A Lecture Notes on

Discrete Mathematics:

Propositional and Predicate Logic

BACHELOR OF ENGINEERING

In

CE/IT

Prepared By

Ms. Mansi G. Vaishnani

Propositional and Predicate Logic

Outline

- Normal Forms
- Disjunctive Normal Forms
- Conjunctive Normal Forms
- Arguments
- Valid Argument and Fallacy Arguments
- Predicates, Universe of Discourse
- Quantifiers: Universal Quantifiers and Existential Quantifiers

Propositional Logic

❖ Normal Forms

- In logic, with the help of truth table we can compare if two statements are equivalent. But when more statements or propositions are involved, then this method is not practical.
- \triangleright [As if *n* propositions are involved, its truth values will be 2^n] Hence, it is necessary to apply another method.
- \triangleright One method is to transform S_1 and S_2 to some standard form S_1' and S_2' . Such that a simple comparison of S_1 and S_2 should establish whether $S_1' \equiv S_2'$.
- > The standard forms are called normal forms or canonical forms.

Disjunctive Normal Forms (DNF)

- \triangleright Disjunctive normal form is a disjunction (V) of **fundamental conjunctions** (\land).
- Now fundamental conjunctions (Λ) are conjunction of simple statements [i.e. joining two statements by ' Λ '].
- \blacktriangleright i.e. $p \land q$, $\sim p \land q$, $\sim p \land \sim q$, $p \land \sim p$, $q \land \sim q$, $p \land \sim q$, $\sim p$ are fundamental conjunctions.
- ► Hence disjunction of fundamental conjunctions is joining fundamental conjunction by 'V'.

For example,

- 1. $(p \land q) \lor p \lor (q \land \sim p)$
- 2. $(p \land q \land r) \lor (p \land q' \land r) \lor (p' \land q \land r)$
- 3. $(p \wedge q) \vee r$

Remark:

- DNF of a given formula is not unique but all different forms are equivalent.
- $q \land \sim q, p \land \sim p$ are always false. Hence, if a fundamental conjunction contains at least one pair of $(p \ and \sim p)$ or $(q \ and \sim q)$ etc., it will be false.

Conjunctive Normal Forms (CNF)

- \triangleright Conjunctive normal form is a conjunction (\land) of **fundamental disjunctions** (\lor).
- Now fundamental disjunctions (V) are disjunction of simple statements [i.e. joining two statements by 'V'].
- \triangleright i.e. p, $p \lor q$, $\sim p \lor q$, $\sim p \lor \sim q$, $p \lor \sim p$, $\sim p$, $\sim q$ are fundamental disjunctions.
- \triangleright Hence conjunction of fundamental disjunctions is joining fundamental disjunction by ' \wedge '.

For example,

- 1. $(p \lor q) \land (q \lor r) \land (\sim p \lor \sim r)$
- 2. $(p \lor q \lor \sim r) \land (p \lor q) \land (\sim p \lor q \lor \sim r)$

3.
$$p \land (\sim q \lor \sim r)$$

Remark:

• CNF of a given formula is not unique but all different forms are equivalent.

***** Equivalent Formulae

$p \lor \mathbf{F} \Leftrightarrow p$	$p \wedge T \Leftrightarrow p$
$p \lor T \Leftrightarrow T$	$p \wedge \mathbf{F} \Leftrightarrow \mathbf{F}$
$p \lor \sim p \Leftrightarrow T$	$p \land \sim p \Leftrightarrow \mathbf{F}$

Example -1 (QB - 160)

Find conjunctive normal form and disjunctive normal form for the following without using truth table. $(p \to q) \land (q \to p)$

Solution:

$$(p \to q) \land (q \to p)$$

$$\equiv (\sim p \lor q) \land (\sim q \lor p)$$

CNF

[As
$$p \to q \equiv (\sim p \lor q)$$
]

$$\equiv [(\sim p) \land (\sim q \lor p)] \lor [q \land (\sim q \lor p)]$$

[Using Distributive law]

$$\equiv (\sim p \land \sim q) \lor (\sim p \land p) \lor (q \land \sim q) \lor (q \land p)$$

$$\equiv (\sim p \land \sim q) \lor F \lor F \lor (q \land p)$$

$$\equiv (\sim p \land \sim q) \lor (q \land p)$$

DNF

Example
$$-2$$
 (QB - 159)

