a) Berechnen Sie die Hessematrix $D^2 f$ der Funktion

$$f(x) = x_1^2 x_2 + 2x_1 x_2^2 + x_1 x_2.$$

Beweis: Da f als Polynom in C^2 liegt, folgt:

$$\nabla f(x) = \begin{pmatrix} 2x_1x_2 + 2x_2^2 + x_2 \\ x_1^2 + 4x_1x_2 + x_1 \end{pmatrix} \text{ und damit } D^2 f(x) = \begin{pmatrix} 2x_2 & 2x_1 + 4x_2 + 1 \\ 2x_1 + 4x_2 + 1 & 4x_1 \end{pmatrix}$$

b) Implementieren Sie eine Funktion DsqF(X), die zu gegebenem Interval $X \in \mathbb{IR}^2$ die (eintragsweise) natürliche Intervallerweiterung D^2F von D^2f zurück gibt.

DsqF soll ein (2,2,2)-Array zurück geben, deren Einträge (i,j,1) die Unter- und (i,j,2) die Obergrenze von $F_{i,j}(X)$ enthalten, $i,j \in \{1,2\}$. Die Box X soll als (2,2)-Array übergeben werden, deren Einträge (i,1) die Untergrenze \underline{x}_i und (i,2)die Obergrenze \overline{x}_i , $i \in \{1, \dots, n\}$ der jeweiligen Intervalle enthalten. Nutzen Sie für die Grundrechenarten der Intervallarithmetik die Funktionen aus Aufgabe S. 3.2.

```
import numpy as np
from math import sqrt
def interval_hull(A):
       result=np.array([min(A), max(A)])
return result
def interval_add(x,y):
    result= np.array([x[0]+y[0],x[1]+y[1]])
        return result
def interval_subtract(x,y):
    result= np.array([x[0]-y[1],x[1]-y[0]])
    return result
def interval_multiply(x,y):
    A=np.array([x[0]*y[0],x[1]*y[1],x[0]*y[1],x[1]*y[0]])
    result= interval_hull(A)
    return result
def boxweite(x):
    result = (x[1]-x[0])
        return result
def mittelpunkt(x):
        result = ((x[0]+x[1])/2)
       return result
def DsqF(X):
    result1=np.array(2*X[1,:])
    result2= interval_add(2*X[0,:],4*X[1,:])+1
    result3=interval_add(2*X[0,:],4*X[1,:])+1
    result4=np.array(4*X[0,:])
    result4=np.array(4*X[0,:])
       res=np.array([[result1,result2],[result3,result4]])
return res
```

Es seien $A(x) = D^2 f(x)$ die (n, n)-Hessematrix einer Funktion f und alle Einträge a_{ij} faktorisierbar. Für eine Box $X \in \mathbb{R}^n$ bezeichne A(X) diejenige Matrix, deren Einträge A_{ij} natürliche Intervallerweiterung von a_{ij} sind.

Implementieren Sie eine Funktion $lambda_min$ die für eine Box X und die Matrix A(X) eine Unterschranke β des kleinsten Eigenwertes $\lambda_{\min}(D^2f(x))$ auf X berechnet. Verwenden sie hierfür die Formel aus Skript S. 146.

Die intervallwertige Hessematrix A soll dabei als (n, n, 2)-Array übergeben werden, deren Einträge (i, j, 1) die Unter- und (i, j, 2) die Obergrenze von $F_{i,j}(X)$ enthalten, $i, j \in \{1, \ldots, n\}$. Die Box X soll als (n, 2)-Array übergeben werden, deren Einträge (i, 1) die Untergrenze \underline{x}_i und (i, 2) die Obergrenze \overline{x}_i , $i \in \{1, \ldots, n\}$ der jeweiligen Intervalle enthalten.

Gegeben seien stetige Funktionen $f, g: X \to \mathbb{R}$, auf einer konvexen und kompakten Menge $X \subseteq \mathbb{R}^n$, die nicht notwendigerweise eine Box ist. Darüber hinaus sei f nicht konvex und

$$\hat{f} := f + g$$

eine konvexe Relaxierung von f auf X.

Sei o.B.d.A X nicht-leer, dann sonst ist in den folgenden Teilaufgaben nichts zu zeigen.

a) Folgt hieraus, dass g eine konvexe Funktion ist? Beweisen Sie Ihre Behauptung.

