```
In [2]: import pandas as pd
        import seaborn as sns
        import numpy as np
        import matplotlib.pyplot as plt
        import warnings
        warnings.filterwarnings ('ignore')
        import requests
        df = pd.read_csv (r"C:\Users\nette802\Desktop\Data Science\data science.csv")
```

In [3]: **df**

Out[3]:	Unnamed: 0	work_year	experience_level	employment_type	job_title	salary	salary_currency
	0 0	2020	MI	FT	Data	70000	EUR

	U						
0	0	2020	MI	FT	Data Scientist	70000	EUR
1	1	2020	SE	FT	Machine Learning Scientist	260000	USD
2	2	2020	SE	FT	Big Data Engineer	85000	GBP
3	3	2020	MI	FT	Product Data Analyst	20000	USD
4	4	2020	SE	FT	Machine Learning Engineer	150000	USD
•••	•••	•••			•••		•••
602	602	2022	SE	FT	Data Engineer	154000	USD
603	603	2022	SE	FT	Data Engineer	126000	USD
604	604	2022	SE	FT	Data Analyst	129000	USD
605	605	2022	SE	FT	Data Analyst	150000	USD
606	606	2022	MI	FT	AI Scientist	200000	USD

607 rows × 12 columns

```
In [15]: # select two columns
         df[['salary','job_title']]
```

```
Out[15]:
                  salary
                                          job_title
                  70000
                                      Data Scientist
                 260000
                          Machine Learning Scientist
              2
                  85000
                                  Big Data Engineer
              3
                  20000
                               Product Data Analyst
              4 150000 Machine Learning Engineer
             •••
                154000
           602
                                     Data Engineer
           603
                126000
                                     Data Engineer
           604 129000
                                       Data Analyst
           605 150000
                                       Data Analyst
           606 200000
                                        Al Scientist
```

607 rows × 2 columns

Out[17]:		Unnamed: 0	work_year	experience_level	employment_type	job_title	salary	salary_curren
	0	177	2021	МІ	FT	Data Scientist	30400000	C
	1	102	2021	МІ	FT	BI Data Analyst	11000000	Н
	2	7	2020	MI	FT	Data Scientist	11000000	Н
	3	137	2021	МІ	FT	ML Engineer	8500000	J
	4	285	2021	SE	FT	Data Science Manager	7000000	II
	•••							
	602	196	2021	EN	FT	BI Data Analyst	9272	U
	603	124	2021	EN	PT	Data Analyst	8760	E
	604	15	2020	MI	FT	Data Analyst	8000	U
	605	185	2021	MI	FT	Data Engineer	4000	U
	606	238	2021	EN	FT	Data Scientist	4000	U
	607 ro	ws × 12 cc	olumns					
4								>

```
In [21]: plt.figure(figsize=(15,6))
    sns.barplot(y = 'salary', x = 'job_title', data= df, palette = 'hls' )
    plt.xticks(rotation = 90)
    plt.show
```

Out[21]: <function matplotlib.pyplot.show(close=None, block=None)>

			<u>'</u>	, <u>-</u> '		_	•	, ,
Out[23]:		Unnamed: 0	work_year	experience_level	employment_type	job_title	salary	salary_curren
	0	177	2021	МІ	FT	Data Scientist	30400000	C
	1	7	2020	MI	FT	Data Scientist	11000000	Н
	2	102	2021	MI	FT	BI Data Analyst	11000000	Н
	3	137	2021	MI	FT	ML Engineer	8500000	J
	4	285	2021	SE	FT	Data Science Manager	7000000	II
	•••							
	602	196	2021	EN	FT	BI Data Analyst	9272	U
	603	124	2021	EN	PT	Data Analyst	8760	Е
	604	15	2020	MI	FT	Data Analyst	8000	U
	605	185	2021	MI	FT	Data Engineer	4000	U
	606	238	2021	EN	FT	Data Scientist	4000	U

607 rows × 12 columns

```
In [32]: plt.figure(figsize=(20,30))
    sns.barplot(y = 'job_title', x = 'salary_in_usd', data= df, palette = 'hls' )
    plt.xticks(rotation = 90)
    plt.show
```

Out[32]: <function matplotlib.pyplot.show(close=None, block=None)>

Out[33]:		Unnamed:	work_year	experience_level	employment_type	job_title	salary	salary_currenc
	0	96	2021	EN	PT	AI Scientist	12000	US
	1	113	2021	EN	PT	Al Scientist	12000	US
	2	244	2021	EN	FT	Al Scientist	1335000	IN
	3	277	2021	SE	FT	Al Scientist	55000	US
	4	606	2022	МІ	FT	Al Scientist	200000	US
	•••					•••		
	602	138	2021	SE	FT	Principal Data Scientist	220000	US
	603	3	2020	MI	FT	Product Data Analyst	20000	US
	604	33	2020	МІ	FT	Research Scientist	450000	US
	605	281	2021	EN	FT	Research Scientist	100000	US
	606	507	2022	МІ	FT	Research Scientist	59000	EU
	607 rd	ows × 12 co	olumns					
4								•

```
In [49]: fig, ax = plt.subplots(1,1, figsize=(15,9))
    sns.heatmap (df.corr(), annot=True,cmap= 'Wistia')
    ax.set(xlabel= 'features')
    ax.set(ylabel='features')

plt.title('Correlation between different features', fontsize=15,c='black')
    plt.show()
```



```
p=df['salary_in_usd'].max()
In [53]:
         q=df['salary_in_usd'].min()
In [54]:
         print (p)
         600000
In [55]:
         print (q)
         2859
         plt.figure(figsize=(5,10))
In [63]:
         sns.barplot(y = 'salary', x = 'experience_level' , data= df, palette = 'hls' )
         plt.xticks(rotation = 90)
         plt.show
         <function matplotlib.pyplot.show(close=None, block=None)>
```

Out[63]:

