

Ferienkurs

Theoretische Physik 1 (Mechanik)

SS 2018

Lösung Aufgabenblatt 1

Daniel Sick Maximilian Ries

1 Aufgabe 1:

Differenzieren Sie die folgenden Funktionen und entwickeln Sie diese für kleine Argumente x (unter ANgabe von jeweils 3 Termen).

$$\sqrt{1-x}$$
, $\frac{1}{\sqrt{1+x}}$, $\frac{1}{(a+bx)^3}$, $\frac{x}{\sqrt{1+x}-1}$, $\frac{\sin(\sqrt{x})}{\sqrt{x}}$

Lösung

Allgemeine Vorüberlegung: Eine Funktion f sei durch eine Potenzreihe um x = a mit Konvergenzradius R darstellbar. Dann gilt:

$$f(x) = \sum_{k=0}^{\infty} c_k (x - a)^k, \quad \forall |x - a| < R$$
 (1)

mit

$$c_k = \frac{f^{(k)}(a)}{k!} \tag{2}$$

wobei $f^{(k)}(a)$ die k-te Ableitung bezeichnet.

a)

$$f(x) = 1 - \frac{x}{2} - \frac{x^2}{8} + \mathcal{O}(x^3) \tag{3}$$

b)

$$f(x) = 1 - \frac{x}{2} + \frac{3x^2}{8} + \mathcal{O}(x^3) \tag{4}$$

c)

$$f(x) = \frac{1}{a^3} - \frac{3b}{a^4}x + \frac{6b^2}{a^5}x^2 + \mathcal{O}(x^3)$$
 (5)

d)

$$f(x) = 2 + \frac{x}{2} - \frac{x^2}{8} + \mathcal{O}(x^3) \tag{6}$$

e)

$$f(x) = 1 - \frac{x}{6} + \frac{x^2}{120} + \mathcal{O}(x^3) \tag{7}$$

2 Aufgabe 2

Leiten Sie die Ausdrücke für die Geschwindigkeit $\vec{v} = \frac{\mathrm{d}\vec{r}}{\mathrm{d}t}$ und die Beschleunigung $\vec{a} = \frac{\mathrm{d}\vec{v}}{\mathrm{d}t}$ in Kugelkoordinaten her. Entwickeln Sie die Vektoren \vec{v} und \vec{a} nach den drei orthogonalen Einheitsvektoren (in Kugelkoordinaten). Geben Sie außerdem den Ausdruck für die kinetische Energie $T = \frac{m\vec{v}^2}{2}$ in Kugelkoordinaten an.

Lösung

Wir nutzen klassische Kugelkoordinaten mit Radius r, Polarwinkel θ und Azimutalwinkel φ .

Um den Lösungsprozess zu beschleunigen betrachten wir die Ableitung des Ortes klassisch und wenden die Produktregel an, wobei die Ableitungen der Einheitsvektoren in Kugelkoordinaten zu benutzen sind:

$$\vec{v} = \frac{\mathrm{d}}{\mathrm{d}t}(r\vec{e}_r) = \dot{r}\vec{e}_r + r\dot{\vec{e}_r} \tag{8}$$

$$= \dot{r}\vec{e}_r + r\dot{\theta}\vec{e}_\theta + r\sin\theta\dot{\varphi}\vec{e}_\varphi \tag{9}$$

Eine äquivalente Betrachtung der Beschleunigung liefert:

$$\vec{a} = (\ddot{r} - r\dot{\theta}^2 - r\sin^2\theta\dot{\varphi}^2)\vec{e_r} \tag{10}$$

$$+(2\dot{r}\dot{\theta} + r\ddot{\theta} - r\sin\theta\cos\theta\dot{\varphi}^2)\vec{e_{\theta}}$$
(11)

$$+(2\dot{r}\sin\theta\dot{\varphi} + 2r\dot{\theta}\dot{\varphi}\cos\theta + r\sin\theta\ddot{\varphi})\vec{e}_{\varphi} \tag{12}$$

Unter Verwendung des zuvor bestimmten Ausdrucks für die Geschwindigkeit erhält man für die kinetische Energie:

$$T = \frac{m\vec{v}^2}{2} = \frac{m}{2}(\dot{r}^2 + r^2\dot{\theta}^2 + r^2\sin^2\theta\dot{\varphi}^2)$$
 (13)

Wie erwartet hat die kinetische Energie keine Verktoreigenschaft.

