Training Neural Networks Optimization II

M. Soleymani
Sharif University of Technology
Spring 2024

Most slides have been adapted from Bhiksha Raj, 11-785, CMU and some from Fei Fei Li et. al, cs231n, Stanford

Recap: First-order optimization

Recap: Poor conditioning problem

Poor Conditioning

Recap: Second-order optimization

- (1) Use gradient and Hessian to form quadratic approximation
- (2) Step to the **minima** of the approximation

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta \mathbf{H}^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})$$
$$\eta = 1$$

Recap: Second-order optimization

Taylor expansion (second-order):

$$E(\mathbf{w})$$

$$\approx E(\mathbf{w}^{(k)}) + \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^{T} (\mathbf{w} - \mathbf{w}^{(k)}) + \frac{1}{2} (\mathbf{w} - \mathbf{w}^{(k)})^{T} H_{E}(\mathbf{w}^{(k)}) (\mathbf{w} - \mathbf{w}^{(k)}) + \cdots$$

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})$$

No hyperparameters! No learning rate!

Why is this bad for deep learning?

- \times Hessian has $O(n^2)$ elements
- \times Inverting takes $O(n^3)$

n =(Tens or Hundreds or ... of) Millions

Recap: Second-order optimization: L-BFGS

- Quasi-Newton methods (BFGS most popular):
 - instead of inverting the Hessian (requiring $O(n^3)$), approximate inverse Hessian with rank 1 updates over time ($O(n^2)$ each).
- L-BFGS (Limited memory BFGS):
 - Does not form/store the full inverse Hessian.
 - usually works very well in full batch, deterministic mode
 - i.e. work very well when you have a single, deterministic cost function
 - But does not transfer very well to mini-batch setting.
 - Gives bad results
 - Adapting L-BFGS to large-scale, stochastic setting is an active area of research.

Recap: Adaptive learning rates

- Advanced methods: Adaptive updates, where the learning rate of each parameter is itself adjusted as part of the estimation
 - RMS Prop, ADAM, ...

In practice

Adam is a good default choice in most cases

• SGD or SGD+Momentum can outperform Adam but may require more tuning of learning rate and decay schedule

• For some applications, the solutions found by adaptive methods generalize worse (often significantly worse) than SGD

Winson et al., NeurIPS 2017

The training formulation

• Given input output pairs at a number of locations, estimate the entire function

Gradient descent

- Start with an initial function
- Adjust its value at all points to make the outputs closer to the required value
 - Gradient descent adjusts parameters to adjust the function value at all points
 - Repeat this iteratively until we get arbitrarily close to the target function at the training points

Gradient descent

- Start with an initial function
- Adjust its value at *all* points to make the outputs closer to the required value
 - Gradient descent adjusts parameters to adjust the function value at all points
 - Repeat this iteratively until we get arbitrarily close to the target function at the training points

Effect of number of samples

- Problem with conventional gradient descent: we try to simultaneously adjust the function at *all* training points
 - We must process all training points before making a single adjustment
 - "Batch" update

Incremental Update: Stochastic Gradient Descent

- Given $(x^{(1)}, y^{(1)})$, $(x^{(2)}, y^{(2)})$,..., $(x^{(N)}, y^{(N)})$
- Initialize all weights
- Do:
 - Randomly permute data
 - For all n = 1: N
 - Update. $W = W \eta \nabla_W loss(o^{(n)}, y^{(n)})$
- Until convergence

Alternative: Incremental update

- Alternative: adjust the function at one training point at a time
 - Keep adjustments small

Alternative: Incremental update

- Alternative: adjust the function at one training point at a time
 - Keep adjustments small

Alternative: Incremental update

- Alternative: adjust the function at one training point at a time
 - Keep adjustments small
 - Eventually, when we have processed all the training points, we will have adjusted the entire function
 - With greater overall adjustment than we would if we made a single "Batch" update

Story so far

- In any gradient descent optimization, presenting training instances incrementally can be more effective than presenting them all at once
 - Provided training instances must be presented in random order
 - "Stochastic Gradient Descent"
- This also holds for training neural networks

Explanations and restrictions

• So why does this process of incremental updates work?

