

Peptide derivatives and their therapeutic application.**Patent number:** EP0298820**Publication date:** 1989-01-11**Inventor:** MARGUERIE DE ROTROU GERARD ARM**Applicant:** INST NAT SANTE RECH MED (FR); LAFON LABOR (FR)**Classification:**

- International: C07K7/06; A61K37/02; C12Q1/56; G01N33/58

- european: C07K14/75

Application number: EP19880401592 19880623**Priority number(s):** FR19870008983 19870625**Also published as:** JP1063596 (A)
 FR2617170 (A1)**Cited documents:** EP02220957**Abstract of EP0298820**

Peptide derivatives of formula

X - Lys - Gln - Y - Gly - Asp - Z - W (I) > in which X denotes hydrogen, an amino acid residue, a group of formula DE where D denotes a physiologically acceptable N-protective group or hydrogen and where E denotes a single bond or an amino acid residue,

Y denotes an L-arginyl or D-arginyl residue, Z denotes an L-valyl, D-valyl, L-phenylalanyl, D-phenylalanyl, L-seryl or D-seryl residue, W denotes an OH, NH₂ or O-R<1> group with R<1> denoting a C1-C4 alkyl radical NHR<2>, with R<2> denoting a C1-C4 alkyl radical or an amino acid residue.

X- Lys - Gln - Y - Gly - Asp - Z - W (I)

Data supplied from the **esp@cenet** database - Worldwide**BEST AVAILABLE COPY**

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Numéro de publication:

0 298 820
A1

⑫

DEMANDE DE BREVET EUROPEEN

㉑ Numéro de dépôt: 88401592.6

㉒ Date de dépôt: 23.06.88

㉓ Int. Cl. 4: C 07 K 7/06

A 61 K 37/02, C 12 Q 1/56,
G 01 N 33/58

㉔ Priorité: 25.06.87 FR 8708983

㉕ Date de publication de la demande:
11.01.89 Bulletin 89/02

㉖ Etats contractants désignés:
AT BE CH DE ES FR GB GR IT LI LU NL SE

㉗ Demandeur: INSTITUT NATIONAL DE LA SANTE ET DE
LA RECHERCHE MEDICALE (INSERM)
101, rue de Tolbiac
F-75654 Paris Cédex 13 (FR)

LABORATOIRE L. LAFON
19 Avenue du Professeur Cadot
F-94701 Maisons Alfort (FR)

㉘ Inventeur: Marguerie de Rotrou, Gérard Armand
5 Avenue Albert 1er de Belgique
F-38000 Grenoble (FR)

㉙ Mandataire: Le Guen, Gérard et al
CABINET LAVOIX 2, place d'Estienne d'Orves
F-75441 Paris Cédex 09 (FR)

Une requête en rectification du tableau 2 ("Gla" doit être "Gin" dans séquence du premier peptide) a été présentée conformément à la règle 88 CBE. Il est statué sur cette requête au cours de la procédure engagée devant la division d'examen (Directives relatives à l'examen pratiqué à l'OEB, A-V, 2.2).

㉚ Nouveaux dérivés peptidiques et leur application notamment en thérapeutique.

㉛ L'invention a pour objet des dérivés peptidiques de formule

X- Lys - Y - Gly - Asp - Z - W (I)
dans laquelle X représente l'hydrogène, un résidu d'acide aminé, un groupement de formule DE où D représente un groupe N-protecteur physiologiquement acceptable, ou l'hydrogène, et où E représente une simple liaison ou un résidu d'acide aminé.

Y représente un résidu L-arginye, ou D-arginye;

Z représente un résidu L-valyle, D-valyle, L-phénylalanyle, D-phénylalanyle, L-séryle, ou D-séryle,

W représente un groupe OH, NH₂, O-R¹ avec R¹ représentant un radical alkyle en C₁ à C₄, NHR² avec R² représentant un radical alkyle en C₁ à C₄, ou un résidu d'acide aminé.

Description**Nouveaux dérivés peptidiques et leur application notamment en thérapeutique**

La présente invention concerne de nouveaux dérivés peptidiques ayant une activité antiagrégante, leur procédé de préparation et leurs applications en thérapeutique et comme agents de diagnostic.

5 De façon plus précise, elle concerne des analogues peptidiques d'une séquence du fibrinogène utilisables notamment comme antagonistes du fibrinogène vis à vis des plaquettes sanguines.

