第 4 次作业

Log Creative

March 29, 2020

第二章

7. 判断下列推理式是否正确?

(10)
$$((P \land Q) \to R) \land ((P \lor Q) \to \neg R) \Rightarrow P \land Q \land R$$

解. 错误。理由:

$$\begin{split} ((P \land Q) \to R) \land ((P \lor Q) \to \neg R) \to P \land Q \land R \\ &= \neg ((\neg (P \land Q) \lor R) \land (\neg (P \lor Q) \lor \neg R)) \lor (P \land Q \land R) \\ &= ((P \land Q) \land \neg R) \lor ((P \lor Q) \land R) \lor (P \land Q \land R) \\ &= (P \land Q \land \neg R) \lor (P \land R) \lor (Q \land R) \lor (P \land Q \land R) \\ &= ((P \land Q) \land (\neg R \lor R)) \lor (P \land R) \lor (Q \land R) \\ &= (P \land Q) \lor (P \land R) \lor (Q \land R) \end{split}$$

当 $P=Q={\rm Fpt}$,该式为 ${\rm F}$ 。故根据 $P\to Q$ 为真与 $P\Rightarrow Q$ 等价的关系可以得到推理式错误。

(11)
$$P \to Q \Rightarrow (P \to R) \to (Q \to R)$$

解. 错误。理由:

$$\begin{split} (P \to Q) \to & ((P \to R) \to (Q \to R)) \\ = & \neg (\neg P \lor Q) \lor (\neg (\neg P \lor R) \lor (\neg Q \lor R)) \\ = & (P \land \neg Q) \lor (P \land \neg R) \lor (\neg Q \lor R) \\ = & \neg Q \lor (P \land \neg R) \lor R \\ = & \neg Q \lor P \lor R \neq \mathbf{T} \end{split}$$

8. 使用推理规则证明

(4)
$$P \lor Q \to R \land S, S \lor E \to U \Rightarrow P \to U$$

证明.

$$P \lor Q \to R \land S$$
 (前提引入) (1a)
 P (附加前提引入) (1b)
 $R \land S$ (分离) (1c)
 S (合取) (1d)
 $S \lor E \to U$ (前提引入) (1e)
 U (分离) (1f)
 $P \to U$ ((1b)和(1f)条件证明规则) (1g)

(5) $\neg R \lor S, S \to Q, \neg Q \Rightarrow Q \leftrightarrow R$ 证明.

$$S \to Q$$
 (前提引入) (2a)
 $\neg Q \to \neg S$ (置换) (2b)
 $\neg Q$ (前提引入) (2c)
 $\neg S$ (分离) (2d)
 $\neg R \lor S$ (前提引入) (2e)
 $\neg S \to \neg R$ (置换) (2f)
 $\neg R$ (分离) (2g)
 $Q \leftrightarrow R$ ((2c)和(2g)条件证明规则) (2h)

(6) $\neg Q \lor S, (E \to \neg U) \to \neg S \Rightarrow Q \to E$ 证明.

$$\neg Q \lor S$$
 (前提引入) (3a) $Q \to S$ (置换) (3b) Q (附加前提引入) (3c) S (分离) (3d) $(E \to \neg U) \to \neg S$ (前提引入) (3e) $S \to \neg (E \to \neg U)$ (置换) (3f) $\neg (E \to \neg U)$ (分离) (3g) $E \land U$ (置换) (3h) E (合取) (3i) $Q \to E$ ((3c)和(3i)条件证明规则) (3j)

(补充) $P \to (Q \to R), Q \to (R \to S) \Rightarrow P \to (R \to S)$

证明.

$$P \to (Q \to R)$$
 (前提引入) (4a)
 P (附加前提引入) (4b)
 $Q \to R$ (分离) (4c)

$$Q \to (R \to S) \tag{前提引入}$$

$$(Q \to R) \to (R \to S) \tag{置换}$$

$$R \to S$$
 (分离)

$$P \to (R \to S)$$
 ((4b)和(4f) 条件证明规则) (4g)

9. 证明下列推理关系:

(1) 在大城市球赛中. 如果北京队第三, 那么如果上海队第二, 那么天津队第四. 沈阳队不是第一或北京队第三. 上海队第二. 从而知, 如果沈阳队第一, 那么天津队第四.

