[19]中华人民共和国国家知识产权局

[51] Int. Cl7

COTF 7/18

COSJ 5/08 COSK 5/54

# [12] 发明专利申请公开说明书

[21] 申请号 98801562.5

[43]公开日 2000年1月26日

[11]公开号 CN 1242774A

[22]申簿日 1998.8.21 [21]申请号 98801562.5 [30]优先权

[32]1997. 8.21 [33]US [31]06/056,566 [86]爾縣申讀 PCT/US98/17391 1998. 8.21 [87]國際公布 WO99/09036 英 1999. 2.25 [85]进入國家阶級日鄉 1999. 6.21

K·J·维勒 E·R·波尔

地址 美国原深状格州 [72]复明人 R·W·克鲁瑟 R·J·皮克维尔

[71]申请人 布特科公司

[74]专利代理机构 中国专利代理(香港)有限公司 代理人 王萊朝 罗才希

权利要求书7页 说明书36页 附图页数0页

[54]发明名称 用于填充橡胶的封端巯基硅烷俱联剂 [57]糖基

本发明描述了新的封端巯基磁烧,其中礦群官能因 的氫原子已被取代。本发明 包括封嘴類基硅化合物的 销套方法及其在填充橡胶中的应用。所述封氧巯基硅 烷的強特之处在于。在填料与有级合物进行混合时,它 们对与聚合物的偶碳 反应保持情性。所述封端磷基键 统化合物的偶碳反应可遏过加入合适的解封剂 而触发。

### 1. 选自以下式(1)和(2)的封端巯基硅烷:

[[(ROC(=O)),-(G),],-Y-S],-G-(SiX,), (1);

和

 $[(X_3Si)_q-G]_x-[Y-[S-G-SiX_3]_b]_c$ 

其中

5

10

Y 为多价的(Q) A(=E)基团,选自,

-C(=NR)-;

 $\begin{subarray}{l} \begin{subarray}{l} \be$ 

 $-OS(-O)-; -(NR)S(-O)-; -SS(-O)_2-; (-S)_2P(-O)-; -(-S)P(-O)-; -P(-O)(-)_2; (-S)_2P(-S)-; -P(-O)(-)_2; (-S)_2P(-O)-; -P(-O)(-O)-; -P(-O)-; -P(-O)(-O)-; -P(-O)-; -P(-O)-; -P(-O)-; -P(-O)-; -P(-O)-; -P(-O)-; -P(-O)-; -P(-O)-; -P(-O)-; -P(-O$ 

 $-(-S)P(-S)-; -P(-S)(-)_2; (-NR)_2P(-O)-; (-NR)(-S)P(-O)-; (-O)(-NR)P(-O)-; (-O)(-S)P(-O)-; ($ 

 $(-O)_{2}P(=O)-;-(-O)P(=O)-;-(-NR)P(=O)-;(-NR)_{2}P(=S)-;(-NR)(-S)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)(-NR)P(=S)-;(-O)$ 

 $(-O)(-S)P(=S)-; (-O)_2P(=S)-; -(-O)P(=S)-; \not \Rightarrow -(-NR)P(=S)-; \\$ 

在每一情况下,连接到不饱和杂原子(E)上的原子(A)被连接到硫上、然后通过基因G键接到硅原子上;

每个R独立地选自氩原子、具有或不具有不饱和度的直链、环状或支链烷基、烯基、芬基和芳烷基,其中每个R包含1-18个碳原子;

每个G独立地为通过烷基、烯基、芳基或芳烷基进行取代而得到的一价或多价基团、其中G可包含1-18个碳原子、但G不应使得硅烷含有α,β-不饱和羰基,其中包括邻近硫代羰基的碳碳双键,而且G为一价附、G可以是氯原子;

X 独立她为选自-C1、-Br、RO-、RC(=0)O-、R<sub>2</sub>C=NO-、R<sub>2</sub>NO-或 R<sub>2</sub>N-、-R、-(OSiR<sub>2</sub>)、(OSiR<sub>3</sub>)的基团,其中每个R和G如上,且至少 一个X不是-R;

p 为 0-5; r 为 1-3; z 为 0-2; q 为 0-6; a 为 0-7; b 为 1-3; j

为 0-1, 但仅当 p 为 1 时, j 才为 0; c 为 1-6; t 为 0-5; s 为 1-3; k 为 1-2, 但必須满足: (A)A为碳原子、硫原子或磺酰基时,(i)a+b=2

ì

且(ii)k=1; (B)A为磷原子时,a+b=3,除非(i)c>1且(ii)b=1, 其中a=c+1;和(C)A为磷原子时,k为2.

- 根据权利要求 1 的封端巯基硅烷,其中 R 选自甲基、乙基、 两基、异丁基、苯基、甲苯基、苯乙基、降冰片基、降冰片烯基、乙 5 基降冰片基、乙基降冰片烯基、乙基环己基、乙基环己烯基、和环己 展环己基。
  - 3. 根据权利要求 1 的结构式 ( I ) 封端巯基硅烷。
  - 4. 根据权利要求 1 的结构式 ( II ) 封端巯基硅烷.
  - 5. 根据权利要求1的封端巯基硅烷,它已部分水解.
  - 6. 根据权利要求 1 的封端巯基硅烷,其中 Y 选自-OC(=0)-、-SC(=0)-、-SC(=0)-、-OS(=0)-、-(-S)P(=0)-、和-P(=0)(-)2\*
    - 7. 根据权利要求 1 的封端巯基硅烷,其中,分子中 G 基固的碳 原子总数为 3-18.
- 根据权利要求 1 的封端巯基硅烷,其中 X 选自甲氧基、乙氧
   基、异丁氧基、丙氧基、异丙氧基、乙酰氧基和肟基。
  - 9. 根据权利要求 1 的封端巯基硅烷, 其中: p 为 0-2; X 为 RO-或 RC (=0) 0-; R 选自氩原子、苯基、异丙基、环己基、异丁基; 且 G 为取代苯基或 Cs-Cn,取代直链烷基。
    - 10. 一种制造填充橡胶的方法,其中包括:
      - a. 将橡胶、封端巯基硅烷和无机填料进行混合;
  - b. 向步骤(a)的混合物中,混入用于解封巯基硅烷的解封剂和 固化剂;然后
    - c. 使该混合物固化.
    - 11. 根据权利要求 10 的方法,其中封端巯基硅烷选自:

 $[[(ROC(=O))_p-(G)_i]_k-Y-S]_r-G-(SiX_1)_r$ , (1);

和

10

20

Y 为多价的(Q).A(=E)基团,在每一情况下,连接到不饱和杂原子 (E)上的原子(A)被连接到碳上、然后通过基因G键接到硅质子上;

每个 R 独立地选自氦原子、具有或不具有不饱和度的直链、环状 或支链烷基、烯基、芳基和芳烷基,其中每个R包含1-18个碳原子;

每个日独主地为通过烷基、烙基、芳基或芳烷基进行取代而得到 的一价或多价基团,其中 G 可包含 1-18 个碳原子,但 G 不应使得硅 烷含有α. β-不饱和羰基, 其中包括邻近硫代羰基的碳碳双键, 而且 G 为一价时, G可以是氦原子;

X 独立地为选自-C1、-Br、RO-、RC(=0)0-、R<sub>2</sub>C=NO-、R<sub>2</sub>NO-或 R<sub>2</sub>N-、-R、-(OSiR<sub>2</sub>),(OSiR<sub>3</sub>)的一个基团,其中每个R和G如上所述, 且至少一个 X 不是-R:

Q 为氮原子、硫原子或(-NR-);

A 为碳质干、硫质干、磷质干、或磺酰基;

E为氧质子、硫质子或 NR:

5

15

20

30

p为 0-5; r为 1-3; z为 0-2; q为 0-6; a为 0-7; b为 1-3; i 为 ()-1. 但仅当 n 为 1 时、 i 才为 (); c 为 1-6; t 为 ()-5; s 为 1-3; k为1-2,但必须满足:(A)A为碳原子、硫原子或磺酰基时,(i)a+b=2 且(ii)k=1; (B) A 为磷原子时, a+b=3, 除非(i)c>l 且(ii)b=1, 此时 a=c+1; 和 (C) A 为磷原子时, k 为 2,

12. 根据权利要求 11 的方法, 其中巯基硅烷选自:

硫代乙酸(2-三乙氧基甲硅烷基-1-乙基)酯、硫代乙酸(2-三甲氧 基甲硅烷基-1-乙基)酯、硫代乙酸(2-(甲基二甲氧基甲硅烷基)-1-乙基) 酯、硫代乙酸(3-三甲氧基甲硅烷基-1-丙基)酯、硫代乙酸(三 乙氧基甲硅烷基甲基)酯、硫代乙酸(三甲氧基甲硅烷基甲基)酯、硫 25 代乙酸(三异丙氧基甲硅烷基甲基)酯,硫代乙酸(甲基二乙氧基甲硅 烷基甲基)酯、硫代乙酸(甲基二甲氧基甲硅烷基甲基)酯、硫代乙酸 (甲基二异丙氧基甲硅烷基甲基)酯、硫代乙酸(二甲基乙氧基甲硅烷 基甲基) 酯、硫代乙酸 (二甲基甲氧基甲硅烷基甲基) 酯、硫代乙酸 (二 甲基异丙氧基甲硅烷基甲基)酯、硫代乙酸(2-三异丙氧基甲硅烷基-1-乙基)酯、硫代乙酸(2-(甲基二乙氧基甲硅烷基)-1-乙基)酯、硫代 乙酸(2-(甲基二异丙氧基甲硅烷基)-1-乙基)酯、硫代乙酸(2-(二甲 基乙氧基甲硅烷基)-1-乙基)酯、硫代乙酸(2-(二甲基甲氧基甲硅烷

基)-1-乙基)酯、硫代乙酸(2-(二甲基异丙氧基甲硅烷基)-1-乙基) 酯、硫代乙酸(3-三乙氧基甲硅烷基-1-丙基)酯、硫代乙酸(3-三异丙 氧基甲硅烷基-1-丙基)酯、硫代乙酸(3-甲基二乙氧基甲硅烷基-1-丙 基) 酯, 硫代乙酸(3-甲基二甲氧基甲硅烷基-1-丙基) 酯、硫代乙酸(3-甲基二异丙氧基甲硅烷基-1-丙基)酯、(1-(2-三乙氧基甲硅烷基-1-乙基)-4-硫代乙酰基环己烷、(1-(2-三乙氧基甲硅烷基-1-乙基)-3-硫代乙酰基环己烷、2-三乙氧基甲硅烷基-5-硫代乙酰基降冰片烯、 2-三乙氧基甲硅烷基-4-硫代乙酰基降冰片烯、2-(2-三乙氧基甲硅烷 基-1-乙基)-5-硫代乙酰基降冰片烯、2-(2-三乙氧基甲硅烷基-1-乙 基)-4-硫代乙酰基降冰片烯、1-(1-氧杂-2-硫杂-5-三乙氧基甲硅烷 基戊基)苯甲酸、硫代乙酸(6-三乙氧基甲硅烷基-1-己基)酯、硫代乙 酸(1-三乙氧基甲硅烷基-5-己基)酯、硫代乙酸(8-三乙氧基甲硅烷基 -1-辛基) 酯、硫代乙酸(1-三乙氧基甲硅烷基-7-辛基) 酯、硫代乙酸 (6-三乙氧基甲硅烷基-1-己基)酯、硫代乙酸(1-三乙氧基甲硅烷基-5-辛基) 酯、硫代乙酸(8-三甲氧基甲硅烷基-1-辛基) 酯、硫代乙酸(1-三甲氧基甲硅烷基-7-辛基)酯、硫代乙酸(10-三乙氧基甲硅烷基-1-癸基)酯、硫代乙酸(1-三乙氧基甲硅烷基-9-癸基)酯、硫代乙酸(1-三乙氧基甲硅烷基-2-丁基)酯、硫代乙酸(1-三乙氧基甲硅烷基-3-丁 基) 酯、硫代乙酸(1-三乙氧基甲硅烷基-3-甲基-2-丁基) 酯、硫代乙 酸 (1-三乙氧基甲硅烷基-3-甲基-3-丁基) 酯、硫代辛酸 (3-三甲氧基 甲硅烷基-1-丙基)酯、硫代棕榈酸(3-三乙氧基甲硅烷基-1-丙基) 酯、硫代辛酸(3-三乙氧基甲硅烷基-1-丙基)酯、硫代苯甲酸(3-三乙 氨基甲硅烷基-1-丙基)酯、硫代-2-乙基己酸(3-三乙氧基甲硅烷基-1-丙基) 酯、硫代乙酸(3-甲基二乙酰氧基甲硅烷基-1-丙基)酯、硫代 乙酸(3-三乙酰氧基甲硅烷基-1-丙基)酯、硫代乙酸(2-甲基二乙酰氧 基甲硅烷基-1-乙基) 酯、硫代乙酸(2-三乙酰氧基甲硅烷基-1-乙基) 酯、硫代乙酸(1-甲基二乙酰氧基甲硅烷基-1-乙基)酯、硫代乙酸(1-三乙酰氧基甲硅烷基-1-乙基)酯、三硫代磷酸三-(3-三乙氧基甲硅烷 基-1-丙基)酯、二硫代膦酸(双-(3-三乙氧基甲硅烷基-1-丙基)甲基) 酯、二硫代磷酸(双-(3-三乙氧基甲硅烷基-1-丙基)乙基)酯、硫代次 膦酸(3-三乙氧基甲硅烷基-1-丙基二甲基)酯、硫代次膦酸(3-三乙氧 基甲硅烷基-1-丙基二乙基)酯、四硫代磷酸三-(3-三乙氧基甲硅烷基

10

15

20

-1-丙基)酯、三硫代膦酸(双-(3-三乙氧基甲硅烷基-1-丙基)甲基) 酯、三硫代膦酸(双-(3-三乙氧基甲硅烷基-1-丙基)乙基)酯、二硫代 次膦酸(3-三乙氧基甲硅烷基-1-丙基二甲基)酯、二硫代次膦酸(3-三 乙氧基甲硅烷基-1-丙基二乙基)酯、三硫代磷酸三-(3-甲基二甲氧基 甲硅烷基-1-丙基)酯、二硫代膦酸(双-(3-甲基二甲氧基甲硅烷基-1-丙基)甲基)酯、二硫代膦酸(双-(3-甲基二甲氧基甲硅烷基-1-丙 基) 乙基) 酯、二硫代次膦酸 (3-甲基二甲氧基甲硅烷基-1-丙基二甲基) 酯。二硫代次膦酸(3-甲基二甲氧基甲硅烷基-1-丙基二乙基)酯、硫 代硫酚(3-三乙氧基甲硅烷基-1-丙基甲基)酯、(3-三乙氧基甲硅烷基 -1-丙基甲烷)硫代磺酚酯、(3-三乙氧基甲硅烷基-1-丙基乙烷)硫代 醋酚酯。(3-三乙氧基甲硅烷基-1-丙基苯)硫代磺酸酯。(3-三乙氧基 甲硅烷基-1-丙基甲苯)硫代磺酸酯、(3-三乙氧基甲硅烷基-1-丙基萘) 硫代磺酸酯、(3-三乙氧基甲硅烷基-1-丙基二甲苯)硫代磺酸酯、甲 基硫代硫酸三乙氧基甲硅烷基甲基酯、三乙氧基甲硅烷基甲基甲烷硫 代磷酸酯、三乙氧基甲硅烷基甲基乙烷硫代磺酸酯、三乙氧基甲硅烷 基甲基苯硫代磺酸酯、三乙氧基甲硅烷基甲基甲苯硫代磺酸酯、三乙 氧基甲硅烷基甲基萘硫代磺酸酯, 三乙氧基甲硅烷基甲基二甲苯硫代 磷酸酯.

13. 根据权利要求 11 的方法、其中 Y 为-C(=0)-.

20

30

14. 根据权利要求 13 的方法, 其中: 每个 X 为 RO-, 硅烷具有结构式 (1), r=1 且 s=1.

