Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	Observaciones (Cambios y justificaciones)
Cancún, Q. Roo, 30/09/2016	Dr. David Israel Flores Granados Ing. Mónica Patricia René Ing. San Martín Alejandro Martín Canul	Actualizacion del programa para incorporarse en el plan de estudios de Ingeniería en Datos e Inteligencia Organizacional.

Relación con otras asignaturas

Anteriores	Posteriores
a) ID0103 Organizacion y diseño de computadorasa) Unidad I. Fundamentos	
b) Unidad II. Componentes logico-digitales	a) IT0316. Principios de automatización y robóticaa) Todos
b) IT0101. Algoritmos y estructura de datosa) Todos	

Nombre de la asignatura	Departamento o Licenciatura
Electrónica digital	Ingeniería en Datos e Inteligencia Organizacional

Ciclo	Clave	Créditos	Área de formación curricular
3 - 3	IT0208	8	Licenciatura Básica

Tipo de asignatura	Horas de estudio			
	нт	HP	TH	н
Taller	16	48	64	64

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Asociar el funcionamiento de circuitos electrónicos digitales para la realizacion de prototipos de hardware basico utilizando circuitos integrados de baja y mediana integración y sistemas de desarrollo electrónico.

Objetivo procedimental

Usar circuitos digitales que empleen diferentes componentes electrónicos para la implementación de sistemas utilizando simuladores, circuitos integrados y sistemas de desarrollo.

Objetivo actitudinal

Fomentar el trabajo colaborativo en la resolucion de practicas de laboratorio para la implementacion de prototipos digitales.

Unidades y temas

Unidad I. COMPONENTES LOGICO-DIGITALES

Clasificar los principales teoremas del álgebra de Boole para la simplificación de funciones en sistemas digitales

- 1) Compuertas básicas fundamentales
- 2) Teoremas del algebra de Boole
- 3) Representacion de funciones con compuertas lógicas
- 4) Métodos de simplificación de funciones

Unidad II. CIRCUITOS COMBINACIONALES

Diferenciar los circuitos combinacionales para la implementación de funciones en sistemas digitales

- 1) Codificadores y decodificadores
- 2) Multiplexores y demultiplexores
- 3) Circuitos aritméticos (sumadores, restadores y comparadores)
- 4) Aplicaciones con displays, motores CD, steppers y servomotores

Unidad III. CIRCUITOS SECUENCIALES

Aplicar los circuitos secuenciales para la implementación de funciones en sistemas digitales

- 1) Latches y Flip-flops
- 2) Contadores y registros
- 3) Memorias simples
- 4) Aplicaciones

Unidad IV. SISTEMAS DE DESARROLLO ELECTRÓNICO

Aplicar conceptos de programación y sistemas digitales para el diseño de prototipos

- 1) Introducción a los sistemas de desarrollo electrónico
- 2) Programación de tarjetas de desarrollo
- 3) Puertos de entrada y salida digitales
- 4) Puertos de entrada y salida analógicas

Actividades que promueven el aprendizaje

Promover el trabajo colaborativo en la definición de propuestas de solución a problemas determinados. Coordinar la discusión de casos prácticos. Realizar foros para la discusión de temas o problemas. Estudiante Realizar tareas asignadas Participar en el trabajo individual y en equipo Resolver casos prácticos (circuitos) Discutir temas en el aula

Actividades de aprendizaje en Internet

El estudiante deberá acceder al portal para la lectura de artículos:

www.librosite.net/floyd

para investigacion documental y solucion de ejercicios

https://www.arduino.cc/en/Guide/HomePage

Para referencia sobre programación y hojas tecnicas

Se promoverá el uso de mecanismos asíncronos (correo electrónico, grupo de noticias, WWW y tecnologías de información) como medio de comunicación.

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Examen	30
Prácticas y simulaciones	30
Trabajos de investigación	15
Exposiciones	15
Participacion en clase	10
Total	100

Fuentes de referencia básica

Bibliográficas

Evans, B. (2011). Beginning Arduino Programming. USA: Apress

Floyd T. (2008). Fundamentos de sistemas digitales(10a edicion). USA: Prentice Hall

Mano M. (2003) Diseño digital(3a b edicion).USA: Prentice Hall

Roth C. Jr. (2005). Fundamentos de diseño lógico (5a edicion). USA: Thomson

Tocci W. (2015). Sistemas digitales: Principios y aplicaciones(10a edicion). USA: Prentice Hall

Web gráficas

.

Fuentes de referencia complementaria

Bibliográficas

Mano M. y Ciletti. (2002) Digital design (4th edicion).USA: Prentice Hall

Mano M. (1999). Arquitectura de computadoras. USA: Prentice Hall:

Patterson D.(2008). Computer Organization and Design: the hardware/software interface (the Morgan Kaufmann series in computer architecture and design). USA: Morgan Kaufmann

Web gráficas

.

Perfil profesiográfico del docente

Académicos

Ingeniería, licenciatura o posgrado en Ciencias de la computación, Sistemas, o Electrónica.

Docentes

Tener experiencia docente a nivel superior mínima de 3 años en ingeniería.

Profesionales

Tener experiencia en el desarrollo de software de base, sistemas embebidos, controladores de dispositivos.