

Welcome

Gare Montparnasse

Agenda

- 1. RAMS
- 2. Functional safety
- 3. Safety architectures

Dysfunctional approach – why?

Dysfunctional approach – why?

Definitions

RAMS

- Reliability
- Availability
- Maintainability
- Safety

FMDS

- Fiabilité
- Maintenabilité
- Disponibilité
- Sûreté de fonctionnement

Metrics

- MDT
- MUT
- MTTF
- MTBF
- MTTR
- A

- = Mean Down Time (moyenne des DT)
- = Mean Up Time (moyenne des UT)
- = Mean Time To Failures (moyenne des TTF)
- = Mean Time Between Failures (moyenne des TBF)
- = Mean Time To Restore (moyenne des TTR)
- = Availability
- = MUT / (MUT + MDT)

RAM: examples of requirements

Reliability

- Bogie 300.000 km
- Train door 100.000 cycles
- Embedded computer 25.000h 200.000h

Availability

• 99.9999%

Maintainability

MTTR 15 minutes – 2 tools maximum – no IT skills

RAM: how to increase performances

Please connect!

Bathtub curve

The bathtub curve

Please connect!

strictly prohibited.

ALSTOM

RAM: methods

$$\lambda = \left[\left\{ \pi_{U} \times \lambda_{0} \right\} \times \left\{ \frac{\sum_{i=1}^{y} (\pi_{t})_{i} \times \tau_{i}}{\tau_{on} + \tau_{off}} \right\} + \left\{ \underbrace{\left\{ 2.75 \times 10^{-3} \times \sum_{i=1}^{z} (\pi_{n})_{i} \times (\Delta T_{i})^{0.68} \right\} \times \lambda_{B}}_{\lambda_{ooversines}} \right\} + \left\{ \underbrace{\left\{ \pi_{I} \times \lambda_{EOS} \right\}}_{\lambda_{ooversines}} \right\} \times 10^{-9} / h$$

Functional safety - Definition

IEC61508

Freedom from unacceptable risk

Risk is a combination of

- the probability of occurrence of harm
- the severity of that harm

Zero risk doesn't exist.

Risk

Risk acceptance (or tolerability):

 to reduce severity or/and occurrence of harm within a given environment

How?

- Severity: protection (e.g. Airbag)
- Occurrence: preventive measures (e.g road safety, signalling)

Safety requirement

- Boundary Hazard
- Tolerable hazard rate
 - Probability, defined in h⁻¹

Break

Faults

Random fault

- quantifiable
- unpredictable
- hardware fault

Systematic fault

- not quantifiable
- predictable in a given context
- inherent to a system
- consequence of a human error

Faults: random or systematic?

Faults (1)

Faults (2)

Faults (3)

Faults (4)

Faults (5)

Random / systematic fault?

A problem has been detected and system has been shutdown to prevent damage to your computer.

DRIVER_IRQL_NOT_LES_OR_EQUAL

If this is the first time you've seen this stop error screen, restart your computer, if this screen appears a these steps:

Check to make sure any new hardware or software is properly installed. If this is a new installation, ask software manufacturer for any system updates you might need.

If problems continue, disable or remove any newly installed hardware or software. Disable BIOS memory caching or shadowing. If you need to use Safe Mode to remove or disable components, restart your components and then select Advanced Startup Options, and then select Safe Mode.

Technical information:

*** STOP: 0x000000D1 (0x0000000R, 0x000000007, 0x000000000, 0xG74H2S74)

Faults (6)

Faults (7)

Faults (8)

Faults (9)

Countermeasures

Random fault

Systematic fault

'?

Faults: how to mitigate?

Countermeasures

Random fault

Architecture

Systematic fault

Process

Tolerable Hazard Rate h ⁻¹	Safety integrity level
$10^{-9} \le THR < 10^{-8}$	4
$10^{-8} \le THR < 10^{-7}$	3
$10^{-7} \le THR < 10^{-6}$	2
$10^{-6} \le THR < 10^{-5}$	1

Inherent fail safety

 A safety-related function can be performed by a single item, provided all the credible failure modes of the item are nonhazardous*.

Principle:

- By construction, the hazardous fault is **physically incredible**.
- Relies on a physical characteristic (absence of energy, thermal characteristics, gravity, buoyancy ...)

*EN50129

Inherent fail safety: example

Toilet flush

Hazard: water overflow.

 Principle: thanks to hole, the water is evacuated and will not overflow outside.

Inherent fail safety

- - Cheap
 - Reliable
- Enforces design simplicity!
 Limited to simple functions

Reactive fail safety

 A safety-related function can be performed by a single item, provided its safe operation is assured by rapid detection and negation of any hazardous fault*.

Principle:

- The function is realised by one item (worker) and then controlled and negated by a second one (checker).

*EN50129

FUNCTION A OUTPUT (worker)

Reactive fail safety

- Possible to implement complex functions
- Extra cost of safety limited to checker
- Suitable in dissymmetric configurations
 Complex worker
 Simple checker

- Erroneous transient shall be tolerated
- Shall react very fast
- Each implementation is specific

Composite fail safety

 At least 2 channels perform the same function. By principle, non restrictive activities are realized only if the 2 channels agree*.

