Advanced Statistical Inference Classification - Performance Evaluation

Maurizio Filippone Maurizio.Filippone@eurecom.fr

Department of Data Science EURECOM

M. Filippone

Assessing classifier performance

0/1 loss
ROC analysis
Confusion matrices

bummary

- ► How do we choose a classifier?
 - Which algorithm?
 - ► Which parameters?
- Need performance indicators.

M. Filippone

Assessing classifier performance

0/1 loss
ROC analysis
Confusion matrice

- How do we choose a classifier?
 - Which algorithm?
 - Which parameters?
- Need performance indicators.
- ► We'll cover:
 - ▶ 0/1 loss.
 - ROC analysis (sensitivity and specificity)
 - Confusion matrices

- ► 0/1 loss: proportion of times classifier is wrong.

 Consider a set of predictions to the and a set
- ▶ Consider a set of predictions $t_1, ..., t_N$ and a set of true labels $t_1^*, ..., t_N^*$.
- ► Mean loss is defined as:

$$\frac{1}{N}\sum_{n=1}^{N}\delta(t_n\neq t_n^*)$$

• $(\delta(a)$ is 1 if a is true and 0 otherwise)

- ▶ 0/1 loss: proportion of times classifier is wrong.
- \triangleright Consider a set of predictions t_1, \ldots, t_N and a set of true labels t_1^*, \ldots, t_N^* .
- Mean loss is defined as:

$$\frac{1}{N}\sum_{n=1}^{N}\delta(t_n\neq t_n^*)$$

- $(\delta(a))$ is 1 if a is true and 0 otherwise)
- Advantages:
 - Can do binary or multiclass classification.
 - Simple to compute.
 - Single value.

Assessing classifier performance

0/1 loss

ROC analysis Confusion matrices

ummary

- ▶ We're building a classifier to detect a rare disease.
- ► Assume only 1% of population is diseased.

- ▶ We're building a classifier to detect a rare disease.
- ► Assume only 1% of population is diseased.
- ▶ Diseased: t = 1
- ▶ Healthy: t = 0

- ▶ We're building a classifier to detect a rare disease.
- ► Assume only 1% of population is diseased.
- ▶ Diseased: t = 1
- ▶ Healthy: t = 0
- ▶ What if we always predict healthy? (t = 0)

- ▶ We're building a classifier to detect a rare disease.
- ► Assume only 1% of population is diseased.
- ▶ Diseased: t = 1
- ▶ Healthy: t = 0
- ▶ What if we always predict healthy? (t = 0)
- Accuracy 99%
- ▶ But classifier is rubbish!

Sensitivity and specificity

- We'll stick with our disease example.
- ▶ Need to define 4 quantities. The numbers of:

Introduction

M. Filippone

performance 0/1 loss ROC analysis

- ▶ We'll stick with our disease example.
- ▶ Need to define 4 quantities. The numbers of:
- ▶ True positives (TP) the number of objects with $t_n^* = 1$ that are classified as $t_n = 1$ (diseased people diagnosed as diseased).

- ▶ We'll stick with our disease example.
- ▶ Need to define 4 quantities. The numbers of:
- True positives (TP) the number of objects with $t_n^* = 1$ that are classified as $t_n = 1$ (diseased people diagnosed as diseased).
- ▶ True negatives (TN) the number of objects with $t_n^* = 0$ that are classified as $t_n = 0$ (healthy people diagnosed as healthy).

- We'll stick with our disease example.
- ▶ Need to define 4 quantities. The numbers of:
- ► True positives (TP) the number of objects with $t_n^* = 1$ that are classified as $t_n = 1$ (diseased people diagnosed as diseased).
- ► True negatives (TN) the number of objects with $t_n^* = 0$ that are classified as $t_n = 0$ (healthy people diagnosed as healthy).
- ▶ False positives (FP) the number of objects with $t_n^* = 0$ that are classified as $t_n = 1$ (healthy people diagnosed as diseased).

- ▶ Need to define 4 quantities. The numbers of:
- ▶ True positives (TP) the number of objects with $t_n^* = 1$ that are classified as $t_n = 1$ (diseased people diagnosed as diseased).
- ▶ True negatives (TN) the number of objects with $t_n^* = 0$ that are classified as $t_n = 0$ (healthy people diagnosed as healthy).
- ▶ False positives (FP) the number of objects with $t_n^* = 0$ that are classified as $t_n = 1$ (healthy people diagnosed as diseased).
- ▶ False negatives (FN) the number of objects with $t_n^* = 1$ that are classified as $t_n = 0$ (diseased people diagnosed as healthy).

