LC28: Cinétique électrochimique

Oxydation du fer accélérée en présence de platine

La réaction ayant lieu est la suivante :

$$Fe_{(s)} + 2H_3O_{(aq)}^+ = Fe_{(aq)}^{2+} + H_{2(g)} + 2H_2O_{(l)}$$
 $K^0(298 K) = 10^{8,2}$

Montage à trois électrodes

Obtention de la courbe i=f(E) pour l'électrode $Fe_{(aq)}^{3+}/Fe_{(aq)}^{2+}$ sur le platine

		S1	S2	S3	S4	S5	S6
Varie beaucoup	Fe^{2+} (mol. L^{-1})	0,0100	0,0143	0,0182	0,0217	0,0250	0,0280
Varie peu	Fe^{3+} (mol. L^{-1})	0,010	0,0095	0,0091	0,0087	0,0083	0,0080

Influence de la nature de l'électrode pour la réduction de $H_3{\it O}^+$ en H_2

Couples lents, couples rapides

	C(graphite)	Pt	Zn
$\eta_a(O_2/H_2O)$	1,6 V	0,5V	0,7
$\eta_c(\mathrm{H}_3O^+/H_2)$	-0,5V	-0,1V	-0,8V

Murs du solvant

réduction de l'eau

Additions des courbes intensité-potentiel

Retour sur l'expérience introductive

Synthèse du dichlore

Synthèse de l'eau de javel

Danielle CACHAU-HERREILLAT, Des expériences de la famille Réd-Ox, de boeck

BILAN:

$$H_2O_{(l)} + Cl_{(aq)}^- = ClO_{(aq)}^- + H_{2(g)}$$

KI + acide éthanoïque **concentrés**

$$ClO_{(aq)}^{-} + 2H_{(aq)}^{+} + 2I_{(aq)}^{-} = I_{2(aq)} + Cl_{(aq)}^{-} + H_{2}O_{(l)}$$

Dosage iodométrique par thiosulfate de sodium

$$2S_2O_3_{(aq)}^{2-} + I_{2(aq)} = S_4O_6_{(aq)}^{2-} + 2I_{(aq)}^{-}$$

$$r = \frac{n_{ClO^-,f}}{n_{ClO^-,th,f}} = \frac{CV_{eq}F}{i\Delta t} = ?$$