Introduction to penalized splines

3ª Jornada Jóvenes Investigadores SEB

Dae-Jin Lee

Basque Center for Applied Mathematics

https://wp.bcamath.org/jjseb3

Outline

Introduction

Splines, regression splines and Smoothing splines

Penalized regression and semi-parametric models

Penalized splines in **R**

Basics

► Scatterplot of pairs (x_i, y_i) , i = 1, ..., n

► Assumption: straight line fits data well

$$\mathsf{E}[\boldsymbol{y}_i|\boldsymbol{x}_i] = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 x_i$$

► Minimize least squares criteria

$$\min \|\boldsymbol{y} - \hat{\boldsymbol{y}}\|^2$$

Basics

► Scatterplot of pairs (x_i, y_i) , i = 1, ..., n

► Assumption: straight line fits data well

$$\mathsf{E}[\boldsymbol{y}_i|\boldsymbol{x}_i] = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 x_i$$

► Minimize least squares criteria

$$\min \|\boldsymbol{y} - \hat{\boldsymbol{y}}\|^2$$

Beyond linear regression

- Linear fit is too simple and not always OK
- ▶ **Alternative:** use higher degree powers of x, with $X = [1_n, x_i, x_i^2, ..., x_i^p]$
- \triangleright Columns of X are basis functions (polynomial regression)

Same regression equations: $\hat{\beta} = (X'X)^{-1}X'y$

non-parametric regression or smoothing

▶ Instead of simple linear regression, we can fit the model:

$$\mathsf{E}[\boldsymbol{y}_i|\boldsymbol{x}_i] = f(\boldsymbol{x})$$

where f(x) is an arbitrary smooth function

- ► The model is "non-parametric" in the sense of no distributional assumptions for the parameters as in a linear model (scatterplot smoothing).
- Wide variety of methods (since 80's):
 - kernel smoothing, local linear methods, smoothing splines, etc ... (out-of-fashion!)
 - Penalized regression splines are getting popular
 - combine a rich set of basis functions, with a roughness penalty

▶ a kth order spline is a piecewise polynomial function of degree k, that is continuous and has continuous derivatives of orders 1, ...k - 1, at its knot points.

- ▶ a kth order spline is a piecewise polynomial function of degree k, that is continuous and has continuous derivatives of orders 1, ...k 1, at its knot points.
- ▶ Formally, a function $f: \mathbb{R} \to \mathbb{R}$ is a kth order spline with knot points at $t_1 < ... < t_m$, if

- ▶ a kth order spline is a piecewise polynomial function of degree k, that is continuous and has continuous derivatives of orders 1, ...k 1, at its knot points.
- Formally, a function $f: \mathbb{R} \to \mathbb{R}$ is a kth order spline with knot points at $t_1 < ... < t_m$, if
 - ▶ f is a polynomial of degree k on each of the intervals $(-\infty, t_1], [t_1, t_2], ... [t_m, \infty)$, and

- ▶ a kth order spline is a piecewise polynomial function of degree k, that is continuous and has continuous derivatives of orders 1, ...k 1, at its knot points.
- Formally, a function $f: \mathbb{R} \to \mathbb{R}$ is a kth order spline with knot points at $t_1 < ... < t_m$, if
 - f is a polynomial of degree k on each of the intervals $(-\infty,t_1],[t_1,t_2],...[t_m,\infty)$, and
 - ▶ $f^{(j)}$, the jth derivative of f, is continuous at $t_1,...,t_m$, for each j=0,1,...k-1.

- ▶ a kth order spline is a piecewise polynomial function of degree k, that is continuous and has continuous derivatives of orders 1, ...k 1, at its knot points.
- Formally, a function $f: \mathbb{R} \to \mathbb{R}$ is a kth order spline with knot points at $t_1 < ... < t_m$, if
 - ▶ f is a polynomial of degree k on each of the intervals $(-\infty, t_1], [t_1, t_2], ... [t_m, \infty)$, and
 - ▶ $f^{(j)}$, the jth derivative of f, is continuous at $t_1,...,t_m$, for each j=0,1,...k-1.
- By requiring continuous derivatives, we ensure that the resulting function is as smooth as possible.

