The Kato square root problem on vector bundles with generalised bounded geometry

Lashi Bandara

(Joint work with Alan McIntosh, ANU)

Centre for Mathematics and its Applications Australian National University

7 August 2012

Recent trends in Geometric and Nonlinear Analysis

Banff International Research Station, Canada

History of the problem

In the 1960's, Kato considered the following abstract evolution equation

$$\frac{du}{dt} + A(t)u = f(t), \quad t \in [0, T].$$

on a Hilbert space \mathscr{H} .

History of the problem

In the 1960's, Kato considered the following abstract evolution equation

$$\frac{du}{dt} + A(t)u = f(t), \quad t \in [0, T].$$

on a Hilbert space \mathcal{H} .

This has a unique strict solution u=u(t) if

$$\mathcal{D}(A(t)^\alpha) = \mathsf{const}$$

for some $0<\alpha\leq 1$ and A(t) and f(t) satisfy certain smoothness conditions.

$$J_t: \mathcal{W} \times \mathcal{W} \to \mathbb{C}$$

where $\mathcal{W} \subset \mathcal{H}$.

$$J_t: \mathcal{W} \times \mathcal{W} \to \mathbb{C}$$

where $\mathcal{W} \subset \mathcal{H}$.

Suppose $0 \le \omega \le \pi/2$. Then J_t is ω -sectorial means that

$$J_t: \mathcal{W} \times \mathcal{W} \to \mathbb{C}$$

where $\mathcal{W} \subset \mathcal{H}$.

Suppose $0 \le \omega \le \pi/2$. Then J_t is ω -sectorial means that

(i) $\mathcal{W} \subset \mathscr{H}$ is dense,

$$J_t: \mathcal{W} \times \mathcal{W} \to \mathbb{C}$$

where $\mathcal{W} \subset \mathcal{H}$.

Suppose $0 \le \omega \le \pi/2$. Then J_t is ω -sectorial means that

- (i) $\mathcal{W} \subset \mathscr{H}$ is dense,
- (ii) $J_t[u, u] \in S_{\omega +} = \{ \zeta \in \mathbb{C} : |\arg \zeta| \le \omega \} \cup \{0\},$

$$J_t: \mathcal{W} \times \mathcal{W} \to \mathbb{C}$$

where $\mathcal{W} \subset \mathcal{H}$.

Suppose $0 \le \omega \le \pi/2$. Then J_t is ω -sectorial means that

- (i) $\mathcal{W} \subset \mathscr{H}$ is dense,
- (ii) $J_t[u,u] \in S_{\omega+} = \{\zeta \in \mathbb{C} : |\arg \zeta| \le \omega\} \cup \{0\}$, and
- (iii) ${\mathcal W}$ is complete under the norm

$$||u||_{\mathcal{W}}^2 = ||u|| + \text{Re } J[u, u].$$

 $T:\mathcal{D}(T)\to\mathscr{H}$ is called ω -accretive if

(i) T is densely-defined and closed,

 $T:\mathcal{D}(T)\to\mathscr{H}$ is called ω -accretive if

- (i) T is densely-defined and closed,
- (ii) $\langle Tu, u \rangle \in S_{\omega+}$ for $u \in \mathcal{D}(T)$,

 $T:\mathcal{D}(T)\to\mathscr{H}$ is called ω -accretive if

- (i) T is densely-defined and closed,
- (ii) $\langle Tu, u \rangle \in S_{\omega+}$ for $u \in \mathcal{D}(T)$, and
- (iii) $\sigma(T) \subset S_{\omega+}$.

 $T:\mathcal{D}(T) o\mathscr{H}$ is called ω -accretive if

- (i) T is densely-defined and closed,
- (ii) $\langle Tu, u \rangle \in S_{\omega+}$ for $u \in \mathcal{D}(T)$, and
- (iii) $\sigma(T) \subset S_{\omega+}$.

A 0-accretive operator is non-negative and self-adjoint.

Let $A(t):\mathcal{D}(A(t))\to \mathscr{H}$ be defined as the operator with largest domain such that

$$J_t[u,v] = \langle A(t)u,v \rangle \qquad u \in \mathcal{D}(A(t)), \ v \in \mathcal{W}.$$

Let $A(t):\mathcal{D}(A(t))\to \mathscr{H}$ be defined as the operator with largest domain such that

$$J_t[u,v] = \langle A(t)u,v \rangle \qquad u \in \mathcal{D}(A(t)), \ v \in \mathcal{W}.$$

The theorem of Lax-Milgram guarantees that

 J_t is ω -sectorial $\Longrightarrow A(t)$ is ω -accretive.

Let $A(t): \mathcal{D}(A(t)) \to \mathcal{H}$ be defined as the operator with largest domain such that

$$J_t[u,v] = \langle A(t)u,v \rangle \qquad u \in \mathcal{D}(A(t)), \ v \in \mathcal{W}.$$

The theorem of Lax-Milgram guarantees that

 J_t is ω -sectorial $\Longrightarrow A(t)$ is ω -accretive.

In 1962, Kato showed in [Kato] that for $0 \le \alpha < 1/2$ and $0 \le \omega \le \pi/2$,

$$\mathcal{D}(A(t)^{\alpha}) = \mathcal{D}(A(t)^{*\alpha}) = \mathcal{D} = \mathrm{const}, \text{ and}$$

 $\|A(t)^{\alpha}u\| \simeq \|A(t)^{*\alpha}u\|, \quad u \in \mathcal{D}.$ (K_{α})

Let $A(t):\mathcal{D}(A(t))\to \mathscr{H}$ be defined as the operator with largest domain such that

$$J_t[u,v] = \langle A(t)u,v \rangle \qquad u \in \mathcal{D}(A(t)), \ v \in \mathcal{W}.$$

The theorem of Lax-Milgram guarantees that

 J_t is ω -sectorial $\Longrightarrow A(t)$ is ω -accretive.

In 1962, Kato showed in [Kato] that for $0 \le \alpha < 1/2$ and $0 \le \omega \le \pi/2$,

$$\mathcal{D}(A(t)^{\alpha}) = \mathcal{D}(A(t)^{*\alpha}) = \mathcal{D} = \text{const}, \text{ and}$$
$$\|A(t)^{\alpha}u\| \simeq \|A(t)^{*\alpha}u\|, \quad u \in \mathcal{D}. \tag{K_{α}}$$

Counter examples were known for $\alpha>1/2$ and for $\alpha=1/2$ when $\omega=\pi/2$.

