EH3DSB miniprojekt 1 – tidsdomæneanalyse

202200284 - Danni Raetzel

Table of Contents

1
. 1
. 1
2
Ę
.5
5
Ę
7
. 7
. 7
7
7
7
8
. 8
ć
. 0
ξ

Indledning og formål

I dette miniprojekt undersøges og analyseres tre forskellige lydklip i tidsdomænet. Formålet med opgaven er at blive fortrolig med håndtering, plottning og analyse af digitale signaler i MATLAB. Vi udfører analyse på de tre signaler, bestemmer deres egenskaber som antal samples, min- og max-værdier, RMS-værdier, energi, samt forskellen mellem venstre og højre kanal. Desuden udføres nedsampling og fade-out på et af signalerne. Projektet sigter mod at give indsigt i forskellige signalbehandlingsmetoder i tidsdomænet.

Indlæsning af data

```
load('miniprojekt1_lydklip.mat');
```

1. Aflytning af eksemplerne

```
% Lyt til signalerne (stop med 'clear sound')
%soundsc(s1, fs_s1);
%soundsc(s2, fs_s2);
%soundsc(s3, fs_s3);
```

2.Bestem antal samples for alle lydklip

Antallet af samples kan findes ved at kigge på længden af signalet

```
% Bestem antal samples
samples_s1 = length(s1);
```

```
samples_s2 = length(s2);
samples_s3 = length(s3);

disp(['Antal samples i s1: ', num2str(samples_s1)]);

Antal samples i s1: 1323000

disp(['Antal samples i s2: ', num2str(samples_s2)]);

Antal samples i s2: 3360000

disp(['Antal samples i s3: ', num2str(samples_s3)]);

Antal samples i s3: 1411200
```

3.Plot signalet med en tidsakse for alle lydklip

For at plotte signalet skal man oprette en tidsakse baseret på samplingsfrekvensen2

```
% Opret tidsakse
t_s1 = (0:length(s1)-1) / fs_s1;
t_s2 = (0:length(s2)-1) / fs_s2;
t_s3 = (0:length(s3)-1) / fs_s3;

% Plot signalet
figure;
plot(t_s1, s1(:,1));
xlabel('Tid (sekunder)');
ylabel('Amplitude');
title('Signal s1');
```



```
% Plot signal s2
figure;
plot(t_s2, s2(:,1));
xlabel('Tid (sekunder)');
ylabel('Amplitude');
title('Signal s2');
```



```
% Plot signal s3
figure;
plot(t_s3, s3(:,1));
xlabel('Tid (sekunder)');
ylabel('Amplitude');
title('Signal s3');
```


4.Bestem min- og max-værdi, RMS-værdi og energi for alle lyd lydklip

Min- og max-værdier

```
%s1
min_s1 = min(s1(:,1));
max_s1 = max(s1(:,1));
%s2
min_s2 = min(s2(:,1));
max_s2 = max(s2(:,1));
%s3
min_s3 = min(s3(:,1));
max_s3 = max(s3(:,1));
```

RMS-værdier

```
%s1
rms_s1 = rms(s1(:,1));
%s2
rms_s2 = rms(s2(:,1));
%s3
rms_s3 = rms(s3(:,1));
```

Energi

```
%s1
energi_s1 = sum(s1(:,1).^2);
```

```
%s2
energi_s2 = sum(s2(:,1).^2);
energi_s3 = sum(s3(:,1).^2);
disp(['s1: ']);
s1:
disp(['Min værdi: ', num2str(min_s1)]);
Min værdi: -1.0038
disp(['Max værdi: ', num2str(max_s1)]);
Max værdi: 1.019
disp(['RMS værdi: ', num2str(rms_s1)]);
RMS værdi: 0.32474
disp(['Energi: ', num2str(energi_s1)]);
Energi: 139515.5361
disp(['s2: ']);
s2:
disp(['Min værdi: ', num2str(min_s2)]);
Min værdi: -0.40533
disp(['Max værdi: ', num2str(max_s2)]);
Max værdi: 0.41742
disp(['RMS værdi: ', num2str(rms_s2)]);
RMS værdi: 0.059926
disp(['Energi: ', num2str(energi_s2)]);
Energi: 12065.9997
disp(['s3: ']);
s3:
disp(['Min værdi: ', num2str(min_s3)]);
Min værdi: -0.85016
disp(['Max værdi: ', num2str(max_s3)]);
```

Max værdi: 0.72832

```
disp(['RMS værdi: ', num2str(rms_s3)]);

RMS værdi: 0.046679

disp(['Energi: ', num2str(energi_s3)]);

Energi: 3074.8863
```

5.Beregn og lyt til forskellen mellem venstre og højre kanal.