On sait qu'au cours de l'hémostase les plaquettes sanguines adhèrent au sous-endothélium du vaisseau lésé, secrètent leur contenu granulaire après stimulation et agrègent les unes aux autres pour former un thrombus plaquettaire. L'agrégation dépend des contacts qui s'établissent entre membranes de plaquettes 10 adjacentes. Cette réaction est nécessaire pour l'arrêt d'un saignement. Elle a cependant de nombreuses déviations pathologiques, notamment dans les cas de thromboses veineuses ou artérielles, au cours du développement d'une plaque d'athérome, ou de la formation de microthrombi qui peuvent obstruer la micro-circulation périphérique ou cérébrale. Le contrôle et la régulation de l'agrégation plaquettaire sont donc 15 un objectif majeur dans la prévention de la thrombose et de l'athérosclérose et de nombreuses études sont consacrées à la recherche et au développement de molécules aux propriétés antiagrégantes.

Dans ce phénomène, le fibrinogène a un rôle important. Ainsi dans le plasma de malades atteints d'afibrinogénémie congénitale, l'agrégation plaquettaire est fortement diminuée ou absente et ce défaut est corrigé par l' injection de fibrinogène. De même en l'absence de fibrinogène, des plaquettes lavées n'agrègent pas à l'ADP ou à l'épinéphrine. La présence de fibrinogène est donc une nécessité pour le développement normal d'un thrombus plaquettaire. La participation du fibrinogène à l'agrégation est due à l'induction d'un récepteur spécifique pour cette protéine sur la membrane de la plaquette activée. Tous les stimuli physiologiques de la plaquette induisent une classe unique de récepteur et l'interaction du fibrinogène avec ce récepteur régule l'agrégation plaquettaire. Il existe donc un mécanisme de l'agrégation plaquettaire, commun à tous les inducteurs, qui dépend de l'interaction entre le fibrinogène et son récepteur. L'importance 20 physiologique de cette voie de l'agrégation plaquettaire dépendante du fibrinogène est attestée par l'étude des thrombasthénies de Glanzmann dont les plaquettes ne fixent pas le fibrinogène et n'agrègent pas en 25 réponse à tous les stimuli physiologiques de la cellule.

En résumé, le récepteur du fibrinogène n'est pas exprimé sur la plaquette circulante, il est induit dès que la cellule est stimulée. Cette induction peut être dépendante ou indépendante de la réaction de sécrétion. Tous 30 les stimuli expriment le même récepteur et l'interaction entre le fibrinogène et le récepteur conduit directement à l'agrégation. La dissociation du fibrinogène lié à la plaquette a pour conséquence la désagrégation des plaquettes.

Dans ce contexte il est clair que si l'interaction entre le fibrinogène et son récepteur plaquettaire pouvait être régulée, ceci constituerait un moyen pour contrôler l'agrégation *In vitro* et *In vivo*.

35 La présente invention vise précisément à fournir de nouveaux agents qui permettent d'inhiber, de réguler ou de mesurer sélectivement la voie de l'agrégation dépendante du fibrinogène.

Deux séquences peptidiques issues de la molécule de fibrinogène ont déjà été identifiées comme inhibant la fixation de cette protéine sur les plaquettes et bloquant ainsi leur agrégation :

40 - une séquence Arg-Gly-Asp-Ser (RGDS) ¹ présente dans la chaîne du fibrinogène (E. Plow et coll. Proc. Natl. Acad. Sci. USAC 82 8057, 1985)
- un dodécapeptide H₁₂ (H-H-L-G-G-A-K-Q-A-G-D-V) représentant l'extrémité C-terminale de la chaîne du fibrinogène (E. Plow et coll. J. Biol. Chem., 259-, 5388, 1984).

La présente invention a pour objet des analogues peptidiques de l'extrémité C-terminale de la chaîne du fibrinogène qui présentent un effet inhibiteur de la liaison fibrinogène-plaquette et de l'agrégation plaquettaire.

