Name: Tian Qiu 00265 35063

Instructor: Womble

1.
$$P = 0.17$$
 × are film directed by ruman

(a) $P(x=3) = \binom{15}{3} (0.7)^3 (1-0.7)^{15-3} = 0.2389$

(b) $P(x=2) = 1 - P(x=0) - P(x=1) = [-(1-0.7)^{15} - [h]_{0.7}] \cdot (0.83)^{15-1}$
 $= 1 - 0.0611 - 0.187 = 0.7519$

(c). $p = 15 \times 0.7 = 2.55$

(d) $p = 15 \times 0.7 = 2.55$

(d) $p = 15 \times 0.7 = 2.55$

(a) $p = \frac{x^2 - x^2}{k!}$ $\lambda = 4$
 $p = \frac{x^2 - x^2}{k!}$ $\lambda = 4$
 $p = \frac{x^2 - x^2}{k!}$ $\lambda = 4$
 $p = \frac{x^2 - x^2}{k!}$ $\lambda = 4$

(b) $p = \frac{x^2 - x^2}{k!}$ $\lambda = 4$
 $p = \frac{x^2 - x^2}{k!}$ $k = 0.1953$

(b) $p = \frac{x^2 - x^2}{k!}$ $k = 0.1953$

(c) $p = \frac{x^2 - x^2}{k!}$ $k = 0.1953$

(d) $p = \frac{x^2 - x^2}{k!}$ $k = 0.1953$

(d) $p = \frac{x^2 - x^2}{k!}$ $k = 0.1953$

(d) $p = \frac{x^2 - x^2}{k!}$ $k = 0.1953$

(e) $p = \frac{x^2 - x^2}{k!}$ $k = 0.1953$

(f) $p = \frac{x^2 - x^2}{k!}$ $k = 0.1953$

4. (a)
$$\int_{1}^{4} k_{1} x^{3} - 1 dx$$

$$= k \left[\frac{1}{4} x^{4} - x \right]_{1}^{4}$$

$$= k \left[64 - 4 + \frac{1}{4} - 1 \right] = 1 = 2$$

$$= 2 + 237$$
(b) $\int_{1}^{4} k_{1} x^{3} - 1 dx$

5.(a)
$$P(1 \le x < 3) = \int_{2}^{3} \frac{6 \cdot x}{6} dx = \left[x - \frac{x^{2}}{12}\right]_{2}^{3} = \left[3 - \frac{9}{12} - 2 + \frac{4}{12}\right]$$

(b) $E(x) = \int_{2}^{4} x \cdot \frac{6 - x}{6} dx = \left[\frac{x^{2}}{2} - \frac{x^{3}}{18}\right]_{2}^{4}$
 $= 8 - \frac{64}{18} - 2 + \frac{8}{18} = 6 - \frac{56}{18} = \frac{26}{9}$

(c)
$$\overline{f}(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{x} 1 = \overline{t} dt$$

 $= \int_{-\infty}^{x} 1 - \overline{t} dt = \left[t - \frac{t^{2}}{(2)}\right]_{2}^{x} = x - \frac{x^{2}}{12} - 2 + \frac{t}{3}$
 $= \int_{-\infty}^{x} 1 - \overline{t} dt = \left[t - \frac{t^{2}}{(2)}\right]_{2}^{x} = x - \frac{x^{2}}{12} - 2 + \frac{t}{3}$
 $= \int_{-\infty}^{x} 1 - \overline{t} dt = \left[t - \frac{t^{2}}{(2)}\right]_{2}^{x} = x - \frac{x^{2}}{12} - 2 + \frac{t}{3}$
 $= \int_{-\infty}^{x} 1 - \overline{t} dt = \left[t - \frac{t^{2}}{(2)}\right]_{2}^{x} = x - \frac{x^{2}}{12} - 2 + \frac{t}{3}$
 $= \int_{-\infty}^{x} 1 - \frac{t}{3} dt = \left[t - \frac{t^{2}}{(2)}\right]_{2}^{x} = x - \frac{x^{2}}{12} - 2 + \frac{t}{3}$

(d)
$$0.5 = F(x) = -\frac{x^2}{12} + x - \frac{5}{3}$$

 $x = 2.83$? (7) > 4 is not accepted).

(a)
$$Var(x) = \int_{-\infty}^{\infty} (x - \frac{26}{9})^2 \cdot \frac{6 - x}{6} dx = \frac{26}{81} 2 \cdot x < 4$$

6. (0).
$$P(R \ge 550) = P(2 \ge \frac{550 - 500}{40}) = 1 - 0.8944 = 0.1056$$

(b) $P(\frac{-62}{40} \le 2 \le \frac{10}{40}) = (0.9394 - 0.5) + (0.5987 - 0.5) = .5381$

(c)
$$Z = 0.84 = \frac{x - 550}{40} \Rightarrow x = 583.6$$

7. (a)
$$U = 51.75$$

 $6 = 14.37$
 $P(2 < \frac{51.75-6t}{14.37}) = 0.6808$

(b).
$$Z = 1.645 = \frac{x - u}{6} \Rightarrow x = 75.38$$

(c)
$$z = 0.76 = \frac{x - u}{6} = 1 \times = 62.67 12$$

 $x_1 = 51.75 - (x_2 - u) = 40.828$

8. (a).
$$np = 5 = n \cdot (1-p) \ge 5$$
 is normal.
 $np = 6 = 30 \cdot 0.63 = 18.9 > 5$ is normal to binomial $nq = 30 \cdot 0.47 = 14.1 > 5$ is appropriate.

$$6^{2} = n \cdot p \cdot (1-p)$$

$$= 30 \times 0.63 \cdot 0.37$$

$$= 6.993$$

$$6 = 2.64$$