Project Design Phase-II Technology Stack (Architecture & Stack)

Date	28 October 2022
Team ID	PNT2022TMID34370
Project Name	Smart farmer-IoT enabled smart farming application
Maximum Marks	4 Marks

- The different soil parameters temperature, soil moistures and then humidity are sensed using different sensors and obtained value is stored in the IBM B2 cloud.
- Arduino UNO is used as a processing Unit that process the data obtained from the sensors and whether data from the weather API.
- NODE-RED is used as a programming tool to write the hardware, software and APIs. The MQTT protocol is followed for the communication.
- 4. All the collected data are provided to the user through a mobile application that was developed using the MIT app inventor. The user could make a decision through an app, weather to water the field or not depending upon the sensor values. By using the app they can remotely operate the motor switch.

Table-1: Components & Technologies:

Component	Description	Technology	
1. User Interface	How user interacts with	MIT App Inventor	
	application e.g. Web		
2. Application Logic-1	Logic for a process in the	Python	
	application		
3. Application Logic-2	Logic for a process in the	IBM Watson IOT service	
	application		
4. Application Logic-3	Logic for a process in the	IBM Watson Assistant	
	application		
5. Database	Data Type, Configurations	MySQL, NoSQL, etc.	
	etc.		
6. Cloud Database	Database Service on Cloud	IBM Cloud	
7. File Storage	File storage requirements	IBM Block Storage or Other	
		Storage	
8. External API-1	Purpose of External API	Open Weather API	
	used in the application		
9. Infrastructure	Application Deployment on	Local, Cloud Foundry.	
(Server / Cloud)	Local System / Cloud		
	Local Server Configuration:		
	Cloud Server Configuration:		

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source	List the open-source	Technology of
	Frameworks	frameworks used	Opensource
			framework
2.	Security Implementations	Sensitive and private data	Node-Red, Open
		must be protected from their	weather App API,
		production until the	MIT App Inventor
		decision-making and	
		storage stages.	
3.	Scalable Architecture	scalability is a major	Technology used
		concern for IoT platforms. It	
		has been shown that	
		different architectural	
		choices of IoT platforms	
		affect system scalability and	
		that automatic real time	
		decision-making is feasible	
		in an environment	
		composed of dozens of	
		thousand.	

References:

https://c4model.com/

 $\underline{https://developer.ibm.com/patterns/online-order-processing-system-during-pandemic/}$

https://www.ibm.com/cloud/architecture/