

Práctica 1

2do cuatrimestre 2021 Álgebra I

Integrante	LU	Correo electrónico
Yago Pajariño	546/21	ypajarino@dc.uba.ar

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina Tel/Fax: (++54+11) 4576-3300

 $\rm http://www.exactas.uba.ar$

${\rm \acute{I}ndice}$

1.	Prá	ctica 1	2
	1.1.	Ejercicio 1	2
	1.2.	Ejercicio 2	2
	1.3.	Ejercicio 3	2
	1.4.	Ejercicio 4	2
	1.5.	Ejercicio 5	3
	1.6.	Ejercicio 6	3
	1.7.	Ejercicio 7	3
	1.8.	Ejercicio 8	4
	1.9.	Ejercicio 9	4
	1.10	. Ejercicio 10	4
	1.11.	. Ejercicio 11	4
	1.12.	. Ejercicio 12	5
	1.13.	. Ejercicio 13	5
	1.14	. Ejercicio 14	6
	1.15.	. Ejercicio 15	7
	1.16	. Ejercicio 16	7
	1.17.	. Ejercicio 17	8
	1.18.	. Ejercicio 18	8
	1.19.	. Ejercicio 19	8
	1.20.	. Ejercicio 20	9
	1.21.	. Ejercicio 21	9
	1.22.	. Ejercicio 22	9
	1.23.	. Ejercicio 23	9
	1.24.	. Ejercicio 24	10
	1.25.	. Ejercicio 25	10
	1.26	. Ejercicio 26	10
	1.27.	. Ejercicio 27	11
			12
			12
			12

1. Práctica 1

1.1. Ejercicio 1

- (a) Verdadero
- (b) Falso
- (c) Verdadero
- (d) Falso
- (e) Falso

1.2. Ejercicio 2

- (a) Falso
- (b) Falso
- (c) Verdadero
- (d) Verdadero
- (e) Verdadero
- (f) Verdadero
- (g) Verdadero
- (h) Falso
- (i) Falso
- (j) Verdadero
- (k) Falso
- (l) Verdadero

1.3. Ejercicio 3

Rdo.: Sean A y B conjuntos. $A\subseteq B\iff \forall x\in A\to x\in B$

- (a) $A \subseteq B$
- (b) $A \not\subseteq B$ pues $3 \not\in B$
- (c) $A \not\subseteq B$ pues $2.25 \not\in B$
- (d) $A \subseteq B$

1.4. Ejercicio 4

- (a) $A \cap (B \triangle C) = \{1, -2, 3\}$
- (b) $(A \cap B) \triangle (A \cap C) = \{1, -2, 3\}$
- (c) $A^c \cap B^c \cap C^c = \emptyset$

1.5. Ejercicio 5

Rdo. DeMorgan: Sean A y B conjuntos, $(A \cap B)^c = (A^c \cup B^c)$ y $(A \cup B)^c = (A^c \cap B^c)$

- 1. $(A \cup B \cup C)^c = A^c \cap B^c \cap C^c$
- 2. $(A \cap B \cap C)^c = A^c \cup B^c \cup C^c$

1.6. Ejercicio 6

1.7. Ejercicio 7

- (a) $(A \cap B^c) \cup (B \cap C \cap A^c)$
- (b) $((A \cap C^c) \cup (C \cap A^c)) \cap B^c$
- (c) $(A \cap B) \cup (A \cap C) \cup (B \cap C) \cap (A \cap B \cap C)^c$

1.8. Ejercicio 8

Rdo. conjunto de partes: Sea A un conjunto, el conjunto de partes de A, P(A) es aquel formado por todos los subonjuntos de A.

- (a) $P(A) = \{\emptyset, \{1\}\}\$
- (b) $P(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$
- (c) $P(A) = \{\emptyset, \{1\}, \{\{1,2\}\}, \{3\}, \{1,\{1,2\}\}, \{1,3\}, \{\{1,2\},3\}, \{1,\{1,2\},3\}\}$

1.9. Ejercicio 9

Quiero probar un (\iff) por lo que debo verificar la doble inclusión.

- (a) $A \subseteq B \to P(A) \subseteq P(B)$ Sea x tal que $x \in P(A) \to (\forall y \in x) : y \in A$. Pero $A \subseteq B \to y \in B$. Por lo tanto $(\forall x \in P(A)) : x \in P(B) \to P(A) \subseteq P(B)$
- (b) $P(A) \subseteq P(B) \to A \subseteq B$ Por definición del conjunto de partes, $A \in P(A)$ por lo tanto se que $A \in P(B)$ Además $B \in P(B)$ y es el elemento con más elementos de P(B), así $A \subseteq B$ como se quiería probar.

