Rank-38 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_1^3 + X_2^3 + X_0^2 X_1 = 0$$

General information

Number of lines	9
Number of points	37
Number of singular points	1
Number of Eckardt points	0
Number of double points	0
Number of single points	36
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{9}
Type of lines on points	$9, 1^{36}$

Singular Points

The surface has 1 singular points:

$$0: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1)$$

The 9 Lines

The lines and their Pluecker coordinates are:

$$\begin{split} \ell_0 &= \left[\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]_{104} = \left[\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]_{104} = \mathbf{Pl}(0,1,0,0,1,0)_{29} \\ \ell_1 &= \left[\begin{array}{cccc} 1 & 0 & \omega^2 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]_{272} = \left[\begin{array}{cccc} 1 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]_{272} = \mathbf{Pl}(0,3,0,0,1,0)_{31} \end{split}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & \omega & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{188} = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{188} = \mathbf{Pl}(0, 2, 0, 0, 1, 0)_{30}$$

$$\ell_{3} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{345} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{345} = \mathbf{Pl}(0, 1, 0, 1, 0, 0)_{13}$$

$$\ell_{4} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{125} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{125} = \mathbf{Pl}(0, 1, 0, 1, 1, 0)_{57}$$

$$\ell_{5} = \begin{bmatrix} 0 & 1 & \omega^{2} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{355} = \begin{bmatrix} 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{355} = \mathbf{Pl}(0, 3, 0, 1, 0, 0)_{15}$$

$$\ell_{6} = \begin{bmatrix} 1 & 1 & \omega^{2} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{293} = \begin{bmatrix} 1 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{293} = \mathbf{Pl}(0, 3, 0, 1, 1, 0)_{59}$$

$$\ell_{7} = \begin{bmatrix} 0 & 1 & \omega & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{350} = \begin{bmatrix} 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{350} = \mathbf{Pl}(0, 2, 0, 1, 0, 0)_{14}$$

$$\ell_{8} = \begin{bmatrix} 1 & 1 & \omega & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{209} = \begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{209} = \mathbf{Pl}(0, 2, 0, 1, 1, 0)_{58}$$

Rank of lines: (104, 272, 188, 345, 125, 355, 293, 350, 209)

Rank of points on Klein quadric: (29, 31, 30, 13, 57, 15, 59, 14, 58)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 0 Double points: The double points on the surface are:

Single Points

The surface has 36 single points: The single points on the surface are:

$0: P_4 = (1, 1, 1, 1)$ lies on line ℓ_4	14: $P_{45} = (0, 2, 1, 1)$ lies on line ℓ_5
1: $P_8 = (1, 0, 1, 0)$ lies on line ℓ_0	15: $P_{47} = (2, 2, 1, 1)$ lies on line ℓ_6
$2: P_9 = (2,0,1,0)$ lies on line ℓ_1	16: $P_{49} = (0, 3, 1, 1)$ lies on line ℓ_7
$3: P_{10} = (3,0,1,0)$ lies on line ℓ_2	17: $P_{52} = (3,3,1,1)$ lies on line ℓ_8
$4: P_{11} = (0, 1, 1, 0)$ lies on line ℓ_3	18: $P_{54} = (1,0,2,1)$ lies on line ℓ_2
$5: P_{12} = (1, 1, 1, 0)$ lies on line ℓ_4	19: $P_{55} = (2,0,2,1)$ lies on line ℓ_0
6: $P_{15} = (0, 2, 1, 0)$ lies on line ℓ_5	20: $P_{56} = (3,0,2,1)$ lies on line ℓ_1
7: $P_{17} = (2, 2, 1, 0)$ lies on line ℓ_6	21: $P_{57} = (0, 1, 2, 1)$ lies on line ℓ_7
8: $P_{19} = (0, 3, 1, 0)$ lies on line ℓ_7	22: $P_{58} = (1, 1, 2, 1)$ lies on line ℓ_8
9: $P_{22} = (3,3,1,0)$ lies on line ℓ_8	23: $P_{61} = (0, 2, 2, 1)$ lies on line ℓ_3
10: $P_{39} = (1,0,1,1)$ lies on line ℓ_0	24: $P_{63} = (2, 2, 2, 1)$ lies on line ℓ_4
11: $P_{40} = (2,0,1,1)$ lies on line ℓ_1	25: $P_{65} = (0, 3, 2, 1)$ lies on line ℓ_5
12: $P_{41} = (3,0,1,1)$ lies on line ℓ_2	26: $P_{68} = (3, 3, 2, 1)$ lies on line ℓ_6
13: $P_{42} = (0, 1, 1, 1)$ lies on line ℓ_3	27: $P_{70} = (1, 0, 3, 1)$ lies on line ℓ_1

```
\begin{array}{lll} 28: \ P_{71} = (2,0,3,1) \ \text{lies on line} \ \ell_2 \\ 29: \ P_{72} = (3,0,3,1) \ \text{lies on line} \ \ell_0 \\ 30: \ P_{73} = (0,1,3,1) \ \text{lies on line} \ \ell_5 \\ 31: \ P_{74} = (1,1,3,1) \ \text{lies on line} \ \ell_6 \\ 32: \ P_{77} = (0,2,3,1) \ \text{lies on line} \ \ell_7 \end{array}
```

