Chapitre 13

Suites (3) Sommes partielles de suites

Table 13.1 – Objectifs. À fin de ce chapitre 13...

	Pour m'entraîner <u></u>			
Je dois connaître/savoir faire	&	•	Ö	
la notation \sum		13.1, 13.2, 13.3	13.4	
calcul de sommes de termes consécutifs d'une suite arithmétique	13.5, 13.6, 13.7	13.8, 13.9		
calcul de sommes de termes consécutifs d'une suite géométrique		13.10, 13.11, 13.12	13.13	
motifs géométriques		13.14, 13.15, 13.16		
Intérêts composés		13.14,		

13.1 Sommes partielles de suites arithmétiques

Propriété 13.1 — somme de termes consécutifs d'une suite arithmétique. (u_n) de raison r :

$$\sum_{i=p}^{n} u_i = u_p + u_{p+1} + \dots + u_n = \underbrace{(n-p+1)}_{\text{nombre de termes}} \times \underbrace{\frac{u_p + u_n}{2}}_{\text{demi somme du premier}}$$
et du dernier termes

Démonstration.
$$S = u_p + (u_p + r) + (u_p + 2r) + ... + u_n$$

$$S = u_n + (u_n - r) + (u_n - 2r) + \ldots + u_p$$

$$2S = \overbrace{(u_p + u_n) + (u_p + u_n) + (u_p + u_n) + \dots + (u_p + u_n)}^{(n-p+1) \text{ termes}} = (n-p+1)(u_n + u_p)$$

Corollaire 13.2 Pour tout n et $p \ge 1$:

1.
$$\sum_{i=p}^{n} i = p + (p+1) + \ldots + n = (n-p+1) \frac{n+p}{2}$$
2.
$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$$

2.
$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$$

13.2 Sommes partielles de suites géométriques

Propriété 13.3 — somme des termes consécutifs d'une suite géométrique. (u_n) de raison q:

$$\sum_{j=p}^{n} u_j = u_p + u_p q + u_p q^2 + u_p q^3 + \ldots + u_p q^{n-p} = \underbrace{u_p \times \frac{1-q^{n-p+1}}{1-q}}_{\text{premier terme raison nbr de termes}}$$

Démonstration.
$$(1-q)\sum_{j=p}^{n}u_{j}=\sum_{j=p}^{n}u_{j}-q\sum_{j=p}^{n}u_{j}$$

$$=u_{p}+u_{p}q+u_{p}q^{2}+u_{p}q^{3}+\ldots+u_{p}q^{n-p}$$

$$-u_{p}q-u_{p}q^{2}-u_{p}q^{3}-\ldots-u_{p}q^{n-p}-u_{p}q^{n-p+1}$$

$$=u_{p}-u_{p}q^{n-p+1}$$

$$=u_{p}\left(1-q^{n-p+1}\right)$$

Corollaire 13.4 Pour
$$q \neq 1$$
: $\sum_{i=0}^{n} q^{i} = 1 + q + q^{2} + q^{3} + \ldots + q^{n} = \frac{1 - q^{n+1}}{1 - q}$

