

planetmath.org

Math for the people, by the people.

closed operator

Canonical name ClosedOperator
Date of creation 2013-03-22 13:48:20
Last modified on 2013-03-22 13:48:20

Owner Koro (127) Last modified by Koro (127)

Numerical id 9

Author Koro (127)
Entry type Definition
Classification msc 47A05
Synonym closed

Defines closure
Defines closable
Defines core

Let B be a Banach space. A linear operator $A : \mathcal{D}(A) \subset B \to B$ is said to be if for every sequence $\{x_n\}_{n\in\mathbb{N}}$ in $\mathcal{D}(A)$ converging to $x\in B$ such that $Ax_n \xrightarrow[n\to\infty]{} y\in B$, it holds $x\in\mathcal{D}(A)$ and Ax=y. Equivalently, A is closed if its graph is closed in $B\oplus B$.

Given an operator A, not necessarily closed, if the closure of its graph in $B \oplus B$ happens to be the graph of some operator, we call that operator the **closure** of A, and we say that A is **closable**. We denote the closure of A by \overline{A} . It follows easily that A is the restriction of \overline{A} to $\mathcal{D}(A)$.

A **core** of a closable operator is a subset \mathscr{C} of $\mathscr{D}(A)$ such that the closure of the restriction of A to \mathscr{C} is \overline{A} .

The following properties are easily checked:

- 1. Any bounded linear operator defined on the whole space B is closed;
- 2. If A is closed then $A \lambda I$ is closed;
- 3. If A is closed and it has an inverse, then A^{-1} is also closed;
- 4. An operator A admits a closure if and only if for every pair of sequences $\{x_n\}$ and $\{y_n\}$ in $\mathcal{D}(A)$, both converging to $z \in B$, and such that both $\{Ax_n\}$ and $\{Ay_n\}$ converge, it holds $\lim_n Ax_n = \lim_n Ay_n$.