CLAIMS

- 1. A method for production of an α -glucan from a β -1,4-glucan, comprising:
- reacting a solution containing a β -1,4-glucan, a primer, a source of phosphoric acid, β -1,4-glucan phosphorylase, and α -1,4-glucan phosphorylase to produce an α -glucan.
- 2. The method according to claim 1, wherein said β -1,4-glucan is cellobiose, and said β -1,4-glucan phosphorylase is cellobiose phosphorylase.
- 3. The method according claim 1, wherein said β -1,4-glucan is a cellooligosacccharide having a degree of polymerization of 3 or more, and said β -1,4-glucan phosphorylase is cellodextrin phosphorylase.
 - 4. The method according to claim 1, wherein said β -1,4-glucan is a cellooligosaccharide having a degree of polymerization of 3 or more, and said β -1,4-glucan phosphorylase is cellobiose phosphorylase and cellodextrin phosphorylase.

20

30

- 5. The method according to claim 1, wherein said production step further comprises removing glucose produced as a byproduct from said solution simultaneously with production of said α -glucan.
 - 6. The method according to claim 5, wherein said solution further contains glucose isomerase or glucose oxidase.
 - 7. The method according to claim 5, wherein said solution further contains glucose oxidase and mutarotase.

- 8. The method according to claim 7, wherein said solution further contains catalase or peroxidase.
- 9. The method according to claim 1, wherein said source of phosphoric acid is inorganic phosphoric acid, glucose-1-phosphate, or a mixture of inorganic phosphoric acid and glucose-1-phosphate.
- 10. The method according to claim 1, wherein the concentration of said source of phosphoric acid is 1mM to 50mM.
 - 11. The method according to claim 1, wherein said $\alpha\text{-glucan}$ is amylose.