Abbreviations $(M 2 \sim M 3) = \frac{\text{choice}[(attyid 9 attsk 9 c)]}{(attyid 9 attsk 9 c)}$

 \sim X_1 = (\sim M_1, \sim M_2, \sim M_3) = choice[(attvid_9,attsk_9,cert(attvid_9,pk(attsk_9),cask_8)),(attvid_8,attsk_8,cert(attvid_8,pk(attsk_8),cask_9))]

~M_5 = choice[aenc((groupkey_request, sign(groupkey_request, vsk_11),cert(vid_35,pk(vsk_11),cask_8)),pk(cask_8)), aenc((groupkey_request, sign(groupkey_request, vsk_10), cert(vid_34,pk(vsk_10),cask_9)),pk(cask_9))]

~M_7 = choice[aenc((groupkey_request, sign(groupkey_request, vsk_13),cert(vid_37,pk(vsk_13),cask_8)),pk(cask_8)), aenc((groupkey_request, sign(groupkey_request, vsk_12), cert(vid_36,pk(vsk_12),cask_9)),pk(cask_9))]

A trace has been found.

