国家精品课程,国家精品资源共享课

信号与系统

Signal and Systems

西安电子科技大学 Xidian University, Xi'an China

第三章 离散系统的时域分析

3. 1差分方程的建立及经典解法	z3.1 离散系统的解析描述-建立差分方程	
	z3.2 差分方程的模拟框图	
	z3.3 差分方程的经典解法	
	z3.4 零输入响应的定义和求解	
	z3.5 零状态响应的定义和求解	
	z3.6 应用案例: 斐波那契(Fibonacci)数列问题	
	z3.7 应用案例: 空运控制系统	
	z3.8 应用案例: RC取样输入和输出关系	
	z3.9 Matlab求解离散系统的零状态响应	
3. 2基本信号与基本响应	z3.10 离散信号表示	
	z3.11 单位脉冲序列	
	z3.12 单位阶跃序列	
	z3.13 单位脉冲响应的定义和求解	
	z3.14 单位阶跃响应的定义和求解	
	z3.15 单位阶跃响应与单位脉冲响应之间的关系	
	z3.16 Matlab求解单位脉冲响应	

第三章 离散系统的时域分析

3. 3卷积和	z3.17 序列的时域分解
	z3.18 卷积公式
	z3.19 卷积和的图解法
	z3.20 卷积和的不进位乘法运算
	z3.21 卷积和的性质
	z3.22 卷积和的Matlab求解
3. 4离散系统的差分算子描述	z3.23 差分算子E的定义
	z3.24 离散系统的差分算子方程
	z3.25 传输算子H(E)
	z3.26 算子法求离散系统的单位脉冲响应

注:学习方法的特点: 类比

离散系统的解析描述--建立差分方程

主要内容:

- 1. 差分的定义
- 2. 差分方程的定义

基本要求:

- 1. 掌握一阶后向差分的定义
- 2. 掌握差分方程的一般形式

Z3.1 离散系统的解析描述--建立差分方程

1. 差分的定义

移位序列: 设有序列f(k),则…,f(k+2),f(k+1),f(k-1),f(k-2),… 等称为f(k)的移位序列。

差分运算:

$$\frac{\Delta f(k)}{\Delta k} = \frac{f(k+1) - f(k)}{(k+1) - k} \qquad \frac{\nabla f(k)}{\nabla k} = \frac{f(k) - f(k-1)}{k - (k-1)}$$

- 一阶前向差分定义: $\Delta f(k) = f(k+1) f(k)$
- 一阶后向差分定义: $\nabla f(k) = f(k) f(k-1)$ 我们主要用后向差分,简称为差分。

差分的线性性质:

$$\nabla [af_1(k) + bf_2(k)] = a\nabla f_1(k) + b\nabla f_2(k)$$

二阶差分定义:

$$\nabla^{2} f(k) = \nabla [\nabla f(k)] = \nabla [f(k) - f(k-1)] = \nabla f(k) - \nabla f(k-1)$$

$$= f(k) - f(k-1) - [f(k-1) - f(k-2)]$$

$$= f(k) - 2f(k-1) + f(k-2)$$

m阶差分:

$$\nabla^{m} f(k) = f(k) + b_{1} f(k-1) + ... + b_{m} f(k-m)$$

2. 差分方程

例1 某人每月初在银行存入一定数量的款,月息为 β 元/月,列出求第k个月初存折上的款数的差分方程。

解:设第k个月初的款数为y(k),这个月初的存款为f(k),上个月初的款数为y(k-1),其利息为 $\beta y(k-1)$,则

$$y(k) = y(k-1) + \beta y(k-1) + f(k)$$

即

$$y(k)-(1+\beta)y(k-1) = f(k)$$

若设开始存款月为k=0,则有y(0)=f(0)。

差分方程: 由未知输出序列项与输入序列项构成的 方程。 差分方程的一般形式:

$$y(k) + a_{n-1}y(k-1) + ... + a_0y(k-n) = b_mf(k) + ... + b_0f(k-m)$$

方程的阶数:未知变量最高序号与最低序号的差。

由n阶差分方程描述的系统称为n阶系统。

描述LTI离散系统的是线性常系数差分方程。

差分方程的模拟框图

1

主要内容:

- 1. 基本部件
- 2. 由框图建立差分方程

基本要求:

掌握框图和差分方程之间的转换方法

Z3.2 差分方程的模拟框图

1.基本部件单元

数乘器

加法器

迟延单元(移位器)

2. 由框图建立差分方程

例 已知框图,写出系统的差分方程。

解: 设辅助变量x(k)如图 x(k)=f(k)-2x(k-1)-3x(k-2)

即:

$$x(k)+2x(k-1)+3x(k-2)=f(k)$$

右端加法器的方程为: y(k)=4x(k-1)+5x(k-2)

利用LTI特性,消去辅助变量x(k),得:

(how?)

y(k)+2y(k-1)+3y(k-2)=4f(k-1)+5f(k-2)

差分方程的经典解法

主要内容:

- 1. 递推迭代
- 2. 经典法

基本要求:

- 1. 了解递推迭代法
- 2. 掌握经典法的齐次解和特解的求解方法

Z3.3 差分方程的经典解法

1.递推迭代

差分方程本质上是递推的代数方程,若已知初始条件和激励,利用迭代法可求得其数值解。

例1 若描述某系统的差分方程为

$$y(k)+3y(k-1)+2y(k-2)=f(k)$$

已知y(0)=0, y(1)=2, 激励 $f(k)=2^k\varepsilon(k)$, 求y(k)。

#:
$$y(k) = -3y(k-1)-2y(k-2)+f(k)$$

$$y(2) = -3y(1)-2y(0)+f(2) = -2$$

$$y(3) = -3y(2)-2y(1)+f(3)=10$$

注: 迭代法一般不易得到解析形式的(闭合)解。

2.经典法

$$y(k)+a_{n-1}y(k-1)+...+a_0y(k-n)=b_mf(k)+...+b_0f(k-m)$$

与连续系统的微分方程经典解类似,差分方程的解由齐次解 $y_h(k)$ 和特解 $y_p(k)$ 两部分组成,即 (类比) $y(k) = y_h(k) + y_p(k)$

齐次解是对应齐次差分方程的解:

$$y(k)+a_{n-1}y(k-1)+...+a_0y(k-n)=0$$

特征根为 $1+a_{n-1}\lambda^{-1}+\ldots+a_0\lambda^{-n}=0$ 的根 $\lambda_i(i=1, 2, \ldots)$

n), 由特征根可以设定齐次解的函数形式。

特解的函数形式与激励的函数形式有关。

3.1 差分方程的建立及经典解法

3.齐次解的常用函数形式(p.74)

