COMPUTER AND COMMUNICATION TECHNOLOGY

DATA REPRESENTATION

BINARY NUMBER SYSTEM

BIT

- A binary digit is called a bit.
- ➤ It is usually expressed as 0 or 1, the two numbers of binary numbering system.
- ➤ A bit is a smallest unit of information a computer can use.
- ➤ A 16 bit computer would process a series of 16 bits such as 0100111101011000 in one go, repeating the process thousands or millions of times per second.
- ➤ Reading a series of bits is very difficult and to make the process easier they are often displayed in a group of 4 bits 0100 1111 0101 1000.
- This grouping is quite interesting in that a group of four bits can be replaced by a single hexadecimal digit, two groups of 4 bits can be replaced by 2 hexadecimal digits and 4 hexadecimal digits are required to replace 16 bits.

Binary	0100	1111	0101	1000
hexadecimal	4	F	9	8

BYTE

- A group of 8 bits is called a byte.
- With 8 bits, there are 256 possible decimal combinations.
- ➤ 1 byte can store one alphabetical letter, single digit or single character symbol such as #.
- Large number of bytes can be expressed in kilobytes and megabytes.

KILOBYTE

- ➤ The value of a kilobyte is 1024.
- \triangleright It is worked out as 2^{10} .
- Normally a kilo refers to a thousand but in computing a kilobyte is equal to 1024.

MEGABYTE

- Likewise 1024 kilobytes is referred to as a megabyte.
- Normally a Mega refers to a million.
- ➤ In computing a megabyte is 1,048,576 bits.
- \triangleright It is worked out as 2^{20} .
- A byte of memory can normally hold:
 - i. a single alphabet letter (upper or lower case).
 - ii. A single number 1 9.
- iii. A symbol $(, _{-}, +, $, #, > etc.$
- iv. A further 127 alternate characters. These could be letters used in foreign languages, lines to produce a box etc.

NUMBER SYSTEM

- The everyday number system we use is denary or decimal number system.
- ➤ In computing three number system are commonly used, binary, hexadecimal and to a lesser extent octal.
- ➤ In denary, binary, octal and hexadecimal systems, the value of any digit depend on its position within the number i.e. which column it is in

How do Numbering Systems Work

- To understand this we will examine the denary system in more detail.
- ➤ Because you are used to the denary system and because it is very easy to multiply, 10 100 etc, you calculate the number in your head.
- Let us use the number 256 as an example.
- ➤ The calculation is automatically done in the following:
 - The most important calculation to do is to work out the position value for that system.
 - o The position value is based on the powers of the number system base value.

Power of the base	10^{4}	10^{3}	10^{2}	10^1	10^{0}
calculation	10x10x10x10	10x10x10	10x10	10	1
=position value	10,000	1000	100	10	1

- > Write down the position value for the number system you are using so for denary we would write
- Position value 10,000 1000 100 10 1.
- > Underneath the correct value, write down your number
- > Position value 10,000 1000 100 10 1
- Enter number 2 5 6
- > The calculation that is done is
- ➤ Position value 10,000 1000 100 10 1
- Enter number 2 5 6
- Required calculation 2x100 5x10 6x1
- ➤ This equals 200 50 6
- Add the three results 200 + 50 + 6 = 256
- You can convert any number to denary system using this calculation.
- > Ensure you use the positional number of the system you are using.
- A byte of memory can store number in the range of 0 to 255.
- ➤ Denary number system uses numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 thus 10 numbers.
- ➤ Hence base 10
- Adding 1 to 9 we must introduce another column to the left i.e. 10.

Binary Number System (base 2)

- Uses a 0 and a 1
- ➤ Hence base 2.
- ➤ Binary numbering is the numbering system that is used by computers.
- ➤ The positional values are shown below.
- \triangleright Power of the base 2^4 2^3 2^2 2^1 2^0
- ➤ Positional values 16 8 4 2 1

- A byte of memory can store a number in the range of 00000000 to 111111111.
- Numbers are often displayed in groups of 4s, as follows, to make them easier to read: 0000 0000 to 1111 1111.

How can you Convert from Binary to Denary

For example convert 1011 binary to denary.

