Project2

Joseph Kahadze March 27, 2019

SQL

PROBLEM 1

To calculate the total payroll and the winning percentage I joined the Salaries and Teams tables on the teamID and the yearID and then filtered all the enteties with yearID >= 1990 or less than <= 2014.

I used an inner join to filter out values with missing data so that only values with corresponding yearID and teamID. Furthermore, I reviewed the table myself to make sure there were no missing enteries.

```
SELECT t.teamID, t.franchID, t.yearID, t.W, t.L, t.G, s.sum_sal, ((t.W * 1.0)/(t.G * 1.0)*100.0) AS WPERC FR

OM Teams as t inner join (SELECT teamID, yearID, sum(salary) as sum_sal FROM Salaries GROUP BY teamID, yearI

D) as s ON t.teamID = s.teamID and t.yearID = s.yearID WHERE t.yearID >= 1990 and t.yearID <=2014
```

PROBLEM 2

I used a boxplot to graph the distribution of payrolls across teams because it visually shows the mean and variance of the payroll per year.

```
sum_df <- payroll_df
sum_df %>%
   ggplot(mapping=aes(x=factor(yearID), y=sum_sal)) +
   geom_boxplot() + scale_y_continuous(labels = scales::comma) +
   theme(axis.text.x = element_text(angle = 90, hjust = 1))
```


Question 1

The mean payroll in the MLB increased from 1990 to 2014 from about 25,000,000 to about 100,000,000. Furthermore, the variation in payroll between teams also increased from 1990 to 2014.

PROBLEM 3

I calculated the mean payroll for each year and then plotted it for every year to show that the payroll has a tendency to increase over time.

```
mean_df <- payroll_df %>%
  group_by(yearID) %>%
  dplyr::summarise(mean_sal = mean(sum_sal))

mean_df %>%
  ggplot(mapping=aes(x=factor(yearID), y=mean_sal)) +
    geom_bar(stat="identity") +
    theme(axis.text.x = element_text(angle = 90, hjust = 1))
```


PROBLEM 4

I split the payroll_df into five categories based on yearID in 5 year ranges. Then I calculated the mean winning percentage and mean payroll for each of the 5 tables and plotted them.

```
cut df <- payroll df
cut_df$group <- cut_df$yearID %>%
 cut(breaks=5)
X <- split(cut_df, cut_df$group)</pre>
per1 <- X[[1]]
per1 <- per1 %>% group_by(teamID) %>% dplyr::summarise(mean_sal = mean(sum_sal), mean_wp = mean(WPERC))
per2 <- per2 %>% group_by(teamID) %>% dplyr::summarise(mean_sal = mean(sum_sal), mean_wp = mean(WPERC))
per3 <- X[[3]]
per3 <- per3 %>% group_by(teamID) %>% dplyr::summarise(mean_sal = mean(sum_sal), mean_wp = mean(WPERC))
per4 <- X[[4]]
per4 <- per4 %>% group_by(teamID) %>% dplyr::summarise(mean_sal = mean(sum_sal), mean_wp = mean(WPERC))
per5 <- X[[5]]
per5 <- per5 %>% group_by(teamID) %>% dplyr::summarise(mean_sal = mean(sum_sal), mean_wp = mean(WPERC))
per1 %>%
  ggplot(mapping=aes(x=mean_sal, y=mean_wp)) +
    geom_point() + scale_x_continuous(labels = scales::comma) + ggtitle("1990-1995") + geom_smooth(me
thod=lm)
```


QUESTION 2

There is a positive correlation between the mean payroll and mean winning percentage for every 5 year period. The most significant positive correlation in the periods 1995 to 2000 and 2004 to 2009.

PROBLEM 5

I calculated the standardized formula using the given formula st_payroll = (pay_roll - mean_payroll)/st_dev

```
values <- payroll_df %>%
  group_by(yearID) %>%
  dplyr::summarise(mean_sal = mean(sum_sal), sd_sal = sd(sum_sal)) %>%
  inner_join(payroll_df, by="yearID") %>%
  mutate (z = (((sum_sal * 1.0) - (mean_sal*1.0)) / (sd_sal*1.0) ))
```

```
## Warning: package 'bindrcpp' was built under R version 3.5.2
```

```
values
```

```
## # A tibble: 728 x 11
     yearID mean_sal sd_sal teamID franchID W
##
                                                       G sum sal WPERC
                                                 L
##
      <int>
             <dbl> <dbl> <chr> <chr> <int> <int> <int> <int><</pre>
                                                           <dbl> <dbl>
       1990
             1.71e7 3.77e6 ATL ATL
                                      65 97
##
                                                     162
                                                          1.46e7 40.1
##
       1990
             1.71e7 3.77e6 BAL
                                           76
                                                 85
                                                      161
                                                          9.68e6
                                                                  47.2
      3.7/e6 BOS BOS
1.590 1.71e7 3.77e6 CAL ANA
1990 1.71e7 3.77e6 CHA CHW
1990 1.71e7 3.77e6 CHN C'''
                                          88
                                               74
                                                      162 2.06e7 54.3
\# \#
                                          80 82
##
                                                      162 2.17e7 49.4
                                          94 68 162 9.49e6 58.0
##
                                          77 85 162 1.36e7 47.5
##
                                          91 71 162 1.44e7 56.2
                                         77 85 162 1.45e7 47.5
  8 1990 1.71e7 3.77e6 CLE CLE
##
  9 1990 1.71e7 3.77e6 DET DET
                                           79 83 162 1.76e7 48.8
            1.71e7 3.77e6 HOU HOU 75 87
## 10 1990
                                                     162 1.83e7 46.3
  \# ... with 718 more rows, and 1 more variable: z <dbl>
```

