# VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.



## LAB REPORT

on

## **Machine Learning (23CS6PCMAL)**

Submitted by

Ananya Agarwal (1BM22CS039)

in partial fulfillment for the award of the degree of

BACHELOR OF ENGINEERING

in

COMPUTER SCIENCE AND ENGINEERING



B.M.S. COLLEGE OF ENGINEERING
(Autonomous Institution under VTU)
BENGALURU-560019
Sep-2024 to Jan-2025

### **B.M.S.** College of Engineering,

**Bull Temple Road, Bangalore 560019** 

(Affiliated To Visvesvaraya Technological University, Belgaum)

#### **Department of Computer Science and Engineering**



#### **CERTIFICATE**

This is to certify that the Lab work entitled "Machine Learning (23CS6PCMAL)" carried out by **Ananya Agarwal (1BM22CS039),** who is bonafide student of **B.M.S. College of Engineering.** It is in partial fulfillment for the award of **Bachelor of Engineering in Computer Science and Engineering** of the Visvesvaraya Technological University, Belgaum. The Lab report has been approved as it satisfies the academic requirements in respect of an Machine Learning (23CS6PCMAL) work prescribed for the said degree.

| Saritha A. N             | Dr. Kavitha Sooda        |
|--------------------------|--------------------------|
| Assistant Professor      | Professor & HOD          |
| Department of CSE, BMSCE | Department of CSE, BMSCE |
|                          |                          |

## Index

| Sl.<br>No. | Date      | Experiment Title                                                                                                    | Page No. |
|------------|-----------|---------------------------------------------------------------------------------------------------------------------|----------|
| 1          | 21-2-2025 | Write a python program to import and export data using Pandas library functions                                     | 4        |
| 2          | 3-3-2025  | Demonstrate various data pre-processing techniques for a given dataset                                              | 7        |
| 3          | 10-3-2025 | Implement Linear and Multi-Linear Regression algorithm using appropriate dataset                                    | 13       |
| 4          | 17-3-2025 | Build Logistic Regression Model for a given dataset                                                                 | 24       |
| 5          | 24-3-2025 | Use an appropriate data set for building the decision tree (ID3) and apply this knowledge to classify a new sample. | 28       |
| 6          | 7-4-2025  | Build KNN Classification model for a given dataset.                                                                 | 33       |
| 7          | 21-4-2025 | Build Support vector machine model for a given dataset                                                              | 45       |
| 8          | 5-5-2025  | Implement Random forest ensemble method on a given dataset                                                          | 53       |
| 9          | 5-5-2025  | Implement Boosting ensemble method on a given dataset.                                                              | 56       |
| 10         | 12-5-2025 | Build k-Means algorithm to cluster a set of data stored in a .CSV file.                                             | 59       |
| 11         | 12-5-2025 | Implement Dimensionality reduction using Principal Component Analysis (PCA) method.                                 | 65       |

Github Link: https://github.com/AnanyaCSE-039/ML-LAB

Write a python program to import and export data using Pandas library functions

Screenshot



#### Code:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from scipy import stats
#**Diabetes Dataset**
df=pd.read csv('/content/Dataset of Diabetes .csv')
df.head()
df.shape
print(df.info())
# Summary statistics
print(df.describe())
missing_values=df.isnull().sum()
print(missing_values[missing_values > 0])
categorical cols = df.select dtypes(include=['object']).columns
print("Categorical columns identified:", categorical_cols)
if len(categorical cols) > 0:
  df = pd.get_dummies(df, columns=categorical_cols, drop_first=True)
  print("\nDataFrame after one-hot encoding:")
  print(df.head())
else:
  print("\nNo categorical columns found in the dataset.")
from sklearn.preprocessing import MinMaxScaler, StandardScaler
import pandas as pd
numerical_cols = df.select_dtypes(include=['number']).columns
scaler = MinMaxScaler()
df_minmax = df.copy() # Create a copy to avoid modifying the original
df_minmax[numerical_cols] = scaler.fit_transform(df[numerical_cols])
scaler = StandardScaler()
df_standard = df.copy()
df_standard[numerical_cols] = scaler.fit_transform(df[numerical_cols])
print("\nDataFrame after Min-Max Scaling:")
print(df_minmax.head())
print("\nDataFrame after Standardization:")
print(df_standard.head())
#**Adult Income Dataset**
df1=pd.read_csv('/content/adult.csv')
```

```
df1.head()
df1.shape
print(df1.info())
# Summary statistics
print(df.describe())
missing_values=df1.isnull().sum()
print(missing_values[missing_values > 0])
categorical_cols = df1.select_dtypes(include=['object']).columns
print("Categorical columns identified:", categorical_cols)
if len(categorical_cols) > 0:
  df1 = pd.get_dummies(df1, columns=categorical_cols, drop_first=True)
  print("\nDataFrame after one-hot encoding:")
  print(df.head())
else:
  print("\nNo categorical columns found in the dataset.")
from sklearn.preprocessing import MinMaxScaler, StandardScaler
import pandas as pd
numerical_cols = df1.select_dtypes(include=['number']).columns
scaler = MinMaxScaler()
df_minmax = df1.copy() # Create a copy to avoid modifying the original
df_minmax[numerical_cols] = scaler.fit_transform(df1[numerical_cols])
scaler = StandardScaler()
df standard = df1.copy()
df_standard[numerical_cols] = scaler.fit_transform(df1[numerical_cols])
print("\nDataFrame after Min-Max Scaling:")
print(df_minmax.head())
print("\nDataFrame after Standardization:")
print(df_standard.head())
```

Demonstrate various data pre-processing techniques for a given dataset



```
Code:
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
df=pd.read_csv('housing.csv')
df.head(2)
df.describe()
df.info()
sns.histplot(df['median_income'], kde=True, color='green')
sns.histplot(df['housing_median_age'])
from sklearn.model_selection import train_test_split
X = df.drop("median_house_value", axis=1)
y = df["median_house_value"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,random_state=42)
X = df.drop("median_house_value", axis=1)
y = df["median_house_value"]
df["income_cat"] = pd.cut(df["median_house_value"],
bins=[0, 100000, 200000, 300000, 400000, np.inf],
labels=[1, 2, 3, 4, 5])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42,
stratify=df["income_cat"])
```

```
train\_set = X\_train.copy()
train_set["median_house_value"] = y_train
train_set.plot(kind="scatter", x="longitude", y="latitude", alpha=0.4,s=train_set["population"]/100,
label="population", figsize=(10,7), c="median_house_value", cmap=plt.get_cmap("jet"),
colorbar=True)
plt.legend()
numerical_columns = df.select_dtypes(include=['float64', 'int64'])
correlation matrix = numerical columns.corr()
print(correlation matrix["median house value"].sort values(ascending=False))
df.plot(kind="scatter", x="median income", y="median house value", alpha=0.1)
# Combine 'median_income' and 'households'
df["income_households"] = df["median_income"] * df["households"]
numerical columns = df.select dtypes(include=['float64', 'int64'])
correlation matrix = numerical columns.corr()
print(correlation_matrix["median_house_value"].sort_values(ascending=False))
df.plot(kind="scatter", x="income_households", y="median_house_value", alpha=0.1)
plt.show()
missing values = df.isnull().sum()
print(missing values[missing values > 0])
h=df
h.dropna(subset=["total_bedrooms"])
from sklearn.preprocessing import OneHotEncoder
df1=pd.read_csv('housing.csv')
hc=df1[["ocean_proximity"]]
```

```
encoder=OneHotEncoder()
hc_encoded=encoder.fit_transform(hc).toarray()
hc_1hot_df = pd.DataFrame(hc_encoded, columns=encoder.get_feature_names_out(hc.columns))
hc_1hot_df.head()
Feature scaling is crucial in machine learning for several reasons, particularly when using algorithms that
are sensitive to the scale of features. Here's a breakdown of its importance:
1. Improved Performance of Distance-Based Algorithms:
2. Faster Convergence of Gradient Descent:
3. Improved Regularization:
4. Better Interpretation of Coefficients:
5. Numerical Stability:
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler
# Custom transformer to add engineered attributes
class CombinedAttributesAdder(BaseEstimator, TransformerMixin):
  def __init__(self, add_bedrooms_per_room=True):
     self.add_bedrooms_per_room = add_bedrooms_per_room
  def fit(self, X, y=None):
    return self
  def transform(self, X):
```

```
# Assumes X is a NumPy array with the following columns:
    # total_rooms (index 3), total_bedrooms (index 2), population (index 4), households (index 5)
    rooms_per_household = X[:, 3] / X[:, 5]
    population_per_household = X[:, 4] / X[:, 5]
    if self.add_bedrooms_per_room:
       bedrooms_per_room = X[:, 2] / X[:, 3]
       return np.c_[X, rooms_per_household, population_per_household, bedrooms_per_room]
    else:
       return np.c_[X, rooms_per_household, population_per_household]
# Identify numerical and categorical columns
num_attribs = df1.drop("ocean_proximity", axis=1).columns # All numeric columns
cat_attribs = ["ocean_proximity"]
# Build numerical pipeline: impute missing values, add new attributes, then scale
num_pipeline = Pipeline([
  ('imputer', SimpleImputer(strategy="median")),
  ('attribs_adder', CombinedAttributesAdder()),
  ('std_scaler', StandardScaler()),
# Build the full pipeline combining numerical and categorical processing
full_pipeline = ColumnTransformer([
  ("num", num_pipeline, num_attribs),
  ("cat", OneHotEncoder(), cat_attribs),
```

# Process the dataset using the pipeline

 $housing\_prepared = full\_pipeline.fit\_transform(housing)$ 

print("Shape of processed data:", housing\_prepared.shape)

Implement Linear and Multi-Linear Regression algorithm using appropriate dataset



