CS 170 Efficient Algorithms and Intractable Problems

Lecture 10 (updated) Huffman Codes and Minimum Spanning Trees

Nika Haghtalab and John Wright

EECS, UC Berkeley

Announcements

Midterm 1 next week 10/3 (be on the lookout for the Midterm Logistics post)

- → Feel free to post about past exams (linked under the Ed central index post), we will also set up past exam mega threads
- → Scope: Including today's material!
- → Midterm 1 Review Sessions: 11 2 Saturday, Sunday @ Woz Soda 411

HW 5 is optional. Posted with solutions, so review the solutions!

→ Feel free to ask exam questions in OH/HWP

HW 2 grades released, regrades due Wed 9/27

Nika's OH combined with Tuesday's after QA.

→ 2-3 in Cory Courtyard. We'll walk together to Cory.

Last Lecture and Today: Greedy Algorithms

Algorithms that build up a solution

piece by piece, always choosing the next piece

that offers the most obvious and immediate benefit!

We saw:

Scheduling
Satisfiability
Started on optimal coding

Today:

More on optimal coding
Minimum Spanning Trees (1 alg next time)

Recap: A Pattern in Greedy Algorithm and Analyses

Greedy makes a series of choices. We show that no choice rules out the optimal solution. How?

Inductive Hypothesis:

- \rightarrow The first m choices of greedy match the first m steps of some optimal solution.
- \rightarrow Or, after greedy makes m choices, achieving optimal solution is still a possibility.

Base case: → At the beginning, achieving optimal is still possible!

<u>Inductive step:</u> <u>Use problem-specific structure</u>

If the first m choices match, we can change OPT's $m + 1^{st}$ choice to that of greedy's, and still have a valid solution that no worst than OPT.

Conclusion: The greedy algorithm outputs an optimal solution.

means "A" has freq. 0.4.

Any prefix-free code can be represented as a binary tree with k leaves.

• Leaves indicate the coded letter

• The code is the "address" of a letter in the tree

10 110

Any tree with the letters at the leaves, also represent a prefix-free code.

Recap: Tree and Code Size

means "A" has freq. 0.4.

Imagine we are encoding a length N text:

 \rightarrow that is written in *n* letters with frequencies f_1, f_2, \dots, f_n .

How long is the encoded message?

length of encoding =
$$\sum_{i=1}^{n} N \cdot f_i \cdot \text{len}(encoding \ i)$$

Definition: Cost of a prefix-code/tree is

$$Cost(tree) = \sum_{i=1}^{n} f_i \cdot depth(leaf i)$$

Recap: Optimal Prefix-free Codes

Input: n symbols with frequencies f_1, \dots, f_n

Output: A tree (prefix-free code) encoding.

Goal: We want to output the tree/code with the smallest cost

$$Cost(tree) = \sum_{i=1}^{n} f_i \cdot depth(leaf i)$$

Even without looking at the frequencies, could this tree be optimal?

Claim: There is a "full binary tree" that is an optimal coding.

Proof: we just argued above!

Means that every non-leaf node has two children.

Claim: There is an optimal tree where the two lowest freq. symbols are sibling leaves.

Proof: By contradiction. Let x, y be symbols with lowest frequencies and assume they aren't siblings.

- Let symbols a, b be the deepest pair of siblings.
- →A lowest sibling pair exists because we have a full binary tree.
- \rightarrow At least one of a, b is neither x or y. Let's say $x \neq a$.

What happens if we swap x and a?

Claim: There is an optimal tree where the two lowest freq. symbols are sibling leaves.

Proof: By contradiction. Let x, y be symbols with lowest frequencies and assume they

aren't siblings.

• Let symbols a, b be the deepest pair of siblings.

→ A lowest sibling pair exists because we have a full binary tree.

 \rightarrow At least one of a, b is neither x or y. Let's say $x \neq a$.

What happens if we swap x and a?

 \rightarrow The cost of tree can't increase, because $f_a \ge f_x$ and we just switch the length of a's code and x 's code.

Claim: There is an optimal tree where the two lowest freq. symbols are sibling leaves.

Proof: By contradiction. Let x, y be symbols with lowest frequencies and assume they aren't siblings.

- Let symbols *a*, *b* be the deepest pair of siblings.
- →A lowest sibling pair exists because we have a full binary tree.
- \rightarrow At least one of a, b is neither x or y. Let's say $x \neq a$.

What happens if we swap x and a?

 \rightarrow The cost of tree can't increase, because $f_a \ge f_x$ and we just switch the length of a's code and x 's code.

Repeat this swap and logic if $y \neq b$ either.

Claim: There is an optimal tree where the two lowest freq. symbols are sibling leaves.

Proof: By contradiction. Let x, y be symbols with lowest frequencies and assume they aren't siblings.

- Let symbols a, b be the deepest pair of siblings.
- →A lowest sibling pair exists because we have a full binary tree.
- \rightarrow At least one of a, b is neither x or y. Let's say $x \neq a$.

What happens if we swap x and a?

 \rightarrow The cost of tree can't increase, because $f_a \ge f_x$ and we just switch the length of a's code and x 's code.

Repeat this swap and logic if $y \neq b$ either.

We found a cheaper tree, where x, y are siblings!

Greedy algorithm

Idea: Since the lowest frequency letters are sibling leaves in some optimal tree, we will greedily build subtrees from the lowest frequency letters.

This is called Huffman Coding.

Node *a* object with

a.freq = f_a

a.left = left child

a.right = right child

```
|Huffman-code(f_1, ..., f_n)|
   For all a = 1, ..., n,
       create node a with a. freq = f_a and no children
       Insert the node in a priority queue Q use key f_q
    While len(Q) > 1
       x and y \leftarrow the nodes in Q with lowest keys
       create a node z, with z. freq = x. freq + y. freq
       Let z. left = x and z. right = y.
       Insert z with key f_z into Q and remove x, y.
    Return the only node left in Q.
```


Smallest frequencies

The corresponding code

Runtime of Huffman Coding

Priority dueue operation (Lec. 8): Binary heap takes $O(\log(n))$ to Insert and DeleteMin.

```
Huffman-code(f_1, ..., f_n)

n \text{ Inserts} = O(n \log(n)) For all a = 1, ..., n,
                                    create node a with a freq = f_a and no children
                                    Insert the node in a priority queue Q use key f_{q}
                                While len(Q) > 1
                                    x and y \leftarrow the nodes in Q with lowest keys \leftarrow 2 DeleteMin
     n iterations, total of
                                    create a node z, with z. freq = x. freq + y. freq
         O(n\log(n))
                                    Let z. left = x and z. right = y.
                                                                                               1 Insert
                                    Insert z with key f_z into Q and remove x, y.
```

Return the only node left in Q.

Total runtime of Huffman coding: $O(n \log(n))$

Claim: Huffman coding is an optimal prefix-free tree.

Recall we use induction to show that greedy choices don't rule out optimality.

We use induction on the number of letters n.

Base case: n=2. The optimal code is to assign one letter to 0 and the other 1. Huffman does the same.

Induction Hypothesis: For n-1 letters, Huffman coding is an optimal pre-fix tree.

Claim: Huffman coding is an optimal prefix-free tree.

Induction step: Let T below be the optimal prefix-free tree for frequencies $f_1, ..., f_n$ and WLOG $f_1 \le f_2 \le \cdots \le f_n$.

- WLOG, assume that the two lowest frequency nodes are siblings.
 - → Because, we proved earlier that that's what optimal trees look like!

Claim: Huffman coding is an optimal prefix-free tree.

By construction of Huffman **tree** H, f_1 and f_2 are lowest siblings. Merge them here too.

 \rightarrow We get a Huffman tree for n-1 letters and frequencies $(f_1+f_2), f_3, \dots, f_n$.

Claim: Huffman coding is an optimal prefix-free tree.

We showed that for tree T that is optimal for n letters, $Cost(T) = cost(T') + (f_1 + f_2)$.

And for Huffman coding tree H for n letters, $Cost(H) = cost(H') + (f_1 + f_2)$.

Putting everything together.

By induction hypothesis, Huffman coding for n-1letters is optimal

Minimum Spanning Trees

Definition: A spanning tree, is a tree that **connects all vertices** of a graph G.

Minimum Spanning Tree (MST) Problem:

Input: a weighted graph G = (V, E) with non-negative weights.

Output: A set of edges that connected graph and has the smallest cost.

Minimum Spanning Trees

Definition: A spanning tree, is a tree that **connects all vertices** of a graph G.

Minimum Spanning Tree (MST) Problem:

Input: a weighted graph G = (V, E) with non-negative weights.

Output: A set of edges that connected graph and has the smallest cost.

MST applications and Algorithms

Biggest applications:

- Network design: Connecting cities with roads/electricity/telephone/...
- Pre-processing for other algorithms.

We will see two greedy algorithms for building Minimum Spanning Trees.

