- 1. The following questions are on the data and model described in Q3 of HW3:
 - Examine the tolerances and variance inflation factors from this model. Do you think any collinearity is present based on the tolerance and VIF? Why or why not?

Table 1.1: Tolerances & Variance Inflation Factors

Variable	Label	DF	Tolerance	Variance Inflation
Intercept	Intercept	1		0
height	Height (cm)	1	0.00218	458.04764
weight	Weight (kg)	1	0.00142	703.44629
bmi		1	0.00564	177.45037
area	Body Surface Area (M**2)	1	0.00073266	1364.89752
age	Age (years)	1	0.92307	1.08334
avtrel	Average Treadmill Elevation (deg)	1	0.00172	580.38969
avtrsp	Average Speed of Treadmill (mph)	1	0.01276	78.39302
int		1	0.00126	795.44895
temp	Air Temperature (deg C)	1	0.03447	29.01379
barm	Barometric Pressure (mmHg)	1	0.94420	1.05910
hum	Relative Humidity %	1	0.03429	29.16692

- There is a good amount of evidence to suggest collinearity in:
 - o BMI and body surface area can be predicted/derived from height and weight.
 - Average treadmill elevation, average treadmill speed, and their interaction are collinear.
 - Temperature and relative humidity can be somewhat "predicted" once one of them is known.
- Age and barometric pressure do not appear to be collinear. This makes sense since age
 cannot guarantee height and weight among adults. Barometric pressure would probably
 tend to stay constant or within a narrow range of values while humidity can vary much
 more.

- Conduct an eigenanalysis of the scaled SSCP and correlation matrices, presenting a table formatted like Table 8.6.2 in Muller and Fetterman.
 - (a) Does there appear to be any collinearity between the intercept and the covariates? Why or why not? If so, list the variables?

Table 1.2: Eigenvalues & Condition Index – Scaled SSCP Matrix

Number	Eigenvalue	CondIndex
1	11.9049480	1.00
2	0.0360383	18.18
3	0.0293709	20.13
4	0.0161788	27.13
5	0.0066991	42.16
6	0.0049049	49.27
7	0.0015550	87.50
8	0.0002515	217.55
9	0.0000375	563.68
10	0.0000097	1109.52
11	0.0000049	1563.90
12	0.0000015	2772.26

Table 1.3: Eigenvectors – Scaled SSCP Matrix

	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6
inter	0.289612	0.003847	041736	0.011264	428489	0.169349
height	0.289592	012406	076762	085857	320422	333604
weight	0.288434	239953	360268	362654	0.422414	270732
bmi	0.288728	206145	292000	169993	0.215099	0.744305
area	0.289363	111646	201362	220653	0.010005	386236
age	0.287541	065062	310877	0.876080	0.184729	112124
avtrel	0.288114	0.542971	0.114554	008826	0.189245	0.156326
avtrsp	0.289555	0.081696	006435	063918	344231	063169
int	0.287589	0.621228	0.147453	079888	0.268208	082800
temp	0.288619	262600	0.436206	0.056399	0.018763	0.043500
barm	0.289608	0.005253	047742	0.006020	425070	0.178686
hum	0.287332	355890	0.642383	0.046041	0.217990	043461
	Prin7	Prin8	Prin9	Prin10	Prin11	Prin12
inter	160576	0.078500	338231	161589	0.611844	393890
height	210883	0.038668	291386	0.338828	0.023636	0.665223
weight	018722	039185	0.238215	394929	0.334969	0.139220
bmi	0.123098	0.027757	194962	0.269726	143594	0.111429
area	132498	0.015069	118058	0.290762	440686	595672
age	0.045774	0.011125	0.001522	001560	002277	001034
avtrel	507446	0.047211	121532	414212	312294	0.071559
avtrsp	0.689454	012728	115575	438188	311166	0.071916
int	0.359344	055730	0.120806	0.416970	0.313806	072700
temp	078823	802916	0.031595	0.002606	009520	007541
barm	155432	0.124637	0.804979	0.091474	071280	0.006178

Several of the scaled SSCP condition indices are greater than 30 and multiple eigenvalues are close to zero; thus, indicating collinarity with the intercept.

