การทดลองที่ 5

เรื่อง สมมูลไฟฟ้าทางความร้อน

วัตถุประสงค์

- 1. ศึกษาการเปลี่ยนแปลงพลังงานไฟฟ้าเป็นพลังงานความร้อนโดย การให้ไฟฟ้ากระแสตรงไหลผ่านขดลวด ความต้านทานที่จุ่มอยู่ในแคลอรีมิเตอร์
- 2. เพื่อคำนวณหาค่าสมมูลไฟฟ้าของความร้อน
- 3. เพื่อหาความสัมพันธ์ระหว่างเวลากับอุณหภูมิของการเปลี่ยนแปลงพลังงานไฟฟ้าเป็นพลังงานความร้อน

ทฤษฎี

พลังงานไฟฟ้าเป็นพลังงานรูปหนึ่งที่รู้จักกันดี และสามารถแปรสภาพไปเป็นพลังงานรูปอื่นได้ เช่น พลังงานความร้อน ซึ่งการค้นพบนี้มีขึ้นครั้งแรกโดย เจมส์ จูล(James Joules) จากการทดลองสรุปได้ว่าพลังงาน ความร้อนที่เกิดขึ้นกับขดลวดความด้านทานจะแปรตามกำลังสองของกระแสไฟฟ้าที่ใหลผ่านขดลวดนั้นกับ เวลาที่ปล่อยให้กระแสไฟฟ้าใหลผ่าน

รูปที่ 1.1 แสดงลักษณะวงจรที่ใช้ในการทดลอง กระแส i จะไหลผ่านขดลวดความต้านทาน (ขด ลวดความร้อน) ซึ่งเท่ากับว่ามีประจุจำนวนหนึ่งไหลผ่านในวงจร ค่าพลังงาน(W) ที่ใช้ในการนำประจุผ่าน ขดลวดความต้านทานหาได้จาก

$$W = i^2 R \Delta t = iV \Delta t \tag{1.1}$$

i คือ กระแสไฟฟ้า (แอมแปร์)

R คือ ความต้านทานของขคลวดความร้อน (โอห์ม)

 Δt คือ เวลา (วินาที)

W คือ พลังงานไฟฟ้า (จูล)

รูปที่ 1.1 แสดงวงจรที่ใช้ในการทดลองสมมูลทางไฟฟ้าความร้อน

ค่าพลังงานไฟฟ้าจำนวนนี้จะแปรสภาพเป็นพลังงานความร้อนที่ขดลวดความต้านทาน R ในที่นี้ t คือ เวลาที่ปล่อยให้กระแสไหล โดย W , R , t และ i มีหน่วยเป็น จูล,โอห์ม,วินาทีและแอมแปร์ ตามลำดับ สมการ ดังกล่าว เรียกชื่อว่า "กฎของจูล"

สำหรับการทดลองนี้จะหาปริมาณความร้อนดังกล่าวโดยจุ่มขดลวดความต้านทานลงในน้ำที่บรรจุอยู่ใน ภาชนะ เพื่อให้มีการถ่ายโอนพลังงานความร้อนไปสู่น้ำ อุปกรณ์ที่ใช้ในที่นี้คือ แคลอรีมิเตอร์ ถ้า M_c และ M คือ มวลของแคลอรีมิเตอร์ และมวลของของเหลว (น้ำ) ตามลำดับ โดยที่ค่า ความร้อนจำเพาะของวัสดุทั้งสองเป็น S_c และ $S_{\mathring{u}_1}$ ตามลำดับ ในขณะที่ทำการทดลองมีการวัดการเปลี่ยนแปลงอุณหภูมิ T ภายในเวลา t ดังนั้นจึง สามารถคำนวณหาพลังงานความร้อน H (มีหน่วยเป็นแคลอรี) ได้ดังนี้

$$H = M_c S_c \Delta T + M S \Delta T \tag{1.2}$$

แต่พลังงานความร้อนนี้จะต้องเป็นสัคส่วนกับพลังงานไฟฟ้าที่ป้อนเข้าไป ทั้งนี้ประมาณว่าไม่มีการ สูญเสียความร้อนในทางอื่น ๆ เลย จะได้ว่า

(พลังงานไฟฟ้า) = (ค่าคงที่). (พลังงานความร้อน)

$$W = J \cdot H \tag{1.3}$$

J คือ สมมูลไฟฟ้าของความร้อน(จูลต่อแคลอรี)

$$J = \frac{iV\Delta t}{(M_c S_c + MS)\Delta T}$$
 (1.4)

