Section 2.4 – Partial Fractions

This section shows how to express a rational; function as a sum of simpler functions, called *partial fractions*.

Example

Evaluate
$$\int \frac{5x-3}{x^2-2x-3} dx$$

Solution

$$\frac{5x-3}{x^2-2x-3} = \frac{A}{x+1} + \frac{B}{x-3}$$

$$5x-3 = (A+B)x-3A+B$$

$$x \qquad A+B=5$$

$$x^0 \quad -3A+B=-3$$

$$A+B=5$$

$$\frac{-3A-B=3}{4A=8}$$

$$A=2, B=3$$

$$\int \frac{5x-3}{x^2-2x-3} dx = \int \left(\frac{2}{x+1} + \frac{3}{x-3}\right) dx$$

$$= 2\ln|x+1| + 3\ln|x-3| + C$$

Example

Use partial fractions to evaluate $\int \frac{x^2 + 4x + 1}{(x-1)(x+1)(x+3)} dx$

$$\frac{x^2 + 4x + 1}{(x-1)(x+1)(x+3)} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{x+3}$$

$$x^2 + 4x + 1 = A(x+1)(x+3) + B(x-1)(x+3) + C(x-1)(x+1)$$

$$= Ax^2 + 4Ax + 3A + Bx^2 + 2Bx - 3B + Cx^2 - C$$

$$x^2 + A + B + C = 1$$

$$x + 4A + 2B = 4$$

$$x^0 + 3A - 3B - C = 1$$

$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ 4 & 2 & 0 \\ 3 & -3 & -1 \end{vmatrix} = -16 \qquad \Delta_A = \begin{vmatrix} 1 & 1 & 1 \\ 4 & 2 & 0 \\ 1 & -3 & -1 \end{vmatrix} = -12$$

$$\Delta_B = \begin{vmatrix} 1 & 1 & 1 \\ 4 & 4 & 0 \\ 3 & 1 & -1 \end{vmatrix} = -8 \qquad \Delta_C = \begin{vmatrix} 1 & 1 & 1 \\ 4 & 2 & 4 \\ 3 & -3 & 1 \end{vmatrix} = 4$$

$$A = \frac{-12}{-16} = \frac{3}{4} \begin{vmatrix} B = \frac{-8}{-16} = \frac{1}{2} \end{vmatrix} \quad C = \frac{4}{-16} = -\frac{1}{4} \begin{vmatrix} C = \frac{4}{-16} = -\frac{1}{4} \end{vmatrix}$$

$$\int \frac{x^2 + 4x + 1}{(x - 1)(x + 1)(x + 3)} dx = \int \left(\frac{3}{4} \frac{1}{x - 1} + \frac{1}{2} \frac{1}{x + 1} - \frac{1}{4} \frac{1}{x + 3} \right) dx$$

$$= \frac{3}{4} \ln|x - 1| + \frac{1}{2} \ln|x + 1| - \frac{1}{4} \ln|x + 3| + K$$

Method of Partial Fractions (f(x)/g(x) **Proper**)

1. Let (x-r) be a linear factor of g(x). Suppose that $(x-r)^m$ is the highest power of (x-r) that divides g(x). Then,

$$\frac{A_1}{(x-r)} + \frac{A_2}{(x-r)^2} + \cdots + \frac{A_m}{(x-r)^m}$$

2. Let $x^2 + px + q$ be an irreducible quadratic function of g(x) has no real roots. Suppose that $\left(x^2 + px + q\right)^n$ is the highest power. Then

$$\frac{B_1 x + C_1}{\left(x^2 + px + q\right)} + \frac{B_2 x + C_2}{\left(x^2 + px + q\right)^2} + \dots + \frac{B_n x + C_n}{\left(x^2 + px + q\right)^n}$$

- 3. Set the original fraction $\frac{f(x)}{g(x)}$ equal to the sum of these partial fractions.
- **4.** Equate the coefficients of corresponding powers of *x* and solve the resulting equations for the undetermined coefficients.