Obtain conjunctive normal form of

(1)
$$(\sim p \rightarrow q) \land (p \rightarrow q)$$

(2)
$$(p \land q) \lor (\sim p \land q \land r)$$

(1)
$$(\sim p \rightarrow q) \land (p \rightarrow q)$$

$$\equiv (\sim (\sim p) \lor q) \land (\sim p \lor q)$$

[As
$$p \rightarrow q \equiv (\sim p \lor q)$$
]

$$\equiv (p \lor q) \land (\sim p \lor q)$$
 CNF

$$(2) \ (p \wedge q) \vee (\sim p \wedge q \wedge r)$$

$$\equiv [p \lor (\sim p \land q \land r)] \land [q \lor (\sim p \land q \land r)]$$

$$\equiv [(p \lor \sim p) \land (p \lor q) \land (p \lor r)] \land [(q \lor \sim p) \land (q \lor q) \land (q \lor r)]$$

$$\equiv [T \land (p \lor q) \land (p \lor r)] \land [(q \lor \sim p) \land (q) \land (q \lor r)]$$

$$\equiv (p \lor q) \land (p \lor r) \land (q \lor \sim p) \land (q) \land (q \lor r)$$
 CNF

Example -3 (QB - 161)

Obtain disjunctive normal form of

1.
$$(p \rightarrow q) \land (\sim p \land q)$$

2.
$$(p \land (p \rightarrow q)) \rightarrow q$$

Solution:

1.
$$(p \rightarrow q) \land (\sim p \land q)$$

$$\equiv (\sim p \lor q) \land (\sim p \land q)$$

$$\equiv [\sim p \land (\sim p \land q)] \lor [q \land (\sim p \land q)]$$

$$\equiv [(\sim p \land \sim p) \land q] \lor [(q \land q) \land \sim p]$$

$$\equiv (\sim p \land q) \lor (q \land \sim p)$$

[Using Distributive law]

 $[\operatorname{As} p \to q \equiv (\sim p \lor q)]$

[By associative and commutative law]

[By idempotent law]

2.
$$(p \land (p \rightarrow q)) \rightarrow q$$

$$\equiv (p \land (\sim p \lor q)) \rightarrow q$$

$$\equiv \sim [p \land (\sim p \lor q)] \lor q$$

$$\equiv \sim p \lor (\sim (\sim p \lor q)) \lor q$$

$$\equiv \sim p \lor (p \land \sim q) \lor q$$

DNF

Example – 4

(QB - 162)

Obtain the conjunction normal form of each of the following:

1.
$$p \land (p \rightarrow q)$$

2.
$$\sim (p \lor q) \leftrightarrow (p \land q)$$

Solution:

1.
$$p \land (p \rightarrow q)$$

$$\equiv p \land (\sim p \lor q)$$

CNF

2.
$$\sim (p \lor q) \leftrightarrow (p \land q)$$

$$\equiv [\sim (p \lor q) \to (p \land q)] \land [(p \land q) \to \sim (p \lor q)]$$

$$[p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)]$$

$$\equiv [(p \lor q) \lor (p \land q)] \land [(\sim p \lor \sim q) \lor (\sim p \land \sim q)]$$

$$\equiv [(p \lor q) \lor p] \land [(p \lor q) \lor q] \land [(\sim p \lor \sim q) \lor (\sim p)] \land [(\sim p \lor \sim q) \lor (\sim q)]$$

$$\equiv (p \lor q) \land (p \lor q) \land (\sim p \lor \sim q) \land (\sim p \lor \sim q)$$

$$\equiv (p \lor q) \land (\sim p \lor \sim q)$$

CNF

Example -5

Show that $(\sim p \land (\sim q \land r)) \lor (q \land r) \lor (p \land r) \equiv r$.

$$(\sim p \land (\sim q \land r)) \lor (q \land r) \lor (p \land r)$$

$$\equiv (\sim p \land (\sim q \land r)) \lor (q \land r) \lor (p \land r)$$

$$\equiv (\sim p \land (\sim q \land r)) \lor (r \land (q \lor p))$$

$$\equiv ((\sim p \land \sim q) \land r) \lor (r \land (q \lor p))$$

$$\equiv ((\sim p \land \sim q) \land r) \lor ((q \lor p) \land r)$$

$$\equiv ((\sim p \land \sim q) \lor (q \lor p)) \land r$$

$$\equiv (\sim (p \lor q) \lor (p \lor q)) \land r$$

$$\equiv T \land r$$

$$\equiv r$$

Example – 6 (**QB - 166**)

Obtain DNF for the following: $p \lor [\sim p \rightarrow (q \lor (q \rightarrow \sim r))]$.

