Exercise 5.33 (Study of multidimensional Brownian motion) $B_t = (B_t^1, B_t^2, \cdots, B_t^N)$ を $x = (x_1, \cdots, x_N) (\in \mathbb{R}^N)$ スタートの N 次元 (\mathcal{F}_t) -BM とする.ここで N は 2 以上の整数とする.

1. $|B_t|^2$ は連続 semimartingale であり、 $|B_t|^2$ の martingale part が true martingale であることを示せ.

証明. B^1_t, \cdots, B^N_t は BM より連続 semimartingale なので、Itô's formula が適用できて、a.s. で任意 の $t \geq 0$ に対し

$$|B_{t}|^{2} = |B_{0}|^{2} + \sum_{i=1}^{N} \int_{0}^{t} \frac{\partial}{\partial x_{i}} |B_{s}|^{2} dB_{s}^{i} + \frac{1}{2} \sum_{i,j=1}^{N} \int_{0}^{t} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} |B_{s}|^{2} d\left\langle B^{i}, B^{j} \right\rangle_{s}$$

$$= |x|^{2} + \sum_{i=1}^{N} \int_{0}^{t} \frac{\partial}{\partial x_{i}} |B_{s}|^{2} dB_{s}^{i} + \frac{1}{2} \sum_{i=1}^{N} \int_{0}^{t} \frac{\partial^{2}}{\partial x_{i}^{2}} |B_{s}|^{2} ds \quad (\because i \neq j \implies \left\langle B^{i}, B^{j} \right\rangle = 0)$$

$$= |x|^{2} + \sum_{i=1}^{N} \int_{0}^{t} 2B_{s}^{i} dB_{s}^{i} + Nt.$$

:)
$$|B|^2 = \sum_{i=1}^N (B^i)^2$$
 \$ 0 $\frac{\partial}{\partial x_i} |B|^2 = 2B^i, \frac{\partial^2}{\partial x_i^2} |B|^2 = 2.$

a.s. で任意の t > 0 に対し

$$\int_{0}^{t} (2B_{s}^{i})^{2} ds \le 4t \sup_{0 \le s \le t} (B_{s}^{i})^{2} < \infty$$

が成り立つので、任意の $1 \leq i \leq N$ に対し $2B^i \in L^2_{\mathrm{loc}}(B^i)$. したがって $(\sum_{i=1}^N \int_0^t 2B^i_s dB^i_s)_{t\geq 0}$ は CLM. また $(|x|^2 + Nt)_{t\geq 0}$ は FV なので、 $|B|^2$ は連続 semimartingale である.

次に $(\sum_{i=1}^N \int_0^t 2B^i_s dB^i_s)_{t\geq 0}$ が true martingale であることを示す. Doob's ineq. in L^2 より任意の $1\leq i\leq N$ に対し

$$\begin{split} E[\left\langle \sum_{i=1}^{N} \int_{0}^{\cdot} 2B_{s}^{i} dB_{s}^{i}, \sum_{i=1}^{N} \int_{0}^{\cdot} 2B_{s}^{i} dB_{s}^{i} \right\rangle_{t}] &= E[\sum_{i=1}^{N} \int_{0}^{t} (2B_{s}^{i})^{2} ds] \\ &\leq 4t \sum_{i=1}^{N} E[\sup_{0 \leq s \leq t} (B_{s}^{i})^{2}] \\ &\leq 4t 2^{2} \sum_{i=1}^{N} E[(B_{s}^{i})^{2}] \\ &= 16t(|x|^{2} + Nt). \end{split}$$

::) 任意の $1 \le i \le N$ に対し

$$t = E[(B_t^i - x_i)^2]$$

= $E[(B_t^i)^2] - 2x_i E[B_t^i] + E[x_i^2]$
= $E[(B_t^i)^2] - x_i^2$

より $E[(B_t^i)^2] = x_i^2 + t$.

よって Thm. 4.13(ii) より $(\sum_{i=1}^N \int_0^t 2B^i_s dB^i_s)_{t\geq 0}$ は true martingale.

2.

$$\beta_t = \sum_{i=1}^N \int_0^t \frac{B_s^i}{|B_s|} dB_s^i$$

と定める(ただし $|B_s|=0$ のとき $\frac{B_s^i}{|B_s|}=0$ とする)。 β_t の定義に現れる確率積分の定義を正当化し、さらに $(\beta_t)_{t\geq 0}$ が 0 スタートの (\mathcal{F}_t) -BM であることを示せ.