45 Ces dérivés peptidiques répondent à la formule générale suivante :

X- Lys - Gln - Y - Gly - Asp - Z - W (I)

dans laquelle X représente l'hydrogène, un résidu d'acide aminé, un groupement de formule DE où D représente un groupe N-protecteur physiologiquement acceptable, ou l'hydrogène, et où E représente une simple liaison ou un résidu d'acide aminé,

50 Y représente un résidu L-arginyle, ou D-arginyle,
Z représente un résidu L-valyle, D-valyle, L-phénylalanyle, D-phénylalanyle, L-séryle, ou D-séryle,

W représente un groupe OH, NH₂, O-R¹ avec R¹ représentant un radical alkyle en C₁ à C₄ NHR² avec R² représentant un radical alkyle en C₁ à C₄, ou un résidu d'acide aminé.

Dans les groupes X et W les résidus d'acides aminés susceptibles d'être utilisés sont notamment les radicaux D ou L-pyroglutamyle, L ou D-alanyle, **glycycle**, L ou D-prolyle, L ou D-valyle, L ou D-phénylalanyle, L ou D-homocystéyle, L ou D-aspartyle, L ou D-glutamyle, L ou D-hystidyle, L ou D-méthionyle, L ou D-thréonyle, L ou D-séryle, L ou D-cystéyle, L ou D-leucyle, L ou D-arginyle, L ou D-tryptophanyle, L ou D-tyrosyle, L ou D-lysyle et L ou D-ornithyle.

60 Les groupes N-protecteurs physiologiquement acceptables sont notamment les groupes protecteurs de l'attaque en N-terminal des enzymes exopeptidases. Comme exemples de tels groupes on peut citer les groupes acyles tels que les groupes t-butylloxycarbonyle (Boc), tert-amyl-oxycarbonyle (*Aoc), benzyloxycarbonyle, benzoyle, acétyle, formyle, propanoyle, butanoyle, phénylacétyle, phenylpropanoyle, cyclo pentylcar-

¹ La signification des symboles et abréviations utilisées est donnée en annexe.

bonyle.

La présente invention englobe également les équivalents des dérivés peptidiques de formule I dans lesquels chaque liaison peptidique (-CO-NH-) entre deux résidus d'acide aminé de la formule générale I est remplacée par les structures suivantes :

- CO-N(CH₃)- ; -CO-O- ; -CH₂-NH- ; -CS-NH- ;
- CO-CH₂ ; CH₂-S- ; -CHOH-CH₂- ; -HN-CO- ;
- CH=CH- ; -CH₂-CH₂-.

5

ou dans lesquels le squelette peptidique présente un ou plusieurs groupes intercalés tels que des groupes -CH₂- ; -NH- ; -O-.

Un dérivé peptidique préféré est un dérivé de formule

10

H-Lys-LGln-LArg-Gly-LAsp-LPhe-OH

La présente invention a également pour objet

- une composition pharmaceutique comprenant à titre de principe actif un dérivé peptidique de formule I
- un agent de diagnostic comprenant un dérivé de peptidique de formule I.

15

Les dérivés peptidiques de formule I peuvent être préparés de manière classique par synthèse peptidique en phase liquide ou solide par couplages successifs des différents résidus d'acides aminés à incorporer (de l'extrémité N-terminale vers l'extrémité C-terminale en phase liquide, ou de l'extrémité C-terminale vers l'extrémité N-terminale en phase solide) et dont les extrémités N-terminales et les chaînes latérales réactives sont préalablement bloquées par des groupements tels que ceux mentionnés ci-dessous :

1) Extrémité N-terminale protégée par :

20

Boc

Bpoc

Fmoc

2) Résidu Groupement bloquant

Résidu la chaîne latérale

25

Alanyle	H
Arginyle	tosyle
Asparagyle	H, xanthyle
Aspartyle	O-benzyle
Cystéyle	acétamidométhyle(Acm), 4-méthylbenzyle (Meb), 4-méthoxybenzyle(Mob), S-ben- zyle
Glutamyle	O-benzyle
Glutaminyle	xanthyle
Glycycle	H
Histidyle	tosyle, 2-4-dinitrophényle(Dnp)
Isoleucyle	H
Leucyle	H
Lysyle	2-chlorobenzylloxycarbonyle(Clz), tri- fluoroacétyle(TFA), formyle(For), ben- zylloxycarbonyle(Z)
Héthionyle	H
Norleucyle	H
Ornithyle	benzylloxycarbonyle
Phénylalanyle	H
Propyle	H
Pyroglytamyle	H
Sarcosyle	H
Séryle	O-benzyle
Thréonyle	H, O-benzyle-
Tryptophanyle	H, formyle
Tyrosyle	H, 2-6-dichlorobenzyle(dcB), 2-bromo- benzylloxycarbonyle
Valyle	H

30

35

40

45

50

55

On peut utiliser différentes méthodes de couplage :

1. Couplage des résidus par un carbodiimide (ex : DCC, EDC) avec ou sans catalyse (ex : HOBT) ou autre agent couplant (ex : EEDQ)
2. Utilisation des acides aminés sous forme d'anhydrides symétriques préformés
3. Utilisation des acides aminés sous forme d'esters activés (ex : p-nitrophénylester, HOBT ester) et couplage par l'intermédiaire de DCC.