表3-1 不同特征根所对应的齐次解

特征根ル	齐次解y _h (k)	
单实根	$C\lambda^k$	
2重实根	$(C_1k+C_0)\lambda^k$	
一对共轭复根	$\rho^{k}[C\cos(\beta k) + D\sin(\beta k)] 或 A \rho^{k}\cos(\beta k - \theta)$	
$\lambda_{1,2} = a \pm jb = \rho e^{\pm j\beta}$	其中 $Ae^{j\theta} = C + jD$	

4.特解的常用函数形式(p.74)

表3-2 不同激励所对应的特解

激励f(k)	特解 $y_p(k)$	
k^m	$P_{m}k^{m} + P_{m-1}k^{m-1} + \dots + P_{1}k + P_{0}$	所有的特征根均不等于1;
	$k(P_1k+P_0)$	有一个特征根等于1;
	Pa^k	a不等于特征根;
a^k	$(P_1k + P_0)a^k$	a等于特征单根;
$\cos(\beta k)$ 或 $\sin(\beta k)$	$P\cos(\beta k) + Q\sin(\beta k)$	所有的特征根均不等于 $e^{\pm ieta}$
	或 $A\cos(\beta k - \theta)$,其中 $Ae^{j\theta}$ =P+ jQ	

3.1 差分方程的建立及经典解法

例2 若某系统的差分方程为

$$y(k)+4y(k-1)+4y(k-2)=f(k)$$

已知y(0)=0, y(1)=-1; $f(k)=2^k$, $k\geq 0$ 。求方程的全解。

解:特征根: $\lambda_1 = \lambda_2 = -2$ (how?)

设<u>齐次解</u>: $y_h(k) = (C_1 k + C_2) (-2)^k$

设<u>特解</u>为: $y_n(k)=P(2)^k$, $k\geq 0$, 代入得: P=1/4

故<u>全解</u>为: $y(k) = y_h + y_p = (C_1 k + C_2) (-2)^k + 2^{k-2}, k \ge 0$

代入y(0), y(1), 解得: $C_1=1$, $C_2=-1/4$

说明: 差分方程的齐次解也称为系统的自由响应,特解也称为强迫响应。本例中由于 $|\lambda|>1$,故自由响应随k的增大而增大。

例3 某人向银行贷款M=10万元,月利率 $\beta=1%$,他定期于每月初还款数为f(k),尚未还清的款数为y(k),列出y(k)的方程。如果他从贷款后第一个月(可设为k=0)还款N,则有 $f(k)=N\varepsilon(k)$ 万元和y(-1)=M=10万元。

- (1) 如每月还款*№*0.5万元,求*y(k)*。
- (2) 他还清贷款需要几个月?
- (3) 如果他想在10个月内还清贷款,求每月还款数N。

解: (1) 列出y(k)的差分方程

$$y(k) = y(k-1)(1+\beta) - f(k)$$

整理得:

$$y(k) - (1+\beta)y(k-1) = -f(k)$$

$$y(k) - (1+\beta)y(k-1) = -f(k) = -N\varepsilon(k)$$

初始条件: y(-1) = 10

迭代得:
$$y(0) = y(-1)(1+\beta) - N = 10.1 - N$$

齐次解:
$$y_h(k) = C(1+\beta)^k \varepsilon(k)$$

特解:
$$y_p(k) = P$$

特解代入得:
$$P = \frac{N}{\beta} = 100N = 50$$

全解:

$$y(k) = y_h(k) + y_p(k) = C(1+\beta)^k + N/\beta$$

代入初始值: $y(0) = 10.1 - N = C + N/\beta$

3.1 差分方程的建立及经典解法

解得: $C = 10.1 - N - N / \beta = -40.4$

所以: $y(k) = -40.4(1+0.01)^k + 50$,

 $k \ge 0$

(2)还清贷款需要满足y(k) ≤0,即:

$$y(k) = -40.4(1+0.01)^k + 50 \le 0$$

解得:

$$k \ge \frac{\lg \frac{50}{40.4}}{\lg 1.01} \approx 21.43$$

k取整数,故k=22。

k从0开始计算,所以还清贷款需要23个月。

(3)如果想10个月还清贷款,需要满足y(9) ≤ 0。

$$y(k) = y_h(k) + y_p(k) = C(1+\beta)^k + P = [10.1 - N - \frac{N}{\beta}](1+\beta)^k + \frac{N}{\beta}$$

$$y(9) = [10.1 - N - \frac{N}{\beta}](1 + \beta)^9 + \frac{N}{\beta} \le 0$$

$$[10.1 - 101N](1 + \beta)^9 + 100N \le 0$$

$$[101(1+0.01)^9 - 100]N \ge 10.1(1+0.01)^9$$

$$N \ge \frac{10.1(1+0.01)^9}{101(1+0.01)^9 - 100} \approx 1.06(万元)$$

零输入响应的定义和求解

主要内容:

- 1. 零输入响应的定义
- 2. 零输入响应的求解步骤

基本要求:

- 1. 掌握零输入响应的初始值
- 2. 掌握零输入响应的求解方法

Z3.4 零输入响应的定义和求解

1.零输入响应的定义

零输入响应:离散系统的激励为零,仅由系统的初始状态引起的响应,用 $y_{ij}(k)$ 表示。

$$y_{zi}(k) + a_{n-1}y_{zi}(k-1) + \dots + a_0y_{zi}(k-n) = 0$$

2.初始值的确定

用y(-1), y(-2), ..., y(-n) 描述n阶系统的初始状态。

$$y(-l) = y_{zi}(-l) + y_{zs}(-l) = 0$$

$$y_{\tau i}(-l)=y(-l), l=0, 1, 2, ..., n-1$$

3.求解步骤

- (1)求特征方程的特征根;
- (2)设定齐次解;
- (3)直接代入初始状态 $y_{i}(-l)$, l=0,1,...n-1, 求待定系数。

思考:

为何无需迭代求解初始值 $y_{zi}(j)$, j=0, 1,

2, ... *n*-1?