What do MSTs look like?

Facts about **trees**: Two equivalent definition of a tree on *n* vertices.

- 1. A connected acyclic graph.
- 2. A connected graph with n-1 edges.

Any minimum weight set of edges that connects all vertices is a tree! Why?

If a set of edges connecting all vertices has a cycle, we can remove one of its edges and still connect all vertices.

→ Removing any edge on the cycle, keeps the graph still connected.

Graph Structures and Facts

Cuts and Graphs

Definition: A **cut** in a graph is a partition of vertices to two disjoint sets S and $V \setminus S$.

→ we'll color them differently to make the two sets clear.

Cuts and Graphs

Definition: A **cut** in a graph is a partition of vertices to two disjoint sets S and $V \setminus S$.

→ we'll color them differently to make the two sets clear.

Cuts and Graphs

Definition: A **cut** in a graph is a partition of vertices to two disjoint sets S and $V \setminus S$.

→ we'll color them differently to make the two sets clear.

Greedy Algorithms and Cuts

Imagine, we already discovered some of the edges X of a minimum spanning tree T. Take any **cut** where edges X don't cross it. i.e., no edge $(u,v) \in X$ has $u \in S, v \in V \setminus S$. What's so special about the edge of MST that is crossing the least $W_{\mathcal{C}}$

Greedy Algorithms and Cuts

Imagine, we already discovered some of the edges X of a minimum spanning tree T. Take any **cut** where edges X don't cross it. i.e., no edge $(u, v) \in X$ has $u \in S$, $v \in V \setminus S$. What's so special about the edge of MST that is crossing the cut?

Formally: The Cut Property

Claim: Suppose $X \subseteq E$ is part of an MST for graph G. Consider a cut S, $V \setminus S$, such that

• X has no edges from S to $V \setminus S$.

(no edges in X are cut)

Let $e \in E$ be the lightest weight edge from S to $V \setminus S$.

Then $X \cup \{e\}$ is also a subset of an MST for graph G.

Proof: Take the MST T that satisfies the conditions of the above claim

X: blue edges

Case 1) $e \in T$. Then by definition $X \cup \{e\} \in T$.

T: blue and red edges.

Formally: The Cut Property

In class, we didn't specify e' sufficiently. The notes are updated here to specify that $e' \in T$ is chosen from the cycle in $T \cup \{e\}$.

Claim: Suppose $X \subseteq E$ is part of an MST for graph G. Consider a cut S, $V \setminus S$, such that

• X has no edges from S to $V \setminus S$.

Let $e \in E$ be the lightest weight edge from S to $V \setminus S$.

Then $X \cup \{e\}$ is also a subset of an MST for graph G.

Proof: Take the MST T that satisfies the conditions of the above claim.

X: blue edgesT: blue and red edges.

Case 2) $T \cup \{e\}$ forms a cycle, since T is connected already.

 \rightarrow This cycle must have another edge $e' \in T$ that cross from S to $V \setminus S$.

Consider $T' = T \cup \{e\} \setminus e'$:

- $\rightarrow T'$ also connects all vertices of the graph
- $\rightarrow cost(T') = cost(T) + w_e w_{e'} \le cost(T).$
- \rightarrow So, T' is also a minimum spanning tree!
- $X \cup \{e\}$ is also a subset of an MST for graph G

Greedy Algorithms based on the Cut Property

Any algorithm that fits the following form finds an MST.

Different Algorithms pick *S* differently

$$X = \{\}$$
Repeat until $|X| = |V| - 1$
 \longrightarrow Pick $S \subseteq V$, s.t. X has no edges from S to $V \setminus S$
 $e \leftarrow$ lightest weight edge from S to $V \setminus S$
 $X \leftarrow X \cup \{e\}$

Claim: The meta Algorithm above returns a minimum spanning tree.

Proof: By induction ...

Induction step:

The cut property ensures that $X \cup \{e\}$ is always a subset of an MST.

Instead of explicitly defining $S, V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut.

Which cut? S, $V \setminus S$ correspond to connected components for u and v.

Kruskal(G = (V,E)):

$$X = \{\}$$

for $e \in E$ in increasing order of weight

If adding *e* to *X* doesn't create a cycle

$$X \leftarrow X \cup \{e\}.$$

Instead of explicitly defining $S, V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut.

Which cut? S, $V \setminus S$ correspond to connected components for u and v.

