### Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación



### IIC2343 – Arquitectura de Computadores

Arquitecturas de Computadores

Profesor: Hans Löbel

### Computador básico ya tiene todas las funcionalidades "básicas"

- Posee registros y unidades de ejecución y control.
- Además de hacer cálculos, puede realizar operaciones de control de flujo.
- Provee modularidad básica, al dar soporte para subrutinas.

### Nuestro computador presenta una de muchas posibles arquitecturas

- Distintos computadores pueden diferir en el conjunto de funcionalidades básicas y fundamentales.
- Por otro lado, existen computadores que son programados de la misma manera (ej. AMD-Intel), pero su construcción interna es distinta.
- Decisiones en cuanto a cantidad de registros, tamaño de buses, memorias, instrucciones, etc., definen la arquitectura de un computador.

### Microarquitectura e ISA definen la arquitectura de un computador

La arquitectura de un computador se define en base a dos elementos:

- 1. Microarquitectura: se refiere a los distintos componentes de hardware que están presentes en el computador.
- 2. Arquitectura del set de instrucciones (ISA): se refiere al tipo, formato, características, etc., de las instrucciones soportadas por el computador. En resumen, lo que tenga que ver con la programación de un computador.

### Revisemos la microarquitectura de nuestro computador básico



#### Revisemos la microarquitectura de nuestro computador básico



### Revisemos la microarquitectura de nuestro computador básico

#### Registros, Unidad de ejecución, Unidad de control



### ¿Cuál es la microarquitectura de nuestro computador?

Registros:A, B, SP, PC, Status

Unidad de control: Simple (Hardwired)

• Tamaños: Regs., dir. mem., etc., 8 bits

Unidad de ejecución: ALU

• Condition Codes: Z, N, C, V

• Stack: En memoria

### Modifiquemos un poco la microarquitectura del computador básico









### Arquitecturas de von Neumann y Harvard se utilizan en distintos casos

La memoria presenta una división entre 2 grandes paradigmas dentro de la arquitectura de los computadores:

- Arquitectura Harvard: presenta memorias independientes para instrucciones y para datos.
- Arquitectura von Neumann: utiliza una sola memoria compartida entre instrucciones y datos. Permite escribir instrucciones como si estas fueran datos.

## En von Neumann, el bus de instrucciones se agrega al bus bidireccional de datos



## ISA especifica como escribir los programas para el computador

- Tipos de Instrucciones: carga, aritméticas,...
- Tipos de datos
- Modos de direccionamiento de memoria
- Manejo del stack
- Formato de instrucción
- Palabras por instrucción
- Ciclos por instrucción

