Topic: Inscribed angles of circles

Question: In the circle, the measure of \widehat{AT} is 36° . Find the sum of the angle measures, $m \angle ABT + m \angle ART$.

Answer choices:

A 0°

B 36°

C 48°

D 72°

Solution: B

The angle $\angle ABT$ is an inscribed angle, so its measure is half that of its intercepted arc, \widehat{AT} .

$$m \angle ABT = \frac{1}{2}(36^\circ) = 18^\circ$$

 $m \angle ART$ is also an inscribed angle with intercepted arc \widehat{AT} , so its measure is also half that of \widehat{AT} , which means that $m \angle ART = 18^{\circ}$. Therefore,

$$m \angle ABT + m \angle ART = 18^{\circ} + 18^{\circ}$$

$$m \angle ABT + m \angle ART = 36^{\circ}$$

Topic: Inscribed angles of circles

Question: In the circle, $m \angle ENW = 50^\circ$, the measure of \widehat{RW} is 70° , and the measure of \widehat{EN} is 110° . What is $m \angle NWR$?

Answer choices:

A 55°

B 60°

C 65°

D 70°

Solution: D

The angle measure $m \angle ENW$ (which is 50°) is half that of EW.

So the measure of \widehat{EW} is 100° . Also,

$$\widehat{mEW} = \widehat{mER} + \widehat{mRW}$$

$$100^{\circ} = \widehat{mER} + 70^{\circ}$$

$$\widehat{mER} = 30^{\circ}$$

Now we know that

$$\widehat{mNR} = \widehat{mNE} + \widehat{mER} = 110^{\circ} + 30^{\circ} = 140^{\circ}$$

Notice that \widehat{NR} is the arc intercepted by inscribed angle $\angle NWR$, so

$$m \angle NWR = \frac{1}{2}m\widehat{NR}$$

$$m \angle NWR = \frac{1}{2}(140^{\circ})$$

	Geometry Quizzes
$m \angle NWR = 70^{\circ}$	

Topic: Inscribed angles of circles

Question: \overline{RP} is a diameter of the circle (with center at O), $m \angle ERP = (5x + 6)^\circ$, and $m \angle RPE = (6x + 7)^\circ$. What is $m \angle ERP$?

Answer choices:

A 41°

B 45°

C 49°

D 54°

Solution: A

The arc intercepted by inscribed angle $\angle PER$ is a semicircle, so

$$m \angle PER = \frac{1}{2}(180^{\circ}) = 90^{\circ}$$

Earlier, when we talked about interior angles of polygons, we learned that the sum of the three interior angles of a triangle is 180° . The interior angles of triangle RPE are $\angle ERP$, $\angle PER$, and $\angle RPE$. Therefore,

$$m \angle ERP + m \angle PER + m \angle RPE = 180^{\circ}$$

Since $m \angle PER = 90^{\circ}$,

$$m \angle ERP + 90^{\circ} + m \angle RPE = 180^{\circ}$$

$$m \angle ERP + m \angle RPE = 90^{\circ}$$

Substitute the expressions for the measures of $\angle ERP$ and $\angle RPE$, and solve for x.

$$(5x + 6)^{\circ} + (6x + 7)^{\circ} = 90^{\circ}$$

$$11x^{\circ} + 13^{\circ} = 90^{\circ}$$

$$11x^{\circ} = 77^{\circ}$$

$$x^{\circ} = 7^{\circ}$$

$$x = 7$$

So

$$m \angle ERP = (5x + 6)^{\circ}$$

$$m \angle ERP = (5(7) + 6)^{\circ}$$

$$m \angle ERP = 41^{\circ}$$

