EPITA

Mathématiques

Contrôle S3

Novembre 2020

Durée: 3 heures

Nom:		
Prénom :		
Classe:		
NOTE:		
Consignes :		
 Documents et calculatrices interdits. 		

— Répondre directement sur les feuilles jointes, dans les espaces prévus. Aucune autre feuille ne sera corrigée.

— Ne pas écrire au crayon de papier.

Exercice 1 (4 points)

1. Déterminer la nature de la série de terme général $u_n = \frac{1 - \cos(n)}{n^2}$.

2. Déterminer la nature de la série de terme général $u_n = \frac{(3n)!}{(n!)^3} 2^n$.

3. Quelle est la nature de la série $\sum \frac{(-1)^n}{n^2}$? Justifiez soigneusement votre réponse.

Exercice 2 (2,5 points)

Soient $a \in \mathbb{R}$ et la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = \frac{n^n}{(n+1)^{n+a}}$.

1. Déterminer la limite suivante : $\lim_{n \to +\infty} \left(\frac{n}{n+1} \right)^n$.

Exercice 3 (4,5 points)

Soient $a \in \mathbb{R}$ et la suite (u_n) définie pour tout $n \ge 2$ par $u_n = \frac{(-1)^n}{(n+(-1)^n)^a}$. Le but de cet exercice est de discuter la nature de $\sum u_n$ en fonction de a.

1. Montrer que $u_n \sim \frac{(-1)^n}{n^a}$.

2. Montrer que, si $a \leqslant 0$, la série $\sum u_n$ diverge.

3. On suppose dans la suite de l'exercice que a > 0. Déterminer $\lambda \in \mathbb{R}$ tel que $u_n = \frac{(-1)^n}{n^a} + \frac{\lambda}{n^{a+1}} + o\left(\frac{1}{n^{a+1}}\right)$.

4. En déduire la nature de $\sum u_n$.

Exercice 4 (4 points)

On considère la série harmonique $\sum \frac{1}{n}$ et la suite (S_n) de ses sommes partielles. Ainsi, pour tout $n \in \mathbb{N}^*$,

$$S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

On sait que la suite (S_n) diverge. Le but de l'exercice est d'en trouver un équivalent quand n tend vers $+\infty$. Pour cela, on utilise une suite auxiliaire (u_n) définie par : $u_n = S_n - \ln(n)$.

1. Montrer que pour tout $n \ge 2$, $u_n - u_{n-1} = \frac{1}{n} + \ln\left(1 - \frac{1}{n}\right)$.

2. Déterminer $c \in \mathbb{R}$ tel que $u_n - u_{n-1} \sim \frac{c}{n^2}$

3. En déduire que (u_n) converge. Notons γ sa limite.

4. Montrer que $S_n \sim \ln(n)$.

Exercice 5 (5 points)

Un virus se propage dans la population. Pour surveiller la maladie, un laboratoire a développé une procédure de test, censée détecter si un patient testé est contaminé ou non.

La procédure n'est cependant pas infaillible : à chaque réalisation, sa probabilité d'erreur a une valeur $p \in]0,1[$. On suppose que les résultats des tests (erreur ou non) sont indépendants.

On considère un ensemble de n patients à tester et on définit la variable aléatoire

Y =« nombre d'erreurs de diagnostic sur les n tests »

Enfin pour tout $i \in [1, n]$, on définit la variable aléatoire

$$X_i = \left| \begin{array}{cc} 1 & \text{si le test réalisé sur le patient i conduit à une erreur de diagnostic} \\ 0 & \text{si le test réalisé sur le patient i conduit au bon diagnostic} \end{array} \right.$$

Ainsi, $Y = X_1 + X_2 + \cdots + X_n$.

- 1. Soit $i \in [1, n]$.
 - a. Quelle est la loi de X_i ?

b. En déduire sa fonction génératrice $G_{X_i}(t)$.

c. En utilisant le résultat de la question précédente, calculer l'espérance et la variance de X_i .

- 2. Étude de la variable Y.
 - a. Quelle est la fonction génératrice de Y?

c. En utilisant les résultats des questions précédentes, calculer l'espérance et la variance de Y.	b.	En déduire la loi de Y .
c. En utilisant les résultats des questions précédentes, calculer l'espérance et la variance de Y .		
	c.	En utilisant les résultats des questions précédentes, calculer l'espérance et la variance de Y.
	٠.	