Exercise 1

Halvor Linder Henriksen

1 Regular languages, NFAs and DFAs

1.1

b*a?a?(ba?a?)*

1.2

State machines for b*, a?, b respectively.

The full NFA obtained form using the MYT-algorithm on the regular expression.

1.3

 $epsilon\text{-}closure(0) = \{0,\!1,\!2,\!4,\!5,\!7,\!8,\!9\}$

State	a	b
$\{0,1,2,4,5,7,8,9\}\ (0)$	${3,4,5,6,7,8,9}$ (1)	$\{1,2,4,5,7,8,9,10,11,13,14,16\}$ (2)
${3,4,5,6,7,8,9}$ (1)	$\{6,7,8,9\}\ (3)$	$\{10,11,13,14,16,8\}$ (4)
$\{1,2,4,5,7,8,9,10,11,13,14,16\}$ (2)	${3,4,5,6,7,8,9,13,14,15,16}$ (5)	$\{1,2,4,5,7,8,9,10,11,13,14,16\}$ (2)
$\{6,7,8,9\}\ (3)$	{} (9)	$\{10,11,13,14,16,8\}$ (4)
$\{10,11,13,14,16,8\}\ (4)$	$\{12,13,14,15,16,8,9\}$ (6)	$\{10,11,13,14,16,8\}$ (4)
${3,4,5,6,7,8,9,13,14,15,16}$ (5)	$\{6,7,8,9,15,16\}\ (7)$	$\{10,11,13,14,16,8\}$ (4)
$\{12,13,14,15,16,8,9\}$ (6)	$\{15,16,8,9\}$ (8)	$\{10,11,13,14,16,8\}$ (4)
$\{6,7,8,9,15,16\}\ (7)$	{} (9)	$\{10,11,13,14,16,8\}$ (4)
$\{15,16,8,9\}\ (8)$	{} (9)	$\{10,11,13,14,16,8\}\ (4)$

The above table provides the iterations of the subset construction algorithm

Transition table for the resulting DFA:

State	a	b
0	1	2
1	3	4
2	5	2
3	9	4
4	6	4
5	7	4
6	8	4
7	9	4
8	9	4
9	9	9

Graph representation:

1.4

To find the minimum DFA, we can find the N-equivalences until fixed point.

N = 0

The 0 equivalence is given by the non-final and final states $\,$

 $\{9\}\ \{0,1,2,3,4,5,6,7,8\}$

N = 1

$$\{9\}\ \{0,1,2,4,5,6\}\ \{3,7,8\}$$

$$N = 2$$

$$\{9\}\ \{0,2,4\}\ \{1,5,6\}\ \{3,7,8\}$$

$$N = 3$$

$$\{9\}\ \{0,2,4\}\ \{1,5,6\}\ \{3,7,8\}$$

We see that a fixed point is reacherd in the iterations, giving the states of the minimum DFA.

Transition table for the resulting DFA:

State	a	b
0	1	0
1	2	0
2	3	0
3	3	3

Graph representation

1.5

In the DFA, all final states could be turned into non-final states and vice versa to produce a DFA recognizing the "opposite" language.

Regex that matches the expression:

$$(b*a*)*(aaa)(b*a*)*$$

The DFA was the easiest

2 DFA for a small language

2.1

$$<\!\!\mathrm{statement}\!\!> ::= (\ \mathrm{``dx="}<\!\!\mathrm{integer}\!\!> | \ \mathrm{``dy="}<\!\!\mathrm{integer}\!\!> | \ \mathrm{"go"} \) \ \mathrm{"`n"}$$

2.2

