Teoría Clásica de Campos

Borja Diez

 $Universidad\ Arturo\ Prat$

 $E ext{-}mail: borjadiez1014@gmail.com}$

ABSTRACT: Estas notas son una suerte de recopilado de las clases Teoría Clásica de Campos dictadas por el Dr. Patricio Salgado el primer semestre del 2024.

Contents

1	Clase 1		
	1.1 Mecánica de Newton		1
	1.2 Acerca de la matriz Hessiana de las ecuaciones d	de Euler-Lagrange	2
2	Clase 2		2
	2.1 Acerca de la matriz Hessiana		3
	2.2 Formalismo de Hamilton		4
	2.3 *Transformaciones canónicas		4
3	3 Clase 3		5
	3.1 Simetrías y leyes de conservación		5
4	4 Clase 4		6
	4.1 Teorema de Noether \dots		6
	4.1.1 Análisis y prueba		6
	4.2 Transformaciones de simetría		7
5			8
	5.1 Relación entre δ y $\bar{\delta}$		9
	5.2 Prueba del teorema de Noether		9
6	6 Clase 6	1	2
	6.1 Continuación prueba del teorema de Noether .		12
	6.2 Grupos y álgebras de Lie $\dots \dots \dots$		۱4
7	Clase 7		5
	7.1 Espacio lineal o espacio vectorial		16
	7.2 Álgebra y álgebra de Lie		16
	7.3 Grupos, álgebras y simetrías		

1 Clase 1

1.1 Mecánica de Newton

Posición, velocidad, aceleración, fuerza.

Si consideramos un sistema de partículas de masa \boldsymbol{m}

$$\vec{p}_{\alpha} = m_{\alpha} \vec{x}_{\alpha}, \qquad \vec{p} = \sum_{\alpha} \vec{p}_{\alpha}, \qquad \alpha = 1, ..., k$$
 (1.1)

$$T = \frac{1}{2} \sum_{\alpha} m_{\alpha} \vec{x}^2, \qquad \vec{L} = \sum_{\alpha} \vec{x}_{\alpha} \times \vec{p}_{\alpha}$$
 (1.2)

Newton estableció que a dinámica de un sistema mecánico queda determinada por tres leyes fundamentales.

1.2 Acerca de la matriz Hessiana de las ecuaciones de Euler-Lagrange

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L'}{\partial \dot{q}'_k} = \frac{\partial L'}{\partial q'_k} - [L]_k \frac{\partial q_l}{\partial \dot{q}_k} \tag{1.3}$$

$$\Rightarrow \frac{\partial L'}{\partial q'_k} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L'}{\partial \dot{q}_k} = [L]_l \frac{\partial q_l}{\partial q'_k} \tag{1.4}$$

$$L']_k = [L]_l \frac{\partial q_l}{\partial q'_k}$$
(1.5)

La derivada de Euler-Lagrange transforma como un vector covariante bajo una transformación de coordenadas

$$\operatorname{Si}\left[L\right]_{l} = 0 \Rightarrow \left[L'\right]_{k} = 0 \tag{1.6}$$

2 Clase 2

- 1. Las ecuaciones de Newton son invariantes en forma bajo las transformaciones de Galileo.
- 2. Las ecuaciones de Newton sn ecuaciones de segundo orden en x_{α} . Es bueno recalcar que todas las ecuaciones dinámicas de la física fundamental son de segundo orden. Las ecuaciones de orden mayor al segundo, tienden a tener inestabilidades [?].
- 3. Si $L = L(q_i, \dot{q}_i, t)$ es la función de Lagrange para un sistema mecánico, entonces la dinámica del sistema es gobernada por las ecuaciones de Euler-Lagrange,

$$[L]_i = \frac{\partial L}{\partial q_i} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_i} = 0$$
 (2.1)

Estas ecuaciones no cambian si la función de Lagrange es modificada a la forma

$$\tilde{L} = L + \frac{\mathrm{d}}{\mathrm{d}t}B(q,t) \tag{2.2}$$

con $L = L(q_i, \dot{q}_i, t)$ y $\bar{L} = \bar{L}(q_i, \dot{q}_i, t)$

4. La libertad en la elección de las coordenadas generalizadas implica que las ecuaciones de Euler-Lagrange son estructuralmente invariantes bajo un cambio de coordenadas:

$$q_i \to q_i' = q_i'(q_l) \tag{2.3}$$

lo cual implica que

$$[L']_k = [L]_l \frac{\partial q_l}{\partial q'_k} \tag{2.4}$$

que muestra que la derivada de Euler transforma como un vector covariante bajo la transformación 2.3

Si
$$[L]_l = 0 \Rightarrow [L']_k = 0.$$
 (2.5)

Es importante recalcar que la invariancia estructural es distinto a la invariancia en forma (covariancia).

Todos los observadores observan la misma forma de las ecuaciones de los modelos de la naturaleza.

Ejemplo 2.1. La ecuación de Newton en el SRI K toma la forma $\mathbf{F} = m\mathbf{a}$ mientras que en el SRI K' toma la forma $\mathbf{F'} = m'\mathbf{a'}$.

Ejemplo 2.2. Las ecuaciones de Maxwell tendrán la misma forma en todos los SRI.

Notemos son embargo, que en la mecánica de Newton las transformaciones son las transformaciones de Galileo y que en la electrodinámica de Maxwell son las transformaciones de Lorentz.

La covariancia de las ecuaciones del movimiento bajo una transformación de coordenadas es la propiedad que define una **simetría de Lie**.

2.1 Acerca de la matriz Hessiana

Una característica básica de las ecuaciones de Newton $m\ddot{\mathbf{r}} = \mathbf{F}(\mathbf{r}, \dot{\mathbf{r}}, t)$ es que es posible expresar la aceleración $\ddot{\mathbf{r}}$ en función de la posición \mathbf{r} , de la velocidad $\dot{\mathbf{r}}$ y de t,

$$\ddot{\boldsymbol{r}}(t) = \frac{1}{m} \boldsymbol{F}(\boldsymbol{r}, \dot{\boldsymbol{r}}(t)) \tag{2.6}$$

Esta es una formulación vectorial de la mecánica es basada en el concepto d partícula material. Esto llevó a pensar que la naturaleza podría no ser contínua, sino que podría ser atómica (cuántica). Esto condujo a la formulación escalar de la mecánica representado de la introducción del concepto de energía.

La formulación de Lagrange y de Hamilton fue el resultado de esta búsqueda. Sin embargo, de las ecuaciones de Euler-Lagrange (2.1) no es evidente cómo expresar la aceleración $\ddot{q}(t)$ en función de $q(t), \dot{q}(t)$ y t.

Consideremos

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_n}, \qquad L = L(q_n, \dot{q}_n, t) \tag{2.7}$$

notemos que

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}_n} = \frac{\partial^2 L}{\partial \dot{q}_n \partial \dot{q}_m} \ddot{q}^m + \frac{\partial^2 L}{\partial \dot{q}_n \partial q_m} \dot{q}^m \tag{2.8}$$

luego

$$[L]_n = \frac{\partial L}{\partial q_n} - \frac{\partial^2 L}{\partial \dot{q}_n \partial q_m} \dot{q}^m - \frac{\partial^2 L}{\partial \dot{q}_n \partial \dot{q}_m} \ddot{q}^m = 0$$
 (2.9)

así

$$\left[\left(\frac{\partial^2 L}{\partial \dot{q}_n \partial \dot{q}_m} \right) \ddot{q}^m = \frac{\partial L}{\partial q_n} - \frac{\partial^2 L}{\partial \dot{q}_n \partial q_m} \dot{q}^m \right]$$
 (2.10)

Notemos que para poder expresar \ddot{q} como función de q y \dot{q} es necesario que la matriz $W_{nm} = \partial^2 L/\partial \dot{q}_n \partial \dot{q}_m$ sea invertible, es decir, det $W_{nm} \neq 0$.

