Template matching in ASR

- Early ASR systems were based on template matching
- Input utterances were compared against stored templates

The transcription of the closest template was returned

How to deal with stretching and shrinking in time?

Aligning features

- Let $a \in \mathbb{R}^{U \times D}$ and $b \in \mathbb{R}^{T \times D}$ be seqs. of speech features
 - MFCCs, f-bank feats, etc.
- Choose some frame-wise (vector) distance function
 - E.g. $d(a_u, b_t) = \sum_{d=1}^{D} |a_{u,d} b_{t,d}|$
- We can sum those frame-wise distances in a monotonic alignment to get a "distance" between utterances!

Dynamic time warping

- There are many possible ways to align a and b (call them \mathcal{A})
- In Dynamic Time Warping (DTW), the "distance" between a and b is that with the minimal frame-wise sum

$$\mathcal{D}_d(a,b) = \min_{\alpha \in \mathcal{A}} \sum_{\{u,t\} \in \alpha} d(a_u,b_t)$$

• $\mathcal{D}_d(a,b)$ can be computed with monotonic_forward

From Park and Glass (2006) "Towards unsupervised pattern discovery in speech"

Specifying DTW

- 1. What are a_u and b_t ? \rightarrow Feature vectors of utts a and b
- 2. What is a solution to a prefix?

$$\rightarrow table[u,t] = \mathcal{D}_d(a_{1,\dots,u},b_{1,\dots,t})$$

3. How do we build the initial prefix(es)?

$$\rightarrow table[1,1] = d(a_1,b_1)$$

4. How do we extend a prefix correctly?

5. How is the result computed from table?

$$\rightarrow \mathcal{D}_d(a,b) = table[U,T]$$

Adapting monotonic_forward

```
Function monotonic_forward

Inputs a = a_1, a_2, ..., a_U and b = b_1, b_2, ..., b_T

1: Define table[0 ... U, 0 ... T]

2: initialize(table[0 ... U, 0], table[0, 1 ... T])

3: For each u in 1 ... U:

4: For each t in 1 ... T:

5: table[u, t] = table[u, t] = table[u, t]

6: Return finalize(table[0 ... U, 0 ... T])
```

initialize: set
$$table[0,0] = 0$$
, $table[1 ... U, 0] = table[0,1 ... T] = \infty$ step: $table[u,t] = d(a_u,b_t) + \min \begin{cases} table[u-1,t] \\ table[u-1,t-1] \\ table[u,t-1] \end{cases}$

finalize: table[U,T]

	b_1	b_2	b_3
a_1	??+0	??+3	??+1
a_2	??+1	??+2	??+5
a_3	??+1	??+2	??+4
a_4	??+1	??+0	??+1

Since $d(a_u, b_t)$ is a fixed cost in table[u, t], we denote it as "+ x"

		b_1	b_2	b_3
	0	∞	∞	∞
a_1	∞	??+0	??+3	??+1
a_2	∞	??+1	??+2	??+5
a_3	∞	??+1	??+2	??+4
a_4	∞	??+1	??+0	??+1

Initialize row 0 and column 0

		b_1	b_2	b_3
	0	∞ ~	∞	∞
a_1	oo	0+0	0+3	3+1
a_2	o	??+1	??+2	??+5
a_3	o	??+1	??+2	??+4
a_4	∞	??+1	??+0	??+1

Fill row 1

		b_1	b_2	b_3
	0	∞ ~	∞	∞
a_1	oo o	0+0	0+3	3 + 1
a_2	_∞	0+1	0+2	2 + 5
a_3	_∞	??+1	??+2	??+4
a_4	_∞	??+1	??+0	??+1

Fill row 2

... and so forth

		b_1	b_2	b_3
	0	∞	∞	∞
a_1	00	0	3	4
a_2	o	Y	2	7
a_3	o	2	3	6
a_4	_∞	3	2	3

Return table[4,3] = 3

ASR evaluation

- ASR systems often generate hypothesis transcripts which don't match the gold-standard reference transcript
- But some are closer than others:
 - Reference: errors are common here
 - Hypothesis 1: his errors are commas here
 - Hypothesis 2: here are are
- We may describe the errors in terms of transformations:
 - Hypothesis 1 inserted his and substituted commas for common
 - Hypothesis 2 substituted here for errors, are for common, and deleted here
 - The heres cannot match without re-ordering

Word-error rate (WER)

 ASR enthusiasts are often concerned with word-error rate (WER), which counts the minimum number of 3 types of errors a hypothesis makes given a reference

