Algebra

Munir Uz Zaman

Date: January 18, 2022

Contents

		jualities AM-GM Inequality
2	Poly	ynomials 9
	2.1	Division Algorithm
	2.2	The Fundamental Theorem of Algebra
	2.3	Roots of Polynomials
	2.4	Quadratic Polynomials
	2.5	Lagrange Interpolation

1 Inequalities

§1.1 AM-GM Inequality

Theorem 1.1.1 (AM-GM Inequality)

For all positive real numbers a_1, a_2, \dots, a_n where $n \in \mathbb{N}$ and $n \geq 2$ the following inequality holds,

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \cdots a_n}$$

Equality occurs if and only if $a_1 = a_2 = \cdots = a_n$.

Proof: We will prove this theorem using a special type of induction know as $Cauchy\ Induction$. Here's how we'll prove it, (let P_n be the statement for n numbers.)

- We will first show that P_2 is true.
- We will show that $P_n \implies P_{2n}$
- Then we will show that $P_n \implies P_{n-1}$

When these are verified, all the assertions P_n with $n \geq 2$ are shown to be true. First we need to prove that if a_1, a_2 are two positive reals then

$$\frac{a_1 + a_2}{2} \ge \sqrt[2]{a_1 a_2}$$

This can be easily shown from the fact that $(\sqrt{a_1} - \sqrt{a_2})^2 \ge 0$. Next we need show that $P_n \implies P_{2n}$. This is also very easy.

$$a_1 + a_2 + \dots + a_{2n} \ge n \sqrt[n]{a_1 a_2 \cdots a_n} + n \sqrt[n]{a_{n+1} a_{n+2} \cdots a_{2n}} \ge 2n \sqrt[2n]{a_1 a_2 \cdots a_{2n}}$$

Now we just need to show that $P_n \implies P_{n-1}$. Let $g = \sqrt[n-1]{a_1 a_2 \cdots a_{n-1}}$. Now,

$$a_1 + \dots + a_{n-1} + g \ge n \sqrt[n]{a_1 \dots a_{n-1} \times g}$$

$$\Longrightarrow a_1 + \dots + a_{n-1} + g \ge n \sqrt[n]{g^{n-1}g}$$

$$\Longrightarrow a_1 + \dots + a_{n-1} + g \ge ng$$

$$\Longrightarrow a_1 + \dots + a_{n-1} \ge (n-1)g$$

$$\Longrightarrow a_1 + \dots + a_{n-1} \ge (n-1) \sqrt[n-1]{a_1 a_2 \dots a_{n-1}}$$

By Cauchy induction, the inequality is true for every natural number $n \ge 2$. Equality occurs if and only if $a_1 = a_2 = \cdots = a_n$.

Theorem 1.1.2 (Weighted AM-GM Inequality)

If a_1, a_2, \dots, a_n are positive real numbers with $n \geq 2$ and x_1, x_2, \dots, x_n are n non-negative real numbers such that $\sum_{i=1}^n x_i = 1$ then

$$a_1x_1 + \dots + a_nx_n \ge a_1^{x_1} \cdots a_n^{x_n}$$

Problem 1.1.3 (BDMO 2019)

Show that if a, b, c are positive real numbers then

$$\frac{a}{bc} + \frac{b}{ac} + \frac{c}{ab} \ge 2\left(\frac{1}{a} + \frac{1}{b} - \frac{1}{c}\right)$$

Solution:

$$(a+b-c)^{2} \ge 0$$

$$\implies a^{2}+b^{2}+c^{2}+2(ab-bc-ca) \ge 0$$

$$\implies a^{2}+b^{2}+c^{2} \ge 2(bc+ca-ab)$$

$$\implies \frac{a^{2}+b^{2}+c^{2}}{abc} \ge 2\left(\frac{bc+ca-ab}{abc}\right)$$

$$\implies \frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab} \ge 2\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\right)$$

Problem 1.1.4

Show that if a_1, a_2, \dots, a_n are n positive real numbers such that $a_1 a_2 \dots a_n = 1$ then

$$(1+a_1)(1+a_2)\cdots(1+a_n) \ge 2^n$$

Solution: Using the AM-GM Inequality, we have $(1 + a_i) \ge 2\sqrt{a_i}$ for all $1 \le i \le n$. Now multiplying the inequalities for all values of i we get

$$(1+a_1)(1+a_2)\cdots(1+a_n) \ge 2^n\sqrt{a_1a_2\cdots a_n} = 2^n$$

Problem 1.1.5

Show that if x_1, x_2, \dots, x_n are n real numbers then

$$(x_1 + x_2 + \dots + x_n) \left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} \right) \ge n^2$$