Principle:

- At least 2 independent items realize the same function.
- Comparison of outputs of the 2 items
- Disagreement => Outputs are set in a safe state

*EN50129

Composite fail safety: example

- Use Case: a student has an exam tomorrow
- Boundary Hazard: he does not wake up and misses the exam.
- Good idea! Use composite fail safety
 - 2 alarm clocks

Composite fail safety: example

- Production of output (vote): Jamming of the sound of the 2 alarm clocks
- Detection of fault is made periodically at each wake up:
 - to check that the 2 alarm clocks have been triggered
 - to check the time (absence of clock drift).
- If at least one clock is failed, imposition of safe state:
 - the student doesn't sleep before to maintain the failed item.
 - Ask wake up support to your neighbour?

- Avoid systematic fault
 - Make sure that the sound level of each alarm is enough to wake up the student!

Composite fail safety: example

Independence

- Mechanical support: Each side of the bed to avoid simultaneous fall.
- Energy: 2 sources of energy:
 - Mains/Battery
 - Mechanical

- Diversification:
 - 2 different technologies

Composite fail safety

Very generic approach

- Cost
- Reliability
- More complex that it looks

Safety architectures

- Inherent
- Reactive
- Composite

... other concepts exist

Concepts are almost always mixed

Part 1 conclusion

Safety architectures

Guillaume Vibert

CPE – part 2

Wake-up!

Please connect!

Safety communication

Example of CBTC application: Communication Based Train Control

Safety communication: threats

Basic communication model

- One data producer
- One data receiver
- One digital communication system

Identify threats:

How can data be altered by the communication system?

Communication threats

strictly prohibited.

Please connect!

Safety communication: threats

Threats defined by EN50159 : 2010

REPETITION

Hello world world!

DELETION

world!

CORRUPTION

H*Ilo w%rld!

DELAY

Hello world

RE-SEQUENCE

world! Hello

INSERTION

Hello everyone in the world!

MASQUERADE

Ciao world!

Communication defences

Please connect!

Safety communication: defences

Table 1 - Threats/Defences matrix

Threats	Defences							
	Sequenc e number	Time stamp	Time- out	Source and destinatio n identifiers	Feed-back message	Identificatio n procedure	Safety code	Cryptographic techniques
Repetition	X	X						
Deletion	Х	•					28	
Insertion	Х			X ^a	X b	X b		
Re-sequence	Х	X						
Corruption	8	5.5				20	X c	Х
Delay		X	Х				5	
Masquerade					X b	X b		X c

Only applicable for source identifier. Will only detect insertion from invalid source. If unique identifiers cannot be determined because of unknown users, a cryptographic technique shall be used, see 7.3.8.

Application dependent.

See 7.4.3 and Clause C.2.

Safe display for Driver-Machine Interface

- Need: Display safety-related graphical objects to the driver
- Boundary Hazard: Display of a frozen or corrupted safety graphical objects
- **THR**: 2*10-7/h
- Required SIL: SIL2
- Examples of objects:

[©] ALSTOM SA, 2019. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authorisation, is strictly prohibited.

[©] ALSTOM SA, 2019. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authorisation, is strictly prohibited.

Reactive fail-safe system

- Synchronization is not an option!
- Illustration of "Safety vs. Availability" trade-off

Break

Inherent fail-safe architecture

"Mono Processeur codé"

Immune to:

- Arithmetical error
- Operator error
- Operand error
- Data refresh error
- Branch error

$$X.C = Control part = -Rk(X) + Bx(X) + D$$

- -Rk(X) = (2^k * X.F) mod A
 A primary, 2^k > A
- Bx(X) = data signature, constant
- D = processing cycle number

All operations on data are done with specific operators

•
$$(Z = X + \sim Y)$$

Outputs checking

• Basic structure: 2-out-of-2 (2002)

- Q1: synchronisation of inputs?
- Q2: independence of items?
- Q3: production of outputs (« vote »)?

- Temporal / logical synchronisation
- Need to define a common time reference
- Synchronisation: a key to stability

What if the "voter" fails?

- Independence needed: avoid common modes
- But... in contradiction with Q1, Q3!

Composite fail-safe architecture: consensus problem

Please connect!

Composite fail-safe architecture: consensus problem

"The Two Generals Problem was the first computer communication problem to be proved to be unsolvable"

Composite fail-safe architecture: example

Composite fail-safe architecture: example

Function

 Drive 1...8 digital outputs (0/1) from network data

Hazard

- Drive output to 1 erroneously
- THR = $10^{-12} h^{-1}$

Functional analysis

Functional analysis ... Dysfunctional analysis

[©] ALSTOM SA, 2019. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authorisation, is strictly prohibited.

strictly prohibited.

Functional analysis ... Dysfunctional analysis

Functional analysis ... Dysfunctional analysis

Architecture patterns

Constructional analysis

Duplicate components?

Safety analysis

- **Define system model**
- Analyze possible failure modes (FMEA)
- Compute statistically the residual risk "Wrong side failure rate"
- Exercise: Wrong side failure rate is too high...

Safety analysis

Safety analysis

COMPOSITE FAIL-SAFETY

Conclusion

Don't forget dysfunctional approach

"Anything that can go wrong will go wrong" ... sooner or later

Robustness is a key

Your feedback

