Análise Matemática 1 Apontamentos

UNIDADES TEMÁTICA - 2

Funções de uma variável real. Limite de uma função

Objectivos:

- Determinar o domínio de uma função,
- Determinar a função inversa duma função caso exista;
- Dar a definição de limite de função segundo Heine e segundo Cauchy;
- Enunciar as principais propriedades de limite de função;
- Efectuar o levantamento de uma indeterminação quando esta é aparente;
- Identificar infinitésimos e infinitamente grandes;
- Calcular limites notáveis e comparar infinitésimos;
- Calcular limite de funções a uma variável real

FUNÇÃO REAL DE VARIÁVEL REAL

Noção de função

Sejam *A* e *B* dois conjuntos não vazios.

Uma lei que faz corresponder cada elemento $x \in A$ a um elemento $y \in B$, chama-se aplicação de A em B, isto é, uma relação $f: A \to B$ é uma função se, e só se:

- (1) Todo o elemento $x \in A$ se relaciona com algum elemento $y \in B$, isto significa que todo o objecto $x \in A$ tem uma imagem $y \in B$.
- (2) Cada elemento $x \in A$ se relaciona com um e único elemento $y \in B$, isto é, um objecto não pode ter mais do que uma imagem.

Se f denota uma função na qual y depende de x, então usa-se a fórmula y = f(x), onde y é uma variável dependente e x é uma variável independente ou argumento da função.

Campo de existência da função, ou campo de definição da função (Domínio da função) — \acute{e} o conjunto de valores de x, para os quais uma dada função \acute{e} determinada.

Nota: Geometricamente, qualquer recta vertical (x = a) não pode intersectar o gráfico de uma função, mais do que uma vez.

Considere as seguintes situações problemáticas:

- (1) Uma botija de gás contém $13\ kg$ de gás, e sabe-se que o consumo médio diário de gás é de $0.5\ kg$.
- a) Encontre uma expressão matemática que exprime o consumo de gás em função do número de dias;
- b) Quantos dias de uso, irá levar a botija de gás?
- c) Determine o campo de existência a imagem da função. Faca o esboço gráfico da função.

Resolução

a) Seja x – tempo em dias, e q(x) a quantidade de gás, após x dias de uso.

Se
$$x = 0$$
 dia, então $q(0) = 13 - 0, 5 \times 0 = 13kg$

Se
$$x = 1$$
 dia, então $q(1) = 13 - 0, 5 \times 1 = 12, 5kg$

Se
$$x = 2$$
 dias, então $q(2) = 13 - 0, 5 \times 2 = 12kg$

Se
$$x = 3$$
 dias, então $q(3) = 13 - 0, 5 \times 3 = 11, 5kg$

Se
$$x = n$$
 dias, então $q(n) = 13 - 0, 5 \times n \Leftrightarrow q(x) = 13 - 0, 5 \times x$

Pode-se concluir que q(x) = 13 - 0, 5x é a expressão matemática que exprime o uso de gás, em função do número de dias.

Trata-se de uma função do 1º grau: q(x) = ax + b

$$q(x) = -0.5x + 13$$
, $a = -0.5$; $b = 13$.

b) No último dia, após o uso, a botija ficará vazia:

$$q(x) = 0 \Leftrightarrow 13 - 0, 5x = 0 \Leftrightarrow 0, 5x = 13 \Leftrightarrow x = \frac{13}{0.5} = 26$$
 dias.

c) Dominio da função: Se x = 0 dia, então $q(0) = 13 - 0, 5 \times 0 = 13kg$

Se
$$x = 26$$
 dias, então $q(26) = 13 - 0, 5 \times 26 = 13 - 13 = 0kg$

$$D_q = [0; 26] \Leftrightarrow \mathbf{0} \le \mathbf{x} \le \mathbf{26};$$

Imagem da função: $Im = CD_q = [0; 13] \Leftrightarrow \mathbf{0} \leq \mathbf{y} \leq \mathbf{13}$

Esboço gráfico da função:

- (2) Pretende-se formar uma caixa a partir de uma chapa metálica quadrada de 12 *cm* de lado. Para tal, pequenos quadrados de lado *x cm* são removidos de cada canto do quadrado maior, e os seus lados são dobrados para cima para formar uma caixa aberta.
 - a) Expresse o volume V da caixa (em centímetros cúbicos) como uma função de *x*, e determine o domínio da função.
 - b) Explique como é que o valor do volume da caixa varia em função do lado x escolhido ao longo do seu campo de existência.

