LCIE Etablissement de Moirans ZI Centr'alp 170, rue de Chatagnon 38430 Moirans

RCS Grenoble 408 363 174

Tél.: +33 4 76 07 36 36 Fax: +33 4 76 55 90 88

N°1-1633

Portée disponible sur www.cofrac.fr

N° 115578-R1-E

DELIVRE A / ISSUED TO

: INGENICO

Rue Claude Chappe

JDE: 106260

B.P. 344

07503 GUILHERAND GRANGES - FRANCE

Objet / Subject

: Essais de compatibilité électromagnétique conformément aux

normes

FCC CFR 47 Part 15, Subpart B.

Electromagnetic compatibility tests according to the standards

FCC CFR 47 Part 15, Subpart B

Matériel testé / Apparatus under test

Rapport d'essai / Test report

Produit / Product

: Lecteur de carte bancaire / Bank payment terminal

Marque / Trade mark

: INGENICO

Constructeur / Manufacturer

: INGENICO

Type sous test / Model under test

: IWL221-01T1537A

N° de série / serial number

: 10255WL4000183

. FCC ID

: XKB-IWL2XXG

Date des essais / Test date

: Du 12 Avril au 27 Mai 2011 / From April 12th to May 27 th, 2011

Lieu d'essai / Test location

: LCIE SUD-EST

ZI Centr'Alp - 170 rue de Chatagnon

38430 MOIRANS - France

Test réalisé par / Test performed by

: Jonathan PAUC

Ce document comporte / Composition of document : 51 pages.

MOIRANS, 27 Juin 2011 / June 27TH ,2011

Approuvé par / Approvéd by, LECTRIQUES

Jacques LORQUITY DEST

Ar Alp

8430 MOIRANS

La reproduction de ce document n'est autorisée que sous sa forme intégrale. Toute reproduction partielle ou toute institut dans un texte d'accompagnement en vue de leur diffusion doit recevoir un accord préalable et formel du LCIE. Cé document résulte d'essaie effectués sur un spécimen, un échantillon ou une éprouvette. Il ne préjuge pas de la conformité de l'ensemble des produits fabriqués à l'objet essayé. Sauf indication contraire, la décision de conformité prend en compte l'incertitude de mesures. Il ne préjuge en aucun cas d'une décision de certification. Seuls certains essais rapportés dans ce document sont couverts par l'accréditation. Ils sont identifiés par le symbole!

This document shall not be reproduced, except in full, without the written approval of the LCIE. This document contains results related only to the item tested. It does not imply the conformity of the whole production to the item tested. Unless otherwise specified, the decision of conformity takes into account the uncertainty of measures. This document does not anticipate any certification decision. Only certain tests mentioned in this document are covered by the accreditation. They are identified by the

33, **symbol** Benéral Leclerc

92266 Fontenay-aux-Roses cedex

Ecrit par / Written by.

Jonathan PAUC

Tél: +33 1 40 95 60 60

Société par Actions Simplifiée

BP 8

Fax: +33 1 40 95 86 56

au capital de 15 745 984 € RCS Nanterre B 408 363 174

France

contact@lcie.fr www.lcie.fr

www.lcie.com

Page: 2 / 51

SUMMARY

1.	TEST PROGRAM	3
2.	SYSTEM TEST CONFIGURATION	4
3.	RADIATED EMISSION DATA	7
4.	CONDUCTED EMISSION DATA	11
5.	TEST EQUIPMENT LIST (MOIRANS SITE)	15
6.	UNCERTAINTIES CHART	17
7.	ANNEX 1 (GRAPHS)	18

Page: 3 / 51

1. TEST PROGRAM

Standard: - FCC Part 15, Subpart B (Digital Devices)

- ANSI C63.4 (2003)

EMISSION TEST	LIMITS			RESULTS (Comments)
Limits for conducted disturbance at mains ports	Frequency	Quasi-peak value (dBµV)	Average value (dBµV)	
150kHz-30MHz №.	150-500kHz	66 to 56	56 to 46	COMPLY
	0.5-5MHz	56	46	
	5-30MHz	60	50	
Radiated emissions 30MHz-12.5GHz №.	Measure at 3m 30MHz-88MHz : 40 dBμV/m 88MHz-216MHz : 43.5 dBμV/m 216MHz-960MHz : 46.0 dBμV/m Above 960MHz : 54.0 dBμV/m		COMPLY	

^{*§15.33:} The highest internal source of a testing device is defined like more the highest frequency generated or used in the testing device or on which the testing device works or agrees.

