Compte rendu TP2 - Régression linéaire, probabilités, intervalle de confiance

Laroussi Labid Bachri, M1 BBS

13-09-2025

Contents

Régression linéaire	1
Nous allons découvrir sur la regression linéaire en travaillant sur le génome d'une bacterie	1
Coefficients de la droite	3
Calculs de probabilité	3
Nous allons maintenant travailler sur les calculs basés sur des données. L'analyse porte sur la taille des arbres sequoia	3
Calculs basés sur une loi binomaile B(n,p)	7
Estimer un intervalle de confiance (IC) d'un paramètre populationnel $(\mu, p,)$ à partir d'un échantillon	8
Sources utiles	10
Dans ce TP, nous allons etudier la regression linéaire, les calculs de probabilité, des calculs bases sur la l binomiale et finalement les intervalles de confiance.	loi
Dans ce tp, on utilisera la libraire here pour la gestion des chemins relatifs.	

Régression linéaire

Nous allons découvrir sur la regression linéaire en travaillant sur le génome d'une bacterie.

```
genomes = read.table(params$fichier_bacteries , sep = params$separateur_bacterias , header = TRUE)
names(genomes)
```

```
## [1] "Genome_size" "ORF_number"
```

```
# L'unité de mesure est de l'ordre des milions de paires de bases.

# On peut calculer la relation entre ces 2 variables mais aussi le coefficient de Pearson.

cov_xy = with(genomes, cov(Genome_size , ORF_number))
    r_xy = with(genomes, cor(Genome_size , ORF_number))
    cat(sprintf("Covariance = %.0f ; r (Pearson) = %.2f\n", cov_xy, r_xy))

## Covariance = 4005883 ; r (Pearson) = 0.96

#On observe une valeur de covariance de 4005883 et un coefficient de correlation de Pearson de 0.96. On

ligneregression= lm(ORF_number-Genome_size, data = genomes) # Nous n'avons utilisé pas attach donc faut

# Ajout de la droite de regréssion

relation_Genome_size_nb_ORF = with(genomes , plot(Genome_size , ORF_number , pch=16 , ylab="Nombre d'ORIabline(ligneregression , col="red", lwd=2)
```

with (genomes, plot (Genome_size, ORF_number, pch=16, ylab="Nombred'ORF", xlab = "Taille du génome

Relation de la taille des genomes avec le nombre d'ORF.


```
summary(ligneregression)
```

```
##
## Call:
## lm(formula = ORF_number ~ Genome_size, data = genomes)
```

```
##
## Residuals:
##
      Min
               1Q Median
                                      Max
## -1365.3 -222.2 -101.9 149.4 3013.0
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 503.29112 117.28721
                                    4.291 4.21e-05 ***
## Genome_size
                0.82723
                           0.02561 32.304 < 2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 557.8 on 97 degrees of freedom
## Multiple R-squared: 0.915, Adjusted R-squared: 0.9141
## F-statistic: 1044 on 1 and 97 DF, p-value: < 2.2e-16
relation_Genome_size_nb_ORF = function() {
with(genomes , {plot(Genome_size , ORF_number , pch=16 ,
                   ylab="Nombre d'ORF",
                   xlab = "Taille du génome (Mpb)" ,
                   main="Relation de la taille des genomes avec le nombre d'ORF. " )
abline(ligneregression , col="red", lwd=2)
})
 }
relation_Genome_size_nb_ORF()
outfile_bacterias = here("figure_tp2" , "relation_Genome_size_nb_ORF.jpg")
jpeg(outfile_bacterias)
relation_Genome_size_nb_ORF()
dev.off()
## pdf
```

Coefficients de la droite

Les coefficients de la droite de régression seront a=0.8272, b=503.39. On peut donc en deduire l'équation y=0.8272x+503.39

La droite de régression est en outil très intéressant pour la prediction et pouvoir estimer des valeurs en lisant direcement sur la figure.

Calculs de probabilité

Nous allons maintenant travailler sur les calculs basés sur des données. L'analyse porte sur la taille des arbres sequoia.

```
data_sequoia = read.table(params$fichier_sequoia , sep = params$separateur_sequoia , header = TRUE)
names(data_sequoia)
```

[1] "taille_arbre"

```
hist(data_sequoia$taille_arbre,
    main="Histogramme representant la taille des arbres Sequoia",
    ylab='Frequence',
    col='salmon')
```

Histogramme representant la taille des arbres Sequoia

La taille moyenne est de 82.268 et l'écart-type est 8.746037

```
histogramme_taille_arbre = function() { hist(data_sequoia$taille_arbre , main="Histogramme representant
histogramme_taille_arbre()
```

Histogramme representant la taille des arbres Sequoia


```
outfile_seq = here("figure_tp2" , "histogramme_taille_arbre.jpg")
jpeg(outfile_seq)
histogramme_taille_arbre()
dev.off()
## pdf
##
if ( file.exists(outfile_seq)) {
  cat("Le fichier a bien ete genérée.
      " , outfile_seq )
 } # Utilisation de if pour envoyer un output qui confirme l'existence de notre fichier.
## Le fichier a bien ete genérée.
          /Users/bachri/Documents/M1_BBS/S7/tdb/tp_tdb/figure_tp2/histogramme_taille_arbre.jpg
## Quel est la probabilité qu'un arbre mesure 80 m ?
proba_arbre_80m = length(which(data_sequoia$taille_arbre==80))/length(data_sequoia$taille_arbre)
cat("La probabilité qu'un arbre mesure 80m est de", proba_arbre_80m)
## La probabilité qu'un arbre mesure 80m est de 0.044
```

proba_arbre_100m = length(data_sequoia\$taille_arbre[data_sequoia\$taille_arbre>100])/length(data_sequoia\$taille_arbre_100m)

cat("La probabilité qu'un arbre mesure 100m est de", proba_arbre_100m)

