同济大学计算机系

数字逻辑课程实验报告

学	号	2151140
姓	名	王谦
专	业	信息安全
授课	老师	· · · · · · · · · · · · · · · · · · ·

一、实验内容

在本次实验中,我们将使用 Verilog HDL 语言实现行为级 ALU 的设计和仿真。

二、硬件逻辑图

(实验步骤中要求用 logisim 画图的实验,在该部分给出 logisim 原理图,否则该部分在实验报告中不用写)

图 6.9.1 ALU 的原理图供参考

三、模块建模

(该部分要求对实验中建模的所有模块进行功能描述,并列出各模块建模的 verilog 代码)

ALU 是负责运算的电路。ALU 必须实现以下几个运算:加(ADD)、减(SUB)、与(AND)、 或(OR)、异或(XOR)、置高位立即数(LUI)、逻辑左移与算数左移(SLL)、逻辑右移(SRL) 以及算数右移(SRA)、 SLT、SLTU 等操作。输出 32 位计算结果、carry(借位进位标志 位)、zero(零标志位)、negative(负数标志位)和 overflow(溢出标志位)。

本实验实现 ALU 的基本思想是:在操作数输入之后将所有可能的结果都计算出来,通 过操作符 aluc 的输入来判别需要执行的操作来选择需要的结果进行输出。图 6.9.1 所示 为本实验的 ALU 参考原理图。表 6.9.1 所示为 aluc 的值所对应的运算。表 6.9.2 所示 为 addsub32 标志位规则(仅供参考)。

表 6.9.1 aluc 的值所对应的运算

1

0

		aluc[3]	aluc[2]	aluc[1]	aluc[0]
Addu	r=a+b 无符号	0	0	0	0
Add	r=a+b 有符号	0	0	1	0
Subu	r=a-b 无符号	0	0	0	1
Sub	r=a-b 有符号	0	0	1	1

Add r=a+b 有符号	0	0	1	0
Subu r=a-b 无符号	0	0	0	1
Sub r=a-b 有符号	0	0	1	1
And r=a & b	0	1	0	0
Or r=a b	0	1	0	1
Xor r=a ^ b	0	1	1	0
Nor r=~ (a b)	0	1	1	1
Lui r={b[15:0],16'b0}	1	0	0	X
Slt r=(a <b)?1:0 td="" 有符号<=""><td>1</td><td>0</td><td>1</td><td>1</td></b)?1:0>	1	0	1	1
Sltu r=(a <b)?1:0 td="" 无符号<=""><td>1</td><td>0</td><td>1</td><td>0</td></b)?1:0>	1	0	1	0
Sra r=b>>>a	1	1	0	0
Sll/Slr r=b< <a< td=""><td>1</td><td>1</td><td>1</td><td>X</td></a<>	1	1	1	X

