Phần xác suất

Các công thức xác suất

Công thức cộng và nhân xác suất:

•
$$P(A+B) = P(A) + P(B) - P(AB)$$
, và $P\left(\sum_{i=1}^{n} A_i\right) = \sum_{i} P(A_i) - \sum_{i < j} P(A_i A_j) + \sum_{i < j < k} P(A_i A_j A_k) - \dots$

•
$$P(AB) = P(A)P(B|A)$$
 và $P(A_1A_2...A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1A_2)...P(A_n|A_1A_2...A_{n-1})$

Với A_1, \ldots, A_n là một họ các biến cố đầy đủ:

- Công thức xác suất đầy đủ: $P(F) = P(A_1)P(F|A_1) + P(A_2)P(F|A_2) + \cdots + P(A_n)P(F|A_n)$.
- Công thức Bayse: $P(A_k|F) = \frac{P(A_k)P(F|A_k)}{P(F)}$.

1.2 Biến ngẫu nhiên (BNN):

- BNN X rời rạc: $\mathbb{E}(X) = \sum_i x_i p_i$, và $\mathbb{V}ar(X) = \sum_i (x_i \mathbb{E}(X))^2 p_i = \sum_i x_i^2 p_i [\mathbb{E}(X)]^2$.
- BNN X liên tục: $\mathbb{E}(X) = \int_{-\infty}^{\infty} x f(x)$, và $\mathbb{V}ar(X) = \int_{-\infty}^{\infty} (x \mathbb{E}(X))^2 f(x) dx = \int_{-\infty}^{\infty} x^2 f(x) dx [\mathbb{E}(X)]^2$.

 3 Các hàm phân phối xác suất cơ bản

Phân phối nhị thức, $X \sim B(n,p)$): $P(X=k) = C_n^k p^k q^{n-k}, \ k=1,\ldots,n \ \text{và } \mathbb{E}(X) = np, \ \mathbb{V}ar(X) = npq.$

Phân phối Poisson,
$$X \sim P(\lambda)$$
 $P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$, $k = 1, 2, ...$, và $\mathbb{E}(X) = \mathbb{V}ar(X) = \lambda$.

 $\mathbf{Phân \ phối \ siêu \ bội,} \ X \sim H(N,K,n) \text{:} \ P(X=k) = \frac{C_K^k}{C_N^n - K} \text{ và } \mathbb{E}(X) = np, \ \mathbb{V}ar(X) = np(1-p) \left(\frac{N-n}{N-1}\right), \ p = \frac{K}{N}$

Phân phối mũ,
$$X \sim Exp(\lambda)$$
: $f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \geq 0 \\ 0, & x < 0 \end{cases}$, và $\mathbb{E}(X) = \frac{1}{\lambda}$, $\mathbb{V}ar(X) = \frac{1}{\lambda^2}$.

Phân phối chuẩn, $X \sim N(\mu, \sigma^2)$: $f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ và $\mathbb{E}(X) = \mu$, $\mathbb{V}ar(X) = \sigma^2$.

Định lý giới hạn trung tâm: Nếu X_1, \ldots, X_n là đôi một độc lập và $\mathbb{E}(X_k) = \mu, \mathbb{V}ar(X_k) = \sigma^2, \overline{X} = \frac{\sum_{k=1}^n X_k}{n}$ khi n đủ lớn, thì $\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1).$

Phần thống kê

Khoảng tin cây

Khoảng tin cậy cho kỳ vọng:

- Biết σ^2, X có phân phối chuẩn hoặc cỡ mẫu n đủ lớn: $\overline{x} z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
- Không biết σ^2 , và X có phân phối chuẩn: $\overline{x} t_{\alpha/2}^{n-1} \frac{s}{\sqrt{n}} \le \mu \le \overline{x} + t_{\alpha/2}^{n-1} \frac{s}{\sqrt{n}}$

Khoảng tin cậy cho tỷ lệ tổng thể $P,\ n>30: \hat{P}-z_{\alpha/2}\sqrt{\frac{\hat{P}(1-\hat{P})}{n}} \leq P \leq \hat{P}+z_{\alpha/2}\sqrt{\frac{\hat{P}(1-\hat{P})}{n}}.$ Trong đó: $\hat{P}=\frac{X}{n},\ X$ là số phần tử thoả tính chất A trong mẫu gồm n phần tử.

Kiểm định giả thuyết thống kê, một mẫu

Kiểm định cho kỳ vọng:

- 1. Biết σ^2, X có phân phối chuẩn hoặc cỡ mẫu n đủ lớn: $z_0 = \frac{\overline{X} \mu_0}{\sigma/\sqrt{n}} ==>$ Dùng bảng 1.
- 2. Không biết σ^2 và X có phân phối chuẩn: $t_0 = \frac{\overline{X} \mu_0}{s/\sqrt{n}} ==>$ Dùng bảng 2.
- 3. Không biết σ^2 , X có phân phối bất kỳ, cỡ mẫu đủ lớn: $z_0=\frac{\overline{X}-\mu_0}{s/\sqrt{n}}==>$ Dùng bảng 1

Kiểm định cho tỉ lệ tổng thể, n > 30 : $z_0 = \frac{\hat{P} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} ==>$ Dùng bảng 1. Trong đó: $\hat{P} = \frac{X}{n}$, X là số phần tử thoả tính chất \mathcal{A} trong mẫu gồm n phần tử.

Kiểm đinh giả thuyết thống kê, hai mẫu

Kiểm định cho kỳ vọng:

- 1. Biết phương sai, phân phối chuẩn hoặc cỡ mẫu đủ lớn: $z_0 = \frac{\overline{X} \overline{Y}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} ==>$ Dùng bảng 1.
- 2. Chưa biết phương sai, có phân phối chuẩn và cỡ mẫu đủ lớn: $z_0 = \frac{\overline{X} \overline{Y}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} ==>$ Dùng bảng 1.