รูปที่ 1.2 แสดงวงจรการทดลองสมมูลไฟฟ้าทางความร้อน

สำหรับการทดลองนี้กำหนดให้ ค่าความร้อนจำเพาะของภาชนะกับเครื่องกวนมีค่าเท่ากับ $S_c=0.22~{
m Cal/C^0}\cdot {
m g}$ ค่าความร้อนจำเพาะของน้ำมีค่า ${
m S_{di}}=1.00~{
m Cal/C^0}\cdot {
m g}$ ${
m M_{di}}$ เป็นมวลของกระป้องแคลอรีมิเตอร์อันในกับเครื่องกวน (ค่ามาตรฐานของสมมูลไฟฟ้าความร้อน ${
m J}=4.18~$ จูลต่อแคลอรี)

รูปที่ 1.3 แสดงรูปเครื่องมือการทดลองสมมูลไฟฟ้าทางความร้อน

อุปกรณ์

1.	แกลอรีมิเตอร์พร้อมขดลวดความต้านทาน	1	ชุด
2.	แหล่งจ่ายไฟฟ้ากระแสตรง (Power Supply)	1	เครื่อง
3.	เทอร์โมมิเตอร์	1	อัน
4.	โวลต์มิเตอร์	1	เครื่อง
5.	แอมมิเตอร์	1	เครื่อง
6.	นาฬิกาจับเวลา	1	เรือน
7.	กระบอกตวง	1	อัน
8.	สายไฟ	5	เส้น

วิธีทำการทดลอง

- 1. จัดชุดทดลองดังรูปที่ 1.2 เมื่อต่ออุปกรณ์เสร็จแล้ว ไม่ควรเปิดสวิทช์ก่อน ทั้งนี้เพราะการต่อผิดจะ ทำ ให้อุปกรณ์เสียหายได้ <u>เมื่อต่อวงจรเสร็จเรียบร้อยแล้วให้ตรวจสอบดูว่าต่อถูกต้องหรือไม่ หากไม่แน่ใจ</u> ให้อาจารย์หรือผู้ควบคุมการทดลองตรวจสอบ
- 2. เติมน้ำที่มีอุณหภูมิ 15 °C ปริมาตรตามที่กำหนดข้างอุปกรณ์ ลงในแคลอรีมิเตอร์ เปิดสวิทช์ แหล่งจ่ายไฟ บันทึกเวลาที่ผ่านไป ค่าแรงคันไฟฟ้าที่ตกคร่อมเส้นลวดความร้อน และ กระแสไฟฟ้าใน แต่ละขณะ เมื่ออุณหภูมิน้ำเปลี่ยนไปทุก ๆ $5^{\circ}C$ จนกระทั่งน้ำมีอุณหภูมิประมาณ $45^{\circ}C$ (ใน ขณะเดียวกันให้คนน้ำตลอดเวลา)
- 3. เขียนกราฟความสัมพันธ์ระหว่างค่าอุณหภูมิที่อ่านได้ในแต่ละครั้งกับเวลาที่ผ่านไป แล้วหาค่าความชัน ของกราฟเท่ากับ $\Delta t/\Delta T$ จากนั้นนำไปแทนค่าในสมการ (1.4) เพื่อคำนวณหาค่าสมมูล ไฟฟ้าของความ ร้อน (J) ในการแทนค่า V และ i ให้ใช้ค่าเฉลี่ยจากการทดลอง จากนั้น คำนวณหาค่าเปอร์เซ็นต์ความ ผิดพลาดของค่า J

บันทึกผลการทดลองที่ 5 สมมูลไฟฟ้าทางความร้อน

มวลของกระปืองแคลอรีมิเตอร์อันในกับเครื่องกวน (\mathbf{M}_{C})	=133 g
ค่าความร้อนจำเพาะของกระป๋องแคลอรีมิเตอร์อันในกับแท่งกวน (\mathbf{S}_{c})	$= \dots \bigcirc 22 \dots \text{Cal/C}^{0} \cdot g$
มวลของน้ำในกระป๋อง (M _{น้ำ})	= 500 g
ค่าความร้อนจำเพาะของน้ำ ($S_{ ilde{\eta}}$)	= 1.00
อุณหภูมิเมื่อเริ่มการทคลอง (T ₁)	=15

อุณหภูมิ T2	เวลา	กระแสไฟฟ้า	ความต่างศักย์
(C ⁰)	(s)	(A)	(V)
15	341	2.901	11.39
20	667	2.904	11.36
25	1,009	2.900	11.39
30	1,322	2.893	11.30
35	1,722	2.874	11.29
40	2,059	2.874	11.25
45	2,462	2.873	11.26
	เฉลี่ย	2.8884	11.3129

เขียนกราฟระหว่าง t กับ \mathbf{T}_2 โดยกำหนดให้ t อยู่บนแกน \mathbf{Y} และ \mathbf{T}_2 อยู่บนแกน \mathbf{X}

วิธีการคำนวณ (แทนค่าต่างๆที่ได้จากการทดลองลงในสมการ)

$$J = \frac{iV\Delta t}{(M_c S_c + MS)\Delta T}$$

สรุปและวิจารณ์ผลการทดลอง