Package 'gamlss.dist'

August 23, 2023

Title Distributions for Generalized Additive Models for Location Scale

```
and Shape
Version 6.1-1
Date 2023-08-01
Description A set of distributions which can be used for modelling the response variables in General-
      ized Additive Models for Location Scale and Shape, Rigby and Stasinopou-
      los (2005), <doi:10.1111/j.1467-9876.2005.00510.x>. The distributions can be continuous, dis-
      crete or mixed distributions. Extra distributions can be created, by transforming, any continu-
      ous distribution defined on the real line, to a distribution defined on ranges 0 to infin-
      ity or 0 to 1, by using a 'log' or a 'logit' transformation respectively.
License GPL-2 | GPL-3
URL https://www.gamlss.com/
BugReports https://github.com/mstasinopoulos/GAMLSS-Distibutions/issues
Depends R (>= 3.5.0)
Imports MASS, graphics, stats, methods, grDevices
Suggests distributions3 (>= 0.2.1)
Encoding UTF-8
NeedsCompilation yes
Author Mikis Stasinopoulos [aut, cre, cph]
       (<https://orcid.org/0000-0003-2407-5704>),
      Robert Rigby [aut] (<a href="https://orcid.org/0000-0003-3853-1707">https://orcid.org/0000-0003-3853-1707</a>),
      Calliope Akantziliotou [ctb],
      Vlasios Voudouris [ctb],
      Gillian Heller [ctb] (<a href="https://orcid.org/0000-0003-1270-1499">https://orcid.org/0000-0003-1270-1499</a>),
      Fernanda De Bastiani [ctb] (<a href="https://orcid.org/0000-0001-8532-639X">https://orcid.org/0000-0001-8532-639X</a>),
      Raydonal Ospina [ctb] (<a href="https://orcid.org/0000-0002-9884-9090">https://orcid.org/0000-0002-9884-9090</a>),
      Nicoletta Motpan [ctb],
      Fiona McElduff [ctb],
      Majid Djennad [ctb],
      Marco Enea [ctb],
      Alexios Ghalanos [ctb],
      Christos Argyropoulos [ctb],
```

```
Almond Stöcker [ctb] (<a href="https://orcid.org/0000-0001-9160-2397">https://orcid.org/0000-0001-9160-2397</a>), Jens Lichter [ctb], Stanislaus Stadlmann [ctb] (<a href="https://orcid.org/0000-0001-6542-6342">https://orcid.org/0000-0001-6542-6342</a>), Achim Zeileis [ctb] (<a href="https://orcid.org/0000-0003-0918-3766">https://orcid.org/0000-0003-0918-3766</a>)
```

Maintainer Mikis Stasinopoulos <d.stasinopoulos@gre.ac.uk>

Repository CRAN

2

Date/Publication 2023-08-23 21:40:08 UTC

R topics documented:

gamlss.dist-package	4
ВВ	8
BCCG	10
BCPE	13
BCT	16
BE	19
BEINF	21
BEOI	26
BEZI	28
BI	31
BNB	33
checklink	35
count_1_31	36
DBI	40
DBURR12	42
DEL	44
DPO	46
EGB2	48
exGAUS	50
EXP	
flexDist	54
GA	55
GAF	57
GAMLSS	60
gamlss.family	62
GB1	66
GB2	68
gen.Family	70
GEOM	72
GG	74
GIG	76
GPO	78
GT	80
GU	82
hazardFun	84
IG	85
IGAMMA	87

Index

194

JSU	88
JSUo	91
LG	93
LNO	95
LO	
LOGITNO	100
LQNO	102
make.link.gamlss	
MN3	
momentSK	
NBF	
NBI	
NBII	
NET	
NO	
NO2	
NOF	
PARETO2	
PE	
PIG	
PO	
RG	
RGE	
SEP	
SEP1	
SHASH	
SI	
SICHEL	
SIMPLEX	
SN1	
SN2	
ST1	
TF	
WARING	
WEI	
WEI2	
WEI3	
YULE	
ZABB	
ZAGA	
ZAGA	
ZAIG	
ZANBI	
ZAP	
ZIP	
ZIP2	
ZIPF	191

gamlss.dist-package Distributions for Generalized Additive Models for Location Scale and Shape

Description

A set of distributions which can be used for modelling the response variables in Generalized Additive Models for Location Scale and Shape, Rigby and Stasinopoulos (2005), <doi:10.1111/j.1467-9876.2005.00510.x>. The distributions can be continuous, discrete or mixed distributions. Extra distributions can be created, by transforming, any continuous distribution defined on the real line, to a distribution defined on ranges 0 to infinity or 0 to 1, by using a 'log' or a 'logit' transformation respectively.

Details

The DESCRIPTION file:

Package: gamlss.dist

Title: Distributions for Generalized Additive Models for Location Scale and Shape

Version: 6.1-1 Date: 2023-08-01

 $Authors @R: \quad c(person("Mikis", "Stasinopoulos", role = c("aut", "cre", "cph"), email = "d.stasinopoulos@gre.ac.uk", comment of the comment$

Description: A set of distributions which can be used for modelling the response variables in Generalized Additive Models

License: GPL-2 | GPL-3

URL: https://www.gamlss.com/

BugReports: https://github.com/mstasinopoulos/GAMLSS-Distibutions/issues

Depends: R (>= 3.5.0)

Imports: MASS, graphics, stats, methods, grDevices

Suggests: distributions 3 (>= 0.2.1)

Encoding: UTF-8

Author: Mikis Stasinopoulos [aut, cre, cph] (https://orcid.org/0000-0003-2407-5704), Robert Rigby [aut] (https://orcid.org/0000-0003-2407-5704)

Maintainer: Mikis Stasinopoulos <d.stasinopoulos@gre.ac.uk>

Index of help topics:

BB Beta Binomial Distribution For Fitting a GAMLSS

Model

BCCG Box-Cox Cole and Green distribution (or Box-Cox

normal) for fitting a GAMLSS

BCPE Box-Cox Power Exponential distribution for

fitting a GAMLSS

BCT Box-Cox t distribution for fitting a GAMLSS
BE The beta distribution for fitting a GAMLSS
BEINF The beta inflated distribution for fitting a

GAMLSS

BEOI The one-inflated beta distribution for fitting

a GAMLSS

BEZI The zero-inflated beta distribution for fitting

a GAMLSS

Binomial distribution for fitting a GAMLSS ΒI

BNB Beta Negative Binomial distribution for fitting

a GAMLSS

DBI The Double binomial distribution

The Discrete Burr type XII distribution for DBURR12

fitting a GAMLSS model

DEL The Delaporte distribution for fitting a GAMLSS

DPO The Double Poisson distribution

The exponential generalized Beta type 2 EGB2

distribution for fitting a GAMLSS

EXP Exponential distribution for fitting a GAMLSS

GΑ Gamma distribution for fitting a GAMLSS

GAF The Gamma distribution family Create a GAMLSS Distribution **GAMLSS**

The generalized Beta type 1 distribution for GB1

fitting a GAMLSS

GB2 The generalized Beta type 2 and generalized

Pareto distributions for fitting a GAMLSS

GEOM Geometric distribution for fitting a GAMLSS

GG Generalized Gamma distribution for fitting a

Generalized Inverse Gaussian distribution for GIG

fitting a GAMLSS

GP0 The generalised Poisson distribution

The generalized t distribution for fitting a GΤ

GAMLSS

GU The Gumbel distribution for fitting a GAMLSS ΙG Inverse Gaussian distribution for fitting a

IGAMMA Inverse Gamma distribution for fitting a GAMLSS JSU

The Johnson's Su distribution for fitting a

GAMLSS

JSUo The original Johnson's Su distribution for

fitting a GAMLSS

Logarithmic and zero adjusted logarithmic LG

distributions for fitting a GAMLSS model

LN0 Log Normal distribution for fitting in GAMLSS Logistic distribution for fitting a GAMLSS LO LOGITNO Logit Normal distribution for fitting in GAMLSS LQNO Normal distribution with a specific mean and

variance relationship for fitting a GAMLSS

model

MN3 Multinomial distribution in GAMLSS

NBF Negative Binomial Family distribution for

fitting a GAMLSS

6

NBI Negative Binomial type I distribution for

fitting a GAMLSS

NBII Negative Binomial type II distribution for

fitting a GAMLSS

NET Normal Exponential t distribution (NET) for

fitting a GAMLSS

NO Normal distribution for fitting a GAMLSS
NO2 Normal distribution (with variance as sigma

parameter) for fitting a GAMLSS

NOF Normal distribution family for fitting a GAMLSS PARETO2 Pareto distributions for fitting in GAMLSS PE Power Exponential distribution for fitting a

GAMLSS

PIG The Poisson-inverse Gaussian distribution for

fitting a GAMLSS model

PO Poisson distribution for fitting a GAMLSS model RG The Reverse Gumbel distribution for fitting a

GAMLSS

RGE Reverse generalized extreme family distribution

for fitting a GAMLSS

SEP The Skew Power exponential (SEP) distribution

for fitting a GAMLSS

SEP1 The Skew exponential power type 1-4

distribution for fitting a GAMLSS

SHASH The Sinh-Arcsinh (SHASH) distribution for

fitting a GAMLSS

SI The Sichel dustribution for fitting a GAMLSS

model

SICHEL The Sichel distribution for fitting a GAMLSS

model

SIMPLEX The simplex distribution for fitting a GAMLSS SN1 Skew Normal Type 1 distribution for fitting a

 GAMLSS

SN2 Skew Normal Type 2 distribution for fitting a

GAMLSS

ST1 The skew t distributions, type 1 to 5
TF t family distribution for fitting a GAMLSS
WARING Waring distribution for fitting a GAMLSS model
WEI Weibull distribution for fitting a GAMLSS
WEI2 A specific parameterization of the Weibull

distribution for fitting a ${\sf GAMLSS}$

WEI3 A specific parameterization of the Weibull

distribution for fitting a GAMLSS

YULE Yule distribution for fitting a GAMLSS model ZABB Zero inflated and zero adjusted Binomial

distribution for fitting in GAMLSS

ZABI	Zero inflated and zero adjusted Binomial
ZAGA	distribution for fitting in GAMLSS The zero adjusted Gamma distribution for fitting a GAMLSS model
ZAIG	The zero adjusted Inverse Gaussian distribution for fitting a GAMLSS model
ZANBI	Zero inflated and zero adjusted negative binomial distributions for fitting a GAMLSS model
ZAP	Zero adjusted poisson distribution for fitting a GAMLSS model
ZIP	Zero inflated poisson distribution for fitting a GAMLSS model
ZIP2	Zero inflated poisson distribution for fitting a GAMLSS model
ZIPF	The zipf and zero adjusted zipf distributions for fitting a GAMLSS model
checklink	Set the Right Link Function for Specified Parameter and Distribution
count_1_31	A set of functions to plot gamlss.family distributions
exGAUS	The ex-Gaussian distribution
flexDist	Non-parametric pdf from limited information data
gamlss.dist-package	Distributions for Generalized Additive Models for Location Scale and Shape

gamlss.family distributions

Family Objects for fitting a GAMLSS model

Functions to generate log and logit distributions from existing continuous

hazardFun Hazard functions for gamlss.family

distributions

momentSK Sample and theoretical Moment and Centile

Skewness and Kurtosis Functions

Author(s)

NA

Maintainer: NA

gamlss.family

gen.Family

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

8 BB

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07. Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family
```

Examples

Beta Binomial Distribution For Fitting a GAMLSS Model

BB

Description

This function defines the beta binomial distribution, a two parameter distribution, for a gamlss. family object to be used in a GAMLSS fitting using the function gamlss()

Usage

Arguments

mu.link	Defines the mu.link, with "logit" link as the default for the mu parameter. Other
	links are "probit" and "cloglog" (complementary log-log)
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter.
	Other links are "inverse", "identity" and "sqrt"

BB 9

vector of positive probabilities mu sigma the dispersion parameter vector of binomial denominators bd vector of probabilities vector of quantiles x,q number of random values to return log, log.p logical; if TRUE, probabilities p are given as log(p) logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, P[X > x]lower.tail fast a logical variable if fast=TRUE the dBB function is used in the calculation of the inverse c.d.f function. This is faster to the default fast=FALSE, where the pBB{} is used, but not always consistent with the results obtained from pBB(), for example if $p \leftarrow pBB(c(0,1,2,3,4,5), mu=.5, sigma=1, bd=5)$ do not ensure that qBB(p, mu=.5, sigma=1, bd=5) will be c(0,1,2,3,4,5)

Details

Definition file for beta binomial distribution.

$$f(y|\mu,\sigma) = \frac{\Gamma(n+1)}{\Gamma(y+1)\Gamma(n-y+1)} \frac{\Gamma(\frac{1}{\sigma})\Gamma(y+\frac{\mu}{\sigma})\Gamma[n+\frac{(1-\mu)}{\sigma}-y]}{\Gamma(n+\frac{1}{\sigma})\Gamma(\frac{\mu}{\sigma})\Gamma(\frac{1-\mu}{\sigma})}$$

for $y=0,1,2,\ldots,n, 0<\mu<1$ and $\sigma>0$, see pp. 523-524 of Rigby *et al.* (2019). . For $\mu=0.5$ and $\sigma=0.5$ the distribution is uniform.

Value

Returns a gamlss.family object which can be used to fit a Beta Binomial distribution in the gamlss() function.

Warning

The functions pBB and qBB are calculated using a laborious procedure so they are relatively slow.

Note

The response variable should be a matrix containing two columns, the first with the count of successes and the second with the count of failures. The parameter mu represents a probability parameter with limits $0<\mu<1$. $n\mu$ is the mean of the distribution where n is the binomial denominator. $\{n\mu(1-\mu)[1+(n-1)\sigma/(\sigma+1)]\}^{0.5}$ is the standard deviation of the Beta Binomial distribution. Hence σ is a dispersion type parameter

Author(s)

Mikis Stasinopoulos, Bob Rigby and Kalliope Akantziliotou

10 BCCG

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, BI,
```

Examples

```
# BB()# gives information about the default links for the Beta Binomial distribution
#plot the pdf
plot(function(y) dBB(y, mu = .5, sigma = 1, bd =40), from=0, to=40, n=40+1, type="h")
#calculate the cdf and plotting it
ppBB <- pBB(seq(from=0, to=40), mu=.2 , sigma=3, bd=40)
plot(0:40,ppBB, type="h")
#calculating quantiles and plotting them
qqBB \leftarrow qBB(ppBB, mu=.2, sigma=3, bd=40)
plot(qqBB~ ppBB)
# when the argument fast is useful
p \leftarrow pBB(c(0,1,2,3,4,5), mu=.01, sigma=1, bd=5)
qBB(p, mu=.01 , sigma=1, bd=5, fast=TRUE)
# 011235
qBB(p, mu=.01 , sigma=1, bd=5, fast=FALSE)
# 0 1 2 3 4 5
# generate random sample
tN <- table(Ni <- rBB(1000, mu=.2, sigma=1, bd=20))
r <- barplot(tN, col='lightblue')</pre>
# fitting a model
# library(gamlss)
#data(aep)
# fits a Beta-Binomial model
#h<-gamlss(y~ward+loglos+year, sigma.formula=~year+ward, family=BB, data=aep)
```

Box-Cox Cole and Green distribution (or Box-Cox normal) for fitting a GAMLSS

BCCG 11

Description

The function BCCG defines the Box-Cox Cole and Green distribution (Box-Cox normal), a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dBCCG, pBCCG, qBCCG and rBCCG define the density, distribution function, quantile function and random generation for the specific parameterization of the Box-Cox Cole and Green distribution. [The function BCCGuntr() is the original version of the function suitable only for the untruncated Box-Cox Cole and Green distribution See Cole and Green (1992) and Rigby and Stasinopoulos (2003a, 2003b) for details. The function BCCGo is identical to BCCG but with log link for mu.

Usage

```
BCCG(mu.link = "identity", sigma.link = "log", nu.link = "identity")
BCCGo(mu.link = "log", sigma.link = "log", nu.link = "identity")
BCCGuntr(mu.link = "identity", sigma.link = "log", nu.link = "identity")
dBCCG(x, mu = 1, sigma = 0.1, nu = 1, log = FALSE)
pBCCG(q, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)
qBCCG(p, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)
rBCCG(x, mu = 1, sigma = 0.1, nu = 1)
dBCCGo(x, mu = 1, sigma = 0.1, nu = 1, log = FALSE)
pBCCGo(q, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)
qBCCGo(p, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)
rBCCGo(n, mu = 1, sigma = 0.1, nu = 1)
```

Arguments

mu.link	Defines the mu.link, with "identity" link as the default for the mu parameter, other links are "inverse", "log" and "own"
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter, other links are "inverse", "identity" and "own"
nu.link	Defines the nu.link, with "identity" link as the default for the nu parameter, other links are "inverse", "log" and "own"
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
nu	vector of skewness parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
р	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

The probability distribution function of the untrucated Box-Cox Cole and Green distribution, BCCGuntr, is defined as

$$f(y|\mu,\sigma,\nu) = \frac{1}{\sqrt{2\pi}\sigma} \frac{y^{\nu-1}}{\mu^{\nu}} \exp(-\frac{z^2}{2})$$

where if $\nu \neq 0$ then $z = [(y/\mu)^{\nu} - 1]/(\nu\sigma)$ else $z = \log(y/\mu)/\sigma$, for y > 0, $\mu > 0$, $\sigma > 0$ and $\nu = (-\infty, +\infty)$.

The Box-Cox Cole and Green distribution, BCCG, adjusts the above density $f(y|\mu, \sigma, \nu)$ for the truncation resulting from the condition y > 0. See Rigby and Stasinopoulos (2003a, 2003b) or pp. 439-441 of Rigby et al. (2019) for details.

Value

BCCG() returns a gamlss.family object which can be used to fit a Cole and Green distribution in the gamlss() function. dBCCG() gives the density, pBCCG() gives the distribution function, qBCCG() gives the quantile function, and rBCCG() generates random deviates.

Warning

The BCCGuntr distribution may be unsuitable for some combinations of the parameters (mainly for large σ) where the integrating constant is less than 0.99. A warning will be given if this is the case. The BCCG distribution is suitable for all combinations of the distributional parameters within their range [i.e. $\mu > 0$, $\sigma > 0$, $\nu = (-\infty, +\infty)$]

Note

 μ is the median of the distribution σ is approximately the coefficient of variation (for small values of σ), and ν controls the skewness.

The BCCG distribution is suitable for all combinations of the parameters within their ranges [i.e. $\mu > 0, \sigma > 0$, and $\nu = (-\infty, \infty)$]

Author(s)

Mikis Stasinopoulos, Bob Rigby and Kalliope Akantziliotou

References

Cole, T. J. and Green, P. J. (1992) Smoothing reference centile curves: the LMS method and penalized likelihood, *Statist. Med.* **11**, 1305–1319

Rigby, R. A. and Stasinopoulos, D. M. (2004). Smooth centile curves for skew and kurtotic data modelled using the Box-Cox Power Exponential distribution. *Statistics in Medicine*, **23**: 3053-3076.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R.A. Stasinopoulos, D.M. (2006). Using the Box-Cox *t* distribution in GAMLSS to mode skewnees and and kurtosis. *Statistical Modelling*, 6(3):209. doi:10.1191/1471082X06st122oa

BCPE 13

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/9780429298547 An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, BCPE, BCT
```

Examples

```
BCCG() # gives information about the default links for the Cole and Green distribution
# library(gamlss)
#data(abdom)
#h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=BCCG, data=abdom)
#plot(h)
plot(function(x) dBCCG(x, mu=5,sigma=.5,nu=-1), 0.0, 20,
    main = "The BCCG density mu=5,sigma=.5,nu=-1")
plot(function(x) pBCCG(x, mu=5,sigma=.5,nu=-1), 0.0, 20,
    main = "The BCCG cdf mu=5, sigma=.5, nu=-1")</pre>
```

BCPE

Box-Cox Power Exponential distribution for fitting a GAMLSS

Description

This function defines the Box-Cox Power Exponential distribution, a four parameter distribution, for a gamlss.family object to be used for a GAMLSS fitting using the function gamlss().

The functions dBCPE, pBCPE, qBCPE and rBCPE define the density, distribution function, quantile function and random generation for the Box-Cox Power Exponential distribution.

The function checkBCPE (very old) can be used, typically when a BCPE model is fitted, to check whether there exit a turning point of the distribution close to zero. It give the number of values of the response below their minimum turning point and also the maximum probability of the lower tail below minimum turning point.

[The function Biventer() is the original version of the function suitable only for the untruncated BCPE distribution.] See Rigby and Stasinopoulos (2003) for details.

The function BCPEo is identical to BCPE but with log link for mu.

14 BCPE

Usage

```
BCPE(mu.link = "identity", sigma.link = "log", nu.link = "identity",
          tau.link = "log")
BCPEo(mu.link = "log", sigma.link = "log", nu.link = "identity",
          tau.link = "log")
BCPEuntr(mu.link = "identity", sigma.link = "log", nu.link = "identity",
          tau.link = "log")
dBCPE(x, mu = 5, sigma = 0.1, nu = 1, tau = 2, log = FALSE)
pBCPE(q, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)
qBCPE(p, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)
rBCPE(n, mu = 5, sigma = 0.1, nu = 1, tau = 2)
dBCPEo(x, mu = 5, sigma = 0.1, nu = 1, tau = 2, log = FALSE)
pBCPEo(q, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE,
       log.p = FALSE)
qBCPEo(p, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE,
       log.p = FALSE)
rBCPEo(n, mu = 5, sigma = 0.1, nu = 1, tau = 2)
checkBCPE(obj = NULL, mu = 10, sigma = 0.1, nu = 0.5, tau = 2,...)
```

Arguments

mu.link	Defines the mu.link, with "identity" link as the default for the mu parameter. Other links are "inverse", "log" and "own"
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter. Other links are "inverse", "identity" and "own"
nu.link	Defines the nu.link, with "identity" link as the default for the nu parameter. Other links are "inverse", "log" and "own"
tau.link	Defines the tau.link, with "log" link as the default for the tau parameter. Other links are "logshifted", "identity" and "own" $$
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
nu	vector of nu parameter values
tau	vector of tau parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
р	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required
obj	a gamlss BCPE family object
	for extra arguments

BCPE 15

Details

The probability density function of the untrucated Box Cox Power Exponential distribution, (BCPE.untr), is defined as

$$f(y|\mu,\sigma,\nu,\tau) = \frac{y^{\nu-1}\tau\exp[-\frac{1}{2}|\frac{z}{c}|^{\tau}]}{\mu^{\nu}\sigma c2^{(1+1/\tau)}\Gamma(\frac{1}{\tau})}$$

where $c = [2^{(-2/\tau)}\Gamma(1/\tau)/\Gamma(3/\tau)]^{0.5}$, where if $\nu \neq 0$ then $z = [(y/\mu)^{\nu} - 1]/(\nu\sigma)$ else $z = \log(y/\mu)/\sigma$, for y > 0, $\mu > 0$, $\sigma > 0$, $\nu = (-\infty, +\infty)$ and $\tau > 0$ see pp. 450-451 of Rigby et al. (2019).

The Box-Cox Power Exponential, BCPE, adjusts the above density $f(y|\mu, \sigma, \nu, \tau)$ for the truncation resulting from the condition y > 0. See Rigby and Stasinopoulos (2003) for details.

Value

BCPE() returns a gamlss.family object which can be used to fit a Box Cox Power Exponential distribution in the gamlss() function. dBCPE() gives the density, pBCPE() gives the distribution function, qBCPE() gives the quantile function, and rBCPE() generates random deviates.

Warning

The BCPE untr distribution may be unsuitable for some combinations of the parameters (mainly for large σ) where the integrating constant is less than 0.99. A warning will be given if this is the case.

The BCPE distribution is suitable for all combinations of the parameters within their ranges [i.e. $\mu>0,\sigma>0,\nu=(-\infty,\infty)$ and $\tau>0$]

Note

 μ , is the median of the distribution, σ is approximately the coefficient of variation (for small σ and moderate nu>0), ν controls the skewness and τ the kurtosis of the distribution

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A. and Stasinopoulos, D. M. (2004). Smooth centile curves for skew and kurtotic data modelled using the Box-Cox Power Exponential distribution. *Statistics in Medicine*, **23**: 3053-3076.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

16 BCT

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973 (see also https://www.gamlss.com/).

See Also

```
gamlss.family, BCT
```

Examples

```
# BCPE() #
# library(gamlss)
# data(abdom)
#h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=BCPE, data=abdom)
#plot(h)
plot(function(x)dBCPE(x, mu=5,sigma=.5,nu=1, tau=3), 0.0, 15,
    main = "The BCPE density mu=5,sigma=.5,nu=1, tau=3")
plot(function(x) pBCPE(x, mu=5,sigma=.5,nu=1, tau=3"), 0.0, 15,
    main = "The BCPE cdf mu=5, sigma=.5, nu=1, tau=3")</pre>
```

BCT

Box-Cox t distribution for fitting a GAMLSS

Description

The function BCT() defines the Box-Cox t distribution, a four parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss().

The functions dBCT, pBCT, qBCT and rBCT define the density, distribution function, quantile function and random generation for the Box-Cox t distribution.

[The function BCTuntr() is the original version of the function suitable only for the untruncated BCT distribution]. See Rigby and Stasinopoulos (2003) for details.

The function BCTo is identical to BCT but with log link for mu.

Usage

BCT 17

Arguments

mu.link	Defines the mu.link, with "identity" link as the default for the mu parameter. Other links are "inverse", "log" and "own"
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter. Other links are "inverse", "identity", "own"
nu.link	Defines the nu.link, with "identity" link as the default for the nu parameter. Other links are "inverse", "log", "own"
tau.link	Defines the tau.link, with "log" link as the default for the tau parameter. Other links are "inverse", "identity" and "own"
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
nu	vector of nu parameter values
tau	vector of tau parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
р	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

The probability density function of the untruncated Box-Cox t distribution, BCTuntr, is given by

$$f(y|\mu,\sigma,\nu,\tau) = \frac{y^{\nu-1}}{\mu^{\nu}\sigma} \frac{\Gamma[(\tau+1)/2]}{\Gamma(1/2)\Gamma(\tau/2)\tau^{0.5}} [1 + (1/\tau)z^2]^{-(\tau+1)/2}$$

where if $\nu \neq 0$ then $z = [(y/\mu)^{\nu} - 1]/(\nu\sigma)$ else $z = \log(y/\mu)/\sigma$, for y > 0, $\mu > 0$, $\sigma > 0$, $\nu = (-\infty, +\infty)$ and $\tau > 0$ see pp. 450-451 of Rigby et al. (2019).

The Box-Cox t distribution, BCT, adjusts the above density $f(y|\mu, \sigma, \nu, \tau)$ for the truncation resulting from the condition y > 0. See Rigby and Stasinopoulos (2003) for details.

Value

BCT() returns a gamlss.family object which can be used to fit a Box Cox-t distribution in the gamlss() function. dBCT() gives the density, pBCT() gives the distribution function, qBCT() gives the quantile function, and rBCT() generates random deviates.

Warning

The use BCTuntr distribution may be unsuitable for some combinations of the parameters (mainly for large σ) where the integrating constant is less than 0.99. A warning will be given if this is the case.

The BCT distribution is suitable for all combinations of the parameters within their ranges [i.e. $\mu > 0, \sigma > 0, \nu = (-\infty, \infty)$ and $\tau > 0$]

18 BCT

Note

 μ is the median of the distribution, $\sigma(\frac{\tau}{\tau-2})^{0.5}$ is approximate the coefficient of variation (for small σ and moderate nu>0 and moderate or large τ), ν controls the skewness and τ the kurtosis of the distribution

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R.A. Stasinopoulos, D.M. (2006). Using the Box-Cox *t* distribution in GAMLSS to mode skewnees and and kurtosis. *Statistical Modelling* 6(3):200. doi:10.1191/1471082X06st122oa.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, BCPE, BCCG
```

Examples

```
BCT()  # gives information about the default links for the Box Cox t distribution
# library(gamlss)
#data(abdom)
#h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=BCT, data=abdom) #
#plot(h)
plot(function(x)dBCT(x, mu=5,sigma=.5,nu=1, tau=2), 0.0, 20,
    main = "The BCT density mu=5,sigma=.5,nu=1, tau=2")
plot(function(x) pBCT(x, mu=5,sigma=.5,nu=1, tau=2), 0.0, 20,
    main = "The BCT cdf mu=5, sigma=.5, nu=1, tau=2")</pre>
```

BE 19

The beta distribution for fitting a GAMLSS

Description

ΒE

The functions BE() and BEo() define the beta distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). BE() has mean equal to the parameter mu and sigma as scale parameter, see below. BEo() is the original parameterizations of the beta distribution as in dbeta() with shape1=mu and shape2=sigma. The functions dBE and dBEo, pBE and pBEo, qBE and qBEo and finally rBE and rBE define the density, distribution function, quantile function and random generation for the BE and BEo parameterizations respectively of the beta distribution.

Usage

```
BE(mu.link = "logit", sigma.link = "logit")

dBE(x, mu = 0.5, sigma = 0.2, log = FALSE)

pBE(q, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)

qBE(p, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)

rBE(n, mu = 0.5, sigma = 0.2)

BEo(mu.link = "log", sigma.link = "log")

dBEo(x, mu = 0.5, sigma = 0.2, log = FALSE)

pBEo(q, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)

qBEo(p, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)
```

Arguments

mu.link	the mu link function with default logit
sigma.link	the sigma link function with default logit
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
p	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

The standard parametrization of the beta distribution is given as:

$$f(y|\alpha,\beta) = \frac{1}{B(\alpha,\beta)} y^{\alpha-1} (1-y)^{\beta-1}$$

```
for y = (0, 1), \alpha > 0 and \beta > 0.
```

20 BE

The first gamlss implementation the beta distribution is called BEo, and it is identical to the standard parametrization with $\alpha = \mu$ and $\beta = \sigma$, see pp. 460-461 of Rigby et al. (2019):

$$f(y|\mu,\sigma) = \frac{1}{B(\mu,\sigma)} y^{\mu-1} (1-y)^{\sigma-1}$$

for $y=(0,1), \, \mu>0$ and $\sigma>0$. The problem with this parametrization is that with mean $E(y)=\mu/(\mu+\sigma)$ it is not convenient for modelling the response y as function of the explanatory variables. The second parametrization, BE see pp. 461-463 of Rigby et al. (2019), is using

$$\mu = \frac{\alpha}{\alpha + \beta}$$

$$\sigma = \frac{1}{\alpha + \beta + 1)^{1/2}}$$

(of the standard parametrization) and it is more convenient because μ now is the mean with variance equal to $Var(y) = \sigma^2 \mu (1 - \mu)$. Note however that $0 < \mu < 1$ and $0 < \sigma < 1$.

Value

BE() and BEo() return a gamlss.family object which can be used to fit a beta distribution in the gamlss() function.

Note

Note that for BE, mu is the mean and sigma a scale parameter contributing to the variance of y

Author(s)

Bob Rigby and Mikis Stasinopoulos

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also https://www.gamlss.com/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

(see also https://www.gamlss.com/).

See Also

```
gamlss.family, BE, LOGITNO, GB1, BEINF
```

Examples

```
BE()# gives information about the default links for the beta distribution
dat1<-rBE(100, mu=.3, sigma=.5)
hist(dat1)
#library(gamlss)
# mod1<-gamlss(dat1~1,family=BE) # fits a constant for mu and sigma
#fitted(mod1)[1]
#fitted(mod1,"sigma")[1]
plot(function(y) dBE(y, mu=.1 ,sigma=.5), 0.001, 0.999)
plot(function(y) pBE(y, mu=.1 ,sigma=.5), 0.001, 0.999)
plot(function(y) qBE(y, mu=.1 ,sigma=.5), 0.001, 0.999)
plot(function(y) qBE(y, mu=.1 ,sigma=.5), 0.001, 0.999)
plot(function(y) qBE(y, mu=.1 ,sigma=.5, lower.tail=FALSE), 0.001, 0.999)
dat2<-rBEo(100, mu=1, sigma=2)
#mod2<-gamlss(dat2~1,family=BEo) # fits a constant for mu and sigma
#fitted(mod2)[1]
#fitted(mod2,"sigma")[1]</pre>
```

BEINF

The beta inflated distribution for fitting a GAMLSS

Description

The function BEINF() defines the beta inflated distribution, a four parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The beta inflated is similar to the beta but allows zeros and ones as values for the response variable. The two extra parameters model the probabilities at zero and one.

The functions BEINF0() and BEINF1() are three parameter beta inflated distributions allowing zeros or ones only at the response respectively. BEINF0() and BEINF1() are re-parameterize versions of the distributions BEZI and BEOI contributed to gamlss by Raydonal Ospina (see Ospina and Ferrari (2010)).

The functions dBEINF, pBEINF, qBEINF and rBEINF define the density, distribution function, quantile function and random generation for the BEINF parametrization of the beta inflated distribution.

The functions dBEINF0, pBEINF0, qBEINF0 and rBEINF0 define the density, distribution function, quantile function and random generation for the BEINF0 parametrization of the beta inflated at zero distribution.

The functions dBEINF1, pBEINF1, qBEINF1 and rBEINF1 define the density, distribution function, quantile function and random generation for the BEINF1 parametrization of the beta inflated at one distribution.

plotBEINF, plotBEINF0 and plotBEINF1 can be used to plot the distributions. meanBEINF0 and meanBEINF1 calculates the expected value of the response for a fitted model.

Usage

```
BEINF(mu.link = "logit", sigma.link = "logit", nu.link = "log",
     tau.link = "log")
BEINF0(mu.link = "logit", sigma.link = "logit", nu.link = "log")
BEINF1(mu.link = "logit", sigma.link = "logit", nu.link = "log")
dBEINF(x, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1,
       log = FALSE)
dBEINFO(x, mu = 0.5, sigma = 0.1, nu = 0.1, log = FALSE)
dBEINF1(x, mu = 0.5, sigma = 0.1, nu = 0.1, log = FALSE)
pBEINF(q, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1,
       lower.tail = TRUE, log.p = FALSE)
pBEINF0(q, mu = 0.5, sigma = 0.1, nu = 0.1,
       lower.tail = TRUE, log.p = FALSE)
pBEINF1(q, mu = 0.5, sigma = 0.1, nu = 0.1,
       lower.tail = TRUE, log.p = FALSE)
qBEINF(p, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1,
       lower.tail = TRUE, log.p = FALSE)
qBEINF0(p, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1,
       lower.tail = TRUE, log.p = FALSE)
qBEINF1(p, mu = 0.5, sigma = 0.1, nu = 0.1,
       lower.tail = TRUE, log.p = FALSE)
rBEINF(n, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1)
rBEINF0(n, mu = 0.5, sigma = 0.1, nu = 0.1)
rBEINF1(n, mu = 0.5, sigma = 0.1, nu = 0.1)
plotBEINF(mu = 0.5, sigma = 0.5, nu = 0.5, tau = 0.5,
          from = 0.001, to = 0.999, n = 101, ...)
plotBEINF0(mu = 0.5, sigma = 0.5, nu = 0.5,
          from = 1e-04, to = 0.9999, n = 101, ...)
plotBEINF1(mu = 0.5, sigma = 0.5, nu = 0.5,
          from = 1e-04, to = 0.9999, n = 101, ...)
meanBEINF(obj)
meanBEINF0(obj)
meanBEINF1(obj)
```

Arguments

mu.link	the mu link function with default logit
sigma.link	the sigma link function with default logit
nu.link	the nu link function with default log
tau.link	the tau link function with default log

x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
nu	vector of parameter values modelling the probability at zero
tau	vector of parameter values modelling the probability at one
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
p	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required
from	where to start plotting the distribution from
to	up to where to plot the distribution
obj	a fitted BEINF object
	other graphical parameters for plotting

Details

The beta inflated distribution is defined as

$$f(y)=p_0$$
 if $y=0$
$$f(y)=p_1$$
 if $y=1$
$$f(y|lpha,eta)=rac{1}{B(lpha,eta)}y^{lpha-1}(1-y)^{eta-1}$$
 otherwise

for $0 \le y \le 1$, $\alpha > 0$, $\beta > 0$, $0 < p_0 < 1$, $0 < p_1 < 1$ and $0 < p_0 + p_1 < 1$.

The GAMLSS function BEINF() re-parametrize the parameters as

$$\mu = \frac{\alpha}{\alpha + \beta}$$

$$\sigma = \frac{1}{\alpha + \beta + 1}$$

$$\nu = \frac{p_0}{p_2}$$

$$\tau = \frac{p_1}{p_2}$$

where $p_2 = 1 - p_0 - p_1$ so $0 < \mu < 1, 0 < \sigma < 1, \nu > 0$ and $\tau > 0$ see pp. 466-467 of Rigby et al. (2019).

The beta inflated at zero distribution is defined as

$$f(y)=p_0\quad \text{if}\quad y=0$$

$$f(y|\alpha,\beta)=\frac{1}{B(\alpha,\beta)}y^{\alpha-1}(1-y)^{\beta-1}\quad \text{otherwise}$$

for $0 \le y < 1$, $\alpha > 0$, $\beta > 0$ and $0 < p_0 < 1$.

The GAMLSS function BEINF0() re-parametrize the parameters as

$$\mu = \frac{\alpha}{\alpha + \beta}$$

$$\sigma = \frac{1}{\alpha + \beta + 1}$$

$$\nu = \frac{p_0}{1 - P_0}$$

so $0<\mu<1,$ $0<\sigma<1$ and $\nu>0$ see pp. 467-468 of Rigby et al. (2019).

The beta inflated at 1 distribution is defined as

$$f(y|\alpha,\beta) = \frac{1}{B(\alpha,\beta)} y^{\alpha-1} (1-y)^{\beta-1} \quad \text{if} \quad 0 < y < 1$$
$$f(y) = p_1 \quad \text{if} \quad y = 1$$

for $0 < y \le 1$, $\alpha > 0$, $\beta > 0$ and $0 < p_1 < 1$.

The GAMLSS function BEINF1() re-parametrize the parameters as

$$\mu = \frac{\alpha}{\alpha + \beta}$$

$$\sigma = \frac{1}{\alpha + \beta + 1}$$

$$\nu = \frac{p_1}{1 - P_1}$$

so $0 < \mu < 1, 0 < \sigma < 1$ and $\nu > 0$ see pp. 468-469 of Rigby et al. (2019).

