기술자료

ISO13399 속성 기호	1966
공구의 마모와 손상	1970
선삭가공의 트러블 대책	1971
선삭가공의 칩 처리	1973
선삭가공의 절삭조건에 의한 영향	1974
 선삭가공의 콩구 각부의 작용	1976
선삭가공의 계산식	1980
나사가공 트러블 대책	1981
나사 아래구멍 경	
나사 가공방법	1983
밀링가공의 트러블 대책	1987
밀링가공의 공구 각부의 작용	1988
밀링가공의 계산식	1991
엔드밀 가공의 트러블 대책	1993
엔드밀의 각부 명칭·날 수	1994
엔드밀의 종류와 형상	1995
피크피느 피지 선성 표	1996
드릴가공 트러블 대책	1997
드릴의 마모상태・절인 손상	1999
드릴 각부의 명칭 및 형상과 절삭특성	2000
드릴가공의 계산식	2003
금속재료기호 대조표	2004
금형용강의 일람표	
표면조도	2010
경도대 <u>조표</u>	2011
구멍 공차치수 허용차 (구멍)	2012
축 공차치수 허용차 (축)	2014
육각구멍 볼트구멍치수	2016
테이퍼 규격	2017
국제단위계 SI	2018
절삭공구재료	2019
재종계열	2020
공구재종 대응표	2021
팁 브레이커 대응표	2027

ISO13399 속성 기호

"ISO13399"에 준거한 속성 기호 일람

알파벳순

출처: ISO13399 규격

URL: https://www.iso.org/search/x/query/13399

ISO13399 속성 기호	부위 · 내용	영어명
ADJLX	최대 조정 한계	adjustment limit maximum
ADJRG	조정 범위	adjustment range
ALF	지름 방향 여유각	clearance angle radial
ALP	축 방향 여유각	clearance angle axial
AN	주절인 여유각	clearance angle major
ANN	부절인 여유각	clearance angle minor
APMX	최대절입	depth of cut maximum
AS	와이퍼 날 여유각	clearance angle wiper edge
ASP	조정나사길이	adjusting screw protrusion
AZ	최대 플랜지 절입 (내인 유효 절인 높이)	plunge depth maximum
В	샹크폭	shank width
BBD	밸런스 설계	balanced by design
ВСН	코너 면취폭	corner chamfer length
BD	본체 지름	body diameter
BDX	최대 본체 지름	body diameter maximum
ВНСС	볼트 구멍 피치 지름 수	bolt hole circle count
BHTA	본체 테이퍼 반각	body half taper angle
BMC	본체 머테리얼 코드	body material code
BS	와이퍼 날 폭	wiper edge length
BSR	와이퍼 날 R	wiper edge radius
CASC	카트리지 사이즈 코드	cartridge size code
СВ	칩 브레이커 면 수	chip breaker face count
CBDP	설비구멍깊이	connection bore depth
CBMD	칩 브레이커 이름	chip breaker manufacturers designation
CBP	칩 브레이커 속성	chip breaker property
CCMS	기계측 접속 코드	connection code machine side
CCWS	워크측 접속 코드	connection code workpiece side
CCP	챔퍼 코너 속성	chamfer corner property
CDI	드릴 인서트 절삭 지름	insert cutting diameter
CDX	최대홈깊이	cutting depth maximum
CEATC	절입각 타입 코드	tool cutting edge angle type code
CECC	절인 호닝 코드	cutting edge condition code
CEDC	절인 수	cutting edge count
CF	스팟 챔퍼	spot chamfer
CHW	코너 챔퍼 폭	corner chamfer width
CICT	날 수	cutting item count
CNC	코너 수	corner count
CND	쿨런트 입구 지름	coolant entry diameter
CNSC	쿨런트 입구 스타일 코드	coolant entry style code
CNT	쿨런트 입구 나사 사이즈	coolant entry thread size
CP	쿨런트 압력	coolant pressure
CRE	스팟 R	spot radius
CRKS	설비나사사이즈	connection retention knob thread size
CSP	쿨런트 공급 속성	coolant supply property
CTP	코팅 속성	coating property
CTX	X 방향 CTX 치수	cutting point translation X-direction
CTY	Y 방향 CTY 치수	cutting point translation Y-direction
CUTDIA	최대절단경	work piece parting diameter maximum
CUB	베이스 접속 유닛	connection unit basis
CW	절삭 폭	cutting width
CWX	회대 절삭 폭	cutting width maximum
CXD	코런트 출구 지름	coolant exit diameter

ISO13399 속성 기호	부위·내용	영어명
CXSC	쿨런트 출구 스타일 코드	coolant exit style code
CZC	접속 사이즈	connection size code
D1	인서트 장착 구멍 지름	fixing hole diameter
DAH	접속 구멍 지름 (볼트 구멍 지름)	diameter access hole
DAXN	단면홈 최소가공경	axial groove outside diameter minimum
DAXX	단면홈 최대가공경	axial groove outside diameter maximum
DBC	볼트 구멍 피치 지름	diameter bolt circle
DC	절삭 지름	cutting diameter
DCB	설비구멍경	connection bore diameter
DCBN	최소 설치 구멍 지름	connection bore diameter minimum
DCBX	최대 설치 구멍 지름	connection bore diameter maximum
DCC	디자인 컨피규레이션 스타일 코드	design configuration style code
DCCB	설비볼트착좌경	counterbore diameter connection bore
DCIN	절삭 내경	cutting diameter internal
DCINN	최소 절삭 내경	cutting diameter internal minimum
DCINX	최대 절삭 내경	cutting diameter internal maximum
DCN	최소 절삭 지름	cutting diameter minimum
DCON	접속 지름	connection diameter
DCONMS	기계측 접속 지름	connection diameter machine side
DCONWS	워크측 접속 지름	connection diameter workpiece side
DCSC	절삭 지름 사이즈 코드	cutting diameter size code
DCSFMS	접촉면의 지름, 플랜지 지름	contact surface diameter machine side
DCX	최대 절삭 지름	cutting diameter maximum
DF	플랜지 지름	flange diameter
DHUB	허브 지름	hub diameter
DMIN	최소 가공 지름	minimum bore diameter
DMM	· 상크경	shank diameter
DN	넥 지름	neck diameter
DRVA EPSR	드라이브 각	drive angle
FHA	인선각(정각) 플루트 헬릭스각	insert included angle
FHCSA	글루드 엘릭스격 설비구멍테이퍼각도	flute helix angle fixing hole countersunk angle
FHCSD	설비구성네이피역도 설치 구멍 상부 지름	fixing hole countersunk diameter
FLGT	플랜지 두께	flange thickness
FMT	형상 타입	form type
FXHLP	설치 구멍 속성	fixing hole property
GAMF	경방향경사각	rake angle radial
GAMN	직각 경사각	rake angle normal
GAMO	수직 경사각	rake angle orthogonal
GAMP	축방향경사각	rake angle axial
GAN	브레이커 경사각	insert rake angle
Н	샹크높이	shank height
НА	이론 나사 높이	thread height theoretical
HAND	승수	hand
НВН	헤드 버텀 오프셋 높이	head bottom offset height
HBKL	헤드 백 오프셋 길이	head back offset length
HBKW	헤드 백 오프셋 폭	head back offset width
HBL	헤드 아랫면 오프셋 길이	head bottom offset length
HC	실제 나사 높이	thread height actual
HF	인선높이	functional height
HHUB	허브 높이	hub height
НТВ	본체높이	body height
IC	내접원	inscribed circle diameter
IFS	인서트 마운트 스타일 코드	insert mounting style code
IIC	인서트 인터페이스 코드	insert interface code
INSL	인서트 길이	insert length
KAPR	절입각	tool cutting edge angle
KCH	코너 챔퍼 각	corner chamfer angle

ISO13399 속성 기호	부위·내용	영어명
KRINS	주절입 각	cutting edge angle major
KWW	키홈폭	keyway width
KYP	키 홈 속성	keyway property
L	절인 길이	cutting edge length
LAMS	절인 경사각	inclination angle
LB	본체길이	body length
LBB	브레이커 폭	chip breaker width
LBX	최대 본체 길이	body length maximum
LCCB	설비볼트자리 두께	counterbore depth connection bore
LCF	플루트길이	length chip flute
LDRED	목밑길이	reduced body diameter length
LE	유효 절인 길이	cutting edge effective length
LF	기능 길이	functional length
LFA	LFA 길이	a dimension on If
LH	헤드길이	head length
LPR	공구 돌출 길이	protruding length
LS	샹크길이	shank length
LSC	클램프 길이	clamping length
LSCN	최소 클램프 길이	clamping length minimum
LSCX	최대클램프길이	clamping length maximum
LTA	LTA 길이 (MCS 에서 CRP 까지의 길이)	LTA length (length from MCS to CRP)
LU	사용가능 길이	usable length
LUX	최대 사용 길이	usable length maximum
M	내접원에서부터의 인선위치	m-dimension
M2	M2 치수	m2-dimension
MHA	설치 구멍 각도	mounting hole angle
MHD	설치 구멍 거리	mounting hole distance
МНН	설치 구멍 높이	mounting hole height
MIID	마스터 인서트 기호	master insert identification
MTP	클램프 타입 코드	clamping type code
NCE	엔드 날 수	cutting end count
NOF	플루트 수	flute count
NOI	인서트 인덱스 수	insert index count
NT	나사 절삭 인서트 산 수	tooth count
OAH	전체높이	overall height
OAL	전장	overall length
OAW	건성 전체폭	overall width
PDPT	인서트 날형 깊이	profile depth insert
PDX	ex 방향 나사산위치	profile deptit fisert
PDY	ey 방향 나사산위치	profile distance ex
PFS	프로파일 스타일 코드	profile style code
PL	선단과 숄더부 칫수차	point length
PNA	│ 선원파 물니구 첫구자 │ 나사산 각	profile included angle
PRFRAD	나사선 각 볼엔드밀 반경	profile included angle
	을 열면으로 반영 의 옆 절인각, 코너 각, 리드 각	
PSIR		tool lead angle
PSIRL	왼쪽 앞 절인각 오른쪽 앞 절인각	cutting edge angle major left hand
PSIRR RAL	지 오는쪽 앞 실인각 지 좌측횡여유각	cutting edge angle major right hand relief angle left hand
RAR	우측횡여유각	relief angle right hand
RCP	라운드 코너 속성	rounded corner property
RE	코너 R, 볼 엔드밀 반경	corner radius
REL	왼쪽 코너 R	corner radius left hand
RER	오른쪽 코너 R	corner radius right hand
RMPX	최대 램핑 각	ramping angle maximum
RPMX	최고 허용 회전 속도	rotational speed maximum
S	인서트 두께	insert thickness
S1	인서트 총 두께	insert thickness total
SC	인서트 형상 코드	insert shape code
SDL	스텝 길이	step diameter length
SIG	포인트 각	point angle

ISO13399 속성 기호	부위 · 내용	영어명					
SSC	인서트 시트 사이즈 코드	insert seat size code					
SX	생크 단면 형상 코드	shank cross section shape code					
TC	인서트 공차 클래스	tolerance class insert					
TCE	칩 절인 코드	tipped cutting edge code					
TCTR	나사 공차 클래스	thread tolerance class					
TD	나사 지름	thread diameter					
THFT	나사형상 타입	thread form type					
THL	나사부 길이	threading length					
THLGTH	나사 길이	thread length					
THSC	공구 홀더 형상 코드	tool holder shape code					
THUB	허브 두께	hub thickness					
TP	나사 피치	thread pitch					
TPI	나사 산 수 / 인치	threads per inch					
TPIN	최소 나사산 수 / 인치	threads per inch minimum					
TPIX	최대 나사산 수 / 인치	threads per inch maximum					
TPN	최소 나사 피치	thread pitch minimum					
TPT	나사 프로파일 타입	thread profile type					
TPX	최대 나사 피치	thread pitch maximum					
TQ	체결 토크	torque					
TSYC	공구 스타일 코드	tool style code					
TTP	나사 타입	thread type					
ULDR	사용 가능 길이 / 절삭 지름비	usable length diameter ratio					
UST	유닛 시스템	unit system					
W1	인서트 폭	insert width					
WEP	와이퍼 날 속성	wiper edge property					
WF	기능 폭	functional width					
WFS	제 2 기능 폭	functional width secondary					
WT	질량	weight of item					
ZEFF	정면 유효 절인 수	face effective cutting edge count					
ZEFP	외주 유효 절인 수	peripheral effective cutting edge count					
ZNC	절인 센터 수	cutting edge center count					
ZNF	정면 장착 인서트 수	face mounted insert count					
ZNP	외주 장착 인서트 수	peripheral mounted insert count					

"ISO13399"에 준거한 기준계 기호 일람

ISO13399 기준계 기호	부위·내용	영어명
CIP	CIP 좌표계	Coordinate system In Process
CRP	CRP 포인트	Cutting Reference Point
CSW	CSW 좌표계	Coordinate System Workpiece side
MCS	MCS 좌표계	Mounting Coordinate System
PCS	PCS 좌표계	Primary Coordinate System

공구의 마모와 손상

공구 손상과 대책

공구 존상과	<u>- - </u>		
골	당구손상형태	원 인	대 책
		· 공구재종이 너무 무르다	· 내마모성이 높은 공구재종으로 한다
여유면 마모	and the manufacture of the contraction of the contr	· 절삭속도가 너무 빠르다	· 절삭속도를 내린다
(크랭크 마모)	Lake the dest beard in the are	· 여유각이 너무 작다 · 이송량이 극단으로 너무 낮다	· 여유각을 크게 한다 · 이송을 올린다
		· 이승당이 국민으로 너무 붓다	· 이승들 물인다
		· 공구재종이 너무 무르다	· 내마모성이 높은 공구재종으로 한다
경사면 마모	Afternatural land	· 절삭속도가 너무 빠르다 · 이송량이 너무 높다	· 절삭속도를 내린다 · 이송을 내린다
(크레이터 마모)		0000 FT = F	이야크 케닌터
		· 공구재종이 너무 단단하다	· 인성이 높은 공구재종으로 한다
		· 이송량이 크다	· 이송량을 내린다
칩핑	A STATE OF THE STA	· 절인강도의 부족	· 호닝량을 크게 한다
	The state of the s		(R호닝이라면 챔퍼호닝으로 한다)
	The state of the s	· 샹크 · 홀더의 강성부족	· 샹크사이즈가 큰것으로 한다
	Contract 1	· 공구재종이 너무 단단하다	· 인성이 높은 공구재종으로 한다
거스	16	이송량이 크다	· 이송량을 내린다
결손		· 절인강도의 부족	· 호닝량을 크게 한다
	一	· 샹크 · 홀더의 강성부족	(R호닝이라면 챔퍼호닝으로 한다) · 샹크사이즈가 큰것으로 한다
	M M M M M M M M M M M M M M M M M M M	· 공구재종이 너무 무르다	· 내마모성이 높은 공구재종으로 한다
л И III = J		· 절삭속도가 너무 빠르다	· 절삭속도를 내린다
소성변형 (절인의 처짐)		· 절입 · 이송이 너무 높다	· 절입 · 이송을 작게한다
(204 746)		· 절인의 온도가 높다	· 열전도율이 큰 공구재종으로 한다
		· 절삭속도가 낮다	· 절삭속도를 올린다
구성인선			(S45C에서는 80m/min이상)
(용착)		· 절삭력이 나쁘다	· 경사각을 크게 한다
		· 재종선정의 부적합	· 친화성이 낮은 공구재종으로 한다 (코팅재종, 서멧재종으로 한다)
		· 절삭열에 의한 팽창과 수축	· 건식절삭으로 한다
		글러글에 다한 영영된 구국	[선 ㅋ 글 ㅋ 프 포 전 디 (습식절삭의 경우, 절삭유제는 전체에 충분히 뿌려준다)
열균열	Jan Dradalania	· 공구재종이 너무 단단하다	· 인성이 높은 공구재종으로 한다
(서멀크랙)	and research use of a 5 and and use and man	※특히 밀링커터 가공	
		· 흑피부, 틸화부 및 가공경화층 등	· 내마모성이 높은 공구재종으로 한다
		· 목피구, 필와구 및 가능성와등 등 표면이 단단하다	테마포장이 표근 중무제중으로 만나
경계마모		· 톱모양의 칩에 의한 마찰	 · 경사각을 크게 하여 절삭성을 좋게 한다
		(미세진동으로 발생한다)	
		. 저이이 요차 . 으차	. 겨시가의 그게 된어 저사서의 조게 된다
		· 절인의 용착·응착 · 칩배출이 나쁘다	· 경사각을 크게 하여 절삭성을 좋게 한다 · 칩포켓이 큰 것으로 한다
플레이킹		B-112 ~ 1 	
	The state of the s		
여유면 마모		· 전형적인 인선강도 부족에 의한 결손	· 호닝량을 크게 한다
(크랭크 마모)	The state of the s		· 내결손성이 높은 재종으로 변경한다
결손			
※ 본 손상은 초고압소결체입니다			
	To a second	· 공구재종이 너무 무르다	· 호닝량을 작게 한다
(크레이터 마모)		· 절삭저항이 높고, 절삭열의 발열량이	· 내마모성이 높은 재종으로 변경한다
결손		크다	
※ 본 손상은 초고압소결체입니다			
			<u> </u>

선삭가공의 트러블 대책

		대 책	공구	·재종	등의 -	선정	쟡	털 스	낙 2	S 2	<u>객</u>		공	Ŧ	1 ;	=	상		기기	4 · 3	당착
	요리블 내용	인	보다 단단한 재종이로 한다	인성이 있는 재종이로 한다	내열충격성이 좋아 재종이로 한다	내용착성이 좋은 자생이며 한다		이 송 인다 <i>,</i>		절 비수용성이로 한다	유제 건식 · 습식의 재검토	칩 브레이커 평가	경 사 각	인 선 코 너 반 경 크게 작게	ŕ		팁 정도 향상	홀더 강성이 향상	위 대· 공 다 이 장착 강성 향상	홀더의 오버颜을 작게 한다	동력 기계의 반동을 작게한다
		공구재종의 부적정	•																		
	인서트의 마모가 빠르다	절인형상의 부적정										•	*	<i>*</i>	*	•					
		절삭속도의 부적정					• 🗡	*			● 습식										
<u>م</u>		공구재종의 부적정		•																	
수명 악화		절삭조건의 부적정						•	•												
꾹	절인의 결손·칩핑	절인강도의 부족										•		*		*					
	걸인커 글C · 입당	열 크랙이 발생하고 있다			•		• *	•	•	•	• 건										
		구성인선이 발생하고 있다				•	*	*		•	● 습식										
		강성부족																•	•	•	•
πĮ	가공중 치수의	인서트 정도가 나쁘다															•				
수 절	불안정	절삭저항이 커서, 인선이 마모되어 있다										•	•	•	•	•		•	•	•	•
치수 정도의 악화	절삭중에 가공정도가 오버하여, 그 때마다	공구재종의 부적정	•																		
ᅪ	조정이 필요하다	절삭조건의 부적정					• ×	*													
정		용착이 발생하고 있다					*			•	습식										
정삭면 조도의 악화	정삭면이 나쁘다	절인형상의 부적정										•		*							
악 화		떨림 발생					• ×	•	•									•	•	•	•
발	절삭열이 커서, 가공정도 악화·	절삭조건의 부적정					• ×	•	•												
열	공구수명 저하	절인형상의 부적정										•	*			•					

	대 책		공구	·재종	등의 -	선정	즡	털 스	낙 2	E ?	<u> </u>		공	Ŧ	1 ;	형	상		기기	∦ · ?	당착
	요 러블 내용	인	보다 다다히 짜증이로 한다	인성이 있는 재종이로 한다	내열등성 성이 좋아 재종이로 한다	- 100 학생이 동생이로 하다		이 송 인다 <i>,</i> 춘다 `		절 비수용성이로 한다	유제 건식 · 습식의 재검토	칩 브레이커 평가	경사각	인선 코너 반경 크게 작게			팁 정도 향상	흘더 강성이 향상	라디·R0구이 정착강정 행정	<u> </u>	동력 기계의 반동을 작게한다
		경계마모가 발생하고 있다	•																		
	버가 발생하고 있다(강·알루미늄)	절삭조건의 부적정					• ×	*			● 습식										
		절인형상의 부적정										•	*	•	•	•					
		절삭조건의 부적정						•	•												
버·칩핑·보풀	가공물 마무리단계 결손(주철)	절인형상의 부적정										•	*	*	*	•					
o· 보풀		진동이 발생하고 있다																•	•	•	•
		공구재종의 부적정				•															
	O 원보세 (여기)	절삭조건의 부적정					*			•	● 습식										
	요철발생(연강)	절인형상의 부적정										•	*			•					
		진동이 발생하고 있다																•	•	•	•
		절삭조건의 부적정					• >	*	*		● 습식										
	롱칩이 나온다	브레이커의 칩유효범위가 크다										•									
칩	칩 처 리 칩이 작고, 비산한다	절인형상의 부적정												•	•						
리		절삭조건의 부적정						•	• ×		• 건										
		브레이커의 칩유효범위가 작다										•									
		절인형상의 부적정												*	*						

선삭가공의 칩 처리

■강선삭가공에 있어서 칩형태

구분	A형	B형	C형	D형	E형
절입소 d<7mm		MANAN MALLERA PRINTINGATION	Thursday.	3-9	
절입대 d=7—15mm			REE.		
컬 길이 I	컬 되지 않는다	l≧50mm	l≦50mm 1—5번	1번 말림 전후	1번 말림 이하 반 말림
비고	●불규칙연속형상 ●공구, 피삭재 등에 얽혀든다	●규칙적 연속형상 ●롱 칩	양호	양호	●칩비산 ●떨림발생 ●정삭면 불량 ●공구부하능력 한계

●절삭속도와 칩브레이커 유효범위

일반적으로 절삭속도가 증가하면 칩브레이커의 칩처리유효범위는 좁아지는 경향이 있습니다.

●절삭유제의 유무와 칩 브레이커 유효범위

절삭속도가 같아도 절삭유제의 사용/미사용으로 칩브레이커의 칩유효범위는 달라집니다.

선삭가공의 절삭조건에 의한 영향

■절삭조건에 의한 영향

절삭가공에서 가장 바람직한 것은 가공시간이 짧고, 공구수명이 길며, 그리고 가공정도가 좋은 것입니다. 여기에서 피가공물의 재질, 경도, 형상, 상태와 공작기계의 성능을 잘 고려해서, 공구를 결정하여 능률적인 절삭조건의 선정이 필요하게 됩니다.

절삭속도

절삭속도는 공구수명에 크게 영향을 미칩니다. 절삭속도가 빨라지면 절삭온도가 상승하고, 공구수명은 극단적으로 짧아 집니다. 피삭재의 종류나 경도에 의해서 절삭속도는 달라집니다만 그에 대응하는 적정한 공구재종의 선택이 필요하게 됩니다.

●절삭속도에 의한 영향

- 1.절삭속도를 20%올리면 공구수명은 2분의1, 절삭속도를 50%올리면 공구수명은 5분의1로 저하된다.
- 2.절삭속도가 낮은(20-40m/min) 저속에서도 떨림진동이 발생하기 쉽고, 공구수명은 짧아진다.

이송

이송이란 보통 바이트의 경우, 피삭재가 1회전했을 때에 바이트의 진행량을 말하고, 컷터의 경우, 커터가 1회전했을 때의 기계 테이블의 진행량을 날수로 나눈 것, 즉 1날당의 이송량을 나타냅니다.

이송은 정삭면 조도와 큰 관계가 있고, 요구되는 정삭면조도에 의해 결정되는 경우가 대부분입니다.

●이송에 의한 영향

- 1. 이송을 작게 하면 여유면 마모가 커지고 공구수명이 극단적으로 짧게 된다.
- 2. 이송을 크게 하면 절삭온도의 상승에 의해 여유면 마모가 커지지만 공구수명에 대한 영향은 절삭속도에 비교하면 적다.
- 3. 이송을 크게하면 가공능률은 향상된다.

절입

절입은 피삭재의 절입량, 그 형상, 공작기계의 동력, 강성, 공구의 강성등에 의해 결정됩니다.

●절입에 의한 영향

- 1. 절입량이 변화해도 공구수명은 크게 변함이 없다.
- 2. 절입이 작은 경우 또는 미세절입일 경우에는 절삭되지 않고 문지르는 현상, 피삭재의 가공경화층을 절삭하게 되 어 공구수명이 짧아지는 원인이 됩니다.
- 3. 주물표면이나 흑피절삭을 할 때 기계동력이 허용하는 한 절입량을 크게 하지 않으면 인선선단이 피삭재 표면의 단단하고 불순물이 포함된 곳을 절삭하게 되어 인선에 칩핑이나 이상마모를 발생시키는 원인이 됩니다.

선삭가공의 공구 각부의 작용

■경사각

경사각은 절삭저항, 칩배출, 절삭열, 공구수명에 큰 영향을 미치는 인선각도입니다.

●경사각에서의 영향

- 1. 경삭각이 양(+)으로 커지면, 절삭성이 좋아진다.
- 2. 경사각이 양(+)의 방향으로1°커지면 절삭동력이 1% 감소한다.
- 3. 경삭각이 양(+)으로 커지면, 인선강도가 저하되고, 음(-)의 방향으로 지나치게 커지게 되면 절삭저항이 증대된다.

경사각을 음(-)의 방향으로 크게 할 경우

- 단단한 피삭재일 때
- 흑피, 단속절삭처럼 인선강도를 필요로 할 때

경사각을 양(+)의 방향으로 크게 할 경우

- 부드러운 피삭재일 때
- 절삭하기 쉬운 재료일 때
- 피삭재, 기계에 강성이 없을 때

■여유각

여유각은 공구의 여유면과 피삭재의 마찰을 피해서 인선을 피삭재에 자유롭게 이송하는 기능을 갖고 있습니다.

