

Nikolai Bjørnestøl Hansen

OSLO METROPOLITAN UNIVERSITY
STORBYUNIVERSITETET

1 Kvadratsetningene

- 2 Faktorisering
 - Hva er faktorisering?
 - Hvordan faktorisere

3 Forkorting av rasjonale uttrykk

■ I videoen til Kapittel 1.1 definerte jeg: Vi plusser sammen ledd og får en sum.

- I videoen til Kapittel 1.1 definerte jeg: Vi plusser sammen ledd og får en sum.
- Et ledd i et uttrykk er en bit av hele uttrykket som plusses eller minuses med resten.

- I videoen til Kapittel 1.1 definerte jeg: Vi plusser sammen ledd og får en sum.
- Et ledd i et uttrykk er en bit av hele uttrykket som plusses eller minuses med resten.
- Uttrykket 3x er et ledd i $2x^2 + 3x 4$.

- I videoen til Kapittel 1.1 definerte jeg: Vi plusser sammen ledd og får en sum.
- Et ledd i et uttrykk er en bit av hele uttrykket som plusses eller minuses med resten.
- Uttrykket 3x er et ledd i $2x^2 + 3x 4$.
- Uttrykket (3x 4) er et ledd i $2x^2 + (3x 4)$.

- I videoen til Kapittel 1.1 definerte jeg: Vi plusser sammen ledd og får en sum.
- Et ledd i et uttrykk er en bit av hele uttrykket som plusses eller minuses med resten.
- Uttrykket 3x er et ledd i $2x^2 + 3x 4$.
- Uttrykket (3x-4) er et ledd i $2x^2 + (3x-4)$.
- Uttrykket 4x er ikke et ledd i 2(4x 1).

- I videoen til Kapittel 1.1 definerte jeg: Vi plusser sammen ledd og får en sum.
- Et ledd i et uttrykk er en bit av hele uttrykket som plusses eller minuses med resten.
- Uttrykket 3x er et ledd i $2x^2 + 3x 4$.
- Uttrykket (3x-4) er et ledd i $2x^2 + (3x-4)$.
- Uttrykket 4x er ikke et ledd i 2(4x 1).
- Om noe er et ledd eller ikke i et uttrykk avhenger av måten vi har skrevet uttrykket på.

I videoen til Kapittel 1.1 definerte jeg: Vi ganger sammen faktorer og får et produkt.

- I videoen til Kapittel 1.1 definerte jeg: Vi ganger sammen faktorer og får et produkt.
- Hvis vi kan skrive et uttrykk som et gangestykke, kaller vi hver av bitene som ganges for faktorer til uttrykket.

- I videoen til Kapittel 1.1 definerte jeg: Vi ganger sammen faktorer og får et produkt.
- Hvis vi kan skrive et uttrykk som et gangestykke, kaller vi hver av bitene som ganges for faktorer til uttrykket.
- Om noe er en faktor eller ikke for et uttrykk avhenger ikke av måten vi har skrevet uttrykket på.

- I videoen til Kapittel 1.1 definerte jeg: Vi ganger sammen faktorer og får et produkt.
- Hvis vi kan skrive et uttrykk som et gangestykke, kaller vi hver av bitene som ganges for faktorer til uttrykket.
- Om noe er en faktor eller ikke for et uttrykk avhenger ikke av måten vi har skrevet uttrykket på.
- Tallet 2 er en faktor for 4 siden vi kan skrive $4 = 2 \cdot 2$.

- I videoen til Kapittel 1.1 definerte jeg: Vi ganger sammen faktorer og får et produkt.
- Hvis vi kan skrive et uttrykk som et gangestykke, kaller vi hver av bitene som ganges for faktorer til uttrykket.
- Om noe er en faktor eller ikke for et uttrykk avhenger ikke av måten vi har skrevet uttrykket på.
- Tallet 2 er en faktor for 4 siden vi kan skrive $4 = 2 \cdot 2$.
- Uttrykket 2x er en faktor for $4x^2 6x$ siden vi kan skrive $4x^2 6x = 2x(2x 3)$.