Value

returns a gamlss.family object which can be used to fit a beta inflated distribution in the gamlss() function....

Author(s)

Bob Rigby and Mikis Stasinopoulos

References

Ospina R. and Ferrari S. L. P. (2010) Inflated beta distributions, *Statistical Papers*, 23, 111-126.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC,doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973 (see also https://www.gamlss.com/).

See Also

```
gamlss.family, BE, BEo, BEZI, BEOI
```

Examples

```
BEINF()# gives information about the default links for the beta inflated distribution
BEINF0()
BEINF1()
# plotting the distributions
op<-par(mfrow=c(2,2))
plotBEINF( mu = .5 , sigma = .5, nu = 0.5, tau = 0.5, from = 0, to = 1, n = 101)
plotBEINF0( mu = .5 , sigma = .5, nu = 0.5, from = 0, to = 1, n = 101)
plotBEINF1( mu =.5 , sigma=.5, nu = 0.5, from = 0.001, to=1, n = 101)
curve(dBE(x, mu = .5, sigma = .5), 0.01, 0.999)
par(op)
# plotting the cdf
op<-par(mfrow=c(2,2))
plotBEINF( mu =.5 , sigma=.5, nu = 0.5, tau = 0.5, from = 0, to=1, n = 101, main="BEINF")
plotBEINF0( mu = .5 , sigma=.5, nu = 0.5, from = 0, to=1, n = 101, main="BEINF0")
plotBEINF1( mu = .5 , sigma= .5, nu = 0.5, from = 0.001, to=1, n = 101, main="BEINF1")
curve(dBE(x, mu =.5, sigma=.5), 0.01, 0.999, main="BE")
par(op)
op<-par(mfrow=c(2,2))</pre>
plotBEINF( mu =.5 , sigma=.5, nu = 0.5, tau = 0.5, from = 0, to=1, n = 101, main="BEINF")
plotBEINF0( mu = .5 , sigma=.5, nu = 0.5, from = 0, to=1, n = 101, main="BEINF0")
plotBEINF1( mu = .5 , sigma=.5, nu = 0.5, from = 0.001, to=1, n = 101, main="BEINF1")
curve(dBE(x, mu = .5, sigma= .5), 0.01, 0.999, main="BE")
par(op)
op<-par(mfrow=c(2,2))
curve( pBEINF(x, mu=.5, sigma=.5, nu = 0.5, tau = 0.5,), 0, 1, ylim=c(0,1), main="BEINF" )
curve(pBEINF0(x, mu=.5 ,sigma=.5, nu = 0.5), 0, 1, ylim=c(0,1), main="BEINF0")
curve(pBEINF1(x, mu=.5 ,sigma=.5, nu = 0.5), 0, 1, ylim=c(0,1), main="BEINF1")
         pBE(x, mu=.5 ,sigma=.5), .001, .99, ylim=c(0,1), main="BE")
curve(
par(op)
#-----
op<-par(mfrow=c(2,2))
curve(qBEINF(x, mu=.5 ,sigma=.5, nu = 0.5, tau = 0.5), .01, .99, main="BEINF" )
curve(qBEINF0(x, mu=.5, sigma=.5, nu = 0.5), .01, .99, main="BEINF0")
curve(qBEINF1(x, mu=.5 , sigma=.5, nu = 0.5), .01, .99, main="BEINF1" )
curve(qBE(x, mu=.5 , sigma=.5), .01, .99 , main="BE")
par(op)
#-----
op<-par(mfrow=c(2,2))
hist(rBEINF(200, mu=.5, sigma=.5, nu = 0.5, tau = 0.5))
hist(rBEINF0(200, mu=.5, sigma=.5, nu = 0.5))
hist(rBEINF1(200, mu=.5 ,sigma=.5, nu = 0.5))
hist(rBE(200, mu=.5 ,sigma=.5))
par(op)
# fit a model to the data
```

26 BEOI

```
# library(gamlss)
#m1<-gamlss(dat~1,family=BEINF)
#meanBEINF(m1)[1]
```

BEOI

The one-inflated beta distribution for fitting a GAMLSS

Description

The function BEOI() defines the one-inflated beta distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The one-inflated beta is similar to the beta distribution but allows ones as y values. This distribution is an extension of the beta distribution using a parameterization of the beta law that is indexed by mean and precision parameters (Ferrari and Cribari-Neto, 2004). The extra parameter models the probability at one. The functions dBEOI, pBEOI, qBEOI and rBEOI define the density, distribution function, quantile function and random generation for the BEOI parameterization of the one-inflated beta distribution. plotBEOI can be used to plot the distribution. meanBEOI calculates the expected value of the response for a fitted model.

Usage

```
BEOI(mu.link = "logit", sigma.link = "log", nu.link = "logit")

dBEOI(x, mu = 0.5, sigma = 1, nu = 0.1, log = FALSE)

pBEOI(q, mu = 0.5, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE)

qBEOI(p, mu = 0.5, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE)

rBEOI(n, mu = 0.5, sigma = 1, nu = 0.1)

plotBEOI(mu = .5, sigma = 1, nu = 0.1, from = 0.001, to = 1, n = 101, ...)

meanBEOI(obj)
```

Arguments

mu.link	the mu link function with default logit
sigma.link	the sigma link function with default log
nu.link	the nu link function with default logit
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of precision parameter values
nu	vector of parameter values modelling the probability at one

BEOI 27

log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
р	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required
from	where to start plotting the distribution from
to	up to where to plot the distribution
obj	a fitted BEOI object
	other graphical parameters for plotting

Details

The one-inflated beta distribution is given as

$$f(y)=\nu\quad \text{if}\quad y=1$$

$$f(y|\mu,\sigma)=(1-\nu)\frac{\Gamma(\sigma)}{\Gamma(\mu\sigma)\Gamma((1-\mu)\sigma)}y^{\mu\sigma}(1-y)^{((1-\mu)\sigma)-1}\quad \text{otherwise}$$

The parameters satisfy $0 < \mu < 0$, $\sigma > 0$ and $0 < \nu < 1$.

Here
$$E(y) = \nu + (1 - \nu)\mu$$
 and $Var(y) = (1 - \nu) \frac{\mu(1 - \mu)}{\sigma + 1} + \nu(1 - \nu)(1 - \mu)^2$.

Value

returns a gamlss.family object which can be used to fit a one-inflated beta distribution in the gamlss() function.

Note

This work is part of my PhD project at the University of Sao Paulo under the supervion of Professor Silvia Ferrari. My thesis is concerned with regression modelling of rates and proportions with excess of zeros and/or ones

Author(s)

Raydonal Ospina, Department of Statistics, University of Sao Paulo, Brazil.

<rospina@ime.usp.br>

References

Ferrari, S.L.P., Cribari-Neto, F. (2004). Beta regression for modelling rates and proportions. *Journal of Applied Statistics*, **31** (1), 799-815.

Ospina R. and Ferrari S. L. P. (2010) Inflated beta distributions, Statistical Papers, 23, 111-126.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape (with discussion). *Applied Statistics*, **54** (3), 507-554.

28 BEZI

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, BEOI
```

Examples

```
BEOI()# gives information about the default links for the BEOI distribution
# plotting the distribution
plotBEOI( mu =0.5 , sigma=5, nu = 0.1, from = 0.001, to=1, n = 101)
# plotting the cdf
plot(function(y) pBEOI(y, mu=.5 ,sigma=5, nu=0.1), 0.001, 0.999)
# plotting the inverse cdf
plot(function(y) qBEOI(y, mu=.5 ,sigma=5, nu=0.1), 0.001, 0.999)
# generate random numbers
dat<-rBEOI(100, mu=.5, sigma=5, nu=0.1)
# fit a model to the data.
# library(gamlss)
#mod1<-gamlss(dat~1,sigma.formula=~1, nu.formula=~1, family=BEOI)</pre>
#fitted(mod1)[1]
#summary(mod1)
#fitted(mod1,"mu")[1]
                             #fitted mu
#fitted(mod1, "sigma")[1]
                             #fitted sigma
#fitted(mod1,"nu")[1]
                             #fitted nu
#meanBEOI(mod1)[1] # expected value of the response
```

BEZI

The zero-inflated beta distribution for fitting a GAMLSS

Description

The function BEZI() defines the zero-inflated beta distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The zero-inflated beta is similar to the beta distribution but allows zeros as y values. This distribution is an extension of the beta distribution using a parameterization of the beta law that is indexed by mean and precision parameters (Ferrari and Cribari-Neto, 2004). The extra parameter models the probability at zero. The functions dBEZI, pBEZI, qBEZI and rBEZI define the density, distribution function, quantile function and random generation for the BEZI parameterization of the zero-inflated beta distribution. plotBEZI can be used to plot the distribution. meanBEZI calculates the expected value of the response for a fitted model.

BEZI 29

Usage

```
BEZI(mu.link = "logit", sigma.link = "log", nu.link = "logit")

dBEZI(x, mu = 0.5, sigma = 1, nu = 0.1, log = FALSE)

pBEZI(q, mu = 0.5, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE)

qBEZI(p, mu = 0.5, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE)

rBEZI(n, mu = 0.5, sigma = 1, nu = 0.1)

plotBEZI(mu = .5, sigma = 1, nu = 0.1, from = 0, to = 0.999, n = 101, ...)

meanBEZI(obj)
```

Arguments

mu.link	the mu link function with default logit
sigma.link	the sigma link function with default log
nu.link	the nu link function with default logit
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of precision parameter values
nu	vector of parameter values modelling the probability at zero
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
р	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required
from	where to start plotting the distribution from
to	up to where to plot the distribution
obj	a fitted BEZI object
	other graphical parameters for plotting

Details

The zero-inflated beta distribution is given as

$$f(y)=\nu$$
 if $(y=0)$
$$f(y|\mu,\sigma)=(1-\nu)\frac{\Gamma(\sigma)}{\Gamma(\mu\sigma)\Gamma((1-\mu)\sigma)}y^{\mu\sigma}(1-y)^{((1-\mu)\sigma)-1}$$
 if $y=(0,1).$ The parameters satisfy $0<\mu<0,\sigma>0$ and $0<\nu<1.$ Here $E(y)=(1-\nu)\mu$ and $Var(y)=(1-\nu)\frac{\mu(1-\mu)}{\sigma+1}+\nu(1-\nu)\mu^2.$

30 BEZI

Value

returns a gamlss.family object which can be used to fit a zero-inflated beta distribution in the gamlss() function.

Note

This work is part of my PhD project at the University of Sao Paulo under the supervion of Professor Silvia Ferrari. My thesis is concerned with regression modelling of rates and proportions with excess of zeros and/or ones

Author(s)

Raydonal Ospina, Department of Statistics, University of Sao Paulo, Brazil. <ruspina@ime.usp.br>

References

Ferrari, S.L.P., Cribari-Neto, F. (2004). Beta regression for modelling rates and proportions. *Journal of Applied Statistics*, **31** (1), 799-815.

Ospina R. and Ferrari S. L. P. (2010) Inflated beta distributions, Statistical Papers, 23, 111-126.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape (with discussion). *Applied Statistics*, **54** (3), 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973 (see also https://www.gamlss.com/).

See Also

```
gamlss.family, BEZI
```

Examples

```
BEZI()# gives information about the default links for the BEZI distribution # plotting the distribution plotBEZI( mu =0.5 , sigma=5, nu = 0.1, from = 0, to=0.99, n = 101) # plotting the cdf plot(function(y) pBEZI(y, mu=.5 ,sigma=5, nu=0.1), 0, 0.999) # plotting the inverse cdf plot(function(y) qBEZI(y, mu=.5 ,sigma=5, nu=0.1), 0, 0.999) # generate random numbers dat<-rBEZI(100, mu=.5, sigma=5, nu=0.1) # fit a model to the data. Tits a constant for mu, sigma and nu
```

BI 31

```
# library(gamlss)
#mod1<-gamlss(dat~1,sigma.formula=~1, nu.formula=~1, family=BEZI)
#fitted(mod1)[1]
#summary(mod1)
#fitted(mod1,"mu")[1] #fitted mu
#fitted(mod1,"sigma")[1] #fitted sigma
#fitted(mod1,"nu")[1] #fitted nu
#meanBEZI(mod1)[1] # expected value of the response</pre>
```

ΒI

Binomial distribution for fitting a GAMLSS

Description

The BI() function defines the binomial distribution, a one parameter family distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dBI, pBI, qBI and rBI define the density, distribution function, quantile function and random generation for the binomial, BI(), distribution.

Usage

```
BI(mu.link = "logit")
dBI(x, bd = 1, mu = 0.5, log = FALSE)
pBI(q, bd = 1, mu = 0.5, lower.tail = TRUE, log.p = FALSE)
qBI(p, bd = 1, mu = 0.5, lower.tail = TRUE, log.p = FALSE)
rBI(n, bd = 1, mu = 0.5)
```

Arguments

mu.link	Defines the mu.link, with "logit" link as the default for the mu parameter. Other
	links are "probit" and "cloglog" (complementary log-log)
X	vector of (non-negative integer) quantiles
mu	vector of positive probabilities
bd	vector of binomial denominators
р	vector of probabilities
q	vector of quantiles
n	number of random values to return
log, log.p	logical; if TRUE, probabilities p are given as log(p)
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$

Details

Definition file for binomial distribution.

$$f(y|\mu) = \frac{\Gamma(n+1)}{\Gamma(y+1)\Gamma(n-y+1)} \mu^{y} (1-\mu)^{(n-y)}$$

for y = 0, 1, 2, ..., n and $0 < \mu < 1$ see pp. 521-522 of Rigby et al. (2019).

32 BI

Value

returns a gamlss.family object which can be used to fit a binomial distribution in the gamlss() function.

Note

The response variable should be a matrix containing two columns, the first with the count of successes and the second with the count of failures. The parameter mu represents a probability parameter with limits $0 < \mu < 1$. $n\mu$ is the mean of the distribution where n is the binomial denominator.

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, ZABI, ZIBI
```

Examples

```
BI()# gives information about the default links for the Binomial distribution # data(aep)
# library(gamlss)
# h<-gamlss(y~ward+loglos+year, family=BI, data=aep)
# plot of the binomial distribution
curve(dBI(x, mu = .5, bd=10), from=0, to=10, n=10+1, type="h")
tN <- table(Ni <- rBI(1000, mu=.2, bd=10))
r <- barplot(tN, col='lightblue')
```

33

BNB Beta Negative Binomial distribution for fitting a GAMLSS

Description

BNB

The BNB() function defines the beta negative binomial distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss().

The functions dBNB, pBNB, qBNB and rBNB define the density, distribution function, quantile function and random generation for the beta negative binomial distribution, BNB().

The functions ZABNB() and ZIBNB() are the zero adjusted (hurdle) and zero inflated versions of the beta negative binomial distribution, respectively. That is four parameter distributions.

The functions dZABNB, dZIBNB, pZABNB,pZIBNB, qZABNB qZIBNB rZABNB and rZIBNB define the probability, cumulative, quantile and random generation functions for the zero adjusted and zero inflated beta negative binomial distributions, ZABNB(), ZIBNB(), respectively.

Usage

```
BNB(mu.link = "log", sigma.link = "log", nu.link = "log")
dBNB(x, mu = 1, sigma = 1, nu = 1, log = FALSE)
pBNB(q, mu = 1, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE)
qBNB(p, mu = 1, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE,
     max.value = 10000)
rBNB(n, mu = 1, sigma = 1, nu = 1, max.value = 10000)
ZABNB(mu.link = "log", sigma.link = "log", nu.link = "log",
      tau.link = "logit")
dZABNB(x, mu = 1, sigma = 1, nu = 1, tau = 0.1, log = FALSE)
pZABNB(q, mu = 1, sigma = 1, nu = 1, tau = 0.1, lower.tail = TRUE,
       log.p = FALSE)
qZABNB(p, mu = 1, sigma = 1, nu = 1, tau = 0.1, lower.tail = TRUE,
       log.p = FALSE, max.value = 10000)
rZABNB(n, mu = 1, sigma = 1, nu = 1, tau = 0.1, max.value = 10000)
ZIBNB(mu.link = "log", sigma.link = "log", nu.link = "log",
      tau.link = "logit")
dZIBNB(x, mu = 1, sigma = 1, nu = 1, tau = 0.1, log = FALSE)
pZIBNB(q, mu = 1, sigma = 1, nu = 1, tau = 0.1, lower.tail = TRUE,
       log.p = FALSE)
qZIBNB(p, mu = 1, sigma = 1, nu = 1, tau = 0.1, lower.tail = TRUE,
       log.p = FALSE, max.value = 10000)
rZIBNB(n, mu = 1, sigma = 1, nu = 1, tau = 0.1, max.value = 10000)
```

Arguments

```
mu.link The link function for mu
sigma.link The link function for sigma
```

34 BNB

nu.link The link function for nu tau.link The link function for tau vector of (non-negative integer) vector of positive means mu vector of positive dispersion parameter sigma vector of a positive parameter nu vector of probabilities tau logical; if TRUE, probabilities p are given as log(p) log, log.p lower.tail logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, P[X > x]vector of probabilities vector of quantiles q number of random values to return max.value a constant, set to the default value of 10000 for how far the algorithm should

Details

The probability function of the BNB is

look for q

$$P(Y=y|\mu,\sigma,\nu) = \frac{\Gamma(y+\nu^{-1})B(y+\mu\sigma^{-1}\nu,\sigma^{-1}+\nu^{-1}+1)}{\Gamma(y+1)\Gamma(\nu^{-1})B(\mu\sigma^{-1}\nu,\sigma^{-1}+1)}$$

for $y = 0, 1, 2, 3, ..., \mu > 0$, $\sigma > 0$ and $\nu > 0$, see pp 502-503 of Rigby et al. (2019).

The distribution has mean μ .

The definition of the zero adjusted beta negative binomial distribution, ZABNB and the the zero inflated beta negative binomial distribution, ZIBNB, are given in p. 517 and pp. 519 of of Rigby *et al.* (2019), respectively.

Value

returns a gamlss.family object which can be used to fit a Poisson distribution in the gamlss() function.

Author(s)

Bob Rigby and Mikis Stasinopoulos

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

checklink 35

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also https://www.gamlss.com/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

NBI, NBII

Examples

```
# gives information about the default links for the beta negative binomial
# plotting the distribution
plot(function(y) dBNB(y, mu = 10, sigma = 0.5, nu=2), from=0, to=40, n=40+1, type="h")
# creating random variables and plot them
tN <- table(Ni <- rBNB(1000, mu=5, sigma=0.5, nu=2))
r <- barplot(tN, col='lightblue')</pre>
ZABNB()
ZIBNB()
# plotting the distribution
plot(function(y) dZABNB(y, mu = 10, sigma = 0.5, nu=2, tau=.1),
     from=0, to=40, n=40+1, type="h")
plot(function(y) dZIBNB(y, mu = 10, sigma = 0.5, nu=2, tau=.1),
     from=0, to=40, n=40+1, type="h")
## Not run:
library(gamlss)
data(species)
species <- transform(species, x=log(lake))</pre>
m6 \leftarrow gamlss(fish \sim pb(x), sigma.fo=\sim 1, data=species, family=BNB)
## End(Not run)
```

checklink

Set the Right Link Function for Specified Parameter and Distribution

Description

This function is used within the distribution family specification of a GAMLSS model to define the right link for each of the parameters of the distribution. This function should not be called by the user unless he/she specify a new distribution family or wishes to change existing link functions in the parameters.

36 count_1_31

Usage

```
checklink(which.link = NULL, which.dist = NULL, link = NULL, link.List = NULL)
```

Arguments

which.link which parameter link e.g. which.link="mu.link"
which.dist which distribution family e.g. which.dist="Cole.Green"
link a repetition of which.link e.g. link=substitute(mu.link)
what link function are required e.g. link.List=c("inverse", "log", "identity")

Value

Defines the right link for each parameter

Author(s)

Calliope Akantziliotou

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC,doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family
```

count_1_31 A set of functions to plot gamlss.family distributions	
---	--

Description

Those functions are used in the distribution book of gamlss, see Rigby et. al 2019.

count_1_31 37

Usage

```
binom_1_31(family = BI, mu = c(0.1, 0.5, 0.7), bd = NULL, miny = 0,
           maxy = 20, cex.axis = 1.2, cex.all = 1.5)
binom_2_33(family = BB, mu = c(0.1, 0.5, 0.8), sigma = c(0.5, 1, 2),
           bd = NULL, miny = 0, maxy = 10, cex.axis = 1.5,
           cex.all = 1.5)
binom_3_33(family = ZIBB, mu = c(0.1, 0.5, 0.8), sigma = c(0.5, 1, 2),
           nu = c(0.01, 0.3), bd = NULL, miny = 0, maxy = 10,
           cex.axis = 1.5, cex.all = 1.5, cols = c("darkgray", "black"),
           spacing = 0.3, legend.cex=1, legend.x="topright",
          legend.where=c("left","right", "center"))
contR_2_{12}(family = "NO", mu = c(0, -1, 1), sigma = c(1, 0.5, 2),
          cols=c(gray(.1),gray(.2),gray(.3)),
          ltype = c(1, 2, 3), maxy = 7,
          no.points = 201, y.axis.lim = 1.1,
          cex.axis = 1.5, cex.all = 1.5,
          legend.cex=1, legend.x="topleft" )
contR_3_11(family = "PE", mu = 0, sigma = 1, nu = c(1, 2, 3),
          cols=c(gray(.1),gray(.2),gray(.3)), maxy = 7, no.points = 201,
          ltype = c(1, 2, 3), y.axis.lim = 1.1, cex.axis = 1.5,
          cex.all = 1.5, legend.cex=1, legend.x="topleft")
contR_4_13(family = "SEP3", mu = 0, sigma = 1, nu = c(0.5, 1, 2),
         tau = c(1, 2, 5), cols=c(gray(.1),gray(.2),gray(.3)), maxy = 7,
         no.points = 201, ltype = c(1, 2, 3),
         y.axis.lim = 1.1, cex.axis = 1.5, cex.all = 1.5,
         legend.cex=1, legend.x="topleft",
         legend.where=c("left","right"))
contRplus_2_11(family = GA, mu = 1, sigma = c(0.1, 0.6, 1),
          cols=c(gray(.1),gray(.2),gray(.3)),
          maxy = 4, no.points = 201,
          y.axis.lim = 1.1, ltype = c(1, 2, 3),
           cex.axis = 1.5, cex.all = 1.5,
          legend.cex=1, legend.x="topright")
contRplus_3_13(family = "BCCG", mu = 1, sigma = c(0.15, 0.2, 0.5),
          nu = c(-2, 0, 4),
          cols=c(gray(.1),gray(.2),gray(.3)),
          maxy = 4, ltype = c(1, 2, 3),
          no.points = 201, y.axis.lim = 1.1,
          cex.axis = 1.5, cex.all = 1.5,
          legend.cex=1, legend.x="topright",
```

38 count_1_31

```
legend.where=c("left","right"))
contRplus_4_33(family = BCT, mu = 1, sigma = c(0.15, 0.2, 0.5),
          nu = c(-4, 0, 2), tau = c(100, 5, 1),
          cols=c(gray(.1),gray(.2),gray(.3)),
          maxy = 4, ltype = c(1, 2, 3),
          no.points = 201, y.axis.lim = 1.1,
          cex.axis = 1.5, cex.all = 1.5,
          legend.cex=1, legend.x="topright",
          legend.where=c("left","right"))
contR01_2_13(family = "BE", mu = c(0.2, 0.5, 0.8), sigma = c(0.2, 0.5, 0.8),
            cols=c(gray(.1),gray(.2),gray(.3)),
            ltype = c(1, 2, 3), maxy = 7, no.points = 201,
            y.axis.lim = 1.1, maxYlim = 10,
            cex.axis = 1.5, cex.all = 1.5,
            legend.cex=1, legend.x="topright",
            legend.where=c("left","right", "center"))
contR01_4_33(family = GB1, mu = c(0.5), sigma = c(0.2, 0.5, 0.7),
            nu = c(1, 2, 5), tau = c(0.5, 1, 2),
            cols=c(gray(.1),gray(.2),gray(.3)),
            maxy = 0.999, ltype = c(1, 2, 3),
             no.points = 201, y.axis.lim = 1.1,
             maxYlim = 10, cex.axis = 1.5, cex.all = 1.5,
              legend.cex=1, legend.x="topright",
              legend.where=c("left","right", "center"))
count_1_31(family = P0, mu = c(1, 2, 5), miny = 0, maxy = 10,
           cex.axis = 1.2, cex.all = 1.5)
count_1_2(family = P0, mu = c(1, 2, 5, 10), miny = 0,
           maxy = 20, cex.axis = 1.2, cex.all = 1.5)
count_2_32(family = NBI, mu = c(0.5, 1, 5), sigma = c(0.1, 2),
           miny = 0, maxy = 10, cex.axis = 1.5, cex.all = 1.5)
count_2_32R(family = NBI, mu = c(1, 2), sigma = c(0.1, 1, 2),
           miny = 0, maxy = 10, cex.axis = 1.5, cex.all = 1.5)
count_2_33(family = NBI, mu = c(0.1, 1, 2), sigma = c(0.5, 1, 2),
          miny = 0, maxy = 10, cex.axis = 1.5, cex.all = 1.5)
count_3_3(family = SICHEL, mu = c(1, 5, 10), sigma = c(0.5, 1),
           nu = c(-0.5, 0.5), miny = 0, maxy = 10, cex.axis = 1.5,
           cex.all = 1.5, cols = c("darkgray", "black"), spacing = 0.2,
           legend.cex=1, legend.x="topright",
                  legend.where=c("left","right"))
```

count_1_31 39

```
count_3_33(family = SICHEL, mu = c(1, 5, 10), sigma = c(0.5, 1, 2), nu = c(-0.5, 0.5, 1), miny = 0, maxy = 10, cex.axis = 1.5, cex.all = 1.5, cols = c("darkgray", "black"), spacing = 0.3, legend.cex=1, legend.x="topright", legend.where=c("left","right", "center"))
```

Arguments

a gamlss family distribution
the mu parameter values
The sigma parameter values
the nu parameter values
the tau parameter values
the binomial denominator
minimal value for the y axis
maximal value for the y axis
the size of the letters in the two axes
the overall size of all plotting characters
colours
spacing between plots
The type of lines used
the number of points in the curve
the maximum value for the y axis
the maximum permissible value for Y
the size of the legend
where in the figure to put the legend
where in the whole plot to put the legend

Details

Th function plot different types of continuous and discrete distributions: i) contR: continuous distribution defined on minus infinity to plus infinity, ii) contRplus: continuous distribution defined from zero to plus infinity, iii) contR01: continuous distribution defined from zero to 1, iv) bimom binomial type discrete distributions, v) count count type discrete distributions.

The first number after the first underline in the name of the function indicates the number of parameters in the distribution. The two numbers after the second underline indicate how may rows and columns are in the plot.

Value

The result is a plot

40 DBI

Note

more notes

Author(s)

Mikis Stasinopoulos, Robert Rigby, Gillian Heller, Fernada De Bastiani

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family
```

Examples

count_1_31()

DBI

The Double binomial distribution

Description

The function DBI() defines the double binomial distribution, a two parameters distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dDBI, pDBI, qDBI and rDBI define the density, distribution function, quantile function and random generation for the double binomial, DBI(), distribution. The function GetBI_C calculates numerically the constant of proportionality needed for the pdf to sum up to 1.

Usage

DBI 41

```
log.p = FALSE)
rDBI(n, mu = 0.5, sigma = 1, bd = 2)
GetBI_C(mu, sigma, bd)
```

Arguments

mu.link the link function for mu with default log sigma.link the link function for sigma with default log vector of (non-negative integer) quantiles x,q vector of binomial denominator bd vector of probabilities р the mu parameter mu sigma the sigma parameter logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, P[X > x]lower.tail log, log.p logical; if TRUE, probabilities p are given as log(p)

Details

n

The definition for the Double Poisson distribution first introduced by Efron (1986) is:

how many random values to generate

$$p_{Y}(y|n,\mu,\sigma) = \frac{1}{C(n,\mu,\sigma)} \frac{\Gamma(n+1)}{\Gamma(y+1)\Gamma(n-y+1)} \frac{y^{y} (n-y)^{n-y}}{n^{n}} \frac{n^{n/\sigma} \mu^{y/\sigma} (1-\mu)^{(n-y)/\sigma}}{y^{y/\sigma} (n-y)^{(n-y)/\sigma}}$$

for $y=0,1,2,\ldots,\infty, \, \mu>0$ and $\sigma>0$ where C is the constant of proportinality which is calculated numerically using the function GetBI_C(), see pp. 524-525 of Rigby *et al.* (2019).

Value

The function DBI returns a gamlss.family object which can be used to fit a double binomial distribution in the gamlss() function.

Author(s)

Mikis Stasinopoulos, Bob Rigby, Marco Enea and Fernanda de Bastiani

References

Efron, B., 1986. Double exponential families and their use in generalized linear Regression. Journal of the American Statistical Association 81 (395), 709-721.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

42 DBURR12

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07. Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973 (see also https://www.gamlss.com/).

See Also

BI.BB

Examples

```
DBI()
x <- 0:20
# underdispersed DBI
plot(x, dDBI(x, mu=.5, sigma=.2, bd=20), type="h", col="green", lwd=2)
# binomial
lines(x+0.1, dDBI(x, mu=.5, sigma=1, bd=20), type="h", col="black", lwd=2)
# overdispersed DBI
lines(x+.2, dDBI(x, mu=.5, sigma=2, bd=20), type="h", col="red",lwd=2)</pre>
```

DBURR12

The Discrete Burr type XII distribution for fitting a GAMLSS model

Description

The DBURR12() function defines the discrete Burr type XII distribution, a three parameter discrete distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dDBURR12(), pDBURR12(), qDBURR12() and rDBURR12() define the density, distribution function, quantile function and random generation for the discrete Burr type XII DBURR12(), distribution.

Usage

Arguments

mu.link	Defines the mu.link, with "log" link as the default for the mu parameter
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter
nu.link	Defines the nu.link, with "log" link as the default for the nu parameter

DBURR12 43

X	vector of (non-negative integer) quantiles
p	vector of probabilities
q	vector of quantiles
mu	vector of positive mu
sigma	vector of positive dispersion parameter sigma
nu	vector of nu
log, log.p	logical; if TRUE, probabilities p are given as log(p)
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
n	number of random values to return

Details

The probability function of the discrete Burr XII distribution is given by

$$f(y|\mu, \sigma, \nu) = (1 + (y/\mu)^{\sigma})^{\nu} - (1 + ((y+1)/\mu)^{\sigma})^{\nu}$$

for $y = 0, 1, 2, ..., \infty$, $\mu > 0$, $\sigma > 0$ and $\mu > 0$ see pp 504-505 of Rigby *et al.* (2019).

Note that the above parametrization is different from Para and Jan (2016).

Value

The function DBURR12() Returns a gamlss.family object which can be used to fit a discrete Burr XII distribution in the gamlss() function.

Note

The parameters of the distributions are highly correlated so the argument of gamlss method=mixed(10,100) may have to be used.

The distribution can be under/over dispersed and also with long tails.

Author(s)

Rigby, R. A., Stasinopoulos D. M., Fernanda De Bastiani.

References

Para, B. A. and Jan, T. R. (2016). On discrete three parameter Burr type XII and discrete Lomax distributions and their applications to model count data from medical science. *Biometrics and Biostatistics International Journal*, **54**, part 3, pp 507-554.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **4**, pp 1-15.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

44 DEL

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973 (see also https://www.gamlss.com/).

See Also

```
gamlss.family, DPO
```

Examples

```
DBURR12()#
#plot the pdf using plot
plot(function(y) dDBURR12(y, mu=10, sigma=1, nu=1), from=0, to=100, n=100+1, type="h") # pdf
# plot the cdf
plot(seq(from=0,to=100),pDBURR12(seq(from=0,to=100), mu=10, sigma=1, nu=1), type="h") # cdf
# generate random sample
tN <- table(Ni <- rDBURR12(100, mu=5, sigma=1, nu=1))
r <- barplot(tN, col='lightblue')</pre>
```

DEL

The Delaporte distribution for fitting a GAMLSS model

Description

The DEL() function defines the Delaporte distribution, a three parameter discrete distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dDEL, pDEL and rDEL define the density, distribution function, quantile function and random generation for the Delaporte DEL(), distribution.

Usage

Arguments

. . .

mu.link	Defines the mu.link, with "log" link as the default for the mu parameter
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter
nu.link	Defines the nu.link, with "logit" link as the default for the nu parameter
X	vector of (non-negative integer) quantiles
mu	vector of positive mu

DEL 45

sigma	vector of positive dispersion parameter
nu	vector of nu
р	vector of probabilities
q	vector of quantiles
n	number of random values to return
log, log.p	logical; if TRUE, probabilities p are given as log(p)
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
max.value	a constant, set to the default value of 10000 for how far the algorithm should look for q

Details

The probability function of the Delaporte distribution is given by

$$f(y|\mu, \sigma, \nu) = \frac{e^{-\mu\nu}}{\Gamma(1/\sigma)} \left[1 + \mu\sigma(1-\nu) \right]^{-1/\sigma} S$$

where

$$S = \sum_{i=0}^{y} \left({y \choose j} \right) \frac{\mu^{y} \nu^{y-j}}{y!} \left[\mu + \frac{1}{\sigma(1-\nu)} \right]^{-j} \Gamma\left(\frac{1}{\sigma} + j\right)$$

for $y=0,1,2,...,\infty$ where $\mu>0$, $\sigma>0$ and $0<\nu<1$. This distribution is a parametrization of the distribution given by Wimmer and Altmann (1999) p 515-516 where $\alpha=\mu\nu$, $k=1/\sigma$ and $\rho=[1+\mu\sigma(1-\nu)]^{-1}$. For more details see pp 506-507 of Rigby *et al.* (2019).

Value

Returns a gamlss.family object which can be used to fit a Delaporte distribution in the gamlss() function.

Note

The mean of Y is given by $E(Y) = \mu$ and the variance by $V(Y) = \mu + \mu^2 \sigma (1 - \nu)^2$.