4□ > 4□ > 4 = > 4 = > = 90

(K1) Does (K_{α}) hold for $\alpha = 1/2$?

- (K1) Does (K_{α}) hold for $\alpha = 1/2$?
- (K2) For the case $\omega=0$, we know $\mathcal{D}(\sqrt{A(t)})=\mathcal{W}$ and (K1) is true, but is

$$\left\|\frac{d}{dt}\sqrt{A(t)}u\right\|\lesssim \|u\|$$

for $u \in \mathcal{W}$?

- (K1) Does (K_{α}) hold for $\alpha = 1/2$?
- (K2) For the case $\omega=0$, we know $\mathcal{D}(\sqrt{A(t)})=\mathcal{W}$ and (K1) is true, but is

$$\left\| \frac{d}{dt} \sqrt{A(t)} u \right\| \lesssim \|u\|$$

for $u \in \mathcal{W}$?

In 1972, McIntosh provided a counter example in [Mc72] demonstrating that (K1) is false in such generality.

- (K1) Does (K_{α}) hold for $\alpha = 1/2$?
- (K2) For the case $\omega=0$, we know $\mathcal{D}(\sqrt{A(t)})=\mathcal{W}$ and (K1) is true, but is

$$\left\|\frac{d}{dt}\sqrt{A(t)}u\right\|\lesssim \|u\|$$

for $u \in \mathcal{W}$?

In 1972, McIntosh provided a counter example in [Mc72] demonstrating that (K1) is false in such generality.

In 1982, McIntosh showed that (K2) also did not hold in general in [Mc82].

$$J[u, v] = \langle A \nabla u, \nabla v \rangle \quad u, v \in H^1(\mathbb{R}^n),$$

$$J[u,v] = \langle A\nabla u, \nabla v \rangle \quad u,v \in H^1(\mathbb{R}^n),$$

where $A \in \mathrm{L}^\infty$ is a pointwise matrix multiplication operator

$$J[u, v] = \langle A\nabla u, \nabla v \rangle \quad u, v \in H^1(\mathbb{R}^n),$$

where $A \in L^{\infty}$ is a pointwise matrix multiplication operator satisfying the following ellipticity condition:

$$\operatorname{Re} J[u,u] \ge \kappa \|\nabla u\|$$
, for some $\kappa > 0$.

$$J[u, v] = \langle A\nabla u, \nabla v \rangle \quad u, v \in H^1(\mathbb{R}^n),$$

where $A \in L^{\infty}$ is a pointwise matrix multiplication operator satisfying the following ellipticity condition:

$$\operatorname{Re} J[u,u] \geq \kappa \left\| \nabla u \right\|, \quad \text{for some } \kappa > 0.$$

Under these conditions, is it true that

$$\mathcal{D}(\sqrt{\operatorname{div} A \nabla}) = \mathrm{H}^{1}(\mathbb{R}^{n})$$

$$\left\| \sqrt{\operatorname{div} A \nabla} u \right\| \simeq \|\nabla u\|$$
(K1)

$$J[u, v] = \langle A\nabla u, \nabla v \rangle \quad u, v \in H^1(\mathbb{R}^n),$$

where $A \in L^{\infty}$ is a pointwise matrix multiplication operator satisfying the following ellipticity condition:

$$\operatorname{Re} J[u,u] \ge \kappa \|\nabla u\|, \quad \text{for some } \kappa > 0.$$

Under these conditions, is it true that

$$\mathcal{D}(\sqrt{\operatorname{div} A \nabla}) = \mathrm{H}^{1}(\mathbb{R}^{n})$$

$$\left\| \sqrt{\operatorname{div} A \nabla} u \right\| \simeq \|\nabla u\|$$
(K1)

This was answered in the positive in 2002 by Auscher, Hofmann, Lacey, McIntosh and Tchamitchian in [AHLMcT].

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 釣 9 0 0 0

Let $\mathcal M$ be a smooth, complete Riemannian manifold with metric g, Levi-Civita connection ∇ , and volume measure $d\mu$.

Let $\mathcal M$ be a smooth, complete Riemannian manifold with metric g, Levi-Civita connection ∇ , and volume measure $d\mu$.

Write $\operatorname{div} = -\nabla^*$ in L^2 and let $S = (I, \nabla)$.

Let $\mathcal M$ be a smooth, complete Riemannian manifold with metric g, Levi-Civita connection ∇ , and volume measure $d\mu$.

Write $\operatorname{div} = -\nabla^*$ in L^2 and let $S = (I, \nabla)$.

Consider the following *uniformly elliptic* second order differential operator $L_A: \mathcal{D}(L_A) \subset L^2(\mathcal{M}) \to L^2(\mathcal{M})$ defined by

$$L_A u = aS^* A S u = -a \operatorname{div}(A_{11} \nabla u) - a \operatorname{div}(A_{10} u) + a A_{01} \nabla u + a A_{00} u.$$

Let $\mathcal M$ be a smooth, complete Riemannian manifold with metric g, Levi-Civita connection ∇ , and volume measure $d\mu$.

Write $\operatorname{div} = -\nabla^*$ in L^2 and let $S = (I, \nabla)$.

Consider the following *uniformly elliptic* second order differential operator $L_A: \mathcal{D}(L_A) \subset L^2(\mathcal{M}) \to L^2(\mathcal{M})$ defined by

$$L_A u = aS^* A S u = -a \operatorname{div}(A_{11} \nabla u) - a \operatorname{div}(A_{10} u) + a A_{01} \nabla u + a A_{00} u.$$

That is, we assume a and $A=(A_{ij})$ are L^{∞} multiplication operators and that there exist $\kappa_1, \kappa_2 > 0$ such that

Re
$$\langle av, v \rangle \ge \kappa_1 \|v\|^2$$
, $v \in L^2$
Re $\langle ASu, Su \rangle \ge \kappa_2 (\|u\|^2 + \|\nabla u\|^2)$, $u \in H^1$

The problem

The *Kato square root problem on manifolds* is to determine when the following holds:

The problem

The Kato square root problem on manifolds is to determine when the following holds:

$$\begin{cases} & \mathcal{D}(\sqrt{L_A}) = \mathrm{H}^1(\mathcal{M}) \\ & \left\| \sqrt{L_A} u \right\| \simeq \left\| \nabla u \right\| + \left\| u \right\| = \left\| u \right\|_{\mathrm{H}^1}, \ u \in \mathrm{H}^1(\mathcal{M}) \end{cases}$$

