Differential cross section measurements at ATLAS

Higgs Couplings 2019

Daniela Börner on behalf of the ATLAS Collaboration 1 Oct 2019

Motivation.

Fiducial and differential cross section measurements

- Important test of the SM predictions (for observables sensitive to the order of the QCD calculations and also sensitive to new physics)
- > Measurement inclusive in production mode
- Minimal model dependence → allows for interpretations
 - EFT ⇒ Discussed in talk from Lianliang Ma [Thursday 10:00]
 - Coupling: low p_{T}^H sensitive to light Yukawa couplings

Discussed in this talk

- > First full Run 2 measurements in $H \to \gamma \gamma$ and $H \to ZZ^* \to 4\ell$ channel
 - Discovery channels: small branching ratio, but clean signal
- Combination of those results

Measurement Procedure.

$$\sigma = rac{
u_{\mathsf{sig}}}{c_{\mathsf{fid}} \cdot \mathcal{L}}$$

- > Signal events ν_{sig} reconstructed in data
- Fiducial phase space defined to match the kinematic acceptance of the analysis and detector as closely as possible
- > Correction factor $c_{\rm fid}$ to account for detector efficiency and resolution effects and out-of-fiducial migrations to $\nu_{\rm sig}$
 - Obtained from MC simulation
- > Differential cross-section measurement
 - Binned in a variable of interest

Fiducial cross section.

- > Require two isolated, high quality photons
- > Main backgrounds from SM $\gamma\gamma$ production and events with jet(s) faking photon(s)
- Background described by a smoothly falling function constrained from fit to data sidebands
- Signal modelled as double sided Crystal Ball, based on MC simulation
- > Inclusive signal events: 6550 ± 530
- > Measured: 65.2 ± 4.5 (stat.) ± 5.6 (syst.) ± 0.3 (theo.) fb
 - Becomes systematically limited
 - Largest systematic uncertainty from background modelling
- > SM: 63.6 ± 3.3 fb \rightarrow consistent

Differential Cross Section.

 $p(\chi^2) = 44\%$

Sensitive to top-quark mass effects, new physics contributions (e.g. Yukawa coupling modifications)

$$p(\chi^2) = 68\%$$

Sensitive to gluon distribution in the proton

- > Uncertainty is mainly statistical
- Good agreement with predictions

Differential Cross Section.

 m_{jj} ensitive

 N_{jets}

Sensitive to VBF in high mass bin

gg → H default MC + XH Powheg NNLOPS + XH

Shama (urocou o) + Vi-

MG5 aMC@NLO + XH XH = VBF+VH+ttH+bbH

N°LO+JVE + XH

 $\Delta \phi_{jj}$

Sensitive to CP properties of the Higgs boson

[CONF-2019-025]

Backgrounds.

- Main background: ZZ* without Higgs
- Allowed to float, constrained in data sidebands (SB)

> VVV, ttV background taken from MC

- > Fake leptons mainly from Z+jets and $t\bar{t}$
- Data-driven method using control regions

- > 4ℓ final state has very small background
- > 316 events observed, 206 ± 13 signal and 97 ± 6 background expected

Fiducial cross section.

> Obtained from fit to $m_{4\ell}$ distribution for each final state and inclusively

- > Measured: $3.35 \pm 0.30 (\text{stat.}) \pm 0.12 (\text{syst.}) \, \text{fb}$
 - Still statistically limited
- > SM: 3.41 ± 0.18 fb \rightarrow consistent p-value of 85%
- Total result (right panel) includes acceptance and BR values

Differential Cross Section.

- > ZZ^* background normalisation compared to MC prediction
- > Good agreement with SM predictions observed
- DESY. | Differential cross section measurements at ATLAS | Daniela Börner | 1 Oct 2019

Combination of $H o \gamma \gamma$ and $H o ZZ^* o 4\ell$

[CONF-2019-032]

Combination.

