Exercice 1 [04151] [Correction]

Dans tout ce sujet n désigne un naturel non nul.

On note $\varphi(n)$ l'indicatrice d'Euler de $n,\,U_n$ l'ensemble des racines n-ième de l'unité et U_n^* l'ensemble des racines de l'unité d'ordre exactement n. Enfin, pour $d\in\mathbb{N}^*$, on pose

$$\Phi_d = \prod_{z \in U_d^*} (X - z).$$

(a) Écrire en Python la fonction liste(n) qui renvoie

$$\{k \in [1; n] \mid k \wedge n = 1\}.$$

Écrire la fonction phi (n) qui renvoie $\varphi(n)$ puis sumphi (n) qui renvoie

$$\sum_{d|n} \varphi(d).$$

(b) Montrer

$$X^n - 1 = \prod_{d \mid n} \Phi_d.$$

(c) Justifier

$$\sum_{d|n} \varphi(d) = n.$$

(d) Montrer que Φ_n est un polynôme à coefficients entiers.

On pose $Q_n = X^n - 1$ et on choisit p, q, r des nombres premiers vérifiant

$$p < q < r < p + q.$$

On pose

$$n = pqr \text{ et } R = \frac{Q_p Q_q Q_r}{X - 1}.$$

(e) Montrer

$$\Phi_n = \frac{Q_n R}{Q_{pq} Q_{qr} Q_{rp}}.$$

(f) Montrer qu'il existe un polynôme S tel que

$$\Phi_n - R = X^{pq} S.$$

(g) En déduire que le coefficient de X^r dans Φ_n est égal à -2.

Exercice 2 [02365] [Correction]

 $(Groupe\ quasi-cyclique\ de\ Pr\"ufer)$ Soit p un nombre premier. On pose

$$G_p = \{ z \in \mathbb{C} \mid \exists k \in \mathbb{N}, z^{p^k} = 1 \}.$$

- (a) Montrer que G_p est un sous-groupe de (\mathbb{C}^*, \times) .
- (b) Montrer que les sous-groupes propres de G_p sont cycliques et qu'aucun d'eux n'est maximal pour l'inclusion.
- (c) Montrer que G_p n'est pas engendré par un système fini d'éléments.

Exercice 3 [02364] [Correction]

Soit un entier $n \geq 2$. Combien le groupe $(\mathbb{Z}/n\mathbb{Z}, +)$ admet-il de sous-groupes?

Exercice 4 [02363] [Correction]

Quel est le plus petit entier n tel qu'il existe un groupe non commutatif de cardinal n?

Exercice 5 [02366] [Correction]

Montrer que

$$\{x + y\sqrt{3} \mid x \in \mathbb{N}, y \in \mathbb{Z}, x^2 - 3y^2 = 1\}$$

est un sous-groupe de (\mathbb{R}_+^*, \times) .

Exercice 6 [02368] [Correction]

Soit n un entier naturel non nul, (e_1, \ldots, e_n) la base canonique de $E = \mathbb{R}^n$. Soit \mathcal{S}_n l'ensemble des permutations de $\{1, 2, \ldots, n\}$. Soit $t_i = (1, i)$. Pour $s \in \mathcal{S}_n$, on définit $u_s(e_i) = e_{s(i)}$.

- (a) Montrer que (t_2, t_3, \ldots, t_n) engendre S_n .
- (b) Interpréter géométriquement u_s lorsque s est une transposition.
- (c) Soit $s = (1 \ 2 \dots n-1 \ n)$. On suppose que s est la composée de p transpositions. Montrer que $p \ge n-1$.
- (d) Quel est le cardinal minimal d'une famille de transpositions génératrice de \mathcal{S}_n ?

Exercice 7 [02390] [Correction]

Soit n un entier ≥ 2 et \mathcal{A} un hyperplan de $\mathcal{M}_n(\mathbb{C})$ stable pour le produit matriciel.

- (a) On suppose que $I_n \notin \mathcal{A}$. Montrer, si $M^2 \in \mathcal{A}$, que $M \in \mathcal{A}$. En déduire que pour tout $i \in \{1, ..., n\}$ que la matrice $E_{i,i}$ est dans \mathcal{A} . En déduire une absurdité.
- (b) On prend n=2. Montrer que $\mathcal A$ est isomorphe à l'algèbre des matrices triangulaires supérieures.

Exercice 8 [02367] [Correction]

Soit A un sous-anneau de \mathbb{Q} .

- (a) Soit p un entier et q un entier strictement positif premier avec p. Montrer que si $p/q \in A$ alors $1/q \in A$.
- (b) Soit I un idéal de A autre que $\{0\}$. Montrer qu'il existe $n \in \mathbb{N}^*$ tel que $I \cap \mathbb{Z} = n\mathbb{Z}$ et qu'alors I = nA.
- (c) Soit p un nombre premier. On pose

$$Z_p = \{ a/b \mid a \in \mathbb{Z}, b \in \mathbb{N}^*, p \wedge b = 1 \}.$$

Montrer que si $x \in \mathbb{Q}^*$ alors x ou 1/x appartient à Z_p .

(d) On suppose ici que x ou 1/x appartient à A pour tout $x \in \mathbb{Q}^*$. On note I l'ensemble des éléments non inversibles de A. Montrer que I inclut tous les idéaux stricts de A. En déduire que $A = \mathbb{Q}$ ou $A = \mathbb{Z}_p$ pour un certain nombre premier p.

Exercice 9 [04164] [Correction]

On se place dans le \mathbb{R} -espace vectoriel $E = \mathbb{R}[X]$.

(a) Soit H un sous-espace vectoriel de dimension finie et f un endomorphisme de H. Montrer qu'il existe $p\in\mathbb{N}$ tel que

$$\forall k \ge p, \operatorname{Ker} f^{k+1} = \operatorname{Ker} f^k.$$

Soit F un sous-espace vectoriel de E stable par l'opérateur D de dérivation.

- (b) On suppose que F est de dimension finie non nulle. Montrer que l'endomorphisme induit par D sur $\mathbb{R}_n[X]$ est nilpotent pour tout $n \in \mathbb{N}$. Montrer qu'il existe $m \in \mathbb{N}$ tel que $F = \mathbb{R}_m[X]$.
- (c) Montrer que si F est de dimension infinie alors $F = \mathbb{R}[X]$.
- (d) Soit $g \in \mathcal{L}(E)$ tel que $g^2 = k \operatorname{Id} + D$ avec $k \in \mathbb{R}$. Quel est le signe de k?

Exercice 10 [04105] [Correction]

On fixe $A \in \mathcal{M}_p(\mathbb{R})$ et on considère $\Delta \colon M \in \mathcal{M}_p(\mathbb{R}) \mapsto AM - MA$.

(a) Prouver que Δ est un endomorphisme de $\mathcal{M}_p(\mathbb{R})$ et que :

$$\forall n \in \mathbb{N}^*, \forall (M, N) \in \mathcal{M}_p(\mathbb{R})^2, \Delta^n(MN) = \sum_{k=0}^n \binom{n}{k} \Delta^k(M) \Delta^{n-k}(N).$$

(b) On suppose que $B = \Delta(H)$ commute avec A. Montrer :

$$\Delta^{2}(H) = 0 \text{ et } \Delta^{n+1}(H^{n}) = 0.$$

Vérifier $\Delta^n(H^n) = n!B^n$.

- (c) Soit $\|\cdot\|$ une norme sur $\mathcal{M}_p(\mathbb{R})$. Montrer que $\|B^n\|^{1/n} \xrightarrow[n \to +\infty]{} 0$.
- (d) En déduire que la matrice B est nilpotente.

Exercice 11 [04107] [Correction]

Soient E un \mathbb{C} -espace vectoriel de dimension finie non nulle, u et v deux endomorphismes de E.

- (a) On suppose dans cette question et dans la suivante que $u \circ v v \circ u = u$. Montrer que $\operatorname{Ker}(u)$ est stable par v.
- (b) Montrer que $\operatorname{Ker}(u) \neq \{0\}$. Indice: On pourra raisonner par l'absurde et utiliser la trace. En déduire que u et v ont un vecteur propre commun.
- (c) On suppose maintenant que $u \circ v v \circ u \in \text{Vect}(u, v)$ Montrer qu'il existe une base de E dans laquelle les matrices de u et v sont triangulaires supérieures.

Exercice 12 [04152] [Correction]

On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{C})$ vérifie la propriété (\mathcal{P}) si

$$\exists \alpha \in \mathbb{C}, \ A + {}^{t}\mathrm{Com} \ A = \alpha \mathrm{I}_{n}.$$

(a) Traiter le cas n=2.

Désormais, on suppose n > 3.

- (b) Rappeler le lien entre la comatrice et l'inverse d'une matrice inversible.
- (c) Soit $A, B \in GL_n(\mathbb{C})$. Montrer Com(AB) = Com A Com B

- (d) Montrer que si $A \in GL_n(\mathbb{C})$ vérifie (\mathcal{P}) alors toutes les matrices semblables à A vérifient aussi (\mathcal{P}) .
- (e) On suppose la matrice A inversible, non scalaire et ne possédant qu'une seule valeur propre.

Montrer que A vérifie (\mathcal{P}) si, et seulement si, il existe une matrice N telle $N^2 = \mathcal{O}_n$ et un complexe λ telle que $\lambda^{n-2} = 1$ pour lesquels $A = \lambda.\mathbf{I}_n + N$.

(f) On suppose que A vérifie la propriété (\mathcal{P}) et possède au moins deux valeurs propres distinctes. Montrer que A est diagonalisable et conclure quelles sont les matrices de cette forme vérifiant (\mathcal{P}) .

Exercice 13 [04185] [Correction]

Soit E un \mathbb{R} -espace vectoriel de dimension n et u un endomorphisme de E. On note χ le polynôme caractéristique de u.

- (a) Soit V et W deux sous-espaces vectoriels de E stables par u et tels que $E = V \oplus W$. On note χ' et χ'' les polynômes caractéristiques des endomorphismes induits par u sur V et W.

 Montrer $\chi = \chi' \chi''$.
- (b) On considère la décomposition en facteurs irréductibles

$$\chi = \prod_{i} P_i^{\alpha_i}.$$

Montrer que pour tout i, dim Ker $P_i^{\alpha_i}(u) = \alpha_i \deg P_i$.

(c) Montrer le polynôme minimal de u est égal à χ si, et seulement si, pour tout $k \leq \alpha_i$, dim Ker $P_i^k(u) = k \deg P_i$.

Exercice 14 [02391] [Correction]

Soient $\mathbb K$ un sous-corps de $\mathbb C$ et

$$J = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{K}).$$

Montrer que J est diagonalisable.

Exercice 15 [02441] [Correction]

Soient E un \mathbb{C} -espace vectoriel de dimension finie non nulle, u, v dans $\mathcal{L}(E)$ et a, b dans \mathbb{C} . On suppose

$$u \circ v - v \circ u = au + bv$$
.

- (a) On étudie le cas a = b = 0. Montrer que u et v ont un vecteur propre en commun.
- (b) On étudie le cas $a \neq 0$, b = 0. Montrer que u est non inversible. Calculer $u^n \circ v - v \circ u^n$ et montrer que u est nilpotent. Conclure que u et v ont un vecteur propre en commun.
- (c) On étudie le cas $a, b \neq 0$. Montrer que u et v ont un vecteur propre en commun.

Exercice 16 [03113] [Correction]

(a) Soit $D \in \mathcal{M}_n(\mathbb{C})$. Déterminer l'inverse de

$$\begin{pmatrix} I_n & D \\ O_n & I_n \end{pmatrix}.$$

(b) Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ diagonalisables telles que $\operatorname{Sp} A \cap \operatorname{Sp} B = \emptyset$. Montrer que pour tout matrice $C \in \mathcal{M}_n(\mathbb{C})$, les matrices suivantes sont semblables

$$\begin{pmatrix} A & C \\ O_n & B \end{pmatrix}$$
 et $\begin{pmatrix} A & O_n \\ O_n & B \end{pmatrix}$.

Exercice 17 [00760] [Correction]

Soit $E = E_1 \oplus E_2$ un K-espace vectoriel. On considère

$$\Gamma = \{ u \in \mathcal{L}(E) \mid \text{Ker } u = E_1 \text{ et } \text{Im } u = E_2 \}.$$

- (a) Montrer, pour tout u de Γ que $\tilde{u} = u_{E_2}$ est un automorphisme de E_2 . Soit $\phi \colon \Gamma \to \operatorname{GL}(E_2)$ définie par $\phi(u) = \tilde{u}$.
- (b) Montrer que \circ est une loi interne dans Γ .
- (c) Montrer que ϕ est un morphisme injectif de (Γ, \circ) dans $(GL(E_2), \circ)$.
- (d) Montrer que ϕ est surjectif.
- (e) En déduire que (Γ, \circ) est un groupe. Quel est son élément neutre?

Exercice 18 [01324] [Correction]

Soient $E = \mathcal{S}_2(\mathbb{R})$,

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$$

et $\Phi \colon \mathcal{S}_2(\mathbb{R}) \to \mathcal{S}_2(\mathbb{R})$ définie par

$$\Phi(S) = AS + S^t A.$$

- (a) Déterminer la matrice de Φ dans une base de E.
- (b) Quelle relation existe-t-il entre les polynômes caractéristiques χ_{Φ} et χ_{A} ?
- (c) Si Φ est diagonalisable, la matrice A l'est-elle?
- (d) Si A est diagonalisable, l'endomorphisme Φ l'est-il?

Exercice 19 [02539] [Correction]

Soit E un espace vectoriel de dimension finie n > 2.

- (a) Donner un exemple d'endomorphisme f de E dont l'image et le noyau ne sont pas supplémentaires.
- (b) On suppose, dans cette question seulement, que f est un endomorphisme de ${\cal E}$ diagonalisable.

Justifier que l'image et le noyau de f sont supplémentaires.

(c) Soit f un endomorphisme de E. Montrer qu'il existe un entier naturel non nul k tel que

$$\operatorname{Im}(f^k) \oplus \operatorname{Ker}(f^k) = E.$$

L'endomorphisme f^k est-il nécessairement diagonalisable?

(d) Le résultat démontré en c) reste-t-il valable si l'espace est de dimension infinie?

Exercice 20 [02393] [Correction]

Existe-t-il dans $\mathcal{M}_n(\mathbb{R})$ une matrice de polynôme minimal $X^2 + 1$?

Exercice 21 [03185] [Correction]

(a) Soit u un endomorphisme inversible d'un \mathbb{K} -espace vectoriel E de dimension finie.

Montrer qu'il existe un polynôme $Q \in \mathbb{K}[X]$ vérifiant

$$u^{-1} = Q(u).$$

(b) Soit u l'endomorphisme de $\mathbb{K}[X]$ qui envoie le polynôme P(X) sur P(2X). Montrer que u est un automorphisme et déterminer ses éléments propres. Existe-t-il $Q \in \mathbb{K}[X]$ tel que

$$u^{-1} = Q(u)?$$

Exercice 22 [02389] [Correction]

- (a) Soient A et B dans $\mathcal{M}_2(\mathbb{K})$ telles que AB = BA. Montrer que $B \in \mathbb{K}[A]$ ou $A \in \mathbb{K}[B]$.
- (b) Le résultat subsiste-t-il dans $\mathcal{M}_3(\mathbb{K})$?

Exercice 23 [02395] [Correction]

Soit E un espace vectoriel complexe de dimension finie non nulle. Soient u et v des endomorphismes de E; on pose [u;v]=uv-vu.

- (a) On suppose [u; v] = 0. Montrer que u et v sont cotrigonalisables.
- (b) On suppose $[u\,;v]=\lambda u$ avec $\lambda\in\mathbb{C}^*$. Montrer que u est nilpotent et que u et v sont cotrigonalisables.
- (c) On suppose l'existence de complexes α et β tels que $[u;v] = \alpha u + \beta v$. Montrer que u et v sont cotrigonalisables.

Exercice 24 [03645] [Correction]

Soit $M \in \mathcal{M}_n(\mathbb{C})$ telle que

$$M^2 + {}^t M = \mathbf{I}_n.$$

(a) Montrer

M inversible si, et seulement si, $1 \notin \operatorname{Sp} M$.

(b) Montrer que la matrice M est diagonalisable.

Exercice 25 [02382] [Correction]

Quelles sont les matrices carrées réelles d'ordre n qui commutent avec diag(1, 2, ..., n) et lui sont semblables?

Exercice 26 [00867] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{C})$. On suppose qu'il existe $p \in \mathbb{N}^*$ tel que $A^p = 0$.

- (a) Montrer que $A^n = 0$.
- (b) Calculer $\det(A + I_n)$. Soit $M \in \mathcal{M}_n(\mathbb{C})$ tel que AM = MA.
- (c) Calculer $\det(A+M)$ (on pourra commencer par le cas où $M \in \mathrm{GL}_n(\mathbb{C})$).
- (d) Le résultat est-il encore vrai si M ne commute pas avec A?

Exercice 27 [03918] [Correction]

Soient E un \mathbb{C} -espace vectoriel de dimension finie et u un endomorphisme de E. On note $\lambda_1, \ldots, \lambda_q$ les valeurs propres de u, n_1, \ldots, n_q leurs multiplicités respectives. On suppose que tout i de $\{1, \ldots, q\}$, l'espace propre de u associé à λ_i est de dimension 1.

- (a) Si $1 \le i \le q$ et $0 \le m \le n_i$, montrer que le noyau de $(u \lambda_i \mathrm{Id}_E)^m$ est de dimension m.
- (b) Soit F un sous-espace vectoriel de E stable par u. Montrer qu'il existe un polynôme unitaire Q de $\mathbb{C}[X]$ tel que

$$F = \operatorname{Ker}(Q(u)).$$

(c) Montrer que le nombre de sous-espaces de E stables par u est le nombre de diviseurs unitaires de χ_u dans $\mathbb{C}[X]$.

Exercice 28 [03745] [Correction]

Soient f une endomorphisme de \mathbb{R}^n et A sa matrice dans la base canonique de \mathbb{R}^n . On suppose que λ est une valeur propre non réelle de A et que $Z \in \mathbb{C}^n$ est un vecteur propre associé.

On note X et Y les vecteurs de \mathbb{R}^n dont les composantes sont respectivement les parties réelles et imaginaires des composantes de Z.

- (a) Montrer que X et Y sont non colinéaires.
- (b) Montrer que Vect(X, Y) est stable par f.
- (c) On suppose que la matrice de f est donnée par

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & 2 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}.$$

Déterminer tous les plans stables par f. Énoncé fourni par le concours CENTRALE-SUPELEC (CC)-BY-NC-SA

Exercice 29 [03213] [Correction]

Soient $n \geq 2$ et $f \in \mathcal{L}(\mathbb{C}^n)$ endomorphisme de rang 2. Exprimer le polynôme caractéristique de f en fonction de $\operatorname{tr}(f)$ et $\operatorname{tr}(f^2)$.

Exercice 30 [01322] [Correction]

Soit $A \in \mathcal{M}_3(\mathbb{R})$ non nulle vérifiant $A^2 = O_3$. Déterminer la dimension de l'espace

 $\mathcal{C} = \{ M \in \mathcal{M}_3(\mathbb{R}) \mid AM - MA = O_3 \}.$

Exercice 31 [00853] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{C})$. On pose f(M) = AM pour toute $M \in \mathcal{M}_n(\mathbb{C})$.

