History

Type Author Citation Literature Cutoff Date
Full Evaluation Jun Chen[#] and Balraj Singh NDS 135, 1 (2016) 31-May-2016

 $Q(\beta^-) = -6426.10 \ 10$; $S(n) = 11480.67 \ 6$; $S(p) = 10276.67 \ 15$; $Q(\alpha) = -6257.34 \ 25$ 2012Wa38 $S(2n) = 19843.49 \ 15$, $S(2p) = 18085.29 \ 15$ (2012Wa38).

Identification of stable ⁴²Ca by F.W. Aston, Nature 133, 684 (1934) through mass spectrographic studies.

⁴²Ca(n,n): 1989Ra06: E=thermal. Measured Bragg diffraction patterns, deduced scattering lengths.

 42 Ca(3 He, 3 He): 1971Ra35: E=13.0 MeV; 1973Mo13: E=28 MeV. Measured $\sigma(\theta)$.

⁴²Ca(⁴⁸Ti, ⁴⁸Ti): 1990Vo07, 1988Br02: E=240-725 MeV. Measured $\sigma(\theta)$, DWBA analysis.

Hyperfine structure and isotope-shift measurements: 2000Mu17, 2015Go24.

Some recent theoretical structure references (levels, B(E2), etc.): 2016Wo02 (shape coexistence), 2012Ca13, 2012Ca27, 2012Ha26.

.....

```
Population of levels in decays/reactions labeled with XREF=Y
```

```
^{42}K
       \beta^{-}
                 (12.355 h): 0, 1525, 1837, 2424, 2752, 3447
       \varepsilon decay (680.79 ms): 0, 1525, 1837
         \varepsilon decay (61.7 s): 0, 1525, 2424, 2752, 3189
^{38}Ar(^{6}Li,d):
                       0, 1525, 1837, 2424, 2752, 3300, 3654, 4443, 4448, 5866, 6016+6020, 6313+6390, 6516,
6716+6720
^{40}Ar(^{3}He,n):
                       0, 1525, 1837, 2424, 3300(?), 3392, 3654, 9270,
                                                                                        10205. 14700
^{40}Ca(t,p\gamma):
                   0, 1520, 2420, 3890, 5850, 6020, 6520, 6700, 6820
^{40}Ca(\alpha, ^{2}He):
                        0, 1530, 2750, 3190, 3660, 4830, 5380, 7280, 8810, 9080, 9330, 9600, 9870, 10160
<sup>40</sup>Ca(<sup>14</sup>C, <sup>12</sup>C), (<sup>12</sup>C, <sup>10</sup>C),:
                                                 0, 1700, 2800, 3500, 4800
<sup>40</sup>Ca(<sup>96</sup>Zr, <sup>94</sup>Zr):
                               0. 5866
^{41}Ca(n,\gamma)
                 E=thermal: 0, 1524.7, 2424.2, 2752.4, 3253.9, 3446.9,
                                                                                        3954.4, 3999.7, 4690.1, 4759.7, 5017.1,
11480.7
^{42}Ca(\gamma,\gamma):
                   0, 1525
^{42}Ca(\pi^+,\pi^{+'}), (\pi^-,\pi^{-'}):
                                    0, 1520, 2420, 3440, 4104, 4680, 6300
<sup>42</sup>Ca(d,d'): 0, 1524, 1835, 2423, 2749, 3445
^{42}Ca(^{16}0,^{16}0'):
                             0, 1525, 1837, 2424, 2752, 3254, 3447, 4100, 4449, 4690, 4971
Coulomb excitation: 0, 1525
^{45}Sc(p,\alpha),(pol
                       p,\alpha): 0, 1525, 1837, 2424, 2752, 3190, 3254, 3954,
4100, 4117
^{46}Ti(d,^{6}Li):
                       0, 1525, 1837
^{96}Zr(^{40}Ca,^{42}Ca\gamma):
                                 0, 1525, 1837, 2424, 2752, 3189, 3254,
3447, 3654, 3954, 4443, 4760, 5017, 5866
```

⁴²Ca Levels

Cross Reference (XREF) Flags

Α	24 Mg(24 Mg, α 2p γ)	P	41 Ca(d,p),(pol d,p)	AD	40 Ca(t,p γ)
В	27 Al(18 O,2np γ)	Q	42 Ca(e,e')	ΑE	40 Ca(α , 2 He)
C	27 Al(19 F, $\alpha\gamma$)	R	42 Ca(p,p' γ)	AF	40 Ca(14 C, 12 C),(12 C, 10 C),
D	28 Si(16 O,2p γ)	S	42 Ca(p,p')	AG	40 Ca(96 Zr, 94 Zr)
E	30 Si(18 O, α 2n γ)	T	42 Ca (α,α')	AH	41 Ca(n, γ) E=thermal
F	38 Ar(α, γ):resonances	U	43 Ca(p,d)	ΑI	42 Ca (γ,γ)
G	39 K(α ,p)	V	43 Ca(d,t)	AJ	42 Ca($\pi^+,\pi^{+\prime}$),($\pi^-,\pi^{-\prime}$)
Н	39 K(α ,p γ)	W	43 Ca(3 He, α)	AK	⁴² Ca(d,d')
I	40 Ca(t,p)	X	44 Ca(p,t)	AL	$^{42}\text{Ca}(^{16}\text{O}, ^{16}\text{O'})$
J	41 K(p, γ)	Y	42 K β^{-} decay (12.355 h)	AM	Coulomb excitation
K	⁴¹ K(p,n),(p,p):resonances	Z	⁴² Sc ε decay (680.79 ms)	AN	45 Sc(p, α),(pol p, α)
L	41 K(p, α):resonances	Other		AO	⁴⁶ Ti(d, ⁶ Li)
M	41 K(3 He,d γ)	AA	⁴² Sc ε decay (61.7 s)	AP	96 Zr(40 Ca, 42 Ca γ)
N	$^{41}\text{K}(^{3}\text{He,d})$	AB	38 Ar(6 Li,d)		•
0	41 Ca(n, α):resonances	AC	40 Ar(3 He,n)		

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$		XREF	Comments
0.0 ^b	0+	stable	ABC E GHIJ	MN PQRSTUVWXYZ	XREF: Others: AA, AB, AC, AD, AE, AF, AG, AH, AI, AJ, AK, AL, AM, AN, AO, AP
					The rms charge radius $(\langle r^2 \rangle)^{1/2}$: 3.5081 fm 21 (2013An02 evaluation).
					J ^π : L(t,p)=L(p,t)=0 from 0 ⁺ . Adopted (1977En02) neutron-stripping spectroscopic factor=1.6 2 (L=3).
					Adopted (1977En02) neutron-pickup spectroscopic factor=0.58 <i>6</i> (L=3).
L					Adopted (1977En02) proton-stripping spectroscopic factor=3.2 4 (L=2).
1524.71 ^b 3	2+	0.83 ps <i>3</i>	ABCDE GHIJ	N PQRSTUVWXYZ	XREF: Others: AA, AB, AC, AD, AE, AF, AH, AI, AJ, AK, AL, AM, AN, AO, AP
					μ=+0.08 12 (2003Sc21,2014StZZ) Q=-0.19 8 (1973To07,2014StZZ,2013StZZ)
					J^{π} : L(t,p)=L(p,t)=2 from 0 ⁺ .
					$T_{1/2}$: weighted average of 0.62 ps 21 $(\alpha, p\gamma)$, 0.97 ps 22 (γ, γ) , 1.11 ps 21 $(p, p'\gamma)$ and 0.825 ps 28 (coulomb excitation).
					μ: from transient field integral perturbed angular correlation (2003Sc21).
					Q: reorientation method (1973To07).
					Adopted (1977En02) neutron-stripping spectroscopic factor=0.04 2 (L=1), 0.48 12 (L=3).
					Adopted (1977En02) neutron-pickup spectroscopic factor=0.18 <i>3</i> (L=3), small (L=1).
					Adopted (1977En02) proton-stripping spectroscopic factor=0.04 <i>3</i> (L=2).
1837.31 ^c 18	0+	387 ps 6	E GHIJ	N PQRSTUVWXYZ	XREF: Others: AB, AC, AF, AK, AL, AN, AO, AP J^{π} : $L(t,p)=L(p,t)=0$ from 0^{+} .
					$T_{1/2}$: from (p,p' γ). Adopted (1977En02) neutron-stripping spectroscopic
					factor=0.18 5 (L=3).
					Adopted (1977En02) neutron-pickup spectroscopic factor=0.05 2 (L=3).
					Adopted (1977En02) proton-stripping spectroscopic factor=0.3 2 (L=2).
2424.15 ^c 4	2+	140 fs <i>40</i>	B E GH J	MN PQRSTUVWXY	XREF: Others: AA, AB, AC, AD, AF, AH, AJ, AK, AL, AN, AP
					J^{π} : L(t,p)=L(p,t)=2 from 0 ⁺ .
					$T_{1/2}$: weighted average of 114 fs 30 (α ,p γ) and 210 fs 50 (p,p $'\gamma$). Adopted (1977En02) neutron-stripping spectroscopic
					factor=0.56 14 (L=3), small (L=1).
					Adopted (1977En02) neutron-pickup spectroscopic factor=0.16 7 (L=3), (0.0) (L=1).
					Adopted (1977En02) proton-stripping spectroscopic factor=0.05 <i>5</i> (L=2).
2752.40 ^b 4	4+	2.8 ps 4	ABCDE GHIJ	M PQRSTUVWXY	XREF: Others: AA, AB, AE, AF, AH, AK, AL, AN, AP J^{π} : $L(t,p)=L(p,t)=4$ from 0^{+} .
					$T_{1/2}$: weighted average of 3.5 ps 3 (18 O,2np γ), 2.63 ps 28 (16 O,2p γ) and 1.6 ps 7 (α ,p γ).
					Adopted (1977En02) neutron-stripping spectroscopic factor= $0.03 I (L=1)$, $0.86 22 (L=3)$.
					Adopted (1977En02) neutron-pickup spectroscopic
					factor=0.59 10 (L=3), 0.01 (L=1).

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	· 	XREF	Comments
3189.26 ^b 10	6+	5.28 ns <i>15</i>	ABCDE GHIJ	M PRTUVW	XREF: Others: AA, AE, AN, AP μ =-2.49 9 (1975Yo02,2014StZZ) J ^{π} : L(α , He)=L(α , α')=6 from 0 ⁺ . T _{1/2} : weighted average of 5.30 ns 16 (α ,p γ) and 5.27 ns 14 (α , α'). μ : DPAD (1975Yo02). Adopted (1977En02) neutron-stripping spectroscopic factor=1.2 3 (L=3). Adopted (1977En02) neutron-pickup spectroscopic
3253.89 ^c 5	4+	123 fs 2 <i>I</i>	B E gHIJ	PRTVX	factor=0.99 18 (L=3) (L=3), 0.01 (L=1). XREF: Others: AH, AL, AN, AP J^{π} : $L(\alpha,\alpha')$ = $L(p,t)$ =4 from 0^+ . $T_{1/2}$: weighted average of 118 fs $2I$ (α ,p γ) and 210 fs $+100$ - 70 (p,p $'\gamma$). Adopted (1977En02) neutron-stripping spectroscopic factor=0.22 6 (L=3), small (L=1). Adopted (1977En02) neutron-pickup spectroscopic factor=0.08 2 (L=3), 0.00 (L=1).
3300.0 4	0_{+}	>0.9 ps	gHIJ	N RST V X	XREF: Others: AB, AC, AF
3392.01 24	2+	135 fs 40	НІЭ	P RST V X	 J^π: L(⁶Li,d)=L(p,t)=0 from 0⁺. XREF: Others: AC J^π: L(t,p)=L(α,α')=2 from 0⁺. T_{1/2}: weighted average of 118 fs 2<i>I</i> in (α,pγ) and 230 fs 50 in (p,p'γ). Adopted (1977En02) neutron-stripping spectroscopic factor=0.01 <i>I</i> (L=1), 0.01 <i>I</i> (L=3). Adopted (1977En02) neutron-pickup spectroscopic
3446.94 ^d 5	3-	0.27 ps 9	B E GHIJ	MN PQRSTUVWXY	factor=0.01 (L=3), 0.01 I (L=1). XREF: Others: AF, AH, AJ, AK, AL, AP B(E3)↑=0.0110 $I8$ (1971He08,1989It02) B(E3) from (e,e'). J**: L(t,p)=L(p,t)=3 from 0+. T _{1/2} : weighted average of 0.23 ps I (α ,p γ) and 0.45 ps I 4 (p,p $'$ γ). Adopted (1977En02) neutron-stripping spectroscopic factor=small (L=0 and L=2). Adopted (1977En02) neutron-pickup spectroscopic factor=0.26 I 7 (L=0), 0.12 I 3 (L=2). Adopted (1977En02) proton-stripping spectroscopic
3654.0 <i>3</i>	2+	49 fs <i>35</i>	GHIJ	P RSTUVWX	factor=0.28 4 (L=1+3). XREF: Others: AB, AC, AE, AP J^{π} : L(t,p)=L(p,t)=2 from 0 ⁺ . $T_{1/2}$: from $(\alpha,p\gamma)$. Other: 40 fs +60-40 from $(p,p'\gamma)$.
3780 <i>10</i> 3885.0 <i>4</i>	(2 ⁺ ,3 ⁻) 1 ⁻		ніј	S N P RST V	J^{π} : L(p,p')=2 or 3. XREF: Others: AD J^{π} : ΔJ =1 γ to 0 ⁺ and L(α , α')=3, L(3 He,d)=1(+3).
3954.39 ^d 6	4-	3.36 ps <i>21</i>	B E GHI	MN P RS V	XREF: Others: AH, AN, AP J^{π} : $\gamma(\theta, \text{lin pol})$ in $(^{18}\text{O}, \alpha 2 \text{n} \gamma)$ and $(\alpha, \text{p} \gamma)$; $L(^{3}\text{He}, \text{d}) = 3$; $L(^{3}\text{He}, \alpha) = 0 (+2)$; $\sigma(\theta)$ and $Ay(\theta)$ in (pol p, α).
3999.66 9	4+		E HIJ	P RS	$T_{1/2}$: from $(\alpha,p\gamma)$. XREF: Others: AH J^{π} : $\gamma(\theta, \text{lin pol})$ in $(^{18}\text{O}, \alpha 2\text{n}\gamma)$ and gammas to 2^+ and 4^+ .
4047.0 <i>4</i>	3-	0.17 ps 5	GHIJ	N P RST V	and 4°. J^{π} : $L(^{3}\text{He,d})=1+3$ from $3/2^{+}$, $L(^{3}\text{He},\alpha)=0+2$; γ to 2^{+} .

