Day 11 Assignment - Hitik Panchal

In [12]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
from scipy.stats import pearsonr
from matplotlib import pyplot
```

Reading the Data

In [3]:

```
gen_data=pd.read_csv('general_data.csv')
gen_data.head()
```

Out[3]:

	Age	Attrition	BusinessTravel	Department	DistanceFromHome	Education	EducationFi€
0	51	No	Travel_Rarely	Sales	6	2	Life Scienc
1	31	Yes	Travel_Frequently	Research & Development	10	1	Life Scienc
2	32	No	Travel_Frequently	Research & Development	17	4	Oth
3	38	No	Non-Travel	Research & Development	2	5	Life Scienc
4	32	No	Travel_Rarely	Research & Development	10	1	Medic

5 rows × 24 columns

In [4]:

gen_data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4410 entries, 0 to 4409
Data columns (total 24 columns):
     Column
                              Non-Null Count
                                               Dtype
     ----
                               ------
0
                              4410 non-null
                                               int64
    Age
1
    Attrition
                              4410 non-null
                                               object
 2
    BusinessTravel
                              4410 non-null
                                               object
 3
    Department
                              4410 non-null
                                               object
 4
    DistanceFromHome
                              4410 non-null
                                               int64
 5
    Education
                              4410 non-null
                                               int64
 6
     EducationField
                              4410 non-null
                                               object
 7
     EmployeeCount
                              4410 non-null
                                               int64
 8
     EmployeeID
                              4410 non-null
                                               int64
 9
    Gender
                              4410 non-null
                                               object
 10
    JobLevel
                              4410 non-null
                                               int64
    JobRole
                              4410 non-null
                                               object
 11
 12
    MaritalStatus
                              4410 non-null
                                               object
                              4410 non-null
                                               int64
 13
    MonthlyIncome
 14
    NumCompaniesWorked
                              4391 non-null
                                               float64
 15
    Over18
                              4410 non-null
                                               object
                              4410 non-null
                                               int64
 16
    PercentSalaryHike
 17
    StandardHours
                              4410 non-null
                                               int64
    StockOptionLevel
                              4410 non-null
                                               int64
 18
    TotalWorkingYears
                              4401 non-null
                                               float64
 19
 20
    TrainingTimesLastYear
                              4410 non-null
                                               int64
```

4410 non-null

4410 non-null

int64

int64

int64

dtypes: float64(2), int64(14), object(8)

22 YearsSinceLastPromotion 4410 non-null

memory usage: 827.0+ KB

YearsAtCompany

23 YearsWithCurrManager

21

Cleaning the Data

In [5]:

```
gen_data.isnull().any()
```

Out[5]:

False Age Attrition False BusinessTravel False False Department DistanceFromHome False Education False EducationField False EmployeeCount False **EmployeeID** False Gender False JobLevel False JobRole False MaritalStatus False MonthlyIncome False NumCompaniesWorked True Over18 False PercentSalaryHike False StandardHours False StockOptionLevel False TotalWorkingYears True TrainingTimesLastYear False YearsAtCompany False YearsSinceLastPromotion False YearsWithCurrManager False dtype: bool

In [6]:

gen_data.fillna(0 , inplace=True)

In [7]:

```
gen_data.isnull().any()
```

Out[7]:

False Age Attrition False BusinessTravel False False Department DistanceFromHome False Education False EducationField False EmployeeCount False **EmployeeID** False Gender False JobLevel False JobRole False MaritalStatus False MonthlyIncome False NumCompaniesWorked False Over18 False PercentSalaryHike False StandardHours False StockOptionLevel False TotalWorkingYears False TrainingTimesLastYear False YearsAtCompany False YearsSinceLastPromotion False YearsWithCurrManager False dtype: bool

асурст осо

In [8]:

gen_data.duplicated()

Out[8]:

0 False False 1 2 False 3 False 4 False 4405 False 4406 False 4407 False 4408 False 4409 False

Length: 4410, dtype: bool

In [9]:

gen_data.drop_duplicates()

Out[9]:

	Age	Attrition	BusinessTravel	Department	DistanceFromHome	Education	Educatio
0	51	No	Travel_Rarely	Sales	6	2	Life Sc
1	31	Yes	Travel_Frequently	Research & Development	10	1	Life Sci
2	32	No	Travel_Frequently	Research & Development	17	4	
3	38	No	Non-Travel	Research & Development	2	5	Life Sci
4	32	No	Travel_Rarely	Research & Development	10	1	N
4405	42	No	Travel_Rarely	Research & Development	5	4	N
4406	29	No	Travel_Rarely	Research & Development	2	4	N
4407	25	No	Travel_Rarely	Research & Development	25	2	Life Sci
4408	42	No	Travel_Rarely	Sales	18	2	N
4409	40	No	Travel_Rarely	Research & Development	28	3	N

4410 rows × 24 columns

Attrition Corelation

In [10]:

```
gen_data.Attrition = gen_data.Attrition.replace('No', 0)
gen_data.Attrition = gen_data.Attrition.replace('Yes', 1)
```

In [11]:

gen_data.head()

Out[11]:

	Age	Attrition	BusinessTravel	Department	DistanceFromHome	Education	EducationFi€
0	51	0	Travel_Rarely	Sales	6	2	Life Scienc
1	31	1	Travel_Frequently	Research & Development	10	1	Life Scienc
2	32	0	Travel_Frequently	Research & Development	17	4	Oth
3	38	0	Non-Travel	Research & Development	2	5	Life Scienc
4	32	0	Travel_Rarely	Research & Development	10	1	Medic

5 rows × 24 columns

•

Correlation 1 : Correlation between Attrition and Age

In [45]:

```
pyplot.figure(figsize=(7,7))
pyplot.xlabel("Attrition")
pyplot.ylabel("Age")
pyplot.scatter( gen_data['Attrition'], gen_data['Age'])
pyplot.show()
```


