Security Level:

Technical Challenges of Future Massively Deployed Radio Technologies

Mérouane Debbah

www.huawei.com

Mathematical and Algorithmic Sciences Lab

Spectral Efficiency for fixed and Wireless Technologies

Copper Access: History and Future Trend: Continuous Innovations Keep Exploring the Potential of Copper

AF5 Put a dash between 50 and 100

A73863; 06/05/2015

Optical Access Trend

Much more flexible OAN will be the Future trend. New technologies such as DSP, SDN and NFV will be involved.

Cable Access Network Trend

Common Trend of various access technologies

Data rate faster & faster

Data rate	Now	Soon	Future
Copper (dedicated)	100 MBPS	1 GBPS	5-10 GBPS
Cable (shared)	1 GBPS	10 GBPS	40 GBPS
Optical (shared)	2.5 GBPS	10 GBPS	40~400 GBPS

Spectrum wider & wider

Frequency Spectrum	Now	Soon	Future
Copper (dedicated)	30 MHz	100 MHz	>200 MHz
Cable (shared)	860 MHz	1.7 GHz	6 GHz
Optical (shared)	1 lambda x2.5G	4 lambda x 10G	more lambda x >10G

Loops shorter & shorter

Loop length	Now	Soon	Future
Copper (dedicated)	300-1000m	100-300m	<100m
Cable (shared)	1000-2000m	500-1000m	<200m

The Massive Paradigm of Next Generation Radio technologies

- Massive number of antennas
- Massive number of things
- Massive bandwidth

Massive spectrum	Massive Antennas	Massive Number of things
?x	?x	?x
New regulations, cognitive radio, mmWave bands	Smaller cells, Massive MIMO	Non-Orthogonal waveforms Asynchronous transmissions

We will focus on Massive Antennas

"David vs Goliath" or "Small Cells vs Massive MIMO"

How to densify: "More antennas or more BSs?"

Questions:

- ▶ Should we install more base stations or simply more antennas per base?
- ▶ How can massively many antennas be efficiently used?

Example

- ▶ Density of UTs: $\lambda_{UT} = 16$
- Constant transmit power density: $P \times \lambda_{BS} = 10$
- ▶ Number of BS-antennas: $N = \lambda_{\rm UT}/\lambda_{\rm BS}$
- ▶ Path loss exponent: $\alpha = 4$
- ▶ UT simultaneously served on each band: $K = \lambda_{UT}/(\lambda_{BS} \times L)$
- \Rightarrow Only two parameters: λ_{BS} and L

Table: Average spectral efficiency C/W in (bits/s/Hz)

sub-bands L	$\lambda_{BS} = 1$	$\lambda_{BS} = 2$	$\lambda_{BS} = 4$	$\lambda_{BS} = 8$	$\lambda_{\mathrm{BS}}=16$
1	0.6209	0.8188	1.1964	1.5215	2.1456
2	1.1723	1.2414	1.3404	1.5068	X
4	0.8882	0.8973	1.1964	X	X
8	0.5689	0.5952		X	Х
16	0.3532	X	Х	Х	Х

Fully distributing the antennas gives highest throughput gains!

Massive MIMO as one of the operating of 5G

E. Bjornson, L. Sanguinetti, J. Hoydis and M. Debbah, "Designing Multi-User MIMO for Energy Efficiency: When is Massive MIMO the Answer? », IEEE Wireless Communications and Networking Conference (WCNC) 2014, Istanbul, Turkey, **BEST PAPER AWARD.**

Human Centric Visual Communications with Future Media

Power Consumption Barrier at Device

- 1 Device 1 Day → 1 Hour 5G video call 10Gbps → 3600x10¹º bits/Hour
- 1 Device → 10 Watts/Hour video call Today LDPC FEC Decoder: 10-9J/bit
- → Require 100 times simplified encoding/decoding techniques, *yet approach Shannon Limit*

Taking Multi-User MIMO to the Next Level

- Network Architecture: Massive MIMO
 - BS with many antennas; e.g., $M \approx 200$ antennas, $K \approx 40$ users
 - Key: Excessive number of antennas, $M \gg K$
 - Very directive signals
 - Little interference leakage

Spectral efficiency prop. to number of users!

$$\min\left(M, K, \frac{\tau_c}{2}\right) \approx K$$

What is the Key Difference from Today?