3. Chưa biết phương sai, có phân phối chuẩn, cỡ mẫu nhỏ và $\sigma_1 = \sigma_2$: $S_p = \frac{(n_- 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}, \ t_0 = \frac{\overline{X} - \overline{Y}}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = => \text{Dùng bảng 2 với } df = n_1 + n_2 - 2 \ .$ Kiểm định cho tỉ lệ tổng thể, $n_1, n_2 > 30 : z_0 = \frac{\hat{P}_1 - \hat{P}_2}{\sqrt{\hat{P}(1 - \hat{P})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = => \text{Dùng bảng 1. Trong đó: } \hat{P} = \frac{X + Y}{n_1 + n_2}, \ \hat{P}_1 = \frac{X}{n_1},$

 $\hat{P}_2 = \frac{Y}{n_0}, X$ và Y lần lượt là số phần tử thoả tính chất \mathcal{A} trong mẫu gồm n_1 và n_2 phần tử.

Bảng quy tắc bác bỏ H_0 :

Da	ing quy tac be							
	Đối thuyết H1	Miền bác bỏ	Trị số p_v	EL	Đối thuyết H1	Miền bác bỏ (một mẫu)	Miền bác bỏ (hai mẫu)	
	Hai phía	$W_{\alpha} = \left\{ z_0 : z_0 > z_{\alpha/2} \right\}$	$2[1-\Phi(z_0)]$	•	Hai phía	$W_{\alpha} = \left\{ t_0 : t_0 > t_{\alpha/2, n-1} \right\}$	$W_{\alpha} = \left\{ t_0 : t_0 > t_{\alpha/2, df} \right\}$	
	Một phía trên	$W_{\alpha} = \{z_0 : z_0 > z_{\alpha}\}$	$1 - \Phi(z_0) \stackrel{\square}{\vdash} 0$	IIHC	Một phía trên	$W_{\alpha} = \{t_0 : t_0 > t_{\alpha, n-1}\}$	$W_{\alpha} = \left\{ t_0 : t_0 > t_{\alpha, df} \right\}$	
	Một phía dưới	$W_{\alpha} = \{ z_0 : z_0 < -z_{\alpha} \}$	$\Phi(z_0)$]	Một phía dưới	$W_{\alpha} = \{t_0 : t_0 < -t_{\alpha, n-1}\}$	$W_{\alpha} = \left\{ t_0 : t_0 < -t_{\alpha, df} \right\}$	
Bång 1					Bảng 2			

Phân tích phương sai (ANOVA) một nhân tố, cỡ mẫu bằng nhau

Quan sát một mẫu có N=kn giá trị quan trắc, trong đó k là số phương thức xử lý của nhân tố, và mõi phương thức xử lý có n giá trị quan

Bài toán kiểm định: $H_0: \tau_1 = \tau_2 = \dots = \tau_k = 0$ v
s $H_1: \tau_i \neq 0$, với ít nhất một i. Bác bỏ
 H_0 khi: $F = \frac{MSB}{MSW} > F_{\alpha;k-1,k(n-1)}$.

Nguồn của sự biến thiên	SS	df	MS	F
Giữa các nhóm(SSB)	$SSB = n \sum_{i=1}^{k} (\bar{y}_{i\cdot} - \bar{y}_{\cdot\cdot})^2 = \sum_{i=1}^{k} \frac{y_{i\cdot}^2}{n} - \frac{y_{\cdot\cdot}^2}{N}$	k-1	$MSB = \frac{SSB}{k-1}$	
Trong từng nhóm (SSW)	$SSW = \sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{i.})^2 = SST - SSB$	k(n-1)	$MSW = \frac{SSW}{k(n-1)}$	$F = \frac{MSB}{MSW}$
Tổng (SST)	$SST = \sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{})^2 = \sum_{i=1}^{k} \sum_{j=1}^{n} y_{ij}^2 - \frac{y_{}^2}{N}$	kn-1		

Hồi quy tuyến tính đơn

 $\begin{aligned} \textbf{Dường hồi quy tuyến tính mẫu} \ Y \ \textbf{theo} \ X : y &= \hat{\beta}_0 + \hat{\beta}_1 x. \ \text{Trong dó:} \ \hat{\beta}_1 = \frac{\sum_{i=1}^n x_i y_i - \frac{\left(\sum_{i=1}^n x_i\right) \left(\sum_{i=1}^n y_i\right)}{n}}{\sum_{i=1}^n x_i^2 - \frac{\left(\sum_{i=1}^n x_i\right)^2}{n}} = \frac{S_{xy}}{S_{xx}}, \ \text{và} \ \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}. \end{aligned} \\ S_{xx} &= \sum_{i=1}^n (x_i - \bar{x})^2 = \sum_{i=1}^n x_i^2 - \frac{\left(\sum_{i=1}^n x_i\right)^2}{n} \ \text{và} \ S_{xy} = \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^n x_i y_i - \frac{\left(\sum_{i=1}^n x_i\right) \left(\sum_{i=1}^n y_i\right)}{n} \end{aligned}$

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n} \text{ và } S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} x_i y_i - \frac{\left(\sum_{i=1}^{n} x_i\right)\left(\sum_{i=1}^{n} y_i\right)}{n}$$

Hệ số tương quan mẫu : $R_{XY}^2 = \beta_1^2 \frac{S_{xx}}{SST}$. Trong đó: $SST = \sum_i (y_i - \overline{y})^2$.