# ISA especifica como escribir los programas para el computador

| Instrucción | Operandos         | Opcode  | Condition | Lpc | La | Lb | Sa0,1 | Sb0,1 | Sop0,1,2 | Sadd0,1 | Sdin0 | Spc0 | W | IncSp | DecSp |
|-------------|-------------------|---------|-----------|-----|----|----|-------|-------|----------|---------|-------|------|---|-------|-------|
| MOV         | A,B               | 0000000 |           | 0   | 1  | 0  | ZERO  | В     | ADD      | -       | -     | -    | 0 | 0     | 0     |
|             | $_{\rm B,A}$      | 0000001 |           | 0   | 0  | 1  | A     | ZERO  | ADD      | -       | -     | -    | 0 | 0     | 0     |
|             | A,Lit             | 0000010 |           | 0   | 1  | 0  | ZERO  | LIT   | ADD      | -       | -     | -    | 0 | 0     | 0     |
|             | B,Lit             | 0000011 |           | 0   | 0  | 1  | ZERO  | LIT   | ADD      | -       | -     | -    | 0 | 0     | 0     |
|             | A,(Dir)           | 0000100 |           | 0   | 1  | 0  | ZERO  | DOUT  | ADD      | LIT     | -     | -    | 0 | 0     | 0     |
|             | B,(Dir)           | 0000101 |           | 0   | 0  | 1  | ZERO  | DOUT  | ADD      | LIT     | -     | -    | 0 | 0     | 0     |
|             | (Dir),A           | 0000110 |           | 0   | 0  | 0  | A     | ZERO  | ADD      | LIT     | ALU   | -    | 1 | 0     | 0     |
|             | (Dir),B           | 0000111 |           | 0   | 0  | 0  | ZERO  | В     | ADD      | LIT     | ALU   | -    | 1 | 0     | 0     |
|             | A,(B)             | 0001000 |           | 0   | 1  | 0  | ZERO  | DOUT  | ADD      | В       | -     | -    | 0 | 0     | 0     |
|             | B,(B)             | 0001001 |           | 0   | 0  | 1  | ZERO  | DOUT  | ADD      | В       | -     | -    | 0 | 0     | 0     |
|             | (B),A             | 0001010 |           | 0   | 1  | 0  | A     | ZERO  | ADD      | В       | ALU   | -    | 1 | 0     | 0     |
| ADD         | A,B               | 0001011 |           | 0   | 1  | 0  | Α     | В     | ADD      | -       | -     | -    | 0 | 0     | 0     |
|             | $_{\rm B,A}$      | 0001100 |           | 0   | 0  | 1  | A     | В     | ADD      | -       | -     | -    | 0 | 0     | 0     |
|             | A,Lit             | 0001101 |           | 0   | 1  | 0  | A     | LIT   | ADD      | -       | -     | -    | 0 | 0     | 0     |
|             | A,(Dir)           | 0001110 |           | 0   | 1  | 0  | A     | DOUT  | ADD      | LIT     | -     | -    | 0 | 0     | 0     |
|             | A,(B)             | 0001111 |           | 0   | 0  | 1  | A     | DOUT  | ADD      | В       | -     | -    | 0 | 0     | 0     |
|             | (Dir)             | 0010000 |           | 0   | 0  | 0  | A     | В     | ADD      | LIT     | ALU   | -    | 1 | 0     | 0     |
| SUB         | $_{\mathrm{A,B}}$ | 0010001 |           | 0   | 1  | 0  | A     | В     | SUB      | -       | -     | -    | 0 | 0     | 0     |
