Deep Learning Perceptron

Tiago Vieira

Institute of Computing Universidade Federal de Alagoas

February 26, 2021

Motivation

¹Aprendizagem de máquina com o Perceptron.

Motivation

Binary Classification and Linear Regression Problems

- ▶ In the binary classification problem, each training pair (\overline{X}, y) contains feature variables $\overline{X} = (x_1, \dots x_d)$, and label y drawn from $\{-1, +1\}$.
 - Example: Feature variables might be frequencies of words in an email, and the class variable might be an indicator of spam.
 - Given labeled emails, recognize incoming spam.
- ▶ In linear regression, the *dependent* variable *y* is real-valued.
 - Feature variables are frequencies of words in a Web page, and the dependent variable is a prediction of the number of accesses in a fixed period.
- Perceptron is designed for the binary setting.

The Perceptron: Earliest Historical Architecture

- ▶ The d nodes in the input layer only transmit the d features $\overline{X} = [x_1 \dots x_d]$ without performing any computation.
- Output node multiplies input with weights $\overline{W} = [w_1 \dots w_d]$ on incoming edges, aggregates them, and applies sign activation:

What is the Perceptron Doing?

- ▶ Tries to find a *linear separator* $\overline{W} \cdot \overline{X} = 0$ between the two classes.
- Ideally, all positive instances (y = 1) should be on the side of the separator satisfying $\overline{W} \cdot \overline{X} > 0$.
- \triangleright All negative instances (y=-1) should be on the side of the separator satisfying $\overline{W} \cdot \overline{X} < 0$

Bias Neurons

In many settings (e.g., skewed class distribution) we need an invariant part of the prediction with bias variable b:

$$\hat{y} = \operatorname{sign}\{\overline{W} \cdot \overline{X} + b\} = \operatorname{sign}\{\sum_{j=1}^d w_j x_j + b\} = \operatorname{sign}\{\sum_{j=1}^{d+1} w_j x_j\}$$

lackbox On setting $w_{d+1}=b$ and x_{d+1} as the input from the bias neuron, it makes little difference to learning procedures ⇒ Often implicit in architectural diagrams

Training a Perceptron

Go through the input-output pairs (\overline{X}, y) one by one and make updates, if predicted value \hat{y} is different from observed value $y \Rightarrow$ Biological readjustment of synaptic weights.

$$\overline{W} \Leftarrow \overline{W} + \alpha \underbrace{(y - \hat{y})}_{\text{Error}} \overline{X}$$

$$\overline{W} \Leftarrow \overline{W} + (2\alpha)y\overline{X} \text{ [For misclassified instances } y - \hat{y} = 2y]$$

- \triangleright Parameter α is the learning rate \Rightarrow Turns out to be irrelevant in the special case of the perceptron
- \triangleright One cycle through the entire training data set is referred to as an epoch \Rightarrow Multiple epochs required
- How did we derive these updates?

What Objective Function is the Perceptron Optimizing?

- At the time, the perceptron was proposed, the notion of loss function was not $popular \Rightarrow Updates were heuristic$
- Perceptron optimizes the perceptron criterion for ith training instance:

$$L_i = \max\{-y_i(\overline{W} \cdot \overline{X_i}), 0\}$$

- Loss function tells us how far we are from a desired solution ⇒ Perceptron criterion is 0 when $\overline{W} \cdot \overline{X_i}$ has same sign as y_i .
- Perceptron updates use stochastic gradient descent to optimize the loss function and reach the desired outcome.
 - Updates are equivalent to $\overline{W} \Leftarrow \overline{W} \alpha \left(\frac{\partial L_i}{\partial w_1} \dots \frac{\partial L_i}{\partial w_d} \right)$

Where does the Perceptron Fail?

- ► The perceptron fails at similar problems as a linear SVM
 - Classical solution: Feature engineering with Radial Basis Function network ⇒ Similar to kernel SVM and good for noisy data
 - Deep learning solution: Multilayer networks with nonlinear activations ⇒ Good for data with a lot of structure

Historical Origins

- ▶ The first model of a computational unit was the *perceptron* (1958).
 - Was roughly inspired by the biological model of a neuron.
 - Was implemented using a large piece of hardware.
 - Generated great excitement but failed to live up to inflated expectations.
- ▶ Was not any more powerful than a simple linear model that can be implemented in a few lines of code today.

Thank you! tvieira@ic.ufal.br

