# **Chapter 4-2 Syntax Analysis**



# **Syntax Analysis**

assignment





# **Syntax Analysis**





- A procedure of building the parse or syntax tree
  - Top-down parsing
  - Bottom-up parsing

```
assignment → identifier = expression
expression → term + term
term → identifier
| identifier * number
```



# PART I: Top-Down Parsing





$$\begin{array}{ccc}
E & \Rightarrow & E \\
& lm & / \\
& & T & E'
\end{array}$$

$$\begin{array}{ccccc} E & \rightarrow & T \ E' \\ E' & \rightarrow & + T \ E' \mid \epsilon \\ T & \rightarrow & F \ T' \\ T' & \rightarrow & * F \ T' \mid \epsilon \\ F & \rightarrow & (E) \mid \mathbf{id} \\ & \mathbf{id} + \mathbf{id} * \mathbf{id} \end{array}$$





























































- Each non-terminal has a procedure or function for parsing
- => Recursive-Descent Parser



- Each non-terminal has a procedure or function for parsing
- => Recursive-Descent Parser
- Example:  $S \rightarrow c A b$ ;  $A \rightarrow a b \mid a$

```
bool S() {
}
```

```
bool A() {
}
```



- Each non-terminal has a procedure or function for parsing
- => Recursive-Descent Parser
- Example:  $S \rightarrow c A b$ ;  $A \rightarrow a b \mid a$

```
bool S() {
    if (*cursor == 'c') cursor++;
    else return false;
    if (!A()) return false;
    if (*cursor == 'b') cursor++;
    else return false;
    return true;
}
```

```
bool A() {
   temp = cursor;
   cursor = temp;
   if (*cursor == 'a') {
       cursor++;
       if (*cursor == 'b') return true;
   }

   cursor = temp;
   if (*cursor == 'a') return true;
   return false;
}
```



```
TreeNode* S() {
    TreeNode *S = new TreeNode;
    if (*cursor == 'c') { cursor++; S.addChildNode('c'); }
    else return null;

if (TreeNode *A = A()) { S.addChildNode(A); }
    else return null;

if (*cursor == 'b') { cursor++; S.addChildNode('b'); }
    else return null;

return S;
}
```

```
bool S() {
    if (*cursor == 'c') cursor++;
    else return false;
    if (!A()) return false;
    if (*cursor == 'b') cursor++;
    else return false;
    return true;
}
```

or function for parsing

```
bool A() {
    temp = cursor;
    cursor = temp;
    if (*cursor == 'a') {
        cursor++;
        if (*cursor == 'b') return true;
    }

    cursor = temp;
    if (*cursor == 'a') return true;
    return false;
}
```



- Each non-terminal has a procedure or function for parsing
- => Recursive-Descent Parser
- Example:  $S \rightarrow c A b$ ;  $A \rightarrow a b \mid a$

```
bool S() {
    if (*cursor == 'c') cursor++;
    else return false;
    if (!A()) return false;
    if (*cursor == 'b') cursor++;
    else return false;
    return true;
}
```

```
bool A() {
   temp = cursor;
   cursor = temp;
   if (*cursor == 'a') {
       cursor++;
       if (*cursor == 'b') return true;
   }

   cursor = temp;
   if (*cursor == 'a') return true;
   return false;
}
```



- Each non-terminal has a procedure or function for parsing
- => Recursive-Descent Parser
- Example:  $S \rightarrow c A b$ ;  $A \rightarrow a b \mid a$

```
bool S() {
   if (*cursor == 'c') cursor++;
   else return false;
   if (!A()) return false;
   if (*cursor == 'b') cursor++;
   else return false;
   return true;
}
```

```
bool A() {
   temp = cursor;
   cursor = temp;
   if (*cursor == 'a') {
       cursor++;
       if (*cursor == 'b') return true;
   }

   cursor = temp;
   if (*cursor == 'a') return true;
   return false;
}
```



- Each non-terminal has a procedure or function for parsing
- => Recursive-Descent Parser
- Example:  $S \rightarrow c A b$ ;  $A \rightarrow a b \mid a$



```
bool S() {
   if (*cursor == 'c') cursor++;
   else return false;
   if (!A()) return false;
   if (*cursor == 'b') cursor++;
   else return false;
   return true;
}
```

```
bool A() {
    temp = cursor;
    cursor = temp;
    if (*cursor == 'a') {
        cursor++;
        if (*cursor == 'b') return true;
    }

    cursor = temp;
    if (*cursor == 'a') return true;
    return false;
}
```



- Each non-terminal has a procedure or function for parsing
- => Recursive-Descent Parser
- Example:  $S \rightarrow c A b$ ;  $A \rightarrow a b \mid a$





```
bool S() {
   if (*cursor == 'c') cursor++;
    else return false;
   if (!A()) return false;
   if (*cursor == 'b') cursor++;
   else return false;
   return true;
}
```

```
bool A() {
   temp = cursor;
   cursor = temp;
   if (*cursor == 'a') {
       cursor++;
       if (*cursor == 'b') return true;
   }

   cursor = temp;
   if (*cursor == 'a') return true;
   return false;
}
```