Llamando

$$V_n = \frac{\partial L}{\partial q_n} - \frac{\partial^2 L}{\partial \dot{q}_n \partial q_m} \dot{q}^m \tag{2.11}$$

tenemos

$$W_{nm}\ddot{q}^m - V_n = 0 (2.12)$$

Si det $W_{nm} \neq 0$ entonces existe una matriz inversa $W^{kn} \equiv (W_{kn})^{-1}$ tal que $W^{kn}W_{nm} = \delta_m^k$. Luego, multiplicando (2.12) por W^{km} , tenemos

$$W^{kn}W_{nm}\ddot{q}^m - W^{kn}V_n = 0 (2.13)$$

$$\Rightarrow \ddot{q}^k = W^{kn} V_n = F(q, \dot{q}, t) \tag{2.14}$$

En la física fundamental, las teorías de gauge tales como la teoría electromagnética o las toerías de Yang-Mills (teoría electrodébil, cromonodinámica cuántica), las correspondientes funciones de Lagrange tienen sus matrices Hessianas singulares, es decir, det $W_{nm} \neq 0$.

2.2 Formalismo de Hamilton

Consiste en pasarse de las coordenadas $\{q_i, \dot{q}_i, t\}$ a $\{q_i, p_i, t\}$, donde

$$p_i = \frac{\partial L}{\partial \dot{q}_i} = f_i(q_i, \dot{q}_i, t) \tag{2.15}$$

es el momentum generalizado.

Para escribir explícitamente la función de Hamilton es necesario expresar por medio de (2.15) $\dot{q}_i = \bar{f}(q_i, p_i)$. Esto implica que la función f_i sea invertible,

$$\dot{q}_n \to p_n = f_n(q_m, \dot{q}_m, t) \tag{2.16}$$

es decir, tenemos una transformación de coordenadas. Esta transformación tiene como matriz Jacobiana a

$$J_{nm} = \frac{\partial f_n}{\partial \dot{q}_m} = \frac{\partial p_n}{\partial \dot{q}_m} = \frac{\partial}{\partial \dot{q}_m} \left(\frac{\partial L}{\partial \dot{q}_n} \right)$$
 (2.17)

esto es

$$J_{nm} = \frac{\partial^2 L}{\partial \dot{q}_n \partial \dot{q}_m} \equiv W_{nm}$$
(2.18)

Para clarificar esto calculemos dp_n recordando que $p_n = f_n(q_m, \dot{q}_m, t)$,

$$dp_n = \frac{\partial f_n}{\partial t}dt + \frac{\partial f_n}{\partial q_m}dq_m + \frac{\partial f_n}{\partial \dot{q}_m}d\dot{q}_m$$
(2.19)

$$= \frac{\partial f_n}{\partial t} dt + \frac{\partial f_n}{\partial q_m} dq_m + \frac{\partial^2 L}{\partial \dot{q}_n \partial q_m} d\dot{q}_m$$
 (2.20)

esto implica que

$$\left(\frac{\partial^2 L}{\partial \dot{q}_n \partial q_m}\right) d\dot{q}_m = dp_n - \frac{\partial p_n}{\partial t} dt - \frac{\partial p_n}{\partial q_m} dq_m$$
(2.21)

De aquí vemos que para expresar $\dot{q} = \bar{f}(q, p, t)$ es necesario que

$$\det W_{nm} = \det \left(\frac{\partial^2 L}{\partial \dot{q}_n \partial q_m} \right) \neq 0 \tag{2.22}$$

2.3 *Transformaciones canónicas

Son transformaciones invertibles de la forma (Ref. [?])

$$\hat{q}^j = \hat{q}^j(q, p), \qquad \hat{p}^j = \hat{p}^j(q, p)$$
 (2.23)

que dejan los corchetes fundamentales invariantes.

Antes de continuar, introduzcamos una notación más compacta en la cual colectamos las 2N variables del espacio de fase en un único conjunto $(x^{\alpha}) = (q^1, ..., q^N, p_1, ..., p_N)$. En esta notación los corchetes fundamentales pueden ser escritos como

$$\{x^{\alpha}, x^{\beta}\} = \Gamma^{\alpha\beta}, \quad \text{con} \quad \Gamma \equiv \begin{pmatrix} 0_N & 1_N \\ -1_N & 0_N \end{pmatrix}$$
 (2.24)

en términos de la matriz Γ , el corchete de Poisson para dos funciones del espacio de fase A y B queda

$$\{A, B\} = \Gamma^{\alpha\beta} \frac{\partial A}{\partial x \alpha} \frac{\partial B}{\partial x^{\beta}} \tag{2.25}$$

La condición para que $\hat{x}(x)$ sea una transformación canónica se simplifica a $\{\hat{x}^{\alpha}, \hat{x}^{\beta}\} = \Gamma^{\alpha\beta}$

3 Clase 3

3.1 Simetrías y leyes de conservación

La homogeneidad del tiempo nos lleva a la conservación de la energía. Que el tiempo sea homogéneo significa que no hay instantes privilegeados. Los resultados de un experimento nno dependen del instantes en que se lleven a cabo, es decir, si llevamos a cabo un experimento para t=t será tambien el mismo en $t'=t+t_0$. La función de Lagrange (que describe un sistema físico) debe ser invariante bajo un desplazamiento temporal, es decir, $L=L(q_i,\dot{q}_i,t)$ es invariante bajo la transformación $t\to t'=t+t_o$ o $\delta t=t'-t=t_o$. Esto se cumplirá sólo si $L=L(q_i,\dot{q}_i,t)$ no depende explicitaente del tiempo, es decir,

$$\frac{\partial L}{\partial t} = 0 \tag{3.1}$$

Así,

$$\frac{\mathrm{d}L}{\mathrm{d}t} = \frac{\partial L}{\partial q_i}\dot{q}_i + \frac{\partial L}{\partial \dot{q}_i}\ddot{q}_i \tag{3.2}$$

De la derivada de Euler-Lagrange, sabemos

$$[L]_i = \frac{\partial L}{\partial q_i} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_i} \qquad \Rightarrow \qquad \frac{\partial L}{\partial q_i} = [L]_i + \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_i}$$
(3.3)

Reemplazando en (3.2)

$$\frac{\mathrm{d}L}{\mathrm{d}t} = \left([L]_i + \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_i} \right) \dot{q}_i + \frac{\partial L}{\partial \dot{q}_i} \ddot{q}_i \tag{3.4}$$

$$= [L]_i \dot{q}_i + \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_i} \dot{q}_i + \frac{\partial L}{\partial \dot{q}_i} \ddot{q}_i$$
(3.5)

de donde se obtiene

$$[L]_i \dot{q}_i = \frac{\mathrm{d}L}{\mathrm{d}t} - \frac{\mathrm{d}}{\mathrm{d}t} \dot{q}_i \frac{\partial L}{\partial \dot{q}_i}$$
(3.6)

$$= -\frac{\mathrm{d}}{\mathrm{d}t} \left(\dot{q}_i \frac{\partial L}{\partial \dot{q}_i} - L \right) \tag{3.7}$$

Para trayectorias on-shell, es decir, para el espacio de soluciones de la ecuación de Euler-Lagrange $[L]_i = 0$, se tiene

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\dot{q}_i \frac{\partial L}{\partial \dot{q}_i} - L \right) = 0 \tag{3.8}$$

Pero sabemos que la función de Hamilton es dada por

$$H = \dot{q}_i p_i - L = E \tag{3.9}$$

Luego,

$$\frac{\mathrm{d}H}{\mathrm{d}t} = \frac{\mathrm{d}E}{\mathrm{d}t} = 0\tag{3.10}$$

es decir, la homogeneidad del tiempo implica la conservación de la energía.

