Recap: Linear Algebra

Stephanie Brandl

Machine Learning: TU Berlin

Announcements

- Biweekly tutorials: recap, discussing solutions of assignments, optional exercises
- Next week joint lecture/tutorial
- 1st assignment is due May 9, 10 am via ISIS (in groups!)
- office hours will be established, details will follow
- contact: stephanie.brandl@tu-berlin.de

Vector space

Definition. A *vector space* in \mathbb{R} consists of a set V equipped with two operations, \dotplus (addition) and \cdot (scalar multiplication)

$$\begin{split} \dot{+} : V \times V \to V & (\vartheta, \omega) \mapsto \vartheta \dotplus \omega \\ \cdot : \mathbb{R} \times V \to V & (\lambda, \vartheta) \mapsto \lambda \cdot \vartheta \end{split}$$

- $(V, \dot{+})$ is an abelian group, satisfying:
 - i) $\forall \vartheta_1, \vartheta_2, \vartheta_3 \in V : \vartheta_1 \dotplus (\vartheta_2 \dotplus \vartheta_3) = (\vartheta_1 \dotplus \vartheta_2) \dotplus \vartheta_3$ (associativity)
 - ii) $\vartheta \dotplus e = e \dotplus \vartheta = \vartheta \ \forall \vartheta \in V$ (unique identity element $e \in V$)
 - iii) $\forall \vartheta \in V \exists ! \ \vartheta^{-1} \in V : \quad \vartheta \dotplus \vartheta^{-1} = \vartheta^{-1} \dotplus \vartheta = e$
 - iv) $\forall \vartheta_1, \vartheta_2 \in V : \vartheta_1 + \vartheta_2 = \vartheta_2 + \vartheta_1$ (commutativity)
- (V, \cdot) satisfies:
 - i) $\lambda(\mu\vartheta) = (\lambda\mu)\vartheta$ (associativity)
 - ii) $1\vartheta = \vartheta$ (unique identity element)
 - iii) $\lambda(\vartheta + \omega) = \lambda\vartheta + \lambda\omega$, $(\lambda + \mu)\vartheta = \lambda\vartheta + \mu\vartheta$ (distributivity)

The Euclidean norm- length of a vector

Definition. The *(euclidean) norm* of a vector
$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix} \in \mathbb{R}^d$$
 is

given by

$$\|\mathbf{x}\| = \sqrt{\sum_{i=1}^d x_i^2}$$

For
$$\mathbf{x} \in \mathbb{R}^2$$
 , $\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2}$

The distance of two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ is then given by $\|\mathbf{x} - \mathbf{y}\|$.

The scalar product

Definition. The *(standard) scalar product* of $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ is given by:

$$\mathbf{x}^T \mathbf{y} = x_1 y_1 + \ldots + x_d y_d.$$

Notice from the definition: $\|\mathbf{x}\| = \sqrt{\mathbf{x}^T \mathbf{x}}$

What does the scalar product tell us?

- $\mathbf{x}^T \mathbf{y} = \cos(\angle \mathbf{x}, \mathbf{y}) \cdot ||\mathbf{x}|| \cdot ||\mathbf{y}||$
- For $\|\mathbf{x}\| = 1$: $\mathbf{x}^T \mathbf{y}$ is the length of the orthogonal projection of \mathbf{y} on \mathbf{x}

Definition. $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are *orthogonal* to each other if

$$\mathbf{x}^T\mathbf{y} = 0$$

Matrices as linear transformations

Definition. A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is **linear** if it satisfies

$$f(\lambda_1 \mathbf{x} + \lambda_2 \mathbf{y}) = \lambda_1 f(\mathbf{x}) + \lambda_2 f(\mathbf{y})$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\lambda_1, \lambda_2 \in \mathbb{R}$

• if f is linear, we have for each $\mathbf{x} \in \mathbb{R}^n$:

$$f(\mathbf{x}) = f(x_1\mathbf{e}_1 + \ldots + x_n\mathbf{e}_n) = x_1f(\mathbf{e}_1) + \ldots + x_nf(\mathbf{e}_n)$$

ullet \Rightarrow The function is entirely determined by $f(\mathbf{e}_1),\ldots,f(\mathbf{e}_n)$

Matrices as linear transformations

$$f(\mathbf{x}) = f(x_1\mathbf{e}_1 + \ldots + x_n\mathbf{e}_n) = x_1f(\mathbf{e}_1) + \ldots + x_nf(\mathbf{e}_n)$$

We can represent f by a $m \times n$ matrix A

$$f(\mathbf{x}) = A \cdot \mathbf{x} = \begin{pmatrix} | & | & | \\ f(\mathbf{e}_1) & \dots & f(\mathbf{e}_n) \\ | & | \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

The columns of A are the images of the unit vectors.

Basic matrix operations

- The sum A + B of matrices A, B is calculated entrywise
- The scalar multiplication λA of matrix A and scalar λ is calculated entrywise
- The **transpose** of matrix $A \in \mathbb{R}^{m \times n}$ is the matrix $A^T \in \mathbb{R}^{n \times m}$ formed by turning rows into columns
- For $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times k}$, the entries of the **matrix product** $AB \in \mathbb{R}^{m \times k}$ are given by the scalar product of the corresponding row of A and the corresponding column of B:

$$(AB)_{ij} = a_{i1}b_{1j} + \ldots + a_{in}b_{nj} = \mathbf{a}_{i\cdot} \cdot \mathbf{b}_{\cdot j}$$

Rank

Definition. The *rank* of a matrix is the maximum number of linearly independent column vectors of A. (equivalent: rows).

Definition. A square matrix $A \in \mathbb{R}^{n \times n}$ is called *invertible*, if there exists a matrix A^{-1} such that

$$AA^{-1} = A^{-1}A = I_n.$$

A has full rank (rang(A) = n) \Leftrightarrow A is invertible.

Useful properties:

$$(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$$

$$(A^{T})^{-1} = (A^{-1})^{T}$$

$$(A + B)^{T} = A^{T} + B^{T}$$

$$(\lambda \cdot A)^{T} = \lambda \cdot A^{T}$$

$$(A \cdot B)^{T} = B^{T} \cdot A^{T}$$

Special matrices:

Let $A \in \mathbb{R}^{n \times n}$ be a square matrix.

- A is **orthogonal** if $AA^T = A^TA = I_n$. Orthogonale Matrices represent rotations or reflections.
- A is symmetric if $A = A^T$
- A is diagonal if all elements on the off-diagonal are 0

Eigenvectors

Definition. An eigenvector of a square matrix $A \in \mathbb{R}^{n \times n}$ with a corresponding eigenvalue $\lambda \in \mathbb{R}$ is a vector $\mathbf{v} \in \mathbb{R}^n \setminus \{0\}$ that, when multiplied by A yields a scaled version of itself:

$$A\mathbf{v} = \lambda \mathbf{v}$$

Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. It holds:

- ullet A has a maximum of n eigenvalues and n linear independent eigenvectors
- \bullet A does not necessarily have n linear independent eigenvectors If A is symmetric:
 - The eigenvalues are real
 - ullet There are n orthogonal eigenvectors
 - It follows:

$$AU = U\Lambda$$

where U is an orthogonal matrix containing the eigenvectors in the columns and Λ is a diagonal matrix with corresponding eigenvalues on the diagonal

This yields the eigendecomposition of A

$$A = U\Lambda U^T$$