Моделі схем електронних пристроїв

- 1. Комутаційна схема (КС)
- 2. Опис КС графами
- 3. Опис КС матрицями

Ієрархія конструктивно-функциональних модулів

Задачі конструкторського проектування належать до класу комбінаторних оптимізаційних задач.

Кожен функціональний вузол, згідно ієрархічній моделі, характеризується своєю схемою: структурною, функціональною, принциповою електромонтажною, і т.д., кінематичною.

Будь-яка схема функционального вузла, пристрою, ЕОС, ЕОА, ЕОМ (структурна, функциональна, принципова, або електромонтажна) складається з **множини елементів** $X = \left\{x_1, \, x_2, \dots, x_i, \dots \, x_n\right\}$, де $i = \overline{1, n}$.

Нумерація наскрізна. Елементи по рівням конструкторської ієрархії. Принципова схема. Включаючи дискретні компоненти: R, C, VD, P,

Множина елементів зв'язана між собою, згідно схеми, множиною електронних ланцюгів $V = \left\{ v_1, \ v_2, ..., v_j, ..., v_m \right\}$, де $j = \overline{1, m}$.

Нумерація наскрізна. Наскрізна нумерація зручна при трасируванні.

Кожен елемент X_i схеми $x_i \in X$, $i = \overline{1,n}$ має деяку множину виводів (*кількість виводів у компонентів різна: R,C = 2; VT= 3, 4; IMC = 14, 16 ...*):

$$C_i = \left\{c_{i1}, c_{i2}, \dots, c_{il}, \dots c_k\right\}$$
, де $j = \overline{1, m}$.

Які разом з множиною зовнішніх виводів схеми C_0 утворюють множину з'єднувальних

виводів схеми
$$C = \bigcup_{i=0}^n C_i$$

Таким чином уявлення схеми пристрою у вигляді множини елементів $\{X\}$, множини електричних ланцюгів $\{V\}$ та множини з'єднувальних виводів $\{C\}$ називається комутаційною схемою (КС).

Приклад комутаційної схеми

Рекомендації:

- пронумерувати КЕ
- пронумерувати виводи КЕ
- пронумерувати ланцюги

Елементи пронумеровані по порядку незалежно від типу (майте на увазі, що перелік компонентів пронумерованний по типам у вашому КП).

* Нумерація елементів наскрізь, а не по типам елементів, як ви робили при побудові схеми електричної принципової

 X_0 - роз'єм

 $C_{01} \div C_{05}$ - множина зовнішніх виводів (блоку, панелі та ін)

 $X_{1},...,X_{5}$ - множина елементів КС

 C_{11}, \dots, C_{63} - множина виводів елеменів

 $V_{\scriptscriptstyle 1}, \ldots, V_{\scriptscriptstyle 5}$ - множина ланцюгів

Введемо визначення та параметри для КС

В КС електричний ланцюг $v_j \in V$ j=1, m об'єднує деяку множину виводів $c_{il} \in C$, що належать одному або різним елементам.

В ваших схемах були IC, в яких були з'єднані декілька виводів одним ланцюгом. На нашій КС таких ланцюгу немає. але є декілька ланцюгів, що з'єднують виводи різних елементів: $V_3 \to C_{13}, C_{21}, C_{43}, C_{61}$ $V_5 \to C_{23}, C_{51}$

Якщо є елемент, у якого виводи з'єднані електричним ланцюгом, то його необхідно обозначити V_f . Тоді $V_f \to C_{lp} C_{lw}$

Сукупність еквіпотенціальних виводів, що належать одному електричному ланцюгу, називається **комплексом** ρ (можна сказати так: елетричний ланцюг об'єднує деяку підмножину виводів елементів).

Число виводів в комплексі визначає розмір комплексу ρ_i . $\rho = \left\{ \rho_1, \, \rho_2, ..., \rho_j, ... \, \rho_m \right\}$ Для нашого прикладу КС: $\rho = \left\{ 3, \, 3, 4 \, ... \, \right\}$

Враховуючи взаємооднозначне співвідношення між множиною компонентів та множиною електричних ланцюгів, будемо їх обозначати однаково:

$$v_j \in V \ j = \overline{1, m}; \rho_j \in \rho \ j = \overline{1, m}$$

Множина комплексів (електричних ланцюгів) $V = \{v_1, v_2, ..., v_j, ..., v_m\}$ представляє собою **розбиття** множини виводів C на перетинаючі підмножини (класи еквівалентності).

