I Problems 1

Block I

Problems

PROBLEMES D'ANÀLISI COMPLEXA 2n quadrimestre del curs 2013-2014.

Llista 1: Els nombres complexos

B.2. Si z = x + iy trobeu les parts real i imaginària de les expressions següents: (b) z(z+1) (c) $\frac{1}{z}$

(e) \sqrt{i} (f) $\sqrt{-i}$

(g) $\sqrt{9i}$ (h) $\sqrt{1+i}$

(d) $\frac{1}{z-3}$.

B.1. Expresseu en la forma a + ib els següents nombres:

B.4. Trobeu la forma polar dels nombres següents i dibuixeu-los.

(a) (2+3i)(4+i) (c) $\frac{1}{4+i}$ (b) $(4+2i)^2$ (d) $\frac{i}{4+i}$

a) $\operatorname{Re}(z+w) = \operatorname{Re} z + \operatorname{Re} w$? b) $\operatorname{Re}(zw) = (\operatorname{Re} z)(\operatorname{Re} w)$?

c) $\operatorname{Re}(\frac{z}{w}) = \frac{\operatorname{Re} z}{\operatorname{Re} w}$?

(a) z^2

B.3. És cert que

		(a) $3(1+\sqrt{3})$	$i)$ (b) 2_{V}	$\sqrt{3}-2i$	(c) $-2 + 2i$	(d) $-1 - i$		
B.5. Sigui $(x + iy)/(x - iy) = a + ib$. Proveu que $a^2 + b^2 = 1$.								
B.6. Proveu que si $p(z)$ és un polinomi amb coeficients reals i z és un zero de també ho és.						z és un zero de p lla	avors \bar{z}	
	B.7.	B.7. Descriviu els conjunts del pla que satisfan (recordeu que $\mathbb{C}^* = \mathbb{C} \setminus \{0\}.$)						
		(a) $\operatorname{Im} \frac{z-a}{z} =$	$0,a\in\mathbb{C}^*$	(b) $ z = \text{Re}$	z+1	(c) $ z-2 > z-3 $	3	
	SOL.	SOL. B.1. a) $5+14i$; b) $12+16i$; c) $4/17-i/17$; d) $1/17+4i/17$; e) $\pm\sqrt{2}/2(1+i)$; f) $\pm\sqrt{2}/2(1-i)$; g) $\pm3\sqrt{2}/2(1+i)$; h) $\pm2^{1/4}(\cos(\pi/8)+i\sin(\pi/8))$. B.2 a) x^2-y^2+2ixy ; b) $x^2-y^2+x+i(y+2xy)$; c) $(x-iy)/(x^2+y^2)$; d) $(x-3-iy)/((x-3)^2+y^2)$. B.3 a) si. b) no. c) no. B.4 a) $6(\cos(\pi/3)+i\sin(\pi/3))$; b) $4(\cos(\pi/6)-i\sin(\pi/6))$; c) $2\sqrt{2}(\cos(\pi/4)+i\sin(\pi/4))$; d) $\sqrt{2}(\cos(3\pi/4)-i\sin(3\pi/4))$. B.6 Conjugueu tot el polinomi. B.7 a) Recta que passa per 0 i a ; b) Paràbola horitzontal $x=(1/2)(y^2-1)$; c) $\{\operatorname{Re} z>3/2\}$.						
1. Expresseu en la forma $a+ib$ els següents nombres:								
	(a)	$\frac{1}{i}$	(c) $\frac{1}{2+i} + \frac{1}{2-i}$	(e) ($\left(\frac{2+i}{3-2i}\right)^2$	(g) $\sqrt[4]{-i}$		
	(b)	$\frac{1+i}{1-i}$	(d) $\frac{1}{2+i} + \frac{4-2}{3+i}$	$\frac{2i}{i}$ (f) ($(1+i)^{100} + (1-i)^{100}$	(h) $(3+4i)^{\frac{1}{2}}$		
2	. Si z =	= x + iu on x, u	$\in \mathbb{R}$, trobeu le	es parts real i	imaginària de:			

