df=sns.load_dataset('iris')
df

	sepal_length	sepal_width	petal_length	petal_width	species				
0	5.1	3.5	1.4	0.2	setosa				
1	4.9	3.0	1.4	0.2	setosa				
2	4.7	3.2	1.3	0.2	setosa				
3	4.6	3.1	1.5	0.2	setosa				
4	5.0	3.6	1.4	0.2	setosa				
145	6.7	3.0	5.2	2.3	virginica				
146	6.3	2.5	5.0	1.9	virginica				
147	6.5	3.0	5.2	2.0	virginica				
148	6.2	3.4	5.4	2.3	virginica				
149	5.9	3.0	5.1	1.8	virginica				
150 rc	150 rows × 5 columns ◆								

df.isnull().sum()

sepal_length 0
sepal_width 0
petal_length 0
petal_width 0
species 0
dtype: int64

df.describe()

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

df.dtypes

sepal_length float64 sepal_width float64 petal_length float64 petal_width float64 species object

dtype: object

df['sepal_length'].hist()

df['sepal_width'].hist()
df['petal_length'].hist()
df['petal_width'].hist()

<Axes: >

df.hist()

df.boxplot()

import seaborn as sns
sns.boxplot(x=df['sepal_width'],data=df)

```
<Axes: xlabel='sepal_width'>
```

```
import numpy as np
outliers = []
thres = 2.3
data = df['sepal_width']
mean = np.mean(data)
std = np.std(data)
print('mean - ',mean)
print('std - ',std)
for i in data:
    z\_score = (i - mean)/std
    if(np.abs(z_score) > thres):
        outliers.append(i)
print('outliers by z score - ',outliers)
     mean - 3.057333333333333
     std - 0.4344109677354946
     outliers by z score - [4.4, 4.1, 4.2, 2.0]
outliers = []
def detect_outliers_iqr(data):
    data = sorted(data)
    q1 = np.percentile(data, 25)
    q3 = np.percentile(data, 75)
    print('q1 - ',q1,'q3 - ', q3)
    IQR = q3-q1
    lwr_bound = q1-(1.5*IQR)
    upr\_bound = q3+(1.5*IQR)
    print('lwr bound - ',lwr_bound,'upr bound - ', upr_bound)
    for i in data:
        if (i<lwr_bound or i>upr_bound):
            outliers.append(i)
    return outliers
marks_outliers = detect_outliers_iqr(df['sepal_width'])
print("Outliers from IQR method: ", marks_outliers)
     q1 - 2.8 q3 - 3.3
     lwr bound - 2.05 upr bound - 4.05
     Outliers from IQR method: [2.0, 4.1, 4.2, 4.4]
```