental_health_score</pre>
```

0.3.1 3.1 Estadísticos descriptivos

```
resumen_cuant <- datos |>
  select(all_of(num_clave)) |>
  pivot_longer(everything(), names_to = "variable", values_to = "valor") |>
  group_by(variable) |>
  summarise(
    n = sum(!is.na(valor)),
    media = mean(valor, na.rm = TRUE),
    mediana = median(valor, na.rm = TRUE),
    sd = sd(valor, na.rm = TRUE),
```

```
q1 = quantile(valor, 0.25, na.rm = TRUE),
q3 = quantile(valor, 0.75, na.rm = TRUE),
asimetria = psych::skew(valor, na.rm = TRUE),
curtosis = psych::kurtosi(valor, na.rm = TRUE)
)

render_table(resumen_cuant, caption = "Estadísticos clave por variable cuantitativa")
```

Table 6: Estadísticos clave por variable cuantitativa

variable	n	media	mediana	sd	q1	q3	asimetria	curtosis
age	100000	48.525990	48.000000	17.886768	33.000000	64.000000	0.0012578	_
								1.2012359
bmi	100000	24.493876	24.156734	5.951069	20.271405	28.258696	0.4206923	0.2137246
daily_steps	91671	7012.92574	87004.28545	02488.98935	65320.85837	78702.28130	010.0524075	-
								0.1437885
mental_health_	_scdn@0000	5.004680	5.000000	3.164228	2.000000	8.000000	0.0017028	-
								1.2207515
sleep_hours	100000	7.002008	6.998164	1.496821	5.986781	8.019219	0.0251318	-
								0.1227913
$stress_level$	100000	4.991600	5.000000	3.154997	2.000000	8.000000	-	-
							0.0004401	1.2121821

Insight: daily_steps presenta mayor asimetría positiva; bmi se mantiene próximo a simetría con mediana ligeramente inferior a la media.

0.3.2 3.2 Histogramas y boxplots (uno por figura)

```
datos |> ggplot(aes(x = age)) +
  geom_histogram(bins = 30, fill = "#2A9D8F", color = "white") +
  labs(title = "Histograma edad", x = "Edad", y = "Frecuencia") +
  theme_minimal()
```



```
datos |> ggplot(aes(y = age)) +
  geom_boxplot(fill = "#2A9D8F", alpha = 0.8) +
  labs(title = "Boxplot edad", y = "Edad") +
  theme_minimal()
```



```
datos |> ggplot(aes(x = bmi)) +
  geom_histogram(bins = 30, fill = "#E76F51", color = "white") +
  labs(title = "Histograma BMI", x = "BMI", y = "Frecuencia") +
  theme_minimal()
```



```
datos |> ggplot(aes(y = bmi)) +
  geom_boxplot(fill = "#E76F51", alpha = 0.8) +
  labs(title = "Boxplot BMI", y = "BMI") +
  theme_minimal()
```


theme_minimal()


```
datos |> ggplot(aes(y = daily_steps)) +
  geom_boxplot(fill = "#264653", alpha = 0.8) +
  labs(title = "Boxplot daily_steps", y = "Pasos diarios") +
  theme_minimal()
```


0.3.3 3.3 Correlaciones y dispersión

```
cor_vars <- intersect(c("age", "bmi", "height", "weight", "sleep_hours", "daily_steps"), num_vars)
cmat <- cor(datos[cor_vars], use = "pairwise.complete.obs")
corrplot::corrplot(cmat, method = "color", type = "upper", addCoef.col = "black", tl.col = "black")</pre>
```



```
datos |> ggplot(aes(x = height, y = weight)) +
  geom_point(alpha = 0.4) +
  geom_smooth(method = "lm", se = FALSE, color = "red") +
  labs(title = "Relación altura vs peso") +
  theme_minimal()
```



```
datos |> ggplot(aes(x = weight, y = bmi)) +
  geom_point(alpha = 0.4) +
  geom_smooth(method = "lm", se = FALSE, color = "red") +
  labs(title = "Relación peso vs BMI") +
  theme_minimal()
```

Relación peso vs BMI


```
datos |> ggplot(aes(x = age, y = bmi)) +
  geom_point(alpha = 0.4) +
  geom_smooth(method = "lm", se = FALSE, color = "red") +
  labs(title = "Relación edad vs BMI") +
  theme_minimal()
```


Insight: peso y altura muestran correlación fuerte con BMI, mientras que edad aporta variación moderada.

0.3.4 3.4 Normalidad y sugerencia distribucional