- (a) L'application f est-elle un endomorphisme de $\mathcal{M}_n(\mathbb{C})$?
- (b) Étudier l'équivalence entre les inversibilités de A et de f.
- (c) Étudier l'équivalence entre les diagonalisabilités de A et de f.

Exercice 32 [03616] [Correction]

Soient $n \in \mathbb{N}$ et $E = \mathcal{M}_n(\mathbb{C})$. On note $E^* = \mathcal{L}(E, \mathbb{C})$ le \mathbb{C} -espace vectoriel des formes linéaires sur E.

- (a) Montrer que $L: E \to E^*$, $A \mapsto L_A$ où L_A est la forme linéaire $M \mapsto \operatorname{tr}(AM)$ est un isomorphisme d'espaces vectoriels. En déduire une description des hyperplans de E.
- (b) Soit $T \in \mathcal{M}_n(\mathbb{C})$ une matrice triangulaire supérieure non nulle et $H = \operatorname{Ker} L_T$.

On note T_n^+ (respectivement T_n^-) le sous-espace vectoriel des matrices triangulaires supérieures (respectivement inférieures) à diagonales nulles. Déterminer $H \cap T_n^+$.

En discutant selon que T possède ou non un coefficient non nul (au moins) hors de la diagonale, déterminer la dimension de $H \cap T_n^-$.

- (c) Une matrice $A \in \mathcal{M}_n(\mathbb{C})$ est dite nilpotente s'il existe $k \in \mathbb{N}$ tel que $A^k = 0$. Prouver que les éléments de $T_n^+ \cup T_n^-$ sont des matrices nilpotentes. En déduire que H contient au moins $n^2 n 1$ matrices nilpotentes linéairement indépendantes.
- (d) Montrer que tout hyperplan de E contient au moins n^2-n-1 matrices nilpotentes linéairement indépendantes. Énoncé fourni par le CENTRALE-SUPELEC (CC)-BY-NC-SA

Exercice 33 [03744] [Correction]

Soient $n \in \mathbb{N}^*$ et $E = \mathcal{M}_n(\mathbb{R})$. Pour $A, B \in E$ fixées non nulles, on définit $f \in \mathcal{L}(E)$ par

$$\forall M \in E, f(M) = M + \operatorname{tr}(AM)B.$$

- (a) Déterminer un polynôme annulateur de degré 2 de f et en déduire une condition nécessaire et suffisante sur (A,B) pour que f soit diagonalisable. Quels sont alors les éléments propres de f?
- (b) Déterminer $\dim C$ où

$$C = \{ g \in \mathcal{L}(E) \mid f \circ g = g \circ f \}$$

[Énoncé fourni par le concours CENTRALE-SUPELEC (CC)-BY-NC-SA]

Exercice 34 [04108] [Correction]

Soient $n \geq 3$, $E = \mathcal{M}_{n,1}(\mathbb{R})$, A, B deux colonnes non colinéaires dans E et $M = AB^T + BA^T$.

- (a) Justifier que M est diagonalisable.
- (b) Déterminer rg(M) en fonction de A et B.
- (c) Déterminer le spectre de M et décrire les sous-espaces propres associés.

Exercice 35 [04157] [Correction]

Soit $n \in \mathbb{N}$ avec $n \geq 2$ et $M \in \mathcal{S}_n(\mathbb{R})$ à coefficients tous positifs.

On veut montrer que M admet un vecteur propre à coordonnées toutes positives, associé à une valeur propre positive.

(a) Trouver les valeurs propres de

$$\begin{pmatrix} a & b & \cdots & b \\ b & a & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \cdots & b & a \end{pmatrix}.$$

- (b) Montrer que si $S \in \mathcal{S}_n(\mathbb{R})$ a des valeurs propres toutes positives, ses coefficients ne sont pas forcément tous positifs.
- (c) Montrer que

$$\alpha = \sup \{ \langle X, MX \rangle \mid X \in \mathcal{M}_{n,1}(\mathbb{R}), ||X|| = 1 \}$$

existe et est valeur propre de M.

- (d) En considérant la valeur absolue d'un vecteur X à définir, établir la propriété voulue.
- (e) Cette propriété reste-t-elle vraie si la matrice M n'est pas symétrique?

Exercice 36 [04167] [Correction] Soit $A \in \mathcal{M}_n(\mathbb{R})$.

(a) Montrer qu'il existe une matrice O orthogonale et une matrice T triangulaire supérieure telles que A=OT.

On pourra commencer par le cas où la matrice A est inversible.

La fonction numpy.linalg.qr de Python donne une telle décomposition.

(b) On pose

$$N_1(A) = \sum_{1 \le i, j \le n} |a_{i,j}|.$$

Montrer que N_1 admet un minimum m_n et un maximum M_n sur $O_n(\mathbb{R})$.

(c) Utilisation de **Python**.

Écrire une fonction randO(n) qui génère une matrice aléatoire A et qui renvoie la matrice orthogonale O de la question précédente.

Écrire une fonction N_1 de la variable matricielle A qui renvoie $N_1(A)$. On pourra utiliser les fonctions numpy.sum et numpy.abs.

Écrire une fonction $\mathsf{test}(\mathsf{n})$ qui, sur 1000 tests, renvoie le minimum et le maximum des valeurs de N_1 pour des matrices orthogonales aléatoires.

- (d) Déterminer la valeur de m_n . Pour quelles matrices, ce minimum est-il atteint? Montrer qu'il y a un nombre fini de telles matrices.
- (e) Montrer que $M_n \leq n\sqrt{n}$ et que $M_3 < 3\sqrt{3}$.

Exercice 37 [04168] [Correction]

Soit $n \in \mathbb{N}^*$ et $M \in \mathcal{M}_n(\mathbb{R})$.

(a) Montrer qu'il existe un unique couple $(A, S) \in \mathcal{M}_n(\mathbb{R})^2$ tel que

$$M = A + S, {}^{t}A = -A, {}^{t}S = S.$$

- (b) Montrer que M et tM commutent si, et seulement si, A et S commutent.
- (c) Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que ${}^tA = -A$. On suppose que A est inversible. Montrer que n est pair et qu'il existe $P \in \mathcal{O}_n(\mathbb{R})$ et $(a_1, \dots, a_p) \in (\mathbb{R}_+^*)^p$ tels que $A = PDP^{-1}$ où D est une matrice diagonale par blocs avec des blocs D_1, \dots, D_n où

$$D_i = \begin{pmatrix} 0 & -a_i \\ a_i & 0 \end{pmatrix}.$$

(d) Énoncer et prouver un théorème de réduction pour les matrices normales de $\mathcal{M}_n(\mathbb{R})$, c'est-à-dire les matrices $M \in \mathcal{M}_n(\mathbb{R})$ telles que $M^tM = {}^tMM$.

Exercice 38 [03084] [Correction]

Montrer que le déterminant d'une matrice antisymétrique réelle est positif ou nul.

Exercice 39 [02401] [Correction]

Soient A et B dans $\mathcal{M}_n(\mathbb{R})$. Montrer, si $A^tA = B^tB$, qu'il existe $Q \in \mathcal{O}_n(\mathbb{R})$ tel que B = AQ.

Exercice 40 [03186] [Correction]

E désigne un espace vectoriel euclidien orienté de dimension 3 muni d'une base orthonormée directe $\mathcal{B} = (i, j, k)$.

Rechercher les rotations R de E telles que

$$R(i) = -j \text{ et } R(i - j + k) = i - j + k.$$

Exercice 41 [02408] [Correction]

On se place dans l'espace euclidien E.

1) Soit p un projecteur de E.

Établir l'équivalence des conditions suivantes :

- (i) p est un projecteur orthogonal;
- (ii) $\forall x \in E, ||p(x)|| \le ||x||;$
- (iii) p est symétrique.
- 2) Soient p et q deux projecteurs orthogonaux.
 - (a) Montrer que $p \circ q \circ p$ est symétrique.
 - (b) Montrer que

$$(\operatorname{Im} p + \operatorname{Ker} q)^{\perp} = \operatorname{Im} q \cap \operatorname{Ker} p.$$

(c) Montrer que $p \circ q$ est diagonalisable.

Exercice 42 [02514] [Correction]

Soit A une matrice symétrique réelle positive de taille n. Pour $\alpha > 0$, on note

$$S_{\alpha} = \{ M \in S_n(\mathbb{R}) \mid \operatorname{Sp} M \subset \mathbb{R}_+ \text{ et } \det(M) \geq \alpha \}.$$

Le but est de montrer la formule :

$$\inf_{M \in \mathcal{S}_{\alpha}} \operatorname{tr}(AM) = n(\alpha \det(A))^{1/n}.$$

- (a) Démontrer la formule dans le cas $A = I_n$.
- (b) Montrer que toute matrice A symétrique réelle positive peut s'écrire $A = {}^t PP$ avec P matrice carrée de taille n.
- (c) Démontrer la formule.
- (d) Le résultat est-il encore vrai si $\alpha = 0$?
- (e) Le résultat reste-t-il vrai si A n'est que symétrique réelle?

Exercice 43 [03743] [Correction]

p,q sont deux entiers strictement positifs. A,B deux matrices de $\mathcal{M}_{p,q}(\mathbb{R})$ telles que ${}^tAA={}^tBB$.

- (a) Comparer $\operatorname{Ker} A$ et $\operatorname{Ker} B$.
- (b) Soit f (respectivement g) l'application linéaire de \mathbb{R}^q dans \mathbb{R}^p de matrice A (respectivement B) dans les bases canoniques de \mathbb{R}^q et \mathbb{R}^p . On munit \mathbb{R}^p de sa structure euclidienne canonique. Montrer que

$$\forall x \in \mathbb{R}^q, \langle f(x), f(y) \rangle = \langle g(x), g(y) \rangle.$$

(c) Soient $(\varepsilon_1, \dots, \varepsilon_r)$ et $(\varepsilon'_1, \dots, \varepsilon'_r)$ deux bases d'un espace euclidien F de dimension r vérifiant

$$\forall (i,j) \in \{1,\ldots,r\}^2, \langle \varepsilon_i, \varepsilon_j \rangle = \langle \varepsilon_i', \varepsilon_j' \rangle.$$

Montrer qu'il existe une application orthogonale s de F telle que

$$\forall i \in \{1, \ldots, r\}, s(\varepsilon_i) = \varepsilon_i'.$$

(d) Montrer qu'il existe $U \in \mathcal{O}_p(\mathbb{R})$ tel que A = UB. [Énoncé fourni par le concours CENTRALE-SUPELEC (CC)-BY-NC-SA]

Exercice 44 [03741] [Correction]

Soit E un espace euclidien; on note $\mathcal{O}(E)$ le groupe des endomorphismes orthogonaux de E et on définit l'ensemble

$$\Gamma = \Big\{ u \in \mathcal{L}(E) \ \Big| \ \forall x \in E, \big\| u(x) \big\| \le \|x\| \Big\}.$$

- (a) Montrer que Γ est une partie convexe de $\mathcal{L}(E)$ qui contient O(E).
- (b) Soit $u \in \Gamma$ tel qu'il existe $(f, q) \in \Gamma^2$ vérifiant

$$f \neq g \text{ et } u = \frac{1}{2}(f+g).$$

Montrer que $u \notin O(E)$

- (c) Soit v un automorphisme de E; montrer qu'il existe $\rho \in \mathcal{O}(E)$ et s un endomorphisme autoadjoint positif de E tels que $v = \rho \circ s$. On admet que ce résultat reste valable si on ne suppose plus v bijectif.
- (d) Soit $u \in \Gamma$ qui n'est pas un endomorphisme orthogonal. Montrer qu'il existe $(f,g) \in \Gamma^2$ tels que

$$f \neq g \text{ et } u = \frac{1}{2}(f+g).$$

(e) Démontrer le résultat admis à la question c). [Énoncé fourni par le concours CENTRALE-SUPELEC (CC)-BY-NC-SA]

Exercice 45 [03610] [Correction]

Soit $n \in \mathbb{N}^*$. Si $M \in \mathcal{M}_n(\mathbb{R})$, on dira que M a la propriété (P) si, et seulement si, il existe une matrice $U \in \mathcal{M}_{n+1}(\mathbb{R})$ telle que M soit la sous-matrice de U obtenue en supprimant les dernières ligne et colonne de U et que U soit une matrice orthogonale, soit encore si, et seulement si, il existe $\alpha_1, \ldots, \alpha_{2n+1} \in \mathbb{R}$ tels que

$$U = \begin{pmatrix} & & & \alpha_{2n+1} \\ & M & & \vdots \\ & & & \alpha_{n+2} \\ \alpha_1 & \cdots & \alpha_n & \alpha_{n+1} \end{pmatrix} \in \mathcal{O}_{n+1}(\mathbb{R}).$$

(a) Ici

$$M = \begin{pmatrix} \lambda_1 & & (0) \\ & \ddots & \\ (0) & & \lambda_n \end{pmatrix}$$

est une matrice diagonale. Déterminer une condition nécessaire et suffisante portant sur les λ_i pour que M ait la propriété (P).

- (b) Ici $M \in \mathcal{S}_n(\mathbb{R})$. Déterminer une condition nécessaire et suffisante pour que M ait la propriété (P).
- (c) Si $M \in GL_n(\mathbb{R})$, montrer qu'il existe $U \in O_n(\mathbb{R})$ et $S \in \mathcal{S}_n(\mathbb{R})$ telles que M = US.

On admettra qu'une telle décomposition existe encore si M n'est pas inversible.

(d) Déterminer une condition nécessaire et suffisante pour que $M \in \mathcal{M}_n(\mathbb{R})$ quelconque ait la propriété (P). Cette condition portera sur tMM . (e) Montrer le résultat admis dans la question c). Énoncé fourni par le CENTRALE-SUPELEC (CC)-BY-NC-SA

Exercice 46 [03738] [Correction]

(a)
$$A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \text{ et } B = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

À quelles conditions nécessaires et suffisantes sur a, b, c existe-t-il $P \in O_2(\mathbb{R})$ telle que $A = PB^tP$?

À quelles conditions nécessaires et suffisantes sur a existe-t-il $b, c \in \mathbb{R}$ et $P \in \mathcal{O}_2(\mathbb{R})$ tels que $A = PB^tP$?

À quelles conditions nécessaires et suffisantes sur c existe-t-il $a, b \in \mathbb{R}$ et $P \in \mathcal{O}_2(\mathbb{R})$ tels que $A = PB^tP$?

(b)
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \text{ et } B = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

À quelles conditions nécessaires et suffisantes sur a, b, c, d existe-t-il $P \in GL_2(\mathbb{R})$ telle que $A = PBP^{-1}$?

À quelles conditions nécessaires et suffisantes sur a existe-t-il $b, c, d \in \mathbb{R}$ et $P \in GL_2(\mathbb{R})$ tels que $A = PBP^{-1}$?

À quelles conditions nécessaires et suffisantes sur d existe-t-il $a, b, c \in \mathbb{R}$ et $P \in \mathrm{GL}_2(\mathbb{R})$ tels que $A = PBP^{-1}$?

(c) Si $A, B \in \mathcal{M}_n(\mathbb{R})$, justifier l'existence de

$$\max_{P,Q\in\mathcal{O}_n(\mathbb{R})}\det(PA^tP+QB^tQ).$$

- (d) Calculer ce maximum si $B = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ et $A = \begin{pmatrix} 1 & -2 \\ -2 & -1 \end{pmatrix}$.
- (e) Si $A, B \in \mathcal{M}_n(\mathbb{R})$,

$$\sup_{P,Q \in \mathrm{GL}_n(\mathbb{R})} \det \left(PAP^{-1} + QBQ^{-1} \right)$$

est-il fini en général? (Si oui, le montrer, si non, donner un contre-exemple).

(f) De manière générale, si $A_1, \ldots, A_k \in \mathcal{S}_2^+(\mathbb{R})$ déterminer

$$\max_{P_1,\dots,P_k\in\mathcal{O}_2(\mathbb{R})} \det(P_1 A_1^t P_1 + \dots + P_k A_k^t P_k)$$

[Énoncé fourni par le concours CENTRALE-SUPELEC (CC)-BY-NC-SA]

Exercice 47 [03919] [Correction]

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien de dimension $n \geq 2$.

(a) Soient $e=(e_1,\ldots,e_n)$ une base orthonormée de $E,\,(x_1,\ldots,x_n)$ et (y_1,\ldots,y_n) dans E^n . On introduit

$$A = \operatorname{Mat}_e(x_1, \dots, x_n)$$
 et $B = \operatorname{Mat}_e(y_1, \dots, y_n)$.

Déterminer les coefficients de la matrice ${}^{t}AB$.

(b) Soit (x_1, \ldots, x_n) une base de E. Montrer qu'il existe une unique famille (y_1, \ldots, y_n) de E telle que

$$\forall (i,j) \in \{1,\ldots,n\}^2, \langle y_i,x_j\rangle = \delta_{i,j}.$$

Montrer que (y_1, \ldots, y_n) est une base de E et exprimer la matrice de passage de la base (x_1, \ldots, x_n) à la base (y_1, \ldots, y_n) à l'aide de la matrice

$$M = (\langle x_i, x_j \rangle)_{1 \le i, j \le n}.$$

On considère dans la suite une famille (x_1, \ldots, x_n) de E vérifiant

$$\forall i \in \{1, \dots, n\}, ||x_i|| = 1, \forall (i, j) \in \{1, \dots, n\}^2, i \neq j \implies \langle x_i, x_j \rangle < 0$$

 $_{
m et}$

$$\exists v \in E, \forall i \in \{1, \dots, n\}, \langle x_i, v \rangle > 0.$$

- (c) Montrer que la famille (x_1, \ldots, x_n) est une base de E.
- (d) On pose $M = (\langle x_i, x_j \rangle)_{1 \leq i, j \leq n} \in \mathcal{M}_n(\mathbb{R})$ et $S = I_n M/n$. Montrer que S est diagonalisable et que $\operatorname{Sp}(S) \subset [0; 1[$.
- (e) Montrer que les coefficients de M^{-1} sont positifs.
- (f) Soit (y_1, \ldots, y_n) déduit de (x_1, \ldots, x_n) comme dans b). Montrer

$$\forall (i,j) \in \{1,\ldots,n\}^2, \langle y_i, y_j \rangle \ge 0.$$

Corrections

Exercice 1: [énoncé]

(a) On commence par définir une fonction calculant le pgcd de deux entiers

```
def gcd(a,b):
    if a % b == 0: return b
        else: return gcd(b, a % b)

def liste(n):
    L = []
    for k in range(1,n):
        if gcd(n,k) == 1: L.append(k)
    return L

def phi(n):
    return len(liste(n))

def sumphi(n):
    return sum(liste(n))
```

(b) U_n est un groupe à n. Les éléments de ce groupe ont un ordre divisant n et pour tout d divisant n, les éléments du groupe U_n d'ordre d sont exactement ceux de U_d^* . On en déduit que U_n est la réunion disjointe des U_d^* pour d parcourant les diviseurs de n. On en déduit

$$X^{n} - 1 = \prod_{z \in U_{d}} (X - z) = \prod_{d \mid n} \Phi_{d}.$$

(c) Le polynôme Φ_n est de degré $\varphi(n)$ car les racines de l'unité d'ordre n sont les

$$e^{2ik\pi/n}$$
 avec $k \in [1; n], k \wedge n = 1$.

