

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ : A61K 39/395, C12P 7/62, C12N 9/02, 15/00, C07H 19/00		A1	(11) International Publication Number: WO 00/21557 (43) International Publication Date: 20 April 2000 (20.04.00)
(21) International Application Number: PCT/US99/23253		(81) Designated States: CA, JP, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(22) International Filing Date: 5 October 1999 (05.10.99)		Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(30) Priority Data: 60/103,760 9 October 1998 (09.10.98) US			
(71) Applicant (for all designated States except US): MERCK & CO., INC. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065 (US).			
(72) Inventors; and			
(75) Inventors/Applicants (for US only): PETRUKHIN, Konstantin [RU/US]; 126 East Lincoln Avenue, Rahway, NJ 07065 (US). CASKEY, C., Thomas [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065 (US).			
(74) Common Representative: MERCK & CO., INC.; 126 East Lincoln Avenue, Rahway, NJ 07065 (US).			

(54) Title: DELTA 6 FATTY ACID DESATURASE

(57) Abstract

Novel human DNA sequences that encode the gene CYB5RP, a delta 6 fatty acid desaturase, are provided. Provided are genomic CYB5RP DNA as well as cDNA that encodes the CYB5RP protein. Also provided is CYB5RP protein encoded by the novel DNA sequences. Methods of expressing CYB5RP protein in recombinant systems are provided. Also provided are CYB5RP methods that identify activators and inhibitors of CYB5RP protein.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

TITLE OF THE INVENTION
DELTA 6 FATTY ACID DESATURASE

CROSS-REFERENCE TO RELATED APPLICATIONS

5 Not applicable.

STATEMENT REGARDING FEDERALLY-SPONSORED R&D

Not applicable.

10 REFERENCE TO MICROFICHE APPENDIX

Not applicable.

FIELD OF THE INVENTION

The present invention is directed to novel human DNA sequences
15 encoding a delta 6 fatty acid desaturase, an enzyme involved in the synthesis of
essential fatty acids.

BACKGROUND OF THE INVENTION

Essential fatty acids (EFAs) are polyunsaturated fatty acids that cannot
20 be manufactured by mammals, yet are required for a number of important biochemical
processes, and thus must be supplied in the diet. The most important dietary EFAs
are linoleic acid and alpha-linolenic acid (ALA). These two EFAs undergo a number
of biosynthetic reactions that convert them into various other EFAs. Figure 1 depicts
the biosynthetic reactions involving the two groups of EFAs, the n-6 EFAs (linoleic
25 acid derivatives) and the n-3 EFAs (ALA derivatives). EFAs are formed from linoleic
acid and ALA by a series of alternating reactions involving the removal of two
hydrogens coupled with the insertion of an additional double bond (desaturation) and
the lengthening of the fatty acid chain by the addition of two carbons (chain
elongation). The enzymes catalyzing the desaturations and elongations are thought to
30 be the same for both groups of EFAs.

Among the more important unsaturated fatty acids are the delta 6
unsaturated fatty acids, which are involved in the maintenance of membrane structure
and function, the regulation of cholesterol synthesis and transport, and the prevention

of water loss from the skin. Delta 6 unsaturated fatty acids also serve as precursors of the eicosanoids, including the prostaglandins and leukotrienes (Horrobin, 1992, Prog. Lipid Res. 31:163-194). The double bond at the 6 position of delta 6 unsaturated fatty acids is introduced by a class of enzymes known as delta 6 desaturases.

5 Deficiencies in linoleic acid and ALA derivatives have been associated with skin diseases, diabetic complications, inflammatory and autoimmune disorders, cardiovascular disorders, complications of viral infection, and retinal dysfunction. For example, a deficiency in gamma-linolenic acid (GLA), which is produced from linoleic acid by the action of the enzyme delta 6 desaturase, can arise from the
10 decreased activity of this enzyme that occurs in aging, stress, diabetes, eczema, and some infections, or from increased catabolism of GLA due to oxidation or rapid cell division, as occurs in inflammation or cancer. Clinical trials have demonstrated that dietary GLA supplementation can be effective in treating a number of conditions that are associated with GLA deficiency, e.g., atopic eczema, mastalgia, diabetic neuropathy, viral infections, and some forms of cancer (Horrobin, 1990, Rev. Contemp. Pharmacother. 1:1-45).

15 Delta 6 desaturase is an example of a fatty acid desaturase. Fatty acid desaturases are enzymes that introduce a double bond into the carbon chain of fatty acids. They play vital roles in the biosynthesis of polyunsaturated fatty acids, including the essential fatty acids. Fatty acid desaturases are present in soluble and membrane-associated forms and require electron donors (for example, cytochrome b5) for their functioning.

20 Delta 6 desaturases catalyze the rate-limiting steps in the biosyntheses of the linoleic and ALA group EFAs shown in Figure 1. End products of the linoleic acid pathway include the eicosanoids (prostaglandins and leukotrienes). The end product of the ALA pathway is docosahexaenoic acid (DHA), an important component of membranes in the vertebrate retina. DHA is highly specific for retina and represents more than 50% of the fatty acids in the rod outer segment (ROS). It appears that DHA is important in maintaining the normal structure and function of the
25 retina (Anderson et al., 1992, Neurobiology of Essential Fatty Acids, Bazan et al., eds., Plenum Press, New York, pages 285-294). Increased dietary consumption of DHA and its precursor, eicosapentaenoic acid, from seal meat and fish has been
30

linked to an increased incidence of macular degeneration in Greenland Eskimos (Rosenberg, 1987, *Arct. Med. Res.* 46:64-70).

Certain delta 6 desaturases have been cloned from plants. For example, a delta 6 desaturase has been cloned from borage (Sayanova et al., 1997, 5 *Proc. Natl. Acad. Sci. USA* 94:4211-4216). This delta 6 desaturase is unusual in that its cytochrome b5 electron donor is present as an N-terminal extension of the enzyme rather than being synthesized as a separate protein. The borage delta 6 desaturase has been shown to be functional, in that transfer of the cloned gene encoding it to tobacco results in the synthesis of high levels of GLA and octadecatetraenoic acid (OTA) in 10 the transgenic tobacco leaves. GLA and OTA are the products of delta 6 desaturase activity on linoleic acid and ALA, respectively.

Based on its hydropathy profile, the borage delta 6 desaturase appears to be a membrane-bound protein. Examination of the amino acid sequence of the borage enzyme, as well as the amino acid sequences of membrane-bound desaturases 15 from a wide variety of organisms, has revealed three regions of conserved short motifs containing histidine residues (HX(3 or 4)H, HX(2 or 3)HH, and HX(2 or 3)HH) having a conserved spacing from each other (Shanklin et al., *Biochemistry*, 1994, 33:12787-12794).

A DNA sequence has been isolated from sunflower embryos that, 20 judging from its sequence, appears to encode a delta 6 desaturase having a cytochrome b5-like moiety fused to its N-terminus (Sperling et al., 1995, *Eur. J. Biochem.* 232:798-805).

SUMMARY OF THE INVENTION

The present invention is directed to novel human DNA sequences that 25 encode a delta 6 fatty acid desaturase, cytochrome b5-related protein (CYB5RP). The present invention includes genomic CYB5RP DNA as well as cDNA that encodes the CYB5RP protein. The genomic CYB5RP DNA is substantially free from other nucleic acids and has the nucleotide sequence shown in SEQ.ID.NO.:1. The cDNA 30 encoding CYB5RP protein is substantially free from other nucleic acids and has the nucleotide sequence shown in SEQ.ID.NO.:2. Also provided is CYB5RP protein encoded by the novel DNA sequences. The CYB5RP protein is substantially free from other proteins and has the amino acid sequence shown in SEQ.ID.NO.:3.

Methods of expressing CYB5RP protein in recombinant systems are provided. Also provided are methods of producing delta 6 unsaturated fatty acids using DNA encoding CYB5RP or using CYB5RP protein.

5 BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts the enzymatic conversions involved in the linoleic acid (n-3) and alpha-linolenic acid (n-6) pathways of essential fatty acid synthesis.

Figure 2A-G shows the genomic DNA sequence of the CYB5RP gene (SEQ.ID.NO.:1). Underlined nucleotides in capitals represent exons. The start ATG codon at position 544 in exon 1 and the stop TGA codon at position 18,103 in exon 10 12 are shown in bold. The putative polyadenylation signal ATTAAA located approximately 20 base pairs upstream of the polyA tail is shown in bold italics (position 18,373 in exon 12). DNA sequence upstream of exon 1 represents a putative promoter region of the CYB5RP gene., as indicated by the presence of the 15 TATA box at position 353 (underlined bold)..

Figure 3A-C shows the cDNA sequence (SEQ.ID.NO.:2) and the amino acid sequence (SEQ.ID.NO.:3) of CYB5RP. The region encompassing amino acids 1-102 represents the cytochrome b5 domain. The region encompassing amino acids 182-186 represents HIS BOX 1. The region encompassing amino acids 219-223 20 represents HIS BOX 2. The region encompassing amino acids 383-387 represents HIS BOX 3.

Figure 4 shows a portion of the cDNA sequence (SEQ.ID.NO.:4) and a portion of the amino acid sequence (SEQ.ID.NO.:5) of mouse CYB5RP.

Figure 5A shows a Kyte-Doolittle hydropathy plot of CYB5RP. 25 Figure 5B shows the proposed membrane topology of CYB5RP based on its hydropathy plot. This membrane topology is similar to that proposed for other membrane-bound fatty acid desaturases (Shanklin et al., Biochemistry, 1994, 33:12787-12794). The amino acids shown in Figure 5B are portions of (SEQ.ID.NO.:3).

30 Figure 6 shows the output of the Profilescan program from the Wisconsin GCG package. The upper amino acid sequence is from CYB5RP (positions 31-78 of SEQ. ID. NO.3). The lower amino acid sequence is positions 1-48 of the cytochrome b5 profile (SEQ. ID. NO.:6.). The output shows that CYB5RP

contains a profile typical for the heme-binding domain of the cytochrome b5 protein family. Importantly, the region of identity includes the invariant HPGG motif, where histidine represents a heme axial ligand for iron.

Figure 7A and B show the results of BlastP searches of the GenBank database using the full-length CYB5RP amino acid sequence as the query. Figure 7A shows the hit with highest homology, a hypothetical protein from sunflower. The sunflower protein and CYB5RP share three His boxes (boxed) in which the spacing between the His boxes is conserved. Also boxed is the HPGG motif typical for the heme-binding domain of the cytochrome b5 protein family. In both proteins the first histidine of the third His box is replaced by glutamine (a typical feature of desaturases with delta 6 specificity). The upper amino acid sequences shown are from CYB5RP and are portions of SEQ. ID. NO.3. The lower amino acid sequences shown are portions of the amino acid sequence of the hypothetical protein from sunflower (Sperling et al., 1995, Eur. J. Biochem. 232:798-805). The sequence shown as positions 348-432 is SEQ. ID. NO.:7. The sequence shown as positions 22-74 is SEQ. ID. NO.:8. The sequence shown as positions 152-227 is SEQ. ID. NO.:9. Figure 7B shows the hit with the second highest homology, a delta 6 desaturase from *Borago officinalis* (Sayanova et al., 1997, Proc. Natl. Acad. Sci. USA 94:4211-4216). The *Borago* protein and CYB5RP also share three His boxes with conserved spacing, as well as the HPGG motif. In both proteins the first histidine of the third His box is replaced by glutamine (a typical feature of desaturases with delta 6 specificity). The upper amino acid sequences shown are from CYB5RP and are portions of SEQ. ID. NO.3. The lower amino acid sequences shown are portions of the amino acid sequence of the *Borago* delta 6 desaturase. The sequence shown as positions 338-424 is SEQ. ID. NO.:10. The sequence shown as positions 12-64 is SEQ. ID. NO.:11. The sequence shown as positions 153-220 is SEQ. ID. NO.:12.

