EXERCÍCIOS

3)	O(1)	O(lg n)	O(n)	O(n.lg(n))	O(n²)	O(n³)	O(n⁵)	O(n ²⁰)
$f(n) = \lg(n)$ $f(n) = n \cdot \lg(n)$	F F	V F	V F	V	V	V	V	V V
f(n) = 5n + 1 f(n) = 7n⁵- 3n²	F F	F F	V F	V F	V F	V F	V V	V V
$f(n) = 99n^3 - 1000n^2$ $f(n) = n^5 - 99999n^4$	F F	F F	F F	F F	F F	V F	V V	V V
, ,	•	'	•	•	•	•	·	v
4)	Ω(1)	Ω(lg n)	Ω(n)	$\Omega(n.lg(n))$	$\Omega(n^2)$	Ωn³)	Ω(n⁵)	$\Omega(n^{20})$
f(n) = Ig(n)	V	V	F	F	F	F	F	F
f(n) = n . lg(n) f(n) = 5n + 1	V V	V V	V V	V F	F F	F F	F F	F F
$f(n) = 7n^5 - 3n^2$	V	V	V	V	V	V	V	F
$f(n) = 99n^3 - 1000n^2$	V	V	V	V	V	V	F	F
f(n) = n⁵- 99999n⁴	V	V	V	F	V	V	V	F
5)								
	Θ(1)	Θ(lg n)	Θ(n)	$\Theta(n.lg(n))$	Θ(n²)	Θ(n³)	Θ(n⁵)	Θ(n ²⁰)
$f(n) = \lg(n)$	F	V F	F F	F V	F F	F F	F F	F F
$f(n) = n \cdot lg(n)$ f(n) = 5n + 1	F F	F	Г V	v F	г F	F	F	F
$f(n) = 7n^5 - 3n^2$	F	F	F	F	F	F	V	F
$f(n) = 99n^3 - 1000n^2$	F	F	F	F	F	V	F	F
f(n) = n⁵- 99999n⁴	F	F	F	F	F	F	V	F
6)								
a) O(máximo(f(n),g(n)) - O(h(n))) b) O(máximo(f(n),g(n)) - O(h(n))) c) O(f(n) x g(n)) d) O(máximo(f(n) x g(n)),O(h(n))) e) O(f(n) x g(n) x l(n)) f) O(f(n))								
7) a) c = 3 m = 6								
b) c = 2								

c) n não é limite superior para n^2 pois sua potência é menor

m = 4

```
8)
a) c = 2
 m = 3
b) c = 1
  m = 3
c) Porque n^3 não é o limite inferior de n^2
9)
a) c1 = 2
  c2 = 3
  m = 5
b) não é limite justo pois n não é igual a n²
c) não é limite justo pois n³ não é igual a n²
11)
a)Alarme
Pior Caso:
               O(n)
Melhor Caso: O(2)
b)Outros metodos
Pior Caso:
               O(n) + n
Melhor Caso: O(n)
12)
if(n<3) n . 2;
else{
       for(int i=0; i<n; i++;){
               n+=3;
               n = n \cdot i;
       }
}
Pior caso: n>3 \mid O(n \cdot 2)
Melhor cas:=o: n<3 \mid O(1)
```

13)A solução que ordena o array primeiro é mais eficiente a longo prazo, pois o array já vai estar ordenado para todas pesquisas futuras

EXERCÍCIOS RESOLVIDOS

10)

O aluno deve escolher a primeira opção, pois a pesquisa sequencial tem custo $\Theta(n)$. A segunda opção tem custo $\Theta(n * \lg n)$ para ordenar mais $\Theta(\lg n)$ para a pesquisa binária

- 11)
- a)Falsa
- b)Verdadeira
- c)Verdadeira
- d)Verdadeira
- e)Verdadeira
- f)Falsa
- g)Falsa
- h)Verdadeira
- i)Falsa

12)

-----Função de Complexidade-----

MOV CMP

PIOR: f(n)=2+(n-2) f(n) = 1 + 2(n-2)MELHOR: $f(n) = 2+(n-2) \times 0$ f(n) = 1 + (n-2)

