Dose response with MCP-Mod method

Helen(Huiyin) Lu, Kuei-Hsun Chiu, Yang Wang, Yeonil Kim

University of Florida

February 1, 2017

- 1. Motivation
- 2. Background
- 3. Study design
- 4. Method
- 5. Project plan

Goal of Clinical Trial

- Explore whether a medical strategy, treatment, or device is safe and effective for humans
- Show which medical approaches work best for certain illnesses or groups of people.
- Clinical trials produce the best data available for health care decision making.
- In pharmceutial company,
 - Clinical trial tests the benefits and risks of a new drug.

Potential Risk

- What if, after running a clinical trial of a new drug, we are more inclined to see the positives than the negatives in the results?
- Perhaps we recommend further trials and further investment, only for the drug to turn out to be useless.
- Money will have been wasted.
- Patients would be exposed to the potential side effects of the failed drug and would not have received the best possible treatment.

Statistician's Responsibility

- Such mistakes could be undetected, either by the drug company itself, or by the regulatory agencies.
- Those who involved in running clinical trails have to be objective to avoid these mistakes.
- Statisticians play a crucial role in ensuring this objectivity by advising on the design of the trail and analyze the trail results in an objective manner

Dose response

Difficulties Statisticians May Face

- When testing new drugs, researchers are asked to specify their statistical analysis plan before seeing their results.
- However, in the early stage of developing a drug, statisticians may not know what kind of data to expect.
- ▶ Difficult to select the most appropriate form of analysis in advance.

MCP-Mod Method

- One way to address this is to use a method, developed by Novartis, "multiple comparisons and modeling", known as MCP-Mod.
- Allows statisticians to specify several candidate models that might describe the observed results.
- Recently recognised by the European Medicines Agency as an efficient statistical method for Phase II dose-finding trials in drug development (bit.ly/28XLtxK).

Our Project

- ▶ Learn what is MCP-Mod method and how to use it.
- Use MCP-Mod method to fit a best model for a drug developed by Merck company in 2010, which is designed to treat migraine.
- Related information for this clinal trail study (1.usa.gov/28Xd9Hr)

Brief Introduction of Clinical Trial

- Pre-Clinical Trial
- Phase I Clinical Trial
- Phase II Clinical Trial
- Phase III Clinical Trial
- Phase IV Clinical Trial

Pre-Clinical Trial

Drug Discovery

- Experimentation before a drug is given to human subjects
- In vitro studies

Phase I Clinical Trial

Screening for safety

- ► Test with a small group of people (20–80).
- Identify possible toxic effects or side effects.
- Determine safe dosage ranges (maximum tolerated dose, MTD).

Phase II Clinical Trial

Screening for efficacy and feasibility

- ► Test with a larger group of people (100–300).
- Assess side effects and toxicity.
- Establish the efficacy of the drug, usually against a placebo.

Phase III Clinical Trial

Comparative Efficacy Trials

- ► Test with large groups of people (1,000–3,000)
- Comparison of new intervention (drug or therapy) to the current standard of treatment; both with respect to efficacy and toxicity.
- FDA approval

13 / 29

Phase IV Clinical Trial

Post-marketing surveillance

- Post-marketing studies delineate additional information, including the treatment's risks, benefits, and optimal use, and look for uncommon side effects.
- ► This type of study design is also used for purposes other than safety and efficacy, such as for marketing.

Demonstation

1. Basic context.

- ▶ In 2010 Merck developed a new drug to treat acute migraine
- ▶ Phase II trial: targeted to test in migraine patients
- ► To find out the optimal dose

2. Merck's crucial decision

- stop evaluating the drug if there was no clear sign that it worked
- Continue developing the product using specific doses.
- ► The latter option implied a major investment in the drug (costing roughly \$26,000 dollars per patient)

Demonstation

- ► The trial contained 517 patients divided into 8 groups: placebo, 2.5, 5, 10, 20, 50, 100 or 200 mg of the new drug.
- ▶ In each group they measured how many patients were free of pain 2 hours after taking the drug.
- ► Each dot represents the percentage of patients with successful outcomes in a specific dose group.

The eight groups figure

FIGURE 1 The results from Merck's trial on a drug to treat migraine. Dose groups included 133, 32, 44, 63, 63, 65, 59 and 58 patients, respectively. Vertical bars present 95% confidence intervals

Demonstation

- ► The results look promising, but can we draw conclusions by just looking at such a plot?
- ➤ To get an understanding of the uncertainty of response in in each dose group, we can look at intervals(the vertical bars in Figure 1).
- ▶ Therefore, we would like to analyze our results using a formal statistical approach that takes and also the three-stage nature of the experimental design, into account.

