M. F. Pradier¹, V. Stojkoski², Z. Utkovski², L. Kocarev², F. Perez-Cruz¹

¹University Carlos III in Madrid,

²Macedonian Academy of Sciences and Arts
melanie@tsc.uc3m.es

PROBLEM STATEMENT

- ► **Aim**: What makes some countries wealthier than others? *Hypothesis*: Capabilities explain economic development of countries [3].
- ► Contribution: A BNP time-dependent Poisson factorization model to analyze international trade.
- ▶ **Key Idea**: Force sparsity in the features for interpretability, and account for temporal dynamics using a markov Indian buffet process.

STATIC POISSON FACTORIZATION MODEL

Let $\mathbf{X} = \{0,1\}^{N \times D}$ be the thresholded revealed competitive advantage (RCA) matrix for N countries and D products:

$$RCA_{nd} = \frac{E_{nd} / \sum_{p} E_{nd}}{\sum_{n} E_{nd} / \sum_{n,d} E_{nd}}$$
$$x_{nd} = \begin{cases} 1, & \text{if } RCA_{nd} \ge 1\\ 0, & \text{otherwise} \end{cases}$$

 E_{nd} refers to the raw export size (in \$) for country n and product d.

► The generative model for the *Bernoulli Process Poisson Factor Analysis model* (BeP-PFA) is as follows:

$$egin{aligned} x_{nd} &\sim \operatorname{Poisson}ig(m{Z_{n:}} \ m{B_{:d}}ig) \ B_{kd} &\sim \operatorname{Gamma}ig(lpha_B, rac{\mu_B}{lpha_B}ig) \ m{Z} &\sim \operatorname{IBP}(lpha_Z) \end{aligned}$$

► The IBP prior can be replaced by more flexible priors, such as the Restricted IBP or the Three-parameter IBP.

DYNAMIC POISSON FACTORIZATION MODEL

- \triangleright We now assume T timestamps (years).
- ▶ We resort to a markov IBP to account for temporal dynamics [2].
- ► The generative model for the *dynamic Bernoulli Process Poisson Factor Analysis model* (dBeP-PFA) is as follows:

$$egin{aligned} & x_{nd}^{(t)} \sim \operatorname{Poisson}\left(oldsymbol{Z_{n:}}^{(t)} oldsymbol{B}_{:d}
ight) \ & B_{kd} \sim \operatorname{Gamma}\left(lpha_{B}, rac{\mu_{B}}{lpha_{B}}
ight) \ & a_{k} \sim \operatorname{Beta}(rac{lpha_{Z}}{K}, 1), \ & b_{k} \sim \operatorname{Beta}(\gamma, \delta), \ & z_{nk}^{(t)} | a_{k}, b_{k} \sim \operatorname{Bernoulli}\left(oldsymbol{a_{k}^{1-z_{nk}^{(t-1)}} b_{k}^{z_{nk}^{(t-1)}}}
ight) \end{aligned}$$

where $z_{nk}^{(0)} = 1, \forall n, k$. The transition matrix Q_k for feature k is given by:

$$Q_k = \left(egin{array}{ccc} 1-a_k & a_k \ 1-b_k & b_k \end{array}
ight)$$

INFERENCE

- ightharpoonup MCMC approach, e.g., Gibbs sampler + slice sampler for the IBP
- ► K Poisson-distributed auxiliary random variables, i.e., $x_{nd}^{(t)} = \sum_{k=1}^{K} r_{nd,k}^{(t)}$
- Forward Filtering Backward Sampling (FFBS) to approximate $p(\mathbf{Z}|\mathbf{X},\mathbf{B})$

$$p(\mathbf{X}_{n:}^{(1:t)}, \mathbf{z}_{nk}^{(t)}|-) = p(\mathbf{X}_{n:}^{(t)}|\mathbf{z}_{nk}^{(t)}, -) \sum_{\mathbf{z}_{nk}^{(t-1)}} p(\mathbf{X}_{n:}^{(1:t-1)}, \mathbf{z}_{nk}^{(t-1)}|-) p(\mathbf{z}_{nk}^{(t)}|\mathbf{z}_{nk}^{(t-1)})$$

- Forward step: compute $p(z_{nk}^{(t)}|\mathbf{X}_{n:}^{(1:t)},\mathbf{Z}_{n,\neg k}^{(t)},\mathbf{B})$
- ▶ Backward step: sample from $p(z_{nk}^{(t)}|z_{nk}^{(t+1)}, \mathbf{X}_{n:}^{(1:t)}, \mathbf{Z}_{n,\neg k}^{(t)}, \mathbf{B})$

RESULTS

We compare against:

- Poisson-Gamma Dynamical Systems (PGDS) [4]
- ► Thinned Gamma Process Poisson Factor Analysis (tGaP-PFA) [1]

Table 1: Model Comparison in terms of test log-likelihood and topic coherence.

Table 2 : List of inferred latent features.

Figure 1: $Z_{\cdot k}^{(:)}$: Feature activation for k=2.

Figure 2: $Z_{n:}^{(:)}$: Features activation for specific countries. Always active features omitted, e.g., Bolivia: F13; Indonesia: F12, F14; United Kingdom: F2, F4, F5, F8, F10; Egypt: F9, F15.

Figure 3:	Finita	ctate	machine	٥f	latent	fastur	
i igure 5.	1 IIIILE	State	macmine	OI	iatem	reatur	C 2

Transitions	Country	Years		
1 o 2	Congo	1996-1997		
2 o 1	Angola	1976-1977		
$2 \rightarrow 3$	Colombia	1977-1978		
$2 \rightarrow 4$	Cote D'Ivoire	1998-1999		
$2 \rightarrow 4$	Cameroon	1970-1971		
$2 \rightarrow 4$	Ecuador	1992-1993		
$2 \rightarrow 5$	El Salvador	1985-1986		
$3 \rightarrow 2$	Cambodia	1996-1997		
3 o 5	Costa Rica	1998-1999		
$4 \rightarrow 2$	Cote D'Ivoire	1983-1984		
$4 \rightarrow 2$	Cameroon	1975-1976		
$4 \rightarrow 2$	Honduras	1997-1998		
$4 \rightarrow 2$	Nicaragua	1982-1983		
$4 \rightarrow 5$	Costa Rica	1986-1987		
5 o 2	El Salvador	1982-1983		
5 o 3	Costa Rica	1997-1998		
5 o 4	Costa Rica	1999-2000		

Table 3: Transition examples.

CONCLUSIONS

- 1. Interpretable BNP model for temporal high-dim count data (sparse, non-negative features).
- 2. Markovian dynamics for features activation.
- 3. Analysis of productive structure of world economies.

WORK IN PROGRESS

- Mixing improvement, better coverage of the posterior:
 - Split and merge moves.
 - Particle Gibbs with Ancestor Sampling.
- Dictionary variation over time via Gamma-Poisson auto-regressive chains.

REFERENCES

- 1. Nicholas J. Foti, Joseph D. Futoma, Daniel N. Rockmore, and Sinead Williamson. A unifying representation for a class of dependent random measures. 2012.
- 2. Jurgen V. Gael, Yee W. Teh, and Zoubin Ghahramani. The Infinite Factorial Hidden Markov Model. 2009.
- 3. César A. Hidalgo and Ricardo Hausmann. The building blocks of economic complexity. 2009.
- 4. Aaron Schein, Hanna Wallach, and Mingyuan Zhou. Poisson-Gamma dynamical systems. 2016.

