# QCD VBFMET samples MadGraph: New proposal

João Pela

Imperial College London

2015-09-01





#### Introduction

#### In the last presentation

- Presented first results from MadGraph pp>jj
  - Pythia8 hadronization efficiency
  - ullet Variable migration studies: parton o gen jets
- Questions were raised about Pythia8 vs MadGraph for parton level cuts

## Pythia vs MadGraph

From conversations with Josh Bendavid:

- Yes, both madgraph and pythia also allow the implementation of custom cuts in the hard process.
- MadGraph is more flexible for cuts in general out of the box.
- Madgraph also does allow to include extra jets at the ME level (QCD samples produced for SUSY have 2,3,4 jets at ME level).
  - Better since these can also be included in the phase space cuts (ie you can require that any pair of
    jets satisfy your requirements).
- We could manage to generate 1 single inclusive sample, without having to break things down in pthat bins.

So it was decided to proceed with studies with pp to 2, 3 and 4 jets sample production



# Implementation of new MadGraph cuts

After first multi-jet results came out and after checking MadGraph forums and direct code inspections it became clear mmjj cut was applied to all possible jet combinations.

#### Implementing MadGraph Cuts

- Had to learn Fortran77 and reverse engineer MadGraph cuts code.
- Implemented cuts to select events with at least one dijet with:
  - dijet\_pt: min pT of at least one jet pair
  - dijet\_eta: min delta era of at least one jet pair
  - dijet\_mjj: min invariant mass of at least one jet pair
- According to Chayanit A. this can be integrated in the official MadGraph gridpacks for official production.

#### Problems found at IC

For a few days I was getting MadGraph crashes in specially long jobs ( $\pm 10$ k diagrams)

- Turns out MadGraph stores sub-process files at /tmp/ while running.
- At IC in most machines /tmp/ has its own partition and is limited in space to 1 GB.
- Big jobs would run out of space and crash.
- A work around was found with Simon to redirect temporary storage in the jobs.



# Checking Correct Implementation (Parton level)

# This plots are for pp to 2, 3 and 4 iets. Parton distributions - Cuts $p_{\perp} >$ 40, $\eta <$ 5.0, $\Delta \eta >$ 3.0 and $m_{jj} >$ 800 100 150 200 250 Selected Diparton - Sublead parton p,

- Cuts look like they are correctly implemented
- It can be seen here and also in my studies Δη cut provides almost no reduction power below 4. We should not use this cut at parton level. London ◆□ > ◆圖 > ◆臺 > ◆臺 >

#### Obtained cross sections

## $p_{\perp} > 30, m_{ii} > 800$

| Process                    | Cross section [pb]                                                                                                                                           |  |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| pp>jj<br>pp>jjj<br>pp>jjjj | $\begin{array}{c} 1.736 \times 10^6 \pm 4.477 \times 10^3 \\ 3.977 \times 10^6 \pm 1.173 \times 10^4 \\ 5.516 \times 10^6 \pm 1.248 \times 10^4 \end{array}$ |  |  |
| pp>all                     | $1.11 \times 10^7 \pm 1.799 \times 10^4$                                                                                                                     |  |  |

# $p_{\perp} > 30$ , $\Delta \eta > 2.5$ , $m_{ii} > 800$

| Process                    | Cross section [pb]                                                                                                                                                       |  |  |  |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| pp>jj<br>pp>jjj<br>pp>jjjj | $\begin{array}{c} 1.797 \times 10^{6} \pm 4.594 \times 10^{3} \\ 3.804 \times 10^{6} \pm 9.742 \times 10^{3} \\ 5.568 \times 10^{6} \pm 1.083 \times 10^{4} \end{array}$ |  |  |  |  |
| pp>all                     | $1.078 \times 10^7 \pm 1.946 \times 10^4$                                                                                                                                |  |  |  |  |

