Chapitre 1 : Structures algébriques - Groupes

L3-S5. Algèbre générale 1

Licence Mathématiques Université d'Avignon

Année 2018–2019

On extrait des règles opératoires valables indépendamment des objets considérés. Plusieurs buts

- comprendre les principes qui sous-tendent les calculs classiques
- étendre ces principes à différents types d'objets
- généraliser dans diverses directions (objets abstraits, opérateurs variés).

- 1. Loi de composition interne
- 2. Exemples de lois usuelles
- 3. Elément neutre et inversibilité
 - 4. Stabilité
 - 5. Distributivité

I. Loi de composition

1. Loi de composition interne

Définition : Loi de composition interne sur un ensemble

Une loi de composition interne sur un ensemble E est une application de $E \times E$ sur E. On notera cette application

$$\begin{array}{ccccc} E & \times & E & \to & E \\ (x & , & y) & \mapsto & x * y \end{array}$$

On parle alors de la loi *. On note souvent (E, *) pour désigner un ensemble E muni d'une loi de composition *.

Le symbole désignant la loi peut être noté \top , \diamondsuit , \clubsuit ...

- 1. Loi de composition interne
- 2. Exemples de lois usuelles
- 4. Stabilité
- 5. Distributivité

I. Loi de composition

1. Loi de composition interne

Définition : Loi de composition interne sur un ensemble

Une loi de composition interne sur un ensemble E est une application de $E \times E$ sur E. On notera cette application

$$\begin{array}{ccccc} E & \times & E & \to & E \\ (x & , & y) & \mapsto & x * y \end{array}$$

On parle alors de la loi *. On note souvent (E, *) pour désigner un ensemble E muni d'une loi de composition *.

Le symbole désignant la loi peut être noté $\top, \diamondsuit, \clubsuit \dots$ Exemples incontournables de lois :

- addition +, multiplication × dans \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C}
- \bullet composition \circ dans l'ensemble des permutations dans E

- 1. Loi de composition interne
- 2. Exemples de lois usuelles
- 3. Elément neutre et inversibilité
 - 4. Stabilité
 - 5. Distributivité

Soit * une loi de composition sur un ensemble E.

• Associativité d'une loi de composition :

On dit que la loi * est associative si, pour tous x, y, z de E, on a : (x * y) * z = x * (y * z). On écrit alors x * y * z.

- 1. Loi de composition interne
- 2. Exemples de lois usuelles
 - Elément neutre et inversib
- 4. Stabilité
- 5. Distributivité

Soit * une loi de composition sur un ensemble E.

- On dit que la loi * est associative si, pour tous x, y, z de E, on a : (x * y) * z = x * (y * z). On écrit alors x * y * z.
- ② Eléments qui commutent pour une loi : Soit x et y deux éléments de E. On dit que x et y commutent (pour la loi *) si x * y = y * x.

- 1. Loi de composition interne
- 2. Exemples de lois usuelles
- Element neutre et inversibilite
- 4. Stabilité
- . Distributivité

Soit * une loi de composition sur un ensemble E.

- On dit que la loi * est associative si, pour tous x, y, z de E, on a : (x * y) * z = x * (y * z). On écrit alors x * y * z.
- ② Eléments qui commutent pour une loi : Soit x et y deux éléments de E. On dit que x et y commutent (pour la loi *) si x * y = y * x.
- **3** Commutativité d'une loi de composition : On dit que la loi * est *commutative* si, pour tous x et y de E, on a x * y = y * x.

Avec l'associativité et la commutativité, on peut changer l'ordre des éléments et les regrouper comme on veut, ce qui permet de simplifier les calculs.

- l. Loi de composition interne
- 2. Exemples de lois usuelles
- 3. Elément neutre et inversibilité
 - 4. Stabilité
 - 5. Distributivité

Somme et produit sur les ensembles de nombres

Les lois + et \times usuelles sur \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} sont associatives et commutatives.

- l. Loi de composition interne
- 2. Exemples de lois usuelles
- 3. Elément neutre et inversibilité
 - 4. Stabilité
 - . Distributivité

Somme et produit sur les ensembles de nombres

Les lois + et \times usuelles sur \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} sont associatives et commutatives.

La loi produit \times est le plus souvent notée xy plutôt que $x \times y$.

- l. Loi de composition interne
- 2. Exemples de lois usuelles
 - 3. Elément neutre et inversibilité
- 4. Stabilité
 - . Distributivité

Somme et produit sur les ensembles de nombres

Les lois + et × usuelles sur \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} sont associatives et commutatives.

La loi produit \times est le plus souvent notée xy plutôt que $x \times y$. La loi $(x,y) \mapsto x-y$ sur \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} , n'est ni associative ni commutative.

- . Loi de composition interne
- 2. Exemples de lois usuelles
- 3. Elément neutre et inversibilité
 - 4. Stabilité
 - 5. Distributivité

Somme et produit sur les ensembles de nombres

Les lois + et \times usuelles sur \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} sont associatives et commutatives.

La loi produit \times est le plus souvent notée xy plutôt que $x \times y$. La loi $(x,y) \mapsto x-y$ sur \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} , n'est ni associative ni commutative.

La loi de composition des applications

Soit E un ensemble et $\mathcal{F}(E)$ l'ensemble des applications de E dans E. On définit la loi \circ (loi de composition) sur $\mathcal{F}(E)$ par $(f,g)\mapsto f\circ g$. Cette loi est associative, mais elle n'est pas commutative (sauf si E est réduit à un singleton).

- L. Loi de composition interne
- 2. Exemples de lois usuelles
- 3. Elément neutre et inversibilité
 - 4. Stabilité
 - . Distributivité

Les lois union et intersection sur les ensembles

Soit E un ensemble et $\mathcal{P}(E)$ l'ensemble des parties de E. On définit les lois union et intersection sur $\mathcal{P}(E)$ par $(A, B) \mapsto A \cup B$ et $(A, B) \mapsto A \cap B$. Ces lois sont associatives et commutatives.

- l. Loi de composition interne
- 2. Exemples de lois usuelles
 - 3. Elément neutre et inversibilité
 - 4. Stabilité
 - . Distributivité

Les lois union et intersection sur les ensembles

Soit E un ensemble et $\mathcal{P}(E)$ l'ensemble des parties de E. On définit les lois union et intersection sur $\mathcal{P}(E)$ par $(A, B) \mapsto A \cup B$ et $(A, B) \mapsto A \cap B$. Ces lois sont associatives et commutatives.

Maximum et minimum sur un ensemble totalement ordonné

Soit E un ensemble muni d'une relation d'ordre total noté \leq . Les lois minimum et maximum sont notées par : $\min(x,y)$ et $\max(x,y)$. Ces deux lois sont associatives et commutatives.

- 1. Loi de composition interne
- 2. Exemples de lois usuelles
 - l. Stabilité
- 5. Distributivité

Une relation d'ordre \leq sur E est une relation binaire sur E

- $r\'{e}flexive : \forall x \in E, x \leq x;$
- $antisymétrique : \forall x, y \in E, (x \leq y \text{ et } y \leq x) \Rightarrow x = y;$
- $transitive : \forall x, y, z \in E, (x \leq y \text{ et } y \leq z) \Rightarrow x \leq z.$

Un ensemble muni d'une relation d'ordre est dit $ordonn\acute{e}$. L'ordre est dit total si deux éléments x et y de E sont comparables $(x \leq y \text{ ou } y \leq x)$. Sinon l'ordre est dit partiel.

- l. Loi de composition interne
- 2. Exemples de lois usuelles
- 4. Stabilité
- 5. Distributivité

Une relation d'ordre \leq sur E est une relation binaire sur E

- $r\'{e}flexive : \forall x \in E, x \leq x;$
- $antisym\acute{e}trique: \forall x,y \in E, (x \leq y \text{ et } y \leq x) \Rightarrow x = y;$
- transitive: $\forall x, y, z \in E, (x \leq y \text{ et } y \leq z) \Rightarrow x \leq z.$

Un ensemble muni d'une relation d'ordre est dit *ordonné*. L'ordre est dit *total* si deux éléments x et y de E sont comparables $(x \leq y \text{ ou } y \leq x)$. Sinon l'ordre est dit *partiel*.

- **1** Ordre usuel sur \mathbb{R} : \leq
- $② Divisibilité dans <math>\mathbb{N}^* : x \leq y \iff x|y$
- Inclusion sur $\mathcal{P}(X)$ ensemble des parties d'un ensemble X: $A \prec B \iff A \subset B$

- 1. Loi de composition interne
- 2. Exemples de lois usuelles
- 3. Elément neutre et inversibilité
 - 4. Stabilité
 - . Distributivité

Pgcd et ppcm sur les entiers

Les lois pgcd et ppcm sur \mathbb{N} et \mathbb{Z} sont commutatives et associatives.

 $a \wedge b = \operatorname{pgcd}(a, b)$ le plus grand entier naturel qui divise a et b $a \vee b = \operatorname{ppcm}(a, b)$ le plus petit entier naturel non nul multiple de a et b

- 1. Loi de composition interne
- 2. Exemples de lois usuelles
 - 3. Elément neutre et inversibilité
- 4. Stabilité
- 5. Distributivité

Pgcd et ppcm sur les entiers

Les lois pgcd et ppcm sur \mathbb{N} et \mathbb{Z} sont commutatives et associatives.

 $a \wedge b = \operatorname{pgcd}(a, b)$ le plus grand entier naturel qui divise a et b $a \vee b = \operatorname{ppcm}(a, b)$ le plus petit entier naturel non nul multiple de a et b

Lois + et \times sur l'ensemble des applications de E vers $\mathbb R$

On pose pour toutes applications $f, g : E \to \mathbb{R}$

$$\forall x \in E, \ (f+g)(x) = f(x) + g(x)$$

$$\forall x \in E, \ (f \times g)(x) = f(x) \times g(x).$$

Ces lois sont associatives et commutatives.

- . Loi de composition interne
- 2. Exemples de lois usuelles
- 3. Elément neutre et inversibilité
- 4. Stabilité

3. Elément neutre et inversibilité

Définition: Elément neutre

Soit E un ensemble muni d'une loi de composition * et e un élément de E. On dit que e est un élément neutre pour la loi * si, pour tout élément x de E, on a x*e=e*x=x.

Si la loi * est commutative, l'égalité x*e=e*x est automatiquement réalisée.

- . Loi de composition interne
- 2. Exemples de lois usuelles
- 3. Elément neutre et inversibilité
- 4. Stabilité
- 5. Distributivité

3. Elément neutre et inversibilité

Définition: Elément neutre

Soit E un ensemble muni d'une loi de composition * et e un élément de E. On dit que e est un élément neutre pour la loi * si, pour tout élément x de E, on a x * e = e * x = x.

Si la loi * est commutative, l'égalité x * e = e * x est automatiquement réalisée.

Proposition: unicité de l'élément neutre

L'élément neutre de l'ensemble E pour la loi *, s'il existe, est unique.

- Loi de composition interne
- 2. Exemples de lois usuelles
- 3. Elément neutre et inversibilité
- 4. Stabilité
- 5. Distributivité

• Dans \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} , 0 est neutre pour la loi + 1 est neutre pour la loi \times .

- Loi de composition interne
- 2. Exemples de lois usuelles
- 3. Elément neutre et inversibilité
- 4. Stabilité
- 5. Distributivité

- Dans \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} , 0 est neutre pour la loi + 1 est neutre pour la loi \times .
- Dans $\mathcal{F}(E)$, l'application identité Id_E est neutre pour la loi \circ .

- 3. Elément neutre et inversibilité

- Dans \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} , 0 est neutre pour la loi + 1 est neutre pour la loi \times .
- Dans $\mathcal{F}(E)$, l'application identité Id_E est neutre pour la loi \circ .
- Dans $\mathcal{P}(E)$, l'ensemble vide \emptyset est neutre pour la loi \cup E est l'élément neutre pour la loi \cap .

- 3. Elément neutre et inversibilité

- Dans \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} , 0 est neutre pour la loi + 1 est neutre pour la loi \times .
- Dans $\mathcal{F}(E)$, l'application identité Id_E est neutre pour la loi \circ .
- Dans $\mathcal{P}(E)$, l'ensemble vide \emptyset est neutre pour la loi \cup E est l'élément neutre pour la loi \cap .
- Dans R, il n'y a pas d'élément neutre pour les lois min et max.

- 3. Elément neutre et inversibilité

- Dans \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} , 0 est neutre pour la loi + 1 est neutre pour la loi \times .
- Dans $\mathcal{F}(E)$, l'application identité Id_E est neutre pour la loi \circ .
- Dans $\mathcal{P}(E)$, l'ensemble vide \emptyset est neutre pour la loi \cup E est l'élément neutre pour la loi \cap .
- Dans R, il n'y a pas d'élément neutre pour les lois min et max.
- Dans $\mathcal{F}(E,\mathbb{R})$, l'application nulle est élément neutre pour la loi + l'application constante 1 est neutre pour la loi \times .

- . Loi de composition interne
- 2. Exemples de lois usuelles
- 3. Elément neutre et inversibilité
- 4. Stabilité

Soit E un ensemble muni d'une loi **associative** *. On suppose qu'il existe un élément neutre e.

Définition: Inversibilité d'un élément

Un élément x de E est dit inversible (pour la loi *) s'il existe x' dans E tel que x * x' = x' * x = e. Si un tel élément x' existe, il est unique. On le note en général x^{-1} , et on l'appelle l'inverse (ou le $sym\acute{e}trique$) de x pour la loi *.

