Tracking context-dependent properties using coeffects

Tomas Petricek
University of Cambridge

The Big Picture

Track properties of computations

Language allows everything

Extend existing programs

Annotate libraries

Track information using types

Different kinds of properties

Effects - what computations do

Coeffects - how computations use context

Introducing effect and coeffect systems

Effect systems

When to use effect systems?

$$\Gamma \vdash e : \tau \& \sigma$$

Typing judgment

Given variables Γ

... expression e has a type au

... and performs effects σ

Tracking memory operations

Primitive operations have effects

$$\frac{r : \operatorname{ref}_{p} \in \Gamma \quad \Gamma \vdash e : \tau \& \sigma}{\Gamma \vdash r \leftarrow e : \operatorname{unit} \& \sigma \cup \{\mathbf{w}(p)\}}$$

Composition combines effects

$$\frac{\Gamma \vdash e_1 \colon \tau_1 \& \sigma_1 \qquad \Gamma, x \colon \tau_1 \vdash e_2 \colon \tau_2 \& \sigma_2}{\Gamma \vdash \mathbf{let} \ x = e_1 \ \mathbf{in} \ e_2 \colon \tau_2 \& \sigma_1 \cup \sigma_2}$$

Coeffect systems

When to use effect systems?

$$\Gamma @ \sigma \vdash e : \tau$$

Typing judgment

Given variables Γ

... with additional context σ

... expression e has a type au

Distributed programming

Primitives with limited modalities

```
\Gamma @ \{\text{server, client}\} \vdash writeFile : \text{string} \rightarrow \text{unit}
\Gamma @ \{\text{client, phone}\} \vdash readInput : \text{unit} \rightarrow \text{string}
```

Composition combines coeffects

$$\frac{\Gamma @ \sigma_1 \vdash e_1 : \tau_1 \qquad \Gamma, x : \tau_1 @ \sigma_2 \vdash e_2 : \tau_2}{\Gamma @ \sigma_1 \cap \sigma_2 \vdash \mathbf{let} \ x = e_1 \mathbf{in} \ e_2 : \tau_2}$$

Effect and coeffect systems

Effect systems

Annotations on the result

Propagate information forward

Correspond to monads

Coeffect systems

Annotations on the context

Propagate information backward

Correspond to comonads

The marriage of coeffects and comonads

Categorical semantics approach

Interpret expressions in context

$$x_1$$
: τ_1 , ..., x_n : $\tau_n \vdash e$: τ

As functions of context

$$[\![\tau_1\times\cdots\times\tau_n]\!]\to[\![\tau]\!]$$

Additional structure over **result**Additional structure over **domain**

Monadic lambda calculus

Monadic type for effects

$$\frac{r : \operatorname{ref}_p \in \Gamma \quad \Gamma \vdash e : \operatorname{IO} \tau}{\Gamma \vdash r \leftarrow e : \operatorname{IO} \operatorname{unit}}$$

Composition combines effects

$$\frac{\Gamma \vdash e_1 \colon \mathbf{IO} \ \tau_1}{\Gamma \vdash \mathbf{let} \ x = e_1 \ \mathbf{in} \ e_2 \colon \mathbf{IO} \ \tau_2}$$

Type means there are some IO effects

The marriage of effects and monads

Capture effects using tagged monads

$$\frac{r : \operatorname{ref}_{p} \in \Gamma \quad \Gamma \vdash e : M^{\sigma} \tau}{\Gamma \vdash r \leftarrow e : M^{\sigma \otimes \{\mathbf{w}(p)\}} \operatorname{unit}}$$

Composition combines effects

$$\frac{\Gamma \vdash e_1 : \mathbf{M}^{\sigma_1} \boldsymbol{\tau_1} \qquad \Gamma, x : \tau_1 \vdash e_2 : \mathbf{M}^{\sigma_2} \boldsymbol{\tau_2}}{\Gamma \vdash \mathbf{let} \ x = e_1 \ \mathbf{in} \ e_2 : \mathbf{M}^{\sigma_1 \otimes \sigma_2} \boldsymbol{\tau_2}}$$

As precise type as in effect systems

The marriage of effects and monads

Tagged monad structure over the result

Tag r captures the effects

$$\tau_1 \rightarrow M^r \tau_2$$

Defines composition

$$(\tau_1 \to \mathbf{M^r} \tau_2) \to (\tau_2 \to \mathbf{M^s} \tau_3) \to (\tau_1 \to \mathbf{M^r \otimes s} \tau_3)$$

