MDI 220 - Statistiques mathématiques

1 Analyse statistique des données

On note Ω l'univers et \mathcal{F} la tribu des événements. On considère une variable aléatoire X, appelée observation, définie sur (Ω, \mathcal{F}) et à valeur dans l'espace des observations $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$, ou $\mathcal{B}(\mathcal{X})$ est une tribu composée de parties de \mathcal{X} .

Def. Modèle statistique : famille de probabilités \mathcal{P} sur $\mathcal{B}(\mathcal{X})$. Si Θ est un ensemble quelconque tel que $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$ alors Θ est appelé espace des paramètres du modèle.

Rem. L'existence d'une paramétrisation est toujours acquise, quitte à prendre $\Theta = \mathcal{P}$.

Si Θ peut être choisi comme sous-ensemble d'un espace euclidien, le modèle est dit **paramétrique**. Si $\Theta \subset \Theta_1 \times \Theta_2$ où Θ_1 est inclus dans un espace euclidien, le modèle est dit **semi-paramétrique**.

Def. Une **statistique** est une variable aléatoire s'écrivant commme une fonction mesurable des observations, de type $\varphi(X)$ où $\varphi \colon (\mathcal{X}, \mathcal{B}(\mathcal{X})) \to (\mathbf{R}^d, \mathcal{B}(\mathbf{R}^d))$ est mesurable.

Def (Identifiabilité). Un modèle statistique \mathcal{P} décrit par un paramètre $\theta \in \Theta$ est dit **identifiable** si $\theta \mapsto P_{\theta}$ est injective. Plus généralement, une fonction g de θ est dite identifiable si $(P_{\theta_1} = P_{\theta_2}) \implies (g(\theta_1) = g(\theta_2))$.

Rem. Avec $\Theta = \mathcal{P}$ on sait qu'il existe toujours au moins une paramétrisation identifiable.

Def. Un modèle statistique est dit **dominé** s'il existe une mesure positive μ sur $\mathcal{B}(\mathcal{X})$ telle que pour tout $\theta \in \Theta$, $P_{\theta} \in \mathcal{P}$ admette une densité de probabilité p_{θ} par rapport à μ .

Rem. Tout modèle défini sur un espace fini ou dénombrable $(\mathcal{X}, \mathcal{P}(\mathcal{X}))$ est dominé par la mesure de comptage sur \mathcal{X} , $\mu = \sum_{x \in \mathcal{X}} \delta_x$.

Def. L'application $\theta \to p(x; \theta)$ s'appelle la fonction de **vraisemblance** de l'observation x (avec $p(\cdot; \theta)$, ou $p_{\theta}(\cdot)$ la densité de la loi P_{θ} par rapport à une mesure dominante de référence μ).

Not. Pour parler de n observations on notera une loi produit $P_n = P^{\otimes n}$ lorsque les échantillons sont i.i.d, et $\mathcal{P}_n = \{P_n, P \in \mathcal{P}\}$ le modèle associé.

Def. Le type de réponse que l'on attend d'une *procédure de décision* (procédure d'estimation ou test statistique) s'appelle une **action**. On notera \mathcal{A} l'espace des actions. Une **règle de décision** est alors définie comme une fonction $\delta \colon \mathcal{X} \to \mathcal{A}$.

Def. Soit $\delta \colon \mathcal{X} \to \mathcal{A}$ une règle de décision. Son risque sous la loi $P_{\theta} \in \mathcal{P}$ est $R(\theta, \delta) = \mathbf{E}_{\theta} [L(\theta, \delta(X))] \in \bar{\mathbf{R}}_{+}$.