

Mapping ML to the AMD RyzenAl Architecture

Elliott Delaye Senior Fellow FastML for Science, Nov 2, 2023

^{*} Certain capabilities and features dependent upon OEM enablement

INTRODUCING RYZEN™ AI

WORLD'S FIRST INTEGRATED AI ENGINE IN AN X86 PROCESSOR WITH RYZEN PRO 7040 SERIES

- Optimized AI workloads for best system efficiency
- Up to 4 concurrent Al streams for real-time multi-tasking
- Processes up to 10 Trillion Al Operations Per Second
- Experience on-device AI everyday on business laptops

RYZEN[™] PRO 7040 PROCESSOR DIE

"ZEN 4" Core

- High performance and efficient x86 cores
- Up to 13%* higher IPC

RDNA™ 3 Graphics

Improved perf/W per compute unit

XDNA AI Engine

- IPU Inference Processing Unit
- First integrated AI engine on an x86 processor, powering AMD Ryzen™ AI

All can run ML models... but how to choose?

"ZEN 4" Core

- High performance and efficient x86 cores
- Up to 13%* higher IPC

RDNA™ 3 Graphics

Improved perf/W per compute unit

XDNA AI Engine

- IPU Inference Processing Unit
- First integrated AI engine on an x86 processor, powering AMD Ryzen[™] AI

Tailored compute for every client use-case

"ZEN 4" Core

- High performance and efficient x86 cores
- Up to 13%* higher IPC

RDNA™ 3 Graphics

Improved perf/W per compute unit

XDNA AI Engine

- IPU Inference Processing Unit
- First integrated AI engine on an x86 processor, powering AMD Ryzen™ AI

Tailored compute for every client use-case

"ZEN 4" Core

- High performance and efficient x86 cores
- Up to 13%* higher IPC

RDNA™ 3 Graphics

Improved perf/W per compute unit

XDNA AI Engine

- IPU Inference Processing Unit
- First integrated AI engine on an x86 processor, powering AMD Ryzen[™] AI

Tailored compute for every client use-case

XDNA Architecture

XDNA Architecture Capabilities

Broad Al Model Support

Transformers, CNNs, others

First Generation XDNA on Ryzen 7040 as 5x4 Array

Up to 12.5 INT8 TOPs, 25 INT4 TOPs, 6.25 BF16 TFLOPs

Real-time Performance

Up to 4 concurrent spatial streams (DNN DPU)

Advanced Features

50% weight sparsity

Power Efficiency Features

Fine-grained clock gating

XDNA AIE-ML Core Tile

Based on same AIE-ML in AMD Versal Devices

Key Features

- Array of AIE-ML Compute tiles with SIMD/Scalar datapaths, local memory
- Full NSEW connectivity to neighbors
- Streaming channels running full vertical/horizontal length of the array
- Dedicated SRAM within the array for shared tile access

Multiple levels of parallelism

- Instruction-level parallelism: multiple operations in one cycle
- Data-level parallelism: vector data path (SIMD)
- Processor-level parallelism: Array of AI Engines

Spatial and Temporal Execution using XDNA

ASR & LLM provisioned for temporal sharing; CNN provisioned a dedicated partition

- Architecture designed to allow multiple spatial partitions of variable sizes
- Temporal sharing of resources scheduled through runtime
- Real time and deterministic processing within the array

Spatial and Temporal Execution using XDNA

XDNA Cloud to Client + Embedded SW SOLUTION

Al Models & Algorithms

O PyTorch

AI Ecosystem optimized for AMD

Vitis-Al Quantizers, Optimizers, Compilers

Vitis-AI C++ and ONNXRT VitisAI EP

Vitis AI Runtime

XRT/MCDM Driver & FW

AMDA VITIS

Al Engine SW stack

AMD Versal Adaptive SoCs, AMD Ryzen Al CPUs

- Out-of-the-box support for broad models & operators
- Generative Al support
- Developer enablement & application support

The Tensor Expression Language: Describing GEMM

HIGH LEVEL DESCRIPTION

```
a = relay.var('a', shape=(1024, 1024))
b = relay.var('b', shape=(1024, 1024))
c = relay.nn.dense(a, b)
```

TENSOR EXPRESSION

```
A = te.placeholder((1024, 1024), name='A')
B = te.placeholder((1024, 1024), name='B')
K = te.reduce_axis((0, 1024), "k")
C = te.compute((1024, 1024), lambda x, y: te.sum(A[x, k] * B[k, y], axis=k), name="C")
S = te.create_schedule(C.op)
```

