SECOND SEMESTER 2022-23 COURSE HANDOUT

Date: 09.01.2024

Course No : CS F342

Course Title : Computer Architecture

Instructors incharge : S Gurunarayanan

Instructor (Lab) : Aalelai Vendhan

1. Scope and Objective:

This course aims at introducing the concept of computer architecture and organization. It involves design aspects, and deals with the current trends in computing architecture. System resources such as memory technology and I/O subsystems needed to achieve proportional increase in performance will also be discussed.

2. Learning outcomes:

- Understand various architectural techniques used in implementation of complex logic functions
- Apply these techniques in building different computing architectures
- > Analyze different performance metrics of different computing architectures
- > Design associated systems resources to achieve proportional increase in performance.

3. Text Book:

- (T1) Patterson, David A & J L Hennessy, Computer Organization Design, Elsevier, 6th Ed., 2021.
- (T2) Samir Palnitkar, *Verilog HDL: A Guide to Digital Design and Synthesis*, Pearson Education Asia, 2nd Ed. 2006.

4. Reference Books:

(i) J.L. Hennessy & D.A. Patterson, *Computer Architecture: A Quantitative Approach*, Morgan Kauffmann, 6th Ed, 2019.

5. Course Plan:

Lecture No.	Topics to be covered	Learning Outcomes	Reference to T1
01	Introduction	Overview of the course	Ch. 1.1-1.3.
02	Introduction to Performance	Definition different	Ch. 1.5-1.10

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Hyderabad Campus

	matrics of computing	parameters	
metrics of computing architectures		parameters	
arcnitectures		impacting processor	
		Performance	
03, 04	MIPS Architecture & Instruction	Overview of different	Ch. 2
	Set	classes of	
	Overview of different classes	instructions and	
	and formats of MIPS instruction	addressing modes of	
		a select RISC	
	set	Processor.	
05-06	Computer Arithmetic: Building	Understanding the	Ch. 3.1 – 3.5
	hardware structures	design and	
		implementation of	
		different arithmetic	
		and logic blocks	
07,08,09	Data path Design: Building using	Single Cycle &	Ch. 4.1 – 4.4
	functional blocks	Multicycle Datapath	
		Implementation of	
		MIPS Processor	
10,11	Control Hardware: FSM based	Controller Design of	Appendix – D
	Design	a Multicycle	
10.10		Implementation of	GL 4.0
12,13	Exceptions &	MIPS Processor	Ch. 4.9
	Microprogramming		
14,15	Floating Point Arithmetic:	Understanding	Ch 3.6 – 3.10
	Hardware Architectures	floating point algebra	
		and its hardware	
		implementation	
16	Role of Performance		Ch. 1.4
17, 18	Memory organization-	Role of Memory in a	Ch5.1
	Introduction	Processor based	
10.20	Cacha Mamanu Cuaranization	Cache Memory	Ch F 2
19, 20	Cache Memory Organization:	Design techniques	Ch.5.2
	Mapping Schemes		
21, 22, 23	Cache Performance		Ch. 5.3

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Hyderabad Campus

24, 25,26	Pipelining – Design Issues	Designing a Pipelines Processor and	Ch. 4.5 – 4.6
27,28	Data Hazards Control Hazards	understanding the associated hazards and methods to	Ch. 4.7 Ch. 4.8
31, 32	Static Branch Prediction	handle them	Class notes
33,34,35	Dynamic Branch Prediction	effectively.	Class notes
36,37	I/O Organization		Ch. 6
38-40	Advanced Concepts in pipelining	Concept of Instruction Level Parallelism and its impact in Processor Performance	Ch. 4.12

6. Evaluation Scheme:

EC No	Evaluation Component	Duratio n (Min)	Maximu m marks	Date & Time	Remarks
1	Mid Semester Test	90	60	14/03 - 2.00 - 3.30PM	Closed Book
2	Lab/Assignments **		60	Will be announced	Open Book
3	Comprehensive examination	180	80	15/05 FN	Open Book/Closed Book

^{**} Details will be announced in the class & on course web page. Text book **T2** will be used for Lab Assignments. (A Detailed Instruction sheet and plan for Laboratory sessions will be shared separately)

7. Chamber Consultation Hours: Mon: 4PM to 5 PM

- **8. Notices:** Notices regarding the course will be put up on the CMS.
- **9.Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor - in - charge
CS F342