➤ Position value 16 8 4 2 1

 \triangleright Enter number 1 0 1 1

➤ Required calculation 8x1 4x0 2x1 1x1

 \triangleright This equals 8 0 2 1

Add the three results 8+0+2+1=11.

ightharpoonup Therefore $1011_2 = 11_{10}$

Hexadecimal Numbering System (Base 16)

- Uses numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
- ➤ Hence 16 numbers and base 16.
- \triangleright By using letters A F, a single digit requires a single position (column)

Power of the base 16^4 16^3 16^2 16^1 16^0

Positional value 65536 4096 256 16 1

- ➤ A byte of memory can store the number in the range of 00 to FF.
- ➤ Hexadecimal number are of displayed in the group of two to make them easier to read.
- ➤ For example 10 AF 3C 9F.

Octal (Base 8)

- > Uses numbers 0, 1, 2, 3, 4, 5, 6, 7,
- > Thus 8 numbers
- ➤ Hence base 8.
- ➤ A byte of memory can store an octal number in the range of 0 to 377.

 \triangleright Power of the base 8^4 8^3 8^2 8^1

➤ Position value 4096 512 64 1

Binary Addition

$$0 + 0 = 0$$
,

$$0+1=1$$
,

$$1 + 0 = 1$$
,

$$1 + 0 = 1$$
, $1 + 1 = 10$.

Consider the following:

+01011101010

11111

Exercise:

Perform the following binary additions

+111011

Subtracting Using Complement

- > Subtraction in any number system can be done through the use of a complement.
- A complement is a number that is used to represent the negative of a number.
- When two numbers are subtracted, the complement of a subtrahend can be added to a minuend to obtain the difference.
- When this method is used, the addition will produce a higher order (left most) one in the result (a "carry") which must be dropped.
- > This is how a computer performs subtraction.
- > To understand the complements consider a mechanical register such as mileage indicator being rotated backwards.
- A five digit register approaching and passing through 0 would read as follows
- > 00005
- > 00004
- **>** 00003
- > 00002
- > 00001
- > 99999
- > 99998
- > 99997
- > Etc

- ➤ It should be clear that the number 99998 correspond to -2.
- Further if we add
- > 00005
- **>** +99998
- **>** 100003
- And ignore carry to the left, we have effectively formed an operation of subtraction 5-2=3.
- The number 99998 is called a tens complement of 2.
- ➤ The tens complement of any decimal number may be formed by subtracting each digit from the number 9, then adding 1 to the least significant digit of the number formed.
- ➤ In the example above:
 - 1. First each digit of subtrahend was subtracted from 9 (this preliminary value is called nines complement of the subtrahend

9	9	9	9	9
<u>-0</u>	-0	-0	-0	-2
9	9	9	9	8

2. We now add 1 to the nines complement to get the tens complement.

9	9	9	9	7
+				1
9	9	9	9	8

3. The tens complement was added to the minuend giving 100003. The leading carry was dropped, effectively performing subtraction 00005 - 00002 = 00003.

$$00005$$
 $+99998$
 100003

- \triangleright Another example consider 4589 322.
- 1. First compute the nines complement

9	9	9	9	
<u>-0</u>	-3	-2	-2	
9	6	7	7	

2. Add 1 to nines complement

3. Add tens complement of subtrahend to minuend giving

Drop the leading 1 and the answer is 4267.

Exercise:

Try the following problems:

Binary Subtraction

- ➤ We use complement method to compute subtraction in binary.
- > Steps:
 - 1. Compute 1s complement subtract each digit of subtrahend from 1. A short cut for doing this is simply to reverse the digits.
 - 2. Add 1 to the 1s complement of the subtrahend to get 2s complement.
 - 3. Add 2s complement of subtrahend to minuend and drop the higher order 1. This is your difference.

> Example : compute 11010101₂ - 1001011₂

1. 1 1 1 1 1 1 1 1
$$\frac{-0}{1}$$
 $\frac{-0}{1}$ $\frac{-1}{1}$ $\frac{-0}{1}$ $\frac{-1}{1}$ $\frac{-0}{1}$ $\frac{-1}{1}$ 0 1 0 0

2.	1	0	1	1	0	1	0	0
	+							1
	1	0	1	1	0	1	0	1
3.	1	1	0	1	0	1	0	1
	<u>+1</u>	0	1	1	0	11	0	1
	1 1	0	0	0	1	0	1	0
	1	0	0	0	1	0	1	0

- \triangleright Example 1 1 1 1 10 1 1₂ 1 1 0 0 0 0 0 1₂
- 1. Original number 1 1 0 0 0 0 0 1 1s complement 0 0 1 1 1 1 1 0
- 2. Add 1 to get the 2s complement

