15-151 Mathematical Foundations for CS – EXCEL

Topic: Intro, Ice breaker, Logic, Sets, Functions

EXCEL Leader: Sam Yong

Email: myong@andrew.cmu.edu

Session Date: Mon 16 Sep 19

Academic Development

Cyert Hall B5 | 412-268-6878

Services available: Supplemental Instruction (SI), Academic Counseling in Study Skills, Individual & Walk-in Tutoring

I. Two Lies and a Truth

Instructions: Each person writes down three facts about themselves, two of which are lies. Then each person takes turns reading their list aloud and the rest of the group writes down the one they think is the truth. When all are done reading the lists aloud, the first person reads their list again and identifies the truth. The group sees how well they did.

II. Fill in the Blanks

•	A propositional variable may	y be assigned a	value, either	or
•	A propositional formula is an	n expression that is eit	her a propositional variabl	e, or is built up from
	simpler propositional formul	ae using	·	
•	For each of the following log	gical operations, write	the operator symbol and it	s definition.
	o Conjunction:	,		
	o Disjunction:	,		
	o Implication:			
	o Biconditional:			
	o Negation:	,		

The converse of a proposition of the form $p \Rightarrow q$ is the proposition					
The contrapositive of a proposition of the form $p \Rightarrow q$ is the proposition					
A contradiction is a proposition known or assumed to be, denoted as					
Write a plain English statement with the universal quantifier, then argue its truth value.					
Write a plain	English statement with the	e existential quantifier	then argue its truth value.		
		4	_		
Write a plain	English statement with the	e unique existential qu	nantifier, then argue its truth va		
Write the de N	Morgan's law for the follo	wing	_		
o Logica	al operation – conjunction	:			
o Logica	al operation – disjunction:				
o Unive	rsal quantifier:				
o Existe	ntial quantifier:				
A tautology is	a proposition or logical f	ormula that is	, no matter		
Let $a, b \in \mathbb{R}$.	Define the following inter	vals using set builder	notation.		
\circ (a,b)					
\circ $(a,b]$					
\circ [a, b]					
$\circ [a, \infty)$					
Let <i>X</i> be a set					
Let X, Y be sets. Then $X = Y$ if and only if The empty set is the set with, denoted as					
	lowing set operations using				
Interse		is set bander notation			
Union					
	1 ,				
	The power set of X is				