ORDENAÇÃO EM MEMÓRIA PRIMÁRIA

PARTE 1

anaeliza.moura@unicap.br

1

Métodos de Classificação em Memória Primária

Métodos Elementares

- □ Classificação por Inserção
 - Método da Inserção Direta
 - Método dos Incrementos Decrescentes -Shellsort
- Classificação por Trocas
 - Método da Bolha Bubblesort

anaeliza.moura@unicap.br

Métodos de Classificação em Memória Primária

- Métodos Elementares (cont.)
 - Classificação por Seleção
 - Método da Seleção Direta
 - Classificação por Intercalação
 - Método da Intercalação Simples MergeSort

anaeliza.moura@unicap.br

3

Métodos de Classificação em Memória Primária

- Métodos Eficientes
 - Classificação por Troca
 - Método de Partição e Troca Quicksort
 - □ Classificação por Seleção
 - Método de Seleção em Árvore Heapsort

anaeliza.moura@unicap.br

Método de Troca e Partição - Quicksort

- O método de troca e partição foi proposto por Hoare.
- Comparado com os demais métodos é o que apresenta, em média, o menor tempo de classificação.
- Apresenta o menor número de operações elementares.

anaeliza.moura@unicap.br

5

Classificação por Troca

O Método Quicksort - Descrição

- Numa etapa inicial, o vetor a ser ordenado é particionado em três segmentos S₁, S₂ e S₃, da seguinte forma:
 - S₂ terá comprimento 1 e conterá uma chave denominada particionadora.
 - S₁ terá comprimento ≥ 0 e conterá todas as chaves cujos valores forem menores ou iguais ao da chave particionadora. Esse segmentos é posicionado à esquerda de S₂.
 - S₃ terá comprimento ≥ 0 e conterá todas as chaves cujos valores forem maiores do que o valor da chave particionadora. Esse segmentos é posicionado à direita de S₂.

anaeliza.moura@unicap.br

O Método Quicksort - Descrição

□ Como V[i] ≤ V[k] para i = 1,...,k-1 e V[i] > V[k] para i = k+1,...,n, a chave particionadora V[k] ocupa sua posição definitiva correta na ordenação.

Vetor inicia	al				
1					n
V					
Vetor parti	cionado				
1		k-1	k k+1		n
	$\mathbf{S_1}$		$ S_2 $	S_3	

anaeliza.moura@unicap.br

7

Classificação por Troca

O Método Quicksort - Descrição

O processo de particionamento é reaplicado aos segmentos S₁ e S₃ e a todos os segmentos correspondentes daí resultantes, que tiverem comprimento > 1. Quando não restarem mais segmentos a serem particionados, o vetor estará ordenado.

<u>Método Quicksort</u> - <u>Escolha da Chave</u> Particionadora

- □ A chave particionadora ideal é aquela que produz segmentos S_1 e S_3 de tamanho igual (ou aproximado).
- Para isso, a chave particionadora deve ser a chave de valor mediano.
- Porém, seria necessário, para cada iteração, percorrer todo o vetor para encontrar tal chave, o que seria ineficiente.

anaeliza.moura@unicap.br

q

Classificação por Troca

<u>Método Quicksort</u> - <u>Escolha da</u> <u>Chave Particionadora</u>

- Para evitar esse problema, devemos utilizar um critério de escolha simples e rápido.
- Como não temos conhecimento prévio sobre a distribuição dos valores das chaves, qualquer uma delas pode ser a particionadora.
- Por questões de simplicidade, vamos escolher a chave que se encontra na posição inicial do vetor para ser a particionadora.

anaeliza.moura@unicap.br

Método Quicksort - Algoritmo

O algoritmo executa o particionamento em N passos (N = número de chaves). Nos N-1 primeiros, as chaves (excluída a particionadora) são deslocadas para o lado esquerdo, se menores ou iguais a particionadora, ou para o lado direito, se maiores. No último passo, a chave particionadora é inserida na sua posição correta.

anaeliza.moura@unicap.br

11

Classificação por Troca

Método Quicksort - Exemplo

Vetor inicial: 9 25 10 18 5 7 15 3

Escolhemos a chave 9 como particionadora e a guardamos em uma variável temporária (CP). Com isso a posição ocupada por ela se torna disponível para ser ocupada por outra chave. Esta situação é indicada pelo símbolo □:

□ 25 10 18 5 7 15 3 CP = 9

anaeliza.moura@unicap.br

Método Quicksort - Exemplo (cont.)

Passo 1: Marcamos o início e o fim do vetor por dois ponteiros: i (de início) e f (de fim). A expressão "esquerda" escrita ao lado do vetor indica que a posição apontada pelo ponteiro i (a da esquerda) está disponível e pode ser ocupada por outra chave.

□ 25 10 18 5 7 15 3 CP=9 "esquerda"

↑ ↑

i f

anaeliza.moura@unicap.br

13

Classificação por Troca

Método Quicksort - Exemplo (cont.)

Passo 2: Comparamos a chave que está apontada por f com a particionadora. Como 3 é menor do que 9, a deslocamos para o lado esquerdo do vetor, ao mesmo tempo que avançamos o ponteiro i para indicar que a chave recém-movida já está no segmento certo. A nova posição vaga passa a ser a apontada por f, ou seja, a da "direita":

Método Quicksort - Exemplo (cont.)

Passo 3: Agora comparamos a chave 25 (pois a nova posição vaga é a da direita) com a particionadora. Como 25 é maior, a deslocamos para a posição vaga, ao mesmo tempo que recuamos o ponteiro f para indicar que a chave recém-movida já está no segmento certo. A nova posição vaga passa a ser a apontada por i, ou seja, a da "esquerda":

3 □	10	18	5	7	15	25	CP = 9	"esquerda"
\uparrow					\uparrow			
i					f			

anaeliza.moura@unicap.br

15

Classificação por Troca

Método Quicksort - Exemplo (cont.)

Passo 4: O processo prossegue comparando a chave 15. Neste caso, por ela ser maior do que a particionadora, não deve ser trocada de posição, pois já se encontra no segmento correto. Apenas o ponteiro f é deslocado para a esquerda:

3 □	10	18	5	7	15	25	CP = 9	"esquerda'
\uparrow				1				
i				f				

Método Quicksort - Exemplo (cont.)

Passo 5:

Passo 6:

anaeliza.moura@unicap.br

17

Classificação por Troca

Método Quicksort - Exemplo (cont.)

Passo 7:

O resultado do passo 7 (passo n - 1) produz a situação abaixo, na qual os dois ponteiros se encontram. Quando isso ocorre, os segmentos S₁ e S₃ já estão formados. A posição vaga é a posição do segmento S₂.

Método Quicksort - Exemplo (cont.)

<u>Passo 8</u>: Resta copiar o valor da chave particionadora na posição apontada por **i** e **j** e o processo de particionamento estará completado:

Vetor final: 3 7 5 9 18 10 15 25 \$1 \$2 \$3

- Embora os segmentos S₁ e S₃ ainda não estejam ordenado, a chave particionadora já se encontra em sua posição correta definitiva.
- Reaplicar o método recursivamente para os segmentos S1 e S3 até que o vetor esteja completamente ordenado.

anaeliza.moura@unicap.br

19

Classificação por Troca

Método Quicksort - Implementação