

□ : Exercices de cours à faire avant le TD et qui ne seront pas corrigés en séances

Exercices à préparer avant le TD et qui seront corrigés en séance

🔳 : Exercices non corrigés en TD (plus difficiles), pour réviser & s'entraîner

N'hésitez pas à demander des éclaircissements auprès de vos enseignant es.

Décroissance radioactive 1

On considère la désintégration d'une source radioactive. On observe que pendant une durée T courte devant la demi-vie de la source, le nombre moyen de désintégrations est $\langle k \rangle = \alpha T$. Le but de l'exercice est de déterminer la probabilité que pendant un temps T il y ait k désintégrations. Pour modéliser la désintégration, on découpe la durée T en $N \gg 1$ intervalles de très courte durée $\Delta t = \frac{T}{N}$. Pendant chacun des N intervalles Δt , il y a donc 0 ou 1 désintégration. On suppose que les événements sont indépendants d'un intervalle à l'autre. Soit $p \ll 1$ la probabilité qu'une désintégration se produise pendant un intervalle Δt

1 – Quel est le nombre moyen de désintégrations dans un intervalle Δt donné? Quel est le nombre moyen de désintégrations pendant la durée T? En relisant l'introduction, en déduire une expression de p en fonction de α , N et T.

On veut maintenant calculer la distribution de probabilité du nombre de désintégrations. On commence par supposer N fini, et, à la toute fin du calcul, on prendra la limite $N \to \infty$.

- 2 Quelle est la probabilité d'avoir une désintégration pendant un intervalle Δt donné (par exemple le 17 $^{\rm e}$) et aucune pendant tous les autres intervalles? En déduire la probabilité qu'il y ait exactement une désintégration pendant toute la durée T, sans qu'on précise à quel instant elle a eu lieu.
- 3 Quelle est la probabilité d'avoir deux désintégrations pendant le temps T, l'une à l'intervalle 17 et l'autre à l'intervalle 71 par exemple? En déduire la probabilité qu'il y ait exactement deux désintégrations pendant toute la durée T, sans qu'on précise à quels instants elles ont eu lieu.
- 4 De même, déterminer la probabilité P(k) d'avoir exactement k désintégrations pendant la durée T à des instants non spécifiés. Vérifier que cette distribution de probabilité est normalisée.
- 5 Prendre la limite $N \to \infty$ (après avoir remplacé p par son expression en fonction de N bien sûr) pour obtenir P(k) en fonction de α et de T (on rappelle que $\lim_{N\to\infty} \left[1+\frac{a}{N}\right]^N=\mathrm{e}^a$). Indice : en cas de doute, commencer par calculer la limite pour k=1 ou k=2.
- 6 Comment s'appelle cette distribution de probabilité? Vérifier qu'elle est bien normalisée. Calculer explicitement la valeur moyenne $\langle k \rangle$ et la variance Var(k).

Indice: écrire $k^2 = k(k-1) + k$.

Eléments de réponses :

 $1: p \times 1 + (1-p) \times 0 = p, \langle k \rangle = Np \text{ (car } N \text{ intervalles indépendents) et } p = \alpha \frac{T}{N} = \alpha \Delta t;$

 $2: p(1-p)^{N-1}$, puis $Np(1-p)^{N-1}$ (car $\binom{N}{1} = N$ possibilités pour l'unique désintégration);

 $3: p^2(1-p)^{N-2}$, puis $\binom{N}{2} \times p^2(1-p)^{N-2}$ (car $\binom{N}{2}$) possibilités pour deux désintégrations parmi N intervalles);

 $4: P(k) = \binom{N}{k} p^k (1-p)^{N-k}$ (car $\binom{N}{k}$ possibilités pour k désintégrations parmi N intervalles) et $\sum_{k=0}^{N} P(k) = \binom{N}{k} p^k (1-p)^{N-k}$ 1 par la formule du binôme de Newton;

 $5: P(k) = \frac{N!}{k!(N-k)!} (\frac{\alpha T}{N})^k (1 - \frac{\alpha T}{N})^{N-k} = \frac{N.(N-1)...(N-(k-1))}{k!} (\frac{\alpha T}{N})^k (1 - \frac{\alpha T}{N})^{N-k} \simeq \frac{N^k}{k!} (\frac{\alpha T}{N})^k e^{-\alpha T} = \frac{1}{k!} (\alpha T)^k e^{-\alpha T}$ $6: \text{Loi de Poisson}: \sum_{k=0}^{\infty} P(k) = e^{-\alpha T} \sum_{k=0}^{\infty} \frac{(\alpha T)^k}{k!} = 1; \langle k \rangle = e^{-\alpha T} \sum_{k=0}^{\infty} k \frac{(\alpha T)^k}{k!} = (\alpha T) e^{-\alpha T} \sum_{k=1}^{\infty} \frac{(\alpha T)^{k-1}}{(k-1)!} = \frac{(\alpha T)^k}{k!} = \frac{($

