Machine Learning Techniques

(機器學習技法)

Lecture 15: Matrix Factorization

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models
- Oistilling Implicit Features: Extraction Models

Lecture 14: Radial Basis Function Network

linear aggregation of distance-based similarities using k-Means clustering for prototype finding

Lecture 15: Matrix Factorization

- Linear Network Hypothesis
- Basic Matrix Factorization
- Stochastic Gradient Descent
- Summary of Extraction Models

Recommender System Revisited

- data: how 'many users' have rated 'some movies'
- skill: predict how a user would rate an unrated movie

A Hot Problem

- competition held by Netflix in 2006
 - 100,480,507 ratings that 480,189 users gave to 17,770 movies
 - 10% improvement = 1 million dollar prize
- data \mathcal{D}_m for m-th movie:

$$\{(\tilde{\mathbf{x}}_n = (n), y_n = r_{nm}): \text{ user } n \text{ rated movie } m\}$$

—abstract feature $\tilde{\mathbf{x}}_n = (n)$

how to learn our preferences from data?

Binary Vector Encoding of Categorical Feature

```
\tilde{\mathbf{x}}_n = (n): user IDs, such as 1126, 5566, 6211, ...
—called categorical features
```

- categorical features, e.g.
 - IDs
 - blood type: A, B, AB, O
 - programming languages: C, C++, Java, Python, . . .
- many ML models operate on numerical features
 - linear models
 - extended linear models such as NNet
 - —except for decision trees
- need: encoding (transform) from categorical to numerical

binary vector encoding:

$$A = [1 \ 0 \ 0 \ 0]^T, B = [0 \ 1 \ 0 \ 0]^T,$$

 $AB = [0 \ 0 \ 1 \ 0]^T, O = [0 \ 0 \ 0 \ 1]^T$

Feature Extraction from Encoded Vector

encoded data \mathcal{D}_m for m-th movie:

```
\{(\mathbf{x}_n = \text{BinaryVectorEncoding}(n), y_n = r_{nm}): \text{ user } n \text{ rated movie } m\}
```

or, joint data \mathcal{D}

$$\left\{ (\mathbf{x}_n = \mathsf{BinaryVectorEncoding}(n), \mathbf{y}_n = [r_{n1} ? ? r_{n4} r_{n5} \dots r_{nM}]^T) \right\}$$

idea: try feature extraction using $N-\tilde{d}-M$ NNet without all $x_0^{(\ell)}$

$$\mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \underbrace{\mathbf{W}_{ni}^{(1)}}_{\text{tanh}} \underbrace{\mathbf{W}_{im}^{(2)}}_{\text{im}} \approx y_2 = \mathbf{y}$$

is tanh necessary? :-)

'Linear Network' Hypothesis

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \underbrace{\mathbf{V}^T : \mathbf{w}_{ni}^{(1)}}_{ni} \underbrace{\mathbf{W} : \mathbf{w}_{im}^{(2)}}_{mi} \approx y_2 = \mathbf{y} \\ \approx y_3 \\ \left\{ (\mathbf{x}_n = \mathsf{BinaryVectorEncoding}(n), \mathbf{y}_n = [r_{n1} ? ? r_{n4} r_{n5} \dots r_{nM}]^T) \right\}$$

- rename: V^T for $\left[w_{ni}^{(1)}\right]$ and W for $\left[w_{im}^{(2)}\right]$
- hypothesis: $\mathbf{h}(\mathbf{x}) = \mathbf{W}^T \mathbf{V} \mathbf{x}$
- per-user output: $\mathbf{h}(\mathbf{x}_n) = \mathbf{W}^T \mathbf{v}_n$, where \mathbf{v}_n is n-th column of \mathbf{V}

linear network for recommender system:

learn V and W

For *N* users, *M* movies, and \tilde{d} 'features', how many variables need to be used to specify a linear network hypothesis $\mathbf{h}(\mathbf{x}) = \mathbf{W}^T \mathbf{V} \mathbf{x}$?

- $1 N + M + \tilde{d}$
- $\mathbf{Q} \ \mathsf{N} \cdot \mathsf{M} \cdot \tilde{\mathsf{d}}$
- $(N+M)\cdot \tilde{d}$

For *N* users, *M* movies, and \tilde{d} 'features', how many variables need to be used to specify a linear network hypothesis $\mathbf{h}(\mathbf{x}) = \mathbf{W}^T \mathbf{V} \mathbf{x}$?

- $1 N + M + \tilde{d}$
- $\mathbf{Q} \mathbf{N} \cdot \mathbf{M} \cdot \tilde{\mathbf{d}}$
- $(N+M)\cdot \tilde{d}$
- $(N \cdot M) + \tilde{d}$

Reference Answer: 3

simply $N \cdot \tilde{d}$ for V^T and $\tilde{d} \cdot M$ for W

Linear Network: Linear Model Per Movie

linear network:

$$\mathbf{h}(\mathbf{x}) = \mathbf{W}^{\mathsf{T}} \underbrace{\mathbf{V}\mathbf{x}}_{\mathbf{\Phi}(\mathbf{x})}$$

—for m-th movie, just linear model $h_m(\mathbf{x}) = \mathbf{w}_m^T \mathbf{\Phi}(\mathbf{x})$ subject to shared transform $\mathbf{\Phi}$

- for every \mathcal{D}_m , want $r_{nm} = y_n \approx \mathbf{w}_m^T \mathbf{v}_n$
- E_{in} over all \mathcal{D}_m with squared error measure:

$$E_{\text{in}}(\{\mathbf{w}_{m}\}, \{\mathbf{v}_{n}\}) = \frac{1}{\sum_{m=1}^{M} |\mathcal{D}_{m}|} \sum_{\text{user } n \text{ rated movie } m} \left(r_{nm} - \mathbf{w}_{m}^{\intercal} \mathbf{v}_{n}\right)^{2}$$

linear network: transform and linear modelS jointly learned from all \mathcal{D}_m

Matrix Factorization

$$r_{nm} \approx \mathbf{w}_{m}^{\mathsf{T}} \mathbf{v}_{n} = \mathbf{v}_{n}^{\mathsf{T}} \mathbf{w}_{m} \Longleftrightarrow \mathbf{R} \approx \mathbf{V}^{\mathsf{T}} \mathbf{W}$$

R	movie ₁	movie ₂	 $movie_M$
user ₁	100	80	 ?
user ₂	?	70	 90
user	7	60	 0

	V^T
	T
~ /	v ₁ '
\approx	$-\mathbf{v}_2^T$
	v

Matrix Factorization Model

learning:

known rating

- \rightarrow learned factors \mathbf{v}_n and \mathbf{w}_m
- → unknown rating prediction

similar modeling can be used for other abstract features

Matrix Factorization Learning

$$\min_{\mathbf{W}, \mathbf{V}} E_{\text{in}}(\{\mathbf{w}_{m}\}, \{\mathbf{v}_{n}\}) \propto \sum_{\text{user } n \text{ rated movie } m} \left(r_{nm} - \mathbf{w}_{m}^{\mathsf{T}} \mathbf{v}_{n}\right)^{2}$$

$$= \sum_{m=1}^{M} \left(\sum_{(\mathbf{x}_{n}, r_{nm}) \in \mathcal{D}_{m}} \left(r_{nm} - \mathbf{w}_{m}^{\mathsf{T}} \mathbf{v}_{n}\right)^{2}\right)$$