Умови розбиття:

- 1. Якщо $\left(\forall v_j \in V\right)$ то $\left\lceil v_j \neq 0 \right\rceil$. Кожен ел. ланцюг включає кінцеве число виводів.
- 2. Якщо $(\forall v_i, v_j \in V)$ то $[v_i \cap v_j = 0]$. Різні ел. ланцюги не повинні включати виводи, що не входять до них. Або виводи, що належать різним ел ланцюгам електрично між собою не зв'язанні.

Один з параметрів КС визначає загальну кількість з'єднаних виводів в схемі

$$K = \sum_{i=0}^{n} k_i \ge \sum_{i=1}^{m} \rho_i$$

 k_i - кількість з'єднувальних виводів елемента $x_i \in X$

n - кількість елементів

т - кількість комплексів (ел ланцюгів)

 ρ_i - розмір ј-го комплексу

Можна сказати так: в комплекс (ел ланцюг) входять **елементи** через свої **виводи**. Тоді елементним комплексом v_i називається підмножина елементів $x_i \in X$, з'єднаних ланцюгом v_j $j=\overline{1,m}$ (ми матрицю зв'язку заповнюємо так $x_i \to v_j$).

Кількість елементів в комплексі $v_i^{'}$ називається **розміром елементного комплексу** $\rho_j^{'}$. $\rho_j^{'} \ge 1$ (фізично). При $\rho_j^{'} = 1$ ланцюг v_j з'єднуе виводи одного і того елемента.

Завжди $\rho_j \ge \rho_j$:

- фізика
- в комплекс виводів завжди входить більше ніж елементів

Конструктивна реалізація ел ланцюга називається монтажним з'єднанням а безпосереднє з'єднання двох виводів - елементарним з'єднанням.

Для зрівнення різних схем за складністю використовують поняття зв'язність схеми **S**.

$$S = \sum_{j=1}^{m} (\rho_{j}^{'} - 1)$$
 $S = \sum_{j=1}^{m} \rho_{j}^{'} - m$
кількість ел ланцюгів

Сума елементних комплексів

Серед різних варіантів опису КС найбільшою наглядністю відрізняється опис у вигляді графів

Опис КС у вигляді графу

У загальному випадку граф КС (**ГКС**) містить вершини трьох типів: \mathbf{X} , \mathbf{V} , \mathbf{C} та ребра двох типів: \mathbf{F} , \mathbf{W} .

F - елементні ребра

W -сигнальні ребра

Таким чином ГКС:

$$G_{GKS} = \{X, V, C, F, W\}$$

Нагадаємо:

- 1. Вершини $x_i \in X$ $i = \overline{1, n}$ відповідають елементам схеми
- 2. Вершини $v_j \in V$ $j = \overline{1,m}$ відповідають ланцюгам (комплексам) схеми
- 3. Вершини $c_l \in C$ $l = \overline{1, k}$ відповідають виводам елементів
- 4. F елементні ребра визначають належність виводів $c_l \in C$ елементам $x_i \in X$ та задаються парами вершин (x_i, c_l) ребро з елементу x_i до його виводу c_l .
- 5. W сигнальні ребра визначають належність виводів $c_l \in C$ ланцюгам $v_j \in V$ та задаються парами вершин (v_i, c_l) ребро з виводу c_l та його ланцюга v_i .

Граф КС

ГКС містіть:

- вершини трьох типів (X, V, C) з них починається побудова ГКС
- ребра двох типів F елементні та W сигнальні

Опис КС матрицями

Матричну модель ГКС представляють у вигляді двох матриць інцидентності А та В.

Матриця A установлює належність електричним ланцюгам v_j виводів c_l та візначається таким чином:

 $A = ||a_{jl}||_{m \times k}$

Рядки матриці відповідають ел ланцюгам, а стовпчики - виводам.

Елементи матриці: $a_{ij} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

1 - якщо ел ланцюг $v_{_{l}}$ відповідає виводу $c_{_{l}}$ - ребро W

0 - в протилежному випадку

Складемо матрицю А для нашого прикладу.

рядки - ел ланцюги $j=\overline{1,m}$ стовпчики - контакти (виводи) $l=\overline{1,k}$

Кожен стовпчик |A| містить одну 1, тому що тільки один вивод входить тільки до одного ел ланцюга (згідно визначенню електричного ланцюга).

Число одиниць в будь-якому рядку дорівнює розміру відповідного електричного ланцюгу.

Матриця В визначає належність елементам x_i виводів c_i

$$B = ||b_{il}||_{n \times k}$$

Елементи матриці: $b_{il} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

1 - якщо між елементом x_i та виводом c_i є ребро F

0 - в протилежному випадку

Складемо матрицю В для нашого прикладу.

