Math 550 Homework 9

Dr. Fuller Solutions

2. If B^3 denotes the unit ball in \mathbb{R}^3 , then by Stokes' Theorem $\operatorname{vol}(B^3) = \int_{B^3} dx \wedge dy \wedge dz = \int_{S^2} z \, dx \wedge dy$, where S^2 receives the orientation induced as the boundary of B^3 . Parameterizing S^2 with spherical coordinates induces the opposite orientation, so we have

$$\int_{S^2} z \, dx \wedge dy = -\int_{(0,2\pi)\times(0,\pi)} g^*(z \, dx \wedge dy) = -\int_0^{\pi} \int_0^{2\pi} -\cos^2 \varphi \sin \varphi \, d\theta \, d\varphi = \frac{4\pi}{3}.$$

3. The vector $c(t)=(c_1'(t),\ldots,c_n'(t))$ forms a positively oriented basis of $C_{c(t)}$, thus $\frac{1}{\|c'(t)\|}$ $(c_1'(t),\ldots,c_n'(t))$ forms a positively oriented orthonormal basis there. So $1=ds_{c(t)}(\frac{1}{\|c'(t)\|}$ $(c_1'(t),\ldots,c_n'(t)))$, which implies that $ds_{c(t)}((c_1'(t),\ldots,c_n'(t)))=\|c'(t)\|$. So

$$(c^*ds)_t(1) = ds_{c(t)}(Dc_{c(t)}(1)) = ds_{c(t)}(c'_1(t), c'_2(t), \dots, c'_n(t)) = ||c'(t)|| = ||c'(t)|| dt(1).$$

This shows that $c^*ds = ||c'(t)||dt$, and the integral formula follows.

- 4. (a) Straightforward.
 - (b) Combine $d^2 = 0$ with part (a):

(i)
$$0 = d^2 f = d(\omega_{\text{grad } f}^1) = \omega_{\text{curl grad } f}^2$$
. So curl grad $f = 0$.

(ii)
$$0 = d^2(\omega_X^1) = d(\omega_{\text{curl } X}^2) = \text{div curl } X \ dV$$
. So div curl $X = 0$.