Tree

What is Tree?

Definition

- A collection of nodes to represent a **hierarchical** relationship
- Each node has a value with a list of references to nodes.
 - Each node is composed with the **parent-child relationship**.
- **Acyclic graph**: contain no cycle.

Tree Example

■ File directory structure

■ Terminology

■ **Node**: a basic component in a tree

■ **Edge**: The connection between one node and another

■ **Root**: the top node in a tree

■ A

■ Internal node (non-terminal node): a node with one or more degrees

- A, B, C, D, E, H
- Leaf node (terminal node): a node with degree zero
 - F, G, I, J, K, L

- Terminology
 - **Level**: The level of a node is its distance from the root.
 - The level of the root node is 0.
 - **Height (depth)**: The longest path (number of nodes) from a root to the farthest leaf
 - The height of a tree: The maximum level of nodes plus 1
 - **Degree**: The number of subtrees of a node

■ Terminology

- **Parent**: a node that has one or more subtrees.
- **Child**: a node that is connected from a parent node.
- **Sibling**: a set of nodes with the same parent
- **Ancestor**: all nodes along the path from the root to the node
- **Descendant**: all nodes that are in a subtree

- Example
 - A is the **root** node.
 - B is the **parent** of nodes E and F.
 - C and D are **children** of node A.
 - B and C are **sibling** nodes.
 - A and D are **ancestors** of node I.
 - H and I are **descents** of node A.

Representation of Tree

- Array representation for child nodes
 - Store the children with an array pointer.

 \blacksquare *n* is the degree of the tree.

The degree of the tree is 3.

Representation of Tree

Representation of Trees

- Left-child right-sibling representation
 - Nodes of a fixed size: Two link fields per node

item left_child right_sibling

Easy to manage the tree

Representation of Trees

What is Binary Tree?

Definition

- A binary tree is a finite set of nodes such that
 - **■** 1) empty or
 - 2) consists of root node and at most two disjoint binary trees, called left subtree and right subtree

Q: Is it a binary tree?

What is Binary Tree?

• Q: Are they binary trees?

■ Q: Are they same?

Properties of Binary Tree

■ If a binary tree has n nodes, it has n - 1 edges. (Prove it !!)

of nodes: 10, # of edges: 9

of nodes: 6, # of edges: 5

Properties of Binary Tree

- \blacksquare Suppose that the height of a binary tree is k.
 - Minimum number of nodes: **k**
 - Maximum number of nodes: $2^k 1$

number of nodes: 1 + 1 + 1 = 3

number of nodes: 1 + 2 + 4 = 7

Properties of Binary Tree

- \blacksquare Suppose that the number of nodes in a tree is n.
 - Minimum height of the tree: $\lceil log_2(n+1) \rceil$
 - Maximum height of the tree: *n*

Height of the tree: 3

Height of the tree: 7

Perfect? Full Binary Tree

■ The full binary tree of height k has $2^k - 1$ nodes.

The full binary tree of height 4 has 15 nodes.

The full binary tree of height 3 has 7 nodes.

Complete Binary Tree

- Complete binary tree
 - lacksquare A binary tree with n nodes that correspond to the nodes numbered from 1 to n in the full binary tree of height k

Full vs. Complete Binary Tree

• Q: Is it a full binary tree, a complete binary tree, or none?

• Q: If a binary tree is the full binary tree, then it is also a complete binary tree. True of False.

- How to represent a binary tree by an array
 - The mapping for a binary tree corresponds to the nodes numbered from 1 to n in the full binary tree of height k

Index	Data
[0]	A
[1]	В
[2]	C
[3]	D
[4]	E
[5]	F
[6]	G
[7]	H
[8]	I

- Rule for array representation
 - The parent node i is at $\lfloor (i-1)/2 \rfloor$.
 - The left child of node i is at 2(i + 1) 1.
 - The right child of node i is at 2(i + 1).

Index	Data
[0]	A
[1]	В
[2]	C
[3]	D
[4]	E
[5]	F
[6]	G
[7]	H
[8]	I

■ Example of array representation

Index	Data
[0]	A
[1]	В
[2]	C
[3]	D
[4]	
[5]	
[6]	E
[7]	
[8]	F

■ Example of array representation

Index	Data
[0]	A
[1]	В
[2]	
[3]	C
[4]	
[5]	
[6]	
[7]	D
[8]	

Cons/Pros of Array Representation

■ Pros

- Easy to implement a binary tree
- Ideal for representing complete binary tree

■ Cons

- Inefficient for arbitrary binary tree
 - E.g., skewed binary tree
- Difficult to update insertions/deletions

Linked List Representation

■ How to represent a binary tree by linked list

Linked List Representation

- How to represent a binary tree by linked list
 - The skewed binary tree does not incur unnecessary space overhead.

