6 Relational Plan Operators

> Planoperatoren

Was sind Planoperatoren

- Physisch ausführbare Operatoren
- Physische Realisierung der logischen Operatoren der Relationalen Algebra
- Basis des Anfrageausführungsplans

> Gliederung

- **♦**UNÄRE **O**PERATOREN
 - Selektion und Projektion
 - Gruppierung
 - Aggregation
 - Sortieren
- ◆Verbundoperatoren (Binäre Operatoren)
 - Verbundoperatoren
 - Nested-Loop Verbund
 - Sort-Merge Verbund
 - ❖ Hash-Verbund
 - Vergleich
 - ❖ Paralleler Verbund
 - Data-Skew
 - Verbund in verteilten Systemen

Unäre Operatoren

> Selektion und Projektion

Planoperatoren für die Projektion

- Spalteneliminierung ist trivial
 - wird typischerweise in Kombination mit Sortierung, Selektion oder Verbund durchgeführt
- Duplikateliminierung wird durch Gruppieren auf allen distinkten Attributen ohne zusätzliche Aggregation realisiert

Planoperatoren zur Selektion

- Nutzung des Scan-Operators
 - Definition von Start- und Stopp-Bedingung
 - Definition von einfachen Suchargumenten
- Relationen-Scan
- Index-Scan
- Auswahl des kostengünstigsten Index

> Selektion und Projektion (2)

Besonderheit im parallelen Umfeld

- Rekonstruktion bei horizontaler Partitionierung R = U (R1, R2, ..., Rn)
- Möglichkeit der parallelen Berechnung lokaler Operationen
 - Mischen der Teilergebnisse und ggf. Duplikateliminierung bei lokaler Projektion Parallele
- Projektion: PROJ(R) => U (PROJ(R1), PROJ(R2), ..., PROJ(Rn))
- Parallele Selektion: SEL(R) => U (SEL(R1), SEL(R2), ..., SEL(Rn))

Berücksichtigung der Architektur: Shared Nothing

- Ausführen auf den Datenknoten
- Rechner und Parallelitätsgrad (n) durch Datenverteilung bestimmt (Ausnahme: bestimmte Anfragen auf dem Verteilattribut)

Berücksichtigung der Architektur: Shared Disk / Shared Everything

- Datenverteilung auf Platte bestimmt maximalen Parallelitätsgrad
- Selektive Anfragen können auf einen Prozessor beschränkt werden (=> minimaler Kommunikationsaufwand).
- Relationen-Scans können von n Prozessoren bearbeitet werden.
- Parallelitätsgrad kann nicht nur vom Anfragetyp, sondern auch von der aktuellen Auslastung abhängig gemacht werden.

> Selektion und Projektion (3)

Beispiel

```
SELECT *
FROM Umsätze
WHERE Monat BETWEEN 1 AND 6
```

Umsetzung durch Relationen-Scan

```
aktuellerScanID := open-rel-scan(Umsätze-RelationID);
aktuellerTID := next-TID(aktuellerScanID);
while (not end-of-scan(aktuellerScanID))
   aktuellesTupel := fetch-tuple(Personen-RelationID, aktuellerTID);
   if aktuellesTupel.Monat >= 1 and aktuellesTupel.Monat <= 6
        return(aktuellesTupel);
   aktuellerTID := next-TID(aktuellerScanID);
close-scan (aktuellerScanID);</pre>
```

Umsetzung durch Index-Scan

```
aktuellerScanID := open-index-scan(Umsätze-Monat-IndexID, 1, 6);
aktuellerTID := next-TID(aktuellerScanID);
while (not end-of-scan(aktuellerScanID))
   aktuellesTupel := fetch-tuple(Umsätze-RelationID, aktuellerTID);
   return(aktuellesTupel);
   aktuellerTID := next-TID(aktuellerScanID);
close-scan (aktuellerScanID);
```


> Probleme bei der Scan-Anwendung

Situation

- deklarative Anweisung (SQL-Anweisung) wird satzorientiert ausgewertet
- Konflikt, falls ein zu aktualisierendes Objekt von Scan benutzt wird

Beispiel

```
UPDATE PERS SET GEHALT = GEHALT * 1.1
```

 Anfrageoptimierung entscheidet, dass ein existierender Index über Gehalt zur Ausführung dieser Anweisung verwendet wird

HALLOWEEN-Problem !!! P.S.: Woher stammt der Name?

