Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Лабораторная работа по дисциплине "Линейная алгебра и Обработка данных" Доказательство совпадения оптимальных направлений РСА и собственных векторов матрицы ковариаций.

Семестр II

Выполнил: студент Черницын Егор Артёмович гр. J3110 ИСУ 467993

Санкт-Петербург 2025

Задание: Доказать, что оптимальные направления РСА совпадают с собственными векторами матрицы ковариаций

Имеющиеся данные и постановка задачи

Пусть $X \in \mathbb{R}^{n \times m}$ — центрированная матрица данных, то есть по каждому столбцу среднее равно нулю. Нам нужно найти такое $w \in \mathbb{R}^m$, на которое проекция данных имеет максимальную дисперсию. Проекция наблюдения x_i на направление w:

$$p_i = x_i^T w$$

Вектор всех проекций:

$$p = Xw$$

Так как данные центрированы, дисперсия проекций равна:

$$\operatorname{Var}(p) = \frac{1}{n} \sum_{i=1}^{n} \|p_i\|^2 = \frac{1}{n} \|Xw\|^2 = \frac{1}{n} (Xw)^T Xw = \frac{1}{n} w^T X^T Xw = w^T \Sigma w$$

где
$$\Sigma = \frac{1}{n} X^T X$$
 — ковариационная матрица.

Нам всего лишь осталось найти единичный вектор w максимизирующий $w^T \Sigma w$.

Свойства ковариационной матрицы

Матрица Σ симметрична (из определения транспонирования) и положительно полуопределена (нужно рассмотреть действие билинейной формы на вектор $v^T X^T X v$). Значит, по спектральной теореме для симметричных матриц, она имеет ортонормированный базис собственных векторов v_1, v_2, \ldots, v_m , где каждому вектору соответсвует неотрицательное собственное значение $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m \geq 0$.

Разложение произвольного вектора w и выражение дисперсии через собственные значения

Любой вектор $w \in \mathbb{R}^m$ можно разложить по собственным векторам:

$$w = \sum_{i=1}^{m} \alpha_i v_i$$

Подставим разложение в выражение $w^T \Sigma w$:

$$w^T \Sigma w = \left(\sum_{i=1}^m \alpha_i v_i\right)^T \Sigma \left(\sum_{j=1}^m \alpha_j v_j\right) = \sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha_j v_i^T \Sigma v_j$$

Поскольку $\Sigma v_j = \lambda_j v_j \ (v_j$ - с.в. матрицы ковариации) и базис - ортонормированный, получаем следуещее равенство:

$$v_i^T \Sigma v_j = v_i^T (\lambda_j v_j) = \lambda_j v_i^T v_j = \lambda_j \delta_{ij}$$

где δ_{ij} — символ Кронекера (равен 1, если i=j, и 0 иначе). Следовательно:

$$w^T \Sigma w = \sum_{i=1}^m \alpha_i^2 \lambda_i$$

Максимизация суммы

Так как $\sum \alpha_i^2 = 1$ и все $\alpha_i^2 \ge 0$ (lоказываем это через рассмотрение $||w||^2$), это — взвешенная сумма собственных значений. Чтобы она была максимальной, весь вес должен быть сосредоточен на самом большом собственном значении λ_1 , то есть:

$$\alpha_1 = 1, \quad \alpha_2 = \ldots = \alpha_m = 0 \Rightarrow w = v_1$$

Остальные компоненты РСА

По аналогии, второе направление PCA будет соответствовать v_2 , так как оно:

- ортогонально v_1 ,
- ullet даёт максимальную дисперсию среди всех направлений, ортогональных $v_1.$

Итог:

Оптимальные направления PCA — это собственные векторы ковариационной матрицы Σ , упорядоченные по убыванию собственных значений.