Contents

Tips generales	1
Introduccion	1
Aplicacion	1
Ejs capa de transporte	2
Algoritmos TCP	2
Tahoe	2
Reno	2

Tips generales

Introduccion

- Hay dos capas que tienen sistema de recuperacion de paquetes
 - Capa de transporte
 - * Recupera errores dados por congestion (los bufferes se sobrecargan)
 - Capa de enlace
 - * Recupera errores dados por el canal
- Si menciona alguna de las siguientes se habla de capa de enlace:
 - Errores
 - Colisiones
- Si menciona alguna de las siguientes se habla de capa de transporte:
 - Capacidad
- La capa de transporte no interviene en los routers intermedios

Aplicacion

- UDP manda datos a la maxima velocidad disponible porque no le importa si el receptor recibe los datos o no
- En cambio en TCP se terminan equilibrando las entradas con las salidas de un determinado router

Ejs capa de transporte

- 1. Plantear formula del Usage del sender donde L es el tamaño del segmento, R la tasa de transmision (L/R) / (RTT + (L/R))
- 2. Plantear inecuacion con formula y eficiencia esperada
- 3. Despejar R

Algoritmos TCP

Tahoe

- 1. Slow start
- 2. Congestion avoidance
- 3. Fast retransmit (3 acks)

Reno

- 1. Fast recovery: no se retransmite de inmediato al recibir varios ACKS, se entra en modo fast recovery y se siguen enviando paquetes. Si se recibe otro ACK se asume que se perdieron mas paquetes y se baja la tasa de transmision
- 2. Congestion Avoidance: aumentar cantidad de paquetes por RTT hasta detectar congestion
- 3. Additive increase multiplicative decrease