MATH 644

CHAPTER 3

SECTION 3.2: LOCAL BEHAVIOR

CONTENTS

CONTENTS	
Analytic Functions Are Open Maps	2
Analytic Functions Are Locally One-To-One	3

Created by: Pierre-Olivier Parisé Spring 2023

Analytic Functions Are Open Maps

DEFINITION 1. A continuous function $f:\Omega\subset\mathbb{C}$, where Ω is open, is an **open map** if $U\subset\Omega$ is open, then f(U) is open.

THEOREM 2. A non-constant analytic function defined on a region is an open map.

Proof.

Let
$$f(z) = \sum_{n=0}^{\infty} a_n(z-z_n)^n$$
 in $\{z:|z-z_n| < R\} \subseteq \Omega$.

Pick $r < R$ and set $\{z:|z-z_n| < R\} \subseteq \Omega$.

Since the zeros of $\{z:|z-z_n| < R\} \subseteq \Omega$.

We want to show

$$\{\omega: |\omega-f(z_0)| < \frac{s}{2}\} \subseteq f(\{z: |z-z_0| < r\}).$$

Suppose
$$\exists \omega$$
 s.t. $|\omega - f(z_0)| < \frac{\delta}{2}$ but $\omega \neq f(z)$ for $|z - z_0| < r$.

So,
$$\frac{1}{f-\omega}$$
 is analytic on $2:|z-z_0|< r$

and if
$$|z-z_0|=r$$
, then
$$\frac{1}{|f(z)-\omega|} \leq \frac{1}{|f(z)-f(z_0)|-|\omega-f(z_0)|} \leq \frac{2}{|S-\frac{S}{2}|} = \frac{2}{|S|}$$

By the max Principle, $\frac{1}{|f(z)-\omega|} < \frac{2}{\delta}$ ₹2 € { 2: |z-20|< r} $\Rightarrow \frac{1}{|f(7\omega)-\omega|} < \frac{2}{8} \Rightarrow \frac{8}{2} < |f(7\omega)-\omega|$ A contradiction with $|w-f(70)| < \frac{S}{2}$. therefore, $\int \omega: |\omega - f(z)| < \frac{\delta}{z} = \int (\{z: |z-z| < r\})$ we can do this for every ₹0 € \$21 so f(U) contains a disk centered at f(w) ¥ 20 EU. D

Note:

• An open map always satisfies the maximum modulus principle.

P.-O. Parisé MATH 644 Page 3

Analytic Functions Are Locally One-To-One

DEFINITION 3. A function f is **one-to-one** if f(z) = f(w) only when z = w.

THEOREM 4. If f is analytic at z_0 with $f'(z_0) \neq 0$, then there is an r > 0 such that f is one-to-one on $\{z : |z - z_0| < r\}$.

Proof.

Suppose
$$\forall r > 0$$
, \neq is not one to one in $\{z: |z-z_0| \ge r\}$.

Take $r = \frac{1}{n}$. $\exists z_1 | w_n \in \{z: |z-z_0| \ge \frac{1}{n}\}$ of.

 $z_n \neq w_n$ $\exists \{z_n\} = \{(w_n): \exists z_{n-1} \neq z_n\}$

$$f'(z_0) = \lim_{n \to \infty} \frac{f(z_n) - f(w_n)}{z_n - w_n} = 0 \#. D$$

Note:

- The function $f(z) = e^z$ gives an example of an analytic function which is locally one-to-one, but globally infinite-to-one! The equation $w = e^z$ has infinitely many solutions.
- Theorem 2 and Theorem 4 show that if f is analytic at z_0 with $f'(z_0) \neq 0$, then f is a homeomorphism of a neighborhood of z_0 onto a neighborhood of $f(z_0)$.