Complexity Crash Course

Thiru, IT1007 2017

What is Time and Space Complexity?

Most of the time, your functions interact with inputs. Eg,

```
1 def print_every_element(lst):
2  for elem in lst:
3    print(elem)
```

What we want to know is for a given code, how does the **time and **space needed** <u>scale with</u> the input.

For the example above, the:

- time needed is O(n)
 - o O(n) means it scales linearly with the input
- Space needed is O(1)
 - The space needed is **independent** of the input. What is space? Its memory that you need to store intermediate computations (working memory for computations)

IMPORTANT1: You only care about the **WORST-CASE complexity**. Read the general advice section at the bottom for more info.

IMPORTANT2: You ignore constants. See general advice section below.

Common Complexities you Might get Tested On

1) $O(1) \rightarrow constant time/space (independent of input)$

<u>Time complexity example:</u> finding an element in a dictionary.

```
x = {"potato":3}
x["potato"] # This is time O(1) because i dont care how long the dictionary is
```

<u>Space complexity example:</u> print_every_element. Print does not require space.

2) $O(n) \rightarrow linear$

The complexity scales with the input.

<u>Time complexity example:</u> print_every_element. The length of the array is N, so as N increases, your time increases linearly.

<u>Space complexity example:</u> Factorial Recursion.

```
13 def fact_recursive(n):
14  if n == 1:
15   return 1
16  return n + fact_recursive(n-1)
```

Recall: Recursion operates by holding the intermediate value in memory, then calling the other computations until everything is done, then adding all the results.

In this case, if i call fact_recursive(10), i will be **holding the results** of fact_recursive(9), fact_recursive(8)... fact_recursive(1) in **memory**, then finally summing them up in the end.

If i input n, i get n calls to fact_recursive, each call stores one item. Hence, the space complexity grows by $n. \rightarrow O(n)$

3) O(n^2) / O(n*m) / O(n^3) - polynomial

You often get polynomial time when doing nested loops.

<u>Time complexity example:</u>

```
33 lst1 = [1,2,3]

34 lst2 = [3,4,7,9,10]

35

36 for entry in lst1:

37 for entry2 in lst2:

38 ## do something

39
```

Let's call length of lst1 as n, length of lst2 as m. You're nested looping through both, means if i print the outputs:

1,3

1,4

1,7

. .

2,3

2,4

2,7

..

The time complexity in this case is n^*m since the arrays are of different length. Hence, your complexity is polynomial time of $O(n^*m)$. If n == m, then this would be $O(n^*2)$.

Time complexity of bubble sort is $O(n^2)$. (why?)

<u>Space complexity example:</u> Matrix Multiplication.

Say you have a function:

```
def matmul(mat_a,mat_b):
    ##insert magic here
    return multiplied
```

In the worst case input, If your matrix A is 4x1 and matrix B is 1x4, \rightarrow your new matrix is 4x4! You need to create a new matrix that's much bigger than A and B to store the results.

4) O(2ⁿ) / O(aⁿ) - exponential

Best example for time complexity is recursive fibonacci.

```
def fib(n):
   if n <= 1:
      return 1
   return fib(n-1) + fib(n-2)</pre>
```

Each fib call calls 2 other fibs.

$$1 \rightarrow 2 \rightarrow 4 \rightarrow 8 \rightarrow 16$$

See the pattern? Hence, this grows exponentially in time. So time complexity is O(2ⁿ)

However, each fib only returns 1 number, so for n fibs, you need n space (you only care about the height of the tree). Therefore, the space complexity is O(n).

Hopefully this diagram makes it clearer

Number of leaves \rightarrow 2ⁿ Height of tree \rightarrow n

Space complexity example: Likely not tested.

5) O(logn) - logarithmic

Logarithmic means that for input of size n, the number of computations you need to do is inverse exponential. Best example for time: binary search.

