Spartan6 - DSP48A1-Project

Digital Designer: George Safwat Wasfy

Presented for:

Digital Design Using Verilog &FPGA Flow Using VIVADO Diploma

Under supervision of: Eng. Kareem Waseem

Table of Contents

1-RTL code	3
First: Instantiation Modules	3
Second: Spartan6 - DSP48A1-Design	4
Inputs, Outputs &Parameters:	4
Instantiations	5
2-Testbench-code	7
3-Do file	11
4-QuestaSim	12
5-QuestaLint	13
6-Synthesize	14
Elaborated Design:	14
Synthesized design:	14
Report timing summary:	16
Utilization summary:	16
7-Implementation	17
Report timing summary:	18
Utilization summary:	18

1-RTL code

First: Instantiation Modules

```
module Mux Reg(in,clk,out,rst,CE,sel);
                                                  module Muxb(in0,in1,b0);
parameter input size=18,RSTTYPE="SYNC";
                                                 parameter sel="Direct";
                                                  input [17:0]in0;
input [input size-1:0]in;
                                                 input [17:0]in1;
input clk,rst,CE,sel;
                                                 output [17:0]b0;
output [input size-1:0] out;
                                                 assign b0= (sel=="Direct")? in0:(sel=="CASCADE")? in1:0;
reg [input size-1:0]regs;
                                                  endmodule
assign out= (sel==1)? regs:in;
                                                  module mux2(sel,in0,in1,out);
                                                  input [17:0] in0,in1; //in0=pre in1=b0 out
generate
    if(RSTTYPE=="SYNC")begin
                                                  output [17:0] out;
                                                  assign out=(sel==0)? in1:in0;
always @(posedge clk) begin
                                                  endmodule
      if(rst)
regs<=0;
                                                  module mux cin(in0,in1,out);
else begin
                                                  parameter sel="OPMODE5";
    if(CE)
                                                  input in0,in1;
                                                  output out;
regs<=in;
                                                  assign out=(sel=="OPMODE5")? in0:in1;
end
end
                                                  module mux4(in0,in1,in2,in3,out,sel);
                                                 input [47:0]in0,in1,in2;
                                                 input [1:0]sel;
if(RSTTYPE=="ASYNC")begin
                                                 output [47:0]out;
always @(posedge clk or posedge rst) begin
                                                 input in3;
    if(rst)
                                                 assign out=(sel==0)? in3:(sel==1)? in2:(sel==2)? in1:in0;
regs<=0;
                                                 endmodule
    if(CE)
                                   module mux4 x(in0,in1,in2,in3,out,sel);
regs<=in;
                                    input [47:0]in0,in1;
                                   input [35:0]in2;
    end
                                   input [1:0]sel;
                                                                      //for Mux X
end
                                   output [47:0]out;
end
                                    input in3;
                                   assign out=(sel==0)? in3:(sel==1)? in2:(sel==2)? in1:in0;
endgenerate
                                    endmodule
endmodule
```

Second: Spartan6 - DSP48A1-Design

Inputs, Outputs & Parameters:

```
module DSP(A,B,C,D,CARRYIN,M,P,CARRYOUT,
CARRYOUTF, clk, opmode, cea, ceb, cec, cecarryin,
ced,cem,ceopmode,cep,rsta,rstb,rstc,rstcarryin,
rstd,rstm,rstopmode,rstp,BCOUT,PCIN,PCOUT,BCIN);
parameter A0REG=0,B0REG=0,A1REG=1,B1REG=1,CREG=1, DREG=1, MREG=1,
PREG=1, CARRYINREG=1, CARRYOUTREG=1, OPMODEREG=1,
CARRYINSEL="OPMODE5", B_INPUT="DIRECT", RSTTYPE="SYNC";
input CARRYIN,clk,cea,ceb,cec,cecarryin,
ced,cem,ceopmode,cep,rsta,rstb,rstc,rstcarryin,
rstd,rstm,rstopmode,rstp;
input [7:0]opmode;
input [17:0]A,B,D,BCIN;
input [47:0]C,PCIN;
output [47:0]P,PCOUT;
output [35:0]M;
output reg CARRYOUT;
output CARRYOUTF;
output [17:0]BCOUT;
```

```
wire [17:0]a,a1_out,d,b0,b0_out,b1,b1_out;
reg [17:0]pre_add_sub;
reg [48:0]post_add_sub;
wire [35:0]M_out;
reg [35:0]M_in;
wire [47:0]c,z,x;
wire [7:0]opmode_out;
wire cyi,cyi_out,cyo_out;
```

Blue signals are Internal Wires.

