0.1 H30 数学選択

- $\boxed{\mathbf{A}}$ $(1)\phi(f+g)=f(1,z)+g(1,z)+(z^2)=\phi(f)+\phi(g)$ である。 $\phi(fg)=f(1,z)g(1,z)+(z^2)=\phi(f)\phi(g)$ である。 $\phi(1)=1+(z^2)=1_B$ である。よって ϕ は環準同型である。
- $(2)\phi(x-1)=\phi(y^2)=0$ である. $f\in\ker\phi$ について $f(x,y)=(x-1)g(x,y)+y^2h(y)+ya+b$ とできる. $\phi(f)=0$ より $\phi(f)=az+b=0$ すなわち $\mathbb{Q}[z]$ のもとで $az+b\in(z^2)$ である. 次数を考えれば a=b=0 がわかる. よって $\ker\phi=(x-1,y^2)$ である.
- (3)ℚ[z] は PID であるから任意のイデアルは (p(x)) と書ける.自然な全射準同型 π : ℚ $[z] \to B$ によってイデアルが対応する. $\pi((p(x))) \neq 0$ であるためには $(p(x)) \supset (z^2)$ が必要.したがって p(x) = 1, z の像のみが B の (0) でないイデアルである.すなわち B,(z) が B の (0) でないイデアルで,(0),(z),B が求める相異なるイデアル.
- (4) 存在すると仮定するとイデアルの対応定理から $0 \subsetneq \phi(J) \subsetneq (z)$ となる. (3) から $\phi(J) = (0), (z), B$ のいずれかである. このうち $\phi(I) = 0 \subsetneq \phi(J) \subsetneq (z) = \phi(I+(y))$ を満たすものは存在しない. これは矛盾.
- $\boxed{\mathbf{B}}$ $(1)\omega = e^{2\pi i/3}$ とする. $X^6 8 = (X \sqrt{2})(X \sqrt{2}\omega)(X \sqrt{2}\omega^2)(X + \sqrt{2})(X + \sqrt{2}\omega)(X + \sqrt{2}\omega^2)$ である.
- $(2)\omega=rac{1}{2}+rac{\sqrt{-3}}{2}$ である.よって $F=\mathbb{Q}(\sqrt{-3},\sqrt{2})$ である. $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$ は明らか. $\mathbb{Q}(\sqrt{2})\subset\mathbb{R}$ であり, $\sqrt{-3}\notin\mathbb{R}$ であるから $[\mathbb{Q}(\sqrt{-3},\sqrt{2}):\mathbb{Q}(\sqrt{2})]=2$ である.よって $[F:\mathbb{Q}]=4$ である.
- $(3)\mathbb{Q}(\sqrt{2})\cdot\mathbb{Q}(\sqrt{-3})=F,\mathbb{Q}(\sqrt{2})\cap\mathbb{Q}(\sqrt{-3})=\mathbb{Q}$ であるから推進定理より $\mathrm{Gal}(F/\mathbb{Q})\cong\mathrm{Gal}(\mathbb{Q}(\sqrt{2})/\mathbb{Q}) imes\mathrm{Gal}(\mathbb{Q}(\sqrt{-3})/\mathbb{Q})\cong\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$ である.
- $(4)F,\mathbb{Q}$ 以外の中間体は $\mathrm{Gal}(F/\mathbb{Q})$ の真部分群に対応する. したがって 3 個あり, $\mathbb{Q}(\sqrt{2}),\mathbb{Q}(\sqrt{-3}),\mathbb{Q}(\sqrt{2}\sqrt{-3})=\mathbb{Q}(\sqrt{-6})$ である.