Lecture 22: Heuristics in multistep decisions

Instructor: Sergei V. Kalinin

Route finding

- Initial state: Arad
- Goal state: Bucharest
- Path cost: Number of intermediate cities, distance traveled, expected travel tire

From agents to search

- Constraints and constraint-satisfaction problems
 - 8-puzzle (sliding tile puzzle)

Goal State

8-queens problem (N-queens problem)

More realistic problems:

- Route finding (Google Maps)
- Travelling salesman problem
- Supply chain planning
- Integrated circuit design
- Experiment planning

Search concepts

- A state can be expanded by generating all states that can be reached by applying a legal operator to the state
- State space can also be defined by a successor function that returns all states produced by applying a single legal operator
- A search tree is generated by generating search nodes by successively expanding states starting from the initial state as the root
- A search node in the tree can contain
 - Corresponding state
 - Parent node
 - Operator applied to reach this node
 - Length of path from root to node (depth)
 - o Path cost of path from initial state to node

Search strategies

Properties of search strategies

- Completeness: does it always find solution if one exists?
- Time Complexity: number of nodes generated/expanded
- Space Complexity: maximum number of nodes in memory
- Optimality: does it always find least cost solution?

Informed vs. uninformed:

- Uninformed search strategies (blind, exhaustive, brute force) do not guide the search with any additional information about the problem.
- Informed search strategies (heuristic, intelligent) use information about the problem (estimated distance from a state to the goal) to guide the search

Breadth-first search

• Expands search nodes level by level, all nodes at level d are expanded before expanding nodes at level d+1

- Implemented by adding new nodes to the end of the queue
- Since eventually visits every node to a given depth, guaranteed to be complete
- Optimal provided path cost is a nondecreasing function of the depth of the node (e.g. all operators of equal cost) since nodes explored in depth order

Depth-first search

• Always expand node at deepest level of the tree, i.e. one of the most recently generated nodes. When hit a dead-end, backtrack to last choice

Heuristic Search

- Heuristic or informed search exploits additional knowledge about the problem that helps direct search to more promising paths.
- A **heuristic function**, h(n), provides an estimate of the cost of the path from a given node to the closest goal state
- Must be zero if node represents a goal state.
 - Example: Straight-line distance from current location to the goal location in a road navigation problem
- Many search problems are NP-complete so in the worst case still have exponential time complexity; however a good heuristic can:
 - o Find a solution for an average problem efficiently.
 - Find a reasonably good but not optimal solution efficiently.

Best first search

 At each step, best-first search sorts the queue according to a heuristic function

AIMA Slides ©Stuart Russell and Peter Norvig, 1998

Best first search

• Does not find shortest path to goal (through Rimnicu) since it is only focused on the cost remaining rather than the total cost

Best first search properties

- Not complete, may follow infinite path if heuristic rates each state on such a path as the best option. Most reasonable heuristics will not cause this problem however
- Worst case time complexity is still $O(b^m)$ where m is the maximum depth.
- Since must maintain a queue of all unexpanded states, space-complexity is also $O(b^m)$
- However, a good heuristic will avoid this worst-case behavior for most problems.

Beam search

- Space and time complexity of storing and sorting the complete queue can be too inefficient
- Beam search trims queue to the best *n* options (*n* is called the beam width) at each point
- Focuses search more but may eliminate solution even for finite search graphs

Example for n=2

AIMA Slides ©Stuart Russell and Peter Norvig, 1998

Hill climbing

- Beam search with a beamwidth of 1 is called hill climbing
- Pursues locally best option at each point, i.e. the best successor to the current best node.
- Subject to local maxima, plateaux, and ridges.

Minimizing total cost: A* Search

- A* combines features of uniform cost search (complete, optimal, inefficient) with best-first (incomplete, non-optimal, efficient).
- Sort queue by estimated total cost of the completion of a path:

$$f(n) = g(n) + h(n)$$

- If the heuristic function always underestimates the distance to the goal, it is said to be admissible.
- If h is admissible, then f(n) never overestimates the actual cost of the best solution through n

Finds the optimal path to Bucharest through Rimnicu and Pitesti

Optimality of A*

If h is admissible, A* will always find a least cost path to the goal

- Proof by contradiction:
 - Let G be an optimal goal state with a path cost f*
 - o Let G_2 be a suboptimal goal state supposedly found by A^*
 - Let n be a current leaf node on an optimal path to G

- Since h is admissible: $f^* >= f(n)$
- If G2 is chosen for expansion over n then: $f(n) >= f(G_2)$
- Therefore: $f^* >= f(G_2)$
- Since G_2 is a goal state, $h(G_2)=0$, therefore $f(G_2)=g(G_2)$ and $f^*>=g(G_2)$
- Therefore G₂ is optimal. Contradiction.

<u>Lemma</u>: A^* expands nodes in order of increasing f value

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers) Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$

Other properties of A*

- A* is complete as long as
 - Branching factor is always finite
 - o Every operator adds cost at least $\delta > 0$
- Time and space complexity still O(b^m) in the worst case, since the search must maintain and sort complete queue of unexplored options.
- However, with a good heuristic can find optimal solutions for many problems in reasonable time
- Again, space complexity is a worse problem than time.

But what about heuristic functions?

