Математический анализ 2

Georgy

@georgyshamteev

Содержание

1 Лекция	3
1.1 Ряды	
1.1.1 Опр. сходимости ряда	
1.1.2 Критерий Коши	
1.1.3 Необходимое условие сходимости ряда	
1.2 Операции над рядами	
1.2.1 Группировка без перестановки (группировка)	
1.3 Знакопостоянные ряды	
1.3.1 Опр. знакоположительный ряд	
1.3.2 Теорема Лобачевского-Коши	
1.3.3 Сходимость ряда вида $\sum rac{1}{n^p}$	
1.3.4 Ряд Бертрана	
1.4 Признаки сравнения рядов	
1.4.1 Первый признак сходимости	
1.4.2 Второй признак сходимости	
1.4.3 Третий признак сходимости	
2 Лекция	
2.1 Другие признаки знакопостоянных рядов	
2.1.1 Усиленный радикальный признак Коши	
2.1.2 Признак Даламбера	
2.1.3 Интегральный признак	
2.1.4 Признак Куммера	
2.1.5 Признак Бертрана	
2.1.6 Признак Раабе	
2.1.7 Признак Гаусса	
2.2 Признаки сравнения любых рядов	
2.2.1 Признаки Абеля и Дирихле	
2.2.2 Преобразование Абеля	
3 Лекция	
3.1 Операции над числовыми рядами	10
3.1.1 Абсолютная и условная сходимость	10
3.1.2 Перестановка без группировки	10
3.1.3 Теорема Римана	10
3.1.4 опр. Произведение рядов по Коши	12
3.1.5 Теорема Тёплица	12
3.1.6 Теорема Коши о суммировании по Чезаро	
3.1.7 Теорема Мертинса	
3.1.8 Теорема Абеля	13
3.1.9 Теорема Абеля об умножении абсолютно сходящихся рядов	14
4 Лекция	
4.1 Функциональные ряды и последовательности	16
4 1 1 Определение функционального ряда	16

4.1.2 Определение поточечной сходимости	16
4.1.3 Определение равномерной сходимости	16
4.1.4 Определение сходимости функциональных рядов	16
4.1.5 Критерий Коши равномерной сходимости	16
4.1.6 Теорема о почленном переходе к пределу	16
4.1.7 Теорема о непрерывности для равномерно сходящегося ряда	17
4.2 Критерии равномерной сходимости	18
4.2.1 lim-sup критерий	18
4.2.2 Критерий Коши равномерной сходимости	18
4.2.3 Признак Вейрштрасса равномерной сходимости	18
4.2.4 Признак Абеля/Дирехле	19
4.3 Почленное интегрирование/дифференцирование	19
4.3.1 Теорема о почленном интегрировании	19
4.3.2 Теорема о почленном дифференцировании	20
4.3.3 Теорема Вейерштрасса о равномерном приближении	
5 Лекция	22
5.1 Степенные ряды	
5.1.1 Опр. степенного ряда	
5.1.2 Опр. радиус сходимости	22
5.1.3 Теорема о радиусе сходимости	22
5.1.4 Теорема Коши-Адамара	23
6 Лекция	
6.1 Операции со степенными рядами	24
6.1.1 Теорема о почленном дифференцировании/интегрировании	
6.1.2 Теорема о нулях степенного ряда	
6.2 Аналитические функции	25
6.2.1 Опр. ряд Тейлора	25
6.2.2 Опр. аналитичской функции	
6.2.3 Теорема Тейлора	
6.2.4 Достаточные условия аналитичности	26

1.1 Ряды

Опр. сходимости ряда.

 $\sum\limits_{n=1}^{\infty}a_n=a,$ $a_n\in\mathbb{R}.$ $A_k=\sum\limits_{n=1}^ka_n$ - частичная сумма ряда. Тогда ряд сходится, если существует конечный предел частичных сумм: $\sum\limits_{n=1}^{\infty}=\lim_{k\to\infty}A_k=a.$

Критерий Коши.

$$\textstyle\sum\limits_{n=1}^{\infty}a_n\text{ -}\operatorname{cx}\Leftrightarrow\forall\ \varepsilon>0\ \exists N(\varepsilon)\in\mathbb{N}:\forall\ k,m\in\mathbb{N}\geq N(\varepsilon)\Rightarrow\left|\sum\limits_{n=k}^{k+m}a_n\right|<\varepsilon.$$

Необходимое условие сходимости ряда.

$$\sum\limits_{n=k}^{k+m}a_n$$
 - cx $\Rightarrow \lim\limits_{n\to\infty}a_n=0$

1.2 Операции над рядами

Сложение:
$$\sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} a_n + b_n$$

Умножение на скаляр: $\lambda \cdot \sum\limits_{n=1}^{\infty} a_n = \sum\limits_{n=1}^{\infty} \lambda \cdot a_n$

Группировка без перестановки (группировка).

а)
$$\sum_{n=0}^{\infty}a_n$$
 - числовой ряд

а)
$$\sum_{n=1}^\infty a_n$$
 - числовой ряд b) $\{K_n\}^\infty\subseteq\mathbb{N}: egin{cases} k_1=1\\k_i< k_{i+1} \end{cases}$

c)
$$\sum_{n=1}^{\infty} b_n = \underbrace{\left(a_1 + \ldots + a_{k_2-1}\right)}_{b_1} + \underbrace{\left(a_{k_2} + \ldots + a_{k_3-1}\right)}_{b_2} + b_3 + \ldots$$

1)
$$\sum_{n=1}^{\infty} a_n = a \Rightarrow \sum_{n=1}^{\infty} b_n = a$$

Тогда: 1) $\sum\limits_{n=1}^{\infty}a_n=a\Rightarrow\sum\limits_{n=1}^{\infty}b_n=a.$ 2) Если $\lim\limits_{n\to\infty}a_n=0$, $\sum\limits_{n=1}^{\infty}b_n=b$ и $\exists~m:k_{n+1}-k_n< m~\forall n$ (т.е. группировка не более чем по m слагаемых), то $\sum\limits_{n=1}^{\infty}a_n=b.$

Proof:

$$B_N=b_1+\ldots+b_N=|{\rm packpыbaem}\ b_i|=a_1+\ldots+a_{k_{N+1}-1}=A_{k_{N+1}-1}\Rightarrow$$

$$\Rightarrow \{B_N\}$$
 подпоследовательность $\{A_N\} \Rightarrow \sum\limits_{n=1}^{\infty} b_n = a$

$$\tilde{a_i} = \max \left\{ \left| a_{k_i} \right|, ..., \left| a_{k_{i+1}-1} \right| \right\}$$

$$A_n = a_1 + \dots + a_n$$

$$\exists ! \ k_i : n \in [k_i, k_{i+1} - 1]$$

$$A_n = b_1 + \ldots + b_{i-1} + a_{k_i} + \ldots + a_n = B_{i-1} + a_{k_i} + \ldots + a_n \leq B_{i-1} + \tilde{a_i} \cdot m$$

$$B_{i-1} - \tilde{a_i} \cdot m \leq A_n$$

При $n \to \infty \Rightarrow i \to \infty \Rightarrow \tilde{a}_i \Rightarrow 0$.

$$\begin{split} B_{i-1} - \tilde{a_i} \cdot m &\leq A_n \leq B_{i-1} + \tilde{a_i} \cdot m \Rightarrow \\ b - 0 \cdot m &\leq A_n \leq b + 0 \cdot m \Rightarrow \\ A_n \to b \end{split}$$

Замечание:

Если нет доп. условий, то в обратную сторону неверно. Контрпример:

$$\sum_{n=1}^{\infty} a_n : (1-1) + (1-1) + (1-1) + \dots$$

$$\sum_{n=1}^{\infty} b_n : 0 + 0 + 0 + \dots$$

Ряд b_n сходится, а a_n — расходится.

Если добавить в условие, что $\lim_{n \to \infty} a_n = 0$, то всё еще неверно.

$$\textstyle \sum\limits_{n=1}^{\infty} a_n : (1-1) + \left(\frac{1}{2} + \frac{1}{2} - \frac{1}{2} - \frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3}\right) + \dots$$

$$\textstyle\sum\limits_{n=1}^{\infty}b_n:0+0+0+\dots$$

Ряд a_n расходится по Коши.

1.3 Знакопостоянные ряды

Опр. знакоположительный ряд.

$$\sum\limits_{n=1}^{\infty}a_{n},\,\,a_{n}\geq0\,\,\forall n$$
 - знакоположительный ряд.

Теорема Лобачевского-Коши.

Пусть:

a)
$$a_n \geq 0$$

b)
$$a_n \ge a_{n+1}$$

Тогда:

$$\sum\limits_{n=1}^{\infty}a_{n}$$
 ~ по сходимости $\sum\limits_{n=0}^{\infty}2^{n}a_{2^{n}}$

Proof:

$$a_2 \le a_2 \le a_1$$

$$2a_4 \le a_3 + a_4 \le 2a_2$$

$$4a_8 \le a_5 + a_6 + a_7 + a_8 \le 4a_4$$

...

$$2^n a_{2^{n+1}} \le a_{2^{n+1}} + \dots + a_{2^{n+1}} \le 2^n a_{2^n}$$

$$\tfrac{S_{n+1}-a_1}{2} \leq A_{2^{n+1}}-a_1 \leq S_n$$

Если исходная сходится, то $\frac{S_{n+1}-a_1}{2}$ - неубывающая и ограниченная сверху последовательность \Rightarrow сходится. Аналогично, если сходится конденсированная, то $A_{2^{n+1}}-a_1$ - неубывающая и ограниченная сверху последовательность \Rightarrow сходится.

