Example 1: As part of a startup that sells Jell-O[®] through the internet, you are tasked with finding the dimensions for a new box for shipping. You are told that the length must be three times the width. The bottom and top parts of the box cost 2 per square foot and the sides cost 5 per square foot. You must design the cheapest box that can hold 30 cubic feet of Jell-O[®].

First, let's define the function that we want to optimize. The objective is to reduce cost, so we want to find the minimum of the cost function. Given length ℓ , width w, and height h, our cost function C is:

$$C = 2*(w*h)*5 + 2*(\ell*h)*5 + 2*(w*\ell)*2$$

Some other information we have: $\ell = 3w$, and $\ell * w * h = 30$. Rewriting the cost function, we have:

$$C = 10 * (w * h) + 10 * (3w * h) + 4 * (w * 3w)$$
$$C = 40wh + 12w^{2}$$

We can also solve our volume function:

$$3w * w * h = 30$$
$$h = \frac{10}{w^2}$$

And substitute that back into our cost function:

$$C = \frac{400}{w} + 10w^2$$

So now we have a function that combines the cost and constraint information that we were given! Our goal is to minimize cost, so we will take the derivative and find the critical numbers:

$$C(w) = 10w^{2} + 400w^{-1}$$

$$C'(w) = 20w - 400w^{-2}$$

$$0 = 20w - 400w^{-2}$$

$$0 = w - 20w^{-2}$$

$$20w^{-2} = w$$

$$20 = w^{3}$$

$$w = 0?, \sqrt[3]{20}$$

A box with width 0 would not only be silly but impossible without infinite material. We can throw that one out immediately. As good practice, though,

we should make sure $\sqrt[3]{20}$ is in fact a minimum. We can use the second derivative test to do so:

$$C'(w) = 20w - 400w^{-2}$$
$$C''(w) = 20 + 800w^{-3}$$

0	$(0,\sqrt[3]{20})$	$\sqrt[3]{20}$	$(\sqrt[3]{20},\infty)$
DNE	+	60	+

So because there is no change in sign at the second derivative at $w = \sqrt[3]{20}$, it must not be a point of inflection, and because it's positive, it must be concave up. This means that our function must have a minimum at this point. We now know w but we also need h and ℓ , so we're not entirely done yet.

$$\ell = 3w$$

$$\ell = 3\sqrt[3]{20}$$

$$\ell * w * h = 30$$

$$3 * \sqrt[3]{20} * \sqrt[3]{20} * h = 30$$

$$h = \frac{30}{3\sqrt[3]{400}}$$

$$h = \frac{10}{\sqrt[3]{400}}$$

And now we have our dimensions!