Diszkrét matematika II. 7. előadás

Fancsali Szabolcs Levente nudniq@inf.elte.hu

ELTE IK Komputeralgebra Tanszék

Mérai László diái alapján

Definíció

Legyen R egységelemes integritási tartomány, és legyen $0 \neq f \in R[x]$ polinom nem egység.

Ezt az f nemnulla polinomot pontosan akkor nevezzük felbonthatatlannak (irreducibilisnek), ha $\forall a,b \in R[x]$ -re

$$f = a \cdot b \Longrightarrow (a \text{ egység} \lor b \text{ egység}).$$

Ha a $0 \neq f \in R[x]$ polinom nem egység, és nem felbonthatatlan, akkor felbonthatónak (reducibilisnek) nevezzük.

Megjegyzés

Utóbbi azt jelenti, hogy f-nek van nemtriviális szorzat-előállítása (olyan, amiben egyik tényező sem egység).

A konstans nulla polinomot sem felbonthatatlannak, sem felbonthatónak nem nevezzük.

Állítás

Legyen $(F;+,\cdot)$ test. Ekkor $f\in F[x]$ pontosan akkor egység, ha deg(f)=0.

Bizonyítás

 \leftarrow

Ha deg(f) = 0, akkor f nem-nulla konstans polinom: $f(x) = f_0$. Mivel F test, ezért létezik $f_0^{-1} \in F$, amire $f_0 \cdot f_0^{-1} = 1$, így f tényleg egység.

 \Longrightarrow

Ha f egység, akkor létezik $g \in F[x]$, amire $f \cdot g = 1$, és így deg(f) + deg(g) = deg(1) = 0 (Miért?), ami csak deg(f) = deg(g) = 0 esetén lehetséges.

Állítás

Legyen $(F; +, \cdot)$ test, és $f \in F[x]$. Ha deg(f) = 1, akkor f-nek van gyöke.

Bizonyítás

Ha deg(f)=1, akkor felírható $f(x)=f_1x+f_0$ alakban, ahol $f_1\neq 0$. Azt szeretnénk, hogy létezzen $c\in F$, amire f(c)=0, vagyis $f_1c+f_0=0$. Ekkor $f_1c=-f_0$ (Miért?), és mivel létezik $f_1^{-1}\in F$, amire $f_1\cdot f_1^{-1}=1$ (Miért?), ezért $c=-f_0\cdot f_1^{-1}\left(=-\frac{f_0}{f_1}\right)$ gyök lesz.

Megjegyzés

Ha $(R;+,\cdot)$ nem test, akkor egy R fölötti elsőfokú polinomnak nem feltétlenül van gyöke, pl. $2x-1\in\mathbb{Z}[x]$ polinomnak nincs egész gyöke. (És emlékezzünk, hogy R[x]-beli polinomnak csak R-beli gyökeit definiáltuk...)

Állítás

Legyen $(F; +, \cdot)$ test, és $f \in F[x]$. Ha deg(f) = 1, akkor f felbonthatatlan.

Bizonyítás

Legyen $f=g\cdot h$. Ekkor deg(g)+deg(h)=deg(f)=1 (Miért?) miatt $deg(g)=0 \wedge deg(h)=1$ vagy $deg(g)=1 \wedge deg(h)=0$. Előbbi esetben g, utóbbiban h egység a korábbi állítás értelmében.

Megjegyzés

Tehát nem igaz, hogy egy felbonthatatlan polinomnak nem lehet gyöke.

Állítás

Legyen $(F; +, \cdot)$ test, és $f \in F[x]$. Ha $2 \le deg(f) \le 3$, akkor f pontosan akkor felbontható, ha van gyöke.

Bizonyítás

 \leftarrow

Ha c gyöke f-nek, akkor az f(x) = (x - c)g(x) egy nemtriviális felbontás (Miért?).

