

B2- Mathematics

B-MAT-200

106bombyx

Bombyx booming bylaw

Bombyx

Bombyx booming bylaw

binary name: 106bombyx

repository name: 106bombyx_\$ACADEMICYEAR

repository rights: ramassage-tek

language: C, C++, perl 5, python 3 (≥ 3.5), ruby 2 (≥ 2.2), php 5.6, bash 4

group size: 1-2

compilation: via Makefile, including re, clean and fclean rules

- Your repository must contain the totality of your source files, but no useless files (binary, temp files, obj files,...).
- All the bonus files (including a potential specific Makefile) should be in a directory named bonus.
- Error messages have to be written on the error output, and the program should then exit with the 84 error code (O if there is no error).

In the 70's, chaos theory opened the way for a better understanding of the evolution of some animal species. Butterflys for instance. Let's say... bombyx.

If a generation is crowded, chances are that the next generation will be crowded too, regarding the natural rules of reproduction. But resources may lack for this new generation, so it may not be able to develop. Therefore, the number of bombyx depends on those two contradictory factors, and its evolution is far from trivial.

Let's call x_i the number of the i^{th} generation of butterflys. Here is a model for the evolution of x_i :

$$\begin{cases} x_1=n & \text{where } n \text{ is the number of first generation individuals} \\ x_{i+1}=k.x_i.\frac{1000-x_i}{1000}, & \text{for } i\geq 1, k \text{ being the } \textit{growth rate}, \text{ from 1 to 4}. \end{cases}$$

In order to study this evolution, you are asked to plot two things:

- the curve representing the number of individuals in relation to the generation (varying from 1 to 100)
- a synthetic scheme summing all the results for a given n; it consists in plotting every value of x_i (between two given bounds), in relation to k (k varying from 1 to 4 by 0.01 steps).

In both cases, your program shall print on the standard outuput the values to be entered into *gnuplot* to draw the graphes.

Your program output has to be strictly identical to the one below.

Terminal

- + X

~/B-MAT-200> cat drawer.gnu
set terminal dumb
set nokey
plot "data"


```
- + X
                                       Terminal
 ~/B-MAT-200> ./106bombyx 10 10000 10010 > data
\sim/B-MAT-200> head -n 30 data
1.00 0.10
1.00 0.10
1.00 0.10
1.00 0.10
1.00 0.10
1.00 0.10
1.00 0.10
1.00 0.10
1.00 0.10
1.00 0.10
1.00 0.10
1.01 9.90
1.01 9.90
1.01 9.90
1.01 9.90
1.01 9.90
1.01 9.90
1.01 9.90
1.01 9.90
1.01 9.90
1.01 9.90
1.01 9.90
1.02 19.61
1.02 19.61
1.02 19.61
1.02 19.61
1.02 19.61
1.02 19.61
1.02 19.61
1.02 19.61
\sim/B-MAT-200> cat drawer.gnu | gnuplot
                                                -+---AAA
                                                            + AAAAAAA
                                                            AAAAAAAA AAA
                                                       AAAAAAAAAAAAAAA
800
                                                            AAAAAAAAAA
                                                    AAAA
                                                  AA
                                                               AAAA AAAA
                                                AAA
                                                               AAAA A AA
                                                               AAAAA AAA
                                       AAAAAAAAA A
600
                                AAAAAAA
                                                 AAA
                                                              AAAA AAAAA
                           AAAAA
                                                   AAAA
                                                             AAAAAAAAAA
                       AAAAA
                                                       AAAAAA AAAAAAAAA
400
                    AAAA
                                                           AA A AAA AAAA
                 AAAA
                                                            AAAAA AA A
              AAAA
                                                               AAA AA AAA
            AAA
                                                                AAAA AAAA
200
          AAA
                                                                  AAAAA+
         AA
                                                                  AAAAA
     I AA
                                                                    AAAA
     +AA
                                                                     AAA
                           2
                                                 3
```

L'ECOLE DE L'INNOVATION ET DE L'EXPERTISE INFORMATIQUE


```
- + X
                                             Terminal
\sim/B-MAT-200> ./106bombyx 10 3.3 > data \sim/B-MAT-200> head data
1 10.00
2 32.67
3 104.29
4 308.26
5 703.68
6 688.10
7 708.24
8 681.89
9 715.82
10 671.29
\sim/B-MAT-200> tail data
91 823.60
92 479.43
93 823.60
94 479.43
95 823.60
96 479.43
97 823.60
98 479.43
99 823.60
100 479.43
```