60

En synthèse en phase solide (SPPS) le tableau I ci-dessous mentionne les différents types de résine utilisable ainsi que les protections et méthodes adéquates pour les différentes étapes.

65

Tableau I

	Système SPPS utilisé	Liaison peptide-résine	Protection en alpha	réactif de déprotection	protection chaîne latérale	réactif de clivage
5	Classique	Benzyl ester	Boc	TFA, HCl	Benzyl	HF, HBr
10	Stable (longue chaîne)	Pam	Boc	TFA, HCl	Benzyl	HF, HBr
15		Benzyl ester	Bpoc	TFA dilué	Benzyl	HF
		Benzyl ester	Bpoc	TFA dilué	t-Butyl	HF
20	Labile	Ether résine	Bpoc	TFA dilué	t-Butyl	TFA
	Orthogonal	Ether résine	Fmoc	Piperidine	t-Butyl	TFA
25	Synthèse de segment	Ether résine	Fmoc	Piperidine	Benzyl	TFA
		t-Butyl résine	Fmoc	Piperidine	Benzyl	TFA
		Hydrazide résine	Fmoc	Piperidine	Benzyl	TFA
30	Assemblage de segments	Benzyl ester	Fmoc	Piperidine	Benzyl	HF
	Peptides amides	MBHA, BHA	Boc	TFA, HCl	Benzyl	HF
	Peptides alcools	Benzyl ester	Boc	TFA, HCl	Benzyl	LiBH_4

35 En synthèse en phase solide le 1er acide aminé (extrémité C-terminale) à fixer sur la résine peut être soit acquis commercialement déjà attaché au support soit fixé par l'intermédiaire de sel de césum (méthode de Gisin), d'un sel de tétraméthylammonium (méthode de Loffet) ou d'un carbodimide.

Les exemples suivants illustrent la préparation des dérivés peptidiques de formule I

40 Exemple 1 :

Synthèse du peptide
H-Ala-Lys-Gln-Arg-Gly-Asp-Val-OH (ou A K Q R G D V, également dénommé A₇ (R₄)

45 Ce peptide a été synthétisé en phase solide en utilisant les méthodes suivantes :
- support : résine Merrifield chlorométhylée (0.7 mmol Cl/g) à 2% de divinylbenzène.

50 Préparation de Boc-Phé-résine :

55 10 mmoles (2g) de Boc-Valine solubilisées dans 10 ml d'éthanol ont été additionnées de 5 mmoles (1,63g) de Cs_2CO_3 dans 2 ml d'eau. L'ester de césum formé (Boc-Val-OCs, 10 mmol) après quelques minutes d'agitation a été évaporé à sec et mis au dessicteur sous vide pendant 48 h. Il a été ensuite resolubilisé par 40 ml de DMF et mélangé à 15g de résine (10,5 mmol Cl). La réaction a été réalisée en 24 h. sous agitation dans un bain chauffant à 50°C. La résine dérivatisée (Boc-Val-résine) a été ensuite filtrée et lavée par DMF, DMF/H₂O, DMF, EtOH, puis séché sous vide pendant 3 h. Le taux de substitution de la résine a été calculé par analyse d'acide aminé après hydrolyse à 150°C, pendant 3 h., par le mélange HCl/acide propionique (50/50). La substitution obtenue a été de 0,34 mmol Val/g résine.

60 - couplage :
Tous les dérivés aminés incorporés ont été couplés par la méthode du carbodiimide DCC en présence de catalyseur HOBT (2 équivalents Val en acide aminé, en DCC et en HOBT).

