Verifying Snapping Mechanism

October 22, 2019

1 Formalization - without Clamping

Definition 1 (Snap(μ , a): Distr(U) $\rightarrow A \rightarrow$ Distr(B))

The ideal Snapping mechanism without clamp operation is defined as:

$$\mathsf{Snap}(\mu, a) = u \overset{\$}{\leftarrow} \mu; x \leftarrow f(a) + \frac{S \cdot \log(u)}{\epsilon}; x \leftarrow \lfloor x \rfloor_{\Lambda}; \mathsf{clamp}_B(x)$$

where f is the query function over input $a \in A$, ϵ is the privacy budget and S sampled from $\{-1, +1\}$ with Bernoulli(0.5).

Definition 2 (ϵ - dilation)

Let $\epsilon \geq 0$. The ϵ -dilation $D_{\epsilon}(\mu_1, \mu_2)$ between two sub-distributions $\mu_1 \in \mathsf{Distr}(U)$, $\mu_2 \in \mathsf{Distr}(U)$ is defined as:

$$\sup_{E \in U} \left(\Pr_{x \leftarrow \mu_1} [x \in E] - \exp(\epsilon) \Pr_{x \leftarrow \mu_2} [x \in \exp(-\epsilon) \cdot E] \right)$$

Proposition 1 $((\epsilon, \delta)$ -differential privacy)

For every pair of sub-distributions $\mu_1 \in \mathsf{Distr}(U), \, \mu_2 \in \mathsf{Distr}(U), \, \mathrm{s.t.}$

$$D_{\epsilon}(\mu_1, \mu_2) \leq \delta$$
,

The snapping mechanism $\mathsf{Snap}(\mu, a) : \mathsf{Distr}(U) \to A \to \mathsf{Distr}(B)$ is (ε, δ) - differentially private w.r.t. an adjacency relation Φ for every two adjacent inputs a, a' and μ_1, μ_2

Proof. Followed directly by unfolding the Snap mechanism.

$$\begin{array}{lll} \Pr_{x \leftarrow \mathsf{Snap}(\mu_1,a)}[x=e] & = & \Pr_{u \leftarrow \mu_1}[\lfloor f(a) + \frac{S \cdot \log(u)}{\epsilon} \rfloor_{\Lambda} = e] \\ \\ & = & \Pr_{u \leftarrow \mu_1}[u \in [\frac{\exp((e - \frac{\Lambda}{2} - f(a))\epsilon)}{S}, \frac{\exp((e + \frac{\Lambda}{2} - f(a))\epsilon)}{S})] \\ \\ & \leq & \exp(\epsilon) \Pr_{u \leftarrow \mu_2}[u \in \exp(-\epsilon)[\frac{\exp((e - \frac{\Lambda}{2} - f(a))\epsilon)}{S}, \frac{\exp((e + \frac{\Lambda}{2} - f(a))\epsilon)}{S})] \\ \\ & = & \exp(\epsilon) \Pr_{u \leftarrow \mu_2}[\lfloor f(a') + \frac{S \cdot \log(u)}{\epsilon} \rfloor_{\Lambda} = e] \\ \\ & = & \exp(\epsilon) \Pr_{x \leftarrow \mathsf{Snap}(\mu_2,a')}[x = e] \end{array}$$

Definition 3 $((\epsilon, \delta)$ - **Dilation lifting**)

Two sub-distributions $\mu_1 \in \mathsf{Distr}(U_1)$, $\mu_2 \in \mathsf{Distr}(U_2)$ are related by the (ϵ, δ) - dilation lifting of $\Psi \subseteq U_1 \times U_2$, written $\mu_1 \Psi^{d(\epsilon, \delta)} \mu_2$, if there exist two witness sub-distributions $\mu_L \in \mathsf{Distr}(U_1 \times U_2)$ and $\mu_R \in \mathsf{Distr}(U_1, U_2)$ s.t.:

- 1. $\pi_1(\mu_L) = \mu_1$ and $\pi_2(\mu_R) = \mu_2$;
- 2. $supp(\mu_L) \subseteq \Psi$ and $supp(\mu_R) \subseteq \Psi$; and

3. $D_{\epsilon}(\mu_L, \mu_R) \leq \delta$.

It is easy to see that two sub-distributions μ_1 and μ_2 are related by $=^{d(\epsilon,\delta)}$ iff $D_{\epsilon}(\mu_1,\mu_2) \leq \delta$. Therefore, the Snap mechanism $\mathsf{Distr}(U) \to A \to \mathsf{Distr}(B)$ is $(\epsilon,\delta)-$ differentially private w.r.t. and adjacency relation Φ and μ_1, μ_2 iff:

$$\mu_1 = d(\epsilon, \delta) \mu_2$$

for every two adjacent inputs a and a'.

Definition 4 $((\epsilon, \delta)$ - **lifting** [1])

Two sub-distributions $\mu_1 \in \mathsf{Distr}(U_1)$, $\mu_2 \in \mathsf{Distr}(U_2)$ are related by the (ϵ, δ) - dilation lifting of $\Psi \subseteq U_1 \times U_2$, written $\mu_1 \Psi^{\#(\epsilon, \delta)} \mu_2$, if there exist two witness sub-distributions $\mu_L \in \mathsf{Distr}(U_1 \times U_2)$ and $\mu_R \in \mathsf{Distr}(U_1, U_2)$ s.t.:

- 1. $\pi_1(\mu_L) = \mu_1$ and $\pi_2(\mu_R) = \mu_2$;
- 2. $supp(\mu_L) \subseteq \Psi$ and $supp(\mu_R) \subseteq \Psi$; and
- 3. $D_{\epsilon}(\mu_L, \mu_R) \leq \delta$.

Theorem 2

if $\mu_1 \Psi^{d(\epsilon,\delta)} \mu_2$, then we can prove $\mathsf{Snap}(\mu_1,a) \Psi^{\#(\epsilon,\delta)} \mathsf{Snap}(\mu_2,a')$, w.r.t. an adjacent relation Φ for every $a\Phi a'$

References

[1] Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. Proving differential privacy via probabilistic couplings. In *LICS 2016*.