Public NTU Open Source Society Version 1.0

Introduction to Reinforcement Learning

Jay Gupta
NTUOSS TGIFHacks #114

Public NTU Open Source Society Version 1.0

Agenda

Introduction RL Algorithms

RL Examples and Applications Code - Pole Balancing (Random)

RL Agents Code - Pole Balancing (Q-Learning)

Markov Decision Process Beyond this workshop

Overview

Reinforcement learning is the training of machine learning models to make a **sequence of decisions.**

The computer employs trial and error to come up with a solution to the problem.

The agent learns to achieve a goal in a potentially complex environment. In RL, an Al agent faces a game-like situation.

To train the machine, the algorithm gets either **rewards or penalties** for the actions it performs. Its goal is to **maximize the total reward**.

K-Means Clustering Anomaly Detection

Key Characteristics

- **01** | There is no training data or any form of supervision.
- 02 | Feedback is not instantaneous, it is often delayed.
- O3 | The agent is trained to select a sequence of actions.
- 04 | Each action taken alters the course of the agent, like real-life.

Reinforcement Learning Examples & Applications

Games

- 01 | Board Games Go, Chess
- **02** | **Gambling Games** Poker, Roulette
- 03 | Atari Games Breakout, Pac Man, Space Invaders
- 04 | Graphic Games StarCraft, Subway Surfers

Real Life Applications

Chemistry

RL Algorithms are used to optimize chemical reactions and perform molecular optimisations.

Live Bidding & Advertising

Numerous algorithms by Alibaba Group in online display bidding with a constrained budget.

Robotics

Tremendous amount of research to make robots learn to do specific tasks such as assembling an equipment or walking.

Agent & the Environment

Reward

- 01 | Reward is like a feedback for an agent.
- 02 | It indicates how well a agent in performing at any step.
- 03 | The goal is to maximise the cumulative reward.

Example | Playing a game of Poker

- +1 reward when the agent wins.
- -1 reward when the agent loses.

Learning to make good sequential decisions

- **01** Our goal is to maximise the total reward.
- O2 | Actions may have long term consequences and rewards may be delayed.
- O3 | Sometimes, it is better to sacrifice immediate reward for future gains.
 - **Example** | A Financial Investment May take months/years to mature.

 Chess Blocking opponent moves may help to win in the long-run.

Agent & the Environment

At each step t, the agent

01 | Execute an action A(t)

02 | Receives observation O(t)

03 | Receives reward R(t)

The Environment

01 | Receives action A(t)

02 | Emits observation O(t+1)

03 | Emits reward R(t+1)

Inside a RL Agent

- **01** | **Policy** How does an agent behave?
- **O2** | **Value Function** How good is each state/action?
- **Model** How does the agent view the environment?

Inside a RL Agent

- **01** | **Policy** How does an agent behave?
 - Mapping from State to Action Denoted by π
- **O2** | **Value Function** How good is each state/action?

Used to evaluate the goodness or badness of States

$$V_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ... | S_t = s]$$

03 | Model - How does the agent view the environment?

Predict the next state

Predict the next and immediate reward

• Rewards: -1 per step

• Actions: (1) Up, (2) Down, (3) Left, (4) Right

• States: Agent's Location

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

Policy π

Take the indicated steps in each state to reach the terminal state.

Value Function

The values for each state $v_{\pi}(s)$ is represented as follows.

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

Model

- **01** | Agent will have a internal model of the environment.
- 02 | The model may or may not be perfect.
- 03 | The agent knows the reward it received from each state.

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

RL Agent Categories

Agent	Model	Туре
01 Value Based	01 Model Free	01 Prediction
02 Policy Based	02 Model Based	02 Control
03 Actor Critic		

Markov Decision Process (MDP)

MDP is used to describe an environment for reinforcement learning, where the environment is fully observable. Almost all RL problems can be formalized as MDPs.

Markov Decision Process - Markov Property

"The future is independent of the past, given the present."

All history of information encountered so far may be thrown away, and that state is a sufficient statistic that gives us the same characterization of the future as if we have all the history. For all Markov states, a state transition probability is defined.

