Energy

Place

입자 (particles)

파동 (waves)

Place

빛 = 전자기파 = 전자기 복사선

그림 3.4 전자기 스펙트럼

전자기 스펙트럼의 다양한 파장

- 감마선(γ ray): 10⁻¹¹ m
- X선(X ray): 10⁻¹¹~10⁻⁸ m
- 자외선(UV, ultra-violet ray): $10^{-8} \sim 4 \times 10^{-7} \text{ m}(400 \text{ nm})$
- 가시광선(visible light): $4 \times 10^{-7} \sim 7.5 \times 10^{-7} \text{ m}(400 \text{ nm} \sim 750 \text{ nm})$
- 적외선(IR, infrared ray): $\sim 10^{-3.5}$ m
- 마이크로파(microwave): ~10⁻¹ m
- 라디오파(radio wave): 10^{-1} m 이상의 장파장

빛과 물질

그림 3.3 파동인 빛의 진폭, 파장의 형태

파수 (wavenumber) ?

$$\lambda(\mathbf{m}) \times \nu(\mathbf{s}^{-1}) = c (\mathbf{m}/\mathbf{s})$$

$$v = \frac{c}{\lambda}$$

$$c = 2.9979 \times 10^8 \text{ m} \cdot \text{s}^{-1}$$

예제 3.3

적색광(파장 700 nm)의 진동수(v)와 파수를 각각 구하시오.

빛과 물질

Blackbody Radiation

Energy spectral density from a black body

빛을 전기로 바꾼다: 광전효과

https://news.samsungdisplay.com/27157/

Planck

: 원자의 진동에너지 (Vibrational Energy) 는 양자화 (quantized) 되어 있다.

양자 1개의 에너지

$$E = h \times v$$

Planck's constant (*h*) *h* = 6.63 x 10⁻³⁴ J•s

$$h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$$

빛의 에너지(E) = 전자기 복사 에너지 = 광자 에너지

예제 3.4 어떤 광자의 에너지가 2.00×10^{−18} J이다. 이 빛의 진동수와 파장을 각각 구하시오.

예제 3.5

적색광(700 nm)에서 각 광자의 에너지를 구하시오.

Max Planck (1900년)

■ 막스 플랑크 (Max Planck)

- 양자 개념의 창시자지만, 본인은 믿지 않았다!
- 에너지의 양자화는 "수학적 트릭"일 뿐이라고 생각함
- 양자역학의 아버지지만 마음은 고전물리학자

♦ 알베르트 아인슈타인 (Albert Einstein)

- 광전효과로 양자 개념 도입 (1905)
- 하지만 확률 중심 양자역학엔 회의적
 - → "신은 주사위를 던지지 않는다."
- 양자이론의 창시자이자 비판자

∮ 닐스 보어 (Niels Bohr)

- 양자역학의 철학적 수호자
- 아인슈타인과 1927년 솔베이 회의에서 매일 논쟁
- 결국 대부분의 과학자들은 보어의 해석을 따르게 됨

스펙트럼과 원자

그림 3.5 태양광의 연속 스펙트럼과 가열된 리튬의 선 스펙트럼

수소의 방사선 스펙트럼

- 수소기체를 밀폐 유리관안에서 전기로 가열하여 발생하는 복사선의 스펙트럼

수소 원자 의 전자 바닥 상태 (ground state)

그림 3.6 수소 원자의 전자 전이와 스펙트럼 계열

발머의 식
$$\frac{1}{\lambda} = v = R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

$$n_1$$
, n_2 = 정수(전자의 궤도 위치, n_1 < n_2)

R (뤼드베리 상수) = $1.09678 \times 10^7 \text{ m}^{-1}$

★ 발머의 식은 전자가 하나만 있는 수소원자에만 적용할 수 있다.

보어 이론

그림 3.7 원자의 보어 모형(행성 모형)

$$E_n = \frac{-B}{n^2}$$

 E_n : 특정 궤도의 에너지

n: 정수

 $B = 2.179 \times 10^{-18} \text{ J}$

◎ 수소 원자의 각 궤도(껍질)의 에너지

	첫 번째 껍질	두 번째 껍질	세 번째 껍질
에너지	$-2.179 \times 10^{-18} \text{ J}$	$-5.445 \times 10^{-19} \text{ J}$	$-2.420 \times 10^{-19} \text{ J}$

예제 3.7

수소 원자의 전자가 첫 번째 껍질에서 두 번째 껍질(들뜬 상태)로 전이하면 어떤 변화가 일어나는가?

