Alex J, anann Homework 2 1.9: 11a. 10 10 d. 100010 10000 1001 00100 00000 00001 14. a. True 6. False C. [100] 100 = I Fals 16,0,50017 b. True C. There $x_1 + 2(0) = -1 x_1 = -1$ 23. First: Permintations: R2'>RI ROW OPSIR3=R3+R1-R2 R3>RZ valid RB = RB

Socond: fermulations: R3 > R1 Row Ops: R2 = R2+R1 Valid
R1 > R3
R3 = R3+R2
Third; Fermulations: R3 > R1 Row Ops: R3 = R3+R1+R2
R1 > R2
R2 > R3

1.3: 1.a.
$$\begin{bmatrix} 2 & 37 & -1 & -3 \\ -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2$$

5. This is because there in a motrix you can multiply it by that will result in a lon the diagonal in the row where the original most ix had all zeroes.

-321 1-2R1 -2R2 7. [a c] [a b] = [ab] [a c]
[b d] [c d] = [ab] [b d]

[a²+c² ab+d] = [a²+b² ac+bd]
[ab+d] b²+d²]

All 2x2 matrices of the form [a b]
[-b d] 16. 10. [x] W= [x] W= [x] Txx4]= [x1/x x1/x] [x2/x x2/x]
W4 = [x2] [x1/x2] = [x1/x x2/x] (False) 12.a. Brownse a MXN times con IXN results in an mx i and since the only entry is a lin the oth column that is the only part of the result that isn't O. is. Because for size colods up being ix! good ali is the only element present in A) Ei and e; T.a. Because flipping the entries about the which is the inverse (ex. R2 > R1, R3 > R2, R1>R3 becomes (R1> K2, R2>R3, R3>R1), 176. a=-1 b=2 L=3