Theory of Automata and Formal Language Lecture-13

Dharmendra Kumar (Associate Professor) Department of Computer Science and Engineering United College of Engineering and Research, Prayagraj April 21, 2021

Mealy and Moore Machines(Finite Automata with Outputs)

Moore Machine

Moore machine is a six-tuple $(Q, \Sigma, \Delta, \delta, \lambda, q_0)$, where

 $Q{\rightarrow}$ Finite set of states

 $\Sigma \to \mathsf{Finite}$ set of input symbols

 $\Delta \to \mathsf{Finite}$ set of output symbols

 $q_0 \in Q o \mathsf{Initial}$ state

 $\delta o \mathsf{Transition}$ function

It is defined as following:-

$$\delta: \mathsf{Q}\mathsf{x}\mathsf{\Sigma} \to \mathsf{Q}$$

 $\lambda o \mathsf{Output}$ function

It is defined as following:-

$$\lambda: Q \to \Delta$$

Mealy Machine

Mealy machine is a six-tuple $(Q, \Sigma, \Delta, \delta, \lambda, q_0)$, where

 $Q \rightarrow$ Finite set of states

 $\Sigma \to \mathsf{Finite}$ set of input symbols

 $\Delta \to \mathsf{Finite}$ set of output symbols

 $q_0 \in Q o$ Initial state

 $\delta
ightarrow {
m Transition}$ function

It is defined as following:-

$$\delta: \mathsf{Qx}\mathsf{\Sigma} \to \mathsf{Q}$$

 $\lambda o \mathsf{Output}$ function

It is defined as following:-

$$\lambda: \mathsf{Qx}\mathsf{\Sigma} \to \mathsf{\Delta}$$

Representation of Moore machine

Moore machine is represented by the following two ways:-

(1) By transition table

Present State	Next State δ		Output λ
	0	1	
$\rightarrow q_0$	q_3	q_1	0
q_1	q_1	q_2	1
q_2	q_2	q_3	0
q_3	q_3	q_0	0

(2) By transition diagram

Example: Find the output string corresponding to the input string 0111 in the above Moore machine.

$$q_0 \rightarrow q_3 \rightarrow q_0 \rightarrow q_1 \rightarrow q_2$$

The output string is 00010.

Representation of Mealy machine

Mealy machine is represented by the following two ways:-

(1) By transition table

Present State	0		1	
	δ	λ	δ	λ
$\rightarrow q_1$	q_3	0	q_2	0
q_2	q_1	1	q_4	0
q_3	q_2	1	q_1	1
q_4	q_4	1	q_3	0

(2) By transition diagram

Example: Find the output string corresponding to the input string 0011 in the above Moore machine.

$$q_1 \rightarrow q_3 \rightarrow q_2 \rightarrow q_4 \rightarrow q_3$$

The output string is 0100.

Procedure for transforming a Moore machine into a Mealy machine

(1) The output function λ^\prime for the Mealy machine is determined as following:-

$$\lambda'(q, a) = \lambda(\delta(q, a)), \forall q \in Q, a \in \Sigma$$

(2) The transition function is the same as that of the given Moore machine.

Example: Construct a Mealy machine which is equivalent to the following Moore Machine

Present State	Next State δ		Output λ
	0	1	
$\rightarrow q_0$	q_3	q_1	0
q_1	q_1	q_2	1
q_2	q_2	q_3	0
q_3	q_3	q_0	0

8

Solution: Mealy machine for the above Moore machine is the following:-

Present State	0		1	
	δ	λ	δ	λ
$\rightarrow q_0$	q_3	0	q_1	1
q_1	q_1	1	q_2	0
q_2	q_2	0	q_3	0
q_3	q ₃	0	q_0	0

9