Substitution error: One word being mistook for another

e.g., hyp: shift, ref: ship

Deletion error: An input word that is 'skipped'

e.g., hyp: I Torgo, ref: I am Torgo

Insertion error: A 'hallucinated' word not in the input.

e.g., hyp: steamed hams, ref: hams

 Given S substitutions, D deletions, I insertions, and N reference tokens:

$$WER = \frac{S + D + I}{N} \times 100\%$$

(this is not a valid percentage)

Aligning strings

- We can count errors by building up prefixes of alignments between reference (a) and hypothesis (b)
 - Insertion: add b_t to hypothesis
 - Deletion: add a_n to reference
 - Match/substitution: add b_t , a_u
- Prepend ref + hyp with a special token <s> to allow for insertions/deletions at the beginning of the reference/hypothesis

Specifying WER

- 1. What are a_u and b_t ? \rightarrow Reference and hypothesis tokens
- 2. What is a solution to a prefix?

$$\rightarrow table[u,t] = \min \#errors(\langle s \rangle a_{1,\dots,u}, \langle s \rangle b_{1,\dots,t})$$

3. How do we build the initial prefix(es)?

$$\rightarrow table[u, 0] = u, table[0, t] = t$$

4. How do we extend a prefix correctly?

$$\Rightarrow table[u,t] = \min \begin{cases} table[u-1,t] + 1 \\ table[u-1,t-1] + \begin{cases} 0 & a_u = b_t \\ 1 & a_u \neq b_t \end{cases} \\ table[u,t-1] + 1 \end{cases}$$

5. How is the result computed from *table*?

Adapting monotonic_forward

```
Function monotonic_forward

Inputs a = a_1, a_2, ..., a_U and b = b_1, b_2, ..., b_T

1: Define table[0 ... U, 0 ... T]

2: initialize(table[0 ... U, 0], table[0, 1 ... T])

3: For each u in 1 ... U:

4: For each t in 1 ... T:

5: table[u, t] = table[u, t] = table[u, t] = table[u, t]

6: Return finalize(table[0 ... U, 0 ... T])
```

initialize: set
$$table[u, 0] = u$$
, $table[0, t] = t$

$$table[u - 1, t] + 1$$

$$table[u, t] = min \begin{cases} table[u - 1, t - 1] + \begin{cases} 0 & a_u = b_t \\ 1 & a_u \neq b_t \end{cases}$$

$$table[u, t - 1] + 1$$

TORONTO

	<s></s>	his	errors	are	comma	here
<s></s>						
errors						
are						
common						
here						

Rows (a_u) are reference tokens, columns (b_t) are hypothesis tokens

- Initialize row 0 and column 0
 - Row 0 inserts hypothesis tokens
 - Column 0 deletes references tokens

- Fill row 1
 - Note: errors match

- Fill row 2
 - Note: are match
 - Note: this priority goes: match > sub > ins > del

• ...and so on

	<s></s>	his	errors	are	comma	here
<s></s>	0 [1	2	3	4	5
errors	1	1	1	2	3	4
are	2	2	2	1	2	3
common	3	3	3	2	2	3
here	4	4	4	3	3	2

• Return
$$\frac{table[4,5]}{4} \times 100\% = 50\%$$

Returning to ASR

Recall: each frame gets a label by repeating transcript tokens
 /ow ow ow ow ow p p p p ah ah ah ah ah n/

- Let $a_{1,\dots,U}$ be the **reference transcript**, $b_{1,\dots,T}$ be **a** frame-wise transcript with repetitions of a
- It is easy to train an RNN or Transformer to maximize the likelihood of \boldsymbol{b}

$$\mathcal{L} = -\log P_{\theta}(b)$$

But there are many choices of b!

Marginalization

- Solution: maximize the likelihood of all such b!
- Let \mathcal{B} be a function which removes sequential repetitions from $b \colon \mathcal{B}(A B B A) = A B A$
- Let $\mathcal{B}^{-1}(a;T)$ be all b of length T which reduce to a $\mathcal{B}^{-1}(a;T)=\{b_{1,\dots,T}:\mathcal{B}(b)=a\}$
- Then we minimize

$$\mathcal{L} = -\log P_{\theta}(a) = -\log \sum_{b \in \mathcal{B}^{-1}(a;T)} P_{\theta}(b)$$

- However, there are $\binom{T-1}{U-1}$ paths in $\mathcal{B}^{-1}(a;T)$
- Can we use monotonic_forward?