# $p_{\perp} > 40$ , $\Delta \eta > 3.0$ , $m_{ij} > 800$

| Process | cess Cross section [pb]                   |  |  |
|---------|-------------------------------------------|--|--|
|         |                                           |  |  |
| pp>jj   | $8.621 \times 10^5 \pm 2.605 \times 10^3$ |  |  |
| pp>jjj  | $2.081 \times 10^6 \pm 4.714 \times 10^3$ |  |  |
| pp>jjjj | $3.186 \times 10^6 \pm 5.790 \times 10^3$ |  |  |
|         |                                           |  |  |
| pp>all  | $5.7616 \times 10^6 \pm 1.2 \times 10^4$  |  |  |

#### Conclusions

- $\Delta \eta$  cut only provides an event reduction of  $\sim 5\%$
- With the least restrictive working point we can produce an  $10 \, fb^{-1}$  equivalent sample with  $\sim 10^{11}$  parton level events.
- Compared with the Pythia8 study that implied full generation of  $2 \times 10^{12}$  events we have a factor 20 reduction
- Hardest presented set cuts buys a further factor of 2 at the cost of less physics usability, but still under offline signal region cuts.
- Only caveat here is the size of such sample even at only parton level would be 20-30 TB (I think this is acceptable)
- I will proceed presenting results for the least restrictive working point, but I have all number/plots for all working points

# Pythia8 Hadronization

Next step is to proceed with Pythia8 Hadronization and matching.

|         |      | Events |        |                | Cross section [pb]                        |                                           |  |
|---------|------|--------|--------|----------------|-------------------------------------------|-------------------------------------------|--|
| Process | #    | Tried  | Passed | Accepted [%]   | Pre-match                                 | Post-match                                |  |
| pp>jj   |      | 10000  | 2197   | $22.0 \pm 0.4$ | $1.736 \times 10^6 \pm 4.478 \times 10^3$ | $3.815 \times 10^5 \pm 7.256 \times 10^3$ |  |
| pp>jjj  |      | 10000  | 696    | $7.0 \pm 0.3$  | $3.977 	imes 10^6 \pm 1.173 	imes 10^4$   | $2.768 \times 10^5 \pm 1.015 \times 10^4$ |  |
| pp>jjjj |      | 10000  | 581    | $5.8 \pm 0.2$  | $5.517 \times 10^6 \pm 1.248 \times 10^4$ | $3.205 \times 10^5 \pm 1.293 \times 10^4$ |  |
| pp>all  | jj   | 1454   | 312    | $21.5 \pm 1.1$ | $1.617 \times 10^6 \pm 2.620 \times 10^3$ | $3.469 \times 10^5 \pm 1.741 \times 10^4$ |  |
| pp>all  | jjj  | 3603   | 251    | $7.0 \pm 0.4$  | $3.946 \times 10^6 \pm 6.394 \times 10^3$ | $2.749 \times 10^5 \pm 1.674 \times 10^4$ |  |
| pp>all  | زززز | 4943   | 337    | $6.8 \pm 0.4$  | $5.538 \times 10^6 \pm 8.973 \times 10^3$ | $3.775 	imes 10^5 \pm 1.986 	imes 10^4$   |  |
| pp>all  | all  | 10000  | 900    | $9.0 \pm 0.3$  | $1.110 \times 10^7 \pm 1.132 \times 10^4$ | $9.993 \times 10^5 \pm 3.127 \times 10^4$ |  |



# Matching Dipartons to Generator Dijets

# Parton distributions







- ullet At the parton  $p_{\perp}$  cut line the upper tail of finishes around 50 GeV
- ullet At the diparton  $m_{jj}$  cut line the upper tail of finishes around 1000 GeV
- Good correlation in η variables, but no migration problems since there is no cut at particular level

# Filter efficiency

Testing several generator filter configurations.

