EEE316 MICROPROCESSORS PRE-LABORATORY REPORT

NAME : TURHAN CAN KARGIN

ID NUMBER : 150403005

LAB. NUMBER : 3

OBJECTIVES OF THE LABORATORY ASSIGNMENT:

Objectives of this lab are examining I/O port operations, improving math operations skills and learning Rotate commands.

CODE AND COMMENTS:

1.

```
org Oh
    BANKSEL ANSELC ; initialization steps
    CLRF ANSELC
    BANKSEL ANSELB
    CLRF ANSELB
    BANKSEL ANSELA
    CLRF ANSELA
    CLRF TRISC ; make PORTC output
    CLRF TRISB ; make PORTB output
    SETF TRISA ; set PORTA as input
COUNT1 EQU 0X25; COUNT1 = 25H
   ; FIRST PART
Start movlw B'00000000'; WREG = 00000000
    movwf PORTB ; SET PORTB '00000000'
    movwf PORTC
                  ; SET PORTB '00000000'
    CALL DELAY ; DELAY
    BTFSC PORTA, 0 ; checking portc RAO pin
                ; if it is SET go to AGAIN, otherwise continue
    BRA AGAIN
    BTFSC PORTA, 1 ; checking portc RA1 pin
    BRA AGAIN2 ; if it is SET go to AGAIN2, otherwise continue
    BTFSC PORTA, 2 ; checking portc RA2 pin
    BRA AGAIN3 ; if it is SET go to AGAIN3, otherwise continue
    {	t MOVLW} .8 ; we have 8 leds and bits for port
    MOVWF COUNT1
LOP1
       RRCF PORTB ; For rotating 8 times from left to right
    BSF STATUS, C ; C=1
    RLCF PORTC; For rotating 8 times from right to left
    BSF STATUS, C ; C=1
    CALL DELAY
     DECF COUNT1 ; setting 8 times
    BNZ LOP1
    MOVLW .8
    MOVWF COUNT1
```

```
LOP2
       BCF STATUS, C ; C=0
    RRCF PORTB ; rotate PORTB 8 times to right
    BCF STATUS, C ; C=0
    RLCF PORTC ; rotate PORTC 8 times to LEFT
    BCF STATUS, C ; C=0
     CALL DELAY
     DECF COUNT1
    BNZ LOP2
    MOVLW .8
    MOVWF COUNT1
        BSF STATUS, C ; C=1
    RLCF PORTB ; rotate portB 8 times to LEFT
    BSF STATUS, C ; C=1
    RRCF PORTC ; rotate portC 8 times to RIGHT
    BSF STATUS, C ; C=1
    CALL DELAY
    DECF COUNT1
    BNZ LOP3
    MOVIW 8
    MOVWF COUNT1
       BCF STATUS, C ;C=1
TOP4
    RLCF PORTB ; rotate portB 8 times to LEFT
     BCF STATUS, C ; C=1
     RRCF PORTC ; rotate portC 8 times to RIGHT
     BCF STATUS, C ; C=1
     CALL DELAY
     DECF COUNT1
    BNZ LOP4
    GOTO Start; go to begining of this part
    ; SECOND PART
      BTFSS PORTA, 0 ; checking portc RAO pin
    BRA Start
                 ; if it is RESET go to START, otherwise continue
     movlw B'00000001'; set PORTC 00000001
     movwf PORTC
                   ;light it with delay
     CALL DELAY
    MOVLW .7
    MOVWF COUNT1
LOP5
       RLNCF PORTC; rotate portb 7 times to left
     CALL DELAY ; with delay
     DECF COUNT1
     BNZ LOP5
     CLRF PORTC ; PORTC is 00000000
     CALL DELAY
    MOVLW B'00000001'; start lighting portb with delay
    MOVWF PORTB
     CALL DELAY
    MOVLW .7
    MOVWF COUNT1
LOP6
     RLNCF PORTB ; rotate portb 7 times to left
                 ; with delay
     CALL DELAY
     DECF COUNT1
     BNZ LOP6
    MOVLW B'10000000'
    MOVWF PORTB
    MOVLW .7
    MOVWF COUNT1
LOP7
     RRNCF PORTB ; rotate portb 7 times to right
     CALL DELAY
                  ; with delay
     DECF COUNT1
     BNZ LOP7
     CALL DELAY
     CLRF PORTB
    MOVLW B'10000000'
    MOVWF PORTC
```

```
CALL DELAY
    MOVLW .7
    MOVWF COUNT1
     RRNCF PORTC ; rotate portb 7 times to right
    CALL DELAY ; with delay
    DECF COUNT1
    BNZ LOP8
    GOTO AGAIN
                 ; go to begining of this part
    ;THIRD PART
AGAIN2 BTFSS PORTA, 1 ; checking portc RA1 pin
    BRA Start ; if it is RESET go to START, otherwise continue
    MOVLW .8
    MOVWF COUNT1
     RLCF PORTC
TOP9
                     ; rotate portB 7 times to LEFT
    BSF STATUS, C ; C=1
    CALL DELAY
                 ; with delay
     DECF COUNT1
    BNZ LOP9
    MOVLW .8
    MOVWF COUNT1
LOP10 RLCF PORTB ; rotate portB 7 times to LEFT
    BSF STATUS, C ; C=1
    CALL DELAY
                 ; with delay
    DECF COUNT1
    BNZ LOP10
    MOVLW .8
    MOVWF COUNT1
LOP11 BCF STATUS, C ; C=0
    RRCF PORTB ; rotate portB 7 times to RIGHT
                 ; with delay
    CALL DELAY
    DECF COUNT1
    BNZ LOP11
    MOVLW .8
    MOVWF COUNT1
LOP12 BCF STATUS, C ; C=0
    RRCF PORTC ; rotate portB 7 times to right
    CALL DELAY
                 ; with delay
    DECF COUNT1
    BNZ LOP12
    GOTO AGAIN2 ; go to beginig of this part
    ; FORTH PART
AGAIN3 BTFSS PORTA, 2 ; checking portc RA2 pin
    BRA Start ; if it is RESET go to START, otherwise continue
        MOVLW .8
    MOVWF COUNT1
LOP13 BSF STATUS, C ; C=1
    RLCF PORTB ; rotate portB 8 times to LEFT
    BSF STATUS, C ; C=1
    RRCF PORTC ; rotate portC 8 times to RIGHT {\tt BSF} STATUS, {\tt C} ; C=1
    CALL DELAY
     DECF COUNT1
    BNZ LOP13
    MOVLW .7
    MOVWF COUNT1
LOP14 BCF STATUS, C ; C=0
                 ; rotate portB 7 times to RIGHT
    RRCF PORTB
                   ; C=0
    BCF STATUS, C
                  ; rotate portC 7 times to LEFT
; C=0
    RLCF PORTC
    BCF STATUS, C
    CALL DELAY
    DECF COUNT1
    BNZ LOP14
    GOTO AGAIN3 ; GO TO BEGINNINGOF THIS PART
```

```
DELAY movlw .40 ; these loop values calculated to look better on proteus
   movwf 0x21
For5 movlw .50
    movwf 0x22
For4
     movlw .1
    movwf 0x23
For3
     nop
    nop
    DECF 0x23, f
    BNZ For3
    decf 0x22, f
    BNZ For4
    decf 0x21, f
    BNZ For5
    RETURN
    end
```

