Analisi III

Paolo Bettelini

Contents

1	Successione di funzioni	1
2	Serie di funzioni	3
3	Integrazione	4
4	Misura di Lebesgue su \mathbb{R}^n	22
5	Esercizi	26

1 Successione di funzioni

Definizione Successione di funzioni

Una successione di funzioni è una famiglia di funzioni $\{f_n\}_{n\in\mathbb{N}}$ definite su un dominio comune $f_n\colon D\to\mathbb{R}$.

Definizione Convergenza in un punto

Sia $\{f_n\}_{n\in\mathbb{N}}$ una successione di funzioni. La successione converge in un punto x_0 se

$$\lim_{n\to\infty} f_n(x_0) < \infty$$

Definizione Convergenza puntuale

Sia $\{f_n\}_{n\in\mathbb{N}}$ una successione di funzioni. La successione converge puntualmente ad una funzione $f\colon D\to\mathbb{R}$ se

$$\forall x \in D, \lim_{n \to \infty} f_n(x) = f(x)$$

Quindi la successione converge in ogni punto, ma la velocità di convergenza può dipenderere dal punto.

Definizione Convergenza uniforme

Sia $\{f_n\}_{n\in\mathbb{N}}$ una successione di funzioni. La successione converge uniformemente ad una funzione $f\colon D\to\mathbb{R}$ se

$$\sup_{x \in D} |f_n(x) - f(x)| \to 0$$

per $n \to \infty$.

Oppure possiamo dire che la condizione è che

$$\forall \varepsilon > 0, \exists N \mid \forall n > N, ||f_n - f||_{\infty, E} < \varepsilon$$

Dovremmo dire che la differenza

$$|f_n(x) - f| \le \varepsilon$$

ma siccome ciò deve valere per tutte le \boldsymbol{x} possiamo utilizzare il supremum.

Quindi la velocità di convergenza è la stessa in ogni punto. Ogni cosa che converge uniformemente converge puntualmente.

Definizione Convergenza uniformemente di Cauchy

Sia $\{f_n\}_{n\in\mathbb{N}}$ una successione di funzioni. La successione è uniformemente di Cauchy se

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \, | \, \forall n, m > N, \sup_{x \in D} |f_n(x) - f_m(x)| < \varepsilon$$

A partire da un certo indice, tutte le funzioni della successione sono molto vicine tra loro in modo uniforme su tutto D, indipendentemente dalla funzione limite.

Teorema Convergenza uniforme e convergenza uniformemente di Cauchy

Sia $\{f_n\}_{n\in\mathbb{N}}$ una successione di funzioni. Se la successione è uniformemente di Cauchy allora è uniformemente convergente.

Teorema

Sia $\{f_n\}$ convergente uniformemente a f in E e sia $x_0 \in E$ un punto di accumulazione di E. Supponiamo che esista

$$\exists \lim_{x \to x_0} f_n(x) = \lambda_n$$

per ognin, allora

1.
$$\lambda_n \to \lambda$$
,

2.

$$\lim_{x \to x_0} f(x) = \lambda$$

Proof

1.

$$|\lambda_n - \lambda_m| = \lim_{x \to x_0} |f_n(x) - f_n(x)| \le \lim_{x \to x_0} ||f_n - f_m||_{\infty, E} < \varepsilon$$

dunque è di Cauchy e converge al limite $\lambda_n \to \lambda$.

2.

$$|f(x) - \lambda| \le |f(x) - f_n(x)| + |f_n(x) - \lambda_n| + |\lambda_n - \lambda|$$

$$\le ||f - f_n||_{\infty, E} + |f_n(x) - \lambda_n|$$

dunque se $\overline{n} = \max\{N_1, N_2\}$

$$|f(x) - \lambda| \le 2\varepsilon + |f_{\overline{n}}(x) - \lambda_{\overline{n}}| \le 3\varepsilon$$

quindi

$$f_{\overline{n}}(x) - \lambda_{\overline{n}} \le \varepsilon$$

Quindi, se abbiamo convergenza uniforme,

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \left(\lim_{x \to \infty} f_n(x) \right)$$
$$= \lambda = \lim_{n \to \infty} \lambda_n = \lim_{n \to \infty} \left(\lim_{x \to x_0} f_n(x) \right)$$

possiamo scambiare l'ordine.

Corollario

Se f_n sono continue e $f_n \to f$, allora f è continua.

Teorema

Sia $f_n \colon [a,b] \to \mathbb{R}$ una successione di funzioni R-integrabili dove $f_n \to f$ in [a,b]. Allora f è R-integrabile e

$$\lim_{n \to \infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \lim_{n \to \infty} f_n(x) dx = \int_{a}^{b} f(x) dx$$

Proof

Supponiamo anche che f_n siano continue.

- 1. f è continua e quindi R-integrabile;
- 2. mostriamo che vale l'uguale, cioè $\forall m, n \geq N$,

$$\left| \int_{a}^{b} f_n(x) dx - \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} f_n(x) - f(x) dx$$
$$\le \int_{a}^{b} ||f_n - f||_{\infty, [a, b]} dx \le \varepsilon (b - a)$$

(cioè tende a zero) per $n \geq N$.

Teorema

Sia $f_n:[a,b]\to\mathbb{R}$ una successione di funzioni derivabili. Supponiamo che:

- 1. $\exists x_0 \in [a, b]$ tale che f_n converge in x_0 ;
- 2. f'_n converge uniformemente in g a [a,b].

Allora.

- 1. f_n converge uniformemente a f in [a, b];
- 2. f è derivabile;
- 3. f'(x) = g(x) per ogni $x \in [a, b]$.

2 Serie di funzioni

Definizione Convergenza uniforme

La serie di funzioni $\sum_{n=1}^{\infty} f_n(x)$ converge uniformemente ad una funzione S(x) se la successione delle somme parziali

$$S_N(x) = \sum_{n=1}^N f_n(x)$$

converge uniformemente a S(x), ovvero se

$$\sup_{x \in D} |S_N(x) - S(x)| \to 0$$

per $N \to \infty$.

È più forte della convergenza puntuale.

Definizione Convergenza totale

Una serie di funzioni $\sum_{n=1}^{\infty} f_n(x)$ converge totalmente su un insieme D se la serie di norme

$$\sum ||f_n||_{\infty}$$

converge.

Ricordiamo che in generale la norma

$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{\frac{1}{p}}, \quad 1 \le p < \infty$$

e per $p = \infty$ con f limitata

$$||f||_{\infty} = \sup_{x \in D} |f(x)|$$

che è un numero siccome f è limitata

Teorema

XXXX. Se ho la convergenza uniforme posso invertire integrale e serie.

3 Integrazione

Teorema Monotone convergence theorem for non-negative measurable functions

Let (X, Σ, μ) be a measurable space and let

$$f_n: X \to [0; +\infty)$$

be measurable such that $f_n \leq f_{n+1}$. Then,

$$\lim_{n} \int_{X} f_n \, d\mu = \int_{X} (\lim_{n} f_n) \, d\mu$$

Sia per esempio $f_n = \chi_{\{1\}} + \chi_{\{n\}}$. Allora la funzione converge puntualmente in quanto l'1 si sposta sempre più a destra. Abbiamo

$$\int_{\mathbb{N}} f_n \, d\mu = 2 \to 2$$

Se invece $f_n \ge f_{n+1}$ allora $f_n = \chi_{\{n,n+1,\dots\}}$, allora tende a zero. Tuttavia, l'integrale di f_n è infinito in quanto la misura dell'insieme è infinita.

Proof

Abbiamo

$$f_n \le f_{n+1} \dots \le f, \quad f = \lim_n f_n$$

Quindi

$$\int_X f_n \, d\mu \le \int_X f_{n+1} \, d\mu \le \int_X f \, d\mu$$

quindi anchde la successione degli integrali è monotona e ammette limite. Il limite sarà sempre

più piccolo dell'ultimo valore.

$$\lim_{n} \int_{X} f_n \, d\mu \le \int_{X} f \, d\mu$$

Facciamo ora il caso \geq . Sia $0 \leq \varphi \leq f$ una funzione semplice

$$\varphi = \sum_{i=1}^{N} \alpha_i \chi_{E_i}, \quad \alpha_i \ge 0$$

e prendiamo $c \in (0,1)$. Considegliamo gli insiemi

$$A_n = \{ f_n \ge c\varphi \}$$

Tali insiemi sono misurabili, in quanto sto moltiplicando una funzione misurabile per una costante e l'insieme $\{f \geq g\}$ è come dire $\{f - g \geq 0\}$. Sappiamo

- 1. $A_n \in A_{n+1}$ in quanto $c\varphi(x) \leq f_n(x) \leq f_{n+1}(x)$; 2. $\bigcup A_n = X$. Sia $x \in X$. Se $\varphi(x) = 0$ allora è in A_n . Se invece $\varphi(x) > 0$, ma siccome $\varphi \leq f$,

$$c\varphi(x) < \varphi(x) \le f(x)$$

La succesione, da un certo posto in poi, è più grande di $c\varphi(x)$ (ne basta uno), quindi $x \in A_n$. Osserviamo che

$$E_i = E_i \cap X$$

$$= E_i \cap (\bigcup A_n)$$

$$= \bigcup_n (E_i \cap A_n)$$

Quindi $E_i \cap A_n \subseteq E_i \cap A_{n+1}$ è una successione di insiemi che si sta allargando. Quindi, la misura dell'union è il limite.

$$\mu(E_i) = \lim_{n \to \infty} E_i \cap A_n$$

Consideriamo

$$\int_{X} f_n d\mu \ge \int_{A_n} f_n d\mu \ge c \int_{A_n} \varphi d\mu$$

$$= c \int_{X} \varphi \chi_{A_n} d\mu = c \sum_{i=1}^{N} \alpha_i \mu(E_i \cap A_n)$$

Facciamo ora il limite

$$\lim_{n} \int_{X} f_{n} d\mu \ge c \lim_{n} \sum_{i=1}^{N} \alpha_{i} \mu(E_{i} \cap A_{n})$$

$$= c \sum_{i=1}^{N} \alpha_{i} \mu(E_{i}) = c \int_{X} \varphi d\mu$$

Abbiamo quindi ottenuto che

$$\lim_{n} \int_{X} f_n \, d\mu \ge c \int_{X} \varphi \, d\mu$$

vale per tutti i $c \in (0,1)$, e allora possiamo usare il supremum

$$\lim_{n} \int_{Y} f_n \, d\mu \ge \int_{Y} \varphi \, d\mu$$

Non solo vale per ogni c, ma per ogni funzione semplice tale che $0 \le \varphi \le f$. In particolare anche per il supremum. Il supremum di questi integrali al variare di tutte le funzioni semplici minori di f è l'integrale di f, cioè la definizione

$$\lim_{n} \int_{X} f_n \, d\mu \ge \int_{X} f \, d\mu$$

Mettendo assieme le due cose otteniamo l'uguaglianza

$$\lim_{n} \int_{X} f_n \, d\mu = \int_{X} f \, d\mu$$

Corollario

Allora

$$\sum_{n=1}^{\infty} \int_{X} f_n d\mu = \int_{X} \sum_{n=1}^{\infty} f_n d\mu$$

Proof

Siccome i termini sono tutti positivi, la successione delle serie parziale è monotona.

Lemma Lemma di Fatou

Sia $f_n \colon X \to [0, +\infty)$ misurabili, allora

$$\int_{X} \liminf f_n \, d\mu \le \liminf \int_{X} f_n \, d\mu$$

(l'integrale esiste sempre)

Proof

Consideriamo

$$g_n = \inf_{k > n} f_k$$

chiaramente $g_n \leq g_{n+1} \to \liminf f_n$ e sono misurabili. Consideriamo allora l'integrale

$$\lim \int_{Y} g_n \, d\mu = \int_{Y} \liminf f_n \, d\mu$$

e per il teorema della convergenza monotona e definizione di lim inf

$$\int_X \liminf f_n \, d\mu = \lim_n \int_X (\inf_n k \ge n f_k) \, d\mu$$

$$\le \liminf \int_X f_n \, d\mu$$

Definizione Integrabilità di una funzione positiva

Sia $f \colon X \to [0; +\infty)$ misurabile. Allora f è integrabile su X se

$$\int_{Y} f \, d\mu < \infty$$

Diciamo che $f \in L^1(\{X, \Sigma, \mu\})$. Per esempio $\{1/n^2\} \in L^1(\mathbb{N})$ ma $\{1/n\} \notin L^1(\mathbb{N})$

Definizione Integrabilità di una funzione

Sia $f: X \to \mathbb{R}$ misurabile. Allora f è *integrabile* se f^+ e f^- sono integrabili (che sono entrambe funzioni positive).

Dobbiamo tuttavia definire l'integrale di una funzione di segno arbitraria. Sia allora

$$\int_X f \, d\mu = \int_X f^+ \, d\mu - \int_X f^- \, d\mu$$

Consideriamo per esempio

$$f = (1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4})$$

Allora

$$f^+ = (1, 0, \frac{1}{3}, 0)$$

е

$$f^-=(0,\frac{1}{2},0,\frac{1}{4})$$

L'integrale non converge in quanto i due integrali non convergono (le serie divergono per confronto asintotico).

Proposition

Siano $f, g \in L^1$.

1.
$$\alpha f + \beta b \in L^1$$
 e

$$\int_X (\alpha f + \beta g) \, d\mu = \alpha \int_X f \, d\mu + \beta \int_X g \, d\mu$$

Quindi lo spazio delle funzioni integrabili è uno spazio vettoriale.

2.

$$f \le g \implies \int_X f \, d\mu \le \int_X g \, d\mu$$

- 3. $f \in L^1 \iff |f| \in L^1$. Infatti $f^+f^- = |f|$ e per la direzione inserva abbiamo $0 \le f^+ \le |f|$. Ma se l'integrale del modulo è finito allora lo sarà anche quello di f^+ che è più piccolo. Lo stesso vale per la parte negativa.
- 4. Se f è misurabile allora lo è anche |f|, ma il viceversa non è vero. Per esempio sia $X = \{a, b, c\}$ e $\Sigma = \{X, \emptyset, \{a\}, \{b, c\}\}$. Sia allora

$$f = \begin{cases} 1 & x = a \lor x = b \\ -1 & x = c \end{cases}$$

Chiaramente $\{f<0\}=\{c\}$ non è misurabile, ma |f|=1 per tutte le x e le funzioni costanti sono sempre misurabili.

5.

$$\left| \int_X f \, d\mu \right| \le \int_X |f| \, d\mu$$

Infatti

$$\left| \int_X (f^+ - f^-) \, d\mu \right| = \left| \int_X f^+ \, d\mu - \int_X f^- \, d\mu \right|$$

$$\leq \left| \int_X f^+ \, d\mu \right| + \left| \int_X f^- \, d\mu \right|$$

$$= \int_X f^+ \, d\mu + \int_X f^- \, d\mu$$

$$= \int_X (f^+ + f^-) \, d\mu$$

$$= \int_Y |f| \, d\mu$$

Teorema Teorema della convergenza dominante

Sia $f_n: X \to \mathbb{R}$ misurabile e sia $f = \lim_n f_n$. Supponiamo che ci sia $g \in L^1$ tale che $|f_n| \leq g$ in X. Allora

$$\lim_{n} \int_{X} f_n \, d\mu = \int_{X} f \, d\mu$$

Proof

 f_n sono integrabili in quanto $|f_n| \leq g$ che è integrabili, quindi sarà finito anche l'integrale del modulo, e f è integrabile perché ciò vale anche per il limite. Allora $|f - f_n| \leq 2g$ quindi $2g - |f - f_n| \geq 0$. Siccome quest'ultima è una successione positiva posso applicare il lemma di Fatou

$$\int_X \liminf (2g - |f - f_n|) \, d\mu \le \liminf \int_X (2g - |f - f_n|) \, d\mu$$

Ma per le proprietà dei lim inf possiamo estrarre la costante

$$\int_{X} 2g - \lim |f - f_n| = \int_{X} 2g$$

$$\leq \lim \inf \left(\int_{X} 2g \, d\mu - \int_{X} |f - f_n| \, d\mu \right)$$

$$= \int_{X} 2g \, d\mu - \lim \sup \int_{X} |f - f_n| \, d\mu$$

Abbiamo quindi

$$\int_X 2g\,d\mu \le \int_X 2g\,d\mu - \limsup \int_X |f-f_n|\,d\mu$$

$$\limsup \int_X |f-f_n|\,d\mu \le 0$$

Ma quindi questo limite deve essere ed essere uguale a zero

$$\int_{V} |f - f_n| \, d\mu = 0$$

Infine, usando il modulo

$$\lim \left| \int_X f_n \, d\mu - \int_X f \, d\mu \right| \le \lim \int_X |f_n - f| \, d\mu = 0$$

siccome è tutto positivo deve essere

$$\lim \left| \int_X f_n \, d\mu - \int_X f \, d\mu \right| = 0$$

Se $A \subseteq X$ con A integrabile e $f: X \to \mathbb{R}$ misurabile, f è integrabile in A se $f\chi_A$ è integrabile. Chiaramente definiamo

$$\int_A f \, d\mu = \int_X f \chi_A \, d\mu$$

Quindi per vedere se è integrabile nel sottoinsieme la estendiamo su tutto lo spazio con la funzione caratteristica e integriamo.

Costruiamo ora una misura su R (la misura di Lebesuge). Vogliamo che sia invariante per traslazione $\mu(A) = \mu(A+c)$ dove c è una costante. Vorremmo anche che $\mu([b,a]) = b-a$. Tuttavia, non è possibile costruire tale misura su tutto \mathbb{R} . Sia allora I=(a,b) (non cambia se incluso o meno) e denotiamo l(I)=b-a. Sia anche $E\subset\mathbb{R}$. Diamo la misura esterna

$$\mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} l(I_n) \mid E \subset \bigcup_n I_n \right\}$$

Alcune proprietà di questa ipotetica misura

- 1. $\mu^*(\emptyset) = 0;$
- 2. $\mu^*(\lbrace x \rbrace) = 0$ dove $\lbrace x \rbrace \subset (x \varepsilon, x + \varepsilon)$;
- 3. se E numerabile, allora $\mu^*(E) = 0$

$$E \subset \{x_n\}$$

$$I_n = \left(x_n - \frac{\varepsilon}{2^n}, x_n + \frac{\varepsilon}{2^n}\right)$$

$$E \subset \bigcup I_n$$

$$\sum_{n=1}^{\infty} l(I_n) = \sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n-1}}$$
$$= \varepsilon \sum_{n=0}^{\infty} \frac{1}{2^n} = 2\varepsilon$$

- 4. $\mu^*(E+x) = \mu^*(E)$ (invariante per traslazione).
- 5. subadditività (numerabile)

$$\mu^* \left(\bigcup E_n \right) \le \sum_n \mu(E_n)$$

6.
$$\mu^*(I) = b - a$$

Se tutto fosse vero, abbiamo quello che cerchiamo, ma in realtà quando gli insiemi sono disgiunti l'ugualgianza non vale, quindi non esiste tale misura.

