MCDiff (Monte Carlo Diffusion)

Mohit Thakur, Ben Cohen, Jack Dempsey, Scott Nordstrom

FADD

(Fluorescence Accumulation after DNA Damage)

Procedure Objective: measure rate of accumulation of proteins

Problem: guess and check

Solution: simulate cellular dynamics to determine governing parameters

D: diffusion coefficient, governs movement

F: mobile fraction - proportion of proteins in motion

Simulation Assumptions

- Particles move according to random walk
 - Proteins always move at each time step
 - Movement distance obeys gaussian
 - Movement direction is unform around circle
 - Movement is in 2 dimensions
 - No interaction between molecules
 - "Escaping molecules" bounce back to same position
- Modeled as 1D points
- Trapping is permanent

Additional Considerations

- "Bleaching effect"
 - Percent of fluorescence is bleached*
 - No molecules revert

https://www.wur.nl/en/show/FRAP.htm

Functions

- Parse 3 input files
- Generate nucleus and roi regions
- For each trial:
 - Populate nucleus
 - Simulate laser
 - Bleach points
 - Move points
 - Get D and F
- After X trials, generate heat map and move towards best parameter set

