Lines:

• 2 points determine a line: How many lines can you draw between points *A* and *B* below?

• line segment between points A and B

• ray starting a point A that goes through point B

Angle: Two line segments or two rays with a common end point.

- Vertex- The common end point of the lines/rays
- Initial side
- Terminal side
- Positive angle- rotation is counter-clockwise
- Negative angle- clockwise
- Measure of an angle is in degrees. The symbol is °.

L 705 Clockwise = positive

Measure of an angle:

360°: one complete rotation in the counter-clockwise direction

180°: half of a counter-clockwise rotation

90°: half of a 180°, i.e. ¼ of a counterclockwise rotation

270°: 3/4 of a counterclockwise rotation

0°: no rotation (the initial and terminal sides correspond)

Angle in standard position:

- the vertex is at the origin
- the initial side lies on the positive x-axis

Example: Draw the following angles in standard position. Give the quadrant of each angle, if possible.

1. 90°

3. 135°

Coterminal Angles: Angles are coterminal if their measures differ by a multiple of 360°

Example:

a. List three positive angles that are coterminal with 45°.

b. List three negative angles that are coterminal with 45°.

Example: List two positive angles and two negative angles that are coterminal with each of the following angles.

Types of angles:

- θ is an acute angle if : $0 \le measure \ of \ \theta < 90^{\circ}$
- θ is a right angle if: measure of $\theta = 90^{\circ}$
- θ is a straight angle if: measure of $\theta = 180^{\circ}$
- θ is an obtuse angle if: $90^{\circ} < measure \ of \ \theta < 180^{\circ}$

Complementary angles: α and β are complementary angles provided $\alpha + \beta = 90^{\circ}$

Supplementary angles: α and β are supplementary angles provided $\alpha+\beta=180^{\circ}$

Measure of angles:

- Just like a dollar is equivalent to 4 quarters, and each quarter is equivalent to 25 pennies.
- Just like an hour is equivalent to 60 minutes, and each minute is equivalent to 60 seconds.
- The smaller pieces of an angle are also called minutes and seconds.

Minutes
$$1^{\circ} = 60 \text{ minutes (denoted by } 60')$$

Seconds $1 \text{ minute} = 60 \text{ seconds (denoted by } 60'')$

Example: Do the following computations.

1. $60^{\circ} 45' + 13^{\circ} 20'$

2. 31° 10′18″ + 20° 15′45″

Example: Find the supplement of the following angles. 1.90°

2. 45° 3′

Example: Find the complement of $60^{\circ} 59'11''$.

Example:

a. Convert 30' to degrees.

b. Convert 45° 30' to degrees.

Example:

a. Convert 25' to degrees.

Example:

a. Convert . 25° to minutes.

b. Convert 16.25° to degrees, minutes, and seconds as is appropriate.

Example:

a. Convert . 27° to minutes.

b. Convert . 27° to minutes and seconds.

c. Convert 16.27° to minutes and seconds as is appropriate.

Example application: A wheel makes 270 revolutions per minute. Through how many degrees will a point on the edge of the wheel move in 5 seconds?

Math 1230 Section 1.2

Activity:

- 1) Cut a triangle out of a piece of paper.
- 2) Label the angles A, B, and C. For each vertex of the triangle, draw an arrow pointing at the vertex.
- 3) With two cuts, separate the triangle into three pieces. Make sure not to cut thru any of the vertices.
- 4) Line up the angles A, B, and C side by side.
- 5) To what value do the angles sum?

Vertical Angles

Example: Identify the pairs of angles below that are vertical angles.

Fact: Vertical angles are equal in measure. Why are vertical angles equal in measure?

Transversal: Any line intersecting two parallel lines.

Math 120 Section 1.2

Page 2 of 6

Parallel Postulate: If a line cuts two lines and the interior angles on the same side sum to less than 180°, then the lines intersect.

Alternate Interior Angles

Example: Find the pairs of alternate interior angles below.

Fact: Alternate interior angles are equal in measure. Why are alternate interior angles equal in measure?

Fact: The interior angles of any triangle sum to 180°. Why do the interior angles of any triangle sum to 180°?

Example: What is the measure of a?

