西安电子科技大学

考试时间__120__分钟

一、基础部分(共40分)

1. (2分) 完成下列数制转换:

$$(25.25)_{10} = (11001.01)_{2}$$
$$= (19.4)_{16}$$

2. (2分) 将十进制数转换为相应的编码表示。

(12)
$$_{10}$$
 = (00010010) $_{8421BCD}$ = (01000101) $_{\$^3\Xi}$

3. (4分)按照反演规则和对偶规则分别写出下列函数的反函数和对偶函数。

$$F = \overline{AB + \overline{E}} \cdot D + BC$$

$$\overline{F} = [\overline{(A + B)E} + \overline{D}](\overline{B} + \overline{C})$$

$$F^* = [\overline{(A + B)E} + D](B + C)$$

表达式错误扣1分

4. (3分)按照要求写出下列函数的等价形式:

$$F = A\overline{B} + BC$$

$$= (A + B)(\overline{B} + C) \qquad (或与式)$$

$$= A\overline{B}BC \qquad (与非与非式)$$

$$= A\overline{B} + B\overline{C} \qquad (与或非式)$$

5. (9分)已知某逻辑函数 F表达式如下,试完成下列内容:

$$F = \overline{A}\overline{C} + \overline{A}\overline{B} + BC + \overline{A}\overline{C}\overline{D}$$

(1) 在下图基础上完成该逻辑函数的卡诺图(下画线处也需要填写)(3分)。

AB	D 00	01	11	10
00	1	1	1	1
00 _01_	1	1	1	1
11			1	1
10_				

0 可以填可以不填

(2) 用卡诺图化简,写出该逻辑函数的最简与或式(2分)。

$$F = \overline{A} + BC$$

(3) 根据化简结果,列出函数 F 的真值表 (2分)。

A B C	F
0 0 0	1
0 0 1	1
0 1 0	1
0 1 1	1
1 0 0	0
1 0 1	0
1 1 0	0
1 1 1	1

(4) 根据最简与或式画出该逻辑函数的电路图 (2分)。

电路图略

6. (6分)下图所示电路用于产生2相时钟信号,按照要求完成下述内容。

(1) 分别写出该电路的输出 Q1 和 Q2 的逻辑表达式 (2分)。

$$Q_1 = \overline{QC}$$

$$\mathbf{Q}_2 = \overline{\overline{\boldsymbol{Q}}\boldsymbol{c}}$$

(2) 完成下列波形图,并说明在 A 取不同值的情况下电路功能(初态为 0)(4分)。

该电路的功能: A=0. Q_2 输出 C 的反相, Q_1 不变; A=1, 分别输出 C 的二分频 (反相) 时钟。

7. (6分) 74194 是双向移位寄存器,试判断下列电路的功能,并画出其状态表和状态图。

装

(1) 在下表中填写电路的状态表,并画出状态图(4分)

Q_0	Q	1 Q ₂	Q	0 ⁿ⁺¹	Q ₁ n+	¹ Q ₂ ⁿ⁺¹
0	0	0	1	0	0	
0	0	1	1	0	0	
0	1	0	0	0	1	
0	1	1	1	0	0	
1	0	0	0	1	0	
1	0	1	1	0	0	
1	1	0	0	1	1	
1	1	1	1	0	0	

(2) 该电路的功能是: // (2 分)

8. (8分)阅读如下电路,完成各项以下内容。

订

线

(1) 如图两片 3-8 译码器的连接方式,直接写出 F1 和 F2 的逻辑函数表达式 (6分)。

$$F_1 = \sum m (3,7,9)$$

$$F_2=\prod M(3,13)$$

(2) 该电路中 3-8 译码器的目的是为了实现什么功能, 试描述并简要说明理由(2分)

利用最小项(3-8 译码器的特点)实现组合逻辑函数

二、电路分析部分(30分)

9. (13分)某同步时序逻辑电路如下图所示。

(1) 写出该电路的激励方程、输出方程(4分)。

激励方程:
$$D_1 = \underline{X}$$

$$J_0 = O_1 \qquad K_0 = \overline{Q_1}$$

输出方程: $Y = \underline{Q_1}\overline{Q_0}$

(2) 写出该电路的状态方程并化简(列出步骤),该时序电路属于什么类型的时序电路,并根据你的判断列出状态表(6分)。

状态方程:
$$Q_0^{n+1} = \mathbf{Q_1}$$

$$Q_1^{n+1} = \mathbf{X}$$

该时序电路属于: Moore 型时序逻辑电路。

该时序电路的状态表如下(注:需要根据电路类型完善表格结构)

现态	次态 Q ₀ ⁿ⁺¹ Q ₁ ⁿ⁺¹ 及输出 Y						
Q_0Q_1	X=0	X=1					
00	00/0	01/0 0					
01	10/1	11/1 1					
10	00/0	01/0 0					
11	10/0	11/0 0					

(3) 设各触发器的初态均为0,试画出下图中 O_0 、 O_1 和Y的输出波形(3分)。

10. (10 分)分析右图组合逻辑电路,写出输出函数表达式,列出真值表,并分析该电路功能。

(3) 该电路的功能描述如下(各个输入变量的含义,以及输出含义)(2分):

1 位全减器 A 为被减数 B 减数 bi 低位向本位借位 d 本位差 b0 向高位的借位

11. (7分)分析下图所示电路,按照要求完成各项内容(注74161功能表见附件)

