Mi Primer Documento

pon tu nombre aquí

14 de Julio 2009

Este es mi primer documento en LATEX. Comenzamos escribiendo un pequeño párrafo que presenta una clase muy importante de sistemas lineales:

"La solución numérica de sistemas lineales de punto de ensilladura constituye un tópico muy importante en la formulación y desarrollo de una gran cantidad de problemas de las ciencias computacionales y la ingeniería. Las dimensiones de este tipo de sistemas así como su patrón de dispersión son variados y dependen del tipo de aplicación involucrada, pero en general poseen una estructura en bloques de la forma:

$$\underbrace{\begin{bmatrix} A & B^T \\ B & O \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x \\ \lambda \end{bmatrix}}_{u} = \underbrace{\begin{bmatrix} f \\ g \end{bmatrix}}_{b}, \tag{1}$$

donde $A\in\mathbb{R}^{n\times n},\,B\in\mathbb{R}^{m\times n},\,O\in\mathbb{R}^{m\times m}$ es una matriz nula, $f\in\mathbb{R}^n,\,g\in\mathbb{R}^m$ y $n\geq m."$

Para practicar la escritura de normas, raíces cuadradas, limites y series, considere el siguiente fragmento de texto en donde se define la exponencial de un operador lineal $T: \mathbb{R}^n \to \mathbb{R}^n$.

Para definir la exponencial de un operador lineal $T: \mathbb{R}^n \to \mathbb{R}^n$ es necesario establecer el concepto de convergencia en el espacio lineal $\mathcal{L}(\mathbb{R}^n)$ de los operadores lineales sobre \mathbb{R}^n . Para ello, se define el operador norma de T como:

$$||T|| = \max_{|x| < 1} |T(x)|, \tag{2}$$

donde |x| denota la norma Euclidea de $x := (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, esto es,

$$|x| = \sqrt{x_1 + x_2 + \dots + x_n}. (3)$$

La norma de operadores posee las propiedades usuales de una norma, por lo tanto, si $S, T \in \mathcal{L}(\mathbb{R}^n)$:

- $||T|| \ge 0$ y ||T|| = 0 si y solo si T = 0.
- ||T|| = |k| ||T|| para todo $k \in \mathbb{R}$.

Definición 1 Una sucesión de operadores lineales $T_k \in \mathcal{L}(\mathbb{R}^n)$ converge a un operador lineal $T \in \mathcal{L}(\mathbb{R}^n)$ cuando $k \to \infty$ si:

$$\lim_{k \to \infty} T_k = T,\tag{4}$$

esto es, para todo $\varepsilon > 0$ existe $N \in \mathbb{N}$ tal que si $k \geq N$ entonces $||T - T_k|| < \varepsilon$.

Lema 1 Para $S, T \in \mathcal{L}(\mathbb{R}^n)$ $y x \in \mathbb{R}^n$,

- $|T(x)| \le ||T|| |x|$.
- $||TS|| \le ||T|| \, ||S||$.
- $\|T^k\| < \|T\|^k \text{ para } k = 0, 1, 2, \dots$

Teorema 1 Dado $T \in \mathcal{L}(\mathbb{R}^n)$ y $t_0 > 0$, la serie

$$\sum_{k=0}^{\infty} \frac{T^k t^k}{k!},\tag{5}$$

es absolutamente y uniformemente convergente para todo $|t| \leq t_0$.

En virtud del teorema 1 se define la exponencial de un operador T mediante la serie absolutamente convergente:

$$e^T := \sum_{k=0}^{\infty} \frac{T^k}{k!}.\tag{6}$$

Para practicar la escritura de derivadas, presentamos la ecuación de Euler y la metodología para transformarla en una ecuación de segundo orden con coeficientes constantes, así como un sistema de ecuaciones diferenciales.

La ecuación de Euler $x^2y'' + \alpha xy' + \beta y = 0$ se puede reducir a una ecuación con coeficientes constantes mediante un cambio de la variable independiente. Sea $x = e^z$ o $z = \ln(x)$, y considere sólo el intervalo x > 0, entonces:

$$\frac{dy}{dx} = \frac{1}{x} \frac{dy}{dz} \tag{7}$$

$$\frac{dy}{dx} = \frac{1}{x} \frac{dy}{dz} \tag{7}$$

$$\frac{d^2y}{dx^2} = \frac{1}{x^2} \frac{d^2y}{dz^2} - \frac{1}{x^2} \frac{dy}{dz}$$

y en consecuencia la ecuación de Euler se convierte en la siguiente:

$$\frac{d^2y}{dz^2} + (\alpha - 1)\frac{dy}{dz} + \beta y = 0. \tag{9}$$

Un ejemplo de un sistema de ecuaciones diferenciales no homogéneo es el siguiente:

$$\dot{x} = -2x + y + 2e^{-t}
\dot{y} = x - 2y + 3t,$$
(10)

el cual puede representarse matricialmente como:

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 2e^{-t} \\ 3t \end{bmatrix}, \tag{11}$$

donde $\dot{x} := \frac{dx}{dt}$ y $\dot{y} := \frac{dy}{dt}$. Para la escritura de integrales y la edición de funciones que están por defecto en el idioma inglés, introducimos la representación en series de Fourier.