3 Aufgabe 3

Ein kugelförmiger Wassertropfen (Radius R(t), Volumen V(t), Masse m(t) und konstante Dichte ρ) fällt in der mit Wasserdampf gesättigten Atmosphäre unter dem Einfluss der Schwerkraft senkrecht nach unten.

Durch Kondensation wächst das Volumen des Wassertropfens proportional zu seiner Oberfläche an (Proportionalitätskonstante α). Bestimmen Sie den Radius R(t) als Funktion der Zeit zur Anfangsbedingung $R(0) = R_0$.

Stellen Sie nun die Bewegungsgleichung auf und lösen Sie diese unter der Annahme,

dass sich der Wassertropfen zum Zeitpunkt t = 0 in Ruhe befindet. Untersuchen Sie das Verhalten von v(t) für kleine und große Zeiten t. Berechnen Sie aus v(t) und die Falltiefe x(t) zur Anfangsbedingung x(0) = 0.

Lösung

Zunächst bestimmen wir die Zeitabhängigkeit des Radius:

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{4\pi}{3} R^3(t) \right) = 4\pi R^2(t) \dot{R}(t) \stackrel{!}{=} \alpha (4\pi R^2(t)) \tag{14}$$

$$\Rightarrow \dot{R}(t) = \alpha \tag{15}$$

Integration liefert die gesuchte Zeitabhängigkeit:

$$R(t) = \alpha t + R_0 \tag{16}$$

Nun muss noch die Zeitabhängigkeit der Masse bestimmt werden, bevor die Bewegungsgleichungen aufgestellt werden können. Mit $\rho = \text{const.}$ gilt:

$$m(t) = \rho V(t) = \rho \frac{4\pi}{3} R^3(t)$$
 (17)

$$\dot{m}(t) = 4\pi \rho R^2(t)\dot{R}(t) = \frac{3m(t)\alpha}{R(t)}$$
(18)

Die Bewegungsgleichung erhalten wir aus dem zweiten Newton'schen Axiom:

$$\frac{\mathrm{d}p}{\mathrm{d}t} \stackrel{!}{=} mg \tag{19}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}[m(t)v(t)] = m\dot{v} + \dot{m}v \stackrel{!}{=} mg \tag{20}$$

$$\Rightarrow \dot{v} + \frac{3\alpha}{R(t)}v(t) = g \tag{21}$$

Wir lösen zunächst die homogene Differentialgleichung

$$\dot{v} = -3\alpha \frac{v(t)}{\alpha t + R_0} \tag{22}$$

durch Trennung der Variablen und erhalten:

$$v = \frac{c}{\left(\frac{\alpha t}{R_0} + 1\right)^3} \tag{23}$$

wobei c eine aus den Ranbedingungen zu bestimmende Konstante ist. Wir nutzen den Ansatz v(t) = aR(t), um eine spezielle Lösung zu erhalten. Wir erhalten durch einsetzen in dei Differentialgleichung

$$a\dot{R}(t) + 3\alpha a = g \tag{24}$$

$$\Rightarrow a = \frac{g}{4\alpha} \tag{25}$$

Die allgemeine Lösung ergibt sich zu:

$$v(t) = \frac{g}{4\alpha} \left[R_0 + \alpha t - R_0^4 (R_0 + \alpha t)^{-3} \right]$$
 (26)

wobei wir bereits v(0) = 0 benutzt haben, um c zu bestimmen.

Wir bestimmen die Taylorreihe und geben das Ergebnis für kleine und große Zeiten t:

$$v(t) = 0 + g \cdot t + \mathcal{O}(t^2)$$
 für kleine Zeiten $t \ge 0$ (27)

$$v(t) = \frac{gt}{4} [1 + \mathcal{O}(t^{-1})] \qquad \text{für } t \to \infty$$
 (28)

Unter der gegebenen Annahme, dass x(0) = 0, erhalten wir die Falltiefe aus der Integration der Geschwindigkeit über die Zeit:

$$x(t) = \int_0^t v(t') dt' = \frac{g}{8\alpha} \left[2R_0 t + \alpha t^2 + \frac{R_0^4}{\alpha (R_0 + \alpha t)^2} - \frac{R_0^2}{\alpha} \right]$$
(29)

4 Aufgabe 4

Bei der Bewegung eines abstürzenden Erdsatelliten, welcher der Gravitationskraft und einer Reibungskraft unterliegt, ergebe sich folgende ortsabhängige Beschleunigung:

$$\vec{a} = -\frac{C}{r^2}\vec{e}_r - \gamma(r)\vec{v}, \quad C, \, \gamma(r) > 0,$$

wobei r den Abstand vom Erdmitelpunkt bezeichnet.

