9.19: Computational Psycholinguistics
3 November 2021

Agenda for the day

Last time: with a hidden layer, a NN can learn XOR...

- ...but language isn't just 2D input+2-class output! So, today:
- Dealing with language in neural networks
- Recurrent neural networks (RNNs)
 - Simple recurrent networks (SRNs)
 - Gated recurrent units (GRUs)
 - Long short-term memory networks (LSTMs)
- Examining RNN behavior

Adam adores zebras ...

For language, input $\{x_i\}$ and output prediction y seem discrete:

Adam adores zebras ...

For language, input $\{x_i\}$ and output prediction y seem discrete:

Adam adores zebras ...

Simplest approach is *localist* or *one-hot* representations:

$$\begin{array}{c|c} \mathtt{Adam} \rightarrow \begin{bmatrix} 1\\0\\0\\0\\\vdots\\0\\0 \end{bmatrix} \quad \mathtt{adores} \rightarrow \begin{bmatrix} 0\\1\\0\\\vdots\\0\\0\\0 \end{bmatrix} \quad \mathtt{zebras} \rightarrow \begin{bmatrix} 0\\0\\0\\\vdots\\0\\1 \end{bmatrix}$$

For language, input $\{x_i\}$ and output prediction y seem discrete:

Adam adores zebras ...

Simplest approach is *localist* or *one-hot* representations:

$$\begin{array}{c|c} \texttt{Adam} \rightarrow \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix} & \texttt{adores} \rightarrow \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix} & \texttt{zebras} \rightarrow \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

But lower-dimensional *embeddings* capture word similarities:

$$\mathtt{Adam} \to \begin{bmatrix} 0.6 \\ 0.3 \end{bmatrix} \quad \mathtt{adores} \to \begin{bmatrix} -0.3 \\ 0.4 \end{bmatrix} \quad \mathtt{zebras} \to \begin{bmatrix} 0.7 \\ -0.1 \end{bmatrix}$$

Example feed-forward+embedding LM

Bengio et al., 2003: Neural *n*-gram language model

Figure 1: Neural architecture: $f(i, w_{t-1}, \dots, w_{t-n+1}) = g(i, C(w_{t-1}), \dots, C(w_{t-n+1}))$ where g is the neural network and C(i) is the i-th word feature vector.

Old (2003!) perplexity results on Brown corpus

 \mathbf{m}

 \mathbf{c}

 \mathbf{n}

direct

mix

train.

valid.

test.

neural
language
models

N	MLP1	5		50	60	yes	no	182	284	268
N	MLP2	5		50	60	yes	yes		275	257
N	MLP3	5		0	60	yes	no	201	327	310
N	MLP4	5		0	60	yes	yes		286	272
N	MLP5	5		50	30	yes	no	209	296	279
N	MLP6	5		50	30	yes	yes		273	259
N	MLP7	3		50	30	yes	no	210	309	2 93
N	MLP8	3		50	30	yes	yes		284	270
N	MLP9	5		100	30	no	no	175	280	276
MLP10		5		100	30	no	yes		265	252
	Oel. Int.	3						31	352	336
k	Kneser-Ney back-off	3							334	323
ŀ	Kneser-Ney back-off	4							332	321
K	Kneser-Ney back-off	5							332	321
c	lass-based back-off	3	150						348	334
c	lass-based back-off	3	200						354	340
c	class-based back-off	3	500						326	312
c	lass-based back-off	3	1000						335	319
c	class-based back-off	3	2000						343	326
c	lass-based back-off	4	500						327	312
C	class-based back-off	5	500						327	312

n-gram language models

(Bengio et al., 2003)

• Advantages: generalizes over *n*-gram contexts

- Advantages: generalizes over *n*-gram contexts
- Limitations:

- Advantages: generalizes over n-gram contexts
- Limitations:
 - this is for a fixed dimensionality input context

- Advantages: generalizes over n-gram contexts
- Limitations:
 - this is for a fixed dimensionality input context
 - how to model variable-length context, like sentences?

