1401116	• • • • • • • • • • • • • • • • • • •		
Roll No.:	• • • • • • • •	•••••	
Invigilator's Signature :	• • • • • • • • • • • • • • • • • • • •		
CS/B.Tech (EIE)/SEM-3		302(EI)/2010-	11
2010-11	• •		
DIGITAL INTEGRATED	CIR	CUITS	
Time Allotted: 3 Hours		Full Marks :	70
The figures in the margin indic	ate ful	ll marks.	
Candidates are required to give their ans	-		ds
as far as practic			
GROUP – A			
(Multiple Choice Type Q)uesti	o ns)	
1. Choose the correct alternatives	for	any ten of	the
following:		10 × 1 =	10
i) ASCII code is		•	
b) 6 bit code_			* *
c) 7 bit code			
d) 8 bit code.			
ii) The minimum of bits in the I	3CD re	epresentation of	th
decimal number 25 is		en eg en skilde fra en	
a) 5	4		
c) 3	6. ,		
3002		[Turn	ove

:	iii)	Excess-3 code representation of decimal 59 is				
-		a)	01100010	b)	00111110	
		c)	10001100	d)	none of these.	
	iv)	Hex	adecimal equivaler	nt of (26.2	5) ₁₀ is	
		a)	A6.4	b)	1A.4	
		c)	FA.4	d)	none of these.	
	v)	The	number of 1's in	the bina	ry representation of the)
		dec	imal number 11 is			
		a)	5	b)	4	
	•	c)	3	d)	none of these.	
•	vi)	Wit	h the same numb	er of flip-f	lops where the Johnson	1
		cou	inter has N states	and the ri	ng counter has M states	3
		are				
		a)	N > M	b)	N = M	
		c)	N < M	d)	none of these.	
	vii)	The	e minimum numbe	er of NOR	gates required to design	1
		one	XOR gate is	•		
		a)	5 / 1	b)	4	
		c)	7	d)	none of these.	
•	viii)	Ad	lecoder with enable	e input car	be used as	
		a)	encoder	b)	parity generator	
		c)	multiplexer	d)	demultiplexer.	
				0		
300:	2	× .		2		

ix) The logic family that gives fastest switching is

CS/B.Tech (EIE)/SEM-3/EC-302(EI)/2010-11

		a) '	CMOS			
٠		b)	ECL	·.		
	-	c)	Schottky TTL			
		d)	Low power Scho	ttky TTL.		
	x)	A 64	1:1 MUX consists	of		
		a)	54 no. of 2:1 MU	JΧ		
		b)	63 no. of 2:1.MU	JΧ	•	
		c)	45 no. of 2:1 MU	JX		
		d)	36 no. of 2:1 MU	J X.		
	xi)	How	many RAM chip	s of size (256k*1bit)	are required
		to b	uild 1M byte men	nory?		
		a)	24	b)	10	
		c)	32	d)	8.	
	xii)	Whi	ch one is the fast	est logic ir	ı logic famili	es?
·		a)	RTL	b)	TTL	
		c)	ECL	d)	none of th	ese.
	xiii)	Bina	ary division 1001	0.1011 ÷ 1	1.01 yields	
		a)	110.11	b)	100.11	
•.		c)	101.10	d)	101.11	
3002	2			3		[Turn over
		:				

xiv) The value of 2^5 in octal system is

a) 40

b) 20

c) 400

- d) 200.
- xv) Excess-3 code is also known as
 - a) weighted code
 - b) self complementing code
 - c) algebraic code
 - d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. a) Design half-adder circuit using NAND gate only.
 - b) Design full adder circuit using half-adder and OR gate only.
- 3. Draw the output waveform of J-K flip-flop for input sequence J = 1011010 and K = 0110110, if
 - a) the flip-flop is positive edge-triggered
 - b) the flip-flop is negative edge-triggered.

3002

- 4. Explain BCD addition with proper diagram and proper example.
- 5. a) Design 8:1 MUX using 4:1 MUX and 2:1 MUX.
 - b) What is priority encoder?
- 6. Prove that:

a)
$$A + \overline{AB} + \overline{ABC}D + \overline{ABC}D = A + B + C + D$$

b) $AB + \overline{AC} + A\overline{BC}(AB + C) = 1$

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) Simplify the following Boolean function using Quine - McCluskey method:

$$Y(A, B, C, D) = \sum m(1, 2, 3, 5, 9, 12, 14, 15) + d(4, 8, 11)$$

- b) Draw the logic circuit of S-R flip-flop using D flip-flop.
- c) What are the advantages of D flip-flop over S-R flip-flop? 8+5+2

3002

5

[Turn over

- 8. a) Using the K-map method, simplify the following Boolean function and obtain
 - i) SOP &
 - ii) POS expressions for

$$Y = \Sigma m (0, 2, 3, 6, 7) + \Sigma d (8, 10, 11, 15)$$

- b) Design a Mod-5 synchronous counter using J-K flip-flop.
- c) What do you mean by Race-around condition ? 6 + 7 + 2
- 9. a) Implement a full-subtractor circuit using PLA having three inputs and two outputs.
 - b) Design 8:1 Multiplexer using NAND gates only.
 - c) Implement the following function using 3-to-8 line decoder:

$$Y(A, B, C) = \Sigma m(4, 5, 6, 7)$$
 6+6+3

- 10. a) Design a Gray code to binary converter using suitable logic gates.
 - b) Explain addition and subtraction for 1's complement using 4-bit parallel adder.

- c) What are the differences between a latch and a flip-flop?
- d) What are the differences between Edge-triggered and level-triggered flip-flop? 7 + 4 + 2 + 2
- 11. Answer any three of the following:

 3×5

- a) Even parity checker and generator
- b) Successive approximation register type ADC
- c) PAL
- d) BCD to Excess-3 converter
- e) R-2R ladder type D/A converter
- f) Universal gate.

3002