```
Code:
# -*- coding: utf-8 -*-
import pandas as pd
import numpy as np
from sklearn import linear_model
import matplotlib.pyplot as plt
df = pd.read_csv('/content/housing_area_price.csv')
df
# Commented out IPython magic to ensure Python compatibility.
# % matplotlib inline
plt.xlabel('area')
plt.ylabel('price')
plt.scatter(df.area,df.price,color='red',marker='+')
new_df = df.drop('price',axis='columns')
new_df
price = df.price
price
# Create linear regression object
reg = linear_model.LinearRegression()
reg.fit(new_df,price)
```

```
"""(1) Predict price of a home with area = 3300 sqr ft"""
reg.predict([[3300]])
reg.coef_
reg.intercept_
"""Y = m * X + b (m is coefficient and b is intercept)"""
3300*135.78767123 + 180616.43835616432
"""(1) Predict price of a home with area = 5000 sqr ft"""
reg.predict([[5000]])
# -*- coding: utf-8 -*-
import pandas as pd
import numpy as np
from sklearn import linear_model
df = pd.read_csv('/content/homeprices_Multiple_LR.csv')
df
"""Data Preprocessing: Fill NA values with median value of a column"""
df.bedrooms.median()
df.bedrooms = df.bedrooms.fillna(df.bedrooms.median())
df
```

```
reg = linear_model.LinearRegression()
reg.fit(df.drop('price',axis='columns'),df.price)
reg.coef_
reg.intercept_
"""Find price of home with 3000 sqr ft area, 3 bedrooms, 40 year old"""
reg.predict([[3000, 3, 40]])
112.06244194*3000 + 23388.88007794*3 + -3231.71790863*40 + 221323.00186540384
import pandas as pd
from sklearn.linear_model import LinearRegression
# Load the dataset
df1 = pd.read_csv('/content/canada_per_capita_income.csv')
# Prepare the data
X = df1.year.values.reshape(-1, 1) # Features (year)
y = df1['per capita income (US$)'] # Target (per capita income)
# Create and train the linear regression model
model = LinearRegression()
model.fit(X, y)
# Predict per capita income for 2020
```

```
year_2020 = [[2020]]
predicted_income = model.predict(year_2020)
print(f"Predicted per capita income for Canada in 2020: {predicted_income[0]:.2f}")
import pandas as pd
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
# Load the dataset (canada_per_capita_income.csv)
df1 = pd.read_csv('/content/canada_per_capita_income.csv')
# Prepare the data
X = df1.year.values.reshape(-1, 1) # Features (year)
y = df1['per capita income (US$)'] # Target (per capita income)
# Create and train the linear regression model
model = LinearRegression()
model.fit(X, y)
# Create the plot
plt.figure(figsize=(8, 6))
plt.scatter(X, y, color='blue', label='Data Points') # Now using the correct X and y
plt.plot(X, model.predict(X), color='red', label='Regression Line')
```

```
plt.xlabel('Year')
plt.ylabel('Per Capita Income (US$)')
plt.title('Per Capita Income in Canada over Time')
plt.legend()
plt.grid(True)
plt.show()
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.impute import SimpleImputer
# Load the dataset
df = pd.read_csv('/content/salary.csv')
# Prepare the data
X = df.iloc[:, :-1].values # Features (years of experience)
y = df.iloc[:, 1].values # Target (salary)
# Impute missing values with the mean
imputer = SimpleImputer(strategy='mean') # Create an imputer object with strategy as mean
X = imputer.fit_transform(X) # Fit and transform the imputer on feature data 'X'
# Create and train the linear regression model
model = LinearRegression()
model.fit(X, y)
```

```
# Predict salary for 12 years of experience
years_experience = [[12]]
predicted_salary = model.predict(years_experience)
print(f"Predicted salary for 12 years of experience: {predicted_salary[0]:.2f}")
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.impute import SimpleImputer
# Load the dataset
df = pd.read_csv('/content/hiring.csv')
# Handle missing values
# Convert 'experience' column to numeric, replacing non-numeric with NaN
df['experience'] = pd.to_numeric(df['experience'], errors='coerce')
imputer = SimpleImputer(strategy='mean')
df['experience'] = imputer.fit_transform(df[['experience']])
df['test_score(out of 10)'] = imputer.fit_transform(df[['test_score(out of 10)']])
# Prepare the data
X = df.drop('salary($)', axis='columns')
y = df['salary(\$)']
# Create and train the linear regression model
```

```
model = LinearRegression()
model.fit(X, y)
# Predict salaries for the given candidates
candidate1 = [[2, 9, 6]]
candidate2 = [[12, 10, 10]]
predicted_salary1 = model.predict(candidate1)
predicted_salary2 = model.predict(candidate2)
print(f"Predicted salary for candidate 1: ${predicted_salary1[0]:.2f}")
print(f"Predicted salary for candidate 2: ${predicted_salary2[0]:.2f}")
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.compose import ColumnTransformer
# Load the dataset
df = pd.read_csv('/content/1000_Companies.csv')
# Separate features (X) and target (y)
X = df.iloc[:, :-1].values
y = df.iloc[:, 4].values
```

```
# Encode categorical data (State)
labelencoder = LabelEncoder()
X[:, 3] = labelencoder.fit\_transform(X[:, 3])
ct = ColumnTransformer(
  transformers=[('encoder', OneHotEncoder(), [3])],
  remainder='passthrough'
)
X = \text{ct.fit\_transform}(X)
# Avoid dummy variable trap (remove one encoded column)
X = X[:, 1:]
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# Create and train the multiple linear regression model
regressor = LinearRegression()
regressor.fit(X_train, y_train)
# Predict profit for the given values
new_prediction = regressor.predict([[1, 0, 91694.48, 515841.3, 11931.24]])
print(f"Predicted Profit: {new_prediction[0]:.2f}")
```

## Build Logistic Regression Model for a given dataset

| Q ton                                                                                                                                                | 61 239                                                                                                                                                                     | Q bre                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sab-E  J.) Given $q_6 = -5$ $q_1 = 0.8$ Legistic regression equation                                                                                 | coltnex (20) = 0 - 0.091                                                                                                                                                   | Model west-                                                                                                                                                                    |
| P(2) = 1 = (10+0,x) = 1 + e-(-6+0.8x)                                                                                                                | Probabilities of the 3 days are approximately                                                                                                                              | import hath def signaid (x): return /(1+ hath.eap(-x))                                                                                                                         |
| 13) Salculate probability that a student who shidies $px = 7 \text{ hrs. will pass.}$ $x=1 : \rho(x) = \frac{1}{1+e^{-(-5+o\pi(7))}}$                | # Bivary lagistic fegrecation:                                                                                                                                             | del prediction guntion (age):  z=0.137 ~ age ~ 9.973  y ~ signoid (z)                                                                                                          |
| = 0.645T                                                                                                                                             | import panday as felt from exospectib import payed as felt                                                                                                                 | return 4  age = 55 prodution function (age)                                                                                                                                    |
| in) Determine the predicted class (PIF) for this shaded based on three-hold of 0.5.  P(x) = 0.6437  P(x) > 0.5  Thus y = 1 (Pass)  Thus y = 1 (Pass) | de pa rod en ("leontent insurance data con")  de head ("  the station (de age, de bought insurance, marken = "4",  char = "red")                                           | O. ST                                                                                                                                                                          |
| Thus y = 1 (Pass) ( otherwise  Consider z = [2,1,0] for three classes. Apply  softwax function to find probabilities values d.                       | pane skleann endel schedion import train test split X train, X 18st, y Train, y 1st - train test split (afficers), d, bought inavance, train size = 0.3, random stat = 10) | # Multiclaw Logistic Regression:                                                                                                                                               |
| 3 dake (zk) = ezi                                                                                                                                    | x tost                                                                                                                                                                     | import pandar as pd  (deport from stleam datasets import load inte  from stleam. Would solection import train. Est split  from stleam. When the dat import Lagistic Regression |
| softmax (z1) = e2 = 0.665                                                                                                                            | from scheam linear scools import legistic legitesion  model fricts legitusion()  model frict rain, y-tain)  y-tait                                                         | from schedum metrics import accuracy score from schedum import matrica support matrica                                                                                         |
| Softmax (20) = c' = 0244                                                                                                                             | y realities a modul predict (x real) y predicted                                                                                                                           | iris = pd. read_cov (" (content   iris.cov") his. head()                                                                                                                       |

|   | =9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | C for top                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - | Y= iris drop('species', axis='columns') Y= iris species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -11 | To write:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| - | Y=1vis species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1 | HR COMMO SEP CAV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| - | x_train, x_test, y_train, y_test = train_test split (x, y,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - | text_size = 0.2, -andon_state = 42)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0   | Satisfaction level: Lower satisfaction - signer tornow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | peodel = Logistic Regression (unticlass = \ untitinomial)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | time speet in company; longer tenure - higher thinkness of leaving solution to calamy - higher attition to bepartment: sales a technical home Migher turnuren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | wood fit (x train, y train)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | Salary: low salary - wigher attintion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9 | y pred = Model predict (x-text)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | Department: soles & technical have Nigher turniver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | accuracy = accuracy store (y-ket, y-pred)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | The state of the s |
|   | and realist and the second of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10) | Accuracy: 95.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | print (f 'Arcuracy of the Huttinomial togistic Regression<br>Model on the tell set: faccurrage. 297°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | Hes it is a good occurracy, but occurracy above co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | undit on the test set faccurage, ef 7 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | be unleading due to potential class impalance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | confusion Natrix = Hetrics, confusion - Matrix (y-test, y-pad)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.  | Zoo balabet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | andiplay = retrices confusion matrix (y tat, y-pred)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | The state of the s |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1)  | Yes, pot performed data processing steps.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1 | on dialous statues emplesionalista y highly Confusion water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | propped the animal name column, standardized the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | cm_diplay = uetrics.confusionMatrix trisplay (unfusion_watern<br>= confusion_watrix, display_labels = ["setraa", "Versiuder",<br>"Virainica (")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | features using standard scaler to improve model perform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| + | Virginica J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 111 | There were no missing or inconstriont values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| + |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0 | 100 100 10 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| + | cm dipplay. Act () plt. show ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tel | The confusion Matrize showed achieved 95.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | plt. show()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100 | acuracy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | the deal artists the gray and table the transport to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 | Eulput:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | Reptiles and amphibians were worthy wischarified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| + | reserved and the state of the s | (4  | claves.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| + | Accuracy on the test set : 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | - to codow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | the state of the s |     | Manuals and birds also be as they had overlope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | Manage and Brief and a total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | - and of the state of the base by - and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | jestivei.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | Third shi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## Code:

```
import pandas as pd
import numpy as np
df=pd.read_csv("/content/HR_comma_sep.csv")
df.head(3)
print(df.isnull().sum())
print(df.groupby('left').mean(numeric_only=True))
print(df.groupby('salary').mean(numeric_only=True))
import matplotlib.pyplot as plt
pd.crosstab(df.salary,df.left).plot(kind='bar')
plt.title('Employee Retention vs Salary')
plt.xlabel('Salary')
plt.ylabel('Number of Employees')
plt.show()
pd.crosstab(df.Department,df.left).plot(kind='bar')
plt.title('Employee Retention vs Department')
plt.xlabel('Department')
plt.ylabel('Number of Employees')
plt.show()
salary_dummies = pd.get_dummies(df.salary, prefix="salary")
dept_dummies = pd.get_dummies(df.Department, prefix="dept")
df_with_dummies = pd.concat([df, salary_dummies, dept_dummies], axis=1)
```

```
df_with_dummies = df_with_dummies.drop(['salary', 'Department'], axis=1)
X_features = ['satisfaction_level', 'last_evaluation', 'number_project', 'average_montly_hours',
'time_spend_company', 'Work_accident', 'promotion_last_5years'] + list(salary_dummies.columns) +
list(dept_dummies.columns)
X = df\_with\_dummies[X\_features]
y = df_with_dummies.left
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train, y_train)
from sklearn.metrics import accuracy_score
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy of the model:", accuracy)
```

Use an appropriate data set for building the decision tree (ID3) and apply this knowledge to classify a new sample.



```
Code:
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn import tree
import matplotlib.pyplot as plt
iris = load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
```

print("Accuracy:", accuracy)

```
print("Confusion Matrix:\n", conf_matrix)
plt.figure(figsize=(12, 8))
tree.plot_tree(clf, feature_names=iris.feature_names, class_names=iris.target_names, filled=True)
plt.show()
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn import tree
import matplotlib.pyplot as plt
iris = load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
```

```
print("Accuracy:", accuracy)
print("Confusion Matrix:\n", conf_matrix)
plt.figure(figsize=(12, 8))
tree.plot_tree(clf, feature_names=iris.feature_names, class_names=iris.target_names, filled=True)
plt.show()
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_absolute_error, mean_squared_error
import numpy as np # import numpy
data = pd.read_csv("petrol_consumption.csv")
X = data[['Petrol_tax', 'Average_income', 'Paved_Highways',
      'Population_Driver_licence(%)']]
y = data['Petrol_Consumption']
X_train, X_test, y_train, y_test = train_test_split(
  X, y, test_size=0.2, random_state=42)
regressor = DecisionTreeRegressor()
regressor.fit(X_train, y_train)
```