- If the highest frequency of the internal sources of the testing device is lower than 108 MHz, measurement must be only performed until 1GHz.
- If the highest frequency of the internal sources of the testing device ranges between 108 MHz and 500 MHz, measurement must be only performed until 2GHz.
- If the highest frequency of the internal sources of the testing device ranges between 500 MHz and 1 GHz, measurement must be only performed until 5GHz.

If the highest frequency of the internal sources of the testing device is above 1 GHz, measurement must be only performed until 5 times the highest frequency or 40 GHz, while taking smallest of both.

Page: 4/51

2. SYSTEM TEST CONFIGURATION

2.1. JUSTIFICATION

The system was configured for testing in a typical fashion (as a customer would normally use it) see §2.6:

2.2. HARDWARE IDENTIFICATION

Equipment under test (EUT):

Maximum internal frequencies: 400MHz

<u>Terminal</u>	<u>Base</u>
IWL221-01T1537A	IWL200-01B1326A
Serial number: 10255WL4000183	Serial number: none

Power supply interface:

1: 5Vdc (Through Micro-USB side connector)

2: 5Vdc (Through Base IWL 200)

ID Power supply	<u>Trademark</u>	Ref	<u>Connector</u>	<u>Cable</u>
PWS 1	SAGEM MONEL	FW 7650/151965	Jack	Length : 200mm
PWS 2	PHIHONG	PSA 105A-050	μUSB	Length : 200mm
PWS 3	INGENICO	FW 7601/152171	μUSB	Length : 200mm
PWS 4	INGENICO	FW 7650L/05	μUSB	Length : 200mm
PWS 5U	INGENICO	PSA C05R-050	μUSB (with adapter Jack <->μUsb)	Length : 200mm
PWS 5J	INGENICO	PSA C05R-050	Jack	Length : 200mm
PWS 6	INGENICO	FW 7601/152171	Jack	Length : 200mm
PWS 7	INGENICO	PSA 105A-050	Jack	Length : 200mm

Input/output - Terminal:

Input/output - Base:

- 1 x DC power input Micro USB (5Vdc)
- 2 x SAM ports
- 1 x SIM port
- 1 x Base connector (4 Pins)

- 1 x DC power input Jack (5Vdc)

Auxiliaries equipment used during test:

I/O cables used for testing:

- 2 x SAM Card
- 1 x SIM Card
- 1 x Smartcards (EMV card)

See Power supply description tab

Page: 5 / 51

2.3. RUNNING MODE

ID Running Mode	Function description				
Running Mode 1	- Printing process is performed - CAM0 card reading process - SAM1 card reading process - SAM2 card reading process - GPRS is activated				

2.4. EQUIPMENT MODIFICATIONS

None

2.5. EUT EXERCISE SOFTWARE

Testcam => TESTCAM0107
Telium manager => M2OS: 47786093
Telium manager => Version : 37770972

Page: 6 / 51

2.6. EUT CONFIGURATION

Configuration	EST	Power supply	<u>Base</u>	Running mode
Configuration 1	IWL221-01T1537A	Internal Battery	NONE	Running mode 1
Configuration 2A	IWL221-01T1537A	PWS 4	NONE	Running mode 1
Configuration 2B	IWL221-01T1537A	PWS 5U	NONE	Running mode 1
Configuration 2C	IWL221-01T1537A	PWS 3	NONE	Running mode 1
Configuration 2D	IWL221-01T1537A	PWS 2	NONE	Running mode 1
Configuration 3A	IWL221-01T1537A	PWS 1	IWL200-01B1326A	Running mode 1
Configuration 3B	IWL221-01T1537A	PWS 5J	IWL200-01B1326A	Running mode 1
Configuration 3C	IWL221-01T1537A	PWS 6	IWL200-01B1326A	Running mode 1
Configuration 3D	IWL221-01T1537A	PWS 7	IWL200-01B1326A	Running mode 1

Page: 7 / 51

3. RADIATED EMISSION DATA

3.1. CLIMATIC CONDITIONS

April 29th , 2011 J PAUC : April 12th ,2011 : J. PAUC April 28th, 2011 Date of test J PAUC Test performed by Atmospheric pressure : 1002mb 990mb 990mb Relative humidity : 41% 39% 39% Ambient temperature : 23℃ 22℃ 23℃

3.2. TEST SETUP

The installation of EUT is identical for pre-characterization measurement in a 3 meters semi anechoic chamber and for measures on a 10 meters Open site.

Typical Configuration (Power supply trough μUSB port)

Typical Configuration (Base + power supply "Jack version")

Page: 8 / 51

RAPPORT D'ESSAI / TEST REPORT N° 115578-R1-E

3.3. TEST SEQUENCE AND RESULTS

3.3.1. Pre-characterization [30MHz-1GHz]

For frequency band 30MHz to 1GHz, a pre-scan of all the setup has been performed in a 3 meters semi anechoic chamber.

