

Radiciação

Resumo

Radical

Simbolizado por $\sqrt[n]{}$ é a raiz n-ésima de um número x com a seguinte propriedade:

Se $\begin{cases} & n \text{ \'e par, } x \geq 0 \\ & n \text{ \'e impar, } x \in \mathbb{R} \end{cases} \text{, ou seja, se n (ou indice) for par o número dentro da raiz (chamado radicando) tem}$

que ser maior que 0, caso o índice for ímpar, x pode assumir qualquer valor real. Considerando que $n \in \mathbb{N}, n \geq 2$

A radiciação é a operação inversa da potenciação da seguinte forma: $\sqrt[n]{X^n} = X$. Por exemplo: 5^2 =25 e $\sqrt{25} = 5$ (quando o n estiver ausente, ele vale 2).

Propriedades.

a)
$$\sqrt[n]{x^m} = \sqrt[n:p]{x^{m:p}}$$
. Exemplo: $\sqrt[8]{5^4} = \sqrt[8:4]{5^{4:4}} = \sqrt[2]{5^1}$

b)
$$\sqrt[n]{x.y} = \sqrt[n]{x} \cdot \sqrt[n]{y}$$
 Exemplo: $\sqrt[2]{2.4} = \sqrt[2]{2} \cdot \sqrt[2]{4}$

c)
$$\sqrt[m]{\frac{x}{y}} = \frac{\sqrt[m]{x}}{\sqrt[m]{y}}$$
. Exemplo: $\sqrt[3]{\frac{5}{4}} = \frac{\sqrt[3]{5}}{\sqrt[3]{4}}$

d)
$$\sqrt[m]{\sqrt[n]{x}} = \sqrt[m.1]{x}$$
. Exemplo: $\sqrt[3]{4/3} = \sqrt[3.4]{3} = \sqrt[12]{3}$

No caso da letra B, vale ressaltar que a expressão poderia ter sido escrita como $\sqrt[2]{8} = \sqrt[2]{2^3}$. E usando as propriedades, pode ser reescrito como $\sqrt[2]{2^3} = \sqrt[2]{2^2} \cdot \sqrt[2]{2} = 2\sqrt{2}$. Repare que apenas uma parte do radicando saiu do radical. Isso acontece porque o expoente é maior que o índice mas não é múltiplo dele. No caso $\sqrt[2]{2^4} = \sqrt[2]{2^2} \cdot \sqrt[2]{2^2} = 2.2 = 4$.

Uma notação muito usual é a de representar a radiciação por um expoente fracionário. Exemplo: $27^{\frac{1}{3}} = \sqrt[9]{27}$ ou $20^{\frac{2}{5}} = \sqrt[5]{20^2}$. Em geral: $x^{\frac{m}{n}} = \sqrt[n]{x^m}$

Racionalização

É o processo de multiplicar o denominador por algum número a fim de torna-lo um número racional, quando ele for irracional. Exemplos:

a)
$$\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

b)
$$\frac{1}{\sqrt{3}+1} \cdot \frac{\sqrt{3}-1}{\sqrt{3}-1} = \frac{\sqrt{3}-1}{3-1} = \frac{\sqrt{3}-1}{2}$$
. Nesse exemplo lembre do produto notável: (a+b)(a-b)= (a²-b²)

c)
$$\frac{2}{\sqrt{5} - \sqrt{2}} \cdot \frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} + \sqrt{2}} = \frac{2\sqrt{5} + 2\sqrt{2}}{3}$$

d)
$$\frac{6}{\sqrt[3]{2}} \cdot \frac{\sqrt[3]{2^2}}{\sqrt[3]{2^2}} = \frac{6\sqrt[3]{4}}{2} = 3\sqrt[3]{4}$$

Quer ver este material pelo Dex? Clique aqui

Exercícios

1. O Índice de Massa Corporal (IMC) é largamente utilizado há cerca de 200 anos, mas esse cálculo representa muito mais a corpulência que a adiposidade, uma vez que indivíduos musculosos e obesos podem apresentar o mesmo IMC. Uma nova pesquisa aponta o Índice de Adiposidade Corporal (IAC) como uma alternativa mais fidedigna para quantificar a gordura corporal, utilizando a medida do quadril e a altura. A figura mostra como calcular essas medidas, sabendo-se que, em mulheres, a adiposidade normal está entre 19% e 26%.