- Number of Antennas? No, we already have many antennas!
 - 3G/UMTS: 3 sectors x 20 element-arrays = 60 antennas
 - 4G/LTE-A: 4-MIMO x 60 = 240 antennas

Typical vertical array:
10 antennas x 2 polarizations

Massive MIMO Characteristics

Many small dipoles with transceiver chains Spatial multiplexing of tens of users Massive in numbers – not massive in size

3 sectors, 4 vertical arrays per sector Image source: gigaom.com

J. Hoydis, S. ten Brink, M. Debbah, "*Massive MIMO in the UL/DL of Cellular Networks: How Many Antennas Do We Need?*," IEEE Journal on Selected Areas in Communications, 2013. **IEEE Leonard G. Abraham Prize**

Massive MIMO Transmission Protocol

Coherence Blocks

- Fixed channel responses
- Coherence time: T_c s
- Coherence bandwidth: W_c Hz
- Depends on mobility and environment
- Block length: $\tau_c = T_c W_c$ symbols
- Typically: $\tau_c \in [100,10000]$

Frequency Time Uplink Uplink Downlink data T_c

Time-Division Duplex (TDD)

- Downlink and uplink on all frequencies
- τ_p symbols/block for uplink pilots for channel estimation
- $\tau_c \tau_p$ symbols/block for uplink and/or downlink payload data

Linear or Non-linear Processing?

- Capacity-Achieving Non-linear Processing
 - Downlink: Dirty paper coding
 - Uplink: Successive interference cancellation

Do we need it in Massive MIMO?

Linear Processing

Bad when $M \approx K$

Good when M/K > 2

Relative low complexity

Massive MIMO

Uses linear processing:

Maximum ratio (MR)

Zero-forcing (ZF)

MMSE

Channel Acquisition in Massive MIMO

- Limited Number of Pilots: $\tau_p \le \tau_c$
 - Must use same pilot sequence in several cells
 - Base stations cannot tell some users apart:
 Essence of pilot contamination
- Coordinated Pilot Allocation
 - Allocate pilots to users to reduce contamination
 - Scalability → No signaling between BSs

- Pilot reuse factor $f \ge 1$
- Users per cell: $K = \frac{\tau_p}{f}$
- $\mathcal{P}_i(f)$: Cells with same pilots as BS j
- Higher $f \to \text{Fewer users per cell}$, but fewer interferers in \mathcal{P}_i

Asymptotic Limit on Spectral Efficiency

$$SE_j \to K \left(1 - \frac{fK}{\tau_c}\right) \log_2 \left(1 + \frac{1}{\sum_{l \in \mathcal{P}_j(f) \setminus \{j\}} \mu_{jl}^{(2)}}\right)$$

How Many Users to Serve?

Pre-log factor $K\left(1-\frac{fK}{\tau_c}\right)$ is maximized by $K^*=\frac{\tau_c}{2f}$ users

Maximal SE:
$$\frac{\tau_c}{4f} \log_2 \left(1 + \frac{1}{\sum_{l \in \mathcal{P}_j(f) \setminus \{j\}} \mu_{jl}^{(2)}} \right)$$

Try different f and $\mathcal{P}_{j}(f)$ to maximize the limit

How Long Pilot Sequences?

 $\tau_p = fK^* = \frac{\tau_c}{2}$: Spend half coherence interval on pilots!

Numerical Results

Problem Formulation:

maximize K, τ_p total spectral efficiency [bit/s/Hz/cell]

for a given M and τ_c .

- Use average spectral efficiency expressions
- Compute average interference $\mu_{il}^{(1)}$ and $\mu_{il}^{(2)}$ (a few minutes)
- Compute for different K and f and pick maximum (< 1 minute)

Assumptions

Pathloss exponent: 3.7

Coherence: $\tau_c = 400$

Rayleigh fading

SNR 5 dB

Asymptotic Behavior: Mean-Case Interference

Observations

- Uniform user distributions
- Asymptotic limits not reached
- Reuse factor f = 3 is desired
- K is different for each scheme
- Small difference between optimized schemes
- Coordinated beamforming:Better at very large M

Flexible Number of Users

- SE w.r.t. number of users (M = 200 antennas)
 - Mean-case interference
 - Optimized reuse factors
 - Equal SNR (5 dB)

Observations

Stable SE for K > 10: Trivial scheduling: Admit everyone

M-ZF, ZF, and MR provide similar per-cell performance

M/K < 10 is just fine!

