

DFS PORTIONS OF

FCC CFR47 PART 15 SUBPART E INDUSTRY CANADA RSS-210 ISSUE 7

CERTIFICATION TEST REPORT

FOR

802.11 a/b/g/n Master Device with Radar Detection (Indoor Model)

MODEL NUMBER: ZF7363

FCC ID: U2M-ZF73XX-1 IC ID: 3616C-ZF73XX-1

REPORT NUMBER: 09U12792-2

ISSUE DATE: OCTOBER 15, 2009

Prepared for RUCKUS WIRELESS 880 WEST MAUDE AVENUE SUNNYVALE, CA 94085

Prepared by

COMPLIANCE CERTIFICATION SERVICES
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.
TEL: (510) 771-1000

FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	10/15/09	Initial Issue	M. Heckrotte

TABLE OF CONTENTS

1.	ATTES	STATION OF TEST RESULTS	4
2.	TEST	METHODOLOGY	5
3.	FACIL	ITIES AND ACCREDITATION	5
4.	CALIB	BRATION AND UNCERTAINTY	5
	4.1. N	MEASURING INSTRUMENT CALIBRATION	5
	4.2. S	SAMPLE CALCULATION	5
		MEASUREMENT UNCERTAINTY	
5.	DYNA	MIC FREQUENCY SELECTION	6
	5.1. C	OVERVIEW	6
	5.1.1.	LIMITS	
	5.1.2.	TEST AND MEASUREMENT SYSTEM	
	5.1.3. 5.1.4.	SETUP OF EUT DESCRIPTION OF EUT	
		RESULTS FOR 20 MHz BANDWIDTH	
	5.2.1. 5.2.2.	TEST CHANNELPLOTS OF RADAR WAVEFORMS AND WLAN TRAFFIC	
	5.2.3.	CHANNEL AVAILABILITY CHECK TIME	
	5.2.4.	OVERLAPPING CHANNEL TESTS	
	5.2.5.	MOVE AND CLOSING TIME	
	5.2.6.	DETECTION BANDWIDTH	
	5.2.7.	IN-SERVICE MONITORING	
		RESULTS FOR 40 MHz BANDWIDTH	
	5.3.1.	TEST CHANNEL	
	5.3.2.	PLOTS OF RADAR WAVEFORMS AND WLAN TRAFFIC	
	5.3.3. 5.3.4.	CHANNEL AVAILABILITY CHECK TIMEOVERLAPPING CHANNEL TESTS	
	5.3.4. 5.3.5.	MOVE AND CLOSING TIME	
	5.3.6.	NON-OCCUPANCY PERIOD	
	5.3.7.	DETECTION BANDWIDTH	
	5.3.8.	IN-SERVICE MONITORING	
6.	SETU	P PHOTOS	70

REPORT NO: 09U12792-2 FCC ID: U2M-ZF73XX-1

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: RUCKUS WIELESS

880 WEST MAUDE AVENUE SUNNYVALE, CA 94085

EUT DESCRIPTION: 802.11 a/b/g/n Master Device with Radar Detection (Indoor Model)

MODEL: ZF7363

SERIAL NUMBER: 270955000138

DATE TESTED: SEPTEMBER 23 to 24, 2009

APPLICABLE STANDARDS

STANDARD TEST RESULTS

DFS Portion of CFR 47 Part 15 Subpart E Pass

DFS Portion of INDUSTRY CANADA RSS-210 Issue 7 Annex 9 Pass

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For CCS By: Tested By:

MICHAEL HECKROTTE
DIRECTOR OF ENGINEERING
COMPLIANCE CERTIFICATION SERVICES

MH

DOUGLAS ANDERSON
EMC TECHNICIAN
COMPLIANCE CERTIFICATION SERVICES

Douglas Combuser

DATE: OCTOBER 15, 2009

IC: 3616C-ZF73XX-1

Page 4 of 71

REPORT NO: 09U12792-2 DATE: OCTOBER 15, 2009 FCC ID: U2M-ZF73XX-1

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 15, FCC 06-96 and RSS-210 Issue 7.

IC: 3616C-ZF73XX-1

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

MEASURING INSTRUMENT CALIBRATION 4.1.