The main theorem

Theorem (B.-Mc)

Let \mathcal{M} be a smooth, complete Riemannian manifold with $|\mathrm{Ric}| \leq C$ and $\mathrm{inj}(M) \geq \kappa > 0$. Suppose there exist $\kappa_1, \kappa_2 > 0$ such that

$$\operatorname{Re}\langle av, v \rangle \ge \kappa_1 \|v\|^2$$

 $\operatorname{Re}\langle ASu, Su \rangle \ge \kappa_2 \|u\|_{H^1}^2$

for $v \in L^2(\mathcal{M})$ and $u \in H^1(\mathcal{M})$. Then, $\mathcal{D}(\sqrt{L_A}) = \mathcal{D}(\nabla) = H^1(\mathcal{M})$ and $\|\sqrt{L_A}u\| \simeq \|\nabla u\| + \|u\| = \|u\|_{H^1}$ for all $u \in H^1(\mathcal{M})$.

Stability

Theorem (B.-Mc)

Let \mathcal{M} be a smooth, complete Riemannian manifold with $|\mathrm{Ric}| \leq C$ and $\mathrm{inj}(M) \geq \kappa > 0$. Suppose that there exist $\kappa_1, \kappa_2 > 0$ such that

$$\operatorname{Re} \langle av, v \rangle \ge \kappa_1 \|v\|^2$$
$$\operatorname{Re} \langle ASu, Su \rangle \ge \kappa_2 \|u\|_{H^1}^2$$

for $v \in L^2(\mathcal{M})$ and $u \in H^1(\mathcal{M})$. Then for every $\eta_i < \kappa_i$, whenever $\|\tilde{a}\|_{\infty} \leq \eta_1$, $\|\tilde{A}\|_{\infty} \leq \eta_2$, the estimate

$$\left\| \sqrt{\mathcal{L}_A} \, u - \sqrt{\mathcal{L}_{A+\tilde{A}}} \, u \right\| \lesssim \left(\|\tilde{a}\|_{\infty} + \|\tilde{A}\|_{\infty} \right) \|u\|_{\mathcal{H}^1}$$

holds for all $u \in H^1(\mathcal{M})$. The implicit constant depends in particular on A, a and η_i .

A more general problem

We can consider the Kato square root problem on vector bundles by replacing $\mathcal M$ with $\mathcal V$, a smooth, complex vector bundle of rank N over $\mathcal M$ with metric h and connection ∇ .

A more general problem

We can consider the Kato square root problem on vector bundles by replacing $\mathcal M$ with $\mathcal V$, a smooth, complex vector bundle of rank N over $\mathcal M$ with metric h and connection ∇ .

These theorems are obtained as special cases of corresponding theorems on vector bundles.

A more general problem

We can consider the Kato square root problem on vector bundles by replacing $\mathcal M$ with $\mathcal V$, a smooth, complex vector bundle of rank N over $\mathcal M$ with metric h and connection ∇ .

These theorems are obtained as special cases of corresponding theorems on vector bundles.

We use the adaptation of the *first order systems* approach in [AKMc], which captures the Kato problem (and some other results of harmonic analysis) in terms of perturbations of *Dirac type operators*.

(H1) Let Γ be a densely-defined, closed, nilpotent operator on a Hilbert space \mathscr{H} ,

- (H1) Let Γ be a densely-defined, closed, nilpotent operator on a Hilbert space \mathscr{H} ,
- (H2) Suppose that $B_1,B_2\in\mathcal{L}(\mathscr{H})$ such that here exist $\kappa_1,\kappa_2>0$ satisfying

$$\operatorname{Re} \langle B_1 u, u \rangle \ge \kappa_1 \|u\|^2$$
 and $\operatorname{Re} \langle B_2 v, v \rangle \ge \kappa_2 \|v\|^2$

for $u \in \mathcal{R}(\Gamma^*)$ and $v \in \mathcal{R}(\Gamma)$,

- (H1) Let Γ be a densely-defined, closed, nilpotent operator on a Hilbert space \mathscr{H} ,
- (H2) Suppose that $B_1,B_2\in\mathcal{L}(\mathscr{H})$ such that here exist $\kappa_1,\kappa_2>0$ satisfying

$$\operatorname{Re} \langle B_1 u, u \rangle \ge \kappa_1 \|u\|^2$$
 and $\operatorname{Re} \langle B_2 v, v \rangle \ge \kappa_2 \|v\|^2$

for $u \in \mathcal{R}(\Gamma^*)$ and $v \in \mathcal{R}(\Gamma)$,

(H3) The operators B_1, B_2 satisfy $B_1B_2\mathcal{R}(\Gamma) \subset \mathcal{N}(\Gamma)$ and $B_2B_1\mathcal{R}(\Gamma^*) \subset \mathcal{N}(\Gamma^*)$.

- (H1) Let Γ be a densely-defined, closed, nilpotent operator on a Hilbert space \mathscr{H} ,
- (H2) Suppose that $B_1,B_2\in\mathcal{L}(\mathscr{H})$ such that here exist $\kappa_1,\kappa_2>0$ satisfying

$$\operatorname{Re} \langle B_1 u, u \rangle \ge \kappa_1 \|u\|^2$$
 and $\operatorname{Re} \langle B_2 v, v \rangle \ge \kappa_2 \|v\|^2$

for $u \in \mathcal{R}(\Gamma^*)$ and $v \in \mathcal{R}(\Gamma)$,

(H3) The operators B_1, B_2 satisfy $B_1B_2\mathcal{R}(\Gamma) \subset \mathcal{N}(\Gamma)$ and $B_2B_1\mathcal{R}(\Gamma^*) \subset \mathcal{N}(\Gamma^*)$.

Let
$$\Gamma_B^* = B_1 \Gamma^* B_2$$
, $\Pi_B = \Gamma + \Gamma_B^*$ and $\Pi = \Gamma + \Gamma^*$.

Growth restrictions

We say ${\cal M}$ has exponential volume growth if there exists $c\geq 1,\ \kappa,\lambda\geq 0$ such that

$$0 < \mu(B(x, tr)) \le ct^{\kappa} e^{\lambda tr} \mu(B(x, r)) < \infty$$
 (E_{loc})

for all $t \ge 1$, r > 0 and $x \in \mathcal{M}$.

