Gramaticas Independientes del Contexto

Fabio Martínez Carrillo

Autómatas Escuela de Ingeniería de Sistemas e Informatica Universidad Industrial de Santander - UIS

11 de octubre de 2017

Gramaticas libres de contexto

Notación formal para expresar definiciones recursivas de los lenguajes.

- Desarrollo de compiladores
- Procesamiento de lenguajes naturales
- Analizadores sintacticos
- Útil para describir estructuras anidadas
- Describen tipos de formatos como : XML, DTD

Gramaticas independientes del contextos

- terminales (T): Un conjunto finito de símbolos que forma las cadenas del lenguaje que se está definiendo. Σ
- 2 variables (v): Un conjunto finito de otros símbolos que representa el lenguaje $V, V \cap \Sigma = \emptyset$
- **Símbolo inicial (S).** variable con la que inicia la definición del lenguaje V
- **4** Conjunto de producciones (P) $V \times (V \cup \Sigma)^*$

$$G = (V, T, P, S)$$

Regla de producción

Definición

variable(cabecera) → cadena de variables y terminales (cuerpo)

Convención

- A, B, C . . . y S son variables
 - S normalmente es el símbolo inicial
- a, b, c son terminales
- X, Y, Z pueden ser terminales o variables
- w, x, y, z son cadenas de los terminales
- α, β cadenas formadas por símbolos terminales y/o variables.

Gramatica en español

- frase >→< sujeto >< predicado >
- $\bullet < articulo > \rightarrow el \mid la$

- < verbo >→ brilla | corre
- < frase > es el simbolo inicial
- Se aplica recursivamente reglas gramticales hasta que no hayan variables
- La palabra generada hace parte de la gramatica. Por ejemplo:
 - "el perro corre"
 - " el perro brilla"

Ejemplo:
$$\{0^n1^n \mid n \ge 1\}$$

- \bullet $S \rightarrow 01$
- S → 0S1
- Base 01 es el lenguaje
- Inducción Si w esta en el lenguaje, entonces es 0w1

Ejemplo de la Gramatica

$$\left\{0^n1^n\mid n\geq 1\right\}$$

- Terminales: {0, 1} constantes
- variables: $\{S\}$
- Simbolo inical S
- Reglas de la producción
 - ullet S
 ightarrow 01
 - $\bullet \ S \to 0S1$

$$G = (\{S\}, \{0, 1\} P, S)$$

Ejemplo 2: generación de expresiones aritmeticas

reglas

- $1. \quad E \to E + T$
- $2. \quad E \to T$
- $3. \quad T \to T * F$
- $4. \quad T \to F$
- $5. \quad F \to CF$
- 6. $F \rightarrow C$
- $7. \quad C \to 0|1|2|3|4|5|6|7|8|9$

- Simbolo inicial: E
- terminales: {+, *, 0, ..., 9}
- variables: *E*, *T*, *F*, *C*

Generación de la expresión: 25 + 3 * 12

EXPRESION	JUSTIFICACION
E	Símbolo inicial, inicia derivación
$\Rightarrow E + T$	Aplicación 1a. regla
$\Rightarrow T + T$	2a. regla, sobre la ${\cal E}$
$\Rightarrow F + T$	4a. regla, sobre la T izquierda
$\Rightarrow CF + T$	5a. regla, sobre F
$\Rightarrow 2F + T$	7a. regla
$\Rightarrow 2C + T$	6a. regla
$\Rightarrow 25 + T$	7a. regla
$\Rightarrow 25 + T * F$	3a. regla
$\Rightarrow 25 + F * F$	4a. regla
$\Rightarrow 25 + C * F$	6a. regla, sobre la F izquierda
$\Rightarrow 25 + 3 * F$	7a. regla
$\Rightarrow 25 + 3 * CF$	5a. regla
$\Rightarrow 25 + 3 * 1F$	7a. regla
$\Rightarrow 25 + 3 * 1C$	6a. regla
$\Rightarrow 25 + 3 * 12$	7a. regla

Derivación utilizando a gramatica

El lenguaje de la gramática son todas las cadenas de terminales que se pueden construir utilizando **derivación**.

 Una cadena α ∈ (V ∪ Σ)* es derivable a partir de la gramatica ({V}, Σ, P, S), si hay al menos una secuencia de pasos de derivación que la produce a partir del símbolo inicial S

$$S \Rightarrow \cdots \alpha$$

lenguaje L(G)

Palabras construidas por terminales derivables a partir del simbolo inicial

$$\{w \in \Sigma^* \mid S \Rightarrow \cdots w\}$$

Derivación utilizando a gramatica

Entonces podemos decir

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$

Si $A \Rightarrow \gamma$ es una regla de producción

Ejemplo: $S \Rightarrow 01$; $S \Rightarrow 0S1$

$$S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 000111$$

Derivación iterativa

Utilizar las reglas de producción para inferir ciertas cadenas que pertenecen al lenguaje de una variable.