Solution:

$$p \lor [\sim p \to (q \lor (q \to \sim r))]$$

$$\equiv p \lor [\sim p \to (q \lor (\sim q \lor \sim r))]$$

$$\equiv p \lor [\sim p \to (q \lor \sim q \lor \sim r)]$$

$$\equiv p \lor [\sim p \to (T \lor \sim r)]$$

$$\equiv p \lor [p \lor (T \lor \sim r)]$$

$$\equiv p \lor [p \lor T]$$

$$\equiv p \lor [T]$$

$$\equiv T$$

Example -7

Use the laws of logic to show that $[(p \rightarrow q) \land \sim q] \rightarrow \sim p$ is a tautology.

$$[(p \to q) \land \sim q] \to \sim p$$

$$\equiv \sim [(p \to q) \land \sim q] \lor \sim p$$

$$\equiv \sim [(\sim p \lor q) \land \sim q] \lor \sim p$$

$$\equiv \sim [\sim q \land (\sim p \lor q)] \lor \sim p$$

$$\equiv \sim [(\sim q \land \sim p) \lor (\sim q \land q)] \lor \sim p$$

$$\equiv \sim [(\sim q \land \sim p) \lor F] \lor \sim p$$

$$\equiv \sim [(\sim q \land \sim p)] \lor \sim p$$

$$\equiv \sim [(\sim q \land \sim p)] \lor \sim p$$

$$\equiv (q \lor p) \lor \sim p$$

$$\equiv q \lor (p \lor \sim p)$$

$$\equiv q \lor T$$

$$\equiv T$$
[Implication law]
[Commutative law]
[Distributive law]

❖ Truth Table Method to find DNF

Let p be a proposition containing n variables $p_1, p_2, \dots, p_i, \dots, p_k, \dots p_n$.

To find its DNF from the truth table.

Step – 1: Consider the true values (T) from p.

Step – 2: Form the conjunction ($' \wedge '$),

$$(p_1 \land p_2 \land \dots \land p_i \land \dots \land p_k \land \dots \land p_n)$$

Where if p_i is true consider p_i and

if p_k is false consider $\sim p_k$

Such term is called minterm.

Step -3: The disjunction of minterms is the DNF of the given form.

Example -1 (QB - 164)

Eliminating conditional and biconditional, find DNF which is logically equivalent to given form. $[p \leftrightarrow (q \lor r)] \rightarrow \sim p$ Using truth table.

Solution:

p	q	r	~p	q V r	$p \leftrightarrow (q \lor r)$	$[p \leftrightarrow (q \lor r)] \to \sim p$
T	T	T	F	T	T	F
T	T	F	F	T	Т	F
T	F	T	F	T	Т	F
T	F	F	F	F	F	T
F	T	T	T	T	F	T
F	T	F	T	T	F	T
F	F	T	T	T	F	T
F	F	F	T	F	Т	T

Consider only (*T*) from last column and choose corresponding values (*T*) from p, q, r. e.g., for marked row (\rightarrow), corresponding p is true, q and r are false, so consider ($p \land q' \land r'$) or ($p \land \neg q \land \neg r$).

Hence, the logically equivalent form of

$$[p \leftrightarrow (q \lor r)] \rightarrow \sim p \equiv (p \land q' \land r') \lor (p' \land q \land r) \lor (p' \land q \land r') \lor (p' \land q' \land r) \lor (p' \land q' \land r')$$

Example -2

Find DNF of $[(p \rightarrow q) \rightarrow q] \rightarrow p$ by truth table method.

p	q	$p \rightarrow q$	$(p \to q) \to q$	$[(p \to q) \to q] \to p$
T	T	T	T	T
T	F	F	Т	T
F	T	T	T	F
F	F	T	F	T

Hence, the logically equivalent form of

$$[(p \to q) \to q] \to p \equiv (p \land q) \lor (p \land q') \lor (p' \land q')$$

Example -3 (QB - 163)

Find dnf of $[p \to (q \land r)] \land [\sim p \to (\sim p \land \sim r)]$ by truth table method.

