

整體學習 Ensemble Learning

原理

- 「三個臭皮匠(裨將),勝過一個諸葛亮」
 - 裨將:副將
 - 三個才能平庸的人一起集思廣益,勝過一個優秀的人。

三個臭裨將真的可以勝過諸葛亮?

- · 問題:燈泡故障的機率是10%,請問取3個燈泡中至少有2個是正常的機率?
- 二項分佈(Binominal Distribution) (獨立事件) $C_k^n p^k (1-p)^{n-k}$
- · 成功(p)/失敗(1-p): 0.9(正常)/0.1(故障)
- P = P(3個燈泡都正常) + P(其中2個燈泡正常)

$$= C_2^3(0.9)^2 \cdot (0.1)^1 + C_3^3(0.9)^3$$

$$= 3 \cdot 0.81 \cdot 0.1 + 1 \cdot 0.729$$

$$= 0.243 + 0.729$$

$$= 0.972$$

三個臭裨將真的可以勝過諸葛亮?

- · 若諸葛亮和臭裨將一起來做分類(o,1)問題,諸葛亮自己預測y值,臭裨將們先各自預測y 後,再採多數決方式決定最後要預測的y值。
- · 諸葛亮(強學習器, strong learner)
 - · 假設準確度0.9
- · 臭裨將(弱學習器, weak learner)
 - 準確度要多高才能超越諸葛亮?
 - 要幾位裨將才夠超越諸葛亮?

Python for Machine Learning & Deep Learning

諸葛亮水準

Ans:

- 0.8水準的3位裨將
- 0.7水準的9位裨將

使用原則

- · 每個分類器準確度至少>0.5
- 每個分類器種類不同(要各有所長,盡量符合獨立事件)

整合多種演算法效果

·降低因不同學習演算法特性所產生的bias

Ensemble Learning with sklearn

- ensemble.AdaBoostClassifier([...])
 An AdaBoost classifier.
 ensemble.AdaBoostRegressor([base_estimator, ...])
- An AdaBoost regressor.
 ensemble.BaggingClassifier([base_estimator, ...])
- A Bagging classifier.
- ensemble.BaggingRegressor([base_estimator, ...])
- A Bagging regressor.
- ensemble.ExtraTreesClassifier([...])
- An extra-trees classifier.
- ensemble.ExtraTreesRegressor([n_estimators, ...])
- An extra-trees regressor.
- ensemble.GradientBoostingClassifier([loss, ...])
- Gradient Boosting for classification.
- ensemble.GradientBoostingRegressor([loss, ...])
- Gradient Boosting for regression.
- ensemble.IsolationForest([n_estimators, ...])
- Isolation Forest Algorithm
- ensemble.RandomForestClassifier([...])
- · A random forest classifier.
- ensemble.RandomForestRegressor([...])
- A random forest regressor.
- ensemble.RandomTreesEmbedding([...])
- · An ensemble of totally random trees.
- ensemble.VotingClassifier(estimators[, ...])
- Soft Voting/Majority Rule classifier for unfitted estimators.

投票分類器 Voting Classifier

Python for Machine Learning & Deep Learning

Voting Example 1

Voting Example 2

VotingClassifier

- · class sklearn.ensemble.VotingClassifier(estimators, voting='hard', weights=None, n_jobs=1, flatten_transform=None)
 - · estimators: classifiers (命名, clf) tuple list
 - · e.g. [('KNN', clf1), ('NB', clf2), ('LogisticRegression', clf3)]
 - ・voting: 'hard' (票票等值)、'soft' (票票不等值) with weights
 - · weights: weight list
 - · e.g. [1, 2, 5]

装袋法 Bagging

Bootstrap

- Bagging (Bootstrap Aggregating)
- · Bootstrap (sample): "自助"隨機產生訓練資料

Bootstrap

- 訓練資料集中可能包含相同資料。
- · 產生各筆資料隨機重要性,抗噪(noise)能力較好、較不易overfitting
 - · 被抽中的機率是1/m, 沒被抽中的機率是(1-1/m)
 - A完全沒被抽中的機率: $(1-\frac{1}{m})^m$
 - 樣本數很大時,任一樣本被抽中的機率是

$$1 - \lim_{m \to \infty} (1 - \frac{1}{m})^m = 1 - \frac{1}{e} \approx 1 - \frac{1}{2.71828} \approx 0.632$$

OB (Out of Bag)

