Assignment 2 - Continuity and Branches of Complex Functions Due February $5 \mathrm{th}$

- 1. Let $f(z) = z^2 + 1$. Draw the image of the following objects by f (show all your work):
 - a) (0,5 pts) The straight line $\{a + i \mid a \in \mathbb{R}\}.$
 - b) (0,5 pts) The straight line $\{1 + ib \mid b \in \mathbb{R}\}$.
 - c) (1 pt) The region $\{a+ib \mid a,b \geq 1\}$.
- 2. (2 pts) Write out all branches of $f(z) = z^{\frac{1}{4}}$.
- 3. Let $f: \mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}$ defined by $f(a+ib) = a^b + ib^a$
 - a) (0,5pts) Show that f is continuous (you may use without proof the fact that the real function $F(x,y)=x^y$ is continuous for $x,y\neq 0$).
 - b) (0,5pts) Show that we cannot pick any value for f(0) that would make $f:\mathbb{C}\to\mathbb{C}$ continuous.