Supplierung

Logische Verarbeitungsreihenfolge

Hash-basierter Ansatz

- Anwendung einer Hash-Funktion auf die Werte der Gruppierungsattribute
- Hash-Tabelle hält Ergebnisse der Aggregationsfunktionen pro Kombination

Sortierungsbasierter Ansatz

- Sortierung auf Gruppierungsattributen
- Im sortiertem Datenstrom liegen Tupel mit gleichwertiger Gruppenattributen, also alle Tupel einer Gruppe, hintereinander
- Datenstrom wird eingelesen und Aggregationsspalten werden gebildet bis zum jeweilig n\u00e4chsten Wertewechsel auf Gruppenattributen

Algorithmus: Sortierungsbasierter Ansatz

```
Input: G_1, \ldots, G_n // Gruppierungsattribute aus der GROUP BY-Klausel
      AGG(), A // Aggregationsfunktion und zu aggregierendes Attribut A
Begin
   // Sortierung des Datenstroms nach den Gruppierungsattributen
   SORT(G_1, \ldots, G_n)
   // Abarbeiten des gesamten Eingabestroms
   While (Eingabestrom noch nicht verarbeitet)
      (\$q_1, ..., \$q_n, \$val) := LeseNächstesTupel(Eingabestrom)
      // Innerhalb der gleichen Gruppe werden die Einträge hinzugefügt.
      If (Aktuelles Tupel hat gleiche Werte in G_1, \ldots, G_n wie letztes Tupel)
         $aggrset := $aggrset U {$val};
      Else
         // Beim Wechsel einer Gruppe (oder am Ende) wird ein Ausgabetupel
         // durch die Aggregationsfunktion über die Wertemenge erzeugt
         $aggrval = AGG($aggrset)
         SchreibeNeuesTupel (Ausgabestrom, (\$g_1, \ldots, \$g_n, \$aggrval))
         $aggrset := {};
      End If
   End While
End
```


> Gruppierung (3)

Paralleles Gruppieren

- Verteilen und Gruppieren
 - Verteilen aller Tupel jedes Datenknoten auf ein oder mehrere Gruppierungsknoten mittels Hashing
 - Lokales Gruppieren auf jedem Gruppierungsknoten
 - Lokales Gruppierungsverfahren freiwählbar
 - Anzahl von Daten- und Gruppierungsknoten kann unterschiedlich sein

- Mit Vorgruppieren
 - Lokales Vorgruppieren auf Datenknoten
 - Verteilen aller Tupel auf ein oder mehrere Gruppierungsknoten mittels Hashing
 - Zusammenführen auf Gruppierungsknoten durch erneutes Gruppieren
 - Aggregatbildung muss entsprechend angepasst werden

z.B.: AVG(x) AS xavg => SUM(x) AS xsum, COUNT(x) AS xcnt SUM(xsum)/SUM(xcnt) AS xavg

auf Datenknoten auf Gruppierungsknoten

> Aggregation

Prinzip

■ ähnlich zur Projektion: Gruppierung entspricht Projektion mit Aggregation Q(R) sei Attribut von R, auf das eine Aggregationsfunktion angewendet werden soll

MIN, MAX

- Parallele Berechnung immer möglich
- $MIN(Q(R)) \Rightarrow MIN(MIN(Q(R_1)), ..., MIN(Q(R_n)))$
- MAX(Q(R)) => MAX (MAX (Q(R₁)), ..., MAX (Q(R_n)))
- Parallele Berechnung der lokalen Minima/Maxima

SUM, COUNT, AVG

- nur anwendbar, wenn keine Duplikateliminierung erforderlich ist
- SUM (Q(R)) => Σ SUM (Q(R_i))
- COUNT $(Q(R)) => \Sigma COUNT (Q(R_i))$
- AVG (Q(R)) => SUM (Q(R)) / COUNT (Q(R))

> Sortieren

Wenn möglich Sortieren durch Index-Scan

- Index auf dem Sortierattribut notwendig
- Einfaches Auslesen des Index
- Kein explizites Sortieren notwendig
- Eventuell müssen weitere Attribute noch geladen werden (FETCH)

