

INTRODUCTION TO GRAPH NEURAL NETWORKS

NVIDIA DLI

WELCOME

- A GPU-accelerated server is being launched for interactive activities
 Datasets, frameworks, and software are being loaded

GRAPH DATA

Used for Representing Unstructured Data

VOLUMETRIC MESHES

SURFACE MESHES

COMMON GRAPH DATA USE CASES

Used to Gather Information About Relationships Between Objects

KNOWLEDGE GRAPHS

SOCIAL NETWORKS & RECOMMENDER SYSTEMS

COMMON GRAPH DATA USE CASES

Usage Extends Across Industries

IMAGES - GRID GRAPHS

Treating Images as Graphs Could Present Some Challenges

ANATOMY OF A GRAPH

EDGES

Directed, Undirected, Weighted, and Unweighted

EDGESDegree, In-Degree, Out-Degree

EDGES

Homogeneous vs. Heterogeneous

SOCIAL NETWORK

E-COMMERCE

EDGES

Neighborhood

Adjacency Matrix Shows the Neighborhood of Each Node

	A	В	С	D	Ε	F
A	0	1	0	0	0	0
В	1	0	1	0	0	0
С	0	1	0	1	0	0
D	0	0	1	0	1	1
Е	0	0	0	1	0	1
F	0	0	0	1	1	0

Note: The adjacency matrix is symmetric for undirected graphs

Adjacency Matrix Can Also Be Used for a Weighted Graph

	A	В	С	D	Е	F
A	0	0.5	0	0	0	0
В	0.5	0	0.7	0	0	0
C	0	0.7	0	0.1	0	0
D	0	0	0.1	0	0.4	0.5
Е	0	0	0	0.4	0	0.9
F	0	0	0	0.5	0.9	0

Note: The adjacency matrix is symmetric for undirected graphs

Degree Matrix Counts Number of Connections to Each Node

	A	В	С	D	Ε	F
A	2	0	0	0	0	0
В	0	2	0	0	0	0
C	0	0	2	0	0	0
D	0	0	0	3	0	0
Е	0	0	0	0	2	0
F	0	0	0	0	0	2

Note: Illustration assumes unweighted and undirected graph

Laplacian Matrix Shows the Smoothness of the Graph

	A	В	С	D	Ε	F
Α	2	-1	0	0	0	0
В	-1	2	-1	0	0	0
C	0	-1	2	-1	0	0
D	0	0	-1	3	-1	-1
Е	0	0	0	-1	2	-1
F	0	0	0	-1	-1	2

Represented as L, where

D = Degree Matrix andA = Adjacency Matrix

Graphs Can Also Be Represented by an Adjacency List

Adjacency	Edges	Nodes
[[1, 2], [2, 3], [3, 4], [4, 5], [4, 6], [5, 6]]	[0.5, 0.7, 0.1, 0.4, 0.5, 0.9]	[0.7, 0.4, 0.9, 0.3, 0.9, 0.5]

Note: Representing graph structure as adjacency lists can be more efficient

GRAPH NEURAL NETWORKS

Learn the Function(s) to Predict Graph-Level, Node-Level, or Edge-Level Features

GRAPH NEURAL NETWORKS

Neural Networks That Operate on Graphs

- Graph data is a challenge as standard deep learning methods focus primarily on structured data, such as fixed-size pixel grids (images) and sequences (text).
- Graph neural networks, or GNN, refers to a variety of different approaches for applying deep learning on graphs that:
 - Take full advantage of the graph structure
 - Considers scalability and efficiency based on the size of the graph and its features
- Graph neural networks that use various techniques, which typically involve learning the latent / embedding space(s) to represent node features that are mindful of a node's direct neighborhood in the graph, have become the most popular approaches:
 - Message Passing Neural Networks (MPNN)
 - Graph Convolution Networks (GCN)
 - Graph Attention networks (GAT)

GNN TASKS

Learn the Function(s) to Predict Graph-Level, Node-Level, or Edge-Level Features

GRAPH-LEVEL TASK

Use (Latent) Node Features and Edge Features to Predict a Global Graph Property

EXAMPLE GRAPH-LEVEL TASK

Google Experimented with Using GNN to Perform Classification at the Graph Level

Objective:

To predict the smell of molecules by framing molecules as graphs

Image credit: ai.googleblog.com

EXAMPLE GRAPH-LEVEL TASKS

MIT Successfully Discovered Halicin's Effectiveness Against Multi-Resistant Bacteria

Image credit: news.mit.edu

Objective:

To predict molecule toxicity rating

NODE PREDICTION

Take (Latent) Node Features and Edge Features to Predict a Node Property

NODE-LEVEL TASKS

Classification

Zachary Karate Club – the 'Hello World' of GNNs

NODE-LEVEL TASKS

Regression

Predict values in each node: continuous outcome variables

Research at Cornell: utilizing geospatial and temporal information for crop yield prediction

Image credit: proceeding NeurIPS 2021

LINK/EDGE PREDICTION

Predict the Weight and Class of Graph Edges

EDGE-LEVEL TASKS

Link prediction

EDGE-LEVEL TASKS

Classification

Predict fradulent transactions:

approach for automated Merchant B credit card transaction fraud detection using network-based extensions

Image credit: Decision Support Systems 2015

EDGE-LEVEL TASKS

Regression

Google Maps: estimate time to travel from A to B

Image credit: DeepMind

MESSAGE PASSING AND GRAPH CONVOLUTION

Principal Ideas Behind Most GNN Architectures

- Message passing is when each node in a graph sends information about itself to its neighbors and receives messages back from them to update its status and understand its environment
 - Enables nodes to aggregate neighboring features and update its own
- Convolution is popularly used to analyze images, which is generalized to be applicable on graphs
- Graph convolution combines information from neighborhoods and encodes updated node features to embeddings
 - Various aggregation methods to handle different use cases
 - The aggregation method should be **permutation invariant**, i.e. independent from the ordering of the nodes
 - Can be thought of as a simple message passing algorithm that involves a linear combination of neighborhood features where weights used for the aggregation depend only on the structure of the graph

GNN: SUM-POOLING

Sum-Pooling Update Rule

 A simple sum aggregation of the neighborhoods can be done efficiently by multiplying the feature vectors and the adjacency matrix together

- Leverage the power of deep learning by giving some layered processing of the features, therefore also multiplying by some learnable node-wise shared linear transformation, W, as well as applying a non-linear function, σ , to make the feature representation more complex
- $H' = \sigma(\tilde{A}HW)$
 - This effectively recombines the information in the neighborhood into just one vector and the output of this dense layer is the new vector representation of the nodes

GNN: MEAN-POOLING

Mean-Pooling Update Rule

- Graph neural networks that use a mean-pooling update rule normalizes the vector to prevent features from *exploding* since the scale of the output features can increase
 - Becomes a more obvious problem when stacking layers
- Multiplying by the inverse of the degree matrix, which measures the number of connections for each node (i.e. neighborhood size), to arrive at the mean
- $\dot{H} = \sigma(\tilde{D}^{-1}\tilde{A}HW)$
 - This effectively takes the average of all neighborhood features

GNN: SYMMETRIC NORMALIZATION

Popular GCN Proposed by Kipf and Welling

- The commonly cited graph convolutional network (GCN) uses symmetric normalization in the update rule
 - Multiplying by the inverse square root of the degree matrix from both sides, which is calculated by dividing by the square root of the product of neighborhood sizes of a node and neighborhood sizes of the neighbor.
- Currently the most popular graph convolution layer
 - Simple to implement
 - Scalable
 - Powerful
- $H' = \sigma(\widetilde{D}^{-\frac{1}{2}}\widetilde{A}\widetilde{D}^{-\frac{1}{2}}HW)$

MESSAGE PASSING NEURAL NETWORKS

Nodes Can Send and Receive Messages Along Graph Edges

- Previous methods described (i.e. graph convolutional networks) only indirectly supports edge features
- A more generalized **message passing neural network (MPNN)** can focus on edge-wise mechanisms, i.e. for a single node in the graph:
 - Let message sent across edge $i \rightarrow j$ be defined as $m_{ij} = f_e(h_i, h_j, e_{ij})$
 - Aggregate all messages sent to node i using a **permutation-invariant** function such that $h'_i = f_v(h_i, \sum_{j \in N_i} m_{ij})$
 - f_e and f_v can be neural networks
- Powerful GNN approach but requires storage and manipulation of edge messages, which can be costly

STACKING LAYERS

Getting Signals From More Distant Neighborhoods in the Graph

- By repeating the step N times for all nodes in the graph, the feature representations are updated with information of nodes up to N hops away
 - Often treated as a hyperparameter for model tuning

GNN TRAINING

Training Is Done in a Similar Way as Other Neural Networks

- Learning is done by gradient-descent to minimize the loss function, typically implemented as backpropagation
- GNN methods commonly use a semi-supervised learning approach
- Depending on the use case, transductive learning may be used
 - Train the neural network model and label unlabeled points which we have already encountered
 - Compute embeddings using the entire graph
 - Can only perform inference on nodes that the model has encountered before