Example

Use partial fractions to evaluate $\int \frac{6x+7}{(x+2)^2} dx$

$$\frac{6x+7}{(x+2)^2} = \frac{A}{x+2} + \frac{B}{(x+2)^2}$$

$$6x+7 = A(x+2) + B$$

$$= Ax + 2A + B$$

$$\Rightarrow \begin{cases} \boxed{A=6} \\ 2A + B = 7 \end{cases} \Rightarrow \boxed{B} = 7 - 12 = -5$$

$$\int \frac{6x+7}{(x+2)^2} dx = \int \left(\frac{6}{x+2} - \frac{5}{(x+2)^2}\right) dx$$

$$= \int \frac{6}{x+2} dx - 5 \int (x+2)^{-2} d(x+2)$$

$$= 6 \ln|x+2| + 5(x+2)^{-1} + C$$

$$= 6 \ln|x+2| + \frac{5}{x+2} + C$$

Example

Use partial fractions to evaluate $\int \frac{2x^3 - 4x^2 - x - 3}{x^2 - 2x - 3} dx$

Solution

$$\begin{array}{r}
2x \\
x^2 - 2x - 3 \overline{\smash)2x^3 - 4x^2 - x - 3} \\
\underline{2x^3 - 4x^2 - 6x} \\
5x - 3
\end{array}$$

$$\frac{2x^3 - 4x^2 - x - 3}{x^2 - 2x - 3} = 2x + \frac{5x - 3}{x^2 - 2x - 3}$$

$$\frac{5x-3}{x^2-2x-3} = \frac{A}{x+1} + \frac{B}{x-3}$$

$$5x - 3 = (A+B)x - 3A + B$$

$$x A+B=5$$

$$x^{0} -3A+B=-3$$

$$A+B=5$$

$$-3A-B=3$$

$$4A=8$$

$$A = 2, B = 3$$

$$\int \frac{2x^3 - 4x^2 - x - 3}{x^2 - 2x - 3} dx = \int 2x dx + \int \frac{5x - 3}{x^2 - 2x - 3} dx$$
$$= \int 2x dx + \int \frac{2}{x + 1} dx + \int \frac{3}{x - 3} dx$$
$$= x^2 + 2\ln|x + 1| + 3\ln|x - 3| + C$$

Example

Use partial fractions to evaluate $\int \frac{-2x+4}{(x^2+1)(x-1)^2} dx$

$$\frac{-2x+4}{\left(x^2+1\right)\left(x-1\right)^2} = \frac{Ax+B}{x^2+1} + \frac{C}{x-1} + \frac{D}{\left(x-1\right)^2}$$
$$-2x+4 = \left(Ax+B\right)\left(x-1\right)^2 + C\left(x-1\right)\left(x^2+1\right) + D\left(x^2+1\right)$$
187

$$= (Ax + B)(x^{2} - 2x + 1) + C(x^{3} - x^{2} + x - 1) + Dx^{2} + D$$

$$= (A + C)x^{3} + (-2A + B - C + D)x^{2} + (A - 2B + C)x + B - C + D$$

$$x^{3} \qquad A + C = 0 \qquad \rightarrow C = -A$$

$$x^{2} \qquad -2A + B - C + D = 0$$

$$x \qquad A - 2B + C = -2 \qquad \rightarrow -2B = -2 \qquad \underline{B = 1}$$

$$x^{0} \qquad B - C + D = 4$$

$$-A + D = -1$$

$$\frac{A + D = 3}{2D = 2} \Rightarrow \underline{D = 1} \qquad A = 2$$

$$\Rightarrow \underline{C = -2}$$

$$\int \frac{-2x + 4}{(x^{2} + 1)(x - 1)^{2}} dx = \int \left(\frac{2x + 1}{x^{2} + 1} - \frac{2}{x - 1} + \frac{1}{(x - 1)^{2}}\right) dx$$

$$= \int \left(\frac{2x}{x^{2} + 1} + \frac{1}{x^{2} + 1} - \frac{2}{x - 1} + \frac{1}{(x - 1)^{2}}\right) dx$$

$$= \ln(x^{2} + 1) + \tan^{-1} x - 2\ln|x - 1| - \frac{1}{x - 1} + K$$

Example

Use partial fractions to evaluate $\int \frac{dx}{x(x^2+1)^2}$

$$\frac{1}{x(x^{2}+1)^{2}} = \frac{A}{x} + \frac{Bx+C}{x^{2}+1} + \frac{Dx+E}{(x^{2}+1)^{2}}$$

$$1 = A(x^{2}+1)^{2} + (Bx+C)x(x^{2}+1) + x(Dx+E)$$

$$1 = (A+B)x^{4} + Cx^{3} + (2A+B+D)x^{2} + (C+E)x + A$$

$$\begin{cases} x^{4} & A+B=0 & \to B=-1 \\ x^{3} & C=0 \\ x^{2} & 2A+B+D=0 & \to D=-1 \\ x & C+E=0 & \to E=0 \\ x^{0} & A=1 \end{cases}$$

$$\int \frac{dx}{x(x^2+1)^2} = \int \frac{dx}{x} - \int \frac{x}{x} \frac{dx}{x^2+1} - \int \frac{x}{(x^2+1)^2} \frac{dx}{(x^2+1)^2}$$

$$= \int \frac{dx}{x} - \frac{1}{2} \int \frac{1}{x^2+1} d(x^2+1) - \frac{1}{2} \int \frac{1}{(x^2+1)^2} d(x^2+1)$$

$$= \ln|x| - \frac{1}{2} \ln(x^2+1) + \frac{1}{2} \frac{1}{x^2+1} + K$$

$$= \ln|x| - \ln\sqrt{x^2+1} + \frac{1}{2} \frac{1}{x^2+1} + K$$

$$= \ln \frac{|x|}{\sqrt{x^2+1}} + \frac{1}{2(x^2+1)} + K$$

Exercises Section 2.4 – Partial Fractions

Express the integrand as a sum of partial fractions and evaluate the integrals

1.
$$\int \frac{dx}{x^2 + 2x}$$

2.
$$\int \frac{2x+1}{x^2 - 7x + 12} dx$$

$$3. \int \frac{x+3}{2x^3-8x} dx$$

$$4. \qquad \int \frac{x^2}{(x-1)\left(x^2+2x+1\right)} dx$$

$$\int \frac{8x^2 + 8x + 2}{\left(4x^2 + 1\right)^2} \, dx$$

$$6. \qquad \int \frac{x^2 + x}{x^4 - 3x^2 - 4} dx$$

7.
$$\int \frac{\theta^4 - 4\theta^3 + 2\theta^2 - 3\theta + 1}{\left(\theta^2 + 1\right)^3} d\theta$$

$$8. \qquad \int \frac{x^4}{x^2 - 1} \ dx$$

$$9. \qquad \int \frac{16x^3}{4x^2 - 4x + 1} \ dx$$

$$10. \int \frac{e^{4x} + 2e^{2x} - e^x}{e^{2x} + 1} \ dx$$

11.
$$\int \frac{\sin\theta \, d\theta}{\cos^2\theta + \cos\theta - 2}$$

12.
$$\int \frac{(x-2)^2 \tan^{-1}(2x) - 12x^3 - 3x}{(4x^2 + 1)(x-2)^2} dx$$

$$13. \quad \int \frac{\sqrt{x+1}}{x} \ dx$$

14.
$$\int \frac{x^3 - 2x^2 + 3x - 4}{x^2 + 1} dx$$

15.
$$\int \frac{4x^2 + 2x + 4}{x + 1} dx$$

$$16. \int \frac{3x^2 + 7x - 2}{x^3 - x^2 - 2x} dx$$

17.
$$\int \frac{3x^2 + 2x + 5}{(x-1)(x^2 - x - 20)} dx$$

18.
$$\int \frac{5x^2 - 3x + 2}{x^3 - 2x^2} \ dx$$

$$19. \int \frac{7x^2 - 13x + 13}{(x-2)(x^2 - 2x + 3)} \, dx$$

20.
$$\int \frac{1}{x^2 - 5x + 6} \, dx$$

21.
$$\int \frac{1}{x^2 - 5x + 5} \, dx$$

$$22. \int \frac{5x^2 + 20x + 6}{x^3 + 2x^2 + x} \, dx$$

23.
$$\int \frac{2x^3 - 4x - 8}{\left(x^2 - x\right)\left(x^2 + 4\right)} \, dx$$

$$24. \int \frac{8x^3 + 13x}{\left(x^2 + 2\right)^2} dx$$

$$25. \int \frac{\sin x}{\cos x + \cos^2 x} dx$$

$$26. \int \frac{5\cos x}{\sin^2 x + 3\sin x - 4} dx$$

$$27. \quad \int \frac{e^x}{\left(e^x - 1\right)\left(e^x + 4\right)} \ dx$$

$$28. \int \frac{e^x}{\left(e^{2x}+1\right)\left(e^x-1\right)} dx$$

$$29. \quad \int \frac{\sqrt{x}}{x-4} \ dx$$

$$30. \quad \int \frac{1}{\sqrt{x} - \sqrt[3]{x}} \ dx$$

$$31. \quad \int \frac{dx}{1+\sin x}$$

$$32. \quad \int \frac{dx}{2 + \cos x}$$

33.
$$\int \frac{dx}{1-\cos x}$$

$$34. \quad \int \frac{dx}{1+\sin x + \cos x}$$

$$35. \quad \int \frac{1}{x^2 - 9} \ dx$$

$$36. \quad \int \frac{5}{x^2 + 3x - 4} \ dx$$

37.
$$\int \frac{2}{9x^2 - 1} \, dx$$

38.
$$\int \frac{3-x}{3x^2 - 2x - 1} \, dx$$

$$39. \int \frac{x^2 + 12x + 12}{x^3 - 4x} \ dx$$

40.
$$\int \frac{x^3 - x + 3}{x^2 + x - 2} \, dx$$

41.
$$\int \frac{5x-2}{(x-2)^2} \, dx$$

$$\mathbf{42.} \quad \int \frac{2x^3 - 4x^2 - 15x + 4}{x^2 - 2x - 8} \ dx$$

$$43. \quad \int \frac{x+2}{x^2+5x} \ dx$$

$$44. \quad \int \frac{\sec^2 x}{\tan^2 x + 5 \tan x + 6} \ dx$$

$$45. \quad \int \frac{\sec^2 x}{\tan x (\tan x + 1)} \ dx$$

$$46. \int \frac{x \ dx}{x^2 + 4x + 3}$$

$$47. \quad \int \frac{x+1}{x^2(x-1)} \, dx$$

48.
$$\int \frac{2x^3 + x^2 - 21x + 24}{x^2 + 2x - 8} dx$$

49.
$$\int \frac{8x+5}{2x^2+3x+1} \, dx$$

$$\mathbf{50.} \quad \int \frac{2x^2 + 7x + 4}{x^3 + 2x^2 + 2x} \, dx$$

$$\mathbf{51.} \quad \int \frac{3x^3 + 4x^2 + 6x}{(x+1)^2 \left(x^2 + 4\right)} \, dx$$

$$52. \int \frac{x^2 - 4}{x^2 + 4} \, dx$$

$$53. \int \frac{dx}{x^2 - 2x - 15}$$

$$\mathbf{54.} \quad \int \frac{3x^2 + x - 3}{x^2 - 1} \ dx$$

$$55. \int \frac{2x^2 - 4x}{x^2 - 4} \, dx$$

$$\mathbf{56.} \quad \int \frac{dx}{x^3 - 2x^2}$$

$$57. \quad \int \frac{dx}{x^2 - x - 2}$$

$$58. \int \frac{4x^2 + 13x - 9}{x^3 + 2x^2 - 3x} \, dx$$

$$\mathbf{59.} \quad \int \frac{3x^3 - 18x^2 + 29x - 4}{(x+1)(x-2)^3} \ dx$$

$$\mathbf{60.} \quad \int \frac{x^2 - x - 21}{2x^3 - x^2 + 8x - 4} \ dx$$

61.
$$\int \frac{5x^3 - 3x^2 + 7x - 3}{\left(x^2 + 1\right)^2} dx$$

62.
$$\int \frac{2x^4 - 2x^3 + 6x^2 - 5x + 1}{x^3 - x^2 + x - 1} dx$$

63.
$$\int \frac{81}{x^3 - 9x^2} \, dx$$

64.
$$\int \frac{10x}{x^2 - 2x - 24} \ dx$$

$$\mathbf{65.} \quad \int \frac{x+1}{x^2 \left(x^2+4\right)} \ dx$$

66.
$$\int \frac{1+x^2}{(x+1)^3} \ dx$$

67.
$$\int \frac{6}{x^2 - 1} \, dx$$

68.
$$\int \frac{21x^2}{x^3 - x^2 - 12x} \, dx$$

69.
$$\int \frac{x+1}{x^3 + 3x^2 - 18x} \ dx$$

$$70. \quad \int \frac{x^2 + 12x - 4}{x^3 - 4x} \ dx$$

71.
$$\int \frac{6x^2}{x^4 - 5x^2 + 4} \, dx$$

$$72. \quad \int \frac{4x-2}{x^3-x} \ dx$$

73.
$$\int \frac{16x^2}{(x-6)(x+2)^2} \ dx$$

$$74. \quad \int \frac{8\left(x^2+4\right)}{x\left(x^2+8\right)} \ dx$$

75.
$$\int \frac{x^2 + x + 2}{(x+1)(x^2 + 1)} \, dx$$

$$76. \quad \int \frac{2}{x\left(x^2+1\right)^2} \ dx$$

77.
$$\int \frac{1}{(x+1)(x^2+2x+2)^2} dx$$

$$78. \quad \int \frac{2-x}{x^2+x} \ dx$$

79.
$$\int \frac{3x+11}{(x+2)(x+3)} \ dx$$

$$80. \quad \int \frac{1}{x^2 - a^2} \ dx$$

81.
$$\int \frac{1}{x^2 + 5x + 6} \, dx$$

82.
$$\int \frac{x^3 + 6x^2 + 3x + 6}{x^3 + 2x^2} dx$$

83.
$$\int \frac{2x^2 + 5x - 1}{x^3 + x^2 - 2x} dx$$

84.
$$\int \frac{3x+6}{x^3+2x^2-3x} \, dx$$

85.
$$\int \frac{3x^2 + 2x - 2}{x^3 - 1} \ dx$$

86.
$$\int \frac{x^3 + 5x^2 + 2x - 4}{x^4 - 1} dx$$

87.
$$\int \frac{x^2 + 4x}{\left(x^2 + 4\right)\left(x - 2\right)^2} \ dx$$

$$95. \quad \int_{-1/2}^{1/2} \frac{x^2 + 1}{x^2 - 1} \, dx$$

88.
$$\int \frac{x^2 + 2x + 3}{(x-1)(x+1)^2} dx$$

$$96. \quad \int_0^2 \frac{3}{4x^2 + 5x + 1} \, dx$$

89.
$$\int \frac{x^4 - x^3 + 3x^2 - x + 2}{(x - 1)(x^2 + 2)^2} dx$$

97.
$$\int_{1}^{5} \frac{x-1}{x^2(x+1)} \, dx$$

90.
$$\int \frac{-x^2 + 11x + 18}{(x-1)(x+1)(x^2 + 3x + 3)} dx$$

$$98. \quad \int_0^1 \frac{x^2 - x}{x^2 + x + 1} \, dx$$

91.
$$\int \frac{x^3 + 5x^2 + 2x - 4}{x(x^2 + 4)^2} dx$$

$$99. \quad \int_{4}^{8} \frac{y \, dy}{y^2 - 2y - 3}$$

$$92. \quad \int_{-1}^{2} \frac{5x}{x^2 - x - 6} \ dx$$

$$100. \int_{1}^{\sqrt{3}} \frac{3x^2 + x + 4}{x^3 + x} dx$$

$$93. \quad \int_0^5 \frac{2}{x^2 - 4x - 32} \, dx$$

$$101. \int_0^{\pi/2} \frac{dx}{\sin x + \cos x}$$

94.
$$\int_0^1 \frac{dx}{(x+1)(x^2+1)}$$

102.
$$\int_{0}^{\pi/3} \frac{\sin \theta}{1 - \sin \theta} d\theta$$

103. Find the volume of the solid generated by the revolving the shaded region about x-axis

Find the area of the region bounded by the graphs of

104.
$$y = \frac{12}{x^2 + 5x + 6}$$
, $y = 0$, $x = 0$, and $x = 1$

105.
$$y = \frac{7}{16 - x^2}$$
 and $y = 1$

106. Find the length of the graph of the function $y = \ln(1 - x^2)$, $0 \le x \le \frac{1}{2}$

- **107.** The region in the first quadrant that is enclosed by the *x*-axis, the curve $y = \frac{5}{x\sqrt{5-x}}$, and the lines x = 1 and x = 4 is revolved about the *x*-axis to generate a solid. Find the volume of the solid.
- **108.** Consider the region bounded by the graphs $y = \frac{2x}{x^2 + 1}$, y = 0, x = 0, and x = 3.
 - a) Find the volume of the solid generated by revolving the region about the x-axis
 - b) Find the centroid of the region.
- **109.** Consider the region bounded by the graph $y^2 = \frac{(2-x)^2}{(1+x)^2}$ $0 \le x \le 1$.

Find the volume of the solid generated by revolving this region about the x-axis.

110. A single infected individual enters a community of *n* susceptible individuals. Let *x* be the number of newly infected individuals at time *t*. The common epidemic model assumes that the disease spreads at a rate proportional to the product of the total number infected and the number not yet infected. So,

$$\frac{dx}{dt} = k(x+1)(n-x)$$
 and you obtain

$$\int \frac{1}{(x+1)(n-x)} \ dx = \int k \ dt$$

Solve for x as a function of t.

111. Evaluate $\int_0^1 \frac{x}{1+x^4} dx$ in *two* different ways.