●여유각에 있어서의 영향

- 1. 여유각을 크게하면 여유면 마모가 감소한다.
- 2. 여유각을 크게 하면 인선강도가 저하된다.

여유각을 작게하는 경우

- 단단한 피삭재일 때
- 인선강도를 필요로 할 때

여유각을 크게하는 경우

- 부드러운 피삭재일 때
- 가공경화하기 쉬운 피삭재일 때

■횡절인각

횡절인각은 충격적 하중의 완화, 이송분력과 배분력의 크기, 칩두께에 영향을 준다.

●횡절인각에 따른 영향

- 1. 같은 이송량이라도 횡절인각을 크게하면, 칩의 접촉길이가 길어지고, 칩의 두께가 얇아지므로 절삭력이 긴 절인에 분산되어 공구수명이 길어집니다.(그래프 참조)
- 2. 횡절인을 크게 하면, a'의 힘이 커지기 때문에, 가늘고 긴 피삭재에서는 구부러지는 현상이 나올 수 있습니다.
- 3. 횡절인이 커지면, 칩처리성은 나빠집니다.
- 4. 횡절인각이 커지면, 칩절삭 두께는 얇아지고, 칩폭은 넓어지기 때문에 쉽게 파단되지 않습니다.

횡절인을 작게하는 경우

- 절입이 작은 정삭절삭일 때
- 가늘고 긴 피삭재일 때
- 기계의 강성이 낮을 때

횡절인각을 크게하는 경우

- 단단해서 발열량이 큰 피삭재일 때
- 황삭에서 경이 큰 피삭재일 때
- 기계에 강성이 있을 때

앞절인각

____. 절삭가공한 면과 공구 (의 앞 절인) 가 간섭하는 것을 방지하기 위한 각도로, 보통 5°~15입니다.

● 앞절인각에 의한 영향

- 1. 앞절인각을 작게 하면 인선강도는 커지지만, 인선에 열이 발생하기 쉽다.
- 2. 앞절인각을 작게 하면 절삭저항의 배분력이 증가하고, 절삭시의 떨림에 의한 진동이 발생한다.
- 3. 앞절인각은 황삭에서는 작게하고, 정삭에서는 크게 한다.

앞절인각

■절인기울기각

경사면의 경사를 나타내는 각도이며, 중절삭에서는 절삭개시점의 인선에 미치는 충격이 상당히 크기 때문에 이 충격이 인선선단에 미치지 않도록 하기 위하여 날 경사각을 설치하여 결손을 방지하도록 한다. 이 경우 선삭에서3°~5°, 평삭에서는10°~15°를 추천합니다.

●절인기울기각에 의한 영향

- 1. 인 기울기각을 마이너스로 하면 칩은 피삭재로, 플러스로으로하면 거꾸로 배출된다.
- 2. 절인 기울기각을 마이너스로 하면 인선강도는 커지지만 절삭저항의 배분력이 증가하고, 떨림이 발생하기 쉽게 된다.

■호닝과 랜드

호닝, 랜드 모두 날의 강도를 유지하기 위한 인선처리입니다.

호닝에는, 날의 엣지를 둥글게 한 R호닝과 작은 면취를 한 챔퍼호닝이 있습니다. 랜드는 경사면위 또는 여유면위를 따라 설계된 폭이 좁은 띠형 면입니다.

호닝폭은 이송의 1/2정도가 최적입니다.

●호닝량에 따른 영향

- 1. 호닝을 크게 하면 인선강도가 높아지고, 결손률이 감소하여, 공구수명이 향상된다.
- 2. 호닝을 크게 하면 여유면 마모가 생기기 쉬워 공구수명이 저하된다. 경사면 마모량은 호닝의 대소에 따른 영향을 받지않는다.
- 3. 호닝을 크게 하면 절삭저항이 커져, 떨림진동이 발생하기 쉬워진다.

호닝을 작게하는 경우

- 정삭절삭등의 미소절입, 미소이송일 때
- 부드러운 피삭재일 때
- 피삭재 기계에 강성이 없을 때

호닝을 크게 하는 경우

- 단단한 피삭재일 때
- 흑피, 단속절삭처럼 인선강도를 필요로 할 때
- 기계에 강성이 있을 때

※초경합금,다이아코팅, 서멧의 팁에는 미리 R호닝(표준)이 되어 있습니다.

코너반경

코너반경은 인선의 강도와 사상면 조도에 큰 영향을 미칩니다. 일반적으로는 이송의 2~3배 가 적당합니다.

코너반경에 따른 영향

- 1. 코너반경을 크게 하면 정삭면 조도는 향상됩니다.
- 2. 코너반경을 크게 하면, 인선강도가 증가합니다.
- 3. 코너반경이 너무 크면 저항이 증가하고, 떨림등의 원인이 됩니다.
- 4. 코너반경을 크게 하면 여유면, 경사면 마모가 감소합니다.
- 5. 코너반경을 너무 크게 하면 칩처리성은 악화됩니다.

코너반경을 작게하는 경우

- ○절입이 작은 정삭절삭일 때
- ○가늘고 긴 피삭재일 때
- ○기계의 강성이 낮을 때

코너반경을 크게 하는 경우

- 흑피,단속절삭처럼 인선강도를 필요로 할 때
- ○황삭에서 경이 큰 피삭재일 때
- ○기계에 강성이 있을 때

●코너반경과 칩처리 범위

소요동력 (Pc)

 $Pc = \frac{ap \cdot f \cdot vc \cdot Kc}{60 \times 10^3 \times n} \text{ (kW)}$

Pc (kW) : 소요동력 f (mm/rev) : 1회전당 이송

Kc (MPa) : 비절삭저항

ap (mm) : 절입 vc (m/min) : 절삭속도 **n**: (기계효율계수)

(예제) 연강을 절입3mm, 절삭속도 120m/min, 이송을 0.2mm/rev (답) 하기표에서 연강의 비절삭저항 Kc=3100MPa를 의 절삭조건에서 절삭할 때, 소요동력을 구하면(단 기계효율계수를 80%로 한다)

공식에 대입하여.

Kc 값

 $Pc = \frac{3 \times 0.2 \times 120 \times 3100}{3 \times 100 \times 100} = 4.65 \text{ (kW)}$ 60×10³×0.8

피삭재 재질	인장강도(MPa)	각 이송에 대한 대비 절삭저항 Kc (MPa)									
피국제 제글	및 강도	0.1 (mm/rev)	0.2 (mm/rev)	0.3 (mm/rev)	0.4 (mm/rev)	0.6 (mm/rev)					
연강	520	3610	3100	2720	2500	2280					
중강	620	3080	2700	2570	2450	2300					
경강	720	4050	3600	3250	2950	2640					
공구강	670	3040	2800	2630	2500	2400					
공구강	770	3150	2850	2620	2450	2340					
크롬망간강	770	3830	3250	2900	2650	2400					
크롬망간강	630	4510	3900	3240	2900	2630					
크롬몰리브덴강	730	4500	3900	3400	3150	2850					
크롬몰리브덴강	600	3610	3200	2880	2700	2500					
니켈크롬몰리브덴강	900	3070	2650	2350	2200	1980					
니켈크롬몰리브덴강	352HB	3310	2900	2580	2400	2200					
경질주철	46HRC	3190	2800	2600	2450	2270					
미하나이트주철	360	2300	1930	1730	1600	1450					
회주철	200HB	2110	1800	1600	1400	1330					

절삭속도 (vc)

 $vc = \frac{\pi \cdot Dm \cdot n}{1000} (m/min)$ $m/min = \frac{\pi \cdot Dm \cdot n}{\pi} (m/min) = \frac{\pi \cdot \pi}{\pi} (3.14) = \frac{\pi \cdot \pi}{\pi}$

vc (m/min): 절삭속도 n (min⁻¹) : 주축회전속도

※1000으로 나누는 것은, mm를m로 고치기 위함. (예제) 주축회전속도700min⁻¹, 피삭재의 외경**ø**50로 절삭하고 있다. 이때의 절삭속도를 구하면

(답) 공식에π=3.14, Dm=50, n=700을 대입하면,

$$vc = \frac{\pi \cdot Dm \cdot n}{1000} = \frac{3.14 \times 50 \times 700}{1000} = 110m/min$$

절삭속도는 약 110m/min가 됩니다.

■절삭시간 (Tc)

— (min)

Tc (min) : 절삭시간 Im (mm) : 공작물의 길이 I (mm/min): 1분간의 절삭길이

(예제) 길이100mm인 피삭재를 회전속도1000min⁻¹, 이송0.2mm/rev에서 절삭했을 때, 몇 분 걸립니까?

우선, 이송과 회전속도로, 1분간의 절삭길이를 구합니다.

 $I = f \times n = 0.2 \times 1000 = 200 \text{mm/min}$

구한값을 공식에 대입하면

 $Tc = \frac{Im}{I} = \frac{100}{200} = 0.5min$

0.5×60=30 (sec) 30초 걸립니다.

이송 (f)

-(mm/rev)

f (mm/rev) : 1회전당 이송 I (mm/min) : 매 1분간의 절삭길이 n (min⁻¹) : 주축회전속도

(예제) 주축의 회전속도500min⁻¹, 1분간의 절삭길이가 120mm/min이다, 이때의 1회전당의 이송량을 구하면

(답) 공식에 n=500, I=120을 대입하면,

 $f = \frac{I}{n} = \frac{120}{500} = 0.24$ mm/rev 1회전당 이송량은 0.24mm/rev가 됩니다.

■이론 정삭면 조도 (h)

 $h = \frac{f^2}{2DE} \times 1000(\mu m)$

h (μm) : 정삭면 조도 f (mm/rev): 1회전당 이송 RE(mm) : 팁 노즈 반경

(예제) 팁의 인선노즈반경0.8mm, 이송 0.2mm/rev일 때의 이론 정삭면 조도를 구하면

공식에 f=0.2mm/rev RE=0.8을 대입하면,

$$h = \frac{0.2^2}{8 \times 0.8} \times 1000 = 6.25 \mu m$$

이론 정삭면 조도는 약 6 μ m가 됩니다.

나사가공 트러블 대책

트러블 대책

트디글 내색								
문제점	현 상	원 인	대 책					
나사정도가 나쁘다	나사산의 각도가 제대로	공구의 장착이 바르지 않다	인서트의 심높이를 0에 맞춘다					
	들어가지 않는다		홀더의 기울기 (횡방향) 를 확인한다					
	나사산이 낮다	절입량의 설정이 바르지 않다	절입량을 수정한다					
		인서트의 내마모성 또는 내소성 변형성이 부족하다	하기「여유면 마모가 빠르다」및 「소성변형이 크다」란을 참조하여 주십시요					
정삭면이 나쁘다	표면에 흔적이 남는다	칩이 말려들거나 접촉이 발생하고 있다	프랭크 인피드로 하고, 칩의 유출방향을 컨트롤 한다					
			M급 3차원 브레이커 인서트로 변경한다					
		인서트 절인측면이 간섭한다	리드각을 확인하고 적절한 시트를 선정한다					
	표면에 뜯김현상이	구성인선 (용착) 이 발생한다	절삭속도를 올린다					
	발생한다		절삭유의 압력과 농도를 올린다					
		절삭저항이 너무 높다	매 패스 (회) 의 절입량을 줄인다					
	표면에 떨림이	절삭속도가 너무 높다	절삭속도를 내린다					
	발생한다 -	워크 또는 공구의 클램프가 충분치 않다	워크와 공구의 클램프상태를 재확인한다 (척압력, 클램프대)					
		공구의 장착이 바르지 않다	인서트의 심높이를 0에 맞춘다					
공구수명이 짧다	여유면 마모가 빠르다	절삭속도가 너무 빠르다	절삭속도를 내린다					
		패스 회수가 많고, 마찰마모가 발달하고 있다	패스회수를 줄여서 절인이 마찰되는 회수를 줄인다					
		정삭패스에서의 절입량이 적다	0.05mm 이상을 기준으로 하여, 0컷트는 하지 않는다					
	좌우 절인의 마모가 균일하지 않다	워크의 리드각과 공구의 리드각이 맞지 않는다	워크의 리드각을 확인하고, 적절한 시트를 선정한다					
	칩핑. 결손이 발생한다	절삭속도가 너무 늦다	절삭속도를 올린다					
		절삭저항이 너무 높다	패스회수를 늘려, 1패스 마다의 절삭저항을 줄인다					
		불안정한 클램프 상태로	워크의 장착정도를 확인한다					
		절삭하고 있다	공구의 돌출장을 작게 한다					
			워크와 공구의 클램프 상태를 재확인한다 (척압력, 클램프대)					
		칩이 물려든다	쿨런트의 압력을 올려 칩을 날린다					
			툴패스를 변경하고, 칩을 원활하게 처리한다 (1패스 마다의 왕복거리를 늘리고, 확실하게 절삭유를 뿌린다)					
			내경절삭은 백가공으로 변경하여, 칩이 막히지 않도록 한다					
		워크에 면취가 되어 있지 않아 처음 절삭할 때의 저항이 높다	입구와 빠져나오는 측면에 면취 가공을 한다					
	소성변형이 크다	절삭속도가 낮고, 발열이 높다	절삭속도를 내린다					
		절삭유의 공급이 부족하다	절삭유가 제대로 공급되고 있는지 재확인한다					
			절삭유의 압력과 농도를 올린다					
		절삭저항이 너무 높다	패스회수를 늘려, 1패스 마다의 절삭저항을 줄인다					

기술자료

나사 아래구멍 경

●미터규격나사

●미터규격나사

♥미터규격나	1^1		
규 격	드림	 릴경	_
규 격	HSS	초경	
M1 ×0.25	0.75	0.75	M1
M1.1×0.25	0.85	0.85	M1.1
M1.2×0.25	0.95	0.95	M1.2
M1.4×0.3	1.10	1.10	M1.4
M1.6×0.35	1.25	1.30	M1.6
M1.7×0.35	1.35	1.40	M1.8
M1.8×0.35	1.45	1.50	M2
M2 ×0.4	1.60	1.65	M2.2
M2.2×0.45	1.75	1.80	M2.5
M2.3×0.4	1.90	1.95	M3
M2.5×0.45	2.10	2.15	M3.5
M2.6×0.45	2.15	2.20	M4
M3 ×0.5	2.50	2.55	M4.5
M3.5×0.6	2.90	2.95	M5
M4 ×0.7	3.3	3.4	M5.5
M4.5×0.75	3.8	3.9	M6
M5 ×0.8	4.2	4.3	M7
M6 ×1.0	5.0	5.1	M8
M7 ×1.0	6.0	6.1	M8
M8 ×1.25	6.8	6.9	M9
M9 ×1.25	7.8	7.9	M9
M10 ×1.5	8.5	8.7	M10
M11 ×1.5	9.5	9.7	M10
M12 ×1.75	10.3	10.5	M10
M14 ×2.0	12.0	12.2	M11
M16 ×2.0	14.0	14.2	M11
M18 ×2.5	15.5	15.7	M12
M20 ×2.5	17.5	17.7	M12
M22 ×2.5	19.5	19.7	M12
M24 ×3.0	21.0	_	M14
M27 ×3.0	24.0	_	M14
M30 ×3.5	26.5	_	M15
M33 ×3.5	29.5	_	M15
M36 ×4.0	32.0	_	M16
M39 ×4.0	35.0	_	M16
M42 ×4.5	37.5	_	M17
M45 ×4.5	40.5	_	M17
M48 ×5.0	43.0	_	M18
			M18

	드	릴경		드릴경					
규 격	HSS	초경	규 격	HSS	초경				
M1 ×0.2	0.80	0.80	M20 ×2.0	18.0	18.3				
M1.1×0.2	0.90	0.90	M20 ×1.5	18.5	18.7				
M1.2×0.2	1.00	1.00	M20 ×1.0	19.0	19.1				
M1.4×0.2	1.20	1.20	M22 ×2.0	20.0	_				
M1.6×0.2	1.40	1.40	M22 ×1.5	20.5	_				
M1.8×0.2	1.60	1.60	M22 ×1.0	21.0	_				
M2 ×0.25	1.75	1.75	M24 ×2.0	22.0	_				
M2.2×0.25	1.95	2.00	M24 ×1.5	22.5	_				
M2.5×0.35	2.20	2.20	M24 ×1.0	23.0	_				
M3 ×0.35	2.70	2.70	M25 ×2.0	23.0	_				
M3.5×0.35	3.20	3.20	M25 ×1.5	23.5	_				
M4 ×0.5	3.50	3.55	M25 ×1.0	24.0	_				
M4.5×0.5	4.00	4.05	M26 ×1.5	24.5	_				
M5 ×0.5	4.50	4.55	M27 ×2.0	25.0	_				
M5.5×0.5	5.00	5.05	M27 ×1.5	25.5	_				
M6 ×0.75	5.30	5.35	M27 ×1.0	26.0	_				
M7 ×0.75	6.30	6.35	M28 ×2.0	26.0	_				
M8 ×1.0	7.00	7.10	M28 ×1.5	26.5	_				
M8 ×0.75	7.30	7.35	M28 ×1.0	27.0	_				
M9 ×1.0	8.00	8.10	M30 ×3.0	27.0	_				
M9 ×0.75	8.30	8.35	M30 ×2.0	28.0	_				
M10 ×1.25	8.80	8.90	M30 ×1.5	28.5	_				
M10 ×1.0	9.00	9.10	M30 ×1.0	29.0	_				
M10 ×0.75	9.30	9.35	M32 ×2.0	30.0	_				
M11 ×1.0	10.0	10.1	M32 ×1.5	30.5	_				
M11 ×0.75	10.3	10.3	M33 ×3.0	30.0	_				
M12 ×1.5	10.5	10.7	M33 ×2.0	31.0	_				
M12 ×1.25	10.8	10.9	M33 ×1.5	31.5	_				
M12 ×1.0	11.0	11.1	M35 ×1.5	33.5	_				
M14 ×1.5	12.5	12.7	M36 ×3.0	33.0	_				
M14 ×1.0	13.0	13.1	M36 ×2.0	34.0	_				
M15 ×1.5	13.5	13.7	M36 ×1.5	34.5	_				
M15 ×1.0	14.0	14.1	M38 ×1.5	36.5	_				
M16 ×1.5	14.5	14.7	M39 ×3.0	36.0	_				
M16 ×1.0	15.0	15.1	M39 ×2.0	37.0	_				
M17 ×1.5	15.5	15.7	M39 ×1.5	37.5	_				
M17 ×1.0	16.0	16.1	M40 ×3.0	37.0	_				
M18 ×2.0	16.0	16.3	M40 ×2.0	38.0	_				
M18 ×1.5	16.5	16.7	M40 ×1.5	38.5	_				
M18 ×1.0	17.0	17.1	M42 ×4.0	38.0	_				

드릴경

초경

HSS

39.0 40.0

40.5

41.0

42.0 43.0

43.5

44.0

45.0

46.0

46.5 47.0

48.0

48.5

규 격

M42 ×3.0

M42 ×2.0 M42 ×1.5

M45 ×4.0

M45 ×3.0

M45 ×2.0

M48 ×4.0

M48 ×3.0

M48 ×2.0

M48 ×1.5

M50 ×3.0 M50 ×2.0

M50 ×1.5

주 이 표의 드릴경을 사용하여 가공하는 경우는, 가공조건에 따라 드릴 구멍의 치수 정도가 변하기 때문에, 가공구멍을 측정하고, 기본홀로서 부적당한 경우는 드릴경을 변경할 필요가 있습니다.

나사 가공방법

나사 가공방법

와이퍼날형과 와이퍼날 없음형

나사 절삭 가공(INFEED)방법

나사절단 절삭의 절입량

주 절입량이 일정한 경우, 최종 패스는 0.05~0.025mm정도의 절입량으로 설정하여 주십시오. 절입량이 커지면 떨림이 발생하고, 정삭면에 영향을 주는 경우도 있습니다.

●계산식

■절삭면적을 일정하게 하는 절입량 계산 방법

●수정 플랭크 인피드 프로그램

■ 예) M12×1.0 5패스 수정각도5°

- 11, 11112 116 6 11— 1 6 1—6	
외 경	내 경
G00 Z = 5.0	G00 Z = 5.0
X = 14.0	X = 10.0
G92 U-4.34 Z-13.0 F1.0	G92 U4.34 Z-13.0 F1.0
G00 W-0.07	G00 W-0.07
G92 U-4.64 Z-13.0 F1.0	G92 U4.64 Z-13.0 F1.0
G00 W-0.06	G00 W-0.05
G92 U-4.88 Z-13.0 F1.0	G92 U4.84 Z-13.0 F1.0
G00 W-0.05	G00 W-0.04
G92 U-5.08 Z-13.0 F1.0	G92 U5.02 Z-13.0 F1.0
G00 W-0.03	G00 W-0.03
G92 U-5.20 Z-13.0 F1.0	G92 U5.14 Z-13.0 F1.0
G00	G00
	1

절삭조건의 선정

				우선	 항목		
		공구수명	절삭저항	악저항 정삭면 나사정도 칩 처리			
이피드 HFHI	래디얼(경사면 절삭)	0		0	0		0
인피드 방법	플랭크(직각절입)	(△ : 수정)	0	(△ : 수정)		0	
절입량	일정한 절입					0	
클립당	일정한 면적	0	0	0	0		0

주 플랭크 인피스에서 수정 플랭크 인피드로 변경함으로써, 공구수명의 연장과 정삭면 정도의 향상을 기대할 수 있다. 일정면적에서도, 후반 패스의 절입량을 크게 함으로써, 칩처리성 향상을 기대할 수 있습니다.

절입량과 패스회수

나사 가공에서는, 절입량과 패스회수의 선정이 대단히 중요합니다

- · 대부분의 나사가공은, 사전에 가공기계에 탑재되어 있는 「나사 사이클」을 사용하고, 「토탈 절입량」, 「첫번째 패스 또는 최종 절입량」을 지정합니다.
- · 래디얼인피드(경사면절삭)는 절입량, 패스회수의 변경이 쉽기 때문에 적절한 조건을 찾기 위한 테스트를 비교적 간단하게 행할 수 있다는 장점이 있습니다.

미쓰비시 제품을 효과적으로 사용하기 위하여

· 우수한 내소성변형성과 내열마모성을 갖는 나사가공 전용재종의 활용으로 고속가공, 패스회수 감소를 달성함으로써 높은 생산성(고능률 절삭)을 실현하였습니다.

가공개선 포인트

■ 공구수명을 연장하고 싶다

- · 코너R의 손상을 줄이고 싶다• 수정 플랭크 인피드
- · 좌우 여유면 마모를 균일하게 하고 싶다()라디얼 인피드(경사면 절삭)
- · 크레이터 마모를 줄이고 싶다�플랭크 인피드

■ 칩 트러블을 줄이고 싶다

- · 플랭크 또는 수정 플랭크 인피드로 변경한다.
- · 래디얼 인피드의 경우, 역바이트를 사용하여 쿨런트의 사출방향을 아래쪽으로 조정한다.
- · 래디얼 인피드의 경우, 최소절입을 0.2mm전후로 설정하고 친 두께를 늘린다.

■ 생산성을 늘리고 싶다

- ·절삭속도를 높인다(단, 가공기계의 제약이 있음 ᠫ최대 회전수, 기계강성등).
- · 패스회수를 줄인다. (30~40%감소를 기준으로하여 적절한 조건에 맞춰 설정하여 주십시오.)
- · 패수회수를 줄이고, 칩의 두께를 늘림으로써 칩처리가 용이하게 되는 경우도 있습니다.

■ 떨림을 줄이고 싶다

- · 플랭크 또는 수정 플랭크 인피드로 변경한다.
- · 래디얼 인피드의 경우, 후반 패스의 절입량을 줄이고, 절삭속도를 낮춘다.

■ 정삭면 조도를 좋게 하고 싶다

- · 최종 정삭 패스 후 제로커트를 행한다.
- · 플랭크 인피드인 경우, 최종 패스만 래디얼 인피드로 한다.

GY 홈 가공

참고자료

C형클립(CIR클립) 규격일람

종류	<u> </u>	도	규격					홈폭((공차)									
ОΠ	٥		"7			샤프트용					홀 용							
C형 고정링 IPI	샤프트용	ioja ioja		0.5 0.7 0.8 0.9 1.1 1.3	+0.14	0.305 0.457 0.737 0.991 1.168 1.422 1.727	+0.051 0 +0.076 0 +0.102	1.15 1.35 1.75 1.95 2.2 2.7 3.2	+0.14 0 +0.18	9 1.1 1.3 1.6 1.85 2.15 2.65	+0.14	0.457 0.737 0.991 1.168 1.422 1.727	+0.051 0 +0.076 0 +0.102					
C형 동심고정링	샤프트용	ion OO	ANSI B27.7/27.8 (미) BS 3673 (영) DIN 471/472 (독) NF E 22 163 (불) UNI 7435/7438 (이)	1.85 2.15 2.65 3.15 4.15 5.15	+0.18 0 +0.22 0	2.184 2.616 3.048 3.531	+0.127 0 +0.152 0	4.2	0	3.15 4.15 5.15 6.2	+0.18 0 +0.22 0	2.184 2.616 3.048	+0.127					
E형 고정링	샤프트용		N1*** American	0.32 0.5 0.7 1.0 1.2 1.4	+0.05 0 +0.10 0 +0.14	0.305 0.457 0.584 0.737 0.991 1.168 1.422 1.727	+0.051 0 +0.076 0 +0.102	0.3 0.4 0.5 0.7 0.9 1.15 1.75 2.2	+0.05 0 +0.10 0 +0.14									

O링규격 일람

T =	77		흠폭(공차)	
종류	규격	일반공업용	일반공업 유압용	일반공업 공기압용
고정용	DIN 3770/3771 (독) JIS B 2401 (일) ISO 3601	2.54 3.18 4.32 6.1 8.0 4.0 4.0 4.0 4.0 4.0 4.0 4.7 4.7 4.0 4.14	1.9 +0.1 2.3 0 2.9 +0.15 0 3.6 +0.2 4.5 0 2.3 3.1 3.7 6.4 9.0 +0.2	
운동용	SMS 1586/1588 (스) BS 1806/4518 (영) SAE AS-568 (미)	7.5 11.0 2.39 3.58 4.78 7.14 9.58	5.5 +0.3 7.0 0 2.4 8.6 +0.4 0 4.8 0 +0.25 10.7 +0.5 0 9.5	2.3 3.1 3.7 6.4 9.0 2.2 3.4 4.6 6.9 9.3 +0.25

□ 정밀급 인서트 MF브레이커로 원스템의 가공이 가능. □ 종래의 GY시리즈 인서트로 원스템의 가공이 가능. □ 복수 횟수 또는 횡이송가공에 대응가능.

