The group G is isomorphic to the group labelled by [40, 2] in the Small Groups library. Ordinary character table of $G\cong C40$:

$\begin{array}{ c cccccccccccccccccccccccccccccccccc$	20a $40b$ $10a$	40c $20b$ $40d$ $5b$	40e $20c$	40f $10b$ $40q$	20d $40h$ $5c$ $40i$	0e $40j$ $10c$ $40k$	20f $40l$ $5d$	40m $20g$ $40n$ $10d$ $40o$ $20h$ $40p$
χ_1 1 1 1 1 1 1 1 1 1	1 1 1	1 1 1 1	1 1	1 1 1	1 1 1 1	1 1 1 1	1 1 1	1 1 1 1 1 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1 \qquad -1 \qquad 1$	-1 1 -1 1	-1 1	-1 1 -1	1 -1 1 -1	1 -1 1 -1	1 -1 1	-1 1 -1 1 -1 1 -1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	E(5) $E(5)$ $E(5)$	E(5) E(5) E(5) E(5)	$E(5)^2 E(5)^2$	$E(5)^2$ $E(5)^2$ $E(5)^2$	$E(5)^2$ $E(5)^2$ $E(5)^3$ $E(5)^3$	$(5)^3 E(5)^3 E(5)^3 E(5)$	$E(5)^3 E(5)^3 E(5)^4$	$E(5)^4$ $E(5)^4$ $E(5)^4$ $E(5)^4$ $E(5)^4$ $E(5)^4$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		E(5) E(5) -E(5) E(5)	$E(5)^2 - E(5)^2$	$-E(5)^2$ $E(5)^2$ $-E(5)^2$	$E(5)^2$ $-E(5)^2$ $E(5)^3$ $-E(5)^3$	$(5)^3 -E(5)^3 E(5)^3 -E(5)^3$	$(5)^3 E(5)^3 -E(5)^3 E(5)^4$	$-E(5)^4$ $E(5)^4$ $-E(5)^4$ $E(5)^4$ $-E(5)^4$ $-E(5)^4$
		$E(5)^2$ $E(5)^2$ $E(5)^2$ $E(5)$	()	$E(5)^4$ $E(5)^4$ $E(5)^4$	$E(5)^4$ $E(5)^4$ $E(5)$	(5) E(5) E(5) E(5)		$E(5)^3$ $E(5)^3$ $E(5)^3$ $E(5)^3$ $E(5)^3$ $E(5)^3$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$E(5)^2 - E(5)^2 - E(5)^2 -$	$E(5)^2$ $E(5)^2$ $-E(5)^2$ $E(5)$	$E(5)^4$ $E(5)^4$	$-E(5)^4$ $E(5)^4$ $-E(5)^4$	$E(5)^4 - E(5)^4 - E(5) - E(5)$	(5) -E(5) E(5) -E(5)		$-E(5)^3$ $E(5)^3$ $-E(5)^3$ $E(5)^3$ $-E(5)^3$ $E(5)^3$ $-E(5)^3$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$E(5)^3$ $E(5)^3$ $E(5)^3$	E(5) E(5)	E(5) $E(5)$ $E(5)$	$E(5)$ $E(5)$ $E(5)^4$ $E(5)^4$	$(5)^4 E(5)^4 E(5)^4 E(5)$	$E(5)^4 E(5)^4 E(5)^2$	$E(5)^2$ $E(5)^2$ $E(5)^2$ $E(5)^2$ $E(5)^2$ $E(5)^2$