```
y_pred = regressor.predict(X_test)
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
print("Mean Absolute Error:", mae)
print("Mean Squared Error:", mse)
print("Root Mean Squared Error:", rmse)
from sklearn.tree import plot_tree
import matplotlib.pyplot as plt
plt.figure(figsize=(15, 10))
# Assuming 'data' is your original pandas DataFrame
plot_tree(regressor, feature_names=data[['Petrol_tax', 'Average_income', 'Paved_Highways',
'Population_Driver_licence(%)']].columns, filled=True, rounded=True)
plt.show()
```

Build KNN Classification model for a given dataset.

| lab-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Plant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a Person Age Sularyk Target Distance Rank.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A 18 50 N 52.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8 23 55 N 46.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C 24 70 N 31.95 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D 41 60 Y 40.44 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| E 43 70 Y 21.0Y 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F 38 40 Y 60.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The state and a service of the servi |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Distance = 1 (x-x)2+ (yo-y)2+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| for k=s, rank in accerding order.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Distance Rank Target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Distonce Rank Target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 31.95 2 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40.44 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| the head and the frame when the manner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Since majority is the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| for (35,100) target will be y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Francisco Filono O Marie California                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The window mindows of the state |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (voters line) time 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Barrier Barrie |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Don                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (ods:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sis habituap learly works, and True, fort a'd', egraps which lands = inisidate to special unique c),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| import pander as ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Six heatuap (earl eating, aned = True, fint = 'd', creap<br>atticklated = trisidate Especial unique(),<br>yticklated = trisidate Especial unique()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| import pandou as pd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SNA heaterap (confusation, and "True, fint ='d', epiape attitutated = trisidate ["special unique"), ytidilated = irisidate [special unique"] plt Hite ("confusion hatix")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| insport pandas as pd<br>from discum sudd solection inport source test aplit<br>from stream neighbours insport salequitons Classifica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sins heatmap (nonfunction, anext = True, first = 'd', epops attitudable = trisidable ["species] unique(), ytidlabele = trisidable [species] unique() plt. Hitle ("confunction Hather") plt. adable ("Araicta")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| inport pandar ar pd  from steam redd-selection inport soin test aplit  from steam religibleouse inport saintest seleculien  from steam religibleouse inport saintestons (lawylen  from steam retries import accuracy, scort, audjusion restrice,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SNA heaterap (confusation, and "True, fint ='d', epiape attitutated = trisidate ["special unique"), ytidilated = irisidate [special unique"] plt Hite ("confusion hatix")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| import pander as polytom import sourcest aplit from stream registroners import their their classifier from stream registroners import accurages cont. confusion matrix. classification report accurages cont. confusion matrix import matrix their classification report accurages cont.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sins heatmap (not next in, and "True fint "'d', cpape atticklabele "insidate l'operate") unique (), yticklabele "insidate l'operate") unique () plt Hitle ("confusion Hatrix") ptt value () (Proticks") plt value ((Proticks"))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| inport pander as pd  Jam dissem under solection import source test appet  Jam astram registrance import solections classifier  Jam astram united import accuracy scort, conjurior water  classification report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sins heatmap (nonfunction, annoted True, first = "d", composited with a live shall be specied unique () ytidabable = inadata [specied unique () yti. Hite ("confusion habita") plt. Alabed ("Artaicts") plt. ylabed ("Artaicts") plt. show () print ("Counification Report:")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| inport pander as pd  from steam religibours inport sain test appet  from steam religibours inport subjections (lessifice  from steam religibours inport accuracy scent, confusion retries,  classification report  inport netfliction report  import seatom as one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Srs. heatmap (not notice, and "True, fint a'd', cpape attitutable a triscalate Toperated uniques), yticklabele insalate Toperated uniques of plt. Hitle ("Confusion Matrix") plt. Adabel ("Predicted"), plt. ylabel ("Predicted"), plt. ylabel ("Predicted"), plt. ylabel ("Rotad"), plt. showe ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| import pander as polytom import sourcest aplit from stream registroners import their their classifier from stream registroners import accurages cont. confusion matrix. classification report accurages cont. confusion matrix import matrix their classification report accurages cont.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sins heatmap (nonfunction, annoted True, first = "d", composited with a live shall be specied unique () ytidabable = inadata [specied unique () yti. Hite ("confusion habita") plt. Alabed ("Artaicts") plt. ylabed ("Artaicts") plt. show () print ("Counification Report:")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| inport pandar as pd  from steam religibours inport soin test apt  from steam religibours inport steamsteam  from steam habite inport accuracy scort confusion within  classification report  largest seaton  largest seaton  Visidato Pd. read-con ("ins.cou")  X. ins = ins.data loc ("ins.cou")  Y. ins = ins.data loc ("ins.cou")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sins heaturap (earf-eastria, annot = True first = 'd', cprop atticklabels = iris data [special] unique (), yticklabels = iris data [special] unique () plt Hitle ("confession Nativa") plt ababel ("Particks") plt vlated ("Advas") plt show ()  Print ("Cassification Report:") print (class report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| inport pandas as pd  from steam religibouses inport soin test appet  from steam religibouses inport surjections classificat  from steams religibouses inport accuracy scent. confusion restrict  cashification report  insport national papet  insport seaton as cash  triculate = Pd. mad.con ("ins.con")  x. ins = ins.data.ins ("ins.con")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sime heater (confusation, aned "True find "'d', composition of the confusion of the confusion of the confusion habita")  plt http: ("confusion habita")  plt vilated ("Antral")  plt show ()  Print ("Countification Report:")  print (class report)  Culput:  Accuracy Score: 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| inport pandar as pd  from steam religibours inport soin test apt  from steam religibours inport steamsteam  from steam habite inport accuracy scort confusion within  classification report  largest seaton  largest seaton  Visidato Pd. read-con ("ins.cou")  X. ins = ins.data loc ("ins.cou")  Y. ins = ins.data loc ("ins.cou")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sins heatmap (usef watria, aned "Trice, find "'d', cprape attitutable = tris date "Special unique"), yticklabele = iris date "Special" unique"() plt. Hitle ("Confusion Matrix") plt. adabel ("Predicted") plt. ylabel ("Predicted") plt. showe ()  Print ("Counification Report")  Print ("Counification Report")  Print (class report)  Output:  Accuracy Surve: 10  Confusion Matrix: [[10 0 0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| inport pandas as pd  from steam religibouses inport soin test appet  from steam religibouses inport surjections classificat  from steams religibouses inport accuracy scent. confusion restrict  cashification report  insport national papet  insport seaton as cash  triculate = Pd. mad.con ("ins.con")  x. ins = ins.data.ins ("ins.con")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sime heater (confusation, aned "True find "'d', composition of the confusion of the confusion of the confusion habita")  plt http: ("confusion habita")  plt vilated ("Antral")  plt show ()  Print ("Countification Report:")  print (class report)  Culput:  Accuracy Score: 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| inport pandar ar pd  from Alexan religibours inport sain text appet  from Alexan religibours inport are any scent. confusion restrict  from Alexan religibours inport  actually atom report  insport national papet  insport seatons as the  insis insis data like (:I)  X. ins = insis data like (:I)  X. ins = insis data like (:I)  X. insis = insis data like (:I)  X. insis = insis data like (:I)  X. insis , y ins, text size = 0.2. tandom other = 10)  Ke s  ke a dansifier & = Kleighbours Classifier (n neighbor - to)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sna heatmap (not notice, and "True, fint = 'd', cprap Attitudada = trisidate Toperiot unique(), ytitudada = trisidate Toperiot unique() plt. Hite ("conficted") plt. glabel ("Article") plt. ylabel ("Article") plt. show()  print ("Counification Report:") print ("Counification Report:")  print (class, report)  Buput:  Accuracy score: 10  Confiction Natrix: [[10 0 a]  [0 9 a]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| inport pandar as pd  from scheum under solection inport solected aptit  from scheum neighbours import scheighton (lausifier  from scheum neighbours import accuracy scort, confusion matrix,  classification report  import neighbotic gight as plt  laport schoon as con  livic data = pd. medican ("inis cour")  X. inis = inis data inic ("inis cour")  X. train inis, x. ted inis, y. train inis, y. ted inic = train but gill  ke s  ke s  ke s  ken dearlifer & "Kleighbours (lassifier (n.mighbon - k)  ken dearlifer & "Kleighbours (lassifier (n.mighbon - k)  ken dearlifer & "Kleighbours (lassifier (n.mighbon - k)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sinch heatmap (sonf section, and "True, first "d", composition of the section unique ()  ytidatable = inadata [special unique ()  ytidatable = inadata [special unique ()  plt. Hite ("confusion habita")  plt. alabed ("Artaicts")  plt. ylabed ("Artaicts")  plt. show ()  Print ("Counification Report:")  print (class report)  Bulgut:  Accuracy score: 10  Co o 11]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| inport pandar ar pd  from Alexan religibours inport sain text appet  from Alexan religibours inport are any scent. confusion restrict  from Alexan religibours inport  actually atom report  insport national papet  insport seatons as the  insis insis data like (:I)  X. ins = insis data like (:I)  X. ins = insis data like (:I)  X. insis = insis data like (:I)  X. insis = insis data like (:I)  X. insis , y ins, text size = 0.2. tandom other = 10)  Ke s  ke a dansifier & = Kleighbours Classifier (n neighbor - to)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sns. heatmap (seef section, aned "True, find = 'd', cprap Attitudable = ins.data ["species] unique() ytitudable = ins.data ["species] unique() plt. Hitle ("confusion Hatia") plt. glabel ("Articles") plt. ylabel ("Articles") plt. show() print ("Counification Report:") print (class. report)  Bulgut:  Accuracy score: 1.0  Confusion Natrix: [[10 0 5]  To 0 0]  Confusion Natrix:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| inport pandar as pd  from steam religibouses inport soin test apit  from steam religibouses inport saleightons classifier  from steam religibouses inport accuracy scort, confusion restrict  catalytication report  insport earlychtic pepet as ptt  Japont scoton as con  **N's data = pd. read_can("in's cou")  **N's = in's data : loc [:,-]  **Y. in's = in's data : loc [:,-]  **Y. in's = in's data : loc [:,-]  **X. hoan in's , x. test : in's . y. hou's th's , x. test : in's = to in heat off  (**x. in's , y in's , test size = 0.2, tandor shor = 40)  **Es a  kno danifier & = **Sleighboure classifier (n. reighbon = K)  **For danifier yt (**x. rain in's , y. to in in's)  y prod in's = kno danifier predict (** test in's)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sins heatmap (seef motion, and True, fint = 'd', cprap Attitudable = tris.date Toperist unique() ytitudable = tris.date Toperist unique() plt. Hite ("Confusion Mation") plt. glabel ("Artal") plt. showe ("Artal") plt. showe ("Artal") print ("Cossification Report:") print (class.report)  Busput:  Accuracy score: 1.0  Confusion Matrix: [[10 0 0]  Confusion Matrix: [0 0 0]  Confusion Matrix: [10 0 0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| inport pandar as pd  from scheam religibours inport source test aplit  from scheam religibours inport screening test applit  from scheam religibours inport accuracy scott, confusion matrix,  classification report  inport religibition great as plt  luport scatom as cree  Ivis data = pd. real.com ("inis.com")  X. inis = inis.data, iloc (".; -1")  M. inis = inis.data, iloc (".; -1")  X. train inis, x. test ivis, y. trainis, y. test inis = train test git  (x. ivis, y. inis, test size = 0.2, random shir = 02)  K. s.  Ken darsificat & "Niciphona test (jet (n. neighbon - h)  Ken darsificat & "Niciphona test (ilot (". test ivis)  y. prod ivis = kno. darsificat prod ivis)  accuracy = accuracy = core (y. test ivis, y. prod ivis)  cont. bath'x = confusion matrix (y. test ivis, y. prod ivis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sns. heatmap (seef section, aned "True, find = 'd', cprap Attitudable = ins.data ["species] unique() ytitudable = ins.data ["species] unique() plt. Hitle ("confusion Hatia") plt. glabel ("Articles") plt. ylabel ("Articles") plt. show() print ("Counification Report:") print (class. report)  Bulgut:  Accuracy score: 1.0  Confusion Natrix: [[10 0 5]  To 0 0]  Confusion Natrix:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| inport pandar as pd  from steam religibouses inport soin test apit  from steam religibouses inport saleightons classifier  from steam religibouses inport accuracy scort, confusion restrict  catalytication report  insport earlychtic pepet as ptt  Japont scoton as con  **N's data = pd. read_can("in's cou")  **N's = in's data : loc [:,-]  **Y. in's = in's data : loc [:,-]  **Y. in's = in's data : loc [:,-]  **X. hoan in's , x. test : in's . y. hou's th's , x. test : in's = to in heat off  (**x. in's , y in's , test size = 0.2, tandor shor = 40)  **Es a  kno danifier & = **Sleighboure classifier (n. reighbon = K)  **For danifier yt (**x. rain in's , y. to in in's)  y prod in's = kno danifier predict (** test in's)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sna heatuap (soof section, aned "True, find = 'd', appropriate of the product unique of the hold a brischaft of product unique of the hold |
| inport pandar as pd  from steam religibouses inport soin test apit  from steam religibouses inport salvigations classifien  from steam religibouses inport accuracy scort, confusion reprise  catalytisation report  accuracy scort, confusion report  seport seaton as can  xincs = inis adate ifor (:1)  y inis = inis adate ifor (:1)  x. train inis, x. test inis, y train inis = train test off  (x inis, y inis, test size = 0.2, tandor star = 03)  k= s  kno deanifier of = «Alvigibouse classifier (n. neighbon = 1)  k= n. deanifier of (x train inis, y train inis)  y prod inis = kno danifier prod if (x test inis)  accuracy = accuracy score (y test inis, y prod inis)  class report = danification report (y test inis, y prod inis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Srs. history (ref. section, aned "True, first "d", apparent which about a triscalate Toperated unique (), ythicklabels = iris date Toperated unique (), ythicklabels = iris date Toperated unique (), plt. Mile ("Confusion Mathix") plt. alabel ("Artisal") plt. show ()  Print ("County cation Report:")  print ("County cation Report:")  print (class report)  Butput:  Accuracy Score: 10  Confusion Watrix: [[10 0 s]  Confusion Watrix:  10 0 0  9 0  11  Producted  Classification table:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| import pandar as pd  from Alexan redd-solection import sown test apit  from Alexan redglobours import secureagy scort, confusion restrict  cashification report  import matificitio pepted as plt  import accuracy scort.  **Minis = inis data floc (:)  **Minis = in                                                                                                                                                                      | Sna heatuap (soof section, aned "True, find = 'd', appropriate of the product unique of the hold a brischaft of product unique of the hold |
| inport pandar as pd  from stream religibours inport soin test aplit  from stream religibours inport streams (lawifier  from stream religibours inport accuracy scort, confusion matrix,  clarification as port  inport religibilities giphet as plt  luport scotom as cres  livis data = pd. real.com ("ins.com")  X. hins = ins. data, inc ("")  M. his = ins. data, inc ("")  X. hinin = ins. data, inc (                                                                                                                                                    | Sno heatmap (evolution, aned True, fint a'd', cprape attributable a triscalate Toperated uniques), yticklabele insafets Toperated uniques) plt. Atte ("Coordination Matrix") plt. alabel ("Arthal") plt. alabel ("Arthal") plt. showe ()  Print ("Countification Report:")  Print ("Countification Report:")  Print (class report)  Confusion Matrix: (Tro o of confusion Matrix: (Tro of confusion Matrix: (Tro of confusion Matrix: (Tro of confusion Matrix: (T |
| import pandar as pd  from Alexan redd-solection import sown test apit  from Alexan redglobours import secureagy scort, confusion restrict  cashification report  import matificitio pepted as plt  import accuracy scort.  **Minis = inis data floc (:)  **Minis = in                                                                                                                                                                      | Srs. hesterap (reof restrict, aned True, first o'd', apparation of the foreign unique of the production of the foreign unique of the first of the foreign unique of the first of the foreign unique of the first of t |
| inport pandar as pd  from stream religibours inport soin test aplit  from stream religibours inport streams (lawifier  from stream religibours inport accuracy scort, confusion matrix,  clarification as port  inport religibilities giphet as plt  luport scotom as cres  livis data = pd. real.com ("ins.com")  X. hins = ins. data, inc ("")  M. his = ins. data, inc ("")  X. hinin = ins. data, inc (                                                                                                                                                    | Sna heatuap (each each a, aned True, fint = 'd', cprap Attitudable = insidate Topecial unique() ytitudable = insidate Topecial unique() plt HITE ("conficted") plt glabel ("fredicted") plt show() print ("Counification Report:") print ("Counification Report:") print (class, report)  Bulgut:  Accuracy score: 1.0  Confesion Watrix: [[10 0 0]  Co 0 11]  Confusion Watrix: [10 0 0]  Fredicted  Classic cation Table:  precision recall fi-sore sup int-school                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# Code: import pandas as pd from sklearn.model\_selection import train\_test\_split from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import classification\_report, confusion\_matrix, accuracy\_score import seaborn as sns import matplotlib.pyplot as plt try: data = pd.read\_csv('/content/iris (1).csv') except FileNotFoundError: print("Error: 'iris.csv' not found. Please upload the file to your Colab environment.") exit() X = data.drop('species', axis=1) y = data['species'] X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size=0.2, random\_state=42) knn = KNeighborsClassifier(n\_neighbors=3) knn.fit(X\_train, y\_train) $y_pred = knn.predict(X_test)$ print("Accuracy Score:", accuracy\_score(y\_test, y\_pred)) print("\nConfusion Matrix:") cm = confusion\_matrix(y\_test, y\_pred) print(cm)