밀링가공의 트러블 대책

				·재종	등의 -	선정		절	삭	 조	 건				-	공 =	구 형	형 실	ŀ			717	∦ · ?	당착
	대 책		보다 단단한	인성이 있는	내열 충격성이 좋아	내용학성이 좋에 자용이다	절삭속도	이 송	절 입	맞 물 림 각	절삭	유제 건 식	경 사 각	코너각	절인강도 · 호디	커 터 경	커터날수	칩 포켓을 크게	와이퍼 인서트의	떨림정도의 향상	공구 강성이 향상	여대 · 공다이 장착강정	물출량을 작게한다	동력・기계의 반동을 작게한다
<u>=</u> 2	요 트러블 내 용 인 공구재종의		0이로 한다	총인 재종이로 한다 ※이 재종이로 한다 재종이로 한다			인다 <i>/</i> 춘다 `		≯ 크게	비수용정이로 한다	· 습식의 재검토		크거작거			다 / 소 및		사 용			착강성 향상	다	동을 작게한다	
	인서트의 마모가 빠르다	<mark>부적정</mark> 절인형상의 부적정	•										•	• *	•					•				
		절삭속도의 부적정					•					• 습식												
수명 악화		공구재종의 부적정 절삭조건의 부적정		•				•	•															
화	절인의	절인강도의 부족													*									
	결손·칩핑	열 크랙이 발생하고 있다			•		•,	•	•		•	· 건												
		구성인선이 발생하고 있다				•	• X X •	• X X •	•		•	- - - - 습식												
		강성부족										1									•	•	•	•
	정삭면이	절삭조건의 부적정	•				•	•	•															
정		용착이 발생하고 있다				•	• X				•	습식	*		•									
면	나쁘다	떨림정도가 나쁘다																	•	•				
정삭면 조도의		떨림 발생					•	•	•	*			*		•		•				•	•	•	•
악화	평면도·	피삭재가 휘어져 있다						•	•				*	•	•		•					•		
화	평한도가 명행도가 나쁘다	공구가 마모되고 있다																			•	•	•	•
		배분력이 크다											*	•	•		•							
		칩두께가 너무 두껍다					3	Š	•															
		커터경이 너무 크다						·		*						•								
	버 발생	가공면이 나쁘다											*		•									
버		코너각이 크다												•										
칩핑		절삭조건의 부적정						•	•															
	-1-1	가공면이 나쁘다						~	~				*		•									
	칩핑발생	코너각이 작다												*										
		떨림 발생					• ×	•	•	*			3		• ×		•				•	•	•	•
		용착이 발생하고 있다					3	•	1															
칩	칩이	친두께가 너무 얇다					3	*																
처리	엉키고, 막힘	커터경이 너무 작다														•								
	박임 너	리 구 식다 칩배출성이 나쁘다									•	● 습식				×	•	•						

술자료

밀링가공의 공구 각부의 작용

■밀링커터 절인의 제각도의 기능

밀링커터의 모든 각도

명 칭	기호	기 능	효 과
아키샬레이크 각	GAMP	칩배출의 방향을 결정한다	정일 때 : 절삭성이 좋다
래디얼레이크각	GAMF	절삭력을 결정한다	마이너스 일때 : 칩배출성이 좋다
절입각	KAPR	칩두께를 결정한다	작을 때 : 칩 두께가 아지고, 절삭시의 충격이 작다. 배분력이 높아진다.
정경사각	т	실제의 절삭력을 결정한다	정(대)일 때 : 절삭성이 좋아서 잘 용착하지 않는다 부(대)일 때 : 절삭성이 나쁘지만 절인강도가 높다
절인기울기각	ı	칩배출의 방향을 결정한다	정(대)일 때 : 배출성이 좋고, 절인강도는 낮다

■기본날형

● 경사각과 + , - 의 값

- 인선이 선행하는 날형상을 포지티브 경사각이라고
- 인선이 뒤에 오는 날형상을 네가티브 경사각이라고 하다.

● 기본날형

	1660			
	기본날형의 조합	(+) 아키샬레이크각 양 래디얼레이크각 양 더블 포지 날 형 (DP날 형)	(-) 아키샬레이크각 음 래디얼레이크 음 더블 네가 날 형 (DN날 형)	(+) 아키살레이크 양 래디얼레이크 음 네가 포지날형(NP날형)
아키	샬레이크 각 (GAMP)	포지(+)	네가()	포지(+)
래디	얼레이크 각 (GAMF)	포지(+)	네가()	네가()
팁	사양	포지티브(단면 사용)	네가티브(양면 사용)	포지티브(단면 사용)
	강 용	•	-	•
피 삭 재	주 철 용	_	•	•
재	경합금용	•	_	-
	난삭재용	•	_	•

■절입각(KAPR)과 절삭특성

피 삭 재 SCM440 (281HB)

공 구 : ø125mm ` 단조 ´ 절삭조건 : vc=125.6m/min ap=4mm ae=110mm

날형상별 절삭저항의 비교

밀링가공 절삭저항 3분력

절입각 배분력은 마이너스 방향으로 작용합니다. 90° 피삭재의 클램프 강성이 낮은 경우 피삭재를 들어 올리는 현상이 발생합니다. 절입각90 절입각 얇은 판재 구조물 등 강성이 없는 피삭재 75° 를 평절삭 가공을 하는 경우에는, 절입각 75°의 밀링 커터를 추천합니다. 절입각75 배분력은 가장 커진다. 박육구조물에서는 절입각 피삭재에 휨이 발생해서 가공정도의 저하를 초래합니다. ※ 주철의 절삭에서는 결손을 방지하는데 절입각45° 유리합니다.

주 분 력 : 밀링커터의 회전방향에 대해 회전과는 역으로 생기는 힘

※ 배 분 력 : 밀링커터를 축방향으로 밀어 올리는 힘 ※ 이송분력 : 테이블이송에 의해서 생기는 이송 방향의 힘

■절입각과 공구 수명

● 절입각과 칩 두께

절입량와 1날당 이송량 fz가 일정할 경우, 하기 그림과 같이 KAPR이 작을수록 잘라내는 두께 h는 얇게 되어 (45°) 에서는 90° 의 70% 정도), 단위 절삭날 길이당 절삭 저항이 감소하여 공구 수명이 길어지게 됩니다. 한편, 절삭 두께 h가 너무 크면, 이송분력의 증가에 의해 떨림 진동이 발생하여 공구 수명 저하에 원인이 됩니다.

● 절입각과 경사면 마모

하기 표는 절입각의 차이에 의한 인선의 마모 형태 입니다. 절입각 90°와 45°에서는 90°쪽이 경사면 마모가 크게 되어 있습니다. 이것은 두꺼운 칩에 의한 마찰력이 크기 때문입니다. 경사면 마모가 커지면 인선 강도가 떨어지고, 칩핑이나 결손이 발생해 공구수명이 짧아집니다.

	절입각 90°	절입각 75°	절입각 45°
vc=100m/min Tc=69min	The second second		
vc=125m/min Tc=55min		Market Market	
vc=160m/min Tc=31min	The second second		The state of the s

피 삭 재 : SNCM439 287HB

공 구 : DC=125mm 팁 : M20초경합금

절삭조건 : ap=3.0mm ae=110mm fz=0.2mm/t.

건식절삭

업커터와 다운커터

업커터와 다운커터 어느쪽의 가공방식을 선택하는가는, 공작기계와 밀링커터의 조건에 의해서 정합니다. 공구수명이라는 점에서는 일반적으로 다운커터가 유리합니다.

■정삭면

●절인 돌출조절 정도

●정삭면 조도의 향상

● 와이퍼팁의 셋팅 방법

- · 와이퍼팁의 부절인 길이는 1회전당의 이송보다 길어야 한다.
- ※필요이상으로 길면 떨림을 유발합니다.
- · 커터의 경이 크고 1회전당의 이송이, 와이퍼팁의 부절인길이 보다 큰 경우는, 2개 또는 3개 셋트합니다.
- · 2곳 이상 장착시는 와이퍼팁끼리의 돌출정도에 주의하여 주십시오.
- · 와이퍼팁의 공구재종은 하이그레이드(내마모성 중시)의 것을 사용하여 주십시오.

밀링가공의 계산식

■절삭속도 (vc)

 $vc = \frac{\pi \cdot DC \cdot n}{1000} \text{ (m/min)}$

※1000으로 나누는 것은, mm를m로 고치기 위함

vc (m/min): 절삭속도 DC(mm) : 커터경 π (3.14) : 원주율 n (min⁻¹): 주축회전속도

(예제) 주축회전속도 350min^{-1} , 커터의 외경 $\phi 125$ 로 절삭하고 있다, 이때의 절삭속도를 구하면,

(답) 공식에π=3.14, DC=125, n=350을 대입하면,

$$vc = \frac{\pi \cdot DC \cdot n}{1000} = \frac{3.14 \times 125 \times 350}{1000} = 137.4 \text{m/min}$$

을 대입하면, 절삭속도는137.4m/min가 됩니다.

1날당 이송 (fz)

$$fz = \frac{vf}{z \cdot n}$$
 (mm/tooth)

이송방향 부절인 각 1날당 이송 (fz) 날형 마크 fz (mm/tooth): 1날당 이송량 z: 날

vf (mm/min) : 매1분간의 테이블 이송속도

n (min⁻¹) : 주축회전속도 (1회전당 이송 f=z×fz)

(예제) 주축의 회전속도500min-1, 커터날수는 10날이고 테이블이송이 500mm/min일때 1날당의 이송량을 구하면.

(답) 공식에 대입하면,

$$fz = \frac{vf}{z \times n} = \frac{500}{10 \times 500} = 0.1 \text{mm/tooth}$$

1날당 이송량은 0.1mm/tooth가 됩니다.

■테이블 이송 (vf)

vf (mm/min) : 매1분간의 테이블 이송속도

fz (mm/tooth): 1날당 이송량 z : 날수

n (min⁻¹) : 주축회전속도

(예제) 1날당의 이송량 0.1mm/tooth이고 커터의 날수가10날, 주축의 회전속도가 500min⁻¹일 때의 테이블이송을 구하면,

(답) 공식에 대입하면,

$$vf = fz \times z \times n = 0.1 \times 10 \times 500 = 500 \text{mm/min}$$

테이블이송은 500mm/min가 됩니다.

■가공시간 (Tc)

 $Tc = \frac{L}{vf}$ (min)

Tc (min) : 가공시간

vf (mm/min): 매1분간의 테이블 이송속도

L (mm) : 테이블 총이송 길이(피삭재길이(I) +플러스직경(DC))

(예제) 주철(FC200)블럭, 폭100mm, 길이300mm의 평면을 정삭하고 싶다. 밀 링커터의 직경**¢**200, 날수16날, 절삭속도125m/min, 1날당 이송0.25mm 에서 절삭시간을 구하면 (주축회전속도200min⁻¹)

매1분간의 테이블이송을 구하고,

vf=0.25x16x200=800mm/min

테이블 총이송 길이를 구하여, L=300+200=500mm

공식에 대입하면,

$$Tc = \frac{500}{800} = 0.625 \text{ (min)}$$

0.625x60=37.5(sec)약37.5초 걸립니다.

■소요동력 (Pc)

 $Pc = \frac{ap \cdot ae \cdot vf \cdot Kc}{60 \times 10^6 \times \eta}$

 Pc (kW)
 : 소요동력
 ap (mm)
 : 절입

 ae (mm)
 : 절삭폭
 vf (mm/min)
 : 매1분간의 테이블 이송속도

Kc (MPa) : 비절삭저항 **η** : (기계효율계수)

(예제) 공구강을 절입2mm, 절삭폭80mm, 테이블이송280mm/min로 절삭하고 싶다, 필요한 동력을 구하면, 단, 절삭속도는 80m/min, 커터경**¢**250, 날수12날, 기계효율계수는80%로 한다. (답) 우선, 밀링의 1한날당의 이송부터 구하기 위하여 주축회전속도를 구합니다.

$$n = \frac{1000vc}{\pi DC} = \frac{1000 \times 80}{3.14 \times 250} = 101.91 min^{-1}$$

1날당 이송 $fz = \frac{vf}{z \times n} = \frac{280}{12 \times 101.9} = 0.228 \text{mm/tooth}$

공식에 대입하면,

$$Pc = \frac{2 \times 80 \times 280 \times 1800}{60 \times 10^{6} \times 0.8} = 1.68 \text{ kW}$$

Kc값

피삭재 재질	인장강도(MPa)	1날당 이송에 따른 비절삭저항 Kc (MPa)												
피역제 제글	및 경도	0.1mm/tooth	0.2mm/tooth	0.3mm/tooth	0.4mm/tooth	0.6mm/tooth								
연강	520	2200	1950	1820	1700	1580								
중강	620	1980	1800	1730	1600	1570								
경강	720	2520	2200	2040	1850	1740								
공구강	670	1980	1800	1730	1700	1600								
공구강	770	2030	1800	1750	1700	1580								
크롬망간강	770	2300	2000	1880	1750	1660								
크롬망간강	630	2750	2300	2060	1800	1780								
크롬몰리브덴강	730	2540	2250	2140	2000	1800								
크롬몰리브덴강	600	2180	2000	1860	1800	1670								
니켈크롬몰리브덴강	940	2000	1800	1680	1600	1500								
니켈크롬몰리브덴강	352HB	2100	1900	1760	1700	1530								
오스테나이트계 스텐레스강	155HB	2030	1970	1900	1770	1710								
주강	520	2800	2500	2320	2200	2040								
경(硬)질주철	46HRC	3000	2700	2500	2400	2200								
미하나이트주철	360	2180	2000	1750	1600	1470								
회주철	200HB	1750	1400	1240	1050	970								
황동	500	1150	950	800	700	630								
경합금 (Al-Mg)	160	580	480	400	350	320								
경합금 (Al-Si)	200	700	600	490	450	390								
경합금 (Al-Zn-Mg-Cu)	570	880	840	840	810	720								

엔드밀 가공의 트러블 대책

		대 책	공구재종의 선정			절		ł 3	<u></u> 조	건				-	공구	형신	<u>}</u>			フ	계	장 :		
			코팅제품이로 한다	절삭속도	이 송	절 입	ョ메ョ비(Pf)	절삭방향	에어블로어를	절	삭유	제	비틀림각	날수	경 사 각	공 구 경	공구강성의	칩 포켓을 크게	70 7 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	공구 체결정도의	스핀들 콜레	콜렛의 점검 교환	척 보지력	워크 체결
		۵.	로 한 다				Pf)		이를 사용한다	분사량을 많게	피수예정이때 한다	건식·습식이					향상	크게	교 제 한다	정내이 하상	시피삐 찜릿 희삐매정나	김 교환	보지편에 넆이다	워크 체결강성의 향상
트리	서블 내 용	인			인다 춘다		`\ 작 게		-	명 게 한 다	머 하다	의재검토		크게							도 향상			
		논코팅품을 사용하고 있다	•																					
	외주날의	날수가 적다												3										
	마모가 현저하다	절삭조건의 부적정		•							•													
		업커터로 가공하고 있다		1				down																
		절삭조건의 부적정																						
수명		인선강도가 약하다															•							
수명 악화	칩핑이 많다	척의 체결이 불충분																				•	•	
화		체결강성이 낮다																	•	•	•	•	•	•
		절삭조건의 부적정				•																		
	가공중에	엔드밀의 강성이 낮다														3	•							
	가공중에 절손이 많다	필요 이상으로 돌출이 길다				•													•					
		칩이 막혀 있다								•								•						
	7.7.5.01	절삭조건의 부적정		•	•																			
	가공중에 떨림이	엔드밀의 강성이 낮다											3	3		3	•							
	발생한다	체결강성이 낮다																	•	•	•	•	•	•
		절인의 마모가 크다	•																					
정 삭 면	벽면의 정삭면 조도가 나쁘다	절삭조건의 부적정		•		•																		
면		칩이 물려든다							•	•		● 습식												
조도의	저면의 정삭면	저날의 요철부 각도가 없다			•	•						п 1			*									
희	조도가 나쁘다	피크 피드가 크다					•																	
악 화		절인의 마모가 크다	•				1																	
	벽면의 휨	절삭조건의 부적정			•	•																		
		엔드밀의 강성 부족			1	4							3	3		3	•							
	정삭치수	절삭조건의 부적정		•	•	•																		
	정도가 나쁘다	체결강성이 낮다																	•	•	•	•	•	•
버	버·가공물 마무리	절삭조건의 부적정			•	•																		
골	단계 결손이 발생하고 있다	비틀림각이 크다											•											
라	버 발생이	경계마모가 발생하고 있다	•																					
버·가공물 마무리단계 결손	빠르다	절삭조건의 부적정		•	4																			
칩	칩 막힘이	가공량이 너무 크다			•	•																		
처 리	발생하고 있다	칩 포켓의 부족												•				•						

기술자료

엔드밀의 각부 명칭・날 수

■엔드밀의 각부 명칭

■칩 포켓 단면적 비교

■날 수에 따른 엔드밀의 특징과 용도

		2 날	3 날	4 날	6 날				
특	이 점	칩배출성 양호 세로이송 가공 용이 절삭저항이 작다	칩배출성 양호 세로이송 가공 용이	강성이 높다	강성이 높다 절인의 내구성이 우수하다				
징	결 점	강성이 낮다	외경 측정이 어렵다	칩배출성이 나쁘다	칩배출성이 나쁘다				
	요 도	홈, 측면가공 드릴가공등 사용용도가 넓다	홈, 측면가공 중삭가공, 정삭가공	얕은 홈, 측면가공 정삭가공	고경도재 가공 얕은 홈, 측면가공				

엔드밀의 종류와 형상

■외주날의 종류와 형상 예

종 류	형 상	특 징
보통날		가장 범용적이고, 홈가공, 측면가공, 숄더가공등에 사용되고, 또한 황삭, 중정삭, 정삭의 어느 경우에나 사용된다. 종류가 가장 많다.
테이퍼 날		금형의 테이퍼부분의 가공이나 인로부의 가공 사용된다. 보통날로 가공한 뒤 테이퍼가공에 사용한다.
라핑날		날이 파도형으로 되어 있어서 칩이 작게 분단되고, 절삭저항이 작아서 황삭에 적합하다. 정삭면은 거칠기 때문에 정삭에는 맞지 않는다. 경사면 연삭이 필요하다.
형상형 날		예로서 코너R가공용 커터를 나타내고 있지만, 가공부의 형상에 맞는 날형으로 한 것을 말한다. 특수품의 경우가 많다.

■저날의 종류와 형상예

종 류	형 상	특 징
센타 구멍형 스퀘어엔드날		범용적이고, 홈가공, 측면가공, 숄더가공 등에 사용된다. 세로 절입은 할 수 없지만 연삭이 양쪽 센터를 지지하므로 재연삭 정도가 좋다.
센타 컷 스퀘어엔드날		범용적이고, 홈가공, 측면가공, 숄더가공 등에 사용된다. 세로절입이 가능하지만 날수가 적을 수록 세로 절입성은 좋다. 한쪽 고정에서의 재연삭.
볼엔드 날		곡면가공에는 없어서는 안되는 것이다. 선단부는 칩포켓이 작으므로 칩의 배출이 나쁘다.
래디어스엔드날		코너 잔삭부의 R가공이나 피크피드 가공에 사용된다. 피크피드 가공의 경우, R은 작아도 경이 큰 엔드밀을 사용할 수 있어서 고능률 가공이 가능하다.

■샹크부 및 목부위의 종류와 형상 예

	7 611 66 41	
종 류	형 상	특 징
표준 (스트레이트 샹크)		가장 범용적으로 폭넓게 사용되고 있다.
롱샹크		깊은 절삭용으로 샹크가 길기때문에 사용목적에 맞는 돌출 길이로 해서 사용할 수 있습니다.
롱넥		가는 파이의 엔드밀로, 깊은 가공용으로서 사용되고 있지만, 보링용에도 적합합니다.
테이퍼넥		금형의 구배로 된 벽부분의, 깊은 가공용에 위력을 발휘한다.

|술자료

피크피드 피치 선정표

■볼엔드밀, 래디어스엔드밀에 의한 피크피드가공(카운터링)

$$h=R \cdot \left[1-\cos\left\{\sin^{-1}\left(\frac{P}{2R}\right)\right\}\right]$$

R : 볼 반경(RE), 코너R반경(RE)

P : 피크피드(Pf) h : 이론 가공면 조도

■엔드밀의 볼 반경 (코너R반경)과 피크피드에 의한 이론가공면조도(h)

단위: mm

Р	피크피드 피치 (P)										
R	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	
0.5	0.003	0.010	0.023	0.042	0.067	0.100	_	_	_	_	
1	0.001	0.005	0.011	0.020	0.032	0.046	0.063	0.083	0.107	_	
1.5	0.001	0.003	0.008	0.013	0.021	0.030	0.041	0.054	0.069	0.086	
2	0.001	0.003	0.006	0.010	0.016	0.023	0.031	0.040	0.051	0.064	
2.5	0.001	0.002	0.005	0.008	0.013	0.018	0.025	0.032	0.041	0.051	
3		0.002	0.004	0.007	0.010	0.015	0.020	0.027	0.034	0.042	
4		0.001	0.003	0.005	0.008	0.011	0.015	0.020	0.025	0.031	
5		0.001	0.002	0.004	0.006	0.009	0.012	0.016	0.020	0.025	
6		0.001	0.002	0.003	0.005	0.008	0.010	0.013	0.017	0.021	
8			0.001	0.003	0.004	0.006	0.008	0.010	0.013	0.016	
10			0.001	0.002	0.003	0.005	0.006	0.008	0.010	0.013	
12.5			0.001	0.002	0.003	0.004	0.005	0.006	0.008	0.010	

Р					피크피드 피치 (P)										
R	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0					
0.5	_	_	_	_	_	_	_	_	_	_					
1	_	_	_	_	_	_	_	_	_	_					
1.5	0.104	_	_	_	_	_	_	_	_	_					
2	0.077	0.092	0.109	_	_	_	_	_	_	_					
2.5	0.061	0.073	0.086	0.100	_	_	_	_	_	_					
3	0.051	0.061	0.071	0.083	0.095	0.109	_	_	_	_					
4	0.038	0.045	0.053	0.062	0.071	0.081	0.091	0.103	_	_					
5	0.030	0.036	0.042	0.049	0.057	0.064	0.073	0.082	0.091	0.101					
6	0.025	0.030	0.035	0.041	0.047	0.054	0.061	0.068	0.076	0.084					
8	0.019	0.023	0.026	0.031	0.035	0.040	0.045	0.051	0.057	0.063					
10	0.015	0.018	0.021	0.025	0.028	0.032	0.036	0.041	0.045	0.050					
12.5	0.012	0.014	0.017	0.020	0.023	0.026	0.029	0.032	0.036	0.040					

드릴가공 트러블 대책

					절	스	<u> </u>	<u></u> 조	건				공	Ŧ	1 :	형	상			기기	# · ?	당착	
	대 책		절 삭 속 도	이 송	절입시 이송을 내린다	관통시 이송을	스텝피드 가공이로 한다	메구멍 정도의 향상(공급		치 즐 폭	호닝 폭	두 꺼 운 심	홈길이를 짧게	양 절인의 높이차를		×;ᡂ云山(thinning)のI叫	공구 체결정도의 향상	공구돌출장을 짧게	가공물 절입면의	워크 체결강성의	기계의 반동 억제·강성 향상
트리	오네블 내 용	인		다↗	다	내 린 다	로 한다)상 , 깊이의 증대	희석률을 짙게 한다	전대학에 기미리다	전에 되었다.		1게	<i>*</i>	한 다	자를 작 게 한 다	을 사용한다	ing)이때 히다	하수	케 한 다	절입면의 평활하게	향상	세·강성 향상
	드릴이 절손한다	드릴강성의 부족 절삭조건의 부적정 파지구의 흔들림이 크다 첫 가공면이 경사져 있다		•										*	•				•		•		•
수평 하화	외주날· 마진부의 마모 대	절삭조건의 부적정 가공점에서 절삭열의 상승 떨림정도가 나쁘다	•						•	•							•		•				
화	외주날의 칩핑	절삭조건의 부적정 파지구의 흔들림이 크다 떨림, 진동이 발생한다		•			•						•						•	•		•	•
	치즐부의 칩핑	치즐의 폭이 넓다 가공시작점의 가공성이 나쁘다 떨림, 진동이 발생한다			•							•,	•							•		•	•
	구멍 경이 확대된다	드릴강성의 부족 드릴 형상이 부적정												*	•	•							
굼	구멍경이 축소 된다	가공점에서 절삭열의 상승 절삭조건의 부적정 드릴 형상이 부적정	• 4						•	•						•	•						
퍼 정보의 학화	진직도가 나쁘다	드릴강성의 부족 파지구의 흔들림이 크다 가이드성의 부족						•						*	•				•				•
퐈	구멍 위치정도· 진원도·면조도가 나쁘다	드릴강성의 부족 가공시작점의 가공성이 나쁘다 절삭조건의 부적정 파지구의 흔들림이 크다			•									*	•			•	•				•
버	천공가공 버가 크다	드릴 형상이 부적정 절삭조건의 부적정				•							•										
칩	칩이 길다	절삭조건의 부적정 칩배출성의 부족		&				•		•	•			•			•						
처리	칩이 막힌다	절삭조건의 부적정 칩배출성의 부족	•	•				•		•	•			•			•						

■ 좋은 사용법

급유하는 곳은 2곳이 바람직하 고 드릴 선단부와 중앙부에도 뿌려주십시요.

