Shashank Shekhar Assignment Homework1 due 01/17/2019 at 08:00pm EST

- **1.** (1 point) If we were to increase the degrees of freedom (DoF) for a machine learning model (e.g. by increasing the number of parameters, or decreasing the effect of regularization). What do we expected for the training error?
 - A. It would increase as DoF increases.
 - **B**. It would decrease and then increases.
 - C. It would decrease as DoF increases.
 - **D**. It would increase and then decrease.
 - E. None of these

Answer(s) submitted:

C

(correct)

- **2.** (1 point) If we were to increase the degrees of freedom (DoF) for a machine learning model (e.g. by increasing the number of parameters, or decreasing the effect of regularization). What do we expected for the validation error?
 - A. It would increase as DoF increases.
 - B. It would decrease and then increases.
 - C. It would decrease as DoF increases.
 - **D**. It would increase and then decrease.
 - E. None of these

Answer(s) submitted:

B

(correct)

- 3. (3 points) Given that you split a dataset into training, validation and testing sets, and have a model that requires a regularization coefficient α (e.g. a penalty on the magnitude of the parameters) and the number of optimization steps N to be specified.
- 1. Is α considered a hyper-parameter?
 - A. Yes

- **B**. No
- C. Sometimes
- 2. Is N considered a hyper-parameter?
 - A. Yes
 - **B**. No
 - C. Sometimes
- 3. What split would you use to fit the model when looking for an appropriate value of α ?
 - A. Training
 - B. Validation
 - C. Testing
 - D. Training and Validation
 - E. Training and Testing
 - F. Validation and Testing
 - **G**. All
- 4. What split would you use to to evaluate the model when looking for an appropriate value of α ?
 - A. Training
 - B. Validation
 - C. Testing
 - D. Training and Validation
 - E. Training and Testing
 - F. Validation and Testing
 - **G**. All

1

- 5. What split would you use to to fit the model after you have identified appropriate values of α and N?
 - A. Training
 - B. Validation
 - C. Testing
 - D. Training and Validation
 - E. Training and Testing
 - F. Validation and Testing
 - **G**. All
- 6. What split would you use to to evaluate the model after you have identified appropriate values of α and N?
 - A. Training
 - B. Validation
 - C. Testing
 - D. Training and Validation
 - E. Training and Testing
 - F. Validation and Testing
 - **G**. All

Answer(s) submitted:

- A
- A
- A
- B
- D
- C

(correct)

4. (1 point) Given that x_1 and x_2 are conditionally independent given x_3 . Then which expression is equivalent to

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

$$p(x_1|x_2,x_3)$$
?

- **A**. $p(x_1|x_2)$
- **B**. $p(x_1|x_3)$
- C. $p(x_1)$
- **D**. $p(x_1|x_2)p(x_1|x_3)$
- **E**. $p(x_1|x_3)p(x_1)$
- **F**. $p(x_1|x_2)p(x_1)$
- **G**. All
- H. None

Answer(s) submitted:

B

(correct)

- **5.** (1 point) Given random variables x_1 , x_2 and x_3 where x_1 and x_2 are independent. Then what is an equivalent expression for $p(x_1, x_2, x_3)$?
 - **A.** $p(x_1)p(x_2)p(x_3)$
 - **B**. $p(x_1|x_3)p(x_2|x_3)p(x_3)$
 - C. $p(x_3|x_1,x_2)p(x_1)p(x_2)$
 - **D**. $p(x_3|x_1)p(x_1)p(x_2)$
 - **E**. $p(x_3|x_2)p(x_1)p(x_2)$

Answer(s) submitted:

• C

(correct)

6. (3 points) What are the gradients of following functions:

e.x.
$$f(x,y) = x^2 + y^2$$
, $\nabla f(x) = [2x, 2y]^T$.
 $f(x,y) = x^7y + 7y$, $\nabla f(x) = [______]^T$ help (formulas)
 $f(x,y) = x^9e^{6x} + \ln y$, $\nabla f(x) = [_____]^T$ help (formulas)

Answer(s) submitted:

- 7*x^6*y, x^7+7
- $6*e^(6*x)*x^9 + 9*x^8*e^(6*x), 1/y$

(correct)