Math A, B

Math A: 1 ~ 17

Math B: $1 \sim 24$, except 5

- 1. Numbers and expressions
 - a. Exponent rules
 - b. Factorization / expansion
 - ① $(a+b)(a^2-ab+b^2) = a^3+b^3$
 - c. Real numbers
 - d. First-degree inequality
 - e. Absolute values
 - ① When |x| = c, $x = \pm c$
- 2. Sets
 - a. Sets
 - ① $A \cap B$, $A \cup B$, $A \subset B$, $x \in A$
 - Sufficient and necessary conditions
- 3. Quadratic equations
 - a. Quadratic functions
 - ① $y = ax^2 + bx + c$

②
$$y = a \left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a}$$

- ③ $D = b^2 4ac$
- b. Minima, maxima
- 4. Figures and measurements
 - a. Sin, cos, tan

$$1 + \tan^2 \theta = \frac{1}{\cos^2 \theta}$$

- b. Trigonometric ratios

(2)
$$a^2 = b^2 + c^2 - 2bc \cos A$$

- 5. Data analysis
 - a. Deviation

$$(1) \quad s^2 = \overline{x^2} - (\overline{x})^2$$

- b. Tendency
- 6. Number of possible outcomes

a. Sets

①
$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

- b. Permutation
 - ① $_{n}P_{r} = \frac{n!}{(n-r)!}$ (Usually written as

P(n,r) outside Japan)

- ② $\frac{(n-1)!}{2}$ for circular permutation
- c. Combination

①
$$_{n}C_{r} = \frac{n^{P_{r}}}{r!} = \frac{n!}{r!(n-r)!}$$
 (Usually

written as $\binom{n}{r}$ outside Japan)

- 7. Probability
 - a. Properties of probability

- ② $P(A) + P(\overline{A}) = 1$
- $(3) \quad P(A \cup B) = P(A) + P(B) P(A \cap B)$
- b. Independent trials

$$\bigcirc$$
 $_{n}C_{r}p^{r}(1-p)^{n-r}$

c. Probability with constraints

①
$$P_A(B) = \frac{P(A \cap B)}{P(A)}$$

- 8. Properties of figures
 - a. Ceva's theorem
 - ① For $\triangle ABC$ with points R, P, and Q on AB, BC, and CA

respectively,
$$\frac{AR}{RB} \cdot \frac{BP}{PC} \cdot \frac{CQ}{QA} = 1$$

- b. Menelaus's theorem
- c. Power of a point theorem
- 9. Properties of integers
 - a. Number of divisors
 - ① If a natural number $N = p^a$.

 $q^b \cdot r^c \cdot \cdots$, then the number of positive divisors = $(a+1)(b+1)(c+1)\cdots$ and the sum of all positive divisors = $(1+p+\cdots p^a)(1+q+\cdots q^b)(1+r+\cdots r^c)\cdots$

b. GCD, LCM

- ① If a = ga' and b = gb', then a' and b' are relative primes of each other, l = ga'b', and ab = gl
- c. Remainder rules
- d. Euclidean algorithm
 - ① If ax + by = c and ap + bq = c, then x = bk + p and y = -ak + q
- e. Recurring decimal
- f. Positional notation (base 2, 3, 4, ...)

10. Miscellaneous expressions

- a. Binomial theorem
 - ① $\frac{n!}{n!q!r!}a^pb^qc^r$
- b. Arithmetic mean
 - ① If a > 0 and b > 0, then $a + b \ge 2\sqrt{ab}$ is true and $a + b = 2\sqrt{ab}$ when a = b
- c. Roots
- d. Properties of complex numbers
 - ① $i^2 = -1$
- e. Solutions of functions
 - ① If α and β are the two solutions of $ax^2 + bx + c = 0$, then $\alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$
 - ② If α , β , and γ are the three solutions of $ax^3 + bx^2 + cx +$ d = 0, then $\alpha + \beta + \gamma = -\frac{b}{a}$ and

$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$$
, and $\alpha\beta\gamma = -\frac{d}{a}$