The distance between EUT and antenna is 3 meters. Test is performed in horizontal (H) and vertical (V) polarization with a log-periodic antenna. The EUT is being rotated on 360° and on 3 axis during the measurement. The precharacterization graphs are obtained in PEAK detection.

See graphs for 30MHz-1GHz (Worst cases):

EMR#1	IWL221-01T1537A	(Configuration 1)	H polarization	(See annex 1)
EMR#2	IWL221-01T1537A	(Configuration 1)	V polarization	(See annex 1)
EMR#3	IWL221-01T1537A	(Configuration 2A)	H polarization	(See annex 1)
EMR#4	IWL221-01T1537A	(Configuration 2A)	V polarization	(See annex 1)
EMR#5	IWL221-01T1537A	(Configuration 2B)	H polarization	(See annex 1)
EMR#6	IWL221-01T1537A	(Configuration 2B)	V polarization	(See annex 1)
EMR#7	IWL221-01T1537A	(Configuration 2C)	H polarization	(See annex 1)
EMR#8	IWL221-01T1537A	(Configuration 2C)	V polarization	(See annex 1)
EMR#9	IWL221-01T1537A	(Configuration 2D)	H polarization	(See annex 1)
EMR#10	IWL221-01T1537A	(Configuration 2D)	V polarization	(See annex 1)
EMR#11	IWL221-01T1537A	(Configuration 3A)	H polarization	(See annex 1)
EMR#12	IWL221-01T1537A	(Configuration 3A)	V polarization	(See annex 1)
EMR#13	IWL221-01T1537A	(Configuration 3B)	H polarization	(See annex 1)
EMR#14	IWL221-01T1537A	(Configuration 3B)	V polarization	(See annex 1)
EMR#15	IWL221-01T1537A	(Configuration 3C)	H polarization	(See annex 1)
EMR#16	IWL221-01T1537A	(Configuration 3C)	V polarization	(See annex 1)
EMR#17	IWL221-01T1537A	(Configuration 3D)	H polarization	(See annex 1)
EMR#18	IWL221-01T1537A	(Configuration 3D)	V polarization	(See annex 1)

3.3.1. Pre-characterization at 3 meters [1GHz-2GHz]

For frequency band 1GHz to 2GHz, a pre-scan of all the setup has been performed in a 3 meters semi anechoic chamber.

The distance between EUT and antenna is 3 meters. Test is performed in horizontal (H) and vertical (V) polarization with a Horn antenna. The EUT is being rotated on 360° and on 3 axis during the measurement. The pre-ch aracterization graphs are obtained in PEAK detection.

Non significatives frequencies observed above 1GHz

Page: 9 / 51

3.3.2. Characterization on 10 meters open site from 30MHz to 2GHz

The product has been tested at a distance of **10 meters** from the antenna and compared to the FCC part 15 subpart B §15.109 limits and C §15.209 limits. Measurement bandwidth was 120kHz from 30 MHz to 1GHz Antenna height search was performed from 1m to 4m for both horizontal and vertical polarization. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on 3 axis of EUT.

A summary of the worst case emissions found in all test configurations and modes is shown on clause 3.2

Frequency range 30MHz-1GHz "Worst case"

No	Frequency (MHz)	QPeak Limit (dBµV/m)		Qpeak-Limit (Margin, dB)		Pol	Hgt (cm)	Tot Corr (dB)	Comments
1	396.76	46	43.90	-2.10	270	Н	250	19.2	Configuration 3A
2	377.2	46	42.30	-3.70	283	Н	300	18.6	Configuration 3A
3	32.04	40	36.40	-3.60	342	V	250	13	Configuration 2B
4	415.96	46	43.6	-2.40	312	Н	200	19.7	Configuration 3A
5	551.7	46	38.5	-7.50	190	Н	250	22.5	Configuration 2C
6	117.5	43.5	34.1	-9.40	220	V	150	14.2	Configuration 2B

^{*:} Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@3m = M@10m+10.5dB)

Frequency range 1GHz- 2GHz

Measurements are performed using a PEAK and Average detection. (RBW = 1MHz)

No	Frequency (GHz)	Limit Average (dBµV/m)	Measure Average (dBµV/m)	Margin (Mes-Lim) (dB)	Angle Table (deg)		Ht Ant. (cm)	Correc. factor (dB)	Comments
Non significative frequency observed									

RESULTS: PASS

Page: 10 / 51

3.4. FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

FS = RA + AF + CF - AG

Where FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor CF = Cable Factor AG = Amplifier Gain

Assume a receiver reading of 52.5dBµV is obtained. The antenna factor of 7.4 and a cable factor of 1.1 are added. The amplifier gain of 29dB is subtracted, giving a field strength of 32 dBµV/m.