Solution:

p	q	r	$q \wedge r$	$p \to (q \land r)$	~p	~r	~p ^ ~r	$\sim p \rightarrow (\sim p \land \sim r)$	$[p \to (q \land r)] \land$
									$[\sim p \to (\sim p \land \sim r)]$
T	T	T	Т	T	F	F	F	T	T
T	T	F	F	F	F	T	F	T	F
T	F	T	F	F	F	F	F	T	F
T	F	F	F	F	F	Т	F	T	F
F	T	T	T	T	T	F	F	F	F
F	T	F	F	T	Т	T	T	T	T
F	F	Т	F	T	T	F	F	F	F
F	F	F	F	T	Т	T	T	T	T

Hence, the DNF is

$$[p \to (q \land r)] \land [\sim p \to (\sim p \land \sim r)] \equiv (p \land q \land r) \lor (p' \land q \land r') \lor (p' \land q' \land r')$$

The CNF is

$$\begin{split} [p \to (q \land r)] \land [\sim p \to (\sim p \land \sim r)] \\ &\equiv (p' \lor q' \lor r) \land (p' \lor q \lor r') \land (p' \lor q \lor r) \land (p \lor q' \lor r') \land (p \lor q \lor r') \end{split}$$

$Example-4 \qquad (QB-168)$

Obtain CNF and DNF for the following using truth table: $(p \rightarrow q) \land (q \lor (p \land r))$

p	q	r	$p \rightarrow q$	$p \wedge r$	$q \lor (p \land r)$	$(p \to q) \land (q \lor (p \land r))$
T	T	T	T	T	T	T
T	T	F	T	F	T	T
T	F	T	F	T	T	F
T	F	F	F	F	F	F

F	T	T	T	F	T	T
F	T	F	T	F	T	T
F	F	T	T	F	F	F
F	F	F	T	F	F	F

Hence, CNF is

$$(p \to q) \land (q \lor (p \land r)) \equiv (p' \lor q \lor r') \land (p' \lor q \lor r) \land (p \lor q \lor r') \land (p \lor q \lor r)$$

DNF is

$$(p \to q) \land (q \lor (p \land r)) \equiv (p \land q \land r) \lor (p \land q \land r') \lor (p' \land q \land r) \lor (p' \land q \land r')$$

Arguments

Argument $P_1, P_2, \dots, P_n \vdash Q$ is said to be valid if Q is true whenever all the premises are true.

* Theorem

Argument $P_1, P_2, \dots, P_n \vdash Q$ is said to be valid if and only if the proposition $P_1 \land P_2 \land \dots \land P_n \to Q$ is a tautology.

❖ Note

An argument which is not valid is said to be fallacy.

Example - 1

Check the validity of the following: $p \to \sim q$, $r \to q$, $r \vdash \sim p$.

Solution:

Here, the premises are

$$P_1: p \rightarrow \sim q$$

$$P_2: r \rightarrow q$$

$$P_3$$
: r

$$Q: \sim p$$

p	q	r	~q	$p \rightarrow \sim q$	$r \rightarrow q$	~p
T	T	T	F	F	T	F
T	T	F	F	F	T	F
T	F	T	T	T	F	F
T	F	F	T	T	T	F
F	T	T	F	T	T	T
F	T	F	F	Т	Т	T
F	F	T	T	T	F	T
F	F	F	T	T	T	T

In all premises only 5^{th} entry will have all T (true) and corresponding $\sim p$ (conclusion) is also T (true).

Hence, argument is valid.

Another Method:

p	q	r	~q	$p \rightarrow \sim q$	$r \rightarrow q$	~p	$(p \to \sim q) \land (r \to q) \land r$	$(p \to \sim q) \land (r \to q) \land r$
								$\rightarrow \sim p$
T	T	T	F	F	Т	F	F	T
T	T	F	F	F	T	F	F	T
T	F	T	T	T	F	F	F	T
T	F	F	Т	T	T	F	F	T
F	Т	T	F	T	T	T	T	T
F	Т	F	F	T	T	T	F	T
F	F	T	Т	T	F	T	F	T
F	F	F	Т	T	T	Т	F	T

Hence, $(p \to \sim q) \land (r \to q) \land r \to \sim p$ is a tautology.