- 11. Figures and equations
 - a. Triangles
 - ① For $\triangle ABO$ with O(0,0), $A(x_1, y_1)$, and $A(x_2, y_2)$, $S = \frac{1}{2} |x_1 y_2 - x_2 y_1|$
 - b. Circles
 - ① $x^2 + y^2 = r^2$
 - ② For a circle C $x^2 + y^2 = r^2$, the equation of the tangent line is $x_1x + y_1y = r^2$ for $P(x_1, y_1)$ on C
 - c. Optimization problems
- 12. Trigonometry
 - a. Trigonometric formulas
 - ① $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$, $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$, $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$, etc.
 - ② $\sin^2 \theta = \frac{1-c}{2}$, $\cos^2 \theta = \frac{1+c}{2}$, $2 \sin \theta \cos \theta = \sin 2\theta$
 - ③ $\sin \alpha \cos \beta = \frac{1}{2} \{ \sin(\alpha + \beta) + \sin(\alpha \beta) \}, \text{ etc.}$
 - $\text{(4)} \quad \sin A + \cos B = 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2},$ etc.
 - $5 \sin 3\theta = 3\sin \theta 4\sin^3 \theta,$ $\cos 3\theta = -3\cos \theta + 4\cos^3 \theta$
 - ⑥ Note: sec, csc, and cot are not included in the syllabus
- 13. Exponential and logarithmic function
 - a. Exponential and logarithmic rules
 - ① Note: In Japan, log(x) = log

base $e(\ln(x))$ and $\log_{10}(x) = \log \text{base } 10$

14. Differential calculus 1

- a. Limit definitions
- b. Basic differentiation
- c. Optimization problems

15. Integral calculus 1

- a. Basic integration
 - ① $\int_{\alpha}^{\beta} a(x \alpha)(x \beta) dx =$ $-\frac{a}{6}(\beta \alpha)^{3}$
 - ② Note: Integral calculus 1 does not contain integration by parts

16. Vectors

- a. Dot product (cross product is not included)
- b. Vector geometry (2D and 3D)
 - ① If $a\overrightarrow{PA} + b\overrightarrow{PB} + c\overrightarrow{PC} = 0$ for a ΔABC and a point P, $\overrightarrow{AP} =$

$$k\left(\frac{n\overrightarrow{AB}+m\overrightarrow{AC}}{m+n}\right)$$

- ② For \vec{p} on \overrightarrow{AB} , $\vec{p} = (1 t)\vec{a} + t\vec{b}$
- ③ For \vec{h} on $\triangle ABC$, $\vec{h} = s\overrightarrow{OA} + t\overrightarrow{OB} + u\overrightarrow{OC}$ (s + t + u = 1)

17. Sequences

- a. Arithmetic and geometric sequences
- b. Sum of sequences
 - ① $S_n = \frac{1}{2}n(a+1), S_n = \frac{1}{2}n(2a+1)$ $(n-1)d), S_n = a\frac{r^n-1}{r-1} = a\frac{1-r^n}{1-r}$
 - ② $\sum_{k=1}^{n} k = \frac{1}{2} n(n+1), \sum_{k=1}^{n} k^2 = \frac{1}{6} n(n+1)(2n+1), \sum_{k=1}^{n} k^3 = \frac{1}{2} n(n+1)^2, \text{ etc.}$

c. Recurrence

- ① $a_{n+1} = a_n + d$
- ② $a_{n+1} = n(a_n)^m$

③
$$pa_{n+2} + qa_{n+1} + ra_n = 0$$

18. Complex plane

- a. De Moivre's theorem
 - ① $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$
- b. Nth root of 1

c. Geometry on complex plane

19. Curves on a plane

- a. Curves
 - ① $y^2 = 4px$

②
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 with $F(\sqrt{a^2 - b^2}, 0), F'(-\sqrt{a^2 - b^2}, 0)$

③
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 with $F(\sqrt{a^2 + b^2}, 0), F'(-\sqrt{a^2 + b^2}, 0)$

- b. Tangent lines
- c. Parametric curves

- d. Polar coordinates
 - ① (r, θ)

