

Multiple Modeling: Permutation

Jimmy Lee & Peter Stuckey

Belt Problem Example

■ B(m,n): Given m copies of each of the numbers 1..n, find a sequence of these numbers where there are k digits between every two consecutive copies of digit k

6

An Assignment Problem

- How is this an assignment problem?
- \blacksquare Map DOM = 11, 12, 21, 22, 31, 32, 41, 42
 - the ordered copies of the digits
- # to COD = 1,2,3,4,5,6,7,8
 - the position in the sequence

7

Belt Problem Model (beltPos.mzn)

■ Data and Decision

```
int: n;
set of int: DIG = 1..n;
int: m;
set of int: COPY = 1..m;
int: l = m*n;
set of int: POS = 1..l;
array[DIG,COPY] of var POS: po;
```

■ Constraints

```
forall(d in DIG, c in 1..m-1)
    (po[d,c+1] = po[d,c] + d + 1);
alldifferent([po[d,c] |
    d in DIG, c in COPY]);
```

8

The Inverse Belt Problem

- DOM is the positions and COD is the digitcopies
- We need to map DIG x COPY to a single integer: $d_c = m^*(d-1) + c$

```
• 11, 12, 21, 22, 31, 32, 41, 42 = 1, 2, 3, 4, 5, 6, 7, 8 set of int: DIGCOP = 1..1; array[POS] of var DIGCOP: dc;
```

The inverse all different constraint is easy to express

```
alldifferent([dc[p] | p in POS]);
```

9

The Inverse Separation Constraint

How do we model the inverse separation constraints?

```
o dc[p] = dc <=> po[d,c] = p
forall(d in DIG, c in 1..m-1)
      (po[d,c+1] = po[d,c] + d + 1);
thus the inverse constraint is
forall(d in DIG, c in 1..m-1,
      p in POS)
   (dc[p] = m*(d-1) + c <->
      dc[p+d+1] = m*(d-1) + c + 1);
```

- Terrible encoding!
 - if position p has dc then p+d+1 has dc+1

10

A Note About the Inverse Constraints

- Notice that we are accessing positions outside the *dc* array, e.g. *l* + *d* + 1
- But this is correct
 - None but the last copy of a digit dm can occur in the last d positions of the sequence
 - Relational semantics requires dc[i] = j evaluates to false when i > l since dc[i] does not exist

11

A Note About the Inverse Constraints

- Safer to avoid out of array access
 - but clumsy in this instance

```
forall(d in DIG, c in 1..m-1,
    p in POS)

(dc[p] = m*(d-1) + c <->
    if p+d+1 in POS then
        dc[p+d+1] = m*(d-1) + c + 1
    else false endif);
```

12

Inverse Belt Problem Model (beltDig.mzn)

```
include "globals.mzn";
   int: n;
   set of int: DIG = 1..n;
   int: m;
   set of int: COPY = 1..m;
   int: l = m*n;
   set of int: POS = 1..1;
   set of int: DIGCOP = 1..1;
   array[POS] of var DIGCOP: dc;
   constraint forall(d in DIG, c in 1..m-1,
         p in POS)
      (dc[p] = m*(d-1) + c <->
         dc[p+d+1] = m*(d-1) + c + 1);
   constraint alldifferent([dc[p] | p in POS]);
   solve satisfy;
13
```

Two Distinct Models

- # Belt:
 - po[d,c] = position of dc
- Inverse Belt
 - dc[p] = the digit dc in position p
- Which runs faster?
- Which one is easier to print the Belt sequence?

```
output["\((dc[p]-1) div m + 1) " |
  p in POS];
4 1 3 1 2 4 3 2
```


Combined Belt Model

- **We can combine the models**
 - Omit the alldifferent constraints
 - they are implied by inverse
 - Omit the inverse models encoding of the constraints
 - they are implied by the equations on po[d,c]
- CP solvers can solve the combined model better
 - searching on po and dc variables simultaneously

15

Combined Belt Model (beltComb.mzn)

```
include "globals.mzn";
int: n;
set of int: DIG = 1..n;
int: m;
set of int: COPY = 1..m;
int: l = m*n;
set of int: POS = 1..1;
array[DIG, COPY] of var POS: po;
set of int: DIGCOP = 1..1;
array[POS] of var DIGCOP: dc;
constraint forall(d in DIG, c in 1..m-1)
  (po[d,c+1] = po[d,c] + d + 1);
constraint inverse (dc,
   [po[d,c]|d in DIG, c in COPY]);
solve satisfy;
output["\setminus ((dc[p]-1) div m + 1) " | p in POS];
```


Summary

- A further example to illustrate modeling from different viewpoints
- The Belt problem is an adaptation and generalisation of the well-known Langford's Problem, which is a mathematical puzzle with applications in circuit design and others
- While it is possible to describe requirements of the example completely in either viewpoint, some requirements are more naturally described in certain viewpoints

17

Image Credits

All graphics by Marti Wong, ©The Chinese University of Hong Kong and the University of Melbourne 2016

18