- ▶ a kth order spline is a piecewise polynomial function of degree k, that is continuous and has continuous derivatives of orders 1, ...k 1, at its knot points.
- Formally, a function $f: \mathbb{R} \to \mathbb{R}$ is a kth order spline with knot points at $t_1 < ... < t_m$, if
 - ▶ f is a polynomial of degree k on each of the intervals $(-\infty, t_1], [t_1, t_2], ... [t_m, \infty)$, and
 - ▶ $f^{(j)}$, the jth derivative of f, is continuous at $t_1,...,t_m$, for each j=0,1,...k-1.
- By requiring continuous derivatives, we ensure that the resulting function is as smooth as possible.
- We can obtain more flexible curves by increasing the degree of the spline and/or by adding knots.

- ▶ a kth order spline is a piecewise polynomial function of degree k, that is continuous and has continuous derivatives of orders 1, ...k 1, at its knot points.
- Formally, a function $f: \mathbb{R} \to \mathbb{R}$ is a kth order spline with knot points at $t_1 < ... < t_m$, if
 - ▶ f is a polynomial of degree k on each of the intervals $(-\infty, t_1], [t_1, t_2], ... [t_m, \infty)$, and
 - ▶ $f^{(j)}$, the jth derivative of f, is continuous at $t_1, ..., t_m$, for each j = 0, 1, ...k 1.
- By requiring continuous derivatives, we ensure that the resulting function is as smooth as possible.
- We can obtain more flexible curves by increasing the degree of the spline and/or by adding knots.
- ► However, there is a tradeoff:

- ▶ a kth order spline is a piecewise polynomial function of degree k, that is continuous and has continuous derivatives of orders 1, ...k 1, at its knot points.
- Formally, a function $f: \mathbb{R} \to \mathbb{R}$ is a kth order spline with knot points at $t_1 < ... < t_m$, if
 - ▶ f is a polynomial of degree k on each of the intervals $(-\infty, t_1], [t_1, t_2], ... [t_m, \infty)$, and
 - ▶ $f^{(j)}$, the jth derivative of f, is continuous at $t_1,...,t_m$, for each j=0,1,...k-1.
- By requiring continuous derivatives, we ensure that the resulting function is as smooth as possible.
- We can obtain more flexible curves by increasing the degree of the spline and/or by adding knots.
- ► However, there is a tradeoff:
 - ► Few knots/low degree: Resulting class of functions may be too restrictive (bias).

- ▶ a kth order spline is a piecewise polynomial function of degree k, that is continuous and has continuous derivatives of orders 1, ...k 1, at its knot points.
- Formally, a function $f: \mathbb{R} \to \mathbb{R}$ is a kth order spline with knot points at $t_1 < ... < t_m$, if
 - ▶ f is a polynomial of degree k on each of the intervals $(-\infty, t_1], [t_1, t_2], ... [t_m, \infty)$, and
 - ▶ $f^{(j)}$, the jth derivative of f, is continuous at $t_1,...,t_m$, for each j=0,1,...k-1.
- By requiring continuous derivatives, we ensure that the resulting function is as smooth as possible.
- We can obtain more flexible curves by increasing the degree of the spline and/or by adding knots.
- However, there is a tradeoff:
 - Few knots/low degree: Resulting class of functions may be too restrictive (bias).
 - ▶ Many knots/high degree: We run the risk of overfitting (variance).

▶ The most common case considered is k = 3, i.e., that of cubic splines. These are piecewise cubic functions that are continuous, and have continuous first, and second derivatives.

