Comparison of dependency and constituency grammar with syntax-enhanced transformers

Vergleich von Dependenz- und Konstituenzgrammatik bei syntaxangereicherten Transformern

Caren Daniel

Masterarbeit im Rahmen des Studiums Informatik: Intelligente Systeme

14. November 2022

Comparison of dependency and constituency grammar with syntax-enhanced transformers

Comparison of dependency and constituency grammar with syntax-enhanced transformers Vergleich von Dependenz- und Konstituenzgrammatik bei syntaxangereicherten Transformern

> Materarbeit im Rahmen des Studiums Informatik: Intelligence System

> > 14. November 2022

Introduction

Introduction

- NLP systems such as BERT can learn some syntactic information from text data but not all (Luo (2021))
- Idea: Leveraging already available syntactic information by using linguistic syntax graphs
 - ► Dependency grammar style
 - ► Constituency grammar style
- Graphs can be injected in various ways
 - ▶ By modifying BERT to also use some information from the syntax graphs (Bai et al. (2021), Zhang et al. (2020))
 - ▶ New approach: by using Graph Neural Networks (GNNs) in conjunction with BERT (Sachan et al. (2021))

Comparison of dependency and constituency grammar with syntax-enhanced transformers

LIntroduction

-Introduction

Introduction

- NLP systems such as BERT can learn some syntactic informatio from text data but not all (Luo (2021))
- Idea: Leveraging already available syntactic information by usin linguistic syntax graphs
 Dependency grammar style
- Constituency grammar style
 Graphs can be injected in various ways
- By modifying BERT to also use some information from the syntax graphs (Bai et al. (2021), Zhang et al. (2020))
 New approach: by using Graph Neural Networks (GNNs) in conjunction with BERT (Sachus et al. (2021))

- BERT: Machine Learning System für eine Vielzahl von Natural Language Processing-Aufgaben
- Zwei verschiedene Typen von Syntaxgraphen, die im Folgenden noch näher vorgestellt werden
- GNN: relativ neue Entwicklung. Ermöglichen das Extrahieren relevanter Information unter Berücksichtigung der Graphstruktur
- das ist auch womit ich mich in der Arbeit beschäftigt habe

BASICS

- Constituency Grammar
- Dependency Grammar
- BERT
- Graph Neural Networks

Basics

Comparison of dependency and constituency grammar with syntax-enhanced transformers

Basics

BASICS

Constituency Grammar
 Dependency Grammar

Dependency Grammar
 BERT
 Graph Neural Networks

Constituency Grammar

Figure: Constituency tree

Comparison of dependency and constituency grammar with syntax-enhanced transformers

Basics
Constituency Grammar
Constituency Grammar

- Abbildung zeigt Beispiel eines Constituency Tree
- Satz besteht aus einzelnen Konstituenten (auch: Phrasen)
- Konstituente besteht aus ihrem Kopf und weiteren Elementen, die vom Kopf dominiert werden
- Noun Phrase -> Kopf cat dominiert Artikel (DET) the und Adjektiv (JJ) large
- Konstituente kann auch weitere Konstituenten beinhalten, siehe VP

Dependency Grammar

Figure: Dependency tree

Comparison of dependency and constituency grammar with syntax-enhanced transformers

Basics

Dependency Grammar

Dependency Grammar

- Dependency Grammar hat keine Konstituenten
- stattdessen: Dependency Relations zwischen den Wörtern
- bestehend aus Kopf-Wort, abhängigem Wort und ihrer Relation
- Kopf cat und large: amod-Relation, Kopf cat und the: det-Relation
- kompakter als Constituency Grammar da nur Knoten für die Wörter
- Fokus auf grammatikalischen Relationen

Basics

BERT

- BERT: Bidirectional Encoder Representations from Transformers
- Machine-learning model based on transformer architecture
- Transformer is pre-trained on special tasks:
 - Masked Language Modelling: Reconstruction of masked words in a sequence
 - ► Next Sentence Prediction: Prediction whether two sentences follow each other or not
- Can be fine-tuned for a variety of NLP tasks such as NER

Basics

Figure: Transformer architecture overview from Vaswani et al. (2017)

Comparison of dependency and constituency grammar with syntax-enhanced transformers **Basics** BERT 202

∟BERT

- Masked Language Modelling: Rekonstruktion maskierter Wörter in einer Sequenz
- Next Sentence Prediction: Vorhersage, ob zwei Sätze aufeinander folgen oder nicht