```
normalidad <- map_df(c("age", "bmi", "sleep_hours", "daily_steps"), function(var) {
   if (!var %in% names(datos)) return(NULL)
   valores <- datos[[var]][!is.na(datos[[var]])]
   if (length(valores) > 5000) valores <- sample(valores, 5000)
   sw <- shapiro.test(valores)
   tibble(variable = var, shapiro_w = sw$statistic, shapiro_p = sw$p.value)
})
render_table(normalidad, caption = "Prueba de normalidad Shapiro-Wilk")</pre>
```

Table 7: Prueba de normalidad Shapiro-Wilk

variable	shapiro_w	shapiro_p
age	0.9550999	0.0000000
bmi	0.9894079	0.0000000
sleep_hours	0.9989825	0.0038962
${\it daily_steps}$	0.9981960	0.0000157

```
dist_sugerida <- resumen_cuant |>
  mutate(
   sugerencia = case_when(
```

```
abs(asimetria) < 0.3 & abs(curtosis) < 1 ~ "Normal",
    asimetria > 0.8 ~ "Gamma / Log-normal",
    asimetria < -0.8 ~ "Distribución sesgada a la izquierda",
    TRUE ~ "Ver análisis gráfico"
    )
    ) |> select(variable, asimetria, curtosis, sugerencia)

render_table(dist_sugerida, caption = "Sugerencia distribucional por variable")
```

Table 8: Sugerencia distribucional por variable

variable	asimetria	curtosis su	igerencia
age	0.0012578	-1.2012359	Ver análisis gráfic
bmi	0.4206923	0.2137246	i Ver análisis gráfic
daily_steps	0.0524075	-0.1437885	6 Normal
mental_health_score	0.0017028	-1.2207515	Ver análisis gráfic
sleep_hours	0.0251318	-0.1227913	8 Normal
stress_level	-0.0004401	-1.2121821	Ver análisis gráfi

0.4 4. Análisis mixto (cuantitativa vs categórica)

```
bmi_stats <- datos |>
  filter(!is.na(bmi), !is.na(gender)) |>
  group_by(gender) |>
  summarise(
    n = n(),
    media = mean(bmi),
    sd = sd(bmi),
    mediana = median(bmi),
    q1 = quantile(bmi, 0.25),
    q3 = quantile(bmi, 0.75),
    .groups = "drop"
)

render_table(bmi_stats, caption = "BMI por género")
```

Table 9: BMI por género

	gen	der	n	media	sd	mediana	q1	q3	
Female	49868	24.	5200	0 - 5.92	5752	24.20467	20.	30653	28.26678
Male	50132	24.	4678	9 - 5.97	6092	24.11126	20.	22856	28.24639

```
datos |>
  filter(!is.na(bmi), !is.na(gender)) |>
  ggplot(aes(x = gender, y = bmi, fill = gender)) +
  geom_boxplot(alpha = 0.8, show.legend = FALSE) +
  labs(title = "Distribución de BMI por género", x = NULL, y = "BMI") +
  theme_minimal()
```

Distribución de BMI por género


```
age_target <- datos |>
  filter(!is.na(age), !is.na(target)) |>
  group_by(target) |>
  summarise(
    n = n(),
    media = mean(age),
    sd = sd(age),
    mediana = median(age),
    q1 = quantile(age, 0.25),
    q3 = quantile(age, 0.75),
    .groups = "drop"
)
render_table(age_target, caption = "Edad segmentada por target")
```

Table 10: Edad segmentada por target

target	n	media	sd	mediana	q1	q3		
	-	48.71635 48.44478			_		33 33	

```
datos |>
  filter(!is.na(age), !is.na(target)) |>
  ggplot(aes(x = target, y = age, fill = target)) +
  geom_boxplot(alpha = 0.8, show.legend = FALSE) +
  labs(title = "Edad por condición de salud", x = NULL, y = "Edad") +
```


Edad por condición de salud

Insight: las distribuciones de BMI y edad sugieren diferencias pequeñas entre grupos, aunque estadísticamente detectables dada la muestra grande.

0.5 5. Pruebas de hipótesis

```
if ("bmi" %in% names(datos)) {
  bmi_vec <- datos$bmi[!is.na(datos$bmi)]
  prueba_media <- t.test(bmi_vec, mu = 25)
  tamaño_efecto <- effectsize::cohens_d(bmi_vec, mu = 25)
  resultado_media <- tibble(
    hipotesis_nula = "mu = 25",
    media_muestral = mean(bmi_vec),
    estadistico_t = prueba_media$statistic,
    gl = prueba_media$parameter,
    p_valor = prueba_media$p.value,
    ic95_li = prueba_media$conf.int[1],
    ic95_ls = prueba_media$conf.int[2],
    cohens_d = tamaño_efecto$Cohens_d
)
  render_table(resultado_media, caption = "Prueba t una muestra para BMI", html_font_size = 9)
}</pre>
```

Table 11: Prueba t una muestra para BMI

hipotesis_nula	$media_muestral$	$esta distico_t$	gl	p_valor	$ic95_li$	$ic95_ls$	cohens_d
mu = 25	24.49388	-26.89442	99999	0	24.45699	24.53076	-0.0850476