### Efficiencies and Expected events

| Generator Cuts |     |     |               |                 | Results                                         |                                           |
|----------------|-----|-----|---------------|-----------------|-------------------------------------------------|-------------------------------------------|
| $p_{\perp}$    | η   | Δη  | $\Delta \phi$ | m <sub>jj</sub> | Filter Efficiency                               | Events for 10 fb <sup>-</sup> 1           |
| 50             | 4.8 | 3.5 | -             | 1000            | $8.248 \times 10^{-2} \pm 4.534 \times 10^{-3}$ | $8.242 \times 10^8 \pm 4.530 \times 10^7$ |
| 40             | 4.8 | 3.5 | 1.5           | 1000            | $1.470 \times 10^{-2} \pm 1.914 \times 10^{-3}$ | $1.469 \times 10^8 \pm 1.913 \times 10^7$ |
| 45             | 4.8 | 3.5 | 1.5           | 1000            | $1.121 \times 10^{-2} \pm 1.672 \times 10^{-3}$ | $1.121 \times 10^8 \pm 1.670 \times 10^7$ |
| 50             | 4.8 | 3.5 | 1.5           | 1000            | $7.725 \times 10^{-3} \pm 1.387 \times 10^{-3}$ | $7.719 \times 10^7 \pm 1.386 \times 10^7$ |
| 50             | 4.8 | 3.5 | 1.5           | 800             | $1.196 \times 10^{-2} \pm 1.726 \times 10^{-3}$ | $1.195 \times 10^8 \pm 1.725 \times 10^7$ |
| 50             | 4.8 | 3.5 | 1.5           | 900             | $9.718 \times 10^{-3} \pm 1.556 \times 10^{-3}$ | $9.712 \times 10^7 \pm 1.555 \times 10^7$ |
| 50             | 4.8 | 3.5 | 1.75          | 1000            | $9.469 \times 10^{-3} \pm 1.536 \times 10^{-3}$ | $9.463 \times 10^7 \pm 1.535 \times 10^7$ |
| 50             | 4.8 | 3.5 | 2.0           | 1000            | $1.196 \times 10^{-2} \pm 1.726 \times 10^{-3}$ | $1.195 \times 10^8 \pm 1.725 \times 10^7$ |
| 50             | 4.8 | 3.5 | 2.25          | 1000            | $1.495 \times 10^{-2} \pm 1.930 \times 10^{-3}$ | $1.494 \times 10^8 \pm 1.929 \times 10^7$ |
| 50             | 4.8 | 3.5 | 2.5           | 1000            | $1.844 \times 10^{-2} \pm 2.144 \times 10^{-3}$ | $1.843 \times 10^8 \pm 2.142 \times 10^7$ |
| 50             | 4.8 | 3.5 | 2.75          | 1000            | $2.018 \times 10^{-2} \pm 2.243 \times 10^{-3}$ | $2.017 \times 10^8 \pm 2.241 \times 10^7$ |
| 50             | 4.8 | 3.0 | 1.5           | 1000            | $7.725 \times 10^{-3} \pm 1.387 \times 10^{-3}$ | $7.719 \times 10^7 \pm 1.386 \times 10^7$ |
| 50             | 4.8 | 3.0 | 2.0           | 1000            | $1.196 	imes 10^{-2} \pm 1.726 	imes 10^{-3}$   | $1.195 	imes 10^8 \pm 1.725 	imes 10^7$   |

- Events passing this filters would going through RECO
- Compared with Pythia8 approach we would be sending about a factor of 2-3 less event through RECO.
- $\bullet$  Depending on cuts a sample could be done with  $\sim 80-120$  with no MET cut
- All cuts can be set below analysis threshold but  $\Delta\phi$  cut cannot be removed from general level.

#### Conclusions

#### Summary

- Full MadGraph production of pp to 2, 3 and 4 jets has been setup
- New MadGraph custom cuts have been implemented and tested
- Pythia8 hadronization/matching preformed and variable migrations studied
- A generator filter study has been also performed.

## Proposal

- MadGraph parton cuts:  $p_{\perp} > 30$ ,  $m_{jj} > 800$
- ullet Generator cuts: Dijet  $p_{\perp}>$  50 GeV,  $\eta<$  4.8,  $\Delta\eta>$  3.0,  $\Delta\phi<$  2.0 and  $m_{jj}>$  1000
- Offline cuts: none

#### Proposed course of action

- Propose this to PPD (this thick all the boxes, less Pythia running, better filter efficiency, less RECO)
- Pass custom MadGraph code to Chayanit for gridpark production
- Pass generator filter code to Chayanit for CMSSW integration
- Wait for samples to be produced :)

