Name: Huize Shi - A92122910

Discussion: A04 Homework: 9

1. (a) Prove that $x^3 - x + 1$ is irreducible in $\mathbb{Z}_3[x]$. By lemma, since $x^3 - x + 1$ is of degree 3, having no zero in \mathbb{Z}_3 , which is a field, means irreducible in \mathbb{Z}_4 :

$$\begin{array}{c|c} x & x^3 - x + 1 \\ \hline 0 & 1 \\ 1 & 1 \\ 2 & 7 \stackrel{3}{=} 1 \end{array}$$

- (b) Prove that $\mathbb{Z}_3[x]/\langle x^3-x+1\rangle$ is a field. By part a we know that x^3-x+1 is irreducible, since \mathbb{Z}_3 is a field $\mathbb{Z}_3[x]$ is a PID, $\langle x^3-x+1\rangle$ is therefore maximal. This means that $\mathbb{Z}_3[x]/\langle x^3-x+1\rangle$ is a field.
- (c) Prove that there is a field F that has 27 elements, and it has a zero α of $x^3 x + 1$. By part b, we know that $\mathbb{Z}_3[x]/\langle x^3 x + 1 \rangle$ is a field. By lemma, it is of size $3^3 = 27$. $0 + \langle x^3 x + 1 \rangle$ is a zero of $x^3 x + 1$.
- 2. Suppose $f(x) = x^5 6x^4 + 30x + 12$.
 - (a) Prove that f(x) is irreducible in $\mathbb{Q}[x]$.

$$p = 3$$

$$3 \nmid 1$$

$$3 \mid -6, 30, 12$$

$$3^{2} = 9 \nmid 12$$

By Eisenstein's irreducibility criterion, f(x) is irreducible in $\mathbb{Q}[x]$.

- (b) Suppose $\alpha \in \mathbb{C}$ is a zero of f. Prove that $\{a_0 + a_1\alpha + \dots + a_4\alpha^4 \mid a_0, \dots, a_4 \in \mathbb{Q}\}$ is a field. Since f(x) is irreducible in $\mathbb{Q}[x]$, let $i : \mathbb{Q} \hookrightarrow E$, $E \subseteq \mathbb{C}$ by i(a) = a, i is an injective ring homomorphism. By theorem, $\exists \alpha, i(f)(\alpha) = 0, E = \{a_0, a_1\alpha, \dots, a_4\alpha^4 \mid a_0, \dots, a_4 \in \mathbb{Q}\}$.
- (c) Prove that $1, \alpha, \ldots, \alpha^4$ are linearly independent over \mathbb{Q} ; That means: if $a_0 + a_1 \alpha + \cdots + a_4 \alpha^4 = 0$ for some $a_i \in \mathbb{Q}$, then $a_0 = a_1 = \cdots = a_4 = 0$.
- 3. Suppose p is an odd prime. Prove that $x^{p-1}-x^{p-2}+\cdots+x^2-x+1$ is irreducible in $\mathbb{Q}[x]$. (Consider f(-x))
- 4. Let $\alpha = \sqrt{1+\sqrt{3}}$

- (a) Prove that $x^4 2x^2 2$ is a minimal polynomial of α over \mathbb{Q} .
- (b) $\{a_0 + a_1\alpha + a_2\alpha^2 + a_3\alpha^3 \mid a_0, a_1, a_2, a_3 \in \mathbb{Q}\}$ is a field.
- 5. Show that there is a finite field of order 25.