예제 3.7

수소 원자의 전자가 첫 번째 껍질에서 두 번째 껍질(들뜬 상태)로 전이하면 어떤 변화가 일어나는가?

<mark>문제풀이</mark>

교재 p. 69 : 연습문제 3.5

수소원자의 3번째 껍질에서 1번째 껍질로 전자 이전, 에너지 차이(△E)?

양자수 (Quantum Number)

전자가 <u>파동</u>의 성질을 갖는다. 이게 무슨 뜻 ??

빛의 파동성

참고: Newton Highlight2-양자론

De Broglie (1924)

광파가 입자(photon, 광자)들의 흐름처럼 행동한다면 → 전자는 파동의 성질을 갖는다.

전자가 수소 원자내에서 <mark>정상파</mark> 처럼 행동한다면

전자의 진동수 증가 → more energy carry on

보어 이론 + De Broglie 의 전자 파동

Quantum Number (양자수)

전자가 분포되 있는 공간 description

Atomic orbitals 3D

https://www.youtube.com/watch?v=Nr40fnfHccQ

- 스핀 양자수(*m_s*, spin quantum number)
 - 오비탈 내부의 전자의 회전(스핀)방향을 의미
 - 오비탈 하나당 전자는 최대 2개만 들어갈 수 있으므로,
 스핀 양자수는 두 가지만 존재함.

- 각운동량 양자수(*l*, angular momentum quantum number)
 - 오비탈(=원자궤도)의 3차원적인 모양을 결정하는 수
 - 부껍질(subshell)의 의미하는 자연수

오비탈의 종류	각운동량 양자수, <i>l</i>
S	0
p	1
d	2
f	3
-	_

◎ 오비탈(=원자궤도): 원자 핵 주변의 전자가 존재할 확률이 90%인 공간오비탈 하나당 전자는 최대 2개 까지 들어갈 수 있다.

- 자기 양자수(*m*_l, magnetic quantum number)
 - 오비탈의 공간적인 배향을 구분하는 의미하는 정수

$$-l \leq m_l \leq +l$$

3p orbital 에 있는 전자의 4 개 양자수를 쓰시오

n=3 p 오비탈이므로 $\ell=1$,

조별토론 3-6

[연습문제 3.9] He 원자에서 주양자수 (n) 과 각운동량 양자수 (l) 값이 주어 졌을때 해당 **오비탈의 이름**을 쓰고, **에너지의 크기**를 부등호로 비교하시오.

(a)
$$n = 4$$
, $l = 1$ (b) $n = 2$, $l = 1$ (c) $n = 3$, $l = 1$ (d) $n = 4$, $l = 0$

오비탈의 모양

(1) s 오비탈: 대칭적인 구형(공 모양)

그림 3.10 s 오비탈의 모양과 크기

(2) p 오비탈: 귓불 모양(lobe)

그림 3.11 세 p 오비탈의 지향성

그림 3.12 다섯 개의 3*d* 오비탈의 형태

오비탈 모양 (orbital, I)

그림 3.8 원자에서 전자의 에너지 상태

핵 가까이의 밀도 : 2s 궤도함수 > 2p 궤도함수

침투성: 2s 궤도함수 > 2p 궤도함수

핵에 대해 잡혀있는 정도:2s 궤도함수 > 2p 궤도함수

궤도함수의 포텐셜에너지: 2s 궤도함수 < 2p 궤도함수

- 자기 양자수(*m*_l, magnetic quantum number)
 - 오비탈의 공간적인 배향을 구분하는 의미하는 정수

$$-l \leq m_l \leq +l$$

산소 원자 (바닥상태)의 전자배치를 나타내시오.

오비탈에 전자가 채워질때는 가장 <u>안정한 오비탈부터</u> 순차적으로.

O ______

표 3.4 양자수와 부껍질의 관계

주양자수	<i>I</i> 값	부껍질	표현	최대 전자 수		
n=1	0	1 <i>s</i>	$1s^2$	2		
2	0	2s	$2s^2$	8		
n=2	1	2p	$2p^6$	o		
	0	3 <i>s</i>	$3s^2$			
n=3	1	3 <i>p</i>	$3p^6$	18		
	2	3 <i>d</i>	$3d^{10}$			
	0	4s	$4s^2$			
n — 4	1	4 <i>p</i>	$4p^6$			
n=4	2	4 <i>d</i>	$4d^{10}$	32		
	3	4 <i>f</i>	4 <i>f</i> ¹⁴			

[※] 표의 값 읽기: $4s^2$ 는 "four s two"(2는 제곱수가 아님)라고 읽는다.

