Лениво оценяване и програмиране от по-висок ред

Трифон Трифонов

Функционално програмиране, 2017/18 г.

4 януари 2018 г.

Щипка λ -смятане

- λ -изрази: $E ::= x \mid E_1(E_2) \mid \lambda x E$
- ullet Изчислително правило: $(\lambda x \, E_1)(E_2) \mapsto E_1[x := E_2]$
- В какъв ред прилагаме изчислителното правило?
- Нека $f := \lambda x x!$, $g := \lambda z z^2 + z$
- $g(f(4)) \longrightarrow ?$
- $g(f(4)) \longrightarrow g(\underline{4!}) \longrightarrow g(24) \longrightarrow 24^2 + 24 \longrightarrow 600$
 - оценява се отвътре навън
 - стриктно (апликативно, лакомо) оценяване
- $\underline{g(f(4))} \longrightarrow \underline{(f(4))^2} + \underline{f(4)} \longrightarrow \underline{(4!)^2} + \underline{4!} \longrightarrow 24^2 + 24 \longrightarrow 600$
 - оценява се отвън навътре
 - нестриктно (нормално, лениво) оценяване

Стриктно и нестриктно оценяване

Стриктното оценяване

- се използва в повечето езици за програмиране
- се нарича още "call-by-value" (извикване по стойност)
- позволява лесно да се контролира редът на изпълнение
- пестеливо откъм памет, понеже "пази чисто"

Нестриктното оценяване

- е по-рядко използвано
- въпреки това се среща в някаква форма в повечето езици!
 - x = p != NULL ? p->data : 0;
 - found = i < n && a[i] == x
- нарича се още "call-by-name" (извикване по име)
- може да спести сметки, понеже "изхвърля боклуците"

Кога мързелът помага

```
(define (f x y) (if (< x 5) x y))
(define (g 1) (f (car 1) (cadr 1)))
 (g'(3)) \longrightarrow (f(car'(3))(cadr'(3)))
           \longrightarrow (f 3 (cadr '(3))) \longrightarrow Грешка!
f x y = if x < 5 then x else y
g l = f (head l) (head (tail l))
 g [3] \longrightarrow f (head [3]) (head (tail [3]))
       \longrightarrow if head [3] < 5 then head [3] else head (tail [3])
       \rightarrow if 3 < 5 then head [3] else head (tail [3])
       \rightarrow if True then head [3] else head (tail [3])
       \longrightarrow head [3] \longrightarrow 3
```

Теорема за нормализация

- всеки път когато апликативното оценяване дава резултат и нормалното оценяване дава резултат
- има случаи, когато нормалното оценяване дава резултат, но апликативното не!
- нещо повече:

Теорема (за нормализация, Church-Rosser)

Ако има някакъв ред на оценяване на програмата, който достига до резултат, то и с нормална стратегия на оценяване ще достигнем до някакъв резултат.

Следствие

Ако с нормално оценяване програмата даде грешка или не завърши, то няма да получим резултат с никоя друга стратегия на оценяване.

Извикване при нужда ("call-by-need")

Ако
$$g(z) = z^2 + z$$
, $g(g(g(2))) = ?$

$$g(g(g(2))) \mapsto g(g(2))^2 + g(g(2)) \mapsto (g(2)^2 + g(2))^2 + g(2)^2 + g(2) \mapsto ((2^2 + 2)^2 + 2^2 + 2) + (2^2 + 2)^2 + 2^2 + 2 \mapsto \dots$$

Времето и паметта нарастват експоненциално!

Идея:
$$(\lambda x E_1)(E_2) \mapsto \mathsf{let} \ x = E_2 \ \mathsf{in} \ E_1$$

$$g(g(g(2)))$$
 \mapsto let $x = g(g(2))$ in $x^2 + x \mapsto$
 \mapsto let $y = g(2)$ in let $x = y^2 + y$ in $x^2 + x \mapsto$
 \mapsto let $z = 2$ in let $y = z^2 + z$ in let $x = y^2 + y$ in $x^2 + x \mapsto$
 \mapsto let $y = 6$ in let $x = y^2 + y$ in $x^2 + x \mapsto$
 \mapsto let $x = 42$ in $x^2 + x \mapsto 1806$

- Избягва се повторението чрез споделяне на общи подизрази
- Заместването се извършва чак когато е абсолютно наложително

Кога се налага оценяване на израз?

Във всеки даден момент Haskell оценява някой израз s.