Allgemein: Externes Sortieren

- Zerlegung der Eingabe in mehrere Läufe (runs)
- Sortieren und Zwischenspeichern der sortierten Läufe
- sukzessives Mischen, bis ein sortierter Lauf entsteht
- Blockgröße der Größe des zur Verfügung stehende Arbeitsspeichers ab
- Passen Daten in den Arbeitsspeicher, entfällt das Mischen

D'

Paralleles Sortieren

- parallele Eingabe (multiple input)
- parallele Sortierphase
- paralleles Mischen
- Partitionierung der sortierten Ausgabe
- lokale Sortierung der Partitionen in den Datenknoten
- Umverteilung der sortierten Läufe unter p Mischknoten, über eine dynamische Bereichsfragmentierung auf dem Sortierattribut
- paralleles Mischen in den p Mischknoten
- partitionierte Ausgabe

Mischknoten

Datenknoten

 $D_{m-3,m-2}$

Verbundoperatoren (Binäre Operatoren)

> Verbundoperatoren

Binäre Operatoren

- Übereinstimmung in allen Attributen
 - A: Differenz r-s
 - B: Schnitt r ∩ s
 - C: Differenz s-r
 - A U C: symmetrische Differenz (r-s)U(s-r)
 - A U B U C: Vereinigung r U s
- Übereinstimmung auf einigen Attributen
 - A: linksseitig Anti-Semi-Verbund
 - B: Verbund
 - C: rechtsseitig Anti-Semi-Verbund
 - A U B: linksseitig äußerer Verbund (Left-Outer-Join)
 - A U C: Anti-Verbund
 - B U C: rechtsseitig äußerer Verbund (Right-Outer-Join)
 - A U B U C: vollständig äußerer Verbund (Full-Outer-Join)

> Verbundoperatoren (2)

Verbund über mehrere Relationen (n-Wege-Verbund)

- Zerlegung in n-1 Zwei-Wege-Verbunde
- Anzahl der Verbundreihenfolgen ist abhängig von den gewählten Verbundattributen
- n! verschiedene Reihenfolgen möglich
- optimale Auswertungsreihenfolge abhängig von
 - Planoperatoren
 - "passende" Sortierordnungen für Verbundattribute
 - Größe der Operanden usw.
- verschiedene Verbundreihenfolgen mit
 Zwei-Wege-Verbunden (n=5)

> Verbundoperatoren (3)

Eigenschaften der Verbundoperation

- teuer und häufig -> Optimierungskandidat !!!
- typisch: Gleichheitsverbund; allgemeines Verbundprädikat eher selten
- Standardszenario

```
SELECT * FROM R, S WHERE R.VA \Theta S.VA // Verbundprädikat AND P(R.SA) // lokale Selektionen AND P(S.SA)
```

Mögliche Zugriffspfade

- DB-Scan über R uns S
- Scans über IR(R.VA) und IS(S.VA)
 - Sortierreihenfolge nach R.VA und S.VA !!!
- Scans über IR(R.SA) und/oder IS(S.SA)
 - schnelle Selektion für R.SA und S.SA !!!
- ... beliebige andere Kombinationen

Nested-Loop Verbund

Annahmen

- Sätze in R und S sind nicht nach den Verbundattributen geordnet
- es sind keine Indexstrukturen I_R(VA) und I_S(VA) vorhanden

Algorithmus für Θ-Verbund

```
Scan über S für jeden Satz s, falls P_S gilt: Scan über R für jeden Satz r, falls P_R AND (r.VA \Theta s.VA) gilt: übernehme kombinierten Satz (r, s) in das Ergebnis
```

Komplexität

O(N²)

> Nested-Loop Verbund (2)

Beispiel

Annahme: Fremdschlüssel-Primärschlüssel-Beziehung!

Nested-Loop Verbund mit Indexzugriff

Annahmen

es sind Indexstrukturen I_R(VA) und I_S(VA) vorhanden

Algorithmus für Θ-Verbund mit Indexzugriff

```
Scan über S
für jeden Satz s, falls PS gilt:
   ermittle mittels IR(VA) alle TIDs für Sätze mit r.VA = s.VA
   für jedes TID:
   hole Satz r, falls PR:
      übernehme kombinierten Satz (r, s) in das Ergebnis
```

Merke

- eigentlich wird block- bzw. seitenweise vorgegangen
- dieses Vorgehen widerspricht jedoch dem Gedanken der Schichtenarchitektur
- gleiches Prinzip wird benutzt um Mengenoperationen zu realisieren

