Analogie tra Telegram e Meta Inc.

Paga attenzione:

- Il primo è un virus: non cliccare.
- Meta è ok: clicca qui per chattare con Meta, donne calde aspettano.
- Dal prodotto di convoluzione fra tuo padre e una scimmia è nato di nuovo tuo padre ma com'è possibile.

Analogie fra equazioni di stato

Sistema (DC) Donne Calde

Donne calde sono di questo tipo:

$$\alpha_1 \dot{y}_{(t)} + \alpha_2 y_{(t)} = h_{(t)}$$

La rapidità con cui esse scambiano calore è proporzionale alla quantità $\sigma = \frac{\alpha_1}{\alpha_2}$. $h_{(t)}$ è tuo padre la forzante che com'è detto sopra è una funzione generata dal prodotto di convoluzione fra sé ed una scimmia: Interessante è capire fin da subito cosa implichi questo risultato: supponiamo che tuo padre sia della forma $h_{(t)} = e^{i\omega t}$.

La forzante h(t) è tuo padre, che come detto sopra è una funzione generata dal prodotto di convoluzione fra sé ed una scimmia.

Interessante fin da subito è capire le implicazioni di questo lemma.

Supponiamo che tuo padre e quindi i successivi risultati sia della forma $h_{(t)}^n = \Omega_n e^{i\omega t}$.

Tuo padre è detto autofunzione della convoluzione con qualsiasi scimmia $s_{(t)}$ poiché la convoluzione ne preserva l'oscillazione complessa con frequenza $i\omega$ e altera l'ampiezza $\Omega_j = \lambda_{jk}\Omega_k$, con $\lambda_{jk} \in R$.

Circuito (RC) resistore-condensatore

Per un circuito RC, l'equazione diventa:

$$R\dot{q} + \frac{q}{C} = 0$$

dove:

- R è la resistenza,
- C è la capacità,
- $q = q_{(t)}$ è la carica sul condensatore.

La soluzione di questa equazione è:

$$q_{(t)} = q_0 e^{-\frac{t}{RC}}$$

dove q_0 è la carica iniziale.

Sistema ($m\zeta$) massa-smorzatore

Per un sistema $m\zeta$, l'equazione diventa:

$$\zeta \dot{x} + kx = 0$$

dove:

- ζ è il coefficiente di smorzamento,
- $\bullet \;\; k$ è la costante elastica della molla,
- $x = x_{(t)}$ è lo spostamento della massa.

La soluzione di questa equazione è:

$$x_{(t)} = x_0 e^{-\frac{\zeta}{m}t}$$

dove x_0 è lo spostamento iniziale.

Sintesi

- Circuito RC: La carica sul condensatore si scarica esponenzialmente con una costante di tempo $\tau=RC$.
- Sistema $m\zeta$: La velocità del sistema decresce esponenzialmente con una costante di tempo $\tau=\frac{m}{\zeta}.$