Politechnika Białostocka	Data: 21.04.2015r
Wydział Informatyki	
Przedmiot: Modelowanie i analiza systemów	Prowadzący:
informatycznych	dr inż. Walenty Oniszczuk
Sprawozdanie nr: 7	
Temat : Modele z komutancją pakietów	Ocena:
Autor: Łukasz Świderski	
Studia: stacjonarne, II stopnia, semestr 1	

1. Treść zadania

Obliczyć i przedstawić je w formie graficznej.

- 1) Prawdopodobieństwa stanów tylko dla $\lambda^1 = 10 \ \lambda^2 = 20$
- 2) Prawdopodobieństwa przestoju
- 3) Prawdopodobieństwo straty dla ruchu tranzytowego
- 4) Prawdopodobieństwo straty dla ruchu lokalnego
- 5) Współczynnik strat dla ruchu tranzytowego
- 6) Współczynnik strat dla ruchu lokalnego
- 7) Współczynnik strat dla obu ruchów

Dane:

C=3

m1 = 6

m = 10

 $\mu = 10$

 $\lambda^1 = 2, 4, 6, ..., 14$ (ruch lokalny)

 $\lambda^2 = 4, 8, 12, ..., 28$ (ruch tranzytowy)

2. Część teoretyczna

Prawdopodobieństwo przestoju:

$$P_{0} = \left[\sum_{l=0}^{c-1} \frac{\rho^{l}}{l!} + \frac{\rho^{c}}{c!} \left\{ \sum_{j=0}^{m_{1}-1} \left(\frac{\rho}{c} \right)^{j} + \left(\frac{\rho^{m_{1}}}{c} \right) * \sum_{k=0}^{m-m_{1}} \left(\frac{\rho_{2}^{k}}{c} \right) \right\} \right]^{-1}$$

Prawdopodobieństwo straty dla ruchu tranzytowego:

$$P_{str2} = P_0 * \frac{\rho^c}{c!} * \left(\frac{\rho}{c}\right)^{m_1} * \left(\frac{\rho_2}{c}\right)^{m-m_1}$$

Prawdopodobieństwo straty dla ruchu lokalnego:

$$P_{str1} = P_0 * \frac{\rho^c}{c!} * \left(\frac{\rho}{c}\right)^{m_1} * \sum_{k=0}^{m-m_1} \left(\frac{\rho_2}{c}\right)^k$$

Współczynnik strat dla ruchu tranzytowego:

$$P_T = P_{str2} * \frac{\rho_2}{\rho}$$

Współczynnik strat dla ruchu lokalnego:

$$P_L = P_{str1} * \frac{\rho_1}{\rho}$$

Współczynnik strat dla obu ruchów:

$$P_{str} = (P_{str2} * \rho_2 + P_{str1} * \rho_1)/\rho$$

3. Rozwiązanie

W celu rozwiązania zadania została utworzona aplikacja w technologii Windows Presentation Foundation, której celem jest przedstawienie wyników w formie tabeli oraz wykresów, oraz arkusz kalkulacyjny w celu porównania wyników.

Ad 1) Prawdopodobieństwa stanów dla $\lambda^1 = 10$ $\lambda^2 = 20$

Ad 2) Prawdopodobieństwa przestoju

Ad 3) Prawdopodobieństwo straty dla ruchu tranzytowego

Ad 4) Prawdopodobieństwo straty dla ruchu lokalnego

Ad 5) Współczynnik strat dla ruchu tranzytowego

Ad 6) Współczynnik strat dla ruchu lokalnego

Ad 7) Współczynnik strat dla obu ruchów

Podsumowanie wykonane w programie Excel w celu porównania otrzymanych wyników

4. Wnioski

Po dokonaniu obliczeń można zauważyć, że prawdopodobieństwo przestoju spada wraz ze wzrostem parametru Lambda. Natomiast prawdopodobieństwa straty dla ruchu lokalnego i tranzytowego oraz współczynniki strat powoli wzrastają wraz z parametrem Lambda. Oba rozwiązania przedstawiają zbliżone do siebie wyniki