

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

По «Научно-исследовательская работа»

Тема: «Моделирование программного обеспечения на основе сетей Петри»

Студент	ИУ7И-76Б	Нгуен Ф. С.			
•	(Группа)	(Подпись, дата)	(И.О. Фамилия)		
Руководитель			Рудаков И.В.		
		(Подпись, дата)	(И.О. Фамилия)		

Оглавление

1.	Аналитическая часть					
1	1.1. l	Классические сети Петри	3			
		Понятие сети Петри				
	1.1.2.					
	1.1.3.	Маркировка				
		Правила выполнения сетей Петри				
		Пространство состояний сети Петри				
]		Параллельные процессы				
]		Расширения сетей Петри				
		Сети с приоритетом				
		Ингибиторные сети				
		Цветные сети Петри				
		Временные сети Петри				
1		Сети Петри и параллельные вычисления				

1. Аналитическая часть

1.1. Классические сети Петри

Сети Петри — аппарат для моделирования динамических дискретных систем (преимущественно асинхронных параллельных процессов).

1.1.1. Понятие сети Петри

Сеть Петри определяется как четверка <P, T, I, O>

где
$$P = \{p1, p2, ..., pn\}$$
 — конечные множества позиций,

$$T = \{t1, t2, ..., tm\}$$
 — конечные множества переходов,

I и О — множества входных и выходных функций (отображение из переходов в комплекты позиций)

Пример 1: сети Петри

$$C = (P, T, I, O)$$

$$P = \{p1, p2, p3, p4, p5\}$$

$$T = \{t1, t2, t3, t4\}$$

X	T1	T2	Т3	T4
I(x)	{p1}	{p2, p3, p5}	{p3}	{p4}
O(x)	{p2, p3, p5}	{p5}	{p4}	{p2, p3}

1.1.2. Графы Сети Петри

Сеть Петри представляет собой двудольный ориентированный граф, в котором позициям соответствуют вершины, изображаемые кружками, а переходам — вершины, изображаемые утолщенными черточками; функциям I соответствуют дуги, направленные от позиций к переходам, а функциям О — от переходов к позициям.

На рисунке 1 показана сеть Петри, соответствует пример 1

Рисунок 1 сеть Петри

Позиция, у которых нет входящих дуг, называются входными.

Позиция, у которых нет исходящих дуг, называются выходными.

1.1.3. Маркировка

Каждая позиция сети Петри может содержать ноль или более маркеров. Все маркеры считаются одинаковыми и неотличимыми друг от друга.

Распределение маркеров по позициям называют маркировкой (μ).

Маркировка и может быть также определена как n-вектор $\mu=(\mu_1,\,\mu_2,\,...,\,\mu_n),\,n=|P|$ На рисунке 2 показан пример сеть Петри с маркировкой $\mu=(0,\,2,\,0,\,5,\,1)$

Рисунок 2 сеть Петри с маркировкой $\mu = (0, 2, 0, 5, 1)$

1.1.4. Правила выполнения сетей Петри

Выполнением сети петри управляют количество и распределение маркеров в сети.

Переход запускается удалением маркеров из его входных позиций и образованием новых маркеров, помещаемых в его выходные позиции.

Перенос маркеров выполняется по следующей схеме.

- Переход является активным, если каждая его входная позиция содержит по крайней мере одну метку (более точно по одной метке на каждую входящую в этот переход дугу).
- Активный переход может сработать, при срабатывании переход поглощает по одной метке с каждой своей входной позиции и размещает по одной метке на каждая свая выходная позиция (по одной метке на каждую исходящую дугу).

• В каждый момент времени для срабатывания из всех активных переходов недетерминированным образом выбирается один. Если активных переходов нет, то работа сети на этом завершается.

Последовательность переходов σ , в которой і-ый переход - сработавший на іом шаге работы сети, называется последовательностью срабатываний сети Петри.

