

AppliedMathematics

Self-Supervised Global-Local Segmentation for 3D Out-of-Distribution Detection

Christoph Angermann Simon Göppel Markus Tiefenthaler Matthias Schwab

https://applied-math.uibk.ac.at/

Inpainting Masks: Ellipsoids

An ellipsoid is defind by the equation

$$E_{abc}^t$$
: $\frac{(x_1-t_1)^2}{a} + \frac{(x_2-t_2)^2}{b} + \frac{(x_2-t_3)^2}{c} \leq 1$,

where $t=(t_1,t_2,t_3)$. Each single ellipsoid is shown in the Figure. Parameters $a,b,c\in\mathbb{N}$ and $t_i\in\mathbb{R}$ where generated in a random fashion and each ellipse was rotated by a random angle between 0° to 90° before adding to the full mask. This was iterated until the number of pixels that lie inside an ellipsoid exceeded a manually set threshold.

Figure: Visualization of 3D ellipsoid inpainting masks. The projections onto the first, second and third axis, respectively.

Inpainting Masks: α -shapes

First, we randomly select a number of points x_i , i = 1, ..., N, that satisfy

$$\epsilon_1 \leq ||x_i - x_j||_2 \leq \epsilon_2,$$

for all $i,j=1,\ldots,N$ and manually chosen $\epsilon_1,\epsilon_2>0$. We then used the Python package α -shape (https://pypi.org/project/alphashape/) to create the α -shape of the set $\{x_1,\ldots x_N\}$. For $\alpha=0$, the algorithm producedes the convex hull. Examples on the right where calculated for $\alpha=3$.

Figure: Visualization of concave inpainting masks. Two examples are shown in the top and bottom row. The projections onto the first, second and third axis, respectively.

AppliedMathematics

Thank you for your attention!

https://applied-math.uibk.ac.at/