Formulae:

$$cos^{2} \theta + sin^{2} \theta = 1$$

$$cos(\alpha \pm \beta) = cos \alpha cos \beta \mp sin \alpha sin \beta$$

$$sin(\alpha \pm \beta) = sin \alpha cos \beta \pm cos \alpha sin \beta$$

Equation(s)	Solution(s)
$\sin \theta = a$	$\theta = \operatorname{Atan2}(a, \pm \sqrt{1 - a^2})$
$\cos \theta = b$	$\theta = \operatorname{Atan2}(\pm \sqrt{1 - b^2}, b)$
$\int \sin \theta = a$	$\theta = \operatorname{Atan2}(a,b)$
$\cos \theta = b$	
$a\cos\theta - b\sin\theta = 0$	$\theta^{(1)} = \operatorname{Atan2}(a,b)$
	$\theta^{(2)} = \text{Atan2}(-a,-b) = \pi + \theta^{(1)}$
$a\cos\theta + b\sin\theta = c$	$\theta^{(1)} = \operatorname{Atan2}(c, \sqrt{a^2 + b^2 - c^2}) - \operatorname{Atan2}(a, b)$
	$\theta^{(2)} = \text{Atan2}(c, -\sqrt{a^2 + b^2 - c^2}) - \text{Atan2}(a, b)$
$\int a\cos\theta - b\sin\theta = c$	$\theta = \operatorname{Atan2}(ad - bc, ac + bd)$
$\int a\sin\theta + b\cos\theta = d$	
$\int \sin \alpha \sin \beta = a$	$\int \alpha^{(1)} = \operatorname{Atan2}(a,b)$
$\left\{\cos\alpha\sin\beta=b\right.$	$\begin{cases} \alpha^{(1)} = \operatorname{Atan2}(a,b) \\ \beta^{(1)} = \operatorname{Atan2}(\sqrt{a^2 + b^2},c) \end{cases}$
$\cos \beta = c$	$\begin{cases} \alpha^{(2)} = \text{Atan2}(-a,-b) = \pi + \alpha^{(1)} \\ \beta^{(2)} = \text{Atan2}(-\sqrt{a^2 + b^2},c) \end{cases}$
	$\int \beta^{(2)} = \operatorname{Atan2}\left(-\sqrt{a^2 + b^2}, c\right)$