

1 驱动源码

驱动源码部分包含数据的解析以及配置文件,其主要结构如下:

名称	修改日期	类型	大小
CMakeLists.txt	2025/7/7 15:01	文本文档	2 KB
Kconfig	2025/7/3 16:59	文件	1 KB
🗓 module.yaml	2025/7/3 16:59	Yaml 源文件	1 KB
₫ ts1224.cpp	2025/7/7 17:06	C++ 源文件	6 KB
₫ ts1224.hpp	2025/7/7 16:41	C++ Header 源	3 KB
🕝 ts1224_main.cpp	2025/7/7 15:38	C++ 源文件	4 KB
🕝 ts1224_parser.cpp	2025/7/7 15:17	C++ 源文件	5 KB
c ts1224_parser.h	2025/7/7 15:47	C Header 源文件	3 KB

Kconfig 与 module.yaml 为与上位机端控制驱动启动的配置文件。

ts1224_parser.cpp 与 ts1224_parser.h 为通过状态机实现的数据解析代码

ts1224.cpp 与 ts1224.h 为驱动实现函数,包含串口绑定、消息类型初始化、以及驱动启动与关闭函数。

ts1224_main.cpp 为飞控端调用的接口函数,属于该类型驱动的标准函数,内容相似。

2 添加驱动

打开下载 PX4 源码,打开路径为 PX4-Autopilot/src/drivers/distance_sensor 的文件夹,并在文件夹中创建一个新文件夹 ts1224,在新创建的文件夹中添加我们的驱动代码,如图:

2.1 外部配置文件修改

default.px4board 位置: PX4-Autopilot/boards/px4/fmu-v6c/src/default.px4board, 修改这部分配置文件用于配置编译时距离传感器启用与否。在末尾增加下面一段,表示编译时启动距离传感器,同时启动

DRIVERS_DISTANCE_SENSOR_TS1224 传感器。另外注意,当前目标飞控板对应目标为 fmu-v6c 版本,需要查询其他飞控板所适配的编码版本,对应的修改此配置文件。

CONFIG_DRIVERS_DISTANCE_SENSOR_TS1224=y

修改配置文件 Kconfig,位置 PX4-Autopilot/src/drivers/distance_sensor,在文件中添加以下内容:

select DRIVERS_DISTANCE_SENSOR_TS1224

3 地面站配置

3.1 硬件连接

本例程使用 Pixhawk6C 的 TELEM2 端口进行硬件连接,TS1224 模块的连接除了基本的 VCC、GND、TX、RX 连接外,还需额外连接电源开关 POWER_ON,3.3V 有效,本次例程使用 GPS1 端口引出 3.3V 端口进行连接,如不连接将不会有数据输出!!!

3.2 地面站设置

下载编译好的固件后,接入 QGC 地面站设置 SENS_TS1224_CFG 为 TELEM2,并重启飞行器

重启完成后,可在 MAVLink 检测的 DISTANCE_SENSOR 选项中看到 TOF 的值