Draw inspiration from real-time nature of human language processing

- Draw inspiration from real-time nature of human language processing
- Previous inputs must be integrated and remembered all together in a uniform representational space

- Draw inspiration from real-time nature of human language processing
- Previous inputs must be integrated and remembered all together in a uniform representational space

The woman brought the sandwich from ...

- Draw inspiration from real-time nature of human language processing
- Previous inputs must be integrated and remembered all together in a uniform representational space

(Jordan, 1986; Elman, 1990)

- Draw inspiration from real-time nature of human language processing
- Previous inputs must be integrated and remembered all together in a uniform representational space

- Draw inspiration from real-time nature of human language processing
- Previous inputs must be integrated and remembered all together in a uniform representational space

(bias nodes not shown)

SRN "rolled up" and unrolled

A "rolled-up" representation (Elman, 1990); and unrolled:

SRN "rolled up" and unrolled

A "rolled-up" representation (Elman, 1990); and unrolled:

SRN "rolled up" and unrolled

A "rolled-up" representation (Elman, 1990); and unrolled:

SRN "rolled up" and unrolled

A "rolled-up" representation (Elman, 1990); and unrolled:

TABLE 3
Categories of Lexical Items Used in Sentence Simulation

Learning with artificial language input

Category	Examples	
NOUN-HUM	man, woman	
NOUN-ANIM	A cat, mouse	
NOUN-INAN	IIM book, rock	
NOUN-AGRE	ESS dragon, monster	
NOUN-FRAG	glass, plate	
NOUN-FOOI	D cookie, break	
VERB-INTRA	N think, sleep	
VERB-TRAN	see, chase	
VERB-AGPA	T move, break	
VERB-PERCE	PT smell, see	
VERB-DESTRO	OY break, smash	
VERB-EAT	eat	

TABLE 4
Templates for Sentence Generator

WORD 1	WORD 2	WORD 3
NOUN-HUM	VERB-EAT	NOUN-FOOD
MUH-NUON	VERB-PERCEPT	NOUN-INANIM
NOUN-HUM	VERB-DESTROY	NOUN-FRAG
NOUN-HUM	VERB-INTRAN	
NOUN-HUM	VERB-TRAN	MUH-HUM
NOUN-HUM	VERB-AGPAT	NOUN-INANIA
MOUH-HUM	VERB-AGPAT	
NOUN-ANIM	VERB-EAT	NOUN-FOOD
NOUN-ANIM	VERB-TRAN	MINA-NUON
NOUN-ANIM	VERB-AGPAT	MOUN-INANIA
NOUN-ANIM	VERB-AGPAT	
MINANI-NUON	VERB-AGPAT	
NOUN-AGRESS	VERB-DESTROY	NOUN-FRAG
NOUN-AGRESS	VERB-EAT	NOUN-HUM
NOUN-AGRESS	VERB-EAT	NOUN-ANIM
NOUN-AGRESS	VERB-EAT	NOUN-FOOD

Used *localist* word representations

Input	Output
00000000000000000000000000000000000000	an) 000000000000000000000000000000000000
00000000000000000000000010000 (smax	sh) 00000000000000000001000000000 (plate)
00000000000000000001000000000 (plate	e) 0000010000000000000000000000000000000
00000100000000000000000000000000000000	0000000000000000010000000000 (move)
000000000000000000100000000000 (move	e) 0000000000000001000000000000000000 (man)
000000000000000100000000000000 (man) 0001000000000000000000000000000000 (break)
00010000000000000000000000000000000000	k) 0000100000000000000000000000000000000
00001000000000000000000000000000000000	01000000000000000000000000000000 (boy)
01000000000000000000000000000000000000	00000000000000000100000000000 (move)
0000000000000000010000000000 (mov	e) 000000000001000000000000000000 (girl)
00000000000100000000000000000 (girl)	00000000010000000000000000000 (eat)
00000000010000000000000000000 (eat)	00100000000000000000000000000000000 (bread)
00100000000000000000000000000000000000	d) 0000000100000000000000000000000000000
000000010000000000000000000000 (dog)	00000000000000000100000000000 (move)
000000000000000000100000000000 (mov	e) 000000000000000001000000000000 (mouse
000000000000000001000000000000 (mou	se) 000000000000000001000000000000 (mouse
00000000000000000100000000000 (mou	se) 0000000000000000010000000000 (move)
000000000000000000100000000000 (mov	e) 1000000000000000000000000000000000000
10000000000000000000000000000000000000	c) 0000000000000010000000000000000000 (lion)