Vale sempre $\mu^*(I) \leq b-a$ perché c'è l'inf, c'è sempre un ricoprimento. La misura esterna è almeno quel valore, magari più piccolo, vale lo stesso.

Vogliamo mostrare la subadditività (numerabile). Per definizione possiamo prendere E_n come un'unione di intervalli numerati

$$E_n \subseteq \bigcup_k I_k^n$$

quindi, per avvicinarsi alla misura

$$\sum_{k=1} l(I_k^n) \le \mu^*(E_n) + \frac{\varepsilon}{2^n}$$

Chairamente l'unione di E_n è ricoperta da un unione di unioni

$$\bigcup E_n \subseteq \bigcup_n \left(\bigcup_k I_k^n\right)$$

E per definizione la misura di tale unione

$$\mu^* \left(\bigcup E_n \right) \le \sum_n \left(\sum_k l(I_k^n) \right)$$

$$\le \sum_n \left(\mu^*(E_n) + \frac{\varepsilon}{2^n} \right)$$

$$= \sum_n \mu^*(E_n) + \varepsilon$$

Siccome $[a,b]\subset (a-\varepsilon,b+\varepsilon)$ è una possibile ricopritura, abbiamo

$$\mu^*([b,a]) \le b - a + 2\varepsilon$$

Ora facciamo il contrario; mostriamo che per ogni ricoprimento $[a,b] \subseteq \bigcup I_n$, la serie di tutte quelle lunghezze è almeno b-a. L'insieme $\bigcup I_n$ è compatto e quindi ha un ricoprimento finito. Possiamo estrarre un sottoricoprimento finito che lo ricopre ancora. Quindi possiamo immaginarci

$$[a,b] \subseteq I_1 \cup \cdots \cup I_n$$

Vogliamo mostrare che se i ricoprimenti finiti hanno lunghezza almeno b-a, quindi anche quelli infiniti. Siccome usiamo intervalli aperti, vogliamo che gli altri intervalli si sovrappongano per coprire anche gli estremi, che non sono coperti. Impostiamo allora la condizione che $a_1 < a$, $a_2 < b_1$, $a_3 < b_2$. Quindi in generale ci spostiamo verso destra con $a_k - b_{k-1}$. L'ultimo intervallo deve contenere b quindi $b_n > b$. Quindi, dato un ricoprimento qualsiasi, possiamo sempre trovare un sottoricoprimento in questa maniera. Abbiamo allora la sommatoria

$$\sum_{k=1}^{n} l(I_k) = b_n - a_n + b_{n-1} - a_{n-1} + \dots + b_2 - a_2 + b_1 - a_1$$
$$= b_n + (b_{n-1} - a_n) + (b_{n-2} - a_{n-1}) + \dots + (b_1 - a_2) - a_1$$

Siccome $a_k - b_{k-1}$, tutte le parentesi sono strettamente positive. Se buttiamo via tali termini ci rimane un valore maggiore di $b_n - a_1$.

$$\sum_{k=1}^{n} l(I_k) > b_n - a_1 > b - a$$

Abbiamo quindi trovato che $\mu^*([a,b]) = b - a$. Possiamo trovare la misura dell'intervallo aperto facendo

$$b - a = \mu^*([a, b]) = \mu^*((a, b) \cup \{a\} \cup \{b\})$$

$$\leq \mu^*((a, b)) + \mu^*(\{a\}) + \mu^*(\{b\})$$

$$= \mu^*((a, b)) \leq b - a$$

Definizione Misurabile secondo Lebesgue

Un insieme $E \subseteq \mathbb{R}$ è misurabile secondo Lebesgue se $\forall A \subseteq \mathbb{R}$,

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

Questa definizione è data dal fatto che vogliamo che la misura si scomponga in due parti disgiunte per tutti gli A, quella che si sovrappone con E e quella che non si sovrappone con E.

Teorema

Gli insiemi misurabili secondo Lebesgue sono una σ -algebra.

Proof

Sia \mathcal{M} tale insieme.

1. Notiamo un paio di cose. Se $\mu^*(E) = 0$, allora $E \in \mathcal{M}$. Questo è dato dal fatto che

$$0 + \mu^*(A \cap E^c) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

\$\leq \mu^*(A)\$

Quindi anche tutti gli insiemi misurabili hanno misura zero.

- 2. Abbiamo anche che se $E \in \mathcal{M}$ allora $E^C \in \mathcal{M}$. Questo è dato dalla definizione simmetrica di misura di Lebesgue.
- 3. Mostriamo che se $E_1, E_2 \in \mathcal{M}$, allora $E_1 \cup E_2 \in \mathcal{M}$. Per fare ciò mostriamo $E_1 \cap E_2 \in \mathcal{M}$, e poi usiamo il complementare due volte per tornare al primo caso. Siccome E_2 è misurabile possiamo scomporre

$$\mu^*(A) = \mu^*(A \cap E_1) + \mu^*(A \cap E_1^c)$$

$$= \mu^*(A \cap E_1 \cap E_2) + \mu^*(A \cap E_1 \cap E_2^c) + \mu^*(A \cap E_1^c)$$

$$\geq \mu^*(A \cap (E_1 \cap E_2)) + \mu^*((A \cap E_1 \cap E_2^c) \cup A \cap E_1^c)$$

$$= \mu^*(A \cap (E_1 \cap E_2)) + \mu^*(A \cap (E_1 \cap E_2^c))$$

il terzo passaggio usa la subadditività per maggiorare. Chiaramente se ciò vale per due insiemi, banalmente vale per n insiemi $E_1, E_2, \cdots, E_n \in \mathcal{M}$, e quindi $\bigcup_i E_i \in \mathcal{M}$. Se quindi E_1, E_2, \cdots, E_n sono misurabili e sono disgiunti, allora $\forall A \subseteq \mathbb{R}$,

$$\mu^* \left(A \cap \left(\bigcup_{k=1}^n E_k \right) \right) = \sum_{k=1}^n \mu^* (A \cap E_k)$$

Per esempio, per $A = \mathbb{R}$

$$\mu^* \left(\bigcup_{k=1}^n E_k \right) = \sum_{k=1}^n \mu^*(E_k)$$

Per induzione abbiamo $n+1 \implies n$

$$\mu^* \left(A \cap \left(\bigcup_{k=1}^n E_k \right) \right) = \mu^* \left(A \cap \left(\bigcup_{k=1}^n E_k \right) \cup E_n \right) + \mu^* \left(A \cap \left(\bigcup_{k=1}^n E_k \right) \cap E_n^c \right)$$

$$= \mu^* (A \cap E_n) + \mu^* \left(A \cap \left(\bigcup_{k=1}^{n-1} E_k \right) \right)$$

$$= \mu^* (A \cap E_n) + \sum_{k=1}^{n-1} \mu^* (A \cap E_k)$$

$$= \sum_{k=1}^n \mu^* (A \cap E_k)$$

Mostriamo ora il caso infinito. Sia $\{E_n\}$ con $E_n \in \mathcal{M}$, allora $\bigcup I_n \in \mathcal{M}$. Sia

$$E = \bigcup E_n = E_1 \cap (E_2 \backslash E_1) \cup (E_3 \backslash (E_1 \cup E_2)) \cup \cdots$$

= $G_1 \cup G_2 \cup G_3 \cup \cdots$

siccome l'intersezione di insiemi misurabili è misurabile, e i G_i sono una collezione finita di quest'ultimi, allora i G_i sono misurabili. Abbiamo allora $E = \bigcup G_n$ dove $G_n \in \mathcal{M}$ sono

disgiunti. Sia

$$F_n = \bigcup_{k=1}^n G_k$$

Chiaramente $F_n \subseteq E$ e $F_n^c \supseteq E^c$. Abbiamo allora

$$\mu^*(A) = \mu^*(A \cap F_n) + \mu^*(A \cap F_n^c)$$

$$\geq \mu^* \left(A \cap \left(\bigcup_{k=1}^n G_k \right) \right) + \mu^*(A \cap E^c)$$

$$= \sum_{k=1}^n \mu^* (A \cap G_k) + \mu^*(A \cap E^c)$$

Abbiamo quindi questa maggiorazione per ogni n, quindi vale anche per il limite. Il limite delle successioni delle somme parziali è la serie.

$$\mu^*(A) \ge \sum_{k=1}^{\infty} \mu^*(A \cap G_k) + \mu^*(A \cap E^c)$$
$$\ge \mu^* \left(\bigcup_{k=0}^{\infty} (A \cap G_k)\right) + \mu^*(A \cap E^c)$$
$$= \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

per la subadditività.

La σ -algebra \mathcal{M} viene detta σ -algebra di Lebesgue.

Definizione Misura di Lebesgue

Sia ${\cal E}$ misurabile secondo Lebesgue. Allora

$$\mu(E) \triangleq \mu^*(E)$$

dove μ^* è la misura esterna.

