I ransversals:	
we how that x 9	→ Stabg(x) G.
can we not only	find the orbit of x, but also
representatives for	find the orbit of x, but also cosets?
1	$[x, \times^{\mathfrak{g}}, \times^{\mathfrak{h}}, \times^{\mathfrak{gh}}, \times^{\mathfrak{hg}}, \dots]$
xh xh3	[1, g, h, gh, hg,]
× 1/	•

Dofn:
Transversal is the list of coset representatives
associated to orbit ×9.

Motation:

- · We will blend the notions of an orbit and a Transversal.
- If T is a fransversal for x^8 , fluen T[y] = g s.f. $x^9 = g$

ALGORITHM: ORBIT-TRANSVERSAL
INPUT: 5 - set of generators of G × - point to act on
OUTPUT: · A - orbit x5
·T - associated transversal
Desim $\Delta = Lx]$ $T = LeJ < group identity$ for $S \in \Delta$ for $S \in S$ $X = S^{S}$ if $X \notin \Delta$ push Y to Δ group elevent $T[X] = T[S] \cdot S$ which sends end end end return Δ , T end
Problem with this algorithm: storage.
1 permutation of length 210 is 8KiB
106 such permutations ~ 106:B
1 perm of longth 2 to is 1024.8 KiB = 8 HiB
512 of such is already 8GiB

Solution: Only store the minimal information required to reconstruct elements from the transversal! Definition: Let $\triangle = x^g$ (as ordered set). We say that $V = (v_1, ..., v_k) \in (Sules)^k$ Schere vector for A iff $\triangle = [x, x^0, x^k, x^{sh}, \dots]$ 1) k = | [] V = [e, g, h, h, ...] 2) N= C 3) whenever $y \in \Delta$ and U[y] = 1then ys, occurs in a before y. the entry of v associated lo y INPUT: · S - a generaling set for G=<1> OUTPUT: $\Delta - x^{\alpha}$ the orbit of xV - Schreier vertor/tree $[x] = \triangle$ J = [e] for SEA for ses Y = &5 if X & A push y to A end end end return s.T. spush s to V

ALGORITHM: RECONSTRUCT REPRESENTATIVE INPUT: A - orbit of x J - associated Schneier Ventor/tree y - point in A begin 8 = y 11 correct point g = e 11 coset representative while y + x 5 = J[X] $y = y^{s'}$ and return g - Generating set for the stabilizer Let g = (5)=(5,-,5h) and let H<G be of finite index with coset representatives [", ..., "n) (we assure that 1=e). for geg there exists a unique coset st getter; we will write q for y. Let T = { Tisj(Tisj) } Lemma: H = <T> T is called the set of Ichreier generators

1)
$$r_i s_j (\overline{r_i s_j})^{ij} \in H$$

let x e H , x = gi ... gm , gi e S.

=
$$1 \cdot g_1((\overline{1 \cdot g_1})^{-1} \cdot (\overline{1 \cdot g_1})) g_2 \cdots g_m$$

$$= t_1 \cdot \overline{g_1} g_2(\overline{g_1} g_2) \cdot (\overline{g_1} g_2) \cdot g_3 \cdot \dots \cdot g_m$$

$$t_2 \in T$$

$$= t_1 \cdot \overline{g_1} g_2(\overline{g_1} g_2) \cdot (\overline{g_1} g_2) \cdot g_3 \cdots g_m$$

$$= t_1 \cdot t_2 \cdot (\overline{\overline{g_1}} g_2) g_3 \cdot (\overline{\overline{g_1}} g_2 g_3) \cdot (\overline{g_1} g_3) \cdot (\overline{g_1} g_2 g_3) \cdot (\overline{g_1} g_3) \cdot (\overline{g_1$$

Application: $H = Stab_g(x) = \{g \in G : x^g = x\}$ A = orbit of x => wests of #16. frankersal HT[x3] >> Hg ALGORITHM: Orbit/Stabilizer INPUT: · S - set of generators for g= (3) · x - a point in 12 Ourput: . A - the orbit of x · T - transversal for A (Schreier or not) · U - set of schreier generators begin $[\times] = \Delta$ T = [e] u = 107 for Se A for ses if y ∉ A push y to s push 5 to T push T[S]·s·T[x] to U end end return D,T,U

Performance: (problem)

• U will have $\sim k \cdot n = |S| \cdot |\Delta|$ elements that's plenty, but sometimes all are needed

· remove duplicates and identify

· instead of collecting all those generators simply form a group $H = \langle U \rangle$, and check if the new one already belongs to H.

Further applications:

Normal closure of H<G i.e. (also have as the normalized the normalized of H m G).

Tips: if $H=\langle u\rangle$ start the orbit algorithm with $\Delta=U$ under the action $g^h=h^igh$.

Proof: 1) termination

2) suppose that $N = \langle \Delta \rangle$

 $H < \mathcal{N}$ since $u \in \Delta$.

3) We have $N < N_g(H)$ since every elt of Δ can be written as carringation gug^{-1} of $u \in \mathcal{U}$.

4) if $x \in \mathcal{N}_{g}(H)$ if can be written as a product of conjugates of gens of H.

Finally: Pseudorandom elements
·
70 find Andez random elts in g one
would need to
1) access all elts of g as a list (at arbitrary locations)
2) generale random number from 1:4
and then pich the corresponding elf.
1) is infeasible (too many of them)
2) 18 impossible (no such hardware exist).
ALGORITHM: Pseudo-random
INPUT: X - a list of "sufficiently" random elts from
Output: · X - a list of
g-a roundon element
begin
i, j - two distinct integers from 1: X chosen at random
San = rand ((-1,1))
1if rand (Bool)
$X(i) = X(i) \cdot X(i)$
else $g = s \cdot \times LiJ$ $\times LiJ = \times LiJ^{sy} \cdot \times LiJ$
exex $\times li = \times li \int_{-\infty}^{\infty} \cdot \sqrt{l} dt$
$a = X(i) \cdot e$
and
g = X[i]·s and return X, g

end

ALGORITHM: initialize

INPUT: · S - a set of generators for G = (S)

OUTPUT: · X - a list of "sufficiently random" elements of G

· a - a pseudoravelom group element

begin

X = concalente S with itself as long as 1×1<11

a = e // the accumulator // // // // // // // // //

for _ in 1: 50 // also a heuristic

X, a = pseudorandom (X,a)

end

return X,a

end