

Tensor Visualization

What are Tensors?

Scientific Visualization Professor Eric Shaffer

Tensors

"A tensor is just a machine that takes in some number of vectors and spits out some other vectors in a linear fashion. For example, the dot product can be viewed as a tensor that takes two vectors in and spits out a number."

Stress forces acting on a particle in a homogeneous continuous medium under a uniform linear stress, as a function of the orientation of a surface element on the particle's boundary.

What is a Tensor

In <u>mathematics</u>, a **tensor** is an algebraic object that describes a (<u>multilinear</u>) relationship between sets of algebraic objects related to a <u>vector space</u>. Objects that tensors may map between include <u>vectors</u> and <u>scalars</u>, and even other tensors.

-wikipedia

Is Tensor a Matrix?

A tensor is often thought of as a generalized matrix.

- A multi-dimensional array of numbers
- A rank 2 tensor is a matrix
- Not all matrices are tensors

The TensorFlow machine learning platform name derives from the operations that such neural networks perform on multidimensional data arrays, which are referred to as tensors....

What is a Tensor?

Explanation 1: Dimensionality

scalar: a OD array of values e.g. 1 value

vector: a 1D array of values e.g. 3 values

tensor: a 2D matrix of values e.g. 3x3 = 9 values

We will focus only on rank-2 tensors

What is a Tensor?

Explanation 2: Analysis

scalar: magnitude (of some signal at a point in space)

vector: magnitude and direction (of some signal at some point in space)

tensor: variation of magnitude (of some signal at some point in space)

What is a Tensor?

Explanation 3: As a function

- scalar: at $x \in \mathbb{R}^3$, measure some value $s \in \mathbb{R}$
- vector: at $x \in \mathbb{R}^3$, measure some magnitude and direction $\mathbf{v} \in \mathbb{R}^3$
- **tensor:** at $x \in \mathbb{R}^3$ and in a direction $v \in \mathbb{R}^3$, measure some magnitude $s \in \mathbb{R}$

Fields

So we have different kinds of fields (i.e. **functions** of a variable $x \in \mathbb{R}^3$):

Scalar fields s: $\mathbb{R}^3 \to \mathbb{R}$

Vector fields $\mathbf{v}: \mathbf{R}^3 \to \mathbf{R}^3$

Tensor fields $T: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$

