Canonical LR Parser

Introduction

- In SLR method, the state i makes a reduction by $A\rightarrow\alpha$ when the current token is a:
 - if the $A \rightarrow \alpha$. in the I_i and a is FOLLOW(A)
- In some situations, βA cannot be followed by the terminal α in a right-sentential form when $\beta \alpha$ and the state i are on the top stack. This means that making reduction in this case is not correct.

$$S \rightarrow AaAb$$

$$S \rightarrow BbBa$$

$$A \rightarrow \epsilon$$

$$B \to \epsilon$$

$$Aab \Rightarrow \varepsilon ab$$

$$AaAb \Rightarrow Aa \varepsilon b$$

Bba
$$\Rightarrow \varepsilon$$
 ba

Introduction

- Split the SLR states by adding LR(1) lookahead
- Unambiguous grammar

1.
$$S \rightarrow L = R$$

- $2. S \rightarrow R$
- 3. $L \rightarrow R$
- 4. $L \rightarrow id$
- 5. $R \rightarrow L$

Should not reduce on =, because no fighter serimential form begins with R=

LR(1) Item

- To avoid some of invalid reductions, the states need to carry more information.
- Extra information is put into a state by including a terminal symbol as a second component in an item.
- A LR(1) item is:

 $A \rightarrow \alpha.\beta$,a where **a** is the look-head of the LR(1) item (**a** is a terminal or end-marker.)

LR(1) Item (cont.)

- When β (in the LR(1) item $A \rightarrow \alpha.\beta,a$) is not empty, the lookhead does not have any affect.
- When β is empty $(A \rightarrow \alpha.,a)$, we do the reduction by $A \rightarrow \alpha$ only if the next input symbol is **a** (not for any terminal in FOLLOW(A)).
- A state will contain $A \rightarrow \alpha$., a_1 where $\{a_1,...,a_n\} \subseteq FOLLOW(A)$

$$A \rightarrow \alpha$$
., a_n

Canonical Collection of Sets of LR(1) Items

• The construction of the canonical collection of the sets of LR(1) items are similar to the construction of the canonical collection of the sets of LR(0) items, except that *closure* and *goto* operations work a little bit different.

closure(I) is: (where I is a set of LR(1) items)

- every LR(1) item in I is in closure(I)
- if $A \rightarrow \alpha.B\beta$, a in closure(I) and $B \rightarrow \gamma$ is a production rule of G; then $B \rightarrow .\gamma$, b will be in the closure(I) for each terminal b in FIRST(βa).

goto operation

- If I is a set of LR(1) items and X is a grammar symbol (terminal or non-terminal), then goto(I,X) is defined as follows:
 - If $A \to \alpha.X\beta$, a in I then every item in **closure({A \to \alpha X.\beta,a})**will be in goto(I,X).

Construction of Canonical LR(1) Collection

• Algorithm:

```
C is \{ closure(\{S' \rightarrow .S,\$\}) \}
```

repeat the followings until no more set of LR(1) items can be added to *C*.

for each I in C and each grammar symbol X
 if goto(I,X) is not empty and not in C
 add goto(I,X) to C

• goto function is a DFA on the sets in C.

Short Notation for Sets of LR(1) Items

• A set of LR(1) items containing the following items $A \rightarrow \alpha.\beta, a_1$

. . .

$$A \rightarrow \alpha.\beta, a_n$$

can be written as

$$A \rightarrow \alpha.\beta, a_1/a_2/.../a_n$$

10

Example LR(1) Items

Unambiguous LR(1) grammar:

$$S \rightarrow L = R$$

 $S \rightarrow R$
 $L \rightarrow R$
 $L \rightarrow id$
 $R \rightarrow L$

- Augment with $S' \to S$
- LR(1) items (next slide)

LR(1) Items

$$I_{0}$$
: $[S' \to \bullet S, \$] \operatorname{goto}(I_{0}, S) = I_{1}$
 $[S \to \bullet L = R, \$] \operatorname{goto}(I_{0}, L) = I_{2}$
 $[S \to \bullet R, \$] \operatorname{goto}(I_{0}, R) = I_{3}$
 $[L \to \bullet *R, =/\$] \operatorname{goto}(I_{0}, *) = I_{4}$
 $[L \to \bullet id, =/\$] \operatorname{goto}(I_{0}, id) = I_{5}$
 $[R \to \bullet L, \$] \operatorname{goto}(I_{0}, L) = I_{2}$

$$I_1: [S' \to S^{\bullet}, \$]$$

$$I_2$$
: $[S \rightarrow L \bullet = R, \$] goto(I_0, =) = I_6$
 $[R \rightarrow L \bullet, \$]$

$$I_3$$
: $[S \rightarrow R^{\bullet}, \$]$

$$I_4$$
: $[L \to *\bullet R, =/\$]$ goto $(I4,R)=I7$
 $[R \to \bullet L, =/\$]$ goto $(I4,L)=I8$
 $[L \to \bullet *R, =/\$]$ goto $(I4, *)=I4$
 $[L \to \bullet id, =/\$]$ goto $(I4, id)=I5$

$$I_5$$
: $[L \rightarrow id \bullet, =/\$]$

Canonical LR(1) Collection

Canonical LR Parsing Tables

- 1. Augment the grammar with $S' \rightarrow S$
- 2. Construct the set $C = \{I_0, I_1, \dots, I_n\}$ of LR(1) items
- 3. If $[A \rightarrow \alpha \bullet a\beta, b] \in I_i$ and $goto(I_i,a) = I_j$ then set action[i,a] = shift j
- 4. If $[A \rightarrow \alpha^{\bullet}, a] \in I_i$ then set $action[i,a] = \text{reduce } A \rightarrow \alpha$ (apply only if $A \neq S$ ')
- 5. If $[S' \rightarrow S^{\bullet}, \$]$ is in I_i then set action[i,\$] = accept
- 6. If $goto(I_i, A) = I_j$ then set goto[i, A] = j
- 7. Repeat 3-6 until no more entries added
- 8. The initial state *i* is the I_i holding item $[S' \rightarrow \bullet S, \$]$

Parsing Tab	le	id	*	=	\$	S	L	R	14
	1		54		acc	_			
	2			s6	r6				
Grammar:	3				r3				
1. S' \rightarrow S	4	s5	s4				8	7	
$2. S \rightarrow L = R$	5			r5	r5				
$3. S \rightarrow R$	6	s12	s11				10	9	
$4. L \rightarrow R$	7			r4	r4				
5. $L \rightarrow id$	8			r6	r6				
$6. R \rightarrow L$	9				r2				
	10				r6				
	11	s12	s11				10	13	
	12				r5				4.4
5 Feb 2010	13 ^C	ompiler	Design		r4				14