LEARN MITRE ATT&CK MAPPING **EFFECTIVELY BASED ON** ATTACK **SCENARIO** SIMULATION

BY IZZMIER IZZUDDIN

ATTACK SCENARIO 1: CREDENTIAL DUMPING AND PRIVILEGE ESCALATION

Steps:

- 1. Initial Access: Exploit a vulnerable service to gain access.
- 2. Privilege Escalation: Exploit a misconfiguration or vulnerability to gain higher privileges.
- 3. Credential Dumping: Extract credentials from memory or files.
- 4. Lateral Movement: Use stolen credentials to move across the network.
- 5. Persistence: Create a backdoor for future access.

Mapping to MITRE ATT&CK

Step	MITRE Tactic	MITRE Technique	Explanation
1. Exploit	Initial Access	T1190: Exploit Public-	Attacker exploits a
Vulnerable	(TA0001)	Facing Application	vulnerability in a public-
Service			facing service (web server,
			RDP).
2. Privilege	Privilege	T1068: Exploitation for	Attacker exploits a
Escalation	Escalation	Privilege Escalation	misconfiguration or
	(TA0004)		vulnerability to gain higher
			privileges (root/admin).
3. Credential	Credential	T1003: Credential	Attacker extracts
Dumping	Access	Dumping	credentials from memory
	(TA0006)		or files (using Mimikatz or
			LSASS memory dumping).
4. Lateral	Lateral	T1078: Valid Accounts	Attacker uses stolen
Movement	Movement		credentials to move to
	(TA0008)		other systems in the
			network.
5. Create	Persistence	T1546.003: Event	Attacker creates a
Backdoor	(TA0003)	Triggered Execution -	backdoor using WMI to
		Windows Management	maintain access.
		Instrumentation (WMI)	

Detailed Explanation

1. Initial Access: Exploit Public-Facing Application (T1190)

- What Happens:
 - The attacker scans the target network for vulnerable services (outdated web servers, unpatched RDP).

- They exploit a vulnerability (CVE-2020-1472 for Zerologon) to gain access.
- MITRE Mapping:
 - o Tactic: Initial Access (TA0001)
 - o Technique: T1190 (Exploit Public-Facing Application)
- Detection:
 - o Monitor for unusual traffic to public-facing services.
 - Use vulnerability scanning tools to identify and patch vulnerabilities.

2. Privilege Escalation: Exploitation for Privilege Escalation (T1068)

- What Happens:
 - The attacker exploits a misconfiguration or vulnerability to escalate privileges (from a regular user to admin/root).
 - Example: Exploiting a Windows kernel vulnerability (CVE-2021-34527 for PrintNightmare).
- MITRE Mapping:
 - Tactic: Privilege Escalation (TA0004)
 - Technique: T1068 (Exploitation for Privilege Escalation)
- Detection:
 - o Monitor for unusual privilege escalation attempts.
 - Use EDR tools to detect exploitation of known vulnerabilities.

3. Credential Dumping: Credential Dumping (T1003)

- What Happens:
 - The attacker uses tools like Mimikatz to dump credentials from memory (LSASS) or files (SAM database).
 - Example: Extracting plaintext passwords or hashes from LSASS.
- MITRE Mapping:
 - Tactic: Credential Access (TA0006)
 - Technique: T1003 (Credential Dumping)
- Detection:
 - Monitor for suspicious processes accessing LSASS memory.
 - Use EDR tools to detect credential dumping tools (Mimikatz).

4. Lateral Movement: Valid Accounts (T1078)

- What Happens:
 - The attacker uses stolen credentials to move to other systems in the network.
 - Example: Using RDP or SMB to access other systems.
- MITRE Mapping:

- Tactic: Lateral Movement (TA0008)
- Technique: T1078 (Valid Accounts)
- Detection:
 - o Monitor for unusual login attempts or access to multiple systems.
 - Use SIEM tools to correlate login events with stolen credentials.

5. Persistence: WMI Event Subscription (T1546.003)

- What Happens:
 - The attacker creates a backdoor using WMI event subscriptions to maintain access.
 - Example: Creating a WMI event that triggers malware execution on system startup.
- MITRE Mapping:
 - Tactic: Persistence (TA0003)
 - Technique: T1546.003 (Event Triggered Execution WMI)
- Detection:
 - Monitor for unusual WMI event subscriptions.
 - o Use EDR tools to detect malicious WMI activity.

SOC Workflow for Detecting and Responding to the Attack

1. Detection

- Exploit Public-Facing Application (T1190):
 - o Tools: IDS/IPS, vulnerability scanners.
 - Indicators: Unusual traffic to public-facing services.
- Privilege Escalation (T1068):
 - o Tools: EDR, SIEM.
 - Indicators: Unusual privilege escalation attempts.
- Credential Dumping (T1003):
 - Tools: EDR, Sysmon.
 - Indicators: Suspicious processes accessing LSASS memory.
- Lateral Movement (T1078):
 - Tools: SIEM, network monitoring tools.
 - o Indicators: Unusual login attempts or access to multiple systems.
- Persistence (T1546.003):
 - o Tools: EDR, SIEM.
 - o Indicators: Unusual WMI event subscriptions.

2. Analysis

- Investigate logs to trace the attack chain.
- Map observed behaviors to MITRE ATT&CK techniques.
- Determine the scope of the attack (affected systems, stolen credentials).

3. Response

- Contain: Isolate affected systems and block malicious activity.
- Eradicate: Remove malicious files, WMI event subscriptions and stolen credentials.
- Recover: Restore systems from backups and verify integrity.
- Communicate: Notify stakeholders about the incident.

4. Post-Incident Activities

- Document the incident and identify gaps in detection or response.
- Improve defenses (patch vulnerabilities, enforce MFA, monitor WMI activity).

Hardening Defenses

- Patch Management: Regularly update and patch systems.
- Credential Protection: Use Credential Guard and limit access to LSASS.
- Network Segmentation: Limit lateral movement by segmenting the network.
- Monitoring: Use EDR and SIEM tools to detect suspicious activity.

SOC Playbook for Credential Dumping Attack

Step	Action	Tools/Techniques
Detection	Monitor for unusual traffic, privilege	IDS/IPS, EDR, SIEM.
	escalation and credential dumping.	
Analysis	Investigate logs and map to MITRE	Sysmon, EDR, MITRE ATT&CK
	ATT&CK.	Navigator.
Containment	Isolate affected systems and block	Network segmentation, EDR.
	malicious activity.	
Eradication	Remove malicious files, WMI event	EDR, manual cleanup.
	subscriptions and stolen	
	credentials.	
Recovery	Restore systems from backups and	Backup solutions, file integrity
	verify integrity.	monitoring.
Post-	Document the incident, identify	Incident report, updated
Incident	gaps and improve defenses.	detection rules, employee
		training.

ATTACK SCENARIO 2: SUPPLY CHAIN COMPROMISE

Steps:

- 1. Initial Access: Compromise a third-party vendor or software.
- 2. Execution: Deliver malicious payload through the supply chain.
- 3. Persistence: Establish persistence in the target environment.
- 4. Lateral Movement: Move laterally within the target network.
- 5. Exfiltration: Steal sensitive data.

Mapping to MITRE ATT&CK

Step	MITRE Tactic	MITRE Technique	Explanation
1. Compromise	Initial Access	T1195: Supply	Attacker compromises a third-
Vendor	(TA0001)	Chain	party vendor or software to gain
		Compromise	access to the target
			organisation.
2. Deliver	Execution	T1204: User	Malicious payload is delivered
Malicious	(TA0002)	Execution	through the supply chain and
Payload			executed by the user (software
			update).
3. Establish	Persistence	T1053:	Attacker creates a scheduled
Persistence	(TA0003)	Scheduled	task to maintain access.
		Task/Job	
4. Lateral	Lateral	T1078: Valid	Attacker uses stolen
Movement	Movement	Accounts	credentials to move to other
	(TA0008)		systems in the network.
5. Exfiltrate	Exfiltration	T1041:	Attacker exfiltrates sensitive
Data	(TA0010)	Exfiltration Over	data over a command-and-
		C2 Channel	control (C2) channel.

