MPSI 1 – La Martinière Monplaisir	Interrogation n^o 9	Le 22 novembre 202
<u>Nom :</u>	<u>Correcteur</u> :	<u>Note :</u>
Montrer que la composée de deux for	actions injectives est injective.	

Montrer que l'application suivante est bijective. On précisera notamment son application réciproque.

$$f: \left\{ \begin{array}{ccc} \mathbb{C} \setminus \{i\} & \longrightarrow & \mathbb{C} \setminus \{1\} \\ z & \longmapsto & \frac{z+i}{z-i} \end{array} \right.$$

Soit $I \subset \mathbb{R}$ un intervalle, soit $f: I \to \mathbb{R}$. Nier la proposition suivante, et justifier formellement qu'elle est vraie pour $f = \mathrm{Id}_{\mathbb{R}}$ (on a alors $I = \mathbb{R}$).

$$\forall \varepsilon > 0, \ \exists \alpha > 0, \ \forall x, y \in I, \ |x - y| \leqslant \alpha \Rightarrow |f(x) - f(y)| \leqslant \varepsilon.$$