

Clean Water and Oregon Forest Practices Act

- Most of the FPADivisions are dedicatedto protecting andmaintaining clean water
- " FPA establishes a commitment to research and monitoring

Lorensen et al. 1994 (ODF Technical Report #1)

Oregon Department of Forestry: Research and Monitoring

- " 2002 Herbicide Study: Found FPA rules were effective in preventing drift contamination to streams
- Z002 BMP Compliance:
 High level of compliance
 with Water Quality Forest
 Practice Rule

Robben and Dent 2002 (ODF Technical Reports #7), Robben and Dent 2002 (#15)

Oregon Department of Forestry: Research and Monitoring

1996 Landslide Study:

- Only ground-based study of it's kind
- Young Stands
- " Road Landslides
- Basis for new Rules and Strategies dealing with landslides, public safety, and wood recruitment to fish streams.

Robison et al. 1999 (ODF Technical Report #4)

Stream Temperature Ripstream Objectives

- ODF initiated long term collaborative study
 - . Effectiveness of practices and strategies in maintaining cold water environment and other riparian functions.
- Recognized by OSAF with the Science Award

Plum Creek, OFIC, ODFW

Ripstream Study Design

- " 33 Sites in the Oregon Coast Range
- " State (FMP) and Private (FPA)
- " "BACI" = Before-After-Control-Impact
- 2 years pre-harvest and 5 years post-harvest data collection

Dent et al. 2008

Result: Meeting DEQ Stream Temperature Water Quality Standards- Mixed Story

- " Numeric Standard
 - . Yes on State
 - . Yes on Private
- Protecting ColdWater Standard
 - . Yes on State
 - 40% probably of not meeting PCW on Private

Groom et al. 2011a

Results: Changes in Stream Temperature

- Temperature change is relatively small
 - . Zero for State
 - . 0.7°C for Private
- " DRAFT results suggest improving trend over 5 years after harvest
- Temperature change downstream of harvest units?

Groom et al. 2011b

Results: Changes in Shade

- Shadedecreased onPrivate Sites
- Temperature increases related to decreases in shade
- Shade related to basal area

Groom et al. 2011b

Stream Temperature: What Are We Learning?

- Stream temperature under State FMP applications
 - ✓ Meets DEQ standards
 - ✓ No detectable change due to harvest
- Stream temperature under FPA:
 - ✓ Meet Numeric Standard
 - Doesn't meet Protecting Cold
 Water Standard
 - ✓ Small magnitude of change
 - √ Shade matters
 - ✓ Improving trend 5-years after harvest
 - ? Downstream propagation of temperature change.

Roads and Sediment

Road research made significant contributions to BMP modifications in the 1980s and 1990s.

- ✓ Durable Surfacing
- ✓ Vegetated ditches
- ✓ Traffic control practices
- ✓ Road location
- ✓ Direct drainage away from streams

Reid and Dunne 1984, Bilby et al 1985, Duncan and Ward 1985, Bilby 1985, Sullivan 1985, Skaugset and Allen 1998, Megahan and Ketcheson 1996

Reducing Hydrologic Connectivity

Direct drainage away from streams, cross drains, water bars, filtering around stream crossings

- Reduce sediment delivery to streams
- Reduce potential for road system to act as a part of the channel network potentially influencing peak flows

ODF 1996, Skaugset and Allen 1998, Mills et al. 2007

In Trask Watershed Context:

- Does road construction increase sediment delivery to streams?
- " Relate to other metrics (ppt, road conditions, traffic, surfacing, stream flow etc.)
- " How is it propagated downstream?
- " Examine biologic linkages

Hinkle Creek: Sediment routing and haul

Trask River Watershed Study

Prevailing questions:

- What are the effects of forest management around very small streams?
- " What is the biological significance of effects from forest management?
- " What are the cumulative effects of forest management?
- Paired watershed studies most suitable to address these questions

Trask Conceptual Model

Year 1: Pre-road work and Pre-harvest

Year 2: Post-roads

Year 3: Post-Road/Post Harvest with Haul

Trask Road Sediment Study Design

- "In 5 headwaters streams where biological data are being collected
- "Three years of data collection:
- ✓ Pre- road construction
- ✓ Post- road construction& maintenance
- ✓ Post-Haul & Harvest

Next Steps

- 2013 Manuscript: Preroad and post-road construction patterns
- " Effects of haul and harvest on sediment
- " Potential biological responses.

Roads and Turbidity in Forested Streams: What are We Learning?

- " Have adapted BMPs to reflect research over several decades
- Trask Pre-road Work:
 Highly Variable
 - . Above and Below Roads
 - . Between Storms
 - . Between Streams

Oregon Forestry and Clean Water

Current Challenge:

Mow to detect slight forest management effects within highly variable systems.

- Are slight forest management effects biologically relevant?
- Goals need to reflect that water quality is naturally variable over time and across the landscape.

Conclusion

- Forested streams provide high water quality
- "Oregon Forestry has a rich history of testing effectiveness & adapting BMPs to reflect findings."
- As long as the forestry community maintains commitment to adaptive management we maintain social license to manage.

