TD 21 Matrices d'une application linéaire

Exercice 1: ★★

Soit φ l'endomorphisme de $\mathbb{R}_n[X]$ défini par $\varphi(P) = P(X+1)$.

- (1) Écrire la matrice A de φ dans la base canonique de $\mathbb{R}_n[X]$.
- (2) Justifier que A est inversible et calculer A^{-1} .

Exercice 2: *

Soit $a \in \mathbb{C}^*$ et $f : z \in \mathbb{C} \mapsto z + a\overline{z}$.

- (1) Montrer que f est un endomorphisme du \mathbb{R} -espace vectoriel $\mathbb{C}.$
- (2) Écrire la matrice de f dans la base (1, i).
- (3) Déterminer le noyau et l'image de f.

Exercice 3: ★★★

Soient E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$ et f un endomorphisme de E tel qu'il existe $x_0 \in E$ pour lequel la famille $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ soit une base de E. On note

$$C = \{ g \in L(E) \mid g \circ f = f \circ g \}.$$

- (1) Montrer que C est un sous-espace vectoriel de L(E).
- (2) Montrer que $C = \text{Vect}(\text{id}_E, f, \dots, f^{n-1}).$
- (3) Déterminer la dimension de C.

Exercice 4: ★★★★

Soient a_0, \dots, a_n des réels deux-à-deux distincts. Montrer qu'il existe un unique (n+1)-uplet $(\lambda_0, \dots, \lambda_n) \in \mathbb{R}^{n+1}$ tel que

$$\forall P \in \mathbb{R}_n[X], \ \int_0^1 P(t) dt = \sum_{i=0}^n \lambda_i P(a_i).$$

Exercice 5: ★★★

Soit E un espace vectoriel de dimension $n \in \mathbb{N}^*$ et $f \in L(E)$ tel que $f^2 = 0$. Montrer qu'il existe une base \mathscr{B} de E telle que la matrice de f dans la base \mathscr{B} soit de la forme $\begin{pmatrix} 0 & I_p \\ 0 & 0 \end{pmatrix}$.

Exercice 6: ★★★

Soit $f \in L(\mathbb{R}^3)$ représenté dans la base canonique \mathscr{B} par $\begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$. On pose $u_1 = (1,0,1), u_2 = (-1,1,0)$ et $u_3 = (1,1,1)$.

- (1) Montrer que $C = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 .
- (2) Déterminer la matrice de f dans la base C.
- (3) Calculer la matrice de f^n dans la base \mathscr{B} pour tout $n \in \mathbb{N}$.

Exercice 7: ★★★

Soit E un espace vectoriel de dimension finie. Montrer qu'il existe une base de L(E) constituée uniquement de projecteurs.

Exercice 8: ★★★★

Dans tout ce problème, on désigne par n un entier supérieur ou égal à 2. On rappelle alors qu'un endomorphisme f de \mathbb{R}^n est nilpotent s'il existe un entier naturel $k \geq 1$ tel que $f^k = 0$, et dans ce cas, on appelle indice de nilpotence p de f le plus petit entier k tel que $f^k = 0$. Ainsi f est nilpotent d'indice p si et seulement si $f^p = 0$ et $f^{p-1} \neq 0$. On rappelle que $f^0 = \mathrm{id}$, même si f est l'application nulle.

On peut définir de façon analogue les matrices nilpotentes dans l'espace vectoriel $\mathcal{M}_n(\mathbb{R})$ des matrices carrées d'ordre n à coefficients réels, et on notera $N_n(\mathbb{R})$ le sous-ensemble de $\mathcal{M}_n(\mathbb{R})$ constitué des matrices nilpotentes. On rappelle que pour toute matrice $M \in \mathcal{M}_n(\mathbb{R})$, $M^0 = I_n$.

L'objectif de ce problème est d'étudier quelques propriétés des endomorphismes nilpotents de \mathbb{R}^n et des matrices nilpotentes de $\mathcal{M}_n(\mathbb{R})$.

