Die Plasma-Randschicht

Die Plasma-Randschicht

Gedankenexperiment

Elektronen und Ionen strömen auf eine Wand:

Kann die Ladungsneutralität des Plasmas bis zur Wand aufrechterhalten werden?

Elektronenfluss:

$$\Gamma_e \sim n_e v_{\rm th,e} = n_e \sqrt{\frac{2k_B T_e}{m_e}}$$

Ionenfluss:

$$\Gamma_i \sim n_i v_{\text{th,i}} = n_i \sqrt{\frac{2k_B T_i}{m_i}}$$

Ladungsneutralität: $n_e = Zn_i$, $\Gamma_e = Z\Gamma_i$

$$\Rightarrow v_{\rm th,e} = v_{\rm th,i}$$

 $\Rightarrow v_{\text{th,e}} = v_{\text{th,i}}$ mit A: Massenzahl des Ions

$$\Rightarrow T_i = \frac{m_i}{m_e} T_e = 1836 A T_e$$

Falls die Ionen in der Randschicht nicht auf diese Temperatur geheizt werden können (gegen erhebliche Wärmeverluste!), dann gilt $n_e \ll n_i$ nahe der Wand.

Praxis: Sie können <u>nie</u>, meist sogar $T_i \ll T_e$

⇒ Es bildet sich eine elektrostatisch geladene Randschicht aus.

Die elektrostatische Randschicht

In der Randschicht: $n_e \ll n_i$

- ⇒ negative Raumladung,
- ⇒ negatives elektrostatisches Potential

Auf die Wand strömende

- Elektronen werden teils zurückgestoßen,
- Ionen zur Wand hin beschleunigt.

Elektronen:

Beschreibe Dichte durch Boltzmann-Faktor

$$n_e(x) = n \exp\left[\frac{eU(x)}{k_B T_e}\right]$$

Wg. U < 0 verarmen Elektronen in der Randschicht

Ionen:

Wg. Teilchenerhaltung entlang der Strömung

$$n_i(x) = \frac{Z n v_0}{\left(v_0^2 - \frac{2eU(x)}{m_i}\right)^{1/2}}$$

wobei v_0 die Geschwindigkeit der Ionen am Eingang zur Randschicht ist.

Wg. Geschwindigkeitserhöhung zur Wand hin dünnen die Ionen (etwas) aus.

Potenzialverlauf in der Randschicht

Poisson-Gleichung:

$$\frac{\mathrm{d}^2 U(x)}{\mathrm{d}x^2} = -\frac{\rho}{\varepsilon_0} = \frac{e}{\varepsilon_0} (n_e - Zn_i)$$

$$= \frac{en}{\varepsilon_0} \left[\exp\left(\frac{eU(x)}{k_B T_e}\right) - \frac{Z}{\left(1 - \frac{2eU(x)}{m_i v_0^2}\right)^{1/2}} \right]$$

Nichtlineare DGL 2. Ordnung!

Definiere dimensionslose Größen:

$$\eta \equiv -\frac{eU}{k_B T_e}, \quad t \equiv \frac{2 k_B T_e}{m_i v_0^2}, \quad \xi \equiv \frac{x}{\lambda_D}$$

mit $\lambda_D = \sqrt{\epsilon_0 K_B T_e/(en)}$ (Debye-Länge)

$$\Rightarrow \frac{\mathrm{d}^2 \eta}{\mathrm{d}\xi^2} = \frac{1}{\sqrt{1+t\eta}} - \exp\left(-\eta\right)$$

(dimensionslose Form der Poisson-Gl.)

Lösung der Poisson-Gl.:

- (a) i.a. numerisch
- (b) $t\eta \ll 1$ und $\eta \ll 1$: Reihenentwicklung Benutze Reihenformeln:

$$\frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 \mp \dots$$

$$\exp(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \dots$$

Am Eingang der Randschicht ($-eU \ll k_B T_e$):

$$\Rightarrow \frac{\mathrm{d}^2 \eta}{\mathrm{d} \xi^2} \sim 1 - \frac{1}{2} t \eta - (1 - \eta) = \eta \left(1 - \frac{1}{2} t \right)$$

Ansatz: $\eta(\xi) = \eta_0 \exp(\alpha \xi)$ $\Rightarrow \alpha^2 = 1 - \frac{1}{2}t$

Verhalten der Lösung hängt vom Vorzeichen von α^2 ab (exponentieller Anstieg oder räumliche Schwingung)

Bohm-Kriterium für die Randschicht

Lösung für Potenzial am Eingang der Randschicht:

$$U(x) = -\frac{k_B T_e}{e} \exp\left(\alpha \frac{x}{\lambda_D}\right)$$
 mit $\alpha^2 = 1 - \frac{k_B T_e}{m_i v_0^2}$

Für $\alpha^2 < 0$ ist α imaginär \rightarrow räumlich oszillierendes Potential (elektrostatische Welle, in der Praxis gedämpft und normalerweise nicht beobachtet)

Für $\alpha^2 > 0$ (α reell) \rightarrow exponenziell ansteigendes Potential D.h. $k_B T_e \leq m_i v_0^2$ bzw.

$$v_0 \geq \sqrt{\frac{k_B T_e}{m_i}} \sim c_s (T_i = 0)$$

"Bohm-Kriterium" (für kalte Ionen, $T_i = 0$):

Das Plasma strömt mit mindestens der Schallgeschwindigkeit in die Randschicht ein.

Für endliche Ionentemperatur (Stangeby, The Plasma Boundary of Magnetic Fusion Devices, ch. 2.4)

$$v_0 \geq \sqrt{\frac{k_B T_e + \gamma K_B T_i}{m_i}} \sim c_s$$

"Sheath" und "Pre-sheath"

Potenzial, Ladungsdichte und el. Feldstärke:

Am Eingang zur eigentlichen Randschicht ("sheath") haben die Ionen $v_0 = \sqrt{2eU/m_i}$.

Diese Energie kommt aus der langsamen Potenzialveränderung in der sog. "pre-sheath" (bei sehr kleiner Raumladung)

Wie groß ist der Spannungsabfall über der Randschicht?

Im stationären Fall und ohne elektrischen Strom durch die Wand bleibt die Ladung des Plasmas und der Wand konstant.

⇔ Elektronenfluss und Ionenfluß auf die Wand sind gleich:

$$\Gamma_{i,w} = \Gamma_{e,w}$$

(Elektronen und Ionen rekombinieren an der Wand zu Neutralen)

Das ist ein stabiles Gleichgewicht:

Sei
$$\Gamma_{e,w} > \Gamma_{i,w}$$
.

- ⇒ Negative Ladungen laden die Wand negativ(er) auf.
- ⇒ Ein kleinerer Anteil der anströmenden
 Elektronen gelangt bis zur Wand
 (Boltzmann-Faktor).
- $\Rightarrow \Gamma_{e,w}$ sinkt ab.

<u>Ionenfluß</u>

am Eingang der Randschicht ("sheath"):

$$\Gamma_{i,s} = n v_0$$

Ohne Rekombination in der Randschicht (da Elektronen dort verarmt sind) bleibt der Ionenfluß erhalten:

$$\Gamma_{i,w} = n v_0$$

Wobei an der Wand $v_i > v_0$ und $n_i < n!$

Ionen-Geschwindigkeitsverteilung:

Wie groß ist der Spannungsabfall über der Randschicht?

Elektronenfluß

Die Elektronen haben eine breitere thermische Geschwindigkeitsverteilung als die Ionen und laufen gegen ein abstoßendes Potential auf die Wand zu.

Elektronen-Geschwindigkeitsverteilung:

An der Wand werden die Elektronen absorbiert (Rekombination). In der Geschwindigkeitsverteilung der vor der Wand reflektierten Elektronen fehlen diese ("cut-off" der Verteilung).

