The original problem 5C intended P to be in the interior of the circle, but did not specify that restriction.

Certainly, if B = P = D and $m \angle APC = 90$, then $\angle APC$ will be

inscribed in a semi-circle and $r = \frac{AC}{2}$

and
$$AC = \sqrt{16^2 + 19^2} = \sqrt{617}$$

$$\left(\frac{5}{2}\sqrt{17}\right)^2 = \frac{25\cdot17}{4} = \frac{425}{4}$$

Comparing the squares,

$$\left(\frac{\sqrt{617}}{2}\right)^2 = \frac{617}{4}$$

and we have an answer larger than the "official" answer. Both answers were accepted.

Extension: Suppose point P had been specified to be on the circle, but the perpendicular condition were omitted. Could we draw any conclusions about the radius r? By making the angle at P acute (or obtuse), what happens to r?

Consider the radius of a circle circumscribed about a triangle. Let *K* denote the area of the triangle.

Knowing that $r_{cc} = \frac{abc}{4K}$ and $K = \frac{1}{2}ab\sin\theta$, where θ is the included angle, we have

$$r_{cc} = \frac{16 \cdot 19 \cdot p}{4 \left(\frac{1}{2} \cdot 16 \cdot 19 \cdot \sin P\right)} = \frac{p}{2 \sin P} = \frac{p}{2 \sin P} = \frac{p}{2 \sin P}$$
 which reduces to the above answer for $P = 90^{\circ}$. But,

for any inscribed angle, $\frac{1}{\sin P} \ge 1$. The problem is that *P* and *p* are not independent of each other.

Using the Law of Cosines and the fact that $\sin^2 \theta + \cos^2 \theta = 1$, for angle θ , we have

$$p^2 = 16^2 + 19^2 - 2 \cdot 16 \cdot 19 \cos P \Rightarrow \cos P = \frac{617 - p^2}{2 \cdot 16 \cdot 19}$$
 and $\sin^2 P = 1 - \left(\frac{617 - p^2}{2 \cdot 16 \cdot 19}\right)^2$. Consequently,

substituting in the boxed expression above, $r_{cc} = \frac{p}{2\sqrt{1-\left(\frac{617-p^2}{2\cdot16\cdot19}\right)^2}}$. Constructing a lookup table for

integer values of c from 4 to 34 is enlightening. Mr. TI gives these results:

р	4	5		9	10	11		24	25
R	13.22	10.97		9.53	9.50	9.51		12.03	12.50
р	26	27	28	29	30	31	32	33	34
R	13.06	13.74	14.56	15.60	16.95	18.80	21.54	26.18	36.74

As P becomes very acute $(P \to 0 \Rightarrow p \to 3)$ and as P becomes very obtuse $(P \to 180^{\circ} \Rightarrow p \to 35)$, as expected from the Triangle Inequality. In either case, r becomes longer and longer $(r \to \infty)$. Without the perpendicular restriction, there is no maximum value of r.