

$$X(j \kappa \omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega_0 \kappa t} dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

$$A_{relight} = \int_{-\infty}^{\infty} x(t) e^{-j\omega_0 k t} dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega_0 k t} dt$$

$$A_{relight} = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty} x(j \kappa \omega) dt \Rightarrow X(j \kappa \omega) = \int_{-\infty}^{\infty}$$

$$\chi(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \chi(j\omega) e^{j\omega t} d\omega$$

Continuous-time
Fourier
Transform Pair

Time	Periodic Apuiali	Reproxatation
C †	P	CTFS
TO	P	DTFS
CT	A	CTFT
DT	Д	DTFT

/X(ju)

(in)

$$X(j\omega) = \int_{\infty}^{\infty} x(t)e^{-j\omega t} dt$$

$$= \int_{0}^{\infty} -(atjw)t$$

$$\chi(j\omega) = \frac{1}{\alpha + j\omega}$$

$$= \int_{e}^{\infty} -at -j\omega t dt$$

For $\alpha = 1$

$$\chi(j\omega) = \frac{1}{1+j\omega}$$

X(jw) Klashitude Sportrum W 4 Those Sportnarr W et $\chi(t) = 1$; $|t| < \tau_1$ $-\pi/2$

eq: $\chi(t) = \delta(t)$