Extremum d'une fonction à deux variable:

Def Une fonction of definie su UCIR² presente en un point a e U

- · Un Maximum (global) & Vuel; f(u) = f(a)
- e Un minimum (global) si ¥uell f(u) ≥ fa) le pt a 8t dit extremum global se f.

Def: Une fonction of definie sur une partie U = R° presente en a

· Un Maximum Local 8'il existe un réél r>0

Vue2; ||u-a||≤r=0 f(u)≤fb)

· Un Minimu Local S'îl existe un réel r≥o Vuell; ||u-a|| ≤ r = v f(u) ≥ f(a).

On dit alors que a st un extrumen Locale def.

Proposition Soit & E'(U), Si f presente un extremum local en a eU, alors grad (4) (a) = 0

a étant un extremum local (on peut Supposer que a st un maximum local) ansi a st un maximum dans toutes le direction possible., en particulier. sou la direction de 2 et de 7 . le a xa presente un local de lya et ya presente un maximum local de lya et ya presente un maximum local de fra 60

fac et fora étant le fonctions partielles de f en a. oinsi, du cours de l'année en deduit que.

$$f'_{y_a}(x_a) = 0$$
 et $f'_{x_a}(y_a) = 0$.

=0
$$\frac{\partial f}{\partial x}(a) = 0$$
 et $\frac{\partial f}{\partial y}(a) = 0$
ie grad $f(a) = 0$.

Remarque: genteur fe l'(U), un point de U en le gradient s'annule et dit et critique de f.

Les ple critique = {u e U; gradif(u) = 0}.

on le verra un pt critique peut me pas être extremum.

Test your la determination de pla nature des pls

On donne dans ce qui suit un test () assez siple pour la reconnasincte de La Motive des pts critique. Ce test repose sur un Developpement de Paylor d'une fonction à deux variables. (pour ceux qui désivent en line plus ; je vous censielle : des livres sour experent la le calcul différentiel sur le espace de Barrach)

Le test $f \in \mathcal{C}^1(\mathcal{U})$; $a \in \mathcal{U}$. $a \in \mathcal{U}$ avec grad f = 0. $posons: D = \frac{\partial^2 f}{\partial x^2}(a) \cdot \frac{\partial^2 f}{\partial y^2}(a) - \left(\frac{\partial^2 f}{\partial x \partial y}(a)\right)^2$

51

"D' designe le determant de la anatice. (31/2 (a) 31/2 (a))
(31/2 (a) 31/2 (a)) appellee: Hessienne de f en a. er D>0 et (2/2 (a) >0 (a 2/2 (4) >0) - as present & presente un Aninimum or 3x, (a) < 0 (or 3x, (a) < 0) => f présente un Maximum Local en a a net ni un minimum, ni um Maximum Local. a jour e rôle d'un pot Selle. le pt a st un pt de dégénéressanco. > 8: D = 0 e à su hamiller pas devant lui " nousey - vous Examples = f(219) = 24+44-429+1. -Dxf = 42-43 244 = 4y3 - 42 gradf = 0 000 fet 3= 2

(=0 x(x-1)=0 to ex(x-1)(x41)=0

x(221)(241)(241)=0

Du veut fabriquer apartir de 12 m² de Carton une boite de volume maximale; tronver ce volume.

$$V = ny3;$$

$$2ny + 2y3 + 2n3 = 12.$$

$$= 3 = \frac{12 - 2ny}{2y + 2x} = \frac{6 - ny}{n + y},$$

$$V(n)y) = ny \cdot \frac{6 - ny}{n + y}$$

$$= \frac{6ny - n^2y^2}{n + y}$$

$$= \frac{6ny - n^2y^2}{n + y} \cdot \frac{6ny + n^2y^2}{n + y^2}$$

$$= \frac{6ny - n^2y^2}{n + y^2} \cdot \frac{6ny + n^2y^2}{n + y^2}$$

$$= \frac{6ny - n^2y^2}{n + y^2} \cdot \frac{6ny + n^2y^2}{n + y^2} \cdot \frac{6ny + n^2y^2}{n + y^2}$$

$$= \frac{6ny - n^2y^2}{n + y^2} \cdot \frac{6ny + n^2y^2}{n + y^2} \cdot \frac{6ny + n^2y^2}{n + y^2}$$

