In [1]: pip install wordcloud

Requirement already satisfied: wordcloud in c:\users\cafeb\anaconda3\lib\site-packages (1.9.3) Requirement already satisfied: pillow in c:\users\cafeb\anaconda3\lib\site-packages (from wordcloud) (9.2. Requirement already satisfied: numpy>=1.6.1 in c:\users\cafeb\anaconda3\lib\site-packages (from wordcloud) (1.21.5)Requirement already satisfied: matplotlib in c:\users\cafeb\anaconda3\lib\site-packages (from wordcloud) (3.5.2)Requirement already satisfied: fonttools>=4.22.0 in c:\users\cafeb\anaconda3\lib\site-packages (from matplo tlib->wordcloud) (4.25.0) Requirement already satisfied: packaging>=20.0 in c:\users\cafeb\anaconda3\lib\site-packages (from matplotl ib->wordcloud) (21.3) Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\cafeb\anaconda3\lib\site-packages (from matplo tlib->wordcloud) (1.4.2) Requirement already satisfied: python-dateutil>=2.7 in c:\users\cafeb\anaconda3\lib\site-packages (from mat plotlib->wordcloud) (2.8.2) Requirement already satisfied: cycler>=0.10 in c:\users\cafeb\anaconda3\lib\site-packages (from matplotlib->wordcloud) (0.11.0) Requirement already satisfied: pyparsing>=2.2.1 in c:\users\cafeb\anaconda3\lib\site-packages (from matplot lib->wordcloud) (3.0.9) Requirement already satisfied: six>=1.5 in c:\users\cafeb\anaconda3\lib\site-packages (from python-dateutil >=2.7->matplotlib->wordcloud) (1.16.0) Note: you may need to restart the kernel to use updated packages.

In [2]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator from sklearn.model_selection import train_test_split from sklearn.linear model import PassiveAggressiveRegressor

```
In [3]: df=pd.read_csv('Instagram data.csv',encoding = 'latin1')
```

In [4]: df

Out[4]:

	Impressions	From Home	From Hashtags	From Explore	From Other	Saves	Comments	Shares	Likes	Profile Visits	Follows	Caption	
0	3920	2586	1028	619	56	98	9	5	162	35	2	Here are some of the most important data visua	#finance #money #
1	5394	2727	1838	1174	78	194	7	14	224	48	10	Here are some of the best data science project	#healthcare #hea
2	4021	2085	1188	0	533	41	11	1	131	62	12	Learn how to train a machine learning model an	#data #datascien
3	4528	2700	621	932	73	172	10	7	213	23	8	Here□s how you can write a Python program to d	#python #pythonpro
4	2518	1704	255	279	37	96	5	4	123	8	0	Plotting annotations while visualizing your da	#datavisualization
114	13700	5185	3041	5352	77	573	2	38	373	73	80	Here are some of the best data science certifi	#datascience #dat
115	5731	1923	1368	2266	65	135	4	1	148	20	18	Clustering is a machine learning technique use	#machinelearning #

	Impressions	From Home	From Hashtags	From Explore	From Other	Saves	Comments	Shares	Likes	Profile Visits	Follows	Caption	
116	4139	1133	1538	1367	33	36	0	1	92	34	10	Clustering music genres is a task of grouping	#machinelearning #
117	32695	11815	3147	17414	170	1095	2	75	549	148	214	Here are some of the best data science certifi	#datascience #dal
118	36919	13473	4176	16444	2547	653	5	26	443	611	228	175 Python Projects with Source Code solved an	#python #pythonpro

119 rows × 13 columns

In [5]: df.is	df.isnull().sum()							
Out[5]: Impre	essions	0						

From Home 0 From Hashtags 0 From Explore From Other 0 Saves 0 Comments 0 Shares 0 Likes Profile Visits 0 Follows 0 Caption 0 Hashtags dtype: int64

```
In [6]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 119 entries, 0 to 118
Data columns (total 13 columns):

	`	,	
#	Column	Non-Null Count	Dtype
0	Impressions	119 non-null	int64
1	From Home	119 non-null	int64
2	From Hashtags	119 non-null	int64
3	From Explore	119 non-null	int64
4	From Other	119 non-null	int64
5	Saves	119 non-null	int64
6	Comments	119 non-null	int64
7	Shares	119 non-null	int64
8	Likes	119 non-null	int64
9	Profile Visits	119 non-null	int64
10	Follows	119 non-null	int64
11	Caption	119 non-null	object
12	Hashtags	119 non-null	object
	-		-

dtypes: int64(11), object(2)

memory usage: 12.2+ KB

