Экзаменационная программа по курсу «Аналитическая геометрия», осенний семестр 2023–2024 учебного года (кроме ЛФИ) С комментариями

16 января 2024 г.

1 Векторы

```
a - вектор lpha - число |a| - модуль вектора
```

1.1 Направленные отрезки и векторы, линейные операции над ними.

Опр. Вектор, коллинеарность (прямая), компланарность (плоскость), равенство Линейные операции: сложение (строим равные), умножение на число (умножаем модуль, смотрим на направление)

1.2 Свойства линейных операций.

```
a+b=b+a
(a+b)+c=a+(b+c)
a+0=a
a+(-1)a=0
(\alpha\beta)a=\alpha(\beta a)
(\alpha+\beta)a=\alpha a+\beta a
\alpha(a+b)=\alpha a+\alpha b
1\cdot a=a
```

1.3 Коллинеарность и компланарность векторов.

cm 1.1

1.4 Линейно зависимые и независимые системы векторов.

Опр. Вектор b раскладывается по векторам a_1, \ldots, a_k , если он представим как их ЛК с некоторыми коэффициентами(могут определяться не однозначно).

Опр. ЛНЗ система векторов, если $\overline{0}$ раскладывается по ней единственным образом (другими словами, если ЛК равна нулю, то все коэффициенты нули)

Опр. ЛЗ система векторов, если $\overline{0}$ раскладывается по ней НЕ единственным образом (другими словами, если ЛК равна нулю и хотя бы **один** коэффициент не ноль)

```
ЛН3 = все нули 
 <math>Л3 = HE все нули
```

Свойства:

если среди векторов системы есть нулевой вектор, то система ЛЗ если в ЛЗ системе 1 вектор, то он нулевой $\overline{0}$

если к $\Pi 3$ зависимой системе добавить какой-то набор векторов, то получится $\Pi 3$ система. если в системе какая-то часть $\Pi 3$, то система $\Pi 3$ Любая часть $\Pi 43$ системы $\Pi 43$

Пр. если разложение по $a_1,...,a_k$ единственно $\Leftrightarrow a_1,...,a_k$ ЛНЗ. д-во: от противного в обе стороны

Тh Критерий Π **3**. Π **3** системе \Leftrightarrow один из векторов раскладывается по остальным. д-во: очев по определению

1.5 Связь линейной зависимости с коллинеарностью и компланарностью векторов.

Теорема $\{a\}$ ЛЗ $\Leftrightarrow a = \overline{0}$ $\{a,b\}$ ЛЗ $\Leftrightarrow a,b$ коллинеарны $\{a,b,c\}$ ЛЗ $\Leftrightarrow a,b,c$ компланарны $\{a,b,c,d\}$ ЛЗ РАЗОБРАТЬ ДОКАЗАТЕЛЬСТВО

1.6 Базис, координаты вектора в базисе.

Опр. Множество замкнуто относительно некоторой операции, если для любых элементов мн-ва результат применения этой операции принадлежит этому множеству.

Опр. Мн-во векторов, замкнуто относительно линейной операции, называется векторным пространством.

Опр. Базисом в векторном пр-ве называется упорядоченная, ЛНЗ система векторов такая, что любой вектор этого пр-ва по ней раскладывается.

Из теоремы выше (отрицание теоремы) следует:

- в нулевом пространстве базиса нет
- в одномерном пространстве базис один ненулевой вектор
- в двумерном пространстве базис упорядоченная пара неколл. векторов
- в трехмерном простравнсте базис упорядоченная тройка некомпланарных векторов

Любой вектор раскладывается по базису единственным образом Опр. Координаты вектора - коэффициенты при разложении по базису

1.7 Действия с векторами в координатах.

При умножении вектора на число все его компоненты умножаются на это число.

При сложении векторов их соответствующие компоненты складываются.

д-во: раскрыть скобки:)

2 Системы координат

2.1 Определения общей декартовой и прямоугольной (ортонормированной) системы координат

Опр. Декартова СК в пространстве - совокупность точки и базиса.

точка - начало координат

оси координат - прямые проходящие через начало координат в направлении базисных векторов (абсцисс, ординат, аппликат)

кооординатные плоскости - плоскости, проходящие через оси координат

Опр. Дана ДСК (O, e_1, e_2, e_3)

Компоненты x, y, z радиус-вектора OM точки M называются ее координатами в данной CK

Опр. Ортонормированный базис (ОНБ) - векторы базиса попарно ортогональны и по длине равны 1.

Опр. Прямоугольная Декартова Система координат (ПДСК) - ДСК, базис которой ортонормированный.

2.2Матрица перехода и ее основное свойство.

Выбор базиса ничем на ограничен, поэтому принципиальное значение имеет задача о нахождении компонент вектора в данном базисе по его компонентам в другом базисе.

