BASIS OF STATISTICS AND HYPOTHESIS TESTING

ALEN DELIC, MS

ADAM DE HAVENON, MD, MS

PLAN FOR THE YEAR

- We will give 5-6 lectures covering some topics that will be basic and others more advanced
 - Basics of Statistics
 - Regression, Survival Analysis, and Model Fitting
 - Clinical Trial Design and Sample Size
 - Causal Inference #1
 - Causal Inference #2
 - Epidemiologic Approaches and Risk Scores

WHAT IS STATISTICS AND WHAT ARE ITS USES

- We can split statistics into two branches:
 - Descriptive statistics
 - Used to describe the basic features of the data in a study. They provide simple summaries about the sample and the measures. Together with simple graphics analysis, they form the basis of virtually every quantitative analysis of data
 - Inferential statistics
 - The use of samples of data to make inferences on the population
 - Involves the use of hypothesis testing via a large range of statistical methods, i.e regressions, survival analysis.

- To begin diving into statistics, we first have to dive into the order of measurement scale.
- The choice of your test statistic or descriptive statistic will be based on the measurement scale of your data.
- When you determine which order your data is in, this will dwindle down the possible list of statistics that can be applied to it.

Measurement Scale	Combination of Elements	Description	Additional Notes
Nominal	Name	Unordered categories Cancer therapies: chemo, radiation, surgery	Can't do arithmetic
Dichotomous (binary)	Special case of nominal scale	Sex: Male or Female	Binary scale can be considered an interval scale with one category to represent 0
Ordinal	Name + order	Ordered categories Quality of Life: Bad, OK, Great	Can't do arithmetic
Interval (continuous)	Name + order + equal intervals + arbitrary zero point	Continuous measurement with arbitrary zero Body temperature: 0°F does not imply absence of temperature. Also no sense in saying that 75°F is 1.5x as hot as 50°F	Can do arithmetic. Test statistics equal for both interval and ratio.
Ratio	Name + order + equal intervals + absolute zero point	Continuous measurement with absolute zero Hematocrit: 0% is absence of hematocrit. 50% is 2x more than 25%	Can do arithmetic. Test statistics equal for both interval and ratio.

- For nominal and binary data,
 we are limited with the
 amount of descriptive stats
 we can report
 - Limited to counts and percentages. For graphical output, histograms and pie charts are mostly used.

- For interval and ratio (both continuous), there are many more options to describe this type of data
 - Mean and Standard Deviation: Used when there is a relatively normal, bell-shaped distribution with minimal outliers that would skew data
 - Median and IQR: Used when there is a skewed distribution or high amount of outliers. Can be combined with box plot to show distribution of data.

I Bar plots display only two numbers (here the mean and s.e.m.) for each distribution.

II Box plots display five numbers (the min, max, and quartiles) to provide greater distributional information.

→ More information

Violin plots display the shape of each distribution and may be overlayed with descriptive or inferential statistics.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427844/pdf/nihms-687401.pdf

A BRIEF TANGENT ON SKEW AND OUTLIERS

BASIS OF DESCRIPTIVE STATISTICS

- For ordinal data, there is a combination of metrics from nominal and continuous to describe this data
 - Median and IQR, perhaps range. Can also use relative counts and frequencies

DESCRIPTIVE STATS IN TABLE I

	Table 1. Demographic and Clinical Characteristics of the Patients at Baseline	(Intention-to-Treat Population).*
--	---	-----------------------------------

Characteristic	Tria	11	Tria	12
	Tirbanibulin (N=175)	Vehicle (N=176)	Tirbanibulin (N=178)	Vehicle (N=173)
Age — yr	69.5±8.6	70.2±9.4	69.1±8.7	70.2±8.9
Male sex — no. (%)	147 (84)	154 (88)	158 (89)	150 (87)
White race — no. (%)†	175 (100)	175 (99)	177 (99)	173 (100)
Fitzpatrick skin type I or II — no. (%):	123 (70)	142 (81)	126 (71)	120 (69)
Median count of actinic keratosis lesions (IQR)	6 (5-7)	6 (5-7)	6 (5-7)	6 (5-7)
Face:scalp ratio of patients with the specified application location — no.§	119:56	121:55	119:59	118:55
History of treatment for actinic keratosis on face or scalp — no. (%)	145 (83)	153 (87)	132 (74)	125 (72)
History of skin cancer — no. (%)	77 (44)	89 (51)	75 (42)	72 (42)

^{*} Plus-minus values are means ±SD. The intention-to-treat population comprised all the patients who had undergone randomization. IQR denotes interquartile range.

