Notes on order statistics

Rui Wang

Tuesday 20th November, 2018

1 Introduction

There are several books on order statistics. This notes only consists very basic facts.

2 Basic properties

Let $\mathbf{X} = (X_1, \dots, X_n)$ be a sample where $X_i \in \mathbb{R}$. The order statistics is defined as

$$T(\mathbf{X}) = (X_{(1)}, \dots, X_{(n)}),$$

where $X_{(1)} \leq \cdots \leq X_{(n)}$ are the ordered X_i 's. It can be seen that $T(\mathbf{X})$ is a measurable map from $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ to $\mathbb{T}, \mathcal{B}(\mathbb{T})$, where \mathbb{T} is the set of all ordered n-tuples.

If X_1, \ldots, X_n are iid random variables with **continuous distribution function**, it can be proved that with probability $1, X_{(1)} < \cdots < X_{(n)}$.

The following statistics are equivalent:

- order statistics
- Empirical measure
- $U(x) = (\sum x_i, \sum x_i^2, \dots, \sum x_i^n)$
- $V(x) = (\sum_i x_i, \sum_{i < j} x_i x_j, \sum_{i < j < k} x_i x_j x_k, \dots, x_1 x_2 \cdots x_n)$

See TSH Example 2.4.1.

A useful property is:

Proposition 1. A statistic ϕ is a function of order statistic iff it is a symmetric function (coordinates can be exchanged).

3 completeness

Definition 1. A statistic T is said to be **complete** if $E_{\theta}[f(T)] = 0$ for all $\theta \in \Omega$ implies f(t) = 0 (a.e. \mathcal{P}).

- if \mathcal{P}_0 , \mathcal{P}_1 are two families of distributions such that $\mathcal{P}_0 \subset \mathcal{P}_1$ and **every null set of** \mathcal{P}_0 is **also a null set of** \mathcal{P}_1 , then a sufficient statistic T that is complete for \mathcal{P}_0 is also complete for \mathcal{P}_1 .
- Let \mathcal{P}_0 be the class of binomial distributions b(p, n), $0 , n=fixed, and let <math>\mathcal{P}_1 = \mathcal{P}_0 \cup \{Q\}$ where Q is the Poisson distribution with expectation 1. Then \mathcal{P}_0 is complete but \mathcal{P}_1 is not.

See TPE Problem 6.32.

3.1 completeness of order statistic

Theorem 1 (TSH Example 4.3.4). Let X_1, \ldots, X_N be i.i.d. with cdf $F \in \mathcal{F}$, where \mathcal{F} is the family of all absolutely continuous distributions. Then the set of order statistics $T(X) = (X_{(1)}, \ldots, X_{(N)})$ was complete.

Proof. Denote $T(X) = (X_{(1)}, \dots, X_{(N)})$ and $T'(X) = (\sum X_i, \sum X_i^2, \dots, \sum X_i^N)$. They are equivalent. So it's enough to proof the completeness of T'(X). Consider the family of densities $\mathcal{F}_0 \subset \mathcal{F}$ as

$$f(X) = C(\theta_1, \dots, \theta_N) \exp(-x^{2N} + \theta_1 x + \dots + \theta_N x^N)$$

It's well defined for all θ 's. The density of a sample of size N is

$$C^N \exp(-\sum x_i^{2N} + \theta_1 \sum x_i + \dots + \theta_N \sum x_i^N)$$

which constitutes an exponential family. So T'(X) is complete for \mathcal{F}_0 . Because the null set of \mathcal{F}_0 is the null set of Lebesgue measure, hence the null set of \mathcal{F} .

Theorem 2 (TSH Problem 4.13). The order statistic is complete for the family of all continuous distributions.

Proof. Suppose ϕ is an **integrable symmetric function**, that is

$$\int \phi(x_1,\ldots,x_n)dF(x_1)\ldots dF(x_n)=0$$

. Replace F by $\alpha_1 F_1 + \cdots + \alpha_n F_n$, where $0 \le \alpha_i \le 1$, $\sum \alpha_i = 1$. In fact, it's not necessary to impose $\sum \alpha_i = 1$ (just multiply a constant to the equation). It can be deduced that

$$\int \phi(x_1,\ldots,x_n)dF_1(x_1)\ldots dF_n(x_n)=0$$

for all continuous F_i . This last equation remains valid if the F_i are replaced by $I_{a_i}(x)F(x) + (1 - I_{a_i}(x))F(a_i)$, where $I_{a_i}(x) = 1$ if $\leq a_i$ and =1 otherwise. This implies that $\phi = 0$ except on a set which has measure 0 under $F \times F \dots \times F$ for all continuous F.

3.2 c_i -order statistics

Definition 2. The c_j -order statistics of a sample of vectors are the vectors arranged in increasing order according to their jth components. (See TPE Problem 3.4.17)

The following property still holds:

A statistic ϕ is a function of c_j -order statistics iff it is a symmetric function (exchangable for observations).

Theorem 3. The c_j -order statistic is complete for the family of all continuous distributions.

The proof is essetially the same as previous theorem once replacing $I_a(x)$ by $I_{a_1,\ldots,a_p}(x_1,\ldots,x_p)$.

Theorem 4 (adapted from TSH Example 4.3.4). suppose X_1, \ldots, X_n are i.i.d., T is order statistic. Then for a statistic δ , we have

$$E[\delta|T] = \frac{1}{n!} \sum \delta(X_{i_1}, \dots, X_{i_n})$$

, that is, the symmetrization of δ .

Proof. Use the definition of conditional expectation.

Appendices

Appendix A haha1

Appendix B haha2

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. xxxxx, xxxx.