- **6.16 常態定理** Let $T \in \mathbb{L}(V)$ for inner-product space V over \mathbb{C} with $\dim(V) < \infty$. V has an orthonormal eigenbasis for T iff T is normal, i.e. $TT^* = T^*T$
- **Def 自伴線運、方陣** T is self-adjoint if $T^* = T$. Square matrix A is Hermitian if $A^* = A$
- Obs 自伴小觀察 If β is an orthonormal basis of a inner-product space V with $\dim(V) < \infty$, then T is self-adjoint iff $[T]_{\beta}^{\beta}$ is self-adjoint.
- Obs 自伴線運基本性質 If T is a self-adjoint linear operator on an inner-product space V over $F \in \{\mathbb{R}, \mathbb{C}\}$ with $\dim(V) < \infty$, then 1. each eigenvalue of T is real (even if $F = \mathbb{C}$, and) 2. the characteristic polynomial $f_T(t)$ of T splits (even if $F = \mathbb{R}$)
- **6.24 投影:正交** \Leftrightarrow **自伴** If T is a projection of W, then T is an orthogonal projection of W iff T is self-adjoint
- Cor 自伴線運推論 Let $T \in \mathbb{L}(V)$ for inner-product space W over $F = \mathbb{C}$ wth $\dim(V) < \infty$. If T is normal, T is self-adjoint iff every eigenvalue of T is real.
- **6.17 自伴定理** Let $T \in \mathbb{L}(V)$ for V over \mathbb{R} with $\dim(V) < \infty$. V has an orthonormal eigenbasis for T iff T is self-adjoint
- Cor 常態線運推論 If $T \in \mathbb{L}(V)$ for W over \mathbb{C} with $\dim(W) < \infty$, then T is normal iff $T^* = g(T)$ for some polynomial $g \in \mathbb{P}(\mathbb{C})$
- Def **公正**、正交方陣 Let $Q \in F^{n \times n}$ with $F \in \{\mathbb{C}, \mathbb{R}\}$, Q is unitary if $Q^*Q = I_n$ (i.e. $Q^* = Q^{-1}$) Q is orthogonal if $Q^tQ = I_n$ (i.e. $Q^t = Q^{-1}$)
- **Def 公正**、正交等價 Let $A, B \in F^{n \times n}$ with $F \in \{\mathbb{C}, \mathbb{R}\}$, A is unitarily equivalent to B if there is a unitary matrix Q with $A = Q^*BQ$ A is orthogonally equivalent to B if there is an orthogonal matrix Q with $A = Q^tBQ$
- **6.20** If $A \in \mathbb{R}^{n \times n}$, then A is self-adjoint (i.e. symmetric) iff A is orthogonally (i.e. unitarily) equivalent to a diagonal matrix in $\mathbb{R}^{n \times n}$
- **6.19** If $A \in \mathbb{C}^{n \times n}$, then A is normal iff A is unitarily equivalent to a diagonal matrix in $\mathbb{C}^{n \times n}$
- **6.21 方陣舒爾** If $f_A(t)$ splits for $A \in F^{n \times n}$, then A is unitarily equivalent to an upper-triangular matrix in $F^{n \times n}$
- Def **公正**、正交線運 Let $T \in \mathbb{L}(V)$, V is an inner-product space over $F \in \{\mathbb{C}, \mathbb{R}\}$. T is unitary if $T^*T = I_V$ T is orthogonal if T is unitary and $F = \mathbb{R}$
