# **SBML Model Report**

# Model name: "Messiha2013 - Pentose phosphate pathway model"



May 5, 2016

## 1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following three authors: Vijayalakshmi Chelliah<sup>1</sup>, Kieran Smallbone<sup>2</sup> and Kent Ed<sup>3</sup> at November nineth 2011 at noon. and last time modified at February 28<sup>th</sup> 2014 at 4:07 p.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

| Element           | Quantity | Element              | Quantity |
|-------------------|----------|----------------------|----------|
| compartment types | 0        | compartments         | 1        |
| species types     | 0        | species              | 21       |
| events            | 0        | constraints          | 0        |
| reactions         | 11       | function definitions | 0        |
| global parameters | 7        | unit definitions     | 3        |
| rules             | 2        | initial assignments  | 0        |

#### **Model Notes**

Messiha2013 - Pentose phosphate pathway model

<sup>&</sup>lt;sup>1</sup>EMBL-EBI, viji@ebi.ac.uk

<sup>&</sup>lt;sup>2</sup>University of Manchester, kieran.smallbone@manchester.ac.uk

 $<sup>^3</sup>$ University of Manchester, edward.kent@manchester.ac.uk

This model describes the dynamic behaviour of the pentose phosphate pathway with the inclusion of various enzymes involved in the pathway. The model's predictions are compared with experimental observations of transient metabolite concentrations following a glucose pulse.

This model is described in the article:Enzyme characterisation and kinetic modelling of pentose phosphate pathway in yeast.Hanan L. Messiha, Edward Kent, Naglis Malys, Kathleen M. Carroll, Pedro Mendes, Kieran SmallbonePeerJ PrePrints 1:e146v2

Abstract:

We present the quantification and kinetic characterisation of the enzymes of the pentose phosphate pathway in Saccharomyces cerevisiae. The data are combined into a mathematical model that describes the dynamics of this system and allows for the predicting changes in metabolite concentrations and fluxes in response to perturbations. We use the model to study the response of yeast to a glucose pulse. We then combine the model with an existing glycolysis one to study the effect of oxidative stress on carbohydrate metabolism. The combination of these two models was made possible by the standardized enzyme kinetic experiments carried out in both studies. This work demonstrates the feasibility of constructing larger network models by merging smaller pathway models.

This model is hosted on BioModels Database and identified by: BIOMD0000000502.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resourcefor published quantitative kinetic models.

To the extent possible under law, all copyright and related orneighbouring rights to this encoded model have been dedicated to the publicdomain worldwide. Please refer to CCO Public DomainDedication for more information.

#### 2 Unit Definitions

This is an overview of seven unit definitions of which four are predefined by SBML and not mentioned in the model.

## 2.1 Unit substance

Name mmol

**Definition** mmol

## 2.2 Unit mM

Name mM

**Definition**  $mmol \cdot l^{-1}$ 

## 2.3 Unit per\_s

Name per s

**Definition**  $s^{-1}$ 

## 2.4 Unit volume

**Notes** Litre is the predefined SBML unit for volume.

**Definition** 1

## 2.5 Unit area

**Notes** Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

**Definition** m<sup>2</sup>

## 2.6 Unit length

**Notes** Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

**Definition** m

## 2.7 Unit time

**Notes** Second is the predefined SBML unit for time.

**Definition** s

# 3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

| Id   | Name | SBO     | Spatial Dimensions | Size | Unit  | Constant | Outside |
|------|------|---------|--------------------|------|-------|----------|---------|
| cell | cell | 0000290 | 3                  | 1    | litre | Z        |         |

## 3.1 Compartment cell

This is a three dimensional compartment with a constant size of one litre.

Name cell

SBO:0000290 physical compartment

# 4 Species

This model contains 21 species. The boundary condition of 13 of these species is set to true so that these species' amount cannot be changed by any reaction. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

| Id    | Name  | Compartment | Derived Unit                        | Constant                 | Boundary<br>Condi-<br>tion |
|-------|-------|-------------|-------------------------------------|--------------------------|----------------------------|
| E4P   | E4P   | cell        | $\operatorname{mmol} \cdot 1^{-1}$  | $\Box$                   |                            |
| G6L   | G6L   | cell        | $\text{mmol} \cdot l^{-1}$          |                          |                            |
| NADPH | NADPH | cell        | $\operatorname{mmol} \cdot 1^{-1}$  |                          |                            |
| P6G   | P6G   | cell        | $\operatorname{mmol} \cdot 1^{-1}$  |                          |                            |
| R5P   | R5P   | cell        | $\operatorname{mmol} \cdot 1^{-1}$  |                          |                            |
| Ru5P  | Ru5P  | cell        | $\operatorname{mmol} \cdot 1^{-1}$  |                          |                            |
| S7P   | S7P   | cell        | $\operatorname{mmol} \cdot 1^{-1}$  |                          |                            |
| X5P   | X5P   | cell        | $\operatorname{mmol} \cdot 1^{-1}$  |                          |                            |
| NADP  | NADP  | cell        | $\operatorname{mmol} \cdot 1^{-1}$  |                          | $\square$                  |
| G6P   | G6P   | cell        | $\operatorname{mmol} \cdot 1^{-1}$  |                          | <u></u>                    |
| F6P   | F6P   | cell        | $\operatorname{mmol} \cdot 1^{-1}$  | $\square$                |                            |
| GAP   | GAP   | cell        | $\operatorname{mmol} \cdot 1^{-1}$  | $\overline{\mathscr{L}}$ |                            |
| GND1  | GND1  | cell        | $\operatorname{mmol} \cdot 1^{-1}$  | $\overline{\mathscr{L}}$ |                            |
| GND2  | GND2  | cell        | $\operatorname{mmol} \cdot 1^{-1}$  |                          |                            |
| NQM1  | NQM1  | cell        | $\operatorname{mmol} \cdot 1^{-1}$  |                          | $\checkmark$               |
| RKI1  | RKI1  | cell        | $\operatorname{mmol} \cdot 1^{-1}$  |                          |                            |
| RPE1  | RPE1  | cell        | $\operatorname{mmol} \cdot 1^{-1}$  | $\overline{\mathscr{L}}$ | $\overline{\mathbf{Z}}$    |
| SOL3  | SOL3  | cell        | $\operatorname{mmol} \cdot 1^{-1}$  | $\overline{\checkmark}$  |                            |
| TAL1  | TAL1  | cell        | $\operatorname{mmol} \cdot 1^{-1}$  | $\overline{\mathscr{L}}$ |                            |
| TKL1  | TKL1  | cell        | $\operatorname{mmol} \cdot l^{-1}$  | $\overline{\mathbf{Z}}$  | $\overline{\mathbf{Z}}$    |
| ZWF1  | ZWF1  | cell        | $\mathrm{mmol}\cdot\mathrm{l}^{-1}$ | $\overline{\mathbf{Z}}$  | $\overline{\mathbf{Z}}$    |

