# DSC40B: Theoretical Foundations of Data Science II

Lecture 9: Hashing and Hash table

Instructor: Yusu Wang

# Recall: (Dynamic) set operations

- Imagine you are maintaining a database indexed by some keys (real values), and you hope to support the following operations:
  - Search
  - Maximum
  - Minimum
  - Successor
  - Predecessor
  - Insert
  - Delete
  - Extract-Max
  - Increase-key

Using balanced BST, all these operations can be done in  $O(\lg n)$  time



# Dictionary operations

- Given a universe of elements U
  - these elements may not be numbers
- Need to store some keys
- Need to perform the following operations for keys
  - Search (membership queries)
  - Insert
  - Delete

We can use balanced BST for this purpose if keys can be compared.

But we can have even lighter weight data structure to handle these



# Today

▶ Hashing in general

- ▶ Hash table
  - For dictionary operations

# Part A: The idea of Hashing



# Hashing

▶ An important idea used commonly in practice

#### Many uses:

- Fast queries on a large data set.
- Verifying message integrity.
- Identify if file has changed in version control.



#### Hash function

- Mathematically, a hash function is simply a function
  - $f: U \to X$  from one set to another
- To make it useful, in practice,
  - It often maps some potentially large or complex object to a much smaller and simpler "fingerprint" or "signature"
  - One also wants the mapping to be "uniform" and cause few "collisions".
  - Note: a hash function needs to be deterministic!
    - ▶ Hashing the same object twice, we should get the same answer

# Some examples

- ▶ A cryptographic hash function:
  - maps data of arbitrary size into an often fixed-sized output of much smaller size
  - e.g, MD5: maps it to a 128-bit value
  - hard to "reverse engineer" input from hash.
  - two similar input could and should lead to very different hash values
    - > echo "My name is Justin" | md5
    - a741d8524a853cf83ca21eabf8cea190
    - > echo "My name is Justin!" | md5
    - f11eed2391bbd0a5a2355397c089fafd
    - > md5 slides.pdf
    - e3fd4370fda30ceb978390004e07b9df

# A cryptographic hash function

#### Why?

- I release a piece of software.
- I host it on Google Drive.
- Someone (Google, US Gov., etc.) decides to insert extra code into software to spy on users.
- A user has no way of knowing.

#### What do I do?

- I release a piece of software and publish the hash
- I host it on Google Drive.
- Someone inserts extra code into software to spy on users.
- You download the software and hash it. If hash is different, you know the file has been changed!



# Some examples

- Want to place images into 100 bins.
  - ▶ How do we decide which bin an image goes into?
  - ▶ Hash function!
  - Takes in an image.
  - Outputs a number in {1, 2, ..., 100}

Part B: Hash Table



# Dictionary operations

- Given a universe of elements U
- Need to store some keys
- Need to perform the following operations for keys
  - Insert
  - Search
  - Delete

In other words, the key operation is membership queries (search), but also allows dynamic updates (insert, delete).



- Use an array to organize all the keys
  - We could pre-sort the array.
    - Preprocessing time:
  - Search:
  - Insert / Delete:

- Organize all keys in a doubly-linked list
  - Pre-processing: None
  - ▶ Insert:
  - Delete
  - Search:

- Organize all keys in a balanced BST
  - Search:
  - Insert:
  - Delete

- Direct address tables (DAT)
- ▶ Suppose we know that all the keys we ever care are from 0 to N = 99,999
  - e.g, we are querying for zipcodes,
- Open an array A of size N
  - If a zipcode z is in, set A[z] = 1, and 0 otherwise
  - Given a query zipcode, say 22330, simply return A[22330]
  - Search:
  - Insert:
  - Delete:

# Approach 3 – cont.

- Direct address tables (DAT)
- Suppose we have (house, zipcode) pairs, where zipcode being the key
  - (so all the keys we ever care are from 0 to N = 99,999)
  - And we want to count how many houses in a specific zipcode
- Open an array A of size N
  - Initialize all array elements to be 0
  - For each (house, zipcode) pair, if a house is in zipcode z is in, set A[z] = + +
  - Given a query zipcode, say 22330, simply return A[22330]
  - Search:
  - Insert:
  - Delete:

# What's the problem of DAT approach?

▶ DAT (directed address tables) very efficient

#### However

- Require the keys to be integers
- Require the keys to be a fixed range
- Require a size as large as this range which makes it hard to use for a huge universe (of keys)

#### Hash Table:

A way to use DAT idea, but allowing to use much more general universe through the "hash" map.



#### Use Hash Table!

- ▶ *U* : universe
- ▶  $T[0 \dots m-1]$ : a hash table of size m
  - $M \ll |U|$
  - usually, we choose m to be around the size of data we will see
- Hash functions
  - ▶  $h: U \to \{0, 1, ..., m-1\}$ 
    - i.e, h maps each element in the universe to an index in the hash-table
- $\blacktriangleright h(k)$  is called the hash value of key k.
  - Given a key k, we will store it in location h(k) of hash table T,
    - $\blacktriangleright$  i.e, store it at T[h(k)]

#### Collision

- Since the size of hash table is smaller than the universe:
  - Multiple keys may hash to the same slot.
  - A collision happens when h(x) = h(y) for  $x \neq y \in U$
- How to handle collisions?
  - Chaining
  - Open addressing
  - **...**

# Collision Resolved by Chaining



- ▶ T[j]: a pointer to the head of the linked list of all stored elements that hash to j
- Nil otherwise

# A simple example

- ightharpoonup U: all positive integers  $\mathbb N$
- $\blacktriangleright$  Hash table T[0,...,10]
- ▶ Hash function:  $h: \mathbb{N} \to [0, ..., 10]$ 
  - $h(x) = x \bmod 11$

# Dictionary operations

- $\blacktriangleright$  Chained-Hash-Insert (T, x)
  - Insert x at the head of list T[h(x)]
- ightharpoonup Chained-Hash-Search(T, x)
  - ▶ Search for an element with key x in list T[h(x)]
- $\blacktriangleright$  Chained-Hash-Delete(T, x)
  - ▶ Delete x from the list T[h(x)]

O(1)

O(length(T[h(x)])

O(length(T[h(x)])



#### Good Hash Function

#### Performance of Hash table operations

depend on the number of elements hashed to each slot in hash table.