15. 一种制造封端巯基硅烷的方法,选自: 1) 巯基硅烷与对应于所需产物中硫酯基因的酸酐进行反应; 2) 巯基硅烷的碱金属盐与合适的酸酐或酰基卤进行反应; 3) 巯基硅烷与酯进行酯基转移反应; 4)硫酯硅烷与另一酯进行酯基转移反应; 5) 1-硅杂-2-硫杂环戊烷或1-硅杂-2-硫杂环己烷与酯进行酯基转移反应; 6) 在紫外线、热、或合适游离基引发剂的催化下,通过游离基加成反应机理,使硫代酸在烯烃官能团硅烷的碳碳双键上进行加成反应,其中如果硫代酸为硫代羧酸,那么这两种反应物的相互接触方式应保证,无论是何种试剂加入另一试剂中,基本上都能反应,随后加成反应得以进行;和7) 硫代酸的碱金属盐与卤烷基硅烷进行反应.

16. 根据权利要求 15 的方法, 其中所述酰氯或酸酐分别为无机

酰氯或无机酸酐。

17. 根据权利要求 16 的方法, 其中所得巯基硅烷是权利要求 12 所要求的巯基硅烷。

18. 一种橡胶组合物, 其中包含:

a. 选自以下式(1)和(2)的封端巯基硅烷:

[[(ROC(=O)),-(G),],-Y-S],-G-(SiX<sub>3</sub>), (1);

和

4

20

 $[(X_3Si)_q-G]_a-[Y-[S-G-SiX_3]_b]_a$  (2)

其中

10 Y 为-C(=0)-;

每个R独立地选自氩原子、具有或不具有不饱和度的直链, 环状或支链烷基、烯基、芳基和芳烷基, 其中每个R包含1-18个碳原子;

每个 G 独立地为通过烷基、烯基、芳基或芳烷基进行取代而得到的一价或多价基团, 其中 G 可包含 1-18 个碳原子, 但 G 不应使得硅烷含有α,β-不饱和羰基,其中包括邻近硫代羰基的碳碳双键,而且 G 为一价时(如果 p=0), G 可以是氢原子;

X 独立地为选自-C1、-Br、R0-、RC(=0)0-、R<sub>2</sub>C=N0-、R<sub>2</sub>N0-或 R<sub>2</sub>N-、-R、-(0SiR<sub>2</sub>)、(0SiR<sub>3</sub>)的一个基团,其中每个R和G如上所述,且至少一个X不是-R;

p 为 0-5; r 为 1-3; q 为 0-6; a 为 0-7; b 为 1-2; j 为 0-1, 但 仅当 p 为 1 时, j 才为 0; c 为 1-6; t 为 0-5; s 为 1-3; k 为 1; 且 a+b=2;

- b. 有机聚合物; 和
- c. 填料,
- 25 该组合物基本上没有官能化硅氧烷。
  - 19. 一种结构式 X<sub>3</sub>SiGSC(=0)GC(=0)SGSiX<sub>3</sub>的硅烷, 其中

的二价基团, 其中 G 可包含 1-18 个碳原子, 但 G 不应使得硅烷含有 α. B-不饱和羰基、其中包括邻近硫代羰基的碳碳双键;

X 独立地为选自-C1、-Br、RO-、RC(=0)O-、R<sub>2</sub>C=NO-、R<sub>2</sub>NO-或 R<sub>2</sub>N-、-R、-(OSiR<sub>2</sub>),(OSiR<sub>3</sub>)的一个基团,其中每个R和G如上所述, 5 且至少一个X不是-R;

t. 为 0-5。

20. 以下结构式的硅烷: 选自以下式(1)和(2)的封端巯基硅烷:

 $[[(ROC(=O))_{o}-(G)_{i}]_{s}-Y-S]_{s}-G-(SiX_{3})_{s}$  (1);

10 🗫

15

 $[(X_3Si)_a - G]_k - [Y - [S - G - SiX_3]_k]_c$  (2)

其中

Y 为-C(=0)-;

R 具有连接到羰基上的伯碳原子, 且为 Co-Co烷基;

每个 G 独立地为通过烷基、烯基、芳基或芳烷基进行取代而得到的一价或多价基因,其中 G 可包含 1-18 个碳原子,但 G 不应使得硅烷含有 $\alpha$ ,  $\beta$ -不饱和羰基,其中包括邻近硫代羰基的碳碳双键,而且 G 为一价时(如果 p=0),G 可以是氮原子;

X 独立地为选自-C1、-Br、RO-、RC(=0)O-、R<sub>2</sub>C=NO-、R<sub>3</sub>NO-或 20 R<sub>2</sub>N-、-R、-(OSiR<sub>2</sub>)、(OSiR<sub>3</sub>)的一个基团,其中每个R和G如上,且 至少一个X不是-R;

p为0-5; r为1-3; q为0-6; a为0-7; b为1-2; j为0-1, 但仅当p为1时, j才为0; c为1-6; t为0-5; s为1-3; k为1; 且 a+b=2.

## 用于填充橡胶的封端巯基硅烷偶联剂

### 发明領域

5

10

25

本发明涉及潜在的硫硅烷偶联剂,即、它们处于减活性态直到有 用时才将其活化。本发明还涉及包含无机填料和这些硅烷偶联剂的橡 胺的制备方法、以及硅烷的制备方法。

### 发明背景

关于含硫偶联剂在橡胶中的应用,大多数已有技术涉及、含有一 个或多个下述种类化学键的硅烷: S-H(巯基)、S-S(二硫化物或多 硫化物)、或 C=S(硫代羰基)。巯基硅烷基本上可在较低的加入量 下产生优异的偶联作用;但其与有机聚合物的化学反应性很强在加工 和早期固化(早期硫化)时会产生不可接受的高粘度。其气味则加重 了它不受欢迎的程度。结果, 现已发现活性较差的其它偶联剂。因此, 15 应该在偶联性能及其相关最终性能、加工性能、与所需加入量之间达 成一种折中方案,但这肯定会需要基本上比巯基硅烷所需要高的偶联 剂加入量,而且常需要涉及不够优化的加工条件,这两者都导致成本 升高.

已有技术公开了酰基硫代烷基硅烷,如 CHaC(=0)S(CHa), .Si(OR)、[M. G. Voronkov 等人的 Inst. Org. Khim., Irkutsk, Russia] 和 HO(=0) CH<sub>2</sub>CH<sub>2</sub>C(=0)S(CH<sub>2</sub>)<sub>3</sub>Si(OC<sub>2</sub>H<sub>4</sub>)<sub>3</sub>[R. Bell 等人的美国专利Me 3922436]. 在日本专利 JP 63270751A2 中, Takeshita 和 Sugawara 公开了由通式 CHs=C(CHs)sC(=0)S(CHs); sSi(OCHs); 表示的化合物在轮 胎胎面组合物中的应用,但这些化合物不够理想,因为硫代酯羰基的 α、8不饱和度易在配合过程中或储存过程中非所需地进行聚合。

作为已有技术, Yves Bomal 和 Olivier Durel 在澳大利亚专利 AU-A-10082/97 中公开了通式 R'"X3."Si-(Alk).(Ar)。-S(C=O)-R 所示 结构的硅烷的应用、其中R'为苯基或烷基; X为卤素、烷氧基、环烷 氧基、酸基、或 OH; AIk 为烷基; Ar 是芳基: R 为烷基、链烯基、或 芳基; n为 0-2; 且 m 和 n 分别为 0 或 1, 但不能同时为 0. 但是。该 已有技术规定,式(IP)结构的组分必须与官能化硅氧烷一起使用. 20日本江上四四七八五七根二日杏子(1D)的收入编作为旅店 巯基硅烷偶联剂的应用,也没有以任何方式公开或提示这些化合物在 作为潜在巯基硅烷源应用时所产生的优点。

Ahamd 等人的美国专利M4519430 和 Shippy 等人的美国专利M4184998 公开了用异氰酸酯将巯基硅烷进行封端以形成可加入轮胎组 6 物中的固体,其中硫醇可在加热时反应进入轮胎中,这发生在加工的任何时候,因为这是一种热作用机理。硅烷的作用是避免巯基硅烷的硫气味,而不是为了提高轮胎的加工性能。还有,所用异氰酸酯在用于制备硅烷时,和在橡胶加工过程中释放毒性。

Porchet 等人的美国专利 № 3957718 公开了包含二氧化硅、酚醛 塑料或氨基塑料、和硅烷,如黄原酸酯、硫代黄原酸酯、和二硫代氨 基甲酸酯的组合物;但该已有技术既没有公开或提示这些硅烷作为潜在巯基硅烷偶联剂的应用,也没有公开或提示它们作为潜在巯基硅烷 源进行应用的优点。因此,仍然有对巯基硅烷的优点但没有本文所述 缺点的有效潜在偶联剂的需求。

#### 15 发明概述

20

25

本发明的硅烷是巯基硅烷衍生物,其中巯基基因是封端的("封端巯基硅烷"),即,巯基氧原子被另一基因(下文称作"封端基因")置换.具体地说,本发明硅烷是封端巯基硅烷,其中封端基因包含通过单键直接化学键接到硫上的不饱和杂原子或碳原子。该封端基因可选地被一种或多种羧酸酯或羧酸官能因所取代。本文还介绍了这些硅烷在制备无机填充橡胶中的应用,其中可通过制备过程中使用解封剂进行解封,还介绍了这些硅烷的制备方法。

发明详述

#### 硅烷结构

封端巯基硅烷可由结构式(1-2)来表示:

$$[[(ROC(=\!O))_{p}\text{-}(G)_{j}]_{k}\text{-}Y\text{-}S]_{r}\text{-}G\text{-}(SiX_{3})_{s}\ (1)$$

$$[(X_sSi)_s-G]_s-[Y_s-G_sSiX_s]_s]_s$$
 (2)

其中 Y 为多价的(Q).A(=E), 优选自

$$\begin{split} & -C(=NR)\cdot; -SC(=NR)\cdot; -SC(=O)\cdot; (-NR)C(=O)\cdot; (-NR)C(=S)\cdot; -OC(=O)\cdot; -OC(=S)\cdot; \\ & -C(=O)\cdot; -SC(=S)\cdot; -C(=S)\cdot; -S(=O)\cdot; -S(=O)\cdot; -S(=O)\cdot; -OS(=O)\cdot; \cdot(-NR)S(=O)\cdot; \cdot SS(=O)\cdot; \\ \end{split}$$

$$\begin{split} & \cdot_{OS}(=O)\cdot; (\cdot NR)S(=O)\cdot; \cdot SS(=O)_{2^{\circ}}; (\cdot S)_{2}P(=O)\cdot; \cdot (\cdot S)P(=O)\cdot; \cdot P(=O)(\cdot)_{2}; (\cdot S)_{2}P(=S)\cdot; \\ & \cdot (\cdot S)P(=S)\cdot; \cdot P(=S)(\cdot)_{2}; (\cdot NR)_{2}P(=O)\cdot; (\cdot NR)(\cdot S)P(=O)\cdot; (\cdot O)(\cdot NR)P(=O)\cdot; (\cdot O)(\cdot S)P(=O)\cdot; \\ & \cdot (\cdot O)_{1}P(=O)\cdot; \cdot (\cdot O)P(=O)\cdot; \cdot (\cdot NR)P(=O)\cdot; (\cdot NR)_{2}P(=S)\cdot; (\cdot NR)(\cdot S)P(=S)\cdot; (\cdot O)(\cdot NR)P(=S)\cdot; \\ & \cdot (\cdot O)(\cdot S)P(=S)\cdot; (\cdot O)_{2}P(=S)\cdot; \cdot (\cdot O)P(=S)\cdot; \cdot f_{3^{\circ}}\cdot (\cdot NR)P(=S)\cdot; \end{aligned}$$

在每一情况下,连接到不饱和杂原子(E)上的原子(A)被连接到硫上,然后通过基因G健接到硅原子上;

每个R独立地选自氦原子、具有或不具有不饱和度的直链、环状或支链烷基、链烯基、芳基和芳烷基, 其中每个R包含1-18个碳原子;

每个 G 独立地为通过烷基、烯基、芳基或芳烷基进行取代而得到的一价或多价基因,其中 G 可包含 1-18 个碳原子,但 G 不应使得硅烷含有 $\alpha$ ,  $\beta$ -不饱和羰基(其中包括邻近硫代羰基的碳碳双键),而且 G 为一价时(即如果 p=0), G 可以是氮原子;

X 独立地为选自-C1、-Br、R0-、RC(=0)0-、R<sub>2</sub>C=N0-、R<sub>3</sub>N0-或 R<sub>2</sub>N-、-R、-(0SiR<sub>2</sub>),(0SiR<sub>3</sub>)的基团,其中每个 R 和 G 如上,且至少一个 X 不是-R;

Q为氧原子、硫原子或(-NR-);

5

18

A 为碳原子、硫原子、磷原子、或磺酰基;

E 为氧原子、硫原子或 NR;

p 为 0-5; r 为 1-3; z 为 0-2; q 为 0-6; a 为 0-7; b 为 1-3; j 为 0-1, 但仅当 p 为 1 时, j 才为 0; c 为 1-6, 优选 1-4; t 为 0-5; s 为 1-3; k 为 1-2, 但必须满足: (A) A 为碳原子、硫原子或磺酰基时, (i) a+b=2 且 (ii) k=1; (B) A 为磷原子时, a+b=3, 除非 (i) c>1 且 (ii) b=1, 此时 a=c+1; 和 (C) A 为磷原子时, k 为 2.

含有一个或多个碳碳双键的直链、支链和环状烯基。烷基具体包括甲基、乙基、丙基、异丁基;芳烷基具体包括苯基、甲苯基和苯乙基。 本文所用的"环状烷基"或"环状烯基"还包括双环或多环结构,以及进一步被烷基取代的环状结构。其代表例包括降冰片基、降冰片烯 5 基、乙基降冰片基、乙基降冰片烯基、乙基环己基、乙基环己烯基、和环己基环己基。

在本发明硅烷中、官能图(-YS-)的代表例包括:硫代羧酸酯-C(=0)-S-(具有这种官能团的任何硅烷为"硫代羧酸酯硅烷");二 硫代羧酸酯-C(=S)-S-(具有这种官能团的任何硅烷为"二硫代羧酸 酯硅烷");硫代碳酸酯-0-C(=0)-S-(具有这种官能团的任何硅烷 10 为"硫代碳酸酯硅烷"); 二硫代碳酸酯, -S-C(=0)-S-和-0-C(=S)-S-(具有这种官能团的任何硅烷为"二硫代碳酸酯硅烷"); 三硫代碳 酸酯。-S-C(=S)-S-(具有这种官能团的任何硅烷为"三硫代碳酸酯 硅烷");二硫代氨基甲酸酯、N-C(=S)-S-(具有这种官能团的任何 硅烷为"二硫代氨基甲酸酯硅烷");硫代磺酸酯,-S(=0)2-S-(具 15 有这种官能团的任何硅烷为"硫代磺酸酯硅烷");硫代硫酸酯,一 ()-S(=0),-S-(具有这种官能团的任何硅烷为"硫代硫酸酯硅烷"); 硫代氨基磺酸酯, (-N-)S(=0),-S-(具有这种官能因的任何硅烷为"硫 代氨基磺酸酯硅烷"); 硫代亚磺酸酯, C-S(=0),-S-(具有这种官 能图的任何硅烷为"硫代亚磺酸酯硅烷");硫代亚硫酸酯,-0-20 S(=0)-S-(具有这种官能团的任何硅烷为"硫代亚硫酸酯硅烷"): 硫代氨基亚硫酸酯,-N-S(=0)-S-(具有这种官能团的任何硅烷为"硫 代氢基亚硫酸酯硅烷"); 硫代磷酸酯, P(=0)(0-)。(S-)(具有这种 官能团的任何硅烷为"硫代磷酸酯硅烷");二硫代磷酸酯, P(=0)(0-)(S-)。或 P(=S)(0-)。(S-)(具有这种官能团的任何硅烷为 "二硫代磷酸酯硅烷"); 三硫代磷酸酯, P(=0)(S-)。或 P(=S)(0-)(S-)。(具有这种官能团的任何硅烷为"三硫代磷酸酯硅 烷"); 四硫代磷酸酯, P(=S)(S-)。(具有这种官能团的任何硅烷为 "四硫代磷酸酯硅烷"); 硫代氨基磷胺酯, P(=0)(-N-)(S-)(具有 30 这种官能团的任何硅烷为"硫代氧基磷胺酯硅烷");二硫代氧基磷 胺酯, P(=S)(-N-)(S-)(具有这种官能团的任何硅烷为"二硫代氨基 磷胺酯硅烷"); 硫代氨基磷酸酯, (-N-)P(=0)(0-)(S-)(具有这种

官能因的任何硅烷为"硫代氨基磷酸酯硅烷");二硫代氨基磷酸酯, (-N-)P(=0)(S-)。或(-N-)P(=S)(0-)(S-)(具有这种官能因的任何硅烷为"二硫代氨基磷酸酯硅烷");三硫代氨基磷酸酯, (-N-)P(=S)(S-)。(具有这种官能因的任何硅烷为"三硫代氨基磷酸酯 硅烷")。

本发明的新型硅烷是这样一些硅烷, 其中 Y基团为:

-C(=NR)-;

-SC(=NR) + ; -SC(=O) + ; -SC(=O) + ; -S(=O) + ; -S(=O) + ; -S(=O) + ; -SC(=O) + ; -SC(=

(-O);P(=O)-; (-O)P(=O)-; (-NR)P(=O)-; (-NR);P(=S)-; (-NR)(-S)P(=S)-; (-O)(-NR)P(=S)-; (-O)(

(-0)(-5)r(-5)-; (-0)<sub>2</sub>r(-5)-; (-0)r(-5)-; (-0)r(-5)-;

10

20

特别优选的是-OC(=0)-、-SC(=0)-、-S(=0)-、-OS(=0)-、-(-S)P(=0)-和-P(=0)(-)2.

