相似矩阵及二次型

习题解答

1. 设 $a = (1,0,-2)^T$, $b = (-4,2,3)^T$, $c 与 a 正交,且 <math>b = \lambda a + c$,求 λ 和

解 以 a^T 左乘已知关系式两边得

$$a^{\mathsf{T}}b = \lambda a^{\mathsf{T}}a + a^{\mathsf{T}}c,$$

因 a 与 c 正交, 有 $a^{T}c=0$; $a\neq 0$, 有 $a^{T}a\neq 0$, 故得

$$\lambda = \frac{a^{\mathrm{T}}b}{a^{\mathrm{T}}a} = \frac{-10}{5} = -2;$$

进而

$$c = b - \lambda a = \begin{bmatrix} -4 \\ 2 \\ 3 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \\ -1 \end{bmatrix}.$$

2. 试把下列向量组施密特正交化,然后再单位化:

$$(1) (a_1, a_2, a_3) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix}; (2) (a_1, a_2, a_3) = \begin{bmatrix} 1 & 1 & -1 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

解 (1)
$$b_1 = a_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
,单位化得 $p_1 = \frac{b_1}{\parallel b_1 \parallel} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$,

$$b_2 = a_2 - \frac{[b_1, a_2]}{[b_1, b_1]} b_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - \frac{6}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \text{ \not $$ $$ \not $$ $\'$ $$ $\'$ $$ $\'$ $$ $\'$ $$ $\rlap{$$}$ $$ $\rlap{$}$ $$ $\rlap{$$}$ $$ $\rlap{$}$ $$ $\rlap{$$}$ $$ $\rlap{$}$ $$ $\rlap{$$}$ $$ $\rlap{$}$ $$ $\rlap{$$}$ $\rlap{$$}$ $$ $\rlap{$$}$ $$$ $\rlap{$$}$ $$ $\rlap{$$}$ $$ $\rlap{$$}$ $$ $\rlap{$$}$ $$$ $\rlap{$$}$ $$$ $\rlap{$$}$ $$$$$ $\rlap{$$}$ $\rlap{$$}$$$

$$b_3 = a_3 - \frac{[b_1, a_3]}{[b_1, b_1]}b_1 - \frac{[b_2, a_3]}{[b_2, b_2]}b_2 = \begin{bmatrix} 1\\4\\9 \end{bmatrix} - \frac{14}{3} \begin{bmatrix} 1\\1\\1 \end{bmatrix} - \frac{8}{2} \begin{bmatrix} -1\\0\\1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -1\\2\\1 \end{bmatrix},$$

单位化得
$$p_3 = \frac{b_3}{\parallel b_3 \parallel} = \frac{(1,-2,1)^{\mathrm{T}}}{\parallel (1,-2,1)^{\mathrm{T}} \parallel} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix};$$

注 这里并没有直接对 b_3 单位化,而是对 $(1,-2,1)^T$ 单位化,小小的技巧给计算带来不小的方便.

(2) $b_1 = a_1 = (1,0,-1,1)^T$,单位化向量为 $\frac{1}{\sqrt{3}}(1,0,-1,1)$,严重言等数字

$$b_2 = a_2 - \frac{\begin{bmatrix} b_1, a_2 \end{bmatrix}}{\begin{bmatrix} b_1, b_1 \end{bmatrix}} b_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix} - \frac{2}{3} \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ -3 \\ 2 \\ 1 \end{bmatrix},$$
 单位化向量为 $\frac{1}{\sqrt{15}} \begin{bmatrix} 1 \\ -3 \\ 2 \\ 1 \end{bmatrix}$

$$b_3 = a_3 - \frac{\begin{bmatrix} b_1, a_3 \end{bmatrix}}{\begin{bmatrix} b_1, b_1 \end{bmatrix}} b_1 - \frac{\begin{bmatrix} b_2, a_3 \end{bmatrix}}{\begin{bmatrix} b_2, b_2 \end{bmatrix}} b_2 = \begin{bmatrix} -1 \\ 1 \\ 1 \\ 0 \end{bmatrix} + \frac{2}{3} \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix} + \frac{2}{15} \begin{bmatrix} 1 \\ -3 \\ 2 \\ 1 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} -1 \\ 3 \\ 3 \\ 4 \end{bmatrix},$$

其单位化向量为 $\frac{1}{\sqrt{35}}(-1,3,3,4)^{\mathrm{T}}$.

3. 下列矩阵是不是正交矩阵? 并说明理由:

$$(1) \begin{bmatrix} 1 & -\frac{1}{2} & \frac{1}{3} \\ -\frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} & -1 \end{bmatrix}; \quad (2) \begin{bmatrix} \frac{1}{9} & -\frac{8}{9} & -\frac{4}{9} \\ -\frac{8}{9} & \frac{1}{9} & -\frac{4}{9} \\ -\frac{4}{9} & -\frac{4}{9} & \frac{7}{9} \end{bmatrix}.$$

解 (1) 不是, 因第1个列向量不是单位向量;

- (2) 是,因为此矩阵的 3 个列向量构成ℝ³ 的标准正交基,即它们两两正交, 并且都是单位向量.
 - 4. (1) 设x为n维列向量, $x^Tx=1$,令 $H=E-2xx^T$,证明H是对称的正交阵.
 - (2) 设 A, B 都是正交阵, 证明 AB 也是正交阵.

证 (1) 对称性:
$$H^{T} = (E - 2xx^{T})^{T} = E - 2(xx^{T})^{T} = E - 2xx^{T} = H$$
.
正交性: $H^{T}H = H^{2}(B H B)$ 的对称性)
$$= (E - 2xx^{T})(E - 2xx^{T})$$

$$= E - 4xx^{T} + 4(xx^{T})(xx^{T})$$

$$= E - 4xx^{T} + 4x(x^{T}x)x^{T} (矩阵乘法结合律)$$

注 本题即第二章例 9.

(2) 证一
$$(AB)^{\mathrm{T}}(AB) = B^{\mathrm{T}}(A^{\mathrm{T}}A)B = B^{\mathrm{T}}B$$
 (因 $A^{\mathrm{T}}A = E$)
= E (因 $B^{\mathrm{T}}B = E$),

 $= \mathbf{E} \quad (\mathbf{x}^{\mathrm{T}}\mathbf{x} = 1).$

由定义知 AB 为正交阵;

证二 因 A, B 为正交阵, 故 A, B 均可逆, 且 $A^{-1} = A^{T}$, $B^{-1} = B^{T}$. 于是 AB 可逆, 且有

$$(AB)^{-1} = B^{-1}A^{-1} = B^{T}A^{T} = (AB)^{T},$$

从而 AB 是正交阵.

5. 设 a_1 , a_2 , a_3 为两两正交的单位向量组, $b_1 = -\frac{1}{3}a_1 + \frac{2}{3}a_2 + \frac{2}{3}a_3$, $b_2 = \frac{2}{3}a_1 + \frac{2}{3}a_2 - \frac{1}{3}a_3$, $b_3 = -\frac{2}{3}a_1 + \frac{1}{3}a_2 - \frac{2}{3}a_3$,证明 b_1 , b_2 , b_3 也是两两正交的单位向量组.

$$\begin{split} \text{iE} - & \left[b_1, b_2 \right] = \left[-\frac{1}{3} a_1 + \frac{2}{3} a_2 + \frac{2}{3} a_3, \frac{2}{3} a_1 + \frac{2}{3} a_2 - \frac{1}{3} a_3 \right] \\ & = -\frac{2}{9} \left[a_1, a_1 \right] + \frac{4}{9} \left[a_2, a_2 \right] - \frac{2}{9} \left[a_3, a_3 \right] = -\frac{2}{9} + \frac{4}{9} - \frac{2}{9} = 0, \end{split}$$

故 b_1 与 b_2 正交,类似可证 b_1 与 b_3 , b_2 与 b_3 正交;

$$\nabla : [b_1, b_1] = \left[-\frac{1}{3}a_1 + \frac{2}{3}a_2 + \frac{2}{3}a_3, -\frac{1}{3}a_1 + \frac{2}{3}a_2 + \frac{2}{3}a_3 \right]
= \frac{1}{9}[a_1, a_1] + \frac{4}{9}[a_2, a_2] + \frac{4}{9}[a_3, a_3] = \frac{1}{9} + \frac{4}{9} + \frac{4}{9} = 1,$$

故 b₁ 为单位向量,类似可证 b₂,b₃ 为单位向量.

证二 把题设条件写成矩阵形式

$$(b_1, b_2, b_3) = (a_1, a_2, a_3) \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} \end{bmatrix},$$

上式记为 B = AK. 因 A 的列向量组为两两正交单位向量组,故 $A^TA = E_3$;因 K 为正交阵,故 $K^TK = E_3$. 于是

$$B^{T}B = (AK)^{T}(AK) = K^{T}(A^{T}A)K = K^{T}K = E_{3},$$

这表明 B 的列向量组,即 b_1,b_2,b_3 是两两正交单位向量组.

注 上面所述矩阵 A 和 B 均不一定是方阵,因而不能当作正交阵.

