KF School of Computing and Information Sciences Florida International University

CNT 4403 Computing and Network Security

Network Security – Firewalls

Dr. Kemal Akkaya

E-mail: kakkaya@fiu.edu

Intrusion Detection Systems (IDS)

- ☐ An IDS is any combination of hardware & software that monitors a system or network for malicious activity.
 - > Car alarms, Fire detectors, House alarms, Surveillance systems
- ☐ Why IDS?
 - Passive security methods are not enough to protect networks from attacks!
 - > IDS are part of reactive defense strategies.
 - ✓ What you do after prevention has failed
 - ✓ Take action or send an alarm to an officer

What should be detected?

- ☐ Attempted and successful break-ins
- ☐ Attacks by legitimate users
 - > For example, illegitimate use of root privileges
 - Unauthorized access to resources and data
- ☐ Trojan horses
- □ Viruses and worms
- Denial of service attacks

Many organizations deploy IDS

- -Provide warnings to network administrator
 - -Administrator can then improve network's security
 - -Vigorous investigation could lead to attackers

Efficiency of IDS

□ Accuracy

- > The proper detection of attacks and the absence of false alarms
 - ✓ False positive:
 - Alarm in normal traffic
 - √ False negative
 - No alarm during an attack

□ Performance

- The rate at which traffic and audit events are processed
 - ✓ To keep up with traffic, may not be able to put IDS at network entry point
 - ✓ Instead, place multiple IDSs downstream

☐ Fault tolerance

- Resistance to attacks
 - ✓ Should be run on a single hardened host that supports only intrusion detection services

□ Timeliness

Time elapsed between intrusion and detection

Classification of IDS

- □ Different classes of IDS based on different criteria
- Based on data collection mechanism
 - > Host-based
 - ✓ OS audits and system and applications logs
 - Network-based
 - ✓ Packets captured from network traffic
- **□** Based on detection techniques
 - Anomaly (Behavior-based)
 - ✓ Any behavior outside of a "normal profile"
 - Misuse (Rule-based)
 - ✓ Monitored activity is compared to set of signatures (patterns) for known attacks

Host-based IDS

- ☐ Run on hosts
- Monitor attacks on OSes, applications.
- Have access to audit logs, error messages, any resources that can be monitored on host
- □ Privileged host access
 - Psswd files, Registry in Windows
- Tuned for system/OS/apps
- High detection accuracy
- Mostly for insider attacks
 - Exemployee utilizing old account, employee modifying performance evaluation, etc.
- Disadvantages
 - Only covers one host
 - ➤ IDS to be placed on every critical host
 - Need version for each OS

Network-based IDS

- ☐ Often placed on a router or firewall
- Monitor traffic, examine packet headers and payloads
 - > TCP/IP packets
- Mostly for outsider attacks
- □ Advantage:
 - Single Network-based IDS can protect many hosts and look for global patterns
- □ Disadvantage
 - Deployment issues where to put the sensors
 - Can be easily detected Airsniff
 - May not deal with huge number of packets
 - Can not deal with encrypted traffic
 - ✓ If packet header or payload is encrypted, no signature analysis can be
 done

IDS sensors

• = IDS sensor application firewall gateway Internet Web Internal server DNS network FTP server server Demilitarized zone

Anomaly Detection (Behavior-based)

- ☐ Define a profile describing "normal" behavior
 - Works best for "small", well-defined systems (single program rather than huge multi-user OS)
- ☐ Profile may be statistical
 - Build it manually (this is hard)
 - Use machine learning and data mining techniques
 - ✓ Log system activities for a while, then "train" IDS to recognize normal and abnormal patterns
 - Risk: attacker trains IDS to accept his activity as normal
 - ✓ Daily low-volume port scan may train IDS to accept port scans
- ☐ IDS flags deviations from the "normal" profile
- ☐ Doesn't rely on having previous knowledge of attack
- ☐ Big research topic in security
 - > Still in the laboratory

Misuse Detection (Signature-based)

- ☐ Set of rules defining a behavioral signature likely to be associated with attack of a certain type
 - > Example: SYN flooding (denial of service)
 - ✓ Large number of SYN packets without ACKs coming back
 - ...or is this simply a poor network connection?
- ☐ Skilled security engineers research known attacks
 - Put them in a database
 - Match attack signatures
- Disadvantages
 - Attack signatures are usually very specific and may miss variants of known attacks
 - ✓ Big research challenge: fast, automatic extraction of signatures of new attacks
 - No knowledge of intention of activity
 - ✓ Triggers alarms even if traffic is benign
 - > Signature bases are getting larger zero-day attacks?
 - ✓ Every packet must be compared with each signature

IDS versus IPS

- □ Intrusion Prevention System (IPS) is often able to recognize the attack and respond appropriately
- □ Both IDS and IPS devices recognize attacks, but they operate with some differences
- □ IDS
 - Operates parallel to the network
 - Passive device
 - Monitors all traffic and sends alerts

- Operates in-line to the network
- Active device
- Monitors all traffic, sends alerts and drops or blocks the offending traffic