

MONASH INFORMATION TECHNOLOGY

FIT2094 - FIT3171 Databases Assignment Project Exam Help

https://powcoder.com

Week 3 - The Relational Database Model Add WeChat powcoder

Workshop S1 2022

Overview

Once we have a conceptual model, it is time to move to the second stage and map this to a logical model

For our unit this will involve mapping to the Relational Model in preparation for implementation in a RDBMS. First before we consider this mapping it is necessary to have a clear understanding of the Relation Madeband it use:

- Relational Model
- Relational Algebra

Early Database Models

- Hierarchical (1970's eg. IBM Information Management System (IMS))
 - 1:M relationships, a tree of linked records, child has only one parent
- Network (1970's eg. Integrated Data Store IDS, basis for the CODASYL group)
 Assignment Project Exam Help
 - child may have multiple parents
- Both Navigational https://pundvin.datarvizoambedded links (pointers)

The Relational Model

- Introduced by CODD in 1970 the fundamental basis for the relational DBMS
- Basic structure is the mathematical concept of a RELATION mapped to the 'concept' of a table (tabular representation of relation)
 - Relation Abstract Project Exam Help
 Table pictorial representation
- Storage structure, "real thing" eg isam file of 1's and 0's
 Relational Model Terminology
- - DOMAIN set of atomic (indivisible) values
 - Examples (name, data type, data top may) coder
 - customer number domain 5 character string of the form xxxdd
 - name domain 20 character string
 - address domain 30 character string containing street, town & postcode
 - credit limit domain money in the range \$1,000 to \$99,999

A Relation

- A relation consists of two parts
 - heading
 - body
- Relation Heading
 - Also called Aelational Schema consists of a fixed senger life in the lifes
 - R (A1,A2,......An)
 - R = relation name, Ai = attribute i
 - Each attribute correstops:tope were the tope of the content of the
 - Customer relation heading:
 - CUSTOMER (custno, custname, custadd, custcredlimit)

 » dom(custno) = customer_nimber Coder

 - » dom(custname) = name
 - » dom(custadd) = address
 - » dom(custcredlimit) = credit limit

custno	custname	custadd	custcredlimit	
--------	----------	---------	---------------	--

Relation Body

Relation Body

- Also called Relation Instance (state of the relation at any point in time)
 - $r(R) = \{t1, t2, t3, ..., tm\}$
 - consists of a time-varying set of n-tuples

 - Relation R consists of typles t1, t2, t3, tm Help
 - each n-tuple is an ordered list of n values
 - t = < v1, v2,, vn>
 n = number of values provide (no fattricutes) = relation degree
- In the tabular representation:

 - Relation heading polympheadings
 Relation body period data rows nat powcoder

cu	stno	custname	custadd	custcredlimit
_	SMI13	SMITH	Wide Rd, Clayton, 3168	2000
	JON44	JONES	Narrow St, Clayton, 3168	10000
-	BRO23	BROWN	Here Rd, Clayton, 3168	10000

Relation Properties

- No duplicate tuples
 - by definition sets do not contain duplicate elements
 - hencestiplessenst Beojeiquexam Help
- Tuples are unordered within a relation https://powcoder.com
 by definition sets are not ordered
 - - hence tupled care 6 has the accessed by content
- No ordering of attributes within a tuple
 - by definition sets are not ordered

Relation Properties cont'd

- Tuple values are atomic cannot be divided
 - EMPLOYEE (eid, ename, departno, dependants)
 - not allowed: dependants (depname, depage) multivalued
 hence no multivalued (repeating) attributes allowed, called the first
- normal form rule https://powcoder.com

 COMPARE with tabular representation
- - normally nothing to perfect purplicate leaves
 - rows are ordered
 - columns are ordered
 - tables and relations are not the same 'thing'

Functional Dependency

Functional Dependency:

- A set of attributes A functionally determines an attribute B if, and only if, for each A value, there is exactly one value of B in the relation. It is denoted as A
 - → B (A determines B, or B depends on A)
 - orderno Assrignment Project Exam Help
 - prodno → proddesc
 - orderno, production gtyppdered coder.com

♦ ORDERDATE
01/MAY/19
02/MAY/19
03/MAY/19
04/MAY/19
04/MAY/19
05/MAY/19
06/MAY/19

				₩ PRODNO ₩ PRODDESC	PRODUNITPRICE
				101 Salmon - Smoked, Sliced	11.98
	A	11 LL	7.01	102 Brololinni - Gaylan, Chinese	80.75
	A	au w		nat powcia e I asagne, Fresh	61.79
⊕ ORDERNO	₱ PRODNO		LINEPRICE	104 Melon - Cantaloupe	47.98
10	101	1	11.98	105 Wine - Peller Estates Late	70.18
11	101	1	11.98	106 Peas - Pigeon, Dry	31.99
11	103	2	123.58	107 Pumpkin - Seed	38.91
12	104	10	479.8		
13	105	2	140.36		