- OOB (Out of Bag): 沒被取到的資料
 - · 當資料量大時,約有1/3資料沒被取到,可作為test set使用

$$\frac{1}{e} \approx \frac{1}{2.71828} \approx 0.368 \approx \frac{1}{3}$$

Python for Machine Learning & Deep Learning

Bagging Classifier

Bagging Regressor

BaggingClassifier/Regressor with sklearn

- · class sklearn.ensemble.BaggingClassifier(base_estimator=None, n_estimators=10, max_s amples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False, oob_score=False, warm _start=False, n_jobs=1, random_state=None, verbose=0)
- · class sklearn.ensemble.BaggingRegressor(base_estimator=None, n_estimators=10, max_sa mples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False, oob_score=False, warm_start=False, n_jobs=1, random_state=None, verbose=0)
 - base_estimator: estimator object
 - · n_estimators: estimator數量
 - ・ oob_score: 是否要使用oob計算score(True/False)
 - · max_features: 最多使用的訓練特徵量,int 定值、float 比例
- attributes:
 - oob_score_ : (float)

隨機森林

Random Forest

Random Forest

- · Random: 隨機挑選特徵做訓練(常用值:特徵數量的平方根)
 - 可以處理高維特徵,不需要降維
- Forest: 訓練多棵決策樹作為weak learners
 - 每棵樹皆完全生長

Notes

▶ Random Forest 決策原理同 Bagging。

Random Forest

Random Forest

決策樹效果

- · 鳶尾花資料集(Iris Dataset) 使用單一特徵完全生長的決策樹測試準確度
 - f1-score
 - · 花萼長度: 0.66
 - · 花萼寬度: 0.51
 - · 花瓣長度: 0.91
 - · 花瓣寬度: 0.98

OB score

優紙點

- 優點:
 - 能處理高維特徵,不用篩選特徵或降維
 - 兩個隨機性(bootstrap+select features)降低雜訊(noise)影響,避免overfitting
 - 分類預測力強,因多數決的關係,不好樹的預測彼此抵銷,由好的樹影響預測結果
- 缶头黑占:
 - 黑盒子,難以控制模型內部運作
 - · 迴歸效果較差(因為average會受不好的樹影響)

Random Forest with sklearn

- · class sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion='gini', max_de pth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features ='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=Tr ue, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None)
 - · n estimators: estimator數量
 - · criterion: 'gini' or 'entropy'
 - max_feautres: 'auto' (=sqrt(n_features))
 - ・ oob_score: 是否要使用oob計算score(True/False)
- attributes:
 - oob_score_ : (float)
 - · feature_importances_: 特徵重要性

Random Forest with sklearn

- · class sklearn.ensemble.RandomForestRegressor(n_estimators=10, criterion='mse', max_de pth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features ='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False)
 - · n_estimators: estimator數量
 - max_feautres: 'auto' (=sqrt(n_features))
 - ・ oob_score: 是否要使用oob計算score(True/False)
- attributes:
 - oob_score_ : (float)
 - · feature_importances_: 特徵重要性

強化法 Boosting

原理

全班同學成績有高有低,如果我想要讓全班同學的整體成績提升,應該怎麼做?

• 學生:加強關照成績較低的學生

• 老師:找比較好的老師來教

AdaBoost Adaptive Boosting

AdaBoost

AdaBoost Algorithm

- · m筆訓練資料:權重起始值為 1/m
- 加權錯誤率 $\mathcal{E}_t = \sum_{i:\hat{y}_i \neq y_i} w \cdot i$
 - e.g. 5筆資料,其中2筆預測錯誤(1)
 - $\varepsilon_t = 0.2 \times 1 + 0.2 \times 1 = 0.4$
- $\boldsymbol{\alpha}_{t} = \frac{1}{2} \ln \cdot \frac{1 \boldsymbol{\varepsilon}_{t}}{\boldsymbol{\varepsilon}_{t}}$

$$\alpha_t = \frac{1}{2} \cdot \ln \frac{0.6}{0.4} \approx 0.203$$

AdaBoost Algorithm(cont.)

- 更新資料權重
 - $w = w \cdot e^{(-\alpha_t \cdot \hat{y} \cdot y)}$
 - $y_m \in \{1, -1\}$
 - 預測正確:(權重降低)

$$w_m = 0.2 \cdot e^{(-0.203 \cdot 1.1)} \approx 0.2 \cdot 0.816 \approx 0.163$$

· 預測錯誤:(權重提高)

$$w_m = 0.2 \cdot e^{(-0.203 \cdot 1 \cdot -1)} \approx 0.2 \cdot 1.225 \approx 0.245$$

• 調整權重加總為1: $w = \frac{w}{\sum_{w_m}}$

AdaBoost Algorithm(cont.)

- · 依照更新的資料權重再抽樣(重複t次,產生t個learner)
- 最後預測:
 - learner weights: $\alpha_t = \frac{1}{2} \ln \frac{1 \varepsilon_t}{\varepsilon_t}$
 - Classifier: weighted voting
 - Regressor: weighted average

AdaBoost with sklearn

- · class sklearn.ensemble.AdaBoostClassifier(base_estimator=None, n_estimators=50, learning_rate=1. 0, algorithm='SAMME.R', random_state=None)
- · class sklearn.ensemble.AdaBoostRegressor(base_estimator=None, n_estimators=50, learning_rate=1.0, loss='linear', random_state=None)
 - · base_estimator: estimator object (預設'None': 決策樹)
 - n_estimators: estimator 數量
- attributes:
 - · estimator_errors_: 各estimators錯誤
 - · estimator_weights_: 各estimators weights
 - ・feature_importances_: 特徵重要性(by 決策樹)
- score function:
 - score(X, y[, sample_weight])

整體學習(二)

Ensemble Learning (2)

Stacking

Stacking Classifier

Stacking Regressor

XGBoost

AdaBoost

- update (after each iteration):
 - weights of learners
 - weights of samples

梯度提升決策樹

- the same as:
 - GBDT (Gradient Boost Decision Tree)
 - MART (Multiple Additive Regression Tree)
 - GBRT (Gradient Boost Regression Tree)

Boosting

- · CART樹的加法(additive)模型
 - 不論是用於迴歸或分類,皆採用迴歸樹
 - 具備自動判斷重要特徵並組合之效果

Boosting

· 累加式訓練 (Additive Training)

Note:

▶以下公式皆源自XGBoost網

頁,請見References。

Cost Function

• Training Loss + Regularization

Cost Function

• MSE

Taylor Expansion

- 泰勒展開式/級數 (Taylor Expansion/Series)
 - 使用目的:推估函數值
 - 使用前提:連續函數且可微分

$$f(x) = f(a) + f'(a)(x-a) + f''(a)\frac{(x-a)^2}{2!} + \dots + f^{(n)}(a)\frac{(x-a)^n}{n!}$$

Taylor Expansion

for a=0,
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Cost Function

$$Obj^{(t)} = \sum_{i=1}^{n} l\left(y_{i}, \hat{y}_{i}^{(t-1)} + f_{t}(x_{i})\right) + \Omega(f_{t})$$

$$\downarrow \text{Taylor Expansion}$$

$$Obj^{(t)} \simeq \sum_{i=1}^{n} \left[l(y_{i}, \hat{y}_{i}^{(t-1)}) + g_{i}f_{t}(x_{i}) + \frac{1}{2}h_{i}f_{t}^{2}(x_{i})\right] + \Omega(f_{t})$$

$$g_{i} = \partial_{\hat{y}^{(t-1)}}l(y_{i}, \hat{y}^{(t-1)}), \quad h_{i} = \partial_{\hat{y}^{(t-1)}}^{2}l(y_{i}, \hat{y}^{(t-1)})$$

• MSE

$$g_i = \partial_{\hat{y}^{(t-1)}} (\hat{y}^{(t-1)} - y_i)^2 = 2(\hat{y}^{(t-1)} - y_i) \quad h_i = \partial_{\hat{y}^{(t-1)}}^2 (y_i - \hat{y}^{(t-1)})^2 = 2$$

模型複雜度

$$\Omega(f) = \gamma T + \frac{1}{2} \lambda \sum_{j=1}^{T} w_j^2$$
leaf 數量 leaf 權重

New Cost Function

$$Obj^{(t)} \approx \sum_{i=1}^{n} [g_i w_{q(x_i)} + \frac{1}{2} h_i w_{q(x_i)}^2] + \gamma T + \frac{1}{2} \lambda \sum_{j=1}^{T} w_j^2$$

$$= \sum_{j=1}^{T} [(\sum_{i \in I_j} g_i) w_j + \frac{1}{2} (\sum_{i \in I_j} h_i + \lambda) w_j^2] + \gamma T$$

• Optimization: 最大化IG (not Gradient Descent) for Splitting

GradientBoosting with sklearn

- class sklearn.ensemble.GradientBoostingClassifier(loss='deviance', learning_rate=0.1, n_estimators=100, subsample=1.0, criterion='friedman_mse', min_samples_split=2, min_samples_l eaf=1, min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_decrease=0.0, min_impurity_split=None, init=None, random_state=None, max_features=None, verbose=0, max_leaf_nodes=None, warm_start=False, presort='auto')
- class sklearn.ensemble.GradientBoostingRegressor(loss='ls', learning_rate=0.1, n_estim ators=100, subsample=1.0, criterion='friedman_mse', min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_decrease=0.0, min_impurity_split=None, init=None, random_state=None, max_features=None, alpha=0.9, verbose=0, max_leaf_nodes=None, warm_start=False, presort='auto')

What's XGBoost

- Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library
 - · 優化版GBDT: 運算速度更快、準確率較高
 - website: http://xgboost.readthedocs.io/en/latest/
 - GitHub: https://github.com/dmlc/xgboost

References

- Tianqi Chen (2014)
 - slide: https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf
 - paper: https://homes.cs.washington.edu/~tqchen/pdf/xgboost-supp.pdf