PHY904, section 4 Homework Assignment 1

Håkon V. Treider MSU id: treiderh

January 2016

Introduction

The tests have been run on Mac OS X (10.11.3) with a 2.5 GHz Intel Core i7.

In this homework assignment we are going to inspect the scaling of a simple matrix-matrix multiplication algorithm. I have chosen to go with the C-code supplied by the course material. This report will basically jump straight to the results from the computations.

Objectives

- 1. Gain experience running programs and checking performance
- 2. Use performance models to gain insight into the behaviour

1 Results

Note: The different test are run 10 times, and the best (minimum) run time is picked out. This is better than i.e. taking the average, since the bias is always one-sided.

Assuming the reader is familiar with the assignment text, I'll start by computing the constants c_1 and c_2 .

$$c_1 = \frac{t_{N=100}}{2N^3} = \underline{3.53 \times 10^{-10}} \tag{1}$$

$$c_2 = \frac{1}{f_{cpu}} = (2.5 \times 10^9 \text{ Hz})^{-1} = \underline{4 \times 10^{-10}}$$
 (2)

We can see that the values are in accordance with each other. Using these constants, we make an estimate using the formula

Table 1: Actual computation times, performance and estimates

		1	/ 1	
N	Perf. MFLOP/s	Time (sec)	Formula time c_1	Formula time c_2
100	2.83e+03	7.06e-04	7.06e-04	8.00e-04
200	2.59e + 03	6.18e-03	5.65e-03	6.40 e - 03
400	2.29e + 03	5.58e-02	4.52e-02	5.12e-02
800	1.37e + 03	7.48e-01	3.61e-01	4.10e-01
1000	1.61e + 03	1.24e + 00	7.06e-01	8.00e-01
1200	3.32e + 02	1.04e+01	1.22e+00	1.38e + 00
1400	2.92e + 02	1.88e + 01	1.94e + 00	2.20e+00
1600	2.94e + 02	2.79e + 01	2.89e + 00	3.28e + 00
2000	2.46e + 02	$6.52e{+01}$	5.65e + 00	6.40e+00

$$t(N) \approx 2cN^3 \tag{3}$$

The results can be seen in table 1 or visually in figure 1 and 2.

Conclusion

We can see the formula works well for small matrices up to and including N=1000. Larger matrices do not follow eq. 3, but when looking at the logarithmic plot we can see that the scaling is the same $(\mathcal{O}(N^3))$, but with a larger constant factor in front.

Figure 1: Visualization of measured time vs estimates. Deviations after N=1000 visible

Figure 2: Measured performance visualized in MFLOP/s vs matrix size N