6. 求下列矩阵的特征值和特征向量:

$$(1) \begin{bmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{bmatrix}; \quad (2) \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 3 & 6 \end{bmatrix}; \quad (3) \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

$$\mathbf{P} \quad (1) |A - \lambda E| = \begin{bmatrix} 2 - \lambda & -1 & 2 \\ 5 & -3 - \lambda & 3 \\ -1 & 0 & -2 - \lambda \end{bmatrix}$$

$$\frac{c_3 - (\lambda + 2)c_1}{2} \begin{vmatrix} 2 - \lambda & -1 & \lambda^2 - 2 \\ 5 & -3 - \lambda & -7 - 5\lambda \\ -1 & 0 & 0 \end{vmatrix}$$

$$\frac{\text{tr}_3 \mathbb{R}^{\text{#}}}{3 + \lambda} \begin{vmatrix} -1 & \lambda^2 - 2 \\ 3 + \lambda & 7 + 5\lambda \end{vmatrix} = \frac{c_2 - c_1}{c_2 \div (1 + \lambda)} (1 + \lambda) \begin{vmatrix} -1 & \lambda - 1 \\ 3 + \lambda & 4 \end{vmatrix}$$

$$= -(1 + \lambda)^3,$$

所以 A 的特征值为 $\lambda_1 = \lambda_2 = \lambda_3 = -1$ (三重根).

对于特征值 -1,解方程(A+E)x=0.由

$$\mathbf{A} + \mathbf{E} = \begin{bmatrix} 3 & -1 & 2 \\ 5 & -2 & 3 \\ -1 & 0 & -1 \end{bmatrix} \stackrel{r}{\longrightarrow} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

得特征向量 $p = (-1, -1, 1)^T$;

请读者注意,在求特征值时,尽量避免对三次多项式作因式分解.

注 请读者注意,在求特征值时,尽量避免对三次多项式作因式分解.

(2)
$$|A - \lambda E| = \begin{vmatrix} 1 - \lambda & 2 & 3 \\ 2 & 1 - \lambda & 3 \\ 3 & 3 & 6 - \lambda \end{vmatrix} = \begin{vmatrix} -(1 + \lambda) & 2 & 3 \\ 1 + \lambda & 1 - \lambda & 3 \\ 0 & 3 & 6 - \lambda \end{vmatrix}$$

$$\frac{c_1 \div (1 + \lambda)}{r_2 + r_1} (1 + \lambda) \begin{vmatrix} -1 & 2 & 3 \\ 0 & 3 - \lambda & 6 \\ 0 & 3 & 6 - \lambda \end{vmatrix}$$

$$= -(1 + \lambda) \begin{vmatrix} 3 - \lambda & 6 \\ 3 & 6 - \lambda \end{vmatrix} = -\lambda(\lambda + 1)(\lambda - 9).$$
(A 的特征值为 $\lambda_1 = -1, \lambda_2 = 0, \lambda_3 = 9$.

所以 A 的特征值为 $\lambda_1 = -1, \lambda_2 = 0, \lambda_3 =$

当 $\lambda_1 = -1$ 时,解方程(A + E)x = 0,由

$$\mathbf{A} + \mathbf{E} = \begin{bmatrix} 2 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 3 & 7 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} 1 & 1 & 4 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

得对应的特征向量 $p_1 = (-1,1,0)^T$;

当 $\lambda_2 = 0$ 时,解方程 Ax = 0,由

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 3 & 6 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -3 \\ 0 & -3 & -3 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

得对应的特征向量 $p_2 = (-1, -1, 1)^T$;

当 $\lambda_3 = 9$ 时,解方程(A - 9E)x = 0,由

$$\mathbf{A} - 9\mathbf{E} = \begin{bmatrix} -8 & 2 & 3 \\ 2 & -8 & 3 \\ 3 & 3 & -3 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} -5 & 5 & 0 \\ 5 & -5 & 0 \\ -1 & -1 & 1 \end{bmatrix}$$

$$\xrightarrow{r} \begin{bmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} 1 & -1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

得对应的特征向量 $p_3 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$;

(3) 特征多项式为

$$|A - \lambda E| = \begin{vmatrix} -\lambda & 0 & 0 & 1 \\ 0 & -\lambda & 1 & 0 \\ 0 & 1 & -\lambda & 0 \\ 1 & 0 & 0 & -\lambda \end{vmatrix} \xrightarrow{r_4 \leftrightarrow r_2} \begin{vmatrix} -\lambda & 1 \\ 1 & -\lambda \\ & & -\lambda & 1 \\ 1 & -\lambda \end{vmatrix}$$
$$= \begin{vmatrix} -\lambda & 1 \\ 1 & -\lambda \end{vmatrix} \begin{vmatrix} -\lambda & 1 \\ 1 & -\lambda \end{vmatrix} = (\lambda^2 - 1)^2,$$

所以 A 的特征值为 $\lambda_1 = \lambda_2 = -1, \lambda_3 = \lambda_4 = 1.$

当 $\lambda_1 = \lambda_2 = -1$ 时,解方程(A + E)x = 0,由

$$A + E = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

得对应的线性无关特征向量为

$$p_1 = (0, -1, 1, 0)^T, \quad p_2 = (-1, 0, 0, 1)^T;$$

当 $\lambda_3 = \lambda_4 = 1$ 时,解方程(A - E)x = 0,由

$$\mathbf{A} - \mathbf{E} = \begin{bmatrix} -1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} -1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

得对应的线性无关特征向量为

$$p_3 = (1,0,0,1)^T, p_4 = (0,1,1,0)^T.$$

7. 设 A 为 n 阶矩阵,证明 A^{T} 与 A 的特征值相同.

证 A 的特征值是特征多项式 $|A - \lambda E|$ 的根,同样 A^{T} 的特征值是特征多项式 $|A^{T} - \lambda E|$ 的根,但根据行列式性质 1,这两个特征多项式 基格等的 一

$$|A - \lambda E| = |(A - \lambda E)^{T}| = |A^{T} - \lambda E|,$$

从而它们的根也相同,即 A 与 A^{T} 的特征值也相同.

注 这里特征值相同的含义是:若 λ_0 是 A 的 k 重特征值,那么它恰好也是 A^T 的 k 重特征值.

8. 设 n 阶矩阵 A , B 满足 R(A) + R(B) < n , 证明 A 与 B 有公共的特征值和公共的特征向量.

证 显然 R(A) < n. 另一方面,

 $R(A) < n \Leftrightarrow A$ 不可逆 $\Leftrightarrow 0$ 是 A 的特征值;

同理,0 也是 B 的特征值,于是 A 与 B 有公共的特征值 0.

A 和 B 对应 λ = 0 的特征向量依次是方程 Ax = 0 和 Bx = 0 的非零解. 于是

A 与B 有对应于 $\lambda = 0$ 的公共特征向量

⇔方程组
$$\begin{vmatrix} Ax = 0, \\ Bx = 0 \end{vmatrix}$$

$$\Leftrightarrow$$
 方程 $\binom{A}{B}x = 0$ 有非零解 \Leftrightarrow $R\binom{A}{B} < n$.

另一方面,由矩阵秩的性质⑤

$$R\begin{pmatrix} A \\ B \end{pmatrix} = R(A^{\mathsf{T}}, B^{\mathsf{T}}) \leqslant R(A^{\mathsf{T}}) + R(B^{\mathsf{T}}) = R(A) + R(B) < n.$$

综上, A 与 B 有公共的特征向量.

9. 设 $A^2 - 3A + 2E = 0$,证明 A 的特征值只能取 1 或 2.

证 设 λ 是 A 的特征值,则 $\lambda^2 - 3\lambda + 2$ 是 $A^2 - 3A + 2E = O$ 的特征值.但是,零矩阵只有特征值 0,故 $\lambda^2 - 3\lambda + 2 = 0 \Rightarrow \lambda = 1$ 或 $\lambda = 2$.

注 本题并不是说 A 必须有特征值 1 和 2 ,例如当 A = E 时,满足题设条件,但 A 只有特征值 1 .

10. 设 A 为正交阵,且 det A = -1,证明 $\lambda = -1$ 是 A 的特征值.

证
$$\lambda = -1$$
 是 A 的特征值 $\Leftrightarrow |A + E| = 0$,

因此只需证|A+E|=0.而

$$|A + E| = |A + A^{T}A| = |(E + A^{T})A| = |A + E| \cdot |A| = -|A + E|,$$

 $\Rightarrow 2|A + E| = 0 \Rightarrow |A + E| = 0.$

11. 设 $\lambda \neq 0$ 是 m 阶矩阵 $A_{m \times n} B_{n \times m}$ 的特征值,证明 λ 也是 n 阶矩阵 BA 的特征值.

证 根据特征值的定义证明.

设 λ 是矩阵 AB 的非零特征值, ξ 是对应于它的特征向量。即立位高等办方 $AB\xi = \lambda \xi$. (5.2)

用矩阵 B 左乘上式两边,得

$$(BA)B\xi = B(AB\xi) = B\lambda\xi = \lambda(B\xi),$$

若 $B\xi \neq 0$,则由特征值定义知, λ 为 BA 的特征值.下面证明 $B\xi \neq 0$.事实上,由 $\lambda \neq 0$, $\xi \neq 0$, 有 $\lambda \xi \neq 0$, 再由(5.2)式得 $AB\xi \neq 0$, 因此 $B\xi \neq 0$.