Figure 8 shows additional results of BlastP searches of the GenBank database using the CYB5RP protein as the query. Figure 8 shows the amino acid alignment between the CYB5RP protein and a delta 6 desaturase from *Synechocystis* sp. (strain pcc 6803) performed by the BlastP program. The *Synechocystis* delta 6 desaturase and CYB5RP share three His boxes, two of which are shown in Figure 8 (boxed). In both proteins the first histidine of the third His box is replaced by glutamine (a typical feature of desaturases with delta 6 specificity). The CYB5RP

sequence shown is a portion of SEQ. ID. NO.3. The *Synechocystis* sequence shown is SEQ. ID. NO:13.

Figure 9A shows the expression pattern of the CYB5RP gene in 9 human tissues, as determined by RT-PCR amplification with 21 cycles. Expression is detected in human retina, kidney, pancreas, placenta, and brain. Figure 9B shows the results of the analogous experiments performed with 25 cycles of amplification. Expression of the CYB5RP gene is seen in all the human tissues studied.

DETAILED DESCRIPTION OF THE INVENTION

10 For the purposes of this invention:

“Substantially free from other proteins” means at least 90%, preferably 95%, more preferably 99%, and even more preferably 99.9%, free of other proteins. Thus, a CYB5RP protein preparation that is substantially free from other proteins will contain, as a percent of its total protein, no more than 10%, preferably no more than 5%, more preferably no more than 1%, and even more preferably no more than 0.1%, of non-CYB5RP proteins. Whether a given CYB5RP protein preparation is substantially free from other proteins can be determined by such conventional techniques of assessing protein purity as, e.g., sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) combined with appropriate detection methods, e.g., silver staining or immunoblotting.

20 “Substantially free from other nucleic acids” means at least 90%, preferably 95%, more preferably 99%, and even more preferably 99.9%, free of other nucleic acids. Thus, a CYB5RP DNA preparation that is substantially free from other nucleic acids will contain, as a percent of its total nucleic acid, no more than 10%, preferably no more than 5%, more preferably no more than 1%, and even more preferably no more than 0.1%, of non-CYB5RP nucleic acids. Whether a given CYB5RP DNA preparation is substantially free from other nucleic acids can be determined by such conventional techniques of assessing nucleic acid purity as, e.g., agarose gel electrophoresis combined with appropriate staining methods, e.g., ethidium bromide staining, or by sequencing.

25 30 “Substantially the same biological activity as CYB5RP” means being able to introduce a double bond into the 6 position of linoleic acid under conditions in which CYB5RP is able to introduce a double bond into the 6 position of linoleic acid.

A "conservative amino acid substitution" refers to the replacement of one amino acid residue by another, chemically similar, amino acid residue. Examples of such conservative substitutions are: substitution of one hydrophobic residue (isoleucine, leucine, valine, or methionine) for another; substitution of one polar residue for another polar residue of the same charge (*e.g.*, arginine for lysine; glutamic acid for aspartic acid); substitution of one aromatic amino acid (tryptophan, tyrosine, or phenylalanine) for another.

The present invention relates to the identification and cloning of cytochrome b5-related protein (CYB5RP), a gene which encodes a human delta 6 fatty acid desaturase. The gene is present on PAC clones 759J12, 756B3, 519O13, and 466A11 from an area of human chromosome 11q12 that has been shown to contain a gene related to Best's macular dystrophy (Cooper *et al.*, 1997, Genomics 41:185-192; Stöhr *et al.*, 1997, Genome Res. 8:48-56; Graff *et al.*, 1997, Hum. Genet. 101: 263-279). This linkage between the chromosomal location of the CYB5RP gene and the location of the gene related to Best's macular dystrophy can be used diagnostically by identifying restriction fragment length polymorphisms (RFLPs) in the vicinity of the CYB5RP gene, *e.g.*, in SEQ.ID.NO.:1. Such RFLPs will be associated with the Best's macular dystrophy gene and thus can be used to identify individuals carrying disease-causing forms of the Best's macular dystrophy gene.

CYB5RP was identified as an EST hit in sequence scanning data from PAC clones from human chromosome 11q12. In addition, a full length cDNA of CYB5RP was recovered from a human retina cDNA library. The genomic region of CYB5RP has been sequenced and the exon/intron organization of CYB5RP has been determined. The CYB5RP gene has 12 exons. The promoter region of CYB5RP was identified upstream of the 5' UTR by detecting consensus elements required for eukaryotic transcription. The expression pattern of CYB5RP was determined by RT-PCR analysis in 9 human tissues. The CYB5RP gene is expressed predominantly in human retina, kidney, pancreas, and placenta; lower levels of expression are also detected in brain, heart, lung, liver, and skeletal muscle. Bioinformatic analysis revealed significant homology to a group of plant and bacterial fatty acid desaturases. All of the typical amino acid motifs present in these fatty acid desaturases are also present in CYB5RP. Kyte-Doolittle algorithm analysis predicts a transmembrane organization typical of fatty acid desaturases for CYB5RP (see Figure 5). CYB5RP is

unusual in that it contains a cytochrome b5 region in its N terminus. While many fatty acid desaturases utilize cytochrome b5 as an electron donor, most have not incorporated this cytochrome as part of their polypeptide chain.

That CYB5RP is a fatty acid desaturase is shown by the following 5 evidence:

(1) CYB5RP possesses significant homology to a group of plant and microbial fatty acid desaturases;

(2) Like other fatty acid desaturases, CYB5RP has three conserved histidine boxes, with correct spacing between the boxes; and

10 (3) The predicted membrane topology of CYB5RP is similar to that of known fatty acid desaturases.

That CYB5RP is a delta 6 fatty acid desaturase is shown by the following evidence:

15 (1) CYB5RP contains a cytochrome b5-like moiety fused to its N-terminus. The only two fatty acid desaturases that contain cytochrome b5-like moiety fused to their N-termini are known or suspected to be delta 6 desaturases.

(2) The only two plant desaturases that are known or suspected to introduce a double bond in the 6 position have an atypical His box 3 (QI/LEHH), with a Q in the first position rather than an H. CYB5RP has the same atypical His Box 3.

20 (3) The only bacterial desaturase that is known to introduce a double bond in the 6 position has an atypical His box 3 (QVTHH), with a Q in the first position rather than an H. CYB5RP has the same atypical His Box 3.

CYB5RP is a target for the development of drugs for the treatment of disorders of lipid metabolism and for the treatment of conditions that require the 25 modulation of the biosynthesis of prostaglandins and leukotrienes (asthma, pain, etc.). CYB5RP is also a target for the development of drugs for use in treating skin diseases, diabetic complications, reproductive disorders, including breast pain and premenstrual syndrome, inflammatory and autoimmune disorders, cardiovascular disorders, complications of viral infections, and various forms of retinal degeneration, 30 including age-related macular degeneration.

CYB5RP is homologous to a delta 6 desaturase from *Borago officinalis* (see Figure 7B). Both CYB5RP and this *Borago* delta 6 desaturase, unlike desaturases from higher plants, are unusual in containing a cytochrome b5-like

domain fused to their N-termini (Sayanova et al., 1997, Proc. Natl. Acad. Sci. USA 94:4211-4216; hereinafter "Sayanova"). The *Borago* desaturase has been expressed in transgenic tobacco, resulting in high levels of delta 6 desaturated fatty acids in the transgenic tobacco leaves, including high levels of γ -linolenic acid (GLA) (Sayanova).

5 Given the medical importance of GLA, Sayanova proposed that transgenic plants, expressing the *Borago* delta 6 desaturase, would be valuable as sources of GLA. Similarly, CYB5RP, expressed in transgenic plants, is expected to provide a valuable source of GLA.

The present invention provides DNA encoding CYB5RP that is
10 substantially free from other nucleic acids. The present invention also provides recombinant DNA molecules encoding CYB5RP. The present invention provides DNA molecules substantially free from other nucleic acids comprising the nucleotide sequence shown in Figure 2 as SEQ.ID.NO.:1. Analysis of SEQ.ID.NO.:1 revealed that this genomic sequence defines a gene having 12 exons. These exons collectively
15 have an open reading frame that encodes a protein of 445 amino acids. When an alternatively spliced exon 8 is used, a CYB5RP protein of 433 amino acids, lacking amino acids 317-328, is produced. Thus, the present invention includes two cDNA molecules, encoding two forms of CYB5RP protein, that are substantially free from other nucleic acids. The first cDNA is shown in Figure 3 and has the nucleotide
20 sequence SEQ.ID.NO.:2. The second cDNA is identical to the first, except that it does not contain the nucleotides at positions 1,019-1,054.

The present invention includes DNA molecules substantially free from other nucleic acids comprising the coding region of SEQ.ID.NO.:2. Accordingly, the present invention includes DNA molecules substantially free from other nucleic acids
25 having a sequence comprising positions 71-1,405 of SEQ.ID.NO.:2. The present invention also includes DNA molecules substantially free from other nucleic acids having a sequence comprising positions 71-1,405 of SEQ.ID.NO.:2, except that the nucleotides at positions 1,019-1,054 are missing. Also included in the present invention are recombinant DNA molecules having a nucleotide sequence comprising
30 positions 71-1,405 of SEQ.ID.NO.:2 and recombinant DNA molecules having a nucleotide sequence comprising positions 71-1,405 of SEQ.ID.NO.:2 with the exception that positions 1,019-1,054 are missing.

The novel DNA sequences of the present invention encoding CYB5RP, in whole or in part, can be linked with other DNA sequences, *i.e.*, DNA sequences to which CYB5RP is not naturally linked, to form "recombinant DNA molecules" encoding CYB5RP. Such other sequences can include DNA sequences that control transcription or translation such as, *e.g.*, translation initiation sequences, promoters for RNA polymerase II, transcription or translation termination sequences, enhancer sequences, sequences that control replication in microorganisms, sequences that confer antibiotic resistance, or sequences that encode a polypeptide "tag" such as, *e.g.*, a polyhistidine tract or the myc epitope. The novel DNA sequences of the present invention can be inserted into vectors such as plasmids, cosmids, viral vectors, P1 artificial chromosomes, or yeast artificial chromosomes.

Included in the present invention are DNA sequences that hybridize to at least one of SEQ.ID.NOs.:1 or 2 under stringent conditions. By way of example, and not limitation, a procedure using conditions of high stringency is as follows:

15 Prehybridization of filters containing DNA is carried out for 2 hr. to overnight at 65°C in buffer composed of 6X SSC, 5X Denhardt's solution, and 100 µg/ml denatured salmon sperm DNA. Filters are hybridized for 12 to 48 hrs at 65°C in prehybridization mixture containing 100 µg/ml denatured salmon sperm DNA and 5-20 X 10⁶ cpm of ³²P-labeled probe. Washing of filters is done at 37°C for 1 hr in a solution containing 2X SSC, 0.1% SDS. This is followed by a wash in 0.1X SSC, 0.1% SDS at 50°C for 45 min. before autoradiography.

Other procedures using conditions of high stringency would include either a hybridization carried out in 5XSSC, 5X Denhardt's solution, 50% formamide at 42°C for 12 to 48 hours or a washing step carried out in 0.2X SSPE, 0.2% SDS at 25 65°C for 30 to 60 minutes.

Reagents mentioned in the foregoing procedures for carrying out high stringency hybridization are well known in the art. Details of the composition of these reagents can be found in, *e.g.*, Sambrook, Fritsch, and Maniatis, 1989, Molecular Cloning: A Laboratory Manual, second edition, Cold Spring Harbor 30 Laboratory Press. In addition to the foregoing, other conditions of high stringency which may be used are well known in the art.

The degeneracy of the genetic code is such that, for all but two amino acids, more than a single codon encodes a particular amino acid. This allows for the

construction of synthetic DNA that encodes the CYB5RP protein where the nucleotide sequence of the synthetic DNA differs significantly from the nucleotide sequence of SEQ.ID.NO.:2, but still encodes the same CYB5RP protein shown as SEQ.ID.NO.:3. Such synthetic DNAs are intended to be within the scope of the present invention. Also with the scope of the present invention are synthetic DNAs that encode a CYB5RP protein lacking amino acids 317-328 of SEQ.ID.NO.:3.

