

> The data contained more then 22000 fashion product images

- ➤ Data was spited into training (17 k) and validation data set
- ➤ Validation data set was completed balanced.
- Two CNN model was trained to classify an product image into category and gender.
- Embedded layer output was taken to recommended similar products.

MODEL 1:

CLASSIFY INPUT INTO CATEGORY

Model: "sequential"

Layer (type)	Output	Shape	Param #
resnet50 (Functional)	(None,	2048)	23587712
dense (Dense)	(None,	128)	262272
batch_normalization (Batch Normalization)	(None,	128)	512
dropout (Dropout)	(None,	128)	0
dense_1 (Dense)	(None,	64)	8256
<pre>batch_normalization_1 (Bat chNormalization)</pre>	(None,	64)	256
dropout_1 (Dropout)	(None,	64)	0
dense_2 (Dense)	(None,	32)	2080
<pre>batch_normalization_2 (Bat chNormalization)</pre>	(None,	32)	128
dropout_2 (Dropout)	(None,	32)	0
dense_3 (Dense)	(None,	18)	594

Total params: 23861810 (91.03 MB)
Trainable params: 23808242 (90.82 MB)
Non-trainable params: 53568 (209.25 KB)

RASNET - 50 — LAYER 1 — LAYER 2 — LAYER 3 Category prediction

- > This model is used to classify an product image category (t-shirt, shirt, salwar, watch, bag pack, wallet etc.)
- > It was trained on more then 17000 product images.
- **ACCURACY** : 92 %

MODEL 2:

CLASSIFY INPUT INTO GENDER

Model:	"seauen	tial	1"
mouel.	seuuen	CIGI	_

Layer (type)	Output Shape	Param #
resnet50 (Functional)		23587712
dense_4 (Dense)	(None, 64)	131136
<pre>batch_normalization_3 (Bat chNormalization)</pre>	(None, 64)	256
dropout_3 (Dropout)	(None, 64)	0
dense_5 (Dense)	(None, 32)	2080
<pre>batch_normalization_4 (Bat chNormalization)</pre>	(None, 32)	128
dropout_4 (Dropout)	(None, 32)	0
dense_6 (Dense)	(None, 16)	528
<pre>batch_normalization_5 (Bat chNormalization)</pre>	(None, 16)	64
dropout_5 (Dropout)	(None, 16)	0
dense_7 (Dense)	(None, 2)	34

Total params: 23721938 (90.49 MB) Trainable params: 23668594 (90.29 MB) Non-trainable params: 53344 (208.38 KB)

RASNET - 50

LAYER 1

LAYER 2

LAYER 3

Category prediction

- > This model is used to classify an product image gender (Male, Female)
- > It was trained on more then 17000 product images.
- **ACCURACY** : 93.13 %

Procedure: **INPUT IMAGE Category classification** Gender classification Select images belonging to predicted categories from both classification Use **embedding layer** output & use cosine similarity to select most similar images Recommendation

Result:

INPUT