```
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
       xticklabels=knn.classes_, yticklabels=knn.classes_)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()
print("\nClassification Report:")
print(classification_report(y_test, y_pred))
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
from sklearn.preprocessing import StandardScaler
import seaborn as sns
import matplotlib.pyplot as plt
try:
  diabetes = pd.read_csv('diabetes.csv')
except FileNotFoundError:
  print("Error: 'diabetes.csv' not found. Please ensure the file is in the current directory.")
  exit()
```

```
X = diabetes.drop('Outcome', axis=1)
y = diabetes['Outcome']
scaler = StandardScaler()
X = scaler.fit\_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy}")
cm = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
print(cm)
sns.heatmap(cm, annot=True, fmt="d")
plt.title('Confusion Matrix')
plt.xlabel('Predicted')
plt.ylabel('True')
plt.show()
print("Classification Report:")
print(classification_report(y_test, y_pred))
import pandas as pd
```

```
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
try:
  heart = pd.read_csv('heart.csv')
except FileNotFoundError:
  print("Error: 'heart.csv' not found. Please ensure the file is in the current directory.")
  exit()
X = \text{heart.drop('target', axis=1)}
y = heart['target']
scaler = StandardScaler()
X = scaler.fit\_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
best_k = 1
best_accuracy = 0
for k in range(1, 21):
  knn = KNeighborsClassifier(n_neighbors=k)
```

```
knn.fit(X_train, y_train)
  y_pred = knn.predict(X_test)
  accuracy = accuracy_score(y_test, y_pred)
  if accuracy > best_accuracy:
     best_accuracy = accuracy
     best_k = k
print(f"Best k: {best_k} with accuracy {best_accuracy}")
knn = KNeighborsClassifier(n_neighbors=best_k)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy}")
cm = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
print(cm)
sns.heatmap(cm, annot=True, fmt="d")
plt.title('Confusion Matrix')
plt.xlabel('Predicted')
plt.ylabel('True')
plt.show()
```

```
print("Classification Report:")
print(classification_report(y_test, y_pred))
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import classification_report, confusion_matrix
cm = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues")
plt.title("Confusion Matrix")
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()
print(classification_report(y_test, y_pred))
# prompt: For Iris dataset
# How to choose the k value? Demonstrate using accuracy rate and error
# rate. Give theory
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
```

```
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
# Load the Iris dataset
try:
  data = pd.read_csv('/content/iris (1).csv')
except FileNotFoundError:
  print("Error: 'iris (1).csv' not found. Please upload the file to your Colab environment.")
  exit()
# Prepare the data
X = data.drop('species', axis=1)
y = data['species']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Scale the data (important for KNN)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_{test} = scaler.transform(X_{test})
# Find the optimal k value
error_rates = []
for k in range(1, 31): # Test k values from 1 to 30
```

```
knn = KNeighborsClassifier(n_neighbors=k)
  knn.fit(X_train, y_train)
  y_pred = knn.predict(X_test)
  error_rates.append(1 - accuracy_score(y_test, y_pred)) # Error rate = 1 - accuracy
# Plot error rates
plt.figure(figsize=(10, 6))
plt.plot(range(1, 31), error_rates, color='blue', linestyle='dashed', marker='o',
     markerfacecolor='red', markersize=10)
plt.title('Error Rate vs. K Value')
plt.xlabel('K')
plt.ylabel('Error Rate')
plt.show()
# Theory for choosing k:
# The optimal 'k' value minimizes the error rate.
# Very small k (e.g., 1) can lead to overfitting, being too sensitive to noise.
# Very large k (e.g., 30) can lead to underfitting, smoothing out the decision boundaries too much.
# We seek a k that balances these extremes, as shown by the error rate plot.
#Select k based on the minimum error rate observed in the plot
best_k = error_rates.index(min(error_rates)) + 1 #Add 1 as the index starts from 0
# Train and evaluate the model with the best k
knn = KNeighborsClassifier(n_neighbors=best_k)
knn.fit(X_train, y_train)
```

```
y_pred = knn.predict(X_test)
# Evaluate the model
print("Accuracy Score:", accuracy_score(y_test, y_pred))
print("\nConfusion Matrix:")
cm = confusion_matrix(y_test, y_pred)
print(cm)
print("\nClassification Report:")
print(classification_report(y_test, y_pred))
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
       xticklabels=knn.classes_, yticklabels=knn.classes_)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
```

```
# Load data
df = pd.read_csv('/content/iris (1).csv')
X = df.iloc[:, :-1]
y = df.iloc[:, -1]
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)
# Store accuracy and error rate
accuracy = []
error_rate = []
# Try k from 1 to 20
for k in range(1, 21):
  knn = KNeighborsClassifier(n_neighbors=k)
  knn.fit(X_train, y_train)
  preds = knn.predict(X_test)
  acc = accuracy_score(y_test, preds)
  accuracy.append(acc)
  error_rate.append(1 - acc)
# Plot
plt.figure(figsize=(10,5))
plt.plot(range(1, 21), accuracy, label='Accuracy')
```

```
plt.plot(range(1, 21), error_rate, label='Error Rate')
plt.xlabel('K Value')
plt.ylabel('Rate')
plt.title('K vs Accuracy and Error Rate')
plt.legend()
plt.show()
import pandas as pd
from sklearn.preprocessing import StandardScaler
# Load data
df = pd.read_csv('/content/diabetes.csv')
X = df.drop('Outcome', axis=1) # Features
y = df['Outcome']
                          # Target
# Perform scaling
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Convert back to DataFrame (optional)
X_scaled_df = pd.DataFrame(X_scaled, columns=X.columns)
```

## Build Support vector machine model for a given dataset

| 6=39                                                                                                                        | Q in the last of t |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lab 4                                                                                                                       | $\kappa_{1}(s) + \kappa_{2}(q) + \kappa_{3}(q) = +1  \kappa_{1} = 13/4$ $\kappa_{1}(q) + \kappa_{2}(q) + \kappa_{3}(q) = +1  \kappa_{2} = 15/4$ $\kappa_{1}(q) + \kappa_{2}(q) + \kappa_{3}(q) = -1  \kappa_{3} = -7/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| # Dian an optimal hyperplane using tinear sum to classify the following points                                              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (4,1) (4,1) (1,-1) (2,-1) (4,0) (5,1) (5,-1) (6,0)                                                                          | = - [ 3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (4,0) (5,1) (6,0) 3-48                                                                                                      | 2 = (#) 6 = 3<br>bt3 = 0<br>Intercept on x-axis = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3 11 11 11 11 11 11                                                                                                         | 2(1) - Vive parallel to y-axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -5 -14 -13 -14 -10 -1 -13 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                                                                                                                           | 1.103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| S <sub>1</sub> =[1] S <sub>2</sub> =[2] S <sub>3</sub> =[6]                                                                 | All species No. 1971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| S. [1] S. [1] S. [1]                                                                                                        | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| x, 5, 5, + x, 5, 5, + x, 5, 5, = +1<br>x, 5, 5, + x, 5, 5, + x, 5, 5, = +1<br>x, 3, 3, + x, 3, 3, + x, 3, 5, -1             | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ma Olyma                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| and the second of the state                                                                                                 | C Date Trape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| import pandas as pd                                                                                                         | lineau SVH acuracy: LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| from sklearn model severior spe                                                                                             | longusion Habix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| from sklearn metrices interes                                                                                               | 0 9 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| iris of = pd. read -cav ('iris.cav')  xe iris of drop (when = [species])                                                    | Loon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| y = inis_af [ speaks]  ~ train or test y-tain y-test = train_test_split                                                     | # Question:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12, y, test size = 0.2, pandon starr = 12)                                                                                  | ) Both RBF & linear gave the some occurracy score for the it's dataset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SVM_ This = SVC (Kekind - ktd; vandom state - 42) SVM (mean fit (2-tain, y-tain) 3 pred knew - SVM_ tineon, predict (a_tat) | 1) The Ave score mas 96-98". The shows that the Ave would performed pretty well few the letter-reagailton av.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| point ("for Accuracy", accuracy score ( , test.                                                                             | The AVC store for iniscess was 1.00 or 24 mas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| print ("In binoar accuracy:", accuracy score (y tot, y)                                                                     | yeng small & dear dataset with well separated down.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| => 0 p:                                                                                                                     | and the own to an aminor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| REF SVH accuracy: 1.0                                                                                                       | about the state of the state of the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Confusion Habit:                                                                                                            | 2000 publish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0 3 0                                                                                                                       | Additional to the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 000                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# Code: import numpy as np import matplotlib.pyplot as plt positive\_class = np.array([[4, 1], [4, -1], [6, 0]]) $negative\_class = np.array([[1, 0], [0, 1], [0, -1]])$ plt.figure(figsize=(8, 6)) plt.scatter(positive\_class[:, 0], positive\_class[:, 1], color='red', label='Positive Class', s=100, edgecolors='black') plt.scatter(negative class[:, 0], negative class[:, 1], color='blue', label='Negative Class', s=100, edgecolors='black') all\_points = np.concatenate([positive\_class, negative\_class]) labels = ["(4,1)", "(4,-1)", "(6,0)", "(1,0)", "(0,1)", "(0,-1)"]for i, txt in enumerate(labels): plt.annotate(txt, (all\_points[i][0], all\_points[i][1]), textcoords="offset points", xytext=(0,5), ha='center', fontsize=10) $x_values = np.linspace(-1, 7, 100)$ y\_values = np.zeros\_like(x\_values) plt.plot(x\_values, y\_values, color='black', linestyle='--', label='Optimal Hyperplane (y = 0)') plt.plot(x\_values, y\_values + 1, color='gray', linestyle=':', label='Margin at y = 1')

plt.plot(x\_values, y\_values - 1, color='gray', linestyle=':', label='Margin at y = -1')

plt.title('Optimal Hyperplane for SVM (Visual Approximation)', fontsize=14)

plt.xlabel('x1')