Linked List Representation

■ Node representation in a binary tree

left_child item right_child

```
typedef int BData;

typedef struct _bTreeNode
{
    BData item;
    struct _bTreeNode * left_child;
    struct _bTreeNode * right_child;
}
BTreeNode;
```


How to Build a Binary Tree

```
int main()
{
    BTreeNode * n1 = (BTreeNode *)malloc(sizeof(BTreeNode));
    BTreeNode * n2 = (BTreeNode *)malloc(sizeof(BTreeNode));
    BTreeNode * n3 = (BTreeNode *)malloc(sizeof(BTreeNode));
    n1->item = 10; // Setting the first node
    n1->left child = n2;
    n1->right child = NULL;
                                                             10
    n2->item = 20; // Setting the second node
    n2->left child = n3;
                                                        20
    n2->right child = NULL;
    n3->item = 30; // Setting the third node
                                                   30
    n3->left child = NULL;
    n3->right child = NULL;
    free(n1), free(n2), free(n3);
    return 0;
}
```

Operations

```
// Create a new node.
BTreeNode * CreateNode(BData item);
// Destroy a node.
void DestroyNode(BTreeNode * node);
// Conect the root to a left-side node.
void CreateLeftSubtree(BTreeNode* root, BTreeNode * left);
// Conect the root to a right-side node.
void CreateRightSubtree(BTreeNode* root, BTreeNode * right);
// Traverse a tree.
void Inorder(BTreeNode* root);
void Preorder(BTreeNode* root);
void Postorder(BTreeNode* root);
void Levelorder(BTreeNode* root);
```

■ CreateNode and DestroyNode operations

```
// Create a new node.
BTreeNode * CreateNode(BData item)
{
    BTreeNode * node = (BTreeNode*)malloc(sizeof(BTreeNode));
    node->item = item;
    node->left child = NULL;
    node->right child = NULL;
    return node;
// Destroy a node.
void DestroyNode(BTreeNode * node)
    free(node);
```

■ CreateLeftSubtree and CreaterightSubtree operations

```
// Conect the root to a left-side node.
void CreateLeftSubtree(BTreeNode* root, BTreeNode * left)
{
    if (root->left_child != NULL)
        exit(1);
    root->left child = left;
}
// Conect the root to a right-side node.
void CreateRightSubtree(BTreeNode* root, BTreeNode * right)
{
    if (root->right_child != NULL)
        exit(1);
    root->right_child = right;
}
```

```
int main()
{
    BTreeNode * node1 = CreateNode(1);
    BTreeNode * node2 = CreateNode(2);
    BTreeNode * node3 = CreateNode(3);
    BTreeNode * node4 = CreateNode(4);
    BTreeNode * node5 = CreateNode(5);
    BTreeNode * node6 = CreateNode(6);
    CreateLeftSubtree(node1, node2);
    CreateRightSubtree(node1, node3);
    CreateLeftSubtree(node2, node4);
                                                                  3
    CreateRightSubtree(node2, node5);
    CreateLeftSubtree(node3, node6);
                                                   5
                                                            6
    DestroyNode(node1);
    DestroyNode(node2);
    DestroyNode(node3);
    DestroyNode(node4);
    DestroyNode(node5);
    DestroyNode(node6);
    return 0;
}
```

Total Number of Nodes

- How to count the number of nodes of a binary tree
 - Recursive definition

$$N(T) = \begin{cases} 1 & \text{if T is a leaf node} \\ N(T.right), +N(T.left)) + 1 & \text{Otherwise} \end{cases}$$

```
int Nodes(BTreeNode *node)
{
   int r = 0, l = 0;
   if (node->right_child != NULL)
      r = Nodes(node->right_child);
   if (node->left_child != NULL)
      l = Nodes(node->left_child);
   return 1 + r + l;
}
```


The Height of Binary Tree

- How to calculate the height of a binary tree
 - Recursive definition

$$H(T) = \begin{cases} 1 & \text{if T is a leaf node} \\ \max(H(T.right), H(T.left)) + 1 & \text{Otherwise} \end{cases}$$

```
int Height(BTreeNode *node)
{
   int r = 0, l = 0;
   if (node->right_child != NULL)
       r = Height(node->right_child);
   if (node->left_child != NULL)
       l = Height(node->left_child);
   return 1 + max(r, l);
}
```