在另一种新型硅烷中, Y 为 RC(=0)-, 其中 R 具有连接到羰基上的伯碳原子, 且为 C<sub>2</sub>-C<sub>12</sub>烷基、更优选 C<sub>5</sub>-C<sub>5</sub>烷基。

另一优选的新结构是 X<sub>3</sub>SiGSC(=0)GC(=0)SGSiX<sub>3</sub>, 其中 G 为二价 烃。

G的例子包括-(CH<sub>2</sub>)。-,其中n为1-12,二亚乙基环已烷、1,2,4-15 三亚乙基环己烷和二亚乙基苯.在每个分子中,G基因碳原子的总数优选3-8,更优选6-14.在封端巯基硅烷中,这种碳原子数有助于无机填料在有机聚合物中的分散,因此可提高固化填充橡胶的综合性能。

优选的 R基团为 C,-C,烷基和 H.

X 的具体例子为甲氧基、乙氧基、异丁氧基、丙氧基、异丙氧基、乙酰氧基和肟基。甲氧基、乙酰氧基和乙氧基是优选的。至少一个 X 公须是活性的(即,可水解的)。

在优选实施方案中, p 为 0-2; X 为 R0-或 RC (=0) 0-;  $R 为氮原子、苯基、异丙基、环己基或异丁基; <math>G 为取代苯基或 C_0-C_{10} 取代直链烷$ 

基。在最优选实施方案中, p为 0; X为乙氧基且 G为 Cs-C12 烷基衍生 基团.

本发明硅烷的代表例包括: 硫代乙酸(2-三乙氧基甲硅烷基-1-乙 基) 酯、硫代乙酸(2-三甲氧基甲硅烷基-1-乙基) 酯、硫代乙酸(2-(甲 5 基二甲氧基甲硅烷基)-1-乙基)酯、硫代乙酸(3-三甲氧基甲硅烷基-1-丙基) 酯、硫代乙酸(三乙氧基甲硅烷基甲基) 酯、硫代乙酸(三甲氧 基甲硅烷基甲基)酯、硫代乙酸(三异丙氧基甲硅烷基甲基)酯、硫代 乙酸(甲基二乙氧基甲硅烷基甲基)酯、硫代乙酸(甲基二甲氧基甲硅 烷基甲基)酯、硫代乙酸(甲基二异丙氧基甲硅烷基甲基)酯、硫代乙 酸(二甲基乙氧基甲硅烷基甲基)酯、硫代乙酸(二甲基甲氧基甲硅烷 基甲基)酯、硫代乙酸(二甲基异丙氧基甲硅烷基甲基)酯、硫代乙酸 (2-三异丙氧基甲硅烷基-1-乙基) 酯、硫代乙酸 (2-(甲基二乙氧基甲 硅烷基)-1-乙基)酯、硫代乙酸(2-(甲基二异丙氧基甲硅烷基)-1-乙 基) 酯、硫代乙醛(2-(二甲基乙氧基甲硅烷基)-1-乙基) 酯、硫代乙酸 (2-(二甲基甲氧基甲硅烷基)-1-乙基)酯、硫代乙酸(2-(二甲基异丙 氧基甲硅烷基)-1-乙基) 酯、硫代乙酸(3-三乙氧基甲硅烷基-1-丙基) 酯、硫代乙酸(3-三异丙氧基甲硅烷基-1-丙基)酯、硫代乙酸(3-甲基 二乙氧基甲硅烷基-1-丙基)酯、硫代乙酸(3-甲基二甲氧基甲硅烷基 -1-丙基) 酯、硫代乙酸 (3-甲基二异丙氧基甲硅烷基-1-丙基) 酯、 (1-(2-三乙氧基甲硅烷基-1-乙基)-4-硫代乙酰基环己烷、(1-(2-三 乙氧基甲硅烷基-1-乙基)-3-硫代乙酰基环己烷、2-三乙氧基甲硅烷 基-5-硫代乙酰基降冰片烯、2-三乙氧基甲硅烷基-4-硫代乙酰基降冰 片烯、2-(2-三乙氧基甲硅烷基-1-乙基)-5-硫代乙酰基降冰片烯、 2-(2-三乙氧基甲硅烷基-1-乙基)-4-硫代乙酰基降冰片烯、1-(1-氧 杂-2-硫杂-5-三乙氧基甲硅烷基戊基)苯甲酸、硫代乙酸(6-三乙氧基 甲硅烷基-1-己基) 酚、硫代乙酸(1-三乙氧基甲硅烷基-5-己基) 酚、 硫代乙酸(8-三乙氧基甲硅烷基-1-辛基)酯、硫代乙酸(1-三乙氧基甲 硅烷基-7-辛基)酯、硫代乙酸(6-三乙氧基甲硅烷基-1-己基)酯、硫 代乙酸(1-三乙氧基甲硅烷基-5-辛基)酯、硫代乙酸(8-三甲氧基甲硅 烷基-1-辛基) 酯、硫代乙酸(1-三甲氧基甲硅烷基-7-辛基) 酯、硫代 乙酸(10-三乙氧基甲硅烷基-1-癸基)酯、硫代乙酸(1-三乙氧基甲硅 烷基-9-癸基)酯、硫代乙酸(1-三乙氧基甲硅烷基-2-丁基)酯、硫代

10

15

乙酸(1-三乙氧基甲硅烷基-3-丁基)酯、硫代乙酸(1-三乙氧基甲硅烷 其-3-甲基-9-丁基)酯、硫代乙酸(1-三乙氧基甲硅烷基-3-甲基-3-丁基) 酷、硫代辛酸 (3-三甲氧基甲硅烷基-1-丙基) 酯、硫代棕榈酸 (3-三乙氧基甲硅烷基-1-丙基)酯,硫代辛酸(3-三乙氧基甲硅烷基-1-丙 基) 酯、硫代苯甲酸 (3-三乙氧基甲硅烷基-1-丙基) 酯、硫代-2-乙基 己酸(3-三乙氧基甲硅烷基-1-丙基)酯、硫代乙酸(3-甲基二乙酰氧基 甲硅烷基-1-丙基)酯、硫代乙酸(3-三乙酰氧基甲硅烷基-1-丙基) 酯、硫代乙酸(2-甲基二乙酰氧基甲硅烷基-1-乙基)酯、硫代乙酸(2-三乙酰氧基甲硅烷基-1-乙基)酯、硫代乙酸(1-甲基二乙酰氧基甲硅 烷基-1-乙基)酯、硫代乙酸(1-三乙酰氧基甲硅烷基-1-乙基)酯、三 硫代磷酸三-(3-三乙氧基甲硅烷基-1-丙基)酯、二硫代膦酸(双-(3-三乙氧基甲硅烷基-1-丙基)甲基)酯、二硫代膦酸(双-(3-三乙氧基甲 硅烷基-1-丙基)乙基)酯、硫代次膦酸(3-三乙氧基甲硅烷基-1-丙基 二甲基) 酯、硫代次膦酸 (3-三乙氧基甲硅烷基-1-丙基二乙基) 酯、四 硫代磷酸三-(3-三乙氧基甲硅烷基-1-丙基)酯、三硫代膦酸(双-(3-15 三乙氧基甲硅烷基-1-丙基)甲基)酯、三硫代膦酸(双-(3-三乙氧基甲 硅烷基-1-丙基)乙基)酯、二硫代次膦酸(3-三乙氧基甲硅烷基-1-丙 其二甲基) 酯、二硫代次膦酸 (3-三乙氧基甲硅烷基-1-丙基二乙基) 酯、三硫代磷酸三-(3-甲基二甲氧基甲硅烷基-1-丙基)酯、二硫代磷 粉(双-(3-甲基二甲氧基甲硅烷基-1-丙基)甲基)酯,二硫代膦酸(双 -(3-甲基二甲氧基甲硅烷基-1-丙基)乙基)酯、二硫代次膦酸(3-甲基 二甲氧基甲硅烷基-1-丙基二甲基)酯、二硫代次膦酸(3-甲基二甲氧 基甲硅烷基-1-丙基二乙基)酯、硫代硫酸(3-三乙氧基甲硅烷基-1-丙 其甲基) 酯。(3-三乙氧基甲硅烷基-1-丙基甲烷)硫代磺酸酯。(3-三 乙氧基甲硅烷基-1-丙基乙烷)硫代磺酸酯、(3-三乙氧基甲硅烷基-1-丙基苯)硫代磺酸酯、(3-三乙氧基甲硅烷基-1-丙基甲苯)硫代磺酸 船 (3-三乙氨基甲硅烷基-1-丙基基)硫代磺酸酯、(3-三乙氨基甲硅 烷基-1-丙基二甲苯)硫代磺酸酯、甲基硫代硫酸三乙氧基甲硅烷基甲 其酷, 三乙氧基甲硅烷基甲基甲烷硫代磺酸酯、三乙氧基甲硅烷基甲 基乙烷硫代磺酸酯、三乙氧基甲硅烷基甲基苯硫代磺酸酯、三乙氧基 甲硅烷基甲基甲苯硫代磺酸酯、三乙氧基甲硅烷基甲基萘硫代磺酸 酯、三乙氧基甲硅烷基甲基二甲苯硫代磺酸酯。

也可使用各种封端巯基硅烷的混合物,其中,因为不同合成方法 而导致各种硅烷分布的混合物,或者封端巯基硅烷的混合物因其不同 封端或离去官能因而加以利用。另外在本文中,应该理解,这些封端 巯基硅烷的部分水解产物(即封端巯基硅氧烷)也可包括在封端巯基 硅烷中,其中这些水解产物是大多数封端巯基硅烷制备方法的副产 物、或在储存封端巯基硅烷时,尤其在潮湿条件下产生的。

如果是液体, 硅烷可载负于载体上, 如多孔聚合物、炭黑或二氧 化硅上, 这样它可作为固态形式传输到橡胶中。在优选方式中, 载体 可以是用于橡胶的无机填料的一部分。

### 硅烷的制备

10

制备封端疏基硅烷的方法可包括: 将含硫硅烷中的硫酯化以及通 过合适离去基团的取代或碳碳双键的加成作用、将硫酯基团直接加入 硅烷中、用于说明硫酯硅烷制备合成步骤的例子包括:反应1), 巯基 硅烷与对应于所需产物中硫酯基团的酸酐之间的反应; 反应 2)、巯基 15 硅烷的磁金属盐与合适的酸酐或酰基卤之间的反应; 反应 3)。巯基硅 烷与酯之间的酯转移反应、可视需要选用任何合适的催化剂。如酸、 碱、锡化合物、钛化合物、过渡金属盐、或一种酯的对应酸的盐; 反 应 4) 硫酯硅烷与另一酯的酯基转移反应可视需要选用任何合适的催 化剂、如酸、碱、锡化合物、钛化合物、过渡金属盐、或该酯的对应 20 酸的盐: 反应 5), 1-硅杂-2-硫杂环戊烷或 1-硅杂-2-硫杂环己烷与 酯的酯转移反应,可视需要选用任何合适的催化剂,如酸、碱、锡化 合物、钛化合物、过渡金属盐、或该酯的对应酸的盐; 反应 6), 在紫 外线、热、或合适游离基引发剂的催化下, 硫代酸在烯烃官能因硅烷 的碳碳双键上的游离基加成反应,其中如果硫代酸为硫代羧酸、那么 25 这两种反应物相互接触方式应保证,无论是何种试剂加入另一试剂 中,基本上都能反应,随后加成反应得以进行;和反应 7) 硫代酸的 碱金属盐与卤烷基硅烷之间的反应。

酰基卤包括, (但不限于): 有机酰基卤、以及无机酰基卤, 如POT<sub>3</sub>、SOT<sub>2</sub>、SO<sub>2</sub>T<sub>2</sub>、COT<sub>2</sub>、CST<sub>2</sub>、PST<sub>3</sub>和PT<sub>6</sub>, 其中 T 为卤根离子。酸 酐包括, (但不限于): 有机酸酐(及其硫类似物)、以及无机酸酐, 如 SO<sub>3</sub>、SO<sub>6</sub>、P<sub>6</sub>O<sub>5</sub>、P<sub>6</sub>S<sub>6</sub>、H<sub>6</sub>S<sub>6</sub>O<sub>7</sub>、CO<sub>2</sub>、COS 和 CS<sub>6</sub>。

用于说明硫代羧酸酯官能团硅烷制备合成步骤的例子包括:反应

8)、巯基硅烷与所需产物中硫酸羧酸酯基团对应的羧酸酐之间的反 应: 反应 9), 巯基硅烷的碱金属盐与合适的羧酸酐或酰基卤之间的反 应;反应 10), 巯基硅烷与羧酸酯的酯基转移反应可视需要选用任何 合适的催化剂、如酸、碱、锡化合物、钛化合物、过渡金属盐、或羧 < 酸酯的对应酸的盐;反应 11),可视需要选用任何合适的催化剂,如 酸、碱、锡化合物、钛化合物、过渡金属盐、或酯的对应酸的盐,进 行硫代羧酸官能固硅烷与另一酯的酯基转移反应;反应 12), 可选通 过使用任何合适的催化剂,如酸、碱、锡化合物、钛化合物、过渡金 属盐、或羧酸酯的对应酸的盐、进行1-硅杂-2-硫杂环戊烷或1-硅杂 -2-硫杂环己烷与该羧酸酯的酯基转移反应; 反应 13), 在紫外线, 热、 或合适游离基引发剂的催化下、硫代羧酸在烯烃官能固硅烷的碳碳双 健上的自由基加成反应;和反应14),硫代羧酸的碱金属盐与卤烷基 硅烷之间的反应。

10

15

20

2.5

30

反应 1 和 8 通过蒸馏巯基硅烷与酸酐、以及可选溶剂的混合物来 进行。该混合物的合适沸点为 60-200℃, 优选 70-170℃, 可任选 50-250℃。在该工艺的化学反应中,巯基硅烷的巯基基因被酯化成硫 酯硅烷类似物。同时释放当量的相应酸。酸通常比酸酐更易挥发蒸馏 除去较多的挥发性酸而驱动反应、对于更易挥发的酸酐,如乙酸酐, 蒸馏优选在常压下进行,以达到足以使反应完成的温度。对于挥发性 较差的物质, 可在工艺中使用溶剂, 如甲苯、二甲苯、甘醇二甲醚, 二甘醇二甲醚以限制反应温度。另外, 该方法可在减压下进行. 使用 多至两倍过量或更多的酸酐是有益的、多余的酸酐可在蒸馏出由酸和 非硅烷酯组成的所有更易挥发的反应副产物之后,由混合物中蒸馏出 来。过量的酸酐可用于推动反应完成,并有助于将副产物从反应混合 物中駆逐出来。反应完成之后,应该继续进行蒸馏,以将剩余的酸酐 驱逐出来,产物可视需要进行蒸馏,