- **6.18** If $T \in \mathbb{L}(V)$ for V over $F \in \{\mathbb{C}, \mathbb{R}\}$, with $\dim(V) < \infty$, then the following are equivalent: \bullet $T^*T = I_V \bullet \langle T(x)|T(y)\rangle = \langle x|y\rangle$ holds for all vectors $x,y \in V \bullet$ For any orthogonal eigenbasis β of V, $T(\beta)$ is an orthonormal basis of $V \bullet$ There is a $\beta \subseteq V$ s.t. β and $T(\beta)$ are both orthonormal bases of $V \bullet \|T(x)\| = \|x\|$ holds for all vectors $x \in V$
- Cor **公正、正交自伴定理** If $T \in \mathbb{L}(V)$ for V over $\mathbb{C}(\mathbb{R})$ with $\dim(V) < \infty$, then T is unitary (orthogonal and self-adjoint) iff V has an orthonormal eigenbasis for T each eigenvalue of T has absolute value 1
- **6.13 最短解** If E: Ax = b with $A \in F^{m \times n}$ and $b \in F^m$ is a system of linear equations with $S(E) \neq \emptyset$, then there is exactly one vector x in $S(E) \cap L_{A^*}(F^m)$ w.r.t. the standard inner product. Moreover, the vector x is the unique vector in S(E) with minimum ||x||
- **6.12 最佳近似解** Let $A \in F^{m \times n}$ and $b \in F^m$. For any inner-product function of F^m , $\exists x \in F^n$ that minimizes $\|Ax b\|$ If $\operatorname{rank}(A) = n$, then $x = (A^*A)^{-1}A^*b$ is the unique minimizer of $\|Ax b\|$ w.r.t. the standard inner product of F^m

- Obs 標準內積觀察 Let $A \in F^{m \times n}$. For any $x \in F^n$ and $y \in F^m$, we have $\langle Ax|y \rangle_m = \langle x|A^*y \rangle_n$
- Obs 矩陣位階觀察 For any $A \in F^{m \times n}$, $rank(A^*A) = rank(A)$
- **Obs 伴隨矩陣觀察** For any $A \in F^{m \times n}$, if $\operatorname{rank}(A) = n$, then $A^*A \in F^{n \times n}$ is invertible.
- **Def** \mathbb{E} **E** A self-adjoint $T \in \mathbb{L}(V)$ for V over F is positive definite (semidefinite) if $\langle T(x)|x \rangle \in \mathbb{R}^+$ ($\langle T(x)|x \rangle \in \mathbb{R}^+ \cup \{0_{\mathbb{R}}\}$) holds for all $x \in V \setminus \{0_V\}$ ($x \in V$)
- Obs (半) 正定線運等價條件 If $T \in \mathbb{L}(V)$ with $\dim(V) < \infty$ is self-adjoint, then T is positive (semi)definite iff all eigenvalues are positive (non-negative) real numbers
- Obs 半正定方陣等價條件 For $F \in \{\mathbb{C}, \mathbb{R}\}$, $A \in F^{n \times n}$ is positive semidefinite iff $A = B^*B$ holds for some $B \in F^{n \times n}$
- Obs 半正定平方性質 If $T_1, T_2 \in \mathbb{L}(V)$ $(A, B \in F^{n \times n})$ with $T_1^2 = T_2^2$ $(A^2 = B^2)$, then $T_1 = T_2$ (A = B)
- **Def 伴随線轉** $T \in \mathbb{L}(V,W)$. $T^*: W \to V$ is an adjoint of T if $\langle T(x)|y\rangle_W = \langle x|T^*(y)\rangle_V$ holds $\forall x \in V, y \in W$
- **Obs 伴隨線轉觀察** If $T \in \mathbb{L}(V,W)$ with $\dim(V) < \infty, \dim(W) < \infty$ then, Both T^*T , TT^* are positive semidefinite $N(T^*T) = N(T)$ $\mathrm{rank}(T^*T) = \mathrm{rank}(TT^*) = \mathrm{rank}(T) = \mathrm{rank}(T^*)$
