Decimals

Problems about decimal numbers.

Problem 1 On the number line below, a point is marked A. Select all options which could be candidates for the value of A.

Select All Correct Answers:

- (a) 3.6278 ✓
- (b) 3.627783 ✓
- (c) 3.68
- (d) 3.62788983 ✓
- (e) 3.629

Problem 2 Select all fractions below which have terminating decimal representation.

Select All Correct Answers:

- (a) $\frac{1}{10}$ \checkmark
- (b) $\frac{1}{30}$
- (c) $\frac{1}{80}$ \checkmark
- (d) $\frac{1}{64}$ \checkmark
- (e) $\frac{1}{125}$ \checkmark

Learning outcomes:

Author(s): Bart Snapp and Brad Findell and Jenny Sheldon

Decimals

(f)
$$\frac{1}{250}$$
 \checkmark

(g)
$$\frac{1}{385}$$

$$(h) \ \frac{1}{2048} \ \checkmark$$

(i)
$$\frac{1}{4228}$$

(j)
$$\frac{1}{2^{19} \times 5^{47}} \checkmark$$

Problem 3 A harder version of the previous problem: select all fractions below which have terminating decimal representation.

Select All Correct Answers:

(a)
$$\frac{14}{10}$$
 \checkmark

(b)
$$\frac{6}{30}$$
 \checkmark

(c)
$$\frac{4}{60}$$

(d)
$$\frac{7}{98}$$

(e)
$$\frac{11}{125}$$
 \checkmark

(f)
$$\frac{3}{150}$$
 \checkmark

(g)
$$\frac{11}{385}$$

(h)
$$\frac{2}{2049}$$

(i)
$$\frac{1057}{4228}$$
 \checkmark

(j)
$$\frac{3^4 \times 7^{11} \times 19}{3^2 \times 5^{22} \times 19} \checkmark$$

Hint: Don't forget to reduce the fractions to lowest terms!

Problem 4 Give an example of an irrational number. For a challenge, don't pick π , e, or \sqrt{p} where p is prime.

Free Response: Hint: One of my favorites is 0.0100100010000100001.... This number's decimal representation is neither terminating nor repeating, though it does have a pattern!

Problem 5 Without doing the long division, after how many places would you expect $\frac{1}{47}$ to repeat?

We expect the repetition to occur after at most 46 places.

Problem 6 Without doing the long division, after how many places would you expect $\frac{3}{104}$ to repeat?

We expect the repetition to occur after at most 103 places.

Problem 7 Write each of the following decimals as a fraction using the patterns we observed in class.

(a)
$$0.\overline{4} = \boxed{\frac{4}{9}}$$

(b)
$$0.\overline{42} = \boxed{ \frac{42}{99}}$$

(c)
$$0.\overline{215} = \frac{215}{999}$$

(d)
$$0.\overline{234584} = \frac{234584}{999999}$$

Problem 8 It is true that $0.\overline{9} = 1$. What do you expect the following to be equal to?

(a)
$$1.\overline{9} = \boxed{2}$$

(b)
$$0.5\overline{9} = \boxed{0.6}$$

(c)
$$2.34\overline{9} = 2.35$$

Problem 9 Given a prime number p, we will explore a relationship between the number of decimal places in which $\frac{1}{p}$ repeats, and the smallest value of n where p divides $10^n - 1$.

Consider the case of p=3. We know that $\frac{1}{3}=0$. $\boxed{3}$, or $\frac{1}{3}$ repeats after $\boxed{1}$ decimal place. What is the smallest value of n so that $3|10^n-1$?

Hint: Choose potential values for n in an organized fashion. What is the prime factorization of $10^n - 1$?

For p = 3, we have $n = \boxed{1}$.

Problem 9.1 Consider the case of p=7. We know that $\frac{1}{7}=0$. $\boxed{142857}$, or $\frac{1}{7}$ repeats after $\boxed{6}$ places. What is the smallest value of n so that $7|10^n-1$? For p=7, we have $n=\boxed{6}$.

Problem 9.1.1 Consider the case of p=11. We know that $\frac{1}{11}=0.\overline{\boxed{09}}$, or $\frac{1}{11}$ repeats after $\boxed{2}$ places. What is the smallest value of n so that $11|10^n-1?$

For p = 11, we have $n = \boxed{2}$.

Consider the case of p=13. We know that $\frac{1}{13}=0.$ 0.076923, or $\frac{1}{13}$ repeats after 0.096923 places. What is the smallest value of n so that $13|10^n-1?$

For p = 13, we have $n = \boxed{6}$.

Consider the case of p = 37. We know that $\frac{1}{37} = 0.\overline{\boxed{027}}$, or $\frac{1}{37}$ repeats after $\boxed{3}$ places. What is the smallest value of n so that $37|10^n - 1$?

For $p = 37$, we have $n = \boxed{3}$. What pattern are you observing?	
Free Response: Hint: same as the value of n .	The number of places in the decimal's repeat is the