This weeks problem set provides some review questions in the lead up to the second midterm. A question marked with a \dagger is difficult and probably too hard for an exam (though still illustrates a useful point). A question marked with a * is especially important.

Homework 4: due Monday 2 February: questions 3 and 5 below.

- 1. From section 5.2, problems 1, $3a, d, e, 8, 9, 10, 11, 18^*, 19, 20^{\dagger}$.
- 2. From section 6.1, problems 1, 2, 3, 4, 8*, 9, 12, 16, 17*, 23, 29.
- 3. Let $T:V\longrightarrow V$ be a diagonalisable linear operator. Let $C(T)\subseteq \operatorname{Hom}(V,V)$ be the set of all linear maps that commute with T. I.e

$$C(T) = \{ S \in \text{Hom}(V, V) \mid S \circ T = T \circ S \}.$$

- (a) If T has $n = \dim V$ distinct eigenvalues, show that any $S \in C(T)$ is diagonalisable.
- (b) Describe explicitly C(T) in the case $T = x \frac{d}{dx} : \mathbb{C}_1[x] \longrightarrow \mathbb{C}_1[x]$.
- (c) Show that part (a) does not necessarily hold if T does not have n distinct eigenvalues.
- 4. Suppose U,W are subspaces of a finite dimensional vector space V and that U+W=V. Show that $U\oplus W=V$ if and only if $\dim U+\dim W=\dim V$.

The previous question, motivates the following definition.

Definition: If U_i , for $1 \le i \le k$, are subspaces of a vector space V, then we say $V = U_1 \oplus U_2 \dots \oplus U_k$ if $V = U_1 + U_2 + \dots + U_k$, i.e. every vector $v \in V$ can be written as a sum $v = \sum_{i=1}^k u_i$ with $u \in U_i$, and $\dim V = \sum_{i=1}^k \dim U_i$.

5.* Suppose that V is a finite dimensional vector space over \mathbb{F} and $T:V\longrightarrow V$ is a linear operator, with distinct eigenvalues $\lambda_1,\ldots,\lambda_k$. Prove that

$$V = E_{\lambda_1} \oplus E_{\lambda_2} \oplus \cdots \oplus E_{\lambda_k}$$

if and only if T is diagonalisable.