Figure 1-3: DSP48A1 Slice

Instantiations

```
Mux_Reg a0(.in(A),.clk(clk),.out(a),.rst(rsta),.CE(cea),.sel(A0REG));
Mux Reg a1(.in(a),.clk(clk),.out(a1 out),.rst(rsta),.CE(cea),.sel(A1REG));
Muxb B_in(.in0(B),.b0(b0),.in1(BCIN));
Mux_Reg B0(.in(b0),.clk(clk),.out(b0_out),.rst(rstb),.CE(ceb),.sel(B0REG));
mux2 b_in(.sel(opmode_out[4]),.in0(pre_add_sub),.in1(b0_out),.out(b1));
Mux_Reg B1(.in(b1),.clk(clk),.out(b1_out),.rst(rstb),.CE(ceb),.sel(B1REG));
Mux_Reg #(.input_size(48))c_in(.in(C),.clk(clk),.out(c),.rst(rstc),.CE(cec),.sel(CREG));
Mux_Reg d_in(.in(D),.clk(clk),.out(d),.rst(rstd),.CE(ced),.sel(DREG));
//Output P
Mux_Reg #(.input_size(48))p(.in(post_add_sub),.clk(clk),.out(P),.rst(rstp),.CE(cep),.sel(PREG));
Mux_Reg #(.input_size(36))m(.in(M_in),.clk(clk),.out(M_out),.rst(rstm),.CE(cem),.sel(MREG));
Mux_Reg #(.input_size(2)) op1(.in(opmode[1:0]),.clk(clk),.out(opmode_out[1:0]),.rst(rstopmode),.CE(ceopmode),.sel(OPMODEREG));
Mux_Reg #(.input_size(2)) op2(.in(opmode[3:2]),.clk(clk),.out(opmode_out[3:2]),.rst(rstopmode),.CE(ceopmode),.sel(OPMODEREG));
Mux_Reg #(.input_size(1)) op4(.in(opmode[4]),.clk(clk),.out(opmode_out[4]),.rst(rstopmode),.CE(ceopmode),.sel(OPMODEREG));
Mux_Reg #(.input_size(1)) op5(.in(opmode[5]),.clk(clk),.out(opmode_out[5]),.rst(rstopmode),.CE(ceopmode),.sel(OPMODEREG));
Mux_Reg #(.input_size(1)) op6(.in(opmode[6]),.clk(clk),.out(opmode_out[6]),.rst(rstopmode),.CE(ceopmode),.sel(OPMODEREG));
Mux_Reg #(.input_size(1)) op7(.in(opmode[7]),.clk(clk),.out(opmode_out[7]),.rst(rstopmode),.CE(ceopmode),.sel(OPMODEREG));
mux_cin cin(.in0(opmode[5]),.in1(CARRYIN),.out(cyi));
Mux_Reg #(.input_size(1)) CYI(.in(cyi),.clk(clk),.out(cyi_out),.rst(rstcarryin),.CE(ceopmode),.sel(CARRYINREG));
Mux_Reg #(.input_size(1)) CYO(.in(post_add_sub[48]),.clk(clk),.out(cyo_out),.rst(rstcarryin),.CE(ceopmode),.sel(CARRYOUTREG));
mux4 MUXz(.in0(c),.in1(PCIN),.in2(P),.in3(0),.out(z),.sel(opmode[3:2]));
```

```
always @(posedge clk) begin
case({opmode[7],opmode[6]})
2'b00:begin
pre add sub= d + b0 out;
M in= b1 out*a1 out;
post add sub=x+z;
CARRYOUT=cyo out;
end
2'b01:begin
pre add sub=d-b0 out;
M in=b1 out*a1 out;
post_add_sub=z+x;
CARRYOUT=cyo_out;
end
2'b10:begin
pre add sub=d+b0 out;
M in=b1 out*a1 out;
post add sub=z-(x+cyi out);
CARRYOUT=cyo out;
end
2'b11:begin
pre add sub=d-b0 out;
M in=b1 out*a1 out;
post_add_sub=z-(x+cyi_out);
CARRYOUT=cyo out;
end
endcase
end
assign BCOUT=b1 out;
assign M=~(~M out);
assign CARRYOUTF=CARRYOUT;
assign PCOUT=P;
endmodule
```

