HORLOGE

Aimeric DUCHEMIN, Amédée LE BERRE, Paul RAPHAEL, Yann VIEGAS

ENS Ulm

14 janvier 2025

Instruction set

Proposition 1.1: Conventions

La taille d'un mot est de 32 bits. On représente les addresses sur 16 bits.

Instruction	Encoding	Description
ADD	01 rs1 rs2 00	rs1 <- \$rs1 + \$rs2
SUB	02 rs1 rs2 00	rs1 <- \$rs1 - \$rs2
XOR	03 rs1 rs2 00	rs1 <- \$rs1 \$rs2
OR	04 rs1 rs2 00	rs1 <- \$rs1 \$rs2
AND	05 rs1 rs2 00	rs1 <- \$rs1 & \$rs2
ADDIMM	45 rs1 rs2 00	rs1 <- imm \$rs1
NOT	06 rs1 rs2 00	rs1 <- \$rs2
LSHIFT	07 rs1 rs2 00	rs1 <- \$rs1 « \$rs2
RSHIFT	08 rs1 rs2 00	rs1 <- \$rs1 » \$rs2
LOADROM	09 rs1 rs2 00	rs1 <- M[\$rs2]
LOADRAM	14 rs1 rs2 00	rs1 <- M[\$rs2]

Instruction	Encoding	Description
MOVIMM	49 rs1 rs2 00	rs1 <- \$imm
STORE	2A rs1 rs2 00	M[\$rs2] <- \$rs1
MOV	0B rs1 rs2 00	rs1 <- \$rs2
NONZERO	82 rs1 rs2 00	rs1 <- \$rs2
JMP	80 rs1 00 00	PC += \$rs1
<i>JMPIMM</i>	81 00 imm	PC += imm
MUL	0D rs1 rs2 00	rs1 <- \$rs1 * \$rs2

Structure

Le projet est structuré en plusieurs fichiers. alu.py contient les fonctions relatives à l'ALU. registers.py permet de créer et connecter les registres. Le main gère la lecture du code dans la ROM. Enfin, utils.py contient des fonctions telles que gigamux (permettant de faire la sélection de registres, d'instructions etc)

Assembleur

Quelques qualités de l'assembleur :

- Alias de variables
- Sauts intelligents
- Interpréteur d'assembleur

Exemple : Fibonacci

MOV rdx \$15 MOV rbx \$0 MOV rcx \$1

MOV r2x \$1

fibo :

MOV r1x rcx

ADD rcx rbx

MOV rbx r1x

MOV rax rcx SUB rdx r2x

NONZERO rdx

JMP 'end JMP 'fibo

MOV rbx \$42

data

end:

Exemple

```
% arg1 = rax
                               JMP 'finProgramme
% \text{ valDeRetour} = \text{rcx}
                               foo:
MOV @arg1 $31
                               # code de la fonction
                               ADD @valDeRetour @arg1
MOV rrt 'finFoo->ici
JMP 'foo
                               finFoo:
ici :
                               IMP rrt
MOV rdx @valDeRetour
                               finProgramme:
                               ADD rax $0 # padding
                                .data
```

Simulateur

Circuit de fonctionnement

L'ALU

Compromis entre:

- Efficacité théorique (profondeur du circuit)
- Efficacité pratique (taille)
- Faisabilité et utilité pour une horloge

Addition rapide

Propagation d'une retenue dans un additionneur carry-lookahead :

Profondeur $O(\log n)$ mais taille $O(n^2)$; pour un n-addeur, profondeur et taille O(n).

Multiplication rapide

Multiplication naïve : addition de *n* nombres.

Schéma d'un fulladder.

Une rangée de fulladders multiplie le nombre de bits à additionner par $\frac{2}{3}$.

Profondeur $O(\log n)$, taille $O(n \log n)$ (avec une grosse constante).

Circuit mixte : profondeur O(n), taille $O(n \log n)$.

La Clock : structure

- Copie des valeurs de ROM dans des registres.
- Boucle des secondes
 - Année bissextile (utilse un critère de divisibilité par 25)
 - Nouvelle date sans changement d'heure
 - Jour de la semaine (congruence de Zeller)
 - Changement d'heure
 - Attente active pour garantir (par exemple) 1000 cycles par seconde

La Clock : critère de divisibilité

Soit $c \in \{0, 1\}$, $a \in N$. Soit d impair. Alors 2a + c est divisible par d ssi $a + 2^{-1}c$ est divisible par d.

La Clock : congruence de Zeller

On considère que janvier et février sont les 13ème et 14ème mois de l'année précédente.

Soit m le mois.

Soit q le jour du mois, $k = annee \mod 100$ et j = annee/100 (toutes les divisions sont entières).

Soit

$$h = q + \frac{13(m+1)}{5} + k + \frac{k}{4} + \frac{j}{4} + 5j$$

Alors, le jour de la semaine pour le calendrier grégorien est

$$((h+5) \mod 7) + 1$$

Conclusion

