DFT Logic, BIST & Memory Testing

Memory Testing

Functional Fault Models

Static

Single Cell

Notation: < S/F >, where:

- ullet S -> value or operation activating fault $S o \{0,1,\uparrow,\downarrow,updownarrow\}$
- F -> Faulty value of cell $F \rightarrow \{0,1,\updownarrow\}$

Stuck at Fault (SAF)

Always stuck at a single state

- SA0
- SA1

Stuck Open Fault (SOF)

Cell cannot be accessed due to broken wire

Transition Fault (TF)

Cell fails to

- Rise from 0 to 1 $<\uparrow$, 0>
- Fall from 1 to 0 $<\downarrow$, 1>

Double Cell

Coupling Faults

- Victim cells are affected by Aggressor cell
- Notation: $< S_1; S_2/F >$, where:
 - ullet S_1 is activator for fault in aggressor
 - ullet S_2 is activator for fault in victim
 - ullet F is faulty value of victim

State CFs

- If aggressor cell is in a given state, victim cell is forced to 0 or 1
- Ex: <0; 0/1>, <0; 1/0>, <1; 0/1>, <1; 1/0>

Inversion CFs

• If aggressor cell rise or fall, victim cell is inverted

Indempotent CFs

• If aggressor cell rise or fall, victim cell is forced to 0, 1

Address Decoder Fault (AF)

- Given a certain address, no cell will be accessed
- A certain cell is never accessed by any address
- A certain cell is accessed by multiple addresses
- Given a certain address, multiple cell will be accessed

AND Type

OR Type

Dynamic

DRF (Data Retention Faults)

DRAM

- Charge leakage loose data in capacitor
- Refresh logic fails to refresh correctly

SRAM

 Defective pull-up device inducing excessive leakage current which changes the state of the cell

Sense Amplifier Recovery Fault

Saturated sense amplifier after reading/writing a long string of 0 or 1 $\,$

Write Recovery Fault

A write followed by a read/write at a different location results in reading or writing at the same location due to slow address decoder

Test Algorithm

MSCAN

- One-zero algorithm
- Read and write 1 and 0 each to every cell sequentially
- Complexity:- 4N
- Detects all SAF, $<\uparrow/0$ TF

Checkerboard

- Write and read checkerboard pattern and it's complement to all cells
- Detects SAF, half TF
- Complexity:- 4N

GALPAT

- Ping pong test
- Detects all SAF, TF
- Complexity:- $4N^2$

Butterfly

- Detects SAF, TF
- Complexity: $-10N \log N$

March Test

• Complexity:- Linear to number of operations Ops*N

MATS (Modified Algorithmic Test Sequence)

- 3 March Elements: $\{\uparrow(w0); \uparrow(r0,w1); \uparrow(r1)\}$
- Complexity:- 4N
- Detects SAF, Half of TF, half AF
- Can detect half of address decoder fault (OR Type)
 - Solution: Reverse MATS: $\{\updownarrow(w1); \updownarrow(r1,w0); \updownarrow(r0)\}$
 - Can detect AND but can't detect OR type faults

MATS+

- Combine AND type and OR type MATS
- March: $\{\updownarrow (w0); \uparrow (r0,w1); \downarrow (r1,w0)\}$
- Detects SAF, AF, Half of TF
- Complexity:- 5N

MATS++

- March: $\{\updownarrow (w0); \uparrow (r0,w1); \downarrow (r1,w1,r0)\}$
- Detects SAF, AF, TF

March X

- March: $\{\uparrow(w0);\uparrow(r0,w1);\downarrow(r1,w0);\uparrow(r0)\}$
- ullet Detects SAF, AF, TF, CF_{in}

March C

- Combine March X in opposite address order
- March: $\{\updownarrow(w0); \uparrow(r0,w1); \uparrow(r1,w0); \updownarrow(r0); \downarrow(r0,w1); \downarrow(r1,w0); \updownarrow(r0)\}$
- Detects SAF, AF, TF, all CF

March C-

- $\bullet \; \mathsf{March} \colon \; \{ \updownarrow (w0); \uparrow (r0,w1); \uparrow (r1,w0); \quad \downarrow (r0,w1); \downarrow (r1,w0); \updownarrow (r0) \}$
- Removes a redundancy
- Detects SAF, AF, TF, all CF

Summary

	SAF	AF	TF	CF	Complexity
MSCAN	D	-	-	-	4N
checkerboard	D	-	-	-	4N
GALPAT	D	D	D	D	4N ²
BUTTERFLY	D	-	D	-	5N log N
MATS	D	-	-	-	4N
MATS+	D	D	-	-	5 <i>N</i>
MATS++	D	D	D	-	6N
March X	D	D	D	-	6N
March C	D	D	D	D	11 <i>N</i>
March C-	D	D	D	D	10 <i>N</i>

Introduction to BIST

Adding extra hardware to chip for test generation and response evaluation

Test Pattern Generation

LFSR (Linear Feedback Shift Register)

- Test pattern generator
- Types
 - 1. XOR in feedback
 - 2. XOR in forward path
- Number of unique Test Vectors:
 - Characteristic polynomials give 2^N-1 patterns (Cannot be divided by any other polynomial)
 - ullet Non characteristic polynomials give $<2^N-1$ patterns and number of unique vectors depends on seed value
- M Sequence (Max Length sequence) is generated by primitive/characteristic polynomials

De Bruijn Counter

- Also generates the 0000 test vector
- Add an AND gate from all registers (except last) to feed it to the XOR gate

Output Response Analysis (ORA)

- Compress CUT output to small signature
- Compare signature with gold signature to determine good/bad
- Aliasing:
 - ullet When $signature_{faulty\ output} = signature_{good\ output}$
 - ullet $PAL=rac{no.\ faulty\ outputs\ with\ gold\ signature}{total\ no.\ faulty\ outputs}$
- Good ORA requires low PAL, small area, small signature, diagnosis support