Another aspect of the present invention includes host cells that have been engineered to contain and/or express DNA sequences encoding CYB5RP protein. Such recombinant host cells can be cultured under suitable conditions to produce CYB5RP protein. An expression vector containing DNA encoding CYB5RP protein can be used for expression of CYB5RP protein in a recombinant host cell. Recombinant host cells may be prokaryotic or eukaryotic, including but not limited to, bacteria such as *E. coli*, fungal cells such as yeast, mammalian cells including, but not limited to, cell lines of human, bovine, porcine, monkey and rodent origin, plant cells such as tobacco, and insect cells including but not limited to *Drosophila* and silkworm derived cell lines. Cell lines derived from mammalian species which are suitable for recombinant expression of CYB5RP protein and which are commercially available, include but are not limited to, L cells L-M(TK⁻) (ATCC CCL 1.3), L cells L-M (ATCC CCL 1.2), 293 (ATCC CRL 1573), Raji (ATCC CCL 86), CV-1 (ATCC CCL 70), COS-1 (ATCC CRL 1650), COS-7 (ATCC CRL 1651), CHO-K1 (ATCC CCL 61), 3T3 (ATCC CCL 92), NIH/3T3 (ATCC CRL 1658), HeLa (ATCC CCL 2), C127I (ATCC CRL 1616), BS-C-1 (ATCC CCL 26) and MRC-5 (ATCC CCL 171).

A variety of mammalian expression vectors can be used to express recombinant CYB5RP in mammalian cells. Commercially available mammalian expression vectors which are suitable include, but are not limited to, pMC1neo (Stratagene), pSG5 (Stratagene), pcDNA1 and pcDNA1amp, pcDNA3, pcDNA3.1, pCR3.1 (Invitrogen), EBO-pSV2-neo (ATCC 37593), pBPV-1(8-2) (ATCC 37110), pdBPV-MMTneo(342-12) (ATCC 37224), pRSVgpt (ATCC 37199), pRSVneo (ATCC 37198), and pSV2-dhfr (ATCC 37146). Following expression in recombinant cells, CYB5RP can be purified by conventional techniques to a level that is substantially free from other proteins. A description of vectors that can be used to express CYB5RP can be found in, e.g., Goeddel, ed., 1990, Meth. Enzymol. vol. 185 or Perbal, 1988, A Practical Guide to Molecular Cloning, John Wiley and Sons, Inc.

The present invention includes CYB5RP protein substantially free from other proteins. The amino acid sequence of the full-length CYB5RP protein is shown in Figure 3 as SEQ.ID.NO.:3. Thus, the present invention includes CYB5RP protein substantially free from other proteins having the amino acid sequence 5 SEQ.ID.NO.:3. Also included in the present invention is a CYB5RP protein that is produced from an alternatively spliced CYB5RP mRNA where the protein has the amino acid sequence of SEQ.ID.NO.:3 with the exception that amino acids 317-328 are missing.

As with many proteins, it is possible to modify many of the amino acids of CYB5RP and still retain substantially the same biological activity as the original protein. Thus, the present invention includes modified CYB5RP proteins which have amino acid deletions, additions, or substitutions but that still retain substantially the same biological activity as CYB5RP. It is generally accepted that single amino acid substitutions do not usually alter the biological activity of a protein 10 (see, e.g., *Molecular Biology of the Gene*, Watson *et al.*, 1987, Fourth Ed., The Benjamin/Cummings Publishing Co., Inc., page 226; and Cunningham & Wells, 15 1989, Science 244:1081-1085). Accordingly, the present invention includes polypeptides where one amino acid substitution has been made in SEQ.ID.NO.:3 wherein the polypeptides still retain substantially the same biological activity as CYB5RP. The present invention also includes polypeptides where two or more 20 amino acid substitutions have been made in SEQ.ID.NO.:3 wherein the polypeptides still retain substantially the same biological activity as CYB5RP. In particular, the present invention includes embodiments where the above-described substitutions are conservative substitutions. In particular, the present invention includes embodiments 25 where the above-described substitutions do not occur in the His boxes of CYB5RP. In particular, the present invention includes embodiments where the above-described substitutions do not occur in positions where the amino acid present in those positions in CYB5RP is the same as the amino acid present in the corresponding position of the sunflower protein depicted in Figure 1 of Sperling *et al.*, 1995, Eur. J. Biochem. 30 232:798-805 when these two proteins are aligned by BLASTP analysis. In particular, the present invention includes embodiments where the above-described substitutions do not occur in positions where the amino acid present in those positions in CYB5RP is the same as the amino acid present in the corresponding position of the

CCCTCTACCCCTGTCCCATCAGGC (SEQ.ID.NO.:15)

One of skill in the art would recognize that many other primer pairs based upon SEQ.ID.NO.:2 would also be suitable.

PCR reactions can be carried out with a variety of thermostable enzymes including but not limited to AmpliTaq, AmpliTaq Gold, or Vent polymerase. For AmpliTaq, reactions can be carried out in 10 mM Tris-Cl, pH 8.3, 2.0 mM MgCl₂, 200 µM for each dNTP, 50 mM KCl, 0.2 µM for each primer, 10 ng of DNA template, 0.05 units/µl of AmpliTaq. The reactions are heated at 95°C for 3 minutes and then cycled 35 times using the cycling parameters of 95°C, 20 seconds, 62°C, 20 seconds, 72°C, 3 minutes. In addition to these conditions, a variety of suitable PCR protocols can be found in PCR Primer, A Laboratory Manual, edited by C.W. Dieffenbach and G.S. Dveksler, 1995, Cold Spring Harbor Laboratory Press; or PCR Protocols: A Guide to Methods and Applications, Michael *et al.*, eds., 1990, Academic Press .

A suitable cDNA library from which a clone encoding CYB5RP can be isolated would be Human Retina 5'-stretch cDNA library in lambda gt10 or lambda gt11 vectors (catalog numbers HL1143a and HL1132b, Clontech, Palo Alto, CA). The primary clones of such a library can be subdivided into pools with each pool containing approximately 20,000 clones and each pool can be amplified separately.

By this method, a cDNA fragment encoding an open reading frame of either 445 amino acids (SEQ.ID.NO.:3) or an open reading frame of 433 amino acids (SEQ.ID.NO.:3 lacking the amino acids at positions 317-328) can be obtained. This cDNA fragment can be cloned into a suitable cloning vector or expression vector. For example, the fragment can be cloned into the mammalian expression vector pcDNA3.1 (Invitrogen, San Diego, CA). CYB5RP protein can then be produced by transferring an expression vector encoding CYB5RP or portions thereof into a suitable host cell and growing the host cell under appropriate conditions. CYB5RP protein can then be isolated by methods well known in the art.

As an alternative to the above-described PCR method, a cDNA clone encoding CYB5RP can be isolated from a cDNA library using as a probe oligonucleotides specific for CYB5RP and methods well known in the art for screening cDNA libraries with oligonucleotide probes. Such methods are described

in, e.g., Sambrook *et al.*, 1989, Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Glover, D.M. (ed.), 1985, DNA Cloning: A Practical Approach, MRL Press, Ltd., Oxford, U.K., Vol. I, II. Oligonucleotides that are specific for CYB5RP and that can be used to screen cDNA libraries can be readily designed based upon the cDNA sequence of CYB5RP shown in SEQ.ID.NO.:2 and can be synthesized by methods well-known in the art.

Genomic clones containing the CYB5RP gene can be obtained from commercially available human PAC or BAC libraries available from Research Genetics, Huntsville, AL. PAC clones containing the CYB5RP gene (e.g., PAC 10 clones 759J12, 756B3, 519O13, and 466A11) are commercially available from Research Genetics, Huntsville, AL (Catalog number for individual PAC clones is RPCI.C). Alternatively, one may prepare genomic libraries, especially in P1 artificial chromosome vectors, from which genomic clones containing the CYB5RP can be isolated, using probes based upon the CYB5RP sequences disclosed herein. Methods 15 of preparing such libraries are known in the art (Ioannou *et al.*, 1994, *Nature Genet.* 6:84-89).

The present invention also provides oligonucleotide probes, based upon SEQ.ID.NO.:2 that can be used to determine the level of CYB5RP RNA in a sample. In particular, the present invention includes DNA oligonucleotides 20 comprising at least 18 contiguous nucleotides of SEQ.ID.NO.:2. Also provided by the present invention are corresponding RNA oligonucleotides. The DNA or RNA oligonucleotide probes can be packaged in kits.

In addition to the utilities described above, the present invention makes possible the recombinant expression of the CYB5RP protein in various cell types. In 25 particular, it is advantageous to recombinantly express CYB5RP in plant cells. Such expression in plant cells provides a method for the production of high levels of valuable EFAs such as GLA and OTA in the recombinant plant cells. An example of such recombinant expression of a delta 6 fatty acid desaturase, in that case from borage, is described in Sayanova *et al.*, 1997, *Proc. Natl. Acad. Sci. USA* 94:4211-30 4216 (Sayanova). The recombinant expression of the borage delta 6 desaturase led to the production of high levels of GLA and OTA in the leaves of the tobacco plants in which it was expressed. The procedures described in Sayanova can be easily adapted to express CYB5RP in tobacco, thus providing an additional, useful way to produce

large amounts of valuable EFAs. Known methods of recombinantly expressing genes in other plant species beside tobacco can be used to express CYB5RP in those other species.

The present invention also makes possible the development of assays 5 which measure the biological activity of the CYB5RP protein. Such assays using recombinantly expressed CYB5RP protein are especially of interest.

Assays for CYB5RP protein activity can be used to screen libraries of compounds or other sources of compounds to identify compounds that are activators or inhibitors of the activity of CYB5RP protein. Such identified compounds can 10 serve as "leads" for the development of pharmaceuticals that can be used to modulate the activity of CYB5RP in patients suffering from conditions where that activity is abnormal, e.g., skin diseases, diabetic complications, inflammatory and autoimmune disorders, cardiovascular disorders, complications of viral infection, and retinal dysfunction such as macular degeneration.

Such assays may comprise:

- (a) recombinantly expressing CYB5RP protein in a host cell;
- (b) measuring the biological activity of the recombinantly

expressed CYB5RP protein in the presence and in the absence of a substance suspected of being an activator or an inhibitor of CYB5RP protein;

20 where a change in the biological activity of the recombinantly expressed CYB5RP protein in the presence as compared to the absence of the substance indicates that the substance is an activator or an inhibitor of CYB5RP protein.

In particular embodiments, the biological activity of the recombinantly 25 expressed CYB5RP protein is the ability to introduce a double bond into the 6 position of linoleic acid or alpha-linoleic acid.

In some embodiments, it may be advantageous to insert additional steps between steps (a) and (b). Such additional steps might include lysing the host cell and fractionating its contents in order to partially purify the recombinantly 30 expressed CYB5RP, thus facilitating exposure of the recombinantly expressed CYB5RP to the substance as well as to any substrate used in the assay.

The present invention includes activators and inhibitors identified by the methods described herein as well as pharmaceutical compositions comprising

such activators and inhibitors. The activators and inhibitors are generally combined with pharmaceutically acceptable carriers before use to form pharmaceutical compositions. Examples of such carriers and methods of formulation of pharmaceutical compositions containing activators or inhibitors and carriers can be found in Remington's Pharmaceutical Sciences. To form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of the activator or inhibitor.

Therapeutic or prophylactic compositions are administered to an individual in amounts sufficient to treat or prevent conditions where CYB5RP activity is abnormal. The effective amount can vary according to a variety of factors such as the individual's condition, weight, sex and age. Other factors include the mode of administration. The appropriate amount can be determined by a skilled physician.

Compositions can be used alone at appropriate dosages. Alternatively, co-administration or sequential administration of other agents can be desirable.

The compositions can be administered in a wide variety of therapeutic dosage forms in conventional vehicles for administration. For example, the compositions can be administered in such oral dosage forms as tablets, capsules (each including timed release and sustained release formulations), pills, powders, granules, elixirs, tinctures, solutions, suspensions, syrups and emulsions, or by injection.

Likewise, they can also be administered in intravenous (both bolus and infusion), intraperitoneal, subcutaneous, topical with or without occlusion, or intramuscular form, all using forms well known to those of ordinary skill in the pharmaceutical arts.

Advantageously, compositions can be administered in a single daily dose, or the total daily dosage can be administered in divided doses of two, three or four times daily. Furthermore, compositions can be administered in intranasal form via topical use of suitable intranasal vehicles, or via transdermal routes, using those forms of transdermal skin patches well known to those of ordinary skill in that art. To be administered in the form of a transdermal delivery system, the dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen.

The dosage regimen utilizing the compositions is selected in accordance with a variety of factors including type, species, age, weight, sex and medical condition of the patient; the severity of the condition to be treated; the route

of administration; the renal, hepatic and cardiovascular function of the patient; and the particular composition thereof employed. A physician or veterinarian of ordinary skill can readily determine and prescribe the effective amount of the composition required to prevent, counter or arrest the progress of the condition. Optimal precision 5 in achieving concentrations of composition within the range that yields efficacy without toxicity requires a regimen based on the kinetics of the composition's availability to target sites. This involves a consideration of the distribution, equilibrium, and elimination of a composition.

The present invention also includes antibodies to the CYB5RP protein.
10 Such antibodies may be polyclonal antibodies or monoclonal antibodies. The antibodies of the present invention are raised against the entire CYB5RP protein or against suitable antigenic fragments of the protein that are coupled to suitable carriers, e.g., serum albumin or keyhole limpet hemocyanin, by methods well known in the art. Methods of identifying suitable antigenic fragments of a protein are known in the art.
15 See, e.g., Hopp & Woods, 1981, Proc. Natl. Acad. Sci. USA 78:3824-3828; and Jameson & Wolf, 1988, CABIOS (Computer Applications in the Biosciences) 4:181-186.

For the production of polyclonal antibodies, CYB5RP protein or an antigenic fragment, coupled to a suitable carrier, is injected on a periodic basis into an appropriate non-human host animal such as, e.g., rabbits, sheep, goats, rats, mice. 20 The animals are bled periodically and sera obtained are tested for the presence of antibodies to the injected antigen. The injections can be intramuscular, intraperitoneal, subcutaneous, and the like, and can be accompanied with adjuvant.

For the production of monoclonal antibodies, CYB5RP protein or an antigenic fragment, coupled to a suitable carrier, is injected into an appropriate non-human host animal as above for the production of polyclonal antibodies. In the case 25 of monoclonal antibodies, the animal is generally a mouse. The animal's spleen cells are then immortalized, often by fusion with a myeloma cell, as described in Kohler & Milstein, 1975, Nature 256:495-497. For a fuller description of the production of 30 monoclonal antibodies, see Antibodies: A Laboratory Manual, Harlow & Lane, eds., Cold Spring Harbor Laboratory Press, 1988.

Gene therapy may be used to introduce CYB5RP polypeptides into the cells of target organs, e.g., the pigmented epithelium of the retina or other parts of the

retina. Nucleotides encoding CYB5RP polypeptides can be ligated into viral vectors which mediate transfer of the nucleotides by infection of recipient cells. Suitable viral vectors include retrovirus, adenovirus, adeno-associated virus, herpes virus, vaccinia virus, and polio virus based vectors. Alternatively, nucleotides encoding CYB5RP polypeptides can be transferred into cells for gene therapy by non-viral techniques including receptor-mediated targeted transfer using ligand-nucleotide conjugates, lipofection, membrane fusion, or direct microinjection. These procedures and variations thereof are suitable for *ex vivo* as well as *in vivo* gene therapy. Gene therapy with CYB5RP polypeptides will be particularly useful for the treatment of diseases where it is beneficial to elevate CYB5RP activity.

The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are intended to fall within the scope of the appended claims.

Various publications are cited herein, the disclosures of which are incorporated by reference in their entireties.

WHAT IS CLAIMED:

1. A recombinant DNA molecule encoding a polypeptide having the amino acid sequence of SEQ.ID.NO.:3.
- 5 2. A recombinant DNA molecule comprising a nucleotide sequence selected from the group consisting of:
SEQ.ID.NO.:1;
SEQ.ID.NO.:2;
10 SEQ.ID.NO.:2 lacking positions 1,019-1,054;
positions 71-1,405 of SEQ.ID.NO.:2; and
positions 71-1,405 of SEQ.ID.NO.:2 lacking positions 1,019-1,054.
- 15 3. A DNA molecule that hybridizes under stringent conditions to the DNA molecule of claim 2.
4. An expression vector comprising the DNA of claim 1.
- 20 5. A recombinant host cell comprising the DNA of claim 1.
6. A CYB5RP protein, substantially free from other proteins, having an amino acid sequence selected from the group consisting of SEQ.ID.NO.:3 and SEQ.ID.NO.:3 lacking positions 317-328.
- 25 7. The CYB5RP protein of claim 6 containing a single amino acid substitution.
8. The CYB5RP protein of claim 7 where the substitution is a conservative substitution.
- 30 9. The CYB5RP protein of claim 6 containing amino acid substitutions where the substitutions do not occur in positions where the amino acid

present in CYB5RP at those positions is also present in the corresponding position in the delta 6 desaturase from sunflower when CYB5RP and the delta 6 desaturase from sunflower are aligned by BLASTP analysis or where the substitutions do not occur in positions where the amino acid present in CYB5RP at those positions is also present
5 in the corresponding position in the delta 6 desaturase from *Synechocystis* when CYB5RP and the delta 6 desaturase from *Synechocystis* are aligned by BLASTP analysis or where the substitutions do not occur in positions where the amino acid present in CYB5RP at those positions is also present in the corresponding position in the delta 6 desaturase from borage when CYB5RP and the delta 6 desaturase from
10 borage are aligned by BLASTP analysis.

10. An antibody that binds specifically to the CYB5RP protein of claim 6.

15 11. A DNA or RNA oligonucleotide probe comprising at least 18 contiguous nucleotides of at least one of the sequences of claim 2.

12. A method for determining whether a substance is an activator or an inhibitor of CYB5RP protein comprising:
20 (a) recombinantly expressing the CYB5RP protein of claim 6 in a host cell;
(b) measuring the biological activity of the recombinantly expressed CYB5RP protein in the presence and in the absence of a substance suspected of being an activator or an inhibitor of CYB5RP protein;
25 where a change in the biological activity of the recombinantly expressed CYB5RP protein in the presence as compared to the absence of the substance indicates that the substance is an activator or an inhibitor of CYB5RP protein.

30 13. The method of claim 12 where the biological activity of CYB5RP protein is the ability to introduce a double bond into the 6 position of linoleic acid.

14. A pharmaceutical composition comprising an activator or an inhibitor of CYB5RP.

15. A method of treating macular degeneration comprising
5 administering to a patient an effective amount of the pharmaceutical composition of
claim 14.

1/19

FIG.1

2/19

1 gctcacagac cgggactccg cctccgggttc ccgaggcggt ggcgaggcg
 51 tgcgggacgc ccaacaggtt cgttgtgtt ccccaggccc cgcgcctccgg
 101 gtggagtcaa gagcctggaa gccggcagcc cgggaaaagg gggcgggacg
 151 gtgccccggg gcagggctgg gtggcgccg ctgtcctccc gggaggggacg
 201 ggccgcctcg acgcccctt ccctggccgcaatggagac cgaggccccg
 251 cgcctggatt ggagcggacg cgggggtcag ccagccttgg gggccggggc
 301 ctggccgggg gcggggggggc aggccggacg aggcggggcgc cgtccgcgc
 351 gttataaaggc ggggagttcc ctgcgcgcg agccgggagg cgcacgcctcg
 401 ctcgtacggc ggccgcggcg gcagggcg gccggagcag cgggcggcg
 451 cggaggcgac gcccgggagc gctCTTCGCT TCCCTCGGG TCTTGCTCGG
 501 ACCTCGGCCA CCCCTGGGA TCCCCAGGAC TCCTGCCTGC AGCATGGCG
 551 GCGTCGGGGA GCCGGGACCG CGGGAGGGAC CCGCGCAGCC GGGGGCGCCG
 601 CTGCCCACCT TCTGCTGGGA GCAGATCCGC GCGCACGACC AGCCCAGGCA
 651 CAAGTGGCTG GTCATCGAGC GCCGCGTCTA CGACATCAGC CGCTGGGCAC
 701 AGCGGCACCC AGGGGGCAGC CGCCTCATCG GCCACCACGG CGCTGAGGAC
 751 GCCACGgtaa ggaagccata aggaagccac ccaccggcggtt gttggagcctg
 801 gagctcggtc gtggcggtga tgtcccgctc cacctgtggg gccttagcat
 851 cctccctccc ctcgctgacc ttgacacctt acgcccggac ccagagttgg
 901 ggtggactag ccagggccag atgtgggtta gggagggcag ttccctgcgt
 951 ggaggacccg cagctgtcca cggagcaggt ctgcggggga ggagggggcc
 1001 tcagaggtgg gtgtgtcatg ctgcagagcc tggccctgggt gggggctgc
 1051 cctgttgctc ccaggtccct gttcagttc tgggtcccca tgctgggtgc
 1101 ttgctgagtg cttagggtag ggcagggcag ggtccccagg gcccggtaag
 1151 gacatgccat tagaggctgg gggctggcc ggcctgaggt ctgtggcttt
 1201 cccaagagct tctgtaaagg gctcaggac agtactcac ctctccgggc
 1251 tagcagctgc acgtgggggac gcttgcac ccaggctggg tgggcctctc
 1301 ctggaaagcac agtcacccca ggaacaggct gggccctggg gaccccaact
 1351 tcccaatccc agccctgtc tagacaggca gggatgtagc ctggccccag
 1401 ggtactgtct ggctggagtc cagtggtggc gcagccccac cagcccttt
 1451 tccttagtta cccacctgca taataggggt tggggccacg atgcctgtc
 1501 cttgaccctc caaatttcta ggtggccac actgggtatc aggaaggct
 1551 tcaagacccg aggacatgaa tcctgaatgc tggcttttg ggcagcagcg
 1601 gaggttctgt ccagtccca gactgtcgcc gtcctcttg ccagggccac
 1651 ctgctctctg ccgattgcca tctccagcat gttgacaat cttcacttgg
 1701 ctctttgagg aagaaagccc ctctttccc ttccaccccc atgaactga
 1751 ggagtgagaa taagaatcct cctgaaattc taaaaaaaaga aaaaaaaaaa
 1801 aaagagaacg cttgtccgt ggctgttcag ggcgcagacg ctggcccgag
 1851 gggacagcac agccgtggga tgaagcagcc tggggcagt atttggcg
 1901 gcaggtgttt gcatgtctgg gtgagtgtgg tgggtgtgcc tgccttctg
 1951 ccagggcgtg gcgaggtgag gggcacggct tctcccaaa ggcctgctg
 2001 agccctggcc tcccttcaag gagtctgtt gatgcctgct ctggctttt
 2051 tttaaaaaaaat tatctatttt atttattttt atttggttaa aaatagagac
 2101 agggctcac tatgttgctc gggctggctt caaatcctg gttcaagca
 2151 ttccctctgc ctcagcctcc gaaagttctg ggattacagg catgacccac
 2201 cactcccgcc ctgctcttagt ctttgtaac cttagaggaca gtatggatac
 2251 aaaaaacttt actccccacc aaccgcccggaa gacagactt tgctctgcca
 2301 cccagactgg agtgcataatgg cgccatctt gctcaactgca acctccgcct
 2351 cccaggttca agcgattctc ctgcctcagc ctcccgagta gctgggatta
 2401 cgggcacgcg ccaccacgcc cagcatattt tatttttagt agagacgggg
 2451 tttcaccatg ttggccaagc tgggtctcgaa ctccgtaccc cgtgatccac
 2501 ccacctcgcc ctcccaaagt gctgggatta caggcgtgag ccaccacgccc
 2551 cggctggat acagaaagct tttatccat cactgtttcc tgcctgggtgc

