Preuve du théorème Krylov-Bogoliubov

Sacha Ben-Arous, Mathis Bordet

I Énoncé du cas particulier

On s'intéresse ici à la démonstration du théorème de Krylov-Bogoliubov, c'est-à-dire à l'existence d'une mesure invariante pour un homéomorphisme du cercle. On admet deux théorème issus du cours de Patrick Bernard sur les mesures sur un espace métrique compact, que l'on rappelle en fin de document.

II Démonstration

Cadre On considère T un homéomorphisme du cercle. Du fait que l'ensemble \mathbb{S}_1 est compact, par le théorème?? on a que $C^0(\mathbb{S}_1,\mathbb{S}_1)$ est séparable, i.e. il existe une sous-famille F dénombrable et dense au sens de la norme uniforme.

Construction de la suite Prenons $x \in \mathbb{S}_1$. Pour tout $f \in C^0(\mathbb{S}_1, \mathbb{S}_1)$, posons :

$$S^{N}f(x) = \frac{1}{N} \sum_{n=0}^{N} f(T^{n}(x))$$

Par extraction diagonale et par compacité de \mathbb{S}_1 , il existe une extraction N_k telle que $\forall f \in \mathbb{F}$, $S^{N_k}{}_f(x)$ converge. On note sa limite $S_f(x)$.

Extension de la construction Soit $g \in C^0(\mathbb{S}1,\mathbb{S}_1)$. Prenons une suite $(f_n)_{n \in \mathbb{N}} \in F^{\mathbb{N}}$ convergeant uniformément vers g. Montrons que $S_g(x)$ a un sens. Pour cela, considérons $(p,q) \in \mathbb{N}^2$:

$$\begin{split} |S^{N_p}g(x) - S^{N_q}{}_g(x)| &= \left|S^{N_p}{}_g(x) - S^{N_p}f_n(x) + S^{N_p}f_n(x) - S^{N_q}f_n(x) + S^{N_q}{}_{f_n}(x) - S^{N_q}{}_g(x)\right| \\ &\leq \left|S^{N_p}g(x) - S^{N_p}f_n(x)\right| + \left|S^{N_p}f_n(x) - S^{N_q}f_n(x)\right| + \left|S^{N_q}{}_{f_n}(x) - S^{N_q}{}_g(x)\right| \\ &\leq 2\left\|g - f_n\right\|_{\infty} + \left|S^{N_p}f_n(x) - S^{N_q}{}_{f_n}(x)\right| \end{split}$$

Donc $S^{N_p}_{q}(x)$ est une suite de Cauchy dans \mathbb{S}_1 , donc elle converge.

Conclusion On pose maintenant

$$L_x: C^0(\mathbb{S}_1, \mathbb{S}_1) \to \mathbb{C}$$

 $g \mapsto S_q(x)$

 L_x est 1-lipschitzienne donc continue. D'après le Théorème 2, il existe alors une mesure borélienne μ vérifiant :

$$\forall g \in C^0(\mathbb{S}_1), \ L_x(g) = \int_{\mathbb{S}_1} g \, d\mu$$

Or, par construction, $L_x(g \circ T) = L_x(g)$, donc $\mu = \mu(T^{-1}(.))$. Avec T bijectif, on a bien $\mu = \mu(T(.))$.

Appendice

Théorème 1. — Pour tout métrique compacte X, l'espace C(X) est séparable pour la norme uniforme.

Théorème 2. — Il y a une bijection entre les mesures boréliennes et les formes linéaires positives sur $C^0(\mathbb{S}_1,\mathbb{S}_1)$.