Vishay Siliconix

P-Channel 30-V (D-S) MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	$r_{DS(on)}\left(\Omega\right)$	I _D (A)		
-30	0.050 @ V _{GS} = -10 V	-5.6		
	0.080 @ V _{GS} = -4.5 V	-4.0		

P-Channel MOSFET

Ordering Information: Si5435DC-T1

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C UNLESS OTHERWISE NOTED)						
Parameter		Symbol	5 secs	Steady State	Unit	
Drain-Source Voltage		V_{DS}	-30		٧	
Gate-Source Voltage		V _{GS}	±20			
Continuous Drain Current (T _J = 150°C) ^a	T _A = 25°C	I _D	-5.6	-4.1		
	T _A = 85°C		-4.0	-2.9	Α	
Pulsed Drain Current		I _{DM}	-30		^	
Continuous Source Current ^a		I _S	-2.1	-1.1		
Maximum Power Dissipation ^a	T _A = 25°C	P _D	2.5	1.3	W	
	T _A = 85°C		1.3	0.7		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150 260		°C	
Soldering Recommendations (Peak Temperature) ^{b, c}					.0	

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Typical	Maximum	Unit	
	t ≤ 5 sec	R _{thJA}	40	50		
Maximum Junction-to-Ambient ^a	Steady State		80	95	°C/W	
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	15	20		

Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. See Reliability Manual for profile. The ChipFET is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- c. Rework Conditions: manual soldering with a soldering iron is not recommended for leadless components.

Si5435DC

Vishay Siliconix

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
Static			•	•	•		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = -250 \mu A$	-1			V	
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 100	nA	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = -24 \text{ V}, V_{GS} = 0 \text{ V}$			-1		
		$V_{DS} = -24 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 85^{\circ}\text{C}$			-5	μΑ	
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \leq -5 \text{ V}, V_{GS} = -10 \text{ V}$	-30			Α	
	^r DS(on)	$V_{GS} = -10 \text{ V}, I_D = -4.1 \text{ A}$		0.042	0.050	Ω	
Drain-Source On-State Resistance ^a		$V_{GS} = -4.5 \text{ V}, I_D = -3.1 \text{ A}$		0.070	0.080		
Forward Transconductancea	9fs	V _{DS} = -15 V, I _D = -4.1 A		8		S	
Diode Forward Voltage ^a	V _{SD}	$I_S = -1.1 \text{ A}, V_{GS} = 0 \text{ V}$		-0.8	-1.2	V	
Dynamic ^b							
Total Gate Charge	Qg			16	24		
Gate-Source Charge	Q_{gs}	V_{DS} = -15 V, V_{GS} = -10 V, I_D = -4.1 A		3.6		nC	
Gate-Drain Charge	Q _{gd}			3.1			
Turn-On Delay Time	t _{d(on)}			11	20	ns	
Rise Time	t _r	$V_{DD} = -15 \text{ V, R}_{1} = 15 \Omega$		5	10		
Turn-Off Delay Time	t _{d(off)}	V_{DD} = -15 V, R_L = 15 Ω $I_D \cong$ -1 A, V_{GEN} = -10 V, R_G = 6 Ω		40	80		
Fall Time	t _f			20	40		
Source-Drain Reverse Recovery Time	t _{rr}	I _F = -1.1 A, di/dt = 100 A/μs		30	60	1	

Notes a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%.

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

Guaranteed by design, not subject to production testing.

Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

Source-Drain Diode Forward Voltage

Capacitance

V_{DS} - Drain-to-Source Voltage (V)

On-Resistance vs. Junction Temperature

On-Resistance vs. Gate-to-Source Voltage

- Source Current (A)

Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

Normalized Thermal Transient Impedance, Junction-to-Ambient