급유의 방법(내부급유형)

절삭유의 압력은 0.5~1MPa (**ø**5미만은 2∼3MPa)정도 분사량은 1.5~4.0 l/min정도

소경드릴의 사용법

- ①아래 구멍을 1DC(DC는 드릴 지 름) 정도 연다
- ②밑구멍을 가이드로 하고, 사용하 고 싶은 쿨런트구멍형 드릴로 가공 한다. 가공내용에 따라서 스텝가공 또는 인칭가공을 추천합니다.

절삭액의 취급

- 1) 쿨런트 필터를 반드시 _ 장착해 주십시요. 절삭가루 등이 쿨런트구멍 내에 막히는 수가 있습니다. 특히 소경드릴을 사용할 경우에는 가능한 한 조밀한 필터를 사용해 주십시요.
- 2) 절삭액이 오래되면 액 속의 미세한 가루가 쿨런트구멍 안에 부착되어, 절삭액의 분출이 악화됩니다. 빨리 교환해 주십시요.

단가공

①2공정으로 나눈다. ②먼저 넓은 부분을 가공한다. 《라마 티브 · 트 ※카운터 및 면취날형 공구를 제작합니다.

관통시의 버, 워크칩핑

- ①관통시의 이송을 낮춘다.
- ②챔퍼각을 만든다.
- ③선단각을 변경한다.

■ 사용상의 주의

- ●쿨런트 구멍이 막히는 것을 방지하기 위해서, 쿨런트 장치에는 정밀필터(메시≦ 3μm)를 사용해 주십시요.
- ●I/d=3을 초과하는 깊은 구멍가공에는 가이드구멍가공을 추천합니다.
- ●스텝가공도 효과적입니다.

드릴의 마모상태 · 절인 손상

드릴의 마모상태

드릴인선의 마모에는 아래 그림 같은 것이 있습니다. 마모의 발생이나 양은, 피삭재나 절삭조건에 따라 달라지지만 보통 외주마모가 가장 커서, 이것이 드릴수명을 대부분 차지하고 있습니다. 재연삭은 선단의 여유면 마모를 연마하기 때문에 결손이 큰 손상이 있으면 재연삭량도 커질 필요가 있습니다.

■절인의 손상

드릴 가공을 하면 드릴의 인선에 칩핑이나 결손, 이상마모가 발생하는 수가 있습니다. 이와 같은 경우, 확대하여 관찰해서 요인을 규명하고 대책을 취하는 것이 중요합니다.

드릴 각부의 명칭 및 형상과 절삭특성

■드릴 각부의 명칭

■형상제원과 절삭특성

80 11 2 7	
비틀림각	드릴 축방항에 대한 홈 경사각으로 바이트의 경사각에 해당된다. 드릴의 경사각은, 날의 위치에 따라 다르고 외주부가 더 크고 중심을 향할수록 작아진다. 치즐엣지 부분에서는 음(-)의 경사각으로 되고 피삭재를 누르게 된다. 고경도재 소 ◆・・ 경사각 ・・ 대 연질재(알루미늄 등)
날장	가공구멍의 깊이, 부쉬장, 재연삭값 등에 의해 결정되지만, 드릴의 수명에의 영향이 크기 때문에 가능한 한 짧 게 설정할 필요가 있다.
선단각	일반적으로는118°이지만, 용도에 따라 설정한다. 연질재이면서 피삭성이 좋은 재료 소 ◆・・ 선단각 ・・▶ 대 단단한 피삭재와 고능률 가공용
두꺼운 심	드릴의 강성과 칩배출성을 생각하는데 있어서 중요한 요소이다. 용도에 맞춰서 설정한다. 절삭저항 소 강성 소 칩배출성 양호 피삭성이 좋은 재료 조 ◀•• 두꺼운 심•• ■ 대 집 배출성 저하 고경도재, 교차구멍 가공용 등
마진	선단부는 드릴의 직경을 결정하고, 가공시에는 드릴의 안내(가이드) 역할을 한다. 마진폭은 가공구멍과의 마찰을 고려해서 결정한다. 가이드성이 뒤떨어진다 소 ••• 마진 폭 ••• 대 가이드성 양호
직경 백 테이퍼	가공한 구멍내면과의 마찰을 적게 하기 위하여, 선단에서 샹크쪽으로 테이퍼를 부착한다. 일반적으로 홈길이 100mm 에 대한 직경의 감소량으로 나타내고, 0.04~0.1mm정도 이다. 고능률가공용 드릴이나 가공구멍의 조임이 발생하는 피삭재의 경우는 크게 설정한다.

■선단날 형상의 변경과 효과

드릴의 선단날 형상은 최적인 선단각을 유지하고, 아래표와 같이 피삭재, 요구되는 구멍의 정도, 재연삭의 용이성에 따라서 변경할 수가 있습니다.

●대표적인 선단 절인 형상

	<u> </u>			
연삭 호칭	형	상	특징·효과	용 도
원추			· 여유면을 원추면으로 연삭하기 때문에 바깥원보다도 중심부에 다가갈 수록 여유각이 커진다	· 일반용
평면			· 2번 여유면을 평면으로 연삭 · 연삭이 용이	· 주로 소경드릴용
스리 레이크			· 치즐부가 없으므로 구심성이 좋고, 구멍 확대대도 적다 · 특수연삭반이 필요 · 3면 평면연삭	· 구멍정도, 위치결정, 정도가 좋은 구멍가공용
스파이럴 포인트			· 드릴 중심부근의 여유각을 크게 하기 위해 원추연삭을 더욱 변칙비틀림으로 하고 있다 · 치즐 엣지가 S형이어서 구심성과 가공정도가 좋다	· 고정도의 구멍가공용
래디얼 립			· 절인을 R로 연삭함으로써, 더욱 부하의 분산을 도모하고 있다 · 가공정도나 정삭면 조도가 좋다 · 뚫린구멍에서는 저면의 버가 적다 · 전용 연삭반이 필요	· 주철, 경합금용 · 주철판용 · 철강
촛불			· 단면이 촛불형상같은 모양을 하고 있어서 구심성이 좋고, 통과할 때의 충격이 적다	· 박판의 구멍가공용

씨닝

드릴날의 경사각은 드릴 중심부에 가까울수록 작고, 치즐엣지 부분에서는 음(-)의 경사각이 됩니다. 절삭시의 드릴중심부는, 피삭재를 짓누르게 되어 절삭저항의 50~70%를 발생시킵니다. 드릴의 절삭저항의 감소와 치즐엣지부에서 생성된 칩의 조기배출 및 정삭성 항상을 위해, 씨닝이 대단한 효과가 있습니다.

형 상	Xà	XRà	Så	Nå
특 징	스러스트 하중이 대폭 감소되고 정삭성이 향상된다. 비교적 심 두께가 큰 경우에 유효.	X형과 비교해 약간 정삭성이 떨어지지만 날강도가 높고, 피삭재의 적용범위가 넓다. 긴수명.	연삭이 용이하고, 일반적으로 많이 사용된다.	비교적 심 두께가 큰 경우에 유효.
주된 용도	일반가공, 깊은구멍가공.	일반가공 스텐레스 강 가공	강, 주철, 비철금속의 일반가공	깊은구멍가공

■드릴 가공에서의 칩

칩의 종류	형 상	특징과 배출성
원추나선형		절인에서 선형으로 유출된 칩이 홈에 의해 구부러져서 생성된다. 연성재의 이송이 낮은 경우에 발생한다. 여러 번 컬이 된 뒤 부러지는 경우에 칩배출성은 좋다.
장피치형	many many my	생성된 칩이 컬이 되지 않고 그대로 배출된 것으로 배출후 드릴에 엉키기 쉽다.
부채형		드릴 홈과 가공구멍벽의 구속에 의해 파손된 칩으로, 이송이 빠를 경우등에 발생한다. 칩처리가 양호하다.
전이절단형		원추나선형으로 생성된 칩이 가공구멍벽의 구속을 받아 장핏치형으로 이행되기 직전에 재료의 연성(延性)부족등으로 파단된 칩. 칩배출성, 칩처리 모두 비교적 양호하다.
지그재그형		생성된 칩이 홈형상이나 재료 특성상의 기복에 따라, 그대로 접혀지면서 생긴 것. 홈에 막히기 쉽다.
바늘모양		연한 재료나 작은 반경으로 컬한 경우, 진동에 의해 파단된 경우의 칩. 비교적 배출성은 좋지만 홈 안에 가득 막히는 일이 있다.

드릴가공의 계산식

절삭속도(vc)

 $\pi \cdot DC \cdot n$ (m/min)

*1000으로 나누는 것은, mm를m로 고치기 위함

vc (m/min): 절삭속도 DC (mm) : 드릴경 **π (3.14)** : 원주율 n (min⁻¹) : 주축회전속도

(예제) 주축회전속도1350min⁻¹, 드릴경**ø**12로 드릴가공을 한다. 이때의 절삭속도를 구하면,

(답) 공식에 π =3.14,DC=12,n=1350을 대입하면,

$$vc = \frac{\pi \cdot DC \cdot n}{1000} = \frac{3.14 \times 12 \times 1350}{1000} = 50.9 \text{m/min}$$

절삭속도는50.9m/min가 됩니다.

주축이송(vf)

 $vf = fr \cdot n(mm/min)$

vf (mm/min): 주축(Z축)이송 속도 fr (mm/rev) : 1회전당의 이송량 n (min-1) : 주축회전속도

(예제) 1회전당의 이송0.2mm/rev로

회전속도가1350min⁻¹일때의 주축이송속도를 구하면,

(답) 공식에 대입하면,

 $vf = fr \times n = 0.2 \times 1350 = 270 mm/min$

주축 이송은 270mm/min가 됩니다.

드릴가공 시간(Tc)

: 가공시간 Tc (min)

n (min⁻¹) : 주축회전속도 Id (mm) : 드릴가공 길이 fr (mm/rev): 1회전당 이송

(예제) SCM440인 강에 415, 깊이30mm인 드릴가공을 한다 절삭속도50m/min, 이송0.15mm/rev로 한다.이때의 절삭시간을 구하면.

주축회전속도 $n = \frac{50 \times 1000}{15 \times 3.14} = 1061.57 min^{-1}$ (답)

$$Tc = \frac{30 \times 1}{1061.57 \times 0.15} = 0.188$$

= 0.188×60≒11.3 sec 초로 드릴가공이 가능하다.

기술자료

금속재료기호 대조표

탄소강

일본	독	·일	영	국	프랑스	이탈리아	스페인	스웨덴	아메리카	중국
JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	AISI/SAE	GB
STKM 12A STKM 12C	1.0038	RSt.37-2	4360 40 C	_	E 24-2 Ne	_	_	1311	A570.36	15
_	1.0401	C15	080M15	_	CC12	C15, C16	F.111	1350	1015	15
_	1.0402	C22	050A20	2C	CC20	C20, C21	F.112	1450	1020	20
SUM22	1.0715	9SMn28	230M07	1A	S250	CF9SMn28	F.2111 11SMn28	1912	1213	Y15
SUM22L	1.0718	9SMnPb28	_	_	S250Pb	CF9SMnPb28	11SMnPb28	1914	12L13	_
_	1.0722	10SPb20	_	_	10PbF2	CF10Pb20	10SPb20	_	_	_
	1.0736	9SMn36	240M07	1B	S300	CF9SMn36	12SMn35	_	1215	Y13
_	1.0737	9SMnPb36	_	_	S300Pb	CF9SMnPb36	12SMnP35	1926	12L14	_
S15C	1.1141	Ck15	080M15	32C	XC12	C16	C15K	1370	1015	15
S25C	1.1158	Ck25	_	_	_	_	_	_	1025	25
	1.8900	StE380	4360 55 E	_	_	FeE390KG	_	2145	A572-60	
_	1.0501	C35	060A35	_	CC35	C35	F.113	1550	1035	35
	1.0503	C45	080M46	_	CC45	C45	F.114	1650	1045	45
_	1.0726	35S20	212M36	8M	35MF4	_	F210G	1957	1140	_
_	1.1157	40Mn4	150M36	15	35M5	_	_	_	1039	40Mn
SMn438(H)	1.1167	36Mn5	_	_	40M5	_	36Mn5	2120	1335	35Mn2
SCMn1	1.1170	28Mn6	150M28	14A	20M5	C28Mn	_	_	1330	30Mn
S35C	1.1183	Cf35	060A35	_	XC38TS	C36	_	1572	1035	35Mn
S45C	1.1191	Ck45	080M46	_	XC42	C45	C45K	1672	1045	Ck45
S50C	1.1213	Cf53	060A52	_	XC48TS	C53	_	1674	1050	50
_	1.0535	C55	070M55	9	_	C55	_	1655	1055	55
_	1.0601	C60	080A62	43D	CC55	C60	_	_	1060	60
S55C	1.1203	Ck55	070M55	_	XC55	C50	C55K	_	1055	55
S58C	1.1221	Ck60	080A62	43D	XC60	C60	_	1678	1060	60Mn
_	1.1274	Ck101	060A96	_	XC100	_	F.5117	1870	1095	-
SK3	1.1545	C105W1	BW1A	_	Y105	C36KU	F.5118	1880	W1	_
SUP4	1.1545	C105W1	BW2	_	Y120	C120KU	F.515	2900	W210	_

합금강

일 급 경										
일본	독	·일	영	국	프랑스	이탈리아	스페인	스웨덴	아메리카	중국
JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	AISI/SAE	GB
SM400A, SM400B SM400C	1.0144	St.44.2	4360 43 C	_	E28-3	_	_	1412	A573-81	_
SM490A, SM490B SM490C	1.0570	St52-3	4360 50 B	_	E36-3	Fe52BFN Fe52CFN	_	2132	_	-
	1.0841	St52-3	150M19	_	20MC5	Fe52	F.431	2172	5120	_
_	1.0904	55Si7	250A53	45	55S7	55Si8	56Si7	2085	9255	55Si2Mn
_	1.0961	60SiCr7	_	_	60SC7	60SiCr8	60SiCr8	_	9262	_
SUJ2	1.3505	100Cr6	534A99	31	100C6	100Cr6	F.131	2258	ASTM 52100	Gr15, 45G
_	1.5415	15Mo3	1501-240	_	15D3	16Mo3KW	16Mo3	2912	ASTM A204Gr.A	_
_	1.5423	16Mo5	1503-245-420	_	_	16Mo5	16Mo5	-	4520	-
_	1.5622	14Ni6	_	_	16N6	14Ni6	15Ni6	_	ASTM A350LF5	_
_	1.5662	X8Ni9	1501-509-510	_	_	X10Ni9	XBNi09	_	ASTM A353	_
SNC236	1.5710	36NiCr6	640A35	111A	35NC6	_	_	_	3135	_
SNC415(H)	1.5732	14NiCr10	_	_	14NC11	16NiCr11	15NiCr11	_	3415	_
SNC815(H)	1.5752	14NiCr14	655M13	36A	12NC15	_	_	_	3415, 3310	_
SNCM220(H)	1.6523	21NiCrMo2	805M20	362	20NCD2	20NiCrMo2	20NiCrMo2	2506	8620	_
SNCM240	1.6546	40NiCrMo22	311-Type 7	_	_	40NiCrMo2(KB)	40NiCrMo2	_	8740	
_	1.6587	17CrNiMo6	820A16	_	18NCD6	_	14NiCrMo13	_	_	_
SCr415(H)	1.7015	15Cr3	523M15	_	12C3	_	_		5015	15Cr

9번 독일 명국 필환상 이용하는 NAPOR UNI UNE SS AISINAS GB SCA40 1.7176 1.717	이브	-	:01	O4		ㅠ리ᄉ	OLEFIN	۵ تاا ۱	A OII FII		7. 2
SCH400	일본		1		i e	프랑스	이탈리아	스페인	스웨덴	아메리카	중국
SUPBAN 17176 55Cr3 527A60 48 55C3 - - 5155 20CMn				BS	EN	AFNOR	UNI				
SCM415(H) 1,7282 15C/Mo5 13C/Mo4 1501420/27 - 15CD3.5 14C/Mo45 14C/Mo45 - ASTM A182 - 1,7380 10C/Mo910 1501-622 12CD9 12C/Mo9 12C/Mo91 12C				_	_	_	_	42Cr4	2245		
1.7335	. ,			527A60	48		_	-	-	5155	20CrMn
- 1.7380 10C/Mo910 1501-622	SCM415(H)				_		-		2216	-	_
- 1,7380 10C/mbog 1501-622 - 12CD9 12C/mbog 1	_	1.7335	13CrMo4 4	1501-620Gr27	_		14CrM045	14CrM045	_		_
- 1,7380 10CrMo910 10CrMo910 10CrMo910 1501,455 - 12CD10 12CrMo10 1U.H 2218 F.22 -				4504.000			400-14-0				
1,7715	_	1.7380	10CrMo910		_			TU.H	2218		_
		4 774E	141101/60			12CD10	12Crivio10	121100016		F.22	
1.6511 36CrMIMo4 816M40 110	_				400		26CrMa\/12				
1,6582 34CrNIMo6 817M40 24 35NCD6 34NCh66/8B - 2541 4340 49CrNIMoA 35Cr430(H) 1,7033 34Cr4 530M32 18B 32C4 41Cr4 42Cr4 - 5132 35Cr - 132 35Cr - 140 40Cr - 140	_					40NCD3			_	0040	_
SCH30(H) 1,7033 34Cr4 530A32 188 32C4 41Cr4 42Cr4 42								 	2541	-	40CrNiMoA
SCR440(H) 1,7035	SCr430(H)								_		
1,7131											
SCM420 1.7218 25C/mod 1717CDS110 - 25CD4 25C/mod 16SD 55Cr3 2225 4130 30C/mlm 30	_				_				2511		
SCM430 Roman Rom	SCM420										TOCTIVITI
SCM432 SCCRM3 1.7220 34CrMo4 708A37 19B 35CD4 35CrMo4 34CrMo4 2234 4137 4135 35CrMo		1.7210	230111104			23004	2301WO+(ND)	55Cr3	2223	7130	30CrMn
SCCRM3				7 OOIVIZO						4137	
SCM 440		1.7220	34CrMo4	708A37	19B	35CD4	35CrMo4	34CrMo4	2234		35CrMo
SCM 440 1.7223	OOOITIVIO										
SCM440(H) 1.7225	SCM 440	1.7223	41CrMo4	708M40	19A	42CD4TS	41CrMo4	42CrMo4	2244		40CrMoA
SCM440(H) 1.722											42CrMo
- 1.7361 32CrMo12 722M24 40B 30CD12 32CrMo12 F.124.A 2240	SCM440(H)	1.7225	42CrMo4	708M40	19A	42CD4	42CrMo4	42CrMo4	2244	4140	
SUP10	_	1.7361	32CrMo12	722M24	40B	30CD12	32CrMo12	F.124.A	2240	_	_
1.8509	SUP10									6150	50CrVA
1.8509	001 10									0.00	0001171
- 1.2067 100Cr6 BL3 - Y100C6 - 100Cr6 - L3 CrV, 9SiCr SKS31 1.2419 105WCr6 - - 105WCr3 100WCr6 105WCr5 2140 - CrWMo SKT4 1.2713 55NiCrMov6 BH224/5 - 55NCDV7 - F.520.S - L6 5CrNiMo - 1.5662 X8Ni9 1501-509 - X10Ni9 XBNi09 - ASTM A353 - - 1.5680 12Ni19 - - Z18N5 - - 2515 - - - 1.6657 14NiCrMo134 832M13 36C - 15NiCrMo13 14NiCrMo131 - - - SKD1 1.2000 X210Cr12 BD3 - Z220Cc12 X210Cr13kU X210Cr12 - D3 ASTM D3 Cr12 Cr12MoV SKD1 1.2343 X40CrMoV51 BB13 - Z40CDV5 X35CMoV6KU X40CrMoV51	_	1.8509	41CrAlMo7	905M39	41B		41CrAlMo7	41CrAlMo7	2940	_	_
SKS31 1.2419 105WCr6 -	_	1.2067	100Cr6	BL3	_		_	100Cr6	_	L3	CrV. 9SiCr
SKS2, SKS3	SKS31			_	_		100WCr6		2140	_	
SKT4							107WCr5KU				CrWMo
- 1.5680 12Ni19 Z18N5 2515 1.6657 14NiCrMo134 832M13 36C - 15NiCrMo13 14NiCrMo131	SKT4	1.2713	55NiCrMoV6	BH224/5	_	55NCDV7	_	F.520.S	_	L6	5CrNiMo
- 1.6657 14NiCrMo134 832M13 36C - 15NiCrMo13 14NiCrMo131	_	1.5662	X8Ni9	1501-509	_	_	X10Ni9	XBNi09	_	ASTM A353	_
SKD1	_	1.5680	12Ni19	_	_	Z18N5	_	_	_	2515	_
X250Cr12KU	_	1.6657	14NiCrMo134	832M13	36C	_	15NiCrMo13	14NiCrMo131	_	-	_
SKD1	SKD1	1.2080	X210Cr12	BD3	_	Z200C12	X210Cr13KU	X210Cr12	_	D3	Cr12
SKD12 1.2363 X100CrMoV5 BA2 - Z100CDV5 X100CrMoV5 F.5227 2260 A2 Cr5Mo1V SKD61 1.2344 X40CrMoV51 BH13 - Z40CDV5 X35CrMoV05KU X40CrMoV5 2242 H13 ASTM H13 40CrMoV5 SKD2 1.2436 X210CrW12 - - X215CrW121KU X210CrW12 2312 - - - 1.2542 45WCrV7 BS1 - - 45WCrV8KU 45WCrSi8 2710 S1 - SKD5 1.2581 X30WCrV93 BH21 - Z30WCV9 X28W09KU X30WCrV9 - H21 30WCrV9 - 1.2601 X165CrMoV12 - - X165CrMoV12 X30WCrV9 - H21 30WCrV9 - 1.2601 X165CrMoV12 - - X28W0WCV X30WCrV9 - H21 30WCrV9 - 1.2601 X165CrMoV12 - - - W210 V <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>X250Cr12KU</td> <td></td> <td></td> <td>ASTM D3</td> <td>CHZ</td>							X250Cr12KU			ASTM D3	CHZ
SKD61 1.2344 X40CrMoV51 RM X40CrMoV51 RM X35CrMoV05KU X40CrMoV5 RM X40CrMoV5 2242 H13 ASTM H13 40CrMoV5 SKD2 1.2436 X210CrW12	SKD11	1.2601	X153CrMoV12	BD2	_	_	X160CrMoV12	_	_	D2	Cr12MoV
X40CrMoV51 X40CrMoV51KU	SKD12	1.2363	X100CrMoV5	BA2	_	Z100CDV5	X100CrMoV5	F.5227	2260	A2	Cr5Mo1V
X40CrMoV51 X40CrMoV51 X40CrMoV51RU X40CrMoV51RU X210CrW12 2312 - X215CrW121KU X210CrW12 2312 - X215CrW121KU X210CrW12 2312 - - X215CrW121KU X210CrW12 2312 - - X165CrMoV12 X30WCrV9 X30WCrV9 - X30WCrV9 X30WCrV9 - X30WCrV9 X30WCrV9 X30WCrV9 - X30WCrV9 X30WC	SKD61	1.2344	X40CrMoV51	BH13	_	Z40CDV5	X35CrMoV05KU	X40CrMoV5	2242	H13	40CrMoV5
- 1.2542 45WCrV7 BS1 - 45WCrV8KU 45WCrSi8 2710 S1 - SKD5 1.2581 X30WCrV93 BH21 - Z30WCV9 X28W09KU X30WCrV9 - H21 30WCrV9 - 1.2601 X165CrMoV12 X165CrMoV12KU X160CrMoV12 2310 SKS43 1.2833 100V1 BW2 - Y1105V W210 V SKH3 1.3255 S18-1-2-5 BT4 - Z80WKCV X78WCo1805KU HS18-1-1-5 - T4 W18Cr4VCo5 SKH2 1.3355 S18-0-1 BT1 - Z80WCV X75W18KU HS18-0-1 - T1 - SCMnH/1 1.3401 G-X120Mn12 Z120M12 - Z120M12 XG120Mn12 X120MN12 SUH1 1.4718 X45CrSi93 401S45 52 Z45CS9 X45CrSi8 F.322 - HW3 X45CrSi93 SUH3 1.3343 S6-5-2 4959BA2 - Z40CSD10 15NiCrMo13 - 2715 D3 - SKH9, SKH51 1.3348 S 2-9-2 HS2-9-2 HS2-9-2 2782 M7 -			X40CrMoV51							ASTM H13	400111000
SKD5 1.2581 X30WCrV93 BH21 — Z30WCV9 X28W09KU X30WCrV9 — H21 30WCrV9 — 1.2601 X165CrMoV12 — — X165CrMoW12KU X160CrMoV12 2310 — — SKS43 1.2833 100V1 BW2 — Y1105V — — W210 V SKH3 1.3255 S 18-1-2-5 BT4 — Z80WKCV X78WCo1805KU HS18-1-1-5 — T4 W18Cr4VCo5 SKH2 1.3355 S 18-0-1 BT1 — Z80WCV X75W18KU HS18-0-1 — T1 — SCMnH/1 1.3401 G-X120Mn12 Z120M12 — Z120M12 XG120Mn12 X120MN12 — — — SUH3 1.3343 X45CrSi93 401S45 52 Z45CS9 X45CrSi8 F.322 — HW3 X45CrSi93 SUH3 1.3343 S6-5-2 4959BA2 — Z40CSD10 15NiCrMo13	SKD2	1.2436	X210CrW12	_	_	_	X215CrW121KU	X210CrW12	2312	-	_
- 1.2601	_	1.2542			_	_				S1	_
SKS43 1.2833 100V1 BW2 - Y1105V - - - W210 V SKH3 1.3255 S 18-1-2-5 BT4 - Z80WKCV X78WCo1805KU HS18-1-1-5 - T4 W18Cr4VCo5 SKH2 1.3355 S 18-0-1 BT1 - Z80WCV X75W18KU HS18-0-1 - T1 - SCMnH/1 1.3401 G-X120Mn12 Z120M12 - Z120M12 XG120Mn12 X120MN12 - - - SUH1 1.4718 X45CrSi93 401S45 52 Z45CS9 X45CrSi8 F.322 - HW3 X45CrSi93 SUH3 1.3343 S6-5-2 4959BA2 - Z40CSD10 15NiCrMo13 - 2715 D3 - SKH9, SKH51 1.3348 S 2-9-2 - - - HS6-5-2-2 F.5603 2722 M2 - - 1.3348 S 2-9-2 - - HS2-9-2 HS2-9-2 </td <td>SKD5</td> <td></td> <td>X30WCrV93</td> <td>BH21</td> <td>_</td> <td>Z30WCV9</td> <td>X28W09KU</td> <td>X30WCrV9</td> <td>_</td> <td>H21</td> <td>30WCrV9</td>	SKD5		X30WCrV93	BH21	_	Z30WCV9	X28W09KU	X30WCrV9	_	H21	30WCrV9
SKH3 1.3255 S 18-1-2-5 BT4 — Z80WKCV X78WCo1805KU HS18-1-1-5 — T4 W18Cr4VCo5 SKH2 1.3355 S 18-0-1 BT1 — Z80WCV X75W18KU HS18-0-1 — T1 — SCMnH/1 1.3401 G-X120Mn12 Z120M12 — Z120M12 XG120Mn12 X120MN12 — — — SUH1 1.4718 X45CrSi93 401S45 52 Z45CS9 X45CrSi8 F.322 — HW3 X45CrSi93 SUH3 1.3343 S6-5-2 4959BA2 — Z40CSD10 15NiCrMo13 — 2715 D3 — SKH9, SKH51 1.3343 S6/5/2 BM2 — Z85WDCV HS6-5-2-2 F.5603 2722 M2 — — 1.3348 S 2-9-2 — — — HS2-9-2 2782 M7 —					_	_	X165CrMoW12KU	X160CrMoV12	2310	_	_
SKH2 1.3355 S 18-0-1 BT1 - Z80WCV X75W18KU HS18-0-1 - T1 - SCMnH/1 1.3401 G-X120Mn12 Z120M12 - Z120M12 XG120Mn12 X120MN12 - - - SUH1 1.4718 X45CrSi93 401S45 52 Z45CS9 X45CrSi8 F.322 - HW3 X45CrSi93 SUH3 1.3343 S6-5-2 4959BA2 - Z40CSD10 15NiCrMo13 - 2715 D3 - SKH9, SKH51 1.3343 S6/5/2 BM2 - Z85WDCV HS6-5-2-2 F.5603 2722 M2 - - 1.3348 S 2-9-2 - - HS2-9-2 HS2-9-2 2782 M7 -					_		_	-	_		
SCMnH/1 1.3401 G-X120Mn12 Z120M12 — Z120M12 XG120Mn12 X120MN12 — — — SUH1 1.4718 X45CrSi93 401S45 52 Z45CS9 X45CrSi8 F.322 — HW3 X45CrSi93 SUH3 1.3343 S6-5-2 4959BA2 — Z40CSD10 15NiCrMo13 — 2715 D3 — SKH9, SKH51 1.3343 S6/5/2 BM2 — Z85WDCV HS6-5-2-2 F.5603 2722 M2 — — 1.3348 S 2-9-2 — — HS2-9-2 HS2-9-2 2782 M7 —					_				-		W18Cr4VCo5
SUH1 1.4718 X45CrSi93 401S45 52 Z45CS9 X45CrSi8 F.322 — HW3 X45CrSi93 SUH3 1.3343 S6-5-2 4959BA2 — Z40CSD10 15NiCrMo13 — 2715 D3 — SKH9, SKH51 1.3343 S6/5/2 BM2 — Z85WDCV HS6-5-2-2 F.5603 2722 M2 — — 1.3348 S 2-9-2 — — HS2-9-2 HS2-9-2 2782 M7 —					_				_	T1	_
SUH3 1.3343 S6-5-2 4959BA2 — Z40CSD10 15NiCrMo13 — 2715 D3 — SKH9, SKH51 1.3343 S6/5/2 BM2 — Z85WDCV HS6-5-2-2 F.5603 2722 M2 — — 1.3348 S 2-9-2 — — HS2-9-2 HS2-9-2 2782 M7 —					_				-	-	_
SKH9, SKH51 1.3343 S6/5/2 BM2 — Z85WDCV HS6-5-2-2 F.5603 2722 M2 — — 1.3348 S 2-9-2 — — HS2-9-2 HS2-9-2 2782 M7 —					52				-		X45CrSi93
- 1.3348 S 2-9-2 HS2-9-2 HS2-9-2 2782 M7 -					_						_
	SKH9, SKH51			BM2	_	Z85WDCV					_
SKH55 1.3243 S6/5/2/5 BM35 - 6-5-2-5 HS6-5-2-5 F.5613 2723 M35 -	-			- DM65	_	-					_
	SKH55	1.3243	56/5/2/5	RM35	_	6-5-2-5	HS6-5-2-5	F.5613	2723	IVI35	_

