

FORMALE SYSTEME

ÜBUNG 4

Eric Kunze
eric.kunze@tu-dresden.de

TU Dresden, 13. November 2021

Aufgabe 1 & 2:

Reguläre Ausdrücke

REGULÄRE AUSDRÜCKE

Die Menge der **regulärer Ausdrücke** über einem Alphabet Σ ist induktiv wie folgt definiert:

- ▶ ∅ ist ein regulärer Ausdruck
- ightharpoonup arepsilon ist ein regulärer Ausdruck
- ▶ a ist ein regulärer Ausdruck für jedes $a \in \Sigma$
- ▶ Wenn α und β reguläre Ausdrücke sind, dann sind auch $(\alpha\beta)$, $(\alpha \mid \beta)$ und $(\alpha)^*$ reguläre Ausdrücke

Die **Sprache eines regulären Ausdrucks** α wird mit **L**(α) bezeichnet und rekursiv definiert:

$$ightharpoonup$$
 L(\emptyset) = \emptyset

$$\mathsf{L}((\alpha\beta)) = \mathsf{L}(\alpha) \circ \mathsf{L}(\beta)$$

▶
$$L(\varepsilon) = \{\varepsilon\}$$

$$L((\alpha \mid \beta)) = L(\alpha) \cup L(\beta)$$

▶
$$L(a) = \{a\} \quad \forall a \in \Sigma$$

$$L((\alpha)^*) = L(\alpha)^*$$

Gegeben sind das Alphabet $\Sigma = \{a, b, c\}$ und die Sprache

$$L = \{ w \in \Sigma^* \mid \text{ es gibt } u, v \in \Sigma^* \text{ mit } w = ubabcv \text{ und}$$

es gibt $u, v \in \Sigma^* \text{ mit } w = ucccv \text{ und}$
es gibt kein $u \in \Sigma^* \text{ mit } w = au \}.$

Geben Sie für L einen regulären Ausdruck r mit L = L(r) an.

Idee:

- die ersten beiden Bedingungen beschreiben zusammen die "Wortmitte"
- die Teile ccc und babc können in drei verschiedenen Kombinationen auftreten
- ▶ die dritte Bedingung schließt ein *a* am Anfang aus

Idee:

- die ersten beiden Bedingungen beschreiben zusammen die "Wortmitte"
- die Teile ccc und babc können in drei verschiedenen Kombinationen auftreten
- die dritte Bedingung schließt ein α am Anfang aus

Lösung:

$$r = ((b \mid c)(a \mid b \mid c)^*)^*$$

$$((babc (a \mid b \mid c)^* ccc) \mid ccc (a \mid b \mid c)^* babc \mid babccc)$$

$$(a \mid b \mid c)^*$$

Beweisen Sie die folgenden Gleichungen für reguläre Ausdrücke r, s und t.

Erinnerung: $r \equiv s$ bedeutet L(r) = L(s)

- a) $r \mid s \equiv s \mid r$
- b) $(r | s) | t \equiv r | (s | t)$
- c) $(rs)t \equiv r(st)$
- d) $r(s \mid t) \equiv rs \mid rt$
- e) $\emptyset^* \equiv \varepsilon$
- f) $(r^*)^* \equiv r^*$
- g) $r^* \equiv rr^* \mid \varepsilon$
- h) $(\varepsilon \mid r)^* \equiv r^*$

Aufgabe 3:

RegExp o NFA

REGEXP → **NFA**: **KOMPOSITIONELLE METHODE**

Für einen Ausdruck α definieren wir rekursiv den ε -NFA $\mathcal{M}(\alpha)$:

Grundfälle:

- ▶ Wenn $\alpha = \emptyset$ dann $\mathcal{M}(\alpha) = \rightarrow A$
- ▶ Wenn $\alpha = \varepsilon$ dann $\mathcal{M}(\alpha) = \rightarrow A$
- ▶ Wenn $\alpha = \mathbf{a} \operatorname{dann} \mathcal{M}(\alpha) = \rightarrow A$ $\xrightarrow{\mathbf{a}} B$

Rekursive Fälle: Wir bezeichnen mit $\operatorname{elim}_{\varepsilon}(\mathcal{M})$ den NFA, der aus einem ε -NFA \mathcal{M} durch Eliminierung der ε -Übergänge entsteht.