- two sets of variables:
 can consider alternating minimization, remember? :-)
- when \mathbf{v}_n fixed, minimizing $\mathbf{w}_m \equiv \text{minimize } E_{\text{in}}$ within \mathcal{D}_m —simply per-movie (per- \mathcal{D}_m) linear regression without w_0
- when w_m fixed, minimizing v_n?
 —per-user linear regression without v₀

by symmetry between users/movies

called alternating least squares algorithm

Alternating Least Squares

Alternating Least Squares

- 1 initialize \tilde{d} dimension vectors $\{\mathbf{w}_m\}, \{\mathbf{v}_n\}$
- 2 alternating optimization of E_{in}: repeatedly
 - optimize $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_M$: update \mathbf{w}_m by m-th-movie linear regression on $\{(\mathbf{v}_n, r_{nm})\}$
 - 2 optimize $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_N$: update \mathbf{v}_n by n-th-user linear regression on $\{(\mathbf{w}_m, r_{nm})\}$

until converge

- initialize: usually just randomly
- converge: guaranteed as E_{in} decreases during alternating minimization

alternating least squares: the 'tango' dance between users/movies

Linear Autoencoder versus Matrix Factorization

Linear Autoencoder

$$X \approx W(W^TX)$$

- motivation: special d-d-d linear NNet
- error measure: squared on all x_{ni}
- solution: global optimal at eigenvectors of X^TX
- usefulness: extract dimension-reduced features

Matrix Factorization

$$R \approx V^T W$$

- motivation:
 N-d-M linear NNet
- error measure: squared on known r_{nm}
- solution: local optimal via alternating least squares
- usefulness: extract hidden user/movie features

 $\begin{array}{c} \text{linear autoencoder} \\ \equiv \text{special matrix factorization of } \text{complete } X \end{array}$

How many least squares problems does the alternating least squares algorithm needs to solve in one iteration of alternation?

- 1 number of movies M
- 2 number of users N
- 3M+N
- 4 M ⋅ N

How many least squares problems does the alternating least squares algorithm needs to solve in one iteration of alternation?

- number of movies M
- 2 number of users N
- $\mathbf{3} M + N$
- $\mathbf{4} \mathbf{M} \cdot \mathbf{N}$

Reference Answer: 3

simply M per-movie problems and N per-user problems

Another Possibility: Stochastic Gradient Descent

$$E_{\text{in}}(\{\mathbf{w}_m\}, \{\mathbf{v}_n\}) \propto \sum_{\text{user } n \text{ rated movie } m} \underbrace{\left(r_{nm} - \mathbf{w}_m^\mathsf{T} \mathbf{v}_n\right)^2}_{\text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm})}$$

SGD: randomly pick one example within the \sum & update with gradient to per-example err, remember? :-)

- · 'efficient' per iteration
- simple to implement
- easily extends to other err

next: SGD for matrix factorization

Gradient of Per-Example Error Function

err(user
$$n$$
, movie m , rating r_{nm}) = $\left(r_{nm} - \mathbf{w}_{m}^{T} \mathbf{v}_{n}\right)^{2}$

$$\nabla_{\mathbf{v}_{1126}}$$
 err(user n , movie m , rating r_{nm}) = $\mathbf{0}$ unless $n = 1126$
 $\nabla_{\mathbf{w}_{6211}}$ err(user n , movie m , rating r_{nm}) = $\mathbf{0}$ unless $m = 6211$
 $\nabla_{\mathbf{v}_n}$ err(user n , movie m , rating r_{nm}) = $-2\left(r_{nm} - \mathbf{w}_m^T \mathbf{v}_n\right) \mathbf{w}_m$
 $\nabla_{\mathbf{w}_m}$ err(user n , movie m , rating r_{nm}) = $-2\left(r_{nm} - \mathbf{w}_m^T \mathbf{v}_n\right) \mathbf{v}_n$

per-example gradient $\propto -(\text{residual})(\text{the other feature vector})$

SGD for Matrix Factorization

SGD for Matrix Factorization

initialize \tilde{d} dimension vectors $\{\mathbf{w}_m\}, \{\mathbf{v}_n\}$ randomly for t = 0, 1, ..., T

- 1 randomly pick (n, m) within all known r_{nm}
- 2 calculate residual $\tilde{r}_{nm} = (r_{nm} \mathbf{w}_{m}^{\mathsf{T}} \mathbf{v}_{n})$
- 3 SGD-update:

$$\mathbf{v}_{n}^{new} \leftarrow \mathbf{v}_{n}^{old} + \eta \cdot \tilde{\mathbf{r}}_{nm} \mathbf{w}_{m}^{old}$$
 $\mathbf{w}_{m}^{new} \leftarrow \mathbf{w}_{m}^{old} + \eta \cdot \tilde{\mathbf{r}}_{nm} \mathbf{v}_{n}^{old}$