T ₁ /2: from (α,py).	E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	<u> </u>	XREF	Comments
Fig. L(p,t)=L(p,p')=L(a,a')=5 from 0°; arc# and Ay(®) in (pp loa; also y(e)lin pol). Tight from 0°; arc# and Ay(®) in (pp loa; also y(e)lin pol). Tight from 0°; arc# and Ay(®) in (pp loa; also y(e)lin pol). Tight from 0°; arc# and Ay(®) in (pp loa; also y(e)lin pol). Tight from 0°; also L(a,b)=20. Adopted (1971; arc# along the load of the	4099.65 ^d 11	5-		ABCDE GHIJ	MN pQRSTUVwX	· –
Tight from (α.py) Adopted (197Fin02) neutron-stripping spectroscopic factor=small (L=2).			1		• •	J^{π} : $L(p,t)=L(p,p')=L(\alpha,\alpha')=5$ from 0^+ ; $\sigma(\theta)$ and
Adopted (1977En02) neutron-stripping spectroscopic factors—small (1,=2). Adopted (1977En02) neutron-pickup spectroscopic factors—ods 3 /3 (1,=2). Adopted (1977En02) neutron-pickup spectroscopic factors—ods 9 /1.—3). Adopted (1977En02) proton-stripping spectroscopic factors—ods 9 /1.—3). Adopted (1977En02) proton-stripping spectroscopic factors—ods 9 /1.—3). Additional information 1. P; γ(θ, lin pol) in (pp'γ); σ(θ) and Ay(θ) in (ppl pol) in (pp'γ); σ(θ) and Ay(θ) in						
Adopted (1977En(2)) neutron-pickup spectroscopic factor=0.43 /3 (1.2-2). 4117.1 3 3 -						
Adopted (1977EnO2) proton-stripping spectroscopic factor=0.45 9 (L=2). Adopted (1977EnO2) proton-stripping spectroscopic factor=0.46 9 (L=3). XREF: Cothers: AR F: y(θ, lin pol) in (p, p'y); σ(θ) and Ay(θ) in (pol p.α). Adopted (1977EnO2) proton-stripping spectroscopic factor=0.46 9 (L=3). XREF: Cothers: AR F: y(θ, lin pol) in (p, p'y); σ(θ) and Ay(θ) in (pol p.α). Additional information 1. F: y(θ, lin pol) in (p, p'y); σ(θ) and Ay(θ) in (pol p.α). Additional information 1. F: y(θ, lin pol) in (p, p'y); σ(θ) and Ay(θ) in (pol p.α). Additional information 2. P: y(θ, lin pol) in (p, p'y); σ(θ) and Ay(θ) in (p, p'y); σ(θ) and (p, p'y); σ(
Adopted (1977En02) proton-stripping spectroscopic factor=0.46 9 (Leg -0.46 9 (Le						
A						
417.1 3 3 -						
180 2	4117.1 3	3-		н Ј	N p R w	
448.0 2 0					-	J^{π} : $\gamma(\theta, \text{lin pol})$ in $(p, p'\gamma)$; $\sigma(\theta)$ and $Ay(\theta)$ in
4342.3 6 (0 ⁺ to 4 ⁺)		_				
4342.3 6 (0° to 4°)						
Additional information 2. Additional information 2. J ^T : γ(θ,lin pol) in (α,pγ); L(d,t)=2. T _{1/2} : from (α,pγ). L(d,t)=2. T _{1/2} : from (α,pγ). L(d,t)=2. T _{1/2} : from (α,pγ). L(d,t)=2. L(d,t)=4. L(d,						
4354.0 5 4- 0.47 ps 7	4342.3 0	(0 104)		g 13	IS W	
4418.0 4 3 GH J MN P UVWX 4443.0 6 4 H QRST V XREF: Others: AB, AL, AP XREF: Others: AB, AP XREF: Others: AB, AB, AB, AP XREF: Others: AB,	4354.0 5	4-	0.47 ps 7	aHi	P rs Vw	
L(3He,d)=1+3 from 3/2+, XREF: Others: AB, AL, AP XREF: S(4470), J*: L(p,p*)=L(α,α*)=4 from 0+, XREF: S(4470), J*: L(p,p*)=L(α,α*)=L(\alpha,\alpha*)				3		
4443.0 6 4+ H QRST v XREF: Others: AB, AL, AP 4448.8 4 2+ HIJ p R v XREF: Others: AB, AL 4505.0 5 (2,3,4)+ HI p S JF: L(t,p)=2 from 0+; gammas to 0+ and 3 4566.9 5 (1,2+) HIJ p S JF: gammas to 0+ and 2+. 4666 10 (3,4)- i p XREF: Others: AF JF: L(d,p)=1+3 from 7/2- this level was not adopted by 1990En08 since the (d,p) cross section is small. 4690.06 10 3- GHi N PQ TuVwX XREF: Others: AF JF: L(t,p)=L(p,t)=3 from 0+. 4717.53c 14 6+ 83 fs 32 A E Hi n XREF: Others: AF, AH, AH, AJ, AL JF: L(t,p)=L(p,t)=3 from 0+ XREF: Others: AF JF: L(t,p)=L(p,t)=3 from 0+. 4717.6 4 3- i n P S XREF: Others: AF 4759.71 16 2+ HIJ P T X XREF: Others: AF 4860.0 6 2+ HIJ P S T X XREF: Others: AE, AF 4897.0d 3 5- 47 fs 21 E GHi uvwX XREF: Others: AF 4904.0 5 3- HIJ N P Tuvw XREF: Others: AF J	4418.0 <i>4</i>	3-		GH J	MN P UVWX	
XREF: S(4470).						
3	4443.0 6	4+		Н	QRST v	
4448.8 4 2* 4505.0 5 (2,3,4)* HI P S J ^π : L(d,p)=2 from 0 ⁺ ; gammas to 0 ⁺ and 3 ⁻ . 4566.9 5 (1,2 ⁺) HIJ P S J ^π : L(d,p)=1+3 from 7/2 ⁻ ; and gammas to 2 ⁺ and 4 ⁺ . 4666 10 (3,4) ⁻ i P XREF: Others: AF J ^π : L(d,p)=0+2 from 7/2 ⁻ this level was not adopted by 1990En08 since the (d,p) cross section is small. 4690.06 10 3 ⁻ GHi N PQ TuVwX XREF: Others: AF, AH, AJ, AL J ^π : L(t,p)=L(p,t)=3 from 0 ⁺ . 4717.53 ^c 14 6 ⁺ 83 fs 32 A E Hi n XREF: Others: AF J ^π : νγ(θ)(DCO) and γ(lin pol) in (18 O,α2nγ). 4717.6 4 3 ⁻ i n P S XREF: Others: AF J ^π : L(p,p)=0+2 from 7/2 ⁻ . 4759.71 16 2 ⁺ HIJ P T X XREF: Others: AF, AH, AP J ^π : L(t,p)=0+2 from 0 ⁺ . 4866.0 6 2 ⁺ HIJ P ST X XREF: Others: AF, AH, AP J ^π : L(t,p)=1 from 0 ⁺ . 4870.0 ^d 3 5 ⁻ 47 fs 21 E GHi uvwX XREF: Others: AF, AF J ^π : γ(θ,lin pol). 4904.0 5 3 ⁻ HiJ N P Tuvw XREF: Others: AF J ^π : γ(θ,lin pol). 471.2: from (α,ργ). 488F: Others: AF J ^π : L(α,ρ)=2; but L(α,²He)=4. 4897.0 ^d 3 5 ⁻ 47 fs 21 E GHi uvwX XREF: Others: AF J ^π : L(t,p)=1 from 0 ⁺ . 4897.0 ^d 3 5 ⁻ 47 fs 21 E GHi uvwX XREF: Others: AF J ^π : γ(θ,lin pol). 4904.0 5 3 ⁻ HiJ N P Tuvw XREF: Others: AF J ^π : L(α,α)=3. This requires E3 to g.s. E(level): if T _{1/2} <50 fs then E3 50% to g.s. is unlikely. In that case another level of J ^π =2 ⁺ is required.						XREF: $S(44/0)$. In (1, p') = I (\alpha \alpha') = 4 from 0+
Jπ : L(t,p) = 2 from 0*; gammas to 0* and 3".	4448.8 <i>4</i>	2+		нтэ	n R v	
4505.0 5 (2,3,4) ⁺ HI P S J^{π} : L(d,p)=1+3 from 7/2 ⁻ ; and gammas to 2 ⁺ and 4 ⁺ . 4566.9 5 (1,2 ⁺) HIJ P S J^{π} : gammas to 0 ⁺ and 2 ⁺ . 4666 10 (3,4) ⁻ i P XREF: Others: AF J^{π} : L(d,p)=0+2 from 7/2 ⁻ this level was not adopted by 1990En08 since the (d,p) cross section is small. 4690.06 10 3 ⁻ GHi N PQ TuVwX XREF: Others: AF, AH, AJ, AL J^{π} : L(t,p)=1 from 0 ⁺ . 4717.53 ^c 14 6 ⁺ 83 fs 32 A E Hi N XREF: Others: AF J^{π} : J^{π}					P	J^{π} : L(t,p)=2 from 0 ⁺ ; gammas to 0 ⁺ and 3 ⁻ .
4566.9 5 (1,2*) 4666 10 (3,4) 467 (3,4) 468 10 (3,4) 4690.06 10 3 4690.06 10 3 4690.06 10 3 4717.53° 14 6 483 fs 32 48 E Hi n 4717.6 4 3 4717.6 4 3 4717.6 4 3 4717.6 4 3 4717.6 4 3 4717.6 5 4717.6 4 3 4717.6 5 4717.6 6 4717.6 6 4717.6 6 4717.6 7 4717.6 8 4717.6 8 4717.6 9 4717.6 9 4717.6 0 4717.	4505.0 5	$(2,3,4)^+$		HI	P S	J^{π} : L(d,p)=1+3 from 7/2 ⁻ ; and gammas to 2 ⁺ and
4666 10 (3,4) i P XRĒF: Others: AF J^{2} : $L(d,p)=0+2$ from $7/2^{-}$ this level was not adopted by 1990En08 since the (d,p) cross section is small. 4690.06 10 3 GHi N PQ TuVwX XREF: Others: AF, AH, AJ, AL J^{2} : $L(t,p)=L(p,t)=3$ from 0 . 4717.53 14 6 83 fs 32 A E Hi N XREF: Others: AF J^{2} : $L(t,p)=L(p,t)=3$ from 0 . 4717.6 4 3 i N P S XREF: Others: AF J^{2} : $L(p,p')=3$ from 0 . 4717.6 4 3 J^{2} HIJ P T X XREF: Others: AF J^{2} : $L(p,p')=3$ from 0 . 4717.6 2 HIJ P ST X XREF: Others: AF, AH, AP J^{2} : $L(t,p)=L(p,t)=2$ from 0 . 4866.0 6 2 J^{2} HIJ P ST X XREF: Others: AE, AF J^{2} : $L(t,p)=L(p,t)=2$ from 0 . 4897.0 J^{2} S J^{2} A J^{2} E GHi J^{2} UvwX XREF: Others: AF J^{2} : $J^{$	15660 5	(1.2+)			D. C	
J^{π} : L(d,p)=0+2 from 7/2 ⁻ this level was not adopted by 1990En08 since the (d,p) cross section is small. 4690.06 10 3 ⁻ GHi N PQ TuVwX XREF: Others: AF, AH, AJ, AL J^{π} : L(t,p)=L(p,t)=3 from 0 ⁺ . 4717.53 ^c 14 6 ⁺ 83 fs 32 A E Hi n XREF: Others: AF J^{π} : γγ(θ)(DCO) and γ(lin pol) in (I^{8} O,α2nγ). 4717.6 4 3 ⁻ 4717.6 2 ⁺ 4759.71 16 2 ⁺ 4866.0 6 2 ⁺ HIJ P T X XREF: Others: AF, AH, AP J^{π} : L(t,p)=L(p,t)=3 from 0 ⁺ ; L(d,p)=0+2 from 7/2 ⁻ . 4866.0 6 2 ⁺ HIJ P ST X XREF: Others: AF, AH, AP J^{π} : L(t,p)=L(p,t)=2 from 0 ⁺ . 4897.0d 3 5 ⁻ 47 fs 21 E GHi uvwX XREF: Others: AF J^{π} : γ(θ,lin pol). 4904.0 5 3 ⁻ HiJ N P Tuvw XREF: Others: AF J^{π} : γ(θ,lin pol). 4904.0 5 3 ⁻ HiJ N P Tuvw XREF: Others: AF J^{π} : L(α,α')=3. This requires E3 to g.s. is unlikely. In that case another level of J^{π} =2 ⁺ is required. 4946.9 10 (1,2,3) ⁻ Hi N P XREF: Others: AF						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4000 10	(3,4)		1	1	
4690.06 10 3 ⁻						
4717.53 ^C 14 6 ⁺ 83 fs 32 A E Hi n XREF: Others: AF J^{π} : L(t,p)=L(p,t)=3 from 0 ⁺ . XREF: Others: AF J^{π} : $\chi \gamma (\theta) (DCO)$ and $\chi (lin pol)$ in ($^{18}O, \alpha 2n \gamma)$. $T_{1/2}$: from $(\alpha, p \gamma)$. XREF: Others: AF J^{π} : L(p,p')=3 from 0 ⁺ ; L(d,p)=0+2 from 7/2 ⁻ . XREF: Others: AF, AH, AP J^{π} : L(t,p)=L(p,t)=2 from 0 ⁺ . XREF: Others: AF, AH, AP J^{π} : L(t,p)=L(p,t)=2 from 0 ⁺ . XREF: Others: AF, AH, AP J^{π} : L(t,p)=L(α,α')=L(p,p')=2; but L(α,2^{^{2}}He)=4. XREF: Others: AF J^{π} : $\chi (\theta, lin pol)$. $\chi (\theta, lin$						
4717.53 ^C 14 6 ⁺ 83 fs 32 A E Hi n XREF: Others: AF J^{π} : $\gamma\gamma(\theta)(DCO)$ and $\gamma(lin pol)$ in $(^{18}O,\alpha2n\gamma)$. $T_{1/2}$: from $(\alpha,p\gamma)$. XREF: Others: AF J^{π} : $(l,p)^{+}$ 3 from 0^{+} ; $(l,p)^{+}$ 3 from 0^{+} ; $(l,p)^{+}$ 3 from 0^{+} ; $(l,p)^{+}$ 4759.71 16 2 ⁺ HIJ P T X XREF: Others: AF, AH, AP J^{π} : $(l,p)^{+}$ 2 from 0^{+} . XREF: Others: AF, AH, AP J^{π} : $(l,p)^{+}$ 2 from 0^{+} . 4866.0 6 2 ⁺ HIJ P ST X XREF: Others: AE, AF J^{π} : $(l,p)^{+}$ 2 from 0^{+} . 47 fs 21 E GHi uvwX XREF: Others: AF J^{π} : $(l,p)^{+}$ 2 from $(l,p)^{+}$ 3 from $(l,p)^{+}$ 4904.0 5 3 from $(l,p)^{+}$ 3 from $(l,p)^{+}$ 3 from $(l,p)^{+}$ 4 from $(l,p)^{+}$ 5 from $(l,p)^{+}$ 4 from $(l,p)^{+}$ 5 from $(l,p)^{+}$ 5 from $(l,p)^{+}$ 6 from $(l,p)^{+}$ 7 from $(l,p)^{+}$ 8 from $(l,p)^{+}$ 9	4690.06 <i>10</i>	3-		GHi	N PQ TuVwX	
3 i n P S XREF: Others: AF J^{π} : $\chi \gamma (\theta)$ (DCO) and χ (lin pol) in (18 O, $\alpha 2$ n γ). $T_{1/2}$: from $(\alpha, p\gamma)$. XREF: Others: AF J^{π} : $L(p,p')=3$ from 0^+ ; $L(d,p)=0+2$ from $7/2^-$. 4759.71 $I6$ 2 HIJ P ST X XREF: Others: AF, AH, AP J^{π} : $L(t,p)=L(p,t)=2$ from 0^+ . 4866.0 6 2 HIJ P ST X XREF: Others: AE, AF J^{π} : $L(t,p)=L(\alpha,\alpha')=L(p,p')=2$; but $L(\alpha,^2He)=4$. 4897.0 J^{π} : J	1717 52 ^C 11	6+	92 fo 22	A E 11-		
4717.6 4 3 i n P S $XREF$: Others: AF J^{π} : $L(p,p')=3$ from 0^+ ; $L(d,p)=0+2$ from $7/2^-$. 4759.71 16 2 HIJ P T X $XREF$: Others: AF, AH, AP J^{π} : $L(t,p)=L(p,t)=2$ from 0^+ . 4866.0 6 2 HIJ P ST X $XREF$: Others: AE, AF J^{π} : $L(t,p)=L(p,p')=2$; but $L(\alpha, \alpha')=1$. 4897.0 3 5 47 fs 21 E GHi UVWX $XREF$: Others: AF J^{π} : $L(t,p)=L(\alpha,\alpha')=L(p,p')=2$; but $L(\alpha, \alpha')=1$. 4904.0 5 3 HiJ N P Tuvw $XREF$: Others: AF	4/17.33 14	O	03 18 32	А Е ПІ	п	
4717.6 4 3 - i n P S						
4759.71 16 2+ HIJ P T X XREF: Others: AF, AH, AP J^{π} : $L(t,p)=L(p,t)=2$ from 0+. 4866.0 6 2+ HIJ P ST X XREF: Others: AE, AF J^{π} : $L(t,p)=L(\alpha,\alpha')=L(p,p')=2$; but $L(\alpha,^2He)=4$. 4897.0 3 5- 47 fs 21 E GHi uvwX XREF: Others: AF J^{π} : $\gamma(\theta, \lim pol)$. 4904.0 5 3- HIJ N P Tuvw XREF: Others: AF J^{π} : $\gamma(\theta, \lim pol)$. $T_{1/2}$: from $(\alpha, p\gamma)$. XREF: Others: AF J^{π} : $\chi(\theta, \lim pol)$. $\chi(\theta, \lim pol)$. XREF: Others: AF $\chi(\theta, \lim pol)$.	4717.6 <i>4</i>	3-		i	n P S	
4866.0 6 2 ⁺ 487.0 ^d 3 5 ⁻ 47 fs 21 E GHi WWX WXEF: Others: AF, AF J ^π : L(t,p)=L(p,p')=2; but L(α,²He)=4. XREF: Others: AF J ^π : $\chi(\theta, \sin p 0)$. XREF: Others: AF J ^π : $\chi(\theta, \sin p 0)$. T _{1/2} : from (α,pγ). XREF: Others: AF J ^π : $\chi(\theta, \sin p 0)$. T _{1/2} : from (α,pγ). XREF: Others: AF J ^π : $\chi(\theta, \sin p 0)$. T _{1/2} : from (α,pγ). XREF: Others: AF J ^π : L(α,α')=3. This requires E3 to g.s. E(level): if T _{1/2} <50 fs then E3 50% to g.s. is unlikely. In that case another level of J ^π =2 ⁺ is required. 4946.9 10 (1,2,3) ⁻ Hi N P XREF: Others: AF						
4866.0 6 2^+ HIJ P ST X XREF: Others: AE, AF J^π : $L(t,p)=L(\alpha,\alpha')=L(p,p')=2$; but $L(\alpha,^2He)=4$. 4897.0 3 5 47 fs 21 E GHi uvwX XREF: Others: AF J^π : $\gamma(\theta, \text{lin pol})$. 4904.0 5 3 XREF: Others: AF $\gamma(\theta, \text{lin pol})$. 4904.0 5 $\gamma(\theta, \text{lin pol})$. 4904.0 5 $\gamma(\theta, \text{lin pol})$. 4904.0 6 $\gamma(\theta, \text{lin pol})$. 4904.0 7 $\gamma(\theta, \text{lin pol})$. 4904.0 8 $\gamma(\theta, \text{lin pol})$. 4904.0 9 $\gamma(\theta, \text{lin pol})$. 4904.0 9 $\gamma(\theta, \text{lin pol})$. 4904.0 8 $\gamma(\theta, \text{lin pol})$. 4904.0 9 $\gamma(\theta, \text{lin pol})$. 4904.0 9 $\gamma(\theta, \text{lin pol})$. 4904.0 8 $\gamma(\theta, \text{lin pol})$. 4904.0 9 $\gamma(\theta, \text{lin pol})$. 4904.0 9 $\gamma(\theta, \text{lin pol})$. 4904.0 8 $\gamma(\theta, \text{lin pol})$. 4904.0 9 $\gamma(\theta, \text{lin pol})$. 4904.0 8 $\gamma(\theta, \text{lin pol})$. 4904.0 9 $\gamma(\theta, \text{lin pol})$. 4904.0 9 $\gamma(\theta, \text{lin pol})$. 4904.0 8 $\gamma(\theta, \text{lin pol})$. 4904.0 9 $\gamma(\theta, \text{lin pol})$. 4904.0 8 $\gamma(\theta, \text{lin pol})$. 4904.0 9 $\gamma(\theta, \text{lin pol})$. 500 8 $\gamma(\theta, \text{lin pol})$. 501 8 $\gamma(\theta, \text{lin pol})$. 502 9 $\gamma(\theta, \text{lin pol})$. 503 9 $\gamma(\theta, \text{lin pol})$. 503 9 $\gamma(\theta, \text{lin pol})$. 504 9 $\gamma(\theta, \text{lin pol})$. 505 9 $\gamma(\theta, \text{lin pol})$. 605 9 $\gamma(\theta, \text{lin pol})$. 607 9 $\gamma(\theta, \text{lin pol})$. 608 9 $\gamma(\theta, \text{lin pol})$. 609 9	4759.71 <i>16</i>	2+		HIJ	P T X	XREF: Others: AF, AH, AP
4897.0 d 3 5 47 fs 21 E GHi uvwX XREF: Others: AF J^π : $\chi(\theta, \pi) = L(\rho, \rho') = 2$; but $L(\alpha, \pi') = 4$. 4897.0 d 3 5 47 fs 21 E GHi uvwX XREF: Others: AF J^π : $\chi(\theta, \pi) = 0$. 4904.0 5 3 XREF: Others: AF J^π : $\chi(\theta, \pi) = 0$. 4904.0 5 J^π :	1966 D 6	2+		шта	р ст v	
4897.0 d 3 5 47 fs 2 I E GHi uvwX XREF: Others: AF J^{π} : $\gamma(\theta, \text{lin pol})$. 4904.0 5 3 Hi J N P Tuvw XREF: Others: AF J^{π} : $\gamma(\theta, \text{lin pol})$. 4904.0 5 J^{π} :	4000.0 0	2		HIJ	F 31 A	· · · · · · · · · · · · · · · · · · ·
4904.0 5 3 Hi J N P Tuvw $\begin{array}{cccccccccccccccccccccccccccccccccccc$	4897 0 <mark>d</mark> 3	5-	47 fs 21	F CHi	шим	
4904.0 5 3 THIJ N P Tuvw $T_{1/2}$: from $(\alpha, p\gamma)$. XREF: Others: AF J ^{π} : $L(\alpha, \alpha') = 3$. This requires E3 to g.s. is unlikely. In that case another level of J ^{π} = 2 is required. 4946.9 10 $(1,2,3)^-$ Hi N P XREF: Others: AF	1077.0 5	3	17 13 21	L dill	avwn	
4904.0 5 3 Tuvw XREF: Others: AF J^{π} : $L(\alpha,\alpha')=3$. This requires E3 to g.s. E(level): if $T_{1/2}<50$ fs then E3 50% to g.s. is unlikely. In that case another level of $J^{\pi}=2^+$ is required. 4946.9 10 $(1,2,3)^-$ Hi N P XREF: Others: AF						
E(level): if $T_{1/2} < 50$ fs then E3 50% to g.s. is unlikely. In that case another level of $J^{\pi} = 2^{+}$ is required. 4946.9 10 (1,2,3) ⁻ Hi N P XREF: Others: AF	4904.0 5	3-		HiJ	N P Tuvw	XREF: Others: AF
unlikely. In that case another level of $J^{\pi}=2^{+}$ is required. 4946.9 10 (1,2,3) ⁻ Hi N P XREF: Others: AF						
required. 4946.9 10 (1,2,3) ⁻ Hi N P XREF: Others: AF						E(level): If $T_{1/2} < 50$ is then E3 50% to g.s. is
4946.9 10 (1,2,3) ⁻ Hi N P XREF: Others: AF						•
	4946.9 10	$(1,2,3)^{-}$		Hi	N P	
		•				

