Deliverable 1-a: Modelling and Deterministic Optimization

Sets

Warehouse: $w \in W = \{1, 2, 3\}$ *Neighboring warehouse:* $q \in W = \{1, 2, 3\}$ *Stage t* ∈ $T = \{1, 2, ...\}$

Variables

 $x_{w,t}$: At stage t, warehouse w can order an amount $x_{w,t} \ge 0$ of coffee from external suppliers

 $z_{w,t}$: storage level of w at t

 $m_{w.t}$: the missing amount

 $y_{w,q,t}^{send}$: At stage t, the amount of coffee is sent from warehouse w to the neighboring warehouse a

 $y_{w,q,t}^{receive}$: At stage t, the amount of coffee is received by the neighboring warehouse q

Parameters

p: the price of ordering coffee

 $b_{w,t} \cdot m_{w,t}$: the cost of failing to miss the demand

 $e_{w,a}$: the per-unit transportation cost

 $C_w^{storgae}$: each warehouse can store coffee up to a capacity limit C_w^{transp} : daily transportation limit

 $D_{w,t}$: demand

Objective model

$$Min\ cost = \sum_{w,t} \left(p \cdot x_{w,t} + \sum_{q} e_{w,q} \cdot y_{w,q,t}^{send} + b_{w,t} \cdot m_{w,t} \right)$$

Constraints

- 1. Storage capacity: $z_{w,t} \leq C_w^{storgae}$, $\forall w,t$
- 2. Transportation capacity: $y_{w,q,t}^{send} \leq C_{w,q}^{transp}$, \forall w,t,q
- 3. Inventory balance: $D_{w,t} = z_{w,t-1} + z_{w,t} + x_{w,t} + \sum_{w,q,t} y_{w,q,t}^{receive}$ $\sum_{w,q,t} y_{w,q,t}^{send} + m_{w,t}$, \forall w,t,q
- 4. $y_{w,q,t}^{send} \le z_{w,t-1}$, $\forall w,t,q$
- 5. $y_{w,q,t}^{send}$ =0, when w=q
- 6. $y_{w,q,1}^{send} \le 2$
- 7. $x_{w,t}, z_{w,t}, m_{w,t}, y_{w,q,t}^{send}, y_{w,q,t}^{receive} \ge 0$,∀w,t,q

Deliverable 1-b: The Expected-Value Benchmark

Sets

```
Warehouse: w \in W = \{1, 2, 3\}
Neighboring warehouse: q \in W = \{1, 2, 3\}
Stage t \in T = \{1, 2, ...\}
```