Démonstration. développer $(1-q)(1+q+q^2+q^3+\ldots+q^n)$

13.3 Formulaire des suites arithmétiques et géométriques

	Relation de récurrence	$u_{n+1} = u_n + r$ (de raison r)			
	Écriture en fonction de n	$u_n = u_0 + nr$ ou $u_n = u_p + (n-p)r$			
ıétiques	Sens de variation	Si $r > 0$ alors (u_n) est croissante. Si $r < 0$ alors (u_n) est décroissante.			
Suites arithmétiques	Limites	Si $r > 0$ alors $\lim_{n \to +\infty} u_n = +\infty$. Si $r < 0$ alors $\lim_{n \to +\infty} u_n = -\infty$.			
Sui	Somme de termes consécutifs	$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$ $u_k + \dots + u_n = \frac{u_k + u_n}{2} \times \text{nb de termes}$ $u_k + \dots + u_n = \frac{u_k + u_n}{2} \times (n - k + 1)$			
	Relation de récurrence	$u_{n+1} = q \times u_n$ (de raison q)			
	Écriture en fonction de n	$u_n = u_0 \times q^n$ ou $u_n = u_p \times q^{(n-p)}$			
Suites géométriques	Sens de variation et limite		Si $0 < q < 1$	$1^{ier} \text{ terme} > 0$ $u_n \searrow 0$	$1^{ier} \text{ terme} < 0$ $u_n \nearrow 0$
			Si $1 = q$	u_n constante	u_n constante
			Si 1 < <i>q</i>	$u_n \nearrow +\infty$	$u_n \searrow -\infty$
		$\sum_{k=0}^{n} q^{k} = 1 + q + \ldots + q^{n} = \frac{1 - q^{n+1}}{1 - q} = \frac{q^{n+1} - 1}{q - 1}$			
	Somme de termes consécutifs	$-1 < q < 1 \text{ alors } \sum_{k=0}^{+\infty} q^k = \lim_{n \to +\infty} \sum_{k=0}^n q^k = \frac{1}{1-q}$			
		$u_k++u_n=1^{ier} \mathbf{terme} imes rac{1-q^{\mathrm{nb \ de \ termes}}}{1-q}$ $u_k++u_n=u_k imes rac{1-q^{n-k+1}}{1-q}$			
		$u_k + \dots + u_n = u_k \times \frac{1 - q^{n-k+2}}{1 - q}$			

13.4.1 Exercice : la notation Σ (sigma)

Notation 13.1 Pour une suite (a_n) définie pour $n \ge 1$, la somme des n premiers termes s'écrit :

$$a_1 + a_2 + a_3 + \ldots + a_n = \sum_{k=1}^n a_k$$
 lire: "somme de a_k de $k = 1$ à $k = n$ "

■ Exemple 13.1

1.
$$\sum_{k=1}^{6} k^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55$$

2.
$$\sum_{j=3}^{5} \frac{1}{j} = \frac{1}{3} + \frac{1}{4} + \frac{1}{5} = \frac{47}{60}$$

3.
$$\sum_{k=4}^{9} (k+1) = (4+1) + (5+1) + (6+1) + (7+1) + (8+1) + (9+1) = 45$$

4.
$$\sum_{i=1}^{6} 3 = 3 + 3 + 3 + 3 + 3 + 3 = 18$$

rad	CALCULS	-
$\sum_{k=1}^{5} (k^2)$		55
$\sum_{k=3}^{5} \left(\frac{1}{k}\right)$	0.7833	333333
I		

Exercice 13.1 Voir la solution

Écrire sans signe \sum les sommes suivantes sans les évaluer.

1. a)
$$\sum_{k=1}^{5} 2^{k-1}$$

b)
$$\sum_{i=1}^{3} i2^{i}$$

b)
$$\sum_{i=1}^{3} i2^{i}$$
 c) $\sum_{i=1}^{8} [1 + (-1)^{i}]$ **d)** $\sum_{k=4}^{12} (10)$

d)
$$\sum_{k=4}^{12} (10)$$

2. a)
$$\sum_{k=1}^{4} k^3$$

b)
$$\sum_{j=1}^{4} \sqrt{\frac{j-1}{j+1}}$$

c)
$$\sum_{k=0}^{6} \sqrt{k+4}$$

2. a)
$$\sum_{k=1}^{4} k^3$$
 b) $\sum_{j=1}^{4} \sqrt{\frac{j-1}{j+1}}$ c) $\sum_{k=0}^{6} \sqrt{k+4}$ d) $\sum_{k=6}^{9} k(k+3)$

3. a)
$$\sum_{k=1}^{4} (3k-5)$$

b)
$$\sum_{k=1}^{5} (11-2k)$$

c)
$$\sum_{k=1}^{7} k(k+1)$$

3. a)
$$\sum_{k=1}^{4} (3k-5)$$
 b) $\sum_{k=1}^{5} (11-2k)$ c) $\sum_{k=1}^{7} k(k+1)$ d) $\sum_{k=1}^{5} (10 \times 2^{k-1})$

Exercice 13.2 Voir la solution

Préciser le nombre de termes et évaluer chaque somme à l'aide de votre calculatrice.

