Long Pressed Name

Your friend is typing his name into a keyboard.

Sometimes, when typing a character c, the key might get *long pressed*, and the character will be typed 1 or more times.

You examine the typed characters of the keyboard. Return True if it is possible that it was your friends name, with some characters (possibly none) being long pressed.

Example 1:

```
Input: name = "alex", typed = "aaleex"
Output: true
Explanation: 'a' and 'e' in 'alex' were long
pressed.
```

Example 2:

```
Input: name = "saeed", typed = "ssaaedd"
Output: false
Explanation: 'e' must have been pressed
twice, but it wasn't in the typed output.
```

```
name: 5 a e e d
                            if(ch(i) = = ch(i))?
typed: ssaaedd
    octur jalse
                              else if (ch(j) == ch(j-17) {
                                    5++;
                               else 1
                                  return Jalsej
```

Range Addition

brute jorce: 0 (q x n)

allowed: 0 (n) + 0(q)

(i) impact

C A CANAL W

(ii) prefix sum

queries:

(Sti, eni, inc)

1,3-14

014-72

1,2-7-4

0)4->-5

2,3-)2

2,4-12

q quiries

Swn

Rigor

Max Range Queries

Chef wants to remove one operation in such a way that after the remaining N-1 operations are performed, the number of cakes with height exactly K is maximum possible. Since Chef is a bit busy these days, he has asked for your help. You need to find the maximum number of cakes with height exactly K that can be achieved by removing one operation.

we should ope no 3

14 32 2 6 3. 2 2 1 0 .2 2 2 4 9 B 3 2 ч 5 7 9 1 4 count of ck 4 3 2 2 3 ч 5

CKP

Stoe: nck = Snitial + count of (k+1) in Stoe - count of (k) in Ckp[e] - ckp[s-1] ck[e] - ck[s-1]

opr 1 : 5-2, c=6

Magic Squares In Grid

Magic square

- (i) A 3x3 matrix which all unique no. 1 to 9
 - (iii) Sum of each row = sum of each col = sum of both diagram

 (iii) It's mid element is always 5.

۵	Ь	С
d	е	3
9	h	i

$$\frac{a+b+c+d+e+j+g+h+i=}{a+b+c+a+b+c=}$$

$$\frac{a+b+c+a+b+c+a+b+c=}{3(a+b+c)=45}$$

$$\frac{3(a+b+c)=45}{(a+b+c)=15}$$

$$\frac{b+e+h+c+e+g+a+e+i=4s}{1s}$$

$$\frac{1s}{1s} = \frac{1s}{1s}$$

$$(a+b+c)+(g+h+i)+3e=24s$$

7	8	1	6
2	3	S	7
3	Ч	9	2
١	6	4	5

count of sub-matrices which one magic square. $\eta^2 \chi (3 \times 3)$

Square Of Sorted Array

Input: [-4,-1,0,3,10]

$$J(x) = x^2$$

$$4 = x^2$$