反应2和9可分两步进行。第一步包括将巯基硅烷转化成相应的 金属衍生物。碱金属衍生物,尤其是钠或钾和锂的衍生物是优选的. 所述金属衍生物可通过向巯基硅烷中加入碱金属或衍生自碱金属的 强碱而得到。反应可在室温下进行。合适的碱包括碱金属烷氧化物。 酰胺、氢化物、硫醇化物。碱金属有机金属试剂也是有效的。作为另 一洗择, Grinard 试剂可产生镁衍生物, 溶剂, 如甲苯、二甲苯、苯、 脂族烃、醚和醇可用于制备碱金属衍生物。一旦制备出碱金属衍生物,必须去除其中的任何醇。这可通过蒸馏或蒸发步骤来完成. 醇,如甲醇、乙醇、丙醇、异丙醇、丁醇、异丁醇和叔丁醇可通过与苯、甲苯、二甲苯或脂族烃的共沸蒸馏而去除。甲苯和二甲苯是优逸的; 甲苯是最优逸的。在总的工艺中,第二步是在搅拌下,在一20℃至混合物沸点下,优选在0℃至室温下,向该溶液中加入酰氯或酸酐,产物可通过去除盐和溶剂而分离出来。它可蒸馏纯化。

反应 3 和 10 在可任选的溶剂和/或催化剂的存在下,通过蒸馏筑基硅烷与酯的混合物而进行。混合物的合适沸点在 100℃以上。在该工艺的化学反应中,巯基硅烷的巯基基因被酯化成硫酯硅烷类似物,同时释放当量的相应解。反应可通过蒸馏去除作为更易挥发物质、或作为与酯的共沸物的酵来推动。对于更易挥发的酯,蒸馏适于在常压下进行,以达到足以使反应完成的温度。对于挥发性较差的酯,可在工艺中使用溶剂,如甲苯、二甲苯、甘醇二甲醚、二甘醇二甲醚以限制反应温度。另外,该方法可在减压下进行。使用最多两倍过量或更多的酯是有用的,它可在蒸馏出所有酵副产物之后由混合物中蒸馏出来。过量的酯可用于推动反应完成,并有助于将酵副产物从反应混合物中驱逐出来。反应完成之后,继续进行蒸馏,以将剩余的酯驱逐出来、产物可视需要进行蒸馏。

反应 4 和 11, 通过蒸馏硫酯硅烷与其它酯以及任选的溶剂和/或 催化剂的混合物而进行. 混合物的合适沸点在 80℃以上, 优选在 100 ℃以上. 反应温度优选不超过 250℃. 在该工艺的化学反应中, 硫酯硅烷的硫酯基因通过酯基转移反应变成新的硫酯硅烷。同时释放当量的新酯。这种新硫酯硅烷一般是反应体系中最不易挥发的物质; 但新酯却比其它反应物更易挥发。反应可通过蒸馏去除新酯来推动。蒸馏可在常压下进行,以达到足以使反应完成的温度。对于只含挥发性较差的物质的体系,可在工艺中使用溶剂,如甲苯、二甲苯、甘醇二甲醚、二甘醇二甲醚以限制反应温度。另外,该方法可在减压下进行。使用最多两倍过量或更多的其它酯是有用的,它可在蒸馏出所有的新酯副产物之后,由混合物中蒸馏出来。过量的其它酯可用于推动反应完成,并有助于将作为副产物的其它酯从反应混合物中驱逐出来。反应完成之后、继续进行蒸馏、以将剩余的所述新酯驱逐出来。产物可

视索要进行基缩。

25

30

反应 5 和 12 可在催化剂的存在下,通过加热 1-硅杂-2-硫杂环戊烷或 1-硅杂-2-硫杂环已烷与酯的混合物而进行。视需要,该混合物可用溶剂,优选其沸点与所需温度相当的溶剂进行加热或回流。可在减压下使用其沸点高于所需反应温度的溶剂,其中可通过调节压力将沸点降低到所需的反应温度。混合物的温度为 80-250℃,优选 100-200℃。可在工艺中使用溶剂,如甲苯、二甲苯、脂族烃、和二甘醇二甲酰来调节温度。另外,该方法可在减压回流条件下进行。最优选的条件是: 在没有溶剂的情况下,优选在惰性气氛下,通过使用酯的相应酸的钠、钾、或锂盐作为催化剂,于 120-170℃下加热 1-硅杂-2-硫杂环戊烷或 1-硅杂-2-硫杂环己烷的硫酯硅烷类似物。可任选使用最多两倍过量或更多的酯来推动反应完成。反应完成之后,蒸馏去除过量的酯。产物可视需要进行蒸馏纯化。

反应 6 和 13 可通过加热或回流烯烃官能团硅烷与硫代酸的混合 物来进行。反应 13 的情况以前在美国专利 № 3692812 和 G. A. Gornowicz 等人的 J. Org. Chem. (1968), 33(7), 2918-24 中公开 过。非催化反应可在低至 105℃的温度下进行, 但往往失败. 温度升 高反应越易成功;当温度超过 160℃时,成功的可能性变得相当高。 通过紫外线辐射或催化剂,反应可保证进行并最大限度反应完全。有 了催化剂, 反应可在低于 90℃的温度下进行。合适的催化剂为游离基 引发剂、如过氧化物、优选有机过氧化物、和偶氮化合物、过氧化物 引发剂的例子包括过酸,如过苯甲酸和过乙酸;过酸的酯类;氢过氧 化物,如叔丁基化过氧氢;过氧化物,如过氧化二叔丁基;和过缩醛 和过缩酮,如1,1-双(叔丁基过氧基)环己烷、或其它任何过氧化物。 偶氮引发剂的例子包括偶氮二异丁腈 (AIBN)、1,1°-偶氮二(环己烷 碳腈)(VAZO; DuPont产品)、和偶氮叔丁烷。反应可在催化剂的存 在下、通过加热端经官能困硅烷与硫代酸的混合物来进行。优选在等 靡尔或近等摩尔的基础上进行整个反应,这样可取得最高的转化率。 反应是福放牧的 因此随着反应的开始和迅速进行。温度会迅速升高

至回流、然后进行剧烈回流。对于大量反应物来说、这种剧烈反应可 产生有害的沸溢现象。同时,不受控制的反应也会导致副反应、污染 和产量损失。可这样有效地控制反应: 向反应混合物中加入部分一种 试剂、用催化剂引发反应, 进行反应直到反应大部分完全, 然后加入 剩余的试剂、可单个加入也可作为多种添加剂加入、不完全加入试剂 的起始浓度和加料速率以及随后的加入次数、取决于所用催化剂的种 娄和数量、反应规模、原料的性质、以及反应装置吸收和散发热量的 能力。控制反应的第二种方式包括、在连续加入催化剂的同时、将一 种试剂连续加入另一种试剂中。无论连续加入或顺序加入,催化剂可 单独加入和/或与一种或两种试剂、或其混合物进行预混。对于其中 10 包括硫代乙酸和含端碳碳双键的烯烃官能固硅烷的反应来说,这两种 方法是优选的。第一种方法包括。首先将烯经官能团硅烷的温度升至 160-180℃、或回流。温度、二者取低者。第一部分硫代乙酸的加入 速率应使得可以保持即便剧烈但可控制的回流状态,对于沸点为 100 以上-120℃的烯烃官能团硅烷来说,这种回流作用主要来自相对烯烃 15 官能团硅烷沸点较低的硫代乙酸(88-92℃、取决于纯度)。加完之 后、回流速率迅速减退、通常随着反应的引发、可在几分钟内再次加 速, 尤其使用沸点在 120℃以上的烯烃官能固硅烷时。如果没有在 10-15 分钟内引发、可通过加入催化剂进行引发。优选的催化剂为过 氧化二叔丁基。催化剂的合适用量为催化剂所加混合物总重的 0.2-2 %、优选 0.5-1%。反应通常在几分钟内引发,这可由回流速率的升 高而表现出来。回流温度随着反应的进行而逐渐升高。当加入下一份 硫代乙酸时, 重复前述的专项顺序, 对于约1-4公斤的总反应量来说, 硫代乙酸的优选加入次数为 2 次, 其中总硫代乙酸的约三分之一第一 次加入、剩余的第二次加入。对于约 4-10 公斤的总重来说、优选总 25 共加入三次、其分布为:第一次加入时使用总数的约20%,第二次加 入时使用约30%、剩余的第三次使用。对于包括硫代乙酸和烯烃官能 用硅烷的较大规模反应来说。优选进行总共三次以上的硫代乙酸加入 过程、更优选倒序加入各种试剂。首先、将全部的硫代乙酸进行回流、 然后连续向硫代乙酸中加入烯烃官能团硅烷。加入速率应使得反应速 30 率平稳但却剧烈,催化剂,优选过氧化二叔丁基可在反应过程中分小 份加入、或以连续流体的形式加入。最好随着反应的进行逐步提高催 化剂的加入速率,这样可在最低量的所需催化剂下,达到最高的产物 收率。所用催化剂的总量应该为所用试剂总重的 0.5-2%。无论使用 何种方法,反应之后都要进行真空汽提以去除挥发物和未反应的硫代 乙酸和硅烷,产物可蒸馏纯化。

10

15

25

30

反应 7 和 14 可分两步进行。第一步包括硫代酸的盐的制备。碱 金属衍生物是优选的、其中的衍生物是最优选的。这些盐可以以溶剂 中的溶液形式而得到,其中益易于溶于这些溶剂,但也可以是盐作为 固体在溶剂中的悬浮液,其中这些盐仅微溶于所述溶剂。可以使用 醇、如丙醇、异丙醇、丁醇、异丁醇和叔丁醇、优选甲醇和乙醇、因 为磁金属盐微溶于其中。在所需产物为烷氧基硅烷时,优选使用硅烷 烷氨基的相应酶以防止硅酯的酯基转移。另外,可以使用非质子溶 剂, 合适溶剂的例子为: 醚或聚醚, 如甘醇二甲醚, 二甘醇二甲醚和 二颗烷; N.N'-二甲基甲酰胺; N,N'-二甲基乙酰胺; 二甲基亚砜; N-甲基吡咯烷酮;或六甲基磷酰胺。一旦制备出硫代酸的溶液、悬浮液、 或其混合形式, 第二步便是将其与合适的卤烷基硅烷进行反应。这可 通过在相当于溶剂液态范围的温度下, 搅拌卤烷基硅烷与硫代酸的盐 的溶液、悬浮液。或其混合形式的混合物来实现。其中反应时间应足 以使反应基本上完成。优选的温度是盐可明显溶于所述溶剂之温度。 且反应能够以可接受的速率进行而不会出现过多的副反应。对于从氯 烷基硅烷(其中氢原子不是烯丙基位或苄基位的)开始进行的反应来 说、温度优选 60-160℃。反应时间可从 1 个或几个小时至几天. 对于 其中含 4 个或更少碳原子的醇溶剂来说,最优选温度为回流温度或近 似回流温度。如果使用二甘醇二甲醚作为溶剂,最优选温度为70-120 C. 这取决于所用的硫代酸盐。如果卤烷基硅烷为溴烷基硅烷或氯烷 基硅烷(氯原干是烯丙基位或苄基位的),这时相对非烯丙基位或苄基 位氯烷基硅烷的合适温度来说,以温度下降 30-60℃为宜, 因为溴基 闭的活性较大、海烷基硅烷比氟烷基硅烷优选。因为其活性较大、所 雷温度较低、且作为副产物的碱金属卤化物易于过滤或离心处理。但 这种优选可以被氦烷基硅烷的低成本所抵消,尤其对于在烯丙基或苄 基位上向全卤素的那些、对于直链氨烷基乙氧基硅烷与硫代羧酸钠之 间反应形成硫代羧酸酯乙氧基硅烷的反应来说、优选使用乙醇回流 10-20 小时(如果产物中可接受 5-20%的巯基硅烷的话). 否则,二 **甘醇二甲醚则是极好的选择,这时反应优选在 80-120℃下进行 1-3** 小时, 反应完成之后, 应去除盐和溶剂, 然后可通过蒸馏以达到较高 的纯度。

如果在反应 7 和 14 中所用的硫代酸盐不是市售的、那么可通过 5 以下方法 A 和方法 B 的一种或两种方法将其制备出来。方法 A 包括、 白硫代酸中加入硫金属或衍生自碱金属的碱。 反应可在室温下进行。 合适的碱包括碱金属烷氧化物、氢化物、碳酸盐、和碳酸氢盐。可以 使用溶剂。如甲苯、二甲苯、苯、脂族烃、醚和醇来制备碱金属衍生 物、在方法B中、酰氯或酸酐可通过与碱金属硫化物或氢硫化物的反 方面 直接转化成硫代酸的盐、水合或部分含水的碱金属硫化物或氮硫 化物是易得的、但优选无水或几乎无水的碱金属硫化物或氢硫化物。 可以使用含水物质。但产量有所损失。且产生硫化氢作为副产物。该 反应包括、向磁金属硫化物和/或氮硫化物的溶液或悬浮液中加入髓 氯或酸酐, 然后在室温至溶剂回流温度下, 加热足够时间以使反应基 太上完成、这可通过形成副产物盐而表现出来。

10

15

如果在制备硫代酸的碱金属盐时存在醇、无论其是用作溶剂、还 县通过例如硫代酸与硫金属烷氢化物间的反应形成的、如果希望其产 物在巯基硅烷中会量较低,则最好将其去除。这时、有必要在硫代酸 的盐与卤烷基硅烷进行反应之前去除醇。这可通过蒸馏或蒸发来进 行, 醇, 如甲醇、乙醇、丙醇、异丙醇、丁醇、异丁醇和叔丁醇优选 通过与苯、甲苯、二甲苯、或脂族经进行共沸蒸馏而去除。甲苯和二 甲苯基优选的。

应用本文所述的封端巯基硅烷可用作有机聚合物(即、橡胶)和 无机境料的偶联剂。封端领基硅烷的独特之处在干、可高效利用其领 基基闭、而不会象通常使用巯基硅烷那样产生各种不利的副作用、如 加工粘度高、填料分散性不够理想、早期固化(早期熟化)、和气味。 产生这些优点的原因在干。作为封端基团的巯基基闭在开始附是非活 性的。封端基团基本上可在橡胶配料期间防止硅烷偶联到有机聚合物 上,一般来说,在配料工艺阶段、只能发生硅烷-Six,基闭与填料间 的反应。因此、基本上可防止填料与聚合物在混合时的偶联作用、这 样可降低非所需的早期固化(早期熟化)和相应非所需的粘度升高。 由于避免了早期固化、人们可获得较好的固化填充橡胶性能、如高模 量与耐磨性的综合性能。

15

25

30

使用时、一种或多种封端巯基硅烷可在填料配料到有机聚合物之 前、之中或之后与有机聚合物进行混合。优选在填料配合到有机聚合 物之前或之中加入硅烷。因为这些硅烷有助于提高填料的分散性。硅 5 烷在所得混合物中的总量应该为每 100 重量份有机聚合物约 0.05-25 重量份 (phr)。更优选 1-10phr. 填料的用量可以是约 5-100phr. 更优选 25-80phr。

当需要混合物进行反应以将填料偶联到聚合物上时,向混合物中 加入解封剂以将封端巯基硅烷解封。解封剂的加入量可以是约 0.1-10 5phr, 更优选 0.5-3phr。如果混合物中存在(通常如此)酵或水. 可以使用催化剂(如, 叔胺、Lewis 酸或三醇)进行引发, 并降低解 封剂的水解或醇解损失, 以释放出相应的巯基硅烷。另外, 解封剂可 以是会有一个特别不安定氢原子的亲核试剂、该氢原子可转移到原封 端基团的部位上以形成巯基硅烷。因此, 通过封端基团的受体分子, 亲核试剂上的氢原子可与封端巯基硅烷的封端基因进行交换,以形成 疏基硅烷和含有原封端基团的亲核试剂的相应衍生物。封端基团这种 由硅烷向亲核试剂的转移作用可通过,例如形成比起始反应物(封端 磁基硅烷和亲核试剂)更加热力学稳定的产物(巯基硅烷和包含封端 基团的亲核试剂)而推动。例如、如果亲核试剂是具有 N-H 键的胺. 那么通过封端基固由封端巯基硅烷的转移作用,可得到巯基硅烷和所 用相应封端基团的几种酰胺之一。例如, 由胺解封的羧基封端基团可 得到酰胺,由胺解封的磺酰基封端基团可得到磺酰胺,由胺解封的亚 硫酰基封端基团可得到亚磺酰胺、由胺解封的膦酰基封端基团可得到 膦酰胺,由胺解封的次膦酰基封端基固可得到次膦酰胺。不管起始存 在于封端疏基硅烷中是何种封端基团, 也不管所用是何种解封剂, 重 要的是,在橡胶混炼胶工艺的所需时间点上,开始基本上非活性的(从 偶联到有机聚合物的角度上看)封端巯基硅烷能够基本上转化成活性 巯基硅烷, 值得注意的是, 如果只需部分解封封端巯基硅烷以控制特 定配方的硫化度。可以使用部分量的(即,化学计量不足的)亲核试 剂.

