Обработка данных:

Размеры тел

	$a_{\scriptscriptstyle \mathrm{K}}$	a	b	c	$h_{\scriptscriptstyle m L\!I}$	$r_{\scriptscriptstyle m L\!I}$	$h_{\scriptscriptstyle m J}$	$r_{\scriptscriptstyle m f J}$
значение, см	9.2	9.9	4.9	14.9	9.6	4.3	1.6	6.15
ε	0.0005	0.0005	0.001	0.0003	0.0005	0.0012	0.0031	0.0008

Таблица 1: Размеры исследуемых тел и их погрешности

Абсолютная погрешность измерения размеров линейкой составляет 0.005 см.

Периоды колебаний

	Γ	T	1z	T_{1}	lx	T	ly	T	ld	T	le	T	1 p	T_1	lm	T_{ϵ}	2x	T_{2}	2y	T_{2}	2z
$T_{\rm cl}$, c	3.0	53	3.0	58	3.0	61	3.0	06	3.0	64	3.0	63	3.0	64	3.	.8	4.1	.02	3.2	55
$\sigma_{ ext{c.i.y}}$	_{/Ч} , с	0.0	01	0.0	04	0.0	08	0.0	07	0.0	08	0.0	005	0.0	07	0.0	26	0.0	09	0.0	J1
$\sigma_{\text{no.}}$	пн, с	0.1	13	0.1	13	0.	13	0.	13	0.	13	0.	13	0.	13	0.1	.33	0.1	13	0.	13
$\varepsilon_{\scriptscriptstyle \Pi}$	олн	0.0	427	0.0	425	0.0	425	0.0	426	0.0	425	0.0	425	0.0	425	0.0	349	0.0	318	0.0	$\overline{401}$
	T	,	T_{i}	2d	T_{i}	2e	T_2	2m	T_{2}	2p	\overline{I}	p	T	Зх	T_{3}	Ву	T_{ϵ}	4x	T_{4}	1y	
	$T_{\rm cp}$, с	3.4	92	3.3	558	3.8	78	3.4	46	2.5	57	3.5	06	4.5	06	3.2	266	3.2	47	

$T_{\rm cp},{ m c}$	3.492	3.358	3.878	3.446	2.557	3.506	4.506	3.266	3.247
$\sigma_{\text{случ}}, \text{с}$	0.009	0.011	0.017	0.008	0.007	0.398	0.453	0.457	0.366
$\sigma_{\text{полн}}$, с	0.13	0.13	0.131	0.13	0.13	0.419	0.472	0.475	0.388
$\varepsilon_{\mathrm{полн}}$	0.0373	0.0389	0.0338	0.0378	0.0509	0.1195	0.1046	0.1455	0.1196

Таблица 2: Средние значения периодов колебаний $(T_{\rm cp})$ и их погрешности

Систематическая погрешность для всех измерений одинакова и складывается из погрешности секундомера и скорости реакции экспериментатора, которая определяется с помощью измерения временного промежутка между двумя нажатиями на кнопку. В моем случае скорость реакции составляет 0.13 с, а погрешность секундомера - 0.001 с, следовательно ей можно пренебречь и принять систематическую погрешность равной 0.13 с.

Проверка соотношений периодов

• Параллелепипед

$$\begin{split} \frac{a^2T_{2\mathrm{x}}^2+b^2T_{2\mathrm{y}}^2+c^2T_{2\mathrm{z}}^2}{a^2+b^2+c^2} &= T_{2\mathrm{d}}^2, \quad \frac{a^2T_{2\mathrm{x}}^2+b^2T_{2\mathrm{y}}^2+c^2T_{2\mathrm{z}}^2}{a^2+b^2+c^2} = (12.125\pm0.6219)c^2, \quad T_{2\mathrm{d}}^2 &= (12.194\pm0.26)c^2 \\ \frac{b^2T_{2\mathrm{y}}^2+c^2T_{2\mathrm{z}}^2}{c^2+b^2} &= T_{2\mathrm{e}}^2, \quad \frac{b^2T_{2\mathrm{y}}^2+c^2T_{2\mathrm{z}}^2}{c^2+b^2} &= (11.203\pm0.7708)c^2, \quad T_{2\mathrm{e}}^2 &= (11.276\pm0.26)c^2 \\ \frac{a^2T_{2\mathrm{x}}^2+c^2T_{2\mathrm{z}}^2}{c^2+a^2} &= T_{2\mathrm{p}}^2, \quad \frac{a^2T_{2\mathrm{x}}^2+c^2T_{2\mathrm{z}}^2}{c^2+a^2} &= (11.773\pm0.6637)c^2, \quad T_{2\mathrm{p}}^2 &= (11.875\pm0.26)c^2 \\ \frac{b^2T_{2\mathrm{y}}^2+a^2T_{2\mathrm{x}}^2}{a^2+b^2} &= T_{2\mathrm{m}}^2, \quad \frac{b^2T_{2\mathrm{y}}^2+a^2T_{2\mathrm{x}}^2}{a^2+b^2} &= (14.91\pm0.8386)c^2, \quad T_{2\mathrm{m}}^2 &= (15.039\pm0.262)c^2 \end{split}$$