FIG.2A

3/19

2601 caggcccattg ctggggttcc tcccaagtgg aattactgac ttaacattt
 2651 gcttgggatc ctgagacttc catcacacag ttttctcatt gattcgacgc
 2701 caataatatac tgttttaaaa acatctcagg ccgagcgttg tggctcacac
 2751 ctgtaatccc agcactttgg gaggctgagg tgggcagatc acctgaggtc
 2801 gggagttga gaccagctg accaacatgg agaaaccctg tctcttctaa
 2851 aaaaatacaa aattagccag gcgtggtggc gcatgcctgt aatcccagca
 2901 ctttgggagg ctgaggcagg agaatcgctt gaacccagga gacggaggtt
 2951 ccggtgagcc gagatcgccg cattgcactc cagcctggc aacaagagca
 3001 aaactccgtc tcaaacaac aaacaaaaaa catctctctg ctcccttgggg
 3051 ccgggtgcca gctctgctat tggaggcact gagcgcaccc gaagcaggca
 3101 tgtactcct ctgtccccca gtttactcat ctgtaaagtg ggagagctgg
 3151 ggcagacagt gagctggctg agggcaggac tgtgtctcct caagcccatg
 3201 gcccaggct gccaggtatg agtttgtatt cgtaaatgc tgctggcccc
 3251 taagtgtgag cgtccccctgc aaactgcagc gtatggtggg acagccctgc
 3301 acggctaccc ctttctggg tgaccttatt tggttacggt cctatctgaa
 3351 gtaggaaagg gacacttttag gctgtctctt agctccctca aggccccaca
 3401 gcctggacta gagttgccag aaataacttgg tccattcagg ccaaaggagac
 3451 tgtgagggtt ctgggatggt gcaatcagtc tttgtccatg atgaacccac
 3501 aggttagacc agggggttggg ccagcccaatg gccctgtgtt gttgagccca
 3551 ggccccaggc atcccatccc gggcggtggc ctcaggtggg ggtggggcag
 3601 ccagttgcca gggatgtgtt ccagcggtca cctctcacca gccccggctg
 3651 cccatcagct gttctcaagt ccaggcaatg aaggcttccct gccaggaat
 3701 tcccaaggtt tctgtgccat gaagtcagcc tttgtccatc ttgggacaca
 3751 agggccgggtg ccctggggag agtactctgg gcccctggcc aggtttgtct
 3801 gagagtataa ggcagcctga tactagtggg gccagccagg gagggatgag
 3851 gcccagccgc tgctggccat aagtataaa gggccatgtg ctgagtgcc
 3901 actatgtgcc aggttttggaa atcagtaattt gatttattga aaccctctt
 3951 tttaatcctc aagggtcccc tatgaggcac gtaccattt ttgttattgc
 4001 cacttgacag atgagaaaaac agaggtctag agaggcaaag tggcttggaaa
 4051 ttcaagtgtt ggtctgggat ttgaatccac agccatgtt ttaaggccat
 4101 gctatgtgc cacctatcct gttttttcc ggcacttattt gattcttcaa
 4151 tgtttgactc attaaatcca tcagtggatc tcttctctgt gtcatgcatt
 4201 gttctcacct ctgaagatgt agctgtgagc aaaacttcta cagggatgaa
 4251 gttcacagca gaggatcag cttagcaaaa ggctcagagg tgggaccgtg
 4301 cgtccctgtgt tccaggaata cagtatggct gcacggagaga gcagtggaga
 4351 gagggccctgg cagtggggc tagaggccgc cgggctggct catgctggat
 4401 gtttgtgtcc tcggaaaggac tttggctta tttaaagag gatggggagc
 4451 cccagagagc acagcaggga agcctggggaa gtctgatgga catttaaag
 4501 gatccattaaat ggagagatgt aaggcagagg cttccagaag ggtaaagagaa
 4551 gggaggatgg agacctgccc tcccccaagg gaggccactc agaagaggtt
 4601 gagttgtggcc agggcagaga gcaagagagg ctgtggacac aggcacactg
 4651 gtcctgtgag agccattaga cacattatg ttagcttcatttcat gttgtcttta
 4701 gagagggagc cagcctggcc tcgctctatg atcttgaca catccttca
 4751 cttctgggtc tcagtttccc cattagtgtt atgaggatgtt gaatgcttt
 4801 gtcctgggcactatgaggatgtt gtcacctgggtt gcacctgggtt gctgggttac
 4851 catgggcaac aaagcttat tcatgggtt ggtgaatgca ttggccacag
 4901 caactcaggc cggatgagga gtttcccagg agccctggt gccccttcgg
 4951 ctgaaggccct aacaactgtt ggaaaatcca agttccagca gacccctgt
 5001 gcctctgtcc ttaggaccct ctttcttagt gtttctctgtt gctggcctg
 5051 agctggagga gggagttggcc agtgcgtcag cagaggctgc ttcataatgaa
 5101 ttgcagccaa cagttattgtt ctagggactt ttctgagggg ttttagatgtt
 5151 gtaactgattt gaaatcgcc aacaacttta tgaggttaatg cctattgtt
 5201 gcccattttt tagatgagga gactgagttt gaaactgggg ggtgtaatgg
 5251 aaccttctca ggacccttga aggtagggc ctttgtactc gggccacgag

FIG.2B

4 / 19

5301 ggtggggttt gtgtctgggt gggagctggg gagggacagg actaggatta
 5351 ggcagatctg aggccacagg agttggttgg ggggtggctc cagagccact
 5401 ccactccctc ctaccacatt gactgccttg aaagtccctt aatggccact
 5451 cccatgaagt gtgactgctc tgggctcccc gcaggcggtt tctgcaaggc
 5501 caccgcccac ccaggccccct tccccagagg ggctgcagtg ccttgctcct
 5551 tccttgtggg aagagttggg attgtctggc gtcagcagga tactgcccct
 5601 gggcatccct cccggctct tcctgcgggt ttctgatgaa acagccaggc
 5651 tccagtagtg gagccagagg tcagttggg agagaggacc aggagccaga
 5701 gggtagatgt gctttggggc tactgtgggg tcagggacac ttgtgaggcc
 5751 aagcgtcctg gctgcaggag ccctcacata tatgcccacc cttcaccagg
 5801 acattgaggg gtgctggggc acaggggtag cttttgggg gtgtctgcct
 5851 tcgacttggg ctccgctaca caggccaaat ttggatgtcc catgtttaga
 5901 gctgtgtttc tttgggacct cttgggacct cagtttcctc atctgtaaaa
 5951 tgggatactg atagtgcctc cccactggcc tcctctgacg ggcgccagg
 6001 agaggatggg acggagcatg gtgtgtggg cacgctcctg ctgtaccac
 6051 ccacctggga gaggggagag gcaggaatgt cctgggggtg tcctttgagg
 6101 catagccctg tcaccccaac atcctacaaa ggcatgagaa ggcagcgagg
 6151 acagaccccg accacctgag ccctcagcag ccctgccaca ctccctgctt
 6201 caccccttc ctgactgatc tggcacattc ttgattctcc tagggagtga
 6251 cccaaaatcc ctccctgccc tgctgtgtct ctgggggtg aggaggctgc
 6301 cagccctcc tctctccag cctcaggcct ggccaggact taacaggcag
 6351 gcagagaagc agcttctcca ctctttccc tgacacctgt aggccccctcc
 6401 tgcaggcaact tacctctaag tggactctca ggaggaggct catcaggct
 6451 gcagggctca gaaagagctg ggctgtggag ctcttgccaa cgcgcagg
 6501 cctcttaagt gcttagcgc caccgactgc atcctccag cagccttgt
 6551 agatggggat ttgtgtttcc cagttactg atgagaaata ctgtatgagag
 6601 atgggtgtgg tcttgtctgg ggctccctgg ctccctgata gcagctcagg
 6651 ttccatcctg ggcaggctgg ctctggaca cccccccgac cagctgtgt
 6701 gtgggattca cggtggggct tggcaggcgt tgggatctt gggccaact
 6751 gagccactct aggcttccag ggaccaaggc caggctgagc tgcgtctgt
 6801 tcctgagaga gcatgaacat cacagaagat gggcccccgt tcgaatccca
 6851 gctctgccac tactaactgg gacctggca ggggtccctt cccgctgagc
 6901 cttcatttcc tcaccagcaa aatggttcgt gcccctgtt tggggctgt
 6951 ggagggttgg ctctgtcta cttgttcata cctgctgtt agcagctgt
 7001 ctgtccggc ctctgaggat gccactgtga acagacctg tcgctaccc
 7051 caggagctt tgtttagggg tgccgtttt attccagcac ttccactcgct
 7101 ctctgtccg gtacccgatg agagacgtcg agtcccgtt tttgtgcac
 7151 tgggtgcgtg tgggggttgg ggggacaggg gtagccctgg acctccacca
 7201 gtggatgttc ctgggtgcac ttagggtgtg tgagggtggg acccgttccc
 7251 gttccctgag gctccactga tgaggtccaa cttcttgaga tagtactgg
 7301 agcccaggct cccagcagct gggcccttgg aggagaactg ctgtttcccc
 7351 cctcacggca aggacccccc cacaccaccc ttcgtctttt gttttgtt
 7401 tctgttccag gagtggcgac aagcacagtt aatgtgcagg tttgttacat
 7451 tcttcacttt aagttccggg aaacgtgcag acccgtaac ccctcatcta
 7501 aggtatacat gtgccatggt gtttgctgc gtttgcattt gtcctaattc
 7551 gtttttaagc tccatataca ttaggcattt tgcgtatgc tcccttccct
 7601 ctggcccttc accggccctag taagccccgg tggatgtgt tcccttccct
 7651 gtgtccatgt gttctcattt ttcaactctc acttatgatg gagaagagac
 7701 ctggactctg atctaaccctc ggtcaaattgg aactgtgtga ctttgcagg
 7751 gtagcttaac ctctctgagtt cttagcttctt gcttgcacc cccatcctt
 7801 agagagggcc cacagaggac caggtcacat gacccctcagcc agttccagag
 7851 aaggctgttt gctccaggt ttcggcctga gtccaggccc ctgcctact
 7901 cgcactccct gatacgatga gaagcacagc cccagggtgc ccacccagct
 7951 ctgagagccc agcctgcttc ccaggaaact gtcacagccc cacctgtccc