Por otra parte, la homogene
idad del espacio conduce a la c
nservación del momentum lineal. Que el espacio sea homogeneo nos dice que todos los puntos son equivalentes y no hay posiciones privilegiadas en el espacio. Esto implica que la función de Lagrange $L=L(q_i,\dot{q}_i,t)$ debe ser invariante bajo una traslación espacial de la forma

$$q_i \rightarrow q_i' = q_i + a_i$$
 ó $\delta q_i = q_i' - q_i = a_i$ (3.11)

Así

$$\delta_q L = \frac{\partial L}{\partial q_i} \delta q_i = 0 \tag{3.12}$$

4 Clase 4

4.1 Teorema de Noether

Teorema 4.1. Si las ecuaciones del movimiento son invariantes bajo una transformación de coordenadas tales como

$$t \to t' = t'(t) \tag{4.1}$$

$$q_i \to q_i' = q_i'(q_j, t) \tag{4.2}$$

entonces existe una cantidad conservada.

4.1.1 Análisis y prueba

Sea $L = L(q_i, \dot{q}_i, t)$ la función de Lagrange de un sistema mecánico, donde i = 1, 2, ..., f. q_i son las coordenadas del espacio de configuraciones. Sean q_i' y t' nuevas coordenadas relacionadas a las antiguas por medio de la transformación de coordenadas invertibles

$$t \to t' = t'(t) = t + \delta t \tag{4.3}$$

$$q_i \to q_i' = q_i'(q_i, t) = q_i + \delta q_I \tag{4.4}$$

Las correspondientes velocidades generalizadas \dot{q}_i y \dot{q}'_i definidas como

$$\dot{q}_i = \frac{\mathrm{d}}{\mathrm{d}t}q_i, \qquad \dot{q}'_i = \frac{\mathrm{d}}{\mathrm{d}t'}q'_i$$
 (4.5)

$$\implies \dot{q}_i' = \frac{\mathrm{d}}{\mathrm{d}t} q_i' \frac{\mathrm{d}t}{\mathrm{d}t'} = \frac{\mathrm{d}}{\mathrm{d}t} (q_i + \delta q_i) \frac{\mathrm{d}t}{\mathrm{d}t'} \tag{4.6}$$

$$\implies \dot{q}_i' = \left(\dot{q}_i + \frac{\mathrm{d}\delta q_i}{\mathrm{d}t}\right) \frac{\mathrm{d}t}{\mathrm{d}t'}$$
 (4.7)

pero,

$$t' = t + \delta t \implies \frac{\mathrm{d}t'}{\mathrm{d}t} = 1 + \frac{\mathrm{d}\delta t}{\mathrm{d}t}$$
 (4.8)

$$\implies \frac{\mathrm{d}t}{\mathrm{d}t'} = \frac{1}{1 + \mathrm{d}\delta t/\mathrm{d}t} \tag{4.9}$$

Así,

$$\dot{q}_I' = (\dot{q}_i + \frac{\mathrm{d}\delta q_i}{\mathrm{d}t}) \frac{1}{1 + \mathrm{d}\delta t/\mathrm{d}t} \tag{4.10}$$

$$\implies \left[\dot{q}_i' = \frac{\dot{q}_i + d\delta q_i/dt}{1 + d\delta t/dt} \right] \tag{4.11}$$

$$\delta \dot{q}_i = \dot{q}_i'(t') - \dot{q}_i(t) \tag{4.12}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t'} \dot{q}_i'(t') - \dot{q}_i(t) \tag{4.13}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t}\dot{q}_i'(t')\frac{\mathrm{d}t}{\mathrm{d}t'} - \dot{q}_i(t) \tag{4.14}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t}(\dot{q}_i + \delta q_i)\frac{\mathrm{d}t}{\mathrm{d}t'} - \dot{q}_i(t) \tag{4.15}$$

$$= \left(\dot{q}_i + \frac{\mathrm{d}\delta q_i}{\mathrm{d}t}\right) \frac{\mathrm{d}t}{\mathrm{d}t'} - \dot{q}_i(t) \tag{4.16}$$

pero

$$\frac{\mathrm{d}t}{\mathrm{d}t'} = \frac{1}{1 + \mathrm{d}\delta t/\mathrm{d}t} = 1 - \frac{\mathrm{d}\delta t}{\mathrm{d}t} + \cdots \tag{4.17}$$

$$\delta \dot{q}_i = \left(\dot{q}_i + \frac{\mathrm{d}\delta q_i}{\mathrm{d}t}\right) \left(1 - \frac{\mathrm{d}\delta t}{\mathrm{d}t}\right) - \dot{q}_i \tag{4.18}$$

$$= \dot{q}_i + \frac{\mathrm{d}\delta q_i}{\mathrm{d}t} - \dot{q}_i \frac{\mathrm{d}\delta t}{\mathrm{d}t} - \frac{\mathrm{d}\delta q_i}{\mathrm{d}t} \frac{\mathrm{d}\delta t}{\mathrm{d}t} - \dot{q}_i \tag{4.19}$$

$$\Longrightarrow \left[\delta \dot{q}_i = \frac{\mathrm{d}}{\mathrm{d}t} \delta q - \dot{q}_i \frac{\mathrm{d}}{\mathrm{d}t} \delta t \right] \tag{4.20}$$

4.2 Transformaciones de simetría

Sabemos que las ecuaciones de Euler-Lagrange se obtienen al aplicar el principio de Hamilton a la acción

$$S(q_i, \dot{q}_i, t) = \int_{t_q}^{t_2} dt L(q_i, \dot{q}_i, t)$$
(4.21)

Sean ahora q_i' y t' otro sistema coordenado relacionado con q_i t t por medio de la transformación

$$q_i \to q_i' = q_i'(q_i, t) \tag{4.22}$$

$$t \to t' = t'(t) \implies t = t(t')$$
 (4.23)

Escribimos (4.21) en términos de las nuevas coordenadas

$$dt = \frac{dt}{dt'}dt', \qquad q_i = q_i(q_i', t)$$
(4.24)

luego,

$$S(q_i, q_i', t) = \int_{t1'=t'(t_1)}^{t_2'=t'(t_2)} dt' \frac{dt}{dt'} L[q_i(q', t), \dot{q}_i(q, \dot{q}', t'), t(t')]$$
(4.25)

Por otro lado la acción $S'(q', \dot{q}', t')$ es dada por

$$S'(q', \dot{q}', t') = \int_{t'_1}^{t'_2} dt' L'(q'_i, \dot{q}'_i, t')$$
(4.26)

Dado que la física no puede ser alterada por un cambio de coordenadas, tenemos

$$S'(q', \dot{q}', t') = S(q, q', t) \tag{4.27}$$

$$\int_{t_{1'}}^{t_{2'}} dt' L'(q', \dot{q}', t') = \int_{t_{1}'}^{t_{2}'} dt' \frac{dt}{dt'} L[q_{i}(q', t), \dot{q}_{i}(q, \dot{q}', t'), t(t')]$$
(4.28)

$$\implies L'(q', \dot{q}', t') = L[q_i(q', t), \dot{q}_i(q, \dot{q}', t'), t(t')] \frac{\mathrm{d}t}{\mathrm{d}t'}$$
(4.29)

Una transformación de coordenadas que deja invariante en forma a las EOM es llamada una transformación de simetría.

