Class 10 Structural Bioinformatics Pt.1

Alyssa Hayashi

#The PDB Database

Here we examine the size and composition of the main database of the biomolecules structuresthe PDB.

Get a csv file from the PDB and read it in R

```
pdbstats<- read.csv("Data Export Summary.csv", row.names=1)
head(pdbstats)</pre>
```

	X.ray	EM	NMR	Multiple.methods	Neutron	Other
Protein (only)	161,663	12,592		200	74	32
Protein/Oligosaccharide	9,348	2,167	34	8	2	0
Protein/NA	8,404	3,924	286	7	0	0
Nucleic acid (only)	2,758	125	1,477	14	3	1
Other	164	9	33	0	0	0
Oligosaccharide (only)	11	0	6	1	0	4
	Total					
Protein (only)	186,898					
Protein/Oligosaccharide	11,559					
Protein/NA	12,621					
Nucleic acid (only)	4,378					
Other	206					
Oligosaccharide (only)	22					

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy.

My pdbstats data frame has number with commas in them. This may cause problems.

```
pdbstats$X.ray
```

```
[1] "161,663" "9,348"
                       "8,404" "2,758" "164"
                                                         "11"
  as.numeric(pdbstats$X.ray)
Warning: NAs introduced by coercion
[1] NA NA NA NA 164 11
  x<- "22,200"
  as.numeric(gsub(",","", x))
[1] 22200
We found a function called 'gsub' now we can figure out how itt works
  as.numeric(gsub(",","", x))
[1] 22200
  gsub(",","", pdbstats$X.ray)
[1] "161663" "9348"
                       "8404"
                                 "2758"
                                          "164"
I can turn this snipit into a function that I can use on every column
  commasum<- function(x){</pre>
    sum(as.numeric(gsub(",","", x)))
  }
  commasum(pdbstats$X.ray)
[1] 182348
  totals<-apply(pdbstats, 2, commasum)</pre>
```

round((totals/totals["Total"]*100),2)

X.ray	EM	NMR	Multiple.methods
84.54	8.72	6.57	0.11
Neutron	Other	Total	
0.04	0.02	100.00	

84.54% are solved by x-ray and 8.72 is solved by EM.

Q2: What proportion of structures in the PDB are protein?

(215684/249751891*100)

[1] 0.08635931

Q3: Type HIV in the PDB website search box on the home page and determine how many HIV-1 protease structures are in the current PDB?

2. Visualizing Protein Structure

We will learn the basics of Mol*. Home page is https://molstar.org/viewer/we will play with PDB code 1HSG

Show the ASP 25

Back to R and working with PDB structures

```
library(bio3d)
hiv<- read.pdb("1hsg")

Note: Accessing on-line PDB file
hiv

Call: read.pdb(file = "1hsg")

Total Models#: 1
   Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)
   Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
   Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)</pre>
```

```
Non-protein/nucleic Atoms#: 172 (residues: 128)
Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]
```

Protein sequence:

PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP VNIIGRNLLTQIGCTLNF

+ attr: atom, xyz, seqres, helix, sheet, calpha, remark, call

head(hiv\$atom)

```
type eleno elety alt resid chain resno insert
                                                                    z o
1 ATOM
                 N <NA>
                          PRO
                                  Α
                                             <NA> 29.361 39.686 5.862 1 38.10
2 ATOM
           2
                CA <NA>
                          PRO
                                             <NA> 30.307 38.663 5.319 1 40.62
                                  Α
                                        1
3 ATOM
           3
                 C <NA>
                          PRO
                                  Α
                                        1 <NA> 29.760 38.071 4.022 1 42.64
4 ATOM
                 O <NA>
                          PRO
                                        1 <NA> 28.600 38.302 3.676 1 43.40
5 ATOM
           5
                CB <NA>
                          PRO
                                        1 <NA> 30.508 37.541 6.342 1 37.87
                                  Α
6 ATOM
                CG <NA>
                          PRO
                                        1
                                            <NA> 29.296 37.591 7.162 1 38.40
           6
                                  Α
  segid elesy charge
 <NA>
            N
                <NA>
 <NA>
            С
                <NA>
3
  <NA>
            C
                <NA>
  <NA>
            0
               <NA>
            С
  <NA>
                <NA>
            C
                <NA>
  <NA>
```

pdbseq(hiv)

