Distributed Intelligent Systems

Multi-robot navigation in cluttered and dynamic environments

Group 10:

Mathilde Bensimhon Daniel Almeida Dias Pauline Maury Laribière Hugo Grall Lucas Professor: Alcherio Martinoli

H.T.A.: Duarte Da Cruz Baptista Dias

T.A.: Quraishi Anwar Ahmad

Contents

Controller architecture

- Controller overall
- Weights adapter
- Migration
- Braitenberg
- Reynolds
- Join

Simulation

- Scenario A
- Scenario B

Real E-pucks

- Scenario A
- Scenario B

Scalability Conclusion

Controller architecture

Architecture:

Main speed controller

- Braitenberg
- Reynolds
- Migration

Additional speed

• Join

Weights adapter

Set_weights()

Set_weights()

- State machine based
- Change the gains
- Change the saturation speed

Weights adapter: set_weights

Algorithms

Simulation

Algorithm 1 Simulation controller

while FOREVER do

Reinitialize weights and speeds

Listen and Send messages

Compute Reynold Speed

Compute Braitenberg Speed

Compute Migration Speed

Compute Join Speed

Compute weights

Compute final speed

Update Odometry

end while

Real implementation

Algorithm 2 Real controller

while FOREVER do

Reinitialize weights and speeds

for 40 ms **do**

Emit messages

end for

for 80 ms do

Listen messages

end for

Compute Reynold Speed

Compute Braitenberg Speed

Compute Migration Speed

Compute Join Speed

Compute weights

Compute final speed

Update Odometry (Real time step)

end while

Migration

Simulation

Real implementation

Migration + Braitenberg

Simulation

	S
•	₽
_	⊆
	Ø
•	
	Ф
	_
_	>

	Motor	IR0	IR1	IR2	IR3	IR4	IR5	IR6	IR7
-	Right	16	9	6	3	-1	-5	-6	-8
•	Left	-12	-8	-5	6	2	4	5	9

Real implementation

Reynolds: Real implementation

Cohesion

Dispersion

Reynolds + Migratory

Simulation

Recall: $W_R = \alpha \times W_M$

• α < 1 : more Migration

• $\alpha > 1$: more Reynolds

Solution: Heterogeneity

$$\alpha = \alpha_0 + (Robot_{id} + 1) \times \frac{2}{5}$$

Parameters:

Reynolds' rules	Threshold	Weights	_
Cohesion	10 cm	7.0	_
Dispersion	12 cm	7.0	$u_0 - u_0$
Alignement	-	4.0	

Complete controller

Without Join

7x

With Join

Simulation: Scenario A

Test

Fitness	Training [%]	Test [%]
Orientation	99.94	99.87
Velocity	17.53	17.47
Cohesion	91.44	91.16
Overall	0.038	0.039

Obstacle scenario

Simulation: Scenario B

Fitness	Training [%]	Test [%]
Orientation	99.65	98.48
Velocity	11.3	17.61
Cohesion	91.15	91.36
Overall	0.074	0.078

Real e-puck: Scenario A

Real e-puck: Scenario B

Scalability

Conclusion

Results discussion

- Obstacle better than crossing
- Robust to change of flock size

Possible improvement

- Optimization algorithm (ex: PSO, etc)
- Optimization Hardware in the loop
- Communication strategy (synchronization)

Metrics corrections

Obstacle scenario

Fitness	Training [%]	Test [%]
Orientation	99.94	99.87
Velocity	54.78	54.59
Cohesion	91.44	91.16
Overall	0.1188	0.1219

Crossing scenario

Fitness	Training [%]	Test [%]
Orientation	99.65	98.48
Velocity	35.31	52.13
Cohesion	91.15	91.36
Overall	0.2188	0.2438