I LICEUM OGÓLNOKSZTAŁCĄCE IM. EDWARDA DEMBOWSKIEGO W GLIWICACH

Grzegorz Koperwas

Badanie przebiegu zmienności funkcji

$$f(x) = x^4 - 6x^2 + 8x + 24$$

Gliwice

1. Analiza wzoru funkcji

Dana jest funkcja:

$$f(x) = x^4 - 6x^2 + 8x + 24$$

Funkcja jest wielomianem więc jej dziedzina jest zbiorem liczb rzeczywistych:

$$D_f = \mathbb{R}$$

Funkcja jest ciągła w dziedzinie. Funkcja jest różniczkowalna w dziedzinie.

1.1. Miejsca zerowe:

Funkcja posiada miejsce zerowe w punkcie (-2;0) drugiego stopnia.

1.2. Przecięcie z osią OY

$$f(0) = 0^4 - 6 \cdot 0^2 + 8 \cdot 0 + 24 = 24$$

Funkcja przecina oś 0Y w punkcie (0; 24).

1.3. Granice na krańcach dziedziny

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \underbrace{x^4}_{\to +\infty} \cdot \left(1 - \underbrace{\frac{6}{x^2} + \frac{8}{x^3} + \frac{24}{x^4}}_{\to 0} \right) =$$

$$= +\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \underbrace{x^4}_{\to +\infty} \cdot \left(1 - \underbrace{\frac{6}{x^2} + \frac{8}{x^3} + \frac{24}{x^4}}_{\to 0} \right) =$$

$$= +\infty$$

Funkcja nie posiada asymptot.

1.4. Parzystość i nieparzystość

Parzystość

Funkcja jest parzysta gdy:

$$f(x) = f(-x)$$
$$(-x)^4 - 6 \cdot (-x)^2 - 8x + 24 = x^4 - 6x^2 + 8x + 24$$

By wielomiany były równe, muszą być tego samego stopnia oraz posiadać takie same współczynniki. $-8 \neq 8$ więc wielomiany nie są równe, zatem:

$$f\left(x\right) \neq f\left(-x\right)$$

Więc funkcja nie jest parzysta.

Nieparzystość

Funkcja jest nieparzysta gdy:

$$-f(x) = f(-x)$$
$$-x^4 + 6x^2 - 8x - 24 = (-x)^4 - 6 \cdot (-x)^2 - 8x + 24$$

By wielomiany były równe, muszą być tego samego stopnia oraz posiadać takie same współczynniki. $24 \neq -24$ więc wielomiany nie są równe, zatem:

$$-f(x) \neq f(-x)$$

Więc funkcja nie jest nieparzysta.

2. Analiza pierwszej pochodnej

Obliczamy pierwszą pochodną:

$$f'(x) = 4x^3 - 12x + 8$$

Pierwsza pochodna danej funkcji jest wielomianem więc jej dziedziną jest zbiór liczb rzeczywistych.

$$D_{f'} = \mathbb{R}$$

2.1. Miejsca zerowe pochodnej

$$f'(x) = (x-1) \cdot (4x^2 + 4x - 8)$$

$$4x^2 + 4x - 8 = 0$$

$$x^2 + x - 2 = 0$$

$$\Delta = 1 + 4 \cdot 2 \cdot 1 = 9 > 0$$

$$\sqrt{\Delta} = \sqrt{9} = 3$$

$$x_{1,2} = \frac{-1 \pm 3}{2} \Rightarrow x_1 = -2, x_2 = 1$$

$$f'(x) = (x-1)^2 \cdot (x+2)$$

Pochodna funkcji posiada miejsce zerowe w 1 drugiego stopnia. Pochodna funkcji posiada miejsce zerowe w punkcie -2.