[†] Race was determined by the investigator.

[‡] Fitzpatrick skin types range from I to VI: type I indicates always burns, never tans; type II, usually burns, tans minimally; type III, sometimes mildly burns, tans uniformly; type IV, burns minimally, always tans well; type V, very rarely burns, tans very easily; and type VI, never burns.

[§] Enrollment across patients was controlled to achieve a 2:1 ratio of facial:scalp treatment areas (i.e., to enroll twice as many patients with facial lesions as those with scalp lesions).

When we try to find associations between two variables,
 we go into the realm of hypothesis testing

 We will start in discussing what is a hypothesis test and how to interpret the results of one

- Hypothesis testing
 - A researcher asks a question and we make a hypothesis about the outcome (Ex: Is Drug A an effective treatment for Disease B)
 - Null hypothesis: there is no effect of Drug A on Disease B
 - Alternative hypothesis: there is an effect of Drug A on Disease B

 We look at the specific level of measurements of the variables and find the correct test to test the association of the relationship

 Obtain data to enter into the test and see if we reach "statistical significance" by the interpretation of p-values and confidence intervals

 As we obtain data, the concept of 'Statistical Regularity' and a relation to the Law of Large Numbers occurs = the signal-tonoise ratio becomes distinct as we gather more and more data

STATISTICAL SIGNIFICANCE

- P-values used to determine if a sample estimate is significantly different from a hypothesized value.
 - The p-value is the probability that the observed effect within the study would have occurred by chance if, in reality, there was no true effect.
 - Standard conventions are set at p = .01, .05 and .10 for statistical significance

- Statistical significance is the likelihood that the results we obtained are due to chance.
 - This is different from "clinical" significance as just because a result is statistically significant, does not imply it is clinically significant
 - Example: A statistically significant effect size (p<.05) of an experimental drug showing a 0.01% decrease in chance of disease may not be clinically significant

STATISTICAL SIGNIFICANCE

- Confidence Intervals function of the sample mean estimate and sample mean standard deviation.
 - Different interpretation of significant for various types of statistics. i.e crossing 1.00 for ratio statistics and 0.00 for non-ratio statistics
 - Can be used to gauge the estimated effect size from the sample data
 - Example: In an adjusted regression model, Drug A was associated with a 12 point decrease in blood pressure [95% CI (8.2, 15.8)]

- P value = the probability of obtaining results at least as extreme as the observed results of a statistical hypothesis test, assuming that the null hypothesis is correct
 - A smaller p-value means that there is stronger evidence in favor of the alternative hypothesis.

		Null hypothesis is						
		TRUE		FALSE				
The null	rejected (P < α)	Type I error, false positive probability = α	×	true positive probability = 1 - β (power of the test)	✓			
was	not rejected $(P \ge \alpha)$	true negative probability = 1 - α	✓	Type II error, false negative probability = β	×			

CHOICE OF SIGNIFICANCE TESTS (NO CONFOUNDING)

Level of Measurement of Dependent Variable	Two Independent Groups	Three or more Independent Groups	Two Correlated* Samples	Three or more Correlated* Samples
Dichotomous	chi-square or Fisher's exact test	chi-square or Fisher-Freeman- Halton test	McNemar test	Cochran Q test
Unordered Categorical	chi-square or Fisher- chi-square or Fisher-Freeman- Stuart-Maxwell Freeman-Halton test Halton test		Stuart-Maxwell test	Multiplicity adjusted Stuart-Maxwell tests#
Ordered categorical	Wilcoxon-Mann-Whitney (WMW) test	Old School***: Kruskal-Wallis analysis of variance (ANOVA) New School***: multiplicity adjusted WMW tests	Wilcoxon sign rank test	Old School [#] Friedman two-way ANOVA by ranks New School [#] Mulitiplicity adjusted Wilcoxon sign rank tests
Continuous	independent groups t-test	Old school***: oneway ANOVA New school***: multiplicity adjusted independent groups t tests	paired t-test	mixed effects linear regression
Censored: time to event	log-rank test	Multiplicity adjusted log-rank test	Shared-frailty Cox regression	Shared-frailty Cox regression

CHOICE OF SIGNIFICANCE TESTS (WITH CONFOUNDING)