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$		KREF	Comments
4971.0 5	3-		GHiJ	N PQ ST X	XREF: Others: AF, AL
5017.14 <i>11</i>	4+		HI	P TVX	J^{π} : L(p,p')=L(p,t)=3 from 0^+ . XREF: Others: AF, AH, AP
					J^{π} : L(t,p)=L(p,t)=4 from 0 ⁺ .
5075.0 8	(1,2,3) ⁻ 3 ⁻		GHI	N P N T	J^{π} : L(3 He,d)=1(+3) from 3/2 ⁺ and γ to 3 ⁻ . J^{π} : L(α,α')=3 from 0 ⁺ .
5158.0 <i>7</i> 5188.0 <i>11</i>	$(2,3,4)^+$		GHI H	N T Vw	J^{π} : γ to J^{π} : $(d,t)=3$.
5210.3 7	(2 ⁺)		Hij	N p T Vwx	J ^{π} : γ to 4 ⁺ . L(t,p)=L(α , α')=2. It is assumed that the level at 5200 5 in (t,p) and 5205 5 in (α , α') is the same as 5210 2 in (α ,p γ).
5212.98 <i>19</i>	6		E		J^{π} : from $\gamma(\theta,DCO)$ in $(^{18}O,\alpha 2n\gamma)$.
5214.1 6	(2 ⁺)		Нј	p wx	J ^π : gammas to 2 ⁺ and 4 ⁺ ; L(p,t)=2. It is assumed that the level at 5213 in (p,t) is the same as this level. See also comment for 5210 level. Additional information 3.
5320.0 5	$(3,4)^{-}$		GHI	N P RS UVw	XREF: Others: AK
					XREF: U(5340). J^{π} : L(d,p)=0(+2) and L(d,t)=0+2 from 7/2 ⁻ .
5345.0 10	0+		Н	R wX	XREF: Others: AJ, AK XREF: X(5332).
5358.0 6	2+		HIJ	P X	J^{π} : L(p,t)=0 and γ to 2^+ . J^{π} : γ to 0^+ and L(d,p)=1 from $7/2^-$.
5380.0 6	5-		HI	P X TVX	XREF: Others: AE
					J ^{π} : gammas to 4 ⁺ and 6 ⁺ ; L(d,t)=2 from 7/2 ⁻ . Inconsistent with L(α , ² He)=6.
5393.0 7	(3)-		GHi	NP tw	J^{π} : gammas to 2 ⁺ ; $L(^{3}He,d)=1(+3)$ from 3/2 ⁺ and $L(d,p)=(0+2)$.
5407 4	3-		i	N P t Vw	J^{π} : $L(^{3}He,d)=1+3$; $L(d,p)=0$.
5439.0 10	$(3,4)^{-}$		Hi	P V	J^{π} : L(d,p)=L(d,t)=0 from 7/2 ⁻ . J^{π} : L(³ He,d)=3.
5466 <i>5</i> 5472.0 <i>6</i>	$(1 \text{ to } 5)^-$ $(2,3,4)^+$		i Hi	N P V X	J^{π} : L(+He,d)=5. J^{π} : γ to 2 ⁺ ; L(d,p)=L(d,t)=1 from 7/2 ⁻ ; L(p,t)=(4) favors 4 ⁺ .
5490.77 ^d 13	6-	59 fs <i>14</i>	ABCDE GH	v x	J^{π} : from $\gamma(\theta, \text{lin pol,DCO})$.
5491.0 8	3-		Н	N T v x	$T_{1/2}$: from $(\alpha,p\gamma)$. J^{π} : $L(\alpha,\alpha')=3$. But inconsistent with $L(d,t)=3(+1)$ for a level at 5488 5.
5510.0 8	3-		Hi	N Q T	XREF: Others: AJ, AK, AL XREF: T(5527).
					J^{π} : $L(e,e')=L(\alpha,\alpha')=3$.
5530.0 <i>7</i> 5578.0 <i>11</i>	2^+ $(0^+ \text{ to } 4^+)$		Hi HI	P X	J^{π} : L(p,t)=2 and L(d,p)=1. J^{π} : γ to 2 ⁺ .
5593.0 5	3-		GHiJ	N TVx	J^{π} : L(³ He,d)=1+3 from 3/2 ⁺ ; L(d,t)=0+2 from 7/2 ⁻ .
5601.0 8	(3-,4-)		Hi	Wx	J ^{π} : L(3 He, α)=(0+2) from 7/2 $^{-}$. It is assumed that the level at 5610 20 in (3 He, α) is the same as the level at 5601 2 in (α ,p γ).
5624.0 7	3-		GHi	N P T	J^{π} : L(³ He,d)=1(+3) from 3/2+; L(d,p)=0(+2) from 7/2 ⁻ .
5665.0 6	(3-)		gHi	n q T w	J ^{π} : L(α , α')=L(p,t)=3. It is assumed that the level at 5665 2 in (α , α) is the same as 5667 5 in (α , α') and 5664 in (p,t).
5670.0 7	(3 ⁻)		gHi	Pq w	J ^{π} : gammas to 2 ⁺ and 3 ⁻ ; L(d,p)=0+2. It is assumed that the level at 5670 2 in $(\alpha,p\gamma)$ is the same as 5669 10 in (d,p).
5691.77 <i>17</i>	6+		E Hi	P T w	J ^{π} : $\gamma(\theta,DCO)$ in ($^{18}O,\alpha 2n\gamma$); gammas to 4 ⁺ and 6 ⁺ . But $L(\alpha,\alpha')=(4,5)$ gives ($4^+,5^-$).
5716.0 <i>10</i>	2+		Hi	n t X	$J^{\pi}: L(p,t)=2.$
			Contin	ued on next page (f	ootnotes at end of table)

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	2	XREF		Comments
5725.0 10	$(2^+ \text{ to } 6^+)$		Hi	n	t	J^{π} : γ to 4^+ .
5738.0 5	(2 ⁺)		J		S	J^{π} : gammas to 0 ⁺ and 2 ⁺ ; L(p,p')=2,3.
5744.01 ^d 11	7-	0.42 ps 10	ABCDE GHi			J^{π} : $\Delta J=2 \gamma$ to 5 ⁻ ; γ to 6 ⁺ from $\gamma(\theta, \text{lin pol,DCO})$.
0711101 11	•	0 2 po 10	112 02 2 0112			$T_{1/2}$: from $(\alpha, p\gamma)$. Other: 10.5 ps 10 is reported in
						$(^{16}O,2p\gamma)$ using RDM. It may suggest two closely
						spaced levels.
5769.0 <i>7</i>	3-		Hi		Vwx	J^{π} : gammas to 2 ⁺ and 4 ⁺ ; L(d,t)=2 from 7/2 ⁻ .
5774.9 <i>7</i>	$(4,5)^+$		Hi	P	WX	J^{π} : gammas to 4 ⁺ and 6 ⁺ ; L(d,p)=1 from 7/2 ⁻ .
5797.0 6	$(1,2)^+$		HI	p	V	XREF: Others: AK, AL XREF: I(5790).
						J^{π} : gammas to 0^{+} and 2^{+} ; $L(d,t)=3$ from $7/2^{-}$.
5802.0 10	3-		GH	N pQ	STUVWx	XREF: Others: AK, AL
						XREF: G(5791)N(5795)T(5794)U(5790)W(5790).
						J^{π} : $L(\alpha,\alpha')=3$.
5822.0 10	$(1,2,3)^-$		H	N	X	J^{π} : γ to 2 ⁺ ; L(³ He,d)=1 from 3/2 ⁺ .
5860 <i>10</i>	0+		I			J^{π} : L(t,p)=0.
5866.0 8	$(1,2,3^{-})$		gH			XREF: Others: AB, AD, AG, AP
						J^{π} : gammas to 0^+ and 2^+ . If this level is the same
						as 5860 in (t,p) with L=0, then placement of 4028.5γ is incorrect as it would be E0.
5875.0 <i>7</i>	2+		gH	N	T	J^{π} : $L(\alpha,\alpha')=2$.
5924.0 5	$(3,4)^{-}$		GHI	N P	t V	XREF: Others: AJ, AK
0,20	(5,1)		0112			XREF: I(5920).
						J^{π} : gammas to 4 ⁺ , 4 ⁻ and 5 ⁻ ; L(d,p)=0+2 from 7/2 ⁻ .
5925.5 <i>3</i>	(5)		E HI		st V	XREF: Others: AJ, AK
						XREF: I(5920).
						J^{π} : $\Delta J=1$, γ to 6 ⁺ from DCO in (¹⁸ O, α 2n γ); γ
505 6 30	(2.4)=			_		from 4 ⁺ .
5956 <i>10</i>	(3,4) ⁻ 3 ⁻		-	P	1117	J^{π} : L(d,p)=0+2 from $7/2^{-}$.
5980 5	3		I	N	UV	XREF: Others: AK XREF: I(5980).
						J^{π} : L(³ He,d)=1 from 3/2 ⁺ ; L(d,t)=0(+2) from 7/2 ⁻ .
5994.0 8	3-		HI	P	UV	XREF: Others: AK
						XREF: I(5980).
						J^{π} : γ to 2^{+} ; $L(d,p)=0+2$; $L(d,t)=0+(2)$ from $7/2^{-}$.
6003.0 <i>10</i>	3-,4-		HI	p	UV	XREF: Others: AK
						XREF: I(5980).
(016.5	0+		-		T	J^{π} : L(d,p)=0+2 from 7/2 ⁻ .
6016 5	0.		I	n	T	XREF: Others: AB J^{π} : $L(t,p)=0$. $L(\alpha,\alpha')=2$ is inconsistent.
						Additional information 4.
6020.0 7	$(4^+,5,6^-)$		Н	n		XREF: Others: AB
	()-,- ,					J^{π} : gammas to 4 ⁻ and 6 ⁺ ; 5 ⁻ or 6 ⁻ are supported by
						$11/2^-$ transfer in (α,p) from $3/2^+$.
						Additional information 5.
6028.0 6	(3)		Н	P	tuvw	J^{π} : L(d,p)=0+2 from 7/2 ⁻ ; γ to 2 ⁺ .
6038.0 7	$(1,2,3)^-$		Н	N	T v	XREF: Others: AD, AJ
						XREF: AD(6020).
						J ^{π} : L(³ He,d)=(1+3) from 3/2 ⁺ ; L(d,t)=2(+0) from 7/2 ⁻ ; γ to 2 ⁺ .
						Additional information 6.
6080	0^{+}				X	J^{π} : L(p,t)=0.
6093.5 8	$(3^- \text{ to } 7^-)$		Н	n q	v	J^{π} : γ to 5 ⁻ .
6104.0 7	$(0^+ \text{ to } 4^+)$		H	n q	v	J^{π} : γ to 2^+ .
6113.0 8	4+		GHI	PQ	T V	XREF: Others: AK
						XREF: G(6096)I(6105).

