```
In [1]: # import packages that will be used for the logistics regression analysis
        import pylab
        import seaborn as sb
        sb.set(style="white")
        sb.set(style="whitegrid", color codes=True)
        import sklearn
        from sklearn.metrics import confusion matrix
        from sklearn import preprocessing
        from sklearn.decomposition import PCA
        from sklearn.linear model import LogisticRegression
        from sklearn.model selection import train test split
        from sklearn.metrics import roc auc score
        from sklearn.metrics import roc curve
        from sklearn.metrics import classification report
        from sklearn import metrics
        import matplotlib.pyplot as plt
        plt.rc("font", size=14)
        import numpy as np
        import scipv.stats as stats
        import statsmodels.api as sm
        import statsmodels.formula.api as smf
        from IPython.core.display import HTML
        from IPython.display import display
        import pandas as pd
        from pandas import Series, DataFrame
        from sklearn.metrics import classification report, confusion matrix
        from imblearn.over sampling import SMOTE
        # import data set that will be used for the logistics regression analysis
        pd.set option('display.max columns', None)
        df = pd.read csv (r'C:\Users\fahim\Documents\0 WGUDocuments\d208\1medical clean.csv')
        # rename the item columns accordingly
        df.rename(columns={'Item1':'Timely admis','Item2':'Timely treat',
         'Item3':'Timely visits','Item4':'Reliability',
          'Item5':'Options','Item6':'Hrs treat',
         'Item7': 'Courteous', 'Item8': 'Active listen'}, inplace=True)
        df.head()
        df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 50 columns):

Data #	columns (total 50 c	Non-Null Count	Dtype
0	 CaseOrder	10000 non-null	 int64
1	Customer id	10000 non-null	object
2	Interaction	10000 non-null	object
3	UID	10000 non-null	object
4	City	10000 non-null	object
5	State	10000 non-null	object
6	County	10000 non-null	object
7	Zip	10000 non-null	int64
8	Lat	10000 non-null	float64
9	Lng	10000 non-null	float64
10	Population	10000 non-null	int64
11	Area	10000 non-null	object
12	TimeZone	10000 non-null	object
13	Job	10000 non-null	object
14	Children	10000 non-null	int64
15	Age	10000 non-null	int64
16	Income	10000 non-null	float64
17	Marital	10000 non-null	object
18	Gender	10000 non-null	object
19	ReAdmis	10000 non-null	object
20	VitD_levels	10000 non-null	float64
21	Doc_visits	10000 non-null	int64
22	Full_meals_eaten	10000 non-null	int64
23	vitD_supp	10000 non-null	int64
24	Soft_drink	10000 non-null	object
25	Initial_admin	10000 non-null	object
26	HighBlood	10000 non-null	object
27	Stroke	10000 non-null	object
28	Complication_risk	10000 non-null	object
29	Overweight	10000 non-null	object
30	Arthritis	10000 non-null	object
31	Diabetes	10000 non-null	object
32	Hyperlipidemia	10000 non-null	object
33	BackPain	10000 non-null	object
34	Anxiety	10000 non-null	object
35	Allergic_rhinitis	10000 non-null	object
36	Reflux_esophagitis	10000 non-null	object
37	Asthma	10000 non-null	object
38	Services	10000 non-null	object
39	Initial_days	10000 non-null	float64

