□PHYS115 □PHYS121 □PHYS123 □PHYS116 □PHYS122 □PHYS124 Lab Cover Letter

	(You) \ resor Som	Signa	ture: Low Sum
	that this assignment is original and has not been submitt		
	of this assignment may, for the purpose of assessing this		
	r member of faculty; and/or (2) communicate a copy of ti in a copy of this assignment on its database for the purpo		
men rena	in a copy of this assignment on its addabase for the purpo	se of finare	pragiarism checking).
Lah Pa	rtner(s) Pratham Bhashya Kul	c -	
Date P	erformed $1/21/25$	Date S	Submitted $\sqrt{27/2s}$
		Date	
Lab (sı	uch as #1: UNC) # 1. DCCIR		
_	o Damantha		
TA: <u></u>	Pamantha		
	GRADE (to be filled in by your TA	Saa vau	r TA for datailed feedback
	An 'x' next to a subcategory means you no		
	Tail a more to a subcategory means you ne	ca w mpi	tove this aspect of your work.
Danas	Subtotals (points)		
1 ареі	Subtotuts (points)	()	Discussion & Conclusions (6)
<i>(</i>)	C 100	()	Numerical comparison of results
()	General (6)		Logical conclusions
- 49	Sig. figs. Units		Discussion of pos. errors
	Clarity of Presentation	<u> </u>	Suggestions to reduce errors
	Format		
		()	Paper Total (60 points)
()	Abstract (4)	` /	(30 points for CME or EPF)
()	Quantity or principle	()	Notebook (10 points)
	How measurement was made	()	Format (proper style, following directions)
	Numerical Results		Apparatus (brief description of equipment,
	Conclusion	·	including sketches)
			Data (including computer file names and
(Intro & Theory (9)	· · · · · · · · · · · · · · · · · · ·	manually recorded data)
,	Basic principle		Experimental Technique (describing your
	Main equations to be used	· ·	procedures; stating & justifying uncerts.)
	Apparatus		Analysis (results and errors)
	What will be plotted	in the	,
	Fitting parameters related	()	Worksheet(s)/Fill-in-the-Blank-
		Pana	rt (30 points) if applicable
()	Exp. Procedures (15)	ксро	it (30 points) is applicable
	Description	.5 5	
175	Stating and justifying uncertainties Data Record	()	
	Quality of Lab Work		improper procedures, etc. – or bonus points
			for exceptional work.
()	Analysis & Error Analysis (20)		
, ,	Discussion (20)	() Total Grade
	Equations & Calculations		,
	Presentation inc. Graphs, Tables	~	7.11
	Results Reported & Reasonable	Graa	led by(TA's initial)
	Underlined items addressed		

DC-CIR Worksheet

Your Name: Tresor Same Signature: Low Sum

Lab partner(s): Pratham Bhashya Korla

Course & Section: 122 & 118-B Station # 118-B Date: 1/26/25

Section D: Ohm's Law

DMM reading for the resistor: $QQ \cdot Q \pm Q \cdot Q$

List your data for minimum and maximum current, with error estimates. Don't forget units. Also, 2. staple to this worksheet a copy of your plot, including the linear fit.

 I_{\min} : 0.0202 ± 0.0001 A V: 1.99 ± 0.001 V: I_{\max} : 0.0299 ± 0.0001 A V: 2.90 ± 0.001 A

List your linear fit parameters, with error estimates from Origin. Also attacked

SLOPE: 98.0 ± 1.1

INTERCEPT: 0.0\3 \pm 0.024

Comment on the comparison of the DMM value and Origin fit. (Use additional sheets if necessary.) The reserved relative our resister vsing the DMM was 99.0 ± 0.01 \(\interpretection \). The slope determined vsing origin was 98.0 ± 1.1 \(\interpretection \). With the in much me on claim that our DMM was functioning propril as the value agree within their errors.

Specifically 99.0 \(\interpretection \) (97.9, 99.1).

Section E.1: Series Resistors

Enter below the data (with error estimates) for series resistors.

Eccor estate melel

Error estations 11

		1	•		7
Resistor	Resistance	Theoretical Sum	Voltage	Current (A or mA)	Experimental Sum
#	(ohms)	(ohms)	(V)	(circle one)	(ohms)
1	99.0±0.1	99.0±0.1	2.55±0.01	0.0258±0.0001	98.8 ± 0.5
2	1.04 5.00	148.2±0.1	2 64 ±0.01	0.0133±0.0001	199 ± 2
3	980 ±10	1178.2± 10.0	2.7 ±0.1	0.0023±0.0001	1217 ± 15
4	48.4 ± 0.1	1226.6± 16.0	2.7±0.1	0.0072±0,0001	1227 1 50

Attach a sheet that describes in detail how you found the errors in each entry for two resistors in series. This should include errors in any raw data you took as well as error propagation through any equations that you used (see App. V of the lab manual).

Compare the theory to the experiment. (Use additional sheets if necessary.)

All of our meisure nets, except the third, are almost prifectly in the with the theoretical sms. Excluding R3, all theoretical results are

Strong coreleter and 5-point for Resisters in Series in Series Ultimes, ohnis le holde tresisterin sovies *The large discrep and in R3:5 most likely due to improper circuit design tot us fined for R4. The would resit in different I, V, and Ruiling!

