Lab 6. Static Route and RIP

Lecturer: phkoan 管培勛 Credit to naich 黃迺絜 & hungwt 洪瑋廷

Outline

- Background Knowledge
- Purpose of this Lab
- Static Route
- Dynamic Route: RIP
- Disadvantage of RIP
- Link-state Routing Protocol

How Packet reaches its destination?

Destination Based Routing (1/2)

- A basic routing mode for IPv4 packets
- Each router determine a proper **next-hop** for a packet
- Based only on the destination address found in the packet.

Destination Based Routing (2/2)

Routing: Reach Remote Networks

- Routers learn next hops from
 - Static routing
 - Manually configured into the routing table
 - Must be reconfigured whenever the network topology changes
 - Dynamic routing
 - Automatically learned through dynamic routing protocols and configured into the routing table

Purpose of this Lab

Purpose of this Lab

- Configuration of Static Routing
- Configuration of Dynamic Routing
- Configuration of Routing Information Protocol (RIP)

What is in the routing table?

Entries in the Routing Table

Route source	Destination network	AD	Metric	Next-hop	Route timestamp	Outgoing interface
D	10.1.1.0/24	[90	/ 2170112] via	209.165.200.226,	00:00:05,	Serial0/0/0

- Route Source: how the route was learned
- Destination Network: the destination of the packets
- Administrative Distance (AD)
 - The trustworthiness of the route source
 - The lower value, the more preferred <u>route source</u>
- Metric
 - The value assigned to reach the remote network.
 - The lower value, the more preferred <u>route</u>
- Next-hop: where the router should send to
- Route Timestamp: after the route was learned
- Outgoing Interface: the exit interface to forward packets

AD v.s. Metric

Route source	Destination network	AD	Metric		Next-hop	Route timestamp	Outgoing interface
D	10.1.1.0/24	[90	/ 2170112]	via	209.165.200.226,	00:00:05,	Serial0/0/0

Administrative Distance (AD)

- the trustworthiness of the route source
- the lower value, the more preferred <u>route source</u>

Metric

- the value assigned to reach the remote network.
- the lower value, the more preferred <u>route</u>

Administrative Distance

Route Source	Administrative Distance
Connected	0
Static	1
EIGRP summary route	5
External BGP	20
Internal EIGRP	90
IGRP	100
OSPF	110
RIP	120
External EIGRP	170
Internal BGP	200

Static Routing

Scenario: In a company, 2 PCs & 3 routers

Question 1: How Sales and Engineers communicate

Static Route: IP Route Command

Configure static route

```
Router(config) # ip route network-address subnet-mask { ip-address |
exit-intf}
```

Parameter	Description		
network-address	Destination network address of the remote network to be added to the routing table		
subnet-mask	 Subnet mask of the remote network to be added to the routing table The subnet mask can be modified to summarize a group of networks 		
ip-address	 Referred to as the next-hop router's IP address Creates a recursive lookup 		
exit-intf	 Use the outgoing interface to forward packets Also referred to as a directly attached static route 		

Static Route Configuration

For Router1 & Router2

Method #1 (Router1): exit-interface

R1(config) # ip route 192.168.4.0 255.255.255.0 GigabitEthernet 0/0

Method #2 (Router2): IP-address

R2(config) # ip route 192.168.1.0 255.255.255.0 192.168.3.1

Static Route Configuration

For CompanyRouter

Method #1 (Engineers): exit-interface

CompanyR(config) # ip route 192.168.4.0 255.255.255.0 GigabitEthernet

Method #2 (Sales): IP-address

CompanyR(config) # ip route 192.168.1.0 255.255.255.0 192.168.2.1

It works? Great! Let's see what is happening.

Show IP Route on Router

```
R1# show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B -
BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter
area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route
```

Routing Table for **exit-intf** (Router1)

Method #1 exit-intf: routing table only needs to search once

```
R1# show ip route
Gateway of last resort is not set
    192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.1.0/24 is directly connected, GigabitEthernet0/1
L 192.168.1.1/32 is directly connected, GigabitEthernet0/1
    192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.2.0/24 is directly connected, GigabitEthernet0/0
L 192.168.2.1/32 is directly connected, GigabitEthernet0/0
S 192.168.4.0/24 is directly connected, GigabitEthernet0/0
```

Routing Table for **IP-Address** (Router2)

Method #2 IP-address: routing table needs to search twice

```
R2# show ip route
Gateway of last resort is not set
S 192.168.1.0/24 [1/0] via 192.168.3.1
    192.168.3.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.3.0/24 is directly connected, GigabitEthernet0/0
L 192.168.3.2/32 is directly connected, GigabitEthernet0/0
    192.168.4.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.4.0/24 is directly connected, GigabitEthernet0/1
L 192.168.4.1/32 is directly connected, GigabitEthernet0/1
```

