

Deep Learning:

Neural Network Architecture & Training

Ozan Özdenizci

Institute of Theoretical Computer Science ozan.ozdenizci@igi.tugraz.at

Deep Learning VO - WS 23/24

Lecture 3 - October 16th, 2023

Today

- Neural Network Architecture
- Neural Network Training
 - Error (Loss) Functions
 - Gradient Descent

General Network Description

- A **neural network** with D inputs and K outputs is defined by a directed graph G=(V,E) with:
 - ullet nodes (neurons and inputs) V
 - ullet edges (connections) E
- a weight w_{ji} for each edge $(i, j) \in E$,
- ullet an activation function h_i for each non-input node j,
- a list $OUT = \langle out_1, ..., out_K \rangle$ defining K output nodes.

Network function

• The output of node i is given by:

$$z_i = \begin{cases} x_i, & \text{if } i \in \{0, ..., D\} \\ h_i(a_i), & \text{otherwise} \end{cases}$$

with **activations** $a_i = \sum_{j \in pre(i)} w_{ij} z_j$ and mappings:

pre: $pre(i) = \{j | (j, i) \in E\}$ is the set of neurons which **connect to** neuron i.

post: $post(i) = \{j | (i,j) \in E\}$ is the set of neurons which neuron i connects to.

Then, the kth output of the network is given by $y_k = z_{out_k}$.

Feedforward networks

- Any network can be described in this way.
- The network function $\mathbf{y}(\mathbf{x}, \mathbf{w})$ can be defined recursively.
- We consider here network graphs without loops, i.e., "feedforward networks".
- Such networks are often called Multilayer
 Perceptrons although the neural units are usually not perceptrons.

- In a **layered network**, the nodes can be divided into layers, such that:
 - Input nodes are in layer 0 (input layer)
 - A node in layer i has outgoing edges only to nodes in layer i+1 for all i.

Network depth: The number of layers of a network excluding the input layer.

Hidden units: Neurons which are neither input nor output units.

Hidden layers: Layers containing hidden units (for layered network).

- Let M_i be the number of neurons in layer i.
 - $M_0 = D$ (inputs)
 - $M_d = K$ (outputs), d is the network depth.
- In a layered network, each layer i>0 computes a function $f^{(i)}:\mathbb{R}^{M_{i-1}}\to\mathbb{R}^{M_i}$.
- It applies the activation function $h^{(i)}$ component-wise to an affine transformation of the previous layer output:

$$f^{(i)}(\mathbf{x}) = h^{(i)} \left(W^{(i)} f^{(i-1)}(\mathbf{x}) + \mathbf{b}^{(i)} \right)$$
 where $f^{(0)}(\mathbf{x}) = \mathbf{x}$

- Let M_i be the number of neurons in layer i.
 - $M_0 = D$ (inputs)
 - $M_d = K$ (outputs), d is the network depth.
- In a layered network, each layer i>0 computes a function $f^{(i)}:\mathbb{R}^{M_{i-1}}\to\mathbb{R}^{M_i}$.
- It applies the activation function $h^{(i)}$ component-wise to an affine transformation of the previous layer output:

$$f^{(i)}(\mathbf{x}) = h^{(i)} \left(W^{(i)} f^{(i-1)}(\mathbf{x}) + \mathbf{b}^{(i)} \right)$$
 where $f^{(0)}(\mathbf{x}) = \mathbf{x}$

- Let M_i be the number of neurons in layer i.
 - $M_0 = D$ (inputs)
 - $M_d = K$ (outputs), d is the network depth.
- In a layered network, each layer i>0 computes a function $f^{(i)}:\mathbb{R}^{M_{i-1}}\to\mathbb{R}^{M_i}$.
- It applies the activation function $h^{(i)}$ component-wise to an affine transformation of the previous layer output:

$$f^{(i)}(\mathbf{x}) = h^{(i)} \left(W^{(i)} f^{(i-1)}(\mathbf{x}) + \mathbf{b}^{(i)} \right)$$
 where $f^{(0)}(\mathbf{x}) = \mathbf{x}$

