```
In [23]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [24]: data=pd.read_csv(r"C:\Users\user\Downloads\4_drug200.csv")
 data

Out[24]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [25]: df=data.head(100)
df

Out[25]:

		Age	Sex	ВР	Cholesterol	Na_to_K	Drug
	0	23	F	HIGH	HIGH	25.355	drugY
	1	47	М	LOW	HIGH	13.093	drugC
	2	47	М	LOW	HIGH	10.114	drugC
	3	28	F	NORMAL	HIGH	7.798	drugX
	4	61	F	LOW	HIGH	18.043	drugY
	•••						
ç	95	36	М	LOW	NORMAL	11.424	drugX
ę	96	58	F	LOW	HIGH	38.247	drugY
ç	97	56	F	HIGH	HIGH	25.395	drugY
ç	98	20	М	HIGH	NORMAL	35.639	drugY
ç	99	15	F	HIGH	NORMAL	16.725	drugY

100 rows × 6 columns

In [26]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype		
0	Age	100 non-null	int64		
1	Sex	100 non-null	object		
2	BP	100 non-null	object		
3	Cholesterol	100 non-null	object		
4	Na_to_K	100 non-null	float64		
5	Drug	100 non-null	object		
<pre>dtypes: float64(1), int64(1), object(4)</pre>					

memory usage: 4.8+ KB

In [27]: df.describe()

Out[27]:

	Age	Na_to_K
count	100.000000	100.000000
mean	43.770000	16.823000
std	16.367531	7.257723
min	15.000000	7.285000
25%	30.500000	11.031250
50%	43.000000	15.025500
75%	58.000000	20.020250
max	74.000000	38.247000

In [28]: df.columns

Out[28]: Index(['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug'], dtype='object')

In [29]: sns.pairplot(df)

Out[29]: <seaborn.axisgrid.PairGrid at 0x1ed590d4c70>

Out[30]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
95	36	М	LOW	NORMAL	11.424	drugX
96	58	F	LOW	HIGH	38.247	drugY
97	56	F	HIGH	HIGH	25.395	drugY
98	20	М	HIGH	NORMAL	35.639	drugY
99	15	F	HIGH	NORMAL	16.725	drugY

100 rows × 6 columns

```
In [31]: sns.heatmap(da.corr())
```

Out[31]: <AxesSubplot:>


```
In [32]: x=df[['Na_to_K']]
y=df['Age']
```

```
In [34]: | from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[34]: LinearRegression()
In [35]:
         print(lr.intercept_)
         48.23899261528304
         coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [36]:
         coeff
Out[36]:
                   Co-efficient
                    -0.212774
          Na_to_K
In [37]:
         prediction=lr.predict(x_test)
         plt.scatter(y_test,prediction)
Out[37]: <matplotlib.collections.PathCollection at 0x1ed5a35a7f0>
           45
           44
           43
           42
           41
                 20
                        30
                               40
                                       50
                                              60
                                                     70
In [38]:
         print(lr.score(x_test,y_test))
          -0.0613309781995135
In [39]:
         print(lr.score(x_train,y_train))
         0.009292226156223271
In [40]: from sklearn.linear_model import Ridge,Lasso
```