| Id | Name | Compartment | Derived Unit | Constant | Boundary |
|----|------|-------------|--------------|----------|----------|
|    |      |             |              |          | Condi-   |
|    |      |             |              |          | tion     |

## **5 Parameters**

This model contains seven global parameters.

Table 4: Properties of each parameter.

| Id                | Name | SBO | Value | Unit                               | Constant                     |
|-------------------|------|-----|-------|------------------------------------|------------------------------|
| sum_NADP          |      |     | 0.330 | $mmol \cdot l^{-1}$                |                              |
| $Kx5p_TAL$        |      |     | 0.670 | $\operatorname{mmol} \cdot 1^{-1}$ | $\overline{\mathbf{Z}}$      |
| $Ke4p\_TAL$       |      |     | 0.946 | $\operatorname{mmol} \cdot 1^{-1}$ | $\overline{\mathbf{Z}}$      |
| Kr5p_TAL          |      |     | 0.235 | $\operatorname{mmol} \cdot 1^{-1}$ | $   \overline{\mathscr{L}} $ |
| ${\tt Kgap\_TAL}$ |      |     | 0.100 | $\operatorname{mmol} \cdot 1^{-1}$ |                              |
| ${\tt Kf6p\_TAL}$ |      |     | 1.100 | $\operatorname{mmol} \cdot 1^{-1}$ |                              |
| ${\tt Ks7p\_TAL}$ |      |     | 0.150 | $mmol \cdot l^{-1}$                | $\checkmark$                 |

## 6 Rules

This is an overview of two rules.

## **6.1 Rule G6P**

Rule G6P is an assignment rule for species G6P:

$$G6P = 0.9 + \begin{cases} \frac{44.1 \cdot t}{48 + t + 0.45 \cdot t^2} & \text{if } t \ge 0\\ 0 & \text{otherwise} \end{cases}$$
 (1)

## 6.2 Rule NADP

Rule NADP is an assignment rule for species NADP:

$$NADP = sum\_NADP - [NADPH]$$
 (2)

**Derived unit**  $mmol \cdot l^{-1}$ 

# 7 Reactions

This model contains eleven reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

|               |               | Table 3. Overview o | 1 all reactions                                    |                                          |
|---------------|---------------|---------------------|----------------------------------------------------|------------------------------------------|
| $N_{\bar{0}}$ | Id            | Name                | Reaction Equation                                  | SBO                                      |
| 1             | GND           | GND                 | P6G+NADP GND1, GND2, GND1, P6G, NADP, F<br>NADPH   | Ru5P NADPH, GND2<br>0000176 Ru5P+        |
| 2             | RKI           | RKI                 | $Ru5P \xrightarrow{RKI1, RKI1, Ru5P, R5P} R5P$     | 0000176                                  |
| 3             | RPE           | RPE                 | $Ru5P \xrightarrow{RPE1, RPE1, Ru5P, X5P} X5P$     | 0000176                                  |
| 4             | SOL           | SOL                 | $G6L \xrightarrow{SOL3, SOL3, G6L, P6G} P6G$       | 0000176                                  |
| 5             | TAL           | TAL                 | GAP+S7P TAL1, NQM1, TAL1, GAP, S7P, F6P, FE4P      | E4P. NOM1<br><del>= 0000176 `</del> F6P+ |
| 6             | TKL_E4P       | TKL (E4P:F6P)       | X5P+E4P TKL1, R5P, S7P, TKL1, X5P, E4P, GAL<br>F6P | P, F6P, R5P, S7P<br>                     |
| 7             | TKL_R5P       | TKL (R5P:S7P)       | X5P+R5P TKL1, E4P, F6P, TKL1, X5P, R5P, GA<br>S7P  | P, S7P, E4P, F6P<br>                     |
| 8             | ZWF           | ZWF                 | G6P+NADP ZWF1, ZWF1, G6P, NADP, G6L, NANDPH        | DPH<br>                                  |
| 9             | NADPH_oxidase | NADPH oxidase       | $NADPH \xrightarrow{NADPH} NADP$                   | 0000176                                  |
| 10            | E4P_sink      | E4P sink            | $E4P \xrightarrow{E4P} \emptyset$                  | 0000176                                  |
| 11            | $R5P_sink$    | R5P sink            | $R5P \xrightarrow{R5P} \emptyset$                  | 0000176                                  |

## 7.1 Reaction GND

This is an irreversible reaction of two reactants forming two products influenced by eight modifiers.

