CS 302 QUIZ 7

26 November, 2019

ANSWERS

- (a) (5 points) See slide set #7
- (b) (5 points) $L = (\omega \in \{0,1\}^* \mid \omega = a^{k+2} b^{k+1} c^k, k \ge 0)$ is NOT a CFL.

Assume it is; then there is some n > 0 and we choose $w = a^{n+2}b^{n+1}c^n$, hence

|w| = 3n + 3 > n and by PL w = uvwxy and

(i) $|vwx| \le n$; (ii) |vx| > 0 and (iii) $|u|v^j |w| |x^j| |y| \le L$ for all $|j| \ge 0$ and in particular for |j| = 0.

We show that $uwy \notin L$, contradicting (iii) which implies that L is not a CFL.

Note that because of (i) either: (1) $vwx = a^m$ or $= b^m$ or $= c^m$ where $m \le n$; OR

(2) $vwx = a^i b^j$; or $= b^i c^j$ where $i+j \le n$. But then because of (ii) with p = |vx| > 0

if (1) holds then $uwy = a^{n+2-p} b^{n+1} c^n$; or $uwy = a^{n+2} b^{n+1-p} c^n$; or $uwy = a^{n+2} b^{n+1} c^{n-p}$;

OR if (2) holds then $uwy = a^{n+2-r}b^{n+1-t}c^n$; or $uwy = a^{n+2}b^{n+1-r}c^{n-t}$ where r+t = p > 0.

Hence for all the cases above $uwy \notin L$ and the result follows!