- Loi de composition interne
- 3. Elément neutre et inversibilité
 - 3. Element neutre et inversibilité 4. Stabilité
- 5 Distributivité

Soit E un ensemble muni d'une loi **associative** *. On suppose qu'il existe un élément neutre e.

Définition: Inversibilité d'un élément

Un élément x de E est dit inversible (pour la loi *) s'il existe x' dans E tel que x * x' = x' * x = e. Si un tel élément x' existe, il est unique. On le note en général x^{-1} , et on l'appelle l'inverse (ou le symétrique) de x pour la loi *.

Remarques immédiates.

- Si x est inversible, x^{-1} l'est aussi et $(x^{-1})^{-1} = x$.
- ② L'élément neutre e de (E,*) est inversible et il est son propre inverse.
- **3** Tout élément inversible a est régulier, c.-à-d.
 - $\forall x, y \in E, \ x * a = y * a \Rightarrow x = y \ (a \text{ régulier à droite})$
 - $\forall x, y \in E, \ a * x = a * y \Rightarrow x = y \ (a \text{ régulier à gauche}).$

- . Loi de composition interne
- 2. Exemples de lois usuelles
- 3. Elément neutre et inversibilité
- 4. Stabilité
- 5. Distributivité

Remarques.

① Dans le cas d'une loi + (nécessairement commutative, d'élément neutre 0), on ne parle pas d'inverse ou de symétrique, mais d' $oppos\acute{e}$, et celui-ci n'est pas noté x^{-1} mais -x.

- Loi de composition interne
- 2. Exemples de lois usuelles
- 3. Elément neutre et inversibilité
- 4. Stabili
- 5. Distributivité

Remarques.

- Dans le cas d'une loi + (nécessairement commutative, d'élément neutre 0), on ne parle pas d'inverse ou de symétrique, mais d' $oppos\acute{e}$, et celui-ci n'est pas noté x^{-1} mais -x.
- ② S'il n'y a pas de neutre dans (E, *), la notion d'élément inversible n'a aucun sens.

- Loi de composition interne
- 2. Exemples de lois usuelles
- 3. Elément neutre et inversibilité
- 4. Stabilité
- 5. Distributivité

Remarques.

- Dans le cas d'une loi + (nécessairement commutative, d'élément neutre 0), on ne parle pas d'inverse ou de symétrique, mais d' $oppos\acute{e}$, et celui-ci n'est pas noté x^{-1} mais -x.
- ullet S'il n'y a pas de neutre dans (E,*), la notion d'élément inversible n'a aucun sens.
- On suppose la loi * associative pour garantir l'unicité du symétrique s'il existe.

Loi de composition interne

2. Exemples de lois usuelles
3. Elément neutre et inversibilité

. Element neut l. Stabilité

Distributivité

Remarques.

- Dans le cas d'une loi + (nécessairement commutative, d'élément neutre 0), on ne parle pas d'inverse ou de symétrique, mais d' $oppos\acute{e}$, et celui-ci n'est pas noté x^{-1} mais -x.
- f 2 S'il n'y a pas de neutre dans (E,*), la notion d'élément inversible n'a aucun sens.
- On suppose la loi * associative pour garantir l'unicité du symétrique s'il existe.

Proposition: inversibilité du produit

Soit x et y deux éléments de E, inversibles pour la loi *, d'inverses respectifs x^{-1} et y^{-1} . Alors x * y est inversible, et son inverse est $(x * y)^{-1} = y^{-1} * x^{-1}$.

- . Loi de composition interne
- 2. Exemples de lois usuelles
- 3. Elément neutre et inversibilité
- 4. Stabilite

• Dans $(\mathbb{N}, +)$, seul 0 admet un opposé.

Dans \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} munis de la loi +, tous les éléments admettent un opposé.

- . Loi de composition interne
- 2. Exemples de lois usuelles
- 3. Elément neutre et inversibilité
- 4. Stabilité

• Dans $(\mathbb{N}, +)$, seul 0 admet un opposé.

Dans \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} munis de la loi +, tous les éléments admettent un opposé.

• Dans (\mathbb{N}, \times) , le seul élément inversible est 1.

Dans (\mathbb{Z}, \times) , les seuls éléments inversibles sont -1 et 1.

Dans \mathbb{Q} , \mathbb{R} et \mathbb{C} munis de la loi \times , tous les éléments non nuls sont inversibles.

- . Loi de composition interne
- 3. Elément neutre et inversibilité
 - 3. Element neutre et inversibilite
- 5 Distributivité

- Dans $(\mathbb{N}, +)$, seul 0 admet un opposé.
- Dans $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ et \mathbb{C} munis de la loi +, tous les éléments admettent un opposé.
- Dans (\mathbb{N}, \times) , le seul élément inversible est 1.
- Dans (\mathbb{Z}, \times) , les seuls éléments inversibles sont -1 et 1.
- Dans \mathbb{Q} , \mathbb{R} et \mathbb{C} munis de la loi \times , tous les éléments non nuls sont inversibles.
- Dans $(\mathcal{F}(E), \circ)$, une application est inversible ssi elle est bijective de E sur E. Son inverse est son application réciproque.

- 3. Elément neutre et inversibilité

- Dans $(\mathbb{N}, +)$, seul 0 admet un opposé.
- Dans \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} munis de la loi +, tous les éléments admettent un opposé.
- Dans (\mathbb{N}, \times) , le seul élément inversible est 1.
- Dans (\mathbb{Z}, \times) , les seuls éléments inversibles sont -1 et 1.
- Dans \mathbb{Q} , \mathbb{R} et \mathbb{C} munis de la loi \times , tous les éléments non nuls sont inversibles.
- Dans $(\mathcal{F}(E), \circ)$, une application est inversible ssi elle est bijective de E sur E. Son inverse est son application réciproque.
- Dans $(\mathcal{F}(\mathbb{R}), \circ)$, f est inversible ssi $f : \mathbb{R} \to \mathbb{R}$ est bijective, son inverse est f^{-1} .
- Dans $(\mathcal{F}(\mathbb{R}), \times)$, f est inversible ssi f ne s'annule pas, son inverse est 1/f.

- . Loi de composition interne
- 2. Exemples de lois usuelles
- 3. Elément neutre et inversibilité
- 4. Stabilité
- 5. Distributivité

4. Stabilité pour une loi

Soit E un ensemble muni d'une loi de composition \ast et F une partie de E.

Définition: Partie stable pour une loi

On dit que F est stable pour la loi * si $x * y \in F$ pour tout $x, y \in F$. La restriction à $F \times F$ de la loi * définit alors une loi de composition sur F appelée loi induite sur F par celle de E, et en général encore notée *.

- . Loi de composition interne
- 2. Exemples de lois usuelles
- 3. Elément neutre et inversibilité
- 4. Stabilité
- 5. Distributivité

4. Stabilité pour une loi

Soit E un ensemble muni d'une loi de composition \ast et F une partie de E.

Définition: Partie stable pour une loi

On dit que F est stable pour la loi * si $x*y \in F$ pour tout $x,y \in F$. La restriction à $F \times F$ de la loi * définit alors une loi de composition sur F appelée loi induite sur F par celle de E, et en général encore notée *.

Remarques.

• Si la loi * sur E est commutative (resp. associative), il en est de même de la loi induite * sur F.

- Loi de composition interne
- 2. Exemples de lois usuelles
- 3. Elément neutre et inversibilité
- 4. Stabilité

4. Stabilité pour une loi

Soit E un ensemble muni d'une loi de composition * et F une partie de E.

Définition: Partie stable pour une loi

On dit que F est stable pour la loi * si $x * y \in F$ pour tout $x, y \in F$. La restriction à $F \times F$ de la loi * définit alors une loi de composition sur F appelée loi induite sur F par celle de E, et en général encore notée *.

Remarques.

- Si la loi * sur E est commutative (resp. associative), il en est de même de la loi induite * sur F.
- ② Si e est neutre dans (E, *), et si $e \in F$, alors bien sûr e est encore neutre dans (F, *).

- . Loi de composition interne
- 2. Exemples de lois usuelles
- 3. Elément neutre et inversibilité
- 4. Stabilité
- 5. Distributivité

5. Distributivité

Soit * et \top deux lois de composition interne sur un même ensemble E.

Définition: Distributivité

On dit que \top est *distributive* par rapport à * si, pour tout $x,y,z\in E,$ on a

$$x \top (y * z) = (x \top y) * (x \top z) \quad \text{(distributivit\'e \`a gauche)},$$

$$(y*z)\top x = (y\top x)*(z\top x)$$
 (distributivité à droite).

- Loi de composition interne
- 2. Exemples de lois usuelles
- 3. Elément neutre et inversibilité
- 4. Stabilité
- 5. Distributivité

5. Distributivité

Soit * et \top deux lois de composition interne sur un même ensemble E.

Définition: Distributivité

On dit que \top est distributive par rapport à * si, pour tout $x,y,z\in E,$ on a

$$x \top (y * z) = (x \top y) * (x \top z)$$
 (distributivité à gauche),
 $(y * z) \top x = (y \top x) * (z \top x)$ (distributivité à droite).

Exemples.

- Dans N, Z, Q, R, C, la loi × est distributive par rapport à la loi +.
- ② Dans $\mathcal{P}(E)$, les lois \cap et \cup sont distributives l'une par rapport à l'autre.

- 1. Structure de groupe
- . Produit fini de groupes
- 3. Sous-groupe
- 4. Sous-groupe engendré par une partie
- II. Groupes et sous-groupes

1. Structure de groupe

$\bf D\acute{e}finition: Groupe$

Soit G un ensemble muni d'une loi de composition interne *. On dit que (G,*) est un groupe si :

- la loi * est associative
- \bullet (G,*) admet un élément neutre
- tout élément de G est inversible.

Si de plus la loi * est commutative, on dit que (G, *) est un groupe commutatif (ou encore abélien).

- 1. Structure de groupe

II. Groupes et sous-groupes

1. Structure de groupe

Définition : Groupe

Soit G un ensemble muni d'une loi de composition interne *. On dit que (G,*) est un groupe si :

- la loi * est associative
- \bullet (G,*) admet un élément neutre
- tout élément de G est inversible.

Si de plus la loi * est commutative, on dit que (G, *) est un groupe commutatif (ou encore abélien).

Remarques. ① Un groupe est toujours non vide.

- 1. Structure de groupe

II. Groupes et sous-groupes

1. Structure de groupe

Définition : Groupe

Soit G un ensemble muni d'une loi de composition interne *. On dit que (G,*) est un groupe si :

- la loi * est associative
- \bullet (G,*) admet un élément neutre
- tout élément de G est inversible.

Si de plus la loi * est commutative, on dit que (G, *) est un groupe commutatif (ou encore abélien).

Remarques. ① Un groupe est toujours non vide.

② Si la loi est notée +, (G, +) est dit groupe additif. Le neutre est noté 0.

- Structure de groupe
 Produit fini de groupes
- 2. Produit fini de groupes
- . Sous-groupe
- 4. Sous-groupe engendré par une partie
- 5. Ordre d'un élément dans un groupe

II. Groupes et sous-groupes

1. Structure de groupe

$\bf D\acute{e}finition: Groupe$

Soit G un ensemble muni d'une loi de composition interne *. On dit que (G,*) est un groupe si :

- la loi * est associative
- \bullet (G,*) admet un élément neutre
- tout élément de G est inversible.

Si de plus la loi * est commutative, on dit que (G, *) est un groupe commutatif (ou encore abélien).

Remarques. ① Un groupe est toujours non vide.

- ② Si la loi est notée +, (G, +) est dit groupe additif. Le neutre est noté 0.
- 3 En cas de loi produit \times , (G, \times) est dit groupe multiplicatif. Le neutre est noté 1.

- 1. Structure de groupe
- 2. Produit fini de groupes
- 3. Sous-groupe
- 4. Sous-groupe engendré par une partie
- 5. Ordre d'un élément dans un groupe

- Les ensembles \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} munis de la loi + sont des groupes additifs de neutre 0.
- 2 Les ensembles \mathbb{Q}^* , \mathbb{R}^* et \mathbb{C}^* munis de la loi \times sont des groupes multiplicatifs de neutre 1.

- 1. Structure de groupe

- Les ensembles \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} munis de la loi + sont des groupes additifs de neutre 0.
- \mathbb{Q} Les ensembles \mathbb{Q}^* , \mathbb{R}^* et \mathbb{C}^* munis de la loi \times sont des groupes multiplicatifs de neutre 1.
- $(\mathbb{N},+), (\mathbb{Z}^*,\times), (\mathbb{R},\times)$ ne sont pas des groupes.

- 1. Structure de groupe

- Les ensembles \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} munis de la loi + sont des groupes additifs de neutre 0.
- \mathbb{Q} Les ensembles \mathbb{Q}^* , \mathbb{R}^* et \mathbb{C}^* munis de la loi \times sont des groupes multiplicatifs de neutre 1.
- $(\mathbb{N},+), (\mathbb{Z}^*,\times), (\mathbb{R},\times)$ ne sont pas des groupes.
- **4** Groupes des permutations. Soit E un ensemble et S(E)l'ensemble des permutations de E, c.-à-d. des bijections de E dans E. $(S(E), \circ)$ est un groupe appelé le groupe symétrique de E. Son élément neutre est l'application identité Id_E . Il est non commutatif dès que E a au moins 3 éléments.

