Measurement and Units, Doc. Version 1.0

Thank you for downloading this document. For any kind of future support, query, help or UPDATE related to this document, please visit www.hsebnotes.com and refer to Subject Physics, Grade XI on our download section. If you have any thing that you think is useful for us then please do not hesitate to contact us through our email.

Links HSEB NOTES,

Home Page http://www.hsebnotes.com/

Facebook http://www.fb.com/HSEBNotes/

Twitter http://twitter.com/HSEBNotes/

Wordpress Blog http://hsebnotes.wordpress.com/

Contact Email hsebnotes@gmail.com

UPDATES,

For any future update on this document please refer to Physics, Grade XI on our download section on www.hsebnotes.com and see for higher versions of this document. This is version 1.0.

Measurement and Units

There are two types of units, they are

- i) Fundamental unit
- ii) Derived unit

The substance which has a numeric value and unit is called physical quantity. Fundamental units contains below physical quantity and units.

Physical Quantity	Units	
Mass	Kg (Kilogram)	
Length	M (Meter)	
Time	S (Second)	
Temperature	K (Kelvin)	
Amount of Substance	Mole	
Luminous Intensity	Cd (Candela)	
Electric Current	A (Ampere)	

All the derived units are derived from above fundamental units.

Dimension:

The dimension of a physical quantity is defined as the power to be raised on fundamental units Length (L), Mass (M) and Time (T) to give the unit of that physical quantity.

Example:

Volume (V) = length × breadth × height
=
$$m \times m \times m = m^3$$

∴ Volume = $[M^0L^3T^0]$

The dimension of volume are 0,3 and 0 in mass, length and time respectively. Like this, dimensional formulae are derived.

Dimensional Formula

An expression which shows how and which fundamental units are involved into the unit of physical quantity are called the dimensional formula of physical quantity. Some are given below:

S.N.	Physical Quantity	S.I. Unit	Dimensional Formula	Dimension in M,L and T
1.	Force	KgMS ⁻¹	[MLT ⁻²]	1,1 and -2
2.	Universal	Nm^2Kg^{-2}	$[M^{-1}L^3T^{-2}]$	-1,3 and -2
	Gravitational			
	Constant			
3.	Pressure/Stress	$KgM^{-1}S^{-2}$	$[ML^{-1}T^{-2}]$	1,-1 and -2
4.	Density	KgM ³	$[ML^{-3}T^0]$	1,-3 and 0
5.	Impulse			
6.	Work/Energy/torque	KgM ² S ⁻²	$[ML^2T^{-2}]$	1,2 and -2
7.	Power	KgM^2S^{-3} KgM^3S^{-2}	$[ML^2T^{-3}]$	1,1 and -3
8.	Momentum	KgM^3S^{-2}	$[ML^3S^{-3}]$	1,3 and -3
9.	Specific Heat	j/KgK	$[L^2T^{-2}K^{-1}]$	2,-2 and -1
	Capacity			

Uses of dimensional equations: The uses of dimensional equations with their examples are as follows;

To check the correctness of physical relation: A dimensional equation can be used as the basic property to check the correctness of a physical relation.

For example, let us consider an equation, $E = mc^2$ ______(i) Where, E is energy, M is mass and C is velocity of light Now, Dimensional Formula of $E = [ML^2T^{-2}]$ Dimensional Formula of $E = [ML^2T^{-2}]$

Dimensional Formula of
$$C = [LT^{-1}]$$

Putting these values in equation (i) we get,
$$[ML^2T^{-2}] = [M] [LT^{-1}]^2$$
$$= [ML^2T^{-2}]$$

To derive physical relation between physical quantities:

For example, Let us consider an example of simple pendulum.

The time period (T) of simple pendulum may depend upon length of

pendulum (I), mass of the bob (m) and acceleration due to gravity (g)

i.e.
$$T \propto l^x$$

$$T \propto m^y$$

$$T \propto g^z$$

Combining all the relations above, we get

$$T \propto l^x m^y g^z$$
 [Where, x, y and z are integers.]

$$T = k l^x m^y g^z$$
 [Where k is proportionality constant]

Now the dimensional formula of

$$T = [T]$$

$$l = [L]$$

$$m = [M]$$

$$g = [LT^{-2}]$$

Putting these values in $eq^{n}(i)$

$$[T] = [L]^x [M]^y [LT^{-2}]^z$$

$$[T] = [L^{x+z}][M^y][T^{-2z}]$$

Equating the power of MLT on both sides and solving the equations we

get,
$$x = \frac{1}{2}$$
, $y = 0$ and $z = -\frac{1}{2}$

Now putting the values in equation (i), we get

$$T = k \sqrt{\frac{l}{g}}$$

Experimentally it has found that the value of K is 2π .

So, we get,
$$T=2\pi\sqrt{\frac{l}{g}}$$

To convert a system of unit to another:

Let us consider n_1 and U_1 are numerical values and fundamental unit of length, mass and time in one system of a physical quantity. Similarly, n_2 and U_2 are numerical values and fundamental unit of length mass and time in another system of the same physical quantity.

Now, The physical quantity $(Q) = n_1 U_1 = n_2 U_2$

i. e.
$$n_1[M_1]^a[L_1]^b[T_1]^c = n_2[M_2]^a[L_2]^b[T_2]^c$$

Where, M_1 , L_1 and T_1 are the units of mass, length and time in the first system of unit. M_2 , L_2 and T_2 are the units of mass, length and time in another system of unit and a, b & c are dimension of mass, length and time. Then,

$$n_2 = n_1 \left[\frac{M_1}{M_2}\right]^a \left[\frac{L_1}{L_2}\right]^b \left[\frac{T_1}{T_2}\right]^c$$

Example: Convert 1000gm/cm³ into Kg/m³.

Solⁿ:

We know that, Given physical quantity is density.

We also know that the dimensional formula of density,

$$\rho = [ML^{-3}T^0] \tag{i}$$

We know,
$$n_2 = n_1 \left[\frac{M_1}{M_2} \right]^a \left[\frac{L_1}{L_2} \right]^b \left[\frac{T_1}{T_2} \right]^c$$
 _____(ii)

Comparing equation (i) and (ii), we get, a=1,b=-3 and c=0 Given,

$$n_1=1000$$
 and $n_2=?$
$$M_1=1gm$$

$$M_2=1kg$$

$$L_1=1cm$$

$$L_2=1m$$

$$T_1=1sec$$

$$T_2=1sec$$

Now, putting these values in equation (ii) we get,

$$n_2 = 1000 \left[\frac{1gm}{1kg} \right]^a \left[\frac{1cm}{1m} \right]^b \left[\frac{1sec}{1sec} \right]^c$$
$$= 1000 \times \frac{1}{1000} \times \left[\frac{1}{100} \right]^{-3} = 1000000$$
$$\therefore n_2 = 10^6$$

Limitation of Dimensional Formula

- a. It doesn't tell us whether the quantity is vector or not.
- b. Physical relations involving exponential, trigonometric and logarithmic functions cannot be derived.
- c. It fails to derive the relation if the physical quantity depends upon more than 3 physical quantities.

Precision and Accuracy:

It is the two different concept precision of a measurement means how close the different measurement are if we measure the quantity with an instruments which has smaller value of least count, readings will be closer to each other. But they are not accurate, they are precise. So precision shows the closeness of reading. The precision is the degree of agreement among the series of measurement of same quantities. Good precision means the readings are mostly very good or close to their mean value and associated with small uncertainties.

Accurate measurement means how close the measured value is to the true values. Accuracy is the closeness of a measurement with a true value.