> Sort-Merge Verbund

Annahmen

es sind Indexstrukturen I_R(VA) und I_S(VA) vorhanden

Algorithmus zum Ausnützen von Indexstrukturen $I_R(R.VA)$ und $I_S(S.VA)$

- Phase 1:
 - Sortierung von R und S nach R.VA und S.VA (falls nicht bereits vorhanden), dabei frühzeitige Eliminierung nicht benötigter Tupel (durch Überprüfung von PR, PS)
- Phase 2: Schritthaltende Scans über sortierte R- und S-Relationen mit Durchführung des Verbundes bei r.VA = s.VA
- Pseudocode:

```
Schritthaltende Scans über I_R(VA) und I_S(VA): für jeweils zwei Schlüssel aus I_R(VA) und I_S(VA), falls r.VA = s.VA: hole mit den zugehörigen TIDs die Tupel, falls P_R und P_S: übernehme kombinierten Satz (r, s) in das Ergebnis
```

Komplexität

O(N log N)

> Sort-Merge Verbund (2)

Beispiel

> Hash-Verbund – classic hashing

Schritt 1

- Abschnittsweises Lesen der (kleineren) Relation R
- Aufbau einer Hash-Tabelle mit h_A(r(VA)) nach Werten von R(VA)
- Aufteilen in p Abschnitte R_i ($1 \le i \le p$) derart, dass
 - jeder der p Abschnitte in den verfügbaren Hauptspeicher passt
 - jeder Satz, der gehasht wird, P_R erfüllt

Schritt 2

- Überprüfung (Probing) für jeden Satz von S mit P_s
- im Erfolgsfall Durchführung des Verbundes

Schritt 3

Wiederhole Schritt 1 und 2 solange, bis alle p Abschnitte bearbeitet

Komplexität

- O(p * N)
- Idealfall: R passt in den Hauptspeicher, d.h. p=1

> Hash-Verbund - classic hashing (2)

Illustration der Partitionierung

> Hash-Verbund – classic hashing (3)

Aufbau der Hash-Tabelle und Probing

- Hash-Tabellen $H_i(1 \le i \le p)$ werden schrittweise im Hauptspeicher aufgebaut
- nach jedem Durchlauf von S wird die aktuelle Hash-Tabelle wieder gelöscht

> Hash-Verbund – classic hashing (4)

Beispiel

- Voraussetzung: Hauptspeicherkapazität = 3 Tupel
- Hashing von R_1 mit $h(x) = x \mod 3$

> Hash-Verbund – simple hashing

Nachteil des Classic Hashing

- der Verbundpartner S muss p-mal gelesen werden
- warum ist nicht auch S (analog zu R) partitionierbar?

Verbesserung: Simple-Hashing

- Hashing von R nicht nach der Reihenfolge der Tupel, sondern wertemäßig durchführen
 - -> Partitionierung von R nach Werten von R.VA
- Aber
 - das ist nicht einfach, da üblicherweise keine Gleichverteilung der Werte vorliegt
 - Heranziehen von Statistiken (ins. Histogramme!)
- Zum Probing auch S mit den gleichen Kriterien partitionieren

Vielzahl unterschiedlicher Hash-Verfahren

Simple-Hashing ist ein Beispiel

> Hash-Verbund – simple hashing (2)

Schritt 1

- führe Scan auf kleinerer Relation R aus
- überprüfe PR und wende auf jedes qualifizierte Tupel r die Hash-Funktion hp an
- Fällt h_p(r.VA) in den gewählten Bereich, trage es in Hi ein
- Anderenfalls speichere r in eine temporäre Zwischendatei für "übergangene" r-Tupel

Schritt 2

- führe Scan auf S aus
- überprüfe P_s und wende auf jedes qualifizierte Tupel s die Hash-Funktion h_p an
- Fällt h_P(s.VA) in den gewählten Bereich, suche in Hi einen Verbundpartner (Probing)
- Falls erfolgreich, bilde ein Verbundtupel und ordne es dem Ergebnis zu
- Anderenfalls speichere s in eine temporäre Zwischendatei für "übergangene" s-Tupel

Schritt 3

 Wiederhole Schritt 1 und 2 mit den bisher übergangenen Tupeln solange, bis R erschöpft ist (die Überprüfung von PR und PS nicht mehr erforderlich)

