Advanced Game Engine Creation

3D Transformations
Lecture 4

Objectives

So far we have:

- Looked at 3D representation of points and vectors
- Introduced matrices and how to multiply them
- Drawn and manipulated OpenGL primitives
- In this lecture, we will
- Discuss how 3D transformations can be represented using matrices
- introduce homogeneous transformation matrices
- Apply matrix multiplication to transform objects in 3D space

Recall

 game world is represented in 3D space by models made up of triangles made up of vertices

Geometric transformations

- remember we keep only one copy of each model
 - Ideally centred on the origin
- a copy of the model is scaled, rotated and placed into position every frame
 - multiple copies for multiple objects
- scaling about the origin
 - multiply the coordinates of each vertex by a scale factor
- rotation about an axis
 - use trigonometry to calculate the new position of each vertex
- translation
 - add a translation vector to each coordinate

What are Translations?

- Translations move every point by the same amount
 - eg move every point 5 units 'up'
 - this is a *translation* of 5 units parallel to the y-axis
 - eg move every point 10 units to the right
 - this is a *translation* of 10 units parallel to the x-axis
 - a vector (10, 5) could be added to each point to move it 10 units to the right and 5 units up

What are Translations?

- Translations will move every point in a fixed direction given by a vector (t_x, t_v, t_z)
- we can translate a point (x_i, y_i, z_i) to a new position (x_f, y_f, z_f) by adding a vector (t_x, t_y, t_z)

$$(x_i, y_i, z_i) + (t_x, t_{y_i}, t_{z_i}) = (x_f, y_f, z_f)$$

Translation of a rectangle

Final position

Original position

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 multiplying any point(s) by this matrix leaves it unchanged (fixed)

The Identity Matrix

• recall from Tutorial 2:

[1	0	0	0]	[1	4	2	2]	Γ1	4	2	2]
0	1	0	0	3	2	-2	8	_ 3	2	-2	8
0	0	1	0	0	4 2 9 -3	1	1	- 0	9	1	1
	0	0	1	1	-3	6	2	L 1	-3	6	2

- multiplying any point by the above matrix will
 - keep the x-coordinate the same
 - reverse the sign of the y-coordinate
- as if the shape is reflected in a mirror positioned along the x-axis
- try it!

Reflection in y axis

Rotations - Conventions

- In Computing and Mathematics the notation is to take anticlockwise rotations as Positive
- So a rotation of 90⁰ means an anticlockwise rotation of 90⁰

Rotation of θ degrees about the z axis

general rotation matrix about the z axis

```
\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}
```

Rotate 90° about the z-axis

•
$$cos(90) = 0$$
 $sin(90) = 1$

$$\begin{bmatrix} \cos(90) & -\sin(90) & 0 \\ \sin(90) & \cos(90) & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix} = \begin{bmatrix} -5 \\ 2 \\ 1 \end{bmatrix}$$

Enlargement or Scaling, Scale Factor s

- An enlargement or scaling
 - centre origin, scale factor s:

Stretches, Scale Factors s_x and s_y

 A stretch of scale factor s_x parallel to the x axis, s_y parallel to the y axis and s_z parallel to the z axis is

Scaling examples

uniform scaling:

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 0 \end{bmatrix}$$

non-uniform scaling (stretch)

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 15 \\ 0 \end{bmatrix}$$

Problem

- we can translate the vertices in a model by adding the translation vector to each vertex
- we can rotate, scale or stretch the model by multiplying each vertex by the appropriate transformation matrix
- it would be nice to represent all transformations by matrices
- which we could multiply together to get a compound transformation matrix
 - and then apply it to each vertex in the model
- solution use homogeneous coordinates and matrices

Homogeneous coordinates for 3D Geometry

- Definition:
- The homogeneous coordinates of a point P in 3D space are given by

```
(x, y, z, w) where w \neq 0
```

 This corresponds to the 3D (X,Y,Z) coordinate system point:

```
(x/w,y/w,z/w)
```

Standardised Homogeneous coordinates for 3D Geometry

- For this course we will only use Standardised homogeneous coordinates
- These are homogeneous coordinates with w = 1
- So $(x, y, z, 1) \leftrightarrow (x, y, z)$
- homogeneous ↔ 3D

Standardised Homogeneous coordinates for 3D Geometry

In column vector format:

Standardised Homogeneous

Non-homogeneous

Homogeneous 4x4 Matrices

- Next consider homogeneous 4x4 matrices
- They represent geometric transformations called Affine Transformations
 - Scalings and rotations about any point
 - Reflections and shears with respect to any lines
 - Translations

General Template for a 4x4 Homogeneous Matrix

General Template for a 4x4 Homogeneous Matrix

- The 3x3 matrix M_{3x3} represents a reflection, rotation, or enlargement centred on the origin
 - its entries are identical to the 3 x 3 matrices
- In these cases t_x t_y and t_z are all set equal to ZERO

General Template for a 4x4 Homogeneous Matrix

- To represent a translation of (t_x, t_y, t_z)
 - set M_{3x3} equal to the 3x3 identity matrix
 - set t_x t_y and t_z to the required values
- Sample Templates follow

Homogeneous matrix template: Reflection in the x-axis

Homogeneous matrix template: Rotation of θ degrees about the z-axis

ĺ					ר
	cos 0	- sin 0	0	0	
	sin 0	cos 0	0	0	
	0	0	1	0	
	0	0	0	1 _	

Homogeneous matrix template: Enlargement, Scale Factor s

 An enlargement centre Origin, scale factor s is:

Homogeneous matrix template: Stretches, Scale Factors s_x s_y and s_z

 A stretch of scale factor s_x parallel to the x axis, s_y parallel to the y axis and s_z parallel to the z axis is

Homogeneous matrix template: A translation of (t_x, t_y, t_z)

The matrix is

Forming Complex Transformations

by concatenating matrix products

- The previous slides gave the 'common' cases
- More complex transformations are built up by combining transformations
 - this involves matrix multiplications (see appendix)
 - the order of the matrices is important

- **Example**: R = a rotation of 60° about the point (15,20)
- Solution:
 - we know the matrix, R60, for a rotation of 60⁰ about the origin (0,0)
 - we know the matrix, T, for a translation from (15,20) to the origin (0,0)
 - we know the matrix, T-1, for a translation from the origin (0,0) back to (15,20)

- **Example**: R = a rotation of 60° about the point (15,20)
- Solution:
 - using the three matrices on the previous slide

$$R = T^{-1} \bullet R60 \bullet T$$

- Example: E = enlargement scale factor 2, centre (-6,7)
- Solution:
 - we know the matrix, E2, for an enlargement scale factor 2 centre the origin (0,0)
 - we know the matrix, T, for a translation from (-6,7)
 to the origin (0,0)
 - we know the matrix, T-1, for a translation from the origin (0,0) back to (-6,7)

- Example: E = an enlargement scale factor 2, centre (-6,7)
- Solution:
 - using the three matrices on the previous slide

$$R = T^{-1} \bullet E2 \bullet T$$

Appendix: Matrix Multiplication

- To Form entry i, j in the Matrix Product A.B
- 1. Multiply corresponding elements in row i by corresponding elements in column j (ie first element in row i by first element in column j , ...)
- 2. Sum all the results from stage 1
- 3. Put the sum from stage 2 into entry i, j

Appendix: Matrix Multiplication - 5 Worked Example: The Entry in row2, column 3

$$\begin{bmatrix} 3 & 1 & -1 & 0 \\ 1 & 1 & -1 & 1 \\ -2 & 2 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} + & + & + & + & + \\ + & + & -2 & + \\ + & + & + & + \\ + & + & + & + \end{bmatrix}$$

row 2 by column 3

(return to main sequence)

Summary

Today we have

- Discussed how 3D transformations can be represented using matrices
- introduced homogeneous transformation matrices
- Applied matrix multiplication to transform objects in 3D space

Practical

- Apply matrix multiplication to transform objects in 3D space
- perform transformations in OpenGL

Further reading

http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/

http://matrix.reshish.com/multiplication.php