 $FS = 52.5 + 7.4 + 1.1 - 29 = 32 \, dB\mu V/m$

The 32 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in $\mu V/m = Common Antilogarithm [(32dB<math>\mu V/m)/20] = 39.8 \mu V/m$.

•

Page: 11 / 51

4. CONDUCTED EMISSION DATA

4.1. CLIMATIC CONDITIONS

Date of test : May 4th ,2011
Test performed by : J. PAUC
Atmospheric pressure : 1002mb
Relative humidity : 40%
Ambient temperature : 22℃

4.2. SETUP FOR CONDUCTED EMISSIONS MEASUREMENT

The product has been tested according to ANSI C63.4-(2003) and FCC Part 15 subpart B and C.

The product has been tested with 110V/60Hz power line voltage and compared to the FCC Part 15 subpart B §15.107 and C §15.207 limits. Measurement bandwidth was 9kHz from 150 kHz to 30 MHz.

Measurement is made with a Rohde & Schwarz ESU8 receiver in peak mode. This was followed by a Quasi-Peak, i.e. CISPR measurement for any strong signal. If the average limit is met when using a Quasi-Peak detector, the EUT shall be deemed to meet both limits and measurement with the average detector is unnecessary. The LISN (measure) is 50Ω / 50μ H.

The Peak data are shown on plots in annex 1. Quasi-Peak and Average measurements are detailed in a table with frequencies and levels measured.

Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on the following page.

Page: 12 / 51

4.3. TEST SETUP

The EUT is placed on the ground reference plane, at 80cm from the LISN. The distance between the EUT and the vertical ground plane is 40cm.

Auxiliaries are powered by another LISN.

The cable has been shorted to 1meter length. The EUT is powered trough the LISN (measure).

Typical Configuration (Power supply trough μUSB port)

Page: 13 / 51

Typical Configuration (Base + power supply "Jack version")

Page: 14 / 51

4.4. TEST SEQUENCE AND RESULTS

Measurements are performed on the phase (L1) and neutral (N) of power line voltage. Graphs are obtained in PEAK detection.

Measures are also performed in Quasi-Peak and Average for any strong signal.

EMC#1	IWL221-01T1537A	(Configuration 2A)	Phase	(See annex 1)
EMC#2	IWL221-01T1537A	(Configuration 2A)	Neutral	(See annex 1)
EMC#3	IWL221-01T1537A	(Configuration 2B)	Phase	(See annex 1)
EMC#4	IWL221-01T1537A	(Configuration 2B)	Neutral	(See annex 1)
EMC#5	IWL221-01T1537A	(Configuration 2C)	Phase	(See annex 1)
EMC#6	IWL221-01T1537A	(Configuration 2C)	Neutral	(See annex 1)
EMC#7	IWL221-01T1537A	(Configuration 2D)	Phase	(See annex 1)
EMC#8	IWL221-01T1537A	(Configuration 2D)	Neutral	(See annex 1)
EMC#9	IWL221-01T1537A	(Configuration 3A)	Phase	(See annex 1)
EMC#10	IWL221-01T1537A	(Configuration 3A)	Neutral	(See annex 1)
EMC#11	IWL221-01T1537A	(Configuration 3B)	Phase	(See annex 1)
EMC#12	IWL221-01T1537A	(Configuration 3B)	Neutral	(See annex 1)
EMC#13	IWL221-01T1537A	(Configuration 3C)	Phase	(See annex 1)
EMC#14	IWL221-01T1537A	(Configuration 3C)	Neutral	(See annex 1)
EMC#15	IWL221-01T1537A	(Configuration 3D)	Phase	(See annex 1)
EMC#16	IWL221-01T1537A	(Configuration 3D)	Neutral	(See annex 1)