Матриця **В**

рядки - елементи
$$j = \overline{1, n}$$

стовпчики - контакти (виводи) $l=\overline{1,k}$

У кожному стовпчику |B| міститься одна 1, таким чином цей вивод належить тільки даному одному елементу. Кількість одиниць в будь-якому рядку дорівнює кількости виводів (контактів) одного елемента.

Узагальненою формою опису ГКС є матриця

$$T = ||t_{il}||_{n \times k}$$

рядки якої відповідають елементам x_i стовпчики - виводам елементів t_i визначає номер v_i ланцюга, що зв'язує x_i елемент та c_i вивод.

Складемо матрицю Т для нашого прикладу.

Матриця *Т*

Якщо елементи x_i мають різну кількість контактів (виводів), тоді $c_{i1} \dots c_{i\max}$. Елементи, які не мають $c_{i\max}$, то $t_{il}=0$.

Для опису зовнішніх з'єднань часто використовують лінійний масив *TR*.

$$TR = |t^l|$$

Кожен елемент цього масиву t^l відповідає номеру ланцюга v_j , що зв'язує виводом c_{0l} елемента x_0 (з роз'ємом).

Складемо матрицю ТЯ для нашого прикладу

$$TR = \begin{array}{ccccc} c_{01} & c_{02} & c_{03} & c_{04} & c_{05} \\ v_1 & v_2 & v_4 & v_7 & v_9 \end{array}$$

Таким чином графова модель КС $G_{GKS} = \{X, V, C, F, W\}$

описується такими матрицями:

 $A = \left\| a_{jl} \right\|_{m imes k}$ - W сигнальний ланцюг об'єднує дві вершини v_j та c_k

 $B = \left| \left| b_i \right| \right|_{n imes k}$ - F елементне ребро об'єднує дві вершини x_i та c_k

 $T = \left| \left| t_i \right| \right|_{n imes t}$ - t_i визначає номер електричного ланцюга, що зв'язує x_i елемент та c_i вивод $TR = \left| t^i \right|$ - t^i номер ланцюга v_j , що зв'язує вивод c_{0k} та елемент x_0

Опис КС графом елементних комплексів (ГЕК)

Не завжди ε сенс використовувати складну модель ГКС. Спробуємо спростити модель. Ціль нашої з вами лекції - спростити опис КС.

Таким чином, якщо в ГКС включити підмножину $c_l \in C$ до вершин $x_i \in X$ $i = \overline{1,n}$, то це призведе до усунення елементних ребер F та вершин C (нагадую, що F задаються парами вершин (x_i, c_l)) та перетворення комплексів $v_i \in V$ в елементні комплекси $v_i' \in V'$.

В результаті цього перетворення отримаємо граф

$$G_{GEK} = (X, V', W)$$

підмножина вершин якого X та $V^{'}$ відповідає елементам та елементним комплексам а множина W визначає входження елементів в комплекси. Такий граф називається ГЕК.

ΓEK

 $v_1^{'}(v_1)$ $v_2^{'}(v_2)$ $v_3^{'}(v_3)$ $v_4^{'}(v_4)$ $v_5^{'}(v_5)$ $v_6^{'}(v_6)$ $v_7^{'}(v_7)$ $v_8^{'}(v_8)$ $v_9^{'}(v_9)$ x_1 x_2 x_3 x_4 x_5 x_6 x_0

!!!!!!

ГЕК містить дві вершини та одне ребро.

ГЕК зручно описувати матрицею комплексів:

$$Q = ||q_{ij}||_{n \times m}$$

рядки якої відповідають елементам x_i , а стовпчики елементним комплексам v_j

Елементи матриці: $q_{ij} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

1 - якщо елемент x_i входить до комплексу $v_j^{'}$

0 - в протилежному випадку

Складаємо матрицю Q.

$$Q = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 & v_5 & v_6 & v_7 & v_8 & v_9 \\ x_1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ x_2 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ x_3 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ x_4 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ x_5 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ x_6 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ & \rho_1' & \rho_2' & \rho_3' & \rho_4' & \rho_5' & \rho_6' & \rho_7' & \rho_8' & \rho_9' \\ & 2 & 2 & 4 & 2 & 2 & 2 & 1 & 2 & 1 \\ \end{pmatrix}$$

Властивосі матриці наступні:

- 1. Кількість одиниць в рядку дорівнює кількості електричних ланцюгів, зв'язаних з відповідним елементом
- 2. Кількість одиниць в стовпчику є розмір елементного комплексу (кількість елементів, зв'язаних даним електричним ланцюгом).

По цій матриці ми характеризуємо елементні комплекси КС

Моделі схем у вигляді ГКС та ГЕК задають електричні з'єднання елементів та залишають свободу у визначенні конкретних монтажних з'єднань між елементами з урахуванням технології їх виконання.