Cut-off Geschwindigkeit:

$$|v_c| = \sqrt{\frac{2e}{m_e} \left(U(x) - U_{\rm W} \right)}$$

U_W: Wandpotenzial

Wie groß ist der Spannungsabfall über der Randschicht?

Maxwell'sche Geschwindigkeitsverteilung:

$$f(\vec{v}) = n \left(\frac{\beta}{\pi}\right)^{3/2} \exp\left[-\beta(v_x^2 + v_y^2 + v_z^2)\right]$$

mit $\beta \equiv m/(2k_BT_e)$.

Die Normierung ist so, daß:

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(\vec{v}) dv_x dv_y dv_z = n$$

Mittlere Geschwindigkeit der zur Wand hinlaufenden Elektronen:

$$\langle v_{x+} \rangle = \frac{1}{n} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{v_x=0}^{+\infty} v_x f(\vec{v}) dv_x dv_y dv_z$$

Formelsammlung:

$$\int_0^\infty x e^{-\beta x^2} dx = \frac{1}{2\beta}, \quad \int_{-\infty}^{+\infty} e^{-\beta x^2} = \frac{\pi^{1/2}}{\beta^{1/2}} \qquad \text{Wasserstoff } (m_i = 1836m_e), \text{ und } T_i \ll T_e: \\ eU_W = 0.5k_B T_e \ln[2\pi(m_e/m_i)] \approx -3k_B T_e$$

Haben für die Flüsse auf die Wand:

$$\Gamma_{e,w} = n < v_{x+,e} > \exp\left[\frac{eU_w}{k_B T_e}\right]$$

$$= n \left(\frac{k_B T_e}{2\pi m_e}\right)^{1/2} \exp\left[\frac{eU_w}{k_B T_e}\right]$$

und

$$\Gamma_{i,w} = nv_0 = n \left(\frac{k_B T_e + \gamma k_B T_i}{m_i}\right)^{1/2}$$

Gleichsetzen ergibt Wandpotenzial:

$$U_{\rm W} = \left(\frac{k_B T_e}{2e}\right) \ln \left[2\pi \frac{m_e}{m_i} \left(1 + \gamma \frac{T_i}{T_e}\right)\right]$$

Beispiel:

Wasserstoff ($m_i = 1836m_e$), und $T_i \ll T_e$:

Kann man den Spannungsabfall über der Randschicht messen?

Naiver Aufbau:

Spannungsmessung zwischen zwei Elektroden durch das Plasma fließenden Strom messen:

Man kann aber eine Spannung anlegen und den durch das Plasma fließenden Strom messen:

Bei T_e = const im Plasma ergibt sich keine Spannung zwischen den Elektroden.

Strom - Spannungs-Kennlinie zweier Sonden

Die Stromstärke ergibt sich aus der Differenz der Ionen- und Elektronenflüsse auf die Elektroden

Linke Elektrode

Rechte Elektrode

Elektronen:

Elektronen:

$$\Gamma_{\rm e,L} = n \left(\frac{k_B T_e}{2m_e \pi}\right)^{1/2} \exp\left[\frac{eU_L}{k_B T_e}\right]$$

$$\Gamma_{\rm e,R} = n \left(\frac{k_B T_e}{2m_e \pi}\right)^{1/2} \exp\left[\frac{e U_R}{k_B T_e}\right]$$

Ionen:

Ionen:

$$\Gamma_{i,L} = n v_o$$

$$\Gamma_{i,R} = n v_o$$

Da bei $U_a = 0$ kein Strom fließt:

$$n v_0 = n \left(\frac{k_B T_e}{2m_e \pi}\right)^{1/2} \exp\left[\frac{eU_0}{k_B T_e}\right]$$

wobei $U_0 \equiv U_W(U_a = 0)$ der Spannungsabfall über der stromlosen Randschicht ist.

