COMP108 Data Structures and Algorithms

Greedy Algorithm (Part II Minimum Spanning Tree)

Professor Prudence Wong

pwong@liverpool.ac.uk

2022-23

Minimum Spanning Tree (MST)

Given an undirected connected graph G

The edges are labelled by weight

Spanning tree of G

a tree containing all vertices in G

Minimum spanning tree of G

a spanning tree of G with minimum weight

Graph G (edge label is weight)

Graph G (edge label is weight)

Spanning trees of \boldsymbol{G}

Graph G (edge label is weight)

Spanning trees of \boldsymbol{G}

Which is MST?

Graph G (edge label is weight)

Spanning trees of \boldsymbol{G}

Which is MST?

How many possible spanning trees?

Arrange edges from smallest to largest weight

(g, h)	1
(c,i)	2
(f,g)	2
(a,b)	4
(c, f)	4
(c,d)	7
(h, i)	7
(a, h)	8
(b, c)	8
(d, e)	9
(e, f)	10
(b, h)	11
(d, f)	14

Choose the minimum weight edge

√	(g,h)	1
	(c,i)	2
	(f,g)	2
	(a,b)	4
	(c, f)	4
	(c, d)	7
	(h, i)	7
	(a, h)	8
	(b,c)	8
	(d,e)	9
	(e, f)	10
	(b,h)	11
	(d, f)	14

Choose the next minimum weight edge

✓	(g,h)	1
√	(c,i)	2
	(f,g)	2
	(a,b)	4
	(c, f)	4
	(c, d)	7
	(h, i)	7
	(a, h)	8
	(b,c)	8
	(d,e)	9
	(e, f)	10
	(b, h)	11
	(d, f)	14

✓	(g,h)	1
√	(c,i)	2
√	(f,g)	2
	(a,b)	4
	(c, f)	4
	(c,d)	7
	(h, i)	7
	(a, h)	8
	(b,c)	8
	(d,e)	9
	(e, f)	10
	(b, h)	11
	(d, f)	14

✓	(g,h)	1
√	(c,i)	2
√	(f,g)	2
√	(a,b)	4
	(c, f)	4
	(c,d)	7
	(h, i)	7
	(a, h)	8
	(b,c)	8
	(d,e)	9
	(e, f)	10
	(b, h)	11
	(d, f)	14

√	(g,h)	1
√	(c,i)	2
√	(f,g)	2
√	(a,b)	4
√	(c, f)	4
	(c, d)	7
	(h, i)	7
	(a, h)	8
	(b,c)	8
	(d,e)	9
	(e, f)	10
	(b, h)	11
	(d, f)	14

√	(g,h)	1
√	(c,i)	2
√	(f,g)	2
√	(a,b)	4
√	(c, f)	4
√	(c, d)	7
	(h, i)	7
	(a, h)	8
	(b,c)	8
	(d,e)	9
	(e, f)	10
	(b, h)	11
	(d, f)	14

\checkmark	(g,h)	1
\checkmark	(c,i)	2
\checkmark	(f,g)	2
\checkmark	(a,b)	4
√	(c, f)	4
√	(c,d)	7
	(h, i)	7
	(a, h)	8
	(b,c)	8
	(d,e)	9
	(e, f)	10
	(b, h)	11
	(d, f)	14

Choose the next minimum weight edge

√	(g,h)	1
√	(c,i)	2
√	(f,g)	2
√	(a,b)	4
√	(c, f)	4
√	(c,d)	7
	(h, i)	7
✓	(a, h)	8
	(b,c)	8
	(d,e)	9
	(e, f)	10
	(b, h)	11
	(d, f)	14

√	(g,h)	1
√	(c,i)	2
√	(f,g)	2
√	(a,b)	4
√	(c, f)	4
√	(c,d)	7
	(h, i)	7
√	(a, h)	8
	(b,c)	8
	(d,e)	9
	(e, f)	10
	(b, h)	11
	(d, f)	14

Choose the next minimum weight edge

√	(g,h)	1
√	(c,i)	2
√	(f,g)	2
√	(a,b)	4
√	(c, f)	4
√	(c, d)	7
	(h, i)	7
✓	(a, h)	8
	(b,c)	8
√	(d,e)	9
	(e, f)	10
	(b, h)	11
	(d, f)	14

√	(g,h)	1
√	(c,i)	2
√	(f,g)	2
\checkmark	(a,b)	4
√	(c, f)	4
√	(c, d)	7
	(h, i)	7
√	(a, h)	8
	(b,c)	8
√	(d,e)	9
	(e, f)	10
	(b, h)	11
	(d, f)	14

