

CS5340 Uncertainty Modeling in Al

Lecture 8: Mixture Models and the EM Algorithm

Asst. Prof. Lee Gim Hee
AY 2018/19
Semester 1

Course Schedule

Week	Date	Торіс	Remarks
1	15 Aug	Introduction to probabilities and probability distributions	
2	22 Aug	Fitting probability models	Hari Raya Haji*
3	29 Aug	Bayesian networks (Directed graphical models)	
4	05 Sep	Markov random Fields (Undirected graphical models)	
5	12 Sep	I will be traveling	No Lecture
6	19 Sep	Variable elimination and belief propagation	
-	26 Sep	Recess week	No lecture
7	03 Oct	Factor graph and the junction tree algorithm	
8	10 Oct	Parameter learning with complete data	
9	17 Oct	Mixture models and the EM algorithm	
10	24 Oct	Hidden Markov Models (HMM)	
11	31 Oct	Monte Carlo inference (Sampling)	
12	07 Nov	Variational inference	
13	14 Nov	Graph-cut and alpha expansion	

^{*} Make-up lecture: 25 Aug (Sat), 9.30am-12.30pm, LT 15

CS5340 :: G.H. Lee

Acknowledgements

- A lot of slides and content of this lecture are adopted from:
- 1. "Pattern Recognition and Machine Learning", Christopher Bishop, Chapter 8.
- 2. "Machine Learning A Probabilistic Perspective", Kevin Murphy, Chapter 11.
- 3. "An Introduction to Probabilistic Graphical Models", Michael I. Jordan, Chapters 10 and 11. http://people.eecs.berkeley.edu/~jordan/prelims/chapter11.pdf
- 4. "Probabilistic Graphical Models", Daphne Koller and Nir Friedman, chapter 19.2.2.
- 5. "Computer Vision: Models, Learning and Inference", Simon Prince, Chapters 7.1-7.4 and 7.8.

Learning Outcomes

- Students should be able to:
- 1. Use the non-probabilistic k-mean algorithm to solve the clustering problem.
- 2. Describe the Gaussian-mixture model.
- 3. Apply the Expectation-Maximization algorithm for estimation of both the unknown parameters and latent variables.

• Suppose that we are given many images of handwritten digits, and we can extract a 2D representation of each image $x_n \in \mathbb{R}^2$.

• We can observe clusters from the 2D plot of $x_1, ..., x_N$, where $x_n \in \mathbb{R}^2$.

• We can observe clusters from the 2D plot of $x_1, ..., x_N$, where $x_n \in \mathbb{R}^2$.

• It turns out that the data points x_n with the same digit tend to be associated with the same cluster!

This suggests that clusters can be use to represent

complex distributions.

Chicken-and-Egg Problem:

- 1. How to find unknown parameters of the clusters?
- 2. Which cluster does each data belong to, i.e. data association?

Given:

- 1. Data set $\{x_1, ... x_N\}$ of observations
- Number of clusters K

Find:

- 1. The K cluster centers $\{\mu_1, \dots, \mu_K\}$, i.e. unknown parameters (assume each cluster is a circle)
- 2. Assignment of each point x_n to a cluster center k, i.e. data association

1-of-*K* coding:

• For each data point x_n , we introduce a corresponding set of binary indicator variables:

$$r_{nk} \in \{0,1\} \ \forall k=1,\dots K,$$
 s.t. $\sum_k r_{nk} = 1$.

- This binary indicator variable describes which of the K clusters the data point \mathbf{x}_n is assigned to.
- 1-of-K constraint ensures that each data point \mathbf{x}_n gets assigned to only ONE cluster k.

• Formally, the **goal** of k-means is to find values for $\{r_{nk}\}$ and $\{\mu_k\}$ so as to minimize the "distortion measure":

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$
, s.t. $\sum_{k} r_{nk} = 1$.

• Represents the sum-of-squares of the distances of each point \mathbf{x}_n to its assigned vector μ_k .

