Numerické metody — numerická derivace a Richardsonova extrapolace

Mirko Navara http://cmp.felk.cvut.cz/~navara/ katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a

https://moodle.fel.cvut.cz/courses/B4B01NUM

1. listopadu 2023

Obsah

1	\mathbf{AP}	ROXIN	MACE FUNKCÍ	11
	1.1	Typick	é úlohy	11
		1.1.1	Aproximace funkcí v ekonomii	11
		1.1.2	Aproximace funkcí v teorii pravděpodobnosti a matematické analýze	11
		1.1.3	Aproximace funkcí v elektrotechnice	
		1.1.4	Základní úloha aproximace	12
	1.2	Interpo	place	
		1.2.1	Prostá interpolace	13
	1.3	Interpo	place polynomem	14
		1.3.1	Lagrangeova konstrukce interpolačního polynomu	15
		1.3.2	Newtonova konstrukce interpolačního polynomu	17
		1.3.3	Nevillův algoritmus	18
		1.3.4	Chyba aproximace interpolačním polynomem	19
		1.3.5	Čebyševovy polynomy	22
		1.3.6	Příklad použití interpolačního polynomu na reálných datech	24
		1.3.7	Hermitův interpolační polynom	26
		1.3.8	Aproximace Taylorovou řadou	27
	1.4	Interpo	place spliny	29
		1.4.1	Kubický spline	
		1.4.2	Příklad použití splinu na reálných datech	
	1.5	Metoda	a nejmenších čtverců	
			Řešení aproximace podle kritéria nejmenších čtverců	
		1.5.2	Ortogonalizace	
		1.5.3	Aproximace goniometrickým polynomem	
		1.5.4	Čebyševova aproximace polynomem	
2	NU	MERIO	CKÁ DERIVACE A RICHARDSONOVA EXTRAPOLACE	43
	2.1		lace problému	
	2.2		metody u numerické derivace	
			Řád metod numerické derivace	
	2.3		y chyb metody u numerické derivace	
	2.4		učená délka kroku	
	2.5	Obecny	ý princip Richardsonovy extrapolace	47
	2.6		í Richardsonovy extrapolace v numerické derivaci	
	2.7	Odhad	derivace z reálných dat	49

3		MERICKA INTEGRACE	60
	3.1	Newtonovy-Cotesovy vzorce	61
		3.1.1 Metoda levých obdélníků	
		3.1.2 Obdélníková metoda	
		3.1.3 Lichoběžníková metoda	
		3.1.4 Simpsonova metoda	62
		3.1.5 Obecné Newtonovy-Cotesovy vzorce	63
	3.2	Odhad chyby numerické integrace	64
	3.3	Řád metod integrace	
	3.4	Gaussova metoda integrace	
	3.5	Richardsonova extrapolace při integraci	
		3.5.1 Rombergova metoda	
	3.6	Praktické stanovení počtu intervalů	
	3.7	Řešení obtížnějších úloh úpravou zadání	
		3.7.1 Integrace přes nekonečný interval	
		3.7.2 Omezení intervalu	
		3.7.3 Pomalu konvergentní integrály	71
1	NITI	MERICKÉ ŘEŠENÍ NELINEÁRNÍCH ROVNIC	75
4			75
	$4.1 \\ 4.2$	Formulace problému	
	$\frac{4.2}{4.3}$	Metoda regula falsi	
	$\frac{4.3}{4.4}$	Univerzální odhad chyby	
	$\frac{4.4}{4.5}$	Metoda sečen	
	$\frac{4.5}{4.6}$	Newtonova metoda (metoda tečen)	
	4.0	4.6.1 Odhad chyby Newtonovy metody	
		4.6.2 Konvergence Newtonovy metody	
		4.6.3 Náhrada derivace numerickým odhadem	
	4.7	Rychlost konvergence (řád metody)	
	4.1	4.7.1 Řád Newtonovy metody	
		4.7.2 Řád metody regula falsi	
	4.8	Kombinace startovacích a zpřesňujících metod	
	4.9	Metoda prosté iterace (MPI)	
	1.0	4.9.1 Kontraktivní funkce	
		4.9.2 Věta o pevném bodě	
		4.9.3 Optimalizace MPI	
		4.9.4 Řád metody prosté iterace	
		4.9.5 Kritéria pro výběr metody řešení rovnic	
	4 10	Podobné úlohy	88
	1.10	4.10.1 Hledání násobných kořenů	
		4.10.2 Řešení algebraických rovnic neboli hledání kořenů polynomů	
		4.10.3 Řešení rovnic v komplexním oboru	89
		4.10.4 Řešení soustav rovnic	89
5		MERICKÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC	91
	5.1	Formulace úlohy a její obtíže	91
		5.1.1 Druhy problémů	91
		5.1.2 Špatná podmíněnost	91
		5.1.3 Zdroje chyb	92
	5.2	Přímé metody	92
		5.2.1 Gaussova eliminace (GEM)	92
		5.2.2 Výběr hlavního prvku	92
		5.2.3 Gaussova-Jordanova redukce	93
		5.2.4 LU-rozklad	93
		5.2.5 Výpočet inverzní matice	94
		5.2.6 Výpočet determinantu	
		5.2.7 Zpřesnění výsledků pomocí rezidua	95

