國中理化公式、重點總整理

目錄

單元一	基本測量與科學方法	1
	为質與能	
	皮動與聲音	
	光	
	温度與熱	
	原子與分子的反應世界	
單元七 亻	化學計量、化學反應、氧化還原	5
單元八 酉	晙鹼鹽	6
單元九月	反應速率與反應平衡	8
單元十 2	有機化合物	8
單元十一	· 力與壓力	10
單元十二	- 直線運動	12
單元十三	. 力與運動	13
單元十四	功與能	14
單元十五	電	16
單元十六	電與生活	17
單元十七	電化學與電池	18
單元十八	磁	20

班級:	姓名:	座號:
	\(\frac{1}{2}\)	· · · · · · · · · · · · · · · · · · ·

單元一 基本測量與科學方法

重點1 測量值

	數字	一組準確值	記錄到測量工具的最小刻度
完整測量結果	数十	一位估計值	最小刻度的下一位
	單位		

公式 1:(長度的測量)

公式 2:(密度公式)

密度
$$(D) = \frac{\text{質} \mathbb{E}(M)}{\text{體積}(V)}$$

* 單位: $g/cm^3 \cdot kg/m^3$

重點2密度、質量、體積分析

	條件	同一	不同物質					
		同一物質(密度相同)	體積相同	質量相同				
	關係	質量與體積成正比	密度與質量成正比	密度與體積成反比				

單元二 物質與能

重點 1 純物質與混合物

分	類	定義	例子
純物質 元素 同一種原子組成		金、氧氣	
(地70) 貝	化合物	雨種或兩種以上原子以固定比例化合而成	水
混合物		雨種或兩種以上原子以任意比例混合而成	空氣、糖水

公式 1:(濃度)

重量百分率濃度
$$(M\%) = \frac{$$
溶質質量 $}{$ 溶液 $($ 溶質 + 溶劑 $)$ 質量 $} \times 100\%$

百萬分點濃度
$$(ppm) = \frac{$$
溶質質量 (mg)
溶液質量 (kg)

公式 2:(溶液稀釋、混合)

公式 3:(溶解度)

溶解度
$$(S) = \frac{$$
溶質公克數}{100 公克溶劑}

- * 溶解度即為飽和溶液的濃度!
- * 大部分固體溫度越高溶解度越大,氣體溫度越高溶解度越小!

單元三 波動與聲音

重點1波的種類

種類	是否需要介質傳遞	例子
力學波	需要	水波、繩波、聲波
非力學波(電磁波)	不需要	可見光

種類	介質振動方向與波前進方向	例子
横波(高低波)	垂直	繩波
縱波(疏密波)	平行	聲波

公式 1:(波速公式)

波速
$$(v) = \frac{$$
波長 $(\lambda)}{$ 週期 $(T)} =$ 頻率 $(f) \times$ 波長 (λ)

* 頻率單位:1/秒、赫、赫茲;週期單位:秒

公式 2:(聲速公式)

聲速
$$(v) = 331 + 0.6 \times T$$
(°C)

重點2 傳遞速率比較

聲速由快到慢:固體 > 液體 > 氣體

單元四 光

重點1透鏡成像

種	實物的位置	上海弘公 里	虚像或	正立或	與實物大
類	貝物的征息	成像的位置	實像	倒立	小比較
	無窮遠處(平行光)	另一側焦點上	實像		一點
凸	兩倍焦距外	另一側焦點與兩倍 焦距間	實像	倒立	縮小
透	兩倍焦距上	另一側兩倍焦距上	實像	倒立	相等
鏡	焦點與兩倍焦距間	另一側兩倍焦距外	實像	倒立	放大
	焦點上	無成像			
	焦距內	與物體同側	虚像	正立	放大
凹活	無窮遠處(平行光)	與物體同側,於虚 焦點上	虚像		一點
透鏡	其他位置	與物體同側,於焦 距內	虚像	正立	縮小

重點 2 傳遞速率比較

光速由快到慢:真空>氣體>液體>固體

單元五 温度與熱

公式 1:(溫標換算)

攝氏轉華氏:°C =
$$\frac{5}{9}$$
(°F - 32)

華氏轉攝氏:°F =
$$\frac{9}{5}$$
°C + 32

公式 2:(熱量公式)

