PhD Application Interview

Lingkang Zhu 朱令糠 Computer Science – Year 4 University of Nottingham Ningbo China (UNNC) https://lingkang.dev ssylz5@nottingham.edu.cn

Sept. 2021 – July 2025 (expected)

Academic Experience

University of Nottingham Ningbo China (UNNC)

BSc Hons Computer Science

- Average score over the first three years: 78.3/100 (GPA equivalent: 3.82/4.0)
- The Dean's Scholarship of Academic Excellence 2022 2023
- 2023 Zhejiang Provincial Scholarship
- The Dean's Scholarship of Academic Excellence 2023 2024
- Meritorious Winner (top 4%) The MCM/ICM 2024 (Jan. 2024)
- 2024 Dream Scholarship for Science & Technology (Dec. 2024)

University of Nottingham (Exchange)

Computer Science

Sept. 2023 – June 2024

Research Experience – C2OPU[1]

Architecture support for Transformer-based LLMs (Large Language Models).

Two heterogeneous cores:

- CGRA core:
 - ► Coarse-Grained Reconfigurable Architecture
 - ▶ For general-purpose computing
- ACIM core:
 - Analog Computing-in-Memory
 - For weight-stationary multiplication

Figure 1: Overview of C2OPU

Research Experience – C2OPU[1] continued

Model	Variant	$n_{ m params}$	$n_{ m layers}$	$n_{ m heads}$	$d_{ m model}$	C2OPU speedup over				
						CPU	GPU	Science23	Nature23	VLSI24
BERT	Small	28M	4	4	512	133.41×	4.34×	4.25×	3.48×	1.24×
	Base	110M	12	12	768	159.22×	5.18×	5.08×	4.15×	1.48×
	Large	336M	24	24	1024	143.50×	4.67×	4.57×	3.74×	1.33×
GPT-2	Small	117M	12	12	768	158.75×	5.16×	5.06×	4.14×	1.47×
	Medium	345M	24	16	1024	146.78×	4.77×	4.68×	3.83×	1.36×
	Large	762	36	20	1280	139.36×	4.53×	$4.44 \times$	3.64×	1.29×
	XL	1.54B	48	24	1600	143.14×	4.65×	_	_	1.33×
T5	Small	61M	6	8	512	139.49×	4.54×	4.45×	3.65×	1.30×
	3B	2.85B	24	32	1024	131.21×	4.27×	_	_	_
DistilBERT		67M	6	12	768	159.22×	5.18×	5.08×	4.15×	1.48×
Average		/	/	/	/	145 41.4	4.50.4	4.70>/	2.05.7	1.25.
Improvements						145.41×	4.73×	4.70×	3.85×	1.37×

Table 1: Specifications of tested Transformer-based models and the speedup of C2OPU over different platforms

Research Experience - SYSgen[2]

Figure 2: Illustration of advanced packaging technologies

Vertical interconnects (VICs) includes:

- μ bumps,
- C4 bumps, and
- through-silicon vias (TSVs)

Figure 3: Overview of SYSgen

VICs mainly serve for:

- Heat dissipation,
- · Power supply, and
- Signal transmission

References

- [1] S. Miao, L. Zhu, C. Wu, S. Lu, T.-J. Lin, and L. He, "C2OPU: Hybrid Computing-in-Memory and Coarse-Grained Reconfigurable Architecture for Overlay Processing of Transformers," in 2025 IEEE 33rd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM'25), May 2025.
- [2] S. Miao, L. Zhu, W. Yang, T. Lu, Y. Zhou, C. Wu, Z. Yu, T.-J. Lin, and L. He, "SYSgen: Electrothermal Simulation and Vertical Interconnect Planning for Integrated Chiplets," in 2025 3rd International Symposium of Electronics Design Automation (ISEDA'25), May 2025.

Thank you!

Lingkang Zhu 朱令糠 Computer Science – Year 4 University of Nottingham Ningbo China (UNNC) https://lingkang.dev ssylz5@nottingham.edu.cn