100 Series

(Great for Calc 2 Students) Video: https://youtu.be/jTuTEcwvkP4

Top Four Secret Weapons

The Fact:
$$\lim_{n\to\infty} \left(1 + \frac{a}{n}\right)^{bn} = e^{ab}$$

The List: As
$$n \to \infty$$
, $\ln n \ll n^p \ll b^n \ll n! \ll n^n$, where $p > 0$ and $b > 1$

The Limit:
$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$
 note: please do not say by L'Hospital's Rule

Best Friend:
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
 where $|x| < 1$

ØblackpenredpenMay 4th, 2019

- (Q1.) $\sum_{n=1}^{\infty} \frac{1}{n}$
- (Q2.) $\sum_{n=2}^{\infty} \frac{1}{\ln n}$
- (Q3.) $\sum_{n=2}^{\infty} \frac{1}{\ln(n^n)}$
- (Q4.) $\sum_{n=1619}^{\infty} \frac{1}{(\ln n)^{\ln n}}$
- (Q5.) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\tan^{-1} n}$
- (Q6.) $\sum_{n=1}^{\infty} \frac{2^n}{3^n + n^3}$
- (Q7.) $\sum_{n=1}^{\infty} \frac{3^n}{2^n + n^2}$
- (Q8.) $\sum_{n=1}^{\infty} \frac{n \sin^2 n}{n^3 + 2}$
- (Q9.) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$
- (Q10.) If possible, evaluate 1/2 1/3 + 2/9 4/27 + ...
- (Q11.) $\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} \frac{1}{n} \right)$
- (Q12.) $\sum_{n=3}^{\infty} \frac{1}{n^2 \ln n}$
- (Q13.) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}e^{\sqrt{n}}}$
- (Q14.) $\sum_{n=1}^{\infty} \frac{n^n}{3^{n^2}}$
- (Q15.) $\sum_{n=1}^{\infty} \frac{n^n}{(n!)^2}$
- (Q16.) $\sum_{n=1}^{\infty} n \sin\left(\frac{1}{n}\right)$
- (Q17.) $\sum_{n=1}^{\infty} \frac{1}{n+3^n}$
- (Q18.) $\sum_{n=1}^{\infty} \frac{\sin(2n)}{n+3^n}$
- (Q19.) $\sum_{n=1}^{\infty} \frac{(-1)^n n}{3n+1}$

(Q20.) If possible, evaluate 1/2 + 1/6 + 1/12 + 1/20 + ...

(Q21.)
$$\sum_{n=1}^{\infty} \frac{n!}{e^{n^2}}$$

(Q22.)
$$\sum_{n=1}^{\infty} \frac{n^2 + 1}{n^3 + 1}$$

(Q23.)
$$\sum_{n=1}^{\infty} \sin\left(\frac{1}{n^2}\right)$$

(Q24.)
$$\sum_{n=1}^{\infty} \cos^2\left(\frac{1}{n}\right)$$

$$(Q25.) \sum_{n=1}^{\infty} \frac{\cos(\pi n)}{\ln n}$$

(Q26.)
$$\sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}}$$

(Q27.)
$$\sum_{n=1}^{\infty} \frac{1}{2^{\ln n}}$$

(Q28.)
$$\sum_{n=1}^{\infty} \frac{1}{3^{\ln n}}$$

(Q29.)
$$\sum_{n=1}^{\infty} \frac{3n^2 + n}{\sqrt{n^5 + 2n + 1}}$$

(Q30.) If possible, evaluate $\sum_{n=1}^{\infty} \frac{n}{2^n}$

(Q31.)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$

(Q32.)
$$\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$$

(Q33.)
$$\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n^2}}}$$

(Q34.)
$$\sum_{n=1}^{\infty} 1$$

(Q35.)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n + 3^n}$$

(Q36.)
$$\sum_{n=1}^{\infty} (1-\frac{1}{n})^n$$

(Q37.)
$$\sum_{n=1}^{\infty} (1-\frac{1}{n})^{n^2}$$

(Q38.)
$$\sum_{n=1}^{\infty} \frac{1}{\sin^4 n}$$

(Q39.)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

(Q40.) If possible, evaluate
$$\sum_{n=1}^{\infty} \frac{1}{n^3 + 3n^2 + 2n}$$

(Q41.) If
$$\sum_{n=1}^{\infty} (a_n)^2$$
 converges, then $\sum_{n=1}^{\infty} a_n$ must also converge.

(Q42.) If
$$\sum_{n=1}^{\infty} a_n$$
 converges, then $\sum_{n=1}^{\infty} (a_n)^2$ must also converge.

(Q43.) If
$$\sum_{n=1}^{\infty} a_n$$
 converges, then $\sum_{n=1}^{\infty} \frac{1}{a_n}$ must diverge.

(Q44.) If
$$\sum_{n=1}^{\infty} a_n$$
 diverges, then $\sum_{n=1}^{\infty} \frac{1}{a_n}$ must converge.

(Q45.) If
$$\sum_{n=1}^{\infty} a_n$$
 converges, then $\sum_{n=1}^{\infty} \frac{a_n}{n}$ must also converge.

(Q46.) If
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ both converge, then $\sum_{n=1}^{\infty} (a_n + b_n)$ must also converge.

(Q47.) If
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ both diverge and $a_n \neq b_n$, then $\sum_{n=1}^{\infty} (a_n - b_n)$ must also diverge.

(Q48.) If
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ both diverge, then $\sum_{n=1}^{\infty} (a_n b_n)$ must also diverge.

(Q49.) If
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ both converge, then does $\sum_{n=1}^{\infty} (a_n b_n)$ must also converge.

(Q50.) If possible, evaluate
$$\sum_{n=1}^{\infty} O$$

(Q51.)
$$\sum_{n=1}^{\infty} n \sqrt{\sin \frac{1}{n^2}}$$

(Q52.)
$$\sum_{n=1}^{\infty} (1-\sin\frac{1}{n})$$

(Q53.)
$$\sum_{n=1}^{\infty} (1-\cos\frac{1}{n})$$

(Q54.)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{2^n+1}}$$

(Q55.)
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n} \ln n}$$

$$(Q56.) \sum_{n=1}^{\infty} \frac{n-1}{\sqrt{n^3 + 2n + 5}}$$

(Q57.)
$$\sum_{n=1}^{\infty} \frac{n^2 2^{n+2}}{4^n}$$

(Q58.)
$$\sum_{n=1}^{\infty} (\sqrt[n]{2} - 1)$$

(Q59.)
$$\sum_{n=1}^{\infty} (\sqrt[n]{2} - 1)^n$$

(Q60.) If possible, evaluate $\sum_{n=1}^{\infty} a_n$, where $a_1 = 9$ and $a_n = (6-n)a_{n-1}$ for $n \ge 2$

(Q61.)
$$\sum_{n=1}^{\infty} \frac{(n!)^n}{n^{10n}}$$

(Q62.)
$$\sum_{n=1}^{\infty} \frac{(2n)!}{n^n}$$

$$(Q63.) \sum_{n=1}^{\infty} e^{-n} \sin n$$

(Q64.)
$$\sum_{n=1}^{\infty} \frac{\tan \frac{1}{n}}{n^2}$$

(Q65.)
$$\sum_{n=1}^{\infty} \frac{n^{10} 4^n}{n!}$$

$$(Q66.) \sum_{n=1}^{\infty} \frac{2^n n!}{(n+2)!}$$

(Q67.)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n!}}$$

(Q68.)
$$\sum_{n=2}^{\infty} \frac{1}{\ln(n!)}$$

(Q69.)
$$\sum_{n=1}^{\infty} \frac{n(n+2)}{(2n+1)^2}$$

(Q70.) If possible, evaluate $\sum_{n=1}^{\infty} \left(e^{\frac{1}{n}} - e^{\frac{1}{n+2}}\right)$

(Q71.)
$$\sum_{n=3}^{\infty} \frac{\ln n}{n^2}$$

$$(Q72.) \sum_{n=1}^{\infty} \frac{n^3}{2n^5 + 3n - 4}$$

$$(Q73.) \sum_{n=1}^{\infty} \left(\frac{1-2n}{3+4n} \right)^n$$

(Q74.)
$$\sum_{n=1}^{\infty} \frac{e^n}{2^{2n-1}}$$

$$(Q75.) \sum_{n=1}^{\infty} \frac{n^3 - 2n - 1}{2n^5 + 3n - 4}$$

(Q76.)
$$\sum_{n=1}^{\infty} \frac{1}{n + \sqrt{n}}$$

(Q77.)
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$$

(Q78.)
$$\sum_{n=1}^{\infty} \sqrt{\cos(\frac{1}{n})}$$

(Q79.)
$$\sum_{n=1}^{\infty} \frac{3^n n^2}{n!}$$

(Q80.) If possible, evaluate $\sum_{n=0}^{\infty} \frac{n}{2^n}$

(Q81.) For what values of x will the series $1^x + 2^x + 3^x + 4^x + \dots + n^x + \dots$ converge? (Q82.) For what values of x will the series $x^1 + x^2 + x^3 + x^4 + \dots + x^n + \dots$ converge?

(Q83.) For what values of x will the series
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{n^n}$$
 converge?

(Q84.) For what values of x will the series
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$
 converge?

(Q85.) For what values of x will the series
$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{n \cdot 3^n}$$
 converge?

(Q86.) For what values of x will the series
$$\sum_{n=1}^{\infty} n! x^n$$
 converge?

(Q87.) For what values of k will the series
$$\sum_{n=1}^{\infty} \frac{1}{x(\ln x)^k}$$
 converge?

(Q88.) For what values of x will the series
$$\sum_{n=0}^{\infty} \left(\frac{1}{1-x}\right)^n$$
 converge?

(Q89.) For what values of x will the series
$$\sum_{n=0}^{\infty} \left(\sum_{m=0}^{\infty} x^m \right)^n$$
 converge?

(Q90.) If possible, evaluate
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n!}$$

(Q91.)
$$\sum_{n=1}^{\infty} (\frac{\pi}{2} - \tan^{-1} n)$$

(Q92.)
$$\sum_{n=1}^{\infty} \sin^2(\frac{1}{n})$$

(Q93.)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} - \sqrt{n+1}}$$

(Q94.)
$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right)$$

(Q95.)
$$\sum_{n=1}^{\infty} \frac{1}{e^{\sqrt{n}}}$$

(Q96.)
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^5-1}}$$

$$(Q97.) \sum_{n=1}^{\infty} \ln \left(\frac{n}{n+2} \right)$$

(Q98.)
$$\sum_{n=1}^{\infty} \frac{1}{e^n + 1}$$

$$(Q99.) \sum_{n=1}^{\infty} \frac{1}{\ln(e^n - 1)}$$

(Q100.) If possible, evaluate 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ...

(Q101.)
$$\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$$

Question for you: $\sum_{n=1}^{\infty} \frac{e^n n!}{n^n}$

Send your answer to blackpenredpen@gmail.com for a potential shout out in my future videos.