Name GND

SBO:0000176 biochemical reaction

## **Reaction equation**

$$P6G + NADP \xrightarrow{GND1, \ GND2, \ GND1, \ P6G, \ NADP, \ Ru5P, \ NADPH, \ GND2} Ru5P + NADPH$$

$$(3)$$

## **Reactants**

Table 6: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| P6G  | P6G  |     |
| NADP | NADP |     |

## **Modifiers**

Table 7: Properties of each modifier.

| Id    | Name  | SBO |
|-------|-------|-----|
| GND1  | GND1  |     |
| GND2  | GND2  |     |
| GND1  | GND1  |     |
| P6G   | P6G   |     |
| NADP  | NADP  |     |
| Ru5P  | Ru5P  |     |
| NADPH | NADPH |     |
| GND2  | GND2  |     |

## **Products**

Table 8: Properties of each product.

| Id   | Name | SBO |
|------|------|-----|
| Ru5P | Ru5P |     |

| Id    | Name  | SBO |
|-------|-------|-----|
| NADPH | NADPH |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$\begin{split} v_1 &= \text{vol}\left(\text{cell}\right) \cdot \left(\frac{\frac{[\text{GND1}] \cdot \text{kcat\_GND1} \cdot [\text{P6G}] \cdot [\text{NADP}]}{\text{Kp6g\_GND1} \cdot \text{Knadp\_GND1}}}{\left(1 + \frac{[\text{P6G}]}{\text{Kp6g\_GND1}} + \frac{[\text{Ru5P}]}{\text{Kru5p\_GND1}}\right) \cdot \left(1 + \frac{[\text{NADP}]}{\text{Knadp\_GND1}} + \frac{[\text{NADPH}]}{\text{Knadph\_GND1}}\right)} \\ &+ \frac{[\text{GND2}] \cdot \text{kcat\_GND2} \cdot [\text{P6G}] \cdot [\text{NADP}]}{\left(1 + \frac{[\text{P6G}]}{\text{Kp6g\_GND2}} + \frac{[\text{Ru5P}]}{\text{Kru5p\_GND2}}\right) \cdot \left(1 + \frac{[\text{NADP}]}{\text{Knadph\_GND2}} + \frac{[\text{NADPH}]}{\text{Knadph\_GND2}}\right)} \end{split} \end{split}$$

Table 9: Properties of each parameter.

| Id                    | Name | S | ВО | Value  | Unit                               | Constant                     |
|-----------------------|------|---|----|--------|------------------------------------|------------------------------|
| kcat_GND1             |      |   |    | 28.000 | $s^{-1}$                           | $\overline{Z}$               |
| Kp6g_GND1             |      |   |    | 0.062  | $\operatorname{mmol} \cdot 1^{-1}$ | $\overline{\mathscr{L}}$     |
| ${\tt Knadp\_GND1}$   |      |   |    | 0.094  | $\operatorname{mmol} \cdot 1^{-1}$ | $   \overline{\mathscr{A}} $ |
| Kru5p_GND1            |      |   |    | 0.100  | $\operatorname{mmol} \cdot 1^{-1}$ |                              |
| ${\tt Knadph\_GND1}$  |      |   |    | 0.055  | $\operatorname{mmol} \cdot 1^{-1}$ | $   \overline{\mathscr{L}} $ |
| $\mathtt{kcat\_GND2}$ |      |   |    | 27.300 | $s^{-1}$                           | $   \overline{\mathscr{A}} $ |
| Kp6g_GND2             |      |   |    | 0.115  | $\operatorname{mmol} \cdot 1^{-1}$ | $ \overline{\mathbf{A}} $    |
| Knadp_GND2            |      |   |    | 0.094  | $\operatorname{mmol} \cdot 1^{-1}$ | $\overline{\mathscr{A}}$     |
| Kru5p_GND2            |      |   |    | 0.100  | $\operatorname{mmol} \cdot 1^{-1}$ | $\overline{\mathbf{Z}}$      |
| Knadph_GND2           |      |   |    | 0.055  | $\operatorname{mmol} \cdot 1^{-1}$ | $\overline{\mathscr{L}}$     |
|                       |      |   |    |        |                                    |                              |

## 7.2 Reaction RKI

This is a reversible reaction of one reactant forming one product influenced by four modifiers.

