Tests 11.2-11.6.*	Requirements for application	If this is twe	Then we conclude
limit test	Any an	lim an +0	Ean diverges
divergence		lin da =0	inconclusive
geo, series	an = rh	r < 1	$\sum_{n=1}^{\infty} (r)^n \text{ converges} $ to $\frac{r}{1-r}$
		Irl≥1	Sirin diverges
p-seriez	$a_n = \frac{1}{n^p}$	p > 1	Ian convenges
		p < 1	San diverges
integral test	an = f(n); f(x) >0, continuous and decreasing on [1,00)	∫o f(x) dx converges	5 an converges
		S, = faidx diverges	San diverges
comparison test	an >0 Known bn >0	an & bn , Ebn converges	San converges
		an > bn & Ebn diverger	Ean divergez
limit comparison test	an >0 Known bn >0	$\lim_{n\to\infty} \frac{a_n}{b_n} = L, 0 < L < \infty$ and Σb_n converges	San converges
		lim an = L, OCL < 0 and & bn diverger	Zan direrger
		lim an = 0 or so, or DNE	in con clusive
alternating series	$a_n > 0$ $a_{n+1} \leq a_n$	lin an = 0	S'(-1)"an converges
		other wise	inconcluive
* absolute convergence	Any an	E an converges	Ea, convergez
0		E an direnger	inconclusive
combinations	Any an, bn, CER	Ean converges and Ebn converges	E (can + dbn) converges

More Convergence testing	Requirements for application.	If this is	Then we conclude
Ratio test	Any, but useful with n! and xn,	$\left \lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = L < 1 \right $	S an converges absolutely
		$\left \lim_{h \to \infty} \left \frac{a_{n+1}}{a_n} \right = L > 1$	∑ an diverges
		$\left \lim_{n \to \infty} \left \frac{a_{n+i}}{a_n} \right = 1$	in conclusive
Root	Any, but useful when there's an overall power of n.	lim an = L < 1	\$ an converges A=1 absolutely
		$\lim_{n\to\infty} \alpha_n ^{\frac{1}{n}} = L > 1$	E an diverges
		lim an = 1	in con clusive
Ratio test for power series	looks like: I Cn x n n=0 or S Cn (x-a)^n	Use Ratio test: same conclusion as above with $L < 1$, but $L = 1$ is a function of X . Solve to find radius Ranund A .	
End points for power series	Plug in at R and a-R get SCnR and Ecn(-R)"	test for divergence,	geometric series, decide which noerge/diverge.