1. Productos

Clase de reserva	Tarifa [€]	Cambios permitidos	Sala Vip	Fast Track	Elección asiento
A	180	Sí	Sí	Sí	Sí
В	130	Solo 1 (penalización $25 \in$)	No	Sí	Sí
\mathbf{C}	100	Solo 1 (penalización $60 \in$)	No	No	Sí
D	80	No	No	No	No
E	40	No	No	No	No

Tabla 1: Servicios y precio de cada clase.

Clase de reserva	μ	σ
A	?	?
В	87	8
С	89	9
D	?	?
E	60	9

Tabla 2: Proyección de demanda para cada clase. (Trayecto MAD - BIO)

$$\sigma = e^{\mu/7} + 2 \tag{1}$$

$$\sigma = \frac{1}{10}\mu^3 - 20\mu + 20\tag{2}$$

La tabla 2 y las ecuaciones (1) y (2) corresponden al trayecto MAD - BIO; las ecuaciones aplican a las clases A y D.

Sea el espacio de la solución:

$$\{5 \le \mu \le 35\}, \{1 \le \sigma \le 30\}$$

Según las figuras 1 y 2, la solución se encuentra en un entorno alrededor de $\mu\approx 14$.

2. Probabilidad EMSR

Para el cálculo de los EMSR(s), se requiere conocer la probabilidad de demanda; para lo cual el modelo toma los datos de demanda proyectados en

Figura 1: Representación de las ecuaciones (1) y (2)

Figura 2: Ecuación (1) - (2)

Figura 3: Ecuación (3) $\mu=0, \sigma=$

la tabla 2 y forma una distribución normal de probabilidades.

Como tal nos ocupa entonces calcular esta probabilidad gaussiana.

La distribución gaussiana (3) está normalizada (si $\mu = 0$ y $\sigma = 1$) tal que la integral en $(-\infty, +\infty)$ iguala a 1:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right)$$
 (3)

$$P(t) = \int_{-\infty}^{t} f(x) dx = 1$$

$$(4)$$

La integral (4) no se puede resolver de forma analítica, sino por métodos computacionales de integración numérica, series de Taylor, etc. En concreto la aproximaremos por el *método del trapecio* y también por el método de Simpson.

Dado que la función (3) es simétrica, la integral (4) es igual a $\frac{1}{2}$. Entonces no es necesario calcular entre $(-\infty,t)$, sino $\frac{1}{2}+\int_{\mu}^{t}f(x)\,\mathrm{d}x$ lo que alivia muchos recursos computacionales.

$$P(t) = \frac{1}{2} + \int_{\mu}^{t} f(x) \, \mathrm{d}x \tag{5}$$