Binary Arithmetic

EIC 0844091

Digital Circuit and Logic Design

Associate Prof. Luo Jie

Huazhong University of Science & Technology

Presentation Outline

- Binary and Hexadecimal Addition
- BCD Addition
- Binary and Hexadecimal subtraction
- Binary Multiplication
- Signed Numbers and Complement Notation
- Carry and Overflow

Single Bit Binary Addition

Given two binary digits (X and Y) and a carry in, we get the sum (S) and the carry out (C)

Carry in
$$= 0$$

Carry in
$$= 1$$

Multiple Bit Binary Addition

- Start with the least significant bit (rightmost bit)
- Add each pair of bits
- ❖ Include the carry in the addition, if present

Hexadecimal Addition

- Start with the least significant hexadecimal digits
- ❖ Let Sum = summation of two hex digits
- If Sum is greater than or equal to 16
 - \Rightarrow Sum = Sum 16 and Carry = 1
- Example:

$$5 + B = 5 + 11 = 16$$

Since Sum ≥ 16
Sum = $16 - 16 = 0$
Carry = 1

Single Digit BCD Addition

We use binary arithmetic to add the BCD digits

- Since the result is more than 9, it must use 2 digits
- To correct the digit, add 6 to the digit sum

Multiple Digit BCD Addition

❖ Add 2905 + 1897 in BCD

Showing carries and digit corrections

	carry	+1	+1	+1	
	+	0010	1001	0000	0101
		0001	1000	1001	0111
		0100	10010	1010	1100
digit correction		ection	0110	0110	0110
		0100	1000	0000	0010

Final answer: 2905 + 1897 = 4802

Binary Arithmetic EIC- 0844091 © Luo Jie – slide 7

Single Bit Binary Subtraction

❖ Given two binary digits (X and Y), and a borrow in we get the difference (D) and the borrow out (B) shown as -1

Borrow in
$$= 0$$

$$\begin{array}{ccc}
X & 0 \\
-Y & -0 \\
\hline
B D & 0 0
\end{array}$$

$$\frac{1}{-0}$$

$$\frac{1}{-1}$$

Borrow in
$$= -1$$

Multiple Bit Binary Subtraction

- Start with the least significant bit (rightmost bit)
- Subtract each pair of bits
- Include the borrow in the subtraction, if present

Hexadecimal Subtraction

- Start with the least significant hexadecimal digits
- Let Difference = subtraction of two hex digits
- If Difference is negative
 - ♦ Difference = 16 + Difference and Borrow = -1
- Example:

Binary Multiplication

Binary Multiplication table is simple:

$$0 \times 0 = 0$$
, $0 \times 1 = 0$, $1 \times 0 = 0$, $1 \times 1 = 1$

Multiplicand

Multiplier

 $\times 1100_2 = 12$
 $\times 1100_2 = 13$

Binary multiplicat

0000 1100 1100

Binary multiplication is easy

 $0 \times \text{multiplicand} = 0$

 $1 \times \text{multiplicand} = \text{multiplicand}$

Product

$$10011100_2 = 156$$

- \bullet *n*-bit multiplicand \times *n*-bit multiplier = 2*n*-bit product
- Accomplished via shifting and addition

Registers

- Registers are fast storage devices used inside processors
- Used to store computation results of a running program
- ❖ A Register consists of a fixed number n of storage bits
- ❖ The register size n is typically a power of 2 (8, 16, 32, 64)
- Numbers stored in registers are either unsigned or signed

The byte size is equal to 8 bits, but the word size can vary from one computer to another

Signed Numbers

- Several ways to represent a signed number
 - ♦ Sign-Magnitude
 - ♦ 1's complement
- Divide the range of values into 2 equal parts

 - ♦ Second part correspond to the negative numbers (< 0)</p>
- The 2's complement representation is widely used
 - ♦ Has many advantages over other representations

Sign-Magnitude Representation

- Independent representation of the sign and magnitude
- Leftmost bit is the sign bit: 0 is positive and 1 is negative
- ❖ Using *n* bits, largest represented magnitude = $2^{n-1} 1$

Sign-magnitude representation of +45 using 8-bit register

Sign-magnitude representation of -45 using 8-bit register

Properties of Sign-Magnitude

- ❖ Two representations for zero: +0 and -0
- Symmetric range of represented values:
 - For n-bit register, range is from $-(2^{n-1}-1)$ to $+(2^{n-1}-1)$
 - For example using 8-bit register, range is -127 to +127
- Hard to implement addition and subtraction
 - ♦ Sign and magnitude parts have to processed independently
 - Sign bit should be examined to determine addition or subtraction Addition is converted into subtraction when adding numbers of different signs
 - Need a different circuit to perform addition and subtraction Increases the cost of the logic circuit

1's Complement Representation

- ❖ Given a binary number N
 The 1's complement of N is obtained by reversing each
- ***** Example: 1's complement of $(01101001)_2 = (10010110)_2$
- ❖ If *N* consists of *n* bits then 1's complement of $N = (2^n - 1) - N$
- $(2^n 1)$ is a binary number represented by n 1's

bit in N (0 becomes 1, and 1 becomes 0)

* Example: if n = 8 then $(2^8 - 1) = 255 = (111111111)_2$ 1's complement of $(01101001)_2 = (11111111)_2 - (01101001)_2 = (10010110)_2$

