Important Theorems

Separation

- X is $T_1 \iff \forall p \in X, \{p\}$ is closed in X
- $T_2 \implies T_1$
- $T_3 \implies T_2$
- \bullet $T_4 \Longrightarrow T_3$
- $X \text{ regular } \iff \forall \, p \in X, \forall \, U_p \in \mathscr{T}, \exists \, V_p \in \mathscr{T}, \overline{V_p} \subset U_p$
- X normal $\iff \forall \, A \in X \text{ closed}, \, \forall \, U_A \in \mathscr{T}, \, \exists \, V_A \in \mathscr{T}, \overline{V_A} \subset U_A$
- $X, Y T_2 \implies X \times Y T_2$
- X, Y regular $\implies X \times Y$ regular
- T_2 is hereditary
- · Regular is hereditary
- X normal and $A \subset X$ closed $\implies A$ normal

Separable

- D dense in $X \iff \forall \, U \in \mathscr{T}, U \neq \emptyset \implies U \cap D \neq \emptyset$
- X, Y separable $\implies X \times Y$ separable
- $X 2^{nd}$ countable $\implies X$ separable
- $X \ 2^{nd}$ countable and $A \subset X$ uncountable $\implies A$ has a limit point.
- 2^{nd} countable is hereditary
- $X, Y \ 2^{nd}$ countable $\implies X \times Y \ 2^{nd}$ countable
- 2^{nd} countable $\Longrightarrow 1^{st}$ countable
- 1^{st} countable is hereditary
- $\bullet \ X, Y \ 1^{st} \ {\sf countable} \Longrightarrow \ X \times Y \ 1^{st} \ {\sf countable}$

Compact

- X finite $\implies X$ compact
- $X \text{ compact} \implies \forall A \subset X, A \text{ infinite} \implies A \text{ has a limit point}$
- X compact $\iff \forall \mathcal{A} = \{A_{\alpha} : \alpha \in \lambda\}$ such that the A_{α} are closed, \mathcal{A} has the finite intersection property $\implies \bigcap \mathcal{A} \neq \emptyset$
- X compact $\iff \forall U \in \mathscr{T}, \forall \mathcal{K} = \{K_{\alpha} : \alpha \in \lambda\}$ such that the \mathcal{K}_{α} are closed and $\bigcap \mathcal{K} \subset U$, there exists $\mathcal{K}' \subset \mathcal{K}$ such that \mathcal{K}' finite and $\mathcal{K}' \subset U$
- $\mathcal{A} = \{A_{\alpha} : \alpha \in \lambda\}$ such that the A_{α} compact $\Longrightarrow \bigcup \mathcal{A}$ compact
- X compact and subspace A closed $\implies A$ compact
- $X T_2$ and subspace A compact $\implies A$ closed
- X compact and $T_2 \implies X$ normal.
- [a, b] compact.
- $A, B \text{ compact} \Longrightarrow A \times B \text{ compact}$.
- $A \subset \mathbb{R}^n$ compact $\iff A$ is closed and bounded.
- Any product of compact spaces is compact.

Continuity

- $X f^{-1}(A) = f^{-1}(Y A)$
- f bijection $\implies f(A) = Y f(X A)$
- · The constant function is continuous
- The inclusion function is continuous
- A restricted function of a continuous function is continuous
- f continuous $\iff \forall K \subset Y, K \text{ closed} \implies f^{-1}(K) \text{ closed}$
- f continuous $\iff \forall A \subset X, f(\bar{A}) \subset \overline{f(A)}$
- f continuous $\iff \forall \, x \in X, \forall \, V \in \mathcal{N}_{f(x)}, \exists \, U \in \mathcal{N}_x, f(U) \subset V$
- $\bullet \ f \ 1^{st} \ \mathsf{countable} \Longrightarrow \ f : X \to Y \ \mathsf{continuous} \ \Longleftrightarrow \ \forall \, (x_n), x_n \to x \ \Longrightarrow \ f(x_n) \to f(x)$
- $f:X \to Y$ and $g:Y \to Z$ continuous $\implies g \circ f:X \to Z$ continuous
- X compact and $f:X \to Y$ continuous and surjective $\Longrightarrow Y$ compact
- D dense in X and $f:X \to Y$ continuous and surjective $\Longrightarrow f(D)$ dense in Y
- X normal and $f:X \to Y$ continuous, surjective, and closed $\Longrightarrow Y$ is normal
- X compact and Y $T_2 \implies f: X \to Y$ continuous $\implies f$ closed

- $\bullet \ f:X\to Y \ {\rm bijective} \implies f \ {\rm open} \Longleftrightarrow \ f \ {\rm closed}$
- f continuous and closed $\Longrightarrow f(\bar{A}) = \overline{f(A)}$
- X normal and f continuous, surjective, and closed $\Longrightarrow Y$ normal
- X compact, Y T_2 , f continuous $\implies f$ closed

Homeomorphism

- All $(a,b)\subset\mathbb{R}$ are homeomorphic to each other and are homeomorphic to \mathbb{R}
- $\bullet \ f \ {\rm continuous}, {\rm TFAE} :$
 - 1. f is a homeomorphism
 - 2. *f* is a closed bijection
 - 3. f is an open bijection
- f X compact, $Y T_2$, f continuous $\implies f$ a homeomorphism.