零状态响应的定义和求解

主要内容:

- 1. 零状态响应的定义
- 2. 零状态响应的求解

基本要求:

掌握零状态响应的求解方法

Z3.5 零状态响应的定义和求解

1.零状态响应的定义

零状态响应:系统的初始状态 $y_{zs}(-l)=0$, l=1, 2, ... n, 为零,仅由激励 f(k)引起的响应,用 $y_{zs}(k)$ 表示。

2.初始值的确定

由迭代法求出初始值 $y_{zs}(j)$, j=0,1,...n-1

3.求解步骤

- (1)设定齐次解;
- (2)设定特解,代入方程求解;
- (3)代入初始值,求待定系数。

例4 求如下离散系统的零输入响应和零状态响应。

$$y(k) + 3y(k-1) + 2y(k-2) = f(k),$$

 $f(k) = \varepsilon(k), y(-1) = 1, y(-2) = 0$

解: (1)求零输入响应:

零输入响应满足方程:

$$y_{zi}(k) + 3y_{zi}(k-1) + 2y_{zi}(k-2) = 0$$

 $y_{zi}(-1) = y(-1) = 1, y_{zi}(-2) = y(-2) = 0$

方程特征根为:

$$\lambda_{1} = -1, \lambda_{2} = -2$$

系统的零输入响应只有齐次解,为:

$$y_{zi}(k) = C_1(-1)^k + C_2(-2)^k, \quad k \ge 0$$

将初始状态直接代入得:

$$y_{zi}(-1) = 1$$

$$y_{zi}(-2) = 0$$

解得:

$$C_1 = 1, C_2 = -4$$

系统的零输入响应为:

$$y_{zi}(k) = [(-1)^k - 4(-2)^k], k \ge 0$$

(2)求零状态响应:

$$y_{zs}(k) + 3y_{zs}(k-1) + 2y_{zs}(k-2) = f(k)$$
$$y_{zs}(-1) = y_{zs}(-2) = 0$$

迭代求初始值(必须):

$$y_{zs}(0) = f(0) - 3y_{zs}(-1) - 2y_{zs}(-2) = 1$$

 $y_{zs}(1) = f(1) - 3y_{zs}(0) - 2y_{zs}(-1) = -2$

特征根为-1,-2,故齐次解为:

$$y_{zsh}(k) = C_1(-1)^k + C_2(-2)^k$$

特解: $y_{zsp}(k) = P$ 满足: 6P = 1, 得P = 1/6

零状态响应: $y_{zs}(k) = C_1(-1)^k + C_2(-2)^k + 1/6$

代入初始值:

$$y_{zs}(0) = C_1 + C_2 + 1/6 = 1$$

 $y_{zs}(1) = -C_1 - 2C_2 + 1/6 = -2$

解得:

$$C_1 = -\frac{1}{2}, C_2 = \frac{4}{3}$$

于是系统的零状态响应为:

$$y_{zs}(k) = \left[-\frac{1}{2}(-1)^k + \frac{4}{3}(-2)^k + \frac{1}{6}\right]\varepsilon(k)$$

(3)系统全响应为:

$$y(k) = y_{zi}(k) + y_{zs}(k) = \left[\frac{1}{2}(-1)^k - \frac{8}{3}(-2)^k + \frac{1}{6}\right], \qquad k \ge 0$$
暂态响应 稳态响应

斐波那契(Fibonacci)数列问题

1

主要内容:

斐波那契数列的差分方程

基本要求:

了解斐波那契数列问题

Z3.6 斐波那契(Fibonacci)数列问题

假设每对大兔子每个月生一对小兔子,而每对小兔子一个月后长成大兔子,而且不会死亡。在最初一个月内有一对大兔子,问第n个月时一共有几对兔子。

解:每一个月中兔子的对数就构成了一个离散的时间信号。列出描述该问题的差分方程。

设y(k)为第k个月兔子对的数量。

第k个月兔子无论大小,在第k+1个月都会成为大兔子,从而在第k+2个月中生出y(k)个小兔子;

因为假设兔子不会死亡,第k+1月的y(k+1)对兔子在第 k+2月中依然存在,使第k+2月中大兔子的个数为 y(k+1);

而第k+2月中兔子的总个数y(k+2)等于大兔子对数 y(k+1)与小兔子对的数量y(k)之和;

$$y(k+2)=y(k+1)+y(k)$$

这就是斐波那契数列问题的差分方程,即:

$$y(k+2)-y(k+1)-y(k)=0$$

简单空运控制系统

1

主要内容:

简单空运控制系统的差分方程

基本要求:

了解简单空运控制系统的模型

Z3.7 简单空运控制系统

一个空运控制系统,它用一台计算机每隔一秒钟计算一次某飞机应有的高度x(k),另外用一雷达同时对此飞机实测一次高度y(k),把应有高度x(k)与一秒钟前的实测高度y(k-1)相比较得一差值,飞机的高度将根据此差值为正或为负来改变。试建立该问题的差分方程。

解: 从第k-1秒到第 k秒这1秒钟内飞机升高为

$$K[x(k)-y(k-1)] = y(k)-y(k-1)$$

整理得:

$$y(k) + (K-1)y(k-1) = Kx(k)$$

RC取样输入和输出关系

1

主要内容:

RC取样输入和输出的关系

基本要求:

了解RC取样输入和输出的差分方程的建立方法

Z3.8 RC取样输入和输出关系

一个RC电路如左图所示,输入端加取样电压信号e(t),如右图所示。试写出此系统每隔时间T输出电压u(k)与输入信号间关系的差分方程。

解:取样信号e(t)表示为如下冲激序列之和

$$e(t) = \sum_{k=0}^{\infty} \tau e(kT) \delta(t - kT)$$

$$R \cdot Cu'(t) + u(t) = e(t)$$

$$u'(t) + 1/RC \cdot u(t) = 1/RC \cdot e(t)$$

现在考察该电路在 $t \geq kT$ 时的输出响应。当t由小于 kT 趋于kT 时,冲激尚未施加,设输出电压为u(k)。

当t>kT,零输入分量:

$$u_{zi}(t) = u(k)e^{\frac{-kT}{RC}}, t > kT$$

电路的冲激响应为:

$$h(t) = \frac{1}{RC} e^{\frac{-t}{RC}} \varepsilon(t)$$

可得: 当t=kT第k个冲激 $\tau e(kT)\delta(t-kT)$ 加于电路后,即 t>kT时, 电容电压的零状态分量为

$$u_{zs}(t) = \tau e(kT)\delta(t - kT) * h(t) = \frac{\tau e(kT)}{RC}e^{\frac{-(t-kT)}{RC}}, t > kT$$

于是,t>kT 时总输出电压为

$$u(t) = u_{zi}(t) + u_{zs}(t) = \left[u(k) + \frac{\tau e(kT)}{RC} \right] e^{-\frac{t-kT}{RC}}, t > kT$$

当 t=(k+1)T 时,上式等于

$$u(k+1) = \left[u(k) + \frac{\tau e(kT)}{RC} \right] e^{-\frac{T}{RC}}$$

经整理,并将e(kT) 记为一般形式e(k),即得

$$u(k+1) - e^{-\frac{T}{RC}}u(k) = \frac{\tau e^{-\frac{T}{RC}}}{RC}e(k)$$

上式即为描述输出离散电压与输入取样电压间关系的差分方程。

Matlab求解离散系统的零状态响应

主要内容:

Matlab求解离散系统响应的函数

基本要求:

了解Matlab求解离散系统零状态响应的函数调用方法

Z3.9 Matlab求解离散系统的零状态响应

在零状态时,MATLAB工具箱提供了一个filter函数, 计算由差分方程描述的系统响应,其调用格式为

y=filter(b,a,f)

其中 $b=[b_0,b_1,b_2,...,b_m]$, $a=[a_0,a_1,a_2,...,a_n]$ 分别是差分方程左右的系数向量,f表示输入序列,y表示系统的零状态响应。注意输出和输入序列的长度相同。

例 输入信号f(k)=s(k)+d(k),其中 $s(k)=(2k)0.9^k$,d(k)是随机噪声信号。求以下系统的零状态响应(均值滤波结果),取M=5 (滤波器窗长)。 $y(k)=\frac{1}{M}\sum_{k=0}^{M-1}f(k-n)$

解:

R=51; d=rand(1,R)-0.5;k=0:R-1; $s=2*k.*(0.9.^k);$ f=s+d; figure(1); stem(k,f,'.'); M=5;b=ones(M,1)/M;a=1;y=filter(b,a,f); figure(2); stem(k,y,'.');

离散信号表示

主要内容:

- 1. 图形表示
- 2. 解析表示和集合表示

基本要求:

- 1. 了解解析表示方法
- 2. 了解集合表示方法

Z3.10 离散信号表示

 $(t_k - t_{k-1})$ 为采样间隔,在图a中为变数;在图b,c中为常数。

2.解析表示

$$\varepsilon(k) = \begin{cases} 1 & k \ge 0 \\ 0 & k < 0 \end{cases}$$

$$f(k) = \begin{cases} e^{-k}, k \ge -1 \\ 0, \sharp \mathfrak{R} \end{cases}$$

$$f(k) = e^{-k} \varepsilon(k+1)$$

3.集合表示

$$\{\cdots,0,1,2,3,4,0,\cdots\}$$

单位脉冲序列

1

主要内容:

- 1.单位脉冲序列的定义和运算
- 2.单位脉冲序列的性质

基本要求:

- 1. 掌握单位脉冲序列的定义和运算规则
- 2. 掌握单位脉冲序列的取样性质

Z3.11 单位脉冲序列

1.单位脉冲序列(单位样值序列/单位取样序列)

$$\mathcal{S}(k) = \begin{cases} 1 & k = 0 \\ 0 & k \neq 0 \end{cases}$$

位移单位脉冲序列:

$$\mathcal{S}(k-k_0) = \begin{cases} 1 & k=k_0 \\ 0 & k \neq k_0 \end{cases}$$

2.运算

加:

$$\delta(k) + 2\delta(k) = 3\delta(k)$$

乘:

$$\delta(k) \cdot \delta(k) = \delta(k)$$

延时:

$$\delta(k-1) + \delta(k-2)$$

$$\delta(k-1) \cdot \delta(k-2) = 0$$

3.取样性质

$$f(k)\delta(k) = f(0)\delta(k)$$

$$f(k)\delta(k - k_0) = f(k_0)\delta(k - k_0)$$

$$\sum_{k=-\infty}^{\infty} \delta(k) = 1$$

$$\sum_{k=-\infty}^{\infty} f(k)\delta(k) = f(0)$$

$$\sum_{k=-\infty}^{\infty} f(k)\delta(k - k_0) = f(k_0)$$

4.偶函数 $\delta(k) = \delta(-k)$

单位阶跃序列

主要内容:

- 1. 单位阶跃序列的定义和运算
- 2. 单位阶跃序列和单位脉冲序列的关系

基本要求:

- 1. 掌握阶跃序列的运算
- 2. 掌握单位阶跃序列和单位脉冲序列的关系

Z3.12 单位阶跃序列

$$\varepsilon(k) = \begin{cases} 0, & k < 0 \\ 1, & k \ge 0 \end{cases}$$

2.运算

$$\mathfrak{E}(k) + 2\mathfrak{E}(k) = 3\mathfrak{E}(k)$$

$$\mathfrak{F}$$
: $\varepsilon(k) \cdot \varepsilon(k) = \varepsilon(k)$

延时:
$$\varepsilon(k-2)-\varepsilon(k-5)$$

$$\varepsilon(k-2)\cdot\varepsilon(k-5) = \varepsilon(k-5)$$

送分:
$$\sum_{i=-\infty}^{k} \varepsilon(i) = \begin{cases} 0, & k < 0 \\ k+1, & k \ge 0 \end{cases}$$
$$= (k+1)\varepsilon(k)$$

$3.\delta(k)$ 与 $\varepsilon(k)$ 的关系

$$\delta(k) = \varepsilon(k) - \varepsilon(k-1)$$

$$\varepsilon(k) = \sum_{i=-\infty}^{k} \delta(i)$$

4. 连续信号与离散信号的 类比

单位冲激信号:

$$\delta(t) \leftrightarrow \delta(k)$$

单位脉冲序列

单位阶跃信号:

$$\varepsilon(t) \longleftrightarrow \varepsilon(k)$$

单位阶跃序列

正弦信号:

$$A\cos(\omega t + \varphi) \leftrightarrow A\cos(\Omega_0 k + \varphi)$$
 正弦序列

虚指数信号:

$$Ae^{j\omega t} \longleftrightarrow Ae^{j\Omega_0 k}$$

虚指数序列

复指数函数:

$$e^{st} \leftrightarrow e^{\beta k} (\vec{\Sigma} z^k)$$

复指数序列

单位脉冲响应的定义和求解

1

主要内容:

- 1. 单位脉冲响应的定义
- 2. 单位脉冲响应的求解

基本要求:

掌握单位脉冲响应的求解方法

Z3.13 单位脉冲响应的定义和求解

1.单位脉冲响应

单位脉冲响应是由单位脉冲序列 $\delta(k)$ 所引起的零状态响应,用h(k)表示。它的作用与连续系统中的冲激响应h(t)相类似。

h(k) 隐含的条件:

$$f(k)=\delta(k)$$
$$h(-1)=h(-2)=0 (对二阶系统)$$

基本信号:单位脉冲序列 $\delta(k)$

基本响应:单位脉冲响应h(k)

2. 求法

由于单位脉冲序列 $\delta(k)$ 仅在k=0处等于1,而在k>0时为零,因而此时单位脉冲响应h(k)与系统的零输入响应的函数形式相同。这样就把求解h(k)的问题转换为求解齐次方程的问题。而k=0处的值h(0)可按零状态的条件由差分方程确定。

