

$ au_{1}^{\#2}$	0	0	0	0	0	0	0
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_1^{\#1} + \alpha \beta \qquad \frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
		$\sigma_{1}^{#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	†	$\tau_{1}^{\#2} +^{\alpha}$

(No massless particles)

			$^{\kappa}\partial^{\kappa}f^{'}{}^{\theta}$ -	$f_{\lambda \alpha}^{-}$			ω
	$\frac{2}{3}t_2\;\omega_{\kappa}^{\ \kappa\lambda}\;\omega_{\kappa\lambda}^{\ \ \prime}+\frac{1}{3}t_2\;\omega_{\kappa\lambda}^{\ \ \prime}\;\omega^{\kappa\lambda}_{\ \ \prime}+f^{\alpha\beta}\;\tau_{\alpha\beta}+\omega^{\alpha\beta\chi}\;\sigma_{\alpha\beta\chi}+$	$\frac{2}{3} r_2 \partial^\beta \omega^{\theta \alpha}_{\ \ \kappa} \partial_\theta \omega_{\alpha\beta}^{\ \ \kappa} - \frac{1}{3} r_2 \partial_\theta \omega_{\alpha\beta}^{\ \ \kappa} \partial_\kappa \omega^{\alpha\beta\theta} - \frac{2}{3} r_2 \partial_\theta \omega_{\alpha\beta}^{\ \ \kappa} \partial_\kappa \omega^{\theta\alpha\beta} +$	$\frac{1}{6}t_2\partial^{\alpha}f_{\theta \kappa}\partial^{\kappa}f_{\alpha}^{\ \ \theta} - \frac{1}{6}t_2\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\ \ \theta} + \frac{1}{6}t_2\partial^{\alpha}f^{\lambda}_{\ \ \kappa}\partial^{\kappa}f_{\alpha\lambda} + \frac{1}{3}t_2\omega_{l\theta\kappa}\partial^{\kappa}f^{l\theta} - \frac{1}{6}t_2\partial^{\alpha}f_{\alpha\lambda}^{l\theta} + \frac{1}{6}t_2\partial^{$	$\frac{2}{3}t_{2} \omega_{_{IK}\theta} \partial^{K} f^{^{I}\theta} - \frac{1}{3}t_{2} \omega_{\theta_{IK}} \partial^{K} f^{^{I}\theta} + \frac{2}{3}t_{2} \omega_{\theta_{K}} \partial^{K} f^{^{I}\theta} - \frac{1}{6}t_{2} \partial^{\alpha} f^{\lambda}_{\ \ K} \partial^{K} f_{\lambda\alpha}^{\ \ \ } - \frac{1}{6}t_{2} \partial^{\alpha} f^{\lambda}_{\ \ \ \ } \partial^{K} f_{\lambda\alpha}^{\ \ \ \ \ } - \frac{1}{6}t_{2} \partial^{\alpha} f^{\lambda}_{\ \ \ \ } \partial^{K} f_{\lambda\alpha}^{\ \ \ \ \ \ } - \frac{1}{6}t_{2} \partial^{\alpha} f^{\lambda}_{\ \ \ \ \ \ } \partial^{K} f_{\lambda\alpha}^{\ \ \ \ \ \ \ } - \frac{1}{6}t_{2} \partial^{\alpha} f^{\lambda}_{\ \ \ \ \ \ } \partial^{K} f_{\lambda\alpha}^{\ \ \ \ \ \ \ \ } - \frac{1}{6}t_{2} \partial^{\alpha} f^{\lambda}_{\ \ \ \ \ \ \ \ } \partial^{K} f_{\lambda\alpha}^{\ \ \ \ \ \ \ \ \ } - \frac{1}{6}t_{2} \partial^{\alpha} f^{\lambda}_{\ \ \ \ \ \ \ } \partial^{K} f_{\lambda\alpha}^{\ \ \ \ \ \ \ } - \frac{1}{6}t_{2} \partial^{\alpha} f^{\lambda}_{\ \ \ \ \ \ \ \ } \partial^{K} f_{\lambda\alpha}^{\ \ \ \ \ \ \ } - \frac{1}{6}t_{2} \partial^{\alpha} f^{\lambda}_{\ \ \ \ \ \ \ \ } \partial^{K} f_{\lambda\alpha}^{\ \ \ \ \ \ \ } - \frac{1}{6}t_{2} \partial^{\alpha} f^{\lambda}_{\ \ \ \ \ \ \ \ } \partial^{K} f_{\lambda\alpha}^{\ \ \ \ \ \ \ \ } + \frac{1}{6}t_{2} \partial^{\alpha} f^{\lambda}_{\ \ \ \ \ \ \ \ } \partial^{K} f_{\lambda\alpha}^{\ \ \ \ \ \ \ \ \ \ } + \frac{1}{6}t_{2} \partial^{\alpha} f^{\lambda}_{\ \ \ \ \ \ \ \ \ \ \ } + \frac{1}{6}t_{2} \partial^{\alpha} f^{\lambda}_{\ \ \ \ \ \ \ \ \ \ \ \ } \partial^{K} f_{\alpha}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } + \frac{1}{6}t_{2} \partial^{\alpha} f^{\lambda}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } + \frac{1}{6}t_{2} \partial^{\alpha} f^{\lambda}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } + \frac{1}{6}t_{2} \partial^{\alpha} f^{\lambda}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } + \frac{1}{6}t_{2} \partial^{\alpha} f^{\lambda}_{\ \ \ \ \ \ \ \ \ \ \ \ \ } + \frac{1}{6}t_{2} \partial^{\alpha} f^{\lambda}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } + \frac{1}{6}t_{2} \partial^{\alpha} f^{\lambda}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\frac{1}{6}t_2\partial_\kappa f_{\theta}^{\lambda}\partial^\kappa f_{\theta}^{\lambda} + \frac{1}{6}t_2\partial_\kappa f^{\lambda}_{\theta}\partial^\kappa f_{\lambda}^{\theta} + \frac{1}{3}r_2\partial_\kappa \omega^{\alpha\beta\theta}\partial^\kappa \omega_{\alpha\beta\theta} +$	$\frac{2}{3} r_2 \partial_\kappa \omega^{\theta \alpha \beta} \partial^\kappa \omega_{\alpha \beta \theta} - \frac{2}{3} r_2 \partial^\beta \omega_i^{\ \alpha \lambda} \partial_\lambda \omega_{\alpha \beta}^{\ \ \prime} + \frac{2}{3} r_2 \partial^\beta \omega_i^{\ \lambda \alpha} \partial_\lambda \omega_{\alpha \beta}^{\ \prime}$	"," f#1 f#2 ,"#1
Lagrangian density	$\frac{2}{3}t_2 \omega_{\kappa^{\lambda}}^{\kappa^{\lambda}} \omega_{\kappa^{\lambda}}^{\prime} + \frac{1}{3}t_2 \omega_{\kappa^{\lambda}}^{\prime}$	$\frac{2}{3} r_2 \partial^{\beta} \omega^{\theta \alpha}_{\ \ \ \ \ \ \ } \partial_{\theta} \omega_{\alpha \beta}^{\ \ \ \ \ \ \ \ \ \ } \frac{1}{3} r_2 \partial_{\theta}$	$rac{1}{6}t_2\partial^{lpha}f_{eta\kappa}\partial^{\kappa}f_{lpha}^{$	$rac{2}{3}t_2\;\omega_{_{IK} heta}\;\partial^{\kappa}f^{' heta}-rac{1}{3}t_2\;\omega_{_{ heta_{IK}}}\;\partial$	$\frac{1}{6}t_2\partial_{\kappa}f_{\theta}^{}\partial^{\kappa}f_{\theta}^{\theta} + \frac{1}{6}t_2\partial_{\kappa}f^{}$	$\frac{2}{3} r_2 \partial_{\kappa} \omega^{\theta \alpha \beta} \partial^{\kappa} \omega_{\alpha \beta \theta} - \frac{2}{3} r_2 \partial^{\beta}$	