- ▶ Wenn $\alpha = (\beta \gamma)$ dann $\mathcal{M}(\alpha) = \mathsf{elim}_{\varepsilon}(\mathcal{M}(\beta) \odot \mathcal{M}(\gamma))$
- ▶ Wenn $\alpha = (\beta \mid \gamma)$ dann $\mathcal{M}(\alpha) = \mathcal{M}(\beta) \oplus \mathcal{M}(\gamma)$
- ▶ Wenn $\alpha = (\beta)^*$ dann $\mathcal{M}(\alpha) = \mathsf{elim}_{\varepsilon}(\mathcal{M}(\beta)^*)$

REGEXP → **NFA**: **EXPLIZITE KONSTRUKTION**

Gegeben: regulärer Ausdruck α ohne \emptyset

Initialisierung:
$$\mathcal{M}_{\alpha} = A \xrightarrow{\alpha} B$$

Solange es in \mathcal{M}_{α} Übergänge $q \stackrel{\beta}{\to} p$ gibt, die mit einem Ausdruck $\beta \notin \{\varepsilon\} \cup \Sigma$ beschriftet sind, wende eine der folgenden Regeln an:

Geben Sie zu jedem der regulären Ausdrücke r_i einen NFA \mathcal{M}_i mit $L(\mathcal{M}_i) = L(r_i)$ an.

a)
$$r_1 = (ab)^*$$

b)
$$r_2 = a(b | c)a^* | a^*$$

Wenden Sie dabei jeweils den *kompositionellen Ansatz* sowie den *expliziten Ansatz* zur Konstruktion von NFAs aus der Vorlesung an.

Aufgabe 4: *NFA* → *RegExp*

$NFA \rightarrow REGEXP: ERSETZUNGSMETHODE$

Gegeben: NFA $\mathcal{M} = \langle Q, \Sigma, \delta, Q_0, F \rangle$

Gesucht: regulärer Ausdruck α mit $\mathbf{L}(\alpha) = \mathbf{L}(\mathcal{M})$

Idee:

Für jeden Zustand $q \in Q$, berechne einen regulären Ausdruck α_q für die Sprache $\mathbf{L}(\alpha_q) = \mathbf{L}(\mathcal{M}_q)$ mit $\mathcal{M}_q = \langle Q, \Sigma, \delta, \{q\}, F \rangle$

Für
$$Q_0 = \{q_1, q_2, \dots, q_n\}$$
 gilt dann

$$\mathbf{L}(\mathcal{M}) = \bigcup_{q \in Q_0} \mathbf{L}(\alpha_q) = \mathbf{L}(\alpha_{q_1} \mid \alpha_{q_2} \mid \dots \mid \alpha_{q_n})$$

- (1) **Vereinfache den Automaten** (entferne offensichtlich unnötige Zustände)
- (2) Bestimme das Gleichungssystem

Intuition: Beschreibe α_q in Abhängigkeit von Folgezuständen

- ightharpoonup Für jeden Zustand $q \in Q \setminus F$: $\alpha_q \equiv \sum_{\mathbf{a} \in \Sigma} \sum_{p \in \delta(q, \mathbf{a})} \mathbf{a} \alpha_p$
- ightharpoonup Für jeden Zustand $q \in F$: $\alpha_q \equiv \varepsilon \mid \sum_{\mathbf{a} \in \Sigma} \sum_{p \in \delta(q,\mathbf{a})} \mathbf{a} \alpha_p$
- (3) Löse das Gleichungssystem durch Einsetzen und

