Chapter3: 3.9 3.10 3.12 3.13

11	713	200
7	竹	多
VI	1	一次

3.9 [10] <\$3.2> Assume 151 and 214 are signed 8-bit decimal integers stored in two's complement format. Calculate 151 + 214 using saturating arithmetic. The result should be written in decimal. Show your work.	4	1: 1=>Ptod :t=Mcarol 2: Shift left Multiplicand		00]]00]00 000	00011 10100
(151)10 = (00 0 11) 2, for igned 8-bit, => (-105)10		3.Shift Right Multiplier	00000		
(2/4) 10 = (0 0 10) 2, for signed 8-bit, => (-42),0	5	1: 0=2NO DPeraction			000 0 00
For signed 8- bit, the maximum value is (01111111) = (127)10		2: Stift left Multiplicand		01100 000 000	
the minimum value is (1000 0000), = (128),		3. Shift Right Multiplier	00000		
As (-125)10+ (-42)0= (-147)10< (-128)10	6	1: 0=>NO Devation			000 0100
The result is smaller than the ordinary value the 8-61	t weld	2: Stift left Multiplicand		11001000000	
represent.		3. Shift Right Multiplier	000 000		

As me use saturating anthmetic method,

The answer would be -128, the maximum negative number.

3.13 [20] <§3.3> Using a table similar to that shown in Figure 3.6, calculate the product of the hexadecimal unsigned 8-bit integers 62 and 12 using the hardware described in Figure 3.5. You should show the contents of each register on each step.

3.10 [10] <\$3.2> Assume 151 and 214 are signed 8-bit decimal integers stored in two's complement format. Calculate 151 - 214 using saturating arithmetic. The result should be written in decimal. Show your work.

(151)₁₀ = (|00|0|11)₂, for signed 8-bit, => (-|05|)₁₀ (24+)₁₀ = (||010||0)₂, for signed 8-bit, => (-42)₁₀ For signed 8-bit, the maximum value is (01111|11)₂=(127)₁₀ the minimum value is (10000000)₂ = (128)₁₀ As (-|05|)₁₀ (-42)₀= (-63)₁₀,

ndish to between the minimum value and the moximum value. As we use saturating arithmetic, the result would be (-63).

3.12 [20] <§3.3> Using a table similar to that shown in Figure 3.6, calculate the product of the octal unsigned 6-bit integers 62 and 12 using the hardware described in Figure 3.3. You should show the contents of each register on each step.

$$(62)_{g} = (||00|0)_{2}$$

$$(|2)_{g} = (||00|0|0)_{2}$$

$$||00|0$$

$$||00|0$$

$$||00|0$$

Iteration	Step	Multiplicand.	Frodu Ct
0	Initial Values	0 1000 0	0000 0000 000 0000
	1.0 => NO Operation 2. Shift Right Product.	0110 00 0	0000 0000 0000 000 0
_2	1. 1 ⇒ Frod t = Multiplicand 2. Shift Right Product	0 0 00 0	010 001 0000 000
3.	1.0 => NO Operation 2. Shift Right Product	0110 0010	001 000 000 000 000 000 000 000 000 000
4	1. 0 > NO Operation 2. Shift Kight Product	0110 0010	0001 100 0100 000 1
5	1. 1=> Rood t=Multiplicand 2. Shift Right Product	0110 0010	0 0 10 0 00 000]
<i>b</i> .	1. 0 => NO Operation 2. Shift Right Product	91100010	000 0 0010 6000
7	1.0 => NO Operation 2. Shift Kight Product	0 0 00 0	000 1011 001 0000
8	1. 0 => NO Operation 2. Gliff Right Product	0 0 00 0	0000 1101 1100 1900

$$\begin{array}{rcl}
(62)_{16} &= & (0||0 & 00||0)_{2}, \\
(|2)_{16} &= & (000||00||0)_{2}, \\
0||0 & 00||0 \\
\hline
0||0 & 00||0 \\
\hline
(0||0|||0 & 00||0 \\
\hline
(0||0||0 & 00||0 \\
\hline
($$

(11110100)2 = (500)10 = (764)8

<u>Iteration</u>		Multiplier	Mulfiplicand	Product.
0	Initial Values	00 0 0	000000 00 0	000000 000000
	1: 0=>NO DPeration			000000000000
	2: Stiff left Multiplicand		0000 100100	
	3.Shift Right Multiplier	000 01		
	1: 1=>flod: +=Mcand			00000 100100
	2: Stiff left Multiplicand		0000 00 000	
	3. Shift Right Multiplier	00000		
3	1:0=>NO Deration			00000 00 00
	2: Stift left Multiplicand		000 110 010 000	
	3. Shift Right Multiplier	000 00		