Supplementary Material

I. DEFINITIONS

Let Σ be a finite set of constant symbols, e.g. $\{a, b, c, \dots\}$. Let Γ be a finite set of variable symbols, e.g. $\{X, Y, Z, \dots\}$. Let $P^n (n \ge 0)$ be a finite set of n-ary predicate symbols, and $P = \bigcup_{i=1}^{k} P^{i}$. We use $p(t_1, \dots, t_k)$ to denote a k-ary predicate,

where $p \in P^k$, $t_i \in \Sigma \cup \Gamma$. Let P, Q be two predicates. $\phi(P)$ is the arity of P. P and Q are identical if they share the same predicate symbol and argument list, written as $P \equiv Q$. A predicate p is called grounded if all arguments (i.e. t_1, \ldots) are constants. The above definitions do not break the those defined in first-order predicate logic.

Definition 1 (Relational Database, RDB). A relational database is a finite set of grounded predicates.

Formally, the pattern induced in SINC is a first-order Horn rule:

$$Q \leftarrow P_1 \wedge P_2 \wedge \cdots \wedge P_n$$

where Q, P_1, \dots, P_n are predicates (arguments of which are from $\Sigma \cup \Gamma$) and there is no negation of the predicates in the rule. $\psi(r)$ denotes the number of different variables in r. According to some rule r, Q is entailed by $P_1 \wedge \cdots \wedge P_n$ if P_i are all true, that is $(\bigwedge P_i) \land (Q \leftarrow P_i) \models Q$. Thus by binding

the variables in the entailment, the grounded predicate Q' is entailed by grounded predicates P_i^\prime w.r.t. the rule r if P_i^\prime is in the RDB \mathcal{D} , written as $\{P'_i\} \models_r Q'$. Let \mathcal{S}, \mathcal{T} be sets of grounded predicates, \mathcal{P} be a set of inference rules, $\mathcal{S} \models_{\mathcal{P}} \mathcal{T}$ if $\forall T \in \mathcal{T}, \exists S' \subseteq S, r \in \mathcal{P}$, such that $S' \models_r T$. Suppose $\mathcal{S} \models_r T$. If $T \in \mathcal{D}$, T is said to be positively entailed by \mathcal{S} w.r.t. r; otherwise, T is negatively entailed.

Definition 2 (Limited Variable (LV), Unlimited Variable (UV)). A variable is unlimited in some inference rule r if there is only one argument in r that is assigned to it. Each unique UV is referred by a '?'. A variable is limited in r if there exist at least two arguments in r that are assigned to it.

For example, the following two rules are identical: X is a LV; Y and Z are UVs.

$$q(X,Y) \leftarrow p(X,Z)$$
$$q(X,?) \leftarrow p(X,?)$$

Definition 3 (Length of Horn rules). The length of rule r is:

$$|r| = \left(\sum_{P \in r} \phi(P)\right) - \psi(r)$$

Definition 4 (Semantic Inductive Compression, SIC). Let \mathcal{D} be a relational database. The compression on \mathcal{D} is a triple $(\mathcal{P}, \mathcal{R}, \mathcal{I}^-)$ with minimal size, where \mathcal{P} is a set of inference rules, both R and I^- are sets of grounded predicates. $\mathcal{D}, \mathcal{P}, \mathcal{R}, \mathcal{I}^-$ satisfies:

- $\mathcal{R} \subseteq \mathcal{D}$ $\mathcal{R} \models_{\mathcal{P}} (\mathcal{D} \setminus \mathcal{R}) \cup \mathcal{I}^-$
- $\forall e \notin \mathcal{D} \cup \mathcal{I}^-, \forall r \in \mathcal{P}, \mathcal{R} \not\models_r e$

The size of $(\mathcal{P}, \mathcal{R}, \mathcal{I}^-)$ is $|\mathcal{P}| + |\mathcal{R}| + |\mathcal{I}^-|$. $|\mathcal{R}|$ is the number of predicates in \mathbb{R} , and so be $|\mathcal{I}^-|$. $|\mathcal{P}|$ is defined as the sum of lengths of all rules in it.

