Experiment Title: 6

Student Name: Pratibha UID:18BCS6093

Branch:AIML-1 Section/Group:B

Semester:5 Date of Performance:

Subject Name: DIP LAB Subject Code: CSF-336

1. Aim/Overview of the practical:

Write the python program which help us to understand the concept od scikit images and there manipulations

2. The task to be done:

Operation on image using Scikit Module

3. Required libraries or software

import numpy as np

from skimage import data

from skimage import io

import matplotlib.pyplot as plt

import cv2 as cv

4. Algorithm/Flowchart:

5. Theme/Interests definition(For creative domains):

6. Steps for experiment/practical:

Operation on Image using Scikit module

In[5]:

Images are NumPy's arrays

import numpy as np

check = np.zeros((8, 8))

```
check[::2, 1::2] = 2
check[1::2, ::2] = 2
import matplotlib.pyplot as plt
plt.imshow(check, cmap='gray', interpolation='nearest')
# cmap() method which returns a matplotlib color map with n colors.
# Interp
# In[6]:
# images using skikit-image
# importing data from skimage
from skimage import data
camera = data.camera()
# An image with 512 rows
# and 512 columns
type(camera)
print(camera.shape)
print(camera.dtype)
### Reading and Display of image using Scikit
# In[7]:
# Uploading and Viewing an Image
from skimage import io
img = io.imread('aa.jpg')
io.imshow(img)
# In[4]:
## get shape of image
img.shape
# In[10]:
#Gettingixel Values
from skimage import io
import pandas as pd
#Pandas is used to read, write, and process various file formats.
img = io.imread('aa.jpg')
df = pd.DataFrame(img.flatten())
```

```
# flatten function is used to convert the three dimensions of an RGB image to a single
dimension
filepath = 'pixel_values.xlsx'
# DataFrame function converts a one-dimensional array into an Excel-like format, with
rows and columns
df.to_excel(filepath, index=True)
# to_excel save that image in an excel file.
print(df)
#print(filepath)
### Converion of image into HSV and vice-versa
# In[13]:
from skimage import io
from skimage import data
from pylab import *
from skimage.color import rgb2hsv
#Read image
img1 = io.imread('aa.jpg')
#Convert to HSV
img_hsv = rgb2hsv(img1)
#Convert back to RGB
img_rgb = rgb2hsv(img_hsv)
#Show both figures
figure(0)
io.imshow(img_hsv)
figure(1)
io.imshow(img_rgb)
## RGB to XYZ and Vice Versa
# In[19]:
#Import libraries
from skimage import io
from skimage import color
from skimage import data
#Read image
img1 = io.imread('aa.jpg')
```

```
#Convert to XYZ
img_xyz = color.rgb2xyz(img)
#Show figures
figure(0)
io.imshow(img_xyz)
# In[20]:
#Convert back to RGB
img_rgb = color.xyz2rgb(img_xyz)
# Show figure
figure(1)
io.imshow(img_rgb)
### Operation on exposure
# In[23]:
from skimage import exposure
from skimage import io
from pylab import *
img1 = io.imread('aa.jpg')
## increase the exposure
gamma_corrected1 = exposure.adjust_gamma(img, 0.5)
figure(0)
io.imshow(gamma_corrected1)
# In[24]:
## decrease the exposure
gamma_corrected2 = exposure.adjust_gamma(img, 3)
figure(1)
io.imshow(gamma_corrected2)
### Operations like rotation, shifting et
# In[25]:
# Rotating,
from skimage import io
from skimage.transform import rotate
img1 = io.imread('aa.jpg')
```

```
img_rot = rotate(img, 30)
io.imshow(img_rot)
# In[26]
from skimage import io
from skimage.transform import resize
img1 = io.imread('aa.jpg')
img_res = resize(img, (100, 100))
io.imshow(img_res)
io.imsave("pp.png", img_res)
7. Observations/Discussions(For applied/experimental sciences/materials based
labs):
8. Percentage error (if any or applicable):
9. The command that we have learned today in the program:
10. Result/Output/Writing Summary of the concept behind the experiment:
```


11. Graphs (If Any): Image /Soft copy of graph paper to be attached here