Under what conditions?

Caveats: learning rate

- Except in the case of a perfect fit, even an optimal overall fit will look incorrect to *individual* instances
 - Correcting the function for individual instances will lead to never-ending, nonconvergent updates
 - We must *shrink* the learning rate with iterations to prevent this

Incremental Update: Stochastic Gradient Descent

- Given $(x^{(1)}, y^{(1)})$, $(x^{(2)}, y^{(2)})$,..., $(x^{(N)}, y^{(N)})$
- Initialize all weights
- j = 0
- Do:

An epoch

Randomly permute data

Randomize input order

- For all n = 1: N

- j = j + 1
- Update. $W = W \eta_j \overline{V_W loss}(o^{(n)}, y^{(n)})$
- Until Err has converged

21

Learning rate reduces with j

Stochastic Gradient Descent

- The iterations can make multiple passes over the data
- A single pass through the entire training data is called an "epoch"
 - An epoch over a training set with N samples results in N updates of parameters

SGD convergence

- SGD converges "almost surely" to a global or local minimum for most functions
 - Sufficient condition: step sizes follow the following conditions

$$\sum_{k} \eta_{k} = \infty$$

• Eventually the entire parameter space can be searched

$$\sum_k \eta_k^2 < \infty$$

- The steps shrink
- The fastest converging series that satisfies both above requirements is

$$\eta_k \propto \frac{1}{k}$$

- This is the optimal rate of shrinking the step size for strongly convex functions
- More generally, the learning rates are heuristically determined
- If the loss is convex, SGD converges to the optimal solution
- For non-convex losses SGD converges to a stationary point

Alternative: Mini-batch update

- Alternative: adjust the function at a small, randomly chosen subset of points
 - Keep adjustments small
 - If the subsets cover the training set, we will have adjusted the entire function
- As before, vary the subsets randomly in different passes through the training data
 - Shuffle first and reshuffle between epochs

Mini-batch Gradient Descent

- Given $(x^{(1)}, y^{(1)})$, $(x^{(2)}, y^{(2)})$,..., $(x^{(N)}, y^{(N)})$
- Initialize all weights
- j = 0
- Do:
 - Randomly permute data

Randomize input order

– while n < N

- j = j + 1
- Update. $W = W \eta_i \nabla_W \sum_{i=n}^{n+B-1} loss(\boldsymbol{o^{(i)}}, \boldsymbol{y^{(i)}})$
 - n = n + B
- Until Err has converged

Recall: Modelling a function

• To learn a network f(X; W) to model a function g(X), it is ideal to minimize the *expected loss*

$$E[loss(f(X; W), g(X))]$$

$$= \int_{X} loss(f(X; W), g(X))P(X)dX$$

$$\mathbf{W}^* = \underset{W}{\operatorname{argmin}} \, \mathbf{E} \big[loss \big(f(X; W), g(X) \big) \big]$$

minimizes the expected error

Recall: The *Empirical* risk

• In practice, we minimize the *empirical error*

$$Err(W) = \frac{1}{N} \sum_{i=1}^{N} loss(f(x^{(i)}; W), y^{(i)})$$

• The expected value of the empirical error is actually the expected loss

$$E[Err(W)] = E[loss(f(X; W), g(X))]$$

$$\widehat{W} = \underset{W}{\operatorname{argmin}} Err(f(X; W), g(X))$$

minimizes the empirical error

The *Empirical* risk

The empirical error is an *unbiased* estimate of the expected error

$$Err(f(X; W), g(X)) = \frac{1}{N} \sum_{i=1}^{N} loss(f(x^{(i)}; W), y^{(i)})$$

$$\widehat{W} = \underset{W}{\operatorname{argmin}} Err(f(X; W), g(X))$$

The expected value of the empirical error is actually the expected loss

$$E[Err(W)] = E[loss(f(X; W), g(X))]$$

SGD

The variance of the sample error is the variance of the loss itself: var(Err) = var(loss)

This is N times the variance of the empirical average minimized by batch update

The sample error is also an unbiased estimate of the expected error

- At each iteration, **SGD** focuses on the loss of a **single** sample $loss(f(x^{(i)}; W), y^{(i)})$
- The expected value of the sample error is still the expected loss E[loss(f(x; W), y)]

- The blue curve is the function being approximated
- ullet The red curve is the approximation by the model at a given W
- The heights of the shaded regions represent the point-by-point error
 - We want to find the $\ensuremath{\mathcal{W}}$ that minimizes the average loss

• Sample estimate approximates the shaded area with the average length of the lines

- Sample estimate approximates the shaded area with the average length of the lines
- This average length will change with position of the samples

- Sample estimate approximates the shaded area with the average length of the lines
- This average length will change with position of the samples

- Having more samples makes the estimate more robust to changes in the position of samples
 - The variance of the estimate is smaller

- Having very few samples makes the estimate swing wildly with the sample position
 - Since our estimator learns the ${\cal W}$ to minimize this estimate, the learned ${\cal W}$ too can swing wildly

- Having very few samples makes the estimate swing wildly with the sample position
 - Since our estimator learns the W to minimize this estimate, the learned W too can swing wildly

Explaining the variance

- Having very few samples makes the estimate swing wildly with the sample position
 - Since our estimator learns the ${\cal W}$ to minimize this estimate, the learned ${\cal W}$ too can swing wildly

SGD vs batch

• SGD uses the gradient from only one sample at a time, and is consequently high variance

But also provides significantly quicker updates than batch

Is there a good medium?

Mini Batches

The batch error is also an unbiased estimate of the expected error

• Mini-batch updates compute and minimize a batch error

$$BatchErr(f(X; W), g(X)) = \frac{1}{b} \sum_{i=1}^{b} loss(f(x^{(i)}; W), y^{(i)})$$

• The expected value of the batch error is also the expected divergence

$$E[BatchErr(f(X; W), g(X))] = E[loss(f(X; W), g(X))]$$

Mini Batches

• Mini-batch updates compute and minimize a batch error

$$BatchErr(f(X; W), g(X)) = \frac{1}{b} \sum_{i=1}^{b} loss(f(x^{(i)}; W), y^{(i)})$$

• The expected value of the batch error is also the expected loss

$$E[BatchErr(f(X; W), g(X))] = E[loss(f(X; W), g(X))]$$

Mini-batch gradient descent

- Large datasets
 - Divide dataset into smaller batches containing one subset of the main training set
 - Weights are updated after seeing training data in each of these batches
- Vectorization provides efficiency

Gradient descent methods

Stochastic gradient

Stochastic mini-batch gradient

Batch gradient

Batch size=1

e.g., Batch size= 32, 64, 128, 256

Batch size=n (the size of training set)

n: whole no of training data

bs: the size of batches

 $m = \left\lceil \frac{n}{h} \right\rceil$: the number of batches

$ \mathbf{v}_{\{1\}} \mathbf{v}_{\{1\}} $	Batch 2 $X^{\{2\}}, Y^{\{2\}}$								Batch m $X^{\{m\}}, Y^{\{m\}}$
---	--------------------------------	--	--	--	--	--	--	--	--------------------------------

Mini-batch gradient descent

For epoch=1,...,k shuffle training data

1 epoch:
Single pass
over all
training
samples

For t=1,...,m Forward propagation on $X^{\{t\}}$

$$J^{\{t\}} = \frac{1}{m} \sum_{n \in Batch_t} L\left(\widehat{Y}_n^{\{t\}}, Y_n^{\{t\}}\right) + \lambda R(W)$$

Backpropagation on $J^{\{t\}}$ to compute gradients dW

For
$$l = 1, ..., L$$

 $W^{[l]} = W^{[l]} - \alpha dW^{[l]}$

$$\begin{split} A^{[0]} &= X^{\{t\}} \\ \text{For } l &= 1, \dots, L \\ Z^{[l]} &= W^{[l]} A^{[l-1]} \\ A^{[l]} &= f^{[l]} \big(Z^{[l]} \big) \\ \widehat{Y}_n^{\{t\}} &= A_n^{[L]} \end{split}$$

Vectorized computation

Batch 1	Batch 2				Batch m
$X^{\{1\}}, Y^{\{1\}}$	$X^{\{2\}}, Y^{\{2\}}$				$X^{\{m\}}$, $Y^{\{m\}}$

Gradient descent methods

Stochastic gradient descent

Stochastic mini-batch gradient

Batch gradient descent

Batch size=1

e.g., Batch size= 32, 64, 128, 256

Batch size=n
(the size of training set)

 Does not use vectorized form and thus not computationally efficient

- Vectorization
- Fastest learning (for proper batch size)

 Need to process whole training set for weight update

Mini-batch gradient descent: loss-#epoch curve

Measuring error

- Convergence is generally defined in terms of the overall training error
 - Not sample or batch error

 Infeasible to actually measure the overall training error after each iteration

- More typically, we estimate is as
 - Average sample/batch error over the past N samples/batches

Batch size

- Full batch (batch size = N)
- SGB (batch size = 1)
- SGD (batch size = 10)

Choosing mini-batch size

• For small training sets (e.g., n<2000) you can use full-batch gradient descent

- Typical mini-batch sizes for larger training sets:
 - **64, 128, 256, 512, 1024**

 Make sure one batch of training data and the corresponding forward, backward required to be cached can fit in GPU memory

Story so far

- Gradient descent can be sped up by incremental updates
 - Convergence is guaranteed under most conditions
 - Learning rate must shrink with time for convergence
 - Stochastic gradient descent: update after each observation. Can be much faster than batch learning
 - Mini-batch updates: update after batches. Can be more efficient than SGD

- Convergence can be improved using smoothed updates
 - RMSprop and Adam

Story so far

- SGD: Presenting training instances one-at-a-time can be more effective than full-batch training
 - Provided they are provided in random order
- For SGD to converge, the learning rate must shrink sufficiently rapidly with iterations
 - Otherwise the learning will continuously "chase" the latest sample
- SGD estimates have higher variance than batch estimates

- Minibatch updates operate on batches of instances at a time
 - Estimates have lower variance than SGD
 - Convergence rate is theoretically worse than SGD
 - But we compensate by being able to perform batch processing

Story so far: Training and minibatches

- Convergence depends on learning rate
 - Simple technique: fix learning rate until the error plateaus, then reduce learning rate by a fixed factor (e.g. 10)

Some practical issues about learning rate

Learning rate

• SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have learning rate as a hyperparameter.

Learning rate is an important hyperparameter that usually adjust first

Which one of these learning rates is best to use?

Learning rate

• Start with small regularization and find learning rate that makes the loss go down.

 loss not going down: learning rate too low

```
model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of cla
trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,
                                  model, two layer net,
                                  num epochs=10, reg=0.000001,
                                  update='sqd', learning rate decay=1,
                                  sample batches -
                                  learning rate=le-6, verbose=True)
Finished epoch 1 / 10: cost 2.302576, train: 0.080000, val 0.103000, lr 1.000000e-06
Finished epoch 2 / 10: cost 2.302582, train: 0.121000, val 0.124000, lr 1.000000e-06
Finished epoch 3 / 10: cost 2.302558, train: 0.119000, val 0.138000, lr 1.000000e-06
Finished epoch 4 / 10: cost 2.302519, train: 0.127000, val 0.151000, lr 1.000000e-06
Finished epoch 5 / 10: cost 2.302517, train: 0.158000, val 0.171000, lr 1.000000e-06
Finished epoch 6 / 10: cost 2.302518, train: 0.179000, val 0.172000, lr 1.000000e-06
Finished epoch 7 / 10: cost 2.302466, train: 0.180000, val 0.176000, lr 1.000000e-06
Finished epoch 8 / 10: cost 2.302452, train: 0.175000, val 0.185000, lr 1.000000e-06
Finished epoch 9 / 10: cost 2.302459, train: 0.206000, val 0.192000, lr 1.000000e-06
Finished epoch 10 / 10; cost 2.302420 train: 0.190000, val 0.192000, lr 1.000000e-06
finished optimization. best validation accuracy: 0.192000
```

Loss barely changing: Learning rate is probably too low

Notice train/val accuracy goes to 20% though, what's up with that? (remember this is softmax)

Choosing learning rate parameter

loss not going down: learning rate too low

```
Finished epoch 1 / 10: cost 2.302576, train: 0.080000, val 0.103000, Finished epoch 2 / 10: cost 2.302582, train: 0.121000, val 0.124000, Finished epoch 3 / 10: cost 2.302558, train: 0.119000, val 0.138000, Finished epoch 4 / 10: cost 2.302519, train: 0.127000, val 0.151000, Finished epoch 5 / 10: cost 2.302517, train: 0.158000, val 0.171000, Finished epoch 6 / 10: cost 2.302518, train: 0.179000, val 0.172000, Finished epoch 7 / 10: cost 2.302466, train: 0.180000, val 0.176000, Finished epoch 8 / 10: cost 2.302452, train: 0.175000, val 0.185000, Finished epoch 9 / 10: cost 2.302459, train: 0.206000, val 0.192000, Finished epoch 10 / 10 cost 2.302420, train: 0.190000, val 0.192000,
```

loss exploding: learning rate too high

```
Finished epoch 1 / 10: cost nan, train: 0.091000, val 0.087000, lr 1.000000e+06
Finished epoch 2 / 10: cost nan, train: 0.095000, val 0.087000, lr 1.000000e+06
Finished epoch 3 / 10: cost nan, train: 0.100000, val 0.087000, lr 1.000000e+06
```

cost: NaN almost always means high learning rate...

• Rough range for learning rate we should be cross-validating is somewhere [1e-3 ... 1e-5]

Learning rate

- Start with small regularization and find learning rate that makes the loss go down.
- loss not going down: learning rate too low
- loss exploding: learning rate too high

3e-3 is still too high.

Cost explodes....=> Rough range for learning rate we should be cross-validating is somewhere [1e-3 ... 1e-5]

Monitoring loss function during iterations

Learning rate decay

 Maybe during the initial steps of learning, you could afford to take much bigger steps

• But then as learning approaches converges, then having a slower learning rate allows you to take smaller steps

Learning rate scheduling

- Need for learning rate schedules
 - Benefits
 - Converge Faster
 - Higher accuracy
- Top Basic Learning Rate Schedules
 - Step-wise decay
 - Reduce on loss plateau decay
 - Cosine decay (Loshchilov & Hutter, 2017)
 - trapezoidal schedule (Xing et al., 2018)

— ...

Step-wise: Reduce learning rate at a few fixed points. e.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90

Learning rate decay

• Cosine:
$$\alpha_t = \frac{1}{2}\alpha_0 \left(1 + cos\left(\frac{t\pi}{T}\right)\right)$$

- $-\alpha_0$: Initial learning rate
- $-\alpha_t$: Learning rate at epoch t
- -T: Total number of epochs

Loshchilov and Hutter, "SGDR: Stochastic Gradient Descent with Warm Restarts", ICLR 2017 Radford et al, "Improving Language Understanding by Generative Pre-Training", 2018 Feichtenhofer et al, "SlowFast Networks for Video Recognition", arXiv 2018 Child at al, "Generating Long Sequences with Sparse Transformers", arXiv 2019

Learning rate decay

- Linear: $\alpha_t = \alpha_0 \left(1 \frac{t}{T} \right)$
 - $-\alpha_0$: Initial learning rate
 - $-\alpha_t$: Learning rate at epoch t
 - -T: Total number of epochs

Learning Rate Decay

- Inverse sqrt: $\alpha_t = \frac{\alpha_0}{\sqrt{t}}$
 - $-\alpha_0$: Initial learning rate
 - $-\alpha_t$: Learning rate at epoch t
 - -T: Total number of epochs

Learning rate decay: Linear warmup

• High initial learning rates can make loss explode; linearly increasing learning rate from 0 over the first $\sim 5,000$ iterations can prevent this.

• Empirical rule of thumb: If you increase the batch size by N, also scale

the initial learning rate by N

Summary

- Stochastic Gradient Descent (SGD)
- Mini-batch update
- Adjusting learning rate