- Each non-terminal has a procedure or function for parsing
- => Recursive-Descent Parser
- Example:  $S \rightarrow c A b$ ;  $A \rightarrow a b \mid a$





```
bool S() {
    if (*cursor == 'c') cursor++;
    else return false;
    if (!A()) return false;
    if (*cursor == 'b') cursor++;
    else return false;
    return true;
}
```

```
bool A() {
   temp = cursor;
   cursor = temp;
   if (*cursor == 'a') {
       cursor++;
       if (*cursor == 'b') return true;
   }

   cursor = temp;
   if (*cursor == 'a') return true;
   return false;
}
```



- Each non-terminal has a procedure or function for parsing
- => Recursive-Descent Parser
- Example:  $S \rightarrow c A b$ ;  $A \rightarrow a b \mid a$



#### Let's parse c a b

```
bool S() {
   if (*cursor == 'c') cursor++;
   else return false;
   if (!A()) return false;
   if (*cursor == 'b') cursor++;
   else return false;
   return true;
}
```

```
bool A() {
   temp = cursor;
   cursor = temp;
   if (*cursor == 'a') {
       cursor++;
       if (*cursor == 'b') return true;
   }

   cursor = temp;
   if (*cursor == 'a') return true;
   return false;
}
```



- Each non-terminal has a procedure or function for parsing
- => Recursive-Descent Parser
- Example:  $S \rightarrow c A b$ ;  $A \rightarrow a b \mid a$





```
bool A() {
    temp = cursor;
    cursor = temp;
    if (*cursor == 'a') {
        cursor++;
        if (*cursor == 'b') return true;
    }

    cursor = temp;
    if (*cursor == 'a') return true;
    return false;
}
```



- Each non-terminal has a procedure or function for parsing
- => Recursive-Descent Parser
- Problem 1: Backtracking may be necessary
  - when one derivation does not work, we may try others



- Each non-terminal has a procedure or function for parsing
- => Recursive-Descent Parser
- Problem 1: Backtracking may be necessary
  - when one derivation does not work, we may try others
- Problem 2: A left-recursive grammar can cause infinite loops
  - when expanding a non-terminal, we may find itself and expand it again



- Each non-terminal has a procedure or function for parsing
- => Recursive-Descent Parser
- Problem 1: Backtracking may be necessary
  - when one derivation does not work, we may try others
- Problem 2: A left-recursive grammar can cause infinite loops
  - when expanding a non-terminal, we may find itself and expand it again
- Example:  $A \rightarrow Ab \mid a$



- Each non-terminal has a procedure or function for parsing
- => Recursive-Descent Parser

Problem 1: Backtracking may be necessary

- when one derivation does not work, we m
- Problem 2: A left-recursive grammar
  - when expanding a non-terminal, we may
- Example:  $A \rightarrow Ab \mid a$

```
bool A() {
   temp = cursor:
    cursor = temp;
   if (A()) {
        cursor++;
        if (*cursor == 'b') return true;
   }

   cursor = temp;
   if (*cursor == 'a') return true;
   return false;
}
```



• A grammar is left-recursive if it has a non-terminal A such that there is a derivation  $A \Rightarrow^+ A\alpha$ 



- A grammar is left-recursive if it has a non-terminal A such that there is a derivation  $A \Rightarrow^+ A\alpha$
- **Example:**  $A \rightarrow A\alpha \mid \beta$  is left-recursive



- A grammar is left-recursive if it has a non-terminal A such that there is a derivation  $A \Rightarrow^+ A\alpha$
- **Example:**  $A \rightarrow A\alpha \mid \beta$  is left-recursive, can be transformed into

$$\begin{array}{ccc} A \to \beta A' \\ A' \to \alpha A' & | & \epsilon \end{array}$$



- A grammar is left-recursive if it has a non-terminal A such that there is a derivation  $A \Rightarrow^+ A\alpha$
- **Example:**  $A \rightarrow A\alpha \mid \beta$  is left-recursive, can be transformed into

$$\begin{array}{ccc} A \to \beta A' \\ A' \to \alpha A' & | & \epsilon \end{array}$$

$$A \to A\alpha_1 \mid A\alpha_2 \mid \cdots \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n$$

?????