Dobbiamo assicurarsi che data una collezione $\{E_n\}$ misurabili secondo Lebesgue e disgiunti,

$$\mu\left(\bigcup E_n\right) = \sum_{n=1}^{\infty} \mu(E_n)$$

Sicuramente il primo termine è minore o uguale al secondo. Per il maggiore o uguale abbiamo

$$\mu\left(\bigcup_{k=1}^{\infty} E_{n}\right) \ge \mu\left(\bigcup_{k=1}^{n} E_{k}\right)$$

$$= \mu^{*}\left(\bigcup_{k=1}^{n} E_{k}\right)$$

$$= \sum_{k=1}^{n} \mu^{*}(E_{k}) = \sum_{k=1}^{n} \mu(E_{k})$$

che vale siccome vale la subadditività su insiemi finiti disgiunti. Sicocme ciò vale per ogni n, allora vale anche il limite

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) \ge \sum_{n=1}^{\infty} \mu(E_n)$$

La misura esterna è additiva per un numero finiti di insiemi disgiunti, ma non è vero nel caso infinito. La σ -algebra che abbiamo creato è la più grande che gode delle proprietà della misura che vogliamo.

Abbiamo quindi l'algebra $(\mathbb{R}, \mathcal{M}, \mu)$. Abbiamo pronta la teoria dell'integrazione per definire l'integrale di Legesbue. Dobbiamo tuttavia capire quali insiemi sono misurabili.

Proposition

 $(a, +\infty)$ è misurabile.

Proof

Abbiamo

$$\mu^*(A) = \mu^*(A \cap (a, +\infty)) + \mu^*(A \cap (-\infty, a])$$

e $A \subseteq \bigcup I_n$ Siano

$$I_n^- = I_n \cap (-\infty, a], \quad I_n^+ = I_n \cap (a, +\infty)$$

ovviamente valgono

$$I_n = I_n^- \cup I_n^+, \quad I_n^- \cap I_n^+ = \emptyset$$

quindi $l(I_n) = l(I_n^-) + l(I_n^+)$. Inoltre

$$A \cap (-\infty, a] \subseteq \bigcup I_n^-, \quad A \cap (a, +\infty) \subseteq \bigcup I_n^+$$

E per definizione abbiamo

$$\mu^*(A \cap (a, +\infty)) + \mu^*(A \cap (-\infty, a]) \le \sum_n l(I_n^+) + \sum_n l(I_n^-)$$
$$= \sum_n l(I_n) \le \mu^*(A) + \varepsilon$$

Quindi tutti anche gli intervalli sono misurabili. Anche [a,b) è misurabile in quanto

$$[a,b) = \bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, \infty \right) \cap (-\infty, b)$$

e $(-\infty,b)$ è misurabile in quanto è il complemento di

$$[b, +\infty) = \bigcap (b - \frac{1}{n}, +\infty)$$

In generale $(a,b) \in \mathcal{M}$. Se A è aperto allora è misurabile. \mathbb{R} con la misura di Lebesgue è uno spazio di misura completo.

Proposition

Sia $A \subseteq \mathbb{R}$ aperto. Allora A è unione numerabile di intervalli disgiunti.

Quindi sono misurabili (non serve nemmeno che siano disgiunti).

Proof

Sia $x \in A$ e consideriamo

$$I_x = \left\{ \bigcup I \mid x \in I \right\} \subseteq A$$

chiaramente I_x è un intervallo, il più grande intervallo contenente x. Se $I_x = A$, allora abbiamo finito altrimenti $I_x \subset A$ e consideriamo dunque $y \in A \setminus I_x$ e I_y . Chiaramente $I_x \cap I_y = \emptyset$. Adesso abbiamo altri due casi, o $I_x \cup I_y = A$, e allora abbiamo scritto l'aperto come unione di intervalli

disgiunti, oppure c'è $z \in A \setminus (I_y \cup I_x)$. Consideriando I_z possiamo fare lo stesso ragionamento. Possiamo andare avanti finché non ho consumato tutti i punti di A. Dobbiamo tuttavia mostrare che $A = \bigcup I_{x_i}$ è unione numerabile. Per fare ciò consideriamo tutti i razionali $\{r_n\}$ che stanno in A. Ognuno dei I_{x_i} deve contenere almeno un razionale, ma siccome i razionali sono numerabili, ci sarebbero intervalli I_{x_i} senza razionali, che è impossibile.

Assioma Assioma della scelta

Sia \mathcal{F} una collezione di sottoinsieme di X esiste una funzione di scelta $\varphi \colon \mathcal{F} \to X$ tale che $\forall G \in \mathcal{F}, \varphi(G) \in G$.

Vediamo ora un insieme che non è misurabile usando l'assioma della scelta. In \mathbb{R} con la misura di Lebesgue, sia X = [0, 1) e definiamo

$$x + y = \begin{cases} x + y & x + y < 1 \\ x + y - 1 & x + y \ge 1 \end{cases}$$

per $x,y\in X$. Usiamo la relazione di equivalenza $x\sim y\iff x-y\in\mathbb{Q}$. Indichiamo con P tutti gli elementi che estraiamo con la funzione della scelta dalle classi di equivalenza, cioè i rappresentanti delle varie classi. Consideriamo ora i razionali $\{r_n\}$ di [0,1) e sia

$$P_n \triangleq P \stackrel{\circ}{+} r_n$$

Abbiamo alcune proprietà:

1. $n \neq m \implies P_n \cap P_m = \emptyset$. Se $z \in P_n \cap P_m$, allora $z = p + r_n = q + r_m$. Quindi $p - q = r_m - r_n$, ma quindi p - q è razionale, e quindi sono nella stessa classe di equivalenza, contro l'ipotesi che sono di classi distinte.

2.

$$P_n = [0, 1]$$

Chiaramente $\bigcup P_n \subseteq [0,1)$. Sia ora $x \in [0,1)$ e mostriamo che appartiene ad un certo P_n . Ovviamente $x \in [x]_{\sim} = [p]_{\sim}$, quindi $p - x \in \mathbb{Q}$.

- se x > p allora $x p = r_{\overline{n}} \in [0, 1)$, quindi $x = p + r_{\overline{n}}$ o in altre parole $x \in r_{\overline{n}}$
- se x < p allora $x p + 1 \in \mathbb{Q} \cap [0, 1)$ e $x p + 1 = r_{\hat{n}} \in [0, 1) = x = p + r_{\hat{n}} 1 = p + r_{\hat{n}}$

Supponiamo ora che P sia misurabile, e quindi P_n è misurabile. Allora $\mu(P) = \mu(P_n)$

$$1 = \mu([0,1)) = \mu\left(\bigcup P_n\right) = \sum_{n=1}^{\infty} \mu(P_n)$$
$$= \sum_{n=1}^{\infty} \mu(P)$$

quindi la serie di termini costanti o è zero, o diverge, il che è assurdo. Quindi l'insieme non è misurabile. Ricordiamo che una funzione è misurabile quando $\{f < \alpha\} \in \mathcal{M}$. La funzione $1_{\mathbb{Q}}$ è misurabile e

$$\int_{\mathbb{R}} 1_{\mathbb{Q}} \, d\mu = \mu(\mathbb{Q}) = 0$$

Teorema

Sia $f:[a,b]\to\mathbb{R}$ Riemann-integrabile. Allora

1. f è misurabile secondo Lebesgue;

2. f è Lebesgue-integrabile;

3.

$$\int_{a}^{b} f(x) dx = \int_{[a,b]} f d\mu$$

Proof

Sia f misurabile. Vogliamo vedere se

$$\int_{[a,b]} |f| \, d\mu < \infty$$

Ma

$$\int_{[a,b]} |f|\,d\mu \leq \int_{[a,b]} M\,d\mu = M(b-a)$$

Siccome f è R-integrabile, sappiamo che $\forall \varepsilon > 0$, esiste una partizione P di [a, b] tale che

$$|S(f, P) - s(f, P)| < \varepsilon$$

TODO: usare i simboli di integrale superiore e inferiore. Ricordiamo che

$$S(f, P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$$

е

$$s(f, P) = \sum_{i=1}^{n} m_i (x_i - x_{i-1})$$

Prendiamo

$$\varphi_1 = \sum_{i=1}^{n} m_i 1_{(x_{i-1}, x_i)}$$

e

$$\varphi_2 = \sum_{i=1}^{n} M_i 1_{(x_{i-1}, x_i)}$$

Una prende l'inf e l'altra prende il sup, quindi $\varphi_1 \leq f \leq \varphi_2$. Allora

$$S(f,P) = \int_{[a,b]} \varphi_2 d\mu, \quad s(f,P) = \int_{[a,b]} \varphi_1 d\mu$$

Quindi possiamo rimpiazzare la condizione con gli integrali di Lebesgue

$$\left| \int_{[a,b]} \varphi_2 \, d\mu - \int_{[a,b]} \varphi_1 \, d\mu \right| < \varepsilon$$