Последовательность срабатываний однозначно определяет последовательность маркировки μi , где $\mu 0$ является начальной маркировкой после срабатывания t-го перехода, маркировка μ преобразуется в маркировку μ ,

будем обозначать кратко:
$$\mu \xrightarrow{t} \mu'$$

На рисунке 3 показан пример работы сети Петри для последовательности срабатываний $\sigma = [t1, t3]$.

Рисунок 3. работы сети Петри для $\sigma = [t1, t3]$.

1.1.5. Пространство состояний сети Петри

Состояние сети Гетри определяется ее маркировкой. Запуск перехода изменяет состояние сети Петри посредством изменения маркировки сети.

Пространство состояний сети Петри, обладающей і позициями, есть множество всех маркировок. Изменение в состоянии, вызванно запуском перехода, определяется функцией изменения, которую мы назовем функцией следующего состояния. Когда эта функция применяется к маркировке р (состоянию) и переходу to она образует новую маркировку (состояние), которая получается при запуске перехода і, в маркировке р. Так как і, может быть запущен только в том случае, когда он разрешен, то функция не определена, если t не разрешен в маркировке р. Если же 1, разрешен, то б(р, 1, и", где р" есть маркиров ка, полученная в результате удаления фишек из входов 1; и добав лення фишек в выходы 1.

1.2. Параллельные процессы

Более адектватной во многих случаях являются интерпретации сетей Петри, в которых процессы могут обрабатываться одновременно. В стандартной модели такой сети предполагается, что время срабатывания всех переходов является одинаковым.

Конфликтом в сети Петри называется ситуация, когда сразу несколько активных переходов претендуют на одну метку некоторого места. При последовательном срабатывании переходов конфликты никак не учитываются, однако при параллельной интерпретации требуется некоторый способ их разрешения.

Пример конфликта показан на рисунке 0.4, на котором переходы t1 и t2 конфликтуют из-за общей метки в месте p.

Рисунок 4. Пример конфликта

Стандартная схема параллельной обработки переходов в сетях Петри выглядит следующим образом: из всех активных в данный момент времени переходов выбирается некоторое их бесконфликтное подмножество (никакие два из выбранных переходов не имеют взаимного конфликта); все эти переходы срабатывают одновременно. Как и выше, если активных переходов нет, то сеть завершает свою работу.

1.3. Расширения сетей Петри

В настоящее время имеется большое количество различных вариаций сетей Петри, мы рассмотрим несколько наиболее стандартных расширений — сети с приоритетами, ингибиторные, цветные и временные сети Петри.

1.3.1. Сети с приоритетом

Сеть Петри с приоритетами — это стандартная сеть Петри, каждому переходу t которой поставлено в соответствие некоторое число Prt, называемое приоритетом этого перехода. Приоритеты используются для более полного управления разрешением конфликтных ситуаций. Если два перехода t1 и t2 конфликтуют из-за некоторого

общего ресурса, то преимущество получит тот, который имеет больший приоритет. В частности, если все переходы данной сети имеют разные приоритеты, то конфликтов в такой сети вообще не будет. На практике, однако, достаточно определить только несколько приоритетов для потенциально конфликтных переходов.

Рисунок 5 Представление сети Петри с приоритетом

1.3.2. Ингибиторные сети

В ингибиторных сетях Петри к стандартным дугам, ведущим из мест в переходы, добавляется специальный вид ингибиторных (тормозящих) дуг. Такая дуга, при наличии в соответствующем месте хотя бы одной метки, препятствует активации соответствующего перехода. Поэтому, такой переход будет активизирован только тогда, когда в данном месте закончатся все метки. Таким образом, тормозящие дуги позволяют явным образом выполнять проверку на отсутствие меток в заданном месте.

На рисунке 6 показана реализация логических операций с использованием (пустое место соответствует логическому нулю, а место с одной меткой — логической единице).

Рисунок 6 Реализация логических операций с использованием

1.3.3. Цветные сети Петри

В традиционных сетях Петри все метки по определению являются одинаковымии, следовательно, неразличимыми. Однако в тех системах, которые моделируются сетями Петри, метки часто представляют собой различные объекты. В цветных сетях Петри каждая метка имеет свое значение (цвет), что дает возможность отличать одни метки от других. Значение метки может быть простым, или любого сколь угодно сложного типа.

Переходы в цветных сетях Петри определяют отношения между значениями входных меток и выходных меток. Для этого входным дугам каждого перехода приписываются предусловия, которые определяют, метки с какими значениями поглощаются данным переходом. Выходные дуги перехода определяют (с помощью выражений) значения меток, которые будут помещены в соответствующие места.

1.3.4. Временные сети Петри

Для моделирования систем, в которых отдельные подпроцессы имеют различную продолжительность, можно использовать временные сети Петри. В таких сетях каждая метка получает дополнительный атрибут — время задержки.

Задержки, которые назначаются меткам, приписываются дугам, ведущим от переходов. Соответственно, все метки, поставляемые по какой-либо дуге, будут получать одну и ту же задержку, которая приписана этой дуге.

1.4. Сети Петри и параллельные вычисления

Сети Петри по своему определению обладают встроенным параллелизмом, поэтому они традиционно используются для моделирования разннообразных параллельных процессов.

Стандартная интерпретация сетей Петри с точки зрения параллельных вычислительных процессов заключается в том, что метки представляют собой данные, места — память, в которых хранятся данные, а переходы — подпрограммы, которые обрабатывают эти данные. Каждая подпрограмма ожидает, когда будут готовы все ее входные данные, после чего производит необходимые вычисления и помещает результаты на свои выходные места. Если какие-либо два перехода не конфликтуют из-за данных, то при некоторых условиях соответствующие им подпрограммы могут быть выполнены одновременно, т. е. параллельно.

На рисунке 7 показана сеть Петри, моделирующая две стандартные операции fork и join для управления параллельными процессами.

Рисунок 7 Моделирование операций fork и join сетью Петри

Так же легко сети Петри позволяют моделировать и конвейерную обработку данных.

Для организации взаимодействия параллельных процессов применяются различные схемы и механизмы синхронизации, критические секции, семафоры, операции обмена и т. д., которые относительно просто и наглядно моделируются с помощью сетей Петри.

На рисунке 8 показан фрагмент сети Петри, который реализует механизм взаимного исключения, применяемый для обеспечения корректного доступа нескольких процессов к одному разделяемому ресурсу. В качестве такого ресурса может выступать какая-нибудь структура данных (например, файл) или устройство (принтер). Часть процесса, которая используется для доступа и модификации разделяемого объекта, называется критической секцией. Выполнение процессом критической секции должно блокировать выполнение другими процессами своих критических секций, связанных с тем же разделяемым объектом.

Рисунок 8. Моделирование процесса взаимного исключения

Список литературы

- 1. Питерсон Дж. Теория сетей Петри и моделирование систем, стр. 15-34.
- 2. Учебный курс МГТУ им. Баумана "Основы САПР. Моделирование". Сети Петри. Анализ сетей Петри

(http://bigor.bmstu.ru/?cnt/?doc=110_Simul/3018.mod/?cou=140_CADedu/CAD.cou)

3. Вестник МГТУ МИРЭА 2015 № 1 МОДЕЛИРОВАНИЕ С ИСПОЛЬЗОВАНИЕМ СЕТЕЙ ПЕТРИ (https://rtj.mirea.ru/upload/medialibrary/941/02-kudj.pdf)

- 4. Некоторые свойства сетей Петри и их приложения (на вьетнамском языке, https://repository.vnu.edu.vn/bitstream/VNU_123/8349/1/01050001007.pdf)
- 5. Course Software Modeling, VNUHCM-University Of Science