Author(s)

Rigby, R. A., Stasinopoulos D. M. and Marco Enea

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC,doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

46 DPO

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

Wimmer, G. and Altmann, G (1999). *Thesaurus of univariate discrete probability distributions*. Stamn Verlag, Essen, Germany

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, SI, SICHEL
```

Examples

```
DEL()# gives information about the default links for the Delaporte distribution #plot the pdf using plot plot(function(y) dDEL(y, mu=10, sigma=1, nu=.5), from=0, to=100, n=100+1, type="h") # pdf # plot the cdf plot(seq(from=0,to=100),pDEL(seq(from=0,to=100), mu=10, sigma=1, nu=0.5), type="h") # cdf # generate random sample tN <- table(Ni <- rDEL(100, mu=10, sigma=1, nu=0.5)) r <- barplot(tN, col='lightblue') # fit a model to the data # libary(gamlss) # gamlss(Ni~1,family=DEL, control=gamlss.control(n.cyc=50))
```

DPO

The Double Poisson distribution

Description

The function DPO() defines the double Poisson distribution, a two parameters distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dDPO, pDPO, qDPO and rPO define the density, distribution function, quantile function and random generation for the double Poisson, DPO(), distribution. The function get_C() calculates numerically the constant of proportionality needed for the pdf to sum up to 1.

Usage

DPO 47

Arguments

mu.link the link function for mu with default log sigma.link the link function for sigma with default log vector of (non-negative integer) quantiles x, q vector of probabilities а the mu parameter mu the sigma parameter sigma lower.tail logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, P[X > x]logical; if TRUE, probabilities p are given as log(p) log, log.p max.value a constant, set to the default value of 10000 for how far the algorithm should look for q n

how many random values to generate

Details

The definition for the Double Poisson distribution first introduced by Efron (1986) is:

$$f(y|\mu,\sigma) = \left(\frac{1}{\sigma}\right)^{1/2} e^{-\mu/\sigma} \left(\frac{e^{-y}y^y}{y!}\right) \left(\frac{e\mu}{y}\right)^{y/\sigma} C$$

for $y=0,1,2,\ldots,\infty, \, \mu>0$ and $\sigma>0$ where C is the constant of proportinality which is calculated numerically using the function get_C.

Value

The function DPO returns a gamlss. family object which can be used to fit a double Poisson distribution in the gamlss() function.

Note

The distributons calculates the constant of proportionality numerically therefore it can be slow for large data

Author(s)

Mikis Stasinopoulos, Bob Rigby and Marco Enea

References

Efron, B., 1986. Double exponential families and their use in generalized linear Regression. Journal of the American Statistical Association 81 (395), 709-721.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/ 9780429298547. An older version can be found in https://www.gamlss.com/.

48 EGB2

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

P0

Examples

```
DPO()
# overdisperse DPO
x <- 0:20
plot(x, dDPO(x, mu=5, sigma=3), type="h", col="red")
# underdisperse DPO
plot(x, dDPO(x, mu=5, sigma=.3), type="h", col="red")
# generate random sample
Y <- rDPO(100,5,.5)
plot(table(Y))
points(0:20, 100*dDPO(0:20, mu=5, sigma=.5)+0.2, col="red")
# fit a model to the data
# library(gamlss)
# gamlss(Y~1,family=DPO)</pre>
```

EGB2

The exponential generalized Beta type 2 distribution for fitting a GAMLSS

Description

This function defines the generalized t distribution, a four parameter distribution. The response variable is in the range from minus infinity to plus infinity. The functions dEGB2, pEGB2, qEGB2 and rEGB2 define the density, distribution function, quantile function and random generation for the generalized beta type 2 distribution.

Usage

EGB2 49

Arguments

mu.link	Defines the mu.link, with "identity" link as the default for the mu parameter.
sigma.link	Defines the $sigma.link$, with "log" link as the default for the $sigma$ parameter.
nu.link	Defines the nu.link, with "log" link as the default for the nu parameter.
tau.link	Defines the tau.link, with "log" link as the default for the tau parameter.
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
nu	vector of skewness nu parameter values
tau	vector of kurtosis tau parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
р	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

The probability density function of the Generalized Beta type 2, (GB2), is defined as:

$$f(y|\mu,\sigma\nu,\tau) = e^{\nu z} \left[|\sigma| B(\nu,\tau) \left(1 + e^z\right)^{\nu+\tau} \right]^{-1}$$

for $-\infty < y < \infty$, where $z = (y - \mu)/\sigma$ and $-\infty < \mu < \infty$, $-\infty < \sigma < \infty$, $\nu > 0$ and $\tau > 0$, McDonald and Xu (1995), see also pp. 385-386 of Rigby et al. (2019).

Value

EGB2() returns a gamlss.family object which can be used to fit the EGB2 distribution in the gamlss() function. dEGB2() gives the density, pEGB2() gives the distribution function, qEGB2() gives the quantile function, and rEGB2() generates random deviates.

Author(s)

Bob Rigby and Mikis Stasinopoulos

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC,doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

50 exGAUS

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973 (see also https://www.gamlss.com/).

See Also

```
gamlss.family, JSU, BCT
```

Examples

```
EGB2() #
y<- rEGB2(200, mu=5, sigma=2, nu=1, tau=4)
library(MASS)
truehist(y)
fx<-dEGB2(seq(min(y), 20, length=200), mu=5 ,sigma=2, nu=1, tau=4)
lines(seq(min(y),20,length=200),fx)
# something funny here
# library(gamlss)
# histDist(y, family=EGB2, n.cyc=60)
integrate(function(x) x*dEGB2(x=x, mu=5, sigma=2, nu=1, tau=4), -Inf, Inf)
curve(dEGB2(x, mu=5 ,sigma=2, nu=1, tau=4), -10, 10, main = "The EGB2 density mu=5, sigma=2, nu=1, tau=4")</pre>
```

exGAUS

The ex-Gaussian distribution

Description

The ex-Gaussian distribution is often used by psychologists to model response time (RT). It is defined by adding two random variables, one from a normal distribution and the other from an exponential. The parameters mu and sigma are the mean and standard deviation from the normal distribution variable while the parameter nu is the mean of the exponential variable. The functions dexGAUS, pexGAUS, qexGAUS and rexGAUS define the density, distribution function, quantile function and random generation for the ex-Gaussian distribution.

Usage

```
exGAUS(mu.link = "identity", sigma.link = "log", nu.link = "log")
dexGAUS(x, mu = 5, sigma = 1, nu = 1, log = FALSE)
pexGAUS(q, mu = 5, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE)
qexGAUS(p, mu = 5, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE)
rexGAUS(n, mu = 5, sigma = 1, nu = 1, ...)
```

Arguments

mu.link Defines the mu.link, with "identity" link as the default for the mu parameter.

sigma.link Defines the sigma.link, with "log" link as the default for the sigma parameter.

exGAUS 51

nu.link	Defines the nu.link, with "log" link as the default for the nu parameter. Other links are "inverse", "identity", "logshifted" (shifted from one) and "own"
x,q	vector of quantiles
mu	vector of mu parameter values
sigma	vector of scale parameter values
nu	vector of nu parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
p	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required
	for extra arguments

Details

The probability density function of the ex-Gaussian distribution, (exGAUS), is defined as

$$f(y|\mu,\sigma,\nu) = \frac{1}{\nu} e^{\frac{\mu-y}{\nu} + \frac{\sigma^2}{2\nu^2}} \Phi(\frac{y-\mu}{\sigma} - \frac{\sigma}{\nu})$$

where Φ is the cdf of the standard normal distribution, for $-\infty < y < \infty, -\infty < \mu < \infty, \sigma > 0$ and $\nu > 0$ see pp. 372-373 of Rigby et al. (2019).

Value

exGAUS() returns a gamlss.family object which can be used to fit ex-Gaussian distribution in the gamlss() function. dexGAUS() gives the density, pexGAUS() gives the distribution function, qexGAUS() gives the quantile function, and rexGAUS() generates random deviates.

Note

The mean of the ex-Gaussian is $\mu + \nu$ and the variance is $\sigma^2 + \nu^2$.

Author(s)

Mikis Stasinopoulos and Bob Rigby

References

Cousineau, D. Brown, S. and Heathecote A. (2004) Fitting distributions using maximum likelihood: Methods and packages, *Behavior Research Methods, Instruments and Computers*, **46**, 742-756.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC,doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

52 EXP

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, BCCG, GA, IG LNO
```

Examples

```
exGAUS() #
y<- rexGAUS(100, mu=300, nu=100, sigma=35)
hist(y)
# library(gamlss)
# m1<-gamlss(y~1, family=exGAUS)
# plot(m1)
curve(dexGAUS(x, mu=300 ,sigma=35,nu=100), 100, 600,
    main = "The ex-GAUS density mu=300 ,sigma=35,nu=100")
plot(function(x) pexGAUS(x, mu=300,sigma=35,nu=100), 100, 600,
    main = "The ex-GAUS cdf mu=300, sigma=35, nu=100")</pre>
```

EXP

Exponential distribution for fitting a GAMLSS

Description

The function EXP defines the exponential distribution, a one parameter distribution for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The mu parameter represents the mean of the distribution. The functions dEXP, pEXP, qEXP and rEXP define the density, distribution function, quantile function and random generation for the specific parameterization of the exponential distribution defined by function EXP.

Usage

```
EXP(mu.link ="log")
dEXP(x, mu = 1, log = FALSE)
pEXP(q, mu = 1, lower.tail = TRUE, log.p = FALSE)
qEXP(p, mu = 1, lower.tail = TRUE, log.p = FALSE)
rEXP(n, mu = 1)
```

Arguments

```
mu.link Defines the mu.link, with "log" link as the default for the mu parameter, other links are "inverse" and "identity"

x,q vector of quantiles
```

EXP 53

mu	vector of location parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
р	vector of probabilities
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

The specific parameterization of the exponential distribution used in EXP is

$$f(y|\mu) = \frac{1}{\mu} \exp\left\{-\frac{y}{\mu}\right\}$$

for y>0, μ > 0 see pp. 422-23 of Rigby et al. (2019).

Value

EXP() returns a gamlss.family object which can be used to fit an exponential distribution in the gamlss() function. dEXP() gives the density, pEXP() gives the distribution function, qEXP() gives the quantile function, and rEXP() generates random deviates.

Author(s)

Mikis Stasinopoulos, Bob Rigby and Nicoleta Motpan

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC,doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family
```

Examples

```
y<-rEXP(1000,mu=1) # generates 1000 random observations
hist(y)
# library(gamlss)
# histDist(y, family=EXP)</pre>
```

54 flexDist

flexDist	Non-parametric pdf from limited information data

Description

This is an attempt to create a distribution function if the only existing information is the quantiles or expectiles of the distribution.

Usage

Arguments

quantiles a list with components values and prob a list with components values and prob expectiles lambda smoothing parameter for the log-pdf smoothing parameter for log concavity kappa smoothing parameter for ridge penalty delta the order of the penalty for log-pdf order n.iter maximum number of iterations plot whether to plot the result no.inter How many discrete probabilities to evaluate lower the lower value of the x the upper value of the x upper how far from the quantile should go out to define the limit of x if not set by perc.quant lower or upper additional arguments . . .

Value

Returns a list with components

pdf	the hights of the fitted pdf, the sum of it multiplied by the Dx should add up to 1 i.e. sum(object\$pdf*diff(object\$x)[1])
cdf	the fitted cdf
Χ	the values of x where the discretise distribution is defined
pFun	the cdf of the fitted non-parametric distribution
qFun	the inverse cdf function of the fitted non-parametric distribution
rFun	a function to generate a random sample from the fitted non-parametric distribu-
	tion

GA 55

Author(s)

Mikis Stasinopoulos, Paul Eilers, Bob Rigby and Vlasios Voudouris

References

Eilers, P. H. C., Voudouris, V., Rigby R. A., Stasinopoulos D. M. (2012) Estimation of nonparametric density from sparse summary information, under review.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), Appl. Statist., 54, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973 (see also https://www.gamlss.com/).

See Also

histSmo

Examples

GΑ

Gamma distribution for fitting a GAMLSS

Description

The function GA defines the gamma distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The parameterization used has the mean of the distribution equal to μ and the variance equal to $\sigma^2\mu^2$. The functions dGA, pGA, qGA and rGA define the density, distribution function, quantile function and random generation for the specific parameterization of the gamma distribution defined by function GA.

GA

Usage

```
GA(mu.link = "log", sigma.link ="log")
dGA(x, mu = 1, sigma = 1, log = FALSE)
pGA(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qGA(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rGA(n, mu = 1, sigma = 1)
```

Arguments

mu.link	Defines the mu.link, with "log" link as the default for the mu parameter, other links are "inverse", "identity" ans "own"
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter, other link is the "inverse", "identity" and "own"
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
р	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

The specific parameterization of the gamma distribution used in GA is

$$f(y|\mu,\sigma) = \frac{y^{(1/\sigma^2 - 1)} \exp[-y/(\sigma^2 \mu)]}{(\sigma^2 \mu)^{(1/\sigma^2)} \Gamma(1/\sigma^2)}$$

for y > 0, $\mu > 0$ and $\sigma > 0$, see pp. 423-424 of Rigby et al. (2019).

Value

GA() returns a gamlss.family object which can be used to fit a gamma distribution in the gamlss() function. dGA() gives the density, pGA() gives the distribution function, qGA() gives the quantile function, and rGA() generates random deviates. The latest functions are based on the equivalent R functions for gamma distribution.

Note

 μ is the mean of the distribution in GA. In the function GA, σ is the square root of the usual dispersion parameter for a GLM gamma model. Hence $\sigma\mu$ is the standard deviation of the distribution defined in GA.

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

GAF 57

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC,doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family
```

Examples

```
GA()# gives information about the default links for the gamma distribution # dat<-rgamma(100, shape=1, scale=10) # generates 100 random observations # fit a gamlss model # gamlss(dat~1,family=GA) # fits a constant for each parameter mu and sigma of the gamma distribution newdata<-rGA(1000,mu=1,sigma=1) # generates 1000 random observations hist(newdata) rm(dat,newdata)
```

GAF

The Gamma distribution family

Description

The function GAF() defines a gamma distribution family, which has three parameters. This is not the generalised gamma distribution which is called GG. The third parameter here is to model the mean and variance relationship. The distribution can be fitted using the function gamlss(). The mean of GAF is equal to mu. The variance is equal to sigma^2*mu^nu so the standard deviation is sigma*mu^(nu/2). The function is design for cases where the variance is proportional to a power of the mean. This is an instance of the Taylor's power low, see Enki et al. (2017). The functions dGAF, pGAF, qGAF and rGAF define the density, distribution function, quantile function and random generation for the GAF parametrization of the gamma family.

58 GAF

Usage

```
GAF(mu.link = "log", sigma.link = "log", nu.link = "identity")
dGAF(x, mu = 1, sigma = 1, nu = 2, log = FALSE)
pGAF(q, mu = 1, sigma = 1, nu = 2, lower.tail = TRUE,
    log.p = FALSE)
qGAF(p, mu = 1, sigma = 1, nu = 2, lower.tail = TRUE,
    log.p = FALSE)
rGAF(n, mu = 1, sigma = 1, nu = 2)
```

Arguments

mu.link	Defines the mu.link, with "identity" link as the default for the mu parameter
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter
nu.link	Defines the nu.link with "identity" link as the default for the nu parameter
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
nu	vector of power parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
p	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

The parametrization of the gamma family given in the function GAF() is:

$$f(y|\mu, \sigma_1) = \frac{y^{(1/\sigma_1^2 - 1)} \exp[-y/(\sigma_1^2 \mu)]}{(\sigma_1^2 \mu)^{(1/\sigma^2)} \Gamma(1/\sigma^2)}$$

for $y>0, \, \mu>0$ where $\sigma_1=\sigma\mu^{(\nu/2)-1}\,\,\sigma>0$ and $-\infty<\nu<\infty$ see pp. 442-443 of Rigby et al. (2019).

Value

GAF() returns a gamlss.family object which can be used to fit the gamma family in the gamlss() function.

GAF 59

Note

For the function GAF(), μ is the mean and $\sigma \mu^{\nu/2}$ is the standard deviation of the gamma family. The GAF is design for fitting regression type models where the variance is proportional to a power of the mean.

Note that because the high correlation between the sigma and the nu parameter the mixed() method should be used in the fitting.

Author(s)

Mikis Stasinopoulos, Robert Rigby and Fernanda De Bastiani

References

Enki, D G, Noufaily, A., Farrington, P., Garthwaite, P., Andrews, N. and Charlett, A. (2017) Taylor's power law and the statistical modelling of infectious disease surveillance data, Journal of the Royal Statistical Society: Series A (Statistics in Society), volume=180, number=1, pages=45-72.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07...

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, GA, GG
```

Examples

60 GAMLSS

GAMLSS Create a GAMLSS Distribution	
-------------------------------------	--

Description

A single class and corresponding methods encompassing all distributions from the **gamlss.dist** package using the workflow from the **distributions3** package.

Usage

```
GAMLSS(family, mu, sigma, tau, nu)
```

Arguments

family	character. Name of a GAMLSS family provided by gamlss.dist , e.g., NO or BI for the normal or binomial distribution, respectively.
mu	numeric. GAMLSS μ mu parameter. Can be a scalar or a vector or missing if not part of the family.
sigma	numeric. GAMLSS sigma parameter. Can be a scalar or a vector or missing if not part of the family.
tau	numeric. GAMLSS tau parameter. Can be a scalar or a vector or missing if not part of the family.
nu	numeric. GAMLSS nu parameter. Can be a scalar or a vector or missing if not part of the family.

Details

The S3 class GAMLSS provides a unified workflow based on the **distributions3** package (see Zeileis et al. 2022) for all distributions from the **gamlss.dist** package. The idea is that from fitted gamlss model objects predicted probability distributions can be obtained for which moments (mean, variance, etc.), probabilities, quantiles, etc. can be obtained with corresponding generic functions.

The constructor function GAMLSS sets up a distribution object, representing a distribution from the GAMLSS (generalized additive model of location, scale, and shape) framework by the corresponding parameters plus a family attribute, e.g., NO for the normal distribution or BI for the binomial distribution. There can be up to four parameters, called mu (often some sort of location parameter), sigma (often some sort of scale parameter), tau and nu (other parameters, e.g., capturing shape, etc.).

All parameters can also be vectors, so that it is possible to define a vector of GAMLSS distributions from the same family with potentially different parameters. All parameters need to have the same length or must be scalars (i.e., of length 1) which are then recycled to the length of the other parameters.

Note that not all distributions use all four parameters, i.e., some use just a subset. In that case, the corresponding arguments in GAMLSS should be unspecified, NULL, or NA.

For the GAMLSS distribution objects there is a wide range of standard methods available to the generics provided in the **distributions3** package: pdf and log_pdf for the (log-)density (PDF), cdf for

GAMLSS 61

the probability from the cumulative distribution function (CDF), quantile for quantiles, random for simulating random variables, and support for the support interval (minimum and maximum). Internally, these methods rely on the usual d/p/q/r functions provided in **gamlss.dist**, see the manual pages of the individual families. The methods is_discrete and is_continuous can be used to query whether the distributions are discrete on the entire support or continuous on the entire support, respectively.

See the examples below for an illustration of the workflow for the class and methods.

Value

A GAMLSS object, inheriting from distribution.

References

Zeileis A, Lang MN, Hayes A (2022). "distributions3: From Basic Probability to Probabilistic Regression." Presented at *useR!* 2022 - *The R User Conference*. Slides, video, vignette, code at https://www.zeileis.org/news/user2022/.

See Also

```
gamlss.family
```

Examples

```
## package and random seed
library("distributions3")
set.seed(6020)
## three Weibull distributions
X \leftarrow GAMLSS("WEI", mu = c(1, 1, 2), sigma = c(1, 2, 2))
Χ
## moments
mean(X)
variance(X)
## support interval (minimum and maximum)
support(X)
is_discrete(X)
is_continuous(X)
## simulate random variables
random(X, 5)
## histograms of 1,000 simulated observations
x <- random(X, 1000)
hist(x[1, ], main = "WEI(1,1)")
hist(x[2, ], main = "WEI(1,2)")
hist(x[3, ], main = "WEI(2,2)")
```

```
## probability density function (PDF) and log-density (or log-likelihood)
x \leftarrow c(2, 2, 1)
pdf(X, x)
pdf(X, x, log = TRUE)
log_pdf(X, x)
## cumulative distribution function (CDF)
cdf(X, x)
## quantiles
quantile(X, 0.5)
## cdf() and quantile() are inverses
cdf(X, quantile(X, 0.5))
quantile(X, cdf(X, 1))
## all methods above can either be applied elementwise or for
## all combinations of X and x, if length(X) = length(x),
## also the result can be assured to be a matrix via drop = FALSE
p < -c(0.05, 0.5, 0.95)
quantile(X, p, elementwise = FALSE)
quantile(X, p, elementwise = TRUE)
quantile(X, p, elementwise = TRUE, drop = FALSE)
## compare theoretical and empirical mean from 1,000 simulated observations
cbind(
  "theoretical" = mean(X),
  "empirical" = rowMeans(random(X, 1000))
)
```

gamlss.family

Family Objects for fitting a GAMLSS model

Description

GAMLSS families are the current available distributions that can be fitted using the gamlss() function.

Usage

```
gamlss.family(object,...)
as.gamlss.family(object)
as.family(object)
## S3 method for class 'gamlss.family'
print(x,...)
```

Arguments

object a gamlss family object e.g. BCT

- x a gamlss family object e.g. BCT
- ... further arguments passed to or from other methods.

Details

There are several distributions available for the response variable in the gamlss function. The following table display their names and their abbreviations in R. Note that the different distributions can be fitted using their R abbreviations (and optionally excluding the brackets) i.e. family=BI(), family=BI are equivalent.

Distributions	R names	No of parameters
Beta	BE()	2
Beta Binomial	BB()	2
Beta negative binomial	BNB()	3
Beta one inflated	BEOI()	3
Beta zero inflated	BEZI()	3
Beta inflated	BEINF()	4
Binomial	BI()	1
Box-Cox Cole and Green	BCCG()	3
Box-Cox Power Exponential	BCPE()	4
Box-Cox-t	BCT()	4
Delaport	DEL()	3
Discrete Burr XII	DBURR12()	3
Double Poisson	DPO()	2
Double binomial	DBI()	2
Exponential	EXP()	1
Exponential Gaussian	exGAUS()	3
Exponential generalized Beta type 2	EGB2()	4
Gamma	GA()	2
Generalized Beta type 1	GB1()	4
Generalized Beta type 2	GB2()	4
Generalized Gamma	GG()	3
Generalized Inverse Gaussian	GIG()	3
Generalized t	GT()	4
Geometric	GEOM()	1
Geometric (original)	GEOMo()	1
Gumbel	GU()	2
Inverse Gamma	IGAMMA()	2
Inverse Gaussian	IG()	2
Johnson's SU	JSU()	4
Logarithmic	LG()	1
Logistic	LO()	2
Logit-Normal	LOGITNO()	2
log-Normal	LOGNO()	2
log-Normal (Box-Cox)	LNO()	3 (1 fixed)
Negative Binomial type I	NBI()	2
Negative Binomial type II	NBII()	2
Negative Binomial family	NBF()	3
Normal Exponential <i>t</i>	NET()	4 (2 fixed)
=		

Normal	NO()	2
Normal Family	NOF()	3 (1 fixed)
Normal Linear Quadratic	LQNO()	2
Pareto type 2	PARETO2()	2
Pareto type 2 original	PARETO2o()	2
Power Exponential	PE()	3
Power Exponential type 2	PE2()	3
Poison	PO()	1
Poisson inverse Gaussian	PIG()	2
Reverse generalized extreme	RGE()	3
Reverse Gumbel	RG()	2
Skew Power Exponential type 1	SEP1()	4
Skew Power Exponential type 2	SEP2()	4
Skew Power Exponential type 3	SEP3()	4
Skew Power Exponential type 4	SEP4()	4
Shash	SHASH()	4
Shash original	SHASHo()	4
Shash original 2	SHASH()	4
Sichel (original)	SI()	3
Sichel (mu as the maen)	SICHEL()	3
Simplex	SIMPLEX()	2
Skew t type 1	ST1()	3
Skew t type 1 Skew t type 2	ST2()	3
Skew t type 2 Skew t type 3	ST3()	3
Skew t type 3 Skew t type 4		3
	ST4()	3
Skew t type 5 t-distribution	ST5()	3
	TF()	3 1
Waring	WARING()	
Weibull	WEI()	2
Weibull (PH parameterization)	WEI2()	2
Weibull (mu as mean)	WEI3()	2
Yule	YULE()	1
Zero adjusted binomial	ZABI()	2
Zero adjusted beta neg. bin.	ZABNB()	4
Zero adjusted IG	ZAIG()	2
Zero adjusted logarithmic	ZALG()	2
Zero adjusted neg. bin.	ZANBI()	3
Zero adjusted poisson	ZAP()	2
Zero adjusted Sichel	ZASICHEL()	4
Zero adjusted Zipf	ZAZIPF()	2
Zero inflated binomial	ZIBI()	2
Zero inflated beta neg. bin.	ZIBNB()	4
Zero inflated neg. bin.	ZINBI()	3
Zero inflated poisson	ZIP()	2
Zero inf. poiss.(mu as mean)	ZIP2()	2
Zero inflated PIG	ZIPIG()	3
Zero inflated Sichel	ZISICHEL()	4
Zipf	ZIPF()	1

Note that some of the distributions are in the package gamlss.dist. The parameters of the distributions are in order, mu for location, sigma for scale (or dispersion), and nu and tau for shape. More specifically for the BCCG family mu is the median, sigma approximately the coefficient of variation, and nu the skewness parameter. The parameters for BCPE distribution have the same interpretation with the extra fourth parameter tau modelling the kurtosis of the distribution. The parameters for BCT have the same interpretation except that $\sigma[(\tau/(\tau-2))^{0.5}]$ is approximately the coefficient of variation.

All of the distribution in the above list are also provided with the corresponding d, p, q and r functions for density (pdf), distribution function (cdf), quantile function and random generation function respectively, (see individual distribution for details).

Value

The above GAMLSS families return an object which is of type gamlss. family. This object is used to define the family in the gamlss() fit.

Note

More distributions will be documented in later GAMLSS releases. Further user defined distributions can be incorporate relatively easy, see, for example, the help documentation accompanying the gamlss library.

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973 (see also https://www.gamlss.com/).

See Also

BE,BB,BEINF,BI,LNO,BCT,BCPE,BCCG,GA,GU,JSU,IG,LO,NBI,NBII,NO,PE,PO,RG,PIG,TF,WEI,WEI2,ZIP

Examples

```
normal<-NO(mu.link="log", sigma.link="log")
normal</pre>
```

GB1

The generalized Beta type 1 distribution for fitting a GAMLSS

Description

GB1

This function defines the generalized beta type 1 distribution, a four parameter distribution. The function GB1 creates a gamlss.family object which can be used to fit the distribution using the function gamlss(). Note the range of the response variable is from zero to one. The functions dGB1, GB1, qGB1 and rGB1 define the density, distribution function, quantile function and random generation for the generalized beta type 1 distribution.

Usage

Arguments

mu.link	Defines the mu.link, with "identity" link as the default for the mu parameter.
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter.
nu.link	Defines the nu.link, with "log" link as the default for the nu parameter.
tau.link	Defines the tau.link, with "log" link as the default for the tau parameter.
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
nu	vector of skewness nu parameter values
tau	vector of kurtosis tau parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
p	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

GB1 67

Details

The probability density function of the Generalized Beta type 1, (GB1), is defined as

$$f(y|\mu,\sigma\,\nu,\tau) = \frac{\tau\nu^{\beta}y^{\tau\alpha-1}\left(1-y^{\tau}\right)^{\beta-1}}{B(\alpha,\beta)[\nu+(1-\nu)y^{\tau}]^{\alpha+\beta}}$$

where 0 < y < 1, $0 < \mu < 1$, $0 < \sigma < 1$, $\nu > 0$, $\tau > 0$ and where $\alpha = \mu(1 - \sigma^2)/\sigma^2$ and $\beta = (1 - \mu)(1 - \sigma^2)/\sigma^2$, and $\alpha > 0$, $\beta > 0$. Note the $\mu = \alpha/(\alpha + \beta)$, $\sigma = (\alpha + \beta + 1)^{-1/2}$ see pp. 464-465 of Rigby et al. (2019).

Value

GB1() returns a gamlss.family object which can be used to fit the GB1 distribution in the gamlss() function. dGB1() gives the density, pGB1() gives the distribution function, qGB1() gives the quantile function, and rGB1() generates random deviates.

Warning

The qSHASH and rSHASH are slow since they are relying on golden section for finding the quantiles

Author(s)

Bob Rigby and Mikis Stasinopoulos

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC,doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, JSU, BCT
```

Examples

```
GB1() #
y<- rGB1(200, mu=.1, sigma=.6, nu=1, tau=4)
hist(y)
# library(gamlss)</pre>
```

68 GB2

GB2

The generalized Beta type 2 and generalized Pareto distributions for fitting a GAMLSS

Description

This function defines the generalized beta type 2 distribution, a four parameter distribution. The function GB2 creates a gamlss.family object which can be used to fit the distribution using the function gamlss(). The response variable is in the range from zero to infinity. The functions dGB2, GB2, qGB2 and rGB2 define the density, distribution function, quantile function and random generation for the generalized beta type 2 distribution. The generalised Pareto GP distribution is defined by setting the parameters sigma and nu of the GB2 distribution to 1.

Usage

Arguments

. . .

mu.link	Defines the mu.link, with "identity" link as the default for the mu parameter.
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter.
nu.link	Defines the nu.link, with "log" link as the default for the nu parameter.
tau.link	Defines the tau.link, with "log" link as the default for the tau parameter.
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values

GB2 69

nu	vector of skewness nu parameter values
tau	vector of kurtosis tau parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
p	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

The probability density function of the Generalized Beta type 2, (GB2), is defined as

$$f(y|\mu, \sigma, \nu, \tau) = |\sigma| y^{\sigma \nu - 1} \{ \mu^{\sigma \nu} B(\nu, \tau) [1 + (y/\mu)^{\sigma}]^{\nu + \tau} \}^{-1}$$

where y > 0, $\mu > 0$, $\sigma > 0$, $\nu > 0$ and $\tau > 0$ see pp. 452-453 of Rigby et al. (2019).

Note that by setting $\sigma=1$ we have the Pearson type VI, by setting $\nu=1$ we have the Burr type XII and by setting $\tau=1$ the Burr type III.

Value

GB2() returns a gamlss.family object which can be used to fit the GB2 distribution in the gamlss() function. dGB2() gives the density, pGB2() gives the distribution function, qGB2() gives the quantile function, and rGB2() generates random deviates.

Warning

The qSHASH and rSHASH are slow since they are relying on golden section for finding the quantiles

Author(s)

Bob Rigby and Mikis Stasinopoulos

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

(see also https://www.gamlss.com/).

70 gen.Family

See Also

```
gamlss.family, JSU, BCT
```

Examples

gen.Family

Functions to generate log and logit distributions from existing continuous gamlss.family distributions

Description

There are five functions here. Only the functions Family and gen. Family should be used (see details).

Usage

```
Family.d(family = "NO", type = c("log", "logit"), ...)
Family.p(family = "NO", type = c("log", "logit"), ...)
Family.q(family = "NO", type = c("log", "logit"), ...)
Family.r(family = "NO", type = c("log", "logit"), ...)
Family(family = "NO", type = c("log", "logit"), local = TRUE, ...)
gen.Family(family = "NO", type = c("log", "logit"), ...)
```

Arguments

```
family a continuous gamlss.family distribution

type the type of transformation only "log" and "logit" are allowed

local It is TRUE if is called within gamlss() otherwise is FALSE

for passing extra arguments
```

gen.Family 71

Details

The function gen.Family creates the standard d,p,q,r functions for the distribution plus the fitting gamlss.family. For example gen.Family("NO", "logit") will generate the functions dlogitNO(), plogitNO(), qlogitNO(), rlogitNO() and dlogitNO(). The latest function can be used in family argument of gamlss() to fit a logic-Normal distribution i.e. family=logitNO. The same fitting can be achieved by using family=Family("NO", "logit"). Here the required dlogitNO(), plogitNO() and logitNO() functions are generated locally within the gamlss() environment.

Value

The function gen. Family returns the d, p, q r functions plus the fitting function.

Author(s)

Mikis Stasinopoulos and Bob Rigby

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

Examples

```
# generating a log t distribution
gen.Family("TF")
# plotting the d, p, q, and r functions
op<-par(mfrow=c(2,2))
curve(dlogTF(x, mu=0), 0, 10)
curve(plogTF(x, mu=0), 0, 10)
curve(qlogTF(x, mu=0), 0, 1)
Y<- rlogTF(200)
hist(Y)
par(op)

# different mu
curve(dlogTF(x, mu=-1, sigma=1, nu=10), 0, 5, ylim=c(0,1))
curve(dlogTF(x, mu=0, sigma=1, nu=10), 0, 5, add=TRUE, col="red", lty=2)
curve(dlogTF(x, mu=1, sigma=1, nu=10), 0, 5, add=TRUE, col="blue", lty=3)</pre>
```

72 GEOM

```
# different sigma
curve(dlogTF(x, mu=0, sigma=.5, nu=10), 0, 5, ylim=c(0,1))
curve(dlogTF(x, mu=0, sigma=1, nu=10), 0, 5, add=TRUE, col="red", lty=2)
curve(dlogTF(x, mu=0, sigma=2, nu=10), 0, 5, add=TRUE, col="blue", lty=3)
# different degrees of freedom nu
curve(dlogTF(x, mu=0, sigma=1, nu=1), 0, 5, ylim=c(0,.8), n = 1001)
curve(dlogTF(x, mu=0, sigma=1, nu=2), 0, 5, add=TRUE, col="red", lty=2)
curve(dlogTF(x, mu=0, sigma=1, nu=5), 0, 5, add=TRUE, col="blue", lty=3)
# generating a logit t distribution
gen.Family("TF", "logit")
# plotting the d, p, q, and r functions
op<-par(mfrow=c(2,2))
curve(dlogitTF(x, mu=0), 0, 1)
curve(plogitTF(x, mu=0), 0, 1)
curve(qlogitTF(x, mu=0), 0, 1)
abline(v=1)
Y<- rlogitTF(200)
hist(Y)
par(op)
# different mu
curve(dlogitTF(x, mu=-2, sigma=1, nu=10), 0, 1, ylim=c(0,5))
curve(dlogitTF(x, mu=0, sigma=1, nu=10), 0, 1, add=TRUE, col="red", lty=2)
curve(dlogitTF(x, mu=2, sigma=1, nu=10), 0, 1, add=TRUE, col="blue", lty=3)
# different sigma
curve(dlogitTF(x, mu=0, sigma=1, nu=10), 0, 1, ylim=c(0,2.5))
curve(dlogitTF(x, mu=0, sigma=2, nu=10), 0, 1, add=TRUE, col="red", lty=2)
curve(dlogitTF(x, mu=0, sigma=.7, nu=10), 0, 1, add=TRUE, col="blue", lty=3)
# different degrees of freedom nu
curve(dlogitTF(x, mu=0, sigma=1, nu=1), 0, 1, ylim=c(0,1.6))
curve(dlogitTF(x, mu=0, sigma=1, nu=2), 0, 1, add=TRUE, col="red", lty=2)
curve(dlogitTF(x, mu=0, sigma=1, nu=5), 0, 1, add=TRUE, col="blue", lty=3)
```

GEOM

Geometric distribution for fitting a GAMLSS model

Description

The functions GEOMo() and GEOM() define two parametrizations of the geometric distribution. The geometric distribution is a one parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The mean of GEOM() is equal to the parameter mu. The functions dGEOM, pGEOM and rGEOM define the density, distribution function, quantile function and random generation for the GEOM parameterization of the Geometric distribution.

GEOM 73

Usage

```
GEOM(mu.link = "log")

dGEOM(x, mu = 2, log = FALSE)

pGEOM(q, mu = 2, lower.tail = TRUE, log.p = FALSE)

qGEOM(p, mu = 2, lower.tail = TRUE, log.p = FALSE)

rGEOM(n, mu = 2)

GEOMo(mu.link = "logit")

dGEOMo(x, mu = 0.5, log = FALSE)

pGEOMo(q, mu = 0.5, lower.tail = TRUE, log.p = FALSE)

qGEOMo(p, mu = 0.5, lower.tail = TRUE, log.p = FALSE)

rGEOMo(n, mu = 0.5)
```

Arguments

mu.link	Defines the mu.link, with log link as the default for the mu parameter
x,q	vector of quantiles
mu	vector of location parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p)
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise $P[X > x]$
р	vector of probabilities
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

The parameterization of the original geometric distribution in the function GEOM is:

$$f(y|\mu) = \mu^y/(\mu+1)^{y+1}$$

for y = 0, 1, 2, 3, ... and $\mu > 0$, see pp 472-473 of Rigby et al. (2019).

The parameterization of the original geometric distribution, GEOMo is

$$f(y|\mu) = (1-\mu)^y \mu$$

for eqny=0,1,2,3,... and $\mu > 0$, see pp 473-474 of Rigby et al. (2019).

Value

returns a gamlss.family object which can be used to fit a Geometric distribution in the gamlss() function.

Author(s)

Fiona McElduff, Bob Rigby and Mikis Stasinopoulos.

GG

References

Johnson, N. L., Kemp, A. W., and Kotz, S. (2005). Univariate discrete distributions. Wiley.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, 54, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family
```

Examples

```
par(mfrow=c(2,2))
y < -seq(0, 20, 1)
plot(y, dGEOM(y), type="h")
q < - seq(0, 20, 1)
plot(q, pGEOM(q), type="h")
p<-seq(0.0001,0.999,0.05)
plot(p , qGEOM(p), type="s")
dat <- rGEOM(100)
hist(dat)
#summary(gamlss(dat~1, family=GEOM))
par(mfrow=c(2,2))
y < -seq(0, 20, 1)
plot(y, dGEOMo(y), type="h")
q < - seq(0, 20, 1)
plot(q, pGEOMo(q), type="h")
p<-seq(0.0001,0.999,0.05)
plot(p , qGEOMo(p), type="s")
dat <- rGEOMo(100)
hist(dat)
#summary(gamlss(dat~1, family="GE"))
```

GG 75

Description

The function GG defines the generalized gamma distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The parameterization used has the mean of the distribution equal to mu and the variance equal to $(\sigma^2)(\mu^2)$. The functions dGG, pGG, qGG and rGG define the density, distribution function, quantile function and random generation for the specific parameterization of the generalized gamma distribution defined by function GG.

Usage

Arguments

mu.link	Defines the mu.link, with "log" link as the default for the mu parameter, other links are "inverse" and "identity"
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter, other links are "inverse" and "identity"
nu.link	Defines the nu.link, with "identity" link as the default for the sigma parameter, other links are $1/nu^2$ and "log"
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
nu	vector of shape parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
р	vector of probabilities
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

The specific parameterization of the generalized gamma distribution used in GG is

$$f(y|\mu,\sigma,\nu) = \frac{\theta^{\theta}z^{\theta}|\nu|e^{(}-\theta z)}{(\Gamma(\theta)y)}$$

where $z=(y/\mu)^{\nu}$, $\theta=1/(\sigma^2|\nu|^2)$ for y>0, $\mu>0$, $\sigma>0$ and $-\infty<\nu<+\infty$ see pp. 443-444 of Rigby et al. (2019). Note that for $\nu=0$ the distribution is log normal.

76 GIG

Value

GG() returns a gamlss.family object which can be used to fit a generalized gamma distribution in the gamlss() function. dGG() gives the density, pGG() gives the distribution function, qGG() gives the quantile function, and rGG() generates random deviates.

Author(s)

Mikis Stasinopoulos, Bob Rigby and Nicoleta Motpan

References

Lopatatzidis, A. and Green, P. J. (2000), Nonparametric quantile regression using the gamma distribution, unpublished.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973 (see also https://www.gamlss.com/).

See Also

```
gamlss.family, GA
```

Examples

```
y<-rGG(100,mu=1,sigma=0.1, nu=-.5) # generates 100 random observations
hist(y)
# library(gamlss)
#histDist(y, family=GG)
#m1 <-gamlss(y~1,family=GG)
#prof.dev(m1, "nu", min=-2, max=2, step=0.2)</pre>
```

GIG

Generalized Inverse Gaussian distribution for fitting a GAMLSS

Description

The function GIG defines the generalized inverse gaussian distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions DIG, pGIG, GIG and rGIG define the density, distribution function, quantile function and random generation for the specific parameterization of the generalized inverse gaussian distribution defined by function GIG.

GIG 77

Usage

Arguments

mu.link	Defines the mu.link, with "log" link as the default for the mu parameter, other links are "inverse" and "identity"
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter, other links are "inverse" and "identity"
nu.link	Defines the nu.link, with "identity" link as the default for the nu parameter, other links are "inverse" and "log"
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
nu	vector of shape parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
р	vector of probabilities
n	number of observations. If $length(n) > 1$, the length is taken to be the number required
	for extra arguments

Details

The specific parameterization of the generalized inverse gaussian distribution used in GIG is

$$f(y|\mu,\sigma,\nu) = (\frac{b}{\mu})^{\nu} \left[\frac{y^{\nu-1}}{2K_{\nu}(\sigma^{-2})} \right] \exp \left[-\frac{1}{2\sigma^2} \left(\frac{by}{\mu} + \frac{\mu}{by} \right) \right]$$

where $b=\frac{K_{\nu+1}(\frac{1}{\sigma^2})}{K_{\nu}(\frac{1}{\sigma-2})}$, for y>0, $\mu>0$, $\sigma>0$ and $-\infty<\nu<+\infty$ see pp 445-446 of Rigby et al. (2019).

Value

GIG() returns a gamlss.family object which can be used to fit a generalized inverse gaussian distribution in the gamlss() function. DIG() gives the density, pGIG() gives the distribution function, GIG() gives the quantile function, and rGIG() generates random deviates.

78 GPO

Author(s)

Mikis Stasinopoulos, Bob Rigby and Nicoleta Motpan

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

Jorgensen B. (1982) Statistical properties of the generalized inverse Gaussian distribution, Series: Lecture notes in statistics; 9, New York: Springer-Verlag.

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, IG
```

Examples

```
y<-rGIG(100,mu=1,sigma=1, nu=-0.5) # generates 1000 random observations
hist(y)
# library(gamlss)
# histDist(y, family=GIG)</pre>
```

GPO

The generalised Poisson distribution

Description

The GPO() function defines the generalised Poisson distribution, a two parameter discrete distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dGPO, pGPO, qGPO and rGPO define the density, distribution function, quantile function and random generation for the Delaporte GPO(), distribution.