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡		XREF	Comments
					J^{π} : L(t,p)=4.
6140.8 <i>6</i>	6-	49 fs +21-14	gHi	p	J^{π} : $\gamma(\theta)$ to 6^- in $(\alpha,p\gamma)$; γ to $4^-,5^-$. $T_{1/2}$: from $(\alpha,p\gamma)$.
6144.72 ^d 14	7-	<70 fs	ABCDE gHI	p	J^{π} : from $\gamma(\theta, \text{lin pol,DCO})$.
6158 5	3-		i	N P T V	$T_{1/2}$: from $(\alpha, p\gamma)$. J^{π} : $L(\alpha, \alpha')=3$.
6182.0 7	$(1,2,3^{-})$		Hi	N P I V	J^{π} : E=6182 γ to 0 ⁺ .
6212.0 10	3-		Hi	P S Vw	J^{π} : L(d,p)=0+2 from 7/2 ⁻ ; L(p,p')=2 or 3 from
(240.5	2-			N.D. T.V.	0+.
6240 <i>5</i> 6247.9 <i>6</i>	3 ⁻ (4 ⁺ ,5,6 ⁻)		Н	N P T V	J^{π} : $L(\alpha, \alpha')=3$. J^{π} : gammas to 4^- and 6^+ .
6274 7	2+		I	P	J^{π} : $L(t,p)=2$.
6313 7	$(2 \text{ to } 5)^+$		GI	P T VW	XREF: Others: AB, AJ
0313 /	(2 to 3)		0.1	1 1 ***	XREF: I(6290).
					J^{π} : L(d,p)=1 and Ay(θ).
6390 10	$(3,4)^{-}$		I	P RST	XREF: Others: AB, AJ
	(- / /				XREF: I(6400)AJ(6300).
					J^{π} : L(d,p)=0 from $7/2^{-}$; L($\pi^{+},\pi^{+\prime}$)=(3).
6408.57 ^d 12	8-	31.0 ps 25	ABCDE GH	W	J^{π} : $\Delta J=2$ E2 γ to 6 ⁻ ; $\Delta J=1$ γ to 7 ⁻ from
0100.57 12	O	31.0 ps 23	nocoe di		$\gamma(\theta, \text{lin pol,DCO}).$
					$T_{1/2}$: from ($^{16}O,2p\gamma$).
6426 10	$(2 \text{ to } 5)^+$		i	P w	J^{π} : L(d,p)=1 from 7/2 ⁻ .
6462 10	$(3,4)^{-}$		i	P	J^{π} : L(d,p)=0+2 from 7/2 ⁻ .
6516.0 6	. , ,		I	P TU W	XREF: Others: AB, AD
					J^{π} : L(d,p)=1 from 7/2 ⁻ . L(p,d)=0+2 from 7/2 ⁻ is
					incompatible. $L(t,p)=(0)$ suggests (0^+) and
					$L(^{3}He,\alpha)=(4)$ suggests (4^{+}) .
6541.8 <i>6</i>	5+		Н	P	J^{π} : gammas to 5 ⁻ ,6 ⁺ , and 6 ⁻ ; $L(d,p)=1$ from $7/2^-$.
6553.72 ^d 12	9-	42 ps 3	ABCDE GH		J^{π} : $\Delta J=2$ E2 γ to 7 ⁻ ; $\Delta J=1$ γ to 8 ⁻ from
					$\gamma(\theta, \text{lin pol,DCO}).$
6572 15	$(2 \text{ to } 5)^+$		i	P w	J^{π} : L(d,p)=1 from 7/2 ⁻ .
6584.7 8	$(5^- \text{ to } 8^-)$		GHi	_ W	J^{π} : gammas to 7 ⁻ and 6 ⁻ .
6614 15	$(3,4)^{+}$	26.6.15	i	P T	J^{π} : L(d,p)=1 and analyzing power in (d,p).
6636.30 ^c 15	8+	36 fs <i>15</i>	E HI	P RST W	XREF: Others: AK
					XREF: I(6640)P(6653)W(6660).
					J^{π} : from $\gamma(\theta,DCO)$ in ($^{18}O,\alpha 2n\gamma$).
6674.8 10	$(4^+ \text{ to } 8^+)$		Н	P T W	$T_{1/2}$: from $(\alpha,p\gamma)$. XREF: Others: AL
0074.0 10	(4 10 8)		п	r ı w	XREF: P(6670)W(6660).
					J^{π} : γ to 6^+ .
6715.9 <i>7</i>	(4^{+})		Н	P	XREF: Others: AB
	()			_	J^{π} : γ to 6^+ ; γ to (2^+) ; $L(d,p)=(1+3)$ from $7/2^-$.
6718.14 <i>17</i>	7		E		J^{π} : $\Delta J=1 \gamma$ to 6^+ from $\gamma(\theta,DCO)$ in
					$(^{18}\mathrm{O},\alpha2\mathrm{n}\gamma).$
6720 8	0^{+}		I		XREF: Others: AB, AD
					XREF: AD(?).
					J^{π} : $L(t,p)=0$.
6746.5 8	4 ⁺		GHI	P T X	XREF: Others: AL
					XREF: P(6760).
					J^{π} : L(d,p)=1 from 7/2 ⁻ ; $J_n=1/2+3/2$ in (pol d,p);
					γ transitions to 5 ⁻ in $(\alpha,p\gamma)$. But 3/2 ⁺ transfer
6781 7			СТ	יי דיי די	in (α, p) from $3/2^+$ favors 3^+ .
6816.8 <i>10</i>	$(4,5)^+$		G I HI	P TU W P	XREF: I(6800). XREF: Others: AD
0010.0 10	(7,5)		111	1	AND OURS ID

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	X	REF	Comments
6895.8 <i>6</i>	4+		ні	P	J^{π} : γ to 6 ⁺ ; $L(d,p)=1$ from 7/2 ⁻ . J^{π} : gammas to 3 ⁻ and 6 ⁺ ; $L(d,p)=1$ from 7/2 ⁻ .
6920 4	$(3,4)^+$		I	P CT II	J^{π} : L(d,p)=1 from 7/2 ⁻ ; $J_n=1/2$ in (pol d,p).
6931 7	$(2,3)^+$		GI	P ST V	XREF: \bar{I} (6940). \bar{J}^{π} : $3/2^+$ transfer in (α,p) from $3/2^+$ and $\bar{L}(d,p)=1+3$
6940.2 6	(5-,6,7-)		Hi	t	from $7/2^-$. J^{π} : gammas to 5^- and 7^- .
6961 <i>15</i> 6975.5 <i>5</i>	$(3,4)^+$ (5^+)		GH	P P	J^{π} : L(d,p)=1 from 7/2 ⁻ ; J_n =1/2 in (pol d,p). J^{π} : gammas to 5 ⁻ , 6 ⁺ , and 6 ⁻ ; 13/2 ⁺ transfer in (α ,p)
7020 12	4 ⁺		GI	PQ s w	from 3/2 ⁺ . XREF: Others: AL
7020 12	T		9.1	IQ S W	XREF: I(7010).
					J^{π} : 11/2+ transfer in (α,p) from 3/2+; L(d,p)=1+3
7041 <i>15</i>	$(3^-,4^-)$			P s w	from $7/2^-$; $J_n=1/2+5/2$ in (pol d,p). J^{π} : $L(d,p)=(0+2)$ from $7/2^-$.
7103 7	$(1 \text{ to } 4)^-$		GI	Q	XREF: Others: AL
					XREF: I(7110).
7129.9 10	4+		Hi	P	J ^π : $5/2^-$ transfer in (α,p) from $3/2^+$. J ^π : L(d,p)=1 from $7/2^-$; J _n =1/2+3/2 in (pol d,p); γ to
7125.5 10				•	6 ⁺ .
7153 7	$(3,4)^+$		Gi	P	J^{π} : L(d,p)=1 from 7/2 ⁻ ; J_n =1/2 in (pol d,p); 11/2 ⁺ transfer in (α,p) favors 4 ⁺ .
7180 20	2+		I		J^{π} : L(t,p)=2.
7197.9 <i>10</i>			Н	P	J^{π} : γ to 6 ⁺ , but L(d,p)=(0+2) from 7/2 ⁻ suggests (3 ⁻ ,4 ⁻).
7228 7	(3 ⁻ ,4 ⁻)		G	P	J^{π} : 5/2 ⁻ transfer in (α,p) from 3/2 ⁺ gives (1 to 4) ⁽⁻⁾ and L(d,p)=(0+2) from 7/2 ⁻ gives (3 ⁻ ,4 ⁻).
7273 7	$(3,4)^+$		GI	P	XREF: Others: AJ, AK, AL XREF: I(7257).
					J^{π} : L(d,p)=1 from 7/2 ⁻ ; J_n =1/2 in (pol d,p); 3/2 ⁺ transfer in (α ,p) from 3/2 ⁺ favors 3 ⁺ .
7282.02 14	9-		A E HI	U	XREF: Others: AE, AJ, AL
					XREF: I(7280).
					J ^π : gammas to 8 ⁻ and 9 ⁻ ; $\gamma(\theta, DCO)$ in (¹⁸ O, α 2n γ). But L(α , ² He)=(5,6,7) suggest (7 ⁻).
7344.7 10	(6 ⁻ to 10 ⁻)		GI	R	XREF: Others: AJ, AL
					XREF: I(7320).
7348 15	$(3,4)^{+}$			P	J^{π} : γ to 8 ⁻ . J^{π} : $L(d,p)=1$ from $7/2^-$; $J_n=1/2$ in (pol d,p).
7360.6 10	$(5^- \text{ to } 9^-)$		Н	•	J^{π} : γ to 7^{-} .
7368.46 ^d 15	10-	1.9 ps 8	ABCDE H		J^{π} : from $\gamma(\theta, \text{lin pol,DCO})$.
					$T_{1/2}$: weighted average of 2.6 ps 11 in (18 O,2np γ) and 1.5 ps 8 in (16 O,2p γ).
7388.8 10	4+		HI	PQ S	XREF: Others: AL
					XREF: P(7401).
					J^{π} : γ to 6 ⁺ ; $L(d,p)=1$ from $7/2^-$; $J_n=1/2+3/2$ in (pol d,p).
7415.87 <i>15</i>	8+		ЕН	P S w	XREF: Others: AJ, AL
					XREF: P(7422).
7421.2 8	$(4^+ \text{ to } 8^+)$		Н	P RS U w	J ^{π} : from $\gamma(\theta, DCO)$ in (¹⁸ O, α 2n γ); γ to 6 ⁺ . XREF: Others: AL
, 121.2 0	(1 100)		11	1 10 0 W	XREF: P(7438).
					J^{π} : γ to 6^+ .
7468 <i>15</i>	$(2 \text{ to } 5)^{(+)}$ $(3,4)^+$			P	J^{π} : L(d,p)=(1+3) from 7/2 ⁻ .
7520 15	(3,4)			P	J^{π} : L(d,p)=1 from 7/2 ⁻ ; J_n =1/2 in (pol d,p).

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡			XREF	Comments
7543.1 6	$(4^+ \text{ to } 7^-)$			Н	W	J^{π} : gammas to 5 ⁻ and 6 ⁺ .
7562.5 10	$(4^+,5^+)$			H	PQ w	XREF: Others: AK, AL
						XREF: P(7571).
						J^{π} : γ to 6^+ ; $L(d,p)=(1)$ from $7/2^-$.
7600 <i>15</i>	$(2^+ \text{ to } 5^+)$				P	J^{π} : L(d,p)=(1+3) from 7/2 ⁻ .
7634.03 <i>23</i>	$(6,8^+)$		E	H		J^{π} : γ to 6 ⁺ ; $\gamma(\theta,DCO)$ in (¹⁸ O, α 2n γ).
7643 <i>15</i>	3+,4+				P	J^{π} : L(d,p)=1 from 7/2 ⁻ ; $J_n=1/2+3/2$ in (pol d,p).
7696.8 <i>10</i>	4 ⁺			Н	P	J^{π} : L(d,p)=1 from 7/2 ⁻ ; $J_n=1/2+3/2$ in (pol d,p); γ to
7726.5 10	$(4^+ \text{ to } 8^+)$			Н		6^+ . J^{π} : γ to 6^+ .
7750.66 17	(11)	<2.1 ps	CD			J^{π} : $\Delta J=1 \gamma$ to 10^- ; γ (lin pol).
						$T_{1/2}$: from ($^{16}O,2p\gamma$).
7758.0 <i>6</i>	$(6^-,7^-)$			H		J^{π} : gammas to 5 ⁻ , 6 ⁻ , 7 ⁻ and 8 ⁻ .
7760 15	$(3,4)^+$				P	J^{π} : L(d,p)=1 from 7/2 ⁻ ; J_n =(1/2) in (pol d,p).
7793 <i>15</i>	$(3,4)^+$				P	J^{π} : L(d,p)=1 from 7/2 ⁻ ; $J_n=1/2$ in (pol d,p).
7800.7 <i>10</i>	$(5^- \text{ to } 9^-)$			H		J^{π} : γ to 7^{-} .
7838.9 12	$(2^+ \text{ to } 6^+)$			H		J^{π} : γ to (4^+) .
7921.2 8	$(4^+ \text{ to } 8^+)$			H		J^{π} : γ to 6^+ .
7939.8 8	$(4^+ \text{ to } 8^+)$			H		J^{π} : gammas to 6^+ .
8052.6 10	$(4^+ \text{ to } 8^+)$			H		J^{π} : γ to 6^+ .
8059.7 8	(6 ⁻ to 9 ⁻)			H		J^{π} : gammas to 7^- and 8^- .
8082.7 10	$(7^- \text{ to } 11^-)$			H		J^{π} : γ to 9 ⁻ .
8103.2 <i>8</i> 8170 <i>20</i>	$(4^+ \text{ to } 8^+)$			Н	W	J^{π} : gammas to 6^+ .
8297.46 ^d 15	11-	<1.7 ps	ABCDE	Н	TU W	XREF: Others: AJ
0297.40 13	11	<1.7 ps	ADCDE	11	10 W	XREF: W(8260).
						J^{π} : $\Delta J=1$ M1 γ to 10 ⁻ ; γ to 9 ⁻ ; $\gamma(\theta,\text{pol},\text{DCO})$.
						$T_{1/2}$: from (¹⁸ O,2npy).
8364.8 8	$(6^-,7,8^+)$			Н	R U W	XREF: W(8330).
0301.00	(0 ,7,0)			**	1. 0	J^{π} : gammas to 6^+ and 8^- .
8449.7 6	$(7,8)^{-}$			Н	QSUW	XREF: W(8410).
	(.,=)					J^{π} : gammas to 6^- and 9^- .
8450	0_{+}				X	J^{π} : L(p,t)=0 from 0 ⁺ .
8511.7 8	$(6^- \text{ to } 9^-)$				U	XREF: Others: AB, AJ, AK
	· · · · · · · · · · · · · · · · · · ·					XREF: AK(8520).
						J^{π} : gammas to 7^{-} and 8^{-} .
8517.0 <i>11</i>	(3 to 9)			H	U W	XREF: Others: AJ, AK
						XREF: W(8520).
						J^{π} : γ to (5,7).
8522.3 <i>3</i>	(10)		C		U W	XREF: Others: AJ, AK
						XREF: W(8520).
						J^{π} : $\Delta J=1 \gamma$ to $(11)^{-}$; $\gamma(\theta)$ in $(^{19}F,\alpha\gamma)$.
8580.9 12	$(2^+ \text{ to } 6^+)$			H	TU W	XREF: W(8600).
						J^{π} : γ to (4^+) .
8611.9 <i>12</i>	$(2^+ \text{ to } 6^+)$			Н	TU W	XREF: W(8600).
0615 12 15	9		T7			J^{π} : γ to (4 ⁺). J^{π} : from $\gamma(\theta,DCO)$ in (¹⁸ O, α 2n γ).
8615.13 <i>15</i>			E			J [*] : from $\gamma(\theta, DCO)$ in ($^{18}O, \alpha 2\pi \gamma$).
8722.30 15	9 (8 ⁻ to 12 ⁻)		E	T.T		
8744.9 <i>11</i>	(8 ⁻ to 12 ⁻)			Н	0 11	J^{π} : γ to 10^{-} .
8773.7 8	(5,6,7)			Н	Q U	XREF: Others: AE XREF: AE(8810).
						J^{π} : gammas to 6^- and 6^+ .
8847.97 ^c 20	(10^+)		Е	Н	Q U W	XREF: Others: AE
00 1 1.91 20	(10)		Ľ	11	Q UW	XREF: AE(8810).
						J^{π} : gammas to 8^+ ; $\gamma(\theta,DCO)$ in $(^{18}O,\alpha 2n\gamma)$.
						. 5 minus (0 0 , /(0,DCO) iii (0,02117).

