MATH 308 Assignment 16:

Exercises 6.4

Nakul Joshi

April 10, 2014

1

We know that $X \sim \mathcal{B}(n,p) \implies f_X(x) = \binom{n}{x} p^x (1$ $p)^{n-x}$. Thus, the probability of obtaining the value X can be written as a function of the parameter p:

$$f(p) = \binom{n}{X} p^X (1-p)^{n-X}$$

$$\implies f'/\binom{n}{X} = Xp^{X-1}(1-p)^{n-X}$$
$$-p^X(n-X)(1-p)^{n-X-1}$$

We can then obtain the MLE \hat{p} by setting f' = 0:

$$Xp^{X-1}(1-p)^{n-X} = p^X(n-X)(1-p)^{n-X-1}$$

$$\implies \hat{p}(n-X) = X(1-\hat{p})$$

$$\implies \hat{p}n - \hat{p}X = X - X\hat{p}$$

$$\implies \hat{p} = X/n \quad \Box$$

2

 $X \sim \mathcal{P}(\lambda) \implies f_X = \frac{\lambda^x e^{-\lambda}}{x!}$. So, the likelihood of obtaining the sample $\{x_1, x_2, \dots x_n\}$ is $L(\lambda) =$ $\prod_{i=1}^n f_X(x_i)$, since the elements of the sample are

$$L = \prod_{i=1}^{n} \frac{\lambda^{x_i} e^{-\lambda}}{x_i!}$$

$$= \frac{\lambda^{\sum x_i} e^{-n\lambda}}{\prod (x_i!)}$$
 3

$$\implies L'/\prod(x_i!) = \left(\lambda^{\sum x_i} e^{-n\lambda}\right)'$$

$$= \sum x_i \lambda^{\sum x_i - 1} e^{-n\lambda} + \lambda^{\sum x_i} e^{-n\lambda} (-n)$$

$$= e^{-n\lambda} \lambda^{\sum x_i - 1} (\sum x_i - n\lambda)$$

Setting L' = 0, we get $\hat{\lambda}$:

$$0 = \Sigma x_i - n\hat{\lambda}$$

$$\implies \hat{\lambda} = \Sigma x_i / n = \overline{x} \quad \Box$$