BÀI TẬP CHƯ**Ơ**NG 4

1. Áp dụng thuật toán duyệt toàn thể giải bài toán cái túi dưới đây, chỉ rõ kết quả theo mỗi bước thực hiện của thuật toán?

$$\begin{cases} 7x_1 + 3x_2 + 2x_3 + x_4 \rightarrow \max \\ 5x_1 + 3x_2 + 6x_3 + 4x_4 \le 12 \\ x_i \in \{0, 1\}; i = 1, 2, 3, 4 \end{cases}$$

Giải

Xác định bài toán:

Có n = 4, b = 12.
$$f(X) = 7x_1 + 3x_2 + 2x_3 + x_4$$
; $g(X) = 5x_1 + 3x_2 + 6x_3 + 4x_4$.

Lập bảng: Fopt = $-\infty$; Xopt = \emptyset ;

X	g(X)	g(X) ≤ 12?	f(X)	Fopt
0, 0, 0, 0	0	Yes	0	0
0, 0, 0, 1	4	Yes	1	1
0, 0, 1, 0	<mark>6</mark>	Yes	2	2
0, 0, 1, 1	10	Yes	3	3
0, 1, 0, 0	3	Yes	3	-
0, 1, 0, 1	<mark>7</mark>	Yes	4	4
0, 1, 1, 0	9	Yes	<mark>5</mark>	5
0, 1, 1, 1	13	No	-	-
1, 0, 0, 0	<mark>5</mark>	Yes	7	<mark>7</mark>
1, 0, 0, 1	9	Yes	8	8
1, 0, 1, 0	11	Yes	9	9
1, 0, 1, 1	<mark>15</mark>	No	-	-
1, 1, 0, 0	8	Yes	10	10
1, 1, 0, 1	12	Yes	11	<mark>11</mark>
1, 1, 1, 0	14	No	-	-
1, 1, 1, 1	18	N0	<u>.</u>	-

Kết luận: Fopt = 11; Xopt = (1, 1, 0, 1).

2. Áp dụng thuật toán nhánh cận giải bài toán cái túi dưới đây, chỉ rõ kết quả theo mỗi bước thực hiện của thuật toán?

$$\begin{cases} 2x_1 + 3x_2 + 2x_3 + 5x_4 \to \max \\ 5x_1 + 3x_2 + 6x_3 + 4x_4 \le 12 \\ x_i \in \{0, 1\}; i = 1, 2, 3, 4 \end{cases}$$

Giải

Xác định bài toán: Có n = 4, b = 12.

Sắp xếp các đồ vật theo thứ tự giảm: $5/4 \ge 3/3 \ge 2/5 \ge 2/6$

Có
$$f(X) = 5x_1 + 3x_2 + 2x_3 + 2x_4$$
; $g(X) = 4x_1 + 3x_2 + 5x_3 + 6x_4$.

$$a_1 = 4$$
, $c_1 = 5$; $a_2 = 3$, $c_2 = 3$; $a_3 = 5$, $a_3 = 2$; $a_4 = 6$, $a_4 = 2$

Lập bảng: Fopt = $-\infty$; Xopt = \emptyset ;

$$b_0 = 12$$
, $b_k = b_{k-1} - a_k x_k$; $\delta_0 = 0$, $\delta_k = \delta_{k-1} + c_k x_k$, $g_k = \delta_k + b_k (c_{k+1}/a_{k+1})$

Kết luận: Fopt = 10; Xopt = (1, 1, 1, 0)

3. Áp dụng thuật toán nhánh cận, giải bài toán người du lịch với ma trận chi phí như sau:

Giải

Có n = 6, Cmin = 2.

Chọn phương án xuất phát: $1 \rightarrow 5: 10$; $5 \rightarrow 4: 3$; $4 \rightarrow 2: 2; 2 \rightarrow 3: 2$; $3 \rightarrow 6: 5$; $6 \rightarrow 1: 8$ Xopt = (1, 5, 4, 2, 3, 6); Fopt = 30

$$\delta_1 = 0$$
, $\delta_k = \delta_{k-1} + c[x_{k-1}][x_k]$; $g_k = \delta_k + (n-k+1) c_{min}$

Lập bảng: Fopt = 30; Xopt = (1, 5, 4, 2, 3, 6);

Lập bảng: Fopt = 30; Xopt = (1, 5, 4, 2, 3, 6);

Kết luận:

$$Fopt = 30$$

Xopt = (1, 5, 4, 2, 3, 6)