Styl "Počítačový kód" pro mimořádně zajímavé části kódu.

Dokumentace UPG – semestrální práce

Cíl této práce bylo vytvořit aplikaci, která dokáže vizualizovat data poskytnuté knihovnou. Použitým jazykem je Java a grafické frameworky Java Swing a Java AWT.

Zpracování

Práce se zpracovává ve dvou etapách a následné bonusové úlohy.

První etapa (Pasivní vizualizace)

• cílem této etapy je vykreslovat síť a vizualizovat její simulaci

Použití

Kompilace aplikace

Aplikaci zkompilujeme pomocí cmd scriptu Make.cmd, který připraví aplikaci na zpuštění.

Zpuštění aplikace

Zpuštění programu provedeme pomocí cmd souboru Run.cmd, který zpustí aplikaci s defaultními parametry.

Zpuštění programu s volitelným parametrem <Glyph size> pomocí příkazu

java -cp water-network Main

Příkaz zpustíme ze složky bin

java -cp water-network Main 150

Tímto příkazem zpustíme aplikaci s vlastním parametrem

Řešení

Během zpracovávání vizualizace jsem narazil na mnoho problémů a několik složitějších situací, která mi dali pořádně zabrat. Jedním z nich bylo napojení na knihovnu, i když později se vše zdálo jednoduché, ze začátku bylo obtížnější pochopit jak se na knihovnu napojit, ale během hodinové analýzy jsem většinu pochopil.

Vykreslování

Vykreslování je založené na "atomickém" přístupu tj. každá komponenta je vykreslována vlastním objektem s názvem Draw<název komponenty>, tento přístup umožnuje rychlé rozšíření v případě potřeby, a opravu chyby většinou bez potřeby přepisovat návazné kódy, taktéž to zabrání takzvanému špagetovému kódu.

KIV/UPG 2017/2018

1. odevzdání

Jan Novák – A17B0309P Celkový počet hodin strávený na řešení SP dosud: <mark>29</mark>

19. března 2018 strana 2

Souřadnice reálné a virtuální

Další velkou překážkou bylo zpracovávání souřadnicového systému, původní přístup byl, že každé vykreslování si bude samo počítat, jak a kde se má vykreslit, ovšem toho se ukázalo jako nevhodné vzhledem k tomu že jsem musel používat redundantní kód, což se neslužuje se zásadou don't repeat yourself (DRY). Také se tento přístup ukázal, jako nevhodný vzhledem k "atomovému" modelu. Nakonec jsem zvolil použití Singletonu Translater a jak už název napovídá tato třída překládá virtuální souřadnice dodané knihovnou na reálné, který využívám pro vykreslování