水涌常作为水合物存在于无机填料中,或以羟基形式键接到填料 上 解封刻可以右转向整形式加入 或者在混鳞的工艺的任何其实阶 段以单组分的形式加入。亲核试剂的例子包括任何伯胺或仲胺、或具有 C=N 双键的胺,如亚胺或胍;前提是,所述胺具有至少一个 N-H( 复一氢)键.在 Rubber Chemicals 橡胶化学品), J. Van Alphen, Plastics and Rubber Research Institute TNO, Delft, Holland, 1973 中,列举了本领域热知可用作橡胶处理剂组分的胍、胺和亚胺的许多特定例。其例子包括 N, N'-二苯基胍、N, N', N'-三苯基胍、N, N' -二-邻一甲苯基胍、邻一双胍、六亚甲基四胺、环己基乙胺、二丁胺、和 4, 4'一二氨基二苯基甲烷。可以使用任何常用于将酯进行酯基转移的酸催化剂,如 Bronsted或 Lewis 酸。

橡胶组合物不必是,但优选不是任何官能化硅氧烷,尤其是在此 将其作为参考并入本发明的澳大利亚专利 AU-A10082/97 所描述的那 些硅氧烷。最优选橡胶组合物没有官能化硅氧烷。

10

15

20

25

30

实际上、硫化橡胶制品通常可这样制备:按照步骤顺序。热机械 混合橡胶和各种成分; 然后通过橡胶混炼胶的成形和圆化, 形成硫化 产品。首先,对于橡胶与各种成分(通常不包括硫和硫化促进剂(统 称为"固化剂"))的前述混合来说,橡胶与各种成分通常在合适的 混合器中、在至少一个、常常(在二氧化硅填充低滚动阻力轮胎时) 两个热机械预混步骤中进行混合。这种预混称作非生产性混合或非生 产性混合步骤或阶段。这种预混通常在高至 140-200℃, 往往高至 150-180℃的温度下进行。在预混步骤之后,在有时标作生产混合步 骤的最终混合步骤中、通常在50-130℃的温度下,将解封剂(在本发 明的情况下)、固化剂、以及可能的一种或多种其它成分与橡胶混炼 **胺或组合物进行混合、该温度低于预混步骤所用的温度、这样可防止** 或延缓硫固化橡胶的早期固化(有时称作橡胶组合物的早期硫化)。 有附称作橡胶混炼胶或组合物的橡胶混合物,例如可冷却(有时在前 述各混合专爨之间的中间研磨混合专爨之后或之中)至约 50℃或更 低。在需要进行模塑和固化橡胶时、将橡胶放入至少约130℃至最高 约 200℃的合适模具中、然后通过巯基硅烷上的巯基基固以及橡胶混 合物中的任何其它游离硫源来硫化橡胶。

"热机械混合"是指,橡胶混炼胶、或橡胶组合物和各种橡胶配料成分在高剪切条件下混入橡胶混合物中,通过混合可在橡胶混合器中自发加热,这归因于橡胶混合物中的剪切和相关的摩擦作用。在混

合和固化工艺的各步骤中可发生几种化学反应。

第一种反应相对较快,本文认为其发生在填料和封端巯基硅烷的 SiX,基团之间。这种反应可在较低温度,例如约 120℃下进行.本文 认为,第二和第三种反应是巯基硅烷的解封、以及有机硅烷(解封后) 的硫部分与可硫化橡胶之间在高温,如约 140℃下的反应.

可以使用另一种硫源,例如元素硫 So的形式。本文认为磁络体是一种可在 140-190℃的温度下释放出游离或元素硫的含硫化合物。这种硫络体可以是,例如,(但不限于),在其多硫化物桥中具有至少两个相连硫原子的多硫化物硫化促进剂和有机硅烷多硫化物。游离硫源在混合物中的加入量可加以控制、或相对独立于前途封端巯基硅烷而进行选择。因此,例如,硫源的加入量方面以及相对其它成分在橡胶混合物中的加入顺序方面。硫源均可独立决定。

烷基硅烷通常以烷基硅烷与封端巯基硅烷 1/50-1/2 的摩尔比, 加入偶联剂体系(封端巯基硅烷加上其它游离硫源和/或硫化促进 剂)中,这样可更好地控制橡胶组合物的加工和熟化。

检验组合物可通过包括按顺序进行的步骤来制备;

15

20

25

- (A) 在至少一个預混步骤中进行热机械混合, 该混合步骤温度为  $140-200\,^{\circ}$ C, 或  $140-190\,^{\circ}$ C, 总的混合时间为  $2-20\,^{\circ}$ 分钟, 或  $4-15\,^{\circ}$ 分钟;
- (i)100 重量份的至少一种碳可硫化橡胶,选自共轭二烯均聚物和共聚物、以及至少一种共轭二烯与芳族乙烯基化合物的共聚物, (ii)5-100,优选25-80phr(相对每100份橡胶的份数)的颗粒填料,其中填料优选包含1-85%重量的炭黑;(iii)0.05-20重量份至少一种封端巯基硅烷的填料。
- (B) 然后在 50-130℃的温度下,在最终的热机械混合步骤中,向其中混入约为填料重量 0.05-20 份的至少一种解封剂和 0-5phr 的固化剂,其中混合时间应足以混合橡胶,优选 1-30 分钟,更优选 1-3 分钟; 和根据需要进行下步;
  - (C)在130-200℃的温度下周化所述混合物约5-60分钟。
- 该方法还包括,制备有胎面的轮胎组装件或硫可硫化橡胶的组装件,然后在130-200℃的湿度下硫化该组件,其中所述胎面由本发明 组久的姆盼细合物组成

合适的有机聚合物和填料是本领域数知的,而且在许多教科书中 有描述, 其两个例子包括 The Vanderbilt Rubber Handbook (Vanderbilt 橡胶手册); R. F. Ohm, ed.; R. T. Vanderbilt Company. Inc., Norwalk, CT: 1990 和 Manual For The Rubber Industry (橡胶 5 工业手册); T. Kempermann, S. Koch, J. Summer, eds; Bayer AG, Leverkusen, Germany: 1993. 合适聚合物的代表例包括:溶解苯乙烯 -丁二烯橡胶(SSBR)、苯乙烯-丁二烯橡胶(SBR)、天然橡胶(NR)、 聚丁二烯 (BR)、乙烯-丙烯共聚物和三元共聚物 (EP、EPDM)、以 及丙烯腈-丁二烯橡胶 (NBR), 橡胶组合物包含至少一种以二烯为基 础的弹性体或橡胶。合适的共轭二烯为异戊二烯和1,3-丁二烯,合适 的乙烯基芳族化合物为苯乙烯和α-甲基苯乙烯。因此, 橡胶为硫固化 橡胶 这种以二烯为基础的弹性体或橡胶可选自,例如至少一种顺一 1.4-聚异戊二烯橡胶 (天然和/或合成, 优选天然橡胶)、乳液聚合 制备的装乙烯/丁二烯共聚物橡胶、有机溶液聚合制备的苯乙烯/丁二 烯橡胶、3,4-聚异戊二烯橡胶、异戊二烯/丁二烯橡胶、苯乙烯/异戊 二烯/丁二烯三元共聚物橡胶、板-1,4-聚丁二烯、中乙烯基含量聚丁 二烯橡胶(35-50%的乙烯基)、高乙烯基含量聚丁二烯橡胶(50-75 %的乙烯基)、苯乙烯/异戊二烯共聚物、乳液聚合制备的苯乙烯/T 二烯/丙烯腈三聚物橡胶丁二烯/丙烯腈共聚物橡胶。可以使用的乳液 聚合苯乙烯/丁二烯 (E-SBR) 具有 20-28% 的相对常规含量的键接苯 乙烯: 或在某些用途中可以使用具有中等至较高键接苯乙烯含量。即 30-45%键接苯乙烯含量的 E-SBR. 作为可用于本发明的以二烯为基础 的橡胶, 也可使用在三元共聚物中包含 2-40% 重量的键接丙烯腈的乳 液聚合制备的苯乙烯/丁二烯/丙烯腈三元共聚物橡胶。

10

15

25

30

溶液聚合制备的 SRR (S-SRR) 的键接苯乙烯含量为 5-50%、优 洗 9-36%。最丁二烯弹性体的常规特征在于。例如具有至少 90% 重 量的順-1.4-丁二烯含量。

合适填料的代表侧包括金属氧化物、如二氧化硅(焦化的和沉淀 的)、二氢化钛、硅铝酸盐和矾土、包括粘土和滑石的含硅物质、和 炭黑、颗粒沉淀二氧化硅有时可用于此、尤其在将二氧化硅与硅烷结 合使用时。有时、可以使用二氧化硅与炭黑的混合物作为包括轮胎胎 面的各种橡胶制品的增强填料。矾土可单独使用或与二氮化硅结合使 用. 本文中的水语"矾土"是指氧化铝、或 Al<sub>2</sub>0。 填料可以是水合的 或无水的. 矾土在橡胶组合物中的应用, 例如可在美国专利№5116886 和 EP 631982 中找到。

封端巯基硅烷可与填料颗粒进行预混或预反应,也可在橡胶和填料加工或混合步骤中加入橡胶混合物中。如果在橡胶和填料混合或加工步骤中,硅烷和填料分开加入橡胶混合物,可以认为封端巯基硅烷随后与填料就地结合。

硫化橡胶组合物应该包含足够量的填料,以产生一定的高模量和 高耐磨性。填料的混合重量可以低至约 5-100phr,但更优选 25-10 85phr.

沉淀二氧化硅可优选作为填料, 该二氧化硅的特征在于, 其 BET 表面积优选 40-600 米 2/克, 更优选 50-300 米 2/克, 这是使用氨气测得的。用于测量表面积的 BET 法在 Journal of American Chemical Sociaty (美国化学学志),第 60 卷,304 页 (1930) 上有描述。该二氧化硅通常还具有这样一个特征, 其邻苯二甲酸二丁酯 (DBP) 的吸收值为 100-350, 更优选 150-300. 另外, 可以预期, 二氧化硅以及前述矾土和硅铝酸盐的 CTAB表面积为 100-220. CTAB表面积是外表面积, 可通过 pH 值为 9 的鲸蜡基三甲基溴化铵进行评估。该方法描述于 ASTM D 3849.

汞孔隙率表面积是通过汞孔隙率仪测得的比表面积。有关该技术是,在热处理去除挥发物之后,汞渗透到样品的孔隙中。合适的设定条件为:使用100毫克的样品、在2小时内于105℃和大气压下去除挥发物、在常压至2000巴的压力下进行测量。这种评估可按照Winslow,Shapiro在ASTM公告,39页(1995)中所描述的方法或按照DIN 66133进行。对于这种评估,可以使用CARLO-ERBA 孔隙率仅2000。二氧化硅的平均汞孔隙率比表面积应该为100-300米²/克。

20

2.5

30

按照这种汞孔隙率评估方法,本文认为,二氧化硅、矾土和硅铝酸盐的平均孔径分布为:5%或更少的孔的直径小于约10纳米、60-90%的孔的直径为10-100纳米、10-30%的孔的直径为100-1000纳米、且5-20%的孔的直径大于约1000纳米。

可以预期,二氧化硅的平均基本颗粒尺寸,通过电子显微镜测得例如为 0.01-0.05um、当然二氧化硅颗粒的尺寸可以更小或更大,可

以考虑在本发明中使用各种市售二氧化硅,如来自 PPG Industries 的 HI-SIL 牌号下的 HI-SIL 210、243 等;得自 Rhone-Poulenc 的二氧化硅,如 ZEOSIL 1165MP;得自 Degussa 的二氧化硅,如 VN2 和 VN3 等: 以及得自 Huber 的二氧化硅,如 HUBERSIL 8745.

S

10

30

在同时含有硅填料,如二氧化硅、矾土和/或硅铝酸盐以及炭黑 强化颜料的橡胶组合物中,如果需要用二氧化硅强化颜料米起主要强 化作用,那么通常优选该硅填料与炭黑的重量比至少为 3/1, 优选至少 10/1, 因此其范围为 3/1-30/1. 填料可由 15-95%重量的沉淀二氧化硅、矾土和/或硅铝酸盐,以及相应的 5-85%重量的炭黑组成,其中所述炭黑的 CTAB 值为 80-150. 另外,该填料可由 60-95%重量的所述二氧化硅、矾土和/或硅铝酸盐,以及相应的 40-5%重量的所述二氧化硅、矾土和/或硅铝酸盐,以及相应的 40-5%重量的炭黑组成,硅填料和炭黑可以进行预混、或在制造硫化橡胶时进行混合。

橡胶组合物可通过橡胶混炼胶领域所已知的各种方法进行配合,如将各种硫可硫化组分与各种常用添加剂进行混合,例如,硫之类的固化助剂、活化剂、延迟剂和促进剂、油之类的加工助剂、包括增粘树脂的树脂、二氧化硅、增塑剂、填料、颜料、脂肪酸、氧化锌、蜡、抗氧化剂和抗臭氧化剂、胶溶剂、和炭黑之类的增强物质、根据可硫化剂和硫化物质(橡胶)的用途,可以选择上述添加剂,然后以20 常規量进行使用。

磁化可在辅助硫化剂的存在下进行。硫化剂的合适例子包括,例如元素硫(游离硫)或硫给体硫化剂,例如,氨基二硫化物、多硫化物、或通常在最终生产性的橡胶组合物混合步骤中加入的硫-烯烃加成物。硫化剂(本领域常用的)在使用或加入生产性混合步骤时的量30.4-3phr,在某些情况下,甚至可高达8phr,其中1.5-2.5phr,有附2-2.5phr是优选的。

本发明可以使用硫化促进剂,即辅助硫给体。较适合的可以是,例如苯并噻唑、二硫化烷基秋兰姆、胍衍生物和硫代氨基甲酸酯之类的硫化促进剂。这种促进剂的例子包括(但不限于): 巯基苯并噻唑、二硫化四甲基秋兰姆、二硫化苯并噻唑、二苯胍、二硫代氨基甲酸锌、二硫化烷基酚、黄原酸丁基锌、N-二环己基-2-苯并噻唑亚磺酰胺、N-环己基-2-苯并噻唑亚磺酰胺、N-环己基-2-苯并噻唑亚磺酰胺、

酰胺、N,N-二苯硫脲、二硫代氨基甲酰亚磺酰胺、N,N-二异丙基苯并 噻唑-2-亚磺酰胺、锌-2-巯基甲苯咪唑、二硫代双(N-甲基哌嗪)。二 硫代双(N-β-羟基乙基哌嗪)和二硫代双(二苄基胺)。其它的辅助硫给 体可以是,例如秋兰姆和吗啉衍生物。这些给体的例子包括(但不服 5 于): 二硫化二吗啉、四硫化二吗啉、二硫化四甲基秋兰姆、苯并噻 唑-2,N-二硫代酰吗啉、硫塑料、六硫化二亚戊基秋兰姆、和二硫化 己内酰胺。

促进剂可用于控制硫化所需的时间和/或温度,还可提高硫化橡胶的性能。在一个实施方案中,可以使用单一的促进剂体系,即主促进剂。 通常优选的是,所用主促进剂的总用量为 0.5-4phr,优选 0.8-1.5phr。可以使用主促进剂与次促进剂的混合物以活化和提高硫化橡胶的性能,其中次促进剂的用量较少(0.05-3phr)。可以使用延迟促进剂。也可使用硫化延迟剂。合适种类的促进剂为胺、二硫化物、胍、硫脲、噻唑、秋兰姆、亚磺酰胺、二硫代氨基甲酸酯和黄原酸盐。主促进剂优选亚磺酰胺。如果使用次促进剂,那么次促进剂优选胍、二硫代氨基甲酸酯或秋兰姆化合物。

如果使用的话,增粘树脂的常用量为 0.5-10phr, 优选 1-5phr. 加工助剂的常用量为 1-50phr. 这些加工助剂可包括,例如芳族加工油、环烷基加工油、和/或石蜡加工油、杭氧化剂的常用量为 1-5phr. 抗氧化剂的代表例为二苯基-对苯二胺. 和 The Vanderbilt Rubber Handbook (Vanderbilt 橡胶手册) (1978),344-346 页上所公开的其它抗氧化剂。抗臭氧化剂的常用量为 1-5phr. 如果使用,脂肪酸的常用量为 0.5-3phr, 其中包括硬脂酸。氧化锌的常用量为 2-5phr. 蜡的常用量为 1-5phr. 通常使用微晶蜡. 胶溶剂的常用量为 0.1-25 1phr. 胶溶剂通常为,例如五氯苯硫酚和二硫化二苯酰氨基二苯.

