1. (1 point) Calculate
$$\frac{(1+\epsilon)}{1+\epsilon}$$

1. (1 point) Calculate
$$\frac{(1+i)^3}{1+2i}$$
. $(+i)(+i)(+i) = (+2i)(-0.4+1.2i)$ (B) $0.4-1.2i$ (C) $(-0.4+1.2i)$ (D) $(-0.4-1.2i)$

(A)
$$0.4 + 1.2i$$

(B)
$$0.4 - 1.2i$$

$$2i$$
 (D)

(E)
$$2+6i$$

(F)
$$2-66$$

(F)
$$2-6i$$
 (G) $-6-2i$

$$\frac{2i-2}{1+2i}\left(\frac{1-2i}{1-2i}\right) = \frac{2i-4i^2-2+4i}{1-(-4)} = \frac{6i+2}{5}$$

2. (1 point) Compute
$$\sum_{k=1}^{\infty} \frac{2^k + 3^k}{4^k}$$
, if the series converges.

$$\frac{2}{100} + \frac{3}{4}$$

(1 point) Compute
$$\sum_{k=1}^{\infty} \frac{1}{4^k}$$
, if the series converges.

(A) 3.2 (B) 3.4 (C) 3.6 (D) The series diverges

(E) 3.8 (F) 4.0 (G) 4.2 (H) None of those

$$\frac{1}{4^k} + \frac{3}{4^k}$$

$$\frac{1}{4^k} +$$

3. (1 point) Find the radius r for z and the number n of distinct roots for z.

(A)
$$r=1$$
 and $n=5$

(B)
$$r = \sqrt[5]{2}$$
 and $n = 5$

(C)
$$r = 1$$
 and $n = 2$

(D)
$$r = \sqrt[10]{2} \text{ and } n = 5$$

(E)
$$r = \sqrt[5]{4}$$
 and $n = 5$

$$(F) \quad r = \sqrt[2]{2} \text{ and } n = 2$$

4. (1 point) Find an angle that corresponds to one of the root for z.

- (B) $\frac{\pi}{4}$
- (C) $\frac{\pi}{5}$
- (D) $\frac{\pi}{10}$

- (F) $\frac{\pi}{2}$
- (G) π
- (H) None of those

- (B) $\sin(b)$

- (F) $\sin\left(\frac{1}{b}\right)$ (G) 0
- (H) None of those

- 6. (2 points) A sequence is defined recursively by $a_1 = -3$, $a_{n+1} = \frac{a_n + 3}{a_n + 1}$, $n \ge 1$. Assume that the sequence converges. Compute the limit of this sequence.
- (B) -2 (C) $-\frac{1}{2}$
- (D) 0

- (G) 3
- (H) None of those

73205

$$A = A + 3$$
 $A + 1$
 $A = A + 3$
 $A + 1$
 $A = A + 3$
 $A = A + 1$
 $A = A + 1$

$$A^2 + A = A + 3$$

7. (2 point) Set up the arc length equation for the parametric curve:

$$x = a\cos(t), y = b\sin(t), 0 \le t \le \frac{\pi}{2}.$$

- (A) $\int_0^{\frac{\pi}{2}} \sqrt{a^2 \cos^2(t) + b^2 \sin^2(t)} dt$ (B) $\int_0^{\frac{\pi}{2}} \sqrt{a^2 \sin^2(t) + b^2 \cos^2(t)} dt$
- (C) $\int_0^{\frac{\pi}{2}} \sqrt{a\cos(t) + b\sin(t)} dt$ (D) $\int_0^{\frac{\pi}{2}} \sqrt{a\sin(t) + b\cos(t)} dt$
- (E) $\int_{0}^{\frac{\pi}{2}} \sqrt{a^2 + b^2} dt$

(F) None of those

$$x = (-asht)$$
 $y' = (b cost)$

Vasin't + 6 cost

- (A) $-\frac{1}{3}$ (B) $-\frac{1}{2}$ (C) -1 (D) 0
- (E) Tangent line is vertical

- (F) $\frac{1}{3}$ (G) $\frac{1}{2}$
- (I) 2
- None of those

$$\frac{r \sin \theta + r \cos \theta}{r \cos \theta - r \sin \theta}$$

$$\frac{r^2 - \sin \theta}{\cos \theta} = 1$$

$$\cos \theta = 0$$

$$\cos \theta = 0$$

$$\frac{1}{6} \quad \frac{1}{6}$$

$$\frac{1}{3} \quad \frac{1}{5}$$

(A)
$$e$$
 (B) e^{-1} (C) 1 (D) The series diverge (E) $e^{1/2}$ (F) e^{+1} (G) (H) None of these