(Elman, 1990)

Learning word classes

Learning word classes

Learning word classes

Beyond the simple recurrent network

- The SRN has a very strong linear locality bias
- But natural language syntax is characterized by hierarchical structure
- SRNs can learn hierarchy (Elman, 1991), but it is hard their inductive bias disfavors it

Another view of an unrolled SRN:

Another view of an unrolled SRN:

Another view of an unrolled SRN:

Keep the recurrent structure and "swap in" a new unit:

$$\mathbf{r}_t = \sigma(\mathbf{W}_r \mathbf{x}_t + \mathbf{U}_r \mathbf{h}_{t-1})$$

$$\tilde{\mathbf{h}}_t = \tanh(\mathbf{W}\mathbf{x}_t + \mathbf{U}(\mathbf{r}_t \odot \mathbf{h}_{t-1}))$$

$$\mathbf{z}_t = \sigma(\mathbf{W}_z \mathbf{x}_t + \mathbf{U}_z \mathbf{h}_{t-1})$$

$$\mathbf{h}_t = (1 - \mathbf{z}_t) \odot \mathbf{h}_{t-1} + \mathbf{z}_t \odot \tilde{\mathbf{h}}_t$$

logistic/sigmoid activation function

$$\mathbf{r}_t = \sigma(\mathbf{W}_r \mathbf{x}_t + \mathbf{U}_r \mathbf{h}_{t-1})$$

$$\widetilde{\mathbf{h}}_t = \tanh(\mathbf{W}\mathbf{x}_t + \mathbf{U}(\mathbf{r}_t \odot \mathbf{h}_{t-1})$$

$$\mathbf{z}_t = \sigma(\mathbf{W}_z \mathbf{x}_t + \mathbf{U}_z \mathbf{h}_{t-1})$$

$$\mathbf{h}_t = (1 - \mathbf{z}_t) \odot \mathbf{h}_{t-1} + \mathbf{z}_t \odot \tilde{\mathbf{h}}_t$$

logistic/sigmoid activation function

$$\mathbf{r}_{t} = \sigma(\mathbf{W}_{r}\mathbf{x}_{t} + \mathbf{U}_{r}\mathbf{h}_{t-1})$$

$$\tilde{\mathbf{h}}_t = \tanh(\mathbf{W}\mathbf{x}_t + \mathbf{U}(\mathbf{r}_t \odot \mathbf{h}_{t-1}))$$

$$\mathbf{z}_t = \sigma(\mathbf{W}_z \mathbf{x}_t + \mathbf{U}_z \mathbf{h}_{t-1})$$

$$\mathbf{h}_t = (1 - \mathbf{z}_t) \odot \mathbf{h}_{t-1} + \mathbf{z}_t \odot \tilde{\mathbf{h}}_t$$