> Hash-Verbund – simple hashing (3)

Illustration

Durchlauf 1

Durchlauf 2

> Vergleich der Verbundalgorithmen

- Elementvergleich
- Elementvergleich, der zu einem Tupelverbund führt

Szenario

- Gleichheitsverbund zwischen R und S
 - $R = U(R_1, R_2, ..., R_n)$
 - $S = \cup (S_1, S_2, ..., S_m)$
- S sei kleiner als R
- Verbundberechnung auf p Joinprozessoren

> Paralleler Verbund (2)

Prinzip des parallelen Hash-Verbunds

- Umverteilung der kleineren Relation S über Hash-Funktion h() auf Verbundattribut
- In Join-Prozessoren kommen eingehende Tupel in Hauptspeicher-Hash-Tabelle
- Umverteilung der zweiten Relation R auf die Join-Prozessoren unter Anwendung der Hash-Funktion
- Probing: für eingehende Tupel Verbundpartner in Hash-Tabelle ermitteln

Merkmale

- Sequenzialisierung der Scan-Phasen
- Vorteil: Reduzierung des Umverteilungsaufwands für R durch Anwendung von Bitvektor-Filterung möglich
- Pipeline-Parallelität in Building- und Probing-Phase möglich
- Überlaufbehandlung erforderlich, falls S-Partitionen nicht vollständig im Hauptspeicher Platz finden (=> dreistufige Partitionierung)

> Paralleler Verbund (2)

Replizierter Verbund "broadcast join"

- Partitionierung bei kleinen Relationen lohnt sich nicht....
- Zuteilung einer Kopie des kleineren Verbundpartners zu den Partitionen des größeren Verbundpartners
 - Vorteil: keine Relation muss nach dem Verbundattribut partitioniert sein

Einseitig umverteilender Verbund "directed join"

- Einer der beiden Verbundpartner ist nach dem Verbundattribut partitioniert
- Partitionen des anderen Verbundpartners werden zur Laufzeit neu nach dem Verbundattribut partitioniert
- Beispiel
 - Auftragsrelation sei partitioniert nach dem Kundenschlüssel
 - Repartitionierung nach dem Attribut O ORDERKEY

> Paralleler Verbund (3)

Vollständig umverteilender Verbund "repartitioned join"

- beide Verbundpartner werden nach dem Verbundattribute neu partitioniert
- hohe Kommunikationskosten -> Vermeiden!

Partitionslokaler Verbund (>co-located joins<)

- Verbundattribut bei beiden Verbundpartnern ist gleichzeitig das Verbundattribut
- maximale Parallelität bei minimalem Kommunikationsaufwand zwischen den parallel ablaufenden Verbundoperatoren
- Beispiel
 - Faktentabelle und Auftragsrelation (ORDERS) partitioniert nach L_ORDERKEY bzw. O_ORDERKEY
- partitionslokaler Verbund bei folgender Anfrage

```
SELECT O_ORDERPRIORITY, SUM(L_QUANTITY) AS SUM_QUAN
FROM TPCD.LINEITEM, TPCD.ORDERS
WHERE L_ORDERKEY = P_ORDERKEY
GROUP BY O_ORDERPRIORITY;
```


> Paralleler Verbund (4)

Beispiel

- F Faktentabelle
- F^k Partitionen der Faktentabelle (1≤k≤n)
- P_k Partitionierungsprädikate der Faktentabelle (1≤k≤n)
- D Dimensionstabelle
- D^k Partitionen der Dimensionstabelle (1≤k≤n/m)

a) Partitionslokaler Verbund

b) Einseitig umverteilender Verbund

> Daten-Skew

Beobachtung

 ungleiche Bearbeitungszeit von Teiloperationen (Ausführungs-Skew) beeinträchtigt Parallelisierung

Ursache

 Ausführungs-Skew geht häufig auf Daten-Skew zurück: unterschiedlich große Datenmengen pro Teiloperation aufgrund ungleichförmiger Verteilung von Attributwerten und Tupeln

> Daten-Skew (2)

Datenverteilungs-Skew (tuple placement skew)

