Termodinâmica

Aula 3 — Equação de van der Waals

Prof. Diego J. Raposo

Universidade de Pernambuco, Escola Politécnica de Pernambuco (UPE-POLI)

Semestre 2025.1

Construindo a equação

Limitações da equação dos gases ideais

- A equação dos gases ideais não representa adequadamente gases em todas as condições de temperatura e pressão;
- Particularmente, ela ignora outros estados de agregação da matéria (fases) e transições entre esses estados, mesmo no caso mais simples de substâncias puras.

- ► Em 1873, em sua tese de doutorado, van der Waals propôs uma forma de corrigir a equação dos gases ideais para além do regime de alta *T* e baixa *p*. Isso permitiu:
 - Entender como a não-idealidade se reflete em V e em p (papel das interações entre partículas);
 - Prever, pela primeira vez, as transições de fase líquido-vapor (propriedade comum à equações de estado cúbicas) e, com a construção de Maxwell, as temperaturas de coexistência entre essas fases;
 - Identificou a presença do ponto crítico, com p_c, T_c e V_c característico para cada gás. Para T > T_c não existe mais transição, apenas um único fluido (supercrítico);
 - ► Em 1880 propôs a lei dos estados correspondentes, unificando as relações entre fluidos e seus pontos críticos.

Johannes Diderik van der Waals (1837 – 1923)

Correção no volume

O volume do recipiente (V) é igual ao volume acessível a partículas pontuais. Porém, se as partículas possuem volume, V é igual a soma do volume que as partículas podem ocupar (V_{corr}) mais o chamado volume excluido, b', que é a soma dos volumes das partículas confinadas. Assim:

$$V = V_{corr} + b' \Rightarrow V_{corr} = V - b' \Rightarrow \overline{V}_{corr} = \overline{V} - b$$
 (1)

► Tal fator, em termos microscópicos, se deve à repulsão entre nuvens eletrônicas das partículas do gás entre si e com as paredes do recipiente.

colisões entre partículas

colisões de partículas com parede

permitido

proibido

permitido

proibido

Correção na pressão

A pressão do gás em um recipiente (p) é a pressão exercida pelas colisões das partículas com a parede menos uma pressão interna $(p_{\rm int})$, que é tão maior quanto mais fortes as interações entre as partículas. Essa pressão interna (parâmetro termodinâmico importante que veremos novamente) é proporcional ao número de colisões entre as partículas por unidade de volume em um certo intervalo de tempo. Portanto, ela é proporcionao à c^2 ou, analogamente, a $1/\overline{V}^2$

$$p = p_{\text{corr}} - p_{\text{int}} \Rightarrow p_{\text{corr}} = p + p_{\text{int}} = p + ac^2 = p + \frac{a}{\overline{V}^2}$$
 (2)

sem interações: pressão maior

com interações: pressão menor

Equação final

Agora podemos unir essas correções em uma única equação, ajustada para compensar a não-idealidade de um gás real, numa forma similar a equação dos gases ideais:

$$p_{\text{corr}}\overline{V}_{\text{corr}} = \left(p + \frac{a}{\overline{V}^2}\right)\left(\overline{V} - b\right) = RT$$
 (3)

- ▶ Quanto maior o a, mais fortes são as atrações entre as partículas. Como a/\overline{V}^2 deve ter unidade de pressão, a possui unidade de (pressão)(volume)/(mol). Ex.: L² bar mol⁻¹;
- Quanto maior o b, mais volume cada uma delas ocupa. Ele possui unidades de volume molar, (volume)/(mol). Ex.: L mol⁻¹;
- ▶ Para a e b suficientemente pequenos, restitui-se a equação dos gases ideais.

Outras formas da equação de vdw

► Isolando a pressão: Para um gás com parâmetros a e b conhecidos, a pressão p pode ser facilmente determinada em função de T e V especificados:

$$\left(p + \frac{a}{\overline{V}^2}\right)\left(\overline{V} - b\right) = RT \Rightarrow p + \frac{a}{\overline{V}^2} = \frac{RT}{\overline{V} - b}$$

$$p = \frac{RT}{\overline{V} - b} - \frac{a}{\overline{V}^2} \tag{4}$$

▶ Isolando o volume: Para a e b conhecidos e T e p específicos, determinar V requer a resolução de uma equação cúbica:

$$p + \frac{a}{\overline{V}^2} = \frac{RT}{\overline{V} - b} \Rightarrow p(\overline{V} - b) + \frac{a(\overline{V} - b)}{\overline{V}^2} - RT = 0$$

$$p\overline{V} - bp + \frac{a}{\overline{V}} - \frac{ab}{\overline{V}^2} - RT = 0 \Rightarrow p\overline{V}^3 - bp\overline{V}^2 + a\overline{V} - ab - RT\overline{V}^2 = 0$$

$$\overline{V}^3 - b\overline{V}^2 + \frac{a\overline{V}}{p} - \frac{ab}{p} - \frac{RT\overline{V}^2}{p} = 0$$

$$\overline{V}^3 - \left(b + \frac{RT}{p}\right)\overline{V}^2 + \frac{a}{p}\overline{V} - \frac{ab}{p} = 0$$
(5)

Equação cuja resolução pode ser analítica ou numérica.

Expansão virial da Eq. de vdw

$$\left(p + \frac{a}{\overline{V}^2}\right)\left(\overline{V} - b\right) = RT \Rightarrow p + \frac{a}{\overline{V}^2} = \frac{RT}{\overline{V} - b} = \frac{RT}{\overline{V}}\left(\frac{1}{1 - b/\overline{V}}\right)$$

$$\frac{1}{1 - x} = 1 + x + x^2 + \dots \left(x^2 < 1\right) \Rightarrow \frac{RT}{\overline{V}}\left[1 + \frac{b}{\overline{V}} + \left(\frac{b}{\overline{V}}\right)^2 + \dots\right] - \frac{a}{\overline{V}^2}$$

$$p = \frac{RT}{\overline{V}}\left[1 + \frac{b}{\overline{V}} + \left(\frac{b}{\overline{V}}\right)^2 + \dots - \frac{a}{\overline{V}RT}\right]$$

$$= \frac{RT}{\overline{V}}\left[1 + \frac{1}{\overline{V}}\left(b - \frac{a}{RT}\right) + \left(\frac{b}{\overline{V}}\right)^2 + \dots\right] \tag{6}$$

O comportamento de gás ideal ocorre quando $p \to 0$, o que está relacionado a um aumento do volume molar: $\overline{V} \to \infty$. Com isso, termos com elevada potência em \overline{V} tendem a zero mais rapidamente, e a equação $p\overline{V} = RT$ é obedecida nesse limite.

Fator de compressibilidade

► Uma maneira conveniente de estudar a não-idealidade de um gás é através da definição do fator de compressibilidade (≠ compressibilidade), Z:

$$Z \stackrel{\text{def}}{=} \frac{p\overline{V}}{RT} \tag{7}$$

Para um gás ideal Z=1 em qualquer valor de \overline{V} e T. Se trata-se de um gás não-ideal que segue a equação de van der Waals, tal fator é dado por:

$$Z = \frac{\overline{V}}{RT} \rho = \frac{\overline{V}}{RT} \left(\frac{RT}{\overline{V} - b} - \frac{a}{\overline{V}^2} \right)$$

$$Z = \frac{\overline{V}}{\overline{V} - b} - \frac{a}{\overline{V}RT}$$
(8)

▶ O comportamento de gás ideal pode ser claramente observado nas condições adequadas ($p \to 0$ e $T \to \infty$) a partir do fator de compressibilidade. A partir da forma convencional da Eq. de vdw:

$$\left(p + \frac{a}{\overline{V}^2}\right)(\overline{V} - b) = RT \Rightarrow \left(\frac{p}{RT} + \frac{a}{\overline{V}^2 RT}\right)(\overline{V} - b) = 1$$

$$Z + \frac{a}{\overline{V}RT} - \frac{bp}{RT} - \frac{ab}{\overline{V}^2 RT} = 1 \Rightarrow \frac{p\overline{V}}{RT} + \frac{a}{\overline{V}RT} - \frac{bp}{RT} - \frac{ab}{\overline{V}^2 RT} = 1$$

$$Z = 1 + \frac{bp}{RT} - \frac{a}{\overline{V}RT} + \frac{ab}{\overline{V}^2 RT} \qquad (9)$$

- ▶ Quando $p \to 0$, o segundo termo (bp/RT) tende a zero, e como nessas condições $\overline{V} \to \infty$, os outros termos a direita também, e Z=1 nesse limite.
- ▶ Se, por outro lado, $T \to \infty$, todos os termos que dependem dela tendem a zero, e Z = 1 também.

