Nombre y Nro. Libreta:

1	2	3	4	5	Calif.

CALCULO AVANZADO - SEGUNDO PARCIAL 2do cuatrimestre 2012 (06/12/2012)

1. Sea $\{I_k\}_{k\in\mathbb{N}}$ una familia de intervalos abiertos en $\mathbb{R}_{\geq 0}$ tales que $I_i \cap I_j = \emptyset$ para todo par $i \neq j$ e $I_k \to \infty$, es decir para todo M existe k_0 tal que los extremos del intervalo I_k son mayores que M para todo $k \geq k_0$.

Probar que existe un $\alpha \in \mathbb{R}_{>0}$ tal que el conjunto $\{n\alpha : n \in \mathbb{N}\}$ interseca a infinitos I_k .

Sugerencia: Considerar los siguientes subconjuntos de $\mathbb{R}_{\geq 0}$:

$$U_k = \{ \alpha \in \mathbb{R}_{\geq 0} : \exists \ n\alpha \in I_j \ para \ alg\'{u}n \ j \geq k \}$$

- 2. Sea $S \subset \ell^{\infty}$ definido como $S = \{(x_n)_{n \in \mathbb{N}} : |x_n| \leq 1/2^n\}$. ¿Es S compacto?
- 3. (a) Sea X un espacio métrico y $A \subset X$ un subespacio. Probar que si $C \subset X$ es un subconjunto conexo tal que $C \cap A \neq \emptyset$ y $C \cap (X \setminus A) \neq \emptyset$ entonces $C \cap \partial A \neq \emptyset$.
 - (b) Sea $\alpha : [0,1] \longrightarrow X$ un camino tal que $\alpha(0) \in A$ y $\alpha(1) \notin A$, probar que existe $x \in [0,1]$ tal que $\alpha(x) \in \partial A$. En otras palabras, todo camino que une A con $X \setminus A$ pasa por la frontera de A.

Aclaración: ∂A es la frontera de A.

- 4. Sea V un espacio normado completo, $\phi: V \to V$ una función lineal y continua con $||\phi|| < 1$ y $\alpha \in V$ un elemento cualquiera. Definamos $f_{\alpha}: V \to V$ como $f_{\alpha}(v) = \alpha + \phi(v)$.
 - (a) Probar que para todo α , f_{α} tiene un único punto fijo.
 - (b) Deducir que $\operatorname{Id} \phi$ es un isomorfismo.
- 5. (a) Sean X e Y espacios normados. Probar que una función $T:X\to Y$ lineal es un homeomorfismo si y solo si existen m y M tales que

$$m||x|| \le ||T(x)|| \le M||x||$$

para todo $x \in X$.

(b) Deducir que si X e Y son espacios normados tales que existe un homeomorfismo lineal entre ellos entonces X es completo si Y es completo.

Justifique todas sus respuestas.