BIBD Coding Example

Peter Yeh

6/6/2023

4.42. Seven different hardwood concentrations are being studied to determine their effect on the strength of the paper produced. However, the pilot plant can only produce three runs each day. As days may differ, the analyst uses the balanced incomplete block design that follows. Analyze the data from this experiment (use $\alpha = 0.05$) and draw conclusions.

Hardwood	Days				
Concentration (%)	1	2	3	4	
2	114				
4	126	120			
6		137	117		
8	141		129	149	
10		145		150	
12			120		
14				136	

Hardwood		Days		
Concentration (%)	5	6	7	
2	120		117	
4		119		
6			134	
8				
10	143			
12	118	123		
14		130	127	

Source	DF	Type I SS	Mean Square	F Value	Pr≥F
Concentration	6	2037.619048	339.603175	16.12	0.0005
Days	6	394.095238	65.682540	3.12	0.0701

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Concentration	6	1317.428571	219.571429	10.42	0.0021
Days	6	394.095238	65.682540	3.12	0.0701

Using the type III SS, we see that concentrations is significant at the 0.05 level. We reject the null hypothesis and conclude that at least one concentration of hardwood has a different effect on strength compared to the others.

We fail to reject the null hypothesis for the days at the 0.05. We conclude there is no significant effect on strength between days.

Tests for Normality						
Test	St	atistic	p Value			
Shapiro-Wilk	W	0.974003	Pr < W	0.8190		
Kolmogorov-Smirnov	D	0.13867	Pr > D	>0.1500		
Cramer-von Mises	W-Sq	0.040987	Pr > W-Sq	>0.2500		
Anderson-Darling	A-Sq	0.242785	Pr > A-Sq	>0.2500		

Judging from the QQ plot and the Shapiro-Wilk test, we do not see any concerning results and conclude the assumption of normality is met.

There is an obvious megaphone shape present in the residual plot. We conclude the assumption of constant variance is not met.

```
1 /* BIBD */
2 /* Read in data */
3 proc import datafile="/home/u60711948/My SAS Files/Stat 571B Experimental Design/Temporary/hardwood.csv"
      dbms=csv
     out=hardwood
     replace;
7
     getnames=yes;
8 run;
/* Run ANOVA and check means */
l1 proc glm data=hardwood;
12 class Concentration Days;
model Strength = Concentration Days;
14 <u>lsmeans</u> Concentration / alpha=0.05 adjust=tukey;
15 output out=myout r=res p=pred;
l6 run;
/*check residuals & model assumptions*/
19 proc sgplot data=myout;
20 scatter y=res x=pred;
l refline 0;
22 run;
proc univariate data=myout normal;
16 qqplot res/normal(mu=est sigma=est);
27 run;
```