Resolução:

Foi dada uma chapa metálica quadrada de **12** *cm* de lado. O objectivo é de se formar uma caixa aberta, a partir da remoção de pequenos quadrados de lado **x**, em cada um dos quatro cantos da chapa dada. Observe atentamente as seguintes figuras:

Na figura 1, quatro pequenos quadrados de lado "x" estão marcados nos quatro cantos do quadrado maior, e sobre o lado do mesmo, para posteriormente serem removidos.

Na figura 2, observa-se que os pequenos quadrados já foram removidos. E desta forma, fica mais visível o quadrado menor de lado 12-2x, que será a própria base da caixa pretendida. As faces laterais da

caixa, serão obtidas ao dobrar o lado "x" para cima, de cada um dos quatro rectângulos de comprimento 12-2x e de largura "x", adjacentes à base da caixa. Portanto "x" é a altura da caixa. Na figura 3, já está formada a caixa aberta, de base quadrangular ($C_b = L_b = 12-2x$) e de altura h = x.

a) Determinação da expressão matemática que expressa o volume da caixa em função da altura x da caixa.

Sabemos que
$$V_c=A_b\times h=\mathcal{C}_b\times L_b\times h=(12-2x)(12-2x)x=(12-2x)^2x$$
 $\Leftrightarrow V(x)=(12-2x)^2x$

Domínio da função
$$V(x)$$
: $\mathbf{D}_V = \{x \in \mathbb{R}: 12 - 2x > 0\}$

C.A.
$$12 - 2x > 0 \land x > 0 \Leftrightarrow 2x < 12 \land x > 0 \Leftrightarrow x < 6 \land x > 0 \Leftrightarrow 0 < x < 6$$

Logo:
$$D_V = \{x \in \mathbb{R}: 12 - 2x > 0\} = \{x \in \mathbb{R}: 0 < x < 6\}$$

b) Sendo
$$V(x) = (12 - 2x)^2 x$$
, definida para $0 < x < 6$.

х	1	2	3	4	5
y = v(x)	100	128	108	64	10

Observe que, para os valores de $x \in]0; 6[$, ou seja, para os quais a função está definida, o valor do volume da caixa vai crescendo até um certo valor de $x \in]2; 3[$, depois começa diminuir-se. Portanto, o valor de "x" que corresponde ao valor máximo do volume da caixa, será conhecido facilmente, na aplicação dos conteúdos relacionados com o "cálculo diferencial".

Outros exemplos de funções:

(1)
$$f: \mathbb{N} \to \mathbb{Z}$$
 tal que $f(x) = x + 1$ é uma função;

(2)
$$g: \mathbb{Z} \to \mathbb{Q}$$
 tal que $g(x) = x^2 + 1$ é uma função ;

(3)
$$h: \mathbb{R} \to \mathbb{R}$$
 tal que $h(x) = 2x^3 - 1$ é uma função

Nota: Geometricamente, qualquer recta vertical (x = a) não pode intersectar o gráfico de uma função, mais do que uma vez.

f é uma função, pois qualquer recta vertical x = a, intercepta o gráfico de f em apenas um ponto.

 \boldsymbol{g} não é uma função, pois existe pelo menos uma recta vertical $\boldsymbol{x} = \boldsymbol{a}$, que intercepta o gráfico de \boldsymbol{g} em mais do que um ponto.

h é uma função, pois qualquer recta vertical x = a, intercepta o gráfico de h em apenas um ponto.

2.1 Campo de existência da função, ou campo de definição da função (Domínio da função) - é o conjunto de valores de x, para os quais uma dada função é determinada.