表 6.9.2 ALU 标志位规则

1

Srl

r=b>>a

zero 标志位	1.Z=1表示运算结果是零,Z=0表示运算结果不是零。
	2.对于 Slt 和 Sltu 运算,如 a-b=0,则 Z=1,表示进行比
	较的两个数大小相等。
	3. 所有运算均影响此标志位。
carry 标志位	1. 无符号数加法运算(Addu)发生上溢出,则该标志位为 1。
	2. 无符号数减法运算(Subu)发生下溢出,则该标志位为 1。
	3.无符号数比较运算(Sltu),如 a-b<0,则该标志位为 1。
	4.移位运算,该标志位为最后一次被移出的位的数值(在移位
	模块实现)。
	5. 其他运算不影响此标志位。
negative 标志位	1.有符号数运算 Add 和 Sub,操作数和运算结果均采用二进
	制补码的形式表示,N=1表示运算的结果为负数,N=0表示
	结果为正数或零。
	2.有符号数比较运算 (Slt), 如果 a-b<0, 则 N=1。
	3.其他运算,运算最终结果的最高位 r[31]为 1,则 N=1。
overflow 标志位	1.对于有符号加减法运算(Add 和 Sub),操作数和运算结果
	均采用二进制补码的形式表示,有溢出时该标志位 o=1。
	2.只有有符号加减法运算影响此标志位。

```
module alu(a,b,aluc,r,zero,carry,negative,overflow);
input [31:0] a,b;
input [3:0] aluc;
output reg [31:0] r;
output reg zero, carry, negative, overflow;
always@(*)
begin
    case(aluc)
         //add
         4'b0010:
              begin
              r=a+b;
              overflow=((a[31]==b[31])&&(\sim r[31]==a[31]))?1:0;
              zero=(r==0)?1:0;
              carry=0;
              negative=(r<0)?1:0;
              end
         //addu
         4'b0000:
              begin
               \{carry,r\}=a+b;
              zero=(r==0)?1:0;
              overflow=0;
              negative=(r[31]==1)?1:0;
              end
         //sub
         4'b0011:
              begin
              r=a-b;
              overflow=((a[31]==0 \&\& b[31]==1 \&\& r[31]==1) \parallel (a[31]==1 \&\&
b[31]==0 && r[31]==0))?1:0;
              zero=(a==b)?1:0;
              carry=0;
              negative=(r<0)?1:0;
              end
         //subu
         4'b0001:
              begin
               \{carry,r\}=a-b;
              zero=(r==0)?1:0;
              overflow=0;
              negative=(r[31]==1)?1:0;
              end
```

```
//and
4'b0100:
    begin
    r=a&b;
    zero=(r==0)?1:0;
    carry=0;
    overflow=0;
    negative=(r[31]==1)?1:0;
    end
//or
4'b0101:
    begin
    r=a|b;
    zero=(r==0)?1:0;
    carry=0;
    overflow=0;
    negative=(r[31]==1)?1:0;
    end
//xor
4'b0110:
    begin
    r=a^b;
    zero=(r==0)?1:0;
    carry=0;
    overflow=0;
    negative=(r[31]==1)?1:0;
    end
//nor
4'b0111:
    begin
    r=\sim(a|b);
    zero=(r==0)?1:0;
    carry=0;
    overflow=0;
    negative=(r[31]==1)?1:0;
    end
//slt
11'b1011:
    begin
    if(a[31]==1 \&\& b[31]==0)
         r=1;
    else if(a[31]==0 && b[31]==1)
         r=0;
    else
```

```
r=(a< b)?1:0;
   overflow=r;
   zero=(r==0)?1:0;
   carry=0;
   negative=(a<b)?1:0;
   end
//sltu
4'b1010:
    begin
    r=(a< b)?1:0;
    carry=r;
    zero=(r==0)?1:0;
    overflow=0;
    negative=(r[31]==1)?1:0;
    end
//sll/slr
4'b111x:
    begin
     {carry,r}=b<<a;
    overflow=0;
    zero=(r==0)?1:0;
    negative=(r[31]==1)?1:0;
    end
//srl
4'b1101:
    begin
    r=b>>a;
    carry=b[a-1];
    overflow=0;
    zero=(r==0)?1:0;
    negative=(r[31]==1)?1:0;
    end
//sra
4'b1100:
    begin
    r=($signed(b))>>>a;
    carry=b[a];
    overflow=0;
    zero=(r==0)?1:0;
    negative=(r[31]==1)?1:0;
    end
//lui
4'b100x:
    begin
```

```
r=\{b[15:0],16'b0\};
              carry=0;
              overflow=0;
              zero=(r==0)?1:0;
              negative=(r[31]==1)?1:0;
              end
    endcase
end
endmodule
```

