- 1. Obliczyć całki krzywoliniowe $\int_{\sigma} f \, ds$, gdzie
 - (a) $f(x, y, z) = y i \sigma(t) = (0, 0, t), 0 \le t \le 1$.
 - (b) $f(x, y, z) = x + y + z \text{ i } \sigma(t) = (\sin t, \cos t, t), \ 0 \le t \le 2\pi.$
 - (c) $f(x, y, z) = \cos z$ i $\sigma(t) = (\sin t, \cos t, t)$, $0 \le t \le 2\pi$.
 - (d) $f(x, y, z) = x \cos z \text{ i } \sigma(t) = (t, t^2, 0), 0 \le t \le 1.$
 - (e) $f(x, y, z) = \exp \sqrt{z} i \sigma(t) = (1, 2, t^2), 0 \le t \le 1$.
 - (f) $f(x, y, z) = yz i \sigma(t) = (t, 3t, 2t), 1 \le t \le 3.$
 - (g) $f(x, y, z) = \frac{x+y}{y+z}$ i $\sigma(t) = (t, \frac{2}{3}t^{3/2}, t), 1 \le t \le 2.$
 - (h) $f(x,y,z) = y^{-3}$ i $\sigma(t) = (\log t, t, 2), 1 \leqslant t \leqslant e$.
- 2. Pokazać, że całka krzywoliniowa funkcji f(x,y) wzdłuż drogi σ zadanej we współrzędnych biegunowych poprzez $r = r(\theta), \, \theta_1 \leqslant \theta \leqslant \theta_2$, jest równa

$$\int_{\theta_1}^{\theta_2} f(r\cos\theta, r\sin\theta) \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta.$$

Obliczyć długość krzywej $r = 1 + \cos \theta$, $0 \le \theta \le 2\pi$.

- 3. Niech f(x,y)=2x-y i $\sigma(t)=(t^4,t^4),\ -1\leqslant t\leqslant 1$. Obliczyć $\int_{\sigma}f\,ds$. Zinterpretować odpowiedź geometrycznie. Obliczyć długość krzywej σ . Obliczyć długość odcinka krzywej dla $-1\leqslant t\leqslant t_0$ gdzie $t_0\leqslant 1$.
- 4. Znaleźć masę przewodu, który powstaje z przecięcia sfery $x^2 + y^2 + z^2 = 1$ i płaszczyzny x + y + z = 0, jeśli gęstość masy w punkcie (x, y, z) wynosi $\varrho(x, y, z) = x^2$ gramów na jednostkę długości przewodu.
- **5.** Obliczyć $\int_{\sigma} f \, ds$, gdzie f(x, y, z) = z i $\sigma(t) = (t \cos t, \sin t, t)$, $0 \le t \le t_0$.
- **6.** Dla krzywej $\sigma(t) = (x(t), y(t), z(t)), a \le t \le b$ niech s(t) oznacza długość odcinka krzywej odpowiadającego przedziałowi czasu [a, t]. Korzystając ze wzoru na długość krzywej pokazać, że

$$\frac{ds}{dt} = \|\sigma'(t)\| = \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2}.$$

Załóżmy, że obiekt porusza się po krzywej tak, że w chwili t znajduje w punkcie $\sigma(t)$. Zatem prędkość poruszania się obiektu w chwili t jest równa długości wektora stycznego do krzywej w punkcie $\sigma(t)$.

