

#### Université Internationale de Casablanca

**AUREATE INTERNATIONAL UNIVERSITIES** 

## Faculté du Commerce et de Gestion Semestre 4 (2<sup>ème</sup> année)

Année Universitaire 2016/2017

#### **Economie managériale**

#### Equipe pédagogique :

- Professeur T. KASBAOUI
- Professeur K. HERRADI

## Chapitre 3

# Les Élasticités de l'offre et de la demande

#### Thèmes abordés

- L'élasticité prix de la demande
- L'élasticité croisée de la demande
- L'élasticité revenu de la demande
- L'élasticité de l'offre

#### Élasticité: Définition

- On a examiné comment les prix et les quantités changent, mais pas de combien ils varient.
- L'élasticité mesure la sensibilité d'une variable à l'autre, c'est-à-dire de combien une variable (par exemple une quantité) change quand une autre variable (par exemple un prix) change.
- Plus précisément, elle indique le pourcentage de variation d'une variable consécutive à l'augmentation de 1 % d'une autre variable.

#### Élasticité : Définition



- à un changement du prix de ce bien
- à un changement du niveau de revenu du consommateur
- □ à un changement du prix des biens complémentaires ou substituables à ce bien
- L'élasticité est une mesure de la "sensibilité" d'une variable par rapport à une autre.
- L'élasticité de la variable X à la variable Y est :  $\varepsilon_{X,y} = \frac{\% \Delta X}{\% \Delta V}$

## Une variation de prix – deux variations de quantités



#### Comment expliquer ce phénomène?

Les acheteurs des deux marchés ne réagissent pas de la même façon à une variation de prix. Les consommateurs du graphique de gauche sont moins sensibles aux variations de prix que ceux du graphique de droite.

Problème : quelle est le degré de sensibilité de la demande suite à une variation du prix?.

Solution : il faut une mesure de la sensibilité de la demande indépendante des unités de mesure de prix et de quantité :

Les élasticités

#### Élasticité : Définition

- Le signe de l'élasticité est très important
  - □ <u>signe positif</u>: implique que les deux variables varient dans le même sens
  - □ <u>signe négatif</u>: implique que les deux variables varient en sens opposé

#### Elasticités : Types

- Le concept d'élasticité est utilisé pour mesurer la sensibilité de :
  - □ la quantité demandée d'un bien *i* par rapport à son prix (élasticité prix directe)
  - □ la quantité demandée du bien *i* par rapport au prix du bien *j* (élasticité prix croisée)
  - □ la quantité demandée de bien i par rapport au revenu (élasticité revenu)
  - □ la quantité offerte de bien i par rapport au prix de i (élasticité de l'offre au prix)
  - □ et bien d'autres choses …

- L'élasticité prix de la demande permet de déterminer la réaction des consommateurs à des changement de prix
- → Ex 1 : De combien va augmenter la demande lorsque le prix des billets d'avion baisse de 1%?
- → Ex 2 : Quel est l'effet sur la demande de travail d'une augmentation du coût du travail horaire de 1%?
- L'élasticité prix de la demande mesure la variation en % de la quantité demandée suite à une variation du prix de marché de 1%



- Mesure de la sensibilité de la quantité demandée aux variations du prix du bien
- Variation en % de la quantité demandée d'un bien à la suite d'une hausse de 1 % du prix de ce bien :

- Exemple: lorsque l'E<sub>p</sub> = -3 deux interprétations sont possibles:
  - □ une hausse du prix de 1% provoque une diminution de la quantité demandée de 3%
  - □ une baisse du prix de 1% provoque une augmentation de la quantité demandée de 3%

#### Exemple de calcul de l'élasticité-prix de la demande de jus d'orange

|               | Demande de                       | jus |
|---------------|----------------------------------|-----|
| Prix du litre | Prix du litre Quantité consommée |     |
|               | annuellement                     |     |
|               |                                  |     |
| 1             | 30                               |     |
| 2             | 25                               | (   |
| 3             | 20                               | (2) |
| 4             | 15                               | (1: |
| 5             | 10                               | (1  |

