Math 69: Logic Winter '23

Homework assigned February 06, 2023

Prof. Marcia Groszek Student: Amittai Siavava

Problem 1.

Let \mathcal{L} be a language for first-order logic, including the equality symbol (and any number of other symbols), and \mathcal{L}^* be \mathcal{L} without the equality symbol, but with an additional 2-place predicate symbol E. For any formula α of \mathcal{L} , define α^* to be the formula of \mathcal{L}^* obtained from α by replacing every occurrence of = with E. If Σ is a set of formulas of \mathcal{L} , define

$$\Sigma^* = \left\{ a^* \mid a \in \Sigma \right\}.$$

(a) This is a short answer problem.

For which logical axiom groups is it true that α is a logical axiom in that group if and only if α^* is a logical axiom in that group?

Groups 5 and 6.

(b) This is a short answer problem.

Which, if any, of the following are true?

(i) If $\alpha_1, \alpha_2, \dots, \alpha_n$ is a deduction from Σ in the language \mathcal{L} then $\alpha_1^*, \alpha_2^*, \dots, \alpha_n^*$ is a deduction from Σ^* in the language \mathcal{L}^*

True

(ii) If $\alpha_1^*, \alpha_2^*, \dots, \alpha_n^*$ is a deduction from Σ^* in the language \mathcal{L}^* then $\alpha_1, \alpha_2, \dots, \alpha_n$ is a deduction from Σ in the language \mathcal{L}

False

(c) Show that if Σ is a consistent set of formulas in \mathcal{L} then Σ^* is a consistent set of formulas in \mathcal{L}^* .

You may use your answers in (a) and (b).

Hint: Recall that Σ is inconsistent if there is some α such that $\Sigma \vdash \alpha$ and $\Sigma \vdash \neg \alpha$.

Suppose Σ is consistent and s is a variable assignment that satisfies Σ , then $\overline{s}(\sigma) = T$ for all $\sigma \in \Sigma$. Then there exists some deduction $(\alpha_1, \alpha_2, \dots, \alpha_n)$ with $\alpha_n = \alpha$ and each α_i either occurring in Σ or having some j, k < i such that $\Sigma \vDash \alpha_j$ and α_k is $\alpha_j \to \alpha_i$. Therefore, the deduction $(\alpha_1^*, \alpha_2^*, \dots, \alpha_n^*)$ also exists in Σ^* with $\alpha_n^* = \alpha^*$, meaning $\Sigma^* \vDash \alpha^*$.

Therefore, if Σ is consistent and some truth assignment satisfies all rules in Σ , then Σ^* is also consistent.

(d) Show by example that it is possible for Σ to be inconsistent but Σ^* to be consistent.

Suppose both \mathcal{L} and \mathcal{L}^* contain two constant symbols c_1 and c_2 defined such that $c_1 \neq c_2$, and a variable symbol x. Suppose Σ contains the two sentences $a = c_2$ and $a = c_2$, then Σ is not consistent since it deduces two contradicting results. For instance, if α is the assertion that $a = c_1$ then $\Sigma \vDash \alpha$ and $\Sigma \vDash \neg \alpha$.

Amittai, S Math 69: Logic

On the other hand, if we change equality in \mathcal{L} with a predicate symbol E in \mathcal{L}^* , then Σ^* contains the two sentences Ea_ic_1 and Ea_ic_2 . Thus, $\Sigma \vDash Ea_ic_1$ and $\Sigma \vDash Ea_ic_2$. However, there is no rule in Σ^* that says $\forall a(Eac_1 \to \neg Eac_2)$, so Σ^* is still consistent.

Amittai, S Math 69: Logic

Problem 2.

Let \mathcal{L} have equality, a one-place function symbol f, and a two-place predicate symbol P.

Define \mathcal{L}^* as in problem 1.

Suppose $\mathfrak A$ is a structure for $\mathcal L^*$ with the property that if α is a logical axiom of $\mathcal L$ in group 5 or group 6 then $\mathfrak A^*$ satisfies α^* .

