Question 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Ans:

- 1. Optimal value of alpha for Ridge is 2.
- 2. Optimal value of alpha Lasso it is 0.001.

After doubling the alpha values in the Ridge and Lasso, the prediction accuracy remains around 0.82 but there is a small change in the co-efficient values.

Model(Ridge)

	Ridge Co-Efficient	Ridge Doubled Alpha Co-Efficient		
Total_sqr_footage	0.169122	Total_sqr_footage	0.149028	
GarageArea	0.101585	GarageArea	0.091803	
TotRmsAbvGrd	0.067348	TotRmsAbvGrd	0.068283	
OverallCond	0.047652	OverallCond	0.043303	
LotArea	0.043941	LotArea	0.038824	
CentralAir_Y	0.032034	Total_porch_sf	0.033870	
LotFrontage	0.031772	CentralAir_Y	0.031832	
Total_porch_sf	0.031639	LotFrontage	0.027526	
Neighborhood_StoneBr	0.029093	Neighborhood_StoneBr	0.026581	
Alley_Pave	0.024270	OpenPorchSF	0.022713	
OpenPorchSF	0.023148	MSSubClass_70	0.022189	
MSSubClass_70	0.022995	Alley_Pave	0.021672	
RoofMatl_WdShngl	0.022586	Neighborhood_Veenker	0.020098	
Neighborhood_Veenker	0.022410	BsmtQual_Ex	0.019949	
SaleType_Con	0.022293	KitchenQual_Ex	0.019787	
HouseStyle_2.5Unf	0.021873	HouseStyle_2.5Unf	0.018952	
PavedDrive_P	0.020160	MasVnrType_Stone	0.018388	
KitchenQual_Ex	0.019378	PavedDrive_P	0.017973	
LandContour_HLS	0.018595	RoofMatl_WdShngl	0.017856	
SaleType_Oth	0.018123	PavedDrive_Y	0.016840	

Model(Lasso)

Lasso Co-Efficient	Lasso Doubled Alpha Co-Efficient

Total_sqr_footage	0.202244	Total_sqr_footage	0.204642
GarageArea	0.110863	GarageArea	0.103822
TotRmsAbvGrd	0.063161	TotRmsAbvGrd	0.064902
OverallCond	0.046686	OverallCond	0.042168
LotArea	0.044597	CentralAir_Y	0.033113
CentralAir_Y	0.033294	Total_porch_sf	0.030659
Total_porch_sf	0.028923	LotArea	0.025909
Neighborhood_StoneBr	0.023370	BsmtQual_Ex	0.018128
Alley_Pave	0.020848	Neighborhood_StoneBr	0.017152
OpenPorchSF	0.020776	Alley_Pave	0.016628
MSSubClass_70	0.018898	OpenPorchSF	0.016490
LandContour_HLS	0.017279	KitchenQual_Ex	0.016359
KitchenQual_Ex	0.016795	LandContour_HLS	0.014793
BsmtQual_Ex	0.016710	MSSubClass_70	0.014495
Condition1_Norm	0.015551	MasVnrType_Stone	0.013292
Neighborhood_Veenker	0.014707	Condition1_Norm	0.012674
MasVnrType_Stone	0.014389	BsmtCond_TA	0.011677
PavedDrive_P	0.013578	SaleCondition_Partial	0.011236
LotFrontage	0.013377	LotConfig_CulDSac	0.008776
PavedDrive_Y	0.012363	PavedDrive_Y	0.008685

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

- Optimum lambda value: Ridge 2 and Lasso 0.0001
- MSE: Ridge 0.002 Lasso 0.002
- Lasso, Because it helps in feature reduction.

Question 3

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Ans: Five most important predictors(Lasso Model:

- Total_sqr_footage
- 2. GarageArea
- 3. TotRmsAbvGrd
- 4. OverallCond
- 5. LotArea

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

As Per, Occam's Razor— given two models that show similar 'performance' in the finite training or test data, we should pick the one that makes fewer on the test data due to following reasons:-

- Simpler models are usually more 'generic'.
- Simpler models require fewer training samples as compare to complex.
- Simpler models are more robust.
 - o Complex models tend to change wildly with changes in the training data set
 - Simple models have low variance, high bias and complex models have low bias, high variance
 - Simpler models make more errors in the training set. Complex models lead to overfitting —
 they work very well for the training samples, fail miserably when applied to other test
 samples

Hence one must make the model more robust and generalizable, make the model simple.

Also, Making a model simple leads to Bias-Variance Trade-off:

- A complex model will need to change for every little change in the dataset and hence is very unstable and extremely sensitive to any changes in the training data.
- A simpler model that abstracts out some pattern followed by the data points given is unlikely to change wildly even if more points are added or removed.

Thus accuracy of the model can be maintained by keeping the balance between Bias and Variance as it minimizes the total error.