Содержание

1	теорема о выражении меры множества через интеграл от меры сечении. Теорема Фу- бини	2
	1.1 Теорема о выражении меры множества через интеграл от меры сечений	2 2
2	Теорема о замене переменных в кратном интеграле	2
3	Теорема о построении криволинейной системы координат исходя из её части	3
4	Гладкие подмногообразия пространства R^N . Теорема о гладком подмногообразии пространства R^N , заданном системой уравнений 4.1 Гладкие подмногообразия пространства R^N	3 3
5	Первообразная и неопределенный интеграл. Линейность неопределенного интеграла, замена переменных и интегрирование по частям. Интегрирование рациональных функций. Основные приемы интегрирования иррациональных и трансцендентных функций	4
6	Числовые ряды. Знакопостоянные ряды. Признаки сравнения сходимости числовых рядов. Интегральный признак сходимости числового ряда. Признаки Даламбера и Коши. Знакопеременные ряды (Критерий Коши сходимости ряда). Сходимость и абсолютная сходимость. Признаки Дирихле, Лейбница и Абеля. Независимость суммы абсолютно сходящегося ряда от порядка слагаемых. Теорема Римана о перестановке членов условно сходящегося ряда. Перемножение абсолютно сходящихся рядов	4
7	Клеточные множества. Верхняя мера Лебега и ее счетная полуаддитивность. Мера Лебега и ее счетная аддитивность. Непрерывность меры Лебега. Теорема о том, что семейство измеримых подмножеств \mathbb{R}^n является σ -кольцом	4
8	Измеримые функции. Измеримость суммы и поточечного предела измеримых функций. Интеграл Лебега для счетно-ступенчатых и для измеримых функций, линейность интеграла Лебега. Теорема о существовании интеграла от неотрицательной измеримой функции. Связь интегрируемости функции и интегрируемости ее положительной и отрицательной составляющих. Связь интегрируемости функции и интегрируемости ее модуля. Интегральная теорема о среднем. Счетная аддитивность и непрерывность интеграла Лебега по множествам интегрирования	4
9	Непрерывность интеграла как функции верхнего предела. Существование первообразной для непрерывной на отрезке функции. Формула Ньютона-Лейбница. Формулы замены переменных в интеграле и интегрирования по частям 9.1 Непрерывность интеграла как функции верхнего предела	4 4 5 5 5
10	Мера декартова произведения двух конечно измеримых множеств. Выражение меры множества под графиком интегрируемой функции через интеграл. Площадь круга. Выражение объема тела вращения и длины кривой через интегралы. Связь интегрируемости по Риману и интегрируемости по Лебегу. Интегрируемость по Риману непрерывной на отрезке функции	5
11	Теорема Б. Леви о монотонной сходимости. Теорема Лебега об ограниченной сходимости 11.1 Теорема Б. Леви о монотонной сходимости	5 6 6
12	Несобственный интеграл. Связь сходимости несобственного интеграла и интегрируемости функции по Лебегу. Критерий Коши. Признаки Дирихле и Абеля сходимости несобственных интегралов 12.1 Несобственный интеграл	6 6 7

12.4 Признаки Дирихле и Абеля сходимости несобственных интегралов
Связь поточечной и равномерной сходимостей для функциональной последовательно-
сти. Критерий Коши равномерной сходимости функциональной последовательности.
Обобщенный признак сравнения для функциональных рядов. Признак Вейерштрасса

13равномерной сходимости функционального ряда. Признаки Дирихле и Лейбница равномерной сходимости функционального ряда. Признак Абеля равномерной сходимости функционального ряда. Непрерывность равномерного предела, непрерывных функ-

ций и суммы равномерно сходящегося функционального ряда с непрерывными слагаемыми. Почленное интегрирование функциональных последовательностей и рядов. Дифференцирование предельной функции и почленное дифференцирование функционального ряда

14 Степенные ряды. Формула Коши-Адамара для радиуса сходимости. Теорема о круге сходимости степенного ряда. Первая теорема Абеля. Теорема о равномерной сходимости степенного ряда. Вторая теорема Абеля. Сохранение радиуса сходимости при почленном дифференцировании степенного ряда. Теоремы о почленном интегрировании и дифференцировании степенного ряда. Единственность разложения функции в степенной ряд, ряд Тейлора. Достаточное условие аналитичности функции. Пример бесконечно дифференцируемой, но неаналитической функции. Представление экспоненты комплексного аргумента степенным рядом. Формулы Эйлера. Формула Тейлора с остаточным членом в интегральной форме. Представление степенной и логарифмической функций степенными рядами

8

7

8

1 Теорема о выражении меры множества через интеграл от меры сечений. Теорема Фубини

1.1 Теорема о выражении меры множества через интеграл от меры сечений

 $\Pi 1$

Пусть есть счётный набор конечно измеримых убывающих вложенных множеств X_i . Мера множества, являющегося счётным пересечением есть предел мер

 $\Pi 2$

Если интеграл неотрицательной функции по множеству равен нулю, то сама функция равна нулю почти на всём множестве

Тһ О выражении меры множества через интеграл от меры сечений

- 1. Для начала докажем для клетки. Её сечение будет принимать простой вид, в зависимости от принадлежности x, что даёт простое интегрирование и доказывает теорему
- 2. Теперь докажем для счётного набора (объединения) клеток. Задача сводится к предыдущей
- 3. Найдём меру множества, являющегося счётным пересечением объединения счётного числа клеток
- 4. Определим убывающую последовательность множеств
- 5. Далее считаем меры составляющих, по ходу дела используя теорему Лебега об ограниченной сходимости
- 6. Теперь рассмотрим случай множества нулевой меры и с помощью всяких сравнений и пределов докажем требуемое
- 7. В конце рассмотрим общий случай конечно измеримого множества
- 8. Используем все предыдущие леммы и случаи и получаем требуемое при почти всех \boldsymbol{x}

1.2 Теорема Фубини

Тһ О геометрическом смысле интеграла

 $\mathbf{Th} \ \Phi y$ бини

2 Теорема о замене переменных в кратном интеграле

 $\mathbf{Omp}\ C^k$ -глад κ ий диффеоморфизм

Опр Носитель функции

Тһ О замене переменных в кратном интеграле

 $\Pi 2$ Теорема справедлива, если функция f непрерывна на Y, а её носитель компактен и лежит в Y

- 1. Убрав условие 3, мы сделали теорему локальной (для каждой точки существует окрестность, где выполнено условие 3)
- 2. Воспользуемся теоремой о расщеплении отображений, о неявной функции, критерием компактности, теоремой о разбиении единицы
- 3. Это позволяет разбить функцию на сумму. Утверждение для фиксированного индекса (на его области значений) верно по предыдущей лемме

${f \Pi}{f 4}$ Теорема справедлива, если функция f непрерывна на Y

- 1. Рассмотрим неотрицательно значные функции и введём хитрые множества Y_k и функции f_k
- 2. Докажем, что $\subset f_k$ исходя из определения f_k . Получили ограниченность и замкнутость f_k
- 3. Из построения множеств следуют включения, а за ними и неравенства
- 4. Теперь покажем, что f_k стремятся к f через определения и построения условий
- 5. Запишем следствия из предела и перейдём и завершим доказательство с помощью теоремы Б. Леви
- 6. В общем случае разобьём f на f_{+} и f_{-} и получим искомое равенство

3 Теорема о построении криволинейной системы координат исходя из её части

Опр Криволинейная система координат на множестве А

Опр Координатный набор

Тһ О построении криволинейной системы координат исходя из ее части

- 1. Рассмотрим отображение из известного набора функций и матрицу Якоби этого отображения
- 2. Рассмотрим координатные строки и матрицу в точке и применим теорему о ранге матрицы
- 3. Определим новые гладкие функции и всеобъемлющее отображение, рассмотрим новую матрицу Якоби
- 4. Применим теорему об обратном отображении и получим требуемое

4 Гладкие подмногообразия пространства R^N . Теорема о гладком подмногообразии пространства R^N , заданном системой уравнений

4.1 Γ ладкие подмногообразия пространства R^N

Опр Гладкое n-мерное подмногообразием пространства \mathbb{R}_p^N в точке $P \in M$

