TOPOLOGICAL DATA ANALYSIS FOR CHARACTERIZING BONE MICROSTRUCTURE IN MEDICAL IMAGING

John Rick Manzanares, Paweł Dłotko

Dioscuri Centre in Topological Data Analysis / University of Silesia in Katowice

16 September 2025 53rd Conference on the Applications of Mathematics

IMAGE DATASET

MICRO-COMPUTED TOMOGRAPHY

$$I:D\subset \mathbb{Z}^3 o \mathbb{Z}_{\geq 0}$$

APPARENT STRENGTH

 \mathbb{R}

SIGNED DISTANCE TRANSFORM

BINARY IMAGE

 $B:D o\{0,1\}$

EUCLIDEAN SIGNED DISTANCE

$$S:D o \mathbb{R}$$

CUBICAL COMPLEX

lacksquare Cubical complex K

Choose some voxels using a sublevel set

$$K_a = \{ \sigma \in K \mid f(\sigma) \leq a \}$$

BONE MORPHOMETRY

Sphere Fitting Methods

- Trabecular thickness
- Trabecular spacing

Voxel-Counting Descriptors

- Bone volume
- **B**one volume fraction

Topological Descriptors

- Euler number
- Connectivity density

Degree of Anisotropy

PERSISTENT HOMOLOGY

FILTRATION

For real numbers $\,a_0 < a_1 < \cdots < a_m\,$ Consider the chain of cubical complexes

$$K_{a_0}\subseteq K_{a_1}\subseteq\cdots\subseteq K_{a_m}$$

DIAGRAM

PERSISTENCE IMAGE

BIRTH-PERSISTENCE

DISCRETIZATION

$$rac{w(b_i,p_i)}{2\pi\sigma^2} \mathrm{exp}\left(-rac{(x-b_i)^2+(y-d_i)^2}{2\sigma^2}
ight)$$

STRENGTH PREDICTION

Mean of Apparent Strength: 5.52 (±2.35)

BONE MORPHOMETRY

Binary	Model	RMSE	R ²
Otsu	Random Forest	1.78 ± 0.21	0.38 ± 0.11
2D Otsu	Gradient-Boosted Trees (GBT)	1.48 ± 0.25	0.56 ± 0.13

PERSISTENCE IMAGE

 Features	Dimension	Model	RMSE	R ²
PH	0	CDT	1.68 ± 0.26	0.44 ± 0.13
SDPH	2	GBT	0.97 ± 0.29	0.81 ± 0.09

TAKEAWAY(S)

On binarization methods

1D Otsu

2D Otsu

BETT CURVE

ZEROTH BETTI CURVE

MINIMUM SPANNING TREE

Weighted graph

$$G = (V, E, w)$$

Spanning tree

$$T=(V,E_0,w_0)$$

Minimize

$$w(T) = \sum_{e \in E} w(e)$$

BORUVKA'S ALGORITHM

- Each vertex starts as a connected component
- While there are multiple connected components, do the following:
 - Find edges of minimum weight connecting the components.

Neighborhood Graph:

((1, 2), 20)

((1,3),30)

((2,4),20)

((3,4),30)

MST:

((1, 2), 20)

((2,4),20)

((1,3),30)

SECOND BETTI CURVE

- Complex associated to the integer lattice grid Ω
- The zeroth Betti curve of the filtration

$$\Omega - K_{a_m} \subseteq \cdots \subseteq \Omega - K_{a_1} \subseteq \Omega - K_{a_0}$$

6-neighborhood graph

EULER CHARACTERISTIC CURVE

For each cube, we compute the change in the Euler characteristic.

$$\Delta\chi(t) = \#(N_0) - \#(N_1) + \#(N_2) - 1$$

First Betti numbers can now be computed.

$$\chi(t) = \beta_0(t) - \beta_1(t) + \beta_2(t)$$

DISTRIBUTED COMPUTING

- Perform the operations on image chunks or subvolumes
 - > Store neighborhood graph (in a distributed way)
 - Compute Betti curves based from graph

Shape	Number of Voxels	Runtime (seconds)
10 x 10 x 10	1000	0.457
20 x 20 x 20	8000	0.81
40 x 40 x 40	64000	2.014
100 x 100 x 100	1000000	29.889
250 x 250 x 250	15625000	447.031

GENERALIZED MERCHALIZED MERCH

Merging of connected components

FIOMOLOGY CLASSES

Homology group

$$H_n(X) = rac{\ker(\partial_n)}{\operatorname{im}(\partial_{n+1})}$$

Merging of homology classes

$$[z_m] = \sum_{i=1}^{m-1} lpha_i [z_i] + \partial
ho$$

MERCE FOREST

