MATH 6421: Algebraic Geometry I

Frank Qiang Instructor: Harold Blum

Georgia Institute of Technology Fall 2025

Contents

1	Aug. 19 — Affine Varieties
	1.1 Motivation for Algebraic Geometry
	1.2 Affine Varieties
	1.3 Correspondence with Ideals
2	Aug. 21 — Hilbert's Nullstellensatz
	2.1 Applications of Hilbert's Nullstellensatz
	2.2 Proof of Hilbert's Nullstellensatz
3	Aug. 26 — The Zariski Topology
	3.1 Polynomial Functions and Subvarieties
	3.2 The Zariski Topology

Lecture 1

Aug. 19 — Affine Varieties

1.1 Motivation for Algebraic Geometry

Remark. Why study algebraic geometry? Algebraic geometry connects to many fields of math.

Example 1.0.1. Consider a plane curve $\{f(z_1, z_2) = 0\} \subseteq \mathbb{C}^2$, e.g. an elliptic curve $z_2^2 - z_1^3 + z_1 - 1 = 0$. Compactify and set C to be the closure of C^0 in \mathbb{CP}^2 , and let $d = \deg f$. There are connections in

- 1. Topology: $H^1(C,\mathbb{C}) \cong \mathbb{C}^{2g}$, where g = (d-1)(d-2)/12;
- 2. Arithmetic: the number of \mathbb{Q} -points is finite if d > 3;
- 3. Complex geometry: We have $C \cong \mathbb{CP}^2$ for $d = 1, 2, C \cong \mathbb{C}/\Lambda$ for d = 3, and $C \cong \mathbb{H}/\Gamma$ for d > 3.

1.2 Affine Varieties

Fix an algebraically closed field k (e.g. \mathbb{C} , $\overline{\mathbb{Q}}$, $\overline{\mathbb{F}}_p$, etc.).

Definition 1.1. Affine space is the set $\mathbb{A}^n = \mathbb{A}^n_k = \{\vec{a} = (a_1, \dots, a_n) : a_i \in k\}.$

Remark. Note the following:

- 1. \mathbb{A}_k^n is the same set as k^n , but forgetting the vector space structure;
- 2. $f \in k[x_1, \ldots, x_n]$ gives a polynomial function $\mathbb{A}^n_k \to k$ by evaluation: $a \mapsto f(a)$.

Definition 1.2. For a subset $S \subseteq k[x_1, \ldots, x_n]$, its vanishing set is

$$V(S) = \{a \in \mathbb{A}^n : f(a) = 0 \text{ for all } f \in S\}.$$

An affine variety is a subset of \mathbb{A}^n_k of this form.

Example 1.2.1. Consider the following:

- 1. $\mathbb{A}^n = V(\emptyset) = V(\{0\});$
- 2. $\emptyset = V(1) = V(k[x_1, \dots, x_n]);$
- 3. a point $a = (a_1, ..., a_n)$ is an affine variety: $V(\{x_1 a_1, ..., x_n a_n\}) = \{a\}$;
- 4. a linear space $L \subseteq \mathbb{A}^n$ (it is the kernel of some matrix);
- 5. plane curves $V(f(x,y)) \subseteq \mathbb{A}^2_{x,y}$;

- 6. $SL_n(k) \subseteq \mathbb{A}^{n \times n}$ is an affine variety: $SL_n(k) = V(\det([x_{i,j}]) 1)$;
- 7. $GL_n(k)$ (as a set) is an affine variety in $\mathbb{A}^{n \times n+1}$: $GL_n(k) = V(\det([x_{i,j}])y 1)$;
- 8. if $X \subseteq \mathbb{A}^m$ and $Y \subseteq \mathbb{A}^n$ are affine varieties, then $X \times Y \subseteq \mathbb{A}^{m+n}$ is an affine variety;
- 9. the affine varieties $X \subseteq \mathbb{A}^1_k$ are of the form: finite set of points, \emptyset , or \mathbb{A}^1_k .

Proposition 1.1 (Relation to ideals). If $S \subseteq k[x_1, ..., x_n]$, then $V(S) = V(\langle S \rangle)$, where $\langle S \rangle$ is the ideal generated by S.

