Introdução à microeletrónica

SÉRIE DE PROBLEMAS 2

Problema 2.1. Simplifique algebricamente as seguintes funções:

a)
$$f(A,B,C) = AB\overline{C} + ABC + A\overline{B}$$

Solução:
$$f(A,B,C) = \underbrace{AB\bar{C} + ABC}_{adjacentes} + A\bar{B} = \underbrace{AB + A\bar{B}}_{adjacentes} = A$$

b)
$$f(A,B,C) = (A+B+\overline{C})\overline{A}B\overline{C} + C$$

Solução:
$$f(A, B, C) = (A + B + \bar{C})\bar{A}B\bar{C} + C = \underbrace{A\bar{A}B\bar{C}}_{=0} + \underbrace{B\bar{A}B\bar{C}}_{BB=B} + \underbrace{\bar{C}\bar{A}B\bar{C}}_{\bar{C}\bar{C}=\bar{C}} + C = \underbrace{\bar{A}B\bar{C} + \bar{A}B\bar{C}}_{iguais} + C = \bar{A}B\bar{C} + C \underbrace{(1 + \bar{A}B)}_{=1} = \underbrace{\bar{A}B\bar{C} + \bar{A}BC}_{adjacentes} + C = \bar{A}B + C$$

Problema 2.2. As quatro linhas de entrada de um circuito combinatório corresponde a um número natural codificado em binário. Desenhe um circuito em dois níveis que detecte quando um número é potência de dois.

Solução:

Problema 2.3. Considere a função $f(A, B, C) = A\overline{B} + AC + BC$

a) Desenhe o logigrama do circuito que concretiza a função indicada acima.

Solução:

b) Transforme a expressão inicial numa função que possa ser concretizada só com portas
NAND (e portas NOT). Desenhe o logigrama do circuito correspondente.

Solução:
$$f(A, B, C) = A\overline{B} + AC + BC = \overline{A\overline{B} + AC + BC} = \overline{A\overline{B} \cdot \overline{AC} \cdot \overline{BC}}$$

c) Transforme o logigrama obtido em b) num esquema eléctrico. Para cada porta lógica, identifique o circuito integrado utilizado; em cada ligação, anote o pino correspondente do circuito integrado. Utilize um número mínimo de circuitos integrados.

Empacotamento tipo N para os integrados SN74LS04 (NOT), SN74LS00 (NAND2) e SN74LS10 (NAND3).

d) Escreva a tabela da verdade da função f.

Solução:

ABC	AB	AC	BC	f
000	0	0	0	0
001	0	0	0	0
010	0	0	0	0
011	0	0	1	1
100	1	0	0	1
101	1	1	0	1
110	0	0	0	0
111	0	1	1	1

Problema 2.4. As normas de segurança dos aviões exigem que, para sinais de vital importância os circuitos devem estar triplicados para que o erro de um deles não produza uma catástrofe. No caso de que os três circuitos não produzam a mesma saída, esta escolhe-se mediante votação. Desenhe o circuito (com portas NAND) que tem de usar-se para obter como resultado o valor maioritário das três entradas.

Solução:

Problema 2.5. Simplifique algebricamente a seguinte função $f(A, B, C, D) = (A + \overline{B})(C + D)$ e expresse usando:

- a) apenas portas NOR de duas entradas.
- b) apenas portas NAND de duas entradas

Solução:

a)
$$f(A,B,C,D) = \overline{(A+\overline{B})(C+D)} = \overline{(A+\overline{B})} + \overline{(C+D)} = \overline{(A+\overline{(B+B)})} + \overline{(C+D)}.$$

b)
$$f(A,B,C,D) = \overline{(A+\overline{B})(C+D)} = \overline{(A+\overline{B})} + \overline{(C+D)} = \overline{(\overline{A}B)} + (\overline{C}\overline{D}) = \overline{(\overline{A}B)} + (\overline{C}\overline{D})$$

Problema 2.6. Considere a função lógica $f(A, B, C, D) = \Sigma m(2,3,6,7,8,10)$. Identifique a expressão algébrica simplificada (em forma soma de produtos).

