GRAFO: Um grafo $\underline{G=(V, E)}$ é um par, onde V é o conjunto de <u>vértices</u> finito e não-vazio e E é o conjunto de <u>arestas</u> formado por pares não ordenados de <u>distintos elementos</u> de V.

• Representações de um grafo:

- 1. Desenho:
- 2. Definição:

G=(V,E), sendo V={a,b,c,d,e} e E={ab,ac,ae,bc,cd,de}

3. Matriz de Adjacência:

$$m_{ij} \begin{cases} 0, \text{se ij} \notin \mathbf{E} \\ 1, \text{se ij} \in \mathbf{E} \end{cases} \qquad \mathbf{M} = \begin{pmatrix} 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

ADJACÊNCIA E INCIDÊNCIA EM GRAFOS: Dado um grafo G=(V, E). Se uv, $vw \in E$ dizemos que \underline{u} é <u>adjacente</u> a \underline{v} ; que uv é adjacente a vw, que u é incidente a uv. Salvo menção em contrário n = |V| e m = |E|.

ORIENTAÇÃO DE GRAFOS: Dado um grafo G=(V, E) e uv uma aresta de E. Uma $\frac{\text{orientação}}{\text{orientação}}$ de uv é uma $\frac{1}{uv}$ ou (exclusivo) $\frac{1}{vu}$ para dada uma ordem ao par (u, v). Um $\frac{1}{uv}$ e obtido a partir de G, onde os elementos de $\frac{1}{E}$ consistem de uma orientação para cada elemento de E.

DIGRAFO: Um dígrafo D=(V, E) consiste de um par, onde V é finito e não vazio e E é um adjunto de par ordenado de distintos elementos de V.

OBS.: Todo grafo orientado é um dígrafo, porém nem todo dígrafo é um grafo Orientado (com é o caso de D).

MULTIGRAFO: Um multigrafo é um par M=(V, E), onde V é um conjunto finito não vazio e E é um multiconjunto de pares não-ordenados de distintos elementos de V (um multiconjunto contém elementos não necessariamente distintos).

$$\begin{pmatrix} a & b & c & d & e \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} = \mathsf{Matriz} \ \mathsf{de} \ \mathsf{adjac} \ \mathsf{encias} \ \mathsf{de} \ \mathsf{D}$$

Digrafo D

a b c d e
$$\begin{pmatrix} 0 & 2 & 1 & 0 & 1 \\ 2 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 & 3 \\ 1 & 0 & 0 & 3 & 0 \end{pmatrix} = Matriz de adjacências de M$$

GRAU DE UM GRAFO: Dado um grafo G=(V, E), o grau d(v) de $v \in V$ é igual ao número de vértices de V que são

adjacentes a v.

$$d(c) = 3$$

$$d(d) = 2$$

$$d(e) = 2$$

GRAU DE SAIDA E ENTRADA DE UM DIGRAFO: Dado um dígrafo D=(V, E), o grau de saída $d^+(v)$ de $v \in V$ é o número de vértices ao qual v é incidente e o grau de entrada $d^-(v)$ é o número de vértices de V que incide em v.

$$d^+(a) = 1$$
 $d^-(a) = 3$

$$d^+(b) = 2$$
 $d^-(b) = 1$

$$d^+(c) = 2$$
 $d^-(c) = 2$

$$d^+(d) = 1$$
 $d^-(d) = 1$

$$d^{+}(e) = 2$$
 $d^{-}(e) = 1$

SUMIDOURO DE UM DIGRAFO: Dado um dígrafo D=(V, E), se $d^+(v) = 0$ então v é um sumidouro.

FONTE DE UM DIGRAFO: Dado um dígrafo D=(V, E), se $d^-(v)$ = 0 então v é um sumidouro.

GRAFOS ISOMÓRFICOS: Dizemos que dois grafos G e H são <u>isomorfos</u> se existe $f: V(G) \xrightarrow{bijetiva} V(H)$ uma função bijetiva do conjunto de vértices V(G) de G no conjunto V(H) de vértices de H tal que uv \in E(G) se, e somente se, $f(u)f(v) \in E(H)$.

• **G é isomorfo a H?** Sim.
$$-f(a) = 6$$
 $-f(d) = 3$ { ae = 61; af = 64; bd = 23; be = 21; $-f(b) = 2$ $-f(e) = 1$ bf = 24; cd = 53; ce = 51} $-f(c) = 5$

• Fé isomorfo a M? Não.