La probabilité qu'un arbre mesure 100m est de 0.024

```
## Calcul basés sur une loi centrée réduite N(0,1)
dnorm(0,0,1) # On a ici x=0, mean=0 et sd=1 respectivement. Ici , x est une variable aleatoire, mean co
## [1] 0.3989423
```

hist(rnorm(100,0,1), col='red')

Histogram of rnorm(100, 0, 1)

En augmentant n, on va tendre vers une figure de plus en plus symetrique centrée normale. pnorm(0,0,1)

[1] 0.5

hist(rnorm(10000,0,1))

Histogram of rnorm(10000, 0, 1)


```
# On va calculer la mean et écart type des tailles des séquoia pour calculer la probabilité qu'u arbre
calcul_arbre80m = round(dnorm(80,mean_taille_sequoia , ecart_type_sequoia ) , 3)
calcul_arbre80m
## [1] 0.044
```

```
calcul_arbre100m = round(pnorm(100,mean_taille_sequoia, ecart_type_sequoia, lower.tail = FALSE),3)
calcul_arbre100m
```

[1] 0.021

L'option lower.tail = F est utilisé pour trouver la valeur que la probabilité de la variable aleatoire normal soit inferieur ou superieure a q. lower.tail = TRUE pour valeurs inferieurs. Par défaut, lower.tail = TRUE lci, il faut utiliser pnorm pour avoir la somme des probabilités des arbres qui font plus de 100m. Cumulative.

La probabilité qu'un arbre fasse 80m selon la loi normal est de 0.044

Le calcul des probabilités qu'un arbre mesure 100m ou plus est de 0.021 . Cette valeur est legeremen

Ces differences sont du à l'échantillonage donc on aura toujours une différence.

Calculs basés sur une loi binomaile B(n,p)

```
n=100
p=0.8
proba_80_graines_germent = dbinom(80,n,prob=p)
proba_au_max80_graines_germent = pbinom(80,n,prob=p)
proba_plus_de_80_graines_germent = pbinom(80,n,prob=p , lower.tail=F)
cat("La probabilité que 80 graines germent est de" ,proba_80_graines_germent)
```

La probabilité que 80 graines germent est de 0.09930021

La probabilité que au maximum 80 graines germent est de 0.5398386

La probabilité que plus de 80 graines germent est de 0.4601614

D'apres notre n et p, on devrait s'attendre en mean a 80

Loi Binomiale B(100,0.8)

pdf ## 2

Le fichier a bien ete genérée. /Users/bachri/Documents/M1_BBS/S7/tdb/tp_tdb/figure_tp2/figure_loi_b

On aura ici des points et pas une droite car la loi binomiale est une loi discrete et non continue.

Estimer un intervalle de confiance (IC) d'un paramètre populationnel $(\mu, p, ...)$ à partir d'un échantillon

```
data_tomatos = read.table(params\fichier_tomatos , sep = params\sparateur_tomatos , header=T)
names(data_tomatos)
## [1] "poids tomate"
mean_tomatos = mean(data_tomatos$poids_tomate)
sd_tomatos = sd(data_tomatos$poids_tomate)
n_tomatos = length(data_tomatos$poids_tomate)
# Intervalle de confiance de la mean théorique \mu de la popualtion, à partir de la mean m calculé sur un
# Intervalle de confiance a 95%
error = qt(0.975, df=n_tomatos-1)*sd_tomatos/sqrt(n_tomatos)
left = mean tomatos - error
right = mean_tomatos + error
left; right
## [1] 11.82531
## [1] 12.41069
## L'intervalle de confiance a 95% sera compris entre 11.82531 et 12.41069 . On peut estimer que la mea
On peut augmenter l'intervalle de confiance mais on aura des valeurs plus importantes.
error_99 = qt(0.995, df=n_tomatos-1)*sd_tomatos/sqrt(n_tomatos)
left_99_tomatos = mean_tomatos - error_99
right_99_tomatos = mean_tomatos + error_99
left_99_tomatos;right_99_tomatos
## [1] 11.72767
## [1] 12.50833
## L'intervalle de confiance a 95% sera compris entre 11.72767 et 12.50833 . On peut estimer que la mea
Cet intervalle pourra etre plus petite en augmentant notre nombre de tomatos.
frequence_red_apples = 0.4 # fréquence de pommes rouges dans l'échantillon
n = 125 # taille de l'échantillon
error_red_apple = qnorm(0.975)*sqrt(frequence_red_apples*(1-frequence_red_apples)/n)
left_apples = frequence_red_apples - error_red_apple
right_apples = frequence_red_apples + error_red_apple
left_apples;right_apples
## [1] 0.3141187
## [1] 0.4858813
```

cat("L'intervalle ayant 95% de chance d'obtenir la vrai proportion p de la popualtion est entre" , left

L'intervalle ayant 95% de chance d'obtenir la vrai proportion p de la popualtion est entre 0.3141187

Sources utiles

- $\bullet \ \ https://www.datamentor.io/r-programming/if-else-statement \ (if \ else/)$
- https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/sprintf (sprintf)
- [https://stat.ethz.ch/R-manual/R-devel/library/base/html/sprintf.html] (https://stat.ethz.ch/R-manual/R-devel/library/base/html/sprintf.html) (sprintf)
- https://yihui.org/knitr/options/ (Options knitr)