#### Name RKI

SBO:0000176 biochemical reaction

## **Reaction equation**

$$Ru5P \xrightarrow{\text{RKI1}, \text{RKI1}, \text{Ru5P}, \text{R5P}} R5P \tag{5}$$

Table 10: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| Ru5P | Ru5P |     |

## **Modifiers**

Table 11: Properties of each modifier.

| Id   | Name | SBO |
|------|------|-----|
| RKI1 | RKI1 |     |
| RKI1 | RKI1 |     |
| Ru5P | Ru5P |     |
| R5P  | R5P  |     |

## **Product**

Table 12: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| R5P | R5P  |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{2} = \frac{\frac{\text{vol(cell)} \cdot [\text{RKI1}] \cdot \text{kcat} \cdot \left( [\text{Ru5P}] - \frac{[\text{R5P}]}{\text{Keq}} \right)}{\text{Kru5p}}}{1 + \frac{[\text{Ru5P}]}{\text{Kru5p}} + \frac{[\text{R5P}]}{\text{Kr5p}}}$$
(6)

Table 13: Properties of each parameter.

|        |      |     | 1      |                            |                           |
|--------|------|-----|--------|----------------------------|---------------------------|
| Id     | Name | SBO | Value  | Unit                       | Constant                  |
| kcat   |      |     | 335.00 | $s^{-1}$                   | $\overline{\hspace{1cm}}$ |
| Kru5p  |      |     | 2.47   | $\text{mmol} \cdot l^{-1}$ |                           |
| Kr5p   |      |     | 5.70   | $\text{mmol} \cdot l^{-1}$ |                           |
| Kiru5p |      |     | 9.88   | $\text{mmol} \cdot l^{-1}$ |                           |
| Keq    |      |     | 4.00   | dimensionless              |                           |

## 7.3 Reaction RPE

This is a reversible reaction of one reactant forming one product influenced by four modifiers.

Name RPE

SBO:0000176 biochemical reaction

## **Reaction equation**

$$Ru5P \xrightarrow{RPE1, RPE1, Ru5P, X5P} X5P \tag{7}$$

#### Reactant

Table 14: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| Ru5P | Ru5P |     |

## **Modifiers**

Table 15: Properties of each modifier.

| Id   | Name | SBO |
|------|------|-----|
| RPE1 | RPE1 |     |
| RPE1 | RPE1 |     |
| Ru5P | Ru5P |     |
| X5P  | X5P  |     |

#### **Product**

Table 16: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| X5P | X5P  |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{3} = \frac{\frac{\text{vol(cell)} \cdot [\text{RPE1}] \cdot \text{kcat} \cdot \left( [\text{Ru5P}] - \frac{[\text{X5P}]}{\text{Keq}} \right)}{\text{Kru5p}}}{1 + \frac{[\text{Ru5P}]}{\text{Kru5p}} + \frac{[\text{X5P}]}{\text{Kx5p}}}$$
(8)

Table 17: Properties of each parameter.

| Id    | Name | SBO | Value   | Unit                               | Constant |
|-------|------|-----|---------|------------------------------------|----------|
| kcat  |      |     | 4020.00 | $s^{-1}$                           |          |
| Kru5p |      |     | 5.97    | $\operatorname{mmol} \cdot 1^{-1}$ |          |
| Kx5p  |      |     | 7.70    | $\operatorname{mmol} \cdot 1^{-1}$ |          |
| Keq   |      |     | 1.40    | dimensionless                      |          |
|       |      |     |         |                                    |          |

## 7.4 Reaction SOL

This is an irreversible reaction of one reactant forming one product influenced by four modifiers.

Name SOL

SBO:0000176 biochemical reaction

## **Reaction equation**

$$G6L \xrightarrow{SOL3, SOL3, G6L, P6G} P6G$$
 (9)

# Reactant

Table 18: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| G6L | G6L  |     |

## **Modifiers**

Table 19: Properties of each modifier.

| Id   | Name | SBO |
|------|------|-----|
| SOL3 | SOL3 |     |
| SOL3 | SOL3 |     |
| G6L  | G6L  |     |
| P6G  | P6G  |     |

#### **Product**

Table 20: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| P6G | P6G  |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{4} = \frac{\frac{\text{vol(cell)} \cdot [\text{SOL3}] \cdot \text{kcat} \cdot [\text{G6L}]}{\text{Kg6l}}}{1 + \frac{[\text{G6L}]}{\text{Kg6l}} + \frac{[\text{P6G}]}{\text{Kp6g}}}$$
(10)

Table 21: Properties of each parameter.

| Id   | Name | SBO | Value | Unit                               | Constant       |
|------|------|-----|-------|------------------------------------|----------------|
| kcat |      |     | 4.3   | $s^{-1}$                           | $ \mathbf{Z} $ |
| Kg6l |      |     | 0.8   | $mmol \cdot l^{-1}$                |                |
| Kp6g |      |     | 0.5   | $\operatorname{mmol} \cdot 1^{-1}$ |                |

## 7.5 Reaction TAL

This is a reversible reaction of two reactants forming two products influenced by eight modifiers.

Name TAL

SBO:0000176 biochemical reaction

## **Reaction equation**

$$GAP + S7P \xrightarrow{TAL1, NQM1, TAL1, GAP, S7P, F6P, E4P, NQM1} F6P + E4P \qquad (11)$$

## **Reactants**

Table 22: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| GAP | GAP  |     |
| S7P | S7P  |     |

#### **Modifiers**

Table 23: Properties of each modifier.

| Id   | Name | SBO |
|------|------|-----|
| TAL1 | TAL1 |     |
| NQM1 | NQM1 |     |
| TAL1 | TAL1 |     |
| GAP  | GAP  |     |
| S7P  | S7P  |     |
| F6P  | F6P  |     |
| E4P  | E4P  |     |
| NQM1 | NQM1 |     |

