```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
                                                                                                                                       M
In [2]:
df = pd.read_csv('AirPassengers.csv')
df.head()
Out[2]:
      Month Passengers
0 15-01-1949
1 15-02-1949
                   118
2 15-03-1949
                  132
3 15-04-1949
                   129
4 15-05-1949
                  121
In [3]:
                                                                                                                                       M
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 144 entries, 0 to 143
Data columns (total 2 columns):
                Non-Null Count Dtype
# Column
0 Month
                 144 non-null
                                object
    Passengers 144 non-null
                                int64
dtypes: int64(1), object(1)
memory usage: 2.4+ KB
                                                                                                                                       M
In [4]:
df = df.set_index('Month')
                                   173
df.head()
Out[4]:
          Passengers
    Month
15-01-1949
15-02-1949
                118
```

## Visualize the time series

132

129

121

15-03-1949

15-04-1949

15-05-1949

In [1]:

Check for trend, seasonality or random patterns

```
sns.lineplot(x=df.index, y=df['Passengers'])
plt.show()
```





## **Check for stationarity**

### Method-1: Rolling Statistics

```
ū
```

```
In [6]:
#Determing rolling statistics
rolmean = df['Passengers'].rolling(window=12).mean()
rolstd = df['Passengers'].rolling(window=12).std()

#Plot rolling statistics:
orig = plt.plot(df['Passengers'], color='blue',label='Original')
mean = plt.plot(rolmean, color='red', label='Rolling Mean')
std = plt.plot(rolstd, color='black', label = 'Rolling Std')
plt.title('Rolling Mean & Standard Deviation')
plt.legend()
plt.show()
```



### Method 2: Augmented Dicky Fuller Test

- for the ADF Test
  - H0: data is non-stationary
  - H1: data is stationary
- Based on pvalue, we will accept or reject H0 (if p-value < 5% reject null hypothesis)

```
In [7]:
from statsmodels.tsa.stattools import adfuller
adfuller_result = adfuller(df['Passengers'])
adfuller_result
Out[7]:
(0.8153688792060543,
 0.9918802434376411,
 13.
 130.
 {'1%': -3.4816817173418295, '5%': -2.8840418343195267, '10%': -2.578770059171598},
 996.692930839019)
In [8]:
                                                                                                                                           M
print('p-value:',adfuller_result[1])
p-value: 0.9918802434376411
                                                                                    The time series is not stationary
Now, we have to convert the non-stationary data to stationary data
Differencing
In [9]:
                                                                                                                                           M
# apply differencing
diff = df['Passengers'].shift(2)
diff.dropna(inplace=True)
# Applying ADF Test
adfuller_result = adfuller(diff)
print('p-value of adf test:',adfuller_result[1])
p-value of adf test: 0.03862975767698741
```

# Step-4: Plot ACF/PACF and find p,d,q parameters

Now, the time series is stationary.

from statsmodels.tsa.stattools import acf,pacf  ${\it import}$  statsmodels.api as sm fig = sm.graphics.tsa.plot\_acf(diff,lags=40)

fig = sm.graphics.tsa.plot\_pacf(diff,lags=40)



, o signa





From ACF curve, optimal value of q in the ARIMA model must be 1

From PACF curve, optimal value of p in the ARIMA model is 1

## **Train-test Split**

Split the data into train (80%) & test(20%)

- for time series data, we have use first 80% of records for training & next 20% of records for testing
- here 80% = 0.8\*142 = 114 records, so first 114 records we have to use for training

Note: We should not apply train-test split function, because it divides the data randomly

```
In [11]:
                                                                                                                                         M
y_train = diff[:114]
y_test = diff[114:]
```

### **Build ARIMA Model**

ARIMA Model is build by using p,d,q values

- p is AR value (determined from PACF plot)
- · d is intergration
- q is MA value (determined from ACF plot)

#### Modelling



```
In [12]:
```

```
from statsmodels.tsa.arima.model import ARIMA
model = ARIMA(diff, order=(1,2,1))
ARIMA = model.fit()
```

C:\Users\admin\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa\_model.py:471: ValueWarning: A date index has been provi ded, but it has no associated frequency information and so will be ignored when e.g. forecasting. self.\_init\_dates(dates, freq)

C:\Users\admin\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa\_model.py:471: ValueWarning: A date index has been provi ded, but it has no associated frequency information and so will be ignored when e.g. forecasting. self. init dates(dates, freq)

C:\Users\admin\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa\_model.py:471: ValueWarning: A date index has been provi ded, but it has no associated frequency information and so will be ignored when e.g. forecasting. self.\_init\_dates(dates, freq)

#### Prediction

```
In [13]:
                                                                                                                                         М
ypred_test = ARIMA.predict(start=y_test.index[0], end=y_test.index[-1])
ypred_train = ARIMA.predict(start=y_train.index[0], end=y_train.index[-1])
```

#### Evaluation

```
Krishna
In [14]:
from sklearn.metrics import r2_score
print("Train R2",r2_score(ypred_train,y_train))
print("Test R2",r2_score(ypred_test,y_test))
```

Train R2 0.34022485430256666 Test R2 0.4239665875806876

· Here, ARIMA model is not performing well, because there is seasonality in the given data

## **Build SARIMAX Model**

Whenever, there is seasonality in given data, apply SARIMAX

#### SARIMAX Model is build by using p,d,q,s values

- p is AR value (determined from PACF plot)
- · d is intergration
- q is MA value (determined from ACF plot)
- · s is seasonality value

SARIMAX = model.fit()

#### Modelling

```
In [15]:
from statsmodels.tsa.statespace.sarimax import SARIMAX
model = SARIMAX(diff,seasonal_order=(1,2,1,12))
```

```
C:\Users\admin\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning: A date index has been provi
ded, but it has no associated frequency information and so will be ignored when e.g. forecasting.
 self. init dates(dates, freq)
```

C:\Users\admin\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa model.py:471: ValueWarning: A date index has been provi ded, but it has no associated frequency information and so will be ignored when e.g. forecasting. self.\_init\_dates(dates, freq)

#### Prediction

```
M
In [16]:
ypred_train = SARIMAX.predict(start=y_train.index[0], end=y_train.index[-1])
ypred_test = SARIMAX.predict(start=y_test.index[0], end=y_test.index[-1])
```



from sklearn.metrics import r2\_score
print("Train R2 of SARIMAX model: ",r2\_score(ypred\_train,y\_train))
print("Test R2 of SARIMAX model: ",r2\_score(ypred\_test,y\_test))

Train R2 of SARIMAX model: 0.9053226759209412 Test R2 of SARIMAX model: 0.9540352226751071

nData science & Ali' Siva Rama Krishna Siva