Day02 - Session 3 - Data Visualization using Matplotlib

Topics

1. Matplotlib

Note:

- 1. First Clean the Evironment (Go to "Kernel" Menu --> "Restart & Clean Output"
- 2. To execute the code --> Click on a cell and press cntrl + enter key

Data Visualization

- 1. Graphical representation of information and Data
- 2. Graph, Chart, and Map make it easier to understed the patterns in Data

Matplotlib

Matplotlib is an amazing visualization library in Python for 2D plots of arrays.

To Save image on your Machine

plt.savefig("path\name")

▼ Import matplotlib

```
import matplotlib.pyplot as plt
```

→ 1 Line Plot

▼ 1.1 Plot a Line

```
x_values = [0,1,2,3,4,5]
squares = [0,1,4,9,16,25]
plt.plot(x_values,squares)
plt.savefig("testimage.jpg")
```


▼ 1.2 Plot a Line with Details

```
x = [5,2,7]
y = [2,16,4]

plt.plot(x,y)

plt.title('Info')
plt.ylabel('Y axis')
plt.xlabel('X axis')

plt.show()
```


▼ 1.3 Plot Multiple Lines

```
x = [1,2,3,4,5]
y = [50,40,70,80,20]
v2 = [80.20.20.50.601
```

```
y3 = [70,20,60,40,60]

y4 = [80,20,20,50,60]

plt.plot(x,y,'g',label='Enfield', linewidth=5)

plt.plot(x,y2,'c',label='Honda',linewidth=5)

plt.plot(x,y3,'k',label='Yahama',linewidth=5)

plt.plot(x,y4,'y',label='KTM',linewidth=5)

plt.title('bike details in line plot')

plt.ylabel('Distance in kms')

plt.xlabel('Days')

plt.legend()
```

<matplotlib.legend.Legend at 0x7f10553be910>

→ 2 Bar Plot

▼ 2.1 Plot a Bar Chart

```
x_values = [5,6,3,7,2]
y_values = ["A", "B", "C", "D", "E"]
plt.bar(y_values,x_values, color = "pink")
plt.show()
```


▼ 2.2 Multiple Bar Plot

```
# Example 1

plt.bar([0.25,1.25,2.25,3.25,4.25],[50,40,70,80,20],
label="Enfield",width=.5)

plt.bar([0.26,1.25,2.25,3.25,4.25],[80,20,20,50,60],
label="Honda", color='r',width=.5)

plt.bar([0.31,1.5,2.5,3.5,4.5],[70,20,60,40,60],
label="Yamaha", color='y',width=.5)

plt.bar([.75,1.75,2.75,3.75,4.75],[80,20,20,50,60],
label="KTM", color='g',width=.5)

plt.legend()
plt.xlabel('Days')
plt.ylabel('Distance (kms)')
plt.title('Bikes details in BAR PLOTTING')
```

Text(0.5, 1.0, 'Bikes details in BAR PLOTTING')


```
#Example 2
#from matplotlib import pyplot as plt

plt.bar([0.25,1.25,2.25,3.25,4.25],[50,40,70,80,20], label="BMW", color='r')
plt.bar([.75,1.75,2.75,3.75,4.75],[80,20,20,50,60], label="Audi", color='y')

plt.legend()
plt.xlabel('Days')
plt.vlabel('Distance (kms)')
```

```
plt.title('Information')
plt.show()
```


▼ 2.3 Horizontal Bar Plot

```
x_values = [5,6,3,7,2]
y_val = ["A", "B", "C", "D", "E"]

plt.barh(y_val,x_values, color ="yellowgreen")

# Adding an "h" after bar will flip the graph
plt.show()
```


→ 3 Scatter Plot

▼ 3.1 Scatter plot withhout Details

```
x = [5, 2, 9, 4, 7] # x-axis values

y = [10, 5, 8, 4, 2] # Y-axis values

plt.scatter(x, y) # Function to plot scatter

plt.show() # function to show the plot
```