RESULT: PASS

Page: 15 / 51

RAPPORT D'ESSAI / TEST REPORT N° 115578-R1-E

5. TEST EQUIPMENT LIST (MOIRANS SITE)

	N°LCIE	TYPE	COMPANY	REF	commentaire
RADIATED	EMISSION MEAS	SUREMENT (PRE-SCAN SEMI-ANECH	OIC CHAMBER #2)		
	A5329032VO	Absorption clamp	LUTHI	MDS21	
	A5329044VO	Absorption clamp	RHODE ET SCHWARZ	85024A	
Х	A4049060VO	Adapter quasi-peak	HEWLETT PACKARD	HP85650A	
Х	A7102024VO	Amplifier 8 GHz	HEROTEK	A1080304A	
Χ	A7486006VO	Amplifier 0.1MHz – 1300 MHz	HEWLETT PACKARD	8447F	
	A7085008VO	Amplifier 0.1MHz – 1300 MHz	HEWLETT PACKARD	8447D	
	A7085009VO	Amplifier 0.1MHz – 1300 MHz	HEWLETT PACKARD	8447D	
	A7085010VO	Amplifier 10MHz – 1300 MHz	A-INFO INC	JXWBLA-T	
Χ	C2040146VO	Antenna Bi-Log XWing	TESEQ	CBL6144	
Χ	C2042027VO	Antenna horn	EMCO	3115	
	C2042028VO	Antenna horn 26GHz	SCHWARZBECK	BBHA 9170	
Χ	C2040052VO	Antenna Loop	ELECTRO-METRICS	EM-6879	
X	A5329045VO	Cable EMR (s-Anechoic chamber)			
Χ	A5329056VO	Cable Radiat EMI (Pre-amp/Analyzer)			
X	A5329057VO	Cable Radiat. EMI (Pre-amp/cage)			
X	A2642019	Measurement Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	
X	A4060030VO	Pre-selector RF	HEWLETT PACKARD	HP85685A	
X	A3169050VO	Radiated emission comb generator	BARDET		
X	D3044015VO	Semi-Anechoic chamber #2	SIEPEL	LIBOTOOD	
X	A4060029VO	Spectrum analyzer	HEWLETT PACKARD	HP8568B	
X	A4060028VO	Spectrum analyzer display	HEWLETT PACKARD	HP85662A	
X	F2000404VO	Turntable chamber	ETS Lingren	Model 2165	
X	F2000393VO	Turntable controller chamber	ETS Lingren	Model 2066	
DAD/ATED		NUDEMENT (ODEN ADEA TEOT OITE)			
RADIATED	A5329032VO	SUREMENT (OPEN AREA TEST SITE)	1	IMP004	
		Absorption clamp	LUTHI	MDS21	
	A5329044VO	Absorption clamp	RHODE ET SCHWARZ	85024A	
X	A4049059VO		HEWLETT PACKARD	HP85650A	
	A7102024VO A7102026VO	Amplifier 8 GHz Amplifier 8-26GHz	HEROTEK ALDETEC	A1080304A ALS01452	
		Amplifier 0.1MHz – 1300 MHz	HEWLETT PACKARD	8447D	
	A7085008VO A7085009VO	Amplifier 0.1MHz – 1300 MHz	HEWLETT PACKARD	8447D	
	A7085009VO	Amplifier 10MHz – 1300 MHz	A-INFO INC	JXWBLA-T	
Х	C2040050VO	Antenna biconic	EMCO	3104C	
^	C2040051VO	Antenna Bi-log	CHASE	CBL6111A	
	C2040031VO	Antenna horn	EMCO	3115	
	C2042027VO	Antenna horn 26GHz	SCHWARZBECK	BBHA 9170	
Х	C2042026VO	Antenna log-periodic	EMCO	3146	
X	C2040052VO	Antenna Loop	ELECTRO-METRICS	EM-6879	
X	F2000288VO	Antenna mast	EMCO	1050	
X	A5329048VO	Cable EMR OATS	SUCOFLEX	106G	
X	A5329199VO	Cable OATS (Mast at 10m)	UTIFLEX	1000	
X	A5329188VO	Cable OATS (Mast at 10m)	UTIFLEX		
	A5329076VO	Cable OATS (Mast at 3m)	UTIFLEX		
	A5329196VO	Cable OATS (Turntable)	UTIFLEX		
	A5329187VO	Cable OATS (Turntable)	UTIFLEX		
	A2640011VO	Measurement receiver 9kHz–30MHz	ROHDE ET SCHWARZ	ESH3	
X	A2642019	Measurement Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	
X	A4060027VO	Pre-selector RF	HEWLETT PACKARD	HP85685A	
X	A3169050VO	Radiated emission comb generator	BARDET	5555671	
X	A4060017VO	Spectrum analyzer	HEWLETT PACKARD	HP8568B	
	A4060017VO	Spectrum Analyzer 9KHz – 26.5GHz	HEWLETT PACKARD	8593E	
	A4060016VO	Spectrum analyzer 9kHz –1.8GHz	HEWLETT PACKARD	8591E	
Х	A4060019VO	Spectrum analyzer display	HEWLETT PACKARD	HP85662A	
X	F2000403VO	Turntable	ETS LINDGREN	Model 2187	
X	F2000286VO	Turntable / Antenna mast controller	ETS LINDGREN	Model 2066	
CONDUCTE	D MEASUREME	NT EMISSION	1	1	1
	A5329061VO	Cable Conduct. EMI			
Х	A5329060VO	Cable Conduct. EMI			
			UTIFLEX	-	