Strom - Spannungs-Kennlinie zweier Sonden

O.b.d.A. Betrachte die Stromdichte an der rechten Elektrode.

In das Plasma fließender Strom sei positiv.

$$j_{R} = e \left(\Gamma_{e,R} - \Gamma_{i,R} \right)$$

$$= en \left(\frac{k_{B}T_{e}}{2\pi m_{e}} \right)^{1/2} \left[exp \left(\frac{eU_{R}}{k_{B}T_{e}} \right) - exp \left(\frac{eU_{0}}{k_{B}T_{e}} \right) \right]$$

$$= env_{0} \left[exp \left(\frac{e(U_{R} - U_{0})}{k_{B}T_{e}} \right) - 1 \right]$$

$$= env_{0} \left[exp \left(\frac{e(U_{a} + U_{L} - U_{0})}{k_{B}T_{e}} \right) - 1 \right]$$

Brauchen nun U_L .

Die Flächen der linken und rechten Elektrode seien A_L bzw. A_R , die Gesamtfläche $A = A_L + A_R$. Ladungserhaltung erfordert:

$$A_L\Gamma_{e,L} + A_R\Gamma_{e,R} = A_L\Gamma_{i,L} + A_R\Gamma_{i,R}$$

Damit

$$\exp\left(\frac{eU_L}{k_B T_e}\right) \left[\frac{A_L}{A} + \frac{A_R}{A} \exp\left(\frac{eU_a}{k_B T_e}\right)\right]$$
$$= \exp\left(\frac{eU_0}{k_B T_e}\right)$$

Die Langmuir-Sonde

Sei, $A_R \ll A_L$, so dass:

$$A_L \sim A, A_R \ll A \text{ und } U_L \sim U_0.$$

Rechte Elektrode ist ein kleiner Pin,

linke Elektrode das gesamte Plasmagefäß.

Es ergibt sich eine "Diodenkennlinie":

$$j_R \sim \underbrace{e \, n \, v_0}_{j_{\text{sat}}} \left[\exp \left(\frac{e U_a}{k_B T_e} \right) - 1 \right]$$

Steigung von $\ln j_R(U_a)$ ergibt T_e ; aus j_{sat} (Sättigungsstrom) ergibt sich die Plasmadichte am Eingang der Randschicht.

Diese Messung wurde von **Irving Langmuir** (1881 - 1957; 1932 Nobelpreis für Chemie) vorgeschlagen und ist weithin in Gebrauch.

Zusammenfassung: Plasma-Randschicht

- Durch unterschiedliche thermische Geschwindigkeiten von Elektronen und Ionen bildet sich in der Kontaktzone von Plasmarand und Wand eine elektrisch geladene Schicht aus: Die **elektrostatische Randschicht** (engl.: *sheath*)
- **Bohm-Kriterium**: In die eigentliche Randschicht strömen Ionen mit der Geschwindigkeit $v_0 = \sqrt{k_B T_e/m_i}$. Sie werden durch ein vergleichsweise schwaches elektrisches Feld weiter innen im Plasma ("*pre-sheath*") beschleunigt.
- Ionen werden auf die Wand hin beschleunigt. Dadurch nimmt ihre Dichte zur Wand hin leicht ab.
- Elektronen werden durch das Wandpotenzial zurückgestoßen. Ihre Dichte wird durch einen Boltzmann-Faktor beschrieben und nimmt zur Wand hin exponentiell ab.
- Das Wandpotenzial ergibt sich durch Gleichheit von Ionen- und Elektronenflüssen: $eU_W = 0.5k_BT_e \ln[2\pi(m_e/m_i) + (1+\gamma(T_i/T_e))]$
- Mit der Langmuir-Sonde (Strom-Spannungsmessung an einer kleinen Elektrode) lässt sich die Plasmadichte und die Elektronentemperatur am Eingang der Randschicht messen.