- A grammar is left-recursive if it has a non-terminal A such that there is a derivation  $A \Rightarrow^+ A\alpha$
- **Example:**  $A \rightarrow A\alpha \mid \beta$  is left-recursive, can be transformed into

$$\begin{array}{ccc} A \to \beta A' \\ A' \to \alpha A' & | & \epsilon \end{array}$$

$$A \to A\alpha_1 \mid A\alpha_2 \mid \cdots \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n$$

$$A \to \beta_1 A' \mid \beta_2 A' \mid \cdots \mid \beta_n A'$$
  
 
$$A' \to \alpha_1 A' \mid \alpha_2 A' \mid \cdots \mid \alpha_m A' \mid \epsilon$$



```
arrange the nonterminals in some order A_1, A_2, \ldots, A_n.
                        for ( each i from 1 to n ) \{
                                 for (each j from 1 to i-1) {
                                          replace each production of the form A_i \to A_j \gamma by the
                                              productions A_i \to \delta_1 \gamma \mid \delta_2 \gamma \mid \cdots \mid \delta_k \gamma, where
                                              A_i \to \delta_1 \mid \delta_2 \mid \cdots \mid \delta_k are all current A_i-productions
                                 eliminate the immediate left recursion among the A_i-productions
A \to A\alpha_1 \mid A\alpha_2 \mid \cdots \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n
```

 $A \to \beta_1 A' \mid \beta_2 A' \mid \cdots \mid \beta_n A'$ 

 $A' \to \alpha_1 A' \mid \alpha_2 A' \mid \cdots \mid \alpha_m A' \mid \epsilon$ 



```
arrange the nonterminals in some order A_1, A_2, \ldots, A_n.
                        for (each i from 1 to n)
                                for (each j from 1 to i-1) {
                                         replace each production of the form A_i \to A_j \gamma by the
                                              productions A_i \to \delta_1 \gamma \mid \delta_2 \gamma \mid \cdots \mid \delta_k \gamma, where
                                              A_j \to \delta_1 \mid \delta_2 \mid \cdots \mid \delta_k are all current A_j-productions
                                eliminate the immediate left recursion among the A_i-productions
A \to A\alpha_1 \mid A\alpha_2 \mid \cdots \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n
```

$$A \to \beta_1 A' \mid \beta_2 A' \mid \cdots \mid \beta_n A'$$
  
 
$$A' \to \alpha_1 A' \mid \alpha_2 A' \mid \cdots \mid \alpha_m A' \mid \epsilon$$



```
arrange the nonterminals in some order A_1, A_2, \ldots, A_n.
                        for ( each i from 1 to n ) \{
                                for (each j from 1 to i-1) {
                                          replace each production of the form A_i \to A_i \gamma by the
                                              productions A_i \to \delta_1 \gamma \mid \delta_2 \gamma \mid \cdots \mid \delta_k \gamma, where
                                              A_i \to \delta_1 \mid \delta_2 \mid \cdots \mid \delta_k are all current A_i-productions
                                 eliminate the immediate left recursion among the A_i-productions
A \to A\alpha_1 \mid A\alpha_2 \mid \cdots \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n
```

$$A \to \beta_1 A' \mid \beta_2 A' \mid \cdots \mid \beta_n A'$$
  
$$A' \to \alpha_1 A' \mid \alpha_2 A' \mid \cdots \mid \alpha_m A' \mid \epsilon$$



This algorithm is guaranteed to work if the input grammar does NOT include (1) cycles  $(A \Rightarrow^+ A)$  or (2)  $\epsilon$  productions



Any grammar can be converted to a grammar that does NOT include (1) cycles  $(A \Rightarrow^+ A)$  or (2)  $\epsilon$  productions\*

\* with possible exception of the empty string



$$S \to Aa \mid b$$
$$A \to Ac \mid Sd$$

$$A \to A\alpha \mid \beta \quad \Longrightarrow \quad \begin{array}{c} A \to \beta A' \\ A' \to \alpha A' \mid \epsilon \end{array}$$





$$A \to A\alpha \mid \beta \quad \Longrightarrow \quad \begin{array}{c} A \to \beta A' \\ A' \to \alpha A' \mid \epsilon \end{array}$$











#### **Building a Parser in Practice**

- Each non-terminal has a procedure or function for parsing
- => Recursive-Descent Parser
- Problem 1: Backtracking may be necessary
  - when one derivation does not work, we may try others
- Problem 2: A left-recursive grammar can cause infinite loops
  - when expanding a non-terminal, we may find itself and expand it again



Predictive parsers are recursive descent parser w/o backtracking



- Predictive parsers are recursive descent parser w/o backtracking
- LL(1)
  - L: scanning input from left to right
  - L: leftmost derivation
  - 1: Using one input symbol of lookahead at each step



- Predictive parsers are recursive descent parser w/o backtracking
- LL(1)
  - L: scanning input from left to right
  - L: leftmost derivation
  - 1: Using one input symbol of lookahead at each step
- LL(1) grammar (Not ambiguous! Not left-recursive!)
  - Rich enough to cover most programming constructs



• Predi Non - Input Symbol  $E \rightarrow TERMINAL$  id  $E \rightarrow TE'$   $E \rightarrow TE'$   $E' \rightarrow F \rightarrow I$   $F \rightarrow I$ 

- LL(1) grammar (Not ambiguous! Not left-recursive!)
  - Rich enough to cover most programming constructs



• Predi Non - Input Symbol  $E \rightarrow TERMINAL$  id  $E \rightarrow TE'$   $E \rightarrow TE'$   $E' \rightarrow F \rightarrow I$   $F \rightarrow I$ 

