

IN THE CLAIMS

1. (Currently Amended) In combination;

a fluid handling device having a fluid flow area;

a plurality of filter frames operatively removably mounted to said fluid handling
5 device;

each of said filter frames having at least one outer frame member that defines a filter
area;

each of said filter frames having a filter selectively removably secured to said at least
10 one outer frame member so that said filter extends over said filter area;

at least one some of said filters being a pocket filter;

at least some of said filters being a planar filter;

said pocket filters and said planar filters being interchangeable with each other so
15 that said pocket and planar filters may be interchangeably positioned in the
fluid flow area to vary the particulate holding capacity and/or pressure drop
across the fluid flow area.

2. (Cancelled)

3. (Currently Amended) The combination of claim 1 wherein each of said
20 pocket filters has have at least one pocket portion.

4. (Currently Amended) The combination of claim 1 wherein at least one
of said pocket filters is a multiple pocket filter.

1 5. (Original) The combination of claim 4 wherein said multiple pocket filter
has multiple pocket portions; said filter frame having at least one inner frame member
which defines multiple spaces for said pocket portions.

5 10 6. (Original) The combination of claim 1 wherein each of said filter frames
comprises multiple outer frame members; each of said filter frames comprising a
horizontally disposed upper frame member having first and second ends; a
horizontally disposed lower frame member having first and second ends, a first side
frame member extending between said first ends of said upper and lower frame
members and a second side frame member extending between said second ends of
15 10 said upper and lower frame members.

15 15 7. (Cancelled)

15 16 8. (Cancelled)

15 17 9. (Cancelled)

15 18 10. (Currently Amended) The combination of claim 1 wherein each of said
pocket filters has have a base panel and a pocket portion; said base panel having
first and second end portions separated by a pocket opening; said pocket portion
having a closed end and side panels defining said pocket opening.

20 20 11. (Original) The combination of claim 10 wherein said pocket filter is
selectively movable between a collapsed position and a filter position.

25 25 12. (Original) The combination of claim 11 wherein said first and second
end portions of said base panel are adjacent one another and said side panels of

1 said pocket portion are adjacent one another when said pocket filter is in said
collapsed position.

5 13. (Original) The combination of claim 11 wherein said side panels of said
pocket portion are spaced from one another to form a chamber when said pocket
filter is in said filter position.

10 14. (Original) The combination of claim 13 wherein less than the entire
chamber is exposed to straight line fluid flow.

15 15. (Original) The combination of claim 4 wherein said multiple pocket filter
has a base panel and multiple pocket portions; said base panel having multiple
pocket openings therein; each of said multiple pocket portions having a closed end
and side panels that define one of said pocket openings.

20 16. (Original) The combination of claim 15 wherein said multiple pocket
filter is selectively movable between a collapsed position and a filter position.

25 17. (Original) The combination of claim 16 wherein each of said first and
second side panels of said multiple pocket portions are adjacent one another when
said multiple pocket filter is in said collapsed position.

20 18. (Original) The combination of claim 17 wherein said first and second
side panels of each of said pocket portions are spaced from one another to form a
chamber when said multiple pocket filter is in said filter position.

25 19. (Original) The combination of claim 18 wherein less than the entire
chamber is exposed to straight line fluid flow.

20. (Cancelled)

1 21. (Cancelled)

2 22. (Cancelled)

3 23. (Cancelled)

4 24. (Cancelled)

5 25. (Cancelled)

6 26. (Cancelled)

7 27. (Cancelled)

8 28. (Cancelled)

9 29. (Cancelled)

10 30. (Cancelled)

11 31. (Cancelled)

12 32. (Withdrawn) A method of using the device according to claim 2,
comprising:
13 providing a fluid flow area that requires filtering of a particulate wherein said
14 concentration of said particulate varies from high to low over said fluid flow
15 area;
16 positioning said at least one planar filter where said concentration of said particulate
17 is low;
18 positioning said at least one pocket filter where said concentration of said particulate
19 is high.
20 33. (Withdrawn) The method of claim 32 further comprising monitoring said
21 planar and pocket filter to determine when each filter needs to be replaced.
22

1 34. (Withdrawn) The method of claim 33 further comprised arranging said
planar and pocket filters so that each filter needs replacement at generally the same
time.

5 35. (Withdrawn) The method of claim 32 further comprised arranging said
planar and pocket filters so that each filter needs replacement at generally the same
time.

10 36. (Cancelled)

37. (Cancelled)

15 38. (Cancelled)

39. (Cancelled)

40. (Cancelled)

41. (Cancelled)

15 42. (Withdrawn) A method of using the device according to claim 2,
comprising:

providing a fluid flow area having consistent particulate concentration throughout that
requires filtering of the particulate wherein it is desired to predetermine a filter
replacement schedule falling between the minimum replacement schedule
20 established by planar filters and the maximum replacement schedule as
established by pocket filters;

increasing the number of planar filters relative to pocket filters to lessen the amount
25 of captured particulate that necessitates filter replacement;

1 increasing the number of pocket filters relative to planar filters to increase the amount
of captured particulate that necessitates filter replacement.

43. (Withdrawn) The method of claim 42 further comprising:
monitoring the overall filtered fluid flow area relative to the desired replacement
5 schedule;

increasing the number of pocket filters relative to the number of planar filters if the
actual replacement schedule is less than the desired replacement schedule;
increasing the number of planar filters relative to the number of pocket filters if the
10 actual replacement schedule is greater than the desired replacement schedule.

44. (Withdrawn) The method of claim 42 further comprising:
providing a fluid flow area that requires filtering of a particulate wherein it is desired to
15 predetermine a filter replacement schedule falling between the minimum
replacement schedule established by planar filters and the maximum
replacement schedule as established by multiple pocket pocket filters;

increasing the number of planar filters relative to multiple pocket pocket filters to
lessen the amount of captured particulate that necessitates filter replacement;
20 increasing the number of multiple pocket pocket filters relative to planar filters to
increase the amount of captured particulate that necessitates filter
replacement;

25 exchanging multiple pocket pocket filters for pocket filters having fewer pockets to
fractionally change the replacement schedule by a lesser amount than the

1 change that would have occurred if the multiple pocket pocket filter had been
5 exchanged for a planar filter.

45. (Withdrawn) The method of using the device according to claim 2
5 wherein it is desired to change the efficiency of filtration without affecting the
pressure drop across the device using low efficiency, low pressure drop planar filters
when lower efficiency is required and replacing the planar filters with a combination of
high efficiency, high pressure drop filters in planar, pocket or multiple pocket
configurations, as required.

10 46. (Withdrawn) The method according to claim 45 wherein the pressure
drop across the fluid handling device is monitored; increasing the number of high
efficiency planar filters to increase the pressure drop; increasing the number of high
efficiency multiple pocket filters to decrease the pressure drop; replacing multiple
pocket filters with single pocket filters to increase the pressure drop less than the
15 increase that would be obtained by replacing the multiple pocket filter with a planar
filter.

20 47. (Withdrawn) The method of using the device according to claim 2
comprising:
providing a fluid flow area requiring particulate filtration wherein it is desired to vary
25 the fluid flow rate in various zones in the fluid flow area;
providing planar filters in those zones requiring lesser flow rates;
providing multiple pocket filters in those zones requiring higher flow rates; and

1 providing single pocket pocket filters in those zones requiring a higher fluid flow rate
than is achieved by planar filters and a lower flow rate than is achieved by
multiple pocket filters.

5

10

15

20

25