L'identité précédente donne la relation voulue en passant celle-ci au degré.

(d) Par récurrence forte sur l'entier $n \geq 1$.

La propriété est immédiate quand n=1. Supposons la propriété vérifiée jusqu'au rang n-1.

On a

$$X^n - 1 = \prod_{d|n, d \neq n} \Phi_d \times \Phi_n.$$

Le polynôme X^n-1 est à coefficients entiers et $\prod_{d|n,d\neq n}$ l'est aussi. De plus, le coefficient dominant de ce dernier vaut 1. On réalisant une division euclidienne, le calcul de Φ_n détermine un polynôme à coefficients entiers.

(e) Les diviseurs de n sont 1, p, q, r, pq, qr, rp et n donc

$$Q_n = (X - 1)\Phi_p \Phi_q \Phi_r \Phi_{pq} \Phi_{qr} \Phi_{rp} \Phi_n.$$

De même

$$Q_{pq} = (X-1)\Phi_p\Phi_q\Phi_{pq}$$
, etc.

La relation demandée s'en déduit.

(f) Par ce qui précède, on peut écrire

$$(\Phi_n - R)Q_{pq}Q_{qr}Q_{rp} = R(Q_n - Q_{pq}Q_{qr}Q_{rp})$$

0 n'est pas racine de $Q_{pq}Q_{qr}Q_{rp}$, ni de R, mais

$$Q_n - Q_{pq}Q_{qr}Q_{rp} = X^{pq} + \dots$$

On en déduit que 0 est racine de multiplicité pq de $\Phi_n - R$.

(g) Puisque r < pq, le coefficient de X^r dans Φ_n est celui de X^r dans P. Or

$$P = (X^{p} - 1)(X^{q} - 1)(1 + X + \dots + X^{r-1})$$

= $(1 - X^{p} - X^{q} + X^{p+q})(1 + X + \dots + X^{r-1}).$

Le coefficient de X^r dans ce polynôme est -2 car p+q>r.

Exercice 2 : [énoncé]

- (a) $G_p \subset \mathbb{C}^*$, $1 \in G_p$, pour $z \in G_p$, il existe $k \in \mathbb{N}$ tel que $z^{p^k} = 1$ et alors $(1/z)^{p^k} = 1$ donc $1/z \in G_p$. Si de plus $z' \in G_p$, il existe $k' \in \mathbb{N}$ vérifiant $z'^{p^{k'}}$ et alors
 - $(zz')^{p^{k+k'}} = (z^{p^k})^{p^{k'}} (z'^{p^{k'}})^{p^k} = 1 \text{ donc } zz' \in G_p.$
- (b) Notons

$$U_{p^k} = \{ z \in \mathbb{C} \mid z^{p^k} = 1 \}.$$

Soit H un sous-groupe de G_p différent de G_p .

S'il existe une infinité de $k\in\mathbb{N}$ vérifiant $U_{p^k}\subset H$ alors $H=G_p$ car G_p est la réunion croissante de U_{p^k} .

Ceci étant exclu, on peut introduire le plus grand $k \in \mathbb{N}$ vérifiant $U_{p^k} \subset H$.

Pour $\ell > k$, tous les éléments de $U_{p^\ell} \setminus U_{p^k}$ engendrent au moins $U_{p^{k+1}}$, or $U_{p^{k+1}} \not\subset H$ donc $H \subset U_{p^k}$ puis $H = U_{p^k}$

 \hat{H} est donc un sous-groupe cyclique et ne peut être maximal pour l'inclusion car inclus dans le sous-groupe propre $U_{p^{k+1}}$.

(c) Si G_p pouvait être engendré par un système fini d'éléments, il existerait $k \in \mathbb{N}$ tel que ses éléments sont tous racines p^k -ième de l'unité et alors $G_p \subset U_{p^k}$ ce qui est absurde.

Exercice 3: [énoncé]

On note \overline{x} la classe d'un entier x dans $\mathbb{Z}/n\mathbb{Z}$.

Soit H un sous-groupe de $\mathbb{Z}/n\mathbb{Z}$.

On peut introduire

$$a = \min\{k > 0, \overline{k} \in H\}$$

car toute partie non vide de N possède un plus petit élément.

Considérons alors $\langle \overline{a} \rangle$ le groupe engendré par la classe de a. On peut décrire ce groupe

$$\langle \overline{a} \rangle = \{q.\overline{a} \mid q \in \mathbb{Z}\}.$$

C'est le plus petit sous-groupe contenant l'élément \overline{a} car il est inclus dans tout sous-groupe contenant cet élément. Par conséquent $\langle \overline{a} \rangle$ est inclus dans H. Montrons qu'il y a en fait égalité.

Soit $\overline{k} \in H$. Par division euclidienne de k par a, on écrit

$$k = aq + r \text{ avec } r \in \{0, \dots, a - 1\}.$$

On a alors $\overline{k}=q.\overline{a}+\overline{r}$ et donc, par opérations dans le groupe H, on obtient $\overline{r}=\overline{k}-q.\overline{a}\in H$. On ne peut alors avoir r>0 car cela contredirait la définition de a. Il reste donc r=0 et par conséquent $\overline{k}=q.\overline{a}\in\langle\overline{a}\rangle$ Finalement

$$H=<\overline{a}>$$
.

De plus, en appliquant le raisonnement précédent avec k=n (ce qui est possible car $\overline{n}=\overline{0}\in H$), on obtient que a est un diviseur de n. Inversement, considérons un diviseur a de n. On peut écrire

$$n = aq \text{ avec } q \in \mathbb{N}^*$$

et on peut alors décrire les éléments du groupe engendré par \overline{a} , ce sont

$$\overline{0}, \overline{a}, 2.\overline{a}, \ldots, (q-1)\overline{a}.$$

On constate alors que les diviseurs de n déterminent des sous-groupes deux à deux distincts de $(\mathbb{Z}/n\mathbb{Z}, +)$.

On peut conclure qu'il y a autant de sous-groupe de $(\mathbb{Z}/n\mathbb{Z},+)$ que de diviseurs positifs de n.

Exercice 4: [énoncé]

Notons, pour n = 6 que (S_3, \circ) est un groupe non commutatif à 6 éléments. Un groupe à n = 1 élément est évidemment commutatif.

Pour n=2,3 ou 5, les éléments d'un groupe à n éléments vérifient $x^n=e$. Puisque n est premier, un élément autre que e de ce groupe est un élément d'ordre n et le groupe est donc cyclique donc commutatif.

Pour n=4, s'il y a un élément d'ordre 4 dans le groupe, celui-ci est cyclique. Sinon, tous les éléments du groupe vérifient $x^2=e$. Il est alors classique de justifier que le groupe est commutatif.

Exercice 5 : [énoncé]

Notons

$$H = \{x + y\sqrt{3} \mid x \in \mathbb{N}, y \in \mathbb{Z}, x^2 - 3y^2 = 1\}.$$

Pour $a\in H,\ a=x+y\sqrt{3}$ avec $x\in\mathbb{N},\ y\in\mathbb{Z}$ et $x^2-3y^2=1.$ On a donc $x=\sqrt{1+3y^2}>\sqrt{3}|y|$ puis a>0. Ainsi $H\subset\mathbb{R}_+^*.$

 $1 \in H$ car on peut écrire $1 = 1 + 0\sqrt{3}$ avec $1^2 - 3.0^2 = 1$.

Pour $a \in H$, on a avec des notations immédiates,

$$\frac{1}{a} = x - y\sqrt{3}$$

avec $x \in \mathbb{N}$, $-y \in \mathbb{Z}$ et $x^2 - 3(-y)^2 = 1$. Ainsi $1/a \in H$. Pour $a, b \in H$ et avec des notations immédiates,

$$ab = xx' + 3yy' + (xy' + x'y)\sqrt{3}$$

avec $xx' + 3yy' \in \mathbb{Z}$, $xy' + xy' \in \mathbb{Z}$ et $(xx' + 3yy')^2 - 3(xy' + x'y)^2 = 1$. Enfin puisque $x > \sqrt{3}|y|$ et $x' > \sqrt{3}|y'|$, on a $xx' + 3yy' \ge 0$ et finalement $ab \in H$.

Exercice 6: [énoncé]

(a) Pour $i \neq j \in \{2, ..., n\}$,

$$(i,j) = (1,i) \circ (1,j) \circ (1,i).$$

Toute transposition appartient à $\langle t_2, t_3, \dots, t_n \rangle$ et puisque celles-ci engendrent S_n ,

$$S_n = \langle t_2, t_3, \dots, t_n \rangle$$
.

(b) Si s = (i, j), u_s est la réflexion par rapport à l'hyperplan de vecteur normal $e_i - e_j$.

- (c) Si s est le produit de p transpositions alors $\operatorname{Ker}(u_s \operatorname{Id}_E)$ contient l'intersection de p hyperplans (ceux correspondant aux transpositions comme décrit ci-dessus). Or, ici $\operatorname{Ker}(u_s \operatorname{Id}_E) = \operatorname{Vect}(e_1 + \cdots + e_n)$ et donc $p \geq n 1$.
- (d) n-1 en conséquence de ce qui précède.

Exercice 7: [énoncé]

- (a) Supposons $M^2 \in \mathcal{A}$. \mathcal{A} et $\mathrm{Vect}(I_n)$ étant supplémentaires dans $\mathcal{M}_n(\mathbb{C})$, on peut écrire $M = A + \lambda I_n$ avec $A \in \mathcal{A}$. On a alors $M^2 = A^2 + 2\lambda A I_n + \lambda^2 I_n$ d'où l'on tire $\lambda^2 I_n \in \mathcal{A}$ puis $\lambda = 0$ ce qui donne $M \in \mathcal{A}$. Pour $i \neq j$, $E_{i,j}^2 = 0 \in \mathcal{A}$ donc $E_{i,j} \in \mathcal{A}$ puis $E_{i,i} = E_{i,j} \times E_{j,i} \in \mathcal{A}$. Par suite $I_n = E_{1,1} + \cdots + E_{n,n} \in \mathcal{A}$. Absurde.
- (b) Formons une équation de l'hyperplan \mathcal{A} de la forme ax + by + cz + dt = 0 en la matrice inconnue $M = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$ avec $(a,b,c,d) \neq (0,0,0,0)$. Cette équation peut se réécrire $\operatorname{tr}(AM) = 0$ avec $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$.

Puisque $I_2 \in \mathcal{A}$, on a tr A = 0. Soit λ une valeur propre de A.

Si $\lambda \neq 0$ alors $-\lambda$ est aussi valeur propre de A et donc A est diagonalisable via une matrice P.

On observe alors que les matrices M de \mathcal{A} sont celles telles que $P^{-1}MP$ a ses coefficients diagonaux égaux.

Mais alors pour $M = P \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} P^{-1}$ et $N = P \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} P^{-1}$ on a $M, N \in \mathcal{A}$ alors que $MN \in \mathcal{A}$.

Si $\lambda = 0$ alors A est trigonalisable en $\begin{pmatrix} 0 & \alpha \\ 0 & 0 \end{pmatrix}$ avec $\alpha \neq 0$ via une matrice P.

On observe alors que les matrices M de \mathcal{A} sont celles telles que $P^{-1}MP$ est triangulaire supérieure. L'application $M\mapsto P^{-1}MP$ est un isomorphisme comme voulu.

Exercice 8: [énoncé]

Notons qu'un sous-anneau de $\mathbb Q$ possédant 1 contient nécessairement $\mathbb Z.$

(a) Par égalité de Bézout, on peut écrire pu+qv=1 avec $u,v\in\mathbb{Z}$. Si $\frac{p}{q}\in A$ alors

$$\frac{1}{q} = u\frac{p}{q} + v.1 \in A.$$

(b) $I \cap \mathbb{Z}$ est un sous-groupe de $(\mathbb{Z}, +)$ donc il est de la forme $n\mathbb{Z}$ avec $n \in \mathbb{N}$.

Puisque $I \neq \{0\}$, il existe $p/q \in I$ non nul et par absorption, $p = q.p/q \in I \cap \mathbb{Z}$ avec $p \neq 0$. Par suite $I \cap \mathbb{Z} \neq \{0\}$ et donc $n \in \mathbb{N}^*$. Puisque $n \in I$, on peut affirmer par absorption que $nA \subset I$. Inversement, pour $p/q \in I$ avec $p \wedge q = 1$ on a $1/q \in A$ et $p \in n\mathbb{Z}$ donc $p/q \in nA$. Ainsi I = nA.

- (c) On peut vérifier que Z_p est un sous-anneau de \mathbb{Q} . Pour $x = a/b \in \mathbb{Q}^*$ avec $a \wedge b = 1$. Si $p \not| b$ alors $p \wedge b = 1$ et $x \in Z_p$. Sinon $p \mid b$ et donc $p \not| a$ d'où l'on tire $1/x \in Z_p$.
- (d) Soit J un idéal strict de A. J ne contient pas d'éléments inversibles de A car sinon il devrait contenir 1 et donc être égal à A.

Ainsi J est inclus dans I. De plus, on peut montrer que I est un idéal de A. En effet $I \subset A$ et $0 \in I$.

Soient $a \in A$ et $x \in I$.

Cas $a = 0 : ax = 0 \in I$.

Cas $a \neq 0$: Supposons $(ax)^{-1} \in A$ alors $a^{-1}x^{-1} \in A$ et donc $x^{-1} = a(a^{-1}x^{-1}) \in A$ ce qui est exclu. Ainsi, $(ax)^{-1} \notin A$ et donc $ax \in I$.

Soient $x, y \in I$. Montrons que $x + y \in I$.

Cas x = 0, y = 0 ou x + y = 0: c'est immédiat.

Cas $x \neq 0, y \neq 0$ et $x + y \neq 0$: On a $(x + y)^{-1}(x + y) = 1$ donc

$$(x+y)^{-1}(1+x^{-1}y) = x^{-1}$$
 et $(x+y)^{-1}(1+xy^{-1}) = y^{-1}$ (*).

Par l'hypothèse de départ, l'un au moins des deux éléments $x^{-1}y$ ou $xy^{-1} = (x^{-1}y)^{-1}$ appartient à A.

Par opérations dans A à l'aide des relations (*), si $(x+y)^{-1} \in A$ alors x^{-1} ou y^{-1} appartient à A ce qui est exclu. Ainsi $(x+y)^{-1} \notin A$ et donc $x+y \in I$. Finalement I est un idéal de A.

Par suite, il existe $n \in \mathbb{N}$, vérifiant I = nA.

Si n = 0 alors $I = \{0\}$ et alors $A = \mathbb{Q}$ car pour tout $x \in \mathbb{Q}^*$, x ou $1/x \in A$ et dans les deux cas $x \in A$ car $I = \{0\}$.

Si n=1 alors I=A ce qui est absurde car $1\in A$ est inversible.

Nécessairement $n \geq 2$. Si n = qr avec $2 \leq q, r \leq n-1$ alors puisque $1/n \notin A$, au moins l'un des éléments 1/q et $1/r \notin A$. Quitte à échanger, on peut supposer $1/q \notin A$. qA est alors un idéal strict de A donc $qA \subset I$. Inversement $I \subset qA$ puisque n est multiple de q. Ainsi, si n n'est pas premier alors il existe un facteur non trivial q de n tel que I = nA = qA. Quitte à recommencer, on peut se ramener à un nombre premier p.

Finalement, il existe un nombre premier p vérifiant I = pA.

Montrons qu'alors $A = Z_p$.

Soit $x \in A$. On peut écrire x = a/b avec $a \wedge b = 1$. On sait qu'alors $1/b \in A$ donc si $p \mid b$ alors $1/p \in A$ ce qui est absurde car $p \in I$. Ainsi $p \not\mid b$ et puisque p est premier, $p \wedge b = 1$. Ainsi $A \subset Z_p$.

Soit $x \in Z_p$, x = a/b avec $b \land p = 1$. Si $x \notin A$ alors $x \neq 0$ et $1/x = b/a \in A$ puis $b/a \in I \in pA$ ce qui entraı̂ne, après étude arithmétique, $p \mid b$ et est absurde.

Ainsi $Z_p \subset A$ puis finalement $Z_p = A$.

Exercice 9: [énoncé]

- (a) Les noyaux croissent donc leurs dimensions croissent. Or ces dernières forment une suite croissante et majorée donc stationnaire.
- (b) $\mathbb{R}_n[X]$ est stable par D et, puisque la dérivée d'ordre n+1 d'un polynôme de degré $\leq n$ est nulle, l'endomorphisme induit par D sur $\mathbb{R}_n[X]$ est nilpotent. Soit F de dimension finie stable par D. Il existe $n \in \mathbb{R}_n[X]$ tel que $F \subset \mathbb{R}_n[X]$. D est nilpotent sur $\mathbb{R}_n[X]$ donc l'endomorphisme induit par D sur F l'est aussi. Posons m+1 la dimension de F. L'endomorphisme induit par la dérivation et assurément nilpotent d'ordre inférieur à m+1 et donc

$$\forall P \in F, D^{m+1}(P) = 0.$$

Ceci donne $F \subset \mathbb{R}_m[X]$ et on obtient l'égalité par argument de dimension.

(c) On suppose F de dimension infinie.

Soit $P \in \mathbb{R}[X]$ et n son degré. Il existe $Q \in F$ tel que deg $Q \ge n$. La famille $(Q, D(Q), \ldots, D^q Q)$ (avec $q = \deg Q$) est une famille de polynômes de degrés étagés tous éléments de F. On a donc

$$P \in \mathbb{R}_q[X] = \text{Vect}(Q, D(Q), \dots, D^q(Q)) \subset F.$$

(d) Supposons $g^2 = k \operatorname{Id} + D$.

D est un polynôme en g et donc commute avec g. Le noyau de D est alors stable par g. Ainsi, on peut écrire $g(1) = \lambda$ et alors $g^2(1) = \lambda^2 = k$. On en déduit k > 0.

On a même k>0, car si $g^2=D$ alors $\operatorname{Ker} g^2$ est de dimension 1. Or $\operatorname{Ker} g\subset \operatorname{Ker} g^2$ et donc dim $\operatorname{Ker} g=0$ ou 1. Le premier cas est immédiatement exclu et le second l'est aussi car si $\operatorname{Ker} g=\operatorname{Ker} g^2$, les noyaux itérés qui suivent sont aussi égaux.

Au surplus k > 0 est possible. Si on écrit le développement en série entière

$$\sqrt{1+x} = \sum_{n=0}^{+\infty} a_n x^n$$

alors

$$g = \sqrt{k} \sum_{n=0}^{+\infty} a_n \left(\frac{D}{\sqrt{k}}\right)^n$$

définit un endomorphisme solution (il n'y a pas de problème de convergence à résoudre, car pour chaque polynôme P la somme est constituée de termes nuls à partir d'un certain rang).

