情報統計 第9-11回

2019年9月19日 神奈川工科大学

櫻井 望

国立遺伝学研究所 生命情報・DDBJセンター

スケジュール

	17日(火) データの見え る化	18日(水) 検定のこれだけ は	19日(木) 多変量解析の雰 囲気	23日(月) データ準備 発表会
1限	 ガイダンス、 PC環境準備、 データの見え る化 	5 区間推定、 分布とその使い 方	9 相関	13 自習(課題、質問)
2限	2 統計の基本と用語	6 t検定	10 主成分分析	14 自習(課題、質問)
3限	3 プログラミ ングの基礎	7 検定で注意 すること	11 他の多変量 解析	15 発表会
4限	4 自習 (課題検討、復習)	8 自習 (課題 検討、復習)	12 自習 (課題検討、復習)	

相関

学習目標

相関のあるなしを評価できるように
なる

相関関係と因果関係の違いが分かる

散布図

二つの変数の間の関係性を見える化する手法

散布図の回帰曲線

エクセルのグラフ上でプ ロットを右クリックし、挿 入できる

相関係数

- 二つの変数の間の関係性の強さを数値化したもの
- -1~1の間の値をとる

0.7~1.0:強い正の相関 -1.0~-0.7:強い負の相関

0.4~0.7:中程度の正の相関 -0.7~-0.4:中程度の負の相関

0.2~0.4:弱い正の相関 -0.4~-0.2:弱い負の相関

-0.2~0.2:相関がない

● ExcelではPEARSON関数で計算できる

相関関係を見るの人

都道府県別の統計

https://todo-ran.com/

携帯版 | スマホ版 | English

都道府県別統計とランキングで見る県民性[とどラン]

都道府県別統計とランキングで見る県民性

https://todo-ran.com/

国土・インフラ トップ 社会・政治 産業・経済 文化・くらし・健康 娯楽・スポーツ 店舗分布 その他 サイトについて 作者について 引用・転載について 統計八百屋 リクエスト ① X 栄養士、管理栄養士募集 《完全無料》栄養士複数在籍、未経験歓迎など栄養士の非 公開求人をご紹介 中

都道府県別統計を比較 した都道府県ランキン グ。**1339** ランキング 掲載中

odomon@gmail.c

🛄 当サイト一番人気

都道府県 ベスト&ワースト

各都道府県の1位と47 位だけを一覧表にまと めました。県民性が一 目で分かります。

都道府県比較

東京vs大阪、埼玉vs千 葉vs神奈川など任意の 都道府県の似たとこ、 似ていないところを一 トップ

最新ランキング

2019年参議院比例代表: NHKから国民を守る党得票率 [2019年 第一位 徳島県]

🔲 記事を探す

▶ 検索から探す(googleサイト内検索)

Google カスタム検索 サイト内検索

▶ カテゴリから探す

政治・経済などカテゴリ別全記事表示

▶ 新着から探す 新しい順に全記事表示

データを集めてみる

例)

神奈川県の高いランクのうち、

「しゅうまい消費量」と

「最低賃金」や「農業就業人口」との相関

- サイトでデータをコピー
- エクセルに貼り付け
- エクセルで加工(県の列で並び替え)
- 散布図を描く
- PEARSON関数で相関係数を計算する

相関係数を手で計算する

ピアソンの積率相関係数

$$r = \frac{s_{xy}}{s_x s_y}$$

$$= \frac{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}) (y_i - \overline{y})}{\sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2} \sqrt{\frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2}}$$

sxy: xとyの共分散

sx: xの標準偏差

sy: yの標準偏差

n: xとyのペアの数

無相関の検定

帰無仮説:

母集団の相関係数は0(無相関)である

分布: t分布

検定統計量: $t=\frac{|r|\sqrt{n-2}}{\sqrt{1-r^2}}$

自由度: n-2

※|r|はrの絶対値エクセルではABS関数で計算できる

そのほかの相関係数

- ●スピアマンの順位相関係数
- ●コサイン相関係数

相関と因果

相関関係:

二つの事柄に関連性がある

因果関係:

二つの事柄が、原因と結果の関係である

疑似相関

https://www.tylervigen.com/spurious-correlations

ニコラス・ケイジの映画出演本数と、 プールでおぼれた人の数には、高い相関があ あるが、、、?

Number of people who drowned by falling into a pool

correlates with

Films Nicolas Cage appeared in

tylervigen.com

統計学と経済学の最新の知見を凝縮

中室牧子, 津川友介著、 ダイヤモンド社2017年

多変量解析

多変量データの例

- 大規模な疫学研究データ
- 生物等のオミクスデータ

など

生物の遺伝子情報の流れとオミクス

オミクス

それぞれの要素を一斉に検出 しようとする技術・学問

多変量解析の目的

- データを要約して解釈しやすくする
- データに含まれる潜在的な因子を見 つける
- 状況を判別したり、分類したりする
- 状況を予測する

さまざまな多変量解析

- 似ているものをグルーピングする クラスター解析
- データを要約する主成分分析
- 判別、分類、予測判別分析、PLS、PLS-DA、重回帰分析

主成分分析

学習目標

主成分分析について

- 概念を理解する
- 結果の解釈の仕方を理解する
- (Rによる計算をする)