Les dérivés protégés utilisés et leur milieu de solubilisation ont été les suivants :

Dérivés	Solvants	
Boc-Asp-O-Bzl	DCM	
Boc-Gly	DCM	5
Boc-Arg(Tos)	DMF	
Boc-Gln(Xab)	DMF	
Boc-Lys(Clz)	DCM	10
Boc-Ala	DMC	

Les couplages ont été réalisés en 2 h. dans du DCM.

15

Les déprotections par TFA et les couplages ont tous été contrôlés par un test de Kaiser - clivage :

Le clivage du peptide synthétisé a été effectué par HF (10 ml/g résine) en présence d'anisol (1 ml/g rés.) pendant 1 h. à 0°C. Après lavage à l'éther, le peptide a été ensuite extrait par de l'acide acétique à 15% et lyophilisé.

20

- purification : sur colonne de Sephadex G10 éluée par de l'acide acétique à 10%

- contrôle :

. analyse d'acide aminé : après hydrolyse pendant 30 mn à 150°C par HCl/acide propionique 50/50

25

. chromatographie sur couche mince de silice :
éluant : CH₃OH/CHCl₃/NH₄OH 25% (60/40/20)

détection :

phénantrène quinone (Arg)

ninhydrine (NH₂)

TDM (NH)

30

R_f = 0,22

-HPLC : sur colonne analytique de phase inverse C18

éluant : gradient H₂O/acétone (100/0 à (20/80) en 25 nm à ml/nm

détection : absorption optique à 210 nm.

T_r = 0,6 nm.

35

Exemple 2 :

Synthèse du peptide :

H-Lys-Gln-Arg-Gly-Asp-Val-OH (ou K Q R G D V, également dénommé K₆ (R₄)).

40

Ce peptide a été synthétisé, purifié et analysé selon les mêmes méthodes que le peptide de l'exemple 1.

Ses caractéristiques analytiques sont les suivantes :

. chromatographie sur couche mince de silice :

45

éluant 1 :CH₃OH/CHCl₃/NH₄OH 25% (60/40/20)

R_f = 0,12

éluant 2 : 2 - butanone/CH₃COOH/H₂O (10/30/25)

R_f = 0,69

-HPLC :

T_r = 1,2 mn.

50

Exemple 3 :

Synthèse du peptide :

H-Lys-Gln-Arg-Gly-Asp-Phe-OH (ou K Q R G D F, également dénommé K₆ (R₄F₁)).

55

Ce peptide a été synthétisé, purifié et analysé selon les mêmes méthodes que le peptide de l'exemple 1.

Ces caractéristiques en chromatographie en couche mince sont les suivantes :

éluant 1 :CH₃OH/CHCl₃/NH₄OH 25% (60/40/20)

60

R_f = 0,51

éluant 2 = 2 - butanone/CH₃COOH/H₂O (10/30/25)

R_f = 0,75

On donnera ci-après des résultats des études pharmacologiques mettant en évidence les propriétés des

65

dérivés peptidiques de formule I

1. Inhibition de la liaison plaquette-fibrinogène

5

Préparation des plaquettes

10 Les plaquettes sont isolées à partir de 60 ml de sang humain prélevé sur un tampon anticoagulant, l'ACD, à raison d'1 volume d'ACD pour 6 volumes de sang.
L'ACD a la composition suivante :
Citrate trisodique 5 H₂O 5,95 g
Acide citrique 3,41 g

15 Dextrose 5 g
H₂O qsp 250 ml
Le sang est ensuite centrifugé 20 mn à 1000 t/mn (centrifugeuse JOUAN E 96) à température ambiante.
Le PRP (plasma riche en plaquettes) est décanté et additionné de PGE₁ 0,1 uM puis centrifugé 15 mn à 2000 t/mn.

20 Les plaquettes obtenues dans le culot sont alors reprises par 1 ml de tampon Tyrode-albumine pH 7,2 préparé selon la composition suivante :
Tampon Tyrode (solution mère) :
NaCl 1,3 M
KCl 0,026 M

25 NaHCO₃ 0,12 M
Tampon Tyrode-albumine :
solution mère 1/10 M
D-glucose 0,0055 M
albumine 2 %

30 HCl 1M qsp pH 7,2
Les plaquettes sont lavées sur une colonne de Sépharose CL 2B par du tampon tyrode-albumine pH 7,2 puis les plaquettes recueillies sont diluées à la concentration de 2.10⁸ pl./ml.
Les essais sont réalisés sur 4.10⁷ plaquettes en présence de CaCl₂ (0,5 mM), de ¹²⁵I-fibrinogène (0,1 μM) et de différentes concentrations de peptide, et la stimulation des plaquettes est provoquée par de l'ADP (5 μM).

35 Après 15 mn d'incubation et dépôt sur une solution de saccharose à 15% le complexe ¹²⁵I-fibrinogène-plaquette est isolé par centrifugation à 12000 t/mn pendant 2 mn.
Les résultats pour trois peptides de formule I et les peptides voisins sont donnés sous forme de CI50 dans le tableau II. Ce tableau donne également la séquence des peptides. La Fig. 1 donne les résultats obtenus avec le peptide A₇ (R₄) de formule I et le peptide de référence A₇.

40 Ces résultats mettent en évidence que les deux peptides de formule I ont une activité inhibitrice sur la liaison plaquette fibrogène bien supérieure à celle du peptide connu H₁₂ et à celle du peptide A₇ très voisin du peptide A₇ (R₄).

2. Inhibition de l'agrégation plaquettaire

45 L'effet des peptides synthétiques sur l'agrégation plaquettaire a été étudié sur des plaquettes isolées comme précédemment pour l'étude de la liaison au fibrinogène. La stimulation des plaquettes est également obtenue par l'ADP 5 μM et l'essai réalisé en présence de fibrinogène 1,1 μM et de CaCl₂ 0,5 μM.
Les résultats sont donnés dans le tableau II et mettent en évidence une activité inhibitrice sur l'agrégation plaquettaire des peptides de formule I nettement supérieure à celle des peptides H₁₂ et A₇.

55

60

65

Tableau II

Peptide	Nomenclature	Inhibition IC50 (µM)	
		Fixation du Fibrinogène	Aggrégation
His . His . Leu . Gly . Gly . Ala . Lys . Glu . Ala . Gly . Asp . Val	H 12	150 ± 50	= 500
Ala ----- Val	A 7	-	500 / 700
Ala ----- Arg ----- Val	A ₇ (R ₄)	20	100/200
Lys ----- Arg ----- Val	K ₆ (R ₄)	20	100/200
Lys ----- Arg ----- Phe	K ₆ (R ₄ F ₁)	40	50

Les dérivés peptidiques de formule I peuvent être utilisés notamment pour le traitement et la prévention des thromboses, en particulier dans les états préthrombotiques pour bloquer l'aggrégation plaquettaire.

Les dérivés peptidiques de formule I se sont avérés en outre exercer un effet inhibiteur sur le développement des métastases.

Inhibition du développement des métastases du poumon.

On a utilisé la tumeur M₄, une sous-lignée obtenue par sélection d'un sarcome induit par le benzopyrène chez la souris C57BL/6 (Mantovani Int. J. Cancer, 22, 741, 1978).

Les cellules M₄ ont été désagréggées avec de la DNase et de la collagénase pendant 30 minutes à 37°C. On a lavé les cellules deux fois avec du PBS et on les a remis en suspension dans le même tampon à la concentration de 10⁶ cellules/ml. On a injecté lentement dans le veine de la queue de souris C57BL/6 0,2 ml de PBS contenant différentes concentrations de peptide et 10⁵ cellules M₄/souris.

Au bout de 15 jours on a tué les souris et excisé les poumons, et on les a fixés avec une solution de Bouin. On a compté visuellement les colonies. Les résultats obtenus avec le peptide KQRGDF sont donnés dans le tableau suivant.

K Q R G D F mg / souris	Nombre de colonie
3 , 0	0
1 , 5	0 , 2
0 , 75	25 , 3 ± 9 , 4
PBS	117 , 5 ± 14 , 4

Ces résultats mettent en évidence une protection contre le développement des métastases.

Les dérivés peptidiques de formule I peuvent également exercer un effet inhibiteur sur

- l'adhésion des plaquettes sanguines aux cellules endothéliales des parois vasculaires ou du sous endothélium.
- l'athérogénèse

- la réponse inflammatoire

Les compositions thérapeutiques selon l'invention peuvent être administrées à l'homme ou aux animaux par voie orale ou parentérale.

Elles peuvent être sous la forme de préparation solides, semi-solides ou liquides. Comme exemples, on peut citer les comprimés, les gélules, les solutions ou les suspensions injectables.

