FUNCIONES DE UNA VARIABLE II

- Cada ejercicio de valora sobre 2,5 puntos.
- En la valoración se tendrá en cuenta: La corrección del resultado, el razonamiento utilizado, la exposición escrita.

Ejercicio 1. Dar una condición necesaria y suficiente para que una función $f:[a,b]\to\mathbb{R}$ acotada sea integrable. Demostrarla.

Ejercicio 2. Calcular
$$\int_{0+}^{1-} (\log(x))^4 dx$$
.

Ejercicio 3. Calcular
$$I = \int \frac{dx}{(1+x^2)^2}$$
.

Ejercicio 4. Dada la serie $\sum_{1}^{\infty} \frac{x^{2n-1}}{2n-1} (-1)^{n+1}$. Calcular el intervalo de convergencia y sumar la serie.

1 Dar ma condición necesario o suficiente para que una función f: [a,6] -DIR acotedo sea integraba Riemann. Demotisto.

Note: Por parte y con cuidado se piede hacer anque eslargo.

$$J = \int \frac{dx}{(4+x^2)^2}$$

$$\int \frac{dx}{(4+x^2)^2} = \int \frac{4+x^2}{(4+x^2)^2} = \int \frac{1}{(4+x^2)^2} = \int \frac{1}{(4+x^2)^2}$$

$$= arcstg(x) - \int \frac{x^2}{(1+x^2)^2}$$

 $\frac{1}{2} \frac{x}{(1+x^2)^2} = \frac{1}{2} \frac{1}{(1+x^2)} dx =$ $= \frac{1}{2} \frac{x}{(1+x^2)^2} = \frac{1}{2} \operatorname{arcoto}(x)$ $I = \frac{1}{2} \operatorname{arcoto}(x) + C$ $R(1+x^2)$