Ціль конструктора: розробка моделі конструкції, розробка моделі реальної конструкції.

Зв'язність \boldsymbol{S} по матриці \boldsymbol{Q} визачається

$$S = \sum_{i=1}^{n} \sum_{j=1}^{m} q_{ij} - m$$

$$S_{KS} = 18 - 9 = 9$$

Таким чином графова модель КС при опису комплексами $G_{GEK} = \left(X,V^{'},W\right)$ Матрична модель: $Q = \left\|q_{ij}\right\|_{\mathbb{R}^{N}}$

$$S = \sum_{i=1}^{n} \sum_{j=1}^{m} q_{ij} - m$$

Продовжуємо спрощувати модель КС Опис КС взвішенним графом (ВГС)

Якщо врахувати реалізації з'єднань в алгоритмах *компонування* та *розміщення*, то отримаємо *спрощені* моделі опису КС, які засновані на задаванні "ступіню зв'язку" елементів одне з одним.

Якщо кожній парі вершин x_i та $x_j \in X$ поставити у відповідність вагу a_{ij} , що пропорційна "степені зв'язності" між x_i та x_j , то утвориться взвішенний граф КС - ВГС

$$G_{VGS} = (X,V)$$

котрий містить тільки одну вершину X та одне ребро V.

ВГС

В загальному випадку ВГС описується матрицею повних з'єднань

$$A = \left| a_{ij} \right|_{n \times n},$$

рядки та стовпчики якої відповідають елементам схеми $a_{ii} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

1 -кількість ланцюгів між x_i та x_j ("степінь зв'язності")

0 - якщо між x_i та x_j зв'язків немає

Складаємо матрицю повних з'єднань А.

Ваги визначаються на наступною формулою

$$a_{ij} = \sum_{s=1}^{m} q_{is} q_{js} f_s$$

s - номер ел ланцюга (комплексу) q_{is} , q_{js} - елементи матриці комплексів

 f_s -коефіцієнт, що враховує розміри ланцюга

Якщо $f_s = 1$, тоді a_{ij} матриці з'єднань численно дорівнюють кількості ланцюгів загальних для x_i та x_j . Така матриця називається матрицею повних з'єднань.

Якщо $f_{s}=\frac{2}{\rho_{s}}$, елемент a_{ij} чисельно дорівнює матиматичному очікуванню числа з'єднань

між елементами x_i та x_j при умові рівноймовірного вибору будь-якого з можливих дерев, що реалізують ел ланцюги. Така матриця називається **ймовірною матрицею з'єднань**.

Зв'язність для ВГС визначається як

$$S = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}$$

Таким чином для спрощенного опису КС використовують ГЕК та ВГС, яким відповідають матриці

 $Q = \left\| q_{ij} \right\|_{n \times m}$ - матриця комплексів

 $A = \left| a_{ij} \right|_{n imes n}$ - матриця повних з'єднань

Тобто для опису КС використовують такі матричні моделі

- для повного опису **A**, **B**, **T**, **TR**
- для спрощенного **Q**, **A**

Оцінка зв'язності схеми **S** залежить від вибору моделі КС

Для ГКС **S** розраховується
$$S = \sum_{i=1}^{m} \rho_{j}^{'} - m$$

для ГЕК
$$S = \sum_{i=1}^{n} \sum_{j=1}^{m} q_{ij} - m$$

для ВГС
$$S = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}$$

Значення **S** співпадають при використанні матриці ймовірностей та матриці найбільш ймовірних з'єднань.

Для визначення **S** ми будемо використовувати ВГС.

Ми з вами розглянули моделі для опису схем - від самих складних до самих простих. Відмітемо, що зайве ускладнення опису призводить до складних обчислювальних процедур та великих затрат манного часу, необґрунтованих с точки зору кінцевого результату. Тому дамо з вами рекомендації що до розглянутих моделей.

1. Опис КС за допомогою ГКС є найбільш повним та точним та входить складовою частиною до початкової інформації для систем автоматизованного проектування. Данна модель безпосередньо використовується при вирішенні задач трасування, при

- вирішенні задач розміщення різногабаритних елементів, тобто при вирішенні складних задач.
- 2. Модель КС у вигляді ГЕК або ВГС використовується для вирішення задач компонування елементів та їх розміщення у вузлах. З точки зору адекватності моделі фізичному складу задачі пріорітетність має ГЕК.
- 3. З точки зору реалізації обчислювальних процедур, найбільш простим є опис схеми за допомогою ВГС (матриця з'єднань). Ми з вами найчастіше будемо використовувати саме цей опис.