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

4.3. **MEASUREMENT UNCERTAINTY**

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

REPORT NO: 09U12792-2 FCC ID: U2M-ZF73XX-1

5. DYNAMIC FREQUENCY SELECTION

5.1. OVERVIEW

5.1.1. LIMITS

INDUSTRY CANADA

IC RSS-210 is closely harmonized with FCC Part 15 DFS rules. The deviations are as follows:

DATE: OCTOBER 15, 2009

IC: 3616C-ZF73XX-1

RSS-210 Issue 7 A9.4 (b) (ii) Channel Availability Check Time: ...

Additional requirements for the band 5600-5650 MHz: Until further notice, devices subject to this Section shall not be capable of transmitting in the band 5600-5650 MHz, so that Environment Canada weather radars operating in this band are protected.

RSS-210 Issue 7 A9.4 (b) (iv) **Channel closing time:** the maximum channel closing time is 260 ms.

FCC

§15.407 (h) and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operational Mode				
	Master	Client (without radar detection)	Client (with radar detection)		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
Uniform Spreading	Yes	Not required	Not required		

Table 2: Applicability of DFS requirements during normal operation

rable 2. Applicability of bit o requirements during normal operation							
Requirement	Operationa	Operational Mode					
	Master	Client	Client				
		(without DFS)	(with DFS)				
DFS Detection Threshold	Yes	Not required	Yes				
Channel Closing Transmission Time	Yes	Yes	Yes				
Channel Move Time	Yes	Yes	Yes				

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

Montoring	
Maximum Transmit Power	Value
	(see note)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Table 4: DFS Response requirement values

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
Channel Closing Transmission Time	200 milliseconds + approx. 60 milliseconds over remaining 10 second period

The instant that the *Channel Move Time* and the *Channel Closing Transmission Time* begins is as follows:

For the Short pulse radar Test Signals this instant is the end of the *Burst*.

For the Frequency Hopping radar Test Signal, this instant is the end of the last radar burst generated.

For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Table 5 - Short Pulse Radar Test Waveforms

Radar	Pulse Width	PRI	Pulses	Minimum	Minimum		
Туре	(Microseconds)	(Microseconds)		Percentage of	Trials		
				Successful			
				Detection			
1	1	1428	18	60%	30		
2	1-5	150-230	23-29	60%	30		
3	6-10	200-500	16-18	60%	30		
4	11-20	200-500	12-16	60%	30		
Aggregate (Aggregate (Radar Types 1-4) 80% 120						

Table 6 - Long Pulse Radar Test Signal

Radar Waveform	Bursts	Pulses per Burst	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Minimum Percentage of Successful Detection	Minimum Trials
5	8-20	1-3	50-100	5-20	1000- 2000	80%	30

Table 7 – Frequency Hopping Radar Test Signal

		7 PP.			g		
Radar	Pulse	PRI	Burst	Pulses	Hopping	Minimum	Minimum
Waveform	Width	(µsec)	Length	per	Rate	Percentage of	Trials
	(µsec)		(ms)	Нор	(kHz)	Successful	
						Detection	
6	1	333	300	9	.333	70%	30

5.1.2. TEST AND MEASUREMENT SYSTEM

RADIATED METHOD SYSTEM BLOCK DIAGRAM

REPORT NO: 09U12792-2 FCC ID: U2M-ZF73XX-1

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

DATE: OCTOBER 15, 2009

IC: 3616C-ZF73XX-1

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at runtime.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

SYSTEM CALIBRATION

A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain – coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. Measure the amplitude and calculate the difference from –64 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

Establish a link between the Master and Slave, adjusting the distance between the units as needed to provide a suitable received level at the Master and Slave devices. Stream the video test file to generate WLAN traffic. Confirm that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.

TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST								
Description Manufacturer Model Asset Number Cal Due								
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C00996	04/20/10				
Vector signal generator, 20GHz	Agilent / HP	E8267C	C01066	11/16/09				
Arbitrary Waveform Generator	Agilent / HP	33220A	C01146	05/04/10				

5.1.3. SETUP OF EUT

RADIATED METHOD EUT TEST SETUP

SUPPORT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

PERIPHERAL SUPPORT EQUIPMENT LIST								
Description	Manufacturer	Model	Serial Number	FCC ID				
AC Adapter (EUT)	Asian Power	DA-24B12 AC	399239872	DoC				
	Devices, Inc.							
Notebook PC (Host)	IBM	Type 1849-4WU	LV-N2110 05/06	DoC				
AC Adapter (Host PC)	IBM	08K8204	11S08K8204Z1Z9V	DoC				
			04931RH					
802.11a/n Multi-Media	Ruckus Wireless	VF7111	02292	S9GVF7XX1				
Adapter (Slave Device)								
AC Adapter (Slave Device)	CUI Inc.	HK-H1-A12	110SCLF	DoC				
Notebook PC (Client)	Dell	PP18L	24863465053	DoC				
AC Adapter (Client PC)	Delta Electronics	DA65NS0-00	CN-0CF745-48661-	DoC				
			6BD-1KDN					

This report shall not be reproduced except in full, without the written approval of CCS.

5.1.4. DESCRIPTION OF EUT

The EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges, excluding operation in the band 5600 to 5650 MHz.

The EUT is a Master Device.

The highest power level within these bands is 22 dBm EIRP in the 5250-5350 MHz band and 21 dBm EIRP in the 5470-5725 MHz band.

The only antenna assembly utilized with the EUT has a gain of 2 dBi.

Two identical antennas are utilized to meet the diversity and MIMO operational requirements.

The calibrated radiated DFS Detection Threshold level is set to -64 dBm.

The EUT uses two transmitter/receiver chains each connected to a 50-ohm coaxial antenna port. All antenna ports are connected to antennas to perform radiated tests.

The Slave device associated with the EUT during these tests does not have radar detection capability.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using VLC version 0.8.5 media player.

TPC is not required since the maximum EIRP is less than 500 mW (27 dBm).

The EUT utilizes the 802.11a/n architecture. Two nominal channel bandwidths are implemented: 20 MHz and 40 MHz.

The software installed in the access point is 8.2 revision 48.

MANUFACTURER'S STATEMENT REGARDING UNIFORM CHANNEL SPREADING

This statement is in a separate document.

5.2. RESULTS FOR 20 MHz BANDWIDTH

5.2.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5500 MHz.

5.2.2. PLOTS OF RADAR WAVEFORMS AND WLAN TRAFFIC

PLOTS OF RADAR WAVEFORMS

PLOT OF WLAN TRAFFIC FROM MASTER

REPORT NO: 09U12792-2 FCC ID: U2M-ZF73XX-1

5.2.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

DATE: OCTOBER 15, 2009

IC: 3616C-ZF73XX-1

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

REPORT NO: 09U12792-2 DATE: OCTOBER 15, 2009 IC: 3616C-ZF73XX-1 FCC ID: U2M-ZF73XX-1

QUANTITATIVE RESULTS

No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
20.84	114.5	93.7	33.7

Radar Near Beginning of CAC

Timing of Reboot	Timing of Radar Burst	Radar Relative to Reboot	Radar Relative to Start of CAC
(sec)	(sec)	(sec)	(sec)
20.89	55.9	35.0	1.4

Radar Near End of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
21.37	114.2	92.8	59.2

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the initial power-up cycle and the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel

TIMING PLOT WITHOUT RADAR DURING CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC End of CAC Traffic is Initiated TIMING PLOT WITHOUT RADAR - NORMAL POWER-ON CYCLE Agilent 09:14:09 Sep 25, 2 R T Freq/Channel Mkr2 114.5 s Center Freq Ref -30 dB Atter 10 dB -82.42 dBm 5.50000000 GHz #Peak Log 10 Start Freq dB/ 5.50000000 GHz Offst -21.2 dB Stop Freq 5.50000000 GHz DΙ -64.0 CF Step dBm 3.00000000 MHz LgA∨ Center 5,500 000 GHz Span 0 Hz Freq Offset Res BW 3 MHz VBW 3 MHz Sweep 210 s (8001 pts) 0.000000000 Hz X Axis 20.84 s Amplitude -75.41 dBm Marker (1) Time (1) Signal Track Off

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

opyright 2000-2009 Agilent Technologies

DATE: OCTOBER 15, 2009

IC: 3616C-ZF73XX-1

TIMING PLOT WITH RADAR NEAR BEGINNING OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle

DATE: OCTOBER 15, 2009

IC: 3616C-ZF73XX-1

No EUT transmissions were observed after the radar signal.

