Работа №5

Транспортная задача

Требуется найти такой план перевозок продукции от поставщиков к потребителям, который обеспечивал бы спрос потребителей и вывоз продукции от поставщиков при минимальных суммарных транспортных расходах.

	B1	B2	В3	B4	B5	Запасы
A1	3	3	5	3	3	150
A2	7	3	6	1	3	50
A3	2	8	7	2	9	100
A4	1	3	9	6	4	100
Потребности	50	150	50	100	50	

Таблица 1: Исходные данные транспортной задачи

Нахождение первого опорного решения

$$\sum \text{потребностей} = 400$$

$$\sum \text{запасов} = 400 = \sum \text{потребностей} \Rightarrow$$

Задача является задачей с правильным балансом.

Метод северо-западного угла

	B1	B2	В3	B4	B5	Запасы
A1	3 50	3 100	5	3	3	150
A2	7	3 50	6	1	3	50
A3	2	8 0	7 50	2 50	9	100
A4	1	3	9	6 50	4 50	100
Потребности	50	150	50	100	50	

Таблица 2: Опорное решение методом северо-западного угла

Получили решение:

$$F = 50 \cdot 3 + 100 \cdot 3 + 50 \cdot 3 + 0 \cdot 8 + 50 \cdot 7 + 50 \cdot 2 + 50 \cdot 6 + 50 \cdot 4 = 1550$$

	B1	B2	В3	B4	B5	Запасы
A1	3	3 100	5	3	3 50	150
A2	7	3 0	6	1 50	3	50
A3	2	8	7 50	2 50	9	100
A4	1 50	3 50	9	6	4	100
Потребности	50	150	50	100	50	

Таблица 3: Опорное решение методом минимальных элементов

Метод минимальных элементов

Получили решение:

$$F = 100 \cdot 3 + 50 \cdot 3 + 50 \cdot 1 + 0 \cdot 8 + 50 \cdot 7 + 50 \cdot 2 + 50 \cdot 1 + 50 \cdot 3 = 1150$$

Метод потенциалов

Возьмем опорное решение, полученное методом минимального элемента

	1	3	6	1	3	Запасы
0	3	3 100	5 p=-1	3	3 50	150
0	7	3 0	6	1 50	3	50
1	2	8	7 50	2 50	9	100
0	1 50	3 50	9	6	4	100
Потребности	50	150	50	100	50	

Таблица 4: Первый шаг метода потенциалов

	1	3	5	0	3	Запасы
0	3	3 50	5 50	3	3 50	150
0	7	3 50	6	1	3	50
2	2 p=-1	8	7 0	2 100	9	100
0	1 50	3 50	9	6	4	100
Потребности	50	150	50	100	50	

Таблица 5: Второй шаг метода потенциалов

	1	3	5	1	3	Запасы
0	3	3 50	5 50	3	3 50	150
0	7	3 50	6	1	3	50
1	2 0	8	7	2 100	9	100
0	1 50	3 50	9	6	4	100
Потребности	50	150	50	100	50	

Таблица 6: Третий шаг метода потенциалов

Теперь все $\Delta_{i,j} = c_{i,j} - u_i - v_j \ge 0 \Rightarrow$ найдено оптимальное решение. Ответ:

$$X = \begin{pmatrix} 0 & 50 & 50 & 0 & 50 \\ 0 & 50 & 0 & 0 & 0 \\ 0 & 0 & 0 & 100 & 0 \\ 50 & 50 & 0 & 0 & 0 \end{pmatrix}$$

$$F_{\min} = 3 \cdot 50 + 5 \cdot 50 + 3 \cdot 50 + 3 \cdot 50 + 2 \cdot 100 + 1 \cdot 50 + 3 \cdot 50 = 1100$$

Решение с помощью кода

```
from pulp import LpProblem, LpMinimize, LpVariable, lpSum, LpStatu
suppliers = ['A1', 'A2', 'A3', 'A4']
customers = ['B1', 'B2', 'B3', 'B4', 'B5']
  supply = {
    'A1': 150,
    'A2': 50,
    'A3': 100,
    'A4': 100
demand = {
    'B1': 50,
    'B2': 150,
    'B3': 50,
    'B4': 100,
    'B5': 50
costs = {
    ('A1', 'B1'): 3, ('A1', 'B2'): 3, ('A1', 'B3'): 5, ('A1', 'B4'
```

```
('A2', 'B1'): 7, ('A2', 'B2'): 3, ('A2', 'B3'): 6, ('A2', 'B4'
    ('A3', 'B1'): 2, ('A3', 'B2'): 8, ('A3', 'B3'): 7, ('A3', 'B4'
    ('A4', 'B1'): 1, ('A4', 'B2'): 3, ('A4', 'B3'): 9, ('A4', 'B4'
}
prob = LpProblem("Transportation Problem", LpMinimize)
# Decision variables: x[supplier][customer]
x = LpVariable.dicts("Shipments", [(s, c) for s in suppliers for o
# Objective function: minimize total transportation cost
prob += lpSum([costs[(s, c)] * x[(s, c)] for s in suppliers for c
# Supply constraints
for s in suppliers:
    prob += lpSum([x[(s, c)] for c in customers]) <= supply[s], f'</pre>
# Demand constraints
for c in customers:
    prob += lpSum([x[(s, c)] for s in suppliers]) >= demand[c], f'
# Solve the problem
prob.solve()
# Check the status of the solution
print("Status:", LpStatus[prob.status])
# Print the optimal shipment amounts and total cost
print("Optimal Shipments:")
for s in suppliers:
    for c in customers:
        if x[(s, c)].varValue > 0:
            print(f''\{s\} \rightarrow \{c\}: \{x[(s, c)].varValue\}'')
print(f"\nTotal Minimum Cost: {prob.objective.value()}")
```

Вывод:

Status: Optimal

Optimal Shipments:

A1 -> B2: 50.0

A1 -> B3: 50.0

A1 -> B5: 50.0

A2 -> B2: 50.0

A3 -> B4: 100.0

A4 -> B1: 50.0

A4 -> B2: 50.0

Total Minimum Cost: 1100.0