Markov Decision Process

Markov Process

A Markov Process is a series of random states S_1 , S_2 , ... with the Markov property.

Markov Reward Process

A Markov Reward Process is a Markov process with value judgment, saying how much reward accumulated through some particular sequence that we sampled.

$$G_{t} = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{k} R_{t+k+1}$$

Markov Decision Process

Image: David Silver "Reinforcement Learning" Course at University College London

The Bellman Equation

The value function consists of two parts

- **01** | The immediate reward R_{t+1}
- 02 | Discounted value of the next state $\gamma v(S_{t+1})$

$$egin{aligned} v(s) &= \mathbb{E}\left[G_t \mid S_t = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s
ight] \end{aligned}$$

Q-Learning

Q-learning is a **model-free** reinforcement learning algorithm to learn a policy telling an agent what action to take under what circumstances. For a finite MDP, Q-Learning always finds the optimal policy.

Types

Deep Q-Learning

Q-Learning

Q-Table

Q-Table is the table used to calculate the maximum expected future rewards for action at each state which will tell us to the best action at each state.

Q-Function

The Q-function uses the Bellman equation to compute the value of each state-action pair.

State-Action	Value
А	1
В	2
С	3

Q-Learning

Image: https://www.analyticsvidhya.com/blog/2017/01/introduction-to-reinforcement-learning-implementation/

• Rewards: -1 per step

• Actions: (1) Up, (2) Down, (3) Left, (4) Right

• States: Agent's Location

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

Step 1 - Initialize Q-Table

Ctata	Action			
State	Up	Down	Left	Right
1	0	0	0	0
2	0	0	0	0
	0	0	0	0

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

Step 2 & 3 - Choose and Perform an Action

• First, an action (a) in the state (s) is chosen based on the Q-Table. It can random or fixed.

Step 4 & 5 - Observe Reward and Update Q-Table

• A reward is observed and the Q-values for the state are updated using the bellman equation.

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

Step 1 - Final Q-Table

State	Up	Down	Left	Right
1	1.1	2.6	5	2.6
2	1.1	1.8	4	0.8

Note - These are not the real Q-values. It is written for demonstration purposes.

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

Exploration vs Exploitation

- **01** RL is a trial and error process where an agent learns from its experiences.
- **O2** | Exploration finds new information about the environment.
- 03 | Exploitation exploits known exploration to maximise reward.
- 04 | A balance between exploration and exploitation is required.

Example | Restaurants

Exploration: Going to a new restaurant.

Exploitation: Going to our favourite restaurant.

Public NTU Open Source Society Version 1.0

Remarks

- RL provides is a key concept for teaching machines to learn from their own experience without any supervision.
- It is a vast topic and we have barely skimmed through the fundamental topics governing RL algorithms.
- It is important to understand the intuition behind RL because it is still primarily a
 research area, with few code libraries available.
- If you are keen to learn more, I highly recommend that you start with <u>David Silver's</u> course on RL available on YouTube.

Beyond this Workshop

We have barely scratched the surface.

- David Silver "Reinforcement Learning" Course at University College London https://www.youtube.com/playlist?list=PLacBNHqv7n9gp9cBMrA6oDbzz 8JqhSKo
- Reinforcement Learning: An Introduction Book by Andrew Barto and Richard S. Sutton
- Lectures from Stanford's Machine Learning course by Andrej Karpathy https://www.youtube.com/playlist?list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC
- The Medium Series of Arthur Juliani, to get some coding of the RL algorithms in TensorFlow https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-0-q-learning -with-tables-and-neural-networks-d195264329d0

Thank you.

References

- https://towardsdatascience.com/applications-of-reinforcement-learning-in-real-world-1a94955bcd12
- Reinforcement Learning: An Introduction Book by Andrew Barto and Richard S. Sutton
- David Silver "Reinforcement Learning" Course at University College London https://www.youtube.com/playlist?list=PLacBNHqv7n9gp9cBMrA6oDbzz_8JqhSKo
- http://people.csail.mit.edu/hongzi/content/publications/DeepRM-HotNets16.pdf