Definition 5 (SIC, decision version). Let \mathcal{D} be a relational database and k be a positive integer. The compression on \mathcal{D} given k is to determine whether there is a triple $(\mathcal{P}, \mathcal{R}, \mathcal{I}^-)$ with size no larger than k that satisfies:

- $\mathcal{R} \subseteq \mathcal{D}$
- $\mathcal{R} \models_{\mathcal{P}} (\mathcal{D} \setminus \mathcal{R}) \cup \mathcal{I}^ \forall e \notin \mathcal{D} \cup \mathcal{I}^-, \forall r \in \mathcal{P}, \mathcal{R} \not\models_r e$

Let r be some inference rule. If for some $\mathcal{R} \subseteq \mathcal{D}$, $\mathcal{R} \models_r$ $\mathcal{D} \setminus \mathcal{R}$, r separates \mathcal{D} into two parts: \mathcal{R} and $\mathcal{D} \setminus \mathcal{R}$, where the latter can be removed from \mathcal{D} . Let \mathcal{I}^- be the set of all negatively inferred predicates from \mathcal{R} w.r.t. r, $(\{r\}, \mathcal{R}, \mathcal{I}^-)$ is a candidate solution (not necessarily minimum) to SIC. The size reduced by r is:

$$\Delta(r) = |\mathcal{D}| - (|r| + |\mathcal{R}| + |\mathcal{I}^-|) = |\mathcal{D} \setminus \mathcal{R}| - |r| - |\mathcal{I}^-|$$

II. PROBLEM COMPLEXITY

Theorem 6. SIC is in NP for fixed \mathcal{P} .

Proof. According to the definition, \mathcal{P} is a Datalog program. Let \mathcal{A} be the evaluation result of \mathcal{P} on \mathcal{R} . $(\mathcal{P}, \mathcal{R}, \mathcal{I}^-)$ is a valid solution if the following are all true:

- $|\mathcal{P}| + |\mathcal{R}| + |\mathcal{I}^-| \le k$
- $\mathcal{R} \subseteq \mathcal{D}$
- $\mathcal{A} \cap \mathcal{D} \supseteq \mathcal{D} \setminus \mathcal{R}$
- $A \setminus D = I^-$

All above comparison can be finished in polynomial time w.r.t. $\mathcal{D}, \mathcal{R}, \mathcal{I}^-, \mathcal{P}$ and \mathcal{A} . Moreover, \mathcal{A} is computable in polynomial time of \mathcal{R} for fixed \mathcal{P} [1]. Therefore, for fixed \mathcal{P} , the overall verification of the solution is in polynomial time w.r.t. \mathcal{D} , \mathcal{R} and \mathcal{I}^- .

Definition 7 (Vertex Cover Problem). Let $\mathcal{G}_{vc} = \langle \mathcal{V}_{vc}, \mathcal{E}_{vc} \rangle$ be an undirected graph. Let k be a positive integer. A vertex cover V_c of G_{vc} is a subset of V_{vc} such that $(u,v) \in \mathcal{E}_{vc} \implies$ $u \in \mathcal{V}_c \lor v \in \mathcal{V}_c$. The vertex cover problem is to determine whether there is a vertex cover V_c of G_{vc} s.t. $|V_c| \leq k$.

Hardness of the semantic compression can be proved by reducing the vertex cover problem to SIC. Let $\mathcal{G}_{vc} = \langle \mathcal{V}_{vc}, \mathcal{E}_{vc} \rangle$ be the graph in the vertex cover problem and $n = |\mathcal{V}_{vc}|$, $m = |\mathcal{E}_{vc}|$. Let m_v be the number of edges connected to vertex v. By the following settings we create a relational database aligning with \mathcal{G}_{vc} :

• Let edge be a unary relation in \mathcal{D} for edges and v be a unary relation for each $v \in \mathcal{V}_{vc}$;

- For each $(u, v) \in \mathcal{E}_{vc}$, add three predicates to \mathcal{D} : edge(e), u(e), v(e);
- Add m+2 redundant predicates: $f_1(c_1), \ldots, f_{m+2}(c_{m+2}).$

The number of predicates, predicate symbols and constant symbols in \mathcal{D} are 4m+2, m+n+3 and 2m+2. Therefore, the reduction can be done in linear time.

