

Overview

1. Questions and Updates

2. Recap: Main Concepts of Unit 4

3. Example: Message Passing in Factor Graphs

4. Hints for Exercise 2 (to be handed in May 19)

Tutorial 4

PML SS 2025

Course Overview

Week	Topic Lecture	Tutorial	Exercises	
07.04. & 08.04.	1 Probability Theory	Intro Julia		
14.04. & 15.04.	2 Inference Methods and Decision-Making	no tutorial	Exercise 1	
21.04. & 22.04.	no lecture	Theory Unit 1 & 2	(14.04. – 08.05.)	
28.04. & 29.04.	3 Graphical Models: Independence	Theory Unit 3		
05.05. & 06.05.	4 Graphical Models: Exact Inference	Theory Unit 4	Exercise 2	
12.05. & 13.05.	5 Graphical Models: Approximate Inference	Theory Unit 5	(05.05. – 19.05.)	
19.05. & 20.05.	6 Bayesian Ranking	Theory Unit 6	Exercise 3	
26.05. & 27.05.	7 Linear Basis Function Models	Theory Unit 7	(19.05 02.06.)	
02.06. & 03.06.	8 Bayesian Regression	Theory Unit 8	Exercise 4	Introduction to
09.06. & 10.06.	no lecture	9 Bayesian Classification	(02.06. – 23.06.)	Probabilistic Machine Learning
16.06. & 17.06.	10 Non-Bayesian Classification Learning	Theory Unit 9 & 10		
23.06. & 24.06.	11 Gaussian Processes	Theory Unit 11	Exercise 5	
30.06. & 01.07.	12 Information Theory	Theory Unit 12	(23.06. – 07.07.)	3/37
07.07. & 08.07.	13 Real-World Applications			

Overview

- 1. Questions and Updates
- 2. Recap: Main Concepts of Unit 4
- 3. Example: Message Passing in Factor Graphs
- 4. Hints for Exercise 2 (to be handed in Monday May 19)

Tutorial 4

PML SS 2025

Factor Graphs

- **Factor Graph (Frey, 1998)**. Given a product of m functions $f_1, f_2, ..., f_m$, each over a subset of n variables $x_1, x_2, ..., x_n$, a factor graph if a bipartite graphical model with m factor nodes and n variable nodes where an undirected edge connects f_i and x_i if and only if the function f_i depends on x_i .
- Factor graphs are more expressive than a Bayesian network!

Brendan Frey (1968 –)

Bayesian network

 $p(x_1, x_2, x_3) = p(x_1) \cdot p(x_2) \cdot p(x_3 | x_1, x_2)$

Corresponding factor graph

 $p(x_1, x_2, x_3) = f_1(x_1) \cdot f_2(x_2) \cdot f_3(x_3, x_1, x_2)$

Factor graph with more structure

 $p(x_1, x_2, x_3) = f_1(x_1) \cdot f_2(x_2) \cdot f_3(x_1, x_3) \cdot f_4(x_2, x_3)$

Introduction to Probabilistic Machine Learning

Unit 4 – Graphical Models: Inference

5/21

Structure in $p(x_3|x_1,x_2)$

- The key operation is summing-out all but one variable (marginalization).
- **Idea**: If we can get J samples $x_{j,1}, ..., x_{j,n}, j \in \{1, ..., J\}$ which are drawn according to

$$p(x_1, \dots, x_n) \propto \prod_{i=1}^m f_i(x_1, \dots, x_n)$$

then we can approximate the marginals $p(x_k)$ arbitrarily well via

$$p(x_k) \approx \frac{1}{J} \sum_{j=1}^{J} \delta(x_k - x_{j,k})$$

■ **Challenge**: How do we sample $p(x_1, ..., x_n)$ if we only have access to (a few) known efficient samplers $q(x_1, ..., x_n)$ such as (pseudo-random) numbers from the uniform distribution or normal distribution over each X_k ?

Introduction to Probabilistic Machine Learning

■ **Importance Sampling**: We get J samples $x_{j,1}, ..., x_{j,n}, j \in \{1, ..., J\}$ from $q(x_1, ..., x_n)$ and $u_{Inference}$ re-weight them with

$$\frac{p(x_{j,1}, \dots, x_{j,n})}{q(x_{j,1}, \dots, x_{j,n})}$$
 Importance weight

Importance Sampling

Given: Proposal distributions $q_1(\cdot), ..., q_n(\cdot)$ for $X_1, ..., X_n$

For $j \in \{1, ..., J\}$

- 1. Sample $x_{i,1} \sim q_1, x_{i,2} \sim q_2$ up to $x_{i,n} \sim q_n$ into $x_i = (x_{i,1}, ..., x_{i,n})$
- 2. Compute

$$w_{j} = \prod_{i=1}^{m} f_{i}(x_{j,1}, \dots, x_{j,n}) / \prod_{k=1}^{n} q_{k}(x_{j,k})$$

Return: $\{x_j\} \in \mathbb{R}^{J \times n}$ and $w \in \mathbb{R}^{+J}$ as weighted empirical distribution

Pros

- 1. Sampling of the x_i is parallel rather than sequential (as in a Bayesian network)!
- The weights can also be computed in parallel!

Cons

1. If the proposal $\prod_{k=1}^n q_k(\cdot)$ is far from the marginal of $\prod_{i=1}^m f_i(\cdot, ..., \cdot)$ then convergence is slow

Introduction to Probabilistic Machine Learning

Unit 4 – Graphical Models: Inference

7/21

Message $m_{f_j \to x_i}(x_i)$ is the sum over all variables in the subtree rooted at f_i

$$p(x_4) = \sum_{\{x_1\}} \sum_{\{x_2\}} \sum_{\{x_3\}} \sum_{\{x_5\}} f_1(x_1) \cdot f_2(x_2) \cdot f_3(x_2) \cdot f_4(x_1, x_3) \cdot f_5(x_2, x_3, x_4) \cdot f_6(x_4, x_5) \cdot f_7(x_5)$$

$$= \left[\sum_{\{x_1\}} \sum_{\{x_2\}} \sum_{\{x_3\}} f_1(x_1) \cdot f_2(x_2) \cdot f_3(x_3) \cdot f_4(x_1, x_3) \cdot f_5(x_2, x_3, x_4) \right] \cdot \left[\sum_{\{x_5\}} f_6(x_4, x_5) \cdot f_7(x_5) \right]$$

$$m_{f_5 \to x_4}(x_4)$$

$$m_{f_6 \to x_4}(x_4)$$

Introduction to Probabilistic Machine Learning

Unit 4 – Graphical Models: Inference

Marginals are the product of all incoming messages from neighbouring factors!

8/21

Sum-Product Algorithm: Message from Factor to Variable

Message $m_{x_i \to f_j}(x_i)$ is the sum over all variables in the subtree rooted at x_i

$$m_{f_5 \to x_4}(x_4) = \sum_{\{x_1\}} \sum_{\{x_2\}} \sum_{\{x_3\}} f_1(x_1) \cdot f_2(x_2) \cdot f_3(x_3) \cdot f_4(x_1, x_3) \cdot f_5(x_2, x_3, x_4)$$

$$= \sum_{\{x_2\}} \sum_{\{x_3\}} f_5(x_2, x_3, x_4) \cdot \left[f_2(x_2) \right] \cdot \left[\sum_{\{x_1\}} f_1(x_1) \cdot f_3(x_3) \cdot f_4(x_1, x_3) \right]$$

$$m_{x_2 \to f_5}(x_2) \qquad m_{x_3 \to f_5}(x_3)$$

Introduction to Probabilistic Machine Learning

Unit 4 – Graphical Models:

Messages from a factor to a variable sum out all neighboring variables weighted by their incoming message

$$m_{x \to f}(x) = \frac{p(x)}{m_{f \to x}(x)}$$

$$m_{x_3 \to f_5}(x_3) = \sum_{\{x_1\}} f_1(x_1) \cdot f_3(x_3) \cdot f_4(x_1, x_3)$$

$$= [f_3(x_3)] \cdot \left[\sum_{\{x_1\}} f_1(x_1) \cdot f_4(x_1, x_3) \right]$$

$$m_{f_3 \to x_3}(x_3) \qquad m_{f_4 \to x_3}(x_3)$$

Introduction to Probabilistic Machine Learning

Unit 4 – Graphical Models:

Messages from a variable to a factor multiply incoming message from neighboring factors

10/21

Overview

- 1. Questions and Updates
- 2. Recap: Main Concepts of Unit 4
- 3. Example: Message Passing in Factor Graphs
- 4. Hints for Exercise 2 (to be handed in Monday May 19)

Tutorial 4

PML SS 2025

Example Chain (Slide 13): Model & Dynamics

Chain Graph:

$$x_1 \in \{1, 2, 3\}, \ x_2 \in \{1, 2, 3\}, \ x_3 \in \{1, 2, 3\}$$

Example Chain (Slide 13): Model & Dynamics

Initial Probability:
$$X_1 = 1 \implies P(X_1 = x_1) = 1_{\{x_1 = 1\}} \xrightarrow{x_2 = 1, 2, 3} (1, 0, 0)$$
 $x_1 \in \{1, 2, 3\}, x_2 \in \{1, 2, 3\}, x_3 \in \{1, 2, 3\}$

Transition Probability:
$$P(X_{i+1} = x_{i+1} \mid X_i = x_i) = f(x_i, x_{i+1}) = \begin{cases} 1/2 & x_{i+1} = x_i \\ 1/4 & x_{i+1} \neq x_i \end{cases}$$
 $i = 1, 2$

Example Chain (Slide 13): Computing Marginals as Usual

Chain Graph: $f_{1}(x_{1}) = \mathbb{I}(x = 1) \qquad f_{2}(x_{1}, x_{2}) = \begin{cases} 1/2 & x_{1} = x_{2} \\ 1/4 & x_{1} \neq x_{2} \end{cases} \qquad f_{3}(x_{2}, x_{3}) = \begin{cases} 1/2 & x_{2} = x_{3} \\ 1/4 & x_{2} \neq x_{3} \end{cases} \qquad p(x_{1}, x_{2}, x_{3}) = p(x_{1}, x_{2}, x_{3}) \qquad p(x_{1}, x_{$

Initial Probability: $X_1 = 1 \implies P(X_1 = x_1) = 1_{\{x_1 = 1\}} \xrightarrow{x_1 = 1, 2, 3} (1, 0, 0)$ $x_1 \in \{1, 2, 3\}, x_2 \in \{1, 2, 3\}, x_3 \in \{1, 2, 3\}$

Transition Probability: $P(X_{i+1} = x_{i+1} \mid X_i = x_i) = f(x_i, x_{i+1}) = \begin{cases} 1/2 & x_{i+1} = x_i \\ 1/4 & x_{i+1} \neq x_i \end{cases}$ i = 1, 2

Marginal x1:

Marginal x2:

Marginal x3:

Example Chain (Slide 13): Computing Marginals as Usual

Chain Graph:
$$f_{1}(x_{1}) = \mathbb{I}(x = 1) \qquad f_{2}(x_{1}, x_{2}) = \begin{cases} 1/2 & x_{1} = x_{2} \\ 1/4 & x_{1} \neq x_{2} \end{cases} \qquad f_{3}(x_{2}, x_{3}) = \begin{cases} 1/2 & x_{2} = x_{3} \\ 1/4 & x_{2} \neq x_{3} \end{cases} \qquad p(x_{1}, x_{2}, x_{3}) = p(x_{1}, x_{2}, x_{3}) \qquad p(x_{1}, x_{$$

Initial Probability:
$$X_1 = 1 \implies P(X_1 = x_1) = 1_{\{x_1 = 1\}} \xrightarrow{x_2 = 1, 2, 3} (1, 0, 0)$$
 $x_1 \in \{1, 2, 3\}, x_2 \in \{1, 2, 3\}, x_3 \in \{1, 2, 3\}$

Transition Probability:
$$P(X_{i+1} = x_{i+1} \mid X_i = x_i) = f(x_i, x_{i+1}) = \begin{cases} 1/2 & x_{i+1} = x_i \\ 1/4 & x_{i+1} \neq x_i \end{cases}$$
 $i = 1, 2$

Marginal x1:
$$p(x_1) = \sum_{x_2} \sum_{x_3} p(x_1, x_2, x_3) = ??$$

Marginal x2:
$$p(x_2) = \sum_{x_1} \sum_{x_3} p(x_1, x_2, x_3) = ??$$

Marginal x3:
$$p(x_3) = \sum_{x_1} \sum_{x_2} p(x_1, x_2, x_3) = ??$$

Example Chain (Slide 13): Computing Marginals as Usual

Chain Graph:
$$f_{1}(x_{1}) = \mathbb{I}(x=1) \qquad f_{2}(x_{1},x_{2}) = \begin{cases} 1/2 & x_{1} = x_{2} \\ 1/4 & x_{1} \neq x_{2} \end{cases} \qquad f_{3}(x_{2},x_{3}) = \begin{cases} 1/2 & x_{2} = x_{3} \\ 1/4 & x_{2} \neq x_{3} \end{cases} \qquad p(x_{1},x_{2},x_{3}) = p(x_{1}) \cdot p(x_{2} \mid x_{1}) \cdot p(x_{3} \mid x_{2}) \qquad p(x_{1},x_{2},x_{3}) \qquad$$

Transition Probability:
$$P(X_{i+1} = x_{i+1} \mid X_i = x_i) = f(x_i, x_{i+1}) = \begin{cases} 1/2 & x_{i+1} = x_i \\ 1/4 & x_{i+1} \neq x_i \end{cases}$$
 $i = 1, 2$

Marginal x1:
$$p(x_1) = \sum_{x_2} \sum_{x_3} p(x_1, x_2, x_3) = p(x_1) \cdot \sum_{x_2} p(x_2 \mid x_1) \cdot \sum_{x_3} p(x_3 \mid x_2) = p(x_1) = f_1(x_1)$$

Marginal x2:
$$p(x_2) = \sum_{x_1} \sum_{x_3} p(x_1, x_2, x_3) = \sum_{x_1} \sum_{x_3} p(x_1) \cdot p(x_2 \mid x_1) \cdot p(x_3 \mid x_2)$$
$$= \sum_{x_1} p(x_1) \cdot p(x_2 \mid x_1) \cdot \sum_{x_3} p(x_3 \mid x_2) = \sum_{x_1} p(x_1) \cdot p(x_2 \mid x_1)$$
$$p(x_3) = \sum_{x_1} \sum_{x_2} p(x_1, x_2, x_3) = \sum_{x_1} \sum_{x_2} p(x_1) \cdot \sum_{x_2} p(x_2 \mid x_1) \cdot p(x_3 \mid x_2)$$
Marginal x3:

Marginal x3:
$$p(x_3) = \sum_{x_1} \sum_{x_2} p(x_1, x_2, x_3) = \sum_{x_1} p(x_1) \cdot \sum_{x_2} p(x_2 \mid x_1) \cdot p(x_3 \mid x_2)$$

Example Chain (Slide 13): Results for Marginals

Chain Graph: $f_{1}(x_{1}) = \mathbb{I}(x = 1) \qquad f_{2}(x_{1}, x_{2}) = \begin{cases} 1/2 & x_{1} = x_{2} \\ 1/4 & x_{1} \neq x_{2} \end{cases} \qquad f_{3}(x_{2}, x_{3}) = \begin{cases} 1/2 & x_{2} = x_{3} \\ 1/4 & x_{2} \neq x_{3} \end{cases} \qquad p(x_{1}, x_{2}, x_{3}) = p(x_{1}, x_{2}, x_{3}) \qquad p(x_{1}, x_{$

