TAS Astro Satellite Electrical Systems BE

© AIRBUS
DEFENCE & SPACE

Instructions:

- You shall work on groups of 2.
- You can use the Presentations from the lessons.
- You shall send to Corinne a Technical Report (PDF 10 pages maximum) by <u>February 8th at 17:00</u> (CET).
- Each exercice (except 3) is independent from one another:
 - 1. Solar array sizing
 - 2. Battery sizing
 - 3. Solar array (battery charge sections)

Requirements

- Geostationary orbit
- 15 years lifetime
- 100V regulated bus
- 12kW payload consumption + 3 kW platform consumption
- Margin on battery: maximal DOD = 80%, including possible failures
- Margin on solar array: 7% on power required by customer

Power architecture

Power architecture

Solar Cell: Azurspace 3G30C

Solar Flux: see Figure at the end

• Loss factor 0.9707

Total SA line Vdrop 2.5V

Max mission duration
 15 years

Radiation dose: 1E+15 MeV

Temperature range

Hot Case: 50°CCold Case: 40°C

Fill factor 80%

This document and its content is the proper

Power architecture

Battery: SAFT VES 140 (Simplified datasheet given in the annex)

- Power architecture assessment
- Solar array sizing
- Hot case Cold case
- 5 Battery sizing
- ယ Sizing thanks to battery charge constraints Solar array (battery charge sections)

- Sizing of Solar array dedicated to battery recharge
 - Start from battery sizing (have a look to the battery discharged need!)
 - Overview of the situation

- Think about the GEO orbit where the eclipse is longer, to define the recharge constraints
- Consider the efficiency of the recharge equal to 90%

Battery sizing

- Determine the min an max cell number in series
- Max energy to be powered by the battery ?
 - Battery sized for what duration ?
- What about the battery capacity? Number of cell in parallel?
- What about the failure mode?

Questions?

Annex

Geostionary flux

Bypass resistance	Average voltage	Minimum Voltage	Maximum Voltage	Nominal Capacity
100 μΩ	3.5V	3 <	4.1V	40 Ah

Battery parameters (Simplified from datasheet)

SAFT VES140 Datasheet

Cell electrical characteristics

Nominal voltage	3.6 V
Nominal capacity at C/1.5 rate at 4.1 V/3 V & 20°C	39 Ah
Maximum discharge current at 25°C	100 A (Continuous ~2 s pulse)
Specific energy (minimum)	126 Wh/Kg
Energy density	140 Wh//
Cell mechanical characteristics	
Diameter	53 mm
Height	250 mm
Mass	1.13 kg
Mechanical environment Leak rate	Qualified all launchers 10-8 dm² atm s-¹
Cell operating conditions	
Lower voltage limit for discharge	Continuous (O°C to +45°C) 2.7 V
Charging method	Constant current/constant voltage (CCCV)
Charging voltage (max)	4.1 V
Recommended continuous charge current	GED/MEO C/10 LEO (20 % DOD) C/5
Operating temperature	Charge +10°C to +35°C Discharge O°C to +40°C
Storage and transportation temperature	- 40°C to + 65°C