12. 已知 3 阶矩阵 A 的特征值为 $1,2,3,求 | A^3 - 5A^2 + 7A |$.

解 令 $\varphi(\lambda) = \lambda^3 - 5\lambda^2 + 7\lambda$. 因 1,2,3 是 A 的特征值,故 $\varphi(1) = 3$, $\varphi(2) = 2$, $\varphi(3) = 3$ 是 $\varphi(A) = A^3 - 5A^2 + 7A$ 的特征值. 又: $\varphi(A)$ 为 3 阶方阵,这样 $\varphi(1)$, $\varphi(2)$, $\varphi(3)$ 便是 $\varphi(A)$ 的全部特征值. 由特征值性质得

$$\det(\varphi(A)) = \varphi(1)\varphi(2)\varphi(3) = 3 \times 2 \times 3 = 18.$$

13. 已知 3 阶矩阵 A 的特征值为 1,2,-3,求 | A*+3A+2E |.

解 本题与例 8 相仿. 由特征值性质得 $|A|=1\times2\times(-3)=-6$,于是 A是可逆矩阵,并且 $A^*=|A|A^{-1}=-6A^{-1}$,以此代入得

$$B = A^* + 3A + 2E = -6A^{-1} + 3A + 2E$$
.

因为当 λ (\neq 0)为 A 的特征值时, $-6\lambda^{-1} + 3\lambda + 2$ 是 B 的特征值. 分别取 $\lambda = 1, 2, -3$ 知 -1, 5, -5 是 B 的全部特征值, 故 $|B| = (-1) \times 5 \times (-5) = 25$.

注 习题 12 和习题 13 中都需给出 A 的所有特征值(如果有重根,还需给出各重根的情况).因此 A 为 3 阶方阵的条件是不可缺少的.

14. 设 A, B 都是 n 阶矩阵, 且 A 可逆, 证明 AB 与 BA 相似.

证 因 A 可逆,故

$$BA = (A^{-1}A)BA = A^{-1}(AB)A$$
,

由定义, AB与BA相似.

15. 设矩阵
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 3 & 1 & x \\ 4 & 0 & 5 \end{bmatrix}$$
可对角化,求 x .

解 先求 Á 的特征值

$$|A - \lambda E| = \begin{vmatrix} 2 - \lambda & 0 & 1 \\ 3 & 1 - \lambda & x \\ 4 & 0 & 5 - \lambda \end{vmatrix} = (1 - \lambda) \begin{vmatrix} 2 - \lambda & 1 \\ 4 & 5 - \lambda \end{vmatrix}$$
$$= (1 - \lambda)^{2} (6 - \lambda),$$

所以 $\lambda_1 = \lambda_2 = 1$ (二重根), $\lambda_3 = 6$ (单重根).

于是 A 可对角化

⇔A 有 3 个线性无关的特征向量 (由定理 4)

⇔A 对应于二重特征值1有两个线性无关的特征向量(定理2的推论)

⇔方程(A-E)x=0的系数矩阵的秩 R(A-E)=1 (上一章定理 7),

另一方面
$$A - E = \begin{bmatrix} 1 & 0 & 1 \\ 3 & 0 & x \\ 4 & 0 & 4 \end{bmatrix} \stackrel{r}{\longleftarrow} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & x - 3 \\ 0 & 0 & 0 \end{bmatrix}$$
 于是
$$R(A - E) = 1 \Leftrightarrow x = 3.$$

16. 已知 $p = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$ 是矩阵 $A = \begin{bmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{bmatrix}$ 的一个特征向量

- (1) 求参数 a,b 及特征向量 p 所对应的特征值;
- (2) 问 A 能不能对角化? 并说明理由.
- 解 (1) 利用特征值和特征向量的定义.

设 p 所对应的特征值是 λ ,则由题设, $(A - \lambda E)p = 0$,即

$$\begin{bmatrix} 2-\lambda & -1 & 2 \\ 5 & a-\lambda & 3 \\ -1 & b & -2-\lambda \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = \mathbf{0}$$

于是得到以 a,b,λ 为未知数的线性方程组:

$$\begin{cases} \lambda + 1 = 0, \\ a - \lambda + 2 = 0, \Rightarrow \lambda = -1, a = -3, b = 0. \\ b + \lambda + 1 = 0 \end{cases}$$

(2) A 不能相似于对角阵. 理由是: 当 a=-3, b=0 时, 容易求得 A 的特征 多项式 $f(\lambda)=|A-\lambda E|=-(\lambda+1)^3$, 故 $\lambda=-1$ 是 A 的三重特征值. 但 $A+E\neq O$, 从而 $R(A+E)\geqslant 1$, 故齐次方程

$$(A + E)x = 0$$

没有 3 个线性无关的解. 于是 A 也就没有 3 个线性无关的特征向量. 由定理 4 知 A 不能相似于对角阵.

17.
$$\mathfrak{P} A = \begin{bmatrix} 1 & 4 & 2 \\ 0 & -3 & 4 \\ 0 & 4 & 3 \end{bmatrix}$$
, $\mathfrak{P} A^{100}$

解 利用矩阵 A 的相似对角阵来求 A 100

(1) 求 A 的特征值:

$$|A - \lambda E| = \begin{vmatrix} 1 - \lambda & 4 & 2 \\ 0 & -3 - \lambda & 4 \\ 0 & 4 & 3 - \lambda \end{vmatrix} = (1 - \lambda) \begin{vmatrix} -3 - \lambda & 4 \\ 4 & 3 - \lambda \end{vmatrix}$$
$$= (1 - \lambda)(\lambda - 5)(\lambda + 5),$$

所以 A 的特征值为 $\lambda_1 = -5$, $\lambda_2 = 1$, $\lambda_3 = 5$, 并且它们互不相同, 由定理 4 的推论 知 A 可对角化.

(2) 对应
$$\lambda_1 = -5$$
,解方程(A+5E)x=0,由

$$A + 5E = \begin{bmatrix} 6 & 4 & 2 \\ 0 & 2 & 4 \\ 0 & 4 & 8 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} 6 & 0 & -6 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

得特征向量 $p_1 = (1, -2, 1)^T$;

对应 $\lambda_2 = 1$,解方程(A - E)x = 0,由

$$\mathbf{A} - \mathbf{E} = \begin{bmatrix} 0 & 4 & 2 \\ 0 & -4 & 4 \\ 0 & 4 & 2 \end{bmatrix} \stackrel{\mathbf{r}}{\longrightarrow} \begin{bmatrix} 0 & 1 & -1 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix} \stackrel{\mathbf{r}}{\longrightarrow} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

得特征向量 $p_2 = (1,0,0)^T$;

对应 $\lambda_3 = 5$,解方程(A - 5E)x = 0,由

$$\mathbf{A} - 5\mathbf{E} = \begin{bmatrix} -4 & 4 & 2 \\ 0 & -8 & 4 \\ 0 & 4 & -2 \end{bmatrix} \stackrel{\mathbf{r}}{\sim} \begin{bmatrix} 2 & -2 & -1 \\ 0 & -2 & 1 \\ 0 & 0 & 0 \end{bmatrix} \stackrel{\mathbf{r}}{\sim} \begin{bmatrix} 1 & -2 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

得特征向量 p3=(2,1,2)T

(3)
$$\Rightarrow$$
 $\mathbf{p} = (p_1, p_2, p_3) = \begin{bmatrix} 1 & 1 & 2 \\ -2 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix},$

则由定理 2,P 为可逆矩阵,且

于是

$$P^{-1}AP = \Lambda = \text{diag}(-5,1,5),$$

 $A = P\Lambda P^{-1} \Rightarrow \Lambda^{100} = P\Lambda^{100}P^{-1}.$

求出
$$P^{-1} = \frac{1}{5} \begin{bmatrix} 0 & -2 & 1 \\ 5 & 0 & -5 \\ 0 & 1 & 2 \end{bmatrix}$$
,代人得

$$A^{100} = \frac{1}{5} \begin{bmatrix} 1 & 1 & 2 \\ -2 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 5^{100} & & \\ & 1 & \\ & & 5^{100} \end{bmatrix} \begin{bmatrix} 0 & -2 & 1 \\ 5 & 0 & -5 \\ 0 & 1 & 2 \end{bmatrix}$$

$$= \frac{1}{5} \begin{bmatrix} 5^{100} & 1 & 2 \cdot 5^{100} \\ -2 \cdot 5^{100} & 0 & 5^{100} \\ 5^{100} & 0 & 2 \cdot 5^{100} \end{bmatrix} \begin{bmatrix} 0 & -2 & 1 \\ 5 & 0 & -5 \\ 0 & 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 5^{100} - 1 \\ 0 & 5^{100} & 0 \\ 0 & 0 & 5^{100} \end{bmatrix}.$$

18. 在某国,每年有比例为 p 的农村居民移居城镇,有比例为 q 的城镇居民移居农村.假设该国总人口数不变,且上述人口迁移的规律也不变.把 n 年后农村人口和城镇人口占总人口的比例依次记为 x_n 和 $y_n(x_n + y_n = 1)$.

(1) 求关系式
$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = A \begin{pmatrix} x_n \\ y_n \end{pmatrix}$$
中的矩阵 A;

(2) 设目前农村人口与城镇人口相等,即 $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$,求 $\begin{pmatrix} x_n \\ y_n \end{pmatrix}$.