```
40 TotalCharge
                        10000 non-null float64
41 Additional_charges 10000 non-null float64
42 Timely admis
                        10000 non-null int64
43 Timely_treat
                        10000 non-null int64
44 Timely visits
                        10000 non-null int64
45 Reliability
                        10000 non-null int64
46 Options
                        10000 non-null int64
47 Hrs treat
                       10000 non-null int64
48 Courteous
                        10000 non-null int64
                        10000 non-null int64
49 Active listen
dtypes: float64(7), int64(16), object(27)
memory usage: 3.8+ MB
```

In [2]: # drop all the demographic columns we don't need for this logistics regression analysis
 df.drop(['City','State','County','Area','Zip','Lat','Lng','Population','TimeZone','Additional_charges','TotalCharge','I
 # verify that all the columns were dropped before proceeding
 df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 34 columns):
```

```
Column
                        Non-Null Count Dtype
                        -----
     Children
0
                        10000 non-null int64
                        10000 non-null int64
1
     Age
 2
                        10000 non-null float64
    Income
    Marital
                        10000 non-null object
4
    Gender
                        10000 non-null object
 5
     ReAdmis
                        10000 non-null object
6
    VitD levels
                        10000 non-null float64
    Doc visits
                        10000 non-null int64
7
    Full meals eaten
                        10000 non-null int64
    vitD supp
                        10000 non-null int64
    Soft drink
                        10000 non-null object
10
11 Initial admin
                        10000 non-null object
    HighBlood
12
                        10000 non-null object
13
    Stroke
                        10000 non-null object
    Complication risk
                        10000 non-null object
15 Overweight
                        10000 non-null object
16
   Arthritis
                        10000 non-null object
17 Diabetes
                        10000 non-null object
   Hyperlipidemia
                        10000 non-null object
19 BackPain
                        10000 non-null object
    Anxiety
                        10000 non-null object
 20
 21 Allergic rhinitis
                        10000 non-null object
 22 Reflux esophagitis
                        10000 non-null object
 23 Asthma
                        10000 non-null object
 24 Services
                        10000 non-null object
   Initial days
                        10000 non-null float64
   Timely admis
                        10000 non-null int64
 26
 27 Timely treat
                        10000 non-null int64
   Timely visits
                        10000 non-null int64
   Reliability
                        10000 non-null int64
 29
    Options
                        10000 non-null int64
 30
 31 Hrs treat
                        10000 non-null int64
 32 Courteous
                        10000 non-null int64
 33 Active listen
                        10000 non-null int64
dtypes: float64(3), int64(13), object(18)
memory usage: 2.6+ MB
```

In [3]: #check if there is any duplicate data entries present in columns
 df[df.duplicated()]

Out[3]: Children Age Income Marital Gender ReAdmis VitD_levels Doc_visits Full_meals_eaten vitD_supp Soft_drink Initial_admin HighBlook

In [4]: # check if there are any duplicated columns in the data set - if there are none then the output should be False

Out[4]: False

In [5]: # check if there are any duplicated rows in the data set - if there are none then the output should be False

df.duplicated().any()

Out[5]: False

In [6]: # convert categorical yes/no values to numeric 1/0 values
df = df.replace(to_replace = ['Yes','No'],value = [1,0])
df

[6]:		Children	Age	Income	Marital	Gender	ReAdmis	VitD_levels	Doc_visits	Full_meals_eaten	vitD_supp	Soft_drink	Initial_admin	Н
	0	1	53	86575.93	Divorced	Male	0	19.141466	6	0	0	0	Emergency Admission	
	1	3	51	46805.99	Married	Female	0	18.940352	4	2	1	0	Emergency Admission	
	2	3	53	14370.14	Widowed	Female	0	18.057507	4	1	0	0	Elective Admission	
	3	0	78	39741.49	Married	Male	0	16.576858	4	1	0	0	Elective Admission	
	4	1	22	1209.56	Widowed	Female	0	17.439069	5	0	2	1	Elective Admission	
	•••													
	9995	2	25	45967.61	Widowed	Male	0	16.980860	4	2	1	0	Emergency Admission	
	9996	4	87	14983.02	Widowed	Male	1	18.177020	5	0	0	0	Elective Admission	
	9997	3	45	65917.81	Separated	Female	1	17.129070	4	2	0	1	Elective Admission	
	9998	3	43	29702.32	Divorced	Male	1	19.910430	5	2	1	0	Emergency Admission	
	9999	8	70	62682.63	Separated	Female	1	18.388620	5	0	1	0	Observation Admission	

10000 rows × 34 columns

```
In [7]: # convert the non-married Marital status values to "Married/Not Married", then convert "Married/Not Married" to "1/0"
#this will make the Marital variable easier to work with during regression analysis
df['Marital'] = df['Marital'].replace(['Divorced','Widowed','Separated','Never Married'],'Not Married')
df['Marital'] = df['Marital'].replace(['Married','Not Married'],[1,0])
df
```

Out[7]

]:		Children	Age	Income	Marital	Gender	ReAdmis	VitD_levels	Doc_visits	Full_meals_eaten	vitD_supp	Soft_drink	Initial_admin	Higl
	0	1	53	86575.93	0	Male	0	19.141466	6	0	0	0	Emergency Admission	
	1	3	51	46805.99	1	Female	0	18.940352	4	2	1	0	Emergency Admission	
	2	3	53	14370.14	0	Female	0	18.057507	4	1	0	0	Elective Admission	
	3	0	78	39741.49	1	Male	0	16.576858	4	1	0	0	Elective Admission	
	4	1	22	1209.56	0	Female	0	17.439069	5	0	2	1	Elective Admission	
	•••													
	9995	2	25	45967.61	0	Male	0	16.980860	4	2	1	0	Emergency Admission	
	9996	4	87	14983.02	0	Male	1	18.177020	5	0	0	0	Elective Admission	
	9997	3	45	65917.81	0	Female	1	17.129070	4	2	0	1	Elective Admission	
	9998	3	43	29702.32	0	Male	1	19.910430	5	2	1	0	Emergency Admission	
	9999	8	70	62682.63	0	Female	1	18.388620	5	0	1	0	Observation Admission	

10000 rows × 34 columns

```
In [8]: # Showcase the unique values for the Services variable
df['Gender'].unique()

Out[8]: array(['Male', 'Female', 'Nonbinary'], dtype=object)

In [9]: #convert the non-Female gender values to "Female/non-female", then convert "Female/non-female" to "1/0"
df['Gender'] = df['Gender'].replace(['Male','Nonbinary'],'non-female')
df['Gender'] = df['Gender'].replace(['Female','non-female'],[1,0])
df
```

Out[9]:		Children	Age	Income	Marital	Gender	ReAdmis	VitD_levels	Doc_visits	Full_meals_eaten	vitD_supp	Soft_drink	Initial_admin	Higl
	0	1	53	86575.93	0	0	0	19.141466	6	0	0	0	Emergency Admission	
	1	3	51	46805.99	1	1	0	18.940352	4	2	1	0	Emergency Admission	
	2	3	53	14370.14	0	1	0	18.057507	4	1	0	0	Elective Admission	
	3	0	78	39741.49	1	0	0	16.576858	4	1	0	0	Elective Admission	
	4	1	22	1209.56	0	1	0	17.439069	5	0	2	1	Elective Admission	
	•••													
	9995	2	25	45967.61	0	0	0	16.980860	4	2	1	0	Emergency Admission	
	9996	4	87	14983.02	0	0	1	18.177020	5	0	0	0	Elective Admission	
	9997	3	45	65917.81	0	1	1	17.129070	4	2	0	1	Elective Admission	
	9998	3	43	29702.32	0	0	1	19.910430	5	2	1	0	Emergency Admission	
	9999	8	70	62682.63	0	1	1	18.388620	5	0	1	0	Observation Admission	

10000 rows × 34 columns

```
In [10]: # Showcase the unique values for the Services variable
    df['Services'].unique()
Out[10]: array(['Blood Work', 'Intravenous', 'CT Scan', 'MRI'], dtype=object)
In [11]: # Drop the services variable since these values cannot be condensed
    df.drop(['Services'],axis = 1,inplace=True)
```

```
# Showcase the unique values for the Complication risk variable
In [12]:
         df['Complication risk'].unique()
         array(['Medium', 'High', 'Low'], dtype=object)
Out[12]:
In [13]: # Drop the services variable since these values cannot be condensed
         df.drop(['Complication risk'],axis = 1,inplace=True)
In [14]: # Showcase the unique values for the Initial_admin variable
         df['Initial admin'].unique()
         array(['Emergency Admission', 'Elective Admission',
Out[14]:
                 'Observation Admission'], dtype=object)
In [15]: # convert the non-emergency admission status values to "Emergency Admission/non-Emergency Admission", then convert "Eme
         #this will make the Marital variable easier to work with during regression analysis
         df['Initial_admin'] = df['Initial_admin'].replace(['Elective Admission','Observation Admission'],'non-Emergency Admissi
         df['Initial admin'] = df['Initial admin'].replace(['Emergency Admission', 'non-Emergency Admission'],[1,0])
         df
```

Out[15]

]:		Children	Age	Income	Marital	Gender	ReAdmis	VitD_levels	Doc_visits	Full_meals_eaten	vitD_supp	Soft_drink	Initial_admin	Higl
	0	1	53	86575.93	0	0	0	19.141466	6	0	0	0	1	
	1	3	51	46805.99	1	1	0	18.940352	4	2	1	0	1	
	2	3	53	14370.14	0	1	0	18.057507	4	1	0	0	0	
	3	0	78	39741.49	1	0	0	16.576858	4	1	0	0	0	
	4	1	22	1209.56	0	1	0	17.439069	5	0	2	1	0	
	•••													
9	995	2	25	45967.61	0	0	0	16.980860	4	2	1	0	1	
9	996	4	87	14983.02	0	0	1	18.177020	5	0	0	0	0	
9	997	3	45	65917.81	0	1	1	17.129070	4	2	0	1	0	
9	998	3	43	29702.32	0	0	1	19.910430	5	2	1	0	1	
9	999	8	70	62682.63	0	1	1	18.388620	5	0	1	0	0	