- ► The most common case considered is k = 3, i.e., that of cubic splines. These are piecewise cubic functions that are continuous, and have continuous first, and second derivatives.
- ▶ How can we parametrize the set of a splines with knots at a given set of points $t_1,...t_m$? The most natural way is to use the **truncated power basis**, $g_1,...g_{m+k+1}$, defined as

$$g_1(x) = 1,$$
 $g_2(x) = x, ...,$ $g_{k+1}(x) = x^k,$ $g_{k+j+1}(x) = (x - t_j)_+^k,$ $j = 1, ..., m.$

- ▶ The most common case considered is k = 3, i.e., that of cubic splines. These are piecewise cubic functions that are continuous, and have continuous first, and second derivatives.
- ▶ How can we parametrize the set of a splines with knots at a given set of points $t_1,...t_m$? The most natural way is to use the **truncated power basis**, $g_1,...g_{m+k+1}$, defined as

$$g_1(x) = 1,$$
 $g_2(x) = x, ...,$ $g_{k+1}(x) = x^k,$ $g_{k+j+1}(x) = (x - t_j)_+^k,$ $j = 1, ..., m.$

where x_+ denote the positive part of x, i.e. $x_+ = \max\{x, 0\}$.

► These types of fixed-knot models are referred to as regression splines

- ▶ The most common case considered is k = 3, i.e., that of cubic splines. These are piecewise cubic functions that are continuous, and have continuous first, and second derivatives.
- ▶ How can we parametrize the set of a splines with knots at a given set of points $t_1,...t_m$? The most natural way is to use the **truncated power basis**, $g_1,...g_{m+k+1}$, defined as

$$g_1(x) = 1$$
, $g_2(x) = x$,..., $g_{k+1}(x) = x^k$,
 $g_{k+j+1}(x) = (x - t_j)_+^k$, $j = 1,...,m$.

- ► These types of fixed-knot models are referred to as regression splines
- ► The truncated power basis are:

- ▶ The most common case considered is k = 3, i.e., that of cubic splines. These are piecewise cubic functions that are continuous, and have continuous first, and second derivatives.
- ▶ How can we parametrize the set of a splines with knots at a given set of points $t_1,...t_m$? The most natural way is to use the **truncated power basis**, $g_1,...g_{m+k+1}$, defined as

$$g_1(x) = 1,$$
 $g_2(x) = x, ...,$ $g_{k+1}(x) = x^k,$ $g_{k+j+1}(x) = (x - t_j)_+^k,$ $j = 1, ..., m.$

- ► These types of fixed-knot models are referred to as regression splines
- The truncated power basis are:
 - Conceptually simple.

- ▶ The most common case considered is k = 3, i.e., that of cubic splines. These are piecewise cubic functions that are continuous, and have continuous first, and second derivatives.
- ▶ How can we parametrize the set of a splines with knots at a given set of points $t_1,...t_m$? The most natural way is to use the **truncated power basis**, $g_1,...g_{m+k+1}$, defined as

$$g_1(x) = 1,$$
 $g_2(x) = x, ...,$ $g_{k+1}(x) = x^k,$
 $g_{k+j+1}(x) = (x - t_j)_+^k,$ $j = 1, ..., m.$

- ► These types of fixed-knot models are referred to as regression splines
- The truncated power basis are:
 - Conceptually simple.
 - Simpler models are nested inside it, leading to straightforward tests of null hypotheses.

- ► The most common case considered is k = 3, i.e., that of cubic splines. These are piecewise cubic functions that are continuous, and have continuous first, and second derivatives.
- ▶ How can we parametrize the set of a splines with knots at a given set of points $t_1,...t_m$? The most natural way is to use the **truncated power basis**, $g_1,...g_{m+k+1}$, defined as

$$g_1(x) = 1$$
, $g_2(x) = x$,..., $g_{k+1}(x) = x^k$,
 $g_{k+j+1}(x) = (x - t_j)_+^k$, $j = 1,...,m$.

- ► These types of fixed-knot models are referred to as regression splines
- The truncated power basis are:
 - ► Conceptually simple.
 - Simpler models are nested inside it, leading to straightforward tests of null hypotheses.
 - ► Computationally inefficient (singularity problems).

Truncated power basis in R

```
> tpoly<-function(x,t,p){
+ # p order truncated polynomials
+ B=NULL
+ for(i in 1:length(t)){
+ B=cbind(B,(x-t[i])^p*(x>t[i]))}
+ B
+ 1
```


Truncated power basis in R

B-splines (de Boor, 1978)

a much better computational choice, both for speed and numerical accuracy, is the B-spline basis.

