Задание №3: машины Тьюринга

Базовое определение, регистры и дорожки

1. Дана машина Тьюринга $M=(\{q_0,q_1,q_2,q_3\},\{1,*\},\{1,*,B\},\delta,q_0,B,\{q_3\}),$ функция переходов δ которой задана таблицей:

	B	1	*
q_0	_	(q_1, B, R) $(q_1, 1, R)$	(q_3, B, R)
q_1	$ (q_2, 1, L) $ $ (q_0, B, R) $	$(q_1, 1, R)$	$(q_1, *, R)$
q_2	(q_0, B, R)	$(q_2, 1, L)$	$(q_2,*,L)$
q_3	_	_	_

- (а) Нарисовать диаграмму переходов.
- (б) Выписать последовательности конфигураций для следующих слов: 1) 1 * 11; 2) 11 * 1; 3) * 111; 4) 11*.
- (в) Установить закономерность в работе машины и описать задачи, решаемые каждым из состояний.
- (г) Вычислить количество операций до останова машины в зависимости от размера исходных данных.
- 2. Функция переходов машины $M=(\{q_0,q_1,q_2,q_3,q_4\},\{0,1\},\{0,1,X,Y,B\},\delta,q_0,B,\{q_4\})$ задана диаграммой:

- (a) Выписать последовательности конфигураций для следующих слов: 1) 0011; 2) 011; 3) 111; 4) 01.
- (б) Сформулировать алгоритм, в соответствии с которым эта машина действует.
- (в) Описать язык этой машины (то есть множество всех слов, на которых машина завершается в допускающем состоянии) и определить, является ли он рекурсивным (всегда ли эта машина завершается).

- 3. Написать программы для машины Тьюринга, распознающие следующие языки:
 - (a) все слова над алфавитом $\Sigma = \{1\}$ с чётным количеством единиц;
 - (б) все слова над алфавитом $\Sigma = \{0,1\}$ с чётным количеством единиц;
 - (в) все слова над алфавитом $\Sigma = \{0, 1\}$, которые заканчиваются на единицу;
 - (г) все слова над алфавитом $\Sigma = \{0,1\}$, которые содержат в точности один нуль в начале слова и произвольное количество единиц;
 - (д) все слова над алфавитом $\Sigma = \{0,1\}$, которые начинаются и заканчиваются нулями и имеют произвольное количество единиц между ними.

Разновидности машин Тьюринга

- 1. Построить двухленточную машину Тьюринга, допускающую язык всех слов из 0 и 1, в которых этих символов поровну. Первая лента содержит вход и просматривается слева направо. Вторая лента используется для запоминания излишка нулей по отношению к единицам и наоборот в прочитанной части входа. Описать состояния и переходы, а также неформальное предназначение каждого состояния.
- 2. Описать идеи многоленточных машин Тьюринга, распознающих следующие языки:
 - (a) $L(M) = \{ww^R \mid w$ произвольное слово из символов 0 и 1 $\}$, символом w^R обозначается слово, записанное теми же символами, что и w, но расположенными в обратном порядке;
 - (6) $L(M) = \{a^n b^n c^n \mid n \geqslant 1\}.$
- 3. Машина Тьюринга, называемая k-головочной, имеет k головок, читающих клетки на одной ленте. Переход такой МТ зависит от состояния и символов, обозреваемых головками. За один переход эта МТ может изменить состояние, записать новый символ в клетку, обозреваемую каждой из головок, и сдвинуть каждую головку влево, вправо или оставить на месте. Поскольку несколько головок могут одновременно обозревать одну и ту же клетку, предполагается, что головки пронумерованы от 1 до k, и символ, который в действительности записывается в клетку, есть символ, записываемый головкой с наибольшим номером. Доказать, что множества языков, допускаемых k-головочными и обычными машинами Тьюринга, совпадают.
- 4. Преобразовать машину Тьюринга $M = (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, B\}, \delta, q_0, B, \{q_2\})$ к виду, в котором машина не перемещается левее начального положения:

Привести примеры работы полученной машины на нескольких словах.

5. Недетерминированная машина Тьюринга $M = (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, B\}, \delta, q_0, B, \{q_2\})$ представлена следующей функцией переходов:

	0	1	В
$\overline{q_0}$	$\{(q_0, 1, R)\}$	$\{(q_1, 0, R)\}$	_
q_1	$\{(q_0, 1, R)\}\$ $\{(q_1, 0, R), (q_0, 0, L)\}$	$\{(q_1,1,R),(q_0,1,L)\}$	$\{(q_2, B, R)\}$
q_2	_	_	_

Показать, какие конфигурации достижимы из начальной конфигурации, если входом является следующая цепочка:

(a) 01;

(б) 001;

(B) 011.

6. Недетерминированная машина $M = (\{q_0, q_1, q_2, q_f\}, \{0, 1\}, \{0, 1, B\}, \delta, q_0, B, \{q_f\})$ представлена следующей функцией переходов:

- $\delta(q_0, 0) = \{(q_0, 1, R), (q_1, 1, R)\},$ $\delta(q_2, 1) = \{(q_0, 1, R)\},$

• $\delta(q_1, 1) = \{(q_2, 0, L)\},\$

• $\delta(q_1, B) = \{(q_f, B, R)\}.$

Описать смысл ветвления в первом правиле для функции δ и язык этой машины.

- 7. Описать идеи недетерминированных, возможно многоленточных, машин Тьюринга, распознающих следующие языки:
 - (а) язык всех слов из символов 0 и 1, содержащих некоторое подслово длиной 100, которое повторяется, причём необязательно подряд;
 - (б) язык всех слов вида $w_1 \# w_2 \# \dots \# w_n$ для произвольного n, где подслова w_i состоят из символов 0 или 1, причём для некоторого j подслово w_{j} есть двоичная запись числа i;
 - (в) язык того же вида, что и в пункте (б), в котором хотя бы для двух различных значений j подслово w_j есть двоичная запись числа j.

Совет: использование недетерминизма позволяет избежать итераций и сократить время работы в недетерминированном смысле, то есть лучше, чтобы ветвей было много, но они были короткими.

Литература

1. Хопкрофт Дж., Мотвани Р., Ульман Дж. Введение в теорию автоматов, языков и вычислений. — 2-е изд. — М.: Вильямс, 2002. - 528 с. (Глава 8, разделы 8.2-8.4, 8.5.1.)