CS-419m: Practice questions on Probabilistic Classifiers

1. An insurance company is trying to classify customers as "Risky" (y=1) or "Not-risky" (y=2) based on two attributes of a customer: x_1 denoting the number of "incidents" in the past ten years and x_2 denoting the type of the vehicle. Assume for each class y that the first attribute follows a Poisson distribution with parameter λ_y (Recall that for a Poisson distribution $P(x=k|\lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$) and the second attribute follows a multinomial distribution with parameter θ_{yr} for $r \in (F,T,S)$. The table below denotes a sample training set.

	x_1	x_2	y
\mathbf{x}^0	0	F	2
\mathbf{x}^1	3	Γ	1
\mathbf{x}^2	1	Γ	2
\mathbf{x}^3	2	S	1
\mathbf{x}^4	2	F	2
\mathbf{x}^5	3	Т	1
\mathbf{x}^6	4	S	1
\mathbf{x}^7	5	S	1

(a) Write the estimate of λ_y for each y using the training data above? [Show the derivation for one y]

(b) Is the maximum likelihood objective concave in λ_y ? Justify.

..2

(c) Write the estimate of all the θ_{yr} s for $r \in (F, T, S)$ and each y
1
(d) Assume the class labels follow a Bernoulli distribution with parameter p denoting the probability of class 1. What is the maximum likelihood estimate of p .
1
2. Consider a binary classification problem $(y \in \{0,1\})$ and two dimension data $(d=2)$ where both x_1 and x_2 are binary. Let $n_{00}^y, n_{10}^y, n_{01}^y, n_{11}^y$ denote the number of training instances in class y where $[x_1 \ x_2]$ is $[0\ 0], [1\ 0], [0\ 1], [1\ 1]$ respectively.
(a) Suppose we use a naive Bayes classifier where x_1 is assumed independent of x_2 .
i. What is the maximum likelihood estimate of the two Bernoulli parameters in class y in terms of the counts $n_{00}^y, n_{10}^y, n_{01}^y, n_{11}^y$
1
ii. What is the maximum likelihood estimate of $Pr(y)$ in terms of the counts $n_{00}^y, n_{10}^y, n_{01}^y, n_{11}^y$
1
iii. For what values of n_{00}^y , n_{10}^y , n_{01}^y , n_{11}^y will the naive Bayes classifier incur the maximum percentage training error? Justify. Assume number of instances in both classes is the same.
3
(b) Now suppose we decide to use a model more powerful than naive Bayes. In each class, we model the probability that $\Pr([x_1 \ x_2] = [a \ b] \ y)$ with a parameter p_{ab}^y . Further we follow a LDA like parameter sharing to reduce the number of parameters by requiring that

 $p_{11}^0=p_{11}^1=p_{11}$. Clearly, $p_{00}^y+p_{10}^y+p_{01}^y+p_{11}=1$. Write the log-likelihood function on the training data in terms of the counts n_{ab}^y , and parameters p_{ab}^y , $\Pr(y=1)$, $\Pr(y=0)$.

..2

(c) Derive the maximum likelihood estimates of the $p_{00}^y, p_{10}^y, p_{01}^y$ parameters only in terms of p_{11} and the training counts. [Hint: Use Lagrangian multiplier to push the two constraints $p_{00}^y + p_{10}^y + p_{01}^y + p_{11} = 1$, one for each y to the objective.]

..3

(d) Now derive the maximum likelihood estimate for p_{11} .

..1

..1