Analysing the data

A popular method : "Pairwise Comparisons"

- ► Tells us whether the difference between the mean responses in the dose groups.
- Usually comparing each dose group with the placebo group to see whether any dose works better than placebo.
- Limitation
 - It only works with pairs of tested doeses.
 - ▶ It fails to tell the mean response of a dose which was not included in the study. (e.g. 150mg)

Analysing the data

Alternative method : Fitting statistical models - We can come up with several scenarios..

- (a) **Emax model**: Assuming the effect of the drug increases almost linearly at first and then flattens off.
- (b) Quadratic model: There may be a lower threshold before the drug starts working, then there is an almost linear increase, and then an upper threshold is reached and the effect flattens out.

Analysing the data

- ▶ Both models tell us what percentage of pain- free patients we could expect for every possible dose.
- ► Next question will be.. Can we make an objective choice between these two models?
- Choosing the most appropriate model is challenging issue to pharmaceutical companies.
- Novatis proposed a method called, "MCP-MOD" (Biometrics, 2005, F.Bretz): Allow us to analyze dose responses under model uncertainty.

Multiple comparisons and Modeling Techniques: MCP-Mod

Set of candidate models M

 A set M of candidate models covering a suitable range of dose response shapes. Also, unrealistic pattern that describes the data needs to be excluded.

Optimum contrast coefficients

(ii) Choose best the contrast coefficients to maximize the power of detecting the *m*-th model.

$$H_0^m : C_m'\mu = 0 \quad V.S. \quad H_1^m : C_m'\mu > 0$$

$$T_m = \frac{\sum_{i=1}^k C_{m_i}\bar{y}_i}{\sqrt{S^2 \sum_{i=1}^k C_{m_i}^2/n_i}}$$

 C_{m_i} : Every single contrast test is to determine whether the given dose response shape is statistically significant.

Model selection

(iii) Combining the test statistics T_m into a single decision rule is to take the maximum

$$T_m = max_m T_m \quad (min_m P_m < \alpha)$$

- ▶ None of models could be significant
 - ▶ When the set M is poorly chosen.
 - Small sample size n, High variance.
- At least one model needs to be significant.

Dose response and target dose estimation

Fitting the selected model to the data and estimating adequacy

$$MED = argmin_{\{d \in (d_1, d_k]\}} \{ f(d, \theta) > f(d_1, \theta) + \Delta \}$$

- $ightharpoonup \Delta$ denote the clinically relevant difference (A dose better than placebo)
- ► The smallest dose which shows a clinically relevant and a statistically significant effect.

Data analysis

- 1. Fitting models to Merck's data and applying MCP-Mod
- 2. Simulated data
 - (i) The power to detect a dose-response relationship. (Comparing with the LRT)
 - (ii) Estimation of a dose close to the desired level taking into account both statistical significance and clinical relevance.(dose-selection performance)
- ▶ Fitting different types of model $\mu(d)$ (Next page)

$$Y \sim N(\mu(d), \sigma^2)$$

- ▶ n=10, 25, 50, 75, 100, and 150
- \rightarrow d=0, 0.05, 0.2, 0.6, 1

Name	$f(d,m{ heta})$	$f^0(d,oldsymbol{ heta^*})$
linear	$E_0 + \delta d$	d
linlog	$E_0 + \delta \log(d+c)$	$\log(d+c)$
quadratic	$E_0 + \beta_1 d + \beta_2 d^2$	$d + \delta d^2$ if $\beta_2 < 0$
emax	$E_0 + E_{\mathrm{max}} d / (\mathrm{ED}_{50} + d)$	$d/(\mathrm{ED}_{50}+d)$
logistic	$E_0 + E_{\text{max}} / \{1 + \exp[(ED_{50} - d)/\delta]\}$	$1/\{1 + \exp[(ED_{50} - d)/\delta]\}$
exponential	$E_0 + E_1(\exp(d/\delta) - 1)$	$\exp(d/\delta) - 1$
sigEmax	$E_0 + E_{\max} d^h / (\mathrm{ED}_{50}^h + d^h)$	$d^h/(\mathrm{ED}_{50}^h+d^h)$
betaMod	$E_0 + E_{\max} B(\delta_1, \delta_2) (d/D)^{\delta_1} (1 - d/D)^{\delta_2}$	$B(\delta_1, \delta_2)(d/D)^{\delta_1}(1-d/D)^{\delta_2}$

Conclusion

- ► The flexibility to consider more than one possible model to describe how a drug works.
- Avoid the possibility of subjective decision-making.
- Merck discontinued development after discovering its negative effect on the liver although the trial showed likely to reduce pain for migraine patients, safety problem was greater than the benefit
- ► The MCP-Mod is being used successfully in many clinical trials.