20. Limits

a. Limits of rⁿ

① Ex.
$$\lim_{n\to\infty} \frac{r^{n}-1}{r^{n}+1} = -1$$
 when $|r| < 1$, $= 0$ when $r = 1$, and $= 1$ when $|r| > 1$

b. Limits of sequences

① Ex.
$$a_{n+1} = \frac{2a_n - 3}{a_n - 4}$$
, $\lim_{n \to \infty} a_n$

② Ex.
$$\frac{1}{\sqrt{1}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{5}} + \dots +$$

$$\frac{1}{\sqrt{2n-1}+\sqrt{2n+1}}+\cdots$$

- ③ Ex. Fractals
- c. Trigonometric limits

21. Differential calculus 2

- a. Chain rule
- b. Limits of e

①
$$\lim_{h\to 0} (1+h)^{\frac{1}{h}} = e$$

- c. Implicit differenciation
- d. Mean-value theorem
- e. L'Hospital's rule
- f. Optimization problems
- g. Differentiation of parametric functions
- h. Approximation
 - ① If $h \approx 0$, then $f(a + h) \approx f(a) + f'(a)h$
 - ② If $x \approx 0$, then $f(x) \approx f(0) + f'(0)x$
- 22. Integral calculus 2

- a. Integration by parts
- b. Trigonometric integration
- c. Volume
- d. Integration of parametric functions
- e. Length of a curve

①
$$L = \int_a^b \sqrt{1 + y'^2}$$

②
$$L = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt \ {
m for} \ a$$

parametric function

*Note 1: The "matrix" section was removed from the syllabus a few years ago, but there is a chance it will come back in the next years $(2024\sim25 \text{ or so})$.

*Note 2: I did not add much detail for obvious contents such as for exponential and logarithmic functions and calculus.

Japanese

- 1. Section A
 - a. JLPT N5 ~ N4
- 2. Section B
 - a. JLPT $N3 \sim N2$
- 3. Section C
 - a. JLPT $N2 \sim N1$
 - b. Additional proverbs and expressions not covered in JLPT

JLPT N5 \rightarrow	30/300 ≈ 10%
JLPT N4 \rightarrow	60/300 ≈ 20%
JLPT N3 \rightarrow	$120/300 \approx 40\%$
JLPT N2 \rightarrow	$190/300 \approx 60\%$
JLPT N1 (100/180 \sim 130/180) \rightarrow	$220/300 \approx 70\%$
JLPT N1 (130/180 \sim 150/180) \rightarrow	$220/300 \approx 80\%$
JLPT N1 (160/180+) →	270/300 ≈ 90%+

(Including lucky guesses)

Chemistry

*Note: Numbers or formulas with a * sign must be memorized.

- 1. Constituent particles of matter
 - a. Simple substances
 - b. Compounds
 - c. Allotropes
 - ① SCOP (sulfur, carbon, oxygen, phosphorous)
 - d. (First) ionization energy
- 2. Chemical formulas
 - a. Molecular weight / formula weight
 - b. Avogadro's number
 - ① 6.02·10²³ ❖
 - c. Standard state
 - ① The volume of any (ideal) gas is 22.4L ❖ at standard state, and standard state always means 101 kPa at 0C°❖
- 3. Chemical bonds and crystals
 - Ion, covalent, metallic bonds and intermolecular bonds (van der Waals force, hydrogen bond)
 - b. Electronegativity
 - c. Molecular polarity
 - d. NaCl, CsCl, diamond,
 body-centered cubic lattice,
 face-centered cubic lattice, and
 hexagonal close-packed structure
 - Number of atoms per unit cube, coordination number, and atomic packing factor *
- 4. States of matter
 - a. Vapor pressure
 - b. Vapor-liquid equilibrium
 - c. Ideal gas law