Solution: Using the AM-GM Inequality, we have

$$(x_1 + x_2 + \dots + x_n) \ge n \sqrt[n]{x_1 x_2 \dots x_n}$$
$$\left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}\right) \ge n \sqrt[n]{\frac{1}{x_1 x_2 \dots x_n}}$$

Multiplying the two inequalities we get

$$(x_1 + x_2 + \dots + x_n) \left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} \right) \ge n^2$$

*

Problem 1.1.6 (Russia MO 2004)

Let a, b, c be positive real numbers with sum 3. Show that

$$\sqrt{a} + \sqrt{b} + \sqrt{c} \ge ab + bc + ca$$

Solution: We know that

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca \implies 2ab + 2bc + 2ca = 9 - (a^2 + b^2 + c^2)$$

The inequality is therefore equivalent to

$$a^{2} + b^{2} + c^{2} + 2\sqrt{a} + 2\sqrt{b} + 2\sqrt{c} \ge 9$$

Now using the AM-GM Inequality we have

$$(a^{2} + \sqrt{a} + \sqrt{a}) \ge 3a$$
$$(b^{2} + \sqrt{b} + \sqrt{b}) \ge 3b$$
$$(c^{2} + \sqrt{c} + \sqrt{c}) \ge 3c$$

Adding the 3 inequalities we get

$$a^2 + b^2 + c^2 + 2\sqrt{a} + 2\sqrt{b} + 2\sqrt{c} \ge 9$$

Problem 1.1.7

Let x, y, z be three positive real numbers such that xyz = 1. Prove that

$$\frac{x^3}{(1+y)(1+z)} + \frac{y^3}{(1+x)(1+z)} + \frac{z^3}{(1+x)(1+y)} \ge \frac{3}{4}$$

Polynomials

Definition 2.0.1. A Polynomial P(x) is an one variable expression or function of the form

$$P(x) = \sum_{i=0}^{n} a_i x^i = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where a_0, a_1, \dots, a_n are constants and $n \in \mathbb{N}$. The constants a_i are called the *coefficients* of the polynomial. We will denote $\mathcal{S}[x]$ as the set of all polynomials with $a_i \in \mathcal{S}$. If $n \neq 0$ then n is called the *degree* of the polynomial P(x) and we write this symbolically as $\deg P(x) = n$. If $a_n = 1$ then we say that the polynomial is *monic*. r is called a *root* of the polynomial P(x) if and only if P(r) = 0.

§2.1 Division Algorithm

Theorem 2.1.1 (The Division Algorithm)

Given two polynomial A(x) and B(x) there exists unique polynomials Q(x) and R(x) with deg $R(x) < \deg B(x)$ such that,

$$A(x) = Q(x)B(x) + R(x)$$

The polynomials Q(x) and R(x) are known as the *quotient* and the *remainder*, respectively. If the remainder R(x) = 0 then we say that B(x) divides A(x) and write $B(x) \mid A(x)$.

Proof: We will first prove the existence of the polynomials Q(x) and R(x). Notice the following algorithm,

Algorithm 1 Division Algorithm

```
A(x) \leftarrow a_n x^n + a_{n-1} x^{n-1} + \dots + a_0
B(x) \leftarrow b_n x^n + b_{n-1} b^{n-1} + \dots + b_0
Q(x) \leftarrow 0
R(x) \leftarrow A(x)
while \deg R(x) \ge \deg B(x) do
a \leftarrow \text{leading coefficient of } R(x)
b \leftarrow \text{leading coefficient of } B(x)
d \leftarrow \deg R(x) - \deg B(x)
Q(x) = Q(x) + \left(\frac{a}{b}\right) x^d
R(x) \leftarrow R(x) - \left(\frac{a}{b}\right) x^d B(x)
output Q(x) and R(x)
```

In each iteration of the while loop, $\deg R(x)$ is decreasing (mono-variant) and the polynomial Q(x)B(x)+R(x) always stays equal to A(x) (invariant). At some point we will eventually get $\deg R(x) \leq \deg B(x)$ which proves the existence of Q(x) and R(x).