Partie I: exemples de matrices nilpotentes

(1) On considère dans cette question les deux matrices suivantes de $\mathcal{M}_n(\mathbb{R})$ (dont les éléments sont tous nuls, à l'exception d'un seul qui est égal à 1):

$$A = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 0 & 0 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \end{pmatrix}.$$

- (a) On note f et g les endomorphismes canoniquement associés à A et B. Déterminer le noyau et l'images de f, et les comparer. Qu'en déduit-on? Faire de même avec g.
- (b) Calculer les puissances des matrices A et B. Ces matrices sont-elles nilpotentes?
- (c) Calculer les puissances $(A+B)^q$ en distinguant les cas q=2k et q=2k+1. On pourra introduire l'endomorphisme canoniquement associé à A+B. La matrice A+B est-elle nilpotente?
- (d) Expliciter les matrices AB et BA. Calculer les puissances des matrices AB et BA. Ces matrices sont-elles nilpotentes?
- (e) L'ensemble $N_n(\mathbb{R})$ des matrices nilpotentes est-il un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$? une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$?

Partie II : Une forme réduite des matrices nilpotentes

(2) Une propriété de l'indice de nilpotence.

On considère dans cette question un endomorphisme nilpotent f d'indice p de \mathbb{R}^n , de sorte qu'il existe un vecteur non nul e_1 de \mathbb{R}^n tel que $f^{p-1}(e_1) \neq 0$ et $f^p = 0$.

- (a) Montrer que la famille $(f^{p-1}(e_1), \dots, f^2(e_1), f(e_1), e_1)$ est libre, puis que $p \leq n$.
- (b) En déduire qu'un endomorphisme g de \mathbb{R}^n est nilpotent si et seulement si $g^n=0$.
- (3) Construction d'une base adaptée à un endomorphisme nilpotent : cas où n=3

On considère dans cette question un endomorphisme nilpotent **non nul** f d'indice p de \mathbb{R}^3 . D'après la question 2, l'indice de nilpotence p de f est alors égal à 2 ou 3.

- (a) On suppose ici f nilpotent d'indice p=3, et on note e_1 un vecteur tel que $f^2(e_1) \neq 0$.
 - Montrer que la famille $(f^2(e_1), f(e_1), e_1)$ forme une base de \mathbb{R}^3 .
 - Écrire la matrice de f dans cette base.
- (b) On suppose ici f nilpotent d'indice p=2, et on notre e_1 un vecteur tel que $f(e_1)\neq 0$.
 - Montrer que $\operatorname{Im}(f) \subset \operatorname{Ker}(f)$, donc que $\dim(\operatorname{Im}(f)) \leq \dim(\operatorname{Ker}(f))$.
 - À l'aide du théorème du rang, en déduire que $\dim(\operatorname{Im}(f)) = 1$ et $\dim(\operatorname{Ker}(f)) = 2$.
 - Justifier l'existence d'un vecteur e_3 complétant $f(e_1)$ en une base de Ker(f), puis démontrer que la famille $(f(e_1), e_1, e_3)$ forme une base de \mathbb{R}^3 .
 - Écrire la matrice de f dans cette base.

(4) Construction d'une base adaptée à un endomorphisme nilpotent : cas général.

On considère dans cette question un endomorphisme nilpotent f d'indice p de \mathbb{R}^n , et on note e_1 un vecteur tel que $f^{p-1}(e_1) \neq 0$.

- (a) Pour $1 \le k \le p$, prouver l'inclusion $\operatorname{Ker}(f^{k-1}) \subset \operatorname{Ker}(f^k)$. Montrer que cette inclusion est stricte en considérant le vecteur $f^{p-k}(e_1)$.
- (b) Montrer que l'image par f du sous-espace $Ker(f^k)$ est incluse dans $Ker(f^{k-1})$.
- (c) On considère une base \mathscr{B}_1 de $\mathrm{Ker}(f)$. Justifier l'existence d'une famille \mathscr{B}_2 complétant \mathscr{B}_1 en une base de $\mathrm{Ker}(f^2)$, puis plus généralement, pour tout entier naturel k tel que $2 \le k \le p$, justifier l'existence d'une famille \mathscr{B}_k complétant une base $\mathscr{B}_1 \cup \cdots \cup \mathscr{B}_{k-1}$ de $\mathrm{Ker}(f^{k-1})$ en une base de $\mathrm{Ker}(f^k)$.

