Analyzing the Ringelmann Effect with the Repeated Measures ANOVA

Nikolas Höft Constantin Meyer-Grant Joachim Munch Quang Nguyen Duc Frederik Schreck

Statistical Programming Languages Humboldt-Universität zu Berlin

MAGA: The Package to make ANOVA great again

- The package bundles functionalities around the grand topic of one-way repeated measures ANOVA.
- Some of the functionalities have not been implemented in R yet. This package aims to fill this void.
- □ Each core functionality of the package represents a quantlet.
- After presenting the theory and code examples from the package, we will give a short overview of the technical implementation.

Outline

- 1. The Ringelmann Effect
- 2. The Repeated Measures ANOVA
 - 2.1 Based on the ANOVA Model
 - 2.2 An Advantageous Model
 - 2.3 Confidence Intervals
 - 2.4 Effect Size Measures
- 3. Sphericity
- 4. Orthogonal Polynomial Contrasts
- Our Package
 - 5.1 Motivation for Making a Package
 - 5.2 Tools to Create a Package in R
 - 5.3 Things to Consider

The Ringelmann Effect

- - French professor of agricultural engineering
- Findings:
 - Work performance depends on group size
 - Decreasing individual performance with increasing group size
 - Example: Pulling weights in differently sized groups

The Ringelmann Effect

- The Ringelmann Effect can be investigated with an experimental design
 - Dependent Variable: Individual performance
 - ▶ Independent Variable / Factor: Group size
 - Realization of different factor levels

Quantlet 1: Data Simulation

Simulation function:

```
rma_data = sim_rma_data(n = 30, k = 5, means =
    means, poly_order = NULL, noise_sd = c(155, 65,
    75, 15, 40), between_subject_sd = 60, NAs = 2)
```

Simulate deviation between subjects:

```
mean_deviation = rnorm(n, mean = 0,
    sd = between_subject_sd)
ow_rma_data[, 2:(k + 1)] = ow_rma_data[, 2:(k + 1)]
    + mean deviation
```

🔾 sim rma data

Quantlet 1: Data Simulation

□ Simulate noise:

```
noise = matrix(NA, nrow = n, ncol = k)

for (i in 1:k) {noise[, i] = rnorm(n,

mean = 0, sd = noise_sd[i])}

ow_rma_data[, 2:(k + 1)] = ow_rma_data[, 2:(k + 1)]

+ noise
```

📿 sim _rma _data

The Ringelmann Effect

Figure 1: Simulated data.

🔾 sim rma_data

Analyzing the Ringelmann Effect with the Repeated Measures ANOVA - 🦃

The Repeated Measures ANOVA: Based on the ANOVA Model

- ANOVA: Analysis of Variance
- oxdot Comparison of the k factor level means

$$H_0: \mu_1 = \mu_2 = \dots = \mu_k$$

 $H_1: \exists i \neq j: \mu_i \neq \mu_j$

- Test is accomplished by decomposition of variance components
- □ For dependent data: Repeated Measures ANOVA

The Repeated Measures ANOVA

Subject	Factor.1	Factor 2	Factor 3	Factor.4	Factor 5
1	218.25	147.13	69.18	74.96	80.11
2	173.77	119.62	114.15	94.04	87.57
3	177.49	116.17	97.97	72.91	69.28
4	126.58	110.36	123.45	90.82	75.07
5	146.61	108.26	86.91	76.62	61.94
6	167.03	95.48	72.13	93.29	102.31

Table 1: Our simulated data consists of dependent data.

sim rma data

Quantlet 2: Repeated Measures ANOVA

Repeated Measures ANOVA function:

```
📿 rma
```

```
rma(rma_data, id = 1)
```

Define basic components:

Quantlet 2: Repeated Measures ANOVA

Define basic components:

```
error_components = dependent_variable -
baseline_components - factor_level_components -
subject_components
```

Q rma

The Repeated Measures ANOVA

	Source	Sum of squares	Degrees of freedom	Mean squares	F-value	p-value
1	Baseline	1769610.20	1.00	1769610.20	1430.36	<0.001
2	Factor	174706.07	4.00	43676.52	142.23	< 0.001
3	Subject	33403.82	27.00	1237.18		
4	Error	33166.05	108.00	307.09		
5	Total	2010886.14	140.00			
6	Corrected total	241275.94	139.00	1735.80		

Table 2: ANOVA-table for our Repeated Measures ANOVA.

