LAST NAME:				FIRST NAME:				CIRCLE:		Da	Dahal 4pm		Li 1pm	
								Li 5:30pm		n Zw	Zweck 11:30am		Zweck 1pm	
1	/12	2	/12	3	/12	4	/15	5	/12	6	/12	Т	/75	

MATH 2415 [Fall 2019] Exam I, Sep 27th

No books or notes! **NO CALCULATORS!** Show all work and give **complete explanations**. Don't spend too much time on any one problem. This 75 minute exam is worth 75 points.

- (1) [12 pts] Let $\mathbf{u} = 4\mathbf{i} + 3\mathbf{k}$ and $\mathbf{v} = 2\mathbf{i} \mathbf{j} 2\mathbf{k}$.
- (a) Find the scalar projection of \mathbf{u} onto \mathbf{v} .

(b) Find the vector projection of \mathbf{v} onto \mathbf{u} .

(c) Find the angle between ${\bf u}$ and ${\bf v}$. [Your answer should be in terms of an inverse trigonometric function.]

- (2) [12 pts] Let $\mathbf{u} = (3, 0, -2)$ and $\mathbf{v} = (-4, 1, 2)$.
- (a) Find a vector \mathbf{w} that is perpendicular to both \mathbf{u} and \mathbf{v} .

(b) Find the volume of the parallelepiped generated by \mathbf{u} , \mathbf{v} and \mathbf{w} .

- (3) [12 pts] Let C be the curve parametrized by $\mathbf{r}(t) = \langle \cos t, \sin t, \ln(\cos t) \rangle$.
- (a) Find a parametrization of the line tangent to the curve, C, when $t = \frac{\pi}{4}$.

(b) Show that the length of the segment of the curve, C, from t=0 to $t=\frac{\pi}{4}$ is $L=\int_0^{\pi/4}\sec t\,dt$.

- (4) [15pts]
- (a) Parametrize the curve of intersection of the surfaces $x = y^2 z^2$ and $y^2 + z^2 = 9$.

(b) Let P be the point with spherical coordinates $(\rho, \theta, \phi) = (4, -\frac{\pi}{4}, \frac{\pi}{3})$. Find the rectangular coordinates of P.

(c) Identify and sketch the surface which is given in cylindrical coordinates by the equation $z^2 - r^2 = 4$.

(5) [12 pts] (a) Let P be the plane parametrized by $\mathbf{r}(s,t)=(1+2s-4t,3s+t,6-t)$. Find an equation of the form Ax+By+Cz=D for the plane, P.

(b) Consider the lines, L_1 , L_2 , and L_3 parametrized by

 $L_1: \mathbf{r}_1(t) = (2+5t, -1+4t, t), \qquad L_2: \mathbf{r}_2(t) = (2+3t, 3+4t, 1-t), \qquad L_3: \mathbf{r}_3(t) = (5+3t, 2-4t, 3+t).$

Let \mathcal{P} be a plane that is perpendicular to L_1 . Could \mathcal{P} contain the line L_2 ? Could \mathcal{P} contain the line L_3 ?

(6) [12 pts] Make a labelled sketch of the traces (slices) of the surface

$$x^2 - 4y^2 + z^2 = 0$$

in the planes $x=0,\,z=0,$ and y=k for $k=0,\,\pm 1,\,\pm 2.$ Then make a labelled sketch of the surface.