Proof. Since $S \subseteq \langle S \rangle$, we have $V(\langle S \rangle) \subseteq V(S)$. Conversely, if $f, g \in S$ and $h \in k[x_1, \dots, x_n]$, then f + g and hf vanish on V(S), so we see that $V(S) \subseteq V(\langle S \rangle)$.

Remark. The statement implies that if $f_1, \ldots, f_r \in k[x_1, \ldots, x_n]$, then $V(f_1, \ldots, f_r) = V((f_1, \ldots, f_n))$. The following are some further applications of the statement:

- 1. affine varities are vanishing loci of ideals;
- 2. if $X \subseteq \mathbb{A}^n$ is an affine variety, then X is cut out by finitely many polynomial equations.

To see the second statement, note that X = V(I) for some ideal $I \leq k[x_1, \ldots, x_n]$. By the Hilbert basis theorem that $k[x_1, \ldots, x_n]$ is Noetherian, there are finitely many $f_1, \ldots, f_r \in k[x_1, \ldots, x_n]$ such that $I = (f_1, \ldots, f_r)$. So $X = V(I) = V(f_1, \ldots, f_r)$.

Proposition 1.2 (Properties of the vanishing set). For ideals I, J of $k[x_1, \ldots, x_n]$,

- 1. if $I \subseteq J$, then $V(J) \subseteq V(I)$;
- 2. $V(I) \cap V(J) = V(I+J);$
- 3. $V(I) \cup V(J) = V(IJ) = V(I \cap J)$.

Proof. (1) This follows from definitions and actually holds for general subsets.

- (2) Note that $V(I) \cap V(J) = V(I \cap J) = V(\langle I \cup J \rangle) = V(I + J)$.
- (3) We only prove the first equality, the second is similar. Recall that $IJ = \left\{ \sum_{i=1}^r f_i g_i : f_i \in I, g_i \in J \right\}$. We have the forwards inclusion $V(I) \cup V(J) \subseteq V(IJ)$ from definitions. For the reverse inclusion, consider a point $x \notin V(I) \cup V(J)$. So there exists $f \in I$ and $g \in J$ such that $f(x), g(x) \neq 0$. So $f(x)g(x) \neq 0$, which implies that $x \notin V(IJ)$. Thus $V(IJ) \subseteq V(I) \cup V(J)$ as well.

Remark. The above implies that if X and Y are affine varieties in \mathbb{A}^n_k , then so are $X \cup Y$ and $X \cap Y$.

Example 1.2.2. Consider $V(y^2 - x^2, y^2 + x^2) \subseteq \mathbb{A}^2$. Note that $(y^2 - x^2, y^2 + x^2) = (x^2, y^2)$, from which we can easily see that $V(y^2 - x^2, y^2 + x^2) = V(x^2, y^2) = \{0\}$.

1.3 Correspondence with Ideals

Remark. Our goal is to build a correspondence between affine varieties in \mathbb{A}^n_k and ideals of $k[x_1,\ldots,x_n]$.

Definition 1.3. For a subset $X \subseteq \mathbb{A}_k^n$, define

$$I(X) = \{ f \in k[x_1, \dots, x_n] : f(a) = 0 \text{ for all } a \in X \}.$$

Remark. Note that I(X) is in fact an ideal of $k[x_1, \ldots, x_n]$.

Example 1.3.1. Consider the following:

- 1. $I(\emptyset) = k[x_1, \dots, x_n];$
- 2. $I(\mathbb{A}^n_k) = \{0\}$, this will follow from the Hilbert nullstellensatz and relies on $k = \overline{k}$ (for $k = \mathbb{R}$, the polynomial $x^2 + y^2 + 1$ is always nonzero and thus lies in $I(\mathbb{A}^n_{\mathbb{R}})$);
- 3. for n=1, if $S\subseteq \mathbb{A}^1_k$ be an infinite set, then I(S)=(0).
- 4. for n = 1, we have $I(V(x^2)) = I(\{0\}) = (x)$.

Remark. What properties does I(X) satisfy?

Definition 1.4. Let R be a ring. The radical of an ideal $J \leq R$ is

$$\sqrt{J} = \{ f \in R : f^n \in J \text{ for some } n > 0 \}.$$

An ideal J is radical if $J = \sqrt{J}$.

