Break-Ground:

Stars and functions

Two young mathematicians discuss stars and functions.

Check out this dialogue between two calculus students (based on a true story):

Devyn: Riley, did you know I like looking at the stars at night?

Riley: Stars are freaking awesome balls of nuclear fire whose light took thousands of years to reach us.

Devyn: I know! But did you know that the best way to see a very dim star is to look **near** it but **not exactly at** it? It's because then you can use the "rods" in your eye, which work better in low light than the "cones" in your eyes.

Riley: That's amazing! Hey, that reminds me of when we were talking about the two functions

$$f(x) = \frac{x^2 - 3x + 2}{x - 2}$$
 and $g(x) = x - 1$,

which we now know are completely different functions.

Devyn: Whoa. How are you seeing a connection here?

Riley: If we want to understand what is happening with the function

$$f(x) = \frac{x^2 - 3x + 2}{x - 2},$$

at x = 2, we can't do it by setting x = 2. Instead we need to look **near** x = 2 but **not exactly at** x = 2.

Devyn: Ah ha! Because if we are **not exactly at** x = 2, then

$$\frac{x^2 - 3x + 2}{x - 2} = x - 1.$$

Problem 1 Let $f(x) = \frac{x^2 - 3x + 2}{x - 2}$ and g(x) = x - 1. Which of the following is true?

Multiple Choice:

Learning outcomes: Consider function values nearer and nearer to a given input value.

- (a) f(x) = g(x) for every value of x.
- (b) There is no x-value where f(x) = g(x).
- (c) f(x) = g(x) when $x \neq 2$.

Problem 2 When you evaluate

$$f(x) = \frac{x^2 - 3x + 2}{x - 2},$$

at x-values approaching (but not equal to) 2, what happens to the value of f(x)? The value of f(x) approaches 1.

Problem 3 Just from checking some values, can you be absolutely certain that your answer to the previous problem is correct?

Multiple Choice:

- (a) yes
- (b) no √

Feedback (attempt): Here you only have information about a few specific points on the graph. There are infinitely many x-values close to, but not equal to, x = 2. Hence we cannot be completely certain.