熱量
$$(ΔH)$$
 = 質量 (M) × 比熱 (S) × 溫度變化 $(ΔT)$

* 單位: $\Delta H(cal) = M(g) \times S(cal/g \cdot {}^{\circ}C) \times T({}^{\circ}C)$

單元六 原子與分子的反應世界

公式 1:(質量數)

* 電中性:質子數=原子序=電子數

重點1同位素

質子數相同、中子數不同的原子

重點 2 常見的離子與原子團(根)

		離	子	原子團			
+1 價	氫離子	鋰離子	鈉離子	鉀離子	銨根		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H^+	Li ⁺	Na ⁺	K+	NH_3^+		
+2 價	鎂離子	鈣離子	鋇離子	鋅離子			
4 1貝	Mg^{2+}	Ca ²⁺	Ba^{2+}	Zn^{2+}			
+3 價	鋁離子	鐵離子					
13 頂	Al^{3+}	Fe ³⁺					
-1 價	氟離子	氯離子	溴離子	碘離子	氫氧根	硝酸根	醋酸根
-1 /貝	F^-	Cl-	Br-	<i>I</i> -	OH-	NH_3^-	CH ₃ COOH-
-2 價	氧離子	硫離子			碳酸根	硫酸根	鉻酸根
-2 /貝	0^{2-}	S^{2-}			CO ₃ ²⁻	SO_4^{2-}	CrO_4^{2-}

重點 3 原子結構

年份	1803 1897		1911	1919	1932
人物	道耳頓	湯姆森	拉塞福	拉塞福	查兌克
事件	提出原子說	發現電子	發現原子核	發現質子	發現中子

重點 4 化學式

種類	說明
實驗式(簡式)	原子種類、原子個數成最簡單整數比
分子式	原子種類、原子個數
式性式	原子種類、原子個數、物質特性
結構式	原子種類、原子個數、原子排列方式

單元七 化學計量、化學反應、氧化還原

公式 1:(原子量)

$$\frac{$$
 待測原子的質量 $}{$ 碳 12 的質量 $=$ $\frac{$ 待測原子的原子量 $}{12}$

* 原子量、分子量無單位

公式 2:(莫耳)

重點1活性表

活																		
性	上																	.1.
大																		-11
小																		
元	鉀	鈉	鋇	鈣	鎂	鋁	碳	鋅	鉻	鐵	錫	鉛	氫	銅	汞	銀	鉑	金
素	K	Na	Ва	Са	Mg	Al	С	Zn	Cr	Fe	Sn	Pb	Н	Си	Нд	Ag	Pt	Au

重點 2 氧化還原

名詞	說明		
氧化反應	與氧結合的反應 失去電子的反應		
還原反應	失去氧的反應	得到電子的反應	

重點3氧化劑&還原劑

名詞	說明	
氧化劑	活性小的氧化物	使他人氧化,自身 被還原
還原劑	活性大的元素	使他人還原,自身 被氧化

單元八 酸鹼鹽

公式 1:(莫耳濃度)

莫耳濃度
$$(M) = \frac{$$
溶質莫耳數 $(mole)$ 溶液體積 (L)

公式 2:(離子積)

 $[H^+][OH^-] = 10^{-14}M^2$ (於溫度 25°C時)

* $[H^{+}]$: 氫離子的濃度、 $[OH^{-}]$: 氫氧根離子的濃度

公式 3:(pH 值)

重點1 酸鹼性與 pH 值

在 25° C、1 大氣壓下,溶液之酸鹼性、 $[H^+]$ 、 $[OH^-]$ 、pH值關係

酸鹼性	[H ⁺]、[OH ⁻]濃度大小	pH值
酸性	$[H^+] > [OH^-]$	<i>pH</i> < 7
中性	$[H^+] = [OH^-]$	pH = 7
鹼性	$[H^+] < [OH^-]$	<i>pH</i> > 7

公式 4:(酸鹼中和)

氫離子濃度 (M_1) ×酸液體積 (V_1) =氫氧根離子濃度 (M_2) ×鹼液體積 (V_2)

重點 2 鹽類

組成	例子
金屬離子/銨根離子+非金屬離子	$NaCl \cdot NH_4Cl$
金屬離子/銨根離子+酸根離子	$K_2SO_4 \cdot (NH_4)_2SO_4$

