

# OPENSHIFT CONTAINER PLATFORM

**TECHNICAL OVERVIEW** 

- in linkedin.com/company/red-hat
- youtube.com/user/RedHatVideos

PRESENTER NAME PRESENTER TITLE DATE

- f facebook.com/redhatinc
- twitter.com/RedHat





# Functional overview











#### OPENSHIFT CONTAINER PLATFORM | Architectural Overview





#### Overwhelmed? Please see the CNCF Trail Map. That and the interactive landscape are at l.cncf.io















OpenShift and Kubernetes core concepts



#### a container is the smallest compute unit





### containers are created from container images





### container images are stored in an image registry





#### an image repository contains all versions of an image in the image registry





### containers are wrapped in pods which are units of deployment and management







# ReplicationControllers & ReplicaSets ensure a specified number of pods are running at any given time





#### 









### configmaps allow you to decouple configuration artifacts from image content







### secrets provide a mechanism to hold sensitive information such as passwords







### services provide internal load-balancing and service discovery across pods





#### apps can talk to each other via services





### routes make services accessible to clients outside the environment via real-world urls





### projects isolate apps across environments, teams, groups and departments







OpenShift lifecycle, installation & upgrades



### OpenShift 4 Installation

Two new paradigms for deploying clusters



#### Installation Paradigms

#### **OPENSHIFT CONTAINER PLATFORM**

#### **Full Stack Automated**

Simplified opinionated "Best Practices" for cluster provisioning

Fully automated installation and updates including host container OS.

Red Hat
Enterprise Linux
CoreOS

#### Pre-existing Infrastructure

Customer managed resources & infrastructure provisioning

Plug into existing DNS and security boundaries





#### **HOSTED OPENSHIFT**

#### **Azure Red Hat OpenShift**

Deploy directly from the Azure console. Jointly managed by Red Hat and Microsoft Azure engineers.

#### **OpenShift Dedicated**

Get a powerful cluster, fully Managed by Red Hat engineers and support.



#### Full-stack Automated Installation





#### Pre-existing Infrastructure Installation





#### Comparison of Paradigms

|                                 | Full Stack Automation  | Pre-existing Infrastructure                              |
|---------------------------------|------------------------|----------------------------------------------------------|
| Build Network                   | Installer              | User                                                     |
| Setup Load Balancers            | Installer              | User                                                     |
| Configure DNS                   | Installer              | User                                                     |
| Hardware/VM Provisioning        | Installer              | User                                                     |
| OS Installation                 | Installer              | User                                                     |
| Generate Ignition Configs       | Installer              | Installer                                                |
| OS Support                      | Installer: RHEL CoreOS | User: RHEL CoreOS + RHEL 7                               |
| Node Provisioning / Autoscaling | Yes                    | Only for providers with OpenShift<br>Machine API support |



# OpenShift 4 Lifecycle

Supported paths for upgrades and migrations



#### **Support Timelines**



#### New model

Release based, not date based. Rolling three release window for support.

The overall 4 series will be supported for at least three years

- Minimum two years full support (likely more)
- One year maintenance past the end of full support

#### EUS release planned

Supported for 14 months of critical bug and critical security fixes instead of the normal 5 months. If you stay on the EUS for its entire life, you must use the application migration tooling to move to a new cluster



#### Upgrades vs. Migrations



#### **OTA Upgrades**

Works between two minor releases in a serial manner.

#### Happy path = migrate through each version

On a regular cadence, migrate to the next supported version.

#### Optional path = migration tooling

If you fall more than two releases behind, you must use the application migration tooling to move to a new cluster.

#### **Current minor release**

Full support for all bugs and security issues 1 month full support overlap with next release to aid migrations

#### Previous minor release

Fixes for critical bugs and security issues for 5 months





**Operations** and infrastructure deep dive



### Red Hat Enterprise Linux CoreOS

The OpenShift operating system



#### Red Hat Enterprise Linux

|             | RED HAT' ENTERPRISE LINUX'                                                                                                                                                                                           | RED HAT' ENTERPRISE LINUX CoreOS                                                                                                                                                                                                     |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | General Purpose OS                                                                                                                                                                                                   | Immutable container host                                                                                                                                                                                                             |
| BENEFITS    | <ul> <li>10+ year enterprise life cycle</li> <li>Industry standard security</li> <li>High performance on any infrastructure</li> <li>Customizable and compatible with wide ecosystem of partner solutions</li> </ul> | <ul> <li>Self-managing, over-the-air updates</li> <li>Immutable and tightly integrated with<br/>OpenShift</li> <li>Host isolation is enforced via Containers</li> <li>Optimized performance on popular<br/>infrastructure</li> </ul> |
| WHEN TO USE | When customization and integration with additional solutions is required                                                                                                                                             | When cloud-native, hands-free operations are a top priority                                                                                                                                                                          |

#### Immutable Operating System

#### Red Hat Enterprise Linux CoreOS is versioned with OpenShift

CoreOS is tested and shipped in conjunction with the platform. Red Hat runs thousands of tests against these configurations.