```
plt.ylabel('x2')
plt.xlim(-1, 7)
plt.ylim(-2, 2)
plt.axhline(0, color='black',linewidth=0.5)
plt.axvline(0, color='black',linewidth=0.5)
plt.legend()
plt.grid(True)
plt.show()
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt
data = pd.read_csv('/content/iris (1) (1).csv')
X = data.drop('species', axis=1)
y = data['species']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
svm_rbf = SVC(kernel='rbf')
svm_rbf.fit(X_train, y_train)
y_pred_rbf = svm_rbf.predict(X_test)
```

```
accuracy_rbf = accuracy_score(y_test, y_pred_rbf)
cm_rbf = confusion_matrix(y_test, y_pred_rbf)
print("SVM with RBF Kernel:")
print("Accuracy:", accuracy_rbf)
print("Confusion Matrix:\n", cm_rbf)
plt.figure(figsize=(6, 4))
sns.heatmap(cm_rbf, annot=True, fmt='d', cmap='Blues',
       xticklabels=data['species'].unique(),
       yticklabels=data['species'].unique())
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix (RBF Kernel)')
plt.show()
svm_linear = SVC(kernel='linear')
svm_linear.fit(X_train, y_train)
y_pred_linear = svm_linear.predict(X_test)
accuracy_linear = accuracy_score(y_test, y_pred_linear)
cm_linear = confusion_matrix(y_test, y_pred_linear)
print("\nSVM with Linear Kernel:")
print("Accuracy:", accuracy_linear)
print("Confusion Matrix:\n", cm_linear)
```

```
plt.figure(figsize=(6, 4))
sns.heatmap(cm_linear, annot=True, fmt='d', cmap='Blues',
       xticklabels=data['species'].unique(),
       yticklabels=data['species'].unique())
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix (Linear Kernel)')
plt.show()
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, confusion_matrix, roc_curve, auc
import seaborn as sns
from sklearn.preprocessing import label_binarize
from sklearn.multiclass import OneVsRestClassifier
data = pd.read_csv('/content/letter-recognition.csv') # Replace with the correct path if necessary
X = data.drop('letter', axis=1)
y = data['letter']
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
svm_classifier = SVC(kernel='rbf', probability=True) # probability=True is needed for ROC curve
svm_classifier.fit(X_train, y_train)
y_pred = svm_classifier.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
cm = confusion_matrix(y_test, y_pred)
print("SVM Classifier:")
print("Accuracy:", accuracy)
print("Confusion Matrix:\n", cm)
plt.figure(figsize=(10, 8))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=np.unique(y),
yticklabels=np.unique(y))
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()
y_test_bin = label_binarize(y_test, classes=np.unique(y))
n_{classes} = y_{test_bin.shape[1]}
classifier = OneVsRestClassifier(SVC(kernel='rbf', probability=True))
classifier.fit(X_train, y_train)
y_score = classifier.predict_proba(X_test)
```

```
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
  fpr[i], tpr[i], _ = roc_curve(y_test_bin[:, i], y_score[:, i])
  roc_auc[i] = auc(fpr[i], tpr[i])
fpr["micro"], tpr["micro"], _ = roc_curve(y_test_bin.ravel(), y_score.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
plt.figure(figsize=(8, 6))
plt.plot(fpr["micro"], tpr["micro"],
     label='micro-average ROC curve (area = {0:0.2f})'
         ".format(roc_auc["micro"]))
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Micro-averaged ROC Curve')
plt.legend(loc="lower right")
plt.show()
print(f"Micro-averaged AUC: {roc_auc['micro']}")
```

Implement Random forest ensemble method on a given dataset.



```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
# Load the dataset
df = pd.read_csv('/content/iris (1).csv')
# Prepare features and target
X = df.drop(columns=['species']) # Assuming 'species' is the target column
y = df['species']
# Split into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Build Random Forest with default n_estimators (10)
rf_default = RandomForestClassifier(n_estimators=10, random_state=42)
rf_default.fit(X_train, y_train)
y_pred_default = rf_default.predict(X_test)
# Measure accuracy
default_score = accuracy_score(y_test, y_pred_default)
```

Code:

```
print(f'Default RF accuracy (n_estimators=10): {default_score:.4f}")
# Fine-tune the number of trees
scores = []
n_range = range(1, 101)
for n in n_range:
  rf = RandomForestClassifier(n_estimators=n, random_state=42)
  rf.fit(X_train, y_train)
  y_pred = rf.predict(X_test)
  score = accuracy_score(y_test, y_pred)
  scores.append(score)
# Find the best score and number of trees
best\_score = max(scores)
best_n = n_range[scores.index(best_score)]
print(f"Best RF accuracy: {best_score:.4f} with n_estimators={best_n}")
# Optional: Plot accuracy vs number of estimators
plt.figure(figsize=(10, 6))
plt.plot(n_range, scores, marker='o')
plt.title('Random Forest Accuracy vs Number of Trees')
plt.xlabel('Number of Trees (n_estimators)')
plt.ylabel('Accuracy')
plt.grid(True)
plt.show()
```

Implement Boosting ensemble method on a given dataset.

| Adaboost  Boosting: combines muttiple weak learners to create a strong learner. It works by training would sequentially where each wodel focuses on ervors model by previous one.  Parameters:  eltimation The base model  n estimator no of weak learner learning rate shrinks contribution of each reagner algorithm 'SANKE.k'  random rate for reproducibility  Algorithm:  1. Start with equal sots for all baining sample train a weak model  3. cal error & update sample wits  4. Add weak model to ensemble with a newbord or repeat n estimator  6. Final prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | Darte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Boosting: Combines multiple weak learners to create a strong learner. It works by training wodds sequentially where each wodd focuses on errors model by previous one.  Parameters:  estimator no of weak learner learning rate shrinks contribution of each tearner algorithm "SAMME.k"  random rate for reproducibility  Algorithm:  1. Start with equal sets for all baining sample of the contribution of each tearner of the contribution of each tearner algorithm:  1. Start with equal sets for all baining sample of the contribution of each tearner of the contribution of each tearner of the contribution of each tearner of the contribution of the contribution of each tearner of the contribution of the contribu |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Boosting: combines multiple weak learners to create a strong learner. It works by training hodels sequentially where each wodel focuses on excors model by previous one.  Parameters:  eltimation The base model n estimator no of weak learner learning rate shrinks contribution of each tearner algorithm 'shulle.k' random rate for reproducibility  Algorithm:  1. Start with equal sots for all baining sample 2. Train a mak model 3. cal error & update sample cots 4. Add weak model to ememble with a neward on the accordary. 5. Final prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Boosting: combines muttiple weak learners to create a strong learner. It works by training wodels sequentially where each wodel focuses on errors wodel by previous one.  Parameters:  ettimation The base wodel  n estimator no. of weak learner learning rate shuinks contribution of each tearner algorithm 'shutte.k'  random rate for reproducibility  Algorithm:  1. Start with equal sots for all baining sample 2. Train a weak wodel  3. Cal error & update sample with a contribution of the |     | Manall V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| create a strong learner. It works by training models sequentially where each wodel focuses on ervors model by previous one.  Parameters:  chimation the base model n'estimator no of weak learner learning rate shuinks contribution of each tearner algorithm 'samme.'  Yandom rate for reproducibility  Algorithm:  1. Start with equal sits for all baining sample 2. Train a meak model 3. cal. error & update sample with a contribution of the contribut |     | Adaboost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| create a strong learner. It works by training models sequentially where each wodel focuses on ervors model by previous one.  Parameters:  eltimation the base model nestimator no of weak learner learning rate shrinks contribution of each rearner algorithm 'SAMME.k' random rate for reproducibility  Algorithm:  1. Start with equal was for all baining sample 2. Train a mack model 3. cal. error & update sample was 4. Add neak model to ensemble with a not based on its accuracy.  5. Train prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | malignala to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| training models sequentially where each model focuses on errors model by previous one.  Parameters:  Obtination The base model  n estimator no of weak learner learning rate shrinks contribution of each rearner algorithm 'sAMME.k'  Yandom rate for reproducibility  Algorithm:  1. Start with equal sots for all baining sample 2. Train a mak model  3. cal error & update sample nots  4. Add neak model to ensemble with a not based on the accuracy.  5. Final prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | Boosting: combines multiple weak learners to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Parameters:  Parameters:  eltimation The base model  n estimator no of weak learner  learning rate shuints contribution of each rearner  algorithm 'SAMME.k'  random rate for reproducibility  Algorithm:  1. Start noith equal nots for all baining sample  2. Train a mak model  3. cal. error & update sample noth c not based on  the accuracy.  5. regeat n-estimator  6. Final preduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | create a strong learner. It works by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Parameters:  eltimation The base model  n estimator no of weak learner learning rake shrinks contribution of each tearner algorithm 'SAMME.k'  random rake for reproducibility  Algorithm:  1. Start with equal sets for all baining sample 2. Train a mak model 3. cal. error & update sample sets 4. Add weak model to ensemble with a contracy. 5 repeat n-estimator 6. And preduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | training under sequentially where each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Parameters:  ettimation The base model  n estimator no of weak learner learning rate shrinks contribution of each rearner algorithm 'SAMME.k'  random rate for reproducibility  Algorithm:  1. Start with equal sets for all baining sample 2. Train a meak model 3. cal error & update sample sets 4. Add neak model to ensemble with a not based on the accuracy.  5. repeat n-estimator 6. Final prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | model focuses on errors model by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| eltimation The base model  n estimator no of weak learner  learning-rate shrinks contribution of each tearner  algorithm 'SAMME.k'  random rate for reproducibility  Algorithm:  1. Start with equal nots for all baining sample 2. Train a mak model 3. cal. error & update sample nots 4. Add weak model to ensemble with a not based on  its accuracy.  5. repeat n-estimator 6. Final prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | previous one.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| eltimation The base model  n estimator no of weak learner  learning-rate shrinks contribution of each tearner  algorithm 'SAMME.k'  random rate for reproducibility  Algorithm:  1. Start with equal nots for all baining sample 2. Train a mak model 3. cal. error & update sample nots 4. Add weak model to ensemble with a not based on  its accuracy.  5. repeat n-estimator 6. Final prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | metals to an extract the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| n estimator no. of weak learner  tearning_rate shrinks contribution of each rearner algorithm 'SAMME.k'  random_rate for reproducibility  Algorithm:  1. Start with equal nots for all baining sample 2. Train a mak model 3. cal. error & update sample nots 4. Add neak model to ensemble with a not based on the accuracy. 5. repeat n-estimator 6. Final preduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | Parameters:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| n estimator no. of weak learner  tearning_rate shrinks contribution of each rearner algorithm 'SAMME.k'  random_rate for reproducibility  Algorithm:  1. Start with equal nots for all baining sample 2. Train a mak model 3. cal. error & update sample nots 4. Add neak model to ensemble with a not based on the accuracy. 5. repeat n-estimator 6. Final preduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6   | emis standillo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| tearning rate shrinks contribution of each tearner algorithm 'SAMME.k'  random rate for reproducibility  Algorithm:  1. Start with equal sots for all baining sample 2. Train a meak model 3. cal error & update sample north a not based on its accuracy.  4. Add weak model to ensemble with a north contraction  6. Final preduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | eltimation The base model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| algorithm 'SAMME.k' random rate for reproducibility  Algorithm:  1. Start with equal nots for all baining sample 2. Train a mak model 3. cal. error & update sample north a not based on the accuracy. 5. repeat n-estimator 6. Final preduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100 | n estimator no. of weak learner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Algorithm:  1. Start with equal with for all baining sample 2. Train a weak model 3. cal error & update sample with 4. Add weak model to ememble with a not based on its accuracy. 5. repeat n-estimator 6. Final prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | tearning-rate shrinks contribution of each tearner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Algorithm:  1. Start with equal nots for all baining sample 2. Train a weak model 3. cal error & update sample nots 4. Add weak model to ensemble with a not based on the accuracy. 5. repeat n-estimator 6. Final prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | algorithm 'SAMME.K'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 1. Start with equal nots for all paining sample 2. Train a weak model 3. cal. error & update sample north a not based on the accuracy. 5. repeat n-estimator 6. Final prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | random rate for reproducibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 1. Start with equal nots for all paining sample 2. Train a weak model 3. cal. error & update sample north a not based on the accuracy. 5. repeat n-estimator 6. Final prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | ol :II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 2. Train a weak model  3. cal. error & update sample nots  4. Add weak model to ensemble with a not based on  its accuracy.  5. repeat n-estimator  6. Final prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | Algontam:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 2. Train a weak model  3. cal. error & update sample nots  4. Add weak model to ensemble with a not based on  its accuracy.  5. repeat n-estimator  6. Final prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | 21 1 (11) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 3. cal. error & update sample with 4. Add neak model to ensemble with a not based on the accuracy. 5. repeat n-estimator 6. Final prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,  | Start with equal with for all baining sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 4. Add neak model to ensemble with a not based on its accuracy.  5. repeat n-estimator  6. Final prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ٧.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| fs accuracy.  5. repeat n-estimator  6. final prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 5. repeat n-estimator 6. final prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 6. Final prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Aldring today today to mhase for the second to the second  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| and adverse malarges makingsta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | o.  | I THE PRESIDENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| and adverse malarges makingsta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | And Andrewski construction and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| The state of the s |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | The state of the s |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

# Code:

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import AdaBoostClassifier
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier
# Load dataset
df = pd.read_csv("/content/income.csv")
# Drop rows with missing values
df.dropna(inplace=True)
# Encode categorical columns
label_encoders = {}
for column in df.select_dtypes(include=['object']).columns:
  le = LabelEncoder()
  df[column] = le.fit_transform(df[column])
  label_encoders[column] = le
# Separate features and target
X = df.drop(columns=['income_level'], errors='ignore', axis=1)
y = df['income_level']
# Split into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# AdaBoost with 10 estimators
```

```
model_10 = AdaBoostClassifier(n_estimators=10, random_state=42)
model_10.fit(X_train, y_train)
y_pred_10 = model_10.predict(X_test)
score_10 = accuracy_score(y_test, y_pred_10)
print(f"Accuracy with 10 estimators: {score_10:.4f}")
# Fine-tune number of estimators
best score = 0
best_n = 0
estimators_range = list(range(10, 201, 10))
scores = []
for n in estimators_range:
  model = AdaBoostClassifier(n_estimators=n, random_state=42)
  model.fit(X_train, y_train)
  y_pred = model.predict(X_test)
  score = accuracy_score(y_test, y_pred)
  scores.append(score)
  print(f"n_estimators={n}, Accuracy={score:.4f}")
  if score > best_score:
     best_score = score
     best_n = n
print(f"\nBest Accuracy: {best_score:.4f} using {best_n} estimators")
# Plot accuracy vs number of estimators
plt.figure(figsize=(7, 4))
plt.plot(estimators_range, scores, marker='o', linestyle='-', color='blue')
```

```
plt.title("Accuracy vs Number of Estimators (AdaBoost)")

plt.xlabel("Number of Estimators (Trees)")

plt.ylabel("Accuracy")

plt.grid(True)

plt.xticks(estimators_range)

plt.tight_layout()

plt.show()
```

Build k-Means algorithm to cluster a set of data stored in a .CSV file.

|     | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|     | £ab-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|     | K-Heans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|     | drawny with a districted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| ->  | Algorithm:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 0   | Randomly initializing controids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|     | a had been been been been been been been bee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 3)  | Updating contoids based of assign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| W   | Kepeating until convergence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|     | AND DESIGNATION OF THE PART PROPERTY OF THE PARTY OF THE |  |  |
| ->  | choosing no. of clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| •   | Elbow nethod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|     | silhouette sione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|     | Donain Knowledge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|     | a estimatore en of uscale residence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| -)  | cum of squared error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|     | SSE = i = 1 Exx & Ci & 1 x - Hill 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|     | philipstoryn my slav malner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| ->  | Flbow Technique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|     | Plot SSE VS K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|     | Choose the k where SSE starts to flatten-this is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 1   | tte "elloop".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|     | 2 Train a reak hald                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| ->  | Key Pagameters in kneany () (sklearn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 200 | n clusters No. of dusters to form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|     | init initialization method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|     | n_init No. a initialization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|     | Max-iter Was iteration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|     | Totalion per suin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|     | - I stroomness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|     | convergence threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|     | algorithm to use.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |

```
Code:
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.metrics import accuracy_score
from scipy.stats import mode
import matplotlib.pyplot as plt
# Step 1: Generate sample data and save to CSV
np.random.seed(42)
names = [f"Person_{i}" for i in range(50)]
ages = np.random.randint(20, 60, 50)
income = np.random.randint(30000, 120000, 50)
df = pd.DataFrame({'Name': names, 'Age': ages, 'Income': income})
df.to_csv("income.csv", index=False)
# Step 2: Load the data
data = pd.read_csv("income.csv")
# Drop 'Name' and extract features
X = data[['Age', 'Income']]
```

```
# Step 3: Split the data
X_train, X_test = train_test_split(X, test_size=0.2, random_state=42)
# Step 4: Perform scaling
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_{test\_scaled} = scaler.transform(X_{test})
# Step 5: Plot SSE vs number of clusters (Elbow method)
sse = []
k_range = range(1, 11)
for k in k_range:
  kmeans = KMeans(n_clusters=k, random_state=42)
  kmeans.fit(X_train_scaled)
  sse.append(kmeans.inertia_)
plt.figure(figsize=(8, 4))
plt.plot(k_range, sse, marker='o')
plt.xlabel('Number of clusters')
plt.ylabel('SSE (Inertia)')
plt.title('Elbow Method For Optimal k')
plt.grid(True)
plt.show()
```

```
# Step 6: Choose optimal number of clusters (say 3) and fit model
optimal_k = 3
kmeans = KMeans(n_clusters=optimal_k, random_state=42)
kmeans.fit(X_train_scaled)
# Predict on test data
predictions = kmeans.predict(X_test_scaled)
# Note: There's no ground truth labels, but for demonstration,
# we can try assigning true clusters (via KMeans on full data)
# and see if predicted clusters align
# Fit on full data to assign pseudo-labels
full_kmeans = KMeans(n_clusters=optimal_k, random_state=42)
true_clusters = full_kmeans.fit_predict(scaler.fit_transform(X))
# Align predicted clusters using majority voting (only for demonstration)
# Match predicted labels to closest true labels
def map_clusters(true_labels, pred_labels):
  labels = np.zeros_like(pred_labels)
  for i in range(optimal_k):
    mask = (pred_labels == i)
    if np.sum(mask) == 0:
       continue
```

```
return labels
mapped_preds = map_clusters(true_clusters[X_test.index], predictions)
accuracy = accuracy_score(true_clusters[X_test.index], mapped_preds)
print(f"Approximate Clustering Accuracy: {accuracy:.2f}")
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import silhouette_score
# Step 1: Load Iris dataset
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['target'] = iris.target
# Keep only petal length and petal width
X = df[['petal length (cm)', 'petal width (cm)']].values
```