單元九 反應速率與反應平衡

公式1:(反應速率)

* 單位:克/秒、莫耳/秒

重點1碰撞學說

有效碰撞=足夠能量+正確碰撞方向

重點 2 影響反應平衡的因素(濃度、溫度、壓力)

因素	結果	
濃度	往濃度低方向移動	
溫度	提高溫度	往吸熱方向移動
(四) 及	降低溫度	往放熱方向移動
壓力	增加壓力	往體積小方向移動
)	減少壓力	往體積大方向移動

單元十 有機化合物

重點 1 有機化合物通式

有機化合物	名稱	通式	例子
	烷類	C_nH_{2n+2}	甲烷 (CH_4) 、乙烷 (C_2H_6)
烴類	烯類	C_nH_{2n}	乙烯(C ₂ H ₄)
	炔類	C_nH_{2n-2}	乙炔(C ₂ H ₂)
醇類	醇	$C_nH_{2n+1}OH$	甲醇 (CH_3OH) 、乙醇 (C_2H_5OH)
有機酸類	有機酸	$C_nH_{2n+1}COOH$	甲酸(HCOOH)、乙酸(CH ₃ COOH)

重點2 酯類

名稱	製造	通式	例子
酯類	有機酸+醇類	$C_nH_{2n+1}COOC_mH_{2m+1}$	乙酸乙酯(CH ₃ COOC ₂ H ₅)

重點3 有機聚合物

種類	名稱	組成單體	
	澱粉	葡萄糖	
天然聚合物	纖維素	葡萄糖	
	蛋白質	胺基酸	
種類 名稱		特性	
人士取入始	鏈狀(熱塑性)	可塑性,可回收再利用	
合成聚合物	網狀(熱固性)	不易變形,不可回收	

重點4纖維

	種類	成分	燃燒結果	例子
天然纖維	植物纖維	纖維素(C、H、 O)組成	如紙張燃燒	棉、麻
大	番白質(C、H、	如羽毛燃燒	羊毛、蠶絲	
人造纖維	再生纖維 (人造絲)	植物纖維溶解 抽成絲狀	如紙張燃燒	嫘縈、醋酸纖維
入垣鄉維	合成纖維	石化產品合成	末端捲曲成球狀	耐綸、達克綸、 聚酯纖維

重點 5 營養素

種類	組成	熱量
醣類(碳水化合物)	葡萄糖	4仟卡/克
蛋白質	胺基酸	4 仟卡/克
脂肪	酯類	9仟卡/克

單元十一 力與壓力

公式 1:(虎克定律)

於彈性限度內,彈簧伸長量(或壓縮量)與所受外力成正比

 $\frac{\hat{\mathbf{x}} - \boldsymbol{\mathsf{x}} \boldsymbol{\mathsf{\mathcal{Y}}} \boldsymbol{\mathsf{D}}(F_1)}{\hat{\mathbf{x}} - \boldsymbol{\mathsf{x}} \boldsymbol{\mathsf{\mu}} \boldsymbol{\mathsf{E}} \boldsymbol{\mathsf{\Xi}}(\Delta l_1)} = \frac{\hat{\mathbf{x}} - \boldsymbol{\mathsf{x}} \boldsymbol{\mathsf{\mathcal{Y}}} \boldsymbol{\mathsf{D}}(F_2)}{\hat{\mathbf{x}} - \boldsymbol{\mathsf{x}} \boldsymbol{\mathsf{\mu}} \boldsymbol{\mathsf{E}} \boldsymbol{\mathsf{\Xi}}(\Delta l_2)}$

重點1力的單位

重力單位	公斤重(kgw)、公克重(gw)
絕對單位	牛頓(N)

* 1kgw = 9.8N

重點2 質量 v.s.重量

	定義	性質
質量	物體含物質的量	不隨地點改變
重量	物體受重力的大小	隨地點改變

重點3 力平衡

條件	例子
大小相等 方向相反 作用在同一直線上	 天花板吊燈受天花板拉力與地球引力 静置桌上的書受桌面支撐力與地球引力

重點 4 摩擦力

	靜		動
種類	静摩擦力	最大靜摩擦力	動摩擦力
定義	物體靜止時所受	物體由靜止至開始運動瞬間所	物體運動時所受
人 我	摩擦力	受摩擦力	摩擦力

公式 2:(壓力)