Propriedades

Ponto crítico

▶ Acima de certa pressão não é possível converter líquido em gás ou vice-versa. Se aumentarmos p e T de um gás nas curvas de equilíbrio dessas fases no diagrama de fases, a separação entre elas se desfaz para p > pc e T > Tc. Obtem-se então um fluido supercrítico.

▶ O ponto crítico pode ser identificado na equação de estado de van der Waals: elaboramos um gráfico $p - \overline{V}$ com T constante (isoterma p - V). p é uma função cúbica de \overline{V} com T raízes reais caso $T < T_c$. Em $T = T_c$ elas se unem em uma única raiz, um ponto de inflexão único, de modo que $p = p_c$ e $\overline{V} = \overline{V}_c$ é obtida diretamente. Para $T > T_c$ não há raízes reais, e o comportamento de fluido segue isotermas similares às de um gás ideal.

▶ É possível usar o fato de que na temperatura crítica há um ponto de inflexão, de modo que:

$$\left(\frac{\partial p}{\partial \overline{V}}\right)_T = 0$$
 e $\left(\frac{\partial^2 p}{\partial \overline{V}^2}\right)_T = 0$ (10)

- ► E assim se obtem uma forma de relacionar os parâmetros a e b com as propriedades críticas medidas experimentalmente;
- Uma maneira mais simples é reconhecer que, no ponto crítico, a equação geral:

$$\overline{V}^3 - \left(b + \frac{RT}{p}\right)\overline{V}^2 + \frac{a}{p}\overline{V} - \frac{ab}{p} = 0$$

que originalmente possui 3 raízes, \overline{V}_1 , \overline{V}_2 e \overline{V}_3 tais que:

$$(\overline{V} - \overline{V}_1)(\overline{V} - \overline{V}_2)(\overline{V} - \overline{V}_3) = 0$$

Passa a possuir apenas uma raiz real, $\overline{V} = \overline{V}_{c}$:

$$(\overline{V} - \overline{V}_{c})^{3} = (\overline{V} - \overline{V}_{c})(\overline{V}^{2} - 2\overline{V}\overline{V}_{c} + \overline{V}_{c}^{2})$$

$$\overline{V}^3 - 2\overline{V}^2\overline{V}_c + \overline{V}\overline{V}_c^2 - \overline{V}_c\overline{V}^2 + 2\overline{V}\overline{V}_c^2 - \overline{V}_c^3$$

$$\overline{V}^3 - 3\overline{V}_c\overline{V}^2 + 3\overline{V}_c^2\overline{V} - \overline{V}_c^3 = 0 \tag{11}$$

Identificando os termos com a equação original:

$$3\overline{V}_{c} = b + \frac{RT_{c}}{\rho_{c}} \tag{12}$$

$$3\overline{V}_{c}^{2} = \frac{a}{p_{c}} \tag{13}$$

$$\overline{V}_{c}^{2} = \frac{ab}{p_{c}} \tag{14}$$

Combinando a segunda e a terceira relação:

$$\frac{3\overline{V}_{c}^{2}}{\overline{V}_{c}^{3}} = \frac{a/(ab)}{p_{c}/p_{c}} = \frac{3}{\overline{V}_{c}} = \frac{1}{b}$$

$$\overline{V}_{c} = 3b \tag{15}$$

Usando tal resultado com a terceira relação:

$$\overline{V}_{c}^{3} = \frac{ab}{p_{c}} \Rightarrow (3b)^{3} = \frac{ab}{p_{c}}$$

$$p_{c} = \frac{a}{27b^{2}}$$
(16)

Unindo a primeira relação com as expressões para \overline{V}_{c} e p_{c} :

$$3\overline{V}_{c} = b + \frac{RT_{c}}{p_{c}} \Rightarrow T_{c} = \frac{p_{c}(3\overline{V}_{c} - b)}{R} \Rightarrow T_{c} = \frac{(9b - b)a}{27Rb^{2}}$$

$$T_{c} = \frac{8a}{27bR}$$
(17)

Como p_c, T_c e V̄_c são dados experimentais, podemos obter a e b diretamente dessas propriedades (que originam os dados tabelados). Como são dois fatores, a e b, só precisamos de um par. Dado que p_c e T_c são obtidos com maior exatidão, então é comum usá-las. Combinando a equação para pressão e temperatura críticos em função desses parâmetros:

$$\frac{p_{c}}{T_{c}} = \frac{a/(27b^{2})}{8a/(27bR)}$$

$$b = \frac{RT_{c}}{8p_{c}}$$
(18)