Assessing classifie performance 0/1 loss ROC analysis

$$S_e = \frac{TP}{TP + FN}$$

- ► The proportion of diseased people that we classify as diseased.
- The higher the better.
- ▶ In our example, $S_e = 0$.

$$S_p = \frac{TN}{TN + FP}$$

- ► The proportion of healthy people that we classify as healthy.
- ► The higher the better.
- ▶ In our example, $S_p = 1$.

Optimising sensitivity and specificity

- ▶ We would like both to be as high as possible.
- ▶ Often increasing one will decrease the other.

Introduction

M. Filippone

performance 0/1 loss ROC analysis

M. Filippone

performance 0/1 loss ROC analysis Confusion matrice

- We would like both to be as high as possible.
- Often increasing one will decrease the other.
- Balance will depend on application:
- e.g. diagnosis:
 - We can probably tolerate a decrease in specificity (healthy people diagnosed as diseased)....
 - ...if it gives us an increase in sensitivity (getting diseased people right).

- Many classification algorithms involve setting a threshold.
- ▶ e.g. SVM:

$$t_{\text{new}} = \operatorname{sign}\left(\sum_{n=1}^{N} t_n \alpha_n k(\mathbf{x}_n, \mathbf{x}_{\text{new}}) + b\right)$$

Implies a threshold of zero (sign function)

- Many classification algorithms involve setting a threshold.
- ► e.g. SVM:

$$t_{\text{new}} = \operatorname{sign}\left(\sum_{n=1}^{N} t_n \alpha_n k(\mathbf{x}_n, \mathbf{x}_{\text{new}}) + b\right)$$

- ▶ Implies a threshold of zero (sign function)
- ▶ However, we could use any threshold we like....
- ▶ The Receiver Operating Characteristic (ROC) curve shows how S_e and $1 S_p$ vary as the threshold changes.

- ▶ SVM for nonlinear data (in SVM lecture) with $\beta = 50$.
- Each point is a threshold value.
 - ▶ Bottom left everything classified as 0 (-1 in SVM)
 - ► Top right everything classified as 1.
- ▶ Goal: get the curve to the top left corner perfect classification ($S_e = 1, S_p = 1$).

- ▶ SVM for nonlinear data (in SVM lecture) with $\beta = 0.01$.
- ▶ Better than $\beta = 50$
 - Closer to top left corner.

- ▶ SVM for nonlinear data (in SVM lecture) with $\beta = 1$.
- Better still.

- We can quantify performance by computing the <u>Area</u> Under the ROC Curve (AUC)
- ► The higher this value, the better.

• $\beta = 50$: AUC=0.8348

• $\beta = 0.01$: AUC= 0.9551

• $\beta = 1$: AUC=0.9936

- ► We can quantify performance by computing the <u>Area</u> Under the ROC Curve (AUC)
- ► The higher this value, the better.

▶ $\beta = 50$: AUC=0.8348 ▶ $\beta = 0.01$: AUC= 0.9551 ▶ $\beta = 1$: AUC=0.9936

▶ AUC is generally a safer measure than 0/1 loss.

The quantities we used to compute S_e and S_p can be neatly summarised in a table:

		True	class
		1	0
Predicted class	1	TP	FP
Predicted class	0	FN	TN

- This is known as a confusion matrix
- ▶ It is particularly useful for multi-class classification.
- ► Tells us where the mistakes are being made.
- ▶ Note that normalising columns gives us S_e and S_p

- 20 newsgroups data.
- Thousands of documents from 20 classes (newsgroups)
- ▶ Use a Naive Bayes classifier (\approx 50000 dimensions (words)!)
 - Details in book Chapter.
- ightharpoonup pprox 7000 independent test documents.
- Summarise results in 20 × 20 confusion matrix:

	True class												
			10	11	12	13	14	15	16	17	18	19	20
	1		4	2	0	2	10	4	7	1	12	7	47
	2		0	0	4	18	7	8	2	0	1	1	3
class	3		0	0	1	0	1	0	1	0	0	0	0
	4		1	0	1	28	3	0	0	0	0	0	0
Predicted							:						
ē	16		3	2	2	5	17	4	376	3	7	2	68
ш	17		1	0	9	0	3	1	3	325	3	95	19
	18		2	1	0	2	6	2	1	2	325	4	5
	19		8	4	8	0	10	21	1	16	19	185	7
	20		0	0	1	0	1	1	2	4	0	1	92

