| Name:  | Centre/Index No: |
|--------|------------------|
| School | Signature        |

P525/1 **CHEMISTRY** Paper 1 July/August 2023 2 3/4 hours



## WAKISSHA JOINT MOCK EXAMINATIONS

## Uganda Advanced Certificate of Education

#### CHEMISTRY

#### Paper 1

#### 2 hours 45 minutes

### Instructions to Candidates

- Attempt all questions in section A and any six questions from section B.
- All questions are to be answered in the spaces provided.
- A Periodic Table with relevant atomic masses is supplied at the end of the paper.
- Mathematical tables (3 figures) and non-programmable silent scientific calculators may be used.
- Illustrate your answers with equations where applicable.
- Molar gas volume at s.t.p =  $22.4 \text{ dm}^3$

|   |   |   |   |   |   | I | or E | xamii | ner's | Use O | nly |    | i  |    |    |    |       |
|---|---|---|---|---|---|---|------|-------|-------|-------|-----|----|----|----|----|----|-------|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8    | 9     | 10    | 11    | 12  | 13 | 14 | 15 | 16 | 17 | Total |
|   |   |   |   |   |   |   |      |       |       |       |     |    |    |    |    |    |       |

Turn Over

**CS** CamScanner

## SECTION A (46 MARKS)

Attempt all questions in this section.

| 1. | (a) |                 | m -24 which is used as an electrolytic tracer decays by emission particle and two gamma rays with half-life of 15 hours. | n of a          |
|----|-----|-----------------|--------------------------------------------------------------------------------------------------------------------------|-----------------|
|    |     |                 | the nuclear reaction for the decay of sodium $-24$ .                                                                     | (01 mark)       |
|    |     |                 |                                                                                                                          |                 |
|    |     |                 |                                                                                                                          |                 |
|    | (b) | 2.4g c<br>Calcu | of sodium -24 were allowed to disintegrate for 72 hours. slate the mass of the radioactive isotope that decayed.         | (04 marks)      |
|    |     |                 |                                                                                                                          |                 |
|    |     | •••••           | ••••••                                                                                                                   |                 |
|    |     | •••••           |                                                                                                                          |                 |
|    |     |                 |                                                                                                                          |                 |
|    |     |                 |                                                                                                                          |                 |
|    | (c) | State           | any two other uses of radioactive isotopes.                                                                              | (01 mark)       |
|    |     |                 |                                                                                                                          |                 |
|    |     |                 |                                                                                                                          |                 |
|    |     |                 |                                                                                                                          |                 |
| 2. | The | atomic          | number of chromium is 24.                                                                                                |                 |
|    | (a) | Write           |                                                                                                                          |                 |
|    |     | (i)             | electronic configuration of chromium.                                                                                    | (01 mark)       |
|    |     |                 |                                                                                                                          |                 |
|    |     | (ii)            | formulae of three common oxides of chromium.                                                                             | (1½ marks)      |
|    |     |                 |                                                                                                                          |                 |
|    |     |                 |                                                                                                                          |                 |
|    |     |                 |                                                                                                                          |                 |
|    | (b) |                 | oxide(s) in a(ii) are either basic, amphoteric or acidic. Write a<br>eaction between the;                                | in equation for |
|    |     | (i)             | basic oxide of chromium and dilute mineral acids.                                                                        | (1½ marks)      |
|    |     |                 |                                                                                                                          |                 |
|    |     |                 |                                                                                                                          |                 |
|    |     | (ii)            | acidic oxide of chromium and sodium hydroxide solution.                                                                  |                 |
|    |     |                 |                                                                                                                          |                 |
|    |     |                 |                                                                                                                          |                 |
|    |     |                 |                                                                                                                          |                 |
|    |     |                 | © WAKISSHA Joint Mock Examinations 2023                                                                                  | 2               |

