(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 25 May 2001 (25.05.2001)

PCT

(10) International Publication Number WO 01/36471 A2

(51) International Patent Classification7:	C07K 14/00	60/242,332	20 October 2000 (20.10.2000)	US
		60/242,343	20 October 2000 (20.10.2000)	US
(21) International Application Number:	PCT/US00/31509	60/243.019	24 October 2000 (24.10.2000)	US

(22) International Filing Date:

16 November 2000 (16 11.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

r Horney Data.		
60/166,088	17 November 1999 (17.11.1999)	US
60/166.099	17 November 1999 (17.11.1999)	US
60/166,369	17 November 1999 (17.11.1999)	US
60/171,900	23 December 1999 (23.12.1999)	US
60/171.901	23 December 1999 (23.12.1999)	US
60/171,902	23 December 1999 (23.12.1999)	US
60/181,749	11 February 2000 (11.02.2000)	US
60/189,258	14 March 2000 (14.03 2000)	US
60/189,259	14 March 2000 (14.03.2000)	US
60/195,898	10 April 2000 (10.04.2000)	US
60/195.899	10 April 2000 (10.04.2000)	US
60/196.078	10 April 2000 (10.04.2000)	US
60/200,419	28 April 2000 (28.04.2000)	US
60/203,630	12 May 2000 (12.05.2000)	US
60/210.741	12 June 2000 (12.06.2000)	US
60/210.982	12 June 2000 (12.06.2000)	US
60/226,760	21 August 2000 (21.08.2000)	US
60/235,418	26 September 2000 (26.09.2000)	US
60/235,779	26 September 2000 (26.09.2000)	US

(71) Applicant (for all designated States except US): ARENA PHARMACEUTICALS, INC. [US/US]; 6166 Nancy Ridge Drive, San Diego, CA 92121 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CHEN, Ruoping [CN/US]; 5296 Timber Branch Way, San Diego, CA 92130 (US). DANG, Huong, T. [US/US]; 5352 Oak Park Drive, San Diego, CA 92105 (US). LOWITZ, Kevin, P. [US/US]; 8031 Caminito de Pizza #C, San Diego, CA 82108 (US).

(74) Agents: MILLER, Suzanne, E. et al.; Woodcock Washburn Kurtz Mackiewicz & Norris LLP, One Liberty Place -46th Floor, Philadelphia, PA 19103 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ. DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR. HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR. LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM. TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH. GM. KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European

[Continued on next page]

(54) Title: ENDOGENOUS AND NON-ENDOGENOUS VERSIONS OF HUMAN G PROTEIN-COUPLED RECEPTORS

IP3 Assay in 293 Cells

(57) Abstract: The invention disclosed in this patent document relates to transmembrane receptors, more particularly to a human G protein-coupled receptor for which the endogenous ligand is unknown ("orphan GPCR receptors"), and most particularly to mutated (non-endogenous) versions of the human GPCRs for evidence of constitutive activity.

patent (AT, BE, CH, CY, DE, DK, ES, FL, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Chudance Notes on Codes and Abbreviations" appearing at the reginning of each regular issue of the PCT Gazette.

Published:

Without international search report and to be republished upon receipt of that report.

ENDOGENOUS AND NON-ENDOGENOUS VERSIONS OF HUMAN G PROTEIN-COUPLED RECEPTORS

FIELD OF THE INVENTION

5

10

15

20

25

The invention disclosed in this patent document relates to transmembrane receptors, and more particularly to human G protein-coupled receptors, and specifically to endogenous human GPCRs with particular emphasis on non-endogenous versions of the GPCRs that have been altered to establish or enhance constitutive activity of the receptor. Preferably, the altered GPCRs are used for the direct identification of candidate compounds as receptor agonists, inverse agonists or partial agonists having potential applicability as therapeutic agents.

BACKGROUND OF THE INVENTION

Although a number of receptor classes exist in humans, by far the most abundant and therapeutically relevant is represented by the G protein-coupled receptor (GPCR or GPCRs) class. It is estimated that there are some 100,000 genes within the human genome, and of these, approximately 2%, or 2,000 genes, are estimated to code for GPCRs. Receptors, including GPCRs, for which the endogenous ligand has been identified are referred to as "known" receptors, while receptors for which the endogenous ligand has not been identified are referred to as "orphan" receptors. GPCRs represent an important area for the development of pharmaceutical products: from approximately 20 of the 100 known GPCRs, approximately 60% of all prescription pharmaceuticals have been developed.

GPCRs share a common structural motif. All these receptors have seven sequences of between 22 to 24 hydrophobic amino acids that form seven alpha helices, each of which spans the membrane (each span is identified by number, *i.e.*, transmembrane-1 (TM-1), transmebrane-2 (TM-2), etc.). The transmembrane helices are joined by strands of amino acids between transmembrane-2 and transmembrane-3,

transmembrane-4 and transmembrane-5, and transmembrane-6 and transmembrane-7 on the exterior, or "extracellular" side, of the cell membrane (these are referred to as "extracellular" regions 1, 2 and 3 (EC-1, EC-2 and EC-3), respectively). The transmembrane helices are also joined by strands of amino acids between transmembrane-1 and transmembrane-2, transmembrane-3 and transmembrane-4, and transmembrane-5 and transmembrane-6 on the interior, or "intracellular" side, of the cell membrane (these are referred to as "intracellular" regions 1, 2 and 3 (IC-1, IC-2 and IC-3), respectively). The "carboxy" ("C") terminus of the receptor lies in the intracellular space within the cell, and the "amino" ("N") terminus of the receptor lies in the extracellular space outside of the cell.

Generally, when an endogenous ligand binds with the receptor (often referred to as "activation" of the receptor), there is a change in the conformation of the intracellular region that allows for coupling between the intracellular region and an intracellular "G-protein." It has been reported that GPCRs are "promiscuous" with respect to G proteins, i.e., that a GPCR can interact with more than one G protein. See, Kenakin, T., 43 Life Sciences 1095 (1988). Although other G proteins exist, currently, Gq, Gs, Gi, Gz and Go are G proteins that have been identified. Endogenous ligand-activated GPCR coupling with the G-protein begins a signaling cascade process (referred to as "signal transduction"). Under normal conditions, signal transduction ultimately results in cellular activation or cellular inhibition. It is thought that the IC-3 loop as well as the carboxy terminus of the receptor interact with the G protein.

Under physiological conditions, GPCRs exist in the cell membrane in equilibrium between two different conformations: an "inactive" state and an "active" state. A receptor in an inactive state is unable to link to the intracellular signaling transduction pathway to produce a biological response. Changing the receptor

25

5

10

15

conformation to the active state allows linkage to the transduction pathway (via the G-protein) and produces a biological response.

A receptor may be stabilized in an active state by an endogenous ligand or a compound such as a drug. Recent discoveries, including but not exclusively limited to modifications to the amino acid sequence of the receptor, provide means other than endogenous ligands or drugs to promote and stabilize the receptor in the active state conformation. These means effectively stabilize the receptor in an active state by simulating the effect of an endogenous ligand binding to the receptor. Stabilization by such ligand-independent means is termed "constitutive receptor activation."

10

5

SUMMARY OF THE INVENTION

Disclosed herein are endogenous and non-endogenous versions of human GPCRs and uses thereof.

15

20

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 provides an illustration of second messenger IP₃ production from endogenous version RUP12 ("RUP12") as compared with the control ("CMV").

Figure 2 is a graphic representation of the results of a second messenger cell-based cyclic AMP assay providing comparative results for constitutive signaling of endogenous RUP13 ("RUP13") and a control vector ("CMV").

Figure 3 is a diagrammatic representation of the signal measured comparing CMV, endogenous RUP13 ("RUP13 wt") and non-endogenous, constitutively activated RUP13 ("RUP13(A268K)"), utilizing 8XCRE-Luc reporter plasmid.

Figure 4 is a graphic representation of the results of a [35S]GTPγS assay providing comparative results for constitutive signaling by RUP13:Gs Fusion Protein ("RUP13-Gs") and a control vector ("CMV").

Figure 5 is a diagrammatic representation of the signal measured comparing CMV, endogenous RUP14 ("RUP14 wt") and non-endogenous, constitutively activated RUP13 ("RUP14(L246K)"), utilizing 8XCRE-Luc reporter plasmid.

Figure 6 is a diagrammatic representation of the signal measured comparing CMV, endogenous RUP15 ("RUP15 wt") and non-endogenous, constitutively activated RUP15 ("RUP15(A398K)"), utilizing 8XCRE-Luc reporter plasmid.

Figure 7 is a graphic representation of the results of a second messenger cell-based cyclic AMP assay providing comparative results for constitutive signaling of endogenous RUP15 ("RUP15 wt"), non-endogenous, constitutively activated version of RUP15 ("RUP15(A398K)") and a control vector ("CMV").

Figure 8 is a graphic representation of the results of a [35S]GTPγS assay providing comparative results for constitutive signaling by RUP15:Gs Fusion Protein ("RUP15-Gs") and a control vector ("CMV").

Figure 9 provides an illustration of second messenger IP₃ production from endogenous version RUP17 ("RUP17") as compared with the control ("CMV").

Figure 10 provides an illustration of second messenger IP₃ production from endogenous version RUP21 ("RUP21") as compared with the control ("CMV").

Figure 11 is a diagrammatic representation of the signal measured comparing CMV, endogenous RUP23 ("RUP23 wt") and non-endogenous, constitutively activated RUP23 ("RUP23(W275K)"), utilizing 8XCRE-Luc reporter plasmid.

5

10

15

Figure 12 is a graphic representation of results from a primary screen of several candidate compounds against RUP13; results for "Compound A" are provided in well A2 and "Compound "B" are provided in well G9.

DETAILED DESCRIPTION

The scientific literature that has evolved around receptors has adopted a number of terms to refer to ligands having various effects on receptors. For clarity and consistency, the following definitions will be used throughout this patent document. To the extent that these definitions conflict with other definitions for these terms, the following definitions shall control:

AGONISTS shall mean materials (e.g., ligands, candidate compounds) that activate the intracellular response when they bind to the receptor, or enhance GTP binding to membranes.

AMINO ACID ABBREVIATIONS used herein are set out in Table A:

TABLE A

ALANINE	ALA	A
ARGININE	ARG	R
ASPARAGINE	ASN	N
ASPARTIC ACID	ASP	D
CYSTEINE	CYS	С
GLUTAMIC ACID	GLU	Е
GLUTAMINE	GLN	Q
GLYCINE	GLY	G
HISTIDINE	HIS	Н
ISOLEUCINE	ILE	I
LEUCINE	LEU	L
LYSINE	LYS	K
METHIONINE	MET	M

5

PHENYLALANINE	PHE	F
PROLINE	PRO	P
SERINE	SER	S
THREONINE	THR	Т
TRYPTOPHAN	TRP	W
TYROSINE	TYR	Y
VALINE	VAL	V

PARTIAL AGONISTS shall mean materials (e.g., ligands, candidate compounds) that activate the intracellular response when they bind to the receptor to a lesser degree/extent than do agonists, or enhance GTP binding to membranes to a lesser degree/extent than do agonists.

ANTAGONIST shall mean materials (e.g., ligands, candidate compounds) that competitively bind to the receptor at the same site as the agonists but which do not activate the intracellular response initiated by the active form of the receptor, and can thereby inhibit the intracellular responses by agonists or partial agonists. ANTAGONISTS do not diminish the baseline intracellular response in the absence of an agonist or partial agonist.

CANDIDATE COMPOUND shall mean a molecule (for example, and not limitation, a chemical compound) that is amenable to a screening technique. Preferably, the phrase "candidate compound" does not include compounds which were publicly known to be compounds selected from the group consisting of inverse agonist, agonist or antagonist to a receptor, as previously determined by an indirect identification process ("indirectly identified compound"); more preferably, not including an indirectly identified compound which has previously been determined to have therapeutic efficacy in at least one mammal; and, most preferably, not including an indirectly identified compound which has previously been determined to have therapeutic utility in humans.

20

5

10

COMPOSITION means a material comprising at least one component; a "pharmaceutical composition" is an example of a composition.

COMPOUND EFFICACY shall mean a measurement of the ability of a compound to inhibit or stimulate receptor functionality, as opposed to receptor binding affinity. Exemplary means of detecting compound efficacy are disclosed in the Example section of this patent document.

CODON shall mean a grouping of three nucleotides (or equivalents to nucleotides) which generally comprise a nucleoside (adenosine (A), guanosine (G), cytidine (C), uridine (U) and thymidine (T)) coupled to a phosphate group and which, when translated, encodes an amino acid.

CONSTITUTIVELY ACTIVATED RECEPTOR shall mean a receptor subject to constitutive receptor activation. A constitutively activated receptor can be endogenous or non-endogenous.

CONSTITUTIVE RECEPTOR ACTIVATION shall mean stabilization of a receptor in the active state by means other than binding of the receptor with its endogenous ligand or a chemical equivalent thereof.

CONTACT or CONTACTING shall mean bringing at least two moieties together, whether in an in vitro system or an in vivo system.

the phrase "candidate compound", shall mean the screening of a candidate compound against a constitutively activated receptor, preferably a constitutively activated orphan receptor, and most preferably against a constitutively activated G protein-coupled cell surface orphan receptor, and assessing the compound efficacy of such compound. This phrase is, under no circumstances, to be interpreted or understood to be encompassed by or to encompass the phrase "indirectly identifying" or "indirectly identified."

25

5

10

15

ENDOGENOUS shall mean a material that a mammal naturally produces. ENDOGENOUS in reference to, for example and not limitation, the term "receptor," shall mean that which is naturally produced by a mammal (for example, and not limitation, a human) or a virus. By contrast, the term NON-ENDOGENOUS in this context shall mean that which is not naturally produced by a mammal (for example, and not limitation, a human) or a virus. For example, and not limitation, a receptor which is not constitutively active in its endogenous form, but when manipulated becomes constitutively active, is most preferably referred to herein as a "non-endogenous, constitutively activated receptor." Both terms can be utilized to describe both "in vivo" and "in vitro" systems. For example, and not limitation, in a screening approach, the endogenous or non-endogenous receptor may be in reference to an in vitro screening system. As a further example and not limitation, where the genome of a mammal has been manipulated to include a non-endogenous constitutively activated receptor, screening of a candidate compound by means of an in vivo system is viable.

G PROTEIN COUPLED RECEPTOR FUSION PROTEIN and **GPCR FUSION PROTEIN**, in the context of the invention disclosed herein, each mean a non-endogenous protein comprising an endogenous, constitutively activate GPCR or a non-endogenous, constitutively activated GPCR fused to at least one G protein, most preferably the alpha (α) subunit of such G protein (this being the subunit that binds GTP), with the G protein preferably being of the same type as the G protein that naturally couples with endogenous orphan GPCR. For example, and not limitation, in an endogenous state, if the G protein "Gs α " is the predominate G protein that couples with the GPCR, a GPCR Fusion Protein based upon the specific GPCR would be a non-endogenous protein comprising the GPCR fused to Gs α ; in some circumstances, as will be set forth below, a non-predominant G protein can be fused to the GPCR. The G

25

5

10

15

protein can be fused directly to the c-terminus of the constitutively active GPCR or there may be spacers between the two.

HOST CELL shall mean a cell capable of having a Plasmid and/or Vector incorporated therein. In the case of a prokaryotic Host Cell, a Plasmid is typically replicated as a autonomous molecule as the Host Cell replicates (generally, the Plasmid is thereafter isolated for introduction into a eukaryotic Host Cell); in the case of a eukaryotic Host Cell, a Plasmid is integrated into the cellular DNA of the Host Cell such that when the eukaryotic Host Cell replicates, the Plasmid replicates. Preferably, for the purposes of the invention disclosed herein, the Host Cell is eukaryotic, more preferably, mammalian, and most preferably selected from the group consisting of 293, 293T and COS-7 cells.

INDIRECTLY IDENTIFYING or INDIRECTLY IDENTIFIED means the traditional approach to the drug discovery process involving identification of an endogenous ligand specific for an endogenous receptor, screening of candidate compounds against the receptor for determination of those which interfere and/or compete with the ligand-receptor interaction, and assessing the efficacy of the compound for affecting at least one second messenger pathway associated with the activated receptor.

INHIBIT or **INHIBITING**, in relationship to the term "response" shall mean that a response is decreased or prevented in the presence of a compound as opposed to in the absence of the compound.

INVERSE AGONISTS shall mean materials (e.g., ligand, candidate compound) which bind to either the endogenous form of the receptor or to the constitutively activated form of the receptor, and which inhibit the baseline intracellular response initiated by the active form of the receptor below the normal base level of activity which

25

5

10

15

is observed in the absence of agonists or partial agonists, or decrease GTP binding to membranes. Preferably, the baseline intracellular response is inhibited in the presence of the inverse agonist by at least 30%, more preferably by at least 50%, and most preferably by at least 75%, as compared with the baseline response in the absence of the inverse agonist.

KNOWN RECEPTOR shall mean an endogenous receptor for which the endogenous ligand specific for that receptor has been identified.

LIGAND shall mean an endogenous, naturally occurring molecule specific for an endogenous, naturally occurring receptor.

MUTANT or MUTATION in reference to an endogenous receptor's nucleic acid and/or amino acid sequence shall mean a specified change or changes to such endogenous sequences such that a mutated form of an endogenous, non-constitutively activated receptor evidences constitutive activation of the receptor. In terms of equivalents to specific sequences, a subsequent mutated form of a human receptor is considered to be equivalent to a first mutation of the human receptor if (a) the level of constitutive activation of the subsequent mutated form of a human receptor is substantially the same as that evidenced by the first mutation of the receptor; and (b) the percent sequence (amino acid and/or nucleic acid) homology between the subsequent mutated form of the receptor and the first mutation of the receptor is at least about 80%, more preferably at least about 90% and most preferably at least 95%. Ideally, and owing to the fact that the most preferred cassettes disclosed herein for achieving constitutive activation includes a single amino acid and/or codon change between the endogenous and the non-endogenous forms of the GPCR, the percent sequence homology should be at least 98%.

5

10

15

NON-ORPHAN RECEPTOR shall mean an endogenous naturally occurring molecule specific for an endogenous naturally occurring ligand wherein the binding of a ligand to a receptor activates an intracellular signaling pathway.

ORPHAN RECEPTOR shall mean an endogenous receptor for which the endogenous ligand specific for that receptor has not been identified or is not known.

PHARMACEUTICAL COMPOSITION shall mean a composition comprising at least one active ingredient, whereby the composition is amenable to investigation for a specified, efficacious outcome in a mammal (for example, and not limitation, a human). Those of ordinary skill in the art will understand and appreciate the techniques appropriate for determining whether an active ingredient has a desired efficacious outcome based upon the needs of the artisan.

PLASMID shall mean the combination of a Vector and cDNA. Generally, a Plasmid is introduced into a Host Cell for the purposes of replication and/or expression of the cDNA as a protein.

SECOND MESSENGER shall mean an intracellular response produced as a result of receptor activation. A second messenger can include, for example, inositol triphosphate (IP₃), diacycglycerol (DAG), cyclic AMP (cAMP), and cyclic GMP (cGMP). Second messenger response can be measured for a determination of receptor activation. In addition, second messenger response can be measured for the direct identification of candidate compounds, including for example, inverse agonists, agonists, partial agonists and antagonists.

STIMULATE or STIMULATING, in relationship to the term "response" shall mean that a response is increased in the presence of a compound as opposed to in the absence of the compound.

10

15

VECTOR in reference to cDNA shall mean a circular DNA capable of incorporating at least one cDNA and capable of incorporation into a Host Cell.

The order of the following sections is set forth for presentational efficiency and is not intended, nor should be construed, as a limitation on the disclosure or the claims to follow.

A. Introduction

5

10

15

20

The traditional study of receptors has always proceeded from the a priori assumption (historically based) that the endogenous ligand must first be identified before discovery could proceed to find antagonists and other molecules that could affect the receptor. Even in cases where an antagonist might have been known first, the search immediately extended to looking for the endogenous ligand. This mode of thinking has persisted in receptor research even after the discovery of constitutively activated receptors. What has not been heretofore recognized is that it is the active state of the receptor that is most useful for discovering agonists, partial agonists, and inverse agonists of the receptor. For those diseases which result from an overly active receptor or an under-active receptor, what is desired in a therapeutic drug is a compound which acts to diminish the active state of a receptor or enhance the activity of the receptor, respectively, not necessarily a drug which is an antagonist to the endogenous ligand. This is because a compound that reduces or enhances the activity of the active receptor state need not bind at the same site as the endogenous ligand. Thus, as taught by a method of this invention, any search for therapeutic compounds should start by screening compounds against the ligand-independent active state.

25 B. Identification of Human GPCRs

The efforts of the Human Genome project has led to the identification of a plethora of information regarding nucleic acid sequences located within the human genome; it has been the case in this endeavor that genetic sequence information has been made available without an understanding or recognition as to whether or not any particular genomic sequence does or may contain open-reading frame information that translate human proteins. Several methods of identifying nucleic acid sequences within the human genome are within the purview of those having ordinary skill in the art. For example, and not limitation, a variety of human GPCRs, disclosed herein, were discovered by reviewing the GenBankTM database. Table B, below, lists several endogenous GPCRs that we have discovered, along with other GPCR's that are homologous to the disclosed GPCR.

TABLE B

Disclosed Human Orphan GPCRs	Accession Number Identified	Open Reading Frame (Base Pairs)	Reference To Homologous GPCR	Per Cent Homology To Designated GPCR
hRUP8	AL121755	1,152bp	NPY2R	27%
hRUP9	AC0113375	1,260bp	GAL2R	22%
hRUP10	AC008745	1,014bp	C5aR	40%
hRUP11	AC013396	1,272bp	HM74	36%
hRUP12	AP000808	966bp	Mas1	34%
hRUP13	AC011780	1,356bp	Fish GPRX- ORYLA	43%
hRUP14	AL137118	1,041bp	CysLT1R	35%
hRUP15	AL016468	1,527bp	RE2	30%
hRUP16	AL136106	1,068bp	GLR101	37%
hRUP17	AC023078	969bp	Masl	37%
hRUP18	AC008547	1,305bp	Oxytocin	31%
hRUP19	AC026331	1,041bp	HM74	52%
hRUP20	AL161458	1,011bp	GPR34	25%
hRUP21	AC026756	1,014bp	P2Y1R	37%
hRUP22	AC027026	993bp	RUP17 Mas1	67% 37%

5

hRUP23	AC007104	1,092bp	Rat GPR26	31%
hRUP24	AL355388	1,125bp	SALPR	44%
hRUP25	AC026331	1,092bp	HM74	95%
hRUP26	AC023040	1,044bp	Rabbit 5HT1D	27%
hRUP27	AC027643	158,700	MCH	38%

Receptor homology is useful in terms of gaining an appreciation of a role of the receptors within the human body. As the patent document progresses, we will disclose techniques for mutating these receptors to establish non-endogenous, constitutively activated versions of these receptors.

The techniques disclosed herein have also been applied to other human, orphan GPCRs known to the art, as will be apparent as the patent document progresses.

C. Receptor Screening

Screening candidate compounds against a non-endogenous, constitutively activated version of the human GPCRs disclosed herein allows for the direct identification of candidate compounds which act at this cell surface receptor, without requiring use of the receptor's endogenous ligand. Using routine, and often commercially available techniques, one can determine areas within the body where the endogenous version of human GPCRs disclosed herein is expressed and/or over-expressed. It is also possible using these techniques to determine related disease/disorder states which are associated with the expression and/or over-expression of the receptor; such an approach is disclosed in this patent document.

With respect to creation of a mutation that may evidence constitutive activation of the human GPCR disclosed herein is based upon the distance from the proline residue at which is presumed to be located within TM6 of the GPCR; this algorithmic technique is disclosed in co-pending and commonly assigned patent document PCT Application

5

10

15

Number PCT/US99/23938, published as WO 00/22129 on April 20, 2000, which, along with the other patent documents listed herein, is incorporated herein by reference. The algorithmic technique is not predicated upon traditional sequence "alignment" but rather a specified distance from the aforementioned TM6 proline residue (or, of course, endogenous constitutive substitution for such proline residue). By mutating the amino acid residue located 16 amino acid residues from this residue (presumably located in the IC3 region of the receptor) to, most preferably, a lysine residue, such activation may be obtained. Other amino acid residues may be useful in the mutation at this position to achieve this objective.

10

15

20

5

D. Disease/Disorder Identification and/or Selection

As will be set forth in greater detail below, most preferably inverse agonists and agonists to the non-endogenous, constitutively activated GPCR can be identified by the methodologies of this invention. Such inverse agonists and agonists are ideal candidates as lead compounds in drug discovery programs for treating diseases related to this receptor. Because of the ability to directly identify inverse agonists to the GPCR, thereby allowing for the development of pharmaceutical compositions, a search for diseases and disorders associated with the GPCR is relevant. For example, scanning both diseased and normal tissue samples for the presence of the GPCR now becomes more than an academic exercise or one which might be pursued along the path of identifying an endogenous ligand to the specific GPCR. Tissue scans can be conducted across a broad range of healthy and diseased tissues. Such tissue scans provide a preferred first step in associating a specific receptor with a disease and/or disorder.

Preferably, the DNA sequence of the human GPCR is used to make a probe for

(a) dot-blot analysis against tissue-mRNA, and/or (b) RT-PCR identification of the expression of the receptor in tissue samples. The presence of a receptor in a tissue

source, or a diseased tissue, or the presence of the receptor at elevated concentrations in diseased tissue compared to a normal tissue, can be preferably utilized to identify a correlation with a treatment regimen, including but not limited to, a disease associated with that disease. Receptors can equally well be localized to regions of organs by this technique. Based on the known functions of the specific tissues to which the receptor is localized, the putative functional role of the receptor can be deduced.

E. Screening of Candidate Compounds

1. Generic GPCR screening assay techniques

When a G protein receptor becomes constitutively active, it binds to a G protein (e.g., Gq, Gs, Gi, Gz, Go) and stimulates the binding of GTP to the G protein. The G protein then acts as a GTPase and slowly hydrolyzes the GTP to GDP, whereby the receptor, under normal conditions, becomes deactivated. However, constitutively activated receptors continue to exchange GDP to GTP. A non-hydrolyzable analog of GTP, [35S]GTPγS, can be used to monitor enhanced binding to membranes which express constitutively activated receptors. It is reported that [35S]GTPγS can be used to monitor G protein coupling to membranes in the absence and presence of ligand. An example of this monitoring, among other examples well-known and available to those in the art, was reported by Traynor and Nahorski in 1995. The preferred use of this assay system is for initial screening of candidate compounds because the system is generically applicable to all G protein-coupled receptors regardless of the particular G protein that interacts with the intracellular domain of the receptor.

2. Specific GPCR screening assay techniques

Once candidate compounds are identified using the "generic" G protein-coupled receptor assay (i.e., an assay to select compounds that are agonists, partial agonists, or inverse agonists), further screening to confirm that the compounds have interacted at the

5

10

15

receptor site is preferred. For example, a compound identified by the "generic" assay may not bind to the receptor, but may instead merely "uncouple" the G protein from the intracellular domain.

a. Gs, Gz and Gi.

5

10

15

20

BNSDOCID <WO 0136471A2 ! >

Gs stimulates the enzyme adenylyl cyclase. Gi (and Gz and Go), on the other hand, inhibit this enzyme. Adenylyl cyclase catalyzes the conversion of ATP to cAMP; thus, constitutively activated GPCRs that couple the Gs protein are associated with increased cellular levels of cAMP. On the other hand, constitutively activated GPCRs that couple Gi (or Gz, Go) protein are associated with decreased cellular levels of cAMP. See, generally, "Indirect Mechanisms of Synaptic Transmission," Chpt. 8, From Neuron To Brain (3rd Ed.) Nichols, J.G. et al eds. Sinauer Associates, Inc. (1992). Thus, assays that detect cAMP can be utilized to determine if a candidate compound is, e.g., an inverse agonist to the receptor (i.e., such a compound would decrease the levels of cAMP). A variety of approaches known in the art for measuring cAMP can be utilized; a most preferred approach relies upon the use of anti-cAMP antibodies in an ELISAbased format. Another type of assay that can be utilized is a whole cell second messenger reporter system assay. Promoters on genes drive the expression of the proteins that a particular gene encodes. Cyclic AMP drives gene expression by promoting the binding of a cAMP-responsive DNA binding protein or transcription factor (CREB) that then binds to the promoter at specific sites called cAMP response elements and drives the expression of the gene. Reporter systems can be constructed which have a promoter containing multiple cAMP response elements before the reporter gene, e.g., \(\beta\)-galactosidase or luciferase. Thus, a constitutively activated Gs-linked receptor causes the accumulation of cAMP that then activates the gene and expression of

the reporter protein. The reporter protein such as β -galactosidase or luciferase can then be detected using standard biochemical assays (Chen et al. 1995).

b. Go and Gq.

5

10

15

20

25

BNSDOCID <WO 0136471A2 | >

Gq and Go are associated with activation of the enzyme phospholipase C, which in turn hydrolyzes the phospholipid PIP₂, releasing two intracellular messengers: diacycloglycerol (DAG) and inistol 1,4,5-triphoisphate (IP₃). Increased accumulation of IP₃ is associated with activation of Gq- and Go-associated receptors. *See. generally*, "Indirect Mechanisms of Synaptic Transmission," Chpt. 8, From Neuron To Brain (3rd Ed.) Nichols, J.G. et al eds. Sinauer Associates, Inc. (1992). Assays that detect IP₃ accumulation can be utilized to determine if a candidate compound is, *e.g.*, an inverse agonist to a Gq- or Go-associated receptor (*i.e.*, such a compound would decrease the levels of IP₃). Gq-associated receptors can also been examined using an AP1 reporter assay in that Gq-dependent phospholipase C causes activation of genes containing AP1 elements; thus, activated Gq-associated receptors will evidence an increase in the expression of such genes, whereby inverse agonists thereto will evidence a decrease in such expression, and agonists will evidence an increase in such expression. Commercially available assays for such detection are available.

3. GPCR Fusion Protein

The use of an endogenous, constitutively activate orphan GPCR or a non-endogenous, constitutively activated orphan GPCR, for use in screening of candidate compounds for the direct identification of inverse agonists, agonists and partial agonists provide an interesting screening challenge in that, by definition, the receptor is active even in the absence of an endogenous ligand bound thereto. Thus, in order to differentiate between, e.g., the non-endogenous receptor in the presence of a candidate compound and the non-endogenous receptor in the absence of that compound, with an

aim of such a differentiation to allow for an understanding as to whether such compound may be an inverse agonist, agonist, partial agonist or have no affect on such a receptor, it is preferred that an approach be utilized that can enhance such differentiation. A preferred approach is the use of a GPCR Fusion Protein.

Generally, once it is determined that a non-endogenous orphan GPCR has been constitutively activated using the assay techniques set forth above (as well as others), it is possible to determine the predominant G protein that couples with the endogenous GPCR. Coupling of the G protein to the GPCR provides a signaling pathway that can be assessed. Because it is most preferred that screening take place by use of a mammalian expression system, such a system will be expected to have endogenous G protein therein. Thus, by definition, in such a system, the non-endogenous, constitutively activated orphan GPCR will continuously signal. In this regard, it is preferred that this signal be enhanced such that in the presence of, e.g., an inverse agonist to the receptor, it is more likely that it will be able to more readily differentiate, particularly in the context of screening, between the receptor when it is contacted with the inverse agonist.

The GPCR Fusion Protein is intended to enhance the efficacy of G protein coupling with the non-endogenous GPCR. The GPCR Fusion Protein is preferred for screening with a non-endogenous, constitutively activated GPCR because such an approach increases the signal that is most preferably utilized in such screening techniques. This is important in facilitating a significant "signal to noise" ratio; such a significant ratio is import preferred for the screening of candidate compounds as disclosed herein.

The construction of a construct useful for expression of a GPCR Fusion Protein is within the purview of those having ordinary skill in the art. Commercially available expression vectors and systems offer a variety of approaches that can fit the particular

25

5

10

15

needs of an investigator. The criteria of importance for such a GPCR Fusion Protein construct is that the endogenous GPCR sequence and the G protein sequence both be inframe (preferably, the sequence for the endogenous GPCR is upstream of the G protein sequence) and that the "stop" codon of the GPCR must be deleted or replaced such that upon expression of the GPCR, the G protein can also be expressed. The GPCR can be linked directly to the G protein, or there can be spacer residues between the two (preferably, no more than about 12, although this number can be readily ascertained by one of ordinary skill in the art). We have a preference (based upon convenience) of use of a spacer in that some restriction sites that are not used will, effectively, upon expression, become a spacer. Most preferably, the G protein that couples to the nonendogenous GPCR will have been identified prior to the creation of the GPCR Fusion Protein construct. Because there are only a few G proteins that have been identified, it is preferred that a construct comprising the sequence of the G protein (i.e., a universal G protein construct) be available for insertion of an endogenous GPCR sequence therein; this provides for efficiency in the context of large-scale screening of a variety of different endogenous GPCRs having different sequences.

As noted above, constitutively activated GPCRs that couple to Gi, Gz and Go are expected to inhibit the formation of cAMP making assays based upon these types of GPCRs challenging (i.e., the cAMP signal decreases upon activation thus making the direct identification of, e.g, inverse agonists (which would further decrease this signal), interesting. As will be disclosed herein, we have ascertained that for these types of receptors, it is possible to create a GPCR Fusion Protein that is not based upon the endogenous GPCR's endogenous G protein, in an effort to establish a viable cyclase-based assay. Thus, for example, an endogenous Gi coupled receptor can be fused to a Gs protein – we believe that such a fusion construct, upon expression, "drives" or "forces"

25

5

10

15

that a cyclase-based assay can be established. Thus, for Gi, Gz and Go coupled receptors, we prefer that that when a GPCR Fusion Protein is used and the assay is based upon detection of adenylyl cyclase activity, that the fusion construct be established with Gs (or an equivalent G protein that stimulates the formation of the enzyme adenylyl cyclase).

Equally effective is a G Protein Fusion construct that utilizes a Gq Protein fused with a Gs, Gi, Gz or Go Protein. A most preferred fusion construct can be accomplished with a Gq Protein wherein the first six (6) amino acids of the G-protein α-subunit ("Gαq") is deleted and the last five (5) amino acids at the C-terminal end of Gαq is replaced with the corresponding amino acids of the Gα of the G protein of interest. For example, a fusion construct can have a Gq (6 amino acid deletion) fused with a Gi Protein, resulting in a "Gq/Gi Fusion Construct". We believe that this fusion construct will force the endogenous Gi coupled receptor to couple to its non-endogenous G protein, Gq, such that the second messenger, for example, inositol triphosphate or diacylgycerol, can be measured in lieu of cAMP production.

4. Co-transfection of a Target Gi Coupled GPCR with a Signal-Enhancer Gs Coupled GPCR (cAMP Based Assays)

20

25

15

5

10

A Gi coupled receptor is known to inhibit adenylyl cyclase, and, therefore, decrease the level of cAMP production, which can make assessment of cAMP levels challenging. An effective technique in measuring the decrease in production of cAMP as an indication of constitutive activation of a receptor that predominantly couples Gi upon activation can be accomplished by co-transfecting a signal enhancer, e.g., a non-endogenous, constitutively activated receptor that predominantly couples with Gs upon activation (e.g., TSHR-A623I, disclosed below), with the Gi linked GPCR. As is

apparent, constitutive activation of a Gs coupled receptor can be determined based upon an increase in production of cAMP. Constitutive activation of a Gi coupled receptor leads to a decrease in production cAMP. Thus, the co-transfection approach is intended to advantageously exploit these "opposite" affects. For example, co-transfection of a non-endogenous, constitutively activated Gs coupled receptor (the "signal enhancer") with the endogenous Gi coupled receptor (the "target receptor") provides a baseline cAMP signal (i.e., although the Gi coupled receptor will decrease cAMP levels, this "decrease" will be relative to the substantial increase in cAMP levels established by constitutively activated Gs coupled signal enhancer). By then co-transfecting the signal enhancer with a constitutively activated version of the target receptor, cAMP would be expected to further decrease (relative to base line) due to the increased functional activity of the Gi target (i.e., which decreases cAMP).