Page: 16 / 51

	N°LCIE	TYPE	COMPANY	REF	commentaire
	A5329076VO	Shielded cable	UTIFLEX		
	A5329206VO	Shielded cable	UTIFLEX		
	A5329207VO	Shielded cable	UTIFLEX		
	A5329060VO	Shielded cable	UTIFLEX		
	A5329071VO	Shielded cable	UTIFLEX		
Χ	A3169049VO	Conducted emission comb generator	BARDET		
	A4040015	Clickmeter	SCHAFFNER	DIA1512D	
	A5329037VO	Current injection probe	SCHAFFNER	CIP8213	
	A1290017VO	Current probe	SCHAFFNER	CSP9160	
	A5329036VO	Direct Injection Module 100+50 Ohms	LCIE	MID01-100 ohms	
	A7156004VO	Direct Injection Module 100+50 Ohms	LUTHI	CR100A	
	A5329042VO	Ferrite Tube	LUTHI	FTC 101	
	A1092042VO	Ferrite Tube	LUTHI	FTC101	
	C2320059VO	LISN	EMCO	3810/2SH	
	C2320068VO	LISN	EMCO	3825/2	
	C2320061VO	LISN	TELEMETER ELECTRONIC	NNB-2/16Z	
	C2320062VO	LISN tri-phase ESH2-Z5	RHODE ET SCHWARZ	33852.19.53	
	C2320063VO	LISN tri-phase ESH2-Z5	RHODE ET SCHWARZ	33852.19.53	
Χ	C2320123VO	LISN	RHODE ET SCHWARZ	ENV216	
	A2640011VO	Measurement receiver 9kHz-30MHz	ROHDE ET SCHWARZ	ESH3	
Χ	A2642019VO	Measurement Receiver 20Hz - 8GHz	ROHDE & SCHWARZ	ESU8	
	C2320067VO	ISN 2 x 2 wires	RHODE ET SCHWARZ	ENY22	
	C2320066VO	ISN 4 wires	RHODE ET SCHWARZ	ENY41	
	C2320124VO	ISN 4 wires	TESEQ	T400A	
	D3044016VO	Semi-Anechoic chamber #1	SIEPEL		
	D3044017VO	Semi-Anechoic chamber #3	SIEPEL		
	D3044015VO	Semi-Anechoic chamber #2	SIEPEL		
Х	D3044010VO	Faraday Cage	RAY PROOF		
Х	A4049061VO	Transient limiter	HEWLETT PACKARD	11947A	
	A4089117VO	Voltage probe	LCIE		

Page: 17 / 51

6. UNCERTAINTIES CHART

Type de mesure / Kind of measurement	Incertitude élargie laboratoire / Wide uncertainty laboratory (k=2) ± x	Incertitude Iimite du CISPR / CISPR uncertainty limit ± y
Mesure des perturbations conduites en tension sur le réseau d'énergie Measurement of conducted disturbances in voltage on the power port	3.57 dB	3.6 dB
Mesure des perturbations conduites en tension sur le réseau de télécommunication Measurement of conducted disturbances in voltage on the telecommunication port.	3.28 dB	A l'étude / Under consid.
Mesure des perturbations discontinues conduites en tension Measurement of discontinuous conducted disturbances in voltage	3.47 dB	3.6 dB
Mesure des perturbations conduites en courant Measurement of conducted disturbances in current	2.90 dB	A l'étude / Under consid.
Mesure du champ électrique rayonné sur le site en espace libre de Moirans Measurement of radiated electric field on the Moirans open area test site	5.07 dB	5.2 dB

Page: 18 / 51

RAPPORT D'ESSAI / TEST REPORT N° 115578-R1-E

7. ANNEX 1 (GRAPHS)

Page: 19 / 51

RAPPORT D'ESSAI / TEST REPORT N° 115578-R1-E

RADIATED EMISSION **Test configuration:** Graph name: Emr#2 (Configuration 1) Antenna position: Vertical Azimuth: 0°-360° Peak Measure QPeak Limit@3m RBW/VBW: 120kHz / 300kHz 100 dBµV/m -Market Market M 30MHz Fréquence (MHz) Frequency (MHz) | Peak (dBµV/m) 121.03 26.1 460.12 30.1

Page: 20 / 51

RAPPORT D'ESSAI / TEST REPORT N° 115578-R1-E

RADIATED EMISSION **Test configuration:** Graph name: Emr#3 (Configuration 2A) Antenna position: Horizontal Azimuth: 0°-360° Peak Measure QPeak Limit@3m RBW/VBW: 120kHz / 300kHz 100 dBµV/m maker the rest of the second control and advantage land Frequency (MHz) Peak (dBµV/m) 415.96 38.33 570.76 38.57

