Last updated: July 12, 2021

Li, Wei Vivian

683 Hoes Lane West Rm 210 Telephone: 732-235-8574

Rutgers, The State University of New Jersey Email: vivian.li@rutgers.edu

Piscataway, NJ 08854 Homepage: http://liw-vivian.appspot.com/

RESEARCH INTERESTS

I am interested in statistical modeling and algorithm development, as well as their applications to high-throughput sequencing data in bioinformatics and clinical research. Major research topics of my lab include:

- · Statistical modeling and experimental design of
 - · Single-cell genomic data
 - · Bulk-tissue high-throughput sequencing data
 - · Biomedical data
- · Gene regulatory networks
- · Alternative RNA splicing and polyadenylation
- Comparative bioinformatics

EDUCATION

University of California, Los Angeles (UCLA)

09/2014 - 06/2019

Department of Statistics

Ph.D. in Statistics

Dissertation: Statistical methods for bulk and single-cell RNA sequencing data

Advisor: Dr. Jingyi Jessica Li

Huazhong University of Science & Technology (HUST)

09/2010 - 06/2014

School of Mathematics and Statistics

B.S. in Statistics

EMPLOYMENT

Assistant Professor Department of Biostatistics and Epidemiology School of Public Health Rutgers, The State University of New Jersey	08/2019 -
Teaching Assistant Consultant Department of Statistics University of California, Los Angeles	10/2018 - 06/2019
Graduate Student Researcher	09/2016 - 06/2019

Department of Statistics

University of California, Los Angeles

HONORS AND AWARDS

Busch Biomedical Grant Award, Rutgers	2020
The Caliburn Allocation Award of Research Computing, Rutgers	2020
The Most Outstanding Statistician Award, UCLA	2019
Physical Sciences Entrepreneurship & Innovation Award (co-inventor with Dr. Jessica Li), UCLA	2018
Dissertation Year Fellowship, UCLA	2018
Pearl Cohen Poster Award, UCLA Biomedical & Life Science Innovation Day	2018
Diversity Scholarship, UseR 2016 Conference	2016
Doctoral Student Travel Grant, UCLA	2016
The Most Promising Computational Statistician Award, UCLA	2015
Distinguished Graduate of Class 2014, HUST	2014
National Fellowship, Ministry of Education, China	2013
Student Award of Excellence (awarded to 20 students per year), HUST	2013
National Fellowship, Ministry of Education, China	2012
National Fellowship, Ministry of Education, China	2011
Outstanding Student Award (awarded to 3 students in each department), HUST	2011

RESEARCH FUNDING

NIH/NIMH R21MH126420

07/01/2021 - 06/30/2023

Multimodal profiling of neurons in 3D human cortical organoids using patch-seq

Role: MPI

Rutgers Busch Biomedical Grant

10/01/2020 - 09/30/2022

A novel approach for joint modeling of multi-patient single-cell gene expression data

Role: PI

NJ ACTS Mini-Methods Grant

06/04/2020 - 06/03/2021

Statistical methods for single-cell differential gene network analysis

Role: PI

Rutgers School of Public Health Pilot Grant

11/01/2019 - 06/01/2021

Understanding gene co-expression patterns in single cells

Role: PI

PUBLICATIONS

* co-first authors __ corresponding authors † trainees

Preprint:

1. **Li WV**, Tong X, & Li JJ. (2020). Bridging Cost-sensitive and Neyman-Pearson Paradigms for Asymmetric Binary Classification. *arXiv*.

- 2. Roque W, Cuevas-Mora K, Sales D, **Li WV**, Rosas IO, & Romero F. (2020). Transcriptomics, metabolomics and lipidomics of chronically injured alveolar epithelial cells reveals similar features of IPF lung epithelium. *bioRxiv*.
- 3. Zhang X, Yin Y, Wang J, Battaglia T, Krautkramer K, Li WV, Li J, Brown M, Zhang M, Badri M, Armstrong A, Strauch CM, Wang Z, Nemet I, Altomare N, Devlin JC, He L, Morton J, Chalk JA, Needles K, Liao V, Mount J, Li H, Ruggles KV, Bonneau RA, Dominguez Bello M, Backhed F, Hazen SL, Blaser MJ. (2021) Cecal Microbiota Transfer Rescues Antibiotic-Induced Acceleration of Type 1 Diabetes and Alteration of Intestinal Gene Expression. Available from: https://ssrn.com/abstract=3760758.

