Aprendizado supervisionado

Aprendizado supervisionado

Exemplos de Treino

Dia	Aspecto	Temp.	Humidade	Vento	Jogar Ténis
D1	Sol	Quente	Elevada	Fraco	Não
D2	Sol	Quente	Elevada	Forte	Não
D3	Nuvens	Quente	Elevada	Fraco	Sim
D4	Chuva	Ameno	Elevada	Fraco	Sim
D5	Chuva	Fresco	Normal	Fraco	Sim
D6	Chuva	Fresco	Normal	Forte	Não
D7	Nuvens	Fresco	Normal	Fraco	Sim
D8	Sol	Ameno	Elevada	Fraco	Não
D9	Sol	Fresco	Normal	Fraco	Sim
D10	Chuva	Ameno	Normal	Forte	Sim
D11	Sol	Ameno	Normal	Forte	Sim
D12	Nuvens	Ameno	Elevada	Forte	Sim
D13	Nuvens	Quente	Normal	Fraco	Sim
D14	Chuva	Ameno	Elevada	Forte	Não

Existem regras que definem quando jogar ou não jogar?

Em função do clima do dia?

2 classes: sim / não

Necessário "rotular" cada um deles

• exemplos Classe "gato"

contraexemplos

Classe

"não-gato"

Etapas principais

Fase 1

Fase 2

Extração de características

Algoritmo de aprendizado

Conjunto de treinamento rotulado

Conjunto de teste rotulado

Modelo aprendido

Cálculo dos parâmetros

Parâmetros do modelo

Parâmetros utilizados

É um gato

Exemplos (X,y → azul, verde)

Classificação (parafusos) Diâmetro Comprimento **Treinamento** 4 cm 3 mm 1 cm 1 mm 2 cm 2 mm 2 cm 3 mm 1 cm 2 mm 5 cm 3 mm 3 cm 3 mm Diâmetro Classe Classe Comprimento 4 cm 8 mm Α Α Teste 7 cm 1 mm Α 2 cm 2 mm 4 mm 3 cm Α

	P				
Dia	Aspecto	Temp.	Humidade	Vento	Jogar Ténis
D1	Sol	Quente	Elevada	Fraco	Não
D2	Sol	Quente	Elevada	Forte	Não
D3	Nuvens	Quente	Elevada	Fraco	Sim
D4	Chuva	Ameno	Elevada	Fraco	Sim
D5	Chuva	Fresco	Normal	Fraco	Sim
D6	Chuva	Fresco	Normal	Forte	Não
D7	Nuvens	Fresco	Normal	Fraco	Sim
D8	Sol	Ameno	Elevada	Fraco	Não
D9	Sol	Fresco	Normal	Fraco	Sim
D10	Chuva	Ameno	Normal	Forte	Sim
D11	Sol	Ameno	Normal	Forte	Sim
D12	Nuvens	Ameno	Elevada	Forte	Sim
D13	Nuvens	Quente	Normal	Fraco	Sim
D14	Chuva	Ameno	Elevada	Forte	Não

Real Algoritmo Teste → D2 D5 D6 D8 D12 Treinam. → os demais Prof. Waldemar B. Jr.

Exemplos de Treino

Métodos

- Redes neurais artificiais
 - Aprendizado profundo ("deep learning")
- Árvores de decisão
- Regressão linear e logística

Classificação X regressão

Redes neurais artificiais

Créditos: Alamy

Créditos: static.wixstatic.com/media/

Redes neurais artificiais

XOR Gate

Créditos: Pierian Data

"multilayer perceptrons" - MLP (Densa)

"multilayer perceptrons" – MLP (Densa)

 RNAs de "uma" camada (entrada e saída) só separam classes "linearmente separáveis"

 ex.: "aprender" tabelasverdade "E" "OU"

"multilayer perceptrons" – MLP (Densa)

 RNAs com mais de "uma" camada (entrada, ocultas e saída) → classes de separação mais complexa

Bias (viés) • ex.: "aprender" tabelasverdade "XOR" e outras

	XOR Gate
Р	0/1 1 OR gate
	1.5 AND gate output
	0/1 -1.5 1
Q	NOT AND gate

Inverso da acima

"multilayer perceptrons" - MLP (Densa)

Aplicação - XOR

P	Q	P⊻Q
٧	٧	F
V	F	V
F	٧	V
F	F	F

- 1) Definir a arquitetura da rede
- 2 neurons de entrada
- 1 neuron de saída

Alguns exemplos utilizando a biblioteca Scikit-Learn do Python

- Numéricos:
 - XOR
 - Wholesale
 - Wine

- Nominais
 - Jogar tênis

One Hot Encoder

- Aspecto
 - Chuvoso = 1, 0, 0
 - Nublado = 0, 1, 0
 - Sol = 0, 0, 1
- Temperatura
 - Ameno = 1, 0, 0
 - Fria = 0, 1, 0
 - Quente = 0, 0, 1

- Umidade
 - Alta = 1, 0
 - Normal = 0, 1
- Vento
 - Forte = 1, 0
 - Fraco = 0, 1

sol, quente, alta, fraco = [0. 0. 1. 0. 0. 1. 1. 0. 0. 1.]