Сходимость ряда вида $\sum \frac{1}{n^p}$.

$$\sum_{n=1}^{\infty} \frac{1}{n^p}, \ p > 0$$

По теореме Лобачевского-Коши исходный ряд эквивалентен:

$$\sum\limits_{n=0}^{\infty} 2^n \frac{1}{(2^n)^p} = \sum\limits_{n=0}^{\infty} \left(2^{1-p}\right)^n$$
 - геометрическая прогрессия, где $q=2^{1-p}$

Тогда ряд сходится $\Leftrightarrow |q| < 1$

$$2^{1-p}<1\Rightarrow p>1$$

Ряд Бертрана.

$$\sum\limits_{n=1}^{\infty}\frac{1}{n^{\alpha}(\ln(n))^{\beta}}$$
 - сходится $\Leftrightarrow \left\{ \substack{\alpha>1\\ \alpha=1,\ \beta>1} \right.$

1.4 Признаки сравнения рядов

Первый признак сходимости.

Пусть:

- a) $a_n, b_n \ge 0$
- b) $a_n \leq b_n$ финально

1)
$$\sum\limits_{n=1}^{\infty}b_n$$
 — сходится $\Rightarrow\sum\limits_{n=1}^{\infty}a_n$ — сходится 2) $\sum\limits_{n=1}^{\infty}a_n$ — расходится $\Rightarrow\sum\limits_{n=1}^{\infty}b_n$ — расходится.

Второй признак сходимости.

Пусть:

- а) $a_n,b_n>0$ b)
З $m,M>0: m\leq \frac{a_n}{b_n}\leq M$ финальною

Тогда:

$$\sum\limits_{n=1}^{\infty}a_{n}{\sim}$$
 по сходимости $\sum\limits_{n=1}^{\infty}b_{n}$

$$\lim_{n\to\infty}\frac{a_n}{b_n}=c\in(0,\infty)\Rightarrow\sum_{n=1}^\infty a_n$$
~ по сходимости $\sum_{n=1}^\infty b_n$

Третий признак сходимости.

a)
$$a_n,b_n>0$$
b) $\frac{a_{n+1}}{a_n}\leq \frac{b_{n+1}}{b_n}$

1)
$$\sum_{n=1}^{\infty} b_n$$
 - $\operatorname{cx} \Rightarrow \sum_{n=1}^{\infty} a_n$ - cx .

$$2) \sum_{n=1}^{n=1} a_n - \text{pacx} \Rightarrow \sum_{n=1}^{\infty} b_n - \text{pacx}.$$

2.1 Другие признаки знакопостоянных рядов

Усиленный радикальный признак Коши.

Пусть:

a)
$$a_n \ge 0 \ \forall n$$

b) $L = \overline{\lim_{n \to \infty} a_n^{\frac{1}{n}}}$

Тогда:

1)
$$L < 1 \Rightarrow \sum\limits_{n=1}^{\infty} a_n$$
 - сходится

2)
$$L>1\Rightarrow\sum\limits_{n=1}^{\infty}a_{n}$$
 - расходится

Proof:

1)
$$\overline{\lim_{n \to \infty}} \, a_n^{\frac{1}{n}} = L < 1 \Rightarrow \exists \; q \in (0,1) \; \exists \; N : \forall n \geq N \to a_n^{\frac{1}{n}} \leq q \Leftrightarrow a_n \leq q^n \Rightarrow \sum_{n=1}^\infty q^n$$
 - сходится \Rightarrow

$$\Rightarrow \sum_{n=1}^{\infty} a_n$$
 - сходится.

2)
$$\overline{\lim_{n \to \infty}} \, a_n^{\frac{1}{n}} = L > 1 \Rightarrow \forall N \; \exists \; n \geq N : a_n^{\frac{1}{n}} > 1 \Rightarrow a_n > 1 \Rightarrow \lim_{n \to \infty} a_n \neq 0 \Rightarrow \sum_{n=1}^\infty a_n$$
 - расходится.

Признак Даламбера.

Пусть:

a)
$$a_n > 0 \ \forall n \in \mathbb{N}$$

b)
$$d = \underline{\lim}_{n \to \infty} \frac{a_{n+1}}{a_n}$$
; $D = \overline{\lim}_{n \to \infty} \frac{a_{n+1}}{a_n}$

Тогда:

1)
$$D < 1 \Rightarrow \sum\limits_{n=1}^{\infty} a_n$$
 - сходится

2)
$$D>1\Rightarrow\sum\limits_{n=1}^{\infty}a_{n}$$
 - расходится

Proof

$$\varliminf_{n\to\infty}\frac{a_{n+1}}{a_n}\le\varliminf_{n\to\infty}a_n^\frac{1}{n}\le\varlimsup_{n\to\infty}a_n^\frac{1}{n}\le\varlimsup_{n\to\infty}\frac{a_{n+1}}{a_n}$$

Ссылаемся на Коши.

<u>Замечание</u>

Признак Коши сильнее признака Даламбера. Пример ряда, к которому применим Коши, но не применим Даламбер:

6

$$\sum_{n=1}^{\infty} 2^{(-1)^n - n}$$

Интегральный признак.

Пусть:

а)
$$f:[1,\infty]\to\mathbb{R};\ f(x)\geq 0;\ f(x)$$
 не возрастает.

Тогда:

Если сходится
$$\sum\limits_{n=1}^{\infty}f(n),$$
 то сходится $\int_{1}^{\infty}f(x)dx$

Признак Куммера.

Пусть:

a)
$$a_n, b_n > 0 \ \forall n$$

b) Положим
$$c_n = b_n \cdot \frac{a_n}{a_{n+1}} - b_{n+1}$$

Тогда:

1)
$$\exists L>0 \ \exists N: \ \forall n\geq N \to c_n\geq L \Rightarrow \sum\limits_{n=1}^{\infty}a_n$$
 - сходится.

Проще говоря, если c_n финально отделены от 0, то ряд a_n сходится.

2)
$$\sum\limits_{n=1}^{\infty} \frac{1}{b_n}$$
 - расходится и $\exists N: \forall n \geq N \to c_n \leq 0 \Rightarrow \sum\limits_{n=1}^{\infty} a_n$ - расходится.

Проще говоря, если ряд $\frac{1}{b_n}$ расходится и $c_n \leq 0$ финально, то ряд a_n расходится.

Proof:

1) Пусть N=1

$$\begin{split} c_n &\geq L \ \forall n \Rightarrow a_n \cdot b_n - b_{n+1} \cdot a_{n+1} \geq L \cdot a_{n+1} \\ A_n &= \sum_{k=1}^n a_k = \frac{1}{L} \sum_{k=1}^n L \cdot a_k = \frac{1}{L} \bigg(L a_1 + \sum_{k=1}^{n-1} L \cdot a_{k+1} \bigg) \leq a_1 + \frac{1}{L} \sum_{k=1}^{n-1} (a_k b_k - a_{k+1} b_{k+1}) = a_1 + \\ &+ \frac{1}{L} \cdot (a_1 b_1 - a_n b_n) \leq a_1 + \frac{a_1 b_1}{L} \Rightarrow A_n \leq a_1 + \frac{a_1 b_1}{L} \Rightarrow \{A_n\} \nearrow \text{и ограничен} \Rightarrow \sum_{n=1}^\infty a_n \text{ - сходится.} \end{split}$$

2)
$$c_n \le 0 \Rightarrow \frac{a_n}{a_{n+1}} \le \frac{b_{n+1}}{b_n} = \frac{\frac{1}{b_n}}{\frac{1}{b_{n+1}}}$$

По 3 признаку сравнения , т.к. $\sum_{n=1}^{\infty} \frac{1}{b_n}$ - расходится, то $\sum_{n=1}^{\infty} a_n$ - тоже расходится.

Признак Бертрана.

Пусть:

a)
$$a_n > 0 \ \forall n$$

b)
$$\lim_{n \to \infty} \ln(n) \Big(n \Big(\frac{a_n}{a_{n+1}} - 1 \Big) - 1 \Big) = B \in [-\infty; \infty]$$

Тогда:

1) Если
$$B>1\Rightarrow \sum\limits_{n=1}^{\infty}a_n$$
 - сходится.

2) Если
$$B < 1 \Rightarrow \sum\limits_{n=1}^{\infty} a_n$$
 - расходится.