Exercise 1.1. Check the following:

- 1. \sqrt{J} is always an ideal.
- $2. \ \sqrt{\sqrt{J}} = \sqrt{J}.$
- 3. An ideal $J \leq R$ is radical if and only if R/J is reduced.¹

Proposition 1.3. If $X \subseteq \mathbb{A}^n_k$ is a subset (not necessarily an affine variety), then I(X) is radical.

Proof. Fix $f \in k[x_1, \ldots, x_n]$. If $f^n \in I(X)$, then $f^n(x) = 0$ for all $x \in X$. This implies f(x) = 0 for all $x \in X$, so $f \in I(X)$. Thus we see that $I(X) = \sqrt{I(X)}$.

Theorem 1.1 (Hilbert's nullstellensatz). If $J \leq k[x_1, \ldots, x_n]$ is an ideal, then $I(V(J)) = \sqrt{J}$.

Example 1.4.1. Let n=1, so that k[x] is a PID. Let $f=(x-a_1)^{m_1}\cdots(x-a_r)^{m_r}$. Then

$$I(V(f)) = I(\{a_1, \dots, a_r\}) = ((x - a_1) \cdots (x - a_r)).$$

¹Recall that a ring R is reduced if for all nonzero $f \in R$ and positive integers n, we have $f^n \neq 0$. It is immediate that an integral domain is reduced.

Lecture 2

Aug. 21 — Hilbert's Nullstellensatz

2.1 Applications of Hilbert's Nullstellensatz

Corollary 2.0.1 (Weak nullstellensatz). If $J \leq k[x_1, \ldots, x_n]$ is an ideal with $J \neq (1)$, then $V(J) \neq \emptyset$. Equivalently, if $f_1, \ldots, f_r \in k[x_1, \ldots, x_n]$ have no common zeros, then there exist $g_1, \ldots, g_r \in k[x_1, \ldots, x_n]$ such that $\sum_{i=1}^r f_i g_i = 1$.

Proof. Assume otherwise that $V(J) = \emptyset$. Then $I(V(J)) = I(\emptyset) = (1)$, so by Hilbert's nullstellensatz, we have $\sqrt{J} = (1)$. Then $1^n \in J$ for some n > 0, so $1 \in J$, i.e. J = (1).

Remark. We need k to be algebraically closed. Note that $(1) \neq (x^2 + 1) \leq \mathbb{R}[x]$ but $V(x^2 + 1) = \emptyset$.

Corollary 2.0.2. There is an inclusion-reversing bijection between radical ideals $J \leq k[x_1, \ldots, x_n]$ and affine varieties $X \subseteq \mathbb{A}^n_k$ given by $J \mapsto V(J)$ and $X \mapsto I(X)$.

Proof. It suffices to show that these maps are inverses. For $J \leq k[x_1, \ldots, x_n]$ a radical ideal, we have

$$I(V(J)) = \sqrt{J} = J$$

by Hilbert's nullstellensatz. For $X \subseteq \mathbb{A}^n_k$ an affine variety, we clearly have $X \subseteq V(I(X))X$. For the reverse inclusion, choose an ideal $J \leq k[x_1, \dots, x_n]$ such that V(J) = X. Then $J \subseteq I(X)$, so we have $V(I(X)) \subseteq V(J) = X$. Thus we also get V(I(X)) = X.

Remark. This implies that maximal ideals in $k[x_1, \ldots, x_n]$ correspond to points in \mathbb{A}^n_k , since maximal ideals correspond to minimal varieties under this bijection.

Corollary 2.0.3. If X_1, X_2 are affine varieties in \mathbb{A}^n_k , then

- 1. $I(X_1 \cup X_2) = I(X_1) \cap I(X_2);$
- 2. $I(X_1 \cap X_2) = \sqrt{I(X_1) + I(X_2)}$.

Proof. (1) This follows from definitions.

(2) Write
$$I(X_1 \cap X_2) = I(V(I(X_1)) \cap V(I(X_2))) = I(V(I(X_1) + I(X_2))) = \sqrt{I(X_1) + I(X_2)}$$
.

