5.2 Powell-Wolfe-Schrittweiten

Powell-Wolfe-Schrittweiten Bestimme $\sigma_k > 0$ mit:

- 1. Armijo: $f(x_k + \sigma_k s_k) f(x_k) < \sigma_k \gamma \nabla f(x_k)^t s_k$
- 2. zstzl: $\nabla f(x_k + \sigma_k s_k)^t s_k \ge \eta \nabla f(x_k)^t s_k$

mit $0<\gamma<\frac{1}{2}$ und $\gamma<\eta<1$ Lemma 5.2.1 Sei $f\in C^1(\mathbb{R}^n)$ und $x,s\in\mathbb{R}^n$, s Abstiegsrichtung von f in x,entlang der f nach unten beschränkt ist,d.h

$$\inf_{t>0} f(x+ts) \ge -\infty \tag{1}$$

. Weiter seien $\gamma \in (0, \frac{1}{2})$ und $\eta \in (\gamma, 1)$ gegeben. $\exists \sigma > 0$, die die Powell-wolfe Bedingung erfüllt.

Implementierung des Powell-Wolfe-Schrittweitenregels

- 1. Falls $\sigma = 1$ die Armijo Bedingugng erfüllt ist gehe zu 3.
- 2. Bestimmedie größte Zahl $\sigma_- \in \{2^--1, 2^{-1}, ...\}$ so dass $\sigma = \sigma_-$ die Armijo-Bedingung erfüllt. Setze $\sigma_+ = \sigma_-$ und gehe zu Schritt 5.
- 3. Falls $\sigma = 1$ die zstzl. Bedingung erfüllt, Stop und return $\sigma = 1$
- 4. Bestimme kleinste Zahl $\sigma_+ \in \{2, 2^2, 2^3, ...\}$, sodass die Armiijo Bedingung für $\sigma = \sigma_+$ verletzt ist. Setze $\sigma = \frac{\sigma_-}{2}$.
- 5. Solange die zusätzl. Bedingung verletzt ist, berechne $\sigma=\frac{\sigma_-+\sigma_+}{2}$ und falls σ der zusätzl. Bedinung genügt setze $\sigma_-=\sigma$ sonst $\sigma_+=\sigma$
- 6. Stop mit $\sigma = \sigma_{-}$

Satz 5.2.2 Sei $f \in C^1(\mathbb{R}^n)$ und f entlang s in x nach unten beschränkt. Dann terminiert der Alg. für die Impementierung von Powell-Wolfe nach endlich vielen Schritten mit einem $\sigma > 0$ die die Powell-Wolfebedingungen erfüllt.

Satz 5.2.3 Sei $f \in C^1(\mathbb{R}^n)$, $x_0 \in \mathbb{R}^n$ so dass $N_f(x_0)$ kompakt ist. Beim Allgemeinen Abstiegsverfahren verwende man die Powell-Wolfe Schritteweite. Dann ist der Algorithmus durchführbar und jede Schrittweite σ_k ist zulässig.

6 Das Newton-Verfahren

Lokales Newton-Verfahren für Gleichungssysteme

- Wähle $x_0 \in \mathbb{R}^n$. Für k=0,1,... Do
- Stop falls $F(x_k) = 0$
- Bestimme Lösung der Newtongleichung: $F'(x_k)s_k = -F(x_k)$
- Setze $x_{k+1} = x_k + s_k$

0.1 Schnelle Konvergenz des Newton-Verfahrens

Konvergenzraten Die Folge x_k in \mathbb{R}^n konvergiert

- q-linear mit Rate $0<\gamma<1$ gegen x, falls $\|x_{k+1}-x\|\leq \gamma\|x_k-x\|$ für hinreichend große k
- q-superlinear gegen x, falls $x_k \to x$ und $\frac{\|x_{k+1} x\|}{\|x_k x\|} \to 0$
- q-quadratisch gegen x, falls $x_k \to x$ und falls $\exists C>0: \|x_{k+1}-x\| \le C \|x_k-x\|^2$

Lemma von Banach $GL_n(\mathbb{R})$ ist offen in $\mathbb{R}^{n,n}$ und $A \to A^{-1}$ stetig. Genauer: Sei $A \in GL_n(\mathbb{R}), B \in \mathbb{R}^{n,n}$ mit $||A^{-1}B|| < 1$, dann ist $A + B \in GL_n(\mathbb{R})$

•
$$||(A+B)^{-1}|| \le \frac{||A^{-1}||}{1-||A^{-1}B||}$$

•
$$||(A+B)^{-1} - A^{-1}|| \le \frac{||A^{-1}|| ||A^{-1}B||}{1 - ||A^{-1}B||}$$

Lemma 6.1.2

Sei $F \in C^1(\mathbb{R}^n, \mathbb{R}^n)$. \overline{x} eine Nullstelle und $F'(\overline{x}) \in GL_n(\mathbb{R})$. Dann gibt es $\varepsilon > 0, \gamma > 0$ mit

$$||F(x)|| \ge \gamma ||x - \overline{x}|| \forall x \in B_{\varepsilon}(\overline{x})$$
 (2)

Insbesondere ist \overline{x} eine isolierte Nullstelle von F.

Lokale Konvergenz des Newton-V für nichtlineare Gleichungen Sei $F \in C^1(\mathbb{R}^n)$, \overleftarrow{x} eine Nullstelle mit $F'(\overline{x}) \in GL_n(\mathbb{R})$. Dann gibt es $\delta > 0, C > 0$:

- 1. \overline{x} ist die einzige Nullstelle in $B_{\delta}(\overline{x})$
- 2. $||F(\overline{x})^{-1}|| \leq C$ für alle $x \in B_{\delta}(\overline{x})$
- 3. Für alle $x_0 \in B_{\delta}(\overline{x})$ terminiert das Neqton-Verfahren entweder mit $x_k = x$ oder erzeugt eine Folge in $B_{\delta}(\overline{x})$, die q-superlinear gegen \overline{x} konvergiert
- 4. Ist F' sogar L-stetig auf $B_{\delta}(\overline{x})$, so ist die Konvergenzrate sogar q-quadratisch mit Rate $\frac{CL}{2}$

0.2 Das Newton-verfahren für Optimierungsprobleme

Lokales Newton-Verfahren für Optimierungsprobleme

- Wähle $x_0 \in \mathbb{R}^n$. Für k=0,1,... Do
- Stop falls $\nabla f(x_k) = 0$
- Bestimme Lösung der Newtongleichung: $\nabla^2 f(x_k) s_k = -\nabla f(x_k)$
- Setze $x_{k+1} = x_k + s_k$

Lemma

 $A \in \mathbb{R}^{n,n}$ symmetrisch und positiv definit. Dann gilt für alle $\nu \in (0, \lambda_{min}(A))$ und alle symmetrische Matrizen $B \in \mathbb{R}^{n,n}$ mit $||B|| \le \lambda_{min}(A) - \nu$:

$$\lambda_{min}(A+B) \ge \nu$$

0.3 Globalisiertes Newtonverfahren

Algorithmus GN

- Wähle $x_0 \in \mathbb{R}^n, \beta, \gamma \in (0, 1), \alpha_{1,2}, p > 0$. Für k=0,1,... Do
- Stop falls $\nabla f(x_k) = 0$
- Bestimme d_k durch lösen der NG $\nabla^2 f(x_k) d_k = -\nabla f(x_k)$. Ist dies möglich und erfüllt die Bedinung

$$-\nabla f(x_k)^t d_k \ge \min\{\alpha_1, \alpha_2 ||d_k||^p\} ||d_k||^2$$
 (3)

so setze $s_k = d_k$, sonst setze $s_k = -\nabla f(x_k)$

- \bullet Bestimme die Schrittweite mit $\sigma_k>0$ mithilfe der Armijo-Regel
- Setze $x_{k+1} = x_k + \sigma_k s_k$

Globaler Konvergenzsatz Sei $f \in C^2(\mathbb{R}^n)$. Dann terminiert Alg. GN entweder mit $\nabla f(x_k) = 0$ oder er erzeugt eine unendliche Folge x_k , deren Häufungspunkte stationäre Punkte von f sind.

0.4 Übergang zu schneller Konvergenz

Lemma 10.11

Sei \overline{x} ein isolierter HP der Folge (x_k) . Für jede gegen \overline{x} konvergente Teilfolge $(x_k)_K$ gelte $(x_{k+1}-x_k)_K \to 0$. Dann konvergiert die gesamte Folge (x_k) gegen \overline{x} .

Lemma 10.12

Sei $f \in C^2(\mathbb{R}^n)$. Alg. GN erzeuge eine Folge (x_k) und $\overline{x} \in \mathbb{R}$ sei ein HP von (x_k) , in dem die Hesse-matrix positiv-definit ist. Dann ist \overline{x} ein isoliertes lokales Minimum von f und die gesamte Folge (x_k) konvergiert gegen \overline{x} .

Lemma 10.13

Sei $f \in C^2(\mathbb{R}^n)$ und $\overline{x} \in \mathbb{R}^n$ ein lokales Minimum von f, in dem die hinreichenden Bedingungen 2. Ordnung gelten. Weiter sei $\gamma \in (0, \frac{1}{2})$ gegeben. Dann gibt es $\varepsilon > 0$, so dass für alle $x \in B_{\varepsilon}(\overline{x}) \setminus \{\overline{x}\}$ gilt:

- Der Vektor $s = -\nabla^2 f(x)^{-1} \nabla f(x)$ ist eine Abstiegsrichtung von f in x.
- Die Armijo Bedingung ist für alle $\sigma \in (0,1]$ erfüllt.

Satz 10.14 Sei $f \in C^2(\mathbb{R}^n)$. Alg (Globales Newtonverfahren) erzeugt eine Folge (x_k) und sei \overline{x} eine Häufungspunkt in der die Hesse matrix positiv definit ist. Dann gilt:

- \overline{x} ist ein isoliertes lokales Minimum von f.
- Die Folge konvergiert ganz gegen \overline{x} .
- Es gibt ein $l \geq 0$, so dass das Verfahren zum einem Newtonverfahren mit $\sigma = 1$ übergeht. Insbesondere ist Alg. Globales Newton-Verfahren q-superlinear konvergent. q-quadratisch, falls die Hessematrix in einer Umgebung von \overline{x} Lipschitz-stetig ist.

1 Newton-artige Verfahren

Lokales Newton-artige Verfahren

Wähle $x_0 \in \mathbb{R}^n$, für k=1,...

- Stop falls $F(x_k) = 0$
- Wähle eine invertierbare Matrix $M_k \in \mathbb{R}^{(n,n)}$
- \bullet Berechne den Schritt s_k durch Lösen der Gleichung $M_k s_k = -F(x_k)$
- Setze $x_{k+1} = x_k + s_{k+1}$.

Satz 11.2 (q-superlineare Konvergenz)

Sei $F \in C^1(\mathbb{R}^n), \overline{x}$ ein Punkt, sodass $F'(\overline{x})$ invertierbar ist. Weiter sei x_k eine Folge, die gegen \overline{x} konvergiert. Es gelte $x_k \neq \overline{x}$ für alle k. Dann sind äquivalent:

- x_k q-superlinear gegen \overline{x} konvergent und es ist $F(\overline{x}) = 0$
- $||F(x_k) + F'(x_k)(x_{k+1} x_k)|| = o(||x_{k+1} x_k||)$
- $||F(x_k) + F'(\overline{x})(x_{k+1} x_k)|| = o(||x_{k+1} x_k||)$

Lemma 11.3 stetig diffbar folgt Lipschitz

Sei $F \in C^1(X)$, wobei X kompakt und konvex. Dann ist F auf X L-stetig mit $L = \max_{x \in X} \|F'(x)\|$