AD-A283 230

COMPUTER-AIDED SYSTEMS ENGINEERING

94-26554

94 8 22 008

COMPUTER-AIDED SYSTEMS ENGINEERING

Dr. S. Andriole

SPC-94039-CMC

Version 01.00.00

JUNE 1994

This material is based in part upon work sponsored by the Advanced Research Projects Agency under Grant # MDA572-92-J-1018. The content does not recessarily reflect the position or the policy of the U.S. Government, and no official endorsement should be saferred.

This document accompanies a videotope of the same presentation recorded live at the Software Productivity Connectant in March 1994. It is recommended that the videotope be viewed with these viewgraphs at hand.

Produced by the
SOFTWARE PRODUCTIVITY CONSORTIUM
under contract to the
VIRGINIA CENTER OF EXCELLENCE
FOR SOFTWARE REUSE AND TECHNOLOGY TRANSFER
SPT Building
2214 Rock Hill Road
Herndon, Virginia 22070

Computer-Aided Systems Engineering

Dr. Stephen J. Andriole Drexel University

and currently available systems engineering tools. He discurses the benefits and problems that organizations experience with tools. The This presentation includes information concerning toolset requirements, current and projected tools, tool capabilities assessment and perceived critical deficiencies. Dr. Andriole presents a tools assausment matrix that demonstrates a mapping between toolset requirements liming and costs of investments in tools, how tools can be expected to perform and future expectations are presented.

managers working in the area of system and software engineering. Viewers will benefit by gaining information about systems engineering Dr. Andriole explains why companies choose tools, identifies the most favorable environments and discusses common obstacles to successful CASE use. This video is intended for systems and software engineering development lead engineers, project managers and division tools and automation, especially the value and capability of commercial off-the-shelf (COTS) tools. Dr. Andriole emphasizes the use of lower cost PC based (DOS or MAC) tools to support systems engineering activities including requirements modeling, simulation and prototyping, evaluation and trade-off analysis, testing and reliability, technology forecasting and risk analysis. Dr. Andriole presents an overall framework for evaluating systems engineering tools based on how effectively the tools support the systems engineering process, followed by an overview of selected tools that are currently available. Dr. Andriole is the Director of Information Systems Technology Laboratory at Drexel University. Prior to this he worked for several years at the Defense Advanced Research Projects Agency and was a professor at George Mason University. Dr. Andriole has broad expertise in the area of systems analysis and systems engineering of software intensive systems. He has published several articles related to systems

Computer-Aided Systems Engineering

An Assessment of Current Practices, Tools & Trends

Stephen J. Andriole

B

The Assessment Framework

- Systems Engineering
- The State-of-the-Practice of Computer-Aided Systems Engineering
- The Generic Systems Engineering Framework
- Phase-by-Phase Organization & Categorization
- Criteria-Based Evaluation & Assessment ---> The Matrix
- COTS/CASE Tools Sampler
- SPC COTS/CASE "Products" & Services ...

Computer-Aided Systems Engineering The State-of-the-Practice of

- "Practiced" for Years by Systems Engineers
- or investments that Characterize the Computer-Aided Opportunistic -- Not Characterized by the Same Zeal Software Engineering Movement
- Development Process Than in the Software-Intensive Systems Design & Development In Many Respects -- Further Integrated into the Other-Than-Software-Intensive Design &

Aided Systems Engineering (Continued) The State-of-the-Practice of Computer-

Practiced as Pieces of a Greater Whole:

Cost-Benefit Modeling

Technology Forecasting Project Management

Resource Allocation

Cost Estimation
Trade-Off Analysis ...
No "I-CASE" ... Yet ...