- ako $s \equiv \text{if } e \text{ then } e_1 \text{ else } e_2$
 - първо се оценява е
 - ullet ако оценката е ${
 m True}$, се преминава към оценката на e_1
 - ullet ако оценката е False, се преминава към оценката на e_2
- ако $s \equiv f \ e_1 \ e_2 \ \dots \ e_n$, за f n-местна примитивна функция:
 - ullet оценяват се последователно e_1, \dots, e_n
 - прилага се примитивната операция над оценките им
- ullet нека сега да допуснем, че $s \equiv f e$
- първо се оценява f, за да разберем как да продължим
- ако f $x_1 \ldots x_n \mid g_1 = t_1 \ldots \mid g_k = t_k$ е дефинирана чрез пазачи:
 - тогава f се замества с израза: $\xspace x_1 \dots x_n \rightarrow \xspace if g_1 then t_1 else \dots if g_k then t_k else error "..."$
- ако f е конструктор (константа), оценката остава f е
- ако $f = p \rightarrow t$, където p е образец, редът на оценяване зависи от образеца!

Кога се оценяват изразите при използване на образци?

Как се оценява ($p \rightarrow t$) e?

- ако $p \equiv c$ е константа
 - преминава се към оценката на аргумента е
 - ullet ако се установи че оценката тя съвпада с константата c, преминава се към оценката на тялото t
- ако $p \equiv _$ е анонимният образец
 - ullet преминава се директно към оценката на t без да се оценява e
- ullet ако $p \equiv \mathbf{x}$ е променлива
 - преминава се към оценка на израза t като се въвежда локалната дефиниция x = e
- aко $p \equiv (p_1, p_2, ..., p_n)$
 - преминава се към оценката на е
 - ако се установи, че тя е от вида $(e_1, e_2, ..., e_n)$, преминава се към оценката на израза $(p_1, p_2, ..., p_n \rightarrow t)$ $e_1, e_2, ..., e_n$

Кога се оценяват изразите при използване на образци?

Как се оценява ($p \rightarrow t$) e?

- ako $p \equiv (p_h: p_t)$
 - преминава се към оценката на е
 - ако се установи, че тя е от вида $(e_h:e_t)$, преминава се към оценката на израза $(\predot p_h \predot p_t \predot -> t) \predot e_h \predot e_t$
- ако $p \equiv [p_1, p_2, ..., p_n]$
 - преминава се към оценката на е
 - ако се установи, че тя е от вида $[e_1, e_2, ..., e_n]$, преминава се към оценката на израза $(p_1, p_2, ..., p_n \rightarrow t)$ $e_1 e_2, ..., e_n$
 - всъщност е еквивалентно да разгледаме p като $p_1:p_2:\ldots:p_n:[]$
- ако има няколко равенства за f с използване на различни образци, се търси кой образец пасва отгоре надолу

```
(filter isPrime [4..1000]) !! 1
\rightarrow (\(x:xs\) n -> xs !! (n-1)) (filter isPrime [4..1000]) 1
\rightarrow (\(x:xs\) n -> xs !! (n-1)) (filter isPrime [4..1000]) 1
\longrightarrow \dots (\p (z:zs) \rightarrow f p z then z:filter p zs
                          else filter p zs) isPrime [4..1000]...
\longrightarrow ...let p=isPrime in (\(z:zs\) -> if p z then z:filter p zs
                           else filter p zs) [4..1000]...
\longrightarrow ...let p=isPrime in (\((z:zs) -> if p z then z:filter p zs
                          else filter p zs) (4:[5..1000]))...
\longrightarrow ...let p=isPrime; z=4; zs=[5..1000] in
    if p z then z:filter p zs else filter p zs...
\longrightarrow ...let p=isPrime; z=4; zs=[5..1000] in
    if False then z:filter p zs else filter p zs...
```

```
\longrightarrow ...(\p (z:zs) -> if p z then z:filter p zs
                           else filter p zs) isPrime [5..1000]...
\longrightarrow ...let p=isPrime in (\(z:zs\) -> if p z then z:filter p zs
                           else filter p zs) (5:[6..1000])...
\longrightarrow ...let p=isPrime; z=5; zs=[6..1000] in
    if p z then z:filter p zs else filter p zs...
\longrightarrow ...let p=isPrime; z=5; zs=[6..1000] in
    if True then z:filter p zs else filter p zs...
\longrightarrow (\(x:xs\) n -> xs !! (n-1)) (5:filter isPrime [6..1000]) 1
\rightarrow let xs=filter isPrime [6..1000] in (\n -> xs !! (n-1)) 1
\longrightarrow let xs=filter isPrime [6..1000]; n=1 in xs !! (n-1)
\longrightarrow (\(y:_) 0 -> y) (filter isPrime [6..1000]) 0
```

```
\longrightarrow \dots (\p (z:zs) \rightarrow f p z then z:filter p zs
                           else filter p zs) isPrime [6..1000]...
\longrightarrow ...let p=isPrime in (\(z:zs\) -> if p z then z:filter p zs
                           else filter p zs) (6:[7..1000])...
\longrightarrow ...let p=isPrime; z=6; zs=[7..1000] in
    if p z then z:filter p zs else filter p zs...
\longrightarrow ...let p=isPrime; z=6; zs=[7..1000] in
    if False then z:filter p zs else filter p zs...
\longrightarrow \dots (\p (z:zs) \rightarrow if p z then z:filter p zs
                           else filter p zs) isPrime [7..1000]...
\longrightarrow ...let p=isPrime in (\(z:zs\) -> if p z then z:filter p zs
                           else filter p zs) (7:[8..1000])...
\longrightarrow ...let p=isPrime; z=7; zs=[8..1000] in
    if p z then z:filter p zs else filter p zs...
```

```
\longrightarrow ...let p=isPrime; z=7; zs=[8..1000] in if True then z:filter p zs else filter p zs ...

\longrightarrow (\((y:_) 0 -> y\) (7:filter isPrime [8..1000]) 0

\longrightarrow let y=7 in y

\longrightarrow 7
```

