Universidad de los Andes, Departamento de Física Física atómica

Oscilador armónico

Juan Barbosa, 201325901 Febrero 2, 2017

La ecuación de movimiento para un sistema armónico se obtiene usando la segunda ley de Newton y la ley de Hooke:

 $F = m\ddot{x} = -\kappa x$ con κ la constante del resorte

Haciendo explícita la ecuación para la aceleración:

$$\ddot{x} = \left(-\frac{\kappa}{m}\right)x = -kx\tag{1}$$

Dado que la ecuación (1) es de segundo orden es necesario reescribirla como dos ecuaciones acopladas de primer orden.

$$\dot{x} = \int \ddot{x} dt
x = \int \dot{x} dt$$
(2)

Usando el método de Euler para resolver numéricamente se obtiene:

$$\dot{x}_n = \dot{x}_{n-1} + \ddot{x}_{n-1} \Delta t$$

$$x_n = x_{n-1} + \dot{x}_n \Delta t$$
(3)

El sistema de ecuaciones diferenciales es resuelto usando como condiciones iniciales para todos los casos x(0) = 1 m y $\dot{x}(0) = 1$ m/s. La constante k varía entre 0.1 y 1 s⁻². Para todos los casos dt = 0.1 s y el número de puntos es N = 1000.

```
import numpy as np
import matplotlib.pyplot as plt

N = 1000; n = 5
x = np.zeros(N); v = np.zeros(N)
ks = np.linspace(0.1, 1, n)
dt = 0.1
t = np.linspace(0, (N-1)*dt, N)

x[0] = 1
v[0] = 1
fig, axes = plt.subplots(1, 2, sharey = True, figsize=(8, 5))
```

```
ax1, ax2 = axes
def equation(x):
    return -k*x
def solver():
    for i in range(1,N):
        v[i] = v[i-1] + equation(x[i-1])*dt
        x[i] = x[i-1] + v[i]*dt
    ax1.plot(t, x)
    ax2.plot(t*np.sqrt(k), x, label="$\%.2f$_"%k)
for i in range(n):
    k = ks[i]
    solver()
for ax in axes:
    ax.set_xlim(0, 20)
    ax.grid()
plt.legend(title = \$k\$_{\downarrow}(s\$^{-2}\$)_{values})
ax1.set_ylabel("$x$_(m)")
ax1.set_xlabel("$t$_(s)")
ax2.set\_xlabel("$t\sqrt\{k\}\_(rad)")
n = int(np.ceil(max(t)/np.pi))
xticks = [i*np.pi for i in range(n)]
xticks_labels = ['$0$', '$\pi$'] + ['$%d\pi$'%i for i in range(2, n)]
plt.xticks(xticks, xticks_labels)
ax2.set_xlim(0, 10*np.pi)
plt.savefig("plot.pdf")
```


La solución analítica a la ecuación es de la forma:

$$x(t) = A\cos\left(\sqrt{k}t\right) + B\sin\left(\sqrt{k}t\right) \tag{4}$$

Lo anterior implica que la frecuencia angular $\omega = \sqrt{k}$, por lo cual en la gráfica izquierda se observa que para valores de k pequeños se tienen frecuencias cortas. En la gráfica derecha se tiene la fase para distintos valores de k, los cuales presentan nodos en múltiplos enteros de π .