FIG.2C

5/19

8001 ttccccagct ggagccctgt caatggctt ggggttctct gacacagccc
 8051 tgaggggcct cacactccccc cttatcattg caaggggttag atctggcttg
 8101 aaggccctgg ggcaggcttg gttctgtcct cccctgtcag tgcctcgaca
 8151 gggctggcct gggtaatca ggaccaacgg gaaaggaggc gaggagacca
 8201 atctggaccc aagatcctca gctcaataag gtggcccccag aactgacatg
 8251 gggtgataga gggaaagggt gggagggagg agattctggg gccgcagcca
 8301 cagcttgcac gttgcgccgg gtgtgtctgt gcgtgcacgc tgcattttg
 8351 cgtaccatgt gtgcaaggct gtgttggct gagtgttcat gtggggcgtg
 8401 attgtggca ttttctgag tttctgagtg atgcctgctg gtgtggctg
 8451 gtgggtgtgt ctgcattgtgc gtgtgtgtct ggggagtttca aaggagaaaa
 8501 gagggactca ccattcacgt ggctcagcct taaaaaggtt ggacatcctg
 8551 acacgtgctg caacatggat ggaccttaag gacattgtgc tgagtgaac
 8601 aagccagagg caaaggaaca aacatgttat ttctccaga tgaggttcc
 8651 ggaggaggca gatctgtatg gacagaaggt agcatggtgg ttgcggggc
 8701 agggggagga gagaatggag aattagtgtt taatggggac agagtttcag
 8751 ttggggaggg taaaaagggtt ctggagctgg atgatggtga tggggagaca
 8801 acactgtgca tgcacttaat accactgagc tggcacaccta aaaatgctta
 8851 caatggtaaa tttcatgtat attttactac aatttttaaa aaattggctg
 8901 ggcgtggtgg cttatgcctg taatccaaac actttgggag gccaaggcgg
 8951 gaggattgtc tgagctcagg agttcaacac cagcctggc aatatggtga
 9001 aaccccgact ctacgaaata tacaaaaatt agcctggtgt ggtggcttgc
 9051 acctctaattt ccacctactc agtaggctaa ggcacaagaa tctcttgaac
 9101 ctgggaggtg gaggttgcag taagccgaga tcatgccact gcaaccagt
 9151 ctgggcgaca gagcaagact ctgtctcaa aaataaaaaga taaaataaaa
 9201 aatttagaggg caggtgtggc tcacacctgt actctcaaca ctttgggagg
 9251 ctgaggtggg aggatcgctt gaagtcaggc atttaagaca tgcctaggca
 9301 acatagttag accttgactc tacaaaaaaaaa ttcaaaagtt aatgagacat
 9351 ggtggcatgt gcctgttagtc cttagtgcgtg gggaggctga ggtggagga
 9401 tcacttacga ccaggatttc aaggctgcag tgagctgtga ttgcatcact
 9451 gcaactccagc ctggtgacag agtgaggccc tgcctcaaa aaattttca
 9501 gtgttttct gggctggcgg tgggtggctca ttcctgttaat tccagcactt
 9551 tgggaggctg aggtgggtgg attgttttag cccaggagtt taagaccagc
 9601 tggcaacat ggcaaaacccctt atctctacaa aaaataaaaaa taaaaaatta
 9651 gctgggcattt gtggtgacaca cctgtactaa cagctacgag agaggctaag
 9701 gtgggaggat cacctgagcc cgggagggtt aggctgcagt gagccatgat
 9751 tgaccactt cactctagcc tgggcatac agcaagaccc tatctcaaaa
 9801 aaaaaaaaaa aaaaaaaaaa aaaaacacccc agtgggtca gtagaacccc
 9851 aagagtcttc ttccctccca gctccctgtt acaccagccc cagctctgca
 9901 ggttagctggg ggcccagaca gcttcctggg gaccccccagc ttccctctg
 9951 cccttttttcc taccagttt gctccccctc cttcaagact catgtccaga
 10001 ggggttggata tctgcactta tacagcccccc tcctctgtaa tgagtgagcc
 10051 aagttagcccccc aggttattcc agaaggggca ccctaccagc cccccagtc
 10101 ccaagctgcc ctgggcctat aaaagcaggc aaggggaccc ctagtagatc
 10151 atgttaggtt tacctcttag tgggtgtgg aggggcctga agtgcttct
 10201 tccccccagggg tggtaggaga atgtcctggc agtgacttca gggcccgctg
 10251 tcacttccgt tttaagactc accagctggt aggctcatta gcaagaggac
 10301 aataggagggc ccctgtcctc agtcagcttt cttcaaaaggt gttcccttta
 10351 gcaactggga ggcccccctt ctccagacccc atggggacaa caccacccag
 10401 ctactggttc tataagctgc tgtatggctc tggctagccc attcagagaa
 10451 agcctctgaa agtacaagga aaaaaatcag tccaagagct gtgaacaatt
 10501 agtgagccga ttacaatacc aagaccacag gcagacctgg aaggctaagt
 10551 gagcccaggt gtgaagttca agcttacttt acttctggc cacttcctgg
 10601 ctggtctttt tccctggccc ttatctttct cctggtctgt cttctttct
 10651 caccacccctt ctttactctt tcttccttct cctgcattgt actccacccc

FIG.2D

6 / 19

10701	cactccagct	attacacaga	atcgcgagaa	tgttgattttt	ttcatttttt
10751	ttatgatgtt	ttcttttttg	taaaaaataga	gacaaggctt	cactatgtgg
10801	cccaggctgg	tcttgaactc	ctggcctcaa	gcaatcctcg	tgccttggcc
10851	tcttacagtg	ctgggattac	agatgtgagc	caccatgcct	ggcccatttt
10901	attacttta	aaaaaaaaat	taggctgggc	gcgggtggctc	acacctataa
10951	ttccagcact	ttggggaggcc	aagggtggca	gatcaactga	ggtcaggagt
11001	taaagaccag	cttggccacc	tggggtcagg	agtttgagac	cagctactcc
11051	ggaggctgag	accggagaat	tgcttgaacc	caggaggtag	aggttgcaat
11101	gaactgagat	catgccattt	catgccagcc	tggcaacag	agcaagactg
11151	tctcaaaaaa	aaaaaaaaat	atgtttgtt	tccttgcttc	ctgcttggta
11201	agtcaaatca	gtttaactgt	tcaagtgtct	tccttgcaaa	cccccaagga
11251	ctcaatgtgt	gtcgccctt	actgatcccc	ccgccccgtg	accagtgggt
11301	cctcagttcc	agggtttccc	acctaccctt	caccactgc	ttatgttat
11351	aaaaacgggg	taaatcaaat	gttcgtgacc	cagatcttat	tctacatgca
11401	gtggaaaactt	gtatgactta	agcttttgg	aaaagcagaa	ccttttttcg
11451	tggttcaaga	aatcaaagtc	ttcccgggag	gtcttctgt	aaatccagag
11501	ctgcagatgt	ttgaccgtgt	tcagagaggg	gcccttgtgc	tgggtgaagt
11551	ggatggggca	cagcaggcaa	tgggtgaaaa	gcaggacaac	ctggggccct
11601	gggaggacca	gggagggccc	atgtcttga	ctgtcatca	gccggctgac
11651	ttcctgtccg	cctgtcgct	gctctgccc	tccatccgta	gtcctccgc
11701	ctgtctctgc	tggttgcgc	tgtctactc	agctgtgtct	gtctgtccgc
11751	ctgactgtct	gctctccttc	agGATGCCTT	CCGTGCCTTC	CATCAAGATC
11801	TCAATTGTG	GCGCAAGTTC	CTACAGCCCC	TGTTGATTGG	AGAGCTGGCT
11851	CCGGAAGAAC	CCAGCCAGGA	TGGACCCCTG	AATgtgagcc	agagccctag
11901	gagaggctca	gccccctgagg	gagggggatg	gctggagggc	tgggagacat
11951	tgccacatgg	ccaggagcac	ctccctcgcc	attcgcccaa	ggggatgcag
12001	agccagggt	gagcctgccc	tcccttccca	ggggcaggc	agttgaaagt
12051	gaagctgttag	ggatgccctg	agaagtccag	ggctccagat	ctggtttagc
12101	caggcactcg	tttggatccc	gaggcaagct	ccctccctgt	tgcgccccag
12151	tgtccccatc	aaaaggagga	ttttgtgaa	ctgatttctc	tcctggctgt
12201	agcgtcttac	ccacccctata	ccttttggga	gggagaggag	gttcaccac
12251	cagccagtc	tccagctcac	acccccgggt	gggtactctt	gtcacttcat
12301	tcctctttgc	ccacacccct	tggcctggc	gatgggagga	gcggctgggg
12351	ctccaggaga	atgggggtgg	ggaggaattt	cttccttggc	tgatcggccc
12401	ctctgctatg	gcagGCGCAG	CTGGTCGAGG	ACTTCCGAGC	CCTGCACCAG
12451	GCAGCCGAGG	ACATGAAGCT	GTGTTGATGCC	AGTCCCACCT	TCTTGCTTT
12501	CCTACTGGGC	CACATCCTGG	CCATGGAGGT	GCTGGCTGG	CTCCTTATCT
12551	ACCTCCTGGG	TCCTGGCTGG	GTGCCCAGTG	CCCTGGCCGC	CTTCATCCTG
12601	GCCATCTCTC	AGgtgacc	agttctgtt	tgcagccacc	ttaactgccc
12651	aacagacgtg	ggccccccatg	catctggca	tttgaacat	atttgctaaa
12701	tgaatgaatg	gacctatgaa	aggatgaatg	gatgaataaa	cagatgaatg
12751	agtgaacagt	ctgaaggccc	atcaggcatg	tctgtgggtc	aagctgcatt
12801	ccagatgagc	caagaagttc	cttcttgaac	agattccgtat	caagcacagg
12851	gccactgagc	cagaggctgc	tggccctgcag	cttcatgaca	cttaacgagcc
12901	cctccacctc	cctgggactc	agttctcatc	tgtaaaaaaga	ggacactggc
12951	ccacaagggt	cttgaatagg	agcatttagca	cgggggttacc	ctgcaagctg
13001	aaaggattca	ctggggcccc	aggccctggc	gggtcccgatc	cttcccaaca
13051	gcttctgacc	ctgcctctct	ccccagGCTC	AGTCCTGGTG	TCTGCAGCAT
13101	GACCTGGGCC	ATGCCTCCAT	CTTCAAGAAG	TCCTGGTGGGA	ACCACGTGGC
13151	CCAGAAAGTTC	GTGATGGGGC	AGCTAAAGt	gagggtgggg	tgggtggta
13201	gccaggtgct	gggtggcgct	gggtctgccc	aagtgtgtgg	gcacagtgcg
13251	gggcacagcc	tgcctctgaga	gcctccctcct	cctccacagG	GCTTCTCCGC

