There two similar pipelines for **CFHT** and **Fourier_Quad**.

1 Distance

Firstly, the distance should be calculated. "calculate_co-distance.py" calculates the comoving distance (Mpc/h) and the integrate part in the distance calculate for the final GGL calculation. The parameters should be specified in code. The data will be saved in a hdf5 file. The distances will be signed to the source catalog in "prepare_background_cata.py".

- "/OM0_H0_C" contains a array of Ω_{m0} , H_0 , and C_0 (~ 2.9).
- "/Z" contains the redshifts $(0 \sim Z_{max})$.
- "/DISTANCE" contains the distances (Mpc/h).
- "/DISTANCE_INTEG" the integrate part of the distance.

2 CFHT catalog

2.1 Prepare data

1. "add_ODD_Z_B.py" adds Z_MIN, Z_MAX, and ODDS (from the .csv files) to the CFHT catalog for source selection. It will create two new files (.hdf5 & _new.dat) that contains the added parameters.

The hdf5 file contains 3 arrays:

- "/data": the catalog with the 3 added parameters. The column: "RA DEC Flag FLUX_RADIUS e1 e2 weight fitclass SNratio MASK Z_B m c2 LP_Mi star_flag MAG_i Z_B_MIN Z_B_MAX ODDS". The last three are added.
- "/mask": it should be 1 for each source
- "/dRA_dDEC": delta RA and delta DEC, they should be very small for each source ($< 10^{-5}$)
- 2. Run "prepare_background_cata.py" in "collect" mode with MPI to stack the data from each field. It creates the "cfht_cata.hdf5" in the parent directory of the one contain the field catalog. The data in i-th area will be in "/w_i" in the .hdf5 file. If the catalog file (cfht_cata.hdf5) doesn't exist, run it firstly! Before this step, CFHT catalog contains 19 (0 \sim 18) columns. After this the 19'th & 20'th column are the PZ data from Dong FY.
- **3.** Run "prepare_background_cata.py" in "select" mode with CPU's as the same number as the area. The result will be in cfht_cata_cut.hdf5. The cutoff should be specified in the code. The program will create a few additional data for GGL calculation (see the code). At the end, the first thread will call "add_com_dist (add_com_dist.cpp)" to sign distance to the source.