Regel von Arden: Aus $\alpha \equiv \beta \alpha \mid \gamma \text{ mit } \varepsilon \notin \mathbf{L}(\beta) \text{ folgt } \alpha \equiv \beta^* \gamma.$

(4) Gib den Ausdruck für die Sprache des NFA an

Für
$$Q_0 = \{q_1, q_2, \dots, q_n\}$$
 gilt dann
$$\mathbf{L}(\mathcal{M}) = \bigcup_{q \in Q_0} \mathbf{L}(\alpha_q) = \mathbf{L}(\alpha_{q_1} \mid \alpha_{q_2} \mid \dots \mid \alpha_{q_n})$$

NFA → REGEXP: DYNAMISCHE ERMITTLUNG

Gegeben: NFA $\mathcal{M} = \langle Q, \Sigma, \delta, Q_0, F \rangle$

Gesucht: regulärer Ausdruck α mit $\mathbf{L}(\alpha) = \mathbf{L}(\mathcal{M})$

Ansatz:

Für jedes Paar von Zuständen $q,p\in Q$, berechne einen regulären Ausdruck $\alpha_{q,p}$ für die Sprache $\mathbf{L}(\alpha_{q,p})=\mathbf{L}(\mathcal{M}_{q,p})$ mit $\mathcal{M}_{q,p}=\langle Q,\Sigma,\delta,\{q\},\{p\}\rangle$

Dann gilt:

$$\mathbf{L}(\mathcal{M}) = \bigcup_{q \in Q_0} \bigcup_{p \in F} \mathbf{L}(\alpha_{q,p}) = \mathbf{L} \left(\sum_{q \in Q_0} \sum_{p \in F} \alpha_{q,p} \right)$$

- ▶ $\mathbf{L}^{k}[i,j]$... Sprache mit Start in q_i , Ende in q_j und nutzt nur Zwischenzustände q_1,\ldots,q_k
- $\alpha^{k}[i,j]$ zugehöriger regulärer Ausdruck

Idee: lasse immer mehr Zwischenzustände von q nach p zu

- ightharpoonup k = n: nutze alle Zustände Ergebnis ablesbar
- ▶ k = 0: nutze keine Zwischenzustände $\alpha^0[i,j]$ direkt ablesbar:

Sei $\{a_1, \ldots, a_m\} = \{a \in \Sigma \mid q_i \stackrel{a}{\to} q_j\}$ die Menge der Beschriftungen von direkten Übergängen von q_i zu q_i .

- ightharpoonup Falls $i \neq j$, dann ist $\alpha^0[i,j] = \mathtt{a_1} \mid \ldots \mid \mathtt{a_m}$
- ightharpoonup Falls i=j, dann ist $\alpha^0[i,j]={\tt a_1}\mid\ldots\mid{\tt a_m}\mid\varepsilon$

Update-Formel:

$$\alpha^{k+1}[i,j] = \alpha^{k}[i,j] \mid (\alpha^{k}[i,k+1](\alpha^{k}[k+1,k+1])^{*}\alpha^{k}[k+1,j])$$

vgl. VL "Algorithmen & Datenstrukturen", Prozess-Problem im Aho-Hopcroft-Ullman-Algorithmus

Entwickeln Sie für die Sprache L über dem Alphabet $\Sigma = \{a, b, c\}$ einen regulären Ausdruck r mit L = L(r). Für alle Wörter $w \in L$ gilt:

- ▶ w enthält aaa.
- ▶ w endet mit c.
- ▶ Die Anzahl der *b* in *w* ist gerade.

