SISTEMAS OPERATIVOS Guía de Ejercicios

Certamen #1

Wenceslao Palma {wenceslao.palma,sandra.cano}@pucv.cl

1 Preguntas desarrollo, alternativas.

- 1. Responda las sgtes preguntas. Justifique cada una de sus respuestas. Lo indicado como respuesta son las ideas principales a desarrollar.
 - (a) Qué es el modo usuario y el modo kernel? Como se relaciona con la ejecución de un proceso?
 - (b) En cuanto a los criterios de los algoritmos de planificación, en particular, el Uso de Cpu y el Tiempo de Respuesta, comente como están relacionados.
 - (c) Describa Diferencias entre planificación a corto plazo (PCP) y a largo plazo (PLP).
 - (d) Qué debe suceder a un proceso para que pase del estado running al estado blocked?
 - (e) Es posible que un proceso pase del estado blocked al estado running? justifique.
 - (f) Considerando el algoritmo de planificación RR, Cuál es la relación que existe entre quantum de tiempo y cambio de contexto?
 - (g) Existe riesgo de inanición en el algoritmo RR?

- 2. Seleccione las alternativas correctas.
 - (a) Cuales ideas no se ajustan a la definición de SO?
 - i. Programa intermedio entre usuario y hardware.
 - ii. Gestionador de Recursos.
 - iii. Programa que aumenta el uso de la CPU al intercambiar procesos de alta utilización de operaciones de E/S.
 - iv. Programa apto para ejecución de procesos de largo tiempo de utilización de CPU y que no requieren interacción de usuario.
 - (b) Cuál de los siguientes algoritmos puede provocar Inanición?
 - i. FCFS
 - ii. RR
 - iii. Retroalimentación
 - iv. SJF (SPN)
 - (c) En general, un cambio de contexto, requiere las siguientes operaciones:
 - i. Restaurar el estado de un proceso planificado para la próxima ejecución.
 - ii. Modificar la prioridad de procesos que se encuentren en estado waiting
 - iii. Guardar valores de los registros de la CPU en conjunto con ubicaciones de memoria.
 - iv. Evaluar el vector de interrupciones para invocar una llamada de sistema acorde a la interrupción.

2 Scheduling

1. Aplique los algoritmos RR(q=1) y SPN, y muestre para todos los procesos la razón tr/ts. Comente el rendimiento de ambos algoritmos usando el tr/ts promedio.

Proceso	Llegada	Tiempo de servicio
A	0	3
В	1	6
\mathbf{C}	3	2
D	9	4
\mathbf{E}	12	5

2. Aplique los algoritmos RR(q=1) y SPN, y muestre para todos los procesos la razón tr/ts. Comente el rendimiento de ambos algoritmos usando el tr/ts promedio.

Proceso	Llegada	Tiempo de servicio
A	0	2
В	1	7
\mathbf{C}	3	4
D	9	6
${ m E}$	12	5

3. Aplique los algoritmos RR(q=1) y SPN, y muestre para todos los procesos la razón tr/ts. Comente el rendimiento de ambos algoritmos usando el tr/ts promedio.

Proceso	Llegada	Tiempo de servicio
A	0	4
В	2	3
\mathbf{C}	4	6
D	8	2
${ m E}$	10	4

4. Aplique los algoritmos RR(q=1) y SPN, y muestre para todos los procesos la razón tr/ts. Comente el rendimiento de ambos algoritmos usando el tr/ts promedio.

Proceso	Llegada	Tiempo de servicio
A	0	1
В	2	3
\mathbf{C}	4	7
D	8	4
${ m E}$	10	3

5. Aplique los algoritmos RR(q=1) y SPN, y muestre para todos los procesos la razón tr/ts. Comente el rendimiento de ambos algoritmos usando el tr/ts promedio.

Proceso	Llegada	Tiempo de servicio
A	0	3
В	2	6
\mathbf{C}	3	10
D	7	1
\mathbf{E}	8	5

6. Aplique los algoritmos RR(q=1) y SPN, y muestre para todos los procesos la razón tr/ts. Comente el rendimiento de ambos algoritmos usando el tr/ts promedio.

Proceso	Llegada	Tiempo de servicio
A	0	3
В	2	6
\mathbf{C}	4	8
D	8	2
${ m E}$	9	5

7. Aplique los algoritmos SPN y RR (q=1) y muestre para todos los procesos la razón tr/ts. Comente el rendimiento de ambos algoritmos usando el tr/ts promedio.

Proceso	Llegada	Tiempo de servicio
A	0	4
В	2	3
\mathbf{C}	5	6
D	8	7
${ m E}$	9	4

8. Aplique los algoritmos SPN y RR (q=1) y muestre para todos los procesos la razón tr/ts. Comente el rendimiento de ambos algoritmos usando el tr/ts promedio.

Proceso	Llegada	Tiempo de servicio
A	0	3
В	1	2
\mathbf{C}	3	5
D	8	8
${ m E}$	10	5

9. Aplique los algoritmos SPN y RR (q=1) y muestre para todos los procesos la razón tr/ts. Comente el rendimiento de ambos algoritmos usando el tr/ts promedio.

Proceso	Llegada	Tiempo de servicio
A	0	5
В	1	3
\mathbf{C}	3	4
D	8	8
${ m E}$	10	5

10. Aplique los algoritmos SPN y RR (q=1) y muestre para todos los procesos la razón tr/ts. Comente el rendimiento de ambos algoritmos usando el tr/ts promedio.

Proceso	Llegada	Tiempo de servicio
A	0	6
В	2	4
\mathbf{C}	5	6
D	8	4
\mathbf{E}	19	5

11. Aplique los algoritmos SPN y RR (q=1) y muestre para todos los procesos la razón tr/ts. Comente el rendimiento de ambos algoritmos usando el tr/ts promedio.

Proceso	Llegada	Tiempo de servicio
A	0	4
В	1	5
\mathbf{C}	3	2
D	8	6
\mathbf{E}	10	5

3 Bash

- 1. Un archivo de texto llamado direcciones IP-16.txt se encuentra almacenada una lista de direcciones IP en hexadecimal al estilo de lo almacenado en /proc/net/tcp. Escriba un script en bash que a partir de direcciones IP-16.txt genere el archivo direcciones IP-10.txt el cual contiene la misma lista de direcciones IP pero en formato decimal y separadas por un punto.
- 2. Escriba un script que renombre todos los archivos JPG y PNG, ubicados en el directorio actual y subdirectorios, agregando como prefijo la fecha en formato dd-mm-yyyy(01-01-1970).