Journal of Guangdong Mechanical Institute

"逢山开路"优化设计问题*

周转玲(1)、朱长斌(2)、潘旭辉(3) 指导教师。舒辉四(4)、孙四海(5)、王福龙(6)

提 要

"逢山开路"问题是一个道路优化设计问题,依据桥梁设计和公路设计的基本原理,本文 给出了该问题的桥梁造址优化模型 A 和一般路段优化模型 B。然后,从公路总体优化的角度 出发,采用 Dijkstra 算法思想、网络细分及插值方法,同时考虑到车辆行驶方便的因素,给出 了公路总体优化设计的方案。

关键词: Dijkstra 算法: 网络扦值方法: 优化设计 中图法分类号: O 157.9

问题的提出 0

要在一山区修建公路,首先测得一些地点的高程,数据显示:在 y=3200 处有一东 西走向的山峰 (见附图); 从坐标 (2400, 2400) 到 (4800, 0) 有一西北——东南走向 的山谷;在(2000,2800)附近有一山口湖,其最高水位略高于1350米,雨季在山谷中 形成一溪流,经调香知,雨量最大时溪流水面宽度 W 与(溪流最深处的) z 坐标的关系 可近似表示为

$$W(x) = (\frac{x - 2400}{2})^{3/4} + 5$$

其中 2400≤ x≤4000

公路从山脚 (0,800) 处开始,经居民点 (4000,2000) 至矿区 (2000,4000)。已 知路段工程成本及对路段坡度 w (上升高程与水平距离之比)的限制如下:

工程种类	一般路段	桥梁	隧 道
工程成本 (元/米)	300	2000	1500 (长度≤300m); 3000 (长度>300m)
对坡度α的限制	a < 0.125	a=0	<i>a</i> <0. 100 .

1) 试给出一种线路设计方案,包括原理、方法及比较精确的线路位置(含桥梁、隧

^{*} 本文获全国大学生数学模型竞赛二等奖

^{(1) 91} 级管理系 (2) 91 级自动化系 (3) 92 级计算机系 (4)、(5)、(6) 院基础课部数学教研室

道),并估算该方案的总成本。

2) 如果居民点改为 $3600 \le x \le 4000,2000 \le y \le 2400$ 的居民区,公路只须经过居民区即可,那么你的方案有什么改变。

1 桥梁造址优化模型 A

本题中,没有给出该地区的地质情况,本模型的设计只考虑造价和水流冲刷的因素。

1.1 模型的一般假设

(1) 河流横面为近似矩形;单位时间内流经河流任一断面的水量相等;河流的基本流向不变,是以(2400,2400)到(4800,0)的一条"直线"(;河流的平均深度 h 一定;河床没有任何阻碍水流运动的物体存在。

(2) 符号说明

h:河流平均深度(单位:m);

 W_{\perp} :湖口河流的宽, $W_{\perp}=5m$;

V4:山口湖湖口年均水流线流速(单位:m/s);

SA:湖口河流横断面面积(单位:m²);

 Z_{A} :湖口横断面单位时间内的水流量,(单位: m^3)。

1.2 模型的建立

设在"直线" 上任一点 x 处,河流横断面面积为 $S(x):S(x)=h \cdot w(x)$, 则单位时间内流经该断面的水量 $Z(x)=S(x) \cdot V(x) \cdot 1$,其中 V(x) 是流经该断面的线速度。

假设在湖口处的 V_A 已实测出,且 $W_A=5$ 米,则 $S_A=W_A$ 。h,因此 $Z_A=W_A$ 。h。 V_A 。1,由假设(1)得 $Z(x)=Z_A$,即S(x)。 $V(x)=W_A$ 。 V_A 。h,h。W(x)。 $V(x)=W_A$ 。 V_A 。h

$$V(x) = W_A \cdot V_A/w(x)$$

将 $W_A=5$ 代入上式得 $V(x)=5V_A/w(x)$ 。

下面讨论 W(x)与 V(x)的恰当处理,使得桥梁造址为最优。

构造一个权衡 W(x)与 V(x)的决策函数 $\rho(v,w)$,且 $\rho(v,w)=A\cdot V(x)+B\cdot w$ (x),即 $\rho(x)=A\cdot V(x)+B\cdot W(x)$,其中 A,B>0,A,B 为加权系数。

