期中考试模拟题(五)20220423

一、 单项选择题(每小题 3 分, 1. 设事件 A, B 满足 $AB = \emptyset$,		是 ().	
(A) \bar{A} , \bar{B} 互不相容	(B) \overline{A} , \overline{B} 相容		
(C) $P(AB) = P(A)P(B)$	(D) $P(A-B) =$	=P(A)	
2. 设 $X \sim N(1, \sigma^2)$,其分布部	函数为 $F(x)$,则必有() .	
(A) $F(x) + F(-x) = 1$	(B) $F(1+x) + x$	F(1-x)=1	
(C) $F(x+1) + F(x-1) = 1$	(D) $F(1-x) +$	F(x-1)=1	
3. 设随机变量 $X \sim U(2,5)$,	现对 X 进行三次独立重复	观测,则恰好有两次	欠观测值大于
3 的概率为().			
(A) $\frac{4}{9}$ (B) $\frac{2}{9}$	(C) $\frac{4}{27}$	(D)	$\frac{5}{9}$
4. 设二维随机向量 (X,Y) 的分	f 市函数为 $F(x,y)$,其边约	象分布函数为 $F_X(x)$), $F_{Y}(y)$, 则
$P{X > 1, Y > 1} = ($).			
(A) $1 - F(1,1)$	(B) $1-F$	$G_X(1) - F_Y(1)$	
(C) $F(1,1) - F_X(1) - F_Y(1) + 1$	(D) $F(1,1)$	$(1) + F_{X}(1) + F_{Y}(1) -$	1
5. 设随机变量 X 与 Y 相互	独立且服从相同的分布,	, <i>X</i> 的分布函数:	为 $F(x)$,则
$Z = \max\{X,Y\}$ 的分布函数为().		
(A) $F^{2}(x)$ (B) $F(x)F(y)$	(C) $1-(1-F(x))^2$	(D) $(1-F(x))(1$	-F(y)
二、 填空题(每小题 3 分,共 1	5分)		
1. 从 0,1,2,,9 这十个数字中	不放回的任取三个数字,用	引 A 表示三个数字中	1不含 0 和 5,
B 表示三个数字中不含 0 或 5, 则	JA 发生的概率为 $_{}$, I	B 发生的概率为	, A,B 同
时发生的概率为,			
2. 设 $f_1(x)$ 为标准正态分布的概率	-		
$f(x) = \begin{cases} af_1(x), & x \le 0 \\ bf_2(x), & x > 0 \end{cases} $	(a>0, b>0) 为概	率密度,则 a,b	,应满足关

系	
/ 1/	

- 3. 设随机变量 X 与 Y 相互独立,且都服从 B(1,0.6),则 P(X=Y) =______
- 5. 设随机变量 $X \sim N(0,1)$, $Y \sim N(1,2)$, 且 $X \ni Y$ 相互独立,则 $P\{X + 2Y \le 5\} =$

(用标准正态分布的分布函数 $\Phi(\cdot)$ 表示)

三、(本题 10 分) 某炮台有 3 门炮, 命中率分别为 0.4, 0.5, 0.6, 3 门炮各独立发射一枚炮 弹.(1) 求命中目标的概率;(2) 若恰有两门命中目标,求第1门炮命中目标的概率。

四、(本题 10 分) 已知随机变量 X 的概率密度为 $f(x) = Ae^{-|x|}, -\infty < x < +\infty$. 求:

(1) 常数 A; (2) X 的分布函数 F(x); (3) 设 Y = -2X, 求 Y 的概率密度 $f_{y}(y)$.

五、(本题 10 分) 已知随机变量 X 的分布律如

右表,

X	-1	0	1
P	0.25	0.5	0.25

且 $Y = X^2$. 求: (1) (X,Y)的分布律;

- (2) $P\{X = 0 \mid X + Y = 0\};$ (3) E(XY), D(XY).

六、(本题 14 分)已知二维随机向量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} 24(1-x)y & 0 \le x \le 1, 0 \le y \le x \\ 0 & \text{#\dot{c}} \end{cases}$$

$$\dot{x}: (1) X \ni Y \text{ bibis d, d was a \dot{c}}$$

- (2) X = Y 是否独立? 为什么? (3) $P\{3Y \le X\}$; (4) $f_{X|Y}(x|y)$.

七、(本题 10 分) 设随机变量 X 与 Y 相互独立,且分别服从参数为 λ_1 , λ_2 的指数分布, 求Z = X + Y的概率密度。

八、(本题 16 分)设一部手机在时间段[0,t]内收到的微信数 X 服从泊松分布 $P(\lambda)$,其中 $\lambda = \mu t$, μ 是正常数。每条微信是否为广告与其到达时间独立,也与其他微信是否为广告 独立。假设每条微信是广告的概率 p > 0。

- (1) 已知[0,t] 内收到了n 条微信,求其中广告微信数Y的分布律;
- (2) 若 p = 0.35, 在[0,t] 内收到的 8 条微信中有几条是广告的概率最大?

(3) 计算[0,t] 内收到的广告微信数Y的概率分布;

(4) [0,t] 内收到的广告微信数Y和非广告微信数Z是否相互独立?为什么?