解 (1) 这是一个应用问题. 关系式

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = A \begin{pmatrix} x_n \\ y_n \end{pmatrix}$$

可看作是向量 $\binom{x_n}{y_n}$ 到 $\binom{x_{n+1}}{y_{n+1}}$ 的递推关系式,从而有

$$\begin{pmatrix} x_n \\ y_n \end{pmatrix} = A \begin{pmatrix} x_{n-1} \\ y_{n-1} \end{pmatrix} = \cdots = A^n \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \frac{1}{2} A^n \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

即把应用问题归结为求 A 的幂 A". 遵循这一思路, 先求 A. 由题设, 有

$$\begin{cases} x_{n+1} = (1-p)x_n + qy_n, \\ y_{n+1} = px_n + (1-q)y_n \end{cases} \Rightarrow \begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} 1-p & q \\ p & 1-q \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix},$$

故

$$\mathbf{A} = \begin{pmatrix} 1-p & q \\ p & 1-q \end{pmatrix}.$$

(2) 再求 A 的特征值和特征向量. 易求得 A 的特征值 $\lambda_1=1$, $\lambda_2=1-p-q$.

对应于 $\lambda_1 = 1$ 的特征向量为 $\xi_1 = (q, p)^T$;对应于 $\lambda_2 = 1 - p - q$ 的特征向量为 $\xi_2 = (-1, 1)^T$.令 $P = (\xi_1, \xi_2)$,则 P 可逆,且 $P^{-1}AP = \text{diag}(1, r)$,其中 r = 1 - p - q.因此

$$A = P \begin{pmatrix} 1 & 0 \\ 0 & r \end{pmatrix} P^{-1}$$

$$\Rightarrow \begin{pmatrix} x_n \\ y_n \end{pmatrix} = A^n \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = P \begin{pmatrix} 1 & 0 \\ 0 & r^n \end{pmatrix} P^{-1} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$

$$= \frac{1}{2(p+q)} \begin{pmatrix} 2q - (q-p)r^n \\ 2p + (q-p)r^n \end{pmatrix}, r = 1 - p - q$$

19. 试求一个正交的相似变换矩阵,将下列对称阵化为对角阵;

$$(1) \begin{bmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{bmatrix}; \qquad (2) \begin{bmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{bmatrix}.$$

解 (1) 先求特征值:

$$|A - \lambda E| = \begin{vmatrix} 2 - \lambda & -2 & 0 \\ -2 & 1 - \lambda & -2 \\ 0 & -2 & -\lambda \end{vmatrix} = -\lambda(1 - \lambda)(2 - \lambda) - 4(2 - \lambda) + 4\lambda$$
$$= -\lambda(1 - \lambda)(2 - \lambda) - 8(1 - \lambda) = (1 - \lambda)(\lambda - 4)(\lambda + 2),$$

所以 A 的特征值为 $\lambda_1 = -2, \lambda_2 = 1, \lambda_3 = 4$.

再求特征向量:

对应 $\lambda_1 = -2$,解方程(A + 2E)x = 0,由

$$A + 2E = \begin{bmatrix} 4 & -2 & 0 \\ -2 & 3 & -2 \\ 0 & -2 & 2 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} -2 & 3 & -2 \\ 0 & 4 & -4 \\ 0 & 1 & -1 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} -2 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} -2 & 1 & 0 \\ -2 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

得单位特征向量 $p_1 = \frac{1}{3}(1,2,2)^T$;

对应 $\lambda_2 = 1$,解方程(A - E)x = 0,由

$$\mathbf{A} - \mathbf{E} = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 0 & -2 \\ 0 & -2 & -1 \end{bmatrix} \xrightarrow{\mathbf{r}} \begin{bmatrix} 1 & -2 & 0 \\ 0 & -4 & -2 \\ 0 & -2 & -1 \end{bmatrix} \xrightarrow{\mathbf{r}} \begin{bmatrix} 1 & -2 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

得单位特征向量 $p_2 = \frac{1}{3}(2,1,-2)^T$;

对应 $\lambda_3 = 4$,解方程(A - 4E)x = 0,由

$$\mathbf{A} - 4\mathbf{E} = \begin{pmatrix} -2 & -2 & 0 \\ -2 & -3 & -2 \\ 0 & -2 & -4 \end{pmatrix} \stackrel{\mathbf{r}}{\sim} \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & -2 \\ 0 & -2 & -4 \end{pmatrix} \stackrel{\mathbf{r}}{\sim} \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

得单位特征向量 $p_3 = \frac{1}{3}(2, -2, 1)^T$.

$$\mathbf{P} = (p_1, p_2, p_3) = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix},$$

则 P 是正交阵,且有

$$P^{-1}AP = P^{T}AP = \begin{bmatrix} -2 & & \\ & 1 & \\ & & 4 \end{bmatrix}.$$
 知英健康等数字

$$(2) \det(\mathbf{A} - \lambda \mathbf{E}) = \begin{vmatrix} 2 - \lambda & 2 & -2 \\ 2 & 5 - \lambda & -4 \\ -2 & -4 & 5 - \lambda \end{vmatrix} = \begin{vmatrix} 2 - \lambda & 2 & -4 \\ 0 & 1 - \lambda & 0 \\ -2 & -4 & 9 - \lambda \end{vmatrix}$$

$$= (1 - \lambda) \begin{vmatrix} 2 - \lambda & -4 \\ -2 & 9 - \lambda \end{vmatrix} = -(1 - \lambda)^2 (\lambda - 10),$$

$$\mathbf{A} \text{ 的特征值为 } \lambda = 10, \lambda_0 = \lambda_0 = 1 \text{ (三面根)}$$

所以 A 的特征值为 $\lambda_1 = 10$, $\lambda_2 = \lambda_3 = 1$ (二重根).

对应 $\lambda_1 = 10$,解方程(A - 10E)x = 0,由

$$A - 10E = \begin{bmatrix} -8 & 2 & -2 \\ 2 & -5 & -4 \\ -2 & -4 & -5 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} 2 & -5 & -4 \\ 0 & -9 & -9 \\ 0 & -18 & -18 \end{bmatrix}$$

$$\xrightarrow{r} \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} -2 & 1 & 0 \\ 2 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

得单位特征向量 $p_1 = \frac{1}{3}(1,2,-2)^T$;

对应 $\lambda_2 = \lambda_3 = 1$,解方程(A - E)x = 0,由

$$\mathbf{A} - \mathbf{E} = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 4 & -4 \\ -2 & -4 & 4 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

得线性无关特征向量: $a_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $a_2 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$. 将 a_1 和 a_2 正交化得

$$b_1 = a_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, b_2 = a_2 - \frac{[b_1, a_2]}{[b_1, b_1]} b_1 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 4 \\ -1 \\ 1 \end{bmatrix}.$$

再分别单位化得: $p_2 = \frac{1}{\sqrt{2}}(0,1,1)^T$, $p_3 = \frac{1}{3\sqrt{2}}(4,-1,1)^T$.

$$\mathbf{P} = (p_1, p_2, p_3) = \begin{bmatrix} \frac{1}{3} & 0 & \frac{4}{3\sqrt{2}} \\ \frac{2}{3} & \frac{1}{\sqrt{2}} & -\frac{1}{3\sqrt{2}} \\ -\frac{2}{3} & \frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} \end{bmatrix},$$

则 P 是正交阵,且有 $P^{-1}AP = P^{T}AP = \begin{bmatrix} 10 \\ 1 \\ 1 \end{bmatrix}$.

20. 设矩阵
$$A = \begin{bmatrix} 1 & -2 & -4 \\ -2 & x & -2 \\ -4 & -2 & 1 \end{bmatrix}$$
与 $A = \begin{bmatrix} 5 \\ -4 \\ y \end{bmatrix}$ 相似,求 x, y ;并求

一个正交阵 P, 使 $P^{-1}AP = A$

解 先求 x,y:

因 A = A 相似,故 A 的特征值是 5, -4, y. 由特征值性质知 5 + (-4) + y = A 的特征值之和 = A 的对角元之和 = 2 + x,

得 y=1+x.

因 $\lambda = -4$ 是 A 的特征值,有 |A + 4E| = 0.

di

$$\begin{vmatrix} 5 & -2 & -4 \\ |A+4E| = \begin{vmatrix} 5 & -2 & -4 \\ -2 & x+4 & -2 \end{vmatrix} = \begin{vmatrix} 5 & -2 & -4 \\ -2 & x+4 & -2 \end{vmatrix} = \begin{vmatrix} 5 & -2 & -4 \\ -2 & x+4 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 & -4 \\ -4 & -2 & 5 \end{vmatrix} = \begin{vmatrix} 1 & -2 & -4 \\ -4 & x+4 & -2 \\ 0 & 0 & 9 \end{vmatrix}$$

(代人 $y=1+x$, 得 $y=5$, 于是 A 的特征值为 $\lambda_1=\lambda_2=5$, $\lambda_3=5$, $\lambda_4=5$,

得 x=4. 再代人 y=1+x, 得 y=5. 于是 A 的特征值为 $\lambda_1=\lambda_3=5$, $\lambda_2=-4$. 再求正交阵 P.

