Concursul de admitere iulie 2017 Domeniul de licență – *Informatică*

- I. Algebră. Fie matricea $A = \begin{pmatrix} 3 & -1 \\ -5 & 2 \end{pmatrix} \in M_2(\mathbb{R}).$
 - (a) Să se calculeze A^2 și A^3 .
 - (b) Să se determine toate matricele $X \in M_2(\mathbb{R})$ pentru care AX = 2X.
 - (c) Să se determine valorile reale ale lui m pentru care există o matrice nenulă $B \in M_2(\mathbb{R})$ cu AB = mB.
 - (d) Fie $n, p \in \mathbb{N}^*$, $n \neq p$. Să se arate că nu există $\lambda \in \mathbb{R}$ astfel încât $A^n = \lambda A^p$.
- II. Analiză. Fie funcția $f: \mathbb{R}^* \to \mathbb{R}$, $f(x) = \arctan \frac{1}{x} \arctan \frac{1}{x}$.
 - (a) Studiați monotonia și convexitatea funcției f.
 - (b) Decideți și justificați dacă funcția $g: \mathbb{R}^* \to \left(-\frac{3\pi}{2}, \frac{\pi}{2}\right), g(x) = f(x)$ este sau nu este bijectivă.
 - (c) Arătați că pentru orice $n \in \mathbb{N}^*$, ecuația $f(x) = \frac{1}{n}$ are o soluție reală unică, notată cu x_n . Demonstrați că șirul $(x_n)_{n \in \mathbb{N}^*}$ este convergent și determinați $\lim_{n \to \infty} x_n$.
 - (d) Să se calculeze aria suprafeței plane cuprinse între graficul funcției f, axa Ox și dreptele de ecuații $x=\frac{1}{\sqrt{3}}$ și $x=\sqrt{3}$.
- III. Geometrie. În sistemul de coordonate xOy se consideră punctul M(3,3) şi triunghiul ABC determinat de dreptele AB: x + 2y 4 = 0, BC: 3x + y 2 = 0 şi CA: x 3y 4 = 0.
 - (a) Să se calculeze aria triunghiului ABC.
 - (b) Fie P, Q şi R proiecțiile punctului M pe dreptele OA, OB şi respectiv AB. Să se demonstreze că punctele P, Q şi R sunt coliniare.
 - (c) Notăm cu m numărul punctelor din interiorul patrulaterului BCAM care au ambele coordonate numere întregi și cu n numărul punctelor de pe reuniunea laturilor patrulaterului BCAM care au ambele coordonate numere întregi. Să se verifice că aria patrulaterului BCAM este $m + \frac{1}{2}n 1$.

Subiectul de Informatică se găsește pe verso.

IV. Informatică.

Fie n un număr natural nenul. Fie v un vector cu n poziții numerotate de la 1 la n și elemente numere naturale diferite, de la 1 la n, într-o ordine oarecare. Pentru i și j numere naturale între 1 și n, numim FLIP(n, v, i, j) operația care inversează ordinea elementelor din v situate pe pozițiile de la i la j.

- a) Să se scrie în limbaj de programare o procedură (sau funcție) care implementează operația FLIP(n, v, i, j).
- b) Să se scrie un program care sortează crescător vectorul v, folosind pentru schimbarea ordinii elementelor în v doar operația FLIP(n, v, 1, k), cu k de la 2 la n.
- c) Considerăm că n este o putere a lui 2 $(n = 2^m, \text{ cu } m \text{ număr natural nenul})$ și vectorul v are proprietatea că pentru orice i de la 1 la m și orice j de la 1 la 2^{m-i} , există k de la 1 la 2^{m-i} , astfel încât pe pozițiile din v de la $2^i(j-1)+1$ la 2^ij se află numerele naturale de la $2^i(k-1)+1$ la 2^ik , într-o ordine oarecare. Să se scrie un program care sortează crescător vectorul v, folosind pentru schimbarea ordinii elementelor în v doar operația FLIP $(n, v, 2^i(j-1)+1, 2^ij)$, cu i de la 1 la m și j de la 1 la 2^{m-i} , printr-un algoritm mai eficient decât cel implementat la punctul b), care se bazează pe proprietatea vectorului v.