K-Means (a.k.a. Lloyd) Algorithm:

- 1. Initialization: Randomly choose some initial values for $\{\mu_k\}$.
- 2. Assignment step: Minimize I w.r.t. $\{r_{nk}\}$, while keeping $\{\mu_k\}$ fixed.
- 3. Update step: Minimize I w.r.t. $\{\mu_k\}$, while keeping $\{r_{nk}\}$ fixed.

Iterate until convergence

Assignment Step:

• We can optimize each r_n separately since they are independent:

$$\underset{r_n}{\operatorname{argmin}} \sum_{k} r_{nk} \|\mathbf{x}_n - \mu_k\|^2 , \qquad \text{s.t.} \quad \sum_{k} r_{nk} = 1.$$

• By inspection, the minimum occurs when we assign x_n to the current closest cluster center:

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\mathbf{x}_n - \boldsymbol{\mu}_j\|^2 \\ 0 & \text{otherwise.} \end{cases}$$

Update Step:

• We can optimize each μ_k separately since they are independent:

$$\underset{\mu_k}{\operatorname{argmin}} \sum_{n} r_{nk} \|\mathbf{x}_n - \mu_k\|^2$$

• Differentiation of L w.r.t. μ_k , and equate to zero gives:

$$2\sum_{n=1}^{N} r_{nk}(\mathbf{x}_n - \boldsymbol{\mu}_k) = 0 \quad \Longrightarrow \quad \left[\boldsymbol{\mu}_k = \frac{\sum_{n} r_{nk} \mathbf{x}_n}{\sum_{n} r_{nk}}\right]$$

Mean of all points assigned to cluster k, hence "k-means"!

Image source: "Pattern recognition and machine learning", Christopher Bishop

17

CS5340 :: G.H. Lee

Application: Image Segmentation

Image source: "Pattern recognition and machine learning", Christopher Bishop

CS5340 :: G.H. Lee 18

Probabilistic Approach

Can we model the problem with a probabilistic approach?

- "Old Faithful" dataset: 272 measurements of the eruption of the Old Faithful geyser at Yellowstone National Park, USA.
- Data set forms two dominant clumps, a simple Gaussian distribution is unable to capture this structure.
- A linear superposition of two Gaussians gives a better characterization of the data set.

Photo source: "Old Faithful", courtesy of Chen Li, June'18

Photo source: Old Faithful , courtesy of Chen Li, June 18

Image source: "Pattern recognition and machine learning", Christopher Bishop

CS5340 :: G.H. Lee 20

- Mixture distributions: Probabilistic models formed by taking linear combinations of more basic distributions such as Gaussian a.k.a Gaussian Mixture Model (GMM).
- Linear combination of sufficient number of Gaussians give rise to very complex densities that can be used to approximate almost any continuous density with arbitrary accuracy.

Example:

1D GMM (red) formed by 3 Gaussians (blue)

(b)-(c) 2D GMM formed by (a) 3 Gaussians

CS5340 :: G.H. Lee

• The probability distribution of a mixture of Gaussians is given by the superposition of K Gaussian densities:

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- Each Gaussian density $\mathcal{N}(\mathbf{x} | \mu_k, \Sigma_k)$ is called a component of the mixture, and has its own mean μ_k and covariance Σ_k .
- The parameters $0 \le \pi_k \le 1$ is the mixing coefficients, and must sum to one:

$$\sum_{k=1}^{K} \pi_k = 1$$

- Let us introduce a K-dimensional binary random variable Z having a 1-of-K representation.
- $z_k = 1 \Rightarrow z_{j\neq k} = 0$ indicates the assignment of the random variable x to the k^{th} Gaussian density.
- The values of Z_k must satisfy:

$$z_k \in \{0,1\}$$
 and $\sum_k z_k = 1$

• K possible states for the vector Z according to which element is non-zero.