- LL(1) grammar (Not ambiguous! Not left-recursive!)
  - Rich enough to cover most programming constructs
  - To build the predictive table, let's define  $FIRST(\alpha)$ ;  $FOLLOW(\alpha)$



## First() and Follow()

- FIRST( $\alpha$ ):
  - A set of terminals that  $\alpha$  may start with



# First() and Follow()

- FIRST( $\alpha$ ):
  - A set of terminals that  $\alpha$  may start with
- FOLLOW( $\alpha$ ):
  - A set of terminals that can appear immediately to the right of  $\alpha$



- FIRST( $\alpha$ ):
  - A set of terminals that  $\alpha$  may start with
  - If X is a terminal,  $FIRST(X) = \{X\}$



- FIRST( $\alpha$ ):
  - A set of terminals that  $\alpha$  may start with
  - If X is a terminal,  $FIRST(X) = \{X\}$
  - If  $X \to \epsilon$  is a production,  $\epsilon \in FIRST(X)$



- FIRST( $\alpha$ ):
  - A set of terminals that  $\alpha$  may start with
  - If X is a terminal,  $FIRST(X) = \{X\}$
  - If  $X \to \epsilon$  is a production,  $\epsilon \in FIRST(X)$

$$X \rightarrow Y_1 Y_2 \dots Y_{i-1} Y_i \dots Y_k$$

• If  $X \to Y_1 Y_2 \dots Y_k$ ,  $\epsilon \in \bigcap_{i=1}^{i-1} \text{FIRST}(Y_i) \land a \in \text{FIRST}(Y_i) \Rightarrow a \in \text{FIRST}(X)$ 



- FIRST( $\alpha$ ):
  - A set of terminals that  $\alpha$  may start with
  - If X is a terminal,  $FIRST(X) = \{X\}$
  - If  $X \to \epsilon$  is a production,  $\epsilon \in FIRST(X)$

$$X \rightarrow Y_1 Y_2 \dots Y_{i-1} Y_i \dots Y_k \rightarrow Y_i \dots Y_k$$

• If  $X \to Y_1 Y_2 \dots Y_k$ ,  $\epsilon \in \bigcap_{i=1}^{i-1} \text{FIRST}(Y_i) \land a \in \text{FIRST}(Y_i) \Rightarrow a \in \text{FIRST}(X)$ 



- FIRST( $\alpha$ ):
  - A set of terminals that  $\alpha$  may start with
  - If X is a terminal,  $FIRST(X) = \{X\}$
  - If  $X \to \epsilon$  is a production,  $\epsilon \in FIRST(X)$
  - If  $X \to Y_1 Y_2 \dots Y_k$ ,  $\epsilon \in \bigcap_{j=1}^{i-1} \mathrm{FIRST}(Y_j) \land a \in \mathrm{FIRST}(Y_i) \Rightarrow a \in \mathrm{FIRST}(X)$  $\epsilon \in \bigcap_{j=1}^k \mathrm{FIRST}(Y_j) \Rightarrow \epsilon \in \mathrm{FIRST}(X)$

$$X \rightarrow Y_1 Y_2 \dots Y_k \rightarrow \epsilon$$



- Example:  $S \rightarrow c A b$ ;  $A \rightarrow a b \mid a$
- $FIRST(S) = \{c\}$
- FIRST $(A) = \{a\}$
- $FIRST(a) = \{a\}$
- $FIRST(b) = \{b\}$
- FIRST $(c) = \{c\}$



• Exercise: write First() for all symbols in the following grammar

```
E \rightarrow T X

X \rightarrow + E

X \rightarrow \epsilon

T \rightarrow int Y

T \rightarrow (E)

Y \rightarrow * T

Y \rightarrow \epsilon
```



• Exercise: write First() for all symbols in the following grammar

| $E \to$                   | ΤX    |
|---------------------------|-------|
| $X \mathrel{\Rightarrow}$ | + E   |
| $X \mathrel{\Rightarrow}$ | 3     |
| $T \to$                   | int Y |
| $T \to$                   | (E)   |
| $Y \to$                   | * T   |
| $Y \rightarrow$           | 3     |

| Symbol | First        |
|--------|--------------|
| (      | (            |
| )      | )            |
| +      | +            |
| *      | *            |
| int    | int          |
| Υ      | ε, *         |
| X      | ε, *<br>ε, + |
| Т      | int, (       |
| E      | int, (       |



- FOLLOW( $\alpha$ ):
  - A set of terminals that can appear immediately to the right of  $\alpha$



- FOLLOW( $\alpha$ ):
  - A set of terminals that can appear immediately to the right of  $\alpha$
  - $\$ \in FOLLOW(S)$ , where \$ is string's end marker, S the start non-terminal