(80 - 70 - 50 = 60

Types of triangles based on interior angles

• Acute triangle: all interior angles are acute

• Right triangle: one interior angle is a 90° angle

• Obtuse triangle: one interior angle is obtuse

Types of triangles based on the lengths of the sides

• Equilateral triangle: all sides are of equal length

• Isosceles triangle: two sides are of equal length

• Scalene triangle: no sides are of equal length

Similar Triangles: Two triangles are similar provided

- Corresponding angles have equal measure.
- Corresponding sides are proportional (the ratio of the lengths of corresponding sides are the same).

Example: Assume the two triangles are similar. Solve for s and t.

$$\frac{5}{3} = \frac{4}{9}$$

$$9\left(\frac{5}{3}\right) = 4$$

$$9\left(\frac{3}{5}\right) = 5$$

Example: Solve for A, B, and M.

Application: Nina wants to know the height of a tree in a park near her home. The tree casts a 38 ft shadow the same time that Nina casts a 42 inch shadow. Nina is 63 inches tall. What is the height of the tree?

Math 120

Section 1.3

The Definition of the Trigonometric Functions: Let (x, y) be a point on the terminal side of an angle θ

- θ in standard position
- $\bullet \quad (x,y) \neq (0,0)$
- Set $r = \sqrt{x^2 + y^2}$

$$\sin \theta = \frac{y}{r}$$

$$\cos \theta = \frac{x}{r}$$

$$\tan \theta = \frac{y}{x}$$

$$\csc \theta = \frac{r}{y}$$

$$\sec \theta = \frac{r}{x}$$

$$\cot \theta = \frac{x}{x}$$

Example: For an angle θ with terminal side passing thru (12,5), find the six trigonometric function values for θ .

Important Observation:

• Draw the ray with endpoint (0,0) that goes thru (1,2). Let this ray be the terminal side of a positive angle θ in standard position.

- Find $\sin \theta = \frac{y}{r}$
- $\cos \theta = \frac{x}{r} \qquad \tan \theta = \frac{y}{x}$

Note that the terminal side of θ also goes thru (2,4). Use this point to find

• $\sin \theta = \frac{y}{r}$ $\cos \theta = \frac{x}{r}$ $\tan \theta = \frac{y}{x}$

How does using different points on the terminal side of an angle affect the value of the trigonometric function values?

Example:

a. Graph 3x - 2y = 0.

- b. Now graph the portion of 3x 2y = 0 where $x \le 0$.
- c. To find the 6 trigonometric function values for an angle θ whose terminal side coincides with 3x 2y = 0 where $x \le 0$, recall that you need to know the (x, y) coordinate pair of a point that lies on the terminal side of θ .

$$x = 2$$

$$y = -3$$

$$r = \sqrt{3}$$

d. Find

$$\sin \theta = \sqrt{\frac{3}{3}}$$

$$\cos\theta = \frac{\times}{\sqrt{3}} = \frac{-2}{\sqrt{3}}$$

$$\tan \theta = \underbrace{\frac{1}{2}}_{\times} - \underbrace{\frac{3}{2}}_{=2} - \underbrace{\frac{3}{2}}_{2}$$

Quadrantal Angles: To find the trigonometric function values for quadrantal angles, just as you would have to do for any other angle, you need to find the (x, y) coordinate pair of a point that lies on the terminal side of the quadrantal angle.

Example: Let's find the trigonometric function values for 90°.

$$\sin \theta = \underbrace{\frac{1}{3}}_{-\frac{3}{3}} \underbrace{\frac{5}{3}}_{-\frac{3}{3}} \cos \theta = \underbrace{\frac{1}{3}}_{-\frac{3}{3}} \underbrace{\frac{5}{3}}_{-\frac{3}{3}} \cos \theta = \underbrace{\frac{5}{3}}_{-\frac{3}{3}} \underbrace{\frac{5}{3}}_{-\frac{3}{3}} \cot \theta = \underbrace{\frac{5}{3}}_{-\frac{3}{3}} \underbrace{\frac{5}{3}}_{-\frac{3}{3}} \underbrace{\frac{5}{3}}_{-\frac{3}{3}} \cot \theta = \underbrace{\frac{5}{3}}_{-\frac{3}{3}} \underbrace{\frac{5}{3}}_{-\frac{3}{3}} \underbrace{\frac{5}{3}}_{-\frac{3}{3}} \cot \theta = \underbrace{\frac{5}{3}}_{-\frac{3}{3}} \underbrace{\frac{5}{3}} \underbrace{\frac{5}{3}}_{-\frac{3}{3}} \underbrace{\frac{5}{3}}_{-\frac{3}}} \underbrace{\frac{5}{3}} \underbrace{\frac{5}{3}} \underbrace{\frac{5}{3}} \underbrace{\frac{5}{3}} \underbrace{\frac{5}{3}} \underbrace{\frac{5}{3}} \underbrace{\frac{5$$

Example: Find the six trigonometric function values for 180°.