証明. (途中)任意の $1 \leq i \leq N$ に対し $\frac{B^i}{|B|} \leq 1$ より、a.s. で任意の $t \geq 0$ に対し

$$\int_0^t \left(\frac{B_s^i}{|B_s|}\right)^2 ds \le \int_0^t ds = t < \infty$$

が成り立つので、任意の $1 \leq i \leq N$ に対し $\frac{B^i}{|B|} \in L^2_{\text{loc}}(B^i)$. よって Thm 5.6 より $\int_0^t \frac{B^i_s}{|B_s|} dB^i_s$ は確率積分の意味で well-defined な CLM である.

したがって β は (\mathcal{F}_t) -CLM である $(\leftarrow?)$. ここで

$$\begin{split} \langle \beta, \beta \rangle_t &= \left\langle \sum_{i=1}^N \int_0^{\cdot} \frac{B_s^i}{|B_s|} dB_s^i, \sum_{i=1}^N \int_0^{\cdot} \frac{B_s^i}{|B_s|} dB_s^i \right\rangle_t \\ &= \sum_{i=1}^N \left\langle \int_0^{\cdot} \frac{B_s^i}{|B_s|} dB_s^i, \int_0^{\cdot} \frac{B_s^i}{|B_s|} dB_s^i \right\rangle_t \\ &= \int_0^t \frac{\sum_{i=1}^N (B_s^i)^2}{|B_s|^2} ds = \int_0^t \frac{|B_s|^2}{|B_s|^2} ds = t \end{split}$$

が成り立つことより、 β は 0 スタートの (\mathcal{F}_t)-BM である.

3.

$$|B_t|^2 = |x|^2 + 2\int_0^t |B_s| d\beta_s + Nt$$

が成り立つことを示せ.

証明.

$$\frac{d\beta_t}{dB_t^i} = \sum_{i=1}^{N} \frac{d}{dB_t^i} \int_0^t \frac{B_s^i}{|B_s|} dB_s^i = \sum_{i=1}^{N} \frac{B_t^i}{|B_t|}$$

より $d\beta_t = \sum_{i=1}^N rac{B_t^i}{|B_t|} dB_t^i$ となるので

$$|B_t|^2 = |x|^2 + 2\sum_{i=1}^N \int_0^t B_s^i dB_s^i + Nt$$

$$= |x|^2 + 2\sum_{i=1}^N \int_0^t |B_s| \frac{B_s^i}{|B_s|} dB_s^i + Nt$$

$$= |x|^2 + 2\int_0^t |B_s| \sum_{i=1}^N \frac{B_s^i}{|B_s|} dB_s^i + Nt$$

$$= |x|^2 + 2\int_0^t |B_s| d\beta_s + Nt.$$

4. 以降, $x \neq 0$ を仮定する. $\varepsilon \in (0,|x|), T_{\varepsilon} = \inf\{t \geq 0: |B_t| \leq \varepsilon\}$ とする. ここで任意の a > 0 に対し

$$f(a) = \begin{cases} \log a & (N=2), \\ a^{2-N} & (N \ge 3) \end{cases}$$

と定める. $f(|B_{t \wedge T_{\epsilon}}|)$ が CLM となることを示せ.

証明. F(x) = f(|x|) と定めると $F \in C^{\infty}(\mathbb{R}^N \setminus \{0\})$ であり,

$$\frac{\partial F}{\partial x_i}(x) = \begin{cases} \frac{x_i}{|x|^2} & N = 2, \\ \frac{(2-N)x_i}{|x|^N} & N \geq 3, \end{cases} \qquad \frac{\partial^2 F}{\partial x_i^2}(x) = \begin{cases} \frac{1}{|x|^2} \left(1 - \frac{2x_i^2}{|x|^2}\right) & N = 2, \\ \frac{2-N}{|x|^N} \left(1 - \frac{Nx_i^2}{|x|^2}\right) & N \geq 3. \end{cases}$$

ここで、任意の $t \geq 0, \omega \in \Omega$ に対し $|B_{t \wedge T_{\varepsilon}}(\omega)| \geq \varepsilon$ が成り立つので、 $B_{t \wedge T_{\varepsilon}} \in \mathbb{R}^{N} \setminus \{0\}$. Itô's formula より