Graph Neural Networks

- GNNs are able to process and extract information from graph structures
- Spatial graph convolutional networks: use spatial information in the graph (e.g. neighbourhood relationships)
- Message Passing: aggregate features from all neighbouring nodes into central node
- **Graph Attention Networks** (GAT): selectively aggregate features from neighbours into node by introducing attention weights

Comparison of dependency and constituency grammar with syntax-enhanced transformers

Basics
Graph Neural Networks
Graph Neural Networks

 GNNs are able to process and extract information from graph structures
 Soatial graph convolutional networks: use soatial information

Graph Neural Networks

- the graph (e.g. neighbourhood relationships)

 Message Passing: aggregate features from all neighbouring node
- into central node
- from neighbours into node by introducing attention weights

- Graph Neural Networks können Graphstrukturen verarbeiten und auch die Struktur berücksichtigen, um Information zu extrahieren
- Message Passing: Graphstruktur wird genutzt, um auch Informationen über Nachbarknoten in einem Knoten zu sammeln.
 Dafür werden die Node Features aller Nachbarknoten und des Knotens selbst aggregiert.
- Nachteil: es kann nicht nach Relevanz selektiert werden. Viele Nachbarn können Ergebnis verwässern.
- Graph Attention: Einführung von attention weights, um selektiv Informationen von bestimmten Knoten übernehmen zu können. Dieses Prinzip wird auch in der Arbeit verwendet

Task

- Create a model using BERT coupled with a GNN processing syntax graphs
- Evaluate performance using dependency and constituency-style graphs
- Choose and process datasets for use with BERT and SynGNN

Task

Comparison of dependency and constituency grammar with syntax-enhanced transformers
T-Task

— Task

SK

- Create a model using BERT coupled with a GNN processing syntagraphs
- Choose and process datasets for use with BERT and SynGNN

Evaluation: Named Entity Recognition

Popular preprocessing task

Task

- Locate and classify named entities in a text
- NE tags generated by Flair (Akbik et al. (2019))
- 18 NE tags and O denoting a non-NE word

John W. Smith is turning thirty B-PERSON I-PERSON E-PERSON O O S-CARDINAL

2022-1

John W. Smith is turning thirty
B-PERSON I-PERSON E-PERSON O O S-CARDINAL

Evaluation: Named Entity Recognition

-Evaluation: Named Entity Recognition

- z.B. PERSON, ORG, DATE, EVENT, LANGUAGE, PRODUCT...
- Eigennamenerkennung: weit verbreitete Aufgabe für viele NLP-Systeme
- Flair: Vortrainiertes Modell auf der Basis von BERT zur Named Entity Recognition
- implementiert war auch eine weitere Evaluationsaufgabe, die Experimente konnten aber aufgrund von Zeitmangel nicht mehr durchgeführt werden
- Masked Language Modelling (Wiederherstellen maskierter Wörter, eine der Trainingsaufgaben von BERT)
- Vorteil hier: die Daten sind vorhanden und müssen nicht generiert werden

Research Questions

- Comparison of BERT baseline model and BERT with SynGNN
 - baseline: BERT model trained on only text data

Research Questions

- Comparison of gold-standard and generated syntax graphs
 - ▶ gold-standard: datasets with hand-annotated syntax graphs
 - generated: syntax graphs generated by spaCy and Berkeley Neural Parser
- Comparison of SynGNN with constituency and dependency graphs

202

-Research Questions

Research Questions

- Comparison of BERT baseline model and BERT with SynGNI baseline: BERT model trained on only text data
- Comparison of gold-standard and generated syntax graphs
 gold-standard: datasets with hand-annotated syntax graphs
 generated: syntax graphs generated by spaCy and Berkeley Neura
- Parser
- Companion or Synamic man constituency and dependency gra

MODEL ARCHITECTURE

- Overview
- SynGNN
- Highway Gate
- Deviations from Sachan et al.

Comparison of dependency and constituency grammar with syntax-enhanced transformers -Model Architecture

MODEL ARCHITECTURE

 Overview SynGNN

 Highway Gate . Deviations from Sachan et al.