One linear B-spline

- ► Two pieces, each a straight line, everything else zero
- ▶ Nicely connected at knots $(t_1 \text{ to } t_3)$ same value
- Slope jumps at knots

One quadratic B-spline

- ► Three pieces, each a quadratic segment, rest zero
- ▶ Nicely connected at knots $(t_1 \text{ to } t_4)$: same values and slopes
- ► Shape similar to Gaussian curve.

► One cubic B-spline

- ► Four pieces, each a cubic segment, rest zero
- \blacktriangleright At knots (t_1 to t_5): same values, first and second derivatives
- Shape more similar to Gaussian curve.

B-splines in R

```
> library(splines)
> bspline <- function(x, x1, xr, ndx, bdeg){</pre>
+ dx <- (xr-x1)/ndx
 knots <- seq(xl-bdeg*dx, xr+bdeg*dx, by=dx)
 B <- spline.des(knots,x,bdeg+1,0*x)$design
+ B
+ }
>
> # xl = left boundry of domain
> # xr = right boundry of domain
> # ndx = number of intervals for B-splines.
> # bdeg = degree of B-spline
```


B-splines basis in R

B-splines basis

- ▶ Basis matrix B
- Columns are B-splines

$$B = \begin{bmatrix} B_1(x_1) & B_2(x_1) & B_3(x_1) & \dots & B_m(x_1) \\ B_1(x_2) & B_2(x_2) & B_3(x_2) & \dots & B_m(x_2) \\ B_1(x_3) & B_2(x_3) & B_3(x_3) & \dots & B_m(x_3) \\ \vdots & \vdots & \vdots & \dots & \vdots \\ B_1(x_n) & B_2(x_n) & B_3(x_n) & \dots & B_m(x_n) \end{bmatrix}$$

- ► In each row only a few non-zero elements (degree plus one)
- Demo
 - > library(gamlss.demo)
 - > demo.BSplines()

Smoothing splines

- Regularized regression over the natural spline basis
- Minimize penalized sum-of-squares:

$$PSS(f,\lambda) = \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int_{x_1}^{x_n} f''(x)^2 dx$$

- First term balances the goodness-of-fit
- ► Second term penalizes the second derivative of the function (i.e. the curvature)
- λ is the so-called smoothing parameter that controls the balance between bias and variance.
- ▶ They put a knots on every data point $x_1,...x_n$ (solver the knots selection problem).
- ▶ $0 < \lambda < \infty$ if $\lambda = 0$ the fit interpolates the data, when $\lambda \to \infty$ the second derivative goes to zero, and the fit is linear.
- ▶ in R, the smooth.spline().

Natural spline basis

- ▶ One problem with regression splines is that the estimates tend to display erractic behavior, i.e., they have high variance, at the boundaries of the domain of $x_1, ... x_n$. This gets worse as the order k gets larger
- A way to remedy this problem is to force the piecewise polynomial function to have a lower degree to the left of the leftmost knot, and to the right of the rightmost knot.
- ▶ in R, the ns().

- ► Smoothing splines often deliver similar fits to those from kernel regression.
- ► However, they are in a sense simpler.
- ▶ Both have a tuning parameter the bandwidth h for kernel regression, and the smoothing parameter λ for smoothing splines, which we would typically need to choose by cross-validation.
- ▶ But for smoothing splines, we don't require a choice of kernel.
- Smoothing splines are generally much more computationally efficient.

Penalized regression

P-splines (Eilers and Marx, 1996)

- ▶ The model: $f(x) = B\theta$, where B is regression basis and θ the new vector of coefficients which we penalize
- Example: Air pollution in NYC

Penalized regression

P-splines (Eilers and Marx, 1996)

Estimation by penalized least squares, such that:

$$egin{aligned} \min & \|m{y} - m{B}m{ heta}\|^2
ightarrow \hat{m{ heta}} &= (m{B}'m{B} + m{P})^{-1}m{B}'m{y} \ & \hat{m{y}} &= m{B}\hat{m{ heta}} \end{aligned}$$

P is a roughness penalty for smoothness controlled by λ

- ▶ Choose the size of B and λ (and penalty order)
 - ▶ $20 < \mathsf{knots} < 40$
 - $ightharpoonup 0 < \lambda < \infty$