1.10. Ejercicio 10

1.10.A. Inciso a

Calculadora de tablas de verdad. Link

			P=>4	~9	~P	N9=>NP	NP V 9	PNNq	N(PANA)
	V	V	V	Ŧ	F	ン ド ソ	V	F	V
	V	F	下	V	F	F	F	V	F
	F	V	V	Ŧ	V	V	V	チ	V
	F	F	V	V	V	V	V	F	V
ı	'	ı	'					'	1
,									
	as	47	ieven	los n	ismo	rawes	de ve	endod,	sor equivalentes

1.10.B. Inciso b

1.11. Ejercicio 11

(a) a = 1 pues $1 \in \mathbb{N}$ pero $\frac{1-1}{1} = 0 \notin \mathbb{N}$.

- (b) x = y = 4 pues $\sqrt{4+4} = \sqrt{8} \neq 4 = \sqrt{4} + \sqrt{4}$
- (c) x = -3 pues $(-3)^2 = 9 > 4$ sin embargo $(-3) \ge 2$

1.12. Ejercicio 12

- (a) El \vee lógico es falso unicamente cuando ambas preposiciones son falsas. Así, la proposición será falsa sii $(x < 5) \wedge (x > 8)$ Pero es fácil ver que no existe ningún $x \in \mathbb{N}$ que lo cumpla.
- (b) Es verdadera pues n=6 hace verdadera la proposición $(n \ge 5) \land (n \le 8)$
- (c) Es verdadera pues el conjunto de los \mathbb{N} es infinito y por lo tanto existe m = n + 1 que hace verdadera la proposición.
- (d) Es falsa pues no existe un natural n tal que 1 > n.
- (e) Es verdadera pues $f(x) = x^2$ es una función estrictamente creciente en el intervalo $[0, \infty]$ y dado que f(3) = 9 > 4 podemos afirmar que la preposición es verdadera.
- (f) Es verdadera pues sea $c \in \mathbb{C} \to c = a + b.i$ con $a, b \in \mathbb{R}$ y por lo tanto $(\forall r \in \mathbb{R}) : (r + 0.i) \in \mathbb{C}$

1.13. Ejercicio 13

(a)

(c)

	A	В	C	AAB	LADB)-C	A-C	B-C	(A-C)(B-C)			
	V	V	V	干	F	F	F	T T			
	V	V	F	F	F	V	V	F			
	V	F	V	V	Ŧ	F	F	F			
	J	F	F	V	V	V	F	V			
	F	٧	V	V	F	Ŧ	F	F			
	F	V	Ē_	V	V	Ŧ	V	V			
	+	F	 V	F	Ŧ	F	F	F			
	F	+	F	F	F	F	F	F			
_ I											
	For ignalls, la prenisa es Verdadera										
						U					

(b) Falsa. Contraejemplo. $A=\{1\}$ $B=\{2\}$ $C=\{1\}$

	4	В	C	CSA	Bnc	ADB	(AAB)c	(BOC) = (ADB) C	CSA => BOCS (ALB) &		
	V	V	V	V	V	F	V	V	V		
	V	V	F	V	F	F	V	V	V		
	V	F	V	V	F	V	F	V	V		
	J	F	F	V	F	V	F	V	V		
	F	٧	V	F	V	V	F	F	V		
	F	V	Ē	VF	Ŧ	V	F	V	V		
	7	F	V	F	F	F	V	V	V _.		
	F	F	F	V	F	下	V	V	V		
I											
1	ts l	lerdu	ade	re eu	Tous	LOS A, I	B, C pos	ibus			

1.14. Ejercicio 14

(a)

Se prueban con tablas de verdad. Van los primeros cuatro.

