Proving Ky Fan norm (nuclear norm) $\|\mathbf{X}\|_*$ is a norm

Andersen Ang

Mathématique et recherche opérationnelle UMONS, Belgium

manshun.ang@umons.ac.be Homepage: angms.science

First draft: December 28, 2018 Last update: October 16, 2019

Quick recall of Singular Value Decomposition

The SVD of a given matrix $\mathbf{A} \in {\rm I\!R}^{m imes n}$ is a factorization in the form

$$\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^{\top},$$

- $\mathbf{U} \in \mathbb{R}^{m \times m}$
 - ▶ the columns of U are the left-singular vectors of A
 - ightharpoonup these vectors are a set of orthonormal eigenvectors of $\mathbf{A}\mathbf{A}^{\top}$
- $\Sigma \in \mathbb{R}^{m \times n}$
 - ▶ ∑ is diagonal
 - ▶ the diagonal elements of Σ , denoted as $\sigma_i, i \in [1, 2, ..., \min\{m, n\}]$, are the singular values of \mathbf{A}
 - $ightharpoonup \sigma_i$ are all non-negative
 - Non-zero σ_i are the the square roots of the non-zero eigenvalues of both $\mathbf{A}^{\top}\mathbf{A}$ and $\mathbf{A}\mathbf{A}^{\top}$
 - convention : σ_i are sorted as $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min\{m,n\}} \geq 0$
- $\mathbf{V} \in \mathbb{R}^{n \times n}$
 - lacktriangle the columns of V are the right-singular vectors of A
 - lacktriangle these vectors are a set of orthonormal eigenvectors of ${f A}^{ op}{f A}$

Ky Fan norm (a.k.a. the Nuclear norm)

Ky Fan norm¹ of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as

$$\|\mathbf{A}\|_* = \sum_{i=1}^{\min\{m,n\}} |\sigma_i(\mathbf{A})|.$$

Note. As $\sigma_i \geq 0$, we can drop the absolute value sign.

Ky Fan norm of a matrix is the sum of the singular values of that matrix.

The Ky Fan k norm is defined as the sum of the k largest singular values.

Short hand notation : let $\sigma_{\bf A}$ be the vector holding all the singular values of ${\bf A}$, we can express Ky Fan norm as the l_1 norm of $\sigma_{\bf A}$

$$\|\mathbf{A}\|_* = \|\sigma_{\mathbf{A}}\|_1.$$

¹Ky Fan. "Maximum properties and inequalities for the eigenvalues of completely continuous operators". Proceedings of the National Academy of Sciences of the United States of America. 37 (11): 760 - 766. 1951

Properties of Ky Fan norm

- It is a norm, and therefore :
 - $\|\cdot\|_*$ is a convex function on the set of $m\times n$ matrices
 - $\|\cdot\|_*$ satisfies the triangle inequality
- It is not differentiable
- ullet The dual norm of $\|\cdot\|_*$ is the spectral norm $\|\cdot\|_2$
- $\bullet \ \langle \mathbf{X}, \mathbf{Y} \rangle \leq \|\mathbf{X}\|_* \|\mathbf{Y}\|_2$
- It is the special case of Schatten p-norm where p=1

This document: show the proof that Ky Fan norm is a norm.

Proving Ky Fan norm is a norm

Let the space $\mathbb{R}^{m \times n}$ be V. Let $f(\mathbf{X}) = \|\mathbf{X}\|_*$ be a function on V. To show $\|\mathbf{X}\|_*$ is a norm, we need to show

- $oldsymbol{0}$ f is a non-negative real-value function defined on V
- ② $f(\mathbf{X}) = 0$ if and only if $\mathbf{X} = \mathbf{0}$

Items 1-3 are easy to show:

- On 1: by definition of Ky Fan norm as a sum of non-negative singular values
- On 2: the singular values of zero matrix ${\bf 0}$ are all zero, so $f({\bf 0})=0$. Furthermore, as singular values are always non-negative, there does not exist a matrix ${\bf A}$ with negative singular values, so for $f({\bf X})=0$, ${\bf X}$ can only be ${\bf 0}$.
- On 3 : by the fact that $-\mathbf{X}$, \mathbf{X} and $k\mathbf{X}$ have the same set of singular values

Proving Ky Fan norm is a norm

To show $\|\mathbf{X}\|_*$ is a norm, the hard part is to show the function $f(\mathbf{X}) = \|\mathbf{X}\|_*$ satisfies the triangle inequality on V: $f(\mathbf{X} + \mathbf{Y}) \leq f(\mathbf{X}) + f(\mathbf{Y}), \ \forall \ \mathbf{X}, \mathbf{Y} \in V.$

To prove this we need an equality between Ky Fan norm and a function :

$$\sup_{\sigma_1(\mathbf{Q})\leq 1} \langle \mathbf{Q}, \mathbf{A} \rangle = \|\mathbf{A}\|_*.$$

The next 3 slides will prove this by

- Showing $\sup_{\sigma_1(\mathbf{Q}) \leq 1} \langle \mathbf{Q}, \mathbf{A} \rangle \geq \|\mathbf{A}\|_*$
- Showing $\sup_{\sigma_1(\mathbf{Q})<1} \langle \mathbf{Q}, \mathbf{A} \rangle \leq \|\mathbf{A}\|_*$
- ullet Conditions \geq and \leq means =

Note: this is exactly this reply made by David Speyer's on a question in stackexchange.. For the reference of the whole proof process for the next 4 slides, see Michael Grant's reply on this stackexchange thread.

