CMP 0575 Artificial Neural Networks

Esteban Flores

Conjunto de datos: Química

Subset:

cv	# features	Selected Features	cv score
8	23	[28, 38, 42, 43, 44, 45, 46, 47, 48, 49, 55, 64, 65, 66, 73, 75, 103, 105, 106, 108, 115, 119, 121]	68.12%

■ Lenguaje utilizado: Java

■ Librerías externas: WEKA, xchart

■ Proceso de normalización:

■ Normalización estándar [0,1]
$$z = \frac{x - \mu}{\sigma}$$

- ANN
 - MultilayerPerceptron (apr. backpropagation)
 - CV

Multilayer Perceptron

- Backpropagation
- Nodes => sigmoid
- Parametros:
 - 2 Hidden Layers
 - Weights: 75 = (23 * 3) + (2 * 3)
 - Biases: 5 = 3 + 2

Momentum

Learning Rate

Hidden Layers

Activation Function

Name	Input/Output Relation	Icon	MATLAB Function
Hard Limit	$a = 0 n < 0$ $a = 1 n \ge 0$		hardlim
Symmetrical Hard Limit	$a = -1 \qquad n < 0$ $a = +1 \qquad n \ge 0$	于	hardlims
Linear	a = n		purelin
Saturating Linear	$a = 0 n < 0$ $a = n 0 \le n \le 1$ $a = 1 n > 1$		satlin
Symmetric Saturating Linear	$a = -1 n < -1$ $a = n -1 \le n \le 1$ $a = 1 n > 1$	\neq	satlins
Log-Sigmoid	$a = \frac{1}{1 + e^{-n}}$		logsig
Hyperbolic Tangent Sigmoid	$a = \frac{e^n - e^{-n}}{e^n + e^{-n}}$	F	tansig
Positive Linear	$a = 0 n < 0$ $a = n 0 \le n$	\square	poslin
Competitive	a = 1 neuron with max $na = 0$ all other neurons	C	compet

Backpropagatio

