

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15110089204

FCC REPORT

(WIFI)

Applicant: Creative trading inc

Address of Applicant: 86 Pressed Brick Drive, Brampton, ONT, L6V 4k4, Canada

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: HELLO HM54, HELLO HM58, HELLO HEM7, HELLO HMX5

Trade mark: HELLO!

FCC ID: 2AGLT- HM54

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 17 Nov., 2015

Date of Test: 17 Nov., to 25 Nov., 2015

Date of report issued: 25 Nov., 2015

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	25 Nov., 2015	Original

Tested by: Date: 25 Nov., 2015

Test Engineer

Reviewed by: 25 Nov., 2015

Project Engineer

3 Contents

			Page
1	CO	/ER PAGE	1
2	VER	RSION	2
3		NTENTS	
4		T SUMMARY	
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	18
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.6.		
	6.6.2		
	6.7	Spurious Emission	
	6.7.		
	6.7.2		
7	TES	ST SETUP PHOTO	67
8	FUT	CONSTRUCTIONAL DETAILS	68

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Creative trading inc
Address of Applicant:	86 Pressed Brick Drive, Brampton, ONT, L6V 4k4, Canada
Manufacturer:	Shenzhen Nony Electronics Co., Ltd
Address of Manufacturer:	Chuangye Building Chuangye Road, Dragon Village Dakang Henggang, Longgang Shenzhen, China

5.2 General Description of E.U.T.

<u> </u>	
Product Name:	Mobile Phone
Model No.:	HELLO HM54, HELLO HM58, HELLO HEM7, HELLO HMX5
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.3dBi
AC adapter:	Model: NOKOKO-3 Input:100-240V AC, 50/60Hz 0.5A Output:5V DC MAX 1000mA
Power supply:	Rechargeable Li-ion Battery DC3.7V-3100mAh
Remark:	Model No.: HELLO HM54, HELLO HM58, HELLO HEM7, HELLO HMX5 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name and exterior colors.

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)								
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
		4	2427MHz	7	2442MHz			
		5	2432MHz	8	2447MHz			
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

Report No: CCIS15110089204

5.3 Test environment and mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Operation mode Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.6 Test Instruments list

Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2015	03-28-2016
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016		
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016		
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.3 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207					
Test Method:	ANSI C63.4: 2009					
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz				
Class / Severity:	Class B	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz	RBW=9 kHz, VBW=30 kHz				
Limit:	Fragues ov range (MUT)	Limit (d	dBuV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
Test cotup:	 Decreases with the logarithm of the frequency. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 					
Test setup:	LISN 40cm		er — AC power			
Test Uncertainty:			±3.28 dB			
Test Instruments:	Refer to section 5.6 for details	i				
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					
·	·	-				

Measurement Data

Neutral:

Trace: 9

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: Mobile phone EUT Model : HELLO HM54 Test Mode : Wifi mode

Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: MT.liang

Remark

NOMALK	Freq	Read Level	LISN Factor	Cable Loss	and a transfer transfer	Limit Line	Over Limit	Remark
0.00	MHz	dBu∜	<u>dB</u>	₫₿	dBu∀	dBu∀	dB	
1	0.170	34.31	0.25	10.77	45.33	64.94	-19.61	QP
2	0.170	18.53	0.25	10.77	29.55	54.94	-25.39	Average
3	0.219	14.67	0.25	10.76	25.68	52.88	-27.20	Average
4	0.222	29.68	0.25	10.75	40.68	62.74	-22.06	QP
1 2 3 4 5 6 7 8 9	0.299	28.12	0.26	10.74	39.12	60.28	-21.16	QP
6	0.307	14.59	0.26	10.74	25.59	50.06	-24.47	Average
7	0.442	30.88	0.27	10.74	41.89	57.02	-15.13	QP
8	0.510	34.13	0.28	10.76	45.17	56.00	-10.83	QP
9	0.529	16.95	0.27	10.76	27.98	46.00	-18.02	Average
10	0.627	28.57	0.22	10.77	39.56	56.00	-16.44	QP
11	0.705	14.13	0.18	10.77	25.08	46.00	-20.92	Average
12	1.918	9.85	0.29	10.95	21.09	46.00	-24.91	Average