对应于 $\lambda_1 = \lambda_3 = 5$,解方程(A - 5E)x = 0,由

$$\mathbf{A} - 5\mathbf{E} = \begin{bmatrix} -4 & -2 & -4 \\ -2 & -1 & -2 \\ -4 & -2 & -4 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} 2 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

得基础解系 $\xi_1 = (1,0,-1)^T$, $\xi_3 = (1,-2,0)^T$. 把它们正交化、单位化、得

$$p_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, p_3 = \frac{1}{3\sqrt{2}} \begin{bmatrix} 1 \\ -4 \\ 1 \end{bmatrix};$$

对应于 $\lambda_2 = -4$ 解方程 (A + 4E)x = 0,由

$$A + 4E = \begin{bmatrix} 5 & -2 & -4 \\ -2 & 8 & -2 \\ -4 & -2 & 5 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} 5 & -2 & -4 \\ 18 & 0 & -18 \\ -9 & 0 & 9 \end{bmatrix}$$

$$\xrightarrow{r} \begin{bmatrix} 1 & 0 & -1 \\ 0 & -2 & 1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} 1 & -2 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

得单位特征向量 $p_2 = \frac{1}{3}(2,1,2)^T$.

知乎。但書等数學

令
$$\mathbf{P} = (p_1, p_2, p_3) = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{2}{3} & \frac{1}{3\sqrt{2}} \\ 0 & \frac{1}{3} & -\frac{4}{3\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{2}{3} & \frac{1}{3\sqrt{2}} \end{bmatrix}$$
,则 \mathbf{P} 是正交阵,且有
$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{P}^{\mathrm{T}}\mathbf{A}\mathbf{P} = \mathbf{A}.$$

- 注 (1) 在寻找 x, y 的关系式时, 题解中用了 A 的对角元之和 = A 的对角元之和以及 |A|+4E|=0, 也可利用特征值的另一性质: |A|=A 的特征值之积 = A 的特征值之积 = |A|, 得 3x+8=4y. 但由 |A-5E|=0 不能得到 x, y 的关系式, 因 |A-5E|=0.
- (2) 因相似对角阵 Λ 是给定的,所以要注意 P 中列向量的排列与 Λ 中对角元对应.
- 21. 设 3 阶矩阵 A 的特征值为 2, -2, 1;对应的特征向量依次为 $p_1 = (0, 1, 1)^T, p_2 = (1, 1, 1)^T, p_3 = (1, 1, 0)^T, 求 <math>A$.

解 因 A 的特征值互异,故由定理 2,知向量组 p_1,p_2,p_3 线性无关,于是若记矩阵 $P=(p_1,p_2,p_3)$,则 P 为可逆矩阵,且有

$$P^{-1}AP = \text{diag}(2, -2, 1)$$

 $\Rightarrow A = P \text{diag}(2, -2, 1) P^{-1},$

用初等行变换求得
$$P^{-1} = \begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$
. 于是
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} -2 & 3 & -3 \\ -4 & 5 & -3 \\ -4 & 4 & -2 \end{bmatrix}.$$

22. 设 3 阶对称阵 A 的特征值为 $\lambda_1=1,\lambda_2=-1,\lambda_3=0$. 对应 λ_1,λ_2 的特征向量依次为 $p_1=(1,2,2)^T,p_2=(2,1,-2)^T,$ 求 A.

解 因 A 对称,由定理 5,有正交阵 $Q = (q_1, q_2, q_3)$,使 $Q^TAQ = Q^{-1}AQ = \text{diag}(1, -1, 0)$.显然 q_1, q_2 可依次取为 p_1, p_2 的单位化向量,即

$$q_1 = \frac{1}{3} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \ q_2 = \frac{1}{3} \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix};$$

 q_3 与 p_1 , p_2 正交, 于是 q_3 可取为方程 $\binom{p_1^T}{p_2^T}$ x=0 的单位解向野口子 《诗学》字

$$\begin{pmatrix} \boldsymbol{p}_1^{\mathsf{T}} \\ \boldsymbol{p}_2^{\mathsf{T}} \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \end{pmatrix} \stackrel{r}{ } \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \end{pmatrix}$$

可知 $q_3 = \frac{1}{3}(2, -2, 1)^T$. 于是

$$A = Q \operatorname{diag}(1, -1, 0) Q^{T}$$

$$= \frac{1}{9} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -1 & 0 & 2 \\ 0 & 1 & 2 \\ 2 & 2 & 0 \end{bmatrix}.$$
(5.3)

23. 设 3 阶对称阵 A 的特征值为 $\lambda_1 = 6$, $\lambda_2 = \lambda_3 = 3$, 与特征值 $\lambda_1 = 6$ 对应的特征向量为 $p_1 = (1,1,1)^T$, 求 A.

解一 用与前两题相同的方法,这是求解本题及类似题型的基本方法.

(1) 求 A 的对应于特征值 3 的两个线性无关的特征向量 p_2 , p_3 由对称阵特征向量的性质知, p_1 与 p_2 和 p_3 都正交,即有

$$\begin{cases} p_1^T p_2 = 0, \\ p_1^T p_3 = 0, \end{cases}$$

其系数矩阵 p_1^T 的秩等于 1. 于是, p_2 , p_3 是它的一个基础解系,取其为

$$p_2 = \begin{bmatrix} -1\\1\\0 \end{bmatrix}, p_3 = \begin{bmatrix} -1\\0\\1 \end{bmatrix}.$$

(2) 把向量组 p2, p3 用施密特方法正交化,得

$$\bar{p}_2 = p_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \, \tilde{p}_3 = p_3 - \frac{[p_3, \tilde{p}_2]}{[\tilde{p}_2, \tilde{p}_2]} \tilde{p}_2 = \frac{1}{2} \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}.$$

(3) 分别把向量 p₁, p₂, p₃ 单位化,得

$$\xi_{1} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \xi_{2} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \xi_{3} = \frac{1}{\sqrt{6}} \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}.$$

$$\Leftrightarrow Q = (\xi_{1}, \xi_{2}, \xi_{3}) = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{bmatrix}, 则 Q 为正交矩阵, 并有$$

 $Q^{T}AQ = Q^{-1}AQ = \text{diag}(6,3,3),$

于是
$$A = Q \operatorname{diag}(6,3,3) Q^{-1} = Q \operatorname{diag}(6,3,3) Q^{T} = \begin{bmatrix} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{bmatrix}$$
.

解二 因 A 是对称阵,故存在正交阵 O,使

$$Q^{\mathrm{T}}AQ = Q^{-1}AQ = \mathrm{diag}(6,3,3) = \Lambda$$
,
也即
$$A = Q\Lambda Q^{\mathrm{T}}, \qquad (5.4)$$

并且,若Q按列分块为 $Q=(\xi_1,\xi_2,\xi_3)$,则向量 ξ_1 是对应于特征值 $\lambda_1=6$ 的单位特征向量.于是,由题设

$$\xi_1 = \frac{1}{\sqrt{3}} (1, 1, 1)^{\mathrm{T}}.$$
 (5.5)

由(5.4)式得 $A-3E=Q(\Lambda-3E)Q^{T}$

$$= (\xi_{1}, \xi_{2}, \xi_{3}) \begin{bmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \xi_{1}^{T} \\ \xi_{2}^{T} \\ \xi_{3}^{T} \end{bmatrix} = 3(\xi_{1}, \mathbf{0}, \mathbf{0}) \begin{bmatrix} \xi_{1}^{T} \\ \xi_{2}^{T} \\ \xi_{3}^{T} \end{bmatrix}$$

$$= 3\xi_{1}\xi_{1}^{T} \frac{(5.5) \Re}{\Re \lambda} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix},$$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} + 3E = \begin{bmatrix} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{bmatrix}.$$

于是

注 (1) 第 21、22、23 题都是矩阵对角化(特别是对称阵对角化)理论的应用. 比较三题所给条件:第 21 题知 3 个特征值及 3 个特征向量;第 22 题知 3 个特征值及 2 个特征向量,且知 A 对称;第 23 题知一个二重特征值和一个单重特征值及其特征向量,且知 A 对称. 由第 21 题的解法,再利用对称阵的特征向量正交性,便可得第 22、23 题的解法.

(2) 第 22 题求解中,在写出单位特征向量 q_1,q_2 后,由(5.3)式有

$$A = Q \operatorname{diag}(1, -1, 0) Q^{\mathrm{T}}$$

$$= (q_1, q_2, q_3) \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} q_1^T \\ q_2^T \\ q_3^T \end{bmatrix} = q_1 q_1^T - q_2 q_2^T,$$

由此可知对应 $\lambda_3 = 0$ 的特征向量 q_3 是不必具体求出的,因为这时 A 已由 q_1,q_2 确定了.这是由 0 是 A 的特征值这一特殊情况所带来的方便之处.由此启发出第 23 题的解二:把求矩阵 A 转换成求 A-3E,因为 0 是 和于3 ② 韵 章 建持

24. $\mathfrak{P} = (a_1, a_2, \dots, a_n)^T, a_1 \neq 0, A = aa^T.$

- (1) 证明 $\lambda = 0$ 是 A 的 n-1 重特征值;
- (2) 求 A 的非零特征值及 n 个线性 无关的特征向量.
- 解 (1) 首先证明 $\lambda=0$ 是 A 的 n-1 重特征值.注意到 A 为对称阵,故 A 可以与对角阵 A 相似.显然 R(A)=1,从而 R(A)=1,于是 A 只有一个非零 A 角元,即 A=0 是 A 的 n-1 重特征值.
- (2) 其次求 A 的非零特征值,因 $A = aa^{T}$ 的对角元之和为 $\sum a_{i}^{2}$,又由特征值性质: A 的 n 个特征值之和为它的 n 个对角元之和,从而由上知 $\sum a_{i}^{2}$ 为 A 的 (惟一的)非零特征值.

