

<u>David</u>

A.I.: Inteligência Artificial

- Filme de 2001
 - Projeto de Stanley Kubrick, que faleceu antes da realização do filme
 - Dirigido por Steven Spielberg
- Dividiu opiniões

A TRAGÉDIA E A BUSCA

SIGNIFICADO DE SER HUMANO

OS RUMOS DA IA

- A realização humana de criar máquinas inteligentes
 - Humanos como "seres divinos"
- Mais do que "ler e escrever", máquinas capazes de amar e que sofrem com a realidade do mundo
 - A questão existencial: o que significa ser real?
- A inversão dos papeis: após o fim da humanidade, as máquinas recriam os humanos
 - Máquinas se tornam "seres divinos"
- Máquinas buscando entender o significado da vida humana

O AVANÇO DO PLN

- o Semântica em todos os seus níveis
 - Significado
 - Ligação com o "mundo real"
 - Sentimentos
- E os desafios existenciais da IA e do PLN
 - Máquinas sencientes?
 - Máquinas conscientes?
 - Queremos realmente isso?

SINTAXE

SCC5908 Introdução ao Processamento de Língua Natural SCC0633 Processamento de Linguagem Natural

RELEMBRANDO

- o Importância da sintaxe
- o Análise de constituintes e de dependências
- o Gramática e treebanks
- Parsing completo e parcial
- Método CKY
- Probabilidades

PARSING DE DEPENDÊNCIA

Uma nova ótica

- Busca por pares de elementos e suas relações
- Tendência cada vez mais forte em PLN

Universal Dependencies

- o Conjunto "universal" de relações de dependências
 - Atualmente em sua versão 2.8

Clausal Argument Relations	Description
NSUBJ	Nominal subject
DOBJ	Direct object
IOBJ	Indirect object
CCOMP	Clausal complement
XCOMP	Open clausal complement
Nominal Modifier Relations	Description
NMOD	Nominal modifier
AMOD	Adjectival modifier
NUMMOD	Numeric modifier
APPOS	Appositional modifier
DET	Determiner
CASE	Prepositions, postpositions and other case markers
Other Notable Relations	Description
CONJ	Conjunct
CC	Coordinating conjunction

DEFINIÇÕES

• Pares *head*/cabeça-dependente

Relation	Examples with head and dependent	
NSUBJ	United canceled the flight.	
DOBJ	United diverted the flight to Reno.	
	We booked her the first flight to Miami.	
IOBJ	We booked her the flight to Miami.	
NMOD	We took the morning flight.	
AMOD	Book the cheapest flight.	
NUMMOD	Before the storm JetBlue canceled 1000 flights.	
APPOS	United, a unit of UAL, matched the fares.	
DET	The flight was canceled.	
	Which flight was delayed?	
CONJ	We flew to Denver and drove to Steamboat.	
CC	We flew to Denver and drove to Steamboat.	
CASE	Book the flight through Houston.	

UDPIPE

- Um dos parsers mais populares com base em UD, para diversas línguas
- Para testar: https://lindat.mff.cuni.cz/services/udpipe/
- o Straka (2018): artigo para os interessados
 - É interessante ver o esforço em larga escala de demonstrar o bom desempenho e a "universalidade" do modelo

Representação gramatical

- o Também é possível
- o Usualmente, tem-se uma quádrupla (R, T, C, F)
 - R: regras de dependência
 - T: símbolos terminais
 - C: categorias não terminais
 - F: funções de associação entre T e C
- Exemplo
 - $R = \{*(V), V(N,*,N), N(Det,*), N(*), Det(*)\}$
 - T = {loves, woman, John, a}
 - $C = \{V, N, Det\}$
 - F(loves) = V
 - F(woman) = N
 - F(John) = N
 - F(a) = Det

Notação

 $x(p_1,...,*,...,p_k)$: $p_1...p_k$ são dependentes de x

x(*): x é folha

*(x): x é raiz da árvore

Representação gramatical

- o Também é possível
- o Usualmente, tem-se uma quádrupla (R, T
 - R: regras de dependência
 - T: símbolos terminais
 - C: categorias não terminais
 - F: funções de associação entre T e C

- $R = \{*(V), V(N,*,N), N(Det,*), N(*), Det(*)\}$
- T = {loves, woman, John, a}
- $C = \{V, N, Det\}$
- F(loves) = V
- F(woman) = N
- F(John) = N
- F(a) = Det

