数字电路实验报告 かずみるメラケは

姓名 弘南琪 学号: 114/60 47 实验日期: 2316-4.14

组合逻辑电路

1. 实验目的

- ▶ 掌握组合逻辑电路的功能测试:
- > 验证半加器和全加器的逻辑功能:
- > 掌握集成译码器及数据选择器的原理;
- ▶ 了解译码器及数据选择器的应用。

2. 预习要求

- > 预习组合逻辑电路的分析方法:
- ▶ 阅读本实验所用各门电路 IC 的数据手册:
- > 预习用与非门和异或门构成的半加器、全加器的工作原理:
- ▶ 预习二进制数的运算。

3. 实验器材

序号	名 称	型号与规格	数量	备注
1	直流稳压电源	DP1308A	1	
2	数字示波器	TDS2012C	1	
3	函数信号发生器	DG1022	1	
4	模电数电综合试验箱	TPE-ADII	1	
5	元器件	74LS00 二输入端四与非门 3片, 74LS86 二输入端四异或门 1片, 74LS54 四组输入与或非门 1片, 74LS139 2-4线译码器 1片, 74LS153 双4选1数据选择器 1片。	7	

4. 实验内容

4.1 组合逻辑电路功能测试

用 2 片 74LS00 组成图 1.1 所示逻辑电路, 图中 UIA, UIB, UIC, UID 为第一 片 74LS00 的四个单元, U2A, U2B, U2D 为第二片 74LS00 的其中三个单元。图中 输入A、B、C接电平开关,输出Y1、Y2接LED电平指示。

按照表 1.1 改变 A、B、C 的状态,根据 LED 电平指示填表,并写出 Y1 和 Y2 的逻辑表达式。

图 1.1 组合逻辑电路功能测试

出	输		输入			
Y2	Y1	С	В	A		
0	0	0	0	0		
1	0	1	0	0		
1	1	1	1	0		
0	1	1	1	1		
0	1	0	1	1		
0	1	0	0	I		
1/	i	1	0	1		
1	11	0	1	0		

A+B

Y2 = A'B+B'C

数字电路实验报告 如力于兴及大学和社

4.2 半加器的逻辑功能测试

根据半加器的逻辑表达式可知,半加器 Y 是A、B的异或,而进位 Z 是A、B 相与,故半加器可用一个集成异或门和两个与非门组成如图2.1所示的电路。其中输入A、B接电平开关,输出Y、Z接LED电平指示。按表2.1要求改变A、B的状态,填表。

表 2.1 半加器电路逻辑功能测试

输	λ	输出	В
A	В	Y	Z
0	0	0	0
0	1	1	0/
1	0	1,	Ø
1	1	0	1

4.3全加器的逻辑功能测试

全加器电路如图3.1所示,写出以下逻辑表达式(请使用原始输入,不要用

根据以上逻辑表达式列真值表如表 3.1 所示,填写真值表

(AB/48%)'+('

(AD) / (BA) + ('
(ATB) (B+A) + ('
A'B' + AB+('

数字电路实验报告 第五寸的及大學的社员

表 3.1 真值表

	输入				11	输出			
Ai	Bi	Ci-1	Y	Z	XI	X2	X3	Si	Ci
0	0	0	0	0	1	1	1	0	0
0	0	1	0	1	i	1	0	1	0
0	1	0	,	0	1	0	1	1	0
0	1	1	1)	0	1	1	0	- 1
1	0	0	1	0	1	0	1	1	0
1	0	1	1	1	0	1	1	- 0	1
1	1	0	0	0	1	V	1	0	1
1	1	1	2	1	1	1	0	1	1

根据真值表, 画出逻辑函数 Si、Ci 的卡诺图

Si的卡诺图

Ci的卡诺图

0 0 1 0 1 0 0 0 1 0	Bi Ci-I	0 0	0 1	1 1	1 0	Ai Ci-1	0 0	0 1	1 1	1 0
1 10 10 1	0	0	1	0	1	0	0	0	1	0
	1	1	0	1	J	1	O/	1	1	1

按原理图选择与非门接线进行测试,检查逻辑功能是否与表 3.1 一致。

4.4测试用异或、与或非门组成的全加器的逻辑功能

全加器可以用两个半加器和两个与门一个或门组成,在实验中,常用一块双异或门、一个与或非门(3-2-2-3输入)和一个与非门实现。

画出用异或门、与或非门和与非门实现全加器的逻辑电路图,写出逻辑表达式。 $\triangle : \mathbb{R} + \mathbb{A}' \cdot \mathbb{R}' + \mathbb{C} \cdot \mathbb{C}'$

