

DNS Security

Dr. Balaji Rajendran Joint Director

Centre of Excellence in DNS Security

Centre for Development of Advanced Computing (C-DAC)

Electronics City, Bangalore 560 100

2-Day Webinar on DNS Security 21st May 2020

Agenda

- DNS Basics
- Architecture
- Forward and Backward Resolution

Need for DNS

What does DNS do?

- Translates Domain names to IP Addresses:
 - www.cdac.in. \rightarrow 196.1.113.45
 - www.cdac.in. \rightarrow 2405:8a00:6029::45
- ... and back:
 - 196.1.113.45 \rightarrow www.cdac.in.
 - 5.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.9.2.0.6.0.0.a.8.5.0.4.2.ip6.arpa. → www.cdac.in.

DNS Fundamentals

- Application Layer protocol
- Runs over **UDP** and user port 53 (for queries and responses)
- Uses TCP for zone data transfers (between master and slave)
- Used by other Application Layer Protocols such as HTTP, FTP, SMTP for name resolution
- No single server in the World has all of the mappings for all of the hosts in the Internet

DNS Fundamentals

- Consistent hierarchical name space for referring to resources
 - Nodes at same level cannot have same names
 - Tree Structure
- A critical component of the Internet Infrastructure
- Globally Distributed, Scalable, and Reliable Database

Structure of DNS

- Decentralized naming system
- DNS *administration* is shared no single central entity administrates all DNS data
- This distribution of the administration is called *delegation*

Structure of DNS

1. Client asks to Local/ISP DNS server for lookup.

2.Local/ISP DNS Server asks Root DNS server.

3.Root DNS server reply with referral to TLD DNS "in".

4.ISP/Local DNS Server queries TLD DNS.

5.TLD DNS reply with referral to STLD DNS "cdac.in".

6.ISP/Local DNS Server queries STLD DNS.

7. "cdac.in" STLD DNS Server gives the reply - i.e IP address of "www.cdac.in"

Elements of DNS

- Domain Name Space and Resource Records
 - A tree structure name space and data associated with the names
- Name Servers
 - Programs that hold information about the domain's tree structure
- Resolvers
 - Programs that extract information from name servers to respond to client's requests.

DNS Ecosystem

Stub Resolver

- DNS Client is called Stub Resolver.
- Always Queries RR.
- RR Replied back to the Stub Resolver.

Authoritative Name Server

- They serve the actual reply i.e., the final translation of the *FQDN*to the IP address, as they are the authoritative source for the
 domain in question.
- DNS hosting companies typically manage the authoritative DNS servers for a domain name which, the users query through recursive resolvers.
- Master and Slave Configurations are maintained to increase availability

Recursive Resolver

- Also called as recursive DNS Server.
- The user queries to RR for domain lookup.
- RR queries the entire DNS Hierarchy for the final result.
- RR can also be Authoritative for some domains

DNS Server Types

- Root DNS Server
 - Root Servers(A to M)
 - Instances
- Authoritative DNS Server
 - Master
 - Slave
- Recursive DNS Server
- Stub Resolver

DNS Centralized or Decentralized?

• Centralized or Decentralized ??

DNS Root Server

- Top of the DNS Hierarchy.
- Contains the information(root zone) of all TLD (e.g. in, org, com, gov etc).
- There are 13 root Name Servers, named A to M, maintained by 12 independent organisations.
 - Each root server is a copy and none of them are special.
 - There are several **instances** (997 as of Jul 2019) of all the root Servers across the World.
 - In India we have **instances** of **D,E,F,I,J,K,L** Root Servers across the country.
- Root name server operations currently provided by volunteer efforts by a very diverse set of organizations

Why 13 root servers?

- Historic Reasons
 - In IPv4, routers tend to fragment packets if the next receiver cannot receive a packet beyond a certain size
 - All IP protocol implementations should minimally support packet size of 576 bytes (including 20 byte header)
 - So if a packet is of <= 576 bytes, it can be transmitted without fragmentation
 - Even if it were part of a large packet, and fragmented, it can always be reassembled, as the size of the DNS packet is fixed at 512 bytes (in the first RFC of DNS).
 - Initially all the root servers did not have commonality in their names, varying from 15 bytes to 31 bytes; 'NS' record;
 - 'A' record the address record includes the root server operator also, and can be represented by 16 bytes;
 - 14 name servers could have fit in; However it was decided to stick with 13, to allow room for future expansions and to add 'options'

Root Name Servers

Root Name Server Operators

Hostname	IP Addresses	Manager
a.root-servers.net	198.41.0.4, 2001:503:ba3e::2:30	VeriSign, Inc.
b.root-servers.net	192.228.79.201, 2001:500:200::b	University of Southern California (ISI)
c.root-servers.net	192.33.4.12, 2001:500:2::c	Cogent Communications
d.root-servers.net	199.7.91.13, 2001:500:2d::d	University of Maryland
e.root-servers.net	192.203.230.10, 2001:500:a8::e	NASA (Ames Research Center)
f.root-servers.net	192.5.5.241, 2001:500:2f::f	Internet Systems Consortium, Inc.
g.root-servers.net	192.112.36.4, 2001:500:12::d0d	US Department of Defense (NIC)
h.root-servers.net	198.97.190.53, 2001:500:1::53	US Army (Research Lab)
i.root-servers.net	192.36.148.17, 2001:7fe::53	Netnod
j.root-servers.net	192.58.128.30, 2001:503:c27::2:30	VeriSign, Inc.
k.root-servers.net	193.0.14.129, 2001:7fd::1	RIPE NCC
I.root-servers.net	199.7.83.42, 2001:500:9f::42	ICANN
m.root-servers.net	202.12.27.33, 2001:dc3::35	WIDE Project

DNS Record Types

- A Record
 - Maps a FQDN to an IP address; Most often used record type
- NS Record
 - Indicate which name servers are authoritative for the Zone / domain
- TXT Record
 - Type of Resource Record;
 - Associates arbitrary text with a host
 - Typically used for verification and email validation
- MX Record
 - Used by Mailservers to determine where to deliver email
 - Used in conjunction with 'A' record;
 - Should point to the mail server, (should point to the 'A' record, which will give the IP address; and should not directly give the IP address);
- PTR Record
 - Resolves an IP address to a domain or host name
 - Should be separately configured and hosted

DNS Query Types

- Recursive Query
- Iterative Query
- Inverse (Reverse) Query

Recursive Query - Illustration

Recursive Query

Recursive Query

Recursive Query

(Name Server)

TTLD "training.coednssecurity.in" DNS Server (Name Server)

In Reality ...

Forward and Reverse Lookup

Public DNS Recursive Resolver

- DNS Resolvers are the critical components within the DNS Ecosystem
- Our Public DNS resolver for IPv4 and IPv6 is available at:
 - IPv4: 223.31.121.171
 - IPv6: 2405:8a00:8001::20
- Optimized Configuration
 - Compliance with RFC 7706

Public DNS Resolvers

Public DNS Resolvers in India

Indian Public DNS Resolvers – DNSSEC Stats

Thank You