(e.g.,
$$\langle 1,2,3 \rangle \odot \langle 0.5,2,1 \rangle = \langle 0.5,4,3 \rangle$$
)

logistic/sigmoid activation function

$$\mathbf{r}_t = \sigma(\mathbf{W}_r \mathbf{x}_t + \mathbf{U}_r \mathbf{h}_{t-1})$$

$$\tilde{\mathbf{h}}_{t} = \tanh(\mathbf{W}\mathbf{x}_{t} + \mathbf{U}(\mathbf{r}_{t} \odot \mathbf{h}_{t-1})$$

$$\uparrow$$
element-wise multiplication

$$\mathbf{z}_t = \sigma(\mathbf{W}_z \mathbf{x}_t + \mathbf{U}_z \mathbf{h}_{t-1})$$

$$\mathbf{h}_t = (1 - \mathbf{z}_t) \odot \mathbf{h}_{t-1} + \mathbf{z}_t \odot \tilde{\mathbf{h}}_t$$

(e.g.,
$$\langle 1,2,3 \rangle \odot \langle 0.5,2,1 \rangle = \langle 0.5,4,3 \rangle$$
)

logistic/sigmoid activation function

$$\mathbf{r}_{t} = \sigma(\mathbf{W}_{r}\mathbf{x}_{t} + \mathbf{U}_{r}\mathbf{h}_{t-1})$$

$$\tilde{\mathbf{h}}_t = \tanh(\mathbf{W}\mathbf{x}_t + \mathbf{U}(\mathbf{r}_t \odot \mathbf{h}_{t-1}))$$

element-wise multiplication

$$\mathbf{z}_t = \sigma(\mathbf{W}_z \mathbf{x}_t + \mathbf{U}_z \mathbf{h}_{t-1})$$

$$\mathbf{h}_t = (1 - \mathbf{z}_t) \odot \mathbf{h}_{t-1} + \mathbf{z}_t \odot \tilde{\mathbf{h}}_t$$

(e.g.,
$$\langle 1,2,3 \rangle \odot \langle 0.5,2,1 \rangle = \langle 0.5,4,3 \rangle$$
)

logistic/sigmoid activation function

$$\mathbf{r}_t = \sigma(\mathbf{W}_r \mathbf{x}_t + \mathbf{U}_r \mathbf{h}_{t-1})$$

$$\tilde{\mathbf{h}}_{t} = \tanh(\mathbf{W}\mathbf{x}_{t} + \mathbf{U}(\mathbf{r}_{t} \odot \mathbf{h}_{t-1})$$

$$\uparrow$$
element-wise multiplication

$$\mathbf{z}_t = \sigma(\mathbf{W}_z \mathbf{x}_t + \mathbf{U}_z \mathbf{h}_{t-1})$$

$$\mathbf{h}_t = (1 - \mathbf{z}_t) \odot \mathbf{h}_{t-1} + \mathbf{z}_t \odot \tilde{\mathbf{h}}_t$$

(e.g.,
$$\langle 1,2,3 \rangle \odot \langle 0.5,2,1 \rangle = \langle 0.5,4,3 \rangle$$
)

logistic/sigmoid activation function

$$\mathbf{r}_{t} = \sigma(\mathbf{W}_{r}\mathbf{x}_{t} + \mathbf{U}_{r}\mathbf{h}_{t-1})$$

$$\tilde{\mathbf{h}}_{t} = \tanh(\mathbf{W}\mathbf{x}_{t} + \mathbf{U}(\mathbf{r}_{t} \odot \mathbf{h}_{t-1})$$
element-wise

$$\mathbf{z}_t = \sigma(\mathbf{W}_z \mathbf{x}_t + \mathbf{U}_z \mathbf{h}_{t-1})$$

$$\mathbf{h}_t = (1 - \mathbf{z}_t) \odot \mathbf{h}_{t-1} + \mathbf{z}_t \odot \tilde{\mathbf{h}}_t$$

(e.g.,
$$\langle 1,2,3 \rangle \odot \langle 0.5,2,1 \rangle = \langle 0.5,4,3 \rangle$$
)

multiplication

Long short-term memory (LSTM) units

(Hochreiter & Schmidhuber, 1997)

- The "hidden layer" \mathbf{h}_{t-1} was used to predict element t of the sequence
- It now gets passed through a "forget gate"

$$\mathbf{f}_t = \sigma(\mathbf{U_f}\mathbf{h}_{t-1} + \mathbf{W}_f\mathbf{x}_t)$$

