University of Dhaka Department of Computer Science and Engineering

CSE-2205: Introduction to Mechatronics

Lec-6: Temperature Sensors + Light Sensors

Mechatronics: Electronic Control Systems in Mechanical Engineering by W. Bolton

Md. Ariful Islam
Assistant Professor
Dept. of Robotics and Mechatronics Engineering
University of Dhaka

1. Thermocouple

A thermocouple works by <u>generating a small electrical voltage</u> in response to a <u>temperature difference between two junctions</u> of different metals. This phenomenon is known as the **Seebeck effect**.

Two Different Metals: A thermocouple <u>consists of two wires made of different</u> <u>metals (or alloys),</u> which are joined at two ends to form two junctions:

- **1.Hot Junction** (measuring junction): *Exposed to the temperature* being measured.
- **2.Cold Junction** (reference junction): Kept at a known or <u>constant</u> temperature, often room temperature or near it.

Seebeck Effect: When <u>two different metals</u> are joined and <u>exposed to a temperature difference</u> between the two junctions (hot and cold), a <u>voltage is generated</u>.

Voltage Measurement: The <u>generated voltage is directly related to the temperature difference</u>, so by measuring this voltage, the temperature at the hot junction can be determined.

Type J (Iron–Constantan): $lpha \approx 52~\mu {
m V/^{\circ}C}$ Type K (Chromel–Alumel): $lpha \approx 41~\mu {
m V/^{\circ}C}$ Wire Type A $V = \alpha~\Delta T$

lpha is the **Seebeck coefficient** for the specific pair of metals (measured in volts per degree Celsius or $V/^{\circ}C$).

 $\Delta T = T_{hot} - T_{cold}$ is the temperature difference between the hot and cold junctions.

A Type K thermocouple with a Seebeck coefficient of $41\,\mu\mathrm{V/^\circ C}$ is used to measure the temperature difference between two junctions. If the temperature at the hot junction is $250^\circ\mathrm{C}$ and the cold (reference) junction is at $25^\circ\mathrm{C}$, calculate the voltage output of the thermocouple.

Determine the Temperature Difference:

$$\Delta T = T_{hot} - T_{cold} = 250^{\circ}\mathrm{C} - 25^{\circ}\mathrm{C} = 225^{\circ}\mathrm{C}$$

Calculate the Voltage Output: Using the formula $V=\alpha\cdot \Delta T$, where $\alpha=41\,\mu{
m V}/{
m ^{\circ}C}$:

$$V=41\,\mu\mathrm{V}/\mathrm{^{\circ}C} imes225\mathrm{^{\circ}C}$$

$$V=9.225\,\mathrm{mV}$$

1.1 Applications of Thermocouples

1.1.1 Thermocouples monitor and control *furnaces, reactors, and kilns* to ensure optimal operating temperatures.

furnaces

reactors

kilns

1.1.2 Thermocouples ensure food reaches <u>safe temperatures to avoid bacterial</u> <u>contamination</u> and monitor storage conditions.

1.1.3 Thermocouples monitor <u>boiler and turbine temperatures</u> and ensure heat exchangers operate efficiently.

2. Thermistors

Thermistors are <u>temperature-sensitive resistors</u> made primarily from ceramic or polymer materials. Their <u>resistance changes significantly with temperature</u>, and they come in two main types based on their resistance-temperature behavior:

NTC (Negative Temperature Coefficient): <u>Resistance decreases</u> as temperature increases.

PTC (Positive Temperature Coefficient): <u>Resistance increases</u> as temperature increases.

2.1 PTC Thermistor

In a Positive Temperature Coefficient (PTC) thermistor, the <u>resistance increases</u> <u>as the temperature rises</u>.

This behavior is <u>due to a phase transition in the thermistor material</u> that occurs at a specific temperature.

Phase Transition:

When the temperature reaches a certain threshold (often called the "Curie temperature"), the material <u>undergoes a change in its internal structure</u> or <u>molecular arrangement</u>.

This phase transition <u>reduces the ability of electrons to move freely</u>, causing a sharp increase in resistance.

Reduced Conductivity:

Above the Curie temperature, the material <u>becomes less conductive</u> because the rearranged structure obstructs the flow of electrons. This <u>limits the current</u> <u>through the thermistor</u>, making it more resistant as the temperature continues to rise.

Applications:

This characteristic is useful in applications where <u>over-current protection</u> or <u>temperature-based circuit control</u> is needed.

if a circuit starts to overheat, a PTC thermistor's increasing resistance will limit current flow, effectively acting as a <u>self-regulating safeguard</u> against overheating.

15

2.2 NTC Thermistor

In an NTC thermistor, for example, as <u>temperature increases</u>, the thermistor's resistance decreases.

This is due to <u>increased conductivity as more charge carriers (like electrons) are released</u> within the material at higher temperatures.

Applications:

NTC thermistors are commonly used in applications such as <u>temperature sensing</u> (e.g., <u>digital thermometers</u>).

