World: Algorithm World

Level 7 / 9 : An algorithm for equality

```
← Previous → Next
```

- *) If a and b are both 0, return "yes".
- Assumptions:
- $h: m \neq n$

 $mn: \mathbb{N}$

Goal:

succ m ≠ succ n

contrapose! h

Retry

- *) If one is 0 and the other is succ n, return "no".
- **Active Goal**

Objects:

 $m n : \mathbb{N}$

Assumptions:

h:succ m = succ n

Goal:

m = n

apply succ_inj at h

Retry

Active Goal

Objects:

 $mn:\mathbb{N}$

Assumptions:

h: m = n

Goal:

m = n

exact h

Retry

level completed! 🞉

succ_inj ×

(a b : N) (h
: MyNat.succ
a =
MyNat.succ b)
: a = b

Statement

If a and b are numbers, then succ_inj a b is the proof that $(\operatorname{succ}(a) = \operatorname{succ}(b)) \implies a = b$.

More technical details

There are other ways to think about succ_inj.

You can think about succ_inj itself as a function which takes two numbers a and b as input, and outputs a proof of $(\operatorname{succ}(a), -)$

*) If a = succ m and b = succ n, then return the answer to "does m = n?"

Our job now is to *prove* that this algorithm always gives the correct answer. The proof that 0 = 0 is rfl. The proof

zero_ne_succ n, and the

that 0 ≠ succ

Next

n is