- (1)迭代求初始值;
- (2)经典法求齐次解;
- (3)代入初始值,求系数。

例1 求图示系统的单位脉冲响应。

解:如图设中间变量x(k),则左边的加法器输出为:

$$x(k) = f(k) + 4x(k-1) - 3x(k-2)$$

整理得: x(k)-4x(k-1)+3x(k-2)=f(k)

右边加法器的输出为:

$$y(k) = 3x(k) - x(k-1)$$

$$y(k)-4y(k-1)+3y(k-2)=3f(k)-f(k-1)$$

$$h(k) - 4h(k-1) + 3h(k-2) = 3\delta(k) - \delta(k-1)$$
 (1)

初始状态: h(-1) = h(-2) = 0

由(1)得:
$$h(k) = 4h(k-1) - 3h(k-2) + 3\delta(k) - \delta(k-1)$$

迭代得初始值:

$$h(0) = 4h(-1) - 3h(-2) + 3 = 3$$

$$h(1) = 4h(0) - 3h(-1) - 1 = 11$$

k≥2时,(1)式的单位脉冲响应化为齐次方程:

$$h(k) - 4h(k-1) + 3h(k-2) = 0$$
 (2)

特征根为:

$$\lambda_1 = 1$$
, $\lambda_2 = 3$

所以:

$$h(k) = [C_1(1)^k + C_2(3)^k] \varepsilon(k)$$

代入初始值得:

$$h(0) = C_1 + C_2 = 3$$
$$h(1) = C_1 + 3C_2 = 11$$

解得:

$$C_1 = -1, C_2 = 4$$

由于h(0), h(1)作为初始值代入,因而方程的解也满足k=0和k=1。所以系统的单位脉冲响应为:

$$h(k) = [-1 + 4(3)^{k}] \varepsilon(k)$$

单位阶跃响应的定义和求解

主要内容:

- 1. 单位阶跃响应的定义
- 2. 单位阶跃响应的求解

基本要求:

掌握单位阶跃响应的求解方法

Z3.14 单位阶跃响应的定义和求解

1.单位阶跃响应

单位阶跃响应是由单位阶跃序列 $\varepsilon(k)$ 所引起的零状态响应,用g(k)表示。

g(k) 隐含的条件:

$$f(k) = \varepsilon(k)$$
$$g(-1) = g(-2) = 0 (对二阶系统)$$

基本信号:单位阶跃序列 $\varepsilon(k)$

基本响应:单位阶跃响应g(k)

2.求解步骤

- (1) 迭代求初始值;
- (2) 由特征根设定齐次解;
- (3) 求出特解; (比较:单位脉冲响应只有齐次解)
- (4) 代入初始值,求系数。

例2 求如图所示离散系统的单位阶跃响应g(k)。

解:

(1)列写差分方程

由加法器的输出可列出系统的方程为

$$y(k) = f(k) + y(k-1) + 2y(k-2)$$

整理得:

$$y(k) - y(k-1) - 2y(k-2) = f(k)$$

根据阶跃响应的定义,它应满足方程

$$g(k)-g(k-1)-2g(k-2)=\varepsilon(k)$$

初始条件: $g(-1)=g(-2)=0$

(2)迭代求初始值:

$$g(0) = g(-1) - 2g(-2) + \varepsilon(0) = 1$$

$$g(1) = g(0) - gh(-1) + \varepsilon(1) = 2$$

(3)齐次解和特解分别为:

$$g_h(k) = C_1(-1)^k + C_2(2)^k$$
, $g_p(k) = -\frac{1}{2}$
经典解为: $g(k) = C_1(-1)^k + C_2(2)^k - \frac{1}{2}$, $k \ge 0$

(4)代入初始值得:

$$g(0) = C_1 + C_2 - \frac{1}{2} = 1$$

$$g(1) = -C_1 + 2C_2 - \frac{1}{2} = 2$$

由上式可解得:

$$C_1 = \frac{1}{6}, C_2 = \frac{4}{3}$$

于是,系统的阶跃响应:

$$g(k) = \frac{1}{6}(-1)^k + \frac{4}{3}(2)^k - \frac{1}{2}, \quad k \ge 0$$

单位阶跃响应与单位脉冲响应的关系

主要内容:

单位阶跃响应与单位脉冲响应之间的关系

基本要求:

掌握 g(k) 和 h(k) 之间的关系

Z3.15 单位阶跃响应与单位脉冲响应的关系

由于

$$\varepsilon(k) = \sum_{i=-\infty}^{k} \delta(i)$$

那么

$$g(k) = \sum_{i=-\infty}^{k} h(i)$$

由于

$$\delta(k) = \nabla \varepsilon(k) = \varepsilon(k) - \varepsilon(k-1)$$

那么

$$h(k) = \nabla g(k) = g(k) - g(k-1)$$

例3 某离散系统的差分方程如下,求单位脉冲响应h(k)和单位阶跃响应g(k)。

$$y(k) - y(k-1) - 2y(k-2) = f(k)$$

解: (1) 先求 h(k)

$$h(k) - h(k-1) - 2h(k-2) = \delta(k)$$

初始条件: $h(-1) = h(-2) = 0$

由迭代得:

$$h(0) = 1$$
, $h(1)=1$

代入初始值求: $h(k) = C_1(-1)^k + C_2(2)^k$, k > 0

$$h(k) = \frac{1}{3}(-1)^k + \frac{2}{3}(2)^k, \quad k \ge 0$$

(2)再求g(k)

$$h(k) = \frac{1}{3}(-1)^k + \frac{2}{3}(2)^k, \quad k \ge 0$$

$$g(k) = \sum_{i=-\infty}^k h(i) = \frac{1}{3}\sum_{i=0}^k (-1)^i + \frac{2}{3}\sum_{i=0}^k (2)^i$$

由级数求和公式得:

$$\sum_{i=0}^{k} (-1)^{i} = \frac{1 - (-1)^{k+1}}{1 - (-1)} = \frac{1}{2} [1 + (-1)^{k}] \qquad \sum_{i=0}^{k} (2)^{i} = \frac{1 - (2)^{k+1}}{1 - 2} = 2(2)^{k} - 1$$

得单位阶跃响应为:

$$g(k) = \frac{1}{3} \cdot \frac{1}{2} [1 + (-1)^k] + \frac{2}{3} [2(2)^k - 1] = \frac{1}{6} (-1)^k + \frac{4}{3} (2)^k - \frac{1}{2}, \quad k \ge 0$$

Matlab求解单位脉冲响应

主要内容:

Matlab求解单位脉冲响应的函数

基本要求:

掌握单位脉冲响应的Matlab求解方法

Z3.16 Matlab求解单位脉冲响应

MATLAB提供了专门用于求LTI离散系统的单位脉冲响应的函数:

h=impz(b,a,k)

其中 $a=[a_0,a_1,a_2,...,a_n]$, $b=[b_0,b_1,b_2,...,b_n]$ 分别是差分方程左右的系数向量,k表示输出序列的取值范围,h就是系统的单位脉冲响应。

例 求离散系统的单位脉冲响应。

$$y(k) + 3y(k-1) + 2y(k-2) = f(k)$$

解:

k=0:10; a=[1 3 2]; b=[1]; h=impz(b,a,k); stem(k,h,'.')