TIMING PLOT WITH RADAR NEAR END OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle

No EUT transmissions were observed after the radar signal.

DATE: OCTOBER 15, 2009

IC: 3616C-ZF73XX-1

This report shall not be reproduced except in full, without the written approval of CCS.

5.2.4. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

5.2.5. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.484	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	10.0	60
IC	18.0	260

DATE: OCTOBER 15, 2009

IC: 3616C-ZF73XX-1

MOVE TIME

CHANNEL CLOSING TIME

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the FCC aggregate monitoring period.

Only intermittent transmissions are observed during the IC aggregate monitoring period.

LONG PULSE CHANNEL MOVE TIME

The traffic ceases prior to 10 seconds after the end of the radar waveform.

5.2.6. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5492	5508	16	18.581	86.1	80

DETECTION BANDWIDTH PROBABILITY

ETECTION BANDWIDTH PROBABILITY RESULTS				
Detection Bandwidth Test Results FCC Type 1 Waveform: 1 us Pulse Width, 1428 us PRI, 18 Pulses per Burst				
Frequency		Number Detected	Detection	Mark
(MHz)			(%)	
5492	10	10	100	FL
5493	10	10	100	
5494	10	10	100	
5495	10	10	100	
5496	10	10	100	
5497	10	10	100	
5498	10	10	100	
5499	10	10	100	
5500	10	10	100	
5501	10	10	100	
5502	10	10	100	
5503	10	10	100	
5504	10	10	100	
5505	10	9	90	
5506	10	10	100	
5507	10	10	100	
5508	10	10	100	FH

5.2.7. IN-SERVICE MONITORING

RESULTS

FCC Radar Test Summ	агу			
Signal Type	Number of Trials	Detection	Limit	Pass/Fail
		(%)	(%)	
FCC Short Pulse Type 1	30	100.00	60	Pass
FCC Short Pulse Type 2	30	100.00	60	Pass
FCC Short Pulse Type 3	30	100.00	60	Pass
FCC Short Pulse Type 4	30	100.00	60	Pass
Aggregate		100.00	80	Pass
FCC Long Pulse Type 5	30	96.67	80	Pass
FCC Hopping Type 6	34	100.00	70	Pass

TYPE 1 DETECTION PROBABILITY

is Puise Wiath, 14	28 us PRI, 18 Pulses per Burst
Trial	Successful Detection
	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

TYPE 2 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
2001	1.4	227.00	25	Yes
2002	3	167.00	29	Yes
2003	4.5	197.00	29	Yes
2004	4.1	162.00	28	Yes
2005	1.7	191.00	25	Yes
2006	1.4	157.00	23	Yes
2007	1.4	225.00	25	Yes
2008	3.7	178.00	25	Yes
2009	4.2	217.00	27	Yes
2010	3.3	183.00	27	Yes
2011	1.6	210.00	29	Yes
2012	1.5	192.00	29	Yes
2013	4.6	174.00	27	Yes
2014	3.2	170.00	26	Yes
2015	1.4	212.00	29	Yes
2016	1.6	192.00	23	Yes
2017	1.3	157.00	28	Yes
2018	5	205.00	24	Yes
2019	1.8	189.00	27	Yes
2020	4.7	153.00	28	Yes
2021	3.3	189.00	23	Yes
2022	4.8	187.00	25	Yes
2023	2.9	198.00	27	Yes
2024	3.5	174.00	27	Yes
2025	4.7	221.00	28	Yes
2026	4.1	165.00	26	Yes
2027	4.9	163.00	23	Yes
2028	4.3	229.00	26	Yes
2029	4.6	178.00	25	Yes
2030	3.8	222.00	29	Yes