| 3. | Con | nplete<br>etion. | the following equations and in each case outline a suitable mech                             | anism for the               |
|----|-----|------------------|----------------------------------------------------------------------------------------------|-----------------------------|
|    | (a) |                  | 3CH₂Br CH₃CH₂ ŌNa+/alcohol → Heat                                                            | (03 marks)                  |
|    |     |                  |                                                                                              |                             |
|    |     |                  |                                                                                              |                             |
|    | (b) | (                | $\xrightarrow{\text{HBr}}$                                                                   | (03 marks)                  |
|    |     | Med              | chanism:                                                                                     |                             |
|    |     |                  |                                                                                              |                             |
|    |     |                  |                                                                                              |                             |
|    |     |                  |                                                                                              |                             |
| 4. | (a) | Defi             | ine the term common ion effect.                                                              | (01 mark)                   |
|    |     |                  |                                                                                              |                             |
|    | (b) | The 2.95         | solubility of Lead (II) chloride in 0.02 M calcium chloride at 25°C 1625 gdm <sup>-3</sup> . |                             |
|    |     | (i)              | Calculate the solubility of lead (II) chloride in gdm <sup>-3</sup> in pure wa               | nter at 25°C.<br>(05 marks) |
|    |     |                  |                                                                                              |                             |
|    |     |                  |                                                                                              |                             |
|    |     |                  |                                                                                              |                             |
|    |     |                  |                                                                                              |                             |
|    |     |                  | ,                                                                                            | ••••••                      |
|    |     |                  |                                                                                              |                             |
|    |     |                  |                                                                                              |                             |
|    |     | (ii)             | Comment on your answer in b(i) above.                                                        | (½ mark)                    |
|    |     |                  | © WAKISSHA Joint Mock Examinations 2023                                                      | Turn Over                   |

| 5. | The c |          | ies of some chemical r   | eactions are given        | below. $\Delta F$ | $I^{\theta}$ (KJmol <sup>-1</sup> ) |
|----|-------|----------|--------------------------|---------------------------|-------------------|-------------------------------------|
|    | MgO   | (s) + 2I | -ICl <sub>(aq)</sub> >   | $MgCl_{2(aq)} + H2O_0$    | D                 | - 146.2                             |
|    |       | + 2HC    |                          | $MgCl_{2(aq)} + H2_{(g)}$ |                   | - 478.4                             |
|    |       | ) + O2   | 20.20                    |                           |                   | - 572                               |
|    | (a)   | Calc     | ulate the enthalpy of fo | - 07                      | sium oxide.       | (03 marks)                          |
|    |       |          |                          |                           |                   |                                     |
|    |       |          |                          |                           |                   |                                     |
|    |       |          |                          |                           |                   |                                     |
|    |       |          |                          |                           |                   |                                     |
|    |       |          |                          |                           |                   |                                     |
|    | (b)   | State    | whether Magnesium        | oxide is stable or        | not. Give a rea   | son for your answer.<br>(1½ marks)  |
|    |       |          |                          |                           |                   |                                     |
|    |       |          |                          |                           |                   |                                     |
| ,  | T.    |          |                          |                           |                   |                                     |
| 6. | The   | physica  | al properties of the hyd | rides of fluorine ar      | nd Iodine are sh  | own below.                          |
|    |       |          | Hydride                  | HF                        | HI                |                                     |
|    |       |          | Boiling point            | +19.9°C                   | -35.1°C           |                                     |
|    |       |          | Physical state           | Liquid                    | Gas               |                                     |
|    | (a)   | Expl     | ain the variation in phy | ysical properties of      | the hydrides.     | (02 marks)                          |
|    |       |          |                          |                           |                   |                                     |
|    |       |          |                          |                           |                   |                                     |
|    |       |          |                          |                           |                   |                                     |
|    |       |          |                          |                           |                   |                                     |
|    | (b)   | Desc     | ribe the reactions of th | ne hydrides with:         |                   |                                     |
|    | (-)   | (i)      | sodium carbonate so      |                           |                   | (11/                                |
|    |       |          |                          |                           |                   | (1½ marks)                          |
|    |       |          |                          |                           |                   | ••••••                              |
|    |       |          |                          |                           |                   |                                     |
|    |       |          |                          |                           |                   |                                     |
|    |       |          |                          |                           |                   |                                     |
|    |       |          | © WAKISSHA J             | loint Mock Examination    | s 2023            | 4                                   |