Penalized regression

P-splines (Eilers and Marx, 1996)

ightharpoonup Choose λ to tune the fit

Penalized regression

P-splines (Eilers and Marx, 1996)

ightharpoonup Choose λ to tune the fit

Penalized regression

P-splines (Eilers and Marx, 1996)

ightharpoonup Choose λ to tune the fit

Penalized regression

P-splines (Eilers and Marx, 1996)

ightharpoonup Choose λ to tune the fit

P-splines

Knots and penalties

- Choose a moderate number of equidistant knots (k <<< n), e.g. $20 \le k \le 40$
- Add a penalty to the measure of fit, to tune smoothness
 - Discrete differences of coefficients

$$\|oldsymbol{y} - oldsymbol{B}oldsymbol{ heta}\|^2 + \lambda \sum_j (\Delta^d heta_j)^2$$

where Δ^d is a difference operator of order d, i.e.

$$\Delta oldsymbol{ heta}_j = oldsymbol{ heta}_j - oldsymbol{ heta}_{j-1}$$
 (First order)
$$\Delta^2 oldsymbol{ heta}_j = oldsymbol{ heta}_j - 2oldsymbol{ heta}_{j-1} + oldsymbol{ heta}_{j-2}$$
 (Second order)

P-splines

Penalties

- ▶ We are interested in differences on the coefficients

$$\boldsymbol{D}_1 = \left[\begin{array}{ccccc} -1 & 1 & 0 & 0 & \cdots \\ 0 & -1 & 1 & 0 & \cdots \\ 0 & 0 & -1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{array} \right] \quad \text{or} \quad \boldsymbol{D}_2 = \left[\begin{array}{ccccc} 1 & -2 & 1 & 0 & \cdots \\ 0 & 1 & -2 & 1 & \cdots \\ 0 & 0 & 1 & -2 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{array} \right]$$

- ► The penalty becomes $P = \lambda D'D$
- Estimation is done by penalized least squares:

$$\min \|\boldsymbol{y} - \boldsymbol{B}\boldsymbol{\theta}\|^2 + \boldsymbol{P} \rightarrow \hat{\boldsymbol{\theta}}_{\lambda^*} = (\boldsymbol{B}'\boldsymbol{B} + \boldsymbol{P})^{-1}\boldsymbol{B}'\boldsymbol{y}$$

 \triangleright λ^* can be selected by criteria as AIC, BIC, or GCV

Selection of λ

▶ Optimal λ^* can be selected by criteria as AIC, BIC, or GCV

$$GCV = \sum_{i=1}^{n} \frac{(y_i - \hat{y}_i)^2}{n - trace(\mathbf{H})}; \quad \mathbf{H} = \mathbf{B}(\mathbf{B}'\mathbf{B} + \lambda \mathbf{D}'\mathbf{D})^{-1}\mathbf{B}'$$
$$AIC = 2log\left(\sum_{i=1}^{n} (y_i - \hat{y}_i)^2\right) - 2\log(n) + 2\log(trace(\mathbf{H}))$$

• Evaluate on a large grid of λ 's.

Demo P-splines

► library(gamlss.demo) demoPsplines()

Smoothing and mixed models

- a semi-parametric approach
 - Reformulate $y = B\theta + \epsilon$ into:

$$m{y} = m{X}m{eta} + m{Z}m{lpha} + m{\epsilon}, \quad egin{pmatrix} m{lpha} \ m{\epsilon} \end{pmatrix} \sim \mathcal{N} egin{bmatrix} m{0} \ m{0} \end{pmatrix}, egin{pmatrix} m{G} & m{0} \ m{0} & \sigma^2 m{I} \end{pmatrix} igg]$$

where $G = \sigma_{\alpha}^2 I$, is the random effects covariance λ estimation becomes the ratio $\sigma^2/\sigma_{\alpha}^2$

- ► Flexibility:
 - Easy incorporation of smoothing in complex models: hierarchical models, multi-level models, longitudinal data, correlated errors ...
- Mixed models theory for estimation and inference
- Extension to non-gaussian data (Poisson, Binomial, etc ...)
 - ► Generalized Linear Models (GLM's) to GL(Mixed)M's

