

© International Baccalaureate Organization 2021

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organisation du Baccalauréat International 2021

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organización del Bachillerato Internacional, 2021

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales—, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Chemie Leistungsstufe 2. Klausur

Freitag,	14.	Mai	2021	(Vormittag)
----------	-----	-----	------	-------------

Fruidingshummer des Nandidatem													

2 Stunden 15 Minuten

Hinweise für die Kandidaten

- Tragen Sie Ihre Prüfungsnummer in die Kästen oben ein.
- Öffnen Sie diese Klausur erst, wenn Sie dazu aufgefordert werden.
- Beantworten Sie alle Fragen.
- Sie müssen Ihre Antworten in die für diesen Zweck vorgesehenen Felder schreiben.
- Für diese Klausur ist ein Taschenrechner erforderlich.
- Für diese Klausur ist ein unverändertes Exemplar des **Datenhefts Chemie** erforderlich.
- Die maximal erreichbare Punktzahl für diese Klausur ist [90 Punkte].

2221-6138

-2-

[2]

Beantworten Sie **alle** Fragen. Sie müssen Ihre Antworten in die für diesen Zweck vorgesehenen Felder schreiben.

1. Kalkstein kann über den Kalkkreislauf in verschiedene nützliche kommerzielle Produkte umgewandelt werden. Kalkstein enthält einen hohen prozentualen Anteil an Calciumcarbonat, CaCO₃.

(a) Beim Erhitzen von Calciumcarbonat entsteht Calciumoxid, CaO.

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

Berechnen Sie das Volumen des unter Standardbedingungen (STP) produzierten Kohlendioxids, wenn 555 g Calciumcarbonat zersetzt werden. Verwenden Sie die Abschnitte 2 und 6 des Datenhefts.

(b) Die thermodynamischen Daten für die Zersetzung von Calciumcarbonat sind angegeben.

Substanz	ΔH [⊕] _f / kJ mol ⁻¹	S ^O /JK ⁻¹ mol ⁻¹
CaCO ₃ (s)	-1207	93
CaO(s)	-635	40
CO ₂ (g)	-393,5	214

(i)	Berechnen Sie die Enthalpieänderung der Reaktion ΔH in kJ für die Zersetzung von Calciumcarbonat.	[2]
(ii)	Berechnen Sie die Entropieänderung ΔS in J K $^{-1}$ für die Zersetzung von Calciumcarbonat.	[1]
(iii)	Bestimmen Sie unter Verwendung von b(i), b(ii) und Abschnitt 1 des Datenhefts die Temperatur in K, bei der die Zersetzung von Calciumcarbonat spontan wird.	
	(Falls Sie keine Antworten für b(i) und b(ii) haben, verwenden Sie $\Delta H = 190\mathrm{kJ}$ und $\Delta S = 180\mathrm{JK^{-1}}$, aber diese sind nicht die richtigen Antworten.)	[2]

[3]

(Fortsetzung Frage 1)

(iv)	Skizzieren Sie basierend auf Ihrer Antwort zu b(i) ein Energieprofil für die
	Zersetzung von Calciumcarbonat mit Beschriftung der Achsen und der
	Aktivierungsenergie E_a .

(v) Geben Sie an, wie das Hinzufügen eines Katalysators zu der Reaktion die Enthalpieänderung der Reaktion ΔH und die Aktivierungsenergie $E_{\rm a}$ beeinflussen würde.

[1]

 ΔH :
... E_{a} :

- (c) Im zweiten Schritt des Kalkkreislaufs wird Calciumhydroxid, Ca(OH)₂, gebildet.
 - (i) Schreiben Sie die Gleichung der Reaktion von Ca(OH)₂(aq) mit Salzsäure (Chlorwasserstoffsäure), HCl (aq).

[1]

.....

(ii)	Bestimmen Sie das Volumen in d m^3 einer 0,015 mol d m^{-3} Calciumhydroxidlösung, das benötigt wird, um 35,0 c m^3 einer Lösung von 0,025 mol d m^{-3} HCl (aq) zu neutralisieren.	[2]
(iii)	Gesättigte Calciumhydroxid-Lösung wird verwendet, um auf Kohlendioxid zu testen. Berechnen Sie den pH-Wert einer $2,33 \times 10^{-2}$ mol dm ⁻³ Calciumhydroxid-Lösung, einer starken Base.	[2]
(d) Calc	iumhydroxid reagiert mit Kohlendioxid wieder zu Calciumcarbonat.	
	$Ca(OH)_2(aq) + CO_2(g) \rightarrow CaCO_3(s) + H_2O(l)$	
(i)	Bestimmen Sie die Masse in g des $CaCO_3(s)$, das durch die Reaktion von 2,41 dm³ $2,33\times 10^{-2}\mathrm{moldm^{-3}}$ $Ca(OH)_2(aq)$ mit $0,750\mathrm{dm^3}$ $CO_2(g)$ unter Standardbedingungen (STP) gebildet wird.	[2]