再求 A 的特征向量.

(i) 对应于 $\lambda = 0$,解方程 Ax = 0. 由

$$\mathbf{A} = \begin{pmatrix} a_1^2 & a_1 a_2 & \cdots & a_1 a_n \\ a_2 a_1 & a_2^2 & \cdots & a_2 a_n \\ \vdots & \vdots & & \vdots \\ a_n a_1 & a_n a_2 & \cdots & a_n^2 \end{pmatrix} \underbrace{\begin{matrix} r_1 \div a_1 \\ r_2 - a_2 r_1 \\ \cdots \\ r_n - a_n r_1 \end{matrix}}_{r_n - a_n r_1} \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$
 (5.6)

得 n-1 个线性无关的特征向量为

$$\xi_{2} = \begin{bmatrix} -\frac{a_{2}}{a_{1}} \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \xi_{3} = \begin{bmatrix} -\frac{a_{3}}{a_{1}} \\ 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, \xi_{n} = \begin{bmatrix} -\frac{a_{n}}{a_{1}} \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix};$$

(ii) 用两种方法求对应于 $λ_1 = \sum a_i^2$ 的特征向量 $ξ_1$.

方法一 由对称矩阵性质知 ξ_1 与 ξ_2 ,…, ξ_n 都正交,即 ξ_1 是满足 $\xi_1^T \xi_k = 0$ $(k=2,\cdots,n)$ 这 n-1 个等式的非零向量.另一方面,因 ξ_k 是对应 0 特征值的特征向量,故

 $A\xi_k = 0 \Rightarrow (aa^T)\xi_k = 0 \Rightarrow a(a^T\xi_k) = 0 \Rightarrow (a^T\xi_k)a = 0 \Rightarrow a^T\xi_k = 0, k = 2, \dots, n$,最后一个式子的成立是因为 $a \neq 0$,(事实上,从(5.6)式也马上可看出这一点。) 这表明 a 具有 ξ_1 应有的性质,故可取 $\xi_1 = a$. 至此已求出 A 的 n 个线性无关的特征向量.

方法二 由
$$A = aa^{T}$$
,有
$$Aa = (aa^{T})a = a(a^{T}a) = (a^{T}a)a,$$

$$\square$$

$$\square$$

$$\square$$

按定义,即知 A 有非零特征值 $\lambda_1 = a^T a$,且对应特征向量为 a.

注 方法二事实上给出了求 A 的非零特征值的另一方法.

25. (1)
$$\partial A = \begin{pmatrix} 3 & -2 \\ -2 & 3 \end{pmatrix}$$
, $\Re \varphi(A) = A^{10} - 5A^9$;

(2)
$$\partial A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
, $\mathcal{R} \varphi(A) = A^{10} - 6A^9 + 5A^8$.

解 (1) 由 $|A - \lambda E| = \begin{vmatrix} 3 - \lambda & -2 \\ -2 & 3 - \lambda \end{vmatrix} = (3 - \lambda)^2 - 4 = (1 - \lambda)(5 - \lambda),$ 求得 A 的特征值为 $\lambda_1 = 1, \lambda_2$

对应 $\lambda_1 = 1$,解方程(A - E)x = 0,由

$$\mathbf{A} - \mathbf{E} = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} \stackrel{\mathbf{r}}{\longrightarrow} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$$

 $p_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix};$ 得单位特征向量

对应 $\lambda_2 = 5$,解方程(A - 5E)x = 0,由

$$\mathbf{A} - 5\mathbf{E} = \begin{pmatrix} -2 & -2 \\ -2 & -2 \end{pmatrix} \stackrel{\mathbf{r}}{\longrightarrow} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

得单位特征向量 $p_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

令
$$P = (p_1, p_2) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
,则 P 是正交阵,且有

$$P^{-1}AP = P^{T}AP = \Lambda = \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix} \Rightarrow A = P\Lambda P^{T}$$
$$\Rightarrow \varphi(\Lambda) = P\varphi(\Lambda)P^{T}$$

$$= \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \varphi(1) & 0 \\ 0 & \varphi(5) \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -4 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = -2 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \varphi(1) & 0 \\ 0 & \varphi(5) \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -4 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = -2 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

$$(2) |A - \lambda E| = \begin{vmatrix} 2 - \lambda & 1 & 2 \\ 1 & 2 - \lambda & 2 \\ 2 & 2 & 1 - \lambda \end{vmatrix} \frac{c_1 + c_2 + c_3}{c_3 - c_1} \begin{vmatrix} 5 - \lambda & 1 & 2 \\ 5 - \lambda & 2 - \lambda & 2 \\ 5 - \lambda & 2 & 1 - \lambda \end{vmatrix}$$

$$= (5 - \lambda) \begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 - \lambda & 2 \\ 1 & 2 - \lambda & 2 \end{vmatrix} \frac{r_2 - r_1}{r_3 - r_1} (5 - \lambda) \begin{vmatrix} 1 & 1 & 2 \\ 0 & 1 - \frac{1}{1 - 1} - \frac{1}{1 -$$

$$= (5-\lambda) \begin{vmatrix} 1 & 1 & 2 \\ 1 & 2-\lambda & 2 \\ 1 & 2 & 1-\lambda \end{vmatrix} = \frac{r_2-r_1}{r_3-r_1} (5-\lambda) \begin{vmatrix} 1 & 1 & 2 \\ 0 & 1-|x| \\ 0 & 1 & -(1+\lambda) \end{vmatrix}$$

$$= (5-\lambda) \begin{vmatrix} 1-\lambda & 0 \\ 1 & -(1+\lambda) \end{vmatrix}$$
$$= (1-\lambda)(1+\lambda)(\lambda-5),$$

于是 A 的特征值 $\lambda_1 = -1$, $\lambda_2 = 1$, $\lambda_3 = 5$. 因为 A 是对称阵, 由定理 5, 存在正交 阵 $Q = (\xi_1, \xi_2, \xi_3)$,使

$$Q^{\mathsf{T}} A Q = Q^{-1} A Q = \operatorname{diag}(-1,1,5) = \Lambda,$$

$$A = Q \Lambda Q^{\mathsf{T}},$$

也即

并且 Q 的列向量 ξ_i 是对应特征值 λ_i 的单位特征向量, i=1,2,3. 从而有

$$\varphi(\mathbf{A}) = Q\varphi(\mathbf{A})Q^{T}
= Q\varphi[\operatorname{diag}(-1,1,5)]Q^{T}
= Q\operatorname{diag}(\varphi(-1),\varphi(1),\varphi(5))Q^{T}
= (\xi_{1},\xi_{2},\xi_{3}) \begin{bmatrix} 12 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \xi_{1}^{T} \\ \xi_{2}^{T} \\ \xi_{3}^{T} \end{bmatrix}
= 12\xi_{1}\xi_{1}^{T},$$
(5.7)

其中 $\varphi(x) = x^{10} - 6x^9 + 5x^8$, $\varphi(-1) = 12$, $\varphi(1) = 0$, $\varphi(5) = 0$. 这样,只需计算 出 ξ_1 ,即对应 $\lambda_1 = -1$ 的单位特征向量,代入上式即得 $\varphi(A)$.

解方程(A+E)x=0,由

$$A + E \stackrel{r}{\longleftarrow} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

 $\xi_1 = \frac{1}{\sqrt{6}}(1,1,-2)^{\mathrm{T}}.$

代入(5.7)式,即求得

$$\varphi(\mathbf{A}) = 2 \begin{bmatrix} 1 & 1 & -2 \\ 1 & 1 & -2 \\ -2 & -2 & 4 \end{bmatrix}.$$

26. 用矩阵记号表示二次型:

- (1) $f = x^2 + 4xy + 4y^2 + 2xz + z^2 + 4yz$;
- (2) $f = x^2 + y^2 7z^2 2xy 4xz 4yz$;
- (3) $f = x_1^2 + x_2^2 + x_3^2 2x_1x_2 + 6x_2x_3$.

解 (1)
$$f = (x, y, z) \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
;

(2)
$$f = (x, y, z) \begin{bmatrix} 1 & -1 & -2 \\ -1 & 1 & -2 \\ -2 & -2 & -7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix};$$

(3)
$$f = (x_1, x_2, x_3) \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 3 \\ 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
.

