Algoritmi e Strutture Dati a.a. 2021/22

Compito del 12/9/2022

Cognon	ne: Nome:
Matrico	la: E-mail:
	Parte I (30 minuti; ogni esercizio vale 2 punti)
	enza: Si giustifichino tecnicamente tutte le risposte. In caso di discussioni poco formali o approssimative gli non verranno valutati pienamente.
1.	 Sia H un min-heap contenente n interi distinti ed implementato con un vettore (come visto durante il corso) Rispondere alle seguenti domande, motivando le risposte. a. Assumendo che i nodi interni di H siano già ordinati, è possibile ordinare tutti gli elementi di H con complessità strettamente inferiore a O(n log n)? b. Sia k costante rispetto ad n. Quanto costa determinare la k-esima chiave più piccola di H? c. Quanto costa eliminare la chiave H[i]?
2.	Il Prof. Cook sostiene che, sebbene (come visto a lezione) 3-SAT-FNC ≤ _P CLIQUE, non sia vero il contrario ovvero che CLIQUE non è riducibile polinomialmente a 3-SAT-FNC. L'affermazione è corretta? (Spiegare.)
3.	Dato un grafo orientato <i>G</i> con <i>n</i> vertici ed <i>m</i> archi, quante sono <i>esattamente</i> le operazioni di rilassamento ("relax") realizzate dall'algoritmo di Bellman-Ford su <i>G</i> ? Potremmo affermare qualcosa riguardo alla correttezza dell'algoritmo nel caso si facesse qualche "relax" in più? (Spiegare.)

Algoritmi e Strutture Dati

a.a. 2021/22

Compito del 12/9/2022

Cognome:	Nome:
Matricola:	E-mail:

Parte II

(2.5 ore; ogni esercizio vale 6 punti)

Avvertenza: Si giustifichino tecnicamente tutte le risposte. In caso di discussioni poco formali o approssimative gli esercizi non verranno valutati pienamente.

- Sia T un albero generale i cui nodi hanno campi: key, left-child e right-sib. Scrivere una funzione efficiente in C o C++ che calcoli il numero di foglie di T e analizzarne la complessità.
 Specificare quale linguaggio è stato utilizzato.
- 2. Sia A un array di n numeri naturali. Si consideri il problema di stampare in ordine **crescente** tutti i numeri che compaiono in A almeno $\lfloor n/k \rfloor$ volte, dove k > 0 è una costante.

Si scriva una procedura **efficiente** che, dati A, n e k, risolva il problema proposto. Valutare e giustificare la complessità dell'algoritmo proposto.

Si devono scrivere le eventuali funzioni/procedure ausiliarie utilizzate.

3. Si scriva l'algoritmo di Dijkstra, si derivi la sua complessità, si dimostri la sua correttezza e si simuli la sua esecuzione sul seguente grafo utilizzando il vertice 1 come sorgente:

In particolare:

- a) si indichi l'ordine con cui vengono estratti i vertici
- b) si riempia la tabella seguente con i valori dei vettori de π , iterazione per iterazione:

	vertice 1		vertice 2		vertice 3		vertice 4		vertice 5	
	d[1]	π[1]	d[2]	π[2]	d[3]	π[3]	d[4]	π[4]	d[5]	π[5]
dopo inizializzazione										
iterazione 1										
iterazione 2										
iterazione 3										
iterazione 4										
iterazione 5										

4. Sia G = (V, E) un grafo non orientato e connesso con funzione peso $w : E \to \mathbb{R}$ e sia S un sottoinsieme di vertici di G. Si supponga che il taglio $(S, V \setminus S)$ sia attraversato da un unico arco leggero (u,v) (ovvero: w(u,v) < w(x,y) per ogni altro arco (x,y) che attraversa il taglio).

Stabilire se le seguenti affermazioni sono vere o false:

- a. G contiene un unico albero di copertura minimo
- b. Tutti gli alberi di copertura minimi di G contengono l'arco (u,v)
- c. Esiste un albero di copertura minimo di G che contiene l'arco (u,v)

Nel primo caso si offra una dimostrazione, nel secondo un controesempio.