Remark 2.1.2. Notice that if $A(x), B(x) \in \mathbb{R}[x]$ then $Q(x), R(x) \in \mathbb{R}[x]$. This implies that if $A(x), B(x) \in \mathbb{R}[x]$ and $B(x) \mid A(x)$ then $A(x)/B(x) \in \mathbb{R}[x]$

We will now prove the uniqueness of the polynomials Q(x) and R(x). Assume,

$$A(x) = Q_1(x)B(x) + R_1(x), \quad \deg R_1(x) < \deg B(x)$$

 $A(x) = Q_2(x)B(x) + R_2(x), \quad \deg R_2(x) < \deg B(x)$

Now,

$$(Q_1(x) - Q_2(x)) B(x) + (R_1(x) - R_2(x)) = 0$$

Let $q(x) = Q_1(x) - Q_2(x)$ and $r(x) = R_1(x) - R_2(x)$. Now,

$$q(x)B(x) + r(x) = 0 \implies q(x)B(x) = -r(x)$$

If $q(x) \neq 0$ then $\deg r(x) = \deg q(x) + \deg B(x) \geq \deg B(x)$. But that is impossible since $\deg R_2(x) < \deg B(x) \implies \deg (R_2(x) - R_1(x)) < \deg B(x)$. Thus q(x) must be zero. Consequently r(x) will also be zero. Therefore $R_1(x) = R_2(x)$ and $Q_1(x) = Q_2(x)$.

For example, if $B(x) = x^2 - x + 1$ and $A(x) = x^5 + x^3 + 2x$ then,

$$x^{5} + x^{3} + 2x = (x^{3} + x^{2} + x)(x^{2} - x + 1) + x$$

In this example, the remainder R(x) = x and the quotient $Q(x) = x^3 + x^2 + x$.

Theorem 2.1.3 (Remainder Theorem)

If P(x) is a polynomial and a is a constant then the remainder upon dividing P(x) by the linear polynomial x - a is equal to P(a).

Proof: From the Division Algorithm we know that there exists polynomials Q(x) and R(x) such that,

$$P(x) = Q(x)(x - a) + R(x)$$

Since $\deg R(x) < \deg(x-a) = 1$, R(x) must be a constant polynomial. Let us assume, R(x) = r. Now letting x = a we get,

$$P(a) = Q(a) \times (a - a) + r \implies P(a) = r$$

Therefore P(a) is the remainder upon dividing P(x) by x-a. QED

Theorem 2.1.4 (Factor Theorem)

The number z will be a root of the polynomial P(x) if and only if P(x) is divisible by x-z.

Proof: We will first prove that, $P(z) = 0 \implies (x - z) \mid P(x)$. Let us assume that r is the remainder upon dividing P(x) by x - z. Now we know from the Remainder Theorem that, P(z) = r. But since z is a root of P(x), P(z) = r = 0. Therefore since r = 0, we must have $(x - z) \mid P(x)$. Using similar arguments one can also prove the converse.

Corollary 2.1.4.1

The number $-\frac{b}{a}$ where $a, b \in \mathbb{R}$ will be a root of the polynomial P(x) if and only if the polynomial P(x) is divisible by ax + b.

If P(x) has the root z then the Factor Theorem guarantees that there exists a polynomial Q(x) such that,

$$P(x) = (x - z) Q(x)$$

Now if,

$$P(x) = (x - z)^m Q'(x), \quad Q'(z) \neq 0$$

then we say that z is root of P(x) of multiplicity m.

For example, in the polynomial $P(x) = (x-2)^2 (x-3)$ the root 2 has multiplicity 2 and the root 3 has multiplicity 1.

§2.2 The Fundamental Theorem of Algebra

Theorem 2.2.1 (The Fundamental Theorem of Algebra)

The Fundamental Theorem of Algebra states that, every polynomial P(x) in $\mathbb{C}[x]$ has at least one root in \mathbb{C}

Corollary 2.2.1.1

If $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ is a polynomial of degree n then,

$$P(x) = k(x - z_1)(x - z_2) \cdots (x - z_n)$$

where, $k = a_n$ and $z_i \in \mathbb{C}$. The numbers $z_1, z_2 \cdots z_n$ are not necessarily distinct.

Proof: This is an immediate consequence of The Fundamental Theorem of Algebra and Factor Theorem.

Figure 2.1: The 4 complex roots of the polynomial $x^4 - 2x^3 + 2x^2 + 8x + 16$

Theorem 2.2.2 (Complex Conjugate Root Theorem)

If $P(x) \in \mathbb{R}[x]$ and z = a + bi where $a, b \in \mathbb{R}$ is a complex root of the polynomial P(x) then $\overline{z} = a - bi$ is also a root of the polynomial P(x).