Al posto di ε prendiamo 1/n. Per ogni n ci saranno le funzioni semplici $\varphi_1^n \leq f \leq \varphi_2^n$. Possiamo anche fare in modo che $\varphi_1^n \leq \varphi_1^{n+1} \leq f \leq \varphi_2^{n+1} \leq \varphi_2^n$. Chiaramente $\{\varphi_1^n\}$ e $\{\varphi_2^n\}$ sono monotone e quindi convergono a $\overline{\varphi}_1$ e $\overline{\varphi}_2$, quindi $\overline{\varphi}_1 \leq f \leq \overline{\varphi}_2$. Vale sempre che $|\varphi_1^n|, |\varphi_2^n| \leq M$ sono limitate da qualche costante, ma allora possiamo applicare il teorema della convergenza dominante

$$\int_{[a,b]} (\overline{\varphi}_2 - \overline{\varphi}_1) \, d\mu = 0$$

ma quindi siccome l'integranda $\overline{\varphi}_2 - \overline{\varphi}_1$ è non negativa, allora deve essere quasi ovunque uguale a zero, oppure che le due sono uguali quasi ovunque, e siccome $\overline{\varphi}_1 \leq f \leq \overline{\varphi}_2$, allora $\overline{\varphi}_2 = f = \overline{\varphi}_1$

quasi ovunque. Allora, siccome \mathcal{M} è completa, f è misurabile. Il terzo punto è immediato in quanto l'integrale rimane monotono e quindi

$$\int_{[a,b]} \overline{\varphi}_1 \, d\mu \le \int_{[a,b]} f \, d\mu \int_{[a,b]} \overline{\varphi}_2 \, d\mu$$

ma il primo è uguale all'ultimo. Per definizione di integrale di Riemann,

$$\int_{[a,b]} \overline{\varphi}_2 \, d\mu$$

è l'integrale di Riemann di f, e quindi

$$\int_{a}^{b} f(x) dx = \int_{[a,b]} f d\mu$$

Teorema

Sia $f: \mathbb{R} \to [0, +\infty)$ misurabile tale che f sia R-integrabile in [a, c] per c > a. Allora,

$$\lim_{c \to \infty} \int_{a}^{c} f(x) dc = \int_{[a, +\infty)} f d\mu$$

L'ipotesi garantisce che l'integrale esiste per ogni c. Siccome la funzione è positiva, l'integrale è monotono crescente (potrebbe essere $+\infty$). Quindi, nel caso dell'integrale di Lebesgue non è necessario usare il limite per estendere l'integrale nell'intervallo illimitato, a differenza dell'integrale di Riemann.

Proof

Consideriamo una generica successione $c_n \to \infty$ e consideriamo

$$f_n(x) = f(x)1_{[a,c_n]}$$

Chiaramente $0 \le f_n \le f_{n+1}$ è monotona crescente. Inoltre, $f_n \to f$ in $[a, +\infty)$. Usiamo il teorema della convergenza monotona che si dice

$$\lim \int_X f_n \, d\mu = \int_X f \, d\mu$$

Quindi

$$\lim_{n} \int_{\mathbb{R}} f_n \, d\mu = \lim_{n} \int_{\mathbb{R}} f 1_{[a,c_n]} \, d\mu$$

$$= \lim_{n} \int_{[a,c_n]} f \, d\mu$$

$$= \lim_{n} \int_{a}^{c_n} f \, d\mu$$

$$= \lim_{n} \int_{a}^{c_n} f(x) \, dx$$

$$= \lim_{n} \int_{\mathbb{R}} f 1_{[a,+\infty)} \, d\mu$$

$$= \int_{[a,+\infty)} d\mu$$

Esempio

La funzione

$$\frac{\cos \pi x}{x} \notin L^1((1, +\infty))$$

Una funzione è integrabile secondo Lebesgue se e solo se lo è il suo modulo. Possiamo anche utilizzare il fatto che

$$\int_{\bigcup E_n} f \, d\mu = \sum_n \int_{E_n} f \, d\mu$$

per insiemi E_n disgiunti se f è positiva, come in questo caso. Consideriamo quindi

$$[1, +\infty) = \bigcup_{k=1}^{\infty} [k, k+1)$$

che sono disgiunti. E quindi

$$\int_{[1,+\infty)} \frac{|\cos \pi x|}{x} d\mu = \sum_{k=1}^{\infty} \int_{[k,k+1)} \frac{|\cos \pi x|}{x} d\mu$$

$$= \sum_{k=1}^{\infty} \int_{k}^{k+1} \frac{|\cos \pi x|}{x} dx$$

$$\geq \sum_{k=1}^{\infty} \int_{k}^{k+1} \frac{|\cos \pi x|}{k+1} dx$$

$$= \sum_{k=1}^{\infty} \frac{1}{k+1} \int_{0}^{1} |\cos \pi x| dx = +\infty$$

che diverge. Questa funzione non è integrabile secondo Lebesgue ma lo è secondo Riemann.

Esempio

Studiare, al variare di α , quando

$$f(x) = \frac{x^{\alpha} \sin \pi x}{(\ln x) \ln(1 + \sqrt{x})} \in L^{1}((0, +\infty))$$

Abbiamo dei problemi in $x = 0, 1, +\infty$. In un intorno di zero abbiamo

$$f \sim \frac{C}{x^{-\alpha - \frac{1}{2}} \ln x}$$

quindi è integrabile per $\alpha > -3/2$. In un intorno di 1 abbiamo

$$f \sim C \frac{\sim \pi x}{\ln x}$$

che è ha limite

$$\lim_{x \to 1} Cx \cos(\pi x) = 0$$

quindi la nostra funzione è sempre integrabile in un intorno di 1. In un intorno di infinito abbiamo la maggiorazione

$$|f| \le \frac{Cx^{\alpha}}{\ln^2(x)}$$

siccome per x grande togliamo il +1. Quindi la funzione è del tipo

$$\frac{C}{x^{-\alpha} \ln^2 x}$$

che è integrabile per $\alpha \le -1$. Quindi la funzione è integrabile per $-3/2 < \alpha \le -1$. Dobbiamo tuttavia capire che cosa succede se $\alpha \le -1$, siccome abbiamo usato una maggiorazione. Dividiamo l'integrale in diversi integrali secondo il periodo

$$\int_{a=2}^{+\infty} \frac{x^{\alpha} |\sin \pi x|}{(\ln x) \ln(1+\sqrt{x})} dx = \sum_{k=2}^{\infty} \int_{k}^{k+1} \frac{x^{\alpha} |\sin \pi x|}{(\ln x) \ln(1+\sqrt{x})} dx$$

$$\geq \sum_{k=1}^{\infty} \frac{1}{(k+1)^{-\alpha} \ln(k+1) \ln(1+\sqrt{k+1})} \int_{0}^{1} |\sin \pi x| dx$$

dove a=2 è quasi arbitrario. Della parte periodica sappiamo che l'integrale è costante, del resto della funzione abbiamo preso il minimo. Cominciamo guardando $-1 \le \alpha \le 0$. Il termine ora ha forma

$$\frac{1}{k^{-\alpha} \ln^2 k}$$

allora diverge per a > -1. In conclusione, la funzione è integrabile se e solo se

$$-\frac{3}{2} < \alpha \le -1$$

Quindi per $\alpha \leq -1$ abbiamo fatto una maggiorazione, mentre per il resto abbiamo fatto una minorazione.

Esempio

Studiare quando

$$f(x) = \frac{\sin^2 x^2}{x^{\alpha}} \in L^1((0, +\infty))$$

al variare di α . Abbiamo problemi in $x=0,+\infty$. In un intorno di 0 abbiamo

$$f \sim \frac{1}{x^{\alpha - 4}}$$

quindi è integrabile per $\alpha < 5$. In un interno di infinito notiamo che

$$f \le \frac{1}{x^{\alpha}}$$

quindi è integrabile se $\alpha > 1$. Dobbiamo tuttavia studiare il caso $\alpha \le 1$. Dobbiamo cambiare la variabile in maniera tale da fare diventare la funzione periodica $x^2 = t$. Allora,

$$\frac{1}{2} \int_{1}^{+\infty} \frac{\sin^{2} t}{t^{\frac{\alpha+1}{2}}} dt \ge \frac{1}{2} \sum_{k=1}^{\infty} \int_{k\pi}^{(k+1)\pi} \frac{\sin^{2} t}{t^{\frac{\alpha+1}{2}}} dt$$
$$\ge \frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{[(k+1)\pi]^{\frac{\alpha+1}{2}}} \int_{0}^{\pi} \sin^{2} t \, dt$$

che non è integrabile $\frac{\alpha+2}{2} \le 1 \iff \alpha \le 1$. Quindi, $f \in L^1((0,+\infty))$ se e solo se $1 < \alpha < 5$.