Em casos mais simples, o campo de existência da função é: ou o segmento [a,b], isto é, o conjunto de números reais x, que satisfazem as desigualdades $a \le x \le b$, ou o intervalo (a,b), isto é, o conjunto de números reais x, que satisfazem as desigualdades a < x < b. Porem é possível, também, uma estrutura mais complexa no campo de existência da função.

Exemplos: (1) Determinar o campo de existência de cada uma das seguintes funções:

a) $f(x) = \log_2(1 - x^2);$	b) $g(x) = \sqrt[6]{x - x^3}$	c) $h(x) = \log_{3-x}(1-x^2)$
d) $l(x) = \frac{2x+4}{\sqrt[3]{6x-2x^3}}$	e) $m(x) = \frac{\sqrt[3]{x-x^3}}{6+x^2}$	f) $p(x) = \sqrt{sen(2x)}$

Resoluções:

a) $f(x) = \log_2(x^2 - 1)$, é uma função logarítmica ($y = \log_a b$, com a > 0, $a \ne 1$ e b > 0): $D_f = \{x \in \mathbb{R}: 1 - x^2 > 0\}$

Logo,
$$D_f = \{x \in \mathbb{R}: 1 - x^2 > 0\} = \{x \in \mathbb{R}: -1 < x < 1\} =]1; 1[$$

Também pode se resolver a inequação $1-x^2>0$, usando o método de tabela de sinais:

C.A.: $1 - x^2 > 0 \Leftrightarrow (1 - \mathbf{x})(1 + \mathbf{x}) > 0$ (Usando o método da tabela de sinais)					
	$x \in]-\infty;-1[$	-1	$x \in]-1;1[$	1	$x \in]1; +\infty[$
1 – x	+	+	+	0	_
1 + x	_	0	+	+	+
(1-x)(1+x)	_	0	+	0	_
$1 - x^2 > 0 \Leftrightarrow (1 - \mathbf{x})(1 + \mathbf{x}) > 0 \Leftrightarrow x \in] - 1; 1[$					

b) $g(x) = \sqrt[6]{x - x^3}$, é uma função radical ($y = \sqrt[n]{a}$, com "a ≥ 0 ", se n for par e "a $\in \mathbb{R}$ ", se n for impar):

$$\begin{aligned} & \boldsymbol{D}_{g} = \{ \boldsymbol{x} \in \mathbb{R} : \boldsymbol{x} - \boldsymbol{x}^{3} \geq 0 \} = \{ \boldsymbol{x} \in \mathbb{R} : \boldsymbol{x} (\mathbf{1} - \mathbf{x}) (\mathbf{1} + \mathbf{x}) \geq 0 \} = \{ \boldsymbol{x} \in \mathbb{R} : \boldsymbol{x} \leq -1 \ \forall 0 \leq \boldsymbol{x} \leq 1 \} \\ & \Leftrightarrow \boldsymbol{D}_{g} =] - \infty; -1] \cup [\boldsymbol{0}; \boldsymbol{1}] \end{aligned}$$

C.A.: $x - x^3 \ge 0 \Leftrightarrow x(1 - x)(1 + x) \ge 0$ (Usando o método da tabela de sinais)							
	x < -1	-1	-1 < x < 0	0	0 < x < 1	1	<i>x</i> > 1
x	_	_	_	0	+	+	+
1 – x	+	+	+	+	+	0	_
1 + x	-	0	+	+	+	+	+
x(1-x)(1+x)	+	0	_	0	+	0	_
$x - x^3 \ge 0 \Leftrightarrow x(1 - \mathbf{x})(1 + \mathbf{x}) \ge 0 \ x - x^3 \ge 0 \Leftrightarrow x \in] - \infty; -1] \cup [0; 1]$							

c)
$$h(x) = \log_{3-x}(1-x^2)$$
, é uma função logarítmica ($y = \log_a b$, com a > 0, $a \ne 1$ e b > 0): $D_h = \{x \in \mathbb{R}: 1-x^2 > 0, 3-x \ne 1 \land 3-x > 0\} = \{x \in \mathbb{R}: 1-x^2 > 0, x \ne 2 \land x < 3\}$ Com base nos cálculos auxiliares da alínea a), $1-x^2 > 0 \Leftrightarrow (1-x)(1+x) > 0 \Leftrightarrow x \in]-1; 1[$, e assim sendo, temos: $D_h = \{x \in \mathbb{R}: 1-x^2 > 0, 3-x \ne 1 \land 3-x > 0\} = \{x \in \mathbb{R}: -1 < x < 1, x \ne 2 \land x < 3\}$