Bayesian P-splines

Lang and Brezger (2004)

- ▶ The bayesian analogue of P-splines replace differences with Gaussian random walks as priors on the regression coefficients θ_i
- First/second order θ_j , corresponds to a B-splines basis **B**:

$$\theta_j = \theta_{j-1} + v_j \quad \text{or} \quad \theta_j = 2\theta_{j-1} - \theta_{j-2} + v_j$$

where $v_i \sim N(0\tau^2)$

- ► The amount of smoothing is controlled by $\tau^2 = \sigma^2/\lambda$
- ► In general, we can rewrite P as:

$$oldsymbol{ heta}| au^2\propto exp\left(-rac{1}{2 au^2}oldsymbol{ heta}'oldsymbol{P}oldsymbol{ heta}
ight)$$

the **rank** of P is c-1 for fist order RW, and c-2 for 2nd order (improper prior)

As previously

$$\boldsymbol{y}|\boldsymbol{\theta} \sim N\left(\boldsymbol{B}\boldsymbol{\theta}, \boldsymbol{I}\sigma^2\right),$$

- Software BayesX, Inla
- Hierarchical models (mixed model representation): BuGS, JAGS

Multidimensional P-splines

► (Generalized) Additive Models (Hastie & Tibshirani, 1990)

$$\boldsymbol{\eta} = f(\boldsymbol{x}_1) + f(\boldsymbol{x}_2) + \boldsymbol{\epsilon}$$

Smooth ANOVA models (Lee and Durban, 2011)

$$\eta = f(x_1) + f(x_2) + f(x_1, x_2) + \epsilon$$

- For higher dimensions one may incur in the curse of dimensionality (computational problems)
- Other approaches includes Thin plate splines (radial basis functions). Problems: knots selection and position in larger dimensions.
- Recommended approach use for interactions: Tensor Products

GAMs with P-splines

- Use B-splines $\eta = f(x_1 + f(x_2)) = B_1\theta_1 + B_2\theta_2$
- ► Vectorize and combine

$$\boldsymbol{\eta} = [B_1 : B_2] \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \boldsymbol{B}\boldsymbol{\theta}$$

Difference penalty is blockdiagonal, i.e.

$$\boldsymbol{P} = \mathsf{bdiag}(\boldsymbol{P}_1, \boldsymbol{P}_2) = \begin{bmatrix} \lambda_1 D_1' D_1 & & \\ & \lambda_2 D_2' D_2 \end{bmatrix}$$

▶ In general $\lambda_1 \neq \lambda_2$ (Anisotopic smoothing)

Two-dimensional smoothing with P-splines

- Use B-splines $\eta = f(x_1 + f(x_2)) = B_1\theta_1 + B_2\theta_2$
- ► Vectorize and combine

$$\boldsymbol{\eta} = [B_1 : B_2] \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \boldsymbol{B}\boldsymbol{\theta}$$

▶ Difference penalty is blockdiagonal, i.e.

$$\boldsymbol{P} = \mathsf{bdiag}(\boldsymbol{P}_1, \boldsymbol{P}_2) = \begin{bmatrix} \lambda_1 D_1' D_1 & & \\ & \lambda_2 D_2' D_2 \end{bmatrix}$$

▶ In general $\lambda_1 \neq \lambda_2$ (Anisotopic smoothing)

2d P-splines

Bivariate smoothing

- lacksquare Bivariate data, $(m{x}_1, m{x}_2, m{y})$, regression model $\mathsf{E}[m{y}|m{x}_1, m{x}_2] = f(m{x}_1, m{x}_2)$
- ▶ B-splines on $m{x}_1$ and $m{x}_2$ domains, i.e. $B_k(x_1)$ and $B_l(x_2)$
- ► We aim to build a surface as a sum of Tensor products

$$f(\boldsymbol{x}_1, \boldsymbol{x}_2) = \sum_{k} \sum_{l} B_k(x_1) B_l(x_2) \theta_{kl}$$

