ANNOUNCEMENTS

- Homework 1 is out on Canvas:
 - Due date: April 17 (midnight) on Canvas
 - Should be submitted as a pdf file
 - Show how you got an answer (just giving an answer without explanation will cost you points). You
 do not need to give a "formal proof" to each point (or use only math notation), but you need to
 provide enough details so the grader can see your logical reasoning.
 - Venn diagrams are NOT proofs.
- Quiz 1: 4:45pm-4:55pm in today's class.
 - 5 questions: time yourself, do not spend more than 2 mins per question.
 - Topics:
 - "Overture" Chapter from Logicomix
 - A couple of conceptual questions about what we covered in Lectures 2 and 3.
 - Quiz 2: Same format and time, Thursday April 16. "Pembroke Lodge" chapter and lectures 4 and 5.
- Exam 1: May 5. Canvas quiz during class time. Covering all month of April
- DRC students getting appropriate time on quizzes (there is a feature on Canvas allowing specific students more time after I close the quiz or exam)
- Slides posted on Canvas after class, videos uploaded to YouTube playlist one or two days after class.
- Emails This is a class of 400 students with 10% of you emailing me questions every day. I cannot answer all emails. Try first Piazza, Tutors, Tas. If that doesn't not work, then email me explaining why the above didn't work.

LECTURE SUMMARY

- Review of Quantifiers
- Cartesian Product
- Set Operations
 - Union
 - Intersection
 - Complementation
 - Difference
- More on Set Cardinality
- Set Identities
- Proving Identities

QUANTIFIERS

- We need quantifiers to express the meaning of English words including all and some:
 - "All men are Mortal."
 - "Some cats do not have fur."
- The two most important quantifiers are:
 - Universal Quantifier, "For all," symbol: ∀
 - Existential Quantifier, "There exists," symbol: ∃
- We write as in $\forall x P(x)$ and $\exists x P(x)$.
- $\forall x P(x)$ asserts P(x) is true for every x in the domain.
- $\exists x P(x)$ asserts P(x) is true for some x in the domain.
- The quantifiers are said to bind the variable x in these expressions.

UNIVERSAL QUANTIFIER

• $\forall x P(x)$ is read as "For all x, P(x)" or "For every x, P(x)"

Examples:

- If P(x) denotes "x > 0" and U is the integers, then $\forall x P(x)$ is false.
- 2) If P(x) denotes "x > 0" and U is the positive integers, then $\forall x P(x)$ is true.
- 3) If P(x) denotes "x is even" and U is the integers, then $\forall x P(x)$ is false.

EXISTENTIAL QUANTIFIER

■ $\exists x P(x)$ is read as "For some x, P(x)", or as "There is an x such that P(x)," or "For at least one x, P(x)."

Examples:

- If P(x) denotes "x > 0" and U is the integers, then $\exists x P(x)$ is true. It is also true if U is the positive integers.
- 2. If P(x) denotes "x < 0" and U is the positive integers, then $\exists x P(x)$ is false.
- 3. If P(x) denotes "x is even" and U is the integers, then $\exists x P(x)$ is true.

TUPLES

- The ordered n-tuple $(a_1,a_2,....,a_n)$ is the ordered collection that has a_1 as its first element and a_2 as its second element and so on until a_n as its last element.
- Two n-tuples are equal if and only if their corresponding elements are equal.
- 2-tuples are called ordered pairs.
- The ordered pairs (a,b) and (c,d) are equal if and only if a=c and b=d.
 - If a=c and b=d then (a,b) and (c,d)
 - And
 - If (a,b)=(c,d) then a=c and d=d

N-TUPLES

```
(11, 12)
                            ordered pair
( 🍎, 🌙, 🌼 )
                           a 3-tuple
( ĕ, ‡, , → , 11, Leo ) a 5-tuple
```

 As opposed to sets, repetition and ordering do matter with *n*-tuples.

```
• (11, 11, 11, 12, 13) \neq (11, 12, 13)
```


WHAT IS \mathbb{R}^2

• What about \mathbb{R}^3

René Descartes (1596-1650)

CARTESIAN PRODUCT

Definition: The *Cartesian Product* of two sets A and B, denoted by $A \times B$ is the set of ordered pairs (a,b) where $a \in A$ and $b \in B$.

Example:

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

$$A = \{a,b\}$$
 $B = \{1,2,3\}$
 $A \times B = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$

• **Definition**: A subset R of the Cartesian product $A \times B$ is called a relation from the set A to the set B. (Relations will be covered in depth in ZyBook Section 6.)

CARTESIAN PRODUCT

Definition: The cartesian products of the sets A_1, A_2, \dots, A_n , denoted by $A_1 \times A_2 \times \dots \times A_n$, is the set of ordered n-tuples (a_1, a_2, \dots, a_n) where a_i belongs to A_i for i = 1, ... n.

$$A_1 \times A_2 \times \dots \times A_n = \{(a_1, a_2, \dots, a_n) | a_i \in A_i \text{ for } i = 1, 2, \dots n\}$$

Example: What is $A \times B \times C$ where $A = \{0,1\}$, $B = \{1,2\}$ and $C = \{0,1,2\}$

Solution:
$$A \times B \times C = \{(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2)\}$$

ZyBook Exercises 1.3 (1.3.1-1.3.3)

WHAT IS \mathbb{R}^2

- What about R³
- $\blacksquare \mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$
- $\blacksquare \mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$
- In general, for an arbitrary set A,
 - $A^n = A \times A \times A \dots \times A = \{(x_1, x_2, \dots, x_n) : x_1, x_2, \dots, x_n \in A\}$

UNION

Definition: Let A and B be sets. The *union* of the sets A and B, denoted by $A \cup B$, is the set:

$$\{x|x\in A\vee x\in B\}$$

Example: What is $\{1,2,3\} \cup \{3,4,5\}$?

Solution: {1,2,3,4,5}

Venn Diagram for $A \cup B$

INTERSECTION

Definition: The *intersection* of sets A and B, denoted by $A \cap B$, is

$$\{x|x\in A\land x\in B\}$$

- $\{x|x\in A \land x\in B\}$ Note if the intersection is empty, then A and B are said to be disjoint.
- **Example**: What is $\{1,2,3\} \cap \{3,4,5\}$?

Solution: {3}

• Example: What is

$$\{1,2,3\} \cap \{4,5,6\}$$
?

Solution: Ø

Zybook Exercises 1.4

Venn Diagram for $A \cap B$

COMPLEMENT

Definition: If A is a set, then the complement of the A (with respect to U), denoted by \bar{A} is the set U - A

$$\bar{A} = \{ x \in U \mid x \notin A \}$$

(The complement of A is sometimes denoted by A^c .)

Example: If *U* is the positive integers less than 100, what is the complement of $\{x \mid x > 70\}$

Solution: $\{x \mid x \le 70\}$

Venn Diagram for Complement

DIFFERENCE

• **Definition**: Let A and B be sets. The difference of A and B, denoted by A - B, is the set containing the elements of A that are not in B. The difference of A and B is also called the complement of B with respect to A.

$$A - B = \{x \mid x \in A \land x \notin B\} = A \cap \overline{B}$$

Venn Diagram for A - B