

GENERADOR SÍNCRONO

Diseño de un generador de Inducido rotante

Esquema de construcción de alternadores sincrónicos con rotores de polos salientes y lisos

Frecuencia

Fig. 4 Aspecto exterior de un rotor con polos salientes

Fig. 5 Aspecto general de un rotor liso montado tetrapolar

Fig. 6 Esquema de excitación de una máquina sincrónica

Expresión de la F.E.M.

$$E = 4,44.f.\phi.N. K$$

Campo rodante trifásico...\...\campo rodante.dwg

Campo rodante trifásico

fig. 12

Alternador elemental de dos polos

Alternador elemental de cuatro polos

CARGA RESISTIVA PURA

CARGA INDUCTIVA PURA
 Efecto Desmagnetizante – Menor fem

- CARGA CAPACITIVA PURA
- Efecto Magnetizante Mayor fem

Reacción de

- Inducido
 CARGA R-L CUALQUIERA
 - Conclusión: Es necesario un Regulador de tensión

REACTANCIAS POR REACCIÓN DE INDUCIDO

Circuito Equivalente

Rotor cilíndrico

$$\overrightarrow{E_0} = \overrightarrow{U} + R.\overrightarrow{I} + jX_i.\overrightarrow{I} + jX_d.\overrightarrow{I}$$

Flujos Dispersos: (a) De ranura; (b) de cabezas de bobinas; (c) Zig zag

Diagrama Vectorial

• De rotor liso

Diagramas Vectoriales

• Componentes del diagrama vectorial

	fmm.	Flujos	Fem.
campo rotórico	θ	ϕ	E_0
por reacción de inducido	θ_i	ϕ_i	$-jX_iI$
campo resultante	$\theta_r = \theta - \theta_i$	ϕ_r	E
flujo disperso		ϕ_d	$-jX_dI$
caída óhmica			RI

Surge del Circuito Equivalente Simplificado

$$Xs = Xi + Xd$$

Circuito Simplificado

Diagrama Vectorial Simplificado • Angulo de

Angulo de carga

Análisis:

• 1) Si la U es cte. E₀ cambia con el tipo de carga

• 2) Si mantengo I_{ex} = cte. Varia la tensión U con el tipo de carga.

3) Diagrama de tensiones x cte . de escala =
 Diagrama de potencias.

Diagrama Vectorial

 De polos salientes E_o Xid Id Xic Ic Ε Xd I θ<u>ic</u> θ_{Γ} θ_{id} θ_{id} fig. 6 $\mathbf{h}_i\theta$

CURVAS CARACTERÍSTICAS

l°) Característica en vacío:

$$\mathbf{n}_{s = \text{cte.}}$$
 $E_0 = f(I_{ex})$

2°) C. de cortocircuito (c.c.): $I = f(I_{ex})$

Circuito Equivalente

Diagrama Vectorial

2°) C. de cortocircuito (c.c.): $I = f(I_{ex})$

3°) Característica en carga: $U = f(I_{ex})$

4°) C. Externa U = f(I) (I_{exc} =cte; cos φ = cte)

5°) Curva de regulación:

$$I_{ex} = f(I)$$
 (U = cte.; cos φ = cte.)

$$I_{ex} = f(\cos \varphi)$$
 ($I = cte.$; $U = cte.$)

6°) Relación de cortocircuito

6°) Relación de cortocircuito

7°) Variación de tensión

Balance Energético

Potencia Electromagnética

Característica angular

Característica angular Rotor cilíndrico $\delta = 90^{\circ} \rightarrow S_{em} = S_{max}$ Característica angular Rotor polos salientes δ < 90

Generadores autoexcitados

PARALIELO DE GENIERADORIES SÍCRONOS

1) Acoplamiento:

• El método de las "lámparas de fase apagadas"

• El método de las "luces rotantes"

2) Análisis sobre barras infinitas

2.1 Proceso para tomar carga:

1° Caso

2° Caso

Sobreexcitado

Subexcitado

3° Caso

4° Caso

Diagrama a Pot. cte y Excitación variable

2.3 Diagrama a Excitación cte y Potencia

3. Análisis de dos máquinas en paralele

1° Caso: cambio de excitación

2° Caso

3° Caso: cambio de potencia

MOTOR SÍNCRONO

Principio de funcionamiento

Principio de funcionamiento

Diagrama Vectorial

Circuito equivalente para generador y motor

Generador:

Diagrama Vectorial

Motor

Generador

Motor

Un símil mecánico de la máquina síncrona como generador - fig. 10 – Podría representarse como un eje A (rueda polar) que gira accionado por un motor y esta ligado a una corona B (inducido) por resortes C (flujo resultante). Al hacer girar el eje, aplicando un freno F a la corona (carga de la máquina) el resorte se estira (los polos se desplazan) formando un cierto ángulo (ángulo de carga) proporcional al frenado (potencia entregada).

Como motor – fig. 11 - giraría la corona (campo rodante del inducido) y los resortes (flujo) arrastrarían al eje (rotor) en el que se encuentra ahora el freno (momento resistente).-

Medición del cosφ

Curvas en V

Arranque del motor síncrono

Arranque del motor síncrono

Arranque automático del motor síncrono