스텐레스 강(페라이트계,마르틴 사이트계)

일본	독	·일	영	국	프랑스	이탈리아	스페인	스웨덴	아메리카	중국
JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	AISI/SAE	GB
SUS403	1.4000	X7Cr13	403S17	_	Z6C13	X6Cr13	F.3110	2301	403	OCr13 1Cr12
_	1.4001	X7Cr14	_	_	_	_	F.8401	_	_	_
SUS416	1.4005	X12CrS13	416S21	_	Z11CF13	X12CrS13	F.3411	2380	416	_
SUS410	1.4006	X10Cr13	410S21	56A	Z10C14	X12Cr13	F.3401	2302	410	1Cr13
SUS430	1.4016	X8Cr17	430S15	60	Z8C17	X8Cr17	F.3113	2320	430	1Cr17
SCS2	1.4027	G-X20Cr14	420C29	56B	Z20C13M	_	_	_	_	_
SUS420J2	1.4034	X46Cr13	420S45	56D	Z40CM Z38C13M	X40Cr14	F.3405	2304	_	4Cr13
_	1.4003	_	405S17	_	Z8CA12	X6CrAl13	_	_	405	_
_	1.4021	_	420S37	_	Z8CA12	X20Cr13	_	2303	420	_
SUS431	1.4057	X22CrNi17	431S29	57	Z15CNi6.02	X16CrNi16	F.3427	2321	431	1Cr17Ni2
SUS430F	1.4104	X12CrMoS17	_	_	Z10CF17	X10CrS17	F.3117	2383	430F	Y1Cr17
SUS434	1.4113	X6CrMo17	434S17	_	Z8CD17.01	X8CrMo17	_	2325	434	1Cr17Mo
SCS5	1.4313	X5CrNi134	425C11	_	Z4CND13.4M	(G)X6CrNi304	_	2385	CA6-NM	
SUS405	1.4724	X10CrA113	403S17	_	Z10C13	X10CrA112	F.311	_	405	OCr13Al
SUS430	1.4742	X10CrA118	430S15	60	Z10CAS18	X8Cr17	F.3113	_	430	Cr17
SUH4	1.4747	X80CrNiSi20	443S65	59	Z80CSN20.02	X80CrSiNi20	F.320B	_	HNV6	_
SUH446	1.4762	X10CrA124	_	_	Z10CAS24	X16Cr26	_	2322	446	2Cr25N
SUH35	1.4871	X53CrMnNiN219	349S54	_	Z52CMN21.09	X53CrMnNiN219	_	_	EV8	5Cr2Mn9Ni4N
_	1.4521	X1CrMoTi182	_	_	_	_	_	2326	S44400	_
_	1.4922	X20CrMoV12-1	_	_	_	X20CrMoNi1201	_	2317	_	_
_	1.4542	_	_	_	Z7CNU17-04	_	_	_	630	_

스텐레스 강(오스테나이트 계)

SUS304L 1.4306 X2CrNi1911 304S11 - Z2CN18.10 X2CrNi18.11 - 2352 304L OCr18 OCr18 SUS304 1.4350 X5CrNi189 304S11 58E Z6CN18.09 X5CrNi1810 F.3551 2332 304 OCr18 SUS303 1.4305 X12CrNi5188 303S21 58M Z10CNF18.09 X10CrNi518.09 F.3504 F.3564 F.3504 SUS303 1.4305 X12CrNi5188 303S21 58M Z10CNF18.09 X10CrNi518.09 F.3508 2346 303 1Cr18N SUS304L - 304C12 - Z3CN19.10 - 2333 - - 2333 - - 2333 301 2333 2347 304L - 2333 301 2333 2347 304L - 2333 301 2333 2347 304L - 2333 301 2333 2347 316 0Cr17N 205316 2344 2347 316 0Cr17N 205316 2344 2347 316 0Cr17N 205316 2345 2347 316 2345 2347 316 2345 2347 316 2345 2347 316 2345 2347 316 2345 2												
SUS304L 1.4306 X2CrNi1911 304S11 - Z2CN18.10 X2CrNi18.11 - 2352 304L OCr18 SUS304 1.4350 X5CrNi189 304S11 58E Z6CN18.09 X5CrNi1810 F.3551 2332 304 OCr18 SUS303 1.4305 X12CrNi5188 303S21 58M Z10CNF18.09 X10CrNi518.09 F.3508 2346 303 1Cr18N SUS304L - 304C12 - Z3CN19.10 - 2333 - - 225CN19.10 - 2333 - - 225CN19.10 - 2333 - 225CN19.10 - 2333 - 225CN19.10 - 2370 2333 - 2333 - 225CN19.10 - 2370 2314 301 Cr17N SUS301 1.4310 X12CrNi177 - Z12CN17.07 X12CrNi1811 F.3503 2352 304L - 225CN19.10 - 2371 304LN - 2371	일본	독	·일	영	국	프랑스	이탈리아	스페인	스웨덴	아메리카	중국	
SUS304	JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	AISI/SAE	GB	
SUS303 1.4305 X12CrNiS188 303S21 58M Z10CNF18.09 X10CrNiS18.09 F.3508 2346 303 1Cr18N	SUS304L	1.4306	X2CrNi1911	304S11	_	Z2CN18.10	X2CrNi18.11	_	2352	304L	OCr19Ni10	
SUS303 1.4305 X12CrNiS188 303S21 58M Z10CNF18.09 X10CrNiS18.09 F.3508 2346 303 1Cr18N SUS304L - 304C12 - Z3CN19.10 - 23333 2355	SUS304	1.4350	X5CrNi189	304S11	58E	Z6CN18.09	X5CrNi1810	F.3551	2332	304	OCr18Ni9	
SUS303 1.4305 X12CrNiS188 303S21 58M Z10CNF18.09 X10CrNiS18.09 F.3508 2346 303 1Cr18N SUS304L -								F.3541				
SUS304L - 304C12 - Z3CN19.10 - 2333 - - SCS19 1.4306 X2CrNi189 304S12 - Z2CrNi1810 X2CrNi18.11 F.3503 2352 304L - SUS301 1.4310 X12CrNi177 - Z12CN17.07 X12CrNi1707 F.3517 2331 301 Cr17N SUS304LN 1.4311 X2CrNiN1810 304S62 - Z2CN18.10 - 2371 304LN - SUS316 1.4401 X5CrNiM01810 316S16 58J Z6CND17.11 X5CrNiM01712 F.3543 2347 316 OCr17N SCS13 1.4308 G-X6CrNiM01810 316C16 - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>F.3504</td><td></td><td></td><td></td></t<>								F.3504				
SCS19 1.4306 X2CrNi189 304S12 - Z2CrNi1810 X2CrNi18.11 F.3503 2352 304L - SUS301 1.4310 X12CrNi177 - - Z12CN17.07 X12CrNi1707 F.3517 2331 301 Cr17N SUS304LN 1.4311 X2CrNi1810 304S62 - Z2CN18.10 - 2371 304LN - SUS316 1.4401 X5CrNiMo1810 316S16 58J Z6CND17.11 X5CrNiMo1712 F.3543 2347 316 0Cr17N SCS13 1.4308 G-X6CrNiMo1810 316C16 - Z6CN18.10M -	SUS303	1.4305	X12CrNiS188	303S21	58M	Z10CNF18.09	X10CrNiS18.09	F.3508	2346	303	1Cr18Ni9MoZr	
SUS301 1.4310 X12CrNi1777 — Z12CN17.07 X12CrNi1707 F.3517 2331 301 Cr17N SUS304LN 1.4311 X2CrNiN1810 304S62 — Z2CN18.100 — — 2371 304LN — SUS316 1.4401 X5CrNiMo1810 316S16 58J Z6CND17.11 X5CrNiMo1712 F.3543 2347 316 0Cr17N SCS13 1.4408 G-X6CrNi189 304C15 — Z6CN18.10M — <t< td=""><td>SUS304L</td><td>_</td><td>_</td><td>304C12</td><td>_</td><td>Z3CN19.10</td><td>_</td><td>_</td><td>2333</td><td>_</td><td>_</td></t<>	SUS304L	_	_	304C12	_	Z3CN19.10	_	_	2333	_	_	
SUS304LN 1.4311 X2CrNiN1810 304S62 — Z2CN18.10 — — 2371 304LN — SUS316 1.4401 X5CrNiMo1810 316S16 58J Z6CND17.11 X5CrNiMo1712 F.3543 2347 316 0Cr17N SCS13 1.4308 G-X6CrNi189 304C15 — Z6CN18.10M — — — — — SCS14 1.4408 G-X6CrNiMo1810 316C16 — — — — F.8414 — — — SCS22 1.4581 G-X5CrNiMo1810 318C17 — Z4CNDNb1812M XG8CrNiMo1811 — — — — — SUS316LN 1.4429 X2CrNiMoN1813 — — Z2CND17.13 — — — — — SCS16 SUS316L 3.4435 X2CrNiMo1812 X2CrNiMo1812 — X2CrNiMo1812 X2CrNiMo1812 X2CrNiMo1712 — — 2353 316L OCr27N X2CrNiMo1712 — — 2353 316L OCr27N X2CrNiMo1712 — —<	SCS19	1.4306	X2CrNi189	304S12	_	Z2CrNi1810	X2CrNi18.11	F.3503	2352	304L	-	
SUS316 1.4401 X5CrNiMo1810 316S16 58J Z6CND17.11 X5CrNiMo1712 F.3543 2347 316 0Cr17N SCS13 1.4308 G-X6CrNi189 304C15 - Z6CN18.10M -	SUS301	1.4310	X12CrNi177	_	_	Z12CN17.07	X12CrNi1707	F.3517	2331	301	Cr17Ni7	
SCS13 1.4308 G-X6CrNi189 304C15 — Z6CN18.10M —	SUS304LN	1.4311	X2CrNiN1810	304S62	_	Z2CN18.10	_	_	2371	304LN	<u> -</u>	
SCS14 1.4408 G-X6CrNiMo1810 316C16 — — — F.8414 — — — SCS22 1.4581 G-X5CrNiMoNb1810 318C17 — Z4CNDNb1812M XG8CrNiMo1811 —	SUS316	1.4401	X5CrNiMo1810	316S16	58J	Z6CND17.11	X5CrNiMo1712	F.3543	2347	316	0Cr17Ni11Mo2	
SCS22 1.4581 G-X5C/NiMoNb1810 318C17 — Z4CNDNb1812M XG8CrNiMo1811 —	SCS13	1.4308	G-X6CrNi189	304C15	_	Z6CN18.10M	_	_	_	-		
SUS316LN 1.4429 X2CrNiMoN1813 — — Z2CND17.13 — — 2375 316LN OCr177 — 1.4404 — 316S13 — Z2CND17.12 X2CrNiMo1712 — 2348 316L — SCS16 1.4435 X2CrNiMo1812 316S13 — Z2CND17.12 X2CrNiMo1712 — 2353 316L OCr27N SUS316L — 1.4436 — 316S13 — Z6CND18-12-03 X8CrNiMo1713 — 2343, 2347 316 — SUS317L 1.4438 X2CrNiMo1816 317S12 — Z2CND19.15 X2CrNiMo1816 — 2367 317L 00Cr19 — 1.4539 X1NiCrMo — — Z6CNT18.10 — — 2562 UNS V 0890A — SUS321 1.4541 X10CrNiTi189 321S12 58B Z6CNNb18.10 X6CrNiTi1811 F.3552 2337 321 1Cr18 SUS347 1.4550 X10CrNiNb189 347S17 58F Z6CNNb18.10 X6CrNiNb1811 F.3552 2338	SCS14	1.4408	G-X6CrNiMo1810	316C16	_	-	_	F.8414	_	_	_	
- 1.4404 - 316S13 - Z2CND17.12 X2CrNiMo1712 - 2348 316L - SCS16 1.4435 X2CrNiMo1812 316S13 - Z2CND17.12 X2CrNiMo1712 - 2353 316L OCr27N SUS316L - 1.4436 - 316S13 - Z6CND18-12-03 X8CrNiMo1713 - 2343, 2347 316 - SUS317L 1.4438 X2CrNiMo1816 317S12 - Z2CND19.15 X2CrNiMo1816 - 2367 317L O0Cr19 - 1.4539 X1NiCrMo - Z6CNT18.10 X6CrNiTi1811 F.3553 F.3523 SUS347 1.4550 X10CrNiTi189 347S17 58F Z6CNNb18.10 X6CrNiNb1811 F.3552 2338 347 1Cr18	SCS22	1.4581	G-X5CrNiMoNb1810	318C17	_	Z4CNDNb1812M	XG8CrNiMo1811	_	_	-		
SCS16 SUS316L 1.4435 SUS316L X2CrNiMo1812 316S13 316S13 - - Z2CND17.12 Z2CND17.12 Z2CND18-12-03 Z2CND18-12-03 Z2CND18-12-03 Z2CND19.15 Z	SUS316LN	1.4429	X2CrNiMoN1813	_	_	Z2CND17.13	_	_	2375	316LN	OCr17Ni13Mo	
SUS316L X2CrNiMo1812 Z2CND17.12 X2CrNiMo1712 - X343, 2347 316 X367 X867 X867 X867 X867 X867 X867 X867 X8	_	1.4404	_	316S13	_	Z2CND17.12	X2CrNiMo1712	_	2348	316L	-	
SUS316L - 1.4436 - 316S13 - Z6CND18-12-03 X8CrNiMo1713 - 2343, 2347 316 - SUS317L 1.4438 X2CrNiMo1816 317S12 - Z2CND19.15 X2CrNiMo1816 - 2367 317L 00Cr19 - 1.4539 X1NiCrMo - - Z6CNT18.10 - 2562 UNS V 0890A - SUS321 1.4541 X10CrNiTi189 321S12 58B Z6CNT18.10 X6CrNiTi1811 F.3553 F.3523 2337 321 1Cr18 SUS347 1.4550 X10CrNiNb189 347S17 58F Z6CNNb18.10 X6CrNiNb1811 F.3552 2338 347 1Cr18	SCS16	1.4435	Y2CrNiMo1812	316S13	_	72CND17 12	Y2CrNiMo1712		2353	316L	OCr27Ni12Mo3	
SUS317L 1.4438 X2CrNiMo1816 317S12 — Z2CND19.15 X2CrNiMo1816 — 2367 317L 00Cr19 — 1.4539 X1NiCrMo — — Z6CNT18.10 — — 2562 UNS V 0890A SUS321 1.4541 X10CrNiTi189 321S12 58B Z6CNT18.10 X6CrNiTi1811 F.3553 F.3523 2337 321 1Cr18 SUS347 1.4550 X10CrNiNb189 347S17 58F Z6CNNb18.10 X6CrNiNb1811 F.3552 2338 347 1Cr18	SUS316L		AZGITNIIVIO 10 12			ZZOND17.12	AZGITNIIVIO 17 12					
- 1.4539 X1NiCrMo - Z6CNT18.10 2562 UNS V 0890A - SUS321 1.4541 X10CrNiTi189 321S12 58B Z6CNT18.10 X6CrNiTi1811 F.3553 F.3523 2337 321 1Cr18 SUS347 1.4550 X10CrNiNh189 347S17 58F Z6CNNb18.10 X6CrNiNb1811 F.3552 2338 347 1Cr18		1.4436	_	316S13	_	Z6CND18-12-03	X8CrNiMo1713	_	2343, 2347	316		
SUS321 1.4541 X10CrNiTi189 321S12 58B Z6CNT18.10 X6CrNiTi1811 F.3553 2337 321 1Cr18 SUS347 1.4550 X10CrNiNb189 347S17 58F Z6CNNb18.10 X6CrNiNb1811 F.3552 2338 347	SUS317L	1.4438	X2CrNiMo1816	317S12	_	Z2CND19.15	X2CrNiMo1816	_	2367	317L	OOCr19Ni13Mo	
SUS321 1.4541 X10CrNiTi189 321S12 58B Z6CNT18.10 X6CrNiTi1811 F.3553 2337 321 1Cr18 SUS347 1.4550 X10CrNiNb189 347S17 58F Z6CNNb18.10 X6CrNiNb1811 F.3552 2338 347	_	1.4539	Y1NiCrMo		_	76CNT18 10	_	_	2562	UNS V		
SUS347 1.4550 X10CrNi11189 F.3523 F.3523 ICr18			ATINICTIVIO			Z00111 10.10				0890A		
SUS347 1.4550 X10CrNiNb189 347S17 58F Z6CNNb18.10 X6CrNiNb1811 F.3552 2338 347 1Cr188	SUS321	1.4541	V10CrNiTi190	321S12	58B	Z6CNT18.10	X6CrNiTi1811	F.3553	2337	321	1Cr18NI9Ti	
X10CrNiNh189			X 10 CHNH 11 103					F.3523			10110101911	
F.3524	SUS347	1.4550	Y10CrNiNh190	347S17	58F	Z6CNNb18.10	X6CrNiNb1811	F.3552	2338	347	1Cr18Ni11Nb	
			V 100HAILIND 109					F.3524			TOTTOINITIND	
	_	1.4571	X10CrNiMoTi1810	320S17	58J				2350	316Ti	Cr18Ni12Mo2T	
- 1.4583 X10CrNiMoNb1812 - Z6CNDNb1713B X6CrNiMoNb1713 - 318 Cr17Ni13		1.4583	X10CrNiMoNb1812	_	_	Z6CNDNb1713B	X6CrNiMoNb1713	_	-	318	Cr17Ni12Mo3Mb	

일본	독	·일	영	국	프랑스	이탈리아	스페인	스웨덴	아메리카	중국
JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	AISI/SAE	GB
SUH309	1.4828	X15CrNiSi2012	309S24	_	Z15CNS20.12	X6CrNi2520	_	_	309	1Cr23Ni13
SUH310	1.4845	X12CrNi2521	310S24	_	Z12CN2520	X6CrNi2520	F.331	2361	310S	OCr25Ni20
SCS17	1.4406	X10CrNi18.08	_	58C	Z1NCDU25.20	_	F.8414	2370	308	_
_	1.4418	X4CrNiMo165	_	_	Z6CND16-04-01	_	_	_	_	_
_	1.4568	_	316S111	_	Z8CNA17-07	X2CrNiMo1712	_	_	17-7PH	_
	1.4504									
_	1.4563	_	_	_	Z1NCDU31-27-03	_	_	2584	NO8028	_
					Z1CNDU20-18-06AZ			2378	S31254	
SUS321	1.4878	X12CrNiTi189	321S32	58B, 58C	Z6CNT18.12B	X6CrNiTi18 11	F.3523	_	321	1Cr18Ni9Ti

내열동

일본	독	·일	영	국	프랑스	이탈리아	스페인	스웨덴	아메리카	중국
JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	AISI/SAE	GB
SUH330	1.4864	X12NiCrSi3616	_	_	Z12NCS35.16	_	_	-	330	_
SCH15	1.4865	G-X40NiCrSi3818	330C11	_	_	XG50NiCr3919	_	-	HT, HT 50	_