So, argument is valid.

Example -2 (QB - 173)

Check the validity of the following:

If 7 is less than 4, then 7 is not prime number.

7 is not less than 4.

7 is prime number.

Solution:

Let

p: 7 is less than 4.

q: 7 is prime number.

Argument: $p \rightarrow \sim q$, $\sim p \vdash q$

p	q	~q	$p \rightarrow \sim q$	~p
T	T	F	F	F
T	F	T	T	F
F	T	F	T	T
F	F	T	T	T

In all premises last two entries are true and corresponding conclusion value is T and F.

So, argument is not valid.

Example -3 (QB - 175)

Check the validity of the following:

If I study, then I will not fail in DM.

If I do not play cricket, then I will study.

But I failed in DM.

Therefore, I must have played cricket.

Solution:

Let

p: I study.

q: I will fail in DM

r: I play cricket.

Argument: $p \to \sim q$, $\sim r \to p$, $q \vdash r$

p	q	r	~q	~r	$p \rightarrow \sim q$	$\sim r \rightarrow p$
T	T	T	F	F	F	T
T	T	F	F	T	F	T
T	F	T	T	F	F	T
T	F	F	T	T	T	T
F	T	T	F	F	T	T
F	T	F	F	T	T	F
F	F	T	T	F	T	F
F	F	F	T	T	T	F

In all premises only 5^{th} entry will have all T (true) and corresponding r (conclusion) is also T (true).

Hence, argument is valid.

Example – 4 (**QB - 171**)

Check the validity of the following:

If I like mathematics then I will study.

Either I will study or I will fail.

If I fail then I do not like mathematics.

Solution:

Let

p: I like mathematics.

q: I will study.

r: I will fail.

Argument: $p \rightarrow q$, $q \lor r \vdash r \rightarrow \sim p$

p	q	r	$p \rightarrow q$	$q \lor r$	~p	$r \rightarrow \sim p$
T	T	T	T	T	F	F
T	T	F	T	T	F	T
T	F	T	F	T	F	F
T	F	F	F	F	F	T
F	T	T	T	T	T	T
F	T	F	T	T	T	T
F	F	T	T	T	T	T
F	F	F	T	F	T	T

In all premises 1^{st} entry will have all T (true) and corresponding $r \to \sim p$ (conclusion) is F.

Hence, argument is not valid.

Example -5 (QB - 172)

Determine the validity of argument given:

S1: If a man is a bachelor, he is unhappy.

S2: If a man is unhappy, he dies young.

S: Bachelors die young.

Solution:

Let

p: A man is bachelor.

q: A man is unhappy.

r: A man dies young.

Argument: $p \rightarrow q$, $q \rightarrow r \vdash p \rightarrow r$

p	q	r	$p \rightarrow q$	$q \rightarrow r$	$p \rightarrow r$
T	T	T	T	T	Т
T	T	F	Т	F	F
T	F	T	F	T	T
T	F	F	F	T	F
F	T	T	T	Т	Т
F	T	F	T	F	T
F	F	T	T	T	T
F	F	F	T	T	T

In all premises entry will have all T (true) and corresponding $p \to r$ (conclusion) is T.

Hence, argument is valid.

Example – 6 (QB - 174)

Determine the validity of argument given:

If two sides of a triangle are equal, then the opposite angles are equal.

Two sides of a triangle are not equal.

The opposite angles are not equal.

Solution:

Let

p: two sides of a triangle are equal.

q: opposite angles are equal.

Argument: $p \rightarrow q$, $\sim p \vdash \sim q$

p	q	$p \rightarrow q$	~p	~q
T	T	T	F	F
T	F	F	F	T
F	T	T	T	F
F	F	T	T	T

In all premises 3^{rd} entry will have all T (true) and corresponding $\sim q$ (conclusion) is F.

Hence, argument is not valid.

❖ Predicate Logic

! Introduction

Propositional logic is not enough to express the meaning of all statements in mathematics and natural language.