#### **Products**

Table 24: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| F6P | F6P  |     |
| E4P | E4P  |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{5} = \text{vol}(\text{cell}) \cdot \left( \frac{\frac{[\text{TAL1}] \cdot \text{kcat}.\text{TAL1} \cdot \left( [\text{GAP}] \cdot [\text{S7P}] - \frac{[\text{F6P}] \cdot [\text{E4P}]}{\text{Keq}} \right)}{\text{Kgap}.\text{TAL1} \cdot \text{Ks7p}.\text{TAL1}}}{\left( 1 + \frac{[\text{GAP}]}{\text{Kgap}.\text{TAL1}} + \frac{[\text{F6P}]}{\text{Kf6p}.\text{TAL1}} \right) \cdot \left( 1 + \frac{[\text{S7P}]}{\text{Ks7p}.\text{TAL1}} + \frac{[\text{E4P}]}{\text{Ke4p}.\text{TAL1}} \right)}{\frac{[\text{NQM1}] \cdot \text{kcat}.\text{NQM1} \cdot \left( [\text{GAP}] \cdot [\text{S7P}] - \frac{[\text{F6P}] \cdot [\text{E4P}]}{\text{Keq}} \right)}{\text{Kgap}.\text{NQM1} \cdot \text{Ks7p}.\text{NQM1}}} + \frac{[\text{GAP}]}{\left( 1 + \frac{[\text{GAP}]}{\text{Kgap}.\text{NQM1}} + \frac{[\text{F6P}]}{\text{Kf6p}.\text{NQM1}} \right) \cdot \left( 1 + \frac{[\text{S7P}]}{\text{Ks7p}.\text{NQM1}} + \frac{[\text{E4P}]}{\text{Ke4p}.\text{NQM1}} \right)} \right)}$$
(12)

Table 25: Properties of each parameter.

|                    |      |     | · · · · I · · |                            |                |
|--------------------|------|-----|---------------|----------------------------|----------------|
| Id                 | Name | SBO | Value         | Unit                       | Constant       |
| kcat_TAL1          |      |     | 0.694         | $s^{-1}$                   | $\overline{Z}$ |
| ${\tt Kgap\_TAL1}$ |      |     | 0.272         | $\text{mmol} \cdot 1^{-1}$ |                |
| $Ks7p_TAL1$        |      |     | 0.786         | $\text{mmol} \cdot 1^{-1}$ |                |
| ${\tt Kf6p\_TAL1}$ |      |     | 1.440         | $\text{mmol} \cdot 1^{-1}$ |                |
| ${\tt Ke4p\_TAL1}$ |      |     | 0.362         | $\text{mmol} \cdot 1^{-1}$ | $\square$      |

| Id                 | Name | SBO | Value | Unit                               | Constant                  |
|--------------------|------|-----|-------|------------------------------------|---------------------------|
| kcat_NQM1          |      |     | 0.694 | $s^{-1}$                           |                           |
| ${\tt Kgap\_NQM1}$ |      |     | 0.272 | $\operatorname{mmol} \cdot 1^{-1}$ | $ \overline{\checkmark} $ |
| ${\tt Ks7p\_NQM1}$ |      |     | 0.786 | $\text{mmol} \cdot 1^{-1}$         |                           |
| ${\tt Kf6p\_NQM1}$ |      |     | 1.040 | $\text{mmol} \cdot 1^{-1}$         | $ \overline{\checkmark} $ |
| ${\tt Ke4p\_NQM1}$ |      |     | 0.305 | $\text{mmol} \cdot 1^{-1}$         |                           |
| Keq                |      |     | 1.050 | dimensionless                      |                           |

## 7.6 Reaction TKL\_E4P

This is a reversible reaction of two reactants forming two products influenced by ten modifiers.

Name TKL (E4P:F6P)

SBO:0000176 biochemical reaction

## **Reaction equation**

$$X5P+E4P \xrightarrow{TKL1, R5P, S7P, TKL1, X5P, E4P, GAP, F6P, R5P, S7P} GAP+F6P \qquad (13)$$

## **Reactants**

Table 26: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| X5P | X5P  |     |
| E4P | E4P  |     |

#### **Modifiers**

Table 27: Properties of each modifier.

| Id   | Name | SBO |
|------|------|-----|
| TKL1 | TKL1 |     |
| R5P  | R5P  |     |
| S7P  | S7P  |     |
| TKL1 | TKL1 |     |
| X5P  | X5P  |     |
| E4P  | E4P  |     |
| GAP  | GAP  |     |
| F6P  | F6P  |     |
| R5P  | R5P  |     |
|      |      |     |

| Id  | Name | SBO |
|-----|------|-----|
| S7P | S7P  |     |

## **Products**

Table 28: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| GAP | GAP  |     |
| F6P | F6P  |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{6} = \frac{\frac{\text{vol(cell)} \cdot [\text{TKL1}] \cdot \text{kcat} \cdot \left( [\text{X5P}] \cdot [\text{E4P}] - \frac{[\text{GAP}] \cdot [\text{F6P}]}{\text{Keq}} \right)}{\text{Kx5p\_TAL} \cdot \text{Ke4p\_TAL}}}{\left( 1 + \frac{[\text{X5P}]}{\text{Kx5p\_TAL}} + \frac{[\text{GAP}]}{\text{Kgap\_TAL}} \right) \cdot \left( 1 + \frac{[\text{E4P}]}{\text{Ke4p\_TAL}} + \frac{[\text{F6P}]}{\text{Kf6p\_TAL}} + \frac{[\text{R5P}]}{\text{Kr5p\_TAL}} + \frac{[\text{S7P}]}{\text{Ks7p\_TAL}} \right)}$$
(14)

Table 29: Properties of each parameter.

| Id   | Name | SBO | Value | I Init        | Constant |
|------|------|-----|-------|---------------|----------|
|      | rune | 550 | varue | Ont           | Constant |
| kcat |      |     | 47.1  | $s^{-1}$      |          |
| Keq  |      |     | 10.0  | dimensionless |          |

## 7.7 Reaction TKL\_R5P

This is a reversible reaction of two reactants forming two products influenced by ten modifiers.

