(19)日本国特新庁(JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-272836

(43)公開日 平成6年(1994)9月27日

(51) Int.C I. ⁵	-	識別記号	庁内整理番号	FI	技術表示箇所
F 2 3 G	5/30	ZAB M	78 15—3K		
	5/00	ZAB B	78 15—3K		
	5/16	ZAB E	78 15—3K		

審査請求 未請求 請求項の数1 OL (全 4 頁)

(21)出願番号	特願平5-60839	(71) (1966.)			
		(71)出願人	000133032		
			株式会社タクマ		
(22)出願日	平成5年(1993)3月22日		大阪府大阪市北区堂島浜1丁目3番23号		
		(72)発明者	鮫島 良二		
			大阪府大阪市北区堂島浜1丁目3番23号		
			株式会社タクマ内		
		(72)発明者	劉 大偉		
			大阪府大阪市北区堂島浜1丁目3番23号		
			株式会社タクマ内		
		(74)代理人	弁理士 杉本 丈夫 (外1名)		

(54)【発明の名称】 焼却炉におけるCO低減方法

(57)【要約】

【目的】 大量の二次空気を吹き込むことなく、CO発 生量を効果的に低減させ得るCO低減方法を提供するこ とを目的とする。

【構成】 燃焼領域5の上部還元領域9に、同一水平面 上に配したノズル13a、13bから該還元領域9の中 心に対して齟齬する方向に二次空気10を噴出させるこ とによって旋回流10~を形成せしめる。この旋回流1 0 により、燃焼領域5で発生したガス11と二次空気 10とが充分に混合攪拌され、CO発生量が低減され る。

【特許請求の範囲】

【請求項1】 燃焼領域の上部還元領域に、同一水平面上に配した複数組のノズルから該還元領域の中心に対して齟齬する方向に二次空気を噴出させることによって旋回流を形成せしめるようにしたことを特徴とする焼却炉におけるCO低減方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、焼却炉により都市ごみ や産業廃棄物等を焼却させる場合において、炉内でのC 10 O発生量を低減させる方法に関するものである。

[0002]

【従来の技術】例えば、階段式ストーカ炉にあっては、 図4又は図6に示す如く、階段状のストーカ1,2,3 下から一次空気4を侵給させることによって、ストーカ 1,2,3上の燃焼領域5においてごみ6を燃焼させる ようにしている。すなわち、ホッパ7から供給されたご み6は、乾燥ストーカ1,燃焼ストーカ2,後燃焼スト ーカ3上を順次流下せしめられる間において乾燥,燃 焼,後燃焼され、その焼却残渣は排出口8から排出され20 るのである。

【0003】ところで、このような焼却炉にあっては、一次空気4の供給量を較った運転を行なうことによって、窒素酸化物(NOx)の発生を抑制するようにしているのが普通である。このため、どうしても不完全燃焼により未燃のCOが発生し易く、これに伴ってダイオキシンも生成することになる。そこで、従来にあっては、図4及び図5に示す如く左右炉壁12a,12bに等間隔で並列する複数のノズル13を設けて、又は図6及び図7に示す如く左右炉壁12c,12dに等間隔で並列する複数のノズル13を設けて、これら対向するノズル群13,13から燃焼領域5の上部還元領域9に二次空気10を噴出させることによって完全燃焼させ、CO発生量を低減させるように図っている。

[0004]

【発明が解決しようとする課題】しかし、このような従来のCO低減方法によっては、炉内空間が大きいこととも相俟って、二次空気10を余程大量に吹き込まない限り、還元領域9において燃焼領域5で発生したガス11と二次空気10との混合攪拌が不充分であり、充分なCO低減効果を発揮し得ない。したがって、有効なCO低減を図るためには、つまり還元領域9での乱流スケールを大きくして上記混合攪拌作用を充分に行なわしめるためには、極めて大量の二次空気量が必要となり、二次空気系統及び下流機器の容量が増大する等の問題が生じる。

【0005】本発明は、かかる点に鑑みてなされたもので、大量の二次空気を吹き込むことなく、CO発生量を効果的に低減させ得る焼却炉におけるCO低減方法を提供することを目的とするものである。

[0006]

【課題を解決するための手段】本発明の焼却炉における CO低減方法では、上記の目的を達成すべく、特に、燃 焼領域の上部還元領域に、同一水平面上に配した複数組 のノズルから該還元領域の中心に対して齟齬する方向に 二次空気を噴出させることにより旋回流を形成せしめる ようにすることを提案する。

2

[0007]

【作用】還元領域においては、二次空気による旋回流が 形成されることから、燃焼領域で発生したガスがこの旋 回流に巻き込まれて同一方向に流動せしめられることに なり、旋回流の運動量が上記ガスの巻き込みにより衰弱 することがない。このため、炉内空間が大きい場合に も、二次空気を大量に吹き込まずとも還元領域での乱流 スケールが大きくなり、二次空気とガスとの混合が充分 に行なわれる。特に、階段式ストーカ炉では、乾燥スト ーカ,燃焼ストーカ,後燃焼ストーカから発生するガス 成分が異なるが、これら成分の異なるガスも旋回流の作 用により混合攪拌されつつ二次空気と充分に混合される ことになる。すなわち、燃焼に寄与しなかった残存酸素 も二次燃焼に寄与することになり、大量の二次空気を吹 き込むことなく、COの発生を効果的に低減させること ができ、且つこれに伴って炭化水素、ダイオキシン類の 生成も充分に抑制することができる。

[0008]

