3119. Maximum Number of Potholes That Can Be Fixed

Description

You are given a string road, consisting only of characters "x" and ".", where each "x" denotes a pothole and each "." denotes a smooth road, and an integer budget.

In one repair operation, you can repair $\begin{bmatrix} n \end{bmatrix}$ consecutive potholes for a price of $\begin{bmatrix} n + 1 \end{bmatrix}$.

Return the maximum number of potholes that can be fixed such that the sum of the prices of all of the fixes doesn't go over the given budget.

Example 1:

Input: road = "..", budget = 5

Output: 0

Explanation:

There are no potholes to be fixed.

Example 2:

Input: road = "..xxxxx", budget = 4

Output: 3

Explanation:

We fix the first three potholes (they are consecutive). The budget needed for this task is 3 + 1 = 4.

Example 3:

Input: road = "x.x.xxx...x", budget = 14

Output: 6

Explanation:

We can fix all the potholes. The total cost would be (1 + 1) + (1 + 1) + (3 + 1) + (1 + 1) = 10 which is within our budget of 14.

Constraints:

- 1 <= road.length <= 10 ⁵
- 1 <= budget <= $10^{5} + 1$
- road consists only of characters '.' and 'x'.