TYPE 3 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection	
	(us)	(us)		(Yes/No)	
3001	8	466.00	17	Yes	
3002	6.5	402.00	16	Yes	
3003	7.7	277.00	17	Yes	
3004	5.8	333.00	18	Yes	
3005	9.3	457.00	17	Yes	
3006	7.6	426.00	16	Yes	
3007	6.7	293.00	16	Yes	
3008	6.3	477.00	18	Yes	
3009	9.3	382.00	16	Yes	
3010	6	389.00	17	Yes	
3011	8.9	302.00	18	Yes	
3012	6.4	481.00	17	Yes	
3013	8.3	344.00	16	Yes	
3014	7	327.00	17	Yes	
3015	5.7	314.00	18	Yes	
3016	6	491.00	16	Yes	
3017	5.5	494.00	17	Yes	
3018	9	443.00	16	Yes	
3019	5	317.00	18	Yes	
3020	6.1	466.00	16	Yes	
3021	8	438.00	16	Yes	
3022	5.5	277.00	18	Yes	
3023	8.9	273.00	16	Yes	
3024	5.2	305.00	16	Yes	
3025	6.5	276.00	16	Yes	
3026	5	449.00	17	Yes	
3027	10	436.00	16	Yes	
3028	5.2	416.00	17	Yes	
3029	5.5	466	16	Yes	
3030	6.5	463	17	Yes	

TYPE 4 DETECTION PROBABILITY

Waveform	for FCC Short Pulse Radar T Pulse Width PRI		Pulses Per Burst	Successful Detection	
	(us)	(us)		(Yes/No)	
4001	15.3	437.00	12	Yes	
4002	13.9	460.00	14	Yes	
4003	10.7	319.00	16	Yes	
4004	10.4	379.00	14	Yes	
4005	19.6	482.00	16	Yes	
4006	19.1	253.00	13	Yes	
4007	10.5	382.00	12	Yes	
4008	17.6	277.00	13	Yes	
4009	12.7	310.00	12	Yes	
4010	19.8	439.00	13	Yes	
4011	18.7	272.00	16	Yes	
4012	16.7	500.00	13	Yes	
4013	14.9	393.00	15	Yes	
4014	11.2	448.00	16	Yes	
4015	16	278.00	13	Yes	
4016	19.8	422.00	13	Yes	
4017	14.6	337.00	14	Yes	
4018	16.9	365.00	15	Yes	
4019	12	391.00	13	Yes	
4020	13	496.00	13	Yes	
4021	12.6	375.00	15	Yes	
4022	19.2	499.00	14	Yes	
4023	11.2	263.00	14	Yes	
4024	15	377.00	15	Yes	
4025	19.3	394.00	16	Yes	
4026	12.2	319.00	13	Yes	
4027	13.6	469.00	16	Yes	
4028	10.7	286.00	14	Yes	
4029	14.2	266.00	13	Yes	
4030	20	383.00	16	Yes	

TYPE 5 DETECTION PROBABILITY

ata Sheet for FCC	Long Pulse Radar Type 5
Trial	Successful Detection
	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	No
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

Note: The Type 5 randomized parameters are shown in a separate document.

TYPE 6 DETECTION PROBABILITY

	e Width, 333 us PRI,		i buist per nop	1
IIIA Aug	just 2005 Hopping Se		11	C
Trial	Starting Index	Signal Generator	Hops within	Successful
	Within Sequence	Frequency	Detection BW	Detection
		(MHz)		(Yes/No)
_1	148	5492	3	Yes
2	623	5493	5	Yes
3	1098	5494	2	Yes
4	1573	5495	2	Yes
5	2048	5496	2	Yes
6	2523	5497	3	Yes
7	2998	5498	2	Yes
8	3473	5499	2	Yes
9	3948	5500	5	Yes
10	4423	5501	1	Yes
11	4898	5502	6	Yes
12	5373	5503	5	Yes
13	5848	5504	6	Yes
14	6323	5505	2	Yes
15	6798	5506	4	Yes
16	7273	5507	3	Yes
17	7748	5508	3	Yes
18	8223	5492	6	Yes
19	8698	5493	5	Yes
20	9173	5494	4	Yes
21	9648	5495	5	Yes
22	10123	5496	2	Yes
23	10598	5497	3	Yes
24	11073	5498	3	Yes
25	11548	5499	4	Yes
26	12023	5500	5	Yes
27	12498	5501	6	Yes
28	12973	5502	7	Yes
29	13448	5503	4	Yes
30	13923	5504	1	Yes
31	14398	5505	2	Yes
32	14873	5506	3	Yes
33	15348	5507	2	Yes

5.3. RESULTS FOR 40 MHz BANDWIDTH

5.3.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5510 MHz.