회주철

일본	독	·일	영	국	프랑스	이탈리아	스페인	스웨덴	아메리카	중국
JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	AISI/SAE	GB
_	-	_	_	-	_	_	_	0100	_	_
FC100	_	GG 10	_	_	Ft 10 D	_	_	0110	No 20 B	_
FC150	0.6015	GG 15	Grade 150	_	Ft 15 D	G15	FG15	0115	No 25 B	HT150
FC200	0.6020	GG 20	Grade 220	-	Ft 20 D	G20	_	0120	No 30 B	HT200
FC250	0.6025	GG 25	Grade 260	_	Ft 25 D	G25	FG25	0125	No 35 B	HT250
_	-	_	_	-	_	_	_	_	No 40 B	_
FC300	0.6030	GG 30	Grade 300	_	Ft 30 D	G30	FG30	0130	No 45 B	HT300
FC350	0.6035	GG 35	Grade 350	_	Ft 35 D	G35	FG35	0135	No 50 B	HT350
_	0.6040	GG 40	Grade 400	_	Ft 40 D	_	_	0140	No 55 B	HT400
_	0.6660	GGL NiCr202	L-NiCuCr202	-	L-NC 202	_	_	0523	A436 Type 2	_

■ 닥타일 주철

	1-16 16										
일본	독	·일	영국		프랑스	이탈리아	스페인	스웨덴	아메리카	중국	
JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	AISI/SAE	GB	
FCD400	0.7040	GGG 40	SNG 420/12	_	FCS 400-12	GS 370-17	FGE 38-17	07 17-02	60-40-18	QT400-18	
_	_	GGG 40.3	SNG 370/17	_	FGS 370-17	_	_	07 17-12	_	_	
_	0.7033	GGG 35.3	_	_	_	_	_	07 17-15	_	_	
FCD500	0.7050	GGG 50	SNG 500/7	_	FGS 500-7	GS 500	FGE 50-7	07 27-02	80-55-06	QT500-7	
_	0.7660	GGG NiCr202	Grade S6	-	S-NC202	_	_	07 76	A43D2	_	
_	_	GGG NiMn137	L-NiMn 137	_	L-MN 137	_	_	07 72	_	_	
FCD600	_	GGG 60	SNG 600/3	_	FGS 600-3	_	_	07 32-03	_	QT600-3	
FCD700	0.7070	GGG 70	SNG 700/2	_	FGS 700-2	GS 700-2	FGS 70-2	07 37-01	100-70-03	QT700-18	

■ 가단주철

일본	독	·일	영	국	프랑스	이탈리아	스페인	스웨덴	아메리카	중국
JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	AISI/SAE	GB
FCMB310	-	-	8 290/6	-	MN 32-8	_	_	08 14	-	_
FCMW330	_	GTS-35	B 340/12	_	MN 35-10	_	_	08 15	32510	_
FCMW370	0.8145	GTS-45	P 440/7	_	Mn 450	GMN45	_	08 52	40010	_
FCMP490	0.8155	GTS-55	P 510/4	_	MP 50-5	GMN55	_	08 54	50005	_
FCMP540	_	GTS-65	P 570/3	_	MP 60-3	_	_	08 58	70003	_
FCMP590	0.8165	GTS-65-02	P 570/3	_	Mn 650-3	GMN 65	-	08 56	A220-70003	_
FCMP690	_	GTS-70-02	P 690/2	-	Mn 700-2	GMN 70	-	08 62	A220-80002	-

|술자료

금형용강의 일람표

분 류	JIS (기타)	愛知製鋼	Uddeholm(否)	코오베제강	스미토모금속	大同특수강	日本高周波	히다찌 금속	미쯔비시 제강
	S50C	AUK1		KTSM2A	SD10	PDS1	KPM1		MT50C
기계구조용 탄소강				KTSM21	SD17	PXZ			
	S55C SCM440	AUK11		KTSM22 KTSM3A	SD21 SD61	PDS3			
기계구조용합금강		AURTI	HOLDAY	KTSM3A KTSM31	3001	F D 33			
FLA マココ	SCM445	CN3	HOLDAX			VV2	L/3	YC3	
탄소공구강	SK3 SKS3	SK3 SKS3				YK3 GOA	K3 KS3	SGT	
	SKS31	SNSS				GO31	K31	361	
	SKS93	SK301				YK30	K3M	YCS3	
	SKD1						KD1	CRD	
	SKD11	SKD11		KAD181		DC11	KD11	SLD	
	SKD11	AUD11				DC3	KD11V	SLD2	
	SKD11		51005			5046	KDQ	000	
	SKD12	0)//4	RIGOR			DC12	KD12	SCD	
		SX4 SX44							
		SX44 SX105V					FH5		
합금공구강		TCD					1113		
(냉간용)		100				DC53	KD21	SLD8	
,020/						PD613		3250	
						GO4		ACD37	
						GO5		HMD5	
						GO40F		HPM2T	
								YSM	
								HPM31	
							KDME	HMD1	
							KDM5 KD11S	HMD5 ACD6	
							KD113	ACD8	
								ACD9	
	(P20)		IMPAX	KTSM3M		PX5	KPM30	HPM2	MT24M
합금공구강	(P20)							HPM7	
(냉간 기타)	(P21)			KTSM40EF		NAK55	KAP	HPM1	
(82 714)				KTSM40E		NAK80	KAP2	HPM50	
	OKD 4					GLD2	I/D 4	CENA1	
	SKD4 SKD5					DH4 DH5	KD4 KD5	YDC HDC	
	SKD6					DH3	KD5	ПОС	
	SKD61	SKD61	Over M Suprem			DHA1	KDA	DAC	
	SKD61	ONDO!	Suprem			5100	MFA	27.0	
	SKD62	SKD62				DH62	KDB	DBC	
	SKT4					GFA	KTV	DM	
	SKD7					DH72	KDH1	YEM	
	(H10)					DH73	L/DE	1400	
	SKD8		QRO80M			DH41	KDF	MDC	
			QI (COUIVI					YHD40	
						DH71		111070	
						DH42			
						DH21			
합금공구강							KDW		
(열간용)							KDHM		
,==3/							AE31	\/E844	
								YEM4 YHD50	
	SKT4	SKT4A						YHD50 YHD26	
	6F4	MPH						111020	
	SKT4	1411 11							
						DH31	KDA1	DAC3	
							KDA5	DAC10	
								DAC40	
						GF78		DAC45	
						DH76	TDO	DAC55	
						DH2F	TD3 KDAS	FDAC	
						UHZE	NUAS	FDAC	
						51121	112710		
						51121	113710	YHD3 MDC-K	

분 류	JIS (기타)	愛知製鋼	Uddeholm(否)	코오베제강	스미토모금속	大同특수강	日本高周波	히다찌 금속	미쯔비시 제강
	SKH51					MH51	H51	YXM1	
	SKH55					MH55	HM35	YXM4	
	SKH57					MH57	MV10	XVC5	
						MH8	NK4	YXM60	
						MH24			
						MH7V1			
고속도 공구강						MH64			
						VH54	HV2	XVC11	
							НМ3	YXM7	
						MH85	KDMV	YXR3	
						MH88	HM9TL	YXR4	
								YXR7	
								YXR35	
			ASP23	KHA32		DEX20		HAP10	
			ASP30	KHA30		DEX40		HAP40	
				KHA3VN		DEX60		HAP50	
분말고속도 공구강				KHA30N		DEX70		HAP63	
C2271 010				KHA33N		DEX80		HAP72	
				KHA50					
				KHA77					
			ASP60	KHA60					
	SUS403					GLD1			
	SUS420		STAVAX			S-STAR	KSP1	НРМ38	
스텐레스 강	SUS440C		ELMAX(분말)	KAS440(분말)		SUS440C	KSP3		
	SUS420							SUS420	
	SUS630					NAK101	U630	PSL	
	(414)								
마르에징강						MAS1C	KMS18-20	YAG	DMG300
초내열합금								HRNC	
단조공구								ICD1	
								ICD5	

주

두

표면조도

표면조도 (JIS B 0601-1994.년 해설에 의거한다) 종 류기 호 구하는 법 구하는 법의 예 (그림) 조도곡선에서 그 평균선의 방향으로 기준길이만을 빼내고. 이 빼낸 산 부분의 평균선 방향으로 x축을, 세로배율의 방향으로 Y축을 술 잡아서, 조도곡선을 y=f(x)로 나타냈을 때에, 다음 식에 의해서 평 Ra 균 구해지는 값을 마이크로 미터(μ m)로 나타낸 것을 말한다. 조 $Ra = \frac{1}{\Omega} \int_{0}^{a} \{f(x)\} dx$ 도 조도곡선에서 그 평균선의 방향으로 기준길이만을 빼내고, 이 빼낸 부분의 정상선과 곡저선과의 간격을 거칠기 곡선의 종배율의 방향으로 최 측정하고, 이 값을 마이크로 미터(μ m)로 나타낸것을 말한다. 대 R₇ 비고 Rz를 구하는 경우에는 흠이라고 보여지는 듯한 유별나게 높은 높 정상 및 곡저가 없는 부분에서 기준길이 만을 빼낸다. 0 $Rz=R_P+Rv$ 조도 곡선에서 그 평균선의 방향으로 기준길이 만을 빼내고, 이 빼낸 부분의 평균선에서 세로배율의 방향으로 측정한 가장 높은 정점에서 5번째까지의 정점 표고(Yp) 절대치의 평균치와, 가장 낮은 곡저에서 10 5번째까지의 곡저 표고(Yv) 절대치의 평균치와의 합계를 구해서, 이 점 값을 마이크로 미터(µm)로 나타낸 것을 말한다. 평 Rzjis 균

Yp1, Yp2, Yp3, Yp4, Yp5: 기준길이Q 에 대한 파고의 부분중에서 가장 높은

Yv1,Yv2,Yv3,Yv4,Yv5 : 기준길이Q 에 대한 파고의 부분중에서 가장 낮은 저점에서 다섯번째까지 낮은 저점의 표고

정점에서 다섯번째까지 큰 정점의 표고

■산술평균조도(Ra)와 종래의 표기 관계(참고 데이타)

 $R_{Z,JIS} = \frac{(Y_{p1} + Y_{p2} + Y_{p3} + Y_{p4} + Y_{p5}) + (Y_{v1} + Y_{v2} + Y_{v3} + Y_{v4} + Y_{v5})}{(Y_{v1} + Y_{v2} + Y_{v3} + Y_{v4} + Y_{v5})}$

5

	교 균 조도 Ra	최대 높이 Rz	10점 평균 조도 R zJIS	Rz • Rzjis의	종래의
표준수열	컷오프값 λc (mm)	표준	수열	기준길이 I (mm)	정삭기호
0.012 a	0.08	0.05s	0.05z	0.08	
0.025 a	0.25	0.1 s	0.1 z	0.00	
0.05 a	0.25	0.2 s	0.2 z	0.25	$\nabla\nabla\nabla\nabla$
0.1 a		0.4 s	0.4 z	0.25	
0.2 a		0.8 s	0.8 z		
0.4 a	0.8	1.6 s	1.6 z	0.0	
0.8 a		3.2 s	3.2 z	0.8	$\nabla\nabla\nabla$
1.6 a		6.3 s	6.3 z		
3.2 a	2.5	12.5 s	12.5 z		\
6.3 a	2.5	25 s	25 z	2.5	$\nabla\nabla$
12.5 a		50 s	50 z		∇
25 a	8	100 s	100 z	0	abla
50 a		200 s	200 z	8	
100 a	_	400 s	400 z	_	

※3종류의 상호관계는, 편의상의 관계를 나타낸것으로 엄밀성은 없습니다.

※Ra: Rz,Rz,Is의 평가길이는 컷오프값, 기준길이를 각각 5배 한 값입니다.

경도대조표

강의 브리넬경도에 대한 근사적 환산치

	- I		J == *II				1		ㅂ귀네	경도(HB)							
	(HB) *)·하중3000kgf	빅			경도		쇼	인장강도		(HB))•하중3000kgf	박커			경도		쇼	인장강도
표준구	텅스텐카바이드 구 (球)	비커스경도 (HV)	A크기 하중60kgf 다이아몬드 원추압자 (HRA)	B크기 하중100kgf 경1.6mm (1/16in) 구 (HRB)	C크기 하중150kgf 다이아몬드 원추압자 (HRC)	D크기 하중100kgf 다이아몬드 원추압자 (HRD)	쇼 아 경 (HS)	(근사치) MPa	표준구	텅스텐카바이드 구 (球)	커 스경도 (HV)	A크기 하중60kgf 다이아몬드 원추압자 (HRA)	B크기 하중100kgf 경1.6mm (1/16in) 구 (HRB)	C크기 하중150kgf 다이아몬드 원추압자 (HRC)	D크기 하중100kgf 다이아몬드 원추압자 (HRD)	쇼 아 경 (HS)	(근사치) MPa
_	–	940	85.6	_	68.0	76.9	97	_	429	429	455	73.4	_	45.7	59.7	61	1510
_	_	920	85.3	_	67.5	76.5	96	_	415	415	440	72.8	_	44.5	58.8	59	1460
_	(707)	900	85.0	_	67.0	76.1	95	_	401	401	425	72.0	_	43.1	57.8	58	1390
_	(767) (757)	880 860	84.7 84.4	_	66.4 65.9	75.7 75.3	93 92	_	388	388	410	71.4	_	41.8	56.8	56	1330
_	(131)	800	04.4	_	05.9	75.5	92	_	375	375	396	70.6	_	40.4	55.7	54	1270
_	(745)	840	84.1	_	65.3	74.8	91	_	363	363	383	70.0	_	39.1	54.6	52	1220
_	(733)	820	83.8	_	64.7	74.3	90	_	352	352	372	69.3	(110.0)	37.9	53.8	51	1180
_	(722)	800	83.4	_	64.0	73.8	88	_	341	341	360	68.7	(109.0)	36.6	52.8	50	1130
_	(712) (710)	- 780	- 83.0	_	63.3	73.3	87	_	331	331	350	68.1	(108.5)	35.5	51.9	48	1095
_	(698)	760	82.6	_	62.5	72.6	86	_	321	321	339	67.5	(108.0)	34.3	51.0	47	1060
									311	311	328	66.9	(107.5)	33.1	50.0	46	1025
_	(684)	740	82.2	_	61.8	72.1	_	_	302	302	319	66.3	(107.0)	32.1	49.3	45	1005
_	(682)	737	82.2	_	61.7	72.0	84	_	293	293	309	65.7	(106.0)	30.9	48.3	43	970
_	(670) (656)	720 700	81.8 81.3		61.0 60.1	71.5 70.8	83	_	285	285	301	65.3	(105.5)	29.9	47.6	-	950
_	(653)	697	81.2	_	60.0	70.7	81	_	277	277	292	64.6	(104.5)	28.8	46.7	41	925
									269	269	284	64.1	(104.0)	27.6	45.9	40	895
_	(647)	690	81.1	_	59.7	70.5	_	_	262	262	276	63.6	(103.0)	26.6	45.0	39	875
_	(638)	680	80.8	_	59.2	70.1	80	_	255	255	269	63.0	(102.0)	25.4	44.2	38	850
_	630 627	670 667	80.6 80.5	_	58.8 58.7	69.8 69.7	79	_	248	248	261	62.5	(101.0)	24.2	43.2	37	825
	021	007	00.0		30.7	00.7	13		241	241	253	61.8	100	22.8	42.0	36	800
_	_	677	80.7	_	59.1	70.0	-	_	235	235	247	61.4	99.0	21.7	41.4	35	785
_	601	640	79.8	_	57.3	68.7	77	_	229	229	241	60.8	98.2	20.5	40.5	34	765
		640	79.8	_	57.3	68.7			223	223	234	_	97.3	(18.8)	_	_	_
_	578	615	79.0 79.1	_	56.0	67.7	_ 75	_	217	217	228	_	96.4	(17.5)	_	33	725
	0.0	0.0	70.1		00.0	01	. 0		212	212	222	_	95.5	(16.0)	_	-	705
_	-	607	78.8	_	55.6	67.4	-	_	207	207	218	_	94.6	(15.2)	_	32	690
_	555	591	78.4	_	54.7	66.7	73	2055	201	207	212	_	93.8	(13.2)	_	31	675
		570	70.0		E4.0	66.4		2015	197	197	207	_	92.8	(12.7)	_	30	655
_	534	579 569	78.0 77.8	_	54.0 53.5	66.1 65.8	71	2015 1985	192	192	202	_	91.9	(11.5)	_	29	640
	354	000	77.0		00.0	00.0	, ,	1303	187	187	196	_	90.7	(10.0)	_	-	620
_	_	533	77.1	_	52.5	65.0	-	1915	400	400				(2.2)			
_	514	547	76.9	_	52.1	64.7	70	1890	183	183	192	_	90.0	(9.0)	_	28 27	615
(405)			70.7		54.0	04.0		4055	179 174	179 174	188 182	_	89.0 87.8	(8.0) (6.4)	_	_	600 585
(495)	_	539 530	76.7 76.4	_	51.6 51.1	64.3 63.9	_	1855 1825	170	170	178	_	86.8	(5.4)	_	26	570
	495	528	76.3	_	51.0	63.8	68	1820	167	167	175	_	86.0	(4.4)	_	_	560
(477)	–	516	75.9	_	50.3	63.2	_	1780	163	163	171	_	85.0	(3.3)	_	25	545
_	477	508	75.6	_	49.6	62.7	_	1740	156	156	163	_	82.9	(0.9)	_	23	525
	477	508	75.6	_	49.6	62.7	66	1740	149 143	149 143	156 150	_	80.8 78.7	_	_	22	505 490
(461)	_	495	75.1	_	48.8	61.9	_	1680	137	137	143	_	76.4	_	_	21	460
_	_	491	74.9	_	48.5	61.7	_	1670									
	461	491	74.9	_	48.5	61.7	65	1670	131	131	137	_	74.0	_	_	-	450
									126	126	132	_	72.0	-	_	20	435
444	_	474	74.3	_	47.2	61.0	-	1595	121	121	127	_	69.8	-	_	19	415
_	444	472	74.2	_	47.1	60.8	- 62	1585	116	116	122	_	67.6	-	_	18	400
<u></u>	444	472	74.2		47.1	60.8	63		111	111	117	_	65.7	_	_	15	385

주1 이 표는, AMS Metals Hand book 제8편 제1권 표에 대응하는 것으로, 편의상 포함했지만, 인장강도 근사값에 대응하는 미터단위값 추가 및 추천범위를 초과하는 브리넬(brinell)경도를 추가하는 수정을 하고 있다.

주2 1MPa=1N/mm²

주3 표중 괄호()내의 수치는 그다지 사용되지 않는 범위의 것으로 참고로 나타낸 것이다. 이 표는 JIS 핸드북 철강(특)에서 발췌.

기술자료 구멍 공차치수 허용차 (구멍)

	치수의 (mm)							구당	멍의 공차	범위 클리	H스						
>	≦	B10	C9	C10	D8	D9	D10	E7	E8	E9	F6	F7	F8	G6	G7	Н6	H7
_	3	+180 +140	+85 +60	+100 +60	+34 +20	+45 +20	+60 +20	+24 +14	+28 +14	+39 +14	+12 +6	+16 +6	+20 +6	+8 +2	+12 +2	+6 0	+10
3	6	+188 +140	+100 +70	+118 +70	+48 +30	+60 +30	+78 +30	+32 +20	+38 +20	+50 +20	+18 +10	+22 +10	+28 +10	+12 +4	+16 +4	+8 0	+12
6	10	+208 +150	+116 +80	+138 +80	+62 +40	+76 +40	+98 +40	+40 +25	+47 +25	+61 +25	+22 +13	+28 +13	+35 +13	+14 +5	+20 +5	+9	+15 0
10	14	+220	+138	+165	+77	+93	+120	+50	+59	+75	+27	+34	+43	+17	+24	+11	+18
14	18	+150	+95	+95	+50	+50	+50	+32	+32	+32	+16	+16	+16	+6	+6	0	0
18	24	+244	+162	+194	+98	+117	+149	+61	+73	+92	+33	+41	+53	+20	+28	+13	+21
24	30	+160	+110	+110	+65	+65	+65	+40	+40	+40	+20	+20	+20	+7	+7	0	0
30	40	+270 +170	+182 +120	+220 +120	+119	+142	+180	+75	+89	+112	+41	+50	+64	+25	+34	+16	+25
40	50	+280 +180	+192 +130	+230 +130	+80	+80	+80	+50	+50	+50	+25	+25	+25	+9	+9	0	0
50	65	+310 +190	+214 +140	+260 +140	+146	+174	+220	+90	+106	+134	+49	+60	+76	+29	+40	+19	+30
65	80	+320 +200	+224 +150	+270 +150	+100	+100	+100	+60	+60	+60	+30	+30	+30	+10	+10	0	0
80	100	+360 +220	+257 +170	+310 +170	+174	+207	+260	+107	+126	+159	+58	+71	+90	+34	+47	+22	+35
100	120	+380 +240	+267 +180	+320 +180	+120	+120	+120	+72	+72	+72	+36	+36	+36	+12	+12	0	0
120	140	+420 +260	+300 +200	+360 +200													
140	160	+440 +280	+310 +210	+370 +210	+208 +145	+245 +145	+305 +145	+125 +85	+148 +85	+185 +85	+68 +43	+83 +43	+106 +43	+39 +14	+54 +14	+25 0	+40 0
160	180	+470 +310	+330 +230	+390 +230													
180	200	+525 +340	+355 +240	+425 +240													
200	225	+565 +380	+375 +260	+445 +260	+242 +170	+285 +170	+355 +170	+146 +100	+172 +100	+215 +100	+79 +50	+96 +50	+122 +50	+44 +15	+61 +15	+29	+46 0
225	250	+605	+395 +280	+465 +280				. 30	.30	. 30							
250	280	+690 +480	+430 +300	+510 +300	+271	+320	+400	+162	+191	+240	+88	+108	+137	+49	+69	+32	+52
280	315	+750 +540	+460 +330	+540 +330	+190	+190	+190	+110	+110	+110	+56	+56	+56	+17	+17	0	0
315	355	+830	+500 +360	+590 +360	+299	+350	+440	+182	+214	+265	+98	+119	+151	+54	+75	+36	+57
355	400	+910 +680	+540 +400	+630 +400	+210	+210	+210	+125	+125	+125	+62	+62	+62	+18	+18	0	0
400	450	+1010 +760	+595 +440	+690 +440	+327	+385	+480	+198	+232	+290	+108	+131	+165	+60	+83	+40	+63
450	500	+1090 +840	+635 +480	+730 +480	+230	+230	+230	+135	+135	+135	+68	+68	+68	+20	+20	0	0
	T 01 01 -	가 다네요			01.01	-1 ^ -1 0	 	11 77 01 2	\	1 = 1 = 1 = 4	-10-1		U. I.e.I				

비고 표안의 각 단에서 위쪽의 수치는 위의 치수허용차, 아래쪽의 수치는 아래치수 허용차를 나타냅니다.