"Attached" to Life Cycle Phases

The "Generic" Systems Engineering Framework

- May Be Described -- Like the Software (Systems)
 Engineering Life Cycle -- as a "Conversion Process"
 -- From Fuzzy & III-Understood Requirements to
 Detailed Design & Measurable Performance
- Well-Supported by "Standards", Such as Blanchard's Framework & 499A/B
- Characterized by:
- Objectives (by Phase & Overall)
 Methods
 Tools

(b)

- into Working, Maintainable Systems is Part of the Discipline The Process by Which we Convert Complex Requirements and Structure Known as Systems Engineering
- System Through Crude Concept Development, Testing Systems Engineering Refers to Those Processes and Activities that Together Define a Life Cycle that Follows a While there are All Sorts of Variations on this Theme, and Evaluation, and Eventual Retirement

- (1962), Chestnut (1965; 1967), Chase (1974), Sage (1977; 1983), and Blanchard and Fabrycky (1981; 1990) Systems Engineering Traces its Origins to the Work of Hall
- (1988), and Chapman, Bayhill and Wymore (1992) have Refined the Methods, Tools Techniques, Activities, More Recently, Sage (1992), Blanchard (1991), Eisner Functions and Purpose of Systems Engineering
- Along the Way an Overarching Department of Defense Standard Evolved

- The Essence of the Systems Engineering Process is Requirements ---> Design ---> Development Efficiency
- The Primacy of Requirements is Well Documented (Andriole, 1989, 1990; Sage, 1992; Sage & Palmer, 1990; Davis, 1990, 1992)

Generic Systems Engineering Process=

•

Systems Engineering

real-world system that satisfies, in a near optimal manner, the full range of requirements for the system." Eisner describes the systems engineering process as consisting of "elements" Eisner defines systems engineering as "an iterative process of top-down synthesis, development, and operation of a

- Requirements Analysis
- **Requirements Allocation**
 - Functional Analysis
- Functional Allocation
- Specification Analysis
- Specification Development

 - Preliminary Design Interface Definition
- Schedule Development
- Preliminary Cost-Analysis Fechnical Performance Measurement
 - **Frade-Off/Alternative Analysis**
 - Pre-Planned Product Improvement
 - Final Design Schedule Update
 - Cost Update

Fabrication

25. 20. 27. 27. 27.

Coding
Preliminary Testing
Debugging & Reconfiguration
Testing & Integration
Updates

A. Schedule B. Cost C. Technical Performance Measurement

Documentation Training Production

23. 25. 25.

- 499A
- performance parameters and a system configuration through technical paran, eters and ensure compatibility of all physical, optimizes the total system definition and design; (c) integrate preferred system configuration ... systems engineering is the · "Systems engineering is the ... logical sequence of activities reliability, maintainability, safety, survivability, human, and the use of an iterating process of definition, synthesis, analysis, design, test, and evaluation; (b) integrate related other such factors into the total engineering effort to meet transform operational need into a description of system cost, schedule, and technical performance objectives" and decisions transforming an operational need into a description of system performance parameters and a application of scientific and engineering efforts to (a) functional, and program interfaces in a manner that

The Revised (Draft) Standard (DOD, 1992) -- 499B -- Describes the Systems Engineering Process as Follows:

customer needs and requirements into a life-cycle process designs, (b) generate information for decision-makers, and (c) provide information for the next acquisition phase" "A comprehensive, iterative problem solving process that is used to: (a) transform validated balanced solution set of system product and

Systems Engineering Goals (After Sage)

- All (Life Cycle) Encompassing
- Problem Understanding
 - Communication
- Early Capture of Design & Implementation Needs Bottom-Up & Top-Down Design & Development
 - Alternative Systems Management Approaches
 - Process & Product Quality Assurance

 - **Product Evolution**
- Support for Configuration Management Standards
- Support for Automated Design & Development Aids
 - Teachable & Transferable Methodology
 - All phase Definition & Documentation
- Product Functionality, Revisability & Transitioning
- Support System Product Development & System I