27. 写出下列二次型的矩阵:

(1)
$$f(x) = x^{T} \begin{pmatrix} 2 & 1 \\ 3 & 1 \end{pmatrix} x;$$
 (2) $f(x) = x^{T} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} x.$

解 (1) 记
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
,则

$$f(x) = (x_1, x_2) \begin{pmatrix} 2 & 1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$= 2x_1^2 + x_2^2 + x_1x_2 + 3x_2x_1 = 2x_1^2 + x_2^2 + 4x_1x_2$$

$$= (x_1, x_2) \begin{pmatrix} 2 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix},$$

故 f 的矩阵为 $\begin{pmatrix} 2 & 2 \\ 2 & 1 \end{pmatrix}$; (2)与(1)相仿,

$$f(x) = x^{\mathrm{T}} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} x = x^{\mathrm{T}} \begin{bmatrix} 1 & 3 & 5 \\ 3 & 5 & 7 \\ 5 & 7 & 9 \end{bmatrix} x,$$

做 f 的矩阵为 $\begin{bmatrix} 1 & 3 & 5 \\ 3 & 5 & 7 \\ 5 & 7 & 9 \end{bmatrix}$.

28. 求一个正交变换化下列二次型成标准形:

(1)
$$f = 2x_1^2 + 3x_2^2 + 3x_3^2 + 4x_2x_3$$
; (2) $f = x_1^2 + x_3^2 + 2x_1x_2 - 2x_2x_3$.

解 (1) 二次型
$$f$$
 的矩阵为 $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{bmatrix}$,

$$|\mathbf{A} - \lambda \mathbf{E}| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 2 \\ 0 & 2 & 3 - \lambda \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 3 - \lambda & 2 \\ 0 & 2 & 3 - \lambda \end{vmatrix}$$

$$= (2-\lambda)(\lambda-1)(\lambda-5),$$

所以 A 的特征值为 $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 5$.

对应特征值 $\lambda_1 = 1$,解方程(A - E)x = 0,由

$$A - E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

得单位特征向量 $p_1 = \frac{1}{\sqrt{2}}(0, -1, 1)^T$;

对应特征值 $\lambda_2=2$,解方程(A-2E)x=0,由

$$\mathbf{A} - 2\mathbf{E} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

得单位特征向量 $p_2 = (1,0.0)^T$;

对应特征值 $\lambda_3 = 5$,解方程(A - 5E)x = 0,由

$$\mathbf{A} - 5\mathbf{E} = \begin{bmatrix} -3 & 0 & 0 \\ 0 & -2 & 2 \\ 0 & 2 & -2 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

得单位特征向量 $p_3 = \frac{1}{\sqrt{2}}(0,1,1)^T$.

即

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \quad \overrightarrow{\mathbb{R}} \quad \begin{cases} x_1 = y_2, \\ x_2 = -\frac{1}{\sqrt{2}}y_1 + \frac{1}{\sqrt{2}}y_3, \\ x_3 = \frac{1}{\sqrt{2}}y_1 + \frac{1}{\sqrt{2}}y_3, \end{cases}$$

便把 f 化为标准形

$$f = y_1^2 + 2y_2^2 + 5y_3^2$$
;

(2) 二次型的矩阵为
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$
,它的特征多项式为

$$|\mathbf{A} - \lambda \mathbf{E}| = \begin{vmatrix} 1 - \lambda & 1 & 0 \\ 1 & -\lambda & -1 \\ 0 & -1 & 1 - \lambda \end{vmatrix} \xrightarrow{r_1 + r_3} (1 - \lambda) \begin{vmatrix} 1 & 0 & 1 \\ 1 & -\lambda & -1 \\ 0 & -1 & 1 - \lambda \end{vmatrix} \xrightarrow{c_3 - c_1} (1 - \lambda) \begin{vmatrix} 1 & 0 & 0 \\ 1 & -\lambda & -2 \\ 0 & -1 & 1 - \lambda \end{vmatrix}$$

$$= (1-\lambda) \begin{vmatrix} -\lambda & -2 \\ -1 & 1-\lambda \end{vmatrix} = -(\lambda-2)(\lambda-1)(\lambda+1),$$

所以 A 的特征值为 $\lambda_1=2,\lambda_2=1,\lambda_3=-1$.

对应 $\lambda_1 = 2$,解方程(A - 2E)x = 0,由

$$A - 2E = \begin{bmatrix} -1 & 1 & 0 \\ 1 & -2 & -1 \\ 0 & -1 & -1 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

得单位特征向量 $p_1 = \frac{1}{\sqrt{3}}(1,1,-1)^T$;

对应 $\lambda_2 = 1$,解方程(A - E)x = 0,由

$$\mathbf{A} - \mathbf{E} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -1 & -1 \\ 0 & -1 & 0 \end{bmatrix} \stackrel{r}{\sim} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

得单位特征向量 $p_2 = \frac{1}{\sqrt{2}}(1,0,1)^T$;

对应 $\lambda_3 = -1$,解方程(A + E)x = 0,由

$$\mathbf{A} + \mathbf{E} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & -1 \\ 0 & -1 & 2 \end{bmatrix} \stackrel{r}{\sim} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & -1 \\ 0 & -1 & 2 \end{bmatrix} \stackrel{r}{\sim} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

得单位特征向量 $p_3 = \frac{1}{\sqrt{6}}(-1,2,1)^T$.

令 $P = (p_1, p_2, p_3)$,则 P 为正交阵,再作正交变换 x = Py,

即

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix},$$

则化 f 为标准形: $f = 2y_1^2 + y_2^2 - y_3^2$.

29. 求一个正交变换把二次曲面的方程

$$3x^2 + 5y^2 + 5z^2 + 4xy - 4xz - 10yz = 1$$

知乎。您哥等数学

化成标准方程.

记二次曲面为 f=1, 则 f 为二次型,它的矩阵为

解 記 次 間 図
$$f = 1$$
 , 例 $f > 0$ 二 次 2 , E お E に E に

得 A 的特征值为 $\lambda_1 = 0$, $\lambda_2 = 2$, $\lambda_3 = 11$.

对应于 $\lambda_1 = 0$,解方程 Ax = 0,由

 $=(-\lambda)(\lambda-2)(\lambda$

$$A = \begin{bmatrix} 3 & 2 & -2 \\ 2 & 5 & -5 \\ -2 & -5 & 5 \end{bmatrix} \xrightarrow[r_2-2r_1]{r_1-r_2} \begin{bmatrix} 1 & -3 & 3 \\ 0 & 11 & -11 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

得单位特征向量 $p_1 = \frac{1}{\sqrt{2}}(0,1,1)^T$;

对应于特征值 $\lambda_2=2$,解方程(A-2E)x=0.由

$$\mathbf{A} - 2\mathbf{E} = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 3 & -5 \\ -2 & -5 & 3 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} 1 & 2 & -2 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

得单位特征向量 $p_2 = \frac{1}{3\sqrt{2}}(4,-1,1)^T$;

$$A - 11E = \begin{bmatrix} -8 & 2 & -2 \\ 2 & -6 & -5 \\ -2 & -5 & -6 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} 2 & -6 & -5 \\ 0 & -22 & -22 \\ 0 & -11 & -11 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} 2 & 0 & 1 \\ -2 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

得单位特征向量 $p_3 = \frac{1}{3}(1,2,-2)^T$.

知民庭高等游学

$$\diamondsuit P = (p_1, p_2, p_3) = \begin{bmatrix} 0 & \frac{4}{3\sqrt{2}} & \frac{1}{3} \\ \frac{1}{\sqrt{2}} & \frac{-1}{3\sqrt{2}} & \frac{2}{3} \\ \frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} & -\frac{2}{3} \end{bmatrix}, \text{则 } P \text{ 为正交阵}, 并且正交变换}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 & \frac{4}{3\sqrt{2}} & \frac{1}{3} \\ \frac{1}{\sqrt{2}} & \frac{-1}{3\sqrt{2}} & \frac{2}{3} \\ \frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} \quad \text{或} \quad \begin{cases} x = \frac{4}{3\sqrt{2}}v + \frac{1}{3}w, \\ y = \frac{1}{\sqrt{2}}u - \frac{1}{3\sqrt{2}}v + \frac{2}{3}w, \\ z = \frac{1}{\sqrt{2}}u + \frac{1}{3\sqrt{2}}v - \frac{2}{3}w \end{cases}$$

即为所求,在此变换下,二次曲面的方程化为标准方程 $2v^2 + 11w^2 = 1$ (它是椭圆柱面).

30. 证明二次型 $f = x^T A x$ 在 ||x|| = 1 时的最大值为矩阵 A 的最大特征值.