By looking at the elements of the 12th Prinicipal Component, the elements corresponding to the intercept, height, weight, bmi, and area have values father from zero relative to the other variables.

This would suggest that height, weight, bmi, and area span the intercept.

(b) Does there appear to be any collinearity among the covariates? Why or why not? If so, list the variables?

Table 1.4: Eigenvalues & Condition Index - Correlation

Number	Eigenvalue	CondIndex
1	3.00984215	1.0000
2	2.44782689	1.1089
3	2.02476481	1.2192
4	1.11320127	1.6443
5	1.01325013	1.7235
6	0.80927943	1.9285
7	0.56109511	2.3161
8	0.01770758	13.0374
9	0.00187374	40.0791
10	0.00070517	65.3317
11	0.00045372	81.4475

Table 1.5: Eigenvectors – Correlation

	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6
height	0.392316	0.296786	0.032498	431698	0.052791	0.294700
weight	0.558767	0.051052	092125	0.096942	0.000376	170215
bmi	0.367229	183577	143312	0.493420	041432	472648
area	0.549273	0.157720	048934	111776	0.019229	000896
age	0.092890	065940	101323	0.368850	0.755491	0.497666
avtrel	199140	0.514774	034223	0.298870	0.116311	185008
avtrsp	0.074811	0.479606	0.086722	079394	115421	0.054060
int	148534	0.589598	004523	0.228684	0.068080	138848
temp	0.091766	044660	0.676385	0.168590	008712	0.038468
barm	0.065437	0.035488	176120	0.457649	626029	0.594893
hum	0.093072	022211	0.678255	0.162613	029775	0.036111
	Prin7	Prin8	Prin9	Prin10	Prin11	
height	259751	0.018476	0.520184	036531	0.375786	
weight	058566	0.003991	634360	174066	0.449619	
bmi	0.168277	0.006166	0.554743	0.038138	0.069126	
area	143725	017816	095960	0.175724	772725	
age	0.148534	013550	001968	0.003505	002419	
avtrel	397123	000850	061237	0.611781	0.146172	
avtrsp	0.825059	0.015953	032894	0.221914	0.054851	
int	081491	0.009784	0.071012	715838	172852	
temp	055085	0.706224	008134	0.004308	015415	
barm	090203	0.006020	0.003518	000885	001557	
hum	042697	707081	0.009525	007438	0.015737	

From the eigenanalysis of the correlation matrix, there appears to be other collinearity within the variables besides the intercept.

By looking at the elements of the 11th Principal Component, the elements corresponding to the height, weight, bmi, area, average treatmill elevation, average treadmill speed, the interaction, temperature, and humidity have values father from zero relative to age and barometric pressure.

2. Find the Box-Cox transformation of the simulated data (BoxCox.dat) and compare the residual plots of the raw and transformed data.

Box-Co	x Transfo	rmation In	formation	for y	
Lambda		R-Square	Log Like		
0.00		0.19	-147.31		
0.25		0.19	-124.38	*	
0.50	+	0.18	-122.59	<	
0.75		0.17	-131.76		
1.00		0.16	-147.64		
< - Best Lambda					
<pre>* - 95% Confidence Interval</pre>					
	+ - Cc	nvenient :	Lambda		

The residual plot for the non-transformed y-values shows a slight pattern with the residuals being clustered closer together for smaller predicted values of y with the dispersion increasing as the predicted values of y increase. This indicates that the assumptions of homogeneity of variance and linearity might be violated. Due to curvature, the Q-Q plot for the non-transformed y-values also indicates that the assumption of Gaussian errors might be violated.

After transforming the y-values using a Box-Cox transformation with lambda=0.50, the residual plot is scattered equally regardless of the predicted value of y_5 and the Q-Q plot no longer contains a curve in the middle. This suggests the Box-Cox transformation of y does not violate the assumptions of homogeneity, linearity, nor Gaussian errors.