Disponível em: http://www1.folha.uol.com.br. Acesso em: 24 abr. 2011(adaptado).

Uma jovem com IMC = 20 kg/m², 100 cm de circunferência dos quadris e 60 kg de massa corpórea resolveu averiguar seu IAC. Para se enquadrar aos níveis de normalidade de gordura corporal, a atitude adequada que essa jovem deve ter diante da nova medida é

(Use
$$\sqrt{3} = 1.7 e \sqrt{1.7} = 1.3$$
)

- a) reduzir seu excesso de gordura em cerca de 1%.
- **b)** reduzir seu excesso de gordura em cerca de 27%.
- c) manter seus níveis atuais de gordura.
- **d)** aumentar seu nível de gordura em cerca de 1%.
- e) aumentar seu nível de gordura em cerca de 27%

2. Dentre outros objetos de pesquisa, a Alometria estuda a relação entre medidas de diferentes partes do corpo humano. Por exemplo, segundo a Alometria, a área A da superfície corporal de uma pessoa

relaciona-se com a sua massa m pela fórmula $A=k.m^{\overline{3}}$, em que k é uma constante positiva. Se no período que vai da infância até a maioridade de um indivíduo sua massa é multiplicada por 8, por quanto será multiplicada a área da superfície corporal?

- a) $\sqrt[3]{16}$
- **b)** 4
- c) $\sqrt{24}$
- **d)** 8
- **e)** 64
- **3.** Usando a *tecnologia* de uma calculadora pode-se calcular a divisão de 2 por $\sqrt[3]{4}$ e obter um resultado igual a:
 - a) $\sqrt{4}$.
 - **b**) ^{3√3}.
 - c) $\sqrt{5}$.
 - **d)** $\sqrt[3]{2}$.
 - **e)** $\sqrt{4^2}$
- 4. Simplificando-se a expressão $\sqrt{\frac{2^{37}}{2^{35} + 2^{38} + 2^{39}}}$, obtém-se o número
 - a) $\frac{\sqrt{19}}{4}$
 - √19 2
 - **b**) 2
 - c) 0,4
 - **d)** 0,16
 - $\sqrt{2}$
- **5.** O valor exato da raiz cúbica de 1.728 é
 - **a)** 9.
 - **b)** 12.
 - **c)** 15.
 - **d)** 18.
 - e) 25.

- **6.** Quanto vale $\frac{\sqrt[3]{3} + \sqrt[3]{9}}{\sqrt[3]{3}}$?
 - a) $\sqrt[3]{3}$
 - **b**) ^{3√9}
 - c) $1+\sqrt[3]{3}$
 - **d)** $1+\sqrt[3]{9}$
 - e) $2\sqrt[3]{3}$
- 7. Simplificando a expressão $\frac{2+\frac{1}{\sqrt{2}}}{\sqrt{2}-1}$ obtemos:
 - a) $\frac{11\sqrt{2}}{2}$.
 - **b)** $\frac{\sqrt{2}}{2} + 3$.
 - c) $\frac{7}{2} + 2\sqrt{2}$.
 - **d)** $3 + \frac{5\sqrt{2}}{2}$.
 - $\frac{2+3\sqrt{2}}{2}$.
- **8.** Simplificando a expressão $3\sqrt{2} 2\sqrt{18} + 3\sqrt{72}$ obtemos:
 - **a)** $3\sqrt{2}$.
 - **b)** $24\sqrt{2}$.
 - **c)** $15\sqrt{2}$.
 - **d)** $-15\sqrt{2}$.
 - **e)** $\sqrt{2}$.