Proof:

1) Возьмем в признаке Куммера $b_n = n \ln(n); \sum_{n=1}^\infty \frac{1}{b_n}$ - расходится

$$c_n = n \ln(n) \frac{a_n}{a_{n+1}} - (n+1) \ln(n+1) = \underbrace{\ln(n) \left(\left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow B > 1} - \underbrace{(n+1) (\ln(n+1) - \ln(n))}_{\rightarrow 1} \Rightarrow \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow 1} = \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right)}$$

7

 \Rightarrow Выражение $\rightarrow L>0 \Rightarrow \sum\limits_{n=1}^{\infty}a_{n}$ - сходится по Куммеру.

$$c_n = n \ln(n) \frac{a_n}{a_{n+1}} - (n+1) \ln(n+1) = \underbrace{\ln(n) \left(\left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{\rightarrow B < 1} - \underbrace{(n+1) (\ln(n+1) - \ln(n))}_{\rightarrow 1} \Rightarrow \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B < 1} - \underbrace{(n+1) (\ln(n+1) - \ln(n))}_{\rightarrow 1} \Rightarrow \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow B < 1} - \underbrace{(n+1) (\ln(n+1) - \ln(n))}_{\rightarrow 1} \Rightarrow \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow 1} - \underbrace{(n+1) (\ln(n+1) - \ln(n))}_{\rightarrow 1} \Rightarrow \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow 1} - \underbrace{(n+1) (\ln(n+1) - \ln(n))}_{\rightarrow 1} \Rightarrow \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow 1} - \underbrace{(n+1) (\ln(n+1) - \ln(n))}_{\rightarrow 1} \Rightarrow \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow 1} - \underbrace{(n+1) (\ln(n+1) - \ln(n))}_{\rightarrow 1} \Rightarrow \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow 1} - \underbrace{(n+1) (\ln(n+1) - \ln(n))}_{\rightarrow 1} \Rightarrow \underbrace{\ln(n) \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1}_{\rightarrow 1} - \underbrace{(n+1) (\ln(n+1) - \ln(n))}_{\rightarrow 1} \Rightarrow \underbrace{(n+1) (\ln(n+1) - \ln(n))}_{\rightarrow 1} = \underbrace{(n+1) (\ln(n+1)$$

 \Rightarrow Выражение $\rightarrow L < 0 \Rightarrow \sum\limits_{n=1}^{\infty} a_n$ - расходится по Куммеру.

Признак Раабе.

Пусть:

$$\lim_{n\to\infty} n\Big(\tfrac{a_n}{a_{n+1}}-1\Big)=R$$

Тогда:

- 1) $R > 1 \Rightarrow$ сходится
- 2) $R < 1 \Rightarrow$ расходится

Proof:

Подставляем в $\lim_{n\to\infty}\ln(n)\Big(n\Big(\frac{a_n}{a_{n+1}}-1\Big)-1\Big)=B$ - из признака Бертрана очевидным образом следуют пункты 1 и 2.

Признак Гаусса.

Пусть:

a)
$$a_n > 0, \exists \lambda \in \mathbb{R}, \exists \mu \in \mathbb{R}, \exists \varepsilon > 0$$

b)
$$\frac{a_n}{a_{n+1}}=\lambda+\frac{\mu}{n}+\frac{\gamma}{n^{1+arepsilon}}$$
, где $\left\{\gamma\right\}_1^N$ ограничено.

Тогда:

1)
$$\left\{^{\lambda>1}_{\lambda=1\ \text{и }\mu>1}\Rightarrow\sum\limits_{n=1}^{\infty}a_{n}$$
 - сходится

2)
$$\left\{ egin{aligned} \lambda < 1 & \sum_{n=1}^\infty a_n \end{array}
ight.$$
 - расходится

Proof:

Возьмём Бертрана.

$$\lim_{n \to \infty} \ln(n) \left(n \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right) = B$$

1) Если
$$\lambda > 1$$
, то $B = +\infty$

Если
$$\lambda=1$$
 и $\mu>1$, то:

$$\lim_{n \to \infty} \ln(n) \left(n \left(\left(1 + \frac{\mu}{n} + \frac{\gamma}{n^{1+\varepsilon}} \right) - 1 \right) - 1 \right) = \lim_{n \to \infty} \ln(n) \left(n \left(\frac{\mu}{n} + \frac{\gamma}{n^{1+\varepsilon}} \right) - 1 \right) = \lim_{n \to \infty} \ln(n) \underbrace{\left(\mu + \frac{\gamma}{n^{\varepsilon}} - 1 \right)}_{\text{const.} > 0} = +\infty$$

2) Если
$$\lambda < 1$$
, то $B = -\infty$

Если $\lambda=1$ и $\mu<1$, то $B=-\infty$ - аналогично 1 пункту.

Если
$$\lambda=1$$
 и $\mu=1$, то в итоге имеем $B=\lim_{n\to\infty} \frac{\ln(n)}{n^\varepsilon} \gamma_n \to 0.$

2.2 Признаки сравнения любых рядов

Признаки Абеля и Дирихле.

Дирихле	Абель
$\left \frac{\exists M>0: \forall n\in\mathbb{N}}{\left \sum\limits_{k=1}^{n}a_{k}\right \leq M}\right $	$\sum\limits_{n=1}^{\infty}a_{n}$ - сходится.
$\lim_{k o\infty}b_k=0$	$\exists M>0: \forall n\\ b_n \leq M$
$\{b_n\} earrow$ или $\{b_n\} \searrow$	$\{b_n\} \nearrow$ или $\{b_n\} \searrow$

Тогда:

$$\sum\limits_{n=1}^{\infty}a_{n}b_{n}$$
 - сходится.

<u>Примечание</u>

Дирихле \Longrightarrow Абель

Преобразование Абеля.

Пусть:

 $\left\{a_{n}\right\}_{n=1}^{\infty}$ и $\left\{b_{n}\right\}_{n=1}^{\infty}$ - последовательности вещественных чисел.

Тогла:

 $\forall n,k \in \mathbb{N}$ выполнено:

$$\sum\limits_{i=n+1}^{n+k}a_ib_i=A_{n+k}b_{n+k}-A_nb_{n+1}+\sum\limits_{i=n+1}^{n+k-1}A_i\big(b_i-b_{i+1}\big)$$
, где $A_m=\sum\limits_{i=1}^ma_i$

3.1 Операции над числовыми рядами

Абсолютная и условная сходимость.

$$\sum_{n=1}^{\infty} a_n$$
:

- сходится абсолютно, если сходится $\sum_{n=1}^{\infty} |a_n|$
- сходится условно, если сходится $\sum\limits_{n=1}^{\infty} a_n$, но расходится $\sum\limits_{n=1}^{\infty} |a_n|$

Перестановка без группировки.

Пусть:

$$\sum\limits_{n=1}^{\infty}a_{n}$$
 - сходится абсолютно.

 $\tau:\mathbb{N}\to\mathbb{N}$ - биекция, задает перестановку ряда.

Тогда:

$$\sum\limits_{n=1}^{\infty}a_{\tau(n)}=\sum\limits_{n=1}^{\infty}a_{n}$$

Proof

Пусть
$$a_n \geq 0$$
, тогда докажем, что $\sum\limits_{k=1}^{\infty} a_{\tau(k)} = \sum\limits_{k=1}^{\infty} a_n$

$$N = \max(\tau(1), ..., \tau(n))$$

$$B_n=\sum\limits_{k=1}^na_{\tau(k)}\leq\sum\limits_{k=1}^Na_k\leq a\Longrightarrow\{B_n\}$$
 - ограничена и не убывает $\Longrightarrow B_n\to b\leq a$

Применим au^{-1} и аналогичными рассуждениями получим, что $\sum\limits_{k=1}^\infty a_{ au^{-1}\circ au(k)} \leq \sum\limits_{k=1}^\infty a_k = a \leq b$

Отсюда
$$a \leq b \leq a \Rightarrow b = a \Rightarrow B_n \to a$$

Возьмём теперь
$$p_k = rac{a_k + |a_k|}{2} \geq 0,$$
 $q_k = rac{|a_k| - a_k}{2} \geq 0.$

$$B_n = \sum\limits_{k=1}^{n} a_{\tau(k)} = \sum\limits_{k=1}^{n} p_{\tau(k)} - \sum\limits_{k=1}^{n} q_{\tau(k)}$$

$$\sum\limits_{k=1}^\infty a_{\tau(k)}=\sum\limits_{k=1}^\infty p_{\tau(k)}-\sum\limits_{k=1}^\infty q_{\tau(k)}$$
 (т.к. ряды p_k и q_k сходятся) = |по доказанному выше| =
$$\sum\limits_{k=1}^\infty p_k-\sum\limits_{k=1}^\infty q_k=\sum\limits_{k=1}^\infty a_k$$

Теорема Римана.

Пусть:

$$\sum\limits_{n=1}^{\infty}a_{n}$$
 - сходится условно.