Detailed Explanation

1. Initial Access: Supply Chain Compromise (T1195)

- What Happens:
 - The attacker compromises a third-party vendor or software used by the target organisation.
 - Example: Injecting malicious code into a software update (SolarWinds Orion).
- MITRE Mapping:
 - o Tactic: Initial Access (TA0001)
 - o Technique: T1195 (Supply Chain Compromise)

Detection:

- o Monitor for unusual behavior in third-party software.
- Use threat intelligence feeds to identify compromised vendors.

2. Execution: User Execution (T1204)

- What Happens:
 - The malicious payload is delivered through the supply chain and executed by the user (installing a software update).
- MITRE Mapping:
 - Tactic: Execution (TA0002)
 - Technique: T1204 (User Execution)
- Detection:
 - o Monitor for unusual processes or files associated with software updates.
 - Use EDR tools to detect malicious activity.

3. Persistence: Scheduled Task/Job (T1053)

- What Happens:
 - o The attacker creates a scheduled task to maintain access.
 - o Example: Creating a task to run a malicious script daily.
- MITRE Mapping:
 - Tactic: Persistence (TA0003)
 - Technique: T1053 (Scheduled Task/Job)
- Detection:
 - Monitor for unusual scheduled tasks.
 - Use EDR tools to detect malicious tasks.

4. Lateral Movement: Valid Accounts (T1078)

- What Happens:
 - The attacker uses stolen credentials to move to other systems in the network.
 - Example: Using RDP or SMB to access other systems.
- MITRE Mapping:
 - Tactic: Lateral Movement (TA0008)
 - Technique: T1078 (Valid Accounts)
- Detection:
 - Monitor for unusual login attempts or access to multiple systems.
 - Use SIEM tools to correlate login events with stolen credentials.

5. Exfiltration: Exfiltration Over C2 Channel (T1041)

- What Happens:
 - The attacker exfiltrates sensitive data over a command-and-control (C2) channel.
 - o Example: Sending stolen data to an external server.
- MITRE Mapping:
 - Tactic: Exfiltration (TA0010)
 - Technique: T1041 (Exfiltration Over C2 Channel)
- Detection:
 - o Monitor for unusual outbound traffic.
 - Use network monitoring tools to detect data exfiltration.

SOC Workflow for Detecting and Responding to the Attack

1. Detection

- Supply Chain Compromise (T1195):
 - o Tools: Threat intelligence feeds, software inventory tools.
 - o Indicators: Unusual behavior in third-party software.
- User Execution (T1204):
 - o Tools: EDR, SIEM.
 - o Indicators: Unusual processes or files associated with software updates.
- Scheduled Task/Job (T1053):
 - Tools: EDR, Sysmon.
 - o Indicators: Unusual scheduled tasks.
- Lateral Movement (T1078):
 - o Tools: SIEM, network monitoring tools.
 - o Indicators: Unusual login attempts or access to multiple systems.
- Exfiltration (T1041):
 - o Tools: Network monitoring tools, IDS/IPS.
 - Indicators: Unusual outbound traffic.

2. Analysis

- Investigate logs to trace the attack chain.
- Map observed behaviors to MITRE ATT&CK techniques.
- Determine the scope of the attack (affected systems, stolen data).

3. Response

- Contain: Isolate affected systems and block malicious activity.
- Eradicate: Remove malicious files, scheduled tasks and stolen credentials.
- Recover: Restore systems from backups and verify integrity.

• Communicate: Notify stakeholders about the incident.

4. Post-Incident Activities

- Document the incident and identify gaps in detection or response.
- Improve defenses (vet third-party vendors, monitor software updates).

Hardening Defenses

- Vendor Vetting: Assess the security posture of third-party vendors.
- Software Inventory: Maintain an inventory of software and monitor for updates.
- Network Monitoring: Use IDS/IPS and network monitoring tools to detect unusual traffic.
- Endpoint Protection: Deploy EDR tools to detect and block malicious activity.

SOC Playbook for Supply Chain Compromise

Step	Action	Tools/Techniques
Detection	Monitor for unusual behavior in	Threat intelligence feeds, EDR,
	third-party software and updates.	SIEM.
Analysis	Investigate logs and map to MITRE	Sysmon, EDR, MITRE ATT&CK
	ATT&CK.	Navigator.
Containment	Isolate affected systems and	Network segmentation, EDR.
	block malicious activity.	
Eradication	Remove malicious files,	EDR, manual cleanup.
	scheduled tasks and stolen	
	credentials.	
Recovery	Restore systems from backups	Backup solutions, file integrity
	and verify integrity.	monitoring.
Post-	Document the incident, identify	Incident report, updated detection
Incident	gaps and improve defenses.	rules, employee training.

ATTACK SCENARIO 3: FILELESS MALWARE ATTACK

Steps:

- 1. Initial Access: Phishing email with a malicious link.
- 2. Execution: Use PowerShell to execute malicious code in memory.
- 3. Persistence: Create a WMI event subscription for persistence.
- 4. Defense Evasion: Use living-off-the-land binaries (LOLBins) to evade detection.
- 5. Exfiltration: Exfiltrate data over DNS tunneling.

Mapping to MITRE ATT&CK

Step	MITRE Tactic	MITRE Technique	Explanation
1. Phishing	Initial Access	T1566.002: Phishing - Spear	Attacker sends a
Email	(TA0001)	Phishing Link	phishing email with a
			malicious link.
2. PowerShell	Execution	T1059.001: Command and	Attacker uses
Execution	(TA0002)	Scripting Interpreter -	PowerShell to execute
		PowerShell	malicious code in
			memory.
3. WMI Event	Persistence	T1546.003: Event Triggered	Attacker creates a
Subscription	(TA0003)	Execution - Windows	WMI event
		Management	subscription to
		Instrumentation (WMI)	maintain access.
4. Use LOLBins	Defense	T1218: Signed Binary Proxy	Attacker uses
	Evasion	Execution	legitimate system
	(TA0005)		tools (msiexec,
			regsvr32) to evade
			detection.
5. DNS	Exfiltration	T1041: Exfiltration Over C2	Attacker exfiltrates
Tunneling	(TA0010)	Channel	data over DNS
			tunneling.

Detailed Explanation

1. Initial Access: Phishing Email (T1566.002)

- What Happens:
 - o The attacker sends a phishing email with a malicious link.
 - o Example: A link to a malicious website that downloads a script.
- MITRE Mapping:
 - o Tactic: Initial Access (TA0001)
 - o Technique: T1566.002 (Phishing Spear Phishing Link)

Detection:

- Monitor for suspicious emails with links.
- Use email security tools to block phishing attempts.

2. Execution: PowerShell (T1059.001)

- What Happens:
 - o The attacker uses PowerShell to execute malicious code in memory.
 - Example: Downloading and executing a script from a remote server.
- MITRE Mapping:
 - o Tactic: Execution (TA0002)
 - o Technique: T1059.001 (Command and Scripting Interpreter PowerShell)
- Detection:
 - o Monitor for unusual PowerShell activity.
 - Use EDR tools to detect malicious scripts.

3. Persistence: WMI Event Subscription (T1546.003)

- What Happens:
 - o The attacker creates a WMI event subscription to maintain access.
 - Example: Creating a WMI event that triggers malware execution on system startup.
- MITRE Mapping:
 - o Tactic: Persistence (TA0003)
 - Technique: T1546.003 (Event Triggered Execution WMI)
- Detection:
 - o Monitor for unusual WMI event subscriptions.
 - Use EDR tools to detect malicious WMI activity.

