Compiler Constructions Deterministic Parsing Chapter 16: LL(k)Grammars Part 2

Example

- Give the $FIRST_2$ and $FOLLOW_2$ sets for each of the variables of the following grammar.
- Construct the length-two lookahead sets for the rules of the grammar.
- Is G strong LL(2) grammar?

$$G: S \rightarrow A\#\#$$

$$A \rightarrow bBA/BcAa/\lambda$$

$$B \rightarrow acB/b$$

Solution

$$G: S \rightarrow A\#\#$$

$$A \rightarrow bBA/BcAa/\lambda$$

$B \rightarrow acB/b$

First

$$First_2(S) = \{ba, bb, ac, bc, ##\}$$

First₂ (A) = { ba, bb, ac, bc,
$$\lambda$$
}

$$First_2(B) = \{b, ac\}$$

Follow:

$$G: S \rightarrow A\#\#$$

$$A \rightarrow bBA / BcAa / \lambda$$

$$B \rightarrow acB/b$$

Follow₂ (S) =
$$\{\lambda\}$$

$$Follow_2(A) = {##, a#, aa}$$

 $Follow_2(B) = \{ ba, bb, ac, bc, ##, a#, aa, cb, ca \}$

Lookahead

$$LA_2(S \rightarrow A\#\#) = \{ ba, bb, ac, bc, \#\# \}$$

$$LA_2(A \rightarrow bBA) = \{ bb, ba \}$$

$$LA_2(A \rightarrow BcAa) = \{bc, ac \}$$

$$LA_2(A \rightarrow \lambda) = \{ \#, a\#, aa \}$$

$$LA_2(B \rightarrow acB) = \{ ac \}$$

$$LA_2(B\rightarrow b) = \{bb, ba, b\#, bc\}$$

G is strong LL(2)

 $G: S \rightarrow A\#\#$

 $A \rightarrow bBA / BcAa / \lambda$

 $B \rightarrow acB/b$

Example

G₁:
$$S \rightarrow Aabd \mid cAbcd$$

 $A \rightarrow a \mid b \mid \lambda$
FIRST₃(S) = {aab, bab, abd, cab, cbb, cbc}
FIRST₃(A) = {a, b, \lambda}
FIRST₃(a) = {a}
FIRST₃(b) = {b}
FIRST₃(c) = {c}
FIRST₃(d) = {d}
FOLLOW₃(S) = {\lambda}
FOLLOW₃(A) = {abd, bcd}

lookahead

The set LA₃($S \to Aabd$) is explicitly constructed from the sets FIRST₃(A), FIRST₃(a), FIRST₃(b), FIRST₃(d), and FOLLOW₃(S) using the strategy outlined in Theorem 16.2.5.

LA₃(
$$S \rightarrow Aabd$$
) = trunc₃(FIRST₃(A)FIRST₃(a)FIRST₃(b)FIRST₃(d)FOLLOW₃(S))

= trunc₃({ a,b,λ }{ a }{ b }{ d }{ λ })

= trunc₃({ $aabd,babd,abd$ })

= { aab,bab,abd }

LA₃($S \rightarrow Aabd$) = { aab,bab,abd }

LA₃($S \rightarrow CAbcd$) = { cab,cbb,cbc }

LA₃($A \rightarrow a$) = { aab,abc }

LA₃($A \rightarrow b$) = { bab,bbc }

LA₃($A \rightarrow b$) = { bab,bbc }

Cabcal As ($A \rightarrow b$) = { abd,bbc }

LA₃($A \rightarrow b$) = { abd,bcd }.

$$LA_{2}(S, S \rightarrow Aabd) = \{aa, ba, ab\}$$

$$LA_{2}(S, S \rightarrow cAbcd) = \{ca, cb\}$$

$$LA_{2}(Aabd, A \rightarrow a) = \{aa\}$$

$$LA_{2}(cAbcd, A \rightarrow a) = \{ab\}$$

$$LA_{2}(Aabd, A \rightarrow b) = \{ba\}$$

$$LA_{2}(cAbcd, A \rightarrow b) = \{bb\}$$

$$LA_{2}(cAbcd, A \rightarrow b) = \{bc\}.$$

Since the alternatives for a given sentential form are disjoint, the grammar is LL(2).

But G is not strong LL(2)

since the string ab is in both $LA_2(A \to a)$ and $LA_2(A \to \lambda)$. The length-two lookahead sets for the sentential forms containing the variables S and A are