Proof (wiki): Since P(z) = 0,

$$P(z) = \sum_{k=0}^{n} a_k z^k = 0$$

Now using the properties of complex conjugates.

$$P(\overline{z}) = \sum_{k=0}^{n} a_k \overline{z}^k = \sum_{k=0}^{n} a_k \overline{z^k} = \sum_{k=0}^{n} \overline{a_k z^k} = \overline{\sum_{k=0}^{n} a_k z^k} = \overline{P(z)} = \overline{0} = 0$$

Therefore, $P(\overline{z}) = 0$.

Corollary 2.2.2.1

If z is a complex root of the polynomial P(x) of multiplicity m then \bar{z} is also a complex root of the polynomial P(x) of multiplicity m. That is, complex conjugate roots have the same multiplicity.

Proof: If $z \in \mathbb{R}$ then obviously z and \bar{z} will have the same multiplicity as $z = \bar{z}$. Let us assume $z \notin \mathbb{R}$ and let m and n be the multiplicity of z and \bar{z} respectively. Without loss of generality, we can assume n < m. Now, let

$$P(x) = (x - z)^m (x - \bar{z})^n Q(x)$$

Now,

$$P(x) = (x-z)^n (x-\bar{z})^n (x-z)^{m-n} Q(x)$$

$$\Longrightarrow \frac{P(x)}{(x-z)^n (x-\bar{z})^n} = (x-z)^{m-n} Q(x)$$

Let, $R(x) = \frac{P(x)}{(x-z)^n(x-\bar{z})^n}$. Since $P(x) \in \mathbb{R}[x]$ and $(x-z)^n(x-\bar{z})^n \in \mathbb{R}[x]$, $R(x) \in \mathbb{R}[x]$. Therefore, $R(x) = (x-z)^{m-n}Q(x) \in \mathbb{R}[x]$. As z is a root of R(x) and $R(x) \in \mathbb{R}[x]$, \bar{z} must also be a root of R(x) which implies the multiplicity of $\bar{z} > n$. But that contradicts our assumption that \bar{z} has multiplicity n. Therefore, m and n must be equal.

Corollary 2.2.2.2

Every polynomial P(x) in $\mathbb{R}[x]$ can be expressed in the form,

$$P(x) = f_1^{e_1}(x) f_2^{e_2}(x) \cdots f_n^{e_n}(x)$$

where the polynomials $f_i(x)$ are either linear or quadratic polynomials in $\mathbb{R}[x]$ and $e_i \in \mathbb{N}$

Corollary 2.2.2.3

If $P(x) \in \mathbb{R}[x]$ and deg P(x) is odd then P(x) has at least on real root.

Figure 2.2: The real root of the cubic polynomial $f(x) = x^3 + 2x^2 + 0.5$

§2.3 Roots of Polynomials

Theorem 2.3.1 (Rational Root Theorem)

If P(x) is a polynomial with integer coefficients and $z = \frac{p}{q}$ is a rational root, where p and q are in lowest terms, of P(x) then the leading coefficient, a_n , of P(x) is a multiple of p and the constant term, a_0 , of P(x) is a multiple of q.

Corollary 2.3.1.1

If P(x) is a polynomial with integer coefficients then every rational root of P(x) is an integer.

§2.4 Quadratic Polynomials

Definition 2.4.1. A quadratic polynomial is a polynomial of the form,

$$P(x) = ax^2 + bx + c$$

where a, b, c are constants and $a \neq 0$.

One can find the roots of a quadratic polynomial using the well known quadratic formula,

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The value $\Delta = b^2 - 4ac$ is called the discriminant of the quadratic polynomial.

Theorem 2.4.2

If P(x) is some quadratic polynomial whose discriminant is Δ and whose two roots are x_1 and x_2 then,

- $\Delta > 0 \iff x_1, x_2 \in \mathbb{R} \text{ and } x_1 \neq x_2$
- $\Delta = 0 \iff x_1, x_2 \in \mathbb{R} \text{ and } x_1 = x_2$
- $\Delta < 0 \iff x_1, x_2 \in \mathbb{C} \text{ and } x_1 \neq x_2$

Theorem 2.4.3

The value $P\left(-\frac{b}{2a}\right)$ is either the maximum (if a>0) or the minimum value (if a<0) of the quadratic polynomial, $P(x)=ax^2+bx+c$