PROBLEM 6

I split the payroll_df into five categories based on yearID in 5 year ranges. Then I created a standardized variable z to standardize payroll. Finally I graphed all 5 split tables with mean standardized value on the x-axis and the mean winning percentage on the y-axis.

```
values <- payroll_df %>%
  group_by(yearID) %>%
  dplyr::summarise(mean_sal = mean(sum_sal), sd_sal = sd(sum_sal)) %>%
  inner_join(payroll_df, by="yearID") %>%
  mutate (z = (((sum_sal * 1.0) - (mean_sal*1.0)) / (sd_sal*1.0) ))
values
```

```
scut df <- values
scut df$group <- scut df$yearID %>%
 cut (breaks=5)
X <- split(scut_df, scut_df$group)</pre>
per1 <- X[[1]]
\texttt{per1} \leftarrow \texttt{per1} \ \$ \texttt{>\$} \ \texttt{group\_by(teamID)} \ \$ \texttt{>\$} \ \texttt{dplyr::summarise(mean\_z = mean(z), mean\_wp = mean(WPERC))}
per2 <- X[[2]]
per2 <- per2 %>% group_by(teamID) %>% dplyr::summarise(mean_z = mean(z), mean_wp = mean(WPERC))
per3 <- X[[3]]
per3 <- per3 %>% group_by(teamID) %>% dplyr::summarise(mean_z = mean(z), mean_wp = mean(WPERC))
per4 <- per4 %>% group_by(teamID) %>% dplyr::summarise(mean_z = mean(z), mean_wp = mean(WPERC))
per5 <- X[[5]]
per5 <- per5 %>% group by(teamID) %>% dplyr::summarise(mean z = mean(z), mean wp = mean(WPERC))
per1 %>%
 ggplot(mapping=aes(x=mean_z, y=mean_wp)) +
   geom_point() + scale_x_continuous(labels = scales::comma) + ggtitle("1990-1995") + geom_smooth(me
thod=lm)
```


QUESTION 3

The standardized plots follow similar trends but have a mean closer to 0. You can see parallels between specific time periods in the dots spread and patter.

PROBLEM 7

To plot the overall standardized value for the entire time period I dind't split the data frame. I just calculated the stardadized value and graphed it using a scatterplot from 1994 to 2014.

```
values <- payroll_df %>%
  group_by(yearID) %>%
  dplyr::summarise(mean_sal = mean(sum_sal), sd_sal = sd(sum_sal)) %>%
  inner_join(payroll_df, by="yearID") %>%
  mutate (z = (((sum_sal * 1.0) - (mean_sal*1.0)) / (sd_sal*1.0) ))

values <- values %>% group_by(teamID) %>% dplyr::summarise(mean_z = mean(z), mean_wp = mean(WPERC))

values %>%
  ggplot(mapping=aes(x=mean_z, y=mean_wp)) +
    geom_point() + scale_x_continuous(labels = scales::comma) + ggtitle("1990-2014") + geom_smooth(me thod=lm)
```


PROBLEM 8

I calculated the effeciency using the expected winning percentage and the actual winning percentage based on the payroll and the plotted the data for the 5 given teams using a line graph. I plotted the efficiency on the y-axis and year on the x-axis.

```
values <- payroll_df %>%
  group_by(yearID) %>%
  dplyr::summarise(mean_sal = mean(sum_sal), sd_sal = sd(sum_sal)) %>%
  inner_join(payroll_df, by="yearID") %>%
  mutate (z = (((sum_sal * 1.0) - (mean_sal*1.0)) / (sd_sal*1.0)))

values <- values %>%
  mutate(exp_wp = 50.0 + (2.5 * z)) %>%
  mutate(exp_wp = 50.0 + (2.5 * z)) %>%
  mutate(efficiency = WPERC - exp_wp) %>%
  filter(teamID == "OAK" | teamID == "BOS" | teamID == "NYA" | teamID == "ATL" | teamID == "TBA")

values %>%
  ggplot(aes(x=factor(yearID), y=efficiency, group=teamID)) +
  geom_smooth(aes(color=teamID), se=FALSE)+
  theme(axis.text.x = element_text(angle = 90, hjust = 1))
```

```
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
```


Question 4

This plot shows the efficiency of the teams from 1990 to 2014. Compared to plots 2 and 3 which showed the relationship between winning percentage and payroll, this graph shows the caluclated efficiency for specific teams over a period of time.

The graph shows a clear peak in Oaklands efficiency during the "Moneyball period," from 2000 to 2005. But, then the efficiency