MAT 300 2-12 HW

ID: 1213399809

Name: Lucas Saldyt (lsaldyt@asu.edu)

Collaborators: \varnothing

Problem 1.	Powersets have cardinality 2^n	1
Problem 2. 0.1 Scrate		2
Problem 3.	Induction 2	3
Problem 4.	Induction 3	4
Problem 5.	Induction 4	5

Problem 1. Powersets have cardinality 2^n

Let S be any finite set, and suppose $x \notin S$. Let $K = S \cup x$.

- (a) Prove that $\mathcal{P}(K)$ is the disjoint union of $\mathcal{P}(S)$ and $X = T \subseteq K : x \in T$
- (b) Prove that every element of X is the union of a subset of S with x, and if you take different subsets of S you get different elements of X. Argue that, therefore, X has the same number of elements as $\mathcal{P}(S)$

Solution

Part (a)

The second theorem below is proven while proving the first, so I've combined both here.

Theorem 0.0.1. $\mathcal{P}(K)$ is the disjoint union of $\mathcal{P}(S)$ and $X = \{T \subseteq K : x \in T\}$ (i.e. $\mathcal{P}(K) = \mathcal{P}(S) \cup X$ and $\mathcal{P}(S) \cap X = \emptyset$)

Theorem 0.0.2. Every element of X is the union of a subset of S with $\{x\}$, and that if you take different subsets of S you get different elements of X. Argue that, therefore, X has the same number of elements as $\mathcal{P}(S)$

Proof The powerset, $\mathcal{P}(U)$ is defined as the set of all subsets of the set U. Each subset (of U, say) is defined as the set V where each element $v \in V$ is also in U. So, the powerset definition, in total, is $\mathcal{P}(U) = \{B | b \in U \text{ for all } b \in B\}$. As a new element, x is added to S to create K, the new powerset must now include subsets containing x (since subsets are any set which contains elements in the parent set), which are based on the original elements of $\mathcal{P}(S)$, such that $X = \{B \cup \{x\} | B \in \mathcal{P}(S)\}$. The powerset is then the union of these sets $(\mathcal{P}(S)\text{and}X)$, by definition. It is very simple to see that these sets $(\mathcal{P}(S)\text{and}X)$ have the same cardinality, from the definition of X. (This shows that the cardinality of $\mathcal{P}(K)$ is twice that of $\mathcal{P}(S)$). It is also very simple to see that the intersection of $\mathcal{P}(S)$ and X is the null set, because every set in X contains x, and every set in $\mathcal{P}(S)$ does not.

Part (b)

Provided above as part of the same proof.

Problem 2. Induction 1

Let $n \in \mathcal{N}$. Conjecture a formula for:

$$a_n = \frac{1}{(1)(2)} + \frac{1}{(2)(3)} + \dots + \frac{1}{(n)(n+1)}$$

Solution

Part (a)

Theorem 0.0.3. The formula $a_n = \frac{n}{n+1}$ describes the summation.

Proof Proceeding by induction, it is first established that the formula works for a_1 , because $a_1 = \frac{1}{(1)*(2)} = \frac{1}{2}$. Then, suppose the formula is true for an arbitrary $n \geq 1$, i.e. that $a_n = \frac{n}{n+1}$. From this, $a_{n+1} = \frac{n}{n+1} + \frac{1}{(n+1)(n+2)} = \frac{n^2+2n+1}{(n+1)(n+2)} = \frac{n+1}{(n+1)(n+2)}$. By induction, this formula describes the summation a_n .

0.0.1 Scratch work

$$\begin{aligned} a_1 &= (1/2) \\ a_2 &= (1/2) + (1/6) = 4/6 = 2/3 \\ a_3 &= (1/2) + (1/6) + (1/12) = 9/12 = 3/4 \end{aligned}$$

A likely formula is $a_n = (n/n + 1)$

Problem 3. Induction 2

Let m and $n \in \mathcal{N}$. Define what it means to say that m divides n. Now prove that for all $n \in \mathcal{N}$, 6 divides $n^3 - n$.

Solution

Part (a)

It is said that m divides n if there exists a natural number o such that om = n. **Theorem 0.0.4.** For all $n \in \mathcal{N}$, 6 divides $n^3 - n$.

Proof Proceeding by induction, it is first shown that 6 divides n=2 (as n=1 is a trivial, but true, case, where o=0). $n^3-n=6$, which is obviously divided by 6 with o=1. Assume the induction hypothesis, namely that $n^3-n=6*o$, where o is a natural number. For n+1, the expression becomes $(n+1)^3-(n+1)=6*p$, where p is another natural number. This expands to $n^3+3n^2+2n=6*p$. Using the induction hypothesis, $n^3-n=6*o$, $(6*o)+3n^2+3n=6*p$ Then, 3(n)(n+1)=6(p-o) Then, $(n)(n+1)=n^2+n=2(p-o)$, which simply means that n^2+n must be even for any n in the natural numbers. If n is even (n=2a), then $n^2+n=4a^2+2a=2(2a^2+a)$, and the expression is even. If n is odd (n=2b+1), then $n^2+n=4b^2+4b+1+2b+1=2(2b^2+3b+1)$, and the expression is even. Therefore, by induction, for all $n \in \mathcal{N}$, 6 divides n^3-n .

Problem 4. Induction 3

Prove the following? Let $x \neq 1$ be a real number. For all $n \in \mathcal{N}$,

$$\frac{(x^n-1)}{x-1} = (x^(n-1) + x^(n-2) + ... + x + 1$$

Solution

Part (a)

Solution

Problem 5. Induction 4

Prove that every reducible polynomial can be written as a product of irreducible polynomials. (*Hint*: Proceed by complete induction on the degree of the polynomial)

Solution

Part (a)

Solution