Initial Probability:
$$X_1 = 1 \implies P(X_1 = x_1) = 1_{\{x_1 = 1\}} \xrightarrow{x_1 = 1, 2, 3} (1, 0, 0)$$

Transition Probability:
$$P(X_{i+1} = x_{i+1} | X_i = x_i) = \begin{cases} 1/2 & x_{i+1} = x_i \\ 1/4 & x_{i+1} \neq x_i \end{cases}$$

Marginal x1:
$$p(x_1) = P(X_1 = x_1) = f_1(x_1) = 1_{\{x_1 = 1\}} \xrightarrow{(x_1 = 1, 2, 3)} (1, 0, 0)$$

Marginal x2:
$$p(x_2) = \sum_{x_1} \sum_{x_3} p(x_1, x_2, x_3) = \sum_{x_1} \sum_{x_3} p(x_1) \cdot p(x_2 \mid x_1) \cdot p(x_3 \mid x_2)$$
$$= \sum_{x_1 = 1, 2, 3} p(x_1) \cdot p(x_2 \mid x_1)$$

Example Chain (Slide 13): Results for Marginals

Chain Graph: $f_{1}(x_{1}) = \mathbb{I}(x = 1) \qquad f_{2}(x_{1}, x_{2}) = \begin{cases} 1/2 & x_{1} = x_{2} \\ 1/4 & x_{1} \neq x_{2} \end{cases} \qquad f_{3}(x_{2}, x_{3}) = \begin{cases} 1/2 & x_{2} = x_{3} \\ 1/4 & x_{2} \neq x_{3} \end{cases} \qquad p(x_{1}, x_{2}, x_{3}) = p(x_{1}, x_{2}, x_{3}) \qquad p(x_{1}, x_{$

Initial Probability:
$$X_1 = 1 \implies P(X_1 = x_1) = 1_{\{x_1 = 1\}} \xrightarrow{x_1 = 1, 2, 3} (1, 0, 0)$$

Transition Probability:
$$P(X_{i+1} = x_{i+1} | X_i = x_i) = \begin{cases} 1/2 & x_{i+1} = x_i \\ 1/4 & x_{i+1} \neq x_i \end{cases}$$

Marginal x1:
$$p(x_1) = P(X_1 = x_1) = f_1(x_1) = 1_{\{x_1 = 1\}} \xrightarrow{x_1 = 1, 2, 3} (1, 0, 0)$$

Marginal x2:
$$p(x_2) = \sum_{x_1} \sum_{x_3} p(x_1, x_2, x_3) = \sum_{x_1} \sum_{x_3} p(x_1) \cdot p(x_2 \mid x_1) \cdot p(x_3 \mid x_2)$$
$$= \sum_{x_1 = 1, 2, 3} p(x_1) \cdot p(x_2 \mid x_1) \stackrel{X_1 = 1}{=} p(x_2 \mid X_1 = 1) \stackrel{x_2 = 1, 2, 3}{\longrightarrow} \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right)$$

Example Chain (Slide 13): Computing Probabilities as Usual

Initial Probability:
$$X_1 = 1 \implies P(X_1 = x_1) = 1_{\{x_1 = 1\}} \xrightarrow{x_1 = 1, 2, 3} (1, 0, 0)$$

Transition Probability:
$$P(X_{i+1} = x_{i+1} \mid X_i = x_i) = \begin{cases} 1/2 & x_{i+1} = x_i \\ 1/4 & x_{i+1} \neq x_i \end{cases}$$

Marginal x3:
$$p(x_3) = \sum_{x_1=1,2,3} \sum_{x_2=1,2,3} p(x_1) \cdot p(x_2 \mid x_1) \cdot p(x_3 \mid x_2)$$

$$= \sum_{x_2=1,2,3} P(X_2 = x_2 \mid X_1 = 1) \cdot P(X_3 = x_3 \mid X_2 = x_2)$$

Example Chain (Slide 13): Computing Probabilities as Usual

Chain Graph: $f_{1}(x_{1}) = \mathbb{I}(x = 1) \qquad f_{2}(x_{1}, x_{2}) = \begin{cases} 1/2 & x_{1} = x_{2} \\ 1/4 & x_{1} \neq x_{2} \end{cases} \qquad f_{3}(x_{2}, x_{3}) = \begin{cases} 1/2 & x_{2} = x_{3} \\ 1/4 & x_{2} \neq x_{3} \end{cases} \qquad p(x_{1}, x_{2}, x_{3}) = p(x_{1}, x_{2}, x_{3}) \qquad p(x_{1}, x_{$

Initial Probability:
$$X_1 = 1 \implies P(X_1 = x_1) = 1_{\{x_1 = 1\}} \xrightarrow{x_1 = 1, 2, 3} (1, 0, 0)$$

Transition Probability:
$$P(X_{i+1} = x_{i+1} | X_i = x_i) = \begin{cases} 1/2 & x_{i+1} = x_i \\ 1/4 & x_{i+1} \neq x_i \end{cases}$$

Marginal x3:
$$p(x_3) = \sum_{x_1=1,2,3} \sum_{x_2=1,2,3} p(x_1) \cdot p(x_2 \mid x_1) \cdot p(x_3 \mid x_2)$$

$$= \sum_{x_2=1,2,3} P(X_2 = x_2 \mid X_1 = 1) \cdot P(X_3 = x_3 \mid X_2 = x_2)$$

$$= \left(\underbrace{\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{4}}_{x_3=1} + \underbrace{\frac{x_2=2}{1} \cdot \frac{x_2=3}{4}}_{x_3=2} + \underbrace{\frac{x_2=2}{1} \cdot \frac{x_2=3}{4}}_{x_3=2} + \underbrace{\frac{x_2=3}{1} \cdot \frac{x_2=3}{4}}_{x_2=3} + \underbrace{\frac{x_2=2}{1} \cdot \frac{x_2=3}{4}}_{x_3=3} + \underbrace{\frac{x_2=3}{1} \cdot \frac{x_2=3}{4}}_{x_3=3} + \underbrace{\frac{x_2=3}{1} \cdot \frac{x_2=3}{4}}_{x_3=1} + \underbrace{\frac{x_2=3}{1} \cdot \frac{x_2=3}{4}}_{x_3=1} + \underbrace{\frac{x_2=3}{1} \cdot \frac{x_2=3}{4}}_{x_3=1} + \underbrace{\frac{x_2=3}{1} \cdot \frac{x_2=3}{4}}_{x_3=2} + \underbrace{\frac{x_2=3}{1} \cdot \frac{x_2=3}{4}}_{x_3=3} +$$

Marginals (conditioned on x3=2): ??

Chain Graph:

Observation: $X_3 = 2$

Marginals (conditioned):

$$P(X_1 = x_1 \mid X_3 = 2) = 1_{\{x_1 = 1\}} \xrightarrow{x_1 = 1, 2, 3} (1, 0, 0)$$

$$P(X_3 = x_3 \mid X_3 = 2) = 1_{\{x_3 = 2\}} \xrightarrow{x_3 = 1, 2, 3} (0, 1, 0)$$

