TASK 3 - DATATYPE_CONSTRAINTS (06/07/23)

Question1:

Write a small explanation of all commands in Data Control Language (DCL) and Transaction Control Language (TCL), along with some examples.

Answer

Data Control Language (DCL) -

GRANT: This command gives users access privileges to the database.

Syntax:

GRANT SELECT, UPDATE ON MY TABLE TO SOME USER, ANOTHER USER;

Eg: Grant select, Insert on Users To 'user2'@localhost

REVOKE: This command withdraws the user's access privileges given by using the GRANT command.

Syntax:

REVOKE SELECT, UPDATE ON MY_TABLE FROM USER1, USER2;

Eg: Revoke select, Insert on Users from 'user2'@localhost

Transaction Control Language (TCL)-

COMMIT: Commit a transaction

Syntax: Commit

Eg: Update products set product name = "Sample" where product id=1

Commit;

ROLLBACK & SAVEPOINT:

Rollbacks a transaction in case of any error occurs & Sets a save point within a transaction.

Syntax: Rollback;

Savepoint S1;

Eg: Begin

Update

SAVEPOINT S1;

Delete

SAVEPOINT S2;

Update

ROLLBACK TO S1;

End

^{*}It will roll back to s1 where only update alone will be committed*

Question 2:

Create an table "customer" with following columns

Output:

Query:

create table customer(cust_id SMALLINT,Cust_no MEDIUMINT,cust_Firstname CHAR, cust_Lastname varchar(20),cust_gender varchar(15),cust_dob date, cust_age int(2),cust_revenue decimal, cust_spend float,cust_addr TEXT,cust_city char,cust_comments TEXT, cust_status ENUM('ACTIVE','INACTIVE'),cust_available boolean)

Question 3:

The output of the SELECT statement should be a single column

Output:

i.

Query:

SELECT CAST(cust_id AS CHAR) AS cust_id_string

FROM customer;

SELECT CAST(cust_dob as Date) AS cust_dob_date

FROM customer;

SELECT CAST(cust_revenue AS SIGNED) AS cust_revenue_int

FROM customer;

SELECT CAST(cust_available AS CHAR) AS cust_available_text

FROM customer;

Question 4:

Case statement

Output:

Query:

```
SELECT cust id, cust age,
```

CASE

WHEN cust_age < 18 THEN 'Child'

WHEN cust_age >= 21 AND cust_age <= 65 then 'ADULT'

ELSE 'Senior Citizen'

END AS age_group

FROM customer;

Question 5:

Alter the above table by adding the following constraints **Output:**

Query

ALTER TABLE customer

MODIFY COLUMN cust_id SMALLINT NOT NULL;

ALTER TABLE customer

MODIFY COLUMN cust no MEDIUMINT UNIQUE;

ALTER TABLE customer

MODIFY COLUMN cust_city char(30) default 'NY';

Question 6:

Create a table called 'Employees' with the following columns:

Output:

Query:

create table employees (emp_id int primary key,emp_name varchar(50) not null, emp_age int,emp_dept varchar(50) default 'IT', CHECK(emp_age >= 18))

Question 7:

Create an table "customers_data" with below columns

Output:

Query:

```
create table customer_data (cust_id int primary key,cust_name varchar(30));
INSERT INTO customer_data(cust_id,cust_name) values(1,'Vishal');
INSERT INTO customer_data(cust_id,cust_name) values(2,'Aiyam');
INSERT INTO customer_data(cust_id,cust_name) values(3,'Perumal');

create table orders (order_id int primary key,cust_id int not null , order_date date,
FOREIGN KEY (cust_id) references customer_data(cust_id))
insert into orders(order_id,

cust_id,

order_date) values (1,2,'1999-04-04');
insert into orders(order_id,

cust_id,

order_date) values (2,2,'1999-04-04');
```


Steps:

- 1. Created customer_data table and inserted data into it
- 2. Created orders table with constraint like FOREIGN KEY REFERENCES TO (Primary key of other table) i.e Cust_id

- 3. Insertion of data into orders table should match with values of cust_id of customer table, if not error will be thrown
- 4.In order of deletion, irst data in order table need to deleted before deleting in Customer table, if not error will be thrown

Question 8

Enter some random 5 records of data into customers_data and orders table.

Output:

Query:

```
INSERT INTO customer_data(cust_id,cust_name) values(1,'Vishal');
INSERT INTO customer_data(cust_id,cust_name) values(2,'Aiyam');
INSERT INTO customer_data(cust_id,cust_name) values(3,'Perumal');
INSERT INTO customer_data(cust_id,cust_name) values(4,'Aravind');
INSERT INTO customer_data(cust_id,cust_name) values(5,'Prasan');
```

```
insert into orders(order_id,cust_id,order_date) values (1,1,'1999-04-04'); insert into orders(order_id,cust_id,order_date) values (2,2,'2000-02-25'); insert into orders(order_id,cust_id,order_date) values (3,3,'1999-12-25'); insert into orders(order_id,cust_id,order_date) values (4,5,'1999-12-11');
```

Question 9:

Remove any of 2 records from the customers data and orders table.

Steps:

- 1. Remove data from Orders table first where in this case I deleted cust_id = 3 and 5 in order table
- 2. Now you can able to remove cust_id 3 and 5 from Customer_data table Query:

delete from orders where cust_id in (3,5)

delete from customer_data where cust_id in (3,5)

Question 10:

Difference between unique and primary key

Differnce between float, double and decimal

Answers:

PRIMARY	UNIQUE		
Primary key does not store null values	Unique key stores null values		
Table can contain only one primary key	Table can contain multiple unique keys		
We can't able to delete or modify values of primary key	We can able to change values of unique key		
The primary Key is used for indicating the rows uniquely.	The Unique Key is used for preventing duplicate entries.		
Used to serve as a unique identifier for each row in a table	Uniquely determines a row that isn't the primary key.		

FLOAT	DOUBLE	DECIMAL	
M should be greater than D	M should be greater than D	Convert to Whole , if no precision	
Eg: Float(4,2)	Eg: Double(4,2)		
32 bits	64 bits	128bits	
Values are less accurate	More accurate than float	More accurate than float and double	
Upto 24 precision	Greater than 24 precision		