Exemple:

	Date de intrare	Date de ieşire
a)	FLIP(9, [3 2 6 8 5 9 1 7 4], 1, 6)	v = [9 5 8 6 2 3 1 7 4]
	FLIP(4, [2 1 4 3], 1, 4)	$v = [3 \ 4 \ 1 \ 2]$
	FLIP(16, [14 13 15 16 11 12 9 10 2 1 4 3 8 7 6 5], 5, 8)	v = [14 13 15 16 10 9 12 11 2 1 4 3 8 7 6 5]
b)	n = 9	v = [1 2 3 4 5 6 7 8 9]
	$v = [3\ 2\ 6\ 8\ 5\ 9\ 1\ 7\ 4]$	
c)	n=4	$v = [1 \ 2 \ 3 \ 4]$
	$v = [2 \ 1 \ 4 \ 3]$	
	n = 16	v = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]
	v = [14 13 15 16 11 12 9 10 2 1 4 3 8 7 6 5]	

Note:

- 1. Programele vor fi scrise într-unul dintre limbajele de programare studiate în liceu (Pascal,C,C++). La fiecare subpunct a), b), c), se va preciza complexitatea timp, în funcție de n, a soluției implementate și se vor descrie informal detaliile algoritmului folosit și ale implementării sub formă de program: semnificația variabilelor, a structurilor de date, a structurilor repetitive, a instructiunilor conditionale.
- 2. Toate operațiile de tip FLIP se vor face în vectorul v, fără a se folosi alți vectori auxiliari.
- 3. La subpunctul a), datele se transmit ca parametri ai procedurii/funcției FLIP(n, v, i, j). La subpunctele b) și c), se citesc de la tastatură n și v, fiecare pe un rând separat și se afișează vectorul v sortat crescător, pe un singur rând. Se va considera că datele de intrare ale programelor sunt oricât de mari, dar fără a pune probleme de reprezentare în memorie cu ajutorul tipurilor de date standard.
- 4. Programele vor folosi doar instrucțiunile de bază ale limbajului de programare ales, inclusiv cele de intrare/iesire, dar nu si alte functii din biblioteci specializate.

Concursul de admitere iulie 2017 Domeniul de licență - *Matematică*

- I. Algebră. Fie mulțimea $A = \{a + b\sqrt[3]{2} \mid a, b \in \mathbb{Q}\}$ și fie $z = 1 + \sqrt[3]{2}$. Să se arate că:
 - (a) $z^3 3z^2 + 3z = 3$.
 - (b) Toate rădăcinile reale ale ecuației $x^6 3x^3 + 2 = 0$ se găsesc în multimea A.
 - (c) Mulțimea A este parte stabilă în raport cu adunarea numerelor reale şi (A, +) este grup abelian.
 - (d) $z^2 \notin A$.
- II. Analiză. Fie funcțiile $f_n : \mathbb{R} \to \mathbb{R}$, $f_n(x) = \sqrt[n]{x^n + (1-x)^n}$, unde $n \in \mathbb{N}$, $n \ge 2$.
 - (a) Să se determine ecuațiile asimptotelor la graficul funcției f_2 .
 - (b) Să se determine punctele de extrem local ale funcției f_3 .
 - (c) Să se studieze continuitatea funcției $f: \mathbb{R} \to \mathbb{R}, f(x) = \lim_{n \to \infty} f_n(x)$.
 - (d) Să se calculeze $I = \int_{0}^{1} \frac{1}{f_2(x)} dx$.
- III. Geometrie. În planul de coordonate xOy se consideră punctele A(a,0), B(-a,0), C(0,a) şi D(0,b), unde a,b>0 şi pătratul ADEF, cu punctele E şi F situate în cadranul I (ambele coordonate strict pozitive).
 - (a) Exprimați vectorul \overrightarrow{OE} în funcție de vectorii \overrightarrow{OA} și \overrightarrow{OD} .
 - (b) Arătați că punctele B, C, E sunt coliniare.
 - (c) Arătați că ariile triunghiurilor FCO și EBO sunt egale.