старая СК	новая СК		
$ \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ b_{12} & b_{22} & b_{32} \\ c_{13} & c_{23} & c_{33} \end{pmatrix} $	$\left \begin{array}{ccc} a_{21} & b_{22} \\ \end{array} \right $	$\begin{pmatrix} c_{13} \\ c_{23} \\ c_{33} \end{pmatrix}$	Строки это столбцы

$$S = egin{pmatrix} a_{11} & b_{12} & c_{13} \ a_{21} & b_{22} & c_{23} \ a_{31} & b_{32} & c_{33} \end{pmatrix}$$
 Матрица перехода от O к O'

2.3 Изменение координат вектора при замене базиса.

$$(e'_1, e'_2, e'_3) = (e_1, e_2, e_3) \cdot S$$

2.4Изменение координат точки при переходе к новой системе коорди-

Рассмотрим две ДСК Старая $\{O, e_1, e_2, e_3\}$ и новая $\{O', e'_1, e'_2, e'_3\}$ M(x, y, z) и (x', y', z') соответственно $O'(a_{10}, a_{20}, a_{30})$ в старой СК Выразим х, у, z через х', у', z' OM = OO' + O'MРазложим по базису $\{e_1, e_2, e_3\}$ Получим систему как матрица перехода (очень похоже)

Формулы перехода от одной прямоугольной системы координат на плоскости к другой.

$$\begin{cases} x = a_{11}x' + a_{12}y' + a_{10} \\ y = a_{21}x' + a_{22}y' + a_{20} \end{cases}$$
 φ угол между e_1 и e_1' отсчитываемый в направлении кратчайшего поворота
$$\begin{cases} e_1' = e_1 cos\varphi + e_2 sin\varphi \\ e_2' = e_1 cos(\varphi \pm \pi/2) + e_2 sin(\varphi \pm \pi/2) \end{cases}$$

$$\begin{cases} e_1' = e_1 cos\varphi + e_2 sin\varphi \\ e_2' = \mp e_1 sin\varphi \pm e_2 cos\varphi \end{cases}$$

ПЛЮС - поворот СК МИНУС - не мб преобразование сделано поворотом базиса

$$\begin{cases} x = \cos\varphi x' \mp \sin\varphi y' + a_{10} \\ y = a\cos\varphi x' \pm \sin\varphi y' + a_{20} \end{cases}$$

- 3. Скалярное произведение и его свойства. Ортогональные проекции. Выражение скалярного произведения в координатах, выражение в ортонормированном базисе. Формулы для определения расстояния между точками и угла между векторами.
- 4. Ориентация на плоскости и в пространстве. Смешанное и векторное произведения векторов, их свойства и геометрический смысл. Выражение смешанного и векторного произведений через координаты векторов. Условия коллинеарности и компланарности векторов. Формула двойного векторного произведения. Биортогональный (взаимный) базис.
- 5. Алгебраические линии и поверхности, их порядок. Теорема об инвариантности порядка линии на плоскости (поверхности в пространстве) при переходе к новой декартовой системе координат.
- 6. Векторные и координатные формы уравнения прямой на плоскости и в пространстве. Условия параллельности (или совпадения), перпендикулярности прямых на плоскости, заданных в координатной форме. Пучок прямых на плоскости. Условия параллельности и перпендикулярности двух прямых в пространстве. Расстояние от точки до прямой на плоскости и в пространстве. Расстояние между двумя прямыми в пространстве.
- 7. Векторные и координатные формы уравнения плоскости. Условия параллельности (или совпадения) плоскостей, заданных в координатной форме. Расстояние от точки до плоскости в пространстве и расстояние между параллельными плоскостями. Условия параллельности и перпендикулярности прямой и плоскости. Прямая как линия пересечения двух плоскостей.
- 8. Алгебраические линии второго порядка на плоскости, их классификация. Приведение уравнения линии второго порядка к каноническому виду. Центр линии второго порядка, центральные и нецентральные линии.
 - 9. Эллипс, гипербола и парабола, их свойства. Касательные к эллипсу, гиперболе и параболе.
 - 10. Асимптотические направления и диаметры линий второго порядка.
- 11. Цилиндрические и конические поверхности. Поверхности вращения. Эллипсоид, гиперболоиды, параболоиды и конус второго порядка, их основные свойства. Прямолинейные образующие.
- 12. Отображения и преобразования плоскости. Произведение (композиция) отображений. Вза-имно однозначное отображение, обратное отображение. Линейные преобразования плоскости.
- 13. Аффинные преобразования плоскости и их основные свойства. Геометрический смысл модуля и знака определителя аффинного преобразования плоскости. Аффинная классификация линий второго порядка. Ортогональные преобразования плоскости и их свойства. Разложение аффинного преобразования плоскости в произведение ортогонального преобразования и двух сжатий. Понятие о группе преобразований.
- 14. Алгебраические операции с матрицами. Элементарные преобразования матриц. Обратная матрица.
- 15. Определение детерминанта. Свойства детерминанта. Миноры, алгебраические дополнения. Детерминант произведения матриц. Правило Крамера. Критерий обратимости. Формула для элементов обратной матрицы.