

Inteligencia Artificial & Machine Learning

Applicaciones en movilidad

Dr. Iván S. Razo Zapata

Aprendizaje Supervisado

K-vecinos más cercanos (KNN)

Métodos

- Paramétricos
 - Asume una forma para y
 - Regresión lineal
 - Estimación de parámetros
- No paramétricos
 - No asume una forma para y

$$y = f(x) + \epsilon$$

$$y = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n + \epsilon$$

$$\theta_0, \theta_1, \theta_2 \dots \theta_n$$

$$y = f(x) + \epsilon$$

Idea general

- Los valores de los vecinos más cercanos son una "mejor" aproximación del valor real para una nueva observación
- ¿Vecinos más cercanos?
 - Distancia
- ¿Cuántos vecinos más cercanos?

Distancia

Distancia

$$D(X,Z) = \sqrt{(x_1 - z_1)^2 + (x_2 - z_2)^2}$$

$$X = (3,5)$$

$$Z = (6,9)$$

$$D(X,Z) = ?$$

Vecinos

$$K = ?$$

Regresión

$$\hat{f}(x_0) = \frac{1}{k} \sum_{x^i \in N_k(x_0)} y^i$$

Funcionamiento - Idea general

$$x = 3$$
 $x_0 = 5.5$
 $y_0 = ?$

Funcionamiento – Idea general

Clasificación

KNN

Idea general

Idea general

Regresión

$$\hat{f}(x_0) = \frac{1}{k} \sum_{x^i \in N_k(x_0)} y^i$$

Clasificación

$$\Pr(Y = j | X = x_0) = \frac{1}{k} \sum_{x^i \in N_k(x_0)} I(y^i = j)$$

Ejemplo

$$[0.43, 0.02] = Rojo$$

$$K = 3$$

$$[0.54, 0.43] = Rojo$$

$$x_0 = (0.5, 0.5)$$

$$[0.42, 0.33] = Azul$$

[0.20, 0.61] = Azul

$$y_0 = ?$$

 X_1

KNN

KNN: K=1

KNN: K=100

Comentarios finales

La maldición de la dimensionalidad

1D | 2D

1-NN in One vs. Two Dimensions

Más dimensiones

En 10 dimensiones necesitamos cubrir 80% del rango de cada dimensión para cubrir una vecindad que contenga el 10% de los datos

Engineering

Founded by the Royal Academy of Engineering and Lloyd's Register Foundation

GRACIAS

https://hubiq.mx/

MUBIORO HUBIO in HUBIORO