Fig. 1. Vertex Cover Example

For example, Figure 1 shows a graph with three vertices and two edges. The corresponding database contains the following predicates:

- edge(a), edge(b)
- $v_1(a), v_2(a), v_1(b), v_3(b)$
- $f_1(c_1), \ldots, f_4(c_4)$

Lemma 8. If \mathcal{G}_{vc} can be covered by \mathcal{V}_c s.t. $|\mathcal{V}_c| \leq k$, there is a solution $(\mathcal{P}, \mathcal{R}, \mathcal{I}^-)$ for the corresponding compression problem s.t. $|\mathcal{P}| + |\mathcal{R}| + |\mathcal{I}^-| \leq 3m + 2 + k$

Proof. Let $\mathcal{P} = \{edge(X) \leftarrow v(X) | v \in \mathcal{V}_c\}, \ \mathcal{E} = \{edge(e) | e \in \mathcal{E}_{vc}\}, \ \mathcal{V} = \{v(e) | \exists u, e(u, v) \in \mathcal{E}_{vc} \text{ or } e(v, u) \in \mathcal{E}_{vc}\}.$ For each $edge(e) \in \mathcal{E}$, $\exists r \in \mathcal{P}$, s.t. $\mathcal{V} \models_r edge(e)$ and there is no counter example as there is some $v \in \mathcal{V}_c$ that covers the corresponding edge. Moreover, $\mathcal{V} \subseteq \mathcal{D}$. Therefore, $(\mathcal{P}, \mathcal{D} \setminus \mathcal{E}, \varnothing)$ is a valid solution to SIC. $|\mathcal{P}| + |\mathcal{D} \setminus \mathcal{E}| + |\varnothing| = |\mathcal{V}_c| \cdot 1 + 4m + 2 - m \leq 3m + 2 + k$.

Lemma 9. Considering all possible forms of a single inference rule, rules of the following form brings the most reduction on the database, which is $m_v - 1$:

$$edge(X) \leftarrow v(X), m_v \ge 1$$
 (1)

Proof. Let r_v refer to the above rule. According to the construction of $\mathcal D$ and other definitions, the size reduced by a single rule r_v is $m_v - |r_v| = m_v - 1 \ge 0$ as there is no counter example introduced by r_v . The reduction of the other forms of rules are:

- $\Delta(edge(?) \leftarrow true) = m (m+2) = -2;$
- $\Delta(v(?) \leftarrow true) = m_v (2m + 2 m_v) = 2m_v 2m 2 \le -2;$
- $\Delta(f_i(?) \leftarrow true) = 1 (2m+1) = -2m \le 0;$
- $\Delta(v(X) \leftarrow edge(X)) = m_v 1 m \le -1;$
- $\Delta(v(X) \leftarrow u(X)) = b 1 (m_u b) \leq 0$, where $b = [(u, v) \in \mathcal{E}_{vc} \lor (v, u) \in \mathcal{E}_{vc}]$, further more, when $b = 1, m_u \geq 1$, otherwise, $m_u \geq 0$;
- Given that only argument v.0 and edge.0 share some of constant symbols, any other longer forms of rules present no larger Δ than r_i above.

Lemma 10. If $(\mathcal{P}, \mathcal{R}, \mathcal{I}^-)$ is a solution to SIC and $|\mathcal{P}| + |\mathcal{R}| + |\mathcal{I}^-| \le k$, there is another solution $(\mathcal{P}', \mathcal{R}', \varnothing)$ to SIC s.t.:

• $|\mathcal{P}'| + |\mathcal{R}'| \le k$

Algorithm 1 FVS

```
Output: Set of Vertices that cover every cycle in \mathcal{G}

1: V' \leftarrow \emptyset

2: SCCs \leftarrow strongly connected components in \mathcal{G}
```

3: **for** each $SCC \in SCCs$ **do**

4: while there are edges in SCC do

5: $v \leftarrow \text{vertex in } SCC \text{ that has maximum in-degree} \times \text{out-degree}$

6: $V' \leftarrow V' \cup \{v\}$

Input: Dependency Graph G

7: remove v and its adjacent edges

8: **while** there exists $v' \in SCC$ such that its in-degree or out-degree is zero **do**

9: remvoe v' and its adjacent edges

10: end while

11: end while

12: **end for**

13: return V'

• Rules in \mathcal{P}' are all under the form of Rule (1);

• Let
$$\mathcal{E} = \{edge(e) | e \in \mathcal{E}_{vc}\}, \ \mathcal{R}' = \mathcal{D} \setminus \mathcal{E};$$

Proof. Lemma 9 indicates that if some rule in \mathcal{P} is not under the form of Rule (1), they can be simply removed or replaced with some r_v under the form of Rule (1) s.t. the size of compression does not increase, yielding \mathcal{P}'' . All rules in \mathcal{P}'' are under the form of Rule (1). If $\exists edge(e_1),\ldots,edge(e_l) \in \mathcal{E}$ that are not inferable w.r.t. \mathcal{P}'' , at most l rules under the form of Rule (1) that infer all of these predicates can be added to the hypothesis set, yielding \mathcal{P}' . The size of the compression does not increase. After the above procedure, all edges are inferred by some vertex, thus $\mathcal{R}' = \mathcal{D} \setminus \mathcal{E}$. Moreover, by \mathcal{P}' , there is no counter example in the solution.