SGD: perhaps most popular large-scale matrix factorization algorithm

SGD for Matrix Factorization in Practice

KDDCup 2011 Track 1: World Champion Solution by NTU

- specialty of data (application need):
 per-user training ratings earlier than test ratings in time
- training/test mismatch: typical sampling bias, remember? :-)
- want: emphasize latter examples
- last T' iterations of SGD: only those T' examples considered
 —learned {w_m}, {v_n} favoring those
- our idea: time-deterministic &GD that visits latter examples last
 —consistent improvements of test performance

if you **understand** the behavior of techniques, easier to **modify** for your real-world use

If all \mathbf{w}_m and \mathbf{v}_n are initialized to the $\mathbf{0}$ vector, what will NOT happen in SGD for matrix factorization?

- \bigcirc all \mathbf{w}_m are always \bigcirc
- 2 all \mathbf{v}_n are always 0
- 3 every residual \tilde{r}_{nm} = the original rating r_{nm}
- \bigoplus E_{in} decreases after each SGD update

If all \mathbf{w}_m and \mathbf{v}_n are initialized to the $\mathbf{0}$ vector, what will NOT happen in SGD for matrix factorization?

- \bigcirc all \mathbf{w}_m are always \bigcirc
- 2 all \mathbf{v}_n are always 0
- **3** every residual \tilde{r}_{nm} = the original rating r_{nm}
- 4 Ein decreases after each SGD update

Reference Answer: 4

The $\mathbf{0}$ feature vectors provides a per-example gradient of $\mathbf{0}$ for every example. So E_{in} cannot be further decreased.

Map of Extraction Models

extraction models: **feature transform** Φ as **hidden variables** in addition to linear model

Adaptive/Gradient Boosting

hypotheses g_t ; weights α_t

Neural Network/ Deep Learning

weights $w_{ij}^{(\ell)}$; weights $w_{ii}^{(L)}$

RBF Network

RBF centers μ_m ; weights β_m

Matrix Factorization

user features \mathbf{v}_n ; movie features \mathbf{w}_m

k Nearest Neighbor

 \mathbf{x}_n -neighbor RBF; weights \mathbf{y}_n

extraction models: a rich family

Map of Extraction Techniques

Adaptive/Gradient Boosting functional gradient descent

Neural Network/ Deep Learning	RBF Network	Matrix Factorization
SGD (backprop)		SGD alternating leastSQR
autoencoder	k-means clustering	

k Nearest Neighbor lazy learning :-)

extraction techniques: quite diverse

Pros and Cons of Extraction Models

Neural Network/ Deep Learning **RBF Network**

Matrix Factorization

Pros

- 'easy': reduces human burden in designing features
- powerful:
 if enough hidden variables
 considered

Cons

- 'hard': non-convex optimization problems in general
- overfitting: needs proper regularization/validation

be careful when applying extraction models

Which of the following extraction model extracts Gaussian centers by *k*-means and aggregate the Gaussians linearly?

- RBF Network
- 2 Deep Learning
 Adaptive Department
- 3 Adaptive Boosting
- Matrix Factorization

Which of the following extraction model extracts Gaussian centers by *k*-means and aggregate the Gaussians linearly?

- RBF Network
- 2 Deep Learning
- 3 Adaptive Boosting
- Matrix Factorization

Reference Answer: 1

Congratulations on being an **expert** in extraction models! :-)

Summary

- Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models
- Oistilling Implicit Features: Extraction Models

Lecture 15: Matrix Factorization

- Linear Network Hypothesis
 feature extraction from binary vector encoding
- Basic Matrix Factorization
 alternating least squares between user/movie
- Stochastic Gradient Descent
 efficient and easily modified for practical use
- Summary of Extraction Models
 powerful thus need careful use
- next: closing remarks of techniques