壓力
$$(P) = \frac{\text{垂直接觸面作用力}(F)}{\text{受力面積}(A)}$$

* 單位:gw/cm²、kgw/m²

公式 3:(液體壓力)

液體壓力(P) = 液體深度(h) × 液體密度(D)

重點 5 液壓應用

原理	連通管原理	帕斯卡原理
內容	各管液面高度必在 同一水平面 上, 與容器形狀、大小、粗細及傾斜方 向無關	密閉容器內,當某處受到壓力時, 會以相同大小傳遞至液體各部分
應用	熱水瓶水位標示、自來水供應	液壓起重機、油壓煞車系統

重點 6 大氣壓力

1 大氣壓
$$(atm) = 76cm - Hg = 760mm - Hg = 1033.6cm - H_2O$$

= $1033.6gw/cm^2 = 1013hPa$

公式 4:(浮力)

重點7 浮體 v.s.沉體

密度	$D_{ ext{物體}} > D_{ ext{液體}}$	$D_{物體} = D_{液 體}$	$D_{物體} < D_{液體}$
大小	物體・一液體	物體を液體	物體、乙液體
狀態	沉體	静止於液體中	浮體
浮力	$B = V \times D$	$B = V \times D$	$B = V' \times D$
浮力	V:物體體積	V:物體體積	V':沒入液體中體積
大小	D:液體密度	D:液體密度	D:液體密度
特性	物重(W) > 浮力(B)	物重(W) = 浮力(B)	物重(W) = 浮力(B)

單元十二 直線運動

重點 1 位移 v.s. 路徑長

物理量	性質	
位移	同時具有大小、方向性	
路徑長	只有大小,無方向性	

重點 2 速度 v.s. 速率

物理量	定義	
平均速度	單位時間內,物體移動的位移	
平均速率	單位時間內,物體移動的路徑長	

公式 1:(平均速度、平均速率)

- * 單位:m/s、cm/s、km/hr
- * 等速度運動:平均速度=平均速率

重點3 加速度

物理量	定義	
平均加速度	單位時間內,速度 變化量	

公式 2:(平均加速度)

平均加速度 =
$$\frac{速度變化量}{經過時間} = \frac{v_2 - v_1}{t_2 - t_1}$$

公式 3:(等加速度運動公式)

基本公式	初速 $v_0 = 0$	自由落體 $(v_0 = 0 \cdot a = g)$
$v = v_0 + at$	v = at	v = gt
$\Delta x = v_0 t + \frac{1}{2} a t^2$	$\Delta x = \frac{1}{2}at^2$	$\Delta x = \frac{1}{2}gt^2$
$v^2 = v_0^2 + 2a\Delta x$	$v^2 = 2a\Delta x$	$v^2 = 2gh$

重點 4v-t、a-t 固面積意義

圖示	圖形底下面積意義
v-t	位移
a-t	速度 變化量

單元十三 力與運動

重點1 牛頓三大運動定律

定律名稱	定義
牛頓第一運動定律	物體與不受外力或合力為 0 的情況下會維持原來
(慣性定律)	的運動狀態
牛頓第二運動定律	物體受到外力時,會沿合力方向產生加速度,此加
(運動定律)	速度與外力大小成正比;與物體質量成反比
牛頓第三運動定律	施作用力給一物體時,物體必給予施力者一反作
(作用力與反作用力定律)	用力

公式1:(牛頓第二運動定律)

外力
$$(F)$$
 = 質量 $(m) \times 加速度(a)$

重點 2 平衡力 v.s. 作用力與反作用力

種類	性質	
	1. 大小相等	
作用力與反作用力	2. 方向相反	
作用力與及作用力	3. 作用於同一條直線上	
	4. 作用於不同物體	
	1. 大小相等	
亚格士	2. 方向相反	
平衡力	3. 作用於同一條直線上	
	4. 作用於同一物體	

公式 2:(萬有引力定律)

兩物體之間,存在一吸引力,其吸引力與兩物體質量 $(m_1 \cdot m_2)$ 乘積成正比;與兩物體距離平方 (r^2) 成反比

萬有引力
$$(F_G) = \frac{Gm_1m_2}{r^2}$$

* 引力常數(G) = $6.67 \times 10^{-11} N \cdot m^2 / kg^2$

單元十四 功與能

公式 1:(功)