$$\alpha T \text{ et } \langle k(k-1) \rangle = \mathrm{e}^{-\alpha T} \sum_{k=0}^{\infty} k(k-1) \frac{(\alpha T)^k}{k!} = (\alpha T)^2 \mathrm{e}^{-\alpha T} \sum_{k=2}^{\infty} \frac{(\alpha T)^{k-2}}{(k-2)!} = (\alpha T)^2 \text{ donc } \mathrm{Var}(k) = \langle k^2 \rangle - \langle k \rangle^2 = \langle k(k-1) \rangle + \langle k \rangle - \langle k \rangle^2 = \alpha T = \langle k \rangle.$$

2 Fluctuation dans un gaz parfait

Un gaz parfait est constitué de N molécules statistiquement indépendantes et uniformément réparties en moyenne dans un récipient de volume V. Soit k le nombre (aléatoire) de molécules contenues dans un sous-volume v du récipient.

- 1 Quelle est la valeur moyenne $\langle k \rangle$ de k?
- 2 Quel est l'écart-type σ_k de k?

Indice : on peut écrire la variable k comme une somme de N variables aléatoires indépendantes.

Données:
$$v = \frac{V}{2}$$
 et $N = 100$, puis $N = 10^{10}$ et $N = \mathcal{N}_A$.

- 3 Faire l'application numérique
- 4 Pour N très grand et $\frac{v}{V}$ fixé, vers quelle loi tend la distribution de probabilité P(k) de k?
- 5 Quelle est la probabilité que toutes les molécules du gaz soient dans le volume v? On veut calculer la probabilité exacte P(k) qu'il y ait k molécules dans le volume v.
- 6 De combien de manières différentes peut-on choisir les k molécules parmi N qui sont dans le volume v?
- 7 Quelle est la probabilité de l'un de ces choix? (par exemple, pour k=4 et N=100, quelle est la probabilité que les particules numéros 8, 12, 35 et 42, par exemple, soient dans le volume v?)
- 8 En déduire l'expression de P(k). Quel est le nom de cette distribution de probabilité?
- 9 On rappelle la formule du binôme de Newton

$$(x+y)^{N} = \sum_{n=0}^{N} {N \choose n} x^{n} y^{N-n}.$$
 (1)

Vérifier que la distribution de probabilité P(k) est bien normalisée.

- 10 Calculer les dérivées première et seconde de l'égalité (1) par rapport à x, puis remplacer y par 1-x dans les expressions obtenues. Utiliser les formules ainsi obtenues pour retrouver la moyenne et la variance de k.
- 11 On se place à la limite thermodynamique $(N \to \infty, V \to \infty)$ tels que la densité $\frac{N}{V}$ est constante). En considérant le nombre de particules comme une variable continue, montrer en utilisant la formule de Stirling que la distribution de probabilité de k se comporte comme une loi gaussienne au voisinage de $\langle k \rangle$ (on posera $k = \langle k \rangle + s$ avec $s \ll N$). Ce résultat est-il surprenant?

3 Distribution de Maxwell-Boltzmann des vitesses

On rappelle que la densité de probabilité qu'une molécule de masse m d'un système à l'équilibre à la température T ait une vitesse \vec{v} à $d\vec{v}$ près est donnée, selon Maxwell, par :

$$P(\vec{v}) = C e^{-\beta \frac{m\vec{v}^2}{2}} ,$$

où $\beta = \frac{1}{k_B T}$ et où C est une constante.

1 – Déterminer C (la distribution de probabilité doit être normalisée).

- 2 En déduire la densité de probabilité $F(v_x)$ que la projection selon l'axe Ox du vecteur vitesse d'une molécule soit égale à v_x à dv_x près.
- 3 Calculer la vitesse moyenne $\langle \vec{v} \rangle$ d'une molécule.
- 4 Calculer la vitesse quadratique moyenne v_q d'une molécule, définie par $v_q^2 = \langle \vec{v}^2 \rangle$.
- 5 Montrer que l'énergie cinétique de translation moyenne d'une molécule est $\langle e \rangle = \frac{3}{2}k_BT$.