A PRODUNITORICE

Relational Model Keys

- A superkey of a relation R is an attribute or set of attributes which exhibits only the uniqueness property
 - No two tuples of R have the same value for the superkey (Uniqueness property)
 Assignment Project Exam Help
 - t1[superkey] ≠ t2[superkey]

Many possible superkeys

composite primary key)

- A candidate key CK of attraction Power attribute of attributes which exhibits the following properties:
 - Uniqueness property (as above), and powcoder Potentially many possible candidate keys
 - No proper subset of CK has the uniqueness property
 (Minimality or Irreducibility property) ie. a minimal superkey
- One candidate key is chosen to be the **primary key** (PK) of a relation. Remaining candidate keys are termed alternate keys (AK).

Free text answer in Flux (after Group discussion):

Q1. List all the super keys for:

Notes:

- treat this as only a small sample of the data
- the attributes are fixed.

Selection of a Primary key

- A primary key must be chosen considering the data that may be added to the table in the future
 - Names, dates of birth etc are rarely unique and as such are not a good option

 Assignment Project Exam Help
 - Option
 Assignment Project Exam Help

 PK should be free of 'extra' semantic meaning and security compliant, preferably a single attribute, preferably numeric (see Table 5.3 Coronel & Morris)
 - Natural vs Surrogate primary key
 - ENROLMENT (unit covered that the control of the c
 - Superkey
 - CK
 - PK
 - Issues with PK?

TABLE 5.3

DESIRABLE PRIMARY KEY CHARACTERISTICS

PK CHARACTERISTIC	RATIONALE
Unique values	The PK must uniquely identify each entity instance. A primary key must be able to guarantee unique values. It cannot contain nulls.
Nonintelligent	The PK should not have embedded semantic meaning other than to uniquely identify each entity instance. An attribute with embedded semantic meaning is probably better used as a descriptive characteristic of the entity than as an identifier. For example, a student ID of 650973 would be preferred over Smith, Martha L. as a primary key identifier.
	If an attribute has semantic meaning, it might be subject to updates, which is why names planning are gold unimary key. If yield sining is the primary key, what he pean if she plannings her name when she gets married: If a primary key is subject to change, the foreign key values must be updated, thus adding to the database work load. Furthermore, changing a primary key value means that you are basically changing the identity of an entity. In short, the PK should be permanent and unchangeable.
Preferably single-attribute	priming by should have the with much in terror attributes possible (irreducible). Single-attribute primary keys are desirable but not required. Single-attribute primary keys simplify the implementation of foreign keys. Having multiple-attribute primary keys can cause primary keys of related entities to grow through the possible addition of many attributes thus adding to the database workload and making (application) coding more and but one.
Preferably numeric	Unique values can be better managed when they are numeric, because the database can use internal routines to implement a counter-style attribute that automatically increments values with the addition of each new row. In fact, most database systems include the ability to use special constructs, such as Autonumber in Microsoft Access, sequence in Oracle, or uniqueidentifier in MS SQL Server to support self-incrementing primary key attributes.
Security-compliant	The selected primary key must not be composed of any attribute(s) that might be considered a security risk or violation. For example, using a Social Security number as a PK in an EMPLOYEE table is not a good idea.

Null in the Relational Model *Implementation*

- NULL is a concept <u>created</u> and <u>implemented by SQL</u>, does not exist in classical relational algebra
- NULL is NOT a value is a representation of the fact that there is NO VALUE
- Reasons for a NULL:
 - VALUE NOTAPPLICABLE TYPICABLE TYP
 - - commission only applies to staff in sales dept
 - VALUE UNKNOW https://powcoder.com
 Joe's salary is NULL, Joe's salary is currently unknown
 - VALUE DOES NOT EXIST -
 - Tax File Number A is applicable that tempo was out of the may not have a number at this time
 - VALUE UNDEFINED -
 - Certain items explicitly undefined eg. divide by zero
 - Columns Number of payments, Total payments
 - Column Average payment made
 - If Number of payments = 0 => Average undefined

Writing Relations

- Relations may be represented using the following notation:
 - RELATION_NAME (attribute1, attribute2,...)
- Relation_name ignatered Beophertalisech (illalset name)
- The primary key is underlined https://powcoder.com
- Example: Add WeChat powcoder
 - STAFF (<u>staff_id</u>, staff_surname, staff_initials, staff_address, staff_phone)

