Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа Р3214 К работе допущен

Студент Силинцев Владислав Работа выполнена

Преподаватель Хвастунов Н.Н. Отчет принят

Рабочий протокол и отчет по лабораторной работе №03.06

Изучение электрических свойств сегнетоэлектриков

1. Цель работы.

- 1) Определение значений электрического смещения насыщения D_s , остаточной поляризации P_r , коэрцитивной силы E_c для предельной петли гистерезиса сегнетоэлектрика.
- 2) Расчет диэлектрических потерь за цикл переполяризации сегнетоэлектрика.
- 3) Получение зависимостей смещения D и диэлектрической проницаемости ε от напряженности электрического поля E.
- 4) Определение значений начальной и максимальной диэлектрической проницаемости.

2. Задачи, решаемые при выполнении работы.

- Вычислить значения коэрцитивного поля E_c , электрической индукции в состоянии насыщения D_s и остаточной поляризации P_r .
- Оценить погрешности вычисляемых величин.
- Построить графики зависимости электрического смещения и диэлектрической проницаемости от напряженности электрического поля на основе экспериментальных данных.
- Сравнить результаты с теоретическими знаниями.

3. Объект исследования.

Сегнетоэлектрический конденсатор (вариконд) ВК2-4.

4. Метод экспериментального исследования.

Исследование петли гистерезиса сегнетоэлектрика с помощью «ИСХ1».

5. Рабочие формулы и исходные данные.

- $R_1 = 47 \kappa O M \pm 10 \%$ номинал резистора 1.
- $R_2 = 470 \, \kappa O_M \pm 10 \,\%$ номинал резистора 2.
- $C_1 = 1 \, \text{мк} \Phi \pm 10 \, \%$ емкость эталонного конденсатора.
- $S = 500 \, \text{мм}^2 \pm 10 \, \%$ площадь пластин конденсатора.
- $d = 0,5 \, \text{мм} \pm 10 \,\%$ толщина сегнетоэлектрика.
- $E = \frac{R_1 + R_2}{R_1} \cdot \frac{U_{R_1}}{d}$ напряженность электрического поля.
- $D = \frac{C_1}{S} \cdot U_{C_1}$ модуль вектора электрической индукции.
- $\varepsilon = \frac{D}{\varepsilon_0 E}$ диэлектрическая проницаемость сегнетоэлектрика.
- $D = P + \varepsilon_0 E$ модуль вектора электрического смещения.
- $\tan \delta = \frac{1}{\pi} \cdot \frac{\int DdE}{D_s E_s}$ тангенс угла диэлектрических потерь в сегнетоэлектриках.
- $\Delta_{E_c} = \sqrt{\left(\frac{\partial E_c}{\partial R_1} \Delta_{R_1}\right)^2 + \left(\frac{\partial E_c}{\partial R_2} \Delta_{R_2}\right)^2 + \left(\frac{\partial E_c}{\partial d} \Delta_d\right)^2}$, $\varepsilon_{E_c} = \frac{\Delta_{E_c}}{E_c} \cdot 100\%$ абсолютная и относительная

погрешности коэрцитивной силы соответственно.

•
$$\Delta_{D_s} = \sqrt{\left(\frac{\partial D_s}{\partial C_1}\Delta_{C_1}\right)^2 + \left(\frac{\partial D_s}{\partial S}\Delta_S\right)^2}$$
, $\varepsilon_{D_s} = \frac{\Delta_{D_s}}{D_s} \cdot 100\%$ — абсолютная и относительная

погрешности электрического смещения насыщения соответственно.

- $\Delta_{P_r} = \Delta_{D_r} = \sqrt{\left(\frac{\partial D_r}{\partial C_1}\Delta_{C_1}\right)^2 + \left(\frac{\partial D_r}{\partial S}\Delta_S\right)^2}$, $\varepsilon_{P_r} = \varepsilon_{D_s} = \frac{\Delta_{D_r}}{D_r} \cdot 100\%$ абсолютная и относительная погрешности остаточной поляризации соответственно.
- $\Delta_{\varepsilon} = \sqrt{\left(\frac{\partial \, \varepsilon}{\partial \, D} \Delta_{\scriptscriptstyle D}\right)^2 + \left(\frac{\partial \, \varepsilon}{\partial \, E} \Delta_{\scriptscriptstyle E}\right)^2}$, $\varepsilon_{\varepsilon} = \frac{\Delta_{\varepsilon}}{\varepsilon} \cdot 100\,\%$ абсолютная и относительная погрешности диэлектрической проницаемости сегнетоэлектрика соответственно.

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	«ИСХ1»	ИСХ	Настраиваемый	Настраиваемая

7. Схема установки (перечень схем, которые составляют Приложение 1).

Схема 1: Измеритель статических характеристик ИСХ1.

Схема 2: Принципиальная электрическая схема установки.

