Propensity Score Analysis

SEMINAR IN CRIMINOLOGY, RESEARCH AND ANALYSIS— CRIM 7301
WEEK 5, 9/22/16
ANDREW WHEELER

Class Overview

- Use Case for Propensity Score
- Weighting vs. Matching
- Balance Statistics

Use Case for Propensity Scores

- Treatment is *categorical* you either get it or you don't. Treatment cannot be a continuous variable.
- You have a general idea of what predicts selection into treatment, but don't have an exact model.
- You have a large sample of potential control cases, but many may be very different than those in treated sample

Calculating Propensity Scores

Predict the probability of treatment (typically using logistic regression)

$$Prob(T) = f(\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k)$$

- Then can use the predicted probability of treatment, \hat{p} , as regression weight:
 - Weight is $1/\hat{p}$ if treated
 - For non-treated it is $1/(1-\hat{p})$
- Or can included propensity score on right hand side
- Or can match control cases based on \hat{p}

Calculating Propensity Scores

Density is weighted inverse to the proportion of cases within each group.

Weighting vs. Matching vs. OLS

Benefits of matching:

- Matching controls for non-linear effects on the outcome for control variables
- Prevents making apples to oranges comparisons
- Large weights can cause problems (see Freedman and Berk, 2008, Weighting Regressions by Propensity Scores)
- can be comparable to OLS by using doubly robust estimates
- can be simple, can conduct a t-test of mean differences for the matched control vs treatment sample
- Can match even with partial missing data

• Drawbacks?

- Ad-hoc
- Can't use all the cases

Types of Matching

- Exact matching
- Nearest-Neighbor: Caliper sometimes ¼ standard deviation of the logit, sometimes some small probability difference (1~2%)
- Optimal Matching
- Stratification

Generally these do not make a large difference (as long as balanced obtained) – see work by Austin (2012) *A comparison of 12 algorithms for matching on the propensity score*

Can have multiple matches, diminishing returns after ~5.

Checking Balance

Local tests for individual covariates:

- t-tests of mean differences
- Standardized bias: t = treatment sample, c = control sample, $\bar{X} = mean$, $S^2 = variance$. (typically want 20% or less)

$$100 \cdot \frac{(\overline{X_t} - \overline{X_c})}{\sqrt{(S_t^2 + S_c^2)/2}}$$

Side by side histograms or other graphics (like a dot plot)

Global tests

 Refit the propensity score equation using the same covariates on the *matched* data and test that all coefficients equal zero, see http://blogs.worldbank.org/impactevaluations/tools-trade-joint-test-orthogonality-when-testing-balance

Checking Balance

Table 1: Covariate Balance on Crime Variables

Covariate	Set	Condition	\mathbf{N}	Mean	Std. Dev.	T-Test	Std. Bias
Part 1 Violent	Full Samp.	Control	11514	0.9	2.0		
		Treated	345	2.5	3.8	15.0	55
	Matched Samp.	Control	328	1.5	2.4		
		Treated	328	2.0	2.6	2.6	20
Part 1 Non-Violent	Full Samp.	Control	11514	3.8	8.4		
		Treated	345	5.8	8.4	4.4	24
	Matched Samp.	Control	328	3.7	5.7		
		Treated	328	4.9	5.9	2.8	22

Other Tips

• Pro-tip with many variables — do data reduction! (More variables harder to balance them all)

Software

- R's MatchIt is the most flexible and tends to produce the best quality matches.
 Slower though and more computationally intensive
- Stata has corrections for standard errors built in, but forces you to use weighted statistics (command *psmatch2* does not allow drawing without replacement)
- SPSS *FUZZY* does not always do a good job drawing comparisons, will work for very large datasets though, and can customize drawing matches (see https://andrewpwheeler.wordpress.com/2015/05/20/fuzzy-matching-in-spss-using-a-custom-python-function/)

Homework & Next Weeks Class

Lab Assignment

- propensity score matching in R (using *MatchIt*), or Stata (using *psmatch2*), or in SPSS (using *FUZZY*)

For Next Week – Difference in Difference Regression Designs

- readings, Mostly Harmless, Chapter 5
- Allison, P. (1990). Change scores as dependent variables in regression analysis, *Sociological Methodology* 20: 93-114.
- Maltz, M., Gordon, A., McDowell, D., and McClearly R. (1980). An artifact in pretest-posttest designs: How it can mistakenly make delinquency programs look effective. *Evaluation Review* 4(2): 225-240.