Потоци в Haskell

- Можем да си мислим, че аргументите в Haskell са обещания, които се изпълняват при нужда
- В частност, x:xs = (:) x xs, където
 - х е обещание за глава
 - хв е обещание за опашка
- списъците в Haskell всъщност са потоци!
- можем да работим с безкрайни списъци
 - ones = 1 : ones
 - ullet length ones $\longrightarrow \dots$
 - take 5 ones \longrightarrow [1,1,1,1,1]

Генериране на безкрайни списъци

- $[a..] \rightarrow [a, a+1, a+2,...]$
- Примери:
 - nats = [0..]
 - take 5 $[0..] \rightarrow [0,1,2,3,4]$
 - take 26 ['a'..] → "abcdefghijklmnopqrstuvwxyz"
- Синтактична захар за enumFrom from
- $[a, a + \Delta x, ...] \rightarrow [a, a + \Delta x, a + 2\Delta x, ...,]$
- Примери:
 - evens = [0,2..]
 - take 5 evens \longrightarrow [0,2,4,6,8]
 - take 7 ['a', 'e'...] → "aeimquy"
- Синтактична захар за enumFromThen from then

Генериране на безкрайни списъци

• създава безкрайния списък [x,x,...]

• iterate f z = z: iterate f (f z)

• repeat :: a -> [a]

```
    repeat x = x : repeat x
    replicate n x = take n (repeat x)
    cycle :: [a] -> [a]
    cycle [1,2,3] → [1,2,3,1,2,3,...]
    cycle 1 = 1 ++ cycle 1
    създава безкраен списък повтаряйки подадения (краен) списък
    iterate :: (a -> a) -> a -> [a]
    iterate f z създава безкрайния списък [z,f(z),f(f(z)),...]
```

Отделяне на безкрайни списъци

Отделянето на списъци работи и за безкрайни списъци.

Функции от по-висок ред над безкрайни списъци

Повечето функции от по-висок ред работят и над безкрайни списъци!

- powers2 = 1 : map (*2) powers2
- notdiv $k = filter (\x -> x 'mod' k > 0) [1..]$
- fibs = 0:1:zipWith (+) fibs (tail fibs)
- foldr (+) 0 [1..] → ...
 - Внимание: foldr не работи над безкрайни списъци с операции, които изискват оценка на десния си аргумент!
 - triplets = iterate (map (+3)) [3,2,1]
 - take 3 triplets \longrightarrow [[3,2,1],[6,5,4],[9,8,7]]
 - take 5 (foldr (++) [] triplets) \longrightarrow [3,2,1,6,5]
 - take 5 (foldl (++) [] triplets) $\longrightarrow \dots$
 - foldl не може да работи с безкрайни списъци!