The Repeated Measures ANOVA: An Advantageous Model

- Problem of ANOVA: In case of large variance between different subjects
 - \Rightarrow High error variance \Rightarrow Loss of power in F-Test
- Repeated Measures ANOVA considers the between subject variance separately
 - \Rightarrow Relatively low error variance \Rightarrow Gain of power in F-Test

Quantlet 3: ANOVA and SSE Reduction

□ Reduction of sum of squares error function:

```
rma_sse_reduct(rma_data, id = 1,
    plot_type = "pie", return_anova_table = FALSE)
```

ANOVA function:

```
ow_a(rma_data, id)
```

rma _ sse _ reduct

Quantlet 3: ANOVA and SSE Reduction

■ ANOVA-tables of Repeated Measures ANOVA and ANOVA

```
ow_a_results = ow_a(rma_data, id)[[1]]
rma_results = rma(rma_data, id)[[1]]

sse_anova = ow_a_results[3, 2]
ss_subject_anova = 0

sse_rma = rma_results[4, 2]
ss_subject_rma = rma_results[3, 2]
```

rma_sse_reduct

The Repeated Measures ANOVA: An Advantageous Model

Figure 2: Pie chart on the reduction of sum of squares (SSE) in percentages.

🔾 rma sse reduct

Analyzing the Ringelmann Effect with the Repeated Measures ANOVA -

The Repeated Measures ANOVA: Confidence Intervals

Figure 3: Unadjusted and adjusted confidence intervals.

Analyzing the Ringelmann Effect with the Repeated Measures ANOVA

Quantlet 4: Confidence Intervals

Confidence interval function:

```
rma_ci(rma_data, C_level = 0.95, id = 1, print_plot
   = TRUE)
```

Computation of adjusted standard errors:

```
cf = sqrt(k/(k - 1))
AdjVal = data.frame(Adj = (cf * ((
 rma_data_long$value - EEmlong$Em + Gm) -
 MeFlmlong$Flm)) + MeFlmlong$Flm)
```

🔾 rma ci

The Repeated Measures ANOVA: Effect Size Measures

- - \rightarrow η^2
 - $\rightarrow \eta_p^2$

	Source	eta squared	partial eta squared
1	Factor	0.72	0.84

Table 3: Effect size measures for our simulated data.

🔾 rma effect size

Quantlet 5: Effect Size Measures

□ Effect size measures function:

```
rma_eta(rma_data, id = 1, append = FALSE)
```

 \odot Computation of η^2 and η_p^2 :

```
eta_sq = SS_Factor/SS_K_Total

eta_partial = SS_Factor/(SS_Factor + SS_Error)
```

Q rma effect size

Sphericity

- An important requirement: The variance of differences are equal for each pair of factor levels
- □ Measurement of sphericity $(\epsilon \in [0, 1])$:
 - ▶ Greenhouse & Geisser: ϵ_{GG}
 - \blacktriangleright Box: ϵ_B
 - ▶ Huynh & Feldt: ϵ_{HF}
- These can be used to correct the degrees of freedom and therefore adjust the p-values if sphericity is violated

Quantlet 6: Test and Adjustment for Sphericity

```
rma_spheri(rma_data, id = 1, append = TRUE)
```

		Mauchly's W	•	df	р
1	Factor	0.20	41.48	9.00	0.00

Table 4: Result of the Mauchly test.

🔾 rm spheri

Sphericity

	Source	G - G	Вох	Huynh-Feldt
1	Epsilon	0.25	0.55	0.60
2	Adj. p-Value	0.05	< 0.001	< 0.001

Table 5: Adjusted p-values.

📿 rma _ spheri

Quantlet 6: Test and Adjustment for Sphericity

Choose recommended adjustment:

🔾 rma spheri

```
_{1} if (p_{W} < 0.05) {
1 if (p_factor_lb < 0.05) {</pre>
  anova_table[, "Recommended Lower-Bound corrected p-
    Value (Greenhouse & Geisser, 1959))"] = c(NA,
    p_factor_lb, NA, NA, NA, NA)}
  else {if (epsilon_gg < 0.75) {anova_table[, "</pre>
    Recommended Box corrected p-Value (Geisser &
    Greenhouse, 1958)"] = c(NA, p_factor_gg, NA, NA,
    NA, NA)}
  else {anova_table[, "Recommended Huynh-Feldt
    corrected p-Value (Huynh & Feldt, 1976)"] = c(NA,
     p_factor_hf, NA, NA, NA, NA)}}
```

Orthogonal Polynomial Contrasts

- Further analysis of factor effect
- Requirement: Level of measurement at least interval
- Factor effect can be decomposed into polynomial trend components
- Polynomial trend components can be tested by polynomial contrasts
- If there shall be no redundant information in each trend component, the contrasts have to be orthogonal
 - ▶ Maximum of orthogonal contrasts: k-1

Quantlet 7: Orthogonal Polynomial Contrasts

Contrast function:

```
rma_opc(rma_data, id = 1, maxpoly = NA, print_plot =
  TRUE)
```

Source	SS	Contribution	t	р
.L	32414.14	0.74	-15.67	0.00
.Q	10898.57	0.25	10.68	0.00
.С	360.39	0.01	-3.40	0.00
^4	3.42	27.00	-0.27	0.40

Qrma opc

Plotting the Orthogonal Polynomial Curves

```
poly_plot = ggplot(data = rma_data_long, aes(x =
    condition, y = value)) + geom_point() + labs(col =
    "Order of \npolynomial", x = "Condition", y = "
    Value", title = "Orthogonal polynomial contrasts")
    +
geom_path(data = poly_curve_data, aes(x, y, color =
    var), lwd = 1.2) + scale_color_discrete(labels =
    as.character(1:(k - 1)))
```

🔾 rma opc

Orthogonal Polynomial Contrasts

Figure 4: Orthogonal polynomial contrasts.

