VLSI Physical Design Automation

Objectives:

- Obtain a general understanding of IC's.
- Study the basic algorithms used in designing the layout of a chip.
- Study algorithms which convert a circuit description into a geometric description.
- Study the differences in algorithms that perform the same operations.

VLSI Design Cylce

- Large number of devices
- Optimization requirements for high performance
- Time-to-market competition
- Cost

VLSI Design Cycle

- 1. System Specification
- 2. Functional Design
- 3. Logic Design
- 4. Circuit Design
- 5. Physical Design
- 6. Design Verification
- 7. Fabrication
- 8. Packaging, Testing, and Debugging

VLSI Design Cycle

VLSI Design Cycle (cont.)

Physical Design

Physical design converts a circuit description into a geometric description. This description is used to manufacture a chip. The physical design cycle consists of

- 1. Partitioning
- 2. Floorplanning and Placement
- 3. Routing
- 4. Compaction

Physical Design Cycle

Complexities of Physical Design

- More than 3 million transistors
- Performance driven designs
 - Time-to-market

High performance, high cost

Full Custom Design Style

Standard Cell Design Style

Gate Array Design Style

FPGA Design Style

Comparisons of Design Styles

	style				
	full-custom	standard cell	gate array	FPGA	
cell size	variable	fixed height*	fixed	fixed	
cell type	variable	variable	fixed	programmable	
cell placement	variable	in row	fixed	fixed	
interconnections	variable	variable	variable	programmable	

^{*} uneven height cells are also used.

Comparisons of Design Styles

	style			
	full-custom	standard cell	gate array	FPGA
Area	$\operatorname{compact}$	compact	moderate	large
		to moderate		
Performance	high	high	moderate	low
		to moderate		
Fabrication layers	All	All	routing layers	none

The increasing complexity and density of the semiconductor devices are driving the development of more advanced VLSI packaging and interconnection approaches.

Printed Circuit Board Model

- Large number of layers (150 λ pitch)
- Large area
- Low performance
- Low cost

MCM Model

- Up to 36 layers (75 λ pitch)
- Moderate to small area
- Moderate to high performance
 - High cost
 - Heat dissipation problems

Wafer Scale Integration

- Small number of layers (VLSI technology 6λ pitch)
- Smallest area
- Significant yield problems
- Very High performance
- Significant heat dissipation problems

Comparisons of Packaging styles

Technology	Figure of Merit		
	(inches/psec . density inches/sq in)		
WSI	28.0		
MCM	14.6		
PCB	2.2		

History of VLSI CAD

Year	Design Tools
1950-1965	Manual design
1965-1975	Layout editors
	Automatic routers (for PCB)
	Efficient partitioning algorithm
1975-1985	Automatic placement tools
	Well defined phases of design of circuits
	Significant theoretical development in all phases
1985-present	Performance driven placement and routing tools
	Parallel algorithms for physical design
	Significant development in underlying graph theory
	Combinatorial optimization problems for layout

VLSI CAD Conferences

- ACM/IEEE Design Automation Conference (DAC)
- International Conference on Computer Aided Design (ICCAD)
- IEEE International Symposium on Circuits and Systems (ISCAS)
- International Conference on Computer Design (ICCD)
- IEEE Midwest Symposium on Circuits and Systems (MSCAS)
- IEEE Great Lakes Symposium on VLSI (GLSVLSI)
- European Design Automation Conference (EDAC)
- International Conference on VLSI Design

VLSI CAD Journals

- IEEE Transactions on CAD of Circuits and Systems
- Integration
- Transactions on Circuits and Systems
- Journal of Circuits, Systems and Computers
- Algorithmica
- SIAM journal of Discrete and Applied Mathematics
- IEEE Transactions on Computers

VLSI CAD Organizations

- ACM SIGDA
- Design Automation Technical Committee (DATC)
- of IEEE Computer Society

Summary

- 1. Physical design is one of the steps in the VLSI design cycle.
- 2. Physical design is further divided into partitioning, placement, routing and compaction.
- 3. There are five major design styles, e.g., full custom, standard cell, gate array, sea of gates and FPGAs.
- 4. There are three alternatives for packaging of chips, e.g., PCB, MCM and WSI.
- 5. Automation reduces cost, increases chip density, reduces timeto-market, and improves performance.
- 6. CAD tools currently lag behind fabrication technology, which is hindering the progress of IC technology.