

Keep Learning

GRADE 93.33%

Week 5 - Problem Set

LATEST SUBMISSION GRADE 86.66%

1. Consider the toy key exchange protocol using an online trusted 3rd party

0 / 1 point

(TTP) discussed in <u>Lecture 9.1</u>. Suppose Alice, Bob, and Carol are three users of this system (among many others) and each have a secret key

users of this system (among many others) and each have a secret key

with the TTP denoted k_a, k_b, k_c respectively. They wish to $\,$

generate a group session key $k_{ABC}\,$ that will be known to Alice,

Bob, and Carol but unknown to an eavesdropper. How

would you modify the protocol in the lecture to accommodate a group key $% \left\{ \left(1\right\} \right\} =\left\{ \left(1\right) \right\} =\left\{ \left(1\right)$

exchange of this type? (note that all these protocols are insecure against

active attacks)

 $igoreal{igoreal}$ Alice contacts the TTP. TTP generates a random k_{ABC} and sends to Alice

$$E(k_a, k_{ABC}), \quad \text{ticket}_1 \leftarrow E(k_c, E(k_b, k_{ABC})), \quad \text{ticket}_2 \leftarrow E(k_b, E(k_c, k_{ABC})).$$

Alice sends k_{ABC} to Bob and k_{ABC} to Carol.

 \bigcirc Alice contacts the TTP. TTP generates a random k_{AB} and a random k_{AC} . It sends to Alice

$$E(k_a, k_{AB})$$
, ticket₁ $\leftarrow E(k_b, k_{AB})$, ticket₂ $\leftarrow E(k_c, k_{AC})$.

Alice sends $ticket_1$ to Bob and $ticket_2$ to Carol.

 \bigcirc Alice contacts the TTP. TTP generates random k_{ABC} and sends to Alice

$$E(k_a, k_{ABC}), \quad \text{ticket}_1 \leftarrow E(k_b, k_{ABC}), \quad \text{ticket}_2 \leftarrow E(k_c, k_{ABC}).$$

Alice sends $ticket_1$ to Bob and $ticket_2$ to Carol.

 \bigcirc $\,$ Bob contacts the TTP. TTP generates a random k_{AB} and a random k_{BC} . It sends to Bob

$$E(k_a, k_{AB}), \quad \text{ticket}_1 \leftarrow E(k_a, k_{AB}), \quad \text{ticket}_2 \leftarrow E(k_c, k_{BC}).$$

Bob sends $ticket_1$ to Alice and $ticket_2$ to Carol.

Incorrect

The protocol doesn't work because Bob and Carol cannot obtain

 k_{ABC} from the tickets given to them.

2. Let G be a finite cyclic group (e.g. $G=\mathbb{Z}_p^*$) with generator g.

0 / 1 point

Suppose the Diffie-Hellman function $\mathrm{DH}_g(g^x,g^y)=g^{xy}$ is difficult to compute in G. Which of the following functions is also difficult to compute?

As usual, identify the f below for which the contra-positive holds: if $f(\cdot,\cdot)$ is easy to compute then so is $\mathrm{DH}_g(\cdot,\cdot)$. If you can show that then it will follow that if DH_g is hard to compute in G then so must be f.

 $f(g^x, g^y) = (\sqrt{g})^{x+y}$

This should not be selected

It is easy to compute f as $f(g^x, g^y) = \sqrt{g^x \cdot g^y}$.

 $f(g^x, g^y) = \sqrt{g^{xy}}$

✓ Corre

an algorithm for calculating $f(g^x,g^y)=\pm g^{xy/2}$ can

easily be converted into an algorithm for

calculating $\mathrm{DH}(\cdot,\cdot).$

Therefore, if f were easy to compute then so would DH ,

contrading the assumption.

 $f(g^x, g^y) = g^{xy+x+y+1}$

✓ Corre

an algorithm for calculating $f(a^x \ a^y)$ can

```
easily be converted into an algorithm for
             calculating \mathrm{DH}(\cdot,\cdot).
             Therefore, if f were easy to compute then so would \operatorname{DH},
             contrading the assumption.
     \qquad \qquad f(g^x,g^y)=(g^2)^{x+y}
         This should not be selected
              It is easy to compute f as f\big(g^x,g^y\big)=\big(g^x\cdot g^y\big)^2.
3. Suppose we modify the Diffie-Hellman protocol so that Alice operates
                                                                                                                                1/1 point
     as usual, namely chooses a random a in \{1,\dots,p-1\} and
     sends to Bob A \leftarrow g^a. Bob, however, chooses a random b
     in \{1,\dots,p-1\} and sends to Alice B \leftarrow g^{1/b} . What
     shared secret can they generate and how would they do it?
     \bigcirc secret =g^{a/b}. Alice computes the secret as B^{1/b}
         and Bob computes A^a.
    igotimes secret =g^{a/b}. Alice computes the secret as B^a
         and Bob computes A^{1/b}.
     \bigcirc secret = q^{b/a}. Alice computes the secret as B^a
         and Bob computes A^{1/b}.
     \bigcirc secret = g^{a/b}. Alice computes the secret as B^{1/a}
         and Bob computes {\cal A}^b.
         / Correct
             This is correct since it is not difficult to see that
             both will obtain g^{a/b}
4. Consider the toy key exchange protocol using public key encryption described in Lecture 9.4.
                                                                                                                                1/1 point
     Suppose that when sending his reply c \leftarrow E(pk,x) to Alice, Bob appends a MAC t := S(x,c) to the
     ciphertext so that what is sent to Alice is the pair (c,t). Alice verifies the tag t and rejects the
     message from Bob if the tag does not verify.
     Will this additional step prevent the man in the middle attack described in the lecture?
     O yes
    no
     it depends on what MAC system is used.
     it depends on what public key encryption system is used.
        ✓ Correct
             an active attacker can still decrypt E(pk^\prime,x) to recover x
             and then replace (c,t) by (c^\prime,t^\prime)
             where c' \leftarrow E(pk,x) and t \leftarrow S(x,c').
5. The numbers 7 and 23 are relatively prime and therefore there must exist integers a and b such that
                                                                                                                                1/1 point
     7a + 23b = 1.
     Find such a pair of integers (a,b) with the smallest possible a>0.
     Given this pair, can you determine the inverse of 7 in \mathbb{Z}_{23}\mbox{?}
     Enter below comma separated values for a,\ b, and for 7^{-1} in \mathbb{Z}_{23}.
      10,-3,10
        ✓ Correct
             7\times 10 + 23\times (-3) = 1.
             Therefore 7 	imes 10 = 1 in \mathbb{Z}_{23} implying
             that 7^{-1}=10 in \mathbb{Z}_{23}.
```

