Aufgabe 2

(1) Seien u = acgacgtag und v = ggacgtgcag zwei Sequenzen über dem DNA-Alphabet $A = \{a, c, g, t\}$. Bestimmen Sie die q-Wort Distanz von u und v für q = 2 und q = 3.

q=2	Auftreten in u	Auftreten in v	$ G_q(u)(w) - G_q(v)(w) $
aa	0	0	0
ac	2	1	1
ag	1	1	0
at	0	0	0
ca	0	1	1
СС	0	0	0
cg	2	1	1
ct	0	0	0
ga	1	1	0
gc	0	1	1
gg	0	1	1
gt	1	1	0
ta	1	0	1
tc	0	0	0
tg	0	1	1
tt	0	0	0

- => Um die q-Wort Distanz zu berechnen wird die Häufigkeit des Vorkommens von w in u bzw. von w in v aufsummiert (letzte Spalte).
- => Die q-Wort Distanz für q = 2 beträgt: qdist(u,v) = 7.
- => Für q = 3 wurde dieselbe Tabelle erstellt. Die q-Wort Distanz beträgt hier: qdist(u,v) = 9
- (2) Bestimmen Sie edist δ (u, v) und ein optimales Alignment von u und v.

$$u = acgacgtag \ und \ v = ggacgtgcag \ \ddot{u}ber \ A = \{a, \, c, \, g, \, t\}$$

- **g g a c g t g c a g** Die Edit-Distanz beträgt: edist(u,v) = 4

(3) Ersetzen Sie in u und v die Zeichen a und g jeweils durch r und die Zeichen c und t durch y. Welche Werte erhalten Sie nun für die q-Wort Distanz (für q = 2 oder q = 3) und für die Einheitskostendistanz?

 $u = r y r r y r y r r und v = r r r y r y r r über A = \{r, y\}$

q=2	Auftreten in u	Auftreten in v	$ G_q(u)(w) - G_q(v)(w) $
rr	2	3	1
ry	3	3	0
уу	0	0	0
yr	3	3	0

=> Die q-Wort Distanz für q = 2 beträgt: qdist(u,v) = 1

q=3	Auftreten in u	Auftreten in v	$ G_q(u)(w) - G_q(v)(w) $
rrr	0	1	1
rry	1	1	0
ryr	3	3	0
ryy	0	0	0
ууу	0	0	0
yyr	0	0	0
yry	1	2	1
yrr	2	1	1

=> Die q-Wort Distanz für q = 3 beträgt: qdist(u,v) = 3

Alignment:

ryr-ryryrr | | | | | | | | edist(u,v) = 2 rrryryryrr (4) Geben Sie Beispiele für Paare (u_1, v_1) , (u_2, v_2) , (u_3, v_3) von nicht leeren Sequenzen und Werte q_1, q_2, q_3 an, für die gilt:

Dabei können Sie q $i \ge 2$ für $1 \le i \le 3$ frei wählen.

a) $qgdist q_1(u_1, v_1) > edist_\delta(u_1, v_1)$

Beispiel: u = aaggaa v= aaaaaa

 \ddot{u} ber Alphabet A = {a,g}

q=2	Auftreten in u	Auftreten in v	$ G_q(u)(w) - G_q(v)(w) $
aa	2	5	3
ag	1	0	1
gg	1	0	1
ga	1	0	1

=> qdist(u,v) = 6

=> edist(u,v) = 2

b) qgdist $q_2(u_2, v_2) = edist_\delta(u_2, v_2)$

Beispiel: u = aaaa v = aaaa

 \ddot{u} ber Alphabet $A = \{a\}$

q=2	Auftreten in u	Auftreten in v	$ G_q(u)(w) - G_q(v)(w) $
aa	3	3	0

=> qdist(u,v)=0

=> edist(u,v) = 0

c) qgdist q_3 (u_3 , v_3) < edist_{δ} (u_3 , v_3)

Beispiel: u = aga v = gag

über	Λ1-	shab	α + Λ	– (a	~l
uner	ΑII	man	ei A	- 3a	.9 }

q=2	Auftreten in u	Auftreten in v	$ G_q(u)(w) - G_q(v)(w) $
aa	0	0	0
ag	1	1	0
gg	0	0	0
ga	1	1	0

=> qdist(u,v) = 0

=> edist(u,v) = 2