Name TKL (R5P:S7P)

SBO:0000176 biochemical reaction

## **Reaction equation**

$$X5P + R5P \xrightarrow{TKL1, E4P, F6P, TKL1, X5P, R5P, GAP, S7P, E4P, F6P} GAP + S7P \qquad (15)$$

Table 30: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| X5P | X5P  |     |
| R5P | R5P  |     |

## **Modifiers**

Table 31: Properties of each modifier.

| •    |      |     |
|------|------|-----|
| Id   | Name | SBO |
| TKL1 | TKL1 |     |
| E4P  | E4P  |     |
| F6P  | F6P  |     |
| TKL1 | TKL1 |     |
| X5P  | X5P  |     |
| R5P  | R5P  |     |
| GAP  | GAP  |     |
| S7P  | S7P  |     |
| E4P  | E4P  |     |
| F6P  | F6P  |     |

#### **Products**

Table 32: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| GAP | GAP  |     |
| S7P | S7P  |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{7} = \frac{\frac{\text{vol(cell)} \cdot [\text{TKL1}] \cdot \text{kcat} \cdot \left( [\text{X5P}] \cdot [\text{R5P}] - \frac{[\text{GAP}] \cdot [\text{S7P}]}{\text{Keq}} \right)}{\text{Kx5p.TAL} \cdot \text{Kr5p.TAL}}}{\left( 1 + \frac{[\text{X5P}]}{\text{Kx5p.TAL}} + \frac{[\text{GAP}]}{\text{Kgap.TAL}} \right) \cdot \left( 1 + \frac{[\text{E4P}]}{\text{Ke4p.TAL}} + \frac{[\text{F6P}]}{\text{Kf6p.TAL}} + \frac{[\text{R5P}]}{\text{Kr5p.TAL}} + \frac{[\text{S7P}]}{\text{Ks7p.TAL}} \right)}$$
(16)

Table 33: Properties of each parameter.

| Id   | Name | SBO | Value | Unit          | Constant                  |
|------|------|-----|-------|---------------|---------------------------|
| kcat |      |     | 40.5  | $s^{-1}$      | $\overline{\hspace{1cm}}$ |
| Keq  |      |     | 1.2   | dimensionless |                           |

## 7.8 Reaction ZWF

This is an irreversible reaction of two reactants forming two products influenced by six modifiers.

## Name ZWF

SBO:0000176 biochemical reaction

## **Reaction equation**

$$G6P + NADP \xrightarrow{ZWF1, ZWF1, G6P, NADP, G6L, NADPH} G6L + NADPH$$
 (17)

#### **Reactants**

Table 34: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| G6P  | G6P  |     |
| NADP | NADP |     |

## **Modifiers**

Table 35: Properties of each modifier.

| Id    | Name  | SBO |
|-------|-------|-----|
| ZWF1  | ZWF1  |     |
| ZWF1  | ZWF1  |     |
| G6P   | G6P   |     |
| NADP  | NADP  |     |
| G6L   | G6L   |     |
| NADPH | NADPH |     |

## **Products**

Table 36: Properties of each product.

| Id    | Name  | SBO |
|-------|-------|-----|
| G6L   | G6L   |     |
| NADPH | NADPH |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$\nu_{8} = \frac{\frac{\text{vol(cell)} \cdot [\text{ZWF1}] \cdot \text{kcat} \cdot [\text{G6P}] \cdot [\text{NADP}]}{\text{Kg6p} \cdot \text{Knadp}}}{\left(1 + \frac{[\text{G6P}]}{\text{Kg6p}} + \frac{[\text{G6L}]}{\text{Kg6l}}\right) \cdot \left(1 + \frac{[\text{NADP}]}{\text{Knadp}} + \frac{[\text{NADPH}]}{\text{Knadph}}\right)}$$
(18)

Table 37: Properties of each parameter.

| Id     | Name | SBO | Value   | Unit                               | Constant     |
|--------|------|-----|---------|------------------------------------|--------------|
| kcat   |      |     | 189.000 | $s^{-1}$                           |              |
| Kg6p   |      |     | 0.042   | $\operatorname{mmol} \cdot 1^{-1}$ |              |
| Knadp  |      |     | 0.045   | $\operatorname{mmol} \cdot 1^{-1}$ |              |
| Kg6l   |      |     | 0.010   | $mmol \cdot l^{-1}$                |              |
| Knadph |      |     | 0.017   | $\operatorname{mmol} \cdot 1^{-1}$ | $\checkmark$ |

## 7.9 Reaction NADPH\_oxidase

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name NADPH oxidase

SBO:0000176 biochemical reaction

## **Reaction equation**

$$NADPH \xrightarrow{NADPH} NADP$$
 (19)

Table 38: Properties of each reactant.

| Id    | Name  | SBO |
|-------|-------|-----|
| NADPH | NADPH |     |

## **Modifier**

Table 39: Properties of each modifier.

| Id    | Name  | SBO |
|-------|-------|-----|
| NADPH | NADPH |     |

## **Product**

Table 40: Properties of each product.