PROBLEMES D'ANLISI COMPLEXA 2n quadrimestre del curs 2013-2014

Llista 2: Funcions de variable complexa i equacions de Cauchy-Riemann

- **B.1.** Trobeu els punts on la funció f és derivable (en el sentit complex), en els següents casos, i calcula'n la derivada.
 - (a) $\cos |z|^2$

(c) e^{iz}

(e) $\frac{1}{(z-1)^2(z^2+2)}$

(b) $|z|^4$

- (d) $z + \frac{1}{z}$
- (f) $\frac{1}{(z+\frac{1}{z})^2}$

 $\textbf{Solució:} \text{ (a) } \emptyset; \text{ (b) } \emptyset \text{ ; (c) } \mathbb{C}; \ f'(z) = ie^{iz}; \text{(d) } \mathbb{C} \setminus \{0\}; \ f'(z) = 1 - |\frac{1}{z^2}; \text{ (e) } \mathbb{C} \setminus \{1, \pm \sqrt{2}i\}; \text{ (f) } \mathbb{C} \cap \{0\}; \ f'(z) = 1 - |\frac{1}{z^2}; \text{ (e) } \mathbb{C} \cap \{1, \pm \sqrt{2}i\}; \text{ (f) } \mathbb{C} \cap \{1,$

- B.2. Determineu si aquestes funcions poden ser la part real d'una funció holomorfa, i en cas que ho siguin calculeu la part imaginària.
 - (a) $e^x \cos y$
- (b) $x^3 + 6xy^2$
- (c) $\log(x^2 + y^2)$

Solució: (a) $e^x \sin y$; $f(z) = e^z$; (b) No ho és; (c) $2\arctan(y/x)$; $(f(z) = \log(z^2)$.

- **B.3.** Sigui f una funció holomorfa en un obert $\Omega \subset \mathbb{C}$ i $z_0 \in \Omega$ tal que $f'(z_0) \neq 0$. Quin angle formen les corbes $\operatorname{Re} f(z) = \operatorname{Re} f(z_0)$ i $\operatorname{Im} f(z) = \operatorname{Im} f(z_0)$ en un punt z_0 ? Solució: $\pi/2$.
- 1. Trobeu els punts on la funció f és derivable (en el sentit complex), en els següents casos:
 - (a) f(z) = |z|

- (d) $f(z) = z + z\bar{z}$
- (b) $\cosh x \cos y + i \sinh x \sin y$
- (c) $f(z) = \operatorname{Re} z$

- (e) $f(z) = \operatorname{Im} e^{\overline{z}} + i \operatorname{Re} e^{z}$
- 2. Sigui $\Omega \subset \mathbb{C}$ un obert, $z_0 \in \Omega$ i $f: \Omega \to \mathbb{C}$ una funció.
 - a) Identificant \mathbb{R}^2 amb \mathbb{C} de la forma habitual, demostreu que si f és diferenciable en z_0 , llavors

$$Df(z_0)(z) = \frac{\partial f}{\partial z}(z_0) \cdot z + \frac{\partial f}{\partial \overline{z}}(z_0) \cdot \overline{z} \qquad (z \in \mathbb{C}),$$

on

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right), \ \ \frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right).$$

- b) Proveu que f és holomorfa en Ω si, i només si, f és diferenciable i $\frac{\partial f}{\partial \overline{z}}=0$ en Ω . En tal cas, $f'=\frac{\partial f}{\partial z}$.
- 3. Demostreu que si f és diferenciable en un obert de \mathbb{C} , llavors

$$\frac{\overline{\partial f}}{\partial z} = \frac{\partial \overline{f}}{\partial \overline{z}} \quad \text{i} \quad \frac{\overline{\partial f}}{\partial \overline{z}} = \frac{\partial \overline{f}}{\partial z}.$$

1. Holomorphic functions

introduction

I Problems 5

go