## Introduction à Python

Jean-Christophe LOISEAU

Arts & Métiers Institute of Technology, 2021-2022

NumPy: bibliothèque (ou package) pour Python destinée à manipuler des matrices ou tableaux multidimensionels ainsi que des fonctions mathématiques opérant sur ces tableaux.





$$oldsymbol{x}\cdotoldsymbol{y}=\sum_{i=1}^n x_iy_i$$

```
def produit_scalaire(x, y):
    # Initialise la variable.
    z = 0

# Calcul le produit scalaire.
for i in range(len(x)):
    z = z + x[i] * y[i]
```

return z

```
In [1]: x, y = npr.rand(100_000), npr.rand(100_000)
In [2]: %%timeit
```

 $26.9~\mathrm{ms}~\pm~110~\mathrm{\mu s}$  (mean  $\pm$  std. dev. of 7 runs, 100 loops each)

produit\_scalaire(x, y)

3

```
def produit_scalaire(x, y):

# Calcul le produit scalair
return np.sum(x * y)
```

```
In [3]: x, y = npr.rand(100_000), npr.rand(100_000)
```

```
In [4]: %%timeit
```

 $100~\mu s~\pm~1.85~\mu s$  (mean  $\pm$  std. dev. of 7 runs, 10000 loops each)

produit\_scalaire(x, y)

3

```
In [5]: x, y = npr.rand(100_000), npr.rand(100_000)
In [6]: %%timeit
```

 $25~\mu s~\pm~8.95~\mu s$  (mean  $\pm$  std. dev. of 7 runs, 10000 loops each)

np.vdot(x, y) # Produit scalaire en NumPy.

2

3

Comment calculer  $\|m{A} - m{B}\|_2$  avec  $m{A}, m{B} \in \mathbb{R}^{m \times n}$ ?

$$\|m{A} - m{B}\|_2 = \sqrt{\sum_{i=1}^m \sum_{j=1}^n (A_{ij} - B_{ij})^2}$$

```
def distance(A, B):
    m, n = A.shape
    d = 0
    for i in range(m):
        for j in range(n):
            d += (A[i, j] - B[i, j])**2
    return np.sqrt(d)
```

```
In [7]: A, B = npr.rand(1000, 1000), npr.rand(1000, 1000)
```

In [8]: %%timeit

distance(A, B)

3

4 5

 $615~\mathrm{ms}~\pm~22.3~\mathrm{ms}$  (mean  $\pm$  std. dev. of 7 runs, 1 loop each)

```
def distance(A, B):
    d = np.sum((A-B)**2)
    return np.sqrt(d)
```

```
In [9]: A, B = npr.rand(1000, 1000), npr.rand(1000, 1000)
In [10]: %%timeit
```

 $4.23~\mathrm{ms}~\pm~69.3~\mathrm{\mu s}$  (mean  $\pm$  std. dev. of 7 runs, 100 loops each)

distance(A, B)

2

3

```
In [11]: A, B = npr.rand(1000, 1000), npr.rand(1000, 1000)
```

2

3

4 5 In [12]: %%timeit

npl.norm(A-B) # Definition de la norme en NumPy.

 $2.98~\mathrm{ms}~\pm~77.1~\mathrm{\mu s}$  (mean  $\pm$  std. dev. of 7 runs, 100 loops each)





Comment trouver l'équation de la droite  $\hat{y} = ax + b$  qui approxime au mieux les données (x, y)?

| Mesure de l'erreur : Pour des valeurs de $a$ et $b$ données, quelle est l'erreur faite par |
|--------------------------------------------------------------------------------------------|
| mon modèle, i.e. à quel point $y$ et $\hat{y}$ sont différents?                            |
|                                                                                            |

Erreur maximum

Erreur quadratique moyenne 
$$\dfrac{1}{m}\sum_{i=1}^{m}\left(y_i-\hat{y}_i
ight)^2$$

Erreur quadratique moyenne

$$\frac{1}{m}$$

$$\sum_{i}|y_{i}|$$
 -

$$|y_i|$$

$$|y_i|$$

$$|y_i|$$

$$|y_i|$$

$$|y_i|$$

- $\max_{i} |y_i \hat{y}_i|$

| Réduction de l'erreur : Connaissant l'erreur commise par mon modèle pour           |            |
|------------------------------------------------------------------------------------|------------|
| valeurs de $a$ et $b$ données, comment dois-je les modifier de façon à réduire cet | te erreur? |



