Linguagens Formais e Autômatos

Aula 04 - Não determinismo

Prof. Dr. Daniel Lucrédio Departamento de Computação / UFSCar Última revisão: ago/2015

Referências bibliográficas

- Introdução à teoria dos autômatos, linguagens e computação / John
 E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman; tradução da 2.ed.
 original de Vandenberg D. de Souza. Rio de Janeiro: Elsevier, 2002
 (Tradução de: Introduction to automata theory, languages, and computation ISBN 85-352-1072-5)
 - Capítulo 2 Seção 2.3
- Introdução à teoria da computação / Michael Sipser; tradução técnica Ruy José Guerra Barretto de Queiroz; revisão técnica Newton José Vieira.
 São Paulo: Thomson Learning, 2007 (Título original: Introduction to the theory of computation. "Tradução da segunda edição norte-americana" -ISBN 978-85-221-0499-4)
 - Capítulo 1 Seção 1.2

Mais um exercício

- Linguagem A consistindo de todas as cadeias sobre {0,1} contendo um 1 na terceira posição a partir do final
 - Ex: 000100, 010110 estão em A, mas 0011 não

Mais um exercício

- Determinismo é como achar um caminho com um GPS
 - Ele avisa a cada esquina
 - Não há dúvida
- Não-determinismo exige "adivinhação"
 - Não é possível saber todos os passos

- Um autômato pode estar em muitos estados ao mesmo tempo
 - No diagrama:
 - DFA tem exatamente 1 seta com 1 símbolo para todo símbolo e estado
 - NFA pode ter zero ou mais setas para um símbolo/estado
 - Na tabela
 - DFA é completamente preenchida, com exatamente um estado em cada célula
 - NFA pode ter células com zero ou mais estados

- O que isto significa na prática?
 - Uma visão: um NFA pode "adivinhar" algumas coisas sobre a entrada (poder paranormal)
 - Outra visão: em transições para mais de um estado, é o mesmo que dividir o autômato em dois e seguir cada execução em paralelo
 - Outra: uma árvore de possibilidades tentativa e erro

- Mais fáceis de projetar e entender
 - \circ Ex: $\Sigma = \{0,1\}$
 - A é uma linguagem consistindo de todas as cadeias contendo um 1 na terceira posição a partir do final (exemplo: 000100)

- Ex: $\Sigma = \{0,1\}$
 - A é uma linguagem que aceita cadeias da forma 0^k, onde k é um múltiplo de 2 ou 3

Autômatos finitos não-determinísticos

- Definição formal: NFA
- $A=(Q,\Sigma,\delta,q_0,F)$
 - Q=Conjunto finito de estados
 - Σ=Conjunto finito de símbolos de entrada
 - δ=Função de transição
 - q_0 =Um estado inicial ($q_0 \in Q$)
 - F=Um conjunto de estados finais ou de aceitação (F
 ⊆ Q)
- Diferença está na função de transição
 - $\circ \quad \delta: Q \times \Sigma \to Q^*$

Autômatos finitos determinísticos

- RELEMBRANDO os AFD:
- Definição formal de linguagem (indutiva)
 - \circ $\delta(q,a)=p$
 - \circ $\delta^{\Lambda}(q,\epsilon)=q$
 - \circ $\delta^{\wedge}(q,w) = \delta(\delta^{\wedge}(q,x),a)$ onde w=xa
 - L(A)={w| δ[^](q₀,w) está em F}
- Definição:
 - Se L é L(A) para algum DFA
 - L é regular

Autômatos finitos não-determinísticos

- Definição formal de linguagem
 - \circ $\delta^{\wedge}(q,\epsilon)=\{q\}$
 - $\circ \delta^{\Lambda}(q,x) = \{p_1, p_2, ..., p_k\}$
 - \circ $\delta^{(q,w)}=$ união de todos $\delta(p_i,a)$, onde w=xa
 - $L(A)=\{w| \delta^{\Lambda}(q_{o},w) \cap F \neq \emptyset\}$
- Definição:
 - Se L é L(A) para algum NFA
 - L é regular

- Calcule a função estendida e mostre, passo a passo, as configurações instantâneas para as seguintes cadeias:
 - 0 111
 - 0 010
 - 0100
 - (Use notação de árvore ou conjuntos)
- Descreva a linguagem reconhecida por este autômato

- Calcule a função estendida e mostre, passo a passo, as configurações instantâneas para as seguintes cadeias:
 - 1234
 - o 123
 - 1231
 - 0 433
 - 412
 - (Use notação de árvore ou conjuntos)
- Descreva a linguagem reconhecida por este autômato

- Resposta
 - Aceita cadeias cujo símbolo final já apareceu antes

- Calcule a função estendida e mostre, passo a passo, as configurações instantâneas para as seguintes cadeias:
 - o ave
 - o avião
 - aves
 - chave
 - (Use notação de árvore ou conjuntos)
- Descreva a linguagem reconhecida por este autômato

Dado o seguinte autômato finito:

	0	1
→ q0	{q0,q1}	{q0}
q 1	Ø	{q2}
* q2	Ø	Ø

- Calcule a função estendida e mostre, passo a passo, as configurações instantâneas para as seguintes cadeias:
 - o 0101010
 - o 11111
 - 001
 - o 1101
 - (Use notação de árvore ou conjuntos)
- Descreva a linguagem aceita por este autômato
 - Resp: cadeias que terminam em 01

Projetando NFAs

- Ex:
 - $\circ \quad \Sigma = \{a,b,c,...,z\}$
 - Linguagem = cadeias que contém a cadeia "pre" como uma subcadeia

Projetando NFAs

- Ex:
 - \circ $\Sigma = \{0,1\}$
 - Linguagem = cadeias que não possuem símbolos repetidos em sequência

Fim

Aula 04 - Não-determinismo