Usage

```
GPO(mu.link = "log", sigma.link = "log")

dGPO(x, mu = 1, sigma = 1, log = FALSE)

pGPO(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
```

GPO 79

```
qGPO(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE, max.value = 10000)
rGPO(n, mu = 1, sigma = 1, max.value = 10000)
```

Arguments

mu.link	Defines the mu.link, with "log" link as the default for the mu parameter
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter
x	vector of (non-negative integer) quantiles
mu	vector of positive mu
sigma	vector of positive dispersion parameter sigma
р	vector of probabilities
q	vector of quantiles
n	number of random values to return
log, log.p	logical; if TRUE, probabilities p are given as log(p)
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
max.value	a constant, set to the default value of 10000 for how far the algorithm should look for \boldsymbol{q}

Details

The probability function of the Generalised Poisson distribution is given by

$$P(Y = y | \mu, \sigma) = \left(\frac{\mu}{1 + \sigma\mu}\right)^{y} \frac{\left(1 + \sigma y\right)^{y-1}}{y!} \exp\left[\frac{-\mu\left(1 + \sigma y\right)}{1 + \sigma\mu}\right]$$

for $y = 0, 1, 2, ..., \infty$ where $\mu > 0$ and $\sigma > 0$ see pp. 481-483 of Rigby *et al.* (2019).

Value

Returns a gamlss.family object which can be used to fit a Generalised Poisson distribution in the gamlss() function.

Author(s)

Rigby, R. A., Stasinopoulos D. M.

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

GT

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07. Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973 (see also https://www.gamlss.com/).

See Also

```
gamlss.family, PO, DPO
```

Examples

```
GPO()# gives information about the default links for the
#plot the pdf using plot
plot(function(y) dGPO(y, mu=10, sigma=1), from=0, to=100, n=100+1, type="h") # pdf
# plot the cdf
plot(seq(from=0,to=100),pGPO(seq(from=0,to=100), mu=10, sigma=1), type="h") # cdf
# generate random sample
tN <- table(Ni <- rGPO(100, mu=5, sigma=1))
r <- barplot(tN, col='lightblue')</pre>
```

GT

The generalized t distribution for fitting a GAMLSS

Description

This function defines the generalized t distribution, a four parameter distribution, for a gamlss.family object to be used for a GAMLSS fitting using the function gamlss(). The functions dGT, pGT, qGT and rGT define the density, distribution function, quantile function and random generation for the generalized t distribution.

Usage

```
GT(mu.link = "identity", sigma.link = "log", nu.link = "log",
    tau.link = "log")

dGT(x, mu = 0, sigma = 1, nu = 3, tau = 1.5, log = FALSE)

pGT(q, mu = 0, sigma = 1, nu = 3, tau = 1.5, lower.tail = TRUE,
    log.p = FALSE)

qGT(p, mu = 0, sigma = 1, nu = 3, tau = 1.5, lower.tail = TRUE,
    log.p = FALSE)

rGT(n, mu = 0, sigma = 1, nu = 3, tau = 1.5)
```

Arguments

mu.link Defines the mu.link, with "identity" link as the default for the mu parameter.

sigma.link Defines the sigma.link, with "log" link as the default for the sigma parameter.

nu.link Defines the nu.link, with "log" link as the default for the nu parameter.

GT 81

tau.link	Defines the tau.link, with "log" link as the default for the tau parameter.
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
nu	vector of skewness nu parameter values
tau	vector of kurtosis tau parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
р	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

The probability density function of the generalized t distribution, (GT), , is defined as

$$f(y|\mu, \sigma \nu, \tau) = \tau \left\{ 2\sigma \nu^{1/\tau} B\left(\frac{1}{\tau}, \nu\right) \left[1 + |z|^{\tau}/\nu\right]^{\nu + 1/\tau} \right\}^{-1}$$

where $-\infty < y < \infty$, $z = (y - \mu)/\sigma \mu = (-\infty, +\infty)$, $\sigma > 0$, $\nu > 0$ and $\tau > 0$, see pp. 387-388 of Rigby et al. (2019).

Value

GT() returns a gamlss.family object which can be used to fit the GT distribution in the gamlss() function. dGT() gives the density, pGT() gives the distribution function, qGT() gives the quantile function, and rGT() generates random deviates.

Warning

The qGT and rGT are slow since they are relying on optimization for finding the quantiles

Author(s)

Bob Rigby and Mikis Stasinopoulos

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07. (see also https://www.gamlss.com/).

GU

See Also

```
gamlss.family, JSU, BCT
```

Examples

GU

The Gumbel distribution for fitting a GAMLSS

Description

The function GU defines the Gumbel distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dGU, pGU, qGU and rGU define the density, distribution function, quantile function and random generation for the specific parameterization of the Gumbel distribution.

Usage

```
GU(mu.link = "identity", sigma.link = "log")
dGU(x, mu = 0, sigma = 1, log = FALSE)
pGU(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qGU(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rGU(n, mu = 0, sigma = 1)
```

Arguments

1	mu.link	Defines the mu.link, with "identity" link as the default for the mu parameter. other available link is "inverse", "log" and "own")
:	sigma.link	Defines the $sigma.link$, with "log" link as the default for the $sigma$ parameter, other links are the "inverse", "identity" and "own"
2	x,q	vector of quantiles
1	mu	vector of location parameter values
:	sigma	vector of scale parameter values
	log, log.p	logical; if TRUE, probabilities p are given as log(p).
	lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
ı	p	vector of probabilities.
ı	n	number of observations. If $length(n) > 1$, the length is taken to be the number required

GU 83

Details

The specific parameterization of the Gumbel distribution used in GU is

$$f(y|\mu,\sigma) = \frac{1}{\sigma} \exp\left\{\left(\frac{y-\mu}{\sigma}\right) - \exp\left(\frac{y-\mu}{\sigma}\right)\right\}$$

for $y=(-\infty,\infty)$, $\mu=(-\infty,+\infty)$ and $\sigma>0$, see pp. 366-367 of Rigby et al. (2019).

Value

GU() returns a gamlss.family object which can be used to fit a Gumbel distribution in the gamlss() function. dGU() gives the density, pGU() gives the distribution function, qGU() gives the quantile function, and rGU() generates random deviates.

Note

The mean of the distribution is $\mu - 0.57722\sigma$ and the variance is $\pi^2 \sigma^2/6$.

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, \doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973 (see also https://www.gamlss.com/).

See Also

```
gamlss.family, RG
```

Examples

```
plot(function(x) dGU(x, mu=0,sigma=1), -6, 3,
  main = "{Gumbel density mu=0,sigma=1}")
GU()# gives information about the default links for the Gumbel distribution
dat<-rGU(100, mu=10, sigma=2) # generates 100 random observations
hist(dat)
# library(gamlss)
# gamlss(dat~1,family=GU) # fits a constant for each parameter mu and sigma</pre>
```

84 hazardFun

hazardFun

Hazard functions for gamlss.family distributions

Description

The function hazardFun() takes as an argument a gamlss.family object and creates the hazard function for it. The function gen.hazard() generates a hazard function called hNAME where NAME is a gamlss.family i.e. hGA().

Usage

```
hazardFun(family = "NO", ...)
gen.hazard(family = "NO", ...)
```

Arguments

```
family a gamlss.family object
... for passing extra arguments
```

Value

A hazard function.

Author(s)

Mikis Stasinopoulos, Bob Rigby and Vlasios Voudouris

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family
```

IG 85

Examples

```
gen.hazard("WEI2")
y<-seq(0,10,by=0.01)
plot(hWEI2(y, mu=1, sigma=1)~y, type="1", col="black", ylab="h(y)", ylim=c(0,2.5))
lines(hWEI2(y, mu=1, sigma=1.2)~y, col="red",lt=2,lw=2)
lines(hWEI2(y, mu=1, sigma=.5)~y, col="blue",lt=3,lw=2)</pre>
```

ΙG

Inverse Gaussian distribution for fitting a GAMLSS

Description

The function IG(), or equivalently Inverse.Gaussian(), defines the inverse Gaussian distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dIG, pIG, qIG and rIG define the density, distribution function, quantile function and random generation for the specific parameterization of the Inverse Gaussian distribution defined by function IG.

Usage

```
IG(mu.link = "log", sigma.link = "log")
dIG(x, mu = 1, sigma = 1, log = FALSE)
pIG(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qIG(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rIG(n, mu = 1, sigma = 1, ...)
```

Arguments

mu.link	Defines the mu.link, with "log" link as the default for the mu parameter
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
p	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required
	can be used to pass the uppr.limit argument to qIG

86 IG

Details

Definition file for inverse Gaussian distribution.

$$f(y|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2 y^3}} \exp\left\{-\frac{1}{2\mu^2\sigma^2 y} (y-\mu)^2\right\}$$

for y > 0, $\mu > 0$ and $\sigma > 0$ see pp. 426-427 of Rigby et al. (2019).

Value

returns a gamlss.family object which can be used to fit a inverse Gaussian distribution in the gamlss() function.

Note

 μ is the mean and $\sigma^2\mu^3$ is the variance of the inverse Gaussian

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, \doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973 (see also https://www.gamlss.com/).

See Also

```
gamlss.family, GA, GIG
```

Examples

```
IG()# gives information about the default links for the normal distribution
# library(gamlss)
# data(rent)
# gamlss(R~cs(Fl),family=IG, data=rent) #
plot(function(x)dIG(x, mu=1,sigma=.5), 0.01, 6,
    main = "{Inverse Gaussian density mu=1,sigma=0.5}")
plot(function(x)pIG(x, mu=1,sigma=.5), 0.01, 6,
    main = "{Inverse Gaussian cdf mu=1,sigma=0.5}")
```

IGAMMA 87

IGAMMA

Inverse Gamma distribution for fitting a GAMLSS

Description

The function IGAMMA() defines the Inverse Gamma distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(), with parameters mu (the mode) and sigma. The functions dIGAMMA, pIGAMMA and rIGAMMA define the density, distribution function, quantile function and random generation for the IGAMMA parameterization of the Inverse Gamma distribution.

Usage

```
IGAMMA(mu.link = "log", sigma.link="log")
dIGAMMA(x, mu = 1, sigma = .5, log = FALSE)
pIGAMMA(q, mu = 1, sigma = .5, lower.tail = TRUE, log.p = FALSE)
qIGAMMA(p, mu = 1, sigma = .5, lower.tail = TRUE, log.p = FALSE)
rIGAMMA(n, mu = 1, sigma = .5)
```

Arguments

mu.link	Defines the mu.link, with log link as the default for the mu parameter
sigma.link	Defines the sigma.link, with log as the default for the sigma parameter
x, q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p)
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise $P[X > x]$
p	vector of probabilities
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

The parameterization of the Inverse Gamma distribution in the function IGAMMA is

$$f(y|\mu,\sigma) = \frac{\left[\mu\left(\alpha+1\right)\right]^{\alpha}}{\Gamma(\alpha)} \, y^{-(\alpha+1)} \, \exp\left[-\frac{\mu\left(\alpha+1\right)}{y}\right]$$

where $\alpha = 1/(\sigma^2)$ for y > 0, $\mu > 0$ and $\sigma > 0$ see pp. 424-426 of Rigby et al. (2019).

Value

returns a gamlss.family object which can be used to fit an Inverse Gamma distribution in the gamlss() function.

JSU

Note

For the function IGAMMA(), mu is the mode of the Inverse Gamma distribution.

Author(s)

Fiona McElduff, Bob Rigby and Mikis Stasinopoulos.

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, 54, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, GA
```

Examples

```
par(mfrow=c(2,2))
y<-seq(0.2,20,0.2)
plot(y, dIGAMMA(y), type="1")
q <- seq(0.2, 20, 0.2)
plot(q, pIGAMMA(q), type="1")
p<-seq(0.0001,0.999,0.05)
plot(p , qIGAMMA(p), type="1")
dat <- rIGAMMA(50)
hist(dat)
#summary(gamlss(dat~1, family="IGAMMA"))</pre>
```

The Johnson's Su distribution for fitting a GAMLSS

JSU

Description

This function defines the , a four parameter distribution, for a gamlss.family object to be used for a GAMLSS fitting using the function gamlss(). The functions dJSU, pJSU, qJSU and rJSU define the density, distribution function, quantile function and random generation for the the Johnson's Su distribution.

JSU 89

Usage

```
JSU(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log")
dJSU(x, mu = 0, sigma = 1, nu = 1, tau = 1, log = FALSE)
pJSU(q, mu = 0, sigma = 1, nu = 1, tau = 1, lower.tail = TRUE, log.p = FALSE)
qJSU(p, mu = 0, sigma = 1, nu = 1, tau = 1, lower.tail = TRUE, log.p = FALSE)
rJSU(n, mu = 0, sigma = 1, nu = 1, tau = 1)
```

Arguments

mu.link	Defines the mu.link, with "identity" link as the default for the mu parameter. Other links are "inverse" "log" ans "own"
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter. Other links are "inverse", "identity" ans "own"
nu.link	Defines the nu.link, with "identity" link as the default for the nu parameter. Other links are "onverse", "log" and "own"
tau.link	Defines the tau.link, with "log" link as the default for the tau parameter. Other links are "onverse", "identity" ans "own"
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
nu	vector of skewness nu parameter values
tau	vector of kurtosis tau parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
p	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

The probability density function of the Jonhson's SU distribution, (JSU), is defined as

$$f(y|\mu,\sigma\,\nu,\tau) = \frac{\tau}{c\sigma(s^2+1)^{\frac{1}{2}}\sqrt{2\pi}}\,\,\exp\left[-\frac{1}{2}z^2\right]$$

for $-\infty < y < \infty, -\infty < \mu < \infty, \sigma > 0, -\infty < \nu < \infty)$ and $\tau > 0$ and where

$$z = -\nu + \tau \sinh^{-1}(s)$$

,

$$s = \frac{y - \mu + c\sigma w^{\frac{1}{2}} \sinh(\nu/\tau)}{c\sigma}$$

,

$$c = \left\{ \frac{1}{2} (w - 1) \left[w \cosh(2\nu/\tau) + 1 \right] \right\}^{-\frac{1}{2}}$$
$$w = e^{1/\tau^2}$$

and

see pp. 393-394 of Rigby et al. (2019).

This is a reparameterization of the original Johnson Su distribution, Johnson (1954), so the parameters mu and sigma are the mean and the standard deviation of the distribution. The parameter nu determines the skewness of the distribution with nu>0 indicating positive skewness and nu<0 negative. The parameter tau determines the kurtosis of the distribution. tau should be positive and most likely in the region from zero to 1. As tau goes to 0 (and for nu=0) the distribution approaches the the Normal density function. The distribution is appropriate for leptokurtic data that is data with kurtosis larger that the Normal distribution one.

Value

JSU() returns a gamlss.family object which can be used to fit a Johnson's Su distribution in the gamlss() function. dJSU() gives the density, pJSU() gives the distribution function, qJSU() gives the quantile function, and rJSU() generates random deviates.

Warning

The function JSU uses first derivatives square in the fitting procedure so standard errors should be interpreted with caution

Author(s)

Bob Rigby and Mikis Stasinopoulos

References

Johnson, N. L. (1954). Systems of frequency curves derived from the first law of Laplace., *Trabajos de Estadistica*, **5**, 283-291.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R. A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also https://www.gamlss.com/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

(see also https://www.gamlss.com/).

JSUo 91

See Also

```
gamlss.family, JSUo, BCT
```

Examples

```
JSU()
plot(function(x)dJSU(x, mu=0,sigma=1,nu=-1, tau=.5), -4, 4,
    main = "The JSU density mu=0,sigma=1,nu=-1, tau=.5")
plot(function(x) pJSU(x, mu=0,sigma=1,nu=-1, tau=.5), -4, 4,
    main = "The JSU cdf mu=0, sigma=1, nu=-1, tau=.5")
# library(gamlss)
# data(abdom)
# h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=JSU, data=abdom)</pre>
```

JSUo

The original Johnson's Su distribution for fitting a GAMLSS

Description

This function defines the , a four parameter distribution, for a gamlss.family object to be used for a GAMLSS fitting using the function gamlss(). The functions dJSUo, pJSUo, qJSUo and rJSUo define the density, distribution function, quantile function and random generation for the the Johnson's Su distribution.

Usage

```
JSUo(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log")
dJSUo(x, mu = 0, sigma = 1, nu = 0, tau = 1, log = FALSE)
pJSUo(q, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE)
qJSUo(p, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE)
rJSUo(n, mu = 0, sigma = 1, nu = 0, tau = 1)
```

Arguments

mu.link	Defines the mu.link, with "identity" link as the default for the mu parameter. Other links are "inverse", "log" and "own"
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter. Other links are "inverse", "identity" and "own"
nu.link	Defines the nu.link, with "identity" link as the default for the nu parameter. Other links are "inverse", "log" ans "own"
tau.link	Defines the tau.link, with "log" link as the default for the tau parameter. Other links are "inverse", "identity" and "own"
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values

92 JSUo

nu	vector of skewness nu parameter values
tau	vector of kurtosis tau parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
р	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

The probability density function of the orininal Jonhson's SU distribution, (JSUo), is defined as

$$f(y|\mu,\sigma\nu,\tau) = \frac{\tau}{\sigma(z^2+1)^{\frac{1}{2}}\sqrt{2\pi}} \exp\left[-\frac{1}{2}r^2\right]$$

for $-\infty < y < \infty$, $\mu = (-\infty, +\infty)$, $\sigma > 0$, $\nu = (-\infty, +\infty)$ and $\tau > 0$. where $z = \frac{(y-\mu)}{\sigma}$, $r = \nu + \tau \sinh^{-1}(z)$, see pp. 389-390 of Rigby et al. (2019).

Value

JSUo() returns a gamlss.family object which can be used to fit a Johnson's Su distribution in the gamlss() function. dJSUo() gives the density, pJSUo() gives the distribution function, qJSUo() gives the quantile function, and rJSUo() generates random deviates.

Warning

The function JSU uses first derivatives square in the fitting procedure so standard errors should be interpreted with caution. It is recomented to be used only with method=mixed(2,20)

Author(s)

Mikis Stasinopoulos and Bob Rigby

References

Johnson, N. L. (1954). Systems of frequency curves derived from the first law of Laplace., *Trabajos de Estadistica*, **5**, 283-291.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973 (see also https://www.gamlss.com/).

LG 93

See Also

```
gamlss.family, JSU, BCT
```

Examples

```
JSU()
plot(function(x)dJSUo(x, mu=0,sigma=1,nu=-1, tau=.5), -4, 15,
    main = "The JSUo density mu=0,sigma=1,nu=-1, tau=.5")
plot(function(x) pJSUo(x, mu=0,sigma=1,nu=-1, tau=.5), -4, 15,
    main = "The JSUo cdf mu=0, sigma=1, nu=-1, tau=.5")
# library(gamlss)
# data(abdom)
# h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=JSUo,
    data=abdom, method=mixed(2,20))
# plot(h)</pre>
```

LG

Logarithmic and zero adjusted logarithmic distributions for fitting a GAMLSS model

Description

The function LG defines the logarithmic distribution, a one parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dLG, pLG, qLG and rLG define the density, distribution function, quantile function and random generation for the logarithmic, LG(), distribution.

The function ZALG defines the zero adjusted logarithmic distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dZALG, pZALG and rZALG define the density, distribution function, quantile function and random generation for the inflated logarithmic, ZALG(), distribution.

Usage

```
LG(mu.link = "logit")
dLG(x, mu = 0.5, log = FALSE)
pLG(q, mu = 0.5, lower.tail = TRUE, log.p = FALSE)
qLG(p, mu = 0.5, lower.tail = TRUE, log.p = FALSE, max.value = 10000)
rLG(n, mu = 0.5)
ZALG(mu.link = "logit", sigma.link = "logit")
dZALG(x, mu = 0.5, sigma = 0.1, log = FALSE)
pZALG(q, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
qZALG(p, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
rZALG(n, mu = 0.5, sigma = 0.1)
```

94 *LG*

Arguments

mu.link defines the mu.link, with logit link as the default for the mu parameter sigma.link defines the sigma.link, with logit link as the default for the sigma parameter which in this case is the probability at zero. vector of (non-negative integer) Χ mu vector of positive means vector of probabilities at zero sigma vector of probabilities vector of quantiles number of random values to return logical; if TRUE, probabilities p are given as log(p) log, log.p logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, P[X > x]lower.tail max.value valued needed for the numerical calculation of the q-function

Details

The parameterization of the logarithmic distribution in the function LG is

$$P(Y = y|\mu) = \alpha \mu^y / y$$

where for $y = 1, 2, 3, \dots$ with $0 < \mu < 1$ and

$$\alpha = -[\log(1-\mu)]^{-1}$$
.

see pp 474-475 of Rigby et al. (2019).

For the zero adjusted logarithmic distribution ZALG which is defined for y=0,1,2,3,... see pp 492-494 of Rigby *et al.* (2019).

Value

The function LG and ZALG return a gamlss.family object which can be used to fit a logarithmic and a zero inflated logarithmic distributions respectively in the gamlss() function.

Author(s)

Mikis Stasinopoulos, Bob Rigby

References

Johnson, Norman Lloyd; Kemp, Adrienne W; Kotz, Samuel (2005). "Chapter 7: Logarithmic and Lagrangian distributions". Univariate discrete distributions (3 ed.). John Wiley & Sons. ISBN 9780471272465.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

LNO 95

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Rigby, R. A. and Stasinopoulos D. M. (2010) The gamlss.family distributions, (distributed with this package or see https://www.gamlss.com/)

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973 (see also https://www.gamlss.com/).

See Also

```
gamlss.family, PO, ZAP
```

Examples

```
LG()
ZAP()
# creating data and plotting them
dat <- rLG(1000, mu=.3)
   r <- barplot(table(dat), col='lightblue')
dat1 <- rZALG(1000, mu=.3, sigma=.1)
   r1 <- barplot(table(dat1), col='lightblue')</pre>
```

Log Normal distribution for fitting in GAMLSS

LNO

Description

The functions LOGNO and LOGNO2 define a gamlss . family distribution to fits the log-Normal distribution. The difference between them is that while LOGNO retains the original parametrization for mu, (identical to the normal distribution NO) and therefore $\mu=(-\infty,+\infty)$, the function LOGNO2 use mu as the median, so $\mu=(0,+\infty)$.

The function LNO is more general and can fit a Box-Cox transformation to data using the gamlss() function. In the LOGNO (and LOGNO2) there are two parameters involved mu sigma, while in the LNO there are three parameters mu sigma, and the transformation parameter nu. The transformation parameter nu in LNO is a 'fixed' parameter (not estimated) and it has its default value equal to zero allowing the fitting of the log-normal distribution as in LOGNO. See the example below on how to fix nu to be a particular value. In order to estimate (or model) the parameter nu, use the gamlss.family BCCG distribution which uses a reparameterized version of the the Box-Cox transformation. The functions dLOGNO, pLOGNO, qLOGNO and rLOGNO define the density, distribution function, quantile function and random generation for the specific parameterization of the log-normal distribution.

The functions dLOGNO2, pLOGNO2, qLOGNO2 and rLOGNO2 define the density, distribution function, quantile function and random generation when mu is the median of the log-normal distribution.

96 LNO

The functions dLNO, pLNO, qLNO and rLNO define the density, distribution function, quantile function and random generation for the specific parameterization of the log-normal distribution and more generally a Box-Cox transformation.

Usage

```
LNO(mu.link = "identity", sigma.link = "log")
LOGNO(mu.link = "identity", sigma.link = "log")
LOGNO2(mu.link = "log", sigma.link = "log")
dLNO(x, mu = 1, sigma = 0.1, nu = 0, log = FALSE)
dLOGNO(x, mu = 0, sigma = 1, log = FALSE)
dLOGNO2(x, mu = 1, sigma = 1, log = FALSE)
pLNO(q, mu = 1, sigma = 0.1, nu = 0, lower.tail = TRUE, log.p = FALSE)
pLOGNO(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
pLOGNO2(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
pLOGNO2(q, mu = 1, sigma = 0.1, nu = 0, lower.tail = TRUE, log.p = FALSE)
qLOGNO(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qLOGNO2(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rLNO(n, mu = 1, sigma = 0.1, nu = 0)
rLOGNO2(n, mu = 0, sigma = 1)
rLOGNO2(n, mu = 1, sigma = 1)
```

Arguments

mu.link	Defines the $\mbox{mu.link}$, with "identity" or " \mbox{log} " link depending on te parametrization
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter. Other links are "inverse", "identity" ans "own"
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
nu	vector of shape parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
p	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

The probability density function in LOGNO is defined as

$$f(y|\mu,\sigma) = \frac{1}{y\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2\sigma^2}(\log y - \mu)^2\right]$$

for y > 0, $-\infty < \mu < \infty$ and $\sigma > 0$ see pp. 428-429 of Rigby et al. (2019).

The probability density function in LOGNO2 is defined as

$$f(y|\mu,\sigma) = \frac{1}{y\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2\sigma^2}(\log y - \log \mu)^2\right]$$

for $y > 0, -\infty < \mu < \infty$ and $\sigma > 0$ see pp. 429-430 of Rigby et al. (2019).

The probability density function in LNO is defined as

$$f(y|\mu, \sigma, \nu) = \frac{y^{\nu-1}}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2\sigma^2}(z-\mu)^2\right]$$

where if $\nu \neq 0$ $z = (y^{\nu} - 1)/\nu$ else $z = \log(y)$ and $z \sim N(0, \sigma^2)$, for y > 0, $\mu > 0$, $\sigma > 0$ and $\nu = (-\infty, +\infty)$. This is not a proper distribution see for example p. 447 of Rigby et al. (2019).

Value

LNO() returns a gamlss.family object which can be used to fit a log-normal distribution in the gamlss() function. dLNO() gives the density, pLNO() gives the distribution function, qLNO() gives the quantile function, and rLNO() generates random deviates.

Warning

This is a two parameter fit for μ and σ while ν is fixed. If you wish to model ν use the gamlss family BCCG.

Note

 μ is the mean of z (and also the median of y), the Box-Cox transformed variable and σ is the standard deviation of z and approximate the coefficient of variation of y

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

Box, G. E. P. and Cox, D. R. (1964) An analysis of transformations (with discussion), *J. R. Statist. Soc.* B., **26**, 211–252

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

(see also https://www.gamlss.com/).

98 LO

See Also

```
gamlss.family, BCCG
```

Examples

```
LOGNO()# gives information about the default links for the log normal distribution
LOGNO2()
LNO()# gives information about the default links for the Box Cox distribution
# plotting the d, p, q, and r functions
op<-par(mfrow=c(2,2))</pre>
curve(dLOGNO(x, mu=0), 0, 10)
curve(pLOGNO(x, mu=0), 0, 10)
curve(qLOGNO(x, mu=0), 0, 1)
Y<- rLOGNO(200)
hist(Y)
par(op)
# plotting the d, p, q, and r functions
op < -par(mfrow = c(2,2))
curve(dLOGNO2(x, mu=1), 0, 10)
curve(pLOGNO2(x, mu=1), 0, 10)
curve(qLOGNO2(x, mu=1), 0, 1)
Y<- rLOGNO(200)
hist(Y)
par(op)
# library(gamlss)
# data(abdom)
\# h1<-gamlss(y~cs(x), family=LOGNO, data=abdom)#fits the log-Normal distribution
\# h2<-gamlss(y^{\sim}cs(x), family=LNO, data=abdom) \#should be identical to the one above
# to change to square root transformation, i.e. fix nu=0.5
# h3<-gamlss(y~cs(x), family=LNO, data=abdom, nu.fix=TRUE, nu.start=0.5)
```

Logistic distribution for fitting a GAMLSS

Description

L0

The function LO(), or equivalently Logistic(), defines the logistic distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss()

Usage

```
LO(mu.link = "identity", sigma.link = "log")
dLO(x, mu = 0, sigma = 1, log = FALSE)
pLO(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qLO(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rLO(n, mu = 0, sigma = 1)
```

LO 99

Arguments

mu.link	Defines the mu.link, with "identity" link as the default for the mu parameter
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
р	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

Definition file for Logistic distribution.

$$f(y|\mu,\sigma) = \frac{1}{\sigma}e^{-\left(\frac{y-\mu}{\sigma}\right)}\left[1 + e^{-\left(\frac{y-\mu}{\sigma}\right)}\right]^{-2}$$

for $y=(-\infty,\infty)$, $\mu=(-\infty,\infty)$ and $\sigma>0$, see page 368 of Rigby et al. (2019).

Value

LO() returns a gamlss.family object which can be used to fit a logistic distribution in the gamlss() function. dLO() gives the density, pLO() gives the distribution function, qLO() gives the quantile function, and rLO() generates random deviates for the logistic distribution. The latest functions are based on the equivalent R functions for logistic distribution.

Note

 μ is the mean and $\sigma\pi/\sqrt{3}$ is the standard deviation for the logistic distribution

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973 (see also https://www.gamlss.com/).

100 LOGITNO

See Also

```
gamlss.family, NO, TF
```

Examples

```
LO()# gives information about the default links for the Logistic distribution plot(function(y) dLO(y, mu=10 ,sigma=2), 0, 20) plot(function(y) pLO(y, mu=10 ,sigma=2), 0, 20) plot(function(y) qLO(y, mu=10 ,sigma=2), 0, 1) # library(gamlss) # data(abdom) # h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=LO, data=abdom) # fits # plot(h)
```

LOGITNO

Logit Normal distribution for fitting in GAMLSS

Description

The functions dLOGITNO, pLOGITNO, qLOGITNO and rLOGITNO define the density, distribution function, quantile function and random generation for the logit-normal distribution. The function LOGITNO can be used for fitting the distribution in gamlss().

Usage

```
LOGITNO(mu.link = "logit", sigma.link = "log")
dLOGITNO(x, mu = 0.5, sigma = 1, log = FALSE)
pLOGITNO(q, mu = 0.5, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qLOGITNO(p, mu = 0.5, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rLOGITNO(n, mu = 0.5, sigma = 1)
```

the link function for mu

Arguments

mu.link

ma. IIIN	the link remetion for the
sigma.link	the link function for sigma
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
p	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

LOGITNO 101

Details

The probability density function in LOGITNO is defined as

$$f(y|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}y(1-y)} \exp\left(-\frac{1}{2\sigma^2} \left[\log(y/(1-y) - \log(\mu/(1-\mu))^2\right)\right]$$

for $0 < y < 1, 0 < \mu < 1$ and $\sigma > 0$ see p 463 of Rigby et al. (2019).

Value

LOGITNO() returns a gamlss.family object which can be used to fit a logit-normal distribution in the gamlss() function.

Author(s)

Mikis Stasinopoulos, Bob Rigby

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, \doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973 (see also https://www.gamlss.com/).

See Also

```
gamlss.family, LOGNO
```

Examples

```
# plotting the d, p, q, and r functions
op<-par(mfrow=c(2,2))
curve(dLOGITNO(x), 0, 1)
curve(pLOGITNO(x), 0, 1)
curve(qLOGITNO(x), 0, 1)
Y<- rLOGITNO(200)
hist(Y)
par(op)

# plotting the d, p, q, and r functions
# sigma 3
op<-par(mfrow=c(2,2))
curve(dLOGITNO(x, sigma=3), 0, 1)</pre>
```

102 LQNO

```
curve(pLOGITNO(x, sigma=3), 0, 1)
curve(qLOGITNO(x, sigma=3), 0, 1)
Y<- rLOGITNO(200, sigma=3)
hist(Y)
par(op)</pre>
```

LQNO

Normal distribution with a specific mean and variance relationship for fitting a GAMLSS model

Description

The function LQNO() defines a normal distribution family, which has a specific mean and variance relationship. The distribution can be used in a GAMLSS fitting using the function gamlss(). The mean of LQNO is equal to mu. The variance is equal to mu*(1+sigma*mu) so the standard deviation is sqrt(mu*(1+sigma*mu)). The function is found useful in modelling small RNA sequencing experiments. The functions dLQNO, pLQNO, qLQNO and rLQNO define the density, distribution function, quantile function (inverse cdf) and random generation for the LQNO() parametrization of the normal distribution.

Usage

```
LQNO(mu.link = "log", sigma.link = "log")
dLQNO(x, mu = 1, sigma = 1, log = FALSE)
pLQNO(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qLQNO(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rLQNO(n, mu = 1, sigma = 1)
```

Arguments

```
mu link function with "log" as default
mu.link
sigma.link
                   mu link function with "log" as default
                   vector of quantiles
x,q
mu
                   vector of location parameter values
sigma
                   vector of scale parameter values
log, log.p
                   logical; if TRUE, probabilities p are given as log(p)
                   if TRUE (default), probabilities are P[X \le x], otherwise, P[X > x].
lower.tail
                   vector of probabilities
p
                   number of observations. If length(n) > 1, the length is taken to be the number
n
                   required
```

LQNO 103

Details

LQNO stands for Linear Quadratic Normal Family, in which the variance is a linear quadratic function of the mean: Var(Y) = mu*(1+sigma*mu). This is created to facilitate the analysis of data coming from small RNA sequencing experiments, basically counts of short RNAs that one isolates from cells or biofluids such as urine, plasma or cerebrospinal fluid. Argyropoulos *et al.* (2017) showing that the LQNO distribution (and the Negative Binomial which implements the same mean-variance relationship) are highly accurate approximations to the generative models of the signals in these experiments

Value

The function LQNO returns a gamlss.family object which can be used to fit this specific form of the normal distribution family in the gamlss() function.

Note

The mu parameters must be positive so for the relationship Var(Y) = mu*(1+sigma*mu) to be valid.

Author(s)

Christos Argyropoulos

References

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Argyropoulos C, Etheridge A, Sakhanenko N, Galas D. (2017) Modeling bias and variation in the stochastic processes of small RNA sequencing. *Nucleic Acids Res.* 2017 Mar 27. doi: 10.1093/nar/gkx199. [Epub ahead of print] PubMed PMID: 28369495.

See Also

NO,NO2, NOF

Examples

```
LQNO()# gives information about the default links for the normal distribution # a comparison of different Normal models #m1 <- gamlss(y~pb(x), sigma.fo=~pb(x), data=abdom, family=NO(mu.link="log")) #m2 <- gamlss(y~pb(x), sigma.fo=~pb(x), data=abdom, family=LQNO) #m3 <- gamlss(y~pb(x), sigma.fo=~pb(x), data=abdom, family=NOF(mu.link="log")) #AIC(m1,m2,m3)
```

make.link.gamlss

Create a Link for GAMLSS families

Description

The function make.link.gamlss() is used with gamlss.family distributions in package gamlss(). Given a link, it returns a link function, an inverse link function, the derivative dpar/deta where 'par' is the appropriate distribution parameter and a function for checking the domain. It differs from the usual make.link of glm() by having extra links as the logshifto1, and the own. For the use of the own link see the example bellow. show.link provides a way in which the user can identify the link functions available for each gamlss distribution. If your required link function is not available for any of the gamlss distributions you can add it in.

Usage

```
make.link.gamlss(link)
show.link(family = "NO")
```

Arguments

link character or numeric; one of "logit", "probit", "cloglog", "identity",

"log", "sqrt", "1/mu^2", "inverse", "logshifted", "logitshifted", or

number, say lambda resulting in power link μ^{λ} .

family a gamlss distribution family

Details

The own link function is added to allow the user greater flexibility. In order to used the own link function for any of the parameters of the distribution the own link should appear in the available links for this parameter. You can check this using the function show.link. If the own do not appear in the list you can create a new function for the distribution in which own is added in the list. For example the first line of the code of the binomial distribution, BI, has change from

"mstats <- checklink("mu.link", "Binomial", substitute(mu.link), c("logit", "probit", "cloglog", "log")), in version 1.0-0 of gamlss, to

"mstats <- checklink("mu.link", "Binomial", substitute(mu.link), c("logit", "probit", "cloglog", "log", "own"))

in version 1.0-1. Given that the parameter has own as an option the user needs also to define the following four new functions in order to used an own link.

- i) own.linkfun
- ii) own.linkinv
- iii) own.mu.eta and
- iv) own.valideta.

An example is given below.

Only one parameter of the distribution at a time is allowed to have its own link, (unless the same four own functions above are suitable for more that one parameter of the distribution).

Note that from **gamlss** version 1.9-0 the user can introduce its own link function by define an appropriate function, (see the example below).

Value

For the make.link.gamlss a list with components

linkfun: Link function function(parameter)
linkinv: Inverse link function function(eta)

mu.eta: Derivative function(eta) dparameter/deta

valideta: function(eta) TRUE if all of eta is in the domain of linkinv.

