

J Selective Sampling-based Scalable Sparse Subspace Clustering

Shin Matsushima

Maria Broic

-OVERVIEW

Sparse Subspace Clustering (SSC)

- ✓ high performance clustering for high dimensional data with strong theoretical guarantees
- quadratic complexity w.r.t. number of data points

Selective Sampling-based Scalable Sparse Subspace Clustering (S⁵C)

- ✓ Theoretical Guarantee → Theoretical Scalability
- Low computational cost → Experimental Scalability
- ✓ Good clustering performance

SUBSPACE CLUSTERING

-0.1 +0.3 +0.8 = ·

Assumption: high-dimensional data points lie in the union of lowdimensional subspaces.

Goal: identify subspaces and assign data points to the subspaces

Algorithm:

- 1. Representation learning
- 2. Derive an affinity graph
- 3. Spectral clustering

Application:

Clustering images Clustering documents...

Represent data point as a linear combination

→Perform selective sampling for subsamples so that all data points are represented well

S5C ALGORITHM

Randomly sample a data point

2. Solve min $\left(c_2 + c_5 + c_7 \right) - \left(c_2 + c_5 \right)$ among current collection of subsamples $\{ \mathbb{Z}, \mathbb{Z}, \mathbb{Z} \}$

- 3. Find selective sample that helps representation of best
- 5. Repeat 1.-4. T times starting from {}

6. Solve min $\left\| \left(c_2 + c_3 + c_5 + c_7 \right) - \cdot \right\|^2$ w.r.t. final subsamples for all data points

> Iteratively select samples which seems to help better representations!

- 1. Initialize N-by-L matrix V as a random orthogonal matrix
- 2. $V \leftarrow (2I L) V$
- 3. Orthogonalize V by QR decomposition
- 4. Repeat 2.-3. until convergence
- 5. Apply K-means for V

Graph Laplacian L has O(N) nonzero elements $\rightarrow O(N)$ algorithm!

-RELATED WORK.

10001010												
	SSC	SSC-OMP	SSC- ORGEN	555C	5 ⁵ C							
Theoretical Scalability	X	X	X	X	√							
Experimental Scalability	X	✓	✓		√							

THEORETICAL SCALABILITY

S⁵C Algorithm performs perfect clustering in O(N) running time in high probability under some generative model

Required number of subsample (=T) is O(1) w.r.t. N

Semi Random model

Data points are uniformly randomly generated from unit ball in each subspace Subspace detection property (SDP)

- 1. c_{i'} for i-th data is nonzero only when i and i' shares the same subspace
- 2. c is not all zeros

-0.1 +0.3 +0.8 = =	
--------------------	--

-CLUSTERING PERFOEMANCE

Clustering error (%)

				J			
	Nystrom	AKK	SSC	SSC-OMP	SSC-ORGEN	SSSC	5 ⁵ C
Yale B	76.8	85.7	33.8	35.9	37.4	59.6	39.3
Hopkins 155	21.8	20.6	4.1	23.0	20.5	21.1.	14.6
COIL-100	54.5	53.1	42.5	57.9	89.7	67.8	45.9
Letter-rec	73.3	71.7	/	95.2	68.6	68.4	67.7
CIFAR-10	76.6	75.6	/	/	82.4	82.4	75.1
MNIST	45.7	44.6	/	/	28.7	48.7	40.4
Devanagari	73.5	72.8	/	/	58.6	84.9	67.2

SPARSE SUBSPACE CLUSTERING

Solve for all data points $\rightarrow O(N^2)$ algorithm! \rightarrow not scalable ($\stackrel{\bullet}{\smile}$)

+ L1 regularizer on c

- represent a data point as a linear combination among all data points

remain

- -0.1 +0.3 +0.8 = :

→ only some data points in the same subspace

According to the

absolute value of

the gradient

 \rightarrow O(NT) algorithm!

→ perfect clustering is theoretically proven

SDP property

EXPERIMENTAL -SCALABILITY

Number of Datapoints