3. Investigators are interested in the effect of dermal nicotine exposure in a population of Latino tobacco workers in North Carolina. (Nicotine can be absorbed from tobacco leaves through the skin and can cause nicotine poisoning, which is characterized by nausea, vomiting, headache, and dizziness.) Data were collected on tobacco work tasks and risk factors for exposure to nicotine during a summer tobacco work season. Nicotine exposure was measured by levels of cotinine, a nicotine metabolite, contained in saliva. Other covariates of interest include age, body mass index, education, work conditions (working in wet conditions is believed to increase nicotine absorption), type of tobacco work ("priming" refers to picking or harvesting the tobacco and is expected to result in highest nicotine exposures, "barning" refers to putting the harvested tobacco into a barn for curing, "topping" refers to breaking the flower off the top of the plant, and "other" refers to farm work that does not involve tobacco contact, such as driving a truck), and smoking (smokers would also have nicotine exposure through cigarettes, and it is not known whether exposure to tobacco leaves would increase cotinine levels to a similar extent in both smokers and non-smokers).

The variables are available in the file tobacco.dat and listed in the following order.

- COTININE: salivary cotinine concentration (in ng/mL)
- AGE: age (in years)
- BMI: body mass index (in kg/m2)
- EDUC: years of education
- WET: takes value 1 if work conditions on day of measurement were wet and takes value 0 otherwise
- TASK: takes value 1 for priming, 2 for barning, 3 for topping, and 4 for other work not involving tobacco contact
- LNNSMOKE: natural logarithm of (1 + number of cigarettes smoked per day)

To report a test, provide H_0 , the test statistic, the degrees of freedom, the p-value, the decision (accept/reject H_0), and an interpretation of the result in terms of the subject matter.

- One-Way ANOVA: For these questions, use the log of salivary cotinine as the response and task as the only predictor.
 - Report a test of whether all cell means are equal.

 H_0 : All cell-means equal ($\mu_{Priming} = \mu_{Barning} = \mu_{Topping} = \mu_{Other}$)

 H_1 : At least one cell-mean differs from another cell-mean.

Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F
Usual Overall Test	3	790.4453988	263.4817996	116.20	<.0001

F(3,690) = 116.20 with p < 0.0001.

Reject H_0 .

There is evidence to suggest that at least two of the cell-means differ.

- If your overall test of the task effect was significant, examine all pairwise comparisons using the Scheffe correction. Summarize your findings in a table including columns for the estimated mean difference, degrees of freedom, *F* statistic, *p*-value, and a Scheffe confidence interval for the mean difference. Explain your findings in language the investigator can understand.

Table 3.1: Pairwise Comparisons

	Estimated Mean Difference	Degrees of Freedom	F	p-value	Scheffe 95% Confidence Interval
Priming v. Barning	0.9208	1, 690	19.58	0.0002	[0.3376, 1.5040]
Priming v. Topping	1.6738	1, 690	131.87	<0.0001	[1.2654, 2.0823]
Priming v. Other	2.6993	1, 690	332.68	<0.0001	[2.2845, 3.1140]
Barning v. Topping	0.7531	1, 690	12.99	0.0049	[0.1675, 1.3386]
Barning v. Other	1.7785	1, 690	71.38	<0.0001	[1.1885, 2.3684]
Topping v. Other	1.0254	1, 690	47.26	< 0.0001	[0.6074, 1.4434]

The average values for the log of salivary cotinine concentration (in mg/mL) found in Latino tobacco workers in North Carolina differs significantly depending on the task workers preformed.

- Provide a table of parameter estimates and standard errors using (a) cell mean coding and (b) reference cell coding, and give the interpretations of parameters in both coding schemes. In addition, provide the \boldsymbol{C} and $\boldsymbol{\theta_0}$ matrices used to test the hypothesis that average cotinine levels for workers involved in priming are greater than the average continine levels for all other workers.

