Homework: Calculus exam problems

1a. Let y=f(x), for $-0.5 \le x \le 6.5$. The following diagram shows the graph of f', the derivative of f.

The graph of f' has a local maximum when x=2, a local minimum when x=4, and it crosses the x-axis at the point $(5,\ 0)$.

Explain why the graph of f has a local minimum when x=5.

[2 marks]

1b. Find the set of values of x for which the graph of f is concave down.

[2 marks]

2a. A function f has its derivative given by $f'(x)=3x^2-2kx-9$, where k is a constant. Find f''(x).

2b. The graph of f has a point of inflexion when x=1. Show that k=3.

[3 marks]

 $2c. \operatorname{Find} f'(-2)$

[2 marks]

2d. Find the equation of the tangent to the curve of f at $(-2,\ 1)$, giving your answer in the form y=ax+b.

2e. Given that f'(-1) = 0, explain why the graph of f has a local maximum when x = -1. [3 marks]