2-Testbench-code

```
module DSP_tb();
parameter A0REG=0,B0REG=0,A1REG=1,B1REG=1,CREG=1, DREG=1, MREG=1,
PREG=1, CARRYINREG=1, CARRYOUTREG=1, OPMODEREG=1,
CARRYINSEL="OPMODE5", B_INPUT="DIRECT", RSTTYPE="SYNC";
reg CARRYIN,clk,cea,ceb,cec,cecarryin,
ced,cem,ceopmode,cep,rsta,rstb,rstc,rstcarryin,
rstd,rstm,rstopmode,rstp;
reg [7:0]opmode;
reg [17:0]A,B,D;
reg [47:0]C,PCIN;
reg [17:0]BCIN;
wire [47:0]P,PCOUT;
wire [35:0]M;
wire CARRYOUT;
wire CARRYOUTF;
wire [17:0]BCOUT;
DSP DSP_test(.A(A),.B(B),.C(C),.D(D),.CARRYIN(CARRYIN),.M(M),.P(P),.CARRYOUT(CARRYOUT),
.CARRYOUTF(CARRYOUTF),.clk(clk),.opmode(opmode),.cea(cea),.ceb(ceb),.cec(cec),.cecarryin(cecarryin),
.ced(ced),.cem(cem),.ceopmode(ceopmode),.cep(cep),.rsta(rsta),.rstb(rstb),.rstc(rstc),.rstcarryin(rstcarryin),
.rstd(rstd),.rstm(rstm),.rstopmode(rstopmode),.rstp(rstp),.BCOUT(BCOUT),.PCIN(PCIN),.PCOUT(PCOUT));
initial begin
clk=1;
forever #1 clk=~clk;
```

```
integer i;
initial begin
//Test reset
rsta=1;
rstb=1;
rstc=1;
rstcarryin=1;
rstd=1;
rstm=1;
rstopmode=1;
rstp=1;
cea=0;
ceb=0;
cec=0;
cecarryin=0;
ced=0;
cem=0;
ceopmode=0;
cep=0;
A=$random;
B=$random;
C=$random;
D=$random;
opmode=$random;
CARRYIN=$random;
BCIN=$random;
PCIN=$random;
repeat (7) @(negedge clk);
if(P!=0)begin
$display("Error in Design");
$stop;
```

```
rsta=0:
rstb=0;
rstc=0;
rstcarryin=0;
rstd=0;
rstm=0;
rstopmode=0;
rstp=0;
cea=1;
ceb=1;
cec=1;
cecarryin=1;
ced=1:
cem=1:
ceopmode=1;
cep=1;
for(i=0;i<10;i=i+1)begin</pre>
//test addition
A=$urandom_range(0,1000);
B=$urandom_range(0,1000);
C=$urandom_range(0,1000);
D=$urandom_range(0,1000);
opmode=8'b00111101;
CARRYIN=$random;
BCIN=$random;
PCIN=$random;
repeat (7) @(negedge clk);
```

```
//test subtraction
A=$urandom range(0,1000);
B=$urandom_range(0,1000);
C=$urandom_range(0,1000);
D=$urandom_range(0,1000);
opmode=8'b11111101;
CARRYIN=$random;
BCIN=$random;
PCIN=$random;
repeat (7) @(negedge clk);
//test subtraction then addition
A=$urandom_range(0,1000);
B=$urandom_range(0,1000);
C=$urandom_range(0,1000);
D=$urandom range(0,1000);
opmode=8'b01111101;
CARRYIN=$random:
BCIN=$random;
PCIN=$random;
repeat (7) @(negedge clk);
//test addition then subtraction
A=$urandom range(0,1000);
B=$urandom_range(0,1000);
C=$urandom_range(0,1000);
D=$urandom_range(0,1000);
opmode=8'b10111101;
CARRYIN=$random;
BCIN=$random;
PCIN=$random;
repeat (7) @(negedge clk);
```

```
//Test all cases
A=$random;
B=$random;
C=$random;
C=$random;
D=$random;
opmode=$random;
CARRYIN=$random;
BCIN=$random;
PCIN=$random;
PCIN=$random;
repeat (7) @(negedge clk);

end
$stop;
end
initial begin

$monitor("A=%d,B=%d,BCOUT=%d,C=%d,D=%d,opmode=%b,P=%d,PCOUT=%d,CARRYOUT=%d",A,B,C,D,BCOUT,opmode,P,PCOUT,CARRYOUTF,);
end
endmodule
```