Table 3.2: Parameter Estimates

			Cell Mean Coding
	Estimates	Standard Errors	
Desirentes	4.5006	0.1022	Latino tobacco workers in NC whose task is priming have an average
Priming	4.5086	0.1022	log of salivary cotinine concentration of 4.5086 mg/mL.
Danning	3.5878	0.1813	Latino tobacco workers in NC whose task is barning have an average
Barning	3.30/0	0.1615	log of salivary cotinine concentration of 3.5878 mg/mL.
Topping	2.8347	0.1039	Latino tobacco workers in NC whose task is topping have an average
Topping	2.0347	0.1039	log of salivary cotinine concentration of 2.8347 mg/mL.
			Latino tobacco workers in NC whose task is not priming, barning, or
Other	1.8093	0.1070	topping have an average log of salivary cotinine concentration of
			1.8093 mg/mL.
	T		nce Cell Coding - Solution 1
	Estimates	Standard Errors	
			Latino tobacco workers in NC whose task is not priming, barning, or
Intercept	1.8093	0.1070	topping have an average log of salivary cotinine concentration of
			1.8093 mg/mL.
			Latino tobacco workers in NC whose task is priming have an average
Priming 2.6993	2.6993	0.1480	log of salivary cotinine concentration of 2.6993 mg/mL higher than
			those whose task is not priming, barning, or topping.
			Latino tobacco workers in NC whose task is barning have an average
Barning	1.7785	0.2105	log of salivary cotinine concentration of 1.7785 mg/mL higher than
			those whose task is not priming, barning, or topping.
			Latino tobacco workers in NC whose task is topping have an average
Topping	1.0254	0.1492	log of salivary cotinine concentration of 1.0254 mg/mL higher than
			those whose task is not priming, barning, or topping.
	T = .		nce Cell Coding - Solution 2
	Estimates	Standard Errors	
Intercept	4.5086	0.1022	Latino tobacco workers in NC whose task is priming have an average
		*****	log of salivary cotinine concentration of 4.5086 mg/mL.
			Latino tobacco workers in NC whose task is barning have an average
Barning	-0.9208	0.2081	log of salivary cotinine concentration of 0.9208 mg/mL lower than
			those whose task is priming.
	4.6700	0.4.70	Latino tobacco workers in NC whose task is topping have an average
Topping	-1.6738	0.1458	log of salivary cotinine concentration of 1.6738 mg/mL lower than
			those whose task is priming.
0.1	2 (225	0.4.400	Latino tobacco workers in NC whose task is not priming, barning, or
Other	-2.6993	0.1480	topping have an average log of salivary cotinine concentration of
			2.6993 mg/mL lower than those whose task is priming.

$$H_0$$
: $\mu_{\text{priming}} = (\mu_{\text{barning}} + \mu_{\text{topping}} + \mu_{\text{other}})/3$

Cell Mean Coding:
$$H_0: \ \beta_{priming} - \frac{\beta_{barning} + \beta_{topping} + \beta_{other}}{3} = 0$$

$$C = [1 \ -1/3 \ -1/3 \ -1/3] \qquad \theta_0 = 0$$

Reference Cell Coding – Solution 1:

$$H_{0}: \ \beta_{0} + \beta_{priming} = \frac{(\beta_{0}) + (\beta_{0} + \beta_{barning}) + (\beta_{0} + \beta_{topping})}{3} \equiv$$

$$H_{0}: \ \beta_{0} + \beta_{priming} = \beta_{0} + \frac{1}{3} (\beta_{barning} + \beta_{topping}) \equiv H_{0}: \ \beta_{1} - \frac{1}{3} (\beta_{2} + \beta_{3}) = 0$$

$$C = [0 \ 1 \ -1/3 \ -1/3] \qquad \theta_{0} = 0$$

Reference Cell Coding – Solution 2:

$$H_{0}: \ \beta_{0} = \frac{(\beta_{0} + \beta_{other}) + (\beta_{0} + \beta_{barning}) + (\beta_{0} + \beta_{topping})}{3} \equiv$$

$$H_{0}: \ \beta_{0} = \beta_{0} + \frac{1}{3} (\beta_{barning} + \beta_{topping} + \beta_{other}) \equiv H_{0}: \frac{1}{3} (\beta_{1} + \beta_{2} + \beta_{3}) = 0$$

$$C = [0 \ 1/3 \ 1/3 \ 1/3] \qquad \theta_{0} = 0$$

Note all these solutions assume equal sample sizes in the groups. You could factor the group sample sizes into these calculations.