Section E.2: Parallel Resistors

Enter below the data from your table of part E.2 for parallel resistors

Resistor	Resistance	Theoretical Sum	Voltage	Current (A or mA)	Experimental Sum
#	(ohms)	(ohms)	(<i>V</i>)	(circle one)	(ohms)
1	99.0 ±0.1	99.01 0.1	2.5610.01	0.0260±0.0001	98.46 ±0.54
2	1.0 £ 5.00	49.55± 6.04	2.40±0.01	0.0240±0.0001	49.38 1 0.59
3	980 ±10	47.1710.04	2.5 10.1	0.0511 ±0.0001	48.97±1.96
4	48.47 O.1	23.8910.03	7.3±0.1	0.0908±0.0001	25.3311.10

- Attach a sheet that describes in detail how you found the errors in each entry for 2 resistors in parallel.
- 10. Compare the theory to the experiment. (Use additional sheets if necessary.) All theoretical soms except for Ry, agree with their corresponding experimental somewhile Ry is book in the major of enorghe and Rs both are will middless their experient error viluse. Similar to my comment on the discrepancy found in our source experient. This is like to seems with our circuit step. Due to the number of reas form we placed between to connections, I would not be surprised if our full newscentures off direct one sort of interference. Though the resister doesn't agree with ohms law it is close enough, and the other data paids support the invest sum relationship between Resette Crossett in public). It's for the reason that he argue ohms laws will for resister a possibil!

Sections F & G. Where Ohm's Law Fails & Power Limits

- 11. What resistance did you measure with the DMM? $\frac{4}{2}$ \pm 0.4
- 12. Attach your Origin plot of R vs. I.
- 13. Comment on Ohm's Law as it applies to the incandescent bulb and compare the DMM reading to the data in your plot: (Use additional sheets if necessary.)

Ohms Lew fails with the bold as it requires constant Resistance for the liner V=12 to hold. With this model, we got a resistance value of ~1.4 first first few data points but he resistance increased as the current increased. This is much different than the produid (const.) resistance of R=1.410.1 \(\Omega\$. This can be explained by the fact that ballow contain a fill amonth hose resistance increases as the temperature of the received As the increased current best to Eillevent resistance increases, violety the My assumption of Ohms Laws

- 14. What is the maximum rated voltage for a 100 Ω , \(\frac{1}{4}\)-watt resistor $\(\frac{5}{2} \) \(\frac{1}{2} = 2 \) \(\frac{1}{2} = 2 \) = \(\frac{1}{2} = 2 \) =$ P=1V=I2R=V2/R
- 15. What is your personal resistance? 50.4 $\text{W}\Omega$
- 16. What voltage across your hands would result in a power that could destroy a 100 Ω , \(\frac{1}{4}\)-watt resistor?

$$\frac{2520V}{P=I^{2}P=7} P = \sqrt{\frac{9}{100}P} = \sqrt{\frac{0.25W}{100}P} = 0.05A$$

$$\frac{2520V}{100P} = 0.05A \cdot 50.4VP$$

GRADE:__ (out of 30 points) **Series Resistors - Error Propagation**

Mecsured Resutes	Theoretal Sun's Error calculation
R, = 99.0±0.1	Stet = 0.
Rz = 99.2±0.1	Sul = \S, + Sp = \0.12 + 0.12 = 0.14 = 0.1
R3: 980±10	$\int_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \int_{-\infty}^$
Ry = 48.4±0.1	Stot 4 = \(\S_{\rm 1} + \S_{\rm 2} + \S_{\rm 2} + \S_{\rm 3} + \S_{\rm 4} = \(\sigma \). \(\sigma

Expurentil Sins Error

$$\begin{array}{lll}
\mathbb{E}_{\text{equin}} &= & \bigvee_{\text{refer to as } R} & \text{Sp} &$$

-> Colc. Letins

$$S_{R_{4}} = \begin{cases} 0.01 \\ 0.0258 \end{cases}^{2} + \begin{cases} 0.0001 \cdot 2.55 \\ 0.0258 \end{cases}^{2} = 0.54497 = 0.5$$

$$S_{R_{4}} = \begin{cases} 0.01 \\ 0.0023 \end{cases}^{2} + \begin{cases} 0.0001 \cdot 2.64 \\ 0.0023 \end{cases}^{2} = 1.6711 = 2$$

$$S_{R_{4}} = \begin{cases} 0.1 \\ 0.0022 \end{cases}^{2} + \begin{cases} 0.0001 \cdot 2.7 \\ 0.00022 \end{cases}^{2} = 15.7245 = 15$$

$$S_{R_{4}} = \begin{cases} 0.1 \\ 0.0022 \end{cases}^{2} + \begin{cases} 0.0001 \cdot 2.7 \\ 0.00022 \end{cases}^{2} = 55.9700 = 58$$

Parallel Resistors - Error Propagation

Messend Service

$$Q_1 = 99.240.1$$
 $Q_2 = 99.240.1$
 $Q_3 = 98.04.0$
 $Q_4 = 98.04.0$
 $Q_5 = 98.04.0$
 $Q_6 = 98.04.0$
 Q

Trevor & Pratham - Ohm's Law in Action