You showed in last-week's homework that in this case, $E^{\mathfrak{A}^*}$ defines an equivalence relation on $|\mathfrak{A}^*|$, and $f^{\mathfrak{A}^*}$ and $P^{\mathfrak{A}^*}$ induce a well-defined function and a well-defined relation on equivalence classes.

Let \mathfrak{B}^* be a structure for \mathcal{L}^* defined by setting

$$|\mathfrak{B}| = |\mathfrak{A}|/E^{\mathfrak{A}^*} = \{[a] \mid a \in |\mathfrak{A}^*|\}$$

where [a] denotes the equivalence class of a under the equivalence relation $E^{\mathfrak{A}^*}$, and letting $f^{\mathfrak{B}^*}$, $P^{\mathfrak{B}^*}$, and $E^{\mathfrak{B}^*}$ be induced by $f^{\mathfrak{A}^*}$, $P^{\mathfrak{A}^*}$, and $E^{\mathfrak{A}^*}$, such that:

$$f^{\mathfrak{B}^*}([a]) = [f^{\mathfrak{A}^*}(a)]$$

$$\langle [a], [b] \rangle \in P^{\mathfrak{B}^*} \iff \langle a, b \rangle \in P^{\mathfrak{A}^*}$$

$$\langle [a], [b] \rangle \in E^{\mathfrak{B}^*} \iff \langle a, b \rangle \in E^{\mathfrak{A}^*}$$

The second and third condition can be rewritten (informally) as:

$$[a]P^{\mathfrak{B}^*}[b] \iff aP^{\mathfrak{A}^*}b$$
$$[a]E^{\mathfrak{B}^*}[b] \iff aE^{\mathfrak{A}^*}b$$

Define a function h from $|\mathfrak{A}^*|$ to $|\mathfrak{B}^*|$ by h(a) = [a].

(a) Show that h is a surjective homomorphism from \mathfrak{A}^* onto \mathfrak{B}^* .

Let b be an element in $|\mathfrak{B}|$, then, from the definition

$$|\mathfrak{B}| = \{ [a] \mid a \in |\mathfrak{A}^*| \},$$

b = [a] for some $a \in |\mathfrak{A}^*|$. Since $h : |\mathfrak{A}^*| \to |\mathfrak{B}^*|$ is defined as h(a) = [a], for every $b \in |\mathfrak{B}^*|$, there exists some $a \in |\mathfrak{A}^*|$ such that h(a) = b, so h is surjective.

(b) Show that if α is any formula of $\mathcal L$ and s is a variable assignment for $|\mathfrak A^*|$, then

$$\mathfrak{A}^* \vDash \alpha^*[s] \iff \vDash \alpha^*[h \circ s]$$

Suppose α is a formula in \mathcal{L} and s is a variable assignment for $|\mathfrak{A}^*|$ such that $\mathfrak{A}^* \models \alpha^*[s]$. Note that $h \circ s$ is the function that sends each element x to the equivalence class $[\overline{s}(x)]$.

If $\mathfrak{A}^* \models \alpha^*[s]$, then $\overline{s}(\alpha^*) = T$, so $a^* = [T]$, i.e. a^* under $h \circ s$ is in the equivalence class of formulas that are always true. This implies that α^* is a tautology in \mathfrak{B}^* under $h \circ s$, or $\models \alpha^*[h \circ s]$.

←

Amittai, S

Math 69: Logic

Suppose $\vDash \alpha^*[h \circ s]$. Then α is a tautology under the assignment defined by $h \circ s$. Therefore, $\alpha^* = [T]$ under $h \circ s$, meaning $\overline{s}(\alpha^*) = T$, so $\mathfrak{A}^* \vDash \alpha^*[s]$.

