

10 Setas

Gabriel é um garoto que gosta muito de um jogo eletrônico onde há várias letras num tabuleiro – que fica sobre o piso – e o jogador precisa, rapidamente, pisar nas letras corretas, de acordo com as instruções que aparecem na *tela de projeção* que está à sua frenta, seguindo uma música ao fundo.

Cansado de vencer o "jogo", Gabriel inventou um novo:

Agora temos um tabuleiro quadrado, com n células de cada lado, em que cada célula possui uma seta que aponta para uma das quatro posições vizinhas ($\triangleright, \blacktriangleleft, \blacktriangle, \blacktriangledown$). O jogador primeiro escolhe uma célula inicial para se posicionar e, quando a música começa, ele deve caminhar na direção para onde a seta em que ele está naquele momento apontar. Ganhará o jogo quem pisar em mais setas *corretas* durante um determinado período de tempo previamente fixado.

O problema é que Gabriel joga tão rápido que quando a seta atual *manda* ele "sair do tabuleiro", ele segue a orientação, muitas vezes quebrando alguns objetos próximos ao tabuleiro. Quando isso acontece, dizemos que a célula inicial deste jogo é uma célula *não segura*, pois leva a um caminho que termina fora do tabuleiro.

A figura a seguir mostra dois tabuleiros: um 3×3 e outro 4×4 , respectivamente, com oito e onze células *seguras*:

Tabuleiro 3x3 com oito células seguras

Tabuleiro 4x4 com onze células seguras

As células seguras de cada tabuleiro são as seguintes:

 3×3 – todas, exceto a (3, 3);

$$4 \times 4 - (1,1); (1,2); (1,3); (1,4); (2,1); (2,2); (2,3); (2,4); (3,1); (3,2) e (3,3).$$

Sua tarefa é ajudar Gabriel: construa um programa \mathbb{C} que indique, a partir de uma dada configuração do tabuleiro fornecida, quantas células são *seguras* para ele iniciar o jogo.

Entrada

A primeira linha da entrada contém o número natural n, o tamanho do tabuleiro, com $1 \le n \le 500$. Cada uma das n linhas seguintes contém n caracteres, com as direções das setas, sem nenhum espaço entre elas. As direções válidas são:

- 'V' (letra V, maiúscula) aponta para a célula da linha abaixo, na mesma coluna;
- '<' (sinal menor-que) aponta para a célula à esquerda, na mesma linha;
- '>' (sinal maior-que) aponta para a célula à direita, na mesma linha;
- 'A' (letra A, maiúscula) aponta para a célula da linha acima, na mesma coluna.

Saída

Seu programa deve produzir um único número natural k: o número de células seguras naquela configuração do tabuleiro.

Exemplos

Entrada	Saída
3	8
> > V	
A V <	
A < >	

Entrada	Saída
4	11
> > V <	
A < < <	
A A A >	
> > > A	

Entrada	Saída
4	0
V > > >	
V > V <	
> A > V	
< < V <	

Entrada	Saída	
5	25	
> > V < <		
V > V V A		
V > > A		
> > A A <		
> > A > A		