$ \chi_8 $ 1 -1 1 -1 1 -1 1 -1 $E(5)^3$ $-E(5)^3$	$E(5)^3 -E(5)^3 E(5)^3 -$	$E(5)^3$ $E(5)^3$ $-E(5)^3$ $E(5)$		-E(5) E(5) -E(5)	$E(5)$ $-E(5)$ $E(5)^4$ $-E(5)^4$	$(5)^4 -E(5)^4 E(5)^4 -E(5)^4$	$E(5)^4 E(5)^4 E(5)^2$	$-E(5)^2$ $E(5)^2$ $-E(5)^2$ $E(5)^2$ $-E(5)^2$ $E(5)^2$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$E(5)^4$ $E(5)^4$ $E(5)^4$	$E(5)^4$ $E(5)^4$ $E(5)^4$ $E(5)$	$E(5)^3 E(5)^3$	$E(5)^3$ $E(5)^3$ $E(5)^3$	$E(5)^3$ $E(5)^3$ $E(5)^2$ $E(5)^2$	$(5)^2 E(5)^2 E(5)^2 E(5)$	$E(5)^2$ $E(5)^2$ $E(5)$	E(5) $E(5)$ $E(5)$ $E(5)$ $E(5)$
$\left \begin{array}{c cccccccccccccccccccccccccccccccccc$	$E(5)^4 - E(5)^4 - E(5)^4 -$	$E(5)^4$ $E(5)^4$ $-E(5)^4$ $E(5)$	$E(5)^3 E(5)^3$	$-E(5)^3$ $E(5)^3$ $-E(5)^3$	$E(5)^3 -E(5)^3 E(5)^2 -E(5)^2$	$(5)^2 -E(5)^2 E(5)^2 -E(5)^2$	$(5)^2 E(5)^2 -E(5)^2 E(5)$	-E(5) $E(5)$ $-E(5)$ $E(5)$ $-E(5)$
$ \chi_{11} $ 1 $E(4)$ -1 $-E(4)$ 1 $E(4)$ -1 $-E(4)$ 1 $E(4)$	-1 -E(4) 1	E(4) -1 -E(4) 1	E(4) -1	-E(4) 1 $E(4)$	$-1 \qquad -E(4) \qquad 1 \qquad E(4)$	-1 $-E(4)$ 1 $E(4)$	-1 -E(4) 1	E(4) -1 $-E(4)$ 1 $E(4)$ -1 $-E(4)$
$ \chi_{12} $ 1 $-E(4)$ -1 $E(4)$ 1 $-E(4)$ -1 $E(4)$ 1 $-E(4)$		E(4) -1 $E(4)$ 1	-E(4) -1	E(4) 1 $-E(4)$	-1 E(4) 1 -E(4)	-1 $E(4)$ 1 $-E(4)$,	-E(4) -1 $E(4)$ 1 $-E(4)$ -1 $E(4)$
$ \chi_{13} $ 1 $E(4)$ -1 $-E(4)$ 1 $E(4)$ -1 $-E(4)$ $E(5)$ $E(20)^9$	$-E(5)$ $-E(20)^9$ $E(5)$ $E(5)$	$E(20)^9$ $-E(5)$ $-E(20)^9$ $E(5)$	$E(20)^{13} - E(5)^2$	$-E(20)^{13}$ $E(5)^2$ $E(20)^{13}$		$E(5)^3 - E(20)^{17} E(5)^3 E(20)$		$E(20)$ $-E(5)^4$ $-E(20)$ $E(5)^4$ $E(20)$ $-E(5)^4$ $-E(20)$
		$E(20)^9 - E(5) = E(20)^9 = E(5)$	()	$E(20)^{13}$ $E(5)^2$ $-E(20)^{13}$		$E(5)^3 E(20)^{17} E(5)^3 -E(20)^{17}$	/_	$-E(20)$ $-E(5)^4$ $E(20)$ $E(5)^4$ $-E(20)$ $-E(5)^4$ $E(20)$
		$(20)^{13}$ $-E(5)^2$ $-E(20)^{13}$ $E(5)$		$-E(20)$ $E(5)^4$ $E(20)$		$E(5)$ $-E(20)^9$ $E(5)$ $E(20)$		$E(20)^{17}$ $-E(5)^3$ $-E(20)^{17}$ $E(5)^3$ $E(20)^{17}$ $-E(5)^3$ $-E(20)^{17}$
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$		$E(20)^{13} - E(5)^2 - E(20)^{13} - E(5)$	()	$E(20)$ $E(5)^4$ $-E(20)$		$E(5)$ $E(20)^9$ $E(5)$ $-E(20)^9$		$-E(20)^{17}$ $-E(5)^3$ $E(20)^{17}$ $E(5)^3$ $-E(20)^{17}$ $-E(5)^3$ $E(20)^{17}$