```
if ("target" %in% names(datos)) {
   exito <- sum(datos$target == "healthy", na.rm = TRUE)
   total <- sum(!is.na(datos$target))
   prueba_prop <- prop.test(exito, total, p = 0.5, correct = FALSE)
   cohens_h <- 2 * asin(sqrt(exito / total)) - 2 * asin(sqrt(0.5))
   resultado_prop <- tibble(
      hipotesis_nula = "p = 0.5",
      proporcion_muestral = exito / total,
      estadistico_chi2 = prueba_prop$statistic,
      p_valor = prueba_prop$p.value,
      ic95_li = prueba_prop$conf.int[1],
      ic95_ls = prueba_prop$conf.int[2],
      cohens_h = cohens_h
   )
   render_table(resultado_prop, caption = "Prueba de proporción para healthy", html_font_size = 9)
}</pre>
```

Table 12: Prueba de proporción para healthy

hipotesis_nula	proporcion_muestral	$esta distico_chi2$	p_valor	$ic95_li$	$ic95_ls$	cohens_h
p = 0.5	0.70097	16155.58	0	0.6981247	0.7037999	0.4136345

Insight: la media de BMI supera ligeramente 25 con un tamaño de efecto pequeño; la proporción de individuos healthy es mayor que 0.5 con diferencia práctica moderada dado el tamaño muestral.

0.6 6. Diccionario de variables (resumen)

```
if (file.exists("data/diccionario_variables.md")) {
  cat(readr::read_file("data/diccionario_variables.md"))
} else {
  message("Archivo de diccionario no encontrado.")
}
```

0.7 7. Información de sesión

```
## R version 4.5.0 (2025-04-11)
## Platform: aarch64-apple-darwin20
## Running under: macOS 26.0
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRlapack.dylib; LAPACK v
##
## locale:
```

```
## [1] C.UTF-8/C.UTF-8/C.UTF-8/C.UTF-8
##
## time zone: America/Bogota
## tzcode source: internal
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                               datasets methods
##
## other attached packages:
## [1] effectsize_1.0.1 rstatix_0.7.2
                                          corrplot_0.95
                                                           psych_2.5.6
## [5] janitor_2.2.1
                         lubridate_1.9.4
                                          forcats_1.0.0
                                                           stringr_1.5.2
                         purrr_1.1.0
## [9] dplyr_1.1.4
                                          readr_2.1.5
                                                           tidyr_1.3.1
## [13] tibble_3.3.0
                         ggplot2_4.0.0
                                          tidyverse_2.0.0
##
## loaded via a namespace (and not attached):
## [1] gtable_0.3.6
                           xfun_0.53
                                              bayestestR_0.17.0 insight_1.4.2
## [5] lattice_0.22-6
                           tzdb_0.5.0
                                              vctrs_0.6.5
                                                                  tools_4.5.0
## [9] generics 0.1.4
                           parallel 4.5.0
                                              datawizard 1.2.0
                                                                  sandwich_3.1-1
## [13] pkgconfig_2.0.3
                           Matrix_1.7-3
                                              RColorBrewer_1.1-3 S7_0.2.0
## [17] lifecycle 1.0.4
                           compiler 4.5.0
                                              farver 2.1.2
                                                                 mnormt 2.1.1
## [21] codetools_0.2-20
                           carData_3.0-5
                                              snakecase_0.11.1
                                                                 htmltools_0.5.8.1
## [25] yaml 2.3.10
                           Formula 1.2-5
                                              crayon_1.5.3
                                                                 pillar_1.11.0
## [29] car_3.1-3
                           MASS_7.3-65
                                              abind_1.4-8
                                                                 multcomp_1.4-28
## [33] nlme 3.1-168
                           tidyselect 1.2.1
                                              digest 0.6.37
                                                                 mvtnorm 1.3-3
## [37] stringi 1.8.7
                           labeling_0.4.3
                                              splines_4.5.0
                                                                  fastmap_1.2.0
## [41] grid 4.5.0
                           cli_3.6.5
                                              magrittr_2.0.3
                                                                  survival_3.8-3
## [45] TH.data_1.1-4
                           broom_1.0.10
                                              withr_3.0.2
                                                                  scales_1.4.0
## [49] backports_1.5.0
                           bit64_4.6.0-1
                                              timechange_0.3.0
                                                                  estimability_1.5.1
## [53] rmarkdown_2.29
                           emmeans_1.11.2-8
                                              bit_4.6.0
                                                                  zoo_1.8-14
## [57] hms 1.1.3
                           coda_0.19-4.1
                                              evaluate_1.0.5
                                                                  knitr_1.50
## [61] parameters_0.28.2
                           mgcv_1.9-1
                                              rlang_1.1.6
                                                                 xtable_1.8-4
## [65] glue_1.8.0
                           vroom_1.6.5
                                              R6_2.6.1
```