(1) 画出该电路的态序表,并简要分析理由(设初态为"0000")(5分)

$$1100 < 1011 < 1010 < 1001 < 1000 < 0111 < 0110$$

$$1101 < 1001 < 1000 < 0111 < 0110$$

(2) 写出该电路的功能(2分)

该电路为摸5计数器

三、电路设计部分(30分)

12. (8分) $A(A_1A_0)$ 和 $B(B_1B_0)$ 分别是两个 2位的二进制输入,设计一个比较器电路: 当 A 大于 B 时,输出二进制 100;当 A 等于 B 时输出二进制 010;而当 A 小于 B 时,则输出二进制 001。试:

(1) 列出电路的真值表 (4分)

A>B	A=B	A <b< th=""></b<>
0		0
0	0	- P
0	0	X
0	D	× ×
11 4	0	0
0	11	0 0
0	0	61 6
0	0	1
. 1	0	0
1	0	0
0	1	0
0	0	OII
11 1	0	10 1
1	Ó	0
and bear	0	0
D	1	0

(2) 给出"A>B"的卡诺图,化简逻辑函数,写出其逻辑函数表达式(2分)

A_1A_0 B_1	B ₂	A 0 1 8	11	0 10
AIAO	6	6	100	0
01	1	0	0	0
11	0	1	0	1
10	(1		(e)	0

"A>B" = A1 B1 + A1A B2 + A0 B1B2

(3) 画出"A>B"输出电路的逻辑电路图(可选的逻辑门包括:与门、或非门以及非门)

$$F = (A_1 + A_0)(\overline{B}_1 + \overline{B}_0)(\overline{B}_2 + A_1)(A_1 + \overline{B}_1)(\overline{B}_1 + A_0)$$

$$= \overline{A_1 + A_0} + \overline{B_1 + B_1} + \overline{B_1 + A_1} + \overline{A_1 + B_2} + \overline{B_2 + A_1}$$

线

订

(3) 画出电路图 (3分)

电路图略

- 14. (12 分)设计一个产生"10011000"序列码的计数型序列信号发生器。要求: 1) 采用一片 74LS160 和 1 片 74LS151 作为主要元件。其中 74LS160 是十进制计数器,74LS151 是一个 8 选 1 的数据选择器。2)按照要求完成以下各个步骤。
 - (1) 根据序列长度设计 74LS160 计数器的模数,并确定使用的有效状态(2分)。 计数器摸值为8 使用有效状态为0~7

(2) 列出真值表,画出输出卡诺图 (6分)。

Qc QB QA	2	QA C	B	0 1	11	10		
0 0 0	0	O	1	0	0	1	eQ	
0 1 0	0	1	0	1	0	0	1	
0 0 0	0			340	4 22			
1 10	0							
2 2 23	0		40	40.	20-11	0		

(3) 根据卡诺图及所使用的 74LS151, 给出组合输出函数 (2分)。

$$A_{1}A_{1}A_{0} = 0.0000$$
 $B_{0} = 1$
 $D_{1} = 0$
 $D_{2} = 0$
 $D_{3} = 0$
 $D_{4} = 0$
 $D_{5} = 0$
 $D_{5} = 0$
 $D_{7} = 0$

(4) 画出电路图 (2分) (为了节省时间,请直接在下图上完成)。

第11页共12页

1、74LS138 功能表。

E_1	$E_{\scriptscriptstyle 2A} + E_{\scriptscriptstyle 2B}$	A_2	A_1	A_0	$oldsymbol{ar{Y}}_{ ext{o}}$	\overline{Y}_1	\overline{Y}_2	\overline{Y}_3	\overline{Y}_4	\overline{Y}_{5}	$ar{m{Y}}_6$	\overline{Y}_7
0	×	×	×	×	1	1	1	1	1	1	1	1
×	1	×	×	×	1	1	1	1	1	1	1	1
1	О	0	0	0	0	1	1	1	1	1	1	1
1	О	0	0	1	1	0	1	1	1	1	1	1
1	0	0	1	0	1	1	0	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1	1	1
1	O	1	0	0	1	1	. 1	1	0	1	1	1
1	, О	1	0	1	1	1	1	1	1	, 0	1	1
1	0	1	1	0	1	1	1	1	1	1	0	1
1	0	1	1	1	1	1	1	1	1	1	1	0

2、74LS160 和 74LS161 功能表

注: 74LS160 是同步十进制计数器, 计数状态从 0000——1001; 74LS161 是同步二进制计数器, 计数状态从 0000——1111。

	输入									输	出	
CP	C_r	LD	P	T	D	С	В	A	Q_D	Q_C	Q_B	Q_A
×	0	×	×	×	×	×	×	×	0	0	0	0
↑	1	0	×	×	d	c	<i>b</i>	а	d	с	b	a
1	1	- 1	1	1	×	×	×	×		计	数	
×	1	1	0	1	×	×	\times '	×		保	持	
×	1	1	×	0	×	×	×	×	保	持	$(O_C =$	= 0)

3、

74LS194功能表

		输出					
Cr	СР	S ₁	So	SL	Sr	Do D1 D2 D3	Q0 Q1 Q2 Q3
0	×	×	×	×	×	\times \times \times	0 0 0 0
1	$ \times $	0	0	×	×	\times \times \times	保持
1	↑	0	1	×	S_{R}	$\times \times \times \times$	Sr Qo Q1 Q2
1	★	1	0	Sl	×	\times \times \times	$Q_1\ Q_2\ Q_3\ S_L$
1	🛉	1	1	×	×	$d_0\ d_1\ d_2\ d_3$	do d1 d2 d3
1	Ö	×	×	×	×	\times \times \times	保持

装

订

线