(Fortsetzung Frage 1) In dem Experiment in d(i) wurden 2,85 g CaCO₃ gesammelt. Berechnen Sie die prozentuale Ausbeute an CaCO₃. (Falls Sie keine Antwort auf die Frage d(i) gefunden haben, verwenden Sie 4,00 g, aber das ist nicht der richtige Wert.) [1] Umreißen Sie, wie eine Calciumverbindung im Kalkkreislauf ein durch saure (e) Niederschläge verursachtes Problem verringern kann. [1] 2. Die Eigenschaften von Elementen können anhand ihrer Position im Periodensystem prognostiziert werden. Erklären Sie, warum Si einen kleineren Atomradius als Al hat. (a) [2] Erklären Sie, warum die erste Ionisierungsenergie von Schwefel niedriger ist als (ii) die von Phosphor. [2]

(b)	(i)	Geben Sie die verkürzten Elektronenkonfigurationen für Cr und Cr³+ an.	[2]
Cr:			
Cr ³⁺ :			
	(ii)	Beschreiben Sie die metallische Bindung und wie sie zur elektrischen Leitfähigkeit beiträgt.	[3]
	(iii)	Leiten Sie mit einer Begründung ab, welches der beiden Komplexionen $[Cr(CN)_6]^{3^-}$ und $[Cr(OH)_6]^{3^-}$ Licht mit höherer Energie absorbiert. Verwenden Sie den Abschnitt 15 des Datenhefts.	[1]
	(iv)	[Cr(OH) ₆] ³⁻ bildet eine grüne Lösung. Schätzen Sie unter Verwendung von Abschnitt 17 des Datenhefts eine Wellenlänge des Lichts, die von diesem Komplex absorbiert wird.	[1]

(Auf die vorliegende Frage wird auf Seite 9 weiter eingegangen)

-8- 2221-6138

Bitte schreiben Sie nicht auf dieser Seite.

Antworten, die auf dieser Seite geschrieben werden, werden nicht bewertet.

(c)	Leiten Sie die Lewis-Struktur (Elektronenformel) und die Molekülgeometrie von
	Schwefeltetrafluorid, SF ₄ , und Schwefeldichlorid, SCl ₂ , ab.

[4]

Spezies	SF ₄	SCl ₂
Lewis-Struktur		
Molekülgeometrie		
(d) Schlagen S	ie mit Bearündungen die relativen Flücht	iakeiten von SCl., und H.O vor. [3]

(d))	So	chl	ag	en	S	ie	m	it l	Вє	eg	rü	nc	lu	ng	ge	n	di	е	re	la	tiv	'er	n F	Ξlü	icl	hti	igl	ke	ite	en	۷٥	n	S	Cl,	₂ U	ıno	d ł	H ₂ (0	VO	r.		[3]
	٠.	٠.			٠.		•		٠.		٠.	٠		•				٠		٠	٠.	٠				٠.				٠.	٠		٠.			٠.			٠.	٠		٠.	 	
	٠.				٠.				٠.																					٠.													 	

- **3.** Oxidations- und Reduktionsreaktionen können eine Vielzahl von kommerziellen Anwendungen haben.
 - (a) Ein Student möchte eine galvanische Zelle aus einer Aluminiumelektrode, Al (s), einer Zinnelektrode, Sn (s), und Lösungen von Aluminiumnitrat, Al $(NO_3)_3$ (aq), und Zinn(II)-nitrat, Sn $(NO_3)_2$ (aq), bauen.

Der Elektronenfluss ist in der Abbildung dargestellt.

Beschriften Sie jede Zeile in der Abbildung unter Verwendung von Abschnitt 25 des Datenhefts.

[3]

(b)	S	Sch	irei	ibe	en	Si	е	di	е	G	le	ic	h	u	nę	g	fü	ir	d	ie	i	n	(6	a)	(er	W	а	rte	et	е	9	je	Sá	ar	nt	е	С	h	eı	m	is	cl	16) (R	ea	ak	cti	O	n.			[1]
																											-																												

/ ~ \	Berechnen Sie das Zellpotenzial unter Verwendung von Abschnitt 24 des Datenhefts.	[4]
(:)	Bereconen Sie das Zeilbolenzial Unier Verwendung von Abschbill zu des Dalenbeits	
(\circ)	berconnen die das Zenpotenziai anter verwendung von Absornitt Zir des Batermetts.	[1]

(d)	Berechnen Sie die freiwillige Änderung der Gibbs-Energie ΔG^{\ominus} in kJ für die Zelle unter	
	Verwendung von Abschnitt 1 des Datenhefts.	[2]

verwending von Absennitt i des Datennetts.	[4]

- **4.** Die organische Chemie kann für die Synthese einer Vielzahl von Produkten verwendet werden.
 - (a) Verschiedene Verbindungen können aus But-2-en synthetisiert werden. Zeichnen Sie die Struktur des Endprodukts für jede der folgenden chemischen Reaktionen. [2]

 $H_3C-CH=CH-CH_3$ H_2 H_2 Pt

(b)	Bestimmen Sie die Enthalpieänderung ΔH für die Verbrennung von But-2-en unter
	Verwendung von Abschnitt 11 des Datenhefts.