$$= \frac{6ny - n^2y^2}{n + y^2} \cdot \frac{6ny + n^2y^2}{n + y^2} \cdot \frac{$$

$$d = \frac{24}{2x} = \frac{6y^2 - n^2y^2 - 2ny^3}{(n+y)^2}$$

$$\frac{2f}{7y} = \frac{6x^2 - x^2y^2 - 2yn^3}{(x+y)^3}$$

$$\begin{cases} \frac{2f}{2x} = 0 \\ \frac{2f}{2x} = 0 \end{cases} = \begin{cases} \frac{4}{3} \left[6 - x^2 - 2xy \right] = 0 \\ \frac{2f}{2x} = 0 \end{cases} \times \left[6 - y^2 - 2xy \right] = 0$$

les solutions 2=y=0 sont refusé.

da

1

1

$$\begin{cases} lxy = 6 - x^{2} \\ lxy = 6 - y^{2} \end{cases} = 0 \quad x' = y' \text{ or } fonc x = y' \\ car yyo, xyo, xyo, 370.$$

on trouve: 22 = 6-2 = x=2

et de plus
$$3 = \frac{6 - \pi y}{x + y} = \sqrt{2}$$
.

Comment

 $(\times, \%, 3) = (2, \sqrt{2}, \sqrt{2}).$

comment un industriel pour construre une Longueur

1 1/2

6

Exemple:

Une boite rectangulaire ouverte au dessus a un volume de 32 m³. Quelles doivent être ses dimension pour que sa Surface totale soit Minimum?

Scit 21413 les longueurs des arêts.

il vient:
$$3 = \frac{32}{xy}$$
.
 $S = xy + \frac{64}{x^2} + \frac{64}{y}$.
 $\frac{35}{5x} = y - \frac{64}{x^2} = 0$ = $0 \times 2y = 64$ et $xy = 64$.
 $\frac{25}{2y} = 2 - \frac{64}{y^2} = 0$ = $0 \times 2y = 64$ et $xy = 64$.
 $x^3 = 64 = 0 \times 2y = 4$ et $x = 2y = 4$.
 $x^3 = 64 = 0 \times 2y = 4$ et $x = 2y = 4$.
 $x = 2y = 4$ et $x = 2y = 4$.
 $x = 2y = 4$ et $x = 2y = 4$.
 $x = 2y = 4$ et $x = 2y = 4$.
 $x = 2y = 4$ ensure $x = 2y = 4$ ensure $x = 2y = 4$. Example $x = 2y = 4$ ensure $x =$

Markette Dans ce que précede, en cherche & optimiséer une quantité of (un potentiel, une énergie, un taux;...)
sont conditions supplémentaire; sans contrainte supplémentaire ou dit qu'on cherche un extremum libre.

dans le cas Contraîre, bi en veut optimiser un phénomère donné avec conditions on sons-certaire lon détions dites contraintes, on parle d'extremume liée on extremum avec Contrairts.

Maximums et Minimum liées: (avec contraints)

Methode des Multiplicateurs de Lagrange

On cherche le extremum Locaux (relatifs) d'une fonction $F: (n_1y_13) \longrightarrow F(n_1y_13)$ Lorsque le variable x_1y_13 pont liées par la Centraine $g(x_1y_13) = 0$. On dit alors qu'on a des extremums liées.

Pour cela, on applique la Méthode du Multiplicateur Se dagrange - qui revient à determiner le extremums de La fonction auxilliaire & define (x,y,5) + 7 of (2e,y,3) (x1413) = 2 F(x,413) + 8(x,413) avec A un paramêtre réel, en deterinant en premier es pts critique: grad & =0: ix 1 36 =0 36 =0 Conditions nécessaire, pour L'obstention d'un pt critiques. de paranètre à independant de 2,4,3 sappelle nultiplicateur de Lagrange. Par une interprétation geométrique de cette Methodo on rervoi au livre de James stewart page 934_p+0

trouver la plus petite distance de l'origine à l'hyperbole $n^2 + 8xy + 7y^2 = 115$; 3=0ainsi nons devant Minimiser la Dané de la distance $x^2 + y^2$, $y^2 + y^2 = F(x,y)$ $n^2 + 8xy + 7y^2 = 225$, g(x,y) = 225.

