

Egy üzem kétféle terméket gyárt (T_1, T_2) . A termékek három alkatrész (A_1, A_2, A_3) felhasználásával készülnek. Az első táblázat a termékek szerelési idejét, egységárát és az alkatrészigényüket tartalmazza. Az alkatrészek megmunkálását két gépen végzik (G_1, G_2) . A második táblázat az alkatrészek gépenkénti megmunkálási igényét tartalmazza, és a megmunkálógépek kapacitását. A szerelőüzem kapacitása 220 perc/nap. Határozza meg a szerelő- és gyártóüzem kapacitását nem meghaladó napi termelést úgy, hogy az árbevétel maximális legyen!

	A_1	A_2	A_3	Szerelés	Egységár		A_1	A_2	A_3	Kapacitás
G_1	1	0	2	2	27	G_1	1	0	1	240
G_2	0	1	1	1	8	G_2	7	1	1	630

Először is a megoldáshoz fel kell írnunk a matematikai modellt, amelyhez ki kell hámoznunk az adatokat a táblázatokból:

$$\begin{aligned} 1 \cdot 1x_1 + 0 \cdot 0x_2 + 1 \cdot 2x_3 + 1 \cdot 0x_1 + 0 \cdot 1x_2 + 1 \cdot 1x_3 &\leq 240 \\ 7 \cdot 1x_1 + 1 \cdot 0x_2 + 1 \cdot 2x_3 + 7 \cdot 0x_1 + 1 \cdot 1x_2 + 1 \cdot 1x_3 &\leq 630 \\ 2x_1 + 1x_2 &\leq 220 \\ 27x_1 + 8x_2 &\longrightarrow \text{max!} \end{aligned}$$

azaz

$$3x_1 + x_2 \le 240$$

 $9x_1 + 2x_2 \le 630$
 $2x_1 + 1x_2 \le 220$
 $27x_1 + 8x_2 \longrightarrow \max!$
 $x_1, x_2 \ge 0$

A következő lépés az LP feladat sztenderdizálása:

$$3x_1 + x_2 + s_1 = 240$$

$$9x_1 + 2x_2 + s_2 = 630$$

$$2x_1 + 1x_2 + s_3 = 220$$

$$27x_1 + 8x_2 \longrightarrow \max!$$

$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

$$\begin{array}{c|cccc}
 x_1 & x_2 \\
 s_1 & 2 & 1 & 220 \\
 s_2 & 3 & 1 & 240 \\
 s_3 & 9 & 2 & 630 \\
 \hline
 & 27 & 8 & 0
\end{array}$$

3

-1980

-11

	x_1	s_1	
x_2	2	1	220
s_2	1	-1	20
s_3	5	-2	190
	11	-8	-1760

Mivel a $\mathbf{z} - \mathbf{c}$ vektor ≤ 0 , ezért megvan az optimális megoldás, amely az $\mathbf{x} = (50,90)$ vektor. A célfüggvény értéke ekkor 2070.