Screening of candidate compounds using a cAMP based assay can then be accomplished, with two provisos: first, relative to the Gi coupled target receptor, "opposite" effects will result, *i.e.*, an inverse agonist of the Gi coupled target receptor will increase the measured cAMP signal, while an agonist of the Gi coupled target receptor will decrease this signal; second, as would be apparent, candidate compounds that are directly identified using this approach should be assessed independently to ensure that these do not target the signal enhancing receptor (this can be done prior to or after screening against the co-transfected receptors).

F. Medicinal Chemistry

5

10

15

20

25

BNSD00ID <W0 0136471A2

Generally, but not always, direct identification of candidate compounds is preferably conducted in conjunction with compounds generated via combinatorial chemistry techniques, whereby thousands of compounds are randomly prepared for such analysis. Generally, the results of such screening will be compounds having

unique core structures; thereafter, these compounds are preferably subjected to additional chemical modification around a preferred core structure(s) to further enhance the medicinal properties thereof. Such techniques are known to those in the art and will not be addressed in detail in this patent document.

5

10

15

20

G. Pharmaceutical compositions

Candidate compounds selected for further development can be formulated into pharmaceutical compositions using techniques well known to those in the art. Suitable pharmaceutically-acceptable carriers are available to those in the art; for example, see Remington's Pharmaceutical Sciences, 16th Edition, 1980, Mack Publishing Co., (Oslo et al., eds.).

H. Other Utility

Although a preferred use of the non-endogenous versions the human GPCRs disclosed herein may be for the direct identification of candidate compounds as inverse agonists, agonists or partial agonists (preferably for use as pharmaceutical agents), these versions of human GPCRs can also be utilized in research settings. For example, *in vitro* and *in vivo* systems incorporating GPCRs can be utilized to further elucidate and understand the roles these receptors play in the human condition, both normal and diseased, as well as understanding the role of constitutive activation as it applies to understanding the signaling cascade. The value in non-endogenous human GPCRs is that their utility as a research tool is enhanced in that, because of their unique features, non-endogenous human GPCRs can be used to understand the role of these receptors in the human body before the endogenous ligand therefore is identified. Other uses of the disclosed receptors will become apparent to those in the art based upon, *inter alia*, a review of this patent document.

EXAMPLES

The following examples are presented for purposes of elucidation, and not limitation, of the present invention. While specific nucleic acid and amino acid sequences are disclosed herein, those of ordinary skill in the art are credited with the ability to make minor modifications to these sequences while achieving the same or substantially similar results reported below. The traditional approach to application or understanding of sequence cassettes from one sequence to another (e.g. from rat receptor to human receptor or from human receptor A to human receptor B) is generally predicated upon sequence alignment techniques whereby the sequences are aligned in an effort to determine areas of commonality. The mutational approach disclosed herein does not rely upon this approach but is instead based upon an algorithmic approach and a positional distance from a conserved proline residue located within the TM6 region of human GPCRs. Once this approach is secured, those in the art are credited with the ability to make minor modifications thereto to achieve substantially the same results (i.e., constitutive activation) disclosed herein. Such modified approaches are considered within the purview of this disclosure.

// //

//

5

10

15

20

Example 1
ENDOGENOUS HUMAN GPCRS

1. Identification of Human GPCRs

The disclosed endogenous human GPCRs were identified based upon a review of the GenBankTM database information. While searching the database, the following cDNA clones were identified as evidenced below (Table C).

TABLE C

Disclosed Human Orphan GPCRs	Accession Number Identified	Complete DNA Sequence (Base Pairs)	Open Reading Frame (Base Pairs)	Nucleic Acid SEQ.ID. NO.	Amino Acid SEQ.ID. NO.
hRUP8	AL121755	147,566bp	1,152bp	1	2
hRUP9	AC0113375	143,181bp	1,260bp	3	4
hRUP10	AC008745	94,194bp	1,014bp	5	6
hRUP11	AC013396	155,086bp	1,272bp	7	8
hRUP12	AP000808	177,764bp	966bp	9	10
hRUP13	AC011780	167,819bp	1,356bp	11	12
hRUP14	AL137118	168,297bp	1,041bp	13	14
hRUP15	AL016468	138,828bp	1,527bp	15	16
hRUP16	AL136106	208,042bp	1,068bp	17	18
hRUP17	AC023078	161,735bp	969bp	19	20
hRUP18	AC008547	117,304bp	1,305bp	21	22
hRUP19	AC026331	145,183bp	1,041bp	23	24
hRUP20	AL161458	163,511bp	1,011bp	25	26
hRUP21	AC026756	156,534bp	1,014bp	27	28
hRUP22	AC027026	151,811bp	993bp	29	30
hRUP23	AC007104	200,000bp	1,092bp	31	32
hRUP24	AL355388	190,538bp	1,125bp	33	34
hRUP25	AC026331	145,183bp	1,092bp	35	36
hRUP26	AC023040	178,508bp	1,044bp	37	38
hRUP27	AC027643	158,700bp	1,020bp	39	40

2. Full Length Cloning

a. hRUP8 (Seq. Id. Nos. 1 & 2)

The disclosed human RUP8 was identified based upon the use of EST database (dbEST) information. While searching the dbEST, a cDNA clone with accession number

AL121755 was identified to encode a novel GPCR. The following PCR primers were used for RT-PCR with human testis Marathon-Ready cDNA (Clontech) as templates:

- 5'-CTTGCAGACATCACCATGGCAGCC-3' (SEQ.ID.NO.:41; sense) and
- 5'-GTGATGCTCTGAGTACTGGACTGG-3' (SEQ.ID.NO.: 42; antisense).
- PCR was performed using Advantage cDNA polymerase (Clontech; manufacturing instructions will be followed) in 50ul reaction by the following cycles: 94°C for 30 sec; 94°C for 10 sec; 65°C for 20 sec, 72°C for 1.5 min, and 72°C for 7 min. Cycles 2 through 4 were repeated 35 times.
- A 1.2kb PCR fragment was isolated and cloned into the pCRII-TOPO vector (Invitrogen) and sequenced using the ABI Big Dye Terminator kit (P.E. Biosystem). See, SEQ.ID.NO.:1. The putative amino acid sequence for RUP8 is set forth in SEQ.ID.NO.:2.

b. hRUP9 (Seq. Id. Nos. 3 & 4)

The disclosed human RUP9 was identified based upon the use of GeneBank

database information. While searching the database, a cDNA clone with Accession

Number AC011375 was identified as a human genomic sequence from chromosome

5. The full length RUP9 was cloned by PCR using primers:

- 5'-GAAGCTGTGAAGAGTGATGC-3' (SEQ.ID.NO.:43; sense),
- 5'-GTCAGCAATATTGATAAGCAGCAG-3' (SEQ.ID.NO.:44; antisense)
- and human genomic DNA (Promega) as a template. Taq Plus Precision polymerase (Stratagene) was used for the amplification in a 100µl reaction with 5% DMSO by the following cycle with step 2 to step 4 repeated 35 times: 94°C for 1 minute; 94°C for 30 seconds; 56°C for 30 seconds; 72°C for 2 minutes; 72°C for 5 minutes.
- A 1.3 Kb PCR fragment was isolated and cloned into the pCRII-TOPO vector (Invitrogen) from 1% agarose gel and completely sequenced using the ABI Big Dye

Terminator kit (P.E. Biosystem). See, SEQ.ID.NO.:3. The putative amino acid sequence for RUP8 is set forth in SEQ.ID.NO.:4. The sequence of RUP9 clones isolated from human genomic DNA matched with the sequence obtained from data base.

c. hRUP10 (Seq. Id. Nos. 5 & 6)

The disclosed human RUP10 was identified based upon the use of GenBank database information. While searching the database, a cDNA clone with accession number AC008754 was identified as a human genomic sequence from chromosome 19. The full length RUP10 was cloned by RT-PCR using primers:

5'-CCATGGGGAACGATTCTGTCAGCTACG-3' (SEQ.ID.NO.:45; sense) and

5'-GCTATGCCTGAAGCCAGTCTTGTG-3' (SEQ.ID.NO.:46; antisense) and human leukocyte Marathon-Ready cDNA (Clontech) as a template. Advantage cDNA polymerase (Clontech) was used for the amplification in a 50µl reaction by the following cycle with step 2 to step 4 repeated 35 times: 94°C for 30 seconds; 94°C for 10 seconds; 62°C for 20 seconds; 72°C for 1.5 minutes; 72°C for 7 minutes. A 1.0 Kb PCR fragment was isolated and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Terminator kit (P.E. Biosystem). The nucleic acid sequence of the novel human receptor RUP10 is set forth in SEQ.ID.NO.:5 and the putative amino acid sequence thereof is set forth in

20

SEQ.ID.NO.:6.

15

5

10

d. hRUP11 (Seq. Id. Nos. 7 & 8)

The disclosed human RUP11 was identified based upon the use of GenBank database information. While searching the database, a cDNA clone with accession number AC013396 was identified as a human genomic sequence from chromosome 2.

The full length RUP11 was cloned by PCR using primers:

5'-CCAGGATGTTGTGTCACCGTGGTGGC-3' (SEQ.ID.NO.:47; sense),

5'-CACAGCGCTGCAGCCCTGCAGCTGGC-3' (SEQ.ID.NO.:48; antisense)

and human genomic DNA (Clontech) as a template. TaqPlus Precision DNA polymerase (Stratagene) was used for the amplification in a 50µl reaction by the following cycle with step 2 to step 4 repeated 35 times: 94°C for 3 minutes; 94°C for 20 seconds; 67°C for 20 seconds; 72°C for 1.5 minutes; 72°C for 7 minutes. A 1.3 Kb PCR fragment was isolated and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Terminator kit (P.E. Biosystem). The nucleic acid sequence of the novel human receptor RUP11 is set forth in SEQ.ID.NO.:7 and the putative amino acid sequence thereof is set forth in SEQ.ID.NO.:8.

e. hRUP12 (Seq. Id. Nos. 9 & 10)

The disclosed human RUP12 was identified based upon the use of GenBank database. While searching the database, a cDNA clone with accession number AP000808 was identified to encode a new GPCR, having significant homology with rat RTA and human mas1 oncogene GPCRs. The full length RUP12 was cloned by PCR using primers:

- 5'-CTTCCTCTCGTAGGGATGAACCAGAC-3' (SEQ.ID.NO.:49; sense)
- 5'-CTCGCACAGGTGGGAAGCACCTGTGG-3' (SEQ.ID.NO.:50; antisense)
- and human genomic DNA (Clontech) as template. TaqPlus Precision DNA polymerase (Stratagene) was used for the amplification by the following cycle with step 2 to step 4 repeated 35 times: 94°C for 3 min; 94°C for 20 sec; 65°C for 20 sec; 72°C for 2 min and 72°C for 7 min. A 1.0kb PCR fragment was isolated and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Terminator kit

5

10

(P.E. Biosystem) (see, SEQ.ID.NO.:9 for nucleic acid sequence and SEQ.ID.NO.:10 for deduced amino acid sequence).

f. hRUP13 (Seq. Id. Nos. 11 & 12)

The disclosed human RUP13 was identified based upon the use of GenBank database. While searching the database, a cDNA clone with accession number AC011780 was identified to encode a new GPCR, having significant homology with GPCR fish GPRX-ORYLA. The full length RUP13 was cloned by PCR using primers: 5'-GCCTGTGACAGGAGGTACCCTGG-3' (SEQ.ID.NO.:51; sense) 5'-CATATCCCTCCGAGTGTCCAGCGGC-3' (SEQ.ID.NO.:52; antisense)

and human genomic DNA (Clontech) as template. TaqPlus Precision DNA polymerase (Stratagene) was used for the amplification by the following cycle with step 2 to step 4 repeated 35 times: 94°C for 3 min; 94°C for 20 sec; 65°C for 20sec; 72°C for 2 min and 72°C for 7 min. A 1.35kb PCR fragment was isolated and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Terminator kit (P.E. Biosystem) (see, SEQ.ID.NO.:11 for nucleic acid sequence and SEQ.ID.NO.:12 for deduced amino acid sequence).

g. hRUP14 (Seq. Id. Nos. 13 & 14)

The disclosed human RUP14 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession Number AL137118 was identified as a human genomic sequence from chromosome 13. The full length RUP14 was cloned by PCR using primers:

- 5'-GCATGGAGAAAATTTATGTCCTTGCAACC-3' (SEQ.ID.NO.:53; sense)
- 5'-CAAGAACAGGTCTCATCTAAGAGCTCC-3' (SEQ.ID.NO.:54; antisense)

and human genomic DNA (Promega) as a template. Taq Plus Precision polymerase

25 (Stratagene) and 5% DMSO were used for the amplification by the following cycle

with step 2 and step 3 repeated 35 times: 94°C for 3 minute; 94°C for 20 seconds; 58°C for 2 minutes; 72°C for 10 minutes.

A 1.1 Kb PCR fragment was isolated and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Terminator kit (P.E. Biosystem) (see, SEQ.ID.NO.:13 for nucleic acid sequence and SEQ.ID.NO.:14 for deduced amino acid sequence). The sequence of RUP14 clones isolated from human genomic DNA matched with the sequence obtained from database.

h. hRUP15 (Seq. Id. Nos. 15 & 16)

The disclosed human RUP15 was identified based upon the use of GeneBank
database information. While searching the database, a cDNA clone with Accession
Number AC016468 was identified as a human genomic sequence. The full length
RUP15 was cloned by PCR using primers:

- 5'-GCTGTTGCCATGACGTCCACCTGCAC-3' (SEQ.ID.NO.:55; sense)
- 5'-GGACAGTTCAAGGTTTGCCTTAGAAC-3' (SEQ.ID.NO.:56; antisense)
- and human genomic DNA (Promega) as a template. Taq Plus Precision polymerase (Stratagene) was used for the amplification by the following cycle with step 2 to 4 repeated 35 times: 94°C for 3 minute; 94°C for 20 seconds; 65°C for 20 seconds; 72°C for 2 minutes and 72°C for 7 minutes.
- A 1.5 Kb PCR fragment was isolated and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Terminator kit (P.E. Biosystem). See, SEQ.ID.NO.:15 for nucleic acid sequence and SEQ.ID.NO.:16 for deduced amino acid sequence. The sequence of RUP15 clones isolated from human genomic DNA matched with the sequence obtained from database.

i. hRUP16 (Seq. Id. Nos. 17 & 18)

The disclosed human RUP16 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession Number AL136106 was identified as a human genomic sequence from chromosome 13. The full length RUP16 was cloned by PCR using primers:

5'-CTTTCGATACTGCTCCTATGCTC-3' (SEQ.ID.NO.:57; sense, 5' of initiation codon),
5'-GTAGTCCACTGAAAGTCCAGTGATCC-3' (SEQ.ID.NO.:58; antisense, 3' of stop codon)
and human skeletal muscle Marathon-Ready cDNA (Clontech) as template. Advantage
cDNA polymerase (Clontech) was used for the amplification in a 50ul reaction by the
following cycle with step 2 to 4 repeated 35 times: 94°C for 30 seconds; 94°C for 5
seconds; 69°C for 15 seconds; 72°C for 1 minute and 72°C for 5 minutes.

A 1.1 Kb PCR fragment was isolated and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the T7 sequenase kit (Amsham). See, SEQ.ID.NO.:17 for nucleic acid sequence and SEQ.ID.NO.:18 for deduced amino acid sequence. The sequence of RUP16 clones matched with four unordered segments of AL136106, indicating that the RUP16 cDNA is composed of 4 exons.

j. hRUP17 (Seq. Id. Nos. 19 & 20)

The disclosed human RUP17 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession Number AC023078 was identified as a human genomic sequence from chromosome

- 20 11. The full length RUP17 was cloned by PCR using primers:
 - 5'-TTTCTGAGCATGGATCCAACCATCTC-3' (SEQ.ID.NO.:59; sense, containing initiation codon)
 - 5'-CTGTCTGACAGGGCAGAGGCTCTTC-3' (SEQ.ID.NO.:60; antisense, 3' of stop codon) and human genomic DNA (Promega) as template. Advantage cDNA polymerase mix
- 25 (Clontech) was used for the amplification in a 100ul reaction with 5% DMSO by the

5

10

following cycle with step 2 to 4 repeated 30 times: 94°C for 1 min; 94°C for 15 sec; 67°C for 20 sec; 72°C for 1 min and 30 sec; and 72°C for 5 min.

A 970bp PCR fragment was isolated from 1% agarose gel and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Termiantor Kit (P.E. Biosystem). *See*, SEQ.ID.NO.:19 for nucleic acid sequence and SEO.ID.NO.:20 for deduced amino acid sequence.

k. hRUP18 (Seq. Id. Nos. 21 & 22)

The disclosed human RUP18 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession Number AC008547 was identified as a human genomic sequence from chromosome 5. The full length RUP18 was cloned by PCR using primers:

- 5'-GGAACTCGTATAGACCCAGCGTCGCTCC-3' (SEQ.ID.NO.:61; sense, 5' of the initiation codon),
- 5'-GGAGGTTGCGCCTTAGCGACAGATGACC-3' (SEQ.ID.NO.:62; antisense, 3' of stop codon)

and human genomic DNA (Promega) as template. TaqPlus precision DNA polymerase (Stratagene) was used for the amplification in a 100ul reaction with 5% DMSO by the following cycle with step 2 to 4 repeated 35 times: 95°C for 5 min; 95°C for 30 sec; 65°C for 30 sec; 72°C for 2 min; and 72°C for 5 min.

A 1.3kb PCR fragment was isolated from 1% agarose gel and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Termiantor Kit (P.E. Biosystem). *See*, SEQ.ID.NO.:21 for nucleic acid sequence and SEQ.ID.NO.:22 for deduced amino acid sequence.

l. hRUP19 (Seq. Id. Nos. 23 & 24)

20

5

The disclosed human RUP19 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession Number AC026331 was identified as a human genomic sequence from chromosome 12. The full length RUP19 was cloned by PCR using primers:

5 '-CTGCACCCGGACACTTGCTCTG-3' (SEQ.ID.NO.:63; sense, 5' of initiation codon), 5'-GTCTGCTTCAGTGCCACTCAAC-3' (SEQ.ID.NO.:64; antisense, containing the stop codon)

and human genomic DNA (Promega) as template. TaqPlus Precision DNA polymerase (Stratagene) was used for the amplification with 5% DMSO by the following cycle with step 2 to 4 repeated 35 times: 94°C for 1 min; 94°C for 15 sec; 70°C for 20 sec; 72°C for 1 min and 30 sec; and 72°C for 5 min.

A 1.1kp PCR fragment was isolated from 1% agarose gel and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Termiantor Kit (P.E. Biosystem). *See*, SEQ.ID.NO.:23 for nucleic acid sequence and SEQ.ID.NO.:24 for deduced amino acid sequence.

m. hRUP20 (Seq. Id. Nos. 25 & 26)

The disclosed human RUP20 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession Number AL161458 was identified as a human genomic sequence from chromosome

- 20 1. The full length RUP20 was cloned by PCR using primers:
 - 5'-TATCTGCAATTCTATTCTAGCTCCTG-3' (SEQ.ID.NO.:65; sense, 5' of initiation codon), 5'-TGTCCCTAATAAAGTCACATGAATGC-3' (SEQ.ID.NO.:66; antisense, 3' of stop codon) and human genomic DNA (Promega) as template. Advantage cDNA polymerase mix (Clonetech) was used for the amplification with 5% DMSO by the following cycle with

10

step 2 to 4 repeated 35 times: 94°C for 1 min; 94°C for 15 sec; 60°C for 20 sec; 72°C for 1 min and 30 sec; and 72°C for 5 min.

A 1.0 kp PCR fragment was isolated from 1% agarose gel and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Termiantor Kit (P.E. Biosystem). *See*, SEQ.ID.NO.:25 for nucleic acid sequence and SEQ.ID.NO.:26 for deduced amino acid sequence.

n. hRUP21 (Seq. Id. Nos. 27 & 28)

The disclosed human RUP21 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession Number AC026756 was identified as a human genomic sequence from chromosome 13. The full length RUP21 was cloned by PCR using primers:

- 5'- GGAGACAACCATGAATGAGCCAC -3' (SEQ.ID.NO.:67; sense)
- 5'- TATTTCAAGGGTTGTTTGAGTAAC -3' (SEQ.ID.NO.:68; antisense)

and human genomic DNA (Promega) as template. Taq Plus Precision polymerase (Stratagene) was used for the amplification in a 100ul reaction with 5% DMSO by the following cycle with step 2 to 4 repeated 30 times: 94°C for 1 min; 94°C for 15 sec; 55°C for 20 sec; 72°C for 1 min and 30 sec; and 72°C for 5 min.

A 1,014 bp PCR fragment was isolated from 1% agarose gel and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Termiantor Kit (P.E. Biosystem). *See*, SEQ.ID.NO.:27 for nucleic acid sequence and SEQ.ID.NO.:28 for deduced amino acid sequence.

o. hRUP22 (Seq. Id. Nos. 29 & 30)

The disclosed human RUP22 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession

5

10

15

Number AC027026 was identified as a human genomic sequence from chromosome

- 11. The full length RUP22 was cloned by PCR using primers:
- 5'- GGCACCAGTGGAGGTTTTCTGAGCATG -3' (SEQ.ID.NO.:69; sense, containing initiation codon)
- 5 5'-CTGATGGAAGTAGAGGCTGTCCATCTC-3' (SEQ.ID.NO.:70; antisense, 3' of stop codon)

and human genomic DNA (Promega) as template. TaqPlus Precision DNA polymerase (Stratagene) was used for the amplification in a 100ul reaction with 5% DMSO by the following cycle with step 2 to 4 repeated 30 times: 94°C, 1 minutes 94°C, 15 seconds 55°C, 20 seconds 72°C, 1.5 minute 72°C, 5 minutes.

A 970bp PCR fragment was isolated from 1% agarose gel and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Termiantor Kit (P.E. Biosystem). *See*, SEQ.ID.NO.:29 for nucleic acid sequence and SEO.ID.NO.:30 for deduced amino acid sequence.

p. hRUP23 (Seq. Id. Nos. 31 & 32)

The disclosed human RUP23 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession Number AC007104 was identified as a human genomic sequence from chromosome 4. The full length RUP23 was cloned by PCR using primers:

- 5'-CCTGGCGAGCCGCTAGCGCCATG-3' (SEQ.ID.NO.:71; sense, ATG as the initiation codon),
 - 5'-ATGAGCCCTGCCAGGCCC<u>TCA</u>GT-3' (SEQ.ID.NO.:72; antisense, TCA as the stop codon)
- and human placenta Marathon-Ready cDNA (Clontech) as template. Advantage cDNA polymerase (Clontech) was used for the amplification in a 50ul reaction by the following

10

cycle with step 2 to 4 repeated 35 times: 95°C for 30 sec; 95°C for 15 sec; 66°C for 20 sec; 72°C for 1 min and 20 sec; and 72°C for 5 min.

A 1.0 kb PCR fragment was isolated and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Terminator Kit (P.E. Biosystem). See, SEQ.ID.NO.:31 for nucleic acid sequence and SEQ.ID.NO.:32 for deduced amino acid sequence.

q. hRUP24 (Seq. Id. Nos. 33 & 34)

The disclosed human RUP25 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession Number AC026331 was identified as a human genomic sequence from chromosome 12. The full length RUP25 was cloned by PCR using primers:

5'-GCTGGAGCATTCACTAGGCGAG-3' (SEQ.ID.NO.:73; sense, 5'of initiation codon),

5'-AGATCCTGGTTCTTGGTGACAATG-3' (SEQ.ID.NO.:74; antisense, 3' of stop codon) and human genomic DNA (Promega) as template. Advantage cDNA polymerase mix (Clontech) was used for the amplification with 5% DMSO by the following cycle with step 2 to 4 repeated 35 times: 94°C for 1 minute; 94°C for 15 seconds; 56°C for 20 seconds 72°C for 1 minute 30 seconds and 72°C for 5 minutes.

A 1.2kb PCR fragment was isolated from 1% agarose gel and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Termiantor Kit (P.E. Biosystem). *See*, SEQ.ID.NO.:33 for nucleic acid sequence and SEQ.ID.NO.:34 for deduced amino acid sequence.

r. hRUP25 (Seq. Id. Nos. 35 & 36)

The disclosed human RUP25 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession

5

10

15

Number AC026331 was identified as a human genomic sequence from chromosome 12. The full length RUP25 was cloned by PCR using primers:

- 5'-GCTGGAGCATTCACTAGGCGAG-3' (SEQ.ID.NO.:75; sense, 5'of initiation codon),
- 5'-AGATCCTGGTTCTTGGTGACAATG-3' (SEQ.ID.NO.:76; antisense, 3' of stop codon)

and human genomic DNA (Promega) as template. Advantage cDNA polymerase mix (Clontech) was used for the amplification with 5% DMSO by the following cycle with step 2 to 4 repeated 35 times: 94°C for 1 minute; 94°C for 15 seconds; 56°C for 20 seconds 72°C for 1 minute 30 seconds and 72°C for 5 minutes.

A 1.2kb PCR fragment was isolated from 1% agarose gel and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Termiantor Kit (P.E. Biosystem). *See*, SEQ.ID.NO.:35 for nucleic acid sequence and SEQ.ID.NO.:36 for deduced amino acid sequence.

s. hRUP26 (Seq. Id. Nos. 37 & 38)

The disclosed human RUP26 was identified based upon the use of GeneBank

database information. While searching the database, a cDNA clone with Accession

Number AC023040 was identified as a human genomic sequence from chromosome

The full length RUP26 was cloned by RT-PCR using RUP26 specific primers:

5'-AGCCATCCCTGCCAGGAAGCATGG-3' (SEQ.ID.NO.:77; sense, containing initiation codon)

5'-CCAGACTGTGGACTCAAGAACTCTAGG-3' (SEQ.ID.NO.:78; antisense, containing stop codon)
 and human pancreas Marathon - Ready cDNA (Clontech) as template. Advantage cDNA polymerase mix (Clontech) was used for the amplification in a 100μl reaction with 5% DMSO by the following cycle with step 2 to 4 repeated 35 times: 94°C for 5 minute;
 95°C for 30 seconds; 65°C for 30 seconds 72°C for 2 minute and 72°C for 5 minutes.

A 1.1kb PCR fragment was isolated from 1% agarose gel and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Termiantor Kit (P.E. Biosystem). *See*, SEQ.ID.NO.:37 for nucleic acid sequence and SEQ.ID.NO.:38 for deduced amino acid sequence.

t. hRUP27 (Seq. Id. Nos. 39 & 40)

The disclosed human RUP27 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession Number AC027643 was identified as a human genomic sequence from chromosome 12. The full length RUP27 was cloned by PCR using RUP27 specific primers:

- 5'-AGTCCACGAACAATGAATCCATTTCATG-3' (SEQ.ID.NO.:79; sense, containing initiation codon),
 - 5'-ATCATGTCTAGACTCATGGTGATCC-3' (SEQ.ID.NO.:80; antisense, 3' of stop codon) and the human adult brain Marathon-Ready cDNA (Clontech) as template. Advantage cDNA polymerase mix (Clontech) was used for the amplification in a 50µl reaction with 5% DMSO by the following cycle with step 2 to 4 repeated 35 times: 94°C for 1 minute; 94°C for 10 seconds; 58°C for 20 seconds 72°C for 1 minute 30 seconds and 72°C for 5 minutes.

A 1.1kb PCR fragment was isolated from 1% agarose gel and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Termiantor Kit (P.E. Biosystem). *See*, SEQ.ID.NO.:35 for nucleic acid sequence and SEQ.ID.NO.:36 for deduced amino acid sequence. The sequence of RUP27 cDNA clone isolated from human brain was determined to match with five unordered segments of AC027643, indicating that the RUP27 cDNA is composed of 5 exons.

5

15

Example 2
PREPARATION OF NON-ENDOGENOUS, CONSTITUTIVELY ACTIVATED GPCRS

Those skilled in the art are credited with the ability to select techniques for mutation of a nucleic acid sequence. Presented below are approaches utilized to create non-endogenous versions of several of the human GPCRs disclosed above. The mutations disclosed below are based upon an algorithmic approach whereby the 16th amino acid (located in the IC3 region of the GPCR) from a conserved proline (or an endogenous, conservative substitution therefore) residue (located in the TM6 region of the GPCR, near the TM6/IC3 interface) is mutated, preferably to an alanine, histidine, arginine or lysine amino acid residue, most preferably to a lysine amino acid residue.

1. Transformer Site-Directed TM Mutagenesis

Preparation of non-endogenous human GPCRs may be accomplished on human GPCRs using Transformer Site-Directed™ Mutagenesis Kit (Clontech) according to the manufacturer instructions. Two mutagenesis primers are utilized, most preferably a lysine mutagenesis oligonucleotide that creates the lysine mutation, and a selection marker oligonucleotide. For convenience, the codon mutation to be incorporated into the human GPCR is also noted, in standard form (Table D):

20

5

10

TABLE D

Receptor Identifier	Codon Mutation		
hRUP8	V274K		
hRUP9	T249K		
hRUP10	R232K		
hRUP11	M294K		
hRUP12	F220K		
hRUP16	A238K		

hRUP17	Y215K
hRUP18	L294K
hRUP19	T219K
hRUP20	K248A
	K248H
	K248R
hRUP21	R240K
hRUP22	Y222K
hRUP24	A245K
hRUP25	I230K
hRUP26	V285K
hRUP27	T248K
	<u> </u>

2. QuikChangeTM Site-DirectedTM Mutagenesis

Preparation of non-endogenous human GPCRs can also be accomplished by

using QuikChangeTM Site-DirectedTM Mutagenesis Kit (Stratagene, according to
manufacturer's instructions). Endogenous GPCR is preferably used as a template and
two mutagenesis primers utilized, as well as, most preferably, a lysine mutagenesis
oligonucleotide and a selection marker oligonucleotide (included in kit). For
convenience, the codon mutation incorporated into the novel human GPCR and the
respective oligonucleotides are noted, in standard form (Table E):

TABLE E

Receptor Identifier	Codon Mutation	5'-3' orientation (sense), (SEQ.ID.NO.) mutation underlined	5'-3' orientation (antisense) (SEQ.ID.NO.)	Cycle Conditions Min ('), Sec (") Cycles 2-4 repeated 16 times
hRUP13	A268K	GGGGAGGGAAAGCAA AGGTGGTCCTCCTGG (81)	CCAGGAGAACCACCT TTGCTTTCCCTCCCC (82)	98° for 2' 98° for 30" 56°C for 30" 72° for 11' 40" 72° for 5'
hRUP14	L246K	CAGGAAGGCAAAGAC CACCATCATCATC (85)	GATGATGATGGTGGT CTTTGCCTTCCTG (86)	98° for 2' 98° for 30" 55°C for 30" 72° for 11' 40" 72° for 5'

hRUP15	A398K	CCAGTGCAAAGCTAAG AAAGTGATCTTC (89)	GAAGATCACTTTCTTA GCTTTGCACTGG (90)	98° for 2' 98° for 30" 55°C for 30" 72° for 11' 40" 72° for 5'
hRUP23	W275K	GCCGCCACCGCGCC AA GAGGAAGATTGGC (93)	GCCAATCTTCCT <u>CTT</u> G GCGCGGTGGCGGC (94)	98° for 2' 98° for 30" 56°C for 30" 72° for 11' 40" 72° for 5'

The non-endogenous human GPCRs were then sequenced and the derived and verified nucleic acid and amino acid sequences are listed in the accompanying "Sequence Listing" appendix to this patent document, as summarized in Table F below:

TABLE F

Non Endogenous Human GPCR	Nucleic Acid Sequence Listing	Amino Acid Sequence Listing
hRUP13	SEQ.ID.NO.:83	SEQ.ID.NO.:84
hRUP14	SEQ.ID.NO.:87	SEQ.ID.NO.:88
hRUP15	SEQ.ID.NO.:91	SEQ.ID.NO.:92
hRUP23	SEQ.ID.NO.:95	SEQ.ID.NO.:96

Example 3 RECEPTOR EXPRESSION

Although a variety of cells are available to the art for the expression of proteins, it is most preferred that mammalian cells be utilized. The primary reason for this is predicated upon practicalities, *i.e.*, utilization of, *e.g.*, yeast cells for the expression of a GPCR, while possible, introduces into the protocol a non-mammalian cell which may not (indeed, in the case of yeast, does not) include the receptor-coupling, genetic-mechanism and secretary pathways that have evolved for mammalian systems – thus, results obtained in non-mammalian cells, while of

10

potential use, are not as preferred as that obtained from mammalian cells. Of the mammalian cells, COS-7, 293 and 293T cells are particularly preferred, although the specific mammalian cell utilized can be predicated upon the particular needs of the artisan.

a. Transient Transfection

On day one, $6x10^6/10$ cm dish of 293 cells well were plated out. On day two, two reaction tubes were prepared (the proportions to follow for each tube are per plate): tube A was prepared by mixing 4µg DNA (*e.g.*, pCMV vector; pCMV vector with receptor cDNA, etc.) in 0.5 ml serum free DMEM (Gibco BRL); tube B was prepared by mixing 24µl lipofectamine (Gibco BRL) in 0.5ml serum free DMEM. Tubes A and B were admixed by inversions (several times), followed by incubation at room temperature for 30-45min. The admixture is referred to as the "transfection mixture". Plated 293 cells were washed with 1XPBS, followed by addition of 5 ml serum free DMEM. 1 ml of the transfection mixture were added to the cells, followed by incubation for 4hrs at 37°C/5% CO₂. The transfection mixture was removed by aspiration, followed by the addition of 10ml of DMEM/10% Fetal Bovine Serum. Cells were incubated at 37°C/5% CO₂. After 48hr incubation, cells were harvested and utilized for analysis.

b. Stable Cell Lines: Gs Fusion Protein

Approximately 12x10⁶ 293 cells are plated on a 15cm tissue culture plate. Grown in DME High Glucose Medium containing ten percent fetal bovine serum and one percent sodium pyruvate, L-glutamine, and anti-biotics. Twenty-four hours following plating of 293 cells to ~80% confluency, the cells are transfected using 12μg of DNA. The 12μg of DNA is combined with 60ul of lipofectamine and 2mL of DME High Glucose Medium without serum. The medium is aspirated from the plates and the cells are washed once with medium without serum. The DNA, lipofectamine, and

25

5

10

15

medium mixture is added to the plate along with 10mL of medium without serum. Following incubation at 37 degrees Celsius for four to five hours, the medium is aspirated and 25ml of medium containing serum is added. Twenty-four hours following transfection, the medium is aspirated again, and fresh medium with serum is added. Forty-eight hours following transfection, the medium is aspirated and medium with serum is added containing geneticin (G418 drug) at a final concentration of 500µg/mL. The transfected cells now undergo selection for positively transfected cells containing the G418 resistant gene. The medium is replaced every four to five days as selection occurs. During selection, cells are grown to create stable pools, or split for stable clonal selection.

Example 4 ASSAYS FOR DETERMINATION OF CONSTITUTIVE ACTIVITY OF NON-ENDOGENOUS GPCRS

A variety of approaches are available for assessment of constitutive activity of the non-endogenous human GPCRs. The following are illustrative; those of ordinary skill in the art are credited with the ability to determine those techniques that are preferentially beneficial for the needs of the artisan.

1. Membrane Binding Assays: [35S]GTPγS Assay

When a G protein-coupled receptor is in its active state, either as a result of ligand binding or constitutive activation, the receptor couples to a G protein and stimulates the release of GDP and subsequent binding of GTP to the G protein. The alpha subunit of the G protein-receptor complex acts as a GTPase and slowly hydrolyzes the GTP to GDP, at which point the receptor normally is deactivated. Constitutively activated receptors continue to exchange GDP for GTP. The non-hydrolyzable GTP analog, [35S]GTPγS, can be utilized to demonstrate enhanced binding of [35S]GTPγS to membranes expressing constitutively activated receptors. The advantage of using

5

10

15

20

[35S]GTPγS binding to measure constitutive activation is that: (a) it is generically applicable to all G protein-coupled receptors; (b) it is proximal at the membrane surface making it less likely to pick-up molecules which affect the intracellular cascade.