|    |     | (ii)            | concentrated sulphuric acid.                                                                                                            | (1½ marks)                      |
|----|-----|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|    |     |                 |                                                                                                                                         |                                 |
|    |     |                 |                                                                                                                                         |                                 |
|    |     |                 |                                                                                                                                         |                                 |
|    |     |                 |                                                                                                                                         |                                 |
| 7. |     |                 | oate was warmed with excess acidified water to form separated by distillation.                                                          | n two organic products          |
|    | (a) | Write           | an equation for the reaction that took place.                                                                                           | (01 mark)                       |
|    |     |                 |                                                                                                                                         |                                 |
|    |     |                 |                                                                                                                                         |                                 |
|    | (b) | what            | e a reagent that can be used to distinguish the product<br>would be observed if each of the products is separate<br>and you have named. |                                 |
|    |     | Reage           | ent.                                                                                                                                    | (03 marks)                      |
|    |     |                 |                                                                                                                                         |                                 |
|    |     | Obser           | vation.                                                                                                                                 |                                 |
|    |     |                 |                                                                                                                                         |                                 |
|    |     |                 |                                                                                                                                         |                                 |
|    |     |                 |                                                                                                                                         |                                 |
|    | (c) | State of separa | one other physical method by which the products of<br>sted.                                                                             | the reaction can be<br>(½ mark) |
|    |     |                 |                                                                                                                                         |                                 |
| 8. |     |                 | expand normally and has a critical temperature of 3 ssure. The triple point of E is -57°C at 5.2 atm pro                                |                                 |
|    | (a) | Sketch          | a well-labelled phase diagram of E.                                                                                                     | (03 marks)                      |
|    |     |                 |                                                                                                                                         |                                 |

|    | (b) | State          | what would happen when E at;                                                                                                                                                                             |                               |
|----|-----|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|    |     | (i)            | 180 K temperature and 50 atm pressure was heated at co                                                                                                                                                   | nstant pressure.<br>(01 mark) |
|    |     |                |                                                                                                                                                                                                          |                               |
|    |     |                |                                                                                                                                                                                                          |                               |
|    |     | (ii)           | -57°C and 5.2 atm pressure was compressed at constant                                                                                                                                                    |                               |
|    |     |                |                                                                                                                                                                                                          |                               |
|    |     |                |                                                                                                                                                                                                          |                               |
| 9. | amm | olex liquonium | wide reacts with excess ice cold concentrated hydrochloric<br>aid which forms a yellow precipitate on addition of a satur<br>chloride. The dry precipitate reacts with concentrated sulplay<br>w liquid. | ated solution of              |
|    | (a) | Name           | e the;                                                                                                                                                                                                   |                               |
|    |     | (i)            | complex liquid.                                                                                                                                                                                          | (½ mark)                      |
|    |     |                |                                                                                                                                                                                                          |                               |
|    |     | (ii)           | yellow precipitate.                                                                                                                                                                                      | (½ mark)                      |
|    |     |                |                                                                                                                                                                                                          |                               |
|    |     | (iii)          | pale yellow liquid.                                                                                                                                                                                      | (½ mark)                      |
|    |     |                |                                                                                                                                                                                                          |                               |
|    | (b) | Write          | e an equation for the reaction between water and the pale y                                                                                                                                              |                               |
|    |     |                |                                                                                                                                                                                                          |                               |
|    |     |                |                                                                                                                                                                                                          |                               |
|    | (c) |                | e the type of reaction that occurs in (b).                                                                                                                                                               | (½ mark)                      |
|    |     |                |                                                                                                                                                                                                          |                               |

### **SECTION B (54 MARKS)**

Attempt any six questions from this section.

10. Write equations to show how the following conversions can be effected.

(a) COOH to

(c)

СООН

(31/2 marks)

.....

.....

(b)  $CH_3Br$  to  $(CH_3)_2N - N = 0$  (3½ marks)

 $\uparrow^{+}_{2}C\Gamma$  to  $\uparrow^{-}_{2}NHN = CH_{2}$  (02marks)

(a) 0.05M copper (II) sulphate was titrated with aqueous ammonia.
 The conductivity of the mixture varies as shown by the graph below.



