a) Hemset I of Size m has 2m-1 Subsets where Support is greater than or equal to Sup (I) I is among the top-K most trequent patterns: 2m -1 < K 2 m 5 K + 1 $m \leq \log (K+1) \leq \lceil \log_2(K+1) \rceil$ bil) let x = a particular subset in the stream ((n) = (Ounter of x f(x) = frequency of x in the stream a(n) = occurance of in the stream without incrementing ((n) b(x) = # of times ((n) was decremented hence f(x) = ((x) + a(x) + b(x)a(x) + b(x) = f(x) - C(x)(ounters maintained = C total Subsets = L fs E [fs - 41, fs] > claim Oroof:-Consider this alternate algorithm: 1) Initialize S to be an empty-set 1) for i=1 to L do: 3 if xi ES, then add (a copy) of xi to S (else if there are less than C distinct elements, add xi to S 6) else add xi, then delete it as well as one copy of each of the C elements in S (6) End for Subsets deleted are in groups of C+1, hence total deletions for a Subset is at most L/(C+1) Therefore $a(n) + b(n) \leq L/(C+1)$ hence $f(n) - C(n) \leq L/(C+1)$ Proof Completed

bi)
$$f_{K} \leq f_{SK}$$
 (trivial)

Using the same approach as b.1:

 $deletions$ of a K-th most frequent pattern is at most $L/(C+1)$

hence $f_{SK} - f_{K} \leq L/(C+1)$, f_{SK}^{*}

bis) ① $L \rightarrow a$ (orctant

(41

let f_{SK}^{*} be the K-th largest support..

and $f_{SK} - L \leq f_{K} \leq f_{SK}^{*}$

if a pattern χ is frequent:

 $f_{X} \geq f_{SK}^{*}$ and $f_{X} - L \leq f_{X} \leq f_{X}^{*}$

therefore $f_{X} \geq f_{SK}^{*} - L$
 $f_{SK}^{*} = f_{SK}^{*} - L$

because $f_{X} \leq f_{SK}^{*}$

hence $f_{X} \leq f_{SK}^{*}$

hence $f_{X} \leq f_{SK}^{*}$

hence $f_{X} \leq f_{SK}^{*}$
 $f_{SK}^{*} = f_{SK}^{*} + f_{SK}^{*}$
 $f_{SK}^{*} = f_{SK}^{*} + f_{SK}^{*}$
 $f_{SK}^{*} = f_{SK}^{*} + f_{SK}^{*} + f_{SK}^{*}$
 $f_{SK}^{*} = f_{SK}^{*} + f_{SK}^{*} + f_{SK}^{*} + f_{SK}^{*}$
 $f_{SK}^{*} = f_{SK}^{*} + f_{SK}^{*} + f_{SK}^{*} + f_{SK}^{*} + f_{SK}^{*}$
 $f_{SK}^{*} = f_{SK}^{*} + f_{S$