Line:

Trace: 11 Site

CCIS Shielding Room FCC PART15 B QP LISN LINE Condition

: Mobile phone : HELLO HM54 EUT Model Test Mode : Wifi mode

Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: MT.liang

Remark

CHIGIR	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
	MHz	₫₿u₹	−−−dB	d₿	dBu₹	dBu√	<u>ab</u>	
1	0.170	33.87	0.27	10.77	44.91	64.94	-20.03	QP
2	0.174	18.05	0.27	10.77	29.09	54.77	-25.68	Average
3	0.214	29.02	0.28	10.76	40.06		-22.99	
1 2 3 4 5 6 7 8 9	0.219	11.73	0.28	10.76	22.77	52.88	-30.11	Average
5	0.310	15.54	0.26	10.74	26.54	49.97	-23.43	Average
6	0.313	29.29	0.26	10.74	40.29	59.88	-19.59	QP
7	0.431	30.32	0.28	10.73	41.33	57.24	-15.91	QP
8	0.437	15.33	0.28	10.74	26.35	47.11	-20.76	Average
9	0.513	31.02	0.28	10.76	42.06	56.00	-13.94	QP
10	0.521	16.50	0.28	10.76	27.54	46.00	-18.46	Average
11	0.611	29.16	0.25	10.77	40.18	56.00	-15.82	QP
12	0.839	13.46	0.23	10.82	24.51	46.00	-21.49	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2	
Limit:	30dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.6 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data

Test CH	Ma	aximum Conduct	Limit(dBm)	Result		
	802.11b	802.11g	802.11g 802.11n(H20) 802.11n(H40)			
Lowest	17.44	15.56	15.56	13.76		
Middle	17.51	17.06	16.91	16.12	30.00	Pass
Highest	17.61	16.29	16.30	14.01		

Test plot as follows:

Highest channel

Highest channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)	
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1	
Limit:	>500kHz	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.6 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data

Test CH		6dB Emission	Limit(kHz)	Result		
	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Littiic(Ki 12)	Rosuit
Lowest	10.24	15.92	16.96	35.52		
Middle	10.24	16.24	17.20	35.68	>500	Pass
Highest	10.24	16.24	17.28	35.68		

Test CH		99% Occupy	Limit(kHz)	Result		
1031011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(Kriz)	resuit
Lowest	12.72	16.48	17.60	35.84		
Middle	12.64	16.48	17.60	35.84	N/A	N/A
Highest	12.64	16.48	17.60	35.84		

Test plot as follows:

6dB EBW

Test mode: 802.11b

Date: 17.NOV.2015 02:21:29

Lowest channel

Date: 17.NOV.2015 02:22:58

Middle channel

Date: 17.NOV.2015 02:24:05

Highest channel

Date: 17.NOV.2015 02:33:53

Lowest channel

Date: 17.NOV.2015 02:27:53

Middle channel

Date: 17.NOV.2015 02:26:28

Highest channel

Date: 17.NOV.2015 02:36:24

Lowest channel

Date: 17.NOV.2015 02:38:01

Middle channel

Date: 17.NOV.2015 02:39:04

Highest channel

Test mode: 802.11n(H40)

Date: 17.NOV.2015 02:40:40

Lowest channel

Date: 17.NOV.2015 02:42:03

Middle channel

Date: 17.NOV.2015 02:43:44

Highest channel

99% OBW

Test mode: 802.11b

Date: 17.NOV.2015 02:46:45

Lowest channel

Date: 17.NOV.2015 02:46:17

Middle channel

Date: 17.NOV.2015 02:45:52

Highest channel

Date: 17.NOV.2015 02:47:14

Lowest channel

Date: 17.NOV.2015 02:47:32

Middle channel

Date: 17.NOV.2015 02:47:55

Highest channel

Page 24 of 68

Date: 17.NOV.2015 02:48:57

Lowest channel

Date: 17.NOV.2015 02:48:39

Middle channel

Date: 17.NOV.2015 02:48:24

Highest channel

Test mode: 802.11n(H40)

