Funciones de los sistemas operativos

Software de base: (esta hecho en código maquina)

- Manejo de dispositivos
- Administra los recursos del equipo
- Servir de interfaz para el usuario
 - **Hardware**: maquina donde se monta el sistema operativos
 - Sistema operativo: Conjunto de programas que administran los recursos del sistema de interfaz para el usuario
 - Software de programación: Programas útiles para los programadores
 - **Software de aplicación**: son aquellos programas útiles para un usuario normal

Clasificación de los sistemas operativos

- 1. Según el tiempo de respuesta
 - a. En tiempo real: responden inmediatamente ante cualquier evento
 - b. <u>De tratamiento por lotes:</u> Realiza las tareas por bloques en un orden establecido
 - c. <u>De tiempo compartido:</u> realiza varias actividades aparentemente a la vez
- 2. Según el numero de usuarios
 - a. Mono-usuario: solo atiende a un usuario a la vez
 - b. Multi-usuario: puede atender a varios usuarios a la vez
- 3. Según el numero de equipos que lo ejecutan
 - a. Mono-puestos: se ejecuta en un solo equipo
 - b. Multi-puestos: se ejecuta de manera distribuida entre varios equipos
- 4. Según el numero de procesadores que lo ejecuten
 - a. mono-programado: se ejecuta en un solo núcleo del procesador
 - b. Multi-programado: se ejecuta entre varios núcleos

Gestión de procesos

El planificador aplica a los procesos una de estas políticas:

- FCFS: Primero en llegar, Primero en atenderse. (no es expulsiva)
- SJF: Primero atenderemos a la mas corta (no es expulsiva
- SRTF: Primero atenderemos a la que menos le quede por terminarse (expulsiva)
- Por prioridades: atenderemos a la de mayor prioridad (puede ser tanto expulsiva como no)
- Round Robin: a todas las tareas les doy el mismo tiempo (expulsiva)

Tablas

T_e= Tiempo en el que el proceso llega a la memoria (tiempo de entrada)

 T_x = tiempo que el proceso tarda en ejecutarse (tiempo de ejecución)

 T_r = Tiempo transcurrido desde que llego a memoria y acabo de ejecutarse (Tiempo de respuesta)

T_s= Tiempo que el proceso pasa esperando desde que entro (tiempo de espera)

Gestión de memoria

Políticas de sustitución

• FIFO: El primero en entrar es el primero en salir

o LRU: El menos usada recientemente

• LFU: El menos frecuentemente usado

• Optimus: El que menos probablemente se vaya a usar

- Políticas de re-ubicación: Movemos los procesos para arriba para compactar la memoria y tener espacio continuo para un nuevo proceso y cuando hay espacio para un proceso, este vuelve a la memoria
 - Best fit (mejor ajuste): se coloca donde menos vaya a sobrar
 - First fit (Primer ajuste): se coloca en el primer hueco que se encuentre
 - Worst fit (Peor ajuste): se coloca donde mas espacio sobra

Memoria segmentada

Los procesos ocupan segmentos de tamaño variable según sea por tamaño y en caso de no caber, se pueden aplicar la políticas de sustitución

Memoria	Iemoria Programas	
250	SOP 250MB	
450	Office 200 MB	
650	Skype 200 MB	
800	Spotify 150 MB	
(250)	Gimp (no puede entrar no hay espacio)	

Memoria Paginada

Se divide la memoria en procesos llamados "marcos de pagina" de tamaño fijo, haciendo que los procesos se dividan

SOP 250 MB	
Office 50 MB	→ marcos de pagina de 50MB
Office 50 MB	
Buscaminas 50 MB	
Buscaminas 25 MB	Fragmentación
GIMP 50 MB	
GIMP 50 MB	

Gestion de E/S

- 1. Los dispositivos de E/S desde el punto de vista del SOP se dividen:
 - a) Dispositivos transferencia de bloques: Realizan grandes transferencias de datos (disco, gráfica, Sonido)
 - b) Dispositivos de transferencia de byte (o Carácter): envían datos individuales (teclado, ratón...)
- 2. Maneras de gestionar las transferencias de E/S:
 - a) E/S programadas: el proceso ejecuta una orden de transferencia y pasa a "ESPERA" hasta que se termina la operación y vuelve a continuar ejecutándose = inanición: un proceso ocupa la CPU indefinidamente impidiendo que se ejecuten otros
 - b) E/S controlada por interrupciones: El proceso realiza una petición al SOP de transferencia y pasa a "BLOQUEADO" cuando el SOP haya ejecutado la transferencia despierta al proceso = interbloqueo: varios procesos están esperando por el mismo dispositivo
 - c) E/S por acceso directo a memoria (DMA): un modulo extra se encarga de leer y recibir en memoria y desde/hacia el dispositivo periférico
 - Mejora de rendimiento: Para evitar esperas del sistema por dispositivos lentas
 - Cache de dispositivo: pequeña memoria intermedia donde se vuelvan los datos para liberar la DMA, CPU, Buses, RAM, etc.
 - Spool (simultaneous perpleral operations on-line): se utiliza una zona del disco para distintas tareas de la impresora
- 3. Desde el punto de vista del dispositivo:
 - a) Gestión por sondeo/muestreo (polling): El SOP pregunta por orden a cada dispositivo si tiene algo que introducir en el sistema y si es así atiende la petición
 - b) Gestión por lineas de interrupción IRQ (Interrupt Request): Cada dispositivo tiene asignada una linea de interrumpido y cuando la activan, la CPU la atiende. en caso de simultaneidad se atiende a la mas prioritaria.
 - c) Daisy-Chain: Se encadenan varios dispositivos a la misma linea de E/S

Gestión de archivos

Sistemas de archivos mas conocidos

- 1. Windows
 - a) FAT16: file allocation table (antiguo)
 - b) FAT32: file allocation table (este es un estándar de multimedia)
 - c) NTFS: New technology file system
- 2. Linux
 - a) Ex+2
 - b) Ex+3
 - c) Ex+4
- 3. MacOS
 - a) HFS (Hierarchical file system)

Sistema de archivos de Linux (ext)

- Bloque: Conjunto de sectores contiguos que componen la unidad de almacenamiento más pequeña de un disco
- Superbloque: es una zona del disco que contiene metadatos críticos del sistema de archivos tales como información acerca del tamaño, cantidad de espacio libre y donde se encuentra los datos. Se clona varias veces para evitar perdidas
- inodos (nodos indice): Contienen la información de cada fichero
 - o Dispositivo en el que se encuentran
 - N.º de identificación
 - Longitud del archivos
 - Identificador del creador
 - Identificador del grupo
 - Modos de acceso permitidos
 - fechas de modificación y acceso
 - N.º de enlaces (entradas de directorio)
 - o Punteros a bloques de datos

Conceptos

- **Proceso**: Programa en ejecución
- **Memoria virtual**: una memoria que se apoya en el disco, para simular que hay en la memoria real mas procesos de los que caben
- **Area de swap**: zona de intercambio entre el disco y la memoria
- Fragmentación: espacios sueltos que quedan entre los procesos
- Archivo: es una unidad lógica compuesta por datos (bytes) que se almacena en un dispositivo de memoria secundaria para cuando no están usándose en el sistema, Normalmente tiene un nombre y una extensión: el nombre para distinguirlo de otros y su extensión para para especificar su contenido
- **Carpeta**: en realidad es un archivo que contiene información sobre los archivos que contiene
- **Buffer de dispositivos**: zona de la memoria principal donde el dispositivo almacena grandes cantidades de datos para poder seguir trabajando y que luego la CPU procesara