Parcial

Este examen pertenece al Banco de Exámanes de la Asociación de Estudiantes de Matemáticas de la Universidad de Granada. Si bien su autoría corresponde a los profesores ya citados, en la asociación nos encargamos de almacenarlos y ceder su uso a los estudiantes para que sea más satisfactoria su labor a la hora de preparar un examen.

- 1. Sea (\mathbb{R}, τ_{in}) para p = 0, (\mathbb{R}, τ_{ex}) para q = 1 y la aplicación $f : (\mathbb{R}, \tau_{in}) \to (\mathbb{R}, \tau_{ex})$ dada por $f(x) = x^2$. Estudia si f es o no continua y prueba que f es continua en x = 1.
- 2. Construye de forma explícita un homeomorfismo entre los siguientes conjuntos:

$$X = \{(0, y) : y \in \mathbb{R}\}$$
 $Y = \{(x, x^2) : -1 < x < 1\}$

- 3. Sea el espacio topológico (X, τ) y $A = \{(x, x) \in X \times X : x \in X\}$. Establece un homeomorfismo entre (X, τ) y $(A, (\tau \times \tau)|_A)$. Estudia cuándo A es abierto en $(X \times X, \tau \times \tau)$.
- 4. Sea X = [-1, 2] y $A = [-1, 0] \cup [1, 2]$. En X se define la relación de equivalencia:

$$xRy \iff x = y \text{ \'o } x, y \in A$$

Prueba que X/R es homeomorfo a \mathbb{S}^1 .

Parcial

Este examen pertenece al Banco de Exámanes de la Asociación de Estudiantes de Matemáticas de la Universidad de Granada. Si bien su autoría corresponde a los profesores ya citados, en la asociación nos encargamos de almacenarlos y ceder su uso a los estudiantes para que sea más satisfactoria su labor a la hora de preparar un examen.

1. Sea X un conjunto y un subconjunto suyo $A\subset X$ fijado. Se define:

$$\tau = \{O \subset X : A \subset O\}$$

- \blacksquare Prueba que τ es una topología de X.
- Prueba que $\beta_x = \{B_x\}$ es base de entornos de $x \in X$, donde $B_x = \{x\} \cup A$.
- Si $C \subset X$, caracteriza el interior y la adherencia de C.
- 2. En (\mathbb{R}^2, τ_u) , halla el interior y la adherencia de:

$$A = B((0,0),1) - \{(0,0)\}$$
 $B = \{(x,y) \in \mathbb{R}^2 : -1 \le y \le 1\}$

- 3. En \mathbb{R}^2 , consideramos la familia $\beta = \{(a,b) \times \{c\} : a < b \text{ y } a,b,c \in \mathbb{R}\}.$
 - Prueba que β es base de abiertos de una topología τ en \mathbb{R}^2 .
 - Compara τ con τ_u .
 - Dado $C = \{0\} \times \mathbb{R}$, estudia cuál es la topología relativa $\tau|_C$ y si es conocida.

Parcial

Este examen pertenece al Banco de Exámanes de la Asociación de Estudiantes de Matemáticas de la Universidad de Granada. Si bien su autoría corresponde a los profesores ya citados, en la asociación nos encargamos de almacenarlos y ceder su uso a los estudiantes para que sea más satisfactoria su labor a la hora de preparar un examen.

1. Estudia en qué puntos es continua la aplicación $f:(\mathbb{R},\tau_u)\to(\mathbb{R},\tau_d)$ dada por:

$$f(x) = sen(x)$$

2. Prueba que la pareja de espacios de cada apartado son homeomorfos entre sí:

•
$$A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1 \mid x \ge 0\} \text{ y } B = [0, 1].$$

■
$$A = \{(x,y) \in \mathbb{R}^2 : x > 0 \mid y > 0\} \text{ y } B = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}.$$

•
$$A =]0, 1[\cup[2, 3] \text{ y } B =]5, 7[\cup[10, 12].$$

3. Se considera (\mathbb{R}, τ) , donde τ es la topología del punto incluido para p = 1.

- Estudia la continuidad global de la aplicación $f: (\mathbb{R} \times \mathbb{R}, \tau \times \tau) \to (\mathbb{R}, \tau)$ dada por f(x, y) = y x.
- Halla el interior del conjunto $A = \{(x, y) \in \mathbb{R}^2 : y > x\}$ en $(\mathbb{R} \times \mathbb{R}, \tau \times \tau)$.
- 4. En $X = ([0,1] \times \{0\}) \cup ([0,1] \times \{1\}) \subset \mathbb{R}^2$ se define la relación:

$$(x,y)R(x',y') \iff \begin{cases} (x,y) = (x',y') \\ (0,0)R(0,1) \\ (1,0)R(1,1) \end{cases}$$

Halla y prueba a qué subconjuntos de \mathbb{R}^2 es homeomorfo X/R.

Parcial

Este examen pertenece al Banco de Exámanes de la Asociación de Estudiantes de Matemáticas de la Universidad de Granada. Si bien su autoría corresponde a los profesores ya citados, en la asociación nos encargamos de almacenarlos y ceder su uso a los estudiantes para que sea más satisfactoria su labor a la hora de preparar un examen.

- 1. Prueba quue cada pareja de conjuntos no son homeomorfos:
 - $\blacksquare \mathbb{R}^2 \ \mathbf{v} \ \mathbb{RP}^2.$
 - $\bullet \ A = (\{0\} \times]-1,1]) \cup ([0,1] \times \{0\}) \ y \ B = (\{0\} \times]-1,1[) \cup ([0,1] \times \{0\}).$
 - $A = \{(x, y) \in \mathbb{R}^2 : y = sen\left(\frac{1}{n}\right) \quad x > 0\} \text{ y } B = A \cup \{(0, 0)\}.$
 - $\blacksquare \mathbb{RS}^1 \times [0,1] \text{ y } \mathbb{RS}^1 \times]0,1[.$
- 2. Calcula las componentes conexas de $\left\{\frac{1}{n}:n\in\mathbb{N}\right\}$ y $\mathbb{R}^2\backslash\{(x,y)\in\mathbb{R}^2:y\in\{-1,1\}\}.$
- 3. Estudia la compacidad de (\mathbb{R}, τ_d) . Caracteriza los subconjuntos compactos.
- 4. Sea $p \notin \mathbb{R}$. En $X = \mathbb{R} \cup \{p\}$ se considera la topología τ que tiene por base:

$$\beta = \beta_u \cup \{] - \infty, a[\cup]b, +\infty[\cup\{p\} : a < b\}$$

Estudia la conexión y compacidad de (X, τ) .

Francisco Milán López

Tipología de examen: Prueba de Clase

Este examen pertenece al Banco de Exámenes de la Asociación de Estudiantes de Matemáticas de la Universidad de Granada. Si bien su autoría corresponde a los profesores ya citados, en la asociación nos encargamos de almacenarlos y ceder su uso a los estudiantes para que sea más satisfactoria su labor a la hora de preparar un examen.

1. Probar que

$$B = \left\{ \left. \left[x - \frac{1}{n}, x + \frac{1}{n} \right[\cup \left] n, +\infty \right[/ x \in \mathbb{R}, n \in \mathbb{N} \right] \right\}$$

es base de una topología τ en \mathbb{R} .

2. Razonar si

$$B_1 = \{ \left[a, b \right] / a, b \in \mathbb{R} \}$$

О

$$B_2 = \{ \,]n, +\infty[\, / \, n \in \mathbb{N} \}$$

son bases de τ .

3. Calcular el interior y la adherencia de $\mathbb N$ y $]-\infty,8]$ en $(\mathbb R,\tau).$