Machine learning – Assignment - 2

- 1. Define Perceptron with representation and write the Gradient Descent algorithm for training a Linear Unit.
- 2. Differentiate:
 - (i) Standard Gradient Descent and Stochastic Gradient Descent.
 - (ii) Perceptron training rule and Delta Rule.
- 3. Apply the perceptron training rule on the following training set.

Desired output : t1 = -1, t2 = -1, t3 = 1

Learning rate: $\eta = 0.1$

Initial weights are:
$$w = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0.5 \end{bmatrix}$$

$$X1 = \begin{bmatrix} 1 \\ -2 \\ 0 \\ -1 \end{bmatrix} \qquad X2 = \begin{bmatrix} 0 \\ 1.5 \\ -0.5 \\ -1 \end{bmatrix} \qquad X3 = \begin{bmatrix} -1 \\ 1 \\ 0.5 \\ -1 \end{bmatrix}$$

- 4. List about the characteristics of the problems for which ANN is best suitable
- 5. Derive the weight vector with respect to Perceptron Training Rule and Delta Rule.
- 6. Apply the Back propagation algorithm on the multilayer feed-forward neural network and update the weights. Assume that the learning rate η is 0.9 and the first training example, X = (1, 0, 1) whose class label is 1

Initial input and weight values are:

- 7. Define MAP (Maximum A Posteriori) and ML (Maximum Likelihood) Hypothesis. Derive the relation h_{MAP} and h_{ML} using Bayesian theorem
- 8. Explain the Naïve Bayes Text classification algorithm
- 9. Write and apply the Bayes theorem on the following data set:

Chills	Runny nose	Headache	Fever	Flu?
Y	N	Mild	Y	N
Y	Y	No	N	Y
Y	N	Strong	Y	Y
N	Y	Mild	Y	Y
N	N	No	N	N
N	Y	Strong	Y	Y
N	Y	Strong	N	N
Y	Y	Mild	Y	Y

Test set: find the class label for flu?

Chills	Runny nose	Headache	Fever	Flu
Y	N	Mild	N	?

- 10. Write the features of Bayesian learning method.
- 11. Explain BRUTE-FORCE MAP Learning Algorithm
- 12. Explain Bayes theorem with equation
- 13. A patient takes a cancer test and the result came back positive. The test returns a correct positive results in only 98% of the cases in which disease is actually present and a correct negative result is only 97% of cases in which disease is not present. Furthermore 0.008 of the entire population have this cancer.
 - (i) What is the probability that patient has cancer?
 - (ii) What is MAP Hypothesis?