(c) Show that

$$E^{\mathfrak{B}^*} = \{([a], [b]) \in |\mathfrak{B}^*| \times |\mathfrak{B}^*| \mid [a] = [b]\}$$

 $E^{\mathfrak{A}^*}$ is an equivalence relation, and \mathfrak{B} is defined as

$$\mathfrak{B} = \mathfrak{A}/E^{\mathfrak{A}^*} = \{[a] \mid a \in |\mathfrak{A}^*|\}.$$

Let $E^{\mathfrak{B}^*}$ be the translation of $E^{\mathfrak{A}^*}$ into \mathfrak{B}^* . Then, for every $a,b\in |\mathfrak{A}^*|$, $E^{\mathfrak{A}}ab\iff E^{\mathfrak{B}^*}[a][b]$. But since $E^{\mathfrak{A}^*}$ is an equivalence relation (the same one used to define $|\mathfrak{B}|$), $E^{\mathfrak{A}^*}ab\iff [x]=[y]$.

The translation $E^{\mathfrak{B}^*}$ is satisfied when the original equivalence relation is satisfied, i.e. $\mathfrak{B} \models E^{\mathfrak{B}^*}$ if and only if $\mathfrak{A} \models E^{\mathfrak{A}^*}$, and $\mathfrak{A} \models E^{\mathfrak{A}^*}$ if and only if (a,y) = T if and only if [a] = [y]. Therefore, $E^{fB^*} = \{([a],[b]) \in |\mathfrak{B}^*| \times |\mathfrak{B}^*| \mid [a] = [b]\}$.

Amittai, S Math 69: Logic

Problem 3.

With the same definitions as in problem (2), let $\mathfrak B$ be the *reduct* of $\mathfrak B^*$ to a structure for $\mathcal L$. This means that:

$$|\mathfrak{B}| = |\mathfrak{B}^*|$$

$$f^{\mathfrak{B}} = f^{\mathfrak{B}^*}$$

$$P^{\mathfrak{B}} = P^{\mathfrak{B}^*}$$

In other words, $\mathfrak B$ translates every parameter $\mathcal L$ in exactly the same way as $\mathfrak B^*$. It merely has no translation for E, since E is not a symbol of $\mathcal L$. (Of course, $\mathfrak B$ must translate = as equality).

Because \mathfrak{B}^* translated E as equality, we can conclude that for any wff α of \mathcal{L} and variable assignment \overline{s} for \mathfrak{B} , since α^* is α with E replaced by =,

$$\mathfrak{B} \vDash \alpha[\overline{s}] \iff \mathfrak{B}^* \vDash \alpha^*[\overline{s}].$$

This makes sense because \mathfrak{B} and \mathfrak{B}^* have the same universe, so \overline{s} is also a variable assignment for \mathfrak{B} .

By problem (2),

$$\mathfrak{B}^* \vDash \alpha [h \circ s] \iff \mathfrak{A}^* \vDash \alpha^* [s],$$

and therefore

$$\mathfrak{B} \vDash \alpha[h \circ s] \iff \mathfrak{A}^* \vDash \alpha^*[s].$$

We conclude that if Σ is any set of formulas of \mathcal{L} including all the logical axioms in groups 5 and 6, and the set Σ^* (obtained by replacing = with E in every element of Σ) is satisfiable by some structure \mathfrak{A}^* and variable assignment s, then the original set Σ is also satisfiable by the structure \mathfrak{B} and variable assignment s0 as defined in problem (2).

Using problem (1) and the further context, show that if every consistent set of sentences in \mathcal{L}^* is satisfiable then every consistent set of sentences in \mathcal{L} is satisfiable.

We shall prove the contrapositive: suppose some consistent set of sentences in \mathcal{L} is not satisfiable. Then there is some set Σ of sentences in \mathcal{L}^* that must not be satisfiable.

Let γ be a variable in \mathcal{L} that is not satisfied under an assignment s, then $\mathfrak{A}^* \models \neg a[s]$.

Therefore, $\mathfrak{B} \models \neg a[h \circ s]$. By the compactness theorem, there exists some finite subset of $\mathfrak{B}_0 \subseteq |\mathfrak{B}|$ such that $\mathfrak{B}_0 \vdash \gamma$. Then either \mathfrak{B}_0 contains $\neg \gamma$ or \mathfrak{B}_0 contains or deduces some formulae α and β such that $\alpha = \text{is } \beta \to \gamma$. so \mathfrak{B} is also not satisfiable.