- Eg. (1) Is "x > 1" true or false? which is true for 3 > 1 and false for -4 > 1.
 - (2) Is "x is great tennis player" True or false? If suppose A is a great tennis player then it is true but B is a common man then it is false.

These types of sentence we cannot express as in terms of propositional logic. For these we use the concept of **predicate logic.**

Such sentences are known as propositional functions or predicates.

Predicate

A predicate p(x) is a sentence that contains a finite number of variables and becomes a proposition, when specific values are substituted for the variables.

Where p(x) is a propositional function and x is a predicate variable.

- A predicate p(x) contains n variables x_1, x_2, \dots, x_n is called an n-place predicate.
 - 1. 'x > 9' is a one place predicate and is denoted by p(x).
 - 2. $'x + y \le 8'$ is two place predicate and is denoted by p(x, y).
 - 3. 'x + y + z = 9' is three place predicate and is denoted by p(x, y, z).
- ➤ The set of all possible values that may be substituted in place of variables is called the universe of discourse.

For example,

1. "x is a tennis player"

Here x is set of all human names which is universe of discourse.

2. p(x): x - 7 = 4

Here, x is the set of natural numbers which is universe of discourse.

Remark

- 1. A predicate is usually not a proposition but every proposition is a predicate (i.e. propositional function).
- 2. When specific values are given to the variables appearing in predicate, variables are bound. If all the variables are bound in a predicate the predicate becomes a proposition.

Quantifier

Quantifiers are words that refers to quantities such as "some" or "all" and indicate how frequently a certain statement is true.

There are two types:

- 1. Universal Quantifier
- 2. Existential Quantifier

❖ Universal Quantifier

➤ The phrase 'for all' denoted by '∀' is called the universal quantifier.

Eg. Let 'All students are smart'.

Let p(x) denote 'x is smart'

then the above sentence can be written as $\forall x \ p(x)$.

"For all x, p(x)", which is interpreted as 'For all values of x, p(x) is true' is a proposition in which variable x is said to be **universally quantified** and ' \forall ' is known as **Universal quantifier**.

***** Existential Quantifiers

The phrase 'there exists' denoted by '∃' is called the existential quantifier.

Eg. Let 'There exists x such that $x^2 = 9$ '

Let
$$p(x)$$
 denote ' $x^2 = 9$ '

Then the above sentence can be written as $\exists x \ p(x)$.

- \Rightarrow $\exists x \ p(x)$ means 'there exists a value of x in the universe of discourse for which p(x) is true'.
- \triangleright $\exists x$ can be read as other ways also,

Eg. There exists an x

There is an x

For some x

There is at least one x

❖ Negation of quantified statements

Negation of $\forall x \ p(x)$ is $\forall x \ p(x)$ is not true or it is not the case that for all x, p(x) is true. This means at least for some $x \ p(x)$ is not true, in other words there exists an x such that $\sim p(x)$ is true.

Hence,
$$\sim [\forall x \ p(x)] \equiv \exists x \ [\sim p(x)]$$

And
$$\sim [\exists x \ p(x)] \equiv \forall x \ [\sim p(x)]$$

Example - 1

Over the universe of book defined propositions

B(x): x has blue cover.

M(x): x is maths book.

I(x): x published in India.

Translate the following.

- (1) $\forall x (M(x) \land I(x)) \rightarrow B(x)$
- (2) There are maths books published outside India.

Solution:

- (1) All mathematics book published in India has blue cover.
- (2) $\exists x (M(x) \land \sim I(x))$

Example -2 (QB - 182)

Rewrite the following statements using quantifiers and predicate symbols:

- 1. All birds can fly
- 2. Not all birds can fly
- 3. Some men are genius
- 4. Some numbers are not rational
- 5. There is a student who likes mathematics but not Geography.
- 6. Each integer is either even or odd

Solution:

1. p(x): x is a bird

$$q(x)$$
: x can fly.

Then statement can be written as,

$$\forall x [p(x) \rightarrow q(x)]$$

2.
$$\sim [\forall x [p(x) \to q(x)]] \equiv \exists x [\sim [p(x) \to q(x)]]$$

 $\equiv \exists x [\sim [\sim p(x) \lor q(x)]]$
 $\equiv \exists x [p(x) \land \sim q(x)]$

3. A(x): x is a man.

$$B(x)$$
: x is a genious.

