Matlab Exercise:

Implementing a solver for solving systems of linear equations

MATVJII

April 11, 2016

The purpose of this exercise is to create a solver for systems of linear equations with variable size.

The solver uses the Gauss-Jordan method to transform the original system of equations to a diagonal one from which the solution can be easily found. The pseudocode of the Gauss-Jordan implementation is given below:

Data: b, A Result: x, flag

IF: size **A** and size **b** are NOT correct \rightarrow set flag = -1, x = nan;

ELSE: \rightarrow **Aa** = concatenation of **A b**.

FOR: each column of $\mathbf{Aa} \to \mathbf{c}$

 \rightarrow search the maximum absolute value entry and store the row of $\mathbf{Aa} \rightarrow \mathrm{row}_p$; the row position in a vector $\rightarrow v_p$ and the pivot \rightarrow pivot = $\mathrm{row}_p(\mathbf{c})$

IF: pivot $\approx 0 \rightarrow \text{flag} = 1$ if system is undetermined or flag = 2 if it is inconsistent ELSE: (the system of equations is consistent)

FOR: every row \rightarrow row_k different to the row of the pivot row_p

 $\rightarrow \operatorname{row}_k = \operatorname{row}_k - (\operatorname{row}_p) (\operatorname{Aa}(k,c)) / \operatorname{row}_p(c);$

FOR: every row position \rightarrow i

 $x(i) = Aa(v_p(i),end)/Aa(v_p(i),i)$

Algorithm 1: Gauss Jordan solver pseudo code

TO DO:

- Implement the above pseudocode in a matlab function.
- Solve the next linear system and compare the output with the results obtained in class

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \boldsymbol{x} \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$$

• Do the same with the next system and justify the results

$$\begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 0 \\ 3 & 3 & 2 \end{pmatrix} \begin{pmatrix} \boldsymbol{x} \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

• Load the attatched matlab wirk space WS.mat, solve the linear system $\mathbf{A}x = \mathbf{b}$ with your solver and deliver the sum of the solution variables $S = \sum_i x_i$