▼ 3.2 Multiple Scatter Plot

```
x = [1,1.5,2,2.5,3,3.5,3.6]
y = [7.5,8,8.5,9,9.5,10,10.5]
x1=[8,8.5,9,9.5,10,10.5,11]
y1=[3,3.5,3.7,4,4.5,5,5.2]

plt.scatter(x,y, label='high income low saving',color='r')
plt.scatter(x1,y1,label='low income high savings',color='b')

plt.xlabel('saving*100')
plt.ylabel('income*1000')
plt.title('Scatter Plot')
plt.legend()

#plt.show()
plt.grid()
```


▼ 4 pie plot

```
days = [1,2,3,4,5]
Enfield =[50,40,70,80,20]
Honda = [80,20,20,50,60]
Yahama =[70,20,60,40,60]
KTM = [80,20,20,50,60]
slices = [8,5,5,6]

activities = ['Enfield','Honda','Yahama','KTM']
cols = ['r','g','y','b']
plt.pie(slices, labels=activities, colors=cols, startangle=90, shadow= True,explode=(0,0.1)
plt.title('Bike details in Pie Plot')
```

Text(0.5, 1.0, 'Bike details in Pie Plot')
Bike details in Pie Plot

▼ 5 Matplotlib Plots on NBA DataSet

```
import pandas as pd
import matplotlib.pyplot as plt
from google.colab import files
uploaded = files.upload()
df = pd.read_csv('nba.csv')
df
```

Choose Files nba.csv

• **nba.csv**(n/a) - 32823 bytes, last modified: 8/23/2020 - 100% done Saving nba.csv to nba.csv

	Name	Team	Number	Position	Age	Height	Weight	Colle
0	Avery Bradley	Boston Celtics	0.0	PG	25.0	6-2	180.0	Тех
1	Jae Crowder	Boston Celtics	99.0	SF	25.0	6-6	235.0	Marque
2	John Holland	Boston Celtics	30.0	SG	27.0	6-5	205.0	Boston Univers
3	R.J. Hunter	Boston Celtics	28.0	SG	22.0	6-5	185.0	Georgia Sta
4	Jonas Jerebko	Boston Celtics	8.0	PF	29.0	6-10	231.0	N
453	Shelvin Mack	Utah Jazz	8.0	PG	26.0	6-3	203.0	But
454	Raul Neto	Utah Jazz	25.0	PG	24.0	6-1	179.0	Ni
455	Tibor Pleiss	Utah Jazz	21.0	С	26.0	7-3	256.0	Ni
456	Jeff Withey	Utah Jazz	24.0	С	26.0	7-0	231.0	Kans
457	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N

458 rows × 9 columns

▼ 5.1 Bar Graph

```
#Example 1
y_values = df['Salary']
x_values = df['Age']

plt.xlabel('Age')
plt.ylabel('Salary (in millions)')

#To plot a bar graph plt.bar() command is used
#This plots a bar graph between Age and Salaries of NBA players
plt.bar(x_values,y_values,color = "purple")
plt.show()
```

```
# Example 2
y_values = df['Salary']
x_values = df['Age']

plt.xlabel('Age')
plt.ylabel('Salary (in millions)')

# Making changes in the color field changes the colour of the graph
plt.bar(x_values,y_values,color = "khaki")
plt.show()
```


▼ 5.2 Horizontal Bar Graph

```
y_values = df['Salary']
x_values = df['Age']

plt.xlabel('Age')
plt.ylabel('Salary (in millions)')
plt.barh(x_values,y_values,color = "indianred")
plt.show()
```


▼ 5.3 Scatter Plot

```
#Example 1
y_value=df['Salary']
x_values=df['Age']

#To display a scatter plot we use plt.scatter() command
plt.xlabel('Age')
plt.ylabel('Salary (in millions)')

#This displays a scatter plot between Age and Salaries of NBA players
```

#This displays a scatter plot between Age and Salaries of NBA players plt.scatter(x_values,y_values)


```
#Example 2
y_value=df['Salary']
x_values=df['Age']

plt.xlabel('Age')
plt.ylabel('Salary (in millions)')

#We can also change the type and colors of scatter plot as shown
plt.scatter(x_values,y_values, color = "slategrey", marker = "x")
```

<matplotlib.collections.PathCollection at 0x7f1055360c10>

×