- 1. Structure de groupe

- Les ensembles \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} munis de la loi + sont des groupes additifs de neutre 0.
- \mathbb{Q} Les ensembles \mathbb{Q}^* , \mathbb{R}^* et \mathbb{C}^* munis de la loi \times sont des groupes multiplicatifs de neutre 1.
- $(\mathbb{N},+), (\mathbb{Z}^*,\times), (\mathbb{R},\times)$ ne sont pas des groupes.
- **4** Groupes des permutations. Soit E un ensemble et S(E)l'ensemble des permutations de E, c.-à-d. des bijections de E dans E. $(S(E), \circ)$ est un groupe appelé le groupe symétrique de E. Son élément neutre est l'application identité Id_E . Il est non commutatif dès que E a au moins 3 éléments.

Lorsque E est un ensemble fini $\{1, 2, \dots, n\}$ on note alors S_n le *n*-ième groupe symétrique de E.

- 1. Structure de groupe

6 Matrices inversibles. Pour $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , l'ensemble des matrices carrées $n \times n$ inversibles à coefficients dans \mathbb{K}

$$GL(n, \mathbb{K}) = \{ M \in \mathcal{M}_n(\mathbb{K}) : \det M \neq 0 \}$$

muni de x est un groupe appelé groupe général linéaire d'ordre n.

- 1. Structure de groupe

6 Matrices inversibles. Pour $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , l'ensemble des matrices carrées $n \times n$ inversibles à coefficients dans \mathbb{K}

$$GL(n, \mathbb{K}) = \{ M \in \mathcal{M}_n(\mathbb{K}) : \det M \neq 0 \}$$

muni de x est un groupe appelé groupe général linéaire d'ordre n.

6 L'ensemble des isométries (applications qui préservent les distances) du plan muni de o est un groupe non commutatif. Ce sont les translations, rotations, réflexions et leurs composées.

- 1. Structure de groupe
- 2. Produit fini de groupes
- 3. Sous-groupe
- 4. Sous-groupe engendré par une partie
- 5. Ordre d'un élément dans un groupe

L'ordre d'un groupe (G, *) est le cardinal de G, c.-à-d. le nombre d'éléments de G, noté cardG.

Un groupe est dit *fini* si son ordre est fini. Sinon il est dit *infini*.

- 1. Structure de groupe
- 2. Produit fini de groupes
- 3. Sous-groupe
- 4. Sous-groupe engendré par une partie
- 5. Ordre d'un élément dans un groupe

L'ordre d'un groupe (G,*) est le cardinal de G, c.-à-d. le nombre d'éléments de G, noté cardG.

Un groupe est dit *fini* si son ordre est fini. Sinon il est dit *infini*.

Exemples de groupes finis

- le groupe symétrique (S_n, \circ) est fini d'ordre n!.
- (G, \times) où $G = \{1, -1, i, -i\}$ est un groupe fini d'ordre 4.

- 1. Structure de groupe

L'ordre d'un groupe (G,*) est le cardinal de G, c.-à-d. le nombre d'éléments de G, noté cardG.

Un groupe est dit *fini* si son ordre est fini. Sinon il est dit *infini*.

Exemples de groupes finis

- le groupe symétrique (S_n, \circ) est fini d'ordre n!.
- (G, \times) où $G = \{1, -1, i, -i\}$ est un groupe fini d'ordre 4.

Pour faciliter l'étude des groupes finis, la table de Cayley (mathématicien britannique, 19^e) donne tous les résultats de la loi de composition interne dans un groupe fini. Les propriétés d'un groupe se déduisent à la lecture d'une telle table. Les éléments de la table sont uniques sur chaque ligne et sur chaque colonne. La table de Cayley comporte toutes les permutations des éléments du groupe.

- 1. Structure de groupe
- 2. Produit fini de groupes
- . Sous-group
- 4. Sous-groupe engendré par une partie
- 5. Ordre d'un élément dans un groupe

L'ordre d'un groupe (G,*) est le cardinal de G, c.-à-d. le nombre d'éléments de G, noté cardG.

Un groupe est dit *fini* si son ordre est fini. Sinon il est dit *infini*.

Exemples de groupes finis

- le groupe symétrique (S_n, \circ) est fini d'ordre n!.
- (G, \times) où $G = \{1, -1, i, -i\}$ est un groupe fini d'ordre 4.

Pour faciliter l'étude des groupes finis, la table de Cayley (mathématicien britannique, 19^e) donne tous les résultats de la loi de composition interne dans un groupe fini. Les propriétés d'un groupe se déduisent à la lecture d'une telle table. Les éléments de la table sont uniques sur chaque ligne et sur chaque colonne. La table de Cayley comporte toutes les permutations des éléments du groupe.

- . Structure de groupe
- 2. Produit fini de groupes
- 4. Sous-groupe engendré par une partie
- 5. Ordre d'un élément dans un groupe

2. Produit fini de groupes

Définition: Loi produit

Soit T_1, \ldots, T_n des lois de composition interne sur des ensembles E_1, \ldots, E_n . On appelle loi produit sur $E := E_1 \times \cdots \times E_n$ la loi \top définie par

$$(x_1, \cdots, x_n) \top (y_1, \cdots, y_n) = (x_1 \top_1 y_1, \cdots, x_n \top_n y_n).$$

- . Structure de groupe
- 2. Produit fini de groupes
- 4. Sous-groupe engendré par une partie
- or ordio a differente delle differente

2. Produit fini de groupes

Définition: Loi produit

Soit \top_1, \ldots, \top_n des lois de composition interne sur des ensembles E_1, \ldots, E_n . On appelle loi produit sur $E := E_1 \times \cdots \times E_n$ la loi \top définie par

$$(x_1,\cdots,x_n)\top(y_1,\cdots,y_n)=(x_1\top_1y_1,\cdots,x_n\top_ny_n).$$

Proposition

Si $(G_1, \top_1), \ldots, (G_n, \top_n)$ sont des groupes de neutres e_1, \ldots, e_n , alors $G = G_1 \times \cdots \times G_n$ muni de la loi produit \top est un groupe de neutre $e := (e_1, \cdots, e_n)$. De plus,

- ② si tous les groupes $(G_1, \top_1), \ldots, (G_n, \top_n)$ sont commutatifs, le groupe (G, \top) l'est aussi.

- 2. Produit fini de groupes
- . Produit fini de groupe
- 3. Sous-groupe
- 4. Sous-groupe engendré par une partie
- 5. Ordre d'un élément dans un groupe

3. Sous-groupe : définition et caractérisation

Définition: Sous-groupe d'un groupe

Soit (G, *) un groupe et H une partie **non vide** de G. On dit que H est un sous-groupe de (G, *) si :

- H est stable par loi de composition : $\forall x, y \in H, x * y \in H$.
- H est stable par passage à l'inverse : $\forall x \in H, x^{-1} \in H$.

- 3. Sous-groupe

3. Sous-groupe : définition et caractérisation

Définition: Sous-groupe d'un groupe

Soit (G, *) un groupe et H une partie **non vide** de G. On dit que H est un sous-groupe de (G,*) si :

- H est stable par loi de composition : $\forall x, y \in H, x * y \in H$.
- H est stable par passage à l'inverse : $\forall x \in H, x^{-1} \in H$.

Proposition

Soit H un sous-groupe de (G,*). On munit H de la loi induite. Alors,

- \bullet (H,*) est lui-même un groupe;
- 3 si x est un élément de H, l'inverse x^{-1} de x dans H est le même que celui dans G.

- 2. Produit fini de groupe
 - 2. Produit fini de groupes
- 3. Sous-groupe
- 4. Sous-groupe engendré par une partie
- 5. Ordre d'un élément dans un groupe

Proposition : Caractérisation des sous-groupes

Soit (G, *) un groupe et H une partie **non vide** de G. Alors, H est un sous-groupe de (G, *) si et seulement si :

$$\forall x, y \in H, \ x * y^{-1} \in H.$$

- 3. Sous-groupe

Proposition: Caractérisation des sous-groupes

Soit (G,*) un groupe et H une partie **non vide** de G. Alors, H est un sous-groupe de (G,*) si et seulement si :

$$\forall x, y \in H, \ x * y^{-1} \in H.$$

En notation additive, H est un sous-groupe de (G, +) ssi $x - y \in H$ pour tous $x, y \in H$.

- 2. Produit fini de groupes
- 2. Produit fini de group
- 3. Sous-groupe
- 4. Sous-groupe engendré par une partie
- 5. Ordre d'un élément dans un groupe

Proposition : Caractérisation des sous-groupes

Soit (G, *) un groupe et H une partie **non vide** de G. Alors, H est un sous-groupe de (G, *) si et seulement si :

$$\forall x, y \in H, \ x * y^{-1} \in H.$$

En notation additive, H est un sous-groupe de (G, +) ssi $x - y \in H$ pour tous $x, y \in H$.

Proposition

Soit (G, *) un groupe, H et H' deux sous-groupes de G. Alors, si elle est non vide, l'intersection $H \cap H'$ est un sous-groupe de G.

- 2. Produit fini de groupes
- l. Produit fini de groupes
- 3. Sous-groupe
- 4. Sous-groupe engendré par une partie

Proposition : Caractérisation des sous-groupes

Soit (G, *) un groupe et H une partie **non vide** de G. Alors, H est un sous-groupe de (G, *) si et seulement si :

$$\forall x, y \in H, \ x * y^{-1} \in H.$$

En notation additive, H est un sous-groupe de (G, +) ssi $x - y \in H$ pour tous $x, y \in H$.

Proposition

Soit (G, *) un groupe, H et H' deux sous-groupes de G. Alors, si elle est non vide, l'intersection $H \cap H'$ est un sous-groupe de G.

C'est faux pour la réunion!

Beaucoup d'exemples de groupes s'obtiennent en tant que sous-groupe d'un groupe plus gros, ce qui simplifie la vérification de l'associativité...

- 3. Sous-groupe

• Si (G,*) est un groupe d'élément neutre e, alors G et $\{e\}$ sont des sous-groupes de G dits sous-groupes triviaux de G.

- 2. Produit fini de groupes
 - 2. Produit fini de groupes
- 3. Sous-groupe
- 4. Sous-groupe engendré par une partie
- 5. Ordre d'un élément dans un groupe

- Si (G,*) est un groupe d'élément neutre e, alors G et $\{e\}$ sont des sous-groupes de G dits sous-groupes triviaux de G.
- ${\bf 2} \ (\mathbb{Z},+)$ est un sous-groupe de $(\mathbb{Q},+),$ lui-même sous-groupe de $(\mathbb{R},+).$

- 2. Produit fini de groupes
- 2. Produit fini de groupes
- 3. Sous-groupe
- 4. Sous-groupe engendré par une partie

- Si (G,*) est un groupe d'élément neutre e, alors G et $\{e\}$ sont des sous-groupes de G dits sous-groupes triviaux de G.
- ${\bf 2}$ $(\mathbb{Z},+)$ est un sous-groupe de $(\mathbb{Q},+),$ lui-même sous-groupe de $(\mathbb{R},+).$
- ③ Les ensembles des translations, homothéties, rotations du plan sont des sous-groupes du groupe des permutations du plan muni de ○. L'ensemble des isométries du plan aussi.

- 3. Sous-groupe

- Si (G,*) est un groupe d'élément neutre e, alors G et $\{e\}$ sont des sous-groupes de G dits sous-groupes triviaux de G.
- $(\mathbb{Z},+)$ est un sous-groupe de $(\mathbb{Q},+)$, lui-même sous-groupe $de(\mathbb{R},+).$
- 3 Les ensembles des translations, homothéties, rotations du plan sont des sous-groupes du groupe des permutations du plan muni de o. L'ensemble des isométries du plan aussi.
- **Nombres complexes de module** 1. Notons $\mathbb{U} = \{z \in \mathbb{C} \mid |z| = 1\}$. Alors (\mathbb{U}, \times) est un sous-groupe du groupe (\mathbb{C}^*, \times) .

- 3. Sous-groupe

- **6** Racines de l'unité. Soit $n \in \mathbb{N}^*$. Notons $\mathbb{U}_n \stackrel{\text{def.}}{=} \{z \in \mathbb{C} \mid z^n = 1\}. \text{ Alors,}$

$$\mathbb{U}_n = \{1, \omega, \omega^2, \cdots, \omega^{n-1}\}, \ \omega = e^{2i\pi/n}$$

et (\mathbb{U}_n, \times) est un sous-groupe du groupe (\mathbb{C}^*, \times) . C'est un groupe fini d'ordre n.

- 2. Produit fini de groupes
 - . Produit fini de group
- 3. Sous-groupe
- 4. Sous-groupe engendré par une partie
- 5. Ordre d'un élément dans un groupe
- **6** Racines de l'unité. Soit $n \in \mathbb{N}^*$. Notons $\mathbb{U}_n \stackrel{\text{déf.}}{=} \{z \in \mathbb{C} \mid z^n = 1\}$. Alors,

$$\mathbb{U}_n = \{1, \omega, \omega^2, \cdots, \omega^{n-1}\}, \ \omega = e^{2i\pi/n}$$

et (\mathbb{U}_n, \times) est un sous-groupe du groupe (\mathbb{C}^*, \times) . C'est un groupe fini d'ordre n.

6 Groupe spécial linéaire. Pour $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , l'ensemble

$$SL(n, \mathbb{K}) = \{ M \in \mathcal{M}_n(\mathbb{K}) : \det M = 1 \}$$

muni de \times est un sous-groupe de $(GL(n, \mathbb{K}), \times)$. Il est appelé groupe spécial linéaire d'ordre n sur \mathbb{K} .

- 3. Sous-groupe
- **©** Les sous-groupes de \mathbb{Z} . Pour tout $n \in \mathbb{N}$, on note $n\mathbb{Z}\stackrel{\text{def.}}{=}\{kn,k\in\mathbb{Z}\}$ l'ensemble des entiers divisibles par n ou encore l'ensemble des multiples de n.