Then the statement can be written as,

$$\exists x [A(x) \land B(x)]$$

- 4. N(x): x is a number.
 - Q(x): x is rational.

Then the statement can be written as,

$$\exists x [N(x) \land \sim Q(x)]$$

5. S(x): x is a student.

M(x): x likes mathematics.

G(x): x likes Geography.

Then the statement in symbolic form is

$$\exists x [S(x) \land M(x) \land \sim G(x)]$$

6. I(x): x is an integer.

E(x): x is even.

O(x): x is odd.

Then the statement in symbolic form is

$$\forall x [I(x) \rightarrow \{E(x) \lor O(x)\}]$$

Example -3 (QB - 186)

Negate each of the statement.

- 1. $\forall x, |x| = x$
- 2. $\exists x, x^2 = x$
- 3. If there is a riot, then someone is killed.
- 4. It is day light and all the people are arisen.

Solution:

- 1. $\exists x$, $|x| \neq x$.
- 2. $\forall x, x^2 \neq x$
- 3. p: There is a riot.

q: Someone is killed.

Given statement is $p \rightarrow q$

Hence, $\sim (p \to q) \equiv \sim (\sim p \lor q) \equiv p \land \sim q \equiv$ There is a riot and someone is not killed.

4. p: It is a day light.

q: All the people are arisen.

Given statement is $p \wedge q$.

Hence
$$\sim (p \land q) \equiv \sim p \lor \sim q$$
.

Hence either it is not a day light or all the people are not arisen.

Example – 4 (**QB - 181**)

Write the following statements in symbolic form, using quantifiers.

- 1. All students have taken a course in communication skills.
- 2. There is a girl student in the class who is also a sports person.

3. Some students are intelligent, but not hard working.

Solution:

- 1. p(x): x is a student
 - q(x): x has taken a course in communication skills.

Then the statement in symbolic form is

$$\forall x (p(x) \rightarrow q(x))$$

- 2. S(x): x is a student
 - G(x): x is a girl
 - SP(x): x is a sports person

Then the statement in symbolic form is

$$\exists x (S(x) \land G(x) \land SP(x))$$

- 3. S(x): x is a student
 - I(x): x is intelligent
 - H(x): x is hardworking

Then the statement in symbolic form is

$$\exists x (S(x) \land I(x) \land \sim H(x))$$

Example – 5 (QB - 185)

Write the following two propositions in symbols.

- 1. for every number x there is a number y such that y = x + 1.
- 2. There is a number y such that, for every number x, y = x + 1.

Solution:

Let p(x, y) denote the predicate y = x + 1

- 1. $\forall x \exists y p(x,y)$
- 2. $\exists y \ \forall x \ p(x,y)$

Example – 6

Negate each of the statements:

- 1. $\exists x P(x) \lor \forall y Q(y)$
- 2. $\forall x P(x) \land \exists y Q(y)$

- 1. $\sim [\exists x \ P(x) \lor \forall y \ Q(y)] \equiv \forall x \ (\sim P(x)) \land \exists y \ (\sim Q(y))$
- 2. $\sim [\forall x \ P(x) \land \exists y \ Q(y)] \equiv \exists x \ (\sim P(x)) \lor \forall y \ (\sim Q(y))$

Example -7

Write the following statement into symbols

- 1. A number x, is less than 7 and greater than 5.
- 2. For a given number x there is a greater number y.
- 3. For two given numbers x and y, there is a number z such that the difference of x and y is less than the product of x^2 and z.
- 4. The numbers x, y, z are such that x + y is greater than xz.

Solution:

- 1. p(x): x is less than 7
 - q(x): x is greater than 5

Then the statement in symbolic form is

$$\exists x [p(x) \land q(x)]$$

2. p(x, y): y is greater than x.

Then the statement in symbolic form is

$$\forall x \exists y p(x,y)$$

- 3. p(x, y): The difference of x and y
 - q(x, z): The product of x^2 and z

r(x, y, z): The difference of x and y is less than the product of x^2 and z

Then the statement in symbolic form is

$$\forall x \ \forall y \ \exists z \ r(x, y, z)$$

4. p(x, y, z): x + y is greater than xz

Then the statement in symbolic form is

$$\exists x \exists y \exists z p(x, y, z)$$