4. Defense Evasion: Signed Binary Proxy Execution (T1218)

- What Happens:
 - The attacker uses legitimate system tools (msiexec, regsvr32) to evade detection.
 - Example: Using regsvr32 to execute a malicious script.
- MITRE Mapping:
 - o Tactic: Defense Evasion (TA0005)
 - Technique: T1218 (Signed Binary Proxy Execution)
- Detection:
 - o Monitor for unusual use of LOLBins.
 - Use EDR tools to detect malicious activity.

5. Exfiltration: DNS Tunneling (T1041)

- What Happens:
 - The attacker exfiltrates data over DNS tunneling.
 - Example: Encoding stolen data in DNS queries and sending it to an external server.
- MITRE Mapping:
 - Tactic: Exfiltration (TA0010)
 - o Technique: T1041 (Exfiltration Over C2 Channel)
- Detection:
 - Monitor for unusual DNS traffic.
 - Use network monitoring tools to detect DNS tunneling.

SOC Workflow for Detecting and Responding to the Attack

1. Detection

- Phishing Email (T1566.002):
 - o Tools: Email security solutions.
 - o Indicators: Suspicious emails with links.
- PowerShell Execution (T1059.001):
 - o Tools: EDR, SIEM.
 - Indicators: Unusual PowerShell activity.
- WMI Event Subscription (T1546.003):
 - o Tools: EDR, Sysmon.
 - o Indicators: Unusual WMI event subscriptions.
- Signed Binary Proxy Execution (T1218):
 - o Tools: EDR, SIEM.
 - o Indicators: Unusual use of LOLBins.
- DNS Tunneling (T1041):
 - o Tools: Network monitoring tools, IDS/IPS.
 - Indicators: Unusual DNS traffic.

2. Analysis

- Investigate logs to trace the attack chain.
- Map observed behaviors to MITRE ATT&CK techniques.
- Determine the scope of the attack (affected systems, stolen data).

3. Response

Contain: Isolate affected systems and block malicious activity.

- Eradicate: Remove malicious scripts, WMI event subscriptions and LOLBins.
- Recover: Restore systems from backups and verify integrity.
- Communicate: Notify stakeholders about the incident.

4. Post-Incident Activities

- Document the incident and identify gaps in detection or response.
- Improve defenses (monitor PowerShell activity, restrict LOLBins).

Hardening Defenses

- Email Security: Use advanced email security solutions to block phishing emails.
- PowerShell Restrictions: Restrict PowerShell usage and enable logging.
- WMI Monitoring: Monitor for unusual WMI event subscriptions.
- LOLBin Restrictions: Restrict the use of LOLBins and monitor for unusual activity.
- DNS Monitoring: Use network monitoring tools to detect DNS tunneling.

SOC Playbook for Fileless Malware Attack

Step	Action	Tools/Techniques
Detection	Monitor for phishing emails,	Email security tools, EDR, SIEM,
	PowerShell activity and DNS	network monitoring tools.
	tunneling.	
Analysis	Investigate logs and map to MITRE	Sysmon, EDR, MITRE ATT&CK
	ATT&CK.	Navigator.
Containment	Isolate affected systems and block	Network segmentation, EDR.
	malicious activity.	
Eradication	Remove malicious scripts, WMI	EDR, manual cleanup.
	event subscriptions and LOLBins.	
Recovery	Restore systems from backups	Backup solutions, file integrity
	and verify integrity.	monitoring.
Post-	Document the incident, identify	Incident report, updated detection
Incident	gaps and improve defenses.	rules, employee training.

ATTACK SCENARIO 4: RANSOMWARE ATTACK

Steps:

- 1. Initial Access: Phishing email with a malicious attachment.
- 2. Execution: Malicious macro in the attachment executes PowerShell.
- 3. Persistence: Registry modification to maintain access.
- 4. Defense Evasion: Disabling antivirus software.
- 5. Lateral Movement: Using stolen credentials to move across the network.
- 6. Impact: Deploying ransomware to encrypt files.

Mapping to MITRE ATT&CK

Step	MITRE Tactic	MITRE Technique	Explanation
1. Phishing	Initial Access	T1566.001: Phishing -	Attacker sends a phishing
Email	(TA0001)	Spear Phishing	email with a malicious
		Attachment	attachment (a Word
			document with a macro).
2. Malicious	Execution	T1059.005: Command	The macro executes a
Macro	(TA0002)	and Scripting	PowerShell script to
		Interpreter - Visual	download and run
		Basic	additional malware.
3. Registry Run	Persistence	T1547.001: Boot or	The malware adds a registry
Key	(TA0003)	Logon Autostart	key to ensure it runs on
		Execution - Registry	system startup.
		Run Keys	
4. Disable	Defense	T1562.001: Impair	The malware disables
Antivirus	Evasion	Defenses - Disable or	antivirus software to avoid
	(TA0005)	Modify Tools	detection.
5. Lateral	Lateral	T1078: Valid	The attacker uses stolen
Movement	Movement	Accounts	credentials to move to other
	(TA0008)		systems in the network.
6. Deploy	Impact	T1486: Data	The attacker deploys
Ransomware	(TA0040)	Encrypted for Impact	ransomware to encrypt files
			and demand payment.

Detailed Explanation

1. Initial Access: Phishing Email (T1566.001)

- What Happens:
 - The attacker sends a phishing email to an employee, pretending to be a legitimate sender (HR or IT).

- o The email contains a malicious Word document as an attachment.
- MITRE Mapping:
 - Tactic: Initial Access (TA0001)
 - o Technique: T1566.001 (Phishing Spear Phishing Attachment)
- Detection:
 - o Monitor for suspicious emails with attachments.
 - Use email security tools to block phishing attempts.

2. Execution: Malicious Macro (T1059.005)

- What Happens:
 - The victim opens the Word document and enables macros (if not blocked by default).
 - The macro executes a PowerShell script to download and run additional malware.
- MITRE Mapping:
 - Tactic: Execution (TA0002)
 - o Technique: T1059.005 (Command and Scripting Interpreter Visual Basic)
- Detection:
 - o Monitor for PowerShell execution from Office applications.
 - Use application whitelisting to block unauthorised scripts.

3. Persistence: Registry Run Key (T1547.001)

- What Happens:
 - The malware adds a registry key (HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run) to ensure it runs on system startup.
- MITRE Mapping:
 - Tactic: Persistence (TA0003)
 - Technique: T1547.001 (Boot or Logon Autostart Execution Registry Run Keys)
- Detection:
 - o Monitor for changes to registry run keys.
 - Use endpoint detection tools to alert on suspicious registry modifications.

4. Defense Evasion: Disable Antivirus (T1562.001)

- What Happens:
 - The malware disables antivirus software to avoid detection.
- MITRE Mapping:
 - o Tactic: Defense Evasion (TA0005)

- Technique: T1562.001 (Impair Defenses Disable or Modify Tools)
- Detection:
 - o Monitor for attempts to stop or modify antivirus services.
 - Use EDR tools to detect and block such activities.

5. Lateral Movement: Valid Accounts (T1078)

- What Happens:
 - The attacker uses stolen credentials (from a phishing attack or brute force)
 to move to other systems in the network.
- MITRE Mapping:
 - Tactic: Lateral Movement (TA0008)
 - Technique: T1078 (Valid Accounts)
- Detection:
 - Monitor for unusual login attempts or access to multiple systems.
 - Use multi-factor authentication (MFA) to protect accounts.

6. Impact: Deploy Ransomware (T1486)

- What Happens:
 - The attacker deploys ransomware to encrypt files on the compromised systems.
 - A ransom note is displayed, demanding payment for decryption.
- MITRE Mapping:
 - o Tactic: Impact (TA0040)
 - Technique: T1486 (Data Encrypted for Impact)
- Detection:
 - Monitor for mass file encryption or changes to file extensions.
 - Use backup solutions to recover encrypted files.

SOC Workflow for Detecting and Responding to the Attack

1. Detection

- Phishing Email (T1566.001):
 - o Tools: Email security solutions.
 - o Indicators: Suspicious emails with attachments.
- Malicious Macro (T1059.005):
 - o Tools: EDR, SIEM.
 - Indicators: Unusual PowerShell activity.
- Registry Run Key (T1547.001):
 - o Tools: EDR, Sysmon.

