Année : 2024/2025	Série n°: 3	2bac sc math
ouikrim	fonction reciproque	fkih ben salah

Résumé

- \blacktriangleright pour montrer que f realise une bijection de I vers J:
 - f continue sur I f strictement monotone sur I J = f(I)
- \blacktriangleright monotonie de f^{-1}
 - La monotonie de f^{-1} sur J est la même que la monotonie de f sur I.
- ▶ la courbe def^{-1} :

 $\overline{C_{f^{-1}}}$ est symetrique à C_f par rapport á la droite d'equation y=x

s'entraîner

correction en classe

Exercice 1

soit la fonction f definie sur [0,1] par $f(x) = \sqrt{1-x^2}-2x$.

- 1. montrer que f realise une bijection de [0,1] vers un imtervalle J qu'on determinera
 - montrer que $\forall x \in J : f^{-1}(x) = \frac{1}{5} \left(\sqrt{5 x^2} 2x \right)$
- 2. on pose $g(x) = f\left(\frac{1}{(x+1)^3} + \frac{1}{2}\right) \operatorname{sur}\left[\frac{1}{3}, +\infty\right[$
 - montrer que g realise une bijection de $\left[\frac{1}{3}, +\infty\right[$ vers K qu'on determinera
 - determiner $g^{-1}(x)$ pour $x \in K$
- 3. soit h definie sur $\left[0, \frac{\pi}{2}\right]$ par $h(x) = f(\cos(x))$
 - \bullet montrer que h realise une bijection de $\left[0,\frac{\pi}{2}\right]$ vers L qu'on determinera
 - determiner $h^{-1}(x)$ pour $x \in L$

Exercice 2(Q1 et 2 indépendantes)

- 1. soit f definie sur $I = [-1, +\infty[$ par $f(x) = (1+x^3)^2]$
 - montrer que f admet une fonction reciproque f^{-1} definie sur J qu'on determinera
 - determiner $f^{-1}(x)$
- 2. soit $\lambda \in \mathbb{R}^-$
 - etudier le signe de $\sqrt[3]{-\lambda} + \lambda$
 - resoudre l'equation $(x^4 \lambda)^3 + \lambda = 0$

Exercice 3

Soit f définie sur $I = \left[0, \frac{\sqrt{3}}{2}\right]$ par $: f(x) = \tan\left(\pi\sqrt{1 - x^2}\right)$

- 1. Calculer $\lim_{x \to (\frac{\sqrt{3}}{2})^-} f(x)$ et montrer que f est continue sur I .
- 2. Montrer que f admet une fonction réciproque f^{-1} , définie sur un ensemble J que l'on déterminera.
- 3. Déterminer explicitement $f^{-1}(x)$ pour x dans J

correction sur la chaîne youtube : ouikrimath

Exercice 1

- montrer que pour tout a, b de \mathbb{R}^+ on a:
- $\left(a^2 + a^{\frac{4}{3}}b^{\frac{2}{3}}\right)^{\frac{1}{2}} + \left(b^2 + a^{\frac{2}{3}}b^{\frac{4}{3}}\right)^{\frac{1}{2}} = \left(a^{\frac{2}{3}} + b^{\frac{2}{3}}\right)^{\frac{3}{2}}$
- calculer $\arctan(\frac{1}{2}) + \arctan(\frac{1}{5}) + \arctan(\frac{1}{8})$

Exercice 2

- 1. montrer que : $\forall t \in \left]0, \frac{\pi}{2}\right[$: $2\sin(t) + \tan(t) > 3t$
- 2. en deduire que :

$$\forall x \in \mathbb{R}^* \colon 0 < \frac{\arctan(x)}{x} < \frac{2 + \sqrt{1 + x^2}}{3\sqrt{1 + x^2}}$$

Exercice 3

soit f definie sur $\left]-a, \frac{\pi}{2}\right[$ par:

$$f(x) = \frac{\sin(x)}{\sin(x+a)} \text{ avec } 0 < a < \frac{\pi}{2}$$

1. calculer $\lim_{x \to (-a)^+} f(x)$ et montrer que f admet une

fonction reciproque f^{-1} definie sur $\left]-\infty, \frac{1}{\cos(a)}\right]$

2. determiner $f^{-1}(x)$ pour $x \in \left] -\infty, \frac{1}{\cos(a)} \right]$

Exercice 4

soit la fonction definie sur \mathbb{R} par $f(x) = \arctan(3x) + 2x - 1$

- 1. montrer que f realise une bijection de \mathbb{R} vers \mathbb{R} .
- 2. montrer que l'equation $f^{-1}(x) = x$ admet une solution unique α dans \mathbb{R} et que $0 < \alpha < \frac{1}{3}$
- 3. verifier que $\alpha = 1 \arctan(3\alpha)$ et puis que: $1 \frac{\pi}{4} < \alpha < \frac{1}{3}$
- 4. montrer que $\forall x > \alpha : f^{-1}(x) < x$

correction en classe

Exercice 4

soit la fonction definie par $f(x) = \sin(x)$ sur $I = \left[-\frac{-\pi}{2}, \frac{\pi}{2} \right]$

