计算机体系结构--

指令系统的设计

zhaofangbupt@163.com

指令系统基本概念

- □指令系统是计算机所有指令的集合
- □指令系统是计算机系统结构的主要内容,是硬件 和软件之间的接口
 - > 计算机具有哪些硬件功能,是硬件逻辑设计的基础
- □指令系统也需要为编译器提供明确的编译目标, 使编译结果具有规律性和完整性
- □指令系统是计算机系统软硬件功能分配的界面, 也是计算机系统结构设计的核心
 - > 其功能对计算机系统的性能有直接的影响

主要内容

- 1. 指令系统结构的分类
- 2.操作数的类型和数据表示
- → 3.寻址方式
- 4. 指令系统的设计和优化
- → 5. 指令系统的发展和改进
- ▲ 6. MIPS/DLX指令系统结构

- □指令系统结构:
 - ▶指令系统的结构(Instruction Set Architecture)
- □区别不同指令集结构的主要因素
 - > CPU中用来存储操作数的存储单元的类型
 - > 指令中显式表示的操作数个数
 - >操作数的寻址方式
 - > 指令集所提供的操作类型
 - >操作数的类型和大小

- □CPU中用于存储操作数的存储单元类型主要有:
 - 〉堆栈
 - ▶累加器
 - > 通用寄存器组
- □将指令系统结构分为三种类型:
 - > 堆栈结构
 - > 累加器结构
 - > 通用寄存器结构

□CPU对操作数的不同存取方式

CPU提供的 暂存器	每条ALU指令显式表示 的操作数个数	运算结果的 目的地	访问显式操作数 的过程
堆栈	0	堆栈	Push/Pop
累加器	1	累加器	Load/Store 累加器
寄存器组	2/3	寄存器或存储器	Load/Store寄存 器或存储器

- □根据操作数的来源不同,又可进一步分为:
 - ▶寄存器-存储器结构(RM结构)
 - 操作数来自可以来自存储器
 - ▶寄存器-寄存器结构 (RR结构)
 - 所有操作数都是来自通用寄存器组
 - 也称为 load-store结构,这个名称强调:只有 load 指令和store指令能够访问存储器
 - ▶ 存储器-存储器结构 (MM结构)
 - ▶扩展累加器或者专用寄存器结构

- □对于不同类型的指令集结构,操作数的位置、个数以及操作数的给出方式(显式或隐式)也会不同
 - > 隐式给出:使用事先约定好的存储单元
 - 堆栈结构: 操作数隐式放在栈的顶部
 - 累加器结构: 部分操作数是隐式的
 - ▶显式给出:用指令字中的操作数字段给出
 - 通用寄存器体系结构: 只有显式操作数

□指令系统结构中操作数的位置及结果的去向

- □【例1】表达式C=A+B在4种类型指令集结构上的代码
 - →假设: A、B、C均保存在存储器单元中,并且不能破坏 A和B的值

堆 栈	累加器	寄存器(RM型)	寄存器(RR型)
push A	load A	load R1, A	load R1, A
push B	add B	add R1, B	load R2, B
add	store C	store R1, C	add R3, R1, R2
рор С			store R3, C

- □各种指令系统类型比较
 - > 堆栈型
 - 优点: 指令字比较短, 程序占用的空间比较小
 - 缺点:不能随机地访问堆栈,难以生成有效的代码, 而对栈顶的访问是个瓶颈
 - ▶累加器型
 - 优点: 指令字比较短, 程序占用的空间比较小
 - 缺点: 只有一个中间结果暂存器,需要频繁访问存储器

- □通用寄存器结构
 - > 现代指令系统结构的主流
 - >在灵活性和提高性能方面有明显的优势:
 - 寄存器的访问速度比存储器快的多
 - 对编译器而言,能更加容易、有效地分配和使用寄存器
 - 在表达式求值方面,通用寄存器型结构具有更大的 灵活性和更高的效率: (A*B)-(C*D)-(E*F)