- o Indicators: Unusual registry modifications.
- Disable Antivirus (T1562.001):
 - o Tools: EDR, SIEM.
 - o Indicators: Attempts to stop or modify antivirus services.
- Lateral Movement (T1078):
 - Tools: SIEM, network monitoring tools.
 - o Indicators: Unusual login attempts or access to multiple systems.
- Ransomware Deployment (T1486):
 - Tools: File integrity monitoring, EDR.
 - o Indicators: Mass file encryption or changes to file extensions.

2. Analysis

- Investigate logs to trace the attack chain.
- Map observed behaviors to MITRE ATT&CK techniques.
- Determine the scope of the attack (affected systems, encrypted files).

3. Response

- Contain: Isolate affected systems and block malicious activity.
- Eradicate: Remove malicious files, registry keys and stolen credentials.
- Recover: Restore systems from backups and verify integrity.
- Communicate: Notify stakeholders about the incident.

4. Post-Incident Activities

- Document the incident and identify gaps in detection or response.
- Improve defenses (patch vulnerabilities, enforce MFA, monitor PowerShell activity).

Hardening Defenses

- Email Security: Use advanced email security solutions to block phishing emails.
- Macro Restrictions: Disable macros by default in Office applications.
- Registry Monitoring: Monitor for changes to registry run keys.
- Antivirus Protection: Use EDR tools to detect and block attempts to disable antivirus.
- Network Segmentation: Limit lateral movement by segmenting the network.
- Backup Solutions: Maintain regular backups of critical data.

SOC Playbook for Ransomware Attack

Step Action	Tools/Techniques
-------------	------------------

Detection	Monitor for phishing emails,	Email security tools, EDR, SIEM, file
	PowerShell activity and file	integrity monitoring.
	encryption.	
Analysis	Investigate logs and map to MITRE	Sysmon, EDR, MITRE ATT&CK
	ATT&CK.	Navigator.
Containment	Isolate affected systems and	Network segmentation, EDR.
	block malicious activity.	
Eradication	Remove malicious files, registry	EDR, manual cleanup.
	keys and stolen credentials.	
Recovery	Restore systems from backups	Backup solutions, file integrity
	and verify integrity.	monitoring.
Post-	Document the incident, identify	Incident report, updated detection
Incident	gaps and improve defenses.	rules, employee training.

ATTACK SCENARIO 5: INSIDER THREAT

Steps:

1. Initial Access: Legitimate access to systems and data.

2. Collection: Gather sensitive data.

3. Exfiltration: Transfer data outside the organisation.

4. Covering Tracks: Delete logs or evidence of activity.

Mapping to MITRE ATT&CK

Step	MITRE Tactic	MITRE	Explanation
		Technique	
1. Legitimate	Initial Access	T1078: Valid	The insider uses their legitimate
Access	(TA0001)	Accounts	credentials to access systems and
			data.
2. Data	Collection	T1005: Data from	The insider gathers sensitive data
Collection	(TA0009)	Local System	from the local system or network
			shares.
3. Data	Exfiltration	T1041:	The insider transfers sensitive data
Exfiltration	(TA0010)	Exfiltration Over	outside the organisation using a
		C2 Channel	command-and-control (C2)
			channel.
4. Covering	Defense	T1070: Indicator	The insider deletes logs or other
Tracks	Evasion	Removal on Host	evidence to avoid detection.
	(TA0005)		

Detailed Explanation

1. Initial Access: Valid Accounts (T1078)

- What Happens:
 - o The insider uses their legitimate credentials to access systems and data.
 - o Example: An employee accesses sensitive files on a shared drive.
- MITRE Mapping:
 - o Tactic: Initial Access (TA0001)
 - Technique: T1078 (Valid Accounts)
- Detection:
 - Monitor for unusual access patterns (accessing files outside normal working hours).
 - Use User and Entity Behavior Analytics (UEBA) tools to detect anomalies.

2. Collection: Data from Local System (T1005)

- What Happens:
 - o The insider gathers sensitive data from the local system or network shares.
 - o Example: Copying customer data to a USB drive or personal cloud storage.
- MITRE Mapping:
 - Tactic: Collection (TA0009)
 - Technique: T1005 (Data from Local System)
- Detection:
 - Monitor for unusual file access or copying activities.
 - Use Data Loss Prevention (DLP) tools to detect unauthorised data transfers.

3. Exfiltration: Exfiltration Over C2 Channel (T1041)

- What Happens:
 - The insider transfers sensitive data outside the organisation using a command-and-control (C2) channel.
 - Example: Uploading files to a personal Google Drive or sending them via email.
- MITRE Mapping:
 - Tactic: Exfiltration (TA0010)
 - Technique: T1041 (Exfiltration Over C2 Channel)
- Detection:
 - o Monitor for unusual outbound traffic or file uploads.
 - Use network monitoring tools to detect data exfiltration.

4. Covering Tracks: Indicator Removal on Host (T1070)

- What Happens:
 - o The insider deletes logs or other evidence to avoid detection.
 - Example: Clearing the command history or deleting log files.
- MITRE Mapping:
 - Tactic: Defense Evasion (TA0005)
 - o Technique: T1070 (Indicator Removal on Host)
- Detection:
 - Monitor for suspicious log deletions or modifications.
 - Use centralised logging and SIEM tools to detect tampering.

SOC Workflow for Detecting and Responding to the Attack

1. Detection

- Valid Accounts (T1078):
 - o Tools: UEBA, SIEM.

- Indicators: Unusual access patterns or login attempts.
- Data from Local System (T1005):
 - o Tools: DLP, EDR.
 - o Indicators: Unusual file access or copying activities.
- Exfiltration Over C2 Channel (T1041):
 - Tools: Network monitoring tools, DLP.
 - o Indicators: Unusual outbound traffic or file uploads.
- Indicator Removal on Host (T1070):
 - Tools: SIEM, centralised logging.
 - o Indicators: Suspicious log deletions or modifications.

2. Analysis

- Investigate logs to trace the insider's activities.
- Map observed behaviors to MITRE ATT&CK techniques.
- Determine the scope of the attack (affected systems, stolen data).

3. Response

- Contain: Revoke the insider's access and isolate affected systems.
- Eradicate: Remove any malicious files or tools used by the insider.
- Recover: Restore any lost or corrupted data from backups.
- Communicate: Notify stakeholders about the incident and take appropriate disciplinary actions.

4. Post-Incident Activities

- Document the incident and identify gaps in detection or response.
- Improve defenses (implement stricter access controls, enhance monitoring).

Hardening Defenses

- Access Controls: Implement the principle of least privilege and regularly review access permissions.
- Monitoring: Use UEBA and DLP tools to detect unusual activities.
- Logging: Enable centralised logging and monitor for suspicious log deletions or modifications.
- Training: Conduct regular security awareness training for employees.
- Incident Response: Develop and regularly update an insider threat response plan.

SOC Playbook for Insider Threat

Step Action Tools/Techniques

Detection	Monitor for unusual access	UEBA, DLP, SIEM, network
	patterns, file access and	monitoring tools.
	outbound traffic.	
Analysis	Investigate logs and map to MITRE	SIEM, MITRE ATT&CK Navigator.
	ATT&CK.	
Containment	Revoke the insider's access and	Access control systems, network
	isolate affected systems.	segmentation.
Eradication	Remove any malicious files or	EDR, manual cleanup.
	tools used by the insider.	
Recovery	Restore any lost or corrupted data	Backup solutions, file integrity
	from backups.	monitoring.
Post-	Document the incident, identify	Incident report, updated detection
Incident	gaps and improve defenses.	rules, employee training.

