

Teoría de Grafos

Taller 2

1. Considere el grafo G.

- a. Seleccione una arista $e \in E(G)$ y dibuje G e y $G \cdot e$.
- b. Calcule $\tau(G e)$ y $\tau(G \cdot e)$.
- c. Escriba la matriz Q asociada al grafo G.
- d. Verifique $\tau(G) = \tau(G-e) + \tau(G\cdot e)$ calculando $\tau(G)$ por medio de la matriz Q.

2. Considere el digrafo D.

- a. Calcule el número de árboles de salida de expansión de D con raíz en u_1 .
- b. Calcule el número de árboles de entrada de expansión de D con raíz en u_4 .

3. Considere el grafo H.

a. Obtenga un árbol de expansión de H con raíz en g usando búsqueda a profundidad.

Teoría de Grafos

- b. Obtenga un árbol de expansión de H con raíz en g usando búsqueda a lo ancho.
- c. Calcule el número de árboles de expansión de H. (Requiere el uso de software).
- 4. Calcule la longitud, el camino y los pasos para determinar un camino de longitud mínima entre: c y f usando el algoritmo de **Dijkstra** en el siguiente grafo ponderado:

5. Considere la siguiente tabla de frecuencias:

Carácter	Frecuencia	Carácter	Frecuencia
A	8	I	4
D	16	О	8
Е	8	R	2
F	8	S	2
G	4	Т	4

- a. Construya un código de Huffman y codifique la cadena TEORÍADEGRAFOS.
- b. Verifique si la entropía es igual a la longitud esperada.
- 6. Escriba los recorridos pre orden, in orden y post orden para el siguiente árbol:

Profesor: Juan David Rojas Gacha