 \Longrightarrow

Mivel 2=0+2=1+1, illetve 3=0+3=1+2, és más összegként nem állnak elő, ezért amennyiben f-nek van nemtriviális felbontása, akkor van elsőfokú osztója. A korábbi állítás alapján ennek van gyöke, és ez nyilván f gyöke is lesz.

Tétel

 $f \in \mathbb{C}[x]$ pontosan akkor felbonthatatlan, ha deg(f) = 1.

Bizonyítás

 \leftarrow

Mivel $\mathbb C$ a szokásos műveletekkel test, ezért korábbi állítás alapján teljesül.

 \Longrightarrow

Indirekt tfh. $deg(f) \neq 1$. Ha deg(f) < 1, akkor f = 0 vagy f egység, tehát nem felbonthatatlan, ellentmondásra jutottunk. deg(f) > 1 esetén az algebra alaptétele értelmében van gyöke f-nek. A gyöktényezőt kiemelve az f(x) = (x-c)g(x) alakot kapjuk, ahol $deg(g) \geq 1$ (Miért?), vagyis egy nemtriviális szorzat-előállítást, így f nem felbonthatatlan, ellentmondásra jutottunk.

Az algebra alaptételét itt használtuk, de nem bizonyítottuk!

Polinomok Diszkrét matematika II.7. előadás Mérai László diái alapján

Polinomok felbonthatósága

Tétel

 $f \in \mathbb{R}[x]$ pontosan akkor felbonthatatlan, ha

- deg(f) = 1, vagy
- deg(f) = 2, és f-nek nincs (valós) gyöke.

Bizonyítás

 \leftarrow

Ha deg(f) = 1, akkor korábbi állítás (test fölötti elsőfokú polinom...) alapján f felbonthatatlan.

Ha deg(f) = 2, és f-nek nincs gyöke, akkor korábbi állítás (test fölötti másodfokú polinom...) alapján f felbonthatatlan.

 \Longrightarrow

Ha f felbonthatatlan, akkor nem lehet deg(f) < 1. (Miért?) Ha f felbonthatatlan, és deg(f) = 2, akkor nem lehet gyöke. (Miért?)

De még nem vagyunk kész! Még nem láttuk, hogy ne lehetne kettőnél magasabb fokú egy $\mathbb R$ felett irreducibilis polinom.

Bizonvítás folyt.

Tfh. $deg(f) \geq 3$. Az algebra alaptétele értelmében f-nek mint \mathbb{C} fölötti polinomnak van $c \in \mathbb{C}$ gyöke. Ha $c \in \mathbb{R}$ is teljesül, akkor a gyöktényező kiemelésével f egy nemtriviális felbontását kapjuk (Miért?), ami ellentmondás.

Legyen most $c \in \mathbb{C} \setminus \mathbb{R}$ gyöke f-nek, és tekintsük a $g(x) = (x-c)(x-\overline{c}) = x^2 - 2\operatorname{Re}(c)x + |c|^2 \in \mathbb{R}[x]$ polinomot. f-et g-vel maradékosan osztva létezik $g, r \in \mathbb{R}[x]$, hogy f = gg + r. r=0, mert deg(r)<2, és r-nek gyöke $c\in\mathbb{C}\setminus\mathbb{R}$. Vagyis f = qg, ami egy nemtriviális felbontás, ez pedig ellentmondás.

Megjegyzés

Ha $f \in \mathbb{R}[x]$ -nek $c \in \mathbb{C}$ gyöke, akkor \overline{c} is gyöke, hiszen

$$f(\overline{c}) = \sum_{i=0}^{\deg(f)} f_j(\overline{c})^j = \sum_{i=0}^{\deg(f)} \overline{f_j} \cdot \overline{c^j} = \sum_{i=0}^{\deg(f)} \overline{f_j} \overline{c^j} = \overline{\left(\sum_{i=0}^{\deg(f)} f_j c^j\right)} = \overline{f(c)} = \overline{0} = 0.$$

Definíció

 $f \in \mathbb{Z}[x]$ -et primitív polinomnak nevezzük, ha az együtthatóinak a legnagyobb közös osztója 1.

