Higher Dimensional Solution Picking

Brian Cohn and May Szedlák March 11, 2015

Example

$$f = J^{-T}RFa$$

 $f = (\frac{10}{3}, -\frac{53}{3}, 2) \cdot a$

$$f = J^{-T}RFa$$

 $f = (\frac{10}{3}, -\frac{53}{3}, 2) \cdot a$

$$f = J^{-T}RFa$$

 $f = (\frac{10}{3}, -\frac{53}{3}, 2) \cdot a$

$$f = J^{-T}RFa$$

 $f = (\frac{10}{3}, -\frac{53}{3}, 2) \cdot a$

$$1 = (\frac{10}{3}, -\frac{53}{3}, 2) \cdot a$$
 Which a 's satisfy this?

$$f = J^{-T}RFa$$

 $f = (\frac{10}{3}, -\frac{53}{3}, 2) \cdot a$

$$1 = (\frac{10}{3}, -\frac{53}{3}, 2) \cdot a$$
 Which a satisfy this?

$$f = J^{-T}RFa$$

 $f = (\frac{10}{3}, -\frac{53}{3}, 2) \cdot a$

$$1 = (\frac{10}{3}, -\frac{53}{3}, 2) \cdot a$$
 Which a satisfy this?

$$f = J^{-T}RFa$$

 $f = (\frac{10}{3}, -\frac{53}{3}, 2) \cdot a$

 $1 = (\frac{10}{3}, -\frac{53}{3}, 2) \cdot a$ Which a satisfy this?

Polygon in 2 dimensions

How to compute? \rightarrow Problem

$$f = J^{-T}RFa$$

 $f = (\frac{10}{3}, -\frac{53}{3}, 2) \cdot a$

 $1 = (\frac{10}{3}, -\frac{53}{3}, 2) \cdot a$ Which a satisfy this?

Polygon in 2 dimensions

How to compute? \rightarrow Problem

Idea: Sampling points

starting point

starting point

random direc.

starting point

random direc.

endpoints

starting point

random direc.

new point

starting point

random direc.

(1,1,0) m_2 (1,0,0) m_1 m_3 (0,1,0)

new point

restart

starting point

random direc.

(1,1,0) m_2 (1,0,0) m_1 m_3 (0,1,0)

new point

restart

unif. distrib.

Histogram

Barplots

