

CPSC 359 — Digital Logic Tutorial #3 Latches and Flip-Flops

Andrew Kuipers

CPSC 359

Feedback and Latching

Feedback and Latching

t	S	Q
0	0	0
1		
2		

Feedback and Latching

t	S	Q
0	0	0
1	1	
2		

Feedback and Latching

t	S	Q
0	0	0
1	1	1
2		

Feedback and Latching

t	S	Q
0	0	0
1	1	1
2	0	

Feedback and Latching

t	S	Q
0	0	0
1	1	1
2	0	1

Feedback and Latching

How can we turn off this line?

t	S	Q
0	0	0
1	1	1
2	0	1

Feedback and Latching

$$Q_t = S \vee (Q_{t-1} \wedge \neg R)$$

Feedback and Latching

t	S	R	Q
0	0	0	0
1			
2			
3			
4			

Feedback and Latching

t	S	R	Q
0	0	0	0
1	1	0	
2			
3			
4			

Feedback and Latching

t	S	R	Q
0	0	0	0
1	1	0	1
2			
3			
4			

Feedback and Latching

t	S	R	Q
0	0	0	0
1	1	0	1
2			
3			
4			

Feedback and Latching

t	S	R	Q
0	0	0	0
1	1	0	1
2	0	0	
3			
4			

Feedback and Latching

t	S	R	Q
0	0	0	0
1	1	0	1
2	0	0	1
3			
4			

Feedback and Latching

t	S	R	Q
0	0	0	0
1	1	0	1
2	0	0	1
3	0	1	
4			

Feedback and Latching

t	S	R	Q
0	0	0	0
1	1	0	1
2	0	0	1
3	0	1	
4			

Feedback and Latching

t	S	R	Q
0	0	0	0
1	1	0	1
2	0	0	1
3	0	1	
4			

Feedback and Latching

t	S	R	Q
0	0	0	0
1	1	0	1
2	0	0	1
3	0	1	0
4			

Feedback and Latching

t	S	R	Q
0	0	0	0
1	1	0	1
2	0	0	1
3	0	1	0
4	0	0	

Feedback and Latching

t	S	R	Q
0	0	0	0
1	1	0	1
2	0	0	1
3	0	1	0
4	0	0	

Feedback and Latching

t	S	R	Q
0	0	0	0
1	1	0	1
2	0	0	1
3	0	1	0
4	0	0	0

SR Latch

$$Q = \neg(R \lor \neg Q)$$
$$\neg Q = \neg(S \lor Q)$$

Gated SR Latch

$$Q = \neg((R \land E) \lor \neg Q)$$
$$\neg Q = \neg((S \land E) \lor Q)$$

Gated D Latch

$$Q = \neg((\neg D \land E) \lor \neg Q)$$
$$\neg Q = \neg((D \land E) \lor Q)$$

Exercise

- 1. Create a new circuit with 4 D Latches (as imported modules)
- 2. Use an Input component to select which D Latch is enabled
 - Only use the two least significant bits
 - Can use the 2bit Decoder circuit from previous tutorial
- 3. Selectively set and clear different D Latches

Level Trigger vs Edge Trigger

Level Trigger vs Edge Trigger

Level Trigger vs Edge Trigger

Level Trigger vs Edge Trigger

Level Trigger vs Edge Trigger

Only change on rising edge of E

Level Trigger vs Edge Trigger

Only change on rising edge of E

Level Trigger vs Edge Trigger

Only change on rising edge of E

Only change on falling edge of E

Master-Slave D Flip-Flop

Master-Slave D Flip-Flop

Positive Edge Triggered

Master-Slave D Flip-Flop

Positive Edge Triggered

Negative Edge Triggered

Example – Shift Register

Data is right-shifted through the register on each triggering edge (neg. or pos.)

Exercise

- 1. Create a 4bit register using D Flip-Flops
 - 4 input "load" lines
 - 4 output "value" lines
 - 1 load enable line (clock line)
- 2. Create a new circuit, add 4 of these registers as modules
- 3. Combine with 2bit Decoder to select which register is enabled
- 4. Load different values into these registers using an Input component

<u>Challenge</u>

Create a simple adding machine:

- Select input values from two of four 4bit registers
 - Need to be able to load the registers with values as well
- Store sum of input values in any of the four registers
 - Monitor values (inputs, output) for operation