(b) Minimum of $f(x) = 0.5x^2 - 2x - 1.5$

§2.5 Lagrange Interpolation

Theorem 2.5.1 (Lagrange Interpolation)

Let $\alpha_0, \alpha_1, \dots, \alpha_n$ be distinct real numbers and $\beta_0, \beta_1, \dots, \beta_n$ be another set of n+1 real numbers. Then there exists a unique polynomial,

$$P(x) = \sum_{i=0}^{n} \left(\prod_{\substack{j=0\\j\neq i}}^{n} \frac{x - \alpha_j}{\alpha_i - \alpha_j} \right) \beta_i$$

with deg $P(x) \le n$ such that $P(\alpha_k) = \beta_k$ for all $0 \le k \le n$.

Proof: Let,

$$D_k(x) = \prod_{\substack{j=0\\j\neq k}}^n \frac{x - \alpha_j}{\alpha_k - \alpha_j} = \frac{(x - \alpha_0)(x - \alpha_1)\cdots(x - \alpha_{k-1})(x - \alpha_{k+1})\cdots(x - \alpha_n)}{(\alpha_k - \alpha_0)(\alpha_k - \alpha_1)\cdots(\alpha_k - \alpha_{k-1})(\alpha_k - \alpha_{k+1})\cdots(\alpha_k - \alpha_n)}$$

If $x = \alpha_k$ then $D_k(x) = 1$ else if $x = \alpha_i$ where $i \neq k$ then $D_k(x) = 0$. Thus the polynomial,

$$P(x) = \sum_{k=0}^{n} D_k(x)\beta_k$$

will be equal to β_k for all $x = \alpha_k$. It is also clear that the polynomial P(x) has degree at most n since deg $D_k(x) = n$ for all $0 \le k \le n$.

Now suppose that there exists two polynomials $P_1(x)$ and $P_2(x)$, with degree at most n, such that,

$$P_1(\alpha_k) = P_2(\alpha_k) = \beta_k, \ 0 \le k \le n$$

Therefore the polynomial $Q(x) = P_1(x) - P_2(x)$ has n+1 distinct roots. But that is impossible since we know that $\deg Q(x) \leq n$ and a polynomial of degree n has at most n distinct roots. This proves that the polynomial P(x) must be unique, that is, P(x) is the only polynomial, with degree at most n, such that, $P(\alpha_k) = \beta_k$ for all $0 \leq k \leq n$

Figure 2.4: Plot of a Lagrange Polynomial

Figure 2.4 shows the Lagrange polynomial going through the points,

$$\{(1,1),(2,3),(0,-1),(5,4),(-5,-3),(4,4.5)\}$$

We can easily compute Lagrange polynomials in python using sympy.

```
>>> import sympy
>>> x = sympy.symbols('x')
>>> points = [(1,1), (2,3), (0, -1), (5, 4), (-5, -3), (4, 4.5)]
>>> expr = sympy.interpolate(points, x)
>>> print(expr)
```

Problem 2.5.2

Let P(x) be a polynomial of degree n such that, $P(k) = 2^k$ for all $0 \le k \le n$. Find P(n+1).

Solution: From Theorem 2.5.1 we have,

$$P(x) = \sum_{k=0}^{n} 2^k D_k(x)$$

where,

$$D_k(x) = \frac{x(x-1)\cdots(x-k+1)(x-k-1)(x-k-2)\cdots(x-n+1)(x-n)}{(k)(k-1)\cdots(1)(-1)(-2)\cdots(k-n+1)(k-n)}$$
$$= (-1)^{n-k} \frac{x(x-1)\cdots(x-k+1)(x-k-1)(x-k-2)\cdots(x-n+1)(x-n)}{k!(n-k)!}$$

Therefore,

$$P(n+1) = \sum_{k=0}^{n} (-1)^{n-k} 2^k \frac{(n+1)n(n-1)\cdots(n-k+2)(n-k)(n-k-1)\cdots1}{k!(n-k)!}$$

$$= \sum_{k=0}^{n} (-1)^{n-k} 2^k \frac{(n+1)!}{k!(n-k)!(n-k+1)}$$

$$= \sum_{k=0}^{n} (-1)^{n-k} 2^k \binom{n+1}{k}$$

$$= (-1) \left(\sum_{k=0}^{n+1} \binom{n+1}{k} 2^k (-1)^{n-k+1}\right) + 2^{n+1}$$

$$= (-1) (2-1)^{n+1} + 2^{n+1}$$

$$= 2^{n+1} - 1$$