Written Assignment #2

- 1. Prove the following entailment in three different ways.
 - a. Prove that $(A \Rightarrow -B) = -(B \land A)$ with truth tables.

Α	В	A => −B	- (B ∧ A)	(A => −B) = − (B ∧ A)
Т	Т	F	F	Т
Т	F	Т	Т	Т
F	Т	Т	Т	Т
F	F	Т	Т	Т

b. Prove that $(A \Rightarrow \neg B) = \neg (B \land A)$ with logical equivalences.

Starting Statement Removing Implication Moving Negation Inward Cumulative Law

c. Prove that $(A \Rightarrow -B) = -(B \land A)$ with resolution algorithm.

Proving the Negation of the statement: (B Λ A)

Number	Statement	Obtained By
S1	- (B ∧ A)	Initial
S2	-B V -A	S1 with 'de Morgan' Law
S3	Α	Goal Statement
S4	В	Goal Statement
S5	-B	Combine [S2 and S3]
S6	{}	Combine [S5 and S4]

2. Decide whether each of the following sentences is valid, unsatisfiable or neither. Verify your decisions using truth tables or equivalence rules.

a. $((Study \land Rest) \Rightarrow Pass) \land (Study \Rightarrow \neg Rest) \land (Rest \Rightarrow \neg Study) \land Study =$ **Neither**

S	R	Р	(S Λ R) => P	S => -R	(R => −S) ∧ S	$((S \land R) \Rightarrow P) \land (S \Rightarrow \neg R) \land ((R \Rightarrow \neg S) \land S)$
Т	Т	Т	Т	F	F	F
Т	Т	F	F	F	F	F
Т	F	Т	Т	Т	Т	Т
F	Т	Т	Т	Т	F	F
F	F	Т	T	Т	F	F
Т	F	F	Т	Т	Т	Т
F	Т	F	Т	Т	F	F
F	F	F	Т	Т	F	F

b. $((Pass \land \neg Study) \Rightarrow Rest) \Rightarrow (\neg Pass \lor Study \lor Rest) = Valid$

S	R	Р	(P ∧ −S) => R	-P V S V R	$((P \land \neg S) => R) => (\neg P \lor S \lor R)$
Т	T	T	Т	Т	Т
Т	T	F	Т	T	Т
Т	F	Т	Т	Т	Т
F	Т	Т	Т	Т	Т
F	F	Т	F	Т	Т
Т	F	F	Т	Т	Т
F	Т	F	Т	Т	Т
F	F	F	Т	Т	Т

3. Convert the following sentences to CNF

$$\begin{array}{ll} P => - (Q \ V \ R) & \text{Starting Statement} \\ -P \ V \ (- \ (Q \ V \ R)) & \text{Removing Implication} \\ -P \ V \ (-Q \ \Lambda \ -R) & \text{De Morgan Law} \\ (-P \ V \ -Q) \ \Lambda \ (-P \ V \ -R) & \text{Distributivity Law} \end{array}$$

b. $(P \land Q) \Leftrightarrow S$

$(P \land Q) \Leftrightarrow S$	Starting Statement
$((P \land Q) => S) \land (S => (P \land Q))$	Removing Biconditional
$(\neg (P \land Q) \lor S) \land (\neg S \lor (P \land Q))$	Removing Implication
((−P V −Q) V S) Λ (−S V (P Λ Q))	Moving Negation Inward
$(\neg P \lor \neg Q \lor S) \land ((\neg S \lor P) \land (\neg S \lor Q))$	De Morgan Law
(−P V −Q V S) ∧ (−S V P) ∧ (−S V Q)	Removing Parenthesis

4. Consider the following KB.

Number	Statement
S1	AVB
S2	-B V -C
S3	-C V D
S4	B V –E
S5	-D V E

a. Use the resolution algorithm to determine whether the following KB entails $\neg D$.

Number	Statement	Obtained By
S6	D	Goal
S7	E	Combine [S6 and S5]
S8	В	Combine [S7 and S4]
S9	-C	Combine [S8 and S2]

From there the knowledge loops not solving the case proving the KB does not entail $\neg D$.

b. Use the resolution algorithm to determine whether the following KB entails $B \lor \neg D$.

Number	Statement	Obtained By
S6	D	Goal
S7	-B	Goal
S8	Е	Combine [S6 and S5]
S9	В	Combine [S8 and S4]
S10	{}	Combine [S9 and S7]

Finding the empty clause proves the KB entails $B \lor \neg D$.