GENERATED TENSOR IR

The Tensor Expression Language: Scheduling the Operator

TENSOR EXPRESSION

```
""
C = te.compute((1024, 1024), lambda x, y: te.sum(A[x, k] * B[k, y], axis=k), name="C")
s = te.create_schedule(C.op)
xo, yo, xi, yi = s[C].tile(C.op.axis[0], C.op.axis[1], 32, 32)
(k,) = s[C].op.reduce_axis
ko, ki = s[C].split(k, factor=4)
s[C].reorder(xo, yo, ko, ki, xi, yi)
```

GENERATED TENSOR IR

Scheduling operators

Tiling

Reordering

Iterator splitting/fusion

Vectorization

Tensorization

Inserting caches

Inserting pragmas

. . .

The Tensor Expression Language: Tensorization

- Insert calls to implemented AIE kernel intrinsics (e.g. 64x128x64 GEMM, ReLU etc.)
- This intrinsic call will be handled and initiated by the AIE uController


```
for (int xo=0; xo<2; xo++)
  for (int yo=0; yo<2; yo++)
    call_aie_intrin(
      op1, xo, yo, ...
)</pre>
```

Case Study: GEMM

- Maximize bandwidth to achieve peak TOPS
- Asymmetry in N/S vs E/W connections
- Think of array as set of column processors
 - Fuse columns if partitioning compute
- Compute vertically and cascade horizontally
 - Broadcast shared activations vertically

Spatial/Temporal Tiling

A00	A01	A02	A03
A10	A11	A12	A13
A20	A21	A22	A23
A30	A31	A32	A33

B0

Spatial/Temporal Tiling

Example computing inner products

A00	A01	A02	A03
A10	A11	A12	A13
A20			
A30	A31	A32	A33

B0

RyzenAl Array Programming / HLS Similarities

```
for t in [0,3]:
   for r in [0:3]:
      core[r].copy(core[r].mem[LocAddrA], shared[r*BlockSizeA])
      core[r].copy(core[r].mem[LocAddrB], shared[t*BlockSizeB])
      core[r].matmul(core[r].mem[LocAddrA], core[r].mem[LocAddrB])
```

Parallelism RyzenAI: Core Instantiations HLS: #pragma HLS unroll

```
for t in [0,3]:
   for r in [0:3]: // unroll
      core[r].copy(core[r].mem[LocAddrA], shared[r*BlockSizeA])
      core[r].copy(core[r].mem[LocAddrB], shared[t*BlockSizeB])
      core[r].matmul(core[r].mem[LocAddrA], core[r].mem[LocAddrB])
```

```
for t in [0,3]:
    core[0].copy(core[r].mem[LocAddrA]
    core[0].copy(core[r].mem[LocAddrB]
    core[0].matmul(core[r].mem[LocAddr
    core[1].copy(core[r].mem[LocAddrA]
    core[1].copy(core[r].mem[LocAddrB]
    core[1].matmul(core[r].mem[LocAddr
    core[2].copy(core[r].mem[LocAddrA]
    core[2].copy(core[r].mem[LocAddrB]
    core[2].matmul(core[r].mem[LocAddr
   core[3].copy(core[r].mem[LocAddrA]
   core[3].copy(core[r].mem[LocAddrB]
    core[3].matmul(core[r].mem[LocAddr
```

RyzenAl Array Programming / HLS Similarities

```
for t in [0,3]:
   for r in [0:3]:
      core[r].copy(core[r].mem[LocAddrA], shared[r*BlockSizeA])
      core[r].copy(core[r].mem[LocAddrB], shared[t*BlockSizeB])
      core[r].matmul(core[r].mem[LocAddrA], core[r].mem[LocAddrB])
```

Broadcast

RyzenAl: stream broadcast

HLS: Wire Fanout

```
for t in [0,3]:
   for r in [0:3]:
      core[r].copy(core[r].mem[LocAddrB], shared[t*BlockSizeB])

for r in [0:3]:
      core[r].copy(core[r].mem[LocAddrA], shared[r*BlockSizeA])
      core[r].copy(core[r].mem[LocAddrB], shared[t*BlockSizeB])
      core[r].matmul(core[r].mem[LocAddrA], core[r].mem[LocAddrB])
```


Open Source for RyzenAI / AIE-ML

- MLIR dialects from AMD Research Labs
- Look for upcoming open source release with tutorials on directly programming RyzenAl

https://xilinx.github.io/mlir-aie/

Join our team!

Compilers, Kernel Optimization, Frameworks Contact for openings in my team: elliott.delaye@amd.com https://careers.amd.com/

#