- unterschiedliche Partitionsgrößen
- ungleichmäßige Dauer von Scan-Operationen
- Behandlung:
 möglichst gute Kenntnis der Werteverteilung für Verteilattribut
 - Histogramme
 - stichprobenartig über Sampling-Verfahren
 - Bestimmung während des Sortierens bei Sort-Merge-Joins

Umverteilungs-Skew (redistribution skew)

- Verteilungsfunktion führt zu unterschiedlichen Fragmentgrößen
- Behandlung: wie Datenverteilungs-Skew

> Daten-Skew (3)

Selektivitäts-Skew

- unterschiedliche Trefferhäufigkeiten pro Rechner
 (z.B. Bereichsanfragen bezüglich Verteilattribut bei Bereichspartitionierung)
- Behandlung:
 kaum behandelbar, da durch Anfrage und Datenverteilung bestimmt

Join-Produkt-Skew

- unterschiedliche Join-Selektivität pro Knoten
- Behandlung:
 - Abschätzung der Gesamtgröße des Join-Ergebnisses sowie der dabei entstehenden Werteverteilung für das Join-Attribut
 - Bereichpartitionierung festlegen, die für jeden der p Join-Prozessoren ein etwa gleich großes
 Teilergebnis liefert

Star-Join

> Verbundoperationen in Star-Queries

Voraussetzungen für einen Star-Join

- Faktentabelle ist immer Bestandteil einer Star-Query
- Verbund mit Dimensionstabelle reflektiert eine indirekte Selektion über Einschränkungen auf der Dimensionsrelation ("Erweiterung der Faktentabelle um dimensionale Attribute on the fly...")

Probleme bei einer klassischen Verbundoperation

- Faktentabelle ist in der ersten Verbundoperation bereits enthalten
- Dimensionstabellen werden sukzessive verknüpft
- Größe des Datenstromes startet mit |F| und nimmt erst schrittweise ab
- Nur ein einziger ein-dimensionaler Index kann nur in der ersten Verbundoperation verwendet werden

> Star-Join mit Restrukturierung

Star-Join mit Restrukturierung

- Bildung des kartesischen Produktes der Dimensionstabellen
- Zugriff auf Faktentabelle mit n-fachen Index
- Nachteil: kartesisches Produkt kann sehr groß werden!

a) Operatorengraph einer Star-Query

b) Operatorengraph einer Star-Query nach Bildung des kartesischen Produktes

> Star-Join mit Vorselektion

 \bowtie

 D_2

 $\gamma_{G1,...,Gn}$

Idee

- Beibehaltung der regulären Verbundstrategie
- Reduktion der Größe der Faktentabelle in einer Vorstufe (Vorselektion)
- Benötigt: Jeweils ein Index auf den Fremdschlüsselattributen von F

Realisierung

- lokale Selektion auf den Dimensionstabellen
- Semi-Verbund mit der korrespondierenden Indexstruktur der Faktentabelle (interne Satzadressen bleiben erhalten)
- Schnittmengenbildung aller Teilergebnisse
- Resultierende Satzadressen identifizieren exakt die benötigten Einträge der Faktentabelle
 - wertebasierter
 Gleichheitsverbund
 - ⋉ Semi-Verbund
 - RID-basierter → Verbund (FETCH-Operator)

> Star-Join mit unscharfer Vorselektion

Bewertung der Vorselektion

- Vorteil: Faktentabelle besitzt vor der Verbundoperation bereits endgültige Größe
- Nachteil: extrem aufwändige Schnittmengenbildung der RID-Listen

Einführung einer Unschärfe: Bloom-Filtertechnik

- Erzeugung einer mit 0 initialisierten Bitliste im Hauptspeicher
- Aufbauphase (build phase)
 - Hashfunktion bestimmt Position der Bitliste für jeden RID-Eintrag: auf 1 setzen
- Testphase (probing phase)
 - Verwurf eines RID, falls korrespondierender Bitlisteneintrag 0 ist
 - anderfalls: Aufnahme in das Ergebnis (unscharf!)
- Beispiel
 - Build Phase: h(RID 14)=3, h(RID 21)=12
 - Probing Phase:
 h(RID 14)=3 --> korrektes Ergebnis, h(RID 65)=4 --> korrekter Verwurf,
 h(RID 31)=25 --> fälschlicherweise Übernahme in Ergebnis
 - Güte abhängig von der Größe der Bitliste; Korrektur durch echte Verbundoperationen

> Star-Join mit unscharfer Vorselektion

Multidimensionale Gruppierung

CUBE-Operator: Erweiterung für die GROUP BY-Klausel:

- Abkürzung für die Aufzählung aller 2ⁿ möglichen Gruppierungskombinationen, d.h.