For the show. link a list with components the available links for the distribution parameters

Note

For the links involving parameters as in logshifted and logitshifted the parameters can be passed in the definition of the distribution by calling the checklink function, for example in the definition of the tau parameter in BCPE distribution the following call is made: tstats <- checklink("tau.link", "Box Cox Power Exponential", substitute(tau.link), c("logshifted", "log", "identity"), par.link = c(1))

Author(s)

Mikis Stasinopoulos and Bob Rigby

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family
```

Examples

```
str(make.link.gamlss("logshiftto1"))
12<-make.link.gamlss("logshiftto1")</pre>
12$linkfun(2) # should close to zero (Note that 0.00001 is added)
12$linkfun(1-0.00001) # should be -Inf but it is large negative
#-----
# now use the own link function
# first if the distribution allows you
show.link(BI)
# seems OK now define the four own functions
# First try the probit link using the own link function
# 1: the linkfun function
own.linkfun <- function(mu) { qNO(p=mu)}</pre>
# 2: the inverse link function
own.linkinv <- function(eta) {</pre>
              thresh <- -qNO(.Machine$double.eps)</pre>
               eta <- pmin(thresh, pmax(eta, -thresh))</pre>
              pNO(eta)}
# 3: the dmu/deta function
own.mu.eta <- function(eta) pmax(dNO(eta), .Machine$double.eps)</pre>
# 4: the valideta function
own.valideta <- function(eta) TRUE
## bring the data
# library(gamlss)
#data(aep)
# fitting the model using "own"
# h1<-gamlss(y~ward+loglos+year, family=BI(mu.link="own"), data=aep)</pre>
# model h1 should be identical to the probit
# h2<-gamlss(y~ward+loglos+year, family=BI(mu.link="probit"), data=aep)</pre>
# now using a function instead of "own"
probittest <- function()</pre>
linkfun <- function(mu) { gNO(p=mu)}</pre>
linkinv <- function(eta)</pre>
              thresh <- -qNO(.Machine$double.eps)</pre>
               eta <- pmin(thresh, pmax(eta, -thresh))</pre>
              pNO(eta)
mu.eta <- function(eta) pmax(dNO(eta), .Machine$double.eps)</pre>
valideta <- function(eta) TRUE</pre>
link <- "probitTest"</pre>
structure(list(linkfun = linkfun, linkinv = linkinv, mu.eta = mu.eta,
        valideta = valideta, name = link), class = "link-gamlss")
# h3<-gamlss(y~ward+loglos+year, family=BI(mu.link=probittest()), data=aep)</pre>
# Second try the complementary log-log
# using the Gumbel distribution
own.linkfun <- function(mu) { qGU(p=mu)}</pre>
own.linkinv <- function(eta) {</pre>
              thresh <- -qGU(.Machine$double.eps)</pre>
```

```
eta <- pmin(thresh, pmax(eta, -thresh))</pre>
               pGU(eta)}
own.mu.eta <- function(eta) pmax(dGU(eta), .Machine$double.eps)</pre>
own.valideta <- function(eta) TRUE</pre>
# h1 and h2 should be identical to cloglog
# h1<-gamlss(y~ward+loglos+year, family=BI(mu.link="own"), data=aep)</pre>
# h2<-gamlss(y~ward+loglos+year, family=BI(mu.link="cloglog"), data=aep)</pre>
# note that the Gumbel distribution is negatively skew
# for a positively skew link function we can used the Reverse Gumbel
revloglog <- function()</pre>
linkfun <- function(mu) { qRG(p=mu)}</pre>
linkinv <- function(eta) {</pre>
               thresh <- -qRG(.Machine$double.eps)</pre>
                eta <- pmin(thresh, pmax(eta, -thresh))</pre>
               pRG(eta)}
mu.eta <- function(eta) pmax(dRG(eta), .Machine$double.eps)</pre>
valideta <- function(eta) TRUE</pre>
link <- "revloglog"</pre>
structure(list(linkfun = linkfun, linkinv = linkinv, mu.eta = mu.eta,
        valideta = valideta, name = link), class = "link-gamlss")
# h1<-gamlss(y~ward+loglos+year, family=BI(mu.link=revloglog()), data=aep)</pre>
# a considerable improvement in the deviance
# try a shifted logit link function from -1, 1
own.linkfun <- function(mu)</pre>
             \{ \text{ shift = } c(-1,1) \}
                log((mu-shift[1])/(shift[2]-mu))
own.linkinv <- function(eta)</pre>
             shift = c(-1,1)
             thresh <- -log(.Machine$double.eps)</pre>
                eta <- pmin(thresh, pmax(eta, -thresh))</pre>
                        shift[2]-(shift[2]-shift[1])/(1 + exp(eta))
             }
own.mu.eta <- function(eta)</pre>
        shift = c(-1,1)
             thresh <- -log(.Machine$double.eps)</pre>
                res <- rep(.Machine$double.eps, length(eta))</pre>
             res[abs(eta) < thresh] <- ((shift[2]-shift[1])*exp(eta)/(1 +</pre>
                                    exp(eta))^2)[abs(eta) < thresh]</pre>
             res
             }
own.valideta <- function(eta) TRUE
str(make.link.gamlss("own"))
12<-make.link.gamlss("own")</pre>
12$linkfun(0) # should be zero
12$linkfun(1) # should be Inf
12$linkinv(-5:5)
```

108 MN3

Multinomial distribution in GAMLSS

MN3

Description

The set of function presented here is useful for fitting multinomial regression within gamlss.

Usage

```
MN3(mu.link = "log", sigma.link = "log")
MN4(mu.link = "log", sigma.link = "log", nu.link = "log")
MN5(mu.link = "log", sigma.link = "log", nu.link = "log", tau.link = "log")
MULTIN(type = "3")
fittedMN(model)
dMN3(x, mu = 1, sigma = 1, log = FALSE)
dMN4(x, mu = 1, sigma = 1, nu = 1, log = FALSE)
dMN5(x, mu = 1, sigma = 1, nu = 1, tau = 1, log = FALSE)
pMN3(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
pMN4(q, mu = 1, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE)
pMN5(q, mu = 1, sigma = 1, nu = 1, tau = 1, lower.tail = TRUE, log.p = FALSE)
qMN3(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qMN4(p, mu = 1, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE)
qMN5(p, mu = 1, sigma = 1, nu = 1, tau = 1, lower.tail = TRUE, log.p = FALSE)
rMN3(n, mu = 1, sigma = 1)
rMN4(n, mu = 1, sigma = 1, nu = 1)
rMN5(n, mu = 1, sigma = 1, nu = 1, tau = 1)
```

Arguments

```
the link function for mu
mu.link
                   the link function for sigma
sigma.link
nu.link
                   the link function for nu
tau.link
                   the link function for tau
                   the x variable
Х
                   vector of quantiles
q
                   vector of probabilities
lower.tail
                   logical; if TRUE (default), probabilities are P[X \le x] otherwise, P[X > x].
                   logical; if TRUE, probabilities p are given as log(p).
log.p
                   logical; if TRUE, probabilities p are given as log(p).
log
                   the number of observations
n
```

MN3 109

mu	the mu parameter
sigma	the sigma parameter
nu	the nu parameter
tau	the tau parameter
type	permitted values are 2 (Binomial), 3, 4, and 5
model	a gamlss multinomial fitted model

Details

GAMLSS is in general not suitable for multinomial regression. Nevertheless multinomial regression can be fitted within GAMLSS if the response variable y has less than five categories. The function here provide the facilities to do so. The functions MN3(), MN4() and MN5() fit multinomial responses with 3, 4 and 5 categories respectively. The function MULTIN() can be used instead of codeMN3(), MN4() and MN5() by specifying the number of levels of the response. Note that MULTIN(2) will produce a binomial fit.

Value

returns a gamlss.family object which can be used to fit a binomial distribution in the gamlss() function.

Author(s)

Mikis Stasinopoulos, Bob Rigby and Vlasios Voudouris

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, BI
```

110 momentSK

Examples

dMN3(3) pMN3(2) qMN3(.6) rMN3(10)

momentSK

Sample and theoretical Moment and Centile Skewness and Kurtosis Functions

Description

The functions momentSK(), centileSK(), centileSkew() and centileKurt(), calculate sample statistics related to skewness and kurtosis. The function theoCentileSK() calculates the theoretical centile statistics from a given gamlss.family distribution. The plotCentileSK() plots the theoretical centile skewness and kurtosis against p (see below).

The function checkMomentSK() can be use to check (a) whether the moment skewness and kurtosis of a fitted model are modelled adequantly (the residuals of the model are used). (b) whether a given sample display skewness or kurtosis.

Usage

```
momentSK(x, weights=NULL)
centileSK(x, cent = c(1, 25), weights=NULL)
centileSkew(x, cent = 1, weights=NULL)
centileKurt(x, cent = 1, weights=NULL)
theoCentileSK(fam = "NO", p = 0.01, ...)
plotCentileSK(fam = "NO", plotting = c("skew", "kurt", "standKurt"),
             add = FALSE, col = 1, lty = 1, lwd = 1, ylim = NULL, ...)
checkMomentSK(x, weights=NULL, add = FALSE, bootstrap = TRUE, no.bootstrap = 99,
               col.bootstrap = "lightblue", pch.bootstrap = 21,
               asCharacter = TRUE, col.point = "black", pch.point = 4,
               lwd.point = 2, text.to.show = NULL, cex.text = 1.5,
               col.text = "black", show.legend = TRUE)
checkCentileSK(x,weights=NULL, type = c("central", "tail"), add = FALSE,
              bootstrap = TRUE, no.bootstrap = 99,
              col.bootstrap = "lightblue", pch.bootstrap = 21,
              asCharacter = TRUE, col.point = "black", pch.point = 4,
              lwd.point = 2, text.to.show = NULL, cex.text = 1.5,
              col.text = "black", show.legend = TRUE)
```

momentSK 111

Arguments

x data vector or gamlss modelweights prior weights for the xcent the centile required

type For centile skewness and kurtosis only whether "central" (default) or "tail")

fam A gamlss distribution family

plotting what to plot

add whether to add the line to the existing plot

col the colour of the line
lty the type of the line
lwd the width of the line
ylim the y limit of the graph

p the value determining the centile skewness or kurtosis

additional arguments pass to theoCentileSK() function i.e. the values of the

distribution parameters

bootstrap whether a plot of the bootstrap skewness and kurtosis measures should be added

in the plot

no.bootstrap the number of boostrap skewness and kurtosis measures

col.bootstrap the coloue for boostraps
pch.bootstrap the point type of boostraps

asCharacter whether to plot the estimated skewness and kurtosis measure as character or as

point

col.point the colour of the skewness and kurtosis measure
pch.point the point type of the skewness and kurtosis measure

lwd.point the width of the plotted point

text.to.show to display text different from variable or model

cex.text the size of the text
col.text the colour of the text

show.legend whether to show the legent

Details

Those function calculate sample moment and centile skewness and kurtosis statistics and theoretical centile values for a specific distribution.

Value

Different functions produce different output: The function momentSK() produce:

mom. skew: sample moment skewness

112 momentSK

trans.mom.skew:

sample transformed moment skewness

mom.kurt: sample moment kurtosis

excess.mom.kurt:

sample excess moment kurtosis

trans.mom.kurt:

sample ransformed moment excess kurtosis

jarque.bera.test:

the value of the Jarque-bera test for testing whether skewness and excess kurtosis

are zero or not

The function centileSK() produces:

S0.25: sample centile central skewness

S0.01: sample centile tail skewness

K0.01: sample centile kurtosis

standK0.01: standardised centile kurtosis, (K0.01/3.449)

exc.K0.01: excess centile kurtosis, (K0.01-3.449)

trans.K0.01: transfored excess centile kurtosis, (exc.K0.01/(1+abs(exc.K0.01))

The function centileSkew() for a given argument p produces:

p: the value determining the centile skewness

Sp: sample centile skewness at p

The function centileKurt() for a given argument p produces:

p the value determining the centile kurtosis

Kp sample centile kurtosis at p

sKp sample standardised centile kurtosis at p

ex.Kp: sample excess centile kurtosis at p

teKp: sample transformed excess centile kurtosis at p

The function theoCentileSK for a given gamlss.family produces:

IR the interquartile range of the distribution

SIR the semi interquartile range of the distribution

S_0.25 the central skewness of the distribution

S_0.01: the tail skewness of the distribution

K_0.01: the centile kurtosis of the distribution

sK_0.01: the standardised centile kurtosis of the distribution

Author(s)

Mikis Stasinopoulos, Bobert Rigby, Gillain Heller and Fernanda De Bastiani.

NBF 113

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family
```

Examples

```
Y <- rSEP3(1000)
momentSK(Y)
centileSK(Y)
centileSkew(Y, cent=20)
centileKurt(Y, cent=30)

theoCentileSK("BCCG", mu=2, sigma=.2, nu=2)
plotCentileSK(fam="BCCG", mu=2, sigma=.2, nu=2)
checkMomentSK(Y)
checkCentileSK(Y)
checkCentileSK(Y, type="tail")</pre>
```

NBF

Negative Binomial Family distribution for fitting a GAMLSS

Description

The NBF() function defines the Negative Binomial family distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dNBF, pNBF, qNBF and rNBF define the density, distribution function, quantile function and random generation for the negative binomial family, NBF(), distribution.

The functions dZINBF, pZINBF and rZINBF define the density, distribution function, quantile function and random generation for the zero inflated negative binomial family, ZINBF(), distribution a four parameter distribution.

114 NBF

Usage

```
NBF(mu.link = "log", sigma.link = "log", nu.link = "log")
dNBF(x, mu = 1, sigma = 1, nu = 2, log = FALSE)
pNBF(q, mu = 1, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
qNBF(p, mu = 1, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
rNBF(n, mu = 1, sigma = 1, nu = 2)

ZINBF(mu.link = "log", sigma.link = "log", nu.link = "log", tau.link = "logit")

dZINBF(x, mu = 1, sigma = 1, nu = 2, tau = 0.1, log = FALSE)

pZINBF(q, mu = 1, sigma = 1, nu = 2, tau = 0.1, lower.tail = TRUE, log.p = FALSE)

qZINBF(p, mu = 1, sigma = 1, nu = 2, tau = 0.1, lower.tail = TRUE, log.p = FALSE)
```

mu.link	The link function for mu
sigma.link	The link function for sigma
nu.link	The link function for nu
tau.link	The link function for tau
x	vector of (non-negative integer)
mu	vector of positive means
sigma	vector of positive dispersion parameter
nu	vector of power parameter
tau	vector of inflation parameter
log, log.p	logical; if TRUE, probabilities p are given as log(p)
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
р	vector of probabilities
q	vector of quantiles
n	number of random values to return

NBF 115

Details

The definition for Negative Binomial Family distribution , NBF, is similar to the Negative Binomial type I. The probability function of the NBF can be obtained by replacing σ with $\sigma\mu^{\nu-2}$ where ν is a power parameter. The distribution has mean μ and variance $\mu + \sigma\mu^{\nu}$. For more details see pp 507-508 of Rigby *et al.* (2019).

The zero inflated negative binomial family ZINBF is defined as an inflated at zero NBF.

Value

returns a gamlss.family object which can be used to fit a Negative Binomial Family distribution in the gamlss() function.

Author(s)

Bob Rigby and Mikis Stasinopoulos

References

Anscombe, F. J. (1950) Sampling theory of the negative binomial and logarithmic distributions, *Biometrika*, **37**, 358-382.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

NBI, NBII

Examples

116 NBI

NBI

Negative Binomial type I distribution for fitting a GAMLSS

Description

The NBI() function defines the Negative Binomial type I distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dNBI, pNBI, qNBI and rNBI define the density, distribution function, quantile function and random generation for the Negative Binomial type I, NBI(), distribution.

Usage

```
NBI(mu.link = "log", sigma.link = "log")
dNBI(x, mu = 1, sigma = 1, log = FALSE)
pNBI(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qNBI(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rNBI(n, mu = 1, sigma = 1)
```

mu.link	Defines the mu.link, with "log" link as the default for the mu parameter
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter
x	vector of (non-negative integer) quantiles
mu	vector of positive means
sigma	vector of positive despersion parameter
p	vector of probabilities
q	vector of quantiles
n	number of random values to return
log, log.p	logical; if TRUE, probabilities p are given as log(p)
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$

NBI 117

Details

Definition file for Negative Binomial type I distribution.

$$P(Y=y|\mu,\sigma) = \frac{\Gamma(y+\frac{1}{\sigma})}{\Gamma(\frac{1}{\sigma})\Gamma(y+1)} \left(\frac{\sigma\mu}{1+\sigma\mu}\right)^y \left(\frac{1}{1+\sigma\mu}\right)^{1/\sigma}$$

for $y=0,1,2,\ldots,\infty$, $\mu>0$ and $\sigma>0$. This parameterization is equivalent to that used by Anscombe (1950) except he used $\alpha=1/\sigma$ instead of σ , see also pp. 483-485 of Rigby *et al.* (2019).

Value

returns a gamlss.family object which can be used to fit a Negative Binomial type I distribution in the gamlss() function.

Warning

For values of $\sigma < 0.0001$ the d,p,q,r functions switch to the Poisson distribution

Note

 μ is the mean and $(\mu + \sigma \mu^2)^{0.5}$ is the standard deviation of the Negative Binomial type I distribution (so σ is the dispersion parameter in the usual GLM for the negative binomial type I distribution)

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

Anscombe, F. J. (1950) Sampling theory of the negative bimomial and logarithmic distributiona, *Biometrika*, **37**, 358-382.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

(see also https://www.gamlss.com/).

See Also

```
gamlss.family, NBII, PIG, SI
```

NBII

Examples

```
NBI() # gives information about the default links for the Negative Binomial type I distribution
# plotting the distribution
plot(function(y) dNBI(y, mu = 10, sigma = 0.5), from=0, to=40, n=40+1, type="h")
# creating random variables and plot them
tN <- table(Ni <- rNBI(1000, mu=5, sigma=0.5))
r <- barplot(tN, col='lightblue')
# library(gamlss)
# data(aids)
# h<-gamlss(y~cs(x,df=7)+qrt, family=NBI, data=aids) # fits the model
# plot(h)
# pdf.plot(family=NBI, mu=10, sigma=0.5, min=0, max=40, step=1)</pre>
```

NBII

Negative Binomial type II distribution for fitting a GAMLSS

Description

The NBII() function defines the Negative Binomial type II distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dNBII, pNBII, qNBII and rNBII define the density, distribution function, quantile function and random generation for the Negative Binomial type II, NBII(), distribution.

Usage

```
NBII(mu.link = "log", sigma.link = "log")
dNBII(x, mu = 1, sigma = 1, log = FALSE)
pNBII(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qNBII(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rNBII(n, mu = 1, sigma = 1)
```

mu.link	Defines the mu.link, with "log" link as the default for the mu parameter
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter
x	vector of (non-negative integer) quantiles
mu	vector of positive means
sigma	vector of positive despersion parameter
р	vector of probabilities
q	vector of quantiles
n	number of random values to return
log, log.p	logical; if TRUE, probabilities p are given as log(p)
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$

NBII 119

Details

Definition file for Negative Binomial type II distribution.

$$P(Y = y | \mu, \sigma) = \frac{\Gamma(y + \frac{\mu}{\sigma})\sigma^y}{\Gamma(\frac{\mu}{\sigma})\Gamma(y + 1)(1 + \sigma)^{y + \mu/\sigma}}$$

for $y = 0, 1, 2, ..., \infty$, $\mu > 0$ and $\sigma > 0$. This parameterization was used by Evans (1953) and also by Johnson *et al.* (1993) p 200, see also pp. 485-487 of Rigby *et al.* (2019).

Value

returns a gamlss.family object which can be used to fit a Negative Binomial type II distribution in the gamlss() function.

Note

 μ is the mean and $[(1+\sigma)\mu]^{0.5}$ is the standard deviation of the Negative Binomial type II distribution, so σ is a dispersion parameter

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

Evans, D. A. (1953). Experimental evidence concerning contagious distributions in ecology. *Biometrika*, **40**: 186-211.

Johnson, N. L., Kotz, S. and Kemp, A. W. (1993). *Univariate Discrete Distributions*, 2nd edn. Wiley, New York.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

(see also https://www.gamlss.com/).

See Also

gamlss.family, NBI, PIG, SI

120 NET

Examples

```
NBII() # gives information about the default links for the Negative Binomial type II distribution
# plotting the distribution
plot(function(y) dNBII(y, mu = 10, sigma = 0.5), from=0, to=40, n=40+1, type="h")
# creating random variables and plot them
tN <- table(Ni <- rNBII(1000, mu=5, sigma=0.5))
r <- barplot(tN, col='lightblue')
# library(gamlss)
# data(aids)
# h<-gamlss(y~cs(x,df=7)+qrt, family=NBII, data=aids) # fits a model
# plot(h)
# pdf.plot(family=NBII, mu=10, sigma=0.5, min=0, max=40, step=1)</pre>
```

NET

Normal Exponential t distribution (NET) for fitting a GAMLSS

Description

This function defines the Power Exponential t distribution (NET), a four parameter distribution, for a gamlss.family object to be used for a GAMLSS fitting using the function gamlss(). The functions dNET, pNET define the density and distribution function the NET distribution.

Usage

mu.link	Defines the mu.link, with "identity" link as the default for the mu parameter. Other links are "inverse", "log" and "own"
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter. Other links are "inverse", "identity" and "own"
nu.link	Defines the nu.link, and because nu is fixed we use "identity" link
tau.link	Defines the tau.link, and because tau is fixed we use "identity" link
x,q	vector of quantiles
р	vector of probabilities
n	number of observations.
mu	vector of location parameter values
sigma	vector of scale parameter values

NET 121

nu vector of nu parameter values tau vector of tau parameter values

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, P[X > x]

Details

The NET distribution was introduced by Rigby and Stasinopoulos (1994) as a robust distribution for a response variable with heavier tails than the normal. The NET distribution is the abbreviation of the Normal Exponential Student t distribution. The NET distribution is a four parameter continuous distribution, although in the GAMLSS implementation only the two parameters, mu and sigma, of the distribution are modelled with nu and tau fixed. The distribution takes its names because it is normal up to nu, Exponential from nu to tau (hence abs(nu)<=abs(tau)) and Student-t with nu*tau-1 degrees of freedom after tau. Maximum likelihood estimator of the third and forth parameter can be obtained, using the GAMLSS functions, find.hyper or prof.dev.

For more details about the NET distribution please refer to pp. 393-396 of of Rigby et al. (2019).

Value

NET() returns a gamlss.family object which can be used to fit a Box Cox Power Exponential distribution in the gamlss() function. dNET() gives the density, pNET() gives the distribution function.

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

Rigby, R. A. and Stasinopoulos, D. M. (1994), Robust fitting of an additive model for variance heterogeneity, *COMPSTAT: Proceedings in Computational Statistics*, editors:R. Dutter and W. Grossmann, pp 263-268, Physica, Heidelberg.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

SStasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

(see also https://www.gamlss.com/).

See Also

```
gamlss.family, BCPE
```

122 NO

Examples

```
NET() #
data(abdom)
plot(function(x)dNET(x, mu=0,sigma=1,nu=2, tau=3), -5, 5)
plot(function(x)pNET(x, mu=0,sigma=1,nu=2, tau=3), -5, 5)
# fit NET with nu=1 and tau=3
# library(gamlss)
#h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=NET,
# data=abdom, nu.start=2, tau.start=3)
#plot(h)</pre>
```

NO

Normal distribution for fitting a GAMLSS

Description

The function NO() defines the normal distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(), with mean equal to the parameter mu and sigma equal the standard deviation. The functions dNO, pNO, qNO and rNO define the density, distribution function, quantile function and random generation for the NO parameterization of the normal distribution. [A alternative parameterization with sigma equal to the variance is given in the function NO2()]

Usage

```
NO(mu.link = "identity", sigma.link = "log")
dNO(x, mu = 0, sigma = 1, log = FALSE)
pNO(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qNO(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rNO(n, mu = 0, sigma = 1)
```

mu.link	Defines the mu.link, with "identity" link as the default for the mu parameter
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
р	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

NO 123

Details

The parametrization of the normal distribution given in the function NO() is

$$f(y|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}(\frac{y-\mu}{\sigma})^2\right]$$

for $y=(-\infty,\infty)$, $\mu=(-\infty,+\infty)$ and $\sigma>0$ see pp. 369-370 of Rigby et al. (2019).

Value

returns a gamlss.family object which can be used to fit a normal distribution in the gamlss() function.

Note

For the function NO(), μ is the mean and σ is the standard deviation (not the variance) of the normal distribution.

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, NO2
```

Examples

```
NO()# gives information about the default links for the normal distribution plot(function(y) dNO(y, mu=10 ,sigma=2), 0, 20) plot(function(y) pNO(y, mu=10 ,sigma=2), 0, 20) plot(function(y) qNO(y, mu=10 ,sigma=2), 0, 1) dat<-rNO(100) hist(dat) # library(gamlss) # gamlss(dat~1,family=NO) # fits a constant for mu and sigma
```

NO2

NO2

Normal distribution (with variance as sigma parameter) for fitting a GAMLSS

Description

The function NO2() defines the normal distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss() with mean equal to mu and variance equal to sigma. The functions dNO2, pNO2, qNO2 and rNO2 define the density, distribution function, quantile function and random generation for this specific parameterization of the normal distribution.

[A alternative parameterization with sigma as the standard deviation is given in the function NO()]

Usage

```
NO2(mu.link = "identity", sigma.link = "log")
dNO2(x, mu = 0, sigma = 1, log = FALSE)
pNO2(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qNO2(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rNO2(n, mu = 0, sigma = 1)
```

Arguments

mu.link	Defines the mu.link, with "identity" link as the default for the mu parameter
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
p	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

The parametrization of the normal distribution given in the function NO2() is

$$f(y|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2} \frac{(y-\mu)^2}{\sigma}\right]$$

for $y=(-\infty,\infty)$, $\mu=(-\infty,+\infty)$ and $\sigma>0$ see p. 370 of Rigby et al. (2019).

NO2 125

Value

returns a gamlss.family object which can be used to fit a normal distribution in the gamlss() function.

Note

For the function NO(), μ is the mean and σ is the standard deviation (not the variance) of the normal distribution. [The function NO2() defines the normal distribution with σ as the variance.]

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, NO
```

Examples

```
NO()# gives information about the default links for the normal distribution dat<-rNO(100) hist(dat) plot(function(y) dNO(y, mu=10 ,sigma=2), 0, 20) plot(function(y) pNO(y, mu=10 ,sigma=2), 0, 20) plot(function(y) qNO(y, mu=10 ,sigma=2), 0, 1) # library(gamlss) # gamlss(dat~1,family=NO) # fits a constant for mu and sigma
```

NOF

NOF

Normal distribution family for fitting a GAMLSS

Description

The function NOF() defines a normal distribution family, which has three parameters. The distribution can be used using the function gamlss(). The mean of NOF is equal to mu. The variance is equal to sigma^2*mu^nu so the standard deviation is sigma*mu^(nu/2). The function is design for cases where the variance is proportional to a power of the mean. This is an instance of the Taylor's power low, see Enki et al. (2017). The functions dNOF, pNOF, qNOF and rNOF define the density, distribution function, quantile function and random generation for the NOF parametrization of the normal distribution family.

Usage

```
NOF(mu.link = "identity", sigma.link = "log", nu.link = "identity")

dNOF(x, mu = 0, sigma = 1, nu = 0, log = FALSE)

pNOF(q, mu = 0, sigma = 1, nu = 0, lower.tail = TRUE, log.p = FALSE)

qNOF(p, mu = 0, sigma = 1, nu = 0, lower.tail = TRUE, log.p = FALSE)

rNOF(n, mu = 0, sigma = 1, nu = 0)
```

Arguments

mu.link	Defines the mu.link, with "identity" link as the default for the mu parameter
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter
nu.link	Defines the nu.link with "identity" link as the default for the nu parameter
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
nu	vector of power parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
р	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

The parametrization of the normal distribution given in the function NOF() is

$$f(y|\mu,\sigma,\nu) = \frac{1}{\sqrt{2\pi}\sigma\mu^{\nu/2}} \exp\left[-\frac{1}{2}\frac{(y-\mu)^2}{\sigma^2\mu^{\nu}}\right]$$

for $y=(-\infty,\infty)$, $\mu=(-\infty,\infty)$, $\sigma>0$ and $\nu=(-\infty,+\infty)$ see pp. 373-374 of Rigby et al. (2019).

NOF 127

Value

returns a gamlss.family object which can be used to fit a normal distribution family in the gamlss() function.

Note

For the function NOF (), μ is the mean and $\sigma\mu^{\nu/2}$ is the standard deviation of the normal distribution family. The NOF is design for fitting regression type models where the variance is proportional to a power of the mean. Models of this type are also related to the "pseudo likelihood" models of Carroll and Rubert (1987) but here a proper likelihood is miximised.

Note that because the high correlation between the sigma and the nu parameter the mixed() method should be used in the fitting.

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

Davidian, M. and Carroll, R. J. (1987), Variance Function Estimation, *Journal of the American Statistical Association*, Vol. **82**, pp. 1079-1091

Enki, D G, Noufaily, A., Farrington, P., Garthwaite, P., Andrews, N. and Charlett, A. (2017) Taylor's power law and the statistical modelling of infectious disease surveillance data, Journal of the Royal Statistical Society: Series A (Statistics in Society), volume=180, number=1, pages=45-72.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, NO, NO2
```

Examples

```
NOF()# gives information about the default links for the normal distribution family ## Not run: ## the normal distribution, fitting a constant sigma m1 < -gamlss(y\sim poly(x,2), sigma.fo=\sim 1, family=NO, data=abdom) ## the normal family, fitting a variance proportional to the mean (mu) m2 < -gamlss(y\sim poly(x,2), sigma.fo=\sim 1, family=NOF, data=abdom, method=mixed(1,20))
```

128 PARETO2

```
## the nornal distribution fitting the variance as a function of x
m3 <-gamlss(y~poly(x,2), sigma.fo=~x, family=NO, data=abdom, method=mixed(1,20))
GAIC(m1,m2,m3)
## End(Not run)</pre>
```

PARET02

Pareto distributions for fitting in GAMLSS

Description

The functions PARETO() defines the one parameter Pareto distribution for y>1.

The functions PARETO1() defines the one parameter Pareto distribution for y>0.

The functions PARET001() defines the one parameter Pareto distribution for y>mu therefor requires mu to be fixed.

The functions PARETO2() and PARETO2o() define the Pareto Type 2 distribution, for y>0, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The parameters are mu and sigma in both functions but the parameterasation different. The mu is identical for both PARETO2() and PARETO2o(). The sigma in PARETO2o() is the inverse of the sigma in codePARETO2() and coresponse to the usual parameter alpha of the Patreto distribution. The functions dPARETO2, pPARETO2, qPARETO2 and rPARETO2 define the density, distribution function, quantile function and random generation for the PARETO2 parameterization of the Pareto type 2 distribution function, quantile function, quantile function and random generation for the original PARETO2o parameterization of the Pareto type 2 distribution

Usage

```
PARETO(mu.link = "log")

dPARETO(x, mu = 1, log = FALSE)

pPARETO(q, mu = 1, lower.tail = TRUE, log.p = FALSE)

qPARETO(p, mu = 1, lower.tail = TRUE, log.p = FALSE)

rPARETO(n, mu = 1)

PARETO1(mu.link = "log")

dPARETO1(x, mu = 1, log = FALSE)

pPARETO1(q, mu = 1, lower.tail = TRUE, log.p = FALSE)

qPARETO1(p, mu = 1, lower.tail = TRUE, log.p = FALSE)

rPARETO1(n, mu = 1)

PARETO1o(mu.link = "log", sigma.link = "log")

dPARETO1o(x, mu = 1, sigma = 0.5, log = FALSE)

pPARETO1o(q, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE)

qPARETO1o(p, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE)

rPARETO1o(n, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE)

rPARETO1o(n, mu = 1, sigma = 0.5)
```

PARETO2 129

```
PARETO2(mu.link = "log", sigma.link = "log")

dPARETO2(x, mu = 1, sigma = 0.5, log = FALSE)

pPARETO2(q, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE)

qPARETO2(p, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE)

rPARETO2(n, mu = 1, sigma = 0.5)

PARETO2o(mu.link = "log", sigma.link = "log")

dPARETO2o(x, mu = 1, sigma = 0.5, log = FALSE)

pPARETO2o(q, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE)

qPARETO2o(p, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE)

rPARETO2o(n, mu = 1, sigma = 0.5)
```

Arguments

mu.link	Defines the mu.link, with "'" link sa the default for the mu parameter
sigma.link	Defines the sigma.link, with "'log"' as the default for the sigma parameter
x, q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p)
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise $P[X > x]$
р	vector of probabilities
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

The parameterization of the one parameter Pareto distribution in the function PARETO is:

$$f(y|\mu) = \mu y^{\mu+1}$$

for y > 1 and $\mu > 0$.

The parameterization of the Pareto Type 1 original distribution in the function PARETO10 is:

$$f(y|\mu,\sigma) = \frac{\sigma\mu^{\sigma}}{y^{\sigma+1}}$$

for y >= 0, $\mu > 0$ and $\sigma > 0$ see pp. 430-431 of Rigby et al. (2019).

The parameterization of the Pareto Type 2 original distribution in the function PARETO20 is:

$$f(y|\mu,\sigma) = \frac{\sigma\mu^{\sigma}}{(y+\mu)^{\sigma+1}}$$

for y >= 0, $\mu > 0$ and $\sigma > 0$ see pp. 432-433 of Rigby et al. (2019).

The parameterization of the Pareto Type 2 distribution in the function PARETO2 is:

PARETO2

$$f(y|\mu,\sigma) = \frac{1}{\sigma} \mu^{\frac{1}{\sigma}} (y+\mu)^{-\frac{1}{\sigma+1}}$$

for y>=0, $\mu>0$ and $\sigma>0$ see pp.433-434 The parameterization of the Pareto Type 1 original distribution in the function PARETO10 is:

$$f(y|\mu,\sigma) = \frac{\sigma\mu^{\sigma}}{v^{\sigma+1}}$$

for y >= 0, $\mu > 0$ and $\sigma > 0$ see pp. 430-431 of Rigby et al. (2019).

Value

returns a gamlss.family object which can be used to fit a Pareto type 2 distribution in the gamlss() function.

Author(s)

Fiona McElduff, Bob Rigby and Mikis Stasinopoulos

References

Johnson, N., Kotz, S., and Balakrishnan, N. (1997). *Discrete Multivariate Distributions*. Wiley-Interscience, NY, USA.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973 (see also https://www.gamlss.com/).

See Also

```
gamlss.family
```

Examples

```
par(mfrow=c(2,2))
y<-seq(0.2,20,0.2)
plot(y, dPARETO2(y), type="l" , lwd=2)
q<-seq(0,20,0.2)
plot(q, pPARETO2(q), ylim=c(0,1), type="l", lwd=2)
p<-seq(0.0001,0.999,0.05)
plot(p, qPARETO2(p), type="l", lwd=2)
dat <- rPARETO2(100)</pre>
```

PE 131

```
hist(rPARETO2(100), nclass=30)
#summary(gamlss(a~1, family="PARETO2"))
```

PΕ

Power Exponential distribution for fitting a GAMLSS

Description

The functions define the Power Exponential distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dPE, pPE, qPE and rPE define the density, distribution function, quantile function and random generation for the specific parameterization of the power exponential distribution showing below. The functions dPE2, pPE2, qPE2 and rPE2 define the density, distribution function, quantile function and random generation of a standard parameterization of the power exponential distribution.

Usage

```
PE(mu.link = "identity", sigma.link = "log", nu.link = "log")
dPE(x, mu = 0, sigma = 1, nu = 2, log = FALSE)
pPE(q, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
qPE(p, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
rPE(n, mu = 0, sigma = 1, nu = 2)
PE2(mu.link = "identity", sigma.link = "log", nu.link = "log")
dPE2(x, mu = 0, sigma = 1, nu = 2, log = FALSE)
pPE2(q, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
qPE2(p, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
rPE2(n, mu = 0, sigma = 1, nu = 2)
```

mu.link	Defines the mu.link, with "identity" link as the default for the mu parameter
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter
nu.link	Defines the nu.link, with "log" link as the default for the nu parameter
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
nu	vector of kurtosis parameter
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
р	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

132 PE

Details

Power Exponential distribution (PE) is defined as:

$$f(y|\mu, \sigma, \nu) = \frac{\nu \exp[-|z|^{\nu}]}{2c\sigma\Gamma(\frac{1}{\nu})}$$

where $z=(y-\mu)/c\sigma$ and $c^2=\Gamma(1/\nu)\left[/\Gamma(3/\nu)\right]^{-1}$, for $y=(-\infty,+\infty)$, $\mu=(-\infty,+\infty)$, $\sigma>0$ and $\nu>0$. This parametrization was used by Nelson (1991) and ensures μ is the mean and σ is the standard deviation of y (for all parameter values of μ , σ and ν within the ranges above), see p. 374 of Rigby et al. (2019)

Thw Power Exponential distribution (PE2) is defined as

$$f(y|\mu, \sigma, \nu) = \frac{\nu \exp[-|z|^{\nu}]}{2\sigma\Gamma(\frac{1}{\nu})}$$

see p. 376 of Rigby et al. (2019)

Value

returns a gamlss.family object which can be used to fit a Power Exponential distribution in the gamlss() function.

Note

 μ is the mean and σ is the standard deviation of the Power Exponential distribution

Author(s)

Mikis Stasinopoulos, Bob Rigby

References

Nelson, D.B. (1991) Conditional heteroskedasticity in asset returns: a new approach. *Econometrica*, **57**, 347-370.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

(see also https://www.gamlss.com/).

See Also

gamlss.family, BCPE

PIG 133

Examples

```
PE()# gives information about the default links for the Power Exponential distribution # library(gamlss)
# data(abdom)
# h1<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=PE, data=abdom) # fit
# h2<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=PE2, data=abdom) # fit
# plot(h1)
# plot(h2)
# leptokurtotic
plot(function(x) dPE(x, mu=10,sigma=2,nu=1), 0.0, 20,
main = "The PE density mu=10,sigma=2,nu=1")
# platykurtotic
plot(function(x) dPE(x, mu=10,sigma=2,nu=4), 0.0, 20,
main = "The PE density mu=10,sigma=2,nu=4")
```

PIG

The Poisson-inverse Gaussian distribution for fitting a GAMLSS model

Description

The PIG() function defines the Poisson-inverse Gaussian distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The PIG2() function is a repametrization of PIG() where mu and sigma are orthogonal see Heller *et al.* (2018).

The functions dPIG, pPIG, qPIG and rPIG define the density, distribution function, quantile function and random generation for the Poisson-inverse Gaussian PIG(), distribution. Also codedPIG2, pPIG2, qPIG2 and rPIG2 are the equivalent functions for codePIG2()

The functions ZAPIG() and ZIPIG() are the zero adjusted (hurdle) and zero inflated versions of the Poisson-inverse Gaussian distribution, respectively. That is three parameter distributions.

The functions dZAPIG, dZIPIG, pZAPIG,pZIPIG, qZAPIG qZIPIG rZAPIG and rZIPIG define the probability, cumulative, quantile and random generation functions for the zero adjusted and zero inflated Poisson Inverse Gaussian distributions, ZAPIG(), ZIPIG(), respectively.