|             | $_{\rm B,A}$      | 0010010 |           | 0   | 0  | 1  | A     | В     | SUB      | -       | -     | -    | 0 | 0     | 0     |
|             | A,Lit             | 0010010 |           | 0   | 1  | 0  | A     | LIT   | SUB      | -       | -     | -    | 0 | 0     | 0     |
|             | A,(Dir)           | 0010011 |           | 0   | 1  | 0  | A     | DOUT  | SUB      | LIT     | -     | -    | 0 | 0     | 0     |
|             | A,(B)             | 0010100 |           | 0   | 1  | 0  | A     | DOUT  | SUB      | В       | -     | -    | 0 | 0     | 0     |
|             | (Dir)             | 0010101 |           | 0   | 0  | 0  | A     | В     | SUB      | LIT     | ALU   | -    | 1 | 0     | 0     |
| AND         | A,B               | 0010110 |           | 0   | 1  | 0  | A     | В     | AND      | -       | -     | -    | 0 | 0     | 0     |
|             | B,A               | 0010111 |           | 0   | 0  | 1  | A     | В     | AND      | -       | -     | -    | 0 | 0     | 0     |
|             | A,Lit             | 0011000 |           | 0   | 1  | 0  | A     | LIT   | AND      | -       | -     | -    | 0 | 0     | 0     |
|             | A,(Dir)           | 0011001 |           | 0   | 1  | 0  | A     | DOUT  | AND      | LIT     | -     | -    | 0 | 0     | 0     |
|             | A,(B)             | 0011010 |           | 0   | 1  | 0  | A     | DOUT  | AND      | В       | -     | -    | 0 | 0     | 0     |
|             | (Dir)             | 0011011 |           | 0   | 0  | 0  | A     | В     | AND      | LIT     | ALU   | -    | 1 | 0     | 0     |
| OR          | $_{A,B}$          | 0011100 |           | 0   | 1  | 0  | A     | В     | OR       | -       | -     | -    | 0 | 0     | 0     |
|             | B,A               | 0011101 |           | 0   | 0  | 1  | A     | В     | OR       | -       | -     | -    | 0 | 0     | 0     |
|             | A,Lit             | 0011110 |           | 0   | 1  | 0  | A     | LIT   | OR       | -       | -     | -    | 0 | 0     | 0     |
|             | A,(Dir)           | 0011111 |           | 0   | 1  | 0  | A     | DOUT  | OR       | LIT     | -     | -    | 0 | 0     | 0     |
|             | A,(B)             | 0100000 |           | 0   | 1  | 0  | A     | DOUT  | OR       | В       | -     | -    | 0 | 0     | 0     |
|             | (Dir)             | 0100001 |           | 0   | 0  | 0  | A     | В     | IR       | LIT     | ALU   | -    | 1 | 0     | 0     |
| NOT         | À,A               | 0100010 |           | 0   | 1  | 0  | A     | -     | NOT      | -       | -     | -    | 0 | 0     | 0     |
|             | B,A               | 0100011 |           | 0   | 0  | 1  | A     | -     | NOT      | -       | -     | -    | 0 | 0     | 0     |
|             | (Dir)             | 0100111 |           | 0   | 0  | 0  | A     | В     | NOT      | LIT     | ALU   | -    | 1 | 0     | 0     |