Refereed Article:

- 4. Sheng J[†] & <u>Li WV</u>. (2021) Selecting gene features for unsupervised analysis of single-cell gene expression data. *Briefings in Bioinformatics*, accepted.
- 5. <u>Li WV</u>, Zheng D, Wang R, and <u>Tian B</u>. (2021). MAAPER: model-based analysis of alternative polyadenylation using 3'end-linked reads. *Genome Biology*, in press.
- 6. <u>Li WV</u> & Li Y.[†] (2021). scLink: Inferring Sparse Gene Co-expression Networks from Single-cell Expression Data. *Genomics, Proteomics & Bioinformatics*, in press.
- 7. Jiang R, Li WV, & Li JJ. (2021). mbImpute: an accurate and robust imputation method for microbiome data. *Genome Biology*, 22(1), 192.
- 8. Sun T, Song D, <u>Li WV</u>, & <u>Li JJ</u>. (2021). scDesign2: an interpretable simulator that generates high-fidelity single-cell gene expression count data with gene correlations captured. *Genome Biology*, 22(1), 1-37.
- 9. Zheng Y, Chen Z, Han L, Han Y, Zou X, Zhou B, Hu R, Hao J, Bai S, Xiao H, **Li WV**, Bueker A, Ma Y, Xie G, Yang J, Chen S, Li H, Cao J, & Shen L. (2020). Immune suppressive landscape in the human esophageal squamous cell carcinoma microenvironment. *Nature Communications*, 11(1), 1-17.
- 10. Wang J, Deng F, Zeng F, Shanahan AJ, Li WV, & Zhang L. (2020). Predicting long-term multicategory cause of death in patients with prostate cancer: random forest versus multinomial model. *American Journal of Cancer Research*, 10(5), 1344.
- 11. Xu J, Cheng Y, Yuan X, **Li WV**, & Zhang L. (2020). Trends and prediction in daily incidence of novel coronavirus infection in China, Hubei Province and Wuhan City: an application of Farr's law. *American Journal of Translational Research*, 12(4), 1355.
- 12. **Li WV***, Li S*, Tong X, Deng L, Shi H, & Li JJ. (2019) AIDE: annotation-assisted isoform discovery with high precision. *Genome Research*, 29, 2056-2072.
- 13. **Li WV** & Li JJ. (2019). A statistical simulator scDesign for rational scRNA-seq experimental design. *Bioinformatics (ISMB/ECCB 2019)*, 35(14), i41-i50.
- 14. Ge X, Zhang H, Xie L, **Li WV**, Kwon SB, & Li JJ. (2019). EpiAlign: an alignment-based bioinformatic tool for comparing chromatin state sequences. *Nucleic Acids Research*, gkz287.

15. **Li WV** & Li JJ. (2018). An accurate and robust imputation method scImpute for single-cell RNA-seq data. *Nature Communications*, 9, 997.

- 16. **Li WV** & Li JJ. (2018). Modeling and analysis of RNA-seq data: a review from a statistical perspective. *Quantitative Biology*, 6(3), 195-209.
- 17. Li WV, Zhao A, Zhang S, & Li JJ. (2018). MSIQ: joint modeling of multiple RNA-seq samples for accurate isoform quantification. *Annals of Applied Statistics*, 12(1), 510-539.
- 18. Li WV, Chen Y, & Li JJ. (2017). TROM: A testing-based method for finding transcriptomic similarity of biological samples. *Statistics in Biosciences*, 9(1), 105-136.
- 19. **Li WV**, Razaee ZS, & Li JJ. (2016). Epigenome overlap measure (EPOM) for comparing tissue/cell types based on chromatin states. *BMC Genomics*, 17(1), S10.