Esempio

Studiare quando

$$f(x) = \frac{x^{\alpha}}{(1+x^2)\sqrt[3]{\sin x}} \in L^1((0,+\infty))$$

al variare di α . Abbiamo problemi ad infinito ed sicuramente illimitata in quanto il seno si annulla periodicamente. Tuttavia, i punti critici periodici dipendono solo da

$$\frac{1}{\sqrt[3]{x}}$$

In un intorno di zero abbiamo

$$f \sim \frac{1}{x^{\frac{1}{3} - \alpha}}$$

che è integrabile per $\alpha > -2/3$. Guardiamo ora cosa succede in un intorno di $k\pi$

$$\frac{1}{|x - k\pi|^{\alpha}} \sim f \frac{1}{\sqrt[3]{\sin x}}$$

Dobbiamo fare uno sviluppo per studiare il seno negli intorni di $k\pi$.

$$\sin(x) = 0 \pm (x - k\pi) + o((x - k\pi))$$

quindi si comporta come

$$\frac{1}{\left|x - k\pi\right|^{1/3}}$$

che è integrabile. Quindi, non ci sono problemi di integrabilità in tali punti per quel pezzo della funzione. In un intorno di infinito

$$\int_{0}^{\infty} |f| \, d\mu \ge \int_{\pi}^{\infty} |f| \, d\mu$$

$$= \sum_{k=1}^{\infty} \int_{k\pi}^{(k+1)\pi} \frac{x^{\alpha}}{(1+x^{2})\sqrt[3]{\sin x}} \, dx$$

$$\ge \sum_{k=1}^{\infty} \frac{(k\pi)^{\alpha}}{1+(k\pi)^{2}} \int_{0}^{\pi} \frac{1}{\sqrt[3]{\sin x}} \, dx$$

quindi il carattere è lo stesso di

$$\frac{1}{k^{2-c}}$$

che diverge per $\alpha \geq 1$. Analogamente minoriamo

$$\leq \sum_{k=1}^{\infty} \frac{((k+1)\pi)^{\alpha}}{1+\pi^{2}(k+1)^{2}} \int_{0}^{\pi} \frac{1}{\sqrt[3]{\sin x}} dx$$

che converge per $\alpha<1.$ Quindi, $f\in L^1\iff -2/3<\alpha<1.$

Esercizio

Calcolare

$$\lim_{n} \int_{0}^{\infty} \frac{e^x + x^n}{1 + x^n e^{2x}} \, dx$$

Calcoliamo il limite (per x > 0) delle funzioni che stiamo integrando

$$\lim_{n} \frac{e^{x} + x^{n}}{1 + x^{n} e^{2x}} = \begin{cases} e^{x} 0 < x < 1 \\ e^{-2x} \end{cases}$$

il caso x=1 non ci interessa in quanto per ciò che concerne l'integrale un singolo punto è irrilevante. Vogliamo applicare il teorema di convergenza dominante. Vogliamo trovare una maggiorante integrabile g. Per $x \in (0,1)$ possiamo usare

$$\frac{e^x + x^n}{1 + x^n e^{2x}} \le e^x + 1$$

Invece, per $x \in (1, +\infty)$

$$\frac{e^x + x^n}{1 + x^n e^{2x}} \leq \frac{e^x}{x^n e^{2x}} + \frac{x^n}{x^n e^{2x}} = \frac{e^- x}{x^n} + e^{-2x} \leq e^{-x} + e^{-2x}$$

Quindi,

$$f_n \le \begin{cases} e^x + 1 & x \in (0,1) \\ e^{-2x} + e^{-x} & x > 1 \end{cases}$$

allora il limite degli integrali è l'integrale del limite

Esercizio

Calcolare

$$\lim_{n} \int_{0}^{n} \frac{n^{2}e^{-n/t}}{t^{2}\sqrt{1+t^{3}}} dt$$

Il problema è l'intervallo di integazione, ma possiamo sistemarlo

$$\lim_{n} \int_{0}^{n} \frac{n^{2}e^{-n/t}}{t^{2}\sqrt{1+t^{3}}} dt = \lim_{n} \int_{0}^{\infty} \frac{n^{2}e^{-n/t}}{t^{2}\sqrt{1+t^{3}}} 1_{[0,n]} dt$$

Il limite è dato da

$$\lim_{n} f_n(t) = \Big\{ \to 0$$

Quindi per dimostrare che l'integrare è nullo dobbiamo trovare una maggiorante integrabile. Potrei maggiorare con una constante

$$\frac{n^2 e^{-n/t}}{t^2 \sqrt{1+t^3}} \leq \frac{C}{t^2 \sqrt{1+t^3}}$$

che tuttavia non è integrabile quando t è piccolo. Consideriamo allora il termine

$$\frac{n^2}{t^2}e^{-n/t} = y^2e^{-y}$$

con y = n/t. Di tale funziona, controlliamo se è veramente limitata superiormente, ha un massimo

$$2ye^{-y} - y^2e^{-y} = ye^{-y}(2-y)$$

Quindi è sempre limitata da $4e^{-2}$

$$\left(\frac{n^2}{t^2}e^{-n/t}\right) \cdot \frac{1}{\sqrt{1+t^3}} \le \frac{4e^{-2}}{\sqrt{1+t^3}}$$

che è integrabile sia in zero che in infinito.

Lo spazio di probabilità è una misura $(\mathbb{R}, \mathcal{B}, \mathbb{P})$ dove \mathcal{B} è la misura generata dagli aperti (di Borel), quindi $\mathcal{B} \subseteq \mathcal{M}$ in quanto gli aperti sono nelle σ -algebra di Lebesgue. Si può mostrare che la misura di Lebesgue è strettamente contenuta in \mathcal{M} ma è più complicato. La misura ha la proprietà che $\mathbb{P}(\mathbb{R}) = 1$. Se prendiamo $x \in \mathbb{R}$, $\delta_x(\mathbb{R}) = 1$ (misura di Dirac).

Costruiamo una funzione $F\colon \mathbb{R} \to [0,1]$ tale che

$$F_{\mathbb{P}}(x) = \mathbb{P}((-\infty, x])$$

Se prendiamo $\mathbb{P} = \delta_x$, allora F_{δ_a} vale 1 per $x \geq 1$, altrimenti 0.

Prendiamo ora $\mathbb{P} = \mu(A \cap [0,1])$ che viene chiamata la misura di Lebesgue concentrata in 1. Scriviamo

$$F_{\mathbb{P}}(x) = \mu((-\infty, x] \cap [0, 1])$$

fino a zero, la funzione è nulla in quanto l'intersezione è vuota. La funzione è 1 per $x \ge 1$ e una retta in [0,1]. Tale funzioni ha delle proprietà molto importanti:

1.
$$x < y \implies F(x) \le F(y)$$

2.

$$\lim_{x \to -\infty} F(x) = 0, \qquad \lim_{x \to \infty} F(x) = 1$$

Per dimostrare che il limite tende ad 1 prendiamo una successione $x_n \to \infty$ e consideriamo gli intervalli $I_n = (-\infty, x_n]$. Abbiamo che $I_n \subseteq I_{n+1}$ e

$$\bigcup I_n = \mathbb{R}$$

quindi la probabilità (misura) dell'unione è data dal limite

$$\mathbb{P}\left(\bigcup I_n\right) = \lim_n \mathbb{P}(I_n) = \mathbb{P}(\mathbb{R}) = \lim_n F(x_n) = 1$$

3. continua da destra

$$\lim_{x \to x_0^+} F(x) = F(x_0)$$

Una funzione $F: \mathbb{R} \to [0,]$ che soddisfa (1), (2), (3) è detta una funzione di distribuzione (anche funzione di ripartizione della probabilità \mathbb{P}). Sia dunque F una tale funzione. Allora esiste una probabilità \mathbb{P} su \mathbb{R} tale che $F = F_{\mathbb{P}}$, cioè partendo da \mathbb{P} posso ritrovare la stessa F. Quindi, avere una probabilità o una funzione di distribuzione è la stessa cosa. Per costruire tale probabilità prendiamo intervalli I = (a, b] e diciamo che la lunghezza di tale intervallo relativa alla funzione la calcolo così:

$$l_F(I) = F(b) - F(a)$$

e poi costruiamo

$$\mu_F^*(E) = \inf \left\{ \sum_{n=1}^{\infty} l_F(I_n), E \subseteq \bigcup_{n=1}^{\infty} I_n \right\}$$

Un sottoinsieme $E \subseteq \mathbb{R}$ è F-misurabile se

$$\forall A \subseteq \mathbb{R}, \mu_F^*(A) = \mu_F^*(A \cap E) + \mu_F^*(A \cap E^c)$$

esattamente come prima. Se E è F-misurabile allora definiamo

$$\mu_F(E) = \mu_F^*(E)$$

che in realtà è una probabilità, la cui funzione di distribuzione è quella da cui siamo partiti.

4 Misura di Lebesgue su \mathbb{R}^n

Consideriamo ora un insieme della forma (che chiamiamo per semplicità rettangolo)

$$J = (a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_n, b_n) \subseteq \mathbb{R}^n$$

Definiamo l'area come

$$\operatorname{area}_n(J) = \prod_{i=1}^n (b_i - a_i)$$

Consideriamo quindi $E\subseteq\mathbb{R}^n$ e definiamo la misura n-dimensionale

$$\mu_n^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \operatorname{area}_n(J_h), E \subseteq \bigcup_{h=1}^{\infty} J_h \right\}$$

Analogamente abbiamo le:

- 1. Proprietà di μ_n^*
- 2. Definizione di insieme misurabile
- 3. Gli insiemi misurabili sono una σ -algebra.
- 4. Tale σ -algebra contiene gli aperti.
- 5. Se $E \in \mathcal{M}_n$, allora definiamo

$$\mu_n(E) = \mu_n^*(E)$$

che è la misura di Lebesgue in \mathbb{R}^n

è la stessa cosa ma siamo partiti dall'area piuttosto che dalla lunghezza. Quindi, $(\mathbb{R}^n, \mathcal{M}_n, \mu_n)$ è l'oggetto con cui abbiamo a che fare, e abbiamo quindi la teoria dell'integrazione.

Una funzione $f \in L^1(\mathbb{R}^n)$, cioè una funzione integrabile in \mathbb{R}^n .

