Exercises for Chapter 0

0.1.1

Given points A = (m, n) and B = (s, t), and the vectors $\vec{a} = [m, n]$ and $\vec{b} = [s, t]$. Show that the midpoint of the line segment AB is given by the expression

$$(0,0) + \frac{1}{2}(\vec{u} + \vec{v})$$

0.1.2

Given $\vec{v} = [ca, cb]$. Show that

$$|\vec{v}| = c\sqrt{a^2 + b^2}$$

0.1.3

- a) Given a vector \vec{v} . Show that the length of the vector $\frac{\vec{v}}{|\vec{v}|}$ is 1.
- b) Determine the expression for the vector that is parallel to the vector [3, 4], and has a length of 10.

0.1.4

Determine the length of each of the vectors.

$$\vec{a} = [3, 4]$$
 $\vec{b} = [-1, 7]$
 $\vec{c} = [-8, 6]$
 $\vec{d} = [4, -3]$

0.1.5

Check if any of the vectors from Exercise 0.1.4 are perpendicular to each other.

0.1.6

Check if any of the vectors from Exercise 0.1.4 are parallel.

0.1.7 (R1V22D1)

For the vectors \vec{a} and \vec{b} , $|\vec{a}| = 2$, $\vec{b} = 3$ and $\vec{a} \cdot \vec{b} = -3$.

We let $\vec{u} = \vec{a} + \vec{b}$ and $\vec{v} = \vec{a} - 6\vec{b}$.

- a) Determine the length of \vec{u} and \vec{v} .
- b) Determine the angle between \vec{u} and \vec{v} .

0.1.8

Given $\vec{u} = [a,b]$ and $\vec{v} = [c,d]$ Show that if $\angle(\vec{u}, \vec{v}) = 0^{\circ}$, (??) gives that

$$ad - bc = 0$$

0.1.9 (R1V23D1)

Given three points A = (1, 3), B = (4, 0), and C = (9, 4).

a) Use vector calculations to determine if $\angle CBA$ is less than, equal to, or greater than 90°.

A point P lies on the line that goes through B and C.

a) Use vector calculations to determine the coordinates of the point P so that $AB \perp AP$.

0.1.10 (R1H23D1)

In the triangle $\triangle ABC$, A = (-3, -1), B = (2, -2), and C = (5,2).

- a) Determine using vector calculations which side of the triangle is the shortest.
- b) Determine using vector calculations if any of the angles in the triangle are 90° .