24

25

26

16

18

36

44

Ben Trovato‡

Institute for Clarity in Documentation P.O. Box 1212 Dublin, Ohio 43017-6221 trovato@corporation.com

Lawrence P. Leipuner

Brookhaven Laboratories P.O. Box 5000 lleipuner@researchlabs.org

G.K.M. Tobin§

Institute for Clarity in Documentation P.O. Box 1212 Dublin, Ohio 43017-6221 webmaster@marysville-ohio.com

Sean Fogarty

NASA Ames Research Center Moffett Field, California 94035 fogartys@amesres.org

Lars Thørväld¶

The Thørväld Group 1 Thørväld Circle Hekla, Iceland larst@affiliation.org

Charles Palmer

10

12

14

16

17

18

19

20

21

22

23

24

25

27

29

30

31

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

50

51

52

53

Palmer Research Laboratories 8600 Datapoint Drive San Antonio, Texas 78229 cpalmer@prl.com

John Smith

The Thørväld Group jsmith@affiliation.org

Julius P. Kumquat

The Kumquat Consortium jpkumquat@consortium.net

Figure 1: This is a teaser

ABSTRACT

This paper provides a sample of a LaTeX document which conforms, somewhat loosely, to the formatting guidelines for ACM SIG Proceedings.

- *Produces the permission block, and copyright information
- †The full version of the author's guide is available as acmart.pdf document
- [‡]Dr. Trovato insisted his name be first.
- §The secretary disavows any knowledge of this author's actions.
- This author is the one who did all the really hard work.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

WOODSTOCK'97, El Paso, Texas USA

@ 2016 Copyright held by the owner/author(s). 123-4567-24-567/08/06...\$15.00

DOI: 10.475/123_4

CCS CONCEPTS

• Computer systems organization → Embedded systems; *Redundancy*; Robotics; • Networks → Network reliability;

KEYWORDS

ACM proceedings, LATEX, text tagging

ACM Reference format:

Ben Trovato, G.K.M. Tobin, Lars Thørväld, Lawrence P. Leipuner, Sean Fogarty, Charles Palmer, John Smith, and Julius P. Kumquat. 1997. SIG Proceedings Paper in LaTeX Format. In *Proceedings of ACM Woodstock conference, El Paso, Texas USA, July 1997 (WOOD-STOCK'97)*, 5 pages. DOI: 10.475/123_4

The proceedings are the records of a conference. ACM seeks

to give these conference by-products a uniform, high-quality

appearance. To do this, ACM has some rigid requirements for

the format of the proceedings documents: there is a specified

format (balanced double columns), a specified set of fonts

(Arial or Helvetica and Times Roman) in certain specified

sizes, a specified live area, centered on the page, specified

Typically, the body of a paper is organized into a hierarchi-

cal structure, with numbered or unnumbered headings for

sections, subsections, sub-subsections, and even smaller sec-

tions. The command \section that precedes this paragraph

is part of such a hierarchy.² LATEX handles the numbering

and placement of these headings for you, when you use

the appropriate heading commands around the titles of the

headings. If you want a sub-subsection or smaller part to

be unnumbered in your output, simply append an asterisk

to the command name. Examples of both numbered and un-

numbered headings will appear throughout the balance of

environment, you can indicate the start of a new paragraph

with a blank line in your input file; that is why this sentence

We have already seen several typeface changes in this sam-

ple. You can indicate italicized words or phrases in your text

with the command \textit; emboldening with the com-

mand \textbf and typewriter-style (for instance, for com-

puter code) with \texttt. But remember, you do not have

to indicate typestyle changes when such changes are part

of the structural elements of your article; for instance, the

heading of this subsection will be in a sans serif³ typeface,

but that is handled by the document class file. Take care with

the use of⁴ the curly braces in typeface changes; they mark

the beginning and end of the text that is to be in the different

You can use whatever symbols, accented characters, or

non-English characters you need anywhere in your docu-

ment; you can find a complete list of what is available in the

Because the entire article is contained in the **document**

size of margins, specified column width and gutter size.

1 INTRODUCTION

2 THE BODY OF THE PAPER

this sample document.

forms a separate paragraph.

Type Changes and Special Characters

2

6

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

31

32

33

34

35

36

37

39

40

41

42

43

44

46

47

48

50

51

52

53

2

¹This is a footnote ²This is a footnote. ³Another footnote here. Let's make this a rather long one to see how it

50

48 49

12 13 14 15

16 17 18 19

20 21

29 30

31 32 33

typeface.