## **Exemple** 1 de calcul de l'élasticité-prix

| Demande de jus d'orange |                    |                               |          |
|-------------------------|--------------------|-------------------------------|----------|
| Prix du litre           | Quantité consommée | Elasticité-prix de la demande |          |
|                         | annuellement       |                               |          |
|                         |                    | Calcul                        | Résultat |
| 1                       | 30                 |                               |          |
| 2                       | 25                 | (25-30)/(2-1)*(1/30)          | - 0,17   |
| 3                       | 20                 | (20-25)/(3-2)*(2/25)          | - 0,4    |
| 4                       | 15                 | (15-20)/(4-3)*(3/20)          | - 0,75   |
| 5                       | 10                 | (10-15)/(5-4)*(4/15)          | - 1,33   |



 → Supposons que lorsque le prix d'un cornet de glace passe de 20 DH à 25 DH, la quantité demandée chute de 10 à 8 cornets

$$\mathsf{E}_{\mathsf{p}} = \frac{\frac{\left(Q_{1} - Q_{0}\right)_{*} \ 100}{Q_{0}} = \frac{\frac{\left(8 - 10\right)}{10} \ * 100}{\frac{\left(25 - 20\right)}{20} \ * 100} = \frac{-20}{25} = -0.8$$

- → Une augmentation du prix des glaces de 1% entraı̂ne une baisse de la quantité demandée de 0,8%
- → Une augmentation du prix des glaces de 10% entraîne une baisse de la quantité demandée de 8%

#### Calcul de l'E<sub>p</sub>: Au point de départ

- Exemple 3: Q<sub>d</sub> = 10 4P
- Calculons E<sub>p</sub> si le prix varie de 2Dh à 1.50Dh:

$$P_1 = 2Dh \Rightarrow Q_1 = 2$$

$$P_2 = 1.50Dh \Rightarrow Q_2 = 4$$

$$E_p = \frac{(Q_2 - Q_1)/Q_1}{(P_2 - P_1)/P_1} = \frac{(4-2)/2}{(1.5-2)/2} = -4$$

#### Calcul de l'Ep<sub>d</sub>: cas continu

- **■** Exemple 4: Q<sub>d</sub> = 10 4P
- Calculons E<sub>p</sub> à un prix de 1.00Dh:

#### Calcul de l'Ep<sub>d</sub>: cas continu



■ Calculons E<sub>p</sub> à un prix de 1.00Dh:

$$P = 1.00Dh \Rightarrow Q = 6$$

$$Ep_d = \frac{dQ}{dP} \times \frac{P}{Q}$$

$$Ep^{d} = -4 * 1/6 = -0.67$$

#### Interprétation de l'Ep

- ightharpoonup Pour la très grande majorité des biens, l'élasticité-prix de la demande est <u>négative</u>  $\mathcal{E}_p < 0$  car la demande et le prix varient en sens inverse
  - ⇒ Il s'agit de biens normaux
- ightharpoonup Si  $\mathcal{E}_p > 0$ , cela signifie que la demande du bien varie dans le même sens que le prix
  - ⇒ Si le prix augmente, la demande augmente
  - Si le prix baisse, la demande baisse
  - ➡ Il s'agit d'un bien atypique : bien de Giffen



- ightarrow Si  $\mathcal{E}_p$  =  $^0$  , le prix n'a pas d'influence sur la quantité demandée
  - ⇒ La demande ne réagit pas aux variations du prix
  - ⇒ La demande est **parfaitement inélastique** au prix
  - ⇒ Il s'agit d'un bien de première nécessité



#### Interprétation de l'Ep

- $\rightarrow$  Si  $_{0<|\mathcal{E}_{p}|<1}$ , cela signifie que lorsque le prix varie de 1%, la quantité demandée varie en **sens inverse** de moins de 1%
  - ⇒ Si le prix augmente de 1%, la quantité demandée baisse de moins de 1%
  - ⇒ Si le prix baisse de 1%, la quantité demandée augmente de moins de 1%
  - La quantité demandée varie moins que proportionnellement par rapport au prix du bien en question
    P₁↑,
  - **♦ La demande est peu élastique (inélastique)**
  - Biens pas facilement substituables
- $\rightarrow$  Si  $|\mathcal{E}_p|_{>1}$ , cela signifie que lorsque le prix varie de 1%, la quantité demandée varie en <u>sens inverse</u> de plus de 1%
  - $\$  La quantité demandée varie plus que proportionnellement par rapport au prix du bien en question
  - **La demande est très élastique**
  - Biens de luxe ou facilement substituables

#### Ep change en chaque point

|      |     |            | P+ 1 _ 1 |
|------|-----|------------|----------|
| Prix | Qté | Élasticité | Ep       |
| 10Dh | 1   |            |          |
| 9Dh  | 2   |            | Ep  1    |
| 8Dh  | 3   |            |          |
| 7Dh  | 4   |            |          |
| 6Dh  | 5   |            | -Ep 1    |
| 5Dh  | 6   |            |          |
| 4Dh  | 7   |            |          |
| 3Dh  | 8   |            | 0  Ep  1 |
| 2Dh  | 9   |            |          |
| 1Dh  | 10  |            |          |
|      | •   | •          | Ep=      |

#### Ep change en chaque point

| _    |     |                                |
|------|-----|--------------------------------|
| Prix | Qté | Élasticité                     |
| 10Dh | 1   |                                |
| 9Dh  | 2   | $\mathbf{Ep} = \mathbf{-6.33}$ |
| 8Dh  | 3   |                                |
| 7Dh  | 4   | $\mathbf{Ep} = -2.14$          |
| 6Dh  | 5   |                                |
| 5Dh  | 6   | $\mathbf{Ep} = -1$             |
| 4Dh  | 7   |                                |
| 3Dh  | 8   | $\mathbf{Ep} = \mathbf{-0.46}$ |
| 2Dh  | 9   |                                |
| 1Dh  | 10  | $\mathbf{Ep} = \mathbf{-0.16}$ |



#### Autre élasticité de la demande L'élasticité-prix croisée de la demande :

- Ex: Comment réagira la demande de voitures à une augmentation des prix du carburant?
- Mesure de la sensibilité de la quantité demandée d'un bien (X) aux variations du prix d'un autre bien (Y)
- Elle mesure de combien varie la demande d'un bien (X) en pourcentage quand le prix d'un bien (Y) varie de 1%.

$$E_{cxy} = \frac{\% \Delta Q_x}{\% \Delta P_y} = \frac{\Delta Q_x / Q_x}{\Delta P_y / P_y} = \frac{\Delta Q_x}{\Delta P_y} \times \frac{P_y}{Q_x}$$

#### Exemple de calcul

Supposons que P<sub>y</sub> affecte Q<sub>x</sub> de la façon suivante:

$$Py_1 = 10Dh \Rightarrow Qx_1 = 100$$

$$Py_2 = 11Dh \Rightarrow Qx_2 = 107$$

$$E_{\text{cxy}} = \frac{(Q_2 - Q_1)/Q_1}{(P_2 - P_1)/P_1} = \frac{(107 - 100)/100}{(11 - 10)/10} = 0,7$$

## Élasticité-prix croisée

#### • Deux exemples :

Quel est l'impact d'une variation du prix du café sur la quantité demandée de thé ? Quel est l'impact d'une variation du prix du citron sur la quantité demandée de thé ?

|          | Avant |    | Après |    |
|----------|-------|----|-------|----|
|          |       |    |       |    |
|          | Px    | Qd | Px    | Qd |
| Café (y) | 40    | 50 | 60    | 30 |
| Thé (x)  | 20    | 40 | 20    | 50 |

40

20

35

20

Thé (x)

| $E_{\mathcal{C}}$ =  | $=\frac{\Delta Q_x}{1}$ | $P_{y} =$ | $\left(\frac{10}{10}\right)$ | $(\frac{40}{40})$    | = +0.5 |
|----------------------|-------------------------|-----------|------------------------------|----------------------|--------|
| $\mathbf{Lc}_{xy}$ – | $\Delta P_{y}$          | $Q_x$     | 20                           | $\langle 40 \rangle$ | =+0,5  |

Le café et le thé sont des biens substituts

$$Ec_{xz} = \frac{\Delta Q_x}{\Delta P_z} \cdot \frac{P_z}{Q_x} = \left(\frac{-5}{10}\right) \cdot \left(\frac{10}{40}\right) = -0.125$$

