Universidade de Aveiro

DEPARTAMENTO DE ELECTRÓNICA, TELECOMUNICAÇÕES E INFORMÁTICA

Introdução à Arquitetura de Computadores (2017/2018)

Teste 1 – 11 de Abril de 2018 – Duração: 1h00m

Notas Importantes:

Justifique todas as suas respostas.

O exame é individual e sem consulta. Não é permitida a utilização de calculadora.

Nome: N	lo	Mec.
---------	----	------

Grupo I

1. Assuma uma máquina com palavras de 12 bits e preencha a tabela seguinte

	Menor Númer	o representável	Maior Número Representável			
Sistema de Representação	Em base 10	Em binário	Em base 10	Em binário		
Sem sinal		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	796 -1 2 ¹³ -1			
Sinal e Módulo		-(2048) -27 2	0 48 -1 271-1			
Complemento para 2		0800000000 12111111111 10000000	000 1111111111111111111111111111111111			

2. Apresente duas vantagens da representação de lúmeros negativos em complemento para 2, relativamente à representação sinal e módulo.

3. Represente o número 2.375 no formato de virgula flutuante IEEE 754 com precisão simples.

Grupo I						Gru	po II		Grupo III	Gı	rupo l	V	
	1	2	3	4	5	6	7	8	9	10	11	12	13
	2	1	1	1	1	1	1	1,5	1	5	1,5	1,5	1,5

Grupo II

Considere a seguinte tabela de verdade da função lógica F.

\boldsymbol{A}	В	С	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

4. Usando um descodificador 3:8 e uma porta lógica adicional projete um circuito que implemente a função F.

5. Implemente a função F, definida na questão 4, usando um multiplexer 4:1 (e alguma lógica adicional).

6. É possível implementar a função F usando um multiplexer 2:1 e algumas portas lógicas adicionais? Se sim esboce esta solução.

7. O que se entende num circuito combinatório por tempo de contaminação? Qual a sua importância no circuito ?

8. Explique o que se entende por Endereço e Espaço de Endereçamento, numa memória.

- Espaço de endereçamento

 Número de endereços possíveis = 2^N = número de palavras.

 Endereçabilidade

 Número de bits em cada Endereço = M = tamanho da palavra.
- Endereço (address) um número (único) que identifica cada posição de memória. Os endereços são contados sequencialmente, começando em 0
- Espaço de endereçamento (address space) a gama total de endereços que o CPU consegue referenciar (depende da dimensão do barramento de endereços).

(Grupo	1			Gru	po II		Grupo III	Grupo IV			
1	2	3	4	5	6	7	8	9	10	11	12	13
2	1	1	1	1	1	1	1,5	1	5	1,5	1,5	1,5

9. Quais as diferenças e vantagens/desvantagens da memória RAM dinâmica vs RAM estática?

Grupo III

10. Pretende projetar-se uma máquina de estados que implemente um contador de Grey de 2 bits com a sequência (00, 01, 11, 10, 00, ...).

A máquina deve ter uma entrada D que, quando a 1, define a sequência de Grey decrescente, isto é pela ordem inversa, e, quando D a 0, define a sequência crescente.

A. A.	D	3.1 1.0	
0 0	0	0 1	
0 0	1	1 0	
o 1	6	1 1	
0 1	1	0 0	
1 0	6	0 0	
1 0	1		
1 1	6	1 0	
1 1	1	0 1	
, ,	ι	•	

10 c) Escreva as equações do estado seguinte em função do estado atual e das entradas e simplifique-as.

(rupo	I			Gru	po II		Grupo III	Grupo IV			
1	2	3	4	5	6	7	8	9	10	11	12	13
2	1	1	1	1	1	1	1,5	1	5	1,5	1,5	1,5

Grupo IV

11. Explique a importância da Arquitetura do Conjunto de Instruções, no desenvolvimento de sistemas computacionais.

Arquitetura do Conjunto de Instruções

- Também designada por "modelo de programação":
 - Uma abstração que representa a interface entre o hardware e o nível mais básico de software
- Descreve tudo o que o programador necessita de saber para programar corretamente, em linguagem máquina, um determinado processador
- Descreve a funcionalidade, independentemente do hardware que a implementa.
 - A organização do fluxo de dados e da unidade de controlo são do nível dos Sistemas Digitais, enquanto a sua implementação é do nível da MicroElectrónica.
- Objetivos de uma arquitetura:
 - Implementação eficiente e simples em hardware
 - Fácil de entender e programar
 - Compiladores eficientes

12. Von Neuman ficou na história dos computadores por uma contribuição revolucionária. Descreva a contribuição dele, a sua vantagem e o modelo funcional dos computadores que ele propôs.

- John Von Neumann propôs a armazenagem dos dados e do programa na mesma memória.
 - Deste modo os programas poderiam ser guardados e reaproveitados.
 - As unidades fundamentais que constituem um computador são:
 - Unidades de entrada permitem a recepção de informação vinda do exterior (dados, programas) e que é armazenada em memória
 - Unidades de saída permitem o envio de resultados para o exterior
 - Memória armazenamento de:
 - Programas
 - · Dados para processamento
 - Resultados
 - <u>CPU</u> processamento da informação através da execução do programa armazenado em memória
- 13. Os processadores MIPS seguem uma arquitetura RISC. Comente a afirmação anterior e identifique pelo menos uma vantagem e uma desvantagem deste tipo de arquiteturas.
- É uma arquitetura RISC (Reduced Instruction Set Computer)
 - Número de registos: muitos ou poucos?
 - Vantagens de um número pequeno de registos
 - Menos hardware
 - · Acesso mais rápido
 - Menos bits para identificação do registo
 - Mudança de contexto mais rápida
 - Vantagens de um número elevado de registos
 - Menos acessos à memória
 - · Variáveis em registos
 - Certos registos podem ter restrições de utilização

- Olliai Tapiao o caso comuni
- O MIPS apenas tem instruções simples e frequentes
- O hardware que implementa essas instruções simples é simples, pequeno e rápido
- As operações mais complexas (menos comuns) são executadas usando múltiplas instruções simples
 - Exemplo: somar 2 operandos em memória. Lw t1, op1 Lw t2, op2
 - Lw t2, op2 Add dst, t1,t2
- O MIPS é um processador RISC
- Número de registos: muitos ou poucos?
 - Vantagens de um número pequeno de registos
 - · Menos hardware
 - Acesso mais rápido
 - Menos bits para identificação do registo
 - Mudança de contexto mais rápida
 - Vantagens de um número elevado de registos
 - · Menos acessos à memória
 - Variáveis em registos
 - Certos registos podem ter restrições de utilização

(Grupo	I			Gru	po II		
1	2	3	4	5	6	7	8	
2	1	1	1	1	1	1	1,5	

Nome:_______Nº Mec._____

10 e) Adicione à máquina anterior uma saída **M2**, que assume o valor lógico **1** quando o valor da sequência for maior ou igual que 2. Escreva a equação lógica de **M2** em função do estado atual, e junte o circuito no diagrama

(da resposta a	interior.	. 1		
	A	Ao	M_2		
	0	Ô	0	$M_2 = A_1 A_0 + A_1 A_0$	
	0	1	0	1	
	1	0	1	= A1	
	4	1		A ₁	_
				Ao	
					_

(rupo	I	Grupo II					Grupo III	Gı	rupo l	٧	
1	2	3	4	5	6	7	8	9	10	11	12	13
2	1	1	1	1	1	1	1,5	1	5	1,5	1,5	1,5