FIG.2E

7/19

13301 CCACTGGTGG AACTTCCGCC ACTTCCAGCA CCACGCCAAG CCCAACATCT
 13351 TCCACAAAGA CCCAGACGTG ACGGTGGCGC CCGTCTTCCT CCTGGGGGAG
 13401 TCATCCGTG AGgtgggtgg ggagggaccc ggacaaccc tggctgggccc
 13451 tgca gtcggatgg ggggagctaa tgcaactgggt ccccaactctg cccctgaccc
 13501 agccccgtat ctggcctcca ctctggctgg gccaagctct gccccgggtgt
 13551 cttcccttcc cacctcccaa cctgctgggg acgaccagcc cgcttgcttag
 13601 aatcttagat tgcccttgac ccttggccccc agccagcccc gtgaccttgc
 13651 ccgggagaag gaggtggct ggagagctgc tgcttcagc cgccgcctgt
 13701 ctccacagTA TGGCAAGAAG AAACGCAGAT ACCTACCCCTA CAACCAGCAG
 13751 CACCTGTACT TCTTCCTGAg tgagtgtcca tctgtccttc tgggtgggg
 13801 gagtgcctgg gcctgcactg tcctccctgc tgcactggac cactcccagc
 13851 cacttcctgg ggcggggcac gtctgtcagg tctccctggat catggcatcc
 13901 tcccagcctc tgca gtcactgt acacactctc ccagcagcat gccttgc
 13951 cagctgtctc ccgtgcctgg gacacccctgc agccacgggc catcacagcc
 14001 ctgctgggag cttcccaag cccacatgg aatttcttct tgccctcact
 14051 agagtggtcc ggagccctag agtctttggg cagggtttggg ggcggacaga
 14101 gtgaggactc aagtctggcc ctgacttgcg gtgaagggtg gtgggagggt
 14151 gtgggttaag ggcagccctgg ggaggcttgg acacagaatt ggggggtgata
 14201 tggggtcatt cagctggatg tgaccagcac caacgtccca ggggcattcc
 14251 tggagtaaca gagccccccta ctctggcggc cactcacctt ggcagcccg
 14301 ccccactcct gaacactctc atgccccttc ttgcagTCGG CCCGCCGCTG
 14351 CTCACCCCTGG TGAACTTTGA AGTGGAAAAT CTGGCGTACA TGCTGGTGTG
 14401 CATGCAGTGG GCGgtgagtg ggggttgc cca ggacccccc catacggtcg
 14451 ccgtggcagg aggtggtgcc tcgggggaca gtacccccc atgaaggca
 14501 acagggtgca catgtgcgtg caacagtgtg gctcacatgt atgcgtgc
 14551 cagtgtggct cacatgtgtg cgcgcagcag gagagcggat gtggccgtg
 14601 ctgtacgtgt ggtggggggg gtttggggaa caggggggggt gtgggtctct
 14651 ctcggtgagg gtgtcttccc aggaggagtt gctggggcga ctctgc
 14701 catctgtgtc cctggcagg tcttcccaa cacaccctgc atgacaccc
 14751 cgtcaaaa atcagcctcg tgactggca gggcaaggac cctgttcc
 14801 tactcagctg agaaaaaccag agagggttgtt ggcttccttcc
 14851 gcaa atcagg cagaagggtt ggtgcctga ggtcttccttcc
 14901 ggcctccaga cctccggca cctggagacc tctcggtatc gccttgc
 14951 tcctctgcag GATTGCTCT GGGCCGCCAG CTTCTATGCC CGCTTCTTCT
 15001 TATCCTACCT CCCCTTCTAC GGCGTCCCTG GGGTGCTGCT CTTCTTGTG
 15051 GCTGTCAAGt atggcaggga gtggcgaggt cacacacagg cgacagggt
 15101 ccccaactgc agccccccac cagagctcc ctttccctg ctgcagaatg
 15151 gggccagtgg tactgcctcc ctggcttgct ggtggaaatca cataaacaca
 15201 agcgtggcag gagcccaggg tcgggtgggt tagggagcgt ggcctggctt
 15251 gtaagtggcc cgggggtgt cggagctgt ctggactcag cctcacatgt
 15301 gacactgctc cattcagatt cttaaacac tgcaagggg gcatggcc
 15351 caatccatt gtacagataa ggaagtcaag gcaacttggg gacagctgt
 15401 ctccagcctc cactcagggt gcctaagtgg tgactggac ctaggc
 15451 gcccggccct cccacagGG TCCCTGGAAAG CCAACTGGTTC GTGGATCA
 15501 CACAGATGAA CCACATCCCC AAGGAGATCG GCCACGAGAA GCACCGGGAC
 15551 TGGGTCAAGCT CTCAGgtggg cagcagggtt gggcccccattt ctgggtgggg
 15601 tgggggggtcc cagcttaggag ccagatggca aagcaggat gaggccctga
 15651 cggggctgcc aggtggggga tggtgcctgt ggtcaggat tctgc
 15701 cctccctaca tgcctccggc cggcttccgg cagCTGGCAG CCACCTGCAA
 15751 CGTGGAGCCC TCACTTTCA CCAACTGGTT CAGCGGGCAC CTCAACTTCC
 15801 AGATCGAGCA CCAAtgagtg tgggtgc tgggaggatc ctgggagg
 15851 ggggtcctg ggagggatc ctgggaggatc acccgatgggt gggccctctc

FIG.2F

8/19

15901 tctggaatct cccacttcag gtgccagcat acgctccccca ccccccagCCT
 15951 CTTCCCCAGG ATGCCGAGAC ACAACTACAG CCGGGTGGCC CCGCTGGTCA
 16001 AGTCGCTGTG TGCCAAGCAC GGCTCAGCT ACGAAAGTGA GCCCTCCCTC
 16051 ACCGCGCTGG TGGACATCGT CAGgtgaggc tgcagccccgg cccctctgtt
 16101 ctgggtggctt cccccagggcc tatgcctacc cttgtccagg tcagcctcat
 16151 gctgagcccc cagggtccct gagcctttct gtccacgtcc catgccttc
 16201 ctccccttccc cagccttcac gcacacagtg agaatttctg gagcacctac
 16251 tgcagactca caaacagcag tgctgcgg gaggcaggat atgcaaacc
 16301 accccccaaag gctgagggaa aaaagctaac agatccagtt tctcagaagg
 16351 aaacactaa cagggactca taaacagaag ccatgtctca gggccgggtg
 16401 cggtggctca cgccctgtaat tccagcactt ggggaggctg aggtggcg
 16451 atcaacttgag gtcaggagtt cgagaccagc ctggccaaca tggtaaaacc
 16501 ccgtctctac taaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaac aaaaacaaaac aaaaatttagc
 16551 tgggtgtgggt ggcaggtgcc cataatccca gctacttggg aggctgaggg
 16601 aggagaatca cttgaactcg cagggcaga gttgcagtg agctgagatt
 16651 gtgccttgc agtccagcct gggcaacaga gcaagactct ctcaaaaaaca
 16701 aacaaaaaaaaaa ccatgtctca ggcagccaag agttggaca tccccctcaca
 16751 cggccctctag aaagaacct ctatatacgca agcttttagg gtgaacccca
 16801 tgcagggtgt tcttatgaac ctggtgacca ctggaggta gataagcg
 16851 tacaagagga gtttatctat gccatgagct tggcattcag ggtcaagcat
 16901 cggtcatcag acagtttgc ttgaagatgg cattggccctt gtagcaatgc
 16951 aggctctaga gagcttcctg ccctcttgg gctgatgttc cttccagcaa
 17001 aggaaacagc aagcaattaa aataacaaat aagtacatta cagaagatgg
 17051 gcaaaagaac aatgaaaaagc ccctcagggt gggacaggg gggggagg
 17101 gggcggccag gcagggggcg cagttctaa ataggtggta ggggtggcag
 17151 tattgacagg ctgacgtgtg agcagggaca gggaggaggg gagaggtctc
 17201 gcccacagggc catctggcaa agagcgttca ggcagaggc acttgaccct
 17251 gaatgccaag ctcatggcat agatagccg ggcaggcatg caggactca
 17301 gagaaggac acgcccggct tgcattttgg aaagctgccc ctactggaa
 17351 tgactggccg gcaggagtcg aagtggaaaa ggagagcaga ggacactgca
 17401 gcccattccagg cgaggggtga tggggctcag ccctgtgtt caccttggag
 17451 gtggggaaaca gaggccagat tccaggtctt atacctctgc gccttgtac
 17501 acgctgttcc ctttacttgg ttggcccttcc ttcttgtgt ggttgtcaga
 17551 tgcccacttc tccttcatga tctctccctt cctgatgtc tgagcccttg
 17601 ccatttgca cagccctta gagcgcctgg cacaggcgtt cctagcagat
 17651 tggtgacatt tctggctcca ctggccaaata tcaggcccaa gatgggtgg
 17701 gcagggttcca cgtccctctt gtccctgggt tgcaegcccc agcaggaggc
 17751 agcaatggag aactgggtgc aggaggacca ggcccccacca ggctcatgcc
 17801 tggacttggc cttggctgcc ctccagctcc cctacccgac acccgtcacc
 17851 ccggctctaga ttccatttcca gagaatgagc atttagtgt tctcccaacc
 17901 caccctccag cccgcacatcg tgcctgcccc caggaaaggg aaccacagg
 17951 gaatggggat ctccgctcac acttaccatg ggggatcacag ggtgtttagg
 18001 atcttgcac ttagctcttca acacccaccc ccactgccac ccccacctcc
 18051 cagGTCCCTG AAGAAGTCTG GTGACATCTG GCTGGACGCC TACCTCCATC
 18101 AGTGAAGGCA ACACCCAGGC GGGCAGAGAA GGGCTCAGGG CACCAGCAAC
 18151 CAAGCCAGCC CCCGGCGGGA TCGATACCCC CACCCCTCCA CTGGCCAGCC
 18201 TGGGGGTGCC CTGCCTGCC TCCTGGTAAT GTTGTCTTCC CCTCGGGCCC
 18251 CTCACATGTG TATTCAAGCAG CCCTATGGCC TTGGCTCTGG GCCTGATGGG
 18301 ACAGGGGTAG AGGGAAGGTG AGCATAGCAC ATTTCCTAG AGCGAGAATT
 18351 GGGGAAAGC TGTTATTTT ATATTAAT ACATTCAGAT GTATTATGGA
 18401 GT

FIG.2G

9/19

1	CTTCGCTTCCCTCGGGGTCTTGCTCGGACCTCGGCCACCGCCTGGGATCC	50
51	CCAGGACTCGTGCCTGCAGCATGGCGGCGTCGGGAGCCGGGACCGCGG M G G V G E P G P R	100 10
101	GAGGGACCCGCGCAGCCGGGGCACCGCTGCCACCTCTGCTGGGAGCA E G P A Q P G A P L P T F C W E Q	150 27
151	GATCCCGCGCACGACCAGCCCAGCGACAAGTGGCTGGTCATCGAGCGCC I R A H D Q P G D K W L V I E R R	200 44
201	GCGTCTACGACATCAGCCGCTGGCACAGCGGCACCCAGGGGGCAGCCGC V Y D I S R W A Q R H P G G S R	250 60
251	CTCATCGGCCACCACGGCGCTGAGGACGCCACGGATGCCCTCCGTGCCCT L I G H H G A E D A T D A F R A F	300 77
301	CCATCAAGATCTCAATTGTGCGCAAGTTCTACAGCCCCCTGTTGATTG H Q D L N F V R K F L Q P L L I G	350 94
351	GAGAGCTGGCTCCGGAAGAACCCAGCCAGGATGGACCCCTGAATGCGCAG E L A P E E P S Q D G P L N A Q	400 110
401	CTGGTCGAGGACTTCCGAGCCCTGCACCAGGCAGCCAGGACATGAAGCT L V E D F R A L H Q A A E D M K L	450 127
451	GTTTGATGCCAGTCCCACCTCTTGTCTTCTACTGGGCCACATCCTGG F D A S P T F F A F L L G H I L A	500 144
501	CCATGGAGGTGCTGGCCTGGCTCCTTATCTACCTCCTGGGTCCCTGGCTGG M E V L A W L L I Y L L G P G W	550 160
551	GTGCCAGTGCCCTGGCCGCTTCATCCTGGCCATCTCTCAGGCTCAGTC V P S A L A A F I L A I S Q A Q S	600 177
601	CTGGTGTCTGCAGCATGACCTGGGCCATGCCTCCATTTCAAGAAGTCCT W C L Q H D L G H A S I F K K S W	650 194
651	GGTGGAACCGTGGCCAGAAGTCGTGATGGGGCAGCTAAAGGGCTTC W N H V A Q K F V M G Q L K G F	700 210

FIG.3A

10/19

701	TCCGCCCACTGGTGGAACTTCCGCCACTTCCAGCACGCCAAGCCAA	750
211	S A H W W N F R H F Q H H A K P N	227
751	CATCTTCCACAAAGACCCAGACGTGACGGTGGCGCCGTCTTCCTCCTGG	800
228	I F H K D P D V T V A P V F L L G	244
801	GGGAGTCATCCGTCGAGTATGGCAAGAACGAGATACCTACCCCTAC	850
245	E S S V E Y G K K K R R Y L P Y	260
851	AACCAGCAGCACCTGTACTTCTTCCTGATCGGCCCGCCGCTGCTCACCT	900
261	N Q Q H L Y F F L I G P P L L T L	277
901	GGTGAACCTTGAAAGTGGAAAATCTGGCGTACATGCTGGTGTGCATGCAGT	950
278	V N F E V E N L A Y M L V C M Q W	294
951	GGCGGATTGCTCTGGCCGCCAGCTTCTATGCCCGTTCTTATCC	1000
295	A D L L W A A S F Y A R F F L S	310
1001	TACCTCCCCTTCTACGGCGTCCCTGGGTGCTGCTCTTCTTGTTGCTGT	1050
311	Y L P F Y G V P G V L L F F V A V	327
1051	CAGGGTCCTGGAAAGCCACTGGTCGTGGATCACACAGATGAACCA	1100
328	R V L E S H W F V W I T Q M N H I	344
1101	TCCCCAAGGAGATCGGCCACGAGAACGGACTGGTCAGCTCTCAG	1150
345	P K E I G H E K H R D W V S S Q	360
1151	CTGGCAGCCACCTGCAACGTGGAGCCCTCACTTTCAACCAACTGGTCAG	1200
361	L A A T C N V E P S L F T N W F S	377
1201	CGGGCACCTCAACTTCCAGATCGAGCACCCACCTCTCCCCAGGATGCCGA	1250
378	G H L N F Q I E H H L F P R M P R	394
1251	GACACAACCTACAGCCGGTGGCCCCGCTGGTCAAGTCGCTGTGTGCCAAG	1300
395	H N Y S R V A P L V K S L C A K	410
1301	CACGGCCTCAGCTACGAAGTGAAGCCCTCCTCACCGCGCTGGACAT	1350
411	H G L S Y E V K P F L T A L V D I	427
1351	CGTCAGGTCCCTGAAGAAGTCTGGTGACATCTGGCTGGACGCCACCTCC	1400
428	V R S L K K S G D I W L D A Y L H	444