5.3	Iterač	$\operatorname{nf} \operatorname{metody} \ldots \ldots$
	5.3.1	Normy vektorů a matic
	5.3.2	Vlastní čísla a spektrální poloměr
	5.3.3	Výpočet vlastních čísel
	5.3.4	Maticové iterační metody
	5.3.5	Jacobiova iterační metoda (JIM)
	5.3.6	Gaussova-Seidelova iterační metoda (GSM)
	5.3.7	Superrelaxační metoda (SOR – Successive OverRelaxation method)
5.4	Jaký j	postup volit?

2 NUMERICKÁ DERIVACE A RICHARDSONOVA EXTRAPO-LACE

2.1 Formulace problému

Úloha: Odhadnout f'(x) pomocí funkčních hodnot v konečně mnoha bodech.

Proč to nedělat?

- 1. Umíme symbolicky zderivovat jakýkoli výraz. ©
- 2. Např. aproximace polynomem dle Weierstrassovy věty má libovolně velkou chybu derivace. ©

Proč to dělat?

- 1. Symbolická derivace je programátorsky náročná. ©
- 2. Ne vždy je derivovaná funkce zadána vzorečkem, máme např. jen diskrétní data. ②
- 3. Chce se to po nás.

Základní numerické odhady derivace

Z definice

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$

dostaneme odhad

$$d_n(x,h) = \frac{f(x+h) - f(x)}{h}.$$

Směrnici tečny nahrazujeme směrnicí sečny v bodech (x, f(x)) a (x + h, f(x + h)).

Symetrický odhad

$$d_s(x,h) = \frac{d_n(x,h) + d_n(x,-h)}{2} = \frac{f(x+h) - f(x-h)}{2h},$$

je směrnice sečny, vedené body (x - h, f(x - h)) a (x + h, f(x + h)).

$$f$$
, $d_n(x,h) = \frac{f(x+h) - f(x)}{h}$, $d_n(x,-h) = \frac{f(x) - f(x-h)}{h}$, $d_s(x,h) = \frac{f(x+h) - f(x-h)}{2h}$

2.2 Chyba metody u numerické derivace

Taylorův rozvoj funkce f a odhadů derivace podle h v okolí 0:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(x) + \frac{h^4}{24}f^{(4)}(x) + \frac{h^5}{120}f^{(5)}(x) + \dots,$$

$$d_n(x,h) = \frac{f(x+h) - f(x)}{h}$$

$$= f'(x) + \frac{h}{2}f''(x) + \frac{h^2}{6}f'''(x) + \frac{h^3}{24}f^{(4)}(x) + \frac{h^4}{120}f^{(5)}(x) + \dots,$$

$$d_n(x,-h) = \frac{f(x) - f(x-h)}{h}$$

$$= f'(x) - \frac{h}{2}f''(x) + \frac{h^2}{6}f'''(x) - \frac{h^3}{24}f^{(4)}(x) + \frac{h^4}{120}f^{(5)}(x) - \dots,$$

$$d_s(x,h) = \frac{f(x+h) - f(x-h)}{2h}$$

$$= f'(x) + \frac{h^2}{6}f'''(x) + \frac{h^4}{120}f^{(5)}(x) + \dots$$

Všimněte si, že libovolný odhad derivace dělí f krokem h, takže v jejím Taylorově rozvoji se h^p násobí $f^{(p+1)}(x)$.