10000 rows × 32 columns

Out[16]:		Children	Age	Income	Marital	Gender	ReAdmis	VitD_levels	Doc_visits	Full_meals_eaten	
	count	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	
	mean	2.097200	53.511700	40490.495160	0.202300	0.501800	0.366900	17.964262	5.012200	1.001400	
	std	2.163659	20.638538	28521.153293	0.401735	0.500022	0.481983	2.017231	1.045734	1.008117	
	min	0.000000	18.000000	154.080000	0.000000	0.000000	0.000000	9.806483	1.000000	0.000000	
	25%	0.000000	36.000000	19598.775000	0.000000	0.000000	0.000000	16.626439	4.000000	0.000000	
	50%	1.000000	53.000000	33768.420000	0.000000	1.000000	0.000000	17.951122	5.000000	1.000000	
	75%	3.000000	71.000000	54296.402500	0.000000	1.000000	1.000000	19.347963	6.000000	2.000000	
	max	10.000000	89.000000	207249.100000	1.000000	1.000000	1.000000	26.394449	9.000000	7.000000	
4											
In [17]: In [18]:	<pre>df.to_csv(r'C:\Users\fahim\Documents\0_WGUDocuments\d208\2medical_clean-PREPAREDTASK2_12-24-2022.csv')</pre>										
	plt.show()										
	1 3	5331 3669 ReAdmis, dty	ype: int64								


```
# identify the columns for variables
         Variables = df.select dtypes(include = "number").columns
         print (Variables)
         Index(['Children', 'Age', 'Income', 'Marital', 'Gender', 'ReAdmis',
                 'VitD_levels', 'Doc_visits', 'Full_meals_eaten', 'vitD_supp',
                'Soft_drink', 'Initial_admin', 'HighBlood', 'Stroke', 'Overweight',
                'Arthritis', 'Diabetes', 'Hyperlipidemia', 'BackPain', 'Anxiety',
                'Allergic_rhinitis', 'Reflux_esophagitis', 'Asthma', 'Initial_days',
                'Timely_admis', 'Timely_treat', 'Timely_visits', 'Reliability',
                'Options', 'Hrs treat', 'Courteous', 'Active listen'],
               dtype='object')
In [20]: # create histogram plots of the identified predictor variables
         fig = plt.figure(figsize=(15, 15))
          ax = df[Variables].hist(bins = 15, figsize=(15,15))
          plt.title('Variables')
         fig.tight layout(h pad=5, w pad=5)
         plt.show()
```



```
In [21]: #selecting the target variable and showcasing the bivariate statistics

X=df.drop('ReAdmis',inplace=False, axis=1)
y=df['ReAdmis']

for column in X.columns:
    plt.scatter(X[column],y)
    plt.xlabel(column)
    plt.ylabel('ReAdmis')
    plt.show()
```



```
In [22]: # create the initial logistics model
log_reg_results = sm.Logit(df["ReAdmis"], df[['Children', 'Age', 'Income', 'Marital', 'Gender', 'VitD_levels', 'Doc_vis
print(log_reg_results.summary())
```

Optimization terminated successfully.

Current function value: 0.107566

Iterations 11

Logit Regression Results

______ Dep. Variable: ReAdmis No. Observations: 10000 Logit Df Residuals: Model: 9969 Method: MLE Df Model: 30 Date: Sat, 24 Dec 2022 Pseudo R-squ.: 0.8363 Time: 23:42:39 Log-Likelihood: -1075.7 True LL-Null: converged: -6572.9 Covaniance Type: IIP n-value: 0 000 nonnohust