Dissertation:

20. Li WV. (2019). Statistical methods for bulk and single-cell RNA sequencing data. PhD dissertation, UCLA.

Google Scholar: https://scholar.google.com/citations?user=HzjANkQAAAAJ

INVITED TALKS AND CONFERENCE PRESENTATIONS

INV	INVITED TALKS AND CONFERENCE PRESENTATIONS		
	Conference and Symposium Presentations:		
1.	Invited Talk, Fifth International Conference on Recent Trends in Statistical Theory and Applications Selecting Gene Features for Unsupervised Analysis of Single-cell Gene Expression Data	06/2021	
2.	Invited Talk, Sixth International Conference on Statistics for Twenty-first Century Statistical Challenges in Single-cell RNA Sequencing Data Analysis	12/2020	
3.	Poster, RECOMB/ISCB 2020 Conference on Regulatory and Systems Genomics Inferring Gene Co-expression Networks from Single Cell Gene Expression Data	11/2020	
4.	Talk, Human Cell Atlas Asia Meeting 2020 Inferring Gene Co-expression Networks from Single Cell Gene Expression Data	10/2020	
5.	Talk, 2020 Joint Statistical Meetings, Virtual. AIDE: Annotation-Assisted RNA Transcript Discovery with High Precision	08/2020	
6.	Invited Talk, RCAF Forum: Challenges and Opportunities in Computational Biology. Current Computational and Analytical Challenges in Transcriptomics	08/2020	
7.	Poster, 28th Conference on Intelligent Systems for Molecular Biology (ISMB 2020). Inferring Gene Co-expression Networks from Single Cell Gene Expression Data	07/2020	
8.	Invited Talk, RCAF Webinar Series. Statistical Challenges and Opportunities in Single-cell Studies	05/2020	
9.	Invited Talk, ENAR 2020 Spring Meeting, Virtual. A Unified View of Asymmetric Binary Classification	03/2020	

1	D. Invited Talk, Inaugural Lange Symposium Software Workshop Improving Single-cell RNA-seq Data Analysis with scImpute and scDesign	02/2020
1	1. Invited Talk, 2019 Joint Statistical Meetings, Denver, CO. A Unified View of Asymmetric Binary Classification	07/2019
1	2. Invited Talk, ENAR 2019 Spring Meeting, Philadelphia, PA. A Unified View of Asymmetric Binary Classification	03/2019
1	3. Talk, 8th Annual Southern California Systems Biology Conference, Irvine, CA. <i>AIDE: Annotation-assisted Isoform Discovery with High Precision</i>	02/2019
1	4. Invited Talk, 2018 IEEE 8th International Conference on Computational Advances in Bio and Medical Sciences, Las Vegas, NV. scImpute: Accurate and Robust Imputation for Single Cell RNA-seq Data	10/2018
1	5. Talk and Poster, Inaugural Symposium on Multiscale Cell Fate, Irvine, CA. scImpute for Imputation of ScRNA-seq Data	10/2018
1	6. Talk, UCLA 4th Annual QCBio Retreat, Los Angeles, CA. AIDE for Annotation-assisted mRNA Isoform Reconstruction and Quantification	09/2018
1	7. Talk, 2018 Joint Statistical Meetings, Vancouver, Canada. Joint Modeling of Multiple RNA-seq Samples for Accurate Isoform Quantification	08/2018
1	8. Talk, 26th Conference on Intelligent Systems for Molecular Biology (ISMB 2018), Chicago, IL. scImpute: Accurate and Robust Imputation for Single Cell RNA-seq Data	06/2018
1	9. Poster, UCLA Biomedical & Life Science Innovation Day, Los Angeles, CA. scImpute: Accurate Imputation for Single Cell RNA-seq Data	06/2018
2	D. Invited Talk, DahShu Webinar. An Accurate and Robust Imputation Method for Single-cell RNA-seq Data	04/2018
2	1. Invited Talk, 3rd Annual NGS Data Analysis & Informatics Conference, San Diego, CA scImpute: Accurate and Robust Imputation for Single Cell RNA-seq Data	02/2018
2	2. Poster, UCLA 3rd Annual QCBio Retreat, Los Angeles, CA. scImpute: Accurate and Robust Imputation for Single Cell RNA-seq Data	09/2017
2	3. Talk, Asia Pacific Bioinformatics Conference 2016, San Francisco, CA. Epigenome Overlap Measure (EPOM) for Comparing Tissue/cell Types based on Chromatin States	01/2016
2	4. Talk, USC/UCLA Bioinformatics Joint Meeting, Los Angeles, CA. A Testing-based Measure EPOM for Comparing Tissue/cell Types based on Chromatin States	11/2015
2	5. Poster, UCLA 1st Annual QCBio Retreat, Los Angeles, CA. A New Measure for Comparing Epigenetic Profiles in Tissue/cell Types	09/2015
	Seminar Presentations:	