Model Architecture

Model Architecture - Overview

- Model architecture adapted from Sachan et al. (2021)
- **BERT Model**: produces BERT embeddings as output
- Syntax-GNN: processes syntax graphs with added BERT embeddings
- **Highway Gate**: combines original BERT embeddings with Syntax-GNN output
- Task-Specific Classifier: classifies samples, e.g. by NE tag

Model Architecture

Figure: Model architecture overview -Reproduced from Sachan et al. (2021)

Comparison of dependency and constituency grammar with syntax-enhanced transformers Model Architecture 2022-1 -Overview -Model Architecture - Overview

Model Architecture - Overview

Model architecture adapted from Sachan et al.

- BERT Model: produces BERT embeddines as
- . Syntax-GNN: processes syntax graphs with

SynGNN

Figure: SynGNN layer overview - adapted from Sachan et al. (2021)

Model Architecture

Comparison of dependency and constituency grammar with syntax-enhanced transformers Model Architecture 2022-1 -SvnGNN

-SvnGNN

- SynGNN: Architektur eines Transformer Encoders, bei dem die self-attention layer ausgetauscht wurde durch Graph Attention
- Eingabe: Node Features, Edge Features und Liste d. Kanten
- es folgt eine GATv2Conv Layer von Pytorch Geometric
- Residual Connection von: SynGNN Input und Ausgabe des GAT
- Feed-Forward Sublayer: zwei hintereinandergeschaltete lineare Layer sowie Residual Conn. mit deren Output

SynGNN - GATv2Conv Layer

Figure: Pytorch Geometric GATv2 Conv layer architecture

Model Architecture

Comparison of dependency and constituency grammar with syntax-enhanced transformers

Model Architecture
SynGNN

GATv2 Layer von Pytorch Geometric

-SvnGNN - GATv2Conv Laver

- für jede Kante werden die Node Features der beiden Knoten sowie die Edge Features konkateniert
- danach kommen die gemeinsamen attention weights hinzu indem das Skalarprodukt gebildet wird
- die Ergebnisse laufen durch eine LeakyReLU-Aktivierungsfunktion und softmax
- das ergibt die attention scores (= Gewichte mit denen die Node Features berücksichtigt werden)
- Node Features der Nachbarn werden dann mit diesen attention scores multipliziert und aufsummiert
- über Ergebnisse aller attention heads wird der Durchschnitt gebildet

Highway Gate

- Highway Gate as introduced in the paper Highway Networks by Srivastava et al. (2015)
- Combines the original BERT embeddings v_i with the SynGNN output zi
- Allows the model to focus more on the BERT embeddings or the SynGNN output when useful for the task

$$g_i = \sigma(\mathbf{W_g} v_i + b_g)$$

$$h_i = g_i \odot v_i + (1 - g_i) \odot z_i$$

Model Architecture

2022-

Figure: Model architecture overview -Reproduced from Sachan et al. (2021)

Comparison of dependency and constituency grammar with syntax-enhanced transformers Model Architecture -Highway Gate └─Highway Gate

Highway Gate

Highway Gate as introduced in the paper Combines the original BERT embeddings v.

> $g_i = \sigma(\mathbf{W}_g \mathbf{v}_i + b_g)$ $h_i = g_i \odot v_i + (1 - g_i) \odot z$

Allows the model to focus more on the BERT embeddings or the SunGNN output when useful

- Highway Gate aus Paper Highway Networks
- Erlaubt es dem Modell, BERT embeddings oder SynGNN Output weiterzugeben
- Lineare Layer mit sigmoid-Aktivierungsfunktion und BERT embeddings als Input (=Wert zwischen 0/1 für jedes token)
- Ergebnis bestimmt ob BERT embeddings, SynGNN-Output oder Mischung aus beiden weitergegeben werden

Deviations from Sachan et al.

- Replaced original GAT algorithm with GATv2Conv layer
 - ► Inclusion of edge features (=dependency relations) in the calculations
 - ► Separate learnable weights for node features, neighbour node features and edge features

Model Architecture

- ▶ Introduction of self-loops for each node
- Use of Cross-Entropy loss function (no loss function specified in paper)
- Use of class weights to counteract imbalanced class distribution

Comparison of dependency and constituency grammar with syntax-enhanced transformers

Model Architecture

Deviations from Sachan et al.

Deviations from Sachan et al.