	A	В	C	BAC	AN(BAC)	Ans	Anc	IANG A (ANC)
	V	V	V	F	F	V	V	F
	V	V	F	V	V	V	F	V
	V	F	V	V	V	F	V	V
	J	F	F	F	F	F	F	F
	F	V	V	F	F	F	F	F
	F	V	F	V	F	F	F	F
	+	F	✓	V	F	F	F	F
	F	+	F	F	F	F	F	F
I		ا						
							~ ·	0 111
						४०१।	gud	15, la afronció es Vardadua
							U	

	4	B	С	4AB	AAC	BAC	(AAC) U(BAC)	A1 B = (ADC) U(B1C)
	V	V	V	F	F	F	F	ν
	V	V	F	Ŧ	V	V _.	V	V
	V	F	V	V	F	V	V	V
	J	F	F	V	V	F	V	V
	F	V	V	ν	V	F	V	V
	F	V	Ē	V	F	V	V,	V
	+	F	V	F	V	V	<u>√</u>	V _.
	F	Ŧ	F	F	F	F	F	, V ,
ı	١			'	'			
								4 65 V on today has hopes
								denostrado

		4	В	C	4nC	(Anc)-B	4-B	(A-B) nc
		V	V	V	V	F	7	下
		V	V	F	F	F	F	Ŧ
		V	F	V	V	V	V	V
		J	F	F	F	F	V	F
		F	٧	V	F	F	エ	F
		F	V	F,	F	F	F	F
		+	F	V	F	F	F	臣
		F	+	F	F	F	F	7
(d)	I	ı	I				'	

(e) TODO

(c)

- (f) TODO
- (g) TODO

1.15. Ejercicio 15

- 1. $A \times A = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$
- 2. $A \times B = \{(1,1), (1,3), (1,5), (1,7), (2,1), (2,3), (2,5), (2,7), (3,1), (3,3), (3,5), (3,7)\}$
- 3. $(A \cap B) \times (A \cup B) = \{(1,1), (1,2), (1,3), (1,5), (1,7), (3,1), (3,2), (3,3), (3,5), (3,7)\}$

1.16. Ejercicio 16

Pruebo la doble implicación.

- (a) TODO
- (b) TODO
- (c) a) $(A \cup B) \times C \to (A \times C) \cup (B \times C)$ $(x,y) \in (A \cup B) \times C \iff (x \in (A \cup B) \land y \in C) \iff ((x \in A \lor x \in B) \land y \in C)$ $\iff (x,y) \in (A \times C) \cup (B \times C)$
 - $\begin{array}{l} b) \ \ (A \times C) \cup (B \times C) \rightarrow (A \cup B) \times C \\ (x,y) \in (A \times C) \cup (B \times C) \iff ((x \in A \vee x \in B) \wedge y \in C) \rightarrow (x \in (A \cup B) \wedge y \in C) \\ \rightarrow (x,y) \in (A \cup B) \times C \end{array}$
 - c) TODO

1.17. Ejercicio 17

Rdo. relación: Sean A y B conjuntos, R es relación de A en B si $R \subseteq A \times B$ es decir, si R es un subonjunto del producto cartesiano $A \times B$

 $R \subseteq A \times B \iff \forall (X, y) \in R : (x \in A \land y \in B)$

(b) No es relación $(3,2) \notin A \times B$ pues $2 \notin B$

Es eloción pues R = AXB

R

A

B

A

1.18. Ejercicio 18

(d)

- (a) $R = \{(1,1), (1,3), (1,5), (1,7), (2,3), (2,5), (2,7), (3,3), (3,5), (3,7)\}$
- (b) $R = \{(2,1), (3,1)\}$
- (c) $R = \{(2,1), (2,3), (2,5), (2,7)\}$
- (d) $R = \{(1,7), (2,5), (2,7), (3,5), (3,7)\}$

1.19. Ejercicio 19

(a) NO es reflexiva, simétrica, antisimétrica, transitiva. $R = \{(a,b), (b,a), (c,c), (c,d), (c,h), (e,c), (f,f), (h,g)\}$

- (b) ES transitiva. NO es reflexiva, simétrica, antisimétrica. $R = \{(a,a), (a,b), (b,b), (b,a), (c,c), (c,e), (c,h), (c,g), (f,f), (h,g)\}$
- (c) ES reflexiva. NO es simétrica, antisimétrica, transitiva. $R = \{(a,a),(a,b),(b,a),(b,b),(c,c),(c,d),(c,e),(c,h),(d,c),(d,d),(e,e),(f,f),(g,g),(h,h),(h,g)\}$
- (d) Es reflexiva, simétrica y transitiva. NO es antisimétrica. $R = \{(a, a), (a, b), (b, a), (b, b), (c, c), (d, d), (e, e), (e, h), (e, g), (f, f), (g, e), (g, g), (g, h), (h, h), (h, e), (h, g)\}$

1.20. Ejercicio 20

1.21. Ejercicio 21

- (a) 4 pares.
- (b) 1 pares.
- (c) 1 pares.
- (d) 5 pares.
- (e) 4 pares.
- (f) 5 pares.

