Learning Objectives:

- > To understand the applications of association rule mining
- To understand the basic flow of rule induction in Apriori algorithm
- To understand the concepts of support, lift and confidence of rules
- To implement association rules using Apriori algorithm in R

Activity:

a. Using the purchase data of stationery store across three days given below:

Trans Id	Item Purchased	Trans Id	Item Purchased
1	Pencils	5	Erasers
1	Markers	6	Envelop
1	Highlighters	7	Markers
1	Papers	7	Erasers
2	Markers	8	Pencils
2	Erasers	8	Markers
3	Stapler Pins	8	Stapler Pins
3	Papers	8	Post-It
3	Erasers	8	Highlighter
3	Card holders	8	Papers
3	Highlighters	8	Erasers
4	Papers	9	Stapler Pins
4	Erasers	9	Post-It
4	Card holders	9	Markers
5	Markers	9	Erasers
5	Post-It	10	Envelop

- 1. Manually compute rules using minimum support = 50%
- 2. Compute lift for the above rules

b. Association Rules for transaction data:

Steps to follow:

- Install and load 'arules' package install.packages("arules")
- Read 'Transactions.csv' data into R such that the arules package treats the input csv file as "transaction" data.
 - trans = read.transactions(file="Transactions.csv", rm.duplicates= FALSE, format="single",sep=",",cols =c(1,2))
- Explore and understand the data and items of transaction data inspect(trans) trans

image(trans)

itemFrequency(trans)
itemFrequencyPlot(trans)

- Implementing association mining using 'Apriori' algorithm to extract rules rules <- apriori(trans,parameter = list(sup = 0.5, conf = 0.6,target="rules"))
- Understanding the rules summary(rules) inspect(rules)
- c. Association Rules for "Pharmacovigilance audit Data" dataset: Generate the rules and identify the patterns.
 - Read the data into R
 Data = read.csv("Pharmacovigilance audit Data.csv")
 - Look at the summary of all the variables and bin the variable"Age" and convert it into factor
 - Drop un-important attributes like Patient ID
 - Convert the data frame in a transactions object. Look at the first 6 transactions to understand how 'arules' library requires data to be transformed. Use the below R code to view the transactions data auditData <- as(Data, "transactions")
 - Apply 'arules' algorithm and play with various support, lift and confidence values.
 rules <- apriori(auditData, parameter = list(support = 0.06, confidence = 0.6))
 - Inspect all the rules.
 - Inspect(rules)
 - Filter the rules with specific LHS and RHS conditions
 E.g.; Filter the rules with loactionID
 rules.classfilter1 <- as(subset(rules, subset = rhs %in% "LocationID=Location2"),"data.frame")</p>
 - Write the Rules into CSV

Assignment

- d. Association Rules for "Flight Delay" dataset: Generate the rules and identify the patterns.
 - 1. Read the data into R
 - 2. Look at the summary of all the variables and convert the following variables as factors
 - Weather
 - DAY_WEEK
 - Flight Status
 - 3. Bin the numeric variable 'CRS_DEP_TIME' into 4 bins as follows: If time is between 6 AM to 12 noon code as 1 and If the time is between 2, etc.
 - 4. Convert the data frame in a transactions object. Look at the first 6 transactions to understand how 'arules' library requires data to be transformed. Use the below R code to view the transactions data
 - 5. Apply 'arules' algorithm and play with various support, lift and confidence values.
 - 6. Inspect all the rules.
 - 7. Filter the rules with specific LHS and RHS conditions E.g.; Filter the rules with Flighstatus=0
 - 8. Write the Rules into CSV