Exercice 10: [énoncé]

(a) Δ est évidemment linéaire de $\mathcal{M}_p(\mathbb{R})$ dans lui-même. En exploitant

$$\Delta(BC) = ABC - BCA = (AB - BA)C + B(AC - CA) = \Delta(B)C + B\Delta(C)$$

on montre la relation

$$\Delta^{n}(MN) = \sum_{k=0}^{n} \binom{n}{k} \Delta^{k}(M) \Delta^{n-k}(N)$$

en raisonnant par récurrence comme pour établir la formule de Leibniz.

(b) AB = BA donne directement $\Delta(B) = 0$ et donc $\Delta^2(H) = 0$. La relation $\Delta^{n+1}(H^n) = 0$ s'obtient alors en raisonnant par récurrence et en observant que les termes sommés sont nuls dans la relation

$$\Delta^{n+1}(H^n) = \Delta^{n+1}(HH^{n-1}) = \sum_{k=0}^{n+1} \binom{n+1}{k} \Delta^k(H) \Delta^{n+1-k}(H^{n-1}).$$

L'identité $\Delta^n(H^n) = n!B^n$ s'obtient aussi par récurrence et un calcul assez analogue.

(c) Considérons une norme sous-multiplicative (par équivalence des normes en dimension finie, cela ne change rien au problème). On a

$$||B^n|| = \frac{1}{n!} ||\Delta^n(H^n)||.$$

L'application linéaire Δ étant continue, on peut introduire $k \geq 0$ vérifiant

$$\forall M \in \mathcal{M}_p(\mathbb{R}), \|\Delta(M)\| \le k\|M\|.$$

On a alors

$$||B^n|| \le \frac{1}{n!} k^n ||H^n|| \le \frac{1}{n!} (k||H||)^n$$

puis

$$\|B^n\|^{1/n} \le \frac{1}{(n!)^{1/n}} (k\|H\|) \xrightarrow[n \to +\infty]{} 0 \text{ car } n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$

(d) On peut plonger le problème dans le cadre complexe. Soit λ une valeur propre complexe de B et M une matrice de $\mathcal{M}_p(\mathbb{C})$ dont toutes les colonnes sont vecteurs propres de B associés à la valeur propre λ . On a $BM = \lambda M$ et donc $B^n M = \lambda^n M$ puis $\|B^n M\|^{1/n} = |\lambda| \|M\|^{1/n}$. Or

$$\|B^n M\|^{1/n} \le \|B^n\|^{1/n} \|M\|^{1/n} \xrightarrow[n \to +\infty]{} 0$$

et on peut donc conclure $\lambda = 0$.

Puisque 0 est la seule valeur propre complexe de B, celle-ci est nilpotente (cf. théorème de Cayley-Hamilton).

Exercice 11: [énoncé]

(a) Soit $x \in \text{Ker } u$. On a $u(x) = 0_E$ et donc

$$u(v(x)) = u(x) + v(u(x)) = 0_E.$$

Ainsi $v(x) \in \text{Ker } u$.

(b) Si par l'absurde, l'endomorphisme u est inversible, on peut écrire

$$u \circ v \circ u^{-1} = v + \mathrm{Id}_E.$$

En passant à la trace, on obtient

$$\operatorname{tr}(v) = \operatorname{tr}(v) + \dim E.$$

Ceci est absurde. On en déduit $Ker(u) \neq \{0\}$.

 $\operatorname{Ker}(u)$ est stable v et non réduit à $\{0\}$. L'endomorphisme complexe induit par v sur cet espace de dimension finie admet donc une valeur propre λ . Si x est un vecteur propre associé, c'est un vecteur propre commun à u et v car

$$u(x) = 0_E$$
 et $v(x) = \lambda . x$.

(c) La conclusion qui précède vaut aussi pour une identité du type $u\circ v-v\circ u=au$ avec $a\neq 0.$

Dans le cas où a=0, la propriété est encore vraie en raisonnant cette fois-ci avec un sous-espace propre de u (stable par v car on est en situation où u et v commutent).

Si $u \circ v - v \circ u = au + bv$ avec $b \neq 0$ alors, en considérant w = au + bv, on a $u \circ w - w \circ u = bw$. Les endomorphismes u et w ont un vecteur propre en commun et celui-ci est aussi vecteur propre de v.

Finalement, on retient

 $u \circ v - v \circ u \in \text{Vect}(u, v) \implies u \text{ et } v \text{ ont un vecteur propre en commun.}$

On peut alors en déduire que ces deux endomorphismes sont cotrigonalisables en raisonnant par récurrence sur la dimension de E. En bref (car c'est assez long à rédiger), si l'on complète le vecteur propre précédent en une base de E, les endomorphismes u et v seront figurés par des matrices

$$\begin{pmatrix} \lambda & * \\ 0 & A \end{pmatrix}$$
 et $\begin{pmatrix} \mu & * \\ 0 & B \end{pmatrix}$.

La relation $u \circ v - v \circ u \in \text{Vect}(u, v)$ donne, par calcul par blocs, $AB - BA \in \text{Vect}(A, B)$. On applique l'hypothèse de récurrence aux matrices A et B:

$$P^{-1}AP = T$$
 et $P^{-1}BP = T'$ avec P inversible de taille $n-1$.

On transpose ensuite cette solution aux matrices précédentes via la matrice inversible

 $\begin{pmatrix} 1 & 0 \\ 0 & P \end{pmatrix}$.

Exercice 12 : [énoncé]

- (a) Si $A = \begin{pmatrix} a & b \\ c & s \end{pmatrix}$ alors $\operatorname{Com} A = \begin{pmatrix} d & -c \\ -a & b \end{pmatrix}$ et la propriété (\mathcal{P}) est satisfaite avec $\alpha = a + d$.
- (b) $\text{Com } A = \det(A)^t (A^{-1}).$
- (c)

$$Com(AB) = \det(AB)^{t}(AB)^{-1} = \det(AB)^{t}(B^{-1}A^{-1})$$
$$= \det(A)^{t}A^{-1}\det(B)^{t}B^{-1} = Com(A)Com(B).$$

- (d) Si $A = PBP^{-1}$ alors $\operatorname{Com}(A) = \operatorname{Com}(P)\operatorname{Com}(B)\operatorname{Com}(P^{-1})$. Or $\operatorname{Com}(P) = \det(P)^t(P^{-1})$ et, après simplification des déterminants, on a $\operatorname{Com}(A) = {}^tP^{-1}\operatorname{Com}(B){}^tP$. Dès lors, si $A + {}^t\operatorname{Com} A = \alpha \operatorname{I}_n$, on obtient $P(B + \operatorname{Com} B)P^{-1} = \alpha \operatorname{I}_n$ puis $B + \operatorname{Com} B = \alpha \operatorname{I}_n$.
- (e) Si A vérifie (\mathcal{P}) , il existe $\alpha \in \mathbb{C}$ tel que

$$A + {}^{t}\operatorname{Com} A = \alpha I_{n}.$$

En multipliant par A et en réordonnant les membres, on obtient l'équation équivalente

$$A^2 - \alpha A + \det(A)I_n = O_n. \tag{1}$$

La matrice A ne possédant qu'une valeur propre et n'étant pas scalaire, n'est pas diagonalisable. Le polynôme annulateur qui précède n'est donc pas à racines simples. En notant λ son unique racine (la valeur propre de A, non nulle) on a les conditions

$$\alpha^2 - 4 \det A = 0, \lambda = \alpha/2 \text{ et } \det A = \lambda^n.$$

On en déduit $\alpha = 2\lambda$, det $A = \lambda^2$ et $\lambda^{n-2} = 1$. Au surplus, l'équation (??) se relit

$$(A - \lambda I_n)^2 = O_n.$$

Ceci permet d'écrire $A = \lambda I_n + N$ avec N vérifiant $N^2 = O_n$.

Inversement, si la matrice A est de cette forme, il est possible de remontrer les calculs jusqu'à constater que A vérifie (\mathcal{P}) .

(f) Comme au-dessus, si A vérifie (\mathcal{P}) , il existe $\alpha \in \mathbb{C}$ tel que

$$A^2 - \alpha A + \det(A)I_n = O_n.$$

Si A possède deux valeurs propres distinctes λ et μ , alors ce polynôme possède deux racines distinctes et est donc scindé à racines simples. On en déduit que la matrice A est diagonalisable. Quitte à remplacer A par une matrice semblable, on peut supposer la matrice A diagonale avec p coefficients λ sur la diagonale et q=n-p coefficients μ sur la diagonale. Il est alors facile de calculer la comatrice de A (elle aussi diagonale) et de constater que A vérifie la propriété (\mathcal{P}) si, et seulement si, les paramètres précédents sont liés par la condition

$$\lambda^{p-1}\mu^{q-1} = 1.$$

Les matrices scalaires vérifiant évidemment la propriété (\mathcal{P}) , il ne reste plus, pour conclure, qu'à étudier le cas des matrices non inversibles.

Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice non inversible vérifiant (\mathcal{P}) . Il existe $\alpha \in \mathbb{C}$ tel que

$$A^2 - \alpha A = O_n.$$

Si $\alpha = 0$ alors $A^2 = 0$. On en déduit rgA < n-1 auquel cas la comatrice de A est nulle (les cofacteurs sont nuls car tous les mineurs sont nuls) et la propriété (\mathcal{P}) conclut que la matrice A est nulle.

Si $\alpha \neq 0$ alors $A = \alpha B$ avec $B^2 = B$. La matrice B est une matrice de projection de même rang que A. Pour que A soit autre que la matrice nulle, il

faut rgA = n - 1 ce qui permet de dire que B est semblable à diag $(1, \ldots, 1, 0)$ et donc A semblable à diag $(\alpha, \ldots, \alpha, 0)$.

Inversement, par le calcul, une telle matrice est solution si, et seulement si, $\alpha^{n-2} = 1$.

Exercice 13: [énoncé]

- (a) Dans une base adaptée à l'écriture $E = V \oplus W$, la matrice de u est diagonale par blocs avec des blocs diagonaux figurant les endomorphismes induits par u sur V et W. En calculant les polynômes caractéristiques par cette représentation matricielle, la relation $\chi = \chi' \chi''$ est immédiate.
- (b) Commençons par un résultat préliminaire : Si P est un polynôme irréductible unitaire et si P^{α} annule u alors le polynôme caractéristique χ de u s'écrit P^{β} . Raisonnons matriciellement. Soit $A \in \mathcal{M}_n(\mathbb{R}) \subset \mathcal{M}_n(\mathbb{C})$. On suppose que P^{α} annule A. Le polynôme minimal π de A divise P^{α} , il est donc de la forme P^{γ} avec $1 \leq \gamma \leq \alpha$. Les valeurs propres complexes de A sont exactement les racines de π donc les racines de P. Les valeurs propres complexes de A sont aussi les racines de χ . Enfin, le polynôme χ est réel et donc, que le polynôme P soit de la forme $X \lambda$ ou de la forme $X^2 + pX + q$ avec des racines conjuguées, on peut écrire $\chi = P^{\beta}$.

Revenons au sujet. Le polynôme caractéristique de u étant annulateur et les polynômes $P_i^{\alpha_i}$ étant deux à deux premiers entre eux, on peut appliquer le lemme de décomposition des noyaux pour écrire

$$E = \bigoplus_{i} \operatorname{Ker} P_{i}^{\alpha_{i}}(u).$$

On peut introduire les endomorphismes u_i induits par u sur les espaces $E_i = \text{Ker } P_i^{\alpha_i}(u)$.

En notant χ_i le polynôme caractéristique de u_i , la question précédente donne

$$\chi = \prod_{i} \chi_{i}.$$

Sachant $P_i^{\alpha_i}(u_i)=0$, l'étude liminaire permet d'écrire $\chi_i=P_i^{\beta_i}$. On a donc simultanémement

$$\chi = \prod_{i} P_i^{\alpha_i} \text{ et } \chi = \prod_{i} P_i^{\beta_i}.$$

Par unicité de la décomposition en facteurs irréductibles, on a $\alpha_i = \beta_i$. On peut alors conclure

$$\dim \operatorname{Ker} P_i^{\alpha_i}(u) = \dim E_i = \deg \chi_i = \alpha_i \deg P_i.$$

(c) Supposons $\pi \neq \chi$. Le polynôme π s'écrit

$$\pi = \prod_{i} P_i^{\gamma_i} \text{ avec } \gamma_i \le \alpha_i \text{ et } \sum_{i} \gamma_i < \sum_{i} \alpha_i.$$

Par le lemme de décomposition des noyaux

$$E = \bigoplus_{i} \operatorname{Ker} P_{i}^{\gamma_{i}}(u).$$

Il est alors impossible que dim Ker $P_i^k(u) = k \deg P_i$ pour tout $k \leq \alpha_i$ car alors

$$\dim E = \sum_{i} \gamma_i \deg P_i < \sum_{i} \alpha_i \deg P_i = \deg \chi = \dim E.$$

Inversement, supposons $\pi = \chi$.

Commençons par établir que si P est un polynôme irreductible unitaire

$$\dim \operatorname{Ker} P^{\alpha}(u) = k \deg P \text{ avec } k \in \mathbb{N}.$$

Considérons v l'endomorphisme induit par u sur $F = \operatorname{Ker} P^{\alpha}(u)$. On a $P^{\alpha}(v) = 0$ et le polynôme caractéristique de v est donc de la forme P^k avec $k \in \mathbb{N}$. On en déduit $\dim F = k \deg P$.

Puisque $\pi = \chi$, on a pout tout i

$$\operatorname{Ker} P_i^{\alpha_i-1}(u) \neq \operatorname{Ker} P_i^{\alpha_i}$$

(sinon, on pourrait définir un polynôme annulateur « plus petit » que π). Par l'étude classique des noyaux itérés, on sait, pour v endomorphisme,

$$\operatorname{Ker} v^k \subset \operatorname{Ker} v^{k+1}$$
 et $\operatorname{Ker} v^k = \operatorname{Ker} v^{k+1} \implies \forall \ell \in \mathbb{N}, \operatorname{Ker} v^{k+\ell} = \operatorname{Ker} v^k$.

En considérant, $v = P_i(u)$, on obtient la succession

$$0 < \dim \operatorname{Ker} P_i(u) < \dim \operatorname{Ker} P_i^2(u) < \dots < \dim \operatorname{Ker} P_i^{\alpha}(u) = \alpha \deg P_i$$

où chacune des α dimensions est multiple de deg P_i . On peut conclure

$$\forall k \leq \alpha_i, \dim \operatorname{Ker} P_i^k(u) = k \deg P_i.$$

Exercice 14: [énoncé]

Notons $\mathcal{B} = (e_1, \dots, e_n)$ la base canonique de \mathbb{K}^n et f l'endomorphisme de \mathbb{K}^n dont la matrice dans \mathcal{B} est J.

Posons $\varepsilon_1 = e_1 + \cdots + e_n$, de sorte que $f(\varepsilon_1) = n\varepsilon_1$.

Puisque $\operatorname{rg} f = \operatorname{rg} J = 1$, on peut introduire $(\varepsilon_2, \ldots, \varepsilon_n)$ base du noyau de f. Il est alors clair que $\mathcal{B}' = (\varepsilon_1, \ldots, \varepsilon_n)$ est une base de \mathbb{K}^n et que la matrice de f dans celle-ci est diagonale.

On peut aussi observer $J^2 = nJ$ et exploiter que X(X - n) est un polynôme annulateur scindé simple de J.

Exercice 15: [énoncé]

- (a) Puisque $u \circ v = v \circ u$ les sous-espaces propres de u sont stables par v. Puisque E est un \mathbb{C} -espace vectoriel, u admet une valeur propre et le sous-espace propre associé est stable par v. L'endomorphisme induit par v sur celui-ci admet une valeur propre et ceci assure l'existence d'un vecteur propre commun à u et v.
- (b) $u \circ v v \circ u = au$.

Si u est inversible alors $u \circ v \circ u^{-1} - v = a \operatorname{Id}_E$ et donc $\operatorname{tr}(u \circ v \circ u^{-1}) - \operatorname{tr} v = a \dim E$.

Or $tr(u \circ v \circ u^{-1}) = tr v$ ce qui entraı̂ne une absurdité.

On en déduit que u est non inversible.

Par récurrence sur $n \in \mathbb{N}$, on obtient

$$u^n \circ v - v \circ u^n = nau^n$$

L'endomorphisme $\varphi \colon w \mapsto w \circ v - v \circ w$ n'admet qu'un nombre fini de valeurs propres car opère en dimension finie. Si u n'est pas nilpotent alors pour tout $n \in \mathbb{N}$, na est valeur propre de φ . C'est absurde et donc u est nilpotent. Enfin, soit $x \in \operatorname{Ker} u$. On a u(v(x)) = v(u(x)) + au(x) = 0 donc $v(x) \in \operatorname{Ker} u$. Par suite $\operatorname{Ker} u \neq \{0\}$ est stable v et un vecteur propre de l'endomorphisme induit est vecteur propre commun à u et v.

(c) $u \circ v - v \circ u = au + bv$.

Si a=0 il suffit de transposer l'étude précédente.

Si $a \neq 0$, considérons w = au + bv.

On a

$$(au + bv) \circ v - v \circ (au + bv) = a(u \circ v - v \circ u) = a(au + bv).$$

Par l'étude qui précède, au + bv et v ont un vecteur propre en commun puis u et v ont un vecteur propre en commun.

Exercice 16: [énoncé]

(a) On vérifie

$$\begin{pmatrix} I_n & D \\ O_n & I_n \end{pmatrix}^{-1} = \begin{pmatrix} I_n & -D \\ O_n & I_n \end{pmatrix}.$$

(b) On observe

$$\begin{pmatrix} I_n & D \\ O_n & I_n \end{pmatrix}^{-1} \begin{pmatrix} A & C \\ O_n & B \end{pmatrix} \begin{pmatrix} I_n & D \\ O_n & I_n \end{pmatrix} = \begin{pmatrix} A & E \\ O_n & B \end{pmatrix}$$

avec E = AD + C - DB.

Pour conclure, montrons qu'il existe $D \in \mathcal{M}_n(\mathbb{C})$ vérifiant DB - AD = C. Considérons pour cela l'endomorphisme φ de $\mathcal{M}_n(\mathbb{C})$ défini par

$$\varphi(M) = MB - AM$$
.

Pour $M \in \operatorname{Ker} \varphi$, on a MB = AM.

Pour tout X vecteur propre de B associé à une valeur propre λ , on a

$$AMX = MBX = \lambda MX.$$

Puisque λ est valeur propre de $B,\,\lambda$ n'est pas valeur propre de A et donc $MX=O_{n,1}.$

Puisqu'il existe une base de vecteurs propres de B et puisque chacun annule M, on a $M = O_n$.

Ainsi l'endomorphisme φ est injectif, or $\mathcal{M}_n(\mathbb{C})$ est de dimension finie donc φ est bijectif. Ainsi il existe une matrice D telle $\varphi(D) = C$ et, par celle-ci, on obtient la similitude demandée.

Exercice 17: [énoncé]

- (a) Im u est stable pour u donc u_{E_2} est bien défini. Par le théorème du rang la restriction de u à tout supplémentaire de Ker u définit un isomorphisme avec Im u. Ici cela donne u_{E_2} automorphisme.
- (b) Soient $u, v \in \Gamma$. Si $x \in \text{Ker}(v \circ u)$ alors $u(x) \in \text{Im } u \cap \text{Ker } v$ donc $u(x) \in E_1 \cap E_2$ et u(x) = 0 puis $x \in E_1$. Ainsi $\text{Ker}(v \circ u) \subset E_1$ et l'inclusion réciproque est immédiate. Im $(v \circ u) = v(u(E)) = v(E_2) = E_2$ car v_{E_2} est un automorphisme de E_2 .