Growth restrictions

We say ${\cal M}$ has exponential volume growth if there exists $c\geq 1,\ \kappa,\lambda\geq 0$ such that

$$0 < \mu(B(x, tr)) \le ct^{\kappa} e^{\lambda tr} \mu(B(x, r)) < \infty$$
 (E_{loc})

for all $t \ge 1$, r > 0 and $x \in \mathcal{M}$.

For instance, if $Ric \ge \eta g$, for $\eta \in \mathbb{R}$, then (E_{loc}) is satisfied.

Generalised bounded geometry

We want to set $\mathscr{H} = L^2(\mathcal{V})$, but we need to assume more structure in \mathcal{V} .

Generalised bounded geometry

We want to set $\mathscr{H}=L^2(\mathcal{V})$, but we need to assume more structure in \mathcal{V} .

Definition (Generalised Bounded Geometry)

Suppose there exists $\rho>0$, $C\geq 1$ such that for each $x\in\mathcal{M}$, there exists a trivialisation $\psi:B(x,\rho)\times\mathbb{C}^N\to\pi_{\mathcal{V}}^{-1}(B(x,\rho))$ satisfying

$$C^{-1}I \le h \le CI$$

in the basis $\left\{e^i=\psi(x,\hat{e}^i)\right\}$, where $\left\{\hat{e}^i\right\}$ is the standard basis for \mathbb{C}^N . Then, we say that $\mathcal V$ has generalised bounded geometry or GBG. We call ρ the GBG radius.

Further assumptions

(H4) The bundle $\mathcal V$ has GBG, $\mathscr H=L^2(\mathcal V)$, and $\mathcal M$ grows at most exponentially.

Further assumptions

- (H4) The bundle $\mathcal V$ has GBG, $\mathscr H=L^2(\mathcal V)$, and $\mathcal M$ grows at most exponentially.
- (H5) The operators B_1, B_2 are matrix valued pointwise multiplication operators. That is, $B_i \in \mathrm{L}^\infty(\mathcal{M}, \mathcal{L}(\mathcal{V}))$ by which we mean that $B_i(x) \in \mathcal{L}(\pi_{\mathcal{V}}^{-1}(x))$ for every $x \in \mathcal{M}$ and there is a $C_{B_i} > 0$ so that $\|B_i(x)\|_\infty \leq C$ for almost every $x \in \mathcal{M}$.

Further assumptions

- (H4) The bundle $\mathcal V$ has GBG, $\mathscr H=L^2(\mathcal V)$, and $\mathcal M$ grows at most exponentially.
- (H5) The operators B_1, B_2 are matrix valued pointwise multiplication operators. That is, $B_i \in \mathrm{L}^\infty(\mathcal{M}, \mathcal{L}(\mathcal{V}))$ by which we mean that $B_i(x) \in \mathcal{L}(\pi_{\mathcal{V}}^{-1}(x))$ for every $x \in \mathcal{M}$ and there is a $C_{B_i} > 0$ so that $\|B_i(x)\|_\infty \leq C$ for almost every $x \in \mathcal{M}$.
- (H6) The operator Γ is a first order differential operator. That is, there exists a $C_{\Gamma}>0$ such that whenever $\eta\in \mathrm{C}_{\mathrm{c}}^{\infty}(\mathcal{M})$, we have that $\eta\mathcal{D}(\Gamma)\subset\mathcal{D}(\Gamma)$ and $\mathrm{M}_{\eta}u(x)=[\Gamma,\eta(x)]\,u(x)$ is a multiplication operator satisfying

$$|\mathcal{M}_{\eta}u(x)| \le C_{\Gamma} |\nabla \eta|_{\mathcal{T}^*M} |u(x)|$$

for all $u \in \mathcal{D}(\Gamma)$ and almost all $x \in \mathcal{M}$.

Since we assume exponential growth of \mathcal{M} , the work of Christ in [Christ] and subsequently of Morris in [Morris] allows us to perform a *dyadic decomposition* of the manifold below a fixed "scale."

Since we assume exponential growth of \mathcal{M} , the work of Christ in [Christ] and subsequently of Morris in [Morris] allows us to perform a *dyadic* decomposition of the manifold below a fixed "scale."

In particular, we are able to choose arbitrarily large $J \in \mathbb{N}$ so that for every $j \geq J$, \mathscr{Q}^j is an almost everywhere decomposition of \mathcal{M} by open sets.

Since we assume exponential growth of \mathcal{M} , the work of Christ in [Christ] and subsequently of Morris in [Morris] allows us to perform a *dyadic* decomposition of the manifold below a fixed "scale."

In particular, we are able to choose arbitrarily large $J \in \mathbb{N}$ so that for every $j \geq J$, \mathscr{Q}^j is an almost everywhere decomposition of \mathcal{M} by open sets.

If l>j then for every $cube\ Q\in \mathscr{Q}^l$, there is a unique cube $\widehat{Q}\in \mathscr{Q}^j$ such that $Q\subset \widehat{Q}$.

Since we assume exponential growth of \mathcal{M} , the work of Christ in [Christ] and subsequently of Morris in [Morris] allows us to perform a *dyadic decomposition* of the manifold below a fixed "scale."

In particular, we are able to choose arbitrarily large $J \in \mathbb{N}$ so that for every $j \geq J$, \mathscr{Q}^j is an almost everywhere decomposition of \mathcal{M} by open sets.

If l>j then for every $cube\ Q\in \mathscr{Q}^l$, there is a unique cube $\widehat{Q}\in \mathscr{Q}^j$ such that $Q\subset \widehat{Q}$.

Each such cube has a centre x_Q .

Since we assume exponential growth of \mathcal{M} , the work of Christ in [Christ] and subsequently of Morris in [Morris] allows us to perform a *dyadic* decomposition of the manifold below a fixed "scale."

In particular, we are able to choose arbitrarily large $J \in \mathbb{N}$ so that for every $j \geq J$, \mathcal{Q}^j is an almost everywhere decomposition of \mathcal{M} by open sets.

If l>j then for every $cube\ Q\in \mathscr{Q}^l$, there is a unique cube $\widehat{Q}\in \mathscr{Q}^j$ such that $Q\subset \widehat{Q}$.

Each such cube has a centre x_Q .

