Aula 2b Regressão Linear

Adaptado dos slides do Prof Samuel Botter

O que é uma regressão?

- É uma abordagem para modelar o relacionamento entre variáveis numéricas independentes (explicativas) e dependentes, ajustando um modelo (uma curva qualquer) para as observações de um conjunto de treinamento.
- Este modelo pode então ser usado para prever aquelas variáveis numéricas dependentes para novas observações ainda não observadas das variáveis explicativas
- Quando esta curva é uma reta, diz-se que a regressão é linear

Tipos de regressão

Regressão Linear X Logística

Variáveis dependentes e independentes

"causas" variáveis independentes

"efeito" variável independente

Idade	Titulação	Experiência	Salário Anual
21	Graduação	1	35.000,00
25	Especialização	5	80.000,00
35	Doutorado	10	120.000,00
•••	•••	•••	•••

Conjunto de Treinamento

Uma variável independente

$$\hat{y} = b_0 + b_1 \cdot x$$

Modelo Linear

Regressão Linear Simples

$$h(x_1) = \widehat{\hat{y}} = \widehat{b_0} + \underbrace{b_1 \cdot \widehat{x}}_{inclina _{ ilde{a}o}}$$

$$sal$$
á $rio = b_0 + b_1 \cdot experi$ ê $ncia$

Equação da Reta

$$(y-y_0) = \mu \cdot (x-x_0)$$

simplificando para $\mathbf{x}_0 = 0$

$$(y-y_0)\,=\,\mu\,\cdot\,x$$

$$y = \overbrace{y_0}^{intercepto} + \underbrace{\mu}_{inclina ilde{ infty}ao} \cdot x$$

$$h(x) \, = \, \hat{y} \, = \, \overbrace{b_0}^{intercepto} + \, \underbrace{b_1}_{inclina$$
ção $\cdot \, x$

$$\mu = b_1 = \tan (\theta)$$

$$\theta = \arctan(\mu)$$

Equação da Reta: exemplos

$$b_0 = 2.0 \ b_1 = 0.0$$

$$egin{aligned} b_0 &= 0.0 \ b_1 &= 1.0 \ (heta &= 45^\circ) \end{aligned}$$

$$egin{aligned} b_0 &= 1.0 \ b_1 &= 0.5 \ (heta pprox 27^\circ) \end{aligned}$$

Qual a melhor reta?

Erro do modelo linear

Objetivo: achar os parâmetros b₀ e b₁ que minimizam a função de custo para o conjunto de treinamento

A reta de menor valor da função de custo

Modelo linear (hipótese)

$$h(x) = \hat{y} = b_0 + b_1 \cdot x$$

$$h(x) = \hat{y} = b_1 \cdot x \ ext{simplificado} \ b_0 = 0$$

$$fc(b_o,b_1) \, = \, MSE \, = \, rac{\sum_{i=1}^{N} \left(\hat{y} - y_i
ight)^2}{N} \, .$$

$$fc(b_1) \,=\, MSE \,=\, rac{\sum_{i=1}^{N} \left(\hat{y} - y_i
ight)^2}{N}$$

$$egin{aligned} Objetivo \ rac{\min}{b_0,\,b_1}(fc\,(b_0,b_1)) \end{aligned}$$

$$egin{aligned} Objetivo \ &\min \ b_1 (fc\left(b_1
ight)) \end{aligned}$$

Exemplo de função de custo

$$h(x)\,=\,\hat{y}\,=\,b_1\,\cdot\,x$$
 $b_1\,=\,1$

$$fc(b_1) \,=\, MSE \,=\, rac{\sum_{i=1}^N \left(\overbrace{b_1 \cdot x_i}^{\hat{y}} \,-\, y_i
ight)^2}{N}$$

Resumo da ideia de minimização

É um processo de otimização.

A função de custo (que deve ser minimizada) é o erro médio quadrático.

Função de Custo

$$fc(b_o,b_1) \, = \, MSE \, = \, rac{\sum_{i=1}^{N} \left(\hat{y} - y_i
ight)^2}{N}$$

 $egin{aligned} Objetivo \ rac{\min}{b_0,b_1}(fc\left(b_0,b_1
ight)) \end{aligned}$

Função de custo

$$fc\left(b_{0},\,b_{1}
ight)\,=\,MSE\,=\,rac{\sum_{i=1}^{N}\left(\overbrace{b_{0}\,+\,b_{1}\,\cdot\,x_{i}}^{\hat{y}}\,-\,y_{i}
ight)^{2}}{N}$$

Gradiente Descendente

Derivada de uma função

A derivada de uma função y=f(x) em um dado ponto x_1 é a inclinação da **reta tangente à curva** no ponto x_1 ,

isto é, é a tangente do ângulo entre a reta tangente à curva no ponto x_1 e o eixo x

Vetor Gradiente

- O vetor gradiente (ou apenas gradiente), é um vetor que aponta para a <u>direção de maior variação da função</u> em um determinado ponto
- É formado pelas derivadas parciais de cada variável da função

O campo gradiente $\langle 2x-4, 2y+2 \rangle$

da função $f=x^2-4x+y^2+2y$

Gradiente Descendente

Gradiente Descendente: algoritmo

Dada uma função de custo $fc(b_0,b_1)$ O objetivo é $\min_{b_0,b_1}(fc(b_0,b_1))$

- 1. inicie os parâmetros b_0 , b_1 (por exemplo, $b_0 = 0$, $b_1 = 0$); 2. varie b_0 , b_1 de modo a reduzir $fc(b_0, b_1)$
- 2. varie b_0, b_1 de modo a reduzir $f^c(b_0, b_1)$ enquanto o valor de f^c for menor que o anterior
- 3. quando o valor de fc não se reduzir mais, chegou-se a um mínimo (local ou global)

Gradiente Descendente: algoritmo

Repita
$$temp_0=b_0-lpha\,rac{\partial}{\partial b_0}\,fc(b_0,b_1)$$
 $temp_1=b_1-lpha\,rac{\partial}{\partial b_1}\,fc(b_0,b_1)$ $b_0=temp_0$ $b_1=temp_1$

até convergir

A taxa de aprendizado

A taxa de aprendizado

$$b_1 = b_1 - lpha rac{\partial}{\partial b_1} fc(b_1)$$

Se α é <u>muito pequeno</u>, o gradiente descendente pode ser **lento**

Se α é <u>muito grande</u>, o gradiente descendente pode sempre **passar pelo mínimo** em ambos os sentidos. A convergência pode falhar

Mínimos locais e globais

Gradiente Descendente para Regressão Linear

Embora o algoritmo de gradiente descendente possa convergir para um mínimo local, isto não será problema para a regressão linear, uma vez que estamos utilizando uma função de custo que é uma função convexa