 $\operatorname{Im}(v \circ u) = v(u(E)) = v(E_2) = E_2 \operatorname{car} v_{E_2}$ est un automorphisme de E_2 . Ainsi $v \circ u \in \Gamma$.

- (c) Si $\phi(u) = \phi(v)$ alors $u_{E_2} = v_{E_2}$. Or $u_{E_1} = 0 = v_{E_1}$ donc les applications linéaires u et v coïncident sur des sous-espaces vectoriels supplémentaires et donc u = v.
- (d) Une application linéaire peut être définie de manière unique par ses restrictions linéaires sur deux sous-espaces vectoriels supplémentaires. Pour $w \in \operatorname{GL}(E_2)$ considérons $u \in \mathcal{L}(E)$ déterminé par $u_{E_1} = 0$ et $u_{E_2} = w$. On vérifie aisément $E_1 \subset \operatorname{Ker} u$ et $E_2 \subset \operatorname{Im} u$. Pour $x \in \operatorname{Ker} u$, x = a + b avec $a \in E_1$ et $b \in E_2$. La relation u(x) = 0 donne alors u(a) + u(b) = 0 c'est-à-dire w(b) = 0. Or $w \in \operatorname{GL}(E_2)$ donc b = 0 puis $x \in E_1$. Ainsi $\operatorname{Ker} u \subset E_1$ et finalement $\operatorname{Ker} u = E_1$. Pour $y \in \operatorname{Im}(u)$, il existe $x \in E$ tel que y = u(x). Or on peut écrire x = a + b avec $a \in E_1$ et $b \in E_2$. La relation y = u(x) donne alors $y = u(a) + u(b) = w(b) \in E_2$. Ainsi $\operatorname{Im} u \subset E_1$ et finalement $\operatorname{Im} u = E_1$. On peut conclure que $u \in \Gamma$ et $u = w : \phi$ est surjectif.

(e) φ est un morphisme bijectif : il transporte la structure de groupe existant sur $GL(E_2)$ en une structure de groupe sur (Γ, \circ) . Le neutre est l'antécédent de Id_{E_2} c'est-à-dire la projection sur E_2 parallèlement à E_1 .

Exercice 18 : [énoncé]

On vérifie aisément que Φ est endomorphisme de $\mathcal{S}_2(\mathbb{R})$.

(a) En choisissant la base de $S_2(\mathbb{R})$ formée des matrices $E_{1,1}, E_{2,2}$ et $E_{1,2} + E_{2,1}$, on obtient la matrice de Φ suivante

$$\begin{pmatrix} 2a & 0 & 2b \\ 0 & 2d & 2c \\ c & b & a+d \end{pmatrix}.$$

(b) Par la règle de Sarrus, on calcule $\chi_{\Phi}(\lambda)$ et on obtient

$$\chi_{\Phi}(2\lambda) = -4(2\lambda - (a+d))\chi_A(\lambda).$$

(c) Posons Δ égal au discriminant de χ_A . Si $\Delta > 0$ alors χ_{Φ} possède trois racines réelles distinctes

$$a+d, a+d+\sqrt{\Delta}$$
 et $a+d-\sqrt{\Delta}$.

Si $\Delta=0$ alors χ_Φ possède une racine réelle triple

$$a+d$$
.

Si $\Delta < 0$ alors χ_{Φ} possède une racine réelle et deux racines complexes non réelles.

Supposons Φ diagonalisable.

Le polynôme caractéristique de Φ est scindé sur \mathbb{R} donc $\Delta \geq 0$.

Si $\Delta > 0$ alors χ_A possède deux racines réelles distinctes et donc la matrice A est diagonalisable.

Si $\Delta=0$ alors Φ est diagonalisable et ne possède qu'une seule valeur propre $\lambda=a+d$ donc l'endomorphisme Φ est une homothétie vectorielle de rapport égal à cette valeur propre. On obtient matriciellement

$$\begin{pmatrix} 2a & 0 & 2b \\ 0 & 2d & 2c \\ c & b & a+d \end{pmatrix} = \begin{pmatrix} a+d & 0 & 0 \\ 0 & a+d & 0 \\ 0 & 0 & a+d \end{pmatrix}.$$

On en déduit

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$$

et donc la matrice A est diagonalisable.

(d) Supposons A diagonalisable

Le polynôme caractéristique de A est scindé sur \mathbb{R} donc $\Delta > 0$.

Si $\Delta > 0$ alors Φ est diagonalisable car possède 3 valeurs propres réelles distinctes.

Si $\Delta=0$ alors A possède une seule valeur propre et étant diagonalisable, c'est une matrice scalaire

$$A = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$$

et alors la matrice de Φ est diagonale

$$\begin{pmatrix} 2a & 0 & 0 \\ 0 & 2a & 0 \\ 0 & 0 & 2a \end{pmatrix}.$$

Exercice 19: [énoncé]

(a) Un endomorphisme non nul vérifiant $f^2 = 0$ avec $f \neq 0$ convient. C'est le cas d'un endomorphisme représenté par la matrice

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

(b) Soit (e_1, \ldots, e_n) une base de vecteurs propres de f. La matrice de f dans cette base est de la forme

$$\begin{pmatrix} \lambda_1 & & & (0) \\ & \ddots & \\ (0) & & \lambda_n \end{pmatrix}$$

et alors les espaces

$$\operatorname{Ker} f = \operatorname{Vect} \{ e_i \mid \lambda_i = 0 \} \text{ et } \operatorname{Im} f = \operatorname{Vect} \{ e_i \mid \lambda_i \neq 0 \}$$

sont évidemment supplémentaires (puisque associés à des regroupements de vecteurs d'une base).

(c) On vérifie Ker $f^k \subset \text{Ker } f^{k+1}$. La suite des dimensions des noyaux des f^k est croissante et majorée par n. Elle est donc stationnaire et il existe $k \in \mathbb{N}$ tel que

$$\forall \ell \geq k$$
, dim Ker $f^{\ell+1} = \dim \operatorname{Ker} f^{\ell}$.

Par inclusion et égalité des dimensions

$$\forall \ell \geq k, \text{Ker } f^{\ell+1} = \text{Ker } f^{\ell}$$

En particulier Ker $f^{2k} = \text{Ker } f^k$. On peut alors établir $\text{Im } f^k \cap \text{Ker } f^k = \{0_E\}$ et par la formule du rang on obtient la supplémentarité

$$\operatorname{Im}(f^k) \oplus \operatorname{Ker}(f^k) = E.$$

L'endomorphisme f^k n'est pas nécessairement diagonalisable. Pour s'en convaincre il suffit de choisir pour f un automorphisme non diagonalisable.

(d) Le résultat n'est plus vrai en dimension infinie comme le montre l'étude de l'endomorphisme de dérivation dans l'espace des polynômes.

Exercice 20: [énoncé]

Supposons n est impair. Le polynôme caractéristique d'une matrice de $\mathcal{M}_n(\mathbb{R})$ étant de degré impair possèdera une racine qui sera valeur propre de la matrice et aussi racine de son polynôme minimal. Celui-ci ne peut alors être le polynôme X^2+1 .

Supposons n est pair. Considérons

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 et $A_n = \operatorname{diag}(A, \dots, A) \in \mathcal{M}_n(\mathbb{R})$

 A_n n'est pas une homothétie donc le degré de son polynôme minimal est supérieur à 2.

De plus $A_n^2 = -I_n$ donc $X^2 + 1$ annule A_n . Au final, $X^2 + 1$ est polynôme minimal de A_n .

Exercice 21 : [énoncé]

(a) Par le théorème de Cayley Hamilton, on a

$$\chi_u(u) = \tilde{0}$$

avec χ_u polynôme de coefficient constant det $u \neq 0$. En écrivant

$$\chi_u(X) = XP(X) + \det u$$

le polynôme

$$Q(X) = -\frac{1}{\det u} P(X)$$

est solution.

(b) Considérons l'endomorphisme v de $\mathbb{K}[X]$ qui envoie le polynôme P(X) sur P(X/2).

On vérifie aisément $u \circ v = v \circ u = \text{Id}$ ce qui permet d'affirmer que u est inversible d'inverse v.

Soit $P = a_n X^n + \cdots + a_1 X + a_0$ un polynôme de degré exactement n. Si $u(P) = \lambda P$ alors par identification des coefficients de degré n, on obtient

$$\lambda = 2^n$$

puis on en déduit

$$P = a_n X^n$$
.

La réciproque étant immédiate, on peut affirmer

$$\operatorname{Sp} u = \{2^n \mid n \in \mathbb{N}\} \text{ et } E_{2^n}(u) = \operatorname{Vect}(X^n).$$

Si par l'absurde il existe $Q \in \mathbb{K}[X]$ tel que

$$u^{-1} = Q(u)$$

alors le polynôme non nul

$$XQ(X) - 1$$

est annulateur de u. Les valeurs propres de u sont alors racines de celui-ci ce qui donne une infinité de racines.

C'est absurde.

Exercice 22: [énoncé]

(a) Commençons par quelques cas particuliers.

Si $A = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$ alors $A \in \mathbb{K}[B]$ en s'appuyant sur un polynôme constant.

Si $A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ avec $\lambda_1 \neq \lambda_2$ alors les matrices qui commutent avec A sont

diagonales donc B est de la forme $\begin{pmatrix} \alpha_1 & 0 \\ 0 & \alpha_2 \end{pmatrix}$. En considérant P = aX + b tel que $P(\lambda_1) = \alpha_1$ et $P(\lambda_2) = \alpha_2$, on a $B = P(A) \in \mathbb{K}[A]$.

Si $A = \begin{pmatrix} \lambda & \mu \\ 0 & \lambda \end{pmatrix}$ avec $\mu \neq 0$, une étude de commutativité par coefficients

inconnus donne $B = \begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix}$. Pour $P = \frac{\beta}{\mu}X + \gamma$ avec $\frac{\beta\lambda}{\mu} + \gamma = \alpha$, on a $B = P(A) \in \mathbb{K}[A]$.

Enfin, dans le cas général, A est semblable à l'un des trois cas précédent via une matrice $P \in GL_2(\mathbb{K})$. La matrice $B' = P^{-1}BP$ commute alors avec $A' = P^{-1}AP$ donc B' est polynôme en A' et par le même polynôme B est polynôme en A.

(b) On imagine que non, reste à trouver un contre-exemple.

Par la recette dite des « tâtonnements successifs » ou saisi d'une inspiration venue d'en haut, on peut proposer

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

On vérifie que A et B commutent et ne sont ni l'un ni l'autre polynôme en l'autre car tout polynôme en une matrice triangulaire supérieure est une matrice triangulaire supérieure.

Exercice 23: [énoncé]

- (a) u admet une valeur propre λ et le sous-espace propre associé est stable par v. Cela assure que u et v ont un vecteur propre en commun e_1 . On complète celui-ci en une base (e_1,e_2,\ldots,e_n) . Les matrices de u et v dans cette base sont de la forme $A=\begin{pmatrix} \lambda & * \\ 0 & A' \end{pmatrix}$ et $B=\begin{pmatrix} \mu & * \\ 0 & B' \end{pmatrix}$. Considérons les endomorphismes u' et v' de $E'=\operatorname{Vect}(e_2,\ldots,e_n)$ représentés par A' et B' dans (e_2,\ldots,e_n) . AB=BA donne A'B'=B'A' et donc [u';v']=0. Cela permet d'itérer la méthode jusqu'à obtention d'une base de cotrigonalisation.
- (b) Par récurrence, on vérifie $[u^k;v]=k\lambda u^k$. L'endomorphisme $w\mapsto [w;v]$ de $\mathcal{L}(E)$ ne peut avoir une infinité de valeurs propres donc il existe $k\in\mathbb{N}^*$ tel que $u^k=0$. L'endomorphisme u est nilpotent donc $\ker u\neq \{0\}$ ce qui permet d'affirmer que u et v ont un vecteur propre commun. On peut alors reprendre la démarche de la question a) sachant qu'ici $A'B'-B'A'=\lambda A'$.
- (c) Si $\alpha=0$, l'étude qui précède peut se reprendre pour conclure. Si $\alpha\neq 0$, on introduit $w=\alpha u+\beta v$ et on vérifie $[w\,;v]=\alpha w$. Ainsi w et v sont cotrigonalisables puis u et v aussi car $u=\frac{1}{\alpha}(w-\beta v)$.

Exercice 24: [énoncé]

- (a) Si M n'est pas inversible, il existe une colonne X non nulle telle que MX=0 et alors l'identité de l'énoncé donne ${}^tMX=X$ donc $1\in \operatorname{Sp}({}^tM)=\operatorname{Sp} M.$ Inversement, si $1\in \operatorname{Sp} M$ alors il existe une colonne X non nulle telle que MX=X et alors l'identité de l'énoncé donne ${}^tMX=0$ et donc tM n'est pas inversible. Or $\det({}^tM)=\det M$ donc M n'est pas inversible non plus.
- (b) La relation donnée entraîne

$$({}^{t}M)^{2} = (I_{n} - M^{2})^{2} = M^{4} - 2M^{2} + I_{n}.$$

Or

$${\binom{t}{M}}^2 = {\binom{t}{M}}^2 = I_n - M$$

donc

$$M^4 - 2M^2 + I_n = I_n - M$$

et donc la matrice M est annulé par le polynôme

$$P(X) = X^4 - 2X^2 + X = X(X - 1)(X^2 + X - 1).$$

C'est un polynôme scindé à racines simples donc la matrice M est diagonalisable.

Exercice 25: [énoncé]

Posons $D = \operatorname{diag}(1,2,\ldots,n)$. L'étude, coefficient par coefficient, de la relation MD = DM donne que les matrices commutant avec D sont les matrices diagonales. Parmi les matrices diagonales, celles qui sont semblables à D sont celles qui ont les mêmes coefficients diagonaux

Exercice 26 : [énoncé]

- (a) Si λ est valeur propre de A alors $\lambda^p = 0$ d'où $\lambda = 0$. Par suite $\chi_A = X^n$ puis par le théorème de Cayley Hamilton $A^n = 0$.
- (b) $\det(A+I) = \chi_A(1) = 1$
- (c) Si M est inversible $\det(A+M) = \det(AM^{-1}+I) \det M$. Or A et M^{-1} commutent donc $(AM^{-1})^p = 0$ puis, par ce qui précède

$$\det(A+M) = \det M.$$

Si M n'est pas inversible, introduisons les matrices $M_p = M + \frac{1}{p}I_n$. À partir d'un certain rang les matrices M_p sont assurément inversibles (car M ne possède qu'un nombre fini de valeurs propres). Les matrices M_p comment avec A et on peut donc écrire

$$\det(A+M_p) = \det M_p.$$

Or $\det M_p \xrightarrow[p \to +\infty]{} \det M$ et $\det (A + M_p) \xrightarrow[p \to +\infty]{} \det (A + M)$ et on peut donc – en passant à la limite – retrouver l'égalité

$$\det(A+M) = \det M.$$

(d) Non prendre : $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ et $M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.

Exercice 27 : [énoncé]

(a) Si v est un endomorphisme, on a

$$\dim v^{-1}(F) \le \dim F + \dim \operatorname{Ker} v.$$

Pour $k \in \mathbb{N}$,

$$\operatorname{Ker}(u - \lambda_i \operatorname{Id}_E)^{k+1} = (u - \lambda_i \operatorname{Id}_E)^{-1} (\operatorname{Ker}(u - \lambda_i \operatorname{Id}_E)^k)$$

donc

$$\dim \operatorname{Ker}(u - \lambda_i \operatorname{Id}_E)^{k+1} \le \operatorname{Ker}(u - \lambda_i \operatorname{Id}_E)^k + 1.$$

Ainsi, on obtient

$$\forall k \in \mathbb{N}, \dim \operatorname{Ker}(u - \lambda_i \operatorname{Id}_E)^k \le k.$$

Le polynôme caractéristique de u est

$$\chi_u(X) = \prod_{i=1}^q (X - \lambda_i)^{n_i}$$

et celui-ci est annulateur de u. Par le lemme de décomposition des noyaux

$$E = \bigoplus_{i=1}^{q} \operatorname{Ker}(u - \lambda_i \operatorname{Id}_E)^{n_i}$$

 $_{
m et\ donc}$

$$\dim E = \sum_{i=1}^{q} \dim \operatorname{Ker}(u - \lambda_i \operatorname{Id}_E)^{n_i}.$$

Or

$$\dim \operatorname{Ker}(u - \lambda_i \operatorname{Id}_E)^{n_i} \le n_i$$

 $_{
m et}$

$$\dim E = \deg \chi_u = \sum_{i=1}^q n_i$$

donc

$$\forall 1 \le i \le q, \dim \operatorname{Ker}(u - \lambda_i \operatorname{Id}_E)^{n_i} = n_i$$

Enfin, par l'étude initiale

$$\forall 1 \le i \le q, \forall 0 \le m \le n_i \dim \operatorname{Ker}(u - \lambda_i \operatorname{Id}_E)^m = m.$$

(b) Si F est un sous-espace vectoriel stable par u, le polynôme caractéristique Q de u_F annule u_F et divise χ_u . On obtient ainsi un polynôme Q de la forme

$$Q(X) = \prod_{i=1}^{q} (X - \lambda_i)^{m_i} \text{ avec } m_i \le n_i$$

vérifiant

$$F \subset \operatorname{Ker} Q(u)$$
.

Or, par le lemme de décomposition des noyaux

$$\operatorname{Ker} Q(u) = \bigoplus_{i=1}^{q} \operatorname{Ker} (u - \lambda_i \operatorname{Id}_E)^{m_i}$$

puis, en vertu du résultat précédent

$$\dim \operatorname{Ker} Q(u) = \sum_{i=1}^{q} m_i = \deg Q = \dim F.$$

Par inclusion et égalité des dimensions

$$\operatorname{Ker} Q(u) = F.$$

(c) On reprend les notations qui précèdent

$$F = \bigoplus_{i=1}^{q} \operatorname{Ker}(u - \lambda_i \operatorname{Id}_E)^{m_i}.$$

On peut alors faire correspondre à F le tuple (m_1, \ldots, m_q) Cette correspondance est bien définie et bijective car

$$\operatorname{Ker}(u - \lambda_i \operatorname{Id}_E)^{m_i} \subset \operatorname{Ker}(u - \lambda_i \operatorname{Id}_E)^{n_i}, E = \bigoplus_{i=1}^q \operatorname{Ker}(u - \lambda_i \operatorname{Id}_E)^{n_i}$$

 $_{
m et}$

$$\dim \operatorname{Ker}(u - \lambda_i \operatorname{Id}_E)^{m_i} = mi.$$

Il y a donc autant de sous-espaces vectoriels stables que de diviseurs unitaires de χ_u .

(a) Par l'absurde supposons X et Y colinéaires. Il existe alors une colonne X_0 réelle telle que

$$X = \alpha X_0$$
 et $Y = \beta X_0$ avec $(\alpha, \beta) \neq (0, 0)$.

