矩阵论 第二次作业

第 1 章 线性空间和线性变换

1.2 线性变换及其矩阵

定义

定义 1.10 设 V 是数域 K 上的线性空间, T 是 V 到自身的一个映射, 使对于任意向量 $x \in V$, V 中都有唯一的向量 y 与之对应, 则称 T 是 V 的一个**变换**或**算子**, 记为 Tx = y, 称 y 为 x 在 T 下的象, 而 x 是 y 的原象(或象源).

定义 1.11 如果数域 K 上的线性空间 V 的一个变换 T 具有以下性质:

$$T(k\boldsymbol{x} + l\boldsymbol{y}) = k(T\boldsymbol{x}) + l(Y\boldsymbol{y})$$

其中 $x, y \in V$, $k, l \in K$, 则称 T 为 V 的一个线性变换或线性算子.

例题

例 1.10 把线性空间 R^2 的所有向量均绕原点依顺 (或逆) 时针方向旋转 θ 角的变换,就是一个线性变换. 这是象 (η_1, η_2) 与原象 (ξ_1, ξ_2) 之间的关系为

$$\begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}$$

例 1.11 在线性空间 P_n 中,求微分是其一个线性变换,这里用 D 表示,即

$$Df(t) = f't \qquad (\forall f(t) \in P_n)$$

事实上,对任意的 $f(t), g(t) \in P_n$ 及 $k, l \in R$,有

$$D(kf(t) + lg(t)) = (kf(t) + lg(t))' = kf'(t) + lg'(t) = k(Df(t)) + l(Dg(t))$$

例 1.12 定义在闭区间 [a, b] 上的所有实连续函数的集合 (C(a, b)) 构成 R 上的一个线性空间,在 C(a, b) 上定义变换 J,即

$$J(f(t)) = \int_{a}^{t} f(t) du \qquad (\forall f(t) \in C(a, b))$$

则 $J \in C(a, b)$ 的一个线性变换.

习题

习题 1.1.10 假定 x_1, x_2, x_3 是 R^3 的一个基,试求由

$$y_1 = x_1 - 2x_2 + 3x_3$$
, $y_2 = 2x_1 - 3x_2 + 2x_3$, $y_3 = 4x_1 + 13x_2$

生成的子空间 $L(y_1, y_2, y_3)$ 的基.

解

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 3 & 2 \\ -4 & 13 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 3 & 2 \\ 0 & 0 & 0 \end{bmatrix} r(A) = 2$$

所以,基的维数是 2,且 y_1 与 y_2 线性无关,

故生成子空间 $L(y_1, y_2, y_3)$ 的基为 $\{y_1, y_2\}$.

习题 1.1.12 给定 $R^{2\times 2} = \{A = (a_{ij})_{2\times 2} \mid a_{ij} \in R\}$ (数域 R 上的 2 阶实方阵按通常矩阵的加法与数乘矩阵构成的线性空间)的子集

$$V = \{ A = (a_{ij})_{2 \times 2} \mid a_{ij} \in R \coprod a_{11} + a_{22} = 0 \}$$

- (1) 证明 $V \in \mathbb{R}^{2\times 2}$ 的子空间;
- (2) 求 V 的维数和一个基.

解

(1) 设 $A = (a_{ij})_{2 \times 2} \in V$, $B = (b_{ij})_{2 \times 2} \in V$, 则有

$$a_{11} + a_{22} = 0$$
, $b_{11} + b_{22} = 0$

所以

$$A + B = (a_{ij})_{2\times 2} + (b_{ij})_{2\times 2}$$
$$= (a_{ij} + b_{ij})_{2\times 2}$$

即

$$a_{11} + a_{22} + b_{11} + b_{22} = 0$$

 $\Rightarrow (a_{11} + b_{11}) + (a_{22} + b_{22}) = 0$

又

$$kA = k(a_{ij})_{2\times 2} = (ka_{ij})_{2\times 2}$$

= $ka_{11} + ka_{22}$
= $k(a_{11} + a_{22}) = 0$
 $\Rightarrow A + B \in V, \ kA \in V$

因此, V 是 $R^{2\times2}$ 的子空间.

(2) 设 V 中,

$$A_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad A_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \qquad A_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

线性无关. 对于任意 $A = (a_{ij})_{2\times 2} \in A$,

有
$$a_{11} + a_{22} = 0$$
, 即 $a_{22} = -a_{11}$,

所以
$$A = a_{11}A_1 + a_{12}A_2 + a_{21}A_3$$

因此, V 的维数是 3, 一组基为 $\{A_1,A_2,A_3\}$

习题 1.2.1 判别下列哪些是线性变换:

- (1) 在 R^3 中,设 $x = (\xi_1, \xi_2, \xi_3)$, $Tx = (\xi_1^2, xi_1 + \xi_2, \xi_3)$;
- (2) 在矩阵空间 $R^{n\times n}$ 中, $T\mathbf{X} = \mathbf{BXC}$, 这里 \mathbf{B}, \mathbf{C} 是给定矩阵;
- (3) 在线性空间 P_n 中, Tf(t) = f(t+1).
- 解 (1) 不是(2) 是(3) 是