

Enabling Grids for E-sciencE

A WS-DAIR Interface to the AMGA Metadata Catalogue

B. Koblitz, CERN with A. Boloori, KTH Stockholm

OGF 23: Workshop on Databases on the Grid Barcelona, June 4th 2008

www.eu-egee.org

- What is AMGA? Why adopt WS-DAIR?
- Overview of WS-DAIR
- The WS-DAIR implementation for AMGA
 - Implementation and Features
 - Evaluation
- Future plans and comments
 - Native SQL!
- Conclusions

What are AMGA and WS-DIAR?

- AMGA is Metadata catalogue of EGEE's gLite 3.1 MW (Metadata is relationally structured data for Grid jobs stored in databases)
- WS-DAIR is new OGF standard for access to relational DB's on the Grid
- Both, the AMGA service and the WS-DAIR interface address (some) problems of DB access on the Grid:
 - Authentication (Grid-Proxy certificates, VOMS)?
 - Logging, tracing?
 - Connection pooling?
 - Replication of Data?
 - Performance of WAN access?
 - ... the Grid idea?

Objective: WS-DAIR integration

- AMGA brings Grid-Idea to relational DBs
 - AMGA hides DB differences
 - AMGA allows replication and (some) federation of data
 - AMGA has fine-grained access control to entries based on ACLs and uses VOMS authentication
- But AMGA uses
 - Propietary (but well documented) TCP-Streaming protocol (WAN performance)
 - Proprietary SQL inspired query language
 - Hides DB differences
 - Allows access control layer
 - Very simple to use for non-experts
- → Integration of WS-DAIR in AMGA will make AMGA a relational data source in a WS-based environment!

eeee

What can AMGA do?

AMGA features:

- Streamed Bulk Operations
- Supports single calls, sessions
 & connections
- SSL security with grid certs
- Own User & Group management + VOMS
- PostgreSQL, Oracle, MySQL,
 SQLite backends
- Can access existing DBs
- Clients in C/C++, Java, Python, Perl, PHP

Simple Metadata query language:

- Supports complex SQL-like queries: joins, SQL functions
- Abstracts DB data types
- Checks access permissions per table/row via ACLs

Replication in AMGA

- AMGA integrates replication of metadata
 - Asynchronous replication: Ideal for WAN
 - Master replication
 - DBs are consistent (transactions supported)
 - But: Not all DBs necessarily in same state!

- Replication makes use of hierarchical table structure
 - Global table tree
 - Different masters (writer) for sub-trees
 - Only one master per table!
- Top-level master
 - controls users/groups
 - hold information about participating Dbs

EGEE experience with Metadata

Medical Data Management

High Energy Physics

Climate Research

Digital Library

WS-DAIR: Overview

INFSO-RI-508833

 Short queries (INSERT, UPDATE, DELETE and brief SELCTS) answered via SQLAccess service:

Indirect Access

AMGA-DAIR Integration

WS-DAIR interface replaces the existing SOAP

- Implementation of direct access and indirect access done. Data returned in Sun's WebRowSet specification.
- All queries still use AMGA's metadata query language.
- Clients written in Java (Axis) and C++ (gSOAP), WSDL had to be hand-optimized for gSOAP

Evaluation: Avian Flu Project

AMGA used as repository for Avian
 Flu Drug Discovery project

- In silico matching of compounds against
 NA surface molecule
- WS-DAIR interface tested against real repository with 300k results of docking simulations, using real queries

• Influence of chunk size for indirect access speed:

Chunk size relatively uncritical, large queries favoured

Direct Access vs Indirect Access

Throughput on LAN, optimized chunk sizes

WS-DAIR only 3-5 times slower than original AMGA interface

eeee

XML Response

AMGA'

```
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
                                                                size ration ~1/8 for
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:wrs="http://java.sun.com/xml/ns/jdbc"
xmlns:ns="urn:metadata.server.amga.glite.org">
<SOAP-ENV:Body>
 <ns:SQLExecuteResponse>
  <ns:SQLDataset xsi:type="ns:SQLDatasetType">
   <ns:DatasetFormatURI> uri:com.cun.java.xml.ns.jdbc.webrowset </ns:DatasetFormatURI>
   <ns:SQLCommunicationsArea>
    <ns:SQLState> </ns:SQLState>
                                            <data>
    <ns:VendorCode> </ns:VendorCode>
                                               <currentRow>
    <ns:MessageText> </ns:MessageText>
                                                 <columnValue> firstrow </columnValue>
   </ns:SQLCommunicationsArea>
                                                 <columnValue> 1 </columnValue>
                                                </currentRow>
   <ns:WebRowSet>
                                                <currentRow>
    DATA
                                                 <columnValue> secondrow </columnValue>
   </ns:WebRowSet>
                                                 <columnValue> 2 </columnValue>
  </ns:SQLDataset>
                                                </currentRow>
 </ns:SQLExecuteResponse>
                                                <currentRow>
</SOAP-ENV:Body>
                                            </data>
</SOAP-ENV:Envelope>
```


Streaming Access

- AMGA's original mechanism streams data back with the possibility to interrupt the streaming
- Flow control is provided by the server and clients buffers:

Only 1 round-trip plus time to stream data.

Some Questions Raised

- Had to hand-optimize WSDL for gSOAP
 - Saw interoperability issues due to bugs
 - Need to do interoperability tests with other implementations
- Several parameters strongly influence performance
 - Direct vs indirect access, which to choose
 - Chunk size controlled by the client, how is the right one chosen?
- Payload to message size ratio is very small < 1/8
 - What happens when bandwidth limited
 - Does compression help?
- We will need to investigate carefully the behaviour on the WAN

Future Plans

- Established a new collaboration with Kisti in Korea, new developments are coming:
 - Support for SQL queries, while keeping AMGA's security features with ACLs for tables/rows
 - Usable through WS-DAIR and text streaming interface
 - Connection pooling DB backend for AMGA
- Start interoperability tests within DAIS WG
- Give feedback to DAIS on standard
- New EGEE working group on Grid DB access starting up:
 - Use AMGA as means to evaluate WS-DAIR
 - Performance analysis

- A WS-DAIR compatible interface makes AMGA a component that can be used within the OGSA FW
- Good experiences with implementation of WS-DAIR:
 - Implementation in AMGA was straight-forward
 - Separation in Direct and Indirect access very useful
- AMGA can contribute several features to the OGSA infrastructure:
 - Access control, VO integration
 - Replication
 - Experiences with high-performance applications
- Still some things missing in AMGA: SQL support
- DAIR: http://www.gridforum.org/documents/GFD.76.pdf
- AMGA Web Site: http://cern.ch/amga

Replication & Federation Modes

AMGA replication makes use of hierarchical concept:

Federation

Performance

Indirect Access

- EU-funded project to connect paediatricians across countries, led by Siemens
- Scalable Grid-based tool for sharing images and studies to support decision making

- Privacy laws in different countries govern data:
 - Anonymization
 - Encryption of sensitive data
 - Very strict access restrictions based on roles
 - Limitations on cross-border transfers of data
- Metadata (names) often more sensitive than real data (images)
 - Metadata anonymized, private part (names, personal information) striped across USB-Key and a special database
- AMGA used as a tool to combine metadata gathered in different hospitals via replication
 - Tightly control replication to restrict data leaving site
 - Replicated metadata allows federated view on complete ensemble

WAN Performance

- Comparison with FC protocols, connection from Taiwan:
 - 300ms latency dominates performance
 - Reduce round-trips with sessions or holding connections
 - (Streamed) bulk operations vital for WAN performance

- Performance required to be comparable to direct DB access by HEP applications
 - Lean C++ Implementation

Fast TCP <u>text streaming protocol</u>, <u>very fast SSL sessions</u>

Throughput comparison between AMGA and direct access via JDBC reading same table on a LAN

LAN Performance

Protocol comparison with LFC and FiReMan catalogues:

- Authentication with X509 Certs, SSL connections
- LFN/GUID pairs inserted, query for GUID of LFN, Oracle DB
- AMGA scales very well up to 100 concurrent client
- Streamed bulk inserts/queries are very fast!

Measurements 2005