Project 3.

Two-dimensional random walks. First passage time and the survival probability. Lévy flights.

1. Two-dimensional random walk.

Simulate symmetric random walks on the square lattice. Probabilities of jumps on the left, on the right, up and down are equal, 1/4.

Task 1.1

Compute and plot the probability P(x,y,t) to find this particle after time t (i.e., after t jumps) at site (x,y). At t=0 the particle is at site (x,y)=0. Use $t=5000,\,5001$, then average over even and odd t and find the averaged probabilities $\overline{P}(x,y,t)$. Compare between your simulations and a theoretical distribution function,

$$P(x, y, t) = \frac{1}{\pi t} e^{-(x^2 + y^2)/t}$$
.

Task 1.2

Plot any 3 trajectories after 100 jumps.

Algorithm for random walks on a square lattice.

Start from the point (x,y)=(0,0).

- 1. Generate at random integer numbers A=1, 2, 3, and 4. If A=1 then the particle jumps up, if A=2 it jumps on the right, if A=3 it jumps down, and if A=4 it jumps on the left.
- 2. Update the point (x,y).
- 3. Repeat steps 1 and 2 t times. You will get a trajectory. Make N trajectories.
- 4. Calculate the number N(x,y,t) of times when the end point of the trajectory is at site (x,y). Calculate the probability

$$P(x, y, t) = N(x, y)/N$$

- 5. Then average over even and odd times: $\overline{P}(x, y, t) = \frac{1}{2}(P(x, y, t) + P(x, y, t + 1))$.
- 6. Plot the averaged distribution function $\overline{P}(x, y, t)$ in the (x, y)-plane.

7. Check that
$$\sum_{x,y} \overline{P}(x,y,t) = 1,$$

$$\sum_{x,y} \overline{P}(x,y,t)x = \sum_{x,y} \overline{P}(x,y,t)y = 0,$$

$$\sum_{x,y} \overline{P}(x,y,t)(x^2 + y^2) = t$$

8. Compare $\overline{P}(x, y, t)$ with the theoretical distribution function

$$P(x, y, t) = \frac{1}{\pi t} e^{-(x^2 + y^2)/t} ...$$

2. First passage time and the survival probability

There is an absorbing boundary along the vertical line at $x_c = -30$, i.e., particles walk in the semi-plane with $-30 \le x$. The starting point is at $\mathbf{R} = (0,0)$. If the particle hits this boundary, then the walk is stopped. Repeat these random walks. The number of attempts N=50000 times. (In other words, there are N=50000 particles.)

Task 2.1

Calculate the number $N_{\rm fpt}$ (t) of particles which hit the boundary for the first time during a time interval [t,t+ Δ t], Δ t=10. Plot the first passage time probability F(t)= $N_{\rm fpt}(t)/(N\Delta t)$ to hit the boundary for the first time at time interval [t,t+ Δ t] (the first passage time probability). Analyse behaviour of F(t) at large t [let the maximum time be 50 000 jumps]. For this purpose plot the function $\ln F$ (t) versus $\ln t$ (log-log plot).

Calculate the survival probability S(t). For this purpose, find the number $N_s(t)$ of particles which are not trapped, i.e., survive, at time t. By definition, $S(t) = N_s(t)/N$. Plot S(t).

Compare between simulation results and the theoretical predictions:

$$S(t) = erf\left(\frac{x_c - x_0}{2\sqrt{Dt}}\right),$$

$$F(t) = \frac{|x_c - x_0|}{\sqrt{4\pi Dt^3}} exp\left(-\frac{(x_c - x_0)^2}{4Dt}\right),$$

$$F(t) \propto \frac{1}{t^{3/2}}, \ S(t) \propto \frac{1}{t^{1/2}}$$

Here, $x_0 = 0$ is the starting point, $x_c = -30$ is the boundary position, and D = 1/4 is the diffusion coefficient.

2. Lévy flights.

This task is aimed to study 2D-random walks with variable length of jumps. The probability P(l) that a jump has the length l is determined by the Lévy distribution,

$$P(l) = \frac{c}{l^{\mu}},$$

where c is the normalization constant. If the minimum and maximum lengths of jumps are $l_{min} = 1$ and $l_{max} = 1000$, respectively, then the normalization constant c is

$$c = \frac{\mu - 1}{1 - l_{max}^{1 - \mu}}$$

After a jump the particle will be at a point with coordinates $(x, y) = (l \cos \varphi, l \sin \varphi)$ with respect to the initial point. Jumps are isotropic. It means that the probability to jump at an angle φ is constant, $p(\varphi) = 1/2\pi$.

Task 3.1

For three values of the exponent μ =1.6, 2, and 2.6 generate trajectories with N=1000 random jumps. Plot these three trajectories and compare with isotropic 2D-random walks having a fixed length of jumps, l=1. Analyse qualitatively the trajectories.

Task 3.2

Show that, if x is a random number generated uniformly at random in the interval [0,1], then the random numbers

$$l = \frac{l_{\text{max}}}{\left[(l_{\text{max}}^{\mu-1} - 1)x + 1 \right]^{1/(\mu-1)}}$$

are distributed according the Levy flights distribution, $P(l) = \frac{c}{l^{\mu}}$.

Algorithm:

In order to generate the Lévy flights use the following method.

- 1. Generate a random number $x \in [0,1]$ with the uniform probability.
- 2. Calculate the length of jump as follows:

$$l = \frac{l_{\text{max}}}{\left[(l_{\text{max}}^{\mu-1} - 1)x + 1 \right]^{1/(\mu-1)}}$$

- 3. Generate the angle of the jump φ with the uniform probability. Namely, generate a random number y in the interval [0,1]. Then, $\varphi=2\pi y$.
- 4. After the jump the particle will be in the point $(x_1, y_1) = (l \cos \varphi, l \sin \varphi)$.
- 5. Start a new jump from the point (x_1, y_1) .
- 6. Repeat these jumps N times.
- 7. Plot the trajectory.