17d. Muradul Bashere Dégital logic Dasign (1802). # Question Analysis

July-December - 2019

* Simplify the boolean function F= A'B'e'D+ B'eD'+ A'BeD'+ AB'e'
and implement the result using logic gates.

At First I use K-map for simplify

\	2D				
AB	00	01	. 11	10	
slamploo.	b 515	dali	rina)	4	'An Expression with the
gnificane 10 ple:	2 m	ารา เก็กรา	Dought -	O TY PI	of to mot necessaryly us
- 11			 U	e · · ·	
10			,		

F= ABe+ AcD + BeD + BeD

* Simplify the boolean function f(4, x, y, 2) = \(\Simplify\) (0,1,2,3,4,5,6,8,9)

F= 9 + W2 + 元 + 的好?

(month related) & restler (months & a (k-Map 1965) (since the function has four variable, a four variable map must be used. The minterem listed in the sum are marked by 1, in the map.

Find the complement of the function $F = xy\bar{z} + z\bar{y}\bar{z}$ and $F_z = x(y\bar{z} + y\bar{z})$ appliering De Morgan's theorem.

* Given F = x \$ 7 + 29 2 complements of F = xy2+ xy2 () 交织主、交牙主 $\frac{1}{\sqrt{x}} \frac{1}{\sqrt{y}} \frac{1}{\sqrt{x}} \frac{1}{\sqrt{x}} \frac{1}{\sqrt{y}} \frac{1}{\sqrt{x}} \frac{1}{\sqrt{x$ (distribution) πα+πy + πε + 9π+94 +9t x 0001 10 @11 + 27, + 42 + 22. 0 TAY + 92 + 192 + 9t + nt 472. +2 At NOV = A Absorption 10 00 of 11 10

Given: The server of partitional and to treat more at boid. I

For de moregans low:

$$A.\overline{A} = 0$$
 complement
 $\overline{A}.\overline{A} = \overline{A}$ $\overline{A}.A = A$
 $\overline{A}+\overline{A} = \overline{A}$ $A+A=A$

Implement the following equations using lagic gates. $F = x\bar{y} + \bar{x}\bar{y} + x\bar{y}$ $F = x\bar{y} + x\bar{z}$

Legic Diagram Por F = x 4 \f + \f x \quad \f + n \quad \f

For this logic circuit we use 5 and (AND Gate and two OR Gate. Finally we find the aetpet of function of F.

* Substract (23532-345920) 10 Voing
10's complement and (11010010-10001100),
using is complement.

$$M = 28532$$
 $N = 345920$

10's complement of $N = 10^6 - 345920$
 $= 654080$
 $= 654080$
 $= 682612$

-317388 amsweл: -1682612 = - (10's complement of 682612)

and the Off and the said

the compact of formation of F.

M = 11010010 N = 10001100 N = 0001100 01110010 01110010 01110010 010100 010100

answer: 01000110

* Convert (511.4) 10 to base 5 number

Given neember (511.4)10

i's completine i of is composited

$$\begin{array}{c} 5 | 5 | 1 \\ 5 | 102 \rightarrow 1 \\ 5 | 20 \rightarrow 2 \\ 5 | 4 \rightarrow 0 \\ 0 - 4 \end{array}$$

$$(511)_{10} = (4021)_{5}$$

$$(511.4)_{10} = (4021.2)_{5}$$

* Prove that f, = mo + m, + m, + m, = M2.M3M4M6

O	rinteron	1 170	mex	term
2 7 2	teran	Dogination	tenm	Legignation
000000000000000000000000000000000000000	文元元元文文文文	Service of the servic	(x+y+2) (x+y+2) (x+y+2) (x+y+2) (x+y+2) (x+y+2) (x+y+2)	My M

$$f_{1} = m_{0} + m_{1} + m_{5} + m_{7}$$

$$= \pi \sqrt{2} + \pi \sqrt{2} + \pi \sqrt{2} + \pi \sqrt{2}$$

- 517 6178 4 E	J. JAN W. A. S.
1 x y t	3, 3
000	(b) 10
00 /	9 0
0 0 0	0
1.01	
1.10	0. 4161 150
11111	10/0

suplement
$$f' = (x + y + t) (x + t) ($$

* What are the advantages and disadvantages of digital termique over amalog technique.