The assay utilizes the ability of G protein coupled receptors to stimulate [35S]GTPγS binding to membranes expressing the relevant receptors. The assay can, therefore, be used in the direct identification method to screen candidate compounds to known, orphan and constitutively activated G protein-coupled receptors. The assay is generic and has application to drug discovery at all G protein-coupled receptors.

The [35S]GTPγS assay was incubated in 20 mM HEPES and between 1 and about 20mM MgCl₂ (this amount can be adjusted for optimization of results, although 20mM is preferred) pH 7.4, binding buffer with between about 0.3 and about 1.2 nM [35S]GTPγS (this amount can be adjusted for optimization of results, although 1.2 is preferred) and 12.5 to 75 μg membrane protein (e.g., 293 cells expressing the Gs Fusion Protein; this amount can be adjusted for optimization) and 10 μM GDP (this amount can be changed for optimization) for 1 hour. Wheatgerm agglutinin beads (25 μl; Amersham) were then added and the mixture incubated for another 30 minutes at room temperature. The tubes were then centrifuged at 1500 x g for 5 minutes at room temperature and then counted in a scintillation counter.

2. Adenylyl Cyclase

A Flash PlateTM Adenylyl Cyclase kit (New England Nuclear; Cat. No. SMP004A) designed for cell-based assays can be modified for use with crude plasma membranes. The Flash Plate wells can contain a scintillant coating which also contains a specific antibody recognizing cAMP. The cAMP generated in the wells can be quantitated by a direct competition for binding of radioactive cAMP tracer to the cAMP

5

10

15

antibody. The following serves as a brief protocol for the measurement of changes in cAMP levels in whole cells that express the receptors.

Transfected cells were harvested approximately twenty four hours after transient transfection. Media is carefully aspirated off and discarded. 10ml of PBS is gently added to each dish of cells followed by careful aspiration. 1ml of Sigma cell dissociation buffer and 3ml of PBS are added to each plate. Cells were pipeted off the plate and the cell suspension was collected into a 50ml conical centrifuge tube. Cells were then centrifuged at room temperature at 1,100 rpm for 5 min. The cell pellet was carefully re-suspended into an appropriate volume of PBS (about 3ml/plate). The cells were then counted using a hemocytometer and additional PBS was added to give the appropriate number of cells (with a final volume of about 50 μl/well).

5

10

15

20

BNSDOCID <WO 0136471A2 L>

cAMP standards and Detection Buffer (comprising 1 μCi of tracer [125] cAMP (50 μl] to 11 ml Detection Buffer) was prepared and maintained in accordance with the manufacturer's instructions. Assay Buffer was prepared fresh for screening and contained 50μl of Stimulation Buffer, 3ul of test compound (12μM final assay concentration) and 50μl cells, Assay Buffer was stored on ice until utilized. The assay was initiated by addition of 50μl of cAMP standards to appropriate wells followed by addition of 50μl of PBSA to wells H-11 and H12. 50μl of Stimulation Buffer was added to all wells. DMSO (or selected candidate compounds) was added to appropriate wells using a pin tool capable of dispensing 3μl of compound solution, with a final assay concentration of 12μM test compound and 100μl total assay volume. The cells were then added to the wells and incubated for 60 min at room temperature. 100μl of Detection Mix containing tracer cAMP was then added to the wells. Plates were then incubated additional 2 hours followed by counting in a Wallac MicroBeta scintillation

counter. Values of cAMP/well were then extrapolated from a standard cAMP curve which was contained within each assay plate.

3. Cell-Based cAMP for Gi Coupled Target GPCRs

5

10

15

20

25

BNSDOCID < WC - 0136471A2 + >

TSHR is a Gs coupled GPCR that causes the accumulation of cAMP upon activation. TSHR will be constitutively activated by mutating amino acid residue 623 (i.e., changing an alanine residue to an isoleucine residue). A Gi coupled receptor is expected to inhibit adenylyl cyclase, and, therefore, decrease the level of cAMP production, which can make assessment of cAMP levels challenging. An effective technique for measuring the decrease in production of cAMP as an indication of constitutive activation of a Gi coupled receptor can be accomplished by co-transfecting, most preferably, non-endogenous, constitutively activated TSHR (TSHR-A623I) (or an endogenous, constitutively active Gs coupled receptor) as a "signal enhancer" with a Gi linked target GPCR to establish a baseline level of cAMP. Upon creating a nonendogenous version of the Gi coupled receptor, this non-endogenous version of the target GPCR is then co-transfected with the signal enhancer, and it is this material that can be used for screening. We will utilize such approach to effectively generate a signal when a cAMP assay is used; this approach is preferably used in the direct identification of candidate compounds against Gi coupled receptors. It is noted that for a Gi coupled GPCR, when this approach is used, an inverse agonist of the target GPCR will increase the cAMP signal and an agonist will decrease the cAMP signal.

On day one, 2X10⁴ 293 and 293 cells/well will be plated out. On day two, two reaction tubes will be prepared (the proportions to follow for each tube are per plate): tube A will be prepared by mixing 2µg DNA of each receptor transfected into the mammalian cells, for a total of 4µg DNA (e.g., pCMV vector; pCMV vector with mutated THSR (TSHR-A623I); TSHR-A623I and GPCR, etc.) in 1.2ml serum free

DMEM (Irvine Scientific, Irvine, CA); tube B will be prepared by mixing 120µl lipofectamine (Gibco BRL) in 1.2ml serum free DMEM. Tubes A and B will then be admixed by inversions (several times), followed by incubation at room temperature for 30-45min. The admixture is referred to as the "transfection mixture". Plated 293 cells will be washed with 1XPBS, followed by addition of 10ml serum free DMEM. 2.4ml of the transfection mixture will then be added to the cells, followed by incubation for 4hrs at 37°C/5% CO₂. The transfection mixture will then be removed by aspiration, followed by the addition of 25ml of DMEM/10% Fetal Bovine Serum. Cells will then be incubated at 37°C/5% CO₂. After 24hr incubation, cells will then be harvested and utilized for analysis.

A Flash PlateTM Adenylyl Cyclase kit (New England Nuclear; Cat. No. SMP004A) is designed for cell-based assays, however, can be modified for use with crude plasma membranes depending on the need of the skilled artisan. The Flash Plate wells will contain a scintillant coating which also contains a specific antibody recognizing cAMP. The cAMP generated in the wells can be quantitated by a direct competition for binding of radioactive cAMP tracer to the cAMP antibody. The following serves as a brief protocol for the measurement of changes in cAMP levels in whole cells that express the receptors.

Transfected cells will be harvested approximately twenty four hours after transient transfection. Media will be carefully aspirated off and discarded. 10ml of PBS will be gently added to each dish of cells followed by careful aspiration. 1ml of Sigma cell dissociation buffer and 3ml of PBS will be added to each plate. Cells will be pipeted off the plate and the cell suspension will be collected into a 50ml conical centrifuge tube. Cells will then be centrifuged at room temperature at 1,100 rpm for 5 min. The cell pellet will be carefully re-suspended into an appropriate volume of PBS (about

25

10

15

3ml/plate). The cells will then be counted using a hemocytometer and additional PBS is added to give the appropriate number of cells (with a final volume of about 50µl/well).

cAMP standards and Detection Buffer (comprising 1 μCi of tracer [125] cAMP (50 μl] to 11 ml Detection Buffer) will be prepared and maintained in accordance with the manufacturer's instructions. Assay Buffer should be prepared fresh for screening and contained 50μl of Stimulation Buffer, 3ul of test compound (12uM final assay concentration) and 50μl cells, Assay Buffer can be stored on ice until utilized. The assay can be initiated by addition of 50μl of cAMP standards to appropriate wells followed by addition of 50μl of PBSA to wells H-11 and H12. 50ul of Stimulation Buffer will be added to all wells. Selected compounds (e.g., TSH) will be added to appropriate wells using a pin tool capable of dispensing 3μl of compound solution, with a final assay concentration of 12μM test compound and 100μl total assay volume. The cells will then be added to the wells and incubated for 60 min at room temperature. 100μl of Detection Mix containing tracer cAMP will then be added to the wells. Plates were then incubated additional 2 hours followed by counting in a Wallac MicroBeta scintillation counter. Values of cAMP/well will then be extrapolated from a standard cAMP curve which is contained within each assay plate.

4. Reporter-Based Assays

5

10

15

20

25

BNSD00ID <WC 0136471A2 +>

a. CRE-LUC Reporter Assay (Gs-associated receptors)

293 and 293T cells are plated-out on 96 well plates at a density of 2 x 10⁴ cells per well and were transfected using Lipofectamine Reagent (BRL) the following day according to manufacturer instructions. A DNA/lipid mixture is prepared for each 6-well transfection as follows: 260ng of plasmid DNA in 100µl of DMEM were gently mixed with 2µl of lipid in 100µl of DMEM (the 260ng of plasmid DNA consisted of

200ng of a 8xCRE-Luc reporter plasmid, 50ng of pCMV comprising endogenous receptor or non-endogenous receptor or pCMV alone, and 10ng of a GPRS expression plasmid (GPRS in pcDNA3 (Invitrogen)). The 8XCRE-Luc reporter plasmid was prepared as follows: vector SRIF-B-gal was obtained by cloning the rat somatostatin promoter (-71/+51) at BglV-HindIII site in the pßgal-Basic Vector (Clontech). Eight (8) copies of cAMP response element were obtained by PCR from an adenovirus template AdpCF126CCRE8 (see, 7 Human Gene Therapy 1883 (1996)) and cloned into the SRIF-β-gal vector at the Kpn-BglV site, resulting in the 8xCRE-β-gal reporter vector. The 8xCRE-Luc reporter plasmid was generated by replacing the beta-galactosidase gene in the 8xCRE-β-gal reporter vector with the luciferase gene obtained from the pGL3-basic vector (Promega) at the HindIII-BamHI site. Following 30 min. incubation at room temperature, the DNA/lipid mixture was diluted with 400 µl of DMEM and 100µl of the diluted mixture was added to each well. 100 µl of DMEM with 10% FCS were added to each well after a 4hr incubation in a cell culture incubator. The following day the transfected cells were changed with 200 ul/well of DMEM with 10% FCS. Eight (8) hours later, the wells were changed to 100 µl /well of DMEM without phenol red, after one wash with PBS. Luciferase activity were measured the next day using the LucLiteTM reporter gene assay kit (Packard) following manufacturer instructions and read on a 1450 MicroBeta™ scintillation and luminescence counter (Wallac).

b. AP1 reporter assay (Gq-associated receptors)

A method to detect Gq stimulation depends on the known property of Gq-dependent phospholipase C to cause the activation of genes containing AP1 elements in their promoter. A PathdetectTM AP-1 cis-Reporting System (Stratagene, Catalogue # 219073) can be utilized following the protocol set forth above with respect to the

5

10

15

20

CREB reporter assay, except that the components of the calcium phosphate precipitate were 410 ng pAP1-Luc, 80 ng pCMV-receptor expression plasmid, and 20 ng CMV-SEAP.

c. SRF-LUC Reporter Assay (Gq- associated receptors)

One method to detect Gq stimulation depends on the known property of Gqdependent phospholipase C to cause the activation of genes containing serum response factors in their promoter. A PathdetectTM SRF-Luc-Reporting System (Stratagene) can be utilized to assay for Gq coupled activity in, e.g., COS7 cells. Cells are transfected with the plasmid components of the system and the indicated expression plasmid encoding endogenous or non-endogenous GPCR using a Mammalian Transfection™ Kit (Stratagene, Catalogue #200285) according to the Briefly, 410 ng SRF-Luc, 80 ng pCMV-receptor manufacturer's instructions. expression plasmid and 20 ng CMV-SEAP (secreted alkaline phosphatase expression plasmid; alkaline phosphatase activity is measured in the media of transfected cells to control for variations in transfection efficiency between samples) are combined in a calcium phosphate precipitate as per the manufacturer's instructions. Half of the precipitate is equally distributed over 3 wells in a 96-well plate, kept on the cells in a serum free media for 24 hours. The last 5 hours the cells are incubated with 1µM Angiotensin, where indicated. Cells are then lysed and assayed for luciferase activity using a Luclite[™] Kit (Packard, Cat. # 6016911) and "Trilux 1450 Microbeta" liquid scintillation and luminescence counter (Wallac) as per the manufacturer's instructions. The data can be analyzed using GraphPad PrismTM 2.0a (GraphPad Software Inc.).

5

10

15

d. Intracellular IP₃ Accumulation Assay (Gq-associated receptors)

On day 1, cells comprising the receptors (endogenous and/or non-endogenous) can be plated onto 24 well plates, usually $1x10^5$ cells/well (although his umber can be optimized. On day 2 cells can be transfected by firstly mixing $0.25\mu g$ DNA in 50 μl serum free DMEM/well and 2 µl lipofectamine in 50 µl serumfree DMEM/well. The solutions are gently mixed and incubated for 15-30 min at room temperature. Cells are washed with 0.5 ml PBS and 400 µl of serum free media is mixed with the transfection media and added to the cells. The cells are then incubated for 3-4 hrs at 37°C/5%CO₂ and then the transfection media is removed and replaced with 1ml/well of regular growth media. On day 3 the cells are labeled with ³H-myo-inositol. Briefly, the media is removed and the cells are washed with 0.5 ml PBS. Then 0.5 ml inositol-free/serum free media (GIBCO BRL) is added/well with 0.25 μCi of 3H -myo-inositol/ well and the cells are incubated for 16-18 hrs o/n at $37^{\circ}\text{C/}5\%\text{CO}_2$. On Day 4 the cells are washed with 0.5ml PBS and 0.45 ml of assay medium is added containing inositol-free/serum free media 10 μM pargyline 10 mM lithium chloride or 0.4 ml of assay medium and 50μl of 10x ketanserin (ket) to final concentration of 10 µM. The cells are then incubated for 30 min at 37°C. The cells are then washed with 0.5 ml PBSand 200µl of fresh/icecold stop solution (1M KOH; 18 mM Na-borate; 3.8 mM EDTA) is added/well. The solution is kept on ice for 5-10 min or until cells were lysed and then neutralized by 200 µl of fresh/ice cold neutralization sol. (7.5 % HCL). The lysate is then transferred into 1.5 ml eppendorf tubes and 1 ml of chloroform/methanol (1:2) is added/tube. The solution is vortexed for 15 sec and the upper phase is applied to a Biorad AG1-X8™ anion exchange resin (100-200 mesh). Firstly, the resin is washed with water at 1:1.25 W/V and 0.9 ml of upper phase is loaded onto the column. The column is washed with 10 mls of 5 mM myo-inositol and 10 ml of 5 mM Na-borate/60mM Na-formate. The inositol

25

5

10

15

tris phosphates are eluted into scintillation vials containing 10 ml of scintillation cocktail with 2 ml of 0.1 M formic acid/1 M ammonium formate. The columns are regenerated by washing with 10 ml of 0.1 M formic acid/3M ammonium formate and rinsed twice with dd $\rm H_2O$ and stored at $\rm 4^{\circ}C$ in water.

Exemplary results are presented below in Table G:

TABLE G

Receptor	Mutation	Assay Utilized Figure No.)	Signal Generated: CMV	Signal Generated: Endogenous Version (Relative Light Units)	Signal Generated: Non- Endogenous Version (Relative Light Units)	Difference (=() Between CMV v. Wild-type Wild-type v. Mutant
hRUP12	N/A	IP ₃ (Figure 1)	317.03 cpm/mg protein	3463.29 cpm/mg protein		1. 11 Fold ←
hRUP13	N/A	cAMP (Figure 2)	8.06 pmol/cAMP/mg protein	19.10 pmol/cAMP/mg protein		1. 2.4 Fold ←
	A268K	8XCRE- LUC (Figure 3)	3665.43 LCPS	83280.17 LPCS	61713.6 LCPS	1. 23 Fold ← 2. 26 % ⟨
hRUP14	L246K	8XCRE- LUC (Figure 5)	86.07 LC PS	1962.87 LCPS	789.73 LCPS	 23 Fold ← 60% ⟨
hRUP15	A398K	8XCRE- LUC (Figure 6)	86.07 LCPS	18286.77 LCPS	17034.83 LCPS	1. 212 Fold ← 2. 1% ⟨
	A398K	cAMP (Figure 7)	15.00 pmol/cAMP/mg protein	164.4 pmol/cAMP/mg protein	117.5 pmol/cAMP/ mg protein	1. 11 Fold ← 2. 29% ⟨
hRUP17	N/A	IP ₃ (Figure 9)	317.03 cpm/mg protein	741.07 cpm/mg protein		1. 2.3 Fold ←
hRUP21	N/A	IP ₃ (Figure 10)	730.5 cpm/mg protein	1421.9 cpm/mg protein		1. 2 Fold ⇐
hRUP23	W275K	8XCRE- LUC (Figure 11)	311.73 pmol/cAMP/mg protein	13756.00 pmol/cAMP/mg protein	9756.87 pmol/cAMP/ mg protein	1. 44 Fold ← 2. 30% ⟨

N/A = not applied

Exemplary results of GTPγS assay for detecting constitutive activation, as disclosed in Example 4(1) above, was accomplished utilizing Gs:Fusion Protein Constructs on human RUP13 and RUP15. Table H below lists the signals generated from this assay and the difference in signals as indicated:

5

TABLE H

Receptor: Gs Fusion Protein	Assay Utilized	Signal Generated: CMV (cpm bound GTP)	Signal Generated: Fusion Protein (cpm bound GTP)	Signal Generated: CMV+ 10µMGDP (cpm bound GTP)	Signal Generated: Fusion Protein + 10µM GDP (cpm bound GTP)	Difference Between: 1. CMV v. Fusion Protein 2. CMV+GDP vs. Fusion+GDP 3. Fusion vs. Fusion+GDP (cpm bound GTP)
hRUP13-Gs	GTPγS (Figure 4)	32494.0	49351.30	11148.30	28834.67	1. 1.5 Fold ← 2. 2.6 Fold ← 3. 42% ⟨
hRUP15-Gs	GTPγS (Figure 8)	30131.67	32493.67	7697.00	14157.33	 1. 1.1 Fold ← 2. 1.8 Fold ← 3. 56% ⟨

Example 5
FUSION PROTEIN PREPARATION

a. GPCR:Gs Fusion Constuct

The design of the constitutively activated GPCR-G protein fusion construct was accomplished as follows: both the 5' and 3' ends of the rat G protein Gsα (long form; Itoh, H. et al., 83 *PNAS* 3776 (1986)) were engineered to include a HindIII (5'-AAGCTT-3') sequence thereon. Following confirmation of the correct sequence (including the flanking HindIII sequences), the entire sequence was shuttled into pcDNA3.1(-) (Invitrogen, cat. no. V795-20) by subcloning using the HindIII restriction site of that vector. The correct orientation for the Gsα sequence was determined after

10

subcloning into pcDNA3.1(-). The modified pcDNA3.1(-) containing the rat Gsα gene at HindIII sequence was then verified; this vector was now available as a "universal" Gsα protein vector. The pcDNA3.1(-) vector contains a variety of well-known restriction sites upstream of the HindIII site, thus beneficially providing the ability to insert, upstream of the Gs protein, the coding sequence of an endogenous, constitutively active GPCR. This same approach can be utilized to create other "universal" G protein vectors, and, of course, other commercially available or proprietary vectors known to the artisan can be utilized – the important criteria is that the sequence for the GPCR be upstream and in-frame with that of the G protein.

RUP13 couples via Gs. For the following exemplary GPCR Fusion Proteins, fusion to Gsα was accomplished.

A RUP13-Gsα Fusion Protein construct was made as follows: primers were designed as follows:

5'-gatc[TCTAGAAT]GGAGTCCTCACCCATCCCCAG -3' (SEQ.ID.NO.:97; sense)

5'-gatc[GATATC]CGTGACTCCAGCCGGGGTGAGGCGGC-3' (SEQ.ID.NO.:98; antisense).

Nucleotides in lower caps are included as spacers in the restriction sites (designated in brackets) between the G protein and RUP13. The sense and anti-sense primers included the restriction sites for XbaI and EcoRV, respectively, such that spacers (attributed to the restriction sites) exists between the G protein and RUP15.

PCR was then utilized to secure the respective receptor sequences for fusion within the Gsα universal vector disclosed above, using the following protocol for each: 100ng cDNA for RUP15 was added to separate tubes containing 2μl of each primer (sense and anti-sense), 3μL of 10mM dNTPs, 10μL of 10XTaqPlusTM Precision buffer, 1μL of TaqPlusTM Precision polymerase (Stratagene: #600211), and 80μL of water. Reaction temperatures and cycle times for RUP15 were as follows with cycle steps 2

25

5

10

15

through 4 were repeated 35 times: 94°C for 1 min; 94°C for 30 seconds; 62°C for 20 sec; 72°C 1 min 40sec; and 72° C 5 min. PCR product for was run on a 1% agarose gel and then purified (data not shown). The purified product was digested with XbaI and EcoRV and the desired inserts purified and ligated into the Gs universal vector at the respective restriction site. The positive clones was isolated following transformation and determined by restriction enzyme digest; expression using 293 cells was accomplished following the protocol set forth *infra*. Each positive clone for RUP15-Gs Fusion Protein was sequenced to verify correctness. (See, SEQ.ID.NO.:99 for nucleic acid sequence and SEQ.ID.NO.:100 for amino acid sequence).

RUP15 couples via Gs. For the following exemplary GPCR Fusion Proteins, fusion to Gs α was accomplished.

A RUP15-Gsα Fusion Protein construct was made as follows: primers were designed as follows:

5'-TCTAGAATGACGTCCACCTGCACCAACAGC-3' (SEQ.ID.NO.:101; sense)

5'-gatatcGCAGGAAAAGTAGCAGAATCGTAGGAAG-3' (SEQ.ID.NO.:102; antisense).

Nucleotides in lower caps are included as spacers in the restriction sites between the G protein and RUP15. The sense and anti-sense primers included the restriction sites for EcoRV and Xba1, respectively, such that spacers (attributed to the restriction sites) exists between the G protein and RUP15.

PCR was then utilized to secure the respective receptor sequences for fusion within the Gsα universal vector disclosed above, using the following protocol for each: 100ng cDNA for RUP15 was added to separate tubes containing 2µl of each primer (sense and anti-sense), 3µL of 10mM dNTPs, 10µL of 10XTaqPlusTM Precision buffer, 1µL of TaqPlusTM Precision polymerase (Stratagene: #600211), and 80µL of water. Reaction temperatures and cycle times for RUP15 were as follows with cycle steps 2

25

5

10

15

through 4 were repeated 35 times: 94°C for 1 min; 94°C for 30 seconds; 62°C for 20 sec; 72°C 1 min 40sec; and 72° C 5 min. PCR product for was run on a 1% agarose gel and then purified (data not shown). The purified product was digested). The purified product was digested with EcoRV and Xba1 and the desired inserts purified and ligated into the Gs universal vector at the respective restriction site. The positive clones was isolated following transformation and determined by restriction enzyme digest; expression using 293 cells was accomplished following the protocol set forth *infra*. Each positive clone for RUP15-Gs Fusion Protein was sequenced to verify correctness. (See, SEQ.ID.NO.:103 for nucleic acid sequence and SEQ.ID.NO.:104 for amino acid sequence).

b. Gq(6 amino acid deletion)/Gi Fusion Construct

The design of a Gq (del)/Gi fusion construct can be accomplished as follows: the N-terminal six (6) amino acids (amino acids 2 through 7, having the sequence of TLESIM (SEQ.ID.NO.: 129) Gαq-subunit will be deleted and the C-terminal five (5) amino acids, having the sequence EYNLV (SEQ.ID.NO.:130) will be replace with the corresponding amino acids of the Gαi Protein, having the sequence DCGLF (SEQ.ID.NO.:131). This fusion construct will be obtained by PCR using the following primers:

 $5 \lq \texttt{-} gat caagette CATGGCGTGCTGCCTGAGCGAGGAG-3 \lq (SEQ.ID.NO.: 132) \ and \\$

5'-gatcggatccTTAGAACAGGCCGCAGTCCTTCAGGTTCAGCTGCAGGATGGTG-3' (SEQ.ID.NO.:133)

and Plasmid 63313 which contains the mouse $G\alpha q$ -wild type version with a hemagglutinin tag as template. Nucleotides in lower caps are included as spacers.

TaqPlus Precision DNA polymerase (Stratagene) will be utilized for the amplification by the following cycles, with steps 2 through 4 repeated 35 times: 95°C

5

10

15

20

for 2 min; 95°C for 20 sec; 56°C for 20 sec; 72°C for 2 min; and 72°C for 7 min. The PCR product will be cloned into a pCRII-TOPO vector (Invitrogen) and sequenced using the ABI Big Dye Terminator kit (P.E. Biosystem). Inserts from a TOPO clone containing the sequence of the fusion construct will be shuttled into the expression vector pcDNA3.1(+) at the HindIII/BamHI site by a 2 step cloning process.

Example 6 TISSUE DISTRIBUTION OF THE DISCLOSED HUMAN GPCRS: RT-PCR

RT-PCR was applied to confirm the expression and to determine the tissue distribution of several novel human GPCRs. Oligonucleotides utilized were GPCR-specific and the human multiple tissue cDNA panels (MTC, Clontech) as templates. Taq DNA polymerase (Stratagene) were utilized for the amplification in a 40µl reaction according to the manufacturer's instructions. 20µl of the reaction will be loaded on a 1.5% agarose gel to analyze the RT-PCR products. Table J below lists the receptors, the cycle conditions and the primers utizilized.

TABLE J

Receptor Identifier	Cycle Conditions Min (*), Sec (") Cycles 2-4 repeated 30 times	5' Primer (SEQ.ID.NO.)	3' Primer (SEQ.ID.NO.)	DNA Fragment	Tissue Expression
hRUP10	94° for 30" 94° for 10" 62°C for 20" 72° for 1' 72° for 7' *cycles 2-4 repeated 35 times	CATGTATGC CAGCGTCCT GCTCC (105)	GCTATGCCTG AAGCCAGTC TTGTG (106)	730bp	Kidney, leukocyte, liver, placenta and spleen
hRUP11	94° for 2' 94° for 15" 67°C for 15" 72° for 45" 72° for 5'	GCACCTGCT CCTGAGCAC CTTCTCC (107)	CACAGCGCT GCAGCCCTG CAGCTGGC (108)	630bp	Liver, kidney, pancreas, colon, small intestinal, spleen and prostate

10

hRUP12	94° for 2'	CCAGTGATG	CAGACACTT	490bp	Brain, colon,
	94° for 15"	ACTCTGTCC	GGCAGGGAC		heart, kidney,
	66°C for 15"	AGCCTG (109)	GAGGTG (110)		leukocyte,
	72° for 45"	} }			pancreas,
	72° for 5'	ļ			prostate, small
	72 101 3	}			intestinal,
					spleen, testis,
					and thymus

hRUP13	94° for 1'	CTTGTGGTCT	CATATCCCTC	700bp	Placenta and
	94° for 15"	ACTGCAGCA	CGAGTGTCC		lung
	68°C for 20"	TGTTCCG	AGCGGC (112)		
	72° for 1' 45"	(111)			
	72° for 5'				
hRUP14	94° for 1'	ATGGATCCT	CAAGAACAG	700bp	Not yet
	94° for 15"	TATCATGGC	GTCTCATCTA		determined
	68°C for 20"	TTCCTC (113)	AGAGCTCC		
	72° for 1' 45"		(114)		
	72° for 5'				
hRUP16	94° for 30"	CTCTGATGC	GTAGTCCACT	370bp	Fetal brain, fetal
	94° for 5"	CATCTGCTG	GAAAGTCCA		kidney and fetal
	69°C for 15"	GATTCCTG	GTGATCC		skeletal muscle
	72° for 30"	(115)	(116)		
	72° for 5'				
hRUP18	94° for 2'	TGGTGGCGA	GTTGCGCCTT	330bp	Pancreas
	94° for 15"	TGGCCAACA	AGCGACAGA		
	60°C for 20"	GCGCTC (117)	TGACC (118)		
	72° for 1'				
	72° for 5'				
hRUP21	94° for 1'	TCAACCTGT	AAGGAGTAG		Kidney, lung
inter 21	94° for 15"	ATAGCAGCA	CAGAATGGT		and testis
	56°C for 20"	TCCTC (119)	TAGCC (120)		
	72° for 40"				
	*cycles 2-3				
	repeated 30 times				
hRUP22	94° for 30"	GACACCTGT	CTGATGGAA		Testis, thymus
	94° for 15"	CAGCGGTCG	GTAGAGGCT		and spleen
	69°C for 20"	TGTGTG (121)	GTCCATCTC		
	72° for 40"		(122)		
	*cycles 2-3				
	repeated 30 times				
hRUP23	94° for 2'	GCGCTGAGC	CACGGTGAC	520bp	Placenta
	94° for 15"	GCAGACCAG	GAAGGGCAC		
	60°C for 20"	TGGCTG (123)	GAGCTC (124)		
	72° for 1'				
	72° for 5'				
hRUP26	94° for 2'	AGCCATCCC	CCAGGTAGG	470bp	Pancreas
· <u> </u>	94° for 15"	TGCCAGGAA	TGTGCAGCA		
	65°C for 20"	GCATGG (125)	CAATGGC		
	72° for 1'		(126)		
	72° for 5'				
	, 2				
hRUP27	94° for 30"	CTGTTCAAC	ATCATGTCTA	890bp	Brain
	94° for 10"	AGGGCTGGT	GACTCATGGT		1
	55°C for 20"	TGGCAAC	GATCC (128)		1
	72° for 1'	(127)			
	72° for 3'				
	*cycles 2-4				
	repeated 35 times	1	1		1

Example 7

5

10

15

20

Protocol: Direct Identification of Inverse Agonists and Agonists

A. [35S]GTPyS Assay

Although we have utilized endogenous, constitutively active GPCRs for the direct identification of candidate compounds as, e.g., inverse agonists, for reasons that are not altogether understood, intra-assay variation can become exacerbated. Preferably, then, a GPCR Fusion Protein, as disclosed above, is also utilized with a non-endogenous, constitutively activated GPCR. We have determined that when such a protein is used, intra-assay variation appears to be substantially stabilized, whereby an effective signal-to-noise ratio is obtained. This has the beneficial result of allowing for a more robust identification of candidate compounds. Thus, it is preferred that for direct identification, a GPCR Fusion Protein be used and that when utilized, the following assay protocols be utilized.

1. Membrane Preparation

Membranes comprising the constitutively active orphan GPCR Fusion Protein of interest and for use in the direct identification of candidate compounds as inverse agonists, agonists or partial agonists are preferably prepared as follows:

a. Materials

"Membrane Scrape Buffer" is comprised of 20mM HEPES and 10mM EDTA, pH 7.4; "Membrane Wash Buffer" is comprised of 20 mM HEPES and 0.1 mM EDTA, pH 7.4; "Binding Buffer" is comprised of 20mM HEPES, 100 mM NaCl, and 10 mM MgCl₂, pH 7.4

b. Procedure

All materials will be kept on ice throughout the procedure. Firstly, the media will be aspirated from a confluent monolayer of cells, followed by rinse with 10ml cold

PBS, followed by aspiration. Thereafter, 5ml of Membrane Scrape Buffer will be added to scrape cells; this will be followed by transfer of cellular extract into 50ml centrifuge tubes (centrifuged at 20,000 rpm for 17 minutes at 4°C). Thereafter, the supernatant will be aspirated and the pellet will be resuspended in 30ml Membrane Wash Buffer followed by centrifuge at 20,000 rpm for 17 minutes at 4°C. The supernatant will then be aspirated and the pellet resuspended in Binding Buffer. This will then be homogenized using a Brinkman polytron™ homogenizer (15-20 second bursts until the all material is in suspension). This is referred to herein as "Membrane Protein".

2. Bradford Protein Assay

Following the homogenization, protein concentration of the membranes will be determined using the Bradford Protein Assay (protein can be diluted to about 1.5mg/ml, aliquoted and frozen (-80°C) for later use; when frozen, protocol for use will be as follows: on the day of the assay, frozen Membrane Protein is thawed at room temperature, followed by vortex and then homogenized with a polytron at about 12 x 1,000 rpm for about 5-10 seconds; it was noted that for multiple preparations, the homogenizor should be thoroughly cleaned between homogenezation of different preparations).

a. Materials

Binding Buffer (as per above); Bradford Dye Reagent; Bradford Protein Standard will be utilized, following manufacturer instructions (Biorad, cat. no. 500-0006).

b. Procedure

Duplicate tubes will be prepared, one including the membrane, and one as a control "blank". Each contained 800ul Binding Buffer. Thereafter, 10µl of Bradford Protein Standard (1mg/ml) will be added to each tube, and 10µl of membrane Protein

25

5

10

will then be added to just one tube (not the blank). Thereafter, 200ul of Bradford Dye Reagent will be added to each tube, followed by vortex of each. After five (5) minutes, the tubes will be re-vortexed and the material therein will be transferred to cuvettes. The cuvettes will then be read using a CECIL 3041 spectrophotometer, at wavelength 595.

3. Direct Identification Assay

a. Materials

GDP Buffer consisted of 37.5 ml Binding Buffer and 2mg GDP (Sigma, cat. no. G-7127), followed by a series of dilutions in Binding Buffer to obtain 0.2 μM GDP (final concentration of GDP in each well was 0.1 μM GDP); each well comprising a candidate compound, has a final volume of 200ul consisting of 100μl GDP Buffer (final concentration, 0.1μM GDP), 50ul Membrane Protein in Binding Buffer, and 50μl [35S]GTPγS (0.6 nM) in Binding Buffer (2.5 μl [35S]GTPγS per 10ml Binding Buffer).

b. Procedure

Candidate compounds will be preferably screened using a 96-well plate format (these can be frozen at -80°C). Membrane Protein (or membranes with expression vector excluding the GPCR Fusion Protein, as control), will be homogenized briefly until in suspension. Protein concentration will then be determined using the Bradford Protein Assay set forth above. Membrane Protein (and control) will then be diluted to 0.25mg/ml in Binding Buffer (final assay concentration, 12.5μg/well). Thereafter, 100 μl GDP Buffer was added to each well of a Wallac ScintistripTM (Wallac). A 5μl pintool will then be used to transfer 5 μl of a candidate compound into such well (*i.e.*, 5μl in total assay volume of 200 μl is a 1:40 ratio such that the final screening concentration of the candidate compound is 10μM). Again, to avoid contamination, after each transfer step the pin tool should be rinsed in three reservoirs comprising water (1X), ethanol (1X)

25

5

10

15

and water (2X) – excess liquid should be shaken from the tool after each rinse and dried with paper and kimwipes. Thereafter, 50 µl of Membrane Protein will be added to each well (a control well comprising membranes without the GPCR Fusion Protein was also utilized), and pre-incubated for 5-10 minutes at room temperature. Thereafter, 50µl of [35 S]GTPγS (0.6 nM) in Binding Buffer will be added to each well, followed by incubation on a shaker for 60 minutes at room temperature (again, in this example, plates were covered with foil). The assay will then be stopped by spinning of the plates at 4000 RPM for 15 minutes at 22°C. The plates will then be aspirated with an 8 channel manifold and sealed with plate covers. The plates will then be read on a Wallacc 1450 using setting "Prot. #37" (as per manufacturer instructions).

B. Cyclic AMP Assay

Another assay approach to directly identified candidate compound was accomplished by utilizing a cyclase-based assay. In addition to direct identification, this assay approach can be utilized as an independent approach to provide confirmation of the results from the [35 S]GTP γ S approach as set forth above.

A modified Flash PlateTM Adenylyl Cyclase kit (New England Nuclear; Cat. No. SMP004A) was preferably utilized for direct identification of candidate compounds as inverse agonists and agonists to constitutively activated orphan GPCRs in accordance with the following protocol.

Transfected cells were harvested approximately three days after transfection. Membranes were prepared by homogenization of suspended cells in buffer containing 20mM HEPES, pH 7.4 and 10mM MgCl₂. Homogenization was performed on ice using a Brinkman PolytronTM for approximately 10 seconds. The resulting homogenate is centrifuged at 49,000 X g for 15 minutes at 4°C. The resulting pellet was then resuspended in buffer containing 20mM HEPES, pH 7.4 and 0.1 mM EDTA,

5

10

15

20

homogenized for 10 seconds, followed by centrifugation at 49,000 X g for 15 minutes at 4°C. The resulting pellet was then stored at -80°C until utilized. On the day of direct identification screening, the membrane pellet as slowly thawed at room temperature, resuspended in buffer containing 20mM HEPES, pH 7.4 and 10mM MgCL2, to yield a final protein concentration of 0.60mg/ml (the resuspended membranes are placed on ice until use).