Date: 17.NOV.2015 02:49:26

Lowest channel

Date: 17.NOV.2015 02:49:46

Middle channel

Date: 17.NOV.2015 02:50:04

Highest channel

6.5 Power Spectral Density

_			
Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Test CH		Power Spec	Limit(dBm)	Result		
	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBin)	Nesuit
Lowest	4.51	-1.04	-0.47	-7.02		
Middle	4.51	-0.35	0.76	-5.04	8.00	Pass
Highest	4.11	-0.68	-0.51	-6.74		

Test plot as follows:

Date: 17.NOV.2015 02:56:27

Lowest channel

Date: 17.NOV.2015 03:00:01

Middle channel

Date: 17.NOV.2015 03:01:00

Highest channel

Date: 17.NOV.2015 03:04:07

Lowest channel

Date: 17.NOV.2015 03:03:36

Middle channel

Date: 17.NOV.2015 03:03:18

Highest channel

Test mode: 802.11n(H20)

Date: 17.NOV.2015 03:04:28

Lowest channel

Date: 17.NOV.2015 03:04:46

Middle channel

Date: 17.NOV.2015 03:05:06

Highest channel

Test mode: 802.11n(H40)

Date: 17.NOV.2015 03:05:45

Lowest channel

Date: 17.NOV.2015 03:06:04

Middle channel

Date: 17.NOV.2015 03:06:28

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:			
	Spectrum Analyzer		
	Non-Conducted Table		
	Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

Date: 17.NOV.2015 03:09:26

Lowest channel

Date: 17.NOV.2015 03:23:04

Highest channel

802.11g

Date: 17.NOV.2015 03:11:00

Lowest channel

Date: 17.NOV.2015 03:19:45

Highest channel

802.11n(H20)

Date: 17.NOV.2015 03:12:30

Lowest channel

Date: 17.NOV.2015 03:17:20

Highest channel

802.11n(H40)

Date: 17.NOV.2015 03:13:22

Lowest channel

Date: 17.NOV.2015 03:14:24

Highest channel

6.6.2 Radiated Emission Method

0.0.2	Natiated Lillission Method									
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
	Test Method:	ANSI C63.10: 2009 and KDB 558074v03r03 section 12.1								
	Test Frequency Range:	2.3GHz to 2.5GHz								
	Test site:	Measurement Distance: 3m								
	Receiver setup:									
		Frequency	Detector	RBW	VBW	Remark				
		Above 1GHz	Peak RMS	1MHz 1MHz	3MHz 3MHz	Peak Value Average Value				
	Limit:		IXIVIO	TIVILIZ JIVILIZ		Average value				
	Lillin.	Freque	ency	Limit (dBuV/m @3m)		Remark				
		Above 1	IGH ₇	54.00		Average Value				
		Above 1GHz 74.00 Peak 1. The EUT was placed on the top of a rotating table 0.8 mete								
	Toot cotup:	 the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 								
	Test setup:	Horn Artienna Tower (Turnsable) Ground fisherna Plane Text Receiver Consulter								
	Test Instruments:	Refer to section 5.6 for details								
	Test mode:	Refer to section 5.3 for details								
	Test results:	Passed								
		•								

802.11b

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Mobile phone
Model : HELLO HM54
Test mode : Wifi-b-L Mode
Power Rating : AC 120V/60Hz

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK :

		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
9	MHz	dBuV	dB/m	₫B	dB	dBu∜/m	dBuV/m	₫B	
1 2	2390.000 2390.000		27.58 27.58	1 7 7 7 7 7 7		54.37 42.01			Peak Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : Mobile phone Model : HELLO HM54 Test mode : Wifi-b-L Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∛	dB/m	dB	dB	dBuV/m	dBuV/m	₫B	
1	2390,000					53.10			Peak Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mobile phone : HELLO HM54 Model : Wifi-B-H Mode Test mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: MT

REMA

ar	KK :								
	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m		
	2483,500 2483,500	200			270700	54.98 43.32	Control of the contro		The state of the s

