CSE 132A Homework# 3 Winter 2023

Due on Friday, March 10, 11:59pm (see instructions below) This is an **individual** assignment.

Xiangyi Lin

Let R be a relation with attributes ABCDE and

$$F = \{C \rightarrow D, AC \rightarrow BDE, AB \rightarrow CDE, B \rightarrow CE\}$$

(i) (1 point) Find all the keys of R.

A+=A	(not key)
B+=BCE	(not key)
C+=CD	(not key)
D+=D	(not key)
E+=E	(not key)
AB+=ABCDE	(key)
AC+ = ACBDE	(key)
AD+=AD	(not key)
AE+=AE	(not key)

Keys: AB and AC

(ii) (4points) Find a BCNF decomposition of R with lossless join with respect to F. (Show how the decomposition is obtained.)

$$F = \{C \rightarrow D, AC \rightarrow BDE, AB \rightarrow CDE, B \rightarrow CE\}$$

By decomposing ABCDE using $C \rightarrow D$ (which violates BCNF within ABCDE), we obtain {CD, ABCE}. Clearly, CD is in BCNF (no violation can occur in a two-attribute relation). By decomposing ABCE using $B \rightarrow CE$ (which violates BCNF within ABCE), we obtain {BCE, AB}. Clearly, AB is in BCNF (no violation can occur in a two-attribute relation). In BCE, the only violations could come from fds with a single attribute on the lefthand side. Thus, it is sufficient to check B+, C+, and E+ within BCE:

 $B+\cap BCE=BCE$, $C+\cap BCE=C$, $E+\cap BCE=E$. So BCE is in BCNF and the final BCNF decomposition is {CD, BCE, AB}.

(iii) (2 points) Is the decomposition obtained in (ii) dependency preserving with respect to F?

run dependency preservation algorithm

$$F = \{C \rightarrow D, AC \rightarrow BDE, AB \rightarrow CDE, B \rightarrow CE\}$$

for the previous BCNF decomposition:

 $C \rightarrow D$ is preserved because we have CD

For AC
$$\rightarrow$$
BDE, A+ = A, C+ = CD
the local closure of AC is ACD, so AC \rightarrow BDE is not preserved

For AB
$$\rightarrow$$
CDE, A+ = A, B+ = BCE
the local closure of AB is ABCE, so AB \rightarrow CDE is not preserved

B →CE is preserved because we have BCE

(iv) (5 points) Find a 3NF decomposition of R with lossless join and dependency preserving with respect to F (show the steps). Is the decomposition also in BCNF?

$$F = \{C \rightarrow D, AC \rightarrow BDE, AB \rightarrow CDE, B \rightarrow CE\}$$

First, we rewrite the FDs as

 $C \rightarrow D$

 $AC \rightarrow B$

 $AC \rightarrow D$ (redundant as $C \rightarrow D$)

 $AC \rightarrow E$ (redundant as $AC \rightarrow B$ and $B \rightarrow E$)

 $AB \rightarrow C$ (redundant as $B \rightarrow C$)

 $AB \rightarrow D$ (redundant as $B \rightarrow C$ and $C \rightarrow D$)

 $AB \rightarrow E$ (redundant as $B \rightarrow E$)

 $B \rightarrow C$

 $B \rightarrow E$

Minimal set of FDs: $\{C \rightarrow D, AC \rightarrow B, B \rightarrow C, B \rightarrow E\}$

The 3NF decomposition is {CD, ABC, BE}.

For ABC,
$$A+\cap ABC = A$$
, $B+\cap ABC = BC$, $C+\cap ABC = C$.

The decomposition is not in BCNF because ABC violate BCNF. A only imply A, and C only imply C. However, B can imply C, and not imply A.