GANPAT UNIVERSITY U. V. PATEL COLLEGE OF ENGINEERING B.TECH. SEM-I

2ES103: BASIC OF ELECTRICAL ENGINEERING CH. 4ELECTROMAGNETIC INDUCTION 7: ASSIGNMENT &TUTORIAL

Part – I Multiple Objective Questions (MCQ)

1.	The induced voltage across a stationary conductor in a stationary magnetic field is			
	A)	zero	B)	reversed in polarity
	C)	increased	D)	decreased
2.	The direction of electro-magnetically induced emf is determined by			
	A)	Fleming's right hand rule	B)	Lenz's law
	C)	Right hand rule	D)	Both (A) and (B)
3.	The self-induction of a coil N turns is proportion to			
	A)	N	B)	N^2
	C)	1/ N	D)	$1/N^2$
4.	A 1 H inductance carrying of 3 A will store energy of			
	A)	3 watts	B)	4.5 w-s
	C)	3 joules	D)	9 watts
5.	The inductance of a coil isthe reluctance of the magnetic path.			
	A)	Independent of	B)	Directly proportional to
	C)	Inversely proportional to	D)	None of the above
6.	The area of hysteresis loop is a measure of			
	A)	Magnetic flux	B)	permeance
	C)	mmf per cycle	D)	Energy loss per cycle
7.	An emf induced in a coil due to change of current in a neighbouring coil is known as:			
	A)	Self induced emf	B)	Speed emf
	C)	Mutually induced emf	D)	All of the above
8.	The coefficient of coupling of two coils is proportional to			
	A)	L_1L_2	B)	$\sqrt{L_1L_2}$
	C)	1	D)	1
	•	$rac{1}{\sqrt{L_1L_2}}$	ŕ	$\frac{\sqrt{L_1L_2}}{\frac{1}{L_1L_2}}$
9.	The maximum mutual inductance between the coils is given by			
	A)	$L_{\rm A}L_{\rm B}$	B)	
	C)	$\sqrt{L_A L_B}$	D)	$\frac{L_{ m A}/L_{ m B}}{(~L_{ m A}L_{ m B})^2}$
10.	Conductance is analogous to			
	A)	Flux	B)	Reluctance
	C)	Permeance	$\hat{\mathbf{D}}$	Current

<u>Part – II Shorts Questions</u>(1 & 2 Marks)(Only for Preparation)

- 1. What is meant by coefficient of coupling between the coils?
- 2. Define "Self inductance" and "Mutual inductance".
- 3. State Faraday's laws of electromagnetic induction.
- **4.** What is Lenz's law?
- **5.** What is difference between a statically induced emf and dynamically induced emf?

Part – III Long Examples

The mean periphery of the steel ring is 50 cm and the cross-sectional area is 4 cm². Calculate the ampere turns necessary to produce flux of 0.6 mWb. If a saw cut of 2 mm is made in the ring and if the mmf remains constant, calculate the new value of the flux. Take μ_r of steel as 1200.

Ans: 497.36 AT, 0.1035 mWb

A coil is uniformly wound with 300 turns over a steel ring of relative permeability 900 and having a mean diameter of 20 cm. The steel ring is made of a bar having crosssection of diameter 2 cm. If coil has a resistance of 50 Ω and connected to 250 V dc, calculate (i) MMF (ii) Field Intensity (iii) Reluctance and (iv) Total flux.

Ans: (i) 1500 AT (ii) 2387.3 AT/m (iii) 17.684 x 10⁵ AT/Wb (iv) 0.848 mWb

Coils A and B with 500 and 600 turns respectively are wound side by side on a closed iron circuit of cross section 50 cm² and mean length of 1.2 m. Estimate (i) mutual inductance between the coils (ii) self-inductance of each coil. Assume μ_r of iron as 1000.

Ans: (i) 0.157 H (ii) 13.1 mH, 1.88 H (iii) 78.5 V

<u>Part – IV Long Questions</u>(Only For Preparation)

- Two coils are connected in series. Derive expressions for net inductance of the coils in 1. (i) series aiding connection (ii) series opposing connection.
- show that $K = \frac{M}{\sqrt{L_1 L_2}}$, 2.
- show that $K = \frac{M}{\sqrt{L_1 L_2}}$, $K \le 1$ Obtain the relation $L = \frac{L_1 L_2 M^2}{L_1 + L_2 + 2M}$ when two inductors are connected in parallel such that 3. the mutually induced emf opposes the self induced emfs.
- Explain self inductance and derive the methods for finding self inductance. 4.
- Derive the equitation of Rise in current for Inductive circuit.

*Notes: Students have to write only Part I and Part III.