Our Package: Motivation for Making a Package

- A package bundles together code, data, documentation, and tests
- Makes it easy to share and publish code with others (CRAN, Github via Devtools)
- Loads all relevant functions into the namespace
- Automatically checks and installs dependency if necessary
- Packages allow to document functions, so that they easily be used by others (help function, argument list, etc.)

Our Package: Tools to Create a Package in R

- □ roxygen2
 - ▶ Enables documentation to be written directly into the R script
- devtools
 - ▶ Load packages still under development e.g. from Github
- Github
 - A package can be handled like a repository, which enables colloboration
- RS tudio
 - Provides many helpful functionalities for creating a package (create, build, check)

Create a Package in R-Studio

Figure 5: Select R-Package to directly create a Package

Helpfiles with roxygen2

```
I' Visualize reduction of SSE due to model selection

"" Compare the sums of squared errors in regular one-way ANOVA and one-way RM ANOVA.

"" Poparam ow_rma_data An object of type data.frame. Each row should represent one subject and each column one

"Poparam id An integer specifying the column position of the subject ID. Default is 1. Set to "none" if the d

"Poparam plot_type A charocter specifying the type of plot that is returned to visualize the error variance r

"Poparam return_anova_table Logical. If TRUE, a regular oneway ANOVA table without repeated measurements is r

"" * Geturn Returns an object of type list.

" Nitem[plot]{A gaplot object. The type of plot is determined by the argument plot_type}

" Nitem[plot]{A gaplot object. The type of plot is determined by the argument plot_type}

" Nitema_vow_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_table}{Anova_t
```

Helpfiles with roxygen2

ow_ma_sse_reduct {MAGA}

Visualize reduction of SSE due to model selection

Description

Compare the sums of squared errors in regular one-way ANOVA and one-way RM ANOVA.

Usage

ow_rma_sse_reduct(ow_rma_data)

Arguments

ow_rma_data An object of type data.frame. Each row should represent one subject and each column one variable.

id An integer specifying the column position of the subject ID. Default is 1. Set to "none" if the data does not contain an ID variable.

plot_type A character specifying the type of plot that is returned to visualize the error variance reduction. Possible values are "ple" and "bar". Default is "ple".

return_anova_table Logical. If TRUE, a regular oneway ANOVA table without repeated measurements is returned additionally. Default is FALSE.

Value

Returns an object of type list.

plot A ggplot object. The type of plot is determined by the argument plot_type

anova_table An object of type data.frame containing a regular oneway ANOVA table without repeated measurements

Note

Note that the consume ANOVA without repeated measures in facility tration rungers only given the data structure is correlated somes the factor levels because of the decorded measurements. The ANOVA without

Package: Things to consider

- Use function names that speak for themselves and use them consistently.
 - ► "There are only two hard things in computer science: cache invalidation and naming things." Phil Karlton
- - Make sure that functions are robust regarding violation of the required input, e.g. character vector supplied although a numeric vector is needed. Use if-statements or try().
- Custom error and warning messages
 - stop() interrupts the code and returns an error message
 - warning() executes the code but returns a warning message

Thank you for your Attention!

Literature

 Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. Behavior Research Methods, 37, 379-384. Box, G. E. R. (1954a). Some theorems on quadratic forms applied in the study of analysis of variance problems. I. Effects of inequality of variance in the one-way classification. Annals of Mathematical Statistics 25 484-498 Box, G. E. R. (1954b). Some theorems on quadratic forms applied in the study of analysis of variance problems. II. Effects of inequality of variance and of correlation between errors in the two-way classification. Annals of Mathematical Statistics, 25, 484-498. Geisser, S. & Greenhouse, S. W. (1958). An extension of Box's results on the use of the F distribution in multivariate analysis. Annals of Mathematical Statistics, 29, 885-891. Huvnh, H. & Feldt, L. S. (1976) Estimation of the Box correction for degrees of freedom from sample data in randomized block and split-plot designs. Journal of Educational Statistics. 1. 69-82. OBrien, F. & Cousineau, D. (2014). Representing error bars in within-subject designs in typical software packages. The Quantitative Methods for Psychology, 10, 58-70. Rutherford, A. (2011): ANOVA and ANCOVA: A GLM Approach (2. Aufl.), Hoboken: John Wiley & Sons.