FMI, Info, Anul I Logică matematică și computațională

Seminar 13

(S13.1) Fie \mathcal{L} un limbaj de ordinul întâi care conține

- două simboluri de relații unare R, S și două simboluri de relații binare P, Q;
- \bullet un simbol de funcție unară f și un simbol de funcție binară g;
- două simboluri de constante c, d.

Să se găsească o formă normală Skolem pentru enunțul φ în formă normală prenex, unde φ este, pe rând:

- (i) $\forall x \exists z (f(x) = c \land \neg (q(x, z) = d));$
- (ii) $\forall y \exists z \exists u (P(u, y) \rightarrow Q(y, z));$
- (iii) $\exists x \forall u \forall y \exists z (P(x, u) \lor \neg (S(y) \to R(z)));$
- (iv) $\forall z \forall x \exists u \forall v ((Q(x,z) \lor R(x)) \to (R(u) \lor \neg Q(v,u))).$

Demonstrație:

- (i) Avem $\varphi^1 = \forall x (f(x) = c \land \neg (g(x, z) = d)_z(h(x)) = \forall x (f(x) = c \land \neg (g(x, h(x)) = d),$ unde h este un nou simbol de operație unară. Cum φ^1 este o formulă universală avem $\varphi^{Sk} = \varphi^1$.
- (ii) Avem $\varphi^1 = \forall y \exists u (P(u,y) \to Q(y,z))_z(p(y)) = \forall y \exists u (P(u,y) \to Q(y,p(y)))$, unde p este un nou simbol de operație unară, și $\varphi^2 = \forall y (P(u,y) \to Q(y,p(y)))_u(j(y)) = \forall y (P(j(y),y) \to Q(y,p(y)))$, unde j este un nou simbol de operație unară. Cum φ^2 este o formulă universală avem $\varphi^{Sk} = \varphi^2$.
- (iii) Avem $\varphi^1 = \forall u \forall y \exists z (P(x,u) \vee \neg (S(y) \to R(z)))_x(m) = \forall u \forall y \exists z (P(m,u) \vee \neg (S(y) \to R(z)))$, unde m este un nou simbol de constantă, și $\varphi^2 = \forall u \forall y (P(m,u) \vee \neg (S(y) \to R(z)))_z(k(u,y)) = \forall u \forall y (P(m,u) \vee \neg (S(y) \to R(k(u,y))))$, unde k este un nou simbol de operație binară. Cum φ^2 este o formulă universală avem $\varphi^{Sk} = \varphi^2$.

(iv) Avem $\varphi^1 = \forall z \forall x \forall v ((Q(x,z) \lor R(x)) \to (R(u) \lor \neg Q(v,u)))_u(n(z,x)) = \forall z \forall x \forall v ((Q(x,z) \lor R(x)) \to (R(n(z,x)) \lor \neg Q(v,n(z,x))))$, unde n este un nou simbol de operație binară. Cum φ^1 este o formulă universală avem $\varphi^{Sk} = \varphi^1$.

(S13.2) Demonstrați că orice clasă finit axiomatizabilă \mathcal{K} de \mathcal{L} -structuri este axiomatizată de un singur enunț.

Demonstrație: Fie $\Gamma = \{\varphi_1, \dots, \varphi_n\}$ o mulțime finită de enunțuri a.î. $\mathcal{K} = Mod(\Gamma)$. Fie

$$\varphi := \varphi_1 \wedge \varphi_2 \wedge \ldots \wedge \varphi_n.$$

Atunci $\mathcal{A} \models \Gamma \iff \mathcal{A} \models \varphi_i$ pentru orice $i \in \{1, ..., n\} \iff \mathcal{A} \models \varphi$. Aşadar, $Mod(\varphi) = Mod(\Gamma) = \mathcal{K}$.

(S13.3) Să se axiomatizeze următoarele clase de grafuri:

- (i) grafurile complete;
- (ii) grafurile cu proprietatea că orice vârf are exact o muchie incidentă;
- (iii) grafurile infinite.

