COMP 250

Lecture 27

graphs

Nov. 11, 2016

Example

Same Example – different notation

Weighted Graph

Definition

A directed graph is a set of vertices

$$V = \{v_i : i \in 1, ..., n\}$$

and set of ordered pairs of these vertices called edges.

$$E = \{ (v_i, v_j) : i, j \in 1, ..., n \}$$

In an undirected graph, the edges are unordered pairs.

$$E = \{ \{v_i, v_j\} : i, j \in 1, ..., n \}$$

Examples

<u>Vertices</u> <u>Edges</u>

airports flights

web pages links (URLs)

Java Objects references

Data Structures for Graphs

Vertices

- hashmap: label → vertex

```
class Graph<T>
{
    HashMap< String, Vertex<T>> vertexMap;
    :
}
```

Data Structures for Graphs

Vertices

- hashmap: label → vertex

Edges

- "adjacency list"
- "adjacency matrix"

Adjacency List

Here each adjacency list is sorted, but that is not always possible (or necessary). 10

```
class Graph<T>
   HashMap< String, Vertex<T> > vertexMap;
class Vertex<T>
   LinkedList<Edge> adjList;
class Edge
                  endVertex;
    Vertex
```

```
class Graph<T>
   HashMap< String, Vertex<T> > vertexMap;
class Vertex<T>
    LinkedList<Edge>
                      adjList;
    String
                      key;
    boolean
                      visited;
                      element;
class Edge
                   endVertex;
    Vertex
    double
                   weight;
```

How many objects?

Adjacency Matrix

Note we require a mapping from vertex names to 0, 1,, n-1.

boolean adjMatrix[6][6]

Adjacency Matrix

boolean adjMatrix[6][6]

Terminology: "in degree"

<u>V</u>	<u>in degree</u>
a	1
b	2
С	2
d	0
е	1
f	3
g	0
h	1

Terminology: "out degree"

<u>V</u>	<u>out degree</u>
a	1
b	1
С	1
d	2
e	2
f	2
g	1
h	0

Terminology: path

A sequence of vertices that are connected by edges.

Equivalently, a sequence of edges such that end vertex of one edge is the start vertex of next edge.)

Examples

- acfeb
- dac
- febf

•

Terminology: cycle

A path such that the last vertex is the same as the first vertex.

Examples

- febf
- efe
- fbf
- ...

Graph algorithms in COMP 251

Given a graph, what is the shortest (weighted) path between two vertices?

Given a graph and weights that describe flow capacities, what is the maximum flow between two given vertices?

Given two sets X and Y, and each ranks the members of the other set, find a stable "match".

Directed Acyclic Graph

Used to capture dependencies.

There are three paths from a to d.

"Travelling Salesman" COMP 360 (Hamiltonian circuit)

Find the shortest cycle that visits all vertices once.

If there is an edge between each pair of vertices, then how many cycles are there?

Announcements

Midterm 2 on Monday

```
STBIO S3/3 [A-C]
ENGTR 0100 [D-J]
ADAMS AUD [K-W]
RPHYS 114 [X-Z]
covers from lecture 10-24
```

Assignment 4 will be posted next week