- FOLLOW( $\alpha$ ):
  - A set of terminals that can appear immediately to the right of  $\alpha$
  - $\$ \in FOLLOW(S)$ , where \$ is string's end marker, S the start non-terminal
  - $A \to \alpha B \beta \Rightarrow \text{FIRST}(\beta) \setminus \{\epsilon\} \subseteq \text{FOLLOW}(B)$

|--|



- FOLLOW( $\alpha$ ):
  - A set of terminals that can appear immediately to the right of  $\alpha$
  - $\$ \in FOLLOW(S)$ , where \$ is string's end marker, S the start non-terminal
  - $A \to \alpha B\beta \Rightarrow FIRST(\beta) \setminus \{\epsilon\} \subseteq FOLLOW(B)$
  - $A \to \alpha B$  or  $A \to \alpha B \beta$  where  $\epsilon \in \text{FIRST}(\beta) \Rightarrow \text{FOLLOW}(A) \subseteq \text{FOLLOW}(B)$

```
A or αB ...
```



- FOLLOW( $\alpha$ ):
  - A set of terminals that can appear immediately to the right of  $\alpha$
  - $\$ \in FOLLOW(S)$ , where \$ is string's end marker, S the start non-terminal
  - $A \to \alpha B \beta \Rightarrow \text{FIRST}(\beta) \setminus \{\epsilon\} \subseteq \text{FOLLOW}(B)$
  - $A \to \alpha B$  or  $A \to \alpha B \beta$  where  $\epsilon \in \text{FIRST}(\beta) \Rightarrow \text{FOLLOW}(A) \subseteq \text{FOLLOW}(B)$

```
A or \alpha B ...
```

Note: repeat the procedure until fixed point!



- Example:  $S \rightarrow c A b$ ;  $A \rightarrow a b \mid a$
- $FOLLOW(S) = \{\$\}$
- $FOLLOW(A) = \{b\}$



- Example:  $S \rightarrow c A b$ ;  $A \rightarrow a b \mid a$
- $FOLLOW(S) = \{\$\}$
- $FOLLOW(A) = \{b\}$
- Example:  $S \rightarrow c A A$ ;  $A \rightarrow a b \mid a$
- $FOLLOW(S) = \{\$\}$



- Example:  $S \rightarrow c A b$ ;  $A \rightarrow a b \mid a$
- $FOLLOW(S) = \{\$\}$
- $FOLLOW(A) = \{b\}$
- Example:  $S \rightarrow c A A$ ;  $A \rightarrow a b \mid a$
- $FOLLOW(S) = \{\$\}$
- FOLLOW(A)  $\supseteq$  FIRST(A)\{ $\epsilon$ } = {a}



- Example:  $S \rightarrow c A b$ ;  $A \rightarrow a b \mid a$
- $FOLLOW(S) = \{\$\}$
- $FOLLOW(A) = \{b\}$
- Example:  $S \rightarrow c A A$ ;  $A \rightarrow a b \mid a$
- $FOLLOW(S) = \{\$\}$
- FOLLOW(A)  $\supseteq$  FIRST(A)\{ $\epsilon$ } = {a}
- $FOLLOW(A) \supseteq FOLLOW(S) = \{\$\}$



• Exercise: write Follow() for all symbols in the grammar

| Ε | $\rightarrow$ T X        |  |
|---|--------------------------|--|
| X | $\rightarrow$ + E        |  |
| X | $\rightarrow$ $\epsilon$ |  |
| Т | $\rightarrow$ int Y      |  |
| Т | $\rightarrow$ ( E )      |  |
| Υ | $\rightarrow$ * T        |  |
| Υ | → ε                      |  |

| Symbol | First        |
|--------|--------------|
| (      | (            |
| )      | )            |
| +      | +            |
| *      | *            |
| int    | int          |
| Υ      | ε, *         |
| X      | ε, *<br>ε, + |
| T      | int, (       |
| E      | int, (       |



• Exercise: write Follow() for all symbols in the grammar

| $E \rightarrow T X$      |
|--------------------------|
| $X \rightarrow + E$      |
| $X \rightarrow \epsilon$ |
| $T \rightarrow int Y$    |
| $T \rightarrow (E)$      |
| $Y \rightarrow *T$       |
| $Y \rightarrow \epsilon$ |

| Symbol | First  | Follow   |
|--------|--------|----------|
| (      | (      |          |
| )      | )      |          |
| +      | +      | N/A      |
| *      | *      |          |
| int    | int    |          |
| Υ      | ε, *   | ), \$, + |
| X      | ε, +   | ), \$    |
| Т      | int, ( | ), \$, + |
| E      | int, ( | ), \$    |



