Assignment 6

Operating System Lab (CS341) Department of CSE, IIT Patna

Date:- 11-Feb-2020 Time:- 3 hours

Instructions:

- 1. All the assignments should be completed and uploaded by 5.30 pm. Marks will be deducted for the submissions made after 5.30 pm.
- 2. Markings will be based on the correctness and soundness of the outputs. Marks will be deducted in case of plagiarism. All questions are of equal marks.
- 3. Proper indentation and appropriate comments (if necessary) are mandatory. [2+2 marks]
- 4. You should zip all the required files and name the zip file as roll_no.zip, eg. 1501cs11.zip.
- 5. Code for each question should be named as Q1.c, Q2.c, Q3.c, Q4.c etc..
- 6. Each question will be evaluated on 10 test cases and marks will be given accordingly.
- 7. Upload your assignment (the zip file) in the following link:

https://www.dropbox.com/request/JiLEo1Qfh2QU1Fb8NYE4

For each question input and output format will be like:

For question 1, the first line of input will contain a number specifying total processes (n) and time quantum. n line follows, ith line contains two space separated integers specifying arrival_time and burst_time of ith process.

Ex-	Input	Output
	6(n) 2(TQ)	$Avg_WT = 7.33 Avg_TAT = 10.83$
	0 4	P3 P1 P4 P2 P6 P5
	1 5	
	2 2	
	3 1	
	4 6	
	6 3	

For question 2, the first line of input will contain a number specifying total processes (n). n line follows, ith line contains two space separated integers specifying arrival_time, burst_time and priority of ith process.

Ex- Input	Output
4(n)	$Avg_WT = 7.75 Avg_TAT = 13.25$
0 10 5	P1 P4 P3 P2

For question 3, the first line of input will contain a number specifying total processes (n) and number of queues i.e 2 here, one for system processes and other for user processes. n line follows, ith line contains two space separated integers specifying arrival time, burst_time and priority queue of ith process.

Ex-	Input	Output
	5(n) 2(Q)	$Avg_WT = 10 Avg_TAT = 17.2$
	0 10 2	P2 P4 P5 P1 P3
	3 7 1	
	4 6 2	
	12 5 1	
	18 8 1	

Your program should output two lines. First line contains two space separated values (rounded off to 2 decimal places) specifying average waiting time (WT) and the turn-around time (TAT).

Second line contains space separated process ids of n processes, specifying completion order of the processes.

Q1: Consider the n processes, P1, P2.. Pn. Write a program to find out the average waiting time (WT), turn-around time (TAT) and the completion order of the processes using **Round Robin** (RR) scheduling.

Q2: Consider the n processes, P1, P2.. Pn. Write a program to find out the average waiting time (WT), turn-around time (TAT) and the completion order of the processes using **Non-preemptive Priority** scheduling algorithm (the lower the priority number, the higher is the priority of the process).

Q3: Consider the n processes, P1, P2.. Pn. Write a program to find out the average waiting time (WT), turn-around time (TAT) and the completion order of the processes using **Multi-level queue** scheduling algorithm. All the processes in the system are divided into two categories – system processes and user processes. System processes are to be given higher priority than user processes. System processes are assigned to queue 1 whereas user processes are assigned to queue 2. Both queues use Round Robin scheduling, with Tq1 = 4 (priority queue 1) and Tq2 = 3 (priority queue2).