## MLDS HW1-2

TAs ntu.mldsta@gmail.com

### **Outline**

- Timeline
- Task Descriptions
- Q&A

## Timeline

#### **Three Parts in HW1**

- (1-1) Deep vs Shallow:
  - Simulate a funtion.
  - Train on actual task using shallow and deep models.
- (1-2) Optimization
  - Visualize the optimization process.
  - Observe gradient norm during training.
  - What happens when gradient is almost zero?
- (1-3) Generalization

#### **Schedule**

- 3/9:
  - Release HW1-1
- 3/16:
  - Release HW1-2
- 3/23:
  - Deadline to team-up by yourselves
  - Release HW1-3
- 3/30:
  - Deadline to team-up by TAs
- 4/6:
  - All HW1 due (including HW1-1, HW1-2 and HW1-3)

# Task Descriptions

## **HW1-2: Optimization**

- Three subtask
  - Visualize the optimization process.
  - Observe gradient norm during training.
  - What happens when gradient is almost zero?
- Train on designed function, MNIST or CIFAR-10...

## **Visualize the Optimization Process** 1/3

- Requirement
  - Collect weights of the model every n epochs.
  - Also collect the weights of the model of different training events.
  - Record the accuracy (loss) corresponding to the collected parameters.
  - Plot the above results on a figure.

## **Visualize the Optimization Process** 2/3

• Collect parameters of the model:



Reduce the dimension



## **Visualize the Optimization Process** 3/3

- DNN train on MNIST
- Collect the weights every 3 epochs, and train 8 times. Reduce the dimension of weights to 2 by PCA.





#### Requirement

- Record the gradient norm and the loss during training.
- Plot them on one figure.
- p-norm

$$\left\| \mathbf{x} 
ight\|_p := igg( \sum_{i=1}^n |x_i|^p igg)^{1/p}$$

In PyTorch:

```
grad_all = 0.0

for p in model.parameters():
    grad = 0.0
    if p.grad is not None:
        grad = (p.grad.cpu().data.numpy() ** 2).sum()
    grad_all += grad

grad_norm = grad_all ** 0.5
```

Other packages: The similar code can be applied.

## Observe Gradient Norm During Training 2/2





## What Happened When Gradient is Almost Zero 1/3

#### Requirement

- Try to find the weights of the model when the gradient norm is zero (as small as possible).
- Compute the "minimal ratio" of the weights: how likely the weights to be a minima.
- Plot the figure between minimal ratio and the loss when the gradient is almost zero.

#### Tips

Train on a small network.

## What Happened When Gradient is Almost Zero 2/3

1. How to reach the point where the gradient norm is zero?

First, train the network with original loss function.

- i. Change the objective function to gradient norm and keep training.
- ii. Or use second order optimization method, such as Newton's method or Levenberg-Marquardt algorithm (more stable)

#### 2. How to compute minimal ratio?

- i. Compute  $H(L(\theta_{norm=0}))$  (hessian matrix), and then find its eigenvalues. The proportion of the eigenvalues which are greater than zero is the minimal ratio.
- ii. Sample lots of weights around  $\theta_{norm=0}$ , and compute  $L(\theta_{sample})$ . The minimal ratio is the proportion that  $L(\theta_{sample}) > L(\theta_{norm=0})$

## What Happened When Gradient is Almost Zero 3/3

#### $\sin 5\pi x$

- $5\pi x$ 
  - Train 100 times.
  - Find gradient norm equal to zero by change objective function.
  - Minimal ratio is defined as the proportion of eigenvalues greater than zero.



## HW1-2 Report Questions (10%)

- Visualize the optimization process.
  - Describe your experiment settings. (The cycle you record the model parameters, optimizer, dimension reduction method, etc) (1%)
  - Train the model for 8 times, selecting the parameters of any one layer and whole model and plot them on the figures separately. (1%)
  - Comment on your result. (1%)
- Observe gradient norm during training.
  - Plot one figure which contain gradient norm to iterations and the loss to iterations. (1%)
  - Comment your result. (1%)
- What happens when gradient is almost zero?
  - State how you get the weight which gradient norm is zero and how you define the minimal ratio. (2%)
  - Train the model for 100 times. Plot the figure of minimal ratio to the loss. (2%)
  - Comment your result. (1%)
- Bonus (1%)
  - Use any method to visualize the error surface.
  - o Concretely describe your method and comment your result.

### **Example of Bonus 1/3**

- Similar method as  $\underline{\text{pg.}10}$ , but use TSNE to reduce dimensionality.
- First train with gradient descent, then use second order optimization, finally train for about 10 epochs furthur by second order optimization.
- During the 10 epochs, randomly plot nearby parameters.
- Tips:
  - Use small model (less than 50 parameters) on small tasks (simulate function)
  - Fixed number of possible input (thus number of possible output is also fixed)
  - Scale the range of randomness according to each parameters' rate of descending
  - Non-linear coloring



## **Example of Bonus 2/3**

- Perturb each parameter randomly within a small range and plot the resulting loss.
- Scale differences between parameters are significant.



## **Example of Bonus** 3/3

Plot the error surface between start and end point.



## **Allow Packages**

- python 3.6
- TensorFlow r1.4
- PyTorch 0.3 / torchvision
- Keras 2.0.7 (TensorFlow backend only)
- MXNet 1.1.0
- CNTK 2.4
- matplotlib
- scikit-learn 0.19.1
- Python Standard Library
- If you want to use other packages, please ask TAs for permission first!

#### **Submission**

- Deadline: 2018/4/6 23:59 (GMT+8)
- Write the questions of HW1-1, HW1-2 and HW1-3 in **one** report.
- Chinese unless you are not familiar with Chinese
- At most 10 pages for HW1-1, HW1-2 and HW1-3
- Your github must have several files under directory hw1/
  - Readme.\*
  - Report.pdf
  - other code
- In your Readme, state clearly how to run your program to generate the results in your report.
- Files for training is required.

## Q&A

ntu.mldsta@gmail.com