The signs of the coordinates in the different quadrants:

Quadrant	x -coordinate	y -coordinate
I	Pos	805
II	Neg	Pos
III	Nog	Neg
IV	Pos	Neg

Signs of the Trigonometric Functions in the different coordinates:

$$\sin \theta = \int_{-\infty}^{\infty} \int_{$$

$$\cos\theta = \frac{\times}{\sqrt{\frac{1}{8eCD}}}$$

$$\tan \theta = \frac{1}{\sqrt{1 - \cot \theta}}$$

Reciprical of
$$x$$
 is $\frac{1}{x}$

The second second

$$\sec \theta = \frac{\sqrt{1000}}{2000} = \frac{1}{2000}$$

$$\cot\theta = \frac{x}{3} = \frac{1}{\tan x}$$

Example: Find each of the following values.

a. If
$$\tan \theta = \frac{1}{4}$$
 then $\cot \theta = \frac{4}{4}$.

b. If
$$\cos \theta = \frac{-2}{\sqrt{20}}$$
 then $\sec \theta = \frac{-\sqrt{20}}{-\sqrt{20}}$

Signs of Trig Functions

V25+69

Example: Find the signs of the trigonometric functions for each of the following angles.

a. 54°

b. 260° Tarp/Co+d

Example: Find the quadrant of the terminal side of the angle θ that satisfies the following conditions.

- a. $\tan \theta > 0$ and $\csc \theta < 0$
- b. $\sin \theta > 0$ and $\csc \theta > 0$

- Example: Given θ is in Quadrant III and $\tan \theta = \frac{8}{5}$, find a. $\sin \theta = \frac{1}{5}$ $\cos \theta = \frac{1}{5}$

Derive the Pythagorean Identity $sin^2\theta + cos^2\theta = 1$.

$$\frac{x+3}{x+3} = \frac{a}{2} + \frac{b}{2}$$

$$\frac{x+3}{2} = \frac{a}{2} + \frac{b}{2}$$

$$\frac{x+3}{2} = \frac{a}{2} + \frac{b}{2}$$

$$\frac{x+3}{2} = \frac{a}{2} + \frac{b}{2}$$

Pythagorean Identities

$$sin^{2}\theta + cos^{2}\theta = 1.$$

$$1 + tan^{2}\theta = sec^{2}\theta$$

$$1 + cot^{2}\theta = csc^{2}\theta$$

$$an \theta =$$

$$\cot\theta = \frac{\cos 8}{\sin 8}$$

Example: Given $\cos \theta = \frac{-7}{25}$ and θ is in Quadrant II, find

a.
$$\cot \theta =$$

b.
$$\csc \theta =$$

 $\sin \theta$:

Sin 8 = 4 -8 = 1 1707 = 5 -1 1707 = 5 -1

Z	Page 5 o
	r ≥ y
	=======================================
1≥ Sin 0	125m220

Function	Range
$\sin \theta$	[-1, 1]
$\csc \theta$	[-0°, -1] √ [1, 00)
$\cos \theta$	
$\sec \theta$	$(-\infty,-1]\cup (1,\infty)$
an heta	$(-\infty, \infty)$
$\cot heta$	$(-\infty, \infty)$

I & I Sin & SI 15 CSC &

_1 < SmD 1 5 -1 csc 8 5 -1

Example: Possible or not possible?

a.
$$\cot \theta = -.999$$

b.
$$\cos \theta = -1.7$$

c.
$$\csc \theta = 0$$

The Definition of the Trigonometric Functions for acute angles: For any angle θ in

standard position

- Θ acute in standard position
- $(x,y) \neq (0,0)$
- $r = \sqrt{x^2 + y^2}$ from the distance formula

$$\sin \theta = rac{opposite\ side}{hypotenuse}$$
 $\cos \theta = rac{adjacent}{hypotenuse}$
 $\tan \theta = rac{opposite}{adjacent}$

$$\csc \theta = \frac{hypotenuse}{opposite side}$$
 $\sec \theta = \frac{hypotenuse}{adjacent}$
 $\cot \theta = \frac{adjacent}{opposite}$

Example: Find the following trigonometric values for the following interior angles of the triangle below.