#### Intuitively,

- A good hash function should spread elements into the hash table uniformly
- If there are n elements in the input data and m slots
  - then ideally there should be  $\frac{n}{m}$  elements in each hash table slot.



# Average case analysis

- > n: # elements in the table
- ▶ m: size of table (# slots in the table)
- ▶ Load factor:
  - $\alpha = \frac{n}{m}$ : average number of elements per linked list
  - Intuitively the optimal time needed
- Individual operation can be slow  $(\Theta(n))$  worst case time
  - ▶ Under certain assumption of the distribution of keys, analyze expected performance.



# Simple uniform hashing assumption

- Simple uniform hashing assumption:
  - $\blacktriangleright$  any given element is equally likely to hash into any of the m slots in T
- Let  $n_j$  be length of list T[j]
  - $n = n_0 + n_1 + \dots + n_{m-1}$
  - Under simple uniform hashing assumption:
    - ightharpoonup expected value  $E[n_j] = \alpha = \frac{n}{m}$

Why?

# Why

- Let  $\{k_1, k_2, ..., k_n\}$  be the set of keys
- Goal: estimate  $E(n_i)$
- Let  $X_i = 1$  if  $h(k_i) = j$ 0 otherwise
- Note:  $n_i = \sum_{i=1}^n X_i$ !
- $E[X_i] = \Pr[h(k_i) = j] = \frac{1}{m}$
- ▶ Hence  $E[n_j] = E[\sum_{i=1}^n X_i] = \sum_{i=1}^n E[X_i] = \sum_{i=1}^n \frac{1}{m} = \frac{n}{m}$

# Expected running time

- Under Simple uniform hashing assumption
- Search:
  - Expected time:  $ET(n) = \Theta(1 + \frac{n}{m})$ 
    - (worst case time  $T(n) = \Theta(n)$ )
- Insert:
  - $T(n) = \Theta(1)$
- Delete:
  - Expected time:  $ET(n) = \Theta(1 + \frac{n}{m})$ 
    - $\text{ (worst case time } T(n) = \Theta(n))$

Key message: if the load factor  $\alpha=\frac{n}{m}=\Theta(1)$  then  $\Theta(1)$  expected time for these operations!

# Hashing in Python

dict and set implement hash tables

Querying is done using in:

```
>>> # make a set

>>> L = {3, 6, -2, 1, 7, 12}

>>> 1 in L # Theta(1)

False

>>> 7 in L # Theta(1)

True
```



# Part C: Some examples of using hash tables and downsides of hash tables

### Recall the movie problem

#### ▶ The Movie problem

- Input: Given a list of length of movies available, stored in array movies, and a flight duration D
- Output: Return two movies whose total length = D; None otherwise.



#### Recall

- The naïve algorithm solves it in  $\Theta(n^2)$  time
- ▶ But earlier, we mentioned we can do better by
  - First sorting the array of movie lengths
  - Then check for each movie x, whether there exits one whose length is D-length(x)
  - Worst case time complexity  $T(n) = \Theta(n \lg n)$



# New approach via Hashing

Use Hash table, and frame this as a membership query problem

```
def optimize entertainment hash(times, D):
    hash_table = dict()
    for i, time in enumerate(times):
        hash table[time] = i
                                                 Expected time?
                                                     \Theta(n)
    for i, time in enumerate(times):
       target = D - time
        if target in hash_table:
       return i, hash_table[target]
    return None
```



# Another example

#### Anagrams

- ▶ Two strings  $w_1$  and  $w_2$  are anagrams if the letters of  $w_1$  can be permuted to make  $w_2$ .
  - ▶ E.g, "eat" and "tea", or "listen" and "silent"

#### ▶ The Anagrams problem

 $\blacktriangleright$  Given a collection of n strings, determine if any two of them are anagrams.



# Using Hash table

#### Observation:

- two strings are anagrams if their sorted lists are equal
  - > sorted(w\_1) == sorted(w\_2)

```
def any_anagrams(words):
    seen = set()
    for word in words:
        w = sorted(word)
        if w in seen
            return True
        else:
            seen.add(w)
     return False
```

Expected time?  $\Theta(n)$ 

# Hashing Downsides

- Only support dictionary queries
  - i.e, membership queries + insert / delete
  - Example I: cannot be used to query for the two movies whose total time is closest to D
  - Example 2: cannot be used for performing a range query in a list of numbers
    - Say report the number of numbers fall within range [a, b]



# Hashing Downsides

- Only support dictionary queries
  - i.e, membership queries + insert / delete
- No locality: similar items map to very different bins
  - Necessarily so for the performance of hashing in most cases!
  - But, in practice, we often query similar objects continuously
    - May result in many cache misses, slow



# Summary

#### Hashing

- Very useful idea
- Generates a small signature for a potentially large complex object

#### Hash Table

- Very practical data structure for dictionary operations
  - Very efficient for these operations, can be constant expected time if the load factor  $\alpha = \frac{n}{m} = \Theta(1)$
- Especially when the number of keys necessary is much smaller than the size of universe where input objects could come from!
- In practice, need to choose hash functions properly
  - ▶ There exist intelligent hashing schemes

# FIN

