Monash University Faculty of Information Technology

Lecture 21 Polynomial-time reductions

Slides by Graham Farr (2012)

FIT2014 Theory of Computation

Overview

- Comparing languages
- Definition of polynomial time reduction
- Examples
- Properties

Polynomial-time reductions

- Some languages are easier to decide than others.
- · How to compare languages?
- · Could we use time complexity?
 - $^{\circ}\,$ seldom known exactly; usually we just know an upper bound (e.g., big-O)

Polynomial-time reductions

- Polynomial-time reductions are also called:
 - o polynomial-time mapping reductions
 - o polynomial-time many-one reductions
 - polynomial transformations
 - Karp reductions
- If there is a polynomial-time reduction from L_1 to L_2 , then we write $L_1 \leq_P L_2$.

Examples

INDEPENDENT SET ≤_P CLIQUE

Complement \overline{G} of G: edges \longleftrightarrow non-edges Independent sets in G correspond to cliques in \overline{G} . G has an independent set of size \ge k if and only if \overline{G} has a clique of size \ge k.

So: $(G, \mathbf{k}) \in \text{INDEPENDENT SET}$ if and only if $(\bar{G}, \mathbf{k}) \in \text{CLIQUE}.$

Construction of (\overline{G}, k) from (G, k) is polynomial time.

So $(G,\mathbf{k})_{\mapsto}$ $(\overline{G},\mathbf{k})$ is a polynomial-time reduction from INDEPENDENT SET to CLIQUE.

Examples

VERTEX COVER ≤_P INDEPENDENT SET

If G is a graph and X is a subset of V(G), then X is a vertex cover of G if and only if $V(G) \setminus X$ is an independent set of G. So: $(G, k) \in VERTEX COVER$ if and only if $(G, n-k) \in INDEPENDENT SET.$

The construction is polynomial time. So the function $(G, k) \mapsto (G, n-k)$ is a polynomial-time reduction.

Examples

2-SAT ≤_P 3-SAT

Given a Boolean formula ϕ in CNF with 2 literals per clause, how can we transform it to another Boolean formula φ' in CNF with 3 literals/clause, such that ϕ is satisfiable if and only if ϕ' is satisfiable?

For each i: Suppose i-th clause in ϕ is $x \vee y$. Create a new variable wi which appears nowhere else. Replace clause $x \lor y$ by two clauses:

 $(x \lor y \lor w_i) \land (x \lor y \lor \neg w_i)$

Examples

Then show that

- this construction takes polynomial time
- ϕ is satisfiable if and only if ϕ' is satisfiable

Examples

SUBGRAPH ISOMORPHISM

 $\{(G,H): G \text{ is isomorphic to a subgraph of } H\}$

GRAPH ISOMORPHISM ≤_P SUBGRAPH ISOMORPHISM

 $(G, H) \mapsto (G, H)$

Polynomial time!

Does it work the other way round?

PARTITION

 $\label{eq:continuous} \left\{\; (s_1, s_2, ..., s_n): \text{ for some subset J of } \{1, 2, ..., n\}, \right.$

$$\sum_{i \in J} s_i = \sum_{i \in \{1, \dots, n\} \setminus J} s_i$$

SUBSET SUM

 $\left\{ (s_{j}, s_{2}, ..., s_{n}, t) : \text{ for some subset } j \text{ of } \{1, 2, ..., n\}, \\ \sum_{i \in J} s_{i} = t \right\}$

$$\sum_{i \in J} s_i = t$$

PARTITION ≤_P SUBSET SUM

 $(s_1, s_2, ..., s_n) \mapsto (s_1, s_2, ..., s_n, (s_1 + s_2 + ... + s_n)/2)$ Can you show SUBSET SUM \leq_P PARTITION?

Examples

Others to try:

3-COLOURABILITY \leq_P GRAPH COLOURING

GRAPH COLOURING = { (G,k) : G is k-colourable }

2-COLOURABILITY ≤_P 3-COLOURABILITY HAMILTONIAN CIRCUIT ≤_P HAMILTONIAN PATH 2-COLOURABILITY \leq_P 2-SAT SATISFIABILITY \leq_P 3-SAT

3-COLOURABILITY \leq_P SATISFIABILITY

Properties

Reflexive: For any L, $L \leq_P L$.

Transitive: If $L_1 \leq_P L_2$ and $L_2 \leq_P L_3$ then $L_1 \leq_P L_3$.

Properties

Theorem

If $L_1 \leq_P L_2$ and L_2 is in P, then L_1 is in P. **Proof.**

Let $\,f\,$ be a polynomial-time reduction from $\,L_1$ to $\,L_2,$ and let $\,D\,$ be a poly-time decider for $\,L_2.$

Decider for L_1 :

Input: x

Use f to construct f(x), and D to decide whether or not f(x) is in L_2 .

Accept x if and only if D accepts f(x). Is it polynomial time?

Properties

If f has time complexity $O(n^k)$, then the length of its output string f(x) must also be $O(n^k)$, since a TM can, in t steps, output no more than t symbols.

The decider $\,D\,$ runs in polynomial time, so suppose it has time complexity $\,O(n^{k'}\,)$, where $\,n\,$ is the size of the input to $\,D.$

If D is given f(x) as input, then the time D takes on it is $O(|f(x)|^{k'})$, where |f(x)| = length of string f(x). Since $|f(x)| = O(n^k)$, we find that D takes time $O(n^{kk'})$, where n = |x|.

Properties

Total time taken by our decider for L_1 is time taken by f on x + time taken by D on f(x) = $O(n^k) + O(n^{kk'}) = O(n^{kk'})$, which is polynomial time.

End of proof

Properties

Exercises

Prove: if L $_1$ is in P and L $_2$ is any language, then L $_1 \leq_{_P} L_2$.

The fine print: some caveats regarding trivial cases are needed here. What are they?

Prove:

Theorem

If $L_1 \leq_P L_2$ and L_2 is in NP, then L_1 is in NP.

Revision

• Sipser, section 7.4, pp299-303.