Rozpoznávanie obrazcov - 9. cvičenie Naivný Bayesov klasifikátor

Viktor Kocur viktor.kocur@fmph.uniba.sk

DAI FMFI UK

21.4.2020

Bayesovo pravidlo

Bayesovo pravidlo

Budeme opäť používať Bayesovo pravidlo:

$$P(\omega_i|\vec{x}) = \frac{P(\vec{x}|\omega_i)P(\omega_i)}{P(\vec{x})}$$
(1)

Naivita

Náš klasifikátor je naivný a predpokladá, že príznaky sú nezávislé:

$$P(\vec{x}|\omega_i) = \prod_k P(x_k|\omega_i)$$
 (2)

Klasifikácia

Klasifikujeme pomocou nájdenia triedy s najväčšou pravdebodobnosťou:

$$pred_{i} = \arg\max_{i} \left(\frac{P(\vec{x}|\omega_{i})P(\omega_{i})}{P(\vec{x})} \right)$$
 (3)

$$= \arg\max_{i} \left(P(\vec{x}|\omega_i) P(\omega_i) \right) \tag{4}$$

$$= \arg\max_{i} \left(P(\omega_{i}) \prod_{k} P(x_{k}|\omega_{i}) \right)$$
 (5)

Výpočet hodnôt

Budeme predpokladať že máme kategorické príznaky. Teda pre každé k môže x_k nadobúdať iba konečne mnoho diskrétnych hodnôt. Označíme celkový počet prvkov trénovacej množiny ako N. Počet prvkov, ktoré patria do triedy ω_i ako N_i . Počet prvkov, ktoré patria do ω_i a pre k-tý príznak majú hodnotu v ako $N_{i,k,v}$. Potom môžeme definovať:

$$P(\omega_i) = \frac{N_i}{N} \tag{6}$$

$$P(\omega_i) = \frac{N_i}{N}$$

$$P(x_k = v | \omega_i) = \frac{N_{i,k,v}}{N_i}$$
(6)

			credit	buys
age	income	student	rating	computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

<u>Ú</u>loha

Spočítajte do ktorej kategórie bude patriť zákazník s náhodnými prediktormi.

Nekategorické dáta

V prípade, že niektorý príznak je numerický, tak nemôžeme aplikovať výpočet z predchádzajúceho slidu. Preto budeme pravdepodobnosť $P(x_k|\omega_i)$ odhadovať nejakou distribučnou funkciou.

Parametrické metódy

Pri parametrických metódach odhadneme parametre nejakého dopredu určeného rozdelenia.

Neparametrické metódy

Pri neparametrických metódach pravdepodobnosť vypočítame na základe bodov z trénovacej množiny v okolí bodu o ktorý sa zaujímame.

Matlab

fitcnb

Mdl = fitcnb(T,'nazov_pola') - vráti naivný Bayesov klasifikátor pre tabuľku T pre klasifikačný cieľ pre stĺpec nazov_pola.

Malab - Table dátový typ

Pre prácu s tabuľkami si pozrite:

https://www.mathworks.com/help/matlab/tables.html

A dôležitá je aj časť o prístup k dátam:

https://www.mathworks.com/help/matlab/matlab_prog/access-data-in-a-table.html

Naivný Bayes na tabuľkových dátach

Na dátach

```
load census1994
Mdl = fitcnb(adulddata, 'salary');
```

Úloha

Zistite presnosť klasifikátora tak, že ho spustíte (Mdl.predict) na tabuľku adulttest a porovnáte výsledok.

Matlab

fitcnb

Mdl = fitcnb(X,y) - vráti naivný Bayesov klasifikátor

Úloha

Otestujte naivný Bayesov klasifikátor na fisheriris dátach.

Úloha

Zobrazte si klasifikátor na dátach zo 6. cvičenia pomocou úpravy skriptu showSVM z toho istého cvičenia.