南开大学 2019 级信息类一元函数微分学统考试卷 (A卷) 2019年11月9日

(说明:答案务必写在装订线右侧,写在装订线左侧无效。影响成绩后果自负。)

题号	1	11	Ξ	四	五.	六	七	八	卷面 成绩	核分 签名	复核 签名
得分											

- 一、选择题(每小题 4 分)
- (1) 当 $x \rightarrow 1$, 与 $\ln x$ 等价的无穷小量为 (
 - (A) $\sin x$; (B) $e^x e$; (C) $\cos x \cos 1$; (D) 1 (1/x).

一 题

草稿区

- - (A) 有界; (B)无界; (C) 连续; (D)可导.
- (3) 若函数 $f(x) = \begin{cases} x \mid x \mid, x \le 0 \\ x \ln x, x > 0 \end{cases}$, 则在 x = 0 是 f(x) 的 ():
 - (A) 可导点,极值点;(B) 可导点,非极值点;(C) 不可导点,极值点;(D) 不可导,非极值点;
- (4) 设函数 f(x) 在[a,b]上可导,且 $f(a) = \max\{f(x) | a \le x \le b\}$,则(
 - (A) $f'_{+}(a) = 0$; (B) $f'_{+}(a) \le 0$; (C) $f'_{+}(a) \ge 0$; (D) $f'_{+}(a) < 0$;
- 二、填空题 (每小题 4 分):
- (1) $\forall f(x) = 1/(1+x^2), \ \text{M} f^{(3)}(0) = \underline{\hspace{1cm}}$

二题 得分

- (2) 设 $f(x) = \begin{cases} e^x, x < 0, \\ ax + b, x \ge 0 \end{cases}$ 在 x = 0 处可导,则 a =_______, b =______
- (3) 设函数 $f(x) = \ln(1-2x), (n \ge 2),$ 则 $f^{(n)}(0) =$ ______
- (4) 设有界函数 f(x) 在 $(0,+\infty)$ 内可导,且存在极限 $\lim_{x\to+\infty} f(x) = b$,则 b =______,

三、求下列极限: (每小题 5 分)

草稿区

三题 得分

$$(2) \lim_{x\to\infty} \left[\frac{(1+\frac{1}{x})^x}{e}\right]^x;$$

(3)
$$\lim_{n\to\infty} (\sqrt{n^2+2n+3}-\sqrt{n^2-n+1})$$

四、求下列函数的导数(每小题5分):

(1) 设
$$y = \arctan(\frac{1-x^2}{1+x^2})$$
, 求 $\frac{dy}{dx}$;

四题 得分

(2) 设
$$y = y(x)$$
 是由参数方程
$$\begin{cases} x = e^t + t \\ y = \sin t \end{cases}$$
 所确定的函数,求
$$\frac{d^2 y}{dx^2} \Big|_{t=0}$$
;

草稿区

五、证明下列不等式: (每小题 6 分)

(1)
$$\stackrel{\text{def}}{=} x > 0, \ln(1 + x + x^2) < x + \frac{x^2}{2};$$

五题 得分

(2)
$$\pm x > 0$$
, arctan $x > x - \frac{x^3}{3}$

六、(6 分) 设函数 y = y(x) 由方程 $x^3 + y^3 - 3x + 3y - 2 = 0$ 所确定,求 y(x) 的极值.

六题 得分 七、(6分) 求函数 $f(x) = x^3 + 3x^2 - 9x - 11$ 在区间[-4,3]上的最大值,最小值.

七题 得分

草稿区

八、(6分) 设函数 f(x) 在[1,2]上连续,在(1,2) 内可导,且 f(1) = f(2) = 0,

证明: 存在不同的
$$\xi, \eta \in (1,2)$$
, 使 $\frac{f'(\xi)}{\xi} - \frac{f(\xi)}{\xi^2} + \frac{2}{3}f'(\eta) = 0$

八题 得分