概率论与数理统计笔记

QuantumBird

2019年9月16日

目录

1	随机	事件与概率	1
	1.1	随机试验 样本空间	2
		1.1.1 随机试验	2
		1.1.2 样本空间	2
	1.2	随机事件	3
		1.2.1 随机事件	3
		1.2.2 事件间的关系和运算	3
	1.3	随机事件的概率	4
	1.4	古典概形与几何概型	4
	1.5	条件概率	4
	1.6	全概率公式与贝叶斯公式	4
	1.7	事件的独立性与伯努利概型	4
		1.7.1 事件的独立性	4
		1.7.2 伯努利概型	4

1 随机事件与概率

本章主要讲述了随机事件与概率的定义,为下面的概率论学习打下基 础

1.1 随机试验 样本空间

确定现象 确定现象指的是在条件一定时,其结果也是一定的,这样的事件被称之为确定现象。

随机现象 随机现象指的是即使在条件一定时,结果也不是确定的,但在大量重复的试验下,又呈现出一定的规律性的现象,其中,随机现象中的规律被称之为统计规律。

疑问:随机现象之中一定蕴含统计规律么?换言之,是否存在没有任何规律的现象?如果存在,那么它是随机现象么?

1.1.1 随机试验

试验 对某一事物的某一特征的一次观察,测量或进行一次科学实验等 这里的实验不一定是真实存在的,只要满足一定条件的行为都可以称 之为试验。

随机试验 一般地,如果一个试验满足下列条件:

- 1. 在相同的条件下可以重复进行
- 2. 每次实验的结果不止一个, 并且在试验前就可以明确所有结果
- 3. 进行一次实验之前不能预知出现的结果

称这样的试验为**随机试验**,用 E 表示。

注:这里的随机事件的定义为老师在讲课时给出的定义,教材上随机事件的原定义不包含第一条。包含第一条性质的随机试验被称为**可重复的随机试验**,但不可重复的随机试验超出了教材的讨论范围,故暂时将可重复的随机事件称为随机事件。

1.1.2 样本空间

对于一个随机试验,我们虽无法得知其在某条件下的具体结果,但我们可以得知一个随机试验所有可能的结果 (随机试验 条件 2),则我们可以定义**样本空间**和**样本点**如下:

样本空间 随机试验 E 的所有可能结果组成的集合称为 E 的样本空间。记为 S。

样本点 E 中的每个结果,即样本空间 S 中的每个元素,称为样本点。

1.2 随机事件

1.2.1 随机事件

随机事件 一般地,称试验 E 的样本空间 S 的子集为 E 的随机事件,简称为事件。

基本事件 由一个样本点组成的单点集称为基本事件。

必然事件 样本空间 S 自身被称为必然事件,因为它在每次随机试验中是一定发生的。

不可能事件 空集 $\emptyset \subset S$,且不包含任何样本点,在试验中不发生,称为不可能事件。

1.2.2 事件间的关系和运算

由前文的定义可知,随机事件本质是一个集合,故其具有集合的所有运算,部分运算在概率论中有一定的意义,下面从事件的角度上定义事件之间的关系和运算。

设试验 E 的样本空间为 S, 而 $A, B, A_k (k = 1, 2, ...)$ 是 S 的子集,则 我们可以定义如下的关系和运算:

- 1. **事件的包含** 若事件 A 的发生会导致事件 B 的发生,则称事件 B 包含事件 A, 记为 $B \supset A$ 或 $A \subset B$ 。
- 2. **事件的相等** 若有 $A \subset B$ 且 $B \subset A$, 则 $A \ni B$ 相等, 记为 A = B。
- 3. **和事件** 事件 $A \subseteq B$ 至少有一个发生的事件,称为事件 $A \subseteq B$ 的和事件,记为 $A \cup B$,或 A + B。

4

- 1.3 随机事件的概率
- 1.4 古典概形与几何概型
- 1.5 条件概率

条件概率 事件 A 发生的条件下事件 B 发生的概率,记为 P(B|A),其中

$$P(B|A) = \frac{P(AB)}{P(A)}$$

性质

• 非负性: $P(B|A) \leq 0$

• 规范性: $P(S|B) = 1, P(\emptyset|B) = 0$

1.6 全概率公式与贝叶斯公式

贝叶斯公式

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_{j=1}^{n} P(A|B_j)P(B_j)}$$

- 1.7 事件的独立性与伯努利概型
- 1.7.1 事件的独立性

两个事件相互独立 设事件 A, B, 发生的概率为 P(AB), 若:

$$P(AB) = P(A)P(B)$$

则称两个事件相互独立当两个事件相互独立时,有:

$$P(A|B) = P(A)$$

n **个事件相互独立** n 个事件相互独立,则任意两个事件,三个事件。。。n 个事件都是相互独立的。

1.7.2 伯努利概型