1.
$$\sum_{k=1}^{10} k^2$$

2.
$$\sum_{k=0}^{100} 3k + 4$$

3.
$$\sum_{j=7}^{20} j^2 (1+j)$$
 4. $\sum_{j=5}^{15} \frac{1}{j^2+1}$

4.
$$\sum_{j=5}^{15} \frac{1}{j^2 + 1}$$

■ Exemple 13.2 — écrire une somme à l'aide de ∑

Écrire les sommes suivantes à l'aide de la notation sigma.

$$A = 1^{3} + 2^{3} + 3^{3} + 4^{3} + 5^{3} + 6^{3} + 7^{3} \mid B = \sqrt{3} + \sqrt{4} + \sqrt{5} + \ldots + \sqrt{77} \mid C = 3 + 11 + 19 + 27 + \ldots + 115$$

solution.

1.
$$1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3 = \sum_{k=1}^{7} k^3$$

2. Diverses écritures avec \sum sont possibles :

$$\sqrt{3} + \sqrt{4} + \sqrt{5} + \ldots + \sqrt{77} = \sum_{k=3}^{77} \sqrt{k}$$
 où $\sum_{k=0}^{74} \sqrt{k+3}$ où $\sum_{k=1}^{75} \sqrt{k+2}$

3. Somme des termes d'une suite arithmétique de raison r=8 et de premier terme $u_1=3$.

Pour
$$n \ge 1$$
, $u_n = 3 + 8(n-1) = 8n - 5$.

Le dernier terme est de rang $8n - 5 = 115 \iff n = 15$.

$$\therefore 3 + 11 + 19 + 27 + \ldots + 115 = \sum_{k=1}^{15} (8k - 5) \quad \text{où} \quad \sum_{k=0}^{14} (8k + 3)$$

Exercice 13.3 Voir la solution

Écrire les sommes suivantes à l'aide de la notation sigma.

1.
$$A = 1^2 + 2^2 + 3^2 + \dots + 10^2$$
 $C = 1 + x + x^2 + x^3 + \dots + x^{100}$ $B = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{999 \times 1000}$ $D = 1 + 2x + 3x^2 + 4x^3 + 5x^4 + \dots + 100x^{99}$

$$C = 1 + x + x^{2} + x^{3} + \dots + x^{100}$$

$$D = 1 + 2x + 3x^{2} + 4x^{3} + 5x^{4} + \dots + 100x^{99}$$

2.
$$A = 2 + 4 + 6 + \ldots + 50$$

 $B = 2 + 5 + 8 + \ldots + 29$

$$C = 42 + 37 + 32 + 27 + \dots + 2$$

$$D = 21 + 24 + 27 + \ldots + 60$$

Propriétés 13.5 Soit deux suites (a_n) et (b_n) . Pour tout entier naturel n et $c \in \mathbb{R}$:

$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k \qquad \sum_{k=1}^{n} (a_k - b_k) = \sum_{k=1}^{n} a_k - \sum_{k=1}^{n} b_k \qquad \sum_{k=1}^{n} ca_k = c \left(\sum_{k=1}^{n} a_k\right)$$

Démonstration.

$$\sum_{k=1}^{n} (a_k + b_k) = a_1 + b_1 + a_2 + b_2 + \dots + a_n + b_n = a_1 + a_2 + \dots + a_n + b_1 + b_2 + \dots + b_n$$

$$= (a_1 + a_2 + \ldots + a_n) + (b_1 + b_2 + \ldots + b_n) = \sum_{k=1}^n a_k + \sum_{k=1}^n b_k$$

$$\sum_{k=1}^{n} (a_k + b_k) =$$

$$\sum_{k=1}^{n} ca_k = ca_1 + ca_2 + \ldots + ca_n = c(a_1 + a_2 + \ldots + a_n) = c\left(\sum_{k=1}^{n} a_k\right)$$

Exercice 13.4 Voir la solution

- 1. Justifier que pour tout $c \in \mathbb{R}$ et $n \in \mathbb{N}$: $\sum_{i=1}^{n} c = cn$.
- 2. Justifier en détaillant les étapes que $\sum_{k=0}^{\infty} (3k^2 + 4k 3) = 3\sum_{k=0}^{\infty} k^2 + 4\sum_{k=0}^{\infty} k 3n$.
- 3. Sachant que $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$ et $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$, simplifier la somme $\sum_{k=0}^{n} (k+1)(k+2)$.

6

13.4.2 Exercice : somme partielles de suites arithmétiques

- Exemple 13.3 calculer une somme de termes consécutifs d'une suite arithmétiques.
- 1. Déterminer la somme de 7 termes consécutifs d'une suite arithmétique, le 1^{er} terme est 5 et le dernier 53.
- 2. Déterminer la somme 1 + 3 + 5 + 7 + 9 + ... + 29.
- 3. Déterminer $\sum_{k=1}^{\infty} (6k-1)$

solution.

1.
$$\therefore$$
 $S = 7 \times \frac{5+53}{2} = 203.$

2. a) somme des termes consécutifs d'une suite arithmétique de raison 2.

b)
$$u_n = 29$$
, $u_p = 1$, on a $u_n - u_p = 2(n-p)$, $n - p = \frac{29-1}{2} = 14$. If y a 15 terms.

$$S = 15 \times \frac{1+29}{2} = 225$$

3. a) $u_k = 6k - 1$ est le terme général d'une suite arithmétique de raison 6 car :

$$u_{k+1} - u_k = (6(k+1) - 1) - (6k - 1) = 6.$$

b) le 1^{er} terme est $u_1 = 6(1) - 1 = 5$, le 150^e terme est $u_{150} = 6(150) - 1 = 899$

$$\therefore S = \sum_{j=1}^{150} u_j = 150 \times \frac{u_{150} + u_1}{2} = 150 \times \frac{899 + 5}{2} = 67800$$

Exercice 13.5 Voir la solution

- 1. Calculer la somme des termes de la suites arithmétiques dans les cas suivants :
 - a) Le premier terme est 7. Le dernier terme est 61, et il y a 10 termes.
 - b) Le premier terme est 6. Le dernier terme est -27, et il y a 11 termes.
 - c) Le premier terme est -10. La raison de la suite est 4, et il y a 13 termes.
 - d) Le premier terme est 21. La raison de la suite est -6, et le dernier terme est -117.
- 2. Déterminer les sommes suivantes.

$$A = 1 + 2 + 3 + 4 + \ldots + 100$$
 $C = 1 + 3 + 5 + 7 + \ldots + 99$ $E = 5 + 9 + 13 + 17 + \ldots + 41$ $E = 50 + 51 + 52 + 53 + \ldots + 100$ $D = 3 + 6 + 9 + 12 + \ldots + 198$ $E = 5 + 9 + 13 + 17 + \ldots + 43$

- 3. Soit (u_n) une suite arithmétique de premier terme u_0 et de raison r.
 - a) Calculer $\sum_{k=0}^{15} u_k$ si $u_0 = 2$ et r = 4 b) Calculer $\sum_{k=5}^{18} u_k$ si $u_0 = -1$ et r = -3
- 4. a) Justifier que la suite (u_n) définie pour $n \ge 0$ par $u_n = \frac{n+3}{2}$ est arithmétique.
 - b) En déduire la somme $\sum_{k=15}^{25} \left(\frac{k+3}{2} \right)$

Exercice 13.6 Voir la solution

- 1. Montrer que pour tout $n \ge 1$ on a $S(n) = 1 + 3 + 5 + \ldots + (2n 1) = n^2$
- **2.** Montrer que pour tout $n \ge 1$ on a $S(n) = 1 + 6 + 11 + ... + (5n + 1) = 3n^2 + 4n + 1$

Exercice 13.7 Voir la solution

 (u_n) est une suite arithmétique de premier terme $u_0 = a$ et de raison b.

- 1. Sachant que $u_3 = 7$, écrire une équation vérifiée par a et b.
- 2. Sachant que $u_1 + u_2 + u_3 + \ldots + u_8 = 176$, montrer que 8a + 36b = 176
- 3. Déterminer a et b.

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} \qquad \sum_{k=p}^{n} 1 = \underbrace{1 + 1 + \ldots + 1}_{n-p+1 \text{ termes}} = n - p + 1$$

■ Exemple 13.4 Déterminer la somme suivante. Les calculs doivent apparaître.

$$\sum_{k=0}^{20} (3-2k) = 3\left(\sum_{k=0}^{20} 1\right) - 2\left(\sum_{k=0}^{20} k\right) = 3 \times (20-0+1) - 2 \times (20-0+1) \times \frac{0+20}{2} = -357$$

Exercice 13.8 Voir la solution

Déterminer les sommes suivantes. Les calculs doivent apparaître.

- 1. a) $\sum_{k=10}^{1000} 1$ b) $\sum_{n=1}^{50} n$ c) $\sum_{k=1}^{100} 2k$ d) $\sum_{n=10}^{100} 6n$ 2. a) $\sum_{n=51}^{100} 7n \sum_{n=1}^{50} 1$ b) $\sum_{n=1}^{400} (2n-1)$ c) $\sum_{n=1}^{250} \left(\frac{1000-n}{5}\right)$ d) $\sum_{k=3}^{26} (2k+3)$

Exercice 13.9 — nombres triangulaires.

Voir la solution

1. On réalise les 4 motifs suivants. On désigne par u_n le nombre de carrés du motif n.

- a) Tracer le 5^e motif.
- b) Justifier que pour tout $n \ge 1$, $u_n = \sum_{i=1}^n k$. Exprimer u_n en fonction de n.
- c) Quel est le plus grand motif que l'on peut on réaliser avec 4950 carrés?
- 2. On réalise les 4 motifs suivants. On désigne par v_n le nombre de cubes du motif n.

- a) Exprimer v_n en fonction de u_n et de n.
- b) En déduire pour tout $n \ge 1$, l'expression de v_n en fonction de n.

8

13.4.3 Exercices : sommes partielles de suites géométriques

- Exemple 13.5 calculer une somme de termes consécutifs d'une suite géométriques.
- 1. Déterminer la somme de 10 termes consécutifs d'une suite géométrique de premier terme 12 et de raison $q = \frac{1}{2}$.
- 2. Déterminer la somme $\sum_{i=1}^{12} 4(0,3)^{i-1}$.
- 3. Déterminer la somme $3 + \frac{3}{5} + \frac{3}{52} + \ldots + \frac{3}{515}$
- 4. Déterminer la somme 1 + 2 + 4 + ... + 1024.

solution.

1.
$$\therefore$$
 $S = 10 \times \frac{1 - \left(\frac{1}{2}\right)^{10}}{1 - \left(\frac{1}{2}\right)} \approx 23.977$

2. a) $u_n = 4(0,3)^{n-1}$ est le terme général d'une suite géométrique de raison 0,3 car :

$$\frac{u_{n+1}}{u_n} = \frac{4(0,3)^{n+1-1}}{4(0,3)^{n-1}} = 0.3$$

b) le 1^{er} terme est $u_1 = 4(0,3)^{1-1} = 4$,

$$\therefore S = \sum_{j=1}^{12} u_j = u_1 \times \frac{1 - (0,3)^{12}}{1 - (0,3)} \approx 5.714$$

- 3. a) somme des termes consécutifs d'une suite géométrique de raison $\frac{1}{5}$
 - b) Le premier terme est $3 = \frac{3}{50}$ et le dernier $\frac{3}{5^{15}}$: 16 termes.