In [73]:

```
corr,p = pearsonr(gen_data['Attrition'], gen_data['Age'])
print('Pearsons correlation: %.3f' % corr)
print("Negative Correlation")
```

Pearsons correlation: -0.159

Negative Correlation

Correlation 2: Correlation between Attrition and Distance from Home

In [47]:

```
pyplot.figure(figsize=(7,7))
pyplot.xlabel("Attrition")
pyplot.ylabel("DistanceFromHome")
pyplot.scatter( gen_data['Attrition'], gen_data['DistanceFromHome'])
pyplot.show()
```


In [72]:

```
corr,p = pearsonr(gen_data['Attrition'], gen_data['DistanceFromHome'])
print('Pearsons correlation: %.3f' % corr)
print("Negative Correlation")
```

Pearsons correlation: -0.010

Negative Correlation

Correlation 3: Correlation between Attrition and Number of Companies Worked

In [49]:

```
pyplot.figure(figsize=(7,7))
pyplot.xlabel("Attrition")
pyplot.ylabel("NumCompaniesWorked")
pyplot.scatter( gen_data['Attrition'], gen_data['NumCompaniesWorked'])
pyplot.show()
```


In [74]:

```
corr,p = pearsonr(gen_data['Attrition'], gen_data['NumCompaniesWorked'])
print('Pearsons correlation: %.3f' % corr)
print("Positive Correlation")
```

Pearsons correlation: 0.042

Positive Correlation

Correlation 4: Correlation between Attrition and Education Level

In [51]:

```
pyplot.figure(figsize=(7,7))
pyplot.xlabel("Attrition")
pyplot.ylabel("Education Level")
pyplot.scatter( gen_data['Attrition'], gen_data['Education'])
pyplot.show()
```


In [71]:

```
corr,p = pearsonr(gen_data['Attrition'], gen_data['Education'])
print('Pearsons correlation: %.3f' % corr)
print("Negative Correlation")
```

Pearsons correlation: -0.015

Negative Correlation

Correlation 5: Correlation between Attrition and Percent Salary Hike

In [53]:

```
pyplot.figure(figsize=(7,7))
pyplot.xlabel("Attrition")
pyplot.ylabel("PercentSalaryHike")
pyplot.scatter( gen_data['Attrition'], gen_data['PercentSalaryHike'])
pyplot.show()
```


In [75]:

```
corr,p = pearsonr(gen_data['Attrition'], gen_data['PercentSalaryHike'])
print('Pearsons correlation: %.3f' % corr)
print("Positive Correlation")
```

Pearsons correlation: 0.033

Positive Correlation

Correlation 6: Correlation between Attrition and Total Working Years

In [56]:

```
pyplot.figure(figsize=(7,7))
pyplot.xlabel("Attrition")
pyplot.ylabel("TotalWorkingYears")
pyplot.scatter( gen_data['Attrition'], gen_data['TotalWorkingYears'])
pyplot.show()
```


In [70]:

```
corr,p = pearsonr(gen_data['Attrition'], gen_data['TotalWorkingYears'])
print('Pearsons correlation: %.3f' % corr)
print("Negative Correlation")
```

Pearsons correlation: -0.170 Negative Correlation

Correlation 7: Correlation between Attrition and Training Times Last Year

In [57]:

```
pyplot.figure(figsize=(7,7))
pyplot.xlabel("Attrition")
pyplot.ylabel("TrainingTimesLastYear")
pyplot.scatter( gen_data['Attrition'], gen_data['TrainingTimesLastYear'])
pyplot.show()
```


In [69]:

```
corr,p = pearsonr(gen_data['Attrition'], gen_data['TrainingTimesLastYear'])
print('Pearsons correlation: %.3f' % corr)
print("Negative Correlation")
```

Pearsons correlation: -0.049 Negative Correlation

Correlation 8 : Correlation between Attrition and Years At Company

In [61]:

```
pyplot.figure(figsize=(7,7))
pyplot.xlabel("Attrition")
pyplot.ylabel("YearsAtCompany")
pyplot.scatter( gen_data['Attrition'], gen_data['YearsAtCompany'])
pyplot.show()
```


In [68]:

```
corr,p = pearsonr(gen_data['Attrition'], gen_data['YearsAtCompany'])
print('Pearsons correlation: %.3f' % corr)
print("Negative Correlation")
```

Pearsons correlation: -0.134

Negative Correlation

Correlation 9: Correlation between Attrition and Years Since Last Promotion

In [62]:

```
pyplot.figure(figsize=(7,7))
pyplot.xlabel("Attrition")
pyplot.ylabel("YearsSinceLastPromotion")
pyplot.scatter( gen_data['Attrition'], gen_data['YearsSinceLastPromotion'])
pyplot.show()
```


In [67]:

```
corr,p = pearsonr(gen_data['Attrition'], gen_data['YearsSinceLastPromotion'])
print('Pearsons correlation: %.3f' % corr)
print("Negative Correlation")
```

Pearsons correlation: -0.033

Negative Correlation

Correlation 10: Correlation between Attrition and Years With Current Manager

In [64]:

```
pyplot.figure(figsize=(7,7))
pyplot.xlabel("Attrition")
pyplot.ylabel("YearsWithCurrManager")
pyplot.scatter( gen_data['Attrition'], gen_data['YearsWithCurrManager'])
pyplot.show()
```


In [66]:

```
corr,p = pearsonr(gen_data['Attrition'], gen_data['YearsWithCurrManager'])
print('Pearsons correlation: %.3f' % corr)
print("Negative Correlation")
```

Pearsons correlation: -0.156 Negative Correlation

All the above correlations are partial correlations.

In []: