CLAIMS

What is claimed is:

1	1.	A method for managing a memory system having a plurality of subsystems,
2		comprising the steps of:
3		upon accessing the subsystems for a piece of data used by a first process,
4		determining the access time to acquire the piece of data in the
5		memory system;
6		comparing the determined access time to a threshold; and
7		taking an action based on the results of the comparing step;
8		wherein accessing the subsystems is in a non-sequential order.
1	2.	The method of claim 1 wherein data blocks containing the piece of data is placed
2		in the memory system based on information selected in one or a combination of:
3		a movement pattern of data in a data block,
4		a structure of the memory system, and
5		a cache-level architecture in the memory system.
1	3.	The method of claim 1 further comprising the steps of:
2		using a memory table having entries pointing to data blocks storing data
3		for at least one subsystem; and
4		using the entries to locate the access data.
·		
1	4.	The method of claim 3 wherein the memory table working with a memory
2		manager managing the data blocks independent of an operating system working
3		with the memory system and independent of a processor working with the memory
4		system.

1	5.	The method of claim 1 further comprising the steps of:
2		using a memory table having entries pointing to data blocks storing data
3		for the memory system; and
4		the memory table using a physical address of a memory page
5		corresponding to the piece of access data to convert to a location
6		address corresponding to an entry pointing to the location of the
7		piece of access data.
1	6.	A method for managing a memory system, comprising the steps of:
2		upon accessing the memory system for a piece of data used by a first
3		process,
4		a processor working with the memory system continuing its
5		functions until it is stalled;
6		comparing the time taken to complete the memory access to a
7		threshold; and
8		if the time taken to complete the memory access is close to, equal
9		to, or greater than the threshold, then taking an action.
1	7.	The method of claim 6 wherein the action is selected in one or a combination of
2		postponing executing the first process and allowing executing a second
3		process;
4		causing the first process to be switched to a second process; and
5		causing a performance monitor on the memory system or on a system using
6		the memory subsystem.
1	8.	The method of claim 6 further comprising the step of polling a latency manager for
2		the time taken to complete the memory access; the latency manger being part of
3		managing the memory system.

1	9.	The method of claim 6 further comprising the steps of:
2		using a memory table having entries pointing to data blocks storing data
3		for at least one subsystem; and
4		using the entries to locate the access data.
1	10.	The method of claim 9 wherein the memory table working with a memory
2		manager managing the data blocks independent of a processor working with the
3		memory system and independent of an operating system working with the memory
4		system.
1	11.	A method for managing a memory system, comprising the steps of:
2		upon accessing the memory system for a piece of data used by a first
3		process
4		counting a time elapsed from the time the data access starts; the
5		counted time being increased as the data is being accessed;
6		comparing the counted time to a threshold; and
7		if the counted time is close to, equal to, or greater than the
8		threshold, then taking an action selected in one or a combination of
9		postponing executing the first process and allowing
10		executing a second process;
11		causing the first process to be switched to a second process;
12		and
13		causing a performance monitor on the memory system or on
14		a system using the memory system.
1	12.	The method of claim 11 further comprising the steps of:
2		using a memory table having entries pointing to data blocks storing data
3		for at least one memory subsystem; and

4

1	13.	A computer-readable medium embodying instructions for a computer to perform a
2		method for managing a memory system having a plurality of subsystems, the
3		method comprising the steps of:
4		upon accessing the subsystems for a piece of data used by a first process,
5		determining the access time to acquire the piece of data in the
6		memory system;
7		comparing the determined access time to a threshold; and
8		taking an action based on the results of the comparing step;
9		wherein accessing the subsystems is in a non-sequential order.
1	14.	The computer-readable medium of claim 13 wherein data blocks containing the
2		piece of data is placed in the memory system based on information selected in one
3		or a combination of:
4		a movement pattern of data in a data block,
5		a structure of the memory system, and
6		a cache-level architecture in the memory system.
1	15.	The computer-readable medium of claim 13 wherein the method further
2		comprising the steps of:
3		using a memory table having entries pointing to data blocks storing data
4		for at least one subsystem; and
5		using the entries to locate the access data.
1	16.	The computer-readable medium of claim 15 wherein the memory table working
2		with a memory manager managing the data blocks independent of an operating

using the entries to locate the access data.