Monotonic alignments

• If $\mathcal{B}(b) = a$, a monotonic alignment exists between (a, b)

• But **not all** monotonic alignments (a, b) imply $\mathcal{B}(b) = a$

• We can fix this by disallowing "down" (adding a_u to a prefix)

Partial solutions

• For DTW and WER, table[u,t] keeps track of **one** optimal alignment per prefix pair $a_{1,\dots,u},b_{1,\dots,t}$ $table[u,t] = \min \#errors(a_{1,\dots,u},b_{1,\dots,t})$

• For ASR, table[u,t] keeps track of **all** alignments per prefix pair $a_{1,\dots,u},b_{1,\dots,t}$

$$table[u,t] = \sum_{b_{1,...,t} \in \mathcal{B}^{-1}(a_{1,...,u};t)} P_{\theta}(b_{1,...,t}|x)$$

• Then $\mathcal{L} = -\log table[U, T]$

An auto-regressive approach?

• Suppose we use an auto-regressive RNN to generate framelevel predictions $P_{\theta}(b_t|b_{1,\dots,t-1},x)$

• Can we use this with monotonic_forward?

Conditional independence

- No. The frame-wise likelihoods depend on a specific prefix
 - $P_{\theta}(\langle ow \rangle | \langle ow \rangle, \langle s \rangle) \neq P_{\theta}(\langle ow \rangle | \langle p \rangle, \langle s \rangle)$
 - We cannot share computations over prefixes
- We require elements of b to be **conditionally independent** given x:

Extending prefixes

- For $b_{1,...,t} \in \mathcal{B}^{-1}(a_{1,...,u};t)$, let
 - $b_{1,\dots,t}^{u-1}$ denote a prefix where a_u is first aligned to b_t
 - a_u aligns to b_t and a_{u-1} aligns to b_{t-1}
 - $b_{1,\dots,t}^u$ denote a prefix where a_u has already been aligned
 - a_u aligns to b_t and a_u aligns to b_{t-1}
- Using conditional independence, we have

$$\begin{split} table[u,t] &= \sum_{b_{1,\dots,t} \in \mathcal{B}^{-1}(a_{1,\dots,u};\,t)} P_{\theta}\big(b_{1,\dots,t}|x\big) \\ &= P_{p_{t}}(b_{t} = a_{u}) \sum_{b_{1,\dots,t} \in \mathcal{B}^{-1}(a_{1,\dots,u};\,t)} P_{\theta}\big(b_{1,\dots,t-1}|x\big) \\ &= P_{p_{t}}(b_{t} = a_{u}) \left(\sum_{b_{1,\dots,t}^{u-1}} P_{\theta}\big(b_{1,\dots,t-1}^{u-1}|x\big) + \sum_{b_{1,\dots,t}^{u}} P_{\theta}\big(b_{1,\dots,t-1}^{u}|x\big) \right) \\ &\in \mathcal{B}^{-1}\big(a_{1,\dots,u-1};\,t-1\big) &\in \mathcal{B}^{-1}(a_{1,\dots,u};\,t-1) \end{split}$$

$$= P_{p_t}(b_t = a_u)(table[u - 1, t - 1] + table[u, t - 1])$$

Specifying the ASR loss

- 1. What are a_u and b_t ? \rightarrow Reference and frame-level tokens
- 2. What is a solution to a prefix?

$$\rightarrow table[u,t] = \sum_{b_{1,...,t} \in \mathcal{B}^{-1}(a_{1,...,u};t)} P_{\theta}(b_{1,...,t}|x)$$

3. How do we build the initial prefix(es)?

$$\rightarrow table[0,0] = 1, table[0,1...T] = table[1...U,0] = 0$$

4. How do we extend a prefix correctly?

$$\rightarrow$$
 table[u,t] = $P_{p_t}(b_t = a_u)(table[u-1,t-1] + table[u,t-1])$

5. How is the result computed from *table*?

$$\rightarrow \mathcal{L} = -\log table[U, T]$$

Adapting monotonic_forward

```
Function monotonic_forward

Inputs a = a_1, a_2, ..., a_U and b = b_1, b_2, ..., b_T

1: Define table[0 ... U, 0 ... T]

2: initialize(table[0 ... U, 0], table[0, 1 ... T])

3: For each u in 1 ... U:

4: For each t in 1 ... T:

5: table[u, t] = table[u, t] = table[u, t]

6: Return finalize(table[0 ... U, 0 ... T])
```

initialize: set table[0,0] = 1, table[0,1...T] = table[1...U,0] = 0

$$step: P_{p_t}(b_t = a_u)(table[u - 1, t - 1] + table[u, t - 1])$$

finalize: $-\log table[U,T]$

	b_1	b_2	b_3	b_4
a_1	??×0.1	??×0.3	??×0.1	??×0.1
a_2	??×0.1	??×0.2	??×0.5	??×0.1
a_3	??×0.1	??×0.2	??×0.4	??×0.1

