

Ciclo de vida do produto

Life cycle assessement (LCA)

de gestão ambiental Resultados típicos de um LCA Latas de alumínio, por 1000 units • Bauxite 59 kq • Oil fuels 148 MJ Consumo de Electricity 1572 MJ recursos • Energy in feedstock 512 MJ Water use 1149 kg • Emissions: CO, 211 kq Qual a situação • Emissions: CO 0.2 kq Inventário de cada "eco-indicador"? • Emissions: NO 1.1 kg das emissões • Emissions: SO, 1.8 kg Particulates 2.47 ka 0.2 X 10⁻⁹ • Ozone depletion potential • Global warming potential Avaliação de 1.1 X 10⁻⁹ Acidification potential 0.8 X 10⁻⁹ impacto 0.3 X 10⁻⁹ Human toxicity potential

Uma análise do LCA de um produto/material é um processo que requere grande detalhe e experiência, sendo um processo moroso e como tal caro.

Consensual: o LCA é *inviável* como ferramenta de design de rotina.

Alternativa???

ISO 14040 – Sistema

Design vs análise do produto

Desenvolvimento de estratégias para orientar a conceção

Necessidade:

Eco auditoria que combina o custo aceitável com precisão suficiente, para ajudar na tomada de decisões

Ferramenta Eco Audit (CES EduPack)

Ferramenta Eco Audit (CES EduPack)

Opção para guiar um processo de decisão

- 1 resource energy (oil equivalent)
- 1 emission CO₂ equivalent
- Distinguish life-phases

Life-energy

Distinguir as diferentes fases da vida de um produto

Fonte: Granta Design and Mike Ashby, 2020.

Ferramenta Eco Audit (CES EduPack)

- 1 resource energy (oil equivalent)
- 1 emission CO_2 equivalent
- Distinguish life-phases
- Audit: Energy or Cost

Fonte: Granta Design and Mike Ashby, 2020.

Grande panorama: consumo de energia dos produtos

Mat. Manu. Trans. Use

Mat. Manu. Trans. Use

Mat. Manu. Trans. Use.

Representação dos eco dados: energia incorporada

Extração do material

FIGURE 6.1 The idea of embodied energy. Energy, in various forms, enters or is required by the plant. Its output is a material. The energy per kg of usable material is the embodied energy of the material.

 $Energia\ incorporada = \frac{\sum energias\ que\ entram\ na\ fábrica\ por\ hora}{massa\ grânulos\ de\ PET\ produzidos\ por\ hora}$

Energia incorporada (embodied energy) – soma das energias necessárias para produzir um bem ou serviço (expressa em MJ/kg)

Representação dos eco dados: energia incorporada

Extração do material

Extração do material

Representação dos eco dados: Libertação de CO₂ para a atmosfera por ano

Fonte: "Materials and the environemnt: Eco-informed materials choice", Mike Ashby, 2009.

Extração do material

Representação dos eco dados: quantidade de água utilizada por unidade de massa

Fonte: "Materials and the environemnt: Eco-informed materials choice", Mike Ashby, 2009.

Fabrico do produto

Energia associada ao processamento do produto

destino no final do ciclo de vida útil

Opção de fim de vida	Descrição	Impacto ambiental	
Re-use	Prolongamento da vida do produto por reutilização	Menor	
Re-engineer	Utilização do material num novo produto		
Recycle	Reprocessamento do material e sua reutilização na cadeia de produção		
Downcycle	Reprocessamento com perda de qualidade do material e sua reutilização na cadeia de produção		
Combustion	Recuperação do conteúdo calorífico do material		
Landfill	Eliminação do material em aterro	Maior	

destino no final do ciclo de vida útil

Potencial de fim de vida (end of life (EoL) potential) — crédito por reciclar ou reutilizar o material

destino no final do ciclo de vida útil

Fração reciclada por material

Estratégia para a seleção dos materiais

Ferramenta Eco Audit (CES EduPack)

User inputs User interface Bill of materials Manufacturing process Transport needs Duty cycle End of life choice

model

Database

Eco data

- Embodied energies
- Process energies
- CO₂ footprints
- Unit transport energies
- Recycling / combustion

Outputs:

Full report

- Data
- Criticality
- Hazard

Fonte: Granta Design and Mike Ashby, 2020.

Eco dados no CES EduPack

Ferramenta Eco Audit (CES EduPack)

Ferramenta Eco Audit (CES EduPack)

1º passo: materiais e energia do processo/ CO₂

1º passo: materiais e energia do processo/ CO₂

24

2º passo: transporte

3º passo: fase de utilização – Modo estático

100 unidades de água engarrafada

- Garrafa em PET de 1 litro, com tampa de PP
- Moldadas por sopro
- Fabricada em França, transportados 550 km para o Reino Unido
- Refrigerada durante dois dias, depois bebida

100 unidades de água engarrafada

28

Which phase has the largest impact?

Materials!

Reducing Material-phase impact

Aim

Minimize embodied energy or CO₂ footprint / unit of function.

Actions

Select material with lowest embodied energy and CO₂ footprint per unit of function.

Use as large a 'recycled content' in the material as possible.

Use as little material as possible while retaining enough redundancy for safety.

Conflicts

Watch out for conflict with the Use phase. The material with the lowest direct eco-impact may not be the lightest or the cheapest. Use trade-off methods to resolve the conflict.

The audit reveals the most energy and carbon intensive steps...

PET

Detalhes...

1º passo: selecionar o nível 1 e a opção "Eco Audit"

2º passo:

preencher os campos "product information" e "material, manufacture and end of life"

Detalhes...

3º passo: preencher os campos transporte e uso

Detalhes...

4º passo: gerar o relatório (resumo e em detalhe)

Detalhes...

4º passo: gerar o relatório (resumo e em detalhe)

Phase	Energy (MJ)	Energy (%)	CO2 footprint (kg)	CO2 footprint (%)
Material	336	60.9	11.2	42.2
Manufacture	80.6	14.6	6.05	22.8
Transport	85.9	15.6	6.18	23.3
Use	46.4	8.4	2.89	10.9
Disposal	2.82	0.5	0.197	0.7
Total (for first life)	552	100	26.5	100
End of life potential	-217		-4.79	

Garrafa de água PET2.prd

NOTE: Differences of less than 20% are not usually significant.

See notes on precision and data sources.

Page 1 / 3 11 de agosto de 2020

Esta ferramenta permite também testar alternativas/hipóteses, tais como a utilização de outros materiais, estratégias de fim de ciclo de vida diferentes, etc.

Será que as garrafas de vidro seriam uma melhor alternativa à utilização de garrafas à base de PET?

The fast comparison allows design decisions on-the-fly

Reducing impact

Actions

Use as large a 'recycled content' in the material as possible.

What if......
100% recycled PET?

Set Recycle content to 100%

Product: Glass bottle

Product: Recycled PET botttle

Can explore:

- Material choice
- Recycle content
- Transport mode
- Transport distance
- Use pattern

+149 %

-16 %

- Electric energy mix
- End of life choice