Eléments de réponses :

$$1: \int_{-\infty}^{+\infty} \mathrm{d}v_x \int_{-\infty}^{+\infty} \mathrm{d}v_y \int_{-\infty}^{+\infty} \mathrm{d}v_z P(\vec{v}) = C \left[\int_{-\infty}^{+\infty} \mathrm{d}v_x \mathrm{e}^{-\beta \frac{mv_x^2}{2}} \right]^3 = C \left[\sqrt{\frac{2\pi}{\beta m}} \right]^3 = 1 \text{ (normalisation de } P) \text{ voir exercice ?? sur l'intégrale gaussienne, donc } C = \left[\frac{\beta m}{2\pi} \right]^{\frac{3}{2}}.$$

2 : Par symétrie :
$$F(v_x) = \sqrt{\frac{\beta m}{2\pi}} e^{-\beta \frac{mv_x^2}{2}}$$
.

$$3: \langle \vec{v} \rangle = \vec{0} \operatorname{car} \langle v_x \rangle = \langle v_y \rangle = \langle v_z \rangle = 0$$
 (isotropie de l'espace, F est une fonction paire).

$$4: v_q = \langle v^2 \rangle = \langle v_x^2 + v_y^2 + v_z^2 \rangle = 3 \langle v_x^2 \rangle = 3 \int_{-\infty}^{+\infty} dv_x \, v_x^2 F(v_x) = \frac{3}{\beta m}.$$

$$5: \langle e \rangle = \frac{1}{2}m\langle v^2 \rangle = \frac{3}{2\beta} = \frac{3}{2}k_BT.$$

4 Manipulation mathématiques

L'intégrale Gaussienne

Soit l'intégrale gaussienne $I_n(\alpha) = \int_0^\infty x^n \mathrm{e}^{-\alpha x^2} \mathrm{d}x$, où $\alpha > 0$.

- 1 Montrer que $I_1(\alpha) = \frac{1}{2\alpha}$.
- 2 Exprimer $I_n(\alpha)$ en fonction de $I_{n-2}(\alpha)$.
- 3 On admet en sus que $I_0(\alpha) = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}}$. En déduire que $I_2(\alpha) = \frac{1}{4\alpha} \sqrt{\frac{\pi}{\alpha}}$ et que $I_3(\alpha) = \frac{1}{2\alpha^2}$.

La fonction Gamma et la factorielle

On définit la fonction Gamma, $\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$, pour x > 0.

- 4 Calculer $\Gamma(1)$ et $\Gamma(1/2)$.
- 5 Montrer que $\Gamma(x+1)=x\Gamma(x)$. En déduire $\Gamma(N+1)$ en fonction de N!, où N est un entier positif.

Les factorielles des grands nombres et la formule de Stirling

On montre que la factorielle n! d'un nombre n entier peut s'approcher par le développement suivant :

$$n! = \sqrt{2\pi n} \ n^n \ e^{-n} \left[1 + \frac{1}{12 \, n} + \frac{1}{288 \, n^2} + O(\frac{1}{n^3}) \right]$$

où $O(\frac{1}{n^3})$ représente les termes d'ordre supérieur ou égal à trois en $\frac{1}{n}$.

- 6 Rappeler la définition de n! où n est un nombre entier positif.
- 7 Calculer à l'aide d'une calculatrice de poche (ou de tout autre moyen dont vous disposez) 2!, 8!, 16! et 64!.
- 8 Jusqu'à quelle valeur de n peut-on calculer n! sur une calculatrice de poche standard?
- 9 Calculer de nouveau 2!, 8!, 16! et 64! en utilisant l'approximation suivante (dite d'ordre zéro) pour la factorielle

$$n! \sim \sqrt{2\pi n} \ n^n \ e^{-n}$$
.

- 10 Calculer numériquement l'erreur relative r(n) (c'est-à-dire le quotient $r(n) = \frac{n! \sqrt{2\pi n} n^n e^{-n}}{n!}$) pour n = 2, 8, 16 et 64.
- 11 Montrer que les résultats numériques sont compatibles avec $r(n) \sim \frac{1}{12n}$.

- 12 On utilise la première expression de n! pour calculer $\ln(n!)$. En déduire une expression de $\ln(n!)$ sous la forme d'une somme.
- 13 Jusqu'à quelle valeur de n peut-on calculer $\ln(n!)$ sur une calculatrice de poche standard?
- 14 Calculer numériquement l'erreur relative sur $\ln(n!)$ faite en utilisant l'approximation d'ordre zéro pour n! pour les valeurs suivantes de $n:2,8,16,64,1024,10^{10}$ et le nombre d'Avogadro \mathcal{N}_A .
- 15 Dans la question précédente, quelle est la contribution du terme $\ln(\sqrt{2\pi n})$? Est-il raisonnable pour n grand d'approcher $\ln(n!)$ par $n \ln(n) n$? On pourra estimer à partir de quelle valeur de n cette approximation est bonne à 0,1% près.
- 16 L'approximation $\ln(n!) \sim n \ln(n) n$ est connue par les physiciens sous le nom de formule de Stirling. En prenant l'exponentielle de cette formule, peut-on affirmer qu'il est raisonnable d'approcher n! par n^n e^{-n} ?