Chain Graph:

$$f_{1}(x_{1}) = \mathbb{I}(x = 1)$$

$$f_{2}(x_{1}, x_{2}) = \begin{cases} 1/2 & x_{1} = x_{2} \\ 1/4 & x_{1} \neq x_{2} \end{cases}$$

$$f_{3}(x_{2}, x_{3}) = \begin{cases} 1/2 & x_{2} = x_{3} \\ 1/4 & x_{2} \neq x_{3} \end{cases}$$

$$x_{1}$$

$$m_{f_{2} \rightarrow x_{1}}(x_{1})$$

$$m_{f_{2} \rightarrow x_{2}}(x_{2})$$

$$m_{f_{3} \rightarrow x_{2}}(x_{2})$$

$$m_{f_{3} \rightarrow x_{2}}(x_{2})$$

Observation: $X_3 = 2$

Marginals (conditioned):
$$P(X_1 = x_1 \mid X_3 = 2) = 1_{\{x_1 = 1\}} \xrightarrow{x_1 = 1, 2, 3} (1, 0, 0)$$

$$P(X_3 = x_3 \mid X_3 = 2) = 1_{\{x_3 = 2\}} \xrightarrow{x_3 = 1, 2, 3} (0, 1, 0)$$

$$P(X_2 = x_2 \mid X_3 = 2) = \frac{P(X_2 = x_2, X_3 = 2)}{P(X_3 = 2)} = \frac{\sum_{x_1} \sum_{x_2: x_3: x_3 = 2} p(x_1, x_2, x_3)}{\sum_{x_1} \sum_{x_2} \sum_{x_3: x_3 = 2} p(x_1, x_2, x_3)} = \frac{\sum_{x_1} p(x_1) \cdot p(x_2 \mid x_1) \cdot \sum_{x_3: x_3 = 2} p(x_3 \mid x_2)}{\sum_{x_1} p(x_1) \cdot \sum_{x_2} p(x_1) \cdot \sum_{x_3: x_3 = 2} p(x_3 \mid x_2)}$$

$$\stackrel{X_1=1}{=}_{X_3=2}$$
 $=$
 $\frac{??}{5/16}$

Chain Graph:

Observation: $X_3 = 2$

Marginals (conditioned):
$$P(X_1 = x_1 \mid X_3 = 2) = 1_{\{x_1 = 1\}} \xrightarrow{x_1 = 1, 2, 3} (1, 0, 0)$$

$$P(X_3 = x_3 \mid X_3 = 2) = 1_{\{x_3 = 2\}} \xrightarrow{x_1 = 1, 2, 3} (0, 1, 0)$$

$$P(X_2 = x_2 \mid X_3 = 2) = \frac{P(X_2 = x_2, X_3 = 2)}{P(X_3 = 2)} = \frac{\sum_{x_1} \sum_{x_2: x_3: x_3 = 2} p(x_1, x_2, x_3)}{\sum_{x_1} \sum_{x_2} \sum_{x_3: x_3 = 2} p(x_1, x_2, x_3)} = \frac{\sum_{x_1} p(x_1) \cdot p(x_2 \mid x_1) \cdot \sum_{x_3: x_3 = 2} p(x_3 \mid x_2)}{\sum_{x_1} p(x_1) \cdot \sum_{x_2} p(x_1) \cdot \sum_{x_3: x_3 = 2} p(x_1 \mid x_2)} = \frac{\sum_{x_1} p(x_1) \cdot p(x_2 \mid x_1) \cdot \sum_{x_3: x_3 = 2} p(x_3 \mid x_2)}{\sum_{x_1} p(x_1) \cdot \sum_{x_2} p(x_2 \mid x_1) \cdot \sum_{x_3: x_3 = 2} p(x_3 \mid x_2)}$$

$$= \frac{P(X_2 = x_2 \mid X_1 = 1) \cdot P(X_3 = 2 \mid X_2 = x_2)}{5/16} \xrightarrow{x_2 = 1, 2, 3} \frac{16}{5} \cdot \left(\frac{1}{2} \cdot \frac{1}{4}, \frac{1}{4} \cdot \frac{1}{2}, \frac{1}{4} \cdot \frac{1}{4}\right) = \left(\frac{2}{5}, \frac{2}{5}, \frac{1}{5}\right)$$

Example Chain (Slide 13): Are Longer Chains Tractable?

Chain with K nodes:

$$f_1(x_1) = \mathbb{I}(x = 1)$$

$$f_2(x_1, x_2) = \begin{cases} 1/2 & x_1 = x_2 \\ 1/4 & x_1 \neq x_2 \end{cases}$$

$$f_3(x_2, x_3) = \begin{cases} 1/2 & x_2 = x_3 \\ 1/4 & x_2 \neq x_3 \end{cases}$$

$$x_3$$

$$m_{f_3 \to x_2}(x_2)$$

$$m_{f_3 \to x_2}(x_2)$$

Initial Probability: $X_1 = 1 \implies P(X_1 = x_1) = f_1(x_1) = 1_{\{x_1 = 1\}} \xrightarrow{x_1 = 1, 2, 3} (1, 0, 0)$

Transition Probability: $P(X_{i+1} = x_{i+1} \mid X_i = x_i) = \begin{cases} 1/2 & x_{i+1} = x_i \\ 1/4 & x_{i+1} \neq x_i \end{cases} \quad i = 1, ..., K-1$

Marginals: ??

Marginals (conditioned): ??

Example Chain (Slide 13): Are Longer Chains Tractable?

Chain with K nodes:

$$f_1(x_1) = \mathbb{I}(x = 1)$$

$$f_2(x_1, x_2) = \begin{cases} 1/2 & x_1 = x_2 \\ 1/4 & x_1 \neq x_2 \end{cases}$$

$$f_3(x_2, x_3) = \begin{cases} 1/2 & x_2 = x_3 \\ 1/4 & x_2 \neq x_3 \end{cases}$$

$$x_3$$

$$m_{f_3 \to x_2}(x_2)$$

$$m_{f_3 \to x_3}(x_3)$$

Initial Probability:
$$X_1 = 1 \implies P(X_1 = x_1) = f_1(x_1) = 1_{\{x_1 = 1\}} \xrightarrow{x_1 = 1, 2, 3} (1, 0, 0)$$

Transition Probability:
$$P(X_{i+1} = x_{i+1} \mid X_i = x_i) = \begin{cases} 1/2 & x_{i+1} = x_i \\ 1/4 & x_{i+1} \neq x_i \end{cases} \quad i = 1, ..., K-1$$

Marginals:
$$P(X_k = x_k) = p(x_k) = \sum_{x_1} ... \sum_{x_{k-1}} \sum_{x_{k+1}} ... \sum_{x_K} p(x_1, ..., x_K) \xrightarrow{x_k = 1, 2, 3} (?, ?, ?)$$

$$P(X_k = x_k \mid X_K = 2) = \frac{P(X_k = x_k, X_K = 2)}{P(X_K = 2)}$$

$$= \frac{\sum_{x_1} \dots \sum_{x_{k-1}} \sum_{x_{k+1}} \dots \sum_{x_K : x_K = 2} p(x_1, \dots, x_K)}{\sum_{x_1} \dots \sum_{x_K : x_K = 2} p(x_1, \dots, x_K)} \xrightarrow{x_k = 1, 2, 3} (?, ?, ?)$$

Marginals (conditioned):

Discrete events: $P(X \le 2) = P(X = 1) + P(X = 2)$

Expected Value: $\sum_{k} k \cdot P(X = k)$

Discrete events: $P(X \le 2) = P(X = 1) + P(X = 2)$

Expected Value: $\sum_{k} k \cdot P(X = k)$

Joint Probability: $P(X=2,Y=30) \stackrel{indep.}{=} P(X=2) \cdot P(Y=30)$

Cond. Probability: $P(X = 2 | Y = 30) = \frac{P(X = 2, Y = 30)}{P(Y = 30)}$

Discrete events: $P(X \le 2) = P(X = 1) + P(X = 2)$

Expected Value: $\sum_{k} k \cdot P(X = k)$

Joint Probability: $P(X=2,Y=30) \stackrel{indep.}{=} P(X=2) \cdot P(Y=30)$

Cond. Probability: $P(X = 2 | Y = 30) = \frac{P(X = 2, Y = 30)}{P(Y = 30)}$

Likelihood x Prior: $P(\theta \mid D) = \frac{P(D \mid \theta) \cdot P(\theta)}{P(D)} \qquad P(D) := \int_{-\infty}^{+\infty} P(D \mid \theta) \cdot P(\theta) \ d\theta$

Discrete events: $P(X \le 2) = P(X = 1) + P(X = 2)$

Expected Value: $\sum_{k} k \cdot P(X = k)$

Joint Probability: $P(X=2,Y=30) \stackrel{indep.}{=} P(X=2) \cdot P(Y=30)$

Cond. Probability: $P(X = 2 | Y = 30) = \frac{P(X = 2, Y = 30)}{P(Y = 30)}$

Likelihood x Prior: $P(\theta \mid D) = \frac{P(D \mid \theta) \cdot P(\theta)}{P(D)} \qquad P(D) := \int_{-\infty}^{+\infty} P(D \mid \theta) \cdot P(\theta) \ d\theta$

$$\Rightarrow \int_{-\infty}^{+\infty} P(\theta \mid D) \ d\theta = \frac{1}{P(D)} \cdot \int_{-\infty}^{+\infty} P(D \mid \theta) \cdot P(\theta) \ d\theta = \frac{P(D)}{P(D)} = 1$$

Discrete events: $P(X \le 2) = P(X = 1) + P(X = 2)$

Expected Value: $\sum_{k} k \cdot P(X = k)$

Joint Probability: $P(X=2,Y=30) \stackrel{indep.}{=} P(X=2) \cdot P(Y=30)$

Cond. Probability: $P(X = 2 | Y = 30) = \frac{P(X = 2, Y = 30)}{P(Y = 30)}$

Likelihood x Prior: $P(\theta \mid D) = \frac{P(D \mid \theta) \cdot P(\theta)}{P(D)} \qquad P(D) := \int_{-\infty}^{+\infty} P(D \mid \theta) \cdot P(\theta) \ d\theta$

$$\Rightarrow \int_{-\infty}^{+\infty} P(\theta \mid D) \ d\theta = \frac{1}{P(D)} \cdot \int_{-\infty}^{+\infty} P(D \mid \theta) \cdot P(\theta) \ d\theta = \frac{P(D)}{P(D)} = 1$$

Product of Probabilities: $h(x, y) = f(x) \cdot g(y)$? h(y) = f(g(y))? $h(x) = f(x) \cdot g(x)$?

Discrete events: $P(X \le 2) = P(X = 1) + P(X = 2)$

Expected Value: $\sum_{k} k \cdot P(X = k)$

Joint Probability: $P(X=2,Y=30) \stackrel{indep.}{=} P(X=2) \cdot P(Y=30)$

Cond. Probability: $P(X = 2 | Y = 30) = \frac{P(X = 2, Y = 30)}{P(Y = 30)}$

Likelihood x Prior: $P(\theta \mid D) = \frac{P(D \mid \theta) \cdot P(\theta)}{P(D)} \qquad P(D) := \int_{-\infty}^{+\infty} P(D \mid \theta) \cdot P(\theta) \ d\theta$

$$\Rightarrow \int_{-\infty}^{+\infty} P(\theta \mid D) \ d\theta = \frac{1}{P(D)} \cdot \int_{-\infty}^{+\infty} P(D \mid \theta) \cdot P(\theta) \ d\theta = \frac{P(D)}{P(D)} = 1$$

Product of Probabilities: $h(x,y) = f(x) \cdot g(y)? \qquad h(y) = f(g(y))? \qquad h(x) = f(x) \cdot g(x)?$ $\int f(x) \cdot g(x) \ dx = 1? \qquad \tilde{h}(x) = f(x) \cdot g(x) / \int f(x) \cdot g(x) \ dx ?$

- 1. Initialize
- 2. Start at leaf x1

Initial message f1 to x1: $m_{f_1 \to x_1}(x_1) = f_1(x_1)$

then marginal x1: $p(x_1)$

Chain Graph: $f_1(x_1) = \mathbb{I}(x=1) \qquad f_2(x_1, x_2) = \begin{cases} 1/2 & x_1 = x_2 \\ 1/4 & x_1 \neq x_2 \end{cases} \qquad f_3(x_2, x_3) = \begin{cases} 1/2 & x_2 = x_3 \\ 1/4 & x_2 \neq x_3 \end{cases}$ $m_{f_2 \to x_1}(x_1) \qquad m_{f_2 \to x_2}(x_2) \qquad m_{f_3 \to x_2}(x_2) \qquad m_{f_3 \to x_2}(x_3)$

- 1. Initialize
- 2. Start at leaf x1

Initial message f1 to x1: $m_{f_1 \to x_1}(x_1) = f_1(x_1)$

then marginal x1: $p(x_1)$

message from f2 to x2: $m_{f_2 \to x_2}(x_2)$

then marginal x2: $p(x_2)$

message from f3 to x3: $m_{f_3 \to x_3}(x_3)$

then marginal x3: $p(x_3)$

Chain Graph:

- 1. Initialize
- 2. Start at leaf x1

Initial message f1 to x1: $m_{f_1 \to x_1}(x_1) = f_1(x_1)$

 $use: p(x_1) \triangleq m_{f_1 \to x_1}(x_1) \cdot m_{f_2 \to x_1}(x_1)$

then **marginal x1**: $p(x_1)$

message from f2 to x2: $m_{f_2 \to x_2}(x_2)$

then marginal x2: $p(x_2)$

message from f3 to x3: $m_{f_3 \to x_3}(x_3)$

then marginal x3: $p(x_3)$

Chain Graph:

 $f_{1}(x_{1}) = \mathbb{I}(x = 1)$ $f_{2}(x_{1}, x_{2}) = \begin{cases} 1/2 & x_{1} = x_{2} \\ 1/4 & x_{1} \neq x_{2} \end{cases}$ $f_{3}(x_{2}, x_{3}) = \begin{cases} 1/2 & x_{2} = x_{3} \\ 1/4 & x_{2} \neq x_{3} \end{cases}$ $m_{f_{1} \to x_{1}}(x_{1})$ $m_{f_{2} \to x_{2}}(x_{2})$ $m_{f_{3} \to x_{2}}(x_{2})$ $m_{f_{3} \to x_{2}}(x_{2})$ $m_{f_{3} \to x_{3}}(x_{3})$

1. Initialize

2. Start at leaf x1

Initial message f1 to x1: $m_{f_1 \to x_1}(x_1) = f_1(x_1)$

then marginal x1: $p(x_1)$

message from f2 to x2: $m_{f_2 \rightarrow x_2}(x_2)$

then marginal x2: $p(x_2)$

message from f3 to x3: $m_{f_3 \to x_3}(x_3)$

then marginal x3: $p(x_3)$

use:
$$m_{f_2 \to x_2}(x_2) \triangleq \sum_{x_1=1,2,3} f_2(x_1, x_2) \cdot m_{x_1 \to f_2}(x_1)$$

and: $p(x_1) = m_{f_2 \to x_1}(x_1) \cdot m_{x_1 \to f_2}(x_1)$

 $use: p(x_1) \triangleq m_{f_1 \to x_1}(x_1) \cdot m_{f_2 \to x_1}(x_1)$

$$\Rightarrow m_{x_1 \to f_2}(x_1) = p(x_1) / m_{f_2 \to x_1}(x_1)$$

Example Chain (Slide 13): Marginal & Messages (Plan)

Chain Graph: $f_{1}(x_{1}) = \mathbb{I}(x = 1) \qquad f_{2}(x_{1}, x_{2}) = \begin{cases} 1/2 & x_{1} = x_{2} \\ 1/4 & x_{1} \neq x_{2} \end{cases} \qquad f_{3}(x_{2}, x_{3}) = \begin{cases} 1/2 & x_{2} = x_{3} \\ 1/4 & x_{2} \neq x_{3} \end{cases}$ $x_{1} \qquad x_{1} \qquad x_{2} \qquad x_{3} \qquad x_{2} \qquad x_{3} \qquad x_{4} \qquad x_{5} \rightarrow x_{2} \qquad x_{2} \qquad x_{3} \rightarrow x_{3} \qquad x_{4} \rightarrow x_{4} \qquad x_{5} \rightarrow x_{5} \rightarrow x_{5} \qquad x_{5} \rightarrow x_{5} \rightarrow x_{5} \qquad x_{5} \rightarrow x_{5} \rightarrow x_{5} \qquad x_{5} \rightarrow x_{5} \qquad x_{5} \rightarrow x_{5} \rightarrow x_{5} \qquad x_{5} \rightarrow x_{5}$