(A)
$$e$$
 (B) $e^{-1}e^{1$

- 10. (2 points) Determine whether or not $\sum_{n=1}^{\infty} \left(\frac{e^n n^e}{e^n} \right)$ converges, giving appropriate (and correct) justification.
 - (A) Converges, by the n-th Terms test.
 - (B) Diverges, by the n-th Terms test.
 - (C) Converges, by a telescoping sum argument.
 - (D) Diverges, by a telescoping sum argument.
 - (E) Converges, by the Integral Test.
 - (F) Diverges, by the Integral Test.
 - (G) Diverges, since it is a harmonic series.
 - (H) None of those

$$\frac{e^{n}-n}{e^{n}}$$

$$\frac{e^{n}-n}{e^{n}}$$

$$\frac{e^{n}-n}{e^{n}}$$

$$\begin{cases} \frac{e^{x}}{e^{x}} - \int \frac{e^{x}}{e^{x}} \\ = \int \frac{e^{x}}{e^{x}} - \int \frac{e^{x$$

MATHEMATICS 101 (Sections A01-A05) Formula sheet, Spring 2018 Midterms and Final examinations.

Table of Integrals

1.
$$\int \frac{du}{\sqrt{a^{2} - u^{2}}} = \sin^{-1}\left(\frac{u}{a}\right) + C, (u < a)$$
2.
$$\int \frac{du}{a^{2} + u^{2}} = \frac{1}{a}\tan^{-1}\left(\frac{u}{a}\right) + C$$
3.
$$\int \frac{du}{u\sqrt{u^{2} - a^{2}}} = \frac{1}{a}\sec^{-1}\left|\frac{u}{a}\right| + C, (u > a)$$
4.
$$\int \frac{du}{\sqrt{u^{2} + a^{2}}} = \sinh^{-1}\left(\frac{u}{a}\right) + C, (a > 0)$$
5.
$$\int \frac{du}{\sqrt{u^{2} + a^{2}}} = \sinh^{-1}\left(\frac{u}{a}\right) + C, (a > 0)$$
6.
$$\int \frac{du}{a^{2} - u^{2}} = \begin{cases} \frac{1}{a}\tanh^{-1}\left(\frac{u}{a}\right) + C, & \text{if } \left|\frac{u}{a}\right| < 1\\ \frac{1}{a}\coth^{-1}\left(\frac{u}{a}\right) + C, & \text{if } \left|\frac{u}{a}\right| > 1 \end{cases}$$
7.
$$\int \frac{du}{u\sqrt{a^{2} - u^{2}}} = -\frac{1}{a}\operatorname{sech}^{-1}\left(\frac{u}{a}\right) + C, (a > u > 0)$$
8.
$$\int \frac{du}{u\sqrt{a^{2} + u^{2}}} = -\frac{1}{a}\operatorname{csch}^{-1}\left|\frac{u}{a}\right| + C, (u > 0)$$
9.
$$\int \operatorname{sec} u \, du = \ln|\operatorname{sec} u + \tan u| + C$$
5.
$$\int \frac{du}{\sqrt{u^{2} - a^{2}}} = \cosh^{-1}\left(\frac{u}{a}\right) + C, (u > a > 0)$$
10.
$$\int \operatorname{csc} u \, du = -\ln|\operatorname{csc} u + \cot u| + C$$

Trigonmetric and Hyperbolic Identities

1.
$$\cos^{2}(\theta) + \sin^{2}(\theta) = 1$$

2. $\sin(2\theta) = 2\sin(\theta)\cos(\theta)$
3. $\cos(2\theta) = \cos^{2}(\theta) - \sin^{2}(\theta)$
4. $\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$
5. $\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$
12. $\operatorname{sech}^{-1}(x) = \cosh^{-1}\left(\frac{1}{x}\right)$
6. $\sin(A)\sin(B) = \frac{1}{2}\cos(A-B) - \frac{1}{2}\cos(A+B)$
7. $\cos(A)\cos(B) = \frac{1}{2}\cos(A-B) + \frac{1}{2}\cos(A+B)$
13. $\operatorname{csch}^{-1}(x) = \sinh^{-1}\left(\frac{1}{x}\right)$
8. $\sin(A)\cos(B) = \frac{1}{2}\sin(A-B) + \frac{1}{2}\sin(A+B)$
14. $\coth^{-1}(x) = \tanh^{-1}\left(\frac{1}{x}\right)$