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Mobile phone EUT Model : HELLO HM54 Test mode : Wifi-B-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq		Factor				Line	Limit	Remark	
	MHz	dBuV	—dB/m	dB	d₿	dBuV/m	dBuV/m	dB		
	2483.500				0.00					
2	2483.500	8.08	27.52	6.85	0.00	42.45	54.00	-11.55	Average	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mobile phone : HELLO HM54 Model Test mode : Wifi-G-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

	Freq			Loss				Over Limit	
	MHz	dBuV	dB/m	dB	āB	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: Mobile phone : HELLO HM54 EUT Model Test mode : Wifi-G-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

w	<i>m</i> •								
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	-dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B	*****
	2390.000								Peak

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mobile phone Model : HELLO HM54
Test mode : Wifi-G-H Mode
Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: MT

REMARK

	Read	Ant enna	Cable	Preamp		Limit	Over	
Freq								Remark
MHz	dBuV	dB/m	d₿	dB	dBuV/m	dBuV/m	<u>dB</u>	
2483.500 2483.500								

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: Mobile phone : HELLO HM54 EUT Model Test mode : Wifi-G-H Mode Power Rating: AC 120V/60Hz Environment: Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq								Remark
	MHz	dBu∜	dB/m	₫B	₫B	dBuV/m	dBuV/m	dB	
1 2	2483, 500 2483, 500								

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Mobile phone
Model : HELLO HM54
Test mode : Wifi-N20-L Mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

EMAN	CK :	Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level			
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	2390.000 2390.000					65.94 47.83			Peak Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : Mobile phone
Model : HELLO HM54
Test mode : Wifi-N20-L Mode
Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

	Read	Antenna	Cable	Preamn		Limit	Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	₫Ē	
2390.000								

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

: Mobile phone EUT Model : HELLO HM54

: Wifi-N20-H Mode Test mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	r Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB/m	₫B	dB	dBuV/m	dBuV/m	−−−dB	
1 2	2483.500 2483.500								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile phone Condition

EUT : HELLO HM54 Model Test mode : Wifi-N20-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: MT REMARK :

	Read	Ant enna	Cable	Preamn		Limit	Over	
Freq							0.004.53.54.05.05.0	Remark
MHz	dBuV	dB/m	dB	₫B	dBuV/m	dBuV/m	₫₿	
2483, 500 2483, 500								Peak Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H40)

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Mobile phone
Model : HELLO HM54
Test mode : Wifi-N40-L Mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

PETT.	Tr .								
			Ant enna				Limit		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB/m	₫₿	₫₿	dBuV/m	dBuV/m	₫B	
1	2390.000								Peak Average
6	2390.000	10.85	21.00	0.03	0.00	40.00	D4. UU	-6. 9q	Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Mobile phone : HELLO HM54 EUT Model : Wifi-N40-L Mode Test mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

Freq		Antenna Factor				the contract of the first of the	Over Limit	
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
2390,000								

Remark:

ž

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Mobile phone EUT : HELLO HM54 Model Test mode : Wifi-N40-H Mode Power Rating : AC 120V/60Hz Environment : Temp: 25.5°C Test Engineer: MT Huni:55%

REMARK

A150-	¥	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq							Limit	Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
2	2483.500 2483.500								

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Mobile phone Model : HELLO HM54
Test mode : Wifi-N40-H Mode
Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK

u	KK :								
			Antenna				Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	dB/m	−−−dB	₫B	dBuV/m	dBuV/m	dB	
	2483, 500 2483, 500						74.00 54.00		Peak Average

Remark:

2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2009 and KDB558074 section 11					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