- Improve statistical power of differential results which are still statistically limited
- Profile-likelihood maximization
 - Likelihood includes correction-factor unfolding to particle level
 - Correlate experimental and theoretical uncertainties that affect both channels with common nuisance parameter

- Extrapolate both individual results to the total phase space by calculating the corresponding acceptance factors based on SM predictions
- > Take branching fractions into account
- More model dependence introduced
- ⇒ Improve the precision in the comparison with the SM predictions

Results.

- Total: p-value of 96%
- p_{T}^H : p-value of 78%

Reduced uncertainty:

- Total: statistical and systematic uncertainty similar size
- p_{T}^H : still statistically dominated
- Largest systematic uncertainties:
 - $\gamma\gamma$ background modelling, luminosity

Interpretations Based on Differential Cross Section Measurements.

CP properties of the Higgs boson

→ EFT interpretation [Thursday 10:00]

Contact terms between the Higgs boson and left- and right-handed leptons using m_{12} vs. m_{34}

Charm Yukawa Coupling.

- > $p_{\rm T}^{\gamma\gamma}$ sensitive to change in charm Yukawa coupling
- ightarrow most sensitive region $p_{\mathsf{T}}^{\gamma\gamma} < 140\,\mathrm{GeV}$ considered
- Only shape information used, normalization profiled in fit

Coefficient	Observed 95% CL limit	Expected 95% CL limit
κ_c	[-19, 24]	[-15, 19]

Differential cross section measurements at ATLAS

- > First ATLAS results with full Run 2 dataset for $H \to \gamma \gamma$ and $H \to ZZ^* \to 4\ell$ channel
- > Inclusive cross-section and differential ones:
 - $p_{\mathsf{T}}^{4\ell}$, N_{jets} in 4ℓ channel
 - $p_{\mathsf{T}}^{\gamma\gamma}$, $|y_{\gamma\gamma}|$, N_{jets} , p_{T}^{j1} , m_{jj} , $\Delta\phi_{jj}$ in $\gamma\gamma$ channel
- Combination of both channels
 - Total cross section
 - p_{T}^H in extrapolated phase space
- Interpretations of differential results
 - Charm Yukawa coupling
 - EFT interpretations [Thursday 10:00]

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 678215

Contact

DESY. Deutsches

Daniela Börner

Elektronen-Synchrotron

daniela.boerner@desy.de

$H \rightarrow \gamma \gamma$ - Fiducial Selection.

Objects	Fiducial definition
Photons	$ \eta < 2.37 \text{ (excluding } 1.37 < \eta < 1.52), \sum p_{\mathrm{T}}^{i}/p_{\mathrm{T}}^{\gamma} < 0.05$
Jets	anti- k_t , $R = 0.4$, $p_T > 30 \text{ GeV}$, $ y < 4.4$
Diphoton	$N_{\gamma} \geq 2, \ \ 105 GeV < m_{\gamma\gamma} < 160 GeV, \ \ p_{\mathrm{T}}^{\gamma_1}/m_{\gamma\gamma} > 0.35, \ \ p_{\mathrm{T}}^{\gamma_2}/m_{\gamma\gamma} > 0.25$

- > Require isolated, high quality photons
- Diphoton vertex selected using dedicated NN

Background estimate.

- Require two isolated, high-quality photons
- > SM $\gamma\gamma$ production and events with jet(s) faking photon(s)

- > Background described as smoothly falling distribution, from fit to data sidebands
 - Data-driven method to get the composition of the backgrounds
 - Background shapes from simulation $(\gamma \gamma)$ or data control regions $(\gamma j, jj)$
 - ightarrow Potential bias estimated in background only fit on background template

$H \to ZZ^* \to 4\ell$ - Fiducial Selection.

