Conjuntos, aplicaciones y relaciones (segunda parte)

Ejercicio 1. Dado el conjunto $X = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ y los subconjuntos $P = \{0, 2, 4, 6, 8\}$ y $T = \{0, 3, 6, 9\}$, calcula los siguientes subconjuntos de X:

$$P \cup T$$
; $P \cap T$; \overline{P} ; \overline{T} ; $\overline{P} \cap T$; $P \cap \overline{T}$; $\overline{\overline{P} \cap T}$

Ahora calcula los siguientes subconjuntos de $X \times X$:

$$P \times T$$
; $\overline{P} \times \overline{P}$; $\overline{P} \times \overline{T}$; $\overline{P \times T}$; $\overline{P} \times T$

$$(P \times \overline{T}) \cap (P \times \overline{P}); (P \cap T) \times (\overline{P} \cap \overline{T})$$

Ejercicio 2.

Consideramos el conjunto $\mathbb N$ de los números naturales, y los subconjuntos $P=\{n\in\mathbb N:n \text{ es par}\}$ y $T=\{3n:n\in\mathbb N\}$. Describe los siguientes subconjuntos de $\mathbb N$.

$$P \cup T$$
; $P \cap T$; \overline{P} ; \overline{T} ; $\overline{P} \cap T$; $P \cap \overline{T}$; $\overline{\overline{P} \cap T}$

Ejercicio 3.

Sea X un conjunto. En $\mathcal{P}(X)$ tenemos definida la operación **diferencia simétrica**

$$A\Delta B = (A \setminus B) \cup (B \setminus A)$$

Demuestra que para cualesquiera A, B, $C \subset X$ se tiene:

- 1. $A\Delta B = B\Delta A$.
- 2. $A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$.
- 3. $A\Delta(B\Delta C) = (A\Delta B)\Delta C$.
- 4. *A*Δ*A*)∅.
- 5. $A\Delta\emptyset = A$.
- 6. $A\Delta X = \overline{A}$.
- 7. $A\Delta \overline{A} = X$.
- 8. $\overline{A\Delta B} = (A \cap B) \cup (\overline{A} \cap \overline{B}).$

Ejercicio 4.

Estudia si las siguientes identidades son verdaderas o falsas:

- 1. $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$,
- 2. $A \cup (B \setminus C) = (A \cup B) \setminus (A \cup C)$,

- 3. $A \setminus (B \setminus C) = (A \setminus B) \setminus (A \setminus C)$,
- 4. $A \setminus (B \setminus C) = A \setminus (B \cup C)$,
- 5. $\overline{A \setminus B} = \overline{A} \cup B$,
- 6. $A \setminus B = \overline{B} \setminus \overline{A}$.

Ejercicio 5.

Comprueba las siguientes afirmaciones,

- 1. $A \cup B = B \cap C$ si, y sólo si, $A \subseteq B \subseteq C$.
- 2. Si $A \subseteq B$, entonces $C \setminus B \subseteq C \setminus A$.
- 3. Si $A \cup B \subseteq A \cup C$ y $A \cap B \subseteq A \cap C$, entonces $B \subseteq C$.

Ejercicio 6.

Da una aplicación biyectiva $\mathbb{Z} \to \mathbb{N}$.

Ejercicio 7.

¿Define la expresión $f\left(\frac{a}{b}\right) = \frac{b}{a}$ una aplicación $f: \mathbb{Q} \to \mathbb{Q}$?

Ejercicio 8.

Calcula $g \circ f y f \circ g$ cuando sea posible para cada uno de los siguientes pares de aplicaciones:

$$2. \qquad \begin{array}{c} \mathbb{Q} \xrightarrow{f} \mathbb{Q} \\ x \mapsto \frac{3x+2}{4} \end{array} \qquad \begin{array}{c} \mathbb{Q} \xrightarrow{g} \mathbb{Q} \\ x \mapsto x^2 \end{array}$$

3.
$$\mathbb{R}^+ \cup \{0\} \xrightarrow{f} \mathbb{R} \qquad \mathbb{R} \xrightarrow{g} \mathbb{R}^+ \cup \{0\}$$
$$x \mapsto +\sqrt{x} \qquad x \mapsto x^2$$

Ejercicio 9.

