

(4) Supomba que XI, ... Xm x~ Bur (0) e ~ Bota (d, E) E[0] = Mo Mostre que E[OIX] = Xm Xm + (1-Xm) µo $f(x, -\infty) = 0 (1-0)$ Z xi = S = mxn Beta (2+ mxm, B+ m- mxm = x + m x m = x + m x m + x + m x m $= (\alpha + \beta) \quad \alpha + m \times m$ $(\alpha + \beta)$ 0+B+m tilibra

D Supamba que uma amastra alectária de torna- mbo m seja retirada de uma distribuição expanencial
1 1 1 0 0 0 1 2 8 9 0
e deve per estimado mondo a propo de evro quadratica. Mantre que as estimadares de Bayes, para m=1, 2, formarm uma requência comsistente de estimadares de 0.
X1, X2, X3,, Xm, O dusc > 0
Sobre a pasteriari de 0
$X_1 = X$, $X_2 = X_2$, $X_m = X_m$
$d_1 = d + m$
$\beta_{1} = \beta + \sum_{i=1}^{N} \chi_{i}$
Midia de X: $E[X] = \frac{\angle}{B}$ Var de X: $Var(X) = \frac{\angle}{B^2}$
Tunção de pirdo de viro quad.
$L(\theta, \alpha) = (\theta, \alpha)^2$
Estimadar de Bayes = 1+ 2/m
$E(\theta x) = d_1 = d + m = d + m = xm + \beta/m$ $\beta L \beta + \sum x_i \beta + m \times n \qquad \text{(tilibra)}$

Windows (Internal Common Common States Common Association (Internal Common Association (Internal Common Com	Va	→ <u>1</u>	~ - 0	0	
•	Vìu	7 = ,	$M \rightarrow 0$		
M → ∞		A0			
	1 + d/ Xm + g	m -	1/0	0	
Cam	amos soci	odernas	comcluie	que con	estimaders

4.4

 $E(\hat{\theta}|X) \ge [E(\theta|X)]^2$

14) Supomba que XI. Xm formam uma amos-tra aleataria de uma distribuição expamencial para e qual o valor do parâmetro o é discombecido (0 x 0). Seja E(0) demotando a papa priori de o , e seja à estimador de Bayes de o em relaperda de euro quadratico i upoda. Sua y = 0° o valor de $\psi = \Theta^2$, e supamba que um vez de votimare Θ , se designa estimare Θ , se designa estimare o valor de ψ superior à seguinte punção de perda de vero quadrático. $L(\psi, \alpha) = (\psi - \alpha)^2$, para $\psi > 0$, $\alpha > 0$ Suja il entimador de Bayes de v. Explique par que ji xés * Podemas incantrar a pasteriar de y=02 mando a pasteniari de a. $\hat{\psi} = E(\psi | X) = E(\theta^2 | X)$ È é a média da parteriar distrib de & $\hat{\psi} = E(\psi|X) = E(\theta^2|X) \ge \left[E(\theta|X)\right]^2 = \hat{\theta}^2$