		$(20)^{17}$ $-E(5)^3$ $-E(20)^{17}$ $E(5)^3$		$-E(20)^9$ $E(5)$ $E(20)^9$		$E(5)^4 - E(20) E(5)^4 E(20)$, , , , , , , , , , , , , , , , , , , ,	$E(20)^{13}$ $-E(5)^2$ $-E(20)^{13}$ $E(5)^2$ $E(20)^{13}$ $-E(5)^2$ $-E(20)^{13}$
		$E(20)^{17} - E(5)^3 - E(20)^{17} - E(5)^3$		$E(20)^9$ $E(5)$ $-E(20)^9$		$E(5)^4$ $E(20)$ $E(5)^4$ $-E(2)$		$-E(20)^{13}$ $-E(5)^2$ $E(20)^{13}$ $E(5)^2$ $-E(20)^{13}$ $-E(5)^2$ $E(20)^{13}$
		$E(20)$ $-E(5)^4$ $-E(20)$ $E(5)$	()	$-E(20)^{17}$ $E(5)^3$ $E(20)^{17}$		$E(5)^2 - E(20)^{13} - E(5)^2 - E(20)$		$E(20)^9$ $-E(5)$ $-E(20)^9$ $E(5)$ $E(20)^9$ $-E(5)$ $-E(20)^9$
		$E(20) -E(5)^4 E(20) E(5)$	$E(20)^{17} - E(5)^3$	$E(20)^{17}$ $E(5)^3$ $-E(20)^{17}$		$E(5)^2$ $E(20)^{13}$ $E(5)^2$ $-E(20)^{13}$	$)^{13} - E(5)^2 E(20)^{13} E(5)$	$-E(20)^9$ $-E(5)$ $E(20)^9$ $E(5)$ $-E(20)^9$ $-E(5)$ $E(20)^9$
		$-E(8)$ $-E(4)$ $-E(8)^3$ 1	E(8) $E(4)$	$E(8)^3$ -1 $-E(8)$	$-E(4)$ $-E(8)^3$ 1 $E(8)$	$E(8)^3 - E(8)^3$	$E(4) -E(8)^3 1$	$E(8)$ $E(4)$ $E(8)^3$ -1 $-E(8)$ $-E(4)$ $-E(8)^3$
		$E(8)$ $-E(4)$ $E(8)^3$ 1	-E(8) $E(4)$	$-E(8)^3$ -1 $E(8)$		$-E(8)^3$ -1 $E(8)$	()	$-E(8)$ $E(4)$ $-E(8)^3$ -1 $E(8)$ $-E(4)$ $E(8)^3$
		$E(40)^{13}$ $-E(20)^9$ $-E(40)^{23}$ $E(5)$		$E(40)^{31}$ $-E(5)^2$ $-E(40)^{21}$		$E(40)^{39} - E(5)^3 - E(40)^{39}$		$E(40)^{37}$ $E(20)$ $E(40)^7$ $-E(5)^4$ $-E(40)^{37}$ $-E(20)$ $-E(40)^7$
$\begin{bmatrix} \lambda^{22} \end{bmatrix}$	(-)	$(40)^{13}$ $-E(20)^9$ $E(40)^{23}$ $E(5)$		$-E(40)^{31}$ $-E(5)^2$ $E(40)^{21}$		$(20)^{17} - E(40)^{39} - E(5)^3 - E(40)$		$-E(40)^{37}$ $E(20)$ $-E(40)^{7}$ $-E(5)^{4}$ $E(40)^{37}$ $-E(20)$ $E(40)^{7}$
		$E(40)^{21}$ $-E(20)^{13}$ $-E(40)^{31}$ $E(5)$		$E(40)^7$ $-E(5)^4$ $-E(40)^{37}$		$E(40)^{23} - E(5) - E(40)^{23}$		$E(40)^{29}$ $E(20)^{17}$ $E(40)^{39}$ $-E(5)^3$ $-E(40)^{29}$ $-E(20)^{17}$ $-E(40)^{39}$
