Algorithms and Data Types

Assignment 2 Logbbook

05/19

Stefan Ahmed 21359035

SW 10 - Sorting

Step 1 Step 2 Step 3

1. Integers:

Bubble sort

[8,7,6,5,4,3,2,1]

```
Step 4
```

54321678

45321678

43521678

43251678

43215678

Step 5

43215678

34215678

32415678

32145678

Step 6

32145678

23145678

21345678

Step

21345678

12345678

Selection Sort

[8,7,6,5,4,3,2,1]

87654321

17654328 Pass 1 - 7 comp, 1 swap

12654378 Pass 2 – 6 comp, 1 swap

12354678 Pass 3 – 5 comp, 1 swap

12345678 Pass 4 – 4 comp, 1 swap

Insertion Sort

```
[8,7,6,5,4,3,2,1] List to be sorted

[7,8,6,5,4,3,2,1] 1 shift

[6,7,8,5,4,3,2,1] 1 shift

[5,6,7,8,4,3,2,1] 1 shift

[4,5,6,7,8,3,2,1] 1 shift

[3,4,5,6,7,8,2,1] 1 shift

[2,3,4,5,6,7,8,1] 1 shift
```

[1,2,3,4,5,6,7,8] 1 shift

Week 11 – Sorting

1.

[8,7,6,5,4,3,2,1]

Shell sort

87654321

8 5 2 Sublist 1

7 4 1 Sublist 2

6 3 Sublist 3

2 5 8 Sublist 1 sorted

1 4 7 Sublist 2 sorted

3 6 Sublist 3 sorted

Apply insertion sort on the list:

21354678

12354678

12345678 List is sorted

Merge sort

87654321

```
8 7 6 5 4 3 2 1 List to be sorted
8 7 6 5
               4 3 2 1
                             Split the list into half
8 7
       6 5
                 4 3
                        2 1
                               Split the list into half again
                                        Split the pairs of numbers
  7
          6
              5
                     4
                          3
                              2
                                   1
   8
          5
              6
                     3
                          4
                               1
                                   2
                                        Merge the numbers
5 6 7 8
              1 2 3 4
                                        Continue merging
1 2 3 4
               5 6 7 8
                                         Merge the two halves of the list back together
1 2 3 4 5 6 7 8
                                         List is sorted
```

Week 7 - Queues

1. What values are returned during the following sequence of queue operations, if executed on an initially empty queue?

```
Q = Queue()
Q.enqueue(5)
Q.enqueue(3)
Q.dequeue()
Q.enqueue(2)
Q.enqueue(8)
Q.dequeue()
Q.dequeue()
Q.enqueue(9)
Q.enqueue(1)
Q.dequeue()
Q.enqueue(7)
Q.enqueue(6)
Q.dequeue()
Q.dequeue()
Q.enqueue(4)
Q.dequeue()
Q.dequeue()
```

The values returned are:

5

3

2

2. Given that the Stack and Queue classes have been implemented correctly, what is the output of the following?

The output is

Q = Queue []

[5,3]

[3] 5

Week 8 – Linked Lists

1. What is the output of the following program?

```
def TestUnorderedList():
    my_list = UnorderedList()
    number_list = [11, 17, 7, 3, 26, 54, 2]
    for num in number_list:
        my_list.add(num)
    print (my_list.size())
    print (my_list.search(17))
    print (my_list.search(1))
    my_list.remove(2)
    my_list.remove(54)
    print (my_list.size())
```

The outputs are

7

True

False

5

2. Give an algorithm for finding the second-to-last node in a non-empty singly linked list in which the last node is indicated by a next reference of None.

```
curr = self.head()
next = curr.get_next()

While curr.get_next != None
curr = curr.get_next()
next = curr.get_next()
Return curr
```

5. Describe a recursive algorithm that counts the number of nodes in a singly linked list
def Size()
curr == self.head()
count = 0
While curr != none
count = count+1
curr = curr.get_next
Return count
Week 9 – Linked Lists
1.
def

1. Create a binary search tree by adding the following values in the order given:

65 34 66 91 23 45 71 52

2. The following diagram shows a binary tree with the root node containing the value, p. Write the pre-order, in-order and post-order traversals of the following binary tree.

Pre-order

1 2 8

3 4 9 10

5 7

6

Post-order

10

6 9

5 4 7 8

2 3

1

Inorder

7 9 9 10 4 6 3

3. The following diagram shows a binary tree with the root node containing the value, A. Write the pre-order, in-order and post-order traversals of the following binary tree.

Preorder traversal

Postorder Traversal

5.Draw the binary search tree structure after inserting the following integer search key values into an empty binary search tree in the order given: 7, 3, 1, 6, 5, 10, 8, 9