Showing $\sup_{\sigma_1(\mathbf{Q}) \leq 1} \langle \mathbf{Q}, \mathbf{A} \rangle \geq \|\mathbf{A}\|_*$

Let $\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^{\mathsf{T}}$, now consider a matrix \mathbf{Q} constructed as

$$\mathbf{Q} = \mathbf{U} \Sigma' \mathbf{V}^{\top} = \mathbf{U} [\mathbf{I} \ \mathbf{0}] \mathbf{V}^{\top} = \mathbf{U} \mathbf{V}^{\top},$$

where $\Sigma' = [\mathbf{I} \ \mathbf{0}]$ is a matrix in $\mathbb{R}^{m \times n}$ with all diagonal elements equal to 1. Note that the largest singular value of \mathbf{Q} is 1. Now the inner product between \mathbf{Q} and \mathbf{A} is

$$\langle \mathbf{Q}, \mathbf{A} \rangle \Big|_{\mathbf{Q} = \mathbf{U} \mathbf{V}^{\top}} = \text{Tr}(\mathbf{Q}^{\top} \mathbf{A}) \stackrel{(1)}{=} \text{Tr}(\mathbf{V} \mathbf{U}^{\top} \mathbf{U} \Sigma \mathbf{V}^{\top}) \stackrel{(2)}{=} \text{Tr} \Sigma = \|\mathbf{A}\|_{*},$$

where (1) is due to \mathbf{U} is unitary $\mathbf{U}^{\top}\mathbf{U} = \mathbf{I}_m$ and (2) is due to the property $\mathrm{Tr}(\mathbf{ABC}) = \mathrm{Tr}(\mathbf{CAB})$ and \mathbf{V} is also unitary.

Showing $\sup_{\sigma_1(\mathbf{Q}) \leq 1} \langle \mathbf{Q}, \mathbf{A} \rangle \geq \|\mathbf{A}\|_*$

Note that it is universal true that, for all function f(x) and a set C, we always have the inequality :

$$\sup_{x \in C} f(x) \ge f(x_0), \ \forall x_0 \in C.$$

Therefore, the expression $\langle \mathbf{Q}, \mathbf{A} \rangle \Big|_{\mathbf{Q} = \mathbf{U}\mathbf{V}^{\top}} = \|\mathbf{A}\|_*$ can be treated as a function f on \mathbf{Q} evaluated at the specific $\mathbf{Q}_0 = \mathbf{U}\mathbf{V}^{\top}$. Hence, we have

$$\sup_{\sigma_1(\mathbf{Q}) \le 1} f(\mathbf{Q}) \ge f(\mathbf{Q}_0) = f(\mathbf{U}\mathbf{V}^\top) = \|\mathbf{A}\|_*$$

The inequality above means, for all possible \mathbf{Q} such that $\sigma_1(\mathbf{Q}) \leq 1$ (spectral norm of \mathbf{Q} is at most 1), the function f at a point $\mathbf{Q}_0 = \mathbf{U}\mathbf{V}^{\top}$ (which fulfil $\sigma_1(\mathbf{Q}_0) \leq 1$), is lower bounded by the supremum on f over all possible \mathbf{Q} such that $\sigma_1(\mathbf{Q}) \leq 1$.

That is, we now have

$$\sup_{\sigma_1(\mathbf{Q}) \le 1} f(\mathbf{Q}) \ge \|\mathbf{A}\|_* \tag{1}$$

Showing $\sup_{\sigma_1(\mathbf{Q}) \le 1} \langle \mathbf{Q}, \mathbf{A} \rangle \le \|\mathbf{A}\|_*$

$$\sup_{\sigma_1(\mathbf{Q}) \leq 1} f(\mathbf{Q}) = \sup_{\sigma_1(\mathbf{Q}) \leq 1} \operatorname{Tr}(\mathbf{Q}^\top \mathbf{A}) \qquad \text{Definition of inner product}$$

$$= \sup_{\sigma_1(\mathbf{Q}) \leq 1} \operatorname{Tr}(\mathbf{Q}^\top \mathbf{U} \Sigma \mathbf{V}^\top) \qquad \text{SVD of } \mathbf{A}$$