© WAKISSHA Joint Mock Examinations 2023

Turn Over

|     | State        | the reason(s) why;                                                                                                                                                                                                                                |              |
|-----|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|     | (i)          | conductivity is initially high at point A.                                                                                                                                                                                                        | (01 mark)    |
|     |              |                                                                                                                                                                                                                                                   |              |
|     |              |                                                                                                                                                                                                                                                   |              |
|     |              |                                                                                                                                                                                                                                                   |              |
|     | (ii)         | conductivity almost remains constant along CD.                                                                                                                                                                                                    | (01 mark)    |
|     |              |                                                                                                                                                                                                                                                   |              |
|     |              |                                                                                                                                                                                                                                                   |              |
|     |              |                                                                                                                                                                                                                                                   |              |
| (b) | Writ         | e an equation for the reaction that takes place along;                                                                                                                                                                                            |              |
|     | (i)          | AB                                                                                                                                                                                                                                                | (01 mark)    |
|     |              |                                                                                                                                                                                                                                                   |              |
|     |              |                                                                                                                                                                                                                                                   |              |
|     | (ii)         | BC                                                                                                                                                                                                                                                | (01 mark)    |
|     |              |                                                                                                                                                                                                                                                   |              |
|     |              |                                                                                                                                                                                                                                                   |              |
| (c) | and<br>at in | electrolytic conductivity of water at 25°C is $5.484 \times 10^{-3}$ its concentration is 18 g per 18 cm <sup>3</sup> . Given that the molar finite dilution of $H^+$ and $\bar{O}H$ are 349.8 and 198.6 $\Omega^{-1}cm$ ectively. Calculate the; | conductivity |
|     | (i)          | degree of ionization of water at 25°C.                                                                                                                                                                                                            | (3½ marks)   |
|     |              |                                                                                                                                                                                                                                                   |              |
|     |              |                                                                                                                                                                                                                                                   |              |
|     |              |                                                                                                                                                                                                                                                   |              |
|     |              |                                                                                                                                                                                                                                                   |              |
|     |              |                                                                                                                                                                                                                                                   |              |
|     |              |                                                                                                                                                                                                                                                   |              |
|     |              |                                                                                                                                                                                                                                                   |              |
|     | (ii)         | ionic product of water, Kw at 25°C.                                                                                                                                                                                                               | (1½ marks)   |
|     |              |                                                                                                                                                                                                                                                   |              |
|     |              |                                                                                                                                                                                                                                                   |              |
|     |              |                                                                                                                                                                                                                                                   |              |
|     |              |                                                                                                                                                                                                                                                   |              |
|     |              |                                                                                                                                                                                                                                                   |              |

| 12. | Dilute nitric acid | reacts with | phenol | according to | the equation; |
|-----|--------------------|-------------|--------|--------------|---------------|
|-----|--------------------|-------------|--------|--------------|---------------|

$$\begin{array}{c}
OH \\
OH \\
\hline
OH \\
NO_2
\end{array}$$

$$\begin{array}{c}
OH \\
NO_2
\end{array}$$

The products were separated by steam distillation.

(a) State the reason(s) why the;

(c)

| (i) | reaction occurs with dilute nitric acid in the absence unlike with benzene. | e of a catalyst (02 marks) |
|-----|-----------------------------------------------------------------------------|----------------------------|
|     |                                                                             |                            |
|     |                                                                             |                            |
|     |                                                                             |                            |
|     |                                                                             |                            |
|     |                                                                             |                            |

- (ii) two products can be separated by steam distillation. (02 marks)
- (b) When the mixture was steam distilled at 1.0 atm at 96°C, the mass of water in the steam distillate was 0.90 g. Calculate the mass of the second component of the distillate.

  (Saturated vapour pressure of water at 96°C = 0.825 atm). (03 marks)

| (canada raponi pressure of water at 50 C | 0.025 ddii). | ) marks) |
|------------------------------------------|--------------|----------|
|                                          |              |          |
| ••••••                                   |              |          |
|                                          |              |          |
|                                          |              | •••••    |
|                                          |              |          |
|                                          |              |          |
|                                          |              |          |
|                                          |              |          |
|                                          |              |          |

| State two advantages of steam distillation. | (02 marks) |
|---------------------------------------------|------------|
|                                             |            |
|                                             |            |

