Subspaces of Topological spaces

Proph Let (X, p) be a pseudometric space. Let $X_o \subseteq X$ and let $P_o = P|_{X_o \in X_o}$. Let $\mathcal{D} = \{G \subseteq X : G \text{ is } p\text{--open}\}$. Let $\mathcal{D}_o = \{G \subseteq X_o : G \text{ is } R\text{--open}\}$. Then $\mathcal{D}_o = \{G \cap X_o : G \in \mathcal{D}\}$.

Pf let $G \in \mathcal{D}$. Let $p \in G_{\Lambda}X_{o}$. Then $\exists r > 0$ sit. $\{x \in X : p(x,p) < r\} \leq G$ Then $B_{X_{o}}(P,r) = \{x \in X_{o} : P_{o}(P,x) < r\} \subseteq \{x \in X : p(x,p) < r\} \subseteq G$ And $B_{X_{o}}(P,r) \subseteq X_{o}$ so $B_{X_{o}}(P,r) \subseteq G_{\Lambda}X_{o}$, so $G_{\Lambda}X_{o}$ is P_{o} -open in X_{o} .

Conversely, suppose Go is any po-open subset of Xo.

let S = { (x, r): x & G., r>0, and Bx(x,r) & G. 7.

let 6= U BX(x,r). Then G is p-open in X since open balls are open.

Now $G_nX_0 = \bigcup_{(x_ir)\in S} \left(B_{\chi}(x_ir) \cap X_0\right) = G_0$.

Thus Do= {GnX: GED}

Propn: Let (X, \mathcal{Y}) be a topological space. Let $X_0 \subseteq X$, $\mathcal{Y}_0 = \{G_1X_0: G_2 \in \mathcal{Y}\}$ Then (X_0, \mathcal{Y}_0) is a topological space. (\mathcal{Y}_0) is called the Subspace topology that $X_0 \in X_0$ in units from $X_0 \in X_0$.

Propos: Let X be a topological space. Let $X_o \subseteq X$. Then the subspace topology X_o inherits from X is the unique topology on X_o with the property that for even topological space W and each $f\colon W \longrightarrow X_o$, f is continuous from $W \longrightarrow X_o$ iff f is continuous from $W \to X_o$.

Page 1

prove that you is the only topology that works)

Back to connectedness.

Thm let I be a topological space. Then TFAE:

a) X is connected

L) \forall continuous $f: X \longrightarrow \mathbb{R}$, f(x) is an interval.

pf we already did (a) \Rightarrow (b) Suppose (b) holds. Let U be a clopen \leq X. We wish to show that $U = \emptyset$ or U = X. Let $f = \mathbb{I}_U$. Then f is continuous because U and X = U are open. Thus f[X] is an interval subset of $\{0,1\}$. The only possible "intervals" are $\{0\}$, $\{1\}$, and \emptyset . If $f[X] = \{0\}$ then $U = \emptyset$, if $f[X] = \{1\}$ has U = X. If $f[X] = \emptyset$, $X = U = \emptyset$. So X is connected.

Corollary: let I be a connected subset of \mathbb{R} . then I is an interval.

PE Apply the theorem with X=I and $f\colon Y\to \mathbb{R}$ defined by f(x)=x.

Theorem Intervals are connected.

 $\frac{\text{Let } A \subseteq [0,1]}{\text{and } (c) \ \forall \ \alpha \in (0,1], \ \text{if } [0,\alpha] \subseteq A, \ \exists \ b \in (\alpha,1], \ [0,b] \subseteq A,}{\text{and } (c) \ \forall \ \alpha \in (0,1], \ \text{if } [0,\alpha] \subseteq A \ \text{turn } [0,\alpha] \subseteq A. \ \text{Then } A = [0,1]}$

In fact, $a \in \{0,1\} : [0,v] \in A\}$, $o \in E$ by (a). Let a = Sup E. Then $a \in [0,1]$.

In fact, $a \in (0,1]$ by (b). Let $x \in [0,a)$. Then $\exists v \in E$ sit. $x \in V$ since x is not an opporr bound for E (it is less time sup E). Since $v \in E$, $[0,V] \in A$ so $x \in A$, meaning $[0,a] \in A$ by (c). Thus $[0,a] \in A$. Thus If a < I then by (b) $\exists b > a$ s. E. $[0,b] \in A$ so $a \neq sup E$. Thus a = I and $s \in [0,1] \in A$ so A = [0,1]

Corollary Let ASEOID THE OFA, A ISOpen in Coil for the right topology, A is closed in Eoil for the left topology.

Then A-Coil.

Proof by (b), the condition (b) of the current holds. By (c) the condition (c) of the lemma holds. Thursto result follows:

Right topology on R is the collection of sets GER s.t. VXEG JESOS.E. [X,X+E) = G.

left topology on R is $\{G \subseteq R : \forall x \in G, (x-\epsilon, x) \in G\}$.

f on R is right continuous iff f is do wet right topology.

Corollary Let $A \subseteq \text{Lorid}$ s.t. $O \in A$, A is open in [0,1], A is closed in Lorid (or in \mathbb{R}). Thun A = Lorid pf A open $\Longrightarrow A$ open with right topology. A closed $\Longrightarrow A$ closed with left topology. \Box Corollary \Box