 GROUP BY CUBE(A,B) ist äquivalent zu GROUP BY GROUPINGS SETS ((A,B),(A),(B),())
- Nulldimensionaler Datenwürfel: CUBE()
 ein einziger Aggregationswert / eine Zelle (nicht vorhandene Group-By Klausel)
- Eindimensionaler Datenwürfel: CUBE(Article)
 eine Wertezeile und eine Zelle
- Zweidimensionaler Datenwürfel: CUBE(Article, Day)
 eine Fläche, zwei Wertezeilen, eine Zelle (Kreuztabelle mit "Totals")

Beispiel

```
SELECT L_SHIPMODE, L_SHIPINSTRUCT,

SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)*(1+L_TAX)) AS SUM_CHARGE,

GROUPING(L_SHIPMODE) AS GRP_SHIPMODE,

GROUPING(L_SHIPINSTRUCT) AS GRP_SHIPINSTRUCT

FROM TPCD.LINEITEM GROUP BY CUBE(L_SHIPMODE, L_SHIPINSTRUCT);
```

L_SHIPMODE	L_SHIPINSTRUCT	SUM_CHARGE	GRP_SHIPMODE	GRP_SHIPINSTRUCT
AIR	COLLECT COD	761624782,329	0	0
AIR	DELIVER IN PERSON	754419485,270	0	0
AIR	NONE	763523815,451	0	0
AIR	TAKE BACK RETURN	769723164,447	0	0
AIR	-	3049291247,498	0	1
MAIL	COLLECT COD	760829060,943	0	0
MAIL	DELIVER IN PERSON	765447918,010	0	0
MAIL	NONE	756568001,823	0	0
MAIL	TAKE BACK RETURN	767495428,550	0	0
MAIL	-	3050340409,327	0	1
TRUCK	COLLECT COD	760705270,142	0	0
• • •				
-	COLLECT COD	5334791395,658	1	0
-	NONE	5340588680,414	1	0
-	TAKE BACK RETURN	5364491060,031	1	0
-	-	21356601173,078	1	1

Problem

CUBE() resultiert in 2ⁿ Gruppierungskombinationen

Naive Variante

- 2ⁿ-fache Ausführung der Anfrage und Bildung der Vereinigungsmenge
- Verbesserung durch Ausnützen der direkten Ableitbarkeit

b) Ausnützen der direkten Ableitbarkeit

> CUBE - Implementierung (2)

Problem

- Datenbestand muss umsortiert werden, um unterschiedliche Gruppierungskombinationen zu berechnen
- Beispiel
 - Datenbestand ist sortiert nach ABC
 - $\gamma(AB)$ oder $\gamma(AC)$ kann ohne Sortierung berechnet werden
 - γ (BC) erfordert Sortierung nach BCA

Auswahl der direkten Vorgängerknoten mit Sortierreihenfolge

- Sortierung des Datenbestands mit minimalen Kosten Konflikt:
 - kleinster Vorgänger ("smallest parent")
 - günstigste Sortierreihenfolge ("share sort")
- Pro Ebene im Aggregationsgitter mit n Attributen
 - ein Operator mit Kosten ohne Sortierung
 - n-1 Kopien des Operators mit Kosten für eine Sortierung
 - Finde kostengünstigste Paarbildung ("minimum cost matching") auf dem bipartiten Graph

> CUBE - Implementierung (3)

CUBE-Implementierung mit Pipelining

a) Erweitertes Aggregationsgitter

b) Ergebnis nach Paarbildung

Erweiterung

- Aufgabe des vollständigen Pipelining
- Zwischenspeicherung bei Einhaltung der partiellen Sortierreihenfolge

> CUBE - Implementierung (4)