5.3.2. PLOTS OF RADAR WAVEFORMS AND WLAN TRAFFIC

DATE: OCTOBER 15, 2009

IC: 3616C-ZF73XX-1

PLOTS OF RADAR WAVEFORMS

PLOT OF WLAN TRAFFIC FROM MASTER

REPORT NO: 09U12792-2 FCC ID: U2M-ZF73XX-1

5.3.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

DATE: OCTOBER 15, 2009

IC: 3616C-ZF73XX-1

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

REPORT NO: 09U12792-2 DATE: OCTOBER 15, 2009 FCC ID: U2M-ZF73XX-1 IC: 3616C-ZF73XX-1

QUANTITATIVE RESULTS

No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
20.61	114.9	94.3	34.3

Radar Near Beginning of CAC

Madai Modi Bo	girining or or to		
Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
21.55	57.3	35.8	1.5

Radar Near End of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
21.21	114.8	93.6	59.3

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the initial power-up cycle and the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel

TIMING PLOT WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

DATE: OCTOBER 15, 2009

IC: 3616C-ZF73XX-1

TEL: (510) 771-1000

TIMING PLOT WITH RADAR NEAR BEGINNING OF CAC

AP is rebooted
Traffic ceases
Start of Initial Power-up cycle

No EUT transmissions were observed after the radar signal.

DATE: OCTOBER 15, 2009

IC: 3616C-ZF73XX-1

TIMING PLOT WITH RADAR NEAR END OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle

DATE: OCTOBER 15, 2009

IC: 3616C-ZF73XX-1

No EUT transmissions were observed after the radar signal.

5.3.4. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

5.3.5. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.690	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	10.0	60
IC	14.0	260

DATE: OCTOBER 15, 2009

IC: 3616C-ZF73XX-1

MOVE TIME

CHANNEL CLOSING TIME

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the FCC aggregate monitoring period.

IC: 3616C-ZF73XX-1

Only intermittent transmissions are observed during the FCC aggregate monitoring period.

LONG PULSE CHANNEL MOVE TIME

The traffic ceases prior to 10 seconds after the end of the radar waveform.

5.3.6. NON-OCCUPANCY PERIOD

RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.

DATE: OCTOBER 15, 2009

IC: 3616C-ZF73XX-1

5.3.7. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5493	5527	34	36.437	93.3	80

DETECTION BANDWIDTH PROBABILITY

etection Band	lwidth Test Results			
CC Type 1 Wa	veform: 1 us Pulse V	Vidth, 1428 us PRI, 1	8 Pulses per E	Burst
Frequency (MHz)	Number of Trials	Number Detected	Detection (%)	Mark
5493	10	10	100	FL
5494	10	10	100	
5495	10	10	100	
5496	10	10	100	
5497	10	10	100	
5498	10	10	100	
5499	10	10	100	
5500	10	10	100	
5501	10	10	100	
5502	10	10	100	
5503	10	10	100	
5504	10	10	100	
5505	10	10	100	
5506	10	10	100	
5507	10	10	100	
5508	10	10	100	
5509	10	10	100	
5510	10	10	100	
5511	10	10	100	
5512	10	10	100	
5513	10	10	100	
5514	10	10	100	
5515	10	9	90	
5516	10	10	100	
5517	10	10	100	
5518	10	10	100	
5519	10	10	100	
5520	10	10	100	
5521	10	10	100	
5522	10	10	100	
5523	10	10	100	
5524	10	10	100	
5525	10	10	100	
5526	10	10	100	
5527	10	9	90	FH

REPORT NO: 09U12792-2 DATE: OCTOBER 15, 2009 FCC ID: U2M-ZF73XX-1 IC: 3616C-ZF73XX-1

5.3.8. IN-SERVICE MONITORING

RESULTS

FCC Radar Test Summ	агу			
Signal Type	Number of Trials	Detection (%)	Limit (%)	Pass/Fail
FCC Short Pulse Type 1	30	100.00	60	Pass
FCC Short Pulse Type 2	30	83.33	60	Pass
FCC Short Pulse Type 3	30	100.00	60	Pass
FCC Short Pulse Type 4	30	86.67	60	Pass
Aggregate		92.50	80	Pass
FCC Long Pulse Type 5	30	93.33	80	Pass
FCC Hopping Type 6	35	97.14	70	Pass