- Two-Way ANOVA: For these questions, use the log of salivary cotinine as the response and task and wet as predictors.
 - Fit the two-way ANOVA model with full interaction, and interpret all parameter estimates in your model, clearly stating which coding scheme you used. Discuss the validity of the HILE Gauss assumptions for this model.

Table of task by wet					
		wet			
			No	Yes	Total
task					
Priming			66	151	217
Barning			44	25	69
Topping			49	161	210
Other			148	50	198
Total			307	387	694

Complete & Not Balanced.

	Cell Mean Coding -					
	$\ln(cotinine) = w0t1 \hat{\beta}_1 + w1t1 \hat{\beta}_2 + w0t2 \hat{\beta}_3 + w1t2 \hat{\beta}_4 + w0t3 \hat{\beta}_5 + w1t3 \hat{\beta}_6 + w0t4 \hat{\beta}_7 + w1t4 \hat{\beta}_8$					
	Estimates	Standard Errors				
Priming & Not Wet	4.2693	0.1855	Latino tobacco workers in NC whose task is priming have an average log of salivary cotinine concentration of 4.2693 mg/mL in non-wet working conditions.			
Priming & Wet	4.6131	0.1226	Latino tobacco workers in NC whose task is priming have an average log of salivary cotinine concentration of 4.6131 mg/mL in wet working conditions.			
Barning & Not Wet	3.5427	0.2272	Latino tobacco workers in NC whose task is barning have an average log of salivary cotinine concentration of 3.5427 mg/mL in non-wet working conditions.			
Barning & Wet	3.6670	0.3014	Latino tobacco workers in NC whose task is barning have an average log of salivary cotinine concentration of 3.6670 mg/mL in wet working conditions.			
Topping & Not Wet	2.6882	0.2153	Latino tobacco workers in NC whose task is topping have an average log of salivary cotinine concentration of 2.6882 mg/mL in non-wet working conditions.			
Topping & Wet	2.8793	0.1188	Latino tobacco workers in NC whose task is topping have an average log of salivary cotinine concentration of 2.8793 mg/mL in wet working conditions.			
Other & Not Wet	1.8089	0.1239	Latino tobacco workers in NC whose task is not priming, barning, or topping have an average log of salivary cotinine concentration of 1.8089 mg/mL in non-wet working conditions.			
Other & Wet	1.8105	0.2131	Latino tobacco workers in NC whose task is not priming, barning, or topping have an average log of salivary cotinine concentration of 1.8105 mg/mL in wet working conditions.			

Assumptions:

Homogeneity – Within cells isn't as important as between cells. The scatter plot of the standard deviations of the residuals for each group reveals a potential pattern to the data. This assumption could be violated and since we have inequality of sample sizes between groups this could impact the testing accuracy.

Independence – given through the sample design.

Linearity – This is okay given the design.

Existence – finite sample satisfies this.

Gaussian Errors – The overall histogram of residuals and overall and individual QQ plots appear to support this assumption.

- Based on this model, create a table of the estimated mean log cotinine levels, associated standard errors, and how each estimated mean is obtained from the model parameters (e.g., $\hat{\beta}_0 + \hat{\beta}_1$) for each task-wet combination.