## **Predictive Parsing Table**

- To build a parsing table M[A, a], for each  $A \to \alpha$ 
  - $\forall a \in FIRST(\alpha): M[A, a] = A \rightarrow \alpha$
  - $\epsilon \in \text{FIRST}(\alpha) \Rightarrow \forall b \in \text{FOLLOW}(A) : M[A, b] = A \rightarrow \alpha$

| Non -    | INPUT SYMBOL       |                   |               |             |                   |                   |
|----------|--------------------|-------------------|---------------|-------------|-------------------|-------------------|
| TERMINAL | id                 | +                 | *             | (           | )                 | \$                |
| E        | $E \to TE'$        |                   |               | $E \to TE'$ |                   |                   |
| E'       |                    | $E' \to +TE'$     |               |             | $E' \to \epsilon$ | $E' \to \epsilon$ |
| T        | $T \to FT'$        |                   |               | $T \to FT'$ |                   |                   |
| T'       |                    | $T' \to \epsilon$ | $T' \to *FT'$ |             | $T' 	o \epsilon$  | $T' \to \epsilon$ |
| F        | $F 	o \mathbf{id}$ |                   |               | $F \to (E)$ |                   |                   |

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid \mathbf{id}$$



#### **Predictive Parsing Table**

- To build a parsing table M[A, a], for each  $A \to \alpha$ 
  - $\forall a \in \text{FIRST}(\alpha) : M[A, a] = A \rightarrow \alpha$
  - $\epsilon \in \text{FIRST}(\alpha) \Rightarrow \forall b \in \text{FOLLOW}(A) : M[A, b] = A \to \alpha$

| Non -    | INPUT SYMBOL       |                   |               |             |                   |                   |
|----------|--------------------|-------------------|---------------|-------------|-------------------|-------------------|
| TERMINAL | id                 | +                 | *             | (           | )                 | \$                |
| E        | $E \to TE'$        |                   |               | $E \to TE'$ |                   |                   |
| E'       |                    | E' 	o +TE'        |               |             | $E' \to \epsilon$ | $E' \to \epsilon$ |
| T        | $T \to FT'$        |                   |               | $T \to FT'$ |                   |                   |
| T'       |                    | $T' \to \epsilon$ | $T' \to *FT'$ |             | $T' 	o \epsilon$  | $T' \to \epsilon$ |
| F        | $F 	o \mathbf{id}$ |                   |               | $F \to (E)$ |                   |                   |

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid \mathbf{id}$$



#### **Predictive Parsing Table**

- To build a parsing table M[A, a], for each  $A \to \alpha$ 
  - $\forall a \in FIRST(\alpha): M[A, a] = A \rightarrow \alpha$
  - $\epsilon \in \text{FIRST}(\alpha) \Rightarrow \forall b \in \text{FOLLOW}(A) : M[A, b] = A \rightarrow \alpha$

| Non -    | INPUT SYMBOL       |                   |               |             |                   |                   |
|----------|--------------------|-------------------|---------------|-------------|-------------------|-------------------|
| TERMINAL | id                 | +                 | *             | (           | )                 | \$                |
| E        | $E \to TE'$        |                   |               | $E \to TE'$ |                   |                   |
| E'       |                    | $E' \to +TE'$     |               |             | $E' \to \epsilon$ | $E' \to \epsilon$ |
| T        | $T \to FT'$        |                   |               | $T \to FT'$ |                   |                   |
| T'       |                    | $T' \to \epsilon$ | $T' \to *FT'$ |             | $T' 	o \epsilon$  | $T' \to \epsilon$ |
| F        | $F 	o \mathbf{id}$ |                   |               | $F \to (E)$ |                   |                   |

| E  | $\rightarrow$ | T E'                   |
|----|---------------|------------------------|
| E' | $\rightarrow$ | $+ T E' \mid \epsilon$ |
| T  | $\rightarrow$ | F T'                   |
| T' | $\rightarrow$ | $*FT' \mid \epsilon$   |
| F  | $\rightarrow$ | $(E) \mid \mathbf{id}$ |
|    |               |                        |



### **Predictive Parsing Table**

- To build a parsing table M[A, a], for each  $A \to \alpha$ 
  - $\forall a \in FIRST(\alpha): M[A, a] = A \rightarrow \alpha$
  - $\epsilon \in \text{FIRST}(\alpha) \Rightarrow \forall b \in \text{FOLLOW}(A) : M[A, b] = A \to \alpha$

| Non -        | INPUT SYMBOL       |                   |               |             |                   |                   |
|--------------|--------------------|-------------------|---------------|-------------|-------------------|-------------------|
| TERMINAL     | id                 | +                 | *             | (           | )                 | \$                |
| E            | $E \to TE'$        |                   |               | $E \to TE'$ |                   |                   |
| E'           |                    | $E' \to +TE'$     |               |             | $E' \to \epsilon$ | $E' \to \epsilon$ |
| T            | $T \to FT'$        |                   |               | $T \to FT'$ |                   |                   |
| $T^{\prime}$ |                    | $T' \to \epsilon$ | $T' \to *FT'$ |             | $T' \to \epsilon$ | $T' \to \epsilon$ |
| F            | $F 	o \mathbf{id}$ |                   |               | $F \to (E)$ |                   |                   |

| E  | $\rightarrow$ | T E'                   |
|----|---------------|------------------------|
| E' | $\rightarrow$ | $+ T E' \mid \epsilon$ |
| T  | $\rightarrow$ | F T'                   |
| T' | $\rightarrow$ | $*FT' \mid \epsilon$   |
| F  | $\rightarrow$ | $(E) \mid \mathbf{id}$ |