$$f(|B_{t \wedge T_{\varepsilon}}|) = F(B_{t \wedge T_{\varepsilon}})$$

$$= \begin{cases} f(|x|) + \sum_{i=1}^{2} \int_{0}^{t} \frac{B_{s \wedge T_{\varepsilon}}^{i}}{|B_{s \wedge T_{\varepsilon}}|^{2}} dB_{s}^{i} + \frac{1}{2} \sum_{i=1}^{2} \int_{0}^{t} \frac{1}{|B_{s \wedge T_{\varepsilon}}|^{2}} \left(1 - \frac{2(B_{s \wedge T_{\varepsilon}}^{i})^{2}}{|B_{s \wedge T_{\varepsilon}}|^{2}}\right) ds & N = 2, \\ f(|x|) + \sum_{i=1}^{N} \int_{0}^{t} \frac{(2 - N)B_{s \wedge T_{\varepsilon}}^{i}}{|B_{s \wedge T_{\varepsilon}}|^{N}} dB_{s}^{i} + \frac{1}{2} \sum_{i=1}^{N} \int_{0}^{t} \frac{2 - N}{|B_{s \wedge T_{\varepsilon}}|^{N}} \left(1 - \frac{N(B_{s \wedge T_{\varepsilon}}^{i})^{2}}{|B_{s \wedge T_{\varepsilon}}|^{2}}\right) ds & N \geq 3 \end{cases}$$

$$= \begin{cases} f(|x|) + \sum_{i=1}^{2} \int_{0}^{t} \frac{B_{s \wedge T_{\varepsilon}}^{i}}{|B_{s \wedge T_{\varepsilon}}|^{2}} dB_{s}^{i} + \frac{1}{2} \int_{0}^{t} \frac{1}{|B_{s \wedge T_{\varepsilon}}|^{2}} \left(2 - 2 \sum_{i=1}^{2} \frac{(B_{s \wedge T_{\varepsilon}}^{i})^{2}}{|B_{s \wedge T_{\varepsilon}}|^{2}}\right) ds & N = 2, \\ f(|x|) + \sum_{i=1}^{N} \int_{0}^{t} \frac{(2 - N)B_{s \wedge T_{\varepsilon}}^{i}}{|B_{s \wedge T_{\varepsilon}}|^{N}} dB_{s}^{i} & N = 2, \end{cases}$$

$$= \begin{cases} f(|x|) + \sum_{i=1}^{2} \int_{0}^{t} \frac{B_{s \wedge T_{\varepsilon}}^{i}}{|B_{s \wedge T_{\varepsilon}}|^{N}} dB_{s}^{i} & N = 2, \\ f(|x|) + \sum_{i=1}^{2} \int_{0}^{t} \frac{B_{s \wedge T_{\varepsilon}}^{i}}{|B_{s \wedge T_{\varepsilon}}|^{N}} dB_{s}^{i} & N \geq 3 \end{cases}$$

が成り立ち、任意の $N \geq 2$ と $1 \leq i \leq N$ に対し $\frac{B^i_{t \wedge T_\varepsilon}}{|B_{t \wedge T_\varepsilon}|^N} \in L^2_{\mathrm{loc}}(B^i_t)$ であるので $\int_0^t \frac{B^i_{s \wedge T_\varepsilon}}{|B_{s \wedge T_\varepsilon}|^N} dB^i_s$ は CLM. したがって $f(|B_{t \wedge T_\varepsilon}|)$ は CLM.

5. $R > |x|, S_R = \inf\{t \ge 0 : |B_t| \ge R\}$ とする.

$$P(T_{\varepsilon} < S_R) = \frac{f(R) - f(|x|)}{f(R) - f(\varepsilon)}$$

となることを示せ、 また $\varepsilon \to 0$ としたとき $P(T_\varepsilon < S_R) \to 0$ となることを確かめ、a.s. で任意の $t \ge 0$ に対し $B_t \ne 0$ となることを示せ.

証明. $T := T_{\varepsilon} \wedge S_R$ とすると a.s. で任意の $t \geq 0$ に対し $f(|B_t^T|) \leq R$. $f(|B_{t \wedge T_{\varepsilon}}|)$ が CLM であることから $f(|B_t^T|)$ は有界な CLM なので、Prop. 4.7(ii) より UIM. ゆえに optional stopping theorem より

$$f(|x|) = E[f(|B_0^T|)] = E[f(|B_T|)]$$

$$= E[f(\varepsilon \mathbf{1}_{\{T_{\varepsilon} < S_R\}} + R \mathbf{1}_{\{T_{\varepsilon} \ge S_R\}})]$$

$$= E[f(\varepsilon) \mathbf{1}_{\{T_{\varepsilon} < S_R\}} + f(R) \mathbf{1}_{\{T_{\varepsilon} \ge S_R\}}]$$

$$= f(\varepsilon) P(T_{\varepsilon} < S_R) + f(R) P(T_{\varepsilon} \ge S_R).$$

$$P(T_{\varepsilon} < S_R) + P(T_{\varepsilon} \ge S_R) = 1$$
 より $P(T_{\varepsilon} < S_R) = \frac{f(R) - f(|x|)}{f(R) - f(\varepsilon)}$ を得る.

arepsilon o 0 とすると N=2 のとき $f(arepsilon) o -\infty, N \geq 3$ のとき $f(arepsilon) o +\infty$ より, $P(T_{arepsilon} < S_R) o 0$ となることがわかる.