Demonstrație: Se ia $\mathcal{L}_{Graf} = (\dot{E})$. Fie $\Gamma := \{(IREFL), (SIM)\}$. Teoria grafurilor este $Th(\Gamma)$, iar clasa grafurilor este axiomatizată de Γ .

(i) Fie \mathcal{K}_1 clasa grafurilor complete. Considerăm enunțul

$$\varphi_1 := \forall x \forall y (\neg (x = y) \to \dot{E}(x, y)).$$

Atunci $\mathcal{K}_1 = Mod(\Gamma \cup \{\varphi_1\}) = Mod((IREFL), (SIM), \varphi_1).$

(ii) Fie \mathcal{K}_2 clasa grafurilor care au proprietatea că orice vârf are exact o muchie incidentă. Considerăm enuntul

$$\varphi_2 := \forall x \exists y \dot{E}(x,y) \land \forall x \forall y \forall z (\dot{E}(x,y) \land \dot{E}(x,z) \to y = z).$$

Atunci $\mathcal{K}_2 = Mod(\Gamma \cup \{\varphi_2\}) = Mod((IREFL), (SIM), \varphi_2).$

(iii) Fie \mathcal{K}_3 clasa grafurilor infinite. Considerăm mulțimea de enunțuri

$$\Delta := \{ \exists^{\geq n} \mid n \geq 1 \}.$$

Aplicând Propoziția 2.55, rezultă că $\mathcal{K}_3 = Mod(\Gamma \cup \Delta)$.

(S13.4) Să se axiomatizeze următoarele clase de mulțimi:

- (i) mulțimile care au între 3 și 5 elemente;
- (ii) mulțimile nevide care au mai puțin de 7 elemente;
- (iii) mulțimile care au între 20 și 300 elemente;
- (iv) mulțimile care au cel puțin 10 elemente.

Demonstrație: Se ia $\mathcal{L}_{=}$. Atunci $\mathcal{L}_{=}$ -structurile sunt mulțimile nevide.

(i) Considerăm enunțul

$$\varphi := \exists^{=3} \lor \exists^{=4} \lor \exists^{=5}.$$

Atunci $\mathcal{K} = Mod(\varphi)$.

- (ii) $\mathcal{K} = Mod(\exists^{\leq 6})$.
- (iii) Considerăm enunțul

$$\psi := \exists^{\leq 300} \land \exists^{\geq 20}.$$

Atunci $\mathcal{K} = Mod(\psi)$.

(iv) Considerăm mulțimea de enunțuri

$$\Gamma := \{ \exists^{\geq n} \mid n \geq 10 \}.$$

Atunci $\mathcal{K} = Mod(\Gamma)$.

Definiția 1. O \mathcal{L} -teorie T se numește completă dacă pentru orice enunț φ , avem că $\varphi \in T$ sau $\neg \varphi \in T$.

(S13.5) Pentru orice \mathcal{L} -structură \mathcal{A} , definim

$$Th(\mathcal{A}) := \{ \varphi \mid \varphi \text{ este enunţ şi } \mathcal{A} \vDash \varphi \}.$$

Demonstrați că $Th(\mathcal{A})$ este o teorie completă.

Demonstrație: Demonstrăm mai întâi că $Th(\mathcal{A})$ este o teorie. Fie φ un enunț a.î. $Th(\mathcal{A}) \vDash \varphi$. Deoarece, evident, \mathcal{A} este un model al $Th(\mathcal{A})$, rezultă că $\mathcal{A} \vDash \varphi$. Prin urmare, $\varphi \in Th(\mathcal{A})$. Aşadar, $Th(\mathcal{A})$ este o teorie.

Demonstrăm în continuare că Th(A) este completă. Fie φ un enunț arbitrar. Avem două cazuri:

- $\mathcal{A} \vDash \varphi$. Rezultă că $\varphi \in Th(\mathcal{A})$.
- $\mathcal{A} \not\vDash \varphi$. Atunci $\mathcal{A} \vDash \neg \varphi$, prin urmare $\neg \varphi \in Th(\mathcal{A})$.