Solutions of Exercises - Module II

Exercise 1. Suppose ab=ba=ca=ac=e

Then
$$b = e b = (c a) b = c (a b) = c e = c$$

Exercise 2. First realize that if $a, b \in T$ then

$$(a b) (b^{-1} a^{-1}) = a(b b^{-1})a^{-1} = a e a^{-1} = e$$

and
$$(b^{-1} a^{-1}) (ab) = b^{-1} (a^{-1} a) b = b^{-1} e b = e$$

so $a b \in T$ and T is closed with respect to the operation. Associativity holds in T since it holds in S. Of course e = e implies that $e \in T$ and

$$a^{-1} a = a a^{-1} = e$$

implies that $(a^{-1})^{-1} = a$. Thus $a \in T$ implies that $a^{-1} \in T$.

Exercise 4. Since $|R| \ge 2$, $0 \ne 1$. By Exercise 3

$$a\ 0=0\neq\ 1$$

 $\forall a \in R$. Then $0 \notin U$ and $U \subseteq R - \{0\}$. Note, however, that we cannot use Exercise 2, since $R - \{0\}$ may NOT be closed with respect to the operation, i.e. there may exist $a, b \in R - \{0\}$ such that ab = 0. NEVERTHELESS, the steps of Exercise 2 may be repeated verbatim to obtain U is a group.

Exercise 5 c) $n | b - c \Rightarrow b = q n + c \text{ so } d | b, n \Leftrightarrow d | c, n$

d)
$$p | a^2 - b^2 = (a - b) (a + b) \implies p | a - b \text{ or } p | a + b$$

e) Suppose
$$f(x) = \sum_{i=0}^{m} a_i x^i$$
 and $\sum_{i=0}^{m} a_i a^i \equiv k \pmod{n}$

Consider $\sum_{i=0}^{m} a_i (a + tn)^i$. If $i \ge 1$

$$(a + tn)^{i} = a^{i} + \sum_{j=1}^{i} {i \choose j} t^{j} n^{j} a^{i=j}$$

$$\equiv a^{i} \pmod{n}$$

Thus
$$\sum_{i=0}^{m} a_i (a + t n)^i = a_0 + \sum_{i=1}^{m} a_i (a + t n)^i$$

$$\equiv a_0 (\text{mod } n) + \sum_{i=1}^{m} \left[a_i \ a^i (\text{mod } n) \right]$$

$$= f(a) (\text{mod } n)$$

$$= k (\text{mod } n)$$

Exercise 6a) $Z_{30} = \{1, 7, 11, 13, 17, 19, 23, 29\}$

Exercise 7) Observe that
$$n = 420$$
, $\left(\frac{n}{5}\right)^{-1} \mod 5 = 4$, $\left(\frac{n}{7}\right)^{-1} \mod 7 = 2$

and
$$\left(\frac{n}{12}\right)^{-1}$$
 mod 12 = 11. Therefore
 $\hat{x} = 3(84)(4) + 3(60)(2) + 5(35)(11) = 3293$
so that $x = 353$.

Exercise 9) We assume that if ord a_1 , ord a_2 ,..., ord a_{k-1} are pairwise relatively prime and $a_1, a_2, ..., a_{k-1}$ commute in pairs then

ord
$$(a_1 \ a_2, ..., \ a_{k-1}) = \prod_{i=1}^{k-1} \text{ ord } a_i$$

Next consider a_1 , a_2 ,..., a_k , which commute in pairs and have orders which are pairwise relatively prime. Suppose

$$d = gcd (ord(\prod_{i=1}^{k-1} a_i), ord a_k).$$

Then, since

ord
$$(\prod_{i=0}^{k-1} a_i) = \prod_{i=1}^{k-1} \text{ ord } (a_i)$$

and ord(a),.., ord(ak), are pairwise relatively prime

 $\exists i \text{ such that } d \mid \text{ ord } a_i$. But then $d \mid \text{ ord } a_i$, ord $a_k \implies d = 1$ Also

$$(a_1 \ a_2 \cdots a_{k-1})a_k = a_1 \cdots a_{k-2} \ a_k \ a_{k-1}$$

= $\cdots = a_k \cdot (a_1, ..., a_{k-1})$

by induction so we may conclude from the k = 2 case that

ord
$$(a_1 \cdots a_{k-1} \ a_k) = \operatorname{ord}(a_1 \cdots a_{k-1}) \operatorname{ord}(a_k)$$

= $(\prod_{i=1}^{k-1} \operatorname{ord}(a_i))$

Solutions of Submitted Exercises from Module II (Exercise 3; 5a and b)

Exercise 3 First
$$a 0 = a(0+0) = a 0 + a 0$$
so
$$0 = a 0 + (-(a 0)) = (a \cdot 0 + a 0) + (-(a 0))$$

$$= a \cdot 0 + (a 0 + (-(a 0)))$$

$$= a 0 + 0$$

$$= a 0$$
Similarly $0 = 0$
Next suppose $|R| \ge 2$ so $\exists a \in R$ such that $a \ne 0$. If $1 = 0$ then $a = a 1 = a 0 = 0$
- a contradiction

Exercise $5 a$) i) $a \equiv b \pmod{n} \Leftrightarrow n| a - b \Leftrightarrow n| b - a$

$$\Leftrightarrow b \equiv a \pmod{n}. \text{ Also}$$

$$n| a - b \Leftrightarrow n| (a - b) - 0 \Leftrightarrow a - b \equiv 0 \pmod{n}$$
 ii) $n| a - b$ and $n| b - c \Rightarrow n| a - c = (a - b) + (b - c)$
 iii) $a + c - (b + d) = (a - b) + (c - d)$
so $n| a - b$ and $n| c - d \Rightarrow n| [a + c - (b + d)]$

$$a c - db = (a - b) c + b(c - d)$$

$$\Rightarrow n| (ac - bd)$$
 iv) $n| a - b$ and $d| n \Rightarrow d| a - b$

$$v$$
) $n| a - b$ $n c| ac - bc = (a - b)c$

Exercise $5 b$) i) Let $n = \alpha \gcd(a, n)$
Suppose $n = \alpha \gcd(a, n) = \alpha \gcd(a, n)$
Suppose $n = \alpha \gcd(a, n) = \alpha \gcd(a, n)$

$$n = \alpha \gcd(a, n) = \alpha \gcd(a, n)$$

$$n = \alpha \gcd(a, n) = \alpha \gcd(a, n)$$

$$n = \alpha \gcd(a, n) = \alpha \gcd(a, n)$$

$$n = \alpha \gcd(a, n) = \alpha \gcd(a, n)$$

$$n = \alpha \gcd(a, n) = \alpha \gcd(a, n)$$

$$n = \alpha \gcd(a, n) = \alpha \gcd(a, n)$$

$$n = \alpha \gcd(a, n) = \alpha \gcd(a, n)$$

$$n = \alpha \gcd(a, n) = \alpha \gcd(a, n)$$

$$n = \alpha \gcd(a, n) = \alpha \gcd(a, n)$$

$$n = \alpha \gcd(a, n) = \alpha \gcd(a, n)$$

$$n = \alpha \gcd(a, n) = \alpha \gcd(a, n)$$

$$n = \alpha \gcd(a, n) = \alpha \gcd(a, n)$$

$$n = \alpha \gcd(a, n) = \alpha \gcd(a, n)$$

$$n = \alpha \gcd(a, n) = \alpha \gcd(a, n)$$

$$n = \alpha \gcd(a, n) = \alpha \gcd(a, n)$$

$$n = \alpha \gcd(a, n) = \alpha \gcd(a, n)$$

$$n = \alpha \gcd($$

so $\alpha \mid \beta(x-y)$ and therefore $\alpha \mid x-y$ i.e. $x \equiv y \mod(\alpha)$

- ii) follows immediately from i)
- $\begin{aligned} iii) &\text{If } n_i \left| \right. \ x-y & i=1,...,k \text{ then } x-y \text{ is a common multiple of each } n_i. \\ &\text{Hence } x-y \text{ is a multiple of } \ell cm \ (n_1,...,n_k) \\ &\text{Conversely } \ell cm \ (n_1,...,n_k) \left| \right. \ x-y \end{aligned}$
- and $n_i \mid \ell cm(n_1,..., n_k) \Rightarrow n_i \mid x y \quad i = 1,..., k$
- *iv*) follows from *iii*) and ℓ cm $(n_1,...,n_k) = \prod_{i=1}^k n_i$ when the n_i are pairwise relatively prime.

Exercise 5 a) Base case: k=2. Suppose $a_1|b, a_2|b$ and $gcd(a_1, a_2)=1$. Then $\ell cm(a_1, a_2)=a_1 a_2$ so $a_1 a_2|b$ because the least common multiple must divide every other common multiple. Induction hypothesis: If $gcd(a_i, a_j)=1$ for $1 \le i < j \le k$ and $a_i|b$ for i=1,...,k then $\prod_{i=1}^k a_i|b$. Induction step: Suppose $gcd(a_i, a_j)=1$ for $1 \le i < j \le k+1$ and $a_i|b$ for i=1,...,k,k+1. Then $\prod_{i=1}^k a_i|b$ by the hypothesis But $gcd(\prod_{i=1}^k a_i, a_{k+1})=1$ by Exercise 4 so $\prod_{i=1}^{k+1} a_i|b$ by the result for k=2.

Exercise 6 b) Here we apply the extended Euclidean algorithm:

so
$$d = 17$$
, $x = -36$, $y = 71$
Check: $\frac{3587}{17} = 211$, $\frac{1819}{17} = 1$
 $(3587)(-36) + (1819)(71) = -129132 + 129149 = 17$

AN APPLICATION OF THE CHINESE REMAINDER

THEOREM

A person's age can be determined to within a congruence by the following procedure:

Defermine the remainders 13, 14 and 5-obtained by dividing the age x by 3, 4 and 5 respectively.

Then

XE

Proof Considu

 $X \equiv r_3 \pmod{3}$

 $X \equiv r_4 \pmod{4}$

X = rs (meds)

Then, by the Chinese Remainder Theorem,

X = 13 (20)(20 mods) + 17 (15)(15 mod4)

+ rs (12)(12" mod 5)

= 40rg + 45 r4 + 36 S5

Example age = 40 so 13=1, 14=0, 55-=0

and x=40= 40