Por lo tanto, si q son las coordenadas de un sistema físico descrito por las EOM,

$$\ddot{q} = G(q, \dot{q}, t) \tag{4.30}$$

entonces

$$t' = t'(t) \tag{4.31}$$

$$q' = q'(q, t) \tag{4.32}$$

será una transfrmación de simetría si las EOM transformadas es dada por

$$\boxed{\ddot{q}' = G(q', \dot{q}', t')} \tag{4.33}$$

Teorema 4.2. Si las EOM expresadas en términos de las nuevas variables tiene exactamente la misma forma funcional que las EOM expresadas en las variables antiguas y si ellas deben ser obtenidas a partir del principio de Hamilton, entonces las respectivas funciones de Lagrange deben diferir a lo más en una derivada total.

$$L'(q', \dot{q}', t') = L(q', \dot{q}', t') + \frac{\mathrm{d}}{\mathrm{d}t'} \Omega(q', t')$$
(4.34)

Prueba

Dado que las EOM se obtienen a partir del principio de Hamilton

$$\delta S = \delta \int_{t_1}^{t_2} \mathrm{d}t L(q, \dot{q}, t) = 0 \tag{4.35}$$

$$\implies \delta \int_{(q'_1, t'_1)}^{(q'_2, t'_2)} dt' L'(q', \dot{q}', t') \delta \int_{(q'_1, t'_1)}^{(q'_2, t'_2)} dt' L(q', \dot{q}', t') + \delta \int_{(q'_1, t'_1)}^{(q'_2, t'_2)} dt' \frac{\mathrm{d}}{\mathrm{d}t'} \Omega(q', t') \tag{4.36}$$

Dado que (4.27) es válida, tenemos

$$\int_{(q'_1,t'_1)}^{(q'_2,t'_2)} dt' L'(q'\dot{q}',t') = \delta \int_{(q'_1,t'_1)}^{(q'_2,t'_2)} dt L(q,\dot{q},t)$$
(4.37)

$$\implies \delta \int_{(q'_1, t'_1)}^{(q'_2, t'_2)} L(q, \dot{q}, t) = \delta \int_{(q'_1, t'_1)}^{(q'_2, t'_2)} dt' L(q, \dot{q}', t') + \delta \Omega(q', t') \Big|_{(q'_1, t'_1)}^{(q'_2, t'_2)}$$

$$(4.38)$$

el último término se cancela debido a que los puntos extremos son fijos,

$$\implies \delta \int_{(q'_1, t'_1)}^{(q'_2, t'_2)} dt L(q, \dot{q}, t) = \delta \int_{(q'_1, t'_1)}^{(q'_2, t'_2)} dt' L(q', \dot{q}', t')$$
(4.39)

Si queremos tener una simetría, entocnes debemos imponer dos condiciones

1.
$$L'(q', \dot{q}', t') = L(q', \dot{q}', t') + \frac{d}{dt'}\Omega(q', t')$$

2.
$$S'(q', \dot{q}', t') = S(q, \dot{q}, t)$$

Estas dos condiciones son el punto de partida para probar el teorema de Noether¹.

5 Clase 5

Distinguimos entre dos tipos de variaciones. La primera es la **variación** δ la cual compara dos coordenadas distintas en tiempos distintos. Es decir, compara las coordenadas q y q' en los tiempos t y t',

$$\delta q = q'(t') - q(t), \qquad t' = t + \delta t \tag{5.1}$$

 $^{^{1} \}verb|https://es.wikipedia.org/wiki/Emmy_Noether|$

$$q'(t') = q(t) + \delta t \tag{5.2}$$

Por otro lado la **variación** $\bar{\delta}$ compara dos coordenadas distintas en el mismo instante. Es decir, compara las coordenadas q y q' en el mismo instante,

$$\bar{\delta}q = q'(t) - q(t) \tag{5.3}$$

$$q'(t) = q(t) + \bar{\delta}q \tag{5.4}$$

5.1 Relación entre δ y $\bar{\delta}$

$$\bar{\delta}q = q'(t) - q(t) + q'(t') - q'(t') \tag{5.5}$$

$$= (q'(t') - q(t)) + q'(t) - q'(t')$$
(5.6)

$$\implies \bar{\delta}q = \delta q - [q'(t') - q'(t)] \tag{5.7}$$

Pero

$$q'(t') = q'(t + \delta t) = q'(t) + \delta t \frac{\mathrm{d}q'(t)}{\mathrm{d}t}$$
(5.8)

$$\implies q'(t') - q'(t) = \delta t \frac{\mathrm{d}}{\mathrm{d}t} (q(t) + \bar{\delta}q) \tag{5.9}$$

$$= \delta t \frac{\mathrm{d}}{\mathrm{d}t} q(t) + \delta t \frac{\mathrm{d}}{\mathrm{d}t} \delta q \tag{5.10}$$

el ultimo término es despreciable por que es de segundo orden.

$$\implies q'(t') - q'(t) = \delta t \dot{q} \tag{5.11}$$

$$\implies \boxed{\bar{\delta}q = \delta q(t) - \delta t \dot{q}(t)} \tag{5.12}$$

Propiedad 5.1. Los operadores $\bar{\delta}$ y d/dt conmutan.

$$\bar{\delta}\dot{q} = \dot{q}'(t) - \dot{q}(t) = \frac{\mathrm{d}}{\mathrm{d}t}q'(t) - \dot{q}(t) \tag{5.13}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \left(q(t) - \bar{\delta}q \right) - \dot{q}(r) \tag{5.14}$$

$$= \dot{g}(t) + \frac{\mathrm{d}}{\mathrm{d}t}\bar{\delta}q - \dot{g}(t) \tag{5.15}$$

$$\Longrightarrow \left[\bar{\delta}\dot{q} = \frac{\mathrm{d}}{\mathrm{d}t}\bar{\delta}q \right], \qquad \Longrightarrow \left[\bar{\delta}, \frac{\mathrm{d}}{\mathrm{d}t} \right] = 0$$
 (5.16)

Propiedad 5.2. Los operadores δ y d/dt no conmutan.