	-() -() -(-)	$(40)^{21}$ $-E(20)^{13}$ $E(40)^{31}$ $E(5)$	\ /	$-E(40)^7$ $-E(5)^4$ $E(40)^{37}$		$(20)^9 - E(40)^{23} - E(5) - E(40)$		$-E(40)^{29}$ $E(20)^{17}$ $-E(40)^{39}$ $-E(5)^3$ $E(40)^{29}$ $-E(20)^{17}$ $E(40)^{39}$
		$E(40)^{29} - E(20)^{17} - E(40)^{39} E(5)$		$E(40)^{23}$ $-E(5)$ $-E(40)^{13}$		$(20) E(40)^7 -E(5)^4 -E(40)^7$		$E(40)^{21}$ $E(20)^{13}$ $E(40)^{31}$ $-E(5)^2$ $-E(40)^{21}$ $-E(20)^{13}$ $-E(40)^{31}$
		$(40)^{29}$ $-E(20)^{17}$ $E(40)^{39}$ $E(5)$		$-E(40)^{23}$ $-E(5)$ $E(40)^{13}$		(20) $-E(40)^7$ $-E(5)^4$ $E(40)$		$-E(40)^{21}$ $E(20)^{13}$ $-E(40)^{31}$ $-E(5)^2$ $E(40)^{21}$ $-E(20)^{13}$ $E(40)^{31}$
		$E(40)^{37}$ $-E(20)$ $-E(40)^{7}$ $E(5)$		$E(40)^{39} - E(5)^3 - E(40)^{29}$		$(20)^{13}$ $E(40)^{31}$ $-E(5)^2$ $-E(40)^{31}$		$E(40)^{13}$ $E(20)^9$ $E(40)^{23}$ $-E(5)$ $-E(40)^{13}$ $-E(20)^9$ $-E(40)^{23}$
		$(40)^{37}$ $-E(20)$ $E(40)^7$ $E(5)$	` / ` /	$-E(40)^{39}$ $-E(5)^3$ $E(40)^{29}$		$(20)^{13} - E(40)^{31} - E(5)^2 - E(40)^{31}$		$-E(40)^{13}$ $E(20)^9$ $-E(40)^{23}$ $-E(5)$ $E(40)^{13}$ $-E(20)^9$ $E(40)^{23}$
		$E(8)^3$ $E(4)$ $-E(8)$ 1	$E(8)^3 - E(4)$	$E(8)$ -1 $-E(8)^3$		E(4) E(8) -1 -E(8)	, , , , , , , , , , , , , , , , , , , ,	$E(8)^3$ $-E(4)$ $E(8)$ -1 $-E(8)^3$ $E(4)$ $-E(8)$
		$E(8)^3$ $E(4)$ $E(8)$ 1	$-E(8)^3$ $-E(4)$	$-E(8)$ -1 $E(8)^3$	_(-) (-)	E(4) - E(8) -1 E(8)		$-E(8)^3$ $-E(4)$ $-E(8)$ -1 $E(8)^3$ $E(4)$ $E(8)$
		$E(40)^{23}$ $E(20)^9$ $-E(40)^{13}$ $E(5)$				$(20)^{17}$ $E(40)^{29}$ $-E(5)^3$ $-E(40)^{17}$, , , , , , , , , , , , , , , , , , , ,	$E(40)^7$ $-E(20)$ $E(40)^{37}$ $-E(5)^4$ $-E(40)^7$ $E(20)$ $-E(40)^{37}$
		$(40)^{23}$ $E(20)^9$ $E(40)^{13}$ $E(5)$	()			$(20)^{17} - E(40)^{29} - E(5)^3 - E(40)$		$-E(40)^7$ $-E(20)$ $-E(40)^{37}$ $-E(5)^4$ $E(40)^7$ $E(20)$ $E(40)^{37}$
		$E(40)^{31}$ $E(20)^{13}$ $-E(40)^{21}$ $E(5)$	(- /	$E(40)^{37} - E(5)^4 - E(40)^7$		$(20)^9$ $E(40)^{13}$ $-E(5)$ $-E(40)^{13}$		$E(40)^{39}$ $-E(20)^{17}$ $E(40)^{29}$ $-E(5)^3$ $-E(40)^{39}$ $E(20)^{17}$ $-E(40)^{29}$