$\sin G = \frac{\emptyset}{10}$	$\sin F = \frac{b}{10}$
$\cos G = \underbrace{b}_{(b)}$	$\cos F = \frac{g}{g}$
$\csc G = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\csc F = \frac{10}{6}$
$\sec G = \frac{\cot \theta}{\varphi}$	$\sec F = \frac{10}{\sqrt{2}}$
$\tan G = \frac{g}{g}$	$\tan F = \frac{\omega}{g}$
$\cot G = \frac{b}{a}$	$\cot F = \frac{g}{b}$

Note:

Angle F and angle G are complementary angles because

$$(measure\ of\ G) + (measure\ of\ F) = \underline{(omplimentary)}$$

Which of their trigonometric function values are equivalent?

$$\sin G = (65)$$

$$\cos G = \sin F$$

$$\sec G = \zeta \zeta \zeta^{-}$$

$$\tan G = \cot F$$

$$\cot G = + a$$

Cofunction Identities for Acute Angles

$$\sin G = \cos(90^{\circ} - G)$$

$$\cos G = \sin(90^{\circ} - G)$$

$$\csc G = \sec(90^{\circ} - G)$$

$$\sec G = \csc(90^{\circ} - G)$$

$$\tan G = \cot(90^{\circ} - G)$$

$$\cot \textit{G} = \tan(90^{\circ} - \textit{G})$$

Example: Use the cofunction identities to fill in the blanks.

a.
$$\sin 9^\circ = \frac{\cos(90^\circ - 9^\circ)}{\cos(90^\circ - 9^\circ)} = \cos(90^\circ)$$

b.
$$\cot 76^{\circ} = \frac{\tan (90^{\circ} - 76^{\circ})}{\tan (90^{\circ} - 76^{\circ})} = \tan (90^{\circ} - 76^{\circ})$$

c.
$$\csc 45^{\circ} = \frac{\sec 45^{\circ}}{}$$

Example: Use the cofunction identities to solve for θ .

a.
$$cot(\theta - 8^\circ) = tan(4\theta + 13^\circ)$$

$$(8^{-8}) + (40 + 13^{\circ}) = 90$$

 $(50 + 5^{\circ}) = 90$
 -5 -5
 $58 = 85^{\circ}$ $8 = 17^{\circ}$

b.
$$\sec(5\theta + 14^\circ) = \csc(2\theta - 8^\circ)$$

$$(50 + 14) + (20 - 8) = 90$$

$$\left(70 + 4\right) = 90^{\circ}$$

$$\frac{70}{7} = \frac{84^{\circ}}{7}$$
 $0 = 12^{\circ}$

Trigonometric Function Values 30° and 60°:

1. Solve for the value of *y* for the triangle below.

12 + y = 27 1 + y = -9 1 + y = -9 2 = 3 4 = -3 4 = -3

2. Use the definition of the trigonometric functions given at the beginning of this section, and the Cofunction Identities to find the following trigonometric function values.

$$\sin 30^\circ = \frac{OPP}{Hypit} = \frac{1}{Z} \qquad \csc 30^\circ = \frac{2}{1} > Z$$

$$\csc 30^{\circ} = \frac{2}{1} > 2$$

$$\cos 30^\circ = \frac{13}{2}$$

$$\sec 30^{\circ} = \frac{2}{\sqrt{3}}$$

$$\tan 30^\circ = \frac{1}{\sqrt{3}}$$

$$\cot 30^{\circ} = \sqrt{3}$$

$$\sin 60^\circ = \frac{3}{7}$$

$$\csc 60^{\circ} = \frac{2}{3}$$

$$\cos 60^{\circ} = \frac{1}{2}$$

$$\sec 60^{\circ} = 2$$

$$\tan 60^\circ = \sqrt{3}$$

$$\cot 60^{\circ} = \sqrt{\frac{1}{3}}$$

The Trigonometric Function Values for 45° - 45° - 90° triangle

a. Why would a triangle with sides of length 1 unit have a hypotenuse of length $\sqrt{2}$?