5

10

15

20

25

BNSDOCID <WC 0136471A2 ->

cAMP standards and Detection Buffer (comprising 2 μCi of tracer [¹²⁵I cAMP (100 μl] to 11 ml Detection Buffer) were prepared and maintained in accordance with the manufacturer's instructions. Assay Buffer was prepared fresh for screening and contained 20mM HEPES, pH 7.4, 10mM MgCl₂, 20mM phospocreatine (Sigma), 0.1 units/ml creatine phosphokinase (Sigma), 50 μM GTP (Sigma), and 0.2 mM ATP (Sigma); Assay Buffer was then stored on ice until utilized.

Candidate compounds identified as per above (if frozen, thawed at room temperature) were added, preferably, to 96-well plate wells (3µl/well; 12µM final assay concentration), together with 40 µl Membrane Protein (30µg/well) and 50µl of Assay Buffer. This admixture was then incubated for 30 minutes at room temperature, with gentle shaking.

Following the incubation, 100µl of Detection Buffer was added to each well, followed by incubation for 2-24 hours. Plates were then counted in a Wallac MicroBetaTM plate reader using "Prot. #31" (as per manufacturer instructions).

A representative screening assay plate (96 well format) result is presented in Figure 12. Each bar represents the results for a different compound in each well, plus RUP13-Gsα Fusion Protein construct, as prepared in Example 5(a) above. The representative results presented in Figure 12 also provide standard deviations based upon the mean results of each plate ("m") and the mean plus two arbitrary preference for

selection of inverse agonists as "leads" from the primary screen involves selection of candidate compounds that that reduce the per cent response by at least the mean plate response, minus two standard deviations. Conversely, an arbitrary preference for selection of an agonists as "leads" from the primary screen involves selection of candidate compounds that increase the per cent response by at least the mean plate response, plus the two standard deviations. Based upon these selection processes, the candidate compounds in the following wells were directly identified as putative inverse agonist (Compound A) and agonist (Compound B) to RUP13 in wells A2 and G9, respectively. See, Figure 12. It is noted for clarity: these compounds have been directly identified without any knowledge of the endogenous ligand for this GPCR. By focusing on assay techniques that are based upon receptor function, and not compound binding affinity, we are able to ascertain compounds that are able to reduce the functional activity of this receptor (Compound A) as well as increase the functional activity of the receptor (Compound B). Based upon the location of these receptor in lung tissue (see, for example, hRUP13 and hRUP21 in Example 6), pharmaceutical agents can be developed for potential therapeutic treatment of lung cancer.

References cited throughout this patent document, including co-pending and related patent applications, unless otherwise indicated, are fully incorporated herein by reference. Modifications and extension of the disclosed inventions that are within the purview of the skilled artisan are encompassed within the above disclosure and the claims that follow.

Although a variety of expression vectors are available to those in the art, for purposes of utilization for both the endogenous and non-endogenous human GPCRs, it is most preferred that the vector utilized be pCMV. This vector was deposited with the American Type Culture Collection (ATCC) on October 13, 1998 (10801 University

25

5

10

15

Blvd., Manassas, VA 20110-2209 USA) under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure. The DNA was tested by the ATCC and determined to be viable. The ATCC has assigned the following deposit number to pCMV: ATCC #203351.

5 //

//

//

//

//

10 //

//

//

//

//

15 //

//

//

//

//

20 //

//

//

//

//

25 //

CLAIMS

What is claimed is:

- 1. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:2.
- 2. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 1.
- 3. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:1.
- 4. A host cell comprising the plasmid of claim 3.
- A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:4.
 - 6. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 5.
 - 7. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:3.
- 8. A host cell comprising the plasmid of claim 7.
 - 9. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:6.
 - 10. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 9.
- 20 11. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:5.
 - 12. A host cell comprising the plasmid of claim 11.
 - 13. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:8.
- 14. A non-endogenous, constitutively activated version of the G protein-coupled
 receptor of claim 13.

15. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:7.

- 16. A host cell comprising the plasmid of claim 15.
- 17. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:10.
- 5 18. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 17.
 - 19. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:9.
 - 20. A host cell comprising the plasmid of claim 19.
 - 21. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:12.
 - 22. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 21 comprising an amino acid sequence of SEQ.ID.NO.84.
 - 23. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:11.
 - 24. A host cell comprising the plasmid of claim 23.
- 25. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:14.
 - 26. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 25 comprising an amino acid sequence of SEQ.ID.NO.88.
 - 27. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:13.
- 20 28. A host cell comprising the plasmid of claim 27.
 - 29. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:16.
 - 30. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 29 comprising an amino acid sequence of SEQ.ID.NO.:92.
- 25 31. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:15.

- 32. A host cell comprising the plasmid of claim 31.
- 33. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:18.
- 34. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 33.
- 35. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:17.
- 36. A host cell comprising the plasmid of claim 35.
- 37. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:20.
- 38. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 37.
 - 39. A plasmid comprising a vector and the cDNA of SE.ID.NO.:19.
 - 40. A host cell comprising the plasmid of claim 39.
 - 41. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:22.
 - 42. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 41.
 - 43. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:21.
 - 44. A host cell comprising the plasmid of claim 43.
- 20 45. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:24.
 - 46. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 45.
 - 47. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:23.
- 48. A host cell comprising the plasmid of claim 47.

5

49. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:26.

- 50. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 49.
- 5 51. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:25.
 - 52. A host cell comprising the plasmid of claim 51.
 - 53. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:28.
 - 54. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 53.
 - 55. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:27.
 - 56. A host cell comprising the plasmid of claim 55.
 - 57. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:30.
- 15 58. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 57.
 - 59. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:29.
 - 60. A host cell comprising the plasmid of claim 59.
 - 61. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:32.
 - 62. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 61 comprising an amino acid sequence of SEQ.ID.NO.:96.
 - 63. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:95.
 - 64. A host cell comprising the plasmid of claim 63.

20

65. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:34.

- 66. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 65.
- 5 67. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:33.
 - 68. A host cell comprising the plasmid of claim 67.
 - 69. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:36.
 - 70. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 69.
 - 71. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:35.
 - 72. A host cell comprising the plasmid of claim 71.
 - 73. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:38.
- 74. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 73.
 - 75. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:37.
 - 76. A host cell comprising the plasmid of claim 75.
 - 77. A G protein-coupled receptor encoded by an amino acid sequence of SEO.ID.NO.:40.
 - 78. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 77.
 - 79. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:39.
 - 80. A host cell comprising the plasmid of claim 79.

20

10

3/12

Figure 5

Figure 6

Figure 7

Figure 11

Figure 12

SEQUENCE LISTING

<110> Arena Pharmaceuticals, Inc. Chen, Rupong Dang, Huong T. Lowitz, Kevin P. <120> Non-Endogenous, Constitutively Activated Human G Protein-Coupled Receptors <130> AREN0087 <150> 60/166,088 <151> 1999-11-17 <150> 60/166,369 <151> 1999-11-17 <150> 60/166,099 <151> 1999-11-17 <150> 61/171,902 <151> 1999-12-23 <150> 60/171,901 <151> 1999-12-23 <150> 60/171,900 <151> 1999-12-23 <150> 60/181,749 <151> 2000-02-11 <150> 60/189,258 <151> 2000-03-14 <150> 60/189,259 <151> 2000-03-14 <150> 60/195,899 <151> 2000-04-10 <150> 60/196,078 <151> 2000-04-10 <150> 60/195,898 <151> 2000-04-10 <150> 60/200,419 <151> 2000-04-28 <150> 60/203,630 <151> 2000-05-12 <150> 60/210,741 <151> 2000-06-12 <150> 60/210,982 <151> 2000-06-12 <150> 60/226,760 <151> 2000-08-21 <150> 60/235,779 <151> 2000-09-26

```
<150> 60/235,418

<151> 2000+09-26
+150> 60/242,332
      2000-10-20
<:151>
<150> 60/242,343
<151> 2000-10-20
<150> 60/243,019
<151> 2000-10-24
<160> 133
<170> PatentIn version 3.0
<210>
      1
      1155
.211>
<212> DNA
<213> Homo sapiens
√400> 1
Atggcagood agaatggaaa daccagttto adaccdaact ttaatccadd ddaagaddat
                                                                       60
gootcotoco totootttaa ottoagttat ggtgattatg acotocotat ggatgaggat
                                                                      120
yaggacatga ccaagacccg gaccttcttc gcagccaaga tcgtcattgg cattgcactg
                                                                       180
gcaggcatca tgctggtctg cggcatcggt aactttgtct ttatcgctgc cctcacccgc
                                                                       240
tataagaagt tgcgcaacct caccaatctg ctcattgcca acctggccat ctccgacttc
                                                                       300
ctggtggcca tcatctgctg ccccttcgag atggactact acgtggtacg gcagctctcc
                                                                       360
                                                                       420
tqqqaqcatq gccacqtgct ctgtgcctcc gtcaactacc tgcgcaccgt ctccctctac
gtotocacca atgoottgot ggocattgoc attgacagat atotogocat ogttoaccoc
                                                                       480
ttgaaaccac ggatgaatta tcaaacggcc tccttcctga tcgccttggt ctggatggtg
                                                                       540
tocattotca ttgccatccc atcggcttac tttgcaacag aaacggtcct ctttattgtc
                                                                       600
aagagccagg agaagatett etgtggccag atetggcetg tggateagea getetaetae
                                                                       660
aagteetact teetetteat etttggtgte gagttegtgg geeetgtggt caccatgace
                                                                       720
                                                                       780
etgtgctatg ccaggatete eegggagete tggttcaagg cagtecetgg gttccagaeg
gagcagattc gcaagcggct gcgctgccgc aggaagacgg tcctggtgct catgtgcatt
                                                                       840
etcacggeet atgtgetgtg etgggeacce ttetacggtt teaccategt tegtgaette
                                                                       900
                                                                       960
ttccccactg tgttcgtgaa ggaaaagcac tacctcactg ccttctacgt ggtcgagtgc
ategecatga geaacageat gateaacace gtgtgetteg tgaeggteaa gaacaacace
                                                                      1020
atgaagtact tcaagaagat gatgctgctg cactggcgtc cctcccagcg ggggagcaag
                                                                      1080
                                                                      1140
tocagtgctg accttgacct cagaaccaac ggggtgccca ccacagaaga ggtggactgt
                                                                      1155
atcaggctga agtga
```

<210> 2 <211> 384

Page 2

<212> PRT

<213> Homo sapiens

<400> 2

Met Ala Ala Gln Asn Gly Asn Thr Ser Phe Thr Pro Asn Phe Asn Pro 1 5 10 15

Pro Gln Asp His Ala Ser Ser Leu Ser Phe Asn Phe Ser Tyr Gly Asp 20 25 30

Tyr Asp Leu Pro Met Asp Glu Asp Glu Asp Met Thr Lys Thr Arg Thr 35 40 45

Phe Phe Ala Ala Lys Ile Val Ile Gly Ile Ala Leu Ala Gly Ile Met 50 55

Leu Val Cys Gly Ile Gly Asn Phe Val Phe Ile Ala Ala Leu Thr Arg 65 70 75 80

Tyr Lys Lys Leu Arg Asn Leu Thr Asn Leu Leu Ile Ala Asn Leu Ala 85 90 95

Ile Ser Asp Phe Leu Val Ala Ile Ile Cys Cys Pro Phe Glu Met Asp $100 \hspace{1cm} 105 \hspace{1cm} 105$

Tyr Tyr Val Val Arg Gln Leu Ser Trp Glu His Gly His Val Leu Cys 115 120 125

Ala Ser Val Asn Tyr Leu Arg Thr Val Ser Leu Tyr Val Ser Thr Asn 130 135 140

Ala Leu Leu Ala Ile Ala Ile Asp Arg Tyr Leu Ala Ile Val His Pro 145 150 155 160

Leu Lys Pro Arg Met Asn Tyr Gln Thr Ala Ser Phe Leu Ile Ala Leu 165 170 175

Val Trp Met Val Ser Ile Leu Ile Ala Ile Pro Ser Ala Tyr Phe Ala 180 185 190

Thr Glu Thr Val Leu Phe Ile Val Lys Ser Gln Glu Lys Ile Phe Cys

Gly Gln Ile Trp Pro Val Asp Gln Gln Leu Tyr Tyr Lys Ser Tyr Phe 210 220

Leu Phe Ile Phe Gly Val Glu Phe Val Gly Pro Val Val Thr Met Thr 225 230 235 240

Leu Cys Tyr Ala Arg Ile Ser Arg Glu Leu Trp Phe Lys Ala Val Pro 245 250 255

Gly Phe Gln Thr Glu Gln Ile Arg Lys Arg Leu Arg Cys Arg Arg Lys

Thr Val Leu Val Leu Met Cys Ile Leu Thr Ala Tyr Val Leu Cys Trp 275 280 285

Ala Pro Phe Tyr Gly Phe Thr Ile Val Arg Asp Phe Phe Pro Thr Val 290 295 300

Phe Val Lys Glu Lys His Tyr Leu Thr Ala Phe Tyr Val Val Glu Cys 305 310 320

Ile Ala Met Ser Asn Ser Met Ile Asn Thr Val Cys Phe Val Thr Val 325 330 335 Lys Asn Asn Thr Met Lys Tyr Phe Lys Lys Met Met Leu Leu His Trp 340 Arg Pro Ser Gln Arg Gly Ser Lys Ser Ser Ala Asp Leu Asp Leu Arg 360 Thr Asn Gly Val Pro Thr Thr Glu Glu Val Asp Cys Ile Arg Leu Lys 375 <210> 3 <211> 1260 <212> DNA <213> Homo sapiens <400> 3 atgctggcag ctgcctttgc agactctaac tccagcagca tgaatgtgtc ctttgctcac 60 ctccactttg ccggagggta cctgccctct gattcccagg actggagaac catcatcccg 120 getetetigg tggetgtetg cetggtggge ttegtgggaa acetgtgtgt gattggeate 180 ctccttcaca atgcttggaa aggaaagcca tccatgatcc actccctgat tctgaatctc 240 agcotggotg atototocot cotgotgttt totgoacota tocgagotac ggogtactoc 300 aaaaqtgttt gggatctagg ctggtttgtc tgcaagtcct ctgactggtt tatccacaca 360 tgcatggcag ccaagagcct gacaatcgtt gtggtggcca aagtatgctt catgtatgca 420 agtgacccag ccaagcaagt gagtatccac aactacacca tctggtcagt gctggtggcc 480 atctqqactq tqqctagcct qttacccctq ccqqaatqqt tctttagcac catcagqcat 540 600 catgaaqqtq tqqaaatgtg cctcqtggat gtaccagctg tggctgaaga gtttatgtcg atgtttggta agctctaccc actcctggca tttggccttc cattatttt tgccagcttt 660 tatttctgga gagcttatga ccaatgtaaa aaacgaggaa ctaagactca aaatcttaga 720 780 aaccagatac geteaaagea agteacagtg atgetgetga geattgeeat catetetget 840 ctcttgtggc tccccgaatg ggtagcttgg ctgtgggtat ggcatctgaa ggctgcaggc coggeccae cacaaggitt catageeetg teleaagtet tgatgitte catetettea 900 960 qcaaatcctc tcatttttct tgtgatgtcg gaagagttca gggaaggctt gaaaggtgta tggaaatgga tgataaccaa aaaacctcca actgtctcag agtctcagga aacaccagct 1020 ggcaactcag agggtcttcc tgacaaggtt ccatctccag aatccccagc atccatacca 1080 1140 gaaaaagaga aacccagctc tccctcctct ggcaaaggga aaactgagaa ggcagagatt cccatcotto otgaogtaga goagttttgg catgagaggg acacagtoco ttotgtacag 1200 gacaatgacc ctatcccctg ggaacatgaa gatcaagaga caggggaagg tgttaaatag 1260 <210> 4

<211> 419 <212> PRT

<213> Homo sapiens

Page 4

<400> 4

Met Leu Ala Ala Ala Phe Ala Asp Ser Asn Ser Ser Ser Met Asn Val Ser Phe Ala His Leu His Phe Ala Gly Gly Tyr Leu Pro Ser Asp Ser 20 25 30Sin Asp Trp Arg Thr Ile Ile Pro Ala Leu Leu Val Ala Val Cys Leu 35 40 45 Val Gly Phe Val Gly Asn Leu Cys Val Ile Gly Ile Leu Leu His Asn 50 55 60 Ala Trp Lys Gly Lys Pro Ser Met Ile His Ser Leu Ile Leu Asn Leu 65 70 75 80 Ser Leu Ala Asp Leu Ser Leu Leu Leu Phe Ser Ala Pro Ile Arg Ala 90 95 Thr Ala Tyr Ser Lys Ser Val Trp Asp Leu Gly Trp Phe Val Cys Lys 100 105 110Ser Ser Asp Trp Phe Ile His Thr Cys Met Ala Ala Lys Ser Leu Thr 115 120 125 Ile Val Val Val Ala Lys Val Cys Phe Met Tyr Ala Ser Asp Pro Ala Lys Gln Val Ser Ile His Asn Tyr Thr Ile Trp Ser Val Leu Val Ala 145 150 155 160 Ile Trp Thr Val Ala Ser Leu Leu Pro Leu Pro Glu Trp Phe Phe Ser Thr Ile Arg His His Glu Gly Val Glu Met Cys Leu Val Asp Val Pro Ala Val Ala Glu Glu Phe Met Ser Met Phe Gly Lys Leu Tyr Pro Leu Leu Ala Phe Gly Leu Pro Leu Phe Phe Ala Ser Phe Tyr Phe Trp Arg Ala Tyr Asp Gln Cys Lys Lys Arg Gly Thr Lys Thr Gln Asn Leu Arg 225 230 235 240 Asn Gln Ile Arg Ser Lys Gln Val Thr Val Met Leu Leu Ser Ile Ala Ile Ile Ser Ala Leu Leu Trp Leu Pro Glu Trp Val Ala Trp Leu Trp 260 265 270 Val Trp His Leu Lys Ala Ala Gly Pro Ala Pro Pro Gln Gly Phe Ile Ala Leu Ser Gln Val Leu Met Phe Ser Ile Ser Ser Ala Asn Pro Leu Ile Phe Leu Val Met Ser Glu Glu Phe Arg Glu Gly Leu Lys Gly Val 305 310 315Trp Lys Trp Met Ile Thr Lys Lys Pro Pro Thr Val Ser Glu Ser Gln 325 330 335

Glu Thr Pro Ala Gly Asn Ser Glu Gly Leu Pro Asp Lys Va. 340 345	l Pro Ser)
Pro Glu Ser Pro Ala Ser Ile Pro Glu Lys Glu Lys Pro Se. 355 360 365	r Ser Pro
Ser Ser Gly Lys Gly Lys Thr Glu Lys Ala Glu Ile Pro Ile 370 375 380	e Leu Pro
Asp Val Glu Gln Phe Trp His Glu Arg Asp Thr Val Pro Se 385	r Val Gln 400
Asp Asn Asp Pro Ile Pro Trp Glu His Glu Asp Gln Glu Th. 405	r Gly Glu 415
Gly Val Lys	
.210	
<400> 5	
atggggaacg attetgteag etacgagtat ggggattaca gegacetete	ggaccgccct 60
gtggactgcc tggatggcgc ctgcctggcc atcgacccgc tgcgcgtggc	cccgctccca 120
ctgtatgccg ccatcttcct ggtgggggtg ccgggcaatg ccatggtggc	ctgggtggct 180
gggaaggtgg cccgccggag ggtgggtgcc acctggttgc tccacctggc	cgtggcggat 240
ttgctgtgct gtttgtctct gcccatcctg gcagtgccca ttgcccgtgg	aggccactgg 300
ccgtatggtg cagtgggctg tcgggcgctg ccctccatca tcctgctgac	catgtatgcc 360
agegteetge teetggeage teteagtgee gacetetget teetggetet	cgggcctgcc 420
tggtggtcta cggttcagcg ggcgtgcggg gtgcaggtgg cctgtggggc	agcctggaca 480
ctggccttgc tgctcaccgt gccctccgcc atctaccgcc ggctgcacca	ggagcacttc 540
ccagecegge tgeagtgtgt ggtggactae ggeggeteet ecageaeega	gaatgcggtg 600
actgccatcc ggtttctttt tggcttcctg gggcccctgg tggccgtggc	cagetgecae 660
agtgccctcc tgtgctgggc agcccgacgc tgccggccgc tgggcacagc	cattgtggtg 720
gggttttttg tetgetggge accetaceae etgetgggge tggtgeteae	tgtggcggcc 780
cogaactoog cactootggo cagggoodtg ogggotgaac cootcatogt	0.10
ctogotoaca gotgootoaa toocatgoto ttootgtatt ttgggagggo	tcaactccgc 900
cggtcactgc cagetgeetg teactgggee etgagggagt eccagggeea	
gtggacagca agaaatccac cagccatgac ctggtctcgg agatggaggt	
<210> 6 <211> 337 <212> PRT <213> Homo sapiens	

<400> 6

Met Gly Asn Asp Ser Val Ser Tyr Glu Tyr Gly Asp Tyr Ser Asp Leu 1 10 15 Ser Asp Arg Pro Val Asp Cys Leu Asp Gly Ala Cys Leu Ala Ile Asp Pro Leu Arg Val Ala Pro Leu Pro Leu Tyr Ala Ala Ile Phe Leu Val 35 40 45 Gly Val Pro Gly Asn Ala Met Val Ala Trp Val Ala Gly Lys Val Ala Arg Arg Val Gly Ala Thr Trp Leu Leu His Leu Ala Val Ala Asp 65 70 75 80 Leu Leu Cys Cys Leu Ser Leu Pro Ile Leu Ala Val Pro Ile Ala Arg Gly Gly His Trp Pro Tyr Gly Ala Val Gly Cys Arg Ala Leu Pro Ser 100 105 110Ile Ile Leu Leu Thr Met Tyr Ala Ser Val Leu Leu Leu Ala Ala Leu Ser Ala Asp Leu Cys Phe Leu Ala Leu Gly Pro Ala Trp Trp Ser Thr Val Gln Arg Ala Cys Gly Val Gln Val Ala Cys Gly Ala Ala Trp Thr 145 150 155 Leu Ala Leu Leu Thr Val Pro Ser Ala Ile Tyr Arg Arg Leu His Gln Glu His Phe Pro Ala Arg Leu Gln Cys Val Val Asp Tyr Gly Gly Ser Ser Ser Thr Glu Asn Ala Val Thr Ala Ile Arg Phe Leu Phe Gly 200 Phe Leu Gly Pro Leu Val Ala Val Ala Ser Cys His Ser Ala Leu Leu Cys Trp Ala Ala Arg Arg Cys Arg Pro Leu Gly Thr Ala Ile Val Val Gly Phe Phe Val Cys Trp Ala Pro Tyr His Leu Leu Gly Leu Val Leu Thr Val Ala Ala Pro Asn Ser Ala Leu Leu Ala Arg Ala Leu Arg Ala Glu Pro Leu Ile Val Gly Leu Ala Leu Ala His Ser Cys Leu Asn Pro Met Leu Phe Leu Tyr Phe Gly Arg Ala Gln Leu Arg Arg Ser Leu Pro Ala Ala Cys His Trp Ala Leu Arg Glu Ser Gln Gly Gln Asp Glu Ser Val Asp Ser Lys Lys Ser Thr Ser His Asp Leu Val Ser Glu Met Glu 330

Val

```
<210>
      7
       1272
<211>
<212>
      DNA
<213> Homo sapiens
<400> 7
                                                                      60
atgttgtgtc accgtggtgg ccagctgata gtgccaatca tcccactttg ccctgagcac
                                                                     120
tectgcaggg gtagaagact ccagaacett etetcaggee catggeecaa gcageecatg
gaacticata accigagete iccatetece teletecet celetgitel eccleeetee
                                                                     180
ttctctccct caccetecte tgctccctct gcctttacca ctgtgggggg gtcctctgga
                                                                     240
                                                                     300
gagecetace accedacete treetegeta grateracet teerageace aareeragee
ctggagtttg teetgggeet ggtggggaae agtttggeee tetteatett etgeateeae
                                                                      360
augequeet ggacetecaa caeggtgtte etggteagee tggtggeege tgaetteete
                                                                     420
ctgatcagca acctgecect eegegtggae tactacetee tecatgagae etggegettt
                                                                     480
ggggctgctg cctgcaaagt caacctcttc atgctgtcca ccaaccgcac ggccagcgtt
                                                                      540
gtottoctca cagocatogo actoaacogo tacotgaagg tggtgcagoo coaccaogtg
                                                                      600
ctgagccgtg cttccgtggg ggcagctgcc cgggtggccg ggggactctg ggtgggcatc
                                                                      €60
ctgctcctca acgggcacct gctcctgagc accttctccg gcccctcctg cctcagctac
                                                                      720
                                                                      780
agggtgggca cgaagccttc ggcctcgctc cgctggcacc aggcactgta cctgctggag
ttcttcctgc cactggcgct catcctcttt gctattgtga gcattgggct caccatccgg
                                                                      840
aaccgtggtc tgggcgggca ggcaggcccg cagagggcca tgcgtgtgct ggccatggtg
                                                                      900
gtggccgtct acaccatctg cttcttgccc agcatcatct ttggcatggc ttccatggtg
                                                                      960
                                                                     1020
getttetgge tgteegeetg eegateeetg gaeetetgea cacagetett ecatggetee
ctggccttca cctacctcaa cagtgtcctg gaccccgtgc tctactgctt ctctagcccc
                                                                     1080
                                                                     1140
aacttectee accagageeg ggeettgetg ggeetcaege ggggeeggea gggeecagtg
                                                                     1200
agogacgaga gotoctacca accotocagg cagtggcgct accgggaggo ototaggaag
                                                                     1260
qcqqaqqcca tagggaagct gaaagtgcag ggcgaggtct ctctggaaaa ggaaggctcc
                                                                     1272
toccagggct ga
<210> 8
<211>
      423
<212>
      PRT
<213> Homo sapiens
<400> 8
Met Leu Cys His Arg Gly Gly Gln Leu Ile Val Pro Ile Ile Pro Leu
                                     10
```

Cys Pro Glu His Ser Cys Arg Gly Arg Arg Leu Gln Asn Leu Leu Ser

20 Gly Pro Trp Pro Lys Gln Pro Met Glu Leu His Asn Leu Ser Ser Pro Ser Pro Ser Leu Ser Ser Ser Val Leu Pro Pro Ser Phe Ser Pro Ser Pro Ser Ser Ala Pro Ser Ala Phe Thr Thr Val Gly Gly Ser Ser Gly 65 70 75 80Gly Pro Cys His Pro Thr Ser Ser Ser Leu Val Ser Ala Phe Leu Ala Pro Ile Leu Ala Leu Glu Phe Val Leu Gly Leu Val Gly Asn Ser Leu Ala Leu Phe Ile Phe Cys Ile His Thr Arg Pro Trp Thr Ser Asn Thr Vai Phe Leu Val Ser Leu Val Ala Ala Asp Phe Leu Leu Ile Ser Asn Leu Pro Leu Arg Val Asp Tyr Tyr Leu Leu His Glu Thr Trp Arg Phe Gly Ala Ala Cys Lys Val Asn Leu Phe Met Leu Ser Thr Asn Arg Thr Ala Ser Val Val Phe Leu Thr Ala Ile Ala Leu Asn Arg Tyr Leu Lys Val Val Gln Pro His His Val Leu Ser Arg Ala Ser Val Gly Ala Ala Ala Arg Val Ala Gly Gly Leu Trp Val Gly Ile Leu Leu Leu Asn Gly His Leu Leu Ser Thr Phe Ser Gly Pro Ser Cys Leu Ser Tyr 225 230 235 240 Arg Val Gly Thr Lys Pro Ser Ala Ser Leu Arg Trp His Gln Ala Leu Tyr Leu Leu Glu Phe Phe Leu Pro Leu Ala Leu Ile Leu Phe Ala Ile Val Ser Ile Gly Leu Thr Ile Arg Asn Arg Gly Leu Gly Gln Ala Gly Pro Gln Arg Ala Met Arg Val Leu Ala Met Val Val Ala Val Tyr Thr Ile Cys Phe Leu Pro Ser Ile Ile Phe Gly Met Ala Ser Met Val Ala Phe Trp Leu Ser Ala Cys Arg Ser Leu Asp Leu Cys Thr Gln Leu Phe His Gly Ser Leu Ala Phe Thr Tyr Leu Asn Ser Val Leu Asp Pro Val Leu Tyr Cys Phe Ser Ser Pro Asn Phe Leu His Gln Ser Arg Ala 355 360 365

Leu Leu Gly Leu Thr Arg Gly Arg Gln Gly Pro Val Ser Asp Glu Ser Ser Tyr Gln Pro Ser Arg Gln Trp Arg Tyr Arg Glu Ala Ser Arg Lys Ala Glu Ala Ile Gly Lys Leu Lys Val Gln Gly Glu Val Ser Leu Glu Lys Glu Gly Ser Ser Gln Gly 420 <210> 9 <211> 966 <212> DNA <213 > Homo sapiens <400> atgaaccaga ctttgaatag cagtgggacc gtggagtcag ccctaaacta ttccagaggg 60 agcacagigo acacggoeta coiggigotg agotocoigg coatgitoac oigcoigtgo 120 180 gggatggcag gcaacagcat ggtgatctgg ctgctgggct ttcgaatgca caggaacccc ttctgcatct atatcctcaa cctggcggca gccgacctcc tcttcctctt cagcatggct 240 tocacgotica gootiggaaac ocagoooctig gtoaatacca otigacaaggt ocacgagotig 300 360 atgaagagac tgatgtactt tgcctacaca gtgggcctga gcctgctgac ggccatcagc acccageget gtetetetgt cetetteeet atetggttea agtgteaeeg geeeaggeae 420 ctgtcagcct gggtgtgtgg cctgctgtgg acactctgtc tcctgatgaa cgggttgacc 480 540 tottoottot gcagcaagtt ottgaaatto aatgaagato ggtgcttcag ggtggacatg gtocaggeog cootcatoat gggggtotta accocagtga tgactotgto cagootgaco 600 ctctttgtct gggtgcggag gagctcccag cagtggcggc ggcagcccac acggctgttc 660 720 gtggtggtcc tggcctctgt cctggtgttc ctcatctgtt ccctgcctct gagcatctac 780 tggtttgtgc tctactggtt gagcctgccg cccgagatgc aggtcctgtg cttcagcttg transporter cotogtocgt aagragrage greaacceg tratetactt cotggtggge 840 900 agcoggagga gccacaggct gcccaccagg tccctgggga ctgtgctcca acaggcgctt cgcgaggagc ccgagctgga aggtggggag acgcccaccg tgggcaccaa tgagatgggg 960 966 gcttga <210> 10 <211> 321 <212:-PRT <213> Homo sapiens <400 → 10 Met Asn Gln Thr Leu Asn Ser Ser Gly Thr Val Glu Ser Ala Leu Asn

Tyr Ser Arg Gly Ser Thr Val His Thr Ala Tyr Leu Val Leu Ser Ser

Leu	Ala	Met 35	Phe	Thr	Cys	Leu	Cys 40	Glγ	Met	Ala	Gly	Asn 45	Ser	Met	Val
Ile	Trp 50	Leu	Leu	Gly	Phe	Arg 55	Met	His	Arg	Asn	Pro 60	Phe	Cys	Ile	Tyr
Ile 65	Leu	Asn	Leu	Ala	Ala 70	Ala	Asp	Leu	Leu	Phe 75	Leu	Phe	Ser	Met	Ala 80
Ser	Thr	Leu	Ser	Leu 85	Glu	Thr	Gln	Pro	Le u 90	Val	Asn	Thr	Thr	Asp 95	Lys
Val	His	Glu	Leu 100	Met	Lys	Arg	Leu	Met 105	Tyr	Phe	Ala	Tyr	Thr 110	Val	Gly
Leu	Ser	Leu 115	Leu	Thr	Ala	Ile	Ser 120	Thr	Gln	Arg	Cys	Leu 125	Ser	Val	Leu
Phe	Pro 130	Ile	Trp	Phe	Lys	Cys 135	His	Arg	Pro	Arg	His 140	Leu	Ser	Ala	Trp
Val 145	Cys	Gly	Leu	Leu	Trp 150	Thr	Leu	Cys	Leu	Leu 155	Met	Asn	Gly	Leu	Thr 160
Ser	Ser	Phe	Cys	Ser 165	Lys	Phe	Leu	Lys	Phe 170	Asn	Glu	Asp	Arg	Cys 175	Phe
Arg	Val	Asp	Met 180	Val	Gln	Ala	Ala	Leu 185	Ile	Met	Gly	Val	Leu 190	Thr	Pro
Val	Met	Thr 195	Leu	Ser	Ser	Leu	Thr 200	Leu	Phe	Val	Trp	Val 205	Arg	Arg	Ser
Ser	Gln 210	Gln	Trp	Arg	Arg	Gln 215	Pro	Thr	Arg	Leu	Phe 220	Val	Val	Val	Leu
Ala 225	Ser	Val	Leu	Val	Phe 230	Leu	Ile	Cys	Ser	Leu 235	Pro	Leu	Ser	Ile	Tyr 240
Trp	Phe	Val	Leu	Tyr 245	Trp	Leu	Ser	Leu	Pro 250	Pro	Glu	Met	Gln	Val 255	Leu
Суз	Phe	Ser	Leu 260	Ser	Arg	Leu	Ser	Ser 265	Ser	Val	Ser	Ser	Ser 270	Ala	Asn
Pro	Val	Ile 275	Tyr	Phe	Leu	Val	Gly 280	Ser	Arg	Arg	Ser	His 285	Arg	Leu	Pro
Thr	Arg 290	Ser	Leu	Gly	Thr	Val 295	Leu	Gln	Gln	Ala	Leu 300	Arg	Glu	Glu	Pro
Glu 305	Leu	Glu	Gly	Gly	Glu 310	Thr	Pro	Thr	Val	Gly 315	Thr	Asn	Glu	Met	Gly 320
Ala															
<21 <21		11 1356													
<21 <21	_	DNA Homo	sap	iens											
<40		11	cacc	cato	cc n	cagt	catc	a gg	gaac	tctt	cca	cttt	aga	gagg	gtccct
ودو				,	0			7 9	,		Page		-	- 	=

60

PCT/US00/31509 WO 01/36471

caaaccccag	gtccctctac	tgccagtggg	gtcccggagg	tggggctacg	ggatgttgct	120
teggaatetg	tggccctctt	cttcatgctc	ctgctggact	tgactgctgt	ggctggcaat	180
gccgctgtga	tggccgtgat	cgccaagacg	cctgccctcc	gaaaatttgt	cttcgtcttc	240
cacctctgcc	tggtggacct	gctggctgcc	ctgaccctca	tgcccctggc	catgctctcc	300
agctctgccc	totttgacca	cgccctcttt	ggggaggtgg	cctgccgcct	ctacttgttt	360
ctgagcgtgt	gctttgtcag	cctggccatc	ctctcggtgt	cagccatcaa	tgtggagcgc	420
tactattacg	tagtosacco	catgcgctac	gaggtgcgca	tgacgctggg	gctggtggcc	480
tctgtgctgg	tgggtgtgtg	ggtgaaggcc	ttggccatgg	cttctgtgcc	agtgttggga	540
agggtctcct	gggaggaagg	agctcccagt	gtccccccag	gctgttcact	ccagtggagc	600
cacagtgcct	actgccagct	ttttgtggtg	gtctttgctg	tcctttactt	tctgttgccc	660
ctgctcctca	tacttgtggt	ctactgcagc	atgttccgag	tggcccgcgt	ggctgccatg	720
cagcacgggc	cgctgcccac	gtggatggag	acaccccggc	aacgctccga	atctctcagc	780
agccgctcca	cgatggtcac	cagctcgggg	gccccccaga	ccaccccaca	ccggacgttt	840
gggggaggga	aagcagcagt	ggttctcctg	gctgtggggg	gacagttcct	gctctgttgg	900
ttgccctact	tctctttcca	cctctatgtt	gccctgagtg	ctcagcccat	ttcaactggg	960
caggtggaga	gtgtggtcac	ctggattggc	tacttttgct	tcacttccaa	ccctttcttc	1020
tatggatgtc	tcaaccggca	gatccggggg	gagctcagca	agcagtttgt	ctgcttcttc	1080
aagccagctc	cagaggagga	gctgaggctg	cctagccggg	agggctccat	tgaggagaac	1140
ttcctgcagt	tccttcaggg	gactggctgt	ccttctgagt	cctgggtttc	ccgaccccta	1200
cccagcccca	agcaggagcc	acctgctgtt	gactttcgaa	tcccaggcca	gatagctgag	1260
gagacctctg	agttcctgga	gcagcaactc	accagcgaca	tcatcatgtc	agacagctac	1320
ctccgtcctg	cegeeteace	ccggctggag	tcatga			1356