3-Do file

```
vlib work
vlog DSP.v DSP_tb.v MUX_REG.v
vsim -voptargs=+acc work.DSP_tb
add wave *
run -all
```

4-QuestaSim

5-QuestaLint

6-Synthesize

Elaborated Design:

Synthesized design:

Report timing summary:

Design Timing Summary

Hold Pulse Width Setup

Worst Negative Slack (WNS): 5.609 ns Worst Hold Slack (WHS): 0.140 ns Total Negative Slack (TNS): $0.000 \, \text{ns}$ Total Hold Slack (THS): 0.000 ns Number of Failing Endpoints: 0

Total Pulse Width Negative Slack (TPWS): 0.000 ns Number of Failing Endpoints: 0 Number of Failing Endpoints: Total Number of Endpoints: Total Number of Endpoints: 209

Worst Pulse Width Slack (WPWS):

4.500 ns

259

All user specified timing constraints are met.

Total Number of Endpoints:

Utilization summary:

Name 1	Slice LUTs (134600)	Slice Registers (269200)	DSP s (740	Bonded IOB (500)	BUFGCTRL (32)
V N DSP	242	257	1	326	1
I a1 (Mux_Reg_1)	54	18	0	0	0
B1 (Mux_Reg)	55	18	0	0	0
C_in (Mux_Regpara	48	48	0	0	0
CYI (Mux_Regpara	0	1	0	0	0
CYO (Mux_Regpara	1	1	0	0	0
d_in (Mux_Reg_2)	17	18	0	0	0
# dbg_hub (dbg_hub_CV)	0	0	0	0	0
I m (Mux_Regparame	0	36	0	0	0
op4 (Mux_Regpara	18	1	0	0	0
p (Mux_Regparamet	50	48	0	0	0
 	0	0	0	0	0

Summary

Resource	Utilization	Available	Utilization %
LUT	242	134600	0.18
FF	257	269200	0.10
DSP	1	740	0.14
Ю	326	500	65.20

7-Implementation

Report timing summary:

Design Timing Summary

etup		Hold		Pulse Width	
Worst Negative Slack (WNS):	2.920 ns	Worst Hold Slack (WHS):	0.058 ns	Worst Pulse Width Slack (WPWS):	3.950 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	8088	Total Number of Endpoints:	8072	Total Number of Endpoints:	5173

<u>Utilization summary:</u>

Name 1	Slice LUTs (133800)	Slice Registers (267600)	F7 Muxes (66900)	F8 Muxes (33450)	Slice (3345 0)	LUT as Logic (133800)	LUT as Memory (46200)	LUT Flip Flop Pairs (133800)	Block RAM Tile (365)	DSP s (740	Bonded IOB (500)	BUFGCTRL (32)	BSCANE2 (4)
N DSP	2671	4272	96	11	1452	2202	469	1555	8	1	326	2	1
I a1 (Mux_Reg_1)	54	18	0	0	24	54	0	0	0	0	0	0	0
B1 (Mux_Reg)	55	18	0	0	20	55	0	0	0	0	0	0	0
c_in (Mux_Regpara	48	48	0	0	35	48	0	0	0	0	0	0	0
CYI (Mux_Regpara	0	1	0	0	1	0	0	0	0	0	0	0	0
CYO (Mux_Regpara	1	1	0	0	1	1	0	1	0	0	0	0	0
d_in (Mux_Reg_2)	17	18	0	0	12	17	0	0	0	0	0	0	0
> I dbg_hub (dbg_hub)	475	727	0	0	243	451	24	298	0	0	0	1	1
I m (Mux_Regparame	0	36	0	0	6	0	0	0	0	0	0	0	0
I op4 (Mux_Regpara	18	1	0	0	6	18	0	0	0	0	0	0	0
p (Mux_Regparamet	50	48	0	0	26	50	0	0	0	0	0	0	0
> 1 u_ila_0 (u_ila_0)	1954	3288	96	11	1122	1509	445	1181	8	0	0	0	0

Resource	Utilization	Available	Utilization %
LUT	2671	133800	2.00
LUTRAM	469	46200	1.02
FF	4272	267600	1.60
BRAM	8	365	2.19
DSP	1	740	0.14
Ю	326	500	65.20