6. Solve the equation 3x + 2 = 7 in \mathbb{Z}_{19} .

0

$$igwedge$$
 Correct $x=(7-2) imes 3^{-1}\in \mathbb{Z}_{19}$

7. How many elements are there in \mathbb{Z}_{35}^* ?

1/1 point

1/1 point

24

$$\checkmark$$
 Correct $|\mathbb{Z}_{35}^*| = \varphi(7 \times 5) = (7-1) \times (5-1).$

8. How much is $2^{10001} \bmod 11$?

1/1 point

Please do not use a calculator for this. Hint: use Fermat's theorem.

2

Correct By Fermat
$$2^{10}=1$$
 in \mathbb{Z}_{11} and therefore
$$1=2^{10}=2^{20}=2^{30}=2^{40}$$
 in $\mathbb{Z}_{11}.$ Then $2^{10001}=2^{10001 \text{mod} 10}=2^1=2$ in $\mathbb{Z}_{11}.$

9. While we are at it, how much is $2^{245} \, \mathrm{mod} \, 35$?

1/1 point

Hint: use Euler's theorem (you should not need a calculator)

32

$$\checkmark$$
 Correct By Euler $2^{24}=1$ in \mathbb{Z}_{35} and therefore
$$1=2^{24}=2^{48}=2^{72}$$
 in $\mathbb{Z}_{35}.$ Then $2^{245}=2^{245 \text{mod} 24}=2^5=32$ in $\mathbb{Z}_{35}.$

10. What is the order of 2 in \mathbb{Z}_{35}^* ?

1/1 point

12

$$\checkmark$$
 correct
$$2^{12}=4096=1 \text{ in } \mathbb{Z}_{\text{qs}} \text{ and } \text{12 is the}$$
 smallest such positive integer.

11. Which of the following numbers is a

1/1 point

1/1 point

generator of
$$\mathbb{Z}_{13}^*$$
?

$$\checkmark$$
 Correct correct, 7 generates the entire group \mathbb{Z}_{13}^*

$$\checkmark$$
 Correct correct, 6 generates the entire group \mathbb{Z}_{13}^*

Use the method described in <u>Lecture 10.3</u> using the quadratic formula.	
14,5	
\checkmark Correct $\label{eq:correct} \text{The quadratic formula gives the two roots in \mathbb{Z}_{23}.}$	
What is the 11th root of 2 in \mathbb{Z}_{19} ? (i.e. what is $2^{1/11}$ in \mathbb{Z}_{19})	1/1 point
Hint: observe that $11^{-1}=5$ in $\mathbb{Z}_{18}.$	
13	
\checkmark Correct $2^{1/11}=2^5=32=13 \text{ in } \mathbb{Z}_{19}.$	
What is the discete log of 5 base 2 in \mathbb{Z}_{13} ? (i.e. what is $\mathrm{Dlog}_2(5)$)	1/1 point
Recall that the powers of 2 in \mathbb{Z}_{13} are $\langle 2 \rangle = \{1,2,4,8,3,6,12,11,9,5,10,7\}$	
9	
\checkmark Correct $2^9 = 5 \ \text{in} \ \mathbb{Z}_{13}.$	
If p is a prime, how many generators are there in \mathbb{Z}_p^* ?	1/1 point
$\bigcirc (p+1)/2$ $\bigcirc (p-1)/2$	
$\bigcirc \varphi(p)$	
$ \begin{tabular}{c} \checkmark \textbf{ Correct} \\ \hline \text{The answer is } \varphi(p-1). \text{ Here is why. Let } g \text{ be some generator of } \mathbb{Z}_p^* \text{ and let } h=g^x \text{ for some } x. \\ \hline \text{It is not difficult to see that } h \text{ is a generator exactly when we can write } g \text{ as } g=h^y \text{ for some integer since } y=x^{-1} \text{ mod } p-1 \text{ this } y \text{ exists exactly when } x \text{ is relatively prime to } p-1. \text{ The number of some since } y=x^{-1} \text{ mod } y=x^{-1} \text{ this } y \text{ exists exactly when } x \text{ is relatively prime to } y=1. \\ \hline \end{tabular} $	