Example 2.0.1. The radical in (2) is necessary. Consider $X_1 = V(y)$ and $X_2 = V(y - x^2)$ in \mathbb{A}^2_k . Then $X_1 \cap X_2 = \{(0,0)\} \subseteq \mathbb{A}^2_k$, so $I(X_1 \cap X_2) = (x,y)$. However, $I(X_1) + I(X_2) = (y) + (y - x^2) = (y,x^2)$.

Note that it is sometimes better to consider (y, x^2) anyway as it tracks multiplicities. In particular, we can see the multiplicity in the dimension of $k[x, y]/(x, y^2) \cong \overline{1}k \oplus \overline{y}k$ as a k-vector space.

2.2 Proof of Hilbert's Nullstellensatz

We will assume the following result from commutative algebra without proof:

Theorem 2.1 (Noether normalization). Let A be a finitely generated algebra over a field k with A a domain. Then there is an injective k-algebra homomorphism $k[z_1, \ldots, z_n] \hookrightarrow A$ that is finite, i.e. A is a finitely generated $k[z_1, \ldots, z_n]$ -module.

Corollary 2.1.1. If $K \subseteq L$ is a field extension and L is a finitely generated K-algebra, then $K \subseteq L$ is a finite field extension. In particular, if in addition $K = \overline{K}$, then K = L.

Proof. By Noether normalization, there exists a k-algebra homomorphism $K[z_1, \ldots, z_n] \to L$ that is finite. Then by a result from commutative algebra, L is integral over $K[z_1, \ldots, z_n]$, which implies that $K[z_1, \ldots, z_n]$ must also be a field since L is. Thus n = 0, so $K \subseteq L$ is a finite extension.

Proposition 2.1. If $(1) \neq J \leq R$ is an ideal, then J is contained in some maximal ideal.

Proof. Consider the set $P = \{I \leq R : J \subseteq I, I \neq (1)\}$ with the partial order given by inclusion. Note that $P \neq \emptyset$ since $J \in P$. Furthermore, every chain in P has an upper bound (for $\{I_{\alpha} : \alpha \in A\}$ a chain P, we can take $\bigcup_{\alpha \in A} I_{\alpha}$, which one can check is indeed an ideal that lies in P; note that $1 \notin I_{\alpha}$ implies $1 \notin \bigcup_{\alpha \in A} I_{\alpha}$). So Zorn's lemma implies there is a maximal element in P, which is a maximal ideal. \square

Proof of Theorem 1.1. We will proceed in the following steps:

- 1. Show that the maximal ideals of $k[x_1, \ldots, x_n]$ are of the form $(x_1 a_1, \ldots, x_n a_n)$ for $a_i \in k$.
- 2. Prove the weak null stellensatz: If $1 \neq J \leq k[x_1, \dots, x_n]$, is an ideal, then $V(J) \neq \emptyset$.
- 3. Prove the (strong) nullstellensatz: $I(V(J)) = \sqrt{J}$ for $J \leq k[x_1, \dots, x_n]$.

The most difficult part is the first step and is where we need k to be algebraically closed.¹

(1) For $a_1, \ldots, a_n \in k$, the ideal $(x_1 - a_1, \ldots, x_n - a_n)$ is maximal (the quotient is k, which is a field). Conversely, fix a maximal ideal $\mathfrak{m} \in k[x_1, \ldots, x_n]$. Since

$$k \xrightarrow{\phi} k[x_1, \dots, x_n]/\mathfrak{m} = L$$

is a finitely generated k-algebra and k is algebraically closed, ϕ is an isomorphism by Corollary 2.1.1. Choose $a_i \in k$ such that $\phi(a_i) = \overline{x_i}$, so $\overline{x_i - a_i} = 0$ in L Then $(x_1 - a_1, \dots, x_n - a_n) \subseteq \mathfrak{m}$, so they must be equal since both the left and right hand sides are maximal ideals.