序列的时域分解

主要内容:

序列的时域分解公式

基本要求:

了解序列的时域分解方法

Z3.17 序列的时域分解

任意离散序列 f(k) 可表示为

$$f(k) = \dots + f(-2)\delta(k+2) + f(-1)\delta(k+1) + f(0)\delta(k) + f(1)\delta(k-1) + \dots + f(i)\delta(k-i) + \dots$$

$$f(k) = \sum_{i=-\infty}^{\infty} f(i)\delta(k-i)$$

卷积和公式

1

主要内容:

- 1. 卷积和的定义
- 2. 卷积和的计算

基本要求:

掌握卷积和公式

Z3.18 卷积和公式

$$f(k) = \sum_{i=-\infty}^{\infty} f(i)\delta(k-i)$$

根据h(k)的定义:

$$\delta(k) \longrightarrow h(k)$$

由时不变性:

$$\delta(k-i) \longrightarrow h(k-i)$$

由齐次性:

$$f(i)\delta(k-i)$$
 \longrightarrow $f(i) h(k-i)$

由叠加性:

$$\sum_{i=-\infty}^{\infty} f(i)\delta(k-i) \longrightarrow \sum_{i=-\infty}^{\infty} f(i)h(k-i)$$

$$f(k) \qquad \qquad y_{zs}(k)$$

$$y_{zs}(k) = \sum_{i=-\infty}^{\infty} f(i)h(k-i)$$
 卷积和

卷积和的定义

已知定义在区间 $(-\infty, \infty)$ 上的两个函数 $f_1(k)$ 和 $f_2(k)$,则定义

$$f(k) = \sum_{i=-\infty}^{\infty} f_1(i) f_2(k-i)$$

为 $f_1(k)$ 与 $f_2(k)$ 的卷积和,简称卷积;记为

$$f(k) = f_1(k) * f_2(k)$$

注意:求和是在虚设的变量i下进行的,i为求和变量,k为参变量。结果仍为k的函数。

$$y_{zs}(k) = \sum_{i=-\infty}^{\infty} f(i)h(k-i) = f(k) * h(k)$$

若有两个序列 $f_1(k)$ 与 $f_2(k)$,如果序列 $f_1(k)$ 是因果序列,即有 $f_1(k)$ =0, k<0,则卷积和可改写为:

$$f(k) = \sum_{i=0}^{\infty} f_1(i) f_2(k-i)$$

若有两个序列 $f_1(k)$ 与 $f_2(k)$,如果序列 $f_2(k)$ 是因果序列,即有 $f_2(k)$ =0, k<0, 则卷积和可改写为:

$$f(k) = \sum_{i=-\infty}^{k} f_1(i) f_2(k-i)$$

如果序列 $f_1(k)$ 与 $f_2(k)$ 均为因果序列,即若 $f_1(k)=f_2(k)=0$,k<0,则卷积和可写为:

$$f(k) = \left[\sum_{i=0}^{k} f_1(i) f_2(k-i)\right] \varepsilon(k)$$

例1 $f(k) = a^k \varepsilon(k), h(k) = b^k \varepsilon(k), \bar{x} y_{zz}(k)$ 。

#: $y_{75}(k) = f(k) * h(k)$

$$= \sum_{i=-\infty}^{\infty} f(i)h(k-i) = \sum_{i=-\infty}^{\infty} a^{i} \varepsilon(i)b^{k-i} \varepsilon(k-i)$$

当i < 0, $\varepsilon(i) = 0$; 当i > k时, $\varepsilon(k - i) = 0$

$$\exists i < 0, \varepsilon(i) = 0; \quad \exists i > k \text{ if } j, \quad \varepsilon(k - i) = 0$$

$$y_{zs}(k) = \left[\sum_{i=0}^{k} a^{i} b^{k-i}\right] \varepsilon(k) = b^{k} \left[\sum_{i=0}^{k} \left(\frac{a}{b}\right)^{i}\right] \varepsilon(k) = \begin{cases} b^{k} \frac{1 - \left(\frac{a}{b}\right)^{k+1}}{1 - \frac{a}{b}} \varepsilon(k) & , a \neq b \\ b^{k} (k+1)\varepsilon(k) & , a = b \end{cases}$$

例2 求 $\varepsilon(k) * \varepsilon(k)$

$$\varepsilon(k) * \varepsilon(k) = \sum_{i=-\infty}^{\infty} \varepsilon(i)\varepsilon(k-i)$$
$$= (\sum_{i=0}^{k} 1)\varepsilon(k) = (k+1)\varepsilon(k)$$

例3 求 $a^k \varepsilon(k) * \varepsilon(k-4)$

$$a^{k}\varepsilon(k) * \varepsilon(k-4) = \sum_{i=-\infty}^{\infty} a^{i}\varepsilon(i) * \varepsilon(k-4-i) = (\sum_{i=0}^{k-4} a^{i})\varepsilon(k-4)$$
$$= \begin{cases} \frac{1-a^{k-3}}{1-a}\varepsilon(k-4), & a \neq 1\\ (k-3)\varepsilon(k-4), & a = 1 \end{cases}$$

例4 求 $\varepsilon(k-3)*\varepsilon(k-4)$

$$\varepsilon(k-3) * \varepsilon(k-4) = \sum_{i=-\infty}^{\infty} \varepsilon(i-3)\varepsilon(k-4-i)$$
$$= (\sum_{i=3}^{k-4} 1)\varepsilon(k-4-3) = (k-6)\varepsilon(k-7)$$

例5 求 $(0.5)^k \varepsilon(k) * 1$

$$(0.5)^{k} \varepsilon(k) *1 = \sum_{i=-\infty}^{\infty} (0.5)^{i} \varepsilon(i) \times 1$$
$$= \sum_{i=0}^{\infty} (0.5)^{i} = \frac{1}{1 - 0.5} = 2$$

卷积和的图解法

主要内容:

卷积和的图解法

基本要求:

了解卷积和的图解过程

Z3.19 卷积和的图解法

$$f(k) = \sum_{i=-\infty}^{\infty} f_1(i) f_2(k-i)$$

卷积图解法可分解为五步:

- (1)换元: k换为 i→得 $f_1(i)$, $f_2(i)$;
- (2)反转:将 $f_2(i)$ 以纵坐标为轴线反转,成为 $f_2(-i)$;
- (3) 平移: 将 $f_2(-i)$ 沿i轴正方向平移k个单位 $\rightarrow f_2(k-i)$;
- (4) 乘积: $f_1(i) f_2(k-i)$;
- (5)求和: i 从 $-\infty$ 到 ∞ 对乘积项求和。

注意: k 为参变量。

例1 $f_1(k)$ 和 $f_2(k)$ 如图所示,已知 $f(k) = f_1(k) * f_2(k)$,求f(2)。

解:

$$f(2) = \sum_{i=-\infty}^{\infty} f_1(i) f_2(2-i)$$

- (1) 换元
- (2) $f_2(i)$ 反转得 $f_2(-i)$
- (3) $f_2(-i)$ 右移2得 $f_2(2-i)$
- (4) $f_1(i)$ $\Re f_2(2-i)$
- (5) 求和,得f(2) = 4.5

例2 求 $f_1(k) * f_2(k)$

解: (1)换元 $f_1(i)$, $f_2(i)$, 反转得 $f_2(-i)$

$(2) f_2(-i)$ 向右移k得 $f_2(k-i)$,求 $f_1(i) f_2(k-i)$

(3)求 $f_1(k)*f_2(k)$:

$$f_1(k) * f_2(k) = \sum_{i=-\infty}^{\infty} f_1(i) f_2(k-i)$$

$$\sum_{i=1}^{\infty} f_1(i) f_2(-1-i) = 1, \qquad k = -1$$

$$\sum_{i=-\infty}^{\infty} f_1(i) f_2(0-i) = 3, \qquad k = 0$$

$$\sum_{i=-\infty}^{\infty} f_1(i) f_2(1-i) = 3,$$

$$\sum_{i=-\infty}^{\infty} f_1(i) f_2(-1-i) = 1, \qquad k = -1$$

$$= \begin{cases}
\sum_{i=-\infty}^{\infty} f_1(i) f_2(0-i) = 3, & k = 0 \\
\sum_{i=-\infty}^{\infty} f_1(i) f_2(1-i) = 3, & k = 1
\end{cases}$$

$$\sum_{i=-\infty}^{\infty} f_1(i) f_2(2-i) = 1, & k = 2$$

$$k \ge 3$$

 $k \leq -2$

卷积和的不进位乘法运算

主要内容:

卷积和的不进位乘法运算规则

基本要求:

掌握卷积和的不进位乘法运算方法

Z3.20 卷积和的不进位乘法运算

$$f(k) = \sum_{i=-\infty}^{\infty} f_1(i) f_2(k-i)$$

$$= \dots + f_1(-1) f_2(k+1) + f_1(0) f_2(k) + f_1(1) f_2(k-1)$$

$$+ f_1(2) f_2(k-2) + \dots + f_1(i) f_2(k-i) + \dots$$

f(k)=所有两序列序号之和为k的那些样本乘积之和。

如:
$$f(2)=...+f_1(-1)f_2(3)+f_1(0)f_2(2)+f_1(1)f_2(1)+...$$

例1
$$f_1(k) = \{0, f_1(1), f_1(2), f_1(3), 0\}$$

 $f_2(k) = \{0, f_2(0), f_2(1), 0\}$
求 $f(k) = f_1(k) * f_2(k)$ 。

接接
$$f_1(1)$$
, $f_1(2)$, $f_1(3)$

$$\times \frac{f_2(0)}{f_1(1)f_2(1)}$$
, $f_1(2)f_2(1)$, $f_1(3)f_2(1)$

$$f_1(1)f_2(0)$$
, $f_1(2)f_2(0)$, $f_1(3)f_2(0)$

$$f_1(1)f_2(1) + f_1(2)f_2(0)$$

$$f_1(2)f_2(1) + f_1(3)f_2(0)$$

$$f(k) = \{ 0, f_1(1)f_2(0), f_1(1)f_2(1) + f_1(2)f_2(0), f_1(2)f_2(1) + f_1(3)f_2(0), f_1(3)f_2(1), 0 \}$$

6, 11, 19, 32, 6, 30

$$f(k) = \{0, 6, 11, 19, 32, 6, 30, 0\}$$

 $\uparrow k=1$

卷积和的性质

1

主要内容:

- 1. 卷积和的运算规则
- 2. 常用卷积和的公式

基本要求:

掌握卷积和的性质及其重要公式

Z3.21 卷积和的性质

1. 满足乘法的三律

- (1) 交換律: $f_1(k) * f_2(k) = f_2(k) * f_1(k)$
- (2) 分配律: $f_1(k)*[f_2(k)+f_3(k)] = f_1(k)*f_2(k)+f_1(k)*f_3(k)$
- (3) 结合律: $f_1(k)*[f_2(k)*f_3(k)]=[f_1(k)*f_2(k)]*f_3(k)$

证明: (仅证明交换律,其它类似)

$$f_1(k) * f_2(k) = \sum_{i=-\infty}^{\infty} f_1(i) f_2(k-i) = \sum_{j=\infty}^{-\infty} f_1(k-j) f_2(j)$$

$$= \sum_{j=-\infty}^{\infty} f_2(j) f_1(k-j) = f_2(k) * f_1(k)$$

2. 复合系统的单位脉冲响应

3.
$$f(k)*\delta(k) = \delta(k) *f(k) = f(k)$$
, $f(k)*\delta(k-k_0) = f(k-k_0)$

4.
$$f(k)*\varepsilon(k) = \sum_{i=-\infty}^{k} f(i)$$

5.
$$f_1(k-k_1) * f_2(k-k_2) = f_1(k-k_1-k_2) * f_2(k)$$

6.
$$\nabla [f_1(k) * f_2(k)] = \nabla f_1(k) * f_2(k) = f_1(k) * \nabla f_2(k)$$

常用卷积和公式

$$(1) f(k) * \delta(k) = f(k);$$

$$(2) f(k) * \delta(k - k_0) = f(k - k_0);$$

$$(3)\delta(k)*\delta(k) = \delta(k);$$

$$(4) f(k) * \varepsilon(k) = \sum_{i=-\infty}^{k} f(i);$$

$$(5) f_1(k - k_1) * f_2(k - k_2) = f_1(k - k_2) * f_2(k - k_1)$$

$$= f_1(k) * f_2(k - k_1 - k_2) = f_1(k - k_1 - k_2) * f_2(k)$$

例1 求 $f(k)=f_1(k)*f_2(k)$ 。

解法I: (不进位乘法)

		1	2	1
		3	2	1
		1	2	1
	2	4	2	
3	6	3		
3	8	8	4	1

$$f(k) = \{0, 3, 8, 8, 4, 1, 0\}$$

 $\uparrow k=-1$

解法II: (图解法)