TEOREMA: Dado um grafo G=(V, E); $\sum_{v \in V} d(v)$ = 2m. Ou seja, o somatório dos graus é igual ao dobro do número de arestas.

• **PROVA:** Note que dada M (matriz de adjacência), $\sum_{v \in V} d(v)$ é o número de 1's em M. Cada aresta de E corresponde a exatamente dois 1's de M.

COROLÁRIO: Dado um grafo G=(V, E), o número de vértices de grau ímpar é par.

• **PROVA:** Considere o teorema prévio:

$$2\mathsf{m} = \sum_{v \in V} d(v) = \sum_{d(v) = 2q}^{v \in V} d(v) + \sum_{d(v) = 2k+1}^{v \in V} d(v)$$

Daí,
$$\sum_{d(v)=2k+1}^{v\in V}d(v)$$
 = 2m - $\sum_{d(v)=2q}^{v\in V}d(v)$ = 2t, t $\in \mathbb{N}$

Temos que o somatório de números ímpares é par. E, portanto, numero de parcelas (número de vértices de impar é par).

Dois vértices de grau ímpar e dois de grau par

Dois vértices de grau ímpar e um de grau par

PASSEIO: Dado um grafo G=(V, E) e S=(v_1 , v_2 , v_3 , ..., v_k) uma sequência de vértices de V, dizemos que S é um <u>passeio</u> se $v_iv_{i+1} \in \{1,2,3,...,k-1\}$. Dizemos que S é <u>fechado</u> se $v_1 = v_k$.

TRILHA: Dado um grafo G=(V, E) e um passeio S, dizemos que S é uma trilha se $v_i v_{i+1} \neq v_i v_{i+1}$ para todo i $\neq j$.

CICLO: Dado um grafo G=(V, E) e uma trilha fechada S, dizemos que S é um <u>ciclo</u> quando o único par idêntico de vértices é $v_1 = v_k$.

CAMINHO: Dado um grafo G=(V, E) e um passeio S, dizemos que S é um <u>caminho</u> $quando \ \forall i, j \in \{1,2,3,...,k\}, i \neq j$, então $v_1 \neq v_k$.

COMPRIMENTO: Dado um grafo G=(V, E) e $S=(v_1, v_2, v_3, ..., v_k)$ uma sequência de vértices de V, temos o <u>comprimento</u> de S igual a k-1 (o número de suas arestas com ou sem repetição).

- Passeio que não é uma trilha: (a,c,a,b)
- Trilha que não é um caminho: (a, c, d, e, a, b)
- *Ciclos:* (a, b, c, a); (a, c, d, e, a); (a, b, c, d, e, a)
- Caminhos: (a, b); (a, c); (a, e); (b, c), (c, d); (a, b, c, d, e); (b, c, d, e, d)

GRAFO ACÍCLICO: Um grafo G=(V, E) é dito ser acíclico quando G não contém ciclos.

COMPLEMENTO DE UM GRAFO: Dado um grafo G=(V, E), seu complemento $\overline{G} = (V, \overline{E})$ satisfaz que e \in E se, e somente se, e $\notin \overline{E}$.

• CLASSES DE GRAFOS

GRAFO COMPLETO: Dado $n \in \mathbb{N}^*$, um <u>grafo completo</u> kn = (V, E) satisfaz que $\forall u, v \in V, uv \in E$.

n	kn	m
1	0	0
2		1
3) 	3
	\bigcirc	
4		6
n		$(n(n-1))/2 = \binom{n}{2}$

CONJUNTO INDEPENDETE: Dado um grafo G=(V, E), um conjunto independente $S \subset V$ satisfaz que $\forall u, v \in S$, $uv \notin E$.

CLIQUE: Dado um grafo G=(V, E), um conjunto independente $S \subset V$ satisfaz que $\forall u, v \in S$, $uv \in E$.

- {a, b} é uma clique máxima de G que é também maximal (não existe outra clique que contenha {a, b} propriamente)
- {a, g, c} é um conjunto independente não maximal porque está contido em {a, g, c, e} que também é independente e maximal.
- {a, f} é um conjunto independente maximal e não é máximo.

PARTIÇÃO: Uma partição $(V_1, V_2, V_3, ..., V_k)$ de um conjunto V satisfaz que $V_1 \cup V_2 \cup V_3 \cup ... \cup V_k = V$ e que $V_i \cap V_i \neq \emptyset$; $\forall i, j \in \{1, 2, 3, ..., k\}$ com i \neq j.