Management Plan (SEMP) Systems Engineering

- the SEMP that Requires the Production of Documentation that can be Reviewed and Assessed. This Documentation At the Core of the Planning and Management Process lies Includes at Least the Following:
- Project Management Schedules
 - Product Cost Estimation
- Timeline Analysis Sheets
- Requirements Allocation Sheets
 - Work Breakdown Structures
- Technical Performance Measures Human Factors Engineering Plan
 - Risk Management Plan
- Data/knowledge Management Plan Maintainability Plan
- Jser Manuals

Management Plan (Continued) Systems Engineering

Software Requirements Specifications (Preliminary & Detailed)

Software Design Specifications

Test & Evaluation Master Plan Configuration Management Plan Production/Manufacturing Plan

Total Quality Management Plan

The Waterfall Modér Of The Software Life Cycle

Generic Systems Engineering Process:

Generic Systems Engineering Process:

(Seug)

TOP-LEVEL DIAGRAM

Trade-Off Analysis Methodology

A Simplified Structure Of A Badio Evaluation Model

-A Systems Engineering Management Structure-

23

Systems Engineering "Versus" Software Engineering

(Systems Engineering		Software Engineering
Alternative Design Methods	Н	١	M
Multidisciplinary Orientation	Н	I	L
Requirements Analysis & Prototy	ping H	I	M
Criteria-Based Trade-Off Analysi	is H	1	L
Detailed Software Specifications	M	1	Н
Optimal Software Production	M	١	Н
Methods Integration (Re-) Planni	ng M	l	L
Education & Training Curricula	M	1	M
Artifact Profiling	M	1	M
Applications Range Assessment	M]	M
Measures & Standards	M	1	М
Processes/Metrics Introspection	M	1	M

Computer-Aided Systems Engineering

Assessment --> The Tools Matrix Criteria-Based Evaluation &

- · Tools Can Be Assessed According to Their:
- "Fit" (with a Systems Engineering Phase, Method, or Objective Cost (to Include Acquisition, Training & Use) Quality of Output Ease of Use
 - - - - Robustness
 - Support ...

