Statistical Inference - Inferential Data Analysis

Silva, RAFAEL

December 4, 2017

Setup

This section presents all the libraries used during the project.

```
library(datasets)
library(ggplot2)
library(dplyr)
library(knitr)
```

Introduction

The objective of this project is to make some inferences about the length variation on each supplement and dose on the ToothGrowth data from the R datasets package. The análysis is going to follow the four steps below:

- 1. Exploratory data analysis and summary;
- 2. Hypothesis testing;
- 3. Conclusions and assumptions.

The chunk bellow is used to read the data set into the workspace.

```
data("ToothGrowth")
```

For more information on the data set (description, dimensions, variables and source) enter ?ToothGrowth on the console to check its documentation.

Exploratory analysis

To start the analysis, a brief verification on how the dataset looks like is necessary.

```
dim(ToothGrowth)
## [1] 60 3
head(ToothGrowth)
```

```
##
     len supp dose
## 1 4.2
           VC 0.5
## 2 11.5
           VC 0.5
## 3
    7.3
           VC 0.5
## 4 5.8
           VC
              0.5
## 5 6.4
           VC
               0.5
## 6 10.0
           VC
              0.5
```

As the outputs above show, the data set has 60 observations on 3 variables. As the instroduction chapter states, the objective is to make some inferences about the length variation on each supplement and dose. The boxplot below gives a feeling about how each combination affects the length.

Length by Supplement and Dose

It is important to notice that, in the graph above, the x axis does not present a continuous scale. This means that when analysing the graph you should not look at how the length increase "evolve" through the doses but at how each group behave in the y scale.

In the table below, the main statistical attributes of each group are summarized.

```
summ <- ToothGrowth %>%
    group_by(suppDose) %>%
    summarise(min = min(len),
        q1 = quantile(len, .25),
        mean = mean(len),
        median = median(len),
        q3 = quantile(len, .75),
        max = max(len),
        variance = var(len),
        n = length(len))
```

Table 1: Data Summary by Supplement and Dose

	Min	1st Qu.	Mean	Median	3rd Qu.	Max	Variance	n
OJ/0.5	8.2	9.700	13.23	12.25	16.175	21.5	19.889000	10
OJ/1.0	14.5	20.300	22.70	23.45	25.650	27.3	15.295556	10
OJ/2.0	22.4	24.575	26.06	25.95	27.075	30.9	7.049333	10
VC/0.5	4.2	5.950	7.98	7.15	10.900	11.5	7.544000	10
VC/1.0	13.6	15.275	16.77	16.50	17.300	22.5	6.326778	10
VC/2.0	18.5	23.375	26.14	25.95	28.800	33.9	23.018222	10

Continue...