本发明橡胶组合物可用于各种用途。例如,它可用于各种轮胎混炼胶。这些轮胎可通过各种已知方法进行制造、成形、模塑和固化, 这对本领域熟练技术人员是显而易见的。

本文所引用的所有参考文件只要与本发明相关,都可并入本发 30 明。

本发明可通过参考以下实施例得到更好的理解,除非另有所指, 其中的价数和百分数都是以重量为基础计.

实施例 1 硫代乙酸 (3-(甲基二乙酰氧基甲硅烷基)-1-丙基) 酯的 制备

将 5 升滤瓶装配上连接有冷凝器和蒸馏头的 15-板 Oldershaw 蒸 缩柱(28毫米的板直径),其中蒸馏头能够控制和调节回流比。使用 电热夹套加热烧瓶,其中电热夹套通过连接到温度电子调节器上的控 制器进行调节。还可控制蒸馏头处的蒸汽温度。在氢气气氛下保持该 体系。通过置于冷阱和蒸馏头之间的排泄阀,可提高对真空度的控制 能力.

将 738.1 克 3-(甲基二甲氧基甲硅烷基)-1-丙基硫醇和 1892.2 京乙酸酐加入该 5 升烧瓶中。搅拌加热该混合物。直到开始从蒸馏头 处收集到第一滴液体,这时将收集速率调节至 1-2 滴/秒。以足够的 速率给烧瓶供热、以保持回流比不低于 8:1, 但不要太快而引起柱泛 液现象。收集温度迅速稳定在54℃。提高并调节收集速率,以保持收 集温度不超过 55℃,直到总共收集 506 克无色透明液体。馏出物具有 15 乙酸甲酯的气味,与含水碳酸钠不混溶且呈反应惰性。进一步蒸馏, 并于 54℃下收集、同时温度逐渐升高且收集速率逐渐降低,直到在 115-120℃下保持稳定的收集。收集到 650 克无色透明液体, 该液体 具有乙酸和乙酸甲酯的气味,而且在与含水碳酸钠一起时刷烈冒泡. 冷却后,向5升烧瓶的内容物中加入另外361克乙酸酐,然后再开始 蒸馏、最终在140℃下稳定收集、生成493克馏出物、将5升烧瓶中 的温度升至 180℃、然后停止加热。通过气味可在馏出物中检测出乙 酸和乙酸酐, 其与含水碳酸钠的反应类似于前述样品, 在真空下, 收 集馏出物的最终样品。调节真空并保持真空度以满足在接近冷却水的 温度上收集馏出物,其中以可通过使用排泄阀所述冷却水去除冷凝器 的热量。在该步骤中, 将 5 升烧瓶中的温度限制在 150℃。逐渐打开 25 排泄阀。收集另外 428 克馏出物。最终的馏出物具有乙酸酐的气味。 运时。慢慢升高 5 升烧瓶中的温度。在低于 0.7kPa 的压力下进行产 物分缩。起始的12克馏分是在低于1滴/秒的条件下收集的,其中回 流比大于 10:1. 作为第二馏分, 950 克无色透明液体基本上是在较快 的速率下收集到的、其中回流比大于5:1。当5升烧瓶中的温度达到 30 180℃时,终止蒸馏。得到 170 克深棕色粘稠残余物。第二馏分是纯 度为 98.5%的产物 (GC); 蒸馏后产率为 83%.

实施例 2 硫代乙酸 (3-(三甲氧基甲硅烷基)-1-丙基) 酯的制备 所用装置与实施例 1 的相同。将 1074 克 3-(三甲氧基甲硅烷 基)-1-丙基硫醇和 561.4 克乙酸酐加入 5 升烧瓶中。抽空该体系、然 后在几乎关闭的位置上使用排泄阀,连续产生真空。将5升烧瓶中的 5 温度逐渐升高到 120℃, 这时开始收集 30℃以下的冷凝物, 继续蒸馏, 直到在 155℃的 5 升烧瓶中再也收集不到任何物质、这时停止加热。 得到 184 克具有明显乙酸甲酯气味的无色透明液体。其比重为 0.898、而且与含水碳酸钠有不利反应,这些都表明可能存在占主要 部分的甲醇。现在将 5 升烧瓶中的温度逐渐升高到 195℃、得到另外 总共266克的馏出物、继续蒸馏、同时将5升烧瓶慢慢加热至225℃。 然后打开排泄阀。在最高 104 C 的蒸馏头温度下, 收集到 379 克无色 透明液体。GC分析表明,起始硅烷和产物硅烷都是馏出物中的主要组 分,其中有少量可通过气味测出的乙酸。

10

15

20

将 5 升烧瓶的内容物倒入 32 盎司 (947 毫升) 瓶中, 并在氦气下 储存、将馏出物装入该5升烧瓶中。然后打开排泄阀进行再蒸馏。大 量的第一缩分包含占大多数的起始封端巯基硅烷。在70℃下,收集到 75 克无色透明的第二馏分。该馏分为纯度大于 90%的产物 (GC); 蒸馏产率为 6%。 该产物还包含具有甲氧基-Si和乙酰氧基-Si基团、 以及 SiOSi 交联衍生物。

实施例 3 具有乙酰氧基-Si 基团和 SiOSi 交联键的硫代乙酸(3-(三甲氧基甲硅烷基)-1-丙基)酯衍生物的制备

所用装置与实施例 1 的相同。将 1775 克 3-(三甲氧基甲硅烷 基)-1-丙基硫醇加入 5 升烧瓶中。总共 4719 克乙酸酐称出待与巯基 硅烷进行反应, 其中 1002 克与巯基硅烷一起加入 5 升烧瓶中。逐渐 加热 5 升烧瓶,直到在 54℃的蒸馏头温度下可稳定收集馏出物.总共 收集到 840 克馏出物,通过 NMR 分析,发现其中包含摩尔比为 100/2/2.7 的乙酸甲酯、乙酸和甲醇。将另外 2015 克乙酸酐加入冷 却的 5 升烧瓶中, 然后重新蒸馏, 得到 923 克馏出物。加入 701 克乙 酸酐, 重复波步骤 3 次, 得到 834 克馏出物。现在开始在蒸馏头上施 加真空。调节真空并保持真空度以满足在接近冷却水的温度上收集缩 出物。其中所述冷却水可通过排泄阀用于去除冷凝器的热量。在该步 器中、将5升烧瓶中的温度限制在170℃。随着收集迷率开始下降、

逐渐打开排泄阀、收集到另外 896 克馏出物,这时蒸馏柱和蒸馏头中 的任何残留液体都已蒸发出去。最终馏出物的 GC 分析表明,基本上 没有蒸馏出挥发性低于乙酸的任何物质。烧瓶的内容物冷却成粘稠深 棕色油、然后将其储存在氦气下.

实施例 5 3-(丙酰基硫基)-1-丙基三甲氧基硅烷的制备

10

25

在氦气气氛下, 将816克3-巯基-1-丙基三甲氧基硅烷、甲醇钠 的 25% 重量甲醇溶液 871 克、和 1724 克甲苯加入 5 升烧瓶中。搅拌 该混合物、出现微桃色。蒸馏甲醇-甲苯共沸物、以去除烧瓶中的甲 醇, 这时烧瓶的内容物变成无色。随着蒸馏头温度由 63℃升至 108℃, 出现高流量的馏出物,这表明甲醇已从烧瓶中完全去除。继续搅拌。 冷却烧瓶的内容物,然后将其放入冰水浴中。在连续搅拌下,在冰水 浴中,逐滴和/或分成小部分地加入 361 克丙酰氯,直到反应完成。 从搅拌混合物中周期性地取出等分试样,然后放到 DH 纸上。碱性读 教表示反应完全。最终混合物为氯化钠在产物甲苯溶液中的白色悬浮 液, 过滤该混合物, 然后将溶剂从滤液中去除, 得到浅棕色产物, 气 相色谱表明, 其中有 5%的 3-巯基-1-丙基三甲氧基硅烷, 25%的 3-(甲基巯基)-1-丙基三甲氧基硅烷、70%的 3-(乙酰基硫代)-1-丙基 三甲氧基硅烷(产物)。于1-2克粉状甲醇钠中进行闪蒸,得到无色 产物。加入甲醇钠是为了保证中和所有残留的酸性物质。进一步视需 20 要进行分馆,得到 GC 纯度超过 98%的产物。

实施例 6 3-(丙酰基硫基)-1-丙基三甲氧基硅烷的制备

在氦气气氛下,将1035克3-巯基-1-丙基三甲氧基硅烷、甲醇钠 的 25% 重量甲醇溶液 1098 克、和 1764 克甲苯加入 5 升烧瓶中。搅 拌该混合物,产生微桃色。将烧瓶放入64℃的水浴中。通过在部分真 空下蒸馏掉甲醇-甲苯共沸物,去除烧瓶中的甲醇。保持真空、使蒸 馅头处的温度保持在30-35℃,这时收集到由甲苯-甲醇共沸物组成的 1500 毫升馏出物。这时,烧瓶的内容物变成无色。另外加入 429 克甲 苯, 然后重新蒸馏。随着蒸馏头温度由 35℃升至 55℃, 出现高流量 的馏出物,而且在冷凝器中出现液体表面张力的变化。这些都表明甲 30 醇已从烧瓶中完全去除。烧瓶的内容物已变成粘稠液体、继续搅拌。 冷却烧瓶的内容物。将烧瓶放入冰水浴中,结果出现粘稠膏体。在连 续搅拌下,在冰水浴中,逐滴和/或分成小部分加入 457 克丙酰氯。

直到反应完成。从搅拌混合物中周期性地取出等分试样。碱性读数表示反应完全。最终混合物为氯化钠在产物甲苯溶液中的白色悬浮液。过滤该混合物,然后将溶剂从滤液中去除,得到近乎无色的产物。气相色谱表明,其中有3%重量的3-巯基-1-丙基三甲氧基硅烷、1%重量的3-(甲基巯基)-1-丙基三甲氧基硅烷、和96%重量的3-(乙酰基硫基)-1-丙基三甲氧基硅烷(产物)。加入1-2克粉状甲醇钠进行闪蒸,得到无色产物。加入甲醇钠是为了保证中和所有残留的酸性物质。进一步视需要进行分馏,得到GC纯度超过98%的产物。

实施例 7 3-(苯甲酰基硫基)-1-丙基三乙氧基硅烷的制备

10

20

25

30

在氧气气氛下,将 763 克 3-巯基-1-丙基三乙氧基硅烷、和乙醇钠的 21%重量甲醇溶液 1013 克加入 5 升烧瓶中。在最高 45℃下,在 48kPa下,从该混合物中蒸馏出 870 克乙醇。在氨气气氛下,向烧瓶的内容物中加入 1550 克甲苯。通过在最高 48kPa 的绝对压力下,在 最高 60℃下蒸馏甲醇-甲苯共沸物,以去除烧瓶中的甲醇。保持真空,使蒸馏头处的温度保持在 30-40℃。随着蒸馏头温度由 35℃升至 60℃,出现高流量的馏出物,而且在冷凝器中出现液体表面张力的变化,这些都表明甲醇已从烧瓶中完全去除。在该步骤结束时,烧瓶的内容物已变成透明的橙色液体。

继续搅拌,冷却烧瓶的内容物至室温。逐滴和/或以足够慢的速率分成小部分地加入 418 克苯甲酰氯,以防温度升至 50℃以上。加完苯甲酰氯之后,继续搅拌一天。开始时,剧烈搅拌以破碎混合物中的大块和消除不均匀性。所得最终混合物为氯化钠在产物的甲苯溶液中的白色悬浮液。过滤滤混合物,然后将溶剂从滤液中去除,得到浅黄棕色产物,它在 pH 纸上反应呈酸性。将足够的粉状乙醇钠搅拌到产物中以中和所有酸性物质。在低于 0.7kPa 的压力下,闪蒸得到浅桃色产物,气相色谱表明,其中含有分别约 10%的苯甲酸乙酯和 1-硅杂-2-硫杂-1,1-二乙氧基环戊烷,这是由于蒸馏时的碱催化分解作用而形成的。进行第二次闪蒸,结果去除了作为前馏分的 30%产物。其中不存在任何碱或酸。第二馏分为 GC 纯度超过 98% 的浅桃色产物。

## 实施例 8 2-(乙酰基硫基)-1-乙基三乙氧基硅烷的制备

将 2513 克乙烯基三乙氧基硅烷加入 5 升烧瓶中, 然后在搅拌下 进行回流, 蒸馏掉 25 毫升前馏分以去除挥发性杂质, 停止加热, 然 后在几分钟内,加入总共两部分的 1005 克硫代乙酸中的第一部分 335 克,其加入速率应使得回流平缓。根据需要进行加热直到加入完毕,以保持回流。从冷凝器处,加入 0.8 克过氧化二叔丁基,导致反应立即进行,这可由回流速率的升高而看出。切断加热套的电源。回流时,温度在几分钟内升至近 160℃,这时回流减慢,然后开始冷却烧瓶中的没黄色内容物。

当烧瓶中的内容物达到 150℃时,按照类似于第一次加入时的方式,另外加入 670 克硫代乙酸、收集 20 毫升前缩分,再加入 1.6 克过氧化二叔丁基。可以看出,回流迷率在几分钟内略有升高。10-15 分钟之后,烧瓶达到最高温度 155℃,然后开始冷却。在 150℃时,通过加热套保温 1 小时。在氦气下,冷却烧瓶。气相色谱分析表明,其中含有 2%重量的硫代乙酸、16%的乙烯基三乙氧基硅烷、5%重量的 1-(乙酰基硫基)-1-乙基三乙氧基硅烷(α加成物)、68%重量的 2-(乙酰基硫代)-1-乙基三乙氧基硅烷(β加成物)、和 9%重量的余 量物质(主要为重物)。

## 实施例 9 3-(辛酰基硫基)-1-丙基三乙氧基硅烷的制备

向配有机械搅拌器、加料漏斗、热电偶、加热套、氦气入口和温度控制器的 12 升 3 類图底烧瓶中,加入 1021 克 3-巯基丙基三乙氧基硅烷(SILQUEST® A-1891硅烷,得自位于Greenwich,CT的Witco Corp.的子公司 Osi Specialties, Inc.)、以及 433 克三乙胺和 3000毫升已烷。在冰浴中冷却波溶液,然后在 2 小时内,通过加料漏斗加入 693 克辛酰氯。加完酰氯之后,使用压力或过滤器将混合物过滤 2 次以去除盐,首先通过 0.1µm 过滤器,然后通过 0.01µm 过滤器。真空去除溶剂。真空蒸馏残留的黄色液体,得到 1349 克辛酰基硫基丙基三乙氧基硅烷,一种浅黄色透明液体。产率为 87%。

### 实施例 10 3-(乙酰基硫基)-1-丙基三乙氧基硅烷的制备

25

飞达 24 小时,这时形成白色固体,对溶液的气相色谱分析表明,乙 酰基硫基丙基三乙氧基硅烷的产率为 78%.