IV. Informatică.

Considerăm triunghiul infinit de mai jos, format din numere naturale:

Spunem că perechea de numere (x, y) este adiacență dacă x și y sunt vecini pe aceeași linie sau pe diagonală, pe linii consecutive. Spre exemplu, (8,9), (12,8) și (8,13) sunt adiacențe, dar (8,14) sau (18,8) nu sunt adiacențe.

Numim drum de la x la y de lungime p-1, cu $p \ge 1$, o secvență de numere $x_1 \ x_2 \ x_3 \ \dots \ x_p$, cu $x=x_1$ și $y=x_p$ și cu proprietatea că toate perechile (x_i,x_{i+1}) , cu i de la 1 la p-1, sunt adiacențe.

Scrieți un program, într-unul dintre limbajele de programare studiate în liceu (Pascal,C,C++), care primește ca date de intrare 2 numere naturale nenule x și y și afișează un drum de la x la y de lungime minimă. Spre exemplu, 1 2 5 8 13 este un drum de lungime minimă de la 1 la 13.

Notă: Se vor descrie informal detaliile algoritmului folosit și ale implementării sub formă de program: semnificația variabilelor, a structurilor de date, a structurilor repetitive, a instrucțiunilor condiționale.

Concursul de admitere iulie 2017 Domeniul de licentă - Informatică

Barem

I.	Algebră. Oficiu	1 p
	(a) Calculul lui A^2 : $\begin{pmatrix} 14 & -5 \\ -25 & 9 \end{pmatrix}$	1 p
	Calculul lui A^3 : $\begin{pmatrix} 67 & -24 \\ -120 & 43 \end{pmatrix}$	
	(b) Determinarea matricelor $X: O_2$	
	(c) Scrierea sistemului care rezultă din $AB = mB$	1 p
	Determinarea lui m : $m = \frac{5-\sqrt{21}}{2}$ sau $m = \frac{5+\sqrt{21}}{2}$	2 p
	(d) Demonstrarea faptului că nu există $\lambda \in \mathbb{R}$ cu proprietatea din enunț \ldots	2 p
II.	I. Analiză. Oficiu	1 p
	(a) f este descrescătoare pe $(-\infty,0)$ și pe $(0,\infty)$	1 p
	f este concavă pe $(-\infty,0)$ și convexă pe $(0,\infty)$	1 p
	(b) Imaginea funcției g este $\left(-\frac{3\pi}{2}, \frac{\pi}{2}\right) \setminus \left\{-\frac{\pi}{2}\right\}$, deci g nu este bijectivă	2 p
	(c) Ecuația $f(x) = \frac{1}{n}$ are o soluție unică x_n	
	Sirul $(x_n)_{n\in\mathbb{N}^*}$ este mărginit și crescător, deci convergent	1 р
	$\lim_{n \to \infty} x_n = 1.$	1 p
	(d) Aria este egală cu $\int_{\frac{1}{\sqrt{3}}}^{1} f(x) dx - \int_{1}^{\sqrt{3}} f(x) dx = \frac{\pi\sqrt{3}}{9} + \ln\frac{3}{4} \dots$	
II	II. Geometrie. Oficiu	1 p
	(a) Determinarea coordonatelor punctelor $A(4,0)$, $B(0,2)$ şi $C(1,-1)$ Aria triunghiului ABC este 5 (formula ariei cu determinant sau observâ	_
	este dreptunghic)	1 p
	(b) Determinarea coordonatelor punctelor $Q(0,3)$ și $P(3,0)$	
	Punctul R are coordonatele $(2,1)$ (analitic sau observând că R este in	
	pătratului $BCAM$)	-
	Demonstrarea coliniarității	-
	(c) $m = 9$, $n = 4$, patrulaterul $BCAM$ este pătrat cu aria egală cu 10	2 p