E(level) [†]	$J^{\pi \#}$			XRE	F	Comments
8951.3 <i>11</i> 9015.01 <i>14</i> 9036.9 <i>11</i>	(6 ⁺ to 10 ⁺) 10 ⁺ (8 ⁻ to 12 ⁻)	A	H E H		UV	J^{π} : γ to 8^+ . J^{π} : from $\gamma(\theta,DCO)$ in ($^{18}O,\alpha 2n\gamma$); gammas to 8^+ , 9^- and 11^- . XREF: Others: AE
	(8 10 12)				OV.	XREF: AE(9080). J^{π} : γ to 10^{-} .
9115 <i>5</i> 9191 <i>5</i>			F F			
9205.9 8	(7 ⁻ to 9 ⁻)		Н		UV	XREF: Others: AE XREF: AE(9080). J^{π} : gammas to 7^{-} and 9^{-} .
9241.9? <i>9</i> 9270			E			J ^{π} : from $\gamma(\theta, DCO)$ in ($^{18}O, \alpha 2n\gamma$). XREF: Others: AC
9280 5	1-@		F			
9311.08 <i>16</i> 9330 <i>50</i>	$(8,10^+)$		E			J^{π} : $\Delta J=(0,2) \gamma$ to $(6,8^+)$; γ to 8^+ ; $\gamma(\theta,DCO)$ in $(^{18}O,\alpha 2n\gamma)$. XREF: Others: AE
9367 5	(5- to 0-)		F			J^{π} : γ to 7^{-} .
9377.7 <i>10</i> 9426 <i>5</i>	(5 ⁻ to 9 ⁻)		H F			\mathcal{F} : γ to γ .
9470 5			F			
9561 <i>5</i>			F			
9600 <i>50</i>	$(5^-,6^+)$					XREF: Others: AE J^{π} : $L(\alpha,^{2}\text{He})=(5,6)$.
9635 5			F			
9672 <i>5</i> 9699 <i>5</i>			F F			
9723 <i>5</i>			F			
9750 10	(2-)		-	M	Q S UVW	XREF: Others: AL T=2
						XREF: W(9740). J^{π} : M2 excitation in (e,e'); g.s. analog of ⁴² Ca.
9757 <i>5</i> 9759.7 <i>10</i>	(7= 4- 11=)		F			ΙΠ 4 - 0 -
9739.7 <i>10</i> 9770	$(7^- \text{ to } 11^-)$ (2^+)		Н		Q	J^{π} : γ to 9^{-} . J^{π} : E2 excitation in (e,e').
9784 <i>5</i>	(2)		F		*	5. 22 exercition in (e,e).
9786.29 <i>14</i>	(9 ⁻ ,11)	A	E			J ^{π} : from $\gamma(\theta,DCO)$ in (¹⁸ O, α 2n γ); gammas to 9, 10 ⁺ , 10 ⁻ and 11 ⁻ .
9841.6 <i>10</i>	(5,6)		Н		UVW	XREF: Others: AE, AL XREF: AE(9870).
0050 10	(2-)					J^{π} : γ to 7 ⁻ ; $L(p,d)=L(^{3}He,\alpha)=2$ from 7/2 ⁻ .
9850 10	(3 ⁻)			M	X	T=2 J^{π} : possible IAS of ⁴² Ca at 107 keV.
9947 <i>5</i> 10000 <i>10</i>	$(4)^{-}$		F	M	u w	T=2
10000 10				11	u w	J^{π} : possible IAS of ⁴² Ca at 258 keV; $L(^{3}He,d)=3$ from $3/2^{+}$.
10035.6 <i>10</i> 10038 <i>5</i>	(5 ⁻ to 9 ⁻)		H F		u w	J^{π} : γ to 7^{-} .
10160 50	(10.12+)		F			XREF: Others: AE
10168.69 <i>16</i> 10205 <i>5</i> 10231 <i>5</i>	$(10,12^+)$	A	E F F			J ^{π} : from $\gamma(\theta, DCO)$ in ($^{18}O, \alpha 2n\gamma$); gammas to 10^+ and 11^- . XREF: Others: AC
10282 5	1-@		F			
10314 <i>5</i> 10358 <i>5</i>	1-@		F F			
10389 5	-		F			
10450.0 <i>10</i>	(5)-			M	QRS U W	T=2

E(level) [†]	$J^{\pi \#}$		XREF		Comments
					XREF: U(10430)W(10430).
					J^{π} : possible IAS of ⁴² Ca at 699. L(³ He,d)=3 from 3/2 ⁺ .
10453 5		F			(),,,,
10500 5	1-@	F			
10510 20				W	T=2
10527 5		F			
10561 5		F			
10588 5		F			
10610 20				W	T=2
10612 <i>5</i> 10633 <i>5</i>		F			
10652 5		F F			
10673 5	1-@	F			
	@				
10700 5		F			
10726 5	1-@	F			
10783 5	1-@	F			
10805 5	1-@	F			
10842 5	1-@	F			
10884 5	1-@	F			
10905 5	1-@	F			
10916 5	1-@	F			
10968 5	1	F			
10970 20	3-	-		U WX	T=2
					J^{π} : L(p,t)=3 from 0 ⁺ and L(p,d)=0 from 7/2 ⁻ .
10985 5		F			
11013 5	1-@	F			
11048 5		F			
11076 5	1-@	F			
11108 5	1-@	F			
11149 5	1-@	F			
11165.7 9	(10,12)	E			J^{π} : $\gamma(\theta,DCO)$ in (¹⁸ O, α 2n γ).
11185 5	1-@	F			0 1 7(0,2 00) iii (0,42ii/).
11103 5	1-@				
11225 5	(1 ⁺)	F	()	T=2
11233 3	(1)		•	2	J^{π} : M1 excitation in (e,e').
11279 5		F			o . Hir exertation in (e,e).
11303.7 10		F	J		
11309.5 10			J		
11319.3 <i>10</i>			J		
11326.1 10			J		
11331.0 <i>10</i>	6		J		
11335.9 10	1-@	F	J		
11343.7 10	(1.0+)		J		T7 (0) • ()
11361.3 <i>7</i> 11363.2 <i>10</i>	$(1,2^+)$		J J		J^{π} : $\gamma(\theta)$ in (p,γ) .
	1-@				
11380.8 <i>10</i> 11398.4 <i>10</i>	1	F	J 1		
11398.4 10		F	J J		
11401.3 10 11405.1 ^c 11	(12^{+})	E	J		J^{π} : $\gamma(\theta,DCO)$ in (¹⁸ O, α 2n γ).
11409.1 10	(12)	15	J		5. 1(0,DCO) iii (0,02117).
11412.0 10			j		
11416.9 10			j		

E(level) [†]	$J^{\pi \#}$	X	REF		Comments
11426.0 10		JI			
11429.6 <i>15</i>	$(0^+,1^-,2^+)^{\&}$	I			
11432.3 10		JI			
11436.1 10	$(1^-,2^+)^{\&}$ $1^{-@}$	JI			
11439.7 10	1-@	FJI			
11440 20	3-,4-	r J L		J WX	T=2
111.10 20	· , .		· ·		J^{π} : L(p,d)=L(3 He, α)=0 from $^{7}/^{2}$
11445.6 10		JI			The Control of the Co
11447.7 15	$(0^+,1^-,2^+)^{\&}$	I			
11449.0 <i>15</i>	(- , , ,	I			
11450.5 <i>15</i>		I			
11453.1 <i>15</i>		I			
11464.7 15		L			
11468.1 <i>15</i>	. 0-	I			
11469.3 <i>15</i>	$(1^-,2^+)^{\&}$	I			
11473.5 <i>15</i>	$(1^-,2^+)^{\&}$	I			
11475.8 <i>15</i>		I			
11477.7 15	2- 4-	I			VDEE OIL AU
(11480.64 7)	3-,4-				XREF: Others: AH
11481.77 9			0		J^{π} : s-wave capture in ⁴¹ Ca g.s. $(J^{\pi}=7/2^{-})$.
	(2 ⁺)&				
11485.20 <i>6</i> 11486.86 <i>6</i>	(2)	I	. 0		
	1-@	г .			
11488.7 <i>15</i> 11490.40 <i>9</i>	1	F L	. 0		
11493.6 15		I			
11495.41 6		-	0		
11499.0 <i>1</i>		I			
11500.20 6		I			
11503.70 <i>11</i>	0	I	. 0		
11507.10 <i>15</i>	$(0^+,1^-,2^+)^{\&}$	I			
11508.8 <i>15</i>	0	I			
11510.34 <i>16</i>	(1 [−]) ^{&}	I			
11512.5 15		L			
11514.36 <i>15</i>	Q_{τ}		0		
11516.6 15	(1 ⁻)&	I			
11519.5 3	1.87	F I			
11523.3 15	$(1^-,2^+)^{\&}$	I			
11525.4 15	(1- 2+) &	I			
11527.4 <i>15</i>	$(1^-,2^+)^{\&}$	I			
11529.3 <i>15</i>	$(0^+,1^-,2^+)^{\&}$	I I			
11530.7 3		I	. 0		
11532.6 <i>15</i> 11537.12 <i>25</i>		L	0		
11537.12 25	(1 ⁻)&				
	(1) (1) (1) (1) (1) (1) (1) (1)	I			
11542.3 <i>15</i> 11543.6 <i>15</i>	$(0^+,1^-,2^+)^{\&}$	I I			
11543.0 15	1-@	F I			
11550.0 <i>15</i> 11551.5 <i>15</i>	$(0^+,1^-,2^+)^{\&}$	I I			
	(1 ⁻)&				
11555.4 <i>15</i> 11556.3 <i>15</i>	(1)	I I			
11000.0 10		-	-		

E(level) [†]	J ^{π#}	XREF	Comments
11558.1 <i>15</i>		L	
11562.8 <i>15</i>	0	L	
11569.2 <i>15</i>	1-&	L	
11571.7 <i>15</i>	$(0^+,1^-,2^+)^{\&}$	L	
11572.8 <i>15</i>	$(1^-,3^-,4^+)$	L	
11575.2 <i>15</i>	$(3^-,4^+)$ &	L	
11576.2 <i>15</i>	0_	L	
11589.8 <i>15</i>	(1 ⁻)&	L	
11591.1 <i>15</i> 11592.6 <i>15</i>		L	
11592.6 15		L L	
11596.7 15	1-&	L	
11599.4 <i>15</i>	$(1^-,2^+)^{\&}$	L	
11601.8 <i>15</i>	1-&	L	
11603.5 <i>15</i>		L	
11612.5 <i>15</i>	1-&	F KL	
11614.0 <i>15</i>	0_	L	
11616.0 <i>15</i>	1-&	L	
11621.0 15	$(1^-,2^+)^{\&}$	L	
11632.8 15	(1-0+)&	L	
11634.5 15	$(1^-,2^+)^{\&}$	L	
11636.1 15	$(1^-,2^+)^{\&}$	L	
11637.4 15	(1 ⁻ ,2 ⁺)& 1 ⁻ &	L	E/L D 211 1 6 1007 1 1: 42 C
11639.4 <i>15</i> 11641.1 <i>15</i>	1 ~	KL L	E(level): possible analog of 1927 level in ⁴² Ca.
11643.5 15		Ĺ	
11644.1 <i>4</i>	$(1^-,2^+)^{\&}$	JKL	
11646.2 <i>15</i>	$(4^+)^{\&}$	L	
11651.2 <i>15</i>	$(1^-,2^+)^{\&}$	J L	
11653.4 <i>15</i>	0_	JKL	
11654.2 <i>15</i>	$(1^{-})^{\&}$	L	
11656.8 15	(1 ⁻)&	L	
11658	(1 ⁻ ,2 ⁺)&	JK	
11662.2 <i>15</i> 11664.9 <i>15</i>	(1 ,2')	F JKL L	
11670.9 4	2+&	JKL	
11674.0 5	$(1^-,2^+)^a$	JK	
11680		J	
11685	0	JK	
11689.2 15	$(1^-,2^+)^{\&}$	L	
11693.0 4	$(1^-,2^+)^a$	JK	
11695.0 <i>15</i> 11697.3 <i>15</i>	(3 ⁻)&	L J L	
11697.3 15		J L	
11707.5 4	2+&	J L	
11709.2 15	$(1^-,2^+)^{\&}$	JKL	
11710.1 <i>15</i>	· , - /	JKL	
11718.3 <i>15</i>		JKL	
11725.7 9	(8 ⁻ to 11)	E	J^{π} : γ to 9 and 10 ⁻ .

E(level) [†]	$J^{\pi \#}$	XREF
11727.1 3	2+&	JKL
11727.1 3	2	L
11729.3 15		L
11733.0 <i>15</i>		JKL
11737.4 15	$(0^+,1^-,2^+)^{\&}$	L
11738.4 4	1-&	JKL
11743.4 5	$(1^-,2^+)^a$	JKL
11748.0 <i>15</i>		L
11752.3 <i>15</i>	0	JKL
11756.6 <i>15</i>	(1 ⁻)&	JKL
11758		J
11760 11763		JK JK
11768		JK
11772.7 15	$(1^-,2^+)$ &	J L
11775.0 4	$(1^-,2^+)^a$	JK
11777.2 15	(1 ,2)	L
11778.5 <i>15</i>	$(0^+,1^-,2^+)^{\&}$	JKL
11783.0 <i>15</i>	$(1^-,2^+)^{\&}$	L
11784.7 <i>15</i>	$(1^{-}),2^{+}$ &	L
11786.1 15	(1),2	JKL
11787.5 <i>15</i>		L
11789.8 <i>15</i>		L
11792	(1 = 2 ±) (1	j
11795.2 <i>4</i>	$(1^-,2^+)^a$	J L
11798.3 <i>15</i>	$(1^-,2^+)^{\&}$	JKL
11805.4 <i>4</i>	$(1^-,2^+)^{\&}$	JKL
11809.7 <i>15</i>	$(1^-,2^+)^{\&}$	JKL
11811.1 <i>15</i>	$(1^-,2^+)^{\&}$	L
11814		JK
11818.0 <i>15</i> 11821.1 <i>4</i>		L E
11822.4 4	(1 [−])&	JKL
11824.0 15	$(1^-,2^+)^{\&}$	L
11829.0 15	$(1^{-},2^{+})$ &	JKL
11830.2 15	$(2^+)^{\&}$	
11830.2 13	(2)	L JKL
11836.4 <i>15</i>	(4 ⁺)&	JKL
11843.3 5	$(1^-,2^+)$ &	JKL
11844.9 <i>15</i>	$(1^-,2^+)$ &	
11846.8 15	(1 ,2)	L L
11850		JK
11852.6 <i>15</i>	1-&	JKL
11856.4 <i>15</i>		JKL
11865.6 <i>15</i>	$(0^+,1^-,2^+)^{\&}$	KL
11868.0 4	$(1^{-},2^{+})^{a}$	ЈК
11871.5 4	$(1^-,2^+)^a$	JKL
11872.8 15	(1= 0+) (1	L
11873.7 4	$(1^-,2^+)^a$	JKL
11881	(1-,2+,3-)&	JK
11885.2 <i>15</i>	(1 ,2',3)	JKL