• The marginal distribution of Z is a categorical distribution specified in terms of the mixing coefficients π_k :

$$p(\mathbf{z}) = \prod_{k=1}^{K} \pi_k^{z_k} = \text{cat}_{\mathbf{z}}[\pi]$$

where the parameter $\pi = [\pi_1, ..., \pi_K]$ must be:

$$0 \le \pi_k \le 1$$
 and $\sum_{k=1}^K \pi_k = 1$

 Conditional distribution of X given a particular value for Z is a Gaussian:

$$p(\mathbf{x}|z_k=1) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Which can also be written as:

$$p(\mathbf{x}|\mathbf{z}) = \prod_{k=1}^{K} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_k}.$$

• The joint distribution p(x, z) is given by the following DGM:

$$p(x,z) = p(z)p(x|z)$$

• The marginal distribution of X is then obtained by summing the joint distribution over all possible states of the latent variable Z to give:

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x}|\mathbf{z}) = \sum_{\mathbf{z}} \prod_{k=1}^{K} \pi_k^{z_k} \mathcal{N}(\mathbf{x} \mid \mu_k, \Sigma_k)^{z_k}$$

Image source: "Pattern recognition and machine learning", Christopher Bishop

CS5340 :: G.H. Lee

• Another quantity that will play an important role is $p(z_k = 1 | x)$ denoted as $\gamma(z_k)$, whose value can be found using Bayes' theorem:

$$\gamma(z_k) \equiv p(z_k = 1 | \mathbf{x}) = \frac{p(z_k = 1)p(\mathbf{x}|z_k = 1)}{\sum\limits_{j=1}^K p(z_j = 1)p(\mathbf{x}|z_j = 1)}$$
 Prior probability of $z_k = 1$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum\limits_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

• As we shall see later, $\gamma(z_k)$ can also be viewed as the responsibility that component k takes for 'explaining' the observation x.

• Suppose we have a data set of N i.i.d. observations $\{x_1, ..., x_N\}$: $x_n \in \mathbb{R}^D$, we model the log-likelihood as:

Unknown parameter heta

$$\ln p(\mathbf{x}_1, \dots \mathbf{x}_N | \theta) = \sum_{n=1}^N \ln \sum_{\mathbf{z}_n} p(\mathbf{x}_n, \mathbf{z}_n | \theta)$$

Incomplete data because $Z = \{z_1, ..., z_n\} \in \mathbb{R}^{N \times K}$ is a latent variable

$$= \sum_{n=1}^{N} \ln \sum_{\mathbf{z}_n} p(\mathbf{z}_n | \pi) p(\mathbf{x}_n | \mathbf{z}_n, \mu, \Sigma)$$

$$= \sum_{n=1}^{N} \ln \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n \mid \mu_k, \Sigma_k)$$

where

$$\theta = \{\pi_1 ... \pi_K, \mu_1 ... \mu_K, \Sigma_1 ... \Sigma_K\}$$

$$\underset{\theta}{\operatorname{argmax}} \ln p(\mathbf{x}_1, \dots \mathbf{x}_N | \theta) = \underset{\pi, \mu, \Sigma}{\operatorname{argmax}} \sum_{n=1}^N \left(\ln \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | \mu_k, \Sigma_k) \right)$$

- The summation term inside the logarithm prevents the logarithm function from acting directly on the Gaussian.
- We shall see that we will no longer obtain a closedform solution of the unknown parameters by setting the derivatives to zero!

• Setting the derivatives of $\ln p(\mathbf{x}_1, \dots \mathbf{x}_N | \theta)$ w.r.t. μ_k of the Gaussian components to zero, we obtain:

$$0 = -\sum_{n=1}^{N} \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j} \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} \boldsymbol{\Sigma}_k(\mathbf{x}_n - \boldsymbol{\mu}_k)$$

$$\gamma(z_{nk}) : \text{Responsibility}$$

• Multiplying by Σ_k^{-1} (which we assume to be nonsingular) and rearranging, we obtain:

$$oldsymbol{\mu_k} = rac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n$$
 , where $N_k = \sum_{n=1}^N \gamma(z_{nk})$

Not closed-form since responsibility is a function of π_k , μ_k , Σ_k !

