# Software Engineering Übung 08

#### Verifikation

Übung von Jonathan Lippert und Magnus Dierking Tag der Einreichung: 22. Januar 2021

Darmstadt



Software Engineering Übung 08 Verifikation

Übung von Jonathan Lippert und Magnus Dierking

Tag der Einreichung: 22. Januar 2021

Darmstadt

## 1 Systematisches Testen von Methoden

## 1.1 Branch-Coverage

| Testeingabe       | Erwartetes Ergebnis/Exception |  |  |
|-------------------|-------------------------------|--|--|
| hexDigitSum(null) | NullPointerException          |  |  |
| hexDigitSum(G)    | -1                            |  |  |
| hexDigitSum(3)    | 3                             |  |  |
| hexDigitSum(B)    | 11                            |  |  |

## 1.2 Condition-Coverage

| Testeingabe               | Erwartetes Ergebnis/Exception |  |  |  |
|---------------------------|-------------------------------|--|--|--|
| hexDigitSum(5)            | 5                             |  |  |  |
| hexDigitSum(B)            | 11                            |  |  |  |
| hexDigitSum(G)            | -1                            |  |  |  |
| <pre>hexDigitSum(=)</pre> | -1                            |  |  |  |
| hexDigitSum(%)            | -1                            |  |  |  |

## 2 MCDC Testabdeckung

#### 2.1 a)

| Testeingabe     | Erwartetes Ergebnis/Exception | c1    | c2    | c3   | c4    | Decision |
|-----------------|-------------------------------|-------|-------|------|-------|----------|
| hexaDigitSum(?) | false                         | false | true  | true | false | false    |
| hexaDigitSum(7) | true                          | false | false | true | false | true     |

### 2.2 b)

#### Listing 2.1: Conditions der aufgabe 2b

```
if(
currNum<0 | // Condition c1
(currNum>=0 & // Condition c2
((currNum>9 & // Condition c3
currNum<'A' // Condition c4
) |
currNum>'F')) // Condition c5
```

Angenommen wir wollen die MCDC für c = c3 anwenden. Da die Decision einmal Wahr und einmal Falsch sein soll, aber die restlichen Conditions gleich bleiben sollen, müssen die Oder-Verknüpften Conditions Falsch und die Und-Verknüpften Wahr ergeben. Also muss C1 = Wahr und C2 = Falsch gelten. Dies ist jedoch ein Widerspruch, da sie einander disjunkte Ereignisse darstellen. Mit Hilfe des Widerspruches ist also bewiesen, dass dies nicht für alle Conditions möglich ist.