Delays in Digital Designs

2021 EL6463: Advanced Digital Design

Slides: Hammond Pearce

Real components take TIME to execute - propagation delay

Combinatorial Logic can be examined to find longest path

Given $T_{xor} = 0.2ns$, and assuming an *ideal register* (no delays)

What is the maximum clock frequency this system can safely operate at?

Given $T_{xor} = 0.2$ ns, and assuming an *ideal register* (no delays)

What is the maximum clock frequency this system can safely operate at?

The loop has $T_{xor} = 0.2ns$

1 / 0.2ns = 5000 MHz = 5 GHz

Given

comparator propagation delay T_{cmp} is 4ns, the adder propagation delay T_{add} is 6ns, the multiplexer propagation delay T_{mux} is 3ns, and the registers are ideal (i.e. no delay at all)...

Specify the critical path and find the maximum clock frequency this circuit can operate properly.

Given

comparator propagation delay T_{cmp} is 4ns, the adder propagation delay T_{add} is 6ns, the multiplexer propagation delay T_{mux} is 3ns, and the registers are ideal (i.e. no delay at all)...

Specify the critical path and find the maximum clock frequency this circuit can operate properly.

Comparator and Adder operate in parallel, Adder is slower.

```
Delay = Tadd + Tmux = 9ns,
1/9ns = 111MHz
```

Registers are made of real components

 This design is called the Master/Slave Flip-Flop

How does it work?

Many possible register layouts

(b) Graphical symbol

Reduced gates =Reduced cost

Characteristic Timing of a Register

- tsu = set up time
 - th = hold time
 - tcQ = time to Q

Example - NC7SZ175P6S D-Type Flip Flop

Symbol	Parameter	V _{CC} (V)	Conditions	T _A = +25°C			T _A = -40 to +85°C		
				Min	Тур	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Propagation Delay CP to Q (Figures 5, 7)	1.65	$C_L = 15 \text{ pF},$ $R_L = 1 \text{ M}\Omega$	2	9.8	15.0	123	16.5	ns
		1.8		-	6.5	10.0	(A .	11.0	1
		2.5 ±0.2		-	3.8	6.5	1000	7.0	1
		3.3 ±0.3		-	2.8	4.5	-	5.0	1
		5.0 ±0.5		-	2.2	3.5	920	3.8	1
		3.3 ±0.3	C _L = 50 pF,	- 23	3.4	5.5	10000	6.2	
		5.0 ±0.5	$R_L = 500 \Omega$		2.6	4.0	, A=3	4.7	
t _s	Setup Time, CP to D (Figures 5, 8)	2.5 ±0.2	$C_L = 50 \text{ pF},$ $R_L = 500 \Omega$	770	-	(15)	2.5	-	ns
		3.3 ±0.3		(40)	-	39	20	-	
		5.0 ±0.5	1		=	828	1.5) -	1
t _H	Hold Time, CP to D (Figures 5, 8)	2.5 ±0.2	$C_L = 50 \text{ pF},$ $R_L = 500 \Omega$	20	=	-	1.5	_	ns
		3.3 ±0.3		- E	-	S - -	1.5	- ,	
		5.0 ±0.5		1.78	-	()	1.5	-	

NC7SZ175P6X

Datasheet •

Digi-Key Part Number NC7SZ175P6XTR-ND - Tape

& Reel (TR)

NC7SZ175P6XCT-ND - Cut

Tape (CT)

NC7SZ175P6XDKR-ND -

Digi-Reel®

Manufacturer ON Semiconductor

Manufacturer Product Number NC7SZ175P6X

Supplier ON Semiconductor

Description IC FF D-TYPE SNGL 1BIT

SC70-6

Manufacturer Standard Lead Time 4 Weeks

Detailed Description Flip Flop Element D-Type Bit

Positive Edge 6-TSSOP,

SC-88, SOT-363

Given
$$T_{xor} = 0.2ns$$
 and $T_{su} = 0.8ns$, $T_{h} = 0.3ns$, $0.8ns \le T_{cQ} \le 1ns$,

What is the maximum clock frequency this system can safely operate at?

Given
$$T_{xor} = 0.2ns$$
 and $T_{su} = 0.8ns$, $T_{h} = 0.3ns$, $0.8ns \le T_{cQ} \le 1ns$,

What is the maximum clock frequency this system can safely operate at?

The loop has
$$T_{cQ} + T_{xor} + T_{su} (T_h \text{ is dominated}) = 1 + 0.2 + 0.8 = 2ns$$

$$1 / 2ns = 500 \text{ MHz}$$

Given

comparator propagation delay T_{cmp} is 4ns, the adder propagation delay T_{add} is 6ns, the multiplexer propagation delay T_{mux} is 3ns, D_1 and D_2 have these timing characteristics:

$$\mathsf{T}_{\mathsf{su}} = 0.8 n \mathsf{s}, \, \mathsf{T}_{\mathsf{h}} = 0.3 n \mathsf{s}, \, \mathsf{1} n \mathsf{s} \leq \mathsf{T}_{\mathsf{cQ}} \leq 1.2 n \mathsf{s}.$$

Specify the critical path and find the maximum clock frequency this circuit can operate properly.

Comparator and Adder operate in parallel, Adder is slower. TcQ dominates Th.

Delay = Tadd + Tmux + Tsu + TcQ =
$$11ns$$
, $1/11ns = 90.9MHz$

Clock Trees

- Wires themselves have propagation delay, meaning the Clock can Skew
- I.e. the same clock arrives at different times causes cascaded errors
- Solution: H-Tree Clock Distribution

