Линейни изображения и оператори. Матрица на изображения

Люба Конова

Ноември 2020

1 Теория:

1	теория.
	Дефиниция за линейно изображение: Нека $\mathbb V$ и $\mathbb V'$ са линейни пространства ϕ е изображение от $\mathbb V$ към $\mathbb V'$. Ще казваме, че ϕ е линейно, ако ϕ
2.	Примери за линейно изображение:
3.	Какво е изоморфизъм на линейни пространства?
4.	Основна теорема за изоморфизми
5.	Как влияе едно изображение на дадено линейно пространство?
6.	Какво е матрица на изображението?
7.	Какво става, ако сменим базиса?
8.	Има ли изоморфни пространства над различни полета?

2 Задачи:

Задача 1: Нека $\mathbb{V} = \mathbb{M}_2(\mathbb{F})$ и A и B са фиксирани матрици от \mathbb{V} . Да се докаже, че изображението ϕ е линеен оператор, където:

a)
$$\phi(X) = X^t$$

b)
$$\phi(X) = AXB$$

c)
$$\phi(X) = AX + XB$$

При n=2 да се напише матрицата на ϕ в базиса $E_{11}, E_{12}, E_{21}, E_{22}$, където $A=\begin{pmatrix}1&2\\3&4\end{pmatrix}, B=\begin{pmatrix}1&1\\2&-1\end{pmatrix}$.

Задача 2: Нека $\mathbb{V} = \mathbb{M}_2(\mathbb{F})$. Дадени са изображенията:

a)

$$\phi(X) = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} . X + X . \begin{pmatrix} -1 & -1 \\ -4 & -3 \end{pmatrix}$$

б)

$$\psi(X) = X. \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} + \begin{pmatrix} -1 & -1 \\ -4 & -3 \end{pmatrix}$$

, където $X \in \mathbb{V}$. Да се провери дали ϕ и ψ са линейни оператори във \mathbb{V} и когато са такива, да се напишат матриците им в базиса $E_{11}, E_{12}, E_{21}, E_{22}$.

Задача 3. Нека $\mathbb{V}=\mathbb{M}_2(\mathbb{R}),\ A=\begin{pmatrix}1&1\\3&3\end{pmatrix}$ и $\phi(X)$ е изображение от \mathbb{V} във $\mathbb{V},$ зададено по правилото $\phi(X)=XA$ за $X\in V.$

а) Да се докаже, че $\phi(X)$ е линеен оператор;

б) Да се провери, че матрицата ϕ в базиса $E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{21} =$

$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
е равна на

$$\begin{pmatrix}
1 & 3 & 0 & 0 \\
1 & 3 & 0 & 0 \\
0 & 0 & 1 & 3 \\
0 & 0 & 1 & 3
\end{pmatrix}$$

Задача 4: Докажете, че $Hom(\mathbb{V}, \mathbb{W})$, където \mathbb{V} и \mathbb{W} са линейни пространства е само по себе си линейно пространство.