i OF PACKAGE	PLATFORM	OPERATING SYSTE	LIFE CYCLE PHASE	EXPERIENCE	a.
3-D Computerscape	IBM/Clone	900	Prototyping/Modeling	Novice	88
3-D Graphics Toolkit	IBM/Clone	500	Prototyping/Modeling	Intermediate	80
4th Dimension	Macintosh	Macintosh	System Transfer	Intermediate	895
ABC Flowcharter	IBM/Clone	Windows	Prototyping/Modeling		295
ACD-Action Chart Diagrammer	IBM/Clone	80	Requirements Analysis	Intermediate	495
ACPVision	Macintosh	Macintosh	Software Selection/Design	Intermediate	495
Acta Advantage	Macintosh	Macintosh	Requirements Analysis	Novice	129
Action: Art	IBM/Clone	900	Prototyping/Modeling	Novice	20
Adobe Illustrator 88	Macintosh	Macintosh	Other	Intermediate	495
AEC Information Manager	Macintosh	Macintosh	Project Management	Casual	695
Aegis Showcase F/X	Macintosh	Macintosh	Prototyping/Modeling	Intermediate	395
Agenda	IBM/Clone	900	Project Management	Intermediate	395
Aldus Persuasion	Macintosh	Macintosh	Prototyping/Modeling	Intermediate	495
Anatool	Macintosh	Macintosh	Prototyping/Modeling	Intermediate	925
Animation Works	Macintosh	Macintosh	Requirements Analysis	Intermediate	200
AppMaker, The Application Gen	Macintosh	Macintosh	Prototyping/Modeling	Casual	295
ATLAS MapMaker	Macintosh	Macintosh	Requirements Analysis	Casual	495
AuthorWare Professional	Macintosh	Macintosh	Prototyping/Modeling	Expert	8000
Black & White Movies	Macintosh	Macintosh	Other	Novice	20
BLUES	Macintosh	Macintosh	Software Selection/Design	Casual	1875
Brainstormer	IBM/Clone	\$00	Requirements Analysis	Novice	75
Business Graphics II	IBM/Clone	900	Prototyping/Modeling		195
Business Graphics Toolkit	Macintosh	Macintosh	Other	Novice	80
CA- Cricket Presents	Macintosh	Macintosh	Requirements Analysis	Casual	495
CA-Cricket Graph	Macintosh	Macintosh	Prototyping/Modeling	Casual	195
CA-Cricket Presents	Macintosh	Macintosh	Other	Casual	199
CA-ESTIMACS	IBM/Clone	88	Prototyping/Modeling		0
Canvas	IBM/Clone	900	Requirements Analysis	Casual	300
Canvas	Macintosh	Macintosh	Other	Casual	299
CASE: PM	IBM/Clone	OS2	Software Selection/Design	Experienced	995
CASE:W	IBM/Clone	Windows	Prototyping/Modeling	Intermediate	795
Chart Master	IBM/Clone	\$0 3	Prototyping/Modeling	Intermediate	395
Charts Unlimited	IBM/Clone	900	Prototyping/Modeling		35
Choreographer	IBM/Clone	082	Prototyping/Modeling	Experience	7500
Cinemation	Macintosh	Macintosh	Prototyping/Modeling	Intermediate	495
Clarion Personal Developer	IBM/Clone	900	Prototyping/Modeling		169
CoCoPro	Macintosh	Macintosh	Project Management	Intermediate	495
Collage Display Utilities	IBM/Clone	900	Prototyping/Modeling	Novice	06
ColoRIX VGA Paint	IBM/Clone	900	Other		199
Company Ladder	IBM/Clone	900	Requirements Analysis	Novice	80
Cost Benefits Models	IBM/Clone	S	Requirements Analysis		40
Cost/Schedule Workshop (CSW)	Macintosh	Macintosh	Project Management	Casual	595
Course Builder	Macintosh	Macintosh	Prototyping/Modeling	Intermediate	395
CPM / PERT	IBM/Clone	98	Project Management	Casual	249
Dan Bricklin's Demo II	1BM/Clone	98	Prototyping/Modeling .	Casual	195
Dalasurt	IBM/Clone	900	Requirements Analysis	Novice	120
Decision Analysis	IBM/Clone	88	Requirements Analysis	Novice	45
Decision Analysis By TreeAge	Macintosh	Macintosh	Requirements Analysis	Intermediate	495
Decision Analysis Techniques	Macintosh	Macintosh	Requirements Anafysis	Casual	145

COTS/CASE Tools Sampler

- Tools Not Usually Associated with Software Engineering + Some of Those That Are!!!
- the Systems Engineering Life Cycle Phases Tools That Support Methods & Objectives of
- Tools That Support:
- Modeling, Charting & Diagramming Analysis (eg, Cost-Benefit, Estimation) Documentation & "Auditing"
- Management
- Technology Assessment Testing & Evaluation ...

A Taxonomy Of Analytical Methods & Sub-Methods

Organization & Categorization Life Cycle Phase-by-Phase

- **Pre-Phases**
- **Project Management Tools**
 - Simple Graphics Tools
- Modeling & Analysis Tools "Visualization" As A Way of Life
- Early Phases & Activities
- Requirements, Requirements, Requirements Requirements Models, Tools & "Environments"
 - - Trade-Off Analyses
- Constraint Analysis ...