2.2.1 Řád metod numerické derivace

Závislost chyby nesymetrického odhadu (≈ lineární) a symetrického (≈ kvadratická).

Obecně derivaci f'(x) nahrazujeme odhadem

$$d(x,h) = f'(x) + e(h),$$

kde e(h) je chyba odhadu (její závislost na x zde nevyznačujeme). Ta bývá pro malé h přibližně úměrná nějaké jeho mocnině,

$$|e(h)| \doteq c \cdot |h|^p$$
.

Zlogaritmováním získáme lineární závislost na parametrech:

$$\begin{split} \ln|e(h)| &\doteq \ln c + p \, \ln|h| \,, \\ p &\doteq \frac{\ln|e(h)| - \ln c}{\ln|h|} \to \frac{\ln|e(h)|}{\ln|h|} \end{split}$$

pro $h \to 0$, tj. $\ln |h| \to -\infty$.

Definujeme **řád metody** (řád odhadu d(x,h)) jako

$$\mathbf{p} = \lim_{h \to 0} \frac{\ln|e(h)|}{\ln|h|}$$

(pokud limita existuje).

Poznámka 2.1 V logaritmických souřadnicích má řád metody význam směrnice asymptoty $v(-\infty,\infty)$.

Závislost chyby nesymetrického odhadu (\approx lineární) a symetrického (\approx kvadratická).

Věta 2.1 Nechť p je nejmenší číslo ≥ 1 , pro které koeficient u h^p v Taylorově rozvoje chyby odhadu d(x,h) derivace f'(x) může být obecně nenulový. Nechť f má v okolí bodu x spojitou derivaci řádu p+1. Pak p je řád metody.

Důkaz. Z Lagrangeova tvaru zbytku Taylorova rozvoje

$$e(h) = \frac{h^p}{p!} f^{(p+1)}(\xi_h)$$

pro nějaké $\xi_h \in I(x, x+h)$.

$$\lim_{h \to 0} \xi_h = x,$$

$$\lim_{h \to 0} f^{(p+1)}(\xi_h) = f^{(p+1)}(x) \in (-\infty, \infty),$$

$$\lim_{h \to 0} \frac{\ln |e(h)|}{\ln |h|} = \lim_{h \to 0} \frac{p \ln |h| - \ln p! + \ln |f^{(p+1)}(\xi_h)|}{\ln |h|}$$

$$= p - \lim_{h \to 0} \frac{\ln p!}{\ln |h|} + \lim_{h \to 0} \frac{\ln |f^{(p+1)}(\xi_h)|}{\ln h} = p.$$

Čitatel posledního zlomku konverguje k ln $|f^{(p+1)}(x)|$, jmenovatel k $-\infty$, celý zlomek k 0. \square Odhad $d_n(x,h)$ je řádu 1, $d_s(x,h)$ řádu 2.

2.3 Odhady chyb metody u numerické derivace

Pro nesymetrický odhad:

$$d_n(x,h) = f'(x) + \frac{h}{2}f''(\xi),$$

kde $\xi \in I(x, x + h)$, pokud f má na intervalu I(x, x + h) spojitou druhou derivaci. Pak existuje M_2 takové, že

$$\forall t \in I(x, x+h) : |f''(t)| \le M_2.$$

$$|d_n(x,h) - f'(x)| \le \frac{M_2}{2} |h|.$$

Odhady chyb metody u numerické derivace

Pro symetrický odhad:

$$d_s(x,h) = f'(x) + \frac{h^2}{6} f'''(\xi),$$

kde $\xi \in I(x-h,x+h)$, pokud f má na intervalu I(x-h,x+h) spojitou třetí derivaci. Pak existuje M_3 takové, že