Turn Over

© WAKISSHA Joint Mock Examinations 2023

0

| 13. | (a) | Name one reagent that can be used to distinguish between the following pairs of compounds. State what would be observed when each member the pair is separately treated with the reagent you have named. |                                                                                                                                                                                          |             |  |  |  |  |  |  |
|-----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|--|--|
|     |     | (i)                                                                                                                                                                                                      | $K_2SO_{4(aq)}$ and $K_3PO_{4(aq)}$                                                                                                                                                      | (02 marks)  |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                          | Reagent                                                                                                                                                                                  |             |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                          |                                                                                                                                                                                          |             |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                          | Observation                                                                                                                                                                              |             |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                          |                                                                                                                                                                                          |             |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                          |                                                                                                                                                                                          |             |  |  |  |  |  |  |
|     |     | (ii)                                                                                                                                                                                                     | $NaCl_{(aq)}$ and $Na_2C_2O_{4(aq)}$                                                                                                                                                     | (02 marks)  |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                          | Reagent                                                                                                                                                                                  |             |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                          |                                                                                                                                                                                          |             |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                          | Observation                                                                                                                                                                              |             |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                          |                                                                                                                                                                                          |             |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                          |                                                                                                                                                                                          |             |  |  |  |  |  |  |
|     | (b) | Explain each of the following observations.                                                                                                                                                              |                                                                                                                                                                                          |             |  |  |  |  |  |  |
|     |     | (i)                                                                                                                                                                                                      | When sodium hydroxide solution is added to neutral potas<br>dichromate solution, the orange solution turns yellow and<br>precipitate is formed on addition of lead (II) nitrate solution | pale yellow |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                          |                                                                                                                                                                                          |             |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                          |                                                                                                                                                                                          |             |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                          |                                                                                                                                                                                          |             |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                          |                                                                                                                                                                                          |             |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                          |                                                                                                                                                                                          |             |  |  |  |  |  |  |
|     |     | (ii)                                                                                                                                                                                                     | Manganese (II) sulphate solution in the presence of conc<br>nitric acid forms a purple solution on addition of sodium                                                                    |             |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                          |                                                                                                                                                                                          |             |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                          |                                                                                                                                                                                          |             |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                          |                                                                                                                                                                                          |             |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                          |                                                                                                                                                                                          |             |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                          |                                                                                                                                                                                          |             |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                          |                                                                                                                                                                                          |             |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                          |                                                                                                                                                                                          |             |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                          | © WAKISSHA Joint Mock Examinations 2023                                                                                                                                                  | 10          |  |  |  |  |  |  |

| 14. | An   | organio           | e compound Q has a molecular formula; $C_4H_8O$ .                                                                              |                      |
|-----|------|-------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------|
|     | Q ha | as the f<br>forms | following chemical properties;<br>a yellow precipitate with both 2,4-dinitrophenyl hyd<br>in the presence of sodium hydroxide. | Irazine and aqueous  |
|     | •    | forms :           | a cloudy solution after 8 minutes on addition of a so<br>aloride in concentrated hydrochloric acid.                            | lution of an 1ydrous |
|     |      |                   | silver mirror on addition of ammoniacal silver nitra                                                                           | ate solution.        |
|     | (a)  | Writ              | re the;                                                                                                                        |                      |
|     |      | (i)               | structural formula of Q.                                                                                                       | (01 mark)            |
|     |      | (ii)              | IUPAC name of Q.                                                                                                               | (01 mark)            |
|     | (1.) | XX7 **            |                                                                                                                                |                      |
|     | (b)  |                   | te an equation for the reaction between Q and;                                                                                 |                      |
|     |      | (i)               | anhydrous zinc chloride in the presence of concenacid.                                                                         | (01 mark)            |
|     |      |                   |                                                                                                                                |                      |
|     |      |                   |                                                                                                                                |                      |
|     |      | (ii)              | ammoniacal silver nitrate solution.                                                                                            | (01 mark)            |
|     |      |                   | •••••                                                                                                                          |                      |
|     |      |                   |                                                                                                                                |                      |
|     |      | (iii)             | saturated sodium hydrogensulphite solution                                                                                     | (01 mark)            |
|     |      |                   |                                                                                                                                | •••••                |
|     |      |                   |                                                                                                                                |                      |
|     | (c)  | Sugo              | est a suitable mechanism for the reaction between (                                                                            | and acidified        |

2,4-dinitrophenyl hydrazine. (04 marks)