Les sous-groupes de $(\mathbb{Z}, +)$ sont exactement les $n\mathbb{Z}$ où $n \in \mathbb{N}$.

- 3. Sous-groupe
- **©** Les sous-groupes de \mathbb{Z} . Pour tout $n \in \mathbb{N}$, on note $n\mathbb{Z} \stackrel{\text{def.}}{=} \{kn, k \in \mathbb{Z}\}$ l'ensemble des entiers divisibles par n ou encore l'ensemble des multiples de n.

Les sous-groupes de $(\mathbb{Z}, +)$ sont exactement les $n\mathbb{Z}$ où $n \in \mathbb{N}$.

 $d\acute{e}m$. Tout d'abord, on vérifie aisément que $n\mathbb{Z}$ est un sous-groupe de $(\mathbb{Z},+)$ pour tout $n\in\mathbb{N}$: il est non vide, la somme et l'oppposé de multiples de n sont encores des multiples de n.

- 3. Sous-groupe
- **©** Les sous-groupes de \mathbb{Z} . Pour tout $n \in \mathbb{N}$, on note $n\mathbb{Z} \stackrel{\text{def.}}{=} \{kn, k \in \mathbb{Z}\}$ l'ensemble des entiers divisibles par n ou encore l'ensemble des multiples de n.

Les sous-groupes de $(\mathbb{Z}, +)$ sont exactement les $n\mathbb{Z}$ où $n \in \mathbb{N}$.

 $d\acute{e}m$. Tout d'abord, on vérifie aisément que $n\mathbb{Z}$ est un sous-groupe de $(\mathbb{Z},+)$ pour tout $n\in\mathbb{N}$: il est non vide, la somme et l'oppposé de multiples de n sont encores des multiples de n.

Ensuite, on considère un sous-groupe H de $(\mathbb{Z}, +)$ et on montre qu'il est de la forme $n\mathbb{Z}$.

- 2. Produit fini de groupes
 - Produit fini de groupe
- 3. Sous-groupe
- 4. Sous-groupe engendré par une partie
- **6** Les sous-groupes de \mathbb{Z} . Pour tout $n \in \mathbb{N}$, on note $n\mathbb{Z} \stackrel{\text{def.}}{=} \{kn, k \in \mathbb{Z}\}$ l'ensemble des entiers divisibles par n ou encore l'ensemble des multiples de n.

Les sous-groupes de $(\mathbb{Z}, +)$ sont exactement les $n\mathbb{Z}$ où $n \in \mathbb{N}$.

 $d\acute{e}m$. Tout d'abord, on vérifie aisément que $n\mathbb{Z}$ est un sous-groupe de $(\mathbb{Z},+)$ pour tout $n\in\mathbb{N}$: il est non vide, la somme et l'oppposé de multiples de n sont encores des multiples de n.

Ensuite, on considère un sous-groupe H de $(\mathbb{Z}, +)$ et on montre qu'il est de la forme $n\mathbb{Z}$. Déjà, H contient le neutre 0. Si $H = \{0\}$, alors $H = 0\mathbb{Z}$, sinon H contient un élément x_0 entier non nul.

- 3. Sous-groupe

- **©** Les sous-groupes de \mathbb{Z} . Pour tout $n \in \mathbb{N}$, on note $n\mathbb{Z}\stackrel{\text{def.}}{=}\{kn,k\in\mathbb{Z}\}$ l'ensemble des entiers divisibles par n ou encore l'ensemble des multiples de n.

Les sous-groupes de $(\mathbb{Z}, +)$ sont exactement les $n\mathbb{Z}$ où $n \in \mathbb{N}$.

 $d\acute{e}m$. Tout d'abord, on vérifie aisément que $n\mathbb{Z}$ est un sous-groupe de $(\mathbb{Z},+)$ pour tout $n\in\mathbb{N}$: il est non vide, la somme et l'oppposé de multiples de n sont encores des multiples de n.

Ensuite, on considère un sous-groupe H de $(\mathbb{Z}, +)$ et on montre qu'il est de la forme $n\mathbb{Z}$. Déjà, H contient le neutre 0. Si $H = \{0\}$, alors $H=0\mathbb{Z}$, sinon H contient un élément x_0 entier non nul. Posons

$$H^+ = \{ x \in H \mid x > 0 \}.$$

Alors, x_0 ou $-x_0$ appartient à H^+ . Dans tous les cas, H^+ est une partie non vide de \mathbb{N} .

3. Sous-groupe

Rappelons : Toute partie non vide de N admet un plus petit élément. Donc, $H^+ = \{x \in H \mid x > 0\}$ admet un plus petit élément, noté n : $n = \min H^+$.

- 3. Sous-groupe

Rappelons : Toute partie non vide de N admet un plus petit élément.

Donc, $H^+ = \{x \in H \mid x > 0\}$ admet un plus petit élément, noté n :

$$n = \min H^+.$$

Comme $n \in H$, par propriété de sous-groupe, on a : $n\mathbb{Z} \subset H$.

- 2. Produit fini de groupes
- 2. Froduit lilli de gro
- 3. Sous-groupe
- 4. Sous-groupe engendré par une partie

Rappelons : Toute partie non vide de \mathbb{N} admet un plus petit élément. Donc, $H^+ = \{x \in H \mid x > 0\}$ admet un plus petit élément, noté n :

$$n = \min H^+.$$

Comme $n \in H$, par propriété de sous-groupe, on a : $n\mathbb{Z} \subset H$. Pour l'iclusion inverse, on fixe $x \in H$ et on effectue la division euclidienne de x par n. Il existe un unique couple d'entiers (q,r) tel que x = nq + r et $0 \le r < n$.

3. Sous-groupe

Rappelons : Toute partie non vide de N admet un plus petit élément. Donc, $H^+ = \{x \in H \mid x > 0\}$ admet un plus petit élément, noté n :

$$n = \min H^+.$$

Comme $n \in H$, par propriété de sous-groupe, on a : $n\mathbb{Z} \subset H$. Pour l'iclusion inverse, on fixe $x \in H$ et on effectue la division euclidienne de x par n. Il existe un unique couple d'entiers (q, r) tel que x = nq + r et $0 \le r < n$. Alors, $r = x - nq \in H$ car $x, nq \in H$, et donc

$$r \in H^+$$
 et $r < n$.

- 3. Sous-groupe

Rappelons : Toute partie non vide de N admet un plus petit élément. Donc, $H^+ = \{x \in H \mid x > 0\}$ admet un plus petit élément, noté n :

$$n = \min H^+.$$

Comme $n \in H$, par propriété de sous-groupe, on a : $n\mathbb{Z} \subset H$. Pour l'iclusion inverse, on fixe $x \in H$ et on effectue la division euclidienne de x par n. Il existe un unique couple d'entiers (q, r) tel que x = nq + r et $0 \le r < n$. Alors, $r = x - nq \in H$ car $x, nq \in H$, et donc

$$r \in H^+$$
 et $r < n$.

Par défintion de n, il s'ensuit r=0, ce qui entraı̂ne $x=nq\in n\mathbb{Z}$. Ainsi, $H \subset n\mathbb{Z}$ et par double inclusion on a l'égalité.

- 1. Structure de groupe
- 2. Produit fini de groupe
- 3. Sous-groupe
- 4. Sous-groupe engendré par une partie
- 4. Sous-groupe engendré par une partie

Soit (G, *) un groupe et A une partie de G. Désignons par \mathcal{H} la famille des sous-groupes de G contenant A. On pose $\langle A \rangle = \bigcap_{H \in \mathcal{H}} H$

l'intersection de tous les sous-groupes de G qui contiennent A.

- 1. Structure de groupe
 - . Produit fini de groupes
- 3. Sous-groupε
- 4. Sous-groupe engendré par une partie
- 5. Ordre d'un élément dans un groupe

Soit (G, *) un groupe et A une partie de G. Désignons par \mathcal{H} la famille des sous-groupes de G contenant A. On pose $\langle A \rangle = \bigcap_{H \in \mathcal{H}} H$

l'intersection de tous les sous-groupes de G qui contiennent A. Lorsque A est réduit à un singleton $\{a\}$, on note simplement $\langle A \rangle = \langle a \rangle$.

- 1. Structure de groupe
- . Produit fini de groupes
- 3. Sous-groupe
- 4. Sous-groupe engendré par une partie
- 5. Ordre d'un élément dans un groupe

Soit (G, *) un groupe et A une partie de G. Désignons par \mathcal{H} la famille des sous-groupes de G contenant A. On pose $\langle A \rangle = \bigcap_{H \in \mathcal{H}} H$

l'intersection de tous les sous-groupes de G qui contiennent A. Lorsque A est réduit à un singleton $\{a\}$, on note simplement $\langle A \rangle = \langle a \rangle$.

Proposition

 $\langle A \rangle$ est le plus petit (pour l'inclusion) sous-groupe de G contenant A.

- 4. Sous-groupe engendré par une partie

Soit (G,*) un groupe et A une partie de G. Désignons par \mathcal{H} la famille des sous-groupes de G contenant A. On pose $\langle A \rangle = \bigcap H$

l'intersection de tous les sous-groupes de G qui contiennent A. Lorsque A est réduit à un singleton $\{a\}$, on note simplement $\langle A \rangle = \langle a \rangle$.

Proposition

 $\langle A \rangle$ est le plus petit (pour l'inclusion) sous-groupe de G contenant A.

Définitions

A est appelé un système générateur de $\langle A \rangle$. On dit que $\langle A \rangle$ est le sous-groupe engendré par A.

- 4. Sous-groupe engendré par une partie

Soit (G,*) un groupe et A une partie de G. Désignons par \mathcal{H} la famille des sous-groupes de G contenant A. On pose $\langle A \rangle = \bigcap H$

l'intersection de tous les sous-groupes de G qui contiennent A. Lorsque A est réduit à un singleton $\{a\}$, on note simplement $\langle A \rangle = \langle a \rangle$.

Proposition

 $\langle A \rangle$ est le plus petit (pour l'inclusion) sous-groupe de G contenant A.

Définitions

A est appelé un système générateur de $\langle A \rangle$. On dit que $\langle A \rangle$ est le sous-groupe engendré par A.

On dit qu'un groupe est monogène s'il est engendré par un des ses éléments ; on dit qu'il est cyclique s'il est monogène et fini.

- 1. Structure de groupe
 - . Produit fini de groupes
- 3. Sous-groupe
- 4. Sous-groupe engendré par une partie

 \bullet $\langle\emptyset\rangle=\{e\}$ (e étant l'élément neutre) et $\langle G\rangle=G.$

- 1. Structure de groupe
 - . Produit fini de groupes
- . Sous-groupe
- 4. Sous-groupe engendré par une partie
- 5. Ordre d'un élément dans un groupe

- \bullet $\langle \emptyset \rangle = \{e\}$ (e étant l'élément neutre) et $\langle G \rangle = G$.
- **2** Si $G = \mathbb{Z}$, $\langle \{2,3\} \rangle = \mathbb{Z}$ et $\langle \{6,8\} \rangle = 2\mathbb{Z}$.

- 1. Structure de groupe
- 2. Produit fini de groupes
- 3. Sous-groupe
- 4. Sous-groupe engendré par une partie
- 5. Ordre d'un élément dans un groupe

- \bullet $\langle \emptyset \rangle = \{e\}$ (e étant l'élément neutre) et $\langle G \rangle = G$.
- **2** Si $G = \mathbb{Z}$, $\langle \{2,3\} \rangle = \mathbb{Z}$ et $\langle \{6,8\} \rangle = 2\mathbb{Z}$.
- **9 Sous-groupe monogène** : le sous-groupe de G engendré par $a \in G$ est $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$. En notation additive, $\langle a \rangle = a\mathbb{Z}$.

- 4. Sous-groupe engendré par une partie

- \bullet $\langle \emptyset \rangle = \{e\}$ (e étant l'élément neutre) et $\langle G \rangle = G$.
- **2** Si $G = \mathbb{Z}$, $\langle \{2,3\} \rangle = \mathbb{Z}$ et $\langle \{6,8\} \rangle = 2\mathbb{Z}$.
- **3** Sous-groupe monogène : le sous-groupe de G engendré par $a \in G$ est $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$. En notation additive, $\langle a \rangle = a\mathbb{Z}$.

Complément : puissance entière d'un élément

- $x^0 = e$ $x^{n+1} = x * x^n$ pour tout $n \in \mathbb{N}$
- $x^{-n} = (x^n)^{-1} = (x^{-1})^n$ pour tout $n \in \mathbb{N}^*$.

- II. Groupes et sous-groupes III. Introduction aux groupes quotient

- 4. Sous-groupe engendré par une partie

- \bullet $\langle \emptyset \rangle = \{e\}$ (e étant l'élément neutre) et $\langle G \rangle = G$.
- **2** Si $G = \mathbb{Z}$, $\langle \{2,3\} \rangle = \mathbb{Z}$ et $\langle \{6,8\} \rangle = 2\mathbb{Z}$.
- **3** Sous-groupe monogène : le sous-groupe de G engendré par $a \in G$ est $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$. En notation additive, $\langle a \rangle = a\mathbb{Z}$.

Complément : puissance entière d'un élément

- $x^0 = e$ $x^{n+1} = x * x^n$ pour tout $n \in \mathbb{N}$
- $x^{-n} = (x^n)^{-1} = (x^{-1})^n$ pour tout $n \in \mathbb{N}^*$.
- $(\mathbb{Z},+)$ est monogène engendré par 1. Les sous-groupes de $(\mathbb{Z},+)$ sont tous monogènes.