TYPE 1 DETECTION PROBABILITY

us Pulse Width, 1428 us PRI, 18 Pulses per Burst			
Trial	Successful Detection		
	(Yes/No)		
1	Yes		
2	Yes		
3	Yes		
4	Yes		
5	Yes		
6	Yes		
7	Yes		
8	Yes		
9	Yes		
10	Yes		
11	Yes		
12	Yes		
13	Yes		
14	Yes		
15	Yes		
16	Yes		
17	Yes		
18	Yes		
19	Yes		
20	Yes		
21	Yes		
22	Yes		
23	Yes		
24	Yes		
25	Yes		
26	Yes		
27	Yes		
28	Yes		
29	Yes		
30	Yes		

TYPE 2 DETECTION PROBABILITY

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013	1.4 3 4.5 4.1 1.7 1.4 1.4 3.7 4.2 3.3 1.6 1.5	227.00 167.00 197.00 162.00 191.00 157.00 225.00 178.00 217.00 183.00 210.00	25 29 29 28 25 23 25 25 27 27	Yes Yes No Yes
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013	4.5 4.1 1.7 1.4 1.4 3.7 4.2 3.3 1.6	197.00 162.00 191.00 157.00 225.00 178.00 217.00 183.00	29 28 25 23 25 25 25 27 27	No Yes Yes Yes Yes Yes
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013	4.1 1.7 1.4 1.4 3.7 4.2 3.3 1.6	162.00 191.00 157.00 225.00 178.00 217.00 183.00	28 25 23 25 25 25 27 27	Yes Yes Yes Yes Yes
2005 2006 2007 2008 2009 2010 2011 2012 2013	1.7 1.4 1.4 3.7 4.2 3.3 1.6	191.00 157.00 225.00 178.00 217.00 183.00	25 23 25 25 27 27	Yes Yes Yes Yes Yes
2006 2007 2008 2009 2010 2011 2012 2013	1.4 1.4 3.7 4.2 3.3 1.6	157.00 225.00 178.00 217.00 183.00	23 25 25 27 27	Yes Yes Yes Yes
2007 2008 2009 2010 2011 2012 2013	1.4 3.7 4.2 3.3 1.6	225.00 178.00 217.00 183.00	25 25 27 27	Yes Yes Yes
2008 2009 2010 2011 2012 2013	3.7 4.2 3.3 1.6	178.00 217.00 183.00	25 27 27	Yes Yes
2009 2010 2011 2012 2013	4.2 3.3 1.6	217.00 183.00	27 27	Yes
2010 2011 2012 2013	3.3 1.6	183.00	27	
2011 2012 2013	1.6			Yes
2012 2013		210.00		
2013	1.5		29	Yes
	1.3	192.00	29	Yes
	4.6	174.00	27	Yes
2014	3.2	170.00	26	No
2015	1.4	212.00	29	Yes
2016	1.6	192.00	23	Yes
2017	1.3	157.00	28	Yes
2018	5	205.00	24	Yes
2019	1.8	189.00	27	Yes
2020	4.7	153.00	28	Yes
2021	3.3	189.00	23	Yes
2022	4.8	187.00	25	No
2023	2.9	198.00	27	Yes
2024	3.5	174.00	27	Yes
2025	4.7	221.00	28	Yes
2026	4.1	165.00	26	No
2027	4.9	163.00	23	No
2028	4.3	229.00	26	Yes
2029	4.6	178.00	25	Yes

TYPE 3 DETECTION PROBABILITY

Waveform	or FCC Short Pu Pulse Width	PRI	Pulses Per Burst	Successful Detection	
	(us)	(us)		(Yes/No)	
3001	8	466.00	17	Yes	
3002	6.5	402.00	16	Yes	
3003	7.7	277.00	17	Yes	
3004	5.8	333.00	18	Yes	
3005	9.3	457.00	17	Yes	
3006	7.6	426.00	16	Yes	
3007	6.7	293.00	16	Yes	
3008	6.3	477.00	18	Yes	
3009	9.3	382.00	16	Yes	
3010	6	389.00	17	Yes	
3011	8.9	302.00	18	Yes	
3012	6.4	481.00	17	Yes	
3013	8.3	344.00	16	Yes	
3014	7	327.00	17	Yes	
3015	5.7	314.00	18	Yes	
3016	6	491.00	16	Yes	
3017	5.5	494.00	17	Yes	
3018	9	443.00	16	Yes	
3019	5	317.00	18	Yes	
3020	6.1	466.00	16	Yes	
3021	8	438.00	16	Yes	
3022	5.5	277.00	18	Yes	
3023	8.9	273.00	16	Yes	
3024	5.2	305.00	16	Yes	
3025	6.5	276.00	16	Yes	
3026	5	449.00	17	Yes	
3027	10	436.00	16	Yes	
3028	5.2	416.00	17	Yes	
3029	5.5	466	16	Yes	
3030	6.5	463	17	Yes	