And pure computations

$$\tau \rightarrow M^1 \tau$$

The marriage of coeffects and comonads

Capture context using tagged comonads

$$C^{\{client,phone\}}\Gamma \vdash readInput : unit \rightarrow string$$

Composition combines coeffects

$$\frac{\mathbf{C}^{\sigma_1}\Gamma \vdash e_1 \colon \tau_1 \quad \mathbf{C}^{\sigma_2}(\Gamma, x \colon \tau_1) \vdash e_2 \colon \tau_2}{\mathbf{C}^{\sigma_1} \otimes_{\sigma_2} \Gamma \vdash \mathbf{let} \ x = e_1 \ \mathbf{in} \ e_2 \colon \tau_2}$$

Tagged comonadic lambda calculus

The marriage of coeffects and comonads

Tagged comonad structure over the domain

Tag *r* captures the coeffects

$$C^r \tau_1 \rightarrow \tau_2$$

Defines composition

$$(\mathbf{C}^r \tau_1 \to \tau_2) \to (\mathbf{C}^s \tau_2 \to \tau_3) \to (\mathbf{C}^{r \otimes s} \tau_1 \to \tau_3)$$

And pure computations

$$C^1 \tau \to \tau$$

More examples and the lambda abstraction

Distributed programming

Tagged with sets of environments

```
C^{\{client,phone\}}\Gamma \vdash read : string → string

C^{\{server,client\}}\Gamma \vdash write : string → unit
```

Tags combined using **intersection**Lambda abstraction in a **pure** context

```
C^{\{\text{client}\}}(\Gamma, x: \text{unit}) \vdash write (read x): \text{unit}
```

```
\overline{\mathbf{C}^{\{\text{server,client,phone}\}}\Gamma \vdash \lambda x.writ}e \ (read \ x): \mathbf{C}^{\{\text{client}\}}\text{unit} \rightarrow \text{unit}
```

Introducing implicit parameters

Configuration problem

Parameterize function deep in the call tree Without adding parameters to all functions

Implicit parameters ?param

```
let print = \lambda prefix \rightarrow
if length prefix > ?width then
\lambda str \rightarrow append prefix str ?width ?size
else ...
```

Implicit parameters

Tagged with sets of parameters

```
\mathbb{C}^{\{\text{?width,?size}\}}\Gamma \vdash \text{append ... ?width ?size} : \text{string}
```

Tags combined using intersection

Lambda abstraction combines contexts

```
let print = \lambda prefix \rightarrow
if length prefix > ?width then
\lambda str \rightarrow append prefix str ?width ?size ...
```

```
print: \mathbb{C}^{\{?\text{width}\}} string \to (\mathbb{C}^{\{?\text{size}\}} string \to string)
```

Type system for coeffects

Comonadic coeffect typing

$$\frac{\mathbf{C^r}\Gamma \vdash e_1 \colon \mathbf{C^t}\tau_1 \to \tau_2 \quad \mathbf{C^s}\Gamma \vdash e_2 \colon \tau_1}{\mathbf{C^r} \otimes s \otimes t} \vdash e_1 \mid e_2 \mid \tau_2}$$

$$\frac{x \colon \tau \in \Gamma}{\mathbf{C}^{\mathbf{1}}\Gamma \vdash x \colon \tau}$$

$$\frac{\mathbf{C}^{r \otimes s} (\Gamma, x; \tau_1) \vdash e : \tau_2}{\mathbf{C}^{s} \Gamma \vdash \lambda x. e : \mathbf{C}^{r} \tau_1 \to \tau_2}$$

Structure of the tags

Monoid with binary operation $(M, \otimes, 1)$

Type preservation requires

Idempotence $r \otimes r = r$

Symmetry $r \otimes s = s \otimes r$

Partial order $\forall r \in M. \mathbf{1} \sqsubseteq r$

Unrestricted reduction needs **set-like** tags Is there a more **fine-grained structure**?

Comparing coeffects and effects

Comonadic abstraction captures context

$$\frac{\mathbf{C}^{r \oplus s} (\Gamma, x : \tau_1) \vdash e : \tau_2}{\mathbf{C}^{s} \Gamma \vdash \lambda x. e : \mathbf{C}^{r} \tau_1 \rightarrow \tau_2}$$

Monadic abstraction is always pure

$$\frac{\Gamma, x: \tau_1 \vdash e: \mathbf{M}^r \tau_2}{\Gamma \vdash \lambda x. e: \mathbf{M}^1 (\tau_1 \to \mathbf{M}^r \tau_2)}$$