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Искомая величина	K _x , В/ дел	Х , дел	U_{R_1} , B	$E, \frac{B}{M}$
E_s	5	2,7	13,5	297000
E_c	5	0,6	3	66000

Искомая величина	К _у , В / дел	Ү , дел	U_{C_1} , B	$D, \frac{K_{I}}{M^2}$
D_{s}	5	3	15	0,03
D_r	5	1.3	6,5	0,013

Примеры расчетов для первой строки:

$$U_{R_1} = 0.6 \cdot 5 = 3B$$
, $U_{C_1} = 3.5 = 15B$.

Используя формулы $E = \frac{R_1 + R_2}{R_1} \cdot \frac{U_{R_1}}{d}$ и $D = \frac{C_1}{S} \cdot U_{C_1}$ найдем значения E_s , E_c , D_s и D_r :

$$E_s = \frac{47 \cdot 10^3 + 470 \cdot 10^3}{47 \cdot 10^3} \cdot \frac{13.5}{0.5 \cdot 10^{-3}} = 297000 \frac{B}{M},$$

$$E_c = \frac{47 \cdot 10^3 + 470 \cdot 10^3}{47 \cdot 10^3} \cdot \frac{3}{0.5 \cdot 10^{-3}} = 66000 \frac{B}{M},$$

$$D_s = \frac{1 \cdot 10^{-6}}{500 \cdot 10^{-6}} \cdot 15 = 0.03 \frac{Kn}{M^2},$$

$$D_r = \frac{1 \cdot 10^{-6}}{500 \cdot 10^{-6}} \cdot 6,5 = 0,013 \frac{Kn}{M^2}.$$

Из D_r = P_r + $arepsilon_0 E_c$ следует, что P_r = D_r - $arepsilon_0 E_c$. $arepsilon_0 E_c \ll D_r$, тогда $P_r pprox D_r$.

Тогда, значение остаточной поляризации: $P_r = D_r = 0.013 \frac{K_{I}}{M^2}$.

	Физические величины							
Nº	U, B	K_x , $B/\partial e$	K_y , $B/\partial e$	Х , дел	Y , дел	Е,В/м	D, Кл/м²	ε
1	17	5	5	2.7	3	297000	0,03	11413,57
2	15	5	5	2.5	2.8	275000	0,028	11504,88
3	13	5	5	2.3	2.6	253000	0,026	11612,07
4	11	5	5	1.7	2.1	187000	0,021	12689,21
5	9	5	5	1.4	1.7	154000	0,017	12473,4
6	7	5	5	1.1	1.2	121000	0,012	11206,05
7	5	2	2	2	1.5	88000	0,006	7704,16

Пример подсчёта:
$$E = \frac{R_1 + R_2}{R_1} \cdot \frac{U_{R_1}}{d} = \frac{47 \cdot 10^3 + 470 \cdot 10^3}{47 \cdot 10^3} \cdot \frac{2,7 \cdot 5}{0.5 \cdot 10^{-3}} = 297000 \frac{B}{M}$$
.

Пример подсчёта:
$$D = \frac{C_1}{S} \cdot U_{C_1} = \frac{1 \cdot 10^{-6}}{500 \cdot 10^{-6}} \cdot 3 \cdot 5 = 0,03 \frac{Kn}{m^2}$$
.

9. Расчет результатов косвенных измерений (*таблицы, примеры расчетов*).

Пример подсчёта:
$$\varepsilon = \frac{D}{\varepsilon_0 E} = \frac{0.03}{8.85 \cdot 10^{-12} \cdot 297000} = 11413,57.$$

Используя формулу $\tan\delta\!=\!\frac{1}{\pi}\cdot\frac{\int DdE}{D_sE_s}$ найдем тангенс угла диэлектрических потерь:

$$\tan \delta = \frac{1}{3,14} \cdot \frac{5,5}{3 \cdot 2,7} \approx 0,216.$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Погрешности прямых измерений:

$$\Delta_{R_1} = 4.7 \, \kappa O M, \, \varepsilon_{R_1} = 10 \, \%.$$

$$\Delta_{R_2} = 47 \, \kappa O M$$
, $\varepsilon_{R_2} = 10 \, \%$.

$$\Delta_{C_1} = 0,1 \text{ MK}\Phi, \ \varepsilon_{C_1} = 10 \%.$$

$$\Delta_{\rm S}=50~{\rm MM}^2,~\varepsilon_{\rm S}=10~\%.$$

$$\Delta_d = 0.05 \, \text{MM}, \, \varepsilon_d = 10 \, \%.$$

Погрешности косвенных измерений:

$$\Delta_{E_c} = \sqrt{\left(\frac{-U_{R_1}R_2}{dR_1^2}\Delta_{R_1}\right)^2 + \left(\frac{U}{dR_1}\Delta_{R_2}\right)^2 + \left(\frac{-U_{R_1}(R_1 + R_2)}{R_1d^2}\Delta_d\right)^2} = \sqrt{(-6000)^2 + (6000)^2 + (-6600)^2} \approx 10749,88\frac{B}{M}.$$