5.2 Prueba del teorema de Noether

Hemos visto que

$$S'(q', \dot{q}', t') = S(q, \dot{q}, t)$$
(5.17)

•
$$L'(q', \dot{q}', t') = L[q_i(q', t), \dot{q}_i(q, \dot{q}', t'), t(t')] \frac{\mathrm{d}t}{\mathrm{d}t'}$$
 (5.18)

$$L'(q', \dot{q}', t') = L(q', \dot{q}', t') + \frac{d}{dt'} \Omega(q', t')$$
(5.19)

De (5.18) y (5.19) vemos

$$L[q(q',t'),\dot{q}(q'\dot{q}',t'),t(t')]\frac{\mathrm{d}t}{\mathrm{d}t'} = L(q',\dot{q}',t')\frac{\mathrm{d}}{\mathrm{d}t'}\Omega(q',t')$$
 (5.20)

cambiando a las coordenadas antiguas,

$$L(q, \dot{q}, t) = L[q'(q, t), \dot{q}'(q\dot{q}, t), t'(t)] \frac{\mathrm{d}t'}{\mathrm{d}t} + \frac{\mathrm{d}}{\mathrm{d}t'} \Omega(q'(q, t), t'(t)) \frac{\mathrm{d}t'}{\mathrm{d}t}$$
(5.21)

$$L(q, \dot{q}, t) = L(q'\dot{q}', t')\frac{\mathrm{d}t'}{\mathrm{d}t} + \frac{\mathrm{d}}{\mathrm{d}t}\Omega(q', t')$$
(5.22)

en el entendido que

$$q' = q'(q, t), \qquad \dot{q}' = \dot{q}'(q, \dot{q}, t), \qquad t' = t'(t)$$
 (5.23)

Dado que $t' = t + \delta t$,

$$\frac{\mathrm{d}t'}{\mathrm{d}t} = 1 + \frac{\mathrm{d}}{\mathrm{d}t}\delta t \tag{5.24}$$

$$L(q, \dot{q}, t) = L(q', \dot{q}', t') \left(1 + \frac{\mathrm{d}}{\mathrm{d}t} \delta t \right) + \frac{\mathrm{d}}{\mathrm{d}t} \Omega(q', t')$$
(5.25)

$$\implies L(q, \dot{q}, t) - L(q', \dot{q}', t') = L(q', \dot{q}', t') \frac{\mathrm{d}}{\mathrm{d}t} \delta t + \frac{\mathrm{d}}{\mathrm{d}t} \Omega(q', t') \tag{5.26}$$

Dado que las transformaciones son continuas, basta estudiar el caso infinitesimal. De (5.26),

$$-\delta L = L(q, \dot{q}, t) - L(q + \delta q, \dot{q} + \delta \dot{q}, t + \delta t)$$

$$(5.27)$$

$$= L(q + \delta q, \dot{q} + \delta \dot{q}, t + \delta t) \frac{\mathrm{d}}{\mathrm{d}t} \delta t + \frac{\mathrm{d}}{\mathrm{d}t} \Omega(q + \delta q, t + \delta t)$$
(5.28)

Expandiendo el primer término hasta primer order

$$-\delta L = L(q, \dot{q}, t) \frac{\mathrm{d}}{\mathrm{d}t} \delta t + \frac{\mathrm{d}}{\mathrm{d}t} \Omega(q + \delta q, t + \delta t)$$
(5.29)

Si consideramos el caso límite donde $\delta q=0, \delta t=0$

$$\delta L = 0, \qquad \frac{\mathrm{d}}{\mathrm{d}t}\Omega(q,t) = 0$$
 (5.30)

Esto nos permite escribir

$$-\delta L = L(q, \dot{q}, t) \frac{\mathrm{d}}{\mathrm{d}t} \delta t + \frac{\mathrm{d}}{\mathrm{d}t} \Omega(q + \delta q, t + \delta t) - \frac{\mathrm{d}}{\mathrm{d}t} \Omega(q, t)$$
(5.31)

$$= L(q, \dot{q}, t) \frac{\mathrm{d}}{\mathrm{d}t} + \delta t \frac{\mathrm{d}}{\mathrm{d}t} [\Omega(q + \delta q, t + \delta t) - \Omega(q, t)]$$
(5.32)

$$\implies \boxed{-\delta L = L(q, \dot{q}, t) \frac{\mathrm{d}}{\mathrm{d}t} \delta t + \frac{\mathrm{d}}{\mathrm{d}t} \delta \Omega(q, t)}$$
 (5.33)

Reemplazando $L = L(q_i, \dot{q}_i, t)$, tenemos

$$\delta L = \sum_{i} \left(\frac{\partial L}{\partial q_{i}} \delta q_{i} + \frac{\partial L}{\partial \dot{q}_{i}} \delta \dot{q}_{i} \right) + \frac{\partial L}{\partial t} \delta t$$
 (5.34)

Reemplazando (5.34) en (5.33),

$$-\sum_{i} \left(\frac{\partial L}{\partial q_{i}} \delta q_{i} + \frac{\partial L}{\partial \dot{q}_{i}} \delta \dot{q}_{i} \right) - \frac{\partial L}{\partial t} \delta t = L(q, \dot{q}, t) \frac{\mathrm{d}}{\mathrm{d}t} \delta t + \frac{\mathrm{d}}{\mathrm{d}t} \delta \Omega(q, t)$$
(5.35)

Estudiaremos ahora el primer término del lado izquierdo. Dado que $\delta \dot{q}_i = d/dt \, \delta q_i - \dot{q}_i \, d/dt \, \delta t$ (eucación (4.20)),

$$\frac{\partial L}{\partial \dot{q}_i} \delta \dot{q}_i = \frac{\partial L}{\partial \dot{q}_i} \left(\frac{\mathrm{d}}{\mathrm{d}t} \delta q_i - \dot{q}_i \frac{\mathrm{d}}{\mathrm{d}t} \delta t \right) \tag{5.36}$$

$$= \frac{\partial L}{\partial \dot{q}_i} \frac{\mathrm{d}}{\mathrm{d}t} \delta q_i - \frac{\partial L}{\partial \dot{q}_i} \dot{q}_i \frac{\mathrm{d}}{\mathrm{d}t} \delta t \tag{5.37}$$

$$\implies \sum_{i} \frac{\partial L}{\partial q_{i}} \delta q_{i} + \frac{\partial L}{\partial \dot{q}_{i}} \delta \dot{q}_{i} = \sum_{i} \frac{\partial L}{\partial q_{i}} \delta q_{i} + \frac{\partial L}{\partial \dot{q}_{i}} \frac{\mathrm{d}}{\mathrm{d}t} \delta q_{i} - \frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i} \frac{\mathrm{d}}{\mathrm{d}t} \delta t$$

$$(5.38)$$

$$= \sum_{i} \left(\frac{\partial L}{\partial q_{i}} + \frac{\partial L}{\partial \dot{q}_{i}} \frac{\mathrm{d}}{\mathrm{d}t} \right) \delta q_{i} - \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i} \frac{\mathrm{d}}{\mathrm{d}t} \delta t$$
 (5.39)