Choose the production according to the table, empty means error



#### **Building a Parser in Practice**

- Each non-terminal has a procedure or function for parsing
- => Recursive-Descent Parser
- Problem 1: Backtracking may be necessary
  - when one derivation does not work, we may try others
- Problem 2: A left-recursive grammar can cause infinite loops
  - when expanding a non-terminal, we may find itself and expand it again



### LL(1) Grammar: Formal Definition

- LL(1) grammar (Not ambiguous! Not left-recursive!)
- A grammar is LL(1) if and only if any  $A \rightarrow \alpha \mid \beta$  satisfies:
  - (1) For no terminal a do both  $\alpha$  and  $\beta$  derive strings starting with a (by left factoring)
  - (2) At most one of  $\alpha$  and  $\beta$  derive the empty string
  - (3) If  $\beta \Rightarrow^* \epsilon$ ,  $\alpha$  doesn't derive strings starting with terminals in FOLLOW( $\alpha$ )



#### **Recursive Predictive Parsing**

- Each non-terminal has a procedure or function for parsing
- => Recursive-Descent Parser
- Example:  $S \rightarrow a S b \mid \epsilon$

```
bool S() {
   if (*cursor == 'c') cursor++;
   else return false;

   if (!S()) return false;

   if (*cursor == 'b') cursor++;
   else return false;

   return true;
}
```





- How can we build a predictive parser without recursion?
- Maintain a stack explicitly!



- How can we build a predictive parser without recursion?
- Maintain a stack explicitly!





- How can we build a predictive parser without recursion?
- Maintain a stack explicitly!
- Initially, we put S in the stack
- When  $A \to \alpha$  is applied, pop A, push  $\alpha$





- How can we build a predictive parser without recursion?
- Maintain a stack explicitly!
- Initially, we put S in the stack
- When  $A \to \alpha$  is applied, pop A, push  $\alpha$
- Building the PDA from CFG!
- Parsing table is the set of transition functions of PDA!





# **PART II: Bottom-Up Parsing**



- Top-down parsing can be viewed as the problem of constructing a parse tree in preorder
- Bottom-up parsing can be viewed as the problem of constructing a parse tree in post-order



- Top-down parsing can be viewed as the problem of constructing a parse tree in preorder
- Bottom-up parsing can be viewed as the problem of constructing a parse tree in post-order





- Top-down parsing can be viewed as the problem of constructing a parse tree in preorder
- Bottom-up parsing can be viewed as the problem of constructing a parse tree in post-order





- Top-down parsing can be viewed as the problem of constructing a parse tree in preorder
- Bottom-up parsing can be viewed as the problem of constructing a parse tree in post-order





- Top-down parsing can be viewed as the problem of constructing a parse tree in preorder
- Bottom-up parsing can be viewed as the problem of constructing a parse tree in post-order





- Top-down parsing can be viewed as the problem of constructing a parse tree in preorder
- Bottom-up parsing can be viewed as the problem of constructing a parse tree in post-order





- Top-down parsing can be viewed as the problem of constructing a parse tree in preorder
- Bottom-up parsing can be viewed as the problem of constructing a parse tree in post-order





- Top-down parsing can be viewed as the problem of constructing a parse tree in preorder
- Bottom-up parsing can be viewed as the problem of constructing a parse tree in post-order





- Keep shifting until we see the right-hand side of a rule
- Keep reducing as long as the tail of our shifted sequence matches the right-hand side of a rule. Then go back to shifting





- Keep shifting until we see the right-hand side of a rule
- Keep reducing as long as the tail of our shifted sequence matches the right-hand side of a rule. Then go back to shifting
- Once we have the right-hand side of a rule:
  - Do we reduce right away, or do we keep shifting more symbols?
  - What if there are multiple rules with the same RHS to reduce by?



- LL(1) top-down parsing, we dealt with the tough decisions by just saying
  - "if we have to make decisions, it's not an LL(1) grammar".



- LL(1) top-down parsing, we dealt with the tough decisions by just saying
  - "if we have to make decisions, it's not an LL(1) grammar".
- We'll start out by looking at LR(0) parsing
  - We only worry about how to handle grammars that don't require us to make decisions during parsing



- LL(1) top-down parsing, we dealt with the tough decisions by just saying
  - "if we have to make decisions, it's not an LL(1) grammar".
- We'll start out by looking at LR(0) parsing
  - We only worry about how to handle grammars that don't require us to make decisions during parsing
  - Left-to-right scanning
  - Right-most derivation
  - Zero symbols of lookahead



- Keep shifting until we see the right-hand side of a rule
- Keep reducing as long as the tail of our shifted sequence matches the right-hand side of a rule. Then go back to shifting



- Keep shifting until we see the right-hand side of a rule
- Keep reducing as long as the tail of our shifted sequence matches the right-hand side of a rule. Then go back to shifting

- If this algorithm ever has to make decisions about which rule to
- reduce by, we give up and say "the grammar is not LR(0)".