- d. Differences of ideal and real gas
- 5. Solution
 - a. Henry's law
 - b. Concentration
 - ① Mass percent concentration (%)
 - ② Mole-concentration (mol/L)
 - ③ Molar concentration (mol/kg)
 - c. Osmotic pressure
 - $\Pi = cRT$
 - d. Colloids
 - ① Size of colloid particles: $10^{-9} \sim 10^{-7} \text{m}$
 - ② Tyndall effect
 - 3 Brownian movement
 - 4 Electrophoresis
 - e. Hydrophobic and hydrophilic colloids
 - ① Coagulation
 - 2 Salting out
 - ③ Dialysis
 - 4 Sol, gel
- 6. Chemical reactions and energy
 - a. Enthalpy
 - ① Enthalpy of formation
 - ② Enthalpy of dissolution
 - ③ Enthalpy of neutralization
 - b. Binding energy
 - c. Hess's law
- 7. Reaction speed
 - a. Activation energy
 - b. Catalysis
 - c. Chemical equilibrium
 - d. Le Chatelier's principle
 - e. Equilibrium constant
- 8. Acid and base
 - a. Arrhenius's theory
 - b. Bronsted-Lowry's theory
 - c. pH

- d. Neutralization
 - ① Phenolphthalein (pH \geq 7)
 - ② Methyl orange (pH \leq 7)
- 9. Oxidation and reduction
 - a. Oxidizer, reducing agent
 - b. Battery
 - ① Primary, secondary
 - Voltaic battery
 -Zn|H₂SO₄aq|Cu +, reaction on each side ❖
 - ③ Daniell cell
 -Zn|ZnSO₄aq|CuSO₄aq|Cu+,
 reaction on each side ❖
 - ④ Manganese battery
 - ⑤ Lead-acid battery
 -Pb|H₂SO₄aq|PbO₂ +, reaction
 on each side ❖
 - c. Ionization tendency
 - ① From bigger to smaller, Li K
 Ca Na Mg Al Zn Fe Ni Sn Pn
 (H₂) Cu Hg Ag Pt Au ❖
 - d. Electrolysis
 - e. Faraday's law
 - ① 96500 C/mol
- 10. Periodic table
 - a. Elements in group 1,2, 13 ~ 18
 must be memorized in order (top to down)
 - b. Transition elements and their characteristics
 - c. Main group elements and their characteristics
- 11. Non-metals
 - a. Halogens
 - b. Contact process 💠
 - c. Haber bosch process &
 - d. Ostwald process *
 - e. Solvay or ammonia-soda process &

- f. Oxoacid
- 12. Metals
 - a. Alkali metals
 - b. Alkaline earth metals
 - ① In Japan, only Ca, Sr, Ba, and Ra are considered alkaline earth metals due to their distinctive characteristics compared to Be and Mg. ❖
 - c. Aluminum
 - ① Production of aluminum, bauxite, aluminum oxyde
 - d. Hydroxide
 - e. Complex ions
 - ① [Ag(NH₃)₂]⁺, straight line ❖
 - ② $[Cu(NH_3)_4]^{2+}$, square •
 - ③ [Zn(NH₃)₄]²⁺, tetrahedron ❖
 - (4) [Fe(CN)₆]³⁻, octahedron \bullet
- 13. Inorganic substances
 - a. Storage methods
 - ① Na, K, P, CaO, CaC₂, NaOH, AgNO₃, HF
 - The production method, collecting method, color, odor, acidity, solubility, and other characteristic features of the following gases must be memorized
 - H₂, O₂, Cl₂, HCl, HF, H₂S, SO₂,
 NO₂, NO, CO₂, CO, NH₃
 - c. Precipitation
- 14. Aliphatic compounds
 - a. Hydrocarbons
 - ① Alkane, cycloalkane
 - ② Alkene, cycloalkene
 - 3 Alkyne
 - The formula, naming, hydrolysis, acidity, and other characteristics of the following functional groups

must be memorized

- ① -OH, -O-, -CHO, = CO, -COOH, -COO-, $-NH_2$, $-NO_2$, $-SO_3H$
- c. Isomers
 - ① Geometric, optical, stereoisomer
- d. Alcohol
 - ① Primary, secondary, tertiary
 - 2 Monohydric, dihydric, trihydric
- e. Ether
- f. Ester
- g. Carboxylic acid
- h. Oils and fats and soap
 - ① Detergent
 - ② Surface active agent
- 15. Aromatic compounds
 - a. Phenol
 - b. Aromatic carboxylic acid
 - c. Aniline
 - d. Pharmaceuticals
 - (1) Sulfonamides
 - 2 Antibiotics
 - e. Dye, azo compounds
- 16. Natural polymers
 - a. Sugar
 - ① Monosaccharide
 - 2 Polysaccharide
 - b. Amino acid
 - ① Zwitterions
 - 2 Ninhydrin reaction
 - c. Protein
 - Peptide bond
 - ② Biuret test
 - ③ Xanthoprotein reaction
 - 4 Enzyme
 - d. Nucleic acid
 - ① DNA, RNA