2's Complement Representation

- Almost all computers today use 2's complement to represent signed integers
- ❖ A simple definition for 2's complement:

Given a binary number N

The 2's complement of N = 1's complement of N + 1

- * Example: 2's complement of $(01101001)_2 = (10010110)_2 + 1 = (10010111)_2$
- ❖ If N consists of n bits then

2's complement of $N = 2^n - N$

Computing the 2's Complement

starting value	00100100 ₂ = +36
step1: reverse the bits (1's complement)	110110112
step 2: add 1 to the value from step 1	+ 1 ₂
sum = 2's complement representation	11011100 ₂ = -36

2's complement of 110111100_2 (-36) = 00100011_2 + 1 = 00100100_2 = +36 The 2's complement of the 2's complement of N is equal to N

Another way to obtain the 2's complement:

Start at the least significant 1
Leave all the 0s to its right unchanged
Complement all the bits to its left

Binary Value
= 00100100 significant 1
2's Complement
= 11011100

Unsigned and Signed Value

Positive numbers

♦ Signed value = Unsigned value

Negative numbers

- ♦ Signed value = Unsigned value 2^n
- \Rightarrow n = number of bits

Negative weight for MSB

 Another way to obtain the signed value is to assign a negative weight to most-significant bit

1	0	1	1	0	1	0	0	
-128	64	32	16	8	4	2	1	

$$= -128 + 32 + 16 + 4 = -76$$

8-bit Binary value	Unsigned value	Signed value
00000000	0	0
00000001	1	+1
00000010	2	+2
01111110	126	+126
01111111	127	+127
10000000	128	-128
10000001	129	-127
11111110	254	-2
11111111	255	-1

Properties of the 2's Complement

- ❖ The 2's complement of N is the negative of N
- ❖ The sum of N and 2's complement of N must be zero
 The final carry is ignored
- ❖ Consider the 8-bit number $N = 00101100_2 = +44$ -44 = 2's complement of $N = 11010100_2$ $00101100_2 + 11010100_2 = 1 00000000_2$ (8-bit sum is 0) Left lignore final carry
- ❖ In general: Sum of N + 2's complement of $N = 2^n$ where 2^n is the final carry (1 followed by n 0's)
- ❖ There is only one zero: 2's complement of 0 = 0

Ranges of Unsigned/Signed Integers

For *n*-bit unsigned integers: Range is 0 to $(2^n - 1)$

For *n*-bit signed integers: Range is -2^{n-1} to $(2^{n-1}-1)$

Positive range: 0 to $(2^{n-1} - 1)$

Negative range: -2^{n-1} to -1

Storage Size	Unsigned Range	Signed Range	
8 bits (byte)	0 to $(2^8 - 1) = 255$	$-2^7 = -128$ to $(2^7 - 1) = +127$	
16 bits	0 to $(2^{16} - 1) = 65,535$	$-2^{15} = -32,768$ to $(2^{15} - 1) = +32,767$	
32 bits	0 to $(2^{32} - 1) =$	$-2^{31} = -2,147,483,648$ to	
32 DIIS	4,294,967,295	$(2^{31} - 1) = +2,147,483,647$	
64 bits	0 to $(2^{64} - 1) =$	$-2^{63} = -9,223,372,036,854,775,808$ to	
04 DILS	18,446,744,073,709,551,615	$(2^{63} - 1) = +9,223,372,036,854,775,807$	

Binary Arithmetic EIC- 0844091 © Luo Jie – slide 21

Sign Extension

- Step 1: Move the number into the lower-significant bits
- Step 2: Fill all the remaining higher bits with the sign bit
- This will ensure the correctness of the signed value
- Examples
 - \Rightarrow Sign-Extend 10110011₂ to 16 bits 10110011₂ = -77 \Longrightarrow 11111111 10110011 = -77
 - \Rightarrow Sign-Extend 01100010₂ to 16 bits 01100010₂ = +98 \Longrightarrow 00000000 01100010 = +98
- ❖ Infinite 0's can be added to the left of a positive number
- Infinite 1's can be added to the left of a negative number

Subtraction with 2's Complement

- ❖ When subtracting A − B, convert B to its 2's complement
- ❖ Add A to (2's complement of B)

- Final carry is ignored, because
 - ♦ Negative number is sign-extended with 1's
 - ♦ You can imagine infinite 1's to the left of a negative number
 - ♦ Adding the carry to the extended 1's produces extended zeros

Carry and Overflow

- Carry is important when ...
 - ♦ Adding or subtracting unsigned integers
 - ♦ Indicates that the unsigned sum is out of range
 - ♦ Either < 0 or >maximum unsigned n-bit value
- ❖ Overflow is important when ...
 - ♦ Adding or subtracting signed integers
 - ♦ Indicates that the signed sum is out of range
- Overflow occurs when
 - ♦ Adding two positive numbers and the sum is negative
 - ♦ Adding two negative numbers and the sum is positive
 - ♦ Can happen because of the fixed number of sum bits

Carry and Overflow Examples

- We can have carry without overflow and vice-versa
- Four cases are possible (Examples are 8-bit numbers)

Range, Carry, Borrow, and Overflow

Unsigned Integers: n-bit representation

❖ Signed Integers: *n*-bit 2's complement representation

Binary Arithmetic EIC- 0844091 © Luo Jie – slide 26