Introduciendo en (5.35),

$$\sum_{i} \left(\frac{\partial L}{\partial q_{i}} + \frac{\partial L}{\partial \dot{q}_{i}} \frac{\mathrm{d}}{\mathrm{d}t} \right) \delta q_{i} - \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i} \frac{\mathrm{d}}{\mathrm{d}t} \delta t + \frac{\partial L}{\partial t} \delta t = -L(q, \dot{q}, t) \frac{\mathrm{d}}{\mathrm{d}t} \delta t - \frac{\mathrm{d}}{\mathrm{d}t} \delta \Omega(q, t)$$
(5.40)

$$\sum_{i} \left(\frac{\partial L}{\partial q_{i}} + \frac{\partial L}{\partial \dot{q}_{i}} \frac{\mathrm{d}}{\mathrm{d}t} \right) \delta q_{i} + \left(L(q, \dot{q}, t) - \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i} \right) \frac{\mathrm{d}}{\mathrm{d}t} \delta t + \frac{\partial L}{\partial t} \delta t = -\frac{\mathrm{d}}{\mathrm{d}t} \delta \Omega(q, t)$$
 (5.41)

despues de algo d cálculo se llega a

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \delta q_{i} + L \delta t - \sum_{i} \frac{\partial L}{\partial q_{i}} \dot{q}_{i} \delta t + \delta \Omega \right] = -\sum_{i} \left(\frac{\partial L}{\partial q_{i}} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_{i}} \right) \delta q_{i} + \left(\frac{\mathrm{d}L}{\mathrm{d}t} - \frac{\partial L}{\partial t} \right) \delta t - \sum_{i} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i} \right) \delta t \tag{5.42}$$

Analicemos los dos últimos términos de (5.42). Dado que $L = L(q_i, \dot{q}_i, t)$, se tiene que

$$\frac{\mathrm{d}L}{\mathrm{d}t} = \sum_{i} \left(\frac{\partial L}{\partial q_i} \dot{q}_i + \frac{\partial L}{\partial q_i} \ddot{q}_i \right) + \frac{\partial L}{\partial t}$$
(5.43)

$$\implies \frac{\mathrm{d}L}{\mathrm{d}t} - \frac{\partial L}{\partial t} = \sum_{i} \left(\frac{\partial L}{\partial q_i} \dot{q}_i + \frac{\partial L}{\partial q_i} \ddot{q}_i \right) \tag{5.44}$$

y además

$$\sum_{i} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial q_{i}} \dot{q}_{i} \right) = \sum_{i} \left(\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_{i}} \right) \dot{q}_{i} + \frac{\partial L}{\partial q_{i}} \ddot{q}_{i}$$
(5.45)

$$\left(\frac{\mathrm{d}L}{\mathrm{d}t} - \frac{\partial L}{\partial t}\right) - \sum_{i} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i}\right) = \sum_{i} \left(\frac{\partial L}{\partial q_{i}} \dot{q}_{i} + \frac{\partial L}{\partial q_{i}} \ddot{q}_{i} - \left(\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_{i}}\right) \dot{q}_{i} - \frac{\partial L}{\partial q_{i}} \ddot{q}_{i}\right)$$
(5.46)

$$= \sum_{i} \left(\frac{\partial L}{\partial q_i} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_i} \right) \dot{q}_i \tag{5.47}$$

Así, (5.42) toma la forma

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \left(\delta q_{i} - \dot{q}_{i} \delta t \right) + L \delta t + \delta \Omega \right] = -\sum_{i} \left(\frac{\partial L}{\partial q_{i}} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_{i}} \right) \left(\delta q_{i} - \dot{q}_{i} \delta t \right)$$
(5.48)

Dado que

$$\bar{\delta}q_i = \delta q_i - \dot{q}_i \delta t \tag{5.49}$$

y que

$$[L]_i = \sum_i \left(\frac{\partial L}{\partial q_i} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_i} \right) \tag{5.50}$$

tenemos

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{\partial L}{\partial \dot{q}_i} \left(\delta q_i - \dot{q}_i \delta t \right) + L \delta t + \delta \Omega \right] = -[L]_i \bar{\delta} q_i \tag{5.51}$$

luego,

$$[L]_{i}\bar{\delta}q_{i} + \frac{\mathrm{d}}{\mathrm{d}t} \left[\sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \bar{\delta}q_{i} + L\delta t + \delta\Omega \right] = 0$$
 (5.52)

esto implica, que en el espacio de soluciones de las ecuaciones de Euler-Lagrange, se tiene

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \bar{\delta} q_{i} + L \delta t + \delta \Omega \right] = 0 \tag{5.53}$$

Definiendo la cantidad,

$$J \equiv \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \bar{\delta} q_{i} + L \delta t + \delta \Omega \tag{5.54}$$

$$\implies \frac{\mathrm{d}J}{\mathrm{d}t} = 0, \implies J = \text{constante}$$
 (5.55)

Luego, J es una cantidad conservada,

$$\boxed{[L]_i \bar{\delta} q_i + \frac{\mathrm{d}J}{\mathrm{d}t} = 0}$$
(5.56)

6 Clase 6

6.1 Continuación prueba del teorema de Noether

De la clase 5 vimos que

$$[L]_i \bar{\delta} q_i + \frac{\mathrm{d}J}{\mathrm{d}t} = 0, \qquad [L]_i = 0$$
(6.1)

donde

$$J \equiv \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \bar{\delta} q_{i} + L \delta t + \delta \Omega \tag{6.2}$$

con

$$\bar{\delta}q_i = \delta q_i - \dot{q}_i \delta t \tag{6.3}$$

$$J = \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \left(\delta q_{i} - \dot{q}_{i} \delta t \right) + L \delta t + \delta \Omega$$
(6.4)

$$= \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \delta q_{i} - \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i} \delta t + L \delta t + \delta \Omega$$
(6.5)

pero sabemos que

$$p_i = \frac{\partial L}{\partial \dot{q}^i}, \qquad H_c = \sum_i p_i \dot{q}^i - L$$
 (6.6)

así,

$$J = \sum_{i} p_{i} \delta q^{i} - H_{c} \delta t + \delta \Omega$$

$$(6.7)$$

donde H_c es el usual Hamiltoniano en el caso de que la función de Lagrange sea regular, y es el llamado **Hamiltoniano canónico** en el caso de que la función de Lagrange L sea de naturaleza singular. En (6.1) tenemos que

$$[L]_i = \frac{\partial L}{\partial a_i} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{a}_i} \tag{6.8}$$

$$= \frac{\partial L}{\partial q_i} - \frac{\partial^2 L}{\partial \dot{q}_i \partial q_j} \dot{q}_j - \frac{\partial L}{\partial \dot{q}_i \dot{q}_j} \ddot{q}_j = 0 \tag{6.9}$$

Definiendo

$$V_i = \frac{\partial L}{\partial q_i} - \frac{\partial^2 L}{\partial \dot{q}_i \partial q_j} \dot{q}_j \tag{6.10}$$

$$W_{ij} = \frac{\partial L}{\partial \dot{q}_i \dot{q}_i} \tag{6.11}$$

se tiene²

$$\implies [L]_i = V_i - W_{ij}\ddot{q}^j \tag{6.12}$$

En el caso de que L sea regular, podemos escribir

$$V_i - W_{ij}\ddot{q}^j = 0 \quad /W^{ki} \tag{6.13}$$

$$W^{ki}V_i - W^{ki}W_{ij}\ddot{q}^j = 0 ag{6.14}$$

$$W^{ki}V_i - \delta^k_i \ddot{q}^j = 0 \tag{6.15}$$

$$\Longrightarrow \left[\ddot{q}^k = W^{ki} V_i \right] \tag{6.16}$$

Dado que la derivada de Euler-Lagrange es

$$[L]_i = V_i - W_{ij}\ddot{q}^j \tag{6.17}$$

tenemos que (6.1) toma la forma

$$(V_i - W_{ij}\ddot{q}^j)\bar{\delta}q^i + \frac{\mathrm{d}J}{\mathrm{d}t} = 0 \tag{6.18}$$