Man kan finde forskellen/differencen ved at trække højre kanal fra den venstre.

Beskriv hvad du hører

Når man lytter til forskellen mellem venstre og højre kanal, hører man mest de lyde, der er ude i siderne, da lydene i midten er fjernet. Det får lyden til at virke lavere og mere spredt sammenlignet med originalen

6.Nedsampling med faktor 4

Lav en "nedsampling" af signalet med en faktor 4 og lyt til det nedsamplede signal2

```
% Definer den nye samplingsfrekvens som en fjerdedel af fs_s1
fs_ny = fs_s1 / 4;

% Nedsampler signalet fra den gamle samplingsfrekvens
s1_nedsamplet = resample(s1, fs_ny, fs_s1);

% Lyt til det nedsamplede signal
%soundsc(s1_nedsamplet, fs_ny);
```

Beskriv forskellen mellem det originale og det nedsamplede signal

Efter nedsampling med en faktor 4 lyder signalet mere forvrænget og mister detaljer i forhold til det originale. Den lavere samplingsfrekvens gør, at de høje frekvenser forsvinder, og det giver en ringere lydkvalitet.

7. Fade-out

Lav et "fade-out" over den sidste tredjedel af signalet. Først lineært og dernæst eksponentielt aftagende Amplituden ved slutningen skal være 5 %

Lineært fade-out

```
% Definer fade-out perioden (sidste tredjedel af signalet)
N = length(s1);
fade_length = round(N / 3);
```

```
fade_start = N - fade_length + 1;

% Lav lineært fade-out
linear_fade = linspace(1, 0.05, fade_length)';
s1(fade_start:end, :) = s1(fade_start:end, :) .* linear_fade;

% Lyt til signalet med lineært fade-out
%soundsc(s1, fs_s1);
```

Plot af lineært fade-out

```
% Opret tidsakse for fade-out delen
t_fade = (fade_start:N) / fs_s1;

% Plot kun den del, der fader (lineært fade-out)
figure;
subplot(2, 1, 1);
plot(t_fade, s1(fade_start:end, 1));
xlabel('Tid (sekunder)');
ylabel('Amplitude');
title('Lineært fade-out på Signal s1');
```


Eksponentielt fade-out

```
% Lav eksponentielt fade-out
alpha = log(0.05) / fade_length; % Beregn alpha for 5% amplitude
exponential_fade = exp(alpha * (1:fade_length))';
s1(fade_start:end, :) = s1(fade_start:end, :) .* exponential_fade;
```

```
% Lyt til signalet med eksponentielt fade-out
%soundsc(s1, fs_s1);
```

Plot af eksponentielt fade-out

```
% Plot kun den del, der fader (eksponentielt fade-out)
figure;
subplot(2, 1, 1);
plot(t_fade, s1(fade_start:end, 1));
xlabel('Tid (sekunder)');
ylabel('Amplitude');
title('Eksponentielt fade-out på Signal s1');
```


Hvad lyder mest naturligt?

Det eksponentielle fade-out lyder mest naturligt, da lyden aftager gradvist og mere blødt mod slutningen. Det lineære fade-out virker mere pludseligt og kunstigt til sammenligning.

Konklusion

I dette projekt har jeg analyseret tre lydklip i tidsdomænet ved hjælp af MATLAB. Jeg har beregnet antal samples, min- og max-værdier, RMS-værdier og energi. Jeg har også set på forskellen mellem venstre og højre kanal, hvor lyden i midten af stereobilledet blev fjernet. Nedsampling med en faktor 4 medførte et tab af detaljer og lavere lydkvalitet. Til sidst testede jeg både lineært og eksponentielt fade-out, hvor det eksponentielle lød mest naturligt.