<u>Notação</u>

 $x(p_1,...,*,...,p_k)$: $p_1...p_k$ são dependentes de x

x(*): x é folha

*(x): x é raiz da árvore

MÉTODO

- Baseado na estratégia shift-reduce normalmente utilizada em compiladores
 - Palavras são empilhadas (*shift* do buffer de entrada para a pilha)
 - Buscam-se relações entre os elementos empilhados (fazendo-se a "redução" da pilha)
 - o Em cada momento, há uma "configuração" do sistema, portanto
 - Estado da pilha
 - Buffer com a entrada
 - Relações já encontradas
 - O segredo do parsing: encontrar a operação apropriada em cada configuração (com base em um "oráculo" que orienta o processo)

MÉTODO BASEADO EM TRANSIÇÕES (ARC TRANSITION)

MÉTODO

- Operações possíveis
 - Shift: a palavra da frente do buffer é empilhada (no topo da pilha)
 - Formato de pilha deitada, para facilitar a visualização das demais operações
 - <u>Left-Arc(R)</u>: é criada uma relação de dependência Rel entre a palavra no topo da pilha e a abaixo dela (removendo-se da pilha o dependente)
 - Right-Arc(R): é criada uma relação de dependência R entre a palavra abaixo do topo da pilha e a palavra do topo (removendo-se da pilha o dependente)

o Esquema de funcionamento do método

- Pilha (*stack*) começa com ROOT
- Sentença a ser analisada no buffer
- A é o conjunto de relações de dependências identificadas
- Transições indicadas pelo oráculo

Transition	Stack	Buffer	A
	[ROOT]	[He has good control.]	Ø
SHIFT	[ROOT He]	[has good control.]	
SHIFT	[ROOT He has]	[good control .]	
LEFT-ARC(nsubj)	[ROOT has]	[good control .]	$A \cup \text{nsubj(has,He)}$
SHIFT	[ROOT has good]	[control.]	
SHIFT	[ROOT has good control]	[.]	
LEFT-ARC (amod)	[ROOT has control]	[.]	$A \cup amod(control,good)$
RIGHT-ARC(dobj)	[ROOT has]	[.]	$A \cup dobj(has,control)$
RIGHT-ARC(root)	[ROOT]		$A \cup \text{root}(\text{ROOT},\text{has})$

ORÁCULO

- No coração do processo
 - Responsável por orientar a análise
 - Em geral, é um classificador que, a partir de dados da configuração do sistema, indica a melhor operação

o Aprendizado de máquina

- Atributos usuais (com regressão logística e SVM, normalmente) são as palavras no topo da pilha e na frente do buffer, suas etiquetas morfossintáticas, as relações já previstas e combinações desses e outros atributos.
 - Problemas dessas abordagens: engenharia de atributos (que atributos usar, que combinações de atributos fazer), dados esparsos, muito tempo para cômputo dos atributos

ORÁCULO

- No coração do processo
 - Responsável por orientar a análise
 - Em geral, é um classificador que, a partir de dados da configuração do sistema, indica a melhor operação

o Aprendizado de máquina

- Redes neurais e os melhores resultados
 - Atributos usuais: *embeddings* e seu poder representacional (menos esparsidade, generalização) para palavras, etiquetas morfossintáticas e relações de dependência da configuração atual
 - Aprendizado automático de relevância dos atributos e suas combinações
 - Maior velocidade de processamento em relação ao cômputo dos atributos das abordagens anteriores

QUESTÕES

- Sistema baseado em transições e "projetividade" (ou seja, o não cruzamento de arcos na árvore de dependências)
 - Mas projetividade nem sempre é o ideal
- o <u>Busca gulosa</u> e a velocidade de análise
 - Versus busca em um espaço maior de soluções (mas com maior tempo de processamento necessário)
 - Relembrando: qual o problema de se usar busca gulosa?

HUMANOS E PARSING

- Experimentos com humanos: probabilidades
 na mente!
 - Estruturas e <u>palavras mais previsíveis</u> (prováveis) são <u>lidas mais rapidamente</u> por humanos
 - o Como se mede isso?

- Experimentos com humanos: probabilidades
 na mente!
 - Estruturas e <u>palavras mais previsíveis</u> (prováveis) são <u>lidas mais rapidamente</u> por humanos
 - Medidas empíricas: por exemplo, entropia vs. rastreamento do movimento dos olhos

- Experimentos com humanos: probabilidades
 na mente!
 - Humanos desambiguam análises, preferindo análises mais prováveis
 - Sentenças garden-path: temporariamente ambíguas
 - The students forgot the solution was in the back of the book.
 - The horse raced past the barn fell.
 - The complex houses married and single students and their families.