Q2. A well designed relational database (a database based on the relational model) has:

- A. No reclined and the Project Exam Help
- B. Minimal redundant data
- C. A large amount of republic data.com
- D. A level of redundancy based on the vendors implementation WeChat powcoder

Relational Database

- A relational database is a collection of normalised relations.
- Normalisation is part of the design phase of the database and will be discussed in plater lecture. Help

```
ORDER (order_id, order_date)
ORDER_LINE (order_id, prod_id, ol_quantity)
PRODUCT (prod_id, prod_desc, prod_unitprice)
```


Foreign Key (FK) - Implementation

 FK: An attribute/s in a relation that exists in the same, or another relation as a Primary Key.

Referential Integrity

- A Foreign Key value must either match the full primary key in a relation or be NULL.

a relation or be NULL.
 https://powcoder.com

 The pairing of PK and FK creates relationships (logical connections)
 between tables when implemented in a RDBMS. Hence the abstraction
 away from the underlying storage model.

EMPNO	ENAME	JOB	DEPTNO	DEPTNO	DNAME	LOC	
7839	KING	PRESIDENT	10	10	ACCOUNTING	NEW YORK	
7698	BLAKE	MANAGER	30	20	RESEARCH	DALLAS	
7782	CLARK	MANAGER	10	30	SALES	CHICAGO	
7566	JONES	MANAGER	20	40	OPERATIONS	BOSTON	
Î			Ŷ	Î			
Prima	ary key	Fore	ign key	Prir	nary key		

Q4. Business rules:

Runners may form a team, the runner who registers the team is recorded as the team leader. Each team can have up to 5 members (runners).

Identify the FK(sAssignment Project Exam Help

TEAM(team_id, teamtprain () team of te RUNNER(<u>runner_id</u>, runner_name, team_id)

A. team_leader in TEAM

- B. team id in TEAM
- C. runner id in RUNNER
- D. team id in RUNNER

Data Integrity - Implementation

- Entity integrity
 - Primary key value must not be NULL.
 - No duplicate tuple property then ensures that each primary key must Assignment Project Exam Help
- Implemented in the RDBMS via a unique index on the PK
 Referential integrity
- - The values of Kippust either match a value of a full PK in the related relation or be NULL.
- Column/Domain integrity
 - All values in a given column must come from the same domain (the same data type and range).

Q5. The following set of relations:

```
HOSPITAL (hosp_id, hosp_name, hosp_phone)
DOCTOR (hosp_id, dr_id, dr_name, dr_mobile)
PATIENT (pat_id, pat_name, pat_dob,.dr_id)
Assignment Project Exam Help
```

- A. have no integrity issues

 B. violate entity integrity wcoder.com
- C. violate referential integrity
- D. violate calumn/weaithiatepritywcoder

Multiple responses allowed

Relational DMLs

- Relational Calculus
- Relational Algebra
- Transform OxieniterhleantgPegjest(EgasCH):
- Graphical Languages

 https://powcoder.com

 Exhibit the "closure" property queries on relations produce relations Add WeChat powcoder

Relational Calculus

- Based on mathematical logic.
- Non-procedural.
- Primarily of the organical important Exam Help
- May be used as a yardstick for measuring the power of other relational languages ("relational completeness").
- Operators may be the total populations.

RELIGITION RIPERATE BRIA

https://powcoder.com
Manipulation of relational data
Add WeChat powcoder

Relational Algebra

- Relationally complete.
- Procedural.
- Operators only apply to at most two relations at a time.
- 8 basic operations signment Project Exam Help

 - single relation: selection, projection https://powcoder.com – two relations:

 - cartesian product, join
 union Add WeChat powcoder union
 - intersection
 - difference
 - division
- Standard RA/pure form has no concept of NULL (Databases units use standard RA)

Relational Operation PROJECT

PRDETAIL (<u>project_code</u>, project_manager, project_bid_price)

π

Assignme	nt Project	Exam Help
21-5Z	Holly B. Parker	\$16,833,460.00
25-2D	Jane D. Grant	\$12,500,000.00
25-5ANTTPS:	//powcode	1.C33 (31),420.00
25-9T	Holly B. Parker	\$21,563,234.00
27-4Q	George F. Dorts	\$10,314,545.00
29-2D Add	WeChat po) W \$36.6
31-7P	√Villiam K. Moor	\$56,850,000.00

Show all project manager:

RESULT = $\pi_{project_manager}$ PRDETAIL

How many tuples? How many attributes?

Relational Operation SELECT

PRDETAIL (<u>project_code</u>, project_manager, project_bid_price)

Show details of project 25-5A:

How many tuples? How many attributes?

