ANALOG INPUT

THE INPUTS ON THE ARDUINO READ <u>VOLTAGE</u>.

ALL INPUTS NEED TO BE THOUGHT OF IN TERMS OF VOLTAGE DIFFERENTIALS.

THE ANALOG INPUTS
CONVERT VOLTAGE
LEVELS TO A NUMERICAL
VALUE.

POTENTIOMETER

VAPIABLE PESISTOR

POTENTIOMETER WITH BLINKING LED

POTENTIOMETER WITH BLINKING LED


```
potblink | Arduino 1.8.8
     potblink §
 1 const int POT_PIN = A1;
 2 const int LED_PIN = 13;
 4 void setup() {
    pinMode(LED_PIN, OUTPUT);
 6 }
 8 void loop() {
    int val = analogRead(POT_PIN);
    digitalWrite(LED_PIN, HIGH);
10
    delay(val);
11
    digitalWrite(LED_PIN, LOW);
12
    delay(val);
13
14 }
15
16
```

READ ANALOG VALUES AND BLINK LED

analogRead() gives values in a range from 0-1024.

READ ANALOG VALUES AND BLINK LED

analogRead() gives values in a range from 0-1024.

```
potblink | Arduino
potblink §
 1 const int POT_PIN = A1;
 2 const int LED_PIN = 13;
 4 void setup() {
    pinMode(LED_PIN, OUTPUT);
 6 }
 8 void loop() {
    int val = analogRead(POT_PIN);
    digitalWrite(LED_PIN, HIGH);
    delay(val);
11
    digitalWrite(LED_PIN, LOW);
12
13
    delay(val);
14 }
15
16
```

ANALOG INPUT WITH PULSE WIDTH MODULATION

PULSE WIDTH MODULATION

POTENTIOMETER WITH PWM LED

POTENTIOMETER WITH PWM LED


```
potfade | Arduino 1.8.8
      potfade
 1 const int LED_PIN = 9;
 2 const int POT_PIN = A1;
 3
 4 void setup() {
     pinMode(LED_PIN, OUTPUT);
 6 }
 8 void loop() {
     int val = analogRead(POT_PIN);
     analogWrite(LED_PIN, val / 4);
10
     delay(10);
11
12 }
13
14
Done Saving.
                                Adafruit Feather 32u4 on /dev/cu.usbmodem14101
```

READ ANALOG VALUES AND FADE LED

analogRead() gives values in a range from 0-1024.

analogWrite() can only write values from 0-255.

To account for this we divide the value received from analogRead() by 4.

POTENTIOMETER WITH PWM LED

```
potfade | Arduino 1.8.8
 potfade
 1 const int LED_PIN = 9;
 2 const int POT_PIN = A1;
 4 void setup() {
     pinMode(LED_PIN, OUTPUT);
 6 }
 8 void loop() {
    int val = analogRead(POT_PIN);
10 analogWrite(LED_PIN, val / 4);
    delay(10);
11
12 }
13
14
```

VOLTAGE DIVIDER

VOLTAGE DIVIDER

The resistor closest to the input voltage (V_{in}) is called $R_1,$ and the resistor closest to ground $R_2.$

The voltage drop across R_2 is called V_{out} , that's the divided voltage our circuit exists to make.

THE EQUATION

$$V_{out} = V_{in} \cdot \frac{R_2}{R_1 + R_2}$$

IF R2 AND R1 ARE EQUAL THEN THE OUTPUT VOLTAGE IS HALF THAT OF THE INPUT.

IF R2 IS MUCH LARGER THAN R1

(AT LEAST AN ORDER OF MAGNITUDE)

THEN THE OUTPUT VOLTAGE WILL BE VERY CLOSE

TO THE INPUT.

IF R2 IS MUCH SMALLER THAN R1
THEN OUTPUT VOLTAGE WILL BE TINY COMPARED
TO THE INPUT.

PHOTOCELL WITH VOLTAGE DIVIDER

PHOTOCELL WITH VOLTAGE DIVIDER

```
potfade | Arduino 1.8.8
 potfade
 1 const int LED_PIN = 9;
 2 const int POT_PIN = A1;
 4 void setup() {
    pinMode(LED_PIN, OUTPUT);
 6 }
 8 void loop() {
    int val = analogRead(POT_PIN);
    analogWrite(LED_PIN, val / 4);
    delay(10);
11
12 }
13
14
```

PHOTOCELL WITH VOLTAGE DIVIDER

Light Level	R ₂ (Sensor)	R ₁ (Fixed)	$R_2/(R_1+R_2)$	V_{out}	Value from analogRead
Bright	300Ω	10kΩ	0.029	0.096 V	~30
Dim	7kΩ	10kΩ	0.411	1.35 V	~420
Dark	40kΩ	10kΩ	0.800	2.64 V	~819

What the input pin gets

VOLTAGE DIVIDER

You can "tune" the output of the sensor by changing the value of R_1 .

PRESSURE SENSOR WITH VOLTAGE DIVIDER


```
potfade | Arduino 1.8.8
      potfade
 1 const int LED_PIN = 9;
 2 const int POT_PIN = A1;
 3
 4 void setup() {
     pinMode(LED_PIN, OUTPUT);
 6 }
 8 void loop() {
     int val = analogRead(POT_PIN);
     analogWrite(LED_PIN, val / 4);
10
     delay(10);
11
12 }
13
14
Done Saving.
                                Adafruit Feather 32u4 on /dev/cu.usbmodem14101
```

READ ANALOG VALUES AND FADE LED

analogRead() gives values in a range from 0-1024.

analogWrite() can only write values from 0-255.

To account for this we divide the value received from analogRead() by 4.