Math 523 HW 9

Morgan Gribbins

Use the technique of Example 2 to determine the number of zeroes of f in the first quadrant.

1.
$$f(z) = z^2 - z + 1$$

We examine f(z) on the quarter circle of radius R >> 0 in the first quadrant bounded by the real and imaginary axes. On the segment $0 \le x \le R$, $f(x) = x^2 - x + 1$, which is real and positive. On the quarter circle $z = Re^{it}$, $0 \le t \le \pi/2$,

$$f(Re^{it}) = R^2 e^{2it} \left(1 - \frac{1}{Re^{it}} + \frac{1}{R^2 e^{2it}} \right) = R^2 e^{2it} (1 + \gamma),$$

where $|\gamma| \leq 2/R < \epsilon$ for R large. Thus, $\arg f(Re^{it})$ is approximately $\arg(e^{2it}) = 2t$ for large R, so $\arg f(Re^{it})$ increases from 0 to about π as t increases from 0 to $\pi/2$. On the segment $z = iy, R \geq y \geq 0$,

$$f(iy) = -y^2 - iy + 1.$$

Thus, as y decreases from R to 0, f(iy) moves from the third quadrant to z=1, and $\arg f(z)$ increases by π , so as z traverses the contour, $\arg f(z)$ increases by exactly 2π , and so f(z) has exactly one zero in the first quadrant.

2.
$$f(z) = z^4 - 3z^2 + 3$$

We examine f(z) on the quarter circle of radius R >> 0 in the first quadrant bounded by the real and imaginary axes. On the segment $0 \le x \le R$, $f(x) = x^4 - 3x^2 + 3$, which is real and positive. On the quarter circle $z = Re^{it}$, $0 \le t \le \pi/2$,

$$f(Re^{it}) = R^4 e^{4it} \left(1 - \frac{3}{R^2 e^{2it}} + \frac{3}{R^4 e^{4it}} \right) = R^4 e^{4it} (1 + \gamma),$$

where $|\gamma| \le 6/R < \epsilon$ for R large. Thus, $\arg f(Re^{it})$ is approximately $\arg(e^{4it}) = 4t$ for large R, so $\arg f(Re^{it})$ increases from 0 to about 2π as t increases from 0 to $\pi/2$. On the segment $z = iy, R \ge y \ge 0$,

$$f(iy) = y^4 + 3iy^2 + 3.$$

Thus, as y decreases from R to 0, f(iy) moves from the first quadrant to z = 3, and arg f(z) increases by 0, so as z traverses the contour, arg f(z) increases by exactly 2π , and so f(z)

has exactly one zero in the first quadrant.

3.
$$f(z) = z^3 - 3z + 6$$

We examine f(z) on the quarter circle of radius R >> 0 in the first quadrant bounded by the real and imaginary axes. On the segment $0 \le x \le R$, $f(x) = x^3 - 3x + 6$, which is real and positive. On the quarter circle $z = Re^{it}$, $0 \le t \le \pi/2$,

$$f(Re^{it}) = R^3 e^{3it} \left(1 - \frac{3}{Re^{it}} + \frac{6}{R^3 e^{3it}} \right) = R^3 e^{3it} (1 + \gamma),$$

where $|\gamma| \leq 7/R < \epsilon$ for R large. Thus, $\arg f(Re^{it})$ is approximately $\arg(e^{3it}) = 3t$ for large R, so $\arg f(Re^{it})$ increases from 0 to about $3\pi/2$ as t increases from 0 to $\pi/2$. On the segment $z = iy, R \geq y \geq 0$,

$$f(iy) = -iy^3 - 3iy + 6.$$

Thus, as y decreases from R to 0, f(iy) moves from the fourth quadrant to z=6, and $\arg f(z)$ increases by $\pi/2$, so as z traverses the contour, $\arg f(z)$ increases by exactly 2π , and so f(z) has exactly one zero in the first quadrant.

