- 29.) a.) Since $S \neq \emptyset$ and is bounded below, there exists $l \in \mathbb{R}$ where $l \leq x$ for all $x \in S$, thus $l \in \mathcal{L}$, thus $\mathcal{L} \neq \emptyset$. Q.E.D.
 - b.) Let $w = \sup(\mathcal{L})$, thus $w \geq l$ for all $l \in \mathcal{L}$. For the sake of establishing a contradiction, suppose w > x for some $x \in S$. Let $m = \min(w, x)$, thus w > m > x. Since m > x for some $x \in S$, m cannot be a lower bound of S, thus w cannot be a lower bound of S, thus $w \neq \sup(\mathcal{L}) \Rightarrow \Leftarrow$, thus $w \leq x$ for all $x \in S$, thus $w = \sup(\mathcal{L})$ is a lower bound of S, thus $w \in \mathcal{L}$. Q.E.D.
 - c.) Since $w = \sup(\mathcal{L})$, $w \ge l$ for all $l \in \mathcal{L}$ and thus all lower bounds l of S, thus $w = \inf(S)$. Q.E.D.
- 33.) Consider |x|:

$$|x| = |x - y + y| \le |x - y| + |y| \implies |x| - |y| \le |x - y|$$

Now consider |y|:

$$|y| = |y - x + x| \le |y - x| + |x| \implies |y| - |x| \le |y - x| = |x - y|$$
$$\implies |x| - |y| \ge -|x - y|$$

Since $-|x-y| \le |x| - |y| \le |x-y|$, $||x|-|y|| \le |x-y|$, thus the inequality holds. Q.E.D.

37.) Since $b \in \mathbb{B} \implies b \geq a$ for all $a \in A$, b is an upper bound of A for all $b \in B$. Since $A \neq \emptyset$ and is bounded above, there exists $u \in \mathbb{R}$ where $u = \sup(A)$. For the sake of establishing a contradiction, suppose u > b for some $b \in B$. Let $m = \min(u, b)$, thus u > m > b. Since m > b for some $b \in B$, m > a for all $a \in A$, thus m is an upper bound of A, but since u > m, $u \neq \sup(A) \Rightarrow \Leftarrow$, thus $u \leq b$ for all $b \in B$, thus u is a lower bound of B, and thus $u = \sup(A) \leq \inf(B)$. Q.E.D.

- 38.) Suppose S is uniformly discrete and $S \neq \emptyset$. For the sake of establishing a contradiction, suppose S has no maximal element, thus $x \in S \implies (x + \varepsilon) \in S$ for some $\varepsilon > 0$. Let $x \in S$, thus there exists $\varepsilon > 0$ where $(x + \varepsilon) \in S$. Since $x, (x + \varepsilon) \in S$ and $x, (x + \varepsilon) \in (x 2\varepsilon, x + 2\varepsilon)$, then $\{x, x + \varepsilon\} \subseteq S \cap (x 2\varepsilon, x + 2\varepsilon)$. Let $\varepsilon_0 = 2\varepsilon$, thus for some $\varepsilon_0 > 0$, $S \cap (x \varepsilon_0, x + \varepsilon_0) \neq \{x\}$, thus S is not uniformly discrete $\Rightarrow \Leftarrow$, thus if S is uniformly discrete, then S has a maximal element $m \in S$. Since by definition $m \geq x$ for all $x \in S$, m is an upper bound of S. Since $m \in S$, then for all $m \in S$ where $m \in S$ where $m \in S$ where $m \in S$ is uniformly discrete, thus $m \in S$ is uniformly discrete, then $m \in S$ is not uniformly discrete, $m \in S$ is uniformly discrete, then $m \in S$ is not uniformly discrete.
- 45.) Since $y_n \to B$, then for all $\varepsilon_0 > 0$, there exists $k_0 \in \mathbb{N}$ where

$$n \ge k_0 \implies |y_n - B| < \varepsilon_0$$

Let $\lambda = |B|/2$. Since $B \neq 0$, there exists $k_1 \in \mathbb{N}$ where

$$n \ge k_1 \implies |y_n| > \lambda$$

Let $n \ge \max(k_0, k_1)$, then

$$\left| \frac{1}{y_n} - \frac{1}{B} \right| = \frac{|y_n - B|}{|y_n| |B|} < \frac{\varepsilon_0}{\lambda |B|}$$

$$\frac{\varepsilon_0}{\lambda |B|} = \varepsilon \implies \varepsilon_0 = \varepsilon |B| \lambda$$

Let $\varepsilon_0 = \varepsilon |B| \lambda$ and $n \ge \max(k_0, k_1)$, then

$$|y_n - B| < \varepsilon_0 \implies |y_n - B| < \varepsilon |B| \lambda \implies \frac{|y_n - B|}{|y_n| |B|} < \frac{|y_n - B|}{\lambda |B|} < \varepsilon$$

$$\implies \frac{|y_n - B|}{|y_n| |B|} = \left| \frac{1}{y_n} - \frac{1}{B} \right| < \varepsilon$$

Thus if $y_n \to B$ and $B \neq 0$, then $1/y_n \to 1/B$. Q.E.D.