【実施例】以下、本発明の方法を図1及び図2に示す実施例に基づいて具体的に説明する。

【0009】この実施例は、本発明を階段式ストーカ炉によりごみを焼却処理させる場合に適用した例に係る。 【0010】すなわち、図1に示す焼却炉は、階段状のストーカ1,2,3下から一次空気4を供給させることによって、ストーカ1,2,3上の燃焼領域5においてごみ6を焼却させるものであり、ホッパ7から供給されたごみ6が、乾燥ストーカ1,燃焼ストーカ2,後燃焼ストーカ3上を順次流下せしめられる間において乾燥、燃焼、後燃焼され、その焼却残渣が排出口8から排出されるようになっている。なお、炉の運転は、冒頭で述べた如く、NOxの発生を抑制すべく、一次空気4の供給量を絞った状態で行なわれる。

40 【0011】さらに、左右炉壁12a,12bには、燃焼領域5の上部領域である還元領域9に向けて二次空気10を噴出する2組の第1及び第2ノズル13a,13bが設けられている。すなわち、図1及び図2に示す如く、左炉壁12aには、複数(この実施例では3個)の第1ノズル13aが還元領域9の中心Oより前方側(図2上、下側)に配して設けられており、右炉壁12bには、第1ノズル13aと同数の第2ノズル13bが、第1ノズル13aの設置面と同一水平面上であって上記中心Oより後方側(図2上、上側)に配して設けられていて、両ノズル群13a,13bから還元領域9の中心O

に対して前後に齟齬する方向に二次空気 10が噴出され るようになっている。

【0012】而して、本発明に係るCO低減方法によれ ば、上記した如く還元領域9の中心0に対して前後に齟 **齬する方向に二次空気10を噴出させることにより、還** 元領域9内に図1及び図2に示す如く、二次空気10に よる旋回流10~を形成せしめ、燃燒領域5で発生した ガス11を還元領域9において混合攪拌させるのであ

回流10 に燃焼領域で発生したガスが巻き込まれて同 一方向に流動せしめられることになる。したがって、旋 回流10 の運動量が上記ガス11の巻き込みにより衰 弱することがなく、還元領域9での乱流スケールが大き くなり、炉内空間が大きいときにも二次空気10とガス 11との混合が充分に行なわれる。 このとき、乾燥スト ーカ1,燃焼ストーカ2,後燃焼ストーカ3から発生す るガス成分が異なるが、これら成分の異なるガスも旋回 流10 の作用により混合攪拌されつつ二次空気10と 充分に混合されることになる。

*【0014】このように、旋回流10¹の作用により二 次空気10とガス11とが充分に混合撹拌されることか ら、大量の二次空気を吹き込まずとも、COの発生を効 果的に低減させることができ、且つこれに伴って炭化水 素、ダイオキシン類の生成も充分に抑制することができ る。実験によれば、冒頭で述べた従来方法における約6 0%の二次空気吹込量で、NOx濃度(12%O2 換 算) を40~80ppmに抑えながら、CO濃度 (12 %O₂ 換算)を30~75ppmに低減させ得ることが 【0013】すなわち、還元領域9においては、上記旋 10 確認されている。表1は、この実験結果を一部抜粋して 示したものである。

> 【0015】なお、二次空気10を噴出させるノズルの 配置,配置数及び各組のノズル構成数は、旋回流10~ を生ぜしめうる限りにおいて任意である。例えば、図3 に示す如く、左右炉壁12a, 12bのみならず、前後 炉壁12c, 12dにも2組のノズル13c, 13dを 設けるようにしてもよい。勿論、本発明は階段式ストー カ炉以外の焼却炉にも適用することができる。

[0016]

*20 【表1】

			1941		
CO 低減	二次空気の吹き込み最	CO濃度 (12%) 換算)	NOx濃度 (12%0,換算)	EP灰中の未燃分	
方法	, ACESSE	(IZMOI BEST)	(1240) Best	未燃分	炭 素
本発明方法	5080 Nm²/h	70 ppm	75 ppm	8.6 %	6.8 %
	9870 Nm³/h	60 рра	75 ppm	8.9 %	7.2 %
従来方法	6930 Nm³/h	170 ррж	50 ррац	8.7 %	7.1 %
	6240 Nm³/h	165 ppm	50 ррш	10.4 %	8.7 %
なし	O Num²/h	180 ppm (瞬時 値は殆ど200ppm を超える)	40 ppm	13.2 %	10.7 %

[0017]

【発明の効果】以上の説明から明らかなように、本発明 によれば、還元領域に大量の二次空気を吹き込むことな 40 く、CO発生量を効果的に低減させることができ、これ に伴って炭化水素、ダイオキシン類の生成も充分抑制す ることができる。また、大量の二次空気を必要としない から、下流機器の容量を縮小できる等の利点もある。し かも、二次空気噴出用ノズルの配置を工夫するだけでC O低減を実現できるから、焼却炉の製作経済上からも有 利である。

【図面の簡単な説明】

【図1】本発明に係る方法を実施する焼却炉の一例を示※

※す縦断正面図である。

- 【図2】図1のII-II線に沿う横断平面図である。
- 【図3】変形例を示す図2相当の横断平面図である。
- 【図4】従来技術を示す焼却炉の縦断正面図である。
- 【図5】図4のV-V線に沿う横断平面図である。
- 【図6】他の従来技術を示す焼却炉の縦断正面図であ る。

【図7】図6のVII-VII線に沿う横断平面図である。 【符号の説明】

5…燃燒領域、9…還元領域、10…二次空気、13 a, 13b, 13c, 13d…ノズル。