#### Red Hat Enterprise Linux CoreOS is managed by the cluster

The Operating system is operated as part of the cluster, with the config for components managed by Machine Config Operator:

- CRI-O config
- Kubelet config
- Authorized registries
- SSH config

#### RHEL CoreOS admins are responsible for:

Nothing. 😃 🙌





A lightweight, OCI-compliant container runtime

Minimal and Secure
Architecture

Optimized for Kubernetes Runs any
OCI-compliant image
(including docker)



#### CRI-O Support in OpenShift

CRI-O tracks and versions identical to Kubernetes, simplifying support permutations



#### podman



A docker-compatible CLI for containers

- Remote management API via Varlink
- Image/container tagging
- Advanced namespace isolation



#### buildah



#### Secure & flexible OCI container builds

- Integrated into OCP build pods
- Performance improvements for knative enablement
- Image signing improvements



## OpenShift 4 installation

Installer and
user-provisioned
infrastructure, bootstrap,
and more



#### OpenShift Bootstrap Process: Self-Managed Kubernetes

#### How to boot a self-managed cluster:

- OpenShift 4 is unique in that management extends all the way down to the operating system
- Every machine boots with a configuration that references resources hosted in the cluster it joins enabling cluster to manage itself
- Downside is that every machine looking to join the cluster is waiting on the cluster to be created
- Dependency loop is broken using a bootstrap machine, which acts as a temporary control plane whose sole purpose is bringing up the permanent control plane nodes
- Permanent control plane nodes get booted and join the cluster leveraging the control plane on the bootstrap machine
- Once the pivot to the permanent control plane takes place, the remaining worker nodes can be booted and join the cluster

#### Bootstrapping process step by step:

- 1. Bootstrap machine boots and starts hosting the remote resources required for master machines to boot.
- 2. Master machines fetch the remote resources from the bootstrap machine and finish booting.
- 3. Master machines use the bootstrap node to form an etcd cluster.
- 4. Bootstrap node starts a temporary Kubernetes control plane using the newly-created etcd cluster.
- 5. Temporary control plane schedules the production control plane to the master machines.
- 6. Temporary control plane shuts down, yielding to the production control plane.
- 7. Bootstrap node injects OpenShift-specific components into the newly formed control plane.
- 8. Installer then tears down the bootstrap node or if user-provisioned, this needs to be performed by the administrator.



#### How everything deployed comes under management

#### Masters (Special)

- Terraform provisions initial masters\*
- Machine API adopts existing masters post-provision
- Each master is a standalone Machine object
- Termination protection (avoid self-destruction)

#### Workers

- Each Machine Pool corresponds to MachineSet
- Optionally autoscale (min,max) and health check (replace if not ready > X minutes)

#### Multi-AZ

- MachineSets scoped to single AZ
- Installer stripes N machine sets across AZs by default
- Post-install best effort balance via cluster autoscaler



# OpenShift 4 Cluster Management

Powered by Operators,
OpenShift 4 automates
many cluster
management activities



#### Over-the-air updates

#### Release Payload Info







#### Cloud API





## OpenShift Security

Features, mechanisms
and processes for
container and platform
isolation





#### **CONTROL**

Application Security



CI/CD Pipeline

**Container Registry** 

Deployment Policies



**DEFEND** 

Infrastructure

**Container Platform** 

Container Host Multi-tenancy

**Network Isolation** 

Storage

Audit & Logging

**API Management** 



**EXTEND** 

Security Ecosystem



#### Extended Depth of Protection

Feature Transfer (upstream)







#### Certificates and Certificate Management

- OpenShift provides its own internal CA
- Certificates are used to provide secure connections to
  - master (APIs) and nodes
  - Ingress controller and registry
  - etcd
- Certificate rotation is automated
- Optionally configure external endpoints to use custom certificates





#### Service Certificates





#### Identity and Access Management





#### Fine-Grained RBAC

- Project scope & cluster scope available
- Matches request attributes (verb,object,etc)
- If no roles match, request is denied (deny by default)
- Operator- and user-level roles are defined by default
- Custom roles are supported



Figure 12 - Authorization Relationships



### OpenShift Monitoring

An integrated cluster monitoring and alerting stack



#### OpenShift Cluster Monitoring







Alerting/notification via Prometheus' Alertmanager, an open-source tool that handles alerts send by Prometheus.



**Metrics visualization** via Grafana, the leading metrics visualization technology.











## OpenShift Logging

An integrated solution for exploring and corroborating application logs



## Observability via log exploration and corroboration with EFK

#### Components

- Elasticsearch: a search and analytics engine to store logs
- Fluentd: gathers logs and sends to Elasticsearch.
- o Kibana: A web UI for Elasticsearch.

#### Access control

- Cluster administrators can view all logs
- Users can only view logs for their projects

#### Ability to forward logs elsewhere

External elasticsearch, Splunk, etc







#### Log data flow in OpenShift





#### Log data flow in OpenShift





### Persistent Storage

Connecting real-world storage to your containers to enable stateful applications



## A broad spectrum of static and dynamic storage endpoints





#### **PV** Consumption





#### Static Storage Provisioning





#### Dynamic Storage Provisioning





### Build and Deploy Container Images

Tools and automation that makes developers productive quickly





DEPLOY YOUR SOURCE CODE



DEPLOY YOUR APP BINARY



DEPLOY YOUR CONTAINER IMAGE





