Reeks-genererende polynomen

Timothy van der Valk, TU Delft

November 3, 2022

Laat $f(x) = c_2 x^2 + c_1 x + c_0$ met $c_0, c_1, c_2 \in \mathbb{R}$. Laat s_i een reeks in \mathbb{R} zijn, bijvoorbeeld (1, 2, 3, 4). Een polynoom f genereert de reeks s_i als $f(i) = s_i$ voor $0 \le i \le n$ met een zekere $n \ge 0$.

De polynoom $f(x) = x^2$ genereert (0, 1, 4) omdat f(0) = 0, f(1) = 1, f(2) = 4.

- 1. Geef een polynoom die (1, 2, 3) genereert.
- 2. Geef een polynoom die (1, 1, 2) genereert.
- 3. Geef een polynoom die een willekeurige reeks (s_1, s_2, s_3) genereert.
- 4. Geef de matrix A_3 zodat $A_3 \cdot \begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} f(0) \\ f(1) \\ f(2) \end{bmatrix}$.
- 5. Bereken de inverse van A_3 . (Hint: zie 1.3)
- 6. Bewijs dat de coefficienten c_i uniek zijn in het genereren van de reeks s_n .

We hebben nu polynomen gevonden die reeksen van drie getallen genereren. Dit process kan worden uitgebreid voor reeksen met n getallen.

Laat f_n een polynoom met graad n-1 gegeven worden door

$$f_n(x) = \sum_{i=0}^n c_i x^i \quad . \tag{1}$$

Met $c_i \in \mathbb{R}$. Laat verder \underline{x} de vector zijn met de coefficienten van f zodat $x_i = c_i$. Laat \underline{b} de vector zijn met de functiewaarden van f met $b_i = f(i)$ voor $0 \le i \le n$.

- 1. Geef een formule voor de matrix A_n waarvoor geldt $A_n \cdot \underline{x} = \underline{b}$. De matrices A_n zijn inverteerbaar voor alle $n \ge 1$.
- 2. Geef een tegenvoorbeeld die laat zien dat reeks-genererende polynomen met verschillende graad dezelfde reeks kunnen maken tot op zekere hoogte.
- 3. Bewijs dat twee reeks-genererende polynomen van dezelfde graad n uniek zijn. ≥ 1 .
- 4. [*Lastig] Bewijs dat A_n inverteerbaar is.