- - 4. Sous-groupe engendré par une partie

- \bullet $\langle \emptyset \rangle = \{e\}$ (e étant l'élément neutre) et $\langle G \rangle = G$.
- **2** Si $G = \mathbb{Z}$, $\langle \{2,3\} \rangle = \mathbb{Z}$ et $\langle \{6,8\} \rangle = 2\mathbb{Z}$.
- **3** Sous-groupe monogène : le sous-groupe de G engendré par $a \in G$ est $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$. En notation additive, $\langle a \rangle = a\mathbb{Z}$.

Complément : puissance entière d'un élément

- $x^0 = e$ $x^{n+1} = x * x^n$ pour tout $n \in \mathbb{N}$
- $x^{-n} = (x^n)^{-1} = (x^{-1})^n$ pour tout $n \in \mathbb{N}^*$.
- $(\mathbb{Z},+)$ est monogène engendré par 1. Les sous-groupes de $(\mathbb{Z},+)$ sont tous monogènes.
- (\mathbb{U}_n, \times) est cylique engendré par $e^{2i\pi/n}$.

- 4. Sous-groupe engendré par une partie

- \bullet $\langle \emptyset \rangle = \{e\}$ (e étant l'élément neutre) et $\langle G \rangle = G$.
- **2** Si $G = \mathbb{Z}$, $\langle \{2,3\} \rangle = \mathbb{Z}$ et $\langle \{6,8\} \rangle = 2\mathbb{Z}$.
- **3** Sous-groupe monogène : le sous-groupe de G engendré par $a \in G$ est $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$. En notation additive, $\langle a \rangle = a\mathbb{Z}$.

Complément : puissance entière d'un élément

- $x^0 = e$ $x^{n+1} = x * x^n$ pour tout $n \in \mathbb{N}$
- $x^{-n} = (x^n)^{-1} = (x^{-1})^n$ pour tout $n \in \mathbb{N}^*$.
- $(\mathbb{Z},+)$ est monogène engendré par 1. Les sous-groupes de $(\mathbb{Z},+)$ sont tous monogènes.
- (\mathbb{U}_n,\times) est cylique engendré par $e^{2i\pi/n}$.
- Par contre, $(\mathbb{C}, +)$, (\mathbb{C}^*, \times) ou (S_n, \circ) , $n \geq 3$, ne sont pas des groupes monogènes.

- 1. Structure de groupe
 - . Produit fini de groupes
- 3. Sous-groupe
- 4. Sous-groupe engendré par une partie
- 5. Ordre d'un élément dans un groupe

Théorème

Soit A une partie du groupe (G, *). Le sous-groupe $\langle A \rangle$ de G est formé des éléments $x_1 * x_2 * \ldots * x_n$ où $n \in \mathbb{N}$ et, x_i ou $(x_i)^{-1}$ dans A.

- 1. Structure de groupe
- 2. Produit fini de groupes
- 3. Sous-groupe
- 4. Sous-groupe engendré par une partie
- 5. Ordre d'un élément dans un groupe

Théorème

Soit A une partie du groupe (G, *). Le sous-groupe $\langle A \rangle$ de G est formé des éléments $x_1 * x_2 * \ldots * x_n$ où $n \in \mathbb{N}$ et, x_i ou $(x_i)^{-1}$ dans A.

 $id\acute{e}e\ de\ la\ d\acute{e}m.\ pour\ A\neq\emptyset.$ Posons

$$H = \{x_1 * x_2 * \dots * x_n \mid n \in \mathbb{N}, x_i \text{ ou } (x_i)^{-1} \in A\}.$$

On vérifie aisément que H est un sous-groupe de G contenant A. Il reste à montrer que c'est le plus petit contenant A.

- 4. Sous-groupe engendré par une partie

Théorème,

Soit A une partie du groupe (G,*). Le sous-groupe $\langle A \rangle$ de G est formé des éléments $x_1 * x_2 * ... * x_n$ où $n \in \mathbb{N}$ et, x_i ou $(x_i)^{-1}$ dans A.

 $id\acute{e}e\ de\ la\ d\acute{e}m.\ pour\ A\neq\emptyset.$ Posons

$$H = \{x_1 * x_2 * \dots * x_n \mid n \in \mathbb{N}, x_i \text{ ou } (x_i)^{-1} \in A\}.$$

On vérifie aisément que H est un sous-groupe de G contenant A. Il reste à montrer que c'est le plus petit contenant A.

On suppose qu'il existe K sous-groupe de G contenant A. Alors si x_i ou x_i^{-1} , $i \in \{1, \dots, n\}$, appartiennent à A, par propriété de sous-groupe, ils appartiennent à K et, $x_1 * x_2 * ... * x_n$ appartient à K.

- 4. Sous-groupe engendré par une partie

Théorème

Soit A une partie du groupe (G,*). Le sous-groupe $\langle A \rangle$ de G est formé des éléments $x_1 * x_2 * ... * x_n$ où $n \in \mathbb{N}$ et, x_i ou $(x_i)^{-1}$ dans A.

 $id\acute{e}e\ de\ la\ d\acute{e}m.\ pour\ A\neq\emptyset.$ Posons

$$H = \{x_1 * x_2 * \dots * x_n \mid n \in \mathbb{N}, x_i \text{ ou } (x_i)^{-1} \in A\}.$$

On vérifie aisément que H est un sous-groupe de G contenant A. Il reste à montrer que c'est le plus petit contenant A.

On suppose qu'il existe K sous-groupe de G contenant A. Alors si x_i ou x_i^{-1} , $i \in \{1, \dots, n\}$, appartiennent à A, par propriété de sous-groupe, ils appartiennent à K et, $x_1 * x_2 * ... * x_n$ appartient à K.Donc $H \subset K$, et H est bien le plus petit sous-groupe de G contenant A.

- 1. Structure de groupe
- 2. Produit fini de groupe
- 3. Sous-groupe
- 4. Sous-groupe engendré par une partie
- 5. Ordre d'un élément dans un groupe

5. Ordre d'un élément dans un groupe

Définition : ordre d'un élément

Un élément a d'un groupe (G, *) est dit d'ordre fini s'il existe $n \in \mathbb{N}^*$ vérifiant $a^n = e$. On appelle alors ordre de a le plus petit entier $n \in \mathbb{N}^*$ vérifiant $a^n = e$. Sinon, son ordre est dit infini.

- . Structure de groupe
- 2. Produit fini de groupes
- 3. Sous-groupe
- 4. Sous-groupe engendré par une partie
- 5. Ordre d'un élément dans un groupe

5. Ordre d'un élément dans un groupe

Définition : ordre d'un élément

Un élément a d'un groupe (G,*) est dit d'ordre fini s'il existe $n \in \mathbb{N}^*$ vérifiant $a^n = e$. On appelle alors ordre de a le plus petit entier $n \in \mathbb{N}^*$ vérifiant $a^n = e$. Sinon, son ordre est dit infini.

Exemples

ullet L'ordre du neutre e est 1 ; c'est l'unique élément d'ordre 1.

- . Structure de groupe
- 2. Produit fini de groupes
- 3. Sous-groupe
- Sous-groupe engendré par une partie
 Ordre d'un élément dans un groupe
- 5. Ordre d'un élément dans un groupe

Définition : ordre d'un élément

Un élément a d'un groupe (G,*) est dit d'ordre fini s'il existe $n \in \mathbb{N}^*$ vérifiant $a^n = e$. On appelle alors ordre de a le plus petit entier $n \in \mathbb{N}^*$ vérifiant $a^n = e$. Sinon, son ordre est dit infini.

- \bullet L'ordre du neutre e est 1 ; c'est l'unique élément d'ordre 1.
- Dans $(\mathbb{Z}, +)$, tous les entiers non nuls sont d'ordre infini.

- .. Structure de groupe
- 2. Produit fini de groupes
- 3. Sous-groupe
- Sous-groupe engendré par une partie
 Ordre d'un élément dans un groupe
- 5. Ordre d'un élément dans un groupe

Définition : ordre d'un élément

Un élément a d'un groupe (G, *) est dit d'ordre fini s'il existe $n \in \mathbb{N}^*$ vérifiant $a^n = e$. On appelle alors ordre de a le plus petit entier $n \in \mathbb{N}^*$ vérifiant $a^n = e$.

Sinon, son ordre est dit *infini*.

- $\bullet\,$ L'ordre du neutre e est 1 ; c'est l'unique élément d'ordre 1.
- Dans $(\mathbb{Z}, +)$, tous les entiers non nuls sont d'ordre infini.
- \bullet Dans $(\mathbb{C}^\star,\times),$ l'élément 2 est d'ordre infini ; $\frac{-1+\sqrt{3}}{2}$ est d'ordre fini.

- . Structure de groupe
- 2. Produit fini de groupes
- 3. Sous-groupe
- 4. Sous-groupe engendré par une partie
- 5. Ordre d'un élément dans un groupe

5. Ordre d'un élément dans un groupe

Définition : ordre d'un élément

Un élément a d'un groupe (G, *) est dit d'ordre fini s'il existe $n \in \mathbb{N}^*$ vérifiant $a^n = e$. On appelle alors ordre de a le plus petit entier $n \in \mathbb{N}^*$ vérifiant $a^n = e$.

Sinon, son ordre est dit *infini*.

- $\bullet\,$ L'ordre du neutre e est 1 ; c'est l'unique élément d'ordre 1.
- Dans $(\mathbb{Z}, +)$, tous les entiers non nuls sont d'ordre infini.
- \bullet Dans $(\mathbb{C}^\star,\times),$ l'élément 2 est d'ordre infini ; $\frac{-1+\sqrt{3}}{2}$ est d'ordre fini.
- Dans (\mathbb{U}_n, \times) , $\omega = e^{2i\pi/n}$ est d'ordre fini égal à n.

- L. Structure de groupe Desduit fini de groupes
- 2. Produit fini de groupes
- 3. Sous-groupe
- Sous-groupe engendré par une partie
 Ordre d'un élément dans un groupe
- 5. Ordre d'un élément dans un groupe

Définition : ordre d'un élément

Un élément a d'un groupe (G, *) est dit d'ordre fini s'il existe $n \in \mathbb{N}^*$ vérifiant $a^n = e$. On appelle alors ordre de a le plus petit entier $n \in \mathbb{N}^*$ vérifiant $a^n = e$.

Sinon, son ordre est dit *infini*.

- \bullet L'ordre du neutre e est 1 ; c'est l'unique élément d'ordre 1.
- Dans $(\mathbb{Z}, +)$, tous les entiers non nuls sont d'ordre infini.
- \bullet Dans $(\mathbb{C}^\star,\times),$ l'élément 2 est d'ordre infini ; $\frac{-1+\sqrt{3}}{2}$ est d'ordre fini.
- Dans (\mathbb{U}_n, \times) , $\omega = e^{2i\pi/n}$ est d'ordre fini égal à n.
- \bullet Dans le groupe symétrique S_3 , les trois transpositions sont d'ordre 2 et les deux permutations circulaires sont d'ordre 3.

- 1. Structure de groupe
- . Produit fini de groupes
- 3. Sous-groupe
- 4. Sous-groupe engendré par une partie
- 5. Ordre d'un élément dans un groupe

Théorème

Si a est d'ordre fini égal à p, alors pour tout entier $n\in\mathbb{Z}$

$$a^n = e \iff p|n.$$

- 5. Ordre d'un élément dans un groupe

Théorème

Si a est d'ordre fini égal à p, alors pour tout entier $n \in \mathbb{Z}$

$$a^n = e \iff p|n.$$

dém. " \Leftarrow " Si p divise n, il existe $q \in \mathbb{Z}$ tel que n = qp, ce qui entraîne $a^n = (a^p)^q = e^q = e.$

- 5. Ordre d'un élément dans un groupe

${ m Th\'eor\`eme}$

Si a est d'ordre fini égal à p, alors pour tout entier $n \in \mathbb{Z}$

$$a^n = e \iff p|n.$$

dém. " \Leftarrow " Si p divise n, il existe $q \in \mathbb{Z}$ tel que n = qp, ce qui entraîne $a^n = (a^p)^q = e^q = e.$

" \Rightarrow " On suppose que $a^n = e$.

D'abord, si $n \ge 1$, on effectue la division euclidienne de n par p: il existe un unique couple d'entiers (q, r) tel que n = qp + r et $0 \le r < p$. Alors, $a^r = a^{qp} * a^r = a^n = e$ avec r < p.

- 5. Ordre d'un élément dans un groupe

${ m Th\'eor\`eme}$

Si a est d'ordre fini égal à p, alors pour tout entier $n \in \mathbb{Z}$

$$a^n = e \iff p|n.$$

dém. " \Leftarrow " Si p divise n, il existe $q \in \mathbb{Z}$ tel que n = qp, ce qui entraîne $a^n = (a^p)^q = e^q = e.$

" \Rightarrow " On suppose que $a^n = e$.

D'abord, si $n \ge 1$, on effectue la division euclidienne de n par p: il existe un unique couple d'entiers (q, r) tel que n = qp + r et $0 \le r < p$. Alors, $a^r = a^{qp} * a^r = a^n = e$ avec r < p. Par définition de p (le plus entier positif non nul tel que $a^p = e...$), on obtient r = 0, et donc p divise n.

