Aula 12

Conteúdo

- Registradores de Deslocamento
 - Conversor Série-Paralelo
 - Conversor Paralelo-Série
 - Registrador de Entrada Série e Saída Série
 - Registrador de Entrada Paralela e Saída Paralela
 - Registrados de Deslocamento Utilizado como Multiplicador ou Divisor por 2

Conteúdo

Contadores

- Contadores Assíncronos
 - Contador de Pulsos
 - Contador de Décadas
 - Contador sequencial de 0 a n
 - Contadores Assíncronos Decrescentes
 - Contador Assíncrono Crescente/Decrescente

Contadores

São circuitos digitais que variam os seus estados, sob o comando de um clock, de acordo com uma sequencia predeterminada. São portanto, circuitos digitais que variam seus estados, sob o comando de um clock de acordo com uma sequência predeterminada.

São utilizados principalmente para contagens diversas, divisão de frequência, medição de frequência e tempo, geração de formas de onda e conversão de analógico para digital.

Divididos em 2 categorias: Assíncronos e Síncronos

Contadores

Contadores Assíncronos

São caracterizados por seus flipflops funcionarem de maneira assíncrona (sem sincronismo), não tendo entradas clock em comum.

Neste tipo de circuito a entrada clock se faz apenas no primeiro flip-flop, sendo as outras derivadas das saídas dos blocos anteriores.

Contador de Pulso

Apresenta nas saídas, o sistema binário em sequencia.

Seu circuito básico apresenta um grupo de 4 flip-flops do tipo T ou JK Mestre-Escravo, os quais possuem a entrada T ou, no caso, J e K iguais a 1, originando na saída $Q_f=\bar{Q}_a$, a cada descida do clock.

Contador de Pulso

A entrada dos pulsos se faz através da entrada do clock do 1º flip-flop, sendo as entradas clock dos flip-flops seguintes, conectadas às saídas Q dos respectivos antecessores conforme circuito:

Contador de Pulso

Descidas	Saídas				
de clock	Q_0	Q_1	Q ₂	Q _a	
1a_	0	0	0	0	
2ª_	1	0	0	0	
3a_	0	1	0	0	
4월	1	1	0	0	
5ª_	W 0	0	1	0	
6a_	A 1	0	1	0	
7ª_	10	1	1	0	
8a _	1	1	1	0	
9a 🔨	0	0	0	1	
10a_	1	0	0	1	
11ª~	10	1	0	1	
12ª_	1	1	0	1	
13a_	0	0	1	1	
142	1	0	1	1	
15ª	0	1	1	1	
16ª	1	1	1	_1	
17ª	10	0	0	0	

```
(Estado inicial, imposto por CLR = 0)
(Após a 1ª descida de clock: Q<sub>0</sub>=1)
(Após a 2ª descida: Q,=0 e Q,=1, obtido pela descida de Q<sub>0</sub>)
(Q<sub>6</sub>=1 e Q, permanece igual a1)
(Q_0=0 \Rightarrow Q_1=0 \Rightarrow Q_2=1)
(Qo=1, Q1 e Q2 permanecem)
(Q_0=0 \Rightarrow Q_1=1)
(Q_0 = 1)
(Q_0{=}0 \Rightarrow Q_1{=}0 \Rightarrow Q_2{=}0 \Rightarrow Q_3{=}1)
(Q.=1)
(Q_0=0 \Rightarrow Q_1=1)
(Q_0 = 1)
(Q_0=0 \Rightarrow Q_1=0 \Rightarrow Q_2=1)
(Q_0 = 1)
\{Q_0=0 \Rightarrow Q_1=1\}
(Q_o=1)
(Q_0=0 \Rightarrow Q_1=0 \Rightarrow Q_2=0 \Rightarrow Q_3=0)
```


Contador de Pulso

Considerando Q_0 como bit menos significativo (LSB) e Q_3 como o mais significativo (MSB), temos nas saídas o sistema binário em sequencia (0000 a 1111).

Após a 16º descida do clock, o contador irá reiniciar a contagem. Um contador digital de 4 bits, que conta de 0000 a 1111 pode ser chamado de contador módulo 16 (ou 16 estados).

O módulo ("mod") de um contador corresponde ao número de contagens que ele completa. Cada um dos passos da contagem é chamado de estado, ex: 0000, 0001, 0010...