Example: A network with three layers computes:

$$y(\mathbf{x}) = f^{(3)}(\mathbf{x}) = h^{(3)} \left(W^{(3)} h^{(2)} \left(W^{(2)} h^{(1)} (W^{(1)} \mathbf{x} + \mathbf{b}^{(1)}) + \mathbf{b}^{(2)} \right) + \mathbf{b}^{(3)} \right)$$

Output Activation functions

The choice of output activation functions depends on the nature of the problem:

• Linear for regression problems.

$$h(a) = a$$

• Sigmoid for (possibly multiple) binary classification problems.

$$h(a) = \frac{1}{1 + \exp(-a)}$$

• Softmax for multiclass classification problems.

$$h_k(a_1, ..., a_K) = \frac{\exp(a_k)}{\sum_{i} \exp(a_i)}$$

Hidden Unit Activation functions

• Sigmoidal Units: Traditional non-linear activations. Discouraged by recent research.

Logsig:
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$
 or Hyperbolic tangent (tanh): $h(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ Note that: $\tanh(x) = 2\sigma(2x) - 1$

- Rectified Linear Unit (ReLU): Excellent default choice. $h(x) = \max\{0, x\}$
- Leaky ReLU: $h(x) = \max\{\alpha x, x\}$ for small α (e.g., $\alpha = 0.1$).
- Exponential Linear Unit (ELU): $h(x) = \begin{cases} x, & x \ge 0 \\ \alpha(e^x 1), & x < 0 \end{cases}$

Hidden Unit Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

Hyperbolic Tangent (tanh)

$$h(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Rectified Linear Unit (ReLU)

$$h(x) = \max\{0, x\}$$

Leaky ReLU

$$h(x) = \max\{\alpha x, x\}$$

Exponential Linear Unit (ELU)

$$h(x) = \max\{\alpha x, x\} \qquad h(x) = \begin{cases} x, & x \ge 0\\ \alpha(e^x - 1), & x < 0 \end{cases}$$

Hidden Unit Activation functions

• Sigmoidal Units: Traditional non-linear activations. Discouraged by recent research.

Logsig:
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$
 or Hyperbolic tangent (tanh): $h(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ Note that: $\tanh(x) = 2\sigma(2x) - 1$

- Rectified Linear Unit (ReLU): Excellent default choice. $h(x) = \max\{0, x\}$
- Leaky ReLU: $h(x) = \max\{\alpha x, x\}$ for small α (e.g., $\alpha = 0.1$).
- Exponential Linear Unit (ELU): $h(x) = \begin{cases} x, & x \ge 0 \\ \alpha(e^x 1), & x < 0 \end{cases}$
- Others: Maxout, Hard tanh: $h(x) = \max\{-1, \min\{1, x\}\}$, Swish: $h(x) = x \sigma(x)$.

Approximation Properties

- Neural networks define a very general class of functions.
- Neural networks are universal approximators:

A two-layer neural network with linear output unit and sigmoidal hidden units can approximate any continuous function on a compact input domain to arbitrary accuracy provided a sufficiently large number of hidden units.

Network with 3 hidden neurons:

blue target function red approximation

——— output of hidden neurons

Hornik, K., Stinchcombe, M., & White, H. (1989)

[&]quot;Multilayer feedforward networks are universal approximators".

Why deep neural networks are preferable?

- A two-layer neural network can approximate any function.
 - However, the number of neurons necessary may be extremely large.
- In many cases, deeper networks can reduce the number of units and improve generalization.
- Using a deep model encodes a general belief that the functions we want to learn involve composition of several simpler functions (multi-step programs).

Summary: Neural Network Architectures

- Neural network architectures can be defined as network graphs.
- For layered networks, we can simplify the definition.
- Many activation functions are possible.
- Neural networks are universal approximators.
- Deep neural networks are preferred.