因为
$$\rho'(x) = (A \cdot V(x) + B \cdot W(x))' = (A \cdot \frac{W_A \cdot V_A}{W(x)} + B \cdot W(x))'$$

$$= (B - \frac{5A \cdot V_A}{W^2(x)})W'(x)$$

令 $\rho'(x)=0$,得到 $B-\frac{5A\cdot V_A}{W^2(x)}=0$ 式 W'(x)=0。根据实际情况, $W'(x)\neq 0$ 。因为若 W'(x)=0,则 x=2400,没有考虑 V(x)在 $\rho(x)$ 中所起的作用。

由 $B - \frac{5A \cdot V_A}{W^2(x)} = 0$,得到 $B \cdot W^2(x) - 5A \cdot V_A = 0$ 。将 $W(x) = (\frac{x - 2400}{2})^{3/4} + 5$ 代入,解得

$$\hat{x} = 2(\sqrt{5 \cdot V_A \cdot A/B} - 5)^{4/3} + 2400, \quad A/B > 5/V_A$$

即为所期望的数学模型。

1.3 关于系数 A、B 的说明

(1) A/B 的取值范围

当 $A/B > 5/V_A$ 时, $x \to A/B$ 的单调函数; 当 $A/B \to \infty$ 时, $x \to \infty$; 当 $A/B \to 5/V_A$ 时, $x \to \infty$ →2400_a

(2) 系数 A、B 的实际意义

系数 $A \setminus B$ 是用来调整 $V(x) \setminus W(x)$ 在决策函数 $\rho(x)$ 中所占的比重,以方便用户针对 实际情况的使用。

1.4 模型的使用

使用模型 A 时,首先通过实测(或根据该地区的水文资料)得到 V ., 然后根据河流的 实际情况确定水流冲刷与桥梁长度在 $\rho(V,W)$ 的所占比重,即确定 A/B,代入模型,算出 对应的桥梁位置 $_{x}^{\wedge}$,即求得最佳桥址的位置。

最后,根据桥梁走向与河流流向尽可能成最大夹角的原则,确定桥梁走向,并使桥长 大干W(x),即可找到桥址的近似最优位置。

一般路段选线优化模型 B

根据公路设计的基本原理,采用"依山势走线"、"以牺牲有限道路长度为代价换取道 路坡度的减小"的方法,并充分考虑车辆行驶难度与修路费用。给出了该优化模型。

2.1 问题的提出

已知路段起点 P,位于 A 等高线上, 现要使道路经 P 点跨越 A+h 等高线, 则要求 在A+h 等高线上增加一个控制点 (Q), 使 PQ 段上任一小段路线的坡度在 $[0, \cos$ (arctg0, 125)] 范围内,使车辆爬坡难度 $f(\theta)$ 与道路近似长度 $l(\theta)$ 综合优化(见图 1)。

2.2 符号说明

 $l(\theta)$:近似路长,其值为|PQ|(单位:m) $R(\theta):l(\theta)$ 在水平面上的投影(单位:m) h:爬升高度(单位:m)

图 1

2.3 模型的建立

如图 1 所示, $l(\theta) = h/\sin\theta$ 。当 $\theta \in (0, \operatorname{arctg} 0.125)$ 时, $l(\theta)$ 是 θ 的单调减函数。与此同 时,可构造车辆爬坡难度函数 $f(\theta)$ 如下:

$$f(\theta) = \theta, \ \theta \in (0, \operatorname{arctg} 0.125)$$

并由此构造一个决策函数:

$$q(\theta) = kf(\theta) + l(\theta)$$

k 为加权系数,k > 0,对于 k 值而言,其大小只有相对意义而无绝对意义。对 $g(\theta)$ 求导:

$$g'(\theta) = kf'(\theta) + l'(\theta) = (k\theta)' + (\frac{h}{\sin\theta})' = \frac{-k\sin^2\theta - h\cos\theta}{\sin^2\theta}$$

$$\Leftrightarrow g'(\theta) = 0, 解得 \cos\theta = \frac{-h \pm \sqrt{h^2 + 4k^2}}{2k}, 取\cos\theta = \frac{-h + \sqrt{h^2 + 4k^2}}{2k}$$