3. Add 2s complement of the subtrahend to minuend.

4. Ignore the carry the answer is 0 0 1 1 1 0 1 0

Exercise: carry out the following subtractions

$$a. \quad 1 \; 1 \; 1 \; 1 \; 1 \; 0 \; 1 \; 1_2 - 1 \; 0 \; 1 \; 0 \; 1 \; 0 \; 1 \; 0_2 \qquad \qquad b. \qquad \qquad 1 \; 0 \; 0 \; 1 \; 0 \; 0_2 - 1 \; 1 \; 1 \; 0 \; 1_2$$

Octal Addition

➤ Octal addition is performed like decimal addition

> Example

$$543_8 + 121_8$$

> 543

> Example $7652_8 + 4574_8$ > 7 5 2 6 7 5 **>** <u>+4</u> 4 4 4 **>** 1 4 6 12/8 12/8 12/8

Exercise:

a.
$$5430_8 + 3241_8$$
 b. $6405_8 + 1234_8$

Octal Subtraction

Example: compute 7526₈ - 3142₈

> 7526

→ <u>-3142</u>

> 4364

> Example: compute 545₈ - 14₈

> 545

> <u>- 14</u>

> 531

Hexadecimal Addition

➤ One consideration is that when the result of addition is between 10 and 15, a corresponding letter A through F must be written in the result.

 \triangleright Example: $195_{16} + 319_{16}$

▶ 195

→ +3 1 9

> 4 A E

Example:

 $3A2_{16} + 41C_{16}$

> 3 A(10) 2

> +4 1 C(12)

> 7 B Ε

 \triangleright

Example:

 $DEB_{16} + 10E_{16}$

➤ D(13) E(14) B(11)

> +1 0 E(14)

> E F 9

Example:

 $8F97_{16} - D54C_{16}$

> 8 F(15) 9 7

 \rightarrow + D(13) 5 4 C(12)

▶ 16 4 E 3

Exercise: compute the following:

a.
$$BED_{16} + 2A9_{16}$$

b.
$$DEED_{16} + BEEF_{16}$$

Hexadecimal Subtraction

Example:

compute ABED₁₆ – 1FAD₁₆

➤ A(10) B(11) E (14) D(13)

F(15) A(10) D(13)

 \mathbf{C} > 8 4 0

> Example:

compute FEED₁₆ – DAF3₁₆

> F(15) E(14) E(14) D(13)

 \rightarrow -D(13) A(10) F(15) 3

> 2 3 F

 \triangleright Exercise: compute: a. 98AE₁₆ – 1FEE₁₆

b. $B6A1_{16} - 8B12_{16}$

Number System Conversion

Converting a binary number to a decimal number.

Example: convert 1001₂ to decimal.

> Example: convert 1101010 to decimal

Exercise: convert a. 1100110_2 b. 11111001_2 to decimal.

- > Converting decimal number to binary using remainder method.
 - 1. Divide the decimal number by the base (in case of binary divide by 2)
 - 2. Indicate the remainder to the right.
 - 3. Continue dividing each quotient (indicating the remainder) until the divide operation produces a zero quotient.

 \triangleright Example: convert 99₁₀ to binary.

The answer is bottom up 1100011₂

> Example convert 13₁₀ to binary

$$13_{10} = 1101_2$$

Exercise: convert the following numbers to binary: a. 49_{10} b. 21_{10}

- > Converting octal number to decimal number
- > Example: convert 367₈ to decimal

>
$$367$$

> $6x8^{0} = 7x1 = 7$
> $6x8^{1} = 6x8 = 48$
> $3x8^{2} = 3x64 = 192$
> 247_{10}

> Example: convert 1601₈ to decimal.

Exercise: convert the following numbers to decimal: a. 536₈ b. 1163₈

- > Converting decimal number to octal number.
 - 1. Divide the decimal number by the base (in this case of octal, divide by 8).
 - 2. Indicate the remainder to the right.
 - 3. Continue dividing into each quotient (and indicating the remainder) until the division operation produces a zero quotient.
- > The base 8 number is the numeric remainder reading from the last division to the first.

 \triangleright Example: convert 465₁₀ to octal.

$$ightharpoonup 465_{10} = 741_8$$

Example: convert 2548₁₀ to octal.

r

$$\triangleright$$
 2548₁₀ = 4764₈

Exercise: convert the following decimal numbers to octal: a. 3002 b. 6512.

- > Converting hexadecimal number to decimal number.
- Example: convert 20B3₁₆ to decimal

> Example: convert 12AE5₁₆ to decimal.

