Fast Fibonacci algorithms

Definition: The Fibonacci sequence is defined as F(0) = 0 F(0) = 0, F(1) = 1 F(1) = 1, and F(n) = F(n-1) + F(n-2) F(n) = F(n-1) + F(n-2) for $n \ge 2$ $n \ge 2$. So the sequence (starting with F(0) F(0)) is $0, 1, 1, 2, 3, 5, 8, \ldots$ $0, 1, 1, 2, 3, 5, 8, \ldots$

If we wanted to compute a single term in the sequence (e.g. F(n) F(n)), there are a couple of algorithms to do so, but some algorithms are *much* faster than others.

Algorithms

Textbook recursive algorithm (extremely slow)

Naively, we can directly execute the recurrence as given in the mathematical definition of the Fibonacci sequence. Unfortunately, it's hopelessly slow: It uses O(n) O(n) stack space and $O(\phi^n)$ $O(\phi n)$ arithmetic operations, where $\phi = \frac{\sqrt{3}+1}{2}$ $\phi = 5+12$ (the golden ratio). In other words, the number of operations to compute F(n) F(n) is proportional to the resulting value itself, which grows exponentially.

Dynamic programming (slow)

It should be clear that if we've already computed F(k-2) F(k-2) and F(k-1) F(k-1), then we can add them to get F(k) F(k). Next, we add F(k-1) F(k-1) and F(k) F(k) to get F(k+1) F(k+1). We repeat until we reach k=n k=n. Most people notice this algorithm automatically, especially when computing Fibonacci by hand. This algorithm takes O(1) O(1) space and O(n) O(n) operations.

Matrix exponentiation (fast)

The algorithm is based on this innocent-looking identity (which can be proven by mathematical induction):

$$\begin{bmatrix} 1 & & 1 \\ 1 & & 0 \end{bmatrix}^{n} = \begin{bmatrix} F(n+1) & & F(n) \\ F(n) & & F(n-1) \end{bmatrix}$$
 [1110]n=[F(n+1)F(n)F(n)F(n-1)].

It is important to use <u>exponentiation by squaring</u> with this algorithm, because otherwise it degenerates into the dynamic programming algorithm. This algorithm takes $O(1)\,O(1)$ space and $O(\log n)\,O(\log n)$ operations. (Note: This is counted in terms of the number of bigint arithmetic operations, not primitive fixed-width operations.)

Fast doubling (faster)

Given F(k) F(k) and F(k+1) F(k+1), we can calculate these:

$$F(2k) = F(k)[2F(k+1) - F(k)].$$

$$F(2k+1) = F(k+1)^2 + F(k)^2.$$

$$F(2k) = F(k)[2F(k+1) - F(k)].F(2k+1) = F(k+1) + F(k) + F(k) = F(k)[2F(k+1) - F(k)].F(2k+1) = F(k+1) + F(k) = F(k)[2F(k+1) - F(k)].$$

These identities can be extracted from the matrix exponentiation algorithm. In a sense, this algorithm is the matrix exponentiation algorithm with the redundant calculations removed. It should be a constant factor faster than matrix exponentiation but the asymptotic time complexity is still the same.

Summary: The two fast Fibonacci algorithms are matrix exponentiation and fast doubling, each having an asymptotic complexity of $O(\log n)$ $O(\log n)$ bigint arithmetic operations. Both algorithms use multiplication, so they become even faster when <u>Karatsuba multiplication</u> is used. The other two algorithms are slow; they only use addition and no multiplication.