On a alors $Z = (\alpha + i\beta)X_0$ et la relation $AZ = \lambda Z$ donne

$$(\alpha + i\beta)AX_0 = \lambda(\alpha + i\beta)X_0$$

Puisque $\alpha + i\beta \neq 0$, on peut simplifier et affirmer $AX_0 = \lambda X_0$. Or X_0 est une colonne réelle donc, en conjuguant, $AX_0 = \overline{\lambda}X_0$ puis $\lambda \in \mathbb{R}$ ce qui est exclu.

(b) On écrit $\lambda = a + \mathrm{i} b$ avec $a, b \in \mathbb{R}$. La relation $AZ = \lambda Z$ donne en identifiant parties réelles et imaginaires

$$AX = aX - bY$$
 et $AY = aY + bX$.

On en déduit que Vect(X, Y) est stable par A.

(c) Le polynôme caractéristique de f est

$$(X+1)(X-2)(X^2-2X+2).$$

Les valeurs propres de A sont -1, 2 et $1 \pm i$ avec

$$E_{-1}(A) = \text{Vect}^{t}(0 \ 0 \ 1 \ 0), E_{2}(A) = \text{Vect}^{t}(1 \ 1 \ 0 \ 1) \text{ et } E_{1+i}(A) = \text{Vect}^{t}(i \ -$$

Soit P un plan stable par f. Le polynôme caractéristique de l'endomorphisme u induit par f sur ce plan divise le polynôme caractéristique de f tout en étant réel et de degré 2. Ce polynôme caractéristique ne peut qu'être

$$(X+1)(X-2)$$
 ou X^2-2X+2

Dans le premier cas, 1 et 2 sont valeurs propres de u et les vecteurs propres associés sont ceux de f. Le plan P est alors

$$Vect\{(0 \ 0 \ 1 \ 0), (1 \ 1 \ 0 \ 1)\}.$$

Dans le second cas, pour tout $x \in P$, on a par le théorème de Cayley Hamilton

$$u^2(x) - 2u(x) + 2x = 0_E$$

et donc la colonne X des coordonnées de x vérifie

$$X \in \text{Ker}(A^2 - 2A + 2I_4).$$

Après calculs, on obtient

$$X \in \text{Vect}({}^{t}(1 \ 0 \ 0 \ 0), {}^{t}(0 \ -1 \ 0 \ 1).$$

Ainsi le plan est inclus dans le plan

$$Vect\{\begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 & 0 & 1 \end{pmatrix}\}$$

ce qui suffit à le déterminer.

Exercice 29 : [énoncé]

Dans une base adaptée au noyau f, la matrice de f est

$$\begin{pmatrix} a & b & 0 & \cdots & 0 \\ c & d & \vdots & & \vdots \\ * & * & \vdots & & \vdots \\ \vdots & \vdots & \vdots & & \vdots \\ * & * & 0 & \cdots & 0 \end{pmatrix}.$$

On a alors

$$\chi_f(X) = X^{n-2} (X^2 - (a+d)X + ad - bc).$$

Or

$$tr(f) = a + d$$
 et $tr(f^2) = a^2 + 2bc + d^2$

donc

$$\chi_f(X) = X^{n-2} \left(X^2 - \text{tr}(f)X + \frac{\left(\text{tr}(f)\right)^2 - \text{tr}(f^2)}{2} \right).$$

Exercice 30: [énoncé]

On vérifie aisément que \mathcal{C} est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ car c'est le noyau de l'endomorphisme $M \mapsto AM - MA$.

Puisque $A^2 = O_3$, on a Im $A \subset \text{Ker } A$.

Puisque $A \neq \mathcal{O}_3$, la formule du rang et l'inclusion précédente montre

$$\operatorname{rg} A = 1$$
 et $\dim \operatorname{Ker} A = 2$.

Soient $X_1 \in \text{Im } A$ non nul, X_2 tel que (X_1, X_2) soit base de Ker A et X_3 un antécédent de X_1 . En considérant la matrice de passage P formée des colonnes X_1, X_2, X_3 , on a

$$P^{-1}AP = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = B.$$

En raisonnant par coefficients inconnus, on obtient que les matrices N vérifiant BN=NB sont de la forme

$$N = \begin{pmatrix} a & b & c \\ 0 & b' & c' \\ 0 & 0 & a \end{pmatrix}.$$

Par suite les matrice M vérifiant AM = MB sont celle de la forme

$$M = P \begin{pmatrix} a & b & c \\ 0 & b' & c' \\ 0 & 0 & a \end{pmatrix} P^{-1}.$$

L'espace \mathcal{C} est donc de dimension 5 et l'on en forme une base à l'aide des matrices

$$M_1 = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} P^{-1}, M_2 = P \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{-1}, M_3 = P \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{-1}.$$

$$M_4 = P \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} P^{-1} \text{ et } M_5 = P \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{-1}.$$

Exercice 31 : [énoncé]

- (a) oui.
- (b) Si A est inversible alors $M \mapsto A^{-1}M$ est clairement application réciproque de f. Si f est inversible alors posons $B = f^{-1}(I_n)$. On a $AB = I_n$ donc A est inversible.
- (c) On observe que $f^n(M) = A^n M$ donc pour $P \in \mathbb{C}[X]$,

$$P(f)(M) = P(A)M.$$

Par suite P est annulateur de f si, et seulement si, il est annulateur de A. Puisque la diagonalisabilité équivaut à l'existence d'un polynôme annulateur scindé à racines simples, on peut conclure.

Exercice 32 : [énoncé]

(a) Notons qu'il est immédiat de vérifier que L_A est une forme linéaire sur E. Par linéarité de la trace, on vérifie $\operatorname{tr}((\lambda A + \mu B)M) = \lambda \operatorname{tr}(AM) + \mu \operatorname{tr}(BM)$ ce qui fournit la linéarité de l'application L.

Puisque dim $E = \dim E^* < +\infty$, il suffit désormais de vérifier l'injectivité de L pour assurer qu'il s'agit d'un isomorphisme. Si $L_A = 0$ (l'application nulle) alors en particulier $L_A({}^t\overline{A}) = 0$ et donc $\operatorname{tr}(A^t\overline{A}) = \operatorname{tr}({}^t\overline{A}A) = 0$. Or

$$\operatorname{tr}({}^{t}\overline{A}A) = \sum_{i,j=1}^{n} |a_{i,j}|^{2}$$

donc A = 0.

Puisque les hyperplans sont exactement les noyaux des formes linéaires non nulles, on peut assurer que pour tout hyperplan H de E, il existe $A \in \mathcal{M}_n(\mathbb{C})$ non nulle telle que

$$H = \{ M \in \mathcal{M}_n(\mathbb{C}) \mid \operatorname{tr}(AM) = 0 \}.$$

(b) Pour tout matrice $M \in T_n^+$, le produit TM est triangulaire à coefficients diagonaux nuls donc $\operatorname{tr}(TM) = 0$. Ainsi $T_n^+ \subset H$ puis $H \cap T_n^+ = T_n^+$. Concernant $H \cap T_n^-$, ou bien c'est un hyperplan de T_n^- , ou bien c'est T_n^- entier.

S'il n'y a pas de coefficient non nul dans le bloc supérieur strict de T alors T est diagonale et un calcul analogue au précédent donne $H \cap T_n^- = T_n^-$ (de dimension n(n-1)/2)

Sinon, on peut déterminer une matrice élémentaire dans T_n^- qui n'est pas dans H (si $\left[T\right]_{i,j} \neq 0$ alors $E_{j,i}$ convient) et donc $H \cap T_n^-$ est un hyperplan de T_n^- (de dimension n(n-1)/2-1).

- (c) Les matrices triangulaire strictes sont bien connues nilpotentes... Une base de T_n^+ adjointe à une base de $H \cap T_n^-$ fournit une famille libre (car T_n^+ et T_n^- sont en somme directe) et celle-ci est formée d'au moins $n(n-1)/2 + n(n-1)/2 1 = n^2 n 1$ éléments.
- (d) Soit H un hyperplan de E. Il existe $A \in \mathcal{M}_n(\mathbb{C})$ non nulle telle que

$$H = \{ M \in \mathcal{M}_n(\mathbb{C}) \mid \operatorname{tr}(AM) = 0 \}.$$

La matrice A est trigonalisable donc on peut écrire $A = PTP^{-1}$ avec $P \in GL_n(\mathbb{C})$ et T triangulaire supérieure non nulle. Posons alors l'isomorphisme $\varphi \colon M \to P^{-1}MP$ et considérons l'hyperplan

$$K = \{ N \in \mathcal{M}_n(\mathbb{C}) \mid \operatorname{tr}(TN) = 0 \}.$$

On constate

$$M \in H \iff \varphi(N) \in K.$$

Par l'isomorphisme φ , on transforme une famille de n^2-n-1 matrices nilpotentes linéairement indépendantes d'éléments de K en une famille telle que voulue.

Exercice 33: [énoncé]

(a) On a

$$f(f(M)) = M + (2 + \operatorname{tr}(AB))\operatorname{tr}(AM)B$$

donc

$$P(X) = X^{2} - (2 + \operatorname{tr}(AB))X + 1 + \operatorname{tr}(AB)$$

est annulateur de f. Les racines de ce polynôme sont 1 et 1 + tr(AB).

Si $\operatorname{tr}(AB) \neq 0$ alors f est diagonalisable car annulé par un polynôme scindé simple.

Pour M appartenant à l'hyperplan défini par la condition $\operatorname{tr}(AM) = 0$, on a f(M) = M.

Pour $M \in \text{Vect}(B) \neq \{0\}$, on a f(M) = (1 + tr(AB))M.

Ce qui précède détermine alors les sous-espaces propres de f.

Si tr(AB) = 0 alors 1 est la seule valeur propre possible de f et donc f est diagonalisable si, et seulement si, f = Id ce qui donne la conditio

$$\forall M \in \mathcal{M}_n(\mathbb{R}), \operatorname{tr}(AM)B = O_n.$$

Cette propriété a lieu si, et seulement si, $A = O_n$ ou $B = O_n$.

(b) Si $A = O_n$ ou $B = O_n$ alors f = Id et donc

$$\dim C = n^4.$$

Si $tr(AB) \neq 0$ alors f est diagonalisable avec des sous-espaces propres de dimensions 1 et $n^2 - 1$. On en déduit

$$\dim C = 1 + (n^2 - 1)^2.$$

Il reste à étudier le cas complémentaire

$$\operatorname{tr}(AB) = 0 \text{ et } A = O_n \text{ ou } B = O_n.$$

Considérons une base de l'hyperplan de $\mathcal{M}_n(\mathbb{R})$ donnée par l'équation $\operatorname{tr}(AM) = 0$ dont le premier éléments serait B. Complétons celle-ci en une base de $\mathcal{M}_n(\mathbb{R})$. La matrice de f dans cette base est de la forme

$$\begin{pmatrix} 1 & & (0) & \lambda \\ & \ddots & & \\ (0) & & 1 & (0) \\ & & (0) & 1 \end{pmatrix} \text{ avec } \lambda \neq 0.$$

En étudiant la commutation avec une telle matrice, on obtient

$$\dim C = n^4 - 2n^2 + 2.$$

Exercice 34: [énoncé]

- (a) La matrice M est symétrique réelle donc diagonalisable.
- (b) Pour $X \in E$, on a $MX = AB^TX + BA^TX = \langle B, X \rangle A + \langle A, X \rangle B$. Les colonnes A et B n'étant pas colinéaires

$$MX = 0 \iff \langle A, X \rangle = \langle B, X \rangle = 0.$$

On en déduit

$$\operatorname{Ker} M = (\operatorname{Vect}(A, B))^{\perp}.$$

Par la formule du rang, on obtient rg(M) = 2.

(c) On complète la base (A,B) de $\mathrm{Vect}(A,B)$ par une base de $\mathrm{Ker}\,M$ et l'on obtient que la matrice M est semblable à la matrice

$$\begin{pmatrix} \langle A, B \rangle & \|B\|^2 & \mathcal{O}_{1,n-2} \\ \|A\|^2 & \langle A, B \rangle & \mathcal{O}_{1,n-2} \\ \mathcal{O}_{n-2,1} & \mathcal{O}_{n-2,1} & \mathcal{O}_{n-2} \end{pmatrix}.$$

L'étude des valeurs propres de cette matrice, donne

$$Sp M = \{0, \langle A, B \rangle - ||A|| ||B||, \langle A, B \rangle + ||A|| ||B|| \}.$$

Pour la valeur propre $\lambda = \langle A, B \rangle - ||A|| ||B||$, le sous-espace propre associé est

$$\operatorname{Vect}(\|B\|A - \|A\|B).$$

Pour la valeur propre $\lambda = \langle A, B \rangle + ||A|| ||B||$, le sous-espace propre associé est

$$\operatorname{Vect}(\|B\|A + \|A\|B)$$

et enfin, pour $\lambda = 0$,

$$\operatorname{Vect}(A,B)^{\perp}$$
.

Exercice 35 : [énoncé]

(a) C'est un calcul classique

$$\chi_A(\lambda) = (\lambda - a - (n-1)b)(\lambda - a + b)^{n-1}.$$

Les valeurs propres de A sont a + (n-1)b et a - b.

- (b) Pour a = n et b = -1, la matrice précédente produit un contre-exemple.
- (c) La matrice M est symétrique réelle donc diagonalisable dans une base orthonormée. En décomposant, une colonne unitaire X dans cette base et en notant x_1, \ldots, x_n ses coordonnées, on a

$$\langle X, MX \rangle = \sum_{i=1}^{n} \lambda_i x_i^2 \text{ et } \sum_{i=1}^{n} x_i^2 = 1$$

avec $\lambda_1, \ldots, \lambda_n$ les valeurs propres de M.

On en déduit que α est la plus grande valeur propre de M.

(d) Soit X un vecteur propre unitaire associé à la plus grande valeur propre de M et Y la colonne (unitaire) formée par les valeurs absolues des coefficients de X. On a

$$\alpha = \langle X, MX \rangle \le |\langle X, MX \rangle| \le \langle Y, MY \rangle \le \alpha$$

et donc $\langle Y, MY \rangle = \alpha$. En décomposant le vecteur Y sur la base orthonormée de vecteurs propres précédente, on obtient que Y est combinaison linéaire des vecteurs propres associés à la plus grande valeur propre de M (il peut y en avoir plusieurs). Le vecteur Y est donc vecteur propre de M à coefficients positifs.

(e) Oui, c'est le théorème de Perron-Frobenius. Cependant cela n'a rien d'immédiat...

Exercice 36 : [énoncé]

(a) Cas: A inversible. La matrice A est la matrice de passage de la base canonique c de \mathbb{R}^n à une base e. Par le procédé de Schmidt, on orthonormalise (pour le produit scalaire canonique) cette base en une base e'. La matrice de passage de e à e' est triangulaire supérieure et la matrice de passage de la base canonique c à e' est orthogonale. Par formule de changement de base

$$A = \operatorname{Mat}_{c} e = \operatorname{Mat}_{c} e' \times \operatorname{Mat}_{e'} e$$

ce qui conduit à l'identité voulue.

Cas général: On introduit $A_p = A + \frac{1}{p} \mathbf{I}_n$. Pour p assez grand, A_p est inversible et on peut écrire $A_p = O_p T_p$ avec O_p orthogonale et T_p triangulaire supérieure. La suite (O_p) évolue dans un compact : il existe une extraction $(O_{\varphi(p)})$ de limite $O \in \mathcal{O}_n(\mathbb{R})$. Puisque $T_{\varphi(p)} = O_{\varphi(p)}^{-1} A_{\varphi(p)}$ est de limite $O^{-1}A$ et évolue dans le fermé des matrices triangulaires supérieures, on peut conclure à l'écriture A = OT.

- (b) La fonction N_1 est une fonction continue, à valeurs réelles définie sur le compact non vide $O_n(\mathbb{R})$: elle admet un minimum et un maximum.
- (c) import random as rnd import numpy as np import numpy.linalg def randO(n): A = np.zeros((n,n))for i in range(n): for j in range(n): A[i,j] = 2 * rnd.random() - 1q,r = numpy.linalg.qr(A) return q def N1(A): S = 0N,M = np.shape(A)for i in range(N): for j in range(M): S = S + np.abs(A[i,j])return S def test(n): A = randO(n)m = N1(A)M = N1(A)for t in range(1000): A = randO(n)N = N1(A)if N < m: m = Nif N > M: M = Nreturn m.M
- (d) Si $A \in O_n(\mathbb{R})$, on a $a_{i,j} \in [-1;1]$ donc $|a_{i,j}| \geq a_{i,j}^2$ puis

$$N_1(A) \ge \sum_{i=1}^n \sum_{j=1}^n a_{i,j}^2 \ge \sum_{i=1}^n 1 = n$$

car les lignes d'une matrice orthogonale sont unitaires. De plus, pour $A = I_n \in O_n(\mathbb{R})$, on a $N_1(A) = n$. On en déduit $m_n = n$.

Une matrice A de $O_n(\mathbb{R})$ vérifiant $N_1(A) = n$ doit satisfaire $|a_{i,j}| = a_{i,j}^2$ et donc $a_{i,j} \in \{0,1,-1\}$. De plus, les rangées étant unitaires, ils ne peut figurer qu'un coefficient non nul par rangée et celui-ci est alors un 1 ou un -1. La réciproque est immédiate.

Ces matrices sont évidemment en nombre fini, précisément, il y en a $2^n n!$ (il y a n! matrice de permutation et 2^n choix de signe pour chaque coefficient 1).

(e) Par l'inégalité de Cauchy-Schwarz

$$N_1(A) \le \sum_{i=1}^n \left(\left(\sum_{j=1}^n 1^2 \right)^{1/2} \left(\sum_{j=1}^n a_{i,j}^2 \right)^{1/2} \right) = n\sqrt{n}.$$

Pour qu'il y ait égalité, il faut qu'il y ait égalité dans chaque inégalité de Cauchy-Schwarz. Ceci entraı̂ne que chaque ligne $(|a_{i,j}|)_{1 \le j \le n}$ est colinéaire à $(1, \ldots, 1)$ et donc

$$\forall i \in [1; n], \forall (j, k) \in [1; n]^2, |a_{i,j}| = |a_{i,k}|.$$

La ligne étant de plus unitaire, les $a_{i,j}$ sont égaux à $\pm 1/\sqrt{n}$.

Lorsque n=3, les coefficients de A sont égaux à $\pm 1/\sqrt{3}$. Cependant, il n'est pas possible de construire des rangées orthogonales avec de tels coefficients : le cas d'égalité est impossible quand n=3.

Exercice 37: [énoncé]

(a) Unicité:

Si M = A + S avec A et S comme voulues, on a ${}^tM = -A + S$ et donc

$$S = \frac{1}{2}(M + {}^{t}M)$$
 et $A = \frac{1}{2}(M - {}^{t}M)$.

Existence:

Les matrices S et A proposées ci-dessus conviennent.

- (b) Si M et tM commutent, il en est de même des matrices A et S fournies par les expressions précédentes. Inversement, si A et S commutent, il en est de même de M = A + S et ${}^tM = -A + S$.
- (c) ${}^tA = -A$ donne $\det({}^tA) = \det(-A)$ et donc $\det A = (-1)^n \det A$. On en déduit que n est pair lorsque $\det A \neq 0$.