Deviations from Sachan et al.

s Replaced original GAT algorithm with GATv2Conv laye

- Inclusion of edge features (redependency relations) in the cale
 Separate learnable weights for node features, neighbour node
- Introduction of self-loops for each node
 Use of Cross-Entropy loss function (no loss function specified in
- Use of class weights to counteract imbalanced class distributio

RESULTS

- Overview
- Comparison of BERT baseline and SynGNN
- Comparison of Gold-standard and Generated Syntax Graphs
- Constituency vs Dependency SynGNN

Comparison of dependency and constituency grammar with syntax-enhanced transformers \sqsubseteq Results

RESULTS

• Overview

Comparison of BERT baseline and SynGNN
 Comparison of Gold-standard and Generated Syntax Graphs
 Constituency vs Dependency SynGNN

roduction Basics Task Research Questions Model Architecture **Results** Conclusion Refe

Results - Overview

	De	ependen	су	Constituency			
Model	Prec.	Recall	F1	Prec.	Recall	F1	
BERT Cased SynGNN Gold Cased SynGNN Gen. Cased	0.68 0.70 -	0.73 0.87 -	0.70 0.77 -	0.62 0.66 0.66	0.65 0.90 0.89	0.63 0.76 0.76	
BERT Uncased SynGNN Gold Uncased SynGNN Gen. Uncased	0.67 0.63	0.71 0.86 -	0.69 0.72 -	0.60 0.56 0.57	0.59 0.88 0.89	0.60 0.69 0.69	

Table: Overview of NER results for BERT baseline and SynGNN on full datasets

Results

 $\begin{array}{c} \textbf{Comparison of dependency and constituency grammar} \\ \textbf{with syntax-enhanced transformers} \\ & \sqsubseteq \textbf{Results} \\ & & \sqsubseteq \textbf{Overview} \end{array}$

Results - Overview

- Ergebnisse der Experimente auf den kompletten Datensätzen
- Unterteilt in zwei Kategorien: Cased/Uncased d.h. welcher BERT tokenizer benutzt wurde (mit GroSSbuchstaben/Umwandlung in Kleinbuchstaben)
- Precision: Anteil richtig klassifizierter Elemente einer Klasse ggü. allen die als die Klasse eingeordnet wurden inkl. False Positives aus anderen Klassen
- Recall: Anteil Elemente, die richtig klassifiziert wurden ggü. allen Elementen der Klasse
- F1: harmonisches Mittel von Precision und Recall
- Diskrepanz Prec./Recall erklärt sich durch falsche Zuordnung von Nicht-NEs (O) zu NE Tags

Comparison of BERT baseline and SynGNN

- BERT Cased: BERT+SynGNN performs better than baseline model for both types of graphs
- Constituency SynGNN improves more over its baseline model than dependency SynGNN
- BERT Uncased: BERT+SynGNN again perform better than the baseline, but to a lesser degree

	De	ependen	су	Constituency			
Model	Prec.	Recall	F1	Prec.	Recall	F1	
BERT Cased	0.68	0.73		0.62	0.65	0.63	
SynGNN Gold Cased	0.70	0.87		0.66	0.90	0.76	
BERT Uncased	0.67	0.71	0.69	0.60	0.59	0.60	
SynGNN Gold Uncased	0.63	0.86	0.72	0.56	0.88	0.69	

Table: Overview of NER results for BERT baseline and SynGNN on full datasets

Results

Comparison of dependency and constituency grammar with syntax-enhanced transformers

Results 2022-1

 Comparison of BERT baseline and SynGNN -Comparison of BERT baseline and SynGNN Comparison of BERT baseline and SynGNN

- BERT Uncased: BERT+SynGNN again perform better than ti

- Cased: BERT + SynGNN schneidet für beide Typen von Syntaxgraphen besser ab als das Baseline Modell mit nur BERT
- Dependency SynGNN: F1 0.7 auf 0.77 Constituency SynGNN: 0.63 auf 0.76
- Verbesserung beim SynGNN + Constituency Graphs um 13 Punkte, bei Dependency nur 7
- Dabei bleibt Precision ähnlich, Recall erhöht sich von 0.65 auf 0.9. also 90% aller NEs werden richtig zugeordnet
- Uncased: Verbesserung Baseline zu SynGNN nicht mehr so sichtbar (Baseline-Performance bricht ein)
- Dep: F1 0.69 auf 0.72 Const: F1 0.6 auf 0.69

Comparison of Gold-standard and Generated Syntax **Graphs**

- Syntax graphs were generated for constituency graphs only
- Performance of SynGNN with gold and generated trees is almost identical
- Cased: same F1 of 0.76
- Uncased: same F1 of 0.69

