The 2020 MCUT-UNIB Artificial Intelligence Online Workshop

No.	Date	Topic	Course outline	Course Instructor
1.	10/13	AI lecture for overview (I)	1. Course Introduction	Jiun-Wei Liou
			2. What is AI?	
			3. History of AI.	
			4. Applications of AI.	
			5. Categorization of AI.	
2.	10/15	AI lecture for overview (II)	1. Introduction of data science.	
			2. Introduction of (basic) machine learning.	
			3. Introduction of deep learning.	
			4. Future thoughts of AI.	
3.	10/20		Assignment and Tutorial	Hendy Santosa
4.	10/22	Machine Learning Essential	1. Business Problems and Data Mining/Machine Learning Tasks Set	Ching-Shih Tsou
		- R/Python Hands-on and	2. Dimensionality Reduction and Principal Component Analysis	
		Theoretical Background	3. Clustering Analysis	
5.	10/27	Machine Learning Essential	4. Association Rule Mining	
		- R/Python Hands-on and	5. k Nearest Neighbors	
		Theoretical Background	6. Tree-Based Models (Classification Trees, Regression Trees, and Model Trees	
			incl.)	
6.	10/29		Assignment and Tutorial	<mark>Arie Vatresia</mark>
7.		Machine Learning Essential	7. Naïve Bayes Classification (text processing incl.)	Ching-Shih Tsou
		- R/Python Hands-on and	8. Support Vector Machines	
		Theoretical Background	9. Bagging and Boosting	
8.	11/3		Assignment and Tutorial	Ruvita Faurina
9.	11/5	AI in Smart Grid (I)	1. Introduction to AI	Yu-Hsiu Lin
			2. Machine Learning vs. Deep Learning	
			3. Supervised learning	
			4. Perceptron	
10.	11/10	AI in Smart Grid (II)	1. Multi-layer perceptron (MLP)	

Commented [z1]: Please merge this section and add unsupervised classification for reinforcement learning seperately

Commented [z2]: PCA can be inserted into this meeting

No.	Date	Topic	Course outline	Course Instructor
			2. MLP applied on iris data for iris flower classification	
			3. A case study: AI in load management	
11.	11/12		Assignment and Tutorial	Novalio Daratha
12.	11/17	Image recognition-	1. Low-level vision: image processing, edge detection, feature detection,	Meng-Jey Youh
		Introduction to Computer	cameras, image formation	
		Vision	2. Geometry and algorithms: projective geometry, stereo, structure from motion,	
			optimization	
			3. Recognition: face detection / recognition, category recognition, segmentation	
13.	11/19	AI-based Face recognition -	1. Dowload code from Github	Chuang-Jan Chang
		Image Transformations	2. Affine Transformation	
			3. Homograohy & Perspective Transformation	
			4. Face Recognition	
14.	11/24	AI-based Face recognition-	1. DrawOver Image	
		OpenCV Basics - 2	2. Mouse Handling	
			3. Read, Write Over Image & Display	
15.	11/26		Assignment and Tutorial	Hendy Santosa
16.	12/1	Image recognition-	1. History and definition of CNN: Neocognitron (a self-organizing neural	Meng-Jey Youh
		Convolutional Neural	network model for a mechanism of pattern recognition).	
		Networks, CNN	2. Algorithm architecture: convolutional layer, pooling layer, Relu layer, fully	
			connected layer, loss layer	
			3. Applications: image recognition, video analysis, natural language processing,	
			time series forecasting, etc.	
			4. Convolutional neural networks for visual recognition.	
17.	12/3	Image recognition- Region-	1. Definition of R-CNN	
		based CNN, R-CNN	2. Extended algorithm: fast R-CNN, masked R-CNN, Mesh R-CNN, YOLO	
			3. Application of region-based convolutional neural network	
18.	12/8		Group Presentation and Course Feedback	UNIB & MCUT

Course time: 18:30~ 21:30 (Indonesian time), **Tuesdays & Thursdays**

Commented [z3]: Can use the deep learning and classification

Teacher presentation

- 1. Ching-Shih Tsou / Prof. C.-S. (Vince) Tsou, Ph.D., Dept. of Mechanical Engineering/ AI&DS Research Center, MCUT
- 2. **Meng-Jey Youh** / Prof. M.-J. Youh, Ph.D., Dept. of Mechanical Engineering, MCUT
- 3. Chuang-Jan Chang / Asst. Prof. C.-J. Chang, Ph.D., Dept. of Electronic Engineering, MCUT
- 4. Yu-Hsiu Lin / Asst.Prof. Y.-H. Lun, Ph.D., Dept. of Electrical Engineering, MCUT
- 5. Jiun-Wei Liou / Asst.Prof. J.-W. Liou, Ph.D., Dept. of Electronic Engineering, MCUT

Reviewing the syllabus:

We recommend that the syllabus can also cover the subjects bellow:

- 1. Convolutional Neural Network, and PCA
- 2. Quantum Learning
- 3. Unsupervised Learning for Reinforcement