Dans ces compositions le principe actif est généralement mélangé avec un ou plusieurs excipients pharmaceutiquement acceptables habituels bien connus de l'homme de l'art.

Les compositions thérapeutiques peuvent contenir notamment de 1 à 60% en poids de principe actif.

La quantité de principe actif administrée dépend évidemment du patient qui est traité, de la voie d'administration et de la sévérité de la maladie. Elle est généralement de 1 à 500 mg.

ANNEXE

15

Abréviations usuelles de la chimie des peptides

20 BHA : benzylhydrylamine (résine)

Boc : tert-butyloxycarbonyle

Bpoc : 2-(4-biphényle)propyl(-2)oxycarbonyle

Bzl : benzyle

Clz : 2-chlorobenzylloxycarbonyle

25 DCC : dicyclohexylcarbodiimide

DCM : dichlorométhane

DMF : diméthylformamide

EDC : N-ethyl-N'-(3-diméthylaminopropyl) carbodiimide

EEDQ : N-ethyloxycarbonyl-2-ethyloxy-1,2-dihydroquinoline ethyloxycarbonyl-2-ethyloxy-1,2-dihydroquinoline

30 Fmoc : 9-fluorénylméthylloxycarbonyle

HOBT : 1-hydroxybenzotriazole

MBHA : 4-méthylbenzylhydrylamine (résine)

TDM : N,N,N',N', tétraméthyl-4-4' - diaminodiphénylméthane

TFA : acide trifluoroacétique

35 Tos : tosyle

Xan : xanthyle

40

45

50

55

60

65

Symboles des acides aminés

A	Ala	alanine	5
C	Cys	cystéine	
D	Asp	acide aspartique	
E	Glu	acide glutamique	10
F	Phe	phénylalanine	
G	Gly	glycine	
H	His	histidine	15
I	Ile	isoleucine	
K	Lys	lysine	
L	Leu	leucine	20
M	Met	méthionine	
N	Asn	asparagine	
P	Pro	proline	25
Q	Gln	glutamine	
R	Arg	arginine	
S	Ser	serine	30
T	Thr	thréonine	
V	Val	valine	
W	Trp	tryptophane	35
Y	Tyr	tyrosine	

40

Revendications

45

1. Dérivés peptidiques de formule

X - Lys - Gln - Y - Gly - Asp - Z - W (I)

dans laquelle X représente l'hydrogène, un résidu d'acide aminé, un groupement de formule DE- où D représente un groupe N-protecteur physiologiquement acceptable, ou l'hydrogène, et où E représente une simple liaison ou un résidu d'acide aminé,

50

Y représente un résidu L-arginyle; ou D-arginyle,

Z représente un résidu L-valyle, D-valyle, L-phénylalanyle, D-phénylalanyle, L-séryle, ou D-séryle,

W représente un groupe OH, NH₂, O-R¹ avec R¹ représentant un radical alkyle en C₁ à C₄ NHR² avec R² représentant un radical alkyle en C₁ à C₄, ou un résidu d'acide aminé.

55

2. Peptide de formule

H - Ala - Lys - Gln - Arg - Gly - Asp - Val - OH

3. Peptide de formule

H - Lys - Gln - Arg - Gly - Asp - Val - OH

4. Peptide de formule

H - Lys - Gln - Arg - Gly - Asp - Phe - OH

60

5. Composition thérapeutique, caractérisée en ce qu'elle contient à titre de principe actif un dérivé peptidique selon l'une quelconque des revendications 1 à 4.

6. Agent de diagnostic, caractérisé en ce qu'il contient un dérivé peptidique selon l'une quelconque des revendications 1 à 4.

