Photoelectric Effect

Rosie Bartlett

- 1. (a) Photoelectric emission from a metal surface is the emission of electrons from a metal surface due to the photoelectric effect.
 - (b) Since for each metal the valence electrons are attracted by different amounts by the nucleus, each photon that hits the metal must have a minimum amount of energy, called the work function ϕ , to remove the valence electron. ϕ is different for each type of metal since it is dependant on the attraction between the atom and nucleus.
- 2. (a) i. $E=hf=450\times 10^{-9}\times h\approx 3.0\times 10^{-40}J$ ii. $E=hf=1500\times 10^{-9}\times h\approx 9.9\times 10^{-40}J$
 - (b) Since E = hf, and $v = f\lambda$, as λ increases, f must decrease, which means the energy of the photon must also decrease. When $\lambda \in \langle 450 \times 10^{-9}, 650 \times 10^{-9} \rangle$ then at some point $E = \phi$, meaning that at a higher wavelength than when that occurs, no electrons can be emitted because the photons do not have enough energy to move them.
- 3. Using $f = \frac{e\phi_{eV}}{h}$:
 - (a) Caesium, potassium
 - (b) Silver
 - (c) Caesium
 - (d) 0. A photon with a wavelength of 300nm has less energy than ϕ
 - (e) 0.18V
- 4. 1.3V
- 5. $3.7 \times 10^{-25} \text{ms}^{-1}$
- 6. (a) $3.1 \times 10^{-19} \text{J}$
 - (b) $\phi = 1.6 \times 10^{-19} \text{J}$
 - (c) $f_0 = 2.5 \times 10^{14} \text{Hz}$