(*) La punctul (b) soluția în care se folosește teorema lui Simson primește 4 puncte dacă sunt verificate condițiile (punctul M se află pe cercul circumscris triunghiului AOB). La punctul (c) pentru enunțarea teoremei Pick (fără verificare) se acordă 1 p.

IV. Informatică. Oficiu	1 p
(a) Folosirea corectă a noțiunii de procedură / funcție	1 p
Implementarea fără vector auxiliar	1 p
Corectitudinea soluției	1 p
Corectitudinea limbajului	0,5 p
Explicații	
Complexitate	
(b) Determinarea maximului dintr-un vector	0,5 p
Utilizarea FLIP conform cerinței	1 p
Corectitudinea soluției	1 p
Corectitudinea limbajului	0,5 p
Explicații	0,25 p
Complexitate	
(c) Corectitudinea soluției	1 p
Explicații	0,25 p
Complexitate	0,25 p

Concursul de admitere iulie 2017 Domeniul de licență - Matematică

\mathbf{Barem}

I. Algebră. Oficiu
(a) Verificarea egalității
(b) Ecuația are două rădăcini reale: $1, \sqrt[3]{2}$
(c) A parte stabilă 1 p
(A,+) - grup abelian
(d) $z^2 \notin A \Leftrightarrow \sqrt[3]{4} \notin A$
Demonstrația $\sqrt[3]{4} \notin A$
II. Analiză. Oficiu
(a) $y = \sqrt{2}x - \frac{\sqrt{2}}{2}$ asimptotă oblică spre $+\infty$
$y=-\sqrt{2}x+\frac{\sqrt{2}}{2}$ asimptotă oblică spre $-\infty$
(b) Calculul lui f_3^2
x = 1/2 punct de extrem local
(c) $f(x) = \begin{cases} 1 - x & x \in (-\infty, 1/2] \\ x & x \in (1/2, \infty) \end{cases}$
f este continuă
(d) $I = \sqrt{2} \ln(\sqrt{2} + 1)$
III. Geometrie. Oficiu
(a) Determinarea coordonatelor punctului $E:(b,a+b)$
(analitic sau folosind congruențe de triunghiuri)
Scrierea vectorului $\overrightarrow{OE} = \frac{b}{a} \overrightarrow{OA} + \frac{a+b}{b} \overrightarrow{OD}$ (dacă au fost determinate mai întâi coordonatele lui E) 2p
Dacă se obține scrierea vectorului $\overset{\longrightarrow}{OE}$ direct prin metode vectoriale se acordă 4 puncte
(b) Scrierea condiției de coliniaritate (analitic, vectorial, etc)
Demonstrarea coliniarității (finalizarea)
(c) Determinarea coordonatelor punctului $F:(a+b,a)$
Calculul ariilor celor două triunghiuri și demonstrarea egalității 1 p
(*) Pentru o soluție care tratează corect doar cazul particular $a = b$ se acordă 7 puncte. Pentru o soluție care tratează corect și complet cazul general fără a aminti de cazul particular se va acorda punctajul maxim. Orice altă soluție completă (transformări geometrice, numere complexe, etc.) va fi notată cu punctaj maxim.
IV. Informatică. Oficiu
Tratarea celor trei cazuri $x < y, x = y, x > y$
Determinarea nivelului pe care se află un număr
Determinarea corectă a tuturor vecinilor (adiacențelor) unui număr
Afișarea unui drum corect pentru orice x și y
Afișarea unui drum corect minim pentru orice x și y
Corectitudinea limbajului
Explicații