b. Use the triangle above to find the trigonometric function values for 45° .

$$\sin 45^\circ = \frac{1}{\sqrt{2}}$$

$$\csc 45^\circ = \sqrt{2}$$

$$\cos 45^\circ = \frac{1}{\sqrt{2}}$$

$$\tan 45^{\circ} =$$

$$\cot 45^{\circ} =$$

Behavior of the trigonometric functions as θ goes from 0° to 90° :

Function	Behavior of the numerator	Behavior of the denominator	Overall Behavior
$\sin\theta = \frac{y}{r}$		No Change	1
$\cos \theta = \frac{x}{r}$		No charge	
$\tan\theta = \frac{y}{x}$	^	✓	J-y 1
$\csc\theta = \frac{r}{y}$	1	No chery	SX (-
$\sec \theta = \frac{r}{x}$	^	No Change	L CUS XX
$\cot \theta = \frac{x}{y}$	V	^	tan Ø

Example: Indicate whether the following statements are true or false. Explain.

a. $\tan 25^{\circ} < \tan 23^{\circ}$

falte, because 232 25°, so tan 23° (tan 25°

b. $\csc 44^{\circ} < \csc 40^{\circ}$

Tre

40° < 44° (SIN 40° (SIN 44°))

CSC40° > CSC44°

Example: Find the equation of the line that is collinear with the terminal side of a 30° angle.

y= m x + b

 $y=\frac{1}{\sqrt{3}}$

Reference Triangles

Question	Answer
 Draw a 30° – 60° – 90° triangle. Label angle measures, label side lengths. 	2 /3
2. Draw a 45° – 45° – 90° triangle. Label angle measures, label side lengths.	12 45 A

The reference angle for an angle in standard position: The reference angle for an angle θ in standard position is the <u>acute</u> angle that the terminal side makes with the x-axis.

Draw each of these angles and determine its reference angle:

a. 30°

-30°

b. 150°

-150°

c. 210°

d. 330°

Example: Find the reference angle for

a. 294°

360-294

b. -883°

180-163- (7)

Example:

a. Draw the angle 135°.

b. Find and label the reference angle for 135°.

c. Draw and label the reference triangle for 135°.

d. Find the six trigonometric function values for 135°.

$$\sin 135^{\circ} = \sqrt[4]{7}$$

$$\cos 135^{\circ} = \sqrt[4]{2}$$

$$\cos 135^{\circ} = \sqrt[4]{2}$$

$$\tan 135^{\circ} = \sqrt[6]{7}$$

$$\cot 135^{\circ} = \sqrt[4]{7}$$

$$\cot 135^{\circ} = \sqrt[4]{7}$$

$$\csc 135^{\circ} = \sqrt{2}$$

$$\sec 135^\circ = 12 - \sqrt{2}$$

$$\cot 135^\circ = \frac{-1}{2}$$

Example:

a. Draw and label the reference triangle for -150° .

b. Find $\sin(-150^{\circ}) = \frac{1}{7}$

Example:

a. Draw and label the reference triangle for 780°.

b. Find $cot(780^{\circ}) =$

Example: Recall the order of operations and note that $sin^2\theta = (sin\theta)^2$.

Evaluate $sin^2(45^\circ) + 3cos^2(135^\circ) - 2tan(225^\circ) =$

valuate
$$sin^{2}(45^{\circ}) + 3cos^{2}(135^{\circ}) - 2tan(225^{\circ}) =$$

$$Sin 45^{2} + 3(108135)^{2} - 2tan(225^{\circ}) =$$

$$(1) \frac{1}{72} + 3(108135)^{2} - 2tan(225^{\circ}) =$$

$$(225) \frac{1}{72} = \frac{1}{72}$$

$$(225) \frac{1}{72} = \frac{1}{72}$$

$$(37 - 2) \frac{1}{72} = \frac{1}{72}$$

Example: Find all values of θ in [0,360°) that satisfy $\sin\theta = \frac{\sqrt{3}}{2}$.

$$180 + 60^{\circ} = 240^{\circ}$$
 $360 - 60^{\circ} = 300^{\circ}$