Optimization algorithms

LATEST SUBMISSION GRADE

100%

1. Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th

1/1 point

 $\bigcirc \ a^{[8]\{3\}\{7)}$

 $\bigcirc \ a^{[3]\{7\}(8)}$

 $\bigcap a^{[8]\{7\}(3)}$

2. Which of these statements about mini-batch gradient descent do you agree with?

One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch

Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one
epoch using batch gradient descent.

O You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that

✓ Correct

If the mini-batch size is 1, you end up having to process the entire training set before making any progress.

4. Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

1 / 1 point

Which of the following do you agree with?

Which of the following do you agree with?

O If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.

Mhether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.

If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

✓ Correct

5. Suppose the temperature in Casablanca over the first three days of January are the same.

1/1 point

Jan 1st: $heta_1=10^oC$

Jan 2nd: $\theta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0, v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias

correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.) $\bigcirc \ v_2=7.5, v_2^{corrected}=7.5$ $\bigcirc \ \ v_2=10, v_2^{corrected}=10$ $\bigcirc \ v_2=10, v_2^{corrected}=7.5$ $v_2 = 7.5$, $v_2^{corrected} = 10$ Correct 1/1 point 6. Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number. $\bigcirc \ \alpha = 0.95^t \alpha_0$ $\alpha = e^t \alpha_0$ $\bigcap \alpha = \frac{1}{1+2*t}\alpha_0$ $\bigcirc \ \alpha = \frac{1}{\sqrt{4}} \alpha_0$ $\alpha = \frac{1}{1+2*t} \alpha_0$ $\bigcap \alpha = \frac{1}{\sqrt{t}}\alpha_0$ ✓ Correct 7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply) temperature days slightly shifted to the right. $\hfill \square$ Decreasing β will create more oscillation within the red line. ✓ Correct True, remember that the red line corresponds to eta=0.9. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations. $\begin{tabular}{ll} \hline & Increasing β will create more oscillations within the red line. \\ \end{tabular}$ 8. Consider this figure: 1/1 point (2)(3)These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm? Try better random initialization for the weights ✓ Correct Try mini-batch gradient descent

with momentum (3 = 0.9). Which curve corresponds to which algorithm?

Try better random initialization for the weights

✓ Correct

Try mini-batch gradient descent

✓ Correct

Try initializing all the weights to zero

Try using Adam

✓ Correct

10. Which of the following statements about Adam is False?

1 / 1 point

 $\begin{tabular}{ll} \hline \end{tabular} \begin{tabular}{ll} The learning rate hyperparameter α in Adam usually needs to be tuned. \\ \hline \end{tabular}$

 $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

Adam should be used with batch gradient computations, not with mini-batches.

	We usually use "default" values for the hyperparameters eta_1,eta_2 and $arepsilon$ in Adam ($eta_1=0.9,eta_2=0.999,arepsilon=10^{-8}$)	
	✓ Correct	
	achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)	_
V	ho Try tuning the learning rate $lpha$	
	✓ Correct	
-	• • • • • • • • • • • • • • • • • • • •	
	✓ Correct	
V	✓ Try mini-batch gradient descent	
	✓ Correct	
	Try initializing all the weights to zero	
V	✓ Try using Adam	
	✓ Correct	
10 W	Which of the following statements about Adam is False?	/1 point
	The learning rate hyperparameter α in Adam usually needs to be tuned.	
	Adam combines the advantages of RMSProp and momentum	
(Adam should be used with batch gradient computations, not with mini-batches.	
	We usually use "default" values for the hyperparameters eta_1,eta_2 and $arepsilon$ in Adam ($eta_1=0.9,eta_2=0.999,arepsilon=10^{-8}$)	
	✓ Correct	