YI + AB

数字电路实验报告 如为于好及大学fitt

Si = AOBOCI-

Ci = ((AB+(ABB) Cit

找出异或门、与或非门以及与非门器件按自己画出的图连线,接线时注意与 或非门中不用的与门输入端接地。

当输入端 Ai、Bi 及 Ci-1 接逻辑电平开关, Si 和 Ci 接 LED 电平显示,填写下表。

输入端	Ai	0	0	0	0	1	1	1	1
	Bi	0	0	1	1	0	0	1	1
7	Ci-1	0	1	0	1	0	1	0	1
*****	Si	0	1	1	0	1	0	0	1
输出端	Ci	0	Ó	0	1	0	1	1	1

4.5译码器功能测试

将 74LS139 译码器的管脚 1、2、3 接电平开关, 管脚 4、5、6、7 接 LED 电平显示,接好电源和地,改变管脚1、2、3的状态,将结果记录于表5.1。

图 5.1 译码器 74LS139 引脚图

表 5.1 译码器 74LS139 逻辑功能测试

	输入			输出	H	
使能	选	择		107 1	11	
G	В	A	YO	Y1	Y2	¥3
Н	X	Х		1	(1
L	L	L	0	1	1	1
L	L	Н		0	DI	1
L	Н	L	1	18	0	1
L	Н	H	1	1	/	0

4.6译码器转换

将双2-4线译码器转换为带使能端的3-8线译码器(可以额外增加与非门等逻 辑门),画出转换电路图并在实验箱上接线并验证设计是否正确。

$$EN(z) = \overline{AzEN}$$
 $EN(1) = \overline{AzEN}$

4.7数据选择器的测试及应用

将双4选1数据选择器74LS153的管脚如图7.1所示,将管脚1、2、14接入逻辑 开关,连接电源,测试其功能并填写功能表7.1。

1		16	Vcc
2			2G
3		14	A
	23	13	2C3
	SI	12	2C 2
6	741		2C1
7		10	2C 0
8		9	27
	2 3 4 5 6 7	2 3 4 5 6 7	2 15 3 14 4 £5 13 5 15 12 6 11 7 10

图 7.1 数据选择器 74LS153

		AL 1.	1 30.36.453千年	* /4L3133 BYE	之中4/186/61	~	
选扎	圣端		数据输入端			输出控制	输出
В	A	C0	Cl	C2	C3	G	Y
х	Х	X	X	X	х	Н	0
L	L	L	X	X	X	L'	0
L	L	Н	х	X	X	L	1
L	Н	х	L	X	х	L	0
L	Н	X	Н	X	х	L	1
Н	L	x	X	L	Х	L	0
Н	L	х	X	H	х	L	1
Н	Н	х	X	Х	L	L	D
Н	Н	X	Х	X	Н	L	1

将实验箱脉冲信号源中固定连续脉冲 4 个不同频率的信号接到数据选择器 4 个输入端 (3 脚接 80kHz, 4 脚接 40kHz, 5 脚接 20kHz, 6 脚接 10kHz),将 选择端置位,在输出端用示波器可以观察到4种不同频率的脉冲信号。

附录: IC引脚图

74LS86

数字电路实验报告 のかすが及まずかは

姓名: 3年 学号: 114/0172 实验日期: 2016.4.14

组合逻辑电路

1. 实验目的

- > 掌握组合逻辑电路的功能测试:
- > 验证半加器和全加器的逻辑功能:
- ▶ 掌握集成译码器及数据选择器的原理:
- > 了解译码器及数据选择器的应用。

2. 预习要求

- ▶ 预习组合逻辑电路的分析方法:
- ▶ 阅读本实验所用各门电路 IC 的数据手册:
- > 预习用与非门和异或门构成的半加器、全加器的工作原理:
- ▶ 预习二进制数的运算。

3. 实验器材

	序号	名称	型号与规格	数量	各注
100	1]	直流稳压电源	DP1308A	1	
	2	数字示波器	TDS2012C	1	
+	3	函数信号发生器	DG1022	1	
	4	模电数电综合试验箱	TPE-ADII	1	3.
		The	74LS00 二输入端四与电门 3片, 74LS86 二输入端四异或门 1片,		0
- 4	5	元器件	74LS54 四组输入与或非门 1片, 74LS139 2-4线译码器 1片, 74LS153 双4选1数据选择器 1片。	7	

数字电路实验报告 のかずみ及太子をはま

4. 实验内容

4.1 组合逻辑电路功能测试

用 2 片 74LS00 组成图 1.1 所示逻辑电路,图中 U1A,U1B,U1C,U1D 为第一片 74LS00 的四个单元,U2A,U2B,U2D 为第二片 74LS00 的其中三个单元。图中输入 A、B、C 接电平开关,输出 Y1、Y2 接 LED 电平指示。

按照表 1.1 改变 A、B、C 的状态,根据 LED 电平指示填表,并写出 Y1 和 Y2 的逻辑表达式。

图 1.1 组合逻辑电路功能测试

来 1 1 组合资料由政功能测过

	表 1.1 型	自台逻辑电	路切能層質	
	-输入	4	輸出	
A	В	C	Y1	Y2
0	0 .	0	0	0
0	0	1	0	
0	1',	1 1	1	1
1.	1	1	1	0
1	1	0	1	0
1	0	0	1	0/
1	0	1	X	V
0	1	0	1	1