Beweis: Die gilt im Allgemeinen nicht. Betrachtet man den Fall n=2 und $X=[-1,1]^2$, so folgt mit

$$f(x) = \frac{1}{2} (3x_1^2 - x_2^2)$$
 und $g(x) = \frac{1}{2} (-x_1^2 + 3x_2^2)$,

dass X konvex ist, und f und g als Polynome in $C^1(X)$. Außerdem sind f, g nicht konvex, da mit Satz 2.2.2 (C^1 -Charakterisierung von Konvexität) folgt

$$f\left(\begin{pmatrix}1\\1\end{pmatrix}\right) = 1 \le 1 + 2 = f\left(\begin{pmatrix}1\\-1\end{pmatrix}\right) + \left\langle\begin{pmatrix}3\\1\end{pmatrix}, \begin{pmatrix}1\\1\end{pmatrix} - \begin{pmatrix}1\\-1\end{pmatrix}\right\rangle$$
$$g\left(\begin{pmatrix}1\\-1\end{pmatrix}\right) = 1 \le 1 + 2 = g\left(\begin{pmatrix}-1\\-1\end{pmatrix}\right) + \left\langle\begin{pmatrix}1\\-3\end{pmatrix}, \begin{pmatrix}1\\-1\end{pmatrix} - \begin{pmatrix}-1\\-1\end{pmatrix}\right\rangle$$

Allerdings hat \hat{f} die Form $\hat{f}(x) = x_1^2 + x_2^2$, ist in $C^2(X)$ als Polynom und damit

$$D^2\hat{f} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \succ 0$$

wodurch \hat{f} nach Satz 2.5.3 (C^2 -Charakterisierung von Konvexität) konvex ist. \square

b) Nun gelte $g(x) \ge -2$ für alle $x \in X$. Zeigen Sie, dass für die Minimalwerte v bzw. \hat{v} von f bzw. \hat{f} auf X gilt:

$$0 \le v - \hat{v} \le 2.$$

Beweis: Da f und g nach Aufgabe stetig sind, ist \hat{f} auch stetig. Somit nehmen, f, \hat{f} und g als stetige Funktionen auf der kompakten Menge X nach dem Satz von Weierstraß (Satz 1.2.10) ihr Minimum an. Nach a) bzw. Definition 3.2.2 (Konvex relaxierte Funktion), ist $\hat{f}(x) \leq f(x)$ für alle $x \in X$, und damit auch

$$\min_{x \in X} \hat{f}(x) \le \min_{x \in X} f(x) \iff 0 \le \min_{x \in X} f(x) - \min_{x \in X} \hat{f}(x) = v - \hat{v}$$

Nach Voraussetzung ist

$$g(x) \ge -2 \iff -g(x) \le 2.$$

Es folgt mit Übung 1.3.1 (Skalare Vielfache und Summen):

$$\min_{x \in X} \hat{f}(x) = \min_{x \in X} (f(x) + g(x)) \ge \min_{x \in X} f(x) + \min_{x \in X} g(x)$$

 $\iff \min_{x \in X} \hat{f}(x) - \min_{x \in X} f(x) \geq \min_{x \in X} g(x) \iff v - \hat{v} \leq -\min_{x \in X} g(x) = \max_{x \in X} -g(x) \leq 2,$ wobei wir im letzten Schritt Ausgenutzt haben, dass 2 eine Oberschranke von -g ist, d.h.

$$0 \le v - \hat{v} \le 2$$

c) Nun seien $X \in \mathbb{IR}$, $f \in C^2(X,\mathbb{R})$, D^2f faktorisierbar und $g = \alpha \psi(x)$ per αBB Methode bestimmt. Zeigen Sie, dass für die Minimalwerte v bzw. \hat{v} von f bzw. \hat{f} auf X die folgende Abschätzung gilt

$$v - \hat{v} \le \frac{\alpha}{8} w(X)^2$$

Beweis: Da die Voraussetzungen von a) und b) gelten und nach Übung 3.4.1

$$\psi(x) \ge \min_{x \in X} \psi(x) = -\frac{1}{8} w(X)^2,$$

folgt die Behauptung aus b), indem man

$$q(x) := \alpha \psi(x) \quad \forall x \in X$$

setzt, damit nicht $g(x) \ge -2$ sondern $g(x) \ge \alpha \min_{x \in X} \psi(x) = -\frac{\alpha}{8} w(X)^2$, und da nach Satz 3.4.3 folgt, dass $\hat{f} = f + \psi$ eine konvexe Relaxierung von f auf X ist. \square

d) Geben Sie eine Funktion f , eine Box X und ein $\alpha \geq 0$ an, sodass das die Voraus-
setzungen aus c) erfüllt und die Ungleichung aus c) mit Gleichheit erfüllt ist.

Beweis: a