• Other information from h_{t-1} gets put into the memory store

$$\mathbf{i}_t = \sigma(\mathbf{U_i}\mathbf{h}_{t-1} + \mathbf{W_i}\mathbf{x}_t)$$

$$\tilde{\mathbf{C}}_t = \tanh(\mathbf{U}_{\mathbf{C}}\mathbf{h}_{t-1} + \mathbf{W}_{\mathbf{C}}\mathbf{x}_t)$$

 That information gets integrated into the memory store (which also gets passed on to the future

$$\mathbf{C}_t = \mathbf{f}_t \odot \mathbf{C}_{t-1} + \mathbf{i}_t \odot \tilde{\mathbf{C}}_t$$

 Finally, we determine the new hidden layer to predict input t+1

$$\mathbf{o}_t = \sigma(\mathbf{U}_{\mathbf{o}}\mathbf{h}_{t-1} + \mathbf{W}_{\mathbf{o}}\mathbf{x}_t)$$

$$\mathbf{h}_t = \mathbf{o}_t \odot \tanh(\mathbf{C}_t)$$

The LSTM unit, complete

$$\mathbf{f}_{t} = \sigma(\mathbf{U}_{\mathbf{f}}\mathbf{h}_{t-1} + \mathbf{W}_{f}\mathbf{x}_{t})$$

$$\mathbf{i}_{t} = \sigma(\mathbf{U}_{\mathbf{i}}\mathbf{h}_{t-1} + \mathbf{W}_{\mathbf{i}}\mathbf{x}_{t})$$

$$\tilde{\mathbf{C}}_{t} = \tanh(\mathbf{U}_{\mathbf{C}}\mathbf{h}_{t-1} + \mathbf{W}_{\mathbf{C}}\mathbf{x}_{t})$$

$$\mathbf{C}_{t} = \mathbf{f}_{t} \odot \mathbf{C}_{t-1} + \mathbf{i}_{t} \odot \tilde{\mathbf{C}}_{t}$$

$$\mathbf{o}_{t} = \sigma(\mathbf{U}_{\mathbf{o}}\mathbf{h}_{t-1} + \mathbf{W}_{\mathbf{o}}\mathbf{x}_{t})$$

$$\mathbf{h}_{t} = \mathbf{o}_{t} \odot \tanh(\mathbf{C}_{t})$$

 a^nb^n

 a^nb^n

Easily generable with a context-free grammar:

$$S \rightarrow a b$$

 $S \rightarrow a S b$

a^nb^n

Easily generable with a context-free grammar:

- ^ab\$
- ^aabb\$
- ^aaabbb\$
- ^aaaabbbb\$
- ^aaaaabbbbb\$
- ^aaaaaabbbbbb\$
- ^aaaaaaabbbbbbb\$

•

^aaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbb

23

 a^nb^n

Easily generable with a context-free grammar:

```
^ab$
```

^aaabbb\$

^aaaabbbb\$

^aaaaabbbbb\$

^aaaaaabbbbbb\$

^aaaaaaabbbbbbb\$

^aaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbb

(Weiss et al. 2018, ACL)

 a^nb^n

Easily generable with a context-free grammar:

```
^ab$ S \rightarrow a b S \rightarrow a S
```

- ^aaabbb\$
- ^aaaabbbb\$

Dtrain

- ^aaaaabbbbb\$
- ^aaaaaabbbbbb\$
- ^aaaaaaabbbbbbb\$

•

N = 20

N = 20

Training recurrent architectures on a^nb^n

Hidden & cell state contents

Summary

- Mechanisms for neural networks at the sentence level:
 - Learned word embeddings
 - Recurrent state representation
- Different units used for recurrent state representation:
 - Simple recurrent network (SRN)
 - Gated recurrent unit (GRU)
 - Long short-term memory (LSTM)
- For classic counting language, LSTM works the best