GEOMETRIA III

I Foglio di Esercizi - 3 Marzo 2014

Omotopia e Retratti

Esercizio 1. Dimostrare che [0,1] e \mathbb{R} sono contraibili.

Esercizio 2. Dimostrare che se X e Y sono spazi topologici e Y è contraibile allora tutte le funzioni continue $f: X \to Y$ sono omotope.

Esercizio 3. Dimostrare che in uno spazio di Hausdorff ogni retratto è chiuso.

Esercizio 4. Sia $(\mathbb{R}^2, \varepsilon)$ il piano reale con la topologia euclidea. Consideriamo P = (0, 1) e i seguenti sottoinsiemi:

- $I_k = \{(x, y) \in \mathbb{R}^2 \mid -1 \le x \le 1, y = k\}$
- $S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$
- $X_k = S^1 \setminus \{P\} \cup I_k$
- 1. Determinare per quali $k \in \mathbb{R}$ X_k è connesso e per quali è compatto.
- 2. Dividere la famiglia $\{X_k\}_{k\in\mathbb{R}}$ in classi d'omotopia.

Esercizio 5. Dire se $A, B, C \subset (\mathbb{R}^n, \varepsilon)$ sono omotopicamente equivalenti:

$$A = \{v \in \mathbb{R}^n : ||v|| \le 5\}, \ B = \{v \in \mathbb{R}^n : ||v|| < 2\}, \ C = \{v \in \mathbb{R}^n : ||v|| \le 1\}.$$

B è un retratto di A?

Esercizio 6. Si consideri $X \subset (\mathbb{R}^2, \varepsilon)$ e $A \subset X$:

Mostrare che A è un retratto di deformazione di X.

Esercizio 7. Sia Y l'unione di due lati di un triangolo X nel piano reale con la topologia euclidea. Y è un retratto di deformazione di X?

Esercizio 8. Dimostrare che il bicchiere vuoto Y è omotopicamente equivalente al bicchiere pieno X, cioè mostrare che in (\mathbb{R}^3, ϵ) $X = \mathbb{D}^2 \times [0, 1]$ e $Y = \mathbb{D}^2 \times \{0\} \cup S^1 \times [0, 1]$ hanno lo stesso tipo d'omotopia.

Esercizio 9. Dire se i seguenti sottospazi di $(\mathbb{R}^2, \varepsilon)$ sono omotopicamente equivalenti:

Esercizio 10. Sia X lo spazio euclideo \mathbb{R}^3 privato degli assi coordinati. Sia $C = [-1,1] \times [-1,1] \times [-1,1]$ e sia Y l'unione degli spigoli di C. Mostrare che X e Y sono omotopicamente equivalenti.

Esercizio 11. Provare che i seguenti sottospazi di $(\mathbb{R}^2, \varepsilon)$ sono omotopicamente equivalenti.

Esercizio 12. Si considerino i seguenti sottospazi di $(\mathbb{R}^3, \varepsilon)$:

- $X = S^2 \coprod I/\sim$ dove \sim è così definita: $N \sim 0, S \sim 1,$ con N, S rispettivamente polo nord e polo sud della sfera;
- $\bullet \ Y = S^2 \vee S^1.$

Provare che X e Y sono omotopicamente equivalenti.

Esercizio 13. In $(\mathbb{R}^3, \varepsilon)$ si consideri la sfera unitaria S^2 centrata nell'origine e sia X lo spazio topologico così definito:

$$X = \{(x,y,z) \in S^2 | z \le 0\} \cup \{(x,y,z) \in S^2 | xy = 0\}.$$

Provare che X è omotopicamente equivalente a $S^1\vee S^1\vee S^1.$

Esercizio 14. Si consideri il toro $T \subset (\mathbb{R}^3, \varepsilon)$ ottenuto facendo ruotare la circonferenza di centro (2,0) e raggio unitario nel piano \mathbb{R}^2_{xz} attorno all'asse delle z. Sia X lo spazio ottenuto aggiungendo al toro n dischi come in figura:

Provare che $X \sim \vee_1^n S^2 \vee S^1$.