- **6.26 奇異值定理** Let $T \in \mathbb{L}(V,W)$ for V and W over $F \in \{\mathbb{C}, \mathbb{R}\}$ with $\mathrm{rank}(T) = r$, $\dim(V) = n$, and $\dim(W) = m$. (a) There exist a set $\sigma = \langle \sigma_1, \cdots, \sigma_r \rangle$ of positive real numbers and orthonormal bases $\beta = \langle \beta_1, \cdots, \beta_n \rangle$ of V and $\gamma = \langle \gamma_1, \cdots, \gamma_m \rangle$ of W s.t. with $\sigma_k = 0_F$ for $r+1 \leq k \leq \max(n,m)$ and $\gamma_k = 0_W$ for $m+1 \leq k \leq n$ 1. $T(\beta_j) = \sigma_j \gamma_j$ holds for each $j=1, \cdots, n$. (b) Moreover, the following hold for any such σ, β, γ : 2. $T^*(\gamma_i) = \sigma_i \beta_i$ holds for $i=1, \cdots, m$ with $\beta_k = 0_V$ for $n+1 \leq k \leq m$ 3. Each (σ_j^2, β_j) with $1 \leq j \leq n$ is an eigenpair of T^*T 4. Each (σ_i^2, γ_i) with $1 \leq i \leq m$ is an eigenpair of T^*T
- **6.27 SVD** For any matrix $A = F^{m \times n}$ with rank r, A = QSR* holds for: unitary matrices $Q \in F^{m \times m}$ and $R \in F^{n \times n}$ a diagonal matrix $S \in F^{m \times n}$ whose $l = \min(m, n)$ diagonal elements $\sigma_i = S_{i,i}$ with $i \in \{1, \dots, l\}$ satisfy $1. \ \sigma_1, \dots, \sigma_r \in \mathbb{R}^+$ $2. \ \sigma_{r+1} = \dots = \sigma_l = 0_F$
- **Def 偽反線轉** $T^{\dagger} \in \mathbb{L}(W, V)$ defined by $T^{\dagger} = (T')^{-1}T''$
- 偽反線轉定理 Let $T \in \mathbb{L}(V,W)$ for V and W over $F \in \{\mathbb{C},\mathbb{R}\}$ with $\mathrm{rank}(T) = r, \dim(V) = n, \dim(W) = m$. If σ, β, γ are as ensured by **6.26**, then T^{\dagger} is the unique function in $\mathbb{L}(W,V)$ satisfying $T^{\dagger}(\gamma_j) = \begin{cases} \frac{1}{\sigma_j}\beta_j & \text{if } 1 \leq j \leq r \\ 0_V & \text{otherwise} \end{cases}$
- **偽反矩陣觀察** S^{\dagger} 對角線上非零的值是原本的倒數,另外 S^{\dagger} 的行數和列數會互換。
- **偽反線運等價條件** If $T_1 \in \mathbb{L}(V, W)$ and $T_2 \in \mathbb{L}(W, V)$ for V, W over $F \in \{\mathbb{C}, \mathbb{R}\}$ and dim $< \infty$, then $T_2 = T_1^{\dagger}$ iff all following hold: (a) $T_1 T_2 T_1 = T_1$ (b) $T_2 T_1 T_2 = T_2$ (c) $T_1 T_2$ and $T_2 T_1$ are self-adjoint
- **偽反矩陣定理** If $A=QSR^*$ is a SVD of matrix $A\in F^{m\times n}$ with $F\in\{\mathbb{C},\mathbb{R}\}$, then $A^\dagger=RS^\dagger Q^*$ is a SVD of matrix $A^\dagger\in F^{n\times m}$
- **6.30** For any system of linear equations E:Ax=b with $A\in F^{m\times n},\ y=A^{\dagger}b$ is the unique vector in F^n with \bullet $\|Ay-b\|\leq \|Ax-b\|$ for any $x\in F^n$ and \bullet $\|y\|<\|x\|$ any $x\in F^n\setminus\{y\}$ with $\|Ay-b\|=\|Ax-b\|$
- **6.28 極分解定理** For any square matrix $A \in F^{n \times n}$ with $F \in \{\mathbb{C}, \mathbb{R}\}$, there exist a unitary matrix $Q \in F^{n \times n}$ and a positive semidefinite matrix $P \in F^{n \times n}$ s.t. A = QP. And, if A is invertible, then the decomposition is unique $(Q = Q_0 R^*, P = RSR^*)$