Lemma (Gauss)

Ha $f, g \in \mathbb{Z}[x]$ primitív polinomok, akkor fg is primitív polinom.

Bizonyítás

Indirekt tfh. fg nem primitív polinom. Ekkor van olyan $p \in \mathbb{Z}$ prím, ami osztja fg minden együtthatóját. Legyen i, illetve j a legkisebb olyan index, amire $p \not| f_i$, illetve $p \not| g_j$ (Miért vannak ilyenek?). Ekkor fg-nek az (i+j) indexű együtthatója $f_0g_{i+j}+\ldots+f_ig_j+\ldots+f_{i+j}g_0$, és ebben az összegben p nem osztója f_ig_j -nek, de osztója az összes többi tagnak (Miért?), de akkor nem osztója az összegnek, ami ellentmondás.

Állítás

Minden $0 \neq f \in \mathbb{Z}[x]$ polinom felírható $f = df^*$ alakban, ahol $0 \neq d \in \mathbb{Z}$, és $f^* \in \mathbb{Z}[x]$ egy primitív polinom.

, , ,

A felírás lényegében egyértelmű.

Bizonyítás

Ha f-ből az együtthatók legnagyobb közös osztóját kiemeljük, és azt d-nek választjuk, akkor megkapjuk a megfelelő előállítást.

Megjegyzés

Az előállítás lényegében (előjelektől eltekintve) egyértelmű, így f^* főegyütthatóját pozitívnak választva egyértelmű.

Állítás

Minden $0 \neq f \in \mathbb{Q}[x]$ polinom felírható $f = af^*$ alakban, ahol $0 \neq a \in \mathbb{Q}$, és $f^* \in \mathbb{Z}[x]$ egy primitív polinom.

A felírás lényegében egyértelmű.

Bizonyítás

Írjuk fel f együtthatóit egész számok hányadosaiként. Ha végigszorozzuk f-et az együtthatói nevezőinek c szorzatával, majd kiemeljük a kapott $\mathbb{Z}[x]$ -beli polinom együtthatóinak d legnagyobb közös osztóját, akkor megkapjuk a megfelelő előállítást a=d/c-vel.

Megjegyzés

Az előállítás lényegében egyértelmű: ha f^* főegyütthatóját pozitívnak választjuk, akkor egyértelmű.

Tétel (Gauss tétele $\mathbb{Z}[x]$ -re)

Ha egy $f \in \mathbb{Z}[x]$ előállítható két nem konstans $g,h \in \mathbb{Q}[x]$ polinom szorzataként, akkor előállítható két nem konstans $g^*,h^* \in \mathbb{Z}[x]$ polinom szorzataként is.

Bizonyítás

Tfh. f=gh, ahol $g,h\in\mathbb{Q}[x]$ nem konstans polinomok. Legyen $f=df^*$, ahol $d\in\mathbb{Z}$, és $f^*\in\mathbb{Z}[x]$ primitív polinom, aminek a főegyütthatója pozitív. Ha felírjuk g-t ag^{**} , h-t pedig bh^{**} alakban, ahol g^{**} , $h^{**}\in\mathbb{Z}[x]$ primitív polinomok, amiknek a főegyütthatója pozitív, akkor azt kapjuk, hogy $df^*=f=gh=abg^{**}\cdot h^{**}$. Mivel Gauss lemmája szerint $g^{**}\cdot h^{**}$ is primitív polinom, továbbá f előállítása primitív polinom segítségével lényegében egyértelmű, ezért $f^*=g^{**}h^{**}$, és d=ab, vagyis $f=dg^{**}h^{**}$, és például $g^*=dg^{**}$, $h^*=h^{**}$ választással kapjuk f kívánt felbontását.