Contador de Pulso

O período de Q_0 é o dobro do período do clock, logo a frequência de Q_0 será a metade da frequência do clock, pois f=1/T.

Na saída Q_1 , vemos que seu período é o dobro de Q_0 e o quádruplo do pulso do clock. Isso se sucederá sucessivamente aos demais flip-flops.

Assim sendo, podemos notar que uma das aplicações dos contadores será a de dividir a frequência de sinais (onda quadrada) aplicados à entrada clock.

No caso deste contador, a divisão será por um número múltiplo de 2^N, onde **N** é o número de flip-flop utilizados.

Contador de Década

É o circuito que efetua a contagem em números binários de 0 a 9_{10} (10 algarismos). Isso significa acompanhar a sequencia do código BCD 8421 de 0000 até 1001.

Para construir este circuito, utilizamos o contador de pulsos, interligando as entradas clear dos flip-flops.

Para que o contador conte somente de 0 a 9, deve-se jogar um nível 0 na entrada clear assim que surgir o caso 10 (1010), ou seja, no 10º pulso.

Contador de Década

Descidas de clock	Q_3	Q_2	Q_1	Q_0	CLR
1 <u>a</u>	r- > 0	0	0	0	1
	0	0	0	1	1
2 <u>a</u> 3 <u>a</u>	0	0	1	0	1
4 <u>a</u>	0	0	1	1	1
5 <u>a</u>	0	1	0	0	1
6 <u>a</u>	0	1	0	1	1
7르	0	1	1	0	1
<u>8a</u>	0	1	1	1	1
9 <u>a</u>	1	0	0	0	1
10ª	L1	0	0	1	1
	(1	0	1	0)	0

Contador de Década

Uma outra forma de obter o mesmo clear ou reset no caso 1010, utilizando uma porta NE com menos entradas, consiste em ligarmos apenas Q3 utilizando e Q1 nesta, pois só serão iguais a 1 simultaneamente neste caso, zerando as saídas do mesmo jeito:

Este contador poderá ser utilizado como divisor de frequência pode 10 para uma onda quadrada aplicada à entrada clock, pois possui 10 estados de saída.

Contador Sequencial de 0 a n

Utilizando o mesmo processo anterior, podemos fazer um contador contar de 0 até um número qualquer. Para isso, basta apenas verificarmos quais as saídas do contador para o caso seguinte a *n*, colocarmos estas saídas numa porta NE e à saída desta ligarmos as entradas clear dos flip-flop.

Para exemplificar, vamos elaborar o circuito de um contador de 0 a 5_{10} . Nesse caso, desejamos que o contador recomece a contagem após o estado 5, ou seja, passe para 0 todos os flip-flops.

Contador Sequencial de 0 a n

Neste caso, o estado seguinte a n será o 6, ocasionando nas saídas: $Q_2=1$, $Q_1=1$ e $Q_0=0$ (110). Quando ocorrer então, deverá haver um 0 nas entradas clear interligadas, levando o contador a 0. Devemos, para tanto, ter na entrada da porta NE, a ligação de Q_2 e Q_1 , pois na sequencia da contagem, estas irão assumir níveis 1 simultaneamente apenas no caso 110:

Contadores Assíncronos Decrescentes

Contadores que efetuam contagem decrescente.

O circuito que efetua a contagem decrescente é o mesmo circuito que efetua a contagem crescente, com a única diferença de extrairmos as saídas dos terminais $\overline{Q_0}$, $\overline{Q_1}$, $\overline{Q_2}$ e $\overline{Q_3}$, sendo o terminal $\overline{Q_0}$ o bit menos significativo.

Decimal	Binário					
15	1	1	1	1		
14	1	1	1	0		
13	1	1	0	1		
12	1	1	0	()		
11	1	0	1	1		
10	1	0	1	0		
9	1	0	0	1		
8	1	0	0	0		
7	0	1	1	1		
6	0	1	1	0		
5	0	1	0	1		
4	0	1	0	0		
3	0	0	1	1		
2	0	0	1	0		
1	0	0	0	1		
0	0	0	0	0		

Contadores Assíncronos Decrescentes

Contadores Assíncronos Decrescentes

Contadores Assíncronos Crescente/Decrescentes

Podemos construir um contador que execute a contagem crescente ou decrescente. Para isso, utilizamos um variável de controle que quando assume 1, faz o circuito executar contagem crescente e quando assume 0 faz a contagem decrescente:

