

Wizualizacja drzewa stanów algorytmu UCT

Autorzy: Patryk Fijałkowski, Grzegorz Kacprowicz Promotor: mgr inż. Jan Karwowski Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej

Cel pracy

Celem prezentowanej pracy było przygotowanie systemu umożliwiającego wizualizację drzew stanów generowanych przez algorytm UCT. Krytyczne dla skuteczności tytułowej heurystyki są odpowiednia konstrukcja i trawersowanie generowanych drzew. Wdrożone rozwiązanie wykorzystuje ten algorytm w podejmowaniu decyzji podczas grania w dwie przykładowe gry planszowe. Nacisk położono na przejrzystą wizualizację ukazującą kolejne etapy rozrastania się drzewa.

Aplikacja ma stanowić wygodne narzędzie dla użytkownika zainteresowanego tematyką sztucznej inteligencji w grach logicznych, aby pomóc w głębszym zrozumieniu tego zagadnienia.

Wizualizacja

Prezentowane rozwiązanie wykorzystuje bibliotekę OpenGL w celu sprawnego wyświetlania i animowania procesu tworzenia dużych drzew stanów. Ponadto, aplikacja umożliwia użytkownikowi interaktywne badanie struktury drzewa poprzez możliwość przybliżania, oddalania i poruszania się po wizualizacji.

Algorytm

Odpowiada za iteracyjne tworzenie drzewa stanów i przeszukiwanie go w celu wyznaczenia najbardziej korzystnego ruchu. Ewaluacja wartości danego ruchu jest dokonywana z użyciem funkcji wypłaty. Użytkownik ma możliwość zmiany liczby iteracji algorytmu albo ograniczenie czasowe jego działania.

Gry logiczne

Szachy

Mankala

no move, 1, 0, 0, base state, 20

Serializacja

Stworzony system obsługuje dwa formaty zapisu drzew:

- CSV
- Binarny

black knight b8 -> c6,0,0,0,black turn,0 black knight b8 -> a6,0,0,0,black turn,0 black knight g8 -> h6,0,0,0,black turn,0 black knight g8 -> f6,0,0,0,black turn,0 black pawn a7 -> a6,0,0,0,black turn,0 black pawn a7 -> a5,0,0,0,black turn,0 black pawn b7 -> b6,0,0,0,black turn,0 black pawn b7 -> b5,0,0,0,black turn,0 black pawn c7 -> c6,0,0,0,black turn,0 black pawn $c7 \rightarrow c5,0,0,0,black turn,0$ black pawn d7 -> d6,0,0,0,black turn,0 black pawn d7 \rightarrow d5,0,0,0,black turn,0 black pawn e7 -> e6,0,0,0,black turn,0 black pawn e7 -> e5,0,0,0,black turn,0 black pawn f7 -> f6,1,0,0.5,black turn,0 black pawn f7 -> f5,0,0,0,black turn,0 black pawn g7 -> g6,0,0,0,black turn,0 black pawn g7 -> g5,0,0,0,black turn,0 black pawn h7 -> h6,0,0,0,black turn,0 black pawn h7 -> h5,0,0,0,black turn,0

Wieloplatformowość

Prezentowane rozwiązanie przygotowane jest w formie aplikacji przenośnej. Aplikacja może zostać uruchomiona zarówno na komputerach z systemem operacyjnym Windows jak i Linux.

Wykorzystane technologie

