```
Computer Graphics with Applications of Dr. Makhanov.
 (*
                        Basic Image Processing with Mathematica *)
SetOptions[{ListPlot3D, Histogram, Plot}, ImageSize → Small];
SetOptions[EvaluationNotebook[], ShowCellLabel → False];
 (* Problem (1) Define the mage val_2021.
  png and output the dimensions and the channels
                                                    *)
 (* Set up your directory where you uploaded the images*)
SetDirectory["E:\\Computer Graphics\\Lab4\\Lab4"]
E:\Computer Graphics\Lab4\Lab4
T0 := Import["val_2022.png"]
ImageDimensions[T0]
{101, 102}
 (* Usually the color image has RG and B channels *)
ImageChannels[T0]
 (* Problem (2) Split T1 the RGB components. *)
 (* If you get 4 channels then RemoveAlphaChannel *)
T1 = RemoveAlphaChannel[T0]
 (* convert into the gray level image *)
{TG = ColorConvert[T1, "Grayscale"]}
 HAPPY VALENTINE'S
```

(\* Problem (3) Evaluate each color~matrix and combine them back into the color image in a different order \*)

{CRed, CGreen, CBlue} = ColorSeparate[T1]







(\* Let us combine them into the image in a different way \*)

{T3 = ColorCombine[{CGreen, CRed, CBlue}]}



(\* Obtain gray levels of the image Cred as a matrix and show them using ListPlot3D. Can take some time.... \*)

M3 = ImageData[CRed];

ListPlot3D[M3, ImageSize → Small] (\* this may take some time \*)



(\* Convert M3 back into the image \*)

{M3Image = Image[M3]}



(\* Problem (4) Import baboon.jpg. Swap the red and the green matrices  $\star$ )







(\* Red \*)



(\* Green \*)



(\* Blue \*)







(\* Binarization splits the gray levels into black and white regions depending on a given threshold \*)

(\* Problem (5) Read the image textold1.jpg
and binarize it with an appropriate threshold\*)

{T5 = Import["textold.jpg"]}



## ImageDimensions[T5]

 $\{332, 254\}$ 

T5GL := ColorConvert[T5, "Grayscale"]

{T5GL}



## T5B := Binarize[T5GL, 0.2];

{T5B}

```
(* Problem (6) Use slider for solving Problem (5) *)
{Dynamic[Binarize[T5GL, Tre]]}
 (* Design the slider *)
{____, 0.35}
 (* Finding the Threshold automatically *)
Tre6 = FindThreshold[T5GL]
0.301961
T6 := Binarize[T5GL, Tre6]
{T6}
 (* Problem (7) Find an appropriate threshold to binarize the
 satellite image river1.jpg \, to remove details and visualize the \,
 river flow. Use ColorNegate[Image] to obtain the negative image *)
 (* Import the image *)
```

R1 := Import["river1.JPG"]

 $\{R1\}$ 



(\* Convert into the gray level \*)

{**R2**}



(\* Use ColorNegate to obtain negative of the image R2  $\,$ Use M-13 help to find this function \*)

{R3}



{Dynamic[Binarize[R3, Tr3]]}



## (\* Design the slider for Tr3\*)



(\* Binarize with a fixed threshold selected by slider and save in R4\*)

 $\{Null\}$ 

{R4}



(\* Gray level histogram shows for each gray level the number of pixels in the image that have this gray level The one~dimensional histogram functions return a vector N elements long containing the number of intensity levels in each bin \*)

(★ Problem (7') Binarize image river1.jpg using a slider and a histogram ★)

(\* Convert into data and flatten the image \*)

RF3 = Flatten[ImageData[R3]];

HP = Histogram[RF3, {0.01}, ChartStyle → Red]



 $\{ Slider[Dynamic[TreP]\,,\, Background \rightarrow LightBlue]\,,\, Dynamic[TreP] \}$ 

 $\label{eq:Dynamic} {\tt Dynamic[Show[HP, ListPlot[\{\{TreP,\,0\}\},\,PlotStyle \rightarrow PointSize[0.06]]]]}$ 



{RH4 = Dynamic[Binarize[R3, TreP]]}



(\* Problem (8) Remove the background noise from image in Heavy\_load\_noisy.jpg using the method applied in Problem (7')  $\star$ )

HL1 = Import["Heavy\_load\_noisy.jpg"]



ImageChannels[HL1]





 $\{ Slider[Dynamic[TreHL], Background \rightarrow LightBlue], Dynamic[TreHL] \}$ 







(\* Binarize[image,  $\{t1,t2\}$ ] creates a binary image by replacing all values in the range  $\mathit{t}_1$  through  $\mathit{t}_2$  (two thresholds) with 1 and others with 0. This is used to segment an object with the gray levels in a specified interval. The image is imported by "cut-and-paste". \*)

T12 :=

```
{T9 = ColorConvert[T12, "Grayscale"]}
 (* Problem (9) Binarize image T9 using a histogram and binarization
  with the two thresholds so that only one object appears at the time \star)
 (* Flatten[ImageDatap[]] *)
T9F := Flatten[ImageData[T9]]
 (* Find the histogram *)
HP9 = Histogram[T9F, {0.01}]
40 000 |
30 000
20 000
10 000
  0.2
         0.4
                         1.0
              0.6
                   0.8
 (* Use Binarize[image, {t1,t2}] *)
```



(\* Turning the gray level up and down \*)

(\* Gray level down by 0.5 \*)

{Tdown = ImageMultiply[T5, 0.5]}



(\* Gray level up 1.5 with the automatic adjustment to [0,1] \*)

{Tup = ImageMultiply[T5, 1.5]}