ATTACK SCENARIO 6: ADVANCED PERSISTENT THREAT (APT)

Steps:

- 1. Reconnaissance: Gather information about the target.
- 2. Initial Access: Exploit a vulnerability or use phishing to gain access.
- 3. Execution: Deploy malicious payloads.
- 4. Persistence: Establish a foothold for long-term access.
- 5. Lateral Movement: Move laterally within the network.
- 6. Collection: Gather sensitive data.
- 7. Exfiltration: Transfer data outside the organisation.

Mapping to MITRE ATT&CK

Step	MITRE Tactic	MITRE	Explanation
		Technique	
1.	Reconnaissance	T1595: Active	The attacker gathers
Reconnaissance	(TA0043)	Scanning	information about the
			target's network and
			systems.
2. Initial Access	Initial Access	T1190: Exploit	The attacker exploits a
	(TA0001)	Public-Facing	vulnerability in a public-
		Application	facing service (web server,
			RDP).
3. Execution	Execution	T1059:	The attacker executes
	(TA0002)	Command and	malicious payloads using
		Scripting	command-line interfaces or
		Interpreter	scripts.
4. Persistence	Persistence	T1547: Boot or	The attacker establishes
	(TA0003)	Logon Autostart	persistence by creating a
		Execution	scheduled task or registry
			key.
5. Lateral	Lateral Movement	T1021: Remote	The attacker uses remote
Movement	(TA0008)	Services	services (RDP, SSH) to
			move laterally within the
			network.
6. Collection	Collection	T1005: Data	The attacker gathers
	(TA0009)	from Local	sensitive data from the
		System	local system or network
			shares.
7. Exfiltration	Exfiltration	T1041:	The attacker transfers
	(TA0010)	Exfiltration Over	sensitive data outside the
		C2 Channel	organisation using a

	command-and-control (C2)
	channel.

Detailed Explanation

1. Reconnaissance: Active Scanning (T1595)

- What Happens:
 - o The attacker gathers information about the target's network and systems.
 - Example: Scanning for open ports, services and vulnerabilities.
- MITRE Mapping:
 - Tactic: Reconnaissance (TA0043)
 - Technique: T1595 (Active Scanning)
- Detection:
 - Monitor for unusual scanning activity (port scans, vulnerability scans).
 - Use intrusion detection systems (IDS) to detect reconnaissance attempts.

2. Initial Access: Exploit Public-Facing Application (T1190)

- What Happens:
 - The attacker exploits a vulnerability in a public-facing service (web server, RDP).
 - Example: Exploiting a vulnerability in an unpatched web application.
- MITRE Mapping:
 - o Tactic: Initial Access (TA0001)
 - Technique: T1190 (Exploit Public-Facing Application)
- Detection:
 - Monitor for unusual traffic to public-facing services.
 - o Use vulnerability scanning tools to identify and patch vulnerabilities.

3. Execution: Command and Scripting Interpreter (T1059)

- What Happens:
 - The attacker executes malicious payloads using command-line interfaces or scripts.
 - Example: Running a PowerShell script to download and execute additional malware.
- MITRE Mapping:
 - Tactic: Execution (TA0002)
 - Technique: T1059 (Command and Scripting Interpreter)
- Detection:
 - o Monitor for unusual command-line or script activity.

Use EDR tools to detect malicious scripts.

4. Persistence: Boot or Logon Autostart Execution (T1547)

- What Happens:
 - The attacker establishes persistence by creating a scheduled task or registry key.
 - o Example: Creating a scheduled task to run a malicious script daily.
- MITRE Mapping:
 - Tactic: Persistence (TA0003)
 - o Technique: T1547 (Boot or Logon Autostart Execution)
- Detection:
 - o Monitor for unusual scheduled tasks or registry modifications.
 - Use EDR tools to detect malicious tasks.

5. Lateral Movement: Remote Services (T1021)

- What Happens:
 - o The attacker uses remote services (RDP, SSH) to move laterally within the network
 - o Example: Using stolen credentials to access other systems via RDP.
- MITRE Mapping:
 - Tactic: Lateral Movement (TA0008)
 - o Technique: T1021 (Remote Services)
- Detection:
 - o Monitor for unusual remote login attempts or access to multiple systems.
 - Use SIEM tools to correlate login events with stolen credentials.

6. Collection: Data from Local System (T1005)

- What Happens:
 - The attacker gathers sensitive data from the local system or network shares.
 - Example: Copying customer data to a USB drive or personal cloud storage.
- MITRE Mapping:
 - Tactic: Collection (TA0009)
 - o Technique: T1005 (Data from Local System)
- Detection:
 - Monitor for unusual file access or copying activities.
 - Use Data Loss Prevention (DLP) tools to detect unauthorised data transfers.

7. Exfiltration: Exfiltration Over C2 Channel (T1041)

- What Happens:
 - The attacker transfers sensitive data outside the organisation using a command-and-control (C2) channel.
 - Example: Uploading files to a personal Google Drive or sending them via email.
- MITRE Mapping:
 - o Tactic: Exfiltration (TA0010)
 - Technique: T1041 (Exfiltration Over C2 Channel)
- Detection:
 - o Monitor for unusual outbound traffic or file uploads.
 - Use network monitoring tools to detect data exfiltration.

SOC Workflow for Detecting and Responding to the Attack

1. Detection

- Active Scanning (T1595):
 - Tools: IDS/IPS, vulnerability scanners.
 - Indicators: Unusual scanning activity.
- Exploit Public-Facing Application (T1190):
 - o Tools: IDS/IPS, vulnerability scanners.
 - o Indicators: Unusual traffic to public-facing services.
- Command and Scripting Interpreter (T1059):
 - o Tools: EDR, SIEM.
 - o Indicators: Unusual command-line or script activity.
- Boot or Logon Autostart Execution (T1547):
 - Tools: EDR, Sysmon.
 - o Indicators: Unusual scheduled tasks or registry modifications.
- Remote Services (T1021):
 - o Tools: SIEM, network monitoring tools.
 - Indicators: Unusual remote login attempts or access to multiple systems.
- Data from Local System (T1005):
 - Tools: DLP, EDR.
 - o Indicators: Unusual file access or copying activities.
- Exfiltration Over C2 Channel (T1041):
 - Tools: Network monitoring tools, DLP.
 - o Indicators: Unusual outbound traffic or file uploads.

2. Analysis

- Investigate logs to trace the attack chain.
- Map observed behaviors to MITRE ATT&CK techniques.

• Determine the scope of the attack (affected systems, stolen data).

3. Response

- Contain: Isolate affected systems and block malicious activity.
- Eradicate: Remove malicious files, scheduled tasks and stolen credentials.
- Recover: Restore systems from backups and verify integrity.
- Communicate: Notify stakeholders about the incident.

4. Post-Incident Activities

- Document the incident and identify gaps in detection or response.
- Improve defenses (patch vulnerabilities, enhance monitoring).

Hardening Defenses

- Patch Management: Regularly update and patch systems.
- Access Controls: Implement the principle of least privilege and regularly review access permissions.
- Monitoring: Use UEBA and DLP tools to detect unusual activities.
- Logging: Enable centralised logging and monitor for suspicious log deletions or modifications.
- Training: Conduct regular security awareness training for employees.
- Incident Response: Develop and regularly update an incident response plan.

SOC Playbook for APT Attack

Step	Action	Tools/Techniques
Detection	Monitor for unusual scanning,	IDS/IPS, EDR, SIEM, network
	traffic and file access.	monitoring tools.
Analysis	Investigate logs and map to	SIEM, MITRE ATT&CK Navigator.
	MITRE ATT&CK.	
Containment	Isolate affected systems and	Network segmentation, EDR.
	block malicious activity.	
Eradication	Remove malicious files,	EDR, manual cleanup.
	scheduled tasks and stolen	
	credentials.	
Recovery	Restore systems from backups	Backup solutions, file integrity
	and verify integrity.	monitoring.
Post-	Document the incident, identify	Incident report, updated detection
Incident	gaps and improve defenses.	rules, employee training.