$$\varepsilon_{E_c} = \frac{10749,88}{66000} \cdot 100\% \approx 16,29\%.$$

$$\Delta_{D_s} = \sqrt{\left(\frac{U_{C_1}}{S}\Delta_{C_1}\right)^2 + \left(\frac{-C_1U_{C_1}}{S^2}\Delta_S\right)^2} = \sqrt{\left(\frac{15}{5000}\right)^2 + \left(\frac{-15}{5000}\right)^2} \approx 0,004243 \frac{Kn}{M^2}.$$

$$\varepsilon_{D_s} = \frac{0,004243}{0.03} \cdot 100\% \approx 14,14\%.$$

$$\Delta_{P_r} = \sqrt{\left(\frac{U_{C_1}}{S}\Delta_{C_1}\right)^2 + \left(\frac{-C_1U_{C_1}}{S^2}\Delta_S\right)^2} = \sqrt{\left(\frac{6.5}{5000}\right)^2 + \left(\frac{-6.5}{5000}\right)^2} \approx 0.001838 \frac{Kn}{M^2}.$$

$$\varepsilon_{P_r} = \frac{0,001838}{0.013} \cdot 100\% \approx 14,14\%.$$

$$\Delta_{\varepsilon} = \sqrt{\left(\frac{1}{\varepsilon_{0}E}\Delta_{D}\right)^{2} + \left(\frac{-D}{\varepsilon_{0}E^{2}}\Delta_{E}\right)^{2}} = \sqrt{\left(\frac{0.4\cdot10^{-2}}{8.85\cdot10^{-12}\cdot1.87\cdot10^{5}}\right)^{2} + \left(\frac{-0.021\cdot0.11\cdot10^{5}}{8.85\cdot10^{-12}\cdot1.87^{2}\cdot10^{10}}\right)^{2}} \approx 2529,624.$$

$$\varepsilon_{\varepsilon} = \frac{2529,624}{12689,21} \cdot 100\% \approx 19,9\%.$$

11. Графики (перечень графиков, которые составляют Приложение 2).

График 1: график зависимости D = D(E).

График 2: график зависимости $\varepsilon = \varepsilon(E)$.

12. Окончательные результаты.

$$D_s = (3.0 \pm 0.4) \cdot 10^{-2} \frac{Kn}{M^2}.$$

$$E_c = (2,97 \pm 0,11) \cdot 10^5 \frac{B}{M}$$
.

$$P_r = (1,30 \pm 0,18) \cdot 10^{-4} \frac{Kn}{M^2}.$$

$$\varepsilon_{\text{\tiny HAY}} = (200 \pm 5) \cdot 10.$$

$$\varepsilon_{\text{\tiny MAKC}} = (12,7\pm2,5)\cdot10^3.$$

$$E_{\text{\tiny MAKC}} = (1,87 \pm 0,11) \cdot 10^5 \frac{B}{\text{\tiny M}}.$$

13. Выводы и анализ результатов работы.

В ходе этой работы была изучена петля гистерезиса сегнетоэлектрика. Были определены значения E_s , E_c , D_s , D_r и $\varepsilon_{\text{\tiny MAKC}}$, а также рассчитаны диэлектрические потери за цикл переполяризации сегнетоэлектрика. Анализируя графики 1 и 2, можно прийти к выводу, что зависимости D = D(E) и $\varepsilon = \varepsilon(E)$ являются нелинейными.

14. Дополнительн	ые задания.
15. Выполнение д	ополнительных заданий.
16. Замечания пре также помещаюп	еподавателя (исправления, вызванные замечаниями преподавателя n в этот пункт).
Примечание:	1. Пункты 1-6,8-13 Протокола-отчета обязательны для заполнения.
примечание.	 Тункты 1-6,6-13 протокола-отчета обязательны оля заполнения. Необходимые исправления выполняют непосредственно в протоколе-отчете. При ручном построении графиков рекомендуется использовать миллиметровую бумагу. Приложения 1 и 2 вкладывают в бланк протокола-отчета.

Приложение 1

Схема 1: Измеритель статических характеристик ИСХ1.

- 1. графический дисплей;
- 2. кнопка выбора режима работы «F»;
- 3. кнопка выбора шкалы «Шкл.»;
- 4. кнопка запоминания оцифрованного сигнала «Стоп»;
- 5. кнопка выбора температурного режима «Темп»;
- 6. кнопка управления генератором «Генер.»;
- 7. кнопка выбора коэффициента отклонения « K_{yc} »;
- 8. кнопка уменьшения выбранной величины «-»;
- 9. кнопка увеличения выбранной величины «+»;
- 10. кнопка выключателя «Сеть»;
- 11. выход генератора;

- 12. вход тока I;
- 13. вход напряжения U_1 ;
- 14. вход напряжения U_2 ;

Схема 2: Принципиальная электрическая схема установки.

Приложение 2

График 1: график зависимости D = D(E).

График 2: график зависимости $\varepsilon = \varepsilon(E)$.