تمرين ششم

امیرحسین مهدینژاد شماره دانشجویی ۸۱۰۸۰۰۰۵۸ mahdinejad@ut.ac.ir

١

به صورت تصادفی یک رنگ آمیزی با دو رنگ ارائه می دهیم. اگر و E_i پیشامد کلیک تکرنگ بودن iمین k-مجموعه باشد، داریم:

$$P(E_i) = 2 \times \left(\frac{1}{2}\right)^{\binom{k}{2}} = 2^{1 - \binom{k}{2}}$$

اشتراک دو k-کلیک، ماکزیمم یک راس خواهد بود. برای هرکدام $\binom{k}{2}\binom{n}{k-2}$ کلیک وجود دارد که حداقل در دو راس مشترک باشند. اگر گراف وابستگیهای D را برای همهی E_i هما بسازیم، درجه هر گره در D را میتوان به این صورت مشخص کرد:

$$d = \binom{k}{2} \binom{n}{k-2}$$

از طرفي

$$4\binom{k}{2}\binom{n}{k-2}2^{1-\binom{k}{2}} \le 1$$

میتوانیم لم Lovasz Local را اعمال کرده و نشان دهیم یک رنگآمیزی وجود دارد به طرزی که هیچ E_i ای رخ ندهد. در این رنگآمیزی، خواسته مسئله برقرار است.

۲

به لیترالها به ترتیب $x_1, x_2, ..., x_n$ و به صورت معیّن مقدار میدهیم. با فرض اینکه اولین $x_1, x_2, ..., x_n$ به لیترالها به ترتیب $y_1, y_2, ..., y_n$ این مقادیر باشند، خواهیم داشت:

$$E[N_c|x_1 = y_1, x_2 = y_2, ..., x_k = y_k, x_{k+1} = T]$$

$$E[N_c|x_1 = y_1, x_2 = y_2, ..., x_k = y_k, x_{k+1} = F]$$

در نهایت بیشترین امید ریاضی را در نظر میگیریم.

۳

$$E(X) = E\left(\sum_{k=0}^{n} X_{k}\right) = \sum_{k=0}^{n} E(X_{k})$$

با توجه به اینکه X_k فقط شامل مقادیر \cdot یا ۱ است، داریم:

$$\begin{split} E\!\left(X_k\right) &= P\!\left(X_k = 1\right) = \frac{f_k}{\binom{n}{k}} \\ \sum\limits_{k=0}^n \frac{f_k}{\binom{n}{k}} &= \sum\limits_{k=0}^n E\!\left(X_k\right) = E\!\left(X\right) \, \leq \, 1 \\ \vdots \\ \exists k \in \mathbb{N} \quad \exists k \in \mathbb{$$

كه همان خواستهي سوال است.

٤

لم Lovasz Local بیان میکند که اگر $E_1,...,E_n$ مجموعه اعداد زوج باشد، برای همهی iها $p(E_i) \leq p$ ، درجهی گراف وابستگیها روی این مجموعه با i و i0 محدود می شود.

در صورتی که پیشامدهای بد به مقادیر جزئی وابسته باشند یا میزان وقوع آنها بیشتر باشد نیز میتوان لم مذکور را اعمال کرد.

از آنجا که
$$x_i=rac{1}{d+1}$$
 میتوان گفت $ep(d+1)\leq 1$ لذا:

$$\begin{aligned} x_i & \prod_{(i,j) \in E} \left(1 - x_j \right) \ge \left(\frac{1}{d+1} \right) \left(1 - \frac{1}{d+1} \right)^d \\ & \ge ep \left(1 - \frac{1}{d+1} \right)^d \\ & = ep \left(\frac{d}{d+1} \right)^d \\ & = \frac{ep}{\left(1 + \frac{1}{d} \right)^d} \end{aligned}$$

$$\Rightarrow x_i \prod_{(i,j) \in E} \left(1 - x_j \right) \geq ep\left(\frac{1}{e}\right) = p$$

از طرفی با توجه به $p(E_i) \leq x_i \prod_{(i,j) \in E} \left(1-x_j\right)$ با داشتن $P(E_i) \leq x_i \prod_{(i,j) \in E} \left(1-x_j\right)$ و اعمال کردن لم، نتیجه می گیریم احتمال اینکه هیچ پیشامد بدی رخ ندهد، بیشتر از صفر خواهد بود.