- 1. montrer f que realise une bijection de I vers J qu'on determinera
- 2. tracer C_f et C_f^{-1}
- 3. montrer que f^{-1} est impair
- 4. on pose $g(x) = f^{-1} \left(2x\sqrt{1-x^2} \right)$ a - determiner D_q b - montrer que
 - $\forall x \in \left| \frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right| \quad g(x) = 2f^{-1}(x)$

Exercice 5

- 1. calculer les limites :
 - $\lim_{x \to 1} \frac{4 \arctan(2x-1)}{-\pi}$
 - $\lim_{x \to 1} \frac{x}{x-1}$ $\lim_{x \to +\infty} \sqrt{x^3} \left(\arctan(\sqrt{2+x}) \arctan(x) \right)$
 - $\lim_{x \to 2} \frac{\sqrt[4]{x-1} \sqrt[3]{3-x}}{\sqrt{x-1} \sqrt[3]{3-x}}$ $\lim_{x \to +\infty} x \left(\sqrt[3]{x^3+1} \sqrt{x^2+1}\right)$

 - $\lim_{x \to +\infty} x \left(\frac{\pi}{4} + \arctan(\frac{x}{1-x}) \right)$ $\lim_{x \to 3} \frac{5\sqrt[3]{x^2 1} 2\sqrt{x^3 2}}{\sqrt[3]{x^2 1}\sqrt{x^3 2} 10}$

 - $\bullet \lim_{x \to 1} \frac{\sqrt[3]{x} \sqrt{x}}{x + \sqrt[3]{x} 2}$
 - $\bullet \lim_{x \to +\infty} \frac{1}{x} \left(x^{\frac{2}{3}} x^{\frac{1}{3}} \right)^{\frac{3}{2}}$
- 2. resoudre dans \mathbb{R} :
 - $\bullet \sqrt{x+1} \sqrt[3]{x} = 1$
 - $\arctan(x+1) + \arctan(x-1) = \frac{\pi}{4}$
 - $\bullet \sqrt[3]{x^2} 3\sqrt[3]{x(x-1)} + 2\sqrt[3]{(x-1)^2} = 0$

Exercice 6

soit f_n definie sur \mathbb{R} par :

$$f_n(x) = 2 \arctan\left(\frac{x^n}{1 + \sqrt{1 + x^{2n}}}\right)$$

avec n impair

- 1. montrer que $(\forall x \in \mathbb{R})(\exists!\alpha \in]\frac{-\pi}{2}, \frac{\pi}{2}[): \tan(\alpha) = x^n$
- 2. montrer que $\forall x \in \mathbb{R} : f_n(x) = \arctan(x^n)$ et deduire que $\tan(\frac{\pi}{8} = \sqrt{2} - 1$
- 3. montrer que f_n realise une bijection de \mathbb{R} vers l'intervalle J qu'on determinera
- 4. determiner $f_n^{-1}(x)$ pour $x \in J$

correction sur la chaîne youtube : ouikrimath

Exercice 5

- 1. montrer que $\lim_{x\to 0} \frac{\sqrt[n]{x+1}-1}{x} = \frac{1}{n}$ (poser $t = \sqrt[n]{x+1}$)
- 2. deduire

$$\lim_{x \to 0} \frac{\sqrt{x+1} - \sqrt[3]{x+1}}{x} \text{ et } \lim_{x \to 0} \frac{\sqrt{x+1}\sqrt[3]{x+1} - 1}{x}$$

$$\lim_{x \to 0} \frac{\sqrt{x+1}\sqrt[3]{x+1} \dots \sqrt[n]{x+1} - 1}{x} = \sum_{k=2}^{k=n} \frac{1}{k}$$

Exercice 6

- 1. calculer les limites:

 - $\begin{array}{l} \bullet \lim_{x \to 1^+} \frac{1}{\sqrt{x-1}} \frac{1}{\sqrt[3]{x-1}} \\ \bullet \lim_{x \to -\infty} \sqrt[3]{x-x^3} \sqrt[4]{x^4-x^2+1} \end{array}$
 - $\bullet \lim_{x \to +\infty} x^{\frac{3}{2}} \left(\sqrt[4]{x+1} \sqrt[4]{x-1} \right)$
 - $\lim_{x \to 1} \frac{\arctan(\sqrt{x}) \arctan(\sqrt[3]{x})}{x 1}$ $\lim_{x \to 0^{+}} \frac{\arctan(\frac{1}{\sqrt{x}} x) \frac{\pi}{2}}{x}$
- 2. resoudre dans \mathbb{R}
 - $\arctan(x-3) + \arctan(x+3) + \arctan(x) = \frac{5\pi}{4}$

Exercice 7

1. Montrer que $\forall x \in \mathbb{R}$:

$$\arctan(x) + 2\arctan\left(\sqrt{1+x^2} - x\right) = \frac{\pi}{2}$$

2. En déduire que $\forall x \in \mathbb{R}^*$:

$$\arctan\left(\sqrt{1+x^2}-x\right) = \begin{cases} \frac{1}{2}\arctan\left(\frac{1}{x}\right) & \text{si } x > 0, \\ \frac{\pi}{2} + \frac{1}{2}\arctan\left(\frac{1}{x}\right) & \text{si } x < 0 \end{cases}$$