LATEX User's Guide [7].

⁴Another footnote.

46 47

51

52 53

Math Equations

You may want to display math equations in three distinct styles: inline, numbered or non-numbered display. Each of the three are discussed in the next sections.

Inline (In-text) Equations. A formula that appears in the running text is called an inline or in-text formula. It is produced by the math environment, which can be invoked with the usual \begin . . . \end construction or with the short form \$. . . \$. You can use any of the symbols and structures, from α to ω , available in Lagrangian [7]; this section will simply show a few examples of in-text equations in context. Notice how this equation: $\lim_{n\to\infty} x = 0$, set here in in-line math style, looks slightly different when set in display style. (See next section).

Display Equations. A numbered display equation—one set off by vertical space from the text and centered horizontally is produced by the **equation** environment. An unnumbered display equation is produced by the displaymath environ-

Again, in either environment, you can use any of the symbols and structures available in LATEX; this section will just give a couple of examples of display equations in context. First, consider the equation, shown as an inline equation above:

$$\lim_{n \to \infty} x = 0 \tag{1}$$

Notice how it is formatted somewhat differently in the displaymath environment. Now, we'll enter an unnumbered equation:

$$\sum_{i=0}^{\infty} x + 1$$

and follow it with another numbered equation:

$$\sum_{i=0}^{\infty} x_i = \int_0^{\pi+2} f$$
 (2)

just to demonstrate LATEX's able handling of numbering.

Citations

Citations to articles [2-4, 6], conference proceedings [4] or maybe books [7, 8] listed in the Bibliography section of your article will occur throughout the text of your article. You should use BibTeX to automatically produce this bibliography; you simply need to insert one of several citation commands with a key of the item cited in the proper location in the . tex file [7]. The key is a short reference you invent to uniquely identify each work; in this sample document, the key is the first author's surname and a word from the title. This identifying key is included with each item in the .bib file for your article.

Table 1: Frequency of Special Characters

Non-English or Math	Frequency	Comments
Ø	1 in 1,000	For Swedish names
π	1 in 5	Common in math
\$	4 in 5	Used in business
Ψ_1^2	1 in 40,000	Unexplained usage

The details of the construction of the .bib file are beyond the scope of this sample document, but more information can be found in the *Author's Guide*, and exhaustive details in the *BTFX User's Guide* by Lamport [7].

This article shows only the plainest form of the citation command, using \cite.

Tables

Because tables cannot be split across pages, the best placement for them is typically the top of the page nearest their initial cite. To ensure this proper "floating" placement of tables, use the environment **table** to enclose the table's contents and the table caption. The contents of the table itself must go in the **tabular** environment, to be aligned properly in rows and columns, with the desired horizontal and vertical rules. Again, detailed instructions on **tabular** material are found in the ETEX User's Guide.

Immediately following this sentence is the point at which Table 1 is included in the input file; compare the placement of the table here with the table in the printed output of this document.

To set a wider table, which takes up the whole width of the page's live area, use the environment **table*** to enclose the table's contents and the table caption. As with a single-column table, this wide table will "float" to a location deemed more desirable. Immediately following this sentence is the point at which Table 2 is included in the input file; again, it is instructive to compare the placement of the table here with the table in the printed output of this document.

It is strongly recommended to use the package booktabs [5] and follow its main principles of typography with respect to tables:

- (1) Never, ever use vertical rules.
- (2) Never use double rules.

It is also a good idea not to overuse horizontal rules.

Figures

Like tables, figures cannot be split across pages; the best placement for them is typically the top or the bottom of the page nearest their initial cite. To ensure this proper "floating" placement of figures, use the environment **figure** to enclose the figure and its caption.

Figure 2: A sample black and white graphic.

Figure 3: A sample black and white graphic that has been resized with the includegraphics command.

This sample document contains examples of .eps files to be displayable with LTEX. If you work with pdfLTEX, use files in the .pdf format. Note that most modern TEX systems will convert .eps to .pdf for you on the fly. More details on each of these are found in the *Author's Guide*.

As was the case with tables, you may want a figure that spans two columns. To do this, and still to ensure proper "floating" placement of tables, use the environment **figure*** to enclose the figure and its caption. And don't forget to end the environment with **figure***, not **figure**!

Theorem-like Constructs

Other common constructs that may occur in your article are the forms for logical constructs like theorems, axioms, corollaries and proofs. ACM uses two types of these constructs: theorem-like and definition-like.