Következmény

 $f\in\mathbb{Z}[x]$ primitív polinom pontosan akkor felbontható \mathbb{Z} fölött, amikor felbontható \mathbb{Q} fölött.

Bizonyítás

 \Longrightarrow

A \mathbb{Z} fölötti felbontás egyben \mathbb{Q} fölötti felbontás is.

 \leftarrow

A Gauss-tételből következik az állítás.

Tétel (Schönemann-Eisenstein)

Legyen $f(x) = f_n x^n + f_{n-1} x^{n-1} + \ldots + f_1 x + f_0 \in \mathbb{Z}[x], f_n \neq 0$ legalább elsőfokú primitív polinom. Ha található olyan $p \in \mathbb{Z}$ prím, melyre

- $p \nmid f_n$,
- $p|f_j$, ha $0 \le j < n$,
- p^2 / f_0 ,

akkor f felbonthatatlan \mathbb{Z} fölött.

Bizonyítás

Tfh. f=gh. Mivel p nem osztja f főegyütthatóját, ezért sem a g, sem a h főegyütthatóját nem osztja (Miért?). Legyen m a legkisebb olyan index, amelyre $p \not| g_m$, és o a legkisebb olyan index, amelyre $p \not| h_o$. Ha k=m+o, akkor

$$p / f_k = \sum_{i+j-k} g_i h_j,$$

mivel p osztja az összeg minden tagját, kivéve azt, amelyben i = m és j = o.

Megjegyzések

- A feltételben f_n és f_0 szerepe felcserélhető.
- A tétel nem használható test fölötti polinom irreducibilitásának bizonyítására, mert testben nem léteznek prímek, hiszen minden nem-nulla elem egység.

Racionális gyökteszt

Tétel

Legyen $f(x) = f_n x^n + f_{n-1} x^{n-1} + \ldots + f_1 x + f_0 \in \mathbb{Z}[x], f_n \neq 0$ primitív polinom. Ha $f\left(\frac{p}{q}\right) = 0$, $p, q \in \mathbb{Z}$, (p, q) = 1, akkor $p|f_0$ és $q|f_n$.

Bizonyítás

$$0 = f\left(\frac{p}{q}\right) = f_n\left(\frac{p}{q}\right)^n + f_{n-1}\left(\frac{p}{q}\right)^{n-1} + \ldots + f_1\left(\frac{p}{q}\right) + f_0 \quad / \cdot q^n$$

$$0 = f_n p^n + f_{n-1} q p^{n-1} + \ldots + f_1 q^{n-1} p + f_0 q^n$$

$$p|f_0 q^n, \text{ mivel az \"osszes t\"obbi tagnak oszt\'oja } p, \'es \'(gy (p,q) = 1 \text{ miatt } p|f_0.$$

$$q|f_n p^n, \text{ mivel az \"osszes t\"obbi tagnak oszt\'oja } q, \'es \'(gy (p,q) = 1 \text{ miatt } q|f_n.$$

Megjegyzés

f primitívsége nem szükséges feltétel, csak praktikus. (Miért?)

A racionális gyökteszt alkalmazása

Állítás

 $\sqrt{2} \notin \mathbb{Q}$.

Bizonyítás

Tekintsük az $x^2 - 2 \in \mathbb{Z}[x]$ polinomot.

Ennek a $\frac{p}{q}$ alakú gyökeire $(p, q \in \mathbb{Z}, (p, q) = 1)$ teljesül, hogy p|2 és q|1, így a lehetséges racionális gyökei ± 1 és ± 2 .

Tekintsük valamely p prímre a \mathbb{Z}_p testet, továbbá egy $f(x) \in \mathbb{Z}_p[x]$ felbonthatatlan főpolinomot. Vezessük be a $g(x) \equiv h(x) \pmod{f(x)}$, ha f(x)|g(x)-h(x) relációt. Ez ekvivalenciareláció, ezért meghatároz egy osztályozást $\mathbb{Z}_p[x]$ -en.