Welche Bestimmungsgleichungen erfüllen die Komponenten a_r, a_θ, a_ϕ der Beschleunigung in Kugelkoordinaten?

Wie müssen $\gamma(r)$ und β gewählt werden, damit die Funktionen

$$r(t) = r_0(1 - \beta t)^{\frac{2}{3}}, \quad \theta(t) = -\frac{2\theta_0}{3}\ln(1 - \beta t), \quad \phi(t) = \text{const}$$

dier Bestimmungsgleichungen lösen?

Tipp: Drücken Sie \dot{r} , \ddot{r} , $\dot{\theta}$, $\ddot{\theta}$ durch r aus.

Berechnen Sie den Betrag der Geschwindigkeit und zeigen Sie, dass $\left|\vec{v}\right| = \sqrt{\frac{C}{r}}$ gilt.

Lösung

Wir nutzen die in Aufgabe 2 hergeleitete Beschleunigung und Geschwindigkeit in Kugelkoordinaten. Setzen wir diese in die gegebene Gleichung für die Beschleunigung

ein, können wir einen Koeffizientenvergleich durchführen und erhalten folgende drei Bewegungsgleichungen:

$$\ddot{r} - r\dot{\theta}^2 - r\sin^2\theta\dot{\varphi}^2 = -\frac{C}{r^2} - \gamma(r)\dot{r}$$
(30)

$$2\dot{r}\dot{\theta} + r\ddot{\theta} - r\sin\theta\cos\theta\dot{\varphi}^2 = -\gamma(r)r\dot{\theta}$$
 (31)

$$2\dot{r}\sin\theta\dot{\varphi} + 2r\dot{\theta}\dot{\varphi}\cos\theta + r\sin\theta\ddot{\varphi} = -\gamma(r)r\sin\theta\dot{\varphi} \tag{32}$$

Mit $\dot{\varphi} = 0$ ist die letzte Gleichung zwangsläufig erfüllt und die ersten beiden vereinfachen sich zu:

$$\ddot{r} - r\dot{\theta}^2 = -\frac{C}{r^2} - \gamma(r)\dot{r} \tag{33}$$

$$2\dot{r}\dot{\theta} + r\ddot{\theta} = -\gamma(r)r\dot{\theta} \tag{34}$$

Wir orientieren uns an der Aufgabenstellung und drücken \dot{r} , \ddot{r} , $\dot{\theta}$, $\ddot{\theta}$ durch r aus.

$$r(t) = r_0 (1 - \beta t)^{\frac{2}{3}} \tag{35}$$

$$\dot{r} = -\frac{2r_0\beta}{3}\sqrt{\frac{r_0}{r}}\tag{36}$$

$$\ddot{r} = -\frac{2\beta^2}{9} r_0 \left(\frac{r_0}{r}\right)^2 \tag{37}$$

(38)

$$\theta = -\frac{2\theta_0}{3}\ln(1-\beta t) \tag{39}$$

$$\dot{\theta} = \frac{2\theta_0 \beta}{3} \left(\frac{r}{r_0}\right)^{-\frac{3}{2}} \tag{40}$$

$$\ddot{\theta} = \frac{2}{3}\theta_0 \beta^2 \left(\frac{r_o}{r}\right)^3 \tag{41}$$

$$\dot{\varphi} = \ddot{\varphi} = 0 \tag{42}$$

Setzen wir dies in die untere der beiden vereinfachten Differentialgleichungen ein, erhalten wir einen Ausdruck für $\gamma(r)$ in Abhängigkeit von β .

$$\gamma(r) = \frac{1}{3}\beta \left(\frac{r_0}{r}\right)^{\frac{3}{2}} \tag{43}$$

Einsetzen in die obere der beiden Differentialgleichungen liefert:

$$\beta = \frac{3}{2} \sqrt{\frac{C}{r_0^3 (1 + \theta_0^2)}} \tag{44}$$

Dabei ist nur $\beta>0$ eine sinnvolle Lösung, da der Radius kleiner und nicht größer werden muss mit fortschreitender Zeit. Nun war noch gefordert, den Betrag der Geschwindigkeit zu berechnen:

$$|\vec{v}| = \sqrt{\frac{C}{r}} \tag{45}$$

Mit der angenommenen Reibungskraft steigt die Geschgwindigkeit also immer weiter an, was offensichtlich kein realistischer Ansatz ist. Eine Reibungskraft $\propto v^2$ wäre realistischer.