Today

- Neural Network Architecture
- Neural Network Training
 - ☐ Error (Loss) Functions
 - Gradient Descent

For training we try to minimize a loss function.

- ullet Consider a neural network with D inputs and K outputs.
- ullet We have M training examples.
 - Network inputs: $X = \langle \mathbf{x}^{(1)}, ..., \mathbf{x}^{(M)} \rangle$
 - Target vectors: $T = \langle \mathbf{t}^{(1)}, ..., \mathbf{t}^{(M)} \rangle$.

- The loss functions for different types of problems can be derived from maximum likelihood and assumptions on the data distribution.
- Corresponding output activation functions arise naturally such that the network output can be interpreted as the (mean of the) posterior distribution.

K-dimensional regression

- Activation function: identity
- Data-sample Likelihood: $N(\mathbf{t}^{(m)} | \mathbf{y}(\mathbf{x}^{(m)}), \sigma^2 \mathbf{I})$
- Error function: Sum squared error

$$E(\mathbf{w}) = \frac{1}{2} \sum_{m} ||\mathbf{y}(\mathbf{x}^{(m)}) - \mathbf{t}^{(m)}||^2$$
$$= \frac{1}{2} \sum_{m} \sum_{k} \left(y_k(\mathbf{x}^{(m)}) - t_k^{(m)} \right)^2$$

Binary classification

- Activation function: logistic sigmoid
- Data-sample Likelihood: $\mathbf{y}(\mathbf{x}^{(m)})^{t^{(m)}} (1 \mathbf{y}(\mathbf{x}^{(m)}))^{(1-t^{(m)})}$
- Error function: Cross-entropy error

$$E(\mathbf{w}) = -\sum_{m} \left[t^{(m)} \log y(\mathbf{x}^{(m)}) + (1 - t^{(m)}) \log \left(1 - y(\mathbf{x}^{(m)}) \right) \right]$$

K-class classification

- Activation function: softmax
- Data-sample Likelihood: $\prod_{k} y_k(\mathbf{x}^{(m)})^{t_k^{(m)}}$
- Error function: Cross-entropy error

$$E(\mathbf{w}) = -\sum_{m} \sum_{k} \left[t_k^{(m)} \log y_k(\mathbf{x}^{(m)}) \right]$$

Target vectors are one-hot encodings of the target class:

$$t_k^{(m)} = \begin{cases} 1, & \text{if target class is } k, \\ 0, & \text{otherwise} \end{cases}$$

Today

- Neural Network Architecture
- Neural Network Training
 - Error (Loss) Functions
 - ☐ Gradient Descent

The Gradient

• The error is a **scalar field**:

$$E: \mathbb{R}^D \to \mathbb{R}$$

 ${\cal D}$: number of parameters

• The gradient is a **vector field:**

$$\nabla_{\mathbf{w}}E:\mathbb{R}^D\to\mathbb{R}^D$$

$$\nabla_{\mathbf{w}} E = \begin{pmatrix} \frac{\partial E}{\partial w_1} \\ \vdots \\ \frac{\partial E}{\partial w_D} \end{pmatrix}$$

• $(\nabla_{\mathbf{w}} E)(\mathbf{w}^*)$ points in the direction of the steepest increase of the error at \mathbf{w}^* .

Loss minimization

For training we try to minimize the loss function.

The gradient $\nabla_{\mathbf{w}} E$ provides useful information.

Stationary points: Points \mathbf{w}^* where $\nabla_{\mathbf{w}} E(\mathbf{w}^*) = 0$

- Minima:
 - Global minima: $E(\mathbf{w}^*) \leq E(\mathbf{w})$ for all \mathbf{w} .
 - Local minima: Smaller errors exist.
- Saddle points:

Our task: Find a good local minimum.