Exercise: Convert the following numbers to decimal: a. $243F_{16}$ b. BEEF₁₆

- > Converting decimal number to hexadecimal
- ➤ Example convert 9263₁₀ to hexadecimal

$$\triangleright$$
 9263₁₀ = 242F₁₆

Example; convert 4259₁₀ to hexadecimal.

 \rightarrow 4259₁₀ = 10A3₁₆

Exercise: convert the following numbers to hexadecimal: a. 69498_{10} b. 114267_{10}

- ➤ Converting binary to hexadecimal or vice versa
- Four binary digits are equivalent to one hexadecimal digit
- > Divide the binary number into groups of 4 starting from the right.
- ➤ If the left most group has less than 4 digits, put necessary number of leading zeros on the left.
- For each group, write equivalent hexadecimal digit

Example: convert 1101001101110111₂

> 1011 0011 0111 0111

➤ D 3 7 7 (Hex)

Example: convert 101101111₂ to hexadecimal

> 0001 0110 1111

➤ 1 6 F (Hex)

 \triangleright

Example: convert 1BE9₁₆ to binary.

► Hex 1 B E

> Binary 001 1011 1110 1001

Data representation

- Example: convert B0A₁₆ to binary
 Hex B 0 A
 Binary 1011 0000 1010
- Converting from octal to binary or from binary to octal.
- > Three binary digits are equivalent to one octal digit.
- > To convert from binary to octal, divide the binary number into group of three digits starting from the right.
- ➤ If the left most group has less than three digits, put necessary leading zeros.
- For each group of three bits, write a single corresponding octal digit.

- \triangleright Example; convert 1101001101110111₂ to octal.
- > Binary 001 101 001 101 110 111
- > Octal 1 5 1 5 6 7

- Example: convert 10110111₂ to octal.
- > Binary 101 101 111
- ➤ Octal 5 5 7

- > Example: convert 1764₈ to binary.
- ➤ Octal 1 7 6 4
- > Binary 001 111 110 0100

- \triangleright Example: convert 731₈ to binary.
- ➤ Octal 7 3 1
- > Binary 111 011 001

ASCII

- ➤ ASCII represents American standard code for information interchange.
- This is a character encoding scheme originally based on the English alphabet.
- ➤ ASCII codes represent text in computers, communication equipment and other devices that use text.

- ➤ Most modern characters schemes are based on ASCII, though they support many additional characters.
- ➤ ASCII include the definition of 128 characters (many now obsolete) that affect how text or space are processed and 95 printable characters including the space.

Table of ASCII codes

EBCDIC

- ➤ EBCDIC stands for extended binary coded decimal interchange code
- ➤ It is an 8 bit character encoding used mainly on IBM mainframe and IBM midrange computer operating system.
- ➤ It descends from the codes used with punch cards and the corresponding six bit binary coded decimal code, used with most of the IBM computer peripherals of late 1950s and 1960s.
- ➤ It is also employed on various non IBM platforms such as Fujistu.-Siemens BS2000/OSD/ix and the Unisys MCP.
- ➤ It was created to extend the existing binary coded decimal (BCD) interchange code.
- ➤ While IBM was a proponent of ASCII, it did not have time to prepare for ASCII peripherals.

UNICODE

- ➤ Unicode provides a unique number for every character.
- ➤ It developed because of limitations of existing text encoding schemes such as ASCII.
- ➤ ASCII can accommodate up to 256 characters because it uses only a byte for storage of information.
- ➤ ASCII was sufficient when only English characters were encoded.
- ➤ If you consider characters for all other languages in the world, ASCII does not have capacity to accommodate them.
- ➤ Hence UNICODE comes in to solve this problem.
- > Unicode provides a unique number for every character:
 - o No matter what the platform
 - o No matter what the program
 - o No matter what the language

- ➤ Before UNICODE was invented, there were hundreds of different of encoding schemes for assigning these numbers.
- > The encoding schemes also conflicted with each other.
- > That is two encoding schemes can use the same number for two different characters or use different numbers for the same character.
- ➤ UNICODE uses up to four bytes for storage of these numbers that represent the characters.

