DATA PREPROCESSING

Using python

The Machine Learning Steps:

Step1: Data Preprocessing

- Import the dataset and libraries
- Clean the data
- Split the data into training and testing sets

Step2: Modeling

- · Create the model
- Train the model
- Make predictions

Step3: Evaluation

- Calculate the performance
- Make a decision

Data Preprocessing (a.k.a. Data Wrangling)

Clean the data

- Missing values
- Mis-formatted data
- Outliers

Transform the data

- Scale
- Turn categorical data into metric data
- Turn metric data into categorical data

Exploratory data analysis

- Visualization
- Statistical analysis

Feature Scaling

house size	House age	House price	
(square feet)	(years)	(\$ dollar)	
2,467	10	800,000	
1,050	5	500,000	
3,000	25	1,500,000	
7,000	2	2,000,000	
5,500	35	2,500,000	
1,900	8	900,000	

'Normalization is used when the data doesn't have Gaussian distribution whereas Standardization is used on data having Gaussian distribution. Normalization scales in a range of [0,1] or [-1,1]. Standardization is not bounded by range(mostly will be between [-3,+3]'.

Feature Scaling example

1,500

2

2,000

6

3,000

8

Feature Scaling example

田田

1,500

500

2,000 6

1000

3,000 8

Feature Scaling example

$$1,500 - 1,500/(3,000-1,500) = 0$$

$$2-2/(8-2)=0$$

$$6-2/(8-2) = 0.66$$

$$3000 - 1,500/(3,000-1,500) = 1$$

$$8-2/(8-2)=1$$

Feature scaling example continued

	size	age	
green house	0	0	_
red house	0.33	0.66	
blue house	1	1	_

Distance =
$$\sqrt{(0.33-1)^2+(0.66-1)^2}$$
 = 0.751

Conclusion: the red house is more similar to the green house than the blue house, since they're closer in distance.

Training and Testing sets

1) Use the training set to train the model, e.g., multiple linear regression model:

$$\hat{y} = b_0 + b_1 X_1 + b_2 X_2$$

3) Evaluate the performance of the model. Compare what the Model predicted for the testing Set, to the actual values of the Testing set.

Testing 20%

2) Use this testing set to test the model that created in step 1

Predicted values vs Actual values