Metody Numeryczne

Politechnika Poznańska Instytut Automatyki i Robotyki

ĆWICZENIE 9

1 ODE 45 – Matlab

https://www.mathworks.com/help/matlab/ref/ode45.html

2 Bouncing of a ball – Matlab

https://www.mathworks.com/help/matlab/math/ode-event-location.html

3 Zadania

3.1 Równania różniczkowe

$$\dot{y}(t) = 2t \tag{1}$$

Wektor czasu [0,5], warunek początkowy $y_0 = 0$.

W jednym pliku można umieszczać polecenia oraz definiować funkcje jeżeli: Matlab jest w wersji $\geqslant 2017a$.

3.2 Piłka

Równania ruchu odbijającej się piłki dane są zależnościami (2-3). Zakładamy, że z każdym odbiciem tracimy 10% prędkości.

 y_1 - to położenie w osi pionowej, y_2 - to prędkość.

$$\dot{y}_1 = y_2 \tag{2}$$

$$\dot{y}_2 = -9.81.$$
 (3)

Przebieg ćwiczenia:

- 1. Bazując na zadaniu 3.1, napisać szkielet programu do całkowania równań (2-3).
- 2. Zakładamy na razie 1 rzut
- 3. Wynikiem działania programu powinna być trajektoria lotu piłki wykres $y_1(t)$.
- 4. Należy przyjąć pewien dowolny warunek początkowy, np. $y_0 = [y_1, y_2] = [0, 10]$, odpowiadający początkowemu położeniu, oraz początkowej prędkości.
- 5. Dodać warunek stopu, tzn. należy zatrzymać całkowanie w momencie zetknięcia się piłki z ziemią (przyjąć, że poziom podłoża odpowiada sytuacji $y_1 = 0$).
- 6. Zmienić program tak, by dokonywanych było n rzutów po sobie.
- 7. Każdy kolejny rzut oznacza utratę 10% prędkości początkowej.
- 8. Wykreślić n kolejnych rzutów na wykresie.