

CSU18M68 ForchTouch 应用笔记

单 Force Touch 按键设计指南

V1.1 版本

囚 深圳市南山区粤海街道科苑南路3156号深圳湾创新科技中心2栋A座3楼

www.chipsea.com

m sales@chipsea.com

+86-0755-8616 9257

P 518000

版本历史

历史版本	修改内容	版本日期
REV 1.0	初始版本	2021-05-18
REV 1.1	更新封面文档格式	2021-11-20

permission of CHIPSEA

目 录

版	本历史	2
目	录	3
1	应用简介	4
	特点	
	2.1 芯片特点	6 6 6
	硬件设计部分 3. 1 硬件框图及说明	7 7 7 8
	软件设计部分	. 10 . 10 . 11
5	产品开发注意事项	13
	5.1 硬件部分	13
	免妻声明和贻权 从生	1.4

1 应用简介

图 1-1 CSU18M68 WLCSP16 封装引脚图 Top View (marking side)

表 1-1 管脚说明表

管脚名称	输入/输 出	管脚 序号	描述		
GND	P	A1	地		
VS0	AI/AO/I	A2	参考电压输出/参考电压输入		
NC	AI	A3	保留管脚,Not Care		
PT11	I/O	A4	GPIO 输入,推挽输出		
VDD	P	B1	电源		
VS_CAP	AI/AO	B2	内置 LDO 电压输出,四档可选 2.45V、2.6V、2.8V、3.0V,外接 0.1uF 电容		
SDA	I/O	В3	I2C 数据口;		
PT10	I/O	B4	GPIO 输入,推挽输出		
AIN0	AI	C1	0 通道正端模拟输入		
AIN1	AI	C2	0 通道负端模拟输入		
GND	I	C3	地;		
SCL	I/O	C4	I2C时钟口;		
AIN2	AI	D1	1通道正端模拟输入		

www.chipsea.com

4 / 14

芯海科技 (深圳) 股份有限公司

AIN3	AI	D2	1通道负端模拟输入	
PT15	I/O	D3	GPIO 输入,开漏输出	
PT14	I/O	D4	GPIO 输入,开漏输出	

图 1-2 CSU18M68 QFN16 封装引脚图

表 1-2 管脚说明

管脚名称	输入/ 输出	管脚 序号	描述		
DVDD	P	1	供电电源		
AVDD	P	2	供电电源		
VS_CAP	AI/AO	3	内置 LDO 电压输出		
AIN0	AI	4	0 通道正端模拟输入		
AIN1	AI	5	0 通道负端模拟输入		
AIN2	AI	6	1通道正端模拟输入		
AIN3	AI	7	1 通道负端模拟输入		
NC	-	8	NC		
PT14	I/O	9	GPIO 输入,开漏输出		
PT15	I/O	10	GPIO 输入,开漏输出		
SCL	I/O	11	IIC 时钟管脚		
SDA	I/O	12	IIC 数据管脚		
PT11	I/O	13	GPIO 输入,推挽输出;时钟烧录管脚		
PT10	I/O	14	GPIO 输入,推挽输出;数据烧录管脚		
NC	-	15	NC		
VS0	AO	16	参考电压输出,外接传感器		
GND	P	0	地		

www.chipsea.com

5 / 14

芯海科技 (深圳) 股份有限公司

2 特点

2.1 芯片特点

CSU18M68 是一个带 16bitADC 的 SOC, 内置 8K×16 位 MTP 程序存储器 和 488 字节数据存储器。

2.2 应用方案特点

基于 CSU18M68 在 TWS 耳机压感按键方案进行应用,通过对耳机进行短按长按、单压双压等操作,控制 手机的音乐播放,切歌等功能。压感按键方案相比电容式按键,具备较强的抗电磁干扰能力,在带水 珠的环境下也能较好地避免误触。

2.3 技术规格

2.3.1 主要功能特性

- 支持按键识别;
- 支持 IO 上报按键;
- 支持压力上报;
- 支持功耗优化;
- 支持固件升级;

2.3.2 主要性能参数

表 1 主要性能参数

指标	最小值	典型值	最大值	单位
力度	100	200	1000	克
工作电流		1.5		mA @ VDD = 3.3V
待机电流		300		uA @ VDD = 3.3V
休眠电流		1		uA @ VDD = 3.3V
存贮温度	-55	25	150	° C
工作电压	2.4	3	3.6	V

3 硬件设计部分

3.1 硬件框图及说明

1、芯片模块框图:

内置高集成度 MCU 的 CSU18M68 能够识别和采集压力传感器的电信号变化,并将其转换为表示一定比例电压值的数字信号,通过内置算法将信号进行处理。通讯协议选用 IIC 接口,输出中断选用 io 口输出。

2、压力传感器受力分析与硬件原理图

3.2 硬件参考原理图

1、CSU18M68-应用硬件参考原理图

注释:

- 1: VS_CAP:输出引脚, 给sensor 供电
- 2: AINO/AIN1与AIN2/AIN3: Sensor差分信号输入引脚,如果只用一个传感器,AIN2/AIN3可以用于检测压感是否接触良好
- 3: SDA/SCL: I2C 通讯接口, 需要外接上拉电阻, 可用于固定升级
- 4: PT15:压力按键状态输出脚,开漏输出,需要外接上拉电阻,按压时输出低电平
- 5: 芯片烧录引脚: VDD,GND,PDA,PCL

如上述应用原理可知,如需与 CSU18M65 兼容,VDD/GND 之间电容 4.7 uF, VS_CAP/GND 之间电容 0.47 uF;如不需兼容,CSU18M68 的 VDD/GND 之间电容 1 uF,VS_CAP/GND 之间电容 0.1 uF。另外外接传感器的参考电压 VS 连接 CSU18M68 的 VSO。S1+-、S2+-之间的电容 100 pF 时应用需求可做选接,默认情况下不接电容。PT14/PT15 口接上拉电阻 4.7 K; 12 C 的上拉电阻 2 K。

2、ADC通道切换原理图

3、烧录口

4 软件设计部分

4.1 总体流程图及说明

程序上电后会加载 bootloader 区以及对应的初始化,然后进入主程序执行压感算法,对采集到的信号进行转换和处理,输出中断 io 口。

4.2 功能1流程图及说明

功能一: Bootloader 功能加载以及芯片内部空间地址分配。

CSU18M68 芯片的 Bootloader 占用 0000h~03FFh 空间地址(1K),APP 占用了 0400h~1FFFh 空间地址(7K),空间分配如下

注意:对 BOOT 区域进行 IAP 操作会把 BOOT 区域的 Bootloader 代码擦除改写,请谨慎操作!

4.3 功能2流程图及说明

功能二: IIC 通讯以及固件升级功能

CSU18M68应用方案通过 IIC 协议与外界(上位机、主控芯片等)通讯,实现固件升级功能。

4.4 功能3流程图及说明

功能三:校准功能

校准流程:上位机给蓝牙芯片发送校准启动命令,蓝牙芯片接收并使能压感芯片进行校准,同时通过 IIC 通讯从压感芯片实时获取校准数据,其中包括校准进度、校准结果、压力值和校准系数等,时间周期为 200ms 一次。上位机通过无线通讯与蓝牙芯片进行数据交互,显示校准数据。

permission of CHIPSEA

5 产品开发注意事项

5.1 硬件部分

暂无。

5.2 软件部分

- 1、设计 bootloader 的时候,需要注意 boot 和 apcode 段所占的芯片内存大小,以及每次上电后芯片从 bootloader 跳转到 apcode 所用的时间。
- 2、采集 rawdata 值需要避开刚开始工作时的数据转换周期,对于 4 阶数字滤波器,需要 4 个数据转换周期的建立时间
- 3、注意数据存储在 8K*16Bits 的 MTP 程序存储器中。
- 4、注意开发产品时的 sensor 传感器存在 offset 差异,避免对程序的效果产生影响
- 5、固件升级前,需要保证芯片复位并及时进入 bootloader 发送命令。
- 6、注意开发产品的功耗问题

6 免责声明和版权公告

股票代码:688595

免责声明和版权公告

本文档中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

本文档可能引用了第三方的信息,所有引用的信息均为"按现状"提供,芯海科技不对信息的准确性、真实性做任何保证。

芯海科技不对本文档的内容做任何保证,包括内容的适销性、是否适用于特定用途,也不提供任何其他芯海科技提案、规格书或样品在他处提到的任何保证。

芯海科技不对本文档是否侵犯第三方权利做任何保证,也不对使用本文档内信息导致的任何 侵犯知识产权的行为负责。本文档在此未以禁止反言或其他方式授予任何知识产权许可,不 管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。

文档中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归 © 2021 芯海科技 (深圳) 股份有限公司。保留所有权利。

www.chipsea.com

14 / 14

芯海科技 (深圳) 股份有限公司