1.22. Ejercicio 22

- (a) Es relación de orden.
- (b) Es relación de equivalencia.
- (c) Es relación de orden.
- (d) Es reflexiva y transitiva.

1.23. Ejercicio 23

- (a) Una relación es simétrica sii $(a,b) \to (b,a) \in \mathbb{R}$ Una relación es antisimétrica sii $((a,b) \in \mathbb{R} \land (b,a) \in \mathbb{R}) \to a = b$ Luego, las relaciones en A simétricas y antisimétricas son de la forma: $R = \{(a,b) \in A^2/a = b\}$
- (b) R también es de orden y equivalencia, pues es reflexiva y transitiva.

La relación $R = \emptyset$ no es simétrica ni antisimétrica.

1.24. Ejercicio 24

1.25. Ejercicio 25

Tiene cuatro clases de equivalencia. Representantes: $\tilde{1}=1; \tilde{2}=2; \tilde{4}=4; \tilde{5}=5$

1.26. Ejercicio 26

Demostración de relación de equivalencia. Vamos a probar que es reflexiva y simétrica y transitiva, cada uno por separado.

Reflexividad

R es reflexiva sii ARA

Por definición, $ARA \iff ((A \triangle A) \cap \{1, 2, 3\} = \emptyset)$

Por definición de la diferencia simétrica, $(A\triangle A) = \emptyset$

Por lo tanto, $\emptyset \cap \{1, 2, 3\} = \emptyset$ como se quería probar.

Así, R es **reflexiva**.

Simetría

R es simétrica $\iff ARA \to BRA$.

Por definición, $ARB \iff (A \triangle B) \cap \{1, 2, 3\} = \emptyset$

Por definición de la diferencia simétrica, $(A\triangle B) = (B\triangle A)$

Por lo tanto, $(A\triangle B)\cap\{1,2,3\}=(B\triangle A)\cap\{1,2,3\}$ Y por definición se que $(B\triangle A)\cap\{1,2,3\}\iff BRA$ como se quería probar.

Así, R es **simétrica**.

Transitividad

R es transitiva \iff $(ARB \land BRC \rightarrow ARC)$.

Por definición,

$$ARB \iff (A \triangle B) \cap \{1, 2, 3\} = \emptyset$$

$$BRC \iff (B\triangle C) \cap \{1, 2, 3\} = \emptyset$$

$$ARC \iff (A\triangle C) \cap \{1, 2, 3\} = \emptyset$$

Por ejercicio 14.3, $(A\triangle B)\subseteq (A\triangle B)\cup (B\triangle C)$

Por lo tanto, $ARC \iff ((A \triangle B) \cup (B \triangle C)) \cap \{1, 2, 3\} = \emptyset$

Haciendo distributiva, $ARC \iff ((A \triangle B) \cap \{1,2,3\}) \cup ((B \triangle C) \cap \{1,2,3\}) = \emptyset$

Pero se que,

$$(A\triangle B)\cap\{1,2,3\}=\emptyset$$
 y

$$(B\triangle C)\cap\{1,2,3\}=\emptyset$$

Entonces, $ARC \iff (\emptyset \cup \emptyset = \emptyset)$ que es verdadero.

Así, R es transitiva.

Dado que R es refelexiva, simétrica y transitiva, queda demostrado que R es una relación de equivalencia.

Antisimétria

R es antisimétrica \iff $(ARB \land BRA \rightarrow B = A).$

Contraejemplo: $A = \{4\}; B = \emptyset$

$$ARB \iff (A\triangle B) \cap \{1, 2, 3\} = \emptyset$$

$$ARB \iff \{4\} \cap \{1,2,3\} = \emptyset$$
 es verdadero.

$$BRA \iff (B\triangle A) \cap \{1, 2, 3\} = \emptyset$$

$$BRA \iff \{4\} \cap \{1,2,3\} = \emptyset$$
 es verdadero.

Por lo tanto ARB y BRA pero $A \neq B$

Así, R NO es antisimétrica.

(2) Busco la clase de equivalencia del $\{1, 2, 3\}$

Se que la clase de equivalencia está formada por todos los $B \in P$ tales que:

$$\{1,2,3\}RB \iff (\{1,2,3\}\triangle B) \cap \{1,2,3\} = \emptyset$$

Por definición de la diferencia simétrica, los B que cumple esto son:

$$\overline{\{1,2,3\}} = \{B \in P/\{1,2,3\} \subset B\}$$

1.27. Ejercicio 27

(1) De nuevo vamos a probar por separado la refexividad, simetría y transitividad.