证明. 令: A_1 =沈阳队第一, A_2 =上海队第二, A_3 =北京队第三, A_4 =天津队第四。则原命题可以陈述为

$$A_3 \rightarrow (A_2 \rightarrow A_4), \neg A_1 \lor A_3, A_2 \Rightarrow A_1 \rightarrow A_4$$

$\neg A_1 \lor A_3$	(前提引入)	(5a)
$A_1 \to A_3$	(置换)	(5b)
A_1	(附加前提引入)	(5c)
A_3	(分离)	(5d)
$A_3 \to (A_2 \to A_4)$	(前提引入)	(5e)
$A_2 \to A_4$	(分离)	(5f)

$$A_2$$
 (前提引入) (5g)

$$A_4$$
 (分离) (5h)

$$A_1 \rightarrow A_4$$
 ((5c)和(5h) 条件证明规则) (5i)

12. 利用归结法证明

(1) $(P \lor Q) \land (P \to R) \land (Q \to R) \Rightarrow R$

3

证明.

$$(P \lor Q) \land (P \to R) \land (Q \to R) \land \neg R$$

=
$$(P \lor Q) \land (\neg P \lor R) \land (\neg Q \lor R) \land \neg R$$

建立子句集 $S = \{P \lor Q, \neg P \lor R, \neg Q \lor R, \neg R\}$

$$P \lor Q$$
 (6a) $\neg P \lor R$ (6b) $\neg Q \lor R$ (6c) $\neg R$ (6d) $Q \lor R$ (6d) 知所) (6e) 紹介 (6e) 知所) (6f) 口 ((6e)和(6f) 知所) (6g)

第四章

- 1. 判断下列各式是否合式公式
 - (1) $P(x) \lor (\forall x)Q(x)$ **解.** 不是。同一变量两边辖域不同。
 - (2) $(\forall x)(P(x) \land Q(x))$ 解. 是。
 - (4) $(\exists x)P(y,z)$ **解.** 是。
 - (6) $(\forall x)(P(x) \land R(x)) \rightarrow ((\forall x)P(x) \land Q(x))$ **解.** 不是。右侧的同一变量两侧辖域不同。
 - (8) $(\exists x)((\forall y)P(y) \to Q(x,y))$ **解.** 不是。 $(\forall y)P(y) \to Q(x,y)$ 内y的辖域不同。
 - (9) $(\exists x)(\exists y)(P(x,y,z) \to S(u,v))$ 解. 是。
- 2. 作如何的具体设定下列公式方为命题
 - (3) $(\forall x)(\exists y)P(x, f(y, a)) \land Q(z)$ **解.** 当且仅当x,y,a,z取为常数,f是常函数,P,Q为谓词常量。
- 3. 指出下列公式中的自由变元和约束变元,并指出各量词的辖域

- (2) $(\forall x)(P(x) \land (\exists y)Q(y)) \land ((\forall x)P(x) \rightarrow Q(z))$ **解.** z是自由变元, x, y是约束变元。 $(\forall x)(P(x) \land (\exists y)Q(y)), P(x) \land (\exists y)Q(y)$ 是x的辖域。 $(\exists y)Q(y), Q(y)$ 是y的辖域。 $(\forall x)P(x), P(x)$ 是x的辖域。
- (3) $(\forall x)(P(x) \leftrightarrow Q(x)) \land (\exists y)R(y) \land S(z)$ **解.** z是自由变元, x,y是约束变元。 $(\forall x)(P(x) \leftrightarrow Q(x)),P(x) \leftrightarrow Q(x)$ 是x的辖域。 $(\exists y)R(y),R(y)$ 是y的辖域。

4. 求下列各式的真值

$$\mathbf{M}$$
. $P = T$

$$(\exists x)