Fourierova analiza

Miha Čančula 18. januar 2012

Slika 1: Znani francoski konvolucionar Jean Baptiste Joseph Fourier

1 Konvolucija

Linearno padajočo funkcijo f(x)=1-x sem izvrednostil v N diskretnih točkah, nato pa numerično računal konvolucijo te funkcije samo s sabo. Ta račun sem ponovil pri različnih vrednostih N in ga vsakih napravil na dva načina: enkrat po definiciji konvolucije, drugič pa z uporabo Fourierove transformacije. Za vse račune sem uporabil program GNU Octave.

1.1 Hitrost

1.2 Natančnost

Preveril sem tudi, kako natančna je metoda s Fourierovo transformacijo. Tako direktna kot FFT metoda ne delata nobenih približkov, edini vir napake je končna natančnost računalniškega zapisa, na katerege pa sta lahko metodi različno občutljivi. Kot mero za napako metode sem izbral

Slika 2: Čas, potreben za izračun konvolucije treh linearno padajočih funkcij po obeh algoritmih

$$\sigma^2 = \sum_{i=0}^{kN-1} (f_i^F - f_i^D)^2 \tag{1}$$

kjer so f_i^F in f_i^D koeficienti, izračunani s Fourierovo oz. direktno metodo. Če sem začel z diskretizacijo na N točk in izračunal konvolucijo k-tih enakih funkcij, ima končni izraz kN koeficientov.

2 Dekonvolucija signala

Tokrat je bila naloga obratna, poiskati izviren signal ob poznavanju izhodnega signala in prehodne funkcije. Prehodna funkcija G(t) pa je imela en neznani parameter β , ki sem ga dolocil tako, da je bil izvirni signal čim lepši. Lepoto signala pa sem definiral na različne načine.

2.1 Čim manjše spremembe

Ena možna izbira je, da iščemo signal, ki se čim počasneje spreminja. Naravna izbira je takšna, da je izraz

$$\sum_{i=0}^{N-1} |s_i - s_{i-1}|^2 \tag{2}$$

Slika 3: Napaka izračuna s Fourierovo transformacijo

čim manjši. Izkaže se, da je to pri vrednosti $\beta=34.852,$ vhodni signal pa je tedaj tak kot na sliki 5.

2.2 Čim nižje frekvence

Lepoto signala pa lahko ocenimo že po frekvenčnem spektru, tako da si želimo čim manj visokih frekvenc. V ta namen sem minimiziral izraz

$$\sum_{i=-N/2}^{N/2-1} i \cdot |S_i| \tag{3}$$

kjer so S_i komponentne Fourierove transformacije signala s_i . Ta kriterij je v bistvu zelo podoben prejšnjemu, zato je tudi optimalna vrednost β blizu, in sicer $\beta=36.475$.

2.3 Čim manjša amplituda

Za primerjavo sem iskal tudi signal z najmanjšo amplitudo. Če privzamemo, da je signal približno sinusen, lahko njegovo amplutido ocenimo v vsaki točki.

$$s(t) = A\sin\omega t\tag{4}$$

$$\dot{s}(t) = A\omega\cos\omega\tag{5}$$

$$A^2 = \omega^2 s^2 + (\dot{s})^2 \tag{6}$$

Slika 4: Izračunani izvirni signal z upoštevanjem različnih eksponentov β

Odvod \dot{s} lahko približamo s končno diferenco, frekvenčo ω pa kot po absolutni vrednosti največjo komponentno Fourierove transformiranke. Seveda naš signal ni povsem sinusen, zato se amplituda spreminja s časom, A=A(t). Podobno kot v prvem primeru sem na koncu minimiziral povprečen kvadrat amplitude.

3 Filtriranje

3.1 Celoten interval

Iz frekvenčnega spektra originalnih signalov na sliki 6 lahko vidimo, da sta oba vrhova v spektru signala iz datoteke val2.dat ostra, medtem ko so vrhovi v spektru val3.dat razširjeni. Iz tega lahko sklepamo, da smo pri merjenju prvega signala ujeli celo število period, pri merjenju drugega pa ne.

Oba spektra lahko približamo z uporabo okenske funkcije. Najprej sem poskusil z enostavno sinusno funkcijo

$$w(n) = \sin(\frac{n\pi}{N-1})\tag{7}$$

Ta funkcija se na robovih dotakne 0, ima pa neničelen odvod. Frekvenčni spekter obeh signalov, pomnoženih s takšnim oknom, je na sliki 7.

Slika 5: Vhodni in izhodni signal pri $\beta = 34.852$

Hitro vidimo, da so se vrhovi prej ostrega signala ražsirili, vrhovi signala s širokimi vrhovi pa zožili. Med signaloma je še vedno jasna razlika, vrhovi so po širini sedaj bolj podobni kot prej, ne pa še enaki.

Nato sem preizkusil Hammingovo okensko funkcijo. Za razliko od prejšnje ta niti na robovih ne pade čisto na 0, ima pa tam odvod enak 0, zato bo tako obdelan signal lahko zvezen in periodičen. Koeficiente okna dobimo s formulo

$$w(n) = 0.54 - 0.46\cos\left(\frac{2\pi n}{N-1}\right) \tag{8}$$

Če okensko funkcijo uporabimo v Fourierovem prostoru, je predznak drugega člena odvisen od izbire intervala za n. V tem primeru pa smo jo uporabili v časovnem prostoru, tako da $n \in [0, N-1]$ in je drugi člen s pozitivnim predznakom. Želimo namreč, da je vrednost okna na robovih intervala enaka 0, na sredini pa 1. Rezultat uporabe zgornje funkcije je na sliki 8.

Širini vrhov pa sta skoraj enaki. Na sliki je sicer vidna razlike med njimi, ampak le v področju med vrhovi, kjer je spekter sedaj mnogo nižji kot pri izvirnem signalu. Opazimo lahko tudi, da v signalu val3.dat tik ob najvišjih vrhovih sedaj dobimo skoke (angl. side-lobes), čeprav je Hammingova funkcija optimizirana tako, da čimbolj zmanjša višino prvega skoka.

Nazadnje sem uporabil se Blackmanovo funkcijo, ki ima na robovih tako vrednost kot odvod enaka 0. Rezultati so na sliki 9.

Slika 6: Frekvenčni spekter obeh signalov

Slika 7: Frekvenčni spekter obeh signalov, pomnoženih s sinusno okensko funkcijo

Slika 8: Frekvenčni spekter obeh signalov, pomnoženih s Hammingovo okensko funkcijo

Slika 9: Frekvenčni spekter obeh signalov, pomnoženih z Blackmanovo okensko funkcijo

3.2 Krajši intervali

Ogledal sem si tudi, kaj se zgodi, če obravnavamo le manjše število točk. Iste izračune kot prej sem ponovil za celoten signal (512 točk) in za krajše podintervale (64, 128 in 256 točk). Tokrat sem prikazal le originalen signal in pa signal, dobljen s Hammingovo okensko funkcijo. Spektri so na slikah 10 in 11.

Slika 10: Frekvečni spektri originalnih signalov pri različnih dolžinah analiziranega intervala

Slika 11: Frekvečni spektri signalov, pomnoženih s Hammingovo okensko funkcijo, pri različnih dolžinah analiziranega intervala