Covariance Type:	nonrobust LLR p-value:				0.000			
	coef	std err	z	P> z	[0.025	0.975]		
Children	0.0050	0.025	0.200	0.841	-0.044	0.054		
Age	-0.0139	0.003	-5.094	0.000	-0.019	-0.009		
Income	-6.555e-06	1.92e-06	-3.422	0.001	-1.03e-05	-2.8e-06		
Marital	-0.0696	0.141	-0.495	0.620	-0.345	0.206		
Gender	-0.3728	0.112	-3.338	0.001	-0.592	-0.154		
VitD_levels	-0.4593	0.026	-17.936	0.000	-0.509	-0.409		
Doc_visits	-0.4609	0.053	-8.763	0.000	-0.564	-0.358		
Full_meals_eaten	-0.0743	0.056	-1.338	0.181	-0.183	0.035		
vitD_supp	-0.1947	0.086	-2.254	0.024	-0.364	-0.025		
Soft_drink	-0.0081	0.128	-0.064	0.949	-0.258	0.242		
<pre>Initial_admin</pre>	0.4679	0.111	4.197	0.000	0.249	0.686		
HighBlood	0.1121	0.113	0.990	0.322	-0.110	0.334		
Stroke	0.2222	0.140	1.584	0.113	-0.053	0.497		
Overweight	-0.4160	0.122	-3.416	0.001	-0.655	-0.177		
Arthritis	-0.4974	0.115	-4.320	0.000	-0.723	-0.272		
Diabetes	-0.1160	0.123	-0.944	0.345	-0.357	0.125		
Hyperlipidemia	-0.0781	0.118	-0.664	0.507	-0.308	0.152		
BackPain	-0.0150	0.112	-0.134	0.894	-0.235	0.205		
Anxiety	-0.3797	0.119	-3.198	0.001	-0.612	-0.147		
Allergic_rhinitis	-0.3806	0.113	-3.358	0.001	-0.603	-0.158		
Reflux_esophagitis	-0.3800	0.113	-3.348	0.001	-0.602	-0.158		
Asthma	-0.4210	0.123	-3.432	0.001	-0.661	-0.181		
<pre>Initial_days</pre>	0.4063	0.013	31.118	0.000	0.381	0.432		
Timely_admis	0.1473	0.081	1.828	0.068	-0.011	0.305		
Timely_treat	0.0719	0.074	0.976	0.329	-0.072	0.216		
Timely_visits	-0.3015	0.068	-4.402	0.000	-0.436	-0.167		
Reliability	-0.5018	0.060	-8.365	0.000	-0.619	-0.384		
Options	-0.9190	0.065	-14.239	0.000	-1.045	-0.792		
Hrs_treat	-0.3222	0.068	-4.747	0.000	-0.455	-0.189		
Courteous	-0.3539	0.061	-5.823	0.000	-0.473	-0.235		

```
-0.478
         Active listen
                               -0.3633
                                            0.058
                                                       -6.211
                                                                   0.000
                                                                                          -0.249
         Possibly complete quasi-separation: A fraction 0.51 of observations can be
         perfectly predicted. This might indicate that there is complete
         quasi-separation. In this case some parameters will not be identified.
        # create the correlation matrix
In [23]:
         matrix df = pd.read csv(r'C:\Users\fahim\Documents\0 WGUDocuments\d208\2medical clean-PREPAREDTASK2 12-24-2022.csv')
         matrix_df = matrix_df[['Children', 'Age', 'Income', 'Marital', 'Gender', 'VitD levels', 'Doc visits', 'Full meals eaten
         X = matrix df.iloc[:, 1:-1].values
         y = matrix df.iloc[:,-1].values
         from sklearn.model selection import train test split
In [24]:
         X train, X test, y train, y test = train test split(X, y, test size = 0.2, random state = 0)
         from sklearn.linear model import LogisticRegression
In [25]:
          classifier = LogisticRegression(random state = 0)
          classifier.fit(X train, y train)
         C:\Users\fahim\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\linear model\ logistic.py:444: Converg
         enceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
           n iter i = check optimize result(
Out[25]: ▼
                  LogisticRegression
         LogisticRegression(random state=0)
         y pred = classifier.predict(X test)
In [26]:
         #now create the confusion matrix for the initial model
In [27]:
         from sklearn.metrics import confusion matrix
         matrix = confusion matrix(y test, y pred)
```

print(matrix)

```
[[1189 73]
[ 50 688]]
```

```
In [28]: y_predict_test = classifier.predict(X_test)
    new_matrix = confusion_matrix(y_test, y_predict_test)
    sb.heatmap(new_matrix, annot=True)
```

Out[28]: <AxesSubplot:>

In [29]: #retrieve the classification report for the initial model
 from sklearn.metrics import classification_report
 print(classification_report(y_test, y_predict_test))

	precision	recall	f1-score	support
0	0.96	0.94	0.95	1262
1	0.90	0.93	0.92	738
26611112614			0.94	2000
accuracy macro avg	0.93	0.94	0.93	2000
weighted avg	0.94	0.94	0.94	2000

```
In [30]: #Create the reduced model with the variables that had a P value below .05 statistical significance level
log_reg_results2 = sm.Logit(df["ReAdmis"], df[['Age', 'Income', 'Gender', 'VitD_levels', 'Doc_visits', 'vitD_supp','Ini
print(log_reg_results2.summary())
```

Optimization terminated successfully.

