

APLICACIONES INTEGRAL DE LEBESGUE

Alan Reyes-Figueroa Teoría de la Medida e Integración

(AULA 22) 19.ABRIL.2023

Aplicación 1: Integrales dependientes de un parámetro.

Sea (X, \mathcal{A}, μ) un espacio de medida, $f: X \times (a, b) \to \mathbb{R}$, con $f = f(\mathbf{x}, t)$, donde $\mathbf{x} \in X$ y $t \in (a, b)$ es un parámetro. Estamos interesados en estudiar integrales del tipo

$$F(t) = \int_X f(\mathbf{x},t) \, \mu(d\mathbf{x}), \qquad ext{para } t \in (a,b).$$

Teorema (Teorema de Continuidad)

Sea $(a,b) \neq \emptyset$, y sea $f: X \times (a,b) \rightarrow \mathbb{R}$ tal que

- i) $\mathbf{x} \longmapsto f(\mathbf{x}, t) \in L^1(\mu)$, para todo $t \in (a, b)$;
- ii) $t \mapsto f(\mathbf{x}, t)$ es continua, para todo $\mathbf{x} \in X$;
- iii) $|f(\mathbf{x},t)| \leq w(\mathbf{x}), \, \forall (\mathbf{x},t) \in X \times (a,b), \, para \, alguna \, w \in L^1(\mu).$

Entonces la función $F:(a,b)\to\mathbb{R}$, dada por $F(t)=\int_{\mathbf{x}}f(\mathbf{x},t)\,\mu(d\mathbf{x})$ es continua.

Prueba: Observe que para cada $t \in (a,b)$ fijo, de (i), el mapa $\mathbf{x} \longmapsto f(\mathbf{x},t) \in L^1(\mu)$, de modo que

 $t \longmapsto F(t) = \int_X f(\mathbf{x}, t) \, \mu(d\mathbf{x})$ está bien definido,

y vale

$$\int_{X} f(\mathbf{x},t) \, \mu(d\mathbf{x}) < +\infty.$$

Vamos a mostrar que para cada $t \in (a,b)$ y cada secuencia $\{t_n\}_{n\geq 1} \subset (a,b)$ tales que $t_n \to t$, vale $\lim_{n\to\infty} F(t_n) = F(t)$.

Por (ii), el mapa $t \mapsto F(\mathbf{x}, t)$ es continuo, luego $f_n(\mathbf{x}) = f(\mathbf{x}, t_n) \to f(\mathbf{x}, t)$.

Además, por (iii), $|f_n(\mathbf{x})| = |f(\mathbf{x}, t_n)| \le |w(\mathbf{x})|$, $\forall t_n \in (a, b)$; lo que muestra que las funciones $f_n \in L^1(\mu)$, $\forall n \ge 1$.

Por el Teorema de Convergencia Dominada, $f_n \in L^1(\mu) \Rightarrow \lim_{n \to \infty} f_n(\mathbf{x}) = f(\mathbf{x}, t) \in L^1(\mu)$, y

$$F(t) = \int_{X} f(\mathbf{x}, t) \, \mu(d\mathbf{x}) = \int \lim_{n \to \infty} f_{n}(\mathbf{x}) \, \mu(d\mathbf{x}) = \lim_{n \to \infty} \int f_{n}(\mathbf{x}) \, \mu(d\mathbf{x})$$
$$= \lim_{n \to \infty} \int_{X} f(\mathbf{x}, t_{n}) \, \mu(d\mathbf{x}) = \lim_{n \to \infty} F(t_{n}).$$

Esto muestra que F(t) es continua en (a,b).

Teorema (Teorema de Diferenciabilidad)

Sea (X, \mathcal{A}, μ) espacio de medida. Si $f: X \times (a, b) \to \mathbb{R}$ satisface

- i) $\mathbf{x} \longmapsto f(\mathbf{x}, t) \in L^1(\mu)$, para todo $\mathbf{t} \in (a, b)$;
- ii) $t \mapsto f(\mathbf{x}, t)$ es diferenciable en t, para todo $\mathbf{x} \in X$;
- iii) $\left| \frac{\partial f}{\partial t}(\mathbf{x},t) \right| \leq w(\mathbf{x}), \, \forall (\mathbf{x},t) \in X \times (a,b), \, para \, alguna \, w \in L^1(\mu).$

Entonces la función $F:(a,b)\to\mathbb{R}$, dada por $F(t)=\int_X f(\mathbf{x},t)\,\mu(d\mathbf{x})$ es diferenciable en $(a,b)\,y$ $\frac{d}{dt}\,F(t)=\frac{d}{dt}\int_X f(\mathbf{x},t)\,\mu(d\mathbf{x})=\int_X \frac{\partial f}{\partial t}(\mathbf{x},t)\,\mu(d\mathbf{x}).$

Prueba: Sea $t \in (a,b)$ y fijemos una secuencia $\{t_n\}_{n\geq 1} \subset (a,b)$ tal que $t_n \neq t$ y $t_n \to t$.

Definimos

$$f_n(\mathbf{x}) = \frac{f(\mathbf{x}, t_n) - f(\mathbf{x}, t)}{t_n - t} \xrightarrow[n \to \infty]{} \frac{\partial}{\partial t} f(\mathbf{x}, t).$$

Esto muestra en particular que $\mathbf{x} \longmapsto \frac{\partial}{\partial t} f(\mathbf{x}, t)$ es mesurable (ya que es múltiplo escalar y resta de funciones mesurables).

Por el Teorema del Valor Medio, existe $\vartheta = \vartheta(\mathbf{x}, n) \in (a, b)$ tal que

$$|f_n(\mathbf{x})| = rac{1}{|t_n - t|} |f_n(\mathbf{x}) - f(\mathbf{x}, t_n)| = \left| rac{\partial}{\partial t} f(\mathbf{x}, \vartheta)
ight| \leq |w(\mathbf{x})|, \ \ \forall n \geq 1.$$

Así, $f_n \in L^1(\mu)$, y la secuencia $\{f_n\}_{n \geq 1}$ satisface las condiciones del Teorema de Convergencia Limitada. Luego

$$F'(t) = \lim_{n \to \infty} \frac{F(t_n) - F(t)}{t_n - t} = \lim_{n \to \infty} \int_X \frac{f(\mathbf{x}, t_n) - f(\mathbf{x}, t)}{t_n - t} \, \mu(d\mathbf{x}) = \lim_{n \to \infty} \int_X f_n(\mathbf{x}) \, \mu(d\mathbf{x})$$
$$= \int_X \lim_{n \to \infty} f_n(\mathbf{x}) \, \mu(d\mathbf{x}) = \int_X \frac{\partial}{\partial t} f(\mathbf{x}, t) \, \mu(d\mathbf{x}). \, \square$$

Ejemplo: Considere la función de Dirichlet $f:[0,1] \to \mathbb{R}$ dada por

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q}; \\ 0, & x \notin \mathbb{Q}. \end{cases}$$

Recordemos que en el contexto de la integral de Riemann, $\int_{0}^{1} f(x) dx$ no existe.

¿Qué ocurre con la integral de Lebesgue de f?

En la medida de Lebesgue λ^1 ($d\lambda^1=dx$), observe que $\mathbb Q$ es un conjunto de medida nula.

En particular,
$$\lambda^1(\mathbb{Q} \cap [0,1]) = 0$$
. Entonces

$$\int_{[0,1]} f(x) d\lambda^{1} = \int_{\mathbb{Q} \cap [0,1]} f(x) d\lambda^{1} + \int_{\mathbb{Q}^{c} \cap [0,1]} f(x) d\lambda^{1}$$

$$= \int_{\mathbb{Q} \cap [0,1]} 1 d\lambda^{1} + \int_{\mathbb{Q}^{c} \cap [0,1]} 0 d\lambda^{1} = \mu(\mathbb{Q} \cap [0,1]) = 0.$$

Así, la integral de Lebesgue existe y $\int f \, d\lambda^1 = 0$.

Obs!

- La integral de Riemann tiene limitantes.
- La motivación de la integral de Lebesgue es resolver estas limitantes.
- Nos gustaría mostrar que para una familia amplia de funciones, vale

$$\int_{[a,b]} f \, d\lambda^1 = \int_a^b f(x) \, dx.$$

Recordemos que para una partición $P = \{a = t_0, t_1, t_2, \dots, t_n = b\}$ de [a, b], tenemos las sumas de Darboux

$$s(P,f) = \sum_{i=1}^{n} m_i(t_i - t_{i-1})$$
 y $S(P,f) = \sum_{i=1}^{n} M_i(t_i - t_{i-1}),$

donde $m_i = \inf_{[t_{i-1},t_i]} f(x)$ y $M_i = \sup_{[t_{i-1},t_i]} f(x)$.

La integral inferior y superior de Darboux, son dadas por

$$\int_a^b f(x) dx = \sup_P S(P, f) \qquad y \qquad \int_a^{\bar{b}} f(x) dx = \inf_P S(P, f).$$

En particular, f es Riemann integrable en $[a,b] \iff \int_a^b f(x) \, dx = \int_a^b f(x) \, dx$.

Observemos que a s(P,f) y S(P,f) le corresponden a funciones simples específicas

$$\sigma_f^P(x) = \sum_{i=1}^n m_i \, \mathbf{1}_{[t_{i-1},t_i]}(x) \qquad y \qquad \Sigma_f^P(x) = \sum_{i=1}^n M_i \, \mathbf{1}_{[t_{i-1},t_i]}(x).$$

Así, para toda partición P de [a,b], vale $\sigma_f^P \leq f \leq \Sigma_f^P$, y

$$\int \sigma_f^P d\lambda^1 = \sum_{i=1}^n m_i \, \mathbf{1}_{[t_{i-1},t_i]} = s(P,f), \qquad \int \Sigma_f^P d\lambda^1 = \sum_{i=1}^n M_i \, \mathbf{1}_{[t_{i-1},t_i]} = s(P,f).$$

A medida que las oscilaciones aumentan (de forma patológica), la integral de Riemann va a fallar con alta probabilidad.

Pregunta: ¿Cómo es que la integral de Lebesgue resuelve este problema?

Para responder esto, recordemos cómo se calcular la integral de Lebesgue para funciones mesurables $f \in \mathcal{M}^+(\mathcal{A})$ (Lema del Sombrero).

(a) Particiones en la integral de Riemann. (b) Particiones en la integral de Lebesgue.

Teorema

Sea $f:[a,b] o\mathbb{R}$ función mesurable y Riemann-integrable en (a,b). Entonces, $f\in L^1(\lambda^1)$ y

$$\int_{[a,b]} f \, d\lambda = \int_a^b f(x) \, dx.$$

Prueba: Como f es Riemann-integrable, entonces existe una secuencia de particiones

$$P_1 \subseteq P_2 \subseteq P_3 \subseteq \ldots \subseteq P_k \subseteq \ldots$$

tales que

$$\lim_{k\to\infty} s(P_k, f) = \int_a^b f(x) \, dx \qquad y \qquad \lim_{k\to\infty} s(P_k, f) = \int_a^b f(x) \, dx,$$

$$\int_a^b f(x) \, dx = \int_a^b f(x) \, dx,$$

con

Las secuencias de funciones simples $\sigma_k = \sigma_f^{P_k}$ y $\Sigma_k = \Sigma_f^{P_k}$ son monótonas, tales que

$$\sigma_1 \leq \sigma_2 \leq \sigma_3 \leq \ldots \Sigma_3 \leq \Sigma_2 \leq \Sigma_1$$

y convergen monótonamente a $\sigma_k \nearrow \sigma_f$ y $\Sigma_k \searrow \Sigma_f$, donde $\sigma_f \le f \le \Sigma_f$.

Por el Teorema de Convergencia Monótona

$$\int_{[a,b]} \sigma_f d\lambda^1 = \lim_{k \to \infty} S(P_k, f) = \lim_{k \to \infty} \int_{[a,b]} \sigma_k d\lambda^1 = \int_{[a,b]} \lim_{k \to \infty} \sigma_k d\lambda^1 = \int_{[a,b]} \sigma_f d\lambda^1.$$

$$\bar{\int}_{[a,b]} \Sigma_f d\lambda^1 = \lim_{k \to \infty} S(P_k, f) = \lim_{k \to \infty} \int_{[a,b]} \Sigma_k d\lambda^1 = \int_{[a,b]} \lim_{k \to \infty} \Sigma_k d\lambda^1 = \int_{[a,b]} \Sigma_f d\lambda^1.$$

De ahí,
$$\int_{[a,b]} (\Sigma_f - \sigma_f) d\lambda^1 = \int_{[a,b]} \sigma_f d\lambda^1 - \int_{[a,b]} \sigma_f d\lambda^1 = \bar{\int} \Sigma_f - \int_{\underline{-}} \sigma_f = \bar{\int} f - \int_{\underline{-}} f = 0.$$

Así, $\Sigma_f - \sigma_f = 0$ λ^1 -c.t.p. $\Rightarrow \Sigma_f = \sigma_f \lambda^1$ -c.t.p. (y recordemos que $\sigma_f \leq f \leq \Sigma_f$).
Luego $\{f \neq \sigma_f\} \cup \{f \neq \Sigma_f\} \in N_{\lambda^1}$ y $f = \sigma_f \lambda^1$ -c.t.p.

Como σ_f es función simple, entonces $\sigma_f \in L^1(\lambda^1) \Rightarrow f \in L^1(\lambda^1)$. Además, como $f = \sigma_f$ λ^1 -c.t.p.

$$\int_{[a,b]} f \, d\lambda^1 = \int_{[a,b]} \sigma_f \, d\lambda^1 = \int_a^b f(x) \, dx = \int_a^b f(x) \, dx. \quad \Box$$