功
$$(W)$$
 = 施力 (F) × 位移 (S)

* 功無方向性,但有正功、負功之分

重點1 功的種類

種類	正功	不做功	負功
說明	施力方向與位移方向	施力方向與位移方向	施力方向與位移方向
一	相同	垂直	相反

公式 2:(功率)

功率
$$(P) = \frac{\mathcal{H}(W)}{\text{經過時間}(t)}$$

* 單位:瓦特(W)、焦耳/秒(J/s)

公式 3:(動能)

動能
$$(K) = \frac{1}{2}mv^2$$
 $m: 質量 \cdot v: 速度$

公式 4:(重力位能)

重力位能
$$(U_g) = mgh$$

 $m:$ 質量、 $g:$ 重力加速度、 $h:$ 高度

重點 2 守恆定律

定律	力學能守恆定律	能量守恆定律
חח געב	物體只受重力、彈力作用並無其他阻	系統的能量在轉換過程中,其總
說明	力時,其力學能(動能+重力位能)不變	和維持不變

公式 5:(力矩)

力矩
$$(L)$$
 = 作用力 (F) × 施力臂 (d)

* 單位:公斤重-公尺、牛頓-公尺

公式 6:(槓桿原理)

施力×施力臂=抗力×抗力臂

公式 7:(斜面省力)

施力做功=物體獲得位能

$$F \times l = W \times h \to F = \frac{h}{l}W$$

其中F:作用力、l:斜面長、W:物重、h:斜面垂直高度

單元十五 電

公式 1(庫倫定律)

兩靜止帶電體間的靜電力大小與帶電量 $(Q_1 \cdot Q_2)$ 乘積成正比;與距離平方 (r^2) 成反比

静電力
$$(F_Q) = \frac{kQ_1Q_2}{r^2}$$

* 庫倫常數 $(k) = 9 \times 10^9 N \cdot m^2 / C^2$

重點1 基本電荷

		性質
	1.	一個電子帶電量 = -1.6×10^{-19} C
基本電荷	2.	任何帶電體的帶電量必為基本電荷帶電量的整數倍
	3.	1 庫倫(C) = 6.25×10^{18} 個電子帶電量

公式 2:(電流)

電流
$$(I) = \frac{$$
帶電量 (Q)
時間 (t)

* 單位:安培(A)、庫倫/秒(Q/s)

公式 3:(電壓)

電壓
$$(V) = \frac{$$
電能 (E)
帯電量 (Q)

* 單位:伏特(V)、焦耳/庫倫(J/C)

公式 4:(歐姆定律)

相同溫度下,導體兩端的電壓(V)與通過的電流(I)成正比

電阻
$$(R) = \frac{$$
電壓 (V)
電流 (I)

* 單位:歐姆 (Ω) 、伏特/安培(V/A)

公式 5:(電阻串聯、並聯)

	電壓	電流	總電阻
串聯	$V = V_1 + V_2$	$I = I_1 = I_2$	$R = R_1 + R_2$
並聯	$V = V_1 = V_2$	$I = I_1 + I_2$	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$

單元十六 電與生活

公式 1(串聯、並聯功率)

	功率	性質
串聯(電流相同)	$P = I^2 R$	電功率與電阻成正比
並聯(電壓相同)	$P = \frac{V^2}{R}$	電功率與電阻成反比

重點 1 直流電(DC) v.s. 交流電(AC)

	直流電	交流電
	(Direct Current)	(Alternating Current)
定義	電流大小與方向不隨時間改變	電流大小與方向隨時間作週期性改變

重點2用電度數

1 度 = $1kW \times 1h = 1000W \times 3600s = 3.6 \times 10^6J$

單元十七 電化學與電池

重點1 鋅銅電池

	負極(活性大的金屬)	正極(活性小的金屬)	
電極	鋅(Zn)	銅(Cu)	
電解液	無色硫酸鋅水溶液	藍色硫酸銅水溶液	
反應	$Zn \rightarrow Zn^{2+} + 2e^-$	$Cu^{2+} + 2e^- \rightarrow Cu$	
得失電子	失去電子,氧化反應	得到電子,還原反應	
質量	變輕	變重	
電解液變化	Zn ²⁺ 增加(無色,不變色)	<i>Cu</i> ²⁺ 減少(藍色,變淡)	
總反應式	$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$		