Sea $f: \mathbb{R} \to \mathbb{R}$ una función de periodo 2L integrable sobre [-L, L]. La serie de Fourier de f(x) se define por:

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(\frac{n\pi x}{L}) + b_n \sin(\frac{n\pi x}{L}), \tag{12}$$

donde los coeficientes de Fourier a_n y b_n son:

$$\begin{cases} a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) \\ b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{n\pi x}{L}), \end{cases}$$
(13)

para todo n = 0, 1, 2, ...

En el desarrollo de la teoría de series de Fourier, es importante tener en cuenta que:

$$\int_{-L}^{L} \sin(\frac{k\pi x}{L}) = -\frac{L}{k\pi} \cos(\frac{k\pi x}{L}) \Big|_{-L}^{L} = 0$$

$$\int_{-L}^{L} \cos(\frac{k\pi x}{L}) = \frac{L}{k\pi} \sin(\frac{k\pi x}{L}) \Big|_{-L}^{L} = 0,$$
(14)

además,

$$\int_{-L}^{L} \cos(\frac{m\pi x}{L}) \cos(\frac{n\pi x}{L}) = \int_{-L}^{L} \sin(\frac{m\pi x}{L}) \sin(\frac{n\pi x}{L}) = \begin{cases} 0 & m \neq n \\ L & m = n \end{cases} (15)$$

$$\int_{-L}^{L} \sin(\frac{m\pi x}{L}) \cos(\frac{n\pi x}{L}) = 0. \tag{16}$$

A fin de ilustrar la escritura de derivadas parciales, presentamos las EDP clásicas que se estudian en un curso básico:

Ecuación del calor:
$$\frac{\partial u}{\partial t} - \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = F(t, x, y).$$
Ecuación de onda:
$$\frac{\partial^2 u}{\partial t^2} - \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = F(t, x, y).$$
Ecuación de Laplace:
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = F(x, y, z).$$

Otras EDP no lineales que surgen en problemas importantes de modelado matemático son:

Con respecto a la escritura de integrales multiples, enunciamos dos teoremas muy importantes en el calculo multivariable: el teorema de Green y el teorema de la divergencia.

Teorema 2 (Green) Sean P, Q, $\partial P/\partial y$, $\partial Q/\partial x$, uniformes y continuas en una region simplemente conexa Ω . Entonces:

$$\oint_{\partial\Omega} P \, dx + Q \, dy = \int_{\Omega} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy \tag{17}$$

Teorema 3 (Gauss) Sea $\Omega \subset \mathbb{R}^3$ un sólido limitado por una superficie lisa a trozos, $\partial\Omega$ cerrada y orientada positivamente. Si $F := (F_1, F_2, F_3) \in \mathcal{C}^1(\bar{\Omega})$ entonces:

$$\iint \int \int_{\Omega} \nabla \cdot F \, dV = \iint_{\partial \Omega} F \cdot dS. \tag{18}$$

Algunos ejemplos de expresiones matriciales son:

$$V\mathcal{A}V^{T} = \begin{bmatrix} Y^{T}AY & Y^{T}AZ & R \\ Z^{T}AY & Z^{T}AZ & O \\ R^{T} & O & O \end{bmatrix}.$$
 (19)

$$\begin{bmatrix} A & B^T \\ B & O \end{bmatrix} = \begin{bmatrix} I_n & O \\ BA^{-1} & I_m \end{bmatrix} \begin{bmatrix} A & O \\ O & S \end{bmatrix} \begin{bmatrix} I_n & O \\ BA^{-1} & I_m \end{bmatrix}^T.$$
 (20)

$$H_{m} = \begin{bmatrix} \alpha_{1} & \beta_{2} & & & & & \\ \beta_{2} & \alpha_{2} & \beta_{3} & & & & \\ & \cdot & \cdot & \cdot & & & \\ & \beta_{m-1} & \alpha_{m-1} & \beta_{m} & & \\ & & \beta_{m} & \alpha_{m} \end{bmatrix}.$$
 (21)

$$\begin{bmatrix} 1 & & & & & \\ l_1 & \ddots & & & & \\ & \ddots & \ddots & & & \\ & & l_{m-1} & 1 \end{bmatrix} \begin{bmatrix} d_1 & & & & & \\ & \ddots & & & & \\ & & d_{m-1} & & \\ & & & d_m \end{bmatrix} \begin{bmatrix} 1 & & & & \\ l_1 & \ddots & & & \\ & \ddots & \ddots & & \\ & & l_{m-1} & 1 \end{bmatrix}^T$$
(22)

$$\begin{vmatrix} p_1 & 0 & \cdots & 0 \\ 0 & p_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & p_n \end{vmatrix} = \prod_{i=1}^n p_i.$$
 (23)

Un ejemplo de una imagen:

Figura 1: Reducción de la norma residual en la solución del problema NS1 - 32×32

	n	m	nz(A)	nz(B)	$\kappa_2(A)$	$\kappa_2(\mathcal{A})$
$14 \times 9 \times 8$	3048	243	59988	12530	120.21	1.02×10^4
$21 \times 14 \times 12$	9108	637	200372	38968	116.48	1.6×10^4
$24 \times 16 \times 14$	14532	960	337704	63221	273.54	2.38×10^4

Cuadro 1: Características de las matrices de los sistemas simétricos. Número de nodos en la discretización, dimensiones de las matrices A y B (valores de n y m), número de elementos no nulos en las matrices A y B (nz(A) y nz(B)), número de condición de las matrices A y A ($\kappa_2(A)$ y $\kappa_2(A)$)