Minden osztálynak van deg(f)-nél alacsonyabb fokú reprezentánsa (Miért?), és ha deg(g), deg(h) < deg(f), továbbá g és h ugyanabban az osztályban van, akkor egyenlőek (Miért?). Tehát deg(f) = n esetén bijekciót létesíthetünk az n-nél kisebb fokú polinomok és az osztályok között, így p^n darab osztály van.

Az osztályok között értelmezhetjük a természetes módon a műveleteket. Ezeket végezhetjük az n-nél alacsonyabb fokú reprezentánsokkal: ha a szorzat foka nem kisebb, mint n, akkor az f(x)-szel vett osztási maradékot vesszük.

 $f \not| g$ esetén a bővített euklideszi algoritmus alapján d(x) = u(x)f(x) + v(x)g(x).

Mivel f(x) felbonthatatlan, ezért d(x) = d konstans polinom, így $\frac{v(x)}{d}$ multiplikatív inverze lesz g(x)-nek.

Tétel (NB)

Az ekvivalenciaosztályok halmaza a rajta értelmezett összeadással és szorzással testet alkot.

Megjegyzés

Tetszőleges p prím és n pozitív egész esetén létezik p^n elemű test, mert létezik n-ed fokú felbonthatatlan polinom \mathbb{Z}_p -ben.

Megjegyzés

Véges test elemszáma prímhatvány, továbbá az azonos elemszámú testek izomorfak.

Példa

Tekintsük az $x^2+1\in\mathbb{Z}_3[x]$ felbonthatatlan polinomot (Miért az?). A legfeljebb elsőfokú polinomok: 0,1,2,x,x+1,x+2,2x,2x+1,2x+2. Az összeadás műveleti táblája:

+	U	1	2	X	X+1	X+2	2X	2X+1	2X+2
0	0	1	2	×	x+1	x+2	2x	2x+1	2x+2
1	1	2	0	x+1	x+2	×	2x+1	2x+2	2x
2	2	0	1	x+2	Х	x+1	2x+2	2x	2x+1
×	X	x+1	x+2	2x	2×+1	2x+2	0	1	2
×+1	x+1	x+2	х	2x+1	2x+2	2x	1	2	0
x+2	x+2	Х	x+1	2x+2	2x	2x+1	2	0	1
2x	2x	2x+1	2x+2	0	1	2	×	×+1	x+2
2x+1	2x+1	2x+2	2x	1	2	0	x+1	x+2	×
2x+2	2x+2	2x	2x+1	2	0	1	x+2	Х	x+1

Például:

$$2x + 2 + 2x + 1 = 4x + 3 = x$$

Példa folyt.

	0	1	2	×	x+1	x+2	2x	2x+1	2x+2
0	0	0	0	0	0	0	0	0	0
1	0	1	2	×	x+1	x+2	2x	2x+1	2x+2
2	0	2	1	2x	2x+2	2x+1	×	x+2	x+1
×	0	×	2×	2	x+2	2x+2	1	x+1	2x+1
×+1	0	$\times +1$	2x+2	x+2	2x	1	2×+1	2	×
x+2	0	x+2	2x+1	2x+2	1	×	x+1	2x	2
2x	0	2x	х	1	2x+1	x+1	2	2x+2	x+2
2x+1	0	2x+1	x+2	x+1	2	2x	2x+2	×	1
2x+2	0	2x+2	x+1	2x+1	×	2	x+2	1	2x

Például:

$$(2x+2)(2x+1) = 4x^2 + 6x + 2 \stackrel{\mathbb{Z}_3}{=} x^2 + 2 = (x^2+1) + 1$$

Feladat: Legyen $\mathbb{F}_9 = \mathbb{Z}_3[x]/(x^2+1)$. Mik lesznek a $z^2+1 \in \mathbb{F}_9[z]$ polinom gyökei?