Question 2: How Sales & Engineers surf the Internet

Default Static Route

Configure default static route

Router(config) # ip route 0.0.0.0 0.0.0.0 {ip-address | exit-intf}

Parameter	Description
0.0.0.0 0.0.0.0	Matches any network address
ip-address	 next-hop router's IP address commonly creates a recursive lookup
exit-intf	 use the outgoing interface to forward packets also referred to as a directly attached static route

Default Route on Company Router

Configure default route on Company Router

```
CompanyR(config) # ip route 0.0.0.0 0.0.0.0 gigabitEthernet 0/0 Try it!
```

Show ip route of Company Router

```
192.168.3.0/24 is variably subnetted, 2 subnets, 2 masks C 192.168.3.0/24 is directly connected, GigabitEthernet0/2 L 192.168.3.1/32 is directly connected, GigabitEthernet0/2 S 192.168.4.0/24 [1/0] via 192.168.3.2 S* 0.0.0.0/0 is directly connected, GigabitEthernet0/0
```

Default Route on Router 1 and Router 2

Configure default route on Route 1

```
R1(config)# ip route 0.0.0.0 0.0.0.0 gigabitEthernet 0/0 Try it!
```

Show ip route of Route 1

```
C 192.168.2.0/24 is directly connected, GigabitEthernet0/0 L 192.168.2.1/32 is directly connected, GigabitEthernet0/0 S 192.168.4.0/24 is directly connected, GigabitEthernet0/0 S* 0.0.0.0/0 is directly connected, GigabitEthernet0/0
```

Dynamic Routing: RIP (Routing Information Protocol)

Question: How to communicate and surf the Internet with RIP

Dynamic Routing: Router RIP Configuration Mode

Enable RIP

```
Router(config) # router rip

Router(config-router) #
```

Advertise Networks

Start RIP routing

```
Router(config-router) # network {subnet}
```

- RIPv1 is a classful routing protocol for IPv4.
- Classful routing protocol: In contrary to classless, a protocol that does not support ip except A, B, C classes
- Therefore, if a subnet address is entered, the IOS automatically converts it to the classful network address.
 - For example, entering the network 192.168.1.32 command would automatically be converted to network 192.168.1.0 on the running configuration file.
 - No error message, but IOS corrects the input and enters the classful network address.

Network Class

- A: 0.0.0.0 ~ 127.0.0.0 (subnet /8)
- B: 128.0.0.0 ~ 191.255.0.0 (subnet /16)
- C: 192.0.0.0 ~ 223.255.255.0 (subnet /24)
- D: 224.0.0.0 ~ 239.255.255.255 (multicast)
- E: 240.0.0.0 ~ 255.255.255.255 (reserved)

Dynamic Routing: RIP

```
R1(config) # router rip
                                                  Try it!
R1(config-router) # network 192.168.1.0
R1(config-router) # network 192.168.2.0
R2(config) # router rip
                                                  Try it!
R2(config-router) # network 192.168.3.0
R2(config-router) # network 192.168.4.0
CompanyR(config) # router rip
CompanyR(config-router) # network 192.168.2.0
                                                  Try it!
CompanyR(config-router) # network 192.168.3.0
```

Dynamic Routing: RIP

```
R2# show ip route
                    Try it!
.....
     192.168.1.0/24 [120/2] via 192.168.3.1, 00:00:09, GigabitEthernet0/0
     192.168.2.0/24 [120/1] via 192.168.3.1, 00:00:09, GigabitEthernet0/0
192.168.3.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.3.0/24 is directly connected, GigabitEthernet0/0
L 192.168.3.2/32 is directly connected, GigabitEthernet0/0
192.168.4.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.4.0/24 is directly connected, GigabitEthernet0/1
L 192.168.4.1/32 is directly connected, GigabitEthernet0/1
```

Propagate a Default Route

- Default static route be advertised to all other routers in the RIP routing domain
- Tell others in the same RIP routing domain where to connect Internet

```
Router(config) # ip route 0.0.0.0 0.0.0.0 {ip-address | exit-intf}
Router(config) # router rip
Router(config-router) # default-information originate
```

Propagate a Default Route

Configure default route on Company Router

```
Try it!
```

```
CompanyR(config) # ip route 0.0.0.0 0.0.0 gigabitEthernet 0/0
CompanyR(config) # router rip
CompanyR(config-router) # default-information originate
```

Propagate a Default Route

Show ip route

```
CompanyR# show ip route
...

192.168.3.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.3.0/24 is directly connected, GigabitEthernet0/1
L 192.168.3.1/32 is directly connected, GigabitEthernet0/1
S* 0.0.0.0/0 is directly connected, GigabitEthernet0/2
```