Current function value: 0.107964

Iterations 11

Logit Regression Results

______ No. Observations: Dep. Variable: ReAdmis 10000 Model: Logit Df Residuals: 9979 MLE Df Model: Method: 20 Sat, 24 Dec 2022 Pseudo R-squ.: 0.8357 Date: 23:42:40 Log-Likelihood: Time: -1079.6 converged: True LL-Null: -6572.9 Covariance Type: LLR p-value: 0.000 nonrobust

covariance Type:	110	iii obasc	LLN P Value.				
	coef	std err	z	P> z	[0.025	0.975]	
Age	-0.0138	0.003	-5.099	0.000	-0.019	-0.009	
Income	-6.401e-06	1.91e-06	-3.350	0.001	-1.01e-05	-2.66e-06	
Gender	-0.3735	0.111	-3.356	0.001	-0.592	-0.155	
VitD_levels	-0.4562	0.025	-18.004	0.000	-0.506	-0.406	
Doc_visits	-0.4580	0.052	-8.803	0.000	-0.560	-0.356	
vitD_supp	-0.1902	0.086	-2.206	0.027	-0.359	-0.021	
<pre>Initial_admin</pre>	0.4636	0.111	4.176	0.000	0.246	0.681	
Overweight	-0.4015	0.121	-3.315	0.001	-0.639	-0.164	
Arthritis	-0.5081	0.115	-4.430	0.000	-0.733	-0.283	
Anxiety	-0.3776	0.118	-3.199	0.001	-0.609	-0.146	
Allergic_rhinitis	-0.3773	0.113	-3.346	0.001	-0.598	-0.156	
Reflux_esophagitis	-0.3738	0.113	-3.309	0.001	-0.595	-0.152	
Asthma	-0.4248	0.122	-3.472	0.001	-0.665	-0.185	
<pre>Initial_days</pre>	0.4039	0.013	31.204	0.000	0.379	0.429	
Timely_admis	0.1828	0.072	2.529	0.011	0.041	0.324	
Timely_visits	-0.2852	0.066	-4.299	0.000	-0.415	-0.155	
Reliability	-0.4999	0.060	-8.393	0.000	-0.617	-0.383	
Options	-0.9164	0.064	-14.346	0.000	-1.042	-0.791	
Hrs_treat	-0.3167	0.067	-4.711	0.000	-0.448	-0.185	
Courteous	-0.3487	0.060	-5.781	0.000	-0.467	-0.230	
Active_listen	-0.3621	0.058	-6.230	0.000	-0.476	-0.248	

Possibly complete quasi-separation: A fraction 0.50 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

In [31]: # create the correlation matrix for the reduced model
matrix_df = pd.read_csv(r'C:\Users\fahim\Documents\0_WGUDocuments\d208\2medical_clean-PREPAREDTASK2_12-24-2022.csv')

```
matrix_df = matrix_df[['Age', 'Income', 'Gender', 'VitD_levels', 'Doc_visits', 'vitD_supp', 'Initial_admin', 'Overweight
         X = matrix df.iloc[:, 1:-1].values
         y = matrix df.iloc[:,-1].values
In [32]:
         from sklearn.model selection import train test split
         X train, X test, y train, y test = train test split(X, y, test size = 0.2, random state = 0)
In [33]:
        from sklearn.linear model import LogisticRegression
         classifier = LogisticRegression(random state = 0)
         classifier.fit(X train, y train)
         C:\Users\fahim\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\linear model\ logistic.py:444: Converg
         enceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
           n iter i = check optimize result(
Out[33]: ▼
                  LogisticRegression
         LogisticRegression(random state=0)
        y_pred = classifier.predict(X_test)
In [34]:
In [35]: #now create the confusion matrix for the reduced model
         from sklearn.metrics import confusion matrix
         matrix = confusion matrix(y test, y pred)
         print(matrix)
         [[1193 69]
          [ 37 701]]
         y predict test = classifier.predict(X test)
In [36]:
         new matrix = confusion matrix(y test, y predict test)
         sb.heatmap(new_matrix, annot=True)
         <AxesSubplot:>
Out[36]:
```


