Pmat - praca domowa z dnia 6.11.2023

Gracjan Barski, album: 448189

November 8, 2023

Zadanie 106:

Niech $\varphi \colon (\mathbb{N} \to \mathbb{N}) \to (\mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N}))$ będzie określona tak: $\varphi(f)(A) = f^{-1}(A)$.

a) Czy φ jest iniekcją?

Jest. Dowód:

Weźmy dowolne $f_1, f_2 \in \mathbb{N}^{\mathbb{N}}$ takie że $f_1 \neq f_2$. Wtedy z definicji

$$\exists_{n_0 \in \mathbb{N}} f_1(n_0) \neq f_2(n_0) \tag{1}$$

Więc weźmy to n_0 .

Teraz rozważmy funkcje $\varphi(f_1), \varphi(f_2)$. Trzeba pokazać, że są różne, więc trzeba wskazać argument dla którego są różne.

Weźmy jako ten argument $\{f_1(n_0)\}$. Wtedy jest:

$$\varphi(f_1)(\{f_1(n_0)\}) \neq \varphi(f_2)(\{f_1(n_0)\})$$

(Dlaczego?) Wynikiem wyrażenia po lewej jest zbiór którego elementem jest n_0 (z oczywistych względów). Wynikiem wyrażenia po prawej jest zbiór, w którym nie może być n_0 , ponieważ to by znaczyło że $f_2(n_0) = f_1(n_0)$ co jest niemożliwe z (1). Dlatego te funkcje nie są równe, więc φ jest iniekcją

b) Czy φ jest surjekcją?

Nie jest. Dowód:

Weźmy taką funkcję $g: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$. Jeśli φ jest surjekcją to powinno się móc otrzymać z niej każdą taką funkcję. Weźmy konkretne g i postawmy dla niej ograniczenia:

Weźmy dowolne niepuste zbiory $A, A', B, B' \subseteq \operatorname{Rg}(f)$, takie że A ma co najmniej dwa elementy, $B \subset A$, $B' \not\subseteq A'$ oraz:

$$g(A) = A'$$

$$q(B) = B'$$

Niewątpliwie istnieje taka funkcja w zbiorze $\mathcal{P}(\mathbb{N})^{\mathcal{P}(\mathbb{N})}$, jednak nie można jej otrzymać z φ .

(Dlaczego?) jeśli g należałoby do zbioru wartości φ to wtedy g danemu zbiorowi przyporządkowuje jego przeciwobraz przy pewnym f. Więc jeśli mamy zbiór A, i jego przeciwobraz A', to z definicji A' zawiera wszystkie wartości dla których funkcja f przyjmuje wartości z A. A teraz dowód faktu, że jeśli weźmiemy zbiór B, który jest podzbiorem właściwym A, to jego przeciwobraz przy f będzie podzbiorem A':

Pokazać:

$$(A, A', B, B' \subseteq \operatorname{Rg}(f) \land B \subset A) \Longrightarrow \varphi(f)(B) \subseteq \varphi(f)(A)$$

Jeśli $B \subset A$, to wtedy $\forall_{n \in B} \ n \in A$. Teraz, jak weźmiemy dowolny element a_0 z B' i odpowiadający mu element n_0 taki że $f(a_0) = n_0$ (taki element n_0 będzie istniał bo $B \subseteq \text{Rg}(f)$). Wtedy $n_0 \in B$, co implikuje $n_0 \in A$. Ale to też znaczy, że $a_0 \in A'$ z definicji przeciwobrazu. Więc $B' \subseteq A'$.

Ale z naszego założenia $B' \not\subseteq A'$ więc taka funkcja g nie należy do $Rg(\varphi)$, więc φ nie jest surjekcją. \square

c) Znaleźć $\varphi^{-1}(\{\operatorname{Id}_{\mathcal{P}(\mathbb{N})}\}).$

Trzeba znaleźć wszystkie takie funkcje f, że $\varphi(f) = \mathrm{Id}_{\mathcal{P}(\mathbb{N})}$. Okazuje się, że jest tylko jedna taka funkcja $f \in \mathbb{N}^{\mathbb{N}}$, a mianowicie $f = \mathrm{Id}_{\mathbb{N}}$.

Powód jest prosty: Dla każdego elementu $A \in \mathcal{P}(\mathbb{N})$, musi zachodzić $\varphi(f)(A) = A$. A wszczególności dla A, które są singletonami. Więc dla każdego zbioru jednoelementowego, przeciwobraz funkcji musi zwracać zbiór zawierający ten sam element. Formalnie:

Dla dowolnego $a \in \mathbb{N}$ mamy $\varphi(f)(\{a\}) = \{a\}$ wiec z definicji f(a) = a

d) Czy istnieje funkcja $G \in \text{Rg}(\varphi)$, która jest różnowartościowa?

Tak, ta funkcja to $\mathrm{Id}_{\mathcal{P}(\mathbb{N})}$, która z oczywistych względów jest iniekcją, oraz tak jak pokazano w podpunkcie c), należy do $\mathrm{Rg}(\varphi)$.

e) Czy każda funkcja $G \in \text{Rg}(\varphi)$ jest różnowartościowa?

Nie. Weźmy taką funkcję $f \in \mathbb{N}^{\mathbb{N}}$, że:

$$\exists_{n_0 \in \mathbb{N}} \ n_0 \notin \operatorname{Rg}(f)$$

Jasnym jest, że:

$$\varphi(f)(\{n_0\}) = f^{-1}(\{n_0\}) = \varnothing$$

Wtedy jeśli rozważymy taki zbiór $A \in \mathcal{P}(\mathbb{N})$, że $n_0 \notin A$, oraz zbiór $A \cup \{n_0\}$ (jasnym jest, że $A \neq A \cup \{n_0\}$), to otrzymamy:

$$\varphi(f)(A) = \varphi(f)(A \cup \{n_0\})$$

Więc taka funkcja $\varphi(f)$ nie jest różnowartościowa.