Опр Канонический и выпрямляющий диффеоморфизм

Утв Гладкое п-мерное подмногообразие пространства

4.2 Теорема о гладком подмногообразии пространства \mathbb{R}^N , заданном системой уравнений

Тһ О гладком подмногообразии, заданном системой уравнений

- 1. Сначала достроим отображения до гладкого диффеоморфизма по теореме о построении криволинейной системы координат, исходя из её части
- 2. Докажем, что выпрямляемость обратного диффеоморфизма. Это делается через анализ множеств и из их свойств

5 Первообразная и неопределенный интеграл. Линейность неопределенного интеграла, замена переменных и интегрирование по частям. Интегрирование рациональных функций. Основные приемы интегрирования иррациональных и трансцендентных функций

- 6 Числовые ряды. Знакопостоянные ряды. Признаки сравнения сходимости числовых рядов. Интегральный признак сходимости числового ряда. Признаки Даламбера и Коши. Знакопеременные ряды (Критерий Коши сходимости ряда). Сходимость и абсолютная сходимость. Признаки Дирихле, Лейбница и Абеля. Независимость суммы абсолютно сходящегося ряда от порядка слагаемых. Теорема Римана о перестановке членов условно сходящегося ряда. Перемножение абсолютно сходящихся рядов
- 7 Клеточные множества. Верхняя мера Лебега и ее счетная полуаддитивность. Мера Лебега и ее счетная аддитивность. Непрерывность меры Лебега. Теорема о том, что семейство измеримых подмножеств \mathbb{R}^n является σ -кольцом
- 8 Измеримые функции. Измеримость суммы и поточечного предела измеримых функций. Интеграл Лебега для счетно-ступенчатых и для измеримых функций, линейность интеграла Лебега. Теорема о существовании интеграла от неотрицательной измеримой функции. Связь интегрируемости функции и интегрируемости ее положительной и отрицательной составляющих. Связь интегрируемости функции и интегрируемости ее модуля. Интегральная теорема о среднем. Счетная аддитивность и непрерывность интеграла Лебега по множествам интегрирования
- 9 Непрерывность интеграла как функции верхнего предела. Существование первообразной для непрерывной на отрезке функции. Формула Ньютона-Лейбница. Формулы замены переменных в интеграле и интегрирования по частям
- 9.1 Непрерывность интеграла как функции верхнего предела

Утв *Обозначения для интеграла Лебега* Множество интегрирования, связь с обратным и множество нулевой меры

 ${\bf Лемма}\ {f E}$ сли f интегрируем на отрезке, содержащим три точки, то её интеграл можно разбить на два Доказывается через интегрируемость функции на подмножестве и с помощью конечной аддитивности интеграла по множествам

Th *Непрерывность интеграла как функции верхнего предела* Если на числовом промежутке функция интегрируема, то её $F(x) = \int_a^x f(t)dt$ непрерывна на (a,b)

1. Зафиксируем произвольную точку отрезка и строго возрастающую последовательность с пределом в нашей точке

2. Воспользуемся определением $F(x_0)$ и непрерывностью интеграла по множествам, а также тем, что предел слева совпадает с обычным на внутренностях

3. Аналогичные рассуждения с убывающей последовательностью доказывают требуемую непрерывность (потому как и справа, и слева)

9.2 Существование первообразной для непрерывной на отрезке функции

Th Если функция интегрируема на отрезке и непрерывна его точке, то для её $F(x)\frac{d}{dx}:F'(x_0)=f(x_0)$, притом на концах отрезка речь идёт об односторонних производных

- 1. Зафиксируем произвольную точку отрезка справа B силу аддитивность интеграла имеем $F(x) F(x_0) = \int_{x_0}^x f(t)dt$
- 2. Применим интегральную теорему о среднем для $f(x), g(x) = 1 \ge 0$, получим отношение. Тогда устремив аргумент к нашей точке, получим определение производной справа
- 3. Аналогичные рассуждения дадут нам производную слева, аз значит, и доказываемую теорему

Из этой теоремы следует существование первообразной для непрерывной для отрезке функции, а также, совместно с теоремой о структуре первообразных, их отличие на константу

9.3 Формула Ньютона-Лейбница

Тh Формула Ньютона-Лейбница

Для доказательства достаточно расписать первообразную на множестве нулевой меры, на втором конце и взять разность

9.4 Формулы замены переменных в интеграле и интегрирования по частям

Тh.1 Замена переменной в определённом интеграле

Если функция $x=\varphi([a,b])$ имеет непрерывную производную на отрезке [a,b], а f непрерывна на $\varphi([a,b]),$ то справедливо равенство ...

- 1. В силу непрерывности f на $\varphi([a,b])$, для неё существует первообразная. Воспользуемся для неё формулой Ньютона-Лейбница
- 2. Продифференцируем первообразную и определим, для какой функции она таковой является. Применим формулу Ньютона-Лейбница уже для неё (обратное равенство) и получим требуемое

Тh.2 Интегрирование по частям

Если функции непрерывно дифференцируемы, то они могут быть проинтегрированы по частям

Для доказательства достаточно воспользоваться линейностью интеграла и формулой Ньютона-Лейбница

- 10 Мера декартова произведения двух конечно измеримых множеств. Выражение меры множества под графиком интегрируемой функции через интеграл. Площадь круга. Выражение объема тела вращения и длины кривой через интегралы. Связь интегрируемости по Риману и интегрируемости по Лебегу. Интегрируемость по Риману непрерывной на отрезке функции
- 11 Теорема Б. Леви о монотонной сходимости. Теорема Лебега об ограниченной сходимости

Отличие следующих теорем от непрерывности интеграла по множествам состоит в том, что теперь предельный переход выполняется для функций, а не множеств

11.1 Теорема Б. Леви о монотонной сходимости

Th Если последовательность измеримых функций $f_k \ge 0$ монотонна и сходится к f, то f измерима с интегралом, равным пределу интегралов f_k

- 1. Измеримость функции следует из леммы о поточечной сходимости, а интегрируемость в силу существования интеграла от неотрицательной измеримой функции (интеграл может быть бесконечным)
- 2. Рассмотрим случай конечного интеграла, предварительно выкинув множества нулевой меры, на котором он бесконечен
- 3. Зафиксируем $\forall \varepsilon > 0$ и рассмотрим множества X_k с (1ε) внутри
- 4. В силу монотонности функции, X_k будут монотонны по включению и покрывать всю область определения
- 5. Вспомним про непрерывность интеграл по множествам и определение предела
- 6. Затем распишем неравенства, устремим $\varepsilon \to 0$ и получим доказываемое соотношение
- 7. В случае бесконечного интеграла фиксируем $\forall C>0$ и миноранту, чей интеграл на том же множестве будет >C (она существует из определения нижнего интеграла) и выкинем множества нулевой меры, на которых миноранта больше f
- 8. Рассмотри измеримые функции $g_k = \min(f_k, g)$, которые в пределе равны миноранте (показывается через определения предела для f и минимума)
- 9. Как показано в конечном случае, предел для миноранты будет больше > C, а в силу неравенства, для f тоже. В силу произвольности C получаем необходимое равенство

11.2 Теорема Лебега об ограниченной сходимости

Th Если последовательность интегрируемых функций f_k , каждый член которой ограничен по модулю интегрируемой функцией φ почти всюду на X и поточечно сходится к f, то f интегрируема с интегралом, равным пределу интегралов f_k

- 1. Измеримость f следует из леммы о поточечной сходимости, а интегрируемость в силу предельного перехода и признака сравнения
- 2. Выкинем множества нулевой меры, на которых условие теоремы не выполняется
- 3. Зафиксируем $\forall \varepsilon > 0$ и рассмотрим множества X_k с $\varepsilon \varphi(x)$ внутри
- 4. X_k будут покрывать X (включение в одну сторону очевидно, а в другое надо рассмотреть два случая для $\varphi(x)$, расписать определение предела). Также X_k будут монотонны по включению
- 5. Распишем предел для $\int_{X_k} \varphi$ с помощью непрерывности и аддитивности интеграла по множествам
- 6. Теперь распишем неравенство для разности интегралов f и f_k , воспользовавшись неравенством треугольника, определением X_k и конечностью интеграла для φ
- 7. В итоге, устремив $\varepsilon \to 0$, завершим доказательство теоремы

12 Несобственный интеграл. Связь сходимости несобственного интеграла и интегрируемости функции по Лебегу. Критерий Коши. Признаки Дирихле и Абеля сходимости несобственных интегралов

12.1 Несобственный интеграл

- Опр Несобственный интеграл, особенность Односторонний предел интегрального конца
- Опр (Рас)ходящийся несобственный интеграл Если (не)существует конечный предел
- **Опр** *Собственный интеграл* Интеграл Лебега, который был до этого
- Опр Абсолютно сходящийся несобственный интеграл Аналогично рядам
- **Опр** (Сходящийся) несобственный интеграл с двумя особенностями Разбить на два интеграла с одной особеностью (и утверждать сходимость только в случае сходимости обоих интегралов)

12.2 Связь сходимости несобственного интеграла и интегрируемости функции по Лебегу

Th.1 Если f интегрируема по Лебегу, на любом открытом промежутке, она интегрируема на всём промежутке \Leftrightarrow соответсвующих несобственный интеграл сходится абсолютно

- $1. \Rightarrow$: согласно лемме об интегрируемости на подмножестве f интегрируема на любом открытом промежутке, как и её модуль (по эквивалентности)
- 2. Из аддитивности интеграла по множествам следует нестрогое возрастание функции $F(b^{'})=\int_{a}^{b^{'}}|f(x)|dx$
- 3. По теореме существует предел слева, поэтому несобственный интеграл сходится абсолютно
- 4. \Leftarrow : зафиксируем возрастающую последовательность $\{b_k\} \to b$
- 5. Определим индикаторную последовательность функций $f_k(x)$. Она сходится к f, что докажет измеримость f на всём интервале
- 6. Затем введём новую функциональную последовательность $g(x) = |f_k(x)|$. Она будет возрастать и в пределе равна |f(x)|, поэтому применима теорема о монотонной сходимости
- 7. Из неё следует интегрируемость |f(x)| на интервале, то есть и f

 ${f Th.2}$ Если f интегрируема в собственном смысле, то несобственный интеграл сходится и его значение равна интегралу Лебега на том же интервале

Доказательство состоит в применении теоремы о непрерывности интеграла как функции верхнего предела

12.3 Критерий Коши

Тһ Критерий Коши

Если на числовом промежутке f интегрируема по Лебегу на любом открытом промежутке, то несобственный интеграл этой функции сходится \Leftrightarrow выполняется условие Коши

- 1. Определим $F(t) = \int_a^t f(x) dx$. Несобственный интеграл с особенностью в верхнем конце будет сходиться, если у этой функции существует конечный предел при $t \to b-0$
- 2. Далее сведём задачу к KK существования предела функции и воспользуемся формулой Ньютона Лейбница

12.4 Признаки Дирихле и Абеля сходимости несобственных интегралов

Смотреть в рукописном конспекте

Связь поточечной и равномерной сходимостей для функциональной последовательности. Критерий Коши равномерной сходимости функциональной последовательности. Обобщенный признак сравнения для функциональных рядов. Признак Вейерштрасса равномерной сходимости функционального ряда. Признаки Дирихле и Лейбница равномерной сходимости функционального ряда. Признак Абеля равномерной сходимости функционального ряда. Непрерывность равномерного предела, непрерывных функций и суммы равномерно сходящегося функционального ряда с непрерывными слагаемыми. Почленное интегрирование функциональных последовательностей и рядов. Дифференцирование предельной функции и почленное дифференцирование функционального ряда

Степенные ряды. Формула Коши-Адамара для радиуса сходимости. Теорема о круге сходимости степенного ряда. Первая теорема Абеля. Теорема о равномерной сходимости степенного ряда. Вторая теорема Абеля. Сохранение радиуса сходимости при почленном дифференцировании степенного ряда. Теоремы о почленном интегрировании и дифференцировании степенного ряда. Единственность разложения функции в степенной ряд, ряд Тейлора. Достаточное условие аналитичности функции. Пример бесконечно дифференцируемой, но неаналитической функции. Представление экспоненты комплексного аргумента степенным рядом. Формулы Эйлера. Формула Тейлора с остаточным членом в интегральной форме. Представление степенной и логарифмической функций степенными рядами