- 7. Obliczyć całki krzywoliniowe.
 - (a) $\int_{\sigma} x \, dx + y \, dy + z \, dz$, $\sigma(t) = (t^2, 3t, 2t^3)$, $-1 \le t \le 2$.
 - (b) $\int_{\sigma} x \, dy y \, dx, \, \sigma(t) = (\cos t, \sin t), \, 0 \leqslant t \leqslant 2\pi.$
 - (c) $\int_{\sigma} x \, dx + y \, dy, \, \sigma(t) = (\cos \pi t, \sin \pi t), \, 0 \leqslant t \leqslant 2.$
 - (d) $\int_{\sigma} yz \, dx + xz \, dy + xy \, dz$, gdzie σ składa się z odcinków łączących punkt (1,0,0) z (0,1,0) i dalej z (0,0,1).
 - (e) $\int_{\sigma} x^2 dx xy dy + dz$, gdzie σ jest fragmentem paraboli $z = x^2$, y = 0 od (-1, 0, 1) do (1, 0, 1).

- 8. Pole sił F jest równe F(x, y, z) = (x, y, z). Obliczyć pracę wykonaną przy przesunięciu obiektu wzdłuż paraboli $y = x^2$, z = 0, od x = -1 do x = 2.
- 9. Niech σ będzie krzywą gładką. (a) Załóżmy, że wektor F jest prostopadły do wektora stycznego $\sigma'(t)$ w punkcie $\sigma(t)$. Pokazać, że $\int_{\sigma} F \cdot ds = 0$. (b) Załóżmy, że wektor F jest równoległy do wektora stycznego $\sigma'(t)$ w punkcie $\sigma(t)$, tzn. $F(\sigma(t)) = \lambda(t)\sigma'(t)$, gdzie $\lambda(t) > 0$. Pokazać, że $\int_{\sigma} F \cdot ds = \int_{\sigma} ||F|| \, ds$.
- 10. Niech T(t) oznacza jednostkowy wektor styczny do krzywej σ . Ile wynosi $\int_{\sigma} T \cdot ds$?
- 11. Niech $F(x, y, z) = (z^3 + 2xy, x^2, 3xz^2)$. Pokazać, że całka krzywoliniowa $\int_{\sigma} F \cdot ds$ wokół obwodu kwadratu jednostkowego jest równa 0.
- 12. Ile wynosi całka krzywoliniowa zorientowana z gradientowego pola wektorowego wzdłuż krzywej zamkniętej?
- 13. Obliczyć $\int_C 2xyz\,dx + x^2z\,dy + x^2y\,dz$, gdzie C jest krzywą zorientowaną łączącą (1,1,1) z (1,2,4).
- **14.** Załóżmy, że $\nabla f(x,y,z) = (2xyze^{x^2}, ze^{x^2}, ye^{x^2})$ i f(0,0,0) = 5. Obliczyć f(1,1,2).
- *15. Niech $\sigma:[a,b]\to\mathbb{R}^3$ będzie drogą taką, że $\sigma'(t)\neq 0$. Niech $f(x)=\int_a^x\|\sigma'(t)\|\,dt$. Obliczyć df/dx. Pokazać, że funkcja $f:[a,b]\to[0,L]$, gdzie L jest długością σ , ma różniczkowalną funkcję odwrotną $g:[0,L]\to[a,b]$ taką, że $f\circ g(s)=s$ i $g\circ f(x)=x$. Obliczyć dg/ds. Niech $\varrho(s)=\sigma\circ g(s)$ będzie reparametryzacją σ . Pokazać, że długość drogi od $\varrho(0)$ do $\varrho(s)$ wynosi s, prędkość przebiegu punktu $\varrho(s)$ po krzywej jest stała i wynosi 1. Wywnioskować, że każdą krzywą σ spełniającą warunek $\sigma'(t)\neq 0$ można sparametryzować przez długość łuku.
- 16. Rozważmy pole grawitacyjne (z G=m=M=1) określone przez $F(x,y,z)=-(x,y,z)/r^3$, gdzie $r=\sqrt{x^2+y^2+z^2}$. Pokazać, że praca potrzebna do przesunięcia obiektu z (x_1,y_1,z_1) do (x_2,y_2,z_2) zależy tylko od promieni $r_1=\sqrt{x_1^2+y_1^2+z_1^2}$ i $r_2=\sqrt{x_2^2+y_2^2+z_2^2}$.