26.	NJ ACTS Biostatistics and Epidemiology Workshop, Rutgers University. <i>An Introduction to Analysis of RNA Sequencing Data at Multiple Scales</i>	05/2021
27.	Department of Mathematics, Texas State University. Statistical Methods for Analyzing Alternative Splicing from RNA Sequencing Data	04/2021
28.	Bioinformatics-Human Genetics Seminar, UCLA. Model-based Analysis of Alternative Polyadenylation Using 3'end Reads	04/2021
29.	Institute for Quantitative Biomedicine, Rutgers University. Statistical Methods for Understanding Post-transcriptional Regulation	01/2020
30.	Epigenetics User Group Meeting, Rutgers Department of Genetics Improving Statistical Analysis of Bulk and Single-cell RNA-seq Data	02/2020
31.	Systems Biology/Bioinformatics Meeting, Rutgers Cancer Institute of New Je Improving Statistical Analysis of Bulk and Single-cell RNA-seq Data	rsey 10/2019
32.	Department of Biostatistics and Epidemiology, Rutgers University. Statistical Methods to Uncover Hidden Information from Large-scale Genomic Data	02/2019
33.	Department of Statistics, University of Wisconsin-Madison. Statistical Methods to Uncover Hidden Information from Large-scale Genomic Data	02/2019
34.	Department of Public Health, University of California, Merced. Statistical Methods to Uncover Hidden Information from Large-scale Genomic Data	01/2019
35.	Department of Statistics, Pennsylvania State University. Statistical Methods to Uncover Hidden Information from Large-scale Genomic Data	01/2019
36.	Department of Statistics, University of Illinois at Urbana-Champaign. Statistical Methods to Uncover Hidden Information from Large-scale Genomic Data	12/2018
37.	Jonsson Comprehensive Cancer Center Gene Regulation Intramural Meeting, UCLA. scImpute: Accurate and Robust Imputation for Single Cell RNA-seq data	03/2018
TEA	CHING EXPERIENCE	
I	nstructor (Rutgers Graduate Courses):	
E	BIST 0725: Generalized Linear Models	Spring 2020
5	Student Instructor (UCLA Graduate Courses):	
S	STATS 495A: Teaching College Statistics	Fall 2018
7	Teaching Assistant (UCLA Graduate Courses):	
S	STATS 207: Statistical Learning with Sparsity	Spring 2018
9	STATS 203: Large Sample Theory, Including Resampling	Winter 2017
9	STATS 205: Hierarchical Linear Models	Winter 2017
9	STATS M254: Statistical Methods in Computational Biology	Spring 2016

STATS 200C: Large Sample Theory	Spring 2016
Teaching Assistant (UCLA Undergraduate Courses):	
STATS 101A: Introduction to Data Analysis and Regression	Summer 2016
STATS 13: Introduction to Statistical Methods for the Health and Life Science	es Winter 2016
STATS 10: Introduction to Statistical Reasoning	Fall 2015
STATS 100B: Introduction to Mathematical Statistics	Summer 2015
Guest Lecturer:	
RESH 0701: Doctoral Colloquium Rutgers School of Public Health Career As a Statistician in the Bioinformatics Field	11/2020
DSO 530: Applied Modern Statistical Learning Methods Marshall School of Business, University of South California Introduction to Cloud Computing	04/2020
DSO 530: Applied Modern Statistical Learning Methods Marshall School of Business, University of South California Cloud Computing with the Amazon Web Services	03/2019
BIOINFO 201: Bioinformatics Interdisciplinary Research Seminar Bioinformatics Interdepartmental Ph.D. Program, UCLA Statistical Methods for Isoform Quantification of Multiple Samples	10/2018
STATS M254: Statistical Methods in Computational Biology Department of Statistics, UCLA Statistical Methods for Isoform Quantification of Multiple Samples	06/2018
STATS M254: Statistical Methods in Computational Biology Department of Statistics, UCLA Imputation Methods for Single-cell RNA-seq Data	05/2018
DSO 530: Applied Modern Statistical Learning Methods Marshall School of Business, University of South California Cloud Computing with the Amazon Web Services	02/2018
DSO 530: Applied Modern Statistical Learning Methods Marshall School of Business, University of South California Introduction to the Amazon Web Services (AWS)	03/2017