Devantages & légétal technique

- 2. Dégétal cércuet are morre reléable.
- 2. Easy to design
- 3. Cheaper than analog circuit
- 4. Information stored is easy
- 5. Accuracy and perice processión are greater

disadvantages of dégital technique

- 1. less data secrety
- 2. more complexity
- 3. Work overcload.
- 4. plagiariesm and copyright

11.511.11.11

5. Digital Media Manipulation

wieng logie gates. F = ABC + BCD + ABC.

The function have four varieable. so we use a four varieable karrono map where the minterem listed in the sum by are marked by 1012140

* Me-Cluskey monthed (Tabulation Forcom). f = (a, b, e, d) = \(\) (0,5, 8, 9, 10, 11, 14, 15)

. appoint and some former all of

Step - 01

, (8 + d ·

	Стоир	minterm	Variable	
	Ø	1000	0000	=
	~ 1	8 V	1000	
-	1901 + 08	5, 10%11	1100101 110	Non lamplemi
	2	9. V	1.0000	wing hegie
		10,0	1011-0	- A
ŀ		11.10		
	2		1.0.11	
É	+570 1	140	1110	
	4	15.	11/1	
		1	KILL	

Group	matched par	Variable	<u>, </u>
0776	1 3 10 1	B C D.	Tool Ting
0	0,8	-000	
	28,9 V	1000	8,9,70,71
000	18, 10 V	10-0	
		10-1	10.41.18.01
	19,11		
2	10,11 4	WO TEX	8.3
	10,14	1-10	8.4
	11.15	1-11	
3	16 15	1112	
	14, 15		
Vac			
	∮ 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		

Step 05

GITTOLEP	conatch par	Variable	7
0	8,9,10,11	B C D	} AB
,	8,10,9,11 10,11.14,15	1 - 1 -	} Ac
	0, 8	- 000	
	5	0101	

						P		
Prime. Imp.		5 8	81.	9	76	-//	19	12/2
8,9,10,11)) /	×	(x)	×	\times		
10,11,12,15) \ (- J 1	-X	×	\times	8
0,8	$\langle x \rangle$		×	7 1	/c.		Q	
5		\Rightarrow	- J	,		- -		
			· *	5 ()	11.		5	
	(

=	AB + AC +	- BED+	ABED.	
ja {		11 ,51,63		
		10. 14 11.15. 12.		
	0.00			

Step ol

,			
втопр	minterm		() dat
4		ABCD	,
O	0	0 0 0	
		0001	
) 0 -	3 -2 5	0010	
(100-	3 - 3 N.s	10000	
2	10 /	1010	
	1100	1 91	
2	11/	1.0.1	
	1- 14	11/1/0	
4	151	11116	7

(a v , v	8, 10, 21, 8	16.1.31.
Group	matched pair	Variable A B C D
0	0,1	000-
	0,8 V	- 0 000
/	2,10V 8,10V	1.00+01
2	10,14	1. 0 1 5
3	11, 15	1 11117

step	0)	secon becap	62/140	9 20 Mg	
3127	() ()	100		3	
	Group	92,8,10 0,8,2,10		ار	7 BD
\$	0 2 0	0,8,2,10	- 0	- 0	
	7-1	10,11,14,15	111	1 -	? Ae
		110, 11	a sel serve (A)	0 -	

	Stepped with white location of the party of the section
-	न स्तान । स्वान निकाल के निकाल है। इस निका निकाल के निकाल है।
	Prim Implent 0 1 2 8 10 11 14 15
_	0,2,8,10 X X X
-	10,11,19,15 × 8 8
	- 0,1 X 8
	(C. /= 35 = /(CII) 2
	BD + AC + ABE.
	2X1+ 2 X1+ 0X5 = 112
	to the state of th
	11/2 =
	0.813

$$\begin{array}{c|c}
375 \\
\times 2 \\
\hline
01750 \\
\times 2 \\
\hline
11500 \\
\times 2 \\
\hline
1100
\end{array}$$

$$011 = 0 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3}$$

$$= \frac{1}{2^{2}} + \frac{1}{2^{3}}$$

$$= \frac{1}{4} + \frac{1}{8}$$

$$= \frac{2+1}{8}$$

$$= \frac{2}{8}$$

$$= 0.375$$

Reflected	Decemal
0000	0 1 2 3
0 1 0 1	
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9
(001	19
	2.10