Gauss' Law $\oint \vec{E} \cdot d\vec{A} = \frac{Q_{in}}{\epsilon_0}$

"The **electric flux** through any **closed surface** is equal to the **charge within** that area"

If you choose an area A upon which the electric field E is uniform, The E can be removed from the integral and Gauss' Law becomes..

$$\mathbf{E} \mathbf{A} = \frac{Q_{in}}{\epsilon_o}$$

Note: The **dark orange shaded region** is charge contained within the **Gaussian surface**, the **tan shaded region** is charge not contained within the **Gaussian surface**

Spherical Symmetry

"Point Charge"
$$E(4\pi r^2)=rac{q}{\epsilon_o}$$

"Point charge in metal shell"

$$E(4\pi r^2) = rac{q}{\epsilon_O}$$
 if $\mathbf{r} < \mathbf{a}$
$$E(4\pi r^2) = 0$$
 if $\mathbf{a} < \mathbf{r} < \mathbf{b}$
$$E(4\pi r^2) = rac{q}{\epsilon_O}$$
 if $\mathbf{r} > \mathbf{b}$

"Metal shell with net charge Q, surrounding point charge q"

$$E(4\pi r^2)=rac{q}{\epsilon_o}$$
 if ${f r}<{f a}$
$$E(4\pi r^2)=0$$
 if ${f a}<{f r}<{f b}$
$$E(4\pi r^2)=rac{q+Q}{\epsilon_o}$$
 if ${f r}>{f b}$

"Metal shell with net charge Q"

$$E(4\pi r^2)=0$$
 if $\mathbf{r}<\mathbf{a}$
$$E(4\pi r^2)=0$$
 if $\mathbf{a}<\mathbf{r}<\mathbf{b}$
$$E(4\pi r^2)=\frac{Q}{\epsilon_o}$$
 if $\mathbf{r}>\mathbf{b}$

"Insulating charged sphere of charge density ho "

$$E(4\pi r^2) = \frac{\rho \cdot \frac{4}{3}\pi r^3}{\epsilon_o} \text{ if } \mathbf{r} < \mathbf{R}$$

$$E(4\pi r^2) = \frac{\rho \cdot \frac{4}{3}\pi R^3}{\epsilon_o} \text{ if } \mathbf{r} > \mathbf{R}$$

"Insulating charged sphere of total charge Q_o"

$$\underline{E}(4\pi r^2) = \frac{\frac{Q_o}{\frac{4}{3}\pi R^3} \cdot \frac{4}{3}\pi r^3}{\epsilon_o} \quad \text{if } \mathbf{r} < \mathbf{R}$$

$$E(4\pi r^2) = \frac{Q_o}{\epsilon_o}$$
 if $r > R$

"Insulating charged shell given charge density ho "

$$E(4\pi r^2) = 0 \quad \text{if } r < a$$

$$E(4\pi r^{2}) = \frac{\rho(\frac{4}{3}\pi r^{3} - \frac{4}{3}\pi a^{3})}{\epsilon_{o}} \text{ if } a < r < b$$

$$\underline{E}(4\pi r^2) = \frac{\rho(\frac{4}{3}\pi b^3 - \frac{4}{3}\pi a^3)}{\epsilon_o} \text{ if } \mathbf{r} > \mathbf{b}$$

"Insulating charged shell given total charge Q_o "

$$\frac{E(4\pi r^2)=0 \quad \text{if } \mathbf{r} < \mathbf{a}}{\frac{Q_o}{\frac{4}{3}\pi b^3 - \frac{4}{3}\pi a^3} \cdot (\frac{4}{3}\pi r^3 - \frac{4}{3}\pi a^3)} \quad \text{if } \mathbf{a} < \mathbf{r} < \mathbf{b}}$$

$$E(4\pi r^2) = \frac{Q_o}{\epsilon_o} \quad \text{if } \mathbf{r} > \mathbf{b}$$

"Insulating sphere with charge density $\rho^{(r)}$ "

$$\begin{split} E(4\pi r^2) &= \frac{\int_o^r \rho(r) 4\pi r^2 dr}{\epsilon_o} \quad \mathbf{r} < \mathbf{R} \\ E(4\pi r^2) &= \frac{\int_o^R \rho(r) 4\pi r^2 dr}{\epsilon_o} \quad \mathbf{r} > \mathbf{R} \\ \hline dV_{sphere} &= d(\frac{4}{3}\pi r^3) = 4\pi r^2 dr \end{split}$$

"Insulating charged shell given charge density ρ _(r)"

$$\begin{split} E(4\pi r^2) &= 0 \quad \text{if } \mathbf{r} < \mathbf{a} \\ E(4\pi r^2) &= \frac{\int_a^r \rho(r) 4\pi r^2 dr}{\epsilon_o} \quad \text{if } \mathbf{a} < \mathbf{r} < \mathbf{b} \\ E(4\pi r^2) &= \frac{\int_a^b \rho(r) 4\pi r^2 dr}{\epsilon_o} \quad \text{if } \mathbf{r} > \mathbf{b} \end{split}$$

Cylindrical Symmetry

"Line of charge"

$$E(2\pi rh) = rac{\lambda h}{\epsilon_O}$$
 for all \mathbf{r}

"Insulating cylinder with charge density ρ "

$$E(2\pi rh) = \frac{\rho(\pi r^2 h)}{\epsilon_o} \quad \mathbf{r} < \mathbf{R}$$

$$E(2\pi rh) = \frac{\rho(\pi R^2 h)}{\epsilon_o} \quad \mathbf{r} > \mathbf{R}$$

"Insulating cylinder with non-uniform charge density $\rho(\mathbf{r})$ "

$$E(2\pi rh) = \int_{o}^{r} \frac{\rho(r)2\pi rhdr}{\epsilon_{o}} \mathbf{r} < \mathbf{R}$$

$$E(2\pi rh) = \int_{o}^{R} \frac{\rho(r)2\pi rhdr}{\epsilon_{o}} \mathbf{r} > \mathbf{R}$$

$$dV_{cylinder} = d(\pi r^{2}h) = 2\pi rhdr$$

"Insulating hollow cylinder of charge density ho"

$$E(2\pi rh) = 0 \quad \text{r < a}$$

$$E(2\pi rh) = \frac{\rho(\pi r^2 h - \pi a^2 h)}{\epsilon_o} \quad \text{b > r > a}$$

$$E(2\pi rh) = \frac{\rho(\pi b^2 h - \pi a^2 h)}{\epsilon_o} \quad \text{r > b}$$

"Insulating hollow cylinder of non-uniform charge density $ho_{(r)}$ "

Planar Symmetry