		$(40)^{31}$ $E(20)^{13}$ $E(40)^{21}$ $E(5)$	\ /_ \ /_	$-E(40)^{37}$ $-E(5)^4$ $E(40)^7$		$(20)^9$ $-E(40)^{13}$ $-E(5)$ $E(40)$		$-E(40)^{39}$ $-E(20)^{17}$ $-E(40)^{29}$ $-E(5)^3$ $E(40)^{39}$ $E(20)^{17}$ $E(40)^{29}$
		$E(40)^{39}$ $E(20)^{17}$ $-E(40)^{29}$ $E(5)^{39}$, , , , , , , , , , , , , , , , , , , ,	10		$E(20)$ $E(40)^{37}$ $-E(5)^4$ $-E(40)^{37}$		$E(40)^{31}$ $-E(20)^{13}$ $E(40)^{21}$ $-E(5)^2$ $-E(40)^{31}$ $E(20)^{13}$ $-E(40)^{21}$
		$(40)^{39}$ $E(20)^{17}$ $E(40)^{29}$ $E(5)$		(-)		$E(20) - E(40)^{37} - E(5)^4 = E(40)^{37}$		$-E(40)^{31}$ $-E(20)^{13}$ $-E(40)^{21}$ $-E(5)^2$ $E(40)^{31}$ $E(20)^{13}$ $E(40)^{21}$
		$E(40)^7$ $E(20)$ $-E(40)^{37}$ $E(5)$	()	(-)		$(20)^{13}$ $E(40)^{21}$ $-E(5)^2$ $-E(40)^{21}$		$E(40)^{23}$ $-E(20)^9$ $E(40)^{13}$ $-E(5)$ $-E(40)^{23}$ $E(20)^9$ $-E(40)^{13}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$-E(20)$ $-E(40)^{37}$ $-E(5)^4$ $E(5)^4$	$E(40)^7$ $E(20)$ $E(40)^{37}$ $E(5)$	$\frac{3}{-E(40)^{39}}$ $-E(20)^{17}$	$-E(40)^{29}$ $-E(5)^3$ $E(40)^{39}$	$E(20)^{17}$ $E(40)^{29}$ $E(5)^2$ $-E(40)^{31}$ $-E(40)^{31}$	$(20)^{13}$ $-E(40)^{21}$ $-E(5)^2$ $E(40)$	$E(20)^{13}$ $E(40)^{21}$ $E(5)$	$-E(40)^{23}$ $-E(20)^9$ $-E(40)^{13}$ $-E(5)$ $E(40)^{23}$ $E(20)^9$ $E(40)^{13}$

Trivial source character table of $G \cong C40$ at $p=5$:														
$\mathrm{lisers}\ N_i$					N_1					N_2				
p-subgroups of G up to conjugacy in G										P_2				
Representatives $n_j \in N_i$	1a	8a	4a	8b	2a $8c$	4b	8 <i>d</i>	1a 8a	4a $2a$	8b	8c $4b$) 8d		
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 1 \cdot \chi_{3} + 0 \cdot \chi_{4} + 1 \cdot \chi_{5} + 0 \cdot \chi_{6} + 1 \cdot \chi_{7} + 0 \cdot \chi_{8} + 1 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} +$	$\cdot \chi_{39} + 0 \cdot \chi_{40} 5$	5	5	5	5 5	5	5	0 0	0 0	0	0 0	0		
	$\cdot \chi_{39} + 0 \cdot \chi_{40} \mid 5$	-5	5	-5	$5 \qquad -5$	5	-5	0 0	0 0	0	0 0	0		