RESULT =
$$\sigma_{project_code} = 25-5A$$
 PRDETAIL

Relational Operation Multiple Actions

PRDETAIL (<u>project_code</u>, project_manager, project_bid_price)

How many tuples? How many attributes?

Show the project manager of project 25-5A

RESULT =
$$\pi_{project_manager}$$
 ($\sigma_{project_code} = 25-5A$ PRDETAIL)

SQL vs Relational Algebra in the Database

Q5. Relational Algebra select and project

The following relations represent a karate dojo member training attendance:

```
SENSEI (sensei_id, sensei_name)
TRAINING_SCHEDULE (training_day, training_time, group_id, sensei_id)
ATTENDANCE (training_day, training_time, member_id, attendance_date)
MEMBER (member_id, member_name, member_dob, member_belt, group_id)
GROUP (group_id, group_name, group_age_range)
```

- A. Primary keys are underlined
- B. A karate member falls into the archive group of the properties of the properties
- C. Sensei (Karate teachers) are scheduled to train an age level group of karate members in a particular day and time (e.g. Sense) Luke Nakanura trains vin Viger members every Tuesday 5pm)
- D. A karate member may attend more than one training schedule of their age level group in a given week.

Write the relational algebra for the following query (your answer must show an understanding of query efficiency):

(1) Show the name and dob of all black belt members.

JOIN

- Join operator used to combine data from two or more relations, based on a common attribute or attributes.
- Different typesignment Project Exam Help
 - theta-join
 - equi-joinhttps://powcoder.com
 - natural join Add WeChat powcoder

THETA JOIN (Generalised join)

(Relation_1)
$$\bowtie_F$$
 (Relation_2)

- F is a predicate (i.e. truth-valued function) which is of the form Relation Relati
 - CUSTOMER Cust prove ORPER cust_no
- θ is one of the standard arithmetic comparison operators,
 <, ≤, =,Add WeChat powcoder
- Most commonly, θ is equals (=), but can be *any* of the operators
 - EMPLOYEE.emp_sal > SALARYSCALE.step_5

NATURAL JOIN

	STUDENT			MARK			
	studid	studname	studid	unitcode	mark		
	1	Alice	1	1004	95		
A .	.2	Bob	2 T	_1045	55		
AS	ssignm	ent Project	Exam F	1e4p	90		

Step 1: STUDENT X MARK

Step 2: delete rows where IDs do not match (select =)

Result at Step 2 (style (select =) (select =

STUDEN	T.studid studname	MARK.studid	unitcode	mark	
1	Add	WeChat	powco	der ₅	
-	Alice	2	1045	55	
1	Alice	1	1045	90	
2	Bob	1	1004	95	
2	Bob	2	1045	55	
2	Bob	1	1045	90	

NATURAL JOIN

STUDEI	NT	MARK				
studid	studname	studid	unitcode	mark		
1	Alice	1	1004	95		
2	Bob	2 .	_1045	55		
Assignme:	nt Project E	xam .	Help	90		

Step 1: STUDENT X MARK

Step 2: delete rows where IDs to match (select 5) der. Com Step 3: delete duplicate columns (project away)

Result at Step 3 is a Natural Join

STUDENT.studid	Add studname	W	eChat	powcode unitcode	er mark
1	Alice	1		1004	95
1	Alice	1		1045	90
2	Bob	2		1045	55

NATURAL JOIN

STUE	DENT		ľ	MARK	
studid	studname		studid	unitcode	mark
1	Alice	N.4	1	1004	95
2	ment Pr	W cicot	E xx 0.200	1045	55
Assign	ment Pi	ojeci	E _X aiii	Terb	90

Step 1: STUDENT X MARK

Step 2: delete rows where IDs do not match (select =)
Step 3: delete duplicate columns (project away) COder. COM

studid 1	Add Studname Add Alice Ve C	chat pov	vcoder
1	Alice	1045	90
2	Bob	1045	55

A natural join of STUDENT and MARK

Q6. Which of the following statements returns a natural join of the two relations on the agent code (agent_cd and agent_code)?

