☑ Jay Sanghvi – Part 1: Introduction + Rover + Weather Station

Good [morning/afternoon] respected judges, teachers, and friends. I am **Jay Sanghvi**, from Class 8.

Together with my teammate Adi Sen, we present to you our innovative project:

This smart agriculture system brings together environmental monitoring, automated irrigation, renewable energy simulation, and agri-tourism education — all into one unified platform.

Let me begin with the Bot X Rover, the heart of our project.

Our rover uses a Raspberry Pi 4 computer and an ESP32 microcontroller, combining mobility and intelligence.

☐ The Raspberry Pi 4 processes real-time images from a camera and performs machine learning—based crop health detection — spotting dryness, weeds, or unhealthy plants.

In the ESP32, which stands for Espressif Systems 32-bit Wi-Fi and Bluetooth Microcontroller, is used to control motors, read sensors, and send wireless data.

The rover is equipped with:

•	
A DHT11 sensor to measure temperature and humidity	
•	
A soil moisture sensor to detect dryness	
•	
A water level sensor for flood detection	
•	
This data helps farmers take better decisions on irrigation and crop protection.	
Now coming to our weather station .	
We've built a compact and wireless weather unit using the ESP32 microcontroller and an OLED disscreen.	splay – that's an Organic Light Emitting Diode
It shows:	

Real-time temperature, humidity, and flood status

Alerts using a passive buzzer and LEDs for extreme conditions

This helps in local weather tracking and better preparedness.

Now I invite Adi to explain the rest of the system.

☑ Adi Sen – Part 2: Sprinkler + Renewable Energy + Drone + Tourism + Conclusion

Thank you, Jay.

Let's talk about our smart sprinkler system.

It uses a soil moisture sensor to detect how dry the soil is.

If the soil is dry, it automatically activates water sprinklers . When the soil is moist again, the sprinklers turn off — saving a lot of water.		
In India, more than 60% of irrigation water is wasted , according to the Ministry of Jal Shakti. Our system reduces water usage and boosts irrigation efficiency.		
Next, we've included renewable energy simulations in our model to promote green power:		
 Solar energy – using solar panels to run small devices. Hydropower – where flowing water rotates a turbine connected to a generator. Wind energy – with a working windmill that powers a motor using airflow. 		
These demonstrate how farmers can generate clean energy and reduce their dependence on fossil fuels.		
We've also designed a concept model of the X Drone .		
It's equipped with a camera and pressure sensors , and can be remotely controlled. This drone can be used for:		

Aerial crop imaging	
• Spraying fertilizers	
• Checking field health from above	
This saves time and effort in monitoring large farms.	
Finally, we've added an agri-tourism zone to our project.	
Here, visitors can:	
Experience real farming methods	

•

Learn how technology supports agriculture

•

Appreciate the hard work of farmers

•

This builds awareness and connects people to rural India in a meaningful way.

□ Conclusion - Both Together (Optional)

Jay:

So in conclusion, EnviroBot X is not just a tech project...

Adi:

...it's a vision for a smarter, greener, and more sustainable future.

Jay

We thank you for your time and hope this inspires real-world innovations in agriculture.

Adi: Thank you once again. We are Jay Sanghvi and Adi Sen from Class 8.