Definisjon

Å faktorisere et uttrykk er å skrive opp uttrykket slik at det bare har ett ledd. Det kalles faktorisering fordi uttrykket da typisk vil se ut som et gangestykke.

Definisjon

Å faktorisere et uttrykk er å skrive opp uttrykket slik at det bare har ett ledd. Det kalles faktorisering fordi uttrykket da typisk vil se ut som et gangestykke.

Eksempler:

Uttrykket 2(x-1)(x+3) er faktorisert.

Definisjon

Å faktorisere et uttrykk er å skrive opp uttrykket slik at det bare har ett ledd. Det kalles faktorisering fordi uttrykket da typisk vil se ut som et gangestykke.

Eksempler:

- Uttrykket 2(x-1)(x+3) er faktorisert.
- Uttrykket $(x-1)^2$ er faktorisert.

Definisjon

Å faktorisere et uttrykk er å skrive opp uttrykket slik at det bare har ett ledd. Det kalles faktorisering fordi uttrykket da typisk vil se ut som et gangestykke.

Eksempler:

- Uttrykket 2(x-1)(x+3) er faktorisert.
- Uttrykket $(x-1)^2$ er faktorisert.
- Uttrykket 2x(x-2)(x+1)+1 er ikke faktorisert.

Definisjon

Å faktorisere et uttrykk er å skrive opp uttrykket slik at det bare har ett ledd. Det kalles faktorisering fordi uttrykket da typisk vil se ut som et gangestykke.

Eksempler:

- Uttrykket 2(x-1)(x+3) er faktorisert.
- Uttrykket $(x-1)^2$ er faktorisert.
- Uttrykket 2x(x-2)(x+1)+1 er ikke faktorisert.

Grunnen til at vi vil faktorisere uttrykk er blant annet at vi kan stryke like faktorer i brøker.

1 Kvadratsetningene

- 2 Faktorisering
 - Hva er faktorisering?
 - Hvordan faktorisere

3 Forkorting av rasjonale uttrykk

Leddene i et uttrykk har felles faktor dersom et uttrykk er faktor for alle leddene.

- Leddene i et uttrykk har felles faktor dersom et uttrykk er faktor for alle leddene.
- Eksempel: I 4x + 2 kan vi skrive 4x som $2 \cdot 2 \cdot x$, så begge leddene har 2 som faktor.

- Leddene i et uttrykk har felles faktor dersom et uttrykk er faktor for alle leddene.
- Eksempel: I 4x + 2 kan vi skrive 4x som $2 \cdot 2 \cdot x$, så begge leddene har 2 som faktor.
- Når leddene har en felles faktor, kan vi sette faktoren utenfor parentesen for å faktorisere uttrykket.

- Leddene i et uttrykk har felles faktor dersom et uttrykk er faktor for alle leddene.
- Eksempel: I 4x + 2 kan vi skrive 4x som $2 \cdot 2 \cdot x$, så begge leddene har 2 som faktor.
- Når leddene har en felles faktor, kan vi sette faktoren utenfor parentesen for å faktorisere uttrykket.
- Eksempel: Siden 2 er en faktor for begge leddene i forrige eksempel, kan vi skrive uttrykket som 2(2x + 1).

■ Vi finner felles faktorer ved å skrive hvert ledd som et gangestykke med flest mulig faktorer.

- Vi finner felles faktorer ved å skrive hvert ledd som et gangestykke med flest mulig faktorer.
- Vi prøver så å kjenne igjen hva som er til felles for alle leddene.

- Vi finner felles faktorer ved å skrive hvert ledd som et gangestykke med flest mulig faktorer.
- Vi prøver så å kjenne igjen hva som er til felles for alle leddene.

