Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-221. Вариант 27

1. Пусть
$$z=\frac{1}{2}+\frac{\sqrt{3}i}{2}$$
. Вычислить значение $\sqrt[6]{z^3}$, для которого число $\frac{\sqrt[6]{z^3}}{2\sqrt{3}-2i}$ имеет аргумент $-\pi$.

2. Решить систему уравнений:

$$\begin{cases} x(-6+5i) + y(-15+4i) = -132 - 154i \\ x(13+11i) + y(3+6i) = 38 + 256i \end{cases}$$

- 3. Найти корни многочлена $4x^6+68x^5+504x^4+1744x^3+1900x^2-5364x-21320$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=-2+3i, \, x_2=-5+4i, \, x_3=-5.$
- 4. Даны 3 комплексных числа: -2-30i, -21+2i, -26-9i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = \frac{3}{2} + \frac{3\sqrt{3}i}{2}, z_2 = -\frac{3\sqrt{3}}{2} + \frac{3i}{2}$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z - 4 - i| < 3\\ |arg(z + 3 + 5i)| < \frac{2\pi}{3} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (4, -1, 10), b = (0, 2, -3), c = (-3, 0, -6). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-9,-11,9) и плоскость P:-24x+16z+56=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-15, -2, -3), $M_1(-2, 101, -6)$, $M_2(10, 1, -6)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -13x + 37y - 13z - 355 = 0 \\ -17x + 19y + z - 181 = 0 \end{cases} \qquad L_2: \begin{cases} 4x + 18y - 14z + 1970 = 0 \\ 2x + 17y + 19z + 615 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.