- (2) By Proposition 2.1, J is contained in some maximal ideal \mathfrak{m} . By (1), $\mathfrak{m} = (x_1 a_1, \dots, x_n a_n)$ for some $a_1, \dots, a_n \in k$. Since $J \subseteq \mathfrak{m}$, we have $V(J) \supseteq V(\mathfrak{m}) \supseteq \{(a_1, \dots, a_n)\}$, so $J \neq \emptyset$.
- (3) The reverse inclusion follows from definitions. For the forward inclusion, fix $f \in I(V(J))$, and we want to show that $f^n \in J$ for some n > 0. Add a new variable y and consider

$$J_1 = (J, fy - 1) \le k[x_1, \dots, x_n, y].$$

Now $V(J_1) = \{(a,b) = (a_1,\ldots,a_n,b) \in \mathbb{A}_k^{n+1} : a \in V(J), f(a)b = 1\} = \emptyset$ since f vanishes on V(J), so f(a)b = 0 for any b. Thus by the weak nullstellensatz, $J_1 = (1)$, so $1 = \sum_{i=1}^r g_i f_i + g_0 (fy - 1)$ with

¹The statement is false when k is not algebraically closed: $(x^2 + 1)$ is maximal in $\mathbb{R}[x]$.

 $f_1, \ldots, f_r \in J$ and $g_0, \ldots, g_r \in k[x_1, \ldots, x_n, y]$. Let N be the maximal power of y in the g_i . Multiplying by f^N , we get

$$f^{N} = \sum_{i=1}^{r} G_{i}(x_{1}, \dots, x_{n}, fy) f_{i} + G_{0}(x_{1}, \dots, x_{n}, fy) (fy - 1)$$

with $G_i \in k[x_1, \ldots, x_n, fy]$. So if we set fy = 1, then we have

$$f^N = \sum_{i=1}^r G_i(x_1, \dots, x_n, 1) f_i + 0 \in J,$$

which gives $f \in \sqrt{J}$. To justify this substitution, we can consider the quotient $k[x_1, \ldots, x_n, y]/(fy-1)$. We have a map $k[x_1, \ldots, x_n] \to k[x_1, \ldots, x_n, y]/(fy-1)$, which is injective since (fy-1) does not lie in $k[x_1, \ldots, x_n]$, so an equality in the quotient implies an equality in $k[x_1, \ldots, x_n]$.

Lecture 3

Aug. 26 — The Zariski Topology

3.1 Polynomial Functions and Subvarieties

Remark. Recall that a polynomial $f \in k[x_1, \ldots, x_n]$ gives a function $\mathbb{A}^n_k \to k$ by $a \mapsto f(a)$.

Proposition 3.1. If $f, g \in k[x_1, ..., x_n]$ give the same function $\mathbb{A}^n_k \to k$, then f = g in $k[x_1, ..., x_n]$.

Proof. Assume f = g as polynomial functions. Then $V(f - g) = \mathbb{A}^n_k$, so $\sqrt{(f - g)} = I(\mathbb{A}^n_k) = (0)$ by Hilbert's nullstellensatz (note that we can also prove $I(\mathbb{A}^n_k) = (0)$ directly, it is enough to have k be an infinite field for this part). Thus f - g = 0, so f = g in $k[x_1, \ldots, x_n]$.

Remark. In the above proposition, we need k to be an infinite field (e.g. if $k = \overline{k}$): Otherwise, there are only finitely many functions $\mathbb{A}^n_k \to k$, but infinitely many polynomials in $k[x_1, \ldots, x_n]$.

Remark. The set of polynomials functions $\mathbb{A}^n_k \to k$ form a ring, and the above proposition implies that this ring is isomorphic to $k[x_1, \ldots, x_n]$.

Definition 3.1. A polynomial function on an affine variety $X \subseteq \mathbb{A}^n_k$ is a function $\varphi : X \to k$ such that there exists $f \in k[x_1, \dots, x_n]$ with $\varphi(a) = f(a)$ for every $a \in X$.

Definition 3.2. The *coordinate ring* of X is $A(X) = \{f : X \to k : f \text{ is a polynomial function}\}$, which is a ring under pointwise addition and multiplication.

Remark. Observe that there exists a surjective ring homomorphism

$$k[x_1, \dots, x_n] \longrightarrow A(X)$$

 $f \longmapsto (a \mapsto f(a))$

with kernel I(X). Thus we have $A(X) \cong k[x_1, \dots, x_n]/I(X)$.

Remark. We can now replace \mathbb{A}^n_k and $k[x_1,\ldots,x_n]$ by X and A(X) to study subvarieties of X.