Each cube $Q \in \mathcal{Q}^j$ also has a diameter of at most $C_1 \delta^j$, where $C_1 > 0$ and $\delta \in (0,1)$ are fixed, uniform quantities.

GBG coordinates

Since we assume the bundle satisfies GBG, we recall the uniform $\rho > 0$ from this criterion.

GBG coordinates

Since we assume the bundle satisfies GBG, we recall the uniform $\rho > 0$ from this criterion.

Choose $J \in \mathbb{N}$ such that $C_1 \delta^J \leq \frac{\rho}{5}$. We call $t_S = \delta^J$ the scale.

GBG coordinates

Since we assume the bundle satisfies GBG, we recall the uniform $\rho > 0$ from this criterion.

Choose $J \in \mathbb{N}$ such that $C_1 \delta^J \leq \frac{\rho}{5}$. We call $t_S = \delta^J$ the scale.

Call the system of trivialisations

$$\mathscr{C} = \left\{ \psi : B(x_Q, \rho) \times \mathbb{C}^N \to \pi_{\mathcal{V}}^{-1}(B(x_Q, \rho)) \text{ s.t. } Q \in \mathscr{Q}^{\mathrm{J}} \right\} \text{ the GBG coordinates.}$$

GBG coordinates (cont.)

Call the set of a.e. trivialisations $\mathscr{C}_{\mathrm{J}} = \left\{ \tilde{\varphi}_{Q} = \psi|_{Q} : Q \times \mathbb{C}^{N} \to \pi_{\mathcal{V}}^{-1}(Q) \text{ s.t. } Q \in \mathscr{Q}^{\mathrm{J}} \right\} \text{ the } \textit{dyadic GBG coordinates.}$

GBG coordinates (cont.)

Call the set of a.e. trivialisations $\mathscr{C}_{\mathrm{J}} = \left\{ \tilde{\varphi}_{Q} = \psi|_{Q} : Q \times \mathbb{C}^{N} \to \pi_{\mathcal{V}}^{-1}(Q) \text{ s.t. } Q \in \mathscr{Q}^{\mathrm{J}} \right\} \text{ the } \textit{dyadic GBG coordinates.}$

For any cube Q, the unique cube $\widehat{Q}\in \mathscr{Q}^{\mathrm{J}}$ satisfying $Q\subset \widehat{Q}$ we call the GBG cube of Q.

GBG coordinates (cont.)

Call the set of a.e. trivialisations $\mathscr{C}_{\mathrm{J}} = \left\{ \tilde{\varphi}_{Q} = \psi|_{Q} : Q \times \mathbb{C}^{N} \to \pi_{\mathcal{V}}^{-1}(Q) \text{ s.t. } Q \in \mathscr{Q}^{\mathrm{J}} \right\} \text{ the } \textit{dyadic GBG coordinates.}$

For any cube Q, the unique cube $\widehat{Q}\in \mathscr{Q}^{\mathrm{J}}$ satisfying $Q\subset \widehat{Q}$ we call the GBG cube of Q.

The GBG coordinate system of Q is then $\psi: B(x_{\widehat{Q}}, \rho) \times \mathbb{C}^N \to \pi_{\mathcal{V}}^{-1}(B(x_{\widehat{Q}}, \rho)).$

• For $t \le t_S$, we write $\mathcal{Q}_t = \mathcal{Q}^j$ whenever $\delta^{j+1} < t \le \delta^j$.

- For $t \le t_S$, we write $\mathcal{Q}_t = \mathcal{Q}^j$ whenever $\delta^{j+1} < t \le \delta^j$.
- For j > J and $Q \in \mathscr{Q}^j$ and $u = u_i e^i \in L^1_{loc}(\mathcal{V})$ in the GBG coordinates associated to \widehat{Q} . Define, the *cube integral*

$$\int_{Q} u = \left(\int_{Q} u_i \right) e^i$$

inside $B(x_{\widehat{Q}}, \rho)$.

- For $t \leq t_S$, we write $\mathcal{Q}_t = \mathcal{Q}^j$ whenever $\delta^{j+1} < t \leq \delta^j$.
- For j > J and $Q \in \mathscr{Q}^j$ and $u = u_i e^i \in L^1_{loc}(\mathcal{V})$ in the GBG coordinates associated to \widehat{Q} . Define, the *cube integral*

$$\int_{Q} u = \left(\int_{Q} u_{i} \right) e^{i}$$

inside $B(x_{\widehat{O}}, \rho)$.

• The *cube average* is then defined as $u_Q(y) = \int_Q u$, for $y \in B(x_{\widehat{Q}}, \rho)$ and 0 otherwise.

- For $t \le t_S$, we write $\mathcal{Q}_t = \mathcal{Q}^j$ whenever $\delta^{j+1} < t \le \delta^j$.
- For j > J and $Q \in \mathscr{Q}^j$ and $u = u_i e^i \in L^1_{loc}(\mathcal{V})$ in the GBG coordinates associated to \widehat{Q} . Define, the *cube integral*

$$\int_{Q} u = \left(\int_{Q} u_{i} \right) e^{i}$$

inside $B(x_{\widehat{Q}}, \rho)$.

- The *cube average* is then defined as $u_Q(y) = f_Q u$, for $y \in B(x_{\widehat{Q}}, \rho)$ and 0 otherwise.
- Let $A_t u(x) = u_Q(x)$ whenever $x \in Q \in \mathcal{Q}_t$.

- For $t \le t_S$, we write $\mathcal{Q}_t = \mathcal{Q}^j$ whenever $\delta^{j+1} < t \le \delta^j$.
- For j > J and $Q \in \mathscr{Q}^j$ and $u = u_i e^i \in L^1_{loc}(\mathcal{V})$ in the GBG coordinates associated to \widehat{Q} . Define, the *cube integral*

$$\int_{Q} u = \left(\int_{Q} u_{i} \right) e^{i}$$

inside $B(x_{\widehat{Q}}, \rho)$.

- The *cube average* is then defined as $u_Q(y) = \oint_Q u$, for $y \in B(x_{\widehat{Q}}, \rho)$ and 0 otherwise.
- Let $A_t u(x) = u_Q(x)$ whenever $x \in Q \in \mathcal{Q}_t$.
- For each $w \in \mathbb{C}^N$, let $\gamma_t(x)w = (\Theta^B_t\omega)(x)$ where $\omega(x) = w$ in the GBG coordinates of each Q.

