

Image: Wikipedia

Logistic regression Classification

Data Mining: Jay Urbain, PhD

Credits: Andrew Ng, Stanford; Hastie and Tibshirani, Stanford

Numeric Prediction: Linear Regression

- When what we want to predict is numeric and when all attributes are numeric.
 - Note: If attributes are not numeric, can convert to indicator variables.
- Staple method in statistics.
- Express class as a linear combination of the attributes, with associated weights learned from training data.

$$y_i = \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \varepsilon_i = \mathbf{x}_i^{\mathrm{T}} \boldsymbol{\beta} + \varepsilon_i, \qquad i = 1, \dots, n,$$

- Excellent method, simple, fast, but linear.
 - If the data exhibits a nonlinear dependency, the best fitting straight line will be found.

h maps from x to y

Learn weights to *minimize* sum of squared error between *hypothesis* and ground truth *y*.

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Linear regression

Theta found by gradient descent: -3.630291 1.166362

For population = 35,000, we predict a profit of 4519.767868

For population = 70,000, we predict a profit of 45342.450129

Classification

Email: Spam / Not Spam?

Online Transactions: Fraudulent (Yes / No)?

Tumor: Malignant / Benign?

 $y \in \{0, 1\}$ 0: "Negative Class" (e.g., benign tumor)

1: "Positive Class" (e.g., malignant tumor)

Multinomial classification: y {0, 1, 2, 3, ...}

Linear Regression for classification

- Linear regression can be used for classification in domains with numeric attributes.
 - Perform a regression for each class, set output to 1 for instances that belong to the class, and 0 for those that do not.
 - The result is a linear expression for each class.
 - Then, given a test instance of an unknown class, calculate the value of each linear expression and choose the one that is largest.
 - Called multinomial linear regression.
 - Problems: output is not a proper probability, assumes errors are not statistically significant.

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \geq 0.5$$
, predict "y = 1"

If
$$h_{\theta}(x) < 0.5$$
, predict "y = 0"

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \geq 0.5$$
, predict "y = 1"

If
$$h_{\theta}(x) < 0.5$$
, predict "y = 0"

 \rightarrow Threshold classifier output $h_{\theta}(x)$ at 0.5:

$$\rightarrow$$
 If $h_{\theta}(x) \geq 0.5$, predict "y = 1"

If
$$h_{\theta}(x) < 0.5$$
, predict "y = 0"

Classification: y = 0 or 1

$$h_{\theta}(x)$$
 can be > 1 or < 0

With regression

Logistic Regression: $0 \le h_{\theta}(x) \le 1$

Want proper probability

Classification

Logistic Regression Model: hypothesis representation

Want $0 \le h_{\theta}(x) \le 1$

$$h_{\theta}(x) = \theta^{T} x$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Sigmoid function ==

Logistic function

Replaces original target variable which can not be approximated easily with a nonlinear function.

Logistic Regression Model: hypothesis representation

Want $0 \le h_{\theta}(x) \le 1$

$$h_{\theta}(x) = g(\theta^T x)$$

Sigmoid functionLogistic function

Interpretation of Hypothesis Output

 $h_{\theta}(x)$ = estimated probability that y = 1 on input x

Example: If
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$

$$h_{\theta}(x) = 0.7$$

Tell patient that 70% chance of tumor being malignant.

Generates proper probability. Use threshold to select classification.

"probability that y = 1, given x, parameterized by θ "

$$P(y = 0|x; \theta) + P(y = 1|x; \theta) = 1$$

 $P(y = 0|x; \theta) = 1 - P(y = 1|x; \theta)$

Interpretation of Hypothesis Output

 $h_{\theta}(x)$ = estimated probability that y = 1 on input $x \leftarrow$

Example: If
$$\underline{x} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$

$$\underline{h_{\theta}(x)} = 0.7$$

Tell patient that 70% chance of tumor being malignant

Tell patient that 70% chance of tumor being malignant

$$h_{\Theta}(x) = P(y=1|x;\Theta)$$
"probability that $y=1$, given x , parameterized by θ "