Since $P_{p_t}(b_t=a_u)$ is a fixed cost in table[u,t], we denote it as "x x"

		b_1	b_2	b_3	b_4
	1	0	0	0	0
a_1	0	??×0.1	??×0.3	??×0.1	??×0.1
a_2	0	??×0.1	??×0.2	??×0.5	??×0.1
a_3	0	??×0.1	??×0.2	??×0.4	??×0.1

Initialize the first row and column

			b_1	b_2	b_3	b_4
	1	M	0	0	0 <	0
a_1	0	4	1 × 0.1	$ 0.1 \times 0.3 $	0.03×0.1	0.003×0.1
a_2	0		??×0.1	??×0.2	??×0.5	??×0.1
a_3	0		??×0.1	??×0.2	??×0.4	??×0.1

Fill row 1

			b_1	b_2	b_3	b_4
	1	M	0	0	0 <	0
a_1	0	文	1 × 0.1	$\bigcirc 0.1 \times 0.3$	0.03×0.1	0.003×0.1
a_2	0		0×0.1	0.1×0.2	0.05×0.5	0.028×0.1
a_3	0	4	0 × 0.1	0×0.2	0.02×0.4	0.033×0.1

... and so on

		b_1	b_2	b_3	b_4
	1 💍	0	0	0	0
a_1	0	0.1	0.03	0.003	0.0003
a_2	0	0	0.02	0.025	0.0028
a_3	0	0	0	0.008	0.0033

Return $-\log table[U, T] = -\log 0.0033 \approx 5.7$

Inference

- We can compute an error signal for $\mathcal{L} = -\log P_{\theta}(a|x)$
- At test time, how do we generate transcriptions a?
- Computing $b^* = \operatorname{argmax}_b P_{\theta}(b|x)$ is **easy**
 - $b^* = \operatorname{argmax}_b \prod_{t=1}^T P_{p_t}(b_t) \Rightarrow b_t^* = \operatorname{argmax}_{b_t} P_{p_t}(b_t)$
- Computing $a^* = \operatorname{argmax}_a P_{\theta}(a|x)$ is hard
 - We use DP to compute $P_{\theta}(a|x)$ once
 - For vocab size V, there are $\frac{V(V^T-1)}{V-1}$ possible a
 - Vanilla beam search on b will just return b^*

Prefix search (sketch)

- We use a modified beam search called prefix search
- Keeps track of K prefixes of a, not b
- For each frame t
 - Extend each prefix $a^{(k)}$ with each element of the vocabulary v and frame-level likelihoods $P_{p_t}(v)$: $a^{(k,v)}$

Collapse any repeats in extensions using \mathcal{B} , summing the likelihoods of matching prefixes: $\mathcal{B}(a^{(k,v)}) = \mathcal{B}(a^{(k',v')})$

• Pick the top K most likely extensions as new $a^{(k)}$

Dealing with doubles

- What happens when a has natural repetitions?
 - E.g. hesitation <I- I am...> = [ey ey ae m...]
 - $\mathcal{B}(a)$ gives us <1 am> = [ey ae m]!
- Connectionist Temporal Classification (CTC) fixes this by introducing a blank token ε to the vocabulary
- \mathcal{B} removes ε after removing duplicates
 - $\mathcal{B}([\text{ey ey } \varepsilon \varepsilon \text{ ey } \varepsilon \text{ ae } \varepsilon \varepsilon \varepsilon \text{ m}]) = [\text{ey ey ae m}]$

From Graves et al. (2006) "Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks"

CTC and monotonic_forward (sketch)

- monotonic_forward cannot handle blanks as-is
 - There are optional ε between each reference token
- Three step solution:
 - 1. Add blanks between reference tokens

•
$$a = \langle C A T \rangle \mapsto a' = \langle \varepsilon C \varepsilon A \varepsilon T \varepsilon \rangle$$

- 2. Add extra diagonal dependency to skip blanks
- 3. $\mathcal{L} = -\log(table[U-1,T] + table[U,T])$

From Graves et al.
(2006) "Connectionist
Temporal Classification:
Labelling Unsegmented
Sequence Data with
Recurrent Neural
Networks"