Тогла

1)
$$\forall a \in \mathbb{R} \; \exists \; \tau: \mathbb{N} \to \mathbb{N} \;$$
 биекция : $\sum\limits_{n=1}^{\infty} a_{\tau(n)} = a$

2)
$$\exists \ au_1, au_2:\mathbb{N} o \mathbb{N}$$
 биекция : $\sum\limits_{n=1}^\infty a_{ au_1}(n)=+\infty; \sum\limits_{n=1}^\infty a_{ au_2}(n)=-\infty$

3)
$$\exists \ \tau: \mathbb{N} \to \mathbb{N}$$
 биекция : $\sum\limits_{n=1}^{\infty} a_{\tau(n)}$ - расходится

Proof:

$$\sum_{k=1}^{\infty} a_k$$

 α_n - n-ый неотрицательный член,

 β_n -
 n-ый отрицательный член.

$$\sum\limits_{k=1}^{\infty}a_k$$
 - сходится условно $\Rightarrow\sum\limits_{k=1}^{\infty}\alpha_k=+\infty;\sum\limits_{k=1}^{\infty}\beta_k=-\infty$

Допустим это неверно.

Если оба ряда α и β сходятся. Тогда оценим $\sum\limits_{k=1}^m |a_k| \leq \sum\limits_{k=1}^m \alpha_k + \sum\limits_{k=1}^m |\beta_k| \leq C \Rightarrow \sum\limits_{k=1}^m a_k$ сходится абсолютно. Противоречие.

Пусть ряд α сходится, ряд β расходится. Тогда частичные суммы будут расходиться при стремлении к бесконечности. Если записать формально, то если $\sum\limits_{k=1}^{\infty}\alpha_k=+\infty, \sum\limits_{k=1}^{\infty}\beta_k=\beta>-\infty$, то $\forall E>0\ \exists N(E): \forall m\geq N(E)\Rightarrow \sum\limits_{k=1}^{m}\alpha_k>E-\beta.$

Пусть М настолько велико, что в $\{a_1,...,a_M\}$ лежат все $\{\alpha_1,...,\alpha_m\}$, тогда:

 $\sum\limits_{k=1}^{M}a_k\geq\sum\limits_{k=1}^{m}\alpha_k+\beta>E$ - в силу произвольности Е частичные суммы не ограничены, а значит ряд a_n расходится. Противоречие.

1) Пусть $a \in \mathbb{R}$ произвольно. Будем делать следующее:

Прибавляем α_i , пока сумма не будет больше a. Как только сумма стала больше a, начинаем прибавлять β_i , как только сумма стала меньше a, снова начинаем прибавлять α_i и так далее.

Стоит оговорить три момента:

- 1. Мы всегда можем брать α_i , которые будут нас «поднимать», потому что их бесконечно много и $\sum\limits_{k=1}^{\infty}\alpha_k=+\infty$. Аналогично с β_i .
- 2. Почему мы действительно сойдёмся к a? Исходный ряд сходится условно $\Rightarrow a_k \to 0 \Rightarrow \alpha_i \to 0; \beta_i \to 0$. Тогда $\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \forall n \geq N \Rightarrow \alpha_i < \frac{\varepsilon}{2}; |\beta_i| < \frac{\varepsilon}{2}$. В момент, когда все α_i и β_i с номерами меньше N войдут в сумму мы начнём отклоняться от a не больше, чем на $\frac{\varepsilon}{2}$. В силу произвольности ε ряд сходится к a по Коши.

- 3. Почему ряд перестановка исходного? По построению ряд включает в себя все члены исходного и только их.
- 2) Чтобы уйти в бесконечность будем брать так:

Берём альфы до 1, потом одну бету, альфы до 2, потому одну бету и т.д.

3) Чтобы сумма расходилась будем набирать так, чтобы получилась последовательность вида $\{1,-1,2,-2,3,-3...\}$.

опр. Произведение рядов по Коши.

 $\sum\limits_{k=1}^\infty a_k$ и $\sum\limits_{k=1}^\infty b_k$ ряда, тогда ряд $\sum\limits_{k=1}^\infty c_k$, где $\,c_k=a_1b_k+a_2b_{k-1}+...+a_kb_1\,$ называется произведением рядов по Коши.

Теорема Тёплица.

Пусть:

$$\begin{pmatrix} t_{11} & & & \\ t_{21} & t_{22} & & & \\ t_{31} & t_{32} & t_{33} & & \\ & \cdots & \cdots & \cdots & \\ t_{n1} & t_{n2} & t_{n3} & \cdots & t_{nn} \\ \vdots & \vdots & \vdots & & \vdots \end{pmatrix}$$

a)
$$\forall j \to \lim_{i \to \infty} t_{ij} = 0$$

b) $\exists K: \forall i \to \sum\limits_{i=1}^i \left|t_{ij}\right| \leq K$ - для любой строки сумма модулей элементов меньше К.

c)
$$\lim_{i \to \infty} t_i = 1$$
, где $t_i = t_{i1} + \ldots + t_{ii}$

Тогда:

1)
$$\lim_{i \to \infty} x_i = 0 \Longrightarrow \lim_{i \to \infty} z_i = 0$$
, где $z_i = x_1 t_{i1} + ... + x_i t_{ii}$

2)
$$\lim_{i \to \infty} x_i = x \in \mathbb{R} \Longrightarrow \lim_{i \to \infty} z_i = x$$
, где $z_i = x_1 t_{i1} + \ldots + x_i t_{ii}$

Теорема Коши о суммировании по Чезаро.

Для любых $x_i \in \mathbb{R}, i \in \mathbb{N}$ выполнено:

$$\lim_{i \to \infty} x_i = x \Longrightarrow \lim_{i \to \infty} z_i = x$$
, где $z_i = \frac{x_1 + x_2 + \ldots + x_i}{i}$.

Proof:

Положим
$$t_{i1}=t_{i2}=\ldots=t_{ii}=rac{1}{i} \ \forall i \in \mathbb{N}$$

Данные t_{ij} удовлетворяют всем пунктам теоремы Тёплица \Rightarrow наше утверждение следует из 2 пункта теоремы.

Лемма 1

$$\begin{cases} \lim\limits_{i\to\infty}x_i=0\\ \lim\limits_{i\to\infty}y_i=0\\ \sum\limits_{j\to\infty}x_j \text{ - cx. абс.} \end{cases} \Rightarrow \lim\limits_{i\to\infty}z_i=0\text{, где }z_i=x_1y_i+\ldots+x_iy_1$$

Лемма 2

$$\begin{cases} \lim\limits_{i\to\infty}x_i=x\in\mathbb{R}\\ \lim\limits_{i\to\infty}y_i=y\in\mathbb{R} \end{cases}\Rightarrow \lim\limits_{i\to\infty}z_i=xy, \text{где }z_i=\frac{x_1y_i+\ldots+x_iy_1}{i}$$

Теорема Мертинса.

Пусть:

a)
$$\sum\limits_{k=1}^{\infty}a_k=a\in\mathbb{R},\ \ \sum\limits_{k=1}^{\infty}b_k=b\in\mathbb{R}$$

b) Хотя бы один сходится абсолютно

Тогда:

$$\sum_{k=1}^{\infty} c_k = ab, \ c_k = a_1b_k + ... + a_kb_1$$

Proof:

Пусть ряд a_k сходится абсолютно без потери общности.

$$C_n=a_1B_n+...+a_nB_1$$
, где $C_n=\sum\limits_{k=1}^nc_k,\;B_n=\sum\limits_{k=1}^nb_k$. Положим также $\beta_n=\sum\limits_{k=n+1}^\infty\beta_k$.

$$C_n = a_1(b-eta_n) + a_2(b-eta_{n-1}) + \ldots + a_n(b-eta_1)$$
, т.к. $B_n + eta_n = \sum\limits_{k=1}^{\infty} b_k = b$

$$C_n = b(a_1+\ldots+a_n) - (a_1\beta_n+\ldots+a_n\beta_1)$$

Положим $x_i = \beta_i$ и $y_i = a_i$ Тогда:

1.
$$\lim_{i \to \infty} x_i = 0$$
, т.к. $x_i = \beta_i = b - B_i = b - b = 0$

2.
$$\lim_{i \to \infty} y_i = 0$$
, необходимый признак сходимости

$$3.\ \ \forall i\sum_{j=1}^{i}\left|y_{j}\right|\leq K=\sum_{j=1}^{\infty}\left|a_{j}\right|$$
 - K существует, т.к. мы предположили, что ряд a_{i} сходится абсолютно.

Тогда по лемме 1 имеем $a_1\beta_n+\ldots+a_n\beta_1\to 0$ при $n\to\infty.$

Соответственно,
$$\lim_{n\to\infty}C_n=b\underbrace{(a_1+\ldots+a_n)}_{\to a}-\underbrace{(a_1\beta_n+\ldots+a_n\beta_1)}_{\to 0}=ab-0=ab.$$

Теорема Абеля.