Ky6

В справедливости соотношения: $T_{1z} = T_{1x} = T_{1y} = T_{1d} = T_{1e} = T_{1p} = T_{1m}$ можно убедиться, исходя из таблицы 2.

$$\begin{split} \frac{T_{1\mathrm{x}}^2 + T_{1\mathrm{y}}^2 + T_{1\mathrm{z}}^2}{3} &= T_{1\mathrm{d}}^2, \quad \frac{T_{1\mathrm{x}}^2 + T_{1\mathrm{y}}^2 + T_{1\mathrm{z}}^2}{3} = (9.347 \pm 0.4587)c^2, \quad T_{1\mathrm{d}}^2 = (9.364 \pm 0.26)c^2 \\ &\frac{T_{1\mathrm{y}}^2 + T_{1\mathrm{z}}^2}{2} = T_{1\mathrm{e}}^2, \quad \frac{T_{1\mathrm{y}}^2 + T_{1\mathrm{z}}^2}{2} = (9.982 \pm 0.562)c^2, \quad T_{1\mathrm{e}}^2 = (9.388 \pm 0.26)c^2 \\ &\frac{T_{1\mathrm{x}}^2 + T_{1\mathrm{z}}^2}{2} = T_{1\mathrm{p}}^2, \quad \frac{T_{1\mathrm{x}}^2 + T_{1\mathrm{z}}^2}{2} = (9.973 \pm 0.5617)c^2, \quad T_{1\mathrm{p}}^2 = (9.382 \pm 0.26)c^2 \\ &\frac{T_{1\mathrm{y}}^2 + T_{1\mathrm{x}}^2}{2} = T_{1\mathrm{m}}^2, \quad \frac{T_{1\mathrm{y}}^2 + T_{1\mathrm{x}}^2}{2} = (11.905 \pm 0.5625)c^2, \quad T_{1\mathrm{m}}^2 = (9.388 \pm 0.26)c^2 \end{split}$$

• Цилиндр

$$\frac{T_{3y}^2}{T_{3x}^2} = 1 + \frac{h_{\pi}^2}{3r_{\pi}^2}, \quad \frac{T_{3y}^2}{T_{3x}^2} = (1.652 \pm 0.525), \quad 1 + \frac{h_{\pi}^2}{3r_{\pi}^2} = (2.661 \pm 0.0042)$$

• Диск

$$\frac{T_{4\mathrm{y}}^2}{T_{4\mathrm{x}}^2} = 1 + \frac{h_{\mathrm{\pi}}^2}{3r_{\mathrm{\pi}}^2}, \quad \frac{T_{4\mathrm{y}}^2}{T_{4\mathrm{x}}^2} = (0.988 \pm 0.3721), \quad 1 + \frac{h_{\mathrm{\pi}}^2}{3r_{\mathrm{\pi}}^2} = (1.023 \pm 0.0001)$$

Эллипсоиды инерции

Поскольку мы не знаем сами моменты инерции, но знаем их соотношения и пропорциональность квадратам периодов, построим сечения эллипсоидов в произвольном масштабе, согласно уравнению эллипсоида:

$$\frac{x^2}{A^2} + \frac{y^2}{B^2} + \frac{z^2}{C^2} = 1$$

• Параллелепипед

$$A = \frac{1}{\sqrt{T_{2x}^2 - T_p^2}} = 0.356, \qquad B = \frac{1}{\sqrt{T_{2y}^2 - T_p^2}} = 0.312, \qquad C = \frac{1}{\sqrt{T_{2z}^2 - T_p^2}} = 0.496$$

Сечение плоскостью хг

Сечение плоскостью ху

Сечение плоскостью ух