模擬微控制器焊接之熱傳分析

B07611002 鄭泊聲 B07611016 黃評堅

前言

- 焊接是電子製造的心臟,同時也是引起最多問題的過程!
- Applying such high temperature long enough to achieve adherence of solder to the oxidized surface causes the wire bonds inside ICs to degrade to an extent that would require decades of product use. The phenomenon is known as the "purple plague"

--Jim Smith, president of Electronics Manufacturing Sciences Inc

- ATMEGA328P: NTD\$120
- 燒晶片就是在燒錢
- 有時候並不是電路接錯,而是在焊接時便已造成電路受損

材料與方法

所使用模擬軟體: Solidworks 2017

-- SOLIDWORKS Simulation 熱研究

Mod.1 電烙鐵

--SOLIDWORKS simulation

額定功率:約20~40 W 理想溫度:約300~400℃

- 穩態分析
- 材質:紅銅(熱導率k = 386.4 W/(m.K))

Convection coefficient h = 10 W/(m^2.K)

• 熱功率P = 10 W

調整熱功率至P = 0.5 W

- 暫態分析
- 材質:紅銅(熱導率k = 386.4 W/(m.K))
- Convection coefficient h = 10 W/(m^2.K)
- 熱功率P = 35 W
- 初始温度 = 30℃
- 模擬時間 = 3 sec

Mod. 2

• Inside a microprochip stock image. Image of abstract - 80701633 (dreamstime.com)

材料與方法

ATMEGA328

- Temperature range (operating):
- -40°C~85°C
- Size: body--7*7*1(mm) leg—1.3*0.38*0.15(mm)
- 假定其封裝材料皆為TQFP

COMMON DIMENSIONS (Unit of measure = mm)

ı	SYMBOL	MIN	NOM	MAX	NOTE
	Α	-	-	1.20	
	A1	0.05	-	0.15	
	A2	0.95	1.00	1.05	
	D	8.75	9.00	9.25	
	D1	6.90	7.00	7.10	Note 2
	E	8.75	9.00	9.25	
	E1	6.90	7.00	7.10	Note 2
	В	0.30	-	0.45	
	С	0.09	-	0.20	
	L	0.45	_	0.75	
	е	e 0.80 TYP			

Notes

- This package conforms to JEDEC reference MS-026, Variation ABA.
- Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
- 3. Lead coplanarity is 0.10mm maximum.

TQFP: thin quad flat package

Name	Typical TQFP
Comments	Thin Quad Flat Packag
Density	2000 kg/m^3
Specific heat	800 J/(kg*K)
Conductivity type	Isotropic
Thermal conductivity	0.2 W/(m*K)
Electrical conductivity	Dielectric
Radiation properties	
∃ Melting temperature	
Temperature	1688.2 K

- Silicon
- Copper
- Connector

Semiconductor: silicon

Silicon

(Table)

Isotropic

Dielectric

1688.2 K

(Table)

 \checkmark

2330 kg/m³

нашо	Ooppoi
Comments	
Density	8960 kg/m^3
Specific heat	(Table)
Conductivity type	Isotropic
Thermal conductivity	(Table)
Electrical conductivity	Conductor
Resistivity	(Table)
Radiation properties	
Melting temperature ■	
Temperature	1356.2 K

copper

Name	Typical Connector
Comments	
Density	2000 kg/m^3
Specific heat	400 J/(kg*K)
Conductivity type	Orthotropic
Thermal conductivity in X	5 W/(m*K)
Thermal conductivity in Y	5 W/(m*K)
Thermal conductivity in Z	20 W/(m*K)
Electrical conductivity in X	Dielectric
Electrical conductivity in Y	Dielectric
Electrical conductivity in Z	Dielectric
Radiation properties	
Melting temperature	
Temperature	1688.2 K

Connector

表面 t=892s

Temperature (Solid) [°C]

Surface Plot 2: contours

transient

t = 60s to reach around 350c at pin

材料與方法

熱風槍

Env temp: 350 C

Fan: d=5 cm

Property	Value
Name	BW05010012BH
Comments	
Fan Type	Axial
Set up reference density	\square
Reference density	1.2 kg/m^3
Mass/Volume flow rate	Volume flow rate
Value	(Table)
Rotor speed	680.67841 rad/s
Outer diameter	0.050000001 m
Hub diameter	0.02 m
Direction of rotation	Clockwise
	25

• With minimum mesh size =0.03

Discussion

Silicon chip can stay under appropriate temperature.

Results

Internal temperature seems close in both cases.

Considering the transient simulation, it seems hard to really damage the chip.

參考文獻

- https://www.eetimes.com/soldering-practices-are-insane/
- https://reurl.cc/Nr4Zlx