Shengqu Cai

shengqu@stanford.edu | +1 (408) 4124395 | https://primecai.github.io |

RESEARCH INTERESTS

Using AI to solve fundamentally ill-posed visual problems, including but not limited to: neural rendering, generative models, scene representation, visual content creation, etc.

EDUCATION

ETH Zürich, Zürich, Switzerland
MSc in Computer Science, Major in Visual Computing
GPA: 5.7/6.0, Major GPA: 6.0/6.0
King's College London, London, United Kingdom
BSc (Hons) in Computer Science, Al Specialization
Average: 90% (GPA: 4.0/4.0, \approx top 1%), graduated with First Honour

F

	werage. 30% (Granding to top 1%), graduated with the fremen			
RESEA	Research Experience			
2022	Visiting Student Researcher at Stanford University , California, USA Master thesis at Stanford Computational Imaging Group. Project: scene extrapolation Supervisor: Prof. Gordon Wetzstein			
2021	Research Student at ETH Zürich CVL & Toyota TRACE, Zürich, Switzerland Project: Unsupervised one-shot novel view synthesis. Paper published at CVPR'2022 [2]. Patent application filed [A]. Supervisor: Dr. Dengxin Dai, Prof. Luc Van Gool			
2019 - 2020	Research student at King's College London , London, United Kingdom Bachelor final thesis, received high distinction(85%). Project: Invariant Information Clustering with Videos Supervisor: Dr. Michael Spratling			

PUBLICATION

- [1] DiffDreamer: Consistent Single-view Perpetual View Generation with Conditional Diffusion Models Shengqu Cai, Eric Ryan Chan, Songyou Peng, Mohamad Shahbazi, Anton Obukhov, Luc Van Gool, and Gordon Wetzstein. Under review. 2022.
- [2] Pix2NeRF: Unsupervised Conditional π -GAN for Single Image to Neural Radiance Fields Translation.

Shengqu Cai, Anton Obukhov, Dengxin Dai, and Luc Van Gool. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2022. Featured: NeRF at CVPR 2022, datagen.tech, metaphysic.ai, etc.

PATENT

[A] System for Unsupervised Single Image to Neural Radiance Fields Translation European patent: EP 22 158 531.8. Application filed in 2022 by Toyota.

TEACHING EXPERIENCE

2019 | Practical Experiences Of Programming, King's College London

INDUSTRIAL EXPERIENCE

2020	Technology Analyst at China National Petroleum Corporation , Shenyang, China
2018 - 2019	Software Engineer at Neusoft , Shenyang, China
2018	Software Engineer at China National Petroleum Corporation , Shenyang, China

PROJECTS

2021	Real Time Photorealistic Neural Rendering in VR at Computer Vision and Learning Group, ETH Zürich, Zürich, Switzerland Description: Deploy per-frame translation module on Oculus Quest 2 using Barracuda and Unity.
2021	Viewpoint Adaptation in a Synthetic Environment at Computer Vision and Geometry group, ETH Zürich , Zürich, Switzerland Description: SLAM module training augmentation with synthetic world model correspondence. Part of the working package available here.
2021	Semi-supervised Semantic Amodal Hand Gesture Segmentation at ETH Zürich, Zürich, Switzerland Description: Occluded hand gesture segmentation with semi-supervised pipeline.
2020	Adapt RCNN for Natural language to SQL Translation at ETH Zürich, Zürich, Switzerland
2018	Ocado Multi-agent Planning at King's College London , London, United Kingdom
2018	Adapt Deep learning to Episodic non-Markov Localization at King's College London, London, United Kingdom

LANGUAGES

ENGLISH: Fluent (IELTS 8.0)
CHINESE: Mothertongue
GERMAN: Basic Knowledge

REFERENCES

Gordon Wetzstein, Associate Professor at Stanford, gordon.wetzstein(at)stanford.edu Dengxin Dai, Senior Researcher at MPI for Informatics, ddai(at)mpi-inf.mpg.de Luc Van Gool, Professor at ETH Zürich, vangool(at)vision.ee.ethz.ch