Computational Inference of Microbial Genotype-Phenotype Relationships

Prof. Alice C. McHardy

Computational Biology of Infection Research Helmholtz Centre for Infection Research

Towards personalized molecular diagnostics and therapy for infectious diseases

Inferring Genotype-Phenotype and Genotype-Environment associations from microbial omics & biomedical data

- May indicate biological functions & mechanisms
- Molecular markers
- Support for diagnostic and therapeutic decisions and prognostics

Characterizing antimicrobial resistances

Pure culture

Test growth conditions and resistances (takes time, other organisms found..)

M. Rohde, HZI

Metagenome sequencing & bioinformatics

(n. a. cultivable)

Phenotypes

TGACGATTCCGAAACACGAGCCGCGCGAGGTCTTCGATCGGGC
ACTITCGATCAGTGGTTCGGGGGGGGTTCAGTTCGATGATCTGAC
STCCTGACGCTGCG
AGCAGCGCCCATAGCGCGCCAGCACGTCGCGGGCCCGCGCCAT
SCCGCGTCGTCCTC
CCGTGAAGATGAGCACGAGCGCCGTGACCTCGCGCCGCTCGC
CGGGGGTGCGCTCGTTGGCCCCGTTCGGCTCCTCTTGGAGCACC
SCCTGGATCTCGGC
CTCCTCGTGGAACGGCTCCAGGAAATCGGCGAGGTCGTTCGCC
SCTCGGCCGTCGCG
GAAGCCGAGGAGCGCCTCGTGCAGCCGCCCGGCGTCGGGGAAC
CGGGTTCTTCGCGA
STGCTCACGACGTCGGCGAGCGACCGGGGCACGTCGGGGCGCAC
SAGCGGCGGATACTC

GATGGTCGTGTTCCGCGGGATGAGCTTGAAGCTCACGCCGCCGCCGGTCTC

Biomarker discovery / phenotype prediction

Genotype-Phenotype / Environment Associations

Method overview

Software	Setting	Input	Features	Predictive model	Biomarker detection	Tree inference
TRAITAR	Microbial genomics	Sequences	Gene family presence or absence (GPA)	√	✓	×
Seq2Geno2Pheno	Microbial genomics / transcriptomics	Sequence and gene expression levels	Sequences (SNPs, GPA) and expression levels	√	✓	√
MicroPheno	16S rRNA amplicon data	Sequences	K-mers	√	×	×
DiTaxa	16S rRNA amplicon data	Sequences	Variable length subsequences	✓	✓	×

TRAITAR

Machine learning combined with evolutionary modelling for predicting microbial phenotypes

Key protein families for selected phenotypes

Predicting antimicrobial resistances for *P. aeruginosa*

S. Häussler, HZI

- Bacterial pathogen with multiple AMRs, causing complications e.g. in cystic fibrosis
- 414 clinical isolates
- 4 common antibiotics
- Genome, transcriptome

Seq2Geno2Pheno

Predicting sensitivity / resistance with high recall/precision

Ceftazidime

Ciprofloxacin

Meropenem

Tobramycin

.. From few molecular markers

Model with fewest features within 1 std. dev. to best performing model

markers

Macro F1-score

Meta-omics - Studying microbial communities by sequencing

Studying microbial communities - the basics

- Who is there? Taxonomic profiling
 - by marker gene (rRNA, ITS regions)
 - shotgun metagenome sequencing

(a) Targeted sequencing of 16S rRNA

Source: Liu *et al.* (2011)

OTU clustering

- After sequencing, 16S rRNA data are usually clustered into groups of closely related sequences, referred to as Operational Taxonomic Units (OTUs)
 - Computationally expensive, as needs sequence alignment
 - Taxonomically inconsistent
 - Sequence similarities between OTUs are ignored

DiTaxa

INFECTION RESEARCH

DiTaxa: biomarker detection from 16S rRNA

- Inference of variable length features using Nucleotide-Pair Encoding (NPE)
- Better than OTUs in detecting differential taxa for host disease phenotypes, and for host disease phenotype prediction

Table 2. The results of DiTaxa and the standard pipeline (STDP) in marker detection for the synthetic dataset.

Method	Precision	Recall	F1
DiTaxa	1	1	1
STDP	0.905	0.898	0.901

Microbial markers for periodontal disease

Table 3. The results of DiTaxa and the standard pipeline (STDP) in marker detection in comparison with literature of periodontal disease.

Method	True Positive Count	Recall
DiTaxa	13 out of 29	0.59
STDP	3 out of 29	0.10

Healthy versus new onset RA

Bacteria: Tenericutes: Mollicutes: Acholeplasmatales: Acholeplasmataceae: Acholeplasma: Acholeplasma palmae i

ttcgacttgcatgtcttatgtgcgccgccagtcgtttatcctgagccaggatc

ttactcacccgttcgcaactcatccaagaagagcaagctcctctcttcagcgttctacttgcatgtattagg

ccgccaggagcaagctcccgcgctgccgttcgacttgcatgtgtaaggcatgccgccag cgccaggagcaagctcccgcgctgccgttcgacttgcatgtgtaaggcatgccgccagcgttcaatctgagccaggatc

t cagt t ccagt t g t g c c g t t cat c c t c t cag a c c g c t a c t g t c g

tcaccaactacctaatcagacgcaaacccctcttcaggcgatagcttacaagtagaggccaccctttcttcc

Rheumatoid Arthritis

unique 16S sequences matched by marker

Data from Scher et al., elife 2013

Healthy

tcatgcgacctaaggaacgtattcggtattagcagtcgtttccgtctgttgtccccatcctgaaggcaggttgtttacgtg

Critical Assessment of Metagenome Interpretation

Towards a comprehensive and objective evaluation of computational metagenomics software