단위 : *μ*m

							구당	범의 공차	범위 클리	H스							
Н8	Н9	H10	JS6	JS7	K6	K 7	M6	M7	N6	N7	P6	P7	R7	S7	Т7	U7	X7
+14	+25	+40	±3	±5	0	0	-2	- 2	-4	-4	-6	-6 40	-10	-14	_	-18	-20
+18	+30	+48	1.4	1.0	-6 +2	-10 +3	− 8 − 1	-12 0	-10 -5	-14	-12 -9	-16	-20	-24		-28	-30 -24
0	0	0	±4	±6	-6	<u>-9</u>	- 9	-12	- 13	- 16	-17	-20	-23	-27	_	-31	-36
+22	+36	+58	±4.5	±7	+2 -7	+5 —10	−3 −12	0 —15		_4 _19		_9 _24	-13 -28	−17−32	_	− 22 − 37	-28 -43
																	-33
+27 0	+43	+70 0	±5.5	±9	+2 —9	+6 —12	−4 −15	0 —18	_9 _20	-5 -23	-15 -26	─11 —29	-16 -34	-21 -39	_	-26 -44	-51 -38
					3	12	10	10	20	25	20	23	34	33		77	-56
122	1.50	+84			.0	-6	-4	0	11	7	40	11	20	07	_	-33	-46 67
+33 0	+52	0	±6.5	±10	+2 -11	+6 -15	—4 —17	0 -21	− 11 − 24		─18 ─31	—14 —35	-20 -41	-27 -48	-33	-54 -40	-67 -56
															-54	- 61	— 77
+39	+62	+100			+3	+7	- 4	0	—12	_8	- 21	—17	- 25	-34	-39 -64	−51 −76	
0	0	0	±8	±12	-13	—18	-20	-25	-28	-33	-37	-42	-50	-59	-45	-61	_
													-30	-42	−70 −55	-86	
+46	+74	+120	105	1.45	+4	+9	- 5	0	- 14	- 9	-26	- 21	-30 -60	-42 -72	—55 —85	-76 -106	
0	0	0	±9.5	±15	- 15	- 21	- 24	-30	-33	-39	-45	- 51	-32	-48	-64	- 91	_
													-62	-78	-94	-121 -111	
+54	+87	+140	±11	±17	+4	+10	-6	0	- 16	- 10	-30	-24	-73	-93	-113	- 146	_
0	0	0		-17	-18	- 25	-28	-35	-38	-45	-52	- 59	-41 -76	-66 -101	-91 -126	-131 -166	
													-78	-101	-120	-100	
													-88	-117	-147		
+63 0	+100	+160 0	±12.5	±20	+4 -21	+12 28	-8 -33	0 -40	-20 -45	−12 −52	-36 -61	-28 -68	-50 -90	-85 -125	—119 —159	_	_
Ü						20				02	0.		-53	-93	—131		
													-93	-133	-171		
													− 60 − 106	− 105 − 151			
+72	+115	+185	±14.5	±23	+5	+13	-8	0	-22	-14	-41	-33	-63	-113	_	_	_
0	0	0	14.0		-24	-33	-37	-46	- 51	-60	-7 0	-7 9	-109 -67	-159 -123			
													-07 -113	-123 -169			
													-7 4				
+81 0	+130	+210 0	±16	±26	+5 -27	+16 -36	−9 −41	0 -52	− 25 −57	—14 —66	-47 -79	-36 -88	− 126 − 78	_	_	_	_
					21	50	71	52	01	00	7.5		-130				
100	1110	1220			.7	147	_10	0	_06	_16	E4	_ 44	-87 -144				
+89 0	+140	+230	±18	±28	+7 -29	+17 -40	− 10 − 46	0 -57	-26 -62	− 16 − 73	-51 -87	-41 -98	-144 -93	_	_	_	_
													- 150				
+97	+155	+250			+8	+18	- 10	0	– 27	—17	- 55	- 45	-103 -166				
0	0	0	±20	±31	-32	-45	-50	-63	-67	-80	-95	-108	-100	_	_	-	_
													-172				

___ 축 공차치수 허용차 (축)

	치수의 ·(mm)							축의 공	공차 범위	클래스						
>	≦	b9	с9	d8	d9	e7	e8	e9	f6	f7	f8	g5	g6	h5	h6	h7
_	3	-140 -165	-60 -85	-20 -34	-20 -45	-14 -24	-14 -28	-14 -39	-6 -12	-6 -16	-6 -20	-2 -6	-2 -8	0 -4	0 -6	0 —10
3	6	-140 -170	-70 -100	-30 -48	-30 -60	-20 -32	-20 -38	-20 -50	-10 -18	-10 -22	-10 -28	-4 -9	-4 -12	0 -5	0 8	0 —12
6	10	-150 -186	-80 -116	-40 -62	-40 -76	-25 -40	-25 -47	-25 -61	-13 -22	-13 -28	−13 −35	-5 -11	-5 -14	0 -6	0 -9	0 —15
10	14	-150	- 95	-50	-50	-32	-32	-32	-16	-16	-16	-6	-6	0	0	0
14	18	— 193	-138	-77	-93	- 50	-59	-7 5	- 27	-34	-43	-14	— 17	-8	- 11	— 18
18	24	-160	-110	-65	-65	-40	-40	-40	-20	-20	-20	- 7	- 7	0	0	0
24	30	- 212	-162	-98	-117	-61	-7 3	-92	-33	-41	-53	- 16	-20	-9	-13	- 21
30	40	-170 -232	-120 -182	-80	-80	- 50	-50	-50	-25	-25	-25	-9	-9	0	0	0
40	50	-180 -242	-130 -192	-119	-142	-7 5	-89	-112	-4 1	-50	-64	-20	-25	-11	-16	- 25
50	65	-190 -264	-140 -214	-100	-100	-60	-60	-60	-30	-30	-30	-10	-10	0	0	0
65	80	-200 -274	-150 -224	-146	-174	- 90	-106	-134	-4 9	-60	-7 6	-23	-29	-13	-19	-30
80	100	-220 -307	-170 -257	-120	-120	-72	-72	-72	-36	-36	-36	-12	-12	0	0	0
100	120	-240 -327	-180 -267	—174	-207	—107	-126	— 159	-58	-7 1	- 90	-2 7	-34	—15	-22	—35 ———
120	140	-260 -360	-200 -300	445	445	0.5	0.5	0.5	40	40	40	44	44			
140	160	-280 -380 -310	-210 -310 -230	—145 —208	-145 -245	85 125	-85 -148	-85 -185	-43 -68	-43 -83	-43 -106	-14 -32	-14 -39	0 —18	0 -25	0 -40
160	180	-4 10	-330													
180	200	-340 -455	-240 -355	470	170	100	100	100	50	50	50	15	45	0		0
200	225	-380 -495 -420	-260 -375 -280	—170 —242	—170 —285	—100 —146	-100 -172	-100 -215	50 79	-50 -96	-50 -122	—15 —35	—15 —44	0 -20	0 -29	0 -46
225	250	-420 -535 -480	-395 -300													
250	280	-460 -610 -540	-300 -430 -330	-190 -271	-190 -320	-110 -162	-110 -191	-110 -240	-56 -88	-56 -108	-56 -137	-17 -40	-17 -49	0 -23	0 -32	0 —52
280	315	-670	-460 -360	211	020	102	131	240	- 50	100	107		73	20	02	
315	355	-740 -680	-500 -400	-210 -299	-210 -350	-125 -182	-125 -214	-125 -265	-62 -98	-62 -119	-62 -151	-18 -43	-18 -54	0 -25	0 -36	0 —57
355	400	-820 -760	-540 -440			.52				. 10	.51					
400	450	-915 -840	-595 -480	-230 -327	-230 -385	-135 -198	-135 -232	-135 -290	-68 -108	-68 -131	-68 -165	-20 -47	-20 -60	0 —27	0 -40	0 63
450	500	-995	-635												10	

비고 표안의 각 단에서 위쪽의 수치는 위의 치수허용차, 아래쪽의 수치는 아래치수 허용차를 나타냅니다.

단위 : μm

						칕	축의 공차	범위 클래:	<u>^</u>						
h8	h9	js5	js6	js7	k5	k6	m5	m6	n6	p6	r6	s6	t6	u6	х6
0	0	±2	±3	±5	+4	+6	+6	+8	+10	+12	+16	+20	_	+24	+26
<u>-14</u>	-25				0	0	+2	+2	+4	+6	+10	+14		+18	+20
0 —18	-30	±2.5	±4	±6	+6 +1	+9 +1	+9 +4	+12 +4	+16 +8	+20 +12	+23 +15	+27 +19	_	+31 +23	+36 +28
0	0	±0	±4.5	47	+7	+10	+12	+15	+19	+24	+28	+32		+37	+43
-22	-36	±3	±4.5	±7	+1	+1	+6	+6	+10	+15	+19	+23	-	+28	+34
•						.40	.45	.40	.00	.00	.04	.00		. 4.4	+51
0 — 27	0 -43	±4	±5.5	±9	+9 +1	+12 +1	+15 +7	+18 +7	+23 +12	+29 +18	+34 +23	+39 +28	_	+44 +33	+40
21	43				''	' '	''	''	112	110	123	120		133	+45
														+54	+67
0	0	±4.5	±6.5	±10	+11	+15	+17	+21	+28	+35	+41	+48		+41	+54
-33	- 52				+2	+2	+8	+8	+15	+22	+28	+35	+54	+61	+77
													+41	+48 +76	+64
0	0				+13	+18	+20	+25	+33	+42	+50	+59	+48	+60	
-39	-62	±5.5	±8	±12	+2	+2	+9	+9	+17	+26	+34	+43	+70	+86	_
													+54	+70	
											+60	+72	+85	+106	
0 46	0 -74	±6.5	±9.5	±15	+15 +2	+21 +2	+24 +11	+30 +11	+39 +20	+51 +32	+41	+53 +78	+66 +94	+87 +121	_
-4 6	— /4				+2	+2	+11	+11	+20	+32	+62	+78	+94	+121	
											+73	+93	+113	+146	
0	0	47 5	± 44	417	+18	+25	+28	+35	+45	+59	+51	+71	+91	+124	
-54	- 87	±7.5	±11	±17	+3	+3	+13	+13	+23	+37	+76	+101	+126	+166	_
											+54	+79	+104	+144	
											+88 +63	+117 +92	+147		
0	0				+21	+28	+33	+40	+52	+68	+90	+125	+122		
- 63	-100	±9	±12.5	±20	+3	+3	+15	+15	+27	+43	+65	+100	+134	_	_
											+93	+133	+171		
											+68	+108	+146		
											+106	+151			
0	0				+24	T33	+37	116	+60	+79	+77	+122			
- 72	—115	±10	±14.5	±23	+4	+33 +4	+17	+46 +17	+60 +31	+50	+109 +80	+159 +130	_	_	_
	110										+113	+169			
											+84	+140			
											+126				
0	0	±11.5	±16	±26	+27	+36	+43	+52	+66	+88	+94	_	_	_	_
- 81	-130				+4	+4	+20	+20	+34	+56	+130 +98				
											+144				
0	0	1.40.5	1.40	1.00	+29	+40	+46	+57	+73	+98	+108				
-89	-140	±12.5	±18	±28	+4	+4	+21	+21	+37	+62	+150	-	_	_	_
											+114				
^									. 00	,400	+166				
0 —97	0 155	±13.5	±20	±31	+32 +5	+45 +5	+50 +23	+63 +23	+80 +40	+108 +68	+126	_	_	_	_
31	100				'3	'3	123	123	140	100	+132				

육각구멍 볼트구멍치수

육각구멍	볼트	에디	바한	좌삭	및·	볼트	구멍	의 ㅊ	수					단위	: mm
나사 호칭 (d)	МЗ	M4	M5	M6	M8	M10	M12	M14	M16	M18	M20	M22	M24	M27	M30
d1	3	4	5	6	8	10	12	14	16	18	20	22	24	27	30
d'	3.4	4.5	5.5	6.6	9	11	14	16	18	20	22	24	26	30	33
D	5.5	7	8.5	10	13	16	18	21	24	27	30	33	36	40	45
D'	6.5	8	9.5	11	14	17.5	20	23	26	29	32	35	39	43	48
Н	3	4	5	6	8	10	12	14	16	18	20	22	24	27	30
H'	2.7	3.6	4.6	5.5	7.4	9.2	11	12.8	14.5	16.5	18.5	20.5	22.5	25	28
H"	3.3	4.4	5.4	6.5	8.6	10.8	13	15.2	17.5	19.5	21.5	23.5	25.5	29	32

테이퍼 규격

그림 2 네셔날테이퍼

●표1 볼트그립테이퍼 (그림1)

규격	DF	DF_2	t1	t2	t3	t5	d1	dз	LS	CRKS	d5
BT35	53	43	20	10	13.0	2	38.1	13	56.5	M12×1.75	21.62
BT40	63	53	25	10	16.6	2	44.45	17	65.4	M16×2	25.3
BT45	85	73	30	12	21.2	3	57.15	21	82.8	M20×25	33.1
BT50	100	85	35	15	23.2	3	69.85	25	101.8	M24×3	40.1
BT60	155	135	45	20	28.2	3	107.95	31	161.8	M30×3.5	60.7

●표2 네셔날테이퍼 (그림2)

					CR	KS						
규격	d1	d2	LS	l1	미터나사	위트나사	l2	13	d3	l 4	DF	15
NT30	31.75	17.4	70	50	M12	W 1/2	24	50	16.5	6	50	8
NT40	44.45	25.3	95	67	M16	W 5/8	30	70	24	7	63	10
NT50	69.85	39.6	130	105	M24	W 1	45	90	38	11	100	13
NT60	107.95	60.2	210	165	M30	W 11/4	56	110	58	12	170	15

그림 **4** 모르스테이퍼 (나사형 샹크)

●표3 슴베형 샹크 (그림3)

모르스 테이퍼 번호	d1	а	BD	d2	Н	l1	LS	d	С	е	R	r
0	9.045	3	9.201	6.104	6	56.5	59.5	3.9	6.5	10.5	4	1
1	12.065	3.5	12.240	8.972	8.7	62.0	65.5	5.2	8.5	13.5	5	1.2
2	17.780	5	18.030	14.034	13.5	75.0	80.0	6.3	10	16	6	1.6
3	23.825	5	24.076	19.107	18.5	94.0	99	7.9	13	20	7	2
4	31.267	6.5	31.605	25.164	24.5	117.5	124	11.9	16	24	8	2.5
5	44.399	6.5	44.741	36.531	35.7	149.5	156	15.9	19	29	10	3
6	63.348	8	63.765	52.399	51.0	210.0	218	19	27	40	13	4
7	83.058	10	83.578	68.185	66.8	286.0	296	28.6	35	54	19	5

●표4 나사형 샹크 (그림4)

모르스 테이퍼 번호	d1	а	BD	d	d2	l1	LS	t	r	CRKS	К
0	9.045	3	9.201	6.442	6	50	53	4	0.2	_	_
1	12.065	3.5	12.240	9.396	9	53.5	57	5	0.2	M6	16
2	17.780	5	18.030	14.583	14	64	69	5	0.2	M10	24
3	23.825	5	24.076	19.759	19	81	86	7	0.6	M12	28
4	31.267	6.5	31.605	25.943	25	102.5	109	9	1.0	M16	32
5	44.399	6.5	44.741	37.584	35.7	129.5	136	9	2.5	M20	40
6	63.348	8	63.765	53.859	51	182	190	12	4.0	M24	50
7	83.058	10	83.578	70.052	65	250	260	18.5	5.0	M33	80

국제단위계 SI

■SI단위로의 전환에서 문제되는 단위 환산률 표(굵게 쓰여진 단위는 SI에 의한 단위이다)

●압력

Pa	kPa MPa		bar	kgf/cm ²	atm	mmH2O	mmHg또는토르(Torr)
1	1×10 ⁻³	1×10 ⁻⁶	1×10 ⁻⁵	1.01972×10 ⁻⁵	9.86923×10 ⁻⁶	1.01972×10 ⁻¹	7.50062×10 ⁻³
1×10 ³	1×10 ³		1×10 ⁻²	1.01972×10 ⁻²	9.86923×10 ⁻³	1.01972×10 ²	7.50062
1×10 ⁶	1×10 ⁶ 1×10 ³		1×10	1.01972×10	9.86923	1.01972×10 ⁵	7.50062×10 ³
1×10 ⁵	1×10 ⁵ 1×10 ²		1	1.01972	9.86923×10 ⁻¹	1.01972×10 ⁴	7.50062×10 ²
9.80665×10 ⁴	9.80665×10	9.80665×10 ⁻²	9.80665×10 ⁻¹	1	9.67841×10 ⁻¹	1×10 ⁴	7.35559×10 ²
1.01325×10 ⁵	1.01325×10 ²	1.01325×10 ⁻¹	1.01325	1.03323	1	1.03323×10 ⁴	7.60000×10 ²
9.80665	9.80665×10 ⁻³	9.80665×10 ⁻⁶	9.80665×10 ⁻⁵	1×10 ⁻⁴	9.67841×10 ⁻⁵	1	7.35559×10 ⁻²
1.33322×10 ²	1.33322×10 ² 1.33322×10 ⁻¹ 1.33		1.33322×10 ⁻³	1.35951×10 ⁻³	1.31579×10 ⁻³	1.35951×10	1

주 1Pa=1N/m²

- 힘

N	dyn	kgf
1	1×10 ⁵	1.01972×10 ⁻¹
1×10 ⁻⁵	1	1.01972×10 ⁻⁶
9.80665	9.80665×10 ⁵	1

●응력

Pa	MPa또는토르N/mm²	kgf/mm ²	kgf/cm ²
1	1×10 ⁻⁶	1.01972×10 ⁻⁷	1.01972×10 ⁻⁵
1×10 ⁶	1	1.01972×10 ⁻¹	1.01972×10
9.80665×10 ⁶	9.80665	1	1×10 ²
9.80665×10 ⁴	9.80665×10 ⁻²	1×10 ⁻²	1

주 1Pa=1N/m²

●일·에너지·열량

J	kW•h	kgf•m	kcal
1	2.77778×10 ⁻⁷	1.01972×10 ⁻¹	2.38889×10 ⁻⁴
3.600 ×10 ⁶	1	3.67098×10 ⁵	8.6000 ×10 ²
9.80665	2.72407×10 ⁻⁶	1	2.34270×10 ⁻³
4.18605×10 ³	1.16279×10 ⁻³	4.26858×10 ²	1

주 1J=1W·s, 1J=1N·m 1cal=4.18605J (계량법에 의한다)

●일률(공률·동력)열류

w	kgf•m/s	PS	kcal/h		
1	1.01972×10 ⁻¹	1.35962×10 ⁻³	8.6000 ×10 ⁻¹		
9.80665	1	1.33333×10 ⁻²	8.43371		
7.355 ×10 ²	7.5 ×10	1	6.32529×10 ²		
1.16279	1.18572×10 ⁻¹	1.58095×10 ⁻³	1		

주 1W=1J/s, PS:불마력 1PS=0.7355kW (계량법 시공법에 의한다) 1cal=4.18605J (계량법에 의한다)

절삭공구재료

아래 그림은, 종축으로 고온 단단함을, 횡축으로 인성 (인성이 강함)을 취해서, 여러가지 공구재료를 구상한 것입니다. 현재, 초경합금·코팅초경합금·TiC-TiN계 서멧의 3재종이 시장에서의 주력 공구재료인데, 그 이유는 고온 단단함과 인성이 강하다는 점에서 잘 조화가 되어 있기 때문입니다.

각종 경질 물질의 특성

경 (硬) 질물질	경도(Hv)	생성자유 에너지 (kcal/g • atom)	철에 대한 용해량 (%.1250°C)	열전도율 (W/m • k)	열팽창계수 (×10 ⁻⁶ /k) ※	적용공구 재료
다이아몬드(C)	>9000	_	역반응	2100	3.1	다이야몬드 소결체
입방정질화붕소(CBN)	>4500	-	-	1300	4.7	CBN소결체
질화규소(Si3N4)	1600	_	_	100	3.4	세라믹
산화알루미늄(Al2O3)	2100	-100	≒ 0	29	7.8	세라믹 코팅
탄화티탄(TiC)	3200	-35	< 0.5	21	7.4	서멧 코팅 초경합금
질화티탄(TiN)	2500	-50	-	29	9.4	서멧 코팅
탄화탄탈(TaC)	1800	-40	0.5	21	6.3	초경합금
탄화텅스텐(WC)	2100	-10	7	121	5.2	초경합금

재종계열

공구재종 대응표

초경합금 재종

사용분류 기호 미쯔비시 사이트 디자가 모나나 그 내기 되어져 미츠비시 새로비 게나메타 내기를 이스라													
	용년 류	분류 기호 기호	미쯔비시 머테리얼	스미토모전공	도시바	교세라	다이젯	미츠비시 히타치툴	샌드빅	케나메탈	세코툴	이스칼	
	p	P01											
- 1		P10		ST10P	TX10S		SRT	WS10				IC70	
		P20	UTi20T	ST20E	UX30		SRT	EX35	SMA			IC70	
	H						DX30 SR30					IC50M IC50M	
		P30	UTi20T	A30	UX30	PW30	DX30	EX35	SM30			IC54	
		P40		ST40E			SR30	EX45				IC54	
N	VI	M10		EH510 U10E			UMN	WA10B	H10A	KU10 K313 K68	890	IC07	
		M20	UTi20T	EH520 U2	UX30		DX25 UMS	EX35	H13A	KU10 K313 K68	НХ	IC07 IC08 IC20	
		M30	UTi20T	A30	UX30		DX25 UMS	EX45	H10F SM30		883	IC08 IC20 IC28	
		M40					UM40	EX45				IC28	
선	۲	K01	HTi05T	H1 H2	TH03 KS05F		KG03	WH05		KU10 K313 K68			
		K10	HTi10	EH10 EH510	TH10	KW10 GW15	KG10 KT9	WH10	H10 HM	KU10 K313 K68	890	IC20	
	Ī	K20	UTi20T	G10E EH20 EH520	KS15F KS20	GW25	CR1 KG20	WH20	H13A	KU10 K313 K68	НХ	IC20	
A I.		K30	UTi20T	G10E			KG30				883		
삭 📙	V	N01		H1	KS05F	KW10			H10				
	`	1401		H2	110001				H13A	KU10			
	Į	N10	HTi10	EH10 EH510	TH10	KW10 GW15	КТ9	WH10		K313 K68	H15	IC08 IC20	
		N20		G10E EH20 EH520	KS15F		CR1	WH20		KU10 K313 K68	НХ	IC08 IC20	
		N30									H25		
	s	S01	RT9005			SW05	KG03						
		S10	RT9005 RT9010 MT9015	EH10 EH510	KS05F TH10	SW10	FZ05 KG10		H10 H10A H10F H13A	K10 K313 K68	НХ	IC07 IC08	
		S20	RT9010 TF15	EH20 EH520	KS15F KS20	SW25	FZ15 KG20			K10 K313 K68	H25	IC07 IC08	
		S30	TF15				KG30						
F	P	P10					SRT						
		P20	UTi20T	A30N	UX30		SRT DX30	EX35		K125M		IC50M IC28	
		P30	UTi20T	A30N	UX30	PW30	SR30	EX35		GX		IC50M	
		P40				PW30	DX30 SR30	EX45				IC28	
_	VI	M10					UMN					1020	
밀 📙		M20	UTi20T	A30N	UX30		DX25	EX35				IC08	
	-		UTi20T				DX25		SM30			IC20 IC08	
링		M30	011201	A30N	UX30		UMS	EX45	SM30			IC28	
		M40	UTIOET				KCOO	EX45		V445N4 V040		IC28	
	۲	K01	HTi05T		_,	KW10	KG03			K115M,K313 K115M			
		K10	HTi10	G10E	TH10	GW25	KG10	WH10		K313		IC20	
		K20	UTi20T	G10E	KS20	GW25	KT9 CR1 KG20	WH20	H13A		HX	IC20	
		K30	UTi20T				KG30						

주 상기는 각사 카탈로그 및 발행물에서 발췌한 것으로 각사의 승인을 받은 것은 아닙니다.

초미립초경합금재종

	사용년 분류	분류 기호 기호	미쯔비시 머테리얼	스미토모전공	도시바	교세라	다이젯	미츠비시 히타치툴	샌드빅	케나메탈	세코툴
	Z	Z01	SF10 MF07 MF10	F0	F MD05F MD1508		FZ05 FB05 FB10	NM08	PN90 6UF,H3F 8UF,H6F		
절삭공구		Z10	HTi10 MF20	XF1 F1 AFU	MD10 MD0508 MD07F	FW30	FZ10 FZ15 FB15	NM15	H10F		890
후		Z20	TF15 MF30	AF0 SF2 AF1			FZ15 FB15 FB20	BRM20 EF20N	H15F		890 883
		Z30		A1 CC			FZ20 FB20	NM25			883

서멧 재종

P P01	이스칼	세코툴	케나메탈	샌드빅	미츠비시 히타치툴	다이젯	교세라	도시바	스미토모전공	미쯔비시 머테리얼	분류 기호	사용 분류	
P10	IC20N IC520N**						I N6010	AT520** GT520**		AP25N [*] VP25N [*]			
P20	IC20N IC520N** IC530N**	TP1030* CM		CT5015 GC1525**	CZ25**	CX75	TN610 PV710* PV60* TN6010	NS730 GT730** NS9530	T2000Z** T1500A	AP25N*	P10		
M	IC20N IC520N** IC30N IC530N** IC75T	TP1020 TP1030 ^{**}	KT1120	GC1525**	CH550	PX75**	PV60* TN620 PV720* TN6020 PV7020*	NS730 GT730** NS9530	T2000Z** T3000Z** T1500A	AP25N** VP25N** NX3035	P20		
Math Math	IC75T					PX90**			T3000Z**		P30		선
M20		TP1030 [®] CM	KT125	GC1525 [*]			PV60* TN620 PV720* TN6020	AT530** GT530**	T1000A T2000Z**	AP25N*	M10	M	
K K01 NX2525 AP25N* T110A T1000A T2000Z* AT520* AT520* GT520* GT720* TN860 PV7005* TN660 PV7010* LN10 K10 NX2525 AP25N* T1200A T2000Z* T1500Z* GT730* T1500A T1500Z* NS520 GT730* NS730 TN60 PV60* PV7020* PV7020* PV7020* PV7020* PV7020* PV7020* PV7020* PV7020* PV7020* PV7025* LN10 CT5015 KT325 KT125 K20 NX2525 AP25N* T3000Z* TN60 CX75 MZ1000* C15M P P10 NX2525 T250A NS530 TN100M CX75 CH550 CH7030 CH7030 KT530M C15M P20 NX2525 T250A NS530 TN100M CX75 CT530 KT530M HT7					CH550		TN6020 TN620 PV720** PV90** PV7020**	GT730**	T2000Z** T1500A	AP25N*	M20		삭
K01											M30		
K10						LN10	PV30* PV7005* TN610 PV710* TN6010	NS520 AT520* GT520*	T1000A T2000Z**		K01	K	
P P10 NX2525 T2504 NS530 TN100M CX75 MZ1000* CT530 HT7 C15M				CT5015		LN10	PV60* TN6020 TN620 PV720* PV7020*	GT730**	T2000Z** T1500A		K10		
P20 NX2525 T250A NS530 TN100M CX75 CH550 CT530 HT7 C15M						CX75			T3000Z**		K20		
P20 NX2525 T250A NS530 TN100M CX75 CH7030 CT530 HT7 C15M	IC30N	C15M			MZ1000*	CX75	TN60			NX2525	P10	Р	
MZ2000* K1605M	IC30N	C15M MP1020	HT7	CT530	CH7030 MZ1000**	CX75 CX90	TN100M TN60		T250A	NX2525	P20		
P30 MX3030 T250A NS530 NS540 NS540 CX90 MZ3000** CX99 CH7035	IC30N							NS540			P30		
□ M M10 NX2525 TN60	IC30N				0115-3		TN60			NX2525	M10	M	빌
B M20 NX2525 NS530 TN100M CX75 CH550 CH7030 MZ1000* CT530 HT7 KT605M C15M	IC30N	C15M	HT7	CT530	CH7030 MZ1000* MZ2000*		TN100M				M20		링
M30 MX3030 NX4545 T250A NS540 NS740 CX90 CX99 CH7035 MZ3000* CX99									T250A		M30		
K K01											K01	K	
K10 NX2525 NS530 TN60			LATECOLA				TN60	NS530		NX2525	K10		
K20 NX2525 CX75 KT530M HT7						CX75				NX2525	K20		

※코팅서멧

주 상기는 각사 카탈로그 및 발행물에서 발췌한 것으로 각사의 승인을 받은 것은 아닙니다.