- ② Ribose, deoxyribose
- 17. Artificial polymers
 - a. Fibers
 - ① Rayon
 - 2 Acetate
 - ③ Nylon (polyamide)
 - 4 Vinylon
 - ⑤ Acrylic fiber
 - 6 Polyester
 - b. Synthetic resin (plastic)
 - Polyethylene
 - ② Polyvinyl acetate
 - 3 Phenolic resin
 - 4 Urea resin
 - 5 Polyethylene terephthalate
 - c. Rubber
 - ① Natural rubber (latex)
 - ② Synthetic rubber, vulcanization

Physics

- 1. Constant acceleration motion
 - V-t graph
 - ① $v = v_0 + at$
 - ② $x = v_0 t + \frac{1}{2} a t^2$
 - ③ $v^2 v_0^2 = 2ax$
 - b. Potential energy

 - ② Mgh
 - Relative velocity
- 2. Equilibrium of forces
 - Action-reaction law
 - b. Friction
 - Forces
 - ① mg
 - ② kx
 - ③ ρVg
 - d. Spring

①
$$\frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_2}$$
, $k = k_1 + k_2$

- e. Center of mass
 - ① $x_G = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3 + \cdots}{m_1 + m_2 + m_3 + \cdots}$
- 3. Laws of motion
 - a. Newtonian equation of motion
 - \vec{I} $\vec{F} = m\vec{a}$
 - b. Conservation of energy and work
 - ① $U = \frac{1}{2}kx^2$
 - ② W = Fl
- 4. Movements with resistance
 - Friction
 - ① μ'N
 - b. Air resistance
 - ① kv
- 5. Conservation of momentum
 - a. Momentum and impulse
 - ① m**v**

- ② $\vec{F} \cdot \Delta t$
- b. Coefficient of restitution and collision
- 6. Circular motion and universal gravitation
 - a. Circular motion
 - $T = \frac{2\pi}{v} = \frac{2\pi}{\omega}$
 - ② $a = \frac{v^2}{r} = r\omega^2$
 - b. Universal gravitation

 - ① $f = G \frac{Mm}{r^2}$ ② $U = -G \frac{Mm}{r}$
 - c. Kepler's law
 - ① $\frac{1}{2}$ rv = constant
 - ② $T^2 = ka^3$
 - d. Escape velocity

- 7. Harmonic motion and pendulum
 - Simple harmonic motion
 - ① $x = A \sin \omega t$
 - ② $v = A\omega \cos \omega t$, $v_{max} = A\omega$
 - $\Im T = \frac{2\pi}{\omega}$
 - b. Spring pendulum

- Pendulum
 - ① $T = 2\pi \sqrt{\frac{l}{g}}$
 - ② g' = g + a in an elevator
- 8. Temperature and heat
 - a. Heat capacity
 - ① $Q = mc\Delta t$
 - ② $Q = C\Delta t$

b. Thermal efficiency

①
$$e = \frac{W}{Q_{in}} = \frac{Q_{in} - Q_{out}}{Q_{in}} < 1$$

- 9. Motion of particles and change in state
 - a. Equation of state and laws of gas
 - ① PV = nRT
 - ② $pS = p_0S + Mg$
 - b. Movement of particles

- ② $\Delta U = nC_V \Delta T$
- ③ $W = p\Delta V = nR\Delta T$
- c. Change in state
 - ① $C_V = \frac{3}{2}R$, $C_P = C_V + R$
 - ② $pV^{\gamma} = constant$, $\gamma = \frac{C_P}{C_V}$
 - \bigcirc Q = $\Delta U + W$
- 10. Properties of waves
 - a. Y-t and y-x graphs