Lemma 11. If $(\mathcal{P}, \mathcal{R}, \mathcal{I}^-)$ is a solution to SIC and $|\mathcal{P}| + |\mathcal{R}| + |\mathcal{I}^-| \leq 3m + 2 + k$, there is a \mathcal{V}_c that covers \mathcal{E}_{vc} and $|\mathcal{V}_c| \leq k$

Proof. By Lemma 10, there is a solution $(\mathcal{P}',\mathcal{R}',\varnothing)$ with size no larger than 3m+2+k. Let $\mathcal{V}_c=\{v|edge(X)\leftarrow v(X)\in\mathcal{P}'\}$. Vertices in \mathcal{V}_c cover all edges as the rules in \mathcal{P}' infer all edges in \mathcal{D} . $|\mathcal{V}_c|=|\mathcal{P}'|\leq 3m+2+k-|\mathcal{R}'|=k$. \square

Theorem 12. SIC is NP-Hard.

П

Proof. By Lemma 8 and 11, the vertex cover problem has solution w.r.t. a positive integer k iff the reduced SIC problem has solution w.r.t. 3m+2+k. According to the reduction setting, the vertex cover problem can be polynomially reduced to SIC. Therefore, SIC is NP-Hard.

Theorem 13. SIC is NP-Complete for fixed \mathcal{P} .

Proof. According to Theorem 6 and 12, SIC is in NP for fixed hypothesis and is also NP-Hard. Therefore, SIC is NP-Complete. \Box

III. GREEDY ALGORITHM FOR FVS

Detailed algorithms for FVS is shown in Algorithm 1.

IV. DETAILED EXPERIMENTAL RESULTS

Table I to IV show detailed results of compression enhancement comparison among SINC, KGIST, AMIE and Gzip. Dataset names are listed in short: E(Elti), D(Dunur), DBf(DBpedia.factbook), Fs(Family.simple), Fm(Family.medium), U(UMLS), FB(FB15K), WN(WN18), N(NELL). "-E" means without enhancement and "+E" stands for compression ratios with enhancement.

REFERENCES

[1] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov, "Complexity and expressive power of logic programming," *ACM Computing Surveys (CSUR)*, vol. 33, no. 3, pp. 374–425, 2001.

TABLE I ENHANCEMENT EFFECT - SINC

	Dataset Reduc. Ratio (%)	E 33.79	D 66.80	S 69.61	DBf 51.94	Fs 35.72	Fm 35.90	U 26.77	FB 61.40	WN 44.63	N 59.92
LZ4	-E	41.04	31.32	19.42	36.60	47.37	43.61	18.66	33.42	38.86	28.98
	+E	18.02	26.97	17.20	19.76	19.01	16.55	6.71	34.76	19.88	31.18
	Enh.	43.90	86.10	88.56	53.98	40.13	37.94	35.98	104.00	51.17	107.59
Lzop	-E	36.13	27.05	17.83	34.01	39.16	35.97	17.84	34.92	40.13	29.80
	+E	16.99	23.58	17.59	20.03	18.14	13.00	6.81	35.71	20.18	31.48
	Enh.	47.01	87.17	98.69	58.88	46.32	36.16	38.16	102.28	50.29	105.65
Pixz	-E	22.78	15.12	5.53	21.15	15.34	11.22	7.80	16.94	15.39	12.28
	+E	11.91	13.81	9.02	12.73	11.19	8.09	3.24	14.50	7.76	10.46
	Enh.	52.30	91.33	163.04	60.18	72.97	72.09	41.57	85.60	50.43	85.16
Gzip	-E	22.97	16.87	11.28	23.50	19.51	17.07	9.35	22.38	24.00	17.86
	+E	11.16	14.18	10.19	13.56	11.15	9.00	3.59	21.52	12.05	17.35
	Enh.	48.58	84.02	90.37	57.68	57.17	52.70	38.43	96.17	50.20	97.17
Bzip2	-E	18.77	12.46	7.98	19.49	14.47	13.19	5.33	15.92	15.87	13.64
	+E	10.54	10.62	6.34	12.18	8.08	5.89	2.39	13.80	7.76	11.36
	Enh.	56.15	85.23	79.42	62.53	55.87	44.67	44.86	86.71	48.91	83.22
7zip	-E	23.69	15.71	6.23	21.37	17.00	11.61	8.76	17.02	16.16	13.10
	+E	13.09	14.40	9.16	13.26	13.04	8.49	3.40	14.69	8.15	11.02
	Enh.	55.25	91.71	147.01	62.02	76.71	73.12	38.84	86.30	50.41	84.11
Roct F	Best $E_{ ext{SINC}/i}$ Best $E_{ ext{SINC}/i}$ Best $E_{ ext{SINC}/i}^{-1}$	10.54 43.90 31.19 76.97	10.62 84.02 15.90 79.51	6.34 79.42 9.11 87.65	12.18 53.98 23.46 96.22	8.08 40.13 22.63 89.00	5.89 36.16 16.41 99.29	2.39 35.98 8.94 74.40	13.80 85.60 22.48 71.74	7.76 48.91 17.39 91.25	10.46 83.22 17.46 72.00