YI = AtB

Y2 = A'B+B'(

数字电路实验报告。前方的及大学和技

4.2 半加器的逻辑功能测试

根据半加器的逻辑表达式可知, 半加器 Y 是A、B的异或, 而进位 Z 是A、B 相与,故半加器可用一个集成异或门和两个与非门组成如图2.1所示的电路。其 中输入A、B接电平开关、输出Y、Z接LED电平指示。按表2.1要求改变A、B的状态, 填表。

. 编	λ	4	輸出
A	В	Y	Z
0	0	0	0
0	1	I	0
1	0	1	0/
1.1.	1	8	1

4.3全加器的逻辑功能测试

全加器电路如图3.1所示,写出以下逻辑表达式(请使用原始输入,不要用

根据以上逻辑表达式列真值表如表 3.1 所示, 填写真值表

3 (LATS) (A'TB)

ABTSA ATSABJ.

				表 3.1 基	[但表					
	输入						输出			
Ai	Bi	Ci-1	Y	Z	X1	X2	X3	Si	Ci	
0	0	0	0	0	1	1	1	0	0	
0	0	1	0	1	1	1	0	1	0	
0	1	0	1	0	1	0	1	1	0	
0	1	1	1	1	Ó	1	1	0	1	
1	0	0	1	0	1	0	1	1	0	
1	0	1	L	1	0	1	1	0	1	
1	1	0	0	0	1	1	1/	0	1	
1	1	1	0	1	1	1	0	1	1	

根据真值表, 画出逻辑函数 Si、Ci 的卡诺图

Ci-1

Ci的卡诺图 Si的卡诺图 0 0 0

按原理图选择与非门接线进行测试,检查逻辑功能是否与表 3.1 一致。

4.4测试用异或、与或非门组成的全加器的逻辑功能

全加器可以用两个半加器和两个与门一个或门组成, 在实验中, 常用一 块双异或门、一个与或非门(3-2-2-3输入)和一个与非门实现。

画出用异或门、与或非门和与非门实现全加器的逻辑电路图,写出逻辑

数字电路实验报告 如为方头及大学和过

找出异或门、与或非门以及与非门器件按自己画出的图连线,接线时注意与 或非门中不用的与门输入端接地。

当输入端 Ai、Bi 及 Ci-1 接逻辑电平开关, Si 和 Ci 接 LED 电平显示, 填写下表。

输入端	Ai	0	0	0	0	1	1	1	1
	Bi	0	0	1	1	0	0	1	1
	Ci-1	0	1	0	1	0	1	9	1
输出端	Si	0	1	1	0	1	0	0	1
	Ci	0	0	0	1	0	1	(1

4.5译码器功能测试

将 74LS139 译码器的管脚 1、2、3 接电平开关,管脚 4、5、6、7 接 LED 电平显示,接好电源和地,改变管脚 1、2、3 的状态,将结果记录于表 5.1。

图 5.1 译码器 74LS139 引脚图

数字电路实验报告 的方式数大学和过去

表 5.1 译码器 74LS139 逻辑功能测试

	输入		输出						
使能	选	择	柳山						
G	В	A	YO	Y1	Y2	Y3			
Н	Х	Х	H	H	H	H			
L	L	L	aL.	H	H	1			
L	L	Н	FI	样人	101	H			
L	Н	L	H	NA	EL	H			
L	Н	Н	H	H	1-1	Q L			

4.6译码器转换

将双2-4线译码器转换为带使能端的3-8线译码器(可以额外增加与非门等逻辑门), 画出转换电路图并在实验箱上接线并验证设计是否正确。

4.7数据选择器的测试及应用

将双4选1数据选择器74LS153的管脚如图7.1所示,将管脚1、2、14接入逻辑 开关,连接电源,测试其功能并填写功能表7.1。

图 7.1. 数据选择器 74LS153

表 7:1 数据选择器 74LS153 的逻辑功能测试

选担	选择端		数据输入端				输出
В	A	C0	C1	C2	C3	G	Y
x	X	X	x	Х	X	Н	Ŀ
L	L	L	X.	X	X	L	t
L	L	н -	x	X	-X	L	H
L	Н	X	L	X	X	L	L
L	Н	X	H.	X	X	L	H
Н	L	X	x	L	X	L	L
Н	L	X	x	H	x	L	1-
Н	Н	x	x	X	L	L	L
Н	Н	x	X	х	Н	L	H

将实验箱脉冲信号源中固定连续脉冲 4 个不同频率的信号接到数据选择器 4 个输入端 (3 脚接 80kHz, 4 脚接 40kHz, 5 脚接 20kHz, 6 脚接 10kHz), 将 选择端置位,在输出端用示波器可以观察到4种不同频率的脉冲信号。

附录: IC引脚图

74LS86

