Real Data Meets Bayesian Brilliance

Parth Kothari M.Sc. Year - II

Principal Investigator: Dr. Suman Majumdar
CSI lab ,DAASE

Course: DSM 517

But do you know the story?

01

Bayes Theorem

Bayes Theorem in Life

- Bayes theorem stems from the rationality of human beings
- Mitigating life by always updating your belief
- Conflict resolution through bayes theorem

Bayes theorem in sciences

Markov Chain Monte Carlo

Monte Carlo

- It is an iterative Sampling Method
- Use of randomly generated number to predict certain outcomes
- These numbers are generated from a known probability distribution

You are at work at 9am

You have a party at 6 pm

Your boss gives you 2 report to complete Monte Carlo!

Report 1 can take 1-5 hours

Report 2 can take 2-6 hours

How will make an educated guess?

Problem credit: <u>RiskByNumbers</u>

Monte Carlo

- Report follows a Uniform distribution
- Sample from these distributions
- Plot the probability distribution


```
sims = 100000
  Report A
 = np.random.uniform(1,5,sims)
  Report B
 = np.random.uniform(2,6,sims)
Duration = A + B #Total time
```


Probability of missing the party: 12 %

Your Choice

Markov Chain Monte Carlo

- Markov chain is an ordered sequence of points $\{x_s\} = \{x_1, x_2, \dots, x_N\}$
- x_s (next point) depends on the last point x_{s-1}
- You sample the next point given the previous point via a probability distribution $P(x_s | x_{s-1})$

Visuals are always better!

Draw
$$\theta_t \sim \text{Normal}(\theta_{t-1}, \sigma)$$

$$\text{Normal}(0.500, \sigma) = 0.460$$

03

Metropolis Hastings -MCMC

MH - MCMC

- Metropolis Hastings is an added condition to MCMC
- You take ratio of the calculated posterior $R = \frac{P^*(L)P^*(prior)}{P(L)P(prior)}$
- DO a coin toss for acceptance of the point
- Accept based on the calculation U(0,1) < min(1,R)
- Considers the less likely samples, exploring the parameter space thoroughly

Drawbacks of MH-MCMC

- Smaller step size resulting in walker getting stuck
- Larger step size results in inaccurate sampling of target distribution
- Problem amplifies in high dimensional parameter space

04

My work (Real data)

Bayesian Inference pipeline

Observational Data

- Power spectrum at 4 length scales
- The error includes systematics of telescopes, random noise, cosmic variance, etc.

Modeling CO emission

Cosmological simulation

- IllustrisTNG: Halo catalogue
- Dark matter halos in 3D field

CO Model

• α and β parameter

$$\log L_{IR} = \alpha \log L_{CO}' + \beta$$

 Parameters control aggregate CO emission

Slice of Halo Field

CO simulation

Theoretical Power spectrum

Parameter Estimation

Foreman-M ackey et al 2013 PASP 125 306 (emcee)

6000 steps with 4 walkers

3000 steps with 4 walkers

- Real Data is noisy
- Multiple peaks in target distribution
- Inference is biased towards highly local minima

05

Hamiltonian Monte Carlo

Origin of HMC

- HMC was initially devised for solving the multidimensional integrals in quantum chromodynamics
- Radford borrowed the idea of constructing a physical system into the bayesian inference

Credit: Wikipedia

Hamiltonian dynamics

Hamiltonian, H(x,u) = U(x) + K(u)

Momentum sampled from Normal distribution

Leapfrog

HMC Flow Chart

Phase space

Position

momentum

- In phase space each point represents position and momentum
- (x1,x2,x3); (p1,p2,p3)
- A 6D space on a 2D space

Credit: <u>JustinKunimune</u>

Comparison

MH - MCMC

- Smaller step size resulting in walker getting stuck
- Larger step size results in inaccurate sampling of target distribution
- Problem amplifies in high dimensional parameter space

HMC

- The kick from momentum will overcome the problem of local minima trap
- The equations of motion will help walker cover the entire parameter space as gradient will guide it to different peaks

THANK YOU!

Got questions?
Connect on linkedIn and let's discuss!

TUTORIAL

