International Rectifier

IRLML9303TRPbF

HEXFET® Power MOSFET

Application(s)

• System/Load Switch

Features and Benefits

Features

Industry-standard pinout
Compatible with existing Surface Mount Techniques
RoHS compliant containing no lead, no bromide and no halogen
MSL1, Consumer qualification

Benefits

	Dononto		
	Multi-vendor compatibility		
results in	Easier manufacturing		
	Environmentally friendly		
	Increased reliability		

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units	
V _{DS}	Drain-Source Voltage	-30	V	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	-2.3		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	-1.8	А	
I _{DM}	Pulsed Drain Current	-12		
P _D @T _A = 25°C	Maximum Power Dissipation	1.25	10/	
P _D @T _A = 70°C Maximum Power Dissipation		0.80	→ w	
	Linear Derating Factor	0.01	W/°C	
V _{GS} Gate-to-Source Voltage		± 20	V	
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ③		100	°C/W
$R_{\theta JA}$	Junction-to-Ambient (t<10s) ⊕		99	C/VV

ORDERING INFORMATION:

See detailed ordering and shipping information on the last page of this data sheet.

Notes ① through ④ are on page 10 www.irf.com

Electric Characteristics @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-30			٧	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		-3.7		mV/°C	Reference to 25°C, I _D = -1mA
В	Static Drain-to-Source On-Resistance		135	165	0	$V_{GS} = -10V, I_D = -2.3A$ ②
R _{DS(on)}	Static Drain-to-Source On-Resistance		220	270	mΩ	V _{GS} = -4.5V, I _D = -1.8A ②
V _{GS(th)}	Gate Threshold Voltage	-1.3		-2.4	٧	$V_{DS} = V_{GS}$, $I_D = -10\mu A$
I _{DSS}	Drain to Course Leakers Current			1.0		$V_{DS} = -24V, V_{GS} = 0V$
	Drain-to-Source Leakage Current			150	μΑ	$V_{DS} = -24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			-100	- A	V _{GS} = -20V
	Gate-to-Source Reverse Leakage			100	nA	V _{GS} = 20V
R_{G}	Internal Gate Resistance		21		Ω	
gfs	Forward Transconductance	2.3			S	V _{DS} = -10V, I _D =-2.3A
Q _g	Total Gate Charge		2.0			I _D = -2.3A
Q_{gs}	Gate-to-Source Charge		0.57		nC	V _{DS} =-15V
Q_{gd}	Gate-to-Drain ("Miller") Charge		1.2			V _{GS} = -4.5V ②
t _{d(on)}	Turn-On Delay Time		7.5			V _{DD} =-15V②
t _r	Rise Time		14			I _D = -1.0A
t _{d(off)}	Turn-Off Delay Time		9.0		ns	$R_G = 6.8\Omega$
t _f	Fall Time		8.6			V _{GS} = -4.5V
C _{iss}	Input Capacitance		160			V _{GS} = 0V
C _{oss}	Output Capacitance		39		pF	V _{DS} = -25V
C _{rss}	Reverse Transfer Capacitance		25			f = 1.0KHz

Source - Drain Ratings and Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			-1.3		MOSFET symbol
	(Body Diode)			-1.5	A	showing the
I _{SM}	Pulsed Source Current			-12	_ ^	integral reverse
	(Body Diode) ①		- -12			p-n junction diode.
V_{SD}	Diode Forward Voltage		_	-1.2	V	$T_J = 25^{\circ}C$, $I_S = -1.3A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		12	18	ns	$T_J = 25^{\circ}C$, $V_R = -24V$, $I_F = -1.3A$
Q _{rr}	Reverse Recovery Charge		5.3	8.0	nC	di/dt = 100A/µs ②

International TOR Rectifier

IRLML9303TRPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRLML9303TRPbF

Fig 9. Maximum Drain Current vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient

International

TOR Rectifier

 $R_{\mbox{\footnotesize{DS}}}(\mbox{\scriptsize{on}}), \mbox{ Drain-to -Source On Resistance } (\mbox{\scriptsize{m}}\Omega)$ 600 500 Vgs = -4.5V400 300 200 Vgs = -10V 100 0 0 5 10 15 20 -I_D, Drain Current (A)

Fig 12. Typical On-Resistance vs. Gate Voltage

Fig 13. Typical On-Resistance vs. Drain Current

Fig 14a. Gate Charge Waveform

Fig 14b. Gate Charge Test Circuit

International IOR Rectifier

IRLML9303TRPbF

Fig 15. Typical Threshold Voltage vs. Junction Temperature

Fig 16. Typical Power vs. Time

Micro3 (SOT-23) Package Outline

Dimensions are shown in millimeters (inches)

DIMENSIONS					
SYMBOL	MILLIM	ETERS	INCHES		
STWIDOL	MIN	MAX	MIN	MAX	
Α	0.89	1.12	0.035	0.044	
A1	0.01	0.10	0.0004	0.004	
A2	0.88	1.02	0.035	0.040	
b	0.30	0.50	0.012	0.020	
С	0.08	0.20	0.003	0.008	
D	2.80	3.04	0.110	0.120	
E	2.10	2.64	0.083	0.104	
E1	1.20	1.40	0.047	0.055	
е	0.95	BSC	0.037	BSC	
e1	1.90	BSC	0.075	BSC	
L	0.40	0.60	0.016	0.024	
L1	0.54	REF	0.021	REF	
L2	0.25	BSC	0.010	BSC	
0	0	8	0	8	

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994
- DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
 CONTROLLING DIMENSION: MILLIMETER.
- A CONTROLLING DIMENSION MILLIMETER.

 ADATUM PLANE HIS LOCATED AT THE MOLD PARTING LINE.

 ADATUM AND B TO BE DETERMINED AT DATUM PLANE H.

 ADMENSIONS D AND E1 ARE MEASUPED AT DATUM PLANE H. DIMENSIONS DOES NOT INCLIDE MOLD PROTINGIONS OR INTERLEAD FLASH SHALL NOT EXCEED 0.25 MM [0.010 INCH] PER SIDE.

 ADMENSION LIS THE LEAD LEWISH FOR SOLDEFINIO TO A SUBSTRATE.

 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO 228 AB.

Micro3 (SOT-23/TO-236AB) Part Marking Information

Notes: This part marking information applies to devices produced after 02/26/2001

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Micro3TM Tape & Reel Information Dimensions are shown in millimeters (inches)

NOTES:

CONTROLLING DIMENSION : MILLIMETER.
 OUTLINE CONFORMS TO EIA-481 & EIA-541.

Orderable part number	Package Type	Standard Pack		Note
		Form	Quantity	
IRLML9303TRPbF	Micro3 (SOT-23)	Tape and Reel	3000	

Qualification information[†]

Qualification level	Consumer ^{††} (per JEDEC JESD47F ^{†††} guidelines)			
	(per JEDEC JES D4/F m galdelines)			
Majatuwa Canaiti itu Laval	Mieres (COT 00)	MS L 1		
Moisture Sensitivity Level	Micro3 (SOT-23)	(per IPC/JEDEC J-STD-020D ^{†††})		
RoHS compliant	Yes			

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width $\leq 400\mu s$; duty cycle $\leq 2\%$.
- ③ Surface mounted on 1 in square Cu board.
- Refer to <u>application note #AN-994.</u>

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.03/12