PRÁCTICO 1 - Álgebra de Boole

Tabla 2-1 Postulados y teoremas del álgebra booleana

Postulado 2	(a) x + 0 = x	(b) $x \cdot 1 = x$
Postulado 5	(a) x + x' = 1	(b) $x \cdot x' = 0$
Teorema 1	(a) x + x = x	(b) $x \cdot x = x$
Teorema 2	(a) $x + 1 = 1$	(b) $x \cdot 0 = 0$
Teorema 3, involución	(x')' = x	10 € 00 € 00 € 00 € 00 € 00 € 00 € 00 €
Postulado 3, conmutativo	(a) x + y = y + x	(b) $xy = yx$
Teorema 4, asociativo	(a) $x + (y + z) = (x + y) + z$	(b) $x(yz) = (xy)z$
Postulado 4, distributivo	$(a) \ x(y+z) = xy + xz$	(b) $x + yz = (x + y)(x + z)$
Teorema 5, de De Morgan	(a) (x + y)' = x'y'	(b) $(xy)' = x' + y'$
Teorema 6, absorción	(a) x + xy = x	$(b) \ x(x+y) = x$
Leorema b, absorcion	(a) $x + xy = x$	(b) $x(x+y)=x$

Name	Distinctive-Shape Graphics Symbol	Algebraic Equation	Truth Table
AND	X — F	F = XY	X Y F 0 0 0
	Y — — P		0 1 0 1 0 0 1 1 1
OR	dus discourse	F = X + Y	XYF
	$X \longrightarrow F$		0 0 0 0 1 1
			1 0 1 1 1 1
NOT (inverter)	, No	$F=\overline{X}$	X F
	XF		0 1 1 0
NAND		$F = \overline{X \cdot Y}$	XYF
	X F		$ \begin{array}{c cccc} 0 & 0 & 1 \\ 0 & 1 & 1 \end{array} $
			1 0 1 1 1 0
NOR	10		XYF
	$X \longrightarrow F$	$F = \overline{X + Y}$	$\begin{array}{c cccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{array}$

Ejercicio 1:

Simplificar las siguientes funciones booleanas a un número mínimo de literales.

- a. x.y + x.y'
- b. (x + y).(x + y')
- $c. \quad x.y.z + x'.y + xyz'$
- d. z.x + z.x'.y
- e. (A + B)'.(A' + B')'
- $f. \quad y.(w.z' + w.z) + x.y$

Ejercicio 2:

Mostrar que la función NAND (Not AND) es universal en el sentido de que las funciones NOR, NOT, OR y AND se pueden obtener a partir de ellas. Graficar las implementaciones de las compuertas NOR, NOT, OR y AND con compuertas NAND.

Ejercicio 3:

Mostrar que la función NOR (Not OR) es universal en el sentido de que las funciones AND, OR, NOT y NAND se pueden obtener a partir de ellas. Graficar las implementaciones de las compuertas AND, OR, NOT y NAND con compuertas NOR.

Ejercicio 4:

Reducir a un número mínimo de literales las siguientes funciones booleanas:

- a. (B.C' + A'.D).(A.B' + C.D')
- b. B'.D + A'.B.C' + A.C.D + A'.B.C
- c. [(A.B)'.A].[(A.B)'.B]
- d. A.B' + C'.D'

Encontrar expresiones equivalentes a las funciones "b" y "d", pero utilizando:

- a. Sólo compuertas NAND del número de entradas necesarias.
- b. Sólo compuertas NOR del número de entradas necesarias.
- c. Mediante cualquier tipo de compuertas de sólo dos entradas.
- d. Graficar las expresiones encontradas en los puntos anteriores.

Ejercicio 5:

La función OR-exclusiva, denotada por "^" tiene dos entradas y una salida. Si **a** y **b** son las entradas y **c** es la salida, entonces **c** es '1' sólo cuando exactamente una de las entradas vale '1'. En el resto de los casos es '0'.

- a. Hacer una tabla de verdad de la función OR-exclusiva.
- b. Encontrar la expresión equivalente a la función OR-exclusiva utilizando sólo suma de productos .
- c. Encontrar la expresión equivalente a la función OR-exclusiva utilizando sólo producto de sumas.
- d. Graficar con compuertas los circuitos lógicos de los puntos "b" y "c".

Ejercicio 6 (extra):

- a. ¿Cuántas funciones booleanas de *n* variables hay?
- b. Demostrar de manera rigurosa que utilizando solo compuertas AND/OR no alcanza para definir todas funciones de *n* variables.