<u>פתרון תרגיל בית מספר 3</u>

שאלה 1

א. <u>הגדרה</u>:

שפה L היא coNP-שלמה אם מתקיים:

- $.\overline{L} \in NP$, כלומר, $L \in coNP$
- $L' \leq_n L$ מתקיים $L' \in coNP$ היא coNP קשה, כלומר, לכל שפה L

ב. הוכחה:

-שלמה: היא NP שלמה. נוכיח ש-CoNP אם \overline{L} היא ריא NP שלמה. $L \in NP$ שלמה, אז מתקיים $L \in NP$

- . אזי $\overline{L} \in coNP$ עפ"י הגדרה, $L \in NP$
- קשה, כלומר, לכל שפה P מתקיים $L' \leq_p L$ מתקיים עם היא -NP קשה, כלומר, לכל שפה -NP מתקיים $L' \in NP$ מתקיים $L' \leq_p L$ מכאן $L' \leq_p L$ מכאן בלומר, למשלים, אזי לכל שפה $L' \leq_p L$ מתקיים $L' \in NP$ מתקיים $L' \in CONP$ היא -conp קשה.

.שלמה ביא \overline{L} היא \overline{L}

- ג. לכל שפה נראה שהיא conP-שלמה ע"י הוכחה שהמשלים שלה ב-NPC (ושימוש בסעיף הקודם).
 - $: \overline{L}$ את השפה המוגדרת בסעיף ונגדיר את L- נסמן ב

 $ar{L}=\left\{(G,k)\middle|$ א בכל קבוצת צמתים בגודל k בגרף G יש שני צמתים שמחוברים בקשת G כלומר, קיימת תת-קבוצה של צמתי G בגודל k בה אין שני צמתים סמוכים. פרושו: ב-G קיימת קב"ת בגודל k. מכאן, E (independent set) E באודל E מכאן, אבל קל לבדוק תקינות הקלט). מאחר והוכחנו בכיתה ש-E היא E היא E

 $: \overline{L}$ את השפה המוגדרת בסעיף ונגדיר את L- נסמן ב-

 $ar{L} = \left\{ (arphi_1, arphi_2, ..., arphi_m) \middle|$ היא נוסחת σ_i ולא קיים σ_i עבורו הנוסחה σ_i אינה ספיקה ולא קיים σ_i ולא קיים σ_i היא NP-שלמה: σ_i הוא σ_i היא σ_i היא σ_i כלומר, כל הנוסחאות

- . כי ניתן בזמן פולינומי בגודל הקלט לנחש השמות לכל הנוסחאות ולאמת אותן, $ar{L} \in NP$
 - יהיא איר הרדוקציה. \bar{L} פונקצית הרדוקציה: איר היא איר היא P-RP כדי להוכיח ש \bar{L} . פונקצית הרדוקציה:

$$f(\varphi) = (\underbrace{\varphi, \varphi, \dots, \varphi}_{m})$$

הפונקציה מלאה וניתנת לחישוב בזמן פולינומי. הפרדה: $\varphi \Leftrightarrow \varphi \in SAT$ נוסחה ספיקה ספיקה ($\varphi, \varphi, \dots, \varphi$) $\in \bar{L} \Leftrightarrow \bar{L}$

-קשה. או ש-NP היא אורי א אורי א אורי א אורי א אורי א אורי או א אורי א א אורי א א אורי א א אורי א איי איי א אורי א אורי א אורי א אורי

שאלה 2

- א. דוגמה לגרף שהוא 4-צביע ואינו 3-צביע: מאחר וכל אחד מ-4 הצמתים מחובר לכל האחרים, אז חייבים לצבוע כל צומת בצבע משלו – 4 צבעים שונים.
- ב. בהנתן גרף G(V,E) ניתן בזמן פולינומי בגודל הגרף לנחש את פונקצית הצביעה לצמתים ב. בלנתן האותה לבדוק שאין זוג צמתים סמוכים שצבועים באותו צבע. $(c:V \to \{1,2,...,k\})$ מכאן, $k\text{-}Col \in NP$

אלגוריתם מתקדם 10121 אלגוריתם מתקדם 10121

ג. פונקצית הרדוקציה:

$$fig(G(V,E)ig)=G'(V',E')$$

 $.E'=\{(x,v)|v\in V\}$ -ו $(x\notin V)\ V'=V\cup\{x\}$ כאשר
הפונקציה מלאה וניתנת לחישוב בזמן פולינומי. הפרדה:

- אם לכן ב-G' ניתן להגדיר אותה ב-3 צבעים, לכן ב-G' ניתן להגדיר אותה $G' \in A$ -Col אם ביעה על צמתי $G' \in A$ -Col את את הצבע הרביעי. כך נקבל $G' \in A$ -Col צביעה על צמתי
- x אם $G'\in 4$ -Col, אז ניתן לצבוע את צמתי G' ב-4 צבעים, כאשר הצבע שמוגדר עבור G' אם לא זמין לשאר הצמתים, כי כולם שכנים של G. מכאן, שאר צמתי G' צבועים ב-3 צבעים G' בלבד, והרי זהו בדיוק הגרף G. לכן G
- ד. אם הגרף 3-צביע, אז כל קבוצת הצמתים שניתן לצבוע באותו צבע היא קב"ת (לא מחוברים ע"י קשתות). לכן 3-צביעה הינה, למעשה, חלוקה של צמתי הגרף ל-3 קבוצות בלתי תלויות. מכאן, לפחות אחת מהן היא בגודל $\left[\frac{n}{3}\right]$ לפחות. כלומר, גודל הקב"ת המקסימלית הוא לפחות $\left[\frac{n}{3}\right]$.

שאלה 3

- V_3 בהנתן גרפים $G(V_1,E_1),H(V_2,E_2)$, ניתן בזמן פולינומי בגודל הקלט לנחש את קבוצת הצמתים $f:V_3 o V_2$ ופונקצית התאמה $f:V_3 o V_2$ ולבדוק ש- $f:V_3 o V_2$ היא חח"ע ועל $Sub\text{-}ISO \in NP$ כלומר, $f:V_3 o V_3$ לכן $f(v) \neq f(u)$ $f(v) \neq f(u)$ לינומר, $f(v) \neq V_3$ לינומר, $f(u) = V_3$ לינומר, $f(u) = V_3$ לינומר, $f(u) = V_3$ לינומר, $f(u) = V_3$ בינומר, $f(u) = V_3$
 - יה: פונקצית הרדוקציה: $CLIQUE \leq_p Sub\text{-}ISO$. פונקצית הרדוקציה:

$$f(G,k) = (G,K_k)$$

.כאשר K_k הוא גרף מלא על K_k צמתים

הפונקציה מלאה וניתנת לחישוב בזמן פולינומי. הפרדה:

- אמ"מ קיים ב- G אמ"מ קיים ב- קליק קיים ב- קליק קיים ב- אמ"מ קיים ב- אמ"מ קיים ב- G אמ"מ קיים ב- $(G,K_k)\in Sub$ אמ"מ אמ"מ אמ"מ אמ"מ אמ"מ אמ"מ

Sub- $ISO \in NPC$ קשה, אזי -NP היא Sub-ISO וגם -Sub- $ISO \in NP$