$$\begin{cases} \frac{\partial G}{\partial x} = 2\lambda x + 2x + 8y = 0 \\ \frac{\partial G}{\partial x} = 2\lambda y + 8x + 14y = 0 \end{cases}$$

$$\begin{cases} \frac{\partial G}{\partial x} = 2\lambda y + 8x + 14y = 0 \\ \frac{\partial G}{\partial y} = 2\lambda y + 8x + 14y = 0 \end{cases}$$

$$(\alpha_{18}) \pm (\alpha_{0}) :$$
 $\begin{vmatrix} \lambda_{+1} & 4 \\ 4 & \lambda_{+2} \end{vmatrix} = 0 = 0 \quad \lambda = 1, -9$

1° cas: $\beta = 1$: on aura: x = -hy d'en en remplaçant ds q(x,y) = 225:

il vient: -342= es inpossible.

L'es 7=9. il vient $7=1\times$ di remplaçant se 9(x,y)=125il vient: $45x^2=11$ Sonc $x^2=5$, y=20of Sonc $x^2+y^2=25$.

la plus petite distance à l'origne 8t 125 = 5.

Geheralization

cette Méthode peut se généralise, si nous voulons determiner le extremus locaux d'une fonction

$$(x_1,...,x_n)$$
 $\longrightarrow F(x_1,...,x_n)$

Losque le variable sont liées par les Contraints:

$$\phi_1(\chi_1,...,\chi_n)=0$$
, ..., $\phi_k(\chi_1,...,\chi_n)=0$.

nous for ons la fonct auxilliais.

$$G(x_1,...,x_n) = F + \gamma \phi_1 + \gamma_2 \phi_2 + ... + \gamma_k \phi_k$$

assignt is aux conditions $\frac{26}{2x_1} = 0$, $\frac{26}{2x_2} = 0$, $\frac{26}{2x_1} = 0$

57

1 traver le valeurs Max et Min de 212+y2+32 assujettées aux conditions 24 + 4/5 + 3 /25 = 1 at 3 = x+y. posons F = x2+y2+32. \$1 = \frac{\chi^2 + \frac{\chi^2}{5} + \frac{3^2}{15} - 1 = 0 \qquad \qquad \qquad 42 = 2+y-3-0. en utilisantée, Multiplicateur de Lagrange: 71,72 étencensiderant la fonct: G=F+D1+72\$2 = x2+y2+3+ >1 (x2+4-3) $\partial_{x}G = 2x + \frac{\lambda_{1}x}{2} + \lambda_{2} = 0$ 246 = 24 + 2214 + 22 =0 736 = 23 + 27,3 - 72=0. $\chi = \frac{-2\lambda^2}{\lambda_1 + 4} \quad ; \quad Y = \frac{-5\lambda_2}{10 + 2\lambda_1}$ il vieul. $3 = \frac{25\lambda_2}{50+2\lambda_1}$ sachant x+7-3=0

 $\frac{-2\lambda_2}{\lambda_1+4}+\frac{-5\lambda_2}{40+2\lambda_1}-\frac{25\lambda_2}{50+2\lambda_4}=0.$ en derivisant pas Az + 0 (car sinou x=7=3=0 inp).

$$\frac{2}{2}$$
 + $\frac{5}{2}$ + $\frac{2r}{50+2\lambda_1}$ = 8 . | 11 viewt.
 $\frac{2}{2}$ + $\frac{5}{2}$ + $\frac{2r}{50+2\lambda_1}$ = 8 . | 11 viewt.
 $17 + 2^2 + 245 + 245 + 760 = 8 = $8$$

pair 21 = - 10. X= 1 A2, Y= 12 A2, 3= 5/6 Az en reuplacant de la 1º Contrainte: nous trouvous $\Lambda_z^2 = \frac{180}{19}$ on a alas: deux pots: (2/5/p , 3/5/19 , 5/5/19) (-4/5/19, -3/5/19, -5/5/19. la volem de ni + y²+3². y coorespondant et 10. 2 : 3, = - 7 /17. n=34/7 22, y=-174 22,3=12/28 22 airsi 4, =0: $\lambda_2 = \pm 140 (17 \sqrt{646})$ ce qui sonne (40/1646, -35/1646, 5/1646) (-40/1646, 35/1646, -5/1646) 85 ce cas la distance 81: 145= 7/17. donc 10 st la valeur Hax et 71/17 st la Valeur Vin. 2y2. (89)

Le