

Circuit Theory and Electronics Fundamentals

Department of Physical Engineering, Técnico, University of Lisbon

First Laboratory Report

March 24, 2021

Contents

1	Introduction	1
2	Theoretical Analysis	1
3	Mesh analysis	1
4	Simulation Analysis 4.1 Operating Point Analysis 4.2 Transient Analysis 4.3 Frequency Analysis 4.3.1 Magnitude Response 4.3.2 Phase Response 4.3.3 Input Impedance	2
5	Conclusion	5

1 Introduction

The objective of this laboratory assignment is to study a circuit containing a DC voltage source V_a , a current source, I_d , a voltage controlled current source I_b , a current controlled voltage source V_c and resistors, R_1 , R_2 , R_3 , R_4 , R_5 , R_6 and R_7 . The circuit can be seen in Figure 1.

In Section 2, a theoretical analysis of the circuit is presented. In Section 4, the circuit is analysed by simulation, and the results are compared to the theoretical results obtained in Section 2. The conclusions of this study are outlined in Section 5.

Figure 1: Voltage driven serial RC circuit.

2 Theoretical Analysis

In this section, the circuit shown in Figure 1 is analysed theoretically.

3 Mesh analysis

We considered 4 meshes delimited by the nodes ABDE, BCEF, DEGH and EFH and named them MA,MB,MC,MD, respectively. Since this is a linear circuit, we can apply to each one of these meshes the Kirchhoff Voltage Law (KVL):

$$\sum V_i = 0 \tag{1}$$

Applying Ohm's Law:

$$V_i = R_i * I \tag{2}$$

We get the following equations:

$$V_a = (R_1 + R_2 + R_3)I_M A - R_3 * I_M B - R_4 * I_M C$$

$$-\mathsf{K}_b*R_3*I_MA+I_b(K_b*R_3-1)=0$$

$$-\mathsf{I}_MA*R_4+I_MC(R_4-K_c+R_6+R_7)=0$$

$$\mathsf{I}_MD=-I_d$$
 (3)

In matrix form:

$$\begin{bmatrix} R_1 + R_2 + R_3 & -R_3 & -R_4 & 0 \\ -K_b * R_3 & K_b * R_3 - 1 & 0 & 0 \\ -R_4 & 0 & R_4 - K_c + R_6 + R_7 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\cdot \begin{bmatrix} I_M A \\ I_M B \\ I_M C \\ I_M D \end{bmatrix} = \begin{bmatrix} V_a \\ 0 \\ 0 \\ -I_d \end{bmatrix}$$
 (4)

4 Simulation Analysis

4.1 Operating Point Analysis

Table 1 shows the simulated operating point results for the circuit under analysis. Compared to the theoretical analysis results, one notices the following differences: describe and explain the differences.

Name	Value [A or V]
а	8.080661e+00
b	7.829186e+00
С	7.306490e+00
d	2.944539e+00
е	7.864549e+00
f	1.177414e+01
g1	9.779981e-01
g2	9.779981e-01

Table 1: Operating point. A variable preceded by @ is of type *current* and expressed in Ampere; other variables are of type *voltage* and expressed in Volt.

4.2 Transient Analysis

ws the simulated transient analysis results for the circuit under analysis. Compared to the theoretical analysis results, one notices the following differences: describe and explain the differences.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

4.3 Frequency Analysis

4.3.1 Magnitude Response

ws the magnitude of the frequency response for the circuit under analysis. Compared to the theoretical analysis results, one notices the following differences: describe and explain the differences.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

4.3.2 Phase Response

F shows the magnitude of the frequency response for the circuit under analysis. Compared to the theoretical analysis results, one notices the following differences: describe and explain the differences.

4.3.3 Input Impedance

Fizim shows the magnitude of the frequency response for the circuit under analysis. Compared to the theoretical analysis results, one notices the following differences: describe and explain the differences.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

5 Conclusion

In this laboratory assignment the objective of analysing a static DC circuit has been achieved. A static analysis has been performed on the circuit, through both the node analysis and mesh analysis methods, using the Octave software, and a simulation was run using ngspice. The three sets of results all match to 11 decimal places of precision. The reason for this perfect match is the fact that although this circuit has multiple components and nodes, all of the components are linear, and no time dependence exists. The matching of results for the various methods also helps to confirm the accuracy of the equations used for the theoretical analysis.