Per calcolare un integrale n-dimensionale, vogliamo ricondurci al caso unidimensionale. Abbiamo allora il

Teorema di Fubini

Sia $f: \mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^{n-k} \to \mathbb{R}$ misurabile e integrabile.

1. $f_x(y): \mathbb{R}^{n-k} \to \mathbb{R}^n$ è integrabile per quasi ogni $x \in \mathbb{R}^k$.

2.

$$G(x) = \int_{\mathbb{R}^{n-k}} f_x(y) \, d\mu_{n-k}(y)$$

è definita quasi ovunque, è integrabile in \mathbb{R}^k .

3.

$$\begin{split} \int_{\mathbb{R}^k} G(x) \, d\mu_n(x) &= \int_{\mathbb{R}^n} f \, d\mu_n \\ &= \int_{\mathbb{R}^k} \left(\int_{\mathbb{R}^{n-k}} f(x,y) \, d\mu_{n-k}(y) \right) \, d\mu_k(x) \end{split}$$

bisogna tuttavia capire quando la funzione è integrabile.

Teorema Teorema di Tonelli

Sia $f\colon \mathbb{R}^n=\mathbb{R}^k\times\mathbb{R}^{n-k}\to [0,+\infty)$ misurabile. Allora

$$G(x) = \int_{\mathbb{R}^{n-k}} f_x(y) \, d\mu_{n-k}(y)$$

(che potrebbe assumere valore infinito) è misurabile in \mathbb{R}^k e

$$\int_{\mathbb{R}^k} G(x)\mu_k(x) = \int_{\mathbb{R}^n} f \, d\mu_n$$

È importante notare che la funzione debba essere positiva. Esempio con i quadratini ± 1 , gli integrali unidimensionali fanno zero ma l'integrale bidimensionale non è integrabile. Se prendiamo il valore assoluto, gli integrali unidimensionali fanno 2, e l'integrale doppio diverge a $+\infty$, che è corretto nel caso di |f|.

Esercizio

Calcolare

$$\lim_{x \to \infty} \int_{1}^{x} \frac{\ln(e^{xt} + 1)}{tx(t^2 + e^{1/x})} dt$$

Per trattare il caso continuo basta considerare qualsiasi successione $x_n \to +\infty$ e calcolare

$$\lim_{n} \int\limits_{1}^{\infty} \frac{\ln(e^{x_{n}t}+1)}{tx_{n}(t^{2}+e^{1/x_{n}})} \chi_{[1,x_{n}]} \, dt$$

Calcoliamo il limite quando t è fissato

$$f_n(t) \to \frac{1}{t^2 + 1}$$

in quanto t > 0. Quindi, l'integrale è pari a

$$\int_{1}^{\infty} \frac{dt}{1+t^2}$$

Osserviamo che $\ln(e^{xt} + 1) \le \ln(e^{xt} + e^{xt}) = xt + \ln(2)$.

$$\frac{\ln(e^{xt}+1)}{xt(t^2+e^{1/x})} \le \frac{xt+\ln 2}{xt(1+t^2)} = \frac{1+\frac{\ln 2}{xt}}{1+t^2}$$
$$\le \frac{2}{1+t^2}$$

che è integrabile

Esercizio

Dopo aver mostrato che esiste C > 0 tale che

$$\frac{n^3x}{(1+nx)^n} \le \frac{C}{\sqrt{x}}$$

per $x \in (0,1)$, calcolare

$$\lim_{n} \int_{0}^{1} \frac{n^3 x}{\left(1 + nx\right)^n} \, dx$$

La maggiorazione è integrabile in un intorno di zero e quindi l'integrale è uguale a

$$\int_{0}^{1} \left(\lim_{n} \frac{n^{3}x}{(1+nx)^{n}} \right) dx = \int_{0}^{1} 0 dx = 0$$

Per dimostrare la maggioranza vogliamo

$$\frac{n^3 x \sqrt{x}}{\left(1 + nx\right)^n} \le C$$

quindi verifichiamo che abbia un massimo studiando quindi la funzione

$$g_n(x) = \frac{x\sqrt{x}}{(1+nx)^n}$$

Abbiamo che $g_n(0) = 0$ e $g_n(1) = \frac{1}{(1+n)^n}$. Calcoliamo la derivata del numeratore per vedere dove si annulla

$$\frac{d}{dx}(g'_n(x)\cdot(1+nx)^n) = \sqrt{x}(1+nx)^{n-1}\left[\frac{3}{2}(1+nx) - n^2x\right]$$

la derivata di annulla in

$$x = \frac{3}{2n^2 - 3n} \to 0$$

quindi vi è un massimo e

$$\frac{n^3 x}{(1+nx)^n} \le \frac{n^3 \left(\frac{3}{2n^2-3n}\right)^{3/2}}{\left(1+\frac{3}{2n-3}\right)^n} \le \lim \dots$$

il denominatore ammette limite (di forma esponenziale) e pure il numeratore, quindi ammette limite ed è quella la costante.

Esercizio

Si consideri la serie

$$\sum_{n=1}^{\infty} \frac{n^{\alpha} x}{x^4 + n^2}$$

1. Determinare per quali α la serie converge in \mathbb{R} : Abbiamo che

$$\frac{n^{\alpha}x}{x^4 + n^2} \sim \frac{C}{n^{2 - \alpha}}$$

quindi converge per $\alpha < 1$.

2. Determinare per quali α la somma è integrabile in \mathbb{R} : Notiamo che le funzioni sono dispari, quindi se prendiamo il modulo otteniamo una funzione pari. Possiamo quindi considerare $x \geq 0$. Per il teorema della convergenza monotona (di funzioni positive) abbiamo

$$\int_{0}^{\infty} \sum_{n=1}^{\infty} \frac{n^{\alpha} x}{x^{4} + n^{2}} dx = \sum_{n=1}^{\infty} \int_{0}^{\infty} \frac{n^{\alpha} x}{x^{4} + n^{2}} dx$$
$$= \sum_{n=1}^{\infty} \frac{n^{\alpha - 1}}{2} \int_{0}^{\infty} \frac{1}{1 + t^{2}} dt$$
$$= \sum_{n=1}^{\infty} \frac{n^{\alpha - 1}}{2} \frac{\pi}{2} \sim \frac{1}{n^{1 - \alpha}}$$

che converge se e solo se $\alpha < 0$.

5 Esercizi

Esercizio Successioni 1

Per x > -1 studia la successione

$$f_n(x) = \frac{ne^{-n/x}}{x^2\sqrt{1+x}}$$

• convergenza puntuale: controlliamo la convergenza puntuale in $E=(0,+\infty)$. Fissato x>0 studiamo

$$\lim_{n} f_n(x) = \lim_{n} \frac{ne^{-n/x}}{x^2\sqrt{1+x}} = 0 = f(x)$$

 \bullet convergenza uniforme: controlliamo la convergenza uniforme in E. Abbiamo

$$||f_n - f||_{\infty, E} = \sup_{x \in (0, +\infty)} \left| \frac{ne^{-n/x}}{x^2 \sqrt{1+x}} \right|$$

sostituendo t=n/x otteniamo una funzione simile all'integranda della funzione gamma, che ha un massimo M

$$\sup_{x \in (0, +\infty)} \left| \frac{ne^{-n/x}}{x^2 \sqrt{1+x}} \right| \le M \sup_{x \in (0, +\infty)} \frac{1}{n\sqrt{1+x}}$$
$$= \frac{M}{n\varepsilon} \to 0$$

Chiaramente il sup si ottiene con il denominatore più piccolo, quindi un ε molto vicino a 0.

• integrabilità: mostriamo che $f_n \in L^1$.

$$\int_{0}^{\infty} |f_n(x)| dx = \int_{0}^{\infty} \left| \frac{ne^{-n/x}}{x^2 \sqrt{1+x}} \right| dx$$

In un intorno di $+\infty$ abbiamo

$$f_n(x) \sim \frac{n}{x^{5/2}}$$

siccome $\frac{5}{2} > 1$ la funzione è integrabile a infinito. In un intorno di 0^+ maggioriamo

$$f_n(x) \le \frac{M}{n\sqrt{1+x}} \sim \frac{M}{n}$$

quindi è integrabile per confronto e confronto asintotico.

Esercizio Successioni 1

Data la successione

$$f_n(x) = n^{\alpha} \arctan(x)e^{n^2x}$$

studiare al variare di $\alpha \in \mathbb{R}$

1. convergenza puntuale: studiamo la convergenza puntuale in $(0, +\infty)$. Fissato x > 0 abbiamo

$$\lim_{n} f_n(x) = \lim_{n} n^{\alpha} \arctan(x) e^{n^2 x} = 0, \forall \alpha \in \mathbb{R}$$

2. **convergenza uniforme:** studiamo la convergenza uniforme in $(0, +\infty)$. Abbiamo

$$||f_n - f||_{\infty, E} = \sup_{x \in (0, +\infty)} \left| n^{\alpha} \arctan(x) e^{n^2 x} \right|$$
$$\leq \sup_{x \in (0, +\infty)} \left| n^{\alpha} x e^{n^2 x} \right|$$

siccome $arctan(x) \leq x$. Studiamo la derivata della funzione maggiorante $g_n(x)$.

$$g'_n(x) = n^{\alpha} e^{-n^2 x} - n^{\alpha} x e^{-n^2 x} n^2$$
$$= n^{\alpha} e^{-n^2 x} (1 - x n^2)$$

Per studiare il segno abbiamo

$$1 - n^2 x \le 0 \iff x \le \frac{1}{n^2}$$

che è un punto di massimo. Chiaramente $g_n(0) = 0$ e $\lim_{x\to\infty} g_n(x)$, e siccome è sempre positiva, siamo sicuri che tale valore è un punto di massimo. Il massimo vale

$$g_n\left(\frac{1}{n^2}\right) = \frac{n^{\alpha - 2}}{e}$$

Quindi, la norma infinito è sempre minore di

$$||f_n - f||_{\infty, E} \le \frac{n^{\alpha - 2}}{e}$$

che tende a zero solo quando $\alpha < 2$ (condizione sufficiente ma non necessaria). Cerchiamo ora un limite dal basso

$$||f_n - f||_{\infty, E} \ge f_n\left(\frac{1}{n^2}\right) = n^{\alpha} \arctan\left(\frac{1}{n^2}\right) e^{-1}$$

 $\sim n^{\alpha - 2} e^{-1}$

che non tende a zero. Quindi la convergenza è uniforme per $\alpha < 2$.

Esercizio Successioni 3

Data la successione

$$f_n(x) = n\left(e^{\frac{x^2}{n}} - 1\right)$$

1. stabilire in che insieme vi è convergenza puntuale: fissato x calcoliamo

$$\lim_{n} f_n = \lim_{n} n \left(e^{\frac{x^2}{n}} - 1 \right) = x^2$$

in quanto la parentesi è asintotica all'esponente. Allora l'insieme di convergenza puntuale è $E=\mathbb{R}.$

2. stabilire se la convergenza è uniforme in tale insieme: fissato x abbiamo

$$||f_n - f||_{\infty, E} = \sup_{x \in (0, +\infty)} \left| n\left(e^{\frac{x^2}{n}} - 1\right) - x^2\right| = \sup_{x \in (0, +\infty)} |g_n(x)|$$

Studiamo la derivata di $g_n(x)$

$$g'_n(x) = ne^{\frac{x^2}{n}} \frac{2x}{n} - 2x = 2x \left(e^{\frac{x^2}{n}} - 1\right)$$

Il segno della derivata è lo stesso di x, e x = 0 è un punto di minimo.

$$\lim_{x \to \pm \infty} g_n(x) = \pm \infty$$

quindi non è limitata e la convergenza non è assoluta.

3. stabilire se la convergenza è uniforme in un intervallo limitato: sia [a, b] tale intervallo. Dalla forma della funzione, il sup è o in x = a o in x = b, quindi

$$||f_n - f||_{\infty, E} \le \max\{|f(a) - f(b)|, |f(b) - f(a)|\}$$

supponiamo che sia in a

$$||f_n - f||_{\infty, E} = \left| n \left(e^{\frac{a^2}{n}} - 1 \right) - a^2 \right|$$

per risolvere il limite facciamo un espansione di MacLaurin fino al secondo ordine

$$||f_n - f||_{\infty, E} = \left| \frac{a^4}{n} + o\left(\frac{1}{n}\right) \right| \to 0$$

Quindi, la convergenza è uniforme in un intervallo limitato.

Esercizio Serie 1

Consideriamo la serie

$$\sum_{n=1}^{\infty} \frac{xe^{-\frac{x^2}{n}}}{n^2 + x^2}$$

verifica la convergenza uniforme in \mathbb{R} . Cominciamo studiando la convergenza totale che è più forte, quindi la convergenza di

$$\sum_{n=1}^{\infty} ||f_n||_{\infty,\mathbb{R}} = \sum_{n=1}^{\infty} \sup_{x \in \mathbb{R}} \left| \frac{xe^{-\frac{x^2}{n}}}{n^2 + x^2} \right|$$

con $t=\frac{x}{\sqrt{n}}$ otteniamo la forma $f(t)=te^{-t^2}$ che ha grafico noto, e un massimo M e minimo

$$||f_n||_{\infty,\mathbb{R}} \le M \sup_{x \in \mathbb{R}} \frac{\sqrt{n}}{n^2 + x^2} = \frac{M}{n^{3/2}}$$

in quanto il supremum è per x = 0. Quindi la serie

$$\sum_{n=1}^{\infty} ||f_n||_{\infty,\mathbb{R}} \le M \sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$$

che converge. Quindi la serie converge totalmente e quindi converge anche in maniera uniformemente su tutto \mathbb{R} .

Esercizio Serie 2

Conderiamo la serie

$$\sum_{n=1}^{\infty} \arctan\left(\frac{n^{\alpha}}{x^2 + n^2}\right)$$

1. Stabilire per quali $\alpha \in \mathbb{R}$ abbiamo convergenza puntuale: Fissato x, notiamo che per convergere il termine n-esimo deve tendere a zero. Quindi,

$$\lim_{n} \arctan\left(\frac{n^{\alpha}}{x^2 + n^2}\right) \to 0$$

se e solo se $\alpha < 2$ (condizione necessaria). Usiamo il criterio del confronto asintotico: l'argomento dell'arcotangente tende a zero e quindi è asintotica al suo argomento. La serie

$$\sum \frac{1}{n^{2-\alpha}}$$

converge se e solo se $\alpha < 1$. Quindi, la serie converge puntualmente per $\alpha < 1$.

2. Stabilire per quali $\alpha \in \mathbb{R}$ abbiamo convergenza uniforme: è necessario $\alpha-1$. Cominciamo studiando la convergenza totale, che è più forte. Abbiamo

$$\sum_{n=1}^{\infty} ||f_n||_{\infty,\mathbb{R}} = \sum_{n=1}^{\infty} \sup_{x \in \mathbb{R}} \left| \arctan\left(\frac{n^{\alpha}}{x^2 + n^2}\right) \right|$$

Studiamo la derivata del termine

$$f'_n(x) = \frac{1}{1 + \left(\frac{n^{\alpha}}{x^2 + n^2}\right)^2} = -\frac{2xn^{\alpha}}{n^{2\alpha} + n^2 + x^{2^2}} \ge 0 \iff x \le 0$$

quindi x=0 è un punto di massimo. Infatti, gli estremi sono

$$\lim_{x \to \pm \infty} f_n(x) \to 0$$

29

Quindi la forma è data da

$$||f_n||_{\infty,\mathbb{R}} = f_n(0) = \arctan(n^{\alpha-2})$$

La serie è quindi a termini positivi e usiamo il confronto asintotico

$$\sum_{n=1}^{\infty} ||f_n||_{\infty,\mathbb{R}} = \sum_{n=1}^{\infty} \arctan(n^{\alpha-2})$$

che converge se e solo se $\alpha < 1$. Quindi abbiamo convergenza uniforme per $\alpha < 1$. Siccome la convergenza puntuale è per $\alpha < 1$, non vi sono altri α per cui vi è convergenza assoluta.

Esercizio Serie 3

Consideriamo la serie

$$\sum_{n=1}^{\infty} \frac{\arctan\left(\frac{x}{n^{\alpha}+1}\right)}{\sqrt{n+1} - \sqrt{n}}$$

1. Valutare per quali $\alpha \in \mathbb{R}$ vi è convergenza puntuale in \mathbb{R} . Studiamo la condizione necessaria di convergenza. Il numeratore tende a zero se e solo se $\alpha > 0$. In tal caso la funzione è assolutamente asintotica a

$$|f_n(x)| \sim \frac{2|x|}{n^{\alpha - 1/2}}$$

E la serie

$$\sum_{n=1}^{\infty} \frac{2|x|}{n^{\alpha - 1/2}}$$

converge se e solo se $\alpha > 3/2$ per confronto asintotico. Per x < 0, basta notare che arctan(t) è simmetrica rispetto all'origine, il ché implica convergenza puntiale per $\alpha > 3/2$.

2. Stabilire per quali $\alpha \in \mathbb{R}$ la somma della serie è continua in \mathbb{R} . Dobbiamo utilizzare il teorema. Dobbiamo trovare per quali α converge totale per applicare il teorema che dice che se f_n è continua in E, allora la sua serie converge uniformemente a S(x) in E e S(x) è continua. Studiamo la convergenza totale in E = [-a, a], a > 0. Abbiamo allora

$$||f_n||_{\infty,[-a,a]} = \sup_{x \in [-a,a]} \frac{\arctan\left(\frac{x}{n^{\alpha}+1}\right)}{\sqrt{n+1} - \sqrt{n}}$$

$$\leq \sup_{x \in [-a,a]} \frac{|x|}{n^{\alpha}+1} 2\sqrt{n} = \frac{2a\sqrt{n}}{n^{\alpha}+1} \sim \frac{C}{n^{\alpha-1/2}}$$

in quanto $arctan(t) \leq t$. Ciò implica che

$$\sum_{n=1}^{\infty} ||f_n||_{\infty, [-a,a]} \le \sum_{n=1}^{\infty} \frac{C}{n^{\alpha - 1/2}}$$

che converge se e solo se $\alpha > 3/2$. Quindi per confronto la serie converge totalmente, e quindi uniformemente per $\alpha > 3/2$. Poiché la convergenza uniforme implica la convergenza puntuale e la serie converge puntualmente per $\alpha > 3/2$, abbiamo convergenza uniformemente se e solo se $\alpha > 3/2$. Poiché f_n è continua e la serie converge uniformemente in [-a,a], la serie risulta continua in tale intervallo. Poiché a è arbitrario, possiamo amplificato e la serie è continua su tutto \mathbb{R} .