2.2. Wyznaczanie ekstremów funkcji

Warunek konieczny ekstremum

$$f'(x) = 0 \Leftrightarrow (x-1)^2 \cdot (x+2) = 0$$

$$f'(x) = 0 \Leftrightarrow x \in \{-2; 1\}$$

Podejrzewam że funkcja ma ekstremum w $x_0 = -2$ oraz w $x_1 = 1$.

$$\begin{cases} f'(x) > 0 \Leftrightarrow x \in (-2; 1) \cup (1; +\infty) \\ f'(x) < 0 \Leftrightarrow x \in (-\infty; -2) \end{cases}$$

Warunek wystarczający ekstremum

$$\left. \begin{array}{l} x \in S^{-}\left(-2,\delta\right) \Rightarrow f'\left(x\right) < 0 \\ x \in S^{+}\left(-2,\delta\right) \Rightarrow f'\left(x\right) > 0 \end{array} \right\} \Rightarrow f\left(-2\right) = 0 = f_{\min}$$

Funkcja posiada minimum w punkcie (-2;0).

$$\left. \begin{array}{l} x \in S^{-}\left(1,\delta\right) \Rightarrow f'\left(x\right) > 0 \\ x \in S^{+}\left(1,\delta\right) \Rightarrow f'\left(x\right) > 0 \end{array} \right\} \Rightarrow$$

 \Rightarrow funkcja nie posiada ekstremum w (1;27).

2.3. Monotoniczność funkcji

$$\begin{cases} f'(x) > 0 \Leftrightarrow x \in (-2; 1) \cup (1; +\infty) \\ f'(x) < 0 \Leftrightarrow x \in (-\infty; -2) \end{cases}$$

więc:

- Funkcja jest rosnąca w przedziale $\langle -2; +\infty \rangle$.
- Funkcja jest malejąca w przedziale $(-\infty; -2)$.

3. Analiza drugiej pochodnej

$$f''(x) = 12x^2 - 12$$

Druga pochodna funkcji jest wielomianem, więc dziedzina drugiej pochodnej to zbiór liczb rzeczywistych.

$$D_{f''(x)} = \mathbb{R}$$

3.1. Punkty przegięcia

Warunek konieczny punktu przegięcia

$$f''(x) = 0 \Leftrightarrow 12x^2 - 12 = 0$$
$$x^2 - 1 = 0$$
$$(x - 1) \cdot (x + 1) = 0$$
$$x = 1 \lor x = -1 \Rightarrow$$
$$\Rightarrow x \in \{-1; 1\}$$

$$\begin{cases} f''(x) > 0 \Leftrightarrow x \in (-\infty; -1) \cup (1; +\infty) \\ f''(x) < 0 \Leftrightarrow x \in (-1; 1) \end{cases}$$

Więc:

- Krzywa jest wypukła w $(-\infty;-1)\cup(1;+\infty)$
- Krzywa jest wklęsła w (-1;1)

Warunek wystarczający punktu przegięcia

$$\left. \begin{array}{l} x \in S^{-}\left(-1;\delta\right) \Rightarrow f''\left(x\right) > 0 \\ x \in S^{+}\left(-1;\delta\right) \Rightarrow f''\left(x\right) < 0 \end{array} \right\} \Rightarrow P_{1} = \left(-1;f\left(-1\right)\right) = \left(-1;11\right) \text{ p.p.}$$

Funkcja posiada punkt przegięcia w (-1;11).

$$x \in S^{-}(1; \delta) \Rightarrow f''(x) < 0$$

 $x \in S^{+}(1; \delta) \Rightarrow f''(x) > 0$ $\Rightarrow P_{2} = (1; f(1)) = (1; 27)$ p.p.

Funkcja posiada punkt przegięcia w (1; 27).

4. Tabela przebiegu zmienności funkcji

$(1; +\infty)$	+	+	27 $\nearrow +\infty$)
$\overline{}$	0	0	22	
(0;1)	+		24 \nearrow 27	(
0	+		24	(
(-1;0)	+		11 > 24	(
	+	0	11	
(-2; -1)	+	+	0 > 11)
-2	0	+	min 0)
$(-\infty; -2)$		+	0 × 8+)
x	f'(x)	f''(x)	$f\left(x ight) $	

Tabela 1: Tabela zmienności funkcji $f\left(x\right)=x^{4}-6x^{2}+8x+24$

5. Wykresy funkcji

Rysunek 1: Wykres funkcji $f(x) = x^4 - 6x^2 + 8x + 24$ z programu Geogebra