EMBEDDED VISION DESIGN 3

DEEP NEURAL NETWORKS

JEROEN VEEN

CONTENTS

- Recap ANN and example
- Vanishing and exploding gradients
- Transfer learning
- Training optimization
- Learning rate scheduling
- Regularization

Use: https://alexlenail.me/NN-SVG/index.html to draw nice maps

RECALL ANNS

Source: Géron, ISBN: 9781492032632

ACTIVATION FUNCTIONS

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

TRAINING

- Multi-dimensional optimization problem
- Gradient descent

EXERCISE: BASIC IMAGE CLASSIFICATION

- https://www.tensorflow.org/tutorials/keras/classification
- Train a shallow net, see also Géron pp. 297-307
- Trouble downloading the datasets? Let me know

See tf_quickstart.py

- Training can take quite some time...
 - >> Use a small number of weights in the hidden layers
 - >>Work on colab.research.google.com
- Train and validate (see Géron p. 303)!

Instead of passing a validation set using the validation_data argument, you could set validation_split to the ratio of the training set that you want Keras to use for validation. For example, validation_split=0.1 tells Keras to use the last 10% of the data (before shuffling) for validation.

UNSTABLE GRADIENTS

- https://www.youtube.com/watch?v=qO_NLVjD6zE&t=105s
- Variance of the outputs > variance inputs leads to saturation

Source: Géron, ISBN: 9781492032632

SOLUTIONS TO SPEED UP TRAINING

Unstable gradients results in very slow training

- Smart weight initialization
- Non-saturating activation function
- Batch normalization
- Reusing parts of a pretrained network

GLOROT AND HE INITIALIZATION

- Signals need to flow properly in both directions
- fan_{in} = number of inputs
- fan_{out} = number of neurons

Fan-Out and Fan-In

Fan-out – number of load gates connected to the output of the driving gate

gates with large fan-out are slower

Table 11-1. Initialization parameters for each type of activation function

Initialization	Activation functions	σ^2 (Normal)
Glorot	None, tanh, logistic, softmax	1 / fan _{avg}
He	ReLU and variants	2 / fan _{in}
LeCun	SELU	1 / fan _{in}

Source: Géron, ISBN: 9781492032632

See also https://www.youtube.com/watch?v=8krd5qKVw-Q&t=300

NONSATURATING ACTIVATION FUNCTIONS

- Standard ReLU may lead to 'dying' neurons
- ReLU variants: leaky ReLU, PReLU, ELU, SELU

Source: Géron, ISBN: 9781492032632

HAN_UNIVERSITY
OF APPLIED SCIENCES

BATCH NORMALIZATION

- Mitigate both vanishing and exploding gradients
- Normalize each hidden layer's input during training

• Input mean and std (μ,σ) , output scale and offset (γ,β) parameters are learned over entire batch

TRANSFER LEARNING

- Reuse pretrained (lower) layers to speed up training, requiring significantly less data
- Works best when the inputs have similar low-level features

TRAINING OPTIMIZATION

- Cost functions / Loss functions measure of correctness of a prediction
- e.g. mean squared error cross entropy
 log loss

a measure of dissimilarity between the ground truth label probability and the predicted probability of the label

- Descending the error curve, feedback on error
- Different kinds of optimization : gradient descent, stochastic gradient descent, adagrad, adam, etc.

FASTER OPTIMIZERS

- Adaptive learning rate algorithms
- https://www.youtube.com/watch?v=mdKjMPmcWjY&t=133s

Source: Géron, ISBN: 9781492032632

OPTIMIZER COMPARISON

Class	Convergence speed	Convergence quality
SGD	*	***
SGD(momentum=)	**	***
SGD(momentum=, nesterov=True)	**	***
Adagrad	***	* (stops too early)
RMSprop	***	** or ***
Adam	***	** or ***
Nadam	***	** or ***
AdaMax	***	** or ***

OPTIMIZING CONSTANT LEARNING RATE

 Compare learning curves for various rates and pick optimal, but constant rate

LEARNING RATE SCHEDULING

- Strategies to adapt learning rate while training progresses.
- Power, exponential, piecewise constant scheduling: drop learning rate every iteration, e.g. $\eta(t) = \eta_0 \ 0.1^{t/s}$
- Performance scheduling: reduce learning rate based on error
- (1cycle) scheduling

REGULARIZATION

- 11 regularization: sparse model
- £2 regularization: constrain weights
- (MC) dropout: ignore neurons during training:
- Max-Norm regularization

 L_2 and L_1 penalize weights differently:

- L₂ penalizes weight².
- L₁ penalizes |weight|.