• If we set the derivative of $\ln p(\mathbf{x}_1, ... \mathbf{x}_N | \theta)$ w.r.t. Σ_k to zero, we get:

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^{\mathrm{T}}$$

Not closed-form since responsibility is a function of π_k , μ_k , Σ_k !

• Finally, we maximize $\ln p(\mathbf{x}_1, \dots \mathbf{x}_N | \theta)$ w.r.t. π_k subjected to $\sum_k \pi_k = 1$ by maximizing the following auxiliary equation:

$$\ln p(\mathbf{X}|\boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Sigma}) + \lambda \left(\sum_{k=1}^K \pi_k - 1\right)$$

• Which gives:

$$0 = \sum_{n=1}^{N} \frac{\mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j} \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} + \lambda$$
$$= N_k / \pi_k$$

• Multiply both sides by π_k and sum over k making use of the constraint $\sum_k \pi_k = 1$, we get:

$$\sum_{n=1}^{N} \frac{\sum_{k} \pi_{k} \mathcal{N}(\mathbf{x}_{n} | \mu_{k}, \Sigma_{k})}{\sum_{j} \pi_{j} \mathcal{N}(\mathbf{x}_{n} | \mu_{j}, \Sigma_{j})} = -\lambda \sum_{k} \pi_{k} \qquad \Longrightarrow \qquad \lambda = -N$$

• Using $\lambda = -N$ to eliminate λ and rearranging, we get:

$$\pi_k = \frac{N_k}{N}$$

Not closed-form since responsibility is a function of π_k , μ_k , Σ_k !

• This is the average responsibility which the k^{th} component takes for explaining the data points.

- The maximum log-likelihood estimates of the unknown parameter do not constitute a closed-form solution because of the responsibilities $\gamma(z_{nk})$.
- However, these results do suggest a simple iterative scheme for finding a solution to the maximum likelihood problem!

EM for Gaussian Mixtures

Given a Gaussian mixture model, the goal is to maximize the likelihood function w.r.t. the parameters $\theta = \{\pi_k, \mu_k, \Sigma_k\}$.

- 1. Initialize the means μ_k , covariances Σ_k and mixing coefficients π_k , and evaluate the initial value of the log likelihood.
- 2. Expectation Step: Evaluate the responsibilities $\gamma(Z)$ using the current parameter values

$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)}{\frac{K}{K}}.$$

$$\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_j,\boldsymbol{\Sigma}_j)$$
 where each entry is $\gamma(z_{nk})$

EM for Gaussian Mixtures

Given a Gaussian mixture model, the goal is to maximize the likelihood function w.r.t. the parameters $\theta = \{\pi_k, \mu_k, \Sigma_k\}$.

 Maximization Step: Re-estimate the parameters using the current responsibilities

$$\boldsymbol{\mu}_{k}^{\text{new}} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_{n}$$

$$\boldsymbol{\Sigma}_{k}^{\text{new}} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{\text{new}}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{\text{new}})^{\text{T}}$$

$$\boldsymbol{\pi}_{k}^{\text{new}} = \frac{N_{k}}{N}$$

where

$$N_k = \sum_{n=1}^N \gamma(z_{nk}).$$

EM for Gaussian Mixtures

Given a Gaussian mixture model, the goal is to maximize the likelihood function w.r.t. the parameters $\theta = \{\pi_k, \mu_k, \Sigma_k\}$.

4. Evaluate the log likelihood:

$$\ln p(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

and check for convergence of either the parameters or the log likelihood. If the convergence criterion is NOT satisfied return to step 2.