Le citron et le thé sont des biens complémentaires

- Le <u>signe</u> et la <u>valeur</u> de l'élasticité-prix croisée dépendent des <u>relations</u> qui existent entre les <u>biens</u>
- i. Elasticité-prix croisée et biens indépendants
- → Lorsque la variation du prix d'un bien (B2) n'a aucune incidence sur la demande d'un autre bien (B1), ces deux biens sont dit indépendants
- → L'élasticité-prix croisée est donc <u>nulle</u>

$$\varepsilon_{x_1/p_2} = \frac{\Delta x_1/x_1}{\Delta P_2/P_2} = 0$$

→ **Ex**: Théâtre et pain



L'augmentation du prix du bien 2 n'a eu aucune incidence sur la demande de B1

#### ii. Elasticité-prix croisée et biens substituables

- Si en présence de deux bien normaux 1 et 2, l'augmentation du prix du bien 2 incite le consommateur à se reporter sur le bien 1 pour satisfaire le même besoin, ces deux biens sont dits **substituables**
- L'élasticité-prix croisée sera donc <u>positive</u>

$$\varepsilon_{x_1/p_2} = \frac{\Delta x_1/x_1}{\Delta P_2/P_2} > 0$$

- ⇒ **Ex**: Pepsi et Coca cola
- La valeur de cette élasticité est d'autant plus forte que les biens sont des substituts proches



#### iii. Elasticité-prix croisée et biens complémentaires

- Si en présence de deux bien normaux 1 et 2, l'augmentation du prix du bien 2 entraîne la baisse de la consommation du bien 1, ces deux biens sont dits complémentaires
- L'élasticité-prix croisée sera donc <u>négative</u>

$$\varepsilon_{x_{1}/p_{2}} = \frac{\Delta x_{1}/x_{1}}{\Delta P_{2}/P_{2}} < 0$$

- **Ex**: voiture et carburant
  - L'augmentation des prix de l'essence entraîne une baisse de la demande de voitures



A savoir :

Si  $Ec_{xy} > 0$  le bien X et le bien Y sont substituables

Si Ec<sub>xy</sub>= 0 le bien X et le bien Y sont indépendants

Si Ec<sub>XY</sub>< 0 le bien X et le bien Y sont complémentaires



#### Autre élasticité de la demande L'élasticité-revenu de la demande :

- Mesure la sensibilité de la quantité demandée d'un bien à une variation de revenu des consommateurs.
- Mesure de combien varie la demande d'un bien Qd en pourcentage quand le revenu R varie de 1% :

$$E_R = \frac{\% \Delta Q}{\% \Delta R} = \frac{\Delta Q/Q}{\Delta R/R} = \frac{\Delta Q}{\Delta R} \times \frac{R}{Q}$$

#### Exemple de calcul

Supposons que R affecte Q<sub>x</sub> de la façon suivante:

$$R_1 = 30\ 000Dh \Rightarrow Q_1 = 100$$

$$R_2 = 33 000Dh \Rightarrow Q_2 = 105$$

$$E_R = \frac{(Q_2 - Q_1)/Q_1}{(R_2 - R_1)/R_1} = \frac{(105 - 100)/100}{(33000 - 30000)/30000} = 0,5$$

- Le <u>signe</u> et la <u>valeur</u> de l'élasticité-revenu dépendent de <u>la nature</u> des biens
- i. Elasticité-revenu et biens inférieurs
- Les biens inférieurs ont une élasticité-revenu négative:  $\mathcal{E}_{x_1}/R < 0$
- → Lorsque le revenu <u>augmente</u> de 1%, la quantité demandée <u>diminue</u> d'un pourcentage égale à la valeur absolue de l'élasticité
- La quantité demandée varie dans le sens inverse du revenu
- → La courbe d'Engel dans le cas de biens inférieurs est donc décroissante

#### Rappel de cours



#### ii. Elasticité-revenu et biens normaux prioritaires

- Les **biens normaux prioritaires** ont une élasticité-revenu comprise entre 0 et 1:  $0 < \mathcal{E}_{x_1/R} < 1$
- → Lorsque le **revenu** <u>augmente</u> de 1%, la **quantité** demandée <u>augmente</u> mais dans une moindre proportion (moins de 1%)
- → La demande est donc <u>peu élastique</u> ou <u>relativement inélastique</u> au revenu

⇒ La courbe d'Engel d'un bien prioritaire (nécessaire) est croissante



#### iii. Elasticité-revenu et biens de luxe

- Les biens de luxe ont une élasticité-revenu supérieure à 1:  $\mathcal{E}_{x_1/R} > 0$
- → Lorsque le **revenu** <u>augmente</u> de 1%, la **quantité** demandée <u>augmente</u> plus que proportionnellement au revenu (plus de 1%)
- → La demande est donc <u>très élastique</u> par rapport au revenu