С	Level of Measurement of Dependent Variable	Two Three or more Independent Independent Groups Groups		Two Correlated* Samples	Three or more Correlated* Samples
	Dichotomous	logistic regression	logistic regression & consider need for multiplicity adjustment	conditional logistic regression, or mixed effects logistic regression	mixed effects logistic regression
			multinomial logistic regression & consider need for multiplicity adjustment	General linear mixed model#	General linear mixed model#
C	Ordered categorical ordinal logistic regre		ordinal logistic regression & consider need for multiplicity adjustment	mixed effects ordinal logistic regression	mixed effects ordinal logistic regression
	Continuous	linear regression	linear regression & consider need for multiplicity adjustment	mixed effects linear regression	mixed effects linear regression
	Censored: time to event	Cox regression	Cox regression & consider need for multiplicity adjustment	shared-frailty Cox regression	shared-frailty Cox regression

INTRODUCTION TO REGRESSION

- Regression aims to estimate the effect size of the main association while maintaining the levels of potential confounders constant.
- Common terms encountered in regression:
 - Dependent variable Outcome variable Response Variable (example: stroke)
 - Independent variable Predictor variable Covariate (example: blood pressure)
 - Coefficient Parameter Estimate Effect Size
 - P-Value and 95% Confidence Interval

- Comparing groups by simple tests such as t-tests and chi-squared tests can be inefficient because there is likely confounding occurring by one or more variables
 - Confounding is the "mixing or confusion of effects". This induces bias into the main association.

A TALE OF TWO MODELS

Logistic regression Log likelihood = -44058.651					of obs i2(2) chi2 R2	= :	76,940 12168.45 0.0000 0.1213	
	Good_outcome	Odds ratio	Std. err.	Z	P> z		[95% conf.	interval]
	NIHSS_baseline Endovascular_thrombectomy _cons	.8450461 1.906714 1.351414	.0016836 .0775697 .015456	-84.50 15.86 26.33	0.000 0.000 0.000		.8417526 1.760583 1.321457	.8483524 2.064973 1.382049

LINEAR REGRESSION EXAMPLE

- The dataset we'll use explores the relationship between several variables and pulmonary function measured with forced expiratory volume (FEV) in a sample of 654 children, aged 3 – 19
 - Outcome (Independent) Variable FEV
 - Predictor (Dependent) Variables height, age, smoking status
- We'll begin with a simple Student T-test (not accounting for confounders) and then building a regression model that accounts for confounding

LINEAR REGRESSION EXAMPLE

- To quickly show how linear regression is related to a t-test and how the
 parameter estimates of a linear regression can be interpreted, we start with
 looking at the relationship between FEV and sex in both a t-test and regression
 - The difference of the t-test is equal to the parameter estimate of the linear regression

. regress fev male

	ev, by(male					
Two-sample	t test wi	ith equal var	iances			
Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0	318	2.45117	.0362111	.645736	2.379925	2.522414
1	336	2.812446	.0547507	1.003598	2.704748	2.920145
combined	654	2.63678	.0339047	.8670591	2.570204	2.703355
diff		3612766	.0663963		491653	2309002
diff =	= mean(0) -	- mean(1)		degrees	t of freedom	= -5.4412 = 652
	lff < 0	Dn/ l	Ha: diff !=			iff > 0) = 1.0000

SS Number of obs 654 Source F(1, 652) 29.61 21.3239848 1 21.3239848 Prob > F 0.0000 Model Residual 469.595849 652 .720239032 R-squared 0.0434 Adj R-squared 0.0420 490.919833 Root MSE .84867 Total 653 .751791475 Coef. Std. Err. P>|t| [95% Conf. Interval] fev .3612766 .0663963 .2309002 .491653 male 0.000 2.45117 .047591 51.50 0.000 2.35772 2.54462 cons

MULTIVARIABLE LINEAR REGRESSION EXAMPLE 📮

regress fev smoker

Source	SS	df	MS	Numbe - F(1,	er of obs		654 41.79
Model	29.569683	1	29.56968	AND STREET, ST		W.	0.0000
Residual	461.35015	652	.70759225	5 R-squ	ared	=	0.0602
ASSISTANT AND DESCRIPTION				- Adj R	-squared	=	0.0588
Total	490.919833	653	.75179147	5 Root	MSE	=	.84119
		(m)	TO AN		0		
fev	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
smoker	.7107189	.1099426	6.46	0.000	.4948346	5	.9266033
_cons	2.566143	.0346604	74.04	0.000	2.498083	3	2.634202

- Still using the FEV dataset, we now show a full model with multiple predictor variables in the equation
 - Predictors variables available in dataset: sex, smoking status, age and height
 - For our mock paper, we want to hypothesize that smoking is associated with lower FEV. We want to build a model that shows that. We start with a simple regression of FEV and smoking status.
- In this model, being a smoker is associated with higher FEV. This
 is opposite of what we want to see and what intuition tells us.
 We need to explore if there is confounding present.

