Семинар 5

Общая информация:

- 1. Перестановка на множестве X это биективное отображение $\sigma: X \to X$.
- 2. Обычно, $X = \{1, ..., n\}$ конечное множество, с занумерованными элементами. Тогда через S_n будем обозначать множество всех перестановок на $\{1, ..., n\}$.
- 3. Пусть $i_1, \ldots, i_k \in \{1, \ldots, n\}$ и пусть $\sigma \in S_n$ такая, что $\sigma(i_1) = i_2, \ldots, \sigma(i_{k-1}) = i_k, \sigma(i_k) = i_1$. Тогда σ называется циклом и обозначается (i_1, \ldots, i_k) . Число k называется длиной цикла.
- 4. Цикл длины 2 называется транспозицией, т.е. транспозиция это перестановка, меняющая местами два элемента.
- 5. Точка $i \in \{1, \dots, n\}$ называется неподвижной для $\sigma \in S_n$, если $\sigma(i) = i$.
- 6. Циклы называются независимыми, если любой элемент $i \in \{1, \dots, n\}$ неподвижен хотя бы относительно одного из них.
- 7. Декремент перестановки $\sigma \in S_n$ это

 $dec(\sigma) = n$ — количество циклов — количество неподвижных точек

Задачи

- 1. Задачник. §3, задача 3.2 (в, е).
- 2. Задачник. §3, задача 3.3 (а, в).
- 3. Пусть $\tau \in S_n$. Тогда τ меняет имена элементов $1, \dots, n$ на $\tau(1), \dots, \tau(n)$. Пусть $\sigma \in S_n$ другая перестановка, заданная таблицей

$$\begin{pmatrix} 1 & 2 & \dots & n \\ a_1 & a_2 & \dots & a_n \end{pmatrix}$$

Найдите какой таблицей будет задаваться σ после смены имен элементов с помощью $\tau.$

- 4. Пусть $\sigma \in S_n$ и пусть $\sigma = \rho_1 \dots \rho_k$ произведение независимых циклов ρ_i с длинами $l_i \geqslant 2$. Покажите, что $\operatorname{dec}(\sigma) = \sum_{i=1}^k (l_i 1)$.
- 5. Пусть $\rho \in S_n$ цикл длины k. Покажите, что его можно представить в виде произведения k-1 транспозиции.
- 6. Пусть $\sigma, \tau \in S_n$ причем τ транспозиция. Покажите, что $\operatorname{dec}(\sigma\tau) = \operatorname{dec}(\sigma) \pm 1$.
- 7. Пусть $\sigma \in S_n$ представлена в виде $\sigma = \tau_1 \dots \tau_d$, где τ_i –транспозиции (вообще говоря зависимые) и пусть d наименьшее из возможных таких чисел. Покажите, что $d = \operatorname{dec}(\sigma)$.
- 8. Пусть $\sigma, \tau \in S_n$, покажите
 - (a) $dec(\tau \sigma \tau^{-1}) = dec(\sigma)$ (указание: пригодится задача 3)
 - (b) $dec(\sigma^{-1}) = dec(\sigma)$
 - (c) $dec(\sigma\tau) = dec(\tau\sigma)$
 - (d) $dec(\sigma\tau) \leq dec(\sigma) + dec(\tau)$
- 9. Для любых $\sigma, \tau \in S_n$ обозначим $d(\sigma, \tau) = \text{dec}(\sigma \tau^{-1})$. Покажите, что $d(\sigma, \tau)$ является метрикой, т.е.
 - (a) $d(\sigma,\tau) \geqslant 0$ для любых $\sigma,\tau \in S_n$
 - (b) $d(\sigma,\tau)=0$ тогда и только тогда, когда $\sigma=\tau$
 - (c) $d(\sigma,\tau) = d(\tau,\sigma)$ для любых $\sigma,\tau \in S_n$
 - (d) $d(\sigma,\tau) \leq d(\sigma,\rho) + d(\rho,\tau)$ для любых $\sigma,\tau,\rho \in S_n$

¹Мы считаем, что $k \geqslant 2$, так как при k = 1 получим (i_1) , что соответствует тождественной перестановке.