Equação do calor e o problema da adega

Caio Tomás de Paula Professor: Yuri Dumaresq Sobral

> Universidade de Brasília Departamento de Matemática

Introdução a Métodos Computacionais em EDPs

Qual é o problema?

Queremos resolver

$$\begin{cases} u_{t} = \kappa u_{xx}, & 0 \le x \le L, t \ge 0 \\ u(x,0) = f(t)e^{-q_{1}x} \\ u(0,t) = f(t) \\ u(L,t) = 0 \end{cases}$$

com $q_1 = 0.71 \text{m}^{-1}$, $\kappa = 6.3 \text{m}^2/\text{ano e}$

2/14

$$f(t) = \begin{cases} T_w, & 0 \le t < 1/2 \\ T_s, & 1/2 \le t \le 1, \end{cases}$$

com $T_s > T_w$.

Método de Euler explícito

Começamos resolvendo a equação com o método de Euler explícito,

$$u_{\ell}^{n+1} = u_{\ell}^{n} + \mu(u_{\ell+1}^{n} - 2u_{\ell}^{n} + u_{\ell-1}^{n}),$$

que converge para $\kappa\mu \leq 1/2$.

Método de Euler explícito — resultados

Método de Euler explícito — ordem

Método de Crank-Nicolson

O método é dado por

6/14

$$-\alpha u_{\ell+1}^{n+1} + (1+2\alpha)u_{\ell}^{n+1} - \alpha u_{\ell-1}^{n+1} = \alpha u_{\ell+1}^{n} + (1-2\alpha)u_{\ell}^{n} + \alpha u_{\ell-1}^{n}$$

com $\alpha = \kappa \mu/2$. Ele é implícito, incondicionalmente estável e consistente (logo convergente pelo Teorema de Equivalência de Lax).

A implicitude do método nos obriga a resolver um sistema linear a cada iteração, dado por

$$\begin{bmatrix} 1+2\alpha & -\alpha & 0 & \cdots & 0 \\ -\alpha & 1+2\alpha & -\alpha & \ddots & \vdots \\ 0 & -\alpha & 1+2\alpha & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & -\alpha \\ 0 & \cdots & 0 & -\alpha & 1+2\alpha \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_{N-1} \\ u_N \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_{N-1} \\ b_N \end{bmatrix},$$

sendo N a quantidade de pontos na malha espacial.

Método de Crank-Nicolson — o algoritmo de Thomas

Seja

$$\begin{bmatrix} b_1 & c_1 \\ a_2 & b_2 & c_2 \\ & a_3 & b_3 & \ddots \\ & & \ddots & \ddots & c_{n-1} \\ & & & a_n & b_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ \vdots \\ d_n \end{bmatrix}$$

um sistema linear tridiagonal. O método de Thomas resolve tais sistemas em $\mathcal{O}(n)$ operações. Este algoritmo não é estável para o caso geral. Não obstante, para Crank-Nicolson temos $b_i = 1 + 2\alpha$, $a_i = c_i = -\alpha$ e a matriz do sistema é estritamente diagonalmente dominante, garantindo estabilidade.

Método de Crank-Nicolson — o algoritmo de Thomas

A primeira etapa do método consiste de uma varredura para o cômputo de novos coeficientes c_i' e d_i' dados por

$$c'_{i} = \begin{cases} \frac{c_{i}}{b_{i}}, & i = 1\\ \frac{c_{i}}{b_{i} - a_{i}c'_{i-1}}, & 2 \leq i \leq n-1 \end{cases}$$

e

$$d'_{i} = \begin{cases} \frac{d_{i}}{b_{i}}, & i = 1\\ \frac{d_{i} - a_{i}d'_{i-1}}{b_{i} - a_{i}c'_{i-1}}, & 2 \leq i \leq n \end{cases}$$

Calculados os novos coeficientes, a solução é dada por

8/14

$$x_n = d'_n$$

 $x_i = d'_i - c'_i x_{i+1}, i = n - 1, n - 2, ..., 1.$

Método de Crank-Nicolson — resultados

Uma variação do problema

Queremos resolver

$$\begin{cases} u_{t} = (\kappa(x)u_{x})_{x}, & 0 \leq x \leq L, t \geq 0 \\ u(x,0) = f(t)e^{-q_{1}x} \\ u(0,t) = f(t) \\ u(L,t) = 0 \end{cases}$$

com
$$q_1 = 0.71 \text{m}^{-1}$$
, $\kappa(x) = (6.3 + x)^{\alpha}$ e

10/14

$$f(t) = \begin{cases} T_w, & 0 \le t < 1/2 \\ T_s, & 1/2 \le t \le 1, \end{cases}$$

com $T_s > T_w$.

Volumes finitos

Para integrar esta equação, lançamos mão de um método de volumes finitos: para cada iteração na malha espacial, tomamos

$$\overline{\kappa}_i = \frac{1}{2} \left(\kappa(x_i) + \kappa(x_{i-1}) \right)$$

e aplicamos o método de Euler com $\overline{\kappa}_i$. Consideramos o mesmo domínio dos métodos anteriores. Para que o método convergisse, fixamos $\Delta x = 0.1$ e tomamos Δt suficientemente pequeno para que

$$\frac{\Delta t}{\Delta x^2} \le \frac{1}{2\kappa_{\mathsf{max}}},$$

com
$$\kappa_{\text{max}} = (6.3 + x_{\text{max}})^{\alpha} = 21.3^{\alpha}$$
.

12/14

Volumes finitos — resultados

Referências

C.C. Lin, L.A. Segel

Mathematics Applied to Deterministic Problems in the Natural Sciences

Society for Industrial and Applied Mathematics, 1998

Y.D. Sobral

Notas de aula do curso de Introdução a Métodos Computacionais em Equações Diferenciais Parciais

Notas de aula, Novembro 2023

13/14

A. Iserles

A First Course in the Numerical Analysis of Differential Equations Cambridge University Press, 2nd edition, 2008

Obrigado!

Códigos