$$P(y=0|x;\theta) + P(y=1|x;\theta)$$

$$P(y=0|x;\theta) - 1 - P(y=1|x;\theta)$$

$$P(y=0|y) + P(y=1|x;\theta) = 1$$

 $P(y=0|x;\theta) = 1 - P(y=1|x;\theta)$

$$\rightarrow P(y=0|x;\theta) = 1 - P(y=1|x;\theta)$$

Logistic regression decision boundary

$$h_{\theta}(x) = g(\theta^T x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

predict
$$\mathcal{Y} = 1$$
 " if $h_{\theta}(x) \geq 0.5$

$$h_{\theta}(x) = \theta^T x$$

predict "y = 0" if $h_{\theta}(x) < 0.5$

$$g(z) >= 0.5$$
 when $z >= 0$
 $g(z) < 0.5$ when $z < 0$

$$1/(1 + EXP(-(0.0001))) = > 0.500025$$

$$1/(1 + EXP(-(-0.0001))) = > 0.499975$$

Logistic regression decision boundary

$$h_{\theta}(x) = g(\theta^T x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "y = 1" if $h_{\theta}(x) \ge 0.5$

$$h_{\theta}(x) = \theta^T x$$

predict "
$$y = 0$$
" if $h_{\theta}(x) < 0.5$

>= 0

Decision Boundary

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$

Decision Boundary

$$h_{\theta}(x) = g(\theta_0 + \underline{\theta}_1 x_1 + \underline{\theta}_2 x_2)$$

Decision boundary

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$

$$\frac{X^{1}+X^{5}=3}{X^{1}+X^{5}}$$

Non-linear decision boundaries

Non-linear decision boundaries

Predict "
$$y = 1$$
" if $-1 + x_1^2 + x_2^2 \ge 0$
 x_2
 $y = 1$
 $y = 0$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1^2 x_2 + \theta_5 x_1^2 x_2^2 + \theta_6 x_1^3 x_2 + \dots)$$

Training
$$\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\cdots,(x^{(m)},y^{(m)})\}$$
 set: $x \in \begin{bmatrix} x_0 \\ x_1 \\ \cdots \\ x_n \end{bmatrix}$ $x_0 = 1, y \in \{0,1\}$ $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$

How to choose parameters θ ?

Cost function

Linear regression: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$

Cost
$$(h_{\theta}(x^{(i)}), y^{(i)}) = \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cost function

 \rightarrow Linear regression: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2}$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$\operatorname{Cost}(h_{\theta}(x^{\bullet}), y^{\bullet}) = \left[\frac{1}{2} \left(h_{\theta}(x^{\bullet}) - y^{\bullet}\right)^{2}\right] \leftarrow \mathbb{R}$$

>>> -math.log(0.0000001,2)
23.25349666421154
>>> -math.log(1,2)
-0.0

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Cost = 0 if
$$y = 1, h_{\theta}(x) = 1$$

But as $h_{\theta}(x) \to 0$
 $Cost \to \infty$

Captures intuition that if $h_{\theta}(x) = 0$, (predict $P(y = 1|x; \theta) = 0$), but y = 1, we'll penalize learning algorithm by a very large cost.

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Sost = 0 if
$$y = 1$$
, $h_{\theta}(x) = 1$
But as $h_{\theta}(x) \to 0$
 $Cost \to \infty$

Captures intuition that if $h_{\theta}(x) = 0$, (predict $P(y = 1|x; \theta) = 0$), but y = 1, we'll penalize learning algorithm by a very large cost.

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Logistic regression cost function with gradient Descent

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Note: y = 0 or 1 always

Logistic regression cost function with gradient Descent

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

To fit parameters θ :

$$\min_{\theta} J(\theta)$$

To make a prediction given new $\, {\mathscr X} \,$

Output
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

To fit parameters θ :

$$\min_{\theta} J(\theta)$$
 Great Θ

To make a prediction given new x:

Output
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$
 $p(y=1) \times p(y=1)$

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

Repeat {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

(simultaneously update all $heta_j$)

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

Want
$$\underline{\min}_{\theta} J(\theta)$$
:

Repeat $\{$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

$$\{ \text{simultaneously update all } \theta_j \}$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{n} \underbrace{\tilde{\xi}}_{i=1} \left(h_{\theta_j} (x^{(i)}) - y^{(i)} \right) \times \tilde{\xi}_j$$

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

Repeat
$$\{$$

$$\theta_j := \theta_j - \alpha \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$
 $\}$ (simultaneously update all θ_j)

Algorithm looks identical to linear regression!