Assuming you have a sorted array:

Lst =
$$[1,45,78,100,103]$$

Every iteration, you are cutting away half the array size. Eg, if i want to find 1,

First iteration: check middle element \rightarrow 78 \rightarrow dont bother checking second half.

new_lst= $[1,45,78] \rightarrow$ check middle element \rightarrow 45 \rightarrow cut away new_lst = $[1] \rightarrow$ found!

For an array of length 5, i only did 2 cuts!

Space complexity for logn: Likely Not tested

6) O(nlogn) - linear*logarithmic

Best examples for time complexity of nlogn are the sorts: merge sort, quicksort, timsort. But you guys likely wont be tested on this. You can google it if you're really interested.

How to Analyze?

General Advice

- You only care about WORST CASE complexity
 - \circ eg , if you have one dual nested loop and one normal loop, the complexity is $O(n^2) + O(n)$, But your answer is $O(n^2)$ because you only care about the worst case
- You ignore constants
 - If you do a loop 5 times in a function across an array, the time complexity is O(5n). But you dont care about constants. So the answer is O(N).
 - Important: I dont know why your notes shows differently for space complexity, so follow what your notes says for space i guess.
- Easy way: Each nested loop increases complexity by n, if n is the length of the array and each loop is looping from beginning to end of array. Eg,

```
20 def nested_loop(lst):
21    for i in range(len(lst)):
22        for j in range(len(lst)):
23             for k in range(len(lst)):
24                 print(i,j,k)
```

This has a time complexity of $O(n^3)$ because for each loop, you are looping the inner value!

```
Eg:

i = 0, j = 0, k = 0

i = 0, j = 0, k = 1,

i = 0, j = 0, k = 2,

...

i = 0, j = 1, k = 0,

i = 0, j = 1, k = 1,

i = 0, j = 1, k = 2,
```

How many calls are made? n^3!

 For a more rigorous approach: You need to exactly see how your computation increases with your inputs across your function. You can see an example here https://stackoverflow.com/questions/360748/computational-complexity-of-fibonacci-sequence

Example Practice Q

Question 2: Alternating Series Galore [24 marks]

Consider the following alternating series s_{11} :

$$s_{11}(n) = 1 - 2 + 3 - 4 + \cdots n$$

- **A.** [Warm Up] Write an <u>recursive</u> function s11(n) that returns the value for $s_{11}(n)$. [4 marks]
- **B.** What is the order of growth in terms of time and space for the function you wrote in Part (A) in terms of *n*. Explain your answer. [4 marks]
- **C.** Write an <u>iterative</u> function sl1(n) that returns the value for $s_{11}(n)$. [4 marks]
- **D.** What is the order of growth in terms of time and space for the function you wrote in Part (C) in terms of n. [2 marks]

Answers:

A. [Warm Up] Write an <u>recursive</u> function s11(n) that returns the value for $s_{11}(n)$. [4 marks]

```
def s11(n):
    if n == 1:
        return 1
    elif n%2 == 0:
        return s11(n-1) - n
    else:
        return s11(n-1) + n
```

B. What is the order of growth in terms of time and space for the function you wrote in Part (A) in terms of *n*. Explain your answer. [4 marks]

```
Time: O(n)
There is a constant number of basic steps in each recursive call, and there are n such recursive calls from s11(n) to s11(1).

Space: O(n)
To compute s11(n), there is n-1 pending operations: s11(n-1), ..., s11(1)

-1 for each missing (or incomplete) explanation.
-1 for incorrect big-O notation.
```

C. Write an **iterative** function sl1(n) that returns the value for $s_{11}(n)$. [4 marks]

```
def sl1(n):
    total = 0
    for i in range(1,n+1):
        if i%2 == 0:
            total -= i
        else:
            total += i
        return total
```

D. What is the order of growth in terms of time and space for the function you wrote in Part (C) in terms of n.

```
Time: O(n)
Space: O(1)
```