重點 2 電池種類

	正極	負極	電解液	電壓
乾電池 (碳鋅電池)	電極:碳棒 反應物:二氧化錳	鋅	氧化銨	1.5V
鹼性電池	二氧化錳	鋅	氫氧化鉀	1.5V
鉛蓄電池	二氧化鉛	鉛	硫酸	2.0V
鋰離子電池	鋰的氧化物	碳	鋰鹽有機溶液	3.6V

重點3鉛蓄電池充、放電

	正極	負極	電極質量	硫酸濃度	pH 值
放電	$PbO_2 \rightarrow PbSO_4$	$Pb \rightarrow PbSO_4$	增加	減少	上升
充電	$PbSO_4 \rightarrow PbO_2$	$PbSO_4 \rightarrow Pb$	減少	增加	下降

重點 4 水的電解

	正極	負極
產物	氧氣 (O_2)	氫氣(H ₂)
體積比	1	2
質量比	8	1
特性	助燃性	可燃性
檢驗	使線香復燃	點火時發出爆鳴聲
反應式	$2H_2O \rightarrow 2H_2 + O_2$	

重點 5 硫酸銅的電解

以碳棒電解硫酸銅水溶液

	正極(碳棒)	負極(碳棒)
反應式	$2H_2O \rightarrow 4H^+ + 4e^- + O_2$	$Cu^{2+} + 2e^- \rightarrow Cu$
電極反應	產生氫氣	析出銅
電極質量	不變	變重
雷知法絲儿	1. Cu ²⁺ 減少,藍色變淡	
電解液變化	2. H ⁺ 增加,pH 值變小	

以銅棒電解硫酸銅水溶液

	正極(銅棒)	負極(銅棒)
反應式	$Cu \rightarrow Cu^{2+} + 2e^-$	$Cu^{2+} + 2e^- \rightarrow Cu$
電極反應	銅解離	析出銅
電極質量	變輕	變重
電解液變化	藍色不變,pH 值不變	

重點 6 電鍍

	正極(銅片)	負極(鐵片)	
反應式	$Cu \to Cu^{2+} + 2e^-$	$Cu^{2+} + 2e^- \rightarrow Cu$	
電極反應	失去電子,變成銅離子溶於溶 液中	獲得電子,變成銅原子,在鐵 片表面析出	
電極質量	變輕	變重	
電解液變化	藍色不變,pH 值不變		

^{*} 被電鍍物體放在負極

單元十八 磁

重點 1 磁化

鐵磁性物質	能被磁鐵吸引的物質
磁化	鐵磁性物質受到磁力影響而具有磁性

重點 2 磁場與磁力線

	特性	
	1.	為封閉平滑曲線
磁力線	2.	磁力線越密集,磁場強度越大
	3.	任兩條磁力線必不相交
	1.	外部磁場方向:由 N 極到 S 極
磁場	2.	內部磁場方向:由S極到N極
	3.	磁力線上某點之切線方向為 N 極所受磁力方向

重點3 電流磁效應&安培定律

	提出者	內容	
電流磁效應	厄斯特	通電的導線周圍會產生磁場	
安培定律	安培	通電長直導線周圍所建立的磁場強度,與導線上電流	
		大小成正比,與導線間距離成反比	

重點 4 電磁感應&感應電流

電磁感應	磁場發生變化,產生電流的現象
感應電流	電磁感應產生的電流

重點 5 電流磁效應 v.s. 電磁感應

	提出者	原理	說明
電流磁效應	厄斯特	電生磁	電流產生磁場
電磁感應	法拉第	磁生電	磁場變化產生電流

重點 6 電動機 v.s. 發電機

	直流電動機	交流發電機
構造	場磁鐵、線圈(電樞)、電刷與集電	場磁鐵、線圈(電樞)、電刷與集電
() ()	環(半圓形)	環(圓形)
原理	電流磁效應	電磁感應
能量	電能→動能	動能→電能

Reference

[1] 張文山。翰林超級翰將(3)、(4)、(5)、(6)。臺北:翰林文化。