Simple 2018 FIFA World Cup forecasting

Edana Merchan

December, 2014

Summary

The aim of this project is to predict which countries are going to participate in the 2018 FIFA World Cup. And them by using a simple pitagorean model predict how will the tournament will unfold.

To simplify the problem we are going to consider several assumptions:

- Data collected from statistics of the 20 world cups only. Preliminary rounds should be consider to produce a better model but this surpases the aim of this project.
- As is done in real live we are going to give points for each game played. This will provide us with a weithed variable "points", which will have information of how many games each team has won a game.
 - Winner = 3 points
 - Loser = 0 points
 - 1 point to each team if tied.
- The clasification spots have changed over time, we are going to consider 32 teams in the clasification from the 6 different regions as is currently done.

Since the 2018 FIFA World Cup will be held in Russia,

```
data<-read.csv("/Users/edana/Hudl/project_Hudl/fifadata/cup_stats_full.csv",
               stringsAsFactors = FALSE)
#Wrong values
data$region[25] = "Asia"
data$region[2] = "N/C.America"
data_africa = data[data$region == "Africa",]
data_asia = data[data$region == "Asia",]
data_europe = data[data$region == "Europe",]
data_ncAmerica = data[data$region == "N/C.America",]
data_oceania = data[data$region == "Oceania",]
data_sAmerica = data[data$region == "S.America",]
#Clasification table
regions <- unique(data$region)</pre>
regions <- regions[order(regions)]</pre>
number_spots <- c(5,4.5,13,3.5,0.5,4.5)
spots_df <- data.frame(regions,number_spots)</pre>
print(spots_df)
```

```
##
        regions number_spots
## 1
         Africa
                         5.0
## 2
           Asia
                         4.5
## 3
         Europe
                        13.0
## 4 N/C.America
                         3.5
## 5
       Oceania
                         0.5
                         4.5
## 6 S.America
```

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

Analysis per region: Africa

Analysis per region: Asia

Analysis per region: Europe

Analysis per region: North, Central America and the Caribean

Analysis per region: South America

Best teams selection

```
#Last teams
oceania <- data.frame(data_oceania[1],data_oceania[2],data_oceania[3],</pre>
                       data_oceania[4],data_oceania[5])
last_teams = cluster_asia[5,]
last_teams = rbind(last_teams,cluster_ncAmerica[4,])
last_teams = rbind(last_teams,oceania)
last_teams = rbind(last_teams,cluster_sAmerica[5,])
last_teams = arrange(last_teams,desc(editions),desc(points))
teams_2018 = rbind(teams_2018,last_teams[1:2,])
host <- data.frame("Russia",data[35,2],data[35,3],data[35,4],data[35,5])
colnames(host)[1] <- "country"</pre>
colnames(host)[2] <- "points"</pre>
colnames(host)[3] <- "gf"</pre>
colnames(host)[4] <- "ga"</pre>
colnames(host)[5] <- "editions"</pre>
teams_2018 = rbind(teams_2018,host)
```

Until know we have a list of 29 teams selected

Tournamet predictions with Pitagorean Linear Model

From the several options that have been used for modeling

```
Prob(Win) = \frac{GF^2}{GF^2 + GA^2}
```

```
#Randomize the teams
set.seed(42)
teams_2018=teams_2018[sample(nrow(teams_2018)),]
print(teams_2018)
```

##		country	points	gf	ga	editions	win_prob
##	30	Paraguay	31	30	38	8	0.38396
##	32	Russia	51	53	34	7	0.70845
##	9	Saudi Arabia	8	9	32	4	0.07330
##	25	Costa Rica	20	22	27	4	0.39901
##	18	Hungary	48	87	57	9	0.69967
##	15	Sweden	61	74	69	11	0.53492
##	20	Scotland	19	25	41	8	0.27103
##	4	Morocco	10	12	18	4	0.30769
##	16	Netherlands	94	90	53	10	0.74251
##	17	Switzerland	39	45	59	10	0.36778
##	11	Spain	99	92	66	14	0.66022
##	24	USA	30	37	62	10	0.26261
##	19	Germany	96	93	44	8	0.81710
##	5	Tunisia	7	8	17	4	0.18130
##	31	Iran	6	7	22	4	0.09193
##	21	Poland	50	44	40	7	0.54751
##	23	Mexico	56	57	92	15	0.27738
##	2	Nigeria	18	20	26	5	0.37175
##	7	Japan	16	14	22	5	0.28824
##	8	Australia	9	11	26	4	0.15182
##	22	Austria	40	43	47	7	0.45564
##	27	Argentina	142	135	86	16	0.71133
##	10	Italy	156	128	77	18	0.73428
##	28	Uruguay	72	80	71	12	0.55939
##	1	Cameroon	19	18	43	7	0.14910
##	29	Chile	39	41	51	9	0.39257
##	3	Algeria	12	13	19	4	0.31887
##	26	Brazil	229	223	103	20	0.82417
##	12	England	98	79	56	14	0.66556
##	6	South Korea	24	31	67	9	0.17633
##	14	Belgium	51	52	66	12	0.38300
##	13	France	96	106	71	14	0.69030