TABLE II ENHANCEMENT EFFECT - KGIST

	Dataset Reduc. Ratio (%)	E _	D -	S -	DBf 175.78	Fs 299.36	Fm 257.41	U 68.40	FB 192.92	WN 135.28	N 157.82
LZ4	-E +E Enh.	41.04	31.32	19.42	36.60 119.80 327.27	47.37 207.30 437.64	43.61 170.39 390.71	18.66 46.57 249.57	33.42 153.72 459.94	38.86 119.49 307.48	14.08 99.02 703.24
Lzop	-E +E Enh.	36.13	27.05	17.83	34.01 116.37 342.16	39.16 202.01 515.88	35.97 165.62 460.49	17.84 48.72 273.19	34.92 121.15 346.96	40.13 99.05 246.81	14.48 84.64 584.63
Pixz	-E +E Enh.	22.78	15.12	5.53	21.15 52.97 250.45	15.34 96.19 627.03	11.22 65.65 584.97	7.80 13.43 172.15	16.94 35.39 208.84	15.39 29.44 191.27	5.97 32.71 548.09
Gzip	-E +E Enh.	22.97 - -	16.87 - -	11.28	23.50 87.08 370.49	19.51 144.24 739.43	17.07 115.26 675.04	9.35 29.76 318.21	22.38 76.87 343.48	24.00 66.48 277.04	8.68 57.82 666.38
Bzip2	-E +E Enh.	18.77	12.46	7.98 - -	19.49 71.64 367.65	14.47 126.97 877.51	13.19 95.27 722.30	5.33 22.85 428.35	15.92 58.14 365.20	15.87 50.67 319.23	6.63 52.93 798.28
7zip	-E +E Enh.	23.69	15.71	6.23	21.37 54.17 253.46	17.00 99.40 584.76	11.61 66.11 569.19	8.76 13.47 153.77	17.02 35.43 208.15	16.16 29.51 182.59	6.37 32.15 505.09
	$egin{array}{ll} ext{Best } R_{ ext{KGIST} \cdot i} \ ext{Best } E_{ ext{KGIST} / i} \ ext{Best } E_{ ext{KGIST} / i}^{-1} \ ext{} \end{array}$	-	- - -	- -	52.97 250.45 30.14	96.19 437.64 32.13	65.65 390.71 25.50	13.43 153.77 19.63	35.39 208.15 18.34	29.44 182.59 21.76	32.15 505.09 20.37
Best 1	Enhancement Efficiency	-	-	-	-	-	-	-	-	-	-