ATTACK SCENARIO 7: MAN-IN-THE-MIDDLE (MITM) ATTACK

Steps:

- 1. Reconnaissance: Gather information about the target network.
- 2. Initial Access: Position the attacker between the victim and the target.
- 3. Collection: Intercept and collect sensitive data.
- 4. Exfiltration: Transfer collected data to the attacker's system.

Mapping to MITRE ATT&CK

Step	MITRE Tactic	MITRE	Explanation
		Technique	
1.	Reconnaissance	T1590: Gather	The attacker gathers
Reconnaissance	(TA0043)	Victim Network	information about the
		Information	target network (IP
			addresses, network
			topology).
2. Initial Access	Initial Access	T1557:	The attacker positions
	(TA0001)	Adversary-in-	themselves between the
		the-Middle	victim and the target (ARP
			spoofing, DNS spoofing).
3. Collection	Collection	T1003:	The attacker intercepts and
	(TA0009)	Credential	collects sensitive data
		Dumping	(login credentials, financial
			data).
4. Exfiltration	Exfiltration	T1041:	The attacker transfers
	(TA0010)	Exfiltration Over	collected data to their
		C2 Channel	system.

Detailed Explanation

1. Reconnaissance: Gather Victim Network Information (T1590)

- What Happens:
 - The attacker gathers information about the target network (IP addresses, network topology).
 - Example: Using tools like Nmap to scan the network.
- MITRE Mapping:
 - o Tactic: Reconnaissance (TA0043)
 - Technique: T1590 (Gather Victim Network Information)
- Detection:
 - Monitor for unusual scanning activity (port scans, network mapping).

Use intrusion detection systems (IDS) to detect reconnaissance attempts.

2. Initial Access: Adversary-in-the-Middle (T1557)

- What Happens:
 - The attacker positions themselves between the victim and the target (ARP spoofing, DNS spoofing).
 - Example: Using tools like Ettercap to perform ARP spoofing.
- MITRE Mapping:
 - o Tactic: Initial Access (TA0001)
 - Technique: T1557 (Adversary-in-the-Middle)
- Detection:
 - Monitor for unusual ARP or DNS traffic.
 - Use network monitoring tools to detect spoofing attempts.

3. Collection: Credential Dumping (T1003)

- What Happens:
 - The attacker intercepts and collects sensitive data (login credentials, financial data).
 - Example: Capturing login credentials from unencrypted HTTP traffic.
- MITRE Mapping:
 - Tactic: Collection (TA0009)
 - Technique: T1003 (Credential Dumping)
- Detection:
 - o Monitor for unusual traffic patterns or unencrypted data transmission.
 - Use Data Loss Prevention (DLP) tools to detect unauthorised data transfers.

4. Exfiltration: Exfiltration Over C2 Channel (T1041)

- What Happens:
 - o The attacker transfers collected data to their system.
 - Example: Sending captured credentials to an external server.
- MITRE Mapping:
 - Tactic: Exfiltration (TA0010)
 - o Technique: T1041 (Exfiltration Over C2 Channel)
- Detection:
 - Monitor for unusual outbound traffic or file uploads.
 - Use network monitoring tools to detect data exfiltration.

SOC Workflow for Detecting and Responding to the Attack

1. Detection

- Gather Victim Network Information (T1590):
 - o Tools: IDS/IPS, vulnerability scanners.
 - Indicators: Unusual scanning activity.
- Adversary-in-the-Middle (T1557):
 - o Tools: Network monitoring tools.
 - o Indicators: Unusual ARP or DNS traffic.
- Credential Dumping (T1003):
 - o Tools: DLP, EDR.
 - o Indicators: Unusual traffic patterns or unencrypted data transmission.
- Exfiltration Over C2 Channel (T1041):
 - Tools: Network monitoring tools, DLP.
 - o Indicators: Unusual outbound traffic or file uploads.

2. Analysis

- Investigate logs to trace the attack chain.
- Map observed behaviors to MITRE ATT&CK techniques.
- Determine the scope of the attack (affected systems, stolen data).

3. Response

- Contain: Isolate affected systems and block malicious activity.
- Eradicate: Remove malicious files and tools used by the attacker.
- Recover: Restore systems from backups and verify integrity.
- **Communicate:** Notify stakeholders about the incident.

4. Post-Incident Activities

- Document the incident and identify gaps in detection or response.
- Improve defenses (implement encryption, enhance monitoring).

Hardening Defenses

- Encryption: Use encryption (HTTPS, VPN) to protect sensitive data in transit.
- Network Segmentation: Segment the network to limit the impact of MITM attacks.
- Monitoring: Use network monitoring tools to detect unusual traffic patterns.
- Training: Conduct regular security awareness training for employees.
- Incident Response: Develop and regularly update an incident response plan.

SOC Playbook for MITM Attack

Step	Action	Tools/Techniques
Detection	Monitor for unusual scanning,	IDS/IPS, EDR, SIEM, network
	traffic and file access.	monitoring tools.
Analysis	Investigate logs and map to	SIEM, MITRE ATT&CK Navigator.
	MITRE ATT&CK.	
Containment	Isolate affected systems and	Network segmentation, EDR.
	block malicious activity.	
Eradication	Remove malicious files and	EDR, manual cleanup.
	tools used by the attacker.	
Recovery	Restore systems from backups	Backup solutions, file integrity
	and verify integrity.	monitoring.
Post-	Document the incident, identify	Incident report, updated detection
Incident	gaps and improve defenses.	rules, employee training.

ATTACK SCENARIO 8: ZERO-DAY EXPLOIT

Steps:

- 1. Reconnaissance: Gather information about the target.
- 2. Initial Access: Exploit a zero-day vulnerability to gain access.
- 3. Execution: Execute malicious payloads.
- 4. Persistence: Establish a foothold for long-term access.
- 5. Lateral Movement: Move laterally within the network.
- 6. Collection: Gather sensitive data.
- 7. Exfiltration: Transfer data outside the organisation.

Mapping to MITRE ATT&CK

Step	MITRE Tactic	MITRE	Explanation
		Technique	
1.	Reconnaissance	T1595: Active	The attacker gathers
Reconnaissance	(TA0043)	Scanning	information about the
			target's network and
			systems.
2. Initial Access	Initial Access	T1190: Exploit	The attacker exploits a
	(TA0001)	Public-Facing	zero-day vulnerability in a
		Application	public-facing service (web
			server, RDP).
3. Execution	Execution	T1059:	The attacker executes
	(TA0002)	Command and	malicious payloads using
		Scripting	command-line interfaces or
		Interpreter	scripts.
4. Persistence	Persistence	T1547: Boot or	The attacker establishes
	(TA0003)	Logon Autostart	persistence by creating a
		Execution	scheduled task or registry
			key.
5. Lateral	Lateral Movement	T1021: Remote	The attacker uses remote
Movement	(TA0008)	Services	services (RDP, SSH) to
			move laterally within the
			network.
6. Collection	Collection	T1005: Data	The attacker gathers
	(TA0009)	from Local	sensitive data from the
		System	local system or network
			shares.
7. Exfiltration	Exfiltration	T1041:	The attacker transfers
	(TA0010)	Exfiltration Over	sensitive data outside the
		C2 Channel	organisation using a

	command-and-control (C2)
	channel.

Detailed Explanation

1. Reconnaissance: Active Scanning (T1595)

- What Happens:
 - o The attacker gathers information about the target's network and systems.
 - Example: Scanning for open ports, services and vulnerabilities.
- MITRE Mapping:
 - Tactic: Reconnaissance (TA0043)
 - Technique: T1595 (Active Scanning)
- Detection:
 - Monitor for unusual scanning activity (port scans, vulnerability scans).
 - Use intrusion detection systems (IDS) to detect reconnaissance attempts.

2. Initial Access: Exploit Public-Facing Application (T1190)

- What Happens:
 - The attacker exploits a zero-day vulnerability in a public-facing service (web server, RDP).
 - o Example: Exploiting a vulnerability in an unpatched web application.
- MITRE Mapping:
 - Tactic: Initial Access (TA0001)
 - Technique: T1190 (Exploit Public-Facing Application)
- Detection:
 - Monitor for unusual traffic to public-facing services.
 - o Use vulnerability scanning tools to identify and patch vulnerabilities.