Now we have a matrix of coefficients $\pmb{A}=[heta_{kl}]$, to be penalized with λ_1 and λ_2

E.g.: Air quality data in NYC

- Covariates:
 - $\mathbf{x}_1 = \mathsf{Daily} \; \mathsf{max} \; \mathsf{temperature} \; (\mathsf{in} \; \mathsf{F})$
 - $x_2 = \text{Wind speed (in mph)}$

2d P-splines

Bivariate smoothing

- lacksquare Bivariate data, $(m{x}_1, m{x}_2, m{y})$, regression model $\mathsf{E}[m{y}|m{x}_1, m{x}_2] = f(m{x}_1, m{x}_2)$
- lacktriangleq B-splines on $oldsymbol{x}_1$ and $oldsymbol{x}_2$ domains, i.e. $B_k(x_1)$ and $B_l(x_2)$
- ► We aim to build a surface as a sum of Tensor products

$$f(\boldsymbol{x}_1, \boldsymbol{x}_2) = \sum_{k} \sum_{l} B_k(x_1) B_l(x_2) \theta_{kl}$$

Now we have a matrix of coefficients $\pmb{A} = [\theta_{kl}]$, to be penalized with λ_1 and λ_2

E.g.: Air quality data in NYC

- Covariates:
 - $ightharpoonup x_1 = \text{Daily max temperature (in F)}$
 - $ightharpoonup x_2 = \text{Wind speed (in mph)}$

Multidimensional smoothing

Array structured data

- $lackbox{Data }Y=oldsymbol{y}_{ij}$, $i=1,...,n_1$ and $j=1,...,n_2$
- ► Array structure: n₁ rows and n₂ columns

$$Y = \begin{bmatrix} y_{11} & y_{12} & \cdots & y_{1n_2} \\ y_{21} & y_{22} & \cdots & y_{2n_2} \\ \vdots & \vdots & \ddots & \vdots \\ y_{n_11} & \cdots & \cdots & y_{n_1n_2} \end{bmatrix}$$

► Regressors:

$$\mathbf{x}_1 = (x_{11}, \cdots, x_{1n_1})'$$

 $\mathbf{x}_2 = (x_{21}, \cdots, x_{2n_2})'$

• e.g.: image data, mortality life tables, micro-arrays etc ...

Multidimensional smoothing

Array structured data

Tensor Products of B-splines

- ► Marginal Basis:
 - ▶ $B_1 = B_1(x_1)$, $n_1 \times c_1$
 - $B_2 = B_2(x_2), n_2 \times c_2$
- ► 2d B-splines Basis:
 - ► Kronecker Product (⊗) of marginal basis:

$$\boldsymbol{B} = \boldsymbol{B}_2 \otimes \boldsymbol{B}_1, \quad n_1 n_2 \times c_1 c_2$$

 Computationally efficient methods (GLAM, Currie, Durban and Eilers, 2006)

Tensor product of 2 cubic B-splines

B-spline basis of 3×3

References

- [1] Hastie T.J. and Tibshirani, R.J. (1990) *Generalized Additive Models* Chapman Hall/CRC Monographs on Statistics Applied Probability
- [2] Eilers P.H.C., and Marx B.D. (1996) Flexible Smoothing with B-splines and Penalties Statistical Science, Vol. 11, No. 2., pp. 89-102
- [3] Lang, S. and Brezger, A. *Bayesian P-Splines* Journal of Computational and Graphical Statistics. Vol 13, 2004, pages 183-212
- [4] Lee, D.-J. and Durbán, M. (2011) *P-spline ANOVA-type interaction models for spatio-temporal smoothing* Statistical Modelling, Vol. 11, Issue 1, Pages 49-69.
- [5] Ruppert, D., Wand, M.P. and Carroll, R.J. (2009) Semiparametric regression during 2003â2007 Electron. J. Statist. Volume 3 (2009), 1193-1256.
- [6] Currie, ID., Durbán M. and Eilers, PHC. (2006) Generalized linear array models with applications to multidimensional smoothing JRSSB, 68:1-22

Penalized splines in R

What's next?

http://idaejin.github.io/bcam-courses/jjseb3/R-jjseb3.html