实施例 11 乙酰基硫基甲基三乙氧基硅烷的制备

本实施例说明、通过使用非质子溶剂、由硫代羧酸的盐制备硫代 5 羧酸酯烷氧基硅烷的过程。向配有磁力搅拌棒、温度探头/控制器、 加热套、加料漏斗、冷凝器、氦气入口和冰水浴的1升3项国底烧瓶 中、加入 88 克粉状乙醇钠和 600 毫升二甘醇二甲醚。冷却溶液至 8 ℃,然后通过加料漏斗加入 105 克硫代乙酸,同时保持温度在 60℃以 下,将溶液冷却至35℃,然后通过加料漏斗加入250克氯甲基三乙氧 基硅烷。加完之后、将溶液加热至70℃、可在120℃时观察到短暂放 热。将溶液在 70℃下再加热 3 小时。首先通过 0.1 um 压力式过滤器, 然后通过 0,01 μm 过滤器, 过滤所形成的白色固体, 得到黑色透明溶 液, 减压去除溶剂, 然后真空蒸馏残留液体, 得到 163 克无色透明液 体、产率为 55%。

实施例 12 实施例 1-4 的硅烷在低滚动阻力轮胎胎面配方中的应

用

10

15

25

使用一种如表 1 所述的低滚动阻力客车轮胎胎面配方以及一种混 合方法来评估本发明硅烷的代表例。实施例 1 中的硅烷按照如下方 式, 在腔容积为 103 立方英寸(1690 毫升)的 "B" Banbury®(Farrell 20 Corp. ) 混合器中进行混合。混合器在开启时, 速度为 120 rpm, 且充 满冷却水。将橡胶聚合物加入混合器中,然后夯实混合 30 秒. 加入 一半二氧化硅和所有硅烷,其中部分二氧化硅约 35-40 克是在乙烯-醋酸乙烯酯共聚物 (EVA) 袋中, 然后夯实混合 30 秒。加入 EVA 袋中 的剩余二氧化硅和油,然后夯实混合 30 秒。将混合器喉部三次除生, 并且将混合物每次夯实混合 15 秒. 为了在约 1 分钟内将橡胶母炼胶 升温至 160-165℃, 将混合器的混合速率升至 160 或 240rpm. 倒出母 炼胶(从混合器取出),在设定温度约50-60℃的辊式捏合机中制成 片材、然后冷却至室温。

将橡胶母炼胶加入速度为 120rpm 且充满冷却水的混合器中。然 后夯实混合 30 秒。加入剩余的各成分,然后夯实混合 30 秒。将混合 器喉部除尘、并且将混合器的速率升至 160 或 240 rpm, 这样内容物可 在约 2 分钟内达到 160-165℃。混合橡胶母炼胶 8 分钟,然后调节 BANBURY 混合器的速度以将温度保持在 160-165℃。倒出母炼版(从混合器取出),在设定温度约 50-60℃的辊式捏合机中制成片材,然后冷却至室温。

在加热至 50-60℃的 6 英寸×13 英寸(15 厘米×33 厘米)双辊捏合机中,将橡胶母炼胶和各种有效成分进行混合。将硫和促进剂加入橡胶母炼胶中,在辊式捏合机中充分混合,然后制成片材。在片材固化之前,将其冷却至室温 24 小时。在 Monsanto R-100 摆动盘流变计和 Monsanto M1400 Mooney 粘度计上,测量其流变性能。用于测量机械性能的样品切自 160℃下固化 35 分钟的 6 毫米板,或切自 160℃下固化 25 分钟的 2 毫米板。

将实施例 2-4 的硅烷配合到按照前述工艺的轮胎胎面配方中. 将实施例 1-4 中制备的硅烷的性能与非硅烷偶联剂 (硅烷α)、以及另两种硅烷的性能进行比较,其中一种硅烷是已有技术的双 (3-三乙氧基甲硅烷基-1-丙基)四硫化物 (TESPT, 硅烷β),另一种硅烷是 3-三乙氧基甲硅烷基-1-丙基硫醇 (TESPM, 硅烷γ),它是本发明代表例硅烷失去其羧基封端基因而得到的产物。该工艺的结果列于下表2.

### 表 1-低滚动阻力胎面配方

| PHR  | <u>成分</u>                                       |
|------|-------------------------------------------------|
| 75   | SSBR (12%苯乙烯, 46%乙烯基, Tg 为 42℃)                 |
| 25   | BR (98%的順式, Tg 为 104℃)                          |
| 80   | 二氧化硅 (150-190 米 <sup>2</sup> /克, ZEOSIL 1165MP, |
|      | Rhone-Poulence)                                 |
| 32.5 | 芳族加工油 (高粘度, Sundex 8125, Sun)                   |
| 2.5  | 氧化锌 (KADOX 720C, Zinc Corp)                     |
| 1    | 硬脂酸 (INDUSTRENE, Witco)                         |
| 2    | 6PPD 抗臭氧化剂 (SANTOFLEX 6PPD, Flexsys)            |
| 1.5  | 微晶蜡 (M-4067, Schumann)                          |
| 3    | N330 炭黑(Engineered Carbons)                     |
| 1.4  | 硫 (#104, Sunbelt)                               |
| 1.7  | CBS 促进剂(SANTOCURE, Flexsys)                     |
| 2    | DPG 促进剂 (PERKACIT DPG-G, Flexsys)               |

以下试验是按照以下方法(在所有实施例中)进行的: Mooney 早期硫化@135℃(ASTM 方法, D1646); Mooney 粘度@100℃(ASTM 方法, D1646); 摆动盘流变计(ODR)@149℃, 弧度1°(ASTM 方法, D2084); 物理性能,固化 t90@149℃(ASTM 方法, D412 和 D224)(G' 5 和 G'',单位为达因/平方厘米); DIN 磨损,立方厘米(DIN 方法 53516); 和热成形(ASTM 方法, D623).

表 2-低滚动阻力客车轮胎胎面配方中代表性硅烷的各种性能

| 硅烷                                        | α      | β      | Ex. 4  | Ex. 3  | Ex. 1       | Ex. 2  | Y     | γ    |
|-------------------------------------------|--------|--------|--------|--------|-------------|--------|-------|------|
| 加入量                                       |        | 7.4    | 7.4    | 7.4    | 7.4         | 8.3    | 3.18  | 6.35 |
| 在100℃下的Moone                              | V      |        |        |        |             |        |       |      |
| 粘度ML1+4                                   | 130    | 67     | 65     | 58     | 73          | 63     | 74    | 121  |
| 在135℃下的Mooi                               | ney早期研 | 313    |        |        |             |        |       |      |
| MS1+, t <sub>3</sub> , 分钟                 | 9.5    | 6.7    | 4.3    | 6.3    | 2.2         | 6.3    | 6.3   | 2.8  |
| MS1+, t <sub>18</sub> ,                   | 11.0   | 10.1   | 5.9    | 7.8    | 3.2         | 7.7    | 8.4   | 3.7  |
| ODR @ 149°C,孤度1                           | 。,30分全 | 计时器    |        |        |             |        |       |      |
|                                           | 26.9   |        | 8.5    | 7.2    | 9.3         | 7.8    |       | 14.8 |
| M <sub>u</sub> , dN-M                     | 44.5   | 30.8   | 31.0   | 31.4   | 34,8        | 30.5   | 27.8  | 33.9 |
| L,1, 分钟                                   | 5.4    | 4.8    | 2.5    | 3.8    | 1.6         | 3.8    | 3.8   | 2.0  |
| 190, 分钟                                   | 10.5   | 17.8   | 8.0    | 8.0    | 8.1         | 7.5    | 15.3  | 15.0 |
| 物理性能, 即化t90                               | @149°C |        |        |        |             |        |       |      |
| 硬度, Shore A                               | 66     | 57     | 59     | 60     | 62          | 60     | 52    | 过早硫化 |
| 伸长率,%                                     | 900    | 400    | 540    |        | 490         |        | 360   |      |
| 10000 to to bolom2                        | 10.5   | 19.0   | 19.0   | 18.3   | 22.5        | 23.2   | 15.5  | 表    |
| 20000 W 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 166    | 56.0   | 40.7   | 46.4   | 54 X        | nn i   | 4311  | 周化   |
| 200% 模重, kg/cm <sup>2</sup>               | 24.6   | 128.0  | 101.2  | 96.3   | 116.0       | 129.4  | 104.8 |      |
| 拉伸强度kg/cm²                                | 137.1  | 208.1  | 234.8  | 218.0  | 237.6       | 222.9  | 139.2 |      |
| 动态性能@0.15%                                | 包变,10F | 亿, 担)  | 力模式 (  | 第二次科   | <b>注击</b> ) |        |       |      |
| G' @ 0°C, x 10'<br>G' @ 60°C, x 10'       | 26.8   | 5.92   | 9.22   | 9.42   | 1.26        | 6.41   | 3.17  |      |
| G' @ 60°C, x 10 <sup>7</sup>              | 12.7   | 2.76   | 4.26   | 3.89   | 5.36        | 3.02   | 1.75  |      |
| 0" @ 0°C v 10 <sup>7</sup>                | 7 87   | 1 26   | 1 81   | 1.84   | 2.14        | 1.3    | 5.69  |      |
| G" @ 60°C, x 10°                          | 11.2   | 2.48   | 4.00   | 3.85   | 4.94        | 2.71   | 2.13  |      |
| Tan delta @ 0°C                           | 0.1070 | 0.2124 | 0.1968 | 0.1952 | 0.169       | 0.202  |       |      |
| Tan delta @ 60°C                          | 0.0876 | 0.09   | 0.0939 |        |             |        |       |      |
| 比率、0°C/60°C                               | 1.22   | 2.36   | 2.10   |        |             |        | 1.67  |      |
| 热成形, 100℃环                                | 境,18.5 | %压缩,   |        |        | a) 魚石       | ž, 25% | 分钟    |      |
| Delta T, °C                               | 66     | 13     | 22     | 19     | 18          |        | 17    |      |
| 永久变形,%                                    | ***    | 6.3    | 10.9   | 8.8    | 8.0         |        | 6.9   |      |
| *** 9%脱层                                  |        |        |        |        |             |        |       |      |

## 实施例 13-实施例 1 硅烷在改变 DPG 含量而活化的低滚动阻力轮 胎配方中的应用

在三种 N, N?-二苯胍 (DPG)含量下,使用低滚动阻力客车轮胎胎面配方和混合工艺来评估实施例 1 硅烷、结果列于表 3 中。

表 3 DPG 对低滚动阻力客车轮胎胎面配方的配合和固化性能的 影响

| 试验                          | A       | В       | C      |
|-----------------------------|---------|---------|--------|
| phr DPG                     | 2.00    | 0.5     | 1.25   |
| 在100℃下的Mooney粘度             |         |         |        |
| ML 1+4                      | 75      | eren er | ***    |
| 在135℃下的Mooney平期硫            | K       |         |        |
| M <sub>o</sub>              | 41      | ***     | ***    |
| MS 1+, t,, 分钟               | 2.5     | 15.3    | 6.2    |
| MS 1+, t <sub>15</sub> , 分钟 | 3.6     | 24.1    | 8.3    |
| ODR@149°C, 延度1°, 30%        | 分钟计时器   |         |        |
| M <sub>1</sub> , dN-M       | 9.8     | 9.4     | 8.6    |
| M <sub>th</sub> dN-M        | 35.7    | 28.8    | 33.4   |
| 1,1,分钟                      | 1.8     | 8.0     | 3.4    |
| 190、分钟                      | 8.0     | 22.5    | 11.8   |
| 物理性能,固化t90@149℃             |         |         |        |
| 硬度、Shore A                  | 63      | 59      | 62     |
| 伸长率。%                       | 550     | 620     | 560    |
| 100% 模量, kg/cm²             | 21.1    | 19.0    | 22.5   |
| 200% 模量, kg/cm²             | 55.5    | 42.9    | 55.5   |
| 300% 模量, kg/cm²             | 106.9   | 80.9    | 106.2  |
| 拉伸强度, kg/cm²                | 236     | 209.5   | 234.1  |
| DIN磨损、毫米                    | 85      | 69      | 72     |
| 动态性能@10Hz, 0.15%            | 应变,扭力模立 | ζ.      |        |
| G' @ 0°C, X10'              | 14.8    | 14.1    | 12.6   |
| G' @ 60°C, X107             | 6.23    | 5.97    | 5.64   |
| G" @ 0°C, X10'              | 23.0    | 26.4    | 22.1   |
| G" @ 60°C, X10°             | 6.55    | 7.30    | 6.01   |
| Tan delta @ 0°C             | 0.1551  | 0.1872  | 0.1753 |
| Tan delta @ 60°C            | 0.1053  | 0.1189  | 0.1035 |
| 比率, 0°C/60°C                | 1.47    | 1.57    | 1.69   |
|                             |         |         |        |

### 实施例 14-鞋底混炼胶组合物

配方: 60 Budene 1207BR、40 SMR5L NR、45 ZEOSIL 1165MP 二氧化硅、5 CALSOL 5550 加工油、3 CARBOWAX 3350 PEG、5 KADOX 720C 氧化锌、1 INDUSTRENE R 硬脂酸、1 BHT 抗氧化剂、1 SUNOLITE 240 蜡、1.9 Rubbermaker 硫 104、1.3 MBTS、0.5MBT、0.2TWTM、 Silane-SILQUEST A-1289 硅烷(TESPT)或乙酰基硫基丙基三乙氧基 硅烷(简写为 Acetyl),每种组分的量以 phr 计。术语"添加硫"或 "添加 S"是指,加入辅助硫以使乙酰基硫代丙基三乙氧基硅烷中的 硫量相当于 TESPT 所能产生的硫量。结果在下表 4 中给出。

## 10 表4

| 建筑                  | 龙     | TESPT | TESPT | Acetyl | Acetyl<br>X | Acetyi | Acetyl<br>X |
|---------------------|-------|-------|-------|--------|-------------|--------|-------------|
| 添加硫                 |       | 2     | 4     | 2      | 2           | 4      | 4           |
| Mooney平海域化@10       | 35°C  |       |       |        |             |        |             |
| MV                  | 51    | 42    | 40    | 36     |             | 33     |             |
| MS1+, t,, 分钟        | 5.0   | 4.3   | 4.3   | 6.9    |             | 7.4    |             |
| MSI+, tu, 分钟        | 5.8   | 5.3   | 5.3   | 8.2    |             | 8.8    |             |
| Mooney 粘度 @ 100 °C  | :     |       |       |        |             |        |             |
| ML1+4               | 96    | 78    | 76    | 74     |             | 71     |             |
| ODR@149°C,抵度1°,     | 12分钟计 | 計器    |       |        |             |        |             |
| M <sub>D</sub> dN-m | 19.7  | 14.9  | 14.0  | 12.2   | 11.5        | 10.4   | 10.2        |
| Ma, dN-m            | 59.7  | 57.4  | 54.2  | 52.0   | 52.8        | 49.3   | 49.8        |
| 51. 分钟              | 3.5   | 2.8   | 2.8   | 4.3    | 3.8         | 4.7    | 4,4         |
| 90. 分钟              | 5.7   | 5.6   | 5.9   | 7.5    | 7.1         | 8.2    | 8.2         |
| 物理性能, 图化t90@        | 149°C |       |       |        |             |        |             |
| 硬度, Shore A         | 67    | 67    | 66    | 66     | 66          | 66     | 66          |
| 伸长率,%               | 630   | 570   | 570   | 540    | 440         | 500    | 460         |
| 100% 模量,kg/cm²      | 19.7  | 23.9  | 25.3  | 26.7   | 26.7        | 26.7   | 27.4        |
| 200% 模量,kg/cm²      | 36.6  | 50.6  | 54.1  | 56.2   | 59.1        | 55.5   | 59.8        |
| 300% 提亭、kg/cm²      | 58.3  | 86.5  | 91.4  | 97.7   | 103.3       | 96.3   | 105.5       |
| 拉伸强度,kg/cm²         | 187.0 | 204.6 | 222.2 | 201.1  | 174.4       | 189.8  | 189.1       |
| DIN 磨损,毫米           | 36    | 75    | 67    | 74     | 71          | 65     | 73          |
| Akron 磨损,毫未         | 0.46  | 0.48  | 0.35  | 0.39   | 0,41        | 0.45   | 0.44        |

