Minería de Datos

Reglas de asociación representativas

Ángel Ríos San Nicolás

20 de marzo de 2021

Ejercicio. Se da el siguiente conjunto de datos $\mathcal{D} = \{abc, abc, abc, abc, ab, ab, ab, ab, ab, bc, a, b, c\}$. Se pide calcular F_{τ} , FC_{τ} , FG_{τ} , $RI_{\tau,\gamma}$ y $RR_{\tau,\gamma}$ para $\tau = 0, 25$ y $\gamma = 0, 75$ (los dos en valores relativos).

Solución. El conjunto de items es $\mathcal{I}=\{a,b,c\}$ que tiene $\#\left(2^{\mathcal{I}}\right)=2^3=8$ subconjuntos posibles.

$$2^{\mathcal{I}} = \{\emptyset, a, b, c, ab, ac, bc, abc\}$$

Calculamos los soportes absolutos y relativos teniendo en cuenta que el número total de datos es $\#(\mathcal{D})=13$.

Subconjunto X	Soporte absoluto $s(X)$	Soporte relativo $s_r(X)$
Ø	13	1
a	10	0.7692307692307693
b	11	0.8461538461538461
c	6	0.4615384615384615
ab	9	0.6923076923076923
ac	4	0.3076923076923077
bc	5	0.3846153846153846
abc	4	0.3076923076923077

Como todos los subconjuntos tienen soporte relativo mayor que $\tau = 0.25$, todos los conjuntos son frecuentes, es decir, $F_{\tau} = \{X \subsetneq \mathcal{I} : s_{\tau}(X) \geq \tau\} = 2^{\mathcal{I}} = \{\emptyset, a, b, c, ab, ac, bc, abc\}.$

Calculamos los conjuntos cerrados frecuentes $FC_{\tau} = \{X \in F_{\tau} : \forall Z \supseteq X, s(Z) < s(X)\}.$

- abcNingún conjunto lo contiene estrictamente, con lo que se cumple la propiedad y $abc \in FC_{\tau}$.
- bcÚnicamente $abc \subseteq bc$ y se cumple s(abc) = 4 < 5 = s(bc), con lo que $bc \in FC_{\tau}$.
- acÚnicamente $abc \subsetneq ac$ y se cumple s(abc) = 4 = s(ac), con lo que $ac \notin FC_{\tau}$.
- abÚnicamente $abc \subsetneq ab$ y se cumple s(abc) = 4 < 9 = s(ab), con lo que $ab \in FC_{\tau}$.
- Tenemos que $\begin{array}{c} abc \supsetneq c \\ ac \supsetneq c \\ bc \supsetneq c \end{array} \text{ y se cumplen } \begin{array}{c} s(abc) = 4 \\ s(ac) = 4 \\ s(bc) = 5 \end{array} \right\} < 6 = s(c), \text{ con lo que } c \in FC_{\tau}.$

• b

Tenemos que
$$\begin{array}{ccc} abc \supsetneq b & s(abc) = 4 \\ ab \supsetneq b & \text{y se cumplen} & s(bc) = 5 \\ bc \supsetneq b & s(bc) = 5 \end{array} \right\} < 11 = s(b), \text{ con lo que } b \in FC_\tau.$$

a

Tenemos que
$$\left. \begin{array}{ll} abc \supsetneq a & s(abc) = 4 \\ ab \supsetneq a & \text{y se cumplen} & s(ab) = 9 \\ ac \supsetneq a & s(ac) = 4 \end{array} \right\} < 10 = s(a), \text{ con lo que } a \in FC_{\tau}.$$

• Ø

No hay conjuntos cerrados no vacíos con soporte 13, con lo que $\emptyset \in FC_{\tau}$.

Por lo tanto, el conjunto de cerrados frecuentes es $FC_{\tau} = \{abc, bc, ab, c, b, a, \emptyset\}$. Calculamos los generadores minimales frecuentes $FG_{\tau} = \{X \in F_{\tau} : \forall Y \subsetneq X, s(Y) > s(X)\}$.

- \emptyset Ningún conjunto está contenido estrictamente, con lo que $\emptyset \in FG_{\tau}$.
- aÚnicamente $\emptyset \subsetneq a$ y se cumple $s(\emptyset) = 13 > 10 = s(a)$, con lo que $a \in FG_{\tau}$.
- bÚnicamente $\emptyset \subseteq b$ y se cumple $s(\emptyset)=13>11=s(b),$ con lo que $b\in FG_{\tau}.$
- cÚnicamente $\emptyset \subsetneq c$ y se cumple $s(\emptyset)=13>6=s(c),$ con lo que $c\in FG_{\tau}.$
- *ab*

Tenemos que
$$\left. \begin{array}{ll} \emptyset \subsetneq ab & s\left(\emptyset\right) = 13 \\ a \subsetneq ab & \text{y se cumple} & s(a) = 10 \\ b \subsetneq ab & s(b) = 11 \end{array} \right\} > 9 = s(ab), \text{ con lo que } ab \in FG_{\tau}.$$

• *ac*

• *bc*

Tenemos que
$$\begin{picture}{ll} \emptyset \subsetneq bc & s\left(\emptyset\right) = 13 \\ b \subsetneq bc & \text{y se cumple} & s(b) = 11 \\ c \subsetneq bc & s(c) = 6 \end{picture} > 5 = s(bc), \text{ con lo que } bc \in FG_{\tau}.$$

abc

Consideramos $ac \subseteq abc$ que cumple s(ac) = 4 = s(abc), con lo que $abc \notin FG_{\tau}$.