Propagate a Default Route

Show ip route

```
R1# show ip route
...
R 192.168.3.0/24 [120/1] via 192.168.2.2, 00:00:23, GigabitEthernet0/0
R 192.168.4.0/24 [120/2] via 192.168.2.2, 00:00:23, GigabitEthernet0/0
R* 0.0.0.0/0 [120/1] via 192.168.2.2, 00:00:05, GigabitEthernet0/0
```

Enable and RIPv2

- Enable RIPv2
 - Make RIP a classless routing protocol

```
Router(config) # router rip
Router(config-router) # version 2
```

Auto Summarization

 Auto summarization is a feature which allows RIP to summarize its routes to their classful networks automatically.

Auto Summarization

Default enable

```
R1# show ip route
...

172.16.0.0/16 is variably subnetted, 9 subnets, 3 masks

R 172.16.0.0/16 [120/1] via 192.168.1.2, 00:00:21, GigabitEthernet0/0

C 172.16.0.0/19 is directly connected, Loopback0

L 172.16.0.1/32 is directly connected, Loopback0
```


Disable Auto Summarization

Disable auto summarization on R2

```
R2(config) # router rip
R2(config-router) # no auto-summary

Try it!
```

- This command has no effect when using RIPv1
- When automatic summarization has been disabled, RIPv2 no longer summarizes networks to their classful address at boundary routers

Disable Auto Summarization

```
R1# show ip route
...
C 172.16.96.0/19 is directly connected, Loopback3
L 172.16.96.1/32 is directly connected, Loopback3
R 172.16.128.0/19 [120/1] via 192.168.1.2, 00:00:13, GigabitEthernet0/0
R 172.16.160.0/19 [120/1] via 192.168.1.2, 00:00:13, GigabitEthernet0/0
```


Longest Prefix Matching

Longest Prefix Matching

```
RO# show ip route
......
Gateway of last resort is not set

192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
S 192.168.1.0/24 [1/0] via 192.168.2.1
S 192.168.1.128/26 [1/0] via 192.168.3.1
......
```


Supplement: Timer

- Update Timer
 - How long to send route update packet
- Invalid Timer
 - How long to mark a route invalid since last update
- Hold-Down Timer
 - How long hold-down time be
 - A route enters hold-down state when it's unreachable
 - No update
 - Will be advertised as unreachable
- Flush Timer
 - How long to remove a route since last update
 - Starting at the same time as invalid timer

Disadvantage of RIP

Problems of RIP

- By default, RIP updates are forwarded out all RIP-enabled interfaces
- Sending out unneeded updates in a LAN impacts the network in three ways:
 - Wasted Bandwidth: RIP updates are either broadcasted or multicasted, switches also forward the updates out all ports
 - Wasted Resources: All devices on the LAN must process the update up to the transport layers, at which the devices will discard the update
 - Security Risk: RIP updates can be intercepted (listened) with packet sniffing software. Routing updates can be <u>modified</u> and sent back to the router.

Solution: Passive Interfaces

- Passive interface is a feature used by routing protocol to stop sending updates on the particular interface.
- Routing updates are only understood by the routers.

Solution: Passive Interfaces

Configure passive interface

Method #1: Passive all and *no* specific

```
Router(config)# router rip
Router(config-router)# passive-interface default
Router(config-router)# no passive-interface Gigabit 0/1
```

Method #2: Passive specific

```
Router(config-router) # passive-interface GigabitEthernet 0/0
```

The command stops routing updates out the specified interface

Solution: Passive Interfaces

Disadvantage of RIP

Closest may not be fastest

Choose the closest path by hop count does not mean it's the fastest route

Disadvantage of RIP

• Example: transmit a file of 1544GB from R1 to R3

port	bandwidth	time
Gig0/0	1Gbps	12352 s
se 0/0/0	1544Kbps	8 * 10 ⁶ s

Distance-Vector v.s. Link-State Routing Protocol

	Distance-Vector (E.g., RIP)	Link-State (E.g., OSPF)
Send What?	Routing Table	Link-State Advertisement (LSA)
Sending Range?	Only Neighbors	Whole Topology
Metric?	Hop Count	Cost

Link-State Routing Protocol

- Performed by every routing node in the network.
 - Every node constructs a map of the connectivity to the network, showing which nodes are connected to which other nodes.
 - b. Each node then calculates the next best **logical path** from it to every possible destination in the network.
 - c. Each collection of best paths will then form each node's routing table.
- OSPF (Using Dijkstra algorithm)

Lab After Midterm: OSPF

Thank you for listening!