Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Bis[8-ethyl-5-oxo-2-(piperazin-4-ium-1-yl)-5,8-dihydropyrido[2,3-d]pyrimidine-6-carboxylic acid] 2,5-dicarboxybenzene-1,4-dicarboxylate octahydrate

Guang-Ju Zhang,* Jiang-Hong He, Shi-Wei Yan, Zhong-Li Ye and Guang-Hua Xin

College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China Correspondence e-mail: guaiguaijuzi@yahoo.com.cn

Received 19 March 2011; accepted 25 March 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean $\sigma(C-C) = 0.002 \text{ Å}$; R factor = 0.046; wR factor = 0.160; data-to-parameter ratio = 14.4.

The asymmetric unit of the title compound, $2C_{14}H_{18}N_5O_3^+$ - $C_{10}H_5O_8^{2-}\cdot 8H_2O$, contains one $[H_2ppa]^+$ cation, one half of an $[H_2btec]^{2-}$ anion ($H_4btec=1,2,4,5$ -benzenetetracarboxylic acid and Hppa=8-ethyl-5-oxo-2-piperazin-1-yl-5,8-dihydropyrido[2,3-d]pyrimidine-6-carboxylic acid) that is completed by inversion symmetry and four water molecules. In the crystal, the molecules are connected by intermolecular hydrogen-bonding interactions and π - π stacking between the benzene rings of the $[H_2btec]^{2-}$ anion and the pyrimidine rings of the $[H_2ppa]^+$ cation [centroid-centroid distance = 3.597 (3) Å], generating a three-dimensional supramolecular structure.

Related literature

For general background to the use of quinolones in the treatment of infections, see: Mizuki *et al.* (1996).

Experimental

Crystal data

 $\begin{array}{lll} \text{C}_{14}\text{H}_{18}\text{N}_{5}\text{O}_{3}^{+}\cdot0.5\text{C}_{10}\text{H}_{4}\text{O}_{8}^{-}\cdot4\text{H}_{2}\text{O} & \gamma = 73.831 \text{ (2)}^{\circ} \\ M_{r} = 502.46 & V = 1138.9 \text{ (4)} \text{ Å}^{3} \\ \text{Triclinic, } P\overline{1} & Z = 2 \\ a = 8.8336 \text{ (16) Å} & \text{Mo } K\alpha \text{ radiation} \\ b = 11.103 \text{ (2) Å} & \mu = 0.12 \text{ mm}^{-1} \\ c = 12.445 \text{ (2) Å} & T = 296 \text{ K} \\ \alpha = 83.010 \text{ (2)}^{\circ} & 0.52 \times 0.48 \times 0.39 \text{ mm} \\ \beta = 76.737 \text{ (2)}^{\circ} \end{array}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.940$, $T_{\max} = 0.954$ 10252 measured reflections 5071 independent reflections 3550 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.021$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.160$ S = 1.015071 reflections 352 parameters 14 restraints H atoms treated by a mixture of independent and constrained refinement

 $\Delta \rho_{\text{max}} = 0.33 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.20 \text{ e Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathbf{H}\cdot\cdot\cdot A$
O6—H6A···O4i	0.92 (2)	1.47 (2)	2.392 (2)	178 (3)
$N1-H1A\cdots OW1^{ii}$	0.90	2.08	2.952(2)	164
$N1-H1A\cdots O6^{ii}$	0.90	2.56	3.022 (2)	113
$N1-H1B\cdots OW2^{ii}$	0.90	1.82	2.717 (2)	176
$OW1-HW1A\cdots O1^{iii}$	0.88(2)	1.98(2)	2.780(2)	150(2)
$OW1-HW1B\cdots O3$	0.85(2)	2.38(2)	3.041(2)	135 (2)
$OW1-HW1B\cdots O7$	0.85(2)	2.57 (2)	3.204(2)	132 (2)
$OW1-HW1B\cdots O6$	0.85(2)	2.59(2)	3.084(2)	118 (2)
$O2-H2A\cdots O3$	0.99(2)	1.56(2)	2.5013 (19)	159 (2)
$OW2-HW2B\cdots OW4^{iv}$	0.86(2)	1.86(2)	2.703 (3)	168 (3)
$OW2-HW2A\cdots O5^{iv}$	0.84(2)	1.98(2)	2.819(2)	173 (3)
$OW3-HW3A\cdots OW1^{v}$	0.85(2)	1.93 (2)	2.770(2)	169 (3)
$OW3-HW3B\cdots O2^{vi}$	0.85(2)	2.17(2)	3.011 (3)	172 (3)
$OW4-HW4A\cdots O4^{vii}$	0.87(2)	1.94(2)	2.782 (2)	163 (3)
$OW4-HW4B\cdots OW3$	0.81(2)	1.97 (2)	2.775 (3)	174 (3)

Symmetry codes: (i) -x, -y+2, -z+1; (ii) x, y, z-1; (iii) x+1, y, z; (iv) -x+1, -y+2, -z+1; (v) -x+1, -y+1, -z+1; (vi) x+1, y, z-1; (vii) -x+1, -y+2, -z.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL-Plus* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Science and Technology Foundation of Southwest University (SWUB2007035).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2005).

organic compounds

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison Wisconsion, USA.

Mizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother. Suppl. A, 37, 41–45.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary m	aterials	

Acta Cryst. (2011). E67, o1011-o1012 [doi:10.1107/S1600536811011068]

Bis[8-ethyl-5-oxo-2-(piperazin-4-ium-1-yl)-5,8-dihydropyrido[2,3-d]pyrimidine-6-carboxylic acid] 2,5-dicarboxybenzene-1,4-dicarboxylate octahydrate

G.-J. Zhang, J.-H. He, S.-W. Yan, Z.-L. Ye and G.-H. Xin

Comment

Pipemidic acid (8-ethyl-5-oxo-2-piperazin-1-yl-5,8-dihydropyrido[2,3-d]pyrimidine-6- carboxylic acid) is member of quinolones used to treat infections (Mizuki *et al.*, 1996). The complexes of the Hppa and H₄btec have not been reported till now. In this paper, the structure of the title compound, **1**, is described (Fig. 1). The asymmetric unit contains one $[H_2ppa]^+$ cation, one half of $[H_2btec]^{2-}$ anion that is completed by inversion symmetry, and four lattice water molecules. The molecules are linked by intermolecular N—H···O and O—H···O hydrogen-bonding interactions (N···O = 2.717 (2)–3.022 (2) Å, O···O = 2.392 (2)–3.204 (2) Å) and π — π stacking between the benzene rings of $[H_2btec]^{2-}$ anion and the pyrimidine rings of $[H_2ppa]^+$ cation (centroid distance of 3.597 (3) Å) to form a three-dimensional supramolecular structure.

Experimental

A mixture of AgNO₃ (0.085 g, 0.5 mmol), Hppa (0.089 g, 0.25 mmol), H₄btec (0.064 g, 0.25 mmol) and distilled water (8 ml) was stirred for 20 min. in air. The mixture was then transferred to a 18 ml Teflon-lined hydrothermal bomb. The bomb was kept at 393 K for 96 h under autogenous pressure. Upon cooling, colorless blocks of 1 were obtained from the reaction mixture.

Refinement

The H atoms bonded to C atoms were positioned geometrically and refined using a riding model approximation [aromatic C—H = 0.93 Å, aliphatic C—H = 0.96 —0.97 Å], with $U_{\rm iso}({\rm H}) = 1.2 - 1.5~U{\rm eq}({\rm C})$. The H on N atoms were located in difference Fourier maps, and refined with distances restraint of N—H = 0.90 Å, and with $U_{\rm iso}({\rm H}) = 1.2~U{\rm eq}({\rm N})$. The H atoms bonded to O atoms were located in difference Fourier maps and refined with $U_{\rm iso}({\rm H}) = 1.3~U{\rm eq}({\rm O})$ for carboxyl groups of $[C_{14}H_{18}O_3N_5]^+$ and $[C_{10}H_4O_8]^2^-$ respectively. The O—H bonds are 0.986 Å and 0.924 Å in carboxyl groups of $[C_{14}H_{18}O_3N_5]^+$ and $[C_{10}H_4O_8]^2^-$. The H atoms bonded to OW atoms were located in a difference Fourier maps and refined with OW—H = 0.812 Å—0.878 Å and $U_{\rm iso}({\rm H}) = 1.1$ —1.5 $U_{\rm eq}({\rm OW})$.

Figures

Fig. 1. The structure of 1. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: -x, -y+2, -z+1].

Bis[8-ethyl-5-oxo-2-(piperazin-4-ium-1-yl)-5,8-dihydropyrido[2,3-d]pyrimidine-6-carboxylic acid] 2,5-di-carboxybenzene-1,4-dicarboxylate octahydrate

Crystal data

 $C_{14}H_{18}N_5O_3^+ \cdot 0.5C_{10}H_4O_8^- \cdot 4H_2O$ Z = 2 $M_r = 502.46$ F(000) = 530Triclinic, $P\overline{1}$ $D_{\rm x} = 1.465 \; {\rm Mg \; m}^{-3}$ Hall symbol: -P 1 Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ a = 8.8336 (16) ÅCell parameters from 10252 reflections $\theta = 2.5-27.4^{\circ}$ b = 11.103 (2) Åc = 12.445 (2) Å $\mu = 0.12 \text{ mm}^{-1}$ $\alpha = 83.010 (2)^{\circ}$ T = 296 K $\beta = 76.737 (2)^{\circ}$ Block, colourless $\gamma = 73.831 (2)^{\circ}$ $0.52\times0.48\times0.39~mm$ $V = 1138.9 (4) \text{ Å}^3$

Data collection

Bruker APEX CCD area-detector diffractometer 5071 independent reflections Radiation source: fine-focus sealed tube 3550 reflections with $I > 2\sigma(I)$

graphite $R_{\text{int}} = 0.021$

phi and ω scans $\theta_{\text{max}} = 27.4^{\circ}, \, \theta_{\text{min}} = 2.5^{\circ}$ Absorption correction: multi-scan $h = -11 \rightarrow 11$

(SADABS; Sheldrick, 1996) $n = 11 \rightarrow 11$ $T_{\text{min}} = 0.940, T_{\text{max}} = 0.954$ $k = -14 \rightarrow 14$ 10252 measured reflections $l = -16 \rightarrow 16$

Refinement

 $wR(F^2) = 0.160$

Refinement on F^2 Primary atom site location: structure-invariant direct

methods

Least-squares matrix: full Secondary atom site location: difference Fourier map $R[F^2 > 2\sigma(F^2)] = 0.046$ Hydrogen site location: inferred from neighbouring

> 20(1')] = 0.040

H atoms treated by a mixture of independent and

constrained refinement

S = 1.01	$w = 1/[\sigma^2(F_0^2) + (0.1P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
5071 reflections	$(\Delta/\sigma)_{\text{max}} < 0.001$
352 parameters	$\Delta \rho_{\text{max}} = 0.33 \text{ e Å}^{-3}$
14 restraints	$\Delta \rho_{\text{min}} = -0.20 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	z	$U_{\rm iso}*/U_{\rm eq}$
C1	-0.2298 (2)	0.58949 (18)	0.76095 (14)	0.0453 (4)
C2	-0.1629 (2)	0.63420 (16)	0.64826 (13)	0.0362 (4)
C3	0.0071 (2)	0.60173 (15)	0.60569 (13)	0.0348 (4)
C4	0.05712 (18)	0.65003 (14)	0.49440 (12)	0.0316(3)
C5	0.2186 (2)	0.62709 (16)	0.43913 (13)	0.0377 (4)
H5A	0.2968	0.5782	0.4765	0.045*
C6	0.14597 (19)	0.74223 (16)	0.28730 (13)	0.0336 (4)
C7	-0.05440 (18)	0.72426 (14)	0.43356 (12)	0.0295(3)
C8	-0.2657 (2)	0.70738 (16)	0.58476 (13)	0.0360(4)
H8A	-0.3755	0.7269	0.6149	0.043*
C9	-0.33740 (19)	0.83037 (17)	0.41760 (14)	0.0402 (4)
Н9А	-0.2943	0.8957	0.3727	0.048*
Н9В	-0.4340	0.8707	0.4687	0.048*
C10	-0.3799 (3)	0.7527 (2)	0.3443 (2)	0.0640(6)
H10A	-0.4572	0.8056	0.3042	0.096*
H10B	-0.4251	0.6892	0.3887	0.096*
H10C	-0.2847	0.7134	0.2931	0.096*
C11	0.0817 (2)	0.85693 (19)	0.11400 (14)	0.0470 (4)
H11A	0.1022	0.9380	0.0881	0.056*
H11B	-0.0279	0.8712	0.1564	0.056*
C12	0.1010(2)	0.78182 (19)	0.01646 (14)	0.0472 (5)
H12A	0.0685	0.7049	0.0421	0.057*
H12B	0.0317	0.8298	-0.0325	0.057*
C13	0.3844 (2)	0.68542 (19)	0.02854 (14)	0.0475 (5)
H13A	0.4945	0.6720	-0.0128	0.057*
H13B	0.3654	0.6040	0.0552	0.057*
C14	0.3613 (2)	0.7624 (2)	0.12515 (15)	0.0474 (5)

H14A	0.4303	0.7166	0.1751	0.057*
H14B	0.3910	0.8403	0.0992	0.057*
C15	0.0728 (2)	0.91872 (15)	0.58174 (12)	0.0335 (4)
C16	0.1614(2)	0.95494 (15)	0.48134 (14)	0.0350(4)
H16	0.271 (2)	0.9248 (16)	0.4737 (15)	0.037 (5)*
C17	0.09561 (19)	1.03470 (15)	0.39901 (12)	0.0327 (4)
C18	0.2204 (2)	1.06072 (16)	0.29829 (14)	0.0419 (4)
C19	0.1758 (2)	0.82880 (18)	0.65566 (15)	0.0459 (4)
N1	0.27157 (18)	0.75043 (15)	-0.04528 (11)	0.0452 (4)
H1A	0.2821	0.7007	-0.0999	0.054*
H1B	0.2974	0.8215	-0.0764	0.054*
N2	0.19315 (17)	0.79002 (15)	0.18387 (11)	0.0430 (4)
N3	0.26607 (16)	0.67052 (14)	0.33790 (11)	0.0396(3)
N4	-0.01218 (15)	0.77067 (13)	0.33069 (10)	0.0338(3)
N5	-0.21691 (15)	0.75273 (13)	0.48113 (11)	0.0333 (3)
O1	-0.37365 (18)	0.61061 (16)	0.80048 (11)	0.0640(4)
OW1	0.34139 (19)	0.54945 (15)	0.80171 (12)	0.0614 (4)
HW1A	0.4401 (19)	0.557 (2)	0.7779 (18)	0.072*
HW1B	0.298 (2)	0.581 (2)	0.7463 (16)	0.070*
O2	-0.12330 (19)	0.52214 (15)	0.81832 (12)	0.0622 (4)
H2A	-0.018 (2)	0.516 (2)	0.7683 (19)	0.083 (8)*
OW2	0.3559 (2)	0.95983 (17)	0.85270 (14)	0.0721 (5)
HW2A	0.442 (3)	0.954(3)	0.8054 (18)	0.097*
HW2B	0.353 (3)	1.013 (2)	0.8988 (19)	0.103*
O3	0.10748 (15)	0.53510 (12)	0.66146 (10)	0.0502(3)
OW3	0.8262 (3)	0.59914 (18)	0.05037 (17)	0.0835 (5)
HW3A	0.764 (3)	0.562 (3)	0.0954 (17)	0.092*
HW3B	0.840 (4)	0.570(3)	-0.0121 (15)	0.118*
OW4	0.6900(2)	0.85376 (17)	0.01290 (14)	0.0782 (5)
HW4A	0.713 (4)	0.876 (2)	-0.0572 (15)	0.107*
HW4B	0.725 (3)	0.7783 (16)	0.022(2)	0.092*
O4	0.17347 (18)	1.10598 (16)	0.20881 (11)	0.0655 (4)
O5	0.36177 (16)	1.03613 (14)	0.30721 (12)	0.0604 (4)
O6	0.1120 (2)	0.80744 (16)	0.75738 (11)	0.0660 (4)
H6A	0.002(2)	0.842 (2)	0.772 (2)	0.084 (8)*
O7	0.31545 (18)	0.77853 (16)	0.61765 (13)	0.0728 (5)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0499 (11)	0.0524 (11)	0.0330 (9)	-0.0199 (9)	-0.0005 (8)	-0.0002(8)
C2	0.0399 (9)	0.0389 (9)	0.0298 (8)	-0.0142 (7)	-0.0017 (7)	-0.0034 (7)
C3	0.0377 (9)	0.0347 (8)	0.0327 (8)	-0.0095 (7)	-0.0074 (7)	-0.0035 (6)
C4	0.0312 (8)	0.0334 (8)	0.0311 (8)	-0.0097 (6)	-0.0052 (6)	-0.0039 (6)
C5	0.0305 (8)	0.0460 (10)	0.0352 (9)	-0.0059 (7)	-0.0080(7)	-0.0036 (7)
C6	0.0310(8)	0.0433 (9)	0.0284(8)	-0.0123 (7)	-0.0040 (6)	-0.0072 (7)
C7	0.0283 (8)	0.0337 (8)	0.0280(7)	-0.0097 (6)	-0.0042 (6)	-0.0068 (6)
C8	0.0308 (8)	0.0441 (10)	0.0324 (8)	-0.0124 (7)	0.0007 (6)	-0.0076 (7)

C9	0.0274 (8)	0.0474 (10)	0.0416 (9)	-0.0031 (7)	-0.0069 (7)	-0.0030(7)
C10	0.0566 (13)	0.0637 (13)	0.0801 (15)	-0.0067 (10)	-0.0388 (12)	-0.0093 (11)
C11	0.0415 (10)	0.0579 (11)	0.0347 (9)	-0.0089(8)	-0.0026 (7)	0.0040(8)
C12	0.0452 (10)	0.0649 (12)	0.0352 (9)	-0.0233 (9)	-0.0109 (8)	0.0091 (8)
C13	0.0413 (10)	0.0584 (12)	0.0375 (10)	-0.0115 (9)	-0.0004(8)	-0.0009(8)
C14	0.0329 (9)	0.0750 (13)	0.0337 (9)	-0.0191 (9)	0.0004(7)	-0.0023 (8)
C15	0.0365 (9)	0.0342 (8)	0.0304(8)	-0.0091 (7)	-0.0076 (6)	-0.0026 (6)
C16	0.0298 (8)	0.0377 (9)	0.0365 (9)	-0.0083 (7)	-0.0045 (7)	-0.0047(7)
C17	0.0368 (9)	0.0324 (8)	0.0288 (8)	-0.0115 (7)	-0.0022 (6)	-0.0045 (6)
C18	0.0458 (10)	0.0395 (9)	0.0358 (9)	-0.0133 (8)	0.0042 (7)	-0.0034 (7)
C19	0.0483 (11)	0.0515 (11)	0.0385 (10)	-0.0105 (9)	-0.0161 (8)	0.0025 (8)
N1	0.0549 (9)	0.0520 (9)	0.0302(7)	-0.0205 (7)	-0.0041 (6)	-0.0018 (6)
N2	0.0332 (8)	0.0654 (10)	0.0276 (7)	-0.0139 (7)	-0.0012 (6)	0.0003 (7)
N3	0.0296 (7)	0.0550 (9)	0.0329 (7)	-0.0097 (6)	-0.0051 (6)	-0.0026 (6)
N4	0.0301 (7)	0.0423 (8)	0.0284 (7)	-0.0104 (6)	-0.0035 (5)	-0.0029 (6)
N5	0.0282 (7)	0.0410(8)	0.0296 (7)	-0.0082 (6)	-0.0036 (5)	-0.0040 (5)
O1	0.0535 (9)	0.0927 (11)	0.0404(7)	-0.0267(8)	0.0077 (6)	0.0014(7)
OW1	0.0568 (9)	0.0730 (10)	0.0537 (9)	-0.0144(8)	-0.0185 (7)	0.0068 (7)
O2	0.0631 (10)	0.0786 (10)	0.0395 (7)	-0.0200(8)	-0.0073 (7)	0.0145 (7)
OW2	0.0719 (11)	0.0748 (11)	0.0624 (10)	-0.0340 (9)	0.0177 (8)	-0.0015 (8)
O3	0.0469 (8)	0.0571 (8)	0.0416 (7)	-0.0086(6)	-0.0123 (6)	0.0107(6)
OW3	0.0943 (14)	0.0840 (13)	0.0773 (12)	-0.0392 (11)	-0.0119 (11)	0.0024 (10)
OW4	0.0926 (13)	0.0772 (11)	0.0517 (9)	-0.0234 (10)	0.0125 (9)	-0.0031 (9)
O4	0.0650 (10)	0.0936 (12)	0.0312 (7)	-0.0228(8)	-0.0001 (6)	0.0087 (7)
O5	0.0412 (8)	0.0692 (9)	0.0569 (8)	-0.0126 (7)	0.0083 (6)	0.0090(7)
O6	0.0667 (10)	0.0878 (11)	0.0363 (7)	-0.0113 (9)	-0.0163 (7)	0.0145 (7)
O7	0.0492 (9)	0.0929 (12)	0.0579 (9)	0.0087 (8)	-0.0165 (7)	0.0124 (8)
Geometric par	rameters (Å, °)					
C1—O1		1.219(2)	C12—	-H12B	0.97	00
C1—O2		1.320 (2)	C13—	-N1	1.48	9 (2)
C1—C2		1.475 (2)	C13—	-C14	1.50	3 (3)
C2—C8		1.368 (2)	C13—	-H13A	0.97	00
C2—C3		1.430(2)	C13—	-H13B	0.97	00
C3—O3		1.268 (2)	C14—	-N2	1.46	2 (2)
C3—C4		1.439 (2)	C14—	-H14A	0.97	00
C4—C7		1.400(2)	C14—	-H14B	0.97	00
C4—C5		1.401(2)	C15—	-C16	1.39	3 (2)
C5—N3		1.311 (2)	C15—	-C17 ⁱ	1.40	6 (2)
C5—H5A		0.9300	C15—	-C19	1.52	5 (2)
C6—N4		1.339 (2)	C16-	-C17	1.39	2 (2)
C6—N2		1.350 (2)	C16-	-H16	0.91	7 (19)
C6—N3		1.367 (2)	C17—	-C15 ⁱ	1.40	6 (2)
C7—N4		1.3307 (19)	C17—			5 (2)
C7—N5		1.3834 (19)	C18—			0 (2)
C8—N5		1.345 (2)	C18—			5 (2)
С8—Н8А		0.9300	C19-			3 (2)
C9—N5		1.487 (2)	C19—			5 (2)

C9—C10	1.499 (3)	N1—H1A	0.9000
C9—H9A	0.9700	N1—H1B	0.9000
C9—H9B	0.9700	OW1—HW1A	0.878 (15)
C10—H10A	0.9600	OW1—HW1B	0.854 (15)
C10—H10B	0.9600	O2—H2A	0.986 (16)
C10—H10C	0.9600	OW2—HW2A	0.842 (16)
C11—N2	1.451 (2)	OW2—HW2B	0.860 (16)
C11—C12	1.507 (3)	OW3—HW3A	0.849 (16)
C11—H11A	0.9700	OW3—HW3B	0.850 (17)
C11—H11B	0.9700	OW4—HW4A	0.871 (16)
C12—N1	1.491 (2)	OW4—HW4B	0.812 (16)
C12—H12A	0.9700	O6—H6A	0.924 (17)
O1—C1—O2	120.65 (17)	N1—C13—C14	110.52 (15)
O1—C1—C2	123.66 (18)	N1—C13—H13A	109.5
O2—C1—C2	115.69 (16)	C14—C13—H13A	109.5
C8—C2—C3	120.28 (14)	N1—C13—H13B	109.5
C8—C2—C1	119.08 (16)	C14—C13—H13B	109.5
C3—C2—C1	120.64 (15)	H13A—C13—H13B	108.1
O3—C3—C2	122.75 (15)	N2—C14—C13	109.98 (14)
O3—C3—C4	121.96 (15)	N2—C14—H14A	109.7
C2—C3—C4	115.29 (14)	C13—C14—H14A	109.7
C7—C4—C5	115.19 (14)	N2—C14—H14B	109.7
C7—C4—C3	121.64 (14)	C13—C14—H14B	109.7
C5—C4—C3	123.17 (15)	H14A—C14—H14B	108.2
N3—C5—C4	123.88 (15)	C16—C15—C17 ⁱ	117.61 (15)
N3—C5—H5A	118.1	C16—C15—C19	113.70 (15)
C4—C5—H5A	118.1	C17 ⁱ —C15—C19	128.68 (15)
N4—C6—N2	117.33 (15)	C17—C15—C17 C17—C16—C15	124.81 (15)
N4—C6—N3	126.49 (14)	C17—C16—H16	124.81 (13)
N2—C6—N3	116.17 (14)	C15—C16—H16	114.4 (11)
N4—C7—N5	117.27 (13)		
	` '	C16—C17—C15 ⁱ	117.58 (14)
N4—C7—C4	123.16 (14)	C16—C17—C18	113.93 (15)
N5—C7—C4	119.57 (14)	C15 ⁱ —C17—C18	128.49 (15)
N5—C8—C2	123.73 (15)	O5—C18—O4	123.21 (16)
N5—C8—H8A	118.1	O5—C18—C17	118.33 (16)
C2—C8—H8A	118.1	O4—C18—C17	118.46 (16)
N5—C9—C10	111.63 (15)	O7—C19—O6	121.26 (18)
N5—C9—H9A	109.3	O7—C19—C15	119.71 (17)
C10—C9—H9A	109.3	O6—C19—C15	119.03 (17)
N5—C9—H9B	109.3	C13—N1—C12	111.63 (13)
C10—C9—H9B	109.3	C13—N1—H1A	109.3
H9A—C9—H9B	108.0	C12—N1—H1A	109.3
C9—C10—H10A	109.5	C13—N1—H1B	109.3
C9—C10—H10B	109.5	C12—N1—H1B	109.3
H10A—C10—H10B	109.5	H1A—N1—H1B	108.0
C9—C10—H10C	109.5	C6—N2—C11	123.41 (14)
H10A—C10—H10C	109.5	C6—N2—C14	122.94 (15)
H10B—C10—H10C	109.5	C11—N2—C14	112.99 (13)

N2—C11—C12	110.08 (15)	C5—N3—C6	115.45 (14)
N2—C11—H11A	109.6	C7—N4—C6	115.83 (14)
C12—C11—H11A	109.6	C8—N5—C7	119.48 (14)
N2—C11—H11B	109.6	C8—N5—C9	120.08 (13)
C12—C11—H11B	109.6	C7—N5—C9	120.43 (13)
H11A—C11—H11B	108.2	HW1A—OW1—HW1B	101.7 (17)
N1—C12—C11	110.68 (14)	C1—O2—H2A	105.2 (15)
N1—C12—H12A	109.5	HW2A—OW2—HW2B	107 (2)
C11—C12—H12A	109.5	HW3A—OW3—HW3B	106 (2)
N1—C12—H12B	109.5	HW4A—OW4—HW4B	109 (2)
C11—C12—H12B	109.5	C19—O6—H6A	111.5 (16)
H12A—C12—H12B	108.1		
Symmetry codes: (i) $-x$, $-y+2$, $-z+1$.			

Hydrogen-bond geometry (Å, °)

D— H ··· A	<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A
O6—H6A···O4 ⁱ	0.92(2)	1.47 (2)	2.392 (2)	178 (3)
N1—H1A···OW1 ⁱⁱ	0.90	2.08	2.952 (2)	164
N1—H1A···O6 ⁱⁱ	0.90	2.56	3.022 (2)	113
N1—H1B···OW2 ⁱⁱ	0.90	1.82	2.717 (2)	176
OW1—HW1A···O1 ⁱⁱⁱ	0.88(2)	1.98 (2)	2.780(2)	150 (2)
OW1—HW1B···O3	0.85(2)	2.38 (2)	3.041 (2)	135.(2)
OW1—HW1B···O7	0.85(2)	2.57 (2)	3.204(2)	132.(2)
OW1—HW1B···O6	0.85(2)	2.59(2)	3.084(2)	118 (2)
O2—H2A···O3	0.99(2)	1.56 (2)	2.5013 (19)	159 (2)
OW2—HW2B···OW4 ^{iv}	0.86 (2)	1.86 (2)	2.703 (3)	168 (3)
OW2—HW2A···O5 ^{iv}	0.84(2)	1.98 (2)	2.819 (2)	173 (3)
OW3—HW3A···OW1 ^v	0.85 (2)	1.93 (2)	2.770 (2)	169 (3)
OW3—HW3B···O2 ^{vi}	0.85 (2)	2.17 (2)	3.011 (3)	172 (3)
OW4—HW4A···O4 ^{vii}	0.87(2)	1.94(2)	2.782 (2)	163 (3)
OW4—HW4B···OW3	0.81 (2)	1.97 (2)	2.775 (3)	174 (3)

Symmetry codes: (i) -x, -y+2, -z+1; (ii) x, y, z-1; (iii) x+1, y, z; (iv) -x+1, -y+2, -z+1; (v) -x+1, -y+1, -z+1; (vi) x+1, y, z-1; (vii) -x+1, -y+2, -z.

Fig. 1