Page : 21 / 51

		RADIA	ATED	EN	/IIS	SIO	N		Tes	t configur	ation:					
Graph	name:				mr#											
	na posit	ion:		_	erti				(Co	nfiguratio	n 2A)					
Azimu				0°	- 30	60°										
RBW	VBW:			12	20k	Hz /	/ 30	00kHz	F	Peak Meas	ure		QPea	k Li	mit@	∂3m
100 dBμV/m																
		M						ww.			myly Mulanya	سیاران		W. Mary Jan	m Inghan	The state of the s
0	V	V Mada	Managa	,/ ^M // M	MM	M/M-144	_l	Hydrid Land	/Malaya _{aal} o	water House Was and	hyvytapyllighteidlyffi					
	30MHz							Fré	quence (MHz)					1	1.001GHz
					F	rec	que	ency (MHz)	Pea	ık (dBµV/n	n)					
							(32.04		38.01						
								38.96		34.33						
							1	15.04		33.62						
							3	96.76		31.08						
							5	51.68		33.69						

Page: 22 / 51

Page: 23 / 51

	F	RADIA	ATEC) EN	/IIS	SIO	N		Tes	t configu	ration:				
Graph	name:			E	mr#	£6									
Anten	na posit	ion:		V	erti	cal			(Co	nfigurati	on 2B)				
Azimu	ıth:			0°	·- 30	60°									
RBW/	VBW:			12	20k	Hz	/ 3	00kHz	F	Peak Mea	sure	QPea	ak Li	mit@	93m
Azimu RBW/	ıth:	/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_\\\	0°	·- 3(60°				Peak Mea		QPea		hpayet and the	
					F	Free	;	ency (MHz) 32.24 64.24 17.52	Pea	ak (dΒμV/ 34.61 34.63 35.8	/m)				
								135.48		37.37					

Page: 24 / 51

Page: 25 / 51

		RADI	ATEC) EN	IISS	SIC	N		Tes	st co	onfigura	ation:				
Graph	name:				nr#											
Anten	na posit	tion:		Ve	ertic	cal			(Co	nfiç	guratio	n 2C)				
Azimı	uth:			0°	- 36	60°	1									
RBW	VBW:			12	20kl	Hz	/ 3	00kHz		Peal	k Meas	ure	QPea	ak Li	mit@	2 3m
100 dBµV/m	30MHz		4/Muso.p	/M		Fre	1 1 3	ency (MH: 32.16 38.88 99.36 104.88 120.44 303.04	Fréquence (MHz) Pe	34 34 34 36 31	dBµV/n 2.47 4.38 4.37 5.19 52.1 1.85	1)		Jacobi Viene	Handing to the state of the sta	1.001GHz
							4	115.96		36	5.83					
							4	135.48			4.07					

Page: 26 / 51

		RADI	ATE) EN	/IIS	SIC	N		Tes	t configur	ation:					
Graph	name:			E	mr#	‡9										
Anten	na posi	tion:		Н	oriz	zon	tal		(Co	nfiguratio	n 2D)					
Azimu	ıth:			0°	°- 3	60°										
RBW/	VBW:			12	20k	Hz	/ 3	00kHz	P	eak Meas	ure		QPeal	k Lim	it@:	3m
100]				1												
dBµV/m																
															_	
													†Ť†.			
												1116				
														ш	MANAMA	MAN
	Λ								۸.					MANA	loui.	
								AM. mat	W My	Maylayaranan/adananan		Ministration				
	W M VI	Mahay	الي د ا	l.				Market	V 1™√	MANAMA	m .					
	/ \ _{\\\\}	M-4/4M	May pay.	MM,	hunh	ساسط	المدر	MAN NO PORT								
	•					11/1	Nail A.									
0.	201411-															101
	30MHz							Fréq	uence (MHz))					1.00	11GHz
					_											
						Fre	qu	ency (MHz)	Pea	k (dΒμV/n	n)					
								33.51		26.62						
					-			29.04		38.1						
					-		- 5	549.81 571.0		39.01 36.92						
					-			31.92		25.65						
							5	531.83		37.2						
					<u> </u>				1							

Page: 27 / 51

		RADI	ATEC) EN	1IS	SIO	N		Test configuration:							
Graph	name:			Eı	mr#	ŧ10										
Anten	na posi	tion:		Ve	erti	cal			(Co	nfiguratio	n 2D)					
Azimu	uth:			0°	- 30	60°										
RBW/	VBW:			12	20k	Hz /	/ 3	00kHz	F	eak Meas	ure		QPea	ık Li	imit@	3m
								00kHz		Peak Meas						
0.	30MHz	Mwyr	when wh	7 ^M • / M	r ^r \ _{\\}	M	A M	Fréq	uence (MHz		ambad bumbha	, julia juniju i juni	N. William			.001GHz
					F	rec	qu	ency (MHz)	Pea	k (dBµV/n	1)					
							,	34.36		24.88						
					-			104 177.2		27.06 27.03						
					_			32.08		33.39						
							- 0	032.00		33.39						