Por lo tanto, el conjunto de generadores minimales frecuentes es $FG_{\tau} = \{\emptyset, a, b, c, ab, ac, bc\}$. Calculamos el conjunto $RI_{\tau,\gamma} = \{Z \in FC_{\tau} : \gamma \cdot \text{mxgs}_{\tau,\gamma}(Z) > \text{mxs}_{\tau}(Z)\}$. Para ello, necesitamos calcular primero mxs_{\tau} para cada cerrado frecuente.

$$mxs_{\tau}(X) = max(\{s(Z) : Z \in FC_{\tau}, Z \supseteq X\} \cup \{0\})$$

El conjunto abc no está contenido estrictamente en ningún otro, con lo que $\text{mxs}_{\tau}(abc) = 0$. Los conjuntos ab y bc están contenidos estrictamente únicamente en abc, así que

$$mxs_{\tau}(ab) = mxs_{\tau}(bc) = s(abc) = 4.$$

Respecto a los unipuntuales

$$\begin{aligned} & \max_{\tau}(a) = \max(\{s(ab), s(ac), s(abc)\} \cup \{0\}) = \max(\{9, 4, 4, 0\}) = 9 \\ & \max_{\tau}(b) = \max(\{s(ab), s(bc), s(abc)\} \cup \{0\}) = \max(\{9, 5, 4, 0\}) = 9 \\ & \max_{\tau}(c) = \max(\{s(ac), s(bc), s(abc)\} \cup \{0\}) = \max(\{4, 5, 4, 0\}) = 5 \end{aligned}$$

El vacío está contenido estrictamente en todos los subconjuntos no vacíos y tenemos

$$\max_{\tau}(\emptyset) = \max(\{s(Z) : Z \in FC_{\tau}\}) = \max(\{10, 11, 6, 9, 4, 5, 4, 0\}) = 11.$$

Tenemos que calcular también $\mathsf{mxgs}_{\tau,\gamma}$ para cada cerrado frecuente.

$$\mathrm{mxgs}_{\tau,\gamma}(X) = \mathrm{max}(\{s(Y): Y \in FG_\tau, Y \subsetneq X, \gamma \cdot s(Y) \leq s(X)\} \cup \{0\})$$

- \emptyset No hay conjuntos estrictamente contenidos en el vacío, con lo que $\text{mxgs}_{\tau,\gamma}\left(\emptyset\right)=0.$
- cÚnicamente $\emptyset \subsetneq c$, pero $0,75 \cdot s(\emptyset) = 0,75 \cdot 13 = 9,75 \not\leq 6 = s(c)$, con lo que $\text{mxgs}_{\tau,\gamma}(c) = 0$.
- bÚnicamente $\emptyset \subsetneq b$, y se cumple $0,75 \cdot s(\emptyset) = 0,75 \cdot 13 = 9,75 \leq 11 = s(b)$. $\max_{\tau,\gamma}(b) = \max(\{s(\emptyset)\} \cup \{0\}) = \max(\{13,0\}) = 13$
- aÚnicamente $\emptyset \subsetneq a$, y se cumple $0,75 \cdot s(\emptyset) = 0,75 \cdot 13 = 9,75 \le 10 = s(a)$. $\max_{\tau,\gamma}(a) = \max(\{s(\emptyset)\} \cup \{0\}) = \max(\{13,0\}) = 13$
- bcSe debe cumplir $0,75 \cdot s(Y) \le s(bc) = 5$, es decir $s(Y) \le \frac{5}{0,75} = 6,\overline{6}$ con $Y \subsetneq bc$. $\max_{T,\gamma}(bc) = \max(\{s(c)\} \cup \{0\}) = \max(\{6,0\}) = 6$
- abSe debe cumplir $0,75 \cdot s(Y) \le s(ab) = 9$, es decir $s(Y) \le \frac{9}{0,75} = 12$ con $Y \subsetneq ab$. $\max_{\tau,\gamma}(ab) = \max(\{s(a),s(b)\} \cup \{0\}) = \max(\{10,11,0\}) = 11$
- abcSe debe cumplir $0,75 \cdot s(Y) \le s(abc) = 4$, es decir $s(Y) \le \frac{4}{0,75} = 5,\overline{3}$ con $Y \subsetneq abc$. $\max_{T,\gamma}(abc) = \max(\{s(ac),s(bc)\} \cup \{0\}) = \max(\{5,4,0\}) = 5$