Date: 17.NOV.2015 03:30:34

30MHz~25GHz

Middle channel

Date: 17.NOV.2015 03:41:53

Highest channel

Date: 17.NOV.2015 03:29:14

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 17.NOV.2015 03:31:34

Middle channel

Date: 17.NOV.2015 03:40:50

30MHz~25GHz

Highest channel

Date: 17.NOV.2015 03:32:26

Test mode: 802.11n(H20) Lowest channel

Date: 17.NOV.2015 03:35:35

30MHz~25GHz

Middle channel

Date: 17.NOV.2015 03:39:53

Highest channel

Date: 17.NOV.2015 03:34:11

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 17.NOV.2015 03:36:31

30MHz~25GHz

Middle channel

Date: 17.NOV.2015 03:38:32

30MHz~25GHz

Highest channel

Date: 17.NOV.2015 03:37:21

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.2	09 and 15.205	5			
Test Method:	ANSI C63.10:2	009					
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement [Distance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
·	30MHz-1GHz	Quasi-peak	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
	Above 1G112	RMS	1MHz	3MHz	Average Value		
Limit:	Freque		Limit (dBuV/	/m @3m)	Remark		
	30MHz-8		40.0		Quasi-peak Value		
	88MHz-21		43.5		Quasi-peak Value		
	216MHz-960MHz 46.0 Quasi-pea						
	960MHz-1GHz 54.0 Quasi-pea						
	Above 1	GHz	54.0		Average Value		
			74.0		Peak Value		
Test Procedure:	the ground degrees to degrees to antenna, we tower. 3. The antendate ground Both horize make the reach search to find the search s	I at a 3 meters determine the vas set 3 meters which was more and height is value and vermeasurement to the rota tab maximum respected embers and width with sion level of the rould be responded to the rota tab maximum respected to the rotatable and with the	chamber. The position of the maximum that the position of the	e table was he highest of the interference of a varie meter to fund a value of the constant of the analysis of the emiter of the analysis of			

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL

: FCC PART15 CLASS B 3m

EUT : Mobile phone

Model : HELLO HM54

Test mode : Wifi Mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK :

EMAR	in .								
	Freq		Antenna Factor				Limit Line	Over Limit	
	MHz	dBu∜	dB/m	₫B	−−−dB	dBuV/m	dBuV/m	−−−−dB	
1	64.433	35.45	10.84	0.74	29.76	17.27	40.00	-22.73	QP
2	85.298	36.71	10.45	0.88	29.60	18.44	40.00	-21.56	QP
3	109.029	39.49	12.35	1.04	29.46	23.42	43.50	-20.08	QP
4	178.758	45.14	9.62	1.36	28.98	27.14	43.50	-16.36	QP
5	238.310	37.34	11.99	1.57	28.60	22.30	46.00	-23.70	QP
6	283.979	37.35	12.75	1.72	28.48	23.34	46.00	-22.66	QP

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

: Mobile phone : HELLO HM54 EUT Model Test mode : Wifi Mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: MT REMARK:

meara	Freq		Antenna Factor				Limit Line		Remark	
	MHz	dBu∜	$\overline{dB/n}$		dB	$\overline{dBuV/m}$	dBu√/m	dB		-
1	37.548	38.50	12.96	0.50	29.92	22.04	40.00	-17.96	QP	
1 2 3 4 5	79.243	46.39	8.43	0.85	29.65	26.02	40.00	-13.98	QP	
3	123.699	49.46	9.90	1.15	29.37	31.14	43.50	-12.36	QP	
4	127.218	46.97	9.32	1.17	29.35	28.11	43.50	-15.39	QP	
5	202.810	39.62	10.64	1.39	28.81	22.84	43.50	-20.66	QP	
6	284.977	43.32	12.75	1.73	28.48	29.32	46.00	-16.68	QP	

Above 1GHz

Test mode: 80	02.11b		Test char	Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	48.96	31.54	10.58	40.22	50.86	74.00	-23.14	Vertical	
4824.00	49.22	31.54	10.58	40.22	51.12	74.00	-22.88	Horizontal	
Test mode: 80	02.11b		Test channel: Lowest			Remark: Ave	erage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	39.62	31.54	10.58	40.22	41.52	54.00	-12.48	Vertical	
4824.00	40.02	31.54	10.58	40.22	41.92	54.00	-12.08	Horizontal	

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	48.21	31.57	10.64	40.15	50.27	74.00	-23.73	Vertical
4874.00	48.83	31.57	10.64	40.15	50.89	74.00	-23.11	Horizontal
Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	39.55	31.57	10.64	40.15	41.61	54.00	-12.39	Vertical
4874.00	39.70	31.57	10.64	40.15	41.76	54.00	-12.24	Horizontal