Kruskal(G = (V,E)):

$$X = \{\}$$

for $e \in E$ in increasing order of weight

If adding *e* to *X* doesn't create a cycle

$$X \leftarrow X \cup \{e\}.$$

Instead of explicitly defining $S, V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut.

Which cut? S, $V \setminus S$ correspond to connected components for u and v.

Kruskal(G = (V,E)):

$$X = \{\}$$

for $e \in E$ in increasing order of weight

If adding *e* to *X* doesn't create a cycle

$$X \leftarrow X \cup \{e\}.$$

Instead of explicitly defining $S, V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut.

Which cut? S, $V \setminus S$ correspond to connected components for u and v.

Kruskal(G = (V,E)):

$$X = \{\}$$

for $e \in E$ in increasing order of weight

If adding *e* to *X* doesn't create a cycle

$$X \leftarrow X \cup \{e\}.$$

Instead of explicitly defining $S, V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut.

Which cut? S, $V \setminus S$ correspond to connected components for u and v.

Kruskal(G = (V,E)):

$$X = \{\}$$

for $e \in E$ in increasing order of weight

If adding *e* to *X* doesn't create a cycle

$$X \leftarrow X \cup \{e\}.$$

Instead of explicitly defining $S, V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut.

Which cut? S, $V \setminus S$ correspond to connected components for u and v.

Kruskal(G = (V,E)):

$$X = \{\}$$

for $e \in E$ in increasing order of weight

If adding *e* to *X* doesn't create a cycle

$$X \leftarrow X \cup \{e\}.$$

Instead of explicitly defining $S, V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut.

Which cut? S, $V \setminus S$ correspond to connected components for u and v.

Kruskal(G = (V,E)):

$$X = \{\}$$

for $e \in E$ in increasing order of weight

If adding *e* to *X* doesn't create a cycle

$$X \leftarrow X \cup \{e\}.$$

Instead of explicitly defining $S, V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut.

Which cut? S, $V \setminus S$ correspond to connected components for u and v.

Kruskal(G = (V,E)):

$$X = \{\}$$

for $e \in E$ in increasing order of weight

If adding *e* to *X* doesn't create a cycle

$$X \leftarrow X \cup \{e\}.$$

Instead of explicitly defining $S, V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut.

Which cut? S, $V \setminus S$ correspond to connected components for u and v.

Kruskal(G = (V,E)):

$$X = \{\}$$

for $e \in E$ in increasing order of weight

If adding *e* to *X* doesn't create a cycle

$$X \leftarrow X \cup \{e\}.$$

Kruskal's Correctness

Does Kruskal return a minimum spanning tree?

- Since $X \cup \{(u, v)\}$ doesn't have a cycle, u and v belong to two different connected components of X.
- Let $S \leftarrow$ Connected component including u
- So (u, v) is the lightest edge from S to $V \setminus S$.
- → Kruskal fits the meta algorithm description, so it find an MST.

Kruskal's Runtime and Union-Find

How do we quickly check if $X \cup \{(u, v)\}$ has a cycle?

 \rightarrow We need to check if u's connected component in X = v's connected component in X = v.

Union-FIND: A data-structure for disjoint sets

- makeSet(u): create a set from element u. Takes O(1)
- find(u): return the set that includes element u. Takes $O(\log(n))$
- union (u,v): Merge two sets containing u and v. Takes $O(\log(n))$

```
Fast-Kruskal(G = (V,E)):

for v \in V, makeSet(v)

for edges (u,v) \in E in increasing order of weight

If find(v) \neq find(u)

X \leftarrow X \cup \{(u,v)\}

union(u,v)

return X
```

Runtime of Kruskal's Algorithm

```
Sorting m edges: O(m \log(m)) = O(m \log(n)). Since m \le n^2.

Everything else:
• n calls to makeSet
• n calls to find: 2 calls per edge to find its endpoints.
• n - 1 calls to union: A tree has n - 1 edges. n \mid g(n)

Total: O((m + n) \log(n)). For connected graphs = O(m \log(n)).
```

```
Fast-Kruskal(G = (V,E)):

for v \in V, makeSet(v)

for edges (u, v) \in E in increasing order of weight

If find(v) \neq find(u)

X \leftarrow X \cup \{(u, v)\}

union(u, v)

return X
```

This slide is skipped in class.

Wrap up

We saw a meta algorithm for MSTs

- → One variant: Kruskal's Algorithm
 - → Greedily add the lightest edge that doesn't create a cycle
- → Union-Find: Useful data structure for keeping track of sets and trees.

Next time

- Another algorithm for MSTs
- Dynamic Programming