[3]

[1]

$$\text{CH}_3\text{CH=CHCH}_3(g) + 6\text{O}_2(g) \rightarrow 4\text{CO}_2(g) + 4\text{H}_2\text{O}\left(g\right)$$

(c) Geben Sie die Hybridisierung der Kohlenstoffatome I und II in But-2-en an.

$$H_3C$$
— CH = CH — CH_3

Kohlenstoff	I	II
Hybridisierung		

(d) Zeichnen Sie Diagramme, die zeigen, wie Sigma- (σ) und Pi-Bindungen (π) zwischen Atomen gebildet werden. [2]

Sigma (σ):

Pi (π):

Skizzieren Sie den Mechanismus der Reaktion von 2-Methylbut-2-en mit Bromwasserstoff (Broman, Hydrogenbromid) unter Verwendung von gebogenen Pfeilen. [3]

2-Brom-3-methylbutan. [2]

- (g) Die Verbrennungsanalyse einer unbekannten organischen Verbindung ergab, dass sie nur Kohlenstoff, Wasserstoff und Sauerstoff enthielt.
 - (i) Leiten Sie zwei Merkmale dieses Moleküls ab, die aus dem Massenspektrum ermittelt werden können. Verwenden Sie den Abschnitt 28 des Datenhefts.

[2]

<i>m/z</i> 58:			
<i>m/z</i> 43:			

(ii) Identifizieren Sie die Bindung, die für die Absorption bei **A** in dem Infrarotspektrum verantwortlich ist. Verwenden Sie den Abschnitt 26 des Datenhefts.

[1]

(iii) Leiten Sie die Identität der unbekannten Verbindung unter Verwendung der bisherigen Informationen, des ¹H-NMR-Spektrums und von Abschnitt 27 des Datenhefts ab.

[2]

¹H-NMR-Spektrum

Verbi	indun	g:	
(h)	(i)	Zeichnen Sie die Stereoisomere von Butan-2-ol mithilfe von Keilstrichformeln.	[1]
(h)	(i)	Zeichnen Sie die Stereoisomere von Butan-2-ol mithilfe von Keilstrichformeln.	[1]
(h)	(i)	Zeichnen Sie die Stereoisomere von Butan-2-ol mithilfe von Keilstrichformeln.	[1]
(h)	(i)	Zeichnen Sie die Stereoisomere von Butan-2-ol mithilfe von Keilstrichformeln.	[1]
(h)	(i)	Zeichnen Sie die Stereoisomere von Butan-2-ol mithilfe von Keilstrichformeln.	[1]
(h)	(i)	Zeichnen Sie die Stereoisomere von Butan-2-ol mithilfe von Keilstrichformeln.	[1]
(h)	(i)	Zeichnen Sie die Stereoisomere von Butan-2-ol mithilfe von Keilstrichformeln.	[1]

(Auf die vorliegende Frage wird auf der nächsten Seite weiter eingegangen)

Aus dem ¹H-NMR-Spektrum abgeleitete Information:

	(ii)	Umreißen Sie, wie zwei Enantiomere mittels eines Polarimeters unterschieden werden können.	[2]
5.	Ethanol เ	und Ameisensäure (Methansäure) sind wichtige Industrieprodukte.	
	(a) Eth	nanol wird als Brennstoff verwendet.	
	(i)	Schreiben Sie die chemische Gleichung für die vollständige Verbrennung von Ethanol.	[1]
	(ii)	Leiten Sie die Enthalpieänderung ΔH in kJ ab, wenn 56,00 g Ethanol verbrannt werden. Verwenden Sie den Abschnitt 13 des Datenhefts.	[2]
	ver	rch die Oxidation von Ethanol mit Kaliumdichromat, K ₂ Cr ₂ O ₇ , können zwei schiedene organische Produkte entstehen. Bestimmen Sie die Namen der anischen Produkte und die Methoden, die verwendet werden, um sie zu isolieren.	[2]

(Auf die vorliegende Frage wird auf der nächsten Seite weiter eingegangen)

Bitte umblättern

(c)	Schreiben Sie die Gleichung und den Namen des organischen Produkts für die
	Reaktion von Ethanol mit Ameisensäure (Methansäure).