√	(g,h)	1
√	(c,i)	2
√	(f,g)	2
√	(a,b)	4
√	(c, f)	4
√	(c,d)	7
	(h, i)	7
√	(a, h)	8
	(b,c)	8
✓	(d,e)	9
	(e, f)	10
	(b, h)	11
	(d, f)	14

√	(g,h)	1
√	(c,i)	2
√	(f,g)	2
√	(a,b)	4
√	(c, f)	4
√	(c,d)	7
	(h, i)	7
√	(a, h)	8
	(b,c)	8
✓	(d,e)	9
	(e, f)	10
	(b, h)	11
	(d, f)	14

√	(g,h)	1
√	(c,i)	2
\checkmark	(f,g)	2
√	(a,b)	4
√	(c, f)	4
✓	(c,d)	7
	(h, i)	7
\checkmark	(a, h)	8
	(b,c)	8
√	(d,e)	9
	(e, f)	10
	(b, h)	11
	(d, f)	14

MST is found when all edges are examined

√	(g,h)	1
√	(c,i)	2
√	(f,g)	2
√	(a,b)	4
√	(c, f)	4
√	(c, d)	7
	(h, i)	7
\checkmark	(a, h)	8
	(b,c)	8
√	(d,e)	9
	(e, f)	10
	(b, h)	11
	(d, f)	14

Order of edges selected (g,h), (c,i), (f,g), (a,b), (c,f), (c,d), (a,h), (d,e)

Kruskal's algorithm is **greedy** in the sense that

it always attempt to select the smallest weight edge to be included in the MST

// Given an undirected connected graph G=(V,E) $T\leftarrow\emptyset$ $E'\leftarrow E$ while $E'\neq\emptyset$ do begin

end

```
// Given an undirected connected graph G=(V,E) T\leftarrow\emptyset E'\leftarrow E while E'\neq\emptyset do begin pick an edge {\color{red} e} in E' with minimum weight
```

end

```
// Given an undirected connected graph G = (V, E)
    T \leftarrow \emptyset
    F' \leftarrow F
    while E' \neq \emptyset do
    begin
          pick an edge e in E' with minimum weight
          if adding e to T does not form cycle then
                add e to T, i.e., \mathbf{T} \leftarrow \mathbf{T} \cup \{\mathbf{e}\}
    end
```

```
// Given an undirected connected graph G = (V, E)
    T \leftarrow \emptyset
    F' \leftarrow F
    while E' \neq \emptyset do
    begin
          pick an edge e in E' with minimum weight
           if adding e to T does not form cycle then
                 add e to T, i.e., \mathbf{T} \leftarrow \mathbf{T} \cup \{\mathbf{e}\}
          remove e from E', i.e., E' \leftarrow E' \setminus \{e\}
    end
```

```
// Given an undirected connected graph G = (V, E)
     T \leftarrow \emptyset
    F' \leftarrow F
    while E' \neq \emptyset do
     begin
           pick an edge e in E' with minimum weight
           if adding e to T does not form cycle then
                 add e to T, i.e., \mathbf{T} \leftarrow \mathbf{T} \cup \{\mathbf{e}\}
           remove e from E', i.e., E' \leftarrow E' \setminus \{e\}
    end
```

How to determine if cycle is formed?

How to determine if cycle is formed? n is # vertices; m is # edges

When we consider a new edge e = (u, v), there may be three cases:

if u & v are both non-colored, then edge can be selected and given a new color; O(1) 1. at most one of u and v is end point of an already chosen edge if u or v are not colored (one of them is colored, the other isn't), can select, give uncolor vertex

- O(1) 2. U and V both belong to the same partial tree that has been already chosen if u & v are the same color, then can't select
- O(n) 3. u and v belong to two separate partial trees that have been already chosen if u & v have different colors C1 and C2, then can select, but we need to recolor so that every vertices of C2 to C1 Use coloring

n is # vertices; m is # edges

// Given an undirected connected graph G = (V, E)sorting before: O(m log m) $T \leftarrow \emptyset$ O(1) $E' \leftarrow E \quad O(1)$ O(m)while $E' \neq \emptyset$ do begin pre-sorting: C pick an edge e in E' with minimum weight O(n)if adding e to T does **not** form cycle then add e to T, i.e., $\mathbf{I} \leftarrow \mathbf{I} \cup \{\mathbf{e}\}$ O(1) remove e from E', i.e., $E' \leftarrow E' \setminus \{e\}$ end

Summary

Summary: Kruskal's algorithm for Minimum Spanning Tree

 ${\bf Next:\ Dijkstra's\ algorithm\ for\ Single-Source\ Shortest-Paths}$

For note taking