5 6 7 8 9 10 11 12 13 14 15 16 17 18 "P" "O" "I" "T" "L" "W" "O" "R" "P" "L" "V" "T" "I" "K" "I" "G" "G" "O" "L" "K" 23 25 26 27 28 29 30 31 32 35 36 24 33 34 37 38 "E" "A" "L" "L" "D" "T" "G" "A" "D" "D" "T" "V" "L" "E" "E" "M" "S" "L" ייקיי 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 "R" "W" "K" "P" "K" "M" "I" "G" "G" "I" "G" "G" "F" "I" "K" "V" "R." "0" 61 62 63 66 68 69 70 71 72 73 74 75 77 78 64 65 67 76

```
86 87
                              88
                                   89
                                      90 91 92 93
        83 84 85
                                                        94
                                                            95
"P" "V" "N" "I" "I" "G" "R" "N" "L" "L" "T" "O" "I" "G" "C" "T" "L" "N"
                                                13
                       7
              5
                   6
                           8
                                9
                                   10
                                       11
                                           12
                                                    14
                                                        15
                                                             16
                                                                 17
                                                                     18
יידיי ייםיי
        "T" "L" "W" "O" "R"
                             "ע" "ו" "ע"
                                          "T" "T"
                                                   "K"
                                                       " T "
                                                            "G"
                                                                "G"
                                                                    "ດ"
                                                                        "L"
                                                                                 "E"
             25
                  26
                      27
                          28
                              29
                                   30
                                       31
                                           32
                                                33
                                                    34
                                                        35
                                                             36
                                                                 37
                                                                     38
                                          "V" "L"
"A" "T."
        "L" "D"
                "T"
                     "G" "A"
                              "D"
                                  "D"
                                     "T"
                                                   "E"
                                                       "E"
                                                            "M"
                                                                "S"
                                                                    "L"
                                                                         "P"
                                                                             "G"
                                                                                 "R"
                               49
                                   50
                                       51
                                                53
                                                    54
                                                        55
                                                             56
                                                                     58
             45
                  46
                      47
                          48
                                           52
"W" "K" "P" "K" "M" "I" "G" "G" "I" "G" "G" "F"
                                                            "V" "R"
                                                                    "0"
                                                  "I" "K"
                                                                        "Y"
                                                                             "D"
             65
                  66
                      67
                          68
                              69
                                   70
                                       71
                                           72
                                                73
                                                    74
                                                        75
                                                             76
                                                                 77
                                                                     78
                                                                         79
"T" "I." "T" "E" "T" "C" "G"
                              "H" "K" "A" "I" "G"
                                                   "T"
                                                       "V"
                                                            "T."
                                                                    "G"
                              89
                                   90
                                       91
                                           92
         84
             85
                  86
                      87
                          88
                                               93
                                                    94
                                                        95
                                                             96
                                                                     98
"V" "N" "I" "I" "G" "R" "N" "L" "L" "T" "Q" "I" "G" "C" "T" "L" "N" "F"
```

Here we will do a normal mode analysis (NMA) to predict functional motions of a kinase pretein

```
adk<- read.pdb("6s36")
 Note: Accessing on-line PDB file
 PDB has ALT records, taking A only, rm.alt=TRUE
 adk
       read.pdb(file = "6s36")
Call:
  Total Models#: 1
    Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)
    Protein Atoms#: 1654 (residues/Calpha atoms#: 214)
    Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
    Non-protein/nucleic Atoms#: 244 (residues: 244)
    Non-protein/nucleic resid values: [ CL (3), HOH (238), MG (2), NA (1) ]
  Protein sequence:
     MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT
     DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDKI
     VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG
     YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG
```

+ attr: atom, xyz, seqres, helix, sheet, calpha, remark, call

modes<- nma(adk)

Building Hessian... Done in 0.043 seconds. Diagonalizing Hessian... Done in 0.185 seconds.

plot(modes)

Make a "move" called a trajectory of the predicted motions:

mktrj(modes, file="adk_m7.pdb")

The you can open it in R