Linear Algebra: Vector Spaces

Arjun Vardhan

†

Created: 7th July 2022 Last updated: 7th July 2022

1 Vector Spaces

- \bullet A vector space V is a set, along with two operations, vector addition and scalar multiplication, satisfying the following properties:
 - 1. v + w = w + v for all $v, w \in V$.
 - 2. (u+v) + w = u + (v+w) for all $u, v, w \in V$.
 - 3. There exists a zero vector $0 \in V$ such that v + 0 = v for all $v \in V$.
 - 4. For every $v \in V$ there exists $w \in V$ such that v + w = 0. Usually denoted -v.
 - 5. $1 \cdot v = v$ for all $v \in V$.
 - 6. $(\alpha\beta) \cdot v = \alpha \cdot (\beta \cdot v)$, for all $v \in V$, for all scalars α, β .
 - 7. $\alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v$, for all $u, v \in V$, for all scalars α .
 - 8. $(\alpha + \beta) \cdot v = \alpha \cdot v + \alpha \cdot v$, for all $v \in V$, for all scalars α, β .
- The zero vector is unique. Proof: Let $0,0' \in V$ such that 0+v=v and 0'+v=v for all $v \in V$. Then 0=0+0'=0'.
- Additive inverses are unique. Proof: Let $v \in V$. Let $u, w \in V$ such that v + w = v + u = 0. Then $v + w + w = v + u + w \implies (v + w) + w = (v + w) + u \implies w = u$.
- $0 = 0 \cdot v$ for all $v \in V$. Proof: $0 \cdot v = (0+0) \cdot v = 0 \cdot v + 0 \cdot v \implies 0 = 0 \cdot v$.
- $-v = (-1) \cdot v$ for all $v \in V$. Proof: $(-1) \cdot v + v = (-1) \cdot v + 1 \cdot v = (-1+1) \cdot v = 0$. Thus $(-1) \cdot v = -v$.
- The scalars are always from a field, usually $\mathbb R$ or $\mathbb C$.
- An $m \times n$ matrix is a rectangular array with m rows and n columns. Entries of a matrix are denoted a_{ij} or $(A)_{i,j}$, where i is the row and j is the column.
- Given a matrix A, its transpose A^T is the matrix formed by transforming the rows of A into columns. Formally, $(A)_{i,j} = (A^T)_{j,i}$.

2 Linear Combinations and Bases

•

- 3 Linear Transformations and Matrix-Vector Multiplication
- 4 Vector Space of Linear Transformations
- 5 Composition of Linear Transformations and Matrix Multiplication
- 6 Invertible Transformations and Isomorphisms
- 7 Subspaces