Projet de conception et de programmation

Mickael LE DENMAT

Université Versailles Saint-Quentin en Yvelines Investigating feature selection techniques to improve data mining tasks

5 février 2023

Table des matières

- Introduction
- 2 Rough Set Theory
- 3 Application
- 4 Conclusion
- 6 Références

Data Mining

• Le monde d'aujourd'hui : Beaucoup de données!

Data Mining

- Le monde d'aujourd'hui : Beaucoup de données!
- Problème de prise de décision.

Data Mining

- Le monde d'aujourd'hui : Beaucoup de données!
- Problème de prise de décision.

Solution

Data Mining: la pratique consistant à rechercher automatiquement de grandes quantités de données afin de découvrir des tendances et des modèles qui vont au delà de la simple analyse. [Oracle,]

Feature selection

• Complexité du monde réel.

Feature selection

- Complexité du monde réel.
- Accélérer la prise de décision.

Feature selection

- Complexité du monde réel.
- Accélérer la prise de décision.

Solution

Feature selection.

Rough Set Theory

Indiscernibility Relation

Exemple

Patient	Headache	Muscle-Pain	Temperature	Flu
01	Yes	Yes	Very High	Yes
<i>o</i> ₂	Yes	No	High	Yes
03	Yes	No	High	No
04	No	Yes	Normal	No
05	No	Yes	High	Yes
06	No	Yes	Very High	Yes

Table – Dessin pour le calcul du IND_C

$$\textit{IND}_{\textit{C}} = \{\{\textit{o}_1\}, \{\textit{o}_2, \textit{o}_3\}, \{\textit{o}_4\}, \{\textit{o}_5\}, \{\textit{o}_6\}\}.$$

B-Lower & B-Upper Approximation

Rappel

$$X_1 = \{o_j | Flu(o_j) = \{ Yes \} \} = \{o_1, o_2, o_5, o_6 \}$$

 $X_2 = \{o_j | Flu(o_j) = \{ No \} \} = \{o_3, o_4 \}$
 $IND_C = \{ \{o_1\}, \{o_2, o_3\}, \{o_4\}, \{o_5\}, \{o_6\} \}.$

B-Lower & B-Upper Approximation

Rappel

$$X_1 = \{o_j | Flu(o_j) = \{Yes\}\} = \{o_1, o_2, o_5, o_6\}$$

 $X_2 = \{o_j | Flu(o_j) = \{No\}\} = \{o_3, o_4\}$
 $IND_C = \{\{o_1\}, \{o_2, o_3\}, \{o_4\}, \{o_5\}, \{o_6\}\}.$

B-Lower

$$CX_1 = \{o_1, o_5, o_6\}$$

 $CX_2 = \{o_4\}$

B-Lower & B-Upper Approximation

Rappel

$$X_1 = \{o_j | Flu(o_j) = \{Yes\}\} = \{o_1, o_2, o_5, o_6\}$$

 $X_2 = \{o_j | Flu(o_j) = \{No\}\} = \{o_3, o_4\}$
 $IND_C = \{\{o_1\}, \{o_2, o_3\}, \{o_4\}, \{o_5\}, \{o_6\}\}.$

B-Lower

$$CX_1 = \{o_1, o_5, o_6\}$$

 $CX_2 = \{o_4\}$

B-Lower

$$\bar{C}X_1 = \{o_1, o_2, o_3, o_5, o_6\}$$

 $\bar{C}X_2 = \{o_2, o_3, o_4\}$

Positive & Negative Region

Rappel

$$\underline{C}X_1 = \{o_1, o_5, o_6\}
\underline{C}X_2 = \{o_4\}
\bar{C}X_1 = \{o_1, o_2, o_3, o_5, o_6\}
\bar{C}X_2 = \{o_2, o_3, o_4\}$$

Positive & Negative Region

Rappel

$$\underline{C}X_1 = \{o_1, o_5, o_6\}
\underline{C}X_2 = \{o_4\}
\bar{C}X_1 = \{o_1, o_2, o_3, o_5, o_6\}
\bar{C}X_2 = \{o_2, o_3, o_4\}$$

Positive Region

$$POS_C = \underline{C}X_1 \cup \underline{C}X_2$$

= $\{o_1, o_5, o_6\} \cup \{o_4\}$
= $\{o_1, o_5, o_6, o_4\}$

Positive & Negative Region

Rappel

$$\underline{C}X_1 = \{o_1, o_5, o_6\}
\underline{C}X_2 = \{o_4\}
\bar{C}X_1 = \{o_1, o_2, o_3, o_5, o_6\}
\bar{C}X_2 = \{o_2, o_3, o_4\}$$

Positive Region

$$POS_C = \underline{C}X_1 \cup \underline{C}X_2$$

= $\{o_1, o_5, o_6\} \cup \{o_4\}$
= $\{o_1, o_5, o_6, o_4\}$

Negative Region

$$NEG_C = U - (\bar{C}X_1 \cup \bar{C}X_2)$$
= $\{o_1, o_2, o_3, o_4, o_5, o_6\} - (\{o_1, o_2, o_3, o_5, o_6\} \cup \{o_2, o_3, o_4\})$
= \emptyset

Reduct

Définition

Un *reduct* est un sous ensemble minimal d'attributs ayant la même *Positive Region* que l'ensemble des attributs.