$$\therefore S = 3 \times \frac{1 - \left(\frac{1}{5}\right)^{16}}{1 - \left(\frac{1}{5}\right)} = 3,75$$

- 4. a) somme des termes consécutifs d'une suite géométrique de raison 2
 - b) Le premier terme est $1 = 2^0$ et le dernier $1024 = 2^{10}$: 11 termes.

$$\therefore S = 1 \times \frac{1 - 2^{11}}{1 - 2} = 1 \times \frac{2^{11} - 1}{2 - 1} = 2^{11} - 1$$

Exercice 13.10 Voir la solution

- 1. Calculer la somme des termes de la suites géométrique dans les cas suivants :
 - a) Le premier terme est $u_1 = 3$, la raison est 2, et il y a 7 membres.
 - b) Le premier terme est $u_1 = 1$, la raison est -3 et il y a 6 termes.
 - c) Le premier terme est $u_1 = 5$, la raison est $\frac{1}{2}$ et il y a 5 termes.
 - d) Le premier terme est $u_1 = 1$, la raison est 3 et le dernier terme est 2187.
- 2. Soit (u_n) une suite géométrique de premier terme u_0 et de raison q.
 - a) Calculer $\sum_{k=1}^{10} u_k$ si $u_0 = 1000$ et q = 0.85 c) Calculer $\sum_{k=0}^{n} u_k$ si $u_0 = 20$ et q = -0.5 b) Calculer $\sum_{k=5}^{n} u_k$ si $u_0 = 5$ et q = 1.05 d) Calculer $\sum_{k=1}^{n} u_k$ si $u_0 = 5$ et q = 1.12

3. Déterminer les sommes suivantes.

$$A = 1 - \frac{1}{2} + \frac{1}{4} + \dots - \frac{1}{512}$$

$$B = -15 + 30 - 60 + \dots - 960$$

$$C = 1,25 + 12,5 + 125 + \dots + 12500000$$

$$D = 10800 + 1080 + 108 + \dots + 0,000108$$

- 4. a) Justifier que la suite (u_n) définie pour $n \ge 0$ par $u_n = 3\left(\frac{3^{2n+1}}{2^n}\right)$ est géométrique.
 - b) En déduire la somme $\sum_{k=10}^{25} 3\left(\frac{3^{2n+1}}{2^n}\right)$

$$\sum_{k=0}^{n} q^{k} = 1 + q + q^{2} + q^{3} + \ldots + q^{n} = \frac{1 - q^{n+1}}{1 - q} \sum_{k=1}^{n} q^{k} = 1 + q + q^{2} + q^{3} + \ldots + q^{n} = q \times \frac{1 - q^{n}}{1 - q}$$

■ Exemple 13.6 Déterminer les somme suivantes. Les calculs doivent apparaitre.

$$\sum_{k=1}^{6} \left[7 \left(-\frac{2}{3} \right)^{k-1} \right] = 7 \sum_{k=1}^{6} \left(-\frac{2}{3} \right)^{k-1} = 7 \times 1 \times \frac{1 - \left(-\frac{2}{3} \right)^{6}}{1 - \left(-\frac{2}{3} \right)} = 7 \times \frac{1 - \frac{64}{729}}{\frac{5}{3}} = \frac{931}{243} \approx 3.83$$

$$\sum_{i=0}^{n} \left[5^{i} + 3i \right] = \sum_{i=0}^{n} 5^{i} + 3 \sum_{i=0}^{n} i = \sum_{i=0}^{n} 5^{i} + 3 \sum_{i=0}^{n} i = \frac{5^{n+1} - 1}{5 - 1} + 3(n+1) \frac{(0+n)}{2} = \frac{5^{n+1} - 1}{4} + \frac{3}{2}n(n+1)$$

Exercice 13.11 Voir la solution

Déterminer les sommes suivantes. Les calculs doivent apparaitre.

