

SRM Institute of Science and Technology College of Engineering and Technology

Department of Mathematics

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2023-2024 (ODD)
Unit II Tutorial sheet - 2

Date: 16/08/2023

Course Code &Title: 18MAB302T-Discrete Mathematics for Engineers

Year & Sem: III/V

Q.	Questions	Answer Keys
No		
1	Use the Euclidean algorithm to find (i) gcd(2464, 7469) and	(i) 77
	(ii) gcd(6060, 9888)	(ii) 12
2	Prove that d n and d m implies d (an+bm)	
3	If $gcd(a,d)=1$, then show that $gcd(a+b, a^2-ab+b^2)$ is either 1 or 3.	
4.	Let a, b \in Z and suppose gcd(a, b) = 1. Prove the following.	
	(a) $gcd(a + b, a - b) = 1$ or 2.	
	(b) $gcd(a + 2b, 2a + b) = 1$ or 3.	
	(c) $gcd(an,bn) = 1$ for all $n \in N$.	
5.	Find the value of m and n such that gcd $(1575, 231) = 1575m +$	m = 5, n = -34
	231 <i>n</i>	
6.	Using prime factorization technique find the gcd and lcm of 256 and 1166	gcd (256, 1166) = 2,
	and prove that gcd $(256, 1166) * lcm (256, 1166) = 256 * 1166$	lcm (256, 1166) = 1166
7.	Prove that number of primes is infinite.	
8.	Prove that every natural number is either 1 or it is a prime or it can	
	be expressed as product of primes.	
	or empressed as product of primes.	
9.	Prove that one of every three consecutive integers is divisible by 3.	
10.	Let a, b \in Z and suppose gcd(a, b) = 1. Then prove that gcd (a+b, ab) =1.	