Usage

134 PIG

Arguments

mu.link	Defines the mu.link, with "log" link as the default for the mu parameter
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter
nu.link	Defines the mu.link, with "logit" link as the default for the nu parameter
x	vector of (non-negative integer) quantiles
mu	vector of positive means
sigma	vector of positive dispersion parameter
nu	vector of zero probability parameter
р	vector of probabilities
q	vector of quantiles
n	number of random values to return
log, log.p	logical; if TRUE, probabilities p are given as log(p)
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
max.value	a constant, set to the default value of 10000 for how far the algorithm should look for \boldsymbol{q}

Details

The probability function of the Poisson-inverse Gaussian distribution PIG, is given by

$$f(y|\mu,\sigma) = \left(\frac{2\alpha}{\pi}\right) \frac{\mu^y e^{\frac{1}{\sigma}} K_{y-\frac{1}{2}}(\alpha)}{(\alpha\sigma)^y y!}$$

where $\alpha^2=\frac{1}{\sigma^2}+\frac{2\mu}{\sigma}$, for $y=0,1,2,...,\infty$ where $\mu>0$ and $\sigma>0$ and $K_\lambda(t)=\frac{1}{2}\int_0^\infty x^{\lambda-1}\exp\{-\frac{1}{2}t(x+x^{-1})\}dx$ is the modified Bessel function of the third kind, see also pp. 487-489 of Rigby *et al.* (2019). [Note that the above parameterization was used by Dean, Lawless and Willmot(1989). It is also a special case of the Sichel distribution SI() when $\nu=-\frac{1}{2}$.]

PIG 135

The probability function of the Poisson-inverse Gaussian distribution PIG2, see Heller, Couturier and Heritier (2018), is given by

$$f(y|\mu,\sigma) = \left(\frac{2\sigma^{\frac{1}{2}}}{\pi}\right) \frac{\mu^y e^{\frac{1}{\sigma}} K_{y-\frac{1}{2}}(\sigma)}{(\alpha\sigma)^y y!}$$

for $y=0,1,2,...,\infty, \mu>0$ and $\sigma>0$ and $\alpha=\left[(\mu^2+\sigma^2)^{0.5}-\mu\right]^{-1}, K_\lambda(t)=\frac{1}{2}\int_0^\infty x^{\lambda-1}\exp\{-\frac{1}{2}t(x+x^{-1})\}dx$ is the modified Bessel function of the third kind, see pp. 487-489 of Rigby *et al.* (2019).

The definition of the zero adjusted Poison inverse Gaussian distribution, ZAPIG and the the zero inflated Poison inverse Gaussian distribution, ZIPIG, are given in p. 513 and pp. 514-515 of of Rigby *et al.* (2019), respectively.

Value

Returns a gamlss.family object which can be used to fit a Poisson-inverse Gaussian distribution in the gamlss() function.

Author(s)

Dominique-Laurent Couturier, Mikis Stasinopoulos, Bob Rigby and Marco Enea

References

Dean, C., Lawless, J. F. and Willmot, G. E., A mixed poisson-inverse-Gaussian regression model, *Canadian J. Statist.*, **17**, 2, pp 171-181

Heller, G. Z., Couturier, D.L. and Heritier, S. R. (2018) Beyond mean modelling: Bias due to misspecification of dispersion in Poisson-inverse Gaussian regression *Biometrical Journal*, **2**, pp 333-342.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

(see also https://www.gamlss.com/).

See Also

gamlss.family, NBI, NBII, SI, SICHEL

136 PO

Examples

```
PIG()# gives information about the default links for the Poisson-inverse Gaussian distribution #plot the pdf using plot plot(function(y) dPIG(y, mu=10, sigma = 1 ), from=0, to=50, n=50+1, type="h") # pdf # plot the cdf plot(seq(from=0,to=50),pPIG(seq(from=0,to=50), mu=10, sigma=1), type="h") # cdf # generate random sample tN <- table(Ni <- rPIG(100, mu=5, sigma=1)) r <- barplot(tN, col='lightblue') # fit a model to the data # library(gamlss) # gamlss(Ni~1,family=PIG) ZIPIG() ZAPIG()
```

P0

Poisson distribution for fitting a GAMLSS model

Description

This function P0 defines the Poisson distribution, an one parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dP0, pP0, qP0 and rP0 define the density, distribution function, quantile function and random generation for the Poisson, P0(), distribution.

Usage

```
PO(mu.link = "log")
dPO(x, mu = 1, log = FALSE)
pPO(q, mu = 1, lower.tail = TRUE, log.p = FALSE)
qPO(p, mu = 1, lower.tail = TRUE, log.p = FALSE)
rPO(n, mu = 1)
```

mu.link	Defines the mu.link, with "log" link as the default for the mu parameter
x	vector of (non-negative integer) quantiles
mu	vector of positive means
р	vector of probabilities
q	vector of quantiles
n	number of random values to return
log, log.p	logical; if TRUE, probabilities p are given as log(p)
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$

PO 137

Details

Definition file for Poisson distribution.

$$f(y|\mu) = \frac{e^{-\mu}\mu^y}{\Gamma(y+1)}$$

for y = 0, 1, 2, ... and $\mu > 0$ see ee pp 476-477 of Rigby et al. (2019).

Value

returns a gamlss.family object which can be used to fit a Poisson distribution in the gamlss() function.

Note

 μ is the mean of the Poisson distribution

Author(s)

Bob Rigby, Mikis Stasinopoulos, and Kalliope Akantziliotou

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

(Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, NBI, NBII, SI, SICHEL
```

Examples

```
PO()# gives information about the default links for the Poisson distribution # fitting data using PO()

# plotting the distribution plot(function(y) dPO(y, mu=10), from=0, to=20, n=20+1, type="h") # creating random variables and plot them tN <- table(Ni <- rPO(1000, mu=5)) r <- barplot(tN, col='lightblue') # library(gamlss)
```

138 *RG*

```
# data(aids)
# h<-gamlss(y~cs(x,df=7)+qrt, family=P0, data=aids) # fits the constant+x+qrt model
# plot(h)
# pdf.plot(family=P0, mu=10, min=0, max=20, step=1)</pre>
```

RG

The Reverse Gumbel distribution for fitting a GAMLSS

Description

The function RG defines the reverse Gumbel distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dRG, pRG, qRG and rRG define the density, distribution function, quantile function and random generation for the specific parameterization of the reverse Gumbel distribution.

Usage

```
RG(mu.link = "identity", sigma.link = "log")
dRG(x, mu = 0, sigma = 1, log = FALSE)
pRG(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qRG(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rRG(n, mu = 0, sigma = 1)
```

Arguments

mu.link	Defines the mu.link, with "identity" link as the default for the mu parameter. other available link is "inverse", "log" and "own"
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter, other links are the "inverse", "identity" and "own"
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
р	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

The specific parameterization of the reverse Gumbel distribution used in RG is

$$f(y|\mu,\sigma) = \frac{1}{\sigma} \exp\left\{-\left(\frac{y-\mu}{\sigma}\right) - \exp\left[-\left(\frac{y-\mu}{\sigma}\right)\right]\right\}$$

for $y=(-\infty,\infty)$, $\mu=(-\infty,+\infty)$ and $\sigma>0$ see pp. 370-371 of Rigby et al. (2019).

RG 139

Value

RG() returns a gamlss.family object which can be used to fit a Gumbel distribution in the gamlss() function. dRG() gives the density, pGU() gives the distribution function, qRG() gives the quantile function, and rRG() generates random deviates.

Note

The mean of the distribution is $\mu + 0.57722\sigma$ and the variance is $\pi^2 \sigma^2 / 6$.

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family
```

Examples

```
plot(function(x) dRG(x, mu=0,sigma=1), -3, 6,
  main = "{Reverse Gumbel density mu=0,sigma=1}")
RG()# gives information about the default links for the Gumbel distribution
dat<-rRG(100, mu=10, sigma=2) # generates 100 random observations
# library(gamlss)
# gamlss(dat~1,family=RG) # fits a constant for each parameter mu and sigma</pre>
```

RGE

RGE

140

Reverse generalized extreme family distribution for fitting a GAMLSS

Description

The function RGE defines the reverse generalized extreme family distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dRGE, pRGE, qRGE and rRGE define the density, distribution function, quantile function and random generation for the specific parameterization of the reverse generalized extreme distribution given in details below.

Usage

```
RGE(mu.link = "identity", sigma.link = "log", nu.link = "log")

dRGE(x, mu = 1, sigma = 0.1, nu = 1, log = FALSE)

pRGE(q, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)

qRGE(p, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)

rRGE(n, mu = 1, sigma = 0.1, nu = 1)
```

Arguments

mu.link	Defines the mu.link, with "identity" link as the default for the mu parameter
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter
nu.link	Defines the nu.link, with "log" link as the default for the nu parameter
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
nu	vector of the shape parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
p	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

Definition file for reverse generalized extreme family distribution.

The probability density function of the generalized extreme value distribution is obtained from Johnson *et al.* (1995), Volume 2, p76, equation (22.184) [where $(\xi, \theta, \gamma) \longrightarrow (\mu, \sigma, \nu)$].

The probability density function of the reverse generalized extreme value distribution is then obtained by replacing y by -y and μ by $-\mu$.

Hence the probability density function of the reverse generalized extreme value distribution with $\nu > 0$ is given by

$$f(y|\mu,\sigma,\nu) = \frac{1}{\sigma} \left[1 + \frac{\nu(y-\mu)}{\sigma} \right]^{\frac{1}{\nu}-1} S_1(y|\mu,\sigma,\nu)$$

for

$$\mu - \frac{\sigma}{\nu} < y < \infty$$

where

$$S_1(y|\mu,\sigma,\nu) = \exp\left\{-\left[1 + \frac{\nu(y-\mu)}{\sigma}\right]^{\frac{1}{\nu}}\right\}$$

and where $-\infty < \mu < y + \frac{\sigma}{\nu}$, $\sigma > 0$ and $\nu > 0$. Note that only the case $\nu > 0$ is allowed here. The reverse generalized extreme value distribution is denoted as $RGE(\mu, \sigma, \nu)$ or as Reverse Generalized. Extreme. Family (μ, σ, ν) .

Note the above distribution is a reparameterization of the three parameter Weibull distribution given by

$$f(y|\alpha_1, \alpha_2, \alpha_3) = \frac{\alpha_3}{\alpha_2} \left[\frac{y - \alpha_1}{\alpha_2} \right]^{\alpha_3 - 1} \exp \left[-\left(\frac{y - \alpha_1}{\alpha_2} \right)^{\alpha_3} \right]$$

given by setting $\alpha_1 = \mu - \sigma/\nu$, $\alpha_2 = \sigma/\nu$, $\alpha_3 = 1/\nu$.

Value

RGE() returns a gamlss.family object which can be used to fit a reverse generalized extreme distribution in the gamlss() function. dRGE() gives the density, pRGE() gives the distribution function, qRGE() gives the quantile function, and rRGE() generates random deviates.

Note

This distribution is very difficult to fit because the y values depends on the parameter values. The RS() and CG() algorithms are not appropriate for this type of problem.

Author(s)

Bob Rigby, Mikis Stasinopoulos and Kalliope Akantziliotou

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

142 SEP

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973 (see also https://www.gamlss.com/).

See Also

```
gamlss.family
```

Examples

```
RGE()# default links for the reverse generalized extreme family distribution newdata<-rRGE(100,mu=0,sigma=1,nu=5) # generates 100 random observations # library(gamlss) # gamlss(newdata~1, family=RGE, method=mixed(5,50)) # difficult to converse
```

SEP

The Skew Power exponential (SEP) distribution for fitting a GAMLSS

Description

This function defines the Skew Power exponential (SEP) distribution, a four parameter distribution, for a gamlss.family object to be used for a GAMLSS fitting using the function gamlss(). The functions dSEP, pSEP, qSEP and rSEP define the density, distribution function, quantile function and random generation for the Skew Power exponential (SEP) distribution.

Usage

```
SEP(mu.link = "identity", sigma.link = "log", nu.link = "identity",
    tau.link = "log")

dSEP(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE)
pSEP(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE,
    log.p = FALSE)

qSEP(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE,
    log.p = FALSE, lower.limit = mu - 5 * sigma,
    upper.limit = mu + 5 * sigma)
rSEP(n, mu = 0, sigma = 1, nu = 0, tau = 2)
```

mu.link	Defines the mu.link, with "identity" link as the default for the mu parameter. Other links are " $1/mu^2$ " and " \log "
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter. Other links are "inverse" and "identity"
nu.link	Defines the nu.link, with "identity" link as the default for the nu parameter. Other links are " $1/nu^2$ " and "log"
tau.link	Defines the tau.link, with "log" link as the default for the tau parameter. Other links are " $1/tau^2$ ", and "identity

SEP 143

x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
nu	vector of skewness nu parameter values
tau	vector of kurtosis tau parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
p	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required
lower.limit	lower limit for the golden search to find quantiles from probabilities
upper.limit	upper limit for the golden search to find quantiles from probabilities

Details

The probability density function of the Skew Power exponential distribution, (SEP), is defined as

$$f(y|n,\mu,\sigma\,\nu,\tau) == \frac{z}{\sigma} \Phi(\omega) \; f_{EP}(z,0,1,\tau)$$

for $-\infty < y < \infty$, $\mu = (-\infty, +\infty)$, $\sigma > 0$, $\nu = (-\infty, +\infty)$ and $\tau > 0$. where $z = \frac{y-\mu}{\sigma}$, $\omega = sign(z)|z|^{\tau/2}\nu\sqrt{2/\tau}$ and $f_{EP}(z, 0, 1, \tau)$ is the pdf of an Exponential Power distribution.

Value

SEP() returns a gamlss.family object which can be used to fit the SEP distribution in the gamlss() function. dSEP() gives the density, pSEP() gives the distribution function, qSEP() gives the quantile function, and rSEP() generates random deviates.

Warning

The qSEP and rSEP are slow since they are relying on golden section for finding the quantiles

Author(s)

Bob Rigby and Mikis Stasinopoulos

References

Diciccio, T. J. and Mondi A. C. (2004). Inferential Aspects of the Skew Exponential Power distribution., *JASA*, **99**, 439-450.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

144 SEP1

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, JSU, BCT
```

Examples

```
SEP() #
plot(function(x)dSEP(x, mu=0,sigma=1, nu=1, tau=2), -5, 5,
    main = "The SEP density mu=0,sigma=1,nu=1, tau=2")
plot(function(x) pSEP(x, mu=0,sigma=1,nu=1, tau=2), -5, 5,
    main = "The BCPE cdf mu=0, sigma=1, nu=1, tau=2")
dat <- rSEP(100,mu=10,sigma=1,nu=-1,tau=1.5)
# library(gamlss)
# gamlss(dat~1,family=SEP, control=gamlss.control(n.cyc=30))</pre>
```

SEP1

The Skew exponential power type 1-4 distribution for fitting a GAMLSS

Description

These functions define the Skew Power exponential type 1 to 4 distributions. All of them are four parameter distributions and can be used to fit a GAMLSS model. The functions dSEP1, dSEP2, dSEP3 and dSEP4 define the probability distribution functions, the functions pSEP1, pSEP2, pSEP3 and pSEP4 define the cumulative distribution functions the functions qSEP1, qSEP2, qSEP3 and qSEP4 define the inverse cumulative distribution functions and the functions rSEP1, rSEP2, rSEP3 and rSEP4 define the random generation for the Skew exponential power distributions.

Usage

```
SEP1(mu.link = "identity", sigma.link = "log", nu.link = "identity",
    tau.link = "log")

dSEP1(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE)
pSEP1(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE,
    log.p = FALSE)

qSEP1(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE,
    log.p = FALSE)
rSEP1(n, mu = 0, sigma = 1, nu = 0, tau = 2)

SEP2(mu.link = "identity", sigma.link = "log", nu.link = "identity",
    tau.link = "log")
```

SEP1 145

```
dSEP2(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE)
pSEP2(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE,
      log.p = FALSE)
qSEP2(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE,
      log.p = FALSE)
rSEP2(n, mu = 0, sigma = 1, nu = 0, tau = 2)
SEP3(mu.link = "identity", sigma.link = "log", nu.link = "log",
      tau.link = "log")
dSEP3(x, mu = 0, sigma = 1, nu = 2, tau = 2, log = FALSE)
pSEP3(q, mu = 0, sigma = 1, nu = 2, tau = 2, lower.tail = TRUE,
      log.p = FALSE)
qSEP3(p, mu = 0, sigma = 1, nu = 2, tau = 2, lower.tail = TRUE,
      log.p = FALSE)
SEP4(mu.link = "identity", sigma.link = "log", nu.link = "log",
      tau.link = "log")
dSEP4(x, mu = 0, sigma = 1, nu = 2, tau = 2, log = FALSE)
pSEP4(q, mu = 0, sigma = 1, nu = 2, tau = 2, lower.tail = TRUE,
      log.p = FALSE)
qSEP4(p, mu = 0, sigma = 1, nu = 2, tau = 2, lower.tail = TRUE,
      log.p = FALSE)
rSEP4(n, mu = 0, sigma = 1, nu = 2, tau = 2)
```

Arguments

mu.link	Defines the mu.link, with "identity" link as the default for the mu parameter. Other links are "inverse" and "log"
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter. Other links are "inverse" and "identity"
nu.link	Defines the nu.link, with "log" link as the default for the nu parameter. Other links are "identity" and "inverse"
tau.link	Defines the tau.link, with "log" link as the default for the tau parameter. Other links are "inverse", and "identity
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
nu	vector of skewness nu parameter values
tau	vector of kurtosis tau parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
p	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

146 SEP1

Details

The probability density function of the Skew Power exponential distribution type 1, (SEP1), is defined as

$$f_Y(y|\mu,\sigma\nu,\tau) = \frac{2}{\sigma} f_{Z_1}(z) F_{Z_1}(\nu z)$$

for $-\infty < y < \infty$, $-\infty < \mu < \infty$, $\sigma > 0$, $-\infty < \nu < \infty$, and $\tau > 0$ where $z = (y - \mu)/\sigma$, and $Z_1 \sim \text{PE2}(0, \tau^{1/\tau}, \tau)$, see pp 401-402 of Rigby et al. (2019).

The probability density function of the Skew Power exponential distribution type 2, (SEP2), is defined as

$$f_Y(y|\mu,\sigma\nu,\tau) = \frac{2}{\sigma}f_{Z_1}(z)\Phi_{Z_1}(\omega)$$

for $-\infty < y < \infty, -\infty < \mu < \infty, \sigma > 0, -\infty < \nu < \infty,$ and $\tau > 0$ where $z = (y - \mu)/\sigma$, and $\omega = \mathrm{sign}(z)|z|^{\tau/2}\nu\sqrt{2/\tau}$, and $Z_1 \sim \mathrm{PE2}(0,\tau^{1/\tau},\tau)$, see pp 402-404 of Rigby et al. (2019).

For SEP3 and SEP3 see pp 404-406 and pp 407-408 of Rigby et al. (2019), respectively.

Value

SEP2() returns a gamlss.family object which can be used to fit the SEP2 distribution in the gamlss() function. dSEP2() gives the density, pSEP2() gives the distribution function, qSEP2() gives the quantile function, and rSEP2() generates random deviates.

Author(s)

Bob Rigby and Mikis Stasinopoulos

References

Fernadez C., Osiewalski J. and Steel M.F.J.(1995) Modelling and inference with v-spherical distributions. *JASA*, **90**, pp 1331-1340.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

(see also https://www.gamlss.com/).

See Also

gamlss.family, SEP

SHASH 147

Examples

SHASH

The Sinh-Arcsinh (SHASH) distribution for fitting a GAMLSS

Description

The Sinh-Arcsinh (SHASH) distribution is a four parameter distribution, for a gamlss.family object to be used for a GAMLSS fitting using the function gamlss(). The functions dSHASH, pSHASH, qSHASH and rSHASH define the density, distribution function, quantile function and random generation for the Sinh-Arcsinh (SHASH) distribution.

There are 3 different SHASH distributions implemented in GAMLSS.

Usage

```
SHASH(mu.link = "identity", sigma.link = "log", nu.link = "log",
      tau.link = "log")
dSHASH(x, mu = 0, sigma = 1, nu = 0.5, tau = 0.5, log = FALSE)
pSHASH(q, mu = 0, sigma = 1, nu = 0.5, tau = 0.5, lower.tail = TRUE,
     log.p = FALSE)
qSHASH(p, mu = 0, sigma = 1, nu = 0.5, tau = 0.5, lower.tail = TRUE,
     log.p = FALSE)
rSHASH(n, mu = 0, sigma = 1, nu = 0.5, tau = 0.5)
SHASHo(mu.link = "identity", sigma.link = "log", nu.link = "identity",
      tau.link = "log")
dSHASHo(x, mu = 0, sigma = 1, nu = 0, tau = 1, log = FALSE)
pSHASHo(q, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE,
     log.p = FALSE)
qSHASHo(p, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE,
     log.p = FALSE)
rSHASHo(n, mu = 0, sigma = 1, nu = 0, tau = 1)
SHASHo2(mu.link = "identity", sigma.link = "log", nu.link = "identity",
      tau.link = "log")
dSHASHo2(x, mu = 0, sigma = 1, nu = 0, tau = 1, log = FALSE)
pSHASHo2(q, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE,
```

148 SHASH

```
log.p = FALSE)
qSHASHo2(p, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE,
    log.p = FALSE)
rSHASHo2(n, mu = 0, sigma = 1, nu = 0, tau = 1)
```

Arguments

mu.link	Defines the mu.link, with "identity" link as the default for the mu parameter.
sigma.link	Defines the $sigma.link$, with "log" link as the default for the $sigma$ parameter.
nu.link	Defines the nu.link, with "log" link as the default for the nu parameter.
tau.link	Defines the tau.link, with "log" link as the default for the tau parameter.
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
nu	vector of skewness nu parameter values
tau	vector of kurtosis tau parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
р	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

The probability density function of the Sinh-Arcsinh distribution, SHASH, Jones (2005), is defined as

$$f(y|\mu, \sigma \nu, \tau) = \frac{c}{\sqrt{2\pi}\sigma(1+z^2)^{1/2}}e^{-r^2/2}$$

where

$$r = \frac{1}{2} \left\{ \exp \left[\tau \sinh^{-1}(z) \right] - \exp \left[-\nu \sinh^{-1}(z) \right] \right\}$$

and

$$c = \frac{1}{2} \left\{ \tau \exp \left[\tau \sinh^{-1}(z) \right] + \nu \exp \left[-\nu \sinh^{-1}(z) \right] \right\}$$

and $z=(y-\mu)/\sigma$ for $-\infty < y < \infty, -\infty < \mu < \infty, \sigma > 0, \nu > 0$ and $\tau > 0$, see pp. 396-397 of Rigby et al. (2019).

The parameters μ and σ are the location and scale of the distribution. The parameter ν determines the left hand tail of the distribution with $\nu>1$ indicating a lighter tail than the normal and $\nu<1$ heavier tail than the normal. The parameter τ determines the right hand tail of the distribution in the same way.

SHASH 149

The second form of the Sinh-Arcsinh distribution can be found in Jones and Pewsey (2009, p.2) denoted by SHASHo and the probability density function is defined as,

$$f(y|\mu, \sigma, \nu, \tau) = \frac{\tau c}{\sigma \sqrt{2\pi} (1 + z^2)^{1/2}} \exp\left(-\frac{1}{2}r^2\right)$$

where

$$r = \sinh(\tau \sinh^{-1}(z) - \nu)$$

and

$$c = \cosh(\tau \sinh^{-1}(z) - \nu)$$

and $z=(y-\mu)/\sigma$ for $-\infty < y < \infty, -\infty < \mu < +\infty, \sigma > 0, -\infty < \nu < +\infty$ and $\tau > 0$, see pp. 398-400 of Rigby et al. (2019)

The third form of the Sinh-Arcsinh distribution (Jones and Pewsey, 2009, p.8) divides the distribution by sigma for the density of the unstandardized variable. This distribution is denoted by SHASHo2 and has pdf

$$f(y|\mu, \sigma, \nu, \tau) = \frac{c}{\sigma} \frac{\tau}{\sqrt{2\pi}} \frac{1}{\sqrt{1+z^2}} - \exp{-\frac{r^2}{2}}$$

where $z=(y-\mu)/(\sigma\tau)$, with r and c as for the pdf of the SHASHo distribution, for $-\infty < y < \infty$, $\mu=(-\infty,+\infty), \sigma>0, \nu=(-\infty,+\infty)$ and $\tau>0$.

Value

SHASH() returns a gamlss.family object which can be used to fit the SHASH distribution in the gamlss() function. dSHASH() gives the density, pSHASH() gives the distribution function, qSHASH() gives the quantile function, and rSHASH() generates random deviates.

Warning

The qSHASH and rSHASH are slow since they are relying on golden section for finding the quantiles

Author(s)

Bob Rigby, Mikis Stasinopoulos and Fiona McElduff

References

Jones, M. C. (2006) p 546-547 in the discussion of Rigby, R. A. and Stasinopoulos D. M. (2005) *Appl. Statist.*, **54**, part 3.

Jones and Pewsey (2009) Sinh-arcsinh distributions. Biometrika. 96(4), pp. 761?780.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

150 SI

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, JSU, BCT
```

Examples

```
SHASH() #
plot(function(x)dSHASH(x, mu=0,sigma=1, nu=1, tau=2), -5, 5,
  main = "The SHASH density mu=0,sigma=1,nu=1, tau=2")
plot(function(x) pSHASH(x, mu=0,sigma=1,nu=1, tau=2), -5, 5,
  main = "The BCPE cdf mu=0, sigma=1, nu=1, tau=2")
dat<-rSHASH(100,mu=10,sigma=1,nu=1,tau=1.5)
hist(dat)
# library(gamlss)
# gamlss(dat~1,family=SHASH, control=gamlss.control(n.cyc=30))</pre>
```

The Sichel dustribution for fitting a GAMLSS model

SI

Description

The SI() function defines the Sichel distribution, a three parameter discrete distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dSI, pSI, qSI and rSI define the density, distribution function, quantile function and random generation for the Sichel SI(), distribution.

Usage

SI 151

Arguments

mu.link	Defines the mu.link, with "log" link as the default for the mu parameter
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter
nu.link	Defines the nu.link, with "identity" link as the default for the nu parameter
х	vector of (non-negative integer) quantiles
mu	vector of positive mu
sigma	vector of positive despersion parameter
nu	vector of nu
р	vector of probabilities
q	vector of quantiles
n	number of random values to return
log, log.p	logical; if TRUE, probabilities p are given as log(p)
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
max.value	a constant, set to the default value of 10000 for how far the algorithm should look for \boldsymbol{q}
У	the y variable. The function tofyS() should be not used on its own.
what	take values 1 or 2, for function tofyS().

Details

The probability function of the Sichel distribution is given by

$$f(y|\mu, \sigma, \nu) = \frac{\mu^y K_{y+\nu}(\alpha)}{y!(\alpha\sigma)^{y+\nu} K_{\nu}(\frac{1}{\sigma})}$$

where $\alpha^2=\frac{1}{\sigma^2}+\frac{2\mu}{\sigma}$, for $y=0,1,2,...,\infty$ where $\mu>0$, $\sigma>0$ and $-\infty<\nu<\infty$ and $K_\lambda(t)=\frac{1}{2}\int_0^\infty x^{\lambda-1}\exp\{-\frac{1}{2}t(x+x^{-1})\}dx$ is the modified Bessel function of the third kind. Note that the above parameterization is different from Stein, Zucchini and Juritz (1988) who use the above probability function but treat μ , α and ν as the parameters. Note that $\sigma=[(\mu^2+\alpha^2)^{\frac{1}{2}}-\mu]^{-1}$. See also pp 510-511 of Rigby $\operatorname{et} al.$ (2019).

Value

Returns a gamlss.family object which can be used to fit a Sichel distribution in the gamlss() function.

Author(s)

Akantziliotou C., Rigby, R. A., Stasinopoulos D. M. and Marco Enea

152 SICHEL

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, \doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

Stein, G. Z., Zucchini, W. and Juritz, J. M. (1987). Parameter Estimation of the Sichel Distribution and its Multivariate Extension. *Journal of American Statistical Association*, **82**, 938-944.

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, PIG, NBI, NBII
```

Examples

```
SI()# gives information about the default links for the Sichel distribution #plot the pdf using plot plot(function(y) dSI(y, mu=10, sigma=1, nu=1), from=0, to=100, n=100+1, type="h") # pdf # plot the cdf plot(seq(from=0,to=100),pSI(seq(from=0,to=100), mu=10, sigma=1, nu=1), type="h") # cdf # generate random sample tN <- table(Ni <- rSI(100, mu=5, sigma=1, nu=1)) r <- barplot(tN, col='lightblue') # fit a model to the data # library(gamlss) # gamlss(Ni~1,family=SI, control=gamlss.control(n.cyc=50))
```

SICHEL

The Sichel distribution for fitting a GAMLSS model

Description

The SICHEL() function defines the Sichel distribution, a three parameter discrete distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dSICHEL, pSICHEL and rSICHEL define the density, distribution function, quantile function and random generation for the Sichel SICHEL(), distribution. The function VSICHEL gives the variance of a fitted Sichel model.

The functions ZASICHEL() and ZISICHEL() are the zero adjusted (hurdle) and zero inflated versions of the Sichel distribution, respectively. That is four parameter distributions.

The functions dZASICHEL, dZISICHEL, pZASICHEL, pZASICHEL, qZASICHEL qZISICHEL rZASICHEL and rZISICHEL define the probability, cumulative, quantile and random generation functions for the zero adjusted and zero inflated Sichel distributions, ZASICHEL(), ZISICHEL(), respectively.

SICHEL 153

Usage

```
SICHEL(mu.link = "log", sigma.link = "log", nu.link = "identity")
dSICHEL(x, mu=1, sigma=1, nu=-0.5, log=FALSE)
pSICHEL(q, mu=1, sigma=1, nu=-0.5, lower.tail = TRUE,
         log.p = FALSE)
qSICHEL(p, mu=1, sigma=1, nu=-0.5, lower.tail = TRUE,
        log.p = FALSE, max.value = 10000)
rSICHEL(n, mu=1, sigma=1, nu=-0.5, max.value = 10000)
VSICHEL(obj)
tofySICHEL(y, mu, sigma, nu)
ZASICHEL(mu.link = "log", sigma.link = "log", nu.link = "identity",
         tau.link = "logit")
dZASICHEL(x, mu = 1, sigma = 1, nu = -0.5, tau = 0.1, log = FALSE)
pZASICHEL(q, mu = 1, sigma = 1, nu = -0.5, tau = 0.1,
          lower.tail = TRUE, log.p = FALSE)
qZASICHEL(p, mu = 1, sigma = 1, nu = -0.5, tau = 0.1,
          lower.tail = TRUE, log.p = FALSE, max.value = 10000)
rZASICHEL(n, mu = 1, sigma = 1, nu = -0.5, tau = 0.1,
         max.value = 10000)
ZISICHEL(mu.link = "log", sigma.link = "log", nu.link = "identity",
          tau.link = "logit")
dZISICHEL(x, mu = 1, sigma = 1, nu = -0.5, tau = 0.1, log = FALSE)
pZISICHEL(q, mu = 1, sigma = 1, nu = -0.5, tau = 0.1,
         lower.tail = TRUE, log.p = FALSE)
qZISICHEL(p, mu = 1, sigma = 1, nu = -0.5, tau = 0.1,
         lower.tail = TRUE, log.p = FALSE, max.value = 10000)
rZISICHEL(n, mu = 1, sigma = 1, nu = -0.5, tau = 0.1,
         max.value = 10000)
```

Arguments

mu.link	Defines the mu.link, with "log" link as the default for the mu parameter
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter
nu.link	Defines the nu.link, with "identity" link as the default for the nu parameter
tau.link	Defines the tau.link, with "logit" link as the default for the tau parameter
x	vector of (non-negative integer) quantiles
mu	vector of positive mu
sigma	vector of positive dispersion parameter sigma
nu	vector of nu
tau	vector of probabilities tau
р	vector of probabilities
q	vector of quantiles
n	number of random values to return

154 SICHEL

log, log.p	logical; if TRUE, probabilities p are given as log(p)
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
max.value	a constant, set to the default value of 10000 for how far the algorithm should look for \mathbf{q}
obj	a fitted Sichel gamlss model
у	the y variable, the tofySICHEL() should not be used on its own.

Details

The probability function of the Sichel distribution SICHEL is given by

$$f(y|\mu,\sigma,\nu) = \frac{(\mu/b)^y K_{y+\nu}(\alpha)}{y!(\alpha\sigma)^{y+\nu} K_{\nu}(\frac{1}{\sigma})}$$

for $y = 0, 1, 2, ..., \infty, \mu > 0$, $\sigma > 0$ and $-\infty < \nu < \infty$ where

$$\alpha^2 = \frac{1}{\sigma^2} + \frac{2\mu}{\sigma}$$

$$c = K_{\nu+1}(1/\sigma)/K_{\nu}(1/\sigma)$$

and $K_{\lambda}(t)$ is the modified Bessel function of the third kind see pp 508-510 of Rigby *et al.* (2019). Note that the above parametrization is different from Stein, Zucchini and Juritz (1988) who use the above probability function but treat μ , α and ν as the parameters.

The definition of the zero adjusted Sichel distribution, ZASICHEL and the tre zero inflated Sichel distribution, ZISICHEL, are given in pp. 517-518 and pp. 519-520 of Rigby *et al.* (2019), respectively.

Value

Returns a gamlss.family object which can be used to fit a Sichel distribution in the gamlss() function.

Note

The mean of the above Sichel distribution is μ and the variance is $\mu^2 \left[\frac{2\sigma(\nu+1)}{c} + \frac{1}{c^2} - 1 \right]$

Author(s)

Rigby, R. A., Stasinopoulos D. M., Akantziliotou C and Marco Enea.

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

SIMPLEX 155

Rigby, R. A., Stasinopoulos, D. M., & Akantziliotou, C. (2008). A framework for modelling overdispersed count data, including the Poisson-shifted generalized inverse Gaussian distribution. *Computational Statistics & Data Analysis*, 53(2), 381-393.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

Stein, G. Z., Zucchini, W. and Juritz, J. M. (1987). Parameter Estimation of the Sichel Distribution and its Multivariate Extension. *Journal of American Statistical Association*, **82**, 938-944.

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, PIG, SI
```

Examples

```
SICHEL()# gives information about the default links for the Sichel distribution
#plot the pdf using plot
plot(function(y) dSICHEL(y, mu=10, sigma=1, nu=1), from=0, to=100, n=100+1, type="h") # pdf
# plot the cdf
plot(seq(from=0,to=100),pSICHEL(seq(from=0,to=100), mu=10, sigma=1, nu=1), type="h") # cdf
# generate random sample
tN <- table(Ni <- rSICHEL(100, mu=5, sigma=1, nu=1))
r <- barplot(tN, col='lightblue')
# fit a model to the data
# library(gamlss)
# gamlss(Ni~1,family=SICHEL, control=gamlss.control(n.cyc=50))</pre>
```

SIMPLEX

The simplex distribution for fitting a GAMLSS

Description

The functions SIMPLEX() define the simplex distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). SIMPLEX() has mean equal to the parameter mu and sigma as scale parameter, see below. The functions dSIMPLEX, pSIMPLEX qSIMPLEX and rSIMPLEX define the density, comulative distribution function, quantile function and random generation for the simplex distribution.

Usage

```
SIMPLEX(mu.link = "logit", sigma.link = "log")
dSIMPLEX(x, mu = 0.5, sigma = 1, log = FALSE)
pSIMPLEX(q, mu = 0.5, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qSIMPLEX(p, mu = 0.5, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rSIMPLEX(n = 1, mu = 0.5, sigma = 1)
```

156 SIMPLEX

Arguments

mu.link the mu link function with default logit sigma.link the sigma link function with default log vector of quantiles x,q vector of location parameter values mu vector of scale parameter values sigma logical; if TRUE, probabilities p are given as log(p). log, log.p lower.tail logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, P[X > x]vector of probabilities. р

vector or probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number

required

Details

The simplex distribution, SIMPLEX, is given as

$$f(y|\mu,\sigma) = \frac{1}{(2\pi\sigma^2 y^3 (1-y)^3)^{1/2}} \exp(-\frac{1}{2\sigma^2} \frac{(y-\mu)^2}{y(1-y)\mu^2 (1-\mu)^2})$$

for $0 < y < 1, 0 < \mu < 1$ and $\sigma > 0$ see p 464 of Rigby et al. (2019).

Value

SIMPLEX() returns a gamlss.family object which can be used to fit a simplex distribution in the gamlss() function.

Author(s)

Bob Rigby, Mikis Stasinopoulos and Fernanda De Bastiani

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

(see also https://www.gamlss.com/).

SN1 157

Examples

```
SIMPLEX()# default links for the simplex distribution plot(function(y) dSIMPLEX(y, mu=.5 ,sigma=1), 0.001, .999) plot(function(y) pSIMPLEX(y, mu=.5 ,sigma=1), 0.001, 0.999) plot(function(y) qSIMPLEX(y, mu=.5 ,sigma=1), 0.001, 0.999) plot(function(y) qSIMPLEX(y, mu=.5 ,sigma=1, lower.tail=FALSE), 0.001, .999)
```

SN1

Skew Normal Type 1 distribution for fitting a GAMLSS

Description

The function SN1() defines the Skew Normal Type 1 distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(), with parameters mu, sigma and nu. The functions dSN1, pSN1, qSN1 and rSN1 define the density, distribution function, quantile function and random generation for the SN1 parameterization of the Skew Normal Type 1 distribution.

Usage

```
SN1(mu.link = "identity", sigma.link = "log", nu.link="identity")
dSN1(x, mu = 0, sigma = 1, nu = 0, log = FALSE)
pSN1(q, mu = 0, sigma = 1, nu = 0, lower.tail = TRUE, log.p = FALSE)
qSN1(p, mu = 0, sigma = 1, nu = 0, lower.tail = TRUE, log.p = FALSE)
rSN1(n, mu = 0, sigma = 1, nu = 0)
```

Arguments

mu.link	Defines the mu.link, with "'identity"' links the default for the mu parameter
sigma.link	Defines the sigma.link, with "'log" as the default for the sigma parameter
nu.link	Defines the nu.link, with "'identity"' as the default for the sigma parameter
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
nu	vector of scale parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p)
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise $P[X > x]$
р	vector of probabilities
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

158 SN1

Details

The parameterization of the Skew Normal Type 1 distribution in the function SN1 is

$$f(y|\mu,\sigma,\nu) = \frac{2}{\sigma}\phi(z)\Phi(\nu z)$$

for $(-\infty < y < +\infty)$, $(-\infty < \mu < +\infty)$, $\sigma > 0$ and $(-\infty < \nu < +\infty)$ where $z = (y-\mu)/\sigma$ and $\phi()$ are the pdf and cdf of the standard normal distribution, respectively, see pp. 378-379 of Rigby et al. (2019).