$$= \sup_{\sigma_1(\mathbf{Q}) \leq 1} \operatorname{Tr}(\mathbf{V}^\top \mathbf{Q}^\top \mathbf{U} \Sigma) \qquad \text{Property of trace of product}$$

$$= \sup_{\sigma_1(\mathbf{Q}) \leq 1} \operatorname{Tr}((\mathbf{U} \mathbf{Q} \mathbf{V})^\top \Sigma)$$

$$= \sup_{\sigma_1(\mathbf{Q}) \leq 1} \langle \mathbf{U} \mathbf{Q} \mathbf{V}, \Sigma \rangle \qquad \text{Definition of inner product}$$

$$= \sup_{\sigma_1(\mathbf{Q}) \leq 1} \sum_i (\mathbf{U} \mathbf{Q} \mathbf{V})_{ii} \sigma_i \qquad \Sigma \text{ is diagonal}$$

$$= \sup_{\sigma_1(\mathbf{Q}) \leq 1} \sum_i \sigma_i \mathbf{u}_i^\top \mathbf{Q} \mathbf{v}_i$$

$$\leq \sup_{\sigma_1(\mathbf{Q}) \leq 1} \sum_i \sigma_i \sigma_1(\mathbf{Q})$$

$$= \sum_i \sigma_i = \|\mathbf{A}\|_*$$

So we now have $\sup_{\sigma_1(\mathbf{Q}) \leq 1} f(\mathbf{Q}) \leq \|\mathbf{A}\|_*$, together with (1) we showed

$$\sup_{\sigma_1(\mathbf{Q}) \le 1} \langle \mathbf{Q}, \mathbf{A} \rangle = \|\mathbf{A}\|_*.$$

Ky Fan norm satisfies the triangle inequality

Now we have

$$\sup_{\sigma_1(\mathbf{Q}) \le 1} \langle \mathbf{Q}, \mathbf{A} \rangle = \|\mathbf{A}\|_*,$$

we can now prove Ky Fan norm satisfies the triangle inequality. Now consider two matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$, apply the equality we just proved : replace \mathbf{A} by $\mathbf{A} + \mathbf{B}$, we get

$$\|\mathbf{A} + \mathbf{B}\|_* = \sup_{\sigma_1(\mathbf{Q}) \le 1} \langle \mathbf{Q}, \mathbf{A} + \mathbf{B} \rangle$$

The supremum of inner product itself obeys the triangle inequality, thus

$$\sup_{\sigma_1(\mathbf{Q}) \leq 1} \langle \mathbf{Q}, \mathbf{A} + \mathbf{B} \rangle \leq \sup_{\sigma_1(\mathbf{Q}) \leq 1} \langle \mathbf{Q}, \mathbf{A} \rangle + \sup_{\sigma_1(\mathbf{Q}) \leq 1} \langle \mathbf{Q}, \mathbf{B} \rangle$$

Therefore,

$$\|\mathbf{A} + \mathbf{B}\|_{*} \leq \sup_{\sigma_{1}(\mathbf{Q}) \leq 1} \langle \mathbf{Q}, \mathbf{A} \rangle + \sup_{\sigma_{1}(\mathbf{Q}) \leq 1} \langle \mathbf{Q}, \mathbf{B} \rangle$$
$$= \|\mathbf{A}\|_{*} + \|\mathbf{B}\|_{*}.$$

That is, Ky Fan norm satisfies the triangle inequality.

Last page - summary

• The Ky Fan norm of matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$

$$\|\mathbf{A}\|_* = \sum_{i}^{\min\{m,n\}} \sigma_i.$$

- Proving $\|\cdot\|_*$ is a norm :
 - ▶ It satisfies $\|\mathbf{A}\|_* = 0$ only if $\mathbf{A} = \mathbf{0}$ and $\|t\mathbf{A}\|_* = |t|\|\mathbf{A}\|_*$
 - $\begin{array}{l} \blacktriangleright \ \ \text{It satisfies} \ \|\mathbf{A}+\mathbf{B}\|_* \leq \|\mathbf{A}\|_* + \|\mathbf{B}\|_*. \\ \text{The proof based on the equality} \ \sup_{\sigma_1(\mathbf{Q}) \leq 1} \langle \mathbf{Q}, \mathbf{A} \rangle = \|\mathbf{A}\|_* \\ \end{array}$
- Hence $\|\cdot\|_*$ is a convex function on matrices

What's next: showing the sub-differential of the Ky Fan norm is the set

$$\partial \|\mathbf{X}\|_* = \left\{ \mathbf{U}\mathbf{V}^\top + \mathbf{W} \,\middle|\, \mathbf{W} \in \mathbb{R}^{m \times n}, \mathbf{U}^\top \mathbf{W} = 0, \mathbf{W}\mathbf{V} = 0, \|\mathbf{W}\|_2 \le 1 \right\}$$

End of document