Organization & Categorization Life Cycle Phase-by-Phase (Continued)

- Mid-Phases & Activities
- Specification (from Multiple Perspectives)
 On-Going Requirements Traceability
 Design (from Multiple Perspectives)
 Development (Often Evolutionary)
- Later Phases & Activity
- T&E; V&V
- On-Going Requirements Traceability
 - Documentation (Throughout)
 - **Configuration Management**

- Requirements Modeling
- QFD Capture RDD
- DOOR TopDown DATA IDEF0
- Inspiration
- Systems Engineering Design Software (SEDSO) Conventional CASE Tools Many CAD/CAM/CALS Tools Some Evaluation & Trade-Off Analysis Tools

- Simulation & Prototyping

- Extend
 iThink
 MicroSaint
 MetaDesign
 Skylights
 ToolBook
 Show Partner
- Access LabView
- Design/IDEF/IDEF0 Visual Basic
 - - Prograph

- **Evaluation & Trade-Off Analysis**
- Logical Decision Expert Choice DecisionMap
- **Decision Analyst**

- Lightyear ADAM 2 Arborist COMPARE!
- Best Choice 3 Criterium
- Crystal Ball David Decision Pad

Expression Tree HIVIEW SuperTree

- Testing & Reliability
- PC Availability PC Predictor

- Tiger Computer Program(s)
 Machanical Reliability Prediction Program (MRP)
 Maintainability Effectiveness Analysis Program
 - Optimum Repair Level Analysis (ORLA) Model MEAP)
 - Equipment Designer's Cost Analysis System (EDCAS)
 - Network Repair Level Analysis (NRLA)
 - OPUS Model VMETRIC

Systems & Logistics Integration Capability (SLIC)
Life Cycle Cost Calculator (LCCC)
Cost Analysis Strategy Assessment (CASE)
Life-Cycle Model for Defense Material Systems

- Technology Forecasting

- 4CAST/2
 Autocast
 Forecast!
 GLIM
 MTS
 NCSS
 SAS
 SIBYL/Runner
 STORM

- **Risk Analysis**
- @Risk RiskWatch
- Automated Risk Evaluation System (ARES) Bayesian Decision Support System (BDSS) The Buddy System Continuous Risk
- Los Alamos Vulnerability & Risk Assessment (LAVA)

- · Prototyping Tools for Software Systems Engineering
- Tool "Requirements"
- **Exemplar Tool Types**
- Specific Tools ...

impact

- Software Support For All Phases of Life Cycle
- Capability to Store & Model Requirements Data ---> Prototypes ---> Specifications **Designs**
- "Audit Trail" of Design/Development Process
- Capability to Store Designs, Models, Prototypes Modules & Reuse the Concepts, Data, Models & Software

Interactive Requirements Modeling & Prioritization & System Concept Design

for

Rouge River Decision Support

Elicitation of System Requirements

Modeling of System Requirements Identification of Implementation Constraints

Interactive
Requirements
Modeling
for
Rouge River
Decision Support

Requirements Prioritization

Alternative System Concept Design

Trade-Off Analyses

Requirements Validation Interactive Prototyping

System Concept Specification

The Process

3

- Collect Requirements Data Via Individual & Group Discussions & Via Codified Requirements Data
- Document Requirements Data -- Not in Elaborate
 "Specs" -- But in a Form that Lends Itself to Analysis & Modification
- Organize the Requirements Data in Alternative Forms for Iteration -- Such as in Simple Outline Form & in a Hierarchical Form
- Assess, Rank-Order, Trade-Off -- "Reconcile" Requirements
- Identify Off-the-Shelf & Existing Special Purpose Applications Programs & Implementation Environments
- Match the Requirements to the Existing Systems
- Develop a System Requirements Specification that Lies at the Intersection of Requirements, Existing Systems & Constraints

Some Special Assumptions & Features of the Process

- The Process Assumes the Value of "Participatory Design"
- The Process Assumes the Value of Iterative Design & Prototyping -- to a Point!
- The Process Assumes the Value of a Life Cycle-Driven System Development Methodology
- The Process Assumes the Need to Make Requirements Explicit & to "Model" Requirements to Determine What are the "Most," "Moderately," and "Not Quite as" Important Requirements
- The Process Assumes the Stupidity of Re-Inventing the Wheel
- Requirements will Be Captured, Modeled & Communicated to All "Stakeholders" During the Process