$$\forall t \in I(x-h,x+h) : |f'''(t)| \le M_3.$$

$$|d_s(x,h) - f'(x)| \le \frac{M_3}{6} h^2.$$

2.4 Doporučená délka kroku

Typické výsledky numerické derivace

Typická závislost výsledku a chyby numerické derivace na kroku (odhady derivace funkce sin v bodě 1, přesnější výsledek 0.5403023059):

	nesymetric	ký odhad	symetrický odhad	
krok	výsledek	chyba	výsledek	chyba
10^{-2}	0.5360859800	$-4.2 \cdot 10^{-3}$	0.5402933000	$-9 \cdot 10^{-6}$
10^{-3}	0.5398815000	$-4.2 \cdot 10^{-4}$	0.5403022000	$-1 \cdot 10^{-7}$
10^{-4}	0.5402600000	$-4.2 \cdot 10^{-5}$	0.5403020000	$-3 \cdot 10^{-7}$
10^{-5}	0.5403000000	$-2.3 \cdot 10^{-6}$	0.5403100000	$7.7 \cdot 10^{-6}$
10^{-6}	0.5403000000	$-2.3 \cdot 10^{-6}$	0.5404000000	$1 \cdot 10^{-4}$
10^{-7}	0.5400000000	$-3 \cdot 10^{-4}$	0.5400000000	$-3 \cdot 10^{-4}$
10^{-8}	0.5400000000	$-3 \cdot 10^{-4}$	0.5400000000	$-3 \cdot 10^{-4}$
10^{-9}	0.50000000000	$-4 \cdot 10^{-2}$	0.4000000000	14
10^{-10}	0	-0.54	0	-0.54

Typická závislost výsledku numerické derivace na kroku (nesymetrický a symetrický odhad derivace funkce sin v bodě 1).

Vyjdeme z odhadu chyby metody tvaru

$$\frac{M_{p+1}}{c} h^p,$$

kde p je řád metody,

 M_{p+1} je odhad $|f^{(p+1)}|$,

c je konstanta pro danou metodu (nejčastěji (p+1)!).

Zaokrouhlovací chybu odhadneme výrazem

$$b\,r\,M_0\,\frac{1}{h},$$

kde M_0 je odhad |f|,

r je relativní přesnost numerického výpočtu funkčních hodnot,

b je konstanta pro danou metodu (většinou řádu jednotek, určená počtem sčítanců v čitateli použitého výrazu). Odhad celkové chyby:

$$d_{Rn}(h) = \frac{M_{p+1}}{c} h^p + b \, r \, M_0 \, \frac{1}{h}$$

minimum nastane pro h_{dop} :

$$e'(h_{dop}) = 0$$

$$p \frac{M_{p+1}}{c} h_{dop}^{p-1} - \frac{b r M_0}{h_{dop}^2} = 0$$

$$h_{dop} = {}^{p+1} \sqrt{\frac{b c r M_0}{p M_{p+1}}}$$

Pro $d_n(x,h)$: p = 1, c = 2, b = 2,

$$h_{dop} = 2\sqrt{\frac{r\,M_0}{M_2}}$$
 odhad chyby metody $\frac{M_2}{2}\,h_{dop} = \sqrt{M_0\,M_2\,r} \sim \sqrt{r}$

To je špatná zpráva! (Zaokrouhlovací chyba je podobná.)

Pro $d_s(x,h)$: p=2, c=6, b=1 (v čitateli máme dva členy, ale dělíme dvěma),

$$h_{dop} = \sqrt[3]{\frac{3r\,M_0}{M_3}}$$
 odhad chyby metody $\frac{M_3}{6}\,h_{dop}^2 = \frac{1}{2\cdot\sqrt[3]{3}}\,M_0^{2/3}\,M_3^{1/3}\,r^{2/3}$

Příklad: $r=10^{-10}$, funkční hodnoty i hodnoty derivací zhruba stejné (jako např. u funkce $x\mapsto \mathbf{e}^x$): Pro odhad $d_n(x,h)$: $h_{dop}=2\sqrt{10^{-10}}=2\cdot 10^{-5}$ s odhadem relativní chyby $\frac{\sqrt{M_0\,M_2}}{M_1}\sqrt{r}=\sqrt{r}=10^{-5}$,

Pro odhad $d_s(x,h)$: $h_{dop} = \sqrt[3]{3 \cdot 10^{-10}} \doteq 6.7 \cdot 10^{-4}$ s odhadem relativní chyby $\frac{1}{2 \cdot 3^{1/3}} \frac{M_0^{2/3} M_3^{1/3}}{M_1} r^{2/3} = \frac{1}{2 \cdot 3^{1/3}} r^{2/3} \doteq 7.47 \cdot 10^{-8}$.

