CSE2023 Discrete Computational Structures

Lecture 9

2.2 Set operations

• **Union**: the set that contains those elements that are either in A or in B, or in both

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

• A={1,3,5}, B={1,2,3}, AUB={1,2,3,5}

Intersection

• Intersection: the set containing the elements in both A and B

• $A=\{1,3,5\}, B=\{1,2,3\}, A \cap B=\{1,3\}$

Disjoint set

- Two sets are **disjoint** if their intersection is \emptyset
- $A=\{1,3\}$, $B=\{2,4\}$, A and B are disjoint
- Cardinality: $|A \cup B| = |A| + |B| |A \cap B|$

1

Difference and complement

A-B: the set containing those elements in A but not in B A-B={x | x ∈ A ∧ x ∉ B}

• A={1,3,5},B={1,2,3}, A-B={5}

Complement

- Once the universal set U is specified, the complement of a set can be defined
- Complement of A: $\overline{A} = \{x \mid x \notin A\}, \overline{A} = U A$
- A-B is also called the complement of B with respect to A

Example

- A is the set of positive integers > 10 and the universal set is the set of all positive integers, then $\overline{A} = \{x \mid x \le 10\} = \{1,2,3,4,5,6,7,8,9,10\}$
- A-B is also called the complement of B with respect to A

Set identities

Identity	Name		
$A \cup \emptyset = A$ $A \cap U = A$	Identity laws		
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws		
$A \cup A = A$ $A \cap A = A$	Idempotent laws		
$\overline{(A)} = A$	Complementation law		
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws		
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws		
$\begin{split} A \cap (B \cup C) &= (A \cap B) \cup (A \cap C) \\ A \cup (B \cap C) &= (A \cup B) \cap (A \cup C) \end{split}$	Distributive laws		
$\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$	De Morgan's laws		
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws		
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws		

Example

- Prove $\overline{A \cap B} = \overline{A} \cup \overline{B}$
- Will show that $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$ and $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$
- (\rightarrow): Suppose that $x \in \overline{A \cap B}$, by definition of complement and use De Morgan's law $\neg(x \in A \land x \in B)$ $\equiv (\neg(x \in A)) \lor (\neg(x \in B))$
- $\equiv (x \notin A) \lor (x \notin B)$ By definition of complement $x \in \overline{A}$ or $x \in \overline{B}$
- By definition of union $x \in \overline{A} \cup \in \overline{B}$

Example

- (\leftarrow): Suppose that $x \in \overline{A} \cup \overline{B}$
- By definition of union $x \in \overline{A} \lor x \in \overline{B}$
- By definition of complement $x \notin A \lor x \notin B$
- Thus $\neg(x \in A) \lor \neg(x \in B)$
- By De Morgan's law: $\neg (x \in A) \lor \neg (x \in B)$ $\equiv \neg (x \in A \land x \in B)$ $\equiv \neg (x \in (A \cap B))$
- By definition of complement, $x \in \overline{A \cap B}$

Builder notation

· Prove it with builder notation

 $\overline{A \cap B} = \{x \mid x \notin A \cap B\} \text{ (def of complement)}$ $= \{x \mid \neg(x \in (A \cap B))\} \text{ (def of not belong to)}$ $= \{x \mid \neg(x \in A \land x \in B)\} \text{ (def of intersection)}$ $= \{x \mid \neg(x \in A) \lor \neg(x \in B)\} \text{ (De Morgan's law)}$ $= \{x \mid x \notin A \lor x \notin B\} \text{ (def of not belong to)}$ $= \{x \mid x \in \overline{A} \lor x \in \overline{B}\} \text{ (def of complement)}$ $= \{x \mid x \in \overline{A} \cup \overline{B}\} \text{ (def of union)}$ $= \overline{A} \cup \overline{B}$

Example

- Prove $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- (\rightarrow): Suppose that $x \in A \cap (B \cup C)$ then $x \in A$ and $x \in B \cup C$. By definition of union, it follows that $x \in A$, and $x \in B$ or $x \in C$. Consequently, $x \in A$ and $x \in B$ or $x \in A$ and $x \in C$
- By definition of intersection, it follows $x \in A \cap B$ or $x \in A \cap C$
- By definition of union, $x \in (A \cap B) \cup (A \cap C)$

12

Membership table

© The McGraw-Hill Companies, Inc. all rights reserved.

A	B	C	$B \cup C$	$A \cap (B \cup C)$	$A \cap B$	$A \cap C$	$(A \cap B) \cup (A \cap C)$
1	1	1	1	1	1	1	1
1	1	0	1	1	1	0	1
1	0	1	1	1	0	1	1
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0

Example

• Show that $\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$

Example

• Show that $\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$ $\overline{A \cup (B \cap C)} = \overline{A} \cap \overline{B \cap C}$ (De Morgan's law)

Example

• Show that $\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$ $\overline{A \cup (B \cap C)} = \overline{A} \cap \overline{B \cap C}$ (De Morgan's law) $= \overline{A} \cap (\overline{B} \cup \overline{C})$ (De Morgan's law)

Example

• Show that $\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$

$$\overline{A \cup (B \cap C)} = \overline{A} \cap \overline{B \cap C} \quad \text{(De Morgan's law)}$$

$$= \overline{A} \cap (\overline{B} \cup \overline{C}) \quad \text{(De Morgan's law)}$$

$$= (\overline{B} \cup \overline{C}) \cap \overline{A} \quad \text{(commutati ve law)}$$

Example

• Show that $\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$

$$\overline{A \cup (B \cap C)} = \overline{A} \cap \overline{B} \cap \overline{C} \quad \text{(De Morgan's law)}$$

$$= \overline{A} \cap (\overline{B} \cup \overline{C}) \quad \text{(De Morgan's law)}$$

$$= (\overline{B} \cup \overline{C}) \cap \overline{A} \quad \text{(commutati ve law)}$$

$$= (\overline{C} \cup \overline{B}) \cap \overline{A} \quad \text{(commutati ve law)}$$

Generalized union and intersection

- A={0,2,4,6,8}, B={0,1,2,3,4}, C={0,3,6,9}
- AUBUC={0,1,2,3,4,6,8,9}
- A∩B∩C={0}

General case

• Union: $A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{i=1}^n A_i$

• Intersection $A_1 \cap A_2 \cap \cdots \cap A_n = \bigcap_{i=1}^n A_i$

• Union: $A_1 \cup A_2 \cup \cdots \cup A_n \cup \cdots = \bigcup_{i=1}^{\infty} A_i$

• Intersection: $A_1 \cap A_2 \cap \cdots \cap A_n \cap \cdots = \bigcap_{i=1}^{\infty} A_i$

• Suppose A_i={1, 2, 3,..., i} for i=1,2,3,...

$$\label{eq:continuous_equation} \begin{split} & \bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} \{1,2,3,\ldots,i\} = \{1,2,3,\ldots\} = Z^+ \\ & \bigcap_{i=1}^{\infty} A_i = \bigcap_{i=1}^{\infty} \{1,2,3,\ldots,i\} = \{1\} \end{split}$$

Computer representation of sets

- U={1,2,3,4,5,6,7,8,9,10}
- A={1,3,5,7,9} (odd integer ≤10),B={1,2,3,4,5} (integer ≤5)
- Represent A and B as 1010101010, and 1111100000
- Complement of A: 0101010101
- A∩B: 1010101010^1111100000=1010100000 which corresponds to {1,3,5}

22