Density of States of Hodge Laplacians: Decomposition effects and Sparsification of SC

Tony Savostianov ¹

 1 Computational Network Science, RWTH Aachen , email: a.s.savostyanov@gmail.com

Abstract:

Keywords: density of states, simplicial complexes, sparsification, generalized effective resistance

Introduction

Well, it would be nice to have one. You know, somewhere here, maybe...

Contributions. we do contribute something, right?

Outline. it's all over the place, man...

Preliminaries

П

- I. Simplicial Complexes, [Lim20]
- II. Networks' Density of States, [DBB19]

Def. 1 (Density of States) Fro a given symmetric matrix $A = Q\Lambda Q^{\top}$ with $Q^{\top}Q = I$ and diagonal $\Lambda = \text{diag}(\lambda_1, \dots \lambda_n)$, the spectral density or density of states (DoS)

$$\mu(\lambda \mid A) = \frac{1}{n} \sum_{i=1}^{n} \delta(\lambda - \lambda_{i})$$

Additionally, let \mathbf{q}_i be a corresponding unit eigenvector of A (such that $A\mathbf{q}_i = \lambda_i \mathbf{q}_i$ and $Q = (\mathbf{q}_1 \mid \mathbf{q}_2 \mid \cdots \mid \mathbf{q}_n)$); then one can define a set of local (entry-wise) densities of states (LDoS):

$$\mu_k(\lambda \mid A) = \sum_{i=1}^n \left| \mathbf{e}_k^{\top} \mathbf{q}_i \right|^2 \delta(\lambda - \lambda_i)$$
 (Eqn. 2)

(Eqn. 1)

with \mathbf{e}_k being the corresponding versor.

III. Kernel Polynomial Method (KPM)

Th III.III.1

(Simplicial Sparsification, [OPW22]) Let $\mathcal K$ be a simplicial complex restricted to its p-skeleton, $\mathcal K = \bigcup_{i=0}^p \mathcal V_i(\mathcal K)$. Let $L_k^\uparrow(\mathcal K)$ be its k-th up-Laplacian and let $m_k = |\mathcal V_k(\mathcal K)|$. For any $\varepsilon > 0$, a sparse simplicial complex $\mathcal L$ can be sampled as follows:

- (1) compute the probability measure \mathbf{p} on $\mathcal{V}_{k+1}(\mathcal{K})$ proportional to the generalized resistance vector $\mathbf{r} = \operatorname{diag}\left(B_{k+1}^{\top}(L_k^{\uparrow})^{\dagger}B_{k+1}\right)$, where $\operatorname{diag}(A)$ denotes the vector of the diagonal entries of A;
- (2) sample q simplices τ_i from $\mathcal{V}_{k+1}(\mathcal{K})$ according to the probability measure \mathbf{p} , where q is chosen so that $q(m_k) \geq 9C^2m_k\log(m_k/\varepsilon)$, for some absolute constant C > 0;
- (3) form a sparse simplicial complex \mathcal{L} with all the sampled simplexes of order k and all its faces with the weight $\frac{w_{k+1}(\tau_i)}{q(m_k)\mathbf{p}(\tau_i)}$; weights of repeated simplices are accumulated.

Then, with probability at least 1/2, the up-Laplacian of the sparsifier $\mathcal L$ is ε -close to the original one, i.e. it holds $L_k^{\uparrow}(\mathcal L) \approx L_k^{\uparrow}(\mathcal K)$.

The bottleneck of the subsampling above is the construction of the appropriate measure \mathbf{p} or, more precisely, generalized effective resistance \mathbf{r} . Indeed, one needs a fast pseudo-inverse operator $\left(L_k^{\uparrow}\right)^{\dagger}$ in order to compute \mathbf{r} .

Th III.III.2

(GER through DoS) For a given simplicial complex mcK with the k-th order up-Laplacian $L_k^{\uparrow} = B_{k+1}W_{k+1}^2B_{k+1}^{\top}$, a generalized effective resistance r can be computed through family of local densities of states $\{\mu_i(\lambda \mid L_{k+1}^{\downarrow})\}$:

$$\mathbf{r}_{i} = \int_{\mathbb{R}} (1 - \mathbb{1}_{0}(\lambda)) \mu_{i}(\lambda \mid L_{k+1}^{\downarrow}) d\lambda$$

(Eqn. 3)

weighted egdges === BAD ?