FIG.3B

11/19

1401	ATCAGTGAAGGCAACACCCAGGCAGGGCAGAGAAGGGCTCAGGGCACCAAGC	1450
445	Q	445
1451	AACCAAGCCAGCCCCGGCGGGATCGATA	1500
1501	CCCCCACCCTCCACTGGCCA	1550
1551	GCCTGGGGGTGCACTGCCTGCCCTGGTACTGTTGTCTTCCCCTCGGC	1600
1601	CCCCTCACATGTGTATTCA	1650
1651	CAGCAGCCCTATGCCCTGGCTCTGGCCTGAT	1700
	GGGACAGGGTAGAGGAAGGTGAGCATAGCACATTTCCTAGAGCGAGA	
	ATTGGGGAAAGCTGTTATTATTA	
	AAATACATTCA	
	GAGATGTAAAAA	

FIG.3C

12/19

1	GTACAGCGGCAATGGCGGTGTCGGGGAGCCGGAGGGGACTCGGGCCG 1	50
	M G G V G E P G G G L G P	13
51	CGGGAGGGGCCCGCACCGCTGGGGGCCCTACCCATCTTCCGCTGGGA 14	100
	R E G P A P L G A P L P I F R W E	30
101	GCAGATCCGCCAGCATGACCTACCAGGCGACAAGTGGCTGGTCATCGAGC 31	150
	Q I R Q H D L P G D K W L V I E R	47
151	GCCGTGTCTACGACATCAGCCGCTGGGCACAGCGGCACCCAGGGGTAGC 48	200
	R V Y D I S R W A Q R H P G G S	63
201	CGCATCATCGGCCACCAACGG 220 64	
	R I I G H H 69	

FIG.4

13/19

14/19

PROFILESCAN of : CYB5rp_correct_protein check: 5714 from: 1 to: 445

GETSEQ from bmd, December 2, 1997 14:20.

Compare to profile library: GenRunData:profilescan.fil

Profile: profiledir:cytochrome_b5.prf

Gap weight: 4.50 Gap Length weight: 0.05

Ave match: 0.27 Ave mismatch : -0.21

(Peptide) PROFILEMAKE v4.40 of: 0191.Msf2{} Length: 48

Sequences: 24 MaxScore: 27.58 December 2, 1992 00:07

This profile is derived from PROSITE release 10.0 and has been tested by a database search against SWISS-PROT release 26.0. A comparison of the SWISS-PROT annotation and the results of the database search follows. For further information about this motif, consult the . . .

Profile: profiledir:cytochrome_b5.prf alignment: 1

Quality: 20.77 Gaps: 0

Ratio: 0.43 Length: 48

Normalized quality: 2.91

S 31 HDQPGDKWLVIERRVYDISRWAQRHPCGSRLIGHHGAEDATDAFRAFH 78

|: ...| ||||. .|||::| .||||. | .||.|:|||. | ::|

P 1 HNDGEETWLVVNGQVYDITKLEEHPGGPDVIMEAAGTDATEEFAIH 48

*Cytochrome b5 family, heme-binding domain signature *

FIG.6

15/19

pir:s68358 hypothetical protein - common sunflower
 Length = 458

Score = 169 (79.4 bits), Expect = 2.8e-42, Sum P(4) = 2.8e-42
 Identities = 31/85 (36%), Positives = 49/85 (57%) His box 3

Query: 348 IGHEKHRDWVSSQLAATCNVEPSLFTNWFSGHLNFQIEHHLFPRMPRHNSRVAPLVKSL 407
 +G K +W Q T ++ S +WF G L FQ+EHHLFPR+PR + ++P+ + L
 Sbjct: 348 VGPPKGDNWF~~E~~KQTRGTIDIA~~C~~SSWMDWFFGGLQFQLEHHLF~~P~~R~~L~~PRCHLR~~S~~ISPICREL 407

Query: 408 CAKHGLSYEVKPFLTALVDIVRSLK 432
 C K+ L Y F A V +++L+
 Sbjct: 408 CKKYNLPYVSLSFYDANVTLKTLR 432

Score = 133 (62.5 bits), Expect = 2.8e-42, Sum P(4) = 2.8e-42
 Identities = 21/53 (39%), Positives = 35/53 (66%) HPCG motif

Query: 26 EQIRAHQPGDKWLVIERRVYDISRWAQRH~~PGG~~SRLIGHHGAEDATDAFR~~A~~FH 78
 +++ H+ P D W+ I +VY++ WA+ H~~PGG~~ + + +D TDAF AFH
 Sbjct: 22 KELKKHNNPNDLWISILGKVYNTEWAKE~~H~~~~PGG~~DAPL~~I~~NLAGQDVTD~~A~~FIAFH 74

Score = 118 (55.5 bits), Expect = 2.8e-42, Sum P(4) = 2.8e-42
 Identities = 25/76 (32%), Positives = 34/76 (44%) His box 1 His box 2

Query: 165 LAAFILAISQAQS~~WCLQ~~HDLG~~H~~ASIFKKS~~WNH~~V~~A~~QKFVMGQLKGFSAHWWNFRHFQ~~HE~~A 224
 L+ IL ++ Q L HD GH + WN A F+ + G S WW + H HH
 Sbjct: 152 LSGAILGLAWMQIAYLGH~~D~~A~~G~~HYQMMATRGWNKFAGIFIGNCITGISIAWWKWT~~H~~NAHHI 211

Query: 225 KPNIFHKDPDTVAPV 240
 N DPD+ P+
 Sbjct: 212 ACNSLDYDPDLQH~~L~~PM 227

Score = 34 (16.0 bits), Expect = 2.8e-42, Sum P(4) = 2.8e-42
 Identities = 7/14 (50%), Positives = 9/14 (64%)

FIG. 7A

16/19

gp:bou79010 1 PID:g2062403 Borago officinalis delta 6 desaturase mRNA, complete cds. (gb:U79010) (NID:2062402)
 Length = 448

Score = 179 (84.1 bits), Expect = 2.3e-42, Sum P(3) = 2.3e-42
 Identities = 34/87 (39%), Positives = 48/87 (55%)

His box 3

Query: 348 IGHEKHRDVSSQLAATCNVEPSLFTNWFSGHLNFQIEHHLFPRMPRHNSRVAPLVKSL 407
 +G K +W Q T ++ + +WF G L FQIEHHLF+MPR N +++P V L
 Sbjct: 338 VGKPKGNWWFEKQTDGTLDISCPPWMDFHGLQFQIEHHLFPKMPRCNLRKISPYVIEL 397

Query: 408 CAKHGLSYEVKPFLTALVDIVRSLKK 434
 C KH L Y F A +R+L+ +
 Sbjct: 398 CKKHNLPYNYASF SKANEMTLRTLRLNT 424

Score = 144 (67.7 bits), Expect = 2.3e-42, Sum P(3) = 2.3e-42
 Identities = 23/53 (43%), Positives = 36/53 (67%)

HPGG MOTIF

Query: 26 EQIRAHDQPGDKWLVIERRVYDISRWAQRHPGGSRIGHHGAEDATDAFRFH 78
 +++ HD+PGD W+ I+ + YD+S W + HPGGS + ++ TDAF AFH
 Sbjct: 12 DELKNHDKPGDLWISIQGKAYDVS DWVKDHPGGSFPLKSLAGQEVTDAFVAFH 64

Score = 105 (49.3 bits), Expect = 2.3e-42, Sum P(3) = 2.3e-42
 Identities = 22/68 (32%), Positives = 28/68 (41%)

His box 1His box 2

Query: 176 QSWCLQHDLGHASIFKKSWNNHVAQKFVMQLKGFSAHWNFRHFQHHAKPNIFHKDPDV 235
 QS + HD GH + S N F L G S WW + H HH N DPD+
 Sbjct: 153 QSGWIGHDAGHYMVSDSRLNKFMGIFAANCLSGISIGWWKWNNAHHIACNSLEYDPDL 212

Query: 236 TVAPVFLL 243
 p ++
 Sbjct: 213 QVIPFLVV 220

FIG. 7B

17/19

pir:s35157 Delta(6)-desaturase - Synechocystis sp.
Length = 359

Score = 126 (59.2 bits), Expect = 9.0e-09, Sum P(2) = 9.0e-09
Identities = 21/54 (38%), Positives = 33/54 (61%)

His box 3

Query: 372 FTNWFSGHLNFQIEHHLFPRM~~PRH~~NYSRVAPLVKSLCAKHGLSYEVKPFLTALV 425
F NMF G LN Q+ HLF P + Y ++ ++K +C + G+ Y+V P A +
Sbjct: 292 FWNWFCCGLNHQVTHHLFPNICHIHYPQLENIIKDVCQEFGV~~EY~~KVYPTFKAAI 345

Score = 36 (16.9 bits), Expect = 9.0e-09, Sum P(2) = 9.0e-09
Identities = 6/15 (40%), Positives = 8/15 (53%)

His box 2

Query: 209 GFSAHWWNFRHFQHH 223
G S+ W +RH H
Sbjct: 113 GLSSFLWRYR~~H~~NYLH 127

FIG.8

18/19

1 2 3 4 5 6 7 8 9

1. Heart	6. Skeletal Muscle
2. Brain	7. Kidney
3. Placenta	8. Pancreas
4. Lung	9. Retina
5. Liver	

FIG.9A

19/19

1 2 3 4 5 6 7 8 9 PCR Marker

1. Heart	6. Skeletal Muscle
2. Brain	7. Kidney
3. Placenta	8. Pancreas
4. Lung	9. Retina
5. Liver	

FIG.9B

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/23253

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) :A61K 39/395; C12P 7/62; C12N 9/02, 15/00; C07H 19/00

US CL :435/135, 189, 320.1, 452.3; 424/130.1; 536/23.2

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 435/135, 189, 320.1, 452.3; 424/130.1; 536/23.2

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Please See Extra Sheet.

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Médiine

Search terms: CYB5RP, delta-6 fatty acid desaturase, human or homo sapiens.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	Database GenBank, Accession AAC23396, submitted by LAMERDIN, JE, publicly available on 12 June 1998, see entire record.	1-15
X	Database GenBank, Accession AC004770, submitted by LAMERDIN, JE, publicly available on 12 June 1998, see entire record, especially identification of CDS at about line 50.	1-15
X,P	Database GenBank, Accession AAD31282 submitted by LI et al, publicly available on 19 May 1999, see entire record.	1-15
X	WO 98/39446 A2 (HUMAN GENOME SCIENCES, INC.) 11 September 1998, see entire document, especially SEQ ID No:63.	1-15

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

24 FEBRUARY 2000

Date of mailing of the international search report

15 MAR 2000

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer
BRADLEY S. MATTHEW
Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/23253

B. FIELDS SEARCHED

Documentation other than minimum documentation that are included in the fields searched:

Because a CRF was not made available at the time of the search, Database GenBank Accession AF134404, which appears to encode the same desaturase as set forth in Figures 3A-C of the instant application, was searched against all available amino acid and nucleic acid databases.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)