Linguistic Temporal Trajectory Analysis on Video Transcripts

Maximilian Mozes

Workshop on Linguistic Temporal Trajectory Analysis

2018 European Symposium Series on Societal Challenges in Computational Social Science

December 05, 2018

Kleinberg, B., Mozes, M. and van der Vegt, I., 2018. **Identifying the sentiment styles of YouTube's vloggers.**

In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (pp. 3581 - 3590).

Video blogs

- Blogs in video format
- People filming their (daily) activities
- Can be domain-specific, e.g.
 - Technical product reviews
 - Beauty vlogs
 - "How-to" vlogs

Continuous sentiment

- Vloggers try to arouse viewer's interest
- Sentiment as a means to achieve that?
- We measure continuous sentiment in videos
- Clustering approach to group similar sentiment styles

Why video transcripts?

- Large amounts of data
- "Implicit annotations"
- Use of language in videos

Why vlogs?

Many samples from single source

Many sources for the same domain

Daily life vlogs, technical reviews, beauty vlogs, ...

Data

- **27,333** vlog transcripts (24 users (13 male, 3 female))
- Each transcript consists of "textual chunks", e.g.

```
there are so many boogers in my nose
right now
forgot my memory card of my blog camera
in my room so now we're starting the
vlog on my phone what's going on I am so
not awake right now my makeup is
actually a hot and disaster
```


Dealing with non-punctuated data

- Sentiment analysis and non-punctuated data do not work well together
- Solution: analyze sentiment's neighborhood and check for
 - **negators** ("not", "never")
 - (de-)amplifiers ("really", "hardly")
 - adversative conjunctions ("but", "yet")

"...this was not a **bad** day at all ..."

-3

Pipeline

- 1. Identify sentiment values for each transcript (Jockers & Rinker Polarity Lookup Table (Rinker, 2018))
- 2. Normalize sentiment values to 100-dimensional vector
- 3. k-means clustering to identify groups of sentiment styles

Results (finding *k*)

Screeplot for k = 1 to k = 30

Results (finding *k*)

Screeplot for k = 1 to k = 30

Clusters (k = 7)

Video distribution over sentiment clusters

Bump in the road vs. twin peaks

Figures: Average sentiment style shapes. Dotted red lines = +/- 1 SD; blue lines = 99% CI.

Rags to riches vs. riches to rags

Figures: Average sentiment style shapes. Dotted red lines = +/- 1 SD; blue lines = 99% CI.

Downhill from here vs. end on a high note

Figures: Average sentiment style shapes. Dotted red lines = +/- 1 SD; blue lines = 99% CI.

Mood swings

Cluster: Mood swings

Figure: Average sentiment style shapes. Dotted red lines = +/- 1 SD; blue lines = 99% CI.

Sentiment styles and gender

	+	_
Families	twin peaks*	end on a high note*
Female	riches to rags*	end on a high note*
Male	end-on-a-high- note*	twin peaks*, downhill from here*

[×]

Limitations

- Automatic transcripts
- Only successful vloggers
- No visual and audio features

References

• Tyler Rinker. 2018a. lexicon: Lexicon Data. http://github.com/trinker/lexicon

Resources

- GitHub: https://github.com/ben-aaron188/narrative_structures
- EMNLP publication: https://aclweb.org/anthology/D18-1394

ThankYou