파울리의 배타 원리(Pauli exclusion principle)

"같은 원자 내의 어떤 전자도 <u>네 개의 양자수</u>가 모두 같은 값을 가질 수 없다." (n, l, m_l, m_s)

상자기성(paramagnetic) 물질

짝을 이루지 않은 스핀의 전자들을 가지고 있어 자석에 끌리는 물질

O (산소 원자) 전자배치:

반자기성(diamagnetic) 물질

전자의 스핀이 모두 짝을 이루고 있어 전자의 자기 효과가 상쇄되어 자석에 끌리지 않는 물질

Ne (네온) 전자배치:

■ 훈트 규칙(Hund's rule)

"부껍질에 있는 전자들은 가능한 홀전자 수가 많은 배치를 하려는 경향이 있다."

축소 전자 배치를 적을 때에는 해당 원소에 가장 가까우면서 원자 번호가 작은 18족 원소의 전자 배치를 대괄호([])로 묶어서 간단히 표시하고, 나머지 전자 배치만을 추가로 적는다.

원자 번호	원소	전자 배치	축소 전자 배치
11	Na	$1s^2 2s^2 2p^6 3s^1$	$[Ne]3s^1$
12	Mg	$1s^2 2s^2 2p^6 3s^2$	$[Ne]3s^2$
13	Al	$1s^2 2s^2 2p^6 3s^2 3p^1$	$[Ne]3s^2 3p^1$
14	Si	$1s^2 2s^2 2p^6 3s^2 3p^2$	[Ne] $3s^2 3p^2$
15	Р	$1s^2 2s^2 2p^6 3s^2 3p^3$	$[Ne]3s^2 3p^3$
16	S	$1s^2 2s^2 2p^6 3s^2 3p^4$	[Ne] $3s^2 3p^4$
17	Cl	$1s^2 2s^2 2p^6 3s^2 3p^5$	$[\text{Ne}]3s^2 3p^5$
18	Ar	$1s^2 2s^2 2p^6 3s^2 3p^6$	$[Ne]3s^2 3p^6$

그림 3.8 원자에서 전자의 에너지 상태

그림 3.13 쌓음 원리

$$1s \rightarrow 2s \rightarrow 2p \rightarrow 3s \rightarrow 3p \rightarrow 4s \rightarrow 3d \rightarrow 4p \rightarrow 5s \rightarrow 4d \rightarrow 5p \rightarrow 6s \rightarrow 4f \rightarrow 5d \rightarrow 6p \rightarrow 7s \rightarrow 5f \rightarrow 6d \rightarrow 7p$$

3번 Li : 1*s*²2*s*1

11번 Na : 1*s*²2*s*²2*p*⁶3*s*1

	4s	3d	
23번, V : [Ar, 18]			
24번, Cr : [Ar, 18]			
29번, Cu : [Ar, 18]			

유효 핵전하(effective nuclear charge, Z_{eff})

- 가려막기 효과를 포함하여 핵 의 전하가 전자에 미치는 영향

$$Z_{\text{eff}} = Z_{\text{actual}} -$$
가림 상수

예제 3.11

17족 할로젠 원소 플루오린, 염소, 브로민, 아이오딘의 전자 배치를 쓰고, 이들이 비슷한 화학적 성질을 나타내는 이유를 설명하시오.

• 전자 배치 (electron configuration)

그림 4.1 주기율표

문제풀이 3장

- Q1. 전자 배치 쓰기: 산소 (oxygen), 황 (sulfur), 칼슘 (calcium), 타이타늄 (Titanium), 셀레늄 (selenium)
- Q2. 연습문제 3.21 (p.70) 전자배치를 나타내고, 홀전자의 수를 구하시오.