Requirements Modeling ---> Prototyping Process --> Management Plan

System Concept Evaluation Process

ไรกกลการกรรกรรกรกรกรกรกครายการกรรกไ

LOCAL MODELING/DISPLAY PROCESSING

65

Decision Outline on DSS H/S Architecture

Alternatives: System Concept #1 System Concept #2 System Concept #3 Factors: R DSS H/S Architect";e |Funct'l Requirements Analyt'l Requiremt's 3 Flow Analysis Whole River Simulate Threshhold Analysis Quasi-RT Analysis Realtime Analysis Map Partitioning Scenario-Driven Clutter/De-clutter Querying Cost-Result Analyses Comparative Analyses Sensitivity Analyses Comunicatn's Reqm'ts 3 Advocacy Requirem'ts

ľ

Regn'1 Group Support

Local Support

Policymkg Requirm'ts Remote PMKG Support Local Support Investment Strategy In-Stream Analysis Educatn'1 Requrm'ts Water Polut'n Educat General Pollution RR Basin Pollution Design Requirements H/S Architecture Optimize Hardware Optimize Models Optimize OS Trends Local Modeling Local/Remote Network Design to Cost

Design to Schedule

Decision Results on DSS H/S Architecture

Alternative			Score	Comments	3						
System	Concept	#3	98.55	Concept	for	PC/NT-based	DSS	with	full	network	ing
System	Concept	#2	75.84	Concept	for	UNIX-based	syste	m w ı	modest	network	cing
System	Concept	#1	57.84	Concept	that	calls for	UNIX	work	statio	n-based	DSS
Comments: "Ontimal" hardware/goftware architecture											

SYSTEM CONCEPT I

- SUN/UNIX
- ARC/INFO
- SPATIAL / TEMPORAL INFORMATION
- INTERACTIVE VISUALIZATION

SYSTEM CONCEPT II

SYSTEM CONCEPT III

Ĺ

MODELING

- PC
- WINDOWS NT
- GUT FOR PRE / POST PROCESSING (& ANIMATION)

- SUN/UNIX
- ARC/INFO
- ORACLE
- SPATIAL / TEMPORAL INFORMATION

SERVER

Decision Results on DSS H/S Architecture

System Concept #1 System Concept #3
System Concept #2

COMMENTS: "Optimal" hardware/software architecture

(2)

Decision Comparison on Comunicatn's Reqm'ts

Decision Comparison on Design Requirements

Decision Comparison on DSS H/S Architecture

Trends

- · Toward I-CASE
- Toward Greater Distribution
- · Toward Automation ...

Key References

- Howard Eisner, Computer-Aided Systems Engineering, Prentice-Hall, 1988
- Benjamin S. Blanchard, System Engineering Management, Wiley-Interscience, 1992
- William L. Chapman, A. Terry Bahill & A. Wayne Wymore, Engineering Modeling & Design, CRC Press, 1992
- Andrew P. Sage, Systems Engineering, Wiley-Interscience, 1992
- Systems Engineering & Analysis, Prentice-Hall, 1990 Benjamin S. Blanchard & William J. Fabrycky,
- Design Tools Report, Software Technology Support Odean Bowler, et al., Requirements Analysis & Center, 1992
- Chris Sittenauer, et al., Re-Engineering Tools Report, Software Technology Support Center, 1992

Questions or comments on content should be directed to:

Dr. Stephen J. Andriole 715 Cornerstone Lane Bryn Mawr, PA 19010 andriole@DUVM.OCS.Drexel.Edu (215) 525-5874

Or to:

Mary Skipp Software Productivity Consortium 2214 Rock Hill Road Herndon, VA 22070 skipp@software.org (703) 742-7298

Send feedback on the Consortium's Video Program and orders for video products to:

Technology Transfer Clearinghouse Software Productivity Consortium 2214 Rock Hill Road Herndon, VA 22070 brewer@software.org (800) 827-4772