## 实施例 15-低滚动阻力轮胎配方

将以下硅烷在低滚动阻力轮胎配方中进行试验: TESPT(A)、TESPM(B)、3-乙酰基硫基-1-丙基三甲氧基硅烷(C)、3-乙酰基硫基-1-丙基三乙氧基硅烷(E)、3-乙酰基硫基-1-丙基三乙氧基硅烷(E)、3-棕榈酰基硫基-1-丙基三乙氧基硅烷(F)、3-乙基乙酰基-1-丙基三乙氧基硅烷(G)、3-丙酰基硫基-1-丙基三乙氧基硅烷(H)、3-苯甲酰基硫基-1-丙基三乙氧基硅烷(I)、乙酰基硫基甲基三乙氧基硅烷(J)、乙酰基硫基乙基三甲氧基硅烷(K)、乙酰基硫基乙基三乙氧基硅烷(L)、乙酰基硫基乙基甲氧基硅烷(M)、乙酰基 硫基辛基三甲氧基硅烷(O)、乙酰基硫基环已基乙基三甲氧基硅烷(P)、和乙酰基硫基降冰片基乙基三甲氧基硅烷(Q)。其配方为(以 phr 计量): 75 SOLFLEX 1216SSBR、25 Budene 1207BR、80 ZEOSIL 1165MP 二氧化硅、32.5SUNDEX 3125 加工油、2.5 KADOX 720C 氧化锌、1.0 INDUSTRENE R 硬脂酸、2.0 SANTOFLEX 13 抗臭氧化剂、1.5 M4067 微蜡、3.0 N330 炭黑、1.4 Rubbermaker 硫 104、1.7CBS、2.0DPG、如上述各硅烷。

|     |   |       |                       |         |                    |              |             |                        |            |          |       |        |                    |           |        | _               | _               | m               | 3           |           |                |             |                         | ***                                       |                                         | ~     | ~                | .2.             | m                | ~            |
|-----|---|-------|-----------------------|---------|--------------------|--------------|-------------|------------------------|------------|----------|-------|--------|--------------------|-----------|--------|-----------------|-----------------|-----------------|-------------|-----------|----------------|-------------|-------------------------|-------------------------------------------|-----------------------------------------|-------|------------------|-----------------|------------------|--------------|
| x   | × | 6,3   |                       | 3       |                    | 7.7          | 9,6         |                        | 7.9        | 34.6     | 4,4   | 9.0    |                    | 8         | 540    | 20.4            | 52.7            | 108             | 244.7       | 8         |                | S           | 7.7                     |                                           | 1.76                                    |       |                  |                 |                  |              |
| x   |   | 6.3   |                       | 99      |                    | 80           | 6.6         |                        | 8.3        | 30.1     | 4.5   | 9,5    |                    | 30        | 610    | 16.2            | 38.0            | 80.2            | 234.1       | 123       |                | 18.9        | 13.0                    | 10.1                                      | 4.18                                    | 2.07  | 4.62             | 0.205           | 0.110            | 3.86         |
| Ö   |   | 9.62  |                       | 32      |                    | 36.8         | 19.0        |                        | 5,5        | 31,6     | 9.1   | 14.1   |                    | 26        | 909    | 15.5            | 35.9            | 9.69            | 175.8       | 157       |                | 10.5        | 7.0                     | 9.29                                      | 1.88                                    | 3.64  | 3.08             | 0.202           | 0.085            | 2.39         |
| ££4 | × | 12.67 |                       | 1       |                    | 1.9          | 13.9        |                        | 5.3        | 30.7     | 8.9   | 11.0   |                    | 3,        | 019    | 15.5            | 36.6            | 71.0            | 186.3       | ;         |                | ŧ           | ;                       | 5.03                                      | 13                                      | 2.17  | 1.23             | 0,191           | 0.057            | 3.35         |
| بشا |   | 12.67 |                       | 20      |                    | 13.0         | 14.6        |                        | 5.3        | 26.8     | 7.0   | 12.3   |                    | 35        | 740    | 12.7            | 27.4            | 55.5            | 205.3       | •         |                | *           | }                       | 6.40                                      | 2.42                                    | 1.27  | 2.34             | 0.199           | 0.097            | 2.05         |
| w   | × | 69'6  |                       | •       |                    | 9.6          | 11.7        |                        | 8.9        | 32.3     | 5.5   | 8.6    |                    | 55        | 490    | 97.             | 49.2            | 105.5           | 213.7       | 8         |                | 8.9         | 4.6                     | 4.67                                      | 0.82                                    | 2,00  | 1.27             | 0.177           | 0.064            | 2.77         |
| w   |   | 69.6  |                       | 55      |                    | 10.4         | 11.7        |                        | 6.3        | 27.8     | 5.6   | 11.3   |                    | 53        | 009    | 14,1            | 34.5            | 77.3            | 227.8       | ŝ         |                | 12.2        | 5.0                     | 4.88                                      | 2.44                                    | 86.0  | 2.14             | 0.205           | 880.0            | 2.33         |
| Ω   | × | 2.45  |                       | 1       |                    | 63           | 3.8         |                        | 3,3        | 33.9     | 3,5   | 7.5    |                    | 8         | 540    | 19.0            | 49.9            | 104.1           | 236.2       | 96        |                | 13.3        | 8.6                     | 20.0                                      | 1.93                                    | 4.05  | 3.21             | 0.185           | 6.079            | 2.34         |
| ۵   |   | 7.45  |                       | 29      |                    | 6.3          | 3.6         |                        | 7.9        | 29.9     | 3.6   | 8.0    |                    | 88        | 069    | 15.5            | 34.5            | 71.7            | 223.6       | 3         | 海路             | 21.1        | 14.5                    | 13.8                                      | 5.10                                    | 2.47  | 5.79             | 0.192           | 0.114            | 1.68         |
| Ç   | × | 6.33  |                       | ;       |                    | 7.5          | 10,2        |                        | 8,5        | 36.7     | 4.4   | 5.1    |                    | 99        | 570    | 22.5            | 54.8            | 105.5           | 250.3       | 6         | 500全           | 183         | 12.3                    | 36.6                                      | 2.67                                    | 7.06  | 5.33             | 0.161           | 0.075            | 2.13         |
| O   |   | 6.33  |                       | 72      |                    | 6.9          | 9.3         |                        | \$6<br>5.3 | 32.0     | 4.3   |        |                    | 25        | 660    | 17.6            | 38.7            | 73.8            | 225.0       | <u></u>   | €.             | 32.2        | 25.3                    | , 5                                       | 8.73                                    | 3.39  | 8.38             | 0.168           | 960.0            | 1.75         |
| m   | × | 6.36  |                       | 74      |                    | 9.6          | 11.5        |                        | - ee       | 34.5     | ×.    | 4.     |                    |           |        |                 |                 |                 |             |           |                |             | 6.3                     |                                           | 5.15                                    | 2.43  | 4.47             | 0.196           | 0.087            | 2.26         |
| m   |   | 6.36  |                       | 34      |                    | 6.6          | 12.6        | なな                     | 2.3        | 29.5     | 5.4   | 10.4   | ن                  | 58        | 560    | 16.9            | 40.1            | 84.4            | 210.3       | 69        | 8              | 18.9        | 10.5                    | 1 2 C                                     | 5.13                                    | 2.44  | 5.23             | 0.191           | 0.102            | 88.          |
| <   |   | 2.0   |                       | 24      |                    | 6.2          | 8.9         | 不多心                    | 9.6        | 31.8     | 4.5   | 17.6   | æ 149              | 33        | 420    | 20.4            | 58.4            | 123.7           | 210.9       | 7         | 5%             | 13,3        | 62                      | 2 2                                       | 3.00                                    | 1.46  | 2.93             | 0.216           | 0.098            | 2.23         |
| 母滨  |   |       | Mooney #4./2 @ 180 °C | ML. 1+4 | Mooney 平独然 在@135 C | MS1+, t., 今季 | MS1+, tim 4 | ODR @ 149 °C, 就度1° 309 | Mr. dN-m   | M., dN-m | 2. 少季 | 400.00 | <b>参照体统</b> 图代 198 | A Marie A | 各水母, % | 100% 接豪, kg/cm² | 200% 秦秦, kg/cm² | 300% 梅亭、 kg/cm² | 拉伸强度 kg/cm2 | DIN 產指毫米。 | 热成形@100℃,17.5% | Delta T, °C | 水久景影, % 法外证的 60.1489.44 | 2000 1 1 10 10 10 10 10 10 10 10 10 10 10 | 2000 A 10 | 2000年 | SOUTH NEW XX 10° | Tan delta @ 0"C | Tan delta @ 60°C | は条, 0°C/60°C |

| ~         |
|-----------|
| 쑗         |
| 裳         |
| <b>~~</b> |
| 10        |
| *         |

| 被                                            |           |      | ×       | ×     |       |       | Σ        | 2     | z     | z     | 0     | 0     | ۵۰    | 0     |
|----------------------------------------------|-----------|------|---------|-------|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|
| S系統                                          |           |      |         | ×     |       | ×     |          | ×     |       | ×     |       | ×     |       |       |
| か入参                                          | 9.        | 6.7  | 5.96    | 3.96  | 7.08  | 7.08  | 5.54     | 5.54  | 8.19  | 8,19  | 9.31  | 9.31  |       | 8.46  |
| Mooney 粘度 @ 100 °C                           |           |      |         |       |       |       |          |       |       |       |       |       |       |       |
|                                              | 55.       | 69   | 2       | 1     | 63    | }     | 2        | ;     | 82    | ţ     | 54    | 3     | 22    | S     |
| Mooney 早期城代@1351                             | 0         |      |         |       |       |       |          |       |       |       |       |       |       |       |
|                                              | 11.5      | 2.5  | 4.6     | 4.3   | 4.5   | 4.6   | 4.7      | 4.9   | 9,4   | 6,8   | =     | 1.2   | 8,5   | 9.5   |
| MSI+, tis. 分學                                | 13.5      | 3.5  | 5.6     | 5.6   | 5.3   | 5.6   | %;<br>00 | 6.1   | 12.6  | 6     | 13.2  | 13,3  | 10,7  | =3    |
| \$ 0.00 m                                    | 30分4      | 相中   | ঙ্গ     |       |       |       |          |       |       |       |       |       |       |       |
|                                              | 6.2       | 30   | 5.6     | 9.6   | 6.8   | 7.7   | 9.4      | 9.3   | 8.6   | 8.5   | 6.3   | 9.6   | 7.0   | 8.6   |
| M., 4N.m                                     | 35.0      | 32.5 | 29.8    | 34.1  | 27.5  | 31.3  | 33.9     | 38.1  | 34.5  | 37.0  | 30.7  | 34.7  | 38.4  | 37.6  |
| 今今                                           | 6.3       | 6:1  | 2.8     | 2.8   | 2.8   | 2,8   | 3.0      | 2.9   | 5.3   | 4.8   | 5.6   | 5.9   | 89    | wi.   |
| 李令 063                                       |           | 17.0 | 16.8    | 5.5   | 1.3   | 5.6   | 13.5     | 8.    | 12.0  | 6.31  | 10.3  | 10.9  | 10.5  | 10.0  |
| <b>63. 图 图 16.</b> 19                        | 3 (2) 149 | Ç    |         |       |       |       |          |       |       |       |       |       |       |       |
| Shore A                                      | 62        |      | <u></u> | 65    | 98    | 88    | 99       | 65    | 9     | 63    | 23    | 28    | 23    | 8     |
| 每长春, %                                       | \$60      |      | 200     | 470   | 580   | 560   | \$30     | \$30  | 640   | 290   | 280   | 530   | 640   | 580   |
| 100% W. kg/cm2                               | 19.0      |      | 19.0    | 20.4  | 14.8  | 17.6  | 21.1     | 22.5  | 17.6  | 21.1  | 15.5  | 18.3  | 31.1  | 32.5  |
| 200% 12 % kg/cm                              | 47.8      |      | 43.6    | 53.3  | 33.7  | 42.9  | 47.1     | 55.5  | 41.5  | 52.7  | 34.5  | 46.4  | 48.5  | 52.7  |
| 300% 2# % ke/cm²                             | 107.5     |      | 84,4    | 105,5 | 9.69  | 91.4  | 87.9     | 105.5 | 80.9  | 100.5 | 71.7  | 92.8  | 86.5  | 94.2  |
| 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 | 210.9     |      | 184.9   | 208.1 | 199.0 | 234.8 | 6'96     | 225.7 | 227.1 | 241.9 | 203.2 | 208.1 | 219.4 | 210.  |
| DIN 泰结 条头"                                   | 133       |      | 23      | 103   | 133   | 96    | 101      | 8     | 00    | 94    | 2     | 6     | 14    | 132   |
| 松成形(6100℃, 17.5%                             | 5压缩,      |      | 000     | 各角名   | ř, 25 | 今本    | 兴縣       |       |       |       |       |       |       |       |
| Delta T. C                                   | 12.8      |      | 21.7    | 16.1  | 28.9  | 16.7  | 25.0     | 16.7  | 21.1  | 3,6   | 14.4  | 10.0  | 7.3   | 2.0   |
| 水久如底, %                                      | 2.9       |      | 13.7    | 50°   | 23.2  | 11.2  | 17.3     | 9.3   | 16.8  | 12,6  | 11.0  | 7.5   | 12.7  | 8.0   |
| 劫合性能面0.15%点变                                 | Ď.        |      | カ数      | भर    |       |       |          |       |       |       |       |       |       |       |
| 2.000 * # # 101 * 101                        | 17.9      |      | 18.7    | 16.3  | 10.1  |       | 27.7     | 22.2  | 14.9  | 12,4  | 10.2  | 8.30  | 27.6  | 23.88 |
| 101 × 2 × 2 × 10 × 10 × 10 × 10 × 10 × 1     | 2.99      |      | 6.60    | 2.70  | 4.30  |       | 9.54     | 3.39  | 5.72  | 2.33  | 4.25  | 1.55  | 3.73  | 3.58  |
| C. GOC 米图/图米 7×10                            | 6.38      |      | 3.37    | 5.86  | 2.12  |       | 4.33     | 7.79  | 2.93  | 4.85  | 2.06  | 2.80  | 10.8  | 90    |
| (10 × 2 × 2 10 × 10 × 10 × 10 × 10 × 10 ×    | 6.83      |      | 9,4     | 5.92  | 5.32  | 2.92  | 14.0     | 9.87  | 5.75  | 3.62  | 4,06  | 2.44  | 12.4  | 9.6   |
|                                              | 0.167     |      | 0.188   | 0.167 | 0.210 |       | 0.156    | 0.153 | 0.197 | 0.187 | 0.202 | 0.192 | 0.135 | 0.15  |
| Tan delta @ 60 °C                            | 0,107     |      | 0.143   | 0.101 | 0.124 |       | 0.147    | 0.118 | 0.103 | 0.075 | 0.096 | 0.087 | 0.115 | 0.10  |
| K. 4. 0.0.60°C                               | 1.56      | 1.67 | 1.26    | 1.65  | 1.69  |       | 3.06     | 1.30  | 1,95  | 2,49  | 2.10  | 2.2   | <br>  | 1.4   |
|                                              |           |      |         |       |       |       |          |       |       |       |       |       |       |       |