	Constituency					
Model	Prec.	Recall	F1			
SynGNN Gold Cased	0.66	0.90	0.76			
SynGNN Gen. Cased	0.66	0.89	0.76			
SynGNN Gold Uncased	0.56	0.88	0.69			
SynGNN Gen. Uncased	0.57	0.89	0.69			

Results

Table: Overview of NER results for SynGNN with gold-standard and generated constituency graphs

Comparison of dependency and constituency grammar with syntax-enhanced transformers Cased: same F1 of 0.76 Results -Comparison of Gold-standard and Generated Syntax 202 Graphs

- Comparison of Gold-standard and Generated Syntax
- Ergebnisse nur für SynGNN mit Constituency Graphen: Syntaxgraphen wurden nur für Constituency Grammar erzeugt, nicht für Dependency
- Ergebnisse für die handerstellten und generierten Graphen sind beim F1 identisch
- Hinweis, dass sich die Graphen durch gute generierte ersetzen lassen

Constituency vs Dependency SynGNN

 Original datasets were imbalanced in size. The comparison was made on 'balanced' datasets with approx. the same number of sentences and NE tags in both sets

	De	ependen	су	Constituency			
Model	Prec.	Recall	F1	Prec.	Recall	F1	
SynGNN Gold Cased Bal.	0.60	0.85	0.70	0.66	0.90	0.76	
SynGNN Gold Uncased Bal.	0.57	0.84	0.68	0.56	0.88	0.69	

Table: Overview of NER results for BERT baseline and SynGNN on balanced datasets

Comparison of dependency and constituency grammar with syntax-enhanced transformers

Results
Constituency vs Dependency SynGNN
Constituency vs Dependency SynGNN

- Vergleich von SynGNN mit Constituency Graphen und Dependency Graphen
- Dafür mussten die Originaldatensätze angepasst werden
- stimmen nicht in der Anzahl Sätzen bzw. NE tags überein
- 'balanced' Datensätze: wurden so ausgewählt, dass diese ungefähr übereinstimmen
- Cased: SynGNN mit Konstituenzgraphen schneidet besser ab. Dep F1 0.7 - Const F1 0.76
- Uncased: Unterschied ist hier nur noch marginal. Dep F1 0.68 -Const F1 0.69

Comparison with Selected NE Tags

- ullet All NE tags where F1 value > 0.5 and the difference in F1 of dep. and const. results is more than 10 points
- Using constituency graphs, the scores are significantly higher

	Dependency					Constituency			
NE type	Prec.	Recall	F1	#	NE type	Prec.	Recall	F1	#
CARDINAL	0.60	0.85	0.70	301	CARDINAL	0.74	0.93	0.82	493
FAC	0.26	0.65	0.37	69	FAC	0.45	0.68	0.54	66
LANGUAGE	0.53	0.60	0.56	47	LANGUAGE	0.81	0.93	0.87	14
ORG	0.51	0.80	0.62	412	ORG	0.63	0.88	0.74	468
QUANTITY	0.28	0.61	0.39	31	QUANTITY	0.41	0.81	0.55	101

Results

Table: Selected NER results for SynGNN gold with cased BERT for balanced dependency and constituency dataset.

Comparison of dependency and constituency grammar with syntax-enhanced transformers

Results

Constituency vs Dependency SynGNN

-Comparison with Selected NE Tags

Comparison with Selected NE Tags

 All NE tags where F1 value > 0.5 and the difference in F1 of dep. and const. results is more than 10 points
 Using constituency graphs, the scores are significantly higher

		Depend	lency			Constituency			
E type	Prec.	Recall	F1	2	NE type	Prec.	Recall	F1	2
ARDINAL	0.60	0.85	0.70	301	CARDINAL	0.74	0.93	0.82	493
AC	0.25	0.65	0.37	69	FAC	0.45	0.68	0.54	00
ANGUAGE	0.53	0.60	0.55	47	LANGUAGE	0.81	0.93	0.87	14
RG	0.51	0.80	0.62	412	ORG	0.63	0.88	0.74	461
UANTITY	0.28	0.61	0.39	31	QUANTITY	0.41	0.81	0.55	101

Table: Selected NER results for SynGNN gold with cased BERT for balanced dependency and constituency dataset.