- **9.** Seja A= $\frac{1}{\sqrt{3} + \sqrt{2}}$ e B= $\frac{1}{\sqrt{3} \sqrt{2}}$, então A + B é igual a:
 - **a)** $-2\sqrt{2}$
 - **b)** $3\sqrt{2}$
 - **c)** $-2\sqrt{3}$
 - **d)** 3√3
 - **e)** $2\sqrt{3}$
- **10.** Se a = 16 e x = 1,25 quanto vale a^x ?
 - **a)** 16
 - **b)** 32
 - **c)** 20
 - **d)** 36
 - **e)** 64

Gabarito

1. A

x = altura da pessoa

$$20 = \frac{60}{x^2} \Leftrightarrow x = \sqrt{3} \Leftrightarrow x = 1,7$$

% de gordura corporal = $\frac{100}{1,7.1,3} - 18 = 45,24 - 10 = 27,24$

27,24 - 26 = 1,24 (aproximadamente 1%).

2. B

Sendo A a área da superfície corporal de uma pessoa na infância e S a área da superfície corporal dessa mesma pessoa na maioridade, de acordo com o enunciado, tem-se:

$$k \cdot \left(8m\right)^{\frac{2}{3}} = 8^{\frac{2}{3}} k \cdot m^{\frac{2}{3}} = \left(\sqrt[3]{8}\right)^2 \cdot k \cdot m^{\frac{2}{3}} = 4 \cdot A$$

Logo, a área ficará multiplicada por 4.

3. [

$$\frac{2}{\sqrt[3]{4}} = \frac{2}{\sqrt[3]{2^2}} \cdot \frac{\sqrt[3]{2}}{\sqrt[3]{2}} = \frac{2 \cdot \sqrt[3]{2}}{\sqrt[3]{2^3}} = \sqrt[3]{2}$$

4 (

$$\frac{\mathbf{c}}{\sqrt{\frac{2^{37}}{2^{35} + 2^{38} + 2^{39}}}} = \sqrt{\frac{2^{37}}{2^{35}(1 + 2^3 + 2^4)}}$$

$$= \sqrt{\frac{2^2}{25}}$$

$$= \frac{2}{5}$$

$$= 0.4.$$

5. B

$$32 \begin{vmatrix} 2 \\ 2 \\ 32 \end{vmatrix} = 3 \cdot 2^3 \cdot 2^3 \cdot 2^3 \rightarrow \sqrt[3]{1728} = \sqrt[3]{3^3 \cdot 2^3 \cdot 2^3} = 12$$

- 16
 - 8 2
- 4 2
- 2 2

6. 0

$$\frac{\sqrt[3]{3} + \sqrt[3]{9}}{\sqrt[3]{3}} = \frac{\sqrt[3]{3}}{\sqrt[3]{3}} + \frac{\sqrt[3]{9}}{\sqrt[3]{3}}$$
$$= 1 + \sqrt[3]{\frac{9}{3}}$$
$$= 1 + \sqrt[3]{3}.$$

7. D

Simplificando a expressão, tem-se:

$$\frac{2+\frac{1}{\sqrt{2}}}{\sqrt{2}-1}\cdot\frac{\sqrt{2}+1}{\sqrt{2}+1} = \frac{\left(2+\frac{1}{\sqrt{2}}\right)\cdot\left(\sqrt{2}+1\right)}{1} = 2\sqrt{2}+3+\frac{1}{\sqrt{2}} = \frac{5+3\sqrt{2}}{\sqrt{2}}\cdot\frac{\sqrt{2}}{\sqrt{2}} = \frac{5\sqrt{2}+6}{2} = 3+\frac{5\sqrt{2}}{2}$$

8. (

$$3\sqrt{2} - 2\sqrt{18} + 3\sqrt{72} = 3\sqrt{2} - 2\sqrt{2.3^2} + 3\sqrt{2^3.3^2} = 3\sqrt{2} - 2.3\sqrt{2} + 3.2.3\sqrt{2} = 3\sqrt{2} - 6\sqrt{2} + 18\sqrt{2} = 15\sqrt{2}$$

9. E

$$A = \frac{1}{\sqrt{3} + \sqrt{2}} \cdot \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}} = \sqrt{3} - \sqrt{2}$$

$$B = \frac{1}{\sqrt{3} - \sqrt{2}} \cdot \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} + \sqrt{2}} = \sqrt{3} + \sqrt{2}$$

$$A + B = 2\sqrt{3}$$

10. B

$$a^{x} = 16^{1,25} = (2^{4})^{1,25} = 2^{5} = 32$$