Лабораторная работа № 5.5.1 Измерение коэффициента ослабления потока γ -лучей в веществе и определение их энергии

Илья Прамский

Октябрь 2024

1 Теоретическая справка

Проходя через вещество, пучок γ -квантов постепенно ослабляется, ослабление происходит по экспоненциальному закону, который может быть записан в двух эквивалентных формах:

$$I = I_0 e^{-\mu l},$$

$$I = I_0 e^{-\mu' m_l},$$

где I, I_0 – интенсивности прошедшего и падающего излучений, l – длина пути, пройденного пучком γ -лучей, m_l – масса пройденного вещества на единицу площади, μ, μ' – константы, зависящие от вещества.

Число выбывших на пути dl из пучка γ -квантов

$$-dN = \mu Ndl,$$

откуда

$$N = N_0 e^{\mu l},$$

или

$$\mu = \frac{1}{l} \ln \frac{N_0}{N}.\tag{1}$$

Описание установки

Рис. 1 — Схема установки.

На Рис. 1 изображена схема установки. Свинцовый коллиматор выделяет узкий почти параллельный пучок γ -квантов, проходящий через набор поглотителей Π и регистрируемый сцинтилляционным счётчиком. Сигналы от счётчика усиливаются и регистрируются пересчётным прибором $\Pi\Pi$. Высоковольтный выпрямитель BB обеспечивает питание сцинтилляционного счётчика. Чтобы уменьшить влияние плохой геометрии, счётчик расположен на большим расстоянии от источника, поглотители имеют небольшие размеры, а так же устанавливаются на расстоянии друг от друга, чтобы испытавшие комптоновское рассеяние кванты с меньшей вероятностью могли в него вернуться.

Ход работы

Число поглощаемых частиц при отсутствии заглушки

$$N_0 = 19680 \pm 40$$

Число поглощаемых частиц в присутствии поглотителя(фон)

$$N_{
m \phioh}=18$$

В дальнейшем за N_0 примем число, равное $N_0-N_{\rm фон},$ а также у всех измерений будем вычитать $N_{\rm фон}.$

$$\sigma_l = 0,01$$
 см

Свинец			Железо			Алюминий		
$l_0 = 0,50 \text{ cm}$			$l_0 = 1,00 \text{ cm}$			2,00 см		
$N_{ m пластин}$	$N_{ ext{\tiny \tiny HACT}}$	$\sigma_{N_{ ext{\tiny qact}}}$	$N_{ m пластин}$	$N_{ ext{\tiny \tiny HACT}}$	$\sigma_{N_{ ext{\tiny qact}}}$	$N_{ m пластин}$	$N_{ ext{\tiny \tiny HACT}}$	$\sigma_{N_{ ext{\tiny 4act}}}$
1	10880	40	1	11160	40	1	12980	40
2	6130	30	2	6260	30	2	8580	30
3	3510	20	3	3490	20	3	5690	20
4	2040	10	4	2000	10	4	3820	20
5	1240	10	5	1158	9	5	2530	20
6	750	6	6	669	6	6	1720	10
7	505	5	7	405	4			
8	361	4	8	251	3			
9	256	3						
10	217	2						

Преобразуем формулу для коэффициента ослабления

$$\ln(N) = -\mu l + \ln(N_0)$$

Тогда получается график зависимости ln(N) от l

Материал	$\mu, 10^{-3} \text{cm}^{-1}$	$\sigma_{\mu}, 10^{-3} \text{cm}^{-1}$	$<\varepsilon>$, M \circ B
Свинец	890	20	0,84
Железо	544	7	0,83
Алюминий	202	1	0,77

Вывод

В ходе работы был вычислен коэффициент ослабления потока γ - лучей в веществе, также была вычислена средняя энергия γ -лучей.