由
$$\cos(\arctan 0.125) < \cos \theta \le 1$$
,即 $\cos(\arctan 0.125) < \frac{-h + \sqrt{h^2 + 4k^2}}{2K} \le 1$

解得

$$k > \frac{h \cdot \cos(\operatorname{arctg 0. } 125)}{1 - \cos^2(\operatorname{arctg 0. } 125)} \tag{1}$$

至此,我们得到了一般路段选线优化模型:

$$\hat{\theta} = \arccos(\frac{-h + \sqrt{h^2 + 4k^2}}{2k}), \quad k > h \cdot \cos(\arccos(0.125) / (1 - \cos^2(\arccos(0.125)))$$
 (2)

权值 k 用来调整车辆行驶难度在 $g(\theta)$ 中所占的比重。

$$\hat{l} = l(\hat{\theta}) = h/\sin(\hat{\theta})$$

$$= h/\sin(\arccos(\frac{-h + \sqrt{h^2 + 4k^2}}{2k}))$$
(3)

实际路长

$$\vec{l} = \hat{l} \cdot r = l(\hat{\theta}) \cdot r$$

其中r为偏差调整系数。当P Q处于同一斜平面时(如图 2):

$$\bar{l} = l \hat{\theta} = \hat{l}$$

故

$$r=1$$

再考虑另一种极端的可能(如图 3)。由于角度 θ 较小,即 $\theta \in (0, arctg\ 0.\ 125)$,故 PNQ 弧线可近似看作一个圆。所以

$$r = \bar{l}/\hat{l} = \frac{\pi \times (\hat{l}/2)}{\hat{l}^2} = \frac{\pi}{2} = 1.57$$

故可以确定调整偏差系数 $r \in (1,1.57)$,因此,实际路长 $\bar{l} = r \cdot \hat{l} = r \cdot l(\hat{\theta}), r \in (1,1.57)$ 。

A+h 等高线 P (Q) P (B)

2.4 加权系数 k 的意义

当用户要尽量减小道路坡度,即要在 $g(\theta)$ 中使 $f(\theta)$ 所占比重较大,使车辆爬坡难度降低时,将k值调整较大,反之亦然。

2.5 模型的使用

假定用户给定需要爬升(或下降)高度 h,首先将 h 代入式(1),得到 k 的取值范围: $(k^i, +\infty)$,其中 $k^i = h \cdot \cos(\operatorname{arctg} 0.125)/(1-\cos^2(\operatorname{arctg} 0.125))$,其次,由用户根据实际情况决定 k 值大小(注:这里 k 值大小是相对 k^i 而言的)。

由附表 1-1,可看出当 h 给定时, $\hat{\theta}$ 随 k 值的变化而变化的情形。为了方便用户使用,我们利用表 1-1 改进为表 1-2 的形式。

当 k 值取定,将 k、k 代入式(2)解得 θ ,再将 θ 代入式(3) 得近似路长

$$\hat{l} = l(\hat{\theta}) = \frac{h}{\sin(\arccos(\frac{-h + \sqrt{h^2 + 4k^2}}{2x}))}$$

近似路长投影

$$R(\stackrel{\wedge}{\theta}) = \frac{h}{\operatorname{tg}(\arccos(\frac{-h+\sqrt{h^2+4k^2})}{2k})}$$
,实际路长 $\stackrel{\wedge}{l} = r \stackrel{\wedge}{l}, r = \frac{h}{k}$

用户根据地形因素决定,r ∈ (1,1.57)。

最后,在图上等高线 A+h 上确定 Q 点位置(Q),作法:(见图 4)

- (i) 量出距离 $R(\theta)$ 。
- (ii) 以 P 点为圆心, $R(\hat{\theta})$ 为半径作圆,与 A+h 等高线交于一点 $(\hat{\theta})$ 。
- (iii) 在等高线图上以 P 点为起点,(Q)为 终点,用圆滑的曲线相连,即得到 PQ 路段在等 高线图上较为精确的长线。