主成分分析で扱うデータ

/組織ごとの生体試料など

		対象					
		1	2	é	<i>3 ···</i>	n	
変数	X_{I}	X_{II}	X 21	X 31		X_{nI}	
	X_2	X 12	X 22	X 32		X n2	
	$X_{\mathcal{J}}$	X 13	X 23	X 33		X_{n3}	
	/						
	X_{m}	X_{Im}	X_{2m}	X_{3m}		X_{nm}	

遺伝子など 説明変数, 観測変数

遺伝子発現量など

①例えば変数が2個しかないとき、2次元の散 布図に、試料ごとに変数をプロットできる

②一番分散の大きい軸(第1軸)決める

③第1軸に直角に交わり、次に分散が大きい軸(第2軸)を決める 2541

変数 X_1

④第1軸がx軸、第2軸がy軸になるように、図を回転させた新たな図を作る

m個の変数の値をm次元の図にプロットし、 同様の計算を行うことが可能

変数2個 2次元 変数3個 3次元 変数m個 m次元

試料間の違い(特徴)が一番はっきりと見える方向から見た図が描ける

スコアプロット

主成分軸に各試料を投影しなおした図

軸に示した%は<mark>寄与率</mark>と呼び、全体の分散のうち各主成分軸 が説明する分散の比率を表す。第1主成分の寄与率が最も大 きい。 .

第2 主成分 (**%)

第1主成分(**%)

ローディングプロット

ローディングは、因子負荷量とも呼ばれ、各試料の主成分ス コアと、変数の間の相関係数に相当する。

(厳密には、数値の前処理の条件などいくつか制約がある)

第2主成分に 対する因子負 荷量

第1主成分に対する因子負荷量

こつの図をセットで見る

この試料と他の試料との違いは、これらの変数がよ

り大きく相関している

第1主成分(**%)

第1主成分に対する因子負荷量

スコアプロット

ローディングプロット

そのほかの多変量解析

さまざまな多変量解析

- 似ているものをグルーピングする クラスター解析
- データを要約する主成分分析
- 判別、分類、予測判別分析、PLS、PLS-DA、重回帰分析

PLS Partial Least Squares 部分最小二乗

PLS-DA

Partial Least Squares-Discriminant Analysis

部分最小二乗-判別分析

PLS、PLS-DAで扱うデータ

目的変数が存在する

組織ごとの生体試料など

説明変数との関連を調べたい試料の分類や、試料の特徴量など例)別途測定した、生理活性データなど

目的変数

		11 <i>5</i>				
		対象				
		Ì	!	2	3	п
変数	y_I	y_{II}	<i>Y</i> 21	<i>y</i> 31		y_{n1}
	y_2	<i>Y</i> 12	<i>Y 22</i>	<i>y</i> 32		y_{n2}
	y_p	y_{Ip}	y_{2p}	y_{3p}		y_{np}
変数	X_{I}	X_{II}	X 21	X 31		X_{n1}
	X_2	X 12	X 22	X 32		X_{n2}
	$X_{\mathcal{J}}$	X 13	X 23	X 33		X_{n3}
	X_{m}	X_{Im}	X_{2m}	X_{3m}		X_{nm}

遺伝子など 説明変数, 観測変数 遺伝子発現量など

PLS、PLS-DAで得られる結果

- PCAと類似したスコアプロットとローディングプロットが得られる
- 目的変数 (y) を説明変数 (x) で説明するためのモデルが構築される
- 目的変数を説明する変数重要度(VIP)が 計算される

情報統計第12回

2019年9月19日 神奈川工科大学

櫻井 望

国立遺伝学研究所 生命情報・DDBJセンター

課題準備

おさらい

やったこと

- 統計的手法
- 記述統計
 - ✓平均値等の計算
 - ✓ 相関係数、回帰式
- 推測統計
 - ✓ 推定、仮説検定
- 多変量解析

- エクセル関数
- プログラミング
- Phython, R

統計つて?

集団の状況を 数値で表したもの

目的:集団の〇〇を知りたい

統計学

- ・データを集める
- 解析する
- ・解釈する

ための方法論

結果:集団の〇〇がわかった!

結論を言う

統計的結論から、設定した目的に対する結論を導くことが最も重要。

発表会のテンプルート

表紙 1枚

- ・タイトル
- ●名前
- ・報告日など

背景と目的 1~枚

- 何に疑問を持ち、どんな目 的のためにこの課題を行っ たか?
- その疑問に至った背景

方法のページ 1~枚

どんなデータ、どんな統計 的手法を使って実施したか。

だれもが追試、検証できるように

結果のページ 1~枚

- どんな結果が得られたか
- そこから言えることは何か

結果に基づいて得られた情報 について述べる

考察のページ 1~枚

結果を総合して、目的に対してどんな結論が得られたか

最初に掲げた疑問に対する答えや、得られた結果の価値について述べる

(将来展望のページ 1~枚) もしあれば

- 今後こんなデータを集めれば…
- 今後こんな統計的手法を適用すれば…

もっとこんなことがわかるだろう、など

未来に対する夢を述べる

よいスライドの作り方

田中佐代子著、 講談社2013年

課題準備