Spectral Efficiency per User

- User Performance for Optimized System
 - Mean-case interference
 - Optimized reuse factors
 - Equal SNR (5 dB)

Observations

User performance is modest: BPSK, Q-PSK, or 16-QAM

Schemes for different purposes:

M-ZF > ZF > MR

Anticipated Uplink Spectral Efficiency

Assumptions

ZF processing

Pilot reuse: f = 3

Observations

- Baseline: 2.25 bit/s/Hz/cell (IMT-Advanced)
- Massive MIMO, M = 100: x20 gain $(M/K \approx 6)$
- Massive MIMO, M = 400: x50 gain $(M/K \approx 9)$
- Per scheduled user: ≈ 2.5 bit/s/Hz

First Large Scale 5G Field Trial (chengdu/china)

Large Scale Field Test of 5G New Radio Interface

- ♦ 64 TRX
- 100MHz Bandwidth
- ♦ 24 UE

Technologies

- f-OFDM
- SCMA
- Polar Coding
- M-MIMO
- Full Duplex

m-MIMO with 24 UEs

Cell throughput of MU-MIMO is >10 times to SU-MIMO with single layer

Key References (1/2)

Seminal and Overview Papers

- 1. T. L. Marzetta, "Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas," IEEE Trans. Wireless Communications, 2010. IEEE W.R.G. Baker Prize Paper Award
- J. Hoydis, S. ten Brink, M. Debbah, "Massive MIMO in the UL/DL of Cellular Networks: How Many Antennas Do We Need?," IEEE Journal on Selected Areas in Communications, 2013. IEEE Leonard G. Abraham Prize
- 3. H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, "Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems," IEEE Trans. Commun., 2013. IEEE Stephen O. Rrice Prize
- 4. F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, "Scaling up MIMO: Opportunities and Challenges with Very Large Arrays," IEEE Signal Proces. Mag., 2013.
- J. Hoydis, K. Hosseini, S. ten Brink, and M. Debbah, "Making Smart Use of Excess Antennas: Massive MIMO, Small Cells, and TDD," Bell Labs Technical Journal, 2013.
- 6. E. G. Larsson, F. Tufvesson, O. Edfors, and T. L. Marzetta, "Massive MIMO for Next Generation Wireless Systems," IEEE Commun. Mag., 2014.
- 7. E. Björnson, E. Jorswieck, M. Debbah, B. Ottersten, "Multi-Objective Signal Processing Optimization: The Way to Balance Conflicting Metrics in 5G Systems," IEEE Signal Processing Magazine, 2014.
- 8. T. L. Marzetta, "Massive MIMO: An Introduction," Bell Labs Technical Journal, 2015
- E. Björnson, E. G. Larsson, T. L. Marzetta, "Massive MIMO: 10 Myths and One Grand Question," IEEE Communications Magazine, To appear.

Key References (2/4)

Spectral Efficiency

- J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vishwanath, "Pilot Contamination and Precoding in Multi-cell TDD Systems," IEEE Trans. Wireless Commun., 2011.
- 2. H. Huh, G. Caire, H. C. Papadopoulos, and S. A. Ramprashad, "Achieving 'Massive MIMO' Spectral Efficiency with a Not-so-Large Number of Antennas," IEEE Trans. Wireless Communications, 2012.
- 3. A. Adhikary, N. Junyoung, J.-Y. Ahn, G. Caire, "Joint Spatial Division and Multiplexing—The Large-Scale Array Regime," IEEE Trans. Information Theory, 2013.
- 4. E. Björnson and E. Jorswieck, "Optimal Resource Allocation in Coordinated Multi-cell Systems," Foundations and Trends in Communications and Information Theory, 2013.
- 5. H. Yang and T. Marzetta, "A Macro Cellular Wireless Network with Uniformly High User Throughputs," in Proc. IEEE VTC-Fall, 2014.
- 6. E. Björnson, E. G. Larsson, M. Debbah, "Massive MIMO for Maximal Spectral Efficiency: How Many Users and Pilots Should Be Allocated?," IEEE Trans. Wireless Communications, To appear.
- 7. X. Li, E. Björnson, E. G. Larsson, S. Zhou, J. Wang, "Massive MIMO with Multi-cell MMSE Processing: Exploiting All Pilots for Interference Suppression," Submitted to IEEE Trans. Wireless Communications.