La matrice A^2 est symétrique réelle et possède donc une valeur propre λ . Soit x un vecteur propre associé et y = Ax. On a

$$(x|y) = {}^{t}xAx = -{}^{t}(Ax)x = -(y|x).$$

On en déduit que x et y sont orthogonaux. Posons alors

$$e_1 = \frac{1}{\|x\|} x$$
 et $e_2 = \frac{1}{\|y\|} y$

et complétons la famille (e_1,e_2) en une base orthonomale. L'endomorphisme canoniquement associé à A est alors figuré dans cette base par une matrice de la forme

$$B = \begin{pmatrix} 0 & \beta & (*) \\ \alpha & 0 & (*) \\ (0) & (0) & A' \end{pmatrix}.$$

Les matrices A et B sont orthogonalement semblables et donc B est antisymétrique. On en déduit $\beta = -\alpha$, les étoiles sont nulles et A' est antisymétrique ce qui permet de propager une récurrence.

(d) Lorsque la matrice antisymétrique A n'est pas inversible, le résultat qui précède est étendu en autorisant des blocs nuls en plus des D_i . Supposons $M^tM = {}^tMM$. Par commutation, les sous-espaces propres de S sont stables par A ce qui permet de mener le raisonnement précédent en choisisssant e_1 vecteur propre commun à S et A^2 . En notant que e_2 sera alors vecteur propre de S pour la même valeur propre que e_1 , on obtient que M est orthogonalement semblable à une matrice diagonale par blocs avec des blocs diagonaux de la forme

$$(\lambda)$$
 et $\begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$.

Exercice 38: [énoncé]

Soit A une matrice antisymétrique réelle.

Le déterminant de A est le produit des valeurs propres complexes de A comptées avec multiplicité. Puisque la matrice A est réelle, ses valeurs propres complexes non réelles sont deux à deux conjuguées et forment donc un produit positif. Il reste à étudier les valeurs propres réelles de A.

Soient λ une valeur propre réelle de A et X est une colonne propre associée. D'une part

$$^{t}XAX = \lambda^{t}XX.$$

D'autre part

$$^{t}XAX = -^{t}(AX)X = -\lambda^{t}XX.$$

On en déduit $\lambda = 0$ sachant $X \neq 0$.

Par suite le déterminant de A est positif ou nul.

Exercice 39: [énoncé]

La résolution est évidente si A est inversible puisque la matrice $Q = A^{-1}B$ convient.

Dans le cas général, munissons \mathbb{R}^n de sa structure euclidienne canonique et considérons les endomorphismes u et v de \mathbb{R}^n canoniquement représentés par A et B. La base canonique de \mathbb{R}^n étant orthonormée on a $uu^* = vv^*$. Or il est connu que $r = \operatorname{rg} u = \operatorname{rg} uu^*$ donc $\operatorname{Im} u = \operatorname{Im} uu^*$ puis $\operatorname{Im} u = \operatorname{Im} v$.

Puisque dim Ker $u = \dim(\operatorname{Im} u)^{\perp}$, il existe $\rho_1 \in O(\mathbb{R}^n)$ transformant $(\operatorname{Im} u)^{\perp}$ en Ker u. Considérons alors $u' = u\rho_1$. On vérifie $u'u'^* = uu^*$ et Ker $u' = (\operatorname{Im} u)^{\perp}$. De même, on définit $\rho_2 \in O(\mathbb{R}^n)$ tel que $v' = v\rho_2$ vérifie $v'v'^* = vv^*$ et Ker $v' = (\operatorname{Im} u)^{\perp}$.

Soit \mathcal{B} une base orthonormée adaptée à la décomposition $\operatorname{Im} u \oplus \operatorname{Im} u^{\perp} = \mathbb{R}^n$. Dans cette base les matrices de u' et v' sont de la forme

$$\begin{pmatrix} A' & 0 \\ 0 & 0 \end{pmatrix} \text{ et } \begin{pmatrix} B' & 0 \\ 0 & 0 \end{pmatrix}$$

avec $A', B' \in \mathcal{M}_r(\mathbb{R})$ inversibles et vérifiant $A'^tA' = B'^tB'$. Il existe alors $Q' \in \mathcal{O}_r(\mathbb{R})$ vérifiant B' = A'Q'. En considérant ρ l'endomorphisme de matrice

$$\begin{pmatrix} Q' & 0 \\ 0 & I_{n-r} \end{pmatrix}$$

dans \mathcal{B} , on obtient $v' = u'\rho$ avec $\rho \in O_n(\mathbb{R})$.

Il en découle la relation $v=u(\rho_1\rho\rho_2^{-1})$ avec $\rho_1\rho\rho_2^{-1}\in O(\mathbb{R}^n)$ qu'il suffit de retraduire matriciellement pour conclure.

Exercice 40 : [énoncé]

Soit R une rotation solution (s'il en existe).

La rotation R n'est pas l'identité et son axe est dirigé par le vecteur u=i-j+k. Orientons cet axe par ce vecteur. Pour déterminer l'angle θ de la rotation, déterminons l'image d'un vecteur orthogonal à l'axe. Considérons

$$v = -2i - j + k = -3i + u.$$

Le vecteur v est orthogonal à u et

$$R(v) = i + 2j + k.$$

On a

$$\cos \theta = \frac{(v | R(v))}{\|v\| \|R(v)\|} = -\frac{1}{2}$$

et le signe de $\sin \theta$ est celui de

$$\det(v, R(v), u) = \begin{vmatrix} -2 & 1 & 1\\ -1 & 2 & -1\\ 1 & 1 & 1 \end{vmatrix} = -9 < 0.$$

On en déduit que R n'est autre que la rotation d'axe dirigé et orienté par u et d'angle $\theta = -2\pi/3$.

Inversement, cette rotation est solution car pour celle-ci le vecteur u est invariant alors et le vecteur v est envoyé sur le vecteur R(v) du calcul précédent ce qui entraîne que i est envoyé sur -j.

Exercice 41: [énoncé]

- 1) (i) \Longrightarrow (ii) par le théorème de Pythagore.
 - (ii) \Longrightarrow (i) Supposons (ii). Pour $x \in \text{Im } p$ et $y \in \text{Ker } p$, $p(x + \lambda y) = x$ donc

$$||x||^2 \le ||x + \lambda y||^2$$

puis

$$0 \le 2\lambda(x|y) + \lambda^2 ||y||^2.$$

Cette relation devant être valable pour tout $\lambda \in \mathbb{R}$, on a (x|y) = 0. Par suite Im p et Ker p sont orthogonaux et donc p est une projection orthogonale.

 $(i) \Longrightarrow (iii)$ car en décomposant x et y on observe

$$(p(x)|y) = (p(x)|p(y)) = (x|p(y))$$

- (iii) \Longrightarrow (i) car Im $p = (\operatorname{Ker} p)^{\perp}$.
- 2) (a) Pour $x, y \in E$,

$$(p \circ q \circ p(x) | y) = (q \circ p(x) | p(y))$$

= $(p(x) | q \circ p(y))$
= $(x | p \circ q \circ p(y))$.

Ainsi, $p \circ q \circ p$ est un endomorphisme symétrique.

- (b) $(\operatorname{Im} p + \operatorname{Ker} q)^{\perp} = (\operatorname{Im} p)^{\perp} \cap (\operatorname{Ker} q)^{\perp} = \operatorname{Ker} p \cap \operatorname{Im} q$.
- (c) $p \circ q \circ p$ est autoadjoint donc diagonalisable. De plus $\operatorname{Im} p$ est stable par $p \circ q \circ p$ donc il existe donc une base (e_1, \ldots, e_r) de $\operatorname{Im} p$ diagonalisant l'endomorphisme induit par $p \circ q \circ p$. On a alors $(p \circ q \circ p)(e_i) = \lambda_i e_i$ avec $\lambda_i \in \mathbb{R}$. Or $e_i \in \operatorname{Im} p$ donc $p(e_i) = e_i$ puis

$$(p \circ q)(e_i) = \lambda_i e_i$$

On complète cette famille de vecteurs propres de $p \circ q$ par des éléments de Ker q pour former une base de Im p + Ker q. Sur ces vecteurs complétant, q est nul donc $p \circ q$ aussi.

Enfin, on complète cette dernière famille par des éléments de $\operatorname{Im} q \cap \operatorname{Ker} p$ pour former une base de E. Sur ces vecteurs complétant, $p \circ q$ est nul car ces vecteurs sont invariants par q et annule p. Au final, on a formé une base diagonalisant $p \circ q$.

Exercice 42 : [énoncé]

(a) Soit $M \in \mathcal{S}_{\alpha}$. La matrice M est diagonalisable de valeurs propres $\lambda_1, \ldots, \lambda_n \geq 0$ avec $\lambda_1, \ldots, \lambda_n \geq \alpha$ et on a $\operatorname{tr} M = \lambda_1 + \cdots + \lambda_n$. Par l'inégalité arithmético-géométrique

$$\frac{\lambda_1 + \dots + \lambda_n}{n} \ge \sqrt[n]{\lambda_1 \dots \lambda_n}$$

et donc

$$\operatorname{tr}(M) \ge n\alpha^{1/n}$$

avec égalité si $M = \alpha^{1/n} I_n \in \mathcal{S}_{\alpha}$.

(b) Par orthodiagonalisation de la matrice A, on peut écrire

$$A = Q\Delta^t Q$$
 avec $\Delta = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ et $Q \in O_n(\mathbb{R})$.

Les valeurs propres de A étant positives, on peut poser $P = \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})^t Q$ et vérifier $A = {}^t P P$.

(c) On peut écrire

$$\operatorname{tr}(AM) = \operatorname{tr}({}^{t}PPM) = \operatorname{tr}(PM^{t}P)$$

avec PM^tP matrice symétrique de déterminant $\det M \times \det A \ge \alpha \det(A)$. Par l'étude qui précède avec $\alpha' = \alpha \det A$, on obtient

$$\operatorname{tr}(AM) \ge n(\alpha \det A)^{1/n}$$
.

Cependant, lorsque M parcourt S_{α} , on n'est pas assuré que PM^tP parcourt l'intégralité $S_{\alpha'}$. Cela est néanmoins le cas lorsque la matrice A est inversible car alors la matrice P l'est aussi. L'inégalité précédente est alors une égalité pour

$$M = (\alpha \det A)^{1/n} A^{-1}.$$

Lorsque la matrice A n'est pas inversible, c'est qu'au moins l'une de ses valeurs propres est nulle. Sans perte de généralité, supposons que ce soit la premier de la séquence $\lambda_1, \ldots, \lambda_n$

$$A = Q\Delta^t Q$$
 avec $\Delta = \operatorname{diag}(0, \lambda_2, \dots, \lambda_n), \lambda_2, \dots, \lambda_n \geq 0.$

Considérons alors pour $\varepsilon > 0$

$$M_{\varepsilon} = Q \operatorname{diag}(\alpha \varepsilon^{-(n-1)}, \varepsilon, \dots, \varepsilon)^t Q.$$

La matrice M_{ε} est élément de \mathcal{S}_{α} et

$$\operatorname{tr}(AM_{\varepsilon}) = (n-1)\varepsilon.$$

Ceci valant pour tout $\varepsilon > 0$, on obtient

$$\inf_{M \in \mathcal{S}_{\alpha}} \operatorname{tr}(AM) = 0 = n(\alpha \det(A))^{1/n}.$$

(d) Soit $M \in \mathcal{S}_n^+(\mathbb{R})$ telle que $\det(M) \geq 0$. Via diagonalisation de M avec des valeurs propres positives, on peut affirmer $\beta = \det(M + \lambda I_n) > 0$ pour tout $\lambda > 0$. Par ce qui précède,

$$\operatorname{tr}(A(M+\lambda I_n)) \ge n(\beta \det(A))^{1/n}$$
.

Par continuité, quand $\lambda \to 0^+$, on obtient

$$\operatorname{tr}(AM) \ge 0$$

et, bien évidemment, il y a égalité si $M = O_n$. Le résultat est donc encore vrai si $\alpha = 0$.

(e) Le résultat n'a plus de sens si A est symétrique réelle de déterminant négatif avec n pair.

Exercice 43: [énoncé]

- (a) Soit $X \in \operatorname{Ker} A$. On a ${}^tBBX = {}^tAAX = 0$ donc ${}^tX{}^tBBX = 0$. Or ${}^tX{}^tBBX = \|BX\|^2$ et donc $X \in \operatorname{Ker} B$. Ainsi $\operatorname{Ker} A \subset \operatorname{Ker} B$ et même $\operatorname{Ker} A = \operatorname{Ker} B$ par une démarche symétrique.
- (b) En notant X,Y les colonnes des coordonnées de X et Y

$$\langle f(x), f(y) \rangle = {}^{t}(AX)AY = {}^{t}X{}^{t}AAY$$

 $_{
m et}$

$$\langle g(x), g(y) \rangle = {}^{t}(BX)BY = {}^{t}X{}^{t}BBY$$

d'où la conclusion.

(c) Considèrons l'application linéaire $s \in \mathcal{L}(F)$ déterminée par

$$\forall i \in \{1, \ldots, r\}, s(\varepsilon_i) = \varepsilon'_i.$$

Il s'agit de montrer que s est orthogonale, par exemple en observant que s conserve la norme.

Soit $x \in F$. On peut écrire

$$x = \sum_{i=1}^{r} x_i \varepsilon_i \text{ et } s(x) = \sum_{i=1}^{r} x_i \varepsilon_i'.$$

On a alors

$$||s(x)||^2 = \sum_{i,j=1}^r x_i x_j \langle \varepsilon_i', \varepsilon_j' \rangle = \sum_{i,j=1}^r x_i x_j \langle \varepsilon_i, \varepsilon_j \rangle = ||x||^2.$$

(d) Soit H un sous-espace vectoriel supplémentaire de $\operatorname{Ker} A = \operatorname{Ker} B$ dans \mathbb{R}^q . Introduisons (x_1, \ldots, x_r) une base de H et posons $(\varepsilon_1, \ldots, \varepsilon_r)$ et $(\varepsilon'_1, \ldots, \varepsilon'_r)$ les familles données par

$$\varepsilon_i = f(x_i) \text{ et } \varepsilon_i' = g(x_i).$$

En vertu du b), on peut affirmer

$$\forall (i,j) \in \{1,\ldots,r\}^2, \langle \varepsilon_i, \varepsilon_j \rangle = \langle \varepsilon_i', \varepsilon_j' \rangle.$$

Introduisons $(\varepsilon_{r+1}, \ldots, \varepsilon_p)$ une base orthonormée de l'orthogonal de l'image de f et $(\varepsilon'_{r+1}, \ldots, \varepsilon'_p)$ une base orthonormée de l'orthogonal de l'image de g. On vérifie alors

$$\forall (i,j) \in \{1,\ldots,p\}^2, \langle \varepsilon_i, \varepsilon_j \rangle = \langle \varepsilon_i', \varepsilon_j' \rangle.$$

On peut alors introduire une application orthogonale $s\colon \mathbb{R}^p \to \mathbb{R}^p$ vérifiant

$$\forall i \in \{1, \ldots, r\}, s(\varepsilon_i) = \varepsilon_i'.$$

On a alors l'égalité d'application linéaire

$$u \circ f = g$$

car celle-ci vaut sur les x_i donc sur H et vaut aussi évidement sur $\operatorname{Ker} f = \operatorname{Ker} g$.

En introduisant U matrice de s^{-1} dans la base canonique de \mathbb{R}^p , on obtient

$$A = US$$
 avec $U \in \mathcal{O}_p(\mathbb{R})$.

Exercice 44: [énoncé]

(a) Soient $u, v \in \Gamma$ et $\lambda \in [0; 1]$. Pour tout $x \in E$,

$$\|(\lambda u + (1 - \lambda)v(x))\| \le \lambda \|u(x)\| + (1 - \lambda)\|v(x)\| \le \|x\|$$

donc $\lambda u + (1 - \lambda)v \in \Gamma$.

Pour $u \in O(E)$, on a

$$\forall x \in E, ||u(x)|| = ||x|| \le ||x||$$

et donc $u \in \Gamma$.

(b) Puisque $f \neq g$, il existe un vecteur x vérifiant $f(x) \neq g(x)$. Si ||f(x)|| < ||x|| ou ||g(x)|| < ||x|| alors

$$||u(x)|| = \frac{1}{2} ||f(x) + g(x)|| \le \frac{||f(x)|| + ||g(x)||}{2} < ||x||$$

et donc $u \notin O(E)$.

Si ||f(x)|| = ||x|| et ||g(x)|| = ||x|| alors la condition $f(x) \neq g(x)$ entraı̂ne

$$||f(x) + g(x)|| < ||f(x)|| + ||g(x)||$$

car il y a égalité dans l'inégalité triangulaire euclidienne si, et seulement si, les vecteurs sont positivement liés.

On en déduit que dans ce cas aussi ||u(x)|| < ||x|| et donc $u \notin O(E)$.

(c) L'endomorphisme $f=v^*\circ v$ est autoadjoint défini positif. Moyennant une diagonalisation en base orthonormée, on peut déterminer s autoadjoint défini positif tel que $f=s^2$. Posons alors $\rho=v\circ s^{-1}$ ce qui est possible car s inversible puisque défini positif. On a alors

$$\rho^* \circ \rho = s^{-1} \circ v^* \circ v \circ s^{-1} = \operatorname{Id}_E$$

et donc $\rho \in O(E)$. Finalement $v = \rho \circ s$ est l'écriture voulue.

(d) Soit $u \in \Gamma \setminus O(E)$. On peut écrire $u = \rho \circ s$ avec $\rho \in O(E)$ et s endomorphisme autoadjoint positif. Puisque

$$\forall x \in E, ||u(x)|| = ||s(x)||$$

on a $s \in \Gamma$ et donc les valeurs propres de s sont éléments de [0;1]. Dans une base orthonormée de diagonalisation, la matrice de s est de la forme

$$\begin{pmatrix} \lambda_1 & & (0) \\ & \ddots & \\ (0) & & \lambda_n \end{pmatrix} \text{ avec } \lambda_1, \dots, \lambda_n \in [0; 1].$$

Si les λ_i sont tous égaux à 1 alors $s = \operatorname{Id}_E$ et $u = \rho \in O(E)$ ce qui est exclu. Il y a donc au moins un λ_i différent de 1. Considérons alors l'endomorphisme t dont la matrice dans la base orthonormée précédente est

$$\begin{pmatrix} 2\lambda_1 - 1 & & (0) \\ & \ddots & \\ (0) & & 2\lambda_n - 1 \end{pmatrix}.$$

On peut écrire

$$s = \frac{1}{2}(\mathrm{Id}_E + t)$$

avec $\mathrm{Id}_E \in \Gamma$, $\mathrm{Id}_E \neq t$ et $t \in \Gamma$ car les coefficients diagonaux précédents sont inférieurs à 1 en valeur absolue.

On en déduit

$$u = \frac{1}{2}(\rho + \rho \circ t)$$

avec $\rho, \rho \circ t \in \Gamma$ et $\rho \neq \rho \circ t$.