Light Sensors

1. Light Sensors

Light sensors are devices that <u>detect and measure light intensity</u>, converting it into an <u>electrical signal for further processing</u>.

Light Dependent Resistor (LDR)

1.1 Photovoltaic Sensors (Solar Cells)

Made from semiconductor materials, typically silicon, that *generate voltage upon exposure to light*.

Photon Absorption:

When sunlight (or other light sources) <u>strikes the surface of a solar cell</u>, photons (light particles) <u>penetrate the semiconductor material</u>, usually silicon.

Electron Excitation:

The energy from the photons <u>excites electrons</u> in the silicon, <u>freeing them from</u> their atomic bonds.

Creation of Electron-Hole Pairs:

This excitation *generates electron-hole pairs*—free electrons and positive holes.

These pairs are <u>critical for current flow within the cell</u>.

Electric Field and Current Flow:

The solar cell has a <u>built-in electric field due to the p-n junction</u> (where positively and negatively doped silicon layers meet).

This field *pushes the free electrons towards the negative layer* and the *holes towards the positive layer*, generating a flow of electric current.

External Circuit:

When connected to an external circuit, the <u>flow of electrons through this circuit</u> <u>creates usable electrical power</u>, which can drive loads or charge batteries.

$$I_{ph} = k \cdot E$$

$$I_{ph}$$
 = Photocurrent (A)

k = Proportionality constant depending on the cell material and design

 $E = \text{Light intensity (W/m}^2)$

I-V (Current-Voltage) Characteristics

$$I=I_{ph}-I_0\left(e^{rac{qV}{kT}}-1
ight)$$

I = Current (A)

 I_0 = Reverse saturation current of the diode (A)

 $q = \text{Charge of an electron } (1.602 \times 10^{-19} \, \text{C})$

V = Voltage across the cell (V)

 $k = \text{Boltzmann constant } (1.381 \times 10^{-23} \text{ J/K})$

T = Absolute temperature (K)

Open-Circuit Voltage (Voc):

The open-circuit voltage Voc is <u>the maximum voltage</u> available from a solar cell when there is <u>no external load connected</u> (i.e., when the circuit is open). At this point, <u>no current flows through the cell</u>, and Voc is measured across the terminals.

Short-Circuit Current (Isc):

The short-circuit current *Isc* is the <u>maximum current</u> that flows through the solar cell <u>when its terminals are shorted</u> (i.e., the <u>output voltage is zero</u>).

Maximum Power Point (MPP):

The maximum power Pmax output by the cell occurs at the maximum power point, where both voltage Vmp and current Imp are optimized.

$$P_{max} = V_{mp} \cdot I_{mp}$$

Fill Factor (FF):

The fill factor is a <u>measure of the cell's efficiency</u> in <u>converting solar energy to electrical energy</u>. It's defined as the ratio of maximum power to the product of open-circuit voltage *Voc* and short-circuit current *Isc*.

$$FF = rac{V_{mp} \cdot I_{mp}}{V_{oc} \cdot I_{sc}}$$

Efficiency:

The overall efficiency η of a solar cell is the ratio of output electrical power to input light power.

$$\eta = rac{P_{max}}{E \cdot A} imes 100\%$$

 η = Efficiency (%)

E = Incident light intensity (W/m²)

A = Surface area of the solar cell (m²)

Problem:

A solar cell is tested under standard conditions (light intensity $E=1000~{
m W/m}^2$) with the following parameters:

Short-circuit current $I_{sc}=5~\mathrm{A}$

Open-circuit voltage $V_{oc}=0.6~
m V$

Maximum power point (MPP):

Voltage at MPP $V_{mp}=0.5~
m V$

Current at MPP $I_{mp}=4.5~\mathrm{A}$

Surface area of the solar cell $A=0.01~\mathrm{m}^2$

- 1. The maximum power P_{max} .
- 2. The fill factor FF.
- 3. The **efficiency** η of the solar cell.

Calculate Maximum Power (P_{max}): The maximum power P_{max} is found at the MPP, using V_{mp} and I_{mp} :

$$P_{max} = V_{mp} imes I_{mp}$$
 $P_{max} = 0.5 ext{ V} imes 4.5 ext{ A} = 2.25 ext{ W}$

Calculate Fill Factor (FF): The fill factor FF is the ratio of P_{max} to the product of V_{oc} and I_{sc} :

$$FF = rac{P_{max}}{V_{oc} imes I_{sc}} \ FF = rac{2.25 ext{ W}}{0.6 ext{ V} imes 5 ext{ A}} = rac{2.25}{3} = 0.75$$

Calculate Efficiency (η): The efficiency η is the ratio of the maximum power output to the power of the incident light on the solar cell:

$$\eta = rac{P_{max}}{E imes A} imes 100\%$$
 $\eta = rac{2.25 ext{ W}}{1000 ext{ W/m}^2 imes 0.01 ext{ m}^2} imes 100\%$ $\eta = rac{2.25}{10} imes 100\% = 22.5\%$