Комплексные числа

Определение 1. Пусть символ i обладает следующим свойством $i^2 = -1$. Комплексным числом будем называть формальную сумму a + bi, где $a, b \in \mathbb{R}$. Множество таких чисел обозначается \mathbb{C} . Операции над комплексными числами:

- 1) Суммой двух комплексных чисел e=a+ib, f=c+id называется комплексное число t=e+f=q+ih, где q=a+c, h=b+d.
- 2) Произведением двух комплексных чисел e = a + ib, f = c + id называется комплексное число t = ef = g + ih, где g = ac bd, h = bc + ad.

Число a называется b вещественной частью и обозначается b. Число b называется b назы

Упражнение 1. а) Докажите, что комплексные числа являются коммутативным кольцом с единицей (да, надо вспомнить, что проверять). б) Докажите, что комплексные числа образуют поле относительно введённых нами операций сложения и умножения.

1. Докажите, что из комплексного числа можно извлекать корень. Иными словами, пусть $z \in \mathbb{C}$, тогда существует число $t \in \mathbb{C}, t^2 = z$. Сколько таких чисел?

Упражнение 2. Найдите, чему равны следующие выражения а) $\frac{1+i}{1-i}$, б) \sqrt{i} .

2. Решите уравнения а) $z^2 + 4z + 5 = 0$; б) $z^2 - (2+i)z + 2i = 0$; в) $z^3 = 1$.

Определение 2. Пусть $z \in \mathbb{C}, z = a + ib$, *сопряжённым* к числу z называется комплексное число $\overline{z} = a - ib$.

Упражнение 3. Пусть $z_1, z_2 \in \mathbb{C}$, докажите следующие свойства сопряжения: а) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$, б) $\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$, в) $z_1 \overline{z_1} \in \mathbb{R}$.

- 3. Пусть $f(x) \in \mathbb{R}[x]$ и z_0 его комплексный корень. Докажите, что $\overline{z_0}$ также является корнем многочлена f(x).
- **4.** Будем рассматривать выражения вида a+bj, где a и b остатки по модулю p, $j^2=d$ (d фиксированный остаток). При каких d в таких числах возможно деление?
- **5.** Докажите, что каждое комплексное число можно представить в виде $z=r(\cos\varphi+i\cdot\sin\varphi)$. Причем r определяется единственным образом, а $\varphi-c$ точностью до 360° (если число не равно нулю). Число r называется модулем, а $\varphi-apsymenmom$ комплексного числа.