**Turn Over** 

| 15. | (a) | Ammonia is obtained on large scale in the Haber process according to the equation.<br>$N_{2(g)} + 3H_{2(g)}$ $\longrightarrow$ $2NH_{3(g)}$ ; $\Delta H = -92 \text{ KJ}$                                                                   |                                       |  |  |  |  |  |  |  |
|-----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|--|--|--|--|
|     |     | State the effect of the following on the yield of ammo your answer.                                                                                                                                                                         | onia. Give a reason for               |  |  |  |  |  |  |  |
|     |     | (i) high pressure of $150 - 200$ atm.                                                                                                                                                                                                       | (1½ marks)                            |  |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                                                             |                                       |  |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                                                             |                                       |  |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                                                             |                                       |  |  |  |  |  |  |  |
|     |     | (ii) high temperature above 450°C                                                                                                                                                                                                           | (1½ marks)                            |  |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                                                             |                                       |  |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                                                             |                                       |  |  |  |  |  |  |  |
|     | 1   |                                                                                                                                                                                                                                             |                                       |  |  |  |  |  |  |  |
|     | (b) | 3.0 moles of nitrogen gas were mixed with 1.0 moles of 500 cm <sup>3</sup> bulb. The mixture was allowed to attain equilible the mass of ammonia in the equilibrium mixture was for Calculate the concentration equilibrium constant, Kc at | brium at 450°C and ound to be 0.34 g. |  |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                                                             |                                       |  |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                                                             |                                       |  |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                                                             |                                       |  |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                                                             |                                       |  |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                                                             |                                       |  |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                                                             |                                       |  |  |  |  |  |  |  |
|     | (c) | Write equations to show how the ammonia obtained fro can be converted to nitric acid.                                                                                                                                                       | om the Haber process (03 marks)       |  |  |  |  |  |  |  |
|     |     | ••••••                                                                                                                                                                                                                                      |                                       |  |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                                                             |                                       |  |  |  |  |  |  |  |
| 16. | (a) | Lithium belongs to group I of the Periodic Table but its properties resemble Magnesium of group II. State three;                                                                                                                            |                                       |  |  |  |  |  |  |  |
|     |     | (i) reasons why the chemistry of Lithium differs from                                                                                                                                                                                       | m other group I                       |  |  |  |  |  |  |  |
|     |     | elements.                                                                                                                                                                                                                                   | (1½ marks)                            |  |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                                                             |                                       |  |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                                                             |                                       |  |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                                                                             |                                       |  |  |  |  |  |  |  |
|     |     | © WAKISSHA Joint Mock Examinations 2023                                                                                                                                                                                                     |                                       |  |  |  |  |  |  |  |
|     |     | 1000                                                                                                                                                                                                                                        | 12                                    |  |  |  |  |  |  |  |

|        | ,   | (11)                                                                                                                                                     | Magnesium.      | (03 marks)          |            |           |           |  |  |  |  |  |
|--------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|------------|-----------|-----------|--|--|--|--|--|
|        |     |                                                                                                                                                          |                 |                     |            |           |           |  |  |  |  |  |
|        |     |                                                                                                                                                          |                 |                     |            |           |           |  |  |  |  |  |
|        |     |                                                                                                                                                          |                 | •••••••             |            |           |           |  |  |  |  |  |
| 00000  |     | 2220002000000                                                                                                                                            |                 |                     |            | ······    |           |  |  |  |  |  |
| (b     | )   | Write                                                                                                                                                    |                 |                     |            |           |           |  |  |  |  |  |
|        | (   | (i)                                                                                                                                                      | Magnesium nitr  | (1½ marks)          |            |           |           |  |  |  |  |  |
|        |     |                                                                                                                                                          |                 |                     |            |           |           |  |  |  |  |  |
|        |     |                                                                                                                                                          |                 |                     |            |           |           |  |  |  |  |  |
|        |     | (ii)                                                                                                                                                     | Beryllium chlor | (1½ marks)          |            |           |           |  |  |  |  |  |
|        |     |                                                                                                                                                          |                 |                     |            |           |           |  |  |  |  |  |
|        |     |                                                                                                                                                          | ••••••          |                     |            |           |           |  |  |  |  |  |
|        | - 2 | (iii)                                                                                                                                                    | Barium peroxid  | (1½ marks)          |            |           |           |  |  |  |  |  |
|        |     |                                                                                                                                                          |                 |                     |            |           |           |  |  |  |  |  |
|        |     |                                                                                                                                                          |                 |                     |            |           |           |  |  |  |  |  |
| 17. (a |     | Ethanol and hexane form an azeotropic mixture of composition 38.42% ethanol and 61.58% hexane. The density of the azeotrope is 0.687 gcm <sup>-3</sup> . |                 |                     |            |           |           |  |  |  |  |  |
|        |     | Sub                                                                                                                                                      | stance          | Ethanol Hexane Azeo |            | Azeotrope |           |  |  |  |  |  |
|        |     | Boi                                                                                                                                                      | ling point (°C) | 78.4                | 68.9       | 59.15     |           |  |  |  |  |  |
|        |     | (i)                                                                                                                                                      | (01 mark)       |                     |            |           |           |  |  |  |  |  |
|        |     |                                                                                                                                                          |                 |                     |            |           |           |  |  |  |  |  |
|        |     | (ii)                                                                                                                                                     | Explain your an |                     | (02 marks) |           |           |  |  |  |  |  |
|        |     | (11)                                                                                                                                                     | Explain your an |                     |            | •••••     |           |  |  |  |  |  |
|        |     |                                                                                                                                                          |                 |                     |            |           |           |  |  |  |  |  |
|        |     |                                                                                                                                                          |                 |                     |            |           |           |  |  |  |  |  |
|        |     |                                                                                                                                                          |                 |                     |            |           |           |  |  |  |  |  |
|        |     |                                                                                                                                                          |                 |                     |            |           |           |  |  |  |  |  |
|        |     |                                                                                                                                                          |                 |                     |            |           |           |  |  |  |  |  |
|        |     |                                                                                                                                                          |                 |                     |            |           |           |  |  |  |  |  |
| -      |     |                                                                                                                                                          |                 |                     |            |           | Turn Over |  |  |  |  |  |
|        |     |                                                                                                                                                          | © WAKISSI       | 13                  |            |           |           |  |  |  |  |  |