Пусть:

a)
$$\sum_{k=1}^{\infty} a_k = a$$

$$b) \sum_{k=1}^{\infty} b_k = b$$

c)
$$\sum\limits_{k=1}^{\infty}c_{k}=c$$
, где $c_{k}=a_{1}b_{k}+...+a_{k}b_{1}$

Тогда:

$$c = ab$$

Proof:

Положим $A_n = \sum_{i=1}^n a_i$, $B_n = \sum_{i=1}^n b_i$, $C_n = \sum_{i=1}^n c_i$. Несложно заметить и проверить, что $C_1 + \dots + C_n = A_1 B_n + \dots + A_n B_1$

Т.к. $\lim_{n\to\infty}A_n=a, \lim_{n\to\infty}B_n=b$ при $x_i=A_i, y_i=B_i$ по лемме 2 имеем: $\frac{C_1+\ldots+C_n}{n}=\frac{A_1B_n+\ldots+A_nB_1}{n}\to ab$ при $n\to\infty$

$$\frac{C_1+\ldots+C_n}{n}=\frac{A_1B_n+\ldots+A_nB_1}{n}\to ab$$
при $n\to\infty$

С другой стороны, $\lim_{n\to\infty}C_n=c$, поэтому в силу теоремы Коши имеем $\frac{C_1+\ldots+C_n}{n}\to c$, при $n\to\infty$.

Из полученных выше равенств заключаем c=ab.

Замечание

Пусть есть два числовых ряда $\sum\limits_{i=1}^{\infty}a_i$ и $\sum\limits_{i=1}^{\infty}b_i$. Как можно определить их произведение:

$$\left(\sum_{i=1}^{\infty} a_i\right) \cdot \left(\sum_{i=1}^{\infty} b_i\right) = ?$$

Такое произведение можно определить как сумму ряда $\sum\limits_{i=1}^{\infty}c_i$, где каждый элемент a_ib_j встречается ровно один раз. Но в каком порядке брать эти слагаемые? Как только мы фиксируем какой-либо порядок мы получаем умножение рядов, однако несложно заметить, что таких порядков столько же, сколько биекций $\mathbb{N} \to \mathbb{N}^2$, т.е. несчетное количество. Следующая теорема Абеля показывает, что если ряды сходятся абсолютно, то порядок не важен.

Теорема Абеля об умножении абсолютно сходящихся рядов.

Пусть:

а) Ряды $\sum\limits_{i=1}^{\infty}a_{i}$ и $\sum\limits_{i=1}^{\infty}b_{i}$ сходятся аболютно.

b)
$$i\mapsto (m_i,n_i)$$
 - биекция $\mathbb{N}\to\mathbb{N}^2.$

c)
$$\sum\limits_{i=1}^{\infty}a_{i}=a,$$
 $\sum\limits_{i=1}^{\infty}b_{i}=b$

Тогда:

$$\sum_{i=1}^{\infty} a_{m_i} \cdot b_{n_i} = ab$$

Proof:

 $\sum\limits_{i=1}^N \left| a_{m_i} b_{n_i} \right| \leq \left(\sum\limits_{i=1}^K |a_i| \right) \cdot \left(\sum\limits_{i=1}^K |b_i| \right)$, где $K = \max\{m_1, m_2, ..., m_N, n_1, n_2, ..., n_N\}$ т.к. любое слагаемое левой суммы присутствует в правой сумме и все слагаемые правой суммы неотрицательны.

$$\textstyle\sum_{i=1}^N \left|a_{m_i}b_{n_i}\right| \leq \left(\sum_{i=1}^K |a_i|\right) \cdot \left(\sum_{i=1}^K |b_i|\right) \leq \hat{a}\hat{b} \in \mathbb{R}, \text{ где } \hat{a} = \sum_{i=1}^\infty |a_i|, \ \hat{b} = \sum_{i=1}^\infty |b_i| \Longrightarrow \sum_{i=1}^N \left|a_{m_i}b_{n_i}\right| \text{ сходителя абсолютно}$$

В силу теоремы о перестановке членов ряда сходящегося абсолютно перестановка на сумму не влияет. Переставим члены ряда следующим образом:

На i диагонали лежат c_i . Сгруппируем члены по диагонялям. Легко увидеть, что получившийся после группировки ряд - это произведение рядов $\sum\limits_{i=1}^{\infty}a_i$ и $\sum\limits_{i=1}^{\infty}b_i$ по Коши. Т.к. ряд сходился до группировки, то сходится и после, причем к тому же числу.

Т.к. сходятся ряды $\sum_{i=1}^\infty a_i$ и $\sum_{i=1}^\infty b_i$, а также сходится полученный ряд, то по т. Абеля сумма ряда равна ab, что и требовалось доказать.

4.1 Функциональные ряды и последовательности

Определение функционального ряда.

Пусть есть функции $f_n(x)=\sum\limits_{i=1}^n u_i(x), u_i:\mathbb{E} o \mathbb{R}, \mathbb{E} \subseteq \mathbb{R}$

Если $\forall x \in \mathbb{E} \ \exists \lim_{n \to \infty} f_n(x) = f(x),$ тогда $\lim_{n \to \infty} f_n(x) = f(x) = \sum_{i=1}^\infty u_i(x)$ - сумма функционального ряда.

Определение поточечной сходимости.

Пусть:

- a) $\mathbb{E} \subseteq \mathbb{R}$
- b) $f_n : \mathbb{E} \to \mathbb{R} \ (\forall n \in \mathbb{N})$

Тогла:

Функциональная последовательность $\left\{f_n\right\}_{n=1}^\infty$ сходится поточечно к функции $f:\mathbb{E}\to\mathbb{R}$, если $\forall x\in\mathbb{E},\exists\lim_{n\to\infty}f_n(x)=f(x).$

Обозначение: $f_n \to f$.

Определение равномерной сходимости.

Пусть:

- a) $\mathbb{E} \subseteq \mathbb{R}$
- b) $f_n : \mathbb{E} \to \mathbb{R} \ (\forall n \in \mathbb{N})$

Тогда:

Функциональная последовательность $\left\{f_n\right\}_{n=1}^\infty$ сходится равномерно к фунции $f:\mathbb{E} \to \mathbb{R}$ на \mathbb{E} , если $\forall \varepsilon > 0 \ \exists N: \forall n \geq N \ \forall x \in \mathbb{E} \Longrightarrow |f_n(x) - f(x)| < \varepsilon.$

Обозначение: $f_n \rightrightarrows f$.

Определение сходимости функциональных рядов.

Пусть:

- a) $\mathbb{E} \subseteq \mathbb{R}$
- b) $u_i : \mathbb{E} \to \mathbb{R} \ (\forall i \in \mathbb{N})$
- c) $f_n(x) = \sum_{i=1}^n u_i(x) \ \forall n \in N$

Тогда:

- 1) Функциональный ряд сходится поточечно к функции $f:\mathbb{E} o \mathbb{R}$, если $f_n o f$.
- 2) Функциональный ряд сходится равномерно к функции $f:\mathbb{E} \to \mathbb{R}$ на \mathbb{E} , если $f_n \rightrightarrows f$.

Критерий Коши равномерной сходимости.

$$(f_n \rightrightarrows f) \Longleftrightarrow \big(\forall \varepsilon > 0 \ \exists N : \forall n,m : n \geq N \ \forall x \in \mathbb{E} \longrightarrow \big| f_{n+m}(x) - f_n(x) \big| < \varepsilon \big).$$

Теорема о почленном переходе к пределу.

- a) $\mathbb{E} \subseteq \mathbb{R}$
- b) а конечная предельная точка множества $\mathbb E$
- c) $u_k : \mathbb{E} \to \mathbb{R} \ \forall k \in \mathbb{N}$
- $\mathbf{d}) \, \exists \lim_{x \to a} u_k(x) = c_k \in \mathbb{R}$
- е) $f_n
 ightharpoonup f$, где $f_n(x) = \sum\limits_{k=1}^n u_k(x) \ \forall n \in \mathbb{N}$

Тогда:

$$\lim_{x \to a} f(x) = \lim_{x \to a} \sum_{k=1}^\infty u_k(x) = \sum_{k=1}^\infty \lim_{x \to a} u_k(x) = \sum_{k=1}^\infty c_k$$

1) Ряд c_k сходится.

$$2) \sum_{k=1}^{\infty} c_k = \lim_{x \to a} f(x)$$

Proof:

1) По кр. Коши равномерной сходимости:

$$(f_n \rightrightarrows f) \Longrightarrow \left(\forall \varepsilon > 0 \ \exists N : \forall n, m : n \geq N \ \forall x \in \mathbb{E} \longrightarrow \left| f_{n+m}(x) - f_n(x) \right| < \varepsilon \right) \Longrightarrow \left| \sum_{k=n+1}^{n+m} u_k(x) \right| < \varepsilon.$$

При $x \to a \Longrightarrow \left|\sum_{k=n+1}^{n+m} c_k\right| \le \varepsilon \Longrightarrow$ ряд c_k сходится по кр. Коши.

2) Пусть
$$\sum\limits_{k=1}^{\infty}c_{k}=C\in\mathbb{R}$$

 $\lim_{x \to a} f(x) = C$ - хотим доказать.

$$\forall \varepsilon > 0 \ \exists \delta : |x - a| < \delta \longrightarrow |f(x) - C| < \varepsilon.$$

$$|f(x) - C| = |f(x) - f_N(x) + f_N(x) - C_N + C_N - C| \leq |f(x) - f_N(x)| + |f_N(x) - C_N| + |C_N - C|$$

- Для $|f(x)-f_N(x)|$ найдется такое N_1 , что $\forall x\in\mathbb{E}:|f(x)-f_N(x)|<rac{arepsilon}{3}$ по равномерной сходисти.
- Для $|C_N-C|$ найдется такое N_2 , что $\forall x\in\mathbb{E}:|C_N-C|<rac{arepsilon}{3}$ по сходимости ряда c_k .

