

On se propose d'étudier l'évolution de la tension aux bornes d'un condensateur dans le but de déterminer la capacité du condensateur.

Un générateur de tension de f.é.m. E alimente un conducteur ohmique de résistance

 $R = 100\Omega$ et un condensateur de capacité C associés en série.

- 1 A l'aide des mesures de la tension u_C aux bornes du condensateur, on a obtenu la courbe $u_C = f(t)$ (figure-1-)
 - a) A l'aide de la courbe $u_c(t)$, déterminer la date t à partir de laquelle on peut considérer que la tension u_c est constante. Quel phénomène physique est mis en évidence par la portion de courbe située avant la date t.
 - b) Déterminer la valeur de E
 - c) Déterminer la valeur de la constante de temps τ.
 - d) En déduire la valeur de la capacité C
 - e) Faut-il augmenter ou diminuer la valeur de *R* pour charger rapidement le condensateur ? Justifier la réponse.
- 2. Etablir l'équation différentielle vérifiée par u_c

- 3. a) Sachant que $u_C = E(1 e^{-t/RC})$ est solution de l'équation différentielle, établir l'expression de i(t).
 - b) A partir du graphe $u_C = f(t)$ déterminer i(t = 0).
 - c) Représenter l'allure de la courbe i = f(t)
- 4. Calculer la valeur de l'énergie $E_{\mathcal{C}}$ accumulée par le condensateur lorsque $u_{\mathcal{R}}=u_{\mathcal{C}}$

A) On considère le circuit électrique schématisé ci-contre : Le générateur débite un courant d'intensité constante I=0,5 mA. Le condensateur, de capacité C, initialement déchargé. Le résistor à une résistance R. A t=0, on ferme K. Un dispositif approprié permet de suivre l'évolution de l'énergie électrique E_C emmagasinée par le condensateur en fonction du carrée du temps. On obtient le graphe figure 1

- b) Montrer que : $E_C = \frac{I^2}{2C} t^2$.
- c) En exploitant le graphe, déterminer la valeur de C du condensateur utilisé.

2. Sachant qu'à l'instant t = 10s, l'énergie E_C emmagasinée par le condensateur est égale à l'énergie E_{th} dissipée par effet joule dans le résistor, calculer la valeur de R. On rappelle qu'en courant continu : $E_{th} = RI^2t$.

a) Identifier les courbes (a) et (b).

Figure 1

100

 $E_c(10^{-2}J)$

2,5

1,5

0,5

- b) Trouver graphiquement la valeur de τ .
- c) Déduire de l'expression de $u_{\mathcal{C}}(t)$ celle de i(t).
- d) Déterminer la valeur de R et celle de C
- 5. Calculer la valeur de l'énergie E_{Cm} stockée par le condensateur lorsque le régime permanent est établi.
 - C) Le condensateur étant initialement totalement chargé, on bascule, à l'instant t = 0, le commutateur K sur la position 2.
- 6. L'équation différentielle qui gère l'évolution de la tension u_C aux bornes du condensateur au cours du temps est : $\tau\left(\frac{du_C}{dt}\right) + u_C = 0$ avec $\tau = RC$

Montrer que l'évolution au cours du temps de l'énergie électrique $E_{\mathcal{C}}$ stockée par le condensateur est gérée par l'équation différentielle :

$$\tau\left(\frac{dE_c}{dt}\right) + 2E_C = 0$$
 avec $\tau = RC$

 $\frac{1}{2}$ 7. On donne ci-contre la courbe d'évolution de E_c au cours du temps. Sachant que $E_C(t) = E_{Cm}e^{-2t/\tau}$:

Déterminer graphiquement les valeurs de E_{Cm} et de $(\frac{dE_C}{dt})_{t=0}$. Déduire alors les valeurs de C et de R.

3 8. Calculer la valeur de l'énergie thermique E_{th} dissipée par

Un condensateur ne portant aucune charge de capacité $C = 10 \mu F$ est utilisé dans le circuit ci-contre.

Le circuit comporte un générateur idéal de f.é.m. E= 12V, trois résistors de résistance $R_1 = 1K\Omega$, R_2 et R_3 sont inconnues et un commutateur à double position K.

1. Etablir l'équation différentielle régissant les variations de la tension $u_{R2}(t)$) aux bornes de R_2 .

$$\alpha = \frac{1}{(R_1 + R_2)C}.$$

3. Sur le graphe de la figure 3, on donne la courbe $u_{R2}(t) = f(t)$.

✓ Déterminer la valeur de la résistance R₂

✓ Prélever la valeur de la constante de temps τ_1 et retrouver la valeur de la capacité C du condensateur

b) Déterminer, à l'instant $t_1 = 0,05s$ la charge portée par l'armature B du condensateur.

Figure-2-

H - Le condensateur est complètement chargé, on bascule le commutateur K sur la position 2 à un instant pris comme origine de temps. A l'aide d'un dispositif approprié on a représenté $q_B = f(t)$ (figure 4).

- 1. a) Déterminer la valeur de l'intensité i du courant à l'instant $t_1 = 0,05s$.
 - \downarrow b) Calculer l'énergie dissipée par effet joule dans les résistors R_1 et R_2 entre les instants $t_0=0$ s t_1
- 2. Sachant que l'expression de la charge portée par l'armature B est $q_B=-12.10^{-5}e^{-\frac{t}{\tau_2}}$ avec $\tau_2=(R_2+R_3)\mathcal{C}$. Calculer la valeur de la résistance R_3 sachant qu'à l'instant $t_2=0,04s$ $q_B=-4,4110^{-5}\mathcal{C}$

On réalise un circuit électrique en série comportant deux résistors dont l'un est de résistance $R_1 = 100 \Omega$ et l'autre est de résistance $R_2 = 100 \Omega$ un condensateur initialement déchargé de capacité C et un interrupteur K. L'ensemble est alimenté par un générateur idéal de tension, de f.é.m. E et de masse flottante M (figure 4). Un oscilloscope à mémoire permet d'enregistrer :

- \checkmark Sur la voie Y_1 , la tension $u_{DA} = u_{R_1}(t)$ aux bornes du résistor de résistance R_1 ;
- \checkmark Sur la voie Y_2 , la tension $u_{AB} = u_C(t)$ aux bornes du condensateur.

A l'instant t = 0, on ferme l'interrupteur K. Les courbes donnant l'évolution au cours du temps des tensions électriques u_{DA} et u_{AB} sont représentées sur la *figure 5*.

- 1. Justifier que la courbe (C_2) correspond à la tension $u_{R_1}(t)$.
- 2. a) Etablir l'équation différentielle régissant l'évolution de la tension u_{R_1} aux bornes du résistor de résistance R_1 .
 - b) La solution de l'équation différentielle peut s'écrire sous la forme $u_{R_1}(t)=U_{0_1}e^{-t/\tau}$. Exprimer U_{0_1} et τ en fonction des caractéristiques des dipôles
 - c) En déduire l'expression de la tension $u_{\mathcal{C}}(t)$ aux bornes du condensateur.
- 3. En exploitant le graphe de la figure 5, déterminer :
 - ✓ La valeur de E;
 - ✓ La valeur de τ . En déduire la valeur de C
- 4. Déterminer à la date $t = \tau$:
 - ✓ La valeur de l'intensité du courant i dans le circuit.
 - \checkmark La valeur de la charge q_B de l'armature B du condensateur .
 - ✓ L'énergie emmagasinée par le condensateur.

2) $q_{g}(t)=-12.10^{-5}.\frac{t}{z_{g}}$ and $z_{g}=(z_{g}+R_{g})c$	* de = Llon e
Ona - 12 lo $e^{-\frac{1}{4}}$ = -4, 411 Sig $e^{\frac{1}{2}}$ = 4, 411	l'équation d'el s'écrit:
$sig = \frac{7}{4}$ (2) $sig = t_2 = t_n (4, 411) = -1.$	$U_0 = (R_1 + R_2)C + A = 0$ $= C = (R_1 + R_2)C$
Sig t2 = 2 = 4.15 = (R2+R3) C	c) La des mailles
sig R = C = 3 K.R.	$R_{R_1}(t) + u_{R_2}(t) + u_{c}(t) = 6$ $(R_1 + R_2) \cdot i(t) + u_{c}(t) = 6$
Ex 4 1) à t=0; un (0)=0 : (C1).	(=, R1+R2 U(t) + uc(t)-E
d'où (Ca): URe	1=> u_(t) = E = R1+R2 R1. E. e = - 1/2 - Rx FR2
x ou: en régie permanent; I co	$= u_{e}(t) - E(1 - e^{t/e})$ 3) $u_{e}(t) - R = 5 \cdot V - U$
2) of Eq diff (Ra+Rz) C dup , v	RA+R2
b/ Men (+) = Mon e	$Z = 2.6^{\circ} \text{s.} = (R_A + R_2).C$
4 å t 205; elp (0) = Uo, = R, i (0). $C = \chi$ $C = \frac{\pi}{R_1 + R_2} = 10 \text{ pF}.$ 4) $t = 7$ $u_c(\tau) = 0.63 = 6.3 \text{ V}$ $(R_2 + R_1) \cdot i(\tau) = E - u_c(\tau)$
$(=) dl_{R_1}(0) = R_1 \cdot \frac{E}{R_1 + R_2}$	$(R_2 + R_1) \cdot i(\overline{z}) = E - u_2(\overline{z})$ $= i(\overline{z}) = E - u_2(\overline{z})$
	200 r = 18,5.10 ⁻³ A

 $q_{g} = -q(\tau)$ = -c. $u_{c}(\tau) = -6, 3.6 ^{-5} C$ Ec(7)=1.92=19,84.105J.