3. Execution: Command and Scripting Interpreter (T1059)

- What Happens:
 - The attacker executes malicious payloads using command-line interfaces or scripts.
 - Example: Running a PowerShell script to download and execute additional malware.
- MITRE Mapping:
 - Tactic: Execution (TA0002)
 - Technique: T1059 (Command and Scripting Interpreter)
- Detection:
 - o Monitor for unusual command-line or script activity.

Use EDR tools to detect malicious scripts.

4. Persistence: Boot or Logon Autostart Execution (T1547)

- What Happens:
 - The attacker establishes persistence by creating a scheduled task or registry key.
 - o Example: Creating a scheduled task to run a malicious script daily.
- MITRE Mapping:
 - o Tactic: Persistence (TA0003)
 - o Technique: T1547 (Boot or Logon Autostart Execution)
- Detection:
 - o Monitor for unusual scheduled tasks or registry modifications.
 - Use EDR tools to detect malicious tasks.

5. Lateral Movement: Remote Services (T1021)

- What Happens:
 - The attacker uses remote services (RDP, SSH) to move laterally within the network.
 - o Example: Using stolen credentials to access other systems via RDP.
- MITRE Mapping:
 - Tactic: Lateral Movement (TA0008)
 - o Technique: T1021 (Remote Services)
- Detection:
 - o Monitor for unusual remote login attempts or access to multiple systems.
 - Use SIEM tools to correlate login events with stolen credentials.

6. Collection: Data from Local System (T1005)

- What Happens:
 - The attacker gathers sensitive data from the local system or network shares.
 - Example: Copying customer data to a USB drive or personal cloud storage.
- MITRE Mapping:
 - Tactic: Collection (TA0009)
 - o Technique: T1005 (Data from Local System)
- Detection:
 - Monitor for unusual file access or copying activities.
 - Use Data Loss Prevention (DLP) tools to detect unauthorised data transfers.

7. Exfiltration: Exfiltration Over C2 Channel (T1041)

- What Happens:
 - The attacker transfers sensitive data outside the organisation using a command-and-control (C2) channel.
 - Example: Uploading files to a personal Google Drive or sending them via email.
- MITRE Mapping:
 - Tactic: Exfiltration (TA0010)
 - Technique: T1041 (Exfiltration Over C2 Channel)
- Detection:
 - o Monitor for unusual outbound traffic or file uploads.
 - Use network monitoring tools to detect data exfiltration.

SOC Workflow for Detecting and Responding to the Attack

1. Detection

- Active Scanning (T1595):
 - Tools: IDS/IPS, vulnerability scanners.
 - Indicators: Unusual scanning activity.
- Exploit Public-Facing Application (T1190):
 - o Tools: IDS/IPS, vulnerability scanners.
 - o Indicators: Unusual traffic to public-facing services.
- Command and Scripting Interpreter (T1059):
 - o Tools: EDR, SIEM.
 - o Indicators: Unusual command-line or script activity.
- Boot or Logon Autostart Execution (T1547):
 - Tools: EDR, Sysmon.
 - o Indicators: Unusual scheduled tasks or registry modifications.
- Remote Services (T1021):
 - o Tools: SIEM, network monitoring tools.
 - Indicators: Unusual remote login attempts or access to multiple systems.
- Data from Local System (T1005):
 - o Tools: DLP, EDR.
 - o Indicators: Unusual file access or copying activities.
- Exfiltration Over C2 Channel (T1041):
 - Tools: Network monitoring tools, DLP.
 - o Indicators: Unusual outbound traffic or file uploads.

2. Analysis

- Investigate logs to trace the attack chain.
- Map observed behaviors to MITRE ATT&CK techniques.

• Determine the scope of the attack (affected systems, stolen data).

3. Response

- Contain: Isolate affected systems and block malicious activity.
- Eradicate: Remove malicious files, scheduled tasks and stolen credentials.
- **Recover:** Restore systems from backups and verify integrity.
- **Communicate:** Notify stakeholders about the incident.

4. Post-Incident Activities

- Document the incident and identify gaps in detection or response.
- Improve defenses (patch vulnerabilities, enhance monitoring).

Hardening Defenses

- Patch Management: Regularly update and patch systems.
- Access Controls: Implement the principle of least privilege and regularly review access permissions.
- Monitoring: Use UEBA and DLP tools to detect unusual activities.
- Logging: Enable centralised logging and monitor for suspicious log deletions or modifications.
- Training: Conduct regular security awareness training for employees.
- Incident Response: Develop and regularly update an incident response plan.

SOC Playbook for Zero-Day Exploit

Step	Action	Tools/Techniques
Detection	Monitor for unusual scanning,	IDS/IPS, EDR, SIEM, network
	traffic and file access.	monitoring tools.
Analysis	Investigate logs and map to	SIEM, MITRE ATT&CK Navigator.
	MITRE ATT&CK.	
Containment	Isolate affected systems and	Network segmentation, EDR.
	block malicious activity.	
Eradication	Remove malicious files,	EDR, manual cleanup.
	scheduled tasks and stolen	
	credentials.	
Recovery	Restore systems from backups	Backup solutions, file integrity
	and verify integrity.	monitoring.
Post-	Document the incident, identify	Incident report, updated detection
Incident	gaps and improve defenses.	rules, employee training.

ATTACK SCENARIO 9: DISTRIBUTED DENIAL OF SERVICE (DDOS) ATTACK

Steps:

- 1. Reconnaissance: Gather information about the target.
- 2. Resource Development: Set up botnets or other resources for the attack.
- 3. Initial Access: Launch the DDoS attack.
- 4. Impact: Overwhelm the target system, service or network.

Mapping to MITRE ATT&CK

Step	MITRE Tactic	MITRE Technique	Explanation
1.	Reconnaissance	T1595: Active	The attacker gathers
Reconnaissance	(TA0043)	Scanning	information about the
			target's network and
			systems.
2. Resource	Resource	T1583: Acquire	The attacker sets up
Development	Development	Infrastructure	botnets or other
	(TA0042)		resources for the
			attack.
3. Initial Access	Initial Access	T1498: Network	The attacker launches
	(TA0001)	Denial of Service	the DDoS attack to
			overwhelm the target.
4. Impact	Impact (TA0040)	T1499: Endpoint	The attacker
		Denial of Service	overwhelms the target
			system, service or
			network.

Detailed Explanation

1. Reconnaissance: Active Scanning (T1595)

- What Happens:
 - o The attacker gathers information about the target's network and systems.
 - Example: Scanning for open ports, services and vulnerabilities.
- MITRE Mapping:
 - Tactic: Reconnaissance (TA0043)
 - o Technique: T1595 (Active Scanning)
- Detection:
 - o Monitor for unusual scanning activity (port scans, vulnerability scans).
 - Use intrusion detection systems (IDS) to detect reconnaissance attempts.

2. Resource Development: Acquire Infrastructure (T1583)

- What Happens:
 - o The attacker sets up botnets or other resources for the attack.
 - Example: Compromising IoT devices to create a botnet.
- MITRE Mapping:
 - Tactic: Resource Development (TA0042)
 - Technique: T1583 (Acquire Infrastructure)
- Detection:
 - Monitor for unusual traffic patterns or compromised devices.
 - Use network monitoring tools to detect botnet activity.

3. Initial Access: Network Denial of Service (T1498)

- What Happens:
 - o The attacker launches the DDoS attack to overwhelm the target.
 - Example: Flooding the target with SYN packets or HTTP requests.
- MITRE Mapping:
 - o Tactic: Initial Access (TA0001)
 - Technique: T1498 (Network Denial of Service)
- Detection:
 - Monitor for unusual traffic spikes or patterns.
 - Use DDoS protection services (Cloudflare, Akamai) to detect and mitigate attacks.