4.
$$f(z) = z^2 + iz + 2 + i$$

We examine f(z) on the quarter circle of radius R >> 0 in the first quadrant bounded by the real and imaginary axes. On the segment $0 \le x \le R$, $f(x) = x^2 + ix + 2 + i$, which traverses from 2+i to $R^2 + 2 + i(R+1)$, so $\arg f(x)$ changes by $-\arg(2+i)$. On the quarter circle $z = Re^{it}$, $0 \le t \le \pi/2$,

$$f(Re^{it}) = R^2 e^{2it} \left(1 + \frac{i}{Re^{it}} + \frac{2+i}{R^3 e^{3it}} \right) = R^2 e^{2it} (1+\gamma),$$

where $|\gamma| \le 4/R < \epsilon$ for R large. Thus, $\arg f(Re^{it})$ is approximately $\arg(e^{2it}) = 2t$ for large R, so $\arg f(Re^{it})$ increases from 0 to about π as t increases from 0 to $\pi/2$. On the segment $z = iy, R \ge y \ge 0$,

$$f(iy) = -y^2 - y + 2 + i.$$

Thus, as y decreases from R to 0, f(iy) moves from the third quadrant to z = 2 + i, and $\arg f(z)$ increases by $-\pi + \arg(2 + i)$, so as z traverses the contour, $\arg f(z)$ increases by exactly 2π , and so f(z) has no zeros in the first quadrant.

5.
$$f(z) = z^9 + 5z^2 + 3$$

We examine f(z) on the quarter circle of radius R >> 0 in the first quadrant bounded by the real and imaginary axes. On the segment $0 \le x \le R$, $f(x) = x^9 + 5x^2 + 3$, which is real and positive. On the quarter circle $z = Re^{it}$, $0 \le t \le \pi/2$,

$$f(Re^{it}) = R^9 e^{9it} \left(1 + \frac{5}{Re^{7it}} + \frac{3}{R^9 e^{9it}} \right) = R^9 e^{9it} (1 + \gamma),$$

where $|\gamma| \leq 8/R < \epsilon$ for R large. Thus, $\arg f(Re^{it})$ is approximately $\arg(e^{9it}) = 9t$ for large R, so $\arg f(Re^{it})$ increases from 0 to about $9\pi/2$ as t increases from 0 to $\pi/2$. On the segment $z = iy, R \geq y \geq 0$,

$$f(iy) = iy^9 - 5y^2 + 3.$$

Thus, as y decreases from R to 0, f(iy) moves from the first quadrant to z = 3, and arg f(z) increases by $-\pi/2$, so as z traverses the contour, arg f(z) increases by exactly 4π , and so f(z) has exactly two zero in the first quadrant.

18. Extend Formula 4 to prove the following. Let g be analytic on a domain containing γ and its inside. Then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{h'(z)}{h(z)} g(z) dz = \sum_{i=1}^{N} g(z_i) - \sum_{j=1}^{M} g(w_j),$$

where $z_1, ..., z_N$ are the zeroes of h and $w_1, ..., w_M$ are the poles of h inside γ , each listed according to its multiplicity.

By the Residue Theorem,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{h'(z)}{h(z)} g(z) dz = \sum_{i=1}^{N} \operatorname{Res}\left(\frac{h'}{h} g; z_{i}\right),$$

where z_i are the poles of $\frac{h'}{h}g$. Note that this set of poles is the union of the set of zeros of h(z) and poles of h(z) inside γ . By theorem, a residue of $\frac{h'(z)g(z)}{h(z)}$ at z_i is equal to $\frac{h'(z_i)g(z_i)}{h'(z_i)} = g(z_i)$. Therefore,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{h'(z)}{h(z)} g(z) dz = \sum_{i=1}^{N} g(z_i) - \sum_{j=1}^{M} g(w_j),$$

with the prior definition of z_i and w_i .