Pro funkci $x \mapsto e^{100x}$ (pouze změna měřítka na ose x) je $M_k = 100^k M_0$,

- pro odhad $d_n(x,h)$: $h_{dop} = 2\sqrt{10^{-14}} = 2 \cdot 10^{-7}$ s odhadem relativní chyby $\sqrt{r} = 10^{-5}$,
- pro odhad $d_s(x,h)$: $h_{dop} = \sqrt[3]{3 \cdot 10^{-16}} \doteq 6.7 \cdot 10^{-6}$ s odhadem relativní chyby $\frac{1}{2 \cdot 3^{1/3}} r^{2/3} \doteq 7.47 \cdot 10^{-8}$.

Pro odhad derivace ln v bodě $x=10^{-6}$ (předchozí délky kroků nelze použít): $M_0 \doteq 14$, $M_1 \doteq 10^6$, $M_2 \doteq 10^{12}$, $M_3 \doteq 2 \cdot 10^{18}$,

- pro odhad $d_n(x,h)$: $h_{dop} = \sqrt{4 \cdot 14 \cdot 10^{-22}} \doteq 8 \cdot 10^{-11}$ s odhadem relativní chyby $\frac{\sqrt{14 \cdot 10^{12}}}{10^6} \sqrt{r} \doteq 3.74 \cdot 10^{-5}$,
- pro odhad $d_s(x,h)$: $h_{dop} = \sqrt[3]{3 \cdot 7 \cdot 10^{-28}} \doteq 1.3 \cdot 10^{-9}$ s odhadem relativní chyby $\frac{1}{2 \cdot 3^{1/3}} \frac{14^{2/3} \cdot \left(2 \cdot 10^{18}\right)^{1/3}}{10^6} r^{2/3} \doteq 5.47 \cdot 10^{-7}$.

Upřesnění:

Dosud jsme uvažovali jen chybu vyhodnocení funkce f pro přesný argument, odhadnutou výrazem $r M_0$. Nepřesnost r x v argumentu se projeví ve funkční hodnotě chybou přibližně $r x M_1$, která může být značná, bude-li velká (absolutní hodnota) derivace funkce f. Proto je žádoucí volit čísla h, x, x + h tak, aby byla v počítači zobrazena přesně, tedy nikoli např. $h = 10^{-3}$ v binární reprezentaci.

Odvození optimální délky kroku by se mělo modifikovat podle toho, která z chyb $r M_0$, $r x M_1$ je větší. (Ještě lépe by bylo uvažovat obě chyby najednou, ale tím by se řešení zkomplikovalo, ani by nemuselo být jednoznačné.)

2.5 Obecný princip Richardsonovy extrapolace

Motivace:

Závislost chyby symetrického odhadu derivace (\approx kvadratická).

Princip:

Úloha: Správný výsledek nějakého výpočtu je $g(0) = \lim_{h \to 0} g(h)$. Předpokládáme, že g má v okolí bodu 0 Taylorův rozvoj

$$g(h) = g(0) + \frac{h^p}{p!} g^{(p)}(0) + \frac{h^r}{r!} g^{(r)}(0) + \dots,$$

kde p (řád metody) známe a r > p. Z hodnot funkce g v konečně mnoha nenulových bodech máme odhadnout q(0).