# $\underset{a,b}{\text{minimiser}} \ \mathcal{L}(a,b)$

$$\mathcal{L}(a_k + \epsilon) \simeq \mathcal{L}(a_k) + \epsilon \frac{\partial \mathcal{L}}{\partial a} \Big|_{a=a_k}$$

$$\mathcal{L}(a_k)$$

 $\dot{a_k}$ 

 $\hat{a}$ 

**Données d'entrée :** La fonction  $\mathcal{L}(\theta)$  à minimiser, le vecteur initial  $\theta$ , le pas d'optimisation  $\eta$ , la tolérance  $\epsilon$  et maxiter le nombre maximum d'itérations possibles.

### Algorithme: Descente de gradient

- 1. Evaluer la fonction  $\mathcal{L}(\theta)$  et son gradient  $\frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}}$  pour la valeur actuelle de  $\boldsymbol{\theta}$ .
- 2. Mettre à jour  $oldsymbol{ heta}$  via  $oldsymbol{ heta} = oldsymbol{ heta} \eta rac{\partial \mathcal{L}}{\partial oldsymbol{ heta}}.$
- 3. Si  $\left\| \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}} \right\| \leq \epsilon$ , on arrête le calcul, sinon retour à l'étape 1.

**Données de sortie :** Les paramètres  $\theta$  du modèle minimisant l'erreur.

Erreur maximum

Erreur quadratique moyenne

Erreur quadratique moyenne 
$$\dfrac{1}{m}\sum_{i=1}^m (y_i-\hat{y}_i)^2$$

$$\frac{1}{m}\sum_{i=1}^{n}|y_i|^2$$

$$\frac{1}{m}\sum_{i=1}^{n}|y_i|$$

$$|y_i|$$

$$\max_{i} |y_i - \hat{y}_i|$$



# Modèle:

- Erreur :  $\mathcal{L}(a,b) = \frac{1}{m} \sum_{i=1}^{m} \left(y_i \hat{y}_i\right)^2$

 $\hat{y}_i = ax_i + b$ 

- Modèle:

 $\mathcal{L}(a,b) = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$ 

 $\mathcal{L}(a,b) = \sum_{i=1}^{m} \mathcal{L}_i(a,b)$ 

- Erreur:

 $\mathcal{L}(a,b) = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$ 

 $\mathcal{L}_i(a,b) = \frac{1}{m} \left( y_i - \hat{y}_i \right)^2$ 

- Erreur:



 $\mathcal{L}_i(a,b) = \frac{1}{m} (y_i - ax_i - b)^2$ 



- Erreur :  $\mathcal{L}(a,b) = \frac{1}{m} \sum_{i=1}^{m} \left( y_i \hat{y}_i \right)^2$



Modèle:

 $\hat{y}_i = ax_i + b$ 

 $\frac{\partial \mathcal{L}_i}{\partial a} = -\frac{2}{m} (y_i - ax_i - b) x_i$ 

- Erreur :  $\mathcal{L}(a,b) = \frac{1}{m} \sum_{i=1}^{m} \left(y_i \hat{y}_i\right)^2$

 $\frac{\partial \mathcal{L}_i}{\partial b} = -\frac{2}{m} \left( y_i - ax_i - b \right)$ 

 $\mathcal{L}(a,b) = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$ 

 $\frac{\partial \mathcal{L}}{\partial a} = \sum_{i=1}^{m} \frac{\partial \mathcal{L}_i}{\partial a}$ 

- Erreur:

| Objectif du TP : Reformuler le code de calcul qui vous est fourni en utilisant au |
|-----------------------------------------------------------------------------------|
| mieux les bonnes pratiques NumPy qui vous ont été présentées.                     |

```
In [13]: x, y = donnes_synthetiques()
In [14]: %%timeit
```

3

5

```
moindres_carres(x, y, eta=0.1)
```

 $2.98~\mathrm{ms}~\pm~77.1~\mathrm{\mu s}$  (mean  $\pm$  std. dev. of 7 runs, 100 loops each)

```
In [15]: %%timeit moindres_
```

3

```
moindres_carres_opt(x, y, eta=0.1)
```

 $2.98~\mathrm{ms}~\pm~77.1~\mathrm{\mu s}$  (mean  $\pm$  std. dev. of 7 runs, 100 loops each)





Pour en savoir plus, rendez-vous sur https://numpy.org/