Systèmes dynamiques

Feuille d'exercices 5

Exercice 1. Unique ergodicité et densité des orbites

Soit (X, d) un espace métrique compact et $f: X \to X$ une transformation continue. On suppose qu'il existe une unique mesure borélienne de probabilité invariante μ et que $\mu(A) > 0$ pour tout ouvert non vide A. Montrer que toutes les orbites de f sont denses dans X.

Exercice 2. Critére de Weyl et équirépartition

Une suite de réels $(x_n)_{n\in\mathbb{N}}$ est dite équirépartie modulo 1 si, pour tout intervalle [a,b] de [0,1], on a

$$\lim_{n \to \infty} \frac{1}{n} \operatorname{Card} \{k \le n : \{x_k\} \in [a, b]\} = b - a,$$

où $\{x\} = x - |x|$ désigne la partie décimale de x.

- 1. Montrer que la rotation du cercle $T_{\alpha}: \mathbf{T} \to \mathbf{T}$ est uniquement ergodique si et seulement si $\alpha \in \mathbf{R} \setminus \mathbf{Q}$.
- 2. En déduire que la suite $(n\alpha)_{n\in\mathbb{N}}$ avec α irrationnel est équirépartie modulo 1.

Il existe une caractérisation pratique de l'équirépartition: le critère de Weyl.

Théorème. Une suite de réel est équirépartie modulo 1 si et seulement si, pour tout m dans \mathbf{Z}^* , on a

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} e^{2i\pi m x_k} = 0.$$

- 1. Soit $\mathcal{F}_b([0,1],\mathbf{C})$ l'espace vectoriel des fonctions bornées sur [0,1], muni de la norme $\|\varphi\|_{\infty} = \sup_{t \in [0,1]} |\varphi(t)|$, et E le sous-espace vectoriel foré des fonctions φ telles $\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi(x_k) = \int_0^1 \varphi(t) dt$. Montrer que E est fermé dans $\mathcal{F}_b([0,1],\mathbf{C})$.
- 2. Prouver le critère de Weyl et retouver le résultat d'équirépartition modulo 1 de la suite $(n\alpha)_{n\in\mathbb{N}}$ pour α irrationnel.
- 3. Soit $x \in \{0, \dots, 9\}$. Calculer la limite suivante

$$\frac{1}{n}\operatorname{Card}\{k \le n : \text{ le premier chiffre de } 2^k \text{ est } x\}.$$

Exercice 3. Équirépartition de la suite P(n) dans le tore

1. Soit α un nombre irrationnel. On considère l'homéomorphisme f du tore \mathbf{T}^N donné par

$$f(\theta_1,\ldots,\theta_N)=(\theta_1+\alpha,\theta_2+\theta_1,\ldots,\theta_N+\theta_{N-1}).$$

Montrer que f est uniquement ergodique pour la mesure de Haar.

2. Soit P un polynôme non constant de degré N à coefficients réels et dont le coefficient dominant est irrationnel. Posons $P_N = P$ et pour j = 0, ..., N - 1, $P_j(X) = P_{j+1}(X+1) - P_{j+1}(X)$. En considérant la suite définie pour $n \in \mathbb{N}$ par

$$\theta_n = (P_1(n), \dots, P_N(n)),$$

montrer que la suite P(n) est équirépartie modulo 1.

Exercice 4. Théorème du point fixe de Markov-Kakutani

Le but de cet exercice est de démontrer le théorème de point fixe suivant:

Théorème. Soit K un compact convexe non vide d'un espace vectoriel topologique localement convexe X and soit \mathcal{F} une famille de fonctions affines continues de K dans lui-même qui commutent deux à deux. Alors il existe $x_0 \in K$ tel que $T(x_0) = x_0$ pour tout $T \in \mathcal{F}$.

1. Pour $T \in \mathcal{F}$ et $n \geq 1$, on définit $T^{(n)}: K \to K$ par

$$T^{(n)} = \frac{1}{n} \sum_{k=0}^{n-1} T^k.$$

On s'intéresse à l'ensemble $\mathcal{K} = \{T^{(n)}(K): T \in \mathcal{F}, n \geq 1\}$. Montrer que l'ensemble $\bigcap \{B: B \in \mathcal{K}\}$ est non vide.

- 2. En déduire le théorème de Markov-Kakutani.
- 3. Soit G un groupe abélien agissant continûment sur un espace compact métrisable X. Montrer qu'il existe une mesure de probabilité G-invariante sur X.