Cancellation assumption

(H7) There exists c>0 such that for all $t\leq t_S$ and $Q\in \mathcal{Q}_t$,

$$\left| \int_Q \Gamma u \ d\mu \right| \leq c \mu(Q)^{\frac{1}{2}} \left\| u \right\| \quad \text{and} \quad \left| \int_Q \Gamma^* v \ d\mu \right| \leq c \mu(Q)^{\frac{1}{2}} \left\| v \right\|$$

for all $u \in \mathcal{D}(\Gamma)$, $v \in \mathcal{D}(\Gamma^*)$ satisfying spt u, spt $v \subset Q$.

Dyadic Poincaré assumption

- (H8) There exists $C_P,\ C_C,\ c,\ \tilde{c}>0$ and an operator $\Xi:\mathcal{D}(\Xi)\subset \mathrm{L}^2(\mathcal{V})\to \mathrm{L}^2(\mathscr{N}),$ where \mathscr{N} is a normed bundle over \mathscr{M} with norm $|\cdot|_{\mathscr{N}}$ and $\mathcal{D}(\Pi)\cap\mathcal{R}(\Pi)\subset\mathcal{D}(\Xi)$ satisfying for all $u\in\mathcal{D}(\Pi)\cap\mathcal{R}(\Pi),$
 - -1 (Dyadic Poincaré)

$$\int_{B} |u - u_{Q}|^{2} d\mu \le C_{P} (1 + r^{\kappa} e^{\lambda crt}) (rt)^{2} \int_{\tilde{c}B} (|\Xi u|_{\mathcal{N}}^{2} + |u|^{2}) d\mu$$

for all balls $B=B(x_Q,rt)$ with $r\geq C_1/\delta$ where $Q\in \mathscr{Q}_t$ with $t\leq \mathrm{t_S}$, and

-2 (Coercivity)

$$\|\Xi u\|_{\mathrm{L}^{2}(\mathcal{N})}^{2} + \|u\|_{\mathrm{L}^{2}(\mathcal{V})}^{2} \le C_{C} \|\Pi u\|_{\mathrm{L}^{2}(\mathcal{V})}^{2}.$$

Kato square root type estimate

Proposition

Suppose $\mathcal M$ is a smooth, complete Riemannian manifold and $\mathcal V$ is a smooth vector bundle over $\mathcal M$. If (H1)-(H8) are satisfied, then

(i)
$$\mathcal{D}(\Gamma)\cap\mathcal{D}(\Gamma_B^*)=\mathcal{D}(\Pi_B)=\mathcal{D}(\sqrt{\Pi_B^2})$$
, and

(ii)
$$\|\Gamma u\| + \|\Gamma_B u\| \simeq \|\Pi_B u\| \simeq \|\sqrt{\Pi_B^2} u\|$$
, for all $u \in \mathcal{D}(\Pi_B)$.

Theorem (B.-Mc.)

Suppose $\mathcal M$ grows at most exponentially and satisfies a local Poincaré inequality on functions. Further, suppose that both $\mathcal V$ and $T^*\mathcal M$ have GBG, and

Theorem (B.-Mc.)

Suppose $\mathcal M$ grows at most exponentially and satisfies a local Poincaré inequality on functions. Further, suppose that both $\mathcal V$ and $T^*\mathcal M$ have GBG, and

(i) the metric h and ∇ are compatible,

Theorem (B.-Mc.)

Suppose ${\cal M}$ grows at most exponentially and satisfies a local Poincaré inequality on functions. Further, suppose that both ${\cal V}$ and $T^*{\cal M}$ have GBG, and

- (i) the metric h and ∇ are compatible,
- (ii) there exists C>0 such that in each GBG chart we have that $\left|\nabla e^{j}\right|,\left|\nabla dx^{i}\right|,\left|\partial_{k}\mathbf{h}^{ij}\right|,\left|\partial_{k}\mathbf{g}^{ij}\right|\leq C$ a.e.,

Theorem (B.-Mc.)

Suppose $\mathcal M$ grows at most exponentially and satisfies a local Poincaré inequality on functions. Further, suppose that both $\mathcal V$ and $T^*\mathcal M$ have GBG, and

- (i) the metric h and ∇ are compatible,
- (ii) there exists C>0 such that in each GBG chart we have that $\left|\nabla e^{j}\right|,\left|\nabla dx^{i}\right|,\left|\partial_{k}\mathbf{h}^{ij}\right|,\left|\partial_{k}\mathbf{g}^{ij}\right|\leq C$ a.e.,
- (iii) there exist $\kappa_1, \kappa_2 > 0$ such that $\operatorname{Re} \langle au, u \rangle \geq \kappa_1 \|u\|^2$ and $\operatorname{Re} \langle ASv, Sv \rangle \geq \kappa_2 \|v\|_{H^1}^2$ for all $u \in L^2(\mathcal{V})$ and $v \in H^1(\mathcal{V})$,

Theorem (B.-Mc.)

Suppose $\mathcal M$ grows at most exponentially and satisfies a local Poincaré inequality on functions. Further, suppose that both $\mathcal V$ and $T^*\mathcal M$ have GBG, and

- (i) the metric h and ∇ are compatible,
- (ii) there exists C>0 such that in each GBG chart we have that $\left|\nabla e^{j}\right|,\left|\nabla dx^{i}\right|,\left|\partial_{k}\mathbf{h}^{ij}\right|,\left|\partial_{k}\mathbf{g}^{ij}\right|\leq C$ a.e.,
- (iii) there exist $\kappa_1, \kappa_2 > 0$ such that $\operatorname{Re} \langle au, u \rangle \geq \kappa_1 \|u\|^2$ and $\operatorname{Re} \langle ASv, Sv \rangle \geq \kappa_2 \|v\|_{H^1}^2$ for all $u \in L^2(\mathcal{V})$ and $v \in H^1(\mathcal{V})$, and
- (iv) we have that $\mathcal{D}(\Delta) \subset \mathrm{H}^2(\mathcal{V})$, and there exist C' > 0 such that $\left\| \nabla^2 u \right\| \leq C' \left\| (I + \Delta) u \right\|$ whenever $u \in \mathcal{D}(\Delta)$.

Kato square root problem on vector bundles

Theorem (B.-Mc.)

