Megoldások (A csoport)

2011/12/2 Formális nyelvek és automaták évfolyamzárthelyi

Megoldás:

		x	y
\rightarrow	0	1	0
	1	1	2
	2	3	0
	3	4	2
	4	1	5
	1 2 3 4 5 6	6	0
_	6	6	6

	x	y	x	y	x	x	x	y	x	y	x	x	y	x	x
0	1	2	3	2	3	4	1	2	3	2	3	4	5	6	6

2. feladat: Hozza 3-as normálformára az alábbi G nyelvtant (grammatikát), majd készítsen a tanult algoritmussal olyan *véges determinisztikus automatát* a nyelvtanhoz, mely a G által generált nyelvet ismeri fel! $G = \langle \{a,b,c\}, \{S,A,B\},\mathcal{P},S\rangle$, ahol a \mathcal{P} szabályrendszer a következő:

$$S \to abS \mid aA$$

$$A \to cS \mid a \mid B$$

$$B \to bB \mid cc \mid \varepsilon$$

Megoldás:

Láncmentesítés:

 $S \to abS \mid aA$ $A \to cS \mid a \mid bB \mid cc \mid \varepsilon$

 $B \to bB \, | \, cc \, | \, \varepsilon$

Hosszredukció (+ univerzális ε szabály):

 $S \to aZ \mid aA$ $A \to cS \mid aF \mid bB \mid cY \mid \varepsilon$

 $Y \to cF$

 $B \to bB \mid cY \mid \varepsilon$ F -

NDA:

		a	b	c
\rightarrow	S	$\{A,Z\}$	{}	{}
\leftarrow	A	$\{F\}$	$\{B\}$	$\{S,Y\}$
\leftarrow	B	{}	$\{B\}$	$\{Y\}$
	Z	{}	$\{S\}$	{}
	Y	{}	{}	$\{F\}$
\leftarrow	F	{}	{}	{}

VDA:

,		a	b	c
\rightarrow	$\{S\}$	$\{A,Z\}$	{}	{}
\leftarrow	$\{A,Z\}$	$\{F\}$	$\{B,S\}$	$\{S,Y\}$
	{}	{}	{}	{}
\leftarrow	$\{F\}$	{}	{}	{}
\leftarrow	$\{B,S\}$	$\{A,Z\}$	$\{B\}$	$\{Y\}$
	$\{S,Y\}$	$\{A,Z\}$	{}	$\{F\}$
\leftarrow	$\{B\}$	{}	$\{B\}$	$\{Y\}$
	$\{Y\}$	{}	{}	$\{F\}$

<u>3. feladat:</u> Készítse el az alábbi \mathcal{A} véges determinisztikus automata *minimális automatáját* a tanult algoritmus alapján (összefüggővé alakítás, redukció)!

 $\mathcal{A} = \langle \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9\}, \{a, b\}, \delta, q_0, \{q_1, q_2, q_6, q_7\} \rangle, \text{ a δ állapotátmenet függvény táblázattal:}$

		a	b
\rightarrow	q_0	q_1	q_2
\leftarrow	q_1	q_2	q_4
\leftarrow	q_2	q_4	q_1
	q_3	q_4	q_9
	q_4	q_5	q_5
	q_5	q_6	q_7
\leftarrow	q_6	q_7	q_8
\leftarrow	q_7	q_8	q_6
	q_8	q_0	q_0
	q_9	q_3	q_0

Megoldás: $H_0 = \{q_0\}, H_1 = \{q_0, q_1, q_2\}, H_2 = \{q_0, q_1, q_2, q_4\}, H_3 = \{q_0, q_1, q_2, q_4, q_5\}, H_4 = \{q_0, q_1, q_2, q_4, q_5, q_6, q_7\}, H_5 = \{q_0, q_1, q_2, q_4, q_5, q_6, q_7, q_8\}, H_6 = H_5.$ Elhagyható q_3, q_9 . $\overset{0}{\sim}: \{q_1, q_2, q_6, q_7\} (=:F), \{q_0, q_4, q_5, q_8\} (=:N);$

	a	b		a	b
q_1	F	N	q_0	F	F
q_2	N	F	q_4	N	N
q_6	F	N	q_5	F	F
q_7	N	F	q_8	N	N

 $\stackrel{2}{\sim} = \stackrel{1}{\sim} = \sim$, tehát a minimális automata:

		a	b
\rightarrow	C	A	B
	D	C	C
\leftarrow	A	B	D
\leftarrow	B	D	A

4. feladat: A CYK-algoritmus segítségével döntse el, hogy az ababab szó levezethető-e a $G = \langle \{a,b\}, \{S,A,B,C\}, \mathcal{P}, S \rangle$ nyelvtanban, ahol a \mathcal{P} szabályrendszer a következő:

$$S \rightarrow AA \mid BB \mid b$$

$$A \rightarrow SC \mid CC \mid b$$

$$B \rightarrow SB \mid a$$

$$C \rightarrow AA \mid AB$$

Megoldás:

$$\{S,C\} \\ \{A,B\} \ \{S,C\} \\ \{\} \ \{S,A\} \ \{\} \\ \{S\} \ \{\} \ \{S,A\} \ \{\} \} \\ \{B,C\} \ \{\} \ \{B,C\} \ \{\} \} \\ \overline{\{B\} \ \{S,A\} \ \{B\} \ \{S,A\} \ \{B\} \ \{S,A\} \}}$$
 Mivel $S \in H_{1,6}$, ezért $ababab \in L(G)$.

<u>5. feladat:</u> Legyen $L = \{a^i b^j \mid i, j \in \mathbb{N}_0 \land i \leq j+1\}$. Bizonyítsuk be, hogy $L \in \mathcal{L}_2 \setminus \mathcal{L}_3$!

Megoldások:

 $L \in \mathcal{L}_2$ bizonyításához megadjuk a nyelvet kettes típusú nyelvleíró eszközzel, pl (vagylagosan)

- környezetfüggetlen nyelv
tannal: $S \to ASb \mid A, A \to a \mid \varepsilon$,
- EBNF-fel: $\langle L \rangle ::= \{a\}_0^1 \langle L \rangle b \mid \{a\}_0^1$

- egy vermes, üres veremmel elfogadó automatával:

$$(S, a, \#) \rightarrow (S, a\#), (S, a, a) \rightarrow (S, aa), (S, \varepsilon, a) \rightarrow (V, \varepsilon),$$

 $(V, b, a) \rightarrow (V, \varepsilon), (V, b, \#) \rightarrow (V, \#), (V, \varepsilon, \#) \rightarrow (V, \varepsilon)$

 $L \notin \mathcal{L}_3$ bizonyításához a Myhill-Nerode tétel szerint elég belátni, hogy végtelen sok maradéknyelve van. Ez utóbbi állítás pedig következik abból, hogy az $\{L_{a^i} \mid i \in \mathbb{N}_+\}$ maradéknyelv halmaz végtelen, aminek elégséges feltétele, hogy i < k esetén $L_{a^i} \neq L_{a^k}$. Ez viszont közvetlenül adódik abból, hogy i < k esetén $b^{i-1} \in L_{a^i}$, de $b^{i-1} \notin L_{a^k}$. A $b^{i-1} \in L_{a^i}$ pedig a maradéknyelv fogalma alapján következik az $a^i b^{i-1} \in L$ állításból, ami nyilvánvaló $i \leq (i-1)+1$ alapján. Hasonlóan, $b^{i-1} \notin L_{a^k}$ a maradéknyelv fogalma alapján következik az $a^k b^{i-1} \notin L$ állításból, ami nyilvánvaló k > (i-1)+1, azaz k > i alapján.

(Más jelöléssel: $\langle L \rangle ::= a_0^1 \langle L \rangle b \mid a_0^1$)

 $L \notin \mathcal{L}_3$ a "Kis" Bar-Hillel lemmából is következik. Tegyük fel ugyanis, hogy $L \in \mathcal{L}_3$ és tekintsük az $a^ib^{i-1} \in L$ szót! Ha i elég nagy, akkor a lemma szerint az a^i prefixben van nemüres, beiterálható részszó. Ez a^k alakú, ahol k>0. A második iteráltat tekintve $a^{i+k}b^{i-1} \in L$, ahonnét L definíciója szerint $i+k \leq (i-1)+1$. Innét az egyenlőtlenség mindkét oldalából i-t kivonva $k \leq 0$ adódik, ami ellentmond a k>0 állításnak.