Mean-Field VI for Models with Local and Global Variables

CS698X: Topics in Probabilistic Modeling and Inference Piyush Rai

LVMs with Local and Global Unknowns

- Examples: Gaussian Mixture Model, Prob. PCA, Variational Autoencoder (VAE), etc.
- lacktriangle Denote all local unknowns $\{m{z}_1, m{z}_2, ..., m{z}_N\}$ as $m{Z}$ and global unknown as $m{eta} = (heta, \phi)$
- The goal is to infer the posterior $p(\mathbf{Z}, \boldsymbol{\beta} | \mathbf{X})$ which is intractable in general
- Mean-field VI will approximating this posterior as $p(Z, \beta | X) \approx q(Z, \beta) \approx q(Z)q(\beta)$

LVMs with Local and Global Unknowns

■ Assuming independence, the joint distribution of data X and unknowns $\boldsymbol{\beta} = (\theta, \phi)$

$$p(\mathbf{X}, \mathbf{Z}, \boldsymbol{\beta}) = p(\boldsymbol{\beta}) \prod_{n=1}^{N} p(x_n | z_n, \boldsymbol{\beta}) p(z_n | \boldsymbol{\beta}) = p(\boldsymbol{\beta}) \prod_{n=1}^{N} p(x_n, z_n | \boldsymbol{\beta}) \bigoplus_{\text{Global}} \boldsymbol{\phi} \underbrace{\boldsymbol{z}_n}_{\text{N}}$$

lacktriangle Assume the joint dist. of $oldsymbol{x}_n$ and $oldsymbol{z}_n$ to be an exp-fam dist with natural params $oldsymbol{eta}$

$$p(\mathbf{x}_n, \mathbf{z}_n | \boldsymbol{\beta}) = h(\mathbf{x}_n, \mathbf{z}_n) \exp \left[\boldsymbol{\beta}^{\top} t(\mathbf{x}_n, \mathbf{z}_n) - A(\boldsymbol{\beta}) \right]$$

 \blacksquare Assume a prior on β , that is conjugate to the above exp-fam dist

$$p(\boldsymbol{\beta}|\boldsymbol{\alpha}) = h(\boldsymbol{\beta}) \exp\left[\boldsymbol{\alpha}^{\top}[\boldsymbol{\beta}, -A(\boldsymbol{\beta})] - A(\boldsymbol{\alpha})\right]$$

where $\alpha = [\alpha_1, \alpha_2]^T$ are the hyperparamers of the prior $p(\beta)$ and $[\beta, -A(\beta)]$ is the sufficient statistics vector for this exp-family distribution

CS698X: TPMI

Mean-Field VI for LVMs with Local and Global Vars 4

- Recall that mean-field VB can be obtained using CP of each unknown
- Optimal variational distribution for each unknown requires expec. of the log of its CP

$$p(\boldsymbol{\beta}|\boldsymbol{\alpha}) = h(\boldsymbol{\beta}) \exp\left[\boldsymbol{\alpha}^{\top}[\boldsymbol{\beta}, -A(\boldsymbol{\beta})] - A(\boldsymbol{\alpha})\right]$$

■ Due to conj, CP of global vars $\beta = (\theta, \phi)$, will be in same distr as prior $p(\beta | \alpha)$. Thus

$$p(\boldsymbol{\beta}|\mathbf{X},\mathbf{Z}) = p(\boldsymbol{\beta}|\boldsymbol{\hat{\alpha}}) \quad \text{where} \quad \boldsymbol{\hat{\alpha}} = \begin{bmatrix} \boldsymbol{\alpha}_1 + \sum_{n=1}^{N} t(\boldsymbol{x}_n,\boldsymbol{z}_n), \boldsymbol{\alpha}_2 + N \end{bmatrix}$$
Updates to the natural parameters requires a summing suff-stats over all data and local variable
$$t(\boldsymbol{x}_n,\boldsymbol{z}_n), \boldsymbol{\alpha}_2 + N$$

■ Likewise, CP of each local variable \mathbf{z}_n

Due to the independence structure

Assuming CP is an exp-fam distribution (will be the case if the prior $p(z_n|\phi)$ and likelihood $p(x_n|z_n,\theta)$ are exp-family and conjugate to each other)

Nat. params depends on

$$p(\mathbf{z}_n|\mathbf{Z}_{-n},\mathbf{X},\boldsymbol{\beta}) = p(\mathbf{z}_n|\mathbf{x}_n,\boldsymbol{\beta}) = h(\mathbf{z}_n) \exp \left[\overline{\eta}(\mathbf{x}_n,\boldsymbol{\beta})^{\top} \mathbf{z}_n - A(\eta(\mathbf{x}_n,\boldsymbol{\beta})) \right]$$

■ Having these CPs, we can compute the mean-field updates for $q(\beta)$ and $q(z_n)$

CS698X: TPMI

Mean-Field VI for LVMs with Local and Global Vars

Let's assume our mean-field approximation to be of the form

$$q(\boldsymbol{eta}, \mathbf{Z}) = q(\boldsymbol{eta}|\boldsymbol{\lambda}) \prod_{n=1}^{N} q(\boldsymbol{z}_{n}|\boldsymbol{\phi}_{n})$$

- CPs are exp-fam, so optimal q's depend on expected suff-stats of CP's nat. params
- The optimal variational dist. for local vars \mathbf{z}_n will be $q(\mathbf{z}_n|\phi_n)$ with

Basically requires expectation over the
$$q(eta|\lambda)$$
 distribution $\phi_{m n}=\mathbb{E}_{\lambda}\left[\eta(m x_{m n},meta)
ight]$

■ The optimal variational dist. for global vars β will be $q(\beta|\lambda)$ with

Basically requires expectation over the
$$q(z_n|\phi_n)$$
 distribution $\lambda = \left[\alpha_1 + \sum_{n=1}^N \mathbb{E}_{\phi_n}[t(x_n, z_n)], \alpha_2 + N\right]^{\top}$

- ullet Mean-Field updates alternate between estimating ϕ_n 's and λ until convergence
- \blacksquare Potential bottleneck: Updating λ requires waiting for all ϕ_n 's to be updated (thus slow).
 - Can be handled using online VI (stochastic VI); will see this later

CS698X: TPMI

Coming Up Next

Some properties of VI