4. Impact: Endpoint Denial of Service (T1499)

- What Happens:
 - The attacker overwhelms the target system, service or network.
 - Example: Crashing a web server by exhausting its resources.
- MITRE Mapping:
 - Tactic: Impact (TA0040)
 - o Technique: T1499 (Endpoint Denial of Service)
- Detection:
 - Monitor for unusual resource usage or system crashes.
 - Use endpoint monitoring tools to detect resource exhaustion.

SOC Workflow for Detecting and Responding to the Attack

1. Detection

- Active Scanning (T1595):
 - Tools: IDS/IPS, vulnerability scanners.
 - Indicators: Unusual scanning activity.

- Acquire Infrastructure (T1583):
 - Tools: Network monitoring tools.
 - o Indicators: Unusual traffic patterns or compromised devices.
- Network Denial of Service (T1498):
 - o Tools: DDoS protection services, network monitoring tools.
 - o Indicators: Unusual traffic spikes or patterns.
- Endpoint Denial of Service (T1499):
 - Tools: Endpoint monitoring tools.
 - Indicators: Unusual resource usage or system crashes.

2. Analysis

- Investigate logs to trace the attack chain.
- Map observed behaviors to MITRE ATT&CK techniques.
- Determine the scope of the attack (affected systems, services).

3. Response

- Contain: Isolate affected systems and block malicious traffic.
- Eradicate: Remove malicious traffic and restore normal operations.
- Recover: Restore systems from backups and verify integrity.
- Communicate: Notify stakeholders about the incident.

4. Post-Incident Activities

- Document the incident and identify gaps in detection or response.
- Improve defenses (implement DDoS protection, enhance monitoring).

Hardening Defenses

- DDoS Protection: Use DDoS protection services (Cloudflare, Akamai) to detect and mitigate attacks.
- Network Monitoring: Use network monitoring tools to detect unusual traffic patterns.
- Endpoint Protection: Use endpoint monitoring tools to detect resource exhaustion.
- Training: Conduct regular security awareness training for employees.
- Incident Response: Develop and regularly update an incident response plan.

SOC Playbook for DDoS Attack

Step	Action	Tools/Techniques
Detection	Monitor for unusual scanning,	IDS/IPS, DDoS protection services,
	traffic and resource usage.	network monitoring tools.

Analysis	Investigate logs and map to MITRE ATT&CK.	SIEM, MITRE ATT&CK Navigator.
Containment	Isolate affected systems and block malicious traffic.	Network segmentation, DDoS protection services.
Eradication	Remove malicious traffic and restore normal operations.	DDoS protection services, manual cleanup.
Recovery	Restore systems from backups and verify integrity.	Backup solutions, file integrity monitoring.
Post- Incident	Document the incident, identify gaps and improve defenses.	Incident report, updated detection rules, employee training.

ATTACK SCENARIO 10: SQL INJECTION

Steps:

- 1. Reconnaissance: Gather information about the target web application.
- 2. Initial Access: Exploit a SQL injection vulnerability to gain access.
- 3. Collection: Extract sensitive data from the database.
- 4. Exfiltration: Transfer collected data outside the organisation.

Mapping to MITRE ATT&CK

Step	MITRE Tactic	MITRE Technique	Explanation
1.	Reconnaissance	T1595: Active	The attacker gathers
Reconnaissance	(TA0043)	Scanning	information about the
			target web application
			(URLs, input fields).
2. Initial Access	Initial Access	T1190: Exploit	The attacker exploits a SQL
	(TA0001)	Public-Facing	injection vulnerability in
		Application	the web application.
3. Collection	Collection	T1003:	The attacker extracts
	(TA0009)	Credential	sensitive data from the
		Dumping	database.
4. Exfiltration	Exfiltration	T1041:	The attacker transfers
	(TA0010)	Exfiltration Over	collected data outside the
		C2 Channel	organisation.

Detailed Explanation

1. Reconnaissance: Active Scanning (T1595)

- What Happens:
 - The attacker gathers information about the target web application (URLs, input fields).
 - Example: Using tools like Burp Suite to identify potential injection points.
- MITRE Mapping:
 - o Tactic: Reconnaissance (TA0043)
 - Technique: T1595 (Active Scanning)
- Detection:
 - Monitor for unusual scanning activity (port scans, vulnerability scans).
 - Use web application firewalls (WAF) to detect reconnaissance attempts.

2. Initial Access: Exploit Public-Facing Application (T1190)

- What Happens:
 - o The attacker exploits a SQL injection vulnerability in the web application.
 - Example: Injecting malicious SQL queries into input fields.
- MITRE Mapping:
 - Tactic: Initial Access (TA0001)
 - Technique: T1190 (Exploit Public-Facing Application)
- Detection:
 - Monitor for unusual SQL queries or error messages.
 - Use WAF to detect and block SQL injection attempts.

3. Collection: Credential Dumping (T1003)

- What Happens:
 - The attacker extracts sensitive data from the database.
 - o Example: Retrieving user credentials or financial data.
- MITRE Mapping:
 - Tactic: Collection (TA0009)
 - Technique: T1003 (Credential Dumping)
- Detection:
 - Monitor for unusual database queries or data access patterns.
 - Use database activity monitoring tools to detect unauthorised access.

4. Exfiltration: Exfiltration Over C2 Channel (T1041)

- What Happens:
 - o The attacker transfers collected data outside the organisation.
 - o Example: Sending stolen data to an external server.
- MITRE Mapping:
 - Tactic: Exfiltration (TA0010)
 - Technique: T1041 (Exfiltration Over C2 Channel)
- Detection:
 - o Monitor for unusual outbound traffic or file uploads.
 - o Use network monitoring tools to detect data exfiltration.

SOC Workflow for Detecting and Responding to the Attack

1. Detection

- Active Scanning (T1595):
 - o Tools: WAF, IDS/IPS.
 - Indicators: Unusual scanning activity.
- Exploit Public-Facing Application (T1190):

- o Tools: WAF, SIEM.
- o Indicators: Unusual SQL queries or error messages.
- Credential Dumping (T1003):
 - o Tools: Database activity monitoring tools.
 - o Indicators: Unusual database queries or data access patterns.
- Exfiltration Over C2 Channel (T1041):
 - o Tools: Network monitoring tools.
 - o Indicators: Unusual outbound traffic or file uploads.

2. Analysis

- Investigate logs to trace the attack chain.
- Map observed behaviors to MITRE ATT&CK techniques.
- Determine the scope of the attack (affected systems, stolen data).

3. Response

- Contain: Isolate affected systems and block malicious traffic.
- **Eradicate:** Remove malicious SQL queries and restore normal operations.
- Recover: Restore systems from backups and verify integrity.
- Communicate: Notify stakeholders about the incident.

4. Post-Incident Activities

- Document the incident and identify gaps in detection or response.
- Improve defenses (implement WAF, enhance monitoring).

Hardening Defenses

- Web Application Firewall (WAF): Use WAF to detect and block SQL injection attempts.
- Input Validation: Implement input validation to prevent SQL injection.
- Database Monitoring: Use database activity monitoring tools to detect unauthorised access.
- Training: Conduct regular security awareness training for developers.
- Incident Response: Develop and regularly update an incident response plan.

SOC Playbook for SQL Injection Attack

Step	Action	Tools/Techniques
Detection	Monitor for unusual scanning, SQL	WAF, IDS/IPS, database activity
	queries and data access patterns.	monitoring tools.
Analysis	Investigate logs and map to MITRE	SIEM, MITRE ATT&CK Navigator.
	ATT&CK.	

Containment	Isolate affected systems and	Network segmentation, WAF.
	block malicious traffic.	
Eradication	Remove malicious SQL queries	WAF, manual cleanup.
	and restore normal operations.	
Recovery	Restore systems from backups	Backup solutions, file integrity
	and verify integrity.	monitoring.
Post-	Document the incident, identify	Incident report, updated detection
Incident	gaps and improve defenses.	rules, employee training.