(1) $_{8}O$ (2) $_{15}P$ (3) $_{20}Ca^{2+}$ (d) $_{17}^{*Lanthanide Series}$

†Actinide Series

1	PERIODIC TABLE OF THE ELEMENTS												18				
H													2				
1.008	2											13	14	15	16	17	He 4.00
3	4											5	6	7	8	9	10
Li	Be											В	C	N	O	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
-11	12											13	14	15	16	17	18
Na	Mg	_		_		_						Al	Si	P	S	Cl	Ar
22.99	24.30	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.06	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
		~~	•••	٠,	CI	14111	1.6		141	Cu	211	Ga	Ge	PAS .	Se	DI	121
39.10	40.08	44.96	47.90	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
39.10 37	40.08 38																
2000	10100	44.96	47.90	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	44.96 39	47.90 40	50.94	52.00 42	54.94 43	55.85 44	58.93 45	58.69 46	63.55 47	65.39 48	69.72 49	72.59 50	74.92 51	78.96 52	79.90 53	83.80 54
37 Rb	38 Sr	44.96 39 Y	47.90 40 Zr	50.94 41 Nb	52.00 42 Mo	54.94 43 Tc	55.85 44 Ru	58.93 45 Rh	58.69 46 Pd	63.55 47 Ag	65.39 48 Cd	69.72 49 In	72.59 50 Sn	74.92 51 Sb	78.96 52 Te	79.90 53 I	83.80 54 Xe
37 Rb 85.47	38 Sr 87.62	44.96 39 Y 88.91	47.90 40 Zr 91.22	50.94 41 Nb 92.91	52.00 42 Mo 95.94	54.94 43 Tc (98)	55.85 44 Ru 101.1	58.93 45 Rh 102.91	58.69 46 Pd 106.42	63.55 47 Ag 107.87	65.39 48 Cd 112.41	69.72 49 In 114.82	72.59 50 Sn 118.71	74.92 51 Sb 121.75	78.96 52 Te 127.60	79.90 53 I 126.91	83.80 54 Xe 131.29
37 Rb 85.47 55 Cs 132.91	38 Sr 87.62 56	44.96 39 Y 88.91 57	47.90 40 Zr 91.22 72	50.94 41 Nb 92.91 73	52.00 42 Mo 95.94 74	54.94 43 Tc (98) 75	55.85 44 Ru 101.1 76	58.93 45 Rh 102.91 77	58.69 46 Pd 106.42 78	63.55 47 Ag 107.87	65.39 48 Cd 112.41 80	69.72 49 In 114.82 81	72.59 50 Sn 118.71 82	74.92 51 Sb 121.75 83	78.96 52 Te 127.60 84	79.90 53 I 126.91 85	83.80 54 Xe 131.29 86
37 Rb 85.47 55 Cs	38 Sr 87.62 56 Ba	44.96 39 Y 88.91 57 * La	47.90 40 Zr 91.22 72 Hf	50.94 41 Nb 92.91 73 Ta	52.00 42 Mo 95.94 74 W	54.94 43 Tc (98) 75 Re	55.85 44 Ru 101.1 76 Os	58.93 45 Rh 102.91 77 Ir	58.69 46 Pd 106.42 78 Pt	63.55 47 Ag 107.87 79 Au	65.39 48 Cd 112.41 80 Hg	69.72 49 In 114.82 81 Tl	72.59 50 Sn 118.71 82 Pb	74.92 51 Sb 121.75 83 Bi	78.96 52 Te 127.60 84 Po	79.90 53 I 126.91 85 At	83.80 54 Xe 131.29 86 Rn
37 Rb 85.47 55 Cs 132.91	38 Sr 87.62 56 Ba 137.33	44.96 39 Y 88.91 57 * La 138.91	47.90 40 Zr 91.22 72 Hf 178.49	50.94 41 Nb 92.91 73 Ta 180.95	52.00 42 Mo 95.94 74 W 183.85	54.94 43 Tc (98) 75 Re 186.21	55.85 44 Ru 101.1 76 Os 190.2	58.93 45 Rh 102.91 77 Ir 192.2	58.69 46 Pd 106.42 78 Pt 195.08	63.55 47 Ag 107.87 79 Au 196.97	65.39 48 Cd 112.41 80 Hg	69.72 49 In 114.82 81 Tl	72.59 50 Sn 118.71 82 Pb	74.92 51 Sb 121.75 83 Bi	78.96 52 Te 127.60 84 Po	79.90 53 I 126.91 85 At	83.80 54 Xe 131.29 86 Rn

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.91	144.24	(145)	150.4	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)