# ISA especifica como escribir los programas para el computador

| Instrucción | Operandos | Opcode  | Condition   | Lpc | La | Lb | Sa0,1 | Sb0,1 | Sop0,1,2 | Sadd0,1          | Sdin0 | Spc0 | W | IncSp | DecSp |
|-------------|-----------|---------|-------------|-----|----|----|-------|-------|----------|------------------|-------|------|---|-------|-------|
| XOR         | A,B       | 0101000 |             | 0   | 1  | 0  | A     | В     | XOR      | -                | -     | -    | 0 | 0     | 0     |
|             | B,A       | 0101001 |             | 0   | 0  | 1  | A     | В     | XOR      | -                | -     | -    | 0 | 0     | 0     |
|             | A,Lit     | 0101010 |             | 0   | 1  | 0  | A     | LIT   | XOR      | -                | -     | -    | 0 | 0     | 0     |
|             | A,(Dir)   | 0101011 |             | 0   | 1  | 0  | A     | DOUT  | XOR      | LIT              | -     | -    | 0 | 0     | 0     |
|             | A,(B)     | 0101100 |             | 0   | 1  | 0  | A     | DOUT  | XOR      | В                | -     | -    | 0 | 0     | 0     |
|             | (Dir)     | 0101101 |             | 0   | 0  | 0  | A     | В     | XOR      | LIT              | ALU   | -    | 1 | 0     | 0     |
| SHL         | A,A       | 0101110 |             | 0   | 1  | 0  | A     | -     | SHL      | -                | -     | -    | 0 | 0     | 0     |
|             | B,A       | 0101111 |             | 0   | 0  | 1  | A     | -     | SHL      | -                | -     | -    | 0 | 0     | 0     |
|             | (Dir)     | 0110011 |             | 0   | 0  | 0  | A     | В     | SHL      | LIT              | ALU   | -    | 1 | 0     | 0     |
| SHR         | A,A       | 0110100 |             | 0   | 1  | 0  | A     | -     | SHR      | -                | -     | -    | 0 | 0     | 0     |
|             | B,A       | 0110101 |             | 0   | 0  | 1  | A     | -     | SHR      | -                | -     | -    | 0 | 0     | 0     |
|             | (Dir)     | 0111001 |             | 0   | 0  | 0  | A     | В     | SHR      | LIT              | ALU   | -    | 1 | 0     | 0     |
| INC         | В         | 0111010 |             | 0   | 0  | 1  | ONE   | В     | ADD      | -                | -     | -    | 0 | 0     | 0     |
| CMP         | A,B       | 0111011 |             | 0   | 0  | 0  | A     | В     | SUB      | -                | -     | -    | 0 | 0     | 0     |
|             | A,Lit     | 0111100 |             | 0   | 0  | 0  | A     | LIT   | SUB      | -                | -     | -    | 0 | 0     | 0     |
| JMP         | Dir       | 0111101 |             | 1   | 0  | 0  | -     | -     | -        | -                | -     | LIT  | 0 | 0     | 0     |
| JEQ         | Dir       | 0111110 | Z=1         | 1   | 0  | 0  | -     | -     | -        | -                | -     | LIT  | 0 | 0     | 0     |
| JNE         | Dir       | 0111111 | Z=0         | 1   | 0  | 0  | -     | -     | -        | -                | -     | LIT  | 0 | 0     | 0     |
| JGT         | Dir       | 1000000 | N=0 y Z=0   | 1   | 0  | 0  | -     | -     | -        | -                | -     | LIT  | 0 | 0     | 0     |
| JLT         | Dir       | 1000001 | N=1         | 1   | 0  | 0  | -     | -     | -        | -                | -     | LIT  | 0 | 0     | 0     |
| JGE         | Dir       | 1000010 | N=0         | 1   | 0  | 0  | -     | -     | -        | -                | -     | LIT  | 0 | 0     | 0     |
| JLE         | Dir       | 1000011 | N=1  o  Z=1 | 1   | 0  | 0  | -     | -     | -        | -                | -     | LIT  | 0 | 0     | 0     |
| JCR         | Dir       | 1000100 | C=1         | 1   | 0  | 0  | -     | -     | -        | -                | -     | LIT  | 0 | 0     | 0     |
| JOV         | Dir       | 1000101 | V=1         | 1   | 0  | 0  | -     | -     | -        | -                | -     | LIT  | 0 | 0     | 0     |
| CALL        | Dir       | 1000101 |             | 1   | 0  | 0  | -     | -     | -        | SP               | PC    | LIT  | 1 | 0     | 1     |
| RET         |           | 1000110 |             | 0   | 0  | 0  | -     | -     | -        | -                | -     | -    | 0 | 1     | 0     |
|             |           | 1000111 |             | 1   | 0  | 0  | -     | -     | -        | SP               | -     | DOUT | 0 | 0     | 0     |
| PUSH        | A         | 1001000 |             | 0   | 0  | 0  | A     | ZERO  | ADD      | SP               | ALU   | -    | 1 | 0     | 1     |
| PUSH        | В         | 1001001 |             | 0   | 0  | 0  | ZERO  | В     | ADD      | $^{\mathrm{SP}}$ | ALU   | -    | 1 | 0     | 1     |
| POP         | A         | 1001010 |             | 0   | 1  | 0  | -     | -     | -        | -                | -     | -    | 0 | 1     | 0     |
|             |           | 1001011 |             | 0   | 1  | 0  | ZERO  | DOUT  | ADD      | SP               | ALU   | -    | 0 | 0     | 0     |
| POP         | В         | 1001100 |             | 0   | 0  | 1  | -     | -     | -        | -                | -     | -    | 0 | 1     | 0     |
|             |           | 1001101 |             | 0   | 0  | 1  | ZERO  | DOUT  | ADD      | SP               | ALU   | -    | 0 | 0     | 0     |

### RISC y CISC presentan soluciones con distinto foco para un mismo problema

Implementación de ISA responde generalmente a uno de dos paradigmas:

- RISC: Instrucciones pequeñas y simples. Diseñado para minimizar complejidad del hardware. Énfasis en el software.
- CISC: Muchas instrucciones y de alta complejidad. Énfasis en el hardware.

## ¿Cuál es la arquitectura del set de instrucciones de nuestro computador?

Tipos de inst.: Carga, aritmética, salto, ...

Tipos de dato: Entero binario con y sin signo

• Directionamiento: Directo, indirecto por reg.