NE Tag CARDINAL: one of Galois' friends

- explicitly modelled as CARDINAL (CD) in constituency tree
- modelled as head of preposition (prep) in the dependency tree

Figure: Syntax graphs for NE tag CARDINAL

Results

Comparison of dependency and constituency grammar with syntax-enhanced transformers

Results
Constituency vs Dependency SynGNN

─NE Tag CARDINAL: one of Galois' friends

F1 Dependency Grammar: 0.7
 F1 Constituency Grammar: 0.82
 Verbesserung in Precision und Recall

- Recall bei Constituency Gr. sehr hoch mit 0.93 aller CARDINALs richtig klassifiziert
- nicht überraschend, da one im constituency tree als CARDINAL markiert ist, was dem Modell bei der Bestimmung helfen dürfte
- im Dependency tree ist für *one* nur die grammatikalische Funktion als Präposition modelliert, die Eigenschaft als Kardinalzahl fällt weg

NE Tag FAC: the meeting at Johnson Space Center

(a) Constituency tree

(b) Dependency tree

Figure: Syntax graphs for NE tag FAC

Comparison of dependency and constituency grammar with syntax-enhanced transformers

Results
Constituency vs Dependency SynGNN

NE Tag FAC: the meeting at Johnson Space

- F1 Dependency: 0.37 F1 Constituency: 0.54
- Recall ist fast gleich (0.65 -> 0.68) nur Precision verbessert sich von 0.26 zu 0.45
- d.h. die beiden Syntaxtypen werden ungefähr dieselbe Anzahl an FAC-Entitäten korrekt klassifiziert
- aber: das SynGNN mit den Dependency Graphen klassifiziert mehr andere NEs fälschlich als Gebäudenamen
- die FAC ist im Constituency tree als NP-Knoten modelliert, der drei NNP-Knoten dominiert (=Proper Noun/Eigenname)
- im Dependency Tree: *Center* ist Kopf zweier compound-Knoten. Compound wird nur für zusammengesetzte Nomen verwendet, weist also auf die Wortart hin. Daher Recall ähnlich
- Unterschied in der Precision: die Informationen im Dep. Tree sind nicht spezifisch genug und es muss noch eine andere Konstruktion mit ähnlichem Syntaxbaum-Aufbau geben, die ebenfalls als FAC klassifiziert wird

NE Tag LANGUAGE: English is a popular language

Figure: Syntax graphs for NE tag LANGUAGE

Comparison of dependency and constituency grammar with syntax-enhanced transformers

Results
Constituency vs Dependency SynGNN
NE Tag LANGUAGE: English is a popular

- grösste Abweichung mit F1 0.56 zu 0.87 beim SynGNN mit Constituency Graphen
- Im Constituency Tree: modelliert als NNP (=Eigenname)
- im Dependency Tree: wieder Fokus auf gramm. Funktion mit nsubj (= Subjekt von is)
- sehr häufig und nicht spezifisch genug, was die schlechtere Performance erklären könnte
- auch: mehr LANGUAGE Entitäten zu klassifizieren: 47 bei Dep., 14 bei Const.

Conclusion

- In all experiments, the SynGNN performs consistently better than BERT only
- SynGNN with constituency graphs seem to perform better than with dependency graphs
- For constituency graphs, performance of gold and generated graphs is similar
- Sachan et al. (2021): No performance gain over BERT with dependency graphs and NER task

Comparison of dependency and constituency grammar with syntax-enhanced transformers

—Conclusion

└─Conclusion

202

Conclusion

In all experiments, the SynGNN performs consistently better than

Conclusion

- SynGNN with constituency graphs seem to perform better than widependency graphs
- For constituency graphs, performance of gold and generated graphs
 - dependency graphs and NER task

- In allen Experimenten schneidet das SynGNN Modell besser ab als das Baseline Modell nur mit BERT
- Constituency Graphen scheinen für NER besser geeignet zu sein als Dependency
- Für Constituency Graphen schneiden generierte und gold-standard Graphen ähnlich ab
- Ergebnis weicht ab von dem, das Sachan et al. mit NER erreichen.
 Sie stellten keine signifikante Verbesserung ggü. BERT fest mit Dependency Graphen
- Gründe: Fehlen von relevanten Infos, da sie die Kanten-Features (=Relationen) nicht berücksichtigen
- GröSSerer Datensatz bei Sachan et. al.: ggf. kann BERT so alle relevanten Informationen selbst lernen. Kleine Datensätze profitieren ggf. von Syntaxgraphen

