Step-1

$$A_1 = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

Applying row operations on this, we can write

This is the reduced matrix.

So, the number of non zero rows in this matrix = 3 is the dimension of the row space

In other words, any three non zero rows of the given matrix span the row space of $A_{\rm I}$.

Step-2

To find the row null space of A_i , we solve the homogeneous system $A_i x = 0$ using the reduced matrix.

$$\begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
i.e.,

Writing the equations from below, we get

$$x_4 = 0$$

$$x_2 + x_3 + x_4 = 0$$

$$x_1 + 2x_2 + 3x_4 = 0$$

Consequently,

$$x_3 = -x_2$$

$$x_1 = -2x_2$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = k \begin{bmatrix} -2 \\ 1 \\ -1 \\ 0 \end{bmatrix}$$

$$\left\{ \begin{bmatrix} 2 \\ -1 \\ 1 \\ 0 \end{bmatrix} \right\}$$

Putting k = -1, the row null space of A_i is spanned by $\begin{bmatrix} 0 \end{bmatrix}$

Step-3

$$A_{1}^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 3 & 2 & 0 & 4 \end{bmatrix}$$

Further, we transpose the given matrix and reduce it.

$$\xrightarrow[R_4 \to R_4 - 3R_i]{R_4 \to R_4 - 3R_i} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 2 & 0 & 4 \end{bmatrix}$$

$$\xrightarrow{R_3 \to R_3 - R_2}
\xrightarrow{R_4 \to R_4 - R_2}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 4
\end{bmatrix}$$

$$\underbrace{\begin{array}{c} R_{5}/2 \\ R_{5} \leftrightarrow R_{4}/4 \end{array}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Step-4

This is the reduced matrix. So, the number of non zero rows = 3

So, the column space of A_1 is spanned by any three non zero columns of A_1

To get the column null space of A_i , we solve the homogeneous system $A_i^T x = 0$ using the reduced matrix.

i.e.,
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Writing the equations, we get $x_1 = 0, x_2 = 0, x_4 = 0$

From this, we get $x_3 = k$ is any parameter.

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ k \\ 0 \end{bmatrix}$$
The solution set is

Putting k = 1, the column null space of A_1 is spanned by

Step-5

$$A_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 1 & 4 \\ 1 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 4 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$
 Row reduction is

So, row space of A_2 is spanned by $\left\{ \begin{pmatrix} 1 \\ 4 \end{pmatrix} \right\}$

Step-6

To get the row null space of A_2 , we solve $\begin{bmatrix} 1 & 4 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$\Rightarrow x_1 + 4x_2 = 0$$

Putting $x_2 = k$ a parameter, we get $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = k \begin{bmatrix} -4 \\ 1 \end{bmatrix}$

Putting k = 1, the row null space of A_2 is spanned by $\begin{bmatrix} -4 \\ 1 \end{bmatrix}$

Step-7

We now transpose A_2 and find the other two.

$$A_2^T = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 4 & 4 \end{bmatrix}$$

Using row operations, we reduce it to $\approx \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

So, the rank of A_2^T is the number of non zero rows in the reduced matrix = 1

Therefore, the column space of A_2 is spanned by

Step-8

 $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ To get the column null space, we solve the homogeneous system

$$\Rightarrow x_1 + x_2 + x_3 = 0$$

Using $x_2 = k$, $x_3 = m$, parameters, we get $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = k \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + m \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$

Therefore, the column null space of A_2 is spanned by $\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$