(e) Soit $v \in \mathcal{L}(E)$. Pour k > 0 assez grand

$$v_k = v + \frac{1}{k} \mathrm{Id}_E \in GL(E)$$

car v ne possède qu'un nombre fini de valeurs propres. On peut alors écrire

$$v_k = \rho_k \circ s_k \text{ avec } \rho_k \in \mathcal{O}(E) \text{ et } s_k \in \mathcal{S}^+(E)$$

Puisque O(E) est compact, il existe une suite extraite $(\rho_{\varphi(k)})$ qui converge $\rho_{\infty} \in O(E)$. On a alors

$$s_{\varphi(k)} = \rho_{\varphi(k)}^{-1} \circ v_{\varphi(k)} \to \rho_{\infty}^{-1} \circ v.$$

En posant $s_{\infty} = \rho_{\infty}^{-1} \circ v$, on a $s_{\infty} \in \mathcal{S}^+(E)$ car $\mathcal{S}^+(E)$ est fermé et donc $v = \rho_{\infty} \circ s_{\infty}$ donne l'écriture voulue.

Exercice 45 : [énoncé]

(a) Si M possède la propriété (P) alors les colonnes de la matrice U introduites doivent être unitaires donc

$$\forall 1 \le i \le n, \lambda_i^2 + \alpha_i^2 = 1$$

et elles doivent être deux à deux orthogonales donc

$$\forall 1 \leq i \neq j \leq n, \alpha_i \alpha_j = 0.$$

Cette dernière condition ne permet qu'au plus un α_k non nul et alors $|\lambda_k| \leq 1$ tandis que pour $i \neq k$, $|\lambda_i| = 1$.

Inversement, si tous les λ_i vérifient $|\lambda_i| = 1$ sauf peut-être un vérifiant $|\lambda_k| < 1$, alors on peut construire une matrice U affirmant que la matrice M possède la propriété (P) en posant

$$\forall 1 \le i \ne k \le n, \alpha_i = \alpha_{2n+2-i} = 0, \alpha_k = \alpha_{2n+2-k} = \sqrt{1 - \lambda_k^2} \text{ et } \alpha_{n+1} = -\lambda_k.$$

(b) La matrice M est orthogonalement diagonalisable, on peut donc écrire

$$M = {}^{t}PDP$$
 avec $P \in O_n(\mathbb{R})$ et $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$.

Considérons alors la matrice

$$Q = \begin{pmatrix} P & 0 \\ 0 & 1 \end{pmatrix} \in \mathcal{O}_{n+1}(\mathbb{R}).$$

Si la matrice M possède la propriété (P) alors on peut introduire $U \in \mathcal{O}_{n+1}(\mathbb{R})$ prolongeant M et alors

$$V = {}^{t}QUQ = \begin{pmatrix} & & \beta_{2n+1} \\ & D & & \vdots \\ & & \beta_{n+2} \\ \beta_{1} & \cdots & \beta_{n} & \beta_{n+1} \end{pmatrix} \in \mathcal{O}_{n+1}(\mathbb{R})$$

ce qui entraı̂ne que les valeurs propres $\lambda_1, \ldots, \lambda_n$ de M sont toutes égales à ± 1 sauf peut être une élément de [-1;1]. La réciproque est immédiate.

(c) La matrice tMM est symétrique définie positive. On peut donc en diagonalisant orthogonalement celle-ci déterminer une matrice S symétrique définie positive telle que

$$^tMM = S^2$$
.

On pose alors $U = MS^{-1}$ et on vérifie $U \in \mathcal{O}_n(\mathbb{R})$ par le calcul de tUU .

(d) Supposons que la matrice M=US possède la propriété (P). En multipliant par la matrice

$$V = \begin{pmatrix} {}^{t}U & 0 \\ 0 & 1 \end{pmatrix} \in \mathcal{O}_{n+1}(\mathbb{R})$$

on démontre que la matrice S possède aussi la propriété (P).

Puisque les valeurs propres de S sont les racines des valeurs propres de tMM , on obtient la condition nécessaire suivante : les valeurs propres de tMM doivent être égales à 1 sauf peut-être une dans $[0\,;1]$ (ces valeurs propres sont nécessairement positives).

La réciproque est immédiate.

(e) Soit $M \in \mathcal{M}_n(\mathbb{R})$. Pour p assez grand, la matrice

$$M_p = M + \frac{1}{p}I_n$$

est assurément inversible ce qui permet d'écrire $M_p=U_pS_p$ avec U_p orthogonale et S_p symétrique réelle.

La suite (U_p) évolue dans le compact $O_n(\mathbb{R})$, elle possède une valeur d'adhérence $U_{\infty} \in O_n(\mathbb{R})$ et la matrice $S_{\infty} = U_{\infty}^{-1}M$ est symétrique réelle en tant que limite d'une suite de matrices symétriques réelles. On peut donc conclure.

Exercice 46: [énoncé]

(a) Si A et B sont orthogonalement semblables, ces deux matrices sont semblables et ont donc même trace et même déterminant. On en tire les conditions nécessaires a+c=4 et $ac-b^2=3$

Inversement, si a+c=4 et $ac-b^2=3$ alors A et B ont le même polynôme caractéristique X^2-4X+3 de racines 1 et 3. Les matrices A et B étant symétriques réelles, elles sont toutes les deux orthogonalement semblables à $D={\rm diag}(1,3)$ et donc A et B sont orthogonalement semblables.

Pour a fixé, on trouvera b et c convenables si, et seulement si, on peut trouver $b \in \mathbb{R}$ tel que $b^2 = ac - 3 = a(4 - a) - 3$ d'où la condition nécessaire et suffisante $1 \le a \le 3$.

Par symétrie, pour c fixé, on obtient la condition $1 \le c \le 3$.

- (b) Le raisonnement est analogue au précédent en parlant seulement de matrices semblables et l'on obtient la condition double a+d=4 et ad-bc=3. Pour a fixé, il existe toujours $b,c,d\in\mathbb{R}$ tels que A et B soient semblables : il suffit de prendre d=4-a et b et c de sorte que $bc=-a^2+4a-3$. Pour d fixé : idem.
- (c) La fonction $(P,Q) \mapsto \det(PA^tP + QB^tQ)$ est continue, à valeurs réelles et définie sur le compact non vide $O_n(\mathbb{R}) \times O_n(\mathbb{R})$, elle y admet donc un maximum.
- (d) Après réduction, la matrice symétrique réelle A est orthogonalement semblable à la matrice $D=\operatorname{diag}(\sqrt{5},-\sqrt{5})$ ce qui permet d'écrire $A=UD^tU$ avec $U\in \mathcal{O}_2(\mathbb{R})$. On a alors

$$\det(PA^tP + QB^tQ) = \det(D + VB^tV)$$

avec $V = {}^tU^tPQ$ parcourant $O_2(\mathbb{R})$. La matrice VB^tV est de la forme

$$\begin{pmatrix} a & b \\ b & c \end{pmatrix}$$
 avec $a+c=4, ac-b^2=3$ et $1 \le a \le 3$

et donc

$$\det(PA^{t}P + QB^{t}Q) = 2(2-a)\sqrt{5} - 2$$

est maximal pour a = 1. Finalement

$$\max_{P,Q \in \mathcal{O}_n(\mathbb{R})} \det(PA^t P + QB^t Q) = 2(\sqrt{5} - 1).$$

(e) Non, prenons par exemple

$$A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \text{ et } B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

La matrice

$$C = \begin{pmatrix} x & 1 - x \\ x & 1 - x \end{pmatrix}$$

est semblable à B et peut donc s'écrire $C=QBQ^{-1}$ avec $Q\in \mathrm{GL}_2(\mathbb{R})$. Pour $P=I_2\in \mathrm{GL}_2(\mathbb{R})$, on obtient

$$PAP^{-1} + QBQ^{-1} = \begin{pmatrix} x & 1-x \\ x & 2-x \end{pmatrix}$$

de déterminant

$$x(2-x) - x(1-x) = x \xrightarrow[x \to +\infty]{} +\infty.$$

(f) En remplaçant A_i par une matrice orthosemblable, on peut supposer A_i de la forme

$$A_i = \begin{pmatrix} \alpha_i & 0 \\ 0 & \beta_i \end{pmatrix} \text{ avec } \alpha_i \ge \beta_i$$

et donc écrire

$$A_i = \frac{\operatorname{tr}(A_i)}{2} I_2 + \begin{pmatrix} \delta_i & 0 \\ 0 & -\delta_i \end{pmatrix} \text{ avec } \delta_i = \frac{\alpha_i - \beta_i}{2} \ge 0.$$

Une matrice orthogonale P_i peut s'écrire sous la forme

$$P_i = \begin{pmatrix} \cos \theta_i & -\sin \theta_i \\ \sin \theta_i & \cos \theta_i \end{pmatrix} \text{ ou } P_i = \begin{pmatrix} \cos \theta_i & \sin \theta_i \\ \sin \theta_i & -\cos \theta_i \end{pmatrix}$$

et alors dans les deux cas

$$P_i A_i^{\ t} P_i = \frac{\operatorname{tr}(A_i)}{2} I_2 + \begin{pmatrix} \delta_i \cos(2\theta_i) & \delta_i \sin(2\theta_i) \\ \delta_i \sin(2\theta_i) & -\delta_i \cos(2\theta_i) \end{pmatrix}.$$

En posant

$$m = \frac{1}{2} (\operatorname{tr}(A_1) + \dots + \operatorname{tr}(A_k))$$

on peut écrire

$$\det(P_1 A_1^{\ t} P_1 + \dots + P_k A_k^{\ t} P_k) = \det\left(mI_2 + \sum_{i=1}^k \begin{pmatrix} \delta_i \cos(2\theta_i) & \delta_i \sin(2\theta_i) \\ \delta_i \sin(2\theta_i) & -\delta_i \cos(2\theta_i) \end{pmatrix}\right)$$

et après calcul

$$\det(P_1 A_1^{t} P_1 + \dots + P_k A_k^{t} P_k) = m^2 - \left(\left(\sum_{i=1}^k \delta_i \cos(2\theta_i) \right)^2 + \left(\sum_{i=1}^k \delta_i \sin(2\theta_i) \right)^2 \right).$$

Pour maximiser le déterminant, il suffit de savoir minimiser la fonction donnée par

$$f(\alpha_1, \dots, \alpha_k) = \left(\sum_{i=1}^k \delta_i \cos(\alpha_i)\right)^2 + \left(\sum_{i=1}^k \delta_i \sin(\alpha_i)\right)^2.$$

On peut interpréter f dans le plan complexe

$$f(\alpha_1, \dots, \alpha_k) = \left| \delta_1 e^{i\alpha_1} + \dots + \delta_k e^{i\alpha_k} \right|^2$$

Quitte à réordonner les matrices A_i , on peut supposer

$$\delta_1 > \delta_2 > \ldots > \delta_k$$

Cas
$$\delta_1 \leq \delta_2 + \cdots + \delta_k$$

On peut montrer que la fonction f s'annule : c'est assez facile si k=2 car alors $\delta_1=\delta_2$, c'est aussi vrai si $k\geq 3$ en établissant que le système suivant possède une solution

$$\begin{cases} \delta_2 \sin \alpha = \delta_3 \sin \beta \\ \delta_2 \cos \alpha + \delta_3 \cos \beta = \delta_1 - (\delta_4 + \dots + \delta_k) \end{cases}$$

que l'on obtient avec

$$\alpha = \arcsin\left(\frac{\delta_3 \sin \beta}{\delta_2}\right)$$
 et $\beta \in [0; \pi/2]$ bien choisi.

Dans ce cas le maximum de $\det(P_1A_1^tP_1 + \cdots + P_kA_k^tP_k)$ vaut m^2 . Cas $\delta_1 > \delta_2 + \cdots + \delta_k$

La fonction f ne peut s'annuler car

$$\left|\delta_1 e^{i\alpha_1} + \dots + \delta_k e^{i\alpha_i}\right| = 0 \implies \delta_1 = -\left(\delta_2 e^{i(\alpha_2 - \alpha_1)} + \dots + \delta_k e^{i(\alpha_k - \alpha_1)}\right)$$

et en passant au module on obtient alors $\delta_1 \leq \delta_2 + \cdots + \delta_k$. La fonction est de classe \mathcal{C}^1 et admet donc un minimum sur le compact $[0; 2\pi]^k$ qui est un point critique. Si $(\beta_1, \ldots, \beta_k)$ est un point critique alors

$$\forall 1 \le i \le k, \frac{\partial f}{\partial \alpha_i}(\beta_1, \dots, \beta_k) = 0$$

ce qui donne

$$\forall 1 \leq i \leq k, C \sin \beta_i = S \cos \beta_i \text{ avec } C = \sum_{j=1}^k \delta_j \cos \beta_j \text{ et } S = \sum_{j=1}^k \delta_j \sin \beta_j.$$

Ici $(C,S) \neq (0,0)$ car on est dans le cas où la fonction f ne s'annule pas. On obtient alors

$$\begin{vmatrix} \cos \beta_i & \cos \beta_j \\ \sin \beta_i & \sin \beta_j \end{vmatrix} = 0.$$

Les points du cercles trigonométriques repérés par les angles β_i et β_j sont alors confondus ou diamétralement opposés. Cela permet d'écrire pour chaque indice i

$$\cos \beta_i = \varepsilon_i \cos \alpha \text{ et } \sin \alpha_i = \varepsilon_i \sin \alpha$$

avec $\varepsilon_i = \pm 1$ et α un angle fixé. On a alors

$$f(\beta_1, \dots, \beta_n) = \left(\sum_{i=1}^k \varepsilon_i \delta_i\right)^2$$

et donc

$$\min f = \left(\min_{\varepsilon_1, \dots, \varepsilon_n = \pm 1} \left| \sum_{i=1}^k \varepsilon_i \delta_i \right| \right)^2 = \mu^2$$

et alors la borne supérieure cherchée vaut

$$m^2 - \mu^2 = (m - \mu)(m + \mu).$$

Cette quantité peut aussi s'interpréter comme égale à

$$\lambda(2m-\lambda)$$

avec λ la quantité la plus proche de m que l'on parvient à obtenir en sommant k valeurs chacune choisies parmi les deux valeurs propres possibles de chaque matrice A_1, \ldots, A_k .

Cette résolution m'a pris des heures... elle me semble bien compliquée et n'exploite pas la positivité des matrices A_i ! Néanmoins l'expression compliquée de la solution et, notamment la discussion, ne me semble pas pouvoir être évitée!

Exercice 47: [énoncé]

(a) On a $a_{i,j} = \langle e_i, x_j \rangle$, $b_{i,j} = \langle e_i, y_j \rangle$ donc

$$[^{t}AB]_{i,j} = \sum_{k=1}^{n} \langle e_k, x_i \rangle \langle e_k, y_j \rangle = \langle x_i, y_j \rangle.$$

(b) La condition étudiée sera remplie si, et seulement si, ${}^{t}AB = I_{n}$. Il existe donc une unique famille y solution et celle-ci est déterminée par

$$B = \left({}^{t}A\right)^{-1}.$$

La matrice B étant inversible, la famille y est une base et

$$P = \operatorname{Mat}_x y = \operatorname{Mat}_{e,x} \operatorname{Id}_E \times \operatorname{Mat}_{y,e} \operatorname{Id}_E = A^{-1}B$$

ce qui donne $P = M^{-1}$ car $M = {}^{t}AA$.

(c) Supposons $\lambda_1 x_1 + \cdots + \lambda_n x_n = 0_E$. Notons $I = \{i \in [1; n] \mid \lambda_i > 0\}$ et $J = [1; n] \setminus I$. On a

$$\sum_{i \in I} \lambda_i x_i = -\sum_{i \in J} \lambda_i x_i$$

donc

$$\left\| \sum_{i \in I} \lambda_i x_i \right\|^2 = -\langle \sum_{i \in I} \lambda_i x_i, \sum_{i \in J} \lambda_i x_i \rangle = -\sum_{(i,j) \in I \times J} \lambda_i \lambda_j \langle x_i, x_j \rangle.$$

Or, dans les termes sommés, $\lambda_i \lambda_j \leq 0$ et $\langle x_i, x_j \rangle \leq 0$ donc

$$\left\| \sum_{i \in I} \lambda_i x_i \right\|^2 \le 0.$$

On en déduit

$$\sum_{i \in I} \lambda_i x_i = 0_E.$$

En faisant le produit scalaire avec un vecteur \boldsymbol{v} comme dans l'énoncé, on obtient

$$\sum_{i \in I} \lambda_i \langle x_i, v \rangle = 0$$

avec $\lambda_i > 0$ et $\langle x_i, v \rangle > 0$ pour tout $i \in I$. On en déduit $I = \emptyset$. Un raisonnement analogue fournit aussi

$$\{i \in [1; n] \mid \lambda_i < 0\} = \emptyset$$

et l'on conclut que la famille x est libre. C'est donc une base puisqu'elle est de longueur $n=\dim E.$

(d) On a $M = {}^tAA$ et la matrice S est diagonalisable car symétrique réelle. Pour étudier ses valeurs propres, commençons par étudier celles de M. Soit λ une valeur propre de M et X vecteur propre associé. On a $MX = \lambda X$ donc

$$||AX||^2 = {}^tX^tAAX = \lambda^tXX = \lambda||X||^2$$

avec $\|X\|^2 > 0$ et $\|AX\|^2 > 0$ (car A est inversible) donc $\lambda > 0$. Aussi

$$||AX||^2 = \sum_{i=1}^n \left(\sum_{j=1}^n a_{i,j}\alpha_j\right)^2$$

avec $\alpha_1, \ldots, \alpha_n$ les coefficients de X.

Par l'inégalité de Cauchy-Schwarz

$$||AX||^2 \le \sum_{i=1}^n \left(\sum_{j=1}^n a_{i,j}^2 \times \sum_{j=1}^n x_j^2\right)$$

et on peut même affirmer qu'il n'y a pas égalité car X ne peut être colinéaires aux transposées de chaque ligne de A. On a alors

$$||AX||^2 < \sum_{i=1}^n \left(\sum_{j=1}^n a_{i,j}^2\right) ||X||^2 = \sum_{j=1}^n \left(\sum_{i=1}^n a_{i,j}^2\right) ||X||^2 = n||X||^2$$

car les colonnes de la matrice A sont unitaires puisque $||x_j||^2 = 1$. On en déduit $\lambda < n$ et finalement

$$\operatorname{Sp} M \subset [0; n[.$$

En conséquence

$$\operatorname{Sp} S \subset]0;1[.$$

(e) On écrit $S = QDQ^{-1}$ avec D diagonale à coefficients diagonaux dans $]0\,;1[$. On a

$$M^{-1} = \frac{1}{n}(I - S)^{-1} = \frac{1}{n}Q(I - D)^{-1}Q^{-1}.$$

Or

$$(I-D)^{-1} = I + D + D^2 + \dots = \sum_{n=0}^{+\infty} D^n$$

avec convergence de la série matricielle. On en déduit

$$M^{-1} = \frac{1}{n} \sum_{n=0}^{+\infty} S^n.$$

La matrice S est à coefficients positifs, ses puissances aussi et donc M^{-1} est à coefficients positifs.

(f) En reprenant les notations précédentes

$$M^{-1} = A^{-1}({}^{t}A)^{-1} = {}^{t}BB = (\langle y_i, y_j \rangle)_{1 \le i,j \le n}.$$