$$V_i \bar{\delta} q^i - W_{ij} \ddot{q}^j \bar{\delta} q^i + \frac{\mathrm{d}J}{\mathrm{d}t} = 0 \tag{6.19}$$

pero $J = J(q, \dot{q}, t)$,

$$\frac{\mathrm{d}J}{\mathrm{d}t} = \frac{\partial J}{\partial a_i} \dot{q}_i + \frac{\partial J}{\partial \dot{a}_i} \ddot{q}_i + \frac{\partial J}{\partial t} \tag{6.20}$$

$$\implies V_i \bar{\delta} q^i - W_{ij} \ddot{q}^j \bar{\delta} q^i + \frac{\partial J}{\partial q_i} \dot{q}_i + \frac{\partial J}{\partial \dot{q}_i} \ddot{q}_i + \frac{\partial J}{\partial t} = 0$$
 (6.21)

$$V_{i}\bar{\delta}q^{i} + \frac{\partial J}{\partial a_{i}}\dot{q}_{i} + \frac{\partial J}{\partial t} + \frac{\partial J}{\partial \dot{a}_{i}}\ddot{q}_{i} - W_{ji}\ddot{q}^{i}\bar{\delta}q^{j} = 0$$

$$(6.22)$$

$$V_{i}\bar{\delta}q^{i} + \frac{\partial J}{\partial q_{i}}\dot{q}_{i} + \frac{\partial J}{\partial t} + \left(\frac{\partial J}{\partial \dot{q}_{i}} - W_{ij}\bar{\delta}q^{j}\right)\ddot{q}^{i} = 0$$

$$(6.23)$$

 $^{^2}$ Abusando un poco de la posición de los índices, que para efecto des este cálculo no es tan relevante.

donde renombramos índices mudos y usado el hecho de que $W_{ij} = W_{ji}$ por como fue definido. Teniendo en cuenta que $J = J(q, \dot{q}, t)$,

$$V_i \bar{\delta} q^i + \frac{\partial J}{\partial q_i} \dot{q}^i + \frac{\partial J}{\partial t} = 0 \tag{6.24}$$

$$\frac{\partial J}{\partial \dot{q}_i} - W_{ij}\bar{\delta}q^j = 0 \tag{6.25}$$

Multiplicando (6.25) por W^{ki} , se tiene,

$$\bar{\delta}q^k = W^{ki} \frac{\partial J}{\partial \dot{q}^i} \tag{6.26}$$

Introduciendo (6.26) en (6.24), tenemos

$$V_i W^{ij} \frac{\partial J}{\partial \dot{q}^j} + \frac{\partial J}{\partial q_i} \dot{q}_i + \frac{\partial J}{\partial t} = 0$$
 (6.27)

De (6.16)

$$\ddot{q}^k = W^{ji}V_i = W^{ij}V_i \tag{6.28}$$

reemplazando (6.27),

$$\ddot{q}^{j}\frac{\partial J}{\partial \dot{q}^{j}} + \frac{\partial J}{\partial q_{i}}\dot{q}_{i} + \frac{\partial J}{\partial t} = 0$$
(6.29)

$$\frac{\partial J}{\partial q_i}\dot{q}_i + \ddot{q}^j\frac{\partial J}{\partial \dot{q}^j} + \frac{\partial J}{\partial t} = 0 \tag{6.30}$$

$$\Longrightarrow \boxed{\frac{\mathrm{d}J}{\mathrm{d}t} = 0}, \qquad J = \text{constante} \tag{6.31}$$

$$J = \sum_{i} p_i \delta q^i - H_c \delta t + \delta \Omega = \text{constante}$$
 (6.32)

6.2 Grupos y álgebras de Lie

Sea A un conjunto de elementos $\{a, b, ...\}$ dotado de una operación binaria interna \square tal que $\forall a, b, c \in A \square b = c \in A$ la operación \square es cerrada (en este caso tenemos un **magma**).

Si la operación binaria interna tiene solo la propiedad asociativa entonces estamos en presencia de un **semigrupo**.

Definición 6.1. Un semigrupo es una estructura algebraica dotada de una sola operación binaria interna que satisface la propiedad asociativa.

Ejemplo 6.1. Sea $A = \{a, b\}$ dotado de la operación \diamond . Una tabla de multiplicación es la siguiente.

$$(a \diamond b) \diamond a = b \diamond a = a \tag{6.34}$$

$$a \diamond (b \diamond a) = a \diamond a = a \tag{6.35}$$

Luego, la operación \diamond es asociativa. Notemos que $a \diamond a = a$ y $a \diamond b = b$ pero $b \diamond a = a$ lo que implica que $a \diamond b \neq b \diamond a$. Luego el conjunto A con la operación \diamond dada en (6.33) no tiene elemento unidad y correspode a un semigrupo.

Si la operación binaria interna demás de ser asociativa admite un elemento unidad, entonces estamos en prsencia de un **monoide**.

Definición 6.2. Un monoide es una estructura algebraca dotada de una operación binaria interna que admite la propiedad asociativa y de elemento unidad.

Si sucediera que cada elemento del mnoide admitiera un elemento neutro, entonces estaos en presencia de un grupo.

Definición 6.3. Un grupo es una estructura algebraica dotada de una operación binaria interna que satisface

- 1. asociatividad
- 2. tiene elemento unidad
- 3. cada elemento de la estructura admite un elemento inverso.

Hasta ahora hemos visto estructuras con solo una ley de composición interna. Una estructura que tiene dos leyes de composición interna es el **anillo**.

Definición 6.4. Un anillo es una estructura algebraica dotada denotada por $(A, \square, *)$ donde

- 1. A con respecto a la operación □ es un grupo abeliano (conmutativo)
- 2. A con respecto de * es un semigrupo.

Normalmente la operación \square se denota por + y se le llama adición, y * se denota por · o solo por yuxtaposición.

Así entonces una estructura $(A, +, \cdot)$ se llama anillo si:

- 1. $\forall a, b, c \in A, (a+b) + c = a + (b+c)$
- 2. $\forall a \in A, \exists \in A / a + 0 = 0 + a = a$
- 3. $\forall a \in A, \exists (-a) \in A, /a + (-a) = (-a) + a = 0$
- $4. \ \forall a, b \in A, \ a+b=b+a$
- 5. $\forall a, b, c \in A, a(bc) = (ab)c$

Su sucediera que $\forall a, b \in A, ab = ba$ el anillo se llamará anillo conmutativo.

Si ocurriera que $\forall a \in A, \exists 1 \in A / a = 1 = 1 = a$ el anillo se llamará **anillo con unidad**.

Definición 6.5. Sea $(A, +, \cdot)$ un anillo. Si ocuriera que $\forall a \in A$, existiera un a^{-1} , salo para el elemento 0, entonces la estructura algebraica ser+a llamada un **campo**.

7 Clase 7

Definición 7.1. Una estructura $(A, +, \cdot)$ es una anillo si

- \bullet (A, +) es un grupo abeliano
- \bullet (A, \cdot) es un semigrupo

En el caso que la operación de multiplicación admita un elemento unidad, entonces $(A, +, \cdot)$ será un anillo con unidad, i.e. $\forall x \in A, \exists x \in A/ex = xe = x$.

En el caso que la operación multiplicativa del anillo sea conmutativa, el anillo es un anillo conmutativo.

