The Real Numbers

Jack Krebsbach

Sep 4

0.1 The Real Numbers

0.1.1 The irrationality of the square root of 2

0.1.2 Preliminaries

Notation

- $\forall \rightarrow$ For all/each/every
- \exists \rightarrow There exists
- $\mathbb{R} \setminus \mathbb{Q} \to \text{Irrationals}$
- $\mathbb{R} \to \text{Real numbers}$
- $\mathbb{Z} \to \text{Integers}$
- $\mathbb{Q} \to \text{Rational numbers}$
- $\mathbb{N} \to \text{Natural numbers}$

- $BWOC \rightarrow By$ way of contradiction
- $\bullet \longrightarrow \longrightarrow Contradiction$
- $! \rightarrow Unique/factorial$
- $\epsilon \to \text{Epsilon}$, usually a small positive quantity
- $\bullet \ni \rightarrow$ Such that

Two real numbers a and b are equal if and only if for every real number $\epsilon > 0$ it follows that $|a - b| < \epsilon$.

Proof. \to If a=b then we have |a-b|=0. No matter which $\epsilon>0\in\mathbb{R}$ is chosen we have that $|a-b|=0<\epsilon$. Thus, a=b

 \leftarrow Suppose, by way of contradiction, that $a \neq b$ and $\forall \epsilon > 0$, we have $|a - b| < \epsilon$. Let $\epsilon_0 = \frac{|a - b|}{2}$, then it is clear that $|a - b| < \frac{|a - b|}{2} = \epsilon_0$ is false. Thus, with this contradiction we overturn our assumption and conclude a must equal b.

0.1.3 The Axiom of Completeness

Definition 0.1.1: Bounded Above

A set $A \subseteq \mathbf{R}$ is bounded above if there exists a number $b \in \mathbf{R}$ such that $a \leq b$ for all $a \in A$. The number b is called an upper bound for A. Similarly, the set A is bounded below if there exists a lower bound $l \in \mathbf{R}$ satisfying $l \leq a$ for every $a \in A$.

Definition 0.1.2: Supremum of a Set

A real number s is the Supremum or the least upper bound for a set $A \subseteq \mathbf{R}$ if:

- (i) s is an upper bound for A;
- (ii) if b is any upper bound for A, then $s \leq b$.

Lemma 1.3.8. Assume $s \in \mathbf{R}$ is an upper bound for a set $A \subseteq \mathbf{R}$. Then, $s = \sup A$ if and only if, for every choice of $\epsilon > 0$, there exists an element $a \in A$ satisfying $s - \epsilon < a$.

Proof. \rightarrow Let $s = \sup A$ and arbitralily choose any $\epsilon > 0$. Suppose, by way of contradiction, there does not exist $a \in A$ with $a > s - \epsilon$. So for all $a \in A$ we have that $a \le s - \epsilon < s$. This means that $s - \epsilon$ is an upperbound of A. Thus, there must exist an element $a \in A$ such that $s - \epsilon < a$.

 \leftarrow Let $\epsilon > 0$ and suppose there exists $a \in A$ with $s - \epsilon < a$ and we know that s is an upperbound of A. To show that s is the least upperbound, by way of contradiction, suppose that b < s and b is another upperbound of A.

Consider $\epsilon_0 = s - b > 0$. By hypothesis there exists a with $s - \epsilon_0 < a \implies s - (s - b) < a \implies b < a$. As we know that b is an upperbound of A this is impossible. Therefore it must be that $b \ge s$. Hence, $s \le b$ and $s = \sup A$.