11887	E(level) [†]	${\sf J}^{\pi \#}$	XREF	Comments
11906.0 15			JK	
11906.3 15 (1-2+)\&	11895.3 <i>15</i>	$(1^-,2^+)^{\&}$	JKL	
11906.5 (1-2-)\(\)		$(1^-,2^+)^{\&}$		
11916		(1 ⁻ ,3 ⁻)&		
11916	11910.6 <i>15</i>	$(1^-,2^+)^{\&}$	JKL	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Q _T		
11929		$(1^-,2^+)^{\alpha}$		
11933 15		(1 ,2')		
11941 15 2+&		(1-2+)&		
11941.9 15		(1 ,2)		
11944.4 15 1-& J L 11950.1 15 JRL 11953 JR 11959.2 5 (1 ⁻) J L 11962.8 15 (1 ⁻ ,2 ⁺)& JRL 11970.2 15 1-& KL 11970.8 15 (2 ⁺) [®] L 11980.3 4 1-& JRL 11980.3 4 1-& JRL 11999.1 15 (2 ⁺ ,3 ⁻) [®] L 11999.1 15 (1 ⁻ ,2 ⁺) [®] L 12000.2 15 2 ⁺ & L 12000.2 15 2 ⁺ & L 12000.3 15 (1 ⁻ ,2 ⁺) [®] L 12012.0 15 (2 ⁺) [®] L 12012.0 15 (1 ⁻ ,2 ⁺) [®] L 12012.0 15 (1 ⁻ ,2 ⁺) [®] L 12012.3 6 15 L 12012.3 5 5 (0 ⁺ ,1 ⁻ ,2 ⁺) [®] L 12032.5 15 (0 ⁺ ,1 ⁻ ,2 ⁺) [®] L 12032.5 15 (3 ⁻) [®] L 12032.8 15 L 12042.8 15 L 12052.0 15 L 12052.0 15 (1 ⁻ ,2 ⁺) [®] L 12052.0 15 (1 ⁻ ,2 ⁺) [®] L 12053.0 15 L 12066.2 15 (1 ⁻ ,2 ⁺) [®] L 12071.4 15 L 12071.4 15 L 12071.5 (2 ⁺) [®] L 12071.7 15 (2 ⁺) [®] L 12071.1 5 (2 ⁺) [®] L 12071.1 5 (2 ⁺) [®] L 12082.8 15 L 12082.8 15 L 12082.8 15 L 12082.8 15 L 12091.9 15 L		2+&		
11950.1 15 11953 11953 118 11959.2 5 1(1^-) 11962.8 15 1(1^-,2^+)^\(\&\) 11970.2 15 1\(^-\&\) 11970.2 15 1\(^-\&\) 11980.3 4 1\(^-\&\) 11980.3 4 1\(^-\&\) 11980.3 15 1\(^-\&\) 11990.1 15 1\(^-\&\) 11990.1 15 1\(^-\&\) 12000.2 15 2\(^+\&\) 1 12000.3 15 1 12000.3 15 1 12012.0 15 (2^+)^\(\&\) 1 12013.6 15 1 12020.4 15 (1^-,2^+)^\(\&\) 1 12032.5 15 (0^+,1^-,2^+)^\(\&\) 1 12032.5 15 (0^+,1^-,2^+)^\(\&\) 1 12032.5 15 (0^+,1^-,2^+)^\(\&\) 1 12032.5 15 1 12004.8 15 1 1 12042.8 15 1 1 12052.0 15 1 12052.0 15 1 12006.2 15 (1^-,2^+)^\(\&\) 1 12071.4 15 1 12071.4 15 1 12082.8 15 1 1 12082.8 15 1 1 12082.8 15 1 1 12082.8 15 1 1 12091.9 15 1 1		1-&		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11950.1 <i>15</i>		JKL	
11962.8 15 (1-,2+)& JKL 11967 JK 11970.2 15 1-& KL 11976.8 15 (2+)& L 11980.3 4 1-& JKL 11989.0 15 (2+,3)& L 11989.1 15 (1-,2+)& L 12000.2 15 2+& L 12000.3 15 (1-,2+)& L 12000.3 15 (1-,2+)& L 12013.6 15 L 12012.0 15 (2+)& L 12020.4 15 (1-,2+)& L 12022.5 15 (3)& L 12022.5 15 (3)& L 12038.8 15 1-& L 12038.8 15 1-& L 12042.8 15 L 12050.9 15 (1-,2+)& L 12050.9 15 (1-,2+)& L 12052.0 15 L 12061.8 15 L 12061.8 15 L 12060.2 15 (1-,2+)& L 12070.1 15 (2+)& L 12082.8 15 L 12091.9 15 L		44-5		
11967 JK 11970.2 15 1-& KL 11976.8 15 (2+)& L 11980.3 4 1-& JKL 11989.0 15 (2+,3-)& L 11992.1 15 (1-,2+)& L 12000.2 15 2+& L 12005.0 15 (1-,2+)& L 12006.3 15 L 12012.0 15 (2+)& L 12013.6 15 L 12020.4 15 (1-,2+)& L 12029.5 15 (0+,1-,2+)& L 12039.8 15 1-& L 12039.8 15 1-& L 12042.8 15 L 12052.0 15 (1-,2+)& L 12052.0 15 (1-,2+)& L 12052.0 15 (1-,2+)& L 12052.0 15 L 12052.0 15 L 12052.0 15 L 12066.2 15 (1-,2+)& L 12071.4 15 L 12071.1 15 (2+)& L 12070.1 15 (2+)& L 12085.2 15 L 12091.9 15 L		(1^{-})		
11970.2 15		(1 ⁻ ,2 ⁺)		
11976.8 15 (2+)& L 11980.3 4 1-& JKL 11989.0 15 (2+,3-)& L 11992.1 15 (1-,2+)& L 12000.2 15 2+& L 12000.3 15 (1-,2+)& L 12006.3 15 L 12012.0 15 (2+)& L 12012.0 15 (2+)& L 12020.4 15 (1-,2+)& L 12020.4 15 (0+,1-2+)& L 12020.5 15 (0+,1-2+)& L 12020.5 15 (0-,1-2+)& L 12020.8 15 L 12020.8 15 L 12042.8 15 L 12052.0 15 L 12062.2 15 (1-,2+)& L 12070.1 15 (2+)& L 12082.8 15 L 12091.9 15 L		1-&		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
11989.0 15 (2+,3 ⁻)& L 11992.1 15 (1 ⁻ ,2 ⁺)& L 12000.2 15 2 ⁺ & L 12005.0 15 (1 ⁻ ,2 ⁺)& L 12006.3 15 L 12012.0 15 (2 ⁺)& L 12013.6 15 L 12020.4 15 (1 ⁻ ,2 ⁺)& L 12029.5 15 (0 ⁺ ,1 ⁻ ,2 ⁺)& L 12032.5 15 (3 ⁻)& L 12032.5 15 (3 ⁻)& L 12042.8 15 L 12050.9 15 (1 ⁻ ,2 ⁺)& L 12050.0 15 (1 ⁻ ,2 ⁺)& L 12070.1 15 (2 ⁺)& L 12082.8 15 L 12082.8 15 L 12085.2 15 L 12091.9 15 L		1-&		
11992.1 15 (1-,2+)& L 12000.2 15 2+& L 12005.0 15 (1-,2+)& L 12006.3 15 L 12012.0 15 (2+)& L 12013.6 15 L 12020.4 15 (1-,2+)& L 12020.5 15 (0+,1-,2+)& L 12020.5 15 (3-)& L 12032.5 15 (3-)& L 12032.5 15 (3-)& L 12032.5 15 (3-)& L 12032.8 15 L 12041.8 15 L 12042.8 15 L 12050.9 15 (1-,2+)& L 12050.9 15 (1-,2+)& L 12060.2 15 (1-,2+)& L 12071.4 15 L 12071.4 15 L 12082.8 15 L 12085.2 15 L				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(1 - 2+) &		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2+&		
12006.3 15 12012.0 15 12013.6 15 12020.4 15 12020.4 15 12029.5 15 10+1,-2+)& L 12032.5 15 12032.5 15 12041.8 15 12042.8 15 12052.0 15 12052.0 15 12066.2 15 12066.2 15 12071.4 15 12071.4 15 12082.8 15				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(1 ,2)	L	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(2 ⁺)&		
12029.5 15 $(0^+,1^-,2^+)^{\&}$ L 12032.5 15 $(3^-)^{\&}$ L 12039.8 15 $1^{-\&}$ L 12041.8 15 L 12042.8 15 L 12050.9 15 $(1^-,2^+)^{\&}$ L 12061.8 15 L 12060.2 15 $(1^-,2^+)^{\&}$ L 12070.1 15 $(2^+)^{\&}$ L 12070.4 15 L 12082.8 15 L 12082.8 15 L 12085.2 15 L 12091.9 15 L			L	
12029.5 15 $(0^+,1^-,2^+)^{\&}$ L 12032.5 15 $(3^-)^{\&}$ L 12039.8 15 $1^{-\&}$ L 12041.8 15 L 12042.8 15 L 12050.9 15 $(1^-,2^+)^{\&}$ L 12061.8 15 L 12060.2 15 $(1^-,2^+)^{\&}$ L 12070.1 15 $(2^+)^{\&}$ L 12070.4 15 L 12082.8 15 L 12082.8 15 L 12085.2 15 L 12091.9 15 L	12020.4 15	$(1^-,2^+)^{\&}$	L	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12029.5 <i>15</i>	$(0^+,1^-,2^+)^{\&}$	L	
$12041.8 \ 15$ L $12042.8 \ 15$ L $12050.9 \ 15$ $(1^-,2^+)^{\&}$ $12052.0 \ 15$ L $12061.8 \ 15$ L $12066.2 \ 15$ $(1^-,2^+)^{\&}$ $12070.1 \ 15$ $(2^+)^{\&}$ $12071.4 \ 15$ L $12082.8 \ 15$ L $12081.9 \ 15$ L	12032.5 <i>15</i>	$(3^{-})^{\&}$	L	
12042.8 15		1-&		
12050.9 15 $(1^-,2^+)^{\&}$ L 12052.0 15 L 12061.8 15 L 12066.2 15 $(1^-,2^+)^{\&}$ L 12070.1 15 $(2^+)^{\&}$ L 12071.4 15 L 12082.8 15 L 12085.2 15 L 12091.9 15 L			L	
12052.0 15 12061.8 15 12066.2 15 (1 ⁻ ,2 ⁺)& L 12070.1 15 (2 ⁺)& L 12071.4 15 12082.8 15 12085.2 15 12091.9 15 L		(1-0+)&		
12061.8 15		(1 ,2')	L T	
12066.2 15 (1 ⁻ ,2 ⁺) ^{&} L 12070.1 15 (2 ⁺) ^{&} L 12071.4 15 L 12082.8 15 L 12085.2 15 L 12091.9 15 L				
12070.1 15 (2 ⁺)& L 12071.4 15 L 12082.8 15 L 12085.2 15 L 12091.9 15 L		$(1^{-},2^{+})^{\&}$		
12071.4 <i>15</i> 12082.8 <i>15</i> 12085.2 <i>15</i> 12091.9 <i>15</i> L		(2 ⁺)&		
12085.2 <i>15</i> L L 12091.9 <i>15</i> L	12071.4 <i>15</i>	,		
12091.9 <i>15</i> L				
12099 L	12091.9 13		L L	
12101.3 15 $1^{-\&}$ JKL E(level): possible analog of 2356 level in 42 Ca.		1-&		E(level): possible analog of 2356 level in ⁴² Ca.
12105.1 <i>15</i> J L	12105.1 <i>15</i>			, , , , , , , , , , , , , , , , , , , ,
12109 JK		0.		
12112.2 <i>15</i> 1 ^{-&} JKL	12112.2 <i>15</i>	1-&	JKL	

E(level) [†]	$J^{\pi \#}$		XREF		Comments
12116.5 <i>15</i>	(2 ⁺)&		KL		
12123.8 <i>15</i>	$(1^-,2^+)$ &		JKL		
12127.6 <i>15</i>	. , ,		JKL		
12130			J		
12135.2 15			JKL		
12137.9 <i>15</i> 12142			L JK		
12144.7 15			JKL		
12146.8 <i>15</i>			L		
12148.5 <i>15</i>	0		J L		
12153.7 <i>15</i>	2+&		JKL		
12156	. &		J		
12158.6 <i>15</i>	1-&		KL		
12160	1-&		JK		
12163.1 <i>15</i> 12168 <i>3</i>	(1 ⁻)&		JKL		
12172.0 5	$(1,2^+)^a$		JKL JK		
12175.7 15	1-&		KL		
12173.7 13	1		JK		
12182.8 <i>15</i>	1-&		KL		
12185			JK		
12187.7 15			JKL		
12198 12198.1 <i>11</i>		E	JK		
12203.0 15	(1 ⁻ ,3 ⁻)&	L	JKL		
12203.0 13	(1 ,5)		JKL		
12207.9 <i>15</i>	$(0^+,1^-,2^+)^{\&}$		JKL		
12210.4 <i>15</i>	(- , , ,		L		
12212.2 <i>15</i>			JKL		
12216 12221.0 <i>15</i>			JK		
12221.0 13			L J L		
12226.3 15			JKL		
12230.5 <i>15</i>	$(1^-,2^+,3^-)$ &		JKL		
12236			JK		
12238.4 <i>15</i>	$(1^-,3^-)^{\&}$		JKL		
12239.4 <i>15</i>	. ρ.		J L		
12246.4 15	$(1^-,2^+)^{\&}$		L		
12247.6 15	(1 ⁻)&		L		
12251.8 <i>15</i> 12255	(1)		L JK		
12260.2 15	(2 ⁺ ,3 ⁻)&		L		
12263	(2 ,3)		JK		
12265.2 <i>15</i>	1-&		L		
12268.1 <i>15</i>	3- &		L		
12270	_		JK		
12271.8 <i>15</i>	$(1^-,2^+)^{\&}$		L		
12277.2 <i>15</i>	$(0^+,1^-,2^+,3^-,4^+)^{\&}$		JKL		
12278.7 15			JKL	77	IT. I (a. 4) 0 faces 0+
12280	0^+ $(1^-,2^+)^{\&}$		J	X	J^{π} : $L(p,t)=0$ from 0^+ .
12285.7 <i>15</i>	(1 ,2')		J L		

E(level) [†]	$\mathbf{J}^{\pi \#}$		XREF	Comments
12287.7 15			JKL	
12291.3 <i>15</i>			JKL	
12294.9 <i>15</i>			L	
12298.6 <i>15</i>	$(1^-,2^+,3^-)^{\&}$		JKL	
12300.6 <i>15</i>			JKL	
12304.9 <i>15</i>			JKL	
12308.2 <i>15</i>			KL	
12310.9 <i>15</i>			JKL	
12314			JK	
12316			J	
12320.6 <i>15</i>	$(0^+,1^-,2^+)^{\&}$		L	
12323.2 15	$(1^-,2^+)^{\&}$		JKL	
12327.0 <i>15</i>	, ,		JKL	
12330			JK	
12336			JKL	
12340			KL	
12344			JK	
12348			JKL	
12351			JKL	
12358			J L	
12362			JKL	
12369			JKL	
12374			JKL	
12377			L	
12381			JKL	
12383			L	
12386			JKL	
12390			J	
12397		Е	J L	
12701.4 <i>4</i> 12814.7 <i>8</i>		E		
		E E		
13712.8 <i>11</i> 13762.8 <i>13</i>		E		
14700 50	0^{+}	E		XREF: Others: AC
14/00/50	U			J^{π} : L(³ He,n)=0.
15251.7 <i>13</i>		E		· · · · · · · · · · · · · · · · · · ·
$17.4 \times 10^3 I$	1-		J	Γ=3.3 MeV 5 (1973Di03)
				J^{π} : GDR, T=1 (p, γ).
$20.4 \times 10^3 I$	1-		J	Γ =4.4 MeV 1 (1973Di03)
				J^{π} : GDR, T=2 (p, γ).

 $[\]dagger$ From least-squares adjustment to measured E γ data when such data are available. Otherwise weighted averages of available level energies from different reactions are taken.

 $^{^{\}ddagger}$ Primarily from $(\alpha,p\gamma)$ and $(p,p'\gamma)$ by Doppler Shift Attenuation Method (DSAM) or Recoil Distance Method (RDM), unless otherwise noted.

[#] When L-transfer arguments are used, the target spin-parity is $J^{\pi}=3/2^+$ for 41 K; $J^{\pi}=0^+$ for 40 Ca, 42 Ca and 44 Ca; $J^{\pi}=7/2^-$ for 43 Ca. When assigning J^{π} to a level based on γ transitions from this level to a level of known J^{π} , evaluators use the following rules: if E γ <4 MeV, transitions are considered to be E1, M1 or E2; if E γ >4 MeV, M2 and E3 are also considered as possible.

[@] From angular distributions of the ground-state γ -rays from resonant states in (α, γ) .

[&]amp; From comparison of experimental data of angular distributions with theoretical predictions in (p,α) :resonance.

^a From $\gamma(\theta)$ and analysis of proton-resonance data in (p,γ) .

 ^b Band(A): g.s., Yrast band.
 ^c Band(B): Excited 0⁺ band.
 ^d Band(C): Negative-parity structure.

γ (⁴²Ca)

$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	α#	$I_{(\gamma+ce)}$	Comments
1524.71	2+	1524.67 3	100	$0.0 0^{+}$	E2				B(E2)(W.u.)=9.5 4
1837.31	0^{+}	312.60 25	100 6	1524.71 2+	E2		0.00349		B(E2)(W.u.)=55 5
									I_{γ} : represents 97.95% 17 decay branching for level.
		1837.3		$0.0 0^{+}$	E0			2.05 17	$\rho^{2}(E0)=0.140 \ 12, \ q_{K}^{2}(E0/E2)=0.92 \ 8, \ X(E0/E2)=0.089 \ 8$
									(2005Ki02 evaluation).
									Decay takes place by pair formation. Γ (pair
									production)= 1.6×10^{-8} eV 2 from (e,e') (1978Gr02).
									$I_{(\gamma+ce)}$: from $(p,p'\gamma)$.
2424.15	2+	586.9 [@]	<1.5	1837.31 0 ⁺					V V
		899.41 <i>4</i>	100 2	1524.71 2 ⁺	M1+E2	-0.172			B(M1)(W.u.)=0.15 5; B(E2)(W.u.)=15 6
		2424.16 7	43 2	$0.0 0^{+}$	E2				B(E2)(W.u.)=1.75
2752.40	4+	328.2	1.0 4	2424.15 2 ⁺	[E2]				$B(E2)(W.u.)=60 \ 30$
		1227.65 <i>3</i>	100.0 4	1524.71 2+	E2				B(E2)(W.u.)=8.3 12
3189.26	6+	436.84 12	100	2752.40 4+	E2				B(E2)(W.u.)=0.777 22
3253.89	4+	501.46 <i>3</i>	64 7	2752.40 4+	[M1]				B(M1)(W.u.)=0.50 11
		829.7	18 9	2424.15 2 ⁺	[E2]				$B(E2)(W.u.)=1.3\times10^2 8$
		1729.19 5	100 7	1524.71 2+	E2(+M3)	+0.05 4			B(E2)(W.u.)=19 4
3300.0	0_{+}	875.8	100 <i>I</i>	2424.15 2+	E2				$B(E2)(W.u.) < 1.3 \times 10^2$
		1775.3	8 4	$1524.71 \ 2^{+}$	E2				B(E2)(W.u.)<0.31
3392.01	2+	967.8	45 10	2424.15 2+					
		1554.7	15 <i>3</i>	$1837.31 0^{+}$	[E2]				B(E2)(W.u.)=3.2 +14-7
		1867.3	100 4	1524.71 2+	M1+E2	+1.7 4			B(M1)(W.u.)=0.0026 +11-6; B(E2)(W.u.)=6.4 +27-15
	_	3391.9	87 8	$0.0 0^{+}$	E2				B(E2)(W.u.)=0.43 9
3446.94	3-	692.0 8	6.6 18	2752.40 4+	[E1]				B(E1)(W.u.)=0.00025 11
		1022.77 4	57 2	2424.15 2 ⁺	[E1]	. 0.02.7			B(E1)(W.u.)=0.00068 23
2654.0	2+	1922.18 7	100 3	1524.71 2 ⁺	E1(+M2)	+0.02 7			B(E1)(W.u.)=0.00018 6; B(M2)(W.u.)<0.7
3654.0	2.	1229.8 1816.7	4.2 <i>10</i> 7 <i>4</i>	2424.15 2 ⁺ 1837.31 0 ⁺	EE:01				$D(E2)/W_{12} = 4 + 19 = 2$
		2129.2	100 3	1524.71 2 ⁺	[E2] M1(+E2)	-0.06 17			B(E2)(W.u.)=4 +18-3 B(M1)(W.u.)=0.035 25; B(E2)(W.u.)<0.55
		3653.8	22.2 10	$0.0 0^{+}$	E2	-0.00 17			B(E2)(W.u.)=0.035 25, B(E2)(W.u.)<0.55 B(E2)(W.u.)=0.34 25
3885.0	1-	1460.8	4 2	2424.15 2 ⁺	L2				D(L2)(W.d.)=0.54 25
3003.0	1	2047.6	93 3	1837.31 0 ⁺	E1				
		3884.8	100 4	$0.0 0^{+}$	E1				
3954.39	4-	507.45 <i>3</i>	100 4	3446.94 3-	M1+E2	+0.11 5			B(M1)(W.u.)=0.042 4; $B(E2)(W.u.)=6 +6-4$
		1202.0	18 4	2752.40 4+	E1				$B(E1)(W.u.)=1.5\times10^{-5} 4$
3999.66	4+	1247.2	7 4	2752.40 4+					()()()()()()()()()()()()()(
		1575.5	49 5	2424.15 2 ⁺					
		2474.80 10	100 5	1524.71 2+					
4047.0	3-	600.1	22 5	3446.94 3-	M1+E2	+0.21 12			$B(M1)(W.u.)=0.07 \ 3; \ B(E2)(W.u.)=30 +70-25$
		1294.6	29 8	2752.40 4+	[E1]				B(E1)(W.u.)=0.00024 11
		1622.8	29 10	$2424.15 \ 2^{+}$	[E1]				B(E1)(W.u.)=0.00012 6
İ		2522.2	100 11	$1524.71 \ 2^{+}$	[E1]				B(E1)(W.u.)=0.00011 4

