FORMULA: FOLDING OF ORIGAMI-BASED MULTISTABLE LAMINATES

ADMIRE-MCSA ADVANCED MATERIALS POSTDOCTORAL FELLOWSHIP

HOST: PROF. PAUL WEAVER, UNIVERSITY OF LIMERICK

Ayan Haldar

04/07/23

PROPOSED DESIGN OF ARCHITECTURED MATERIAL

Multistable Composite Laminates

[0%0] [90%0] [0%90] [0%90] [90%0] [0%0]

Rectangular Laminates

Using Carbon fiber reinforced composites additively manufactured using MarkedForge 3

Tessellated Bistable Structure

Designed Core of Wind Turbine Flap

STRATEGY - A

ZPR trailing edge (Qing et al.)

LOCKING AT MULTIPLE STABLE SHAPES

STRATEGY - B

ZPR trailing edge (Qing et al.)

Min plate length of 200 mm for substantial deformation for a flap

Hinges cause issue in manufacturing or scalability

STRATEGY - B (IMPROVED DESIGN)

With hinges at the corners

[0]₂ layers are the corners

DESIGN OF UNIT CELL EXPLORING BISTABILITY (R10)

*Contour indicates U_z

STIFFNESS TAILORING (R10 8S 8U 4C)

STIFFNESS TAILIORING: R30 8S 8U 4C

DESIGN OF UNIT CELL - EXPLORING BISTABILITY (R30)

DIVERSE STABLE SHAPES FROM VS LAMINATES

Obtained shapes after thermal cool-down for different parameters of VS laminates

Haldar et al. 2018, Composite Structures

BISTABLE LAMINATE WITH ATL

 $\phi \langle T_0 | T_1 \rangle$

0<30|60>/0<-30|-60>

