LAST NAME (please print)	
First name (please print)	
Student Number	

WESTERN UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

CS3331: Foundations of Computer Science – Fall 2020 – Final Exam –

Saturday, Dec. 12, 2020, 2:00 - 5:00pm Location: OWL

Instructor: Prof. Lucian Ilie

Upload your solutions in OWL by $5:30\,\mathrm{pm}$. Approved accommodation: email to cs3331@uwo.ca by $2:00\,\mathrm{pm}$ + your approved time + $30\,\mathrm{min}$. In either case, failure to do so will result in your exam being discarded; no exceptions.

This exam consists of 5 questions (6 pages, including this page), worth a total of 100 marks. The exam is 180 minutes long and comprises 39% of your final grade.

For each questions, solve only part $V_i, 0 \le i \le 3$, where $i = student_number \mod 4$. Failure to answer the correct version will result in your answer being discarded.

 $V_i =$

(1) 20pt	
(2) 20pt	
(3) 20pt	
(4) 30pt	
(5) 10pt	
Grade	

1. (20pt) Remember to solve only your version V_i ; calculate correctly your $i = student_number \mod 4$. Construct a deterministic Turing machine M that performs the action indicated at your V_i below. M starts with the initial configuration $(s, \Box w)$ and halts with the configuration $(h, \Box w)$. Describe M using the macro language (the one that looks like this: $R_{\Box,a} \xrightarrow{\Box} aRbL_{\neg\Box}$).

 $V_0: \Sigma = \{a, b\}; M$ replaces any occurrence of aba in the input with aca.

 $V_1: \Sigma = \{0,1\}; M \text{ adds } 2 \text{ to its input, seen as a binary number.}$

 $V_2: \Sigma = \{a, b\}; M$ moves the leftmost a (if any) to the end of the input, then closes the hole where a was.

 $V_3: \Sigma = \{a, b, c\}; M$ replaces the input with the number of a's in the input, written in unary (using 1's).

2. (20pt) Describe in clear English a Turing machine that semidecides the language L given below:

 $V_0: L = \{ \langle M \rangle \mid M \text{ rejects at least two strings} \}$

 $V_1: L = \{ <\!\! M\!\! > \mid M \text{ accepts at least one string starting with } a \}$

 V_2 : $L = \{ \langle M \rangle \mid M \text{ accepts the empty string and at least one string of odd length} \}$

 $V_3: L = \{ \langle M \rangle \mid M \text{ accepts at least two strings of different lengths} \}$

- 3. (20pt) Prove your answers to the questions below ((a) 6pt, (b) 5pt, (c) 9pt: 3pt for each (i)-(iii)):
 - V_0 : (a) Is it possible that $L \in D$ and $L \cap \neg L \notin SD D$?
 - (b) If we modify an FSM to allow infinitely many states, then we can easily accept any language, e.g., we can build a path to accept every string in the language. That means, we can accept also non-SD languages. Does this contradict Church's thesis?
 - (c) Can the union $L_1 \cup L_2$, for $L_1 \in SD$, $L_2 \in \neg SD$ be in: (i) D, (ii) SD D, (iii) $\neg SD$?
 - V_1 : (a) Is it possible that L is regular and $\neg(L \cap \neg L) \notin SD D$?
 - (b) Is it possible to design a new mechanism (that would have a finite description) such that the languages it accepts are precisely the non-SD languages, thus contradicting Church's thesis?
 - (c) Can the intersection $L_1 \cap L_2$, for $L_1 \in SD$, $L_2 \in \neg SD$ be in: (i) D, (ii) SD D, (iii) $\neg SD$?
 - V_2 : (a) Is it possible that L is context-free and $L \neg \neg L \notin SD D$?
 - (b) Is it possible to define a new mechanism that uses a Turing Machine but accepts exactly when the TM does not; such a mechanism would then accept languages such as $\neg H$, which is not in SD, thus contradicting Church's thesis?
 - (c) Can the difference $L_1 L_2$, for $L_1 \in SD$, $L_2 \in \neg SD$ be in: (i) D, (ii) SD D, (iii) $\neg SD$?
 - V_3 : (a) Is it possible that $L \not\in SD$ and $L \cup \neg L \in D$?
 - (b) Let's define a new class of languages, which is obtained as the closure of SD under complement. This new class would strictly include SD, as it would include, for instance, $\neg H$. Does this contradict Church's thesis?
 - (c) Can the intersection $L_1 \cap L_2$, for $L_1 \in \neg SD$, $L_2 \in SD$ be in: (i) D, (ii) SD D, (iii) $\neg SD$?

- 4. (30pt) Consider an alphabet Σ such that all languages below are over Σ .
 - (i) (18pt) For each of the languages below, prove, without using Rice's theorem, whether it is in D, SD D, or \neg SD. Explain first intuitively why you think it is in D, SD D, or \neg SD, then prove your assertion rigorously.
 - (ii) (12pt) Explain whether Rice's Theorem applies or not to each of these languages.
 - V_0 : (a) $L_1 = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ accepts at least two strings and } M_2 \text{ rejects at least one string} \}$
 - (b) $L_2 = \{ \langle M \rangle \mid M \text{ accepts only the string } aba \}$
 - (c) $L_3 = a^*$
 - V_1 : (a) $L_1 = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ accepts at least one string in } a^* \text{ and } M_2 \text{ rejects at least one string in } b^* \}$
 - (b) $L_2 = \{ \langle M \rangle \mid |L(M)| \leq 10 \}$
 - (c) $L_3 = \{\varepsilon\}$
 - V_2 : (a) $L_1 = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ accepts } a \text{ and } L(M_2) \text{ is not empty} \}$
 - (b) $L_2 = \{ \langle M \rangle \mid M \text{ accepts finitely many even-length strings} \}$
 - (c) $L_3 = \emptyset$
 - V_3 : (a) $L_1 = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ accepts at least one string and } M_2 \text{ rejects at least one string} \}$
 - (b) $L_2 = \{ \langle M \rangle \mid M \text{ accepts two palindromes and nothing else} \}$
 - (c) $L_3 = \{ab\}$

- 5. (10pt) Answer your version of the PCP question below:
 - V_0 : PCP over one letter (that is, all strings are from 1*) is decidable, because we work with numbers instead of strings. If PCP over one letter is decidable, and we can always encode any number of letters into a single letter (e.g., a = 1, b = 11, c = 111, d = 1111, etc.), explain how is it possible that PCP over an arbitrary alphabet is undecidable?
 - V_1 : Explain what is wrong with the following proof that PCP is decidable. Denote the top and bottom strings by (x_1, x_2, \ldots, x_n) and (y_1, y_2, \ldots, y_n) , resp. Considering all possible subsets of all possible permutations of these blocks, we obtain $2^{n!}$ possibilities. If we denote the maximum length of a string by $m = \max_{i=1..n} (\max(|x_i|, |y_i|))$, this means the shortest solution, if any, must be of length at most $m2^{n!}$. The PCP is then decided by checking all potential solutions up to this length.
 - V_2 : Show that the following restricted version of PCP is decidable: $PCP_r = \{((x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n)) \mid n \geq 1, x_i, y_i \in \{a, b\}^+, \max(|x_i|, |y_i|) \leq 4, \text{ for all } 1 \leq i \leq n\}.$
 - V_3 : Given a positive number n, construct a PCP problem over $\{a,b\}$ whose shortest solution has n blocks. Explain why your answer is correct.