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\#1} \dagger^{lphaeta}$	0	0	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1} \dagger^{lphaeta\chi}$	0	0	0

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{lphaeta}$	0	0	0
$ au_2^{\#1} \dagger^{lphaeta}$	0	0	0
$\sigma_{2}^{#1} \dagger^{\alpha\beta\chi}$	0	0	0

0	0	0	$k^2 r_2 + t_2$		
0	0	0	0		
0	0	0	0		
0	0	0	0		
$\omega_{0}^{\#1}\dagger$	$f_{0}^{#1} +$	$f_{0}^{#2} +$	$\omega_{0^-}^{\#1} \dagger$		
	$\omega_{0}^{\#1}$ † 0 0 0 0	+ +	+ + +	0 0 0 0	

$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 + t_2}$	
$\tau_{0}^{\#2}$	0	0	0	0	
$\tau_{0}^{\#1}$	0	0	0	0	
$\sigma_{0}^{\#1}$	0	0	0	0	
,	$\sigma_{0}^{\#1}\dagger$	$\tau_0^{\#1} +$	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}\dagger$	

	#	1	1	1	3	3	3	3	3	3	2	2	2	36
Source constraints	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0+}^{\#1} == 0$	$\sigma_{0+}^{\#1} == 0$	$\tau_{1}^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\sigma_{1}^{\#2\alpha} == 0$	$\sigma_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#1}\alpha\beta == 0$	$\sigma_{1+}^{\#1}\alpha\beta == \sigma_{1+}^{\#2}\alpha\beta$	$\sigma_{2}^{*1}\alpha\beta\chi==0$	$\tau_{2+}^{\#1}\alpha\beta==0$	$\sigma_{2^+}^{\#1}\alpha\beta=0$	Total #:

_

	Massive partic	le
? /	Pole residue:	$-\frac{1}{r_2} > 0$
$J^P = 0^-$	Polarisations:	1
k^{μ}	Square mass:	$-\frac{t_2}{r_2} > 0$
?	Spin:	0
	Parity:	Odd