- 8-puzzle search space
 - o Typical solution length: 20 steps
 - Average branching factor: 3
 - o Exhaustive search: 3²⁰=3.5 x 10⁹
 - o Bound on unique states:

$$9! = 362,880$$

Goal State

- Admissible Heuristics:
 - Number of tiles out of place (h1): 7
 - City-block (Manhattan) distance (h2): 2+3+3+2+4+2+0+2=18

Using heuristics:

- Experiments on sample problems can determine the number of nodes searched and CPU time for different strategies
- One other useful measure is effective branching factor: If a method expands N nodes to find solution of depth d, and a uniform tree of depth d would require a branching factor of b^* to contain N nodes, the effective branching factor is b^* , so that $N = 1 + b^* + (b^*)^2 + ... + (b^*)^d$

Experimental Results on 8-puzzle problems

	Search Cost			Effective Branching Factor		
d	IDS	$A^*(h_1)$	$A^*(h_2)$	IDS	$A^*(h_1)$	$A^*(h_2)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	364404	227	73	2.78	1.42	1.24
14	3473941	539	113	2.83	1.44	1.23
16	_	1301	211	_	1.45	1.25
18	_	3056	363	_	1.46	1.26
20	_	7276	676	_	1.47	1.27
22	_	18094	1219	_	1.48	1.28
24	_	39135	1641	_	1.48	1.26

Quality of heuristics

- Since A* expands all nodes whose f value is less than that of an optimal solution, it is always better to use a heuristic with a higher value as long as it does not over-estimate.
- Therefore h₂ is uniformly better than h₁ or h₂ dominates h₁
- A heuristic should also be easy to compute, otherwise the overhead of computing the heuristic could outweigh the time saved by reducing search (e.g. using full breadth-first search to estimate distance wouldn't help).

Inventing Heuristics

- Many good heuristics can be invented by considering relaxed versions of the problem (abstractions)
- For 8-puzzle: A tile can move from square A to B if A is adjacent to B and B is blank
 - o (a) A tile can move from square A to B if A is adjacent to B
 - o (b) A tile can move from square A to B if B is blank
 - o (c) A tile can move from square A to B
- If there are a number of features that indicate a promising or unpromising state, a weighted sum of these features can be useful. Learning methods can be used to set weights.

(A Peek at) Reinforcement Learning

Supervised learning

- Classification
- Regression

Unsupervised learning

- Clustering
- Dimensionality reduction

Reinforcement learning

- more general than supervised/unsupervised learning
- learn from interaction with environment to achieve a goal

Where is reinforcement learning in ML world?

Examples

- Frozen lake
- Pole-balancing
- TD-Gammon [Gerry Tesauro]
- Helicopter [Andrew Ng]
- no teacher who would say "good" or "bad"
 - is reward "10" good or bad?
 - rewards could be delayed
- similar to control theory
 - more general, fewer constraints
- explore the environment and learn from experience
 - not just blind search, try to be smart about it

State Representation

- pole-balancing
 - move car left/right to keep the pole balanced
- state representation
 - position and velocity of car
 - angle and angular velocity of pole
- what about Markov property?
 - would need more info
 - noise in sensors, temperature, bending of pole
- solution
 - coarse discretization of 4 state variables
 - left, center, right
 - totally non-Markov, but still works

From Reinforcement Learning Tutorial, Peter Bodík, RAD Lab, UC Berkeley

Backgammon

- rules
 - 30 pieces, 24 locations
 - roll 2, 5: move 2, 5
 - hitting, blocking
 - branching factor: 400
- implementation
 - use $TD(\lambda)$ and neural nets
 - 4 binary features for each position
 - no BG expert knowledge

results

- TD-Gammon o.o: trained against itself (300,000 games)
 - as good as best previous BG computer program (also by Tesauro)
 - lot of expert input, hand-crafted features
- TD-Gammon 1.0: add special features
- TD-Gammon 2 and 3 (2-ply and 3-ply search)
 - 1.5M games, beat human champion

From Reinforcement Learning Tutorial, Peter Bodík, RAD Lab, UC Berkeley

Designing Rewards

- robot in a maze
 - episodic task, not discounted, +1 when out, o for each step
- chess
 - GOOD: +1 for winning, -1 losing
 - BAD: +0.25 for taking opponent's pieces
 - high reward even when lose
- rewards
 - rewards indicate what we want to accomplish
 - NOT how we want to accomplish it
- shaping
 - positive reward often very "far away"
 - rewards for achieving subgoals (domain knowledge)
 - also: adjust initial policy or initial value function

Robot in the room

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP10% move LEFT10% move RIGHT

- Reward +1 at [4,3], -1 at [4,2]
- Reward -0.04 for each step
- What's the strategy to achieve max reward?
- What if the actions were deterministic?

From Reinforcement Learning Tutorial, Peter Bodík, RAD Lab, UC Berkeley

Is this a solution?

- only if actions deterministic
- not in this case (actions are stochastic)
- solution/policy
- mapping from each state to an action

From Reinforcement Learning Tutorial, Peter Bodík, RAD Lab, UC Berkeley

Optimal policy

What if the reward for each step is -2?

Reward for each step is -0.1

Reward for each step is -0.04

Reward for each step is -0.01

Reward for each step is +0.01