Berechnung über partielle Sortierreihenfolge

Auswahl der Vorgänger mit partieller Sortierreihenfolge

Ableitungsbaum bei Erhaltung der partiellen Sortierreihenfolge

> CUBE – Implementierung (5)


```
Algorithmus: PartitionedCube
                  // Relation mit zu gruppierenden Tupeln
Eingabe:R
        G_1, \ldots, G_n // Gruppierungsattribute aus der GROUP BY-Klausel
        AGG(), A // Aggregationsfunktion und zu aggregierendes Attribut A
Begin
  If (Size(R) < MaxMemorySize)</pre>
    // Falls R in dem Hauptspeicher passt, wird eine CUBE() basierend
    // auf der direkten Ableitbarkeit berechnet.
    C := ComputeMainMemoryCube(R, G_1, ..., G_n, A, AGG());
  Else
    // Wahl eines Gruppierungsattributes, nach welchem der Datenbestand
    // horizontal in m Fragemente partitioniert wird.
    k := PickSplitPosition(G_1, ..., G_n);
    (R_1, \ldots, R_m) := PartitionTableByAttr(R, k); // wobei gilt: m \leq |G_k|
    // Individuelle Berechnung von m Teilwürfeln
    For i = 1 To m
      C_i := PartitionedCube(R_i, G_1, ..., G_n, AGG(), A);
      C := C + C_{i};
    End For
    // Berechnung der teilwürfelübergreifenden Teilsummen, indem die Menge
    // der Gruppierungsattribute um das Partitionsattribute verringert wird.
    C' := PartitionedCube(R, G_1, ..., G_{k-1}, G_{k+1}, ..., G_n, AGG(), A);
    C := C + C';
  End If
  Return(C);
End
```


Schnittmengenansatz

- Prinzipieller Unterschied zum Teilmengenansatz
 - direkte Ableitbarkeit im Teilmengenansatz ("subset stacking")
 - Schnittmengenansatz ("intersection stacking")

Realisierung des CUBE()-Operators mit Schnittmengenansatz

ROLLUP-Operator: Kombination von Dimensionshierarchien

GROUP BY ROLLUP($A_1, A_2, ..., A_n$), ROLLUP($B_1, B_2, ..., B_m$)

Beispiel

```
FROM TPCD.LINEITEM, -- Faktentabelle

TPCD.ORDERS, TPCD.CUSTOMER, TPCD.NATION N1 -- Auftragsdimension

TPCD.SUPPLIER, TPCD.NATION N2 -- Lieferantendimension

WHERE L_ORDERKEY = O_ORDERKEY AND O_CUSTKEY = C_CUSTKEY

AND C_NATIONKEY = N1.N_NATIONKEY

AND L_SUPPKEY = S_SUPPKEY AND S_NATIONKEY = N2.N_NATIONKEY

GROUP BY ROLLUP(N1.N_REGIONKEY, N1.N_NATIONKEY, C_CUSTKEY, O_ORDERKEY),

ROLLUP(N2.N_REGIONKEY, N2.N_NATIONKEY, S_SUPPKEY);
```


> ROLLUP - Implementierung

a) Einzelner Gruppierungsturm

b) Gruppierungsturm mit weiteren Gruppierungsattributen

> ROLLUP - Implementierung (2)

Kette von Gruppierungstürmen für hierarchische Datenwürfel

- sukzessive Auswertung von ROLLUP()-Konstrukten
- "Durchreichen" der Partial-Ergebnisse an das Gesamtergebnis

> ROLLUP - Implementierung (3)

Beispiel

Erweiterung

- Partitionierung nach einem Gruppierungsattribut
- Berechnung der Teilwürfel plus der Gruppierung über die Summen der Teilwürfel

> Zusammenfassung

Unäre Operatoren

- Selektion und Projektion
- Gruppierung
- Aggregation
- Sortieren

Verbundoperatoren (Binäre Operatoren)

- Verbundoperatoren
 - Nested-Loop Verbund
 - Sort-Merge Verbund
 - Hash-Verbund
 - Paralleler Verbund
- Data-Skew
- Verbund in verteilten Systemen

Literatur

- Härder, T. & Rahm, E. Datenbanksysteme: Konzepte und Techniken der Implementierung. Springer-Verlag, 1999
- Saake, G.; Heuer, A. & Sattler, K.-U. Datenbanken: Implementierungstechniken. MITP-Verlag, 2005
- Hellerstein, J. M.; Stonebraker, M. & Hamilton, J. R. Architecture of a Database System. Foundations and Trends in Databases, 2007, 1, 141-259
- Graefe, G. Query Evaluation Techniques for Large Databases. ACM Computing Surveys, 1993, 25, 73-170

