

Aula 5– Teoria dos jogos (4)

Material baseado no Coursera: Game Theory, Extensive Games Stanford&British Columbia

Prof. E. A. Schmitz

Jogos extensivos

Representação na forma normal:

não descreve ações executadas em sequencia não existe tempo

Forma extensive incorpora ações que são executadas dentro de uma estrutura temporal.

Variantes são jogos de:

informação perfeita informação imperfeita

Formalização

Um jogo de informação perfeita na forma extensiva é definido pela tupla: $G=(N,A,H,Z,\chi,\rho,\sigma,u)$, onde:

- Jogadores: N
- Ações: A
- Nós de decisão: H
- Função de acão: $\chi : H \rightarrow 2^A$
- Função de jogador: ρ : H → N
- Nós terminais: Z
- Função de sucessor: $\sigma: H \times A \rightarrow H \cup Z$
- Função de utilidade: u = (u1,...,un); ui : Z →R

Estratégias puras

Uma estratégia pura para um jogador é uma especificação completa para cada uma das ações a serem tomadas em cada um dos nós pertencentes ao agente.

Formalmente:

Let $G=(N,A,H,Z,\chi,\rho,\sigma,u)$

As estratégias puras para o agente / consiste do produto cruzado:

 $\Pi \chi(h) \mid h \text{ pertence a i}$

Ez

Exemplo

Estratégias puras para 2 $S2 = \{(C;E); (C;F); (D;E); (D;F)\}$

Estratégias puras para 2 1? $S1 = \{(A;G); (A;H); (B;G); (B;H)\}$

Equilibrio de Nash

Usando a nova definição de estratégias puras podemos reutilizar as definições de:

Estratégia mistas

Melhor resposta

Equilíbrio de Nash

1*	11		12		21		22	
	3	8	3	8	8	3	8	3
21	5	5	2	10	5	5	2	10
22	5	5	1	0	5	5	1	0

Subgame perfection

Definições:

1-Um subgame de G com raiz em h é a restrição de G aos descendentes de h.

2-O conjunto de subgames de G é definido pelos subgames de G com raiz em todos os nós de G.

3-s é chamado de "Subgame Perfect Equilibrium" (SPE) de G: sse para todo subgame G' de G, S é um NE de G'

Como *G* é um subgame de si mesmo, every SPE também é um NE. Esta definição elimina os "ameaças não-credíveis"

.

Exemplo de SPE

Quais equilibrios são sub-game perfect? BI sempre calcula um sub-game perfect (1)

Jogo do Ultimato

Jogador 1 faz uma oferta de \$x in {0..10} para o Jogador 2

Jogador 2 pode aceitar ou não.

Se aceita ele recebe x e jogador 1 recebe (10-x)

Se rejeita ambos recebem 0

Qual o resultado do jogo?

Resultado é realista?

Jogos de conhecimento imperfeito

Informação perfeita:

jogadores sabem onde estão no jogo portanto conhecem todas as jogadas do passado (incluindo os outros jogadores).

Informação imperfeita:

os nós dos jogadores são particionados em "information sets" jogadores não conseguem distinguir nós do mesmo info set.

Informação imperfeita - formalização

Um jogo de informação imperfeita na forma extensiva é uma tupla:

 $G=(N,A,H,Z,\chi,\rho,\sigma,u,I)$, onde

 $G' = (N,A,H,Z,\chi,\rho,\sigma,u)$ é um jogo de informação perfeita e

I =é um conjunto das partições de H com as seguintes características:

são consequências do mesmo conjunto de nós resultam no mesmo conjunto de nós

Exemplo

Quais são as classes de equivalencia para cada jogador?

Estratégias puras para cada jogador: escolha de uma ação em cada classe de equivalencia