Reduct

Définition

Un *reduct* est un sous ensemble minimal d'attributs ayant la même *Positive Region* que l'ensemble des attributs.

Exemple

[["Headache", "Temperature"], ["Muscle-pain", "Temperature"]]

Core

Définition

Un core est un ensemble d'attributs indépendant incluant tous les reduct.

Core

Définition

Un core est un ensemble d'attributs indépendant incluant tous les reduct.

Exemple

["Temperature"]

Dépendance des attributs

Rappel

$$POS_C = \{o_1, o_5, o_6, o_4\}$$

 $U = \{o_1, o_2, o_3, o_4, o_5, o_6\}$

Exemple

$$\lambda = POS_C/U$$

= $|\{o_1, o_5, o_6, o_4\}|/|\{o_1, o_2, o_3, o_4, o_5, o_6\}|$
= $4/6$

• Nous calculons toutes les dépendances pour un attributs.

- Nous calculons toutes les dépendances pour un attributs.
- Nous prenons l'attribut possèdent la dépendance la plus haute et nous l'ajoutons dans la réduction.

- Nous calculons toutes les dépendances pour un attributs.
- Nous prenons l'attribut possèdent la dépendance la plus haute et nous l'ajoutons dans la réduction.
- Nous calculons la dépendance de la réduction en ajoutons à un à chaque attributs.

- Nous calculons toutes les dépendances pour un attributs.
- Nous prenons l'attribut possèdent la dépendance la plus haute et nous l'ajoutons dans la réduction.
- Nous calculons la dépendance de la réduction en ajoutons à un à chaque attributs.
- Nous ajoutons l'attribut ayant la meilleur dépendance dans la réduction

- Nous calculons toutes les dépendances pour un attributs.
- Nous prenons l'attribut possèdent la dépendance la plus haute et nous l'ajoutons dans la réduction.
- Nous calculons la dépendance de la réduction en ajoutons à un à chaque attributs.
- Nous ajoutons l'attribut ayant la meilleur dépendance dans la réduction
- Nous nous arrêtons quand nous obtenons la même dépendance qu'avec la totalité des attributs.

Application

Dataset Statlog Heart

	age	sex	chest pain type	blood pressure	cholestoral	blood sugar	electrocardiographic	heart rate max	angina	oldpeak	peak exercise	vessels	thal	heart disease
0														
1														
2														
3														
4														
265														
266														
267														
268														
269														
270														

Figure – Extrait du dataset

• Détection des valeurs manquantes/ nulles.

- Détection des valeurs manquantes/ nulles.
- Discretisation.

Attribut	Interval	Discretisation
age	[20 - 40)	Young
	[40 - 60)	Mid
	[60 - 80)	Old
Blood Pressure	[90 - 139]	Normal
	> 140	Abnormal
Cholestoral	[150 - 250]	Normal
	< 150 or > 250	Abnormal
Maximum heart rate	< 60	Low
	[60 - 100]	Normal
	> 100	Hight

Figure – Tableau de discrétisation

- Détection des valeurs manquantes/ nulles.
- Discretisation.
- Encodage.

- Détection des valeurs manquantes/ nulles.
- Discrétisation.
- Encodage.
- Équilibrer le nombre d'objet par classe.

Figure – Répartition des objets par classe

- Détection des valeurs manquantes/ nulles.
- Discrétisation.
- Encodage.
- Équilibrer le nombre d'objet par classe.
- Normalisation (attributs/ classes).

Figure - Matrice de corélation

- Matrice de corrélation.
- Boxplot => suppression "outliers".

- Matrice de corrélation.
- Boxplot => suppression "outliers".
- Histogrammes.

- Matrice de corrélation.
- Boxplot => suppression "outliers".
- Histogrammes.
- Pairplot.

Réductions trouvées

Méthode	age	sex	chest pain type	blood pressure	cholestoral	blood sugar	electrocardiographic	heart rate max	angina	oldpeak	peak exercise	vessels	thal
Reduct	√	√	√	√	Χ	Χ	√	Χ	Χ	√	Χ	✓	√
QuickReduct	√	√	√	√	Χ	Χ	√	Χ	Χ	√	Χ	√	√
Variance	Χ	√	Χ	√	√	Χ	√	Χ	√	Χ	Χ	Χ	√
Fuzzy	√	√	√	√	√	√	✓	Х	Χ	√	Χ	X	Х