ABCD	f		
0000	0		
0001	1		
0010	1		
0011	0		
0100	0		
0101	0		
0110	1		
0111	1		
1000	1		
1001	0		
1010	1		
1011	0		
1100	0		
1101	0		
1110	0		
1111	0		

Mapa de Karnaugh de f

 $f(A, B, C, D) = \overline{A}C + A\overline{B}\overline{D}.$

Problema 2.7. Considere a função lógica $f(A, B, C, D) = \sum m(0,1,2,8,10,13) + \sum m_d(3,4,11,15)$ incompletamente especificada:

- a) Identifique a expressão algébrica simplificada (em forma soma de produtos).
- b) Projete o circuito usando uma porta NAND-2, AND-3, AND-2, OR-2 e uma NOT.
- c) Na solução identificada na alínea anterior, qual o valor da função quando a entrada (A, B, C, D) toma o valor 3? Justifique.

c) A função obtida toma o valor 1 quando ABCD=0011₍₂₎=3₍₁₀₎

$$f(0,0,1,1) = 1$$

Problema 2.8. Pretende-se realizar um circuito que calcule o resultado da operação $y = \lfloor x^2 / 10 \rfloor$, sendo x um número inteiro pertencente ao intervalo [1;6].

- a) Quantas entradas e saídas requer o circuito para concretizar o cálculo referido?
- Escreva a tabela da verdade das funções lógicas necessárias.
- c) Expresse-as na forma soma de produtos mínima. Para os termos não especificados considere, em cada função, os valores lógicos que conduzem a maior simplificação.

Solução:

a) e b) 3 bits 2 bits entrada x₂x₁x₀ 0 000 0 001 0.1 00 00 011 0.9 00 100 1.6 01

c)	Mapa d	le Karr						
	$x_2^{x_1x_0}$	00	01	11	10			
	0	_	0	0	0	$y_1 = x_2 x_1 + x_2 x_0$		
	1	0	1		1			
			*		\			
			^x 2 ^x 1		^x 2 ^x 0			
Mapa de Karnaugh y ₀								
	x_2 x_1 x_0	00	01	11	10			
	0		0	0	0	$y_0 = x_2 = x_0$		
	1	1	0		1	70 2 0		
x ₂ x ₀								

Problema 2.9. Considere a função lógica *f*(*A, B, C, D, E*) incompletamente especificada, definida da seguinte forma:

$$f(A, B, C, D, E) = \Sigma m(1,3,6,10,13,16,18,19,20,26,30,31) + \Sigma m_d(0,2,4,9,14,15,17,22,24,25,29)$$

- a) Identifique a expressão algébrica simplificada (em forma soma de produtos).
- b) Na solução identificada na alínea anterior, qual o valor da função quando a entrada (A, B, C, D, E) toma o valor 25? Justifique.

Solução:

$$f(A,B,C,D,E) = BC + DE + BCE + BE$$

b)
$$f(1,1,0,0,1) = 0$$

Problema 2.10. (Prova 2018.1) Considere a função lógica *f*(*A, B, C, D, E*) incompletamente especificada, definida da seguinte forma:

$$f(A, B, C, D, E) = \Sigma m(1,6,10,13,16,18,19,20,26,30) + \Sigma m_d(0,2,3,4,9,14,15,17,22,24,25,29,31)$$

- a) Identifique a expressão algébrica simplificada (em forma produto de somas).
- b) Na solução identificada na alínea anterior, qual o valor da função quando a entrada (A, B, C, D, E) toma o valor 25? Justifique.

Solução:

$$f(A,B,C,D,E) = (\overline{B} + C + \overline{E})(B + \overline{C} + \overline{E})(\overline{B} + D + E)$$

b)
$$f(1,1,0,0,1) = 0$$