Idee:
$$L = \underbrace{\left(\left\{w \in \Sigma^* : w \text{ enthält } aaa\right\} \cap \left\{w \in \Sigma^* : \left|w\right|_b \text{ gerade}\right\}\right)}_{:=L(\mathcal{M})} \cdot \left\{c\right\}$$

- Konstruiere Automaten für die erste und dritte Bedingung
- ▶ Produktautomat \mathcal{M} erkennt die Sprache ohne c am Ende

▶ Umwandlung in regulären Ausdruck $\alpha_{\mathcal{M}}$ (z.B. via Lemma von Arden)

$$\alpha_{\mathcal{M}} = \left(a \mid c \mid b (a|c)^* b\right)^*$$
$$\left(aaa(a \mid c \mid b (a|c)^* b)^* \mid b(a|c)^* aaa(a|c)^* b (a \mid c \mid b(a|c)^* b)^*\right)$$

▶ Mit $r = \alpha_{\mathcal{M}} c$ gilt dann L(r) = L.

Aufgabe 5:

Minimierung von Automaten

ÄQUIVALENZ VON ZUSTÄNDEN & QUOTIENTENAUTOMAT

$$\mathsf{DFA}\ \mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle \leadsto \mathsf{DFA}\ \mathcal{M}_q = \langle Q, \Sigma, \delta, q, F \rangle$$

Quotientenautomat: Verschmelzen von äquivalenten Zuständen

Für einen DFA $\mathcal{M}=\langle Q,\Sigma,\delta,q_0,F\rangle$ mit totaler Übergangsfunktion ist der Quotientenautomat $\mathcal{M}/_{\sim}=\langle Q/_{\sim},\Sigma,\delta_{\sim},[q_0]_{\sim_{\mathcal{M}}},F/_{\sim}\rangle$ gegeben durch

- $F/_{\sim} = \{ [q]_{\sim} \mid q \in F \}$

Bestimmung von \sim :

- ▶ Initialisiere $\checkmark := \emptyset$
- ▶ **Regel 1**: Für jedes Paar von Zuständen $\langle q, p \rangle \in Q \times Q$: falls $q \in F$ und $p \notin F$, dann "speichere $q \nsim p$ "
- ▶ **Regel 2**: Für jedes Paar $\langle q, p \rangle \in Q \times Q \setminus \mathscr{P}$ und jedes $\mathbf{a} \in \Sigma$: falls $\delta(q, \mathbf{a}) \not\sim \delta(p, \mathbf{a})$ dann "speichere $q \not\sim p$ "
- ► Wiederhole Regel 2 bis keine Änderungen mehr auftreten
- ▶ Das Ergebnis ist $(Q \times Q) \setminus \not\sim$

Beispiel: Für einen DFA mit Zuständen $Q = \{A, B, C, D, E\}$ genügt eine Tabelle mit zehn Feldern (statt $5^2 = 25$).

(dazu reihen wir Zustände vertikal in umgekehrter Reihenfolge)

Berechnen Sie für folgenden DFA

$$\mathcal{M} = (\{q_0, q_1, q_2, q_3, q_4, q_5\}, \{a, b\}, \delta, q_0, \{q_1, q_2, q_4\}) \text{ mit } \delta$$
:

die Äquivalenzrelation $\sim_{\mathcal{M}}$, und geben Sie den Quotientenautomaten $\mathcal{M}/_{\sim}$ an.

$$\begin{split} \sim &= \{ \langle q_1, q_2 \rangle, \langle q_2, q_4 \rangle, \langle q_1, q_4 \rangle, \langle q_0, q_3 \rangle \} \\ & \cup \ \{ \langle q_2, q_1 \rangle, \langle q_4, q_2 \rangle, \langle q_4, q_1 \rangle, \langle q_3, q_0 \rangle \} \\ & \cup \ \{ \langle q, q \rangle : q \in Q \} \\ Q/_{\sim} &= \Big\{ \underbrace{\{q_0, q_3\},}_{=[q_0]_{\sim}} \underbrace{\{q_1, q_2, q_4\},}_{=[q_1]_{\sim}} \underbrace{\{q_5\}}_{=[q_5]_{\sim}} \Big\}$$

