NCSU Python Exploratory Data Analysis

Data Preparation: Linear Transformations Normalizing, Standardizing, and Rescaling

Before Z-score Standardization

After Z-score Standardization

- Centering
- Standardizing
- Z-scores
- Normalizing
- Rescaling

Prof. Nagiza F. Samatova

samatova@csc.ncsu.edu

Department of Computer Science North Carolina State University

Linear Transformations

- Linear transformations of variables often do not affect the accuracy of predictive models such as linear regression
 - E.g.: Linear regression: any change in the x or y variables will be compensated for in corresponding changes in the β values
- However, linear transforms can still be important for at least 3 reasons:
 - Avoiding nonsensical values by centering
 - centering: subtracting the mean
 - the mean of centered data is always 0
 - Increasing comparability by Z-Score Standardization
 - e.g., distance calculations for clustering
 - Z-score standardization: dividing the centered variable by its standard deviation
 - the means of Z-scores are always 0 and their standard deviations are always 1,
 - so differences are always on the same scale
 - Reducing collinearity of predictors

Mean

Let $x = (x_1, x_2, ..., x_n)$ be the quantitative variable over n observations

The mean of the variable:

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

import numpy as np

3.05

$$\overline{x} = \frac{2.1 + 2.5 + 4.0 + 3.6}{4} = 3.05$$

Economic Growth % (x _i)	S & P 500 Returns % (y _i)
2.1	8
2.5	12
4.0	14
3.6	10

Centering

Let $x = (x_1, x_2, ..., x_n)$ be the column: quantitative variable over n observations

The mean of the vector:

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{1} \sum_{i=1}^{n} x_i + \text{scalar, number}$$

Note: The mean of the centered vector is zero: $\overline{x_c} = 0$

Centering the variable: center x at its mean

$$x_c = x - \overline{x} = (x_1 - \overline{x}, x_2 - \overline{x}, ..., x_n - \overline{x})$$
 centered variable

$$\overline{x} = x_c$$

$$\overline{x} = \frac{2.1 + 2.5 + 4.0 + 3.6}{4} = 3.05$$

$$x_c = (2.1 - 3.05, 2.5 - 3.05, 4.0 - 3.05, 3.6 - 3.05)$$

= $(-.95, -0.55, 0.95, 0.55)$

Economic Growth % (x _i)	S & P 500 Returns % (y _i)
2.1	8
2.5	12
4.0	14
3.6	10

 $x_c = x - x_bar$

Standardizing and Z-scores

Let $x = (x_1, x_2, ..., x_n)$ be the column: variable over n observations

Centered variable:
$$x_c = x - \overline{x} = (x_1 - \overline{x}, x_2 - \overline{x}, \dots, x_n - \overline{x})$$

Variance:
$$var(x) = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n-1}$$

Standard Deviation:
$$sd(x) = \sqrt{var(x)}$$

Standardizing using standard deviation:

$$x_s = \frac{x}{sd(x)}$$

Standardizing using mean & standard deviation (*Z*-score):

Z-score =
$$\frac{x-\overline{x}}{sd(x)} = \frac{x_c}{sd(x)}$$

Economic Growth % (x _i)	S & P 500 Returns % (y _i)
2.1	8
2.5	12
4.0	14
3.6	10

Z-score Standardization

- Applied to symmetrically distributed data, such as normal distribution data
- If the distribution is skewed or wide:
 - then transformations for skewed and wide distributions should be applied first
 - before z-scores are computed
- Z-score values less than -1 signify values smaller than typical
- Z-score values greater than 1 signify values greater than typical

Z-scores Standardization for Increased Comparability

Before Z-score Standardization

After Z-score Standardization

Normalization

- Useful when absolute quantities are less meaningful than relative ones:
 - the meaningful quantity can be external (came from analyst's domain knowledge) or internal (derived from the data)
- Examples:
 - normalizing income relative to another meaningful quantity: median income
 - rather than considering customer's absolute age, consider how old or young they are relative to a "typical" customer
 - the mean age of customers can be treated as the typical age