TABLE III ENHANCEMENT EFFECT - AMIE

	Dataset Reduc. Ratio (%)	E _	D _	S	DBf 81.60	Fs 87.79	Fm 83.36	U 65.78	FB 53.69	WN 58.77	N 57.98
	-E	41.04	31.32	19.42	36.60	47.37	43.61	18.66	33.42	38.86	14.08
LZ4	+E	-	-	-	30.91	43.70	39.73	15.80	30.71	27.16	31.49
	Enh.	-	-	-	84.43	92.25	91.09	84.69	91.88	69.88	108.67
	-E	36.13	27.05	17.83	34.01	39.16	35.97	17.84	34.92	40.13	14.48
Lzop	+E	-	-	-	29.86	36.88	33.82	16.22	31.26	26.93	31.36
	Enh.	-	-	-	87.79	94.18	94.04	90.93	89.52	67.10	105.24
Pixz	-E	22.78	15.12	5.53	21.15	15.34	11.22	7.80	16.94	15.39	5.97
	+E	-	-	-	17.84	21.06	17.35	7.10	13.01	10.34	10.55
	Enh.	-	-	-	84.34	137.30	154.56	91.07	76.77	67.16	85.91
	-E	22.97	16.87	11.28	23.50	19.51	17.07	9.35	22.38	24.00	8.68
Gzip	+E	-	-	-	19.31	22.39	20.28	8.27	18.94	16.19	17.58
	Enh.	-	-	-	82.14	114.77	118.78	88.46	84.65	67.45	98.44
	-E	18.77	12.46	7.98	19.49	14.47	13.19	5.33	15.92	15.87	6.63
Bzip2	+E	-	-	-	16.01	16.85	13.56	4.87	12.13	10.39	11.63
	Enh.	-	-	-	82.15	116.48	102.78	91.39	76.21	65.48	85.22
	-E	23.69	15.71	6.23	21.37	17.00	11.61	8.76	17.02	16.16	6.37
7zip	+E	-	-	-	18.37	22.93	17.80	7.60	13.16	10.78	11.00
	Enh.	-	-	-	85.93	134.88	153.28	86.79	77.29	66.68	83.96
_	Best $R_{AMIE \cdot i}$	-	-	-	16.01	16.85	13.56	4.87	12.13	10.34	10.55
Best $E_{AMIE/i}$		-	-	-	82.14	92.25	91.09	84.69	76.21	65.48	83.96
Best $E_{AMIE/i}^{-1}$		-	-	-	19.62	19.20	16.26	7.41	22.60	17.59	18.20
Best E	Enhancement Efficiency	-	-	-	99.34	95.16	91.51	77.67	70.45	89.76	69.06

TABLE IV ENHANCEMENT EFFECT - GZIP

	Dataset Reduc. Ratio (%)	E 22.97	D 16.87	S 11.28	DBf 23.50	Fs 19.51	Fm 17.07	U 9.35	FB 22.38	WN 24.00	N 17.86
LZ4	-E	41.04	31.32	19.42	36.60	47.37	43.61	18.66	33.42	38.86	14.08
	+E	23.29	17.05	10.68	23.59	15.94	8.96	9.36	22.38	24.00	17.86
	Enh.	56.74	54.42	55.01	64.44	33.65	20.55	50.15	66.96	61.75	61.63
Lzop	-E	36.13	27.05	17.83	34.01	39.16	35.97	17.84	34.92	40.13	14.48
	+E	24.05	17.48	11.32	23.84	20.69	10.24	9.37	22.38	24.00	17.86
	Enh.	66.58	64.63	63.50	70.11	52.83	28.47	52.55	64.10	59.80	59.94
Pixz	-E	22.78	15.12	5.53	21.15	15.34	11.22	7.80	16.94	15.39	5.97
	+E	23.96	17.42	10.37	23.77	16.25	8.89	9.37	22.38	24.00	17.86
	Enh.	105.17	115.18	187.46	112.37	105.95	79.25	120.16	132.09	155.94	145.39
Gzip	-E	22.97	16.87	11.28	23.50	19.51	17.07	9.35	22.38	24.00	8.68
	+E	23.35	17.08	10.36	23.61	16.27	8.95	9.36	22.38	24.00	17.86
	Enh.	101.64	101.24	91.90	100.43	83.42	52.44	100.07	100.02	100.02	100.02
Bzip2	-E	18.77	12.46	7.98	19.49	14.47	13.19	5.33	15.92	15.87	6.63
	+E	29.32	20.36	10.80	25.75	21.68	11.86	9.50	22.48	24.12	17.94
	Enh.	156.23	163.38	135.31	132.13	149.86	89.92	178.08	141.21	151.94	131.46
7zip	-E	23.69	15.71	6.23	21.37	17.00	11.61	8.76	17.02	16.16	6.37
	+E	25.17	18.09	10.42	24.19	18.10	9.33	9.39	22.38	24.00	17.86
	Enh.	106.22	115.20	167.26	113.20	106.46	80.34	107.25	131.48	148.49	136.32
Best I	Best $E_{Gzip\cdot i}$	23.29	17.05	10.36	23.59	15.94	8.89	9.36	22.38	24.00	17.86
	Best $E_{Gzip/i}$	56.74	54.42	55.01	64.44	33.65	20.55	50.15	64.10	59.80	59.94
	Best $E_{Gzip/i}^{-1}$	101.35	101.03	91.90	100.35	81.72	52.09	100.06	100.00	100.00	100.00
	Enhancement Efficiency	40.49	31.00	20.50	36.48	57.96	83.07	18.65	34.91	40.13	29.79