-4 -3 -2 -1 0

解法III: (解析法)

$$f_1(k) = \delta(k+1) + 2\delta(k) + \delta(k-1)$$

$$f_2(k) = 3\delta(k) + 2\delta(k-1) + \delta(k-2)$$

$$f_1(k) * f_2(k)$$

$$= [\delta(k+1) + 2\delta(k) + \delta(k-1)] * [3\delta(k) + 2\delta(k-1) + \delta(k-2)]$$

$$= [3\delta(k+1) + 2\delta(k) + \delta(k-1)] + [6\delta(k) + 4\delta(k-1) + 2\delta(k-2)]$$

$$+[3\delta(k-1)+2\delta(k-2)+\delta(k-3)]$$

$$= 3\delta(k+1) + 8\delta(k) + 8\delta(k-1) + 4\delta(k-2) + \delta(k-3)$$

例2 如图所示复合系统,由3个子系统组成,它们的单位脉冲响应分别为 $h_1(k)=\delta(k)$, $h_2(k)=\delta(k-N)$, N为常数, $h_3(k)=\varepsilon(k)$, 求复合系统的单位脉冲响应。

解: 由复合系统的各子系统间的关系得:

$$h(k) = [h_1(k) - h_2(k)] * h_3(k)$$

$$= [\delta(k) - \delta(k - N)] * \varepsilon(k) = \delta(k) * \varepsilon(k) - \delta(k - N) * \varepsilon(k)$$

$$= \varepsilon(k) - \varepsilon(k - N)$$

卷积和的Matlab求解

1

主要内容:

卷积和的Matlab求解方法

基本要求:

掌握卷积和的Matlab求解函数

Z3.22 卷积和的Matlab求解

MATLAB中用于计算离散序列卷积的函数为:

conv(x1,x2)

例求以下两个离散序列的卷积。

$$x_1(k) = \sin(k), 0 \le k \le 10$$
 $x_2(k) = 0.8^k, 0 \le k \le 15$

解:

k1=0:10; x1=sin(k1); k2=0:15; x2=0.8.^k2; y=conv(x1,x2);

差分算子E的定义

1

主要内容:

- 1. 延迟算子的定义
- 2. 超前算子的定义

基本要求:

掌握延迟算子符号

Z3.23 差分算子E的定义

E^{-1} -----延迟算子

$$E^{-1}f(k) = f(k-1),$$

$$E^{-2} f(k) = f(k-2),$$

$$E^{-n}f(k) = f(k-n),$$

E -----超前算子

$$Ef(k) = f(k+1),$$

$$E^2 f(k) = f(k+2),$$

$$E^n f(k) = f(k+n),$$

离散系统的差分算子方程

主要内容:

离散系统的差分算子方程的定义

基本要求:

掌握由差分方程建立差分算子方程的方法

Z3.24 离散系统的差分算子方程

描述离散系统的数学模型是n阶常系数线性差分方程,表示如下:

$$y(k) + a_{n-1}y(k-1) + \dots + a_0y(k-n)$$

= $b_m f(k) + b_{m-1}f(k-1) + \dots + b_0f(k-m)$

由后向差分方程形式得算子方程:

$$y(k) + a_{n-1}E^{-1}y(k) + a_{n-2}E^{-2}y(k) + \dots + a_0E^{-n}y(k)$$

$$= b_m f(k) + b_{m-1}E^{-1}f(k) + b_{m-2}E^{-2}f(k) + \dots + b_0E^{-m}f(k)$$

传输算子

主要内容:

- 1. 传输算子的定义
- 2. 传输算子的注意事项

基本要求:

掌握传输算子的求解方法

Z3.25 传输算子

算子方程也可写成:

$$(1 + a_{n-1}E^{-1} + a_{n-2}E^{-2} + \dots + a_0E^{-n})y(k)$$

$$= (b_m + b_{m-1}E^{-1} + b_{m-2}E^{-2} + \dots + b_0E^{-m})f(k).$$

进一步写成:

$$y(k) = \frac{(b_m + b_{m-1}E^{-1} + b_{m-2}E^{-2} + \dots + b_0E^{-m})}{(1 + a_{n-1}E^{-1} + a_{n-2}E^{-2} + \dots + a_0E^{-n})}f(k)$$

系统的传输算子H(E):

$$H(E) = \frac{y(k)}{f(k)} = \frac{b_m + b_{m-1}E^{-1} + b_{m-2}E^{-2} + \dots + b_0E^{-m}}{1 + a_{n-1}E^{-1} + a_{n-2}E^{-2} + \dots + a_0E^{-n}}$$

H(E)的E正幂形式:

$$H(E) = \frac{b_m E^n + b_{m-1} E^{n-1} + \dots + b_0 E^{n-m}}{E^n + a_{n-1} E^{n-1} + \dots + a_0}$$

关于差分算子方程的说明:

(1)E的正幂多项式可以相乘,也可以进行因式分解;

例:
$$(E^2 + 3E + 2)f(k) = (E + 2)(E + 1)f(k)$$
.

- (2)A(E)B(E)f(k) = B(E)A(E)f(k); 其中,A(E)、B(E)为E的正幂或负幂多项式;
- (3)算子方程两边的公因子或H(E)的分子分母中的公因子不能随意消去。

例 图示LTI离散系统,写出系统的差分算子方程,并

由左边加法器输入输出关系得:

$$x(k) = -a_1 E^{-1} x(k) - a_0 E^{-2} x(k) + f(k)$$

$$(1 + a_1 E^{-1} + a_0 E^{-2}) x(k) = f(k)$$

$$x(k) = \frac{1}{(1 + a_1 E^{-1} + a_0 E^{-2})} f(k)$$

由右边加法器得系统的差分算子方程:

$$y(k) = b_1 E^{-1} x(k) + b_0 E^{-2} x(k)$$

$$= (b_1 E^{-1} + b_0 E^{-2}) x(k) = \frac{(b_1 E^{-1} + b_0 E^{-2})}{(1 + a_1 E^{-1} + a_0 E^{-2})} f(k)$$

传输算子:

$$H(E) = \frac{y(k)}{f(k)} = \frac{b_1 E^{-1} + b_0 E^{-2}}{1 + a_1 E^{-1} + a_0 E^{-2}} = \frac{b_1 E + b_0}{E^2 + a_1 E + a_0}$$

差分方程:

$$y(k) + a_1 y(k-1) + a_0 y(k-2) = b_1 f(k-1) + b_0 f(k-2)$$

或:

$$y(k+2) + a_1 y(k+1) + a_0 y(k) = b_1 f(k+1) + b_0 f(k)$$