فرآيندهاي تصادفي

نيمسال اول ۲۰-۱۴۰۳

زمان پاسخ گویی : ۲۰ دقیقه

مدرس: دکتر ربیعی

Gaussian Process

کوییز سری پنجم (۱۰۰ نمره)

سوال ۱

میدانیم Brownian motion یک فرآیند گاوسی است به طوری که در آن داریم $cov[W_t,W_s]=min(t,s)$ یک فرآیند گاوسی است به طوری که در آن داریم Brownian motion یک بادکنک بزرگ با قطر ۱۰۰ متر را در یک استادیوم فوتبال در نظر بگیرید. بادکنک در بالای سر هواداران قرار دارد. از آنجا که آنها هیجان زده هستند، در زمانهای مختلف و با جهات مختلف، با حرکتهای تصادفی، به بادکنک ضربه میزنند. در پایان، بادکنک بهطور تصادفی در جهتهای مختلف هل داده می شود؛ ولی امید ریاضی جابجایی آن صفر است. (در این مثال حرکت بادکنک را یک Brownian در نظر گرفتیم.)

الف) حال اگر W_t یک Brownian motion باشد و فرآیند جدید X_t به صورت زیر تعریف شود :

$$X_t = \xi W_t$$

$$\xi \sim N(1, 1)$$

و بدانیم W_t و ξ مستقل از هم هستند، آنگاه تابع کوواریانس فرآیند X_t را بدست آورید. (ξ^2) مستقل از هم هستند، آنگاه تابع کوواریانس فرآیند X_t

ب) اگر همچنان W_t یک Brownian motion باشد و فرآیند Y به صورت زیر تعریف شود :

$$Y_t = \xi + W_t$$

$$\xi \sim N(1, 1)$$

و همچنان W_t و Y_t مستقل از هم باشند، آنگاه $var(Y_t+Y_s)$ را بدست آورید. (۶۰ نمره)

الف)

با توجه به مثال گفته شده میانگین Brownian motion صفرا است.

$$\begin{split} E[W_t] &= E[W_s] = 0 \\ cov(\xi W_t, \xi W_s) &= E[\xi^2 W_t W_s] - E[\xi W_t] E[\xi W_s] \\ &= E[\xi^2] E[W_t W_s] - (E[\xi])^2 E[W_t] E[W_s] = (1+1^2) E[W_t W_s] - 0^2.0.0 \\ &= 2 min(t,s) \end{split}$$

<u>(</u>ب

$$\begin{split} var[Y_t + Y_s] &= var[Y_t] + var[Y_s] + 2cov[Y_t, Y_s] \\ var[Y_t] &= var[\xi + W_t] = var[\xi] + var[W_t] = 1 + t \\ var[Y_s] &= var[\xi + W_s] = var[\xi] + var[W_s] = 1 + s \\ cov[Y_t, Y_s] &= E[Y_tY_s] - E[Y_t]E[Y_s] = E[(\xi + W_t)(\xi + W_s)] - 0 \\ &= E[\xi^2] + E[\xi W_t] + E[\xi W_s] + E[W_tW_s] = 2 + 0 + 0 + min(t, s) \\ var[Y_t + Y_s] &= 4 + t + s + min(t, s) \end{split}$$