Smart Green House

Alexander Platz
Aravinth, S. Panchadcharam
Florian David Roubal
Martin Kessel
Sven Erik Jeroschewski

Telecommunication Networks Group Technische Universität Berlin

Agenda

- Project Progress
- Communication
- Architecture
 - Sensor Node & Sensors
 - Actuator Node & Actuators
 - Control Center
- Roadmap
- Live demo

Project Progress

You live far away from home and no one is there to take care of your plants?

You are a busy student and you don't have enough time to water your plants?

Our Smart Green House can help you!

Solution

The Smart green house ...

- is able to water several plants automatically
- controls perfect illumination
- is scalable for a lot of plants
- user can interact with the system

Work Split Up

- Sensor Node & Sensors
 - Martin Kessel
- Communication
 - Sven Erik Jeroschewski
- Actuator Node & Actuators
 - Florian David Roubal
- Control Center & UI
 - Alexander Platz
 - Aravinth, S. Panchadcharam

Communication

Communication

- principle: main computing should be done in the controller
- message learned: 2,4 GHz is not 868 MHz! (cost us hours)
- communication is only possible via strings!
- convert the strings into integers can be a lot of work

Communication

powered by Astah

Architecture

Sensor Node & Sensors

Sensor Node & Sensors

Software principle:

- Check if message received:
 - → yes: Update range values
- Read sensor values
- Decide if sending necessary to save energy
 - → Only if values out of range
- Sleep for a in code definable time
- Wake up via RTC Interrupt and repeat cycle

Sensor Node & Sensors

Sensors and Values:

DHT11 Temperature and Humidity:

- Temperature in Celsius
- Humiditiy in %

Soil moisture sensor connected via ADC:

- Value between 0 and 1023
- Dry = High value, Wet = value decreases

Light sensor connected via I2C:

- Luminous flux per area = LUX

Architecture

Actuator Node & Actuators

Actuator node & actuator

Software Components

Hardware Components

Actuator node & actuator

Presentation Mode

- Sender
 - sends periodically
 - message: {Pump on for 3 seconds ; lamp on for 1 second}
- Receiver
 - waits for message from sender
 - activates both actuators
 - sets timer: pump timer = 3 seconds, lamp timer = 1 second
 - waits until both timers expired
 - waits again for message

Architecture

Control Center

Processing

- Processing incoming sensor data: **temperature**, **air humidity**, **soil moisture**, **light**Calculating uptime for actuators: **water pump**, **lighting**
- Sending ON-Signal and uptime duration to: **Actuator-water pump / Actuator-lighting**Setting boolean variable TRUE (water pump / lighting is on)
- Receiving OFF-Signal from actuator
 Setting boolean variable FALSE (water pump / lighting is off)

Robustness / Troubleshooting

- Control Center ◆ Sensor Node
 - CC needs to check whether Sensor Node is still operating (f. e. node discovery or searching specific nodes every hour)
- Control Center Actuator Node

Double Check uptime of actuators (CC and actuator node know the uptime, if OFF-Signal not received within time, check what is wrong)

- Checking and evaluate errors
 - Error flags: error AT; error RX; error TX [868Guide, sec 2.2]
 - Getting Errors:
 - xbee868.getRFerrors(); [868Guide, sec 7.3.1]
 - xbee868.getTransmisionErrors(); [868Guide, sec 7.3.4]
- Retry mechanism: xbee868.setMacRetries(0x0A); [868Guide, sec 7.3.10]

Roadmap

final sprint

Roadmap 1/2

- **■** Communication: Control Center → Actuator Node
 - Control Center sends ON-Signal and uptime duration to actuator
 - Actuator node reacts and switches on it's two power outputs in the relay shield for the given time
- Communication: Sensor Node → Control Center
 - Sensor Node sends the values of the connected sensors to the Control Center
- Implementing robustness
 - Control Center checks whether nodes are still operating
 - Double check whether the actuator node has switched off it's actuators
 - API Error handling, retry mechanism

Roadmap 2/2

Energy saving

- Switch Waspmote to low-power mode if there is nothing to process
- Switching off the XBee Antenna if communication is not needed

Interrupts / Timers

- Programme timer interrupts with Real Time Clock (RTC)
- Interrupts via sensors but perhaps direct connected sensors at some pins can't interrupt
- Interrupts via XBee antenna investigate if that is possible

Live demo

Bibliography

[868Guide] http://www.libelium.com/v11-files/documentation/waspmote/waspmote-868-networking_quide.pdf

Thank you for your attention.