Para el conjunto $A = \{a, b, c, d\}$ encuentra todas las aplicacines $f : A \to A$ tales que $f \circ f = Id_A$.

Ejercicio 10.

Dado un conjunto X no vacío, y A, B \subseteq X, se define $\chi_A: X \to \{0,1\}$ por la fórmula

$$\chi_A(x) = \begin{cases} 0 \text{ si } x \notin A \\ 1 \text{ si } x \in A \end{cases}$$

Prueba que:

- 1. $\chi_A = \chi_B \text{ si, y sólo si, } A = B.$
- 2. $\chi_{\overline{A}} = 1 \chi_A$.
- 3. $\chi_{A \cap B} = \chi_A \cdot \chi_B$.
- 4. $\chi_{A \cup B} + \chi_{A \cap B} = \chi_A + \chi_B$.
- 5. $\chi_{A \setminus B} = \chi_A \chi_A \cdot \chi_B$.
- 6. La aplicación $\chi:\mathcal{P}(X) \to \{0,1\}^X$ dada por $\chi(A) = \chi_A$ es una biyección 1.

 $^{\{0,1\}^}X$ denota el conjunto de todas las aplicaciones $X \to \{0,1\}$.

Ejercicio 11.

Sea $f: X \to X$ una aplicación biyectiva, e Y un subconjunto de X tal que $f_*(Y) \subseteq Y$. ¿Es cierto que la aplicación $Y \to Y$ dada por $y \mapsto f(y)$ es biyectiva?

Ejercicio 12.

Estudia en que casos existe una aplicación satisfaciendo las condiciones que se exigen:

- 1. $f: \mathbb{Z}_8 \to \mathbb{Z}_4$, $f([x]_8) = [x]_4$.
- 2. $f: \mathbb{Z}_4 \to \mathbb{Z}_8$, $f([x]_4) = [x]_8$.
- 3. $f: \mathbb{Z}_8/R_g \to \mathbb{Z}_4$, $f(\overline{[x]_8}) = [x]_4$, donde $g: \mathbb{Z}_8 \to \mathbb{Z}_8$ verifica $g([x]_8) = [x]_8^2$.
- 4. $f: \mathbb{Z}_4 \to \mathbb{Z}_8$, $f([x]_4) = [x^2]_8$.
- 5. $f: \mathbb{Z}_8/R_q \to \mathbb{Z}_2$, $f(\overline{[x]_8}) = [x]_2$ y g es la misma aplicación del apartado 3.
- 6. $f: \mathbb{Q} \to \mathbb{Z}$, $f(\frac{a}{b}) = a + b$.
- 7. $f: \mathbb{Z}_n \to \mathbb{Z}_n$, $f([x]_n) = [E(\frac{x}{2})]_n$, donde E es la función parte entera.
- 8. $f: \mathbb{Z}_3 \to \mathbb{Z}_6$, $f([x]_3) = [x^2]_6$.
- 9. $f: \mathbb{Z}_3 \to \mathbb{Z}_9$, $f([x]_3) = [x^2]_9$.

Ejercicio 13.

Para cada una de las relaciones de equivalencia siguientes definidas sobre $\mathbb{R} \times \mathbb{R}$, da una interpretación geométrica del conjunto cociente.

- 1. $(a,b)R(c,d) \iff a+b=c+d$.
- 2. $(a, b)R(c, d) \iff |a| + |b| = |c| + |d|$.
- 3. $(a,b)R(c,d) \iff a^2 + b^2 = c^2 + d^2$.
- 4. $(a,b)R(c,d) \iff a^2 + 2b^2 = c^2 + 2d^2$.

Ejercicio 14.

Considera la aplicación $f: \mathbb{Z} \to \mathbb{Z}$ que a cada entero nle asocia el resto de dividir n por 7.

- 1. Calcula f(259).
- 2. Calcula Im(f).
- 3. Calcula $f^*(\{1,3,5,7\})$.
- 4. Calcula $f^*(\{1,3,5,7,9,11,13\}.$