1. a)
$$\sum_{k=0}^{n} 0.2^k$$
 b) $\sum_{k=5}^{100} (-2)^{k-1}$ c) $\sum_{k=1}^{10} \left(\frac{5}{2}\right)^{k-1}$ d) $\sum_{k=1}^{10} \frac{1}{2^k}$

2. a)
$$\sum_{i=0}^{6} 500(1,04)^{2i}$$
 b) $\sum_{k=1}^{10} 2\left(\frac{1}{4}\right)^{k-1}$ c) $\sum_{k=1}^{8} 5(-1)^k$ d) $\sum_{k=0}^{25} 5\left(-\frac{1}{3}\right)^k$

3. a)
$$\sum_{i=0}^{n} [2^i - 1]$$
 b) $\sum_{i=0}^{n+1} [4^i + 3i]$ c) $\sum_{i=1}^{n} [3^i - 2i]$ d) $\sum_{k=1}^{n+1} (8^k - 3^{k-1})$

Exercice 13.12 Voir la solution

Soit les suites (u_n) et (S_n) définies pour $n \in \mathbb{N}$ par $u_n = \frac{1}{2^n}$ et $S(n) = \sum_{k=1}^n u_k$.

- 1. Montrer que la suite (u_n) est géométrique.
- 2. Déterminer $S_{n+1} S_n$ et en déduire que (S_n) est strictement croissante.
- 3. Exprimer S(n) en fonction de n et en déduire $\lim_{n\to\infty}S(n)$.

Exercice 13.13 Voir la solution

Soit une suite (u_n) tel que pour tout $n \ge 1$, la somme des premiers n termes d'une suite géométrique est égale à $5(3^n-1)$

- 1. Quelle est la somme des 90 premiers termes?
- 2. Montrer que pour tout $n \ge 1$ on a $u_n = k(3^n)$ où k est un réel à déterminer.

13.4.4 Exercices : problèmes

Exercice 13.14 Voir la solution

La figure suivante est formée de carrés emboités de côté c_n et triangles rectangles isocèles T_n .

- 1. a) Donner les valeurs de c_1 , c_2 , c_3 et c_4 .
 - b) Quelle est la nature de la suite (c_n) . Exprimer pour tout $n \ge 1$, c_n en fonction de n.
- 2. On désigne par A_n l'aire du triangle T_n .
 - a) Déterminer A_1 , A_2 et A_3 .
 - b) Démontrer que la suite (A_n) est géométrique de raison $q = \frac{1}{4}$.
- 3. On désigne par S_n l'aire totale des n premiers triangles. Ainsi $S_n = \sum_{k=1}^n A_k$.
 - a) Donner S_1 , S_2 et S_3 .
 - b) Donner $S_{n+1} S_n$ et en déduire le sens de variation de la suite (S_n)
 - c) Exprimer pour tout $n \ge 1$, S_n en fonction de n.
 - d) Donner $\lim_{n\to+\infty} S_n$. Interprétez le résultat sur la figure.
- 4. a) Compléter le script ci-dessous afin qu'il affiche le premier rang à partir duquel $S_n > 0.666$.

b) Déterminer par la méthode de votre choix la valeur affichée par le script.

Exercice 13.15 Voir la solution

On réalise la figure ci-dessous à partir de carrés emboités de côté c_n et d'aires grisées a_n .


```
1  n = 1
2  a = ...
3  s = a
4  for k in range(...) :
5    a = ...
6    s = s + ...
7    n = n + ...
```

- 1. Donner les 3 premiers termes des suites (c_n) et (a_n) .
- 2. Donner la nature des suites (c_n) et (a_n) . On précisera leur caractéristiques.
- 3. On définit la suite $S_n = \sum_{k=1}^n a_k$. Donner une interprétation graphique de la valeur de S_n .
- 4. a) Compléter le script suivant afin qu'en fin d'exécution, la variable ${\tt s}$ soit égale à S_{100} .
 - b) Déterminer par la méthode de votre choix une valeur approchée de S_{100} à 10^{-3} près.
- 5. Exprimer pour tout $n \ge 1$, S_n en fonction de n.
- 6. En déduire la limite $\lim_{n\to+\infty} S_n$. Interprétez le résultat sur la figure.