Definición 7.2. Un campo denotado por K, es una estructura que además de tener las propiedades del anillo con unidad, cada elemento A, excepto el cero, tiene un inverso. Por lo tanto un campo $(K, +, \cdot)$ es una estructura tal que

- (K, +) es un grupo abeliano aditivo.
- $(K-0,\cdot)$ es un grupo abeliano multiplicativo.

Hasta ahora hemos estudiado estructuras que tienen una ó dos operaciones binarias internas. Consideremos ahora una estructura dotada de una operación binaria interna y una operación binaria externa.

7.1 Espacio lineal o espacio vectorial

Definición 7.3. Una estructura (M, K, \bullet) es llamado un espacio vectorial, si

- M es un grupo abeliano,
- K es un campo conmutativo,
- es una operación binaria externa que define la acción del campo K sobre el grupo M,

$$\bullet: K \times M \to M \tag{7.1}$$

$$(\alpha, x) \to \alpha \bullet x, \qquad \forall x \in M, \forall \alpha \in K$$
 (7.2)

 La operación binaria interna de M está relacionada con la operación binaria externa ● a través de una operación distintiva mixta.

$$-\alpha \bullet (x+y) = \alpha \bullet x + \alpha \bullet y$$
$$-(\alpha + \beta) \bullet x = \alpha \bullet x + \beta \bullet y$$

$$\forall \alpha, \beta \in K, \forall x, y \in M.$$

Normalmente los elementos $x \in M$ se llaman vectores y los elementos $\alpha \in K$ se llaman escalares y la operación \bullet se llama producto por escalar.

7.2 Álgebra y álgebra de Lie

Definición 7.4. Una estructura algebraica (A, K, \bullet) es llamada un álgebra, si

- A es un anillo,
- K es un campo conmutativo,
- ullet es una operación binaria externa que define la acción del campo K sobre el anillo,

$$\bullet: K \times A \to A \tag{7.3}$$

• La operació binara interna aditiva del anillo (+) está relacionada con la operación binaria externa a través de la propiedad distributiva mixta

$$-\alpha \bullet (x+y) = \alpha \bullet x\alpha \bullet y, \qquad \forall \alpha, \beta \in K, \forall x, y \in A$$
$$-(\alpha + \beta)x = \alpha \bullet x + \beta \bullet x$$

 La operación binaria interna multiplicativa del anillo (denotada por ⋄) está relacionada con la operación binaria externa • por medio de la propiedad asociativa mixta

$$\alpha \bullet (x \diamond y) = (\alpha \bullet x) \diamond y = x \diamond (\alpha \bullet y), \qquad \forall x, y \in A, \, \forall \alpha \in K$$
 (7.4)

1. La operación binaria interna del anillo \diamond se le llama producto algebraico.

En el caso que la multiplicación algebraica \diamond sea asociativa, i.e., $\forall x,y,z\in A,$

$$(x \diamond y) \diamond z = x \diamond (y \diamond z) \tag{7.5}$$

entonces el álgebra se llama **álgebra asociativa**.

- 2. Si la multiplicación algebraica tiene además de la propiedad asociativa, al elemento unidad entonces el álgebra es llamada **álgebra asociativa unital**.
- 3. Si la operación multiplicación algebraica es una operación antisimétrica, i.e., si

4.

$$x \diamond y = [x, y] = xy - yx \tag{7.6}$$

entonces el álgebra se llama **álgebra de Lie** y la operación \diamond antisimétrica satisface la propiedad derivativa conocida como identidad de Jacobi.

7.3 Grupos, álgebras y simetrías

El concepto de grupo está muy relacionado con el concepto de invariancia o de simetría de objetos tales como superficies, funciones, ecuaciones algebraicas, ecuaciones diferenciales, entre otros.

Nota histórica:

- El estudio de las simetrías de las ecuaciones algebraicas se hace en el contexto de la teoría de Galois.
- El estudio de las simetrías de las ecuaciones diferenciales se hacen en el contexto de la teoría de Lie.

Los grupos de Lie son grupos continuos que tienen la propiedad que es suficiente estudiarlos en su forma infinitesimal. En física, los grupos de Lie se introducen como grupos de transformaciones de coordenadas, i.e., como actuando sobre los elementos de una variedad.

Ejemplo 7.1. Consideremos la típica rotación en un plano de los ejes coordenados en un ángulo θ , La relación entre las coordenadas primadas y las sin primar viene dada por

$$x_1' = \cos\theta x_1 - \sin\theta x_2 \tag{7.7}$$

$$x_2' = \sin \theta x_1 + \cos \theta x_2 \tag{7.8}$$

o de manera equivalente

$$\underbrace{\begin{pmatrix} x_1' \\ x_2' \end{pmatrix}}_{x'} = \underbrace{\begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}}_{R(\theta)} \underbrace{\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}}_{x}$$
(7.9)

Así, tenemos una transformación de la forma

$$x' = f(x, \theta) \tag{7.10}$$

además, notemos que

• $\{R(\theta)\}\ tiene\ unidad\ \forall \theta,\ dada\ por$

$$R(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tag{7.11}$$

- tiene inverso, $\forall \theta, \exists (-\theta)$.
- es asociativo,
- es conmutativo

Si la transformación $x' = f(x, \theta)$, entonces la unidad es dada por x' = f(x, 0) = f(x, e) = x.

Definición 7.5. Un conjunto de transformaciones

$$x^{i} = f^{i}(x', ..., x^{n}; g^{1}, ..., g^{r}) \equiv f(x, g)$$
(7.12)

es llamado un grupo de transformaciones r-paramétrico si

1. admite el elemento unidad

$$x' = f(x, e) = x \tag{7.13}$$

- 2. admite elemento inverso
- 3. tiene definida una ley de composición interna,

$$x' = f(x,g),$$
 $x'' = f(x',g') = f[f(x,g),g'] = f(x,g'')$ (7.14)

entonces

$$g'' = g''(g, g')$$
 (7.15)

Definición 7.6. Un conjunto de transformaciones es un grupo de simetría de una ecuación diferencial

$$F(x, x^{(1)}, ..., x^{(n)}) = 0, \quad con \ x = (x^1, ..., x^n)$$
 (7.16)

si la ecuación (7.16) permanece invariante en fora bajo la acción del grupo,

$$F(x', x'^{(1)}, ..., x'^{(n)}) = 0 (7.17)$$

Lo interesante de los grupos de Lie es que basta estudiar sus versiones infinitesimales.

$$x' = f(x,g) \to x' = f(x,\delta g) \tag{7.18}$$

$$x^{i} = f^{i}(x, \delta g) = f^{i}(x, e) + \left. \frac{\partial f^{i}(x, \delta g)}{\partial g^{k}} \right|_{g=e} \delta g^{k} + \cdots$$
 (7.19)

donde x' = f(x, e) = x

$$x^{\prime i} = x^{i} + \left. \frac{\partial f^{i}(x, \delta g)}{\partial g^{k}} \right|_{q=e} \delta g^{k} + \cdots$$
 (7.20)

$$\Rightarrow \delta x^{i} = x^{\prime i} - x^{i} = \left. \frac{\partial f^{i}(x, \delta g)}{\partial g^{k}} \right|_{q=e} \delta g^{k}$$
 (7.21)

Esto significa que un cambio infinitesimal en los parámetros implica un cambio infinitesimal en las coordenadas de la variedad sobre la cual actúa el grupo.