2.

```
INPUT equ 0x00; DEFINE LOCATIONS
H BYTE equ 0x10
L BYTE
        equ 0x11
C Contl equ 0x30
C Cont2 equ 0x31
     org Oh
     CLRF H BYTE
     CLRF C_Cont1
CLRF C_Cont2
     CLRF L BYTE
     CLRF 0X01
     MOVLW .22 ; INPUT VALUE
     MOVWF INPUT
     MOVLW .1 ; move wreg 1
     MOVWF 0\times01; First number is 1
    MOVWF L_BYTE ; Second number is 1
LOOP
     BCF STATUS, 0 ; clear carry
     ADDWF 0X01,W ; sum first and second number
     MOVWF 0x03 ; send summation to 0x03 location
     MOVFF L BYTE, 0X01 ; second number = first number
     MOVFF 0\times03,L_BYTE; summation = second number
     movf C_Cont1,W ; For carries
     addwfc C Cont2,W
     movff C Cont1, C Cont2
     movwf C Cont1
     movff C Contl, H BYTE; we moved carries to H BYTE
     MOVF L BYTE,W ; move second number to wreg
     DECF INPUT ; loop input times
     BNZ LOOP
     END
```

```
org Oh
     NUMBER1.1 EQU 0X30 ; first lower
     NUMBER1.2 EQU 0X62 ; first higher
    NUMBER2.1 EQU OX2E ; second lower
    NUMBER2.2 EQU 0X43; second higher
    RESULT 4 EQU OX10; MSB
    RESULT 3 EQU 0X11; 2.bit
     RESULT 2 EQU OX12; 3.bit
    RESULT 1 EQU 0X13 ; LSB
    MOVLW NUMBER1.1; 1st low byte moved to wreq
    MULLW NUMBER2.1; 2nd x 1st low byte
    MOVFF PRODL, RESULT 1; result of low byte is directly to lowest byte
    MOVFF PRODH, 0x20; result of higher byte is at 0x20 loc.
    MOVLW NUMBER1.2; 1st higher byte moved to wreq
    MULLW NUMBER2.1; 2nd low byte x 1st high byte
    MOVFF PRODL, 0x22; result of low byte is at 0x22
    MOVFF PRODH, 0x21; result of high byte is 0x21
    MOVLW NUMBER1.1; 1st lower byte moved to wreg
    MULLW NUMBER2.2 ; 1st low byte x 2nd high byte
    MOVFF PRODL, 0X24 ; result of low byte is at 0x24
    MOVFF PRODH, 0x23; result of high byte is 0x23
    MOVLW NUMBER1.2; 1st higher byte moved to wreg
    MULLW NUMBER2.2; 1st high byte x 2nd high byte
    MOVFF PRODL, 0x25; result of low byte is at 0x25
    MOVFF PRODH, RESULT 4 ; result of high byte is directly to highest byte
     ; Summing numbers and carry controls
    MOVF 0X22,0
     ADDWF 0x24,F; adding location 22h and location 24h
     BNC NO CARRYO
     INCF 0x21, F; if carry exist, +1
NO CARRYO MOVF 0x21,0
     ADDWF 0X23,F; adding location 21h and location 23h
     BNC NO CARRY1
     INCF RESULT 4,F ; if carry exist, +1
NO CARRY1 MOVF 0X20,0
     ADDWFC 0X24,F; adding location 20h and location 24h
     BNC NO CARRY2
     INCF 0x25,F; if carry exist, +1
NO CARRY2 MOVF 0X25,0
    ADDWF 0X23,F; adding location 25h and location 23h
     BNC NO CARRY3
     INCF RESULT 4,F ; if carry exist, +1
NO CARRY3 MOVFF 0X23, RESULT 3 ; moving result location
     MOVFF 0X24, RESULT 2; moving result location
    END
```

EXPLANATIONS:

QUESTION-1:

Our aim is to simulate Knight Rider LED scanner on each LED from pin 0 to 7 of PORTB and PORTC and to do these visual effects, we should use the commands for rotating the bits such as RRNCF, RRCF or RLCF.

QUESTION-2:

Our aim is to implement the Fibonacci sequence in this question. You can see my 14^{th} , 15^{th} and 16^{th} result of Fibonacci sequence below. Location 0x10 is higher byte and location 0x11 is lower byte.

Address	00	01	Address	00	01	Address	00	01
000	00	E9	000	00	79	000	00	62
010	01	79	010	02	62	010	03	DB

QUESTION-3:

Our aim is to write code for multiplying two 16 bit signed number. You can see my result on the location 0x10, 0x11, 0x12, and 0x13.

Note:

This document will be prepared before the lab session. Unless you bring this document in the desired format or prepared, you will not be let to the session.