Ainsi $\mathscr{B}_1 \cup \mathscr{B}_2 \cup \cdots \cup \mathscr{B}_p$ forme une base de $\operatorname{Ker}(f^p) = \mathbb{R}^n$.

(d) Écrire par blocs la matrice de f dans la base $\mathcal{B}_1 \cup \cdots \cup \mathcal{B}_p$ de \mathbb{R}^n (on précisera avec soin les blocs qui sont nuls, sans chercher à expliciter les autres.)

Partie III : Caractérisation de $Vect(N_n(\mathbb{R}))$ à l'aide de la trace.

- (5) On rappelle que la trace d'une matrice $M = (m_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ est le réel $\text{Tr}(M) = \sum_{i=1}^n m_{i,i}$.
 - (a) Montrer que l'application $M \in \mathcal{M}_n(\mathbb{R}) \mapsto \text{Tr}(M) \in \mathbb{R}$ est une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$. En déduire la dimension du noyau Ker(Tr) de l'application trace.
 - (b) Soient $A, B \in \mathcal{M}_n(\mathbb{R})$. Montrer que Tr(AB) = Tr(BA).
 - (c) En exploitant le résultat de la question 4, démontrer l'inclusion $N_n(\mathbb{R}) \subset \text{Ker}(\text{Tr})$, puis l'inclusion $\text{Vect}(N_n(\mathbb{R})) \subset \text{Ker}(\text{Tr})$.
- (6) Étude de la réciproque : cas où n=2.

On considère les matrices suivantes de $\mathcal{M}_2(\mathbb{R})$:

$$E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, N = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}.$$

- (a) Lesquelles de ces trois matrices sont-elles nilpotentes?
- (b) On considère une matrice (2,2) de trace nulle $M=\begin{pmatrix} a & b \\ c & -a \end{pmatrix}$. Montrer que M est combinaison linéaire des trois matrices N, E_{12}, E_{21} .
- (c) En déduire dans le cas n=2 l'égalité $\operatorname{Vect}(N_2(\mathbb{R}))=\operatorname{Ker}(\operatorname{Tr})$.
- (7) Étude de l'inclusion réciproque : cas général.

Pour $1 \leq i \leq n$, $1 \leq j \leq n$, on désigne par E_{ij} la matrice de la base canonique de $\mathcal{M}_n(\mathbb{R})$ dont tous les éléments sont nuls, sauf celui en position (i,j) qui est égal à 1.

Pour $2 \le i \le n$, on désigne par N_i la matrice définie par $N_i = E_{11} - E_{1i} + E_{i1} - E_{ii}$.

- (a) Calculer E_{ij}^2 pour $i \neq j$ et N_i^2 pour $2 \leq i \leq n$.
- (b) On considère la famille \mathcal{F}_n composée des $n^2 n$ matrices $E_{i,j}$ pour $1 \le i, 1 \le j \le n$ et $i \ne j$ et des n-1 matrices N_i pour $2 \le i \le n$.
 - Montrer que la famille \mathcal{F}_n est libre.
 - En déduire une minoration de la dimension de $Vect(N_n(\mathbb{R}))$.
- (c) Justifier l'égalité $Vect(N_n(\mathbb{R})) = Ker(Tr)$.
- (d) Démontrer que \mathcal{F}_n est une base du sous-espace $\text{Vect}(N_n(\mathbb{R}))$, et étant donnée une matrice $M = (m_{ij})$ de $\mathcal{M}_n(\mathbb{R})$ dont la trace est nulle, exprimer M comme combinaison linéaire des matrices nilpotentes de la famille \mathcal{F}_n en explicitant tous les coefficients.