- 1. Initialize
- 2. Start at leaf x1

Initial message f1 to x1:
$$m_{f_1 \to x_1}(x_1) = f_1(x_1)$$

then marginal x1: $p(x_1)$

message from f2 to x2: $m_{f_2 \to x_2}(x_2)$

then marginal x2: $p(x_2)$

message from f3 to x3: $m_{f_3 \rightarrow x_3}(x_3)$

then marginal x3: $p(x_3)$

$$use: p(x_1) \triangleq m_{f_1 \to x_1}(x_1) \cdot m_{f_2 \to x_1}(x_1)$$

use:
$$m_{f_2 \to x_2}(x_2) \triangleq \sum_{x_1 = 1, 2, 3} f_2(x_1, x_2) \cdot m_{x_1 \to f_2}(x_1)$$

and:
$$p(x_1) = m_{f_2 \to x_1}(x_1) \cdot m_{x_1 \to f_2}(x_1)$$

$$\Rightarrow m_{x_1 \to f_2}(x_1) = p(x_1) / m_{f_2 \to x_1}(x_1)$$

Example Chain (Slide 13): Computing Marginal & Messages

- 1. Initialize (Uniform!):
- $P(X_k = x_k) = 1/3$ $m_{f_k \to x_k}(x_k) = 1/3$
- $m_{f_{k+1}\to x_k}(x_k) = 1/3$ $x_k = 1, 2, 3$ k = 1, ..., 3

2. Start at leaf x1

Initial message f1 to x1: $m_{f_1 \to x_1}(x_1) = f_1(x_1) = 1_{\{x_1 = 1\}} \stackrel{x_1 = 1, 2, 3}{\to} (1, 0, 0)$

then marginal x1:

message from f2 to x2:

then marginal x2:

message from f3 to x3:

Example Chain (Slide 13): Computing Marginal & Messages

Chain Graph:

- 1. Initialize (Uniform!):

- $P(X_k = x_k) = 1/3$ $m_{f_k \to x_k}(x_k) = 1/3$ $m_{f_{k+1} \to x_k}(x_k) = 1/3$ $x_k = 1, 2, 3$ k = 1, ..., 3

2. Start at leaf x1

Initial message f1 to x1:
$$m_{f_1 \to x_1}(x_1) = f_1(x_1) = 1_{\{x_1 = 1\}} \xrightarrow{x_1 = 1, 2, 3} (1, 0, 0)$$

then marginal x1: -

message from f2 to x2:

$$P(x_1) = P(X_1 = x_1) = \frac{m_{f_1 \to x_1}(x_1) \cdot m_{f_2 \to x_1}(x_1)}{\sum_{\tilde{x}_1 = 1, 2, 3} m_{f_1 \to x_1}(\tilde{x}_1) \cdot m_{f_2 \to x_1}(\tilde{x}_1)} \xrightarrow{x_1 = 1, 2, 3} (1, 0, 0)$$

then marginal x2:

message from f3 to x3:

Example Chain (Slide 13): Computing Marginal & Messages

Chain Graph:

- 1. Initialize (Uniform!):

- $P(X_k = x_k) = 1/3$ $m_{f_k \to x_k}(x_k) = 1/3$ $m_{f_{k+1} \to x_k}(x_k) = 1/3$ $x_k = 1, 2, 3$ k = 1, ..., 3

2. Start at leaf x1

Initial message f1 to x1:
$$m_{f_1 \to x_1}(x_1) = f_1(x_1) = 1_{\{x_1 = 1\}} \xrightarrow{x_1 = 1, 2, 3} (1, 0, 0)$$

then marginal x1:

message from f2 to x2:
$$p(x_1) = P(X_1 = x_1) = \frac{m_{f_1 \to x_1}(x_1) \cdot m_{f_2 \to x_1}(x_1)}{\sum_{\tilde{x}_1 = 1, 2, 3} m_{f_1 \to x_1}(\tilde{x}_1) \cdot m_{f_2 \to x_1}(\tilde{x}_1)} \xrightarrow{x_1 = 1, 2, 3} (1, 0, 0)$$

then marginal x2:

message from f3 to x3:

$$m_{f_2 \to x_2}(x_2) = \frac{\sum_{x_1 = 1, 2, 3} f_2(x_1, x_2) \cdot p(x_1) / m_{f_2 \to x_1}(x_1)}{\sum_{\tilde{x}_2 = 1, 2, 3} \sum_{\tilde{x}_1 = 1, 2, 3} f_2(\tilde{x}_1, \tilde{x}_2) \cdot p(\tilde{x}_1) / m_{f_2 \to x_1}(\tilde{x}_1)} \xrightarrow{x_2 = 1, 2, 3} \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right)$$

Example Chain (Slide 13): Forward Results

Chain Graph:

initial message from f1 to x1:

$$m_{f_1 \to x_1}(x_1) = f_1(x_1) \xrightarrow{x_1 = 1, 2, 3} (1, 0, 0)$$

then marginal x1:

$$p(x_1) \xrightarrow{x_1=1,2,3} (1,0,0)$$

then message from f2 to x2:

$$m_{f_2 \to x_2}(x_2) \xrightarrow{x_2 = 1,2,3} \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right)$$

then **marginal x2**: should be ??

then message from f3 to x3:

then **marginal x3**: should be ??

Example Chain (Slide 13): Forward Results (Confirmed)

Chain Graph:

initial message from f1 to x1:

then marginal x1:

then message from f2 to x2:

then marginal x2:

then message from f3 to x3:

$$m_{f_1 \to x_1}(x_1) = f_1(x_1) \xrightarrow{x_1 = 1, 2, 3} (1, 0, 0)$$

$$p(x_1) \xrightarrow{x_1=1,2,3} (1,0,0)$$

$$m_{f_2 \to x_2}(x_2) \xrightarrow{x_2 = 1, 2, 3} \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right)$$

$$p(x_2) \xrightarrow{x_2=1,2,3} \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right)$$

$$m_{f_3 \to x_3}(x_3) \stackrel{x_3=1,2,3}{\to} \left(\frac{6}{16}, \frac{5}{16}, \frac{5}{16}\right)$$

$$p(x_3) \xrightarrow{x_3=1,2,3} \left(\frac{6}{16}, \frac{5}{16}, \frac{5}{16}\right)$$

Chain Graph:

Observation: $X_3 = 2$

- 3. Observation: $X_3 = 2$
- 4. What now?

Chain Graph:

$$f_{1}(x_{1}) = \mathbb{I}(x = 1)$$

$$f_{2}(x_{1}, x_{2}) = \begin{cases} 1/2 & x_{1} = x_{2} \\ 1/4 & x_{1} \neq x_{2} \end{cases}$$

$$f_{3}(x_{2}, x_{3}) = \begin{cases} 1/2 & x_{2} = x_{3} \\ 1/4 & x_{2} \neq x_{3} \end{cases}$$

$$m_{f_{1} \to x_{1}}(x_{1})$$

$$m_{f_{2} \to x_{2}}(x_{2})$$

$$m_{f_{3} \to x_{2}}(x_{2})$$

$$m_{f_{3} \to x_{2}}(x_{2})$$

Observation: $X_3 = 2$

3. Observation: $X_3 = 2$

4. New factor f4 to x3: $f_4(x_3) = 1_{\{x_3=2\}}$

Now messages **backwards**: $m_{f_4 \to x_3}(x_3) = f_4(x_3)$

then marginal x3: $p(x_3)$

message from f3 to x2: $m_{f_3 \to x_2}(x_2)$

then marginal x2: $p(x_2)$

message from f2 to x1: $m_{f_2 \to x_1}(x_1)$

then marginal x1: $p(x_1)$

Chain Graph:

$$f_{1}(x_{1}) = \mathbb{I}(x = 1)$$

$$f_{2}(x_{1}, x_{2}) = \begin{cases} 1/2 & x_{1} = x_{2} \\ 1/4 & x_{1} \neq x_{2} \end{cases}$$

$$f_{3}(x_{2}, x_{3}) = \begin{cases} 1/2 & x_{2} = x_{3} \\ 1/4 & x_{2} \neq x_{3} \end{cases}$$

$$m_{f_{1} \to x_{1}}(x_{1})$$

$$m_{f_{2} \to x_{2}}(x_{2})$$

$$m_{f_{3} \to x_{2}}(x_{2})$$

$$m_{f_{3} \to x_{3}}(x_{3})$$

Observation: $X_3 = 2$

3. Observation: $X_3 = 2$

4. New factor f4 to x3: $f_4(x_3) = 1_{\{x_3=2\}}$

Now messages **backwards**: $m_{f_4 \to x_3}(x_3) = f_4(x_3) = 1_{\{x_3 = 2\}} \xrightarrow{x_3 = 1, 2, 3} (0, 1, 0)$

then **marginal x3**: $p(x_3) \leftarrow use: p(x_3) \triangleq m_{f_3 \to x_3}(x_3) \cdot m_{f_4 \to x_3}(x_3)$

message from f3 to x2: $m_{f_3 \rightarrow x_2}(x_2)$

then marginal x2: $p(x_2)$

message from f2 to x1: $m_{f_2 \to x_1}(x_1)$

then marginal x1: $p(x_1)$

Chain Graph:

$$f_{1}(x_{1}) = \mathbb{I}(x = 1)$$

$$f_{2}(x_{1}, x_{2}) = \begin{cases} 1/2 & x_{1} = x_{2} \\ 1/4 & x_{1} \neq x_{2} \end{cases}$$

$$f_{3}(x_{2}, x_{3}) = \begin{cases} 1/2 & x_{2} = x_{3} \\ 1/4 & x_{2} \neq x_{3} \end{cases}$$

$$x_{3} = 2$$

$$m_{f_{3} \rightarrow x_{2}}(x_{2})$$

$$m_{f_{3} \rightarrow x_{2}}(x_{2})$$

$$m_{f_{3} \rightarrow x_{3}}(x_{3})$$

Observation: $X_3 = 2$

3. Observation: $X_3 = 2$

4. New factor f4 to x3: $f_4(x_3) = 1_{\{x_3=2\}}$

Now messages **backwards**: $m_{f_4 \to x_3}(x_3) = f_4(x_3) = 1_{\{x_3 = 2\}} \xrightarrow{x_3 = 1, 2, 3} (0, 1, 0)$

then marginal x3: $p(x_3) \leftarrow use: p(x_3) \triangleq m_{f_3 \to x_3}(x_3) \cdot m_{f_4 \to x_3}(x_3)$

 $m_{f_3\to x_2}(x_2)$

message from f3 to x2:

then marginal x2: $p(x_2) = \sum_{x_3=1,2,3} f_3(x_2,x_3) \cdot m_{x_3 \to f_3}(x_3)$

message from f2 to x1: $m_{f_2 \to x_1}(x_1)$ and $p(x_3) = m_{f_3 \to x_3}(x_3) \cdot m_{x_3 \to f_3}(x_3)$

then marginal x1: $p(x_1) \Rightarrow m_{x_3 \to f_3}(x_3) = p(x_3) / m_{f_3 \to x_3}(x_3)$

 $f_3(x_2,x_3) = \begin{cases} 1/2 \\ 1/4 \end{cases}$ $f_1(x_1) = \mathbb{I}(x=1)$ Chain Graph:

Observation: $X_3 = 2$

 $X_3 = 2$ 3. Observation:

 $f_4(x_3) = 1_{\{x_2=2\}}$ 4. New factor f4 to x3:

 $m_{f_4 \to x_3}(x_3) = f_4(x_3) = 1_{\{x_3 = 2\}} \xrightarrow{x_3 = 1, 2, 3} (0, 1, 0)$ Now messages backwards:

- use: $p(x_3) \triangleq m_{f_3 \to x_3}(x_3) \cdot m_{f_4 \to x_3}(x_3)$ then marginal x3:

 $m_{f_3\to x_2}(x_2)$ message from f3 to x2: use: $m_{f_3 \to x_2}(x_2) \triangleq \sum_{x_3=1,2,3} f_3(x_2, x_3) \cdot m_{x_3 \to f_3}(x_3)$

 $p(x_2)$ then marginal x2: and: $p(x_3) = m_{f_3 \to x_3}(x_3) \cdot m_{x_3 \to f_3}(x_3)$

 $m_{f_2\to x_1}(x_1)$ message from f2 to x1: $\Rightarrow m_{x_3 \to f_3}(x_3) = p(x_3) / m_{f_3 \to x_3}(x_3)$ $p(x_1)$ then marginal x1:

Chain Graph:

$$f_{1}(x_{1}) = \mathbb{I}(x = 1)$$

$$f_{2}(x_{1}, x_{2}) = \begin{cases} 1/2 & x_{1} = x_{2} \\ 1/4 & x_{1} \neq x_{2} \end{cases}$$

$$f_{3}(x_{2}, x_{3}) = \begin{cases} 1/2 & x_{2} = x_{3} \\ 1/4 & x_{2} \neq x_{3} \end{cases}$$

$$x_{1}$$

$$m_{f_{2} \to x_{1}}(x_{1})$$

$$m_{f_{2} \to x_{2}}(x_{2})$$

$$m_{f_{3} \to x_{2}}(x_{2})$$

$$m_{f_{3} \to x_{2}}(x_{2})$$

Observation: $X_3 = 2$

3. Observation: $X_3 = 2$

4. New factor f4 to x3: $f_4(x_3) = 1_{\{x_3=2\}}$

Now messages **backwards**: $m_{f_4 \to x_3}(x_3) = f_4(x_3) = 1_{\{x_3 = 2\}} \xrightarrow{x_3 = 1, 2, 3} (0, 1, 0)$

then **marginal x3**: $p(x_3) = P(X_3 = x_3) = \frac{m_{f_3 \to x_3}(x_3) \cdot m_{f_4 \to x_3}(x_3)}{\sum_{\tilde{x}_3 = 1, 2, 3} m_{f_3 \to x_3}(\tilde{x}_3) \cdot m_{f_4 \to x_3}(\tilde{x}_3)} \xrightarrow{x_3 = 1, 2, 3} (0, 1, 0)$ message from f3 to x2: $m_{f_3 \to x_2}(x_2)$

then marginal x2: $p(x_2)$

message from f2 to x1: $m_{f_2 \to x_1}(x_1)$

then marginal x1: $p(x_1)$

 $f_1(x_1) = \mathbb{I}(x=1)$ Chain Graph:

Observation: $X_3 = 2$

- $X_3 = 2$ 3. Observation:
- $f_4(x_3) = 1_{\{x_2=2\}}$ 4. New factor f4 to x3:

Now messages **backwards**: $m_{f_4 \to x_3}(x_3) = f_4(x_3) = 1_{\{x_3 = 2\}} \xrightarrow{x_3 = 1, 2, 3} (0, 1, 0)$

 $p(x_3) = P(X_3 = x_3) = \frac{m_{f_3 \to x_3}(x_3) \cdot m_{f_4 \to x_3}(x_3)}{\sum_{x_3 \to x_3} m_{f_3 \to x_3}(\tilde{x}_3) \cdot m_{f_4 \to x_3}(\tilde{x}_3)} \xrightarrow{x_3 = 1, 2, 3} (0, 1, 0)$ then marginal x3:

message from f3 to x2.