Introduction

M. Filippone

Assessing classifie performance 0/1 loss ROC analysis Confusion matrices

True class												
		10	11	12	13	14	15	16	17	18	19	20
1		4	2	0	2	10	4	7	1	12	7	47
2		0	0	4	18	7	8	2	0	1	1	3
3		0	0	1	0	1	0	1	0	0	0	0
4		1	0	1	28	3	0	0	0	0	0	0
						:						
16		3	2	2	5	17	4	376	3	7	2	68
17		1	0	9	0	3	1	3	325	3	95	19
18		2	1	0	2	6	2	1	2	325	4	5
19		8	4	8	0	10	21	1	16	19	185	7
20		0	0	1	0	1	1	2	4	0	1	92
	3 4 16 17 18 19	1 2 3 4 16 17 18 19	1 4 2 0 3 0 4 1	1 4 2 2 0 0 3 0 0 4 1 0	1 4 2 0 2 0 0 4 3 0 0 1 4 1 0 1 16 3 2 2 17 1 0 9 18 2 1 0 19 8 4 8	1 4 2 0 2 2 0 0 4 18 3 0 0 1 0 4 1 0 1 28 16 3 2 2 5 17 1 0 9 0 18 2 1 0 2 19 8 4 8 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

- ▶ Algorithm is getting 'confused' between classes 20 and 16, and 19 and 17.
 - ▶ 17: talk.politics.guns
 - ▶ 19: talk.politics.misc

True class													
			10	11	12	13	14	15	16	17	18	19	20
	1		4	2	0	2	10	4	7	1	12	7	47
	2		0	0	4	18	7	8	2	0	1	1	3
class	3		0	0	1	0	1	0	1	0	0	0	0
Ü	4		1	0	1	28	3	0	0	0	0	0	0
eq													
Predicted							:						
re	16		3	2	2	5	17	4	376	3	7	2	68
ш	17		1	0	9	0	3	1	3	325	3	95	19
	18		2	1	0	2	6	2	1	2	325	4	5
	19		8	4	8	0	10	21	1	16	19	185	7
	20		0	0	1	0	1	1	2	4	0	1	92

- ► Algorithm is getting 'confused' between classes 20 and 16, and 19 and 17.
 - ▶ 17: talk.politics.guns
 - ▶ 19: talk.politics.misc
 - ▶ 16: talk.religion.misc
 - 20: soc.religion.christian

						True c	lass					
		 10	11	12	13	14	15	16	17	18	19	20
	1	 4	2	0	2	10	4	7	1	12	7	47
	2	 0	0	4	18	7	8	2	0	1	1	3
class	3	 0	0	1	0	1	0	1	0	0	0	0
-6	4	 1	0	1	28	3	0	0	0	0	0	0
Predicted						:						
red	16	 3	2	2	5	17	4	376	3	7	2	68
ш	17	 1	0	9	0	3	1	3	325	3	95	19
	18	 2	1	0	2	6	2	1	2	325	4	5
	19	 8	4	8	0	10	21	1	16	19	185	7
	20	 0	0	1	0	1	1	2	4	0	1	92

- ▶ Algorithm is getting 'confused' between classes 20 and 16, and 19 and 17.
 - ▶ 17: talk.politics.guns
 - ▶ 19: talk.politics.misc
 - ▶ 16: talk.religion.misc
 - ▶ 20: soc.religion.christian
- ▶ Maybe these should be just one class?
- ▶ Maybe we need more data in these classes?

	ucti	

M. Filippone

performance 0/1 loss ROC analysis Confusion matrices

						True c	lass					
		 10	11	12	13	14	15	16	17	18	19	20
	1	 4	2	0	2	10	4	7	1	12	7	47
	2	 0	0	4	18	7	8	2	0	1	1	3
class	3	 0	0	1	0	1	0	1	0	0	0	0
-6	4	 1	0	1	28	3	0	0	0	0	0	0
Predicted												
ġ.												
ē	16	 3	2	2	5	17	4	376	3	7	2	68
ш	17	 1	0	9	0	3	1	3	325	3	95	19
	18	 2	1	0	2	6	2	1	2	325	4	5
	19	 8	4	8	0	10	21	1	16	19	185	7
	20	 0	0	1	0	1	1	2	4	0	1	92

- ▶ Algorithm is getting 'confused' between classes 20 and 16, and 19 and 17.
 - ▶ 17: talk.politics.guns
 - ▶ 19: talk.politics.misc
 - 16: talk.religion.misc
 - 20: soc.religion.christian
- Maybe these should be just one class?
- Maybe we need more data in these classes?
- Confusion matrix helps us direct our efforts to improving the classifier.

Assessing classif performance 0/1 loss ROC analysis Confusion matrice

- ▶ Introduced two different performance measures:
 - ▶ 0/1 loss
 - ▶ ROC/AUC

- ▶ Introduced two different performance measures:
 - ▶ 0/1 loss
 - ► ROC/AUC
- ▶ Introduced confusion matrices a way of assessing the performance of a multi-class classifier.