四、测试模块建模

```
(要求列写各建模模块的 test bench 模块代码)
`timescale 1ns / 1ns
module alu_tb;
    reg [3:0] aluc;
    reg [31:0] a,b;
    wire [31:0] r;
    wire carry, overflow, zero, negative;
    alu alu_init(a,b,aluc,r,zero,carry,negative,overflow);
    initial
    begin
              //add
              aluc=4'b0010;
              a=32'h4321fedc;
              b=32'h9321fedc;
              #20
              a=32'hf321fedc;
              b=32'hf321fedc;
              #20
              //addu
              aluc=4'b0000;
              a=32'h4321fedc;
              b=32'h9321fedc;
              #20
              a=32'hf321fedc;
              b=32'hf321fedc;
              #20
              //sub
              aluc=4'b0011;
              a=32'h4321fedc;
              b=32'h9321fedc;
```

```
#20
a=32'hf321fedc;
b=32'ha321fedc;
#20
//subu
aluc=4'b0001;
a=32'h4321fedc;
b=32'h9321fedc;
#20
a=32'hf321fedc;
b=32'ha321fedc;
#20
//and
aluc=4'b0100;
a=32'h4320fed0;
b=32'h4020f0d0;
#20
a=32'h11111111;
b=32'h11111111;
#20
a=32'h11111111;
b=32'h00000000;
#20
//or
aluc=4'b0101;
a=32'h4320fed0;
b=32'h4020f0d0;
#20
a=32'h11111111;
b=32'h00000000;
#20
a=32'h00000000;
b=32'h00000000;
#20
//xor
aluc=4'b0110;
a=32'h4320fed0;
b=32'h4020f0d0;
#20
a=32'h11111111;
b=32'h00000000;
#20
a=32'h11111111;
b=32'h11111111;
```

```
#20
//nor
aluc=4'b0111;
a=32'h4320fed0;
b=32'h4020f0d0;
#20
a=32'h11111111;
b=32'h00000000;
#20
a=32'h11111111;
b=32'h11111111;
#20
//slt
aluc=4'b1011;
a=32'h4320fed0;
b=32'h4020f0d0;
#20
a=32'hf0000000;
b=32'h00000000;
#20
a=32'h00000000;
b=32'h0f000000;
#20
//sltu
aluc=4'b1010;
a=32'h4320fed0;
b=32'h4020f0d0;
#20
a=32'hf0000000;
b=32'h00000000;
#20
a=32'h00000000;
b=32'h0f000000;
#20
//sll/slr
aluc=4'b1111;
a=1;
b=32'h4020f0d0;
#20
aluc=4'b1110;
#20
a=3;
```

```
#20
      //srl
      aluc=4'b1101;
      a=1;
      b=32'h4020f0d0;
      #20
      a=2;
      #20
      a=3;
      #20
      //sra
      aluc=4'b1100;
      a=1;
      b=32'h4020f0d0;
      #20
      a=2;
      #20
      a=3;
      #20
      //lui
      aluc=4'b1001;
      #20
      aluc=4'b1000;
      #20
      b=32'b10110111011110111110111110111110;
      #20
      $stop;
  end
endmodule
```

五、实验结果

(该部分可截图说明,要求 logisim 逻辑验证图、modelsim 仿真波形图、以及下板后的实验结果贴图(实验步骤中没有下板要求的实验,不需要下板贴图))

有无符号的加:

Addu r=a+b 无符号	0	0	0	0
Add r=a+b 有符号	0	0	1	0

Name	Value	0 ns ,		20 ns ,	40 ns ,	60 ns ,
□ ■ aluc[3:0]	2		2		(
⊞ · ■ a[31:0]	4321fedc	4321fedc	\supset	f321fedc	4321fedc	f321fedc
⊞ ■ b[31:0]	9321fedc	9321fedc		f321fedc	9321fedc	f321fedc
⊞ 📲 r [31:0]	d643fdb8	d643fdb8		e643fdb8	d643fdb8	e643fdb8
Wa carry	0					
w overflow	0					
Wa zero	0					
negative	0					

有无符号的减:

Subu	r=a-b 无符号	0	0	0	1
Sub	r=a-b 有符号	0	0	1	1

Name	Value	80	Ons ,		100 ns ,	120 ns ,	140 ns ,
□ ™ aluc[3:0]	3	玆					*
⊞- ™ a[31:0]	4321fedc	lж	4321fedc	D	f321fedc	4321fedc	f321fedc
□ · ₩ b[31:0]	9321fedc	lж	9321fedc	D	a321fedc	9321fedc	a321fedc
□ · • r [31:0]	Ъ0000000	X	Ъ0000000	D	50000000	Ъ0000000	50000000
Wa carry	0						
w overflow	1						
la zero	0	$oxed{oxed}$					
la negative	0						

		I	I	I	l
And	r=a & b	0	1	0	0
Or	r=a b	0	1	0	1

Name	Value	160 ns	18	0 ns	200 ns	220 ns	240 ns	260 ns 2
H aluc[3:0]	4	X		4		X	5	**************************************
⊞- ™ a[31:0]	11111111	4320fed0	Œ	1111	111	4320fed0	11111111	00000000
ш Ч b[31:0]	11111111	4020f0d0	C	11111111	00000000	4020f0d0	00000	000
□ ¶ r[31:0]	11111111	4020f0d0	C	11111111	00000000	4320fed0	11111111	00000000
a carry	0							
w overflow	0							
Wa zero	0							
In negative	0							

Xor	r=a ^ b	0	1	1	0
Nor	r=~ (a b)	0	1	1	1

Name	Value	280 ns	300 ns	320 ns	340 ns	360 ns	380 ns
H- aluc[3:0]	4	*	6		X	7	
⊞- 5 a[31:0]	11111111	4320fed0	1111	111	4320fed0	1111	111
⊞ % b[31:0]	11111111	4020f0d0	00000000	11111111	4020f0d0	00000000	11111111
⊞	11111111	03000e00	11111111	00000000	bodf012f	eeeee	eee
Wa carry	0						
We overflow	0						
Um zero	o						
We negative	0						

		l		
Slt r=(a <b)?1:0 td="" 有符号<=""><td>1</td><td>0</td><td>1</td><td>1</td></b)?1:0>	1	0	1	1
Sltu r=(a <b)?1:0 td="" 无符号<=""><td>1</td><td>0</td><td>1</td><td>0</td></b)?1:0>	1	0	1	0

Name	Value	400 ns	420 ns	440 ns	460 ns	480 ns	500 ns
⊞ 🖥 aluc[3:0]	4	*	ь		K	a	X
■ Na[31:0]	11111111	4320fed0	f0000000	00000000	4320fed0	f0000000	00000000
⊞ 😽 b[31:0]	11111111	4020f0d0	00000000	0f000000	4020f0d0	00000000	0f000000
■ 📲 r [31:0]	11111111	00000000	00001	001	00000	000	
Wa carry	0						
We overflow	0						
Wa zero	0						
M negative	0	ļ					

Srl r=b>>a	1	1	0	1
	· I	· [
Sra r=b>>>a	1	1	0	0

Name	Value	580 ns	600 ns	620 ns	640 ns	660 ns	680 ns
■ 🦥 aluc[3:0]	f	*	d		*	С	
⊞ a[31:0]	00000001	00000001	00000002	00000003	00000001	00000002	k
⊞	4020f0d0	4020f0d0	b77be	fdf	4020f0d0		b77befdf
⊞ 📲 r [31:0]	00000001	20107868	2ddefbf7	16ef7dfb	20107868	eddefbf7	k
la carry	1						
w overflow	0						
Te zero	0						
la negative	0						

		İ		Ì	<u> </u>
Lui	r={b[15:0],16'b0}	1	0	0	X

Name	Value	700 ns ,	72	Ons,	740 ns , 7
H- aluc[3:0]	8	9	¢		
⊞ ¶ a[31:0]	00000003		L	00000003	
⊞ · S b [31:0]	377befdf	b77befdf	K	377befdf	b77befde
⊞ - ₩ x [31:0]	f6ef7dfb			f6ef7dfb	
Un carry	1				
Wa overflow	0		L		
Um zero	0		L		
In negative	1				