Einführung in Wissensbasierte Systeme WS 2018/19, 3.0 VU, 184.737

Exercise Sheet 1 – Logic, Part 1

Exercise 1.1: Check using semantics whether the following statements hold (do *not* use truth tables). If a statement does not hold, provide a counterexample.

- 1. $\neg(p \to q) \models p \to \neg q$
- 2. $p \rightarrow q \models (p \rightarrow \neg q) \rightarrow \neg p$
- 3. $p \rightarrow q \models q \rightarrow \neg p$

Exercise 1.2: Let ϕ be a tautology, ψ a contradiction, and χ a contingency (i.e., χ is satisfiable as well as falsifiable). Which of the following formulas are (i) tautological, (ii) contradictory, (iii) contingent, or (iv) logically equivalent to χ ? Justify your answers.

1	4	Λ	2/
т.	φ	/\	χ .

4. $\psi \vee \chi$.

2.
$$\phi \vee \chi$$
.

5. $\phi \lor \psi$.

3.
$$\psi \wedge \chi$$
.

6. $\chi \to \psi$.

Exercise 1.5: Prove or refute whether the following formulas are tautologies. Establish your claim by purely semantic means (i.e., without applying a calculus like **TC1**).

(a)
$$\exists x (P(x) \rightarrow P(f(x)))$$

(b)
$$\forall x \exists y \, R(x,y) \rightarrow \exists y \forall x \, R(x,y)$$

Hint: Truth tables do not work.

Exercise 1.6: Translate the following arguments into entailment problems of first-order logic and check the validity of each statement. If the argument is valid, provide a proof in TC1. Otherwise, prove that there exists no closed tableau for the (negation of the) corresponding formula in TC1.

- (a) Influenza is caused by a virus. Pseudomonas is a bacterium and not a virus, therefore it doesn't cause influenza.
- (b) Every chicken eats corn. Berta eats grass. Therefore Berta is not a chicken.

Einführung in Wissensbasierte Systeme WS 2018/19, 3.0 VU, 184.737

Exercise Sheet 2 - Nonmonotonic Reasoning

Exercise 2.1: Consider the following theory:

$$T = \{ \forall x (\neg P(x) \to Q(x)), \neg P(b), R(a), \forall x (R(x) \to P(x)) \}.$$

- (a) Determine CWA(T) as well as $CWA^Q(T)$.
- (b) Prove or refute whether CWA(T) is consistent. What about $CWA^Q(T)$?

Exercise 2.3: Consider the open default theory $T = (W, \Delta)$, where

$$\begin{split} W &= \{\exists x (P(x) \vee Q(x)), \forall x (P(x) \vee R(x)), \forall x (R(x) \rightarrow Q(x))\} \\ \Delta &= \left\{\frac{P(x) : \neg Q(x)}{\neg Q(x)}, \frac{Q(x) : \neg P(x)}{\neg P(x)}, \frac{\top : R(x)}{R(x)}\right\}. \end{split}$$

Compute the closure of T and determine the possible candidates for being an extension. Then compute the classical reduct Δ_E for each candidate E, and determine all extensions of T.

Exercise 2.5: The property *semi-monotonicity* is a weaker form of monotonicity and is defined as follows:

Let $T=(W,\Delta)$ and $T'=(W,\Delta')$ be default theories with $\Delta\subseteq\Delta'$, and let E be an extension of T. Then T' has an extension E' such that $E\subseteq E'$.

Prove or disprove whether semi-monotonicity holds in default logic.

Exercise 2.6: You are given the propositional default theory $T = (W, \Delta)$, where

$$\begin{split} W = & \{a\}, \\ \Delta = & \left\{\frac{a:b}{b}, \frac{b:c, \neg d}{c}, \frac{b:d, \neg c}{d}, \frac{c:e}{\neg e}\right\}. \end{split}$$

Now consider the following (erroneous) reasoning trying to find an extension E of T:

- 1. Starting with the certain knowledge $a \in W$, we can apply the default a : b/b to derive b.
- 2. Having derived b, we can now apply the second default $b: c, \neg d/c$ to derive c.
- 3. Due to c, the third default is blocked, but we can apply the fourth default $c: e/\neg e$ and derive $\neg e$.
- 4. No more defaults are applicable, so we arrive at $E = Cn(\{a, b, c, \neg e\})$.