Here is a theorem:

Theorem 2.1. Let f be continuous on [a, b]. If G is an antiderivative for f on [a, b], then

$$\int_a^b f(t) dt = G(b) - G(a).$$

Here is a definition:

Definition 2.2. If z is irrational, then by e^z we mean the unique number that has logarithm z:

$$\log e^z = z$$
.

The pre-defined theorem-like constructs are **theorem**, **conjecture**, **proposition**, **lemma** and **corollary**. The pre-defined definition-like constructs are **example** and **definition**. You can add your own constructs using the *amsthm* interface [1]. The styles used in the \theoremstyle command are **acmplain** and **acmdefinition**.

Another construct is **proof**, for example,

Table 2: Some Typical Commands

Command	A Number	Comments
\author	100	Author
\table	300	For tables
\table*	400	For wider tables

Figure 4: A sample black and white graphic that needs to span two columns of text.

Figure 5: A sample black and white graphic that has been resized with the includegraphics command.

Proof. Suppose on the contrary there exists a real number L such that

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L.$$

Then

$$l = \lim_{x \to c} f(x) = \lim_{x \to c} \left[gx \cdot \frac{f(x)}{g(x)} \right] = \lim_{x \to c} g(x) \cdot \lim_{x \to c} \frac{f(x)}{g(x)} = 0 \cdot L = 0,$$

which contradicts our assumption that $l \neq 0$.

3 CONCLUSIONS

This paragraph will end the body of this sample document. Remember that you might still have Acknowledgments or Appendices; brief samples of these follow. There is still the Bibliography to deal with; and we will make a disclaimer about that here: with the exception of the reference to the LETEX book, the citations in this paper are to articles which have nothing to do with the present subject and are used as examples only.

A HEADINGS IN APPENDICES

The rules about hierarchical headings discussed above for the body of the article are different in the appendices. In the **appendix** environment, the command **section** is used to indicate the start of each Appendix, with alphabetic order designation (i.e., the first is A, the second B, etc.) and a title (if you include one). So, if you need hierarchical structure *within* an Appendix, start with **subsection** as the highest level. Here is an outline of the body of this document in Appendix-appropriate form:

Introduction

The Body of the Paper

Type Changes and Special Characters.

Math Equations.

Inline (In-text) Equations.

Display Equations.

Citations.

Tables.

Figures.

Theorem-like Constructs.

A Caveat for the TEX Expert.

Conclusions

References

Generated by bibtex from your .bib file. Run latex, then bibtex, then latex twice (to resolve references) to create the .bbl file. Insert that .bbl file into the .tex source file and comment out the command \thebibliography.

B MORE HELP FOR THE HARDY

Of course, reading the source code is always useful. The file acmart.pdf contains both the user guide and the commented code.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Yuhua Li for providing the matlab code of the *BEPS* method.

The authors would also like to thank the anonymous referees for their valuable comments and helpful suggestions. The work is supported by the National Natural Science Foundation of China under Grant No.: 61273304 and Young Scientsts' Support Program (http://www.nnsf.cn/youngscientsts).

REFERENCES

- [1] American Mathematical Society 2015. *Using the amsthm Package*. American Mathematical Society. http://www.ctan.org/pkg/amsthm.
- [2] Mic Bowman, Saumya K. Debray, and Larry L. Peterson. 1993. Reasoning About Naming Systems. ACM Trans. Program. Lang. Syst. 15, 5 (November 1993), 795–825. DOI: https://doi.org/10.1145/161468.161471
- [3] Johannes Braams. 1991. Babel, a Multilingual Style-Option System for Use with LaTeX's Standard Document Styles. *TUGboat* 12, 2 (June 1991), 291–301.
- [4] Malcolm Clark. 1991. Post Congress Tristesse. In TeX90 Conference Proceedings. TeX Users Group, 84–89.
- [5] Simon Fear. 2005. Publication quality tables in LaTeX. http://www.ctan. org/pkg/booktabs.
- [6] Maurice Herlihy. 1993. A Methodology for Implementing Highly Concurrent Data Objects. ACM Trans. Program. Lang. Syst. 15, 5 (November 1993), 745–770. DOI: https://doi.org/10.1145/161468.161469
- [7] Leslie Lamport. 1986. LaTeX User's Guide and Document Reference Manual. Addison-Wesley Publishing Company, Reading, Massachusetts.
- [8] S.L. Salas and Einar Hille. 1978. Calculus: One and Several Variable. John Wiley and Sons, New York.