Training: Gradient Descent

• The negative gradient

$$-\nabla_{\mathbf{w}} E(\mathbf{w}_{old})$$

at \mathbf{w}_{old} points in the direction where the error **decreases** most strongly.

 We slightly change parameters to reduce error.

$$\mathbf{w}_{new} = \mathbf{w}_{old} - \eta \nabla_{\mathbf{w}} E(\mathbf{w}_{old})$$

 $\eta > 0$ is the **learning rate**.

Batch Gradient Descent

- This follows the true gradient of the error.
- Error function has the form: $E(\mathbf{w}) = \sum_{m=1}^{M} E_m(\mathbf{w})$

 $E_m(\mathbf{w})$ is the error for

the training sample m

• Hence, we have $\nabla_{\mathbf{w}} E(\mathbf{w}) = \sum_{\mathbf{w}} \nabla_{\mathbf{w}} E_m(\mathbf{w})$.

Batch Gradient Descent

```
1 Choose w randomly
2 i ← 0
3 REPEAT
4 w ← w − η(i) ∇wE(w)
5 i ← i+1
6 UNTIL Stopping Criterion met
```

For example in the case of regression with the error function:

$$E(\mathbf{w}) = \sum_{m} \frac{1}{2} ||\mathbf{y}(\mathbf{x}^{(m)}) - \mathbf{t}^{(m)}||^2$$

- This follows the true gradient of the error.
- Error function has the form: $E(\mathbf{w}) = \sum_{m=1}^{M} E_m(\mathbf{w})$
- ullet Hence, we have $\nabla_{\mathbf{w}} E(\mathbf{w}) = \sum_{m} \nabla_{\mathbf{w}} E_m(\mathbf{w}).$

 $E_m(\mathbf{w})$ is the error for the training sample m

A single descent step has time complexity O(M).

M: number of training examples

Mini-batch (Stochastic) Gradient Descent

```
1 Choose w randomly

2 Let B be the set of minibatches

2 i \leftarrow 0

3 REPEAT

4 FOR b in B

4 w \leftarrow w - \eta(i) \nabla_w E(w, b)

5 i \leftarrow i+1

6 UNTIL Stopping Criterion
```

"epoch": one complete pass over the whole training set.

- Divide the training set into **mini-batches** of size M'.
- Approximate the true gradient by the gradient over the mini-batch.
- Here, $E(\mathbf{w}, b)$ denotes the error on mini-batch b.

Mini-batch (Stochastic) Gradient Descent

- Initially, SGD referred to a batch-size of 1.
 i.e., update the weights after every training example.
- Today, mini-batch GD is commonly called SGD.
- For large training sets, batch GD is too slow.
- In SGD, complexity of one update is independent of training set size. Instead, depends on the mini-batch size M'.
- SGD converges faster.
- Gradients within one mini-batch can be computed in parallel (e.g., on GPUs).

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \sum_{m} \nabla_{\mathbf{w}} E_{m}(\mathbf{w})$$

When Gradient Descent struggles

- Local minima: Usually not a problem in neural networks.
 - In high-dimensional spaces, there are many downhill paths.
- Plateaus:
 - Regions of small gradients
 - Gradient scaling techniques help
- Saddle points:
 - They are much more numerous in high-dimensional spaces.
 - Small gradients.
- Ragged error landscapes:
 - Gradients can become very large unstable training.
 - We can clip/rescale large gradients.

Summary: Gradient Descent

- We want to minimize a loss function.
 - But we can only find local minima.
- The loss function is often dictated by the problem-type.
- Training with **gradient descent**

$$\mathbf{w}_{new} = \mathbf{w}_{old} - \eta \nabla_{\mathbf{w}} E(\mathbf{w}_{old})$$

• Mini-batch (stochastic) gradient descent — Much more efficient

Next lecture: How do we compute the gradients in a neural network?

Today

- Meural Network Architecture
- Neural Network Training
 - Error (Loss) Functions
 - Gradient Descent

Questions?