Eksempel

Vi skal finne felles faktorer for $6x^2 - 12x$. Vi skriver om:

- Vi finner felles faktorer ved å skrive hvert ledd som et gangestykke med flest mulig faktorer.
- Vi prøver så å kjenne igjen hva som er til felles for alle leddene.

Eksempel

Vi skal finne felles faktorer for $6x^2 - 12x$. Vi skriver om:

$$6x^2 = 2 \cdot 3 \cdot x \cdot x$$

- Vi finner felles faktorer ved å skrive hvert ledd som et gangestykke med flest mulig faktorer.
- Vi prøver så å kjenne igjen hva som er til felles for alle leddene.

Eksempel

Vi skal finne felles faktorer for $6x^2 - 12x$. Vi skriver om:

$$6x^2 = 2 \cdot 3 \cdot x \cdot x \qquad 12x = 2 \cdot 2 \cdot 3 \cdot x.$$

- Vi finner felles faktorer ved å skrive hvert ledd som et gangestykke med flest mulig faktorer.
- Vi prøver så å kjenne igjen hva som er til felles for alle leddene.

Eksempel

Vi skal finne felles faktorer for $6x^2 - 12x$. Vi skriver om:

$$6x^2 = 2 \cdot 3 \cdot x \cdot x \qquad 12x = 2 \cdot 2 \cdot 3 \cdot x.$$

Begge leddene har 2,3 og x til felles, så 6x trekkes utenfor.

Vi sitter igjen med x i første ledd og 2 i andre ledd. Vi får:

- Vi finner felles faktorer ved å skrive hvert ledd som et gangestykke med flest mulig faktorer.
- Vi prøver så å kjenne igjen hva som er til felles for alle leddene.

Eksempel

Vi skal finne felles faktorer for $6x^2 - 12x$. Vi skriver om:

$$6x^2 = 2 \cdot 3 \cdot x \cdot x \qquad 12x = 2 \cdot 2 \cdot 3 \cdot x.$$

Begge leddene har 2,3 og *x* til felles, så 6*x* trekkes utenfor. Vi sitter igjen med *x* i første ledd og 2 i andre ledd. Vi får:

$$6x^2 - 12x = 6x(x-2)$$
.

Husk at om vi har minustegn foran en parentes og fjerner parentesen, så skal fortegnet på alle ledd inni byttes.

- Husk at om vi har minustegn foran en parentes og fjerner parentesen, så skal fortegnet på alle ledd inni byttes.
- Det betyr også at om vi tar et minustegn ut av en parentes, må vi bytte fortegnet på alle ledd.

- Husk at om vi har minustegn foran en parentes og fjerner parentesen, så skal fortegnet på alle ledd inni byttes.
- Det betyr også at om vi tar et minustegn ut av en parentes, må vi bytte fortegnet på alle ledd.

Eksempel

Vi vil faktorisere $-4x^2 - 10x$, og trekker -2x utenfor parentesen.

- Husk at om vi har minustegn foran en parentes og fjerner parentesen, så skal fortegnet på alle ledd inni byttes.
- Det betyr også at om vi tar et minustegn ut av en parentes, må vi bytte fortegnet på alle ledd.

Eksempel

Vi vil faktorisere $-4x^2 - 10x$, og trekker -2x utenfor parentesen. Vi får da

$$-4x^2 - 10x = -2x(2x+5).$$

Kvadratsetningene og faktorisering

Vi kan bruke første og andre kvadratsetning, og konjugatsetningen, til å faktorisere uttrykk om vi er heldige.

Eksempel

Vi vil faktorisere $2x^4 - 8x^2$. Vi ser først at vi kan faktorisere ut $2x^2$ og få $2x^2(x^2 - 4)$. Vi kjenner igjen $x^2 - 4 = (x + 2)(x - 2)$ fra konjugatsetningen. Vi har derfor

$$2x^4 - 8x^2 = 2x^2(x+2)(x-2).$$

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET