1)Partie LtSpice

Le compteur que j'ai réalisé est un compteur synchrone (pas de propagation du délai, tous les bits sont évalués en même temps) basé sur l'utilisation de T Flip Flop.

Le principe du T Flip Flop est, si T=VDD il change la valeur en mémoire par son opposé à chaque Clock montante, si T=0, il est en mode mémorisation.

Ici on peut donc voir sur la figure ci dessous la table de vérité du compteur complet lorsque le signal Reset vaut 0. L'état où T1=0 est un état qui n'est normalement jamais considéré, il est donné à titre illustratif. De manière générale, T1 vaut toujours VDD.

Q3	Q2	Q1		T3=(Q2*Q1)	T2=(Q1)	T1	Q3	+	Q2+	Q1+
	0	0	0	0	0	0		0	0	0
	0	0	0	0	0	1		0	0	1
	0	0	1	0	1	1		0	1	0
	0	1	0	0	0	1		0	1	1
	0	1	1	1	1	1		1	0	0
	1	0	0	0	0	1		1	0	1
	1	0	1	0	1	1		1	1	0
	1	1	0	0	0	1		1	1	1
	1	1	1	1	1	1		0	0	0
	0	0	0	0	0	1		0	0	1

Lorsque Reset vaut VDD , Q1, Q2,et Q3 valent tous 0 , le compteur est donc remis à 0.Lorsque le signal de Reset redevient 0 , le compteur recomencera à compter à partir de 0 au prochain flanc montant de Clock. Schématique LtSpice

Circuit Complet

And et Xor:

T Flip Flop

Résultat de la simulation

Avec signal de Reset Test

On remarque l'apparition de glitchs à chaque montée de Clock (évaluation). Cependant j'ignore toujours leur origine.

Fréquence de fonctionnement maximale

La fréquence maximale de fonctionnement se trouve au alentour de 1 GHz , sans la fonctionnalité de Reset ,il est possible d'augmenter cette fréquence. En effet le Reset impose le passage par une porte logique And ce qui a pour effet de délayer l'information à la sortie du D Flip Flop.

2)Partie Mydaq

Voici le schéma Bloc

Ainsi que la table de vérité, cette table décrit les 16 états consécutifs dans lequel le circuit se trouve.

XOR Gate		_		1	4-Bit Cou	inter				N	NOR Gate					
	OUT	Number		Q4	Q3	Q2	Q1		Setting when Q1=Q2=0	A	В	С	D	High Right Shifting otherwhise		(2) OUT
Q3=Q4	0	C)		0	0	0	0	Setting (Q4 Q3 Q2 Q1)		0	0	0	0	Q1=Q2=0	O Setting
Q3=/=Q4	1=Diode 1 on	1			0	0	0	1			1	0	0	0 High Right Shifting		
		2			0	0	1	0			1	1	0	0 High Right Shifting		
		3			0	0	1	1			1	1	1	0 High Right Shifting		
		4			0	1	0	0	Setting (Q4 Q3 Q2 Q1)		0	1	0	0	Q1=Q2=0	O Setting
		5			0	1	0	1			1	0	1	0 High Right Shifting		
		6			0	1	1	0			1	1	0	1 High Right Shifting		
		7			0	1	1	1			1	1	1	0 High Right Shifting		
		8			1	0	0	0	Setting (Q4 Q3 Q2 Q1)		1	0	0	0	Q1=Q2=0	O Setting
		9			1	0	0	1			1	1	0	0 High Right Shifting		
		10			1	0	1	0			1	1	1	0 High Right Shifting		
		11			1	0	1	1			1	1	1	1 High Right Shifting		
		12			1	1	0	0	Setting (Q4 Q3 Q2 Q1)		1	1	0	0	Q1=Q2=0	D Setting
		13			1	1	0	1			1	1	1	0 High Right Shifting		
		14			1	1	1	0			1	1	1	1 High Right Shifting		
		15	i		1	1	1	1			1	1	1	1 High Right Shifting		
									Diode2 on							
			Light Table						Diode1 on							
			Diode1	Diode2												
)													
		1														
		2														
		3														
		4														
		5	5													
		6		_												
		7														
		8														
		9		_												_
		10														
		11					_			_						_
		12			_		_			_	_					_
		13								_	_					_
		14		-			_			_		_				_

On a donc la Led 1 qui s'allume lorsque Q3 et Q4 sont différents, et la Led 2 s'allume lorsque la sortie C du Bi Directional Shifter vaut 1. Le Shifter mémorise une nouvelle configuration à chaque foi que Q1=Q2=0 ,cette configuration est ensuite « déplacée » à 3 reprises à droite en ajoutant un 1 logique à gauche de la liste ABCD.

Voici une photo du circuit, en haut à gauche du conteur 4bit il y a le Xor, réalisé à partie de 4 portes NAnd, à droite du compteur il y a le Bi Shifter et la porte Nor.

On remarque sur la figure de gauche que la partie avec la porte Xor du circuit fonctionne correctement . Cependant, il y a un problème avec le compteur 4bit , le deuxième bit (Q2, figure de droite) reste coincé à VDD alors que les autres bits fonctionnent correctement. J'en conclu donc que ce n'est pas un problème de branchement (que j'ai vérifié). Le compteur est probablement défectueux.