

Lecture 1 – Atomic Structure

Lecture 2 – The Ultraviolet Catastrophe

Lecture 3 – Particle Nature of Light

Lecture 4 – Atomic Energy Levels and Spectra

Lecture 5 – X-ray Production and Diffraction

Lecture 6 – X-ray Spectra

Lecture 7 – Matter Waves

Lecture 8 – Wave-Particle Duality

Lecture 9 – Wave functions for Quantum Particles

Lecture 10 – A Quantum Mechanical Wave Equation

Lecture 11 – Applications of Schrödinger's Equation

Recap of Lecture 5

- How to produce X-rays fire high voltage electrons into metal target in vacuum
- It's hard to measure the wavelength ('to disperse') X-rays prisms don't work, and they are the size of atoms, so gratings seem hard..
- But we can use solid materials with periodic crystal structure as 3D gratings
- 2 Bragg conditions, $\theta_{in} = \theta_{out} \& n\lambda = 2dsin\theta$ for constructive interference
- Fire X-rays at an angled crystal of known lattice plane spacing to measure/select a wavelength
- Or Fire known monochromatic X-rays at an unknown crystal, changing angle, to measure the crystal

In this lecture

- The production of X-rays the spectrum created
- Attenuation of X-rays in matter
- Absorption of X-rays in materials & 'absorption edges'

X-Ray spectra

- Typical energy spectrum
 - Plot as a function of wavelength

Bremsstrahlung

K alpha/beta in Cu and Mo

Just for interest...

Common lab X-ray sources:

Cu: $K_{\alpha} = 1.54 \text{ Å}$ $K_{\beta} = 1.39 \text{ Å}$

(In fact, as always in atomic physics, there is more complexity and another splitting and the K_{α} is actually two lines, $K_{\alpha 1}$ and $K_{\alpha 2}$ very close together..)

So if use this for crystallography, every peak from a crystal's d-spacing becomes 2:

Commonly use a filter to remove the $K_{\alpha 2}$

Mo $K_{\alpha} = 0.7 \text{ Å}$ (this wavelength isn't absorbed by diamonds!)

Mo X-Ray spectra

Molybdenum X-ray spectra for different acceleration voltages

1 angstrom (Å) = 0.1 nm (useful unit for crystal structures)

Absorption Edges

Moseley's Law

Henry Gwyn-Jeffreys Moseley (1887-1915)

$$f_{K_{\alpha}} = (2.48 \times 10^{15} \text{ Hz}) \times (Z - 1)^2$$

 This discovery enabled the periodic table to be ordered correctly by atomic number (Z) rather than atomic mass

 Moseley would have almost certainly been awarded a Nobel Prize had he not died in the Battle of Gallipoli (1915)