证 设 $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n$ 为 A 的 n 个特征值,由定理 6,知有正交变换 x = Qy,使

$$f(\mathbf{x}) = \mathbf{y}^{\mathrm{T}} \mathbf{A} \mathbf{Q} \mathbf{y} = \mathbf{y}^{\mathrm{T}} \mathbf{A} \mathbf{y} = \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2}.$$

$$\parallel \mathbf{x} \parallel^{2} = \mathbf{x}^{\mathrm{T}} \mathbf{x} = \mathbf{y}^{\mathrm{T}} \mathbf{Q}^{\mathrm{T}} \mathbf{Q} \mathbf{y} = \mathbf{y}^{\mathrm{T}} \mathbf{y} = \parallel \mathbf{y} \parallel^{2},$$

$$\max_{\parallel \mathbf{x} \parallel = 1} f(\mathbf{x}) = \max_{\parallel \mathbf{y} \parallel = 1} \mathbf{y}^{\mathrm{T}} \mathbf{A} \mathbf{y} = \max_{\sum y_{i}^{2} = 1} (\lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2})$$

$$\leq \lambda_{1} \max_{\sum y_{i}^{2} = 1} \sum y_{i}^{2} = \lambda_{1}.$$

另一方面,取 $y_0 = e_1 = (1,0,\cdots,0)^T$,即 y_0 为第 1 个分量是 1 的单位坐标向量,再作正交变换 $x_0 = Qy_0$,则 $\|x_0\| = \|y_0\| = 1$,并且二次型 f 在 x_0 处的值为

$$f(x_0) = y_0^{\mathsf{T}} \Lambda y_0 = \lambda_1.$$

$$\max_{\|x\| = 1} f(x) = \max_{\|x\| = 1} x^{\mathsf{T}} \Lambda x = \lambda_1.$$

综合以上知

- 31. 用配方法化下列二次型成规范形,并写出所用变换的矩阵:
- (1) $f(x_1, x_2, x_3) = x_1^2 + 3x_2^2 + 5x_3^2 + 2x_1x_2 4x_1x_3$;
- (2) $f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 2x_1x_3 + 2x_2x_3$;
- (3) $f(x_1, x_2, x_3) = 2x_1^2 + x_2^2 + 4x_3^2 + 2x_1x_2 2x_2x_3$
- 解 (1) 由于 f 中含变量 x_1 的平方项,故把含 x_1 的项归并起来。 $f(x_1,x_2,x_3)=x_1^2+2x_1x_2-4x_1x_3+3x_2^2+5x_3^2$

$$= (x_1 + x_2 - 2x_3)^2 - x_2^2 - 4x_3^2 + 4x_2x_3 + 3x_2^2 + 5x_3^2$$

$$= (x_1 + x_2 - 2x_3)^2 + 2x_2^2 + x_3^2 + 4x_2x_3$$

$$= (x_1 + x_2 - 2x_3)^2 + 2(x_2 + x_3)^2 - x_3^2,$$

写成矩阵形式: x = Cy, 这里 $C = \begin{bmatrix} 1 & -\frac{1}{\sqrt{2}} & 3 \\ 0 & \frac{1}{\sqrt{2}} & -1 \\ 0 & 0 & 1 \end{bmatrix}$ 为可逆矩阵. 在此变换下,

f 化为规范形:

$$f(x) = f(Cy) = y_1^2 + y_2^2 - y_3^2.$$

(2) 由于 f 中含变量 x_1 的平方项,故把含 x_1 的项归并起来,配方可得

$$f(x_1, x_2, x_3) = x_1^2 + 2x_3^2 + 2x_1x_3 + 2x_2x_3$$

= $(x_1 + x_3)^2 + x_3^2 + 2x_2x_3$
= $(x_1 + x_3)^2 - x_2^2 + (x_2 + x_3)^2$,

$$\Leftrightarrow \begin{cases}
y_1 = x_1 + x_3, \\
y_2 = x_2, \\
y_3 = x_2 + x_3,
\end{cases}$$

$$\begin{cases}
x_1 = y_1 + y_2 - y_3, \\
x_2 = y_2, \\
x_3 = -y_2 + y_3,
\end{cases}$$

写成矩阵形式: x = Cy, 这里 $C = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$ 为可逆矩阵. 在此变换下, f 化

为规范形:

$$f(x) = f(Cy) = y_1^2 - y_2^2 + y_3^2.$$

(3) 由于 f(x)中含变量 x_1 的平方项,故把含 x_1 的项归并起来,配方可得 $f(x_1,x_2,x_3) = 2x_1^2 + 2x_1x_2 + x_2^2 + 4x_3^2 - 2x_2x_3$ $= \left(\sqrt{2}x_1 + \frac{1}{\sqrt{2}}x_2\right)^2 + \frac{1}{2}x_2^2 + 2x_3^2 - 2x_2x_3 + 2x_3^2$ $= \left(\sqrt{2}x_1 + \frac{1}{\sqrt{2}}x_2\right)^2 + \left(\frac{1}{\sqrt{2}}x_2 - \sqrt{2}x_3\right)^2 + \sqrt{2}x_2^2 + \frac{1}{\sqrt{2}}x_2^2 + \frac{1}{\sqrt{2}}x_$

令
$$\begin{cases} y_1 = \sqrt{2}x_1 + \frac{1}{\sqrt{2}}x_2, \\ y_2 = \frac{1}{\sqrt{2}}x_2 - \sqrt{2}x_3, & \text{即 } \mathbf{y} = \mathbf{P}\mathbf{x}, \text{这里 } \mathbf{P} = \begin{pmatrix} \sqrt{2} & \frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{2}} & -\sqrt{2} \\ 0 & 0 & \sqrt{2} \end{pmatrix} \text{为可逆矩阵,} \\ \mathbf{B} \mathbf{易求得} \end{cases}$$

$$C = P^{-1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 & -1 \\ 0 & 2 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

于是在变换 $x = Cy \, \text{下}, f$ 化为规范形

$$f(x) = f(Cy) = y_1^2 + y_2^2 + y_3^2$$
.

32. 设 $f = x_1^2 + x_2^2 + 5x_3^2 + 2ax_1x_2 - 2x_1x_3 + 4x_2x_3$ 为正定二次型,求 a.

解 根据定理 9(赫尔维茨定理),对 f 的矩阵 A 进行讨论,这里

$$\mathbf{A} = \begin{bmatrix} 1 & a & -1 \\ a & 1 & 2 \\ -1 & 2 & 5 \end{bmatrix},$$

于是,

$$A$$
 正定 $\Leftrightarrow \begin{vmatrix} 1 & a \\ a & 1 \end{vmatrix} > 0$ 且 $|A| > 0$

由 $\begin{vmatrix} 1 & a \\ a & 1 \end{vmatrix} > 0$ 且 |A| > 0. $\begin{vmatrix} 1 & a \\ a & 1 \end{vmatrix} > 0 \Rightarrow a^2 < 1$; 由 $|A| = -a(5a+4) > 0 \Rightarrow -\frac{4}{5} < a < 0$. 合起来, 当 $-\frac{4}{5}$ <a<0时,A 正定,从而 f 正定.

33. 判定下列二次型的正定性:

(1)
$$f = -2x_1^2 - 6x_2^2 - 4x_3^2 + 2x_1x_2 + 2x_1x_3$$
;

(2)
$$f = x_1^2 + 3x_2^2 + 9x_3^2 - 2x_1x_2 + 4x_1x_3$$
.

解 (1)
$$f$$
 的矩阵 $A = \begin{bmatrix} -2 & 1 & 1 \\ 1 & -6 & 0 \\ 1 & 0 & -4 \end{bmatrix}$, 它的一阶主子式 $-2 < 0$; 二阶主子式 $\begin{vmatrix} -2 & 1 \\ 1 & -6 \end{vmatrix} = 11 > 0$; 三阶主子式 $|A| = -38 < 0$. 由定理 9 知 f 为负定二次规

(2)
$$f$$
 的矩阵 $A = \begin{bmatrix} 1 & -1 & 2 \\ -1 & 3 & 0 \\ 2 & 0 & 9 \end{bmatrix}$, 它的一阶主子式 $1 > 0$; 二阶主子式 $\begin{vmatrix} 1 & -1 \\ -1 & 3 \end{vmatrix} = 2 > 0$; 三阶主子式 $|A| = 6 > 0$, 由定理 9 知 f 为正是王人国际中办学

34. 证明对称阵 A 为正定的充要条件是:存在可逆矩阵 U,使 $A = U^T U$,即 A 与单位阵 E 合同.

证 充分性:若存在可逆矩阵 U,使 $A = U^T U$,任取 $x \in \mathbb{R}$, $x \neq 0$,就有 $Ux \neq 0$,并且 A 的二次型在该处的值

$$f(x) = x^{T}Ax = x^{T}U^{T}Ux = [Ux, Ux] = ||Ux||^{2} > 0,$$

即矩阵 A 的二次型是正定的,从而由定义知 A 是正定矩阵.

必要性:因 A 是对称阵,故存在正交阵 Q,使

$$Q^{\mathsf{T}}AQ = \Lambda = \mathrm{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n),$$

其中 n 是 A 的阶数, λ_1 , λ_2 , \cdots , λ_n 是 A 的全部特征值. 因 A 为正定矩阵, 故 $\lambda_i > 0$, $i = 1, 2, \cdots, n$. 记对角阵 $\Lambda_1 = \operatorname{diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \cdots, \sqrt{\lambda_n})$,则有

$$\Lambda_1^2 = \operatorname{diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \cdots, \sqrt{\lambda_n}) \operatorname{diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \cdots, \sqrt{\lambda_n}) = \Lambda$$
.

从而

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathrm{T}} = \mathbf{Q} \mathbf{\Lambda}_{1} \mathbf{\Lambda}_{1} \mathbf{Q}^{\mathrm{T}} = (\mathbf{Q} \mathbf{\Lambda}_{1}) (\mathbf{Q} \mathbf{\Lambda}_{1})^{\mathrm{T}},$$

记 $U = (Q\Lambda_1)^T$,显然 U 可逆,并且 $A = U^T U$.

知乎。例謂釋數學