FC_{τ} abc	$\mathrm{mxs}_{ au}$	$\gamma \cdot \mathrm{mxgs}_{\tau,\gamma}$	$\mathrm{mxgs}_{\tau,\gamma}$
abc	0	3,75	5
ab	4	8, 25	11
bc	4	4, 5	6
a	9	9,75	13
b	5	9,75	13
c	5	0	0
Ø	11	0	0

Por lo tanto, $RI_{\tau,\gamma} = \{abc, ab, bc, a, b\}.$

Calculamos el conjunto de reglas representativas

$$RR_{\tau,\gamma} = \{X \to Z \setminus X : Z \in RI_{\tau,\gamma}, X \subsetneq Z, \max_{\tau}(Z) < \gamma \cdot s(X) \le s(Z) < \gamma \cdot \min_{\tau}(X)\}.$$

Para ello calculamos primero $\operatorname{mns}_{\tau}$ para cada generador minimal frecuente.

$$mns_{\tau}(X) = min(\{s(Y) : Y \in FG_{\tau}, Y \subsetneq X\} \cup \{\infty\})$$

No hay ningún conjunto contenido estrictamente en el vacío con lo que $\operatorname{mns}_{\tau}(\emptyset) = \infty$. El vacío es el único conjunto contenido estrictamente en a,b,c, con lo que

$$\operatorname{mns}_{\tau}(a) = \operatorname{mns}_{\tau}(b) = \operatorname{mns}_{\tau}(c) = \min(\{s(\emptyset\} \cup \{\infty\}) = \min(\{13, \infty\}) = 13.$$

Para los generadores minimales frecuentes de dos elementos

$$\begin{split} & \operatorname{mns}_{\tau}(ab) = \min(\{s(\emptyset), s(a), s(b)\} \cup \{\infty\}) = \min(\{13, 10, 11, \infty\}) = 10 \\ & \operatorname{mns}_{\tau}(ac) = \min(\{s(\emptyset), s(a), s(c)\} \cup \{\infty\}) = \min(\{13, 10, 6, \infty\}) = 6 \\ & \operatorname{mns}_{\tau}(bc) = \min(\{s(\emptyset), s(b), s(c)\} \cup \{\infty\} = \min(\{13, 11, 6, \infty\}) = 6 \end{split}$$

Por lo tanto, tenemos

$Z \in RI_{\tau,\gamma}$	$X \subsetneq Z$	$\operatorname{mxs}_{\tau}(Z)$	$\gamma \cdot s(X)$	s(Z)	$\gamma \cdot \operatorname{mns}_{\tau}(X)$	$RR_{\tau,\gamma}$
a	Ø	5	$0,75 \cdot 13 = 9,75$	11	$0,75\cdot\infty=\infty$	$\emptyset \to a$
b	Ø	9	$0,75 \cdot 13 = 9,75$	10	$0,75\cdot\infty=\infty$	$\emptyset \to b$
ab	Ø		$0,75 \cdot 13 = 9,75$		$0,75\cdot\infty=\infty$	
	a	4	$0,75 \cdot 10 = 7,5$	9	$0,75 \cdot 13 = 9,75$	$a \rightarrow b$
	b		$0,75 \cdot 11 = 8,25$		$0,75 \cdot 13 = 9,75$	$b \to a$
	Ø		$0,75 \cdot 13 = 9,75$		$0,75\cdot\infty=\infty$	
bc	b	4	$0,75 \cdot 11 = 8,25$	5	$0,75 \cdot 13 = 9,75$	
	c		$0,75 \cdot 6 = 4,5$		$0,75 \cdot 13 = 9,75$	$c \to b$
abc	Ø		$0,75 \cdot 13 = 9,75$		$0,75\cdot\infty=\infty$	
	a		$0,75 \cdot 10 = 7,5$		$0,75 \cdot 13 = 9,75$	
	b		$0,75 \cdot 11 = 8,25$		$0,75 \cdot 13 = 9,75$	
	c	0	$0,75 \cdot 6 = 4,5$	4	$0,75 \cdot 13 = 9,75$	
	ab		$0,75 \cdot 9 = 6,75$		$0,75 \cdot 10 = 7,5$	
	ac		$0,75 \cdot 4 = 3$		$0,75 \cdot 6 = 4,5$	$ac \rightarrow b$
	bc		$0,75\cdot 5=3,75$		$0,75\cdot 6=4,5$	$bc \rightarrow a$

Las reglas de asociación representativas son

$$RR_{\tau,\gamma} = \{\emptyset \to a, \emptyset \to b, a \to b, b \to a, c \to b, ac \to b, bc \to a\}.$$