| Id   | Name | SBO |
|------|------|-----|
| NADP | NADP |     |

## **Kinetic Law**

**Derived unit**  $s^{-1} \cdot mmol$ 

$$v_9 = \text{vol}(\text{cell}) \cdot \mathbf{k} \cdot [\text{NADPH}] \tag{20}$$

Table 41: Properties of each parameter.

| Id | Name | SBO Value Unit | Constant |
|----|------|----------------|----------|
| k  |      | $1.0 	 s^{-1}$ |          |

## 7.10 Reaction E4P\_sink

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name E4P sink

**SBO:0000176** biochemical reaction

## **Reaction equation**

$$E4P \xrightarrow{E4P} \emptyset \tag{21}$$

Table 42: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| E4P | E4P  |     |

## **Modifier**

Table 43: Properties of each modifier.

| Id  | Name | SBO |
|-----|------|-----|
| E4P | E4P  |     |

## **Kinetic Law**

**Derived unit**  $s^{-1} \cdot mmol$ 

$$v_{10} = \text{vol}(\text{cell}) \cdot \mathbf{k} \cdot [\text{E4P}] \tag{22}$$

Table 44: Properties of each parameter.

| Id | Name | SBO Value Unit | Constant |
|----|------|----------------|----------|
| k  |      | $1.0 	 s^{-1}$ | Ø        |

## 7.11 Reaction R5P\_sink

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name R5P sink

SBO:0000176 biochemical reaction

## **Reaction equation**

$$R5P \xrightarrow{R5P} \emptyset \tag{23}$$

Table 45: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| R5P | R5P  |     |

#### **Modifier**

Table 46: Properties of each modifier.

| Id  | Name | SBO |
|-----|------|-----|
| R5P | R5P  |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot mmol$ 

$$v_{11} = \text{vol}(\text{cell}) \cdot \mathbf{k} \cdot [\text{R5P}] \tag{24}$$

Table 47: Properties of each parameter.

| Id | Name | SBO Value Unit | Constant |
|----|------|----------------|----------|
| k  |      | $1.0 	 s^{-1}$ |          |

# 8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

#### 8.1 Species E4P

Name E4P

SBO:0000247 simple chemical

Initial concentration  $0.029 \text{ } \text{mmol} \cdot l^{-1}$ 

This species takes part in eight reactions (as a reactant in TKL\_E4P, E4P\_sink and as a product in TAL and as a modifier in TAL, TKL\_E4P, TKL\_R5P, TKL\_R5P, E4P\_sink).

$$\frac{d}{dt}E4P = v_5 - v_6 - v_{10} \tag{25}$$

## 8.2 Species G6L

Name G6L

SBO:0000247 simple chemical

Initial concentration  $0.1 \text{ } \text{mmol} \cdot l^{-1}$ 

This species takes part in four reactions (as a reactant in SOL and as a product in ZWF and as a modifier in SOL, ZWF).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{G6L} = \nu_8 - \nu_4 \tag{26}$$

## 8.3 Species NADPH

Name NADPH

SBO:0000247 simple chemical

Initial concentration  $0.16 \text{ } \text{mmol} \cdot l^{-1}$ 

This species takes part in six reactions (as a reactant in NADPH\_oxidase and as a product in GND, ZWF and as a modifier in GND, ZWF, NADPH\_oxidase).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NADPH} = v_1 + v_8 - v_9 \tag{27}$$

#### 8.4 Species P6G

Name P6G

SBO:0000247 simple chemical

Initial concentration  $0.25 \text{ } \text{mmol} \cdot l^{-1}$ 

This species takes part in four reactions (as a reactant in GND and as a product in SOL and as a modifier in GND, SOL).

$$\frac{\mathrm{d}}{\mathrm{d}t} P6G = v_4 - v_1 \tag{28}$$

## 8.5 Species R5P

Name R5P

SBO:0000247 simple chemical

Initial concentration  $0.118 \text{ } \text{mmol} \cdot l^{-1}$ 

This species takes part in eight reactions (as a reactant in TKL\_R5P, R5P\_sink and as a product in RKI and as a modifier in RKI, TKL\_E4P, TKL\_E4P, TKL\_R5P, R5P\_sink).

$$\frac{d}{dt}R5P = v_2 - v_7 - v_{11} \tag{29}$$

## 8.6 Species Ru5P

Name Ru5P

SBO:0000247 simple chemical

Initial concentration  $0.033 \text{ } \text{mmol} \cdot l^{-1}$ 

This species takes part in six reactions (as a reactant in RKI, RPE and as a product in GND and as a modifier in GND, RKI, RPE).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Ru}5\mathrm{P} = v_1 - v_2 - v_3 \tag{30}$$

## 8.7 Species S7P

Name S7P

SBO:0000247 simple chemical

Initial concentration  $0.082 \text{ } \text{mmol} \cdot l^{-1}$ 

This species takes part in six reactions (as a reactant in TAL and as a product in TKL\_R5P and as a modifier in TAL, TKL\_E4P, TKL\_R5P).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{S7P} = v_7 - v_5 \tag{31}$$

## 8.8 Species X5P

Name X5P

SBO:0000247 simple chemical

Initial concentration  $0.041 \text{ mmol} \cdot 1^{-1}$ 

This species takes part in six reactions (as a reactant in TKL\_E4P, TKL\_R5P and as a product in RPE and as a modifier in RPE, TKL\_E4P, TKL\_R5P).