3 公路总体设计方案

通过对该地区等高线图进行分析及估算,考虑到以下因素:

- (i) 桥的造价较高,路段造价较低(桥梁为 2000 元/米,一般路段 300 元/米)。
- (ii) 给定的地区山势平缓,用自然展线的方法,沿等高线进行展线,一般路段走向也 趋向目标区域,故一般路段走线的矛盾不突出。
 - (iii) 山岭溪流湍急,桥址倘若造择不当,则增加选桥难度,费用,甚至影响其可靠性。 我们决定先选桥址。

3.1 公路总体优化计设方案如下(参看附图)

- (1) 按照模型 A 选桥址建桥。
- (2) 以 AA' 为一般路段的走向控制点,采用 Dijkstra 算法思想及网络细分与插值方法,按模型 B 每升高 h 高度,增加一个控制点,得到 A 到 A' 的近似最佳路线。
- (3) 以 B'、B 为一般路段的走向控制点,采用 Dijkstra 算法思想及网络细分与插值方法,按模型 B 每升高 h 高度,增加一个控制点,得到 B'到 B 的近似最佳路线。
- (4) 依照越岭道路设计中,明堑与隧道的取舍原则,以打隧道方式跨越山峰是最优的。

在 y = 3200 处东西走向的山峰附近寻找等高线密集(即坡度大)的地点作为隧道方位,利用居民点西北方向较平缓的山坡,反复运用模型 B 增加控制点进行迂回展线,尽可能使道路接近山脊的地点作隧道的入口 D'。从 D' 处在隧道建造坡度允许范围内选择适当的角度沿北向开凿隧道从 D 处穿出。

(5) 类似于步骤(2)、(3)得到 DC 段近似最佳位置。

3.2 字例

应用给出的公路总体优化设计方案,对本题给出的地区设计了一条实际线路,同时,给出了一条不服从方案中第(4)条原则穿隧道越岭的线路,并把两者加以比较,最后,给出了居民点变为居民区时公路总体优化设计的路线。

假设:用户根据该地区的水文资料或实测得到 V₄=10m/s。

- (1) 运用公路总体优化设计方案,我们找出一条最优线路 I (经居民点),(见附图), 此线路中各段参数及计算的中间结果列于附表 2,成本约 436 万元。
- (2) 如果从居民点到隧道不经迂回展线,运用模型 B 走线,得到线路 I ,见附图。线路中各参数及计算的中间结果列于附表 3,成本约为 516 万元。
- (3) 当居民点改为居民区时的最优线路见附图中线路 I,线路中各段参数及计算结果见附表 4,其总成本约为 404 万元。

4 模型 A、B 的优缺点

模型 $A \setminus B$ 可以独立使用。模型 A 可独立适用于优选桥址的问题;模型 B 可适用于道路最佳控制点的问题;其实用性突出,具有较好的推广价值。

鉴于模型构造过程中的假设条件,使其精确度有一定的偏差。

参考文献

- 1 钱颂迪主编,运筹学,清华大学出版社
- 2 黄梦平编,桥梁建筑,科技普及出版社
- 3 张雨化主编,公路勘测设计,人民交通出版社
- 4 华东水利学院编,水力学,科学出版社
- 5 "路线设计手册"编写组,路线,人民交通出版社

附表:

			附表	1-1				
K	3225	3250	3275	3300	3325	3350	3375	3400
最优 Α̂	7. 125	7.098	7. 070	7.044	7.017	8. 991	6.965	6. 940
近似路长	403. 12	404. 67	406. 21	407.74	409. 27	401.80	412. 32	413. 83
投影路长	400.01	401.57	403. 12	404.67	406. 21	407.74	409. 27	410.80
设计坡度 tg θ	0.1249	0. 1245	0. 1240	0. 1236	0. 1231	0. 1226	0. 1222	0. 1217
K	3450	3500	3550	3600	3700	3800	3900	4000
最优 δ	6. 899	6. 840	6. 792	6.745	6. 653	6. 565	6. 481	6. 399
近似路长	416.84	419. 83	422.79	425.74	431. 57	437. 33	443. 01	448.6
投影路长	413. 83	416.84	419. 83	422. 79	428. 67	434.46	440. 17	445. 82
设计坡度 tg Å	0. 1208	0. 1200	0. 1191	0. 1183	0. 1166	0. 1151	0. 1136	0. 1122
K	4200	4400	4600	5000	5500	6000	6500	7000
最优 $\overset{\wedge}{ heta}$	6. 245	6. 102	5.968	5.725	5. 459	5. 228	5. 022	4. 839
近似路长	459. 62	470. 38	480. 89	501. 25	325. 60	548. 86	571. 19	592. 6
投影路长	456. 90	467.71	478. 28	498. 75	523. 21	546. 58	568. 99	590. 5
设计坡度 tg Å	0.1094	0. 1069	0. 1045	0. 1003	0. 0956	0. 0915	0. 0879	0. 084
К	8000	9000	10000	12000	15000	20000	30000	40000

К	8000	9000	10000	12000	15000	20000	30000	40000
最优 [^]	4. 527	4. 269	4. 050	3.697	3. 307	2.864	2. 339	2. 026
近似路长	623. 44	671.75	707.99	775. 40	866.75	1000.63	1225. 26	1414.66
投影路长	613. 47	669. 89	706. 22	773. 79	865. 30	999. 38	1224. 23	1413.77
设计坡度 tg θ	0.0792	0.0746	0.0708	0.0646	0. 0578	0. 0500	0. 0408	0. 0354

注:h=50m 时.K>3224.9;等高线每升高 50m(h=50m)加一个控制点。

附表 1-2

K 的取值范围	(3225	.4400)	(4600.	10000)	(12000	.40000)
对行车难度的考虑	较	少	较	多	最	大

通过附表 1-1 中的 θ 分析,对 K 进行分类得到上表,由表可看出,在 L 一定的情况下,对加权系数值 L 进行分类后,更加方便于用户使用。

同理,模型 I 中 A/B 也可以进行类似的分类。

		附表	表 2		
路段控制点	K	最优 ^λ (度)	近似路 长 L(m)	投影路 长(m)	设计坡 度 tg θ
AA_1	3900	6. 481	443. 01	440. 17	0. 1136
A_1A_2	3500	6.840	419. 83	416.84	0. 1200
A_2A_3	3800	6. 565	437. 33	434. 46	0. 1157
A 3A 4	10000	4. 050	707. 99	706. 22	0.0708
A 4 A 5	30000	2. 339	1225.76	1224. 32	0.0418
A_5A'	∞	0	680	680	0
修正系数	1. 2	ΣL	3912. 92m	成本 1409011.2 ラ	
桥梁	A/B = 150	长度	90m	成本	 180000 元
路段控制点	. <i>K</i>	最优 δ	近似路	投影路	设计坡
研究 江柳杰	, A	(度)	长 <i>L</i> (m)	长(m)	度 tg θ
$B'B_1$	17000	3. 107	922. 63	921.28	0. 0543
	7000	4. 839	592. 67	590.55	0.0847
B_1B_2	1200	3. 697	775. 40	773.79	0. 0646
B 2B 3	4600	5. 986	480. 89	478. 28	0. 1045
B ₃ B ₄	65-00	5.022	571. 19	568.99	0. 0879
B ₄ B ₅	6500	5. 022	571.19	568.99	0. 0879
B 5 B 6	4600	5. 968	480. 89	478. 28	0. 1045
B_6D'	4600	5. 968	480. 89	478. 28	0. 1045
修正系数	1. 2	ΣL	4875.75m	成本 1755270	
隧 道	长度	260m	/	成本	39000 元
D C	长度	2080m	/	成本	624000 元