- Keep shifting until we see the right-hand side of a rule
- Keep reducing as long as the tail of our shifted sequence matches the right-hand side of a rule. Then go back to shifting

- If this algorithm ever has to make decisions about which rule to
- reduce by, we give up and say "the grammar is not LR(0)".
  - LR(1), SLR(1), ...
  - Refer to Chapter 4, the Dragon book!



#### ???

- Keep shifting until we see the right-hand side of a rule
- Keep reducing as long as the tail of our shifted sequence matches the right-hand side of a rule. Then go back to shifting

- If this algorithm ever has to make decisions about which rule to
- reduce by, we give up and say "the grammar is not LR(0)".
  - LR(1), SLR(1), ...
  - Refer to Chapter 4, the Dragon book!



#### ??? DFA/NFA!!!

- Keep shifting until we see the right-hand side of a rule
- Keep reducing as long as the tail of our shifted sequence matches the right-hand side of a rule. Then go back to shifting

- If this algorithm ever has to make decisions about which rule to
- reduce by, we give up and say "the grammar is not LR(0)".
  - LR(1), SLR(1), ...
  - Refer to Chapter 4, the Dragon book!



$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \to F$$

$$F \rightarrow (E)$$

$$F \rightarrow id$$



$$E \rightarrow E + T$$



$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \to F$$

$$F \rightarrow (E)$$

$$F \rightarrow id$$



$$E \rightarrow E + T$$



$$E \rightarrow T$$



$$T \rightarrow T * F$$

$$T \to F$$

$$F \rightarrow (E)$$

$$F \rightarrow id$$



$$E \rightarrow E + T$$



$$E \rightarrow T$$

$$-$$
ET

$$T \to T * F$$

$$T \to F$$

$$F \rightarrow (E)$$

$$F \rightarrow id$$



$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$-$$
ET

$$T \rightarrow T * F$$

$$T \to F$$

$$T$$
 $F$ 

$$F \rightarrow (E)$$

$$F \rightarrow id$$



$$E \rightarrow E + T$$



$$E \rightarrow T$$

$$T \to T * F$$

$$T \to F$$

$$(T)$$
 $F$  $($ 

$$F \rightarrow (E)$$

$$F \rightarrow id$$

Create DFAs for the RHS of each rule and mark the initial states with the LHS.

For each state with a transition leading **outwards on a nonterminal**, connect the state (using  $\varepsilon$ -transitions) to all the states marked with that nonterminal.









$$T \to F$$

$$F \rightarrow (E)$$

$$F \rightarrow id$$







Create DFAs for the RHS of each rule and mark the initial states with the LHS.

For each state with a transition leading **outwards on a nonterminal**, connect the state (using  $\epsilon$ -transitions) to all the states marked with that nonterminal.





$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \to F$$

$$F \rightarrow (E)$$

$$F \rightarrow id$$



Create DFAs for the RHS of each rule and mark the initial states with the LHS.

For each state with a transition leading **outwards on a nonterminal**, connect the state (using  $\epsilon$ -transitions) to all the states marked with that nonterminal.





$$E \rightarrow T$$

$$T \to T * F$$

$$T \to F$$

$$F \rightarrow (E)$$

$$F \rightarrow id$$



Create DFAs for the RHS of each rule and mark the initial states with the LHS.

For each state with a transition leading **outwards on a nonterminal**, connect the state (using  $\varepsilon$ -transitions) to all the states marked with that nonterminal.





Create DFAs for the RHS of each rule and mark the initial states with the LHS.

For each state with a transition leading **outwards on a nonterminal**, connect the state (using  $\varepsilon$ -transitions) to all the states marked with that nonterminal.





Create DFAs for the RHS of each rule and mark the initial states with the LHS.

For each state with a transition leading **outwards on a nonterminal**, connect the state (using  $\varepsilon$ -transitions) to all the states marked with that nonterminal.

We can transform it into a DFA





Create DFAs for the RHS of each rule and mark the initial states with the LHS.

For each state with a transition leading **outwards on a nonterminal**, connect the state (using  $\varepsilon$ -transitions) to all the states marked with that nonterminal.

#### We can transform it into a DFA

When shifting during LR(0) parsing, if we reach a final state, use the corresponding non-terminal to reduce.























#### Summary



- Syntax analysis is a procedure of building the parse/syntax tree
  - Top-down parsing and LL parsing
    - Recursive-descent parsers
    - Eliminating left-recursive
    - Predictive parsers, LL(1) parsers
    - Non-recursive predictive parser vs. PDA
  - Bottom-up parsing and LR parsing
    - LR(0) parser
    - Refer to § 4.5, Chapter 4, the Dragon book!





#### **THANKS!**