| hexane system.  (02 marks  (ii) A mixture containing 25% liquid ethanol was fractionally distilled. Identifithe substance obtained as;  • distillate. (½ marks)  • residual liquid. (½ marks)  (2) 50 cm³ of the azeotrope was shaken with 100 cm³ of choline chloride (solvent) at 25°C. Calculate the mass of ethanol extracted by choline solvent. (Partition coefficient of ethanol between choline chloride and hexane at 25°C is 15.80). (03 marks) | )  | (i)   | Sketch a well-labelled boiling point composition diagram for the ethanol-                                                              |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|----------------------------------------------------------------------------------------------------------------------------------------|---|
| the substance obtained as;  • distillate                                                                                                                                                                                                                                                                                                                                                                                                                  |    |       | hexane system. (02 marks)                                                                                                              |   |
| the substance obtained as;  • distillate                                                                                                                                                                                                                                                                                                                                                                                                                  |    |       |                                                                                                                                        |   |
| the substance obtained as;  • distillate                                                                                                                                                                                                                                                                                                                                                                                                                  |    |       |                                                                                                                                        |   |
| • residual liquid                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | (ii)  | A mixture containing 25% liquid ethanol was fractionally distilled. Identif the substance obtained as;                                 | У |
| 50 cm <sup>3</sup> of the azeotrope was shaken with 100 cm <sup>3</sup> of choline chloride (solvent) at 25°C. Calculate the mass of ethanol extracted by choline solvent. (Partition coefficient of ethanol between choline chloride and hexane at 25°C is 15.80).  (03 marks)                                                                                                                                                                           |    |       | • distillate (½ mark                                                                                                                   | ) |
| (solvent) at 25°C. Calculate the mass of ethanol extracted by choline solvent. (Partition coefficient of ethanol between choline chloride and hexane at 25°C is 15.80).  (03 marks)                                                                                                                                                                                                                                                                       |    |       | • residual liquid (½ mark                                                                                                              | ) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c) | (solv | vent) at 25°C. Calculate the mass of ethanol extracted by choline vent. (Partition coefficient of ethanol between choline chloride and | ) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |       |                                                                                                                                        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |       |                                                                                                                                        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |       |                                                                                                                                        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |       |                                                                                                                                        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |       |                                                                                                                                        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |       |                                                                                                                                        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |       |                                                                                                                                        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |       |                                                                                                                                        |   |