①
$$y = A \sin 2\pi \left(\frac{t}{T} - \frac{x}{\lambda}\right)$$

- b. Fixed end and free end reflection
- c. Interference

①
$$|l_1 - l_2| = m\lambda$$
 or $= (\frac{1}{2} + m)\lambda$

- d. Sound waves
 - ① String: $v = \sqrt{\frac{s}{\rho}}$, $f_m = \frac{m}{2l} \sqrt{\frac{s}{\rho}}$

$$(m = 1, 2, 3, \cdots)$$

- ② Open pipe: $f_m = \frac{mV}{2l}$ (m = 1,2,3,...)
- ③ Closed pipe: $f_m = \frac{mV}{4I}$ (m = 1,3,5,...)
- e. Doppler effect
- f. Beat
- 11. Light waves

- a. Properties of light
 - ① $n = \frac{c}{v}$
 - ② $n_{12} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} = \frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1}$
 - $3 \quad n_1 \sin \theta_1 = n_2 \sin \theta_2$
- b. Lenses
 - ① $\frac{1}{f} = \frac{1}{a} + \frac{1}{b}$
 - ② $m = \left| \frac{b}{a} \right|$
- c. Young's experiment
 - ① $\lambda m = \frac{dx}{1}$
- d. Newton's rings
 - ① $d = \frac{r^2}{2R}$
- 12. Electrostatic force and electric field
 - a. Formulas and laws

①
$$F = k \frac{Qq}{r^2}$$

②
$$E = k \frac{Q}{r^2}$$

$$4 N = 4\pi kQ = \frac{Q}{\epsilon_0}$$

- \bigcirc U = qV
- 13. Capacitor
 - a. Capacitor laws
 - ① Note: In Japan, capacitors are called "condensers"
 - Q = CV
 - b. Conservation of electric power
- 14. DC circuit

- a. Current laws
 - ① I = Senv
 - ② V = RI
- 15. Electric current and magnetic field
 - Magnetic field
 - ① $H = \frac{I}{2\pi r}, H' = \frac{I}{2r}, H'' = nI$
 - ② $B = \mu H$
 - \bigcirc eE = evB
 - (4) E = vB
- 16. Electromagnetic induction
 - Induction laws
 - ① $V = -N \frac{\Delta \varphi}{\Delta t}$
 - ② $V = Blv_1 = Blv \cos \theta$
 - b. Self and mutual induction
 - ① $V = -L \frac{\Delta I}{\Delta t}$
 - ② $V' = -M \frac{\Delta I}{\Delta t}$
 - ③ $U = \frac{1}{2}LI^2$
- 17. AC circuit
 - a. Generator of AC
 - ① $V = V_0 \sin \omega t$
 - ② $\varphi = BS \cos \omega t$
 - b. AC circuit
 - \bigcirc V = RI
 - ② $V = \omega LI$
 - $\Im V = \frac{1}{\omega C}I$
 - $\textcircled{4} \quad Z = \sqrt{R^2 + \left(\omega L \frac{1}{\omega C}\right)^2}$
 - c. Resonance circuit
 - (1) $T = 2\pi\sqrt{LC}$
 - ② $\frac{1}{2}LI^2 = \frac{1}{2}CV^2$
- 18. Electrons and lights
 - a. Electron in a magnetic field
 - \bigcirc F = eE

②
$$\frac{1}{2}mv_0^2 + eV = \frac{1}{2}mv^2$$

③ $a = \frac{eE}{m}$

- 4 f = evB
- b. Wave-particle duality of light
 - ① E = hv

 - ③ $\lambda = \frac{c}{v}$
- X-rays c.
 - $1 \lambda = \frac{hc}{aV}$
- Compton effect
- e. Bragg's law
 - ① $2d \sin \theta = n\lambda \ (n = 1,2,3,\cdots)$
- 19. Atoms and nuclei
 - a. Hydrogen atom

 - ② $2\pi r = n \frac{h}{mv} (n = 1,2,3,...)$
 - 3 $E = -\frac{ke^2}{2\pi}$
 - b. Release of light
 - ① Lyman series
 - 2 Balmer series
 - ③ Paschen series
 - Radioactive decay
 - d. Properties of atoms and energy
 - \bigcirc E = mc²