Olympiades Panafricaines Mathématiques 2023 Quelques solutions

KouakouSchool

12 juin 2023

Table des matières

Ta	ble des matières	1
1	Enoncés	2
	1.1 Jour 1	2
	1.2 Jour 2	2
	Solutions	3
	2.1 Jour 1	3
	2.2 Jour 2	3

Résumé

Ce document présente des solutions aux différents problèmes rencontrés lors des Olympiades Panafricaines de Mathématiques (OPAM) 2023.

1 Enoncés

1.1 Jour 1

Problème 1 : (taux de réussite : 22/178)

Dans un triangle ABC tel que AB < AC, D est un point du segment [AC] tel que BD = CD. Une droite parallèle à (BD) coupe le segment [BC] en E et coupe la droite (AB) en F. G est le point d'intersection des droites (AE) et (BD) par G.

Montrer que
$$BCG = BCF$$
. (1)

Problème 2 : (taux de réussite : 20/178)

Trouver tous les nombres entiers naturels non nuls m et n qui n'ont pas de diviseur commun plus grand que 1 tels que :

$$m^3 + n^3$$
 divise $m^2 + 20mn + n^2$. (2)

Problème 3 : (taux de réussite : 13/178)

On considère la suite de nombres réels définie par :

$$\begin{cases} x_1 = c \\ x_{n+1} = cx_n + \sqrt{c^2 - 1}\sqrt{x_n^2 - 1} & \text{pour tout} \quad n \ge 1. \end{cases}$$
 (3)

Montrer que si c est un nombre entier naturel non nul, alors x_n est un entier pour tout $n \ge 1$.

1.2 Jour 2

Problème 4: (taux de réussite : 4/178)

Manzi possède n timbres et un album avec 10 pages. Il distribue les n timbres dans l'album de sorte que chaque page contienne un nombre distinct de timbres. Il trouve que, peu importe comment il fait cela, il y a toujours un ensemble de 4 pages tels que le nombre total de timbres dans ces 4 pages soit au moins $\frac{n}{2}$.

Déterminer la valeur maximale possible de
$$n$$
. (4)

Problème 5 : (taux de réussite : 17/178)

Soient a et b des nombres réels avec $a \neq 0$. Soit :

$$P(x) = ax^4 - 4ax^3 + (5a+b)x^2 - 4bx + b$$
 (5)

Montrer que toutes les racines de P(x) sont réelles et strictement positives si et seulement si a = b.

Problème 6 : (taux de réussite : 3/178)

Soit ABC un triangle dont tous les angles sont aigus avec AB < AC. Soient D, E et F les pieds des perpendiculaires issues de A, B et C aux côtés opposés, respectivement. Soit P le pied de la perpendiculaire issue de F sur la droite (DE). La droite (FP) et le cercle circonscrit au triangle BDF se rencontrent encore en Q.

Montrer que
$$\widehat{PBQ} = \widehat{PAD}$$
. (6)

2 Solutions

2.1 Jour 1

Probleme 1

Probleme 2

Probleme 3

2.2 Jour 2

Probleme 4

Probleme 5

Probleme 6