<210> 12 <211> 451 <212> PRT <213> Homo sapiens

<400> 12

Met Glu Ser Ser Pro Ile Pro Gln Ser Ser Gly Asn Ser Ser Thr Leu 1 5 10

Glu Val Gly Leu Arg Asp Val Ala Ser Glu Ser Val Ala Leu Phe Phe $\frac{35}{40}$

Met Leu Leu Asp Leu Thr Ala Val Ala Gly Asn Ala Ala Val Met 50 60

Ala Val Ile Ala Lys Thr Pro Ala Leu Arg Lys Phe Val Phe Val Phe 65 70 75 80His Leu Cys Leu Val Asp Leu Leu Ala Ala Leu Thr Leu Met Pro Leu 85 90 95 Ala Met Leu Ser Ser Ala Leu Phe Asp His Ala Leu Phe Gly Glu 100 105 110Val Ala Cys Arg Leu Tyr Leu Phe Leu Ser Val Cys Phe Val Ser Leu 115 120 125 Ala Ile Leu Ser Val Ser Ala Ile Asn Val Glu Arg Tyr Tyr Val 130 135 140Val His Pro Met Arg Tyr Glu Val Arg Met Thr Leu Gly Leu Val Ala 145 \$150\$ 155 \$160Ser Val Leu Val Gly Val Trp Val Lys Ala Leu Ala Met Ala Ser Val 165 170 175 Pro Gly Cys Ser Leu Gln Trp Ser His Ser Ala Tyr Cys Gln Leu Phe 195 200 205 Val Val Val Phe Ala Val Leu Tyr Phe Leu Leu Pro Leu Leu Leu Ile Leu Val Val Tyr Cys Ser Met Phe Arg Val Ala Arg Val Ala Ala Met Gln His Gly Pro Leu Pro Thr Trp Met Glu Thr Pro Arg Gln Arg Ser Glu Ser Leu Ser Ser Arg Ser Thr Met Val Thr Ser Ser Gly Ala Pro Gln Thr Thr Pro His Arg Thr Phe Gly Gly Gly Lys Ala Ala Val Val 280 Leu Leu Ala Val Gly Gly Gln Phe Leu Leu Cys Trp Leu Pro Tyr Phe Ser Phe His Leu Tyr Val Ala Leu Ser Ala Gln Pro Ile Ser Thr Gly Gln Val Glu Ser Val Val Thr Trp Ile Gly Tyr Phe Cys Phe Thr Ser 330 Asn Pro Phe Phe Tyr Gly Cys Leu Asn Arg Gln Ile Arg Gly Glu Leu Ser Lys Gln Phe Val Cys Phe Phe Lys Pro Ala Pro Glu Glu Glu Leu Arg Leu Pro Ser Arg Glu Gly Ser Ile Glu Glu Asn Phe Leu Gln Phe 370 380Leu Gln Gly Thr Gly Cys Pro Ser Glu Ser Trp Val Ser Arg Pro Leu 385 390 395 400Pro Ser Pro Lys Gln Glu Pro Pro Ala Val Asp Phe Arg Ile Pro Gly 410

Gln Ile Ala Glu Glu Thr Ser Glu Phe Leu Glu Gln Gln Leu Thr Ser 430 420 425 Asp Ile Ile Met Ser Asp Ser Tyr Leu Arg Pro Ala Ala Ser Pro Arg 435 440 Leu Glu Ser 450 <210> 13 <211> 1041 <:212> DNA <213> Homo sapiens <:400> 13 atggagagaa aatttatgto ottgoaacca tocatotoog tatcagaaat ggaaccaaat 60 ggcaccttca gcaataacaa cagcaggaac tgcacaattg aaaacttcaa gagagaattt 120 180 ttcccaattg tatatctgat aatatttttc tggggagtct tggggaaatgg gttgtccata tatgttttcc tgcagcctta taagaagtcc acatctgtga acgttttcat gctaaatctg 240 gecatticag atotoctgit cataagcacg citcoctica gggcigacia tiatottaga 300 quotecaatt ggatatttgg agacetggee tgeaggatta tgtettatte ettgtatgte 360 aacatgtaca gcagtattta tttcctgacc gtgctgagtg ttgtgcgttt cctggcaatg 420 gitcaccect ticggettet geatgicaec ageateagga gigeeiggat celeigigg 480 atcatatgga teettateat ggetteetea ataatgetee tggaeagtgg etetgageag 540 600 aacggcagtg tcacatcatg cttagagctg aatctctata aaattgctaa gctgcagacc argaactata tigoottggt ggtgggotgo otgotgocat tittoacact cagoatotgt 660 tatotgotga toattogggt totgttaaaa gtggaggtoo cagaatoggg gotgogggtt 720 totcacagga aggicactgae caccateate ateacettga teatettett ettgtgttte 780 ctgccctatc acacactgag gaccgtccac ttgacgacat ggaaagtggg tttatgcaaa 840 900 qacaqactqc ataaagcttt ggttatcaca ctggccttgg cagcagccaa tgcctgcttc aatoototgo totattaott tgotggggag aattttaagg acagactaaa gtotgcacto 960 agaaaaggcc atccacagaa ggcaaagaca aagtgtgttt tccctgttag tgtgtggttg 1020 1041 agaaaggaaa caagagtata a <210> 14 <211> 346 +212> PRT <213> Homo sapiens +400> 14 Met Glu Arg Lys Phe Met Ser Leu Gln Pro Ser Ile Ser Val Ser Glu Met Glu Pro Asn Gly Thr Phe Ser Asn Asn Asn Ser Arg Asn Cys Thr

25

Ile	Glu	Asn 35	Phe	Lys	Arg	Glu	Phe 40	Phe	Pro	Ile	Val	Tyr 45	Leu	Ile	Ile
Phe	Phe 50	Trp	Gly	Val	Leu	Gly 55	Asn	Gly	Leu	Ser	Ile 60	Tyr	Val	Phe	Leu
Gln 65	Pro	Tyr	Lys	Lys	Ser 70	Thr	Ser	Val	Asn	Val 75	Phe	Met	Leu	Asn	Leu 80
Ala	Ile	Ser	Asp	Leu 85	Leu	Phe	Ile	Ser	Thr 90	Leu	Pro	Phe	Arg	Ala 95	Asp
Tyr	Tyr	Leu	Arg 100	Gly	Ser	Asn	Trp	Ile 105	Phe	Gly	Asp	Leu	Ala 110	Cys	Arg
Ile	Met	Ser 115	Tyr	Ser	Leu	Tyr	Val 120	Asn	Met	Tyr	Ser	Ser 125	Ile	Tyr	Phe
Leu	Thr 130	Val	Leu	Ser	Val	Val 135	Arg	Phe	Leu	Ala	Met 140	Val	His	Pro	Phe
Arg 145	Leu	Leu	His	Val	Thr 150	Ser	Ile	Arg	Ser	Ala 155	Trp	Ile	Leu	Cys	Gly 160
Ile	Ile	Trp	Ile	Leu 165	Ile	Met	Ala	Ser	Ser 170	Ile	Met	Leu	Leu	Asp 175	Ser
Gly	Ser	Glu	Gln 180	Asn	Gly	Ser	Val	Thr 185	Ser	Cys	Leu	Glu	Leu 190	Asn	Leu
Tyr	Lys	Ile 195	Ala	Lys	Leu	Gln	Thr 200	Met	Asn	Tyr	Ile	Ala 205	Leu	Val	Val
Gly	Cys 210	Leu	Leu	Pro	Phe	Phe 215	Thr	Leu	Ser	Ile	Cys 220	Tyr	Leu	Leu	Ile
Ile 225	Arg	Val	Leu	Leu	Lys 230	Val	Glu	Val	Pro	Glu 235	Ser	Gly	Leu	Arg	Val 240
Ser	His	Arg	Lys	Ala 245	Leu	Thr	Thr	Ile	Ile 250	Ile	Thr	Leu	Ile	Ile 255	Phe
Phe	Leu	Cys	Phe 260	Leu	Pro	Tyr	His	Thr 265	Leu	Arg	Thr	Val	His 270	Leu	Thr
Thr	Trp	Lys 275	Val	Gly	Leu	Cys	Lys 280	Asp	Arg	Leu	His	Lys 285	Ala	Leu	Val
Ile	Thr 290	Leu	Ala	Leu	Ala	Ala 295		Asn	Ala	Суѕ	Phe 300	Asn	Pro	Leu	Leu
Tyr 305	Tyr	Phe	Ala	Gly	Glu 310	Asn	Phe	Lys	Asp	Arg 315	Leu	Lys	Ser	Ala	Leu 320
Arg	Lys	Gly	His	Pro 325	Gln	Lys	Ala	Lys	Thr 330	Lys	Cys	Val	Phe	Pro 335	Val
Ser	Val	Trp	Leu 340	Arg	Lys	Glu	Thr	Arg 345	Val						
<210 <21 <211 <211	1 > 2 >	15 1527 DNA Homo	sap.	iens							D	15			

<400> 15 atgacgtcca	cctgcaccaa	cagcacgcgc	gagagtaaca	gcagccacac	gtgcatgccc	60
ctctccaaaa	tgcccatcag	cctggcccac	ggcatcatcc	gctcaaccgt	gctggttatc	120
ttcctcgccg	cctctttcgt	cggcaacata	gtgctggcgc	tagtgttgca	gcgcaagccg	180
cagctgctgc	aggtgaccaa	ccgttttatc	tttaacctcc	tcgtcaccga	cctgctgcag	240
atttcgctcg	tggccccctg	ggtggtggcc	acctctgtgc	ctctcttctg	gcccctcaac	300
agccacttct	gcacggccct	ggttagcctc	acccacctgt	tcgccttcgc	cagcgtcaac	360
accattgtcg	tggtgtcagt	ggatcgctac	ttgtccatca	tccaccctct	ctcctacccg	420
tccaagatga	cccagcgccg	cggttacctg	ctcctctatg	gcacctggat	tgtggccatc	480
ctgcagagca	ctcctccact	ctacggctgg	ggccaggctg	cctttgatga	gcgcaatgct	540
ctctgctcca	tgatctgggg	ggccagcccc	agctacacta	ttctcagcgt	ggtgtccttc	600
atogtoatto	cactgattgt	catgattgcc	tgctactccg	tggtgttctg	tgcagcccgg	660
aggcagcatg	ctctgctgta	caatgtcaag	agacacagct	tggaagtgcg	agtcaaggac	720
tgtgtggaga	atgaggatga	agagggagca	gagaagaagg	aggagttcca	ggatgagagt	780
gagtttcgcc	gccagcatga	aggtg aggt c	aaggccaagg	agggcagaat	ggaagccaag	840
gacggcagcc	tgaaggccaa	ggaaggaagc	acggggacca	gtgagagtag	tgtagaggcc	900
aggggcagcg	aggaggtcag	agagagcagc	acggtggcca	gcgacggcag	catggagggt	960
aaggaaggca	gcaccaaagt	tgaggagaac	agcatgaagg	cagacaaggg	tcgcacagag	1020
gtcaaccagt	gcagcattga	cttgggtgaa	gatgacatgg	agtttggtga	agacgacatc	1080
aatttcagtg	aggatgacgt	cgaggcagtg	aacatcccgg	agagcctccc	acccagtcgt	1140
cgtaacagca	acagcaaccc	tcctctgccc	aggtgctacc	agtgcaaagc	tgctaaagtg	1200
atcttcatca	tcattttctc	ctatgtgcta	tccctggggc	cctactgctt	tttagcagtc	1260
ctggccgtgt	gggtggatgt	cgaaacccag	gtaccccagt	gggtgatcac	cataatcatc	1320
tagettttet	tectgcagtg	ctgcatccac	ccctatgtct	atggctacat	gcacaagacc	1380
attaagaagg	aaatccagga	catgctgaag	aagttcttct	gcaaggaaaa	gcccccgaaa	1440
gaagatagcc	acccagacct	gcccggaaca	gagggtggga	ctgaaggcaa	gattgtccct	1590
tootacgatt	ctgctacttt	toottga				1527

Met Thr Ser Thr Cys Thr Asn Ser Thr Arg Glu Ser Asn Ser Ser His l $$ 10 $$ 15

Page 16

<210> 16
<211> 508
<212> PRT
<213> Homo sapiens

^{-:400&}gt; 16

Thr Cys Met Pro Leu Ser Lys Met Pro Ile Ser Leu Ala His Gly Ile 20 25 30Ile Arg Ser Thr Val Leu Val Ile Phe Leu Ala Ala Ser Phe Val Gly 40 Asn Ile Val Leu Ala Leu Val Leu Gln Arg Lys Pro Gln Leu Leu Gln 50 60 Val Thr Asn Arg Phe Ile Phe Asn Leu Leu Val Thr Asp Leu Leu Gln 65 70 75 80Ile Ser Leu Val Ala Pro Trp Val Val Ala Thr Ser Val Pro Leu Phe Trp Pro Leu Asn Ser His Phe Cys Thr Ala Leu Val Ser Leu Thr His 100 105 110 Leu Phe Ala Phe Ala Ser Val Asn Thr Ile Val Val Ser Val Asp 120 Arg Tyr Leu Ser Ile Ile His Pro Leu Ser Tyr Pro Ser Lys Met Thr Gln Arg Arg Gly Tyr Leu Leu Tyr Gly Thr Trp Ile Val Ala Ile 155 Leu Gln Ser Thr Pro Pro Leu Tyr Gly Trp Gly Gln Ala Ala Phe Asp 165 170 175 Glu Arg Asn Ala Leu Cys Ser Met Ile Trp Gly Ala Ser Pro Ser Tyr 185 Thr Ile Leu Ser Val Val Ser Phe Ile Val Ile Pro Leu Ile Val Met Ile Ala Cys Tyr Ser Val Val Phe Cys Ala Ala Arg Arg Gln His Ala Leu Leu Tyr Asn Val Lys Arg His Ser Leu Glu Val Arg Val Lys Asp Cys Val Glu Asn Glu Asp Glu Glu Gly Ala Glu Lys Lys Glu Glu Phe Gln Asp Glu Ser Glu Phe Arg Arg Gln His Glu Gly Glu Val Lys Ala Lys Glu Gly Arg Met Glu Ala Lys Asp Gly Ser Leu Lys Ala Lys Glu Gly Ser Thr Gly Thr Ser Glu Ser Ser Val Glu Ala Arg Gly Ser Glu Glu Val Arg Glu Ser Ser Thr Val Ala Ser Asp Gly Ser Met Glu Gly Lys Glu Gly Ser Thr Lys Val Glu Glu Asn Ser Met Lys Ala Asp Lys Gly Arg Thr Glu Val Asn Gln Cys Ser Ile Asp Leu Gly Glu Asp Asp 345 Met Glu Phe Gly Glu Asp Asp Ile Asn Phe Ser Glu Asp Asp Val Glu Page 17

Ala Val Asn Ile Pro Glu Ser Leu Pro Pro Ser Arg Arg Asn Ser Ass 370 375 380	n
Ser Asn Pro Pro Leu Pro Arg Cys Tyr Gln Cys Lys Ala Ala Lys Va 385 390 395 40	1
Ile Phe Ile Ile Phe Ser Tyr Val Leu Ser Leu Gly Pro Tyr Cy 405 410 415	S
Phe Leu Ala Val Leu Ala Val Trp Val Asp Val Glu Thr Gln Val Pro 420 425 430	0
Gln Trp Val Ile Thr Ile Ile Ile Trp Leu Phe Phe Leu Gln Cys Cy 435	s
Ile His Pro Tyr Val Tyr Gly Tyr Met His Lys Thr Ile Lys Lys Gl 450 455 460	u
Tie 31n Asp Met Leu Lys Lys Phe Phe Cys Lys Glu Lys Pro Pro Ly 465 470 475 48	s 0
Glu Asp Ser His Pro Asp Leu Pro Gly Thr Glu Gly Gly Thr Glu Gl 485 490 495	У
Lys Ile Val Pro Ser Tyr Asp Ser Ala Thr Phe Pro 500	
<210> 17 <211> 1068 <212> DNA <213> Homo sapiens	
$\pm 4400 \geq -17$ atgenettga eggaeggeat therteatht gaggaeetet tggetaacaa tateete	aga 60
atatttgtot gggttatago tttcattaco tgctttggaa atctttttgt cattggo	atg 120
agatotttoa ttaaagotga aaatacaaot caogotatgt ocatcaaaat ootttgt	tgc 180
gctgattgcc tgatgggtgt ttacttgttc tttgttggca ttttcgatat aaaatac	cga 240
gggcagtate agaagtatge ettgetgtgg atggagageg tgeagtgeeg eeteatg	ggg 300
ttootggooa tgotgtocao ogaagtotot gttotgotao tgacotaott gactttg	gag 360
aagtteetgg teattgtett eeeetteagt aacattegae etggaaaaeg geagaee	tca 420
gtcatcotca titgcatotg gatggoggga titttaatag otgtaattoo attitgg	aat 480
aaggattatt ttggaaactt ttatgggaaa aatggagtat gtttcccact ttattat	gac 540
caaacagaag atattggaag caaagggtat totottggaa tittcotagg tgigaac	
ctggcttttc tcatcattgt gttttcctat attactatgt tctgttccat tcaaaaa	acc 660
goottgoaga ocacagaagt aaggaattgt titiggaagag aggiggoigt igcaaat	cgt 720
ttottttta tägtgttoto tgatgocato tgotggatto otgtatttgt agttaaa	
stitcoctot teogggigga aataccagac acaatgacti ootggatagi gattitt	
cttccagtta acagtgottt gaatccaato ototatacto toacaaccaa otttttt	
gacaagttga aacagctgct gcacaaacat cagaggaaat caattttcaa aattaaa	
Page 18	

aaaagtttat ctacatccat tgtgtggata gaggactcct cttccctgaa acttggggtt 1020 ttgaacaaaa taacacttgg agacagtata atgaaaccag tttcctag 1068

<210> 18 <211> 355

<212> PRT

<213> Homo sapiens

<400> 18

Met Pro Leu Thr Asp Gly Ile Ser Ser Phe Glu Asp Leu Leu Ala Asn 1 5 10 15

Asn Ile Leu Arg Ile Phe Val Trp Val Ile Ala Phe Ile Thr Cys Phe 20 25 30

Gly Asn Leu Phe Val Ile Gly Met Arg Ser Phe Ile Lys Ala Glu Asn $35 \hspace{1cm} 40 \hspace{1cm} 45$

Thr Thr His Ala Met Ser Ile Lys Ile Leu Cys Cys Ala Asp Cys Leu 50 55 60

Met Gly Val Tyr Leu Phe Phe Val Gly Ile Phe Asp Ile Lys Tyr Arg 65 70 75 80

Gly Gln Tyr Gln Lys Tyr Ala Leu Leu Trp Met Glu Ser Val Gln Cys $85 \hspace{1cm} 90 \hspace{1cm} 95$

Arg Leu Met Gly Phe Leu Ala Met Leu Ser Thr Glu Val Ser Val Leu 100 105 110

Leu Leu Thr Tyr Leu Thr Leu Glu Lys Phe Leu Val Ile Val Phe Pro 115 120 125

Phe Ser Asn Ile Arg Pro Gly Lys Arg Gln Thr Ser Val Ile Leu Ile 130 140

Cys lle Trp Met Ala Gly Phe Leu Ile Ala Val Ile Pro Phe Trp Asn 145 \$150\$ 155 \$160\$

Lys Asp Tyr Phe Gly Asn Phe Tyr Gly Lys Asn Gly Val Cys Phe Pro $165 \\ 170 \\ 175$

Leu Tyr Tyr Asp Gln Thr Glu Asp Ile Gly Ser Lys Gly Tyr Ser Leu 180 185 190

Gly Ile Phe Leu Gly Val Asn Leu Leu Ala Phe Leu Ile Ile Val Phe 195 200 205

Ser Tyr Ile Thr Met Phe Cys Ser Ile Gln Lys Thr Ala Leu Gln Thr 210 220

Thr Glu Val Arg Asn Cys Phe Gly Arg Glu Val Ala Val Ala Asn Arg 225 230 235

Val Val Lys Ile Leu Ser Leu Phe Arg Val Glu Ile Pro Asp Thr Met 260 270

Thr Ser Trp Ile Val Ile Phe Phe Leu Pro Val Asn Ser Ala Leu Asn Page 19

	á	275					280					285				
Pro I 2	le I 90	Leu	Tyr	Thr	Leu	Thr 295	Thr	Asn	Phe	Phe	Lys 300	Asp	Lys	Leu	Lys	
Gln Lo	eu I	Leu	His	Lys	His 310	Gln	Arg	Lys	Ser	Ile 315	Phe	Lys	Ile	Lys	Lys 320	
Lys S	er 1	Leu	Ser	Thr 325	Ser	Ile	Val	Trp	Ile 330	Glu	Asp	Ser	Ser	Ser 335	Leu	
Lys L	eu (Gly	Val 340	Leu	Asn	Lys	Ile	Thr 345	Leu	Gly	Asp	Ser	Ile 350	Met	Lys	
Pro V		Ser 355														
<210> <211> <212> <213>	9 (Dì	69 NA	sapi	Lens												
<400> atgga			ccato	ctcaa	ac c1	ttgga	acaca	a gaa	actga	acac	caat	caad	cgg	aacto	gagga	g 60
actct																
gggct	gac	ag q	gaaac	cgcaq	gt to	gtgc	tctg	g cto	ctg	ggct	gcc	gcate	gcg	cagga	aacgc	c 180
ttctc	cate	ct a	acato	ctca	aa c	ttgg	ccgca	a gca	agact	tcc	tcti	tcct	cag	cggc	gcct	t 240
atata	ttc	cc t	tgtta	aagct	tt c	atca	gtato	c cc	ccata	acca	tct	ctaa	aat	cctc	atcc	t 300
gtgat	gat	gt 1	tttc	ctact	tt to	gcag	gcctq	g ago	cttt	ctga	gtg	ccgt	gag	cacc	gagcg	c 360
tgaat	gtc	cg 1	tcct	gtgg	cc c	atct	ggtad	c cg	ctgc	cacc	gcc	ccac	aca	cctgi	cagc	g 420
gtggt	gtg	tg 1	tcct	gctci	tg g	gccc	tgtc	cte	gctg	egga	gca	tcct	gga	gtgg	atgtt	a 480
tgtgg	rctt	cc 1	tgtto	cagt	gg t	gctg	attci	t gc	ttgg [,]	tgtc	aaa	catc	aga	tttca	atcac	a 540
gtogo	gtg	gc 1	tgati	tttt	tt a	tgtg	tggti	t ct	ctgt	gggt	cca	gcct	ggt	cctg	ctgat	c 600
aggat	tct	ct (gtgga	atcc	cg g	aaga	tacc	g ct	gacc	aggc	tgt	acgt	gac	catc	ctgct	c 660
acagt	act	gg 1	tctt	cctc	ct c	tgtg	gcct	g cc	cttt	ggca	ttc	agtt	ttt	ccta	tttt	a 720
tggat	cca	cg 1	tgga	cagg	ga a	gtct	tatti	t tg	tcat	gttc	atc	tagt	ttc	tatt	ttcct	g 780
toogo	tct	ta a	acag	cagto	gc c	aacc	ccat	c at	ttac	ttct	tcg	tggg	ctc	cttt	aggca	g 840
egtca	aaa	ta (ggca	gaac	ct g	aagc	tggti	t ct	ccag	aggg	ctc	tgca	gga	cgcg	tc tga	g 900
gtgga	itga	ag (gtgg	aggg	ca g	cttc	ctga	g ga	aatc	ctgg	agc	tgtc	ggg	aagc	agatt	g 960
gagca	igtg	a														969
<210><211><211><212><213>	> 3 > P	0 22 R T	sap	iens												

Page 20

<400> 20

Met Asp Pro Thr Ile Ser Thr Leu Asp Thr Glu Leu Thr Pro Ile Asn 1 $$ 5 $$ 10 $$ 15 Gly Thr Glu Glu Thr Leu Cys Tyr Lys Gln Thr Leu Ser Leu Thr Val $20 \,$ $\,$ $25 \,$ $\,$ $30 \,$ Leu Thr Cys Ile Val Ser Leu Val Gly Leu Thr Gly Asn Ala Val Val 35 40 45 Leu Trp Leu Leu Gly Cys Arg Met Arg Arg Asn Ala Phe Ser Ile Tyr 50 60Ile Leu Asn Leu Ala Ala Ala Asp Phe Leu Phe Leu Ser Gly Arg Leu 65 70 75 80 The Tyr Ser Leu Leu Ser Phe Ile Ser Ile Pro His Thr Ile Ser Lys 85 90 95 Leu Ser Ala Val Ser Thr Glu Arg Cys Leu Ser Val Leu Trp Pro Ile 115 120 125 Trp Tyr Arg Cys His Arg Pro Thr His Leu Ser Ala Val Val Cys Val 130 135 140Leu Leu Trp Ala Leu Ser Leu Leu Arg Ser Ile Leu Glu Trp Met Leu Cys Gly Phe Leu Phe Ser Gly Ala Asp Ser Ala Trp Cys Gln Thr Ser 165 170 175Gly Ser Ser Leu Val Leu Leu Ile Arg Ile Leu Cys Gly Ser Arg Lys 195 200 205 Ile Pro Leu Thr Arg Leu Tyr Val Thr Ile Leu Leu Thr Val Leu Val 210 215 220 Phe Leu Leu Cys Gly Leu Pro Phe Gly Ile Gln Phe Phe Leu Phe Leu 225 230 235 240 Trp Ile His Val Asp Arg Glu Val Leu Phe Cys His Val His Leu Val 245 250 255 Ser Ile Phe Leu Ser Ala Leu Asn Ser Ser Ala Asn Pro Ile Ile Tyr 260 265 270Phe Phe Val Gly Ser Phe Arg Gln Arg Gln Asn Arg Gln Asn Leu Lys 275 280 285 Leu Val Leu Gln Arg Ala Leu Gln Asp Ala Ser Glu Val Asp Glu Gly Gly Gly Gln Leu Pro Glu Glu Ile Leu Glu Leu Ser Gly Ser Arg Leu 315 Glu Gln <210> 21 <211> 1305

<212> -213>	DNA Homo	sapiens					
		Jupiems					
√400> atggag	21 gatc	tctttagccc	ctcaattctg	ccgccggcgc	ccaacatttc	ogtgoccato	60
ttgctg	gget	ggggtctcaa	cctgaccttg	gggcaaggag	cccctgcctc	tgggccgccc	120
agccgc	cgeg	teegeetggt	gttcctgggg	gtcatcctgg	tggtggcggt	ggcaggcaac	180
accaca	gtgc	tgtgccgcct	gtgcggcggc	ggcgggccct	gggcgggccc	caagcgtcgc	240
aagatg	gact	tectgetggt	gcagctggcc	ctggcggacc	tgtacgcgtg	cgggggcacg	300
gcgctg	tcac	agctggcctg	ggaactgctg	ggcgagcccc	gcgcggccac	gggggacctg	360
gcgtgc	cgct	tcctgcagct	gctgcaggca	tccgggcggg	gcgcctcggc	ccacctcgtg	420
gtgctc	atog	ccctcgagcg	ccggcgcgcg	gtgcgtcttc	cgcacggccg	gccgctgccc	480
gcgcgt	gece	tcgccgccct	gggctggctg	ctggcactgc	tgctggcgct	gcccccggcc	540
ttogtg	gtạc	gcggggactc	cccctcgccg	ctgccgccgc	cgccgccgcc	aacgtccctg	600
cagcca	ggcg	cgcccccggc	cgcccgcgcc	tggccggggg	agcgtcgctg	ccacgggatc	560
ttcgcg	cccc	tgccgcgctg	gcacctgcag	gtctacgcgt	tctacgaggc	cgtcgcgggc	720
ttcgtc	gcąc	ctgttacggt	cctgggcgtc	gcttgcggcc	acctactctc	cgtctggtgg	780
cggcac	cggc	cgcaggcccc	cgcggctgca	gcgccctggt	cggcgagccc	aggtcgagcc	840
cctgcg	ссса	gcgcgctgcc	ccgcgccaag	gtgcagagcc	tgaagatgag	cctgctgctg	900
gegetg	ctgt	tcgtgggctg	cgagctgccc	tactttgccg	cccggctggc	ggccgcgtgg	360
togtoo	gggc	ccgcgggaga	ctgggaggga	gagggcctgt	cggcggcgct	gcgcgtggtg	1020
ącgatg	gcca	acagcgctct	caatcccttc	gtctacctct	tcttccaggc	gggcgactgc	1080
eggete	cggc	gacagetgeg	gaagcggctg	ggctctctgt	gctgcgcgcc	gcagggaggc	1140
gcggag	gacg	aggagggcc	ccggggccac	caggcgctct	accgccaacg	ctggccccac	1200
cctcat	tatc	accatgctcg	gcgggaaccg	ctggacgagg	gcggcttgcg	cccaccccct	1260
acgaga	ccca	gacccctgcc	ttgctcctgc	gaaagtgcct	tctag		1305
<210> (211> (212> (213>	22 434 PRT	n sanians					

<213> Homo sapiens <400> 22

Met Glu Asp Leu Phe Ser Pro Ser Ile Leu Pro Pro Ala Pro Asn Ile

3er Val Pro Ile Leu Leu Gly Trp Gly Leu Asn Leu Thr Leu Gly Gln 20 25 30

Gly Ala Pro Ala Ser Gly Pro Pro Ser Arg Arg Val Arg Leu Val Phe 35 40 45

Page 22

Leu Gly Val Ile Leu Val Val Ala Val Ala Gly Asn Thr Thr Val Leu $50 \hspace{1.5cm} 60$ Cys Arg Leu Cys Gly Gly Gly Gly Pro Trp Ala Gly Pro Lys Arg Arg 65 70 75 80 Lys Met Asp Phe Leu Leu Val Gl
n Leu Ala Leu Ala Asp Leu Tyr Ala 85 90 95 Cys Gly Gly Thr Ala Leu Ser Gln Leu Ala Trp Glu Leu Leu Gly Glu 100 105 110 Pro Arg Ala Ala Thr Gly Asp Leu Ala Cys Arg Phe Leu Gln Leu Leu Gln Ala Ser Gly Arg Gly Ala Ser Ala His Leu Val Val Leu Ile Ala 130 $$135\$ Leu Glu Arg Arg Arg Ala Val Arg Leu Pro His Gly Arg Pro Leu Pro 145 $$ 150 $$ 155 $$ 160 Ala Arg Ala Leu Ala Ala Leu Gly Trp Leu Leu Ala Leu Leu Leu Ala Leu Pro Pro Ala Phe Val Val Arg Gly Asp Ser Pro Ser Pro Leu Pro 180 185 190 Pro Pro Pro Pro Thr Ser Leu Gln Pro Gly Ala Pro Pro Ala Ala 195 200 205 Arg Ala Trp Pro Gly Glu Arg Arg Cys His Gly Ile Phe Ala Pro Leu Pro Arg Trp His Leu Gln Val Tyr Ala Phe Tyr Glu Ala Val Ala Gly Phe Val Ala Pro Val Thr Val Leu Gly Val Ala Cys Gly His Leu Leu Ser Val Trp Trp Arg His Arg Pro Gln Ala Pro Ala Ala Ala Ala Pro Trp Ser Ala Ser Pro Gly Arg Ala Pro Ala Pro Ser Ala Leu Pro Arg Ala Lys Val Gln Ser Leu Lys Met Ser Leu Leu Leu Ala Leu Leu Phe Val Gly Cys Glu Leu Pro Tyr Phe Ala Ala Arg Leu Ala Ala Arg Ser Ser Gly Pro Ala Gly Asp Trp Glu Gly Glu Gly Leu Ser Ala Ala 325 330 335 Leu Arg Val Val Ala Met Ala Asn Ser Ala Leu Asn Pro Phe Val Tyr Leu Phe Phe Gln Ala Gly Asp Cys Arg Leu Arg Arg Gln Leu Arg Lys 355 360 365Arg Leu Gly Ser Leu Cys Cys Ala Pro Gl
n Gly Gly Ala Glu Asp Glu 370 \$375\$Glu Gly Pro Arg Gly His Gln Ala Leu Tyr Arg Gln Arg Trp Pro His Page 23

Pro His Tyr His His Ala Arg Arg Glu Pro Leu Asp Glu Gly Gly Leu 405 410 415 Arg Pro Pro Pro Pro Arg Pro Arg Pro Leu Pro Cys Ser Cys Glu Ser 420 425 430

Ala Phe

<210> 23 <211> 104	1					
<212> DNA <213> Home	o sapiens					
<400> 23	-					
	ggtcgtgctg	ccgcatcgag	ggggacacca	tctcccaggt	gatgccgccg	60
ctgctcattg	tggcctttgt	gctgggcgca	ctaggcaatg	gggtcgccct	gtgtggtttc	120
tgottocaca	tgaagacctg	gaagcccagc	actgtttacc	ttttcaattt	ggccgtggct	180
gatttootoo	ttatgatctg	cctgcctttt	cggacagact	attacctcag	acgtagacac	240
tgggcttttg	gggacattcc	ctgccgagtg	gggctcttca	cgttggccat	gaacagggcc	300
gggagcatcg	tgttccttac	ggtggtggct	gcggacaggt	atttcaaagt	ggtccacccc	360
caccacgcgg	tgaacactat	ctccacccgg	gtggcggctg	gcatcgtctg	caccctgtgg	420
gocctggtca	tcctgggaac	agtgtatctt	ttgctggaga	accatctctg	cgtgcaagag	480
acggccgtct	cctgtgagag	cttcatcatg	gagtcggcca	atggctggca	tgacatcatg	540
ttccagctgg	agttctttat	gcccctcggc	atcatcttat	tttgctcctt	caagattgtt	600
tggagcctga	ggcggaggca	gcagctggcc	agacaggctc	ggatgaagaa	ggcgacccgg	660
ttcatcatgg	tggtggcaat	tgtgttcatc	acatgctacc	tgcccagcgt	gtctgctaga	720
ctctatttcc	tctggacggt	gccctcgagt	gcctgcgatc	cctctgtcca	tggggccctg	780
cacataaccc	tcagcttcac	ctacatgaac	agcatgctgg	atcccctggt	gtattatttt	840
tcaagcccct	cctttcccaa	attctacaac	aagctcaaaa	tctgcagtct	gaaacccaag	900
cagecaggae	actcaaaaac	acaaaggccg	gaagagatgc	caatttcgaa	cctcggtcgc	960
aggagttgca	tcagtgtggc	aaatagtttc	caaagccagt	ctgatgggca	atgggatccc	1020
cacattgttg	agtggcactg	a				1041

Met Tyr Asn Gly Ser Cys Cys Arg Ile Glu Gly Asp Thr Ile Ser Gln $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Val Met Pro Pro Leu Leu Ile Val Ala Phe Val Leu Gly Ala Leu Gly 25

