Problem londonskega stolpa

Ines Meršak

mentor: prof. dr. Sandi Klavžar

16. 11. 2015

Klasični problem londonskega stolpa (Shallice)

- izumljen leta 1982
- 3 enako velike krogle različnih barv
- 3 palice različnih velikosti
- cilj igre je priti iz trenutnega stanja v neko dano stanje z minimalnim številom potez

Osnovne definicije teorije grafov

- graf G = (V, E)
- soseščina vozlišča u: $N(u) = \{x \in V; ux \in E\}$
- stopnja vozlišča u: deg u = |N(u)|
- sprehod v grafu je zaporedje vozlišč v_1, \ldots, v_k , da za vsak i velja $v_i v_{i+1} \in E$
- graf je povezan, če za poljuben par vozlišč obstaja sprehod med njima
- premer grafa je največja minimalna razdalja med pari vozlišč

- ravninski graf je graf, ki ga lahko narišemo v ravnini brez križanja povezav
- pot v grafu, ki vsebuje vsa vozlišča, je Hamiltonova pot

Graf klasičnega problema londonskega stolpa

Primer

Začetni položaj

Končni položaj

Lastnosti grafa

- 36 vozlišč (36 možnih stanj)
- 12 vozlišč stopnje 2, 3, 4
- premer grafa je 8
- ravninski
- vsebuje Hamiltonovo pot

Oznake

- J. R. Tunstall prva predlagala razširitev na 4 krogle s podaljšanimi palicami
- n krogel različne barve, $n \ge 2$
- p palic, $p \ge 3$
- ullet vsako palico označimo s številom $k \in [p]$, njeno višino pa s h_k
- veljati mora $n \leq \sum_{k=1}^{p} h_k$
- veljavnost poteze
- ullet vsako stanje lahko enolično predstavimo s permutacijo $s \in \mathcal{S}_{n+p}$

Primer

Začetni položaj

Končni položaj

Definicija

Definicija

Londonski graf L_h^n , kjer je $p \ge 3$, $n \ge 2$, $h \in [n]^p$, $\sum_{k=1}^p h_k \ge n$:

• vozlišča: vse permutacije $s \in S_{n+p}$, za katere velja:

$$\forall k \in [p]: 1 \leq s_{n+k} - s_{n+k-1} \leq h_k + 1, \ s_{n+p} = n + p,$$

 povezave: vsaki dve stanji (oz. pripadajoči permutaciji), med katerima lahko prehajamo z veljavno potezo, sta povezani

Lastnosti grafa

Potreben pogoj za povezanost Londonskega grafa je

$$n \leq \sum_{k=1}^{p-1} h_k.$$

Izrek

Londonski graf L_h^n je povezan natanko tedaj, ko velja pogoj

$$n \leq \sum_{k=1}^{p-1} h_k.$$

Primeri uporabe

- Problem londonskega stolpa je bil razvit z namenom merjenja sposobnosti načrtovanja in reševanja problemov pri bolnikih s poškodbami čelnega režnja možganov.
- Slabo reševanje londonskega stolpa se interpretira kot nezmožnost učinkovitega načrtovanja.
- Uporabljen je bil za ocenjevanje napredka bolezni pri bolnikih z Alzheimerjevo in Parkinsonovo boleznijo.
- Uporabljen je bil tudi za opazovanje vedenja majhnih otrok pri reševanju problemov.