

Título da Apresentação

Sub-título da apresentação

Disciplina: COMP01 - Nome da Disciplina

 ${\bf Professor:} \quad {\sf Nome \ do \ professor}$

Aluno: Nome do aluno

Outro: Conteúdo adicional

mês ano Outra informação

Agenda

- 1 Introdução
- 2 Fundamentação Teórica
- 3 Proposta de Sistema
- 4 Resultados e Testes
- **5** Trabalhos Futuros

O Problema

Introdução O Problema

Quem nunca passou pela seguinte situação?

O Problema

Introdução

Poluição Sonora

De fato, em um típico ambiente urbano, rodeado de construções, avenidas, bares e restaurantes, estamos expostos à:

Poluição Sonora.

Introdução

Poluição Sonora

De fato, em um típico ambiente urbano, rodeado de construções, avenidas, bares e restaurantes, estamos expostos à:

Poluição Sonora.

Uma das piores consequências:

Perda Auditiva Induzida por Ruído (PAIR).

O Problema

Introdução

Combate à Poluição Sonora

No contexto da nossa cidade, a Prefeitura da Cidade do Recife (PCR) e outros órgãos ligados, realizam a fiscalização.

Introdução

Motivação do Trabalho

A ideia do sistema medidor desenvolvido neste trabalho tem por motivos principais:

- Diminuir níveis de poluição;
- 2 Identificar e punir emissores;
- 3 Monitorar locais remotamente;
- Viabilizar dados à população;

Fundamentação Teórica

O Som e suas características

Definição

Sons são vibrações se propagando através de um meio, onde um objeto vibrador comprime e espalha moléculas (do meio).

Fundamentação Teórica

O Som e suas características

O ouvido humano consegue perceber variações de pressão e a unidade utilizada para expressar estas medidas é o *Pascal* (Pa).

$$1 pascal = 1 Pa = 1 N/m^2$$
 (1)

Homenagem ao cientista e filósofo francês Blaise Pascal.

Fundamentação Teórica

O Som e suas características

O som *mais suave* que podemos escutar tem uma pressão medida de:

$$0,000020 \ Pa = 20 \ \mu Pa$$

Este é o limiar da audição.

Fundamentação Teórica

O Som e suas características

Já um som que nos causa dor tem uma pressão medida de:

 $2.000.000.000 \ \mu Pa$

Este é o Limiar da Dor.

Fundamentação Teórica

O Som e suas características

Seu estabelecimento está emitindo 200.000 μPa!

ou...

Dá pra falar mais baixo? a conversa de vocês está medindo $20.000 \ \mu Pa!$

É um tanto quanto inviável.

A Escala Decibél

Fundamentação Teórica

A Escala Decibél

Uma escala logarítmica resolve o problema dos valores grandes.

A Escala Decibél

Fundamentação Teórica

Valores em Pa × Valores em Decibéis

Sound Pressure Level (SPL)

Portanto, o valor de *Nível de Pressão Sonora* em decibéis, é obtido pela fórmula:

$$SPL = 20 \cdot log_{10} \left(\frac{p}{p_0}\right) \tag{2}$$

sendo p o valor medido em Pa, e p_0 o valor de referência padrão que é de 20 μPa – limiar da audição humana.

Como medir Som

Fundamentação Teórica

Medidor de Níveis de Pressão Sonora (MNPS)

O instrumento utilizado para medir níveis de pressão sonora é chamado $Medidor\ de\ Nível\ de\ Pressão\ Sonora\ (MNPS).$

Como medir Som

Fundamentação Teórica

Medidor de Níveis de Pressão Sonora (MNPS)

Algumas das principais desvantagem de um MNPS comum são:

- Valor relativamente alto;
- Impossibilidade de medição remota;
- Não salva dados medidos;

A solução mais utilizada é chamada de MNPS Integrador, com custo médio de mais de R\$2000,00 (!).

Proposta do Sistema

Solução Completa

Desenvolvimento de um sistema de hardware e software, contendo um medidor de baixo custo com capacidade de monitoramento remoto via software.

Proposta do Sistema

Diagrama do hardware

Solução em hardware

Componentes conectados em placa de protótição, medindo valores de amplitude sonora e enviando para servidor web.

Proposta do Sistema

Arduino

Propósito no sistema: atuar como o "cérebro" do sistema de *hardware*, controlando os demais componentes a partir do programa gravado no seu microcontrolador.

Proposta do Sistema

Detector de Som

Propósito no sistema: leitura da amplitude sonora do ambiente.

Proposta do Sistema Módulo ESP8266

Propósito no sistema: equipar o sistema com Internet ao conectar-se ao WiFi do local.

Proposta do Sistema

 $Liquid\ Crystal\ Display\ (LCD)$

Propósito no sistema: dispositivo de saída para que o usuário possa verificar valores medidos.

Proposta do Sistema

 $Light\ Emitting\ Diode\ (LED)$

Propósito no sistema: indicar se os níveis emitidos pelo local estão adequados ou não, de maneira intuitiva.

Projeto do Software

Proposta do Sistema

Desenvolvimento do Software

Solução em software

Aplicação em *software* para iOS, permitindo leitura dos valores enviados pelo medidor em *hardware*.

Resultados e Testes

Medição no Hardware

Os componentes do medidor foram montados em uma placa de prototipação MSB-500, sendo testados na placa tanto com alimentação de uma bateria de 9V quanto USB (5V).

A calibração do valor de referência foi feita a partir do aplicativo Decibels.

Medição no *Hardware*

Resultados e Testes Medição no *Hardware*

Medição no Hardware

Resultados e Testes

Medição no Hardware

Permanecendo ligado por volta de 1 hora e 40 minutos numa sala com pessoas conversando, os valores medidos e enviados para o servidor web podem ser vistos no gráfico.

Resultados e Testes

Software desenvolvido

A aplicação foi desenvolvida, compilada e testada em um aparelho iPhone 5, conectado à Internet. Foi possível abrir o app e ler o último valor calculado e enviados ao servidor através do hardware desenvolvido.

Resultados e Testes Software desenvolvido

 \blacklozenge Pontos no mapa do Centro do Recife: locais que podem ser monitorados.

Resultados e Testes Software desenvolvido

 \blacklozenge Usuário pode escolher que pontos quer saber valores medidos.

Resultados e Testes Software desenvolvido

♦ Usuário abre tela de Detalhes e vê último valor medido.

Nama idaiaa a malbanamantaa

Novas ideias e melhoramentos

Uma das principais ideias futuras é projetar uma placa de circuito impresso que abrigue todos os componentes. Porém também pretende-se:

- Desenvolver aplicação multi-plataforma em software: Android e Windows Phone;
- Melhorar a precisão a partir da calibração com MNPS profissional;
- Implementar features de envio de e-mail e ligação do app desenvolvido;