65

7. Agent de diagnostic, caractérisé en ce qu'il contient un dérivé peptidique tel que défini à la revendication 1.

Revendications pour l'Etat contractant suivant: GR

5 1. Dérivés peptidiques de formule
 X - Lys - Gln - Y - Gly - Asp - Z - W (I)
 dans laquelle X représente l'hydrogène, un résidu d'acide aminé, un groupement de formule DE- où D représente un groupe N-protecteur physiologiquement acceptable, ou l'hydrogène, et où E représente une simple liaison ou un résidu d'acide aminé,
 10 Y représente un résidu L-arginyle, ou D-arginyle,
 Z représente un résidu L-valyle, D-valyle, L-phénylalanyle, D-phénylalanyle, L-séryle, ou D-séryle,
 W représente un groupe OH, NH₂, O-R¹ avec R¹ représentant un radical alkyle en C₁ à C₄ NHR² avec R² représentant un radical alkyle en C₁ à C₄, ou un résidu d'acide aminé.
 15 2. Peptide de formule
 H - Ala - Lys - Gln - Arg - Gly - Asp - Val - OH
 3. Peptide de formule
 H - Lys - Gln - Arg - Gly - Asp - Val - OH
 4. Peptide de formule
 H - Lys - Gln - Arg - Gly - Asp - Phe - OH
 20 5. Procédé de préparation d'une composition thérapeutique, caractérisé en ce que l'on met un dérivé peptidique tel que défini à la revendication 1 sous une forme pharmaceutiquement acceptable.
 6. Utilisation d'un dérivé peptidique tel que défini à la revendication 1 pour la préparation d'une composition pharmaceutique.
 25 7. Agent de diagnostic, caractérisé en ce qu'il contient un dérivé peptidique tel que défini à la revendication 1.

Revendications pour l'Etat contractant suivant: ES

30 1. Procédé de préparation de dérivés peptidiques de formule
 X - Lys - Gln - Y - Gly - Asp - Z - W (I)
 dans laquelle X représente l'hydrogène, un résidu d'acide aminé, un groupement de formule DE- où D représente un groupe N-protecteur physiologiquement acceptable, ou l'hydrogène, et où E représente une simple liaison ou un résidu d'acide aminé,
 35 Y représente un résidu L-arginyle, ou D-arginyle,
 Z représente un résidu L-valyle, D-valyle, L-phénylalanyle, D-phénylalanyle, L-séryle, ou D-séryle,
 W représente un groupe OH, NH₂, O-R¹ avec R¹ représentant un radical alkyle en C₁ à C₄, NHR² avec R² représentant un radical alkyle en C₁ à C₄, ou un résidu d'acide aminé, caractérisé en ce que l'on prépare ces dérivés par synthèse peptidique.
 40 2. Procédé selon la revendication 1 caractérisé en ce que l'on prépare un peptide de formule
 H - Ala - Lys - Gln - Arg - Gly - Asp - Val - OH
 3. Procédé selon la revendication 1 caractérisé en ce que l'on prépare un peptide de formule
 H - Lys - Gln - Arg - Gly - Asp - Val - OH
 4. Procédé selon la revendication 1 caractérisé en ce que l'on prépare un peptide de formule
 H - Lys - Gln - Arg - Gly - Asp - Phe - OH
 45 5. Procédé de préparation d'une composition thérapeutique, caractérisé en ce que l'on met un dérivé peptidique tel que défini à la revendication 1 sous une forme pharmaceutiquement acceptable.
 6. Utilisation d'un dérivé peptidique tel que défini à la revendication 1 pour la préparation d'une composition pharmaceutique.

50

55

60

65

0298820

Office européen
des brevets

RAPPORT DE RECHERCHE EUROPEENNE

Numéro de la demande

EP 88 40 1592

DOCUMENTS CONSIDERES COMME PERTINENTS					
Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int. CL+4)		
X	EP-A-0 220 957 (SCRIPPS CLINIC AND RESEARCH FOUNDATION) * En entier * ---	1-5	C 07 K 7/06 A 61 K 37/02 C 12 Q 1/56 G 01 N 33/58		
X	PROC. NATL. ACAD. SCI., vol. 83, 1986, pages 5708-5712, US; Z.M. RUGGERI et al.: "Inhibition of platelet function with synthetic peptides designed to be high-affinity antagonists of fibrinogen binding to platelets" * En entier * -----	1,5			
			DOMAINES TECHNIQUES RECHERCHES (Int. CL+4)		
			C 07 K 7/00 A 61 K 37/00		
Le présent rapport a été établi pour toutes les revendications					
Lieu de la recherche	Date d'achèvement de la recherche	Examinateur			
LA HAYE	03-10-1988	RAJIC M.			
CATEGORIE DES DOCUMENTS CITES					
X : particulièrement pertinent à lui seul Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie A : arrière-plan technologique O : divulgation non-écrite P : document intercalaire					
T : théorie ou principe à la base de l'invention E : document de brevet antérieur, mais publié à la date de dépôt ou après cette date D : cité dans la demande L : cité pour d'autres raisons & : membre de la même famille, document correspondant					

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.