

## HACETTEPE UNIVERSITY ELECTRICAL AND ELECTRONICS ENGINEERING ELE 489-Fundamentals of Machine Learning

## Homework 1

k-NN Classification

Akanay Boran Özcan 2200357021 I downloaded the wine data, normalized the data then I implemented the k-NN algorithm.

Figure 1.



Figure 2.

Figure 1 compares the accuracies between my k-NN function and the sklearn implementation

Figure 2 shows the change in accuracy depending on the value k (k goes up to 142 there are some scaling issues in the image).

|       | 0          | 1          | 2          | <br>10     | 11         | 12         |  |
|-------|------------|------------|------------|------------|------------|------------|--|
| count | 142.000000 | 142.000000 | 142.000000 | 142.000000 | 142.000000 | 142.000000 |  |
| mean  | 0.019859   | 0.003740   | 0.003637   | 0.001467   | 0.003945   | 0.986027   |  |
| std   | 0.007046   | 0.002374   | 0.001380   | 0.000715   | 0.001940   | 0.009872   |  |
| min   | 0.008941   | 0.001093   | 0.001519   | 0.000579   | 0.001750   | 0.951812   |  |
| 25%   | 0.013810   | 0.001730   | 0.002423   | 0.000970   | 0.002479   | 0.981687   |  |
| 50%   | 0.019042   | 0.003259   | 0.003468   | 0.001232   | 0.003394   | 0.988268   |  |
| 75%   | 0.024675   | 0.005139   | 0.004460   | 0.001774   | 0.004870   | 0.993172   |  |
| max   | 0.040439   | 0.011652   | 0.007305   | 0.004105   | 0.010858   | 0.997738   |  |

Figure 3.

In figure 3 I used .describe function on the futures and mean is close to 0 but it can be closer, and variance is not equal to one as we can see.

So I used another function called StandartScaler to make the mean 0 and variance to 1 to improve the performance .

```
11
                                                            12
count 1.420000e+02 1.420000e+02
                                 ... 1.420000e+02 1.420000e+02
mean -1.488637e-15 3.221210e-16
                                 ... -2.376815e-16 -8.131211e-17
     1.003540e+00 1.003540e+00
                                 ... 1.003540e+00 1.003540e+00
std
     -2.430426e+00 -1.468929e+00
min
                                 ... -1.827912e+00 -1.494255e+00
25%
     -7.924121e-01 -6.928989e-01 ... -9.877434e-01 -7.633656e-01
50%
     6.855519e-02 -4.297234e-01
                                 ... 2.412637e-01 -2.224249e-01
75%
     8.114115e-01 7.646884e-01
                                 ... 8.071624e-01 6.290406e-01
max 2.194554e+00 2.948820e+00 ... 1.963262e+00 2.658188e+00
```

Figure 4.

In figure 4 we can see that the mean value is close to zero and the variance is nearly 1.

Figure 5.



Figure 6.

In figures 5 and 6 we can see that accuracy has improved quite well.

```
Confusion Matrix for my KNN:

[[14 0 0]

[ 0 15 1]

[ 0 0 6]]

Confusion Matrix for Sklearn KNN:

[[14 0 0]

[ 1 14 1]

[ 0 0 6]]
```

Figure 7.

Figure 7 shows confusion matrix for k=3 for both my k-NN function and sklearn implementation.

It seems that in k=3 my function classified class 2 better.