PID studies with proto-TORCH testbeam TORCH meeting

Martin Tat

University of Oxford

7th April 2022

Introduction

- My work so far:
 - Study how photons are propagated through TORCH optics
 - Study analytical photon reconstruction from MCP hits
 - Understand likelihood calculation
- Long term goal:
 - Prepare for PID study of next testbeam data
 - Testing reoconstruction code on real data
 - Build on Jenny's testbeam data analysis:
 - Jenny has focused on timing resolution studies
 - I will study PID separation power
- Thanks to:
 - Thomas Blake and Jonas Rademacker for providing LHCb reconstruction code
 - Jenny for providing testbeam data

Introduction to reconstruction code

- Forwards propagation:
 - Trace emitted photon through quartz bar
 - Reflect in cylindrical mirror
 - MCP hit!

Reconstruction described in LHCb-PUB-2022-007

Introduction to reconstruction code

- Reconstruction:
 - Reconstruct photon direction from vertical MCP pixel position
 - 2 From photon direction, calculate $\theta_c \to n_{\rm phase} \to n_{\rm group}$
 - 3 Reconstruct propagation time!

Reconstruction described in LHCb-PUB-2022-007

Simulated hit maps

Figure 1: Track incident 1 m from top

Beam position

Simulated hit maps

Figure 2: Track incident on top right corner (position 1)

Likelihood calculation

• Probability of photon hit with energy E_{γ} , azimuthal angle ϕ_c , time t_0 :

$$P(E_{\gamma}, \phi_c, z, t_0) = P(\phi_c)P(z)P(t_0)P(E_{\gamma})\Theta(E_{\gamma}, \phi_c, z)$$

$$= \frac{1}{2\pi} \frac{1}{r_z} P(E_{\gamma})P(t_0)\Theta(E_{\gamma}, \phi_c, z)$$

• Transform to detector coordinates (x_d, y_d) :

$$P(x_d, y_d, t_d) = P(E_{\gamma}, \phi_c, t_0) / |J|, \quad |J| = \left| \frac{\partial y_d}{\partial E_{\gamma}} \frac{\partial x_d}{\partial \phi_c} - \frac{\partial x_d}{\partial E_{\gamma}} \frac{\partial y_d}{\partial \phi_c} \right|$$

- $P(t_0)$: Gaussian PDF with $\sim 70 \, \mathrm{ps}$ time resolution
- $P(E_{\gamma})$: Frank-Tamm formula
- PID algorithm described in LHCb-PUB-2022-007

Test likelihood calculation on proto-TORCH

- Half height, 2 MCPs (one with reduced QE)
- Does PID separation still work?
- Set up single charged track simulation:
 - Send single particle (pion, kaon, proton) through quartz
 - @ Generate Cherenkov photons
 - Propagate photons to MCPs
 - Calculate likelihood from photon hits
 - Start over from step 1
- No background hypothesis
- Turn on pixelisation, charge sharing, clustering

Figure 3: Log likelihood at 6 GeV/c

Figure 4: Log likelihood at 15 GeV/c

Figure 5: Log likelihood at 20 GeV/c

Figure 6: Log likelihood at 6 GeV/c

Figure 7: Log likelihood at 15 GeV/c

Figure 8: Log likelihood at 20 GeV/c

Figure 9: Log likelihood at 6 GeV/c

Adopt to testbeam setup: MCP A and B Assume MCP A has QE that is 65% of MCP B

Figure 10: Log likelihood at 6 GeV/c

Adopt to testbeam setup: MCP A and B Assume MCP A has QE that is 65% of MCP B

PID efficiency from FTDR

PID efficiency study from FTDR Aim: Reproduce similar study with testbeam setup

PID efficiency simulation

Figure 11: PID efficiency

Full array of MCPs with same QE

PID efficiency simulation

Figure 12: PID efficiency

2 MCPs, one with lower QE

PID study of proto-TORCH testbeam data

Obviously, more messy and challenging:

- lacktriangledown Not many photons \Longrightarrow Use position 1 only
- ullet Backgrounds \Longrightarrow For now, discard events where reconstruction fails
 - Photon hits do not match track sometimes...
- \blacksquare T2 has an unknown offset \implies Align time distribution from simulation with that in data
 - There is probably a much better way...
- \bullet No T1 \Longrightarrow Introduce artificial 9500 mm offset to time information

Likelihood in proto-TORCH testbeam data

Figure 13: ΔLL of testbeam data

Results from testbeam data "out of the box"

Estimate of testbeam momentum: 8.6 GeV/c

PID cut	$\Delta \mathrm{LL} > 0$	$\Delta { m LL} > 5$
8 GeV/c pion simulation	99.0%	97.9%
9 GeV/c pion simulation	98.9%	96.8%
Proto-TORCH testbeam pion sample	78.6%	72.9%
8 GeV/c proton simulation	98.7%	97.4%
9 GeV/c proton simulation	98.8%	96.5%
Proto-TORCH testbeam proton sample	66.9%	59.5%

- Clearly this is work in progress:
 - Time alignment not perfect! Needs to be understood...
 - Individual pixels
 - Overall t₀
 - Proton sample has more backgrounds (kaons)?
 - **3** Likelihood calculation uses a "perfect" time resolution ($\sim 70 \, \mathrm{ps}$)
 - MCPs in proto-TORCH have worse QE than in simulation

Summary and next steps

- Summary
 - Likelihood calculation gives consistent results
 - 2 Single particle simulation shows very good PID separation power
 - 3 Testbeam data show some PID separation, not as good as simulation
- Next steps:
 - Need much more work to understand test beam data better
 - Time alignment
 - ② Background

Figure 14: Log likelihood at 6 GeV/c

Figure 15: Log likelihood at 15 GeV/c

Figure 16: Log likelihood at 20 GeV/c

Figure 17: Log likelihood at 6 GeV/c

Figure 18: Log likelihood at 15 GeV/c

Figure 19: Log likelihood at 20 GeV/c