Assignment #6 Blake Evans

Problem #1)

Hamiltonian of electron is H=Ho-90L.S

(1) Find energy eigenstates

(1) Find the number of degenerate States for each energy level.

(3) If at t=0 an electron is at 2p state with spin in the positive z direction, Calculate (Lz(1)) = (74) | Lz|74)

(1)
$$H = H_0 - 9L \cdot 5$$
 $\hat{J} = \hat{L} + \hat{S}$
 $\hat{J} \cdot \hat{J} = (\hat{L}^2 + \hat{S}^2 + 2L^2 \cdot S^2)$
 $\hat{L} \cdot \hat{S} = (\hat{J}^2 - \hat{L}^2 - S^2) / L$
 $(\hat{L} \cdot \hat{S}) = [\hat{J}(\hat{J} + 1) - \hat{L}(\hat{L} + 1) - \hat{S}(\hat{S} + 1)] / L / L$
 $(\hat{H}) = (H_0 - 9L \cdot \hat{S})$
 $(\hat{H}) = (H_0 - 9L \cdot \hat{S})$

From this we can see that our namiltonian has a dependency on Variables: n. J. L (J is dependent on m because Bo said so). And we can say our eigenstate is

In,J,L,M)

(2) Looking at our eigenstate, Our Hamiltonian has a dependancy on all the variables but m. So, for every m value, we have a different eigenvalue and thus will have m = 2j +1 degenerate States.

2j+1 degenerate States

(3) \(\psi(0) = |2,1,1\) \(\rightarrow\) \(\lambda_1 = 1, M_2 = 1, M_2 = 1, \(\gamma > 1\)

We can re-write this as $\ln J_1 \, \ell_1 \, J_2 = M_0 + M_5$) where $M_2 = 1$, $M_5 = \frac{1}{2} - \frac{3}{2}$

Our state is then $| \gamma(\alpha) \rangle = \sum_{J,J_{\epsilon}} C_{J,J_{\epsilon}} | 2,J_{\epsilon} | 1,\frac{3}{2} \rangle$

we know Q = 1 and S = 1/2, and $|Q - S| \le |Q \le 1$. Meaning |J = 1/2, 3/2, which makes our state

| 十四) = C: 12, 1, 3/2 + C: 12, 2, 1, 3/2 >

Now, looking at the table, we see

Table 11.3 Clebsch-Gordan Coefficients for $j_1 = 1$ and $j_2 = \frac{1}{2}$

$j_1 = 1$		j	3 2	3/2	3/2	3/2	1/2	1/2
	$j_2 = \frac{1}{2}$	m	3 2	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{3}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$
m ₁	m_2		Y					
1	$\frac{1}{2}$	-	1	0	0	0	0	0
1	$-\frac{1}{2}$		0	$\frac{1}{\sqrt{3}}$	0	0	$\sqrt{\frac{2}{3}}$	0
0	$\frac{1}{2}$		0	$\sqrt{\frac{2}{3}}$	0	0	$-\frac{1}{\sqrt{3}}$	0
0	$-\frac{1}{2}$		0	0	$\sqrt{\frac{2}{3}}$	0	0	$\frac{1}{\sqrt{3}}$
_1	$\frac{1}{2}$		0	0	$\frac{1}{\sqrt{3}}$	0	0	$-\sqrt{\frac{2}{3}}$
-1	$-\frac{1}{2}$		0	0	0	1	0	0

and we get

|\psi(0)\ = (0) + (1) |2.\frac{3}{2}, 1,\frac{3}{2}\>

which makes time evolving easy, because we can just say that

一十(七) = 戸にいる、1、多、1、多、

NOW, we can just use the formula Lz 14> = mekit) to solve for (Lz(+)>

(Lz(1)) = (+(+) | Lz | +(+)

= (eith)(eith) (2,3,1,3,1,3,1,2,1,3)

= (1) (2,3/2,1,3/2 | L2 | 2,3/2,1,3/2)

= (2,3/2,1,3/2)((1)4/2,3/2,1,3/2)

= 4 (2,3/2,13/2/2,3/2,1,3/2)

(Lz4)) = 4 (1)