SPECTRAL SUBSAMPLING MCMC FOR MULTIVARIATE TIME SERIES

ROBERT KOHN, MATIAS QUIROZ AND MATTIAS VILLANI

ABSTRACT. Whatevs

1. Introduction

Spectral subsampling MCMC was proposed in Salomone et al. (2020) to accelerate MCMC for long stationary univariate time series.

2. Model

Let $\mathbf{X}_t \in \mathbb{R}^d$ be a *d*-variate zero mean stationary time series with autocovariance function

$$C_{\mathbf{X}}(\tau) = \operatorname{Cov}(\mathbf{X}_{t}, \mathbf{X}_{t-u})$$

The spectral density matrix is

(2.2)
$$f_{\mathbf{X}}(\omega) = \frac{1}{2\pi} \sum_{\tau=-\infty}^{\infty} C_{\mathbf{X}}(\tau) \exp(-i\omega\tau),$$

with the diagonal elements is the usual spectral density for each time series and the offdiagonal elements are cross-spectral densities

(2.3)
$$f_{jk}(\omega) = \sum_{\tau = -\infty}^{\infty} \mathbb{C}_{jk}(\tau) \exp(-i\omega\tau).$$

The Discrete Fourier Transform (DFT) of X_t is

(2.4)
$$J_T(\omega) = \sum_{t=0}^{T-1} \mathbf{X}_t \exp(-i\omega t)$$

for
$$\omega \in [-\pi/2, \pi/2]$$

The elements of the the DFT $J_T(\omega)$ at the Fourier frequencies for $\Omega_T = \{2\pi k/T\}_{k=0}^{[T/2]}$ are asymptotically independent complex multivariate normal (Brillinger, 2001)

(2.5)
$$J_T(\omega_k) \sim \text{CN}(0, 2\pi T f_{\mathbf{X}}(\omega_k)) \text{ as } T \to \infty.$$

The periodogram ordinates $I_T(\omega) = T^{-1}J(\omega)\bar{J}(\omega)^{\top}$, where $\bar{J}(\omega)^{\top}$ is the conjugate transpose, are therefore asymptotically independent Complex Wishart distributed with one degree of freedom $I_T(\omega) \sim CW(1, f_X(\omega))$

Kohn: School of Business, University of New South Wales. Quiroz: University of Technology Sydney. Villani: Dept of Statistics, Stockholm University and Department of Computer and Information Science, Linkoping University. E-mail: mattias.villani@liu.se.

The Whittle log-likelihood is therefore

$$\ell_{\mathcal{W}}(\theta) \stackrel{c}{=} -\sum_{\omega \in \Omega_{T}}^{T} \left(\log |f_{\mathbf{X}}(\omega_{k})| + \operatorname{tr} \left[f_{\mathbf{X}}(\omega_{k})^{-1} I_{T}(\omega) \right] \right)$$

- 3. Experiments
- 4. CONCLUSIONS

REFERENCES

Brillinger, D. R. (2001). *Time series: data analysis and theory*. SIAM. Salomone, R., Quiroz, M., Kohn, R., Villani, M., and Tran, M.-N. (2020). Spectral subsampling mcmc for stationary time series. *International Conference on Machine Learning (ICML2020)*.

APPENDIX A. ADDITIONAL RESULTS OR PROOFS

Stuff goes in here.