# Step 2: Check impact of scaling

labels[mask] = mode(true\_labels[mask])[0]

```
# Try without scaling
sse_unscaled = []
for k in range(1, 11):
  kmeans = KMeans(n_clusters=k, random_state=42)
  kmeans.fit(X)
  sse_unscaled.append(kmeans.inertia_)
# Now scale the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
sse_scaled = []
for k in range(1, 11):
  kmeans = KMeans(n_clusters=k, random_state=42)
  kmeans.fit(X_scaled)
  sse_scaled.append(kmeans.inertia_)
# Step 3: Plot Elbow Comparison (Scaled vs Unscaled)
plt.figure(figsize=(10, 5))
plt.plot(range(1, 11), sse_unscaled, marker='o', label='Unscaled')
plt.plot(range(1, 11), sse_scaled, marker='s', label='Scaled')
plt.title('Elbow Method (Petal Features Only)')
plt.xlabel('Number of Clusters (k)')
```

```
plt.ylabel('SSE (Inertia)')
plt.legend()
plt.grid(True)
plt.show()
```

Implement Dimensionality reduction using Principal Component Analysis (PCA) method.

|         | Otes                                                                                                                                                                   |                                                                                                    | Q total                                                                       |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|         | 1aby                                                                                                                                                                   | $(ov (x_1, x_2) = 1 + \frac{11}{2} (x_1x - \overline{x_1})(x_2x - \overline{x_2})$                 | A= 1 (37 + √565)                                                              |
|         | PCA WIN -                                                                                                                                                              | - YS [4-8)(1-3,5)+(8-5)(4-8,5)+  (13-8)(5-8.5)+(7-8)(14-8.5)  =-11                                 | = 30.3849 , 6.6151                                                            |
|         | Principal component Analysis (PCA) algorithm                                                                                                                           | = -11                                                                                              | = d. , d.                                                                     |
|         | Calculabe Hean                                                                                                                                                         | (ax (x2, x1) - 1/42 (ax (x2, x2)                                                                   | e computation of eigenvectors:                                                |
|         | Calculation of convariance matrix Eigenvalues of the associance matrix computation of the eigenvectors - Unit referencetors                                            |                                                                                                    |                                                                               |
| 5.      | computation of first principal components executerical avaning of first principal components                                                                           | $cov(x_2, X_2) = \frac{1}{N-1} \frac{x_1}{kM} (x_{2k} - \overline{X}_2)^2$                         | 0 - (5-AI)X                                                                   |
| 177.9-1 | Feature Ex 1 Ex2 Ex3 Ez4                                                                                                                                               | = Y3 ((1-8.5) + (4-8.5) + (5-8.5) + (14-8.5) = 23                                                  | $= \begin{bmatrix} u_1 - A_1 - 0 & U_1 \\ -10 & 23 - A_1 & U_2 \end{bmatrix}$ |
|         | X, 4 8 13 7<br>X <sub>2</sub> 11 4 5 14                                                                                                                                | & Covariance Hatrix:                                                                               | $= \left[ (14 - A_1) u_1 - 11 u_2 \right]$                                    |
|         | Reduce dimension from 2-to 1 using PCA                                                                                                                                 | $S = \begin{bmatrix} cov(x_1, x_1) & cov(x_1, x_2) \\ cov(x_2, x_1) & cov(x_2, x_2) \end{bmatrix}$ | -114, (23-A) u                                                                |
| L       | Calculate Mean:                                                                                                                                                        | = [14 -11]<br>-11 23                                                                               | (4-d) u1-11 u2 = 0 D                                                          |
|         |                                                                                                                                                                        | s. Eigen values:                                                                                   | $\frac{d_1}{d_1} = \frac{d_2}{d_1} = \frac{1}{2} = \frac{1}{2}$               |
|         | T, = 11 + 4 + S+N = 8.5                                                                                                                                                | Characteristic ear of enexicages matrix:                                                           | 11 14-11<br>4 = 11t 43 = (14-14) t                                            |
| 2.      | Covariance Matrix:                                                                                                                                                     | 0-det (S-AI)                                                                                       | taking to                                                                     |
|         | $\operatorname{Cov}\left(X_{1},X_{1}\right) = \frac{1}{N-1} \underbrace{\overset{M}{\underset{K=1}{\longleftarrow}}}_{K=1} \left(X_{pk} - \overline{X}_{1}\right)^{k}$ | - (4)                                                                                              | U <sub>1</sub> = 11                                                           |
|         | = Y3 [(4-8)2+(8-8)2+(13-8)3+(7-8)2]<br>= 14                                                                                                                            | = 322 - 23A - 14A + 12 - 121<br>= 12 - 37A + 201                                                   | [14-A1]                                                                       |
| 0       |                                                                                                                                                                        | 6==9                                                                                               |                                                                               |
|         | compute the length of X1:                                                                                                                                              | = 0,5574 (x1k-\(\bar{X}_1\) - 0.8503 (\(\bar{X}_1\) - \(\bar{X}_2\)                                |                                                                               |
|         |                                                                                                                                                                        | Geometrical Hearing                                                                                |                                                                               |
|         | = \(\1\\^2 + (14-50.3849)^4\) = 19.7348                                                                                                                                | (0)                                                                                                |                                                                               |
|         | :. unit eigenvector corresponding to the is:                                                                                                                           | 6 - ((5))                                                                                          |                                                                               |
|         | e4 = [11/11/11]<br>(4-24.5)/11/11]                                                                                                                                     | 3 10 13 11 1/2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                     |                                                                               |
|         | = ["/(3.1548<br>[(4-30-3849]/(3.1548]                                                                                                                                  | 1 7 1                                                                                              |                                                                               |
| - 41    | = 0.5574                                                                                                                                                               |                                                                                                    |                                                                               |
|         | After similar computations, the unit eigenvertor economisms to eigenvalue Az can be shown as                                                                           |                                                                                                    |                                                                               |
|         | e, = 0.8303<br>0.5574                                                                                                                                                  |                                                                                                    |                                                                               |
| 5       | Computation of first principal components:                                                                                                                             |                                                                                                    |                                                                               |
|         | let, X,x                                                                                                                                                               |                                                                                                    |                                                                               |
|         | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  |                                                                                                    |                                                                               |

```
Code:
import pandas as pd
from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.decomposition import PCA
from sklearn.metrics import accuracy_score
#1. Load data
df = pd.read_csv("heart.csv")
# 2. Label-encode binary text columns
le = LabelEncoder()
for col in ["Sex", "ExerciseAngina"]:
  df[col] = le.fit_transform(df[col])
```

df[col] = le.fit\_transform(df[col])

# 3. Separate features and target

X = df.drop("HeartDisease", axis=1)

y = df["HeartDisease"]

```
# 4. Build preprocessing pipeline:
   - One-hot for multi-category columns (using sparse_output=False)
   - passthrough the rest
   - then scale everything
cat_cols = ["ChestPainType", "RestingECG", "ST_Slope"]
preprocessor = Pipeline([
  ("onehot", ColumnTransformer([
     ("ohe", OneHotEncoder(sparse_output=False, drop="first"), cat_cols)
  ], remainder="passthrough")),
  ("scaler", StandardScaler())
])
# 5. Apply preprocessing
X_proc = preprocessor.fit_transform(X)
# 6. Train/test split
X_train, X_test, y_train, y_test = train_test_split(
  X_proc, y, test_size=0.2, random_state=42
)
#7. Define models
models = {
  "SVM": SVC(random_state=42),
  "LogisticRegression": LogisticRegression(max_iter=1000, random_state=42),
```

```
"RandomForest": RandomForestClassifier(random_state=42)
}
# 8. Train & evaluate before PCA
print("=== Accuracies BEFORE PCA ===")
scores_before = {}
for name, clf in models.items():
  clf.fit(X_train, y_train)
  preds = clf.predict(X_test)
  acc = accuracy_score(y_test, preds)
  scores_before[name] = acc
  print(f"{name:17s}: {acc:.4f}")
# 9. Apply PCA (retain 95% variance)
pca = PCA(n_components=0.95, random_state=42)
X_{train\_pca} = pca.fit_{transform}(X_{train})
X_{test_pca} = pca.transform(X_{test})
print(f"\nPCA retained {pca.n_components_} components, "
   f"explained variance = {pca.explained_variance_ratio_.sum():.4f}\n")
# 10. Train & evaluate after PCA
print("=== Accuracies AFTER PCA ===")
scores_after = {}
for name, clf in models.items():
  clf.fit(X_train_pca, y_train)
```

```
preds = clf.predict(X_test_pca)
acc = accuracy_score(y_test, preds)
scores_after[name] = acc
print(f"{name:17s}: {acc:.4f}")
```