Critical Assessment of Metagenome Interpretation—a benchmark of metagenomics software

Alexander Sczyrba^{1,2,48}, Peter Hofmann^{3-5,48}, Peter Belmann^{1,2,4,5,48}, David Koslicki⁶, Stefan Janssen^{4,7,8} Johannes Dröge³⁻⁵, Ivan Gregor³⁻⁵, Stephan Majda^{3,47}, Jessika Fiedler^{3,4}, Eik Dahms³⁻⁵, Andreas Bremges^{1,2,4,5,9}, Adrian Fritz^{4,5}, Ruben Garrido-Oter^{3-5,10,11}, Tue Sparholt Jørgensen¹²⁻¹⁴, Nicole Shapiro¹⁵, Philip D Blood¹⁶, Alexey Gurevich17, Yang Bai 10,47, Dmitrij Turaev18, Matthew Z DeMaere19, Rayan Chikhi 20,21, Niranjan Nagarajan²², Christopher Quince²³, Fernando Meyer^{4,5}, Monika Balvočiūtė²⁴, Lars Hestbjerg Hansen¹², Søren J Sørensen13, Burton K H Chia22, Bertrand Denis22, Jeff L Froula15, Zhong Wang15, Robert Egan15, Dongwan Don Kang15, Jeffrey J Cook25, Charles Deltel26,27, Michael Beckstette28, Claire Lemaitre26,27, Pierre Peterlongo^{26,27}, Guillaume Rizk^{27,29}, Dominique Lavenier^{21,27}, Yu-Wei Wu^{30,31}, Steven W Singer^{30,32}, Chirag Jain³³, Marc Strous³⁴, Heiner Klingenberg³⁵, Peter Meinicke³⁵, Michael D Barton¹⁵, Thomas Lingner³⁶, Hsin-Hung Lin37, Yu-Chieh Liao37, Genivaldo Gueiros Z Silva38, Daniel A Cuevas38, Robert A Edwards58, Surva Saha³⁹, Vitor C Piro^{40,41}, Bernhard Y Renard⁴⁰, Mihai Pop^{42,43}, Hans-Peter Klenk⁴⁴, Markus Göker⁴⁵,

e15, Julia A Vorholt46, Paul Schulze-Lefert10,11, Edward M Rubin15,

ittei18 8 Alice C McHardy3-5,110

Sczyrba et al, 2017 Nat Methods

Alice McHardy

Alex Sczyrba

Thomas Rattei

Short and long reads **CAMI 2 Challenge** Marine/rhizosphere microbial community metagenome reads environment Strain madness Pathogen detection challenge pathogen detection taxonomic profiling metagenome assembly genomic or tax. binning Meyer et al, 2022 Nat Methods

Summary and Outlook

- Personalized infection medicine (e.g. pathogen & AMR analyses)
- Molecular markers (e.g. AMR diagnostics, generic microbial phenotypes, microbiome-related diseases)
 - may indicate functional basis
- Shotgun metaOmics
 - increasing resolution of taxonomic analyses
 - functional markers, genomic context
 - improving sensitivity & turnaround time relative to culture-based analyses

Acknowledgements

- E. Asgari (BIFO / UC Berkeley)
- A. Weimann
- T.-H. Kuo
- F. Meyer
- T.R. Lesker
- P. Münch
- Z.-L. Deng, K. Hu
- A. Fritz
- N. Saffaei, B. Junk

- S. Häussler and lab (HZI)
- M. Mofrad (UC Berkeley)
- S. Szafranski (MHH)
- A. Sczyrba, J. Kalinowksi (U. Bielefeld)

CAMI II Contributors

F. Meyer, A. Fritz, Z.-L. Deng, D. Koslicki, A. Gurevich, G. Robertson, T.-R. Lesker, M. Alser, D. Antipov, F. Beghini, D. Bertrand, J.J. Brito, C.T. Brown, J. Buchmann, A. Buluc, B. Chen, R. Chikhi, P.T.L.C. Clausen, A. Cristian, P.W. Dabrowski, A.E. Darling, R. Egan, E. Eskin, E. Georganas, E. Goltsman, M.A. Gray, L.H. Hansen, S. Hofmeyr, P. Huang, L. Irber, H. Jia, T.S. Jørgensen, S.D. Kieser, T. Klemetsen, A. Kola, M. Kolmogorov, A. Korobeynikov, J. Kwan, N. LaPierre, C. Lemaitre, C. Li, A. Limasset, F. Malcher-Miranda, S. Mangul, V.R. Marcelino, C. Marchet, P. Marijon, D. Meleshko, D.R. Mende, A. Milanese, N. Nagarajan, J. Nissen, S. Nurk, L. Oliker, L. Paoli, P. Peterlongo, V.C. Piro, J.S. Porter, S. Rasmussen, E.R. Rees, K. Reinert, B. Renard, E.M. Robertsen, G.L. Rosen, H.-J. Ruscheweyh, V. Sarwal, N. Segata, E. Seiler, L. Shi, F. Sun, S. Sunagawa, S.J. Sørensen, A. Thomas, C. Tong, M. Trajkovski, J. Tremblay, G. Uritskiy, R. Vicedomini, Zi. Wang, Zhe. Wang, Zho. Wang, A. Warren, N.P. Willassen, K. Yelick, R. You, G. Zeller, Z. Zhao, S. Zhu, J. Zhu, R. Garrido-Oter, P. Gastmeier, S. Hacquard, S. Häußler, A. Khaledi, F. Maechler, F. Mesny, S. Radutoiu, P. Schulze-Lefert, N. Smit, T. Strowig, A. Bremges, A. Sczyrba, A.C. McHardy

>100 contributors from 77 institutions

