

Assessment Item

Systems Analysis and Design (11727(T) 11796(A) 1.0

Information Technology 1192(T) 1193(A)

Semester 2, 2018

NAME: _____ Line: 2IPLS2

Teacher: Sanjay Sharma Due Date: 14/9/2018

TASK CRITERIA	TASK	DUE DATE	WEIGHTING
1, 2, 3 & 4	Practical Test	Week 8	20%

VET Competencies Assessed in this Item:

Code	Competency Title	Core/Elective
ICTICT207	Integrate commercial computing packages	Elective II
ICTICT203	Operate application software packages	Core II
ICTICT202	Work and communicate effectively in an ICT environment	Core II & III
ICTICT209	Interact with ICT clients	Elective II

Criteria assessed in this Item:

Students will be assessed on the degree to which they demonstrate:

- 1. knowledge, understanding, application, analysis and evaluation
- 2. planning, designing, creating and implementing
- 3. communication and interpersonal skills
- 4. flexible, adaptive and creative thinking

IMPORTANT ASSESSMENT INFORMATION

The following are important factors common to all units of study at the Canberra College. See **Staff and Student Assessment Handbook** for details.

- ATTENDANCE AND PARTICIPATION
- LATE SUBMISSION OF WORK
- COMPETENCY BASED ASSESSMENT
- RECOGNITION OF CURRENT COMPETENCIES (RCC) and PRIOR LEARNING (RPL)
- NOTIONAL ZEROS
- COMPENSATION
- CHEATING AND DISHONEST PRACTICE
- PLAGIARISM/ELECTRONIC SUBMISSION OF ASSIGNMENTS
- MODERATION PROCEDURES
- UNIT SCORE CALCULATION (where applicable)
- RIGHT TO APPEAL

Conditions for Item:

- · All work is to be an individual effort.
- You will be given 1 period to complete this test.
- You will receive NO teacher assistance.
- This is an "open computer" test, so you may use resources or programs you created or form part of your learning and notes.
- No internal documentation is required in your programs.

Aim:

• To demonstrate your ability to write a Python program on a Raspberry Pi to effectively to monitor and control senor inputs, processing and outputs through its GPIO.

TEST

- 1. Create a folder called **Systems_Test_Your_Name** (e.g. Systems_Test_Subaru_WRX) in a working folder in you Pi's. You will save all the Python programs (& pictures of circuits) required to answer the questions for this test in this folder.
- 2. Do the following:

Tertiary

Build the circuit required and then write a program on your Raspberry Pi that simulates a low light alarm:

- a. An LDR detects light that falls below a threshold If it gets too dark, an LED is turned on and STAYS
 ON (5 marks)
- b. A push button resets the system, turning the LED off until it gets dark again and the system operates as above continuously (5 marks)
- c. Use the temp / humidity sensor to print readings onto the screen, temperature in both Fahrenheit and degrees Celsius (10 marks)

Accredited

Build the circuit required and then write a program on your Raspberry Pi that simulates a flashing beacon:

- a. two LEDs turn on and stays on (5 marks)
- b. a button push makes the LEDs blink alternately, ie when one is on, the other is off (5 marks)
- c. Use the temp / humidity sensor to print readings onto the screen (10 marks)

Submission

You need to submit **ONE compressed (ZIPPED) folder only** named **Systems_Test_Your_Name** (e.g. Systems_Test_Subaru_WRX), containing all the programs and pictures at the end of the test period.

You must keep an up to date copy of your work in your h: drive at all times as well as a backup on Google Drive.

Systems Test Marking Rubric

Name:	Date:	

	Section	Total	Mark
Tertiary	 An LDR detects light that falls below a threshold – (2.5 marks) If it gets too dark, an LED is turned on and STAYS on – (2.5 marks) A push button resets the system, turning the LED off – (2.5 marks) until it gets dark again and the system operates as above continuously – (2.5 marks) humidity and temp (Fahrenheit and Celsius) data printed on the screen – (4 + 3 + 3 marks) 	5+5+10	
Accredited	 two LEDs turn on and stays on – (5 marks) a button push makes the LEDs blink alternately, ie when one is on, the other is off – (5 marks) humidity and temp data printed on the screen – (5 + 5 marks) 	5+5+5+5	
Total (T course)		20	
Total (A course)		20	

VET Competencies:

Result	Vocational co	mpetencies assessed via this task	Aspect of task addressing competency	
	BSBOHS201A	Participate in OHS processes	Proper & safe use of Robot & tools to create circuits, equipment & evacuation drills	
	ICAICT201A	Use computer operating system and hardware	Logging in correctly, starting app & interfacing computer with Robot	
	ICASA203A	Connect Hardware Peripherals	Connecting & setting up interface with IDE & Robot	
	ICAICT203A	Operate application software packages	Use of Programming IDE	
	ICAPRG301A	Apply introductory programming techniques	Programming Robot to do tasks	

Final Comment:			