Etude d'une bijection

On considère la fonction f définie par la relation $f(x) = \sqrt{x}e^{-x/2}$.

- 1.a Sur quels intervalles la fonction f est-elle définie ? continue ? dérivable ? Préciser la tangente à la courbe représentative de f au point d'abscisse 0.
- 1.b Dresser le tableau de variation de f.
- 1.c Justifier que la courbe représentative de f présente une inflexion en un point d'abscisse α à préciser.
- 1.d Déterminer l'abscisse du point d'intersection de la tangente à f en α avec l'axe (Ox).
- 1.e Représenter f et sa tangente en α en prenant des unités égales à 2 cm en abscisse et 10 cm en ordonnée.
- 2.a Montrer que f réalise une bijection de l'intervalle [0,1] vers l'intervalle $\left[0,1/\sqrt{\mathrm{e}}\right]$ et que l'application réciproque correspondante, notée φ , est continue.
- 2.b Dresser le tableau de variation de φ .
- 2.c Justifier que φ est dérivable sur $\left]0,1\right/\sqrt{\mathrm{e}}\right[$.
- 2.d Etudier la dérivabilité de φ en 0 et en $\frac{1}{\sqrt{e}}$.
- 2.e Déterminer un équivalent simple de φ au voisinage de 0.
- 3.a Montrer que f réalise une bijection de l'intervalle $[1,+\infty[$ vers l'intervalle $]0,1/\sqrt{e}]$. On note ψ l'application réciproque correspondante.
- 3.b Dresser le tableau de variation de ψ .
- 3.c Déterminer un équivalent simple de ψ au voisinage de 0.
- 4. On considère l'application composée $g=\varphi\circ\psi^{-1}$ au départ de $\left[1,+\infty\right[$. Dresser le tableau de variation de g.