Suppose $\mathcal M$ grows at most exponentially and satisfies a local Poincaré inequality on functions. Further, suppose that both $\mathcal V$ and $T^*\mathcal M$ have GBG, and

- (i) the metric h and ∇ are compatible,
- (ii) there exists C>0 such that in each GBG chart we have that $\left|\nabla e^{j}\right|,\left|\nabla dx^{i}\right|,\left|\partial_{k}\mathbf{h}^{ij}\right|,\left|\partial_{k}\mathbf{g}^{ij}\right|\leq C$ a.e.,
- (iii) there exist $\kappa_1, \kappa_2 > 0$ such that $\operatorname{Re} \langle au, u \rangle \geq \kappa_1 \|u\|^2$ and $\operatorname{Re} \langle ASv, Sv \rangle \geq \kappa_2 \|v\|_{\operatorname{H}^1}^2$ for all $u \in L^2(\mathcal{V})$ and $v \in \operatorname{H}^1(\mathcal{V})$, and
- (iv) we have that $\mathcal{D}(\Delta) \subset \mathrm{H}^2(\mathcal{V})$, and there exist C' > 0 such that $\left\| \nabla^2 u \right\| \leq C' \left\| (I + \Delta) u \right\|$ whenever $u \in \mathcal{D}(\Delta)$.
- Then, $\mathcal{D}(\sqrt{L_A}) = \mathcal{D}(\nabla) = H^1(\mathcal{V})$ with $\|\sqrt{L_A}u\| \simeq \|\nabla u\| + \|u\| = \|u\|_{H^1}$ for all $u \in H^1(\mathcal{V})$.

Set $\mathscr{H} = L^2(\mathcal{V}) \oplus (L^2(\mathcal{V}) \oplus L^2(T^*\mathcal{M} \otimes \mathcal{V})).$

Set
$$\mathscr{H} = L^2(\mathcal{V}) \oplus (L^2(\mathcal{V}) \oplus L^2(T^*\mathcal{M} \otimes \mathcal{V})).$$

Define

$$\Gamma = \begin{bmatrix} 0 & 0 \\ S & 0 \end{bmatrix}, \ B_1 = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}, \ \text{and} \ B_2 = \begin{bmatrix} 0 & 0 \\ 0 & A \end{bmatrix}.$$

Set
$$\mathscr{H} = L^2(\mathcal{V}) \oplus (L^2(\mathcal{V}) \oplus L^2(T^*\mathcal{M} \otimes \mathcal{V})).$$

Define

$$\Gamma = \begin{bmatrix} 0 & 0 \\ S & 0 \end{bmatrix}, \ B_1 = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}, \ \text{and} \ B_2 = \begin{bmatrix} 0 & 0 \\ 0 & A \end{bmatrix}.$$

Then,

$$\Gamma^* = \begin{bmatrix} 0 & S^* \\ 0 & 0 \end{bmatrix} \text{ and } \Pi_B^2 = \begin{bmatrix} \mathbf{L}_A & 0 \\ 0 & * \end{bmatrix}$$

Kato square root problem for tensors

Theorem (B.-Mc.)

Let \mathcal{M} be a smooth, complete Riemannian manifold with $|\mathrm{Ric}| \leq C$ and $\mathrm{inj}(M) \geq \kappa > 0$. Suppose that there exist C' > 0 such that $\left\| \nabla^2 u \right\| \leq C' \left\| (I + \Delta) u \right\|$ whenever $u \in \mathcal{D}(\Delta) \subset \mathrm{H}^2(\mathcal{T}^{(p,q)}\mathcal{M})$. Then, $\mathcal{D}(\sqrt{\mathrm{L}_A}) = \mathcal{D}(\nabla) = \mathrm{H}^1(\mathcal{T}^{(p,q)}\mathcal{M})$ and $\left\| \sqrt{\mathrm{L}_A} u \right\| \simeq \left\| \nabla u \right\| + \left\| u \right\| = \left\| u \right\|_{\mathrm{H}^1}$ for all $u \in \mathrm{H}^1(\mathcal{T}^{(p,q)}\mathcal{M})$.

Proposition

Suppose there is a $\kappa, \eta > 0$ such that $\operatorname{inj}(\mathcal{M}) \geq \kappa$ and $|\operatorname{Ric}| \leq \eta$.

Proposition

Suppose there is a $\kappa, \eta > 0$ such that $\operatorname{inj}(\mathcal{M}) \geq \kappa$ and $|\operatorname{Ric}| \leq \eta$. Then for A > 1 and $\alpha \in (0,1)$, there exists $r_H(n,A,\alpha,\kappa,\eta) > 0$ such that for each $x \in \mathcal{M}$, there is a coordinate system corresponding to $B(x,r_H)$ satisfying:

Proposition

Suppose there is a $\kappa, \eta > 0$ such that $\operatorname{inj}(\mathcal{M}) \geq \kappa$ and $|\operatorname{Ric}| \leq \eta$. Then for A > 1 and $\alpha \in (0,1)$, there exists $r_H(n,A,\alpha,\kappa,\eta) > 0$ such that for each $x \in \mathcal{M}$, there is a coordinate system corresponding to $B(x,r_H)$ satisfying:

(i) $A^{-1}\delta_{ij} \leq g_{ij} \leq A\delta_{ij}$ as bilinear forms and,

Proposition

Suppose there is a $\kappa, \eta > 0$ such that $\operatorname{inj}(\mathcal{M}) \geq \kappa$ and $|\operatorname{Ric}| \leq \eta$. Then for A > 1 and $\alpha \in (0,1)$, there exists $r_H(n,A,\alpha,\kappa,\eta) > 0$ such that for each $x \in \mathcal{M}$, there is a coordinate system corresponding to $B(x,r_H)$ satisfying:

(i) $A^{-1}\delta_{ij} \leq g_{ij} \leq A\delta_{ij}$ as bilinear forms and,

(ii)
$$\sum_{l} r_{H} \sup_{y \in B(x, r_{H})} |\partial_{l} g_{ij}(y)|$$

$$+ \sum_{l} r_{H}^{1+\alpha} \sup_{y \neq z \in B(x, r_{H})} \frac{|\partial_{l} g_{ij}(z) - \partial_{l} g_{ij}(y)|}{d(y, z)^{\alpha}} \leq A - 1.$$

Proposition

Suppose there is a $\kappa, \eta > 0$ such that $\operatorname{inj}(\mathcal{M}) \geq \kappa$ and $|\operatorname{Ric}| \leq \eta$. Then for A > 1 and $\alpha \in (0,1)$, there exists $r_H(n,A,\alpha,\kappa,\eta) > 0$ such that for each $x \in \mathcal{M}$, there is a coordinate system corresponding to $B(x,r_H)$ satisfying:

(i) $A^{-1}\delta_{ij} \leq g_{ij} \leq A\delta_{ij}$ as bilinear forms and,

(ii)
$$\sum_{l} r_{H} \sup_{y \in B(x, r_{H})} |\partial_{l} g_{ij}(y)|$$

$$+ \sum_{l} r_{H}^{1+\alpha} \sup_{y \neq z \in B(x, r_{H})} \frac{|\partial_{l} g_{ij}(z) - \partial_{l} g_{ij}(y)|}{d(y, z)^{\alpha}} \leq A - 1.$$

See the observation following Theorem 1.2 in [Hebey].

ullet The proposition guarantees GBG coordinates for $\mathcal{V}=\mathcal{T}^{(p,q)}\mathcal{M}.$

- The proposition guarantees GBG coordinates for $\mathcal{V} = \mathcal{T}^{(p,q)}\mathcal{M}$.
- The proposition gives $\left|\nabla e^{j}\right|, \left|\nabla dx^{i}\right|, \left|\partial_{k} \mathbf{h}^{ij}\right|, \left|\partial_{k} \mathbf{g}^{ij}\right| \leq C$ in each GBG coordinate chart $\left\{e^{j}\right\}$ for $\mathcal{T}^{(p,q)}\mathcal{M}$.

- The proposition guarantees GBG coordinates for $\mathcal{V} = \mathcal{T}^{(p,q)}\mathcal{M}$.
- The proposition gives $\left|\nabla e^{j}\right|, \left|\nabla dx^{i}\right|, \left|\partial_{k} \mathbf{h}^{ij}\right|, \left|\partial_{k} \mathbf{g}^{ij}\right| \leq C$ in each GBG coordinate chart $\left\{e^{j}\right\}$ for $\mathcal{T}^{(p,q)}\mathcal{M}$.
- The Ricci bounds guarantee exponential volume growth and the local Poincaré inequality.

- ullet The proposition guarantees GBG coordinates for $\mathcal{V}=\mathcal{T}^{(p,q)}\mathcal{M}.$
- The proposition gives $|\nabla e^j|$, $|\nabla dx^i|$, $|\partial_k \mathbf{h}^{ij}|$, $|\partial_k \mathbf{g}^{ij}| \leq C$ in each GBG coordinate chart $\{e^j\}$ for $\mathcal{T}^{(p,q)}\mathcal{M}$.
- The Ricci bounds guarantee exponential volume growth and the local Poincaré inequality.

By invoking Theorem 5 (on vector bundles), we obtain Theorem 6 (finite rank tensors).

- ullet The proposition guarantees GBG coordinates for $\mathcal{V}=\mathcal{T}^{(p,q)}\mathcal{M}.$
- The proposition gives $|\nabla e^j|$, $|\nabla dx^i|$, $|\partial_k \mathbf{h}^{ij}|$, $|\partial_k \mathbf{g}^{ij}| \leq C$ in each GBG coordinate chart $\{e^j\}$ for $\mathcal{T}^{(p,q)}\mathcal{M}$.
- The Ricci bounds guarantee exponential volume growth and the local Poincaré inequality.

By invoking Theorem 5 (on vector bundles), we obtain Theorem 6 (finite rank tensors).

Theorem 1 follows from Theorem 6 since $\|\nabla^2 u\| \lesssim \|(I+\Delta)u\|$ is a consequence of the *Bochner-Lichnerowicz-Weitzenböck* identity, Ricci curvature bounds and uniform lower bounds on injectivity radius.

- ullet The proposition guarantees GBG coordinates for $\mathcal{V}=\mathcal{T}^{(p,q)}\mathcal{M}.$
- The proposition gives $|\nabla e^j|$, $|\nabla dx^i|$, $|\partial_k \mathbf{h}^{ij}|$, $|\partial_k \mathbf{g}^{ij}| \leq C$ in each GBG coordinate chart $\{e^j\}$ for $\mathcal{T}^{(p,q)}\mathcal{M}$.
- The Ricci bounds guarantee exponential volume growth and the local Poincaré inequality.

By invoking Theorem 5 (on vector bundles), we obtain Theorem 6 (finite rank tensors).

Theorem 1 follows from Theorem 6 since $\|\nabla^2 u\| \lesssim \|(I+\Delta)u\|$ is a consequence of the *Bochner-Lichnerowicz-Weitzenböck* identity, Ricci curvature bounds and uniform lower bounds on injectivity radius.

See Proposition 3.3 in [Hebey].

References I

- [AHLMcT] Pascal Auscher, Steve Hofmann, Michael Lacey, Alan McIntosh, and Ph. Tchamitchian, *The solution of the Kato square root problem for second order elliptic operators on* \mathbb{R}^n , Ann. of Math. (2) **156** (2002), no. 2, 633–654.
- [AKMc-2] Andreas Axelsson, Stephen Keith, and Alan McIntosh, *The Kato square root problem for mixed boundary value problems*, J. London Math. Soc. (2) **74** (2006), no. 1, 113–130.
- [AKMc] ______, Quadratic estimates and functional calculi of perturbed Dirac operators, Invent. Math. **163** (2006), no. 3, 455–497.
- [Christ] Michael Christ, $A\ T(b)$ theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. **60/61** (1990), no. 2, 601–628.

References II

- [Hebey] Emmanuel Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathematics, vol. 5, New York University Courant Institute of Mathematical Sciences, New York, 1999.
- [Kato] Tosio Kato, Fractional powers of dissipative operators, J. Math. Soc. Japan 13 (1961), 246–274. MR 0138005 (25 #1453)
- [Mc72] Alan McIntosh, On the comparability of $A^{1/2}$ and $A^{*1/2}$, Proc. Amer. Math. Soc. **32** (1972), 430–434. MR 0290169 (44 #7354)
- [Mc82] ______, On representing closed accretive sesquilinear forms as $(A^{1/2}u,\,A^{*1/2}v)$, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. III (Paris, 1980/1981), Res. Notes in Math., vol. 70, Pitman, Boston, Mass., 1982, pp. 252–267. MR 670278 (84k:47030)
- [Morris] Andrew J. Morris, *The Kato Square Root Problem on Submanifolds*, ArXiv e-prints:1103.5089v1 (2011).