- Experimentos com humanos: probabilidades
 na mente!
 - Humanos desambiguam análises, preferindo análises mais prováveis
 - Sentenças *garden-path*: temporariamente ambíguas
 - Maria beijou João e o irmão dele arregalou os olhos de espanto.

- Experimentos com humanos: probabilidades
 na mente!
 - Humanos desambiguam análises, preferindo análises mais prováveis
 - Sentenças *garden-path*: há casos mais complexos!
 - Um navio brasileiro entrava na baía um navio japonês.

ATRIBUTOS E UNIFICAÇÃO

- Exemplo simples
 - $S \rightarrow SN SV$
 - $SN \rightarrow pronome \mid art subst$
 - $SV \rightarrow verbo$
 - pronome \rightarrow ele | eles | ela | elas
 - art \rightarrow o | os | a | as
 - subst -> menino | meninos | menina | meninas
 - verbo → chorou | choraram

EXEMPLO

- O que aconteceu?
- Por que aconteceu?
- Como resolver?

```
📜 SWI-Prolog -- c:/Users/Th... 🖳
File Edit Settings Run Debug Help
 1 ?- s(S,[]).
  = [ele, chorou]
   = [ele, choraram]
     [eles, chorou]
     [eles, choraram] ;
      ela, choroul
      [ela, choraram]
     [elas, chorou]
     [elas, choraram]
     [o, menino, chorou]
     [o, menino, choraram]
     [o, meninos, chorou]
     [o, meninos, choraram]
     [o, menina, chorou]
     [o, menina, choraram]
     [o, meninas, chorou]
     [o, meninas, choraram]
     [os, menino, chorou]
     [os. menino. choraram]
     [os, meninos, chorou]
     [os, meninos, choraram]
     [os, menina, chorou]
     [os, menina, choraram]
     [os, meninas, chorou]
     [os, meninas, choraram]
     [a, menino, chorou]
     [a, menino, choraram]
     [a, meninos, chorou]
     [a, meninos, choraram]
     [a, menina, chorou]
     [a, menina, choraram]
     [a, meninas, chorou]
     [a, meninas, choraram]
     [as, menino, chorou]
     [as, menino, choraram]
     [as, meninos, chorou]
     [as, meninos, choraram]
     [as, menina, chorou]
     [as, menina, choraram]
   = [as, meninas, chorou]
    [as, meninas, choraram].
```

- Sentença correta/bem formada
 - S>SN SV não basta
 - Normalmente é necessário que haja
 - o Concordância de número e gênero dentro do SN
 - o Concordância de número e pessoa entre SN e SV
 - Concordância entre argumentos esperados pelo verbo e argumentos realizados
 - Etc.
 - Restrições!

• Questão: como resolver isso?

- Questão: como resolver isso?
 - 1^a opção: duplicar regras
 - Exemplo para **número**, somente
 - $\circ S_{\text{sing}} \to SN_{\text{sing}} SV_{\text{sing}}$
 - \circ $S_{plu} \rightarrow SN_{plu} SV_{plu}$
 - \circ SN_{sing} \rightarrow pronome_{sing} | art_{sing} subst_{sing}
 - \circ SN_{plu} \rightarrow pronome_{plu} | art_{plu} subst_{plu}
 - \circ SV_{sing} \rightarrow verbo_{sing}
 - \circ SV_{plu} \rightarrow verbo_{plu}
 - \circ pronome_{sing} \rightarrow ele | ela
 - \circ pronome_{plu} \rightarrow eles | elas

o ...

EXEMPLO

Número resolvido

o E gênero?

```
💥 SWI-Prolog -- c:/Users/Thiago/Docu...
<u>File Edit Settings Run Debug</u>
   ?- s sinq(S,[]).
 S = [ele, chorou]
 S = [ela, chorou]
 \bar{S} = [o, menino, chorou]
 S = [o, menina, chorou]
 S = [a, menino, chorou] ;
 S = [a, menina, chorou].
 2 ?- s_plu(S,[]).
 S = [eles, choraram]
 S = [elas, choraram]
  = [os, meninos, choraram]
 S = [os, meninas, choraram]
 S = [as, meninos, choraram];
 S = [as, meninas, choraram].
 3 ?-
```