TYPE 4 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
4001	15.3	437.00	12	Yes
4002	13.9	460.00	14	Yes
4003	10.7	319.00	16	Yes
4004	10.4	379.00	14	Yes
4005	19.6	482.00	16	No
4006	19.1	253.00	13	Yes
4007	10.5	382.00	12	Yes
4008	17.6	277.00	13	Yes
4009	12.7	310.00	12	Yes
4010	19.8	439.00	13	No
4011	18.7	272.00	16	Yes
4012	16.7	500.00	13	Yes
4013	14.9	393.00	15	Yes
4014	11.2	448.00	16	Yes
4015	16	278.00	13	Yes
4016	19.8	422.00	13	No
4017	14.6	337.00	14	Yes
4018	16.9	365.00	15	Yes
4019	12	391.00	13	Yes
4020	13	496.00	13	Yes
4021	12.6	375.00	15	Yes
4022	19.2	499.00	14	No
4023	11.2	263.00	14	Yes
4024	15	377.00	15	Yes
4025	19.3	394.00	16	Yes
4026	12.2	319.00	13	Yes
4027	13.6	469.00	16	Yes
4028	10.7	286.00	14	Yes
4029	14.2	266.00	13	Yes
4030	20	383.00	16	Yes

TYPE 5 DETECTION PROBABILITY

Trial	Long Pulse Radar Type 5 Successful Detection		
	(Yes/No)		
1	Yes		
2	Yes		
3	No		
4	Yes		
5	Yes		
6	No		
7	Yes		
8	Yes		
9	Yes		
10	Yes		
11	Yes		
12	Yes		
13	Yes		
14	Yes		
15	Yes		
16	Yes		
17	Yes		
18	Yes		
19	Yes		
20	Yes		
21	Yes		
22	Yes		
23	Yes		
24	Yes		
25	Yes		
26	Yes		
27	Yes		
28	Yes		
29	Yes		
30	Yes		

Note: The Type 5 randomized parameters are shown in a separate document.

TYPE 6 DETECTION PROBABILITY

TA Aua	ust 2005 Hopping Se	quence		•
Trial	Starting Index Within Sequence	Signal Generator Frequency (MHz)	Hops within Detection BW	Successful Detection (Yes/No)
1	299	5493	8	Yes
2	774	5494	7	Yes
3	1249	5495	8	Yes
4	1724	5496	6	Yes
5	2199	5497	5	Yes
6	2674	5498	8	Yes
7	3149	5499	7	Yes
8	3624	5500	7	Yes
9	4099	5501	6	Yes
10	4574	5502	2	Yes
11	5049	5503	4	Yes
12	5524	5504	9	Yes
13	5999	5505	7	Yes
14	6474	5506	6	Yes
15	6949	5507	8	Yes
16	7424	5508	4	Yes
17	7899	5509	7	Yes
18	8374	5510	6	Yes
19	8849	5511	9	Yes
20	9324	5512	10	Yes
21	9799	5513	7	Yes
22	10274	5514	7	Yes
23	10749	5515	7	Yes
24	11224	5516	11	Yes
25	11699	5517	5	No
26	12174	5518	7	Yes
27	12649	5519	8	Yes
28	13124	5520	8	Yes
29	13599	5521	7	Yes
30	14074	5522	9	Yes
31	14549	5523	6	Yes
32	15024	5524	6	Yes
33	15499	5525	7	Yes
34	15974 16449	5526 5527	8	Yes

6. SETUP PHOTOS

DYNAMIC FREQUENCY SELECTION

END OF REPORT