PVD코팅재종

	사요	분류 기호	DITTULL					미국비대				
	분류	기호	미쯔비시 머테리얼	스미토모전공	도시바	교세라	다이젯	미츠비시 히타치툴	샌드빅	케나메탈	세코툴	이스칼
	Р	P01				PR1005						
		P10	VP10MF MS6015		AH710 SH725	PR1005 PR930 PR1025 PR1115 PR1225 PR1425			GC1125	KCU10 KC5010 KC5510 KU10T	CP200 TS2000	IC250 IC507 IC570 IC807 IC907 IC908
		P20	VP10RT VP20RT VP15TF VP20MF MS6015	AC520U	AH710 AH725 AH120 SH730 GH730 GH130 SH725	PR930 PR1025 PR1115 PR1225 PR1425 PR1535		IP2000	GC1125 GC15	KCU10 KC5025 KC5525 KU25T	TS2500	IC250 IC308 IC507 IC807 IC808 IC907 IC908 IC1008 IC1028 IC3028
		P30	VP10RT VP20RT VP15TF VP20MF	AC1030U AC530U	AH725 AH120 SH730 GH730 GH130 AH740 J740 SH725	PR1225		IP3000	GC1125	KCU25 KC5525 KU25T	CP500	IC228 IC250 IC328 IC330 IC354 IC528 IC1008 IC1028 IC3028
		P40			AH740 J740	PR1535					CP500 CP600	IC228 IC328 IC528 IC928 IC1008 IC1028 IC3028
	М	M01										
선		M10	VP10MF MS6015		AH710 SH725	PR1025 PR1225 PR1425	JC5003 JC8015	IP050S	GC1115 GC15 GC1105	KCU10 KC5010 KC5510	CP200 TS2000	IC354 IC507 IC520 IC807 IC907 IC5080T
		M20	VP10RT VP20RT VP15TF VP20MF	AC520U	AH710 AH725 AH120 SH730 GH730 GH130 GH330 AH630 SH725	PR1025 PR1125 PR1225 PR1425 PR915 PR930 PR1535	JC5003 JC5015 JC8015 JC5118	IP100S	GC1115 GC15 GC1125	KCU10 KC5010 KC5510	TS2500 CP500	IC354 IC808 IC908 IC1008 IC1028 IC3028 IC5080T
삭		M30	VP10RT VP20RT VP15TF VP20MF MP7035	AC520U AC530U AC1030U AC6040M	GH330 AH725 AH120 SH730 GH730 GH130 J740 AH645 SH725		JC5015 JC8015 JC5118		GC1125 GC2035	KCU25 KC5525	CP500 CP600	IC228 IC250 IC328 IC330 IC1008 IC1028 IC9080T
		M40	MP7035	AC530U AC6040M	J740	PR1535	JC5118		GC2035			IC328 IC928 IC1008 IC1028 IC3028 IC9080T
	K	K01			GH110					KCU10	CP200	IC350 IC910
		K10		AC510U	AH110 AH710				GC15	KC5010 KC5510		IC1008
		K20	VP10RT VP20RT VP15TF		GH110 AH110 AH710 AH725 AH120 GH730 GH130					KCU15 KCU25	CP200 TS2000 TS2500	IC228 IC350 IC808 IC830 IC908 IC1007 IC1008
		K30	VP10RT VP20RT VP15TF		AH725 AH120 GH730 GH130					KCU25 KC5525	CP500	IC228 IC350 IC808 IC830 IC908 IC928 IC1007 IC1008
	S	S01	MP9005 VP05RT		AH905 AH8005	PR1305	JC5003 JC8015	JP9105			TH1000	IC507 IC804 IC807 IC907
		S10	MP9005 MP9015 VP10RT	AC510U	AH905 SH730 AH110 AH8005 AH120	PR1310	JC5003 JC5015 JC8015	JP9115	GC1105 GC15	KCU10 KC5010 KC5410 KC5510	CP200 CP250 TS2000 TS2050 TS2500 TH1000	IC5080T IC507 IC807 IC903 IC5080T
		S20	MP9015 MT9015	AC510U AC520U	AH120 AH725	PR1125 PR1325	JC5015 JC8015		GC1125	KCU10 KCU25 KC5025	TS2500 CP500	IC228 IC300 IC328 IC808 IC908 IC928
		S30	VP20RT VP15TF	AC1030U	AH8015 AH725	PR1125 PR1535	JC5118 JC5118		GC1125	KC5525 KC5525	CP600	IC3028 IC806 IC9080T
	Р	P01		110000	741725		JC8003	ATH80D ATH08M TH308 PN208 JP4105 PN15M	001120	NGGZG	01 000	IC903
밀		P10		ACP200		PR830 PR1225	JC8003 JC8015 JC5015 JC5118	PN15M PN215 PCA12M JP4115	GC1010	KC505M KC715M KC510M KC515M		IC250 IC350 IC808 IC810 IC900 IC903 IC908 IC910 IC950
司		P20	MP6120 VP15TF	ACP200	AH725 AH120 GH330 AH330	PR830 PR1225 PR1230 PR1525	JC5015 JC5040 JC6235 JC8015 JC5118 JC6235 JC7560P JC8118P	CY9020 JP4120 CY150	GC1010 GC1030 GC1130 GC2030	KC522M KC525M KC527M KC610M KC620M KC635M KC715M KC720M KC730M KTPK20		IC250 IC300 IC328 IC330 IC350 IC808 IC810 IC830 IC900 IC908 IC910 IC928 IC950 IC1008

주 상기는 각사 카탈로그 및 발행물에서 발췌한 것으로 각사의 승인을 받은 것은 아닙니다.

분류	기호			누시마	III 서I 라	다이젯	미츠비신	l 샌드빅	케나메탈	세코툴	이스칼
	기오	머테리얼	스미토모전공	도시바	교세라	나이것	히타치툴	앤드릭	게낙메필	세고돌	이스글
Р	P30	MP6120 VP15TF MP6130 VP30RT	ACP200 ACP300	AH725 AH120 AH130 AH140 GH130 AH730 AH3035	PR1230 PR1525	JC6235 JC7560 JC8050 JC7560P JC5015 JC8118 JC5040 JC8118P JC8015 JC5118	JS4045 CY250 CY250V CY25 HC844	GC1010 GC1030 GC2030 GC1130	KC735M KC725M KC530M KC537M KCPM40	F25M MP3000 F30M	IC250 IC3 IC328 IC3 IC350 IC8 IC845 IC9 IC928 IC9 IC1008
	P40	VP30RT	ACP300	AH140 AH3035	PR1525	JC6235 JC7560 JC8050 JC7560P JC5040 JC8118 JC5118 JC8118P JC5118	JS4060 PTH30E PTH40H JX1060 JS4060	GC2030 GC1030 GC1130	KC735M KC537M KCPM40	F40M T60M	IC300 IC3 IC330 IC8 IC928 IC1008
М	M01						PN08M PN208				IC907
	M10		ACM100		PR1225		PN15M PN215	GC1025 GC1030 GC1010	KC715M KC515M		IC903
	M20	VP15TF MP7130 MP7030 VP20RT	ACP200	AH725 AH120 GH330 AH330 GH110	PR1025 PR1225	JC5015 JC5118 JC8015	JP4120	GC1025 GC1030 GC1040 GC2030 S30T	KC610M KC635M KC730M KC720M KC522M KC525M KCPM40 KTPK20	F25M MP3000	IC250 IC3 IC808 IC3 IC900 IC3 IC928 IC1008
	M30	VP15TF MP7130 MP7030 VP20RT MP7140 VP30RT	ACP200 ACP300 ACM300	AH120 AH725 AH130 AH140 GH130 AH730 GH340 AH3135	PR830 PR1225 PR1525 PR1535	JC5015 JC7560 JC8015 JC7560P JC8050 JC8118 JC5118 JC8118P	JS4045 CY250 HC844	S30T GC1040 GC2030	KC537M KC725M KC735M KCPM40 KC530M	F30M F40M MP3000	IC250 IC3 IC328 IC3 IC830 IC9 IC1008 IC380
	M40	MP7140 VP30RT	ACP300 ACM300	AH140 AH3135 AH4035	PR1525 PR1535	JC5015 JC7560 JC5118 JC7560P JC8050 JC8118 JC8118P	PTH30E PTH40H JM4160			F40M	IC250 IC328 IC328 IC1008
K	K01	MP8010		AH110 GH110 AH330		JC8003	ATH80D ATH08M TH308				
	K10	MP8010		AH110 GH110 AH725 AH120 GH130 AH330	PR1210 PR1510	JC8015	ATH10E TH315 CY100H	GC1010	KC514M KC515M KC527M KC635M	MK2050	IC350 IC IC830 IC IC910 IC IC950 IC IC1008
	K20	VP15TF VP20RT	ACK300	GH130	PR1210 PR1510	JC5015 JC8015 JC6235	CY150 JP4120 CY9020 PTH13S	GC1010 GC1020	KTPK20 KC514M KC610M KC520M KC620M KC524M	MK2000 MK2050	IC350 IC8 IC810 IC8 IC900 IC9 IC910 IC9 IC950 IC1
	K30	VP15TF VP20RT	ACK300			JC6235 JC5015 JC8015 JC8118 JC8118P	CY250 JS4045	GC1020	KC522M KC725M KC524M KC735M KC537M	MK2050	IC350 IC IC830 IC IC928 IC IC1008
S	S01				PR1210	JC8003 JC8015 JC5118	PN08M PN208				IC907 IC IC808 IC
П	S10	MP9120 VP15TF	EH520Z EH20Z ACM100		PR1210	JC8003 JC5015 JC8015 JC5118	JS1025 JP4120	GC1130 GC1010 GC1030 GC2030	KC510M	MS2050	IC903 IC9 IC908 IC6 IC910 IC6
	S20	MP9120 VP15TF MP9130 MP9030	EH520Z EH20Z ACK300 ACP300		PR1535	JC8015 JC5015 JC8050 JC5118	PTH30H	S30T GC2030 GC1030	KC522M KC525M KCSM30 KCPM40	MS2050	IC300 IC9 IC808 IC9 IC830 IC9 IC328 IC9 IC840 IC9
	S30		ACP300 ACM300	AH3135	PR1535	JC8050 JC7560 JC5118	JM4160	GC2030 GC1040	KC725M KCPM40	MS2050 F40M	IC830 IC
Н	H01	MP8010 VP05HT				JC8003 DH103 JC8008 DH102					IC903
	H10	VP15TF VP10H				JC8008 JC8008 JC8015 JC5118 JC8118P	JP4105 TH308 PTH08M ATH08M ATH80D	GC1130 GC1010 GC1030	KC505M KC510M	MH1000 F15M	IC900 IC8
	H20	VP15TF		AH3135		JC8015 JC5118 JC8118P	JP4115 TH315	GC1030 GC1130		F15M	IC900 IC IC908 IC IC1008
				AH3135			JP4120			MP3000	IC380 IC

주 상기는 각사 카탈로그 및 발행물에서 발췌한 것으로 각사의 승인을 받은 것은 아닙니다.

CVD코팅재종

	사용 분류	분류 기호 기호	미쯔비시 머테리얼	스미토모전공	도시바	교세라	다이젯	미츠비시 히타치툴	샌드빅	케나메탈	세코툴	이스칼
	P	P01	UE6105	AC810P AC700G	T9105 T9005	CA510 CA5505	JC110V	HG8010	GC4305 GC4205 GC4005	KCP05B KCP05 KC9105	TP0501 TP0500 TP1501 TP1500	IC9150 IC8150 IC428
		P10	UE6105 MC6015 UE6110 MY5015	AC810P AC700G AC820P AC2000 AC8025P	T9105 T9005 T9115	CA510 CA5505 CA515 CA5515	JC110V JC215V	HG8010 HG8025 GM8020	GC4315 GC4215 GC4015 GC4325	KCP10B KCP10 KCP25 KC9110	TP1501 TP1500 TP2501 TP2500	IC9150 IC9015 IC8150 IC8250
		P20	MC6015 UE6110 MC6025 UE6020 MY5015	AC820P AC2000 AC8025P AC830P	T9115 T9125	CA515 CA5515 CA525 CA5525 CR9025	JC110V JC215V	HG8025 GM8020 GM25	GC4315 GC4215 GC4015 GC4325 GC4225 GC4025	KCP25B KCP30B KCP25 KC9125	TP2501 TP2500	IC9015 IC8250 IC9025 IC9250 IC8350
		P30	MC6025 UE6020 MC6035 UE6035 UH6400	AC830P AC630M	T9125 T9135 T9035	CA525 CA5525 CA530 CA5535 CR9025	JC215V JC325V	GM25 GM8035	GC4325 GC4225 GC4025 GC4235 GC4035	KCP30B KCP40B KCP30 KCP40 KC8050	TP3500 TP3000	IC8350 IC9250 IC9350
선		P40	MC6035 UE6035 UH6400	AC630M	T9135 T9035	CA530 CA5535	JC325V JC450V	GM8035 GX30	GC4235 GC4035	KCP30 KCP40 KC9140 KC9040 KC9240 KC9245	TP3500 TP3000	IC9350
	M	M10	MC7015 US7020	AC610M	T6120 T9115	CA6515	JC110V		GC2015	KCM15B KCM15	TM2000	IC9250 IC6015 IC8250
		M20	MC7015 US7020 MC7025	AC610M AC6030M AC630M	T6120 T6020 T9125	CA6515 CA6525	JC110V	HG8025 GM25	GC2015	KCM15 KC9225 KCM25B	TM2000	IC9250 IC6015 IC9025 IC656
삭		M30	MC7025 US735	AC6030M AC630M	T6030	CA6525		GM8035 GX30	GC2025	KCM25 KC9230 KCM35B	TM4000	IC9350 IC6025 IC635
·		M40	US735	AC6030M AC630M				GX30	GC2025	KCM35B KCM35 KC9240 KC9245	TM4000	IC6025 IC9350
	K	K01	MC5005 UC5105	AC405K AC410K	T515 T5105	CA4505 CA4010 CA310	JC050W JC105V	HX3505 HG3305	GC3205 GC3210	KCK05B KCK05	TK0501 TH1500 TK1001 TK1000	IC5005 IC9007
		K10	MC5015 UC5115 MY5015	AC405K AC410K AC415K AC420K AC700G	T515 T5115	CA315 CA4515 CA4010 CA4115	JC108W JC050W JC105V JC110V	HX3515 HG3315 HG8010	GC3205 GC3210 GC3215	KCK15B KCK15 KCK20 KC9315 KCK20B	TK1001 TK1000 TK2000 TK2001	IC5005 IC5010 IC9150 IC428 IC4028
		K20	MC5015 UC5115 UE6110 MY5015	AC415K AC420K AC700G AC820P	T5115 T5125	CA320 CA4515 CA4115 CA4120	JC108W JC110V JC215V	HG8025 GM8020	GC3215	KCK20 KC9110 KC9325	TK2001 TK2000	IC5010 IC8150 IC9150 IC9015 IC418
		K30	UE6110	AC820P	T5125		JC215	HG8025 GM8020		KC9125 KC9325		IC9015 IC418
	S	S01	US905			CA6515 CA6525 CA6535		HS9105 HS9115	S05F			
	Р	P10					JC730U				MP1500	IC9080 IC4100 IC9015
		P20	F7030	ACP100	T3130		JC730U	GX2140	GC4220		MP1500 MP2500	IC5500 IC5100 IC520M
		P30	F7030	ACP100	T3130			GX2140 GX2160	GC4230	KCPK30 KC930M	MP2500	IC5500 IC4050
		P40						GX2030 GX30 GX2160	GC4240	KC935M KC530M		
	M	M10		ACP100				AX2040			MP2500	IC9250 IC520M
밀		M20	F7030	ACM200	T3130	CA6535	JC730U	GX2140 AX2040		KC925M	MM4500	IC9350
링		M30	F7030	ACP100	T3130	CA6535		GX2140 GX2160 GX30	GC2040	KC930M	MP2500 MM4500	IC9350 IC4050
0		M40						GX2030 GX2160 GX30		KC930M KC935M		IC635
	K	K01			T1215		JC600					
		K10	MC5020	ACK100	T1215 T1115 T1015	CA420M	JC600		000000			
		K20	MC5020	ACK200	T1115 T1015		JC610		GC3220 GC3330 K20W	KC915M	MK1500 MK2000	IC5100 IC9150
		K30					JC610	GX30	GC3330 GC3040	KC920M KC925M KCPK30 KC930M KC935M	MK2000 MK3000	IC4100 IC4050 IC520M

주 상기는 각사 카탈로그 및 발행물에서 발췌한 것으로 각사의 승인을 받은 것은 아닙니다.

CBN재종

	사용	분류 기호	미쯔비시	ADECHA	E UW	W-1	FIOLEI	ли — ні	W7E
	분류	기호	머테리얼	스미토모전공	도시바	교세라	다이젯	샌드빅	세코툴
	Н	H01	BC8105 BC8110 MBC010 MB810	BNC100 BNX10 BN1000	BXM10 BX310	KBN050M KBN10M KBN510			CBN060K
		H10	BC8110 MBC020 BC8120 BC8020 MB825 MB8025	BNC160 BNX20 BN2000	BXM20 BX330	KBN25M KBN525	JBN300	CB7015	CBN010
선		H20	MBC020 BC8120 BC8020 MB8025	BNC200 BNX25 BN250	BXM20 BX360	KBN30M	JBN245	CB7025 CB20	CBN150 CBN160C
		H30	BC8130 MB835	BNC300 BN350	BXC50 BX380	KBN35M		CB7525	CBN150 CBN160C
	S	S01	MB730	BN700 BN7000	BX950				CBN170
		S10							
		S20							
삭		S30							
•	K	K01	MB710 MB5015	BN500 BNC500	BX930 BX910				
		K10	MB730 MB4020	BN700 BN7500 BN7000	BX850	KBN60M	JBN795	CB7525	
		K20	MB730 MB4020	BN700 BN7000	BX950	KBN60M	JBN500		CBN200
		K30	BC5030 MBS140	BNS800	BX90S BXC90	KBN900		CB7925	CBN300 CBN400C CBN500
	소	결합금	MB4020 MB835	BN7500 BN7000	BX450 BX470 BX480	KBN65B KBN570 KBN65M KBN70M			CBN200

PCD재종

	사용분류 기호 분류 기호		미쯔비시 머테리얼	스미토모전공	전공 도시바 교세라		다이젯	샌드빅	세코툴
선	N	N01	MD205	MD205 DA90 DX		KPD001	JDA30 JDA735	CD05	PCD05
_		N10	MD220	DA150	DX140	KPD010		CD10	PCD10
		N20	MD220	DA2200	DX120		JDA715		PCD20
삭		N30	MD230	DA1000	DX110	KPD230	JDA10		PCD30 PCD30M

주 상기는 각사 카탈로그 및 발행물에서 발췌한 것으로 각사의 승인을 받은 것은 아닙니다.

팁 브레이커 대응표

네가티브팁

-11*	「디브립											
ISO사용 분류기호	절삭영역	미쯔비시 머테리얼	스미토모전공	도시바	교세라	다이젯	미츠비시 히타치툴	샌드빅	케나메탈	세코툴	발타	대구텍
P	정삭절삭	PK* FH, FP FY	FA, FB FL	01** TF, 11 ZF	DP* GP, PP XP, XP-T, XF		FE	QF LC	FF	FF1, FF2	FP5	FA
	경절삭	LP C SA, SH	SU LU, FE SX, SE	NS, 27 TSF, AS	PQ HQ, CQ	PF UR, UA, UT	BE B, BH, CE	XF PF	LF, FN	MF2	MP3 NF3, NF4	FG
	경절삭 (연강)	SY		17	XQ, XS							FC
	경절삭 (와이퍼)	SW	LUW, SEW	FW, SW AFW, ASW	WF, WE WP, WQ			WL, WF	FW	W-MF2	NF	WS
	중절삭	MP MA MH	GU UG GE, UX	NM, ZM TM, AM DM, 33, 37, 38	PG, CJ, GS PS, HS PT	PG UB	CT, AB AH AY, AE	PM QM, XM	P MN	MF3 MF5, M3 M5	MP5	PC, MP MT SM
	중절삭 (와이퍼)	MW	GUW					WMX, WM	MW, RW	W-M6, W-M3 W-MF5	NM	WT
	준중절삭	RP GH 무기호	MU, MX, ME	TH 무기호	PH GT 무기호	UD GG	RE	PR, HM XMR	RN, RP	MR6, MR7	RP5, RP7 NM6, NM9	RT
	중절삭	HR, HZ, HL HM, HX HV	MP HG, HP HU, HW, HF	TRS TU TUS	PX	UC	HX HE, H	QR, PR HR, MR	MR RM RH	R4, R5, R6 57, RR6, R7 R8, RR9	NR6, NRF	RX, RH HD, HY, HT HZ, EH
M	정삭 경절삭	SH, LM	SU, EF	SS	MQ, GU		MP, AB, BH	MF	FP LF*	MF1	NF4	SF
	중절삭	MS, GM MM, MA ES	EX, EG, UP GU HM	SA, SF SM S	MS, MU SU, HU, TK ST	SF, SZ SG	PV, DE, SE AH	MM QM, XM K	MP	MF4	RM5 NM4	ML EM VF
	중절삭	GH, RM HL, HZ	MU MP	TH, SH			AE	MR MR	UP, RP	M5, MR7 RR6	NR4, NR5	
K	정삭 경절삭	LK, MA		CF	KQ		VA, AH	KF	FN	MF2, MF5 M3, M4	MK5	
	중절삭	MK, GK 무기호	UZ, GZ, UX	CM 무기호	KG, 무기호, C	PG	V, AE	KM	RP,UN	M5	RK5, NM5	
	준중절삭	RK			KH, GC	GG	RE	KR			RK7	
	중절삭	플랫 톱	플랫 톱	CH, 플랫 톱	ZS, 플랫 톱	플랫 톱	플랫 톱		플랫 톱	MR3, MR4, MR7 플랫 톱	플랫 톱	
S	정삭	FJ [*]	EF		MQ			SF	FS, LF ^{**}	MF1		
	경절삭	LS,MJ,MJ**	SU*	HRF				SGF*	MS	MF4, MF5	NF4, NFT	EA
	중절삭	MS	EG, EX, UP	HRM SA, HMM	MS, MU, TK		VI	NGP*, SM	UP, P, NGP*	M1	NMS, NMT	
	중절삭	RS, GJ	MU					SR, SMR	RP	M5, MR3, MR4	NRS, NRT	ET

※외주연삭형

주 상기는 각사 카탈로그 및 발행물에서 발췌한 것으로 각사의 승인을 받은 것은 아닙니다.

7°포지티브팁

ISO사용 분류기호	절삭영역	미쯔비시 머테리얼	스미토모전공	도시바	교세라	다이젯	미츠비시 히타치툴	샌드빅	케나메탈	세코툴	발타	대구텍
Р	정삭	SMG*	FC*, SC*	JS*, 01*	CF*,CK* GQ*,GF* SK*			UM*	LF*			
	정삭 경절삭	FP, FV LP, SV	FP, LU SU	PF, PSF PS, PSS	GP, PP XP		JQ	PF, UF, XF	UF, 11 LF, FP	FF1 F1	PF4	FA, FX FG
	경절삭 (와이퍼)	SW	LUW, SDW		WP			WF	FW	W-F1	PF	ws
	중절삭	MV MP, 무기호	MU	23 PM, 24	HQ, MF* XQ, GK	FT	JE	XM, PM UM PR, XR	MF, MP	F2, MF2, M5	FP6, PS5 PM5	PC MT
	중절삭 (와이퍼)	MW						WM	MW	W-F2 W-M3	PM	WT
M	정삭 경절삭	FM LM	FC*,SI* LU SU	PF, PSF PS, PSS	CF*,CK* GQ*,GF* MQ ,SK		MP	MF	LF, UF FP	F1, F2		
	중절삭	MM, 무기호	MU	PM	HQ, GK			ММ	MP		MM4, RM4	
K	중절삭	MK, 무기호 플랫 톱	MU, 플랫 톱	플랫 톱, CM	* 플랫 톱			KF, KM, KR	플랫 톱	F1, M3, M5	FK6	
N	중절삭	AZ*	AG [*]	AL ^{**}	AH ^{**}	ASF*,ALU* ACB*		AL*	HP*	AL**	PM2**	SA* FL*
S	정삭 경절삭	FS *, LS * FS-P *, LS-P * FJ * LS, MS	SI*	무기호	MQ				LF* HP*			

※외주연삭형

주 상기는 각사 카탈로그 및 발행물에서 발췌한 것으로 각사의 승인을 받은 것은 아닙니다.

11°포지티브팁

ISO사용 분류기호	절삭영역	미쯔비시 머테리얼	스미토모전공	도시바	교세라	다이젯	미츠비시 히타치툴	샌드빅	케나메탈	세코툴	발타	대구텍
Р	정삭 경절삭	FV, SMG** SV	SI, FK. FB LU, LUW, LB SU,SF	01** PF, PSF PS, PSS	PP, GP [*] CF XP		JQ	PF	UF, FP FW, LF			FG PC
	중절삭	MV	MU	PM 23 24	HQ XQ		JE	PM, UM	MF MP, MW		MP4	
M	정삭 경절삭	SV	SU	SS* PF, PS	GP, CF*		MP	MF	HP** LF		MM4	
	중절삭	MV	MU	PM	HQ			MM				

※외주연삭형

주 상기는 각사 카탈로그 및 발행물에서 발췌한 것으로 각사의 승인을 받은 것은 아닙니다.