О разрешимости математических моделей, описывающих движение вязкоупругих сред с памятью

Звягин Андрей Викторович Воронежский государственный университет

zvyagin.a@mail.ru

Секция: Пленарный доклад

Математические вопросы, возникающие при изучении гидродинамики, являются актуальной и быстро развивающейся областью исследований последние сто пятьдесят лет. При этом основное внимание математиков было уделено системе уравнений Эйлера, описывающей движение идеальной среды, и системе уравнений Навье-Стокса, описывающей движение вязкой ньютоновской жидкости. Однако было замечено, что многие реальные среды (например, полимерные растворы, суспензии и др.) не подчиняются моделям классической гидродинамики. Такие модели называются "неньютоновскими средами". Данный доклад посвящен математическому исследованию начально-краевых задач для одного класса моделей неньютоновской гидродинамики, а именно, моделей движения вязкоупругих сред. Такие среды, как следует из названия, сочетают в себе свойства вязкости и упругости.

При изучение большого класса полимеров, в которых необходимо учитывать эффекты ползучести и релаксации, в последние годы появились математические модели с дробными производными. В силу своей сложности математические постановки задач для таких моделей неньютоновской гидродинамики на сегодняшний день не столь подробно изучены и существующие математические методы зачастую оказываются не столь эффективными для них. Именно о слабой разрешимости для таких модей в докладе пойдет речь.

- [1] А. В. Звягин, О слабой разрешимости и сходимости решений дробной альфамодели Фойгта движения вязкоупругой среды, Успехи математических наук, 74:3 (2019), 189–190.
- [2] А. В. Звягин, Исследование слабой разрешимости дробной альфа-модели Фойгта, Известия Академии Наук. Серия математическая, 85:1 (2021), 66–97.
- [3] А. В. Звягин, О существовании слабых решений дробной модели Кельвина-Фойгта, Математические заметки, 116:1 (2024), 152–157.