Leptons and jets				
Leptons	$p_{\rm T} > 5 { m ~GeV}, \ \eta < 2.7$			
Jets	$p_{\rm T} > 30 \; {\rm GeV}, y < 4.4$			
remove jets with	$\Delta R(\mathrm{jet},\ell) < 0.1$			
Lepton selection and pairing				
Lepton kinematics	$p_{\rm T} > 20, 15, 10 { m ~GeV}$			
Leading pair (m_{12})	SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $			
Subleading pair (m_{34})	remaining SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $			
Event selection (at most one quadruplet per event)				
Mass requirements	$50 \text{ GeV} < m_{12} < 106 \text{ GeV}$ and $12 \text{ GeV} < m_{34} < 115 \text{ GeV}$			
Lepton separation	$\Delta R(\ell_i, \ell_j) > 0.1$			
J/ψ veto	$m(\ell_i, \ell_i) > 5 \text{ GeV}$ for all SFOS lepton pairs			
Mass window	$105 \; \mathrm{GeV} < m_{4\ell} < 160 \; \mathrm{GeV}$			
If extra leptons with $p_{\rm T} > 12~{\rm GeV}$	Quadruplet with the largest ME			

$H ightarrow \gamma \gamma$ - p-Values.

Distribution	$p(\chi^2)$ with Default MC Prediction
$p_{\mathrm{T}}^{\gamma\gamma}$	44%
$ y_{\gamma\gamma}^- $	68%
$ y_{\gamma\gamma} \ p_{ m T}^{j_1}$	77%
$N_{ m jets}$	96%
$\Delta\phi_{jj}$	82%
m_{jj}^{jj}	75%

- > Calculation of $\Delta \phi(jj)$
- > Azimuthal angle between more forward jet minus that of the more central one

$H ightarrow \gamma \gamma$ - Systematic Uncertainties.

Source	Uncertainty (%)
Statistics	6.9
Signal extraction syst.	7.9
Photon energy scale & resolution	4.6
Background modelling (spurious signal)	6.4
Correction factor	2.6
Pile-up modelling	2.0
Photon identification efficiency	1.2
Photon isolation efficiency	1.1
Trigger efficiency	0.5
Theoretical modelling	0.5
Photon energy scale & resolution	0.1
Luminosity	1.7
Total	11.0

$H o ZZ^* o 4\ell$ - Systematic Uncertainties.

	Experimental uncertainties [%]			Theory uncertainties [%]						
Measurement	Lum.	$e, \mu,$	Jets, flavour	Reducible	ZZ^*	tXX			Signal	
		pile-up	tagging	backgr.	backgr	backgr.	PDF	QCD scale	Parton Shower	Composition
				Fidu	icial cross	section				
$\sigma_{ m comb}$	1.7	2.5	_	< 0.5	1	< 0.5	< 0.5	2	1	< 0.5
			Pe	er decay final	state fidu	icial cross	sections			
4μ	1.7	2.5	_	0.5	1	< 0.5	< 0.5	2	1	< 0.5
4e	1.7	7	_	0.5	1.5	< 0.5	< 0.5	2	0.5	< 0.5
$2\mu 2e$	1.7	5.5	_	0.5	1	< 0.5	< 0.5	2	1.5	< 0.5
$2e2\mu$	1.7	2.0	_	0.5	1	< 0.5	< 0.5	2	1	< 0.5
				Stage-0 prod	luction bi	n cross see	ctions			
ggF	1.7	1.5	1	0.5	1.5	< 0.5	0.5	1	2	_
VBF	1.7	1	4.5	0.5	2	0.5	1.5	8	6	_
VH	1.8	1.5	3.5	1	5	0.5	2	12	8	_
ttH	1.7	1	4.5	1	1	0.5	0.5	8	4	_

$H \rightarrow \gamma \gamma$ - Results.

Using matrix inversion method instead of bin-by-bin unfolding

$H \rightarrow \gamma \gamma$ - Results.

Using matrix inversion method instead of bin-by-bin unfolding

$H \to \gamma \gamma$ - Results.

Using matrix inversion method instead of bin-by-bin unfolding

$H \to ZZ^* \to 4\ell$ - Correlation Matrices.

$H o ZZ^* o 4\ell$ - Results.

Using bin-by-bin unfolding instead of matrix inversion

Acceptance factors.

 ZZ^* 49% overall, 45% at low p_T^H , 65% at high p_T^H

 $\gamma\gamma$ 50% overall, 50% at low $p_{\rm T}^H$, 45% at intermediate values and about 75% at high $p_{\rm T}^H$

Results.

Total cross-section