- □寄存器可以用来存放变量:
 - 户能加快程序的执行速度
 - 寄存器比存储器快
 - 户能够减少对存储器的访问
 - 》用更少的地址位来对寄存器进行寻址,从而有效地减少程序的目标代码所占用的空间
 - 相对于存储器地址来说

- □CPU需要设置寄存器的个数:
 - > 主要由编译器使用寄存器的情况来决定
 - 为表达式求值保留一些寄存器
 - 为传递参数保留一些寄存器
 - 用剩下的寄存器来保存变量
- □通用寄存器和专用寄存器个数的选择:
 - 早期计算机, 相当一部分用作专用寄存器
 - 现代计算机中通用寄存器的个数已越来越多

- □根据ALU指令的操作数特征对通用寄存器型指令集结构进一步细分:
 - > ALU指令的操作数个数
 - 3个操作数的指令(两个源操作数、一个目的操作数)
 - ·2个操作数的指令(其中一个操作数既作为源操作数, 又作为目的操作数)
 - > ALU指令中存储器操作数的个数
 - •可以是0~3中的某一个值,0表示没有存储器操作数

□存储器操作数个数和操作数个数的所有可能组合

ALU指令中存	ALU指令中	结构	机器实例
储器操作数的个数	操作数的最多个数	类型	
0	3	RR	MIPS, SPARC, Alpha, PowerPC, ARM
1	2	RM	IBM 360/370, Intel 80x86, Motorola 68000
	3	RM	IBM 360/370
2	2	MM	VAX
3	3	ММ	VAX

- □通用寄存器型指令集结构进一步细分为3种类型
 - >寄存器-寄存器型
 - RR型: register-register
 - >寄存器-存储器型
 - RM型: register-memory
 - ▶存储器-存储器型
 - MM型: memory-memory

指令集结构类型	优点	缺点
寄存器一寄存器型(0,3)	指令字长固定,指令结构简洁, 是一种简单的代码生成模型,各 种指令的执行时钟周期数相近	与指令中含存储器操作数的指令集结构相比, 指令条数多,目标代码不够紧凑,因而程序占 用的空间比较大
寄存器一存储器型(1,2)	可以在ALU指令中直接对存储器操作数进行引用,而不必先用load 指令进行加载。容易对指令进行 编码,目标代码比较紧凑	指令中的两个操作数不对称。在一条指令中同时对寄存器操作数和存储器操作数进行编码,有可能限制指令所能够表示的寄存器个数。指令的执行时钟周期数因操作数的来源(寄存器或存储器)不同而差别比较大
存储器一存储器型 (2,2) 或(3,3)	目标代码最紧凑,不需要设置寄 存器来保存变量	指令字长变化很大,特别是3操作数指令。而 且每条指令完成的工作也差别很大。对存储器 的频繁访问会使存储器成为瓶颈。这种类型的 指令集结构现在已不用了

指令系统分类

- □指令格式与指令字长对编译的影响
 - >指令格式和指令字长越单一,编译器的工作就越简单
 - ▶指令格式和指令字长具有多样性,可有效减少目标代码所占的空间
 - > 多样性也可能会增加编译器和CPU实现的难度
 - > CPU寄存器的个数也会影响指令的字长
- □通用寄存器型结构比堆栈型结构和累加器型结构 更具有优势
 - >寄存器-寄存器型结构备受青睐

内容小结

- □指令系统基本概念
- □指令系统结构的分类
 - 产在CPU中操作数的存储方法
 - > 指令中显式表示的操作数个数
 - >操作数的寻址方式
 - > 指令系统所提供的操作类型
 - >操作数的类型和大小

内容小结

□知识要点

堆栈型结构	累加器型结构	通用寄存器型结构
寄存器-存储器型结构	存储器-存储器型结构	寄存器-寄存器型结构

练习题

- □1. 区别不同指令系统结构的主要因素是什么? 根据这个主要因素可将指令系统结构分为哪三类?
- □2. 常见的三种通用寄存器型机器的优缺点各有哪些?

Thank You !

zhaofangbupt@163.com