- El simbolo inicial se expande utilizando producciones iterativamente hasta obeter una cadena de terminales
- El lenguaje de la gramática son todas las cadenas de terminales que se pueden obtener de esta forma
- Podemos extender ⇒ hacia ⇒* para indicar cero o mas derivaciones
- ullet Operación equivalente a pasar δ hasta $\hat{\delta}$

Derivación iterativas

Podemos extender \Rightarrow hacia \Rightarrow * para indicar cero o mas derivaciones

- Caso Base: $\alpha \Rightarrow^* \alpha$. Cualquier cadena se deriva a sí misma
- paso Inductivo: Si $\alpha \Rightarrow^* \beta$ y $\beta \Rightarrow \gamma$ entonces $\alpha \Rightarrow^* \gamma$. Indica que hay una secuencia de cadenas $\gamma_1, \gamma_2, \dots, \gamma_n$ para $n \ge 1$
 - $\alpha = \gamma_1$
 - $\beta = \gamma_n$
 - Para i = 1, 2, ..., n-1 tenemos $\gamma_i \Rightarrow \gamma_{i+1}$

Ejemplo derivación iterativa

$\mathcal{S} ightarrow 01$; $\mathcal{S} ightarrow 0\mathcal{S}1$

- $S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 000111$
- Entonces:
 - $S \Rightarrow^* S$
 - S ⇒* 0S1
 - S ⇒* 00S11
 - S ⇒* 000111

Derivación interativa

Considere la expresión: a * (a + b00).

- Defina la expresión de la gramatica
- Pruebe si la cadena es una palabra de la gramatica

Derivación iterativa

$$E \Rightarrow E * E \Rightarrow I * E \Rightarrow a * E \Rightarrow$$

$$a * (E) \Rightarrow a * (E + E) \Rightarrow a * (I + E) \Rightarrow a * (a + E) \Rightarrow$$

$$a * (a + I) \Rightarrow a * (a + I0) \Rightarrow a * (a + I00) \Rightarrow a * (a + b00)$$

Formas sentenciales

$$E \Rightarrow^* a * (a + b00)$$

Derivaciones de Izquierda y Derecha

La derivación nos permite reemplazar cualquier variable en una cadena.

• Esto conduce a diferentes derivaciones para la misma cadena

Podemos forzar para reemplazar la variable más a la izquierda/derecha

Derivación hacia la izquierda

Derivación hacia la izquierda

$$WA\alpha \Rightarrow_{lm} W\beta\alpha$$

Si w es una cadena terminal y existe la regla de producción $A \rightarrow \beta$

Derivación hacia la derecha

$$A\alpha Aw \Rightarrow_{rm} w\beta\alpha$$

Si w es una cadena terminal y existe la regla de producción $A \to \beta$

Gramatica de parentesis balanceados (LM)

$$\bullet \ S \rightarrow SS \mid (S) \mid ()$$

$$S \Rightarrow_{lm}^* SS \Rightarrow_{lm}^* (S)S \Rightarrow_{lm}^* (())S \Rightarrow_{lm}^* (())()$$

Ejercicio

Describa la expresión a*(a+b00) como una derivación por izquierda y por derecha

Ejercicio

Describa la expresión a*(a+b00) como una derivación por izquierda y por derecha

$$E \underset{lm}{\Rightarrow} E * E \underset{lm}{\Rightarrow} I * E \underset{lm}{\Rightarrow} a * E \underset{lm}{\Rightarrow}$$

$$a * (E) \underset{lm}{\Rightarrow} a * (E + E) \underset{lm}{\Rightarrow} a * (I + E) \underset{lm}{\Rightarrow} a * (a + E) \underset{lm}{\Rightarrow}$$

$$a * (a + I) \underset{lm}{\Rightarrow} a * (a + I0) \underset{lm}{\Rightarrow} a * (a + I00) \underset{lm}{\Rightarrow} a * (a + b00)$$

Figura 1: Por izquierda

Ejercicio

Describa la expresión a*(a+b00) como una derivación por izquierda y por derecha

$$E \underset{rm}{\Rightarrow} E * E \underset{rm}{\Rightarrow} E * (E) \underset{rm}{\Rightarrow} E * (E+E) \underset{rm}{\Rightarrow}$$

$$E * (E+I) \underset{rm}{\Rightarrow} E * (E+I0) \underset{rm}{\Rightarrow} E * (E+I00) \underset{rm}{\Rightarrow} E * (E+b00) \underset{rm}{\Rightarrow}$$

$$E * (I+b00) \underset{rm}{\Rightarrow} E * (a+b00) \underset{rm}{\Rightarrow} I * (a+b00) \underset{rm}{\Rightarrow} a * (a+b00)$$

Figura 1: Por derecha

Muchas gracias por su atención