GRAMATICALIDADE

- o Questão: como resolver isso?
 - 1^a opção: duplicar regras
 - o Desvantagens sérias
 - Explosão do número de regras
 - o Perda de generalidade da gramática
 - o Legibilidade da gramática prejudicada

GRAMATICALIDADE

- Questão: como resolver isso?
 - 2ª opção: atributos/propriedades associados aos constituintes
 - Exemplo
 - \circ S \rightarrow SN SV
 - Atributo "número" para SN e SV
 - SN.número = SV.número
 - o Vantagens: elegância, generalidade, legibilidade

• Feature structure

- Conjunto de atributos e valores
 - o Valores atômicos ou subestruturas de atributos
- Matriz atributo-valor

```
\begin{bmatrix} \text{atributo}_1 & \text{valor}_1 \\ \text{atributo}_2 & \text{valor}_2 \\ \dots & \dots \\ \text{atributo}_N & \text{valor}_N \end{bmatrix}
```

• Feature structure

Exemplos

Número singular

Categoria SN

Número singular

Pessoa 3a

Categoria SN

Número singular

Pessoa 3a

Categoria

Número singular Pessoa 3a

Operações

- União de estruturas compatíveis
- Rejeição de estruturas incompatíveis
 - o Unificação!

Exemplos

```
[Número singular] ∪ [Número singular] = [Número singular] 
[Número singular] ∪ [Número plural] → FALHA
```

Portanto

- Utilidade das estruturas de atributos
 - o Representar informação sobre algum objeto linguístico
 - o Impor restrições sobre comportamento do objeto linguístico

Unificação

- União de informações de estruturas de atributos compatíveis
- o Produz uma nova estrutura de atributos, que pode ser mais específica ou idêntica às originais

- Uso das estruturas de atributos
 - Forma de associar restrições às regras gramaticais
 - Extensão das regras gramaticais
 - Em vez de constituintes, temos constituintes+atributos/propriedades

Originalmente

Extensão para concordância de número entre SN e SV

 $S \rightarrow SN SV$

 $S \rightarrow SN SV$ $\langle SN \text{ num} \rangle = \langle SV \text{ num} \rangle$

- Uso das estruturas de atributos
 - Forma de associar restrições às regras gramaticais
 - Extensão das regras gramaticais
 - Em vez de constituintes, temos constituintes+atributos/propriedades

Originalmente

Extensão para concordância de número entre SN e SV

 $S \rightarrow SN SV$

 $S \rightarrow SN SV$ $\langle SN \text{ num} \rangle = \langle SV \text{ num} \rangle$

Significado

Significado

S se SN e SV

S se SN e SV e se SN.num=SV.num

EXERCÍCIO

 Adicionar atributos de gênero e número à gramática abaixo

```
S → SN SV
S → SV
SN → pronome
SN → substantivo
SN → artigo substantivo
SV → verbo
SV → verbo SN
SV → verbo SN
SV → preposição SN
```

```
pronome → eu | ele | ela | ...

artigo → o | a | os | as

substantivo → carro | carros | pessoa | ...

verbo → corre | correm | morre | morrem | ...

preposição → de | para | ...
```

- \circ S \rightarrow SN SV SN.num = SV.num
- o SN → artigo substantivo artigo.num = substantivo.num artigo.gen = substantivo.gen SN.num = substantivo.num
- o SV → verbo SV.num = verbo.num
- o artigo → o
 artigo.num = singular
 artigo.gen = masculino
- o substantivo → copo substantivo.num = singular substantivo.gen = masculino
- o verbo → quebrou verbo.num = singular

INÍCIO DA RESPOSTA

Exercício

Fazer derivação sintática da sentença "o copo quebrou"

O que acontece com "o copo quebraram"?

o DCG

- É possível representar atributos na forma de argumentos dos elementos
- Exemplo

```
s --> sn(Num,Gen), sv(Num).
sn(Num,Gen) --> art(Num,Gen), subst(Num,Gen).
...
art(singular,masculino) --> [o].
art(plural,masculino) --> [os].
...
```

o DCG

• É possível representar atributos na forma de argumentos dos elementos

```
Exemplo S \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle = \langle SV Num \rangle
s \rightarrow SN SV \\ \langle SN Num \rangle
```

- Atributos podem ser computados
 - Após geração/reconhecimento das sentenças, cortando algumas análises
 - Durante geração/reconhecimento, podando possibilidades