-----Complexidade-----

MOV CMP

PIOR: O(n), $\Omega(n)$ e $\Theta(n)$ O(n), $\Omega(n)$ e $\Theta(n)$ MELHOR: O(1), $\Omega(1)$ e $\Theta(1)$ O(n), $\Omega(n)$ e $\Theta(n)$

13)

 $\begin{array}{ccc} & & & & & & & \\ & & & & & \\ PIOR: & f(n)=n+2 & & & & \\ MELHOR: & f(n)=n+1 & & & & \\ O(n), & \Omega(n) & e & \Theta(n) \end{array}$

14)

Função complexidade

TODOS: f(n) = (2n + 1)n O(n2), $\Omega(n2) \in \Theta(n2)$

15)

função complexidade

TODOS: $f(n) = (\lg(n)+1)*n=n*\lg(n)+n$ $O(n \times \lg(n)), \Omega(n \times \lg(n)) \in \Theta(n \times \lg(n))$

16)
Constante Linear Polinomial Exponencial

3n v 1 v

(3/2)n v 2n3

2n

3n2 v

1000 v (3/2)n v

17)

f6(n) = 1

f2(n) = n

f1(n) = n2

f5(n) = n3

f4(n) = (3/2)n

f3(n) = 2n

18)

f6(n) = 64

f3(n) = log8(n)

f2(n) = Ig(n)

f9(n) = 4n

f1(n) = n.log6(n)

f5(n) = n.lg(n)

 $f4(n) = 8n^2$

 $f7(n) = 6n^3$

 $f8(n) = 8^2n$

19) f(n) g(n) 3n-1 n + 30 n² + 2n - 10 n²+3n n³ x 3n n⁴

lg(n) lg(2n)

Resumo de Complexidade

João Pedro de Castro Ribeiro

¹Ciência da Computação – Pontifícia Universidade Católica de Minas Gerais (PUC-MG)

joaopedrocastro05@gmail.com

A teoria da complexidade computacional é um ramo da teoria da computação que se concentra em classificar problemas computacionais de acordo com sua dificuldade inerente, e relacionar essas classes entre si. Um problema computacional consiste de instâncias do problema e soluções para essas instâncias do problema.

A classe de complexidade P é vista na maioria dos casos como uma abstração matemática de modelagem que admitem um algoritmo eficiente. A classe de complexidade NP contém muitos problemas que as pessoas gostariam de resolver de forma eficiente, mas nenhum algoritmo que seja eficiente é conhecido.

A complexidade de muitos problemas computacionais de interesse prático é desconhecida. Para muitos desses problemas, não temos um algoritmo polinomial nem sabemos se um tal algoritmo é impossível. Isso continua assim mesmo que tratemos apenas de problemas polinomialmente verificáveis. Em particular, para muito problemas de decisão importantes, não sabemos se estão na classe P. Resta-nos procurar entender, ao menos, quais desses problemas são menos provavelmente polinomiais.

Um problema é considerado como difícil se a sua resolução requer muito recursos, não importando qual algoritmo foi usado. A teoria formaliza esta intuição para estudar estes problemas e quantificar os recursos necessários para resolvê-los, tais como tempo e armazenamento. Outras medidas de complexidade também são utilizadas, tais como a quantidade de comunicação, o número de portas em um circuito e o número de processadores. Uma das funções da teoria da complexidade computacional é determinar os limites práticos do que os computadores conseguem e não conseguem fazer.

Campos relacionados com a ciência da computação teórica são a análise de algoritmos e a teoria da computabilidade. A análise de algoritmos é dedicada a analisar a quantidade de recursos necessários para um certo algoritmo resolver um problema, enquanto a teoria da computabilidade faz uma pergunta mais geral sobre todos os algoritmos existentes que poderiam ser usados para resolver o mesmo problema. Ele tenta classificar os problemas que podem ou não serem resolvidos com os recursos devidamente restritos.

Por sua vez, impondo restrições sobre os recursos disponíveis é o que distingue a complexidade computacional da teoria da computabilidade: a segunda pergunta que tipos de problemas podem, em princípio, ser resolvidos através de algoritmos.

Para provar que P = NP, basta encontrar um algoritmo polinomial para um único problema NP-completo. Mas até hoje ninguém conseguiu ainda realizar esse feito.