Future Work

- Evaluate performance with generated dependency graphs
- Different evaluation tasks (Masked Language Modeling, Semantic Role Labeling, Relation Extraction)
- Development of model with automatic generation of syntax graphs for any text

Comparison of dependency and constituency grammar with syntax-enhanced transformers Conclusion

Future Work

 Evaluate performance with generated dependency graphs Different evaluation tasks (Masked Language Modeling, Semantic Role Labeling, Relation Extraction)

· Development of model with automatic generation of syntax graphs for

-Future Work

Thank You

- 1 Introduction
- 2 Basics
- 3 Task
- 4 Research Questions
- **5** Model Architecture
- 6 Results
- Conclusion

Comparison of dependency and constituency grammar

with syntax-enhanced transformers

Conclusion

Thank You

Thank You

Thank You

Conclusion

Thank You

Thank You

Thank You

ons Model Architecture Results **Conclusion** References

References I

- A. Akbik, T. Bergmann, D. Blythe, K. Rasul, S. Schweter, and R. Vollgraf. FLAIR: An easy-to-use framework for state-of-the-art NLP. In *NAACL* 2019, 2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pages 54–59, 2019.
- J. Bai, Y. Wang, Y. Chen, Y. Yang, J. Bai, J. Yu, and Y. Tong. Syntax-bert: Improving pre-trained transformers with syntax trees. CoRR, abs/2103.04350, 2021. URL https://arxiv.org/abs/2103.04350.
- Z. Luo. Have attention heads in BERT learned constituency grammar? CoRR, abs/2102.07926, 2021. URL https://arxiv.org/abs/2102.07926.

Comparison of dependency and constituency grammar with syntax-enhanced transformers

Conclusion

References

202

References

References I

- A. Abbik, T. Bergmann, D. Blythe, K. Rasul, S. Schwetze, and R. Vollgragen, F. FLAIR. An assyt-to-sis framework for state-of-th-sart NLP. In NICCL. 2012. 2019. Annual Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pages 54–59, 2019.
- J. Bai, Y. Wang, Y. Chen, Y. Yang, J. Bai, J. Yu, and Y. Tong, Syntax-bert: Improving pre-trained transformers with syntax trees. CoRR, abs/2103.04350, 2021. URL https://arxiv.org/abs/2103.04350.
- Z. Luo. Have attention heads in BERT learned constituency grammar? CoRR, abs/2102.07926, 2021. URL https://arxiv.org/abs/2102.07926.

References II

- D. Sachan, Y. Zhang, P. Qi, and W. L. Hamilton. Do syntax trees help pre-trained transformers extract information? In *Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume*, pages 2647–2661, Online, April 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.228. URL https://aclanthology.org/2021.eacl-main.228.
- R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway networks. *CoRR*, abs/1505.00387, 2015. URL http://arxiv.org/abs/1505.00387.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need. *CoRR*, abs/1706.03762, 2017. URL http://arxiv.org/abs/1706.03762.
- Z. Zhang, Y., J. Zhou, S. Duan, H. Zhao, and R. Wang. Sg-net: Syntax guided transformer for language representation. *CoRR*, abs/2012.13915, 2020. URL https://arxiv.org/abs/2012.13915.

Comparison of dependency and constituency grammar with syntax-enhanced transformers

Conclusion

-References

References

References II

- D. Sachan, Y. Zhang, P. Qi, and W. L. Hamilton. Do syntax trees help per-trained transformers extract information? In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 2647–2661, Online, April 2021. Association for Computational Linguistics. doi: 10.1863/31/12/21.end-tunia.25. URL
- https://aclanthology.org/2021.eacl-main.228.

 R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway networks. CoRR also/1505.00387, 2015. URL https://arxiv.org/abs/1505.00387.
- N. Nordazivi, N. Orin, and J. Scimmonus virginary lesionetics. Users, 8ab;1955:03037. 2015. URL http://www.pr/abs/1955.03397.
 A. Vasnani, N. Shazeer, N. Parmar, J. Uskoreit, L. Jones, A. N. Gomez, L. Kaiser, and P. Folososkin, Attention is all you need. Cybrack Sci. 2015. URL http://arxiv.org/abs/1706.03762, 2017. URL http://arxiv.org/abs/1706.03762.
 Z. Zhang, Y. J. Zhou, S. Duan, H. Zhou, and R. Winney, Sperit: Syntax guided transformer for language representation. CoRR, abs/2012.13915, 2020. URL https://arxiv.org/abs/2012.13915.