CS6502

Applied Big Data & Visualization

ML Project

KAILASH MURALIDHARAN

19116608

Your task here is to

- 1. use the python scikit-learn to investigate the similarities and relationships that PCA can provide. It will not be possible for you to analyze the entire data set in this way so you should perform your analysis on *the first 1000 rows* of the table. Ideally the output of this phase should guide the direction you take in the second, ML, part of the assignment. You will need to decide which columns should be part of your analysis and which should be ignored. See some of the tutorial links we have posted in the lecture slides for help in deciding what are appropriate columns to consider.
- based on the information you gained from step 1, create a model¹ to predict the taxi fare ("fare" column in the dataset). Note that you may need to clean the data, pick a list of features (feature engineering), and then design your model.

Please email your zipped solution pack to the lecturer by the end of week 14 with subject "cs6502: ml proj".

Note that your solution pack should contain

- the query you use to selected the first 1000 rows
- key steps for your PCA (setup, command, etc)
- the sql for model creation
- the sql to evaluate the model
- the sql to predict using the model above
- link of the BigQuery commands you composed²
- screenshot of the model evaluation report³

Summary

	Item	Links
1.	Query used to select 1000 rows	https://console.cloud.google.com/bigquery?sq=3103539222:e d4b7d29551040a1a3441a2b2cf59031
2.	Results of the query containing 1000 rows	https://docs.google.com/spreadsheets/d/1xc51HUUrw51UBC wIfbpPT343E8GyODNaQc2khHywu30/edit?ts=5eb593ba#gi d=2010390566
3.	Query used to create the Final Model	https://console.cloud.google.com/bigquery?sq=3103539222:8 8ef2a11074c451db05d9e1598f90d55
4.	Query used for Model Evaluation	https://console.cloud.google.com/bigquery?sq=3103539222:4 c44667fd77d489e8a8164b3a02b843c
5.	Query used for Model Prediction	https://console.cloud.google.com/bigquery?sq=3103539222:4 be462936e3c40eba4f80b02cc69c4b4
6.	Final Model Evaluation Report	Mean absolute error Mean squared error Mean squared log error Median absolute error 1.8286 Mean squared log error 0.0143 Median absolute error 1.1597 R squared 0.9421

1. Query to select 1000 rows

I have used a query to check for the minimum, maximum and average of three numeric columns.

Using the latitude and longitude values of Chicago, to consider only those trips that started and ended inside the city range.

Conditions applied:

- Picked values to apply for where conditions based on the min, max, avg summary and Chicago's location coordinates.
- Years filtered between 2016 and 2018, and months between January and September.
- Rest of the columns NOT NULL condition
- In addition to the existing columns, following additional columns have been created
 - **total_fare_without_tips** (the value to be predicted), since the tips amount varies from customer to customer (created a column by subtracting tips from the trip_total)

- **hour_of_day**, from the timestamp
- **month_of_trip**, also from the timestamp
- euclidean_distance, the distance between the pickup and dropoff points
- longitude, the distance between the pickup and dropoff points longitude
- latitude, the distance between the pickup and dropoff points latitude
- **taxi_company**, the name of the taxi company

2. Base Model before PCA

Evaluation Report:

- MSE= **14.3731**
- **R squared value** = **0.9258**, about **92.58**% of the variability in the dependent variable is explained by our model.

3. PCA using R statistical package

• Load the dataset into the dataframe df

• The taxi_company column is changed to be of numeric data type (to be included in creating the model)

```
df$taxi_company = as.numeric(df$taxi_company)
str(df)
```

• Correlation Matrix

```
install.packages("ggcorrplot")
library(ggcorrplot)
correlation <- round(cor(df[,1:13]), 2)
ggcorrplot(correlation, lab=TRUE, colors = c("red", "white", "oran</pre>
```

The below matrix shows the correlation between the numeric variables in the dataset.

• Computing PCA using prcomp()

```
install.packages("factoextra")
library(factoextra)
df.pca <- prcomp(df[,2:13], scale = TRUE)
fviz_eig(df.pca,addlabels = TRUE)</pre>
```

This plot shows the percent contribution of the principle components. We can see that the first two principle components explain about 57.5% variation.

• We visualize the first two principle components to check the % contribution of each variable (features from the original dataset) in both the principle components.

```
fviz_contrib(df.pca, choice = "var", axes = 1:2, top = 12)
```

Output Screenshot:

4. Final Model after PCA and feature selection

Final Prediction Model - Evaluation Report:

- The MSE of the prediction model after PCA, is 11.1206, which is less than that of the base model MSE = 14.3731
- The R squared value of the prediction model has increased from 0.9258 to 0.9421, which
 suggests that the final model captures more variation in the total_fare_without_tips than the
 base model

5. Final Model - Evaluation Query

Output Screenshot:

6. Final Model - Prediction Query

The prediction model uses training data from months 1 to 9 and the test data from months 10, 11, 12.

Below screenshot shows total_fare_without_tips and the predicted_total_fare_without_tips using the final prediction model.

