AIM: Simulating a flash ADC, and studying it's working and advantages.

In this report, we shall analyze how a flash ADC is made and will see the working of each component

Flash ADC simulation made in LTspice:

Key Components of a 4-bit Flash ADC

1. Voltage Reference (Resistor Ladder Network)

- o The resistor ladder consists 2⁴ resistors (one for each reference voltage).
- o It divides the input range into 16 levels.

2. Comparators

A 4-bit Flash ADC requires 2⁴ - 1 comparators.

- Each comparator compares the input signal with a specific reference voltage from the resistor ladder.
- The output of each comparator is either high if the input voltage is above the reference or low if below.
- The comparator outputs form a thermometer code, where a sequenced of consecutive 1s indicate the input level.
- o For a 4-bit Flash ADC, this code consists of 16 bits.

3. Encoder (Priority Encoder)

- A 4-bit priority encoder converts the thermometer code into a 4-bit binary output.
- This encoder finds the highest active bit in the thermometer code and maps it to the corresponding binary output.
- It typically uses a multi-stage encoding process due to the large number of inputs.

The Priority Encoder is represented by the Boolean Expressions given below:

$$\begin{array}{l} Y0 = & \sum (\overline{D}_{14} \ \overline{D}_{12} \ \overline{D}_{10} \ \overline{D}_{8} (\overline{D}_{6} \ \overline{D}_{4} \ \overline{D}_{2} \ D_{1} + \ \overline{D}_{6} \ \overline{D}_{4} \ D_{3} + \ \overline{D}_{6} \ D_{5} + \ D_{7}) \\ + \ \overline{D}_{14} \ \overline{D}_{12} \ (\overline{D}_{10} \ D_{9} + \ D_{11}) + \ \overline{D}_{14} \ D_{13} + \ D_{15}) \end{array}$$

$$\begin{array}{l} Y1 = & \sum (\bar{D}_{13} \; \bar{D}_{12} \; \bar{D}_{9} \; \bar{D}_{8} (\bar{D}_{5} \; \bar{D}_{4} \; D_{2} + \; \bar{D}_{5} \; \bar{D}_{4} \; D_{3} + \; D_{6} + \; D_{7}) \; + \; \bar{D}_{13} \\ \bar{D}_{12} \; (D_{10} + \; D_{11}) \; + \; D_{14} + \; D_{15}) \end{array}$$

$$Y2 = \sum (\overline{D}_{11}\overline{D}_{10}\overline{D}_{9}\overline{D}_{8}(D_{4}+D_{5}+D_{6}+D_{7}) + D_{12}+D_{13}+D_{14}+D_{15})$$

$$Y3=\sum (D_8+D_9+D_{10}+D_{11}+D_{12}+D_{13}+D_{14}+D_{15})$$

Y0,Y1,Y2 and Y3 are the 4 output bits with Y3 being the most significant bit and Y0 being the least significant bit. D1 to D15 are the thermometer code.

How a Flash ADC Works

Analog Input

The analog signal Vin is fed into all the comparators simultaneously.

2. Comparison Against Reference Levels

- Each comparator checks whether Vin is greater than its assigned reference voltage from the resistor ladder.
- The comparators whose reference voltages are Vin output high, while those above Vin output low.

3. Thermometer Code Generation

- The comparators produce a thermometer code.
- o For example, Vin corresponds to the 7th level in an 16-level ADC:
 - Output = 00000001111111.

4. Encoding

- The thermometer code is passed through a priority encoder to produce the digital output.
- o For the above example:
 - Thermometer Code: 000000001111111
 - Encoded Binary Output: 0111 (binary for 7).

Working of the simulation:

Now let's test the simulation by giving a specific DC voltage input:

Let Vin = 7 V

4bit_flash_adc 2024-1

The video above shows the output when we give the input voltage as 7V.

The video above shows the output when we give the input voltage as 10V.

Advantages of Flash ADC:

- 1. Flash ADCs are the fastest type of ADC, making them ideal for applications requiring very high sampling rates.
- 2. Simple Operational Concept: The design relies on basic components: resistors, comparators, and an encoder
- 3. Continuous Conversion: Flash ADCs perform a continuous, real-time conversion of the analog input to digital output, which is crucial in systems requiring minimal delay.
- 4. At resolutions below 8 bits, the simplicity of Flash ADCs can lead to lower power consumption compared to other ADC types.

Disadvantages of Flash ADC:

- 1. Exponential Component Growth: For an N-bit resolution, a Flash ADC requires $2^{N} - 1$ comparators and 2^{N} resistors in the resistor ladder.
 - This exponential growth increases the circuit complexity, size, and cost.
- 2. High Power Consumption: With a large number of comparators operating simultaneously, Flash ADCs consume significantly more power than other ADC types.
- 3. Poor Resolution: While fast, Flash ADCs are generally not used for resolutions greater than 8–10 bits due to their impracticality.