次に a.s. で任意の $t \geq 0$ に対し $B_t \neq 0$ を示す. $\varepsilon_n \downarrow 0$ かつ $\sum_{n=1}^{\infty} P(T_{\varepsilon_n} < S_n) < \infty$ を満たす正の 実数列 $\{\varepsilon_n\}$ を選ぶと、Borel-Cantelli の補題より $A := \bigcap_{m \geq 1} \bigcup_{n \geq m} \{T_{\varepsilon_n} < S_n\}$ に対し P(A) = 0. このとき任意の $\omega \in A^c$, $t \geq 0$ に対し $B_t(\omega) \neq 0$.

 (\cdot,\cdot) $\omega\in A^c$ に対し $B_t(\omega)=0$ を満たす t>0 が存在すると仮定すると,任意の $n\geq 1$ に対し $T_{\varepsilon_n}(\omega)< t$ であり, A^c の定め方からある $m\geq 1$ が存在して,任意の $n\geq m$ に対し $S_n(\omega)< t$ stopping time の列 $(S_n(\omega))_{n\geq 1}$ は nondecreasing なので, $\lim_{n\to\infty}S_n(\omega)(\leq t)$ が存在する.これを s とすると $B_s(\omega)=\infty$ となるが,B の連続性より矛盾.

以上より a.s. で任意の $t \ge 0$ に対し $B_t \ne 0$.

6. a.s. で任意の $t \ge 0$ に対し

$$|B_t| = |x| + \beta_t + \frac{N-1}{2} \int_0^t \frac{ds}{|B_s|}$$

となることを示せ.

証明. F(x) = |x| と定めると $F \in C^{\infty}(\mathbb{R}^N \setminus \{0\})$ であり、 $\frac{\partial F}{\partial x_i}(x) = \frac{x_i}{|x|}, \frac{\partial^2 F}{\partial x_i^2}(x) = \frac{|x|^2 - x_i^2}{|x|^3}$. a.s. で任意の $t \ge 0$ に対し $B_t \in \mathbb{R}^N \setminus \{0\}$ より、Itô's formula から

$$|B_t| = F(B_t) = |x| + \sum_{i=1}^N \int_0^t \frac{B_s^i}{|B_s|} dB_s^i + \frac{1}{2} \sum_{i=1}^N \int_0^t \frac{|B_s|^2 - (B_s^i)^2}{|B_s|^3} ds$$

$$= |x| + \beta_t + \frac{1}{2} \int_0^t \frac{N|B_s|^2 - \sum_{i=1}^N (B_s^i)^2}{|B_s|^3} ds$$

$$= |x| + \beta_t + \frac{1}{2} \int_0^t \frac{(N-1)|B_s|^2}{|B_s|^3} ds$$

$$= |x| + \beta_t + \frac{N-1}{2} \int_0^t \frac{ds}{|B_s|}.$$

7. $N \ge 3$ を仮定する. a.s. で $t \to \infty$ としたとき $|B_t| \to \infty$ となることを示せ(ヒント: $|B_t|^{2-N}$ が非負 supermartingale であることを確かめよ).

証明. $F(x)=|x|^{2-N}$ と定めると $F\in C^\infty(\mathbb{R}^N\setminus\{0\})$ であり, $\frac{\partial F}{\partial x_i}(x)=\frac{(2-N)x_i}{|x|^N},\frac{\partial^2 F}{\partial x_i^2}(x)=\frac{2-N}{|x|^N}\left(1-\frac{Nx_i^2}{|x|^2}\right)$. a.s. で任意の $t\geq 0$ に対し $B_t\in\mathbb{R}^N\setminus\{0\}$ より,Itô's formula と 4. の証明から

$$|B_t|^{2-N} = F(B_t) = |x|^{2-N} + \sum_{i=1}^N \int_0^t \frac{(2-N)B_s^i}{|B_s|^N} dB_s^i + \frac{1}{2} \sum_{i=1}^N \int_0^t \frac{2-N}{|B_s|^N} \left(1 - \frac{N(B_s^i)^2}{|B_s|^2}\right) ds$$
$$= |x|^{2-N} + \sum_{i=1}^N \int_0^t \frac{(2-N)B_s^i}{|B_s|^N} dB_s^i.$$

