I. Game Theory Basics

 $N = \{1, ..., n\} \leftarrow \text{set of players}$ In case of RPS: $S: \leftarrow \text{Set of outrons for playeris}$ $A = \{1, ..., n\} \leftarrow \text{action profile}$ (set of every possible combinations of actions) $S: (a_1, ..., a_n) \mapsto (a_1$

Pay-off table for RPS:

R P S

R 0,0 -1,1 1,-1

P 1,-1 0,0 -1,1

S -1,1 1,-1 0,0

pure strategy - if player chancer a rough action with probability 1

muced strategy - at least 2 actions with positive probability -> we denote it

6: (3) <- probability that player i chooses action s
(se Si)

 $\frac{u_{i}(6i,6-i)}{seSi} = \sum_{seSi} \frac{Si}{s} \frac{S$

Expected utility for both pl., it player 1 play with strategy or i and player 2 plays with strategy or i (In the 2-player ease).

The best strategy for

- every player is to maximum

their expected utility

Nash Equilibrium

Both players play best "response" strategies.

No player can improve by changing strategy alone.

tarry
$$G_{gary}(C) = \pi \leftarrow probability that Gary chaosis a movie in the control of the control of$$

$$u_{moniea}(M) = G_{pary}(C) \cdot u_{moniea}(M,C) + G_{pary}(M) \cdot u_{moniea}(M,C) = \pi \cdot 0 + (1-\pi) \cdot 1 = 1-\pi$$

$$2\pi c = 1 - \pi$$

$$\pi = \frac{1}{3} = \frac{1}{3} = \frac{1}{3}$$

$$\text{Export } (c) = \frac{1}{3}$$

$$\text{Export } (M) = \frac{2}{3}$$

II. Regret Matching

1 ex named

Pl	opp	utility for pl	regret for pl	Strategy
R	P	-1	٥	٥
P	Р	٥	+1	4/3
S	P	+1	+2	2/3

Pegret for player i of not choosing an action S_2 when choosing S_4 & $I_i(S_1,S_2) = 4i(S_2) - 4i(S_1)$

legret matching - select actums with probability proportional to positive regrets

Our good is to minimize expected regrets over time

2 nd Counds

Pl	opp	utility for pl	regret for pl	previous regrets	U	ive vegrets	Strategy	
S	ß	-1	0	2		2	4/3	
R	R	0	1	0		1	4/6	
P	ß	+1	2	1.		3	1/2	

			· · · · · · · · · · · · · · · · · · ·					
	Pl	opp	utility for pl	regret for pl	previous regrets	cumulative vegrets	Strategy	
λ.	R	S	+1	0	2	2.	1/2	
1 (6000	Р	S	-1	-2	1	0	0	
New	S	S	Ď	-1	3	2.	1/2	
			•		•			

 $m \cdot \overline{\text{hex}} \stackrel{\text{k}}{\longrightarrow} \text{Should}$ regotive? \longrightarrow be negative and pointive