⇒ La courbe d'Engel d'un bien de luxe (supérieur) est croissante



#### iv. Remarques

- La demande d'un bien peut être **indépendante** du revenu :  $\mathcal{E}_{x_1/R} = 0$ 
  - → Lorsque le revenu augmente, la quantité demandée reste constante
  - La demande est donc <u>parfaitement</u> <u>inélastique</u> par rapport au revenu
  - La courbe d'Engel d'un bien à élasticité revenu nulle est une droite horizontale



- L'élasticité-revenu peut être égale à l'unité :  $\mathcal{E}_{x_1/R} = 1$ 
  - → Lorsque le revenu augmente de 1%, la demande augmente aussi de 1%
  - → La demande varie dans la même proportion que le revenu
    - ⇒ Le bien 1 est donc un bien normal



#### Élasticité-prix de l'offre

- Mesure la sensibilité de la quantité offerte quand le prix change.
  - ☐ Mesure le pourcentage de variation de la quantité offerte Qs d'un bien consécutive à l'augmentation de 1 % du prix P de ce bien :

$$\boldsymbol{E}_{P}^{S} = \frac{\% \Delta \boldsymbol{Q}_{S}}{\% \Delta \boldsymbol{P}}$$

La demande d'un bien Q en fonction du prix de ce bien est donnée au tableau suivant :

| Prix (P) | Quantité (Q) |
|----------|--------------|
| 5        | 30           |
| 4        | 40           |
| 3        | 50           |
| 2        | 60           |
| 1        | 80           |

1) Calculez les élasticités de la demande par rapport au prix lorsque P passe de 1 à 2, de 2 à 3, de 3 à 4, de 4 à 5.

Effectuez le même calcul pour des modifications de prix en sens inverse (5 à 4, 4 à 3, etc.).

Tirez les conséquences de ces deux séries de calculs.

2) Quel est le calcul d'élasticité qui permet de pallier à l'inconvénient mis en évidence à la question précédente ?

#### Élasticité d'arc

L'élasticité d'arc de la demande est l'élasticité calculée sur un ensemble de prix (P ou Q = moyenne):

$$E_P^D = \begin{pmatrix} \Delta Q / \\ \Delta P \end{pmatrix} \begin{pmatrix} \bar{P} / \bar{Q} \end{pmatrix}$$

#### Exemple de Calcul de l'E<sub>p</sub>: Arc ou moyenne



- Soit la relation suivante : Q = -2P + 24
- Calculons l'E<sub>D</sub>, si le prix varie de 9 Dh à 10 Dh :

$$P_1 = 9 Dh \Rightarrow Q_1 = 6$$

$$P_2 = 10 \text{ Dh} \Rightarrow Q_2 = 4.$$

Si nous utilisons la formule sur un arc...

$$E_{p} = \frac{\Delta Q}{\Delta P} \times \frac{(P_{1} + P_{2})}{(Q_{1} + Q_{2})} = \frac{-2}{1} \times \frac{(9+10)}{(6+4)} = -3.8$$

## Exemple de calcul

Supposons que P<sub>v</sub> affecte Q<sub>x</sub> de la façon suivante :

$$Py_1 = 12 Dh \Rightarrow Qx_1 = 102$$

$$Py_2 = 14 Dh \Rightarrow Qx_2 = 110.$$

Si nous utilisons la formule sur un arc...

$$E_{cxy} = \frac{\Delta Q_x}{\Delta P_y} \times \frac{P_{y1} + P_{y2}}{Q_{x1} + Q_{x2}} = \frac{8}{2} \times \frac{12 + 14}{102 + 110} = 0,49$$

## Exemple de calcul

Supposons que R affecte Q<sub>x</sub> de la façon suivante :

$$R_0 = 2000 \text{ Dh} \Rightarrow Q_0 = 9$$

$$R_1 = 2200 Dh \Rightarrow Q_1 = 12.$$

Si nous utilisons la formule sur un arc ...

$$E_{R} = \frac{\Delta Q}{\Delta R} \times \frac{R_{1} + R_{2}}{Q_{1} + Q_{2}} = \frac{3}{200} \times \frac{2000 + 2200}{9 + 12} = 3$$