1

Assignment 7

D V K M Rishab AI20MTECH14004

Download the python code, latex file and the pdf doc from

https://github.com/Rishab9991/EE5609/tree/master/ Assignments/Assignment7

QUESTION

(Q.No.72, UGC June 2017)

Let m, n and r be natural numbers. Let A be an m \times n matrix with real entries such that $(AA^t)^r = I$, where I is the m \times m identity matrix and A^t is the transpose of the matrix A. We can conclude that

Options

- 1) m = n
- 2) AA^{t} is invertible
- 3) A^tA is invertible
- 4) if m = n, then **A** is invertible

SOLUTION

Option 1	To conclude that $m = n$.
Assumptions	Without loss of generality, Let $m = 2$, $n = 3$ and $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \implies \mathbf{A}^{\mathbf{t}} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$
Proof	$\implies \mathbf{A}\mathbf{A}^{\mathbf{t}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{I} \implies (\mathbf{A}\mathbf{A}^{\mathbf{t}})^r = \mathbf{I}$
	But $m \neq n$. Therefore, Option 1 is incorrect.

TABLE I: Option 1

Option 2	To conclude that AA^t is invertible.
Assumptions	AA ^t is not invertible
Proof	$\implies \mathbf{A}\mathbf{A}^{t} = 0 \implies (\mathbf{A}\mathbf{A}^{t})^r = 0$
	$\implies (\mathbf{A}\mathbf{A}^{\mathbf{t}})^r \neq \mathbf{I}\left(\left \mathbf{I}\right = 1\right)$
	Since, there is a contradiction to the assumption made we can conclude that
	AA ^t is invertible. Therefore, Option 2 is correct.

TABLE II: Option 2

Option 3	To conclude that A^tA is invertible.
Assumptions	Without loss of generality, Let $m = 2$, $n = 3$ and $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \implies \mathbf{A}^{\mathbf{t}} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$
Proof	$\Rightarrow \mathbf{A^t A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies \mathbf{A^t A} = 0$ This means that $\mathbf{A^t A}$ is not invertible. Therefore, Option 3 is incorrect.

TABLE III: Option 3

Option 4	To conclude that if $m = n$ then A is invertible.
Assumptions	Let $m = n$
D 6	Since $(\mathbf{A}\mathbf{A}^{t})^r = \mathbf{I} \implies (\mathbf{A}\mathbf{A}^{t})^r = \mathbf{I} = 1$
Proof	$\implies (\mathbf{A} \mathbf{A}^{t})^r = 1 \ (\mathbf{A} \text{ is a square matrix})$
	$\implies (\mathbf{A})^{2r} = 1$
	Therefore, Option 4 is correct.

TABLE IV: Option 4