<210> 24
<211> 346
<212> PRT
<213> Homo sapiens

<400> 24

Asn Gly Val Ala Leu Cys Gly Phe Cys Phe His Met Lys Thr Trp Lys Pro Ser Thr Val Tyr Leu Phe Asn Leu Ala Val Ala Asp Phe Leu Leu Met Ile Sys Leu Pro Phe Arg Thr Asp Tyr Tyr Leu Arg Arg Arg His 70 75 80Trp Ala Phe Gly Asp Ile Pro Cys Arg Val Gly Leu Phe Thr Leu Ala Met Asn Arg Ala Gly Ser Ile Val Phe Leu Thr Val Val Ala Ala Asp Arg Tyr Phe Lys Val Val His Pro His His Ala Val Asn Thr Ile Ser Thr Arg Val Ala Ala Gly Ile Val Cys Thr Leu Trp Ala Leu Val Ile Leu Gly Thr Val Tyr Leu Leu Glu Asn His Leu Cys Val Gln Glu Thr Ala Val Ser Cys Glu Ser Phe Ile Met Glu Ser Ala Asn Gly Trp His Asp Ile Met Phe Gln Leu Glu Phe Phe Met Pro Leu Gly Ile Ile 180 185 190 Leu Phe Cys Ser Phe Lys Ile Val Trp Ser Leu Arg Arg Arg Gin Gln
195 200 205 Leu Ala Arg Gln Ala Arg Met Lys Lys Ala Thr Arg Phe Ile Met Val Val Ala Ile Val Phe Ile Thr Cys Tyr Leu Pro Ser Val Ser Ala Arg Leu Tyr Phe Leu Trp Thr Val Pro Ser Ser Ala Cys Asp Pro Ser Val 245 250 255 His Gly Ala Leu His Ile Thr Leu Ser Phe Thr Tyr Met Asn Ser Met Leu Asp Pro Leu Val Tyr Tyr Phe Ser Ser Pro Ser Phe Pro Lys Phe Tyr Asn Lys Leu Lys Ile Cys Ser Leu Lys Pro Lys Gln Pro Gly His Ser Lys Thr Gln Arg Pro Glu Glu Met Pro Ile Ser Asn Leu Gly Arg Arg Ser Cys Ile Ser Val Ala Asn Ser Phe Gln Ser Gln Ser Asp Gly 330 Gln Trp Asp Pro His Ile Val Glu Trp His <210> 25 <211> 1011
<212> DNA
<213> Homo sapiens

<400> 25 atgaacaaca	atacaacatg	tattcaacca	tctatgatct	cttccatggc	tttaccaatc	60
atttacatcc	tootttgtat	tgttggtgtt	tttggaaaca	ctctctctca	atggatattt	120
ttaacaaaaa	taggtaaaaa	aacatcaacg	cacatctacc	tgtcacacct	tgtgactgca	180
aacttacttg	tgtgcagtgc	catgcctttc	atgagtatct	atttcctgaa	aggtttccaa	240
tgggaatatc	aatctgctca	atgcagagtg	gtcaattttc	tgggaactct	atccatgcat	300
gcaagtatgt	ttgtcagtct	cttaatttta	agttggattg	ccataagccg	ctatgctacc	360
ttaatgcaaa	aggattcctc	gcaagagact	acttcatgct	atgagaaaat	attttatggc	420
catttactga	aaaaatttcg	ccagcccaac	tttgctagaa	aactatgcat	ttacatatgg	480
ggagttgtac	tgggcataat	cattccagtt	accgtatact	actcagtcat	agaggctaca	540
gaaggagaag	agagcctatg	ctacaatcgg	cagatggaac	taggagccat	gatctctcag	600
attgcaggtc	tcattggaac	cacatttatt	ggattttcct	ttttagtagt	actaacatca	660
tactactctt	ttgtaagcca	tctgagaaaa	ataagaacct	gtacgtccat	tatggagaaa	720
gatttgactt	acagttctgt	gaaaagacat	cttttggtca	tccagattct	actaatagtt	730
tgcttccttc	cttatagtat	ttttaaaccc	attttttatg	ttctacacca	aagagataac	840
tgtcagcaat	tgaattattt	aatagaaaca	aaaaacattc	tcacctgtct	tgcttcggcc	900
agaagtagca	cagaccccat	tatatttctt	ttattagata	aaacattcaa	gaagacacta	960
tataatctct	ttacaaagtc	taattcagca	catatgcaat	catatggttg	a	1011

<210> 26 <211> 336 <212> PRT <213> Homo sapiens

<400> 26

Met Asn Asn Asn Thr Thr Cys Ile Gln Pro Ser Met Ile Ser Ser Met

Ala Leu Pro Ile Ile Tyr Ile Leu Leu Cys Ile Val Gly Val Phe Gly

Asn Thr Leu Ser Gln Trp Ile Phe Leu Thr Lys Ile Gly Lys Lys Thr

Ser Thr His Ile Tyr Leu Ser His Leu Val Thr Ala Asn Leu Leu Val

Cys Ser Ala Met Pro Phe Met Ser Ile Tyr Phe Leu Lys Gly Phe Gln 65 70 75 80

Trp Glu Tyr Gln Ser Ala Gln Cys Arg Val Val Asn Phe Leu Gly Thr

Leu Ser Met His Ala Ser Met Phe Val Ser Leu Leu Ile Leu Ser Trp

Ile	Ala	11e 115	Ser	Arg	Tyr	Ala	Thr 120	Leu	Met	Gln	Lys	Asp 125	Ser	Ser	Gln	
Glu	Thr 130	Thr	Ser	Cys	Tyr	Glu 135	Lys	Ile	Phe	Tyr	Gly 140	His	Leu	Leu	Lys	
Lys 145	Phe	Arg	Gln	Pro	Asn 150	Phe	Ala	Arg	Lys	Leu 155	Cys	Ile	Туг	Ile	Trp 160	
Gly	Val	Val	Leu	Gly 165	Ile	Ile	Ile	Pro	Val 170	Thr	Val	Tyr	Tyr	Ser 175	Val	
Ile	Glu	Ala	Thr 180	Glu	Gly	Glu	Glu	Ser 185	Leu	Cys	Tyr	Asn	Arg 190	Gln	Met	
Glu	Leu	Gly 195	Ala	Met	Ile	Ser	Gln 200	Ile	Ala	Gly	Leu	11e 205	Gly	Thr	Thr	
Phe	Ile 210	Gly	Phe	Ser	Phe	Leu 215	Val	Val	Leu	Thr	Ser 220	Tyr	Туr	Ser	Phe	
Val 225	Ser	His	Leu	Arg	Lys 230	Ile	Arg	Thr	Cys	Thr 235	Ser	Ile	Met	Glu	Lys 240	
Asp	Leu	Thr	Tyr	Ser 245	Ser	Val	Lys	Arg	His 250	Leu	Leu	Val	Ile	Gln 255	Ile	
Leu	Leu	Ile	Val 260	Cys	Phe	Leu	Pro	Tyr 265	Ser	Ile	Phe	Lys	Pro 270	Ile	Phe	
Tyr	Val	Leu 275	His	Gln	Arg	Asp	Asn 280	Cys	Gln	Gln	Leu	Asn 285	Tyr	Leu	Ile	
Glu	Thr 290	Lys	Asn	Ile	Leu	Thr 295	Cys	Leu	Ala	Ser	Ala 300	Arg	Ser	Ser	Thr	
Asp 305	Pro	Ile	Ile	Phe	Leu 310	Leu	Leu	Asp	Lys	Thr 315	Phe	Lys	Lys	Thr	Leu 320	
Tyr	Asn	Leu	Phe	Thr 325	Lys	Ser	Asn	Ser	Ala 330	His	Met	Gln	Ser	Tyr 335	Gly	
<210 <211 <212 <213	L >	27 1014 DNA Homo	sap	iens												
<400 atga		27 age (cacta	agaci	ta tt	tago	caaat	: qct	tctc	att	tcc	ccgat	ta 1	tgcad	gctgct	60
-	•	-		-				-				-			atttat	120
ggca	atta	tct	tcct	egtg	gg at	ttc	caggo	aat	gcag	gtag	tgat	atco	cac 1	ttaca	attttc	180
aaaa	atga	gac	cttg	gaag	ag ca	agcad	ccato	att	atgo	ctga	acct	ggc	ctg (caca	gatctg	240
ctgi	tatc	tga -	ccago	cctc	cc c1	tcci	tgati	ca c	ctact	tatg	cca	gtggd	ega a	aaacı	tggatc	300
tttç	ggag	att	tcate	gtgta	aa gt	tta	teege	tto	cagct	tcc	att	tcaad	cct (gtata	agcagc	360
atco	ctct	tcc	tcac	ctgt	tt ca	agcat	tctt	c cg	ctact	tgtg	tgat	tcati	tca (ccca	atgagc	420
tgci	tttt	cca	ttca	caaa	ac to	gat	gtgca	a gti	tgtag	gcct	gtg	ctgto	ggt	gtgg	atcatt	480
tcad	ctgg	tag	ctgt	catt	cc ga	atgad	cctt	c tto	gatca		caa Page		cag :	gacc	aacaga	540
											_					

thagoctgto	togacotoac	cagttcggat	gaactcaata	ctattaagtg	gtacaacctg	600
attttgactg	caactacttt	ctgcctcccc	ttggtgatag	tgacactttg	ctataccacg	660
attatccaca	ctctgaccca	tggactgcaa	actgacagct	gccttaagca	gaaagcacga	720
aggctaacca	ttctgctact	ccttgcattt	tacgtatgtt	ttttaccctt	ccatatcttg	780
agggtcattc	ggatcgaatc	tcgcctgctt	tcaatcagtt	gttccattga	gaatcagatc	340
catgaagctt	acatcgtttc	tagaccatta	gctgctctga	acacctttgg	taacctgtta	900
ctatatgtgg	tggtcagcga	caactttcag	caggctgtct	gctcaacagt	gagatgcaaa	960
gtaagcggga	accttgagca	agcaaagaaa	attagttact	caaacaaccc	ttga	1014

- <210> 28
- +:211> 337 +:212> PRT
- <213 > Homo sapiens
- <400≥ 28

Met Asn Glu Pro Leu Asp Tyr Leu Ala Asn Ala Ser Asp Phe Pro Asp

Tyr Ala Ala Ala Phe Gly Asn Cys Thr Asp Glu Asn Ile Pro Leu Lys 20 25 30

Met His Tyr Leu Pro Val Ile Tyr Gly Ile Ile Phe Leu Val Gly Phe 35 40 45

Pro Gly Asn Ala Val Val Ile Ser Thr Tyr Ile Phe Lys Met Arg Pro 50 55 60

Trp Lys Ser Ser Thr Ile Ile Met Leu Asn Leu Ala Cys Thr Asp Leu 65 70 75 80

Leu Tyr Leu Thr Ser Leu Pro Phe Leu Ile His Tyr Tyr Ala Ser Gly 85 90 95

Glu Asn Trp Ile Phe Gly Asp Phe Met Cys Lys Phe Ile Arg Phe Ser

Phe His Phe Asn Leu Tyr Ser Ser Ile Leu Phe Leu Thr Cys Phe Ser

Ile Phe Arg Tyr Cys Val Ile Ile His Pro Met Ser Cys Phe Ser Ile

His Lys Thr Arg Cys Ala Val Val Ala Cys Ala Val Val Trp Ile Ile

Ser Leu Val Ala Val Ile Pro Met Thr Phe Leu Ile Thr Ser Thr Asn

Arg Thr Asn Arg Ser Ala Cys Leu Asp Leu Thr Ser Ser Asp Glu Leu

Asn Thr Ile Lys Trp Tyr Asn Leu Ile Leu Thr Ala Thr Thr Phe Cys 200

Leu Pro Leu Val Ile Val Thr Leu Cys Tyr Thr Thr Ile Ile His Thr

	210					215					220					
Leu 225	Thr	His	Gly	Leu	Gln 230	Thr	Asp	Ser	Cys	Leu 235	Lys	Gln	Lys	Ala	Arg 240	
Arg	Leu	Thr	Ile	Leu 2 4 5	Leu	Leu	Leu	Ala	Phe 250	Tyr	Val	Cys	Phe	Leu 255	Pro	
Phe	Hıs	Ile	Leu 260	Arg	Val	Ile	Arg	Ile 265	Glu	Ser	Arg	Leu	Leu 270	Ser	Ile	
Ser	Cys	Ser 275	Ile	Glu	Asn	Gln	Ile 280	His	Glu	Ala	Tyr	Ile 285	Val	Ser	Arg	
Pro	Leu 290	Ala	Ala	Leu	Asn	Thr 295	Phe	Gly	Asn	Leu	Leu 300	Leu	Tyr	Val	Val	
Val 305	Ser	Asp	Asn	Phe	Gln 310	Gln	Ala	Val	Cys	Ser 315	Thr	Val	Arg	Суѕ	Lys 320	
Val	Ser	Gly	Asn	Leu 325	Glu	Gln	Ala	Lys	Lys 330	Ile	Ser	Tyr	Ser	Asn 335	Asn	
Pro																
<210 <211 <212 <213	L> 9 2> [29 993 DNA Homo	sapi	ens												
<400 atgg		29 caa d	ccacc	ccgç	gc ct	gg g g	gaaca	a gaa	aagta	caa	cagt	gaat	igg (aaatq	jaccaa	60
gcc	ettet	ttc t	gctt	tgtç	gg ca	agga	agaco	cto	gatco	cgg	tctt	teet	gat	ccttt	tcatt	120
geed	etggt	tog g	ggetg	gtag	gg aa	acgg	gttt	gto	jctct	:ggc	tcci	tgggd	ett (ccgca	tgcgc	180
agga	aacqo	cct t	ctct	gtct	a co	gtoct	cago	cto	gccc	ggg	ccga	actto	ect (cttcc	ctctgc	240
	-			-			_				_				itcaat	300
	_			_				_				-			atgctg	360
		-				-	_	_	-		-				gccgc	420
-	_		-		-	_	•	_	_					-	tgctg	480
-		-							_						ggtgt	540
-				-			_				_	_			gtggg	600
															ccagg	660
															ttggc	720
															catatt	780
															acttc	840
															gctctc	900
						-										960
										ayey	aay	yaty		ccyc	cagggc	
acc	ccgg	aga '	tgtc	gagaa	ag c	agtc	cggt	g tao	j							993

<210> 30 <211> 330 <212> PRT <213> Homo sapiens <400> 30 Met Asp Pro Thr Thr Pro Ala Trp Gly Thr Glu Ser Thr Thr Val Asn Gly Asn Asp Gln Ala Leu Leu Leu Cys Gly Lys Glu Thr Leu Ile Pro Val Phe Leu Ile Leu Phe Ile Ala Leu Val Gly Leu Val Gly Asn Gly Phe Val Leu Trp Leu Leu Gly Phe Arg Met Arg Arg Asn Ala Phe Ger Val Tyr Val Leu Ser Leu Ala Gly Ala Asp Phe Leu Phe Leu Cys 65 70 75 80 Phe Gir. Ile Ile Asn Cys Leu Val Tyr Leu Ser Asn Phe Phe Cys Ser Ile Ser Ile Asn Phe Pro Ser Phe Phe Thr Thr Val Met Thr Cys Ala Tyr Leu Ala Gly Leu Ser Met Leu Ser Thr Val Ser Thr Glu Arg Cys Leu Ser Val Leu Trp Pro Ile Trp Tyr Arg Cys Arg Arg Pro Arg His Leu Ser Ala Val Val Cys Val Leu Leu Trp Ala Leu Ser Leu Leu Leu Ser Ile Leu Glu Gly Lys Phe Cys Gly Phe Leu Phe Ser Asp Gly Asp Ser 3ly Trp Cys Gln Thr Phe Asp Phe Ile Thr Ala Ala Trp Leu Ile Phe Leu Phe Met Val Leu Cys Gly Ser Ser Leu Ala Leu Leu Val Arg Ile Leu Cys Gly Ser Arg Gly Leu Pro Leu Thr Arg Leu Tyr Leu Thr Ile Leu Leu Thr Val Leu Val Phe Leu Leu Cys Gly Leu Pro Phe Gly 225 230 235 Ile Gln Trp Phe Leu Ile Leu Trp Ile Trp Lys Asp Ser Asp Val Leu Phe Cys His Ile His Pro Val Ser Val Val Leu Ser Ser Leu Asn Ser Ser Ala Asn Pro Ile Ile Tyr Phe Phe Val Gly Ser Phe Arg Lys Gln Trp Arg Leu Gln Gln Pro Ile Leu Lys Leu Ala Leu Gln Arg Ala Leu 300 295 Page 30

Gin Asp Ile Ala Glu Val Asp His Ser Glu Gly Cys Phe Arg Gln Gly Thr Pro Glu Met Ser Arg Ser Ser Leu Val <210> 31 <211> 1092 <212> DNA <2113> Homo sapiens <:400> 31 atgggccccg gcgaggcgct gctggcgggt ctcctggtga tggtactggc cgtggcgctg 60 120 ctatecaacq cactqqtqct qetttqttqc qeetacaqeq etgageteeg cactegagee 180 traggraphic tectggtgaa tetgtragetg garbacetge tgctggegge getggaratg cccttcacgc tgctcggtgt gatgcgcggg cggacaccgt cggcgcccgg cgcatgccaa 240 300 gtcattggct tcctggacac cttcctggcg tccaacgcgg cgctgagcgt ggcggcgctg 360 agegeagace agtggetgge agtgggette ceaetgeget aegeeggaeg cetgegaeeg cgctatgccg gcctgctgct gggctgtgcc tggggacagt cgctggcctt ctcaggcgct 420 gcacttggct gctcgtggct tggctacagc agcgccttcg cgtcctgttc gctgcgcctg 480 540 cogocogago otgagogtoo gogottogoa goottoacog coaegotoca tgoogtgggo 600 ttogtgotgo ogotggoggt gototgooto acotogotoo aggtgoacog ggtggoacgo agccactgcc agcgcatgga caccgtcacc atgaaggcgc tcgcgctgct cgccgacctg 660 720 caccccaqtq tqcqqcaqcq ctqcctcatc cagcagaagc ggcgccgcca ccgcgccacc aggaagattg gcattgctat tgcgaccttc ctcatctgct ttgccccgta tgtcatgacc 780 aggetggegg agetegtgee ettegteace gtgaaegeee agtggggeat eeteageaag 840 900 tgcctgacct acagcaagge ggtggccgac ccgttcacgt actototgct ccgccggccg 960 ttccgccaag tcctggccgg catggtgcac cggctgctga agagaacccc gcgcccagca tecacecatg acagetetet ggatgtggee ggeatggtge accagetget gaagagaace 1020 ccgcgcccag cgtccaccca caacggctct gtggacacag agaatgattc ctgcctgcag 1080 1092 cagacacact ga <210> 32 <211> 363 <212> PRT <213> Homo sapiens <400> 32 Met Gly Pro Gly Glu Ala Leu Leu Ala Gly Leu Leu Val Met Val Leu

Ala Val Ala Leu Leu Ser Asn Ala Leu Val Leu Leu Cys Cys Ala Tyr

Ser Ala Glu Leu Arg Thr Arg Ala Ser Gly Val Leu Leu Val Asn Leu 35 40 45 Ser Leu Gly His Leu Leu Leu Ala Ala Leu Asp Met Pro Phe Thr Leu Leu Gly Val Met Arg Gly Arg Thr Pro Ser Ala Pro Gly Ala Cys Gln Val Ile Gly Phe Leu Asp Thr Phe Leu Ala Ser Asn Ala Ala Leu Ser Val Ala Ala Leu Ser Ala Asp Gln Trp Leu Ala Val Gly Phe Pro Leu Arg Tyr Ala Gly Arg Leu Arg Pro Arg Tyr Ala Gly Leu Leu Gly Cys Ala Trp Gly Gln Ser Leu Ala Phe Ser Gly Ala Ala Leu Gly Cys Ser Trp Leu Gly Tyr Ser Ser Ala Phe Ala Ser Cys Ser Leu Arg Leu Pro Pro Glu Pro Glu Arg Pro Arg Phe Ala Ala Phe Thr Ala Thr Leu His Ala Val Gly Phe Val Leu Pro Leu Ala Val Leu Cys Leu Thr Ser Leu Gln Val His Arg Val Ala Arg Ser His Cys Gln Arg Met Asp Thr Val Thr Met Lys Ala Leu Ala Leu Leu Ala Asp Leu His Pro Ser Val Arg Gln Arg Cys Leu Ile Gln Gln Lys Arg Arg Arg His Arg Ala Thr Arg Lys Ile Gly Ile Ala Ile Ala Thr Phe Leu Ile Cys Phe Ala Pro Tyr Val Met Thr Arg Leu Ala Glu Leu Val Pro Phe Val Thr Val Asn Ala Gln Trp Gly Ile Leu Ser Lys Cys Leu Thr Tyr Ser Lys Ala Val Ala Asp Pro Phe Thr Tyr Ser Leu Leu Arg Arg Pro Phe Arg Gln Val Leu Ala Gly Met Val His Arg Leu Leu Lys Arg Thr Pro Arg Pro Ala Ser Thr His Asp Ser Ser Leu Asp Val Ala Gly Met Val His Gln Leu 330 Leu Lys Arg Thr Pro Arg Pro Ala Ser Thr His Asn Gly Ser Val Asp Thr Glu Asn Asp Ser Cys Leu Gln Gln Thr His <210> 33 <211> 1125

<212> DNA <213> Homo sapiens	
<400> 33 atgoccacae teaataette tgeetetesa eccacattet tetgggeeaa tgeeteegga	60
ggmagtgtge tgagtgetga tgatgeteeg atgeetgtea aatteetage eetgaggete	120
atggttgccc tggcctatgg gcttgtgggg gccattggct tgctgggaaa tttggcggtg	180
ctgtgggtac tgagtaactg tgcccggaga gcccctggcc caccttcaga caccttcgtc	240
ttcaacctgg etctggegga cetgggactg geacteacte teseettttg ggeageegag	300
tragcactgg actiticactg goodticgga ggtgccctct gcaagatggt totgacggcc	360
actigecetca acgentation cagnatotto otdaticada ogotgagogi igotogotad	420
tquqtqqtqq ccatgqctqc ggggccaggc acccacctct cactcttctg ggcccgaata	480
gccaccotgg cagtgtgggc ggcggctgcc ctggtgacgg tgcccacagc tgtcttcggg	540
gtqqaqqqtq aggtgtgtgg tgtgcgcctt tgcctgctgc gtttccccag caggtactgg	600
ctgggggcct accagetgca gagggtggtg ctggetttea tggtgeeett gggegteate	660
accaccaget acetgetget getggeette etgeagegge ggeaaeggeg geggeaggae	720
ageagggteg tggcccgctc tgtccgcatc ctggtggctt ccttcttcct ctgctggttt	780
cccaaccatg tggtcactct ctggggtgtc ctggtgaagt ttgacctggt gccctggaac	840
agtactttct atactatcca gacgtatgtc ttccctgtca ctacttgctt ggcacacagc	900
aatagctgcc tcaaccctgt gctgtactgt ctcctgaggc gggagccccg gcaggctctg	960
geaggeacet teagggatet geggtegagg etgtggeece agggeggagg etgggtgeaa	1020
caggtggccc taaagcaggt aggcaggcgg tgggtcgcaa gcaacccccg ggagagccgc	1080
octiciacco tgotcaccaa cotggacaga gggacaccog ggtga	1125
<210> 34 <211> 374 <212> PRT <213> Homo sapiens	
<400> 34	
Met Pro Thr Leu Asn Thr Ser Ala Ser Pro Pro Thr Phe Phe Trp Ala 1 10 15	
Asn Ala Ser Gly Gly Ser Val Leu Ser Ala Asp Asp Ala Pro Met Pro 20 25 30	
Val Lys Phe Leu Ala Leu Arg Leu Met Val Ala Leu Ala Tyr Gly Leu 35 40 45	
Val Gly Ala Ile Gly Leu Leu Gly Asn Leu Ala Val Leu Trp Val Leu 50 60	

Ser Asn Cys Ala Arg Arg Ala Pro Gly Pro Pro Ser Asp Thr Phe Val 65

	Asn	Leu	Ala	Leu 85	Ala	Asp	Leu	Gly	Leu 90	Ala	Leu	Thr	Leu	95	rne
Trp	Ala	Ala	Glu 100	Ser	Ala	Leu	Asp	Phe 105	His	Trp	Pro	Phe	Gly 110	Gly	Ala
Leu	Cys	Lys 115	Met	Val	Leu	Thr	Ala 120	Thr	Val	Leu	Asn	Val 125	Tyr	Ala	Ser
Ile	Phe 130	Leu	Ile	Thr	Ala	Leu 135	Ser	Val	Ala	Arg	Tyr 140	Trp	Val	Val	Ala
Met 145	Ala	Ala	Gly	Pro	Gly 150	Thr	His	Leu	Ser	Leu 155	Phe	Trp	Ala	Arg	Ile 160
Ala	Thr	Leu	Ala	Val 165	Trp	Ala	Ala	Ala	Ala 170	Leu	Val	Thr	Val	Pro 175	Thr
Ala	Val	Phe	Gly 180	Val	Glu	Gly	Glu	Val 185	Cys	Gly	Val	Arg	Leu 190	Суѕ	Leu
Leu	Arg	Phe 195	Pro	Ser	Arg	туг	Trp 200	Leu	Gly	Ala	Tyr	Gln 205	Leu	Gln	Arg
Val	Val 210	Leu	Ala	Phe	Met	Va l 215	Pro	Leu	Gly	Val	Ile 220	Thr	Thr	Ser	Tyr
Leu 225	Leu	Leu	Leu	Ala	Phe 230	Leu	Gln	Arg	Arg	Gln 235	Arg	Arg	Arg	Gln	Asp 240
Ser	Arg	Val	Val	Ala 245	Arg	Ser	Val	Arg	Ile 250	Leu	Val	Ala	Ser	Phe 255	Phe
Leu	Cys	Trp	Phe 260	Pro	Asn	His	Val	Val 265	Thr	Leu	Trp	Gly	Val 270	Leu	Val
Lys	Phe	Asp 275	Leu	Val	Pro	Trp	Asn 280	Ser	Thr	Phe	Туr	Thr 285	Ile	Gln	Thr
Tyr	Val 290		Pro	Val	Thr	Thr 295		Leu	Ala	His	Ser 300	Asn	Ser	Cys	Leu
Asn 305	Pro	Val	Leu	Туr	Cys 310		Leu	Arg	Arg	Glu 315	Pro	Arg	Gln	Ala	Leu 320
Ala	Gly	Thr	Phe	Arg 325		Leu	Arg	Ser	Arg 330	Leu	Trp	Pro	Gln	Gly 335	Gly
Gly	Trp	Val	Gln 340		Val	Ala	Leu	Lys 345	Gln	Val	. Gly	Arg	Arg 350	Trp	Val
Ala	Ser	Asn 355		Arg	Glu	Ser	360	Pro	Ser	Thr	Leu	1 Leu 365	Thr	: Asn	Leu
Asp	Arg 370	Gly	Thr	Pro	Gly										
<21 <21		35 1092 DNA													

Page 34

PCT/US00/31509 WO 01/36471

ttccgagatg	acttcattgt	caaggtgttg	ccgccggtgt	tggggctgga	gtttatcttc	120
gggattatgg	gcaatggcct	tgccctgtgg	attttctgtt	tecaceteaa	gtcctggaaa	180
tccagccgga	ttttcctgtt	caacctggca	gtggctgact	ttctactgat	catctgcctg	240
cccttcctga	tggacaacta	tgtgaggcgt	tgggactgga	agtttgggga	catecettge	300
cggctgatgc	tottcatgtt	ggctatgaac	cgccagggca	gcatcatctt	cctcacggtg	360
gtggcggtag	acaggtattt	ccgggtggtc	catccccacc	acgccctgaa	caagatetee	420
aatcggacag	cagccatcat	ctcttgcctt	ctgtggggca	tcactattgg	cctgacagtc	480
cacctcctga	agaagaagat	gccgatccag	aatggcggtg	caaatttgtg	cagcagette	54 0
agcatctgcc	ataccttcca	gtggcacgaa	gccatgttcc	tcctggagtt	cttcctgccc	600
ctgggcatca	tcctgttctg	ctcagccag a	attatctgga	gcctgcggca	gagacaaatg	660
gaccggcatg	ccaagatcaa	gagagccatc	accttcatca	tggtggtggc	catcgtcttt	720
gtcatctgct	tccttcccag	cgtggttgtg	cggatccgca	tcttctggct	cctgcacact	780
tcgggcacgc	agaattgtga	agtgtaccgc	tcggtggacc	tggcgttctt	tatcactctc	8 4 0
agcttcacct	acatgaacag	catgctggac	cccgtggtgt	actacttctc	cagcccatcc	900
tttcccaact	tcttctccac	tttgatcaac	cgctgcctcc	agaggaagat	gacaggtgag	960
ccagataata	accgcagcac	gagcgtcgag	ctcacagggg	accccaacaa	aaccagaggc	1020
gctccagagg	cgttaatggc	caactccggt	gagccatgga	gcccctctta	tctgggccca	1080
acctctcctt	aa					1092

<210> 36 <211> 363 <212> PRT <213> Homo sapiens

<400> 36

Met Asn Arg His His Leu Gln Asp His Phe Leu Glu Ile Asp Lys Lys 1 5 10 15

Asn Cys Cys Val Phe Arg Asp Asp Phe Ile Val Lys Val Leu Pro Pro

Val Leu Gly Leu Glu Phe Ile Phe Gly Leu Leu Gly Asn Gly Leu Ala

Leu Trp Ile Phe Cys Phe His Leu Lys Ser Trp Lys Ser Ser Arg Ile 50 60

Phe Leu Phe Asn Leu Ala Val Ala Asp Phe Leu Leu Ile Ile Cys Leu 65 70 75 80

Pro Phe Leu Met Asp Asn Tyr Val Arg Arg Trp Asp Trp Lys Phe Gly 85 90 95

Gly	Ser	Ile 115	Ile	Phe	Leu	Thr	Val 120	Val	Ala	Val	Asp	Arg 125	Tyr	Phe	Arg	
Val	Val 130	His	Pro	His	His	Ala 135	Leu	Asn	Lys	Ile	Ser 140	Asn	Arg	Thr	Ala	
Ala 145	Ile	Ile	Ser	Cys	Leu 150	Leu	Trp	Gly	Ile	Thr 155	Ile	Gly	Leu	Thr	Val 160	
His	Leu	Leu	Lys	Lys 165	Lys	Met	Pro	Ile	Gln 170	Asn	Gly	Gly	Ala	Asn 175	Leu	
Cys	Ser	Ser	Phe 180	Ser	Ile	Cys	His	Thr 185	Phe	Gln	Trp	His	Glu 190	Ala	Met	
Phe	Leu	Leu 195	Glu	Phe	Phe	Leu	Pro 200	Leu	Gly	Ile	Ile	Leu 205	Phe	Cys	Ser	
Ala	Arg 210	Ile	Ile	Trp	Ser	Leu 215	Arg	Gln	Arg	Gln	Met 220	Asp	Arg	His	Ala	
Lys 225	Ile	Lys	Arg	Ala	Ile 230	Thr	Phe	Ile	Met	Val 235	Val	Ala	Ile	Val	Phe 240	
Val	Ile	Cys	Phe	Leu 245	Pro	Ser	Val	Val	Val 250	Arg	Ile	Arg	Ile	Phe 255	Trp	
Leu	Leu	His	Thr 260	Ser	Gly	Thr	Gln	Asn 265	Cys	Glu	Val	Tyr	Arg 270	Ser	Val	
Asp	Leu	Ala 275	Phe	Phe	Ile	Thr	Leu 280	Ser	Phe	Thr	Tyr	Met 285	Asn	Ser	Met	
Leu	Asp 290	Pro	Val	Val	Tyr	Tyr 295	Phe	Ser	Ser	Pro	Ser 300	Phe	Pro	Asn	Phe	
Phe 305	Ser	Thr	Leu	Ile	Asn 310	Arg	Cys	Leu	Gln	Arg 315	Lys	Met	Thr	Gly	Glu 320	
Pro	Asp	Asn	Asn	Arg 325	Ser	Thr	Ser	Val	Glu 330	Leu	Thr	Gly	Asp	Pro 335	Asn	
Lys	Thr	Arg	Gly 3 4 0	Ala	Pro	Glu	Ala	Leu 345	Met	Ala	Asn	Ser	Gly 350	Glu	Pro	
Trp	Ser	Pro 355	Ser	Tyr	Leu	Gly	Pro 360	Thr	Ser	Pro						
<21 <21 <21 <21	1> 2>	37 1044 DNA Homo	sap	iens												
<40 atg	gggg 0>	37 atg	agct	ggca	cc t	tgcc	ctgt	g gg	cact	acag	ctt	ggcc	ggc	cctg	atccag	60
ctc	atca	gca	agac	accc	tg c	atgc	ccca	a gc	agcc	agca	aca	cttc	ctt	gggc	ctgggg	120
															ctggct	180
															cggctg	240
сда	cago	agc	ссса	ctac	ct g	ctcc	cggc	t aa	catc	ctgc	tct	caga	cct	ggcc	tacatt	300
ctc	etec	aca	tgct	catc	tc c	tcca	gcag	c ct	gggt	ggct	ggg Page		ggg	cc gc	atggcc	360

tgtggcattc	tcactgatgc	tgtcttcgcc	gcctgcacca	gcaccatcct	gtccttcacc	420
gccattgtgc	tgcacaccta	cctggcagtc	atccatccac	tgcgctacct	ctccttcatg	480
teccatgggg	ctgcctggaa	ggcagtggcc	ctcatctggc	tggtggcctg	etgetteees	540
acatteetta	tttggctcag	caagtggcag	gatgcccagc	tggaggagca	aggagettea	600
tacatcctac	caccaagcat	gggcacccag	ccgggatgtg	gcctcctggt	cattgttacc	660
tacacctcca	ttctgtgcgt	tctgttcctc	tgcacagctc	tcattgccaa	ctgtttctgg	720
aggatotatg	cagaggccaa	gacttcaggc	atctgggggc	agggctattc	ccgggccagg	780
ggcaccctgc	tgatccactc	agtgctgatc	acattgtacg	tgagcacagg	ggtggtgttc	840
tccctggaca	tggtgctgac	caggtaccac	cacattgact	ctgggactca	cacatggctc	900
ctggcagcta	acagtgaggt	actcatgatg	cttccccgtg	ccatgctccc	atacctgtac	960
ctgctccgct	accggcagct	gttgggcatg	gtccggggcc	acctcccatc	caggaggcac	1020
caggocatot	ttaccatttc	ctag				1044