Logo,
$$D_l = \{x \in \mathbb{R}: \sqrt[3]{6x - 2x^3} \neq 0\} = \{x \in \mathbb{R}: x \neq 0 \land x \neq \pm \sqrt{3}\} = \mathbb{R} \setminus \{-\sqrt{3}; 0; \sqrt{3}\}$$

- e) $m(x) = \frac{\sqrt[3]{x-x^3}}{6+x^2}$, neste caso, o índice da raiz é ímpar e o denominador nunca se anula, concluímos assim que, todos os números reais satisfazem a função, isto é, $D_m = \{x \in \mathbb{R}: 6+x^2 \neq 0\} = \mathbb{R}$
- f) $p(x) = \sqrt{sen(2x)}$, tratando-se duma função radical de índice par, farão parte do campo de existência da fun**ção**, todos os valores de x para os quais $sen(2x) \ge 0$, isto é,

$$\boldsymbol{D_p} = \{\boldsymbol{x} \in \mathbb{R} : sen(2x) \ge 0\}$$

=]-1;1[

C.A.: $sen(2x) \ge 0$, é uma inequação trigonométrica. O conjunto solução desta inequação, é constituído por todos os valores de x, para os quais sen(2x) = 0 (função seno é nula), ou sen(2x) > 0(função seno é positiva).

Observando o circulo trigonométrico, verifica-se que, a função y = sen(x):

- (1) Anula-se, quando $x = 0 + 2k\pi$, ou $x = \pi + 2k\pi$;
- (2) É positiva, para $0 + 2k\pi < x < \pi + 2k\pi \Leftrightarrow 2k\pi < x < \pi + 2k\pi$ Portanto, de (1) e (2), temos: $sen(x) \ge 0 \Leftrightarrow 2k\pi \le x \le \pi + 2k\pi$

Assim sendo, como no argumento da inequação $sen(2x) \ge 0$, aparece 2x, teremos:

$$sen(2x) \ge 0 \Leftrightarrow \mathbf{0} + 2k\pi \le 2x \le \pi + 2k\pi \Leftrightarrow \frac{2k\pi}{2} \le x \le \frac{\pi + 2k\pi}{2} \Leftrightarrow k\pi \le x \le \frac{\pi}{2} + k\pi$$

Logo, temos:

$$D_p = \{x \in \mathbb{R} : sen(2x) \ge 0\} = \{x \in \mathbb{R} : k\pi \le x \le \frac{\pi}{2} + k\pi\}$$

Em jeito de resumo, para determinar-se o domínio de uma função, acautelam-se os seguintes aspectos:

2.1.1 Para uma função da forma $f(x) = \sqrt[n]{a}$,

$$D_f = \begin{cases} x \in \mathbb{R} | a \ge 0, se \ n \ for \ par \\ x \in \mathbb{R} | a \in \mathbb{R}, se \ n \ for \ impar \end{cases}$$

2.1.2 Para uma função da forma $f(x) = \frac{k}{a}$,

$$\boldsymbol{D}_f = \{ \boldsymbol{x} \in \mathbb{R} | \boldsymbol{a} \neq \boldsymbol{0} \}$$

2.1.3 Para uma função da forma $f(x) = \frac{k}{\sqrt[n]{a}}$,

$$D_f = \begin{cases} x \in \mathbb{R} | a > 0, se \ n \ for \ par \\ x \in \mathbb{R} | a \neq 0, se \ n \ for \ impar \end{cases}$$

2.1.4 Função logarítmica

(a) Para uma função da forma $f(x) = \log_a b$

$$D_f = \{ x \in \mathbb{R} | b > 0, a \neq 1, a > 0 \}$$

(b) Para uma função da forma $f(x) = \log_e b = Ln(b)$

$$D_f = \{ x \in \mathbb{R} | b > 0 \}$$

LIMITE DE UMA FUNÇÃO

Seja f uma função definida num intervalo contendo um ponto "a", excepto talvez o próprio "a", e seja "b" um número real.

Definição

Sendo "a" e "b" números reais (finitos ou infinitos), diz-se que uma função y = f(x), real de variável real, tem por limite "b" quando "x" tende para "a" e escreve-se $\lim_{x \to a} f(x) = b$, se e só

se, a toda a sucessão x_1 , x_2 , x_3 , ..., x_n , ... **de valores** de "x" (distintos de "a" **e** todos pertencentes ao domínio da função), tendente para "a", corresponde uma sucessão $f(x_1)$, $f(x_2)$, $f(x_3)$, ..., $f(x_n)$, ... tendente para "b". (HEINE)

 $\lim_{x\to a} f(x) = b$ significa que:

Para qualquer que seja $\varepsilon>0$ dado por volta de "b", existe um $\delta>0$ por volta de "a", tal que $\forall x\in]a-\delta; a+\delta[\setminus\{a\}$ sua imagem f(x) está no intervalo $]b-\varepsilon; b+\varepsilon[$

Simbolicamente:

$$\lim_{x \to a} f(x) = b \Leftrightarrow \forall \varepsilon > 0 \exists \delta > 0 : \forall x \in]a - \delta; a + \delta[\setminus \{a\} \Rightarrow f(x)\epsilon]b - \varepsilon; b + \varepsilon[$$

Exemplo: Seja dada a função $f(x) = \begin{cases} -3x - 5, & x < -2 \\ -\frac{1}{2}x^2 - 2x - 1, & x \ge -2 \end{cases}$

Supondo que a = -3, para achar o valor do limite, tomase a expressão -3x - 5, pois -3 < -2, e tem-se:

$$\lim_{\substack{x \to -3 \\ \Leftrightarrow \forall \varepsilon > 0 \exists \delta > 0: \forall x \in]} [-3 \times (-3) - 5] = 9 - 5 = 4$$

$$\Leftrightarrow \forall \varepsilon > 0 \exists \delta > 0: \forall x \in] - 3 - \delta; -3 + \delta[\setminus \{-3\}]$$

$$\Rightarrow f(x) \in [4 - \varepsilon; 4 + \varepsilon[$$

No gráfico observa-se que à medida que uma sucessão de valores de "x" se aproximam de "-3", quer por valores maiores (à direita) ou por valores menores (à esquerda), os valores de "y" correspondentes às suas imagens se aproximam de "y = 4", ou seja, $\lim_{x \to -3} f(x) = 4$.

Mostre usando a definição para mostrar que $\lim_{x\to -3}(-3x-5)=4$

Demostração:

Dado $\varepsilon > 0$, deve-se encontrar algum $\delta > 0$ tal que, sempre que $0 < |x - (-3)| < \delta$, então $|(-3x - 5) - 4| < \varepsilon$

Sabe-se que
$$|(-3x - 5) - 4| = |-3x - 5 - 4| = |-3x - 9| = |-3(x + 3)|$$

= $|-3| \times |x + 3| < \varepsilon \Leftrightarrow 3|x + 3| < \varepsilon \Leftrightarrow |x + 3| < \frac{\varepsilon}{3}$

Fazendo
$$\delta = \frac{\varepsilon}{3} \Leftrightarrow 3\delta = \varepsilon \Rightarrow |x+3| < \frac{\varepsilon}{3} \Leftrightarrow 3|x+3| < 3\delta = \varepsilon$$

Limites laterais

Seja y = f(x) uma função real de variável real:

- (1) " b_1 " diz-se limite de f à direita de "a"e escreve-se $\lim_{x\to a^+} f(x) = b_1$, se e só se, a toda sucessão $x_1, x_2, x_3, ..., x_n$, ... de valores de "x"(" $x_n \neq a$ ") tendentes para "a"por valores maiores que "a"($x \to a$), faz corresponder uma sucessão de valores $f(x_1), f(x_2), f(x_3), ..., f(x_n)$, ... tendente para " b_1 "($f(x) \to b_1$).
- (2) " b_2 " diz-se limite de f à esquerda de "a"e escreve-se $\lim_{x\to a^-} f(x) = b_2$, se e só se, a toda sucessão $x_1, x_2, x_3, ..., x_n$, ... de valores de "x"(" $x_n \ne a$ ") tendentes para "a"por valores menores que "a" ($x \to a^-$), faz corresponder uma sucessão de valores $f(x_1), f(x_2), f(x_3), ..., f(x_n), ...$ tendente para " b_2 "($f(x) \to b_2$).

Quando uma dada função está definida somente de um lado do ponto "a", então $\displaystyle \lim_{x \to a} f(x)$ é igual ao limite lateral, se esse existir.

Há situações em que o limite à esquerda (" a^- "), e o limite à direita (" a^+ ") não coincide, isto é, $\lim_{x \to a^-} f(x) \neq \lim_{x \to a^+} f(x)$, quando isso acontece diz-se que o limite não existe no ponto x = a.

A condição necessária e suficiente para que exista o limite de f(x) num determinado ponto "x = a", é que existam e sejam iguais os limites laterais de f(x), e o limite é o valor comum destes limites laterais, isto é,

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = b \Leftrightarrow \lim_{x \to a} f(x) = b$$

Exemplos:

1. Considere as seguintes funções: $f(x) = \begin{cases} -3x - 5, & x < -2 \\ -\frac{1}{2}x^2 - 2x - 1, & x \ge -2 \end{cases}$

 $g(x) = \sqrt{1 - x^2}, h(x) = \frac{1}{x} e k(x) = \frac{1}{2 - x} Calcule:$ a) $\lim_{x \to -2^+} f(x)$ b) $\lim_{x \to -2^-} f(x)$ c) $\lim_{x \to 0^+} h(x)$

a)
$$\lim_{x \to a^+} f(x)$$
 b) $\lim_{x \to a^-} f(x)$

c)
$$\lim_{x\to 0^+} h(x)$$

$$d) \lim_{x\to 0^-} h(x)$$

e)
$$\lim_{x \to 1^+} g(x)$$
 f) $\lim_{x \to 1^-} g(x)$ g) $\lim_{x \to 2^+} k(x)$

f)
$$\lim_{x \to 1^{-}} g(x)$$

g)
$$\lim_{x\to 2^+} k(x)$$

h)
$$\lim_{x\to 2^-} k(x)$$

Resoluções:

a)
$$\lim_{x \to -2^+} f(x) = \lim_{x \to -2^+} \left(-\frac{1}{2}x^2 - 2x - 1 \right) = -\frac{1}{2}(-2)^2 - 2(-2) - 1 = -2 + 4 - 1$$

$$1 = 1;$$

b)
$$\lim_{x \to -2^{-}} f(x) = \lim_{x \to -2^{-}} (-3x - 5) = -3(-2) - 5 = 6 - 5 = 1$$

Das alíneas **a)** e **b)**, conclui-se que $\lim_{x \to -2^-} f(x) = \lim_{x \to -2^+} f(x) = 1 \Leftrightarrow \lim_{x \to -2} f(x) = 1$

c)
$$\lim_{x\to 0^+} h(x) = \lim_{x\to 0^+} \frac{1}{x} = \frac{1}{0^+} = +\infty$$

d)
$$\lim_{x \to 0^{-}} h(x) = \lim_{x \to 0^{-}} \frac{1}{x} = \frac{1}{0^{-}} = -\infty$$

Das alíneas **c)** e **d)**, conclui-se que $\lim_{x\to 0} h(x) \not\exists$, $D_h = \{x \in IR : x \neq 0\}$.

e) $\lim_{x \to 1^+} g(x)$ \nexists , pois, $D_g = \{x \in IR: 1 - x^2 \ge 0\} = \{x \in IR: -1 \le x \le 1\}$. A função g não está definida à esquerda de -1, assim como à direita de 1.

f)
$$\lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{-}} \sqrt{1 - x^2} = \sqrt{1 - (1^{-})^2} = \sqrt{0} = 0 \Rightarrow \lim_{x \to 1} g(x) = 0$$

g)
$$\lim_{x \to 2^+} k(x) = \lim_{x \to 2^+} \frac{1}{2-x} = \frac{1}{2-2^+} = \frac{1}{0^-} = -\infty$$

h)
$$\lim_{x \to 2^{-}} k(x) = \lim_{x \to 2^{-}} \frac{1}{2-x} = \frac{1}{2-2^{-}} = \frac{1}{0^{+}} = +\infty$$

 $D_k = \{x \in IR: x \neq 2\}$. Das alíneas **g)** e **h) conclui-se** $\lim_{x \to 2} k(x) \not\exists$, ou seja, não existe o

limite no ponto x = 2, pois os limites laterais são diferentes.

Teoremas sobre limites de funções

Como consequência da definição de limite, as propriedades e os teoremas sobre limite de sucessões são válidas para o cálculo do limite de funções.

Importa salientar que a abordagem de limite para as sucessões é feita somente quando a variável "n" tende para o infinito ($n \to +\infty$), enquanto para o caso das funções, a abordagem de limite é feita quando a variável "x" tende para qualquer número real "a" finito ou infinito.

(1) Se f(x) = C, isto é, uma função constante, então $\lim_{x \to a} f(x) = C$ Supondo que $\lim_{x \to a} f(x) = A$ e $\lim_{x \to a} g(x) = B$, onde A e B são números reais finitos, então:

(2)
$$\lim_{x\to a} C \times f(x) = C \times \lim_{x\to a} f(x) = C \times A;$$

(3)
$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) = A \pm B;$$

(4)
$$\lim_{x\to a} f(x) \times g(x) = \lim_{x\to a} f(x) \times \lim_{x\to a} g(x) = A \times B;$$

(5)
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{\substack{x\to a \\ y\to a}} f(x) = \frac{A}{B}, \text{ se } B \neq 0;$$

(6)
$$\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to a} f(x)} = \sqrt[n]{A}$$
, se $\sqrt[n]{A}$ está definida;

(7)
$$\lim_{x\to a} Ln[f(x)] = Ln\left[\lim_{x\to a} f(x)\right] = Ln(A)$$
, se $Ln(A)$ está definida, ou seja, se existe e é positivo $\lim_{x\to a} f(x)$.

(8)
$$\lim_{x \to a} C^{f(x)} = C^{\lim_{x \to a} f(x)} = C^A$$

LIMITES NOTÁVEIS

(1) Limite notável exponencial

a)
$$\lim_{X\to +\infty} (1+\frac{K}{X})^X = e^K$$

$$\lim_{x\to 0}(1+X)^{\frac{K}{X}}=e^K$$

(2) Limite notável Logaritmico

Se existe e é positivo $\lim_{x \to a} f(x)$, então: $\lim_{x \to a} [\operatorname{Ln}(f(x))] = \operatorname{Ln}[f(x)]$

$$\lim_{X\to 0}\frac{Ln(1+X)}{X}=1$$

(3) Limite notável trigonométrico

$$\lim_{X\to 0}\frac{Sen(kX)}{kX}=\lim_{X\to 0}\frac{kX}{Sen(kX)}=1$$

Pode-se mostrar analisando o comportamento da função $f(x) = \frac{Sen(X)}{X}$ nas proximidades de

X = 0 (activar a função RAD na calculadora).

$$X$$
 0,01 0,001 0,0001 0,0001 0,0001 $f(x) = \frac{Sen(X)}{X}$ 0,998 0,999 0,9999

Na tabela, verifica-se que quando $X \to 0$, $f(X) \to 1$, o que permite concluir que $\lim_{X \to 0} \frac{Sen(X)}{X} = 1$ E duma maneira geral $\lim_{X \to 0} \frac{Sen(kX)}{kX} = \lim_{X \to 0} \frac{kX}{Sen(kX)} = 1$

Importante:

Caro estudante, encontre outras informações sobre limite de função, infinitamente grandes, infinitésimos, indeterminações, continuidade, tipos de descontinuidade, teoremas sobre funções contínuas, entre outros conteúdos, desta unidade noutras fontes.

Ficha de exercícios de aplicação sobre Função real de variável real (Entregar no dia 28/03/2024)

1. Ache o domínio de cada uma das seguintes funções:

a) $f(x) = \frac{4}{\sqrt{x^2 + 8}}$	b) $g(x) = \frac{(x^2 - 16)^{\frac{3}{2}}}{(x - 2)(x + 1)}$	c) $h(x) = \frac{\sqrt[3]{x-6}}{x(4-x^2)}$
d) $h(x) = \frac{\sqrt{x^2 + 16}}{\sqrt[3]{x^2 - 4}} - Ln(x^2 - 1)$	e) $f(x) = \sqrt{\frac{x}{2-x}} + \frac{1}{\sqrt{x+1}}$	$f) h(x) = \frac{x}{\sqrt[3]{x^2 - 4}}$

- 2. Determine os valores de "a" e "b" da função f(x) = ax + b, se o gráfico de f:
- a) Forma um ângulo de 30° com o eixo das abcissas e passa pelo ponto P(1; -5);
- **b**) Passa pelos pontos P(1; -5) e Q(3; 2);
- 3. Represente graficamente as funções das alíneas a) e b) do exercício anterior.
- 4. Considere a função $f(x) = ax^2 + 2bx + 3$. Determine os valores de **a** e **b** de modo que o vértice da função seja o ponto V(1; 4).
- 5. Sabe-se que o custo, em meticais para produzir q unidades de certo tipo de produto é dada por $C(x) = q^2 50q + 3000$. Determine:
- a) a quantidade mínima de unidades produzidas;
- **b)** o valor mínimo do custo;
- c) Esboce graficamente a função;
- **6.** Um triângulo equilátero tem de área $55 cm^2$. Determine a medida do seu lado sabendo que este excede a altura em 1 cm.
- 7. Considere as funções: $f(x) = \frac{3-3x}{4x+2}$, $g(x) = \sqrt{x-1}$, $f(x) = \log_2(|x|-1)$ e $h(x) = \sqrt{|2x|-2}$. Para cada uma das funções, determine o domínio, o contradomínio, os pontos de intersecção do gráfico com os eixos, e represente graficamente.

8. Calcule os seguintes limites até achar uma das alternativas dadas:

8. Calcule of seguintes limites ate achar uma das alternatives dadas:

a)
$$\lim_{x \to 2} \frac{x-2}{\sqrt{2x}-2} A \cdot \frac{1}{2} B \cdot -\frac{1}{4} C \cdot -2 D \cdot 2$$

f) $\lim_{x \to -1} (\frac{2x^2 - 3x - 8}{3x - 6})^2 A \cdot \frac{1}{3} B \cdot \frac{1}{9} C \cdot 3 D \cdot 9$

g) $\lim_{x \to 3} \frac{x^3 - 27}{x^2 - x - 6} A \cdot \frac{27}{5} B \cdot -\frac{27}{5} C \cdot -6 D \cdot -\frac{5}{27}$

g) $\lim_{x \to a} \frac{x^2 - (a+1)x + a}{x^3 - a^3} A \cdot \frac{a-1}{3a^2} B \cdot \frac{1-a}{3a^3} C \cdot -\frac{1}{3a} D \cdot \frac{3a^2}{1-a}$

i) $\lim_{x \to 0} [\frac{1}{x} Ln(\sqrt{\frac{1+x}{1-x}})] A \cdot e^{\frac{1}{2}} B \cdot 0 C \cdot 3 D \cdot 1$

j) $\lim_{x \to +\infty} (\frac{3x - 4}{3x + 2})^{2x} A \cdot e^{\frac{21}{3}} B \cdot 0 C \cdot 3 D \cdot 1$

j) $\lim_{x \to +\infty} [Ln(2x + 1) - Ln(x + 2)]$

A. $e^2 B \cdot Ln(2) C \cdot 2 D \cdot 1$

Fim