In [37]: #retrieve the classification report for the reduced model
 from sklearn.metrics import classification_report
 print(classification_report(y_test, y_predict_test))

```
precision
                            recall f1-score
                                               support
           0
                    0.97
                                        0.96
                              0.95
                                                  1262
           1
                    0.91
                              0.95
                                        0.93
                                                   738
                                                   2000
    accuracy
                                        0.95
                    0.94
                              0.95
                                        0.94
                                                   2000
   macro avg
weighted avg
                    0.95
                              0.95
                                        0.95
                                                   2000
```

```
In [38]: # plot ROC Curve
logit_roc_auc = roc_auc_score(y_test, classifier.predict(X_test))
fpr, tpr, thresholds = roc_curve(y_test, classifier.predict_proba(X_test)[:,1])
plt.figure()
plt.plot(fpr, tpr, label='Logistic Regression (area = %0.2f)' %logit_roc_auc)
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
plt.savefig('Log_ROC')
plt.show()
```



```
In [39]: # create an equation of the regression
    print('Logit: {:.2f}'.format(logit_roc_auc))
    equation = log_reg_results2.summary().tables[1]
    print('Estimate [{}] as L = '.format(log_reg_results2.summary().tables[0][1][1]))
    equation = pd.DataFrame(equation)
    for i in equation.itertuples():
        print(' {:+.3f} x ( {} ) '.format(i[0],i[1]))
```

In [40]:

```
Logit: 0.95
Estimate [Logit] as L =
 +0.000 x ( )
 +1.000 x ( Age )
 +2.000 \times (Income)
 +3.000 \times (Gender)
 +4.000 x ( VitD_levels )
 +5.000 x ( Doc_visits )
 +6.000 x ( vitD supp )
 +7.000 x ( Initial_admin )
 +8.000 \times (Overweight)
 +9.000 x ( Arthritis )
 +10.000 \times (Anxiety)
 +11.000 x ( Allergic rhinitis )
 +12.000 x ( Reflux esophagitis )
 +13.000 x ( Asthma )
 +14.000 \times (Initial days)
 +15.000 x ( Timely_admis )
 +16.000 x ( Timely_visits )
 +17.000 \times (Reliability)
 +18.000 x ( Options )
 +19.000 \times (Hrs treat)
 +20.000 x ( Courteous )
 +21.000 x ( Active_listen )
print(equation)
```

	0	1	2	3	4	5	١
0		coef	std err	Z	P> z	[0.025	
1	Age	-0.0138	0.003	-5.099	0.000	-0.019	
2	Income	-6.401e-06	1.91e-06	-3.350	0.001	-1.01e-05	
3	Gender	-0.3735	0.111	-3.356	0.001	-0.592	
4	<pre>VitD_levels</pre>	-0.4562	0.025	-18.004	0.000	-0.506	
5	Doc_visits	-0.4580	0.052	-8.803	0.000	-0.560	
6	vitD_supp	-0.1902	0.086	-2.206	0.027	-0.359	
7	<pre>Initial_admin</pre>	0.4636	0.111	4.176	0.000	0.246	
8	Overweight	-0.4015	0.121	-3.315	0.001	-0.639	
9	Arthritis	-0.5081	0.115	-4.430	0.000	-0.733	
10	Anxiety	-0.3776	0.118	-3.199	0.001	-0.609	
11	Allergic_rhinitis	-0.3773	0.113	-3.346	0.001	-0.598	
12	Reflux_esophagitis	-0.3738	0.113	-3.309	0.001	-0.595	
13	Asthma	-0.4248	0.122	-3.472	0.001	-0.665	
14	<pre>Initial_days</pre>	0.4039	0.013	31.204	0.000	0.379	
15	Timely_admis	0.1828	0.072	2.529	0.011	0.041	
16	Timely_visits	-0.2852	0.066	-4.299	0.000	-0.415	
17	Reliability	-0.4999	0.060	-8.393	0.000	-0.617	
18	Options	-0.9164	0.064	-14.346	0.000	-1.042	
19	Hrs_treat	-0.3167	0.067	-4.711	0.000	-0.448	
20	Courteous	-0.3487	0.060	-5.781	0.000	-0.467	
21	Active_listen	-0.3621	0.058	-6.230	0.000	-0.476	
	_						
	6						
0	0.975]						
1	-0.009						
2	-2.66e-06						
3	-0.155						
4	-0.406						
5	-0.356						
6	-0.021						
7	0.681						
8	-0.164						
9	-0.283						
10	-0.146						
11	-0.156						
12	-0.152						
13	-0.185						
14	0.429						
15	0.324						
16	-0.155						
17	-0.383						
18	-0.791						
19	-0.185						

```
20 -0.230
21 -0.248
```

```
In [41]: updated_equation = equation.drop(0)
```

