Autômato de Pilha

Linguagens Livre de Contexto → Gramáticas Livre de Contexto

Autômatos Finitos não reconhecem certas Linguagens Livre de Contexto

$$L = \{ \ w \mid w \in \{ \ a, \ b \ \} \land w \ segue \ o \ padrão \ de \ formação \ a^n \ b^n, \ n \geq 0 \ \}$$

$$L = \{ w \mid w, u \in \{ a, b \} \land w = u u^R \text{ onde } R = \text{reverso } \}$$

idéia → autômato com memória = autômato de pilha

Definição

Um autômato de pilha é uma sétupla M = (Q, Σ , Γ , δ , q_0 , z, F), onde

Q é um conjunto de estados $\Sigma \text{ é um conjunto finito de símbolos} \rightarrow \text{ alfabeto de entrada}$ $\Gamma \text{ é um conjunto finito de símbolos} \rightarrow \text{ alfabeto da pilha}$ $q_0 \in Q \text{ é o estado inicial}$ $z \in \Gamma \text{ é o símbolo inicial da pilha}$ $F \subseteq Q \text{ é o conjunto de estados finais}$ $\delta : (Q \times (\Sigma \cup \{ \epsilon \})) \times \Gamma \rightarrow (Q \times \Gamma^*) \text{ é a função de transição}$

- \checkmark $(q', w) \in \delta$ (q, r, s) significa que, no estado q, se o símbolo da entrada é r e o símbolo no topo da pilha é s, o autômato lê r, desempilha s, muda para o estado q'e empilha a seqüência w
- \checkmark $(q', w) \in \delta$ (q, ε, s) significa que, no estado q, se o símbolo no topo da pilha é s, o autômato desempilha s, muda para o estado q'e empilha a seqüência w
- ✓ se a pilha estiver vazia, nenhum movimento é possível
- se o valor de δ for um par (q, ε) , a quantidade de elementos da pilha diminui \rightarrow desempilhamento

$$\delta(q_1, r, s) = \{(q_2, tu), (q_3, \varepsilon)\}$$

se a unidade de controle estiver no estado q_1 , o símbolo da entrada for r e o símbolo no topo da pilha for s,

são possíveis as ações

a unidade de controle passa para o estado $m{q}_2$ e os símbolos $m{t}$ e $m{u}$ substituem o símbolo $m{s}$ no topo da pilha

ou

a unidade de controle passa para o estado q_3 e o símbolo s é desempilhado

Q = {
$$q_0$$
, q_1 , q_2 , q_3 }
 Σ = { a, b }
 Γ = { 0, 1 }
 q_0 = q_0
z = 0
F = q_3
 δ = { $(q_0$, a, 0) \rightarrow $(q_1$, 10), $(q_0$, ε , 0) \rightarrow $(q_3$, ε),
 $(q_1$, a, 1) \rightarrow $(q_1$, 11), $(q_1$, b, 1) \rightarrow $(q_2$, ε),
 $(q_2$, b, 1) \rightarrow $(q_2$, ε), $(q_2$, ε , 0) \rightarrow $(q_3$, ε) }

	а	b	${\cal E}$
$(q_0, 0)$	$(q_1, 10)$		(q ₃ , ε)
$(q_1, 1)$	$(q_1, 11)$	(q_2, ε)	
$(q_2, 1)$		(q_2, ε)	
$(q_2, 0)$			$(q_3, \ \varepsilon)$

Exemplo

 $L = \{ \ w \mid w \in \{ \ a, \ b \ \} \land w \ segue \ o \ padrão \ de \ formação \ a^n \ b^n, \ n \geq 0 \ \}$

$$\mathsf{M} = (\; \{\; q_0,\; q_1,\; q_2\;\},\; \{\; \mathsf{a},\; \mathsf{b}\;\},\; \{\; \mathsf{0},\; \mathsf{1}\;\},\; \delta,\; q_0,\; \mathsf{0},\; \{\; q_2\;\}\;),\; \mathsf{para}\; \delta$$

	а	b	${\cal E}$
$(q_0, 0)$	(<i>q</i> ₀ , 10)		(q_2, ε)
$(q_0, 1)$	$(q_0, 11)$	(q_1, ε)	
$(q_1, 1)$		(q_1, ε)	
$(q_1, 0)$			$(q_2, \ arepsilon)$

leitura de a → empilhamento de 1

leitura de b \rightarrow desempilhamento de 1

Exemplo

$$L = \{ w \mid w \in \{ a, b \}^* \land \#a's = \#b's \}$$

$$M = (\{q_0, q_1\}, \{a, b\}, \{0, 1, z\}, \delta, q_0, z, \{q_1\}), para \delta$$

	a	b	${\cal E}$
(q ₀ , z)	(q ₀ , 0z)	(q ₀ , 1z)	(q ₁ , z)
$(q_{o}, 0)$	$(q_0, 00)$	$(q_0, \ \varepsilon)$	
$(q_0, 1)$	(q_0, ε)	$(q_0, 11)$	

O número de 0s (de 1s) empilhados é a diferença positiva entre o número de a s e o número de b s lidos (de b s e de a s lidos)

