Week 12 - 02 P & NP

50.004 Introduction to Algorithm
Dr. Subhajit Datta
Based on original slides by Dr. Simon LUI
ISTD, SUTD

How important is P & NP?

- People have been thinking about it since 1956
- No one has seen able to solve it yet!
- Perhaps you will solve it
- So pay attention to these lectures ©
- Simply,
 - If you can prove P=NP or P!=NP
 - That's a big deal!

TRACTABLE PROBLEMS & SOLVABLE PROBLEMS

Tractable Problems

- Tractable problems = problems that can be solved in polynomial time.
 - shortest path
 - sort n number
 - etc

Intractable Problems

- Problems that cannot be solved in polynomial time.
- e.g. The travelling salesman problem (TSP)
 - Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?

Unsolvable Problems?

- Are there computational problems that cannot be solved?
- Is a python program P syntactically correct?
 - If it is correct: yes, we can tell it is correct in polynomial time
 - If it is not correct: How long does it take to CONFIRM that it is not correct? Can be forever!
 - Function(P) = 1 if P is syntactically correct
 - Function(P) = 0 if P is syntactically incorrect
 - Function() is unsolvable. Since we can never confirm any answer which is 0

Halting problem

- H(P,X)=1 if program P on input X terminates
- H(P,X)=0, if program P on input X runs forever
- Program A(P)
 - Input: Program P
 - if H(P,P)=1, then enter infinite loop
 - else if H(P,P)=0, then stop
- Question: Does A(A) terminate?
 - suppose it does, then ... H(A,A)=0 (A will run forever)
 - suppose it does not, then...H(A,A)=1 (A will stop)
 - Contradiction! So there is no algorithm that can solve this problem...

Introduction to Algorithms 50.004

What we will learn...

- Classification of problems: P, EXP, unsolvable
- Problems for which we can't decide yet
- the class NP
- the P vs NP question

PROVING A PROBLEM IS UNSOLVABLE IN P

1. Knapsack Problem

- Input:
 - Knapsack of size S
 - Collection of *n* items
 - Item i has (integer) size s_i and (integer) value v_i
- DP algorithm: O(n S)
- In Polynomial time

2. Traveling Salesperson Problem (TSP)

- Input: Undirected graph with lengths on edges.
- Output: Shortest tour that visits each vertex exactly once.
- Best known algorithm: O(n² 2ⁿ) time.
- In Exponential time

3. Unsolvable problem

- Can we prove that a certain problem is not in P?
 - (Problem in P: problem solvable in polynomial time)

Proving a negative

- How to prove there is no polynomial time algorithm for a problem?
 - i.e show that there is no algorithm of time O(n), OR O(n²), OR O(n³)...

Short Answer: We don't know how to prove
We don't even have general technique to show
that there is no O(n) algorithm

Proving a negative

- How to prove no perpetual motion machine?
 - We can prove one exists by building it.
 - We can't prove none exists.
 - Especially if the only "evidence" is that we tried and failed.
- Many have tried to build one and failed
 - But an absolute evidence is impossible

POLYNOMIAL REDUCTION

Polynomial-Time Reduction

- A huge number of fundamental problems are hard
- Show that these fundamental problems are "computationally equivalent" to each other
 - Hence all of them appear to be different representation of one really hard problem
 - Hence we can say "they are probably not solvable in P"
- Technique: Polynomial-time reductions

- Problem P can be reduced to problem Q in polynomialtime
- if an arbitrary instances of problem P can be solved using:
 - Polynomial number of standard computational steps,
 <u>plus</u>
 - Polynomial number of calls that solves problem $oldsymbol{Q}$.
- Notation: $P \leq_{P} Q$
- We can solve P in polynomial time IF we can solve Q in polynomial time!

Polynomial-Time Reduction

A: Algorithm that in polynomial time transforms the input for P to an input for Q

A⁻¹: Algorithm that in polynomial time transforms the answer for Q to an answer for P

- Classify problems according to relative difficulty.
- Design algorithms: If $P \leq_P Q$ and Q can be solved in polynomial-time, then P can also be solved in polynomial time.
- Establish intractability: If $P \leq_P Q$ and P cannot be solved in polynomial-time, then Q cannot be solved in polynomial time.
- Establish equivalence. If $P \leq_{p} Q$ and $Q \leq_{p} P$, we use notation $P \cong_{p} Q$.
- $P \leq_{p} Q$: "Q is at least as hard as P"

Algorithmic Hardness "Proof"

- Suppose you want evidence that there is no polytime algorithm for your problem Q.
- Take a problem P where many scientists have tried and failed to find a poly-time algorithm.
- Find a poly-time reduction $Q \leq_P P$ of the solution of P to the solution of Q.
- If no poly-time algorithm for P, then no poly-time algorithm for Q.
- Evidence from scientists that P is hard becomes evidence that Q is hard.