ASCII	DEC	Hex	Octal	Binary	ASCII	Dec	Hex	Octal	Binary	ASCII	Dec	Hex	Octal	Binary
NULL	000	00	000	0000 0000	+	043	2B	053	0010 1011	٧	086	56	126	0101 0110
SOH	001	01	001	0000 0001	<u> </u>	044	2C	054	0010 1100	W	087	57	127	0101 0111
STX	002	02	002	0000 0010	-	045	2D	055	0010 1101	Х	088	58	130	0101 1000
ETX	003	03	003	0000 0011		046	2E	056	0010 1110	Υ	089	59	131	0101 1001
EOT	004	04	004	0000 0100	/	047	2F	057	0010 1111	Z	090	5A	132	0101 1010
ENQ	005	05	005	0000 0101	0	048	30	060	0011 0000	[091	5B	133	0101 1011
ACK	006	06	006	0000 0110	1	049	31	061	0011 0001	١	092	5C	134	0101 1100
BEL	007	07	007	0000 0111	2	050	32	062	0011 0010]	093	5D	135	0101 1101
BS	800	08	010	0000 1000	3	051	33	063	0011 0011	^	094	5E	136	0101 1110
HT	009	09	011	0000 1001	4	052	34	064	0011 0100		095	5F	137	0101 1111
LF	010	0A	012	0000 1010	5	053	35	065	0011 0101	` `	096	60	140	0110 0000
VT	011	0B	013	0000 1011	6	054	36	066	0011 0110	а	097	61	141	0110 0001
FF	012	0C	014	0000 1100	7	055	37	067	0011 0111	b	098	62	142	0110 0010
CR	013	0D	015	0000 1101	8	056	38	070	0011 1000	С	099	63	143	0110 0011
S0	014	0E	016	0000 1110	9	057	39	071	0011 1001	d	100	64	144	0110 0100
SI	015	0F	017	0000 1111	:	058	3A	072	0011 1010	е	101	65	145	0110 0101
DLE	016	10	020	0001 0000	;	059	3B	073	0011 1011	f	102	66	146	0110 0110
DC1	017	11	021	0001 0001	a	060	3C	074	0011 1100	g	103	67	147	0110 0111
DC2	018	12	022	0001 0010	=	061	3D	075	0011 1101	h	104	68	150	0110 1000
DC3	019	13	023	0001 0011	>	062	3E	076	0011 1110	i	105	69	151	0110 1001
DC4	020	14	024	0001 0100	?	063	3F	077	0011 1111	j	106	6A	152	0110 1010
NAK	021	15	025	0001 0101	@	064	40	100	0100 0000	k	107	6B	153	0110 1011
SYN	022	16	026	0001 0110	Α	065	41	101	010 00001		108	6C	154	0110 1100
ETB	023	17	027	0001 0111	В	066	42	102	0100 0010	m	109	6D	155	0110 1101
CAN	024	18	030	0001 1000	С	067	43	103	0100 0011	n	110	6E	156	0110 1110
EM	025	19	031	0001 1001	D	068	44	104	0100 0100	0	111	6F	157	0110 1111
SUB	026	1A	032	0001 1010	E	069	45	105	0100 0101	р	112	70	160	0111 0000
ESC	027	1B	033	0001 1011	F	070	46	106	0100 0110	q	113	71	161	0111 0001
FS	028	1C	034	0001 1100	G	071	=	107	0100 0111	r	114	\vdash	162	0111 0010
GS	029	1D	035	0001 1101	Н	072	48	110	0100 1000	S	115	73	163	0111 0011
RS	030	1E	036	0001 1110	I	073	==	111	0100 1001	t	116	74	164	0111 0100
US	031	1F	037	0001 1111	J	074		112	0100 1010	u	117	75	165	0111 0101
space	032	20	040	0010 0000	K	075	4B	113	0100 1011	V	118	76	166	0111 0110
!	033	21	041	0010 0001	L	076	==	114	0100 1100	W	119	77	167	0111 0111
"	034	22	042	0010 0010	M	077	=	115	0100 1110	X	120	78	170	0111 1000
#	035	23	043	0010 0011	N	078 079	4E	116	0100 1111	У 7	121	79 74	171	0111 1001
\$	036	24	044	0010 0100	0		H	117	0100 1111	Z	122	7A	172	
%	037	25	045	0010 0101	P	080	50	120	010 10000	{ 	123 124	7B 7C	173 174	0111 1011
&	038	26	046	0010 0110	Q R	081	52	121	0101 0001	1	124	7C 7D	174	0111 1100
'	039	27	047	0010 0111	S	082	53	123	0101 0010	}	126	7E	176	0111 1101
(040	28	050	0010 1000	5 T	083	54	123	0101 0011	DEL	126	7E 7F	176	0111 1110
)	041	29	051	0010 1001	U	085	\vdash	125	0101 0100	DLL	14/	_ / 1	1//	0111 1111
*	042	2A	052	0010 1010		003	رر	143	2101 0101					