<210> 38

<211> 347 <212> PRT

<213> Homo sapiens

<400> 38

Met Gly Asp Glu Leu Ala Pro Cys Pro Val Gly Thr Thr Ala Trp Pro 1 5 10 15

Ala Leu Ile Gln Leu Ile Ser Lys Thr Pro Cys Met Pro Gln Ala Ala 20 25 30

Ser Asn Thr Ser Leu Gly Leu Gly Asp Leu Arg Val Pro Ser Ser Met 35 40 45

Leu Tyr Trp Leu Phe Leu Pro Ser Ser Leu Leu Ala Ala Ala Thr Leu 50 60

Ala Val Ser Pro Leu Leu Leu Val Thr Ile Leu Arg Asn Gln Arg Leu 65 70 75 80

Arg Gln Glu Pro His Tyr Leu Leu Pro Ala Asn Ile Leu Leu Ser Asp 90 95

Gly Trp Glu Leu Gly Arg Met Ala Cys Gly Ile Leu Thr Asp Ala Val 115 120 125

Phe Ala Ala Cys Thr Ser Thr Ile Leu Ser Phe Thr Ala Ile Val Leu 130 135 140

His Thr Tyr Leu Ala Val Ile His Pro Leu Arg Tyr Leu Ser Phe Met 150 155 160

Ser His Gly Ala Ala Trp Lys Ala Val Ala Leu Ile Trp Leu Val Ala 165 170 175

Cys	Cys	Phe	Pro 180	Thr	Phe	Leu	Ile	Trp 185	Leu	Ser	Lys	Trp	Gln 190	Asp	Ala	
Gln	Leu	Glu 195	Glu	Gln	Gly	Ala	Ser 200	Tyr	Ile	Leu	Pro	Pro 205	Ser	Met	Gly	
Thr	Gln 210	Pro	Gly	Cys	Gly	Leu 215	Leu	Val	Ile	Val	Thr 220	Tyr	Thr	Ser	Ile	
Leu 225	Cys	Val	Leu	Phe	Leu 230	Cys	Thr	Ala	Leu	Ile 235	Ala	Asn	Cys	Phe	Trp 240	
Arg	Ile	Tyr	Ala	Glu 245	Ala	Lys	Thr	Ser	Gly 250	Ile	Trp	Gly	Gln	Gly 255	Tyr	
Ser	Arg	Ala	Arg 260	Sly	Thr	Leu	Leu	Ile 265	His	Ser	Val	Leu	Ile 270	Thr	Leu	
Tyr	Val	Ser 275	Thr	Gly	Val	Val	Phe 280	Ser	Leu	Asp	Met	V al 285	Leu	Thr	Arg	
Туг	His 290	His	Ile	Asp	Ser	Gly 295	Thr	His	Thr	Trp	Leu 300	Leu	Ala	Ala	Asn	
Ser 305	Glu	Val	Leu	Met	Met 310	Leu	Pro	Arg	Ala	Met 315	Leu	Pro	Tyr	Leu	Tyr 320	
Leu	Leu	Arg	Tyr	Arg 325	Gln	Leu	Leu	Gly	Met 330	Val	Arg	Gly	His	Leu 335	Pro	
Ser	Arg	Arg	His 340	Gln	Ala	Ile	Phe	Thr 345	Ile	Ser						
<210 <211 <211 <21	1> 2> [39 1023 DNA Homo	sap.	iens												
<40 atg	0> aatc	39 cat	ttca	tgca	tc ti	tgttq	ggaa	c ac	ctct	gccg	aac	tttt	aaa	caaa	tcctgg	60
aat	aaag	agt	ttgc	ttat	ca a	actgo	ccag	t gto	ggta	gata	cag	tcat	cct	ccct	tccatg	120
att	ggga	tta	tctg	ttca	ac a	gggci	tggt	t gg	caac	atcc	tca	ttgt	att	cact.	ataata	180
aga	tcca	gga	aaaa	aaca	gt c	cctga	acat	c ta	tatc	tgca	acc	tggc	tgt	ggct	gatttg	240
gtc	caca	tag	ttgg	aatg	cc t	tttc	ttat	t ca	ccaa	tggg	ccc	gagg	ggg	agag	tgggtg	300
ttt	gggg	ggc	ctct	ctgc	ac c	atca	tcac	a tc	cctg	gata	ctt	gtaa	cca	attt	gcctgt	360
agt	gcca	tca	tgac	tgta	at g	agtgi	tgga	c ag	gtac	tttg	ccc	togt	сса	acca	tttcga	420
ctg	acac	gtt	ggag	aaca	ag g	taca	agac	c at	ccgg	atca	att	tggg	cct	ttgg	gcagct	480
tac	ttta	toc	tggc	attg	cc t	gtot	gggt	c ta	ctcg	aagg	tca	tcaa	att	taaa	gacggt	540
gtt	gaga	gtt	gtgc	tttt	ga t	ttga	catc	c cc	tgac	gatg	tac	tctg	gta	taca	ctttat	600
ttg	acga	taa	caac	ttt	tt t	ttcc	ctct	a cc	cttg	attt	tgg	tgtg	cta	tatt	ttaatt	660
tta	tgct	ata	cttg	ggag	at g	tatc	aaca	g aa	taag	gatg	сса	gatg	ctg	caat	cccagt	720
gta	ccaa	aac	agag	agtg	at g	aagt	tgac	a aa	gatg	gtgc	tgg Page		ggt	ggta	gtcttt	780

Page 39

atootgagtg otgoccotta toatgtgata caactggtga acttacagat ggaacagcoc
acactggcct totatgtggg ttattacctc tocatctgtc tcagctatgc cagcagcage
attaaccett ttetetacat eetgetgagt ggaaatttee agaaaegtet geeteaaate
caaagaagag cgactgagaa ggaaatcaac aatatgggaa acactctgaa atcacacttt
tag
<210> 40 <211> 340 <212> PRT <213> Homo sapiens
<400> 40
Met Asn Pro Phe His Ala Ser Cys Trp Asn Thr Ser Ala Glu Leu Leu 1 5 10
Asn Lys Ser Trp Asn Lys Glu Phe Ala Tyr Gln Thr Ala Ser Val Val 20 25 30
Asp Thr Val Ile Leu Pro Ser Met Ile Gly Ile Ile Cys Ser Thr Gly 35 40 45
Leu Val Gly Asn Ile Leu Ile Val Phe Thr Ile Ile Arg Ser Arg Lys 50 55 60
Lys Thr Val Pro Asp Ile Tyr Ile Cys Asn Leu Ala Val Ala Asp Leu 65 70 75 80
Val His Ile Val Gly Met Pro Phe Leu Ile His Gln Trp Ala Arg Gly 85 90 95
Gly Glu Trp Val Phe Gly Gly Pro Leu Cys Thr Ile Ile Thr Ser Leu 100 105 110
Asp Thr Cys Asn Gln Phe Ala Cys Ser Ala Ile Met Thr Val Met Ser 115 120 125
Val Asp Arg Tyr Phe Ala Leu Val Gln Pro Phe Arg Leu Thr Arg Trp 130 135 140
Arg Thr Arg Tyr Lys Thr Ile Arg Ile Asn Leu Gly Leu Trp Ala Ala 145 150 155 160
Ser Phe Ile Leu Ala Leu Pro Val Trp Val Tyr Ser Lys Val Ile Lys 165 170 175
Phe Lys Asp Gly Val Glu Ser Cys Ala Phe Asp Leu Thr Ser Pro Asp 180 185 190
Asp Val Leu Trp Tyr Thr Leu Tyr Leu Thr Ile Thr Thr Phe Phe 195 200 205
Pro Leu Pro Leu Ile Leu Val Cys Tyr Ile Leu Ile Leu Cys Tyr Thr 210 215 220
Trp Glu Met Tyr Gln Gln Asn Lys Asp Ala Arg Cys Cys Asn Pro Ser 235 240
Val Pro Lys Gln Arg Val Met Lys Leu Thr Lys Met Val Leu Val Leu

				245					250					255		
Val	Val	Val	Phe 260	Ile	Leu	Ser	Ala	Ala 265	Pro	Tyr	His	Val	Ile 270	Gln	Leu	
Val	Asn	Leu 275	Gln	Met	Glu	Gln	Pro 280	Thr	Leu	Ala	Phe	Tyr 285	Val	Gly	Tyr	
Tyr	Leu 290	Ser	Ile	Cys	Leu	Ser 295	Tyr	Ala	Ser	Ser	Ser 300	Ile	Asn	Pro	Phe	
Leu 305	Tyr	Ile	Leu	Leu	Ser 310	Gly	Asn	Phe	Gln	Lys 315	Arg	Leu	Pro	Gln	Ile 320	
Gln	Arg	Arg	Ala	Thr 325	Glu	Lys	Glu	Ile	Asn 330	Asn	Met	Gly	Asn	Thr 335	Leu	
Lys	Ser	His	Phe 340													
+:210 +:211 +:212 +:213	L> 2 2 -> 1	41 24 DNA Artii	ficia	al Se	equei	nce										
	L> 1	misc Nove			ce											
<400 ctto		41 aca 1	tcac	catg	gc a	gcc										24
<210 <211 <212 <211	L> :	42 24 DNA Arti:	ficia	al S	eque	nce										
	1> 1	misc Nove			ce											
<400 gtga		42 tot (gagt	actg	ga c	tgg										24
<210 <211 <211	1 > 2 >	43 20 DNA Arti	fici	al S	eque	nce										
+ 22(+ 22) + 22.	1 > :	misc Nove			ce											
:40 gaa		43 tga	agag	tgat	gc											20
<21 <21 <21	1>	44 24 DNA														

Page 40

<213>	Artificial Sequence	
	misc_feature Novel Sequence	
<400> gtcago	44 aata ttgataagca gcag	24
<210> <211> <212> <213>		
	misc_feature Novel Sequence	
	45 ggaa cgattctgtc agctacg	27
<210><211><211><212><213>		
	misc_feature Novel Sequence	
<400> gctatg	46 cctg aagccagtct tgtg	24
<210><211><211><212><213>	26	
	misc_feature Novel Sequence	
<400> ccagga	47 tgtt gtgtcaccgt ggtggc	26
<210><211><211><212><213>		
<220> <221> <223>		
<400>	48 getg cagecetgea getgge	26

Page 41

PCT/US00-31509

210>	4.9	
	26	
+312>		
• 213>	Artificial Sequence	
0 -		
.221>	misc feature	
<313>	Novel Sequence	
	•	
<400>	4.9	
	ctog tagggatgaa ccagac	26
<210>	5.0	
.211>		
52112> 5212>		
	Artificial Sequence	
5 50 50		
- 120 >	- as fantura	
	misc_feature	
232	Novel Sequence	
< 400>		26
ctogoa	cayg tgggaagcac ctgtgg	26
<210>		
<.211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
- 221>	misc feature	
	Novel Sequence	
	-	
400>	51	
	gaca ggaggtaccc tgg	23
	35 3535 33	
-210>	5.2	
<211>		
<212>		
	Artificial Sequence	
	Altificial Sequence	
<220>		
	mina footuro	
	misc_feature	
- 223>	Navel Sequence	
100	5.3	
. 400>		25
ratato	coto ogagtgtoca goggo	2.3
-210>	53	
2110		
· 112>	DNA	
- 2130	Artificial Sequence	
<220>		
	misc feature	

<223>	Novel Sequence	
< 4(10>	53	
ącatgga	gag aaaatttatg teettgeaac c	31
<210>	s A	
<211>		
<212>		
	Artificial Sequence	
<220>		
<221>	misc feature	
<223>	Novel Sequence	
· 400>	5.4	
	eagg totoatotaa gagotoo	27
cuagaac	agg totoutoud gagette	-
<210>	55	
<211>	26	
<212>		
<213>	Artificial Sequence	
<220>		
<221>	misc_feature	
<223>	Novel Sequence	
<400>	55	
	cca tgacgtccac ctgcac	26
900900		
<210>	56	
<211>	26	
<212>		
<213>	Artificial Sequence	
<220>		
<221>	misc_feature	
<223>	Novel Sequence	
<400>	56	
	tca aggtttgcct tagaac	26
,,,		
<210>	57	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<221>	misc_feature	
<223>	Novel Sequence	
<100>	57	
<400>	5/ atac tgctcctatg ctc	23
culturge	reac typecoccacy coc	
<210>	58	
<211>	26	

WO 01/36471	PCT/US00/31509

	INA Artificial Sequence	
	misc_feature Novel Sequence	
<400> gtagtc	58 cact gaaagtccag tgatcc	26
<110> <211> <112> <213>		
	misc_feature Novel Sequence	
<400> tttctg	59 agca tggatccaac catete	26
<210><211><212><212><213>		
<220> <221> <223>	misc_feature Novel Sequence	
<400> ctgtct	60 gaca gggcagaggc tette	25
<210><211><211><212><213>	28 DNA	
	misc_feature Novel Sequence	
<400> ggaact	61 cgta tagacccage gtegetee	28
<pre><210> <211> <212> <213></pre>	52 28 DNA Artificial Sequence	
<220> <221> <223>		
<400>	62	

Page 44

ggaggtt	geg cettagegae agatgace	28
<2108 - 2112- - 2123	22	
	Artificial Sequence	
- 2205	mine footure	
	misc_feature Novel Sequence	
400.		
ctdcack	cogg acacttgoto tg	22
.210 -	64	
111.		
112	Artificial Sequence	
	Artificial Sequence	
- 120	muca fortura	
	misc_feature Novel Sequence	
24.5		
400 -	6.4	
	tigt teagtgeeac teaac	25
.210-	65	
-211-		
<212		
<213 ·	Artificial Sequence	
. 220 -		
221>	misc_feature	
. 223 -	Novel Sequence	
400>		2.6
tatctg	caat totattotag otootg	26
• • •		
.210>	66 26	
211> 212>	DNA	
- 213>	Artificial Sequence	
.220>		
	misc feature	
223>	Novel Sequence	
.400>	ა 66	
	taat aaagtcacat gaatgc	26
210>		
<:211> <:212>		
	Artificial Sequence	
<:220>		

	misc_feature Novel Sequence	
<4(10> ggaga	67 caacc atgaatgage cac	23
<210><211><211><212><213>	24	
	misc_feature Novel Sequence	
<400> tattt	б8 caagg gttgtttgag taac	24
<220> :221> :223>	misc_feature Novel Sequence	
<400> ggcac	69 cagtg gaggttttct gagcatg	27
<220> <221> <223>		
<400> ctgat	70 ggaag tagaggetgt ceatete	27
<210> <111> <212> <213>	23 DNA	
<220><221><223>	misc_feature	
<400x	> 71 gegage egetagegee atg	23
<210:	- 72	

<211>	23	
<212>		
	Artificial Sequence	
<1.0>		
	misc_feature	
<2.3>	Novel Sequence	
<400>	72	
atgaged	ctg ccaggccctc agt	23
<210×	71	
<210> <211>	73	
<212>		
	Artificial Sequence	
<220>	the Contract of the Contract o	
	misc_feature	
<2.32	Novel Sequence	
	73	
ctgcgat	gee cacacteaat acttetg	27
<210>	74	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	misc feature	
	Novel Sequence	
	·	
<400>	74 ccta cacttggtgg atctcag	27
aayyac	cactagety access	-
<210>	75	
	22	
<212> <213>	DNA Artificial Sequence	
_13/	Altificial bequence	
<400>	75	
gctgga	gcat tcactaggcg ag	22
<210>	76	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
. 2 2 0 5		
<220> <221>	misc feature	
<221>		
<400>		24
agatcc	tggt to ttggtgac aa tg	۲ ٦
< 2105	77	

<211> <212> <213>		
<pre><220> <221> <223> </pre>	misc_feature Novel Sequence	
· 40(i> agccato	77 coot gooaggaago atgg	24
-211> -212>		
	misc_feature Novel Sequence	
+400≯ ccagac	78 tgtg gactcaagaa ctctagg	27
<211> <212>		
	misc_feature Novel Sequence	
- 400> agtoca	79 cgaa caatgaatcc atttcatg	28
<211>	80 25 DNA Artificial Sequence	
	misc_feature Novel Sequence	
-400≯ atcatg	80 tota gaotoatggt gatoo	25
<210 > <211 > <212 > <212 > <213 >	81 30 DNA Artificial Sequence	
<220 → <221 > <223 >	misc_feature Novel Sequence	

Page 48

<pre>+400> 81 ggggagggaa agcaaaggtg gtootcotgg</pre>	30
<pre>%210> 82 %211> 30 %212> DNA %213> Artificial Sequence</pre>	
<pre><120> <121> misc_feature <123> Novel Sequence</pre>	
<pre>c+00> 82 ccaggagaac cacctttgct ttccctcccc</pre>	30
<pre><210> 83 <211> 1356 <212> DNA <213> Homo sapiens</pre>	
<400> 83 atggagteet cacceateec ceagteatea gggaactett ceaetttggg gagggteect	60
caaaccccag gtccctctac tgccagtggg gtcccggagg tggggctacg ggatgttgct	120
teggaatetg tggecetett etteatgete etgetggaet tgaetgetgt ggetggeaat	180
gccgctgtga tggccgtgat cgccaagacg cctgccctcc gaaaatttgt cttcgtcttc	240
cacctotgee tggtggacet getggetgee etgaccetea tgcccetgge catgetetee	300
agetetgece tetttgacca egecetettt ggggaggtgg eetgeegeet etaettgttt	360
ctgagcgtgt gctttgtcag cctggccatc ctctcggtgt cagccatcaa tgtggagcgc	420
tactattacg tagtccaccc catgogotac gaggtgcgca tgacgctggg gctggtggcc	480
tetgtgetgg tgggtgtgtg ggtgaaggee ttggeeatgg ettetgtgee agtgttggga	540
agggtetect gggaggaagg ageteecagt gteececcag getgtteact ecagtggage	600
cacagtgeet actgecaget ttttgtggtg gtetttgetg teetttaett tetgttgeee	660
ctgctcctca tacttgtggt ctactgcage atgttccgag tggcccgcgt ggctgccatg	720
cagcacgggc cgctgcccac gtggatggag acaccccggc aacgctccga atctctcagc	780
ageogeteca egatggteac cagetegggg geoecceaga ceaecceaca eeggacgttt	840
gggggaggga aagcaaaggt ggttctcctg gctgtggggg gacagttcct gctctgttgg	900
ttgccctact tctctttcca cctctatgtt gccctgagtg ctcagcccat ttcaactggg	960
caggtggaga gtgtggtcac ctggattggc tacttttgct tcacttccaa ccctttcttc	1020
tatggatgto toaaccggca gatccggggg gagctcagca agcagtttgt ctgcttctto	1080
aajccagete cagaggagga getgaggetg eetageeggg agggeteeat tgaggagaae	1140
ticotgoagt toottoaggg gactggotgt cottotgagt cotgggttto cogaccocta	1200
occagodoca agoaggagoo acctgotgtt gactttogaa toocaggooa gatagotgag	1260
Page 49	

gagacetetg agtteetgga geageaacte accagegaca teateatgte agacagetae 1320

oteogtootg cogoctoacc coggotggag toatga <210> 84
<211> 451 <212> PRT <213> Homo sapiens <400> 84 Met Glu Ser Ser Pro Ile Pro Gln Ser Ser Gly Asn Ser Ser Thr Leu Gly Arg Val Pro Gln Thr Pro Gly Pro Ser Thr Ala Ser Gly Val Pro Glu Val Gly Leu Arg Asp Val Ala Ser Glu Ser Val Ala Leu Phe Phe Met Leu Leu Leu Asp Leu Thr Ala Val Ala Gly Asn Ala Ala Val Met Ala Val Ile Ala Lys Thr Pro Ala Leu Arg Lys Phe Val Phe Val Phe 70 80 His Leu Cys Leu Val Asp Leu Leu Ala Ala Leu Thr Leu Met Pro Leu 85 90 95 Ala Met Leu Ser Ser Ser Ala Leu Phe Asp His Ala Leu Phe Gly Glu Val Ala Cys Arg Leu Tyr Leu Phe Leu Ser Val Cys Phe Val Ser Leu Ala Ile Leu Ser Val Ser Ala Ile Asn Val Glu Arg Tyr Tyr Tyr Val Val His Pro Met Arg Tyr Glu Val Arg Met Thr Leu Gly Leu Val Ala 145 150 160 Ser Val Leu Val Gly Val Trp Val Lys Ala Leu Ala Met Ala Ser Val Pro Val Leu Gly Arg Val Ser Trp Glu Glu Gly Ala Pro Ser Val Pro Pro Gly Cys Ser Leu Gln Trp Ser His Ser Ala Tyr Cys Gln Leu Phe 200 Val Val Val Phe Ala Val Leu Tyr Phe Leu Leu Pro Leu Leu Leu Ile Leu Val Val Tyr Cys Ser Met Phe Arg Val Ala Arg Val Ala Ala Met Gln His Gly Pro Leu Pro Thr Trp Met Glu Thr Pro Arg Gln Arg Ser Glu Ser Leu Ser Ser Arg Ser Thr Met Val Thr Ser Ser Gly Ala Pro 265 Gln Thr Thr Pro His Arg Thr Phe Gly Gly Gly Lys Ala Lys Val Val Page 50

	275					280					285				
Leu Leu 290		Val	Gly	Gly	Gln 295	Phe	Leu	Leu	Cys	Trp 300	Leu	Pro	Tyr	Phe	
Ser Ph€ 305	His	Leu	Tyr	Val 310	Ala	Leu	Ser	Ala	Gln 315	Pro	Ile	Ser	Thr	Gly 320	
Gln Val	Glu	Ser	Val 325	Val	Thr	Trp	Ile	Gly 330	Tyr	Phe	Cys	Phe	Thr 335	Ser	
Asn Pro	Phe	Phe 340	Tyr	Gly	Cys	Leu	Asn 345	Arg	Gln	Ile	Arg	Gly 350	Glu	Leu	
Ser Lys	355	Phe	Val	Cys	Phe	Phe 360	Lys	Pro	Ala	Pro	Glu 365	Glu	Glu	Leu	
Arg Let 370		Ser	Arg	Glu	Gly 375	Ser	Ile	Glu	Glu	Asn 380	Phe	Leu	Gln	Phe	
Leu Gl: 385	n Gly	Thr	Gly	Cys 390	Pro	Ser	Glu	Ser	Trp 395	Val	Ser	Arg	Pro	Leu 400	
Pro Se	r Pro	Lys	Gln 405	Glu	Pro	Pro	Ala	Val 410	Asp	Phe	Arg	Ile	Pro 415	Gly	
Gln Ile	e Ala	Glu 420	Glu	Thr	Ser	Glu	Phe 425	Leu	Glu	Gln	Gln	Leu 430	Thr	Ser	
Asp Ile	e Ile 435	Met	Ser	Asp	Ser	Tyr 440	Leu	Arg	Pro	Ala	Ala 445	Ser	Pro	Arg	
Leu Gla															
<210> <211> <212> <213>	85 28 DNA Homo	sap	iens												
<400>	85														
caggaa	ggca	aaga	ccac	ca to	catca	atc									28
<210> <211> <212> <213>	86 28 DNA Homo	sap	ien <i>s</i>												
<400> gatgat	86 gatg	gtgg	tctt	tg c	cttc	ctg									28
<210><211><211><212><212><213>	87 1041 DNA Homo		iens												
<400> atggag	87 agaa	aatt	tatq	tc c	ttgc	aacc	a tc	catc	tecg	tat	caga	aat	ggaa	ccaaat	60
ggcacc	_		-												120
ttccca	attg	tata	tctg	at a	atat	tttt	c tg	ggga	gtct	tgg	gaaa	tgg	gttg	tccata	180

tatgttttcc	tgcagcctta	taagaagtcc	acatctgtga	acgttttcat	gctaaatctg	240
gccatttcag	atctcctgtt	cataagcacg	cttcccttca	gggctgacta	ttatcttaga	300
ggctccaatt	ggatatttgg	agacctggcc	tgcaggatta	tgtcttattc	cttgtatgtc	360
aacatgtaca	gcagtattta	tttcctgacc	gtgctgagtg	ttgtgcgttt	cctggcaatg	420
gttcacccct	ttcggcttct	gcatgtcacc	agcatcagga	gtgcctggat	cctctgtggg	480
atcatatgga	tccttatcat	ggcttcctca	ataatgctcc	tggacagtgg	ctctgagcag	5 4 0
aacggcagtg	tcacatcatg	cttagagctg	aatctctata	aaattgctaa	gctgcagacc	600
atgaactata	ttgccttggt	ggtgggctgc	ctgctgccat	ttttcacact	cagcatctgt	650
tatotgotga	tcattcgggt	tctgttaaaa	gtggaggtcc	cagaatcggg	gctgcgggtt	720
tctcacagga	aggcaaagac	caccatcatc	atcaccttga	tcatcttctt	cttgtgtttc	780
ctgccctatc	acacactgag	gaccgtccac	ttgacgacat	ggaaagtggg	tttatgcaaa	840
gacagactgc	ataaagcttt	ggttatcaca	ctggccttgg	cagcagccaa	tgcctgcttc	900
aatcctctgc	tctattactt	tgctggggag	aattttaagg	acagactaaa	gtctgcactc	960
agaaaaggcc	atccacagaa	ggcaaagaca	aagtgtgttt	tccctgttag	tgtgtggttg	1020
agaaaggaaa	caagagtata	a				1041

<210> 88 <211> 346

<211> 346 <212> PRT

<213> Homo sapiens

<400> 88

Met Glu Arg Lys Phe Met Ser Leu Gln Pro Ser Ile Ser Val Ser Glu 1 5 10 15

Met Glu Pro Asn Gly Thr Phe Ser Asn Asn Asn Ser Arg Asn Cys Thr

Ile Glu Asn Phe Lys Arg Glu Phe Phe Pro Ile Val Tyr Leu Ile Ile 35 40

Phe Phe Trp Gly Val Leu Gly Asn Gly Leu Ser Ile Tyr Val Phe Leu 50 60

Gln Pro Tyr Lys Lys Ser Thr Ser Val Asn Val Phe Met Leu Asn Leu 65 70 75 80

Ala Ile Ser Asp Leu Leu Phe Ile Ser Thr Leu Pro Phe Arg Ala Asp $85 \hspace{1cm} 90 \hspace{1cm} 95$

Tyr Tyr Leu Arg Gly Ser Asn Trp Ile Phe Gly Asp Leu Ala Cys Arg 100 105 110

Ile Met Ser Tyr Ser Leu Tyr Val Asn Met Tyr Ser Ser Ile Tyr Phe 115 120 125

Leu Thr Val Leu Ser Val Val Arg Phe Leu Ala Met Val His Pro Phe 130 135 140

Arg 145	Leu	Leu	His	Val	Thr 150	Ser	Ile	Arg	Ser	Ala 155	Trp	Ile	Leu	Cys	Gly 160		
Ile	Ile	Trp	Ile	Leu 165	Ile	Met	Ala	Ser	Ser 170	lle	Met	Leu	Leu	Asp 175	Ser		
Gly	Ser	Glu	Gln 180	Asn	Gly	Ser	Val	Thr 185	Ser	Cys	Leu	Glu	Leu 190	Asn	Leu		
Tyr	Lys	Ile 195	Ala	Lys	Leu	Gln	Thr 200	Met	Asn	Tyr	Ile	Ala 205	Leu	Val	Val		
Gly	Cys 210	Leu	Leu	Pro	Phe	Phe 215	Thr	Leu	Ser	Ile	Cys 220	Tyr	Leu	Leu	Ile		
Ile 225	Arg	Val	Leu	Leu	Lys 230	Val	Glu	Val	Pro	Glu 235	Ser	Gly	Leu	Arg	Val 240		
Ser	His	Arg	Lys	Ala 245	Lys	Thr	Thr	Ile	Ile 250	Ile	Thr	Leu	Ile	Ile 255	Phe		
Phe	Leu	Cys	Phe 260	Leu	Pro	Tyr	His	Thr 265	Leu	Arg	Thr	Val	His 270	Leu	Thr		
Thr	Trp	Lys 275	Val	Gly	Leu	Cys	Lys 280	Asp	Arg	Leu	His	Lys 285	Ala	Leu	Val		
Ile	Thr 290	Leu	Ala	Leu	Ala	Ala 295	Ala	Asn	Ala	Суз	Phe 300	Asn	Pro	Leu	Leu		
Tyr 305	Tyr	Phe	Ala	Gly	Glu 310	Asn	Phe	Lys	Asp	Arg 315	Leu	Lys	Ser	Ala	Leu 320		
Arg	Lys	Gly	His	Pro 325	Gln	Lys	Ala	Lys	Thr 330	Lys	Суѕ	Val	Phe	Pro 335	Val		
Ser	Val	Trp	Leu 340	Arg	Lys	Glu	Thr	Arg 345	Val								
<210 <211 <211 <211	L> . 2> 1	89 28 DNA Arti	ficia	al Se	equei	nce											
<220 <221 <221	1> 1	misc Nove			ce												
< 400 cca		89 aaa (gcta	agaa	ag to	gato	ttc									28	
<21) <21	1>	90 28															
<21: <21:		DNA Arti	fici	al S	eque	nce											
722 722 722 722	1> 1	misc Nove			ce												
<40 gaa		90 act	ttct	tagc	tt t	gcac	tgg				_	•				28	

PCT/US00/31509 WO 01/36471

<pre><210> 91 <211> 1527 <212> DNA <213> Homo sapiens</pre>	
<400> 91 atgacgteca cetgeaceaa cageaegege gagagtaaca geageeacae gtgeatgeee	ნ 0
ctctccaaaa tgcccatcag cctggcccac ggcatcatcc gctcaaccgt gctggttatc	120
tteetegeeg cetetttegt eggeaacata gtgetggege tagtgttgea gegeaageeg	180
cagetgetge aggtgaccaa cegttttate tttaacetee tegteacega cetgetgeag	240
atttogotog tggccccotg ggtggtggcc acctotgtgc ototottotg gcccctcaac	300
agocactict gcacggoodt ggttagooto accoaccigt tegeeticge cagogicaac	360
accattgtcg tggtgtcagt ggatcgctac ttgtccatca tccaccctct ctcctacccg	420
tocaagatga cocagogoog oggitacotg otoototatg goacotggat tgtggocato	480
ctgcagagca ctcctccact ctacggctgg ggccaggctg cctttgatga gcgcaatgct	540
ctotgotoca tgatotgggg ggocagocoo agotacacta ttotoagogt ggtgtootto	600
atogicatic cactgatigt catgatiges tgetacteeg tggtgtietg tgcagecegg	660
aggcagcatg ctctgctgta caatgtcaag agacacagct tggaagtgcg agtcaaggac	720
tgtgtggaga atgaggatga agagggagca gagaagaagg aggagttcca ggatgagagt	780
gagtttcgcc gccagcatga aggtgaggtc aaggccaagg agggcagaat ggaagccaag	840
gacggcagcc tgaaggccaa ggaaggaagc acggggacca gtgagagtag tgtagaggcc	900
aggggcagcg aggaggtcag agagagcagc acggtggcca gcgacggcag catggagggt	960
aaggaaggca gcaccaaagt tgaggagaac agcatgaagg cagacaaggg tcgcacagag	1020
gtcaaccagt gcagcattga cttgggtgaa gatgacatgg agtttggtga agacgacatc	1080
aatttcagtg aggatgacgt cgaggcagtg aacatcccgg agagcctccc acccagtcgt	1140
cgtaacagca acagcaacce tectetgeee aggtgetace agtgeaaage taagaaagtg	1200
atottoatca toattttoto otatgtgota toootggggo ootactgott tttagcagto	1260
ctggccgtgt gggtggatgt cgaaacccag gtaccccagt gggtgatcac cataatcatc	1320
tygetttiet teetgeagtg etgeateeae eestatgtet atggetacat geacaagaee	1380
attaagaagg aaatccagga catgctgaag aagttcttct gcaaggaaaa gcccccgaaa	1440
gaagatagee acccagacet geeeggaaca gagggtggga etgaaggeaa gattgteeet	1500
tootacgatt ctgctacttt toottga	1527

<210> 92 <211> 508 <212> PRT <213> Homo sapiens

Page 54

<400> 92

Met Thr Ser Thr Cys Thr Asn Ser Thr Arg Glu Ser Asn Ser Ser His Thr Cys Met Pro Leu Ser Lys Met Pro Ile Ser Leu Ala His Gly Ile 20 25 30Ile Arg Ser Thr Val Leu Val Ile Phe Leu Ala Ala Ser Phe Val Gly Asn Ile Val Leu Ala Leu Val Leu Gln Arg Lys Pro Gln Leu Leu Gln Val Thr Asn Arg Phe Ile Phe Asn Leu Leu Val Thr Asp Leu Leu Gln lle Ser Leu Val Ala Pro Trp Val Val Ala Thr Ser Val Pro Leu Phe Trp Pro Leu Asn Ser His Phe Cys Thr Ala Leu Val Ser Leu Thr His Leu Phe Ala Phe Ala Ser Val Asn Thr Ile Val Val Ser Val Asp Arg Tyr Leu Ser Ile Ile His Pro Leu Ser Tyr Pro Ser Lys Met Thr Gln Arg Arg Gly Tyr Leu Leu Leu Tyr Gly Thr Trp Ile Val Ala Ile 145 150 155 Leu Gln Ser Thr Pro Pro Leu Tyr Gly Trp Gly Gln Ala Ala Phe Asp 165 170 175 Glu Arg Asn Ala Leu Cys Ser Met Ile Trp Gly Ala Ser Pro Ser Tyr Thr Ile Leu Ser Val Val Ser Phe Ile Val Ile Pro Leu Ile Val Met 200 Ile Ala Cys Tyr Ser Val Val Phe Cys Ala Ala Arg Arg Gln His Ala Leu Leu Tyr Asn Val Lys Arg His Ser Leu Glu Val Arg Val Lys Asp 225 230 235 240 Cys Val Glu Asn Glu Asp Glu Glu Gly Ala Glu Lys Lys Glu Glu Phe Gln Asp Glu Ser Glu Phe Arg Arg Gln His Glu Gly Glu Val Lys Ala Lys Glu Gly Arg Met Glu Ala Lys Asp Gly Ser Leu Lys Ala Lys Glu Gly Ser Thr Gly Thr Ser Glu Ser Ser Val Glu Ala Arg Gly Ser Glu Glu Val Arg Glu Ser Ser Thr Val Ala Ser Asp Gly Ser Met Glu Gly 310 Lys Glu Gly Ser Thr Lys Val Glu Glu Asn Ser Met Lys Ala Asp Lys 330

Gly	Arg	Thr	Glu 340	Val	Asn	Gln	Cys	Ser 345	Ile	Asp	Leu	Gly	Glu 350	Asp	Asp	
Met	Glu	Phe 355	Gly	Glu	Asp	Asp	Ile 360	Asn	Phe	Ser	Glu	Asp 365	Asp	Val	Glu	
Ala	Val 370	Asn	Ile	Pro	Glu	Ser 375	Leu	Pro	Pro	Ser	Arg 380	Arg	Asn	Ser	Asn	
Ser 385	Asn	Pro	Pro	Leu	Pro 390	Arg	Cys	Tyr	Gln	Cys 395	Lys	Ala	Lys	Lys	Val 400	
Ile	Fhe	Ile	Ile	Ile 405	Phe	Ser	Tyr	Val	Leu 410	Ser	Leu	Gly	Pro	Tyr 415	Cys	
Phe	Leu	Ala	Val 420	Leu	Ala	Val	Trp	Val 425	Asp	Val	Glu	Thr	Gln 430	Val	Pro	
Olm	Trp	Val 435	Ile	Thr	Ile	Ile	Ile 440	Trp	Leu	Phe	Phe	Leu 445	Gln	Cys	Cys	
Ile	H15 450	Pro	Tyr	Val	Tyr	Gly 455	Tyr	Met	His	Lys	Thr 460	Ile	Lys	Lys	Glu	
11e 465	Gln	Asp	Met	Leu	Lys 470	Lys	Phe	Phe	Cys	Lys 475	Glu	Lys	Pro	Pro	Lys 480	
Glu	Asp	Ser	His	Pro 485	Asp	Leu	Pro	Gly	Thr 490	Glu	Gly	Gly	Thr	Glu 495	Gly	
Lys	ile	Val	Pro 500	Ser	Tyr	Asp	Ser	Ala 505	Thr	Phe	Pro					
<210 <211 <211 <211	1: : 2: !	93 29 DNA Arti:	fici	al S	eque:	nce										
	1 - 1	misc Nove			ce											
-:40 gcc		93 ccg	cgcc.	aaga	gg a	agat	tggc									29
-:21 -:21 -:21 -:21	1 · 2 ·	94 29 DNA Arti	fici	al S	eque	nce										
.22 .22	1 •	misc Nove	_fea l Se	ture quen	ce											
	O· aatc	∋4 ttc	ctct	tggc	gc g	gtgg	cggc									29
<21 <21 <21	<u>:</u> >	95 1092 DNA														