Manejo stack: General

• Formato de inst.: Mixto (Inst. + 0, 1 ó 2 args.)

Palabras por inst.:
1 (salvo RET y POP)

Ciclos por inst.: 1 (salvo RET y POP)

RISC

## Finalicemos esta unidad con un pequeño ejercicio

Se desea modificar la arquitectura del computador básico, para que soporte de manera nativa el uso de número reales.

- Modifique la microarquitectura para soportar de manera nativa el uso y operaciones de número reales.
- Modifique la ISA par dar soporte a las instrucciones relacionadas con el uso de números reales.

No tenemos idea como representar, almacenar y operar números reales

¿Cómo escribimos comúnmente números racionales?

Podemos expandir usando exponentes negativos

$$123,45 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0 + 4 \cdot 10^{-1} + 5 \cdot 10^{-2}$$

• En binario es lo mismo

$$101,01 = 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} = 5,25$$

¿Cómo lo hacemos para pasar de decimal a binario?

Necesitamos obtener el valor de una división en binario

Por ejemplo:

$$10^{-1} = 0, 1 = \frac{1}{10} = \frac{(1)_2}{(1010)_2}$$

- Y el resultado de esa división es:  $0,0\overline{0011}$
- Decimal finito pasa a ser infinito en binario = Pésimo
- Todo depende de la base elegida (ej. 1/3 en ternario)

#### El secreto oscuro de la programación

• Los resultados de los ejemplos son inesperados

¿Por qué pasa esto?

- Estos números usan memoria finita para manejar rangos muy grandes y densos.
- Luego, existe un trade-off entre rango y precisión.

#### Caso real: Misil Patriot<sup>1</sup>

- 28 personas murieron en 1991, debido al mal funcionamiento de un misil Patriot.
- El Patriot es un sistema defensivo para interceptar objetivo aéreos, que utiliza misiles.
- Error fue ocasionado por aproximación de un decimal finito mediante un número binario infinito.
- Debido al error, el sistema no siguió correctamente al objetivo y el misil nunca fue disparado.

www.youtube.com/watch?v=EMVBLg2MrLs

#### Representación de punto fijo

- Dados *n* dígitos (bits), estos se dividen de manera fija para representar signo, parte entera y parte fraccional.
- Pro: simple y rápido
- Contra: rango pequeño
- Idea: mover (flotar) la coma (punto)

#### Representación de punto flotante

- Basada en notación científica normalizada
- Dos elementos centrales: significante y exponente
- Codifica la posición del punto
- Pro: gran rango
- Contra: pérdida de precisión

### IEEE754, el formato más usado para números de punto flotante

#### float (32 bits):

- 1 bit de signo, 8 bit exponente, 23 bit significante
- Significante normalizado
- Exponente desfasado en 127
- 0: exponente = 0, significante = 0
- $\pm \infty$ : exponente = 11111..., significante = 0
- *NaN*: exponente = 11111..., significante ≠ 0

double: 64 bits, reglas similares

$$X = (-1)^{signo} \cdot 1.significante \cdot 2^{exponente-127}$$

$$0.00101b = (1.01 \cdot 10^{-11})_2 = 1 \cdot 2^{-3} + 1 \cdot 2^{-5} = 0.15625$$

signo = 0

significante = 01

exponente = **1**24 = 01111100



#### Representaciones alternativas

#### Decimales como números enteros

- Se utiliza como unidad el menor valor decimal requerido
- Elimina problemas de aproximación, pero tiene poco rango

#### Punto flotante con base decimal

- Se cambia la base de 2 a 10
- o Elimina problemas de aproximación, pero resulta muy lento
- Ideal para cálculos "humanos"

#### Punto flotante con base decimal y precisión arbitraria

- Tamaño asignado a significante y exponente se aumenta de acuerdo a las necesidades
- Lentísimo, pero el más adecuado para cálculos "humanos"

Volvamos ahora al código y luego al ejercicio



### Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación



### IIC2343 – Arquitectura de Computadores

Arquitecturas de Computadores

Profesor: Hans Löbel