	Cell Mean Coding					
	Estimates	Standard Errors	$w0t1\hat{\beta}_1 + w1t1\hat{\beta}_2 + w0t2\hat{\beta}_3 + w1t2\hat{\beta}_4 + w0t3\hat{\beta}_5 + w1t3\hat{\beta}_6 + w0t4\hat{\beta}_7 \\ + w1t4\hat{\beta}_8$			
Grand Mean	3.1599	0.0699	$(\hat{\beta}_1 + \hat{\beta}_2 + \hat{\beta}_3 + \hat{\beta}_4 + \hat{\beta}_5 + \hat{\beta}_6 + \hat{\beta}_7 + \hat{\beta}_8)/8$			
Priming	4.4412	0.1112	$(\hat{\beta}_1 + \hat{\beta}_2)/2$			
Barning	3.6049	0.1887	$(\hat{\beta}_3 + \hat{\beta}_4)/2$			
Topping	2.7837	0.1229	$(\hat{\beta}_5 + \hat{\beta}_6)/2$			
Other	1.8097	0.1232	$(\hat{\beta}_7 + \hat{\beta}_8)/2$			
Wet	3.2425	0.1017	$(\hat{\beta}_2 + \hat{\beta}_4 + \hat{\beta}_6 + \hat{\beta}_8)/4$			
Not Wet	3.0773	0.0961	$(\hat{\beta}_1 + \hat{\beta}_3 + \hat{\beta}_5 + \hat{\beta}_7)/4$			

Cell Mean Coding								
	Estimates	Standard Errors						
Priming & Not Wet	4.2693	0.1855	$\hat{\beta}_1$					
Priming & Wet	4.6131	0.1226	$\hat{\beta}_2$					
Barning & Not Wet	3.5427	0.2272	\hat{eta}_3					
Barning & Wet	3.6670	0.3014	$\hat{\beta_4}$					
Topping & Not Wet	2.6882	0.2153	\hat{eta}_5					
Topping & Wet	2.8793	0.1188	\hat{eta}_6					
Other & Not Wet	1.8089	0.1239	\hat{eta}_7					
Other & Wet	1.8105	0.2131	\hat{eta}_8					

- The Full Model in Every Cell: For these questions, use the log of salivary cotinine as the response and task, and lnnsmoke as predictors.
 - Fit the full model in every cell. Provide and interpret estimates of all parameters for this model.

	Cell Mean Coding -						
ln(cotin	$\ln(cotinine) = \hat{\beta}_{0t1}t1 + \hat{\beta}_{0t2}t2 + \hat{\beta}_{0t3}t3 + \hat{\beta}_{0t4}t4 + \hat{\beta}_{1t1}(t1lnnsmoke) + \hat{\beta}_{1t2}(t2lnnsmoke) + \hat{\beta}_{1t3}(t3lnnsmoke) + \hat{\beta}_{1t4}(t4lnnsmoke)$						
	Estimates	Standard Errors					
Priming	4.3344	0.0932	Latino tobacco workers in NC whose task is priming have an average log of salivary cotinine concentration of 4.3344 mg/mL.				
Barning	3.1134	0.1666	Latino tobacco workers in NC whose task is barning have an average log of salivary cotinine concentration of 3.1134 mg/mL.				
Topping	2.0123	0.0985	Latino tobacco workers in NC whose task is topping have an average log of salivary cotinine concentration of 2.0123 mg/mL.				
Other	0.9137	0.0957	Latino tobacco workers in NC whose task is not priming, barning, or topping have an average log of salivary cotinine concentration of 0.9137 mg/mL.				
Priming & LNNSMOKE	0.2946	0.0887	Latino tobacco workers in NC whose task is priming average log of salivary cotinine concentration increases by 0.2946 mg/mL for every 1 unit increase in lnnsmoke.				
Barning & LNNSMOKE	0.7221	0.1450	Latino tobacco workers in NC whose task is barning average log of salivary cotinine concentration increases by 0.7221 mg/mL for every 1 unit increase in lnnsmoke.				
Topping & LNNSMOKE	1.2305	0.0894	Latino tobacco workers in NC whose task is topping average log of salivary cotinine concentration increases by 1.2305 mg/mL for every 1 unit increase in lnnsmoke.				
Other & LNNSMOKE	1.7789	0.1022	Latino tobacco workers in NC whose task is not priming, barning, or topping average log of salivary cotinine concentration increases by 1.7789 mg/mL for every 1 unit increase in lnnsmoke.				

