SEGUNDO TESTE

Universidade Federal de Goiás (UFG) - Regional Jataí Bacharelado em Ciência da Computação Teoria da Computação Esdras Lins Bispo Jr.

12 de junho de 2017

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 06 (seis) componentes que formarão a média final da disciplina: quatro testes, uma prova e exercícios;
- \bullet A média final (MF) será calculada assim como se segue

$$MF = MIN(10, S)$$

 $S = (\sum_{i=1}^{4} 0, 2.T_i) + 0, 2.P + 0, 1.EA + EB$

em que

- -S é o somatório da pontuação de todas as avaliações,
- $-T_i$ é a pontuação obtida no teste i,
- P é a pontuação obtida na prova,
- EA é a pontuação total dos exercícios de aquecimentos, e
- $-\ EB$ é a pontuação total dos exercícios-bônus.
- O conteúdo exigido desta avaliação compreende o seguinte ponto apresentado no Plano de Ensino da disciplina: (2) Modelos de Computação e (3) Problemas Decidíveis.

Nome:		

Segundo Teste

1. (5,0 pt) Mostre que a coleção de linguagens Turing-reconhecíveis é fechada sob a operação de intersecção.

Prova: Sejam duas linguagens Turing-reconhecíveis (TR) quaisquer A e B. Sejam M_A e M_B as duas máquinas de Turing (MT) que reconhecem A e B, respectivamente (Definição 3.5). Iremos construir uma MT não-determinística (MTN) M_{aux} , a partir de M_A e M_B , que reconhece $A \cap B$. A descrição de M_{aux} é dada a seguir:

 M_{aux} = "Sobre a entrada ω , faça:

- (a) Rode, não deterministicamente, M_A e M_B sobre a mesma cadeia ω .
- (b) Se M_A e M_B aceitam, aceite.
- (c) Se uma das máquinas rejeita, rejeite".

Como é possível construir M_{aux} , então $A \cap B$ é TR (Teorema 3.16). Logo, a classe de linguagens Turing-reconhecíveis é fechada sob a operação de intersecção \blacksquare

- 2. (5,0 pt) Seja $\Sigma = \{0,1\}$ e $A = \{\langle M \rangle \mid M \text{ \'e uma expressão regular e } L(M)$ é composta por todas as cadeias que terminam com 1}. Mostre que A é decidível.
 - R Primeiro será criado um AFD S de forma que $L(S) = \Sigma^*1$. É possível construir S, pois L(S) é regular (Definição 1.16). Ora, é necessário que L(M) = L(S) para que $\langle M \rangle \in A$. Diante disto, será construído a seguir um decisor M_A para A:

 M_A = "Sobre a entrada $\langle M \rangle$, em que M é uma expressão regular (ER), faça:

- (a) Construa o AFD S conforme descrito anteriormente;
- (b) Converta a ER M no AFD N (Teorema 1.54 e Definição 1.16);
- (c) Construa a MT T que decide EQ_{AFD} (Teorema 4.5);
- (d) Rode T sobre $\langle S, N \rangle$;
 - i. Se T aceita, aceite;
 - ii. Caso contrário, rejeite.

A linguagem Aé decidível pois foi possível construir uma máquina de Turing que a decide (Definição 3.6) \blacksquare

Teoremas Auxiliares

Definição 1.16: Uma linguagem é chamada de uma linguagem regular se algum autômato finito a reconhece.

Teorema 1.25: A classe de linguagens regulares é fechada sob a operação de união.

Teorema 1.26: A classe de linguagens regulares é fechada sob a operação de concatenação.

Teorema 1.39: Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Teorema 1.49: A classe de linguagens regulares é fechada sob a operação estrela.

Teorema 1.54: Uma linguagem é regular se e somente se alguma expressão regular a descreve.

Definição 3.5: Chame uma linguagem de Turing-reconhecível se alguma máquina de Turing a reconhece.

Definição 3.6: Chame uma linguagem de Turing-decidível ou simplesmente decidível se alguma máquina de Turing a decide.

Teorema 3.13: Toda máquina de Turing multifita tem uma máquina de Turing que lhe é equivalente.

Teorema 3.16: Toda máquina de Turing não-determinística tem uma máquina de Turing determinística que lhe é equivalente.

Teorema 3.21: Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

Teorema 4.1: A_{AFD} é uma linguagem decidível.

Teorema 4.2: A_{AFN} é uma linguagem decidível.

Teorema 4.3: A_{EXR} é uma linguagem decidível.

Teorema 4.4: V_{AFD} é uma linguagem decidível.

Teorema 4.5: EQ_{AFD} é uma linguagem decidível.

Teorema 4.9: Toda linguagem livre-de-contexto é decidível.

Teorema 4.11: A_{MT} é uma linguagem indecidível.

Definição 4.14: Um conjunto A é contável se é finito ou tem o mesmo tamanho que N.