Value

returns a gamlss.family object which can be used to fit a Skew Normal Type 1 distribution in the gamlss() function.

Note

This is a special case of the Skew Exponential Power type 1 distribution (SEP1) where tau=2.

Author(s)

Mikis Stasinopoulos, Bob Rigby and Fiona McElduff

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family
```

Examples

```
par(mfrow=c(2,2))
y<-seq(-3,3,0.2)
plot(y, dSN1(y), type="l" , lwd=2)
q<-seq(-3,3,0.2)
plot(q, pSN1(q), ylim=c(0,1), type="l", lwd=2)
p<-seq(0.0001,0.999,0.05)
plot(p, qSN1(p), type="l", lwd=2)
dat <- rSN1(100)
hist(rSN1(100), nclass=30)</pre>
```

159

SN2

Description

The function SN2() defines the Skew Normal Type 2 distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(), with parameters mu, sigma and nu. The functions dSN2, pSN2, qSN2 and rSN2 define the density, distribution function, quantile function and random generation for the SN2 parameterization of the Skew Normal Type 2 distribution.

Usage

```
SN2(mu.link = "identity", sigma.link = "log", nu.link = "log")
dSN2(x, mu = 0, sigma = 1, nu = 2, log = FALSE)
pSN2(q, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
qSN2(p, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
rSN2(n, mu = 0, sigma = 1, nu = 2)
```

Arguments

mu.link	Defines the mu.link, with "'identity"' links the default for the mu parameter
sigma.link	Defines the sigma.link, with "'log" as the default for the sigma parameter
nu.link	Defines the nu.link, with "'log"' as the default for the sigma parameter
x, q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
nu	vector of scale parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p)
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise $P[X > x]$
р	vector of probabilities
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

The parameterization of the Skew Normal Type 2 distribution in the function SN2 is

$$f(y|\mu,\sigma,\nu) = \frac{c}{\sigma} \exp\left[\frac{1}{2}(\nu z)^2\right]$$
 if $y < \mu$
$$f(y|\mu,\sigma,\nu) = \frac{c}{\sigma} \exp\left[\frac{1}{2}(\frac{z}{\nu})^2\right]$$

160 SN2

```
if y \ge \mu for (-\infty < y < +\infty), (-\infty < \mu < +\infty), \sigma > 0 and \nu > 0 where z = (y - \mu)/\sigma and c = \sqrt{2}\nu/\left[\sqrt{\pi}(1+\nu^2)\right] see pp. 380-381 of Rigby et al. (2019).
```

Value

returns a gamlss.family object which can be used to fit a Skew Normal Type 2 distribution in the gamlss() function.

Note

This is a special case of the Skew Exponential Power type 3 distribution (SEP3)where tau=2.

Author(s)

Mikis Stasinopoulos, Bob Rigby and Fiona McElduff.

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family
```

Examples

```
par(mfrow=c(2,2))
y<-seq(-3,3,0.2)
plot(y, dSN2(y), type="1" , lwd=2)
q<-seq(-3,3,0.2)
plot(q, pSN2(q), ylim=c(0,1), type="1", lwd=2)
p<-seq(0.0001,0.999,0.05)
plot(p, qSN2(p), type="1", lwd=2)
dat <- rSN2(100)
hist(rSN2(100), nclass=30)</pre>
```

The skew t distributions, type 1 to 5

ST1

Description

There are 5 different skew t distributions implemented in GAMLSS.

The Skew t type 1 distribution, ST1, is based on Azzalini (1986), see pp. 411-412 of Rigby et al. (2019).

The skew t type 2 distribution, ST2, is based on Azzalini and Capitanio (2003) see pp. 412-414 of Rigby et al. (2019).

The skew t type 3, ST3 and ST3C, distribution is based Fernande and Steel (1998) see pp 413-415 of Rigby et al. (2019). The difference between the ST3 and ST3C is that the first is written entirely in R while the second is in C.

The skew t type 4 distribution, ST4, is a spliced-shape distribution see see pp 413-415 of Rigby et al. (2019).

The skew t type 5 distribution, ST5, is Jones and Faddy (2003).

The SST is a reparametrised version of ST3 where sigma is the standard deviation of the distribution.

Usage

```
ST1(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link="log")
dST1(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE)
pST1(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
qST1(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
rST1(n, mu = 0, sigma = 1, nu = 0, tau = 2)
ST2(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log")
dST2(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE)
pST2(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
qST2(p, mu = 1, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
rST2(n, mu = 0, sigma = 1, nu = 0, tau = 2)
ST3(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log")
dST3(x, mu = 0, sigma = 1, nu = 1, tau = 10, log = FALSE)
pST3(q, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)
qST3(p, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)
rST3(n, mu = 0, sigma = 1, nu = 1, tau = 10)
ST3C(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log")
dST3C(x, mu = 0, sigma = 1, nu = 1, tau = 10, log = FALSE)
pST3C(q, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)
qST3C(p, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)
rST3C(n, mu = 0, sigma = 1, nu = 1, tau = 10)
SST(mu.link = "identity", sigma.link = "log", nu.link = "log",
```

162 ST1

```
tau.link = "logshiftto2")

dSST(x, mu = 0, sigma = 1, nu = 0.8, tau = 7, log = FALSE)

pSST(q, mu = 0, sigma = 1, nu = 0.8, tau = 7, lower.tail = TRUE, log.p = FALSE)

qSST(p, mu = 0, sigma = 1, nu = 0.8, tau = 7, lower.tail = TRUE, log.p = FALSE)

rSST(n, mu = 0, sigma = 1, nu = 0.8, tau = 7)

ST4(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log")

dST4(x, mu = 0, sigma = 1, nu = 1, tau = 10, log = FALSE)

pST4(q, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)

qST4(p, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)

rST4(n, mu = 0, sigma = 1, nu = 1, tau = 10)

ST5(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log")

dST5(x, mu = 0, sigma = 1, nu = 0, tau = 1, log = FALSE)

pST5(q, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE)

qST5(p, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE)

rST5(n, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE)
```

Arguments

Defines the mu.link, with "identity" link as the default for the mu parameter. Other links are " $1/mu^2$ " and "log"
Defines the sigma.link, with "log" link as the default for the sigma parameter. Other links are "inverse" and "identity"
Defines the nu.link, with "identity" link as the default for the nu parameter. Other links are " $1/mu^2$ " and "log"
Defines the nu.link, with "log" link as the default for the nu parameter. Other links are "inverse", "identity"
vector of quantiles
vector of mu parameter values
vector of scale parameter values
vector of nu parameter values
vector of tau parameter values
logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
vector of probabilities.
number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

The definitions of all Skew t distributions is given in pp.409-420 of of Rigby et al. (2019).

Note

The mean of the ex-Gaussian is $\mu + \nu$ and the variance is $\sigma^2 + \nu^2$.

ST1 163

Author(s)

Bob Rigby and Mikis Stasinopoulos

References

Azzalini A. (1986) Futher results on a class of distributions which includes the normal ones, *Statistica*, **46**, pp. 199-208.

Azzalini A. and Capitanio, A. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution, *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, **65**, pp. 367-389.

Jones, M.C. and Faddy, M. J. (2003) A skew extension of the t distribution, with applications. *Journal of the Royal Statistical Society*, Series B, **65**, pp 159-174.

Fernandez, C. and Steel, M. F. (1998) On Bayesian modeling of fat tails and skewness. *Journal of the American Statistical Association*, **93**, pp. 359-371.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, SEP1, SHASH
```

Examples

```
y<- rST5(200, mu=5, sigma=1, nu=.1)
hist(y)
curve(dST5(x, mu=30, sigma=5, nu=-1), -50, 50, main = "The ST5 density mu=30, sigma=5, nu=1")
# library(gamlss)
# m1<-gamlss(y~1, family=ST1)
# m2<-gamlss(y~1, family=ST2)
# m3<-gamlss(y~1, family=ST3)
# m4<-gamlss(y~1, family=ST4)
# m5<-gamlss(y~1, family=ST5)
# GAIC(m1, m2, m3, m4, m5)</pre>
```

t family distribution for fitting a GAMLSS

TF

TF

164

Description

The function TF defines the t-family distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dTF, pTF, qTF and rTF define the density, distribution function, quantile function and random generation for the specific parameterization of the t distribution given in details below, with mean equal to μ and standard deviation equal to $\sigma(\frac{\nu}{\nu-2})^{0.5}$ with the degrees of freedom ν The function TF2 is a different parametrization where sigma is the standard deviation.

Usage

```
TF(mu.link = "identity", sigma.link = "log", nu.link = "log")
dTF(x, mu = 0, sigma = 1, nu = 10, log = FALSE)
pTF(q, mu = 0, sigma = 1, nu = 10, lower.tail = TRUE, log.p = FALSE)
qTF(p, mu = 0, sigma = 1, nu = 10, lower.tail = TRUE, log.p = FALSE)
rTF(n, mu = 0, sigma = 1, nu = 10)

TF2(mu.link = "identity", sigma.link = "log", nu.link = "logshiftto2")
dTF2(x, mu = 0, sigma = 1, nu = 10, log = FALSE)
pTF2(q, mu = 0, sigma = 1, nu = 10, lower.tail = TRUE, log.p = FALSE)
qTF2(p, mu = 0, sigma = 1, nu = 10, lower.tail = TRUE, log.p = FALSE)
rTF2(n, mu = 0, sigma = 1, nu = 10)
```

Arguments

mu.link	Defines the mu.link, with "identity" link as the default for the mu parameter
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter
nu.link	Defines the nu.link, with "log" link as the default for the nu parameter
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
nu	vector of the degrees of freedom parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
р	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

TF 165

Details

Definition file for t family distribution TF():

$$f(y|\mu,\sigma,\nu) = \frac{1}{\sigma B(1/2,\nu/2))\nu^{0.5}} \left[1 + \frac{(y-\mu)^2}{\nu\sigma^2} \right]^{-(\nu+1)/2}$$

for $-\infty < y < +\infty$, $-\infty < \mu < +\infty$, $\sigma > 0$ and $\nu > 0$ see pp. 382-383 of Rigby et al. (2019). Note that $z = (y - \mu)/\sigma$ has a standard t distribution with degrees of freedom ν see pp. 382-383 of Rigby et al. (2019).

Definition file for t family distribution TF2():

$$f(y|\mu,\sigma,\nu) = \frac{1}{\sigma B(1/2,\nu/2)(\nu-2)^{0.5}} \left[1 + \frac{(y-\mu)^2}{(\nu-2)\sigma^2} \right]^{-(\nu+1)/2}$$

for $-\infty < y < +\infty$, $-\infty < \mu < +\infty$, $\sigma > 0$ and $\nu > 2$ see pp. 382-383 of Rigby et al. (2019). Note that $z = (y - \mu)/\sigma$ has a standard t distribution with degrees of freedom ν see pp. 383-384 of Rigby et al. (2019).

Value

TF() returns a gamlss.family object which can be used to fit a t distribution in the gamlss() function. dTF() gives the density, pTF() gives the distribution function, qTF() gives the quantile function, and rTF() generates random deviates. The latest functions are based on the equivalent R functions for gamma distribution.

Note

 μ is the mean and $\sigma[\nu/(\nu-2)]^{0.5}$ is the standard deviation of the t family distribution. $\nu>0$ is a positive real valued parameter.

Author(s)

Mikis Stasinopoulos, Bob Rigby and Kalliope Akantziliotou

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

166 WARING

See Also

```
gamlss.family
```

Examples

```
TF()# gives information about the default links for the t-family distribution
# library(gamlss)
#data(abdom)
#h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=TF, data=abdom) # fits
#plot(h)
newdata<-rTF(1000,mu=0,sigma=1,nu=5) # generates 1000 random observations
hist(newdata)</pre>
```

WARING

Waring distribution for fitting a GAMLSS model

Description

The function WARING() defines the Waring distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(), with mean equal to the parameter mu and scale parameter sigma. The functions dWARING, pWARING, qWARING and rWARING define the density, distribution function, quantile function and random generation for the WARING parameterization of the Waring distribution.

Usage

Arguments

mu.link	Defines the mu.link, with "log" link as the default for the mu parameter
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter
X	vector of (non-negative integer) quantiles.
q	vector of quantiles.
p	vector of probabilities.
n	number of random values to return.
mu	vector of positive mu values.
sigma	vector of positive sigma values.
lower.tail	logical; if TRUE (default) probabilities are $P[Y \leq y]$, otherwise, $P[Y > y]$.
log, log.p	logical; if TRUE probabilities p are given as log(p).
max.value	constant; generates a sequence of values for the cdf function.

WARING 167

Details

The Waring distribution, WARING, has density,

$$f(y|\mu,\sigma) = \frac{B(y + \mu\sigma^{-1}, \sigma^{-1} + 2)}{B(\mu\sigma^{-1}, \sigma^{-1} + 1)}$$

for $y = 0, 1, 2, ..., \mu > 0$ and $\sigma > 0$ see pp. 490-492 of Rigby *et al.* (2019).

Value

Returns a gamlss.family object which can be used to fit a Waring distribution in the gamlss() function.

Author(s)

Fiona McElduff, Bob Rigby and Mikis Stasinopoulos. <f.mcelduff@ich.ucl.ac.uk>

References

Wimmer, G. and Altmann, G. (1999) Thesaurus of univariate discrete probability distributions. Stamm.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family
```

Examples

```
par(mfrow=c(2,2))
y<-seq(0,20,1)
plot(y, dWARING(y), type="h")
q <- seq(0, 20, 1)
plot(q, pWARING(q), type="h")
p<-seq(0.0001,0.999,0.05)
plot(p , qWARING(p), type="s")
dat <- rWARING(100)
hist(dat)
#summary(gamlss(dat~1, family=WARING))</pre>
```

Weibull distribution for fitting a GAMLSS

Description

The function WEI can be used to define the Weibull distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). [Note that the GAMLSS function WEI2 uses a different parameterization for fitting the Weibull distribution.] The functions dWEI, pWEI, qWEI and rWEI define the density, distribution function, quantile function and random generation for the specific parameterization of the Weibul distribution.

Usage

```
WEI(mu.link = "log", sigma.link = "log")
dWEI(x, mu = 1, sigma = 1, log = FALSE)
pWEI(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qWEI(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rWEI(n, mu = 1, sigma = 1)
```

Arguments

mu.link	Defines the mu.link, with "log" link as the default for the mu parameter, other links are "inverse", "identity" and "own"
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter, other link is the "inverse", "identity" and "own"
x,q	vector of quantiles
mu	vector of the mu parameter
sigma	vector of sigma parameter
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
р	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

The parameterization of the function WEI is given by

$$f(y|\mu,\sigma) = \frac{\sigma y^{\sigma-1}}{\mu^{\sigma}} \; \exp\left[-\left(\frac{y}{\mu}\right)^{\sigma}\right]$$

for y>0, $\mu>0$ and $\sigma>0$ see pp. 435-436 of Rigby et al. (2019). The GAMLSS functions dWEI, pWEI, qWEI, and rWEI can be used to provide the pdf, the cdf, the quantiles and random generated numbers for the Weibull distribution with argument mu, and sigma. [See the GAMLSS function WEI2 for a different parameterization of the Weibull.]

WEI

Value

WEI() returns a gamlss.family object which can be used to fit a Weibull distribution in the gamlss() function. dWEI() gives the density, pWEI() gives the distribution function, qWEI() gives the quantile function, and rWEI() generates random deviates. The latest functions are based on the equivalent R functions for Weibull distribution.

Note

The mean in WEI is given by $\mu\Gamma(\frac{1}{\sigma}+1)$ and the variance $\mu^2\left[\Gamma(\frac{2}{\sigma}+1)-(\Gamma(\frac{1}{\sigma}+1))^2\right]$

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, WEI2, WEI3
```

Examples

```
WEI()
dat<-rWEI(100, mu=10, sigma=2)
# library(gamlss)
# gamlss(dat~1, family=WEI)</pre>
```

WEI2

A specific parameterization of the Weibull distribution for fitting a GAMLSS

Description

The function WEI2 can be used to define the Weibull distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). This is the parameterization of the Weibull distribution usually used in proportional hazard models and is defined in details below. [Note that the GAMLSS function WEI uses a different parameterization for fitting the Weibull distribution.] The functions dWEI2, pWEI2, qWEI2 and rWEI2 define the density, distribution function, quantile function and random generation for the specific parameterization of the Weibull distribution.

Usage

```
WEI2(mu.link = "log", sigma.link = "log")
dWEI2(x, mu = 1, sigma = 1, log = FALSE)
pWEI2(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qWEI2(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rWEI2(n, mu = 1, sigma = 1)
```

Arguments

mu.link	Defines the mu.link, with "log" link as the default for the mu parameter, other links are "inverse" and "identity" $$
sigma.link	Defines the $sigma.link$, with "log" link as the default for the $sigma$ parameter, other link is the "inverse" and "identity"
x,q	vector of quantiles
mu	vector of the mu parameter values
sigma	vector of sigma parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
p	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

The parameterization of the function WEI2 is given by

$$f(y|\mu,\sigma) = \sigma \mu y^{\sigma-1} e^{-\mu y^{\sigma}}$$

for y>0, $\mu>0$ and $\sigma>0$, see pp. 436-437 of Rigby et al. (2019). The GAMLSS functions dWEI2, pWEI2, qWEI2, and rWEI2 can be used to provide the pdf, the cdf, the quantiles and random generated numbers for the Weibull distribution with argument mu, and sigma. [See the GAMLSS function WEI for a different parameterization of the Weibull.]

WEI2 171

Value

WEI2() returns a gamlss.family object which can be used to fit a Weibull distribution in the gamlss() function. dWEI2() gives the density, pWEI2() gives the distribution function, qWEI2() gives the quantile function, and rWEI2() generates random deviates. The latest functions are based on the equivalent R functions for Weibull distribution.

Warning

In WEI2 the estimated parameters mu and sigma can be highly correlated so it is advisable to use the CG() method for fitting [as the RS() method can be veru slow in this situation.]

Note

```
The mean in WEI2 is given by \mu^{-1/\sigma}\Gamma(\frac{1}{\sigma}+1) and the variance \mu^{-2/\sigma}(\Gamma(\frac{2}{\sigma}+1)-\left[\Gamma(\frac{1}{\sigma}+1)\right]^2)
```

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, WEI, WEI3,
```

Examples

```
WEI2()
dat<-rWEI(100, mu=.1, sigma=2)
hist(dat)
# library(gamlss)
# gamlss(dat~1, family=WEI2, method=CG())</pre>
```

WEI3 A specific parameterization of the Weibull distribution for fitting a GAMLSS

Description

The function WEI3 can be used to define the Weibull distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). This is a parameterization of the Weibull distribution where μ is the mean of the distribution. [Note that the GAMLSS functions WEI and WEI2 use different parameterizations for fitting the Weibull distribution.] The functions dWEI3, pWEI3, qWEI3 and rWEI3 define the density, distribution function, quantile function and random generation for the specific parameterization of the Weibull distribution

Usage

```
WEI3(mu.link = "log", sigma.link = "log")
dWEI3(x, mu = 1, sigma = 1, log = FALSE)
pWEI3(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qWEI3(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rWEI3(n, mu = 1, sigma = 1)
```

Arguments

mu.link	Defines the mu.link, with "log" link as the default for the mu parameter, other links are "inverse" and "identity"
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter, other link is the "inverse" and "identity"
x,q	vector of quantiles
mu	vector of the mu parameter values
sigma	vector of sigma parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
р	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required

Details

The parameterization of the function WEI3 is given by

$$f(y|\mu,\sigma) = \frac{\sigma}{\beta} \left(\frac{y}{\beta}\right)^{\sigma-1} e^{-\left(\frac{y}{\beta}\right)^{\sigma}}$$

where $\beta = \frac{\mu}{\Gamma((1/\sigma)+1)}$ for y>0, $\mu>0$ and $\sigma>0$ see pp. 437-438 of Rigby et al. (2019). The GAMLSS functions dWEI3, pWEI3, qWEI3, and rWEI3 can be used to provide the pdf, the cdf, the quantiles and random generated numbers for the Weibull distribution with argument mu, and sigma. [See the GAMLSS function WEI for a different parameterization of the Weibull.]

WEI3 173

Value

WEI3() returns a gamlss.family object which can be used to fit a Weibull distribution in the gamlss() function. dWEI3() gives the density, pWEI3() gives the distribution function, qWEI3() gives the quantile function, and rWEI3() generates random deviates. The latest functions are based on the equivalent R functions for Weibull distribution.

Warning

In WEI3 the estimated parameters mu and sigma can be highly correlated so it is advisable to use the CG() method for fitting [as the RS() method can be very slow in this situation.]

Note

The mean in WEI3 is given by μ and the variance $\mu^2 \left\{ \Gamma(2/\sigma+1)/\left[\Gamma(1/\sigma+1)\right]^2 - 1 \right\}$ see pp. 438 of Rigby et al. (2019)

Author(s)

Bob Rigby and Mikis Stasinopoulos

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, WEI, WEI2
```

Examples

```
WEI3()
dat<-rWEI(100, mu=.1, sigma=2)
# library(gamlss)
# gamlss(dat~1, family=WEI3, method=CG())</pre>
```

174 YULE

YULE

Yule distribution for fitting a GAMLSS model

Description

The function YULE defines the Yule distribution, a one parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(), with mean equal to the parameter mu. The functions dYULE, pYULE, qYULE and rYULE define the density, distribution function, quantile function and random generation for the YULE parameterization of the Yule distribution.

Usage

```
YULE(mu.link = "log")
dYULE(x, mu = 2, log = FALSE)
pYULE(q, mu = 2, lower.tail = TRUE, log.p = FALSE)
qYULE(p, mu = 2, lower.tail = TRUE, log.p = FALSE,
    max.value = 10000)
rYULE(n, mu = 2)
```

Arguments

mu.link	Defines the mu.link, with "log" link as the default for the mu parameter
x	vector of (non-negative integer) quantiles.
q	vector of quantiles.
р	vector of probabilities.
n	number of random values to return.
mu	vector of positive mu values.
lower.tail	logical; if TRUE (default) probabilities are $P[Y \leq y]$, otherwise, $P[Y > y]$.
log, log.p	logical; if TRUE probabilities p are given as log(p).
max.value	constant; generates a sequence of values for the cdf function.

Details

The Yule distribution has density

$$P(Y = y | \mu) = (\mu^{-1} + 1)B(y + 1, \mu^{-1} + 2)$$

for $y = 0, 1, 2, \dots$ and $\mu > 0$, see pp 477-478 of Rigby et al. (2019).

Value

Returns a gamlss.family object which can be used to fit a Yule distribution in the gamlss() function.

ZABB 175

Author(s)

Fiona McElduff, Bob Rigby and Mikis Stasinopoulos.

References

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

Wimmer, G. and Altmann, G. (1999) Thesaurus of univariate discrete probability distributions. Stamm.

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family
```

Examples

```
par(mfrow=c(2,2))
y<-seq(0,20,1)
plot(y, dYULE(y), type="h")
q <- seq(0, 20, 1)
plot(q, pYULE(q), type="h")
p<-seq(0.0001,0.999,0.05)
plot(p , qYULE(p), type="s")
dat <- rYULE(100)
hist(dat)
#summary(gamlss(dat~1, family=YULE))</pre>
```

ZABB

Zero inflated and zero adjusted Binomial distribution for fitting in GAMLSS

Description

The function ZIBB defines the zero inflated beta binomial distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dZIBB, pZIBB, qZIBB and rZINN define the density, distribution function, quantile function and random generation for the zero inflated beta binomial, ZIBB, distribution.

The function ZABB defines the zero adjusted beta binomial distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dZABB, pZABB, qZABB and rZABB define the density, distribution function, quantile function and random generation for the zero inflated beta binomial, ZABB(), distribution.

176 ZABB

Usage

```
ZABB(mu.link = "logit", sigma.link = "log", nu.link = "logit")
ZIBB(mu.link = "logit", sigma.link = "log", nu.link = "logit")

dZIBB(x, mu = 0.5, sigma = 0.5, nu = 0.1, bd = 1, log = FALSE)
dZABB(x, mu = 0.5, sigma = 0.1, nu = 0.1, bd = 1, log = FALSE)

pZIBB(q, mu = 0.5, sigma = 0.5, nu = 0.1, bd = 1, lower.tail = TRUE, log.p = FALSE)
pZABB(q, mu = 0.5, sigma = 0.1, nu = 0.1, bd = 1, lower.tail = TRUE, log.p = FALSE)

qZIBB(p, mu = 0.5, sigma = 0.5, nu = 0.1, bd = 1, lower.tail = TRUE, log.p = FALSE)
qZABB(p, mu = 0.5, sigma = 0.1, nu = 0.1, bd = 1, lower.tail = TRUE, log.p = FALSE)
rZIBB(n, mu = 0.5, sigma = 0.5, nu = 0.1, bd = 1)
rZABB(n, mu = 0.5, sigma = 0.1, nu = 0.1, bd = 1)
```

Arguments

mu.link	Defines the mu.link, with "logit" link as the default for the mu parameter. Other links are "probit" and "cloglog" (complementary log-log)
sigma.link	Defines the $\verb"sigma.link",$ with "log" link as the default for the $\verb"sigma"$ parameter.
nu.link	Defines the sigma.link, with "logit" link as the default for the mu parameter. Other links are "probit" and "cloglog" (complementary log-log)
х	vector of (non-negative integer) quantiles
mu	vector of positive probabilities
sigma	vector of positive dispertion parameter
nu	vector of positive probabilities
bd	vector of binomial denominators
р	vector of probabilities
q	vector of quantiles
n	number of random values to return
log, log.p	logical; if TRUE, probabilities p are given as log(p)
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$

Details

The definition of the zero adjusted beta binomial distribution, ZABB and the the zero inflated beta binomial distribution, ZIBB, are given in p. 527 and p. 528 of of Rigby *et al.* (2019), respectively.

Value

The functions ZIBB and ZABB return a gamlss.family object which can be used to fit a zero inflated or zero adjusted beta binomial distribution respectively in the gamlss() function.

ZABI 177

Author(s)

Mikis Stasinopoulos, Bob Rigby

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07..

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, NBI, NBII
```

Examples

```
ZIBB()
ZABB()
# creating data and plotting them
dat <- rZIBB(1000, mu=.5, sigma=.5, nu=0.1, bd=10)
   r <- barplot(table(dat), col='lightblue')
dat1 <- rZABB(1000, mu=.5, sigma=.2, nu=0.1, bd=10)
   r1 <- barplot(table(dat1), col='lightblue')</pre>
```

ZABI

Zero inflated and zero adjusted Binomial distribution for fitting in GAMLSS

Description

The ZABI() function defines the zero adjusted binomial distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dZABI, pZABI and rZABI define the density, distribution function, quantile function and random generation for the zero adjusted binomial, ZABI(), distribution.

The ZIBI() function defines the zero inflated binomial distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dZIBI, pZIBI, qZIBI and rZIBI define the density, distribution function, quantile function and random generation for the zero inflated binomial, ZIBI(), distribution.

178 ZABI

Usage

```
ZABI(mu.link = "logit", sigma.link = "logit")
dZABI(x, bd = 1, mu = 0.5, sigma = 0.1, log = FALSE)
pZABI(q, bd = 1, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
qZABI(p, bd = 1, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
rZABI(n, bd = 1, mu = 0.5, sigma = 0.1)

ZIBI(mu.link = "logit", sigma.link = "logit")
dZIBI(x, bd = 1, mu = 0.5, sigma = 0.1, log = FALSE)
pZIBI(q, bd = 1, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
qZIBI(p, bd = 1, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
rZIBI(n, bd = 1, mu = 0.5, sigma = 0.1)
```

Arguments

mu.link	Defines the mu.link, with "logit" link as the default for the mu parameter. Other links are "probit" and "cloglog" (complementary log-log)
sigma.link	Defines the sigma.link, with "logit" link as the default for the mu parameter. Other links are "probit" and "cloglog" (complementary log-log)
Х	vector of (non-negative integer) quantiles
mu	vector of positive probabilities
sigma	vector of positive probabilities
bd	vector of binomial denominators
р	vector of probabilities
q	vector of quantiles
n	number of random values to return
log, log.p	logical; if TRUE, probabilities p are given as log(p)
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$

Details

The definition of the zero adjusted binomial distribution, ZABI and the the zero inflated binomial distribution, ZIBI, are given in p. 526 and p. 527 of of Rigby *et al.* (2019), respectively.

Value

The functions ZABI and ZIBI return a gamlss.family object which can be used to fit a binomial distribution in the gamlss() function.

Note

The response variable should be a matrix containing two columns, the first with the count of successes and the second with the count of failures.

ZAGA 179

Author(s)

Mikis Stasinopoulos, Bob Rigby

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, BI
```

Examples

```
ZABI()
curve(dZABI(x, mu = .5, bd=10), from=0, to=10, n=10+1, type="h")
tN <- table(Ni <- rZABI(1000, mu=.2, sigma=.3, bd=10))
r <- barplot(tN, col='lightblue')

ZIBI()
curve(dZIBI(x, mu = .5, bd=10), from=0, to=10, n=10+1, type="h")
tN <- table(Ni <- rZIBI(1000, mu=.2, sigma=.3, bd=10))
r <- barplot(tN, col='lightblue')</pre>
```

ZAGA

The zero adjusted Gamma distribution for fitting a GAMLSS model

Description

The function ZAGA() defines the zero adjusted Gamma distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The zero adjusted Gamma distribution is similar to the Gamma distribution but allows zeros as y values. The extra parameter nu models the probabilities at zero. The functions dZAGA, pZAGA, qZAGA and rZAGA define the density, distribution function, quartile function and random generation for the ZAGA parameterization of the zero adjusted Gamma distribution. plotZAGA can be used to plot the distribution. meanZAGA calculates the expected value of the response for a fitted model.

ZAGA

Usage

Arguments

mu.link	Defines the mu.link, with "log" link as the default for the mu parameter
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter
nu.link	Defines the nu.link, with "logit" link as the default for the sigma parameter
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
nu	vector of probability at zero parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
р	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required
from	where to start plotting the distribution from
to	up to where to plot the distribution
obj	a fitted gamlss object
main	for title in the plot
	can be used to pass the uppr.limit argument to qIG

Details

The Zero adjusted GA distribution is given as

$$f(y|\mu,\sigma\,\nu)=\nu$$
 if (y=0)
$$f(y|\mu,\sigma,\nu)=(1-\nu)\left[\frac{1}{(\sigma^2\mu)^{1/\sigma^2}}\,\frac{y^{\frac{1}{\sigma^2}-1}\,\,e^{-y/(\sigma^2\mu)}}{\Gamma(1/\sigma^2)}\right]$$
 otherwise for $y=(0,\infty), \mu>0, \sigma>0$ and $0<\nu<1.$ $E(y)=(1-\nu)\mu$ and $Var(y)=(1-\nu)\mu^2(\nu+\sigma^2).$

ZAGA 181

Value

The function ZAGA returns a gamlss.family object which can be used to fit a zero adjusted Gamma distribution in the gamlss() function.

Author(s)

Bob Rigby, Mikis Stasinopoulos and Almond Stocker

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also https://www.gamlss.com/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, GA, ZAIG
```

Examples

```
ZAGA()# gives information about the default links for the ZAGA distribution # plotting the function

PPP <- par(mfrow=c(2,2))

plotZAGA(mu=1, sigma=.5, nu=.2, from=0,to=3)

#curve(dZAGA(x,mu=1, sigma=.5, nu=.2), 0,3) # pdf

curve(pZAGA(x,mu=1, sigma=.5, nu=.2), 0,3, ylim=c(0,1)) # cdf

curve(qZAGA(x,mu=1, sigma=.5, nu=.2), 0,.99) # inverse cdf

y<-rZAGA(100, mu=1, sigma=.5, nu=.2) # randomly generated values

hist(y)

par(PPP)

# check that the positive part sums up to .8 (since nu=0.2)

integrate(function(x) dZAGA(x,mu=1, sigma=.5, nu=.2), 0,Inf)
```

182 ZAIG

ZAIG The zero adjusted Inverse Gaussian distribution for fitting a GAMLSS model	ZAIG
---	------

Description

The function ZAIG() defines the zero adjusted Inverse Gaussian distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The zero adjusted Inverse Gaussian distribution is similar to the Inverse Gaussian distribution but allows zeros as y values. The extra parameter models the probabilities at zero. The functions dZAIG, pZAIG, qZAIG and rZAIG define the density, distribution function, quantile function and random generation for the ZAIG parameterization of the zero adjusted Inverse Gaussian distribution. plotZAIG can be used to plot the distribution. meanZAIG calculates the expected value of the response for a fitted model.

Usage

Arguments

mu.link	Defines the mu.link, with "log" link as the default for the mu parameter
sigma.link	Defines the sigma.link, with "log" link as the default for the sigma parameter
nu.link	Defines the nu.link, with "logit" link as the default for the sigma parameter
x,q	vector of quantiles
mu	vector of location parameter values
sigma	vector of scale parameter values
nu	vector of probability at zero parameter values
log, log.p	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$
р	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number
	required
from	where to start plotting the distribution from
to	up to where to plot the distribution
obj	a fitted BEINF object
main	for title in the plot
	can be used to pass the uppr.limit argument to qIG

ZAIG 183

Details

The Zero adjusted IG distribution is given as

$$f(y|\mu, \sigma \nu) = \nu$$

if (y=0)

$$f(y|\mu, \sigma, \nu) = (1 - \nu) \frac{1}{\sqrt{2\pi\sigma^2 y^3}} \exp(-\frac{(y - \mu)^2}{2\mu^2 \sigma^2 y})$$

otherwise

for
$$y = (0, \infty), \mu > 0, \sigma > 0$$
 and $0 < \nu < 1$. $E(y) = (1 - \nu)\mu$ and $Var(y) = (1 - \nu)\mu^2(\nu + \mu\sigma^2)$.

Value

returns a gamlss.family object which can be used to fit a zero adjusted inverse Gaussian distribution in the gamlss() function.

Author(s)

Bob Rigby and Mikis Stasinopoulos

References

Heller, G. Stasinopoulos M and Rigby R.A. (2006) The zero-adjusted Inverse Gaussian distribution as a model for insurance claims. in *Proceedings of the 21th International Workshop on Statistial Modelling*, eds J. Hinde, J. Einbeck and J. Newell, pp 226-233, Galway, Ireland.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, IG
```

Examples

```
ZAIG()# gives information about the default links for the ZAIG distribution # plotting the distribution plotZAIG( mu =10 , sigma=.5, nu = 0.1, from = 0, to=10, n = 101) # plotting the cdf plot(function(y) pZAIG(y, mu=10 ,sigma=.5, nu = 0.1 ), 0, 1)
```

184 ZANBI

```
# plotting the inverse cdf
plot(function(y) qZAIG(y, mu=10 ,sigma=.5, nu = 0.1 ), 0.001, .99)
# generate random numbers
dat <- rZAIG(100,mu=10,sigma=.5, nu=.1)
# fit a model to the data
# library(gamlss)
# m1<-gamlss(dat~1,family=ZAIG)
# meanZAIG(m1)[1]</pre>
```

ZANBI

Zero inflated and zero adjusted negative binomial distributions for fitting a GAMLSS model

Description

The function ZINBI defines the zero inflated negative binomial distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dZINBI, pZINBI and rZINBI define the density, distribution function, quantile function and random generation for the zero inflated negative binomial, ZINBI(), distribution.

The function ZANBI defines the zero adjusted negative binomial distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dZANBI, pZANBI and rZANBI define the density, distribution function, quantile function and random generation for the zero inflated negative binomial, ZANBI(), distribution.

Usage

```
ZINBI(mu.link = "log", sigma.link = "log", nu.link = "logit")
dZINBI(x, mu = 1, sigma = 1, nu = 0.3, log = FALSE)
pZINBI(q, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE)
qZINBI(p, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE)
rZINBI(n, mu = 1, sigma = 1, nu = 0.3)
ZANBI(mu.link = "log", sigma.link = "log", nu.link = "logit")
dZANBI(x, mu = 1, sigma = 1, nu = 0.3, log = FALSE)
pZANBI(q, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE)
qZANBI(p, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE)
rZANBI(n, mu = 1, sigma = 1, nu = 0.3)
```

Arguments

mu.link	Defines the mu.link, with "log" link as the default for the mu parameter
sigma.link	Defines the ${\tt sigma.link},$ with "log" link as the default for the sigma parameter
nu.link	Defines the mu.link, with "logit" link as the default for the nu parameter
X	vector of (non-negative integer) quantiles
mu	vector of positive means
sigma	vector of positive despersion parameter

ZANBI 185

nu	vector of zero probability parameter
р	vector of probabilities
q	vector of quantiles
n	number of random values to return
log, log.p	logical; if TRUE, probabilities p are given as log(p)
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$

Details

The definition of the zero adjusted Negative Binomial type I distribution, ZANBI and the the zero inflated Negative Binomial type I distribution, ZINBI, are given in p. 512 and pp. 513-514 of of Rigby *et al.* (2019), respectively.

Value

The functions ZINBI and ZANBI return a gamlss.family object which can be used to fit a zero inflated or zero adjusted Negative Binomial type I distribution respectively in the gamlss() function.

Author(s)

Mikis Stasinopoulos, Bob Rigby

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973 (see also https://www.gamlss.com/).

See Also

```
gamlss.family, NBI, NBII
```

Examples

```
ZINBI()
ZANBI()
# creating data and plotting them
dat <- rZINBI(1000, mu=5, sigma=.5, nu=0.1)
   r <- barplot(table(dat), col='lightblue')
dat1 <- rZANBI(1000, mu=5, sigma=.5, nu=0.1)
   r1 <- barplot(table(dat1), col='lightblue')</pre>
```

ZAP

Zero adjusted poisson distribution for fitting a GAMLSS model

Description

ZAP

The function ZAP defines the zero adjusted Poisson distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dZAP, pZAP, qZAP and rZAP define the density, distribution function, quantile function and random generation for the inflated poisson, ZAP(), distribution.