Definition 3.3. Let $X \subseteq \mathbb{A}^n_k$ be an affine variety. If $S \subseteq A(X)$ is a subset, then define

$$V_X(S) = \{ a \in X : f(a) = 0 \text{ for all } f \in S \}.$$

A subset of X of this form is called an *affine subvariety* of X. (Equivalently, these are the same as an affine variety $Y \subseteq \mathbb{A}^n_k$ such that $Y \subseteq X$.) For $Y \subseteq X$ a subvariety, define

$$I_X(Y) = \{ f \in A(X) : f(a) = 0 \text{ for all } a \in Y \}.$$

Proposition 3.2. There is a bijective correspondence between radical ideals in A(X) and affine subvarieties of X given by $J \mapsto V_X(J)$ and $Y \mapsto I_X(Y)$.

Proof. See Homework 2. \Box

3.2 The Zariski Topology

Definition 3.4. The *Zariski topology* on \mathbb{A}^n_k is the topology with closed sets $V(I) \subseteq \mathbb{A}^n_k$, where I is an ideal in $k[x_1, \ldots, x_n]$. (Equivalently, the closed sets are the affine varieties in \mathbb{A}^n_k .)

Remark. Note the following:

- 1. On \mathbb{A}^1_k , the closed sets are of the form: \emptyset , \mathbb{A}^1_k , or finite collections of points.
- 2. When $k = \mathbb{C}$, then $X \subseteq \mathbb{A}^n_{\mathbb{C}}$ being Zariski closed implies that X is closed in the analytic topology on $\mathbb{A}^n_{\mathbb{C}}$. In particular, the Zariski topology is coarser than the analytic topology.
- 3. On \mathbb{A}^2_k , the closed sets are of the form: \emptyset , \mathbb{A}^2_k , finite collections of points, plane curves, and their finite unions.

Proposition 3.3. The Zariski topology on \mathbb{A}^n_k is indeed a topology.

Proof. First note that $\emptyset = V((1))$ and $\mathbb{A}_k^n = V((0))$ are closed. For arbitrary intersections, note that $\bigcap_{\alpha} V(I_{\alpha}) = V(\sum_{\alpha} I_{\alpha})$, and for finite unions, note that $\bigcup_{i=1}^r V(I_i) = V(I_1 \cdots I_r)$.

Definition 3.5. If $X \subseteq \mathbb{A}^n_k$ is an affine variety, then we can define the *Zariski topology* on X in the following two equivalent ways:

- 1. take the subspace topology from the Zariski topology on \mathbb{A}_k^n ;
- 2. take the closed sets of X to be of the form $V_X(I)$ for some ideal $I \leq A(X)$.

This is because an affine subvariety of X is precisely the intersection of X with an affine variety in \mathbb{A}_k^n .

Remark. Our goal now is to relate properties of the Zariski topology on X to the ring A(X), and then to the ideal $I(X) \leq k[x_1, \ldots, x_n]$.

Definition 3.6. A topological space X is *reducible* if we can write $X = X_1 \cup X_2$ for some closed sets $X_1, X_2 \subsetneq X$. Otherwise, X is called *irreducible*.

Example 3.6.1. The plane curve $X = V(y^2 - x^2y) = V(y) \cup V(y - x^2)$ is reducible.

Remark. Note the following:

- 1. A disconnected topological space is reducible.
- 2. Many topologies are reducible, e.g. \mathbb{C}^n , \mathbb{R}^n with the analytic topology.
- 3. If X is irreducible and $U \subseteq X$ is a nonempty open set, then $\overline{U} = X$ (we have $\overline{U} \cup (X \setminus U) = X$).

Proposition 3.4. Let $X \subseteq \mathbb{A}^n$ be an affine variety. Then the following are equivalent:

- 1. X is irreducible;
- 2. $I(X) \leq k[x_1, \ldots, x_n]$ is a prime ideal;

3. the coordinate ring A(X) is an integral domain.

Example 3.6.2. We have the following:

- 1. \mathbb{A}^n_k is irreducible as $A(\mathbb{A}^n_k) = k[x_1, \dots, x_n]$, which is an integral domain.
- 2. A hypersurface $X \subseteq \mathbb{A}_k^n$ is an affine variety with I(X) = (f) for some $f \in k[x_1, \dots, x_n]$. Then A is irreducible if and only if (f) is prime, if and only if f is irreducible.

¹Note that any prime ideal is radical.