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are:

Line Intersection Graph

	ام	4	0	0	4	_	0	_	0
	Ψ	1	2	3	4	Э	b	1	8
$\frac{1}{2}$	0	1	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1	1	1
2	1	1	0	1	1	1	1	1	1
3	1	1	1	0	1	1	1	1	1
4	1	1	1	1	0	1	1	1	1
5	1	1	1	1	1	0	1	1	1
6	1	1	1	1	1	1	0	1	1
7	1	1	1	1	1	1	1	0	1
3 4 5 6 7 8	1	1	1	1	1	1	1	1	0

Neighbor sets in the line intersection graph:

1101811901 BOOD III OHO IIIIO IIIIO	21200011011 81	ωρ11.							
Line 0 intersects									
	Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_7	ℓ_8
	in point	P_3							
Line 1 intersects									
	Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_7	ℓ_8
	in point	P_3							
Line 2 intersects									
	Line	ℓ_0	ℓ_1	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_7	ℓ_8
	in point	P_3							
Line 3 intersects									
	Line	ℓ_0	ℓ_1	ℓ_2	ℓ_4	ℓ_5	ℓ_6	ℓ_7	ℓ_8
	in point	P_3							
Line 4 intersects									
	Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_5	ℓ_6	ℓ_7	ℓ_8
	in point	P_3							
Line 5 intersects									
	Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_6	ℓ_7	ℓ_8
	in point	P_3							
Line 6 intersects									
	Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_7	ℓ_8
	in point	P_3							
Line 7 intersects									
	Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_8
	in point	P_3							

Line 8 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_7
in point	P_3							

The surface has 37 points:

The points on the surface are:

$0: P_3 = (0,0,0,1)$	13: $P_{41} = (3,0,1,1)$	$26: P_{65} = (0, 3, 2, 1)$
$1: P_4 = (1, 1, 1, 1)$	$14: P_{42} = (0, 1, 1, 1)$	$27: P_{68} = (3, 3, 2, 1)$
$2: P_8 = (1,0,1,0)$	15: $P_{45} = (0, 2, 1, 1)$	$28: P_{70} = (1, 0, 3, 1)$
$3: P_9 = (2,0,1,0)$	16: $P_{47} = (2, 2, 1, 1)$	29: $P_{71} = (2, 0, 3, 1)$
$4: P_{10} = (3,0,1,0)$	$17: P_{49} = (0, 3, 1, 1)$	$30: P_{72} = (3,0,3,1)$
$5: P_{11} = (0, 1, 1, 0)$	$18: P_{52} = (3, 3, 1, 1)$	$31: P_{73} = (0, 1, 3, 1)$
$6: P_{12} = (1, 1, 1, 0)$	$19: P_{54} = (1, 0, 2, 1)$	$32: P_{74} = (1, 1, 3, 1)$
$7: P_{15} = (0, 2, 1, 0)$	$20: P_{55} = (2,0,2,1)$	$33: P_{77} = (0, 2, 3, 1)$
$8: P_{17} = (2, 2, 1, 0)$	$21: P_{56} = (3,0,2,1)$	$34: P_{79} = (2, 2, 3, 1)$
$9: P_{19} = (0, 3, 1, 0)$	$22: P_{57} = (0, 1, 2, 1)$	$35: P_{81} = (0,3,3,1)$
$10: P_{22} = (3, 3, 1, 0)$	$23: P_{58} = (1, 1, 2, 1)$	$36: P_{84} = (3, 3, 3, 1)$
$11: P_{39} = (1,0,1,1)$	$24: P_{61} = (0, 2, 2, 1)$	
$12: P_{40} = (2,0,1,1)$	$25: P_{63} = (2, 2, 2, 1)$	