Illustration of the EM Algorithm

EM for GMM: Initialization

- EM algorithm takes many more iterations to reach (approximate) convergence compared with the *K*-means algorithm.
- And each cycle requires significantly more computation.
- Run the *K*-means algorithm first to find a suitable initialization for a GMM that is subsequently adapted using EM.

- The goal of the EM algorithm is to find maximum likelihood solutions for models having latent variables.
- The log-likelihood function is given by:

$$\ln p(\mathbf{X}|\boldsymbol{\theta}) = \ln \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \right\} \qquad \text{or} \qquad \ln p(\mathbf{X}|\boldsymbol{\theta}) = \ln \left\{ \int_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \right\}$$
Output
Discrete latent variable
Continuous latent variable

- where
 - X: set of all observed data with n^{th} row represents \mathbf{x}_n^T
 - Z: set of all latent variables with corresponding row z_n^T
 - θ : set of all model parameters

$$\ln p(\mathbf{X}|\boldsymbol{\theta}) = \ln \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \right\} \quad \text{or} \quad \ln p(\mathbf{X}|\boldsymbol{\theta}) = \ln \left\{ \int_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \right\}$$

- A key observation is that the summation/integration over the latent variables appears inside the logarithm.
- Marginal distribution $p(X|\theta)$ does not simplify even if the joint distribution $p(X,Z|\theta)$ belongs to the exponential family, e.g. Gaussian.
- Resulting in complicated (non closed-form) expressions for the maximum likelihood solution.

Assignment of x_n into clusters is known: Complete data

Assignment of x_n into clusters is unknown: Incomplete data

- Complete data: Both observation X and latent variable Z are known.
- Incomplete data: Observation X is known, but latent variable Z is unknown.

Image source: "Pattern recognition and machine learning", Christopher Bishop

CS5340 :: G.H. Lee 43

- It is straightforward to maximize the likelihood function for the complete data set In $p(X, Z|\theta)$.
- In practice, however, we are not given the complete data set $\{X, Z\}$, but only the incomplete data X.
- Instead, we consider maximization of the expected value of the complete data log-likelihood In $p(X, Z|\theta)$ w.r.t. $p(Z|X,\theta)$.
- Do the Expectation and Maximization steps iteratively until convergence.

Expectation Step:

- Use the current parameter values θ^{old} to find the posterior distribution of the latent variables given by $p(Z|X, \theta^{old})$.
- We then use $p(\mathbf{Z}|\mathbf{X}, \theta^{old})$ to find the expectation of the complete-data log likelihood evaluated for some general parameter value θ .
- This expectation, denoted $Q(\theta, \theta^{old})$, is given by:

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}).$$

$$= \mathbb{E}_{\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}} [\ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})]$$

Maximization Step:

• Determine the revised parameter estimate θ^{new} by maximizing this function:

$$\boldsymbol{\theta}^{\text{new}} = \underset{\boldsymbol{\theta}}{\operatorname{arg\,max}} \, \mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}})$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{arg\,max}} \, \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

Log is now inside the summation!

• Since the logarithm now acts directly on the joint distribution $p(X, Z|\theta)$, the corresponding M-step will be tractable.

• **Given**: a joint distribution $p(X, Z|\theta)$ over observed variables X and latent variables Z, governed by parameters θ .

• Goal: is to maximize the likelihood function $p(X|\theta)$ with respect to θ .

- 1. Choose an initial setting for the parameters θ^{old} .
- 2. Expectation step: Evaluate $p(Z|X, \theta^{old})$.
- 3. Maximization step: Evaluate θ^{new} given by:

$$oldsymbol{ heta}^{ ext{new}} = rg \max_{oldsymbol{ heta}} \mathcal{Q}(oldsymbol{ heta}, oldsymbol{ heta}^{ ext{old}})$$

where

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

4. Check for convergence of either the log likelihood or the parameter values, if not converged:

$$\boldsymbol{\theta}^{\mathrm{old}} \leftarrow \boldsymbol{\theta}^{\mathrm{new}}$$

Singularities and MAP

Illustration of the "singularity problem":

A Gaussian gets erroneously fitting to 1 single data, i.e. $\Sigma_k \to 0$

• Problem can be alleviated by applying MAP on $Q(\theta, \theta^{old})$.

$$\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\mathrm{old}}) + \ln p(\boldsymbol{\theta})$$
 —— Dirichlet prior on π_k , and normalized inversed Gaussian on (μ_k, σ_k) .