MULTIVARIABLE LINEAR REGRESSION EXAMPLE

- 0
- · Adding age and height to the model, we still get an estimate that is worth exploring further
 - The estimates for the height and age predictor variables are significant. Also have the proper direction as what intuition would say
 - The estimate for smoking status has turned into the right direction but we're still not seeing significance so let's explore further

. regress fev	smoker height	age					
Source	SS	df	MS		per of obs	=	654
				- F(3,	, 650)	=	715.69
Model	376.837002	3	125.612334	1 Prob) > F	=	0.0000
Residual	114.082831	650	.175512048	R-so	quared	=	0.7676
				- Adj	R-squared	=	0.7665
Total	490.919833	653	.751791475	5 Root	MSE	=	.41894
fev	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
smoker	1102319	.0600175	-1.84	0.067	2280834	1	.0076196
height	.1090947	.0047196	23.12	0.000	.0998272	2	.1183622
age	.059741	.0095634	6.25	0.000	.0409621	L	.07852
_cons	-4.616007	.2238833	-20.62	0.000	-5.055629	9	-4.176385

- 0
- Height is directly related to lung size and since smoking occurs more in later teenage years, smoking status acts as a surrogate for lung size
 - Restricting to older children creates a more homogenous lung size in the sample

tab	age	smoker
Lab	age	Smoker.

Age	Smoking		
(years)	never smo	ever smok	Total
3	2	0	2
4	9	0	9
5	28	0	28
6	37	0	37
7	54	0	54
8	85	0	85
9	93	1	94
10	76	5	81
11	81	9	90
12	50	7	57
13	30	13	43
14	18	7	25
15	9	10	19
16	6	7	13
17	6	2	8
18	4	2	6
19	1	2	3
Total	589	65	654

MULTIVARIABLE LINEAR REGRESSION EXAMPLE

- No smokers under age of 9 so we should restrict the analysis to only those older than 9 years
 - We now see that we have achieved significance in all 3 predictor variables with proper effect directions

. regress fev	smoker height	age if age	e>9				
Source	SS	df	MS	Numb	Number of obs F(3, 341) Prob > F R-squared Adj R-squared Root MSE		345
				- F(3,			178.10
Model	120.042531	3	40.01417	7 Prob			0.0000
Residual	76.6153415	341	.224678423	1 R-sc			0.6104
				- Adj			0.6070
Total	196.657872	344	.571679862	2 Root			.474
fev	Coef.	Std. Err.	t	P> t	[95% Con	f.	 Interval]
smoker	1810955	.0696684	-2.60	0.010	3181293		0440616
height	.1399885	.0074785	18.72	0.000	.1252786		.1546983
age	.0726024	.0141029	5.15	0.000	.0448627		.1003421
_cons	-6.758471	.4477109	-15.10	0.000	-7.639094		-5.877848

MULTIVARIABLE LINEAR REGRESSION EXAMPLE

- To use your regression output and find a specified value of the outcome variable for a specific individual, we use the variable coefficients
 - Example: What is the FEV for a 52" tall 15 year old who smokes?
 - FEV = Constant + [smoking status]*(-0.181) + [height]*(0.140) + [age]*(0.073)
 - FEV = -6.76 + [1]*(-0.181) + [52]*(0.140) + [15]*(0.073) = 1.43

	_					
regress	fev	smoker	height	age	if	age>9

345	s =	F(3, 341) = Prob > F = R-squared =		MS	df	SS	Source
178.10	=						
0.0000	=			40.014177	3	120.042531	Model
0.6104	=			.224678421	341	76.6153415	Residual
0.6070	ed =						
.474	Root MSE =		_	.571679862	344	196.657872	Total
Interval]	Conf.	[95%	P> t	t	Std. Err.	Coef.	fev
0440616	.293	3181	0.010	-2.60	.0696684	1810955	smoker
.1546983	786	.1252	0.000	18.72	.0074785	.1399885	height
.1003421	627	.0448	0.000	5.15	.0141029	.0726024	age