Page: 28 / 51

	F	RADIA	ATEC	EN	IISS	1018	J	Tes	t configura	ation:			
Graph	name:				mr#								
	na posit	ion:				onta	al	(Co	nfiguratio	n 3A)			
Azimu				0°	- 36	60°							
RBW/	VBW:			12	20kl	Hz/	300kHz	P	eak Meas	ure	QPeak	Limit	@3m
100 ⁻ dBμV/m													
									1	İ		Marke VV	Japan Wy May 2
	A Market Market Market	ho, pho, of and an Arthritish as		MANA MANA	May	Madalan	arlindar kilosofin osan sahankan	L. V. L. Market	To the transfer of the second	map Manaha.			
0 +	30MHz						Fré	quence (MHz))				1.001GHz
								. , ,					
					F	rea	uency (MHz)	Pea	ık (dBµV/m	1)			
					Ť	- 1	358		36.98				
							377.24		40.93				
							396.76		49.58				
							415.96		45.13				
							435.48		41.37				
								•					

Page: 29 / 51

		RADI	ATED	EM	IISS	101	N N		Tes	t configur	ation:					
Graph	name:				nr#											
	na posi			_	rtic				(Co	nfiguratio	n 3A)					
Azimı				0°	- 36	0°										
RBW/	VBW:			12	0kF	łz/	300kl	Ηz	F	Peak Meas	ure		QPea	k Lir	nit@	3m
										·						
100 dBμV/m																
												Ī				
	ut.															had
	M							Ť					Muhhhh	, JAMM	hundhally	APPLATOR S
	/ \ .					.			1	A Mar Mar.	الليا . ا		Haladah	/••••		
	-	A IA	<u> </u>) . Id	<u> </u>	\	- /	may had hard h	May Malling.					
	`\mu	J WILL	Mynn	"\\\\\\	₩, /	W			wlll.Av. N°							
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	Mara I.			1	₩.									
0.	30MHz	1						Fut	quence (MHz	`	1	I			1.0	001GHz
								r Tek	pusitive (IVIFIZ	,						
					F	rec	Hency	/ (MHz)	Pea	ık (dBµV/n	n)					
					 	. oq	31.4		1.00	31.21	,					
							125.6		1	27.25						
							358			35.58						
							396.7	' 6		43.18						
							415.9	96		39.93						

Page: 30 / 51

Page: 31 / 51

Page: 32 / 51

Page: 33 / 51

		RADIA	ATED	EN	/IISS	SIO	N		Tes	t configur	ation:				
Graph	name:				mr#										
	na posit	ion:		Ve	ertic	cal			(Co	nfiguratio	n 3C)				
Azimu	uth:			0°	- 36	60°									
RBW/	VBW:			12	20kl	Hz	/ 3	00kHz		Peak Meas	ure	QPea	k Lin	nit@:	3m
100 dBµV/m		***	W. A.	My					May port	North Annual Property Annual Co	And the late of th	April who had no h	LINE AND VIEW	Mary for a filter of	
0.															
	30MHz								Fréquence (MH	ž)				1.0	01GHz
					F	rec	qu	ency (MHz) Pea	ak (dBµV/n	n)				
					-			33.4		32.45					
					-			62.88	-	33.86					
					-		1	00.28		34.64					
					\vdash		1	17.44 396.76	-	32.99 37.38					
					\vdash			115.92		39.13					
					<u> </u>			1.0.02		00.10					

Page: 34 / 51

Page: 35 / 51

Page: 36 / 51

Page: 37 / 51

Page: 38 / 51

Page: 39 / 51

Frequency (MHz)	Avg (dBµV)	Lim Avg (dBµV)	Avg-LimAvg (dBµV)	QPeak (dBµV)	LimQPeak (dBµV)	QPeak-LimQPeak (dBµV)
0.194	37.4	53.86	-16.46	55.61	63.86	-8.25
0.254	24.44	51.63	-27.19	41.55	61.63	-20.08
0.322	17.12	49.66	-32.53	34.01	59.66	-25.64
0.386	15.58	48.15	-32.57	30.62	58.15	-27.53
8.45	11.81	50	-38.19	23.21	60	-36.79

Page: 40 / 51

Page: 41 / 51

Page: 42 / 51

Page: 43 / 51

Page: 44 / 51

Page: 45 / 51

Page: 46 / 51

Page: 47 / 51

Page: 48 / 51

Page: 49 / 51

Page: 51 / 51