Usage

```
ZAP(mu.link = "log", sigma.link = "logit")
dZAP(x, mu = 5, sigma = 0.1, log = FALSE)
pZAP(q, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
qZAP(p, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
rZAP(n, mu = 5, sigma = 0.1)
```

Arguments

mu.link	defines the mu.link, with "log" link as the default for the mu parameter	
sigma.link	defines the sigma.link, with "logit" link as the default for the sigma parameter which in this case is the probability at zero. Other links are "probit" and "cloglog" (complementary log-log)	
X	vector of (non-negative integer)	
mu	vector of positive means	
sigma	vector of probabilities at zero	
p	vector of probabilities	
q	vector of quantiles	
n	number of random values to return	
log, log.p	logical; if TRUE, probabilities p are given as log(p)	
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$	

Details

Details about the zero adjusted Poison, ZAP can be found pp 494-496 of Rigby et al. (2019).

Value

The function ZAP returns a gamlss.family object which can be used to fit a zero inflated poisson distribution in the gamlss() function.

Author(s)

Mikis Stasinopoulos, Bob Rigby

ZIP 187

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/)..
```

See Also

```
gamlss.family, PO, ZIP, ZIP2, ZALG
```

Examples

```
ZAP()
# creating data and plotting them
dat<-rZAP(1000, mu=5, sigma=.1)
r <- barplot(table(dat), col='lightblue')</pre>
```

ZIP

Zero inflated poisson distribution for fitting a GAMLSS model

Description

The function ZIP defines the zero inflated Poisson distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dZIP, pZIP, qZIP and rZIP define the density, distribution function, quantile function and random generation for the inflated poisson, ZIP(), distribution.

Usage

```
ZIP(mu.link = "log", sigma.link = "logit")
dZIP(x, mu = 5, sigma = 0.1, log = FALSE)
pZIP(q, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
qZIP(p, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
rZIP(n, mu = 5, sigma = 0.1)
```

188 ZIP

Arguments

mu.link defines the mu.link, with "log" link as the default for the mu parameter sigma.link defines the sigma.link, with "logit" link as the default for the sigma parameter which in this case is the probability at zero. Other links are "probit" and "cloglog"'(complementary log-log) vector of (non-negative integer) quantiles Х mu vector of positive means sigma vector of probabilities at zero vector of probabilities vector of quantiles number of random values to return log, log.p logical; if TRUE, probabilities p are given as log(p) lower.tail logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, P[X > x]

Details

Let Y=0 with probability σ and $Y\sim Po(\mu)$ with probability $(1-\sigma)$ the Y has a Zero inflated Poisson Distribution given by

$$f(y) = \sigma + (1-\sigma)e^{-\mu}$$
 if (y=0)
$$f(y) = (1-\sigma)\frac{e^{-\mu}\mu^y}{y!}$$

if (y>0) for y = 0, 1, ... see pp 498-500 of Rigby *et al.* (2019). .

Value

returns a gamlss.family object which can be used to fit a zero inflated poisson distribution in the gamlss() function.

Author(s)

Mikis Stasinopoulos, Bob Rigby

References

Lambert, D. (1992), Zero-inflated Poisson Regression with an application to defects in Manufacturing, *Technometrics*, **34**, pp 1-14.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

ZIP2 189

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, PO, ZIP2
```

Examples

```
ZIP()# gives information about the default links for the normal distribution
# creating data and plotting them
dat<-rZIP(1000, mu=5, sigma=.1)
r <- barplot(table(dat), col='lightblue')
# library(gamlss)
# fit the distribution
# mod1<-gamlss(dat~1, family=ZIP)# fits a constant for mu and sigma
# fitted(mod1)[1]
# fitted(mod1,"sigma")[1]</pre>
```

ZIP2

Zero inflated poisson distribution for fitting a GAMLSS model

Description

The function ZIP2 defines the zero inflated Poisson type 2 distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dZIP2, pZIP2, qZIP2 and rZIP2 define the density, distribution function, quantile function and random generation for the inflated poisson, ZIP2(), distribution. The ZIP2 is a different parameterization of the ZIP distribution. In the ZIP2 the mu is the mean of the distribution.

Usage

```
ZIP2(mu.link = "log", sigma.link = "logit")
dZIP2(x, mu = 5, sigma = 0.1, log = FALSE)
pZIP2(q, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
qZIP2(p, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
rZIP2(n, mu = 5, sigma = 0.1)
```

Arguments

```
mu.link defines the mu.link, with "log" link as the default for the mu parameter sigma.link defines the sigma.link, with "logit" link as the default for the sigma parameter which in this case is the probability at zero. Other links are "probit" and "cloglog" (complementary log-log)
```

190 ZIP2

X	vector of (non-negative integer) quantiles
mu	vector of positive means
sigma	vector of probabilities at zero
р	vector of probabilities
q	vector of quantiles
n	number of random values to return
log, log.p	logical; if TRUE, probabilities p are given as log(p)
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$

Details

The parametrization used for this version of the zero inflated Poison distribution ZIP2 can be found in pp 500-501 of Rigby *et al.* (2019). Note that the mean of the distribution in this parameterization is μ .

Value

returns a gamlss.family object which can be used to fit a zero inflated poisson distribution in the gamlss() function.

Author(s)

Bob Rigby, Gillian Heller and Mikis Stasinopoulos

References

Lambert, D. (1992), Zero-inflated Poisson Regression with an application to defects in Manufacturing, *Technometrics*, **34**, pp 1-14.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
gamlss.family, ZIP
```

ZIPF 191

Examples

```
ZIP2()# gives information about the default links for the normal distribution
# creating data and plotting them
dat<-rZIP2(1000, mu=5, sigma=.1)
r <- barplot(table(dat), col='lightblue')
# fit the disteibution
# library(gamlss)
# mod1<-gamlss(dat~1, family=ZIP2)# fits a constant for mu and sigma
# fitted(mod1)[1]
# fitted(mod1, "sigma")[1]</pre>
```

ZIPF

The zipf and zero adjusted zipf distributions for fitting a GAMLSS model

Description

This function ZIPF() defines the zipf distribution, Johnson et. al., (2005), sections 11.2.20, p 527-528. The zipf distribution is an one parameter distribution with long tails (a discete version of the Pareto distribution). The function ZIPF() creates a gamlss.family object to be used in GAMLSS fitting. The functions dZIPF, pZIPF, qZIPF and rZIPF define the density, distribution function, quantile function and random generation for the zipf, ZIPF(), distribution. The function zetaP() defines the zeta function and it is based on the zeta function defined on the VGAM package of Thomas Yee, see Yee (2017).

The distribution zipf is defined on $y=1,2,3,\ldots,\infty$, the zero adjusted zipf permits values on $y=,01,2,\ldots,\infty$. The function ZAZIPF() defines the zero adjusted zipf distribution. The function ZAZIPF() creates a gamlss.family object to be used in GAMLSS fitting. The functions dZAZIPF, pZAZIPF, qZAZIPF and rZAZIPF define the density, distribution function, quantile function and random generation for the zero adjusted zipf, ZAZIPF(), distribution.

Usage

192 ZIPF

Arguments

mu.link	the link function for the parameter mu with default log	
x,q	vectors of (non-negative integer) quantiles	
р	vector of probabilities	
mu	vector of positive parameter	
log, log.p	logical; if TRUE, probabilities p are given as log(p)	
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X \ge x]$	
n	number of random values to return	
max.value	a constant, set to the default value of 10000, It is used in the q function which numerically calculates how far the algorithm should look for q. Maybe for zipf data the values has to increase at a considerable computational cost.	
sigma.link	the link function for the parameter aigma with default logit	
sigma	a vector of probabilities of zero	

Details

The probability density for the zipf distribution, ZIPF, is:

$$f(y|\mu) = \frac{y^{-(\mu+1)}}{\zeta(\mu+1)}$$

for $y=1,2,\ldots,\infty, \mu>0$ and where $\zeta()=\sum_i^n i^{-b}$ is the (Reimann) zeta function.

The distribution has mean $\zeta(\mu)/\zeta(\mu+1)$ and variance $\zeta(\mu+1)\zeta(\mu-1)-[\zeta(\mu)]^2/[\zeta(\mu+1)]^2$, see pp 479-480 of Rigby et al. (2019)

For more details about the zero-adjusted Zipf distributions, ZAZIPF, see see pp 496-498 of Rigby *et al.* (2019).

Value

The function ZIPF() returns a gamlss.family object which can be used to fit a zipf distribution in the gamlss() function.

Note

Because the zipf distribution has very long tails the max. value in the q and r, may need to increase.

Author(s)

Mikis Stasinopoulos and Bob Rigby

ZIPF 193

References

N. L. Johnson, A. W. Kemp, and S. Kotz. (2005) Univariate Discrete Distributions. Wiley, New York, 3rd edition.

Thomas W. Yee (2017). VGAM: Vector Generalized Linear and Additive Models. R package version 1.0-3. https://CRAN.R-project.org/package=VGAM

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) *Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) *Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC. doi:10.1201/b21973

```
(see also https://www.gamlss.com/).
```

See Also

```
PO, LG, GEOM, YULE
```

Examples

```
# ZIPF
par(mfrow=c(2,2))
y < -seq(1, 20, 1)
plot(y, dZIPF(y), type="h")
q \leftarrow seq(1, 20, 1)
plot(q, pZIPF(q), type="h")
p<-seq(0.0001,0.999,0.05)
plot(p , qZIPF(p), type="s")
dat <- rZIPF(100)</pre>
hist(dat)
# ZAZIPF
y < -seq(0, 20, 1)
plot(y, dZAZIPF(y, mu=.9, sigma=.1), type="h")
q < - seq(1, 20, 1)
plot(q, pZAZIPF(q, mu=.9, sigma=.1), type="h")
p<-seq(0.0001,0.999,0.05)
plot(p, qZAZIPF(p, mu=.9, sigma=.1), type="s")
dat <- rZAZIPF(100, mu=.9, sigma=.1)</pre>
hist(dat)
```

Index

* distribution	LOGITNO, 100
BB, 8	LQNO, 102
BCCG, 10	MN3, 108
BCPE, 13	momentSK, 110
BCT, 16	NBF, 113
BE, 19	NBI, 116
BEINF, 21	NBII, 118
BE0I, 26	NET, 120
BEZI, 28	NO, 122
BI, 31	NO2, 124
BNB, 33	NOF, 126
count_1_31, 36	PARETO2, 128
DBI, 40	PE, 131
DBURR12, 42	PIG, 133
DEL, 44	P0, 136
DPO, 46	RG, 138
EGB2, 48	RGE, 140
exGAUS, 50	SEP, 142
EXP, 52	SEP1, 144
flexDist, 54	SHASH, 147
GA, 55	SI, 150
GAF, 57	SICHEL, 152
GB1, 66	SIMPLEX, 155
GB2, 68	SN1, 157
gen.Family, 70	SN2, 159
GEOM, 72	ST1, 161
GG, 74	TF, 164
GIG, 76	WARING, 166
GP0, 78	WEI, 168
GT, 80	WEI2, 170
GU, 82	WEI3, 172
hazardFun, 84	YULE, 174
IG, 85	ZABB, 175
IGAMMA, 87	ZABI, 177
JSU, 88	ZAGA, 179
JSUo, 91	ZAIG, 182
LG, 93	ZANBI, 184
LNO, 95	ZAP, 186
L0, 98	ZIP, 187

ZIP2, 189	MN3, 108
ZIPF, 191	NBF, 113
* package	NBI, 116
gamlss.dist-package,4	NBII, 118
* regression	NET, 120
BB, 8	NO, 122
BCCG, 10	NO2, 124
BCPE, 13	NOF, 126
BCT, 16	PARETO2, 128
BE, 19	PE, 131
BEINF, 21	PIG, 133
BEOI, 26	P0, 136
BEZI, 28	RG, 138
BI, 31	RGE, 140
BNB, 33	SEP, 142
checklink, 35	SEP1, 144
count_1_31, 36	SHASH, 147
DBI, 40	SI, 150
DBURR12, 42	SICHEL, 152
DEL, 44	SIMPLEX, 155
DPO, 46	SN1, 157
EGB2, 48	SN2, 159
exGAUS, 50	ST1, 161
EXP, 52	TF, 164
flexDist, 54	WARING, 166
	WEI, 168
GA, 55 GAF, 57	WEI2, 170
gamlss.family, 62	WEI3, 172
GB1, 66	YULE, 174
	ZABB, 175
GB2, 68 gen.Family, 70	ZABI, 177
	ZAGA, 179
GEOM, 72	ZAIG, 182
GG, 74	ZANBI, 184
GIG, 76	ZAP, 186
GP0, 78	ZIP, 187
GT, 80	ZIP2, 189
GU, 82	ZIPF, 191
hazardFun, 84	
IG, 85	as.family(gamlss.family), 62
IGAMMA, 87	as.gamlss.family(gamlss.family), 62
JSU, 88	0 10 60 65
JSUo, 91	BB, 8, 42, 63, 65
LG, 93	BCCG, 10, 18, 52, 63, 65, 95, 98
LNO, 95	BCCGo (BCCG), 10
L0, 98	BCCGuntr (BCCG), 10
LOGITNO, 100	BCPE, 13, 13, 18, 63, 65, 121, 132
LQNO, 102	BCPEo (BCPE), 13
make.link.gamlss, 104	BCPEuntr (BCPE), 13

BCT, 13, 16, 16, 50, 63, 65, 67, 70, 82, 91, 93,	cSHASH (momentSK), 110
144, 150	cST3_1 (momentSK), 110
BCTo (BCT), 16	cST3_2 (momentSK), 110
BCTuntr (BCT), 16	
BE, 19, 21, 25, 63, 65	dBB (BB), 8
BEINF, 21, 21, 63, 65	dBCCG (BCCG), 10
BEINF0 (BEINF), 21	dBCCGo (BCCG), 10
BEINF1 (BEINF), 21	dBCPE (BCPE), 13
BEo, 25	dBCPEo (BCPE), 13
BEo (BE), 19	dBCT (BCT), 16
BEOI, 21, 25, 26, 28, 63	dBCTo (BCT), 16
BEZI, 21, 25, 28, 30, 63	dBE (BE), 19
BI, 10, 31, 42, 60, 63, 65, 109, 179	dBEINF (BEINF), 21
binom_1_31 (count_1_31), 36	dBEINF0 (BEINF), 21
binom_2_33 (count_1_31), 36	dBEINF1 (BEINF), 21
binom_3_33 (count_1_31), 36	dBEo (BE), 19
BNB, 33, 63	dBEOI (BEOI), 26
boundary (momentSK), 110	dBEZI (BEZI), 28
Souridary (momentosity, 110	DBI, 40, 63
cdf, 60	dBI (BI), 31
cdf. GAMLSS (GAMLSS), 60	dBNB (BNB), 33
cEGB2_1 (momentSK), 110	DBURR12, 42, 63
cEGB2_1Data (momentSK), 110	dDBI (DBI), 40
cEGB2_2 (momentSK), 110	dDBURR12 (DBURR12), 42
centileKurt (momentSK), 110	dDEL (DEL), 44
centileSK (momentSK), 110	dDPO (DPO), 46
centileSkew (momentSK), 110	dEGB2 (EGB2), 48
checkBCPE (BCPE), 13	DEL, 44, <i>63</i>
checkCentileSK (momentSK), 110	dexGAUS (exGAUS), 50
checklink, 35	dEXP (EXP), 52
checkMomentSK (momentSK), 110	dGA (GA), 55
cJSU (momentsK), 110	dGAF (GAF), 57
contR01_2_13 (count_1_31), 36	dGB1 (GB1), 66
contR01_4_33 (count_1_31), 36	dGB2 (GB2), 68
contR_2_12 (count_1_31), 36	dGEOM (GEOM), 72
contR_3_11 (count_1_31), 36	dGEOMo (GEOM), 72
contR_4_13 (count_1_31), 36	dGG (GG), 74
contRplus_2_11 (count_1_31), 36	dGIG (GIG), 76
contRplus_3_13 (count_1_31), 36	dGP (GB2), 68
	dGP0 (GP0), 78
contRplus_4_33 (count_1_31), 36	
count_1_22 (count_1_31), 36	dGT (GT), 80
count_1_31, 36	dGU (GU), 82
count_2_32 (count_1_31), 36	dIG (IG), 85
count_2_32R (count_1_31), 36	dIGAMMA (IGAMMA), 87
count_2_33 (count_1_31), 36	dJSU (JSU), 88
count_3_32 (count_1_31), 36	dJSUo (JSUo), 91
count_3_33 (count_1_31), 36	dLG (LG), 93
cSB (momentSK), 110	dLNO (LNO), 95
cSEP3 (momentSK), 110	dL0 (L0), 98

dLOGITNO (LOGITNO), 100	dTF2 (TF), 164
dLOGNO (LNO), 95	dWARING (WARING), 166
dLOGN02 (LN0), 95	dWEI (WEI), 168
dLQNO (LQNO), 102	dWEI2 (WEI2), 170
dMN3 (MN3), 108	dWEI3 (WEI3), 172
dMN4 (MN3), 108	dYULE (YULE), 174
dMN5 (MN3), 108	dZABB (ZABB), 175
dNBF (NBF), 113	dZABI (ZABI), 177
dNBI (NBI), 116	dZABNB (BNB), 33
dNBII (NBII), 118	dZAGA (ZAGA), 179
dNET (NET), 120	dZAIG (ZAIG), 182
dNO (NO), 122	dZALG (LG), 93
dNO2 (NO2), 124	dZANBI (ZANBI), 184
dNOF (NOF), 126	dZAP (ZAP), 186
dPARETO (PARETO2), 128	dZAPIG (PIG), 133
dPARETO1 (PARETO2), 128	dZASICHEL (SICHEL), 152
dPARET010 (PARET02), 128	dZAZIPF (ZIPF), 191
dPARETO2 (PARETO2), 128	dZIBB (ZABB), 175
dPARETO20 (PARETO2), 128	dZIBI (ZABI), 177
dPE (PE), 131	dZIBNB (BNB), 33
	dZINBF (NBF), 113
dPE2 (PE), 131 dPIG (PIG), 133	dZINBI (ZANBI), 184
	dZIP (ZIP), 187
dPIG2 (PIG), 133	dZIP2 (ZIP2), 189
DPO, 44, 46, 63, 80	dZIPF (ZIPF), 191
dPO (PO), 136	dZIPIG (PIG), 133
dRG (RG), 138	dZISICHEL (SICHEL), 152
dRGE (RGE), 140	,,
dSEP (SEP), 142	EGB2, 48, <i>63</i>
dSEP1 (SEP1), 144	exGAUS, 50, 63
dSEP2 (SEP1), 144	EXP, 52, 63
dSEP3 (SEP1), 144	
dSEP4 (SEP1), 144	Family (gen.Family), 70
dSHASH (SHASH), 147	fEGB2_1 (momentSK), 110
dSHASHo (SHASH), 147	fEGB2_2 (momentSK), 110
dSHASHo2 (SHASH), 147	fittedMN (MN3), 108
dSI (SI), 150	fJSU (momentSK), 110
dSICHEL (SICHEL), 152	flexDist, 54
dSIMPLEX (SIMPLEX), 155	format.GAMLSS(GAMLSS), 60
dSN1 (SN1), 157	fSEP3 (momentSK), 110
dSN2 (SN2), 159	fST3_1 (momentSK), 110
dSST (ST1), 161	fST3_2 (momentSK), 110
dST1 (ST1), 161	
dST2 (ST1), 161	GA, 52, 55, 59, 63, 65, 76, 86, 88, 181
dST3 (ST1), 161	GAF, 57
dST3C (ST1), 161	GAMLSS, 60
dST4 (ST1), 161	gamlss, 60
dST5 (ST1), 161	${\tt gamlss.dist}({\tt gamlss.dist-package}), 4$
dTF (TF), 164	gamlss.dist-package,4

gamlss.family, 8, 10, 13, 16, 18, 21, 25, 28,	LOGNO2 (LNO), 95
30, 32, 36, 40, 44, 46, 50, 52, 53, 57,	LQNO, 64, 102
59, 61, 62, 67, 70, 74, 76, 78, 80,	
82–84, 86, 88, 91, 93, 95, 98, 100,	make.link.gamlss, 104
101, 105, 109, 113, 117, 119, 121,	mean.GAMLSS(GAMLSS), 60
123, 125, 127, 130, 132, 135, 137,	meanBEINF (BEINF), 21
139, 142, 144, 146, 150, 152, 155,	meanBEINF0 (BEINF), 21
158, 160, 163, 166, 167, 169,	meanBEINF1 (BEINF), 21
171–173, 175, 177, 179, 181, 183,	meanBEOI (BEOI), 26
185, 187, 189, 190	meanBEZI (BEZI), 28
GB1, 21, 63, 66	meanZAGA (ZAGA), 179
GB2, 63, 68	meanZAIG (ZAIG), 182
gen.Family, 70	MN3, 108
gen.hazard (hazardFun), 84	MN4 (MN3), 108
GEOM, 63, 72, 193	MN5 (MN3), 108
GEOMo, 63	momentSK, 110
GEOMO (GEOM), 72	MULTIN (MN3), 108
get_C (DPO), 46	11021111 (11113); 100
GetBI_C (DBI), 40	NBF, <i>63</i> , 113
GG, 59, 63, 74	NBI, 35, 63, 65, 115, 116, 119, 135, 137, 152,
	177, 185
GIG, 63, 76, 86	NBII, 35, 63, 65, 115, 117, 118, 135, 137, 152,
GP (GB2), 68	177, 185
GPO, 78	NET, 63, 120
GT, 63, 80	NO, 60, 64, 65, 100, 103, 122, 125, 127
GU, 63, 65, 82	NO2, 103, 123, 124, 127
h	NOF, 64, 103, 126
hazardFun, 84	NOI , 04, 103, 120
histSmo, 55	own.linkfun(make.link.gamlss), 104
TC 52 62 65 70 05 102	own.linkinv (make.link.gamlss), 104
IG, 52, 63, 65, 78, 85, 183	own.mu.eta (make.link.gamlss), 104
IGAMMA, 63, 87	own.valideta(make.link.gamlss), 104
is_continuous, 61	owii. valideta (iiiake. 1111k. gaiii155), 104
is_continuous.GAMLSS(GAMLSS),60	PARETO (PARETO2), 128
is_discrete, 61	PARETO1 (PARETO2), 128
is_discrete.GAMLSS(GAMLSS),60	PARETO10 (PARETO2), 128
TOU 50 (2 (5 (7 70 02 00 02 144 150	PARETO2, 64, 128
JSU, 50, 63, 65, 67, 70, 82, 88, 93, 144, 150	PARETO20, 64
JSUo, <i>91</i> , 91	•
	PARETO2o (PARETO2), 128
kurtosis.GAMLSS(GAMLSS),60	pBB (BB), 8
10 (2 02 102	pBCCG (BCCG), 10
LG, 63, 93, 193	pBCCGo (BCCG), 10
LNO, 52, 63, 65, 95	pBCPE (BCPE), 13
L0, 63, 65, 98	pBCPEo (BCPE), 13
log_pdf, 60	pBCT (BCT), 16
log_pdf.GAMLSS (GAMLSS), 60	pBCTo (BCT), 16
LOGITNO, 21, 63, 100	pBE (BE), 19
LOGNO, 63, 101	pBEINF (BEINF), 21
LOGNO (LNO), 95	pBEINF0 (BEINF), 21

pBEINF1 (BEINF), 21	plotZAGA (ZAGA), 179
pBEo (BE), 19	plotZAIG (ZAIG), 182
pBEOI (BEOI), 26	pLQNO (LQNO), 102
pBEZI (BEZI), 28	pMN3 (MN3), 108
pBI (BI), 31	pMN4 (MN3), 108
pBNB (BNB), 33	pMN5 (MN3), 108
pDBI (DBI), 40	pNBF (NBF), 113
pDBURR12 (DBURR12), 42	pNBI (NBI), 116
pDEL (DEL), 44	pNBII (NBII), 118
pdf, 60	pNET (NET), 120
pdf.GAMLSS (GAMLSS), 60	pNO (NO), 122
pDPO (DPO), 46	pN02 (N02), 124
PE, 64, 65, 131	pNOF (NOF), 126
PE2, 64	P0, 48, 64, 65, 80, 95, 136, 187, 189, 193
PE2 (PE), 131	pPARETO (PARETO2), 128
pEGB2 (EGB2), 48	pPARETO1 (PARETO2), 128
pexGAUS (exGAUS), 50	pPARET01o (PARET02), 128
pEXP (EXP), 52	pPARETO2 (PARETO2), 128
pGA (GA), 55	pPARET02o (PARET02), 128
pGAF (GAF), 57	pPE (PE), 131
pGB1 (GB1), 66	pPE2 (PE), 131
pGB2 (GB2), 68	pPIG (PIG), 133
pGEOM (GEOM), 72	pPIG2 (PIG), 133
pGEOMo (GEOM), 72	pP0 (P0), 136
pGG (GG), 74	pRG (RG), 138
pGIG (GIG), 76	pRGE (RGE), 140
pGP (GB2), 68	print.GAMLSS(GAMLSS),60
pGPO (GPO), 78	print.gamlss.family(gamlss.family),62
pGT (GT), 80	pSEP (SEP), 142
pGU (GU), 82	pSEP1 (SEP1), 144
PIG, 64, 65, 117, 119, 133, 152, 155	pSEP2 (SEP1), 144
pIG (IG), 85	pSEP3 (SEP1), 144
PIG2 (PIG), 133	pSEP4 (SEP1), 144
pIGAMMA (IGAMMA), 87	pSHASH (SHASH), 147
pJSU (JSU), 88	pSHASHo (SHASH), 147
pJSUo (JSUo), 91	pSHASHo2 (SHASH), 147
pLG (LG), 93	pSI (SI), 150
pLNO (LNO), 95	pSICHEL (SICHEL), 152
pL0 (L0), 98	pSIMPLEX (SIMPLEX), 155
pLOGITNO (LOGITNO), 100	pSN1 (SN1), 157
pLOGNO (LNO), 95	pSN2 (SN2), 159
pLOGNO2 (LNO), 95	pSST (ST1), 161
plotBEINF (BEINF), 21	pST1 (ST1), 161
plotBEINF0 (BEINF), 21	pST2 (ST1), 161
plotBEINF1 (BEINF), 21	pST3 (ST1), 161
plotBEOI (BEOI), 26	pST3C (ST1), 161
plotBEZI (BEZI), 28	pST4 (ST1), 161
<pre>plotCentileSK (momentSK), 110</pre>	pST5 (ST1), 161

pTF (TF), 164	qEGB2 (EGB2), 48
pTF2 (TF), 164	qexGAUS (exGAUS), 50
pWARING (WARING), 166	qEXP (EXP), 52
pWEI (WEI), 168	qGA (GA), 55
pWEI2 (WEI2), 170	qGAF (GAF), 57
pWEI3 (WEI3), 172	qGB1 (GB1), 66
pYULE (YULE), 174	qGB2 (GB2), 68
pZABB (ZABB), 175	qGEOM (GEOM), 72
pZABI (ZABI), 177	qGEOMo (GEOM), 72
pZABNB (BNB), 33	qGG (GG), 74
pZAGA (ZAGA), 179	qGIG (GIG), 76
pZAIG (ZAIG), 182	qGP (GB2), 68
pZALG (LG), 93	qGPO (GPO), 78
pZANBI (ZANBI), 184	qGT (GT), 80
pZAP (ZAP), 186	qGU (GU), 82
pZAPIG (PIG), 133	qIG (IG), 85
pZASICHEL (SICHEL), 152	qIGAMMA (IGAMMA), 87
pZAZIPF (ZIPF), 191	qJSU (JSU), 88
pZIBB (ZABB), 175	qJSUo (JSUo), 91
pZIBI (ZABI), 177	qLG (LG), 93
pZIBNB (BNB), 33	qLNO (LNO), 95
pZINBF (NBF), 113	• • •
pZINBI (ZANBI), 184	qL0 (L0), 98
pZIP (ZIP), 187	qLOGITNO (LOGITNO), 100
pZIP2 (ZIP2), 189	qL0GN0 (LN0), 95
pZIPF (ZIPF), 191	qL0GN02 (LN0), 95
pZIPIG (PIG), 133	qLQNO (LQNO), 102
pZISICHEL (SICHEL), 152	qMN3 (MN3), 108
F = (,)	qMN4 (MN3), 108
qBB (BB), 8	qMN5 (MN3), 108
qBCCG (BCCG), 10	qNBF (NBF), 113
qBCCGo (BCCG), 10	qNBI (NBI), 116
qBCPE (BCPE), 13	qNBII (NBII), 118
qBCPEo (BCPE), 13	qNET (NET), 120
qBCT (BCT), 16	qN0 (N0), 122
qBCTo (BCT), 16	qN02 (N02), 124
qBE (BE), 19	qNOF (NOF), 126
qBEINF (BEINF), 21	qPARETO (PARETO2), 128
qBEINF0 (BEINF), 21	qPARET01 (PARET02), 128
qBEINF1 (BEINF), 21	qPARET01o (PARET02), 128
qBEo (BE), 19	qPARETO2 (PARETO2), 128
qBEOI (BEOI), 26	qPARETO2o (PARETO2), 128
qBEZI (BEZI), 28	qPE (PE), 131
qBI (BI), 31	qPE2 (PE), 131
qBNB (BNB), 33	qPIG (PIG), 133
qDBI (DBI), 40	qPIG2 (PIG), 133
qDBURR12 (DBURR12), 42	qP0 (P0), 136
qDEL (DEL), 44	qRG (RG), 138
qDP0 (DP0), 46	qRGE (RGE), 140

qSEP (SEP), 142	qZISICHEL (SICHEL), 152
qSEP1 (SEP1), 144	
qSEP2 (SEP1), 144	random, 61
qSEP3 (SEP1), 144	random.GAMLSS (GAMLSS), 60
qSEP4 (SEP1), 144	rBB (BB), 8
qSHASH (SHASH), 147	rBCCG (BCCG), 10
qSHASHo (SHASH), 147	rBCCGo (BCCG), 10
qSHASHo2 (SHASH), 147	rBCPE (BCPE), 13
qSI (SI), 150	rBCPEo (BCPE), 13
qSICHEL (SICHEL), 152	rBCT (BCT), 16
qSIMPLEX (SIMPLEX), 155	rBCTo (BCT), 16
qSN1 (SN1), 157	rBE (BE), 19
gSN2 (SN2), 159	rBEINF (BEINF), 21
qSST (ST1), 161	rBEINF0 (BEINF), 21
qST1 (ST1), 161	rBEINF1 (BEINF), 21
qST2 (ST1), 161	rBEo (BE), 19
qST3 (ST1), 161	rBEOI (BEOI), <mark>26</mark>
qST3C (ST1), 161	rBEZI (BEZI), 28
qST4 (ST1), 161	rBI (BI), 31
qST5 (ST1), 161	rBNB (BNB), 33
qTF (TF), 164	rDBI (DBI), 40
qTF2 (TF), 164	rDBURR12 (DBURR12), 42
quantile.GAMLSS (GAMLSS), 60	rDEL (DEL), 44
qWARING (WARING), 166	rDPO (DPO), 46
qWEI (WEI), 168	rEGB2 (EGB2), 48
qWEI2 (WEI2), 170	rexGAUS (exGAUS), 50
qWEI3 (WEI3), 172	rEXP (EXP), 52
qYULE (YULE), 174	RG, 64, 65, 83, 138
qZABB (ZABB), 175	rGA (GA), 55
qZABI (ZABI), 177	rGAF (GAF), 57
qZABNB (BNB), 33	rGB1 (GB1), 66
qZAGA (ZAGA), 179	rGB2 (GB2), 68
qZAIG (ZAIG), 182	RGE, 64, 140
qZALG (LG), 93	rGEOM (GEOM), 72
qZANBI (ZANBI), 184	rGEOMo (GEOM), 72
qZAP (ZAP), 186	rGG (GG), 74
qZAPIG (PIG), 133	rGIG (GIG), 76
qZASICHEL (SICHEL), 152	rGP (GB2), 68
qZAZIPF (ZIPF), 191	rGPO (GPO), 78 rGT (GT), 80
qZIBB (ZABB), 175	rGU (GU), 82
qZIBI (ZABI), 177	rIG (IG), 85
qZIBNB (BNB), 33	rIGAMMA (IGAMMA), 87
qZINBF (NBF), 113	rJSU (JSU), 88
qZINBI (ZANBI), 184	rJSUo (JSUo), 91
qZIP (ZIP), 187	rLG (LG), 93
qZIP2 (ZIP2), 189	rLNO (LNO), 95
qZIPF (ZIPF), 191	rL0 (L0), 98
qZIPIG (PIG), 133	rLOGITNO (LOGITNO), 100
-1 (·),	

rLOGNO (LNO), 95	rWEI (WEI), 168
rLOGNO2 (LNO), 95	rWEI2 (WEI2), 170
rLQNO (LQNO), 102	rWEI3 (WEI3), 172
rMN3 (MN3), 108	rYULE (YULE), 174
rMN4 (MN3), 108	rZABB (ZABB), 175
rMN5 (MN3), 108	rZABI (ZABI), 177
rNBF (NBF), 113	rZABNB (BNB), 33
rNBI (NBI), 116	rZAGA (ZAGA), 179
rNBII (NBII), 118	rZAIG (ZAIG), 182
rNET (NET), 120	rZALG (LG), 93
rNO (NO), 122	rZANBI (ZANBI), 184
rNO2 (NO2), 124	rZAP (ZAP), 186
rNOF (NOF), 126	rZAPIG (PIG), 133
rPARETO (PARETO2), 128	rZASICHEL (SICHEL), 152
rPARETO1 (PARETO2), 128	rZAZIPF (ZIPF), 191
rPARETO1o (PARETO2), 128	rZIBB (ZABB), 175
rPARETO2 (PARETO2), 128	rZIBI (ZABI), 177
rPARETO20 (PARETO2), 128	rZIBNB (BNB), 33
rPE (PE), 131	rZINBF (NBF), 113
rPE2 (PE), 131	rZINBI (ZANBI), 184
rPIG (PIG), 133	rZIP (ZIP), 187
rPIG2 (PIG), 133	rZIP2 (ZIP2), 189
rP0 (P0), 136	rZIPF (ZIPF), 191
rRG (RG), 138	rZIPIG (PIG), 133
rRGE (RGE), 140	rZISICHEL (SICHEL), 152
rSEP (SEP), 142	
rSEP1 (SEP1), 144	SEP, 142, <i>146</i>
rSEP2 (SEP1), 144	SEP1, <i>64</i> , 144, <i>163</i>
	SEP2, 64
rSEP3 (SEP1), 144	SEP2 (SEP1), 144
rSEP4 (SEP1), 144	SEP3, 64
rSHASH (SHASH), 147	SEP3 (SEP1), 144
rSHASHo (SHASH), 147	SEP4, 64
rSHASHo2 (SHASH), 147	SEP4 (SEP1), 144
rSI (SI), 150	SHASH, <i>64</i> , 147, <i>163</i>
rSICHEL (SICHEL), 152	SHASHo, 64
rSIMPLEX (SIMPLEX), 155	SHASHo (SHASH), 147
rSN1 (SN1), 157	SHASHo2 (SHASH), 147
rSN2 (SN2), 159	show.link(make.link.gamlss), 104
rSST (ST1), 161	SI, 46, 64, 117, 119, 135, 137, 150, 155
rST1 (ST1), 161	SICHEL, 46, 64, 135, 137, 152
rST2 (ST1), 161	SIMPLEX, <i>64</i> , 155
rST3 (ST1), 161	SKcentile_col (momentSK), 110
rST3C (ST1), 161	SKcentile_gray (momentSK), 110
rST4 (ST1), 161	SKcentileBoth (momentSK), 110
rST5 (ST1), 161	skewness.GAMLSS(GAMLSS), 60
rTF (TF), 164	SKmoment_col (momentSK), 110
rTF2 (TF), 164	SKmoment_gray (momentSK), 110
rWARING (WARING), 166	SKmomentBoth (momentSK), 110

SN1, 157	ZAP, <i>64</i> , <i>95</i> , 186
SN2, 159	ZAPIG (PIG), 133
SST (ST1), 161	ZASICHEL, 64
ST1, 64, 161	ZASICHEL (SICHEL), 152
ST2, 64	ZAZIPF, 64
ST2 (ST1), 161	ZAZIPF (ZIPF), 191
ST3, <i>64</i>	zetaP (ZIPF), 191
ST3 (ST1), 161	ZIBB (ZABB), 175
ST3C (ST1), 161	ZIBI, 32, 64
ST4, 64	ZIBI (ZABI), 177
ST4 (ST1), 161	ZIBNB, <i>64</i>
ST5, 64	ZIBNB (BNB), 33
ST5 (ST1), 161	ZINBF (NBF), 113
support, 61	ZINBI, <i>64</i>
support.GAMLSS (GAMLSS), 60	ZINBI (ZANBI), 184
	ZIP, 64, 65, 187, 187, 190
tEGB2_1 (momentSK), 110	ZIP2, 64, 187, 189, 189
tEGB2_2 (momentSK), 110	ZIPF, 64, 191
TF, 64, 65, 100, 164	ZIPIG, <i>64</i>
TF2 (TF), 164	ZIPIG (PIG), 133
	ZISICHEL, <i>64</i>
theoCentileSK (momentSK), 110	
tJSU (momentSK), 110	ZISICHEL (SICHEL), 152
tofyS (SI), 150	
tofySICHEL (SICHEL), 152	
tSB (momentSK), 110	
tSEP3 (momentSK), 110	
tSHASH (momentSK), 110	
tST3_1 (momentSK), 110	
tST3_2 (momentSK), 110	
to 15_2 (momentosity, 110	
variance.GAMLSS(GAMLSS),60	
VSICHEL (SICHEL), 152	
VSICHEL (SICHEL), 132	
WARTING 64 166	
WARING, 64, 166	
WEI, 64, 65, 168, 171–173	
WEI2, 64, 65, 169, 170, 172, 173	
WEI3, 64, 169, 171, 172	
YULE, 64, 174, 193	
ZABB, 175	
ZABI, 32, 64, 177	
ZABNB, <i>64</i>	
ZABNB (BNB), 33	
ZAGA, 179	
•	
ZAIG, 64, 181, 182	
ZALG, 64, 187	
ZALG (LG), 93	
ZANBI, 64, 184	