DOCUMENTATION

For

BEAMFORMER TEST TOOL SUITE

Contents

Installation and Execution	4
Noise to Signal C+	4
Delay Generator C+	4
Fractal Delay Application Python	4
Noise Generator Python	5
Subfile Generator C+	5
Functionality	6
Noise to Signal C+	6
float* readFile(char* filename, int sample_size, int channels)	6
Delay Generator C+	6
void checkFlags(struct arguments arguments)	6
coord** parseCoordFile(char* filename)	6
float* calcDelay(coord** coordinates, double elevation, double azimuth)	7
char* generateOutputFilename()	7
bool generateRandomDelays(char* outputFilename)	7
bool generateModelledDelays(char* outputFilename, char* coordinateFile, double elevation, double azimuth)	8
Fractal Delay Application	8
resample(signal, sample_size, original_sample_size)	8
generate_gauss(sample_size, magnitude=127)	9
generate_sine(frequency, baseline, sample_size, amplitude=127, phase=None)	9
read_delay_file(filename="delays.csv")	10
delay_signal(signal, delay)	10
apply_delay(signal, delay)	10
splice_signal(signal, step)	11
reset_output_file(filename)	11
write_signal(signal, filename)	11
write_original_signals(signal, sampled_signal, filename)	12

Contrib	oution				12
---------	--------	--	--	--	----

Installation and Execution

Noise to Signal C+

- 1. open path .../FrontEnd/src/executables/apply_noise_to_signal/ in terminal
- 2. run "make"
- 4. run "./delay_generator"

Type of files

```
main.c - main file to execute the functions
```

noise_to_signal.c – all signal functions are stored here to be executed by main.c

noise_to_signal.h – header file

makefile - build file

readme - guide to run

Delay Generator C+

- 1. open path .../FrontEnd/src/executables/delay_generator/ in terminal
- 2. make sure having delays.csv in the same directory
- 3. run "make"
- 4. run "./delay_generator "

Type of files

main.c - main file to execute the functions

delay_generator.c - all signal functions are stored here to be executed by main.c

delay_generator.h – header file

delays.csv - csv file that store all the delays value

makefile - build file

readme - guide to run

Fractal Delay Application Python

1. open path .../FrontEnd/src/executables/fractal_delay_application/ in terminal

- 2. make sure having delays.csv in the same directory
- 3. run "python main.py" to generate noise.csv file

Type of files

```
main.py – main file to execute the functions (optimized version)
utils.py – main function (old version)
delays.csv – csv file that store all the delays value
```

Noise Generator Python

- 1. open path .../FrontEnd/noise_generator/ in terminal
- 2. run "python main.py" to generate noise.csv file

Type of files

main.py - main file to execute

Subfile Generator C+

- 1. open path .../FrontEnd/subfile_generator/ in terminal
- 2. make sure having configfile.csv, delays.csv, signals.csv, noise.csv in the same directory
- 3. run "make"
- 4. run "./subfile_generator"

Type of files

frannor.c - library that give normally distributed gaussian random float

frannor.h - define fields and functions

subfile_generator.c - functions to load files and combine to final .subfile

makefile - build file

readme - guide to run

delays.csv - contain delays values

noise.csv - contain noise values

configfile.csv - contain settings values

signal.csv - contain signal values

Functionality

Noise to Signal C+

float* readFile(char* filename, int sample_size, int channels)

Description

Read the file for the delay value

Parameters

```
char - char file name
sample_size - integer sample_size
channels - integer number of channels
```

What the function Returns

Return nothing

Delay Generator C+

void checkFlags(struct arguments arguments)

Description

Check the default parameters value, if there is no error, proceed to execute

Parameters

Arguments – Struct arguments

What the function Returns

Return nothing

coord** parseCoordFile(char* filename)

Description

Get the coordinate for the longitude and latitude value from the file

Parameters

filename – char file name

What the function Returns
Return the coordinate value from the file

float* calcDelay(coord** coordinates, double elevation, double azimuth)

Description

Parameters

What the function Returns

char* generateOutputFilename()

Description

Generate the timestamp of the output filename

Parameters

Nothing

What the function Returns

Return the file

bool generateRandomDelays(char* outputFilename)

Description

Generate the random delay and then write it to a file

Parameters

outputFilename - char file name

What the function Returns

Return true if the file has been successfully written, else false

bool generateModelledDelays(char* outputFilename, char* coordinateFile, double elevation, double azimuth)

Description

Generate the delay model from the coordinate

Parameters

```
outputFilename – char file name

coordinateFile – char coordinates value

elevation – double value of the elevation

azimuth – double value of the azimuth
```

What the function Returns

Return true if the delays have been calculated, else false

Fractal Delay Application

resample(signal, sample_size, original_sample_size)

Description

Resample the signal value

Parameters

```
signal – the signal value
sample_size – the sample size value
original_sample_size – the original sample size value
```

What the function Returns

Return the resampled signal values

```
generate_gauss(sample_size, magnitude=127)
```

Description

Generate the gaussian white noise signal

Parameters

```
sample_size – the sample size of the signal magnitude – the noise magnitude
```

What the function Returns

Return the signal wave

generate_impulse(duration, baseline, sample_size, amplitude=127)

Description

Generate the impulse signal and then plot the graph out

Parameters

```
duration – the duration of the impulse wave
baseline – the baseline of the impulse wave
sample_size – the signal sample size
amplitude – the amplification of the impulse wave
```

What the function Returns

Return nothing

generate_sine(frequency, baseline, sample_size, amplitude=127, phase=None)

Description

Generate the sinusoidal wave and plot the graph out

Parameters

```
frequency – the frequency of the sine wave
baseline – the baseline of the wave
sample_size – the signal sample size
amplitude – the amplification of the sine wave
```

```
phase – the phase mode for the phasing of the sine wave
```

What the function Returns

Return the y-axis value of the graph

```
read_delay_file(filename="delays.csv")
```

Description

Read the delay value from the file

Parameters

filename - the file name

What the function Returns

Return the delay values

delay_signal(signal, delay)

Description

Get the signal with the delay value and then calculate it

Parameters

```
signal – the signal value delay – the delay value
```

What the function Returns

Return the calculated delay value for the signal

apply_delay(signal, delay)

Description

Apply the delay value to the signal and shift it

Parameters

```
signal – the signal value
delay – the delay value
```

What the function Returns

Return the shifted value of the signal

```
splice_signal(signal, step)
```

Description

Splice the signal based on the step

Parameters

signal – the signal value

step – the amount of step requires to splice

What the function Returns

Return the spliced signal

reset_output_file(filename)

Description

Reset the file by removing the old path name

Parameters

filename – the file name

What the function Returns

Return nothing

write_signal(signal, filename)

Description

Write the generated signal into the file

Parameters

signal – the signal value

filename – the file name

What the function Returns

Return nothing

write_original_signals(signal, sampled_signal, filename)

Description

Write the original signals to the file

Parameters

signal - the signal value
sampled_signal - the sampled signal value
filename - the file name

What the function Returns

Return nothing

Contribution

NAME	SECTION			
Chuin Jet Ong	Installation & Execution			
	1. Apply Noise to Signal			
	2. Delay Generator			
	3. Fractal Delay Application			
	Functionality			
	1. Apply Noise to Signal			
	2. Delay Generator			
	3. Fractal Delay Application			
Phi Long Nguyen	Installation & Execution			
	1. Noise Generator			
	2. Subfile Generator			
	Functionality (Comments and Description are added in the source			
	code itself)			
	Noise Generator			
	2. Subfile Generator			