MATH 6605 Homework 1

Joe Tran

January 12, 2025

Question 1. Let $\Omega = \mathbb{R}$ be the set of real numbers. Describe the σ -algebra generated by each of the following collections of subsets of \mathbb{R} .

- (i) C_1 is the collection of all subsets of $[0, \infty)$.
- (ii) C_2 is the collection of all subsets of $\mathbb R$ that contain exactly three points.

Question 2. Let (Ω, \mathcal{F}, P) be a probability triple. For sets A and B in \mathcal{F} , write $A \equiv B$ if $P(A\Delta B) = 0$. Prove

- (i) The relation " \equiv " is an equivalence relation on \mathcal{F} .
- (ii) If $A \equiv B$, then $P(A) = P(B) = P(A \cap B)$
- (iii) $\{C \in \mathcal{F} : C \equiv \emptyset \text{ or } C \equiv \Omega\}$ is a σ -algebra.

Question 3. Let (Ω, \mathcal{F}, P) be a probability triple. Fix a set $D \in \mathcal{F}$ such that P(D) > 0. Define

$$\mathcal{F}_D = \{ A \in \mathcal{F} : A \subset D \} \qquad P_D(A) = \frac{P(A)}{P(D)}$$

for $A \in \mathcal{F}_D$. Prove that (D, \mathcal{F}_D, P_D) is a probability triple.