

Aus Loveland Modern Nuclear Chemistry

Gamma Strahlung

- Durchainsend
- Pb Zus Abschirmung
- Energical hangigheit
 - Material abhairsigher L
- exp. Schwachung

Fig. 15-17. Plot of the β -transition energy for nuclei in the region $28 \le Z \le 64$ which have the same neutron excess and which undergo the decay process

$${}_{Z}^{A}X_{N+1} \xrightarrow{\beta^{-}}_{\beta^{+}, E.C.} {}_{Z+1}^{A}X_{N}$$

with Z and N even. (From [May 55].) (Used by permission of Wiley and Sons, New York.)

Das Schalenmodell des Atoms

$$H = \sum_{i=1}^{Z} T_{i} + \sum_{i=1}^{Z} V_{c}(r_{i}) + \sum_{\substack{i,j=1\\i\neq j}}^{Z} V_{ij}(|\vec{r}_{i} - \vec{r}_{j}|)$$

$$T_i = -\frac{h^2}{2m_i}\Delta_i$$
 kinetische Energie

V_c Zentralpotential, Coulombpotential

 $V_{i,i}$ Wechselwirkungspotential

SK Potential

- Selbstkonsistentes Potential
 - Oszillator
 - Rechteck
 - Woods Saxon
- Spin Orbit Kopplung
- Deformation (Nilsson-Modell)

- Selbstkonsistentes Potential
 - Oszillator
 - Rechteck
 - Woods Saxon
- Spin Orbit Kopplung
- Deformation (Nilsson-Modell)

- Selbstkonsistentes Potential
 - Oszillator
 - Rechteck
 - Woods Saxon
- Spin Orbit Kopplung
- Deformation (Nilsson-Modell)

Deformation

(--)

prodat

oblat

- Selbstkonsistentes Potential
 - Oszillator
 - Rechteck
 - Woods Saxon
- Spin Orbit Kopplung
- Deformation (Nilsson-Modell)

Grundzustandsformen von Kernen

http://radchem.nevada.edu/classes/rdch702/images/nuclear%20shapes.gif