49

The complete data log-likelihood is given by:

$$\ln p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \ln \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_k^{z_{nk}} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_{nk}}$$

$$= \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left\{ \ln \pi_k + \ln \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

Now the log is inside the summation!

50

Complete data log-likelihood:

$$\ln p(X, Z \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{k=1}^{K} \sum_{n=1}^{N} z_{nk} (\ln \pi_k + \ln \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k))$$

- We can switch the sums and only look at the points associated with the respective mixture component k.
- Maximization of each (μ_k, Σ_k) can be done separately, similarly we can solve for π_k by enforcing the sum to one constraint using Lagrange multiplier.
- **Problem:** the latent variables Z are not observed!!!

• Instead of maximizing the joint log-likelihood, we maximize its expectation under the latent variable distribution:

$$\begin{split} \mathbb{E}_{z}[\ln p(X,Z|\theta)] &= \sum_{Z} p(Z|X,\theta^{old}) \ln p(X,Z|\theta) \\ &= \sum_{n} \sum_{k} p(z_{nk}|x_{n},\theta^{old}) \ln p(x_{n},z_{nk}|\theta) \\ &= \sum_{n} \sum_{k} \frac{p(x_{n}|z_{nk},\theta^{old})p(z_{nk}|\theta^{old})}{p(x_{n}|\theta^{old})} \ln p(x_{n},z_{nk}|\theta) \\ &= \sum_{n} \sum_{k} \frac{\mathcal{N}(x_{n}|\mu_{k}^{old},\Sigma_{k}^{old})\pi_{k}^{old}}{p(x_{n}|\mu_{j}^{old},\Sigma_{j}^{old})\pi_{j}^{old}} \ln p(x_{n},z_{nk}|\theta) \\ &= \sum_{n} \sum_{k} \frac{\mathcal{N}(x_{n}|\mu_{k}^{old},\Sigma_{j}^{old})\pi_{j}^{old}}{\sum_{j} \mathcal{N}(x_{n}|\mu_{j}^{old},\Sigma_{j}^{old})\pi_{j}^{old}} \ln p(x_{n},z_{nk}|\theta) \\ &= \sum_{n} \sum_{k} \gamma(z_{nk}) \left[\ln \pi_{k} + \ln \mathcal{N}(x_{n}|\mu_{k},\Sigma_{k}) \right] \end{split}$$
 (Bayes Rule)

$$\mathbb{E}_{Z}[\ln p(X, Z|\theta)] = \sum_{k} \sum_{n} \gamma(z_{nk}) \left[\ln \pi_{k} + \ln \mathcal{N}(x_{n}|\mu_{k}, \Sigma_{k})\right]$$

• Similar to the complete log-likelihood case, we can switch the sums and only look at the points associated with the respective mixture component k.

• Since $\gamma(z_{nk})$ stays fixed, maximization of each (μ_k, Σ_k) can be done separately, similarly we can solve for π_k by enforcing the sum to one constraint using Lagrange multiplier.

• Maximizing the log-likelihood $\ln p(X|\theta)$ is difficult due to the need of marginalizing over the latent variables inside the logarithm:

$$\ln p(X|\theta) = \ln \sum_{Z} p(X, Z|\theta)$$

• It turns out that $\ln p(X|\theta)$ can be maximized by maximizing its lower bound $\mathcal{L}(q,\theta)$ within the EM algorithm.

Let us rewrite the log-likelihood into:

$$\ln p(\mathbf{X}|\boldsymbol{\theta}) = \mathcal{L}(q, \boldsymbol{\theta}) + \mathrm{KL}(q\|p)$$
Lower bound KL Divergence

where

$$\mathcal{L}(q, \boldsymbol{\theta}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})}{q(\mathbf{Z})} \right\}$$

$$\mathrm{KL}(q||p) = -\sum_{\mathbf{Z}} q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})}{q(\mathbf{Z})} \right\} \geq 0$$

q(Z) is a distribution we defined over the latent variable

Proof:

$$\mathcal{L}(q,\theta) + \text{KL}(q||p) = \sum_{Z} q(Z) \ln \left\{ \frac{p(X,Z|\theta)}{q(Z)} \right\} - \sum_{Z} q(Z) \ln \left\{ \frac{p(Z|X,\theta)}{q(Z)} \right\}$$

$$= \sum_{Z} q(Z) \{ \ln p(X,Z|\theta) - \ln q(Z) - \ln p(Z|X,\theta) + \ln q(Z) \}$$

$$= \ln p(Z|X,\theta) + \ln p(X|\theta)$$

$$= \sum_{Z} q(Z) \ln p(X|\theta)$$

$$= \ln p(X|\theta)$$

Illustration of the decomposition given by:

$$\ln p(\mathbf{X}|\boldsymbol{\theta}) = \mathcal{L}(q,\boldsymbol{\theta}) + \mathrm{KL}(q||p)$$

which holds for any choice of $q(\mathbf{Z})$.

• Because the Kullback-Leibler divergence satisfies $\mathrm{KL}(q||p) \geq 0$, we see that the quantity $\mathcal{L}(q,\theta)$ is a lower bound on the log-likelihood function $\ln p(X|\theta)$.

57

Illustration of the E-Step:

Lower bound $\mathcal{L}(q, \theta)$ is maximized by choosing $q(Z) = p(Z|X, \theta^{old})!$

Proof:

KL
$$(q||p) = -\sum_{Z} q(Z) \ln \left\{ \frac{p(Z|X,\theta)}{p(Z|X,\theta)} \right\}$$

= 0

 $\Longrightarrow \mathcal{L}(q,\theta)$ must be at its maximum since

$$\ln p(\mathbf{X}|\boldsymbol{\theta}) = \mathcal{L}(q,\boldsymbol{\theta}) + \mathrm{KL}(q||p)$$

Equivalence of expectation under the latent variable distribution:

$$\mathcal{L}(q, \boldsymbol{\theta}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) - \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \ln p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}})$$

$$= \mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) + \text{const}$$

Illustration of the M-Step:

$$\mathcal{L}(q, \theta^{new}) = \sum_{Z} p(Z|X, \theta^{old}) \ln p(X, Z|\theta^{new}) + \text{const}$$

$$KL(q||p) = -\sum_{Z} p(Z|X, \theta^{old}) \ln \left\{ \frac{p(Z|X, \theta^{new})}{p(Z|X, \theta^{old})} \right\}$$

- The distribution q(Z) is held fixed and the lower bound $\mathcal{L}(q, \theta)$ is maximized w.r.t θ to give a revised value θ^{new} .
- Because the KL divergence is nonnegative, this causes the log-likelihood $\ln p(X|\theta)$ to increase by at least as much as the lower bound does.

- **E-step**: we compute the convex lower bound given the old parameters θ^{old} (blue curve).
- M-step: we maximize this lower bound to get new parameters θ^{new}
- This is repeated (green curve) until convergence.

CS5340 :: G.H. Lee 60

Summary

- We have looked at how to:
- 1. Use the non-probabilistic k-mean algorithm to solve the clustering problem.
- 2. Describe the Gaussian-mixture model.
- 3. Apply the Expectation-Maximization algorithm for estimation of both the unknown parameters and latent variables.