	$\cdot \chi_{39} + 0 \cdot \chi_{40} \mid 5$	5 * E(4)	-5	-5 * E(4)	5 5 * E(4)	-5	-5 * E(4)	0 0	0 0	0	0 0	0		
	$\cdot \chi_{39} + 0 \cdot \chi_{40} \mid 5$	-5 * E(4)	-5	5 * E(4)	5 -5*E(4)	-5	5 * E(4)	0 0	0 0	0	0 0	0		
	$\cdot \chi_{39} + 0 \cdot \chi_{40} \mid 5$	5 * E(8)	5 * E(4)	$5 * E(8)^3$	-5 -5 * E(8)	-5*E(4)	$-5*E(8)^3$	0 0	0 0	0	0 0	0		
	$\cdot \chi_{39} + 0 \cdot \chi_{40} \mid 5$	-5 * E(8)	5 * E(4)	$-5 * E(8)^3$	-5 5 * E(8)	-5*E(4)	$5*E(8)^3$	0 0	0 0	0	0 0	0		
	$\cdot \chi_{39} + 0 \cdot \chi_{40} \mid 5$	$5 * E(8)^3$	-5 * E(4)	5 * E(8)	-5 -5 * E(8)	$)^3 5 * E(4)$	-5 * E(8)	0 0	0 0	0	0 0	0		
	$\cdot \chi_{39} + 1 \cdot \chi_{40} \mid 5$	$-5 * E(8)^3$	-5 * E(4)	-5 * E(8)	-5 5 * E(8)	5*E(4)	5 * E(8)	0 0	0 0	0	0 0	0		
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} +$	$\cdot \chi_{39} + 0 \cdot \chi_{40} 1$	1	1	1	1 1	1	1	1 1	1 1	1	1 1	1		
	$\cdot \chi_{39} + 0 \cdot \chi_{40} \mid 1$	-1	1	-1	1 -1	1	-1	1 -1	1 1	-1	-1 1	-1		
	$\cdot \chi_{39} + 0 \cdot \chi_{40} \mid 1$	-E(4)	-1	E(4)	1 $-E(4)$	-1	E(4)	1 - E(4)	-1 1	E(4)	-E(4) -1	E(4)		
	$\cdot \chi_{39} + 0 \cdot \chi_{40} \mid 1$	E(4)	-1	-E(4)	1 $E(4)$	-1	-E(4)	1 E(4)	-1 1	-E(4)	E(4) -1	1 - E(4)		
	$\cdot \chi_{39} + 0 \cdot \chi_{40} \mid 1$	$E(8)^{3}$	-E(4)	E(8)	$-1 - E(8)^3$	E(4)	-E(8)	$1 E(8)^3$	-E(4) -1	E(8)	$-E(8)^3$ $E(4)$	-E(8)		
		$-E(8)^{3}$	-E(4)	-E(8)	$-1 E(8)^3$	E(4)	E(8)	$1 - E(8)^3$	-E(4) -1	-E(8)	$E(8)^3$ $E(4)$	(4) $E(8)$		
	$\cdot \chi_{39} + 0 \cdot \chi_{40} \mid 1$	E(8)	E(4)	$E(8)^{3}$	-1 -E(8)	-E(4)	$-E(8)^3$	1 E(8)	E(4) -1	$E(8)^{3}$	-E(8) $-E(8)$	$-E(8)^3$		
	$\cdot \chi_{39} + 0 \cdot \chi_{40} \mid 1$	-E(8)	E(4)	$-E(8)^3$	-1 $E(8)$	-E(4)	$E(8)^3$	1 - E(8)	E(4) -1	$-E(8)^3$	E(8) $-E(8)$	$E(4) E(8)^3$		

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 2, 3, 4, 5)]) \cong C5$

 $N_1 = Group([(1, 2, 3, 4, 5), (6, 7, 8, 9, 10, 11, 12, 13)]) \cong C40$ $N_2 = Group([(1, 2, 3, 4, 5), (6, 7, 8, 9, 10, 11, 12, 13)]) \cong C40$