از این رو، ورژن مقارن لم Lovasz Local در صورتی که شرط $ep(d+1) \le 1$ را جایگزین Lovasz Local از این رو، ورژن مقارن لم

۵

(در این سوال بخاطر کوچک بودن مقداری مثل x میتوان از تقریب e^{-x} استفاده کرد.) احتمال جدا شدن یک راس (هیچ یالی مجاور آن نباشد) برابر است با

$$\left(1 - \frac{c \ln n}{n}\right)^n \approx e^{-c \ln n} = n^{-c}$$

وقتی n به مقدار کافی بزرگ است، تعداد رئوس جدا شده تقریبا n^{1-c} و برای n^{1-c} بیشتر است. n^{1-c} و برای n^{1-c} بیشتر است، n^{1-c} و برای n^{1-c} و برای n^{1-c} بیشتر است، n^{1-c} و برای n^{1-c} و برای n^{1-c} و برای n^{1-c} و بیشتر است، n^{1-c} و برای n^{1-c} و بیشتر است، n^{1-c} و بیشتر است، n^{1-c} و برای n^{1-c} و بیشتر است، n^{1-c} و بیشتر است،

$$E[X|X_{i} = 1] = 1 + \sum_{j \neq i} P(X_{j} = 1|X_{i} = 1)$$

$$P(X_{j} = 1|X_{i} = 1) = \left(1 - \frac{clnn}{n}\right)^{n-1} \approx n^{-c}$$

برای nهای به قدر کافی بزرگ:

$$P(X > 0) \ge \frac{n^{1-c}}{1+(n-1)n^{-c}} \ge 1 - \varepsilon$$

مقدار حداقل $\epsilon = 1$ همان خواستهی سوال است.

۶ الف:

گراف $t_1,...,t_{\binom{n}{3}}$ با n راس و هر راس جداگانه با یک یال با احتمال p به یکدیگر متصلاند. دنباله ی $t_1,...,t_{\binom{n}{3}}$ با $t_1,...,t_{\binom{n}{3}}$ با $t_1,...,t_{\binom{n}{3}}$ در غیر این صورت یک مثلث ظاهر شود t_1 و در غیر این صورت عنوان تمام سهتایی های گراف در نظر می گیریم. t_i و در غیر این صورت یک مثلث ظاهر شود t_i و در غیر این صورت t_i و در غیر این صورت و در خیر این صورت و در غیر این صورت و در خیر این ص

از طرفی $p=\omega(n^{-3/4})$ یک حد بالا برای مثلث داشتن $G_{n,p}$ است. با مشتق گرفتن از آن برای گراف با ۲ کلیک، امید ریاضی X بدین صورت محاسبه می شود:

$$E[X] = \Theta(n^k p^{2k-2})$$

$$k = 3 \to E[X] = \Theta(n^3 p^4)$$

ر :

از بند قبل داریم
$$E[X]=\Thetaig(n^3p^4ig)$$
 و میتوان گفت $P(X>0) \geq \sum\limits_{i=0}^n rac{Pig(X_i=1ig)}{Eig[X|X_i=1ig]} o 0$

، نتىجە

$$Eig[X|X_j=1ig] = \sum\limits_{i=1}^{(n)} Eig[X_i|X_j=1ig]$$
 $= 1 + inom{n-4}{4}p^6 + 4inom{n-4}{3}p^6 + 6inom{n-4}{2}p^5 + 4inom{n-4}{1}p^3$ $\Rightarrow P(X>0) \geq rac{inom{n}{4}}{1+inom{n-4}{4}p^6+4inom{n-4}{3}p^6+6inom{n-4}{2}p^5+4inom{n-4}{1}p^3}$ از طرفی $Y=1/X$ و $X^2=X$ میتوان نوشت $E[XY]=P(X>0)$

لذا وقتی np o 0 در نتیجه 0 o (X>0) پس وقتی امید ریاضی به صفر میل میکند، احتمال نیز به صفر میل خواهد کرد.