Reflexividad

$$R$$
 es reflexiva \iff $(\forall x \in A) : xRx$

Por definición,
$$xRx \iff x^2 - x^2 = 93x - 93y \iff 0 = 0$$

Así, R es **reflexiva**.

Simetría

$$R$$
 es simétrica $\iff (\forall x, y \in A) : xRy \to yRx$

Por definición,

$$xRy \iff x^2 - y^2 = 93x - 93y$$

$$\iff -x^2 + y^2 = -93x + 93y$$

$$\iff y^2 - x^2 = 93y - 93x$$

$$\iff yRx$$

Así, R es simétrica.

Transitividad

R es transitiva \iff $(\forall x, y, z \in A) : (xRy \land yRz) \rightarrow xRz$

Por definición.

$$xRy \iff x^2 - y^2 = 93x - 93y$$
$$yRz \iff y^2 - z^2 = 93y - 93z$$

Sumando ambas,

$$x^{2} - y^{2} + y^{2} - z^{2} = 93x - 93y + 93y - 93z$$

$$\iff x^{2} - z^{2} = 93x - 93z \iff xRz$$

Así, R es transitiva.

Por lo tanto, R es reflexiva, simétrica y transitiva; luego R es una relación de equivalencia.

$$(2) \ \overline{x} = \{x, 93 - x\}$$

1.28. Ejercicio 28

Habrá una clase de equivalencia para cada cardinal posible en los subconjuntos de P(A) es decir,

- (a) $\tilde{1} = \{\text{subconjuntos con } \# = 1\}$
- (b) $\tilde{2} = \{\text{subconjuntos con } \# = 2\}$
- (c) $\tilde{3} = \{\text{subconjuntos con } \# = 3\}$
- (d) etc

Lo que define 10 clases de equivalencia, más la clase $\tilde{0} = \emptyset$ determinan 11 clases de equivalencia.

1.29. Ejercicio 29

Rdo. función: Una relación $R \subseteq A \times B$ es una función de A en B si: $\forall x \in A, \exists ! y \in B/xRy$

- (a) No. El 3 tiene dos asignaciones en R: (3, a)y(3, d)
- (b) No. El 5 no tiene asignación en R.
- (c) Sí
- (d) Sí
- (e) No. $\not\exists b \in \mathbb{N} : 2b 3 = \pi$
- (f) No. Tomando a=1 se obtiene más de un valor en R:(1,4),(1,9)

1.30. Ejercicio 30

1.30.A. Inciso 1

Inyectiva

Por definición, f es inyectiva $\iff \forall x, y \in \mathbb{R} : f(x) = f(y) \to x = y$

Contraejemplo: x = 1; y = -1

$$f(x) = 12 - 5 = 7$$

$$f(y) = 12 - 5 = 7$$

Luego f(x) = f(y) pero $x \neq y$

Así, f NO es **inyectiva**.

Sobreyectiva

Por definición, f es sobreyectiva $\iff Im(f) = \mathbb{R}$

Pero por ej. $\not\exists x \in \mathbb{R} : f(x) = -6$ pues $f(x) = 12x^2 - 5 \ge -5, \forall x \in \mathbb{R}$

Así, f NO es **sobreyectiva**.

$$Im(f)=\mathbb{R}_{\geq -5}$$

1.30.B. Inciso 2

Inyectiva

Por definición, f es inyectiva $\iff \forall a,b,c,d \in \mathbb{R}: f(a,b) = f(c,d) \to (a,b) = (c,d)$

Contraejemplo: (1,3),(2,2)

$$f(1,3) = 1 + 3 = 4$$

$$f(2,2) = 2 + 2 = 4$$

Luego f(a,b) = f(c,d) pero $(a,b) \neq (c,d)$

Así, f NO es **inyectiva**.

Sobreyectiva

Por definición, f es sobreyectiva $\iff Im(f) = \mathbb{R}$

Sea $n \in \mathbb{R}$ quiero ver que $\exists (x,y) \in \mathbb{R}^2 : f(x,y) = n$

Luego
$$n = x + y \iff y = n - x \to y \in \mathbb{R}$$

Así, f es sobreyectiva.

1.30.C. Inciso 3