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$
 Want $\min_{\theta} J(\theta)$:
$$\text{Repeat } \left\{ \theta_{j} := \theta_{j} - \alpha \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)} \right)$$

$$\left\{ \text{(simultaneously update all } \theta_{j} \right\}$$

Algorithm looks identical to linear regression!

Optimization algorithm - Advanced optional material

Cost function $J(\theta)$. Want $\min_{\theta} J(\theta)$.

$$egin{array}{ll} heta \ J(heta) \ rac{\partial}{\partial heta_j} J(heta) \end{array}$$
 (for $j=0,1,\ldots,n$)

Gradient descent:

```
Repeat \{ \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) \}
```

Optimization algorithm

Given θ , we have code that can compute

-
$$J(\theta)$$

-
$$\frac{\partial}{\partial \theta_j} J(\theta)$$
 (for $j=0,1,\ldots,n$)

Optimization algorithms:

- Gradient descent
- Conjugate gradient
- BFGS
- L-BFGS

Advantages:

- No need to manually pick lpha
- Often faster than gradient descent.

Disadvantages:

- More complex

Example: $\theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$ $J(\theta) = (\theta_1 - 5)^2 + (\theta_2 - 5)^2$ $\frac{\partial}{\partial \theta_1} J(\theta) = 2(\theta_1 - 5)$ $\frac{\partial}{\partial \theta_2} J(\theta) = 2(\theta_2 - 5)$

```
theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \vdots \end{bmatrix}
function [jVal, gradient] = costFunction(theta)
         jVal = [code to compute J(\theta)];
         gradient(1) = [code to compute \frac{\partial}{\partial \theta_0} J(\theta)];
         gradient(2) = [code to compute \frac{\partial}{\partial \theta_1} J(\theta)];
         gradient(n+1) = [code to compute \frac{\partial}{\partial \theta_n} J(\theta) ];
```


Prevent overfitting with regularization parameter

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left[-y^{(i)} \log(h_{\theta}(x^{(i)})) - (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}.$$

$$\frac{\partial J(\theta)}{\partial \theta_{0}} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} \qquad \text{for } j = 0$$

$$\frac{\partial J(\theta)}{\partial \theta_{j}} = \left(\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} \right) + \frac{\lambda}{m} \theta_{j} \quad \text{for } j \geq 1$$

Overfitting lamda = 0

Under fitting lamda = 100

Correctfitting lamda = 1

Multiclass classification

Email foldering/tagging: Work, Friends, Family, Hobby

Medical diagrams: Not ill, Cold, Flu

Weather: Sunny, Cloudy, Rain, Snow

Binary classification:

Multi-class classification:

One-vs-all (one-vs-rest):

 $h_{\theta}^{(i)}(x) = P(y = i|x;\theta) \qquad (i = 1, 2, 3)$

One-vs-all (one-vs-rest):

One-vs-all

Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that y=i.

On a new input x, to make a prediction, pick the class i that maximizes

$$\max_{i} h_{\theta}^{(i)}(x)$$

Softmax

- Generalization of the logistic function that "squashes" a Kdimensional vector into a range [0,1]
- Softmax can be used in multiclass classification methods.
- In multinomial logistic regression, the input to the function is the result of K distinct linear functions, and the predicted probability for the j'th class given a sample vector x and a weighting vector w is:

$$P(y=j|\mathbf{x}) = rac{e^{\mathbf{x}^\mathsf{T}\mathbf{w}_j}}{\sum_{k=1}^K e^{\mathbf{x}^\mathsf{T}\mathbf{w}_k}}$$