

CS 561: Data Systems Architectures

class 12

Adaptive Radix Trees

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

Do we have a quiz today ...?

Yes! At the end!

Student Discussion Reminder

Presenters will be giving a full presentation of the main paper (with background information from other papers as needed)

Critics and **Proponents** will participate in a live Q&A during presentation (criticizing and supporting the paper) + everyone should chime in!

Critics will also present a few slides with the core critique/feedback

Proponents will address this feedback

Everyone is expected to participate in the discussion!

Indexing is key to database performance

B⁺ **Trees** and **LSM-Trees** dominate disk-based indexes

Hash indexes and optimized search trees are common for in-memory **BUT**

Hash indexes are unordered (<u>no range queries</u>)
Search trees are slower than Hash indexes for <u>point queries</u>

can we build a better compromise?

Increasing data size

Search trees size (tree height and width) grows with data size!

So, it quickly does not fit in cache or in memory

Why is that problem?

Reminder: Memory Wall

In-Memory Search Trees: T-Trees

Fat nodes (<u>cacheline</u> size) with **two** children

Developed in the 80s (still used in some systems!)

Unpredictable pointer chasing

Memory access latency is not uniform

Are B+ Trees good for in-memory execution?

Designed for **disks**!

Node size is equal to **page size**, the goal is to <u>minimize #random accesses</u> of pages (wide fanout)

How to make it **memory-friendly**?

Cache-sensitive B+ Trees

Every level is physically stored contiguously

Good cache utilization!

Poor updates – needs logic to balance

Tree **height** depends on **#items** inserted

similar to ...?

Can we do better for an in-memory search tree?

Maintain order

tree

Maintain few random access

low height

Maintain good cache utilization

access cachelines

Maintain low space complexity

Cheap updates

less logic, avoid rebalancing or splitting

Enter Tries

Also known as Radix Trees, Prefix Trees, Digital Trees

Trie, Radix Tree, Prefix Tree, Digital Tree

Tree **height** depends on **key length k**

Not on tree (data) size

No rebalancing needed!

Automatically get lexicographical order

Tries on integers (in binary format)

Every node stores a part of the binary representation ("radix") of the key

Implicit Keys

Significant space savings

Adaptive Radix Tree Span

For **binary representations** of keys, the fanout can be configured!

Each node uses s bits ("span") of the radix of the key

Hence, an **inner node** is an <u>array of 2^s pointers</u> (with equal number of children)

k bit keys & span=s \rightarrow k/s inner levels & 2^s pointers in each node let's assume 32 bit keys span=1 \rightarrow 32 inner levels & 2 pointers in each node

k bit keys & span=s \rightarrow k/s inner levels & 2^s pointers in each node let's assume 32 bit keys span=2 \rightarrow 16 inner levels & 4 pointers in each node

k bit keys & span=s \rightarrow k/s inner levels & 2^s pointers in each node let's assume 32 bit keys span=4 \rightarrow 8 inner levels & 16 pointers in each node

k bit keys & span=s \rightarrow k/s inner levels & 2^s pointers in each node let's assume 32 bit keys span=8 \rightarrow 4 inner levels & 256 pointers in each node

k bit keys & span=s \rightarrow k/s inner levels & 2^s pointers in each node let's assume 32 bit keys

span=1 → 32 inner levels & 2 pointers in each node

tall and thin tree

span=2 → 16 inner levels & 4 pointers in each node

span=4 → 8 inner levels & 16 pointers in each node

span=8 → 4 inner levels & 256 pointers in each node

short and fat tree

Height vs. Size Tradeoff

Large s:

small height (fast)

BUT

high space consumption

Small s:

large height (slow)

BUT

low space consumption

ART manages to avoid this tradeoff

How?

Adaptively Sized Nodes

s = 8: each inner node corresponds 1 byte of the key

however: different node sizes depending on the actual number of children

a classical radix tree with fixed-side array nodes

a radix tree with adaptively-sized nodes

Remember: what is the goal?

to break a 32-bit key in 4 bytes across 4 levels and reduce the size of the nodes!

More on adaptive nodes

4 node sizes, dynamic decision

explicit keys both Node4 and Node16 use arrays of size 16

```
typedef struct {
    art_node n;
    unsigned char keys[16];
    art_node *children[16];
} art_node16;
```

indirection index with implicit keys

```
typedef struct {
    art_node n;
    unsigned char keys[256];
    art_node *children[48];
} art_node48;
```

```
implicit keys

typedef struct {
    art_node n;
    art_node *children[256];
} art_node256;
```


ART Traversal

integer key

bit representation (32 bit, unsigned)

byte representation

+218237439

00001101 00000010 00001001 11111111

13 2 9 255

Optimizations: Remove one-way nodes

Supporting various data types

Native support for:

String

Integers (binary representation)

Require transformations for:

floats, Unicode, signed, null, composite

when?

Evaluation

Insert performance (4B keys)

Lookup performance (4B keys)

GPT: Generalized Prefix Tree, Boehm et al., BTW 2011

RB: Red-Black Tree

CSB: Cache-Sensitive B+Tree, Rao and Ross, SIGMOD 2000

kary: K-ary Search Tree, Schlegel et at., Damon 2009

FAST: Fast Architecture Sensitive Tree, Kim et al., SIGMOD 2010

HT: Chained Hash Table

Cache Efficiency

PERFORMANCE COUNTERS PER LOOKUP.

	65K			16M		
	ART (d./s.)	FAST	HT	ART (d./s.)	FAST	HT
Cycles	40/105	94	44	188/352	461	191
Instructions	85/127	75	26	88/99	110	26
Misp. Branches L3 Hits	0.0/0.85	0.0	0.26	0.0/0.84	0.0	0.25
	0.65/1.9	4.7	2.2	2.6/3.0	2.5	2.1
L3 Misses	0.0/0.0	0.0	0.0	1.2/2.6	2.4	2.4

Skewed Search & Impact of Cache Size

ART: adjacent items are in the same node/subtree

HT: adjacent items are in different buckets

ART: no evictions, fewer misses overall

HT: data is randomly distributed more misses

Tree Height in TPCC

Without the height optimization the height can be the length of the keys \rightarrow can be prohibitively high

Space Efficiency for TPCC

MAJOR TPC-C INDEXES AND SPACE CONSUMPTION PER KEY USING ART.

#	Relation	Cardinality	Attribute Types	Space
1	item	100,000	int	8.1
2	customer	150,000	int,int,int	8.3
3	customer	150,000	int,int,varchar(16),varchar(16),TID	32.6
4	stock	500,000	int,int	8.1
5	order	22,177,650	int,int,int	8.1
6	order	22,177,650	int,int,int,TID	24.9
7	orderline	221,712,415	int,int,int	16.8

Conclusions

Radix Trees can be used as a generalized index for multiple data types space efficient with excellent performance thus, combining:

range query support of search trees

point lookup efficiency of hash indexes

CS 561: Data Systems Architectures

class 12

Adaptive Radix Trees

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/