Республиканская олимпиада по математике, 2012 год, 9 класс

- **1.** Решите уравнение $p + \sqrt{q^2 + r} = \sqrt{s^2 + t}$ в простых числах. (А. Васильев)
- **2.** Даны две окружности k_1 и k_2 с центрами в точках O_1 и O_2 которые пересекаются в точках A и B. Через точку A проходит две прямые которые пересекают окружность k_1 в точках N_1 и M_1 , а окружность k_2 в точках N_2 и M_2 (точки A, N_1 и N_2 лежат на одной прямой). Обозначим середины отрезков N_1N_2 и M_1M_2 через N и M. Доказать, что: а) точки M, N, A и B лежат на одной окружности. б) центр окружности проходящий через M, N, A и B лежит на середине отрезка O_1O_2 .
- **3.** Даны положительные действительные числа $a, b, c, d \in \mathbb{R}^+$, для которых выполнено следующие условия: a) (a-c)(b-d)=-4. б) $\frac{a+c}{2} \geq \frac{a^2+b^2+c^2+d^2}{a+b+c+d}$. Найти минимум выражения a+c. (Сатылханов К.)
- **4.** Существует ли такая бесконечная последовательность целых положительных чисел (a_n) , что для каждого $n \ge 1$ выполняется соотношение $a_{n+2} = \sqrt{a_{n+1}} + a_n$? (Сатылханов К.)
- **5.** Дан вписанный четырехугольник ABCD, в котором отмечены середины сторон точками M, N, P, Q в данном порядке. Пусть диагонали AC и BD пересекаются в точке O. Доказать, что треугольники OMN, ONP, OPQ, OQM имеют одинаковые радиусы описанных окружностей.
- 6. Клетки доски $(2m+1) \times (2n+1)$ красятся в два цвета белый и черный. Единичная клетка строки (столбца) называется доминирующей по строке (по столбцу), если более половины клеток этой строки (этого столбца) имеет одинаковый цвет с этой клеткой. Докажите, что по крайней мере m+n-1 клеток доски одновременно доминируют по строке и по столбцу.