# THE PERIODIC TABLE

| 1                 | 2                 |                   |                   |                  |                  |                  |                   |                   |                   |                   |                   | 3                | 4                 | 5                  | 6                  | 7                  | 8                 |
|-------------------|-------------------|-------------------|-------------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|--------------------|--------------------|--------------------|-------------------|
| 1<br>H<br>1.0     |                   |                   |                   |                  |                  |                  |                   |                   |                   |                   |                   |                  |                   |                    |                    | 1<br>H<br>1.0      | 2<br>He<br>4.0    |
| 3<br>Li<br>6.9    | 4<br>Be<br>9.0    |                   |                   |                  |                  |                  |                   |                   |                   |                   |                   | 5<br>B<br>19.8   | 6<br>C<br>12.0    | 7<br>N<br>14.0     | 8<br>O<br>16.0     | 9<br>F<br>19.0     | 10<br>Ne<br>20.2  |
| 11<br>Na<br>23.0  | 12<br>Mg<br>24.3  |                   |                   |                  |                  |                  |                   |                   |                   |                   |                   | 13<br>Al<br>27.0 | 14<br>SI<br>28.1  | 15<br>P<br>31.0    | 16<br>S<br>32.1    | 17<br>Cl<br>35.4   | 18<br>Ar<br>40.0  |
| 19<br>K<br>39.1   | 20<br>Ca<br>40.1  | 21<br>Sc<br>45.0  | 22<br>Ti<br>47.9  | 23<br>V<br>50.9  | 24<br>Cr<br>52.0 | 25<br>Mn<br>54.9 | 26<br>Fe<br>55.8  | 27<br>Co<br>58.9  | 28<br>NI<br>58.7  | 29<br>Ca<br>63.5  | 30<br>Zn<br>65.7  | 31<br>Ga<br>69.7 | 32<br>Ge<br>72.6  | 33<br>AJ<br>74.9   | 34<br>Se<br>79.0   | 35<br>Br<br>79.9   | 36<br>Kr<br>83.8  |
| 37<br>Rb<br>85.5  | 38<br>Sr<br>87.6  | 39<br>Y<br>88.9   | 40<br>Zr<br>91.2  | 41<br>Nb<br>92.9 | 42<br>Mo<br>95.9 | 43<br>Tc<br>98.9 | 44<br>Ru<br>101   | 45<br>Rh<br>103   | 46<br>Pd<br>106   | 47<br>Ag<br>108   | 48<br>Cd<br>112   | 49<br>In<br>115  | 50<br>Sn<br>119   | 51<br>Sb<br>122    | 52<br>Te<br>128    | 53<br>[<br>127     | 54<br>Xe<br>131   |
| 55<br>Cs<br>133   | 56<br>Ba<br>137   | 57<br>La<br>139   | 72<br>Hf<br>178   | 73<br>Th<br>181  | 74<br>W<br>184   | 75<br>Re<br>186  | 76<br>Os<br>190   | 77<br>Ir<br>192   | 78<br>Pt<br>195   | 79<br>Au<br>197   | 80<br>Hg<br>201   | 81<br>T1<br>204  | 82<br>Pb<br>207   | 83<br>Bi<br>209    | 84<br>Po<br>(209)  | 85<br>At<br>(210)  | 86<br>Rn<br>(222) |
| 87<br>Fr<br>(223) | 83<br>Ra<br>(226) | 89<br>Ac<br>(227) |                   |                  |                  |                  |                   |                   | ,                 |                   |                   |                  |                   | ,                  |                    |                    | ,                 |
|                   | -                 | A                 | 57<br>Le<br>139   | 53<br>Ce<br>140  | 59<br>Pr<br>141  | 60<br>Nd<br>144  | 61<br>Pm<br>(145) | 62<br>Sm<br>152   | 63<br>Sm<br>150   | 64<br>Eu<br>152   | 65<br>Tb<br>159   | 66<br>Dy<br>162  | 67<br>Ho<br>165   | 68<br>Er<br>167    | 69<br>Tm<br>169    | 70<br>Yb<br>173    | 71<br>Lu<br>175   |
|                   |                   |                   | 89<br>Ac<br>(227) | 90<br>Th<br>232  | 91<br>Pa<br>231  | 92<br>U<br>238   | 93<br>Np<br>237   | 94<br>Pu<br>(244) | 95<br>Am<br>(243) | 96<br>Cm<br>(247) | 97<br>Bk<br>(247) | 98<br>Cf<br>251  | 99<br>Es<br>(254) | 100<br>Fm<br>(257) | 101<br>Mv<br>(256) | 102<br>No<br>(254) | 103<br>Lw         |

1. Indicates atomic number.

2. H Indicates relative atomic mass.

**END**