

Sequential Baseline

Algorithm

- 1. Create a population
- 2. Simulate walkers
- 3. Select the fittest walkers
- 4. Cross and mutation of the fittest walkers
- 5. Repeat steps 2-4

REPEAT

Initial Visualization

Bottlenecks

Bottlenecks after profiling:

- Creating a new population is the most expensive step
- 2. **Simulating a step** for each of the walkers
- 3. **Memory constraints** on sequential implementation. Opportunities for scaling and parallelizing (Cache locality and exploiting multiple processes can be explored).

The algorithm is synchronization- and not compartmentalized computation-heavy

Number of Walkers

Parallelism

- Create population with MPI
 - Each rank takes a subset of the population to be created
 - Every rank simulates the walkers of the subpopulation
 - Reports the fitnesses and the torque
- Simulation
 - Pass walkers to Box2D environment, calculate distance travelled
- Select the fittest walkers
 - Sorting algorithm
- Migration
 - Randomly select 5% of the walkers from population A → population B
 - o Communication between ranks

REPEAT

Migration – Student Visas

