Property P and \mathcal{L}_P

Definition

A property P is simply a subset of Turing recognizable languages. We say that a language L satisfies a property P, if $L \in P$.

For any property P, let $\mathcal{L}_P = \{M \mid L(M) \in P\}$, i.e. the set of all Turing machine such that $L(M) \in P$.

We say that a property P is trivial if either $\mathcal{L}_P = \emptyset$ or \mathcal{L}_P is the set of all the Turing recognizable languages.

Examples of properties

Examples

1. $\mathcal{L}_P = \{M \mid L(M) \text{ is regular}\}.$

 \mathcal{L}_P is collection of TMs M such that L(M) is regular.

Is $\mathcal{L}_P = \emptyset$? No. For example, a TM accepting a^*b^* is in \mathcal{L}_P .

Is $\mathcal{L}_P = \Sigma^*$? No. For example, a TM accepting $\{a^nb^n \mid n \geq 0\}$ is not in \mathcal{L}_P .

Therefore, P is not trivial.

Examples of properties

Examples

2
$$\mathcal{L}_P = \{M \mid L(M) = \emptyset\}.$$

Here \mathcal{L}_P is a collection of TMs M such that $L(M) = \emptyset$.

Is $\mathcal{L}_P = \varnothing$? No. For example, a TM M that rejects any string is in \mathcal{L}_P .

Is $\mathcal{L}_P = \Sigma^*$? No. For example, a TM M that accepts a single string $\{a\}$ is not in \mathcal{L}_P .

Example of a trivial property

Examples

3.
$$\mathcal{L}_P = \left\{ \begin{array}{c|c} M & \text{M is a TM and } L(M) \text{ is accepted by} \\ \text{a TM that has even number of states} \end{array} \right\}$$

Here P is a property of Turing recognizable languages.

But any TM can be converted into another one that has even number of states.

Therefore, any Turing recognizable language has property P.

Therefore, P is in fact all Turing recognizable languages.

Rice's theorem

Theorem

Let P be a property such that it is not trivial. Recall that $\mathcal{L}_P = \{M \mid L(M) \in P\}$. Then \mathcal{L}_P is undecidable.

When is the theorem NOT applicable?

 $\{\langle M \rangle \mid M \text{ has at least ten states} \}.$

 $\{\langle M \rangle \mid M \text{ never moves left on any input string } \}.$

 $\{\langle M \rangle \mid M \text{ has no useless state } \}.$

To prove non-recognizability of a property of languages.

Rice's theorem cannot be used to prove non-recognizability of languages.

It is only used to prove undecidability.

We now learn how to apply Rice's theorem $\{\langle M \rangle \mid M \text{ runs for atmost } 10 \text{ steps on } aab\}.$

Not applicable.

We now learn how to apply Rice's theorem

 $\{\langle M \rangle \mid L(M) \text{ is recognized a TM with at least } 10 \text{ states}\}.$

Applicable, but property is trivial.

We now learn how to apply Rice's theorem

 $\{\langle M \rangle \mid M \text{ has at most } 10 \text{ states}\}.$

Not applicable, but the language is decidable.

We now learn how to apply Rice's theorem

$$\{M \mid L(M) \text{ contains } \langle M \rangle \}.$$

Applicable, the property is not trivial, therefore undecidable.