we need to assume somewhere $W_k = I$

for simplicity and

do not forget about

Let $B_{k+1}W_{k+1} = USV^{\top}$ where S is diagonal and invertible and both U and V are orthogonal (so it is a truncated SVD decomposition of $B_{k+1}W_{k+1}$ matrix with eliminated obsolete kernel). Then:

$$(L_k^{\uparrow})^{\dagger} = \left(B_{k+1}W_{k+1}^2B_{k+1}^{\top}\right)^{\dagger} = \left(US^2U^{\top}\right)^{\dagger} = US^{-2}U^{\top}$$
 (Eqn. 4)

$$\mathbf{r} = \operatorname{diag}\left(W_{k+1}B_{k+1}^{\top}(L_{k}^{\uparrow})^{\dagger}B_{k+1}W_{k+1}\right) =$$

$$= \operatorname{diag}\left(VSU^{\top}US^{-2}U^{\top}USV^{\top}\right) = \operatorname{diag}\left(VV^{\top}\right)$$
(Eqn. 5)

As a result, $\mathbf{r}_i = \|V_i\|^2 = \sum_j |v_{ij}|^2$, so the *i*-th entry of the resistance is defined by the sum of square of *i*-th components of eigenvectors \mathbf{v}_j of $L_{k+1}^{\downarrow} = W_{k+1}B_{k+1}^{\top}B_{k+1}W_{k+1}$ operator where $\mathbf{v}_j \perp \ker L_{k+1}^{\downarrow}$. Note that

$$\mu_{i}(\lambda \mid L_{k+1}^{\downarrow}) = \sum_{j=1}^{m_{k+1}} \left| \mathbf{e}_{i}^{\top} \mathbf{q}_{j} \right|^{2} \delta\left(\lambda - \lambda_{j}\right) = \sum_{j=1}^{m_{k+1}} \left| q_{ij} \right|^{2} \delta\left(\lambda - \lambda_{j}\right) \tag{Eqn. 6}$$

r_i = $\|V_{i.}\|^2 = \sum_{j} |v_{ij}|^2 = \int_{\mathbb{R}\setminus\{0\}} \sum_{j=1}^{m_{k+1}} |q_{ij}|^2 \delta\left(\lambda - \lambda_j\right) d\lambda =$ $= \int_{\mathbb{R}\setminus\{0\}} \mu_i(\lambda \mid L_{k+1}^{\downarrow}) d\lambda = \int_{\mathbb{R}} (1 - \mathbb{1}_0(\lambda)) \mu_i(\lambda \mid L_{k+1}^{\downarrow}) d\lambda$ (Eqn. 7)

Rem III.1 (Sensitivity of the Sparsification vis-a-vis sampling measure p) Compare ε with $\frac{1}{m_2}$: if below, you are fiiiiiiine INSERT FIGURE HERE

KID for LDoS

Note that up- and down-Laplacians L_k^\uparrow and L_k^\downarrow by their definition have non-trivial kernels of high dimensionality. Indeed, recalling the Hodge decomposition :

.

ref up

$$\mathbb{R}^{m_k} = \underbrace{\operatorname{im} B_k^\top \oplus \ker \left(B_k^\top B_k + B_{k+1} B_{k+1}^\top \right) \oplus \operatorname{im} B_{k+1}}_{\ker B_k} \tag{Eqn. 8}$$

the subspaces $\ker B_k = \ker L_k^{\downarrow}$ and $\ker B_{k+1}^{\top} = \ker L_k^{\uparrow}$ include at least $\operatorname{im} B_{k+1}$ and $\operatorname{im} B_{k+1}^{\top}$. As a result, the zero eigenvalue in the corresponding DoS and LDoS for both operators exhibits a dominating pick severely affecting the quality of KPM-approximation.

Conclusion

Motive filtration is still a thing

V References

- [BGL16] Austin R Benson, David F Gleich, and Jure Leskovec. Higher-order organization of complex networks. *Science*, 353(6295):163–166, 2016.
- [BGVKS23] Jess Banks, Jorge Garza-Vargas, Archit Kulkarni, and Nikhil Srivastava. Pseudospectral shattering, the sign function, and diagonalization in nearly matrix multiplication time. Foundations of computational mathematics, 23(6):1959–2047, 2023.
- [DBB19] Kun Dong, Austin R Benson, and David Bindel. Network density of states. In *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pages 1152–1161, 2019.
- [GST23] Nicola Guglielmi, Anton Savostianov, and Francesco Tudisco. Quantifying the Structural Stability of Simplicial Homology. *Journal of Scientific Computing*, 97(1):2, August 2023.
- [Lim20] Lek-Heng Lim. Hodge laplacians on graphs. Siam Review, 62(3):685–715, 2020.
- [OPW22] Braxton Osting, Sourabh Palande, and Bei Wang. Spectral sparsification of simplicial complexes for clustering and label propagation. *Journal of computational geometry*, 11(1), 2022.
- [SBH⁺20] Michael T Schaub, Austin R Benson, Paul Horn, Gabor Lippner, and Ali Jadbabaie. Random walks on simplicial complexes and the normalized Hodge 1-Laplacian. *SIAM Review*, 62(2):353–391, 2020.