1. 试求 $\lambda I - A$ 的法式, 其中 A 为

(1)
$$\mathbf{A} = \begin{pmatrix} -1 & 0 & 1 \\ 3 & 2 & 0 \\ 0 & 1 & 4 \end{pmatrix}$$
, (2) $\mathbf{A} = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 4 & 0 \\ -1 & 1 & 0 \end{pmatrix}$.

答: (1)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (\lambda - 2)(\lambda + 1)(\lambda - 4) - 3 \end{pmatrix}$$

(2)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (\lambda - 4)(\lambda^2 - 3\lambda + 1) \end{pmatrix}.$$

2. 判断下列矩阵是否相似

$$(1) \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; (2) \begin{pmatrix} 3 & 2 & 0 \\ 2 & 6 & 1 \\ 1 & 2 & -3 \end{pmatrix}, \begin{pmatrix} 6 & 2 & -3 \\ 6 & 2 & -1 \\ 4 & 0 & -3 \end{pmatrix};$$

$$(3) \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}; (4) \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ -4 & -4 & -3 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ -1 & 1 & 2 \end{pmatrix}.$$

答: (1) 否不变因子: $\lambda - i$, $\lambda - i$ 及 1, $(\lambda - 1)(\lambda + 1)$.

- (2) 否不变因子: $1, 1, (\lambda 2)(\lambda^2 4\lambda 23)$ 及 $1, 1, \lambda^3 11\lambda^2 + 36\lambda 16$.
- (3) 否不变因子: $1, 1, (\lambda 1)^2(\lambda + 1)$ 及 $1, \lambda 1, (\lambda 1)(\lambda + 1)$.
- (4) 是不变因子: $1, (\lambda 1), (\lambda 1)^2$ 。
- 3. 求下列矩阵的行列式因子与不变因子:

$$(1) \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ -1 & -2 & 0 \end{pmatrix}, (2) \begin{pmatrix} 0 & 1 & 2 & -1 \\ 6 & 2 & 1 & 0 \\ 0 & 4 & 1 & -1 \\ 5 & 6 & -4 & 1 \end{pmatrix}, (3) \begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & 0 \\ -2 & -2 & 1 \end{pmatrix}, (4) \begin{pmatrix} 4 & 5 & -2 \\ -2 & -2 & 1 \\ -1 & -1 & 1 \end{pmatrix}.$$

答 (1) 行列式因子 $1,1,\lambda(\lambda-1)^2$; 不变因子 $1,1,\lambda(\lambda-1)^2$;

- (2) 行列式因子 $1, 1, \lambda^4 8\lambda^3 16\lambda^2 + 88\lambda 304$; 不变因子 $1, 1, \lambda^4 8\lambda^3 16\lambda^2 + 88\lambda 304$;
- (3) 行列式因子 $1, 1, (\lambda 1)^2(\lambda 2)$; 不变因子 $1, 1, (\lambda 1)^2(\lambda 2)$;
- (4) 行列式因子 $1,1,(\lambda-1)^3$; 不变因子 $1,1,(\lambda-1)^3$.

4. 设 \mathbf{A} 为 n 阶复方阵, $f(x) \in \mathbb{C}[x]$, 证明: \mathbf{A} 可对角化的充要条件是 $\begin{pmatrix} \mathbf{A} & f(\mathbf{A}) \\ f(\mathbf{A}) & \mathbf{A} \end{pmatrix}$ 可对角化.

证明:本题的必要性类似小白书例 6.56, 下证充分性. 容易验证 $\begin{pmatrix} \mathbf{I}_n & \mathbf{I}_n \\ \mathbf{I}_n & -I_n \end{pmatrix}$ 的逆阵为 $\mathbf{I}_n & \mathbf{I}_n \end{pmatrix}$ 大点 $\mathbf{I}_n = \mathbf{I}_n$

$$\frac{1}{2}\begin{pmatrix} \boldsymbol{I}_n & \boldsymbol{I}_n \\ \boldsymbol{I}_n & -\boldsymbol{I}_n \end{pmatrix}$$
,考虑如下相似变换:

$$\frac{1}{2} \begin{pmatrix} \mathbf{I}_n & \mathbf{I}_n \\ \mathbf{I}_n & -\mathbf{I}_n \end{pmatrix} \begin{pmatrix} \mathbf{A} & f(\mathbf{A}) \\ f(\mathbf{A}) & \mathbf{A} \end{pmatrix} \begin{pmatrix} \mathbf{I}_n & \mathbf{I}_n \\ \mathbf{I}_n & -\mathbf{I}_n \end{pmatrix} = \begin{pmatrix} \mathbf{A} + f(\mathbf{A}) & \mathbf{O} \\ \mathbf{O} & \mathbf{A} - f(\mathbf{A}) \end{pmatrix}$$

故由 $\begin{pmatrix} A & f(A) \\ f(A) & A \end{pmatrix}$ 可对角化得到 $\begin{pmatrix} A+f(A) & O \\ O & A-f(A) \end{pmatrix}$ 也可对角化,再由高代白皮书例 6.71 可知 A+f(A) 与 A-f(A) 都可对角化.又 A+f(A) 与 A-f(A) 乘法可交换,故由高代白皮书例 6.41 可知这两个矩阵可同时对角化,即存在可逆阵 P,使得 $P^{-1}(A+f(A))P = \Lambda_1$, $P^{-1}(A-f(A))P = \Lambda_2$ 都是对角阵.上述等式相加可得 $P^{-1}AP = \frac{1}{2}(\Lambda_1 + \Lambda_2)$ 也是对角阵,即 A 可对角化.

5. 设n 阶实方阵 \mathbf{A} 的n-1 阶行列式因子是一个n-2 次多项式, 试求 \mathbf{A} 的不变因子组及其有理标准型.

解: 设 **A** 的不变因子组为 $d_1(\lambda), d_2(\lambda), \dots, d_n(\lambda)$, 其中 $d_i(\lambda) \mid d_{i+1}(\lambda) (1 \le i \le n-1)$, 则 由条件可知, **A** 的极小多项式 $m(\lambda) = d_n(\lambda)$ 是一个二次实系数多项式. 下面分情况进行讨论: (1) 若 $m(\lambda) = (\lambda - a)^2 + b^2$ 在 ℝ 上不可约, 其中 $a, b \ne 0$ 为实数, 则由整除关系可知 **A** 的不变因子组为 $1, \dots, 1, m(\lambda), \dots, m(\lambda)$. (2) 若 $m(\lambda) = (\lambda - a_1) (\lambda - a_2)$, 其中 a_1, a_2 为实数, 则由整除关系可知 **A** 的不变因子组为 $1, \dots, 1, \lambda - a_i, \dots, \lambda - a_i, m(\lambda), \dots, m(\lambda)$, i = 1 或 2.

6. 设 V 是数域 \mathbb{K} 上的 n 维线性空间, φ 是 V 上的线性变换. 证明: 若 φ 有 r 维不变子空间, 则 φ 必有 n-r 维不变子空间.

证明: 设 U 是 r 维 φ -不变子空间, 选取 U 的一组基 $\{e_1, \dots, e_r\}$, 并将其扩张为 V 的一组基 $\{e_1, \dots, e_r, e_{r+1}, \dots, e_n\}$, 则 φ 在这组基下的表示矩阵为分块上三角阵 $M = \begin{pmatrix} A & C \\ O & B \end{pmatrix}$, 其中 A, B 分别是 r, n-r 阶方阵. 由高代白皮书例 7.3 可知, M 与 M' 相似, 即存在 n 阶 非异阵 P, 使得 $P^{-1}MP = M'$. 令 $(f_1, f_2, \dots, f_n) = (e_1, e_2, \dots, e_n)$ P, 则由 P 的非异性可知 f_1 , f_2 , \dots , f_n 是 V 的一组基, 并且 φ 在这组基下的表示矩阵为 $P^{-1}MP = M' = \begin{pmatrix} A' & O \\ C' & B' \end{pmatrix}$. 令 $W = L(f_{r+1}, \dots, f_n)$, 则容易验证 W 是 n-r 维 φ -不变子空间.

7. 设数域 \mathbb{K} 上的三阶矩阵 A, B, C, D 具有相同的特征多项式,证明: 其中必有两个矩阵 在 \mathbb{K} 上相似.

证明: 设 A, B, C, D 相同的特征多项式为 $f(\lambda)$, 我们只要证明: 特征多项式为 $f(\lambda)$ 的数域 \mathbb{K} 上的三阶矩阵,其不变因子组 $d_1(\lambda)$, $d_2(\lambda)$, $d_3(\lambda)$ 只有三种可能性,那么 A, B, C, D 中至少有两个矩阵有相同的不变因子组,从而它们在 \mathbb{K} 上相似. (1) 若 $\deg d_3(\lambda) = 3$, 则 $d_3(\lambda) = f(\lambda)$, 从而 $d_1(\lambda) = d_2(\lambda) = 1$, 此时不变因子组为 1, 1, $f(\lambda)$. (2) 若 $\deg d_3(\lambda) = 2$, 则 $\deg d_2(\lambda) = 1$, $d_1(\lambda) = 1$. 设 $d_2(\lambda) = \lambda - a$, 其中 $a \in \mathbb{K}$, 则由 $d_2(\lambda) \mid d_3(\lambda)$ 可设 $d_3(\lambda) = (\lambda - a)(\lambda - b)$, 其中 $b \in \mathbb{K}$, 于是 $f(\lambda) = (\lambda - a)^2(\lambda - b)$, 其中 $a \in f(\lambda)$ 唯一的重数大于等于 $f(\lambda) = a$, 此时不变因子组为 $f(\lambda) = a$, $f(\lambda) = a$,

8. 设 V 为 n 阶复方阵全体构成的线性空间, V 上的线性变换 φ 定义为 $\varphi(X) = AX - XA'$, 其中 $A \in V$. 请用矩阵的 Kronecker 积证明: 若 A 可对角化, 则 φ 也可对角化.

证明:由于 A 可对角化,故存在可逆矩阵 P,使得 $P^{-1}AP = \Lambda$ 为对角矩阵.由例 6.105 可知, φ 在基础矩阵这组基下的表示矩阵为 $A\otimes I_n - I_n\otimes A$,于是

$$\left(\boldsymbol{P} \otimes \left(\boldsymbol{P} \right)^{-1} \right)^{-1} \left(\boldsymbol{A} \otimes \boldsymbol{I}_n - \boldsymbol{I}_n \otimes \boldsymbol{A} \right) \left(\boldsymbol{P} \otimes \left(\boldsymbol{P} \right)^{-1} \right) = \boldsymbol{\Lambda} \otimes \boldsymbol{I}_n - \boldsymbol{I}_n \otimes \boldsymbol{\Lambda}$$

为对角矩阵, 即 $A \otimes I_n - I_n \otimes A$ 可对角化, 从而 φ 可对角化.