#### TP2

# Synthèse de filtre en technologie microruban

- Cahier des charges
- Filtres
- Filtre LC
- Filtre à stubs
- Filtre à sauts d'impédance

## Cahier des charges

- Passe bas
- Ordre 5
- Tchebychev
- Ondulation: 0,5dB
- fc=1840MHz
- Adaptation : 50Ω

#### Substrat:

- FR4
- εr=4,7
- H=1,55mm
- t=35μm
- Tanδ=0,014

#### **Filtres**







-150

2e9

4e9

Fréquence (Hz)

6e9

8e9

1e10

# Technologie microruban



#### Filtre LC



|          | Ordre n |       |       |       |       |       |       |       |       |       |
|----------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Indice k | 1       | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |
| 1        | 0,699   | 1,403 | 1,596 | 1,670 | 1,706 | 1,725 | 1,737 | 1,745 | 1,750 | 1,754 |
| 2        |         | 0,707 | 1,097 | 1,193 | 1,230 | 1,248 | 1,258 | 1,265 | 1,269 | 1,272 |
| 3        |         |       | 1,596 | 2,366 | 2,541 | 2,606 | 2,638 | 2,656 | 2,668 | 2,675 |
| 4        |         |       |       | 0,842 | 1,230 | 1,314 | 1,344 | 1,359 | 1,367 | 1,372 |
| 5        |         |       |       |       | 1,706 | 2,476 | 2,638 | 2,696 | 2,724 | 2,739 |
| 6        |         |       |       |       |       | 0,870 | 1,258 | 1,339 | 1,367 | 1,381 |
| 7        |         |       |       |       |       |       | 1,737 | 2,509 | 2,668 | 2,723 |
| 8        |         |       |       |       |       |       |       | 0,880 | 1,269 | 1,348 |
| 9        |         |       |       |       |       |       |       |       | 1,750 | 2,524 |
| 10       |         |       |       |       |       |       |       |       |       | 0,884 |

$$L_k = \frac{Z_0}{\omega_c} g_k$$

$$L_k = \frac{Z_0}{\omega_c} g_k$$

$$C_k = \frac{1}{Z_0 \omega_c} g_k$$

#### Filtre LC

















Subst1 er=4.7 h=1.55 mm t=35 um tand=0.014 rho=16.78e-9 D=0.15e-6



Subst=Subst1 W=x mm L=y mm



MS1 Subst=Subst1 W=1 mm







# Optimisation / Rétro-simulation























- $Zc=10\Omega$
- ZL=96Ω

$$l_{L} = \frac{L_{C}}{Z_{C} \sqrt{\epsilon_{eff}}}$$

$$l_C = \frac{Z_C C_C}{\sqrt{\epsilon_{eff}}}$$





MS<sub>1</sub>

Subst=Subst1

W1=2 mm

W2=1 mm











• fc>3GHz





#### Conclusion