Compare implicit parameters and reader monad

More precise structural coeffects system

Tracking properties per variable

Example: checked array indexing

$$C^{3\times5}(x:A,y:A) \vdash x.3 + y.5 + y.3 : int$$

Structural rules manipulate tags

Tags correspond to variables

$$\frac{\mathbf{C}^{r \times s} (\Gamma_{1}, \Gamma_{2}) \vdash e : \tau}{\mathbf{C}^{s \times r} (\Gamma_{2}, \Gamma_{1}) \vdash e : \tau} \qquad \frac{\mathbf{C}^{r} \Gamma \vdash e : \tau}{\mathbf{C}^{r \times 1} (\Gamma, x : \tau') \vdash e : \tau}$$

Tracking properties per variable

Contraction rule combines coeffects

$$\frac{\mathbf{C}^{3\times5}(x:A,y:A) \vdash y.2 + x.3 + y.5 : \text{int}}{\mathbf{C}^{\max(3,5)}(z:A) \vdash z.2 + z.3 + z.5 : \text{int}}$$

Use two different operations

- × for product structure
- ⊗ for combining coeffects

$$\frac{\mathbf{C}^{r \times s} (x; \tau, y; \tau) \vdash e; \tau_1}{\mathbf{C}^{r \otimes s} (z; \tau) \vdash e[z/x][z/y]; \tau_1}$$

More precise coeffects

Generalized application rule

$$\frac{\mathbf{C^r}\Gamma_1 \vdash e_1 \colon \mathbf{C^t}\tau_1 \to \tau_2 \qquad \mathbf{C^s}\Gamma_2 \vdash e_2 \colon \tau_1}{\mathbf{C^r} \times (\mathbf{t} \otimes \mathbf{s})(\Gamma_1, \Gamma_2) \vdash e_1 e_2 \colon \tau_2}$$

Point-wise (or scalar) application of ⊗

$$\mathbf{C} \vdash \lambda y. y. 5 : \mathbf{C}^{5} A \rightarrow \text{int}$$

$$\mathbf{C}^{0 \times 0} (x: A, z: A) \vdash (\mathbf{if} ... \mathbf{then} \ x \ \mathbf{else} \ z) : A$$

$$\mathbf{C}^{5 \times 5} (x: A, z: A) \vdash (\lambda y. y. 5) (\mathbf{if} ... \mathbf{then} \ x \ \mathbf{else} \ z) : \text{int}$$

More precise coeffects

Tag structure with two operations

- × for product structure
- ⊗ for combining coeffects

Distributivity law $(a \times b) \otimes c = (a \otimes c) \times (b \otimes c)$

Future work

Does it generalize simple version?

Refined categorical semantics

Application: Secure information flow

Application: Multi-stage programming

Conclusions

Summary

Introducing coeffects

Context-dependent properties

Modeled using comonads

Distributed, dynamic scoping, multi-stage, security

Tracking information

Simple set-like structures for context properties

Precise structure associates data with variables

Backup slides

Categorical semantics for coeffects

Categorical semantics for coeffects

Operations of a tagged comonad

$$(\mathbf{C}^r \tau_1 \to \tau_2) \to (\mathbf{C}^s \tau_2 \to \tau_3) \to (\mathbf{C}^{r \otimes s} \tau_1 \to \tau_3)$$

$$\mathbf{C}^1 \tau \to \tau$$

With additional structure

Combine contexts for abstraction

Split contexts for application

Semantics of lambda abstraction

Combine the inner and outer scope

Use monoidal tagged comonad

$$[\![\lambda x.e]\!] = \text{curry}([\![e]\!] \circ \text{combine})$$

combine:
$$C^r \tau_1 \times C^s \tau_2 \to C^{r \otimes s} (\tau_1 \times \tau_2)$$

Other variations of tags are possible!

Restrict one context or require equal tags

Future work

Could be done in the monadic setting

Semantics of application

Evaluate both expressions and apply

$$\llbracket e_1 \ e_2 \rrbracket = \operatorname{ev} \circ \langle \llbracket e_1 \rrbracket, \operatorname{cobind} \llbracket e_2 \rrbracket \rangle$$

Split context between two functions

$$f: \mathbf{C}^r \tau \to \tau_1 \\ g: \mathbf{C}^s \tau \to \tau_2$$
 $\langle f, g \rangle : \mathbf{C}^{r \otimes s} \tau \to (\tau_1, \tau_2)$

Tagged inverse of the combine operation

$$\operatorname{split}_{r,s}: \mathbf{C}^{r\otimes s}(\tau_1 \times \tau_2) \to \mathbf{C}^r \tau_1 \times \mathbf{C}^s \tau_2$$