Zanedbáme členy řádů vyšších než p a aproximujeme g polynomem $\varphi(h) = s + c h^p$, $s, c \in \mathbb{R}$. Ke stanovení s, c zvolíme 2 uzlové body h, h/q, kde $q \neq 1$:

$$\varphi(h) = s + c h^p = g(h),$$

$$\varphi\left(\frac{h}{q}\right) = s + c \frac{h^p}{q^p} = g\left(\frac{h}{q}\right).$$

To je regulární soustava dvou lineárních rovnic pro dvě neznámé s, c, z nichž nás zajímá pouze $s = \varphi(0)$:

$$(q^p - 1) s = q^p g\left(\frac{h}{q}\right) - g(h),$$

$$s = \frac{q^p g\left(\frac{h}{q}\right) - g(h)}{q^p - 1}.$$

Odhad s hodnoty g(0) je zatížen pouze chybami vyšších řádů než p (zde řádu r). Často q=2, pak

$$s = \frac{2^p g\left(\frac{h}{2}\right) - g(h)}{2^p - 1}.$$

2.6 Využití Richardsonovy extrapolace v numerické derivaci

Odhad $d_n(x,h)$ má chybu řádu 1; z hodnot $d_n(x,h)$, $d_n(x,h/q)$ vypočteme odhad

$$d_{Rn}(x,h) = \frac{q d_n(x,h/q) - d_n(x,h)}{q-1},$$

s chybou řádu 2. Pro q=2:

$$d_{Rn}(x,h) = 2 d_n(x,h/2) - d_n(x,h) = \frac{-f(x+h) + 4 f(x+h/2) - 3 f(x)}{h}.$$

Ze symetrických odhadů $d_s(x,h)$, $d_s(x,h/q)$:

$$d_{Rs}(x,h) = \frac{q^2 d_s(x,h/q) - d_s(x,h)}{q^2 - 1},$$

s chybou řádu 4. Pro q=2:

$$d_{Rs}(x,h) = \frac{4 d_s(x,h/2) - d_s(x,h)}{3} = \frac{-f(x+h) + 8 f(x+h/2) - 8 f(x-h/2) + f(x-h)}{6 h}.$$

Symetrický odhad $d_s(x,h)$ lze též dostat Richardsonovou extrapolací z odhadu $d_{Rn}(x,h)$ s q=-1.

Výsledky symetrického vzorce zpřesněného Richardsonovou extrapolací.

Chyba (4. řádu) symetrického vzorce zpřesněného Richardsonovou extrapolací.

Chyba (4. řádu) symetrického vzorce zpřesněného Richardsonovou extrapolací.

2.7 Odhad derivace z reálných dat

Vyjdeme z motivační úlohy (teplota pacienta).

Použijeme nesymetrický i symetrický vzorec pro odhad derivace a porovnáme s derivací dříve použitých aproximací.

Dodatek: Přehled značení

Popis je zjednodušený a nemusí být přesný, podrobnosti jsou v textu. Značení použité jen lokálně zde není uvedeno.

Značení specifické pro kapitoly 2 a 2

```
f\,\dotsderivovaná funkce
```

 $h \dots$ krok při numerickém odhadu derivace

 φ ... funkce aproximující závislost na kroku

 $d, d_n, d_s, d_{Rn}, d_{Rs}$... numerické odhady derivace, $d(x,y) \approx f'(x)$ atd.

Značení používané podobně v celém předmětu

```
I(\ldots) ... nejmenší interval obsahující čísla (body) v závorce, např. I(x_0,\ldots,x_{n-1})=\langle \min_i x_i, \max_i x_i \rangle
```

 M_j ... horní odhad absolutní hodnoty j-té derivace derivované funkce, $|f^{(j)}| \leq M_j$ na použitém intervalu

Literatura

- [Navara, Němeček] Navara, M., Němeček, A.: Numerické metody. ČVUT, Praha, dotisk 2005.
- [Knuth] Knuth, D.E.: Fundamental Algorithms. Vol. 1 of The Art of Computer Programming, 3rd ed., Addison-Wesley, Reading, MA, 1997.
- [Num. Recipes] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes (The Art of Scientific Computing). 3rd edition, Cambridge University Press, Cambridge, 2007. http://www.nrbook.com/a/bookcpdf.php
- [Handbook Lin. Alg.] Hogben, L. (ed.): *Handbook of Linear Algebra*. Chapman & Hall/CRC, Boca Raton/London/New York, 2007.