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	47.82	31.61	10.70	40.08	50.05	74.00	-23.95	Vertical
4924.00	48.29	31.61	10.70	40.08	50.52	74.00	-23.48	Horizontal
Test mode: 80	02.11b		Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	38.76	31.61	10.70	40.08	40.99	54.00	-13.01	Vertical
4924.00	39.78	31.61	10.70	40.08	42.01	54.00	-11.99	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11g		Test char	nel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	48.65	31.54	10.58	40.22	50.55	74.00	-23.45	Vertical	
4824.00	49.14	31.54	10.58	40.22	51.04	74.00	-22.96	Horizontal	
Test mode: 80	02.11g		Test channel: Lowest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	39.64	31.54	10.58	40.22	41.54	54.00	-12.46	Vertical	
4824.00	40.12	31.54	10.58	40.22	42.02	54.00	-11.98	Horizontal	

Test mode: 80	02.11g		Test char	nel: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	49.02	31.57	10.64	40.15	51.08	74.00	-22.92	Vertical	
4874.00	48.77	31.57	10.64	40.15	50.83	74.00	-23.17	Horizontal	
Test mode: 80	02.11g		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	39.65	31.57	10.64	40.15	41.71	54.00	-12.29	Vertical	
4874.00	39.71	31.57	10.64	40.15	41.77	54.00	-12.23	Horizontal	

Test mode: 80	Test mode: 802.11g			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	48.65	31.61	10.70	40.08	50.88	74.00	-23.12	Vertical	
4924.00	49.03	31.61	10.70	40.08	51.26	74.00	-22.74	Horizontal	
Test mode: 80	02.11g		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	39.94	31.61	10.70	40.08	42.17	54.00	-11.83	Vertical	
4924.00	40.13	31.61	10.70	40.08	42.36	54.00	-11.64	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	48.87	31.54	10.58	40.22	50.77	74.00	-23.23	Vertical	
4824.00	49.27	31.54	10.58	40.22	51.17	74.00	-22.83	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	39.24	31.54	10.58	40.22	41.14	54.00	-12.86	Vertical	
4824.00	38.82	31.54	10.58	40.22	40.72	54.00	-13.28	Horizontal	

Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	49.27	31.57	10.64	40.15	51.33	74.00	-22.67	Vertical	
4874.00	48.34	31.57	10.64	40.15	50.40	74.00	-23.60	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	40.23	31.57	10.64	40.15	42.29	54.00	-11.71	Vertical	
4874.00	39.93	31.57	10.64	40.15	41.99	54.00	-12.01	Horizontal	

Test mode: 802.11n(H20)			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	49.25	31.61	10.70	40.08	51.48	74.00	-22.52	Vertical	
4924.00	49.16	31.61	10.70	40.08	51.39	74.00	-22.61	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	39.63	31.61	10.70	40.08	41.86	54.00	-12.14	Vertical	
4924.00	40.17	31.61	10.70	40.08	42.40	54.00	-11.60	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	49.16	31.55	10.61	40.19	51.13	74.00	-22.87	Vertical	
4844.00	48.72	31.55	10.61	40.19	50.69	74.00	-23.31	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	40.21	31.55	10.61	40.19	42.18	54.00	-11.82	Vertical	
4844.00	39.96	31.55	10.61	40.19	41.93	54.00	-12.07	Horizontal	

Test mode: 80	Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	49.62	31.57	10.64	40.15	51.68	74.00	-22.32	Vertical	
4874.00	49.71	31.57	10.64	40.15	51.77	74.00	-22.23	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	40.03	31.57	10.64	40.15	42.09	54.00	-11.91	Vertical	
4874.00	40.15	31.57	10.64	40.15	42.21	54.00	-11.79	Horizontal	

Test mode: 802.11n(H40)			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	49.71	31.59	10.67	40.10	51.87	74.00	-22.13	Vertical	
4904.00	49.22	31.59	10.67	40.10	51.38	74.00	-22.62	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	39.62	31.59	10.67	40.10	41.78	54.00	-12.22	Vertical	
4904.00	39.41	31.59	10.67	40.10	41.57	54.00	-12.43	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.