$$\frac{d}{dt}X5P = v_3 - v_6 - v_7 \tag{32}$$

## 8.9 Species NADP

Name NADP

SBO:0000247 simple chemical

Initial concentration  $0.17 \text{ } \text{mmol} \cdot l^{-1}$ 

Involved in rule NADP

This species takes part in five reactions (as a reactant in GND, ZWF and as a product in NADPH-oxidase and as a modifier in GND, ZWF). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

## 8.10 Species G6P

Name G6P

SBO:0000247 simple chemical

Initial concentration  $0.9 \text{ } \text{mmol} \cdot l^{-1}$ 

Involved in rule G6P

This species takes part in two reactions (as a reactant in ZWF and as a modifier in ZWF). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

#### 8.11 Species F6P

Name F6P

SBO:0000247 simple chemical

Initial concentration  $0.325 \text{ } \text{mmol} \cdot l^{-1}$ 

This species takes part in six reactions (as a product in TAL, TKL\_E4P and as a modifier in TAL, TKL\_E4P, TKL\_R5P, TKL\_R5P), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{F}\mathbf{6}\mathbf{P} = 0\tag{33}$$

## 8.12 Species GAP

Name GAP

SBO:0000247 simple chemical

Initial concentration  $0.067 \text{ } \text{mmol} \cdot l^{-1}$ 

This species takes part in six reactions (as a reactant in TAL and as a product in TKL\_E4P, TKL\_R5P and as a modifier in TAL, TKL\_E4P, TKL\_R5P), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GAP} = 0\tag{34}$$

## 8.13 Species GND1

Name GND1

SBO:0000252 polypeptide chain

Initial concentration  $0.013 \text{ mmol} \cdot l^{-1}$ 

This species takes part in two reactions (as a modifier in GND, GND), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GND1} = 0\tag{35}$$

## 8.14 Species GND2

Name GND2

SBO:0000252 polypeptide chain

Initial concentration  $0.0030 \text{ } \text{mmol} \cdot l^{-1}$ 

This species takes part in two reactions (as a modifier in GND, GND), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GND2} = 0\tag{36}$$

#### 8.15 Species NQM1

Name NQM1

SBO:0000252 polypeptide chain

Initial concentration  $0.02 \text{ mmol} \cdot l^{-1}$ 

This species takes part in two reactions (as a modifier in TAL, TAL), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NQM1} = 0\tag{37}$$

#### 8.16 Species RKI1

Name RKI1

SBO:0000252 polypeptide chain

Initial concentration  $0.05 \text{ } \text{mmol} \cdot l^{-1}$ 

This species takes part in two reactions (as a modifier in RKI, RKI), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{R}\mathbf{K}\mathbf{I}\mathbf{1} = 0\tag{38}$$

## 8.17 Species RPE1

Name RPE1

SBO:0000252 polypeptide chain

Initial concentration  $0.03 \text{ mmol} \cdot l^{-1}$ 

This species takes part in two reactions (as a modifier in RPE, RPE), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RPE1} = 0\tag{39}$$

## 8.18 Species SOL3

Name SOL3

SBO:0000252 polypeptide chain

Initial concentration  $0.0296 \text{ } \text{mmol} \cdot l^{-1}$ 

This species takes part in two reactions (as a modifier in SOL, SOL), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{SOL3} = 0\tag{40}$$

# 8.19 Species TAL1

Name TAL1

SBO:0000252 polypeptide chain

Initial concentration  $0.144 \text{ } \text{mmol} \cdot 1^{-1}$ 

This species takes part in two reactions (as a modifier in TAL, TAL), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TAL1} = 0\tag{41}$$

## 8.20 Species TKL1

Name TKL1

SBO:0000252 polypeptide chain

Initial concentration  $0.455 \text{ } \text{mmol} \cdot 1^{-1}$ 

This species takes part in four reactions (as a modifier in TKL\_E4P, TKL\_R5P, TKL\_R5P, TKL\_R5P), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{T}\mathrm{KL}1 = 0\tag{42}$$

## 8.21 Species ZWF1

Name ZWF1

SBO:0000252 polypeptide chain

Initial concentration  $0.02 \text{ mmol} \cdot l^{-1}$ 

This species takes part in two reactions (as a modifier in ZWF, ZWF), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ZWF1} = 0\tag{43}$$

# A Glossary of Systems Biology Ontology Terms

**SBO:0000176 biochemical reaction:** An event involving one or more chemical entities that modifies the electrochemical structure of at least one of the participants.

SBO:0000247 simple chemical: Simple, non-repetitive chemical entity

**SBO:0000252 polypeptide chain:** Naturally occurring macromolecule formed by the repetition of amino-acid residues linked by peptidic bonds. A polypeptide chain is synthesized by the ribosome. CHEBI:1654

**SBO:0000290 physical compartment:** Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions

SBML2LATEX was developed by Andreas Dräger<sup>a</sup>, Hannes Planatscher<sup>a</sup>, Dieudonné M Wouamba<sup>a</sup>, Adrian Schröder<sup>a</sup>, Michael Hucka<sup>b</sup>, Lukas Endler<sup>c</sup>, Martin Golebiewski<sup>d</sup> and Andreas Zell<sup>a</sup>. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

<sup>&</sup>lt;sup>a</sup>Center for Bioinformatics Tübingen (ZBIT), Germany

<sup>&</sup>lt;sup>b</sup>California Institute of Technology, Beckman Institute BNMC, Pasadena, United States

<sup>&</sup>lt;sup>c</sup>European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

<sup>&</sup>lt;sup>d</sup>EML Research gGmbH, Heidelberg, Germany