SEQUENTIAL LOGIC

Sequential Logic

2 storage mechanisms

- positive feedback
- charge-based

Positive Feedback: Bi-Stability

Meta-Stability

Gain should be larger than 1 in the transition region

SR-Flip Flop

	S	R	Q	Q
•	0	0	Q	Q
	1	0	1	0
	0	1	0	1
	1	1	0	0

S	R	Q	Q
1	1	Q	Q
0	1	1	0
1	0	0	1
0	0	1	1

JK- Flip Flop

Other Flip-Flops

Toggle Flip-Flop

Delay Flip-Flop

Race Problem

Signal can race around during ϕ = 1

Master-Slave Flip-Flop

Propagation Delay Based Edge-Triggered

= Mono-Stable Multi-Vibrator

Edge Triggered Flip-Flop

Flip-Flop: Timing Definitions

Maximum Clock Frequency

 $t_{pFF}^{+}t_{p,comb}^{+}t_{setup}^{-}$

CMOS Clocked SR- FlipFlop

Flip-Flop: Transistor Sizing

6 Transistor CMOS SR-Flip Flop

Charge-Based Storage

(b) Non-overlapping clocks

(a) Schematic diagram

Pseudo-static Latch

Master-Slave Flip-Flop

Overlapping Clocks Can Cause

- Race Conditions
- Undefined Signals

2 phase non-overlapping clocks

2-phase dynamic flip-flop

Flip-flop insensitive to clock overlap

C²MOS LATCH

C²MOS avoids Race Conditions

Pipelining

Clock Period	Adder	Absolute Value	Logarithm
1	$a_1 + b_1$		
2	$a_2 + b_2$	$ a_1 + b_1 $	
3	$a_3 + b_3$	$ a_2 + b_2 $	$\log(a_1+b_1)$
4	$a_4 + b_4$	$ a_3 + b_3 $	$\log(a_2+b_2)$
5	<i>a</i> ₅ + <i>b</i> ₅	$ a_4 + b_4 $	$\log(a_3+b_3)$

Pipelined Logic using C²MOS

NORA CMOS

What are the constraints on F and G?

Example

Number of a static inversions should be even

NORA CMOS Modules

Digital Integrated Circuits

Sequential Logic

© Prentice Hall 1995

Doubled C²MOS Latches

Doubled n-C²MOS latch

Doubled n-C²MOS latch

TSPC - True Single Phase Clock Logic

Including logic into the latch

Inserting logic between latches

Master-Slave Flip-flops

(a) Positive edge-triggered D flip-flop

(b) Negative edge-triggered D flip-flop

(c) Positive edge-triggered *D* flip-flop using split-output latches

Schmitt Trigger

- VTC with hysteresis
- Restores signal slopes

Noise Suppression using Schmitt Trigger

CMOS Schmitt Trigger

Schmitt Trigger Simulated VTC

CMOS Schmitt Trigger (2)

Multivibrator Circuits

Bistable Multivibrator flip-flop, Schmitt Trigger

Monostable Multivibrator one-shot

Astable Multivibrator oscillator

Transition-Triggered Monostable

Monostable Trigger (RC-based)

(a) Trigger circuit.

(b) Waveforms.

Astable Multivibrators (Oscillators)

Ring Oscillator

Voltage Controller Oscillator (VCO)

propagation delay as a function of control voltage

Relaxation Oscillator

$$T = 2 (log3) RC$$