STUDENT MENTORING & ADVISING

Research Mentor of Graduate Students:

Shiwei Fu (07/2021 -)
Jie Sheng (11/2020 -)
Dayuan Wang (08/2020 - 12/2020)
Shiwei Fu (06/2020 - 06/2021)
Yanzeng Li (12/2019 - 09/2020)
Alireza Naghizadeh (06/2020 - 08/2020)
PhD student in Biostatistics at Rutgers
MS student in Statistics at UIUC
MS student in Biostatistics at Rutgers
MS student in Biostatistics at Rutgers
PhD student in Computer Science at Rutgers

Research Mentor of Undergraduate Students:

• Andrew Cheng (09/2020 -) Undergraduate student in Computer Science at Rutgers

Academic Advisor of Graduate Students:

• Phoebe Chu (08/2020 -)	MS student in Biostatistics at Rutgers
· Changhan Lin (08/2020 -)	MS student in Biostatistics at Rutgers
· Adriel Staana (08/2020 -)	MS student in Biostatistics at Rutgers
• Daniel Yen (08/2020 -)	MS student in Biostatistics at Rutgers
· Zifan Guo (01/2020 -)	MS student in Biostatistics at Rutgers

Thesis Committee Member:

• Wenxuan Xiong (2020 -) PhD student in Biostatistics at Rutgers

· Aysegul Guvenek (2019 - 2020) PhD student in Biomedical Science at Rutgers

Qualifying Exam Committee Member:

Wenxuan Xiong (2021)
Peng Zhang (2021)
PhD student in Biostatistics at Rutgers
PhD student in Biostatistics at Rutgers

PROFESSIONAL SERVICE

Committee Member:

Rutgers School of Public Health Bylaws and Elections Committee 2020 - Rutgers Bioinformatics and Microbiome Research Committee 2020 -

Reviewer:

Applied Sciences $(\times 1)$

Bioinformatics ($\times 10$)

BioMed Research International $(\times 1)$

Biometrics (\times 3)

BMC Bioinformatics ($\times 1$)

BMC Genomics $(\times 1)$

Cells $(\times 1)$

Cell Systems $(\times 1)$

Chapman & Hall/CRC Press (×1)

Frontiers in Genetics (\times 3)

Gene Report $(\times 1)$

Genes $(\times 2)$

Genome Biology (\times 2)

Genomics, Proteomics & Bioinformatics $(\times 1)$

IEEE Access (\times 2)

Journal of Molecular Cell Biology $(\times 1)$

Laboratory Investigation $(\times 2)$

NAR Cancer $(\times 1)$

NAR Genomics and Bioinformatics ($\times 1$)

Nature Communications (\times 2)

Nature Methods (\times 2)

Nucleic Acids Research (\times 5)

PeerJ $(\times 1)$

Plos Computational Biology $(\times 3)$

Plos One $(\times 1)$

Proteomics $(\times 1)$

Quantitative Biology $(\times 1)$

PROFESSIONAL AFFILIATIONS

Member:	
Rutgers Cancer Institute of New Jersey	2019 -
Eastern North American Region International Biometric Society	2019 -
American Statistical Association	2019 -
International Chinese Statistical Association	2019 -
Student Member:	
International Society for Computational Biology	2017 - 2019
International Chinese Statistical Association	2015 - 2019
American Statistical Association	2014 - 2019

SOFTWARE

R packages:

- scDesign for rational scRNA-seq experimental design https://github.com/Vivianstats/scDesign
- scLink for constructing single-cell gene co-expression networks https://github.com/Vivianstats/scLink
- scImpute for accurate imputation of scRNA-seq data https://github.com/Vivianstats/scImpute
- AIDE for annotation-assisted transcript reconstruction and quantification https://github.com/Vivianstats/AIDE
- MSIQ for quantifying expression of RNA transcripts from multiple RNA-seq samples https://github.com/Vivianstats/MSIQ
- TUBE for bridging cost-sensitive and Neyman-Pearson paradigms for asymmetric binary classification

https://github.com/Vivianstats/TUBE

 TROM for comparing transcriptomes of biological samples from the same or different species

https://cran.r-project.org/web/packages/TROM/index.html