Table – Liste des réductions

Méthode	age	sex	chest pain type	blood pressure	cholestoral	blood sugar	electrocardiographic	heart rate max	angina	oldpeak	peak exercise	vessels	thal
Reduct	√	✓	√	✓	X	X	√	Χ	Χ	✓	Χ	✓	√
QuickReduct	√	√	√	√	Χ	Х	√	Χ	Χ	√	Χ	√	✓
Variance	Х	√	Χ	√	√	Х	√	Χ	√	Χ	Χ	Χ	√
Fuzzy	√	√	√	√	√	√	√	Χ	Χ	√	Χ	Χ	X

Table – Liste des réductions

Méthode	age	sex	chest pain type	blood pressure	cholestoral	blood sugar	electrocardiographic	heart rate max	angina	oldpeak	peak exercise	vessels	thal
Reduct	√	✓	✓	✓	X	Χ	√	X	Χ	✓	Χ	✓	✓
QuickReduct	√	✓	✓	✓	X	Χ	✓	Х	Χ	✓	Χ	√	✓
Variance	Χ	√	Χ	√	√	Χ	√	Χ	√	X	Χ	Χ	✓
Fuzzy	√	√	√	√	√	√	√	Χ	Χ	√	Χ	Χ	X

Table – Liste des réductions

Méthode	age	sex	chest pain type	blood pressure	cholestoral	blood sugar	electrocardiographic	heart rate max	angina	oldpeak	peak exercise	vessels	thal
Reduct	√	✓	✓	✓	X	Χ	√	X	Χ	✓	Χ	✓	✓
QuickReduct	√	√	√	√	X	Χ	√	Х	Χ	✓	Χ	√	✓
Variance	Χ	√	Χ	√	√	Χ	√	Χ	√	Χ	Χ	Х	✓
Fuzzy	√	√	√	√	√	√	√	Χ	Χ	√	Χ	Χ	X

Table – Liste des réductions

Méthode	age	sex	chest pain type	blood pressure	cholestoral	blood sugar	electrocardiographic	heart rate max	angina	oldpeak	peak exercise	vessels	thal
Reduct	√	✓	✓	✓	X	X	√	X	X	✓	Χ	√	✓
QuickReduct	√	✓	✓	✓	X	Х	✓	Х	Χ	√	Χ	√	√
Variance	Χ	√	Χ	√	√	Χ	√	Χ	√	Χ	Χ	Χ	√
Fuzzy	√	√	√	√	√	√	√	Χ	X	√	Χ	X	X

Table – Liste des réductions

Méthode	age	sex	chest pain type	blood pressure	cholestoral	blood sugar	electrocardiographic	heart rate max	angina	oldpeak	peak exercise	vessels	thal
Reduct	√	✓	√	√	X	Χ	√	Х	Χ	√	Х	√	✓
QuickReduct	√	✓	✓	✓	X	Х	√	Х	Χ	√	Х	✓	✓
Variance	Χ	√	X	√	√	Χ	√	Х	√	Χ	Χ	Χ	√
Fuzzy	√	√	√	√	√	√	√	Х	Χ	√	Χ	Χ	X

Table – Liste des réductions

Classification

Liste des modèles appliqués :

Gaussian Process

Liste des modèles appliqués :

- Gaussian Process
- Random Forest

Liste des modèles appliqués :

- Gaussian Process
- Random Forest
- Nearest Neighbors

Liste des modèles appliqués :

- Gaussian Process
- Random Forest
- Nearest Neighbors
- Autres (Linear SVM, RBF SVM, Neural Net, Naive Bayes, Decision Tree, AdaBoost, QuadraticDiscriminantAnalysis)

Comparaison

Figure – Matrice de confusion de sans feature selection


```
reduct
Gaussian Process
[[-1 \ 1]
 [-5 5]]
Random Forest
[[ 2 -2]
 [-4 4]]
Nearest Neighbors
```

Figure – Différence entre avec reduct et sans


```
quickreduct
Gaussian Process
 [-5 5]]
Random Forest
[[ 2 -2]
Nearest Neighbors
```

Figure – Différence entre avec quickreduct et sans


```
variance
Gaussian Process
 [-4 4]]
Random Forest
 [-3 3]]
Nearest Neighbors
```

Figure – Différence entre avec variance et sans


```
fuzzy
Gaussian Process
[[-2 2]
 [-1 1]]
Random Forest
 [-1 1]]
Nearest Neighbors
 [-1 1]]
```

Figure – Différence entre avec fuzzy et sans

Comparaison de la précision

Amélioration des modèles.

Amélioration du Random Forest

Mickael LE DENMAT

Limite du Quickreduct

Limite

• Générer tous les sous ensembles possibles d'attributs.

Limite

- Générer tous les sous ensembles possibles d'attributs.
- Re-calcul tout à chaque fois.

Amélioration du Quickreduct

Améliorations

• Stocker les résultats et faire une version incrémentale.

Améliorations

- Stocker les résultats et faire une version incrémentale.
- Trouver un moyen de partir de l'ensemble des attributs et de supprimer les moyens utiles si c'est plus rapide (comment le savoir?).

Références

Oracle.

Qu'est-ce que le data mining?

Merci pour votre attention! Avez vous des questions?