then marginal x2:

message from f2 to x1:

$$m_{f_3 \to x_2}(x_2) = \frac{\sum_{x_3 = 1, 2, 3} f_3(x_2, x_3) \cdot p(x_3) / m_{f_3 \to x_3}(x_3)}{\sum_{\tilde{x}_2 = 1, 2, 3} \sum_{\tilde{x}_3 = 1, 2, 3} f_3(\tilde{x}_2, \tilde{x}_3) \cdot p(\tilde{x}_3) / m_{f_3 \to x_3}(\tilde{x}_3)} \xrightarrow{x_2 = 1, 2, 3} \left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right)$$

Example Chain (Slide 13): Backward Results (x3=2)

Chain Graph:

Observation: $X_3 = 2$

initial message:

$$m_{f_4 \to x_3}(x_3) := 1_{\{x_3 = 2\}} \xrightarrow{x_3 = 1, 2, 3} (0, 1, 0)$$

then marginal x3:

$$p(x_3) \xrightarrow{x_3=1,2,3} (0,1,0)$$

then message from x3 to x2:

$$m_{f_3 \to x_2}(x_2) \xrightarrow{x_2 = 1, 2, 3} \left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right)$$

then marginal x2:

should be ??

then message from x2 to x1:

Example Chain (Slide 13): Backward Results (x3=2)

Chain Graph:

Observation: $X_3 = 2$

initial message:

$$m_{f_4 \to x_3}(x_3) := 1_{\{x_3 = 2\}} \xrightarrow{x_3 = 1, 2, 3} (0, 1, 0)$$

then marginal x3:

$$p(x_3) \xrightarrow{x_3=1,2,3} (0,1,0)$$

then message from x3 to x2:

$$m_{f_3 \to x_2}(x_2) \xrightarrow{x_2=1,2,3} \left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right)$$

then marginal x2:

$$p(x_2) \xrightarrow{x_2=1,2,3} \left(\frac{2}{5}, \frac{2}{5}, \frac{1}{5}\right)$$

then message from x2 to x1:

$$m_{f_2 \to x_1}(x_1) \stackrel{x_1=1,2,3}{\to} \left(\frac{5}{16}, \frac{6}{16}, \frac{5}{16}\right)$$

$$p(x_1) \xrightarrow{x_1=1,2,3} (1,0,0)$$

- 1. Initialize via Uniform
- 2. Update initial message: $f_1(x_1) = (*, *, *)$
- $p(x_k) = P(X_k = x_k) = \frac{m_{f_k \to x_k}(x_k) \cdot m_{f_{k+1} \to x_k}(x_k)}{\sum_{z=1,2,2} m_{f_k \to x_k}(\tilde{x}_k) \cdot m_{f_{k+1} \to x_k}(\tilde{x}_k)} \xrightarrow{x_k = 1,2,3} (*,*,*)$ 3. Update marginal xk:

1. Initialize via Uniform

- 2. Update initial message: $f_1(x_1) = (*, *, *)$

3. Update marginal xk:

$$p(x_k) = P(X_k = x_k) = \frac{m_{f_k \to x_k}(x_k) \cdot m_{f_{k+1} \to x_k}(x_k)}{\sum_{\tilde{x}_k = 1, 2, 3} m_{f_k \to x_k}(\tilde{x}_k) \cdot m_{f_{k+1} \to x_k}(\tilde{x}_k)} \xrightarrow{x_k = 1, 2, 3} (*, *, *)$$

Forward message from fk to xk: $m_{f_k \to x_k}(x_k) = \frac{\sum_{x_{k-1} = 1, 2, 3} f_k(x_{k-1}, x_k) \cdot p(x_{k-1}) / m_{f_k \to x_{k-1}}(x_{k-1})}{\sum_{\tilde{x}_{k-1} = 1, 2, 3} \sum_{\tilde{x}_{k-1} = 1, 2, 3} f_k(\tilde{x}_{k-1}, \tilde{x}_k) \cdot p(\tilde{x}_{k-1}) / m_{f_k \to x_{k-1}}(\tilde{x}_{k-1})} \xrightarrow{x_k = 1, 2, 3} (*, *, *)$

Chain (K nodes):
$$f_{1}(x_{1}) = \mathbb{I}(x = 1)$$

$$f_{2}(x_{1}, x_{2}) = \begin{cases} 1/2 & x_{1} = x_{2} \\ 1/4 & x_{1} \neq x_{2} \end{cases}$$

$$f_{3}(x_{2}, x_{3}) = \begin{cases} 1/2 & x_{2} = x_{3} \\ 1/4 & x_{2} \neq x_{3} \end{cases}$$

$$f_{K+1}(x_{K}) = (*, *, *)$$

$$f_$$

- 1. Initialize via Uniform
- 2. Update initial message: $f_1(x_1) = (*, *, *)$
- $p(x_k) = P(X_k = x_k) = \frac{m_{f_k \to x_k}(x_k) \cdot m_{f_{k+1} \to x_k}(x_k)}{\sum m_{f_k \to x_k}(\tilde{x}_k) \cdot m_{f_{k+1} \to x_k}(\tilde{x}_k)} \xrightarrow{x_k = 1, 2, 3} (*, *, *)$ 3. Update marginal xk:

Forward message from fk to xk:
$$m_{f_k \to x_k}(x_k) = \frac{\sum_{x_{k-1}=1,2,3} f_k(x_{k-1},x_k) \cdot p(x_{k-1}) / m_{f_k \to x_{k-1}}(x_{k-1})}{\sum_{\tilde{x}_k=1,2,3} \sum_{\tilde{x}_{k-1}=1,2,3} f_k(\tilde{x}_{k-1},\tilde{x}_k) \cdot p(\tilde{x}_{k-1}) / m_{f_k \to x_{k-1}}(\tilde{x}_{k-1})} \xrightarrow{x_k=1,2,3} (*,*,*)$$

4. Backward message from fk to xk-1: $m_{f_k \to x_{k-1}}(x_{k-1}) = \frac{\sum\limits_{x_k = 1,2,3} f_k(x_{k-1}, x_k) \cdot p(x_k) / m_{f_k \to x_k}(x_k)}{\sum\limits_{x_k = 1,2,3} f_k(\tilde{x}_{k-1}, \tilde{x}_k) \cdot p(\tilde{x}_k) / m_{f_k \to x_k}(\tilde{x}_k)} \xrightarrow{x_{k-1} = 1,2,3} (*, *, *)$

Chains: Are Longer Chains Tractable? Yes!

1. Initialize via Uniform

$$P(X_k = x_k \mid X_{k-1} = x_{k-1}) = f_k(x_{k-1}, x_k) = \begin{cases} 1 & * & * & * \\ 2 & * & * & * \end{cases}$$

2. Start again at leaf x1

3 * * *

- 3. Forward Updates: messages & marginals from k=1 to k=K
- 4. Backward Updates: messages & marginals from k=K to k=1

Do you think you can do that?

Chains: Are Longer Chains Tractable? Yes!

- 3. Forward Updates: messages & marginals from k=1 to k=K
- 4. Backward Updates: messages & marginals from k=K to k=1

Test it: It easily works for K=100.

Note: This has not been possible by using standard summations!

- 1. Questions and Updates
- 2. Recap: Main Concepts of Unit 4
- 3. Example: Message Passing in Factor Graphs
- 4. Hints for Exercise 2 (to be handed in May 19)

Tutorial 4

PML SS 2025

Exercise 2 (until May 19)

- Part I: Sums & Products of Gaussians & Distributions
- Part II: Conditional Independence & D-separation
- Part III: TrueSkill (discrete) via Message Passing

Tutorial 4

PML SS 2025

- Recap I: Conditional Probabilities
- Recap II: Conditional Independence in Bayesian Networks
- Recap III: Messages & Marginals in Factor Graphs (Chain)

Tutorial 4

PML SS 2025

See you next Week!