- 5. Ordre d'un élément dans un groupe

${ m Th\'eor\`eme}$

Si a est d'ordre fini égal à p, alors pour tout entier $n \in \mathbb{Z}$

$$a^n = e \iff p|n.$$

dém. " \Leftarrow " Si p divise n, il existe $q \in \mathbb{Z}$ tel que n = qp, ce qui entraîne $a^n = (a^p)^q = e^q = e.$

" \Rightarrow " On suppose que $a^n = e$.

D'abord, si $n \ge 1$, on effectue la division euclidienne de n par p: il existe un unique couple d'entiers (q, r) tel que n = qp + r et $0 \le r < p$. Alors, $a^r = a^{qp} * a^r = a^n = e$ avec r < p. Par définition de p (le plus entier positif non nul tel que $a^p = e...$), on obtient r = 0, et donc p divise n. Ensuite, si n=0, on a toujours $p \mid n$.

5. Ordre d'un élément dans un groupe

${ m Th\'eor\`eme}$

Si a est d'ordre fini égal à p, alors pour tout entier $n \in \mathbb{Z}$

$$a^n = e \iff p|n.$$

dém. " \Leftarrow " Si p divise n, il existe $q \in \mathbb{Z}$ tel que n = qp, ce qui entraı̂ne $a^n = (a^p)^q = e^q = e.$

" \Rightarrow " On suppose que $a^n = e$.

D'abord, si $n \ge 1$, on effectue la division euclidienne de n par p: il existe un unique couple d'entiers (q, r) tel que n = qp + r et $0 \le r < p$. Alors, $a^r = a^{qp} * a^r = a^n = e$ avec r < p. Par définition de p (le plus entier positif non nul tel que $a^p = e...$), on obtient r = 0, et donc p divise n. Ensuite, si n=0, on a toujours $p\mid n$.

Enfin, si $n \leq -1$, alors $-n \geq 1$, et d'après ce qui précède, $p \mid -n$, ce qui équivaut à $p \mid n$.

- 1. Classes suivant un sous-groupe
- 2. Ensemble quotient
 - 3. Théorème de Lagrange
 - 4. L'ensemble $\mathbb{Z}/n\mathbb{Z}$

III. Introduction aux groupes quotient

1. Classes suivant un sous-groupe

Soit (G, *) un groupe et H un sous-groupe. On définit la relation binaire sur G suivante

$$x\mathcal{R}y \stackrel{\text{déf.}}{\Longleftrightarrow} x^{-1} * y \in H.$$

Rappel : une relation binaire sur un ensemble G est la donnée d'une partie \mathcal{R} de $G \times G$; on note $x\mathcal{R}y$ pour signifier $(x,y) \in \mathcal{R}$.

- 1. Classes suivant un sous-groupe
- 2. Ensemble quotient
- 3. Théorème de Lagrange
- 4. L'ensemble $\mathbb{Z}/n\mathbb{Z}$

III. Introduction aux groupes quotient

1. Classes suivant un sous-groupe

Soit (G, *) un groupe et H un sous-groupe. On définit la relation binaire sur G suivante

$$x\mathcal{R}y \stackrel{\text{déf.}}{\Longleftrightarrow} x^{-1} * y \in H.$$

Rappel : une relation binaire sur un ensemble G est la donnée d'une partie \mathcal{R} de $G \times G$; on note $x\mathcal{R}y$ pour signifier $(x,y) \in \mathcal{R}$.

Propriété

 \mathcal{R} est une relation d'équivalence, c.-à-d.

- **2** \mathcal{R} est $sym\acute{e}trique: \forall x,y \in G, x\mathcal{R}y \Rightarrow y\mathcal{R}x;$
- **3** \mathcal{R} est transitive: $\forall x, y, z \in G$, $(x\mathcal{R}y \text{ et } y\mathcal{R}z) \Rightarrow x\mathcal{R}z$.

- 1. Classes suivant un sous-groupe
- 2. Ensemble quotient
 - 3. Théorème de Lagrange
 - 4. L'ensemble $\mathbb{Z}/n\mathbb{Z}$

Propriété

 \mathcal{R} est une **congruence à gauche**, c.-à-d.

- \bullet \mathcal{R} est une relation d'équivalence

- 1. Classes suivant un sous-groupe
- 2. Ensemble quotient
 - 3. Théorème de Lagrange
 - 4. L'ensemble $\mathbb{Z}/n\mathbb{Z}$

Propriété

 \mathcal{R} est une **congruence à gauche**, c.-à-d.

- \bullet \mathcal{R} est une relation d'équivalence

Posons $xH \stackrel{\text{def.}}{=} \{x * h : h \in H\}$. Alors,

$$x\mathcal{R}y \iff y \in xH$$

- 1. Classes suivant un sous-groupe
- 2. Ensemble quotient
- 3. Théorème de Lagrange
- 4. L'ensemble $\mathbb{Z}/n\mathbb{Z}$

Propriété

 \mathcal{R} est une **congruence à gauche**, c.-à-d.

- $oldsymbol{0}$ \mathcal{R} est une relation d'équivalence

Posons $xH \stackrel{\text{def.}}{=} \{x * h : h \in H\}$. Alors,

$$x\mathcal{R}y \iff y \in xH$$

Exemple

Si $G=\mathbb{Z}$ muni de + et $H=n\mathbb{Z},$ alors $xH=\{x+ny:y\in\mathbb{Z}\}$ et

$$x\mathcal{R}y \iff x \equiv y[n],$$

autrement dit x est congru à y modulo n, c.-à-d. n divise y-x. \mathcal{R} est une congruence (à gauche et à droite).

- 1. Classes suivant un sous-groupe
- 2. Ensemble quotient
 - 3. Théorème de Lagrange
 - 4. L'ensemble $\mathbb{Z}/n\mathbb{Z}$

On appelle classe d'équivalence d'un élément x de G pour la relation \mathcal{R} , le sous-ensemble formé des éléments qui sont en relation avec x, c.-à-d. l'ensemble $\{y \in G \mid x\mathcal{R}y\}$.

La classe d'équivalence de x est notée \overline{x} . Dans notre cas

$$\overline{x} = xH = \{ y \in G : x^{-1} * y \in H \}$$

appelé classe à gauche de x modulo H.

- 1. Classes suivant un sous-groupe
- 2. Ensemble quotient
 - 3. Théorème de Lagrange
 - 1. L'ensemble $\mathbb{Z}/n\mathbb{Z}$

On appelle classe d'équivalence d'un élément x de G pour la relation \mathcal{R} , le sous-ensemble formé des éléments qui sont en relation avec x, c.-à-d. l'ensemble $\{y \in G \mid x\mathcal{R}y\}$.

La classe d'équivalence de x est notée \overline{x} . Dans notre cas

$$\overline{x} = xH = \{ y \in G : x^{-1} * y \in H \}$$

appelé classe à gauche de x modulo H.

Quatre remarques immédiates. ① $\overline{e} = H$

② Une classe d'équivalence est toujours non vide : $\overline{x} \ni x$.

- 1. Classes suivant un sous-groupe
- 2. Ensemble quotient
 - 3. Théorème de Lagrange
 - 1. L'ensemble $\mathbb{Z}/n\mathbb{Z}$

On appelle classe d'équivalence d'un élément x de G pour la relation \mathcal{R} , le sous-ensemble formé des éléments qui sont en relation avec x, c.-à-d. l'ensemble $\{y \in G \mid x\mathcal{R}y\}$.

La classe d'équivalence de x est notée \overline{x} . Dans notre cas

$$\overline{x} = xH = \{ y \in G : x^{-1} * y \in H \}$$

appelé classe à gauche de x modulo H.

Quatre remarques immédiates. ① $\bar{e} = H$

- ② Une classe d'équivalence est toujours non vide : $\overline{x} \ni x$.
- ③ Deux classes d'équivalence sont soient égales soient disjointes. Tout élément d'une classe d'équivalence détermine celle-ci : on dit que c'est un *représentant* de la classe.

- 1. Classes suivant un sous-groupe
- 2. Ensemble quotient
 - 3. Théorème de Lagrange
 - 1. L'ensemble $\mathbb{Z}/n\mathbb{Z}$

On appelle classe d'équivalence d'un élément x de G pour la relation \mathcal{R} , le sous-ensemble formé des éléments qui sont en relation avec x, c.-à-d. l'ensemble $\{y \in G \mid x\mathcal{R}y\}$.

La classe d'équivalence de x est notée \overline{x} . Dans notre cas

$$\overline{x} = xH = \{ y \in G : x^{-1} * y \in H \}$$

appelé classe à gauche de x modulo H.

Quatre remarques immédiates. ① $\bar{e} = H$

- ② Une classe d'équivalence est toujours non vide : $\overline{x} \ni x$.
- ③ Deux classes d'équivalence sont soient égales soient disjointes. Tout élément d'une classe d'équivalence détermine celle-ci : on dit que c'est un *représentant* de la classe.
- $\textcircled{4} f: H \to \overline{x}$ définie par f(h) = x * h est bijective, et $\operatorname{card} H = \operatorname{card}(\overline{x})$.

- 1. Classes suivant un sous-groupe
- 2. Ensemble quotient
 - 3. Théorème de Lagrange
 - l. L'ensemble $\mathbb{Z}/n\mathbb{Z}$

Si
$$G = \mathbb{Z}$$
 et $H = n\mathbb{Z}$, et $x, y \in G$, alors $\overline{x} = x + n\mathbb{Z}$ et

$$\overline{x} = \overline{y} \iff x \equiv y[n] \iff \exists k \in \mathbb{Z}, \ x = y + kn.$$

Rappelons dans $\mathbb{Z}: x$ et y sont congrus modulo n s'ils ont le même reste dans la division euclidienne par n, c.-à-d. y-x est un multiple de n, ou encore n divise y-x.

- l. Classes suivant un sous-groupe
- 2. Ensemble quotient
- 3. Théorème de Lagrange
- 4. L'ensemble $\mathbb{Z}/n\mathbb{Z}$

2. Ensemble quotient

Définition

On appelle ensemble quotient de G par H l'ensemble des classes à gauche de (G,*) modulo H. On le note G/H.

G/H se comprend comme l'ensemble obtenu lorsqu'on "identifie entre eux les éléments qui sont égaux modulo \mathcal{R} ":

$$G/H = \{xH : x \in G\}.$$

Cet espace admet parfois une structure naturelle de groupe. On regardera l'exemple de $\mathbb{Z}/n\mathbb{Z}$ l'ensemble quotient de \mathbb{Z} pour la relation de congruence modulo n:

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{(n-1)}\}.$$

- 1. Classes suivant un sous-groupe
- 2. Ensemble quotient
 - 3. Théorème de Lagrange

3. Théorème de Lagrange

Un résultat important :

Théorème de Lagrange

Soit G un groupe fini d'ordre n et H un sous-groupe de G d'ordre p. Alors, p divise n et

$$n = \operatorname{card}(G/H)p$$
.

* On dit que $\operatorname{card}(G/H)$ est l'*indice* de H : c'est le nombre de classes d'équivalence distinctes.

- 1. Classes suivant un sous-groupe
- 2. Ensemble quotient
 - 3. Théorème de Lagrange

3. Théorème de Lagrange

Un résultat important :

Théorème de Lagrange

Soit G un groupe fini d'ordre n et H un sous-groupe de G d'ordre p. Alors, p divise n et

$$n = \operatorname{card}(G/H)p$$
.

- * On dit que $\operatorname{card}(G/H)$ est l'*indice* de H : c'est le nombre de classes d'équivalence distinctes.
- * Les classes à gauche de H forment une partition de G, à savoir qu'elles forment un ensemble de parties non vides de G deux à deux disjointes qui recouvrent G.

- 1. Classes suivant un sous-groupe
- 2. Ensemble quotient
 - 3. Théorème de Lagrange

3. Théorème de Lagrange

Un résultat important :

Théorème de Lagrange

Soit G un groupe fini d'ordre n et H un sous-groupe de G d'ordre p. Alors, p divise n et

$$n = \operatorname{card}(G/H)p$$
.

- * On dit que $\operatorname{card}(G/H)$ est l'*indice* de H : c'est le nombre de classes d'équivalence distinctes.
- * Les classes à gauche de H forment une partition de G, à savoir qu'elles forment un ensemble de parties non vides de G deux à deux disjointes qui recouvrent G.
- * Les classes à gauche de H ont toutes le même nombre d'éléments $p=\mathrm{card} H.$

- 1. Classes suivant un sous-groupe
- 2. Ensemble quotient
 - 3. Théorème de Lagrange

Corollaire

Soit G un groupe fini d'ordre n. Alors pour tout $a \in G$, on a $a^n = e$ et l'ordre de a divise n.

L'ordre de a est le cardinal du sous-groupe $\langle a \rangle$ (c.-à-d. l'ordre de ce sous-groupe).

- . Classes suivant un sous-groupe
- 2. Ensemble quotient
- 3. Théorème de Lagrange

Corollaire

Soit G un groupe fini d'ordre n. Alors pour tout $a \in G$, on a $a^n = e$ et l'ordre de a divise n.

L'ordre de a est le cardinal du sous-groupe $\langle a \rangle$ (c.-à-d. l'ordre de ce sous-groupe).

Exemples: groupes d'ordre 4

On pose $G = \{e, a, b, c\}$ avec e l'élément neutre. G contient des éléments d'ordre 1 (c'est e), 2 ou 4. On a alors deux cas :

- lacktriangle ou bien il existe un élément d'ordre 4 (par exemple a), et dans ce cas G est un groupe cyclique (engendré par a), donc abélien,
- ② ou bien a, b et c sont d'ordre 2, dans ce cas, G est encore abélien (exo : si tous les éléments x d'un groupe vérifient $x^2 = e$, le groupe est abélien).

Dans tous les cas, un groupe d'ordre 4 est abélien.

- . Classes suivant un sous-groupe
- 2. Ensemble quotient
 - 3. Théorème de Lagrange
 - 4. L'ensemble $\mathbb{Z}/n\mathbb{Z}$

4. L'ensemble $\mathbb{Z}/n\mathbb{Z}$

Définition

On note $\mathbb{Z}/n\mathbb{Z}$ l'ensemble quotient de \mathbb{Z} pour la relation de congruence modulo n :

$$\mathbb{Z}/n\mathbb{Z} = \{x + n\mathbb{Z} : x \in \mathbb{Z}\}.$$

- . Classes suivant un sous-groupe
- 2. Ensemble quotient
 - 3. Théorème de Lagrange
 - 4. L'ensemble $\mathbb{Z}/n\mathbb{Z}$

4. L'ensemble $\mathbb{Z}/n\mathbb{Z}$

Définition

On note $\mathbb{Z}/n\mathbb{Z}$ l'ensemble quotient de \mathbb{Z} pour la relation de congruence modulo n :

$$\mathbb{Z}/n\mathbb{Z} = \{x + n\mathbb{Z} : x \in \mathbb{Z}\}.$$

Théorème

 $\mathbb{Z}/n\mathbb{Z}$ est un ensemble fini à n éléments qui sont $\overline{0},\overline{1},\ldots,(n-1).$

- . Classes suivant un sous-groupe
- 2. Ensemble quotient
 - 3. Théorème de Lagrange
- 4. L'ensemble $\mathbb{Z}/n\mathbb{Z}$

4. L'ensemble $\mathbb{Z}/n\mathbb{Z}$

Définition

On note $\mathbb{Z}/n\mathbb{Z}$ l'ensemble quotient de \mathbb{Z} pour la relation de congruence modulo n :

$$\mathbb{Z}/n\mathbb{Z} = \{x + n\mathbb{Z} : x \in \mathbb{Z}\}.$$

Théorème

 $\mathbb{Z}/n\mathbb{Z}$ est un ensemble fini à n éléments qui sont $\overline{0}, \overline{1}, \dots, \overline{(n-1)}$.

On définit deux opérations + et \times sur $\mathbb{Z}/n\mathbb{Z}$ en posant

$$\bar{x} + \bar{y} \stackrel{\text{def.}}{=} \overline{x + y}$$
 et $\bar{x} \times \bar{y} \stackrel{\text{def.}}{=} \bar{x} \bar{y}$

autrement dit:

$$\bar{x} + \bar{y} = \bar{z} \iff x + y \equiv z[n] \text{ et } \bar{x} \times \bar{y} = \bar{z} \iff xy \equiv z[n].$$

- 1. Classes suivant un sous-groupe
- 2. Ensemble quotient
 - 3. Théorème de Lagrange
 - 4. L'ensemble $\mathbb{Z}/n\mathbb{Z}$

- 1. Classes suivant un sous-groupe
- 2. Ensemble quotient
 - 3. Théorème de Lagrange
 - 4. L'ensemble $\mathbb{Z}/n\mathbb{Z}$

- ($\mathbb{Z}/n\mathbb{Z}$, +) est un groupe abélien fini d'ordre n et de neutre $\overline{0}$. De plus, $-\overline{x} = \overline{(-x)}$ et $k\overline{x} = \overline{(kx)}$ pour tous $k \in \mathbb{Z}$ et $x \in \mathbb{Z}/n\mathbb{Z}$.
- $\mathfrak{Q}(\mathbb{Z}/n\mathbb{Z},+)$ est monogène : il est engendré par $\overline{1}$.

- 1. Classes suivant un sous-groupe
- 2. Ensemble quotient
 - 3. Théorème de Lagrange
 - 4. L'ensemble $\mathbb{Z}/n\mathbb{Z}$

- ($\mathbb{Z}/n\mathbb{Z}$, +) est un groupe abélien fini d'ordre n et de neutre $\overline{0}$. De plus, $-\overline{x} = \overline{(-x)}$ et $k\overline{x} = \overline{(kx)}$ pour tous $k \in \mathbb{Z}$ et $x \in \mathbb{Z}/n\mathbb{Z}$.
- $\mathfrak{Q}(\mathbb{Z}/n\mathbb{Z},+)$ est monogène : il est engendré par $\overline{1}$.
- **8** Ses générateurs sont les \overline{m} pour $m \in \mathbb{Z}$ premier avec n.

 $(\mathbb{Z}/n\mathbb{Z},+)$ est appelé groupe cyclique d'ordre n: il est monogène (engendré par un élément) et fini (d'ordre n).

- 1. Classes suivant un sous-groupe
- 2. Ensemble quotient
 - 3. Théorème de Lagrange
 - 4. L'ensemble $\mathbb{Z}/n\mathbb{Z}$

- ($\mathbb{Z}/n\mathbb{Z}$, +) est un groupe abélien fini d'ordre n et de neutre $\overline{0}$. De plus, $-\overline{x} = \overline{(-x)}$ et $k\overline{x} = \overline{(kx)}$ pour tous $k \in \mathbb{Z}$ et $x \in \mathbb{Z}/n\mathbb{Z}$.
- $\mathfrak{Q}(\mathbb{Z}/n\mathbb{Z},+)$ est monogène : il est engendré par $\overline{1}$.
- **8** Ses générateurs sont les \overline{m} pour $m \in \mathbb{Z}$ premier avec n.

 $(\mathbb{Z}/n\mathbb{Z}, +)$ est appelé groupe cyclique d'ordre n: il est monogène (engendré par un élément) et fini (d'ordre n).

Exercice : $((\mathbb{Z}/n\mathbb{Z})^*, \times)$ est un groupe si et seulement si n est premier.

- 1. Définitions et propriétés
- 2. Noyau et image
- 3. Groupes isomorphes
- l. Actions de groupes

IV. Morphisme de groupes

1. Définitions et propriétés

Soit (G, *) et (G', \top) des groupes.

Définition : Morphisme de groupes

On appelle (homo)morphisme du groupe (G,*) vers le groupe (G',\top) toute application $f:G\to G'$ vérifiant

$$\forall x, y \in G, \ f(x * y) = f(x) \top f(y).$$

- $1.\ \, {\rm D\'efinitions}\ {\rm et}\ {\rm propri\'et\'es}$
- 2. Noyau et image
- 3. Groupes isomorphes

IV. Morphisme de groupes

1. Définitions et propriétés

Soit (G, *) et (G', \top) des groupes.

Définition : Morphisme de groupes

On appelle (homo)morphisme du groupe (G,*) vers le groupe (G',\top) toute application $f:G\to G'$ vérifiant

$$\forall x, y \in G, \ f(x * y) = f(x) \top f(y).$$

- Un morphisme de G vers G est un endomorphisme de G.
- Un morphisme bijectif est un *isomorphisme*.
- Un endomorphisme bijectif est un automorphisme.

- 1. Définitions et propriétés
- 2. Noyau et image
- Groupes isomorphes
- 1. Actions de groupes

• L'application constante $f: G \to G$ définie par f(x) = e est un endomorphisme de (G, *).

- 1. Définitions et propriétés
- 2. Noyau et image
- 3. Groupes isomorphes
- 1. Actions de groupes

- L'application constante $f: G \to G$ définie par f(x) = e est un endomorphisme de (G, *).
- 2 L'application identité $\mathrm{Id}_G:G\to G$ est un automorphisme de (G,*).

- 1. Définitions et propriétés
- 2. Noyau et image
- 3. Groupes isomorphes

- L'application constante $f: G \to G$ définie par f(x) = e est un endomorphisme de (G, *).
- **2** L'application identité $\mathrm{Id}_G:G\to G$ est un automorphisme de (G,*).
- **3** L'application $\ln : \mathbb{R}_+^* \to \mathbb{R}$ est un isomorphisme de (\mathbb{R}_+^*, \times) vers $(\mathbb{R}, +)$.

- 1. Définitions et propriétés
- 2. Noyau et image
- 3. Groupes isomorphes

- **1** L'application constante $f: G \to G$ définie par f(x) = e est un endomorphisme de (G, *).
- **2** L'application identité $\mathrm{Id}_G:G\to G$ est un automorphisme de (G,*).
- **3** L'application $\ln : \mathbb{R}_+^* \to \mathbb{R}$ est un isomorphisme de (\mathbb{R}_+^*, \times) vers $(\mathbb{R}, +)$.
- **1** L'application $\exp: \mathbb{C} \to \mathbb{C}^*$ est un morphisme de $(\mathbb{C}, +)$ vers (\mathbb{C}^*, \times) .

- 1. Définitions et propriétés
- 2. Noyau et image
- 3. Groupes isomorphes

- L'application constante $f: G \to G$ définie par f(x) = e est un endomorphisme de (G, *).
- **2** L'application identité $\mathrm{Id}_G:G\to G$ est un automorphisme de (G,*).
- **3** L'application $\ln : \mathbb{R}_+^* \to \mathbb{R}$ est un isomorphisme de (\mathbb{R}_+^*, \times) vers $(\mathbb{R}, +)$.
- **1** L'application $\exp: \mathbb{C} \to \mathbb{C}^*$ est un morphisme de $(\mathbb{C}, +)$ vers (\mathbb{C}^*, \times) .
- **③** Soit $a \in G$. L'application $f : \mathbb{Z} \to G$ définie par $f(k) = a^k$ est un morphisme de $(\mathbb{Z}, +)$ vers (G, *).

- 1. Définitions et propriétés
- 2. Noyau et image
- 3. Groupes isomorphes

- L'application constante $f: G \to G$ définie par f(x) = e est un endomorphisme de (G, *).
- **2** L'application identité $\mathrm{Id}_G:G\to G$ est un automorphisme de (G,*).
- **3** L'application $\ln : \mathbb{R}_+^* \to \mathbb{R}$ est un isomorphisme de (\mathbb{R}_+^*, \times) vers $(\mathbb{R}, +)$.
- ① L'application $\exp: \mathbb{C} \to \mathbb{C}^*$ est un morphisme de $(\mathbb{C}, +)$ vers (\mathbb{C}^*, \times) .
- Soit $a \in G$. L'application $f : \mathbb{Z} \to G$ définie par $f(k) = a^k$ est un morphisme de $(\mathbb{Z}, +)$ vers (G, *).
- **③** La surjection canonique $p : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ qui à x associe sa classe d'équivalence est un morphisme de groupes de $(\mathbb{Z}, +)$ vers $(\mathbb{Z}/n\mathbb{Z}, +)$.

- $1.\ \, {\rm D\'efinitions\ et\ propri\'et\'es}$
- 2. Noyau et image
- 3. Groupes isomorphes

Propriétés

Soit $f: G \to G'$ un morphisme de groupes.

• Soit (G'', \bot) un groupe. Si $g: G' \to G''$ est autre morphisme de groupes alors $g \circ f: G \to G''$ en est un aussi.

- 1. Définitions et propriétés
- 2. Noyau et image
- 3. Groupes isomorphes
 - . Actions de groupes

Propriétés

Soit $f: G \to G'$ un morphisme de groupes.

- Soit (G'', \bot) un groupe. Si $g: G' \to G''$ est autre morphisme de groupes alors $g \circ f: G \to G''$ en est un aussi.
- ② On a f(e) = e' et pour tous $x \in G$ et $n \in \mathbb{Z}$, $f(x^n) = f(x)^n$.

- 1. Définitions et propriétés
- 2. Noyau et image
- Groupes isomorphes

Propriétés

Soit $f: G \to G'$ un morphisme de groupes.

- Soit (G'', \bot) un groupe. Si $g: G' \to G''$ est autre morphisme de groupes alors $g \circ f: G \to G''$ en est un aussi.
- ② On a f(e) = e' et pour tous $x \in G$ et $n \in \mathbb{Z}$, $f(x^n) = f(x)^n$.
- 3 L'image directe (resp. réciproque) d'un sous-groupe par un morphisme de groupes est un sous-groupe.

- 1. Définitions et propriétés
- 2. Noyau et image
- 4 Actions de groupes

Propriétés

Soit $f: G \to G'$ un morphisme de groupes.

- Soit (G'', \bot) un groupe. Si $g: G' \to G''$ est autre morphisme de groupes alors $g \circ f: G \to G''$ en est un aussi.
- ② On a f(e) = e' et pour tous $x \in G$ et $n \in \mathbb{Z}$, $f(x^n) = f(x)^n$.
- 3 L'image directe (resp. réciproque) d'un sous-groupe par un morphisme de groupes est un sous-groupe.
- ① Si $f: G \to G'$ est un isomorphisme alors $f^{-1}: G' \to G$ aussi un isomorphisme de groupes.

- l. Définitions et propriétés
- 2. Noyau et image
- 3. Groupes isomorphes

2. Noyau et image

Soit $f: G \to G'$ un morphisme de groupes. On définit son noyau et son image respectivement par :

$$\operatorname{Ker} f \stackrel{\text{def.}}{=} f^{-1}(\{e'\}) = \{x \in G : f(x) = e'\}$$

$$\operatorname{Im} f \stackrel{\text{def.}}{=} f(G) = \{f(x) : x \in G\}.$$

Ainsi,

Corollaire

Ker f est un sous-groupe de G, et $\operatorname{Im} f$ est un sous-groupe de G'.

- 1. Définitions et propriétés
- 2. Noyau et image
- 3. Groupes isomorphes
- . Actions de groupes

• Soit $f: \mathbb{C}^* \to \mathbb{C}^*$ le morphisme défini par f(z) = |z|. Alors Ker $f = \mathbb{U}$ et Im $f = \mathbb{R}_+^*$.

- 1. Définitions et propriétés
- 2. Noyau et image
- 3. Groupes isomorphes
 - . Actions de groupes

- Soit $f: \mathbb{C}^* \to \mathbb{C}^*$ le morphisme défini par f(z) = |z|. Alors $\operatorname{Ker} f = \mathbb{U}$ et $\operatorname{Im} f = \mathbb{R}_+^*$.
- ② Pour exp : $\mathbb{C} \to \mathbb{C}^*$ morphisme de $(\mathbb{C}, +)$ vers (\mathbb{C}^*, \times) , on a $\operatorname{Ker}(\exp) = 2i\pi\mathbb{Z}$ et $\operatorname{Im}(\exp) = \mathbb{C}^*$.

- . Définitions et propriétés
- 2. Noyau et image
- 3. Groupes isomorphes

- Soit $f: \mathbb{C}^* \to \mathbb{C}^*$ le morphisme défini par f(z) = |z|. Alors $\operatorname{Ker} f = \mathbb{U}$ et $\operatorname{Im} f = \mathbb{R}_+^*$.
- Pour exp : $\mathbb{C} \to \mathbb{C}^*$ morphisme de $(\mathbb{C}, +)$ vers (\mathbb{C}^*, \times) , on a $\operatorname{Ker}(\exp) = 2i\pi\mathbb{Z}$ et $\operatorname{Im}(\exp) = \mathbb{C}^*$.
- **②** Pour det : $GL(n, \mathbb{K}) \to \mathbb{K}^*$ morphisme de $(GL(n, \mathbb{K}), .)$ vers (\mathbb{K}^*, \times) , on a Ker(det) = $SL(n, \mathbb{K})$ et Im(det) = \mathbb{K}^* .

- . Définitions et propriétés
- 2. Noyau et image
- 3. Groupes isomorphes

Exemple

- Soit $f: \mathbb{C}^* \to \mathbb{C}^*$ le morphisme défini par f(z) = |z|. Alors $\operatorname{Ker} f = \mathbb{U}$ et $\operatorname{Im} f = \mathbb{R}_+^*$.
- ② Pour exp : $\mathbb{C} \to \mathbb{C}^*$ morphisme de $(\mathbb{C}, +)$ vers (\mathbb{C}^*, \times) , on a $\operatorname{Ker}(\exp) = 2i\pi\mathbb{Z}$ et $\operatorname{Im}(\exp) = \mathbb{C}^*$.
- **③** Pour det : $GL(n, \mathbb{K})$ → \mathbb{K}^* morphisme de $(GL(n, \mathbb{K}), .)$ vers (\mathbb{K}^*, \times) , on a Ker(det) = $SL(n, \mathbb{K})$ et Im(det) = \mathbb{K}^* .

Propiétés

Soit $f: G \to G'$ un morphisme de groupes.

 \bullet $f: G \to G'$ est injective si et seulement si Ker $f = \{e\}$.

- . Définitions et propriétés
- 2. Noyau et image
- 3. Groupes isomorphes

Exemple

- Soit $f: \mathbb{C}^* \to \mathbb{C}^*$ le morphisme défini par f(z) = |z|. Alors $\operatorname{Ker} f = \mathbb{U}$ et $\operatorname{Im} f = \mathbb{R}_+^*$.
- ② Pour exp : $\mathbb{C} \to \mathbb{C}^*$ morphisme de $(\mathbb{C}, +)$ vers (\mathbb{C}^*, \times) , on a $\operatorname{Ker}(\exp) = 2i\pi\mathbb{Z}$ et $\operatorname{Im}(\exp) = \mathbb{C}^*$.
- **③** Pour det : $GL(n, \mathbb{K})$ → \mathbb{K}^* morphisme de $(GL(n, \mathbb{K}), .)$ vers (\mathbb{K}^*, \times) , on a Ker(det) = $SL(n, \mathbb{K})$ et Im(det) = \mathbb{K}^* .

Propiétés

Soit $f: G \to G'$ un morphisme de groupes.

- \bullet $f: G \to G'$ est injective si et seulement si Ker $f = \{e\}$.
- \bullet $f: G \to G'$ est surjective si et seulement si $\operatorname{Im} f = G'$.

- . Définitions et propriétés
- 2. Noyau et image
- 3. Groupes isomorphes
 4. Actions de groupes

3. Groupes isomorphes

Définition: Groupes isomorphes

On dit que deux groupes sont *isomorphes* s'il existe un isomorphisme de l'un vers l'autre.

- . Définitions et propriétés
- 2. Noyau et image
- 3. Groupes isomorphes

3. Groupes isomorphes

Définition : Groupes isomorphes

On dit que deux groupes sont *isomorphes* s'il existe un isomorphisme de l'un vers l'autre.

Exemples

- (\mathbb{R}_+^*, \times) et $(\mathbb{R}, +)$ sont isomorphes. (\mathbb{R}^*, \times) et $(\mathbb{R}, +)$ ne sont pas isomorphes.
- $(\mathbb{Z}/n\mathbb{Z},+)$ et (\mathbb{U}_n,\times) sont isomorphes.

- . Définitions et propriétés
- 2. Noyau et image
- 3. Groupes isomorphes

3. Groupes isomorphes

Définition: Groupes isomorphes

On dit que deux groupes sont *isomorphes* s'il existe un isomorphisme de l'un vers l'autre.

Exemples

- (\mathbb{R}_+^*, \times) et $(\mathbb{R}, +)$ sont isomorphes. (\mathbb{R}^*, \times) et $(\mathbb{R}, +)$ ne sont pas isomorphes.
- $(\mathbb{Z}/n\mathbb{Z},+)$ et (\mathbb{U}_n,\times) sont isomorphes.

Théorème

Soit (G, *) un groupe monogène.

Si G est fini d'ordre $n \in \mathbb{N}^*$, (G, *) est isomorphe à $(\mathbb{Z}/n\mathbb{Z}, +)$.

Si G est infini, (G, *) est isomorphe à $(\mathbb{Z}, +)$

- 1. Définitions et propriétés
- 2. Noyau et image
- 4. Actions de groupes

4. Notions sur les actions de groupes

Soit (G,*) un groupe et X un ensemble non vide.

Définition

On dit que G agit (à gauche) sur X s'il existe une application $\varphi: G \times X \to X, (g, x) \mapsto g \cdot x$ qui vérifie :

- $\forall g_1, g_2 \in G, \, \forall x \in X, \, g_1 \cdot (g_2 \cdot x) = (g_1 * g_2) \cdot x.$

On dit que φ est une action (à gauche) de G sur X.

- . Définitions et propriétés
- 2. Noyau et image
- 4. Actions de groupes

4. Notions sur les actions de groupes

Soit (G,*) un groupe et X un ensemble non vide.

Définition

On dit que G agit (à gauche) sur X s'il existe une application $\varphi: G \times X \to X, (g, x) \mapsto g \cdot x$ qui vérifie :

- $\forall g_1, g_2 \in G, \, \forall x \in X, \, g_1 \cdot (g_2 \cdot x) = (g_1 * g_2) \cdot x.$

On dit que φ est une action (à gauche) de G sur X.

Remarques. (1) G agit sur X si, et seulement si, il existe un morphisme $\Phi: G \to \mathcal{S}(X)$. L'action de G sur X est alors donnée par $g \cdot x = \Phi(g)(x)$.

- l. Définitions et propriétés
- 2. Noyau et image
- 4. Actions de groupes

4. Notions sur les actions de groupes

Soit (G,*) un groupe et X un ensemble non vide.

Définition

On dit que G agit (à gauche) sur X s'il existe une application $\varphi: G \times X \to X, (g, x) \mapsto g \cdot x$ qui vérifie :

- $\forall g_1, g_2 \in G, \ \forall x \in X, \ g_1 \cdot (g_2 \cdot x) = (g_1 * g_2) \cdot x.$

On dit que φ est une action (à gauche) de G sur X.

Remarques. (1) G agit sur X si, et seulement si, il existe un morphisme $\Phi: G \to \mathcal{S}(X)$. L'action de G sur X est alors donnée par $g \cdot x = \Phi(g)(x)$.

(2) Si G agit sur X, tout sous-groupe de G agit sur X.

- . Définitions et propriétés
- 2. Noyau et image
- 4. Actions de groupes

Définition

On dit que l'action de G sur X est fidèle si le morphisme de groupes $\Phi: G \to \mathcal{S}(X), \Phi(g)(x) = g \cdot x$, est injectif.

Conséquence. Une action fidèle permet d'identifier G à un sous-groupe du groupe des permutations S(X).

Exemples

1 Action par translation à gauche. G agit sur lui-même par translation à gauche : $(g, x) \in G \times G \mapsto g * x$.

- 1. Définitions et propriétés
- 2. Noyau et image
- 4. Actions de groupes

Définition

On dit que l'action de G sur X est fidèle si le morphisme de groupes $\Phi: G \to \mathcal{S}(X), \Phi(g)(x) = g \cdot x$, est injectif.

Conséquence. Une action fidèle permet d'identifier G à un sous-groupe du groupe des permutations S(X).

Exemples

1 Action par translation à gauche. G agit sur lui-même par translation à gauche : $(g, x) \in G \times G \mapsto g * x$.

Théorème de Cayley

L'action de G sur lui-même par translation à gauche est fidèle, et G est isomorphe à un sous-groupe de $(S(G), \circ)$.

En particulier, si G est un groupe fini d'ordre n, il est isomorphe à un sous-groupe de S_n .

- 1. Définitions et propriétés
- 2. Noyau et image
- 4. Actions de groupes

 ${\cal G}$ agit sur lui-même par conjugaison :

$$(g,x) \in G \times G \mapsto g * x * g^{-1}.$$

- l. Définitions et propriétés
- 2. Noyau et image
- 3. Groupes isomorphes4. Actions de groupes

G agit sur lui-même par conjugaison :

$$(g,x) \in G \times G \mapsto g * x * g^{-1}.$$

G agit sur l'ensemble X des sous-groupes de G par conjugaison :

$$(g,H) \in G \times X \mapsto gHg^{-1}$$
.

L'action n'est pas fidèle.

- l. Définitions et propriétés
- 2. Noyau et image
- 3. Groupes isomorphes
 4. Actions de groupes

G agit sur lui-même par conjugaison :

$$(g,x) \in G \times G \mapsto g * x * g^{-1}.$$

 ${\cal G}$ agit sur l'ensemble X des sous-groupes de ${\cal G}$ par conjugaison :

$$(g,H) \in G \times X \mapsto gHg^{-1}$$
.

L'action n'est pas fidèle.

- . Définitions et propriétés
- 2. Noyau et image
- 3. Groupes isomorphes
- 4. Actions de groupes

G agit sur lui-même par conjugaison :

$$(g,x) \in G \times G \mapsto g * x * g^{-1}.$$

G agit sur l'ensemble X des sous-groupes de G par conjugaison :

$$(g,H) \in G \times X \mapsto gHg^{-1}$$
.

L'action n'est pas fidèle.

3 Soit E un ensemble non vide. S(E) agit fidèlement sur E par l'action $(f, x) \mapsto f(x)$.

- 1. Définitions et propriétés
- 2. Noyau et image
- 3. Groupes isomorphes
- 4. Actions de groupes

Soit un groupe G agissant sur un ensemble non vide X.

Définition

On appelle $stabilisateur\ de\ x$ l'ensemble

$$G_x = \{ g \in G \mid g \cdot x = x \}.$$

Proposition

Pour tout $x \in X$, G_x est un sous-groupe de G.

- 1. Définitions et propriétés
- 2. Noyau et image
- 4. Actions de groupes

Soit un groupe G agissant sur un ensemble X. On définit la relation binaire sur G suivante pour $x,y\in X$

$$x\mathcal{R}y \stackrel{\text{def.}}{\Longleftrightarrow} \exists g \in G, \ y = g \cdot x.$$

- l. Définitions et propriétés
- 2. Novau et image
- 4. Actions de groupes

Soit un groupe G agissant sur un ensemble X. On définit la relation binaire sur G suivante pour $x, y \in X$

$$x\mathcal{R}y \stackrel{\text{def.}}{\Longleftrightarrow} \exists g \in G, \ y = g \cdot x.$$

Propriété - Définition

 \mathcal{R} est une **relation d'équivalence** et les classes d'équivalence $G \cdot x = \{y \in X \mid \exists g \in G, \ y = g \cdot x\}$ sont appelés les *orbites de x selon G*. Elles forment une partition de X.

On dit qu'une action est transitive si il n'existe qu'une seule orbite selon G.

- l. Définitions et propriétés
- 2. Noyau et image
- 4. Actions de groupes

Soit un groupe G agissant sur un ensemble X. On définit la relation binaire sur G suivante pour $x,y\in X$

$$x\mathcal{R}y \stackrel{\text{def.}}{\Longleftrightarrow} \exists g \in G, \ y = g \cdot x.$$

Propriété - Définition

 \mathcal{R} est une **relation d'équivalence** et les classes d'équivalence $G \cdot x = \{y \in X \mid \exists g \in G, \ y = g \cdot x\}$ sont appelés les *orbites de x selon G*. Elles forment une partition de X.

On dit qu'une action est transitive si il n'existe qu'une seule orbite selon G.

Proposition

Soit G un groupe agissant sur un ensemble X et $x \in X$. Alors, il existe une bijection entre l'orbite $G \cdot x$ de x et l'ensemble des classes à gauche de G modulo G_x .