Análise na Reta 1^a prova

Problema 1 Para cada um dos conjuntos abaixo, diga se ele é ou não enumerável, e justifique:

- (a) $\{(a_n)_{n\in\mathbb{N}}|a_1=1 \text{ e } a_{n+1}>(a_n)^2, \forall n\geq 1\}.$
- (b) $\{(a_n)_{n\in\mathbb{N}}|a_n\in\mathbb{Z}, \forall n\geq 1 \text{ e } (a_n) \text{ converge}\}.$

Problema 2 Suponha que $X \subset \mathbb{R}$ é não-vazio, limitado superiormente e que existe $\delta > 0$ tal que $|x - y| \ge \delta$ para quaisquer $x, y \in X$ distintos. Prove que $\sup(X) \in X$.

Problema 3 Seja $(a_n)_{n\in\mathbb{N}}$ a sequência dada por $a_1=1, a_{n+1}=\frac{1}{3+a_n}, \forall n\geq 1$. Prove que (a_n) converge e determine seu limite.

Problema 4 Seja (a_n) uma sequência decrescente. Prove que $\sum_{n=1}^{\infty} a_n$ converge se, e somente se, $\sum_{n=1}^{\infty} 2^n \cdot a_{2^n}$ converge.

Problema 5 Dada uma sequência (a_n) de números reais, dizemos que b é valor de aderência da sequência se ela tem uma subsequência que converge a b.

Prove que o conjunto dos valores de aderência de uma dada sequência é sempre fechado.

Problema 6 Seja ϕ : N → N a bijeção tal que ϕ (1) = 1 e, para todo k ∈ N, temos ϕ ($k^2 + 2r - 1$) = $k^2 + k + r$, para r inteiro com 1 ≤ r ≤ k + 1 e ϕ ($k^2 + 2r$) = $k^2 + k + 1 - r$, para r inteiro com 1 ≤ r ≤ k. Assim, por exemplo, ϕ (1) = 1, ϕ (2) = 3, ϕ (3) = 2, ϕ (4) = 4, ϕ (5) = 7, ϕ (6) = 6, ϕ (7) = 8, ϕ (8) = 5, ϕ (9) = 9.

- (a) Prove que se (a_n) é uma sequência tal que $\sum a_n$ converge então $\sum a_{\phi(n)}$ converge e $\sum a_n = \sum a_{\phi(n)}$.
- (b) Exiba uma sequência (b_n) tal que $\sum b_n$ diverge mas $\sum b_{\phi(n)}$ converge.