Combinando a expressão da temperatura crítica com a anterior:

$$T_{c} = \frac{8a}{27bR} \Rightarrow T_{c} = \frac{8a}{27R} \cdot \frac{8p_{c}}{RT_{c}}$$

$$a = \frac{27(RT_{c})^{2}}{64p_{c}}$$
(19)

					-	-			-	
Gas		MW	T_c	p_c	V_c	Z_{c}	a	\boldsymbol{b}	d	ϕ_{\min}
Name	formula	(g/mol)	(K)	(kPa)	(cm^3/mol)		$(eV Å^3)$	$(Å^3)$	(Å)	(meV)
Noble gases										
Helium	He	4.0030	5.1953	227.46	57	0.300	0.05956	39.418	3.4033	0.8657
Neon	Ne	20.183	44.490	2678.6	42	0.304	0.37090	28.665	3.0604	7.414
Argon	Ar	39.948	150.69	4863	75	0.291	2.344	53.48	3.768	25.11
Krypton	Kr	83.800	209.48	5525	91	0.289	3.987	65.43	4.030	34.91
Xenon	Xe	131.30	289.73	5842	118	0.286	7.212	85.59	4.407	48.28
Diatomic gases										
Hydrogen	H_2	2.0160	33.140	1296.4	65	0.306	0.42521	44.117	3.5335	5.5223
Hydrogen fluoride	HF	20.006	461.00	6480	69	0.117	16.46	122.8	4.970	76.82
Nitrogen	N_2	28.014	126.19	3390	90	0.291	2.358	64.24	4.005	21.03
Carbon monoxide	CO	28.010	132.86	3494	93	0.294	2.536	65.62	4.034	22.14
Nitric Oxide	NO	30.010	180.00	6480	58	0.251	2.510	47.94	3.633	29.99
Oxygen	O_2	32.000	154.58	5043	73	0.286	2.378	52.90	3.754	25.76
Hydrogen chloride	HCl	36.461	324.70	8310	81	0.249	6.368	67.43	4.070	54.11
Fluorine	F_2	37.997	144.41	5172.4	66	0.284	2.024	48.184	3.6389	24.06
Chlorine	Cl_2	70.910	417.00	7991	123	0.284	10.92	90.06	4.482	69.49
Polyatomic gases										
Ammonia	NH_3	17.031	405.56	11357	69.9	0.235	7.2692	61.629	3.9500	67.581
Water	H_2O	18.015	647.10	22060	56	0.230	9.5273	50.624	3.6993	107.83
Carbon dioxide	CO_2	44.010	304.13	7375	94	0.274	6.295	71.17	4.144	50.68
Nitrous oxide	N_2O	44.013	309.52	7245	97	0.273	6.637	73.73	4.193	51.58
Carbon oxysulfide	COS	60.074	375.00	5880	137	0.258	12.00	110.1	4.792	62.49
Alkanes										
Methane	CH_4	16.043	190.56	4600	99	0.287	3.962	71.49	4.150	31.75
Ethane	C_2H_6	30.070	305.36	4880	146	0.281	9.591	108.0	4.762	50.88
Propane	C_3H_8	44.097	369.9	4250	199	0.275	16.16	150.2	5.316	61.64
Butane	C_4H_{10}	55.124	425.2	3790	257	0.276	23.94	193.6	5.785	70.85
Pentane	C_5H_{12}	72.151	469.7	3370	310	0.268	32.86	240.5	6.219	78.27
Hexane	C_6H_{14}	86.178	507.5	3030	366	0.263	42.67	289.1	6.612	84.57
Heptane	C_7H_{16}	100.21	540.1	2740	428	0.261	53.44	340.2	6.981	90.00

Princípio/Lei dos estados correspondentes

- Como os parâmetros a e b podem ser obtidos a partir de pc, Tc e Vc, van der Waals imaginou que seria possível escrever sua equação apenas em termos desses parâmetros críticos;
- Substituindo as equações $a=3\overline{V}_c{}^2p_c$ e $b=\overline{V}_c/3$ na equação de van der Waals (forma inicial):

$$\left(p + \frac{\mathsf{a}}{\overline{V}^2}\right)\left(\overline{V} - \mathsf{b}\right) = \mathsf{RT} \Rightarrow \left(p + \frac{3\overline{V}_\mathsf{c}^2 p_\mathsf{c}}{\overline{V}^2}\right)\left(\overline{V} - \frac{\overline{V}_\mathsf{c}}{3}\right) = \mathsf{RT}$$

▶ Multiplicando por $1/(p_c\overline{V}_c) = (1/p_c)(1/\overline{V}_c)$:

$$\left(\frac{p}{p_{c}} + \frac{3\overline{V}_{c}^{2}}{\overline{V}^{2}}\right)\left(\frac{\overline{V}}{\overline{V}_{c}} - \frac{1}{3}\right) = \frac{RT}{p_{c}\overline{V}_{c}}$$

Dado que em condições críticas podemos expressar tal equação como:

$$\left(\frac{p_{\rm c}}{p_{\rm c}} + \frac{3\overline{V}_{\rm c}^2}{\overline{V}_{\rm c}^2}\right) \left(\frac{\overline{V}_{\rm c}}{\overline{V}_{\rm c}} - \frac{1}{3}\right) = \frac{RT_{\rm c}}{p_{\rm c}\overline{V}_{\rm c}}$$

Conclui-se que:

$$(1+3)\left(1-\frac{1}{3}\right) = \frac{RT_{c}}{\rho_{c}\overline{V}_{c}} \Rightarrow \frac{RT_{c}}{\rho_{c}\overline{V}_{c}} = \frac{8}{3}$$

$$\rho_{c}\overline{V}_{c} = \frac{3}{8}RT_{c}$$
(20)

Equação que pode ser jogada novamente na que a originou:

$$\left(\frac{p}{p_{c}} + \frac{3\overline{V}_{c}^{2}}{\overline{V}^{2}}\right)\left(\frac{\overline{V}}{\overline{V}_{c}} - \frac{1}{3}\right) = \frac{RT}{p_{c}\overline{V}_{c}} = \frac{RT}{(3/8)RT_{c}}$$

Rearranjando-a:

$$\left[\left(\frac{p}{p_c} \right) + \frac{3}{(\overline{V}/\overline{V}_c)^2} \right] \left[\left(\frac{\overline{V}}{\overline{V}_c} \right) - \frac{1}{3} \right] = \frac{8}{3} \left(\frac{T}{T_c} \right)$$

Definindo a pressão, temperatura e volume molar reduzidos, p_R , T_R e \overline{V}_R , respectivamente:

$$p_{\mathsf{R}} \stackrel{\mathsf{def}}{=} \frac{p}{p_{\mathsf{c}}} \qquad \overline{V}_{\mathsf{R}} \stackrel{\mathsf{def}}{=} \frac{\overline{V}}{\overline{V}_{\mathsf{c}}} \qquad T_{\mathsf{R}} \stackrel{\mathsf{def}}{=} \frac{T}{T_{\mathsf{c}}}$$
 (21)

Podemos obter a seguinte equação de estado:

$$\left(p_{\mathsf{R}} + \frac{3}{\overline{V}_{\mathsf{R}^2}}\right) \left(\overline{V}_{\mathsf{R}} - \frac{1}{3}\right) = RT_{\mathsf{R}} \tag{22}$$

Antes corrigimos o efeito da não-idealidade de um gás real para uma substância específica, com parâmetros a e b. Agora normalizamos a equação de van der Waals de modo a torná-la válida para qualquer substância: ela quantifica a relação do fluido com seu estado crítico, sendo universal. Ela depende, no entanto, da equação de estado escolhida para o gás.

- Como ela independe de a ou b, que são parâmetros a ou b, que são parâmetros relacionadas a gases específicos, ela é válida para quaisquer fluidos, especificamente gases. Ela implica que as relações entre variáveis de estado e o estado crítico (e seus parâmetros) se relacionam da mesma forma para todos os gases. Os gases possuem estados correspondentes entre si, ou em comum;
- ▶ Este procedimento reescreve a equação de van der Waals em termos de variáveis adimensionais apenas, e pode ser utilizado para outras equações de estado. Em particular, van der Waals aplicou sua equação e ajustou dados de p_R, V_R e T_R para vários gases. Ele descobriu que a equação generalizada representava adequadamente o comportamento dos gases nas condições investigadas.
- ► Essa comparação teoria/experimento pode ser feita de várias formas. Uma delas é comparar parâmetros esperados com os observados. Por exemplo, o fator de compressibilidade no ponto crítico, Z_c, é, segundo a equação de estado de van der Waals, igual a 3/8 = 0,375 (Eq. 20) e único para todo gás. Os experimento mostra que, apesar de um pouco inferior ao previsto (observa-se que Z_c = 0,3), ele é essencialmente constante para diferentes gases.
- ▶ Outra forma relativamente comum de verificar a validade do procedimento é pela inspeção do gráfico de Z em função de p_R para diferentes temperaturas (isotermas). Tal fator está relacionado à pressão reduzida segundo a equação:

$$Z = \frac{p\overline{V}}{RT} = \left(\frac{p}{p_{c}}\right) \cdot \left(\frac{V}{V_{c}}\right) \cdot \left(\frac{T_{c}}{T}\right) \cdot \frac{1}{R} \cdot \frac{p_{c}\overline{V}_{c}}{T_{c}}$$

$$\frac{p_{R}\overline{V}_{R}}{T_{R}} \cdot \frac{1}{R} \cdot RZ_{c} = Z_{c}\frac{p_{R}\overline{V}_{R}}{T_{R}}$$
(23)

► Conhecendo T_R e \overline{V}_R para qualquer gás, podemos obter p_R e, consequentemente, Z. Fazendo essas curvas nota-se que o comportamento é obedecido independente da substância investigada, dando suporte a lei dos estados correspondentes proporsta por van der Waals.

Esses gráficos são facilmente criados de maneira paramétrica: ao invés de obter as equações para Z em função de p (ou de p_R), aproveita-se a dependencia de Z e de p com \overline{V} , e para um mesmo volume molar e temperatura plota-se Z vs. p em uma planilha.

Questão 3.1

Calcule a pressão (em bar) exercida por 1 mol de metano (CH₄) que ocupa um recipiente de 250 mL à 0 °C. Para isso use os dados da tabela apresentada anteriormente, e compare seu resultado com o esperado caso o gás fosse ideal [modificar questão depois].

Questão 3.2

Use os dados críticos da tabela (slides) para obter os parâmetros de van der Waals para o etano [modificar questão depois].

Resumo

- ▶ Van der Waals propôs uma equação para suprimir as limitações da equação dos gases ideais, a saber: não prevê a existência de a) outra fase além da gasosa, b) pontos críticos, c) transições de fase. Além disso, ele propôs um procedimento para gerar uma equação de estado em termos de parâmetros reduzidos, que pode ser usada para prever o comportamento de qualquer substância, desde que obedeçam adequadamente a equação de estado proposta.
- Construindo a equação:
 - Subtrai-se b do volume molar para compensar o acréscimo do volume das partículas (repulsão entre partículas e entre partículas e parede): $\overline{V}_{corr} \rightarrow \overline{V} b$;
 - Adiciona-se p_{int} à pressão do gás para compensar a subtração da pressão devido às interações entre pares de partículas (atrações): $p_{\text{corr}} \rightarrow p + p_{\text{int}} = p + a/\overline{V}^2$.
 - a (em L² bar mol⁻¹) e b (em L mol⁻¹) são os parâmetros de van der Waals.

Resumo

- Formas da equação:

 - Convencional: $\left(p + \frac{a}{\overline{V}^2}\right)(\overline{V} b) = RT$ Isolado pressão: $p = \frac{RT}{\overline{V} b} \frac{a}{\overline{V}^2}$ Isolando volume: $\overline{V}^3 \left(b + \frac{RT}{p}\right)\overline{V}^2 + \frac{a}{p}\overline{V} \frac{ab}{p} = 0$
 - Expansão virial: $p = \frac{RT}{\overline{V}} \left[1 + \frac{1}{\overline{V}} \left(b \frac{a}{RT} \right) + \left(\frac{b}{\overline{V}} \right)^2 + \ldots \right]$
- Fator de compressibilidade:

Referências adicionais

- David C. Johnston Thermodynamic Properties of the van der Waals Fluid:
- Donald A. McQuarrie, John D. Simon Physical Chemistry: A Molecular Approach, 1997;
- ▶ Gilbert W. Castellan Physical Chemistry, 3a Edição, 1983.

- ► Falar sobre influência de atrações/repulsões na inclinação inicial do fator de compressibilidade em função da pressão reduzida quando esta tende a zero;
- Apresentar temperatura de Boyle e, a partir dela, ao modelo do gás de esferas rígidas (sem atração, apenas com repulsão).