47.) Since $y_n \to 0$, then for all $\varepsilon_0 > 0$, there exists $k \in \mathbb{R}$ where

$$n \ge k \implies |y_n - 0| < \varepsilon_0$$

Since x_n is bounded, there exists $M \in \mathbb{R}$ where $M \ge |x_n|$ for all $n \in \mathbb{N}$. Let $\varepsilon_0 = \varepsilon/M$ and $n \ge k$:

$$|y_n - 0| < \varepsilon_0 \implies |y_n - 0| < \frac{\varepsilon}{M} \le \frac{\varepsilon}{|x_n|} \implies |y_n - 0| < \frac{\varepsilon}{|x_n|}$$

$$\implies |x_n| |y_n - 0| = |x_n y_n - 0| < \varepsilon$$

Thus if x_n is bounded and $y_n \to 0$, then $x_n y_n \to 0$. Q.E.D.

48.) Let x_n and y_n be sequences defined as follows:

$$x_n = \begin{cases} 1 & n \text{ is even} \\ 0 & n \text{ is odd} \end{cases} \quad y_n = \begin{cases} 0 & n \text{ is even} \\ 1 & n \text{ is odd} \end{cases}$$

Since $x_n, y_n < 2$ for all $n \in \mathbb{N}$, x_n and y_n are bounded. In addition, x_n and y_n do not converge. However, $x_n y_n = 0$ for all $n \in \mathbb{N}$, thus $x_n y_n \to 0$. Q.E.D.

49.)
$$\lim_{n \to \infty} \frac{1 - 5n^2 + 40x^3 + 2n^{-2}}{4 - 12n - 2n^3} = \lim_{n \to \infty} \frac{n^{-3}}{n^{-3}} \cdot \frac{1 - 5n^2 + 40x^3 + 2n^{-2}}{4 - 12n - 2n^3}$$

$$= \lim_{n \to \infty} \frac{x^{-3} - 5n^{-1} + 40 + 2n^{-5}}{4n^{-3} - 12n^{-2} - 2} = \frac{\lim_{n \to \infty} \frac{1}{n^3} - \frac{5}{n} + 40 + \frac{2}{n^5}}{\lim_{n \to \infty} \frac{4}{n^3} - \frac{12}{n^2} - 2} = \frac{0 - 0 + 40 + 0}{0 - 0 - 2}$$

$$= \frac{40}{-2} = -20$$

50.) Since $x_n \to A$, then for all $\varepsilon_0 > 0$, there exists $k \in \mathbb{N}$ where

$$n \ge k \implies |x_n - A| < \varepsilon_0$$

Let $\varepsilon_0 = \varepsilon/|c|$, then

$$|x_n - A| < \varepsilon_0 \implies |x_n - A| < \frac{\varepsilon}{|c|} \implies |c| |x_n - A| = |cx_n - cA| < \varepsilon$$

Thus if $x_n \to A$, then $cx_n \to cA$. Q.E.D.

57.) We can show this by induction. For the base case, consider a_1 and a_2 :

$$a_1 = 1$$
, $a_2 = \frac{4 + 2(1)}{3} = 2$

Thus $a_1 < a_2 < 4$, thus the base case holds.

- 86.) a.) True; Let $n_k = k$, thus $x_k = x_{n_k}$, thus $x \leq x$.
 - b.) False; Let $x_n = (-1)^n$ and $y_n = (-1)^{n+1}$.
 - c.) True;
 - d.) False; Let $x_n = 1/2n$, $y_n = 1/n$, $z_n = 1/3n$, and $w_n = 1/n$. $x_n + z_n = 1/2n + 1/3n = 5/6n$ and $y_n + w_n = 2/n$, but $2/n \neq 5/6$ for all $n \in \mathbb{N}$, thus $x_n + z_n \not \leq y_n + w_n$.
 - e.) False; Let $x_n = 1$ and $y_n = 2$.
- 87.) Let x_n and y_n be defined as follows:

$$x_n = \begin{cases} -1 & n = 1 \\ 1 & n = 2 \quad y_n = (-1)^n \\ 2 & n > 2 \end{cases}$$

By definition, $X = \{-1, 1, 2\}$, and $Y = \{-1, 1\}$. In this case, $Y \subset X$, however $y_n \npreceq x_n$, thus the implication does not hold for all x_n, y_n . Q.E.D.

