

#### Fourth Industrial Summer School

### Big Data Analytics

Introduction and Fundamentals

### **Session Objectives**

- ✓ Introduction
- ✓ Fundamentals



## Big Data Analytics

#### What is it?

- Processing massive amounts of data that cannot fit in a single computer system
- Loading, analysis, and modeling of big data and making predictions from the learned models

Traditional vs. current approaches

### Why Big Data

- Data being produced at an exponential rate
- Computing capabilities, commodity clusters
- More data leads to better modeling and predictions, which in turn leads to:
  - Personalized services
  - Recommendation systems
  - Sentiment analysis
  - Location-based adds
  - Smart cities

### Interesting insights

- 90% of the information ever generated was generated in the last two years!
- Every Minute:
  - 204 million emails
  - 200,000 photos, 1.8 million likes in Facebook
  - 1.3 million video views, 72 hours of video upload on YouTube
- Source: 25 interesting facts about big data by Bernard Marr, <a href="https://www.smartdatacollective.com/big-data-25-facts-everyone-needs-know/">https://www.smartdatacollective.com/big-data-25-facts-everyone-needs-know/</a>)

### Interesting insights



Source: 25 interesting facts about big data by Bernard Marr, <a href="https://www.smartdatacollective.com/big-data-25-facts-everyone-needs-know/">https://www.smartdatacollective.com/big-data-25-facts-everyone-needs-know/</a>)

1

### Sources of Big Data

- Machine-generated data:
  - Largest source of data
  - Sensors (machines, smart devices)
- People generated data:
  - Social media, emails, blogs
  - Mainly unstructured and text intensive
  - Facebook produces more data in a day than all the US academic research libraries.
- Organization generated data:
  - Banks, stores, hospitals, governmental institutions
  - Mainly structured data

### Sources of Big Data



https://www.slideshare.net/hdscorp/capitalize-on-big-data-through-hitachi-innovation

### Big Data-Characteristics

- Data that cannot fit in a single computer
- It is generally identified by Five 'Vs':
  - Volume: Challenges related to storage, access, and processing
  - Velocity: Real-time processing vs. batch processing
  - Variety: Challenges related to integration, storage, and processing
  - Veracity: Challenges related to data validity
  - Valence: Challenges related to copmlex processing

### Big Data-Process

- Depends on defining the right problem
- Big data analytics in the big picture (process):
  - Acquiring data: from multiple sources using SQL queries, file parsing, web services.
  - Exploring: Understanding data using stats, plots, etc.
  - Preprocessing: Cleaning and transformation
  - Analysis: Predictive models, clustering, graph analytics, etc.
  - **Reporting**: The results
  - Actions: With feedback to close the loop
- Value comes from data integration, processing, and modeling.

# Foundations

Big Data

### Distributed File Systems

All the data cannot fit in one computer





• Allows for fault tolerance, scalability and concurrency

### Commodity Clusters vs. Super Computer





### The Hadoop Ecosystem

- Mostly free and open source
- Hadoop is inspired by a system invented at Google in 2004
  - Google file system
  - MapReduce
- Yahoo created Hadoop in 2005
- Layered approach
- Cost benefits along with scalability, fault tolerance, and parallel processing
- Fault tolerance through software is cheaper than implementing it in hardware
- Moving code closer to data and not vice-versa
- No complicated skills to manage parallel computation

## The Hadoop Ecosystem



### **HDFS** Architecture



## YARN-Resource Manager and scheduler



### MapReduce

- Programming model for Hadoop ecosystem
- WordCount example

# **Apache Spark**

### References

- Ilkay Altintas and Amarnath Gupta, Introduction to Big data, University of California San Diego: https://www.coursera.org/learn/big-data-introduction/home/welcome
- Guller, Mohammed. Big data analytics with Spark: A practitioner's guide to using Spark for large scale data analysis. Apress, 2015.
- https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/big-data-the-next-frontier-for-innovation