[n [42]: print(updated_equation)

				D200 10	511 Z 110 VIOIC	/// 12_22022	
	0	1	2	3	4	5	
1	Age	-0.0138	0.003	-5.099	0.000	-0.019	
2	Income	-6.401e-06	1.91e-06	-3.350	0.001	-1.01e-05	
3	Gender	-0.3735	0.111	-3.356	0.001	-0.592	
4	<pre>VitD_levels</pre>	-0.4562	0.025	-18.004	0.000	-0.506	
5	Doc_visits	-0.4580	0.052	-8.803	0.000	-0.560	
6	vitD_supp	-0.1902	0.086	-2.206	0.027	-0.359	
7	<pre>Initial_admin</pre>	0.4636	0.111	4.176	0.000	0.246	
8	Overweight	-0.4015	0.121	-3.315	0.001	-0.639	
9	Arthritis	-0.5081	0.115	-4.430	0.000	-0.733	
10	Anxiety	-0.3776	0.118	-3.199	0.001	-0.609	
11	Allergic_rhinitis	-0.3773	0.113	-3.346	0.001	-0.598	
12	Reflux_esophagitis	-0.3738	0.113	-3.309	0.001	-0.595	
13	Asthma	-0.4248	0.122	-3.472	0.001	-0.665	
14	<pre>Initial_days</pre>	0.4039	0.013	31.204	0.000	0.379	
15	Timely_admis	0.1828	0.072	2.529	0.011	0.041	
16	Timely_visits	-0.2852	0.066	-4.299	0.000	-0.415	
17	Reliability	-0.4999	0.060	-8.393	0.000	-0.617	
18	Options	-0.9164	0.064	-14.346	0.000	-1.042	
19	Hrs_treat	-0.3167	0.067	-4.711	0.000	-0.448	
20	Courteous	-0.3487	0.060	-5.781	0.000	-0.467	
21	Active_listen	-0.3621	0.058	-6.230	0.000	-0.476	
	6						
1	-0.009						
2	-2.66e-06						
3	-0.155						
4	-0.406						
5	-0.356						
6	-0.021						
7	0.681						
8	-0.164						
9	-0.283						
10	-0.146						
11							
	-0.156						
12	-0.152						
12 13	-0.152 -0.185						
12 13 14	-0.152 -0.185 0.429						
12 13 14 15	-0.152 -0.185 0.429 0.324						
12 13 14 15 16	-0.152 -0.185 0.429 0.324 -0.155						
12 13 14 15 16 17	-0.152 -0.185 0.429 0.324 -0.155 -0.383						
12 13 14 15 16 17 18	-0.152 -0.185 0.429 0.324 -0.155 -0.383 -0.791						
12 13 14 15 16 17 18 19	-0.152 -0.185 0.429 0.324 -0.155 -0.383 -0.791						
12 13 14 15 16 17 18	-0.152 -0.185 0.429 0.324 -0.155 -0.383 -0.791						

```
In [43]: # create an equation of the logistics regression
         print('Logit: {:.2f}'.format(logit_roc_auc))
         print('Estimate [{}] as L = '.format(log reg results2.summary().tables[0][1][1]))
          for i in updated equation.itertuples():
              print(' {:+.3f} x ( {} ) '.format(float(str(i[2])),i[1]))
         Logit: 0.95
         Estimate [Logit] as L =
          -0.014 x ( Age )
          -0.000 x ( Income )
          -0.373 \times (Gender)
           -0.456 \times (VitD levels)
           -0.458 x ( Doc visits )
           -0.190 x ( vitD supp )
          +0.464 x ( Initial admin )
           -0.402 \times (Overweight)
           -0.508 \times (Arthritis)
           -0.378 x ( Anxiety )
           -0.377 x ( Allergic rhinitis )
          -0.374 x ( Reflux esophagitis )
           -0.425 \times (Asthma)
          +0.404 x ( Initial days )
          +0.183 x ( Timely admis )
           -0.285 x ( Timely visits )
          -0.500 x ( Reliability )
           -0.916 x ( Options )
          -0.317 \times (Hrs treat)
           -0.349 \times (Courteous)
           -0.362 x ( Active listen )
```