h=50m.K>3224.9.桥中心坐标(3108,1692).隧道南面入口坐标(4400,3067)。

4358281.2元

总成本

			附着	表 3		
na Ca i	A 4.1 h		最优 θ	近似路	投影路	设计坡
路段控制点 —————		K	(度)	长 L(m)	长(m)	度 tg θ
A	A ;	3900	6. 481	443. 01	440. 17	0. 1136
\boldsymbol{A}	1 A 2	3500	6. 840	419.83	416.84	0.1200
A ;	,A 3	3800	6. 565	437. 33	434. 45	0. 1157
A	3A 4	10000	4. 050	707. 99	706. 22	0. 0708
A	₄ A ₅	30000	2. 339	1225. 76	1224. 32	0. 0418
<i>A</i> :	εA'	∞	0	680	680	0
修正	系数	1. 2	ΣL	3912. 92m	成本	1409011.2元
桥	梁	A/B=150	长度	90m	成本	180000 元
			最优 θ	近似路	投影路	设计坡
路段1	空制点 	K	(度)	长 <i>L</i> (m)	长(m)	度 tg θ
В	B	15000	3. 307	866. 75	865. 30	0. 0578
\boldsymbol{B}	$E_1^{\prime\prime}$	3250	7. 098	404.67	401.57	0. 1245
$B_1^{\prime\prime}$	$B_2^{\prime\prime}$	3250	7. 098	404.67	401.57	0.1245
B_2^{\prime}	D'	4200	6. 245	459. 62	456. 90	0.1094
修正	系数	1.2	ΣL	2135.71m	成本	768855.6元
藩	道	长度	650m	/	成本	1950000元
no en a	ı		最优 θ	近似路	投影路	设计坡
炉权1	空制点 	К	(度)	长 <i>L</i> (m)	长(m)	度 tg Å
D	C''	3250	7. 098	404. 67	401. 57	0. 01245
C_1''	$C_2^{''}$	3350	6. 991	410. 80	407.74	0. 1226
$C_2^{\prime\prime}$	C''	7000	4. 839	592.67	590. 55	0. 0847
C'_3	(C)	7000	4. 839	592. 67	590. 55	0.0847
C	'' C	∞	0	600	600	0
修正		1.1	ΣL	2600. 81m	成本	858267.3元
总成2	<u> </u>			5166134.1元		

注释同附表 2

			附表	表 4		
路段控制	制占	К	最优 Å	近似路	投影路	设计坡
PH 12 II.	h1/m		(度)	长 L(m)	长(m)	度 tg θ
AA	1	3900	6. 481	443. 01	440. 17	0. 1136
A_1A	2	3500	6.840	419.83	416.84	0. 1200
AzA	3	3800	6. 565	437. 33	434. 46	0. 1157
A_3A	4	10000	4. 050	707. 99	706. 22	0. 0708
A A	5	30000	2. 339	1225. 76	1224. 32	0. 0418
A 5A	•	∞ .	0	680	680	0
修正系	.数	1.2	ΣL	3912. 92m	成本 1409	011.2元
桥	梁	A/B = 150	长度	90m	成本 1	80000 元
路段控	制占	K	最优 θ	近似路	投影路	设计坡
ж о д.			(度)	长 <i>L</i> (m)	长(m)	度 tg Å
B' B	1	3400	6. 940	413. 83	410.80	0. 1217
$B_1'B$	2	33500	6. 991	410.80	407.74	0. 1226
$B_2'B$	3	4200	6. 245	459.62	450.90	0. 1094
B'3B	4	10000	4. 050	707. 99	706. 22	0.0708
B'_4B	, 5	4200	6. 245	459.62	456.90	0.1094
$B_5'B$, 6	4000	6. 339	448. 61	445. 82	0. 1122
$B'_{\theta}B$, 7	4000	6. 399	448. 61	445.82	0. 1122
$B_7'B$, 8	4000	6. 399	448.61	445.82	0. 1122
$B_{8}^{'}D$,	4400	6. 102	470.71	467.71	0. 1069
修正系数	<u> </u>	1. 2	ΣL	4268. 07m	成本 153	6505.2元
隧 道	t D'I	<i>y</i>	长度	260m	成本 29	2500 元
DC			长度	2080m	成本 62	4000 元
总 成	本			4042016. 4 元	÷	

注释同附表 2.

