

SC1015 MINI PROJECT

A139 Team 5

Ev Chua Yee Suan (U2222559E) Fan Jin Min (U2220358C) Boonkitrungpaisarn Potala (U2222312E)

Factors that could affect a student's grade and predicting a student's grades

Grade Bandings

G3_band

- Band 1 (best): G3 > 15
- Band 2: 10 < G3 <= 15
- Band 3: 5 < G3 <= 10
- Band 4: G3 <= 5

Grade Bandings

Have relatively stronger correlations with G3_band

Parents' Education

Parents' Jobs


```
# Map Mjob to numeric
data["Mjob"] = data["Mjob"].map({"teacher": 1, "at_home": 0, "health": 0, "other": 0, "services": 0})
# Map Fjob to numeric
data["Fjob"] = data["Fjob"].map({"teacher": 1, "at_home": 0, "health": 0, "other": 0, "services": 0})
# Create new column where it is 1, if either Mother or Father job is a teacher
def conditions(data):
    if (data['Mjob'] == 1) or (data['Fjob'] == 1):
        return 1
    else:
        return 0
data['parentJob'] = data.apply(conditions, axis=1)
```



```
# Create new column where it reflects the highest educational level of their parents

def conditions(data):
    if (data['Medu']) >= (data['Fedu']):
        return data['Medu']
    else:
        return data['Fedu']
```


data['parentEdu'] = data.apply(conditions, axis=1)


```
# dropping columns that are not relevant
data = data.drop(['reason'], axis=1)
data = data.drop(['guardian'], axis=1)
data = data.drop(['school'], axis=1)
data = data.drop(['sex'], axis=1)
data = data.drop(['Pstatus'], axis=1)
data = data.drop(['famsize'], axis=1)
data = data.drop(['famrel'], axis=1)
data = data.drop(['freetime'], axis=1)
data = data.drop(['health'], axis=1)
data = data.drop(['absences'], axis=1)
data = data.drop(['famsup'], axis=1)
data = data.drop(['paid'], axis=1)
data = data.drop(['activities'], axis=1)
data = data.drop(['nursery'], axis=1)
data = data.drop(['Medu'], axis=1)
data = data.drop(['Fedu'], axis=1)
data = data.drop(['Mjob'], axis=1)
data = data.drop(['Fjob'], axis=1)
```


Machine Learning Techniques

Decision Tree

Support Vector Machines

k-Nearest Neighbours

Decision Tree

 Issue of overfitting due to huge difference in accuracy scores between train and test set

Decision Tree

- · Accuracy score for decision tree with train set: 99.76
- Accuracy score for decision tree with test set: 84.21

SVM

- Accuracy score for SVM with train set: 83.35
- · Accuracy score for SVM with test set: 85.65

KNN

- Accuracy score for KNN with train set: 85.75
- Accuracy score for KNN with test set: 82.78

Improving Accuracy

 Using only columns: failures, higher, G1, G2, parentJob and parentEdu

SVM

- Initial accuracy scores
 - Accuracy score for SVM with train set: 83.35
 - Accuracy score for SVM with test set: 85.65
- After improvement
 - Accuracy score for the train set=84.07%
 - Accuracy score for the test set=85.65%
- KNN
 - Initial accuracy scores
 - Accuracy score for KNN with train set: 85.75
 - Accuracy score for KNN with test set: 82.78
 - After improvement
 - Accuracy score for the train set=85.99%
 - Accuracy score for the test set=84.69%

Failures

Previous fail rates could negatively impact grades

Higher

Interest in higher education may make one more motivated to score better

G1, G2

Past results may mean one is likely to score similarly in latest tests (G3)

Parents' Jobs

When a parent is a teacher, it could impact student's grade positively

Parent's Education

Students with parents with higher education level likely to score better