3		system working with the memory system and independent of a processor working
4		with the memory system.
1	17.	The computer-readable medium of claim 13 wherein the method further comprises
2		the steps of:
3		using a memory table having entries pointing to data blocks storing data
4		for the memory system; and
5		the memory table using a physical address of a memory page
6		corresponding to the piece of access data to convert to a location
7		address corresponding to an entry pointing to the location of the
8		piece of access data.
1	18.	A computer-readable medium embodying instructions for a computer to perform a
2		method for managing a memory system, the method comprising the steps of:
3		upon accessing the memory system for a piece of data used by a first
4		process,
5		a processor working with the memory system continuing its
6		functions until it is stalled;
7		comparing the time taken to complete the memory access to a
8		threshold; and
9		if the time taken to complete the memory access is close to, equal
10		to, or greater than the threshold, then taking an action.
1	19.	The computer-readable medium of claim 18 wherein the method further comprises
2		the step of polling a latency manager for the time taken to complete the memory
3		access; the latency manger being part of managing the memory system.

1	20.	The computer-readable medium of claim 18 wherein the method further comprises
2		the steps of:
3		using a memory table having entries pointing to data blocks storing data
4		for at least one subsystem; and
5		using the entries to locate the access data.
1	21.	A computer-readable medium embodying instructions for a computer to perform a
2		method for managing a memory system, the method comprising the steps of:
3		upon accessing the memory system for a piece of data used by a first
4		process,
5		counting a time elapsed from the time the data access starts; the
6		counted time being increased as the data is being accessed;
7		comparing the counted time to a threshold, and
8		if the counted time is close to, equal to, or greater than the
9		threshold, then taking an action selected in one or a combination of
10		postponing executing the first process and allowing
11		executing a second process;
12		causing the first process to be switched to a second process;
13		and
14		causing a performance monitor on the memory system or on
15		a system using the memory subsystem.
1	22.	The computer-readable medium of claim 21 wherein the method further comprises
2		the steps of:
3		using a memory table having entries pointing to data blocks storing data
4		for at least one memory subsystem; and
5		using the entries to locate the access data.

ļ	23.	An apparatus for managing a memory system having a plurality of subsystems,
2		comprising:
3		means for, upon accessing the subsystems for a piece of data used by a first
4		process,
5		determining the access time to acquire the piece of data in the
6		memory system;
7		comparing the determined access time to a threshold; and
8		taking an action based on the results of the comparing step;
9		wherein accessing the subsystems is in a non-sequential order.
1	24.	The apparatus of claim 23 wherein data blocks containing the piece of data is
2		placed in the memory system based on information selected in one or a
3		combination of:
4		a movement pattern of data in a data block,
5		a structure of the memory system, and
6		a cache-level architecture in the memory system.
1	25.	The apparatus of claim 23 further comprising a memory table having entries
2		pointing to data blocks storing data for at least one subsystem; the entries being
3		used to locate the access data.
1	26.	The apparatus of claim 25 wherein the memory table working with a memory
2		manager managing the data blocks independent of an operating system working
3		with the memory system and independent of a processor working with the memory
4		system.
1	27.	The apparatus of claim 23 further comprising a memory table having entries
2		pointing to data blocks storing data for the memory system; the memory table

3		using a physical address of a memory page corresponding to the piece of access
4		data to convert to a location address corresponding to an entry pointing to the
5		location of the piece of access data.
1	28.	An apparatus for managing a memory system, comprising:
2		upon accessing the memory system for a piece of data used by a first
3		process,
4		a processor for working with the memory system and for continuing
5		its functions until it is stalled;
6		means for comparing the time taken to complete the memory access
7		to a threshold; and
8		means for taking an action if the time taken to complete the
9		memory access is close to, equal to, or greater than the
10		threshold.
1	29.	The apparatus of claim 28 further comprising means for polling a latency manager
2		for the time taken to complete the memory access; the latency manger being part
3		of managing the memory system.
1	30.	The apparatus of claim 28 further comprising a memory table having entries
2		pointing to data blocks storing data for at least one subsystem; the entries being
3		used to locate the access data.
1	31.	An apparatus for managing a memory system, comprising:
2		upon accessing the memory system for a piece of data used by a first
3		process,

4		means for counting a time elapsed from the time the data access
5		starts; the counted time being increased as the data is being
6		accessed;
7		means for comparing the counted time to a threshold, and
8		if the counted time is close to, equal to, or greater than the
9		threshold, means for taking an action selected in one or a
10		combination of
11		postponing executing the first process and allowing
12		executing a second process;
13		causing the first process to be switched to a second process;
14		and
15		causing a performance monitor on the memory system or or
16		a system using the memory subsystem.
1	32.	The apparatus of claim 31 further comprising a memory table having entries
2		pointing to data blocks storing data for at least one memory subsystem; the entries
3		being used to locate the access data.