- 105.) Suppose $y_n = 1/n$. $y_n \neq 0$ for all $n \in \mathbb{N}$, yet $y_n \to 0$. Since y_n converges, it is also cauchy. Because $y_n \to 0$, x_n/y_n does not converge, thus $z_n = x_n/y_n$ does not converge, thus z_n is not cauchy. Q.E.D.
- 109.) a.) A cauchy sequence is a sequence whose terms, past a certain point, get arbitrarily close to eachother. A type-C sequence is a sequence whose terms, past a certain point, remain constant.
 - b.) Since $n \neq m \implies 1/n \neq 1/m$, there exists no N such that $n, m \geq N \implies |x_n x_m| < \varepsilon$ for all $\varepsilon > 0$, thus $x_n = 1/n$ is not type-C.

c.) Let $n \in \mathbb{N}$ be fixed, and consider y_n, y_{n+1} , and y_{n+2} :

$$|y_n - y_{n+1}| = 2, |y_n - y_{n+2}| = 0$$

Since the distance between any two terms of y_n is either 0 or 2, it cannot be less than all $\varepsilon > 0$, thus y_n is not type-C.

d.)

- e.) Since any type-C sequence eventually reaches a point where its terms remain constant, we know that every type-C sequence converges to this constant. Since it converges, it is also cauchy.
- f.) 1/n is a cauchy sequence, but not a type-C sequence, thus not every cauchy sequence is type-C.
- 110.) Let $y_n = 2^{-n}$ and $z_n = -2^{-n}$. We know that $\lim_{n \to \infty} 2^{-n} = 0$, thus $\lim_{x \to \infty} -2^{-n} = -\lim_{x \to \infty} 2^{-n} = -0 = 0$, thus $y_n \to 0$ and $z_n \to 0$. Now consider x_n . For all $n \in \mathbb{N}$, the following is true:
- 121.) $E = \{1\}$
- 122.) $E = \{x_n\} \cup \{y_n\} \cup \{z_n\}$ where $x_n = 1/n$, $y_n = (n+1)/n$, and $z_n = (2n+1)/n$.
- 123.) $E = \bigcup_{k \in \mathbb{N}} \left\{ \frac{n}{kn+1} \right\}_{n \in \mathbb{N}}$ where $\left\{ \frac{n}{kn+1} \right\}_{n \in \mathbb{N}}$ is a sequence given $k \in \mathbb{N}$.
- 135.) For |x| to be continuous over all $c \in \mathbb{R}$, then for all $\varepsilon > 0$, there must exist $\delta > 0$ where

$$|x - c| < \delta \implies ||x| - |c|| < \varepsilon$$

By the reverse triangle inequality, we know that $||x| - |c|| \le |x - c|$, thus

$$||x| - |c|| \le |x - c| < \delta$$

Let $\delta = \varepsilon$, then

$$||x| - |c|| < \varepsilon$$

Thus |x| is continuous for all $c \in \mathbb{R}$. Q.E.D.

136.) For g(x) to be continuous at $c \in \mathbb{R}$, then for all $\varepsilon > 0$, there exists $\delta > 0$ where

$$|x-c| < \delta \implies |g(x) - g(c)| < \varepsilon$$

Consider |g(x) - g(c)|:

$$|g(x) - g(c)| = |(x - c)f(x) - (c - c)f(x)| = |(x - c)f(x)| = |x - c| |f(x)|$$

$$\leq M |x - c| < \varepsilon \implies |x - c| < \frac{\varepsilon}{M}$$

Let $\delta = \varepsilon/M$:

$$|x - c| < \delta \implies |x - c| < \frac{\varepsilon}{M} \implies M |x - c| < \varepsilon \implies |f(x)| |x - c| < \varepsilon$$

$$\implies |(x - c)f(x) - 0| < \varepsilon \implies |g(x) - g(c)| < \varepsilon$$

Thus if f(x) is bounded and g(x) = (x - c)f(x), then g(x) is continuous at c. Q.E.D.

- 137.) g(x) = |x| is continuous over all $x \in \mathbb{R} \mathbb{Z}$.
- 139.) Let $f: \mathbb{R} \to \mathbb{R}$ be 1/2-Hölder. For f to be continuous over all \mathbb{R} , then for all $\varepsilon > 0$, there exists $\delta > 0$ where

$$|x - c| < \delta \implies |f(x) - f(c)| < \varepsilon$$

Let c = y and $\delta = (\varepsilon/C)^2$:

$$|x-y| < \delta \implies |x-y| < \left(\frac{\varepsilon}{C}\right)^2 \implies |x-y|^{1/2} < \frac{\varepsilon}{C} \implies C|x-y|^{1/2} < \varepsilon$$

Since f is 1/2-Hölder, $|f(x) - f(y)| < C|x - y|^{1/2}$, thus $|f(x) - f(y)| < \varepsilon$, thus f is continuous over all \mathbb{R} . Q.E.D.

- 150.) a.)
 - b.)