Report an appropriate test of whether task is related to cotinine levels. If this test is significant, report step-down tests to determine exactly where differences lie. For all tests reported, be sure to state H_0 clearly and give explicit justification for which tests were used and why.

Use a test of coincidence; the hypothesis indicates that the slopes and intercepts are all equal regardless of task.

$$H_0$$
: $\beta_{0t1} = \beta_{0t2} = \beta_{0t3} = \beta_{0t4}$ and $\beta_{1t1} = \beta_{1t2} = \beta_{1t3} = \beta_{1t4}$

Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F
TEST OF COINCIDENCE	6	922.1700624	153.6950104	119.29	<.0001

F(6, 687) = 119.29 p-value < 0.001 Reject H₀

Task is related either by slope or intercept to cotinine levels at the 0.01 level.

Step down to determine if the differences are in the slopes or intercepts.

$$H_0$$
: $\beta_{1t1} = \beta_{1t2} = \beta_{1t3} = \beta_{1t4}$

Contrast		Contrast SS	Mean Square	F Value	Pr > F
STEPDOWN: EQUAL SLOPES	3	169.6441128	56.5480376	43.89	<.0001

F(3,690) = 43.89 p-value < 0.0001 Reject H₀

The slopes are significantly different from each other at the 0.01 level.

$$H_0$$
: $\beta_{0t1} = \beta_{0t2} = \beta_{0t3} = \beta_{0t4}$

Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F
STEPDOWN: EQUAL INTERCEPTS	3	902.0132306	300.6710769	233.36	<.0001

F(3,690) = 233.36 p-value < 0.0001 Reject H₀

The intercepts are significantly different from each other at the 0.01 level.

Use pair-wise tests to determine exactly which intercepts/slopes are different.

$$\alpha = 0.05 / 6 = 0.0083$$
 $\sim F(1, 692)$

 H_0 : $\beta_{0ti} = \beta_{0tj}$

	Contrast			DF	Contrast SS	Mean Square	F Value	Pr > F
PAIRWISE	INTERCEPTS	Т1	V T	2 1	52.7322641	52.7322641	40.93	<.0001
PAIRWISE	INTERCEPTS	Т1	V T	3 1	377.7620263	377.7620263	293.20	<.0001
PAIRWISE	INTERCEPTS	Т1	V T	4 1	845.0460533	845.0460533	655.87	<.0001
PAIRWISE	INTERCEPTS	Т2	V T	3 1	41.7145812	41.7145812	32.38	<.0001
PAIRWISE	INTERCEPTS	Т2	V T	4 1	168.9622476	168.9622476	131.14	<.0001
PAIRWISE	INTERCEPTS	Т3	V T	4 1	82.4489524	82.4489524	63.99	<.0001

Reject H₀ for all ij pairs

All intercepts are significantly different from each other at the 0.01 level.

$$H_0$$
: $\beta_{1ti} = \beta_{1tj}$

Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F
PAIRWISE SLOPES T1 V T2	1	8.1529052	8.1529052	6.33	0.0121
PAIRWISE SLOPES T1 V T3	1	71.1683903	71.1683903	55.24	<.0001
PAIRWISE SLOPES T1 V T4	1	155.0229026	155.0229026	120.32	<.0001
PAIRWISE SLOPES T2 V T3	1	11.4843308	11.4843308	8.91	0.0029
PAIRWISE SLOPES T2 V T4	1	45.7480465	45.7480465	35.51	<.0001
PAIRWISE SLOPES T3 V T4	1	21.0166241	21.0166241	16.31	<.0001

Reject H_0 for all ij pairs except i=1 and j=2

Except for task 1 and 2, the slopes are significantly different from each other at the 0.01 level.