Чтобы это выполнялось одновременно $N = \max\{N_1, N_2\}$

• Для $|f_N(x) - C_N|$:

$$f_N(x)=\sum\limits_{k=1}^N u_k(x) \underbrace{\longrightarrow}_{x o a} \sum\limits_{k=1}^N c_k=C_N$$
 \Longrightarrow найдется такое $\delta:|x-a|<\delta \Rightarrow |f_N(x)-C_N|<rac{arepsilon}{3}$

Тогда
$$|f(x) - C| < \varepsilon \Longrightarrow \lim_{x \to a} f(x) = C.$$

Теорема о непрерывности для равномерно сходящегося ряда.

- a) $\mathbb{E} \subseteq \mathbb{R}$
- b) $u_k : \mathbb{E} \to \mathbb{R}$

c)
$$f_n(x) = \sum_{k=1}^n u_k(x)$$

- d) $u_k \in C(\mathbb{E})$ непрерывная
- e) $f_n \rightrightarrows f$

Тогда:

 $f \in C(\mathbb{E})$

Proof:

Достаточно доказать, что f непрерывна в любой точке $a\in\mathbb{E}$, т.е. нужно доказать, что $\lim_{x\to a}f(x)=f(a), \forall a\in\mathbb{E}.$

Если a — изолированная точка множества \mathbb{E} , то равенство очевидно.

Если a — предельная точка множества \mathbb{E} , то:

 $\exists\lim_{x o a}u_k(x)=u_k(a)=c_k.$ Тогда по теореме о почленном переходе к пределу $\lim_{x o a}f(x)=\sum_{k=1}^\infty u_k(a)=f(a)$

4.2 Критерии равномерной сходимости

lim-sup критерий.

Пусть:

- a) $\mathbb{E} \subseteq \mathbb{R}$
- b) $f_n: \mathbb{E} \to \mathbb{R}, \ \forall n \in \mathbb{N}$

c)
$$f_n = \sum_{k=1}^n u_k : \mathbb{E} \to \mathbb{R}$$

Тогда:

$$(f_n \rightrightarrows f) \Longleftrightarrow \left(\lim_{n \to \infty} \sup_{x \in \mathbb{E}} \lvert f_n(x) - f(x) \rvert = 0 \right)$$

Proof:

По определению равномерной сходимости:

$$\forall \varepsilon > 0 \ \exists N : \forall n \geq N \ \underbrace{\forall x \in \mathbb{E} \longrightarrow |f(x) - f_n(x)| < \varepsilon}_{\substack{x \in \mathbb{E} \\ x \in \mathbb{E}}}.$$

Тогда по определению предела последовательности имеем: $\lim_{n \to \infty} \sup_{x \in \mathbb{R}} |f_n(x) - f(x)| = 0$

Критерий Коши равномерной сходимости.

$$(f_n \rightrightarrows f) \Longleftrightarrow \big(\forall \varepsilon > 0 \ \exists N : \forall n,m : n \geq N \ \forall x \in \mathbb{E} \longrightarrow \big| f_{n+m}(x) - f_n(x) \big| < \varepsilon \big).$$

Признак Вейрштрасса равномерной сходимости.

Пусть:

- a) $\mathbb{E} \subseteq \mathbb{R}$
- b) $u_k : \mathbb{E} \to \mathbb{R}$
- c) $\forall n \in \mathbb{N} \ \forall x \in \mathbb{E} \longrightarrow |u_k(x)| \le a_k$
- d) $\sum_{k=1}^{\infty} a_k$ сходится.

Тогда:

$$\sum\limits_{k=1}^{\infty}u_k(x)\rightrightarrows u(x)$$

Признак Абеля/Дирехле.

Пусть:

Дирихле	Абель
$\exists M > 0 : \forall n \in \mathbb{N}, \forall x \in E$ $\left \sum_{k=1}^{n} a_k(x) \right \leq M$	$\sum\limits_{n=1}^{\infty}a_{n}(x)$ - сходится равномерно.
$b_k(x) \rightrightarrows 0$	$\exists M>0: \forall n, \forall x$ $ b_n(x) \leq M$
$\{b_n(x)\} earrow$ или $\{b_n(x)\} \searrow$	$\{b_n\} earrow$ или $\{b_n\} \searrow$

Тогда:

$$\sum\limits_{n=1}^{\infty}a_{n}b_{n}$$
 - сходится равномерно.

4.3 Почленное интегрирование/дифференцирование

Теорема о почленном интегрировании.

Пусть:

a)
$$I = [a, b] \subset \mathbb{R}$$

b)
$$u_k: I \to \mathbb{R}$$

c)
$$f_n(x) = \sum_{k=1}^n u_k(x)$$

d) $u_k \in R(I)$ (интегрируемая по Риману)

e)
$$f_n \rightrightarrows f$$

Тогда:

1)
$$f \in R(I)$$

2)
$$\int\limits_a^b f(x) dx = \sum\limits_{k=1}^\infty \int\limits_a^b u_k(x) dx$$

Proof:

- d(T) диаметр разбиения $(\max |I_i|)$
- $\underset{I_i}{w} = \sup_{x \in I_i}(f) \inf_{x \in I_i}(f)$ колебание f на отрезке I_i .
- Суммирование ведется по всем отрезкам разбиения Т

Выбираем N по данному $\varepsilon > 0$.

$$(1) - \forall \varepsilon > 0 \ \exists N : \forall x \in I \to |f(x) - f_N(x)| < \frac{\varepsilon}{4(b-a)} \Longrightarrow f_N(x) - \frac{\varepsilon}{4(b-a)} \le f(x) \le f_N(x) + \frac{\varepsilon}{4(b-a)}, \forall x \in I$$
 Для любого подотрезка $\tilde{I} \subseteq I$ имеем:

$$\underbrace{w(f) = \sup(f) - \inf(f)}_{\text{по определению}} \leq \underbrace{\left(\sup(f_N) + \frac{\varepsilon}{4(b-a)}\right) - \left(\inf(f_N) - \frac{\varepsilon}{4(b-a)}\right)}_{\text{из неравенства (1) и т.к. inf } f_N \leq f_N \leq \sup f_N}_{\text{по определению } w(f_N)} \leq \underbrace{w(f_N) + \frac{\varepsilon}{2(b-a)}}_{\text{по определению } w(f_N)}$$

Дальше, пользуясь критерием Дарбу, для заданного ε и выбранного N мы выбираем λ :

$$f_N \in R(I) \Longrightarrow \forall \varepsilon > 0 \ \exists \lambda : d(T) < \lambda \to \sum_T \underset{I_i}{w}(f_N) \cdot |I_i| < \tfrac{\varepsilon}{2}$$

$$\sum_{T} \underset{I_i}{w}(f) \cdot |I_i| \leq \underbrace{\sum_{T} \left(\underset{I_i}{w}(f_N) + \frac{\varepsilon}{2(b-a)} \right) \cdot |I_i|}_{\text{т.к. нер-во (2) верно для } \forall \text{ подотрезка}} = \underbrace{\sum_{T} \underset{I_i}{w}(f_N) |I_i|}_{\text{в силу (3) меньше}} + \underbrace{\frac{\varepsilon}{2(b-a)}}_{\underbrace{D-a}} \underbrace{\sum_{I} |I_i|}_{b-a} \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

2) Положим $\varphi_n = f - f_n$. Ясно, что $\varphi \in R(I)$ (сумма конечного числа интегрируемых интегрируема, а $f \in R(I)$ доказали в 1 пункте).

Достаточно доказать, что
$$\int\limits_a^b \varphi_n(x) dx \ \underset{n \to \infty}{ \longrightarrow} \ 0$$

Т.к.
$$f_n \rightrightarrows f$$
, то $\exists N: \forall n>N, \forall x\in I \ |f_n-f|<\frac{\varepsilon}{b-a}$
$$\left|\int\limits_a^b \varphi_n(x)dx\right|\leq \int\limits_a^b |\varphi_n(x)|dx=\int\limits_a^b |f_n-f|dx\leq \int\limits_a^b \frac{\varepsilon}{b-a}dx=\varepsilon$$

Теорема о почленном дифференцировании.

Пусть:

a)
$$I = [a, b] \subset \mathbb{R}$$

b)
$$u_k:I\to\mathbb{R}$$

c)
$$f_n(x) = \sum_{k=1}^n u_k(x)$$

d) $u_k \in D(I)$, (дифференцируемая)

е)
$$\exists c \in I : \sum\limits_{k=1}^{\infty} u_k(c) = L \in \mathbb{R},$$
 (есть хоть одна точка, где ряд сходится)

f) $f'_n \rightrightarrows g$, (сходится равномерно к чему-то)

Тогда:

1)
$$f_n \rightrightarrows f$$

2)
$$f'(x) = g(x) = \left(\sum_{k=1}^{\infty} u_k\right)'$$

Proof:

1) Прежде всего покажем, что $\forall y \in I$:

$$\sum\limits_{k=1}^{\infty}\frac{u_k(x)-u_k(y)}{x-y}, x\in\underbrace{I\setminus\{y\}}_{\mathbb{E}}\to$$
ряд сходится на $\mathbb{E}.$

Т.е. по кр. Коши показать, что $\forall \varepsilon > 0 \,\, \exists N : \forall n > N, \,\, \forall m \in \mathbb{N}, \,\, \forall x \in I \to \left|\sum\limits_{k=n}^{n+m} \frac{u_k(x) - u_k(y)}{x-y}\right| < \varepsilon$

Т.к.
$$f_n'
ightharpoonup g \Longrightarrow orall arepsilon > 0 \,\, \exists N: \forall n > N, \,\, \forall m \in \mathbb{N}, \,\, \forall x \in I \to \left|f_{n+m}'(x) - f_n'(x)\right| < arepsilon$$

$$\left|f'_{n+m}(x) - f'_{n}(x)\right| = \left|\sum_{k=n+1}^{n+m} u'_{k}(x)\right| = |h'(x)| < \varepsilon$$

$$\left| \sum_{k=n}^{n+m} \frac{u_k(x) - u_k(y)}{x - y} \right| = \left| \left(\sum_{k=n}^{n+m} u_k(x) - \sum_{k=n}^{n+m} u_k(y) \right) / (x - y) \right| = \left| \frac{h(x) - h(y)}{x - y} \right| = |\text{т. Лагранжа о среднем}| = \left| \frac{(h'(t))(x - y)}{x - y} \right| = |h'(t)|,$$
где $x < t < y$.

Знаем, что $|h'(x)|<arepsilon\Longrightarrow |h'(t)|<arepsilon\Longrightarrow \sum_{k=1}^\infty rac{u_k(x)-u_k(y)}{x-y}$ сходится равномерно.

Возьмем y = c:

$$\sum\limits_{k=1}^{\infty} \frac{u_k(x) - u_k(c)}{x - c}$$
 - сходится равномерно на $I \setminus \{c\}$

(x - c) - ограниченная функция, а домножение на ограниченную функцию не влияет на сходимость. Тогда:

$$\sum\limits_{k=1}^{\infty}(u_k(x)-u_k(c))$$
 - сходится равномерно на $I\setminus\{c\}$ $\sum\limits_{k=1}^{\infty}(u_k(x)-u_k(c))=\sum\limits_{k=1}^{\infty}u_k(x)-\sum\limits_{k=1}^{\infty}u_k(c)\Rightarrow\sum\limits_{k=1}^{\infty}u_k(x)$ сх. равномерно на $I\setminus\{c\}$

Ряд сходится равномерно на $\{c\}$ и на I \ $\{c\}$ => ряд сходится равномерно на I, т.к. если ряд сходится на множествах, то он будет сходиться и на их объединении (достаточно в критерии Коши выбрать $N = \max\{N_1, ..., N_k\}$).

2) Доказали, что
$$\sum\limits_{k=1}^{\infty}u_k(x)=f(x).$$

$$\sum_{k=n}^{n+m} \frac{u_k(x) - u_k(y)}{x - y} = \frac{f(x) - f(y)}{x - y}$$

Пусть:

a)
$$E = I \setminus \{y\}$$

b) у - конечная предельная точка E

c)
$$\lim_{x \to y} \frac{u_k(x) - u_k(y)}{x - y} = u'_k(y)$$

d)
$$\sum_{k=1}^{\infty} \frac{u_k(x) - u_k(y)}{x - y} \Rightarrow \frac{f(x) - f(y)}{x - y}$$

Выполнены все условия теоремы о почленном переходе к пределу \Longrightarrow

$$\Longrightarrow \sum_{k=1}^{\infty} u_k'(y) = \lim_{x \to y} \frac{f(x) - f(y)}{x - y} = f'(y).$$

<u>Теорема Вейерштрасса о равномерном приближении.</u>

Пусть:

$$a)f \in C^m[a,b]$$

Тогла:

$$\forall \varepsilon > 0 \ \exists p \in \mathbb{R}[x]: \ \forall k \in \{0..m\}, \forall x \in [a,b] \longrightarrow \left|f^{(k)}(x) - p^{(k)}(x)\right| < \varepsilon$$

5.1 Степенные ряды

Опр. степенного ряда.

Фукнциональный ряд вида $\sum\limits_{n=0}^{\infty}c_n(x-x_0)^n$, где $x_0,c_n\in\mathbb{R}$ фиксированные числа - называется степенным рядом с центром в точке x_0 .

Опр. радиус сходимости.

Пусть $D=\{$ множество точек сходимости ряда $\}$. Тогда $R=\sup_{x\in D}\{|x|\}$ - называется радиусом сходимости ряда.

Множество (-R, R) - называется интервалом сходимости ряда.

Теорема о радиусе сходимости.

Пусть:

Дан степенной ряд $\sum\limits_{k=0}^{\infty}c_kx^k$ и R - радиус его сходимости.

1)
$$|x| < R \Rightarrow \sum\limits_{k=0}^{\infty} c_k x^k$$
 сходится абсолютно.

2)
$$|x|>R\Rightarrow\sum\limits_{k=0}^{\infty}c_{k}x^{k}$$
 расходится.

3)
$$\forall [a,b] \subset (-R,R) \Rightarrow \sum_{k=0}^{\infty} c_k x^k$$
 сходится равномерно (и абсолютно) на $[a,b].$

4) Если
$$\sum\limits_{k=0}^{\infty}c_kR^k$$
 - сходится, то на $[0,R]$ сходится равномерно (и абсолютно).

5)
 Если
$$\sum\limits_{k=0}^{\infty}c_{k}R^{k}$$
 - расходится, то на $[0,R)$ сходится неравномерно.

1)
$$|x| < R = \sup\{|x| : x \in D\} \Rightarrow \exists y \in D : |y| > |x|$$

Возьмем ряд
$$\sum\limits_{k=0}^{\infty}\left|c_{k}x^{k}\right|=\sum\limits_{k=0}^{\infty}\left|c_{k}\right|\left|y\right|^{k}\left|\frac{x}{y}\right|^{k}$$

$$\sum\limits_{k=0}^{\infty}c_ky^k$$
 - сходится, т.к. $y\in D\Rightarrow c_ky^k\longrightarrow 0\Rightarrow \exists M:\left|c_ky^k\right|< M,\ \forall k\in\mathbb{N}$

$$\sum_{k=0}^{\infty} c_k y^k \text{ - сходится, т.к. } y \in D \Rightarrow c_k y^k \longrightarrow 0 \Rightarrow \exists M : \left| c_k y^k \right| < M, \ \forall k \in \mathbb{N}$$
 Тогда
$$\sum_{k=0}^{\infty} |c_k| |y|^k \left| \frac{x}{y} \right|^k \leq \underbrace{M \cdot \sum_{k=0}^{\infty} \left| \frac{x}{y} \right|^k}_{\text{сходится, геом. прогр.}} \Rightarrow \text{исходный ряд сходится абсолютно.}$$

2)
$$|x| > R$$
.

Предположим обратное - ряд $\sum\limits_{k=0}^{\infty}c_kx^k$ сходится. Тогда $x\in D\Rightarrow R\geq |x|$. Противоречие.

3)
$$\left|c_k x^k\right| \le \left|c_k\right| \cdot \underbrace{\left(\max\{|a|,|b|\}\right)^k}_{\lambda}$$

$$\sum\limits_{k=0}^{\infty}|c_k|\lambda^k$$
 — сходится по пункту $(1)\Rightarrow\sum\limits_{k=0}^{\infty}c_kx^k$ сх. равномерно по признаку Вейрштрасса, т.к.

$$\left|c_k x^k
ight| \leq |c_k| \lambda^k$$
 и $\sum\limits_{k=0}^{\infty} |c_k| \lambda^k -$ сходится.

4)
$$\sum_{k=0}^{\infty} c_k x^k = \sum_{k=0}^{\infty} c_k R^k \left(\frac{x}{R}\right)^k.$$

Положим $a_k = c_k R^k$ - сходится равномерно, т.к. не зависит от иксов.

Положим
$$b_k = \left(\frac{x}{B}\right)^k . \forall k, \forall x : |b_k(x)| \le 1.$$

Тогда по признаку Абеля ряд сходится равномерно.

5) Предположим, что сходится равномерно. Тогда заметим, что R - предельная точка E=[0,R). Пусть также $u_n(x)=c_nx^n$ и $\exists\lim_{x\to R=0}u_n(x)=c_nR^n.$

Тогда по теореме о почленном переходе к пределу ряд $c_n R^n$ - сходится. Противоречие.

Теорема Коши-Адамара.

Пусть:

a)
$$\sum_{k=0}^{\infty} c_k x^k$$

b)
$$R = \sup \left\{ |x| : \sum_{k=0}^{\infty} c_k x^k - \mathsf{сходится} \right\}$$

c)
$$au = \overline{\lim}_{k \to \infty} |c_k|^{\frac{1}{k}}$$

Тогда:

1)
$$\tau = 0 \Rightarrow R = \infty$$

2)
$$\tau = \infty \Rightarrow R = 0$$

3)
$$\tau \in (0, \infty) \Rightarrow R = \frac{1}{\tau}$$

R - радиус сходимости.

Proof:

Положим $x \neq 0$, если x = 0, то всё очевидно.

Далее будем пользоваться радикальным признаком Коши.

1)
$$\tau = 0$$

Положим
$$a_k=\left|c_kx^k\right|\Rightarrow L=\varlimsup_{k\to\infty}\left|c_kx^k\right|^{\frac{1}{k}}=|x| au$$

 $L=|x| au<1\Rightarrow$ сходится. Т.к. au=0, то сходится для любого $x\Rightarrow R=\infty$.

2)
$$\tau = \infty$$

L=|x| au<1. Т.к. $au=\infty$, то ряд сходится только в точке $x=0\Longrightarrow R=0$.

3)
$$\tau \in (0, \infty)$$

Ряд сходится, если $|x| < \frac{1}{\tau} \Longrightarrow R \ge \frac{1}{\tau}$.

Пусть $R>\frac{1}{ au}\Rightarrow \exists y\in D: |y|>\frac{1}{ au}\Rightarrow |y| au>1\Rightarrow$ в точке у ряд расходится. Противоречие.

Значит $R = \frac{1}{\tau}$.

6.1 Операции со степенными рядами

Теорема о почленном дифференцировании/интегрировании.

Пусть:

а)
$$f(x) = \sum\limits_{n=0}^{\infty}$$
 - степенной ряд

b) R>0 - радиус его сходимости

Тогда:

1)
$$f'(x)=\sum\limits_{n=1}^{\infty}nc_{n}x^{n-1},R_{1}$$

2)
$$\int_{0}^{x} f(t)dt = \sum_{n=0}^{\infty} \frac{c_n}{n+1} x^{n+1}, R_2$$

3)
$$R 1 = R 2 = R$$

Proof:

3)

$$R_1 = rac{1}{\lim\limits_{n o \infty} \ ^{n-1}\!\sqrt{|nc_n|}} = rac{1}{\lim\limits_{n o \infty} \ ^{n}\!\sqrt{|c_n|}} = R$$

$$R_2 = \frac{1}{\lim\limits_{n \to \infty} \ ^{n+1}\!\!\sqrt{\left|\frac{c_n}{n+1}\right|}} = \frac{1}{\lim\limits_{n \to \infty} \ ^{n}\!\!\sqrt{|c_n|}} = R$$

1)
$$R_1 = R > 0$$

Выберем на интервале (-R,R) произвольную точку х и отрезок [a,b] её содержащий. По т. о радиусе сходимости на этом отрезке ряд сходится равномерно.

Исходный ряд сходится в 0. $u_k \in D([a,b])$

Тогда по теореме о почленном дифференцировании $f'(x) = \sum_{n=1}^{\infty} nc_n x^{n-1}$ выполняется, а в силу произвольности х выполняется везде.

2)
$$R_2 = R > 0$$

Возьмем отрезок [0,x]. На нём есть равномерная сходимость. $u_k \in R([0,x])$. Тогда по теореме о почленном интегрировании выполняется $\int\limits_0^\infty f(t)dt = \sum\limits_{n=0}^\infty \frac{c_n}{n+1} x^{n+1}$.

Замечание

Радиусы сходимости могут быть равны, а множества сходимости отличаться.

$$\left(\sum_{n=1}^{\infty} \frac{1}{n} x^n\right)' \underset{(-1,1)}{=} \left(\sum_{n=1}^{\infty} x^{n-1}\right)$$

$$R = 1$$

В точке 1 первый ряд расходится. В точке -1 первый ряд сходится.

В точке 1 второй ряд расходится. В точке -1 второй ряд расходится.

Радиусы равны, а множества сходимости нет.

Теорема о нулях степенного ряда.

а)
$$f(x) = \sum\limits_{n=0}^{\infty}$$
 - степенной ряд

b) R > 0 - радиус его сходимости

с) Пусть существует
$$\left\{x_n\right\}_{n=1}^{\infty}\subset (-R,R)\setminus\{0\}$$

$$\lim_{n\to\infty}x_n=0~\mathrm{и}~f(x_n)=0, \forall n\in\mathbb{N}$$

Тогда:

$$c_n = 0, \forall n \in \mathbb{N}_0$$

Proof:

Индукция по индексу n.

База:

$$n = 0, f \in C(-R, R)$$

Тогда
$$0=\lim_{n\to\infty}f(x_n)=\underbrace{f\Bigl(\lim_{n\to\infty}x_n\Bigr)}_{\text{по непрерывности}}=f(0)=c_0$$

Предположение:

$$c_0 = \dots = c_n = 0$$

$$f(x) = \sum_{k=0}^{\infty} c_k x^k = \sum_{k=n+1}^{\infty} c_k x^k = x^{n+1} \sum_{k=n+1}^{\infty} c_{k+n+1} x^k$$

 $R_{g(x)}=R_{f(x)}$ как предел сдвинутой на n последовательности.

$$g(x_n) = 0, \forall n$$

$$0=f(x_n)=\underbrace{x_n^{n+1}}_{\neq 0}g(x_n)\Longrightarrow c_{0+n+1}=0$$
 (следует из базы индукции для g). Доказано.

6.2 Аналитические функции

Опр. ряд Тейлора.

Пусть есть
$$f \in C^{\infty}(\{a\}), a \in E, f : E \to R$$

Значит
$$\exists f^{(k)}(a), \forall k \in \mathbb{N}_0$$

Тогда
$$T_{f,a}(x)=\sum\limits_{k=0}^{\infty}rac{f^{(k)}(a)}{k!}(x-a)^{k}$$
 ____ $f(x)$

 $a \in M$ точно можно гарантировать.

<u>Пример 1</u>

$$a = 0$$

$$f(x) = \begin{cases} e^{-\frac{1}{x^2} \max x \neq 0} \Longrightarrow f^{(k)}(x) = \begin{cases} Q(x)e^{-\frac{1}{x^2} \max x \neq 0} \Longrightarrow f^{(k)}(0) = 0, \forall k \in \mathbb{N}_0 \Longrightarrow T_{f,0}(x) \equiv 0 \\ 0 \max x = 0 \end{cases}$$

<u>Пример 2</u>

$$g(x) = \int\limits_0^\infty e^{-t} \cos(t^2 x) dt)$$

$$q^{(2k)}(0) = (4k)! \cdot (-1)^k$$

$$q^{(2k+1)}(0) = 0$$

$$T_{g,0} = \sum_{k=0}^{\infty} \frac{(4k)!(-1)^k}{(2k)!} x^{2k} \rightarrow 0, x \neq 0 \Longrightarrow R = 0$$

Опр. аналитичской функции.

f:E o R, f аналитична в точке a, если $\exists \delta>0:T_{f,a}(x)=f(x),$ $\forall x\in(a-\delta,a+\delta)\cap E$ <u>Теорема Тейлора.</u>

Пусть:

 $\{c_k\}$ —произвольная последовательность

Тогда:

$$\exists f \in C^{\infty}(\{0\}): T_{f,0}(x) = \sum_{k=0}^{\infty} \tfrac{c_k}{k!} x^k$$

(Для любой последовательности вещественных чисел существует функция $f\in C^\infty(\{0\})$, такая что $f^{(n)}(0)=c_n, \forall n\in\mathbb{N}_0$)

Достаточные условия аналитичности.

Пусть:

а)
$$f \in C^{\infty}(-r,r)$$
, для некоторого $r > 0$

b)
$$\exists L > 0, \exists \lambda \in [0,1): \forall n \in \mathbb{N}_0, \forall x \in (-r,r) \longrightarrow |f^{(n)}(x)| \leq L^n n^{n\lambda}$$

Тогда:

$$f(x) = T_{f,0}(x), \forall x \in (-r,r)$$

Proof:

В силу формулы Тейлора с остаточным членом в форме Лагранжа имеем:

$$f(x) = \underbrace{\sum_{k=0}^{N-1} \frac{f^{(k)}(a)}{k!} x^k}_{\to T_{f,0}(x)} + \underbrace{\frac{f^{(N)}(\tau_N x)}{(N)!} x^N}_{\to 0}, \tau_N \in (0,1)$$

В силу условия (b) имеем оценку:

$$0 \leq \left| rac{f^{(N)}(au_N x)}{(N)!} x^N
ight| \leq \underbrace{rac{L^N N^{N\lambda}}{N!} r^N}_{ ext{нужно чтобы это } o 0}$$

Обозначим правую часть за b_n . Тогда $\frac{b_{n+1}}{b_n}=\frac{Lr}{n+1}\big(\frac{N+1}{N}\big)^{N\lambda}(N+1)^{\lambda} \to L\cdot r\cdot e^{\lambda}\cdot 0 \to 0$

Тогда по Даламберу $\sum b_N$ сходится $\Rightarrow b_N \to 0$.