ي:

$$P(X < 0) \le \frac{Var[X]}{E[x]^2} \Rightarrow Var[X_i] \le p^3$$

٧

هر یال را به صورت $e=\{u,v\}$ و رنگ را با توجه به اینکه هیچ دو راس مجاوری که رنگ مشترک در لیستهایشان دارند نباید آن را انتخاب کنند به صورت $c\in C(v)\cap C(u)$ در نظر می گیریم؛ اگر X(e,c) پیشامد تخصیص رنگ $c\in C(v)\cap C(u)$ به رئوس c و c باشد، بدین صورت، پیشامد مناسب بودن رنگ آمیزی تقاطع پیشامدهای c است. برای هر یال اگر c در لیست هر و c به باشد، بدین صورت، پیشامد مناسب بودن رنگ آمیزی تقاطع پیشامدهای c است. برای هر یال اگر c در لیست هر و c و باشد، بدین صورت، پیشامد مناسب بودن رنگ آمیزی تقاطع پیشامدهای c است. برای هر یال اگر c در لیست هر c و باشد، بدین صورت، پیشامد مناسب بودن رنگ آمیزی تقاطع پیشامدهای c است. برای هر یال اگر c در لیست و c و باشد، احتمال رخداد و باشد، باشد، احتمال رخداد و باشد، احتمال رخداد و باشد، احتمال رخداد و باشد، باشد، احتمال رخداد و باشد و باشد، احتمال رخداد و باشد

اگر e' مجاور e باشد، هر X(e,c) به X(e,c) بستگی دارد. برای هر رنگ در U حداکثر U مجاور U به میتوان داشت و به طریق مشابه برای V نیز ممکن است؛ پس هر V حداکثر به V حداکثر به V متغیرهای دیگر وابستگی دارد. V

لذا مىتوانيم لم محلى را با مقادير $d+1=20k^2$ و $p=1/(10k)^2=1/(100k^2)$ اعمال كنيم. بنابراين ep(d+1)=e/5<1 رخ ندهد بزرگتر از صفر خواهد بود. نتيجه مىشود حتما يک ليست رنگآميزی وجود دارد به طوری که X(e,c) رخ ندهد.

٨

 $(1 \leq i \leq \binom{n}{k})$ که در آن X_i که در آن که در آن که در آن که در کتاب، ۵-کلیک را در نظر میگیریم. برای هر مجموعه C_i

پیشامد ۵-کلیک بودن C_i بوده و $p=f(n)=o(n^{-2/4})$ بوده و $p=f(n)=o(n^{-2/4})$

$$X = \sum_{i=1}^{\binom{n}{5}} X_i \Rightarrow E[X] = \binom{n}{5} p^{10}$$

از طرفی $E[X] < \epsilon$ از طرفی $E[X] = o(n^5) \cdot o(n^{-5}) = o(1)$ الذا برای ۱۵ بزرگ $E[X] = o(n^5) \cdot o(n^{-5}) = o(1)$ و از این رو $E[X] < E[X] < \epsilon$ یعنی احتمال اینکه زیرگرافی از $G_{n,p}$ دارای ۵-کلیک باشد از $E[X] < \epsilon$

$$E[X|X_i = 1] = \sum_{i=1}^{\binom{n}{5}} E[X_i|X_i = 1]$$

اگر c_{j}^{0} دو راس مشترک داشته باشند، $\binom{5}{2}$ راه وجود دارد که بتوانیم دو راس مشترک و $\binom{n-5}{3}$ راه وجود دارد که باقی

رئوس را انتخاب کنیم. باید ۹ یال جدید اضافه کنیم تا شرایط $X_i=1$, $X_j=1$ برقرار شود.

$$P[X < 0] \ge \frac{\binom{n}{5}p^{10}}{1 + \binom{n-5}{5}p^{10} + 5\binom{n-5}{4}p^{10} + 10\binom{n-5}{3}p^9 + 10\binom{n-5}{2}p^7 + 5\binom{n-5}{1}p^4}$$

ضمن در نظر گرفتن $p=f(n)=\omega(n^{-1/2})$ وقتی $m o\infty$ ، این مقدار از پایین به ۱ نزدیک می شود.