However, E is *not* an extension of T.

Your task is to analyse the above reasoning and explain in detail why this approach does not work. Furthermore, find the actual extensions of T.

Exercise 2.7: Consider the following information:

- 1. People who live in a city usually rent a flat.
- 2. People who live in a city and rent a flat are usually not rich.
- 3. Rich people usually do not rent a flat.
- 4. Emily lives in a city.
- 5. Emily is rich.

Formalise the given information in terms of an open default theory and compute all of its extensions. Use

- city(x) for "x lives in a city",
- flat(x) for "x rents a flat",
- rich(x) for "x is rich", and
- ullet the constant symbol e for "Emily".

Einführung in Wissensbasierte Systeme WS 2018/19, 3.0 VU, 184.737

Exercise Sheet 3 – Answer-Set Programming and Probabilistic Reasoning

Exercise 3.1: Let P be a Horn logic program and $M_1, M_2 \subseteq HB(P)$ classical models of P. Prove that $M_1 \cap M_2$ is also a classical model of P. What about $M_1 \cup M_2$?

Exercise 3.2: Consider the following disjunctive logic program P:

$$P = \left\{ \begin{aligned} a \lor b &\leftarrow \text{not } c. \\ c &\leftarrow b, \text{not } d. \\ d &\leftarrow \text{not } c. \\ a &\leftarrow d. \end{aligned} \right\}.$$

- (i) Determine all answer sets of P. For each proposed answer set S, argue formally that it is indeed an answer set (using the Gelfond-Lifschitz reduct P^S).
- (ii) Is it possible to add new rules Q to P such that $S' = \{b, c\}$ is an answer set of $P \cup Q$? If yes, give the new rules Q, if not, argue why.
- (iii) The same as in (??), but for $S' = \{a, b\}$.

Exercise 3.3: For a program P, we denote by AS(P) the set of all answer sets of P. Let P,Q be programs. We say that P,Q are

- (i) equivalent if AS(P) = AS(Q) and
- (ii) strongly equivalent if $AS(P \cup R) = AS(Q \cup R)$ for every program R.

Prove or refute whether

- (a) (i) implies (ii),
- (b) (ii) implies (i).

Exercise 3.4: Let S_1, S_2 be answer sets of a program P. Show that $S_1 \subseteq S_2$ implies $S_1 = S_2$.

Exercise 3.6: Consider the following graph of a Bayesian network:

Answer the following questions and give an explanation of your answer.

- (i) Is B conditionally independent of G?
- (ii) Is B conditionally independent of G given evidence M?
- (iii) Which evidences are needed such that G is conditionally independent of M?
- (iv) Which evidences are needed such that A is conditionally independent of L?

Exercise 3.7: Given the following Bayesian network with the Boolean variables

- B = BrokeElectionLaw,
- I = Indicted,
- M = PoliticallyMotivatedProsecutor,
- G = FoundGuilty, and
- J = Jailed,

where the probabilities for B and M are P(B)=0.9 and P(M)=0.1, respectively. The conditional probabilities for P(G|B,I,M), P(J|G), and P(I|B,M) are as follows:

B	M	P(I B,M)		B	I	M	P(G B,I,M)
0	0	0.1		0	0	0	0.0
0	1	0.5	$\begin{pmatrix} B \end{pmatrix} \longrightarrow \begin{pmatrix} I \end{pmatrix} \longleftarrow \begin{pmatrix} M \end{pmatrix}$	0	0	1	0.0
1	0	0.5		0	1	0	0.1
1	1	0.9	G	0	1	1	0.2
			9	1	0	0	0.0
	$G \mid$	P(J G)	<u></u>	1	0	1	0.0
	1	0.9	(J)	1	1	0	0.8
	0	0.0		1	1	1	0.9

- (i) Which, if any, of the following relations hold in view of the *network structure alone* (ignoring the conditional probability tables for now)?
 - (a) P(B, I, M) = P(B)P(I)P(M).
 - (b) P(J|G) = P(J|G, I).
 - (c) P(M|G, B, I) = P(M|G, B, I, J).
- (ii) Calculate $P(b, i, \neg m, g, j)$.
- (iii) Calculate the probability that someone goes to jail given that he or she broke the law, has been indicted, and faces a politically motivated prosecutor.