Bayesian hierarchical models for NHPP using rstan

Miao Cai miao.cai@slu.edu

2019-07-01

Contents

1 Model setting 1

2 Simulating data 2

1 Model setting

Let $T_{d,s,i}$ denote the time to the d-th driver's s-th shift's i-th critical event. The total number critical events of d-th driver's s-th shift is $n_{d,s}$. The ranges of these notations are:

- $i = 1, 2, \cdots, n_{d,S_d}$
- $s = 1, 2, \cdots, S_d,$
- $d = 1, 2, \dots, D$.

We assume the times of critical events within the d-th driver's s-th shift were generated from a non-homogeneous Poisson process (NHPP) with a power law process (PLP), with a fix rate parameter β and varying scale parameters $\theta_{d,s}$ across drivers. The data generating process is then:

$$T_{d,s,1}, T_{d,s,2}, \cdots, T_{d,s,n_{d,s}} \sim \text{PLP}(\beta, \theta_{d,s})$$

$$\beta \sim \text{Gamma}(1,1)$$

$$\log \theta_{d,s} = \gamma_{0d} + \gamma_1 x_{d,s,1} + \gamma_2 x_{d,s,2} + \cdots + \gamma_k x_{d,s,k}$$

$$\gamma_{01}, \gamma_{02}, \cdots, \gamma_{0D} \sim \text{i.i.d. } N(\mu_0, \sigma_0^2)$$

$$\gamma_1, \gamma_2, \cdots, \gamma_k \sim \text{i.i.d. } N(0, 10^2)$$

$$\mu_0 \sim N(0, 10^2)$$

$$\sigma_0 \sim \text{Gamma}(1, 1)$$

2 Simulating data

1. Random intercepts $\gamma_{01}, \gamma_{02}, \cdots, \gamma_{0D}$.

$$\mu_0 \sim N(0, 10^2)$$

$$\sigma_0 \sim \text{Gamma}(1, 1)$$

$$\gamma_{01}, \gamma_{02}, \cdots, \gamma_{0D} \sim \text{i.i.d. } N(\mu_0, \sigma_0^2)$$

2. fixed parameters: 3 fixed parameters $\gamma_1, \gamma_2, \gamma_3$.

$$\gamma_1, \gamma_2, \gamma_3 \sim \text{i.i.d. } N(0, 10^2)$$

3. The number of observations in the d-th driver: N_d .

$$N_d \sim \text{Poisson}(100)$$

4. Data: 3 predictor variables $x_{d,s,1}, x_{d,s,2}, x_{d,s,3}$.

$$x_{d,s,1} \sim N(0,10)$$

 $x_{d,s,2} \sim \text{Gamma}(10,2)$
 $x_{d,s,3} \sim \text{Poisson}(3.5)$

5. scale parameterS of a NHPP (random effects): $\theta_{d,s}$.

$$\theta_{d,s} = \text{EXP}(\gamma_{0d} + \gamma_1 x_{d,s,1} + \gamma_2 x_{d,s,2} + \gamma_k x_{d,s,3})$$

6. Shape parameter of a NHPP (fixed effect): β .

$$\beta \sim \text{Gamma}(1,1)$$

7. Simulate a NHPP based on β and $\theta_{d,s}$.

$$T_{d,s,1}, T_{d,s,2}, \cdots, T_{d,s,n_{d,s}} \sim PLP(\beta, \theta_{d,s})$$

```
set.seed(123)
D = 10 # the number of drivers
K = 3 # the number of predictor variables
# 1. Random-effect intercepts
# hyperparameters
mu0 = rnorm(1, mean = 0, sd = 10)
sigma0 = rgamma(1, 1, 1)
r_OD = rnorm(D, mean = mu0, sd = sigma0)
# 2. Fixed-effects parameters
R_K = rnorm(K, mean = 0, sd = 10)
# 3. Generate data: x_1, x_2, ... x_K
sim1 = function(n = 10){
 x1 = rnorm(n, 0, 10)
 x2 = rgamma(n, 10, 2)
 x3 = rpois(n, 3.5)
 return(data.frame(x1, x2, x3))
simXD = function(ndrivers = D){
}
XD = rep(list(data.frame()), 10)
for (i in 1:D) {
 XD[[i]] = sim1()
}
data.table::rbindlist(list())
y = c(0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1)
x = c(1, 3, 2, 0, -1, 5, 2, 6, 2, 5, 3, 3, 1)
fit = glm(y ~ x, family = "binomial")
yhat = predict(fit, type = "response")
```

sum(y)

sum(yhat)