Exercice 13.16 Voir la solution

On réalise la figure ci-dessous en divisant le grand rectangle d'aire 1, de manière itérative en 3 rectangles semblables. On désigne par a_n l'aire du rectangle grisé correspondant.

- 1. Donner les 4 premiers termes de la suite (a_n) .
- 2. Donner la nature de la suite (a_n) . On précisera ses caractéristiques.
- 3. On définit la suite $S_n = \sum_{k=1}^n a_k$. Donner une interprétation graphique de la valeur de S_n .
- 4. Exprimer pour tout $n \ge 1$, S_n en fonction de n.
- 5. En déduire la limite $\lim_{n\to +\infty} S_n$. Interprétez le résultat sur la figure.

- **■** Exemple 13.7 préliminaire. Pour un placement P à taux annuel t, à intérêts composés mensuels, le placement après 12 mois vaut $P\left(1+\frac{t}{12}\right)$
- 1. Pour un placement P de taux annuel 3% à intérêts composés mensuels, le placement après 12 mois vaut $\left(1 + \frac{0.03}{12}\right)^{12} P = (1.002 \ 5)^{12} P \approx (1.030 \ 4) P$.
- 2. De même, pour un placement P de taux annuel 3% à intérêts composés trimestriels, le placement après 12 mois (4 trimestres) vaut $\left(1 + \frac{3}{4}\right)^4 P = (1,007\ 5)^4 P \approx (1,030\ 3) P$.

Exercice 13.17 Voir la solution

Un placement de 2500 € au taux annuel de 2%.

Déterminer le montant après 20 ans dans les cas suivants :

- 1. taux composés évalués annuellement. 3. taux composés évalués par mois.
- 2. taux composés évalués par trimestre. 4. taux composés évalués par quinzaine.

Exercice 13.18 Voir la solution

On dépose une mensualité de 100€ au début de chaque mois. Ce placement est au taux annuel de 6%, et les intérêts sont composés mensuellement.

Après 5 ans (60 mois) le capital s'évalue à :

$$P = 100\left(1 + \frac{0,06}{12}\right) + 100\left(1 + \frac{0,06}{12}\right)^2 + \dots + 100\left(1 + \frac{0,06}{12}\right)^{60}$$

Déterminer P.

Exercice 13.19 Voir la solution

En déposant une mensualité de m \in au début de chaque mois à taux annuel de t. Pour des intérêts composés mensuellement, à la fin de n années sans retrait possible :

- Le dépot de m \in au début du premier mois s'apprécie sur 12n mois : $m\left(1+\frac{t}{12}\right)$
- Le dépot de m \in au début du 2^{e} mois, s'apprécie sur 12n-1 mois : $m\left(1+\frac{t}{12}\right)^{12n-1}$ Le dépot de m \in au début du 3^{e} mois, s'apprécie sur 12n-2 mois : $m\left(1+\frac{t}{12}\right)^{12n-2}$
- Le dépot de m \in au début du j^{e} mois, s'apprécie sur 12n-j+1 mois : $m\left(1+\frac{t}{12}\right)^{12n-j+1}$
- Le dépot de m € au au début du $12n^{\rm e}$ mois , s'apprécie sur le 1 mois restant : $m\left(1+\frac{t}{12}\right)^{1}$

À la fin de n années sans retrait possible, le capital s'évalue à :

$$C = m\left(1 + \frac{t}{12}\right) + m\left(1 + \frac{t}{12}\right)^2 + \ldots + m\left(1 + \frac{t}{12}\right)^{12n}$$
Montrer que $C = m\left[\left(1 + \frac{r}{12}\right)^{12n} - 1\right]\left(1 + \frac{12}{r}\right)$.