<213> Homo	sapiens					
<400> 95 atgggccccg	gcgaggcgct	gctggcgggt	ctcctggtga	tggtactggc	cgtggcgctg	60
ctatccaacg	cactggtgct	gctttgttgc	gcctacagcg	ctgagctccg	cactcgagcc	120
tcaggcgtcc	tectggtgaa	tctgtcgctg	ggccacctgc	tgctggcggc	gctggacatg	180
cccttcacgc	tgctcggtgt	gatgcgcggg	cggacaccgt	cggcgcccgg	cgcatgccaa	240
gtcattggct	tcctggacac	cttcctggcg	tccaacgcgg	cgctgagcgt	ggcggcgctg	300
agcgcagacc	agtggctggc	agtgggcttc	ccactgcgct	acgccggacg	cctgcgaccg	360
cgctatgccg	gcctgctgct	gggctgtgcc	tggggacagt	cgctggcctt	ctcaggcgct	420
gcacttggct	gctcgtggct	tggctacagc	agcgccttcg	cgtcctgttc	gctgcgcctg	480
ccgcccgagc	ctgagcgtcc	gcgcttcgca	gccttcaccg	ccacgctcca	tgccgtgggc	540
ttcgtgctgc	cgctggcggt	gctctgcctc	acctcgctcc	aggtgcaccg	ggtggcacgc	600
agccactgcc	agcgcatgga	caccgtcacc	atgaaggcgc	tcgcgctgct	cgccgacctg	660
caccccagtg	tgcggcagcg	ctgcctcatc	cagcagaagc	ggcgccgcca	ccgcgccacc	720
aggaagattg	gcattgctat	tgcgaccttc	ctcatctgct	ttgccccgta	tgtcatgacc	780
aggctggcgg	agctcgtgcc	cttcgtcacc	gtgaacgccc	agaagggcat	cctcagcaag	840
tgcctgacct	acagcaaggc	ggtggccgac	ccgttcacgt	actctctgct	ccgccggccg	900
ttccgccaag	tcctggccgg	catggtgcac	cggctgctga	agagaacccc	gcgcccagca	960
tccacccatg	acagctctct	ggatgtggcc	ggcatggtgc	accagctgct	gaagagaacc	1020
ccgcgcccag	cgtccaccca	caacggctct	gtggacacag	agaatgattc	ctgcctgcag	1080
cagacacact	ga					1092
<210> 96						

<210> 96 <211> 363 <212> PRT <213> Homo sapiens

<400> 96

Met Gly Pro Gly Glu Ala Leu Leu Ala Gly Leu Leu Val Met Val Leu 1 5 10 15

Ala Val Ala Leu Leu Ser Asn Ala Leu Val Leu Leu Cys Cys Ala Tyr 20 25 30

Ser Ala Glu Leu Arg Thr Arg Ala Ser Gly Val Leu Leu Val Asn Leu

Ser Leu Gly His Leu Leu Leu Ala Ala Leu Asp Met Pro Phe Thr Leu

Leu Gly Val Met Arg Gly Arg Thr Pro Ser Ala Pro Gly Ala Cys Gln 65 70 75 80

Val Ile Gly Phe Leu Asp Thr Phe Leu Ala Ser Asn Ala Ala Leu Ser Page 57

PCT/US00/31509 WO 01/36471

				85					90					95	
Val	Ala	Ala	Leu 100	Ser	Ala	Asp	Gln	Trp 105	Leu	Ala	Val	Gly	Phe 110	Pro	Leu
Arg	Tyr	Ala 115	31 <i>y</i>	Arg	Leu	Arg	Pro 120	Arg	Tyr	Ala	Gly	Leu 125	Leu	Leu	Gly
Cys	Ala 130	Trp	317	Gln	Ser	Leu 135	Ala	Phe	Ser	Gly	Ala 140	Ala	Leu	Gly	Cys
Ser 145	Trp	Leu	Gly	Tyr	Ser 150	Ser	Ala	Phe	Ala	Ser 155	Cys	Ser	Leu	Arg	Leu 160
Pro	Pro	Glu	Pro	Glu 165	Arg	Pro	Arg	Phe	Ala 170	Ala	Phe	Thr	Ala	Thr 175	Leu
His	Ala	Val	Gly 180	Phe	Val	Leu	Pro	Leu 185	Ala	Val	Leu	Cys	Leu 190	Thr	Ser
Leu	Gln	Val 195	His	Arg	Val	Ala	Arg 200	Ser	His	Суѕ	Gln	Arg 205	Met	Asp	Thr
Val	Thr 210	Met	Lys	Ala	Leu	Ala 215	Leu	Leu	Ala	Asp	Leu 220	His	Pro	Ser	Val
Arg 225	Gln	Arg	Cys	Leu	Ile 230	Gln	Gln	Lys	Arg	Arg 235	Arg	His	Arg	Ala	Thr 240
Arg	Lys	Ile	Gly	Ile 245	Ala	Ile	Ala	Thr	Phe 250	Leu	Ile	Cys	Phe	Ala 255	Pro
Tyr	Val	Met	Thr 260	Arg	Leu	Ala	Glu	Leu 265	Val	Pro	Phe	Val	Thr 270	Val	Asn
Ala	Gln	Lys 275	Gly	Ile	Leu	Ser	Lys 280	Cys	Leu	Thr	Tyr	Ser 285	Lys	Ala	Val
Ala	Asp 290	Pro	Phe	Thr	Tyr	Ser 295	Leu	Leu	Arg	Arg	Pro 300	Phe	Arg	Gln	Val
Leu 305	Ala	Gly	Met	Val	His 310	Arg	Leu	Leu	Lys	Arg 315	Thr	Pro	Arg	Pro	Ala 320
Ser	Thr	His	Asp	Ser 325	Ser	Leu	Asp	Val	Ala 330	Gly	Met	Val	His	Gln 335	Leu
Leu	Lys	Arg	Thr 340		Arg	Pro	Ala	Ser 345	Thr	His	Asn	Gly	Ser 350	Val	Asp
Thr	Glu	Asn 355	Asp	Ser	Cys	Leu	Gln 360	Gln	Thr	His					
<21 <21 <21 <21	1> 2>	97 34 DNA Arti	fici	al S	eque	nce									

<d20>
<221> misc_feature
<223> Novel Sequence

<400> 97

gatetetaga atggagteet cacceateee ceag

34

<210>	98						
<211> <212>	36 DNA						
<213>	Arti	ficial Sequ	ience				
		_feature l Sequence					
		•					
<400>	98						
gatogat	atc	cgtgactcca	gccggggtga	ggcggc			36
	- 0						
- 2102 - 211 -	99 2510						
+2.2> <2.3>	CNA	sapiens ar	nd Rat				
		Saprens a.	ia kat				
<400> utggagt	99 CCt	cacccatccc	ccagtcatca	gggaactctt	ccactttggg	gagggtccct	€0
caaaccc	caq	gtccctctac	tgccagtggg	gtcccggagg	tggggctacg	ggatgttgct	120
			cttcatgctc				180
			cgccaagacg				240
							300
			gctggctgcc				
agetetg	iccc	tctttgacca	cgccctcttt	ggggaggtgg	cctgccgcct	ctacttgttt	360
ctgagcg	gtgt	gctttgtcag	cctggccatc	ctctcggtgt	cagccatcaa	tgtggagcgc	420
tactatt	acg	tagtccaccc	catgcgctac	gaggtgcgca	tgacgctggg	gctggtggcc	480
tetgtge	tgg	tgggtgtgtg	ggtgaaggcc	ttggccatgg	cttctgtgcc	agtgttggga	540
agggtot	cct	gggaggaagg	agctcccagt	gtccccccag	gctgttcact	ccagtggagc	600
cacagto	gcct	actgccagct	ttttgtggtg	gtctttgctg	tcctttactt	tctgttgccc	660
ctgctcc	ctca	tacttgtggt	ctactgcagc	atgttccgag	tggcccgcgt	ggctgccatg	720
cagcaco	gggc	cgctgcccac	gtggatggag	acaccccggc	aacgctccga	atctctcagc	780
agccgct	cca	cgatggtcac	cagctcgggg	gccccccaga	ccaccccaca	ccggacgttt	840
gggggag	ggga	aagcagcagt	ggttctcctg	gctgtggggg	gacagttcct	gctctgttgg	900
ttgccct	tact	tctctttcca	cctctatgtt	gccctgagtg	ctcagcccat	ttcaactggg	960
caggtg	gaga	gtgtggtcac	ctggattggc	tacttttgct	tcacttccaa	ccctttcttc	1020
tatggat	tgtc	tcaaccggca	gatccggggg	gagctcagca	agcagtttgt	ctgcttcttc	1080
aagccaq	gctc	cagaggagga	gctgaggctg	cctagccggg	agggctccat	tgaggagaac	1140
ttcctg	cagt	tccttcaggg	gactggctgt	ccttctgagt	cctgggtttc	ccgaccccta	1200
cccagc	ccca	agcaggagcc	acctgctgtt	gactttcgaa	tcccaggcca	gatagctgag	1260
						agacagctac	1320
J J. T	,	, , , , , , , , , , , , , , , , , , ,			Page 59	-	

PCT/US00/31509 WO 01/36471

ctccgtcctg	ccgcctcacc	ccggctggag	tcagcgatat	ctgcagaatt	ccaccacact	1380
ggactagtgg	atccgagctc	ggtaccaagc	ttgggctgca	ggtcgatggg	ctgcctcggc	1440
aacagtaaga	ccgaggacca	gcgcaacgag	gagaaggcgc	agcgcgaggc	caacaaaaag	1500
atcgagaagc	agctgcagaa	ggacaagcag	gtctaccggg	ccacgcaccg	cctgctgctg	1560
ctgggtgctg	gagagtctgg	caaaagcacc	attgtgaagc	agatgaggat	cctacatgtt	1620
aatgggttta	acggagaggg	cggcgaagag	gacccgcagg	ctgcaaggag	caacagcgat	1680
ggtgagaagg	ccaccaaagt	gcaggacatc	aaaaacaacc	tgaaggaggc	cattgaaacc	1740
attgtggccg	ccatgagcaa	cctggtgccc	cccgtggagc	tggccaaccc	tgagaaccag	1800
ttcagagtgg	actacattct	gagcgtgatg	aacgtgccaa	actttgactt	cccacctgaa	1860
ttctatgagc	atgccaaggc	tctgtgggag	gatgagggag	ttcgtgcctg	ctacgagcgc	1920
tccaacgagt	accagctgat	cgactgtgcc	cagtacttcc	tggacaagat	tgatgtgatc	1980
aagcaggccg	actacgtgcc	aagtgaccag	gacctgcttc	gctgccgcgt	cctgacctct	2040
ggaatctttg	agaccaagtt	ccaggtggac	aaagtcaact	tccacatgtt	cgatgtgggc	2100
ggccagcgcg	atgaacgccg	caagtggatc	cagtgcttca	atgatgtgac	tgccatcatc	2160
ttcgtggtgg	ccagcagcag	ctacaacatg	gtcatccggg	aggacaacca	gaccaaccgt	2220
ctgcaggagg	ctctgaacct	cttcaagagc	atctggaaca	acagatggct	gcgtaccatc	2280
tctgtgatcc	tcttcctcaa	caagcaagat	ctgcttgctg	agaaggtcct	cgctgggaaa	2340
tcgaagattg	aggactactt	tccagagttc	gctcgctaca	ccactcctga	ggatgcgact	2400
cccgagcccg	gagaggaccc	acgcgtgacc	cgggccaagt	acttcatccg	ggatgagttt	2460
ctgagaatca	gcactgctag	tggagatgga	cgtcactact	gctaccctca	ctttacctgc	2520
gccgtggaca	ctgagaacat	ccgccgtgtc	ttcaacgact	gccgtgacat	catccagcgc	2580
atgcatcttc	gccaatacga	gctgctctaa				2610

<210> 100 <211> 869 <212> PRT <213> Homo sapiens and Rat

<400> 100

Met Glu Ser Ser Pro Ile Pro Gln Ser Ser Gly Asn Ser Ser Thr Leu 1 5 10 15

Glu Val Gly Leu Arg Asp Val Ala Ser Glu Ser Val Ala Leu Phe Phe 35

Met Leu Leu Asp Leu Thr Ala Val Ala Gly Asn Ala Ala Val Met 50 55

Ala Val Ile Ala Lys Thr Pro Ala Leu Arg Lys Phe Val Phe Val Phe 65 70 75 80 His Leu Cys Leu Val Asp Leu Leu Ala Ala Leu Thr Leu Met Pro Leu 85 90 95 Ala Met Leu Ser Ser Ala Leu Phe Asp His Ala Leu Phe Gly Glu 100 105 110Val Ala Cys Arg Leu Tyr Leu Phe Leu Ser Val Cys Phe Val Ser Leu 115 120 125 Ala Ile Leu Ser Val Ser Ala Ile Asn Val Glu Arg Tyr Tyr Tyr Val Val His Pro Met Arg Tyr Glu Val Arg Met Thr Leu Gly Leu Val Ala 145 150155 Ser Val Leu Val Gly Val Trp Val Lys Ala Leu Ala Met Ala Ser Val 165 170 175 Pro Gly Cys Ser Leu Gln Trp Ser His Ser Ala Tyr Cys Gln Leu Phe Val Val Phe Ala Val Leu Tyr Phe Leu Leu Pro Leu Leu Leu Ile Leu Val Val Tyr Cys Ser Met Phe Arg Val Ala Arg Val Ala Ala Met Gln His Gly Pro Leu Pro Thr Trp Met Glu Thr Pro Arg Gln Arg Ser Glu Ser Leu Ser Ser Arg Ser Thr Met Val Thr Ser Ser Gly Ala Pro Gln Thr Thr Pro His Arg Thr Phe Gly Gly Gly Lys Ala Ala Val Val Leu Leu Ala Val Gly Gly Gln Phe Leu Leu Cys Trp Leu Pro Tyr Phe Ser Phe His Leu Tyr Val Ala Leu Ser Ala Gln Pro Ile Ser Thr Gly Gln Val Glu Ser Val Val Thr Trp Ile Gly Tyr Phe Cys Phe Thr Ser 330 Asn Pro Phe Phe Tyr Gly Cys Leu Asn Arg Gln Ile Arg Gly Glu Leu Ser Lys Gln Phe Val Cys Phe Phe Lys Pro Ala Pro Glu Glu Glu Leu Arg Leu Pro Ser Arg Glu Gly Ser Ile Glu Glu Asn Phe Leu Gln Phe Leu Gln Gly Thr Gly Cys Pro Ser Glu Ser Trp Val Ser Arg Pro Leu Pro Ser Pro Lys Gln Glu Pro Pro Ala Val Asp Phe Arg Ile Pro Gly

Gln Ile Ala Glu Glu Thr Ser Glu Phe Leu Glu Gln Gln Leu Thr Ser Asp Ile Ile Met Ser Asp Ser Tyr Leu Arg Pro Ala Ala Ser Pro Arg Leu Glu Ser Ala Ile Ser Ala Glu Phe His His Thr Gly Leu Val Asp Pro Ser Ser Val Pro Ser Leu Gly Cys Arg Ser Met Gly Cys Leu Gly Asn Ser Lys Thr Glu Asp Gln Arg Asn Glu Glu Lys Ala Gln Arg Glu Ala Asn Lys Lys Ile Glu Lys Gln Leu Gln Lys Asp Lys Gln Val Tyr Arg Ala Thr His Arg Leu Leu Leu Gly Ala Gly Glu Ser Gly Lys Ser Thr Ile Val Lys Gln Met Arg Ile Leu His Val Asn Gly Phe Asn Gly Glu Gly Glu Glu Asp Pro Gln Ala Ala Arg Ser Asn Ser Asp Gly Glu Lys Ala Thr Lys Val Gln Asp Ile Lys Asn Asn Leu Lys Glu Ala Ile Glu Thr Ile Val Ala Ala Met Ser Asn Leu Val Pro Pro Val Glu Leu Ala Asn Pro Glu Asn Gln Phe Arg Val Asp Tyr Ile Leu Ser 600 Val Met Asn Val Pro Asn Phe Asp Phe Pro Pro Glu Phe Tyr Glu His Ala Lys Ala Leu Trp Glu Asp Glu Gly Val Arg Ala Cys Tyr Glu Arg Ser Asn Glu Tyr Gln Leu Ile Asp Cys Ala Gln Tyr Phe Leu Asp Lys Ile Asp Val Ile Lys Gln Ala Asp Tyr Val Pro Ser Asp Gln Asp Leu 660 670 Leu Arg Cys Arg Val Leu Thr Ser Gly Ile Phe Glu Thr Lys Phe Gln Val Asp Lys Val Asn Phe His Met Phe Asp Val Gly Gly Gln Arg Asp Glu Arg Arg Lys Trp Ile Gln Cys Phe Asn Asp Val Thr Ala Ile Ile 705 710715715 Phe Val Val Ala Ser Ser Ser Tyr Asn Met Val Ile Arg Glu Asp Asn Gln Thr Asn Arg Leu Gln Glu Ala Leu Asn Leu Phe Lys Ser Ile Trp Asn Asn Arg Trp Leu Arg Thr Ile Ser Val Ile Leu Phe Leu Asn Lys Page 62

		755					760					765					
Gln	Asp 770	Leu	Leu	Ala	Glu	Lys 775	Val	Leu	Ala	Gly	Lys 780	Ser	Lys	Ile	Glu		
Asp 785	Tyr	Phe	Pro	Glu	Phe 790	Ala	Arg	Tyr	Thr	Thr 795	Pro	Glu	Asp	Ala	Thr 800		
Pro	Glu	Pro	Gly	Glu 805	Asp	Pro	Arg	Val	Thr 810	Arg	Ala	Lys	Tyr	Phe 815	Ile		
Arg	Asp	Glu	Phe 820	Leu	Arg	Ile	Ser	Thr 825	Ala	Ser	Gly	Asp	Gly 830	Arg	His		
Tyr	Cys	Tyr 835	Pro	His	Phe	Thr	Cys 840	Ala	Val	Asp	Thr	Glu 845	Asn	Ile	Arg		
Arg	Val 850	Phe	Asn	Asp	Cys	Arg 855	Asp	Ile	Ile	Gln	Arg 860	Met	His	Leu	Arg		
Gln 865	Tyr	Glu	Leu	Leu													
<210 <211 <211 <211	1 >	101 30 DNA Arti:	ficia	al Se	equei	nce											
<220 <221 <221	1 > r	misc Nove			ce												
<400 tcta		101 tga	cgtc	cacc	tg c	accaa	acago	3									30
<210 <211 <211 <211	1> 2>	102 34 DNA Arti	fici	al S	eque	nce											
<22 <22 <22	1> :	misc Nove			ce												
<40 gat	-	102 cag	gaaa	agta	gc a	gaat	cgtaq	g ga	ag								34
<21 <21 <21 <21	1> 2>	103 2781 DNA Homo		iens	and	Rat											
<40		103 cca	ccta	cacc	aa c	agca	caca	с фа	gagt	aaca	gca	gcca	cac	atac	atgcco	5	60
_	_		_												gttato		120
															aagcc		180
															ctgcaq		240
- >	- 5 -		,,-	_		-							-	-			

atttcgctcg	tggccccctg	ggtggtggcc	acctctgtgc	ctctcttctg	gcccctcaac	300
agccacttct	gcacggccct	ggttagcctc	acccacctgt	tegeettege	cagcgtcaac	360
accattgtcg	tggtgtcagt	ggatcgctac	ttgtccatca	tccaccctct	ctcctacccg	420
tccaagatga	cccagcgccg	cggttacctg	ctcctctatg	gcacctggat	tgtggccatc	480
ctgcagagca	ctcctccact	ctacggctgg	ggccaggctg	cctttgatga	gcgcaatgct	540
ctctgctcca	tgatctgggg	ggccagcccc	agctacacta	ttctcagcgt	ggtgtccttc	600
atcgtcattc	cactgattgt	catgattgcc	tgctactccg	tggtgttctg	tgcagcccgg	660
aggcagcatg	ctctgctgta	caatgtcaag	agacacagct	tggaagtgcg	agtcaaggac	720
tgtgtggaga	atgaggatga	agagggagca	gagaagaagg	aggagttcca	ggatgagagt	780
gagtttcgcc	gccagcatga	aggtgaggtc	aaggccaagg	agggcagaat	ggaagccaag	940
gacggcagcc	tgaaggccaa	ggaaggaagc	acggggacca	gtgagagtag	tgtagaggcc	900
aggggcagcg	aggaggtcag	agagagcagc	acggtggcca	gcgacggcag	catggagggt	960
aaggaaggca	gcaccaaagt	tgaggagaac	agcatgaagg	cagacaaggg	tcgcacagag	1320
gtcaaccagt	gcagcattga	cttgggtgaa	gatgacatgg	agtttggtga	agacgacatc	1080
aatttcagtg	aggatgacgt	cgaggcagtg	aacatcccgg	agagcctccc	acccagtcgt	1140
cgtaacagca	acagcaaccc	tcctctgccc	aggtgctacc	agtgcaaagc	tgctaaagtg	1200
atcttcatca	tcattttctc	ctatgtgcta	tccctggggc	cctactgctt	tttagcagtc	1260
ctggccgtgt	gggtggatgt	cgaaacccag	gtaccccagt	gggtgatcac	cataatcatc	1320
tggcttttct	tcctgcagtg	ctgcatccac	ccctatgtct	atggctacat	gcacaagacc	1380
attaagaagg	aaatccagga	catgctgaag	aagttcttct	gcaaggaaaa	gcccccgaaa	1440
gaagatagcc	acccagacct	gcccggaaca	gagggtggga	ctgaaggcaa	gattgtccct	1500
tcctacgatt	ctgctacttt	tcctgcgata	tctgcagaat	tccaccacac	tggactagtg	1560
gateegaget	cggtaccaag	cttgggctgc	aggtcgatgg	gctgcctcgg	caacagtaag	1620
accgaggacc	agcgcaacga	ggagaaggcg	cagcgcgagg	ccaacaaaaa	gatcgagaag	1680
cagctgcaga	aggacaagca	ggtctaccgg	gccacgcacc	gcctgctgct	gctgggtgct	1740
ggagagtctg	gcaaaagcac	cattgtgaag	cagatgagga	tcctacatgt	taatgggttt	1800
aacggagagg	gcggcgaaga	ggacccgcag	gctgcaagga	gcaacagcga	tggtgagaag	1860
gccaccaaag	tgcaggacat	caaaaacaac	ctgaaggagg	ccattgaaac	cattgtggcc	1920
		ccccgtggag				1980
		gaacgtgcca				2040
		ggatgaggga				2100
		ccagtacttc				2160
gactacgtgc	caagtgacca	ggacctgctt	cgctgccgcg		tggaatcttt	2220
				Page 64		

gagaccaagt	tccaggtgga	caaagtcaac	ttccacatgt	togatgtggg	cggccagcgc	2290
gatgaacgcc	gcaagtggat	ccagtgcttc	aatgatgtga	ctgccatcat	cttcgtggtg	2340
gccagcagca	gctacaacat	ggtcatccgg	gaggacaacc	agaccaaccg	tctgcaggag	2400
gctctgaacc	tottcaagag	catctggaac	aacagatggc	tgcgtaccat	ctctgtgatc	2460
ctcttcctca	acaagcaaga	tctgcttgct	gagaaggtcc	tcgctgggaa	atcgaagatt	2520
gaggactact	ttccagagtt	cgctcgctac	accactcctg	aggatgcgac	tcccgagccc	2580
ggagaggacc	cacgcgtgac	ccgggccaag	tacttcatcc	gggatgagtt	tctgagaatc	2640
agcactgcta	gtggagatgg	acgtcactac	tgctaccctc	actttacctg	cgccgtggac	2700
actgagaaca	tccgccgtgt	cttcaacgac	tgccgtgaca	tcatccagcg	catgcatctt	2760
cgccaatacg	agctgctcta	a				2781

<210> 104 <211> 926 <212> PRT

<213> Homo sapiens and Rat

<400> 104

Met Thr Ser Thr Cys Thr Asn Ser Thr Arg Glu Ser Asn Ser Ser His 1 $$ 5 $$ 10 $$ 15

Thr Cys Met Pro Leu Ser Lys Met Pro Ile Ser Leu Ala His Gly Ile

Ile Arg Ser Thr Val Leu Val Ile Phe Leu Ala Ala Ser Phe Val Gly

Asn Ile Val Leu Ala Leu Val Leu Gln Arg Lys Pro Gln Leu Leu Gln

Val Thr Asn Arg Phe Ile Phe Asn Leu Leu Val Thr Asp Leu Leu Gln

Ile Ser Leu Val Ala Pro Trp Val Val Ala Thr Ser Val Pro Leu Phe

Trp Pro Leu Asn Ser His Phe Cys Thr Ala Leu Val Ser Leu Thr His

Leu Phe Ala Phe Ala Ser Val Asn Thr Ile Val Val Ser Val Asp 120

Arg Tyr Leu Ser Ile Ile His Pro Leu Ser Tyr Pro Ser Lys Met Thr 130 140

Gln Arg Arg Gly Tyr Leu Leu Leu Tyr Gly Thr Trp Ile Val Ala Ile 145 150 155 160

Leu Gln Ser Thr Pro Pro Leu Tyr Gly Trp Gly Gln Ala Ala Phe Asp 165

Glu Arg Asn Ala Leu Cys Ser Met Ile Trp Gly Ala Ser Pro Ser Tyr 185

Thr Ile Leu Ser Val Val Ser Phe Ile Val Ile Pro Leu Ile Val Met 200 Ile Ala Cys Tyr Ser Val Val Phe Cys Ala Ala Arg Arg Gln His Ala Leu Leu Tyr Asn Val Lys Arg His Ser Leu Glu Val Arg Val Lys Asp Cys Val Glu Asn Glu Asp Glu Glu Gly Ala Glu Lys Lys Glu Glu Phe Gln Asp Glu Ser Glu Phe Arg Arg Gln His Glu Gly Glu Val Lys Ala Lys Glu Gly Arg Met Glu Ala Lys Asp Gly Ser Leu Lys Ala Lys Glu Gly Ser Thr Gly Thr Ser Glu Ser Ser Val Glu Ala Arg Gly Ser Glu Glu Val Arg Glu Ser Ser Thr Val Ala Ser Asp Gly Ser Met Glu Gly Lys Glu Gly Ser Thr Lys Val Glu Glu Asn Ser Met Lys Ala Asp Lys Gly Arg Thr Glu Val Asn Gln Cys Ser Ile Asp Leu Gly Glu Asp Asp Met Glu Phe Gly Glu Asp Asp Ile Asn Phe Ser Glu Asp Asp Val Glu 360 Ala Val Asn Ile Pro Glu Ser Leu Pro Pro Ser Arg Arg Asn Ser Asn Ser Asn Pro Pro Leu Pro Arg Cys Tyr Gln Cys Lys Ala Ala Lys Val 385 390 395 Ile Phe Ile Ile Ile Phe Ser Tyr Val Leu Ser Leu Gly Pro Tyr Cys Phe Leu Ala Val Leu Ala Val Trp Val Asp Val Glu Thr Gln Val Pro Gln Trp Val Ile Thr Ile Ile Ile Trp Leu Phe Phe Leu Gln Cys Cys Ile His Pro Tyr Val Tyr Gly Tyr Met His Lys Thr Ile Lys Lys Glu Ile Gln Asp Met Leu Lys Lys Phe Phe Cys Lys Glu Lys Pro Pro Lys 465 470 475 480 Glu Asp Ser His Pro Asp Leu Pro Gly Thr Glu Gly Gly Thr Glu Gly Lys Ile Val Pro Ser Tyr Asp Ser Ala Thr Phe Pro Ala Ile Ser Ala Glu Phe His His Thr Gly Leu Val Asp Pro Ser Ser Val Pro Ser Leu Gly Cys Arg Ser Met Gly Cys Leu Gly Asn Ser Lys Thr Glu Asp Gln 530 540 Page 66

Arg Asn Glu Glu Lys Ala Gln Arg Glu Ala Asn Lys Lys Ile Glu Lys Gln Leu Gln Lys Asp Lys Gln Val Tyr Arg Ala Thr His Arg Leu Leu 565 570 575 Leu Leu Gly Ala Gly Glu Ser Gly Lys Ser Thr Ile Val Lys Gln Met Arg Ile Leu His Val Asn Gly Phe Asn Gly Glu Gly Glu Glu Asp 600 Pro Gln Ala Ala Arg Ser Asn Ser Asp Gly Glu Lys Ala Thr Lys Val Gln Asp Ile Lys Asn Asn Leu Lys Glu Ala Ile Glu Thr Ile Val Ala Ala Met Ser Asn Leu Val Pro Pro Val Glu Leu Ala Asn Pro Glu Asn Gln Phe Arg Val Asp Tyr Ile Leu Ser Val Met Asn Val Pro Asn Phe Asp Phe Pro Pro Glu Phe Tyr Glu His Ala Lys Ala Leu Trp Glu Asp Glu Gly Val Arg Ala Cys Tyr Glu Arg Ser Asn Glu Tyr Gln Leu Ile Asp Cys Ala Gln Tyr Phe Leu Asp Lys Ile Asp Val Ile Lys Gln Ala 705 710 715 720 Asp Tyr Val Pro Ser Asp Gln Asp Leu Leu Arg Cys Arg Val Leu Thr 725 730 735Ser Gly Ile Phe Glu Thr Lys Phe Gln Val Asp Lys Val Asn Phe His Met Phe Asp Val Gly Gly Gln Arg Asp Glu Arg Arg Lys Trp Ile Gln 755 760 765 Cys Phe Asn Asp Val Thr Ala Ile Ile Phe Val Val Ala Ser Ser Ser Tyr Asn Met Val Ile Arg Glu Asp Asn Gln Thr Asn Arg Leu Gln Glu 795 Ala Leu Asn Leu Phe Lys Ser Ile Trp Asn Asn Arg Trp Leu Arg Thr Ile Ser Val Ile Leu Phe Leu Asn Lys Gln Asp Leu Leu Ala Glu Lys Val Leu Ala Gly Lys Ser Lys Ile Glu Asp Tyr Phe Pro Glu Phe Ala Arg Tyr Thr Thr Pro Glu Asp Ala Thr Pro Glu Pro Gly Glu Asp Pro Arg Val Thr Arg Ala Lys Tyr Phe Ile Arg Asp Glu Phe Leu Arg Ile 875 Ser Thr Ala Ser Gly Asp Gly Arg His Tyr Cys Tyr Pro His Phe Thr Page 67

				885					890					895		
Cys	Ala	Val	Asp 900	Thr	Glu	Asn	Ile	Arg 905	Arg	Val	Phe	Asn	Asp 910	Cys	Arg	
Asp	Ile	Ile 915	Gln	Arg	Met	His	Leu 920	Arg	Gln	Tyr	Glu	Leu 925	Leu			
<210 •111 <112 •113	.> !>	105 23 DNA Arti:	ficia	al Se	equer	nce										
	.>	misc Nove			ce											
< 400 cuto		105 gcc 4	agcgi	tcct	gc to	cc										23
<210 <211 <212 <213	> }>	106 24 DNA Arti:	ficia	al S	equei	nce										
<220 <221 <221	>	misc Nove			ce											
<400 gota		106 ctg	aagc	cagt	ct t	gtg										24
<pre></pre>	l ·	107 25 DNA Arti	fici	al S	eque	nce										
. 00 . 00 . 00 . 00	1 .•	misc Nove														
< 400 gcao		107	ctga	gcac	ct t	ctcc										25
<pre><.210 <.210 <.210 <.210 </pre>	1 · 2 -	108 26 DNA Arti	fici	al S	eqeu	nce										
< 22 < 22 < 22	1 -	misc Nove														
	0 · ageg	108 gctg	cago	cctg	ıca g	ctgg	ıc									26
<21	O >	109														

<211> <212> <213>	24 ENA Artificial Sequence	
<220> <221> <223>	misc_feature Novel Sequence	
<400> ccagtga	109 atga ctctgtccag cctg	24
<210><211><211><212><213>	110 24 DNA Artificial Sequence	
<pre></pre>	misc_feature Novel Sequence	
400> cagaca	110 cttg gcagggacga ggtg	24
<210><211><211><212><213>	111 26 DNA Artficial Sequence	
	misc_feature Novel Sequence	
<400> cttgtg	111 gtot actgcagcat gttoog	26
<210> <211> <212> <213>	112 25 DNA Artificial Sequence	
<220> <221> <223>	misc_feature Novel Sequence	
<400> catate	112 cctc cgagtgtcca gcggc	25
<210> <211> <212> <213>	113 24 DNA Artificial Sequence	
<220> <221> <223>	misc_feature Novel Sequence	

	113 cott atcatggott coto	24
<211> <212>	114 27 DNA Artificial Sequence	
	misc_feature Novel Sequence	
<400> caagaad	114 cagg totoatotaa gagotoo	27
<210> <211> <212> <213>		
	misc_feature Novel Sequence	
<400> ctctga	115 tgcc atctgctgga ttcctg	26
<211> <212>		
	misc_feature Novel Sequence	
<400> gtagtc	116 cact gaaagtecag tgatec	26
<210><211><211><212><213>	117 24 DNA Artificial Sequence	
<220> <221> <223>	misc_feature Novel Sequence	
<400> tggtgg	117 cgat ggccaacagc gctc	24
<210> <211> <212> <213>	DNA	

000		
<220>	and forthing	
	misc_feature	
- 2232	Novel Sequence	
400>	118	
		24
	119	
<211>		
<112>	Artificial Sequence	
13/	Altificial Sequence	
<220>		
	misc feature	
€223>	Nove Sequence	
	•••	
<400>		23
tedace	tqta tagcagcatc ctc	23
-210>	12C	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
250.		
.220>		
· 2032	misc_feature	
	Novel Sequence	
· 400>	120	
aaggagi	tage agaatggtta gee	23
.010>	101	
·211>		
/212>		
	Artificial Sequence	
· 220>		
	misc_feature	
<223>	Novel Sequence	
<400>	121	
	tgtc agcggtcgtg tgtg	24
,		
<210>	122	
<211>	27	
<212> <213>	DNA Artificial Seguence	
	Artificial Sequence	
<220>		
	misc feature	
	Novel Sequence	
<400>	122	
	= 122 gaag tagaggotgt coatoto	27
	and industrial confirm	

<210>	123	
<211>		
<212>	DND DND	
. 2132	Articial Sequence	
<220>		
	Ties feature	
	misc_feature	
<223>	Novel Sequence	
<400>	1.23	
	ageg cagaceagtg getg	
J J	- 3-3 - 3 - 3 - 3 - 3	
<210>	124	
<211>	24	
<212>	DNA	
	Artificial Sequence	
	•	
<220>		
	misc_feature	
	Novel Sequence	
<400>		
cacggt	gacg aagggcacga gctc	
212.	1.25	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	misc feature	
	Novel Sequence	
~J/	Novel Sequence	
<400>	125	
	coot gocaggaago atgg	
- ,	, , , , , , , , , , , , , , , , , , ,	
<210>	126	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	misc_feature	
<223>	Novel Sequence	
1005	1.26	
	126	
ccaggt	aggt gtgcagcaca atggc	
. 2105	127	
<210><211>		
<211>	25 DND	
	DNA	
. 213>	Artificial Sequence	
<220>		
<221>	misc feature	
<223>	Novel Sequence	
~2232	Movel Seduence	

<400>	127	
	aaca gggctggttg gcaac	2
,		
<210>		
<211>	25	
<112>	DNA	
	Artificial Sequence	
	•	
<220>		
<221>	mlsc_feature	
<223>	Novel Sequence	
<400>		,
atcatg	tota gactcatggt gatco	2
Z2105	128	
	129	
<211>	6 BB#	
<212>		
S2132	Artificial Sequence	
<2000>		
	misc feature	
	Novel Sequence	
12237	novel bequence	
<400>	129	
Thr Le	u Glu Ser Ile Met	
1	5	
	130	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	misc_feature	
<223>	Novel Sequence	
<400>	130	
~400 <i>></i>	130	
Glu Tu	r Asn Leu Val	
1	5	
•	-	
<210>	131	
<211>	5	
<212>		
<213>	Artificial Sequence	
-	•	
<220>		
<221>	misc feature	
<223>	Novel Sequence	
-	•	
<400>	131	
	ys Gly Leu Phe	
1	5	
<210>	133	
< 2.1 U.S.	1.3.7	

```
<211> 36
<212> PRT
<213> Artificial Sequence
<220>
<221> misc_feature
<223> Novel Sequence
<40C> 132
Gly Ala Thr Cys Ala Ala Gly Cys Thr Thr Cys Cys Ala Thr Gly Gly
 Cys Gly Thr Gly Cys Thr Gly Cys Cys Thr Gly Ala Gly Cys Gly Ala 25
 Gly Gly Ala Gly
 <210> 133
<211> 53
<212> PRT
<213> Artificial Sequence
  <220>
  <221> misc_feature
<223> Novel Sequence
  <400> 133
  Cys Ala Gly Gly Cys Cys Gly Cys Ala Gly Thr Cys Cys Thr Thr Cys 25
  Ala Gly Gly Thr Thr Cys Ala Gly Cys Thr Gly Cys Ala Gly Gly Ala 45 \phantom{-}
   Thr Gly Gly Thr Gly
       50
```

		1