[2]

Gleich	ung:											
Produk	ktnam	e:										

(d) (i) Skizzieren Sie die Titrationskurve von Ameisensäure (Methansäure) mit Natriumhydroxid, die zeigt, wie Sie den p K_a -Wert von Ameisensäure (Methansäure) bestimmen würden.

[2]

(ii)	Identifizieren Sie unter Verwendung von Abschnitt 22 des Datenhefts einen
	Indikator, der für die Titration in 5(d)(i) verwendet werden könnte.

[1]

(e)	Bestimmen Sie die Konzentration von Ameisensäure (Methansäure) in einer Lösung mit dem pH-Wert = 4,12. Verwenden Sie den Abschnitt 21 des Datenhefts.	[2]
(f)	Identifizieren Sie, ob wässrige Lösungen der folgenden Salze sauer, alkalisch oder neutral sind.	[2]
Natı	riumformiat (Natriummethanoat):	
Amr	moniumchlorid:	
Natı	iumnitrat:	

[2]

6. Bromat- und Bromid-Ionen reagieren in saurer wässriger Lösung.

$$BrO_3^-(aq) + 5Br^-(aq) + 6H^+(aq) \rightarrow 3Br_2(l) + 3H_2O(l)$$

Die folgenden Daten der Anfangsgeschwindigkeit wurden erhoben.

Experiment	[BrO ₃ ⁻] / mol dm ⁻³	[Br ⁻] / mol dm ⁻³	[H ⁺] / mol dm ⁻³	Anfangsgeschwindigkeit / mol dm ⁻³ s ⁻¹
1	0,10	0,10	0,10	8,0 × 10 ⁻⁴
2	0,20	0,10	0,10	1,6 × 10 ⁻³
3	0,20	0,20	0,10	3.2×10^{-3}
4	0,10	0,10	0,20	3.2×10^{-3}

(a) Bestimmen Sie die Geschwindigkeitsgleichung für die Reaktion.

Reaktionsordnung in Bezug auf BrO₃⁻:

Reaktionsordnung in Bezug auf Br⁻:

Reaktionsordnung in Bezug auf H⁺:

Geschwindigkeitsgleichung:

(D)			rv																												HC	ıις	JK	211	.Sr	(0	113	Sla	3 11	ιιe	; L	ווג	le	1:1						[2	2]
•		٠.	٠		٠		•		•		•	•		•	•		-	•	 	٠	•		•	•		•	•		٠		 •		•		•		•		•	•		٠			•		٠	٠.		•		
																			 											٠.																						
		•	•	•		•		•	•		•		•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•				•	•	•	•	•	•		
-		٠.	٠		٠		٠		٠	٠.	•	٠		٠	•		-	•	 	٠			-	•	٠.		•		٠	٠.	٠		٠		٠		٠		•	•		٠			•		٠	٠.		•		

7. Betrachten Sie die folgende Gleichgewichts	reaktion:
---	-----------

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

(a)	Geben Sie den Ausdruck für die Gleichgewichtskonstante $K_{\rm c}$ für die oben genannte Reaktion an.	[1]
(b)	Geben Sie an und erklären Sie, wie das Gleichgewicht durch die Vergrößerung des Volumens des Reaktionsgefäßes bei konstanter Temperatur beeinflusst werden würde.	[3]
(c)	$SO_2(g)$, $O_2(g)$ und $SO_3(g)$ werden gemischt. Dann wird gewartet, bis die Mischung	

das Gleichgewicht bei 600°C erreicht hat.

	SO ₂	O ₂	SO ₃
Anfangskonzentration / mol dm ⁻³	2,00	1,50	3,00
Gleichgewichtskonzentration / mol dm ⁻³	1,50		

Bestimmen Sie den Wert von K_c bei 600° C.	[2]

Quellen:

- **4.(g)(i)** NIST Mass Spectrometry Data Center Collection © 2014 copyright vom US-Handelsminister im Namen der Vereinigten Staaten von Amerika [copyright by the U.S. Secretary of Commerce on behalf of the United States of America]. Alle Rechte vorbehalten.
- **4.(g)(ii)** NIST Mass Spectrometry Data Center Collection © 2014 copyright vom US-Handelsminister im Namen der Vereinigten Staaten von Amerika [copyright by the U.S. Secretary of Commerce on behalf of the United States of America]. Alle Rechte vorbehalten.
- **4.(g)(iii)** SDBS, National Institute of Advanced Industrial Science and Technology (AIST) [allgemeines Forschungsinstitut für Industrietechnik].

Alle anderen Texte, Grafiken und Illustrationen © International Baccalaureate Organization 2021

Bitte schreiben Sie nicht auf dieser Seite.

Antworten, die auf dieser Seite geschrieben werden, werden nicht bewertet.

Bitte schreiben Sie nicht auf dieser Seite.

Antworten, die auf dieser Seite geschrieben werden, werden nicht bewertet.

