

NEHA

Agrawal Mathematically Inclined

Neha Agrawal Mathematically Inclined

Neha Agrawal Mathematically Inclined

Inclined

"RADIAN"

One radian ($1^R \ or \ 1^C$) = measure of an angle subtended at the center of a circle by an arc of length equal o the radius of the circle.

NEHA

Introduction to Trigonometry

Opposite $\sin \theta$ Hypotenuse Adjacent cos heta =Hypotenuse Opposie $\tan \theta$

Adjacent

Trigonometric Identities

NEHA

Mathematically

NEHA

Mathematically

Inclined

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta \qquad \cos\left(\frac{\pi}{2} + \theta\right) = -\sin\theta$$

$$\cos\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$
$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$

$$\tan\left(\frac{\pi}{2} + \theta\right) = -\cot\theta$$

$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$$

$$\sin\left(\frac{\pi}{2} + \theta\right) = \cos\theta$$

NEHA

Inclined

Complementary & Supplementary Angles

$$\sin(\pi + \theta) = -\sin\theta$$

$$\sin(\pi - \theta) = \sin\theta$$

$$\cos(\pi - \theta) = -\cos\theta$$

$$\cos(\pi + \theta) = -\cos\theta$$
$$\tan(\pi + \theta) = \tan\theta$$

$$\tan(\pi - \theta) = -\tan\theta$$

NEGATIVE of Angles

Mathematically Inclined

NEHA

 $\sin(-\theta) = -\sin\theta$

 $\cos(-\theta) = \cos\theta$

 $\tan(-\theta) = -\tan\theta$

NEHA MA'AM'S

Neha Agrawal Mathematically Inclined Neha Agrawal Mathematically Inclined

Mathematically

JEE 2023: TRIGONOMETRY FORMULAS with TRICKS

Factorization Formula:

Inclined Factorization Formulae are used to convert Sum and differences into Product.

•
$$\sin C + \sin D = 2 \sin \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$$

■
$$\sin C - \sin D = 2 \cos \left(\frac{C+D}{2}\right) \sin \left(\frac{C-D}{2}\right)$$

•
$$\cos C + \cos D = 2 \cos \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$$

•
$$\cos C - \cos D = -2 \sin \left(\frac{C+D}{2}\right) \sin \left(\frac{C-D}{2}\right)$$

Factorization Formula:

Defactorization Formulae are used to convert product into sum and differences

- $2 \sin A \cdot \cos B = \sin (A + B) + \sin (A B)$
- 2 cos A. sin B = sin (A + B) sin (A B)
- $2 \cos A \cdot \cos B = \cos (A + B) + \cos (A B)$
- $2 \sin A. \sin B = \cos (A B) \cos (A + B)$

Double Angle & Half angle Formula

NEHA

Mathematically Inclined

yrar	Double Angle Formulas	Half Angle Formulas	
	$\sin 2\theta = 2\sin \theta \cos \theta$	$\sin^2\theta = \frac{1-\cos 2\theta}{}$	
	$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$	2	
ylai	$=2\cos^2\theta-1$	$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}}$	K
	$=1-2\sin^2\theta$	2 1 2	
	$\tan 2\theta = \frac{2\tan \theta}{1-\tan^2 \theta}$	$\cos^2\theta = \frac{1+\cos 2\theta}{2}$	
giai	1—tan 0	$\cos \frac{\theta}{2} = \pm \sqrt{\frac{1 + \cos \theta}{1 + \cos \theta}}$	ľ
		2 V 2	

tan

 $1-\cos\theta$

NEHA

If $tan \theta = tan \alpha$

 $\Rightarrow \theta = n\pi + \alpha$

where $a \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,

 $n \in I$.

Mathematically

Inclined

Periodic Functions

- to periodic function According definition fundamental period of a function can be defined as the period of the function which are of the form, f(x+k) = f(x)
- f(x+k) = f(x), then k is known as the period of the function and the function f is known as a periodic function.

JEE 2023: TRIGONOMETRY FORMULAS with TRICKS NEHA **Periodic Functions Mathematically** Inclined **Function** Period **Function** Period $\cot x$ 2π $\sin x$ 2π $\sec x$ $\cos x$ 2π tan x $\csc x$ 2π π

Domain & Range of Trigonometric Functions

Function	Domain	Range
sin A	R	[–1, 1]
cos A	R	[-1, 1]
tan A	$R - \left[\left(2n + 1 \right) \pi / 2, n \in I \right]$	$R = (-\infty, \infty)$
cosec A	$R - [n\pi, n \in I]$	$\left(-\infty,-1\right]\cup\left[1,\infty\right)$
sec A	$R - \left\{ \left(2n+1\right)\pi / 2, n \in I \right\}$	$(-\infty,-1] \cup [1,\infty)$
cot A	$R - [n\pi, n \in I]$	$(-\infty,\infty)$

We find, $|\sin A| \le 1$, $|\cos A| \le 1$, $|\sec A| \ge 1$ or $|\sec A| \le -1$ and $|\csc A| \ge 1$ or $|\csc A| \le -1$

Agrawal Ma

Neha Agrawal N

Neha Agrawal N

Neha Agrawal N

SINE FORMULA

COSINE FORMULA

a

In any \triangle ABC, we have

Inclined

$$a^2 = b^2 + c^2 - 2bc \cos A \text{ or } \cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$b^2 = c^2 + a^2 - 2ac \cos B \text{ or } \cos B = \frac{a^2 + c^2 - b^2}{2ac}$$

$$c^2 = a^2 + b^2 - 2ab \cos C \text{ or } \cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

Some Important Identities

If
$$A+B+C=\pi$$
, then

- tanA + tanB + tanC = tanA tanB tanC
- 3. $\tan \frac{B}{2} \tan \frac{C}{2} + \tan \frac{C}{2} \tan \frac{A}{2} + \tan \frac{A}{2} \tan \frac{B}{2} = 1$

- 2. cotBcotC + cotCcotA + cotAcotB = 1
- 4. $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2}$

Neha Agrawal Mathematically Inclined

Some Important Identities

If
$$A+B+C=\pi$$
, then

$$\parallel$$
 5. $\sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C$

7.
$$\cos^2 A + \cos^2 B + \cos^2 C = 1 - 2\cos A \cos B \cos C$$

6.
$$\cos 2A + \cos 2B + \cos 2C = -1 - 4\cos A \cos B \cos C$$

8. $\sin A + \sin B + \sin C = 4\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$

9.
$$\cos A + \cos B + \cos C = 1 + 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$