19

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	Comments
4099.65	5-	652.8		3446.94 3-			
		910.37 <i>15</i>	100 <i>3</i>	3189.26 6+	E1(+M2)	+0.04 2	B(E1)(W.u.)=0.00102 24
		1347.26 <i>14</i>	61 <i>3</i>	2752.40 4+	E1+M2	-0.094	B(E1)(W.u.)=0.00019 5
4117.1	3-	670.1	61 <i>11</i>	3446.94 3-			
		1692.8	21 6	2424.15 2 ⁺			
		2592.2	100 7	1524.71 2+			
4232.0	1	1807.8	27 5	2424.15 2 ⁺			
		4231.8	100 5	$0.0 0^{+}$			
4342.3	$(0^+ \text{ to } 4^+)$	1918.1	100	2424.15 2 ⁺			
4354.0	4-	399.6	9 2	3954.39 4-	M1+E2	>0.09	B(M1)(W.u.)<0.046; B(E2)(W.u.)>3.9 δ: also,<-0.09.
		907.0	53 9	3446.94 3-			
		1100.1	20 5	3253.89 4+	[E1]		B(E1)(W.u.)=0.00010 3
		1601.6	100 9	2752.40 4+	E1		B(E1)(W.u.)=0.00016 3
4418.0	3-	971.0	67 12	3446.94 3-			
		1993.8	25 8	2424.15 2 ⁺			
		2893.2	100 <i>13</i>	1524.71 2+			
4443.0	4+	1189.1	10 <i>3</i>	3253.89 4 ⁺			
		1690.6	100 5	2752.40 4+			
		2018.8	16 <i>4</i>	$2424.15 \ 2^{+}$			
4448.8	2+	794.8	34 6	3654.0 2 ⁺			
		1001.8	37 9	3446.94 3-			
		2611.4	49 11	$1837.31 \ 0^{+}$			
		2924.0	100 17	1524.71 2+			
		4448.5	66 14	$0.0 0^{+}$			
4505.0	$(2,3,4)^+$	1113.0	34 6	3392.01 2+			
		1251.1	15 4	3253.89 4+			
		1752.6	64 11	$2752.40 4^{+}$			
		2980.2	100 <i>13</i>	$1524.71 \ 2^{+}$			
4566.9	$(1,2^+)$	682.0	47 9	3885.0 1			
		2142.8	100 9	2424.15 2+			
		3042.2	100 9	$1524.71 \ 2^{+}$			I_{γ} : $I_{\gamma}(3043)/I_{\gamma}(2143)=78/44$ in (p,γ) .
		4566		$0.0 0^{+}$			I_{γ} : $I_{\gamma}(4566)/I_{\gamma}(2143)=100/44$ in (p,γ) .
4690.06	3-	2265.8	22 6	2424.15 2+			
		3165.24 <i>11</i>	100 6	$1524.71 \ 2^{+}$			
4717.53	6+	1463.7 <i>3</i>	95 5	3253.89 4+	[E2]		B(E2)(W.u.)=48 +30-13
		1525.5	35 7	3189.26 6+			
	- 1	1965.2 <i>4</i>	100 3	2752.40 4+	[E2]		B(E2)(W.u.)=12 +7-3
4759.71	2+	2335.70 30	57 29	2424.15 2+			
		2922.5	43 14	1837.31 0 ⁺			
		3235.1	86 29	1524.71 2+			
10.00		4759.6	100 29	$0.0 0^{+}$			
4866.0	2+	2441.8	100 9	$2424.15 \ 2^{+}$			

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	J_f^{π} M	ult.‡	δ^{\ddagger}	Comments
4866.0	2+	3341.2	22 9	1524.71				
		4865.7	22 9		0^{+}			I_{γ} : $I_{\gamma}(4866)/I_{\gamma}(3341)=100/100$ in (p,γ) .
4897.0	5-	779.0	8 1	4117.1	3- [E2	2]		$B(E2)(W.u.)=3.1\times10^2$ 15
								I_{γ} : branching most likely incorrect.
		797.8 <i>3</i>	100 4	4099.65	5- M1	1+E2	+0.14 8	B(M1)(W.u.)=0.7 4; B(E2)(W.u.)=70 +230-60
		1449.0	18 4	3446.94	3- E2			B(E2)(W.u.)=31 16
4904.0	3-	2151.5	36 9	2752.40	4 ⁺			
		2479.8	45 9	2424.15	2+			
		4903.7	100 18		0+ [E3	3]		
4946.9	$(1,2,3)^{-}$	2522.7	100	2424.15		-		
4971.0	3-	1016.6	91 <i>14</i>	3954.39				
		2546.7	100 17	2424.15				
		3446.1	94 17	1524.71				E_{γ} : (p,γ) reported 1526, 2281 and 4968 γ transitions instead of the three
					_			transition given here from $(\alpha, p\gamma)$.
5017.14	4+	1763.12 <i>12</i>	100 7	3253.89	4 ⁺			
001/11	·	3492.2	21 7	1524.71				
5075.0	$(1,2,3)^{-}$	657.0	47 10	4418.0				
00,010	(1,2,0)	1628.0	100 10	3446.94				
5158.0	3-	2733.7	85 17	2424.15				
5150.0	2	3633.1	100 17	1524.71				
5188.0	$(2,3,4)^+$	770.0	100 17	4418.0				
5210.3	(2^+)	1956.1	100 5	3253.89				
3210.3	(2)	2457.5	14 5	2752.40				
5212.98	6	1213.2 3	100 10	3999.66				
3212.70	O	1959.1 <i>4</i>	75 9	3253.89				
5214.1	(2^{+})	1217 3	100 8	3999.66				
321 1.1	(2)	2789.7	25 7	2424.15				
		3689.1	39 8	1524.71				
			37 0					
5000.0	(2.4)=	5213.7 [@]	(1.11		0+			γ reported in (p,γ) only.
5320.0	$(3,4)^{-}$	902.0	61 11		3-			
		1220.3	61 <i>11</i>	4099.65				
		1273.0	26 5		3-			
		1365.6	100 13	3954.39				
50.45.0	0+	2066.1	16 5	3253.89				
5345.0	0+	3820.1	100	1524.71				
5358.0	2+	2933.7	33 20	2424.15				
		5357.6	100 20		0+			
5380.0	5-	2126.1	52 10	3253.89				
		2190.5	86 12	3189.26				
		2627.5	100 14	2752.40				
5393.0	$(3)^{-}$	2968.7	33 12	2424.15				
		3868.1	100 12	1524.71				
5439.0	$(3,4)^{-}$	1339.3	100	4099.65	5-			

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.‡	δ^{\ddagger}	Comments
5472.0	$(2,3,4)^+$	2218.1	100 10	3253.89 4+			
		2719.5	43 8	2752.40 4+			
		3947.1	16 <i>10</i>	$1524.71 \ 2^{+}$			
5490.77	6-	2301.6 2	100	3189.26 6 ⁺	E1(+M2)	+0.10 8	B(E1)(W.u.)=0.00077 19
5491.0	3-	1374.0	100 <i>13</i>	4117.1 3			
		3966.1	45 13	1524.71 2+			
5510.0	3-	1463.0	47 12	4047.0 3-			
		2063.0	100 12	3446.94 3-			
5530.0	2+	3105.7	100 13	2424.15 2+			
		4005.1	43 13	1524.71 2+			
5578.0	$(0^+ \text{ to } 4^+)$	2185.9	100	3392.01 2+			
5593.0	3-	1638.6	100 15	3954.39 4			
		3168.7	56 8	2424.15 2+			
		4068.1	52 15	1524.71 2+			
		5592.6	52 15	0.0 0+	[E3]		E_{γ} : reported only in (p,γ) .
5601.0	$(3^-,4^-)$	1096.0	49 15	4505.0 (2,3,4)+			
.	-	1601.3	100 15	3999.66 4+			
5624.0	3-	1624.3	100 15	3999.66 4+			
	(2-)	5623.6	60 15	$0.0 0^{+}$	[E3]		
5665.0	(3 ⁻)	1247.0	51 11	4418.0 3			
		1710.6	100 16	3954.39 4 ⁻			
5.670.0	(2-)	3240.7	71 13	2424.15 2 ⁺			
5670.0	(3 ⁻)	2223.0	100 16	3446.94 3 ⁻			
5601.77	c+	4145.1	79 16	1524.71 2 ⁺			
5691.77	6+	974.1 2	100 13	4717.53 6 ⁺			
		2437.8 3	83 13	3253.89 4 ⁺			
57160	2+	2502.4	30 9	3189.26 6 ⁺			
5716.0 5725.0	2^+ (2 ⁺ to 6 ⁺)	2462.0	100	3253.89 4 ⁺			
		2972.5	100	2752.40 4 ⁺			
5738.0	(2^{+})	3313.7	33 17	2424.15 2 ⁺ 1524.71 2 ⁺			
		4213.1	33 17				
5744.01	7-	5737.6 253.3 <i>1</i>	100 <i>33</i> 2.6 <i>2</i>	0.0 0 ⁺ 5490.77 6 ⁻			
J/44.UI	/	253.3 <i>I</i> 1026.3 2	2.6 <i>2</i> 4.0 <i>4</i>	5490.77 6 4717.53 6 ⁺			
		1026.3 <i>2</i> 1644.29 <i>11</i>		4099.65 5	E2(+M2)	-0.02 3	B(E2)(W.u.)=7.2 18
			100 3		E2(+M3)		B(E2)(W.u.) = 7.2 T8 $B(E1)(W.u.) = 3.2 \times 10^{-5} 8$; $B(M2)(W.u.) < 0.12$
5760 O	3-	2554.75 21	73 3	3189.26 6 ⁺	E1+M2	-0.04 2	$B(E1)(W.u.)=5.2\times10^{-6} \delta; B(M2)(W.u.)<0.12$
5769.0	3	3016.5	100 11	2752.40 4 ⁺			
57740	(4.5)+	3344.7	59 11	2424.15 2 ⁺			
5774.9	$(4,5)^+$	2521.0	100 3	3253.89 4 ⁺			
5707.0	(1.2)+	2585.5	12 3	3189.26 6 ⁺			
5797.0	$(1,2)^+$	3372.7	100 18	2424.15 2 ⁺			
		4272.1	72 <i>15</i> 85 <i>18</i>	1524.71 2+			
		5796.6	03 10	$0.0 0^{+}$			

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^π	Mult.‡	δ^{\ddagger}	Comments
5802.0	$\frac{3}{3}$	$\frac{E_{\gamma}}{1802.3}$	$\frac{1\gamma}{100}$	3999.66		1.10111		
5822.0	$(1,2,3)^{-}$	3397.7	100	2424.15				
5866.0	(1,2,3) $(1,2,3^-)$	4028.5	122 22	1837.31				
3000.0	(1,2,3)	4341.1	100 22	1524.71				
5875.0	2+	3122.5	41 11	2752.40				
3073.0	2	3450.7	100 11	2424.15				
5924.0	$(3,4)^{-}$	1419.0	27 8	4505.0				
3721.0	(3,1)	1570.0	32 8	4354.0	4-			
		1824.2	100 14	4099.65				
		1969.6	57 11	3954.39				
		3171.5	54 11	2752.40				
5925.5	(5)	2736.2 4	100	3189.26				
5994.0	3-	1023.0	20 6	4971.0				
		3569.7	100 6	2424.15				
6003.0	3-,4-	3250.5	100	2752.40				
6020.0	$(4^+,5,6^-)$	2065.6	23 7	3954.39				
		2830.5	100 7	3189.26				
6028.0	$(3)^{-}$	2073.6	91 <i>16</i>	3954.39				
		3275.5	100 16	2752.40				
		4503.0	36 11	1524.71				
6038.0	$(1,2,3)^-$	3613.7	33 8	2424.15				Additional information 7.
		4513.0	100 8	1524.71				Additional information 8.
6093.5	$(3^- \text{ to } 7^-)$	1197.0	100 8	4897.0				
61040	(0+	1993.2	47 8	4099.65				
6104.0	$(0^+ \text{ to } 4^+)$	3679.7	100 14	2424.15				
(112.0	4+	4579.0	79 <i>14</i>	1524.71				
6113.0	4	1695.0	16 5	4418.0				
6140.8	6-	2859.0 649.8	100 <i>5</i> 16 <i>6</i>	3253.89 5490.77		(M1+E2)	-0.25 +25-10	B(M1)(W.u.)=0.16 +8-10; B(E2)(W.u.)<210
0140.0	U	049.8 1787.0	10 <i>0</i> 17 <i>3</i>	4354.0		(M1+E2) [E2]	-0.23 +23-10	B(E2)(W.u.)=8+3-4
		2041.2 [@]						
		2041.2	26 5	4099.65	5	[M1]		B(M1)(W.u.)=0.009 +3-5
		2186.5	100 9	3954.39	4-	E2(+M3)	≈0	Placement possibly incorrect. B(E2)(W.u.)=13 5
6144.72	7-	2180.5 2955.42 <i>20</i>	100 9	3934.39		E2(+M3) E1(+M2)	≈0 +0.02 2	B(E2)(W.u.)=13 3 B(E1)(W.u.)>0.00031
6182.0	$(1,2,3^{-})$	4657.0	100 13	1524.71		L1(TIV12)	TU.UZ Z	D(E1)(W.u.)>0.00031
0102.0	(1,2,3)	6181.5	47 13	0.0				
6212.0	3-	3459.4	100	2752.40				
6247.9	$(4^+,5,6^-)$	2293.5	74 13	3954.39				
U271.)	(1,5,0)	3058.4	100 15	3189.26				
		3495.4	82 13	2752.40				
6408.57	8-	263.84 8	20.3 9	6144.72		M1(+E2)	0.00 2	B(M1)(W.u.)=0.0055 6
	-	664.6 2	5.0 7	5744.01		(·)	-	()()
			,		-			

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	Comments
6408.57	8-	3219.2 3	16.3 17	3189.26 6+	M2+E3	+0.85 23	B(M2)(W.u.)=0.016 5; B(E3)(W.u.)=5.0 18
							δ : weighted average of +0.8 2 in ($^{16}\text{O},2\text{p}\gamma$) and +2.0 10 in ($\alpha,\text{p}\gamma$).
6516.0		2630.9		3885.0 1-			E_{γ} : from (^{14}C , ^{12}C) only.
		4091.6		2424.15 2+			E_{γ} : from (^{14}C , ^{12}C) only.
		4991.0		1524.71 2+			E_{γ} : from (14 C, 12 C) only.
6541.8	5 ⁺	1050.8	43 7	5490.77 6			Ey. Hom (C, C) omj.
		2442.2	29 7	4099.65 5			
		3352.4	100 10	3189.26 6+			
6553.72	9-	145.12 10	36.8 17	6408.57 8-	M1(+E2)	0.00 2	B(M1)(W.u.)=0.042 4
		409.1 2	3.0 5	6144.72 7-	· /		E_{γ} : reported only in ($^{18}O, \alpha 2n\gamma$).
		809.73 10	100 2	5744.01 7	E2(+M3)	-0.032	B(E2)(W.u.)=2.96 23
		3364.4 <i>3</i>	11 <i>I</i>	3189.26 6+	[E3]	0.02 2	B(E3)(W.u.)=4.1 5
			-		F ~ J		E_{γ} : reported only in (^{18}O , $\alpha 2n\gamma$).
6584.7	(5 ⁻ to 8 ⁻)	840.7	100 11	5744.01 7-			Ly. reported only in (O,u Zny).
	(2 00 0)	1093.8	85 11	5490.77 6			
6636.30	8+	1918.6 2	100 4	4717.53 6 ⁺			
0020.20		3447.1 <i>4</i>	100 3	3189.26 6+			
6674.8	$(4^+ \text{ to } 8^+)$	3485.4	100	3189.26 6+			
6715.9	(4 ⁺)	1505.0	100 13	5210.3 (24	.)		
	,	1999.9	83 <i>13</i>	4717.53 6 ⁺	,		
		3525.4	68 <i>13</i>	3189.26 6+			
6718.14	7	1505.1 2	100 9	5212.98 6			
		2000.4 3	64 7	4717.53 6 ⁺			
		3528.8 <i>5</i>	52 5	3189.26 6+			
6746.5	4+	1850.0	100 18	4897.0 5			
		2646.2	96 18	4099.65 5			
6816.8	$(4,5)^+$	3627.4	100	3189.26 6+			
6895.8	4+	970.5	32 6	5925.5 (5)			
		1404.8	8 3	5490.77 6-			
		3706.4	100 6	3189.26 6+			
6940.2	$(5^-,6,7^-)$	1195.7	43 9	5744.01 7			
		2043.9	100 13	4897.0 5			
		2840.2	74 11	4099.65 5			
6975.5	(5^+)	1483.8	36 7	5490.77 6			
		2259.9	27 7	4717.53 6+			
		2875.2	60 9	4099.65 5			
	. 1	3785.4	100 11	3189.26 6+			
7129.9	4+	3940.4	100	3189.26 6+			
7197.9	_	4008.4	100	3189.26 6+			
7282.02	9-	728.3 1	30 3	6553.72 9			
		873.5 2	100 5	6408.57 8			
7344.7	(6 ⁻ to 10 ⁻)	936.1	100	6408.57 8			
7360.6	$(5^{-} \text{ to } 9^{-})$	1215.9	100	6144.72 7			

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	Comments
7368.46	10-	814.70 <i>19</i>	100 3	6553.72 9-	M1+E2		
		959.9 2	3.5 6	6408.57 8-	[E2]		B(E2)(W.u.)=1.4 +10-4
7388.8	4+	4199.3	100	3189.26 6+			
7415.87	8+	779.6 2	35 <i>3</i>	6636.30 8+			
		1723.9 <i>3</i>	30 5	5691.77 6 ⁺			
		2699.9	4.0 12	4717.53 6 ⁺			
		4225.3	100 5	3189.26 6+			
7421.2	$(4^+ \text{ to } 8^+)$	2704.9	33 5	4717.53 6+			
		4230.3	100 5	3189.26 6+			
7543.1	$(4^+ \text{ to } 7^-)$	2645.9	100 19	4897.0 5			
		2826.9	100 <i>19</i>	4717.53 6 ⁺			
		4352.3	63 19	3189.26 6+			
7562.5	$(4^+,5^+)$	2844.9	100	4717.53 6 ⁺			
7634.03	$(6,8^+)$	1708.5 <i>4</i>	51 9	5925.5 (5)			
		1942.2 <i>3</i>	54 9	5691.77 6+			
		2916.3 <i>3</i>	100 14	4717.53 6 ⁺			
		4444.3	80 11	3189.26 6+			
7696.8	4+	4507.3	100	3189.26 6+			
7726.5	$(4^+ \text{ to } 8^+)$	3008.9	100	4717.53 6 ⁺			
7750.66	$(11)^{-}$	382.20 8	100	7368.46 10	M1(+E2)	+0.02 7	
7758.0	$(6^-,7^-)$	1349.1	56 9	6408.57 8			
		2013.6	75 13	5744.01 7-			
		2266.7	100 13	5490.77 6			
		2861.9	81 <i>13</i>	4897.0 5			
7800.7	$(5^- \text{ to } 9^-)$	1655.9	100	6144.72 7			
7838.9	$(2^+ \text{ to } 6^+)$	1123.0	100	6715.9 (4 ⁺)			
7921.2	$(4^+ \text{ to } 8^+)$	3204.9	100 13	4717.53 6 ⁺			
5020 0	(4± . 0±)	4730.3	61 <i>13</i>	3189.26 6 ⁺			
7939.8	$(4^+ \text{ to } 8^+)$	2248.0	75 12	5691.77 6 ⁺			
0050 5	(4+ , 0+)	4750.3	100 12	3189.26 6 ⁺			
8052.6	$(4^+ \text{ to } 8^+)$	3334.9	100	4717.53 6 ⁺			
8059.7	(6 ⁻ to 9 ⁻)	1651.1	100 2	6408.57 8			
0002 7	(7- to 11-)	2315.6	6 2	5744.01 7 ⁻			
8082.7	$(7^- \text{ to } 11^-)$	1529.0	100	6553.72 9-			
8103.2	$(4^+ \text{ to } 8^+)$	2410.0	49 8	5691.77 6 ⁺			
9207.46	11-	3386.9	100 8	4717.53 6 ⁺	M1 + E2	0.11.5	D(M1)/W ₁₁ > 0.0005, D/E2)/W ₁₁ > 0.040
8297.46	11	928.98 10	100 4	7368.46 10	M1+E2	-0.11 5	B(M1)(W.u.)>0.0095; B(E2)(W.u.)>0.040
02610	(6- 7 0+)	1743.8 2	67 4	6553.72 9-	[E2]		
8364.8	$(6^-,7,8^+)$	1956.1	100 18	6408.57 8			
8449.7	$(7,8)^{-}$	5175.2 1896.0	75 <i>18</i> 69 <i>12</i>	3189.26 6 ⁺ 6553.72 9 ⁻			
0449./	(7,0)	2041.0					
		2041.0	69 <i>12</i> 100 <i>12</i>	6408.57 8 ⁻ 5490.77 6 ⁻			

$\gamma(^{42}\text{Ca})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}
8511.7	(6 ⁻ to 9 ⁻)	2103.0	89 13	6408.57 8	_		
	(* ,	2767.6	100 13	5744.01 7			
8517.0	(3 to 9)	2591.4	100		5)		
8522.3	(10)	771.61 20	100	,	11) ⁻	D(+Q)	0.00 4
8580.9	(2^+) to $6^+)$	1865.0			4 ⁺)		
8611.9	$(2^+ \text{ to } 6^+)$	1896.0	100	6715.9	4 ⁺)		
8615.13	9	1199.3 <i>3</i>	34 <i>4</i>	7415.87 8	+ _		
		1896.9 2	100 8	6718.14 7			
		1978.7 <i>3</i>	54 7	6636.30 8	+		
		2061.1	9 2	6553.72 9	_		
8722.30	9	1306.4 2	90 9	7415.87 8	+		
		1440.3 <i>3</i>	30 5	7282.02 9	_		
		2004.0 <i>3</i>	86 <i>15</i>	6718.14 7			
		2085.9 2	100 10	6636.30 8	+		
		2168.6 <i>3</i>	36 <i>6</i>	6553.72 9	-		
8744.9	$(8^- \text{ to } 12^-)$	1376.4		7368.46 1	0-		
8773.7	(5,6,7)	3282.7	100 11	5490.77 6	_		
		5584.2	41 <i>11</i>	3189.26 6	+		
8847.97	(10^{+})	2211.6 2	100	6636.30 8	+		
8951.3	$(6^+ \text{ to } 10^+)$	2314.9	100	6636.30 8	+		
9015.01	10 ⁺	292.7 2	11 2	8722.30 9			
		399.9 <i>1</i>	26 2	8615.13 9			
		717.6 <i>3</i>	5 <i>1</i>		1-		
		1599.1 <i>I</i>	100 4	7415.87 8	+		
		1733.0 2	67 10	7282.02 9			
		2378.6 <i>3</i>	13 2	6636.30 8			
		2461.3 <i>3</i>	15 2	6553.72 9			
9036.9	$(8^- \text{ to } 12^-)$	1668.4	100		0_		
9205.9	$(7^- \text{ to } 9^-)$	1924.0	92 13	7282.02 9			
		3060.8	100 <i>13</i>	6144.72 7			
9241.9?		1959.9		7282.02 9			
9311.08	$(8,10^+)$	1677.0 <i>3</i>	90 6	`	5,8+)		
		2674.7 <i>3</i>	100 12	6636.30 8			
9377.7	$(5^- \text{ to } 9^-)$	3633.5	100	5744.01 7			
9759.7	(7 ⁻ to 11 ⁻)	3205.9	100	6553.72 9			
9786.29	$(9^-,11)$	475.2 1	14 <i>I</i>		8,10+)		
		771.3 <i>1</i>	100 3		0+		
		938.3 2	16 <i>I</i>		10^{+})		
		1063.9 3	24.0 14	8722.30 9			
		1171.0 2	16.0 15	8615.13 9			
		1488.8 <i>1</i>	44 2		1-		
0041.6	(5.6)-	2417.8 2	28 2		0_		
9841.6	$(5,6)^{-}$	3696.7	100	6144.72 7			

γ (⁴²Ca) (continued)

$E_i(level)$	\mathtt{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Comments
10035.6	(5 ⁻ to 9 ⁻)	3890.7	100	6144.72 7	
10168.69	$(10,12^+)$	382.4 <i>I</i>	100 3	9786.29 (9 ⁻ ,11)	
10100.05	(10,12)	1153.6 3	29 2	9015.01 10 ⁺	
		1871.2 2	11 <i>I</i>	8297.46 11	
10450.0	$(5)^{-}$	6349.8	100	4099.65 5	I _γ : represents>60% decay branching for level.
11165.7	(10,12)	2868.1 8	100	8297.46 11	27. Teptersonal Government of the control of the co
11361.3	$(1,2^+)$	9835.4	100	1524.71 2+	
11301.5	(1,2)	11359.6		$0.0 0^{+}$	
11405.1	(12^{+})	2557.0	100	8847.97 (10 ⁺)	
(11480.64)	3-,4-	6462.79 17	100	5017.14 4+	
(11100.01)	5 ,.	6720.46 <i>18</i>		4759.71 2 ⁺	
		6790.05 <i>17</i>		4690.06 3	
		7480.07 18		3999.66 4+	
		7525.47 10		3954.39 4	
		8033.03 18		3446.94 3-	
		8225.86 <i>13</i>		3253.89 4+	
		8727.42 <i>14</i>		2752.40 4+	
11644.1	$(1^-,2^+)$	7194.6	6	4448.8 2+	
11011.1	(1 ,2)	7411.4	50	4232.0 1	
		7526.4	19	4117.1 3	
		7596.4	19	4047.0 3	
		7758.3	19	3885.0 1	
		7989.3	19	3654.0 2 ⁺	
		8251.2	9	3392.01 2+	
		9218.8	16	2424.15 2 ⁺	
		9805.6	12	1837.31 0 ⁺	
		10118.1	100	1524.71 2+	
		11642.4	44	$0.0 0^{+}$	
11670.9	2+	7221.4	38	4448.8 2+	
	_	7553.2	34	4117.1 3	
		8016.1	28	3654.0 2 ⁺	
		8278.0	31	3392.01 2 ⁺	
		9245.6	59	2424.15 2 ⁺	
		9832.4	100	1837.31 0 ⁺	
		10144.9	55	1524.71 2 ⁺	
11674.0	$(1^-,2^+)$	7556.3	100	4117.1 3-	
	, , ,	8281.1	59	3392.01 2 ⁺	
		9248.7	48	2424.15 2+	
		9835.5	48	1837.31 0 ⁺	
11693.0	$(1^-,2^+)$				
	() - /				
			33		
11693.0	(1-,2+)	10148.0 6932.5 7460.3 7575.3	90 90 62 33	1524.71 2 ⁺ 4759.71 2 ⁺ 4232.0 1 4117.1 3 ⁻	

E_i (level)	J_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	${\rm J}_f^\pi$	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	${\rm J}_f^\pi$
11743.4	$(1^-,2^+)$	9904.8	26	1837.31		11843.3	$(1^-,2^+)$	9418.0	29	2424.15	2+
		10217.4	100	1524.71	2+			10317.2	61	1524.71	2+
1155.0	(1- 0+)	11741.6	24	0.0	0+	11868.0	$(1^-,2^+)$	6963.4	87	4904.0	3-
11775.0	$(1^-,2^+)$	7207.3	33	4566.9	$(1,2^+)$			7750.2	87	4117.1	3-
		7542.3	29	4232.0	1			7820.2	87	4047.0	3-
		7657.3	19	4117.1	3-			8213.1	73	3654.0	2 ⁺
		7774.6	76 20	3999.66				8475.1	87	3392.01	2 ⁺
		7889.2	29	3885.0	1-			9442.7 10029.4	100	2424.15	2 ⁺ 0 ⁺
		8327.2 8382.1	100 62	3446.94					33 53	1837.31	2+
		9349.7	76	3392.01 2424.15				10341.9 11866.2	60	1524.71 0.0	0+
		10249.0	24	1524.71		11871.5	$(1^-,2^+)$	6133.0	59	5738.0	(2^+)
		11773.2	29	0.0	0 ⁺	110/1.3	(1 ,2)	6513.0	59 59	5358.0	2+
11795.2	$(1^-,2^+)$	7677.4	50	4117.1	3-			7753.7	82	4117.1	3-
11/93.2	(1 ,2)	8347.4	25	3446.94				7823.7	47	4047.0	3-
		8402.3	100	3392.01	2 ⁺			7985.7	71	3885.0	1-
		9369.9	92	2424.15				8478.6	29	3392.01	2+
		9956.6	46	1837.31				9446.2	100	2424.15	2 ⁺
		10269.2	33	1524.71	2+			10032.9	29	1837.31	0^{+}
		11793.4	71	0.0	0+			10345.4	47	1524.71	2+
11805.4	$(1^-,2^+)$	6211.9	86	5593.0	3-			11869.7	55	0.0	0^{+}
	, , ,	7355.9	38	4448.8	2+	11873.7	$(1^-,2^+)$	7641.0	100	4232.0	1
		7386.7	52	4418.0	3-			7755.9	28	4117.1	3-
		7462.4	100	4342.3	$(0^+ \text{ to } 4^+)$			7825.9	28	4047.0	3-
		7757.6	71	4047.0	3-			7987.9	34	3885.0	1-
		8357.6	24	3446.94				8480.8	19	3392.01	2+
		8412.5	52	3392.01	2+			9448.4	25	2424.15	2+
		9380.1	14	2424.15				10035.1	16	1837.31	0_{+}
		10279.3	19	1524.71				10347.6	56	1524.71	2+
		11803.6	19	0.0	0+			11871.9	6	0.0	0+
11821.1		1652.3 <i>4</i>	83 11		$(10,12^+)$	11925.6	$(1^-,2^+)$	8270.7	42	3654.0	2+
		2034.6 8	100 7	9786.29	. , ,			8477.7	53	3446.94	3-
11822.4	(1^{-})	7589.7	100	4232.0	1			9500.3	40	2424.15	2+
		8167.5	56	3654.0	2+			10399.5	63	1524.71	2+
		8429.5	52	3392.01	2 ⁺	11050.0	(1=)	11923.8	100	0.0	0+
		9397.1	48	2424.15		11959.2	(1-)	8511.3	25	3446.94	3 ⁻
		9983.8 10296.3	36 92	1837.31 1524.71	0 ⁺ 2 ⁺			9533.9 10433.1	50	2424.15 1524.71	2 ⁺ 2 ⁺
					0+						0+
11843.3	$(1^-,2^+)$	11820.6 6871.7	16 68	0.0 4971.0	3-	11980.3	1-	11957.4 7530.8	100 23	0.0 4448.8	2+
11043.3	(1 ,2)	6976.7	100	4866.0	3 2 ⁺	11900.3	1	8325.4	23 18	3654.0	2+
		8188.4	39	3654.0	2 ⁺			8532.4	5	3446.94	3-
		8542.4	26	3300.0	0+			8587.4	8	3392.01	2 ⁺
		3374.7	20	5500.0	· ·	l		0.507.4	U	3372.01	_

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f \underline{J_f^{\pi}}$	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	\mathbb{E}_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$
11980.3	1-	8679.3	21	3300.0 0+	12198.1		3350.0	8847.97	(10^+)
		9555.0	21	$2424.15 \ 2^{+}$	12701.4		880.3 2	11821.1	
		10454.2	100	1524.71 2 ⁺			2533 <i>1</i>	10168.69	$(10,12^+)$
		11978.5	62	$0.0 0^{+}$	12814.7		2646.0	10168.69	$(10,12^+)$
12172.0	$(1,2^+)$	8779.0	72	3392.01 2+			4517.0	8297.46	11-
		9746.6	83	2424.15 2+	13712.8		5415.0	8297.46	11-
		10645.8	60	$1524.71 \ 2^{+}$	13762.8		2037.0	11725.7	$(8^- \text{ to } 11)$
		12170.1	100	$0.0 0^{+}$	15251.7		2436.9	12814.7	

[†] Primarily from $(\alpha, p\gamma)$, (p, γ) , $(p, p'\gamma)$ and $(^{18}O, \alpha 2n\gamma)$. Weighted averages are taken of all available values with uncertainties. Values of γ -energies without uncertainties are deduced from level-energy difference.

[‡] From $\gamma(\theta, \text{pol})$ in $(\alpha, \text{p}\gamma)$, $(\text{p}, \text{p}'\gamma)$ and $(^{19}F, \alpha\gamma)$. If $T_{1/2}$ is unknown and parity is determined not by polarization measurements, evaluators use D and Q, instead of M1 and E2, or, E1 and M2.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

Level Scheme

Level Scheme (continued)

Legend

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

6516.0 8⁻ (4⁺,5,6⁻) 31.0 ps 25 6408.57 6247.9 3⁻ (1,2,3⁻) 7⁻ 6212.0 6182.0 6144.72 <70 fs 6140.8 49 fs +21-14 $\frac{6}{4^{+}}$ $(0^{+} \text{ to } 4^{+})$ $(3^{-} \text{ to } 7^{-})$ $(1,2,3)^{-}$ $(3)^{-}$ $(4^{+} 5,6^{-})$ 6113.0 6104.0 6093.5 6038.0 6028.0 $\frac{(3)}{(4^+,5,6^-)}$ $\frac{3^-,4^-}{3^-}$ 6020.0 6003.0 5994.0 0.42 ps 10 5744.01 5490.77 59 fs 14 4971.0 4897.0 47 fs 21 4418.0 4354.0 0.47 ps 7 4099.65 0.45 ps 10 3954.39 3.36 ps 21 3885.0 3253.89 123 fs 21 3189.26 5.28 ns 15 2752.40 2.8 ps 4 2424.15 140 fs 40 1524.71 0.83 ps *3* 0.0 stable

 $^{42}_{20}\text{Ca}_{22}$

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

