

ROBOSTEM Project

Agreement no: 2019-1-RO01-KA202-063965

Chemistry Lesson Plan

Topic/Subject: Titration Experiments with Arduino-Based pH Sensor

Target Group: 10th Grade

Objectives:

Obj1. Describe the key steps in performing an acid-base titration

Obj2. Describe and understand the principle of operation of an Arduino-Based pH Sensor

Obj3. Identify suitable indicators by determining the equivalence points in plotted or

tabulated pH data

Approach/Methodology used: Combining the Arduino with pH and temperature sensors and actuators. Potentiometric titration is operated by hand, providing a titration curve directly to the Microsoft Excel Spreadsheet. The titrant is added, under agitation, at a constant rate of $100 \, \mu L \, (1,0 \, mL)$ every 6 seconds.

Means/Tools/Educational technology

Desktop computers running Excel or similar software Chemistry textbook Arduino-Based pH Sensor Arduino UNO Breadboard Cables 50 ml buret 250 ml beaker Solutions of HCl and NaOH

Plan for work

Time	Activities	Methods/
		means
10 min.	Demonstrate the operation of a buret by discharging small amounts of water into a flask. Explain to the students how to read the buret using the marks on the sides. Issue each group a buret and a flask. Have the students set up their burets and fill them with water. Have each student dispense a small amount of water (2-5 ml) into the flask.	Buret, flask

ROBOSTEM Project

Agreement no: 2019-1-RO01-KA202-063965

5 min.	Demonstrate the operation of the Arduino-Based pH	Arduino-Based
	Sensor. Show them how to use the meter without the risk	pH Sensor
	of breaking the electrode.	
10 min.	Have a group of students rinse their buret with the NaOH	NaOH solution,
	solution and dispose of the waste base properly. Then	HCl solution,
	have them fill their burets to 50 ml with the NaOH	phenolphthalein
	solution. Add 1 drop of phenolphthalein indicator to the	indicator
	30.0 ml of hydrochloric acid solution.	
10 min.	Have students add the solution 5 ml at a time. Have them	Computer,
	record the pH after each addition. If the pH changes	NaOH solution
	dramatically, have them change the procedure and add	
	NaOH 1-2 ml at a time. One student can control the	
	stopcock, one can read the volume, and one can record	
	the pH in a spreadsheet or on paper.	
10 min.	Have students dispose of their remaining chemicals	
	appropriately.	

Assessment/Feedback: Students will turn in a group lab that includes of their titration graph, their calculations, and a short lab report from each team member. Reports will be assessed based on how well the students explain any difference between the estimated, calculated, and observed, values for their titration. Reports will also be assessed based on how well the student is able to describe the progress of the reaction in his or her own words.

This work has the potential to improve the integration of the visually impaired into mainstream settings in an area not previously covered. The use and interpretation of pH paper in measuring pH, which could not be attempted previously by the visually impaired, is now possible using the Arduino-based pH sensor.

Bibliography:

Kenkel, J., 2013. Analytical Chemistry for Technicians. 3rd ed. Hoboken: CRC Press, pp.99-101.

https://www.xylemanalytics.com/File%20Library/Downloads/SIA_Titration-handbook_English.pdf