Relation : CUSTOMER		Relation : AGENT				
CUS_CODE	CUS_LNAME	CUS_ZIP	AGENT_CD		AGENT_CODE	AGENT_PHONE
1132445	Walker	32145	231		125	6152439887
1217782	Adares	32145	125		167	£153426778
1312243	Sadwein1	meni	125 16 Proje 125	ect E	xam r	6 2 1024
1321242	Rodriguez	37134	125		333	9041234445
1542311	Smithson	37134	333			
1657399	Vanlot 44	32145 / /	powe	dor	aam	
	1111	JS. //	powe	Juel.	COIII	

- A. $\sigma_{agent_cd = agent_code}$ (CUSTOMER X AGENT)
- B. π Add WeChat powcoder (CUSTOMER X AGENT))
- C. $\sigma_{agent_cd} = agent_code$ ($\pi_{cus_code, cus_lname, cus_zip, agent_code, agent_phone}$ (CUSTOMER X AGENT))
- D. All of the above

UNION, INTERSECT, DIFFERENCE

STOREA

product_id	product_name
1	LG Nano91 75" 4K
2	TCL P725 65" 4KAUHDS1g111 Sony X85J 75" Bravia S1g111
3	Sony X85J 75" Bravia

UNION (STOREA U STOREB)

product_id	product_name
1.	LG Nano91 75" 4K
Exam	TCL P72 65" 4K UHD Sony X85J 75" Bravia
3	Sony X85J 75" Bravia
33	LG C1 48" Self Lit OLED 4K

STOREB

product_id	product_name	۸ ۵
1	LG Nano91 75" 4K	Au
2	TCL P725 65" 4K UHD	
33	LG C1 48" Self Lit OLED 4	K

DIFFERENCE (STOREA - STOREB)

product_id	product_name
3	Sony X85J 75" Bravia

Union compatible relations required

Q7. Relational Algebra

The following relations represent a karate dojo member training attendance:

SENSEI (sensei_id, sensei_name)
TRAINING_SCHEDULE (training_day, training_time, group_id, sensei_id)
ATTENDANCE (training_day, training_time, member_id, attendance_date)
MEMBER (member_id, member_name, member_deb, member_belt, group_id)
GROUP (group_id, group_id, group_id, group_id)

- A. Primary keys are underlined
- B. A karate member falls in a pre-of-the age level groups. Tiny Tiger (for 4-7 year old), Young Dragon (for 8-14 years old), or Adult (for 14+ years old) and owns a certain color of belt (e.g. white, green, brown or black)
- C. Sensei (Karate teachers) are scheduled to train an age level group of karate members in a particular day and time (e.g. Sensei Luke Maramura trains Time Tiger Morate (e.g. Sensei Luke Maramura trains Time Tiger Maramura trains Time Tiger (e.g. Sensei Luke Maramura trains Tiger (e.g. Sen
- D. A karate member may attend more than one training schedule of their age level group in a given week.

Write the relational algebra for the following query (your answer must show an understanding of query efficiency):

(2) Show the name, belt colour and attendance dates of the member with an id of 12345

ANSWER Q7

(2) Show the name, belt colour and attendance dates of the member with an id of 12345

R2 = π member_name, member_belt, attendance_date (σ member_id = 12345 (MEMBER ⋈ ATTENDANCE))

- this is the CANONICAL QUEAY and technically incorrect, but very inefficient, say member 12345 has drive attended once in say 1000 tuples in ATTENDANCE. The join between MEMBER and ATTENDANCE yields, in such a scenario, 1000 tuples, 959 of which are unnecessary.

Your solution must demonstrate an understanding of efficiency:

A2a = π member_id, attemance Ovace (Generalist = 12345)
ATTENDANCE)

ATTENDANCE)

Add WeChat powcoder

A2b = π member_id, member_name, member_belt (σ member_id = 12345 MEMBER)

R2 = π member name, member belt, attendance date (A2a \bowtie A2b)

Q8. Relational Algebra POST WORKSHOP TASK - answer available Sunday 5PM

The following relations represent a karate dojo member training attendance:

```
SENSEI (<u>sensei_id</u>, sensei_name)
TRAINING_SCHEDULE (<u>training_day</u>, <u>training_time</u>, group_id, sensei_id)
ATTENDANCE (<u>training_day</u>, <u>training_time</u>, <u>member_id</u>, <u>attendance_date</u>)
MEMBER (<u>member_id</u> member_name, member_dob member_belt_group_id
GROUP (<u>group_id</u>, group_name, group_age_range)
```

- A. Primary keys are underlined
- B. A karate member falls in the Sthe and Word of the Apple Wyrous the Top of the
- C. Sensei (Karate teachers) are scheduled to train an age level group of karate members in a particular day and time (e.g. Sensei Luke Nakamuja/trains Tiny Tiger members every Tuesday 5pm)
- D. A karate member may attend more than one training schedule of their age level group in a given week.

Write the relational algebra for the following query (your answer must show an understanding of query efficiency):

(3) Show the id, name and age level group name of members who were absent (did not attend any training) between 01-03-2021 and 31-03-2021 (inclusive).