```
In [7]: plt.figure(figsize=(10, 8))
    plt.style.use('fivethirtyeight')
    plt.title("Distribution of Impressions From Home")
    sns.distplot(df['From Home'])
    plt.show()
```

C:\Users\cafeb\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a de precated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)


```
In [8]: plt.figure(figsize=(8,6))
    plt.title('Distribution of Impressions From Hashtags')
    sns.distplot(df['From Hashtags'])
    plt.show()
```

C:\Users\cafeb\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a de precated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)


```
In [9]: plt.figure(figsize=(10, 8))
    plt.title("Distribution of Impressions From Explore")
    sns.distplot(df['From Explore'])
    plt.show()
```

C:\Users\cafeb\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a de precated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)


```
In [10]: home=df['From Home'].sum()
    hashtag= df['From Hashtags'].sum()
    explore=df['From Explore'].sum()
    other=df['From Other'].sum()
    labels= ['From Home', 'From Hashtag', 'From Explore', 'From Other']
    values=[home, hashtag, explore, other]
    fig=px.pie(df, values=values , names=labels)
    fig.show()
```



```
In [11]: text= "".join(i for i in df.Caption)
    stopword=set(STOPWORDS)
    wordcloud=WordCloud(stopwords=stopword,background_color='white').generate(text)
    plt.style.use('classic')
    plt.figure(figsize=(10,8))
    plt.imshow(wordcloud, interpolation='bilinear')
    plt.axis('off')
    plt.show()
```



```
In [12]: text= "".join(i for i in df.Hashtags)
    stopwords=set(STOPWORDS)
    wordcloud = WordCloud(stopwords=stopwords, background_color="white").generate(text)
    plt.figure(figsize=(12,10))
    plt.imshow(wordcloud, interpolation='bilinear')
    plt.axis("off")
    plt.show()
```



```
In [13]: figure= px.scatter(data_frame= df, x="Impressions", y="Likes", size="Likes", trendline="ols",title='Relations
figure.show()
```

Relationship Between Likes and Impress

In [14]: figure= px.scatter(data_frame=df,x="Impressions", y="Shares",size="Shares",trendline="ols",title="relationsh:
 figure.show()

relationship between shares and impression


```
In [15]: figure= px.scatter(data_frame=df, x="Impressions", y="Saves", size="Saves", trendline="ols")
    figure.show()
```



```
In [16]: correlation=df.corr()
    print(correlation["Impressions"].sort_values(ascending=False))
```

Impressions 1.000000 From Explore 0.893607 Follows 0.889363 Likes 0.849835 From Home 0.844698 Saves 0.779231 Profile Visits 0.760981 Shares 0.634675 From Other 0.592960 From Hashtags 0.560760 Comments -0.028524

Name: Impressions, dtype: float64

```
In [17]: plt.figure(figsize=(8,10))
    sns.heatmap(correlation, annot=True, cmap='coolwarm', vmin=-1, vmax=1, linewidths=0.5)
    plt.show()
```


5 u

Analyzing Conversion Rate

```
In [18]: conversion_rate = (df["Follows"].sum() / df["Profile Visits"].sum()) * 100
print(conversion_rate)
```

41.00265604249668

```
In [19]: figure= px.scatter(data_frame=df,x="Profile Visits", y="Follows",size="Follows",trendline="ols",title = "Relation of the profile visits", y="Follows",trendline="ols",title = "Relation of the profile visits", y="Follows",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendline="ols",trendli
```

Relationship Between Profile Visits and Followers Gained

Instagram Reach Prediction Model

```
In [20]: x=np.array(df[['Likes', 'Saves', 'Comments', 'Shares', 'Profile Visits', 'Follows']])
y=np.array(df['Impressions'])

In [21]: xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.2, random_state=42)
model=PassiveAggressiveRegressor()
model.fit(xtrain,ytrain)
model.score(xtest,ytest)

Out[21]: 0.8203807510667341

In [22]: #prediction
# Features = [['Likes', 'Saves', 'Comments', 'Shares', 'Profile Visits', 'Follows']]
features=np.array([[282.0, 233.0, 4.0, 9.0, 165.0, 54.0]])
model.predict(features)

Out[22]: array([9413.55203892])

In []:
```