4. の結果より $|B|^{2-N}$ は非負 CLM なので、Prop. 4.7(i) より $|B|^{2-N}$ は非負 supermartingale. ゆえ

に任意の $t \ge 0$ に対し

$$E[|B_t|^{2-N}] \le E[|B_0|^{2-N}] = |x|^{2-N}$$

が成り立つので、 $\sup_{t\geq 0} E[|B_t|^{2-N}] < \infty$ より $|B|^{2-N}$ は L^1 -bdd. よって Thm. 3.19 より $|B_\infty|^{2-N}$ が a.s. で存在するので、 $\lim_{t\to\infty} |B_t|$ が a.s. で存在する。 a.s. で $\limsup_{t\to\infty} B_t^1 = \infty$ となるので、a.s. で $\lim_{t\to\infty} |B_t| = \infty$.

8. N=3 を仮定する. Gaussian density の形式を用いて, r.v. の族 $(|B_t|^{-1})_{t\geq 0}$ が L^2 -bdd. であることを確かめよ. また $(|B_t|^{-1})_{t\geq 0}$ が CLM であり, かつ true martingale でないことを示せ.

証明. まず $(|B_t|^{-1})_{t\geq 0}$ が L^1 -bdd. であることを示す. $\delta:=\frac{|x|}{2}(>0)$ と定める. このとき

$$E[|B_t|^{-2}] = \int_{\mathbb{R}^3} |y|^{-2} p(y) dy = \int_{\mathbb{R}^3} \frac{1}{|y|^2 (2\pi t)^{3/2}} \exp\left(-\frac{|y-x|^2}{2t}\right) dy$$

$$= \int_{|y|<\delta} \frac{1}{|y|^2 (2\pi t)^{3/2}} \exp\left(-\frac{|y-x|^2}{2t}\right) dy + \int_{|y|\geq\delta} \frac{1}{|y|^2 (2\pi t)^{3/2}} \exp\left(-\frac{|y-x|^2}{2t}\right) dy$$

$$=: I_1(t) + I_2(t).$$

任意の t>0 に対し

$$I_2(t) \le \frac{1}{\delta^2} \int_{\mathbb{R}^3} \frac{1}{(2\pi t)^{3/2}} \exp\left(-\frac{|y-x|^2}{2t}\right) dy \le \frac{1}{\delta^2}$$

と評価できることから I_2 は有界。 あとは $I_1(t)$ が任意の t>0 において有界であることを示せば十分。 $|y|<\delta=\frac{|x|}{2}\implies |y-x|\geq |x|-|y|>\frac{|x|}{2}$ であることより

$$I_1(t) \le \frac{1}{(2\pi t)^{3/2}} \exp\left(-\frac{|x|^2}{8t}\right) \int_{\mathbb{R}^3} \frac{1}{|y|^2} dy = \frac{1}{(2\pi t)^{3/2}} \exp\left(-\frac{|x|^2}{8t}\right) \cdot 4\pi \delta$$

が成り立つ.

$$\varphi(t) = \frac{1}{(2\pi t)^{3/2}} \exp\left(-\frac{|x|^2}{8t}\right)$$

で定めると φ は $(0,\infty)$ 上連続かつ $\lim_{t\downarrow 0+} \varphi(t) = 0$, $\lim_{t\to\infty} \varphi(t) = 0$. よって φ は有界なのである M>0 が存在し, $\sup_{t>0} |\varphi(t)| \leq M < \infty$. よって $\sup_{t>0} I_1(t) \leq 4\pi M\delta$ と評価できるので I_1 も有界. ゆえに $(|B_t|^{-1})_{t\geq 0}$ は L^2 -bdd.

次に $(|B_t|^{-1})_{t\geq 0}$ が CLM であるが true martingale でないことを示す。7. の証明より CLM であることが言えるので $(|B_t|^{-1})_{t\geq 0}$ が true martingale であると仮定すると L^2 -bdd. martingale. a.s. で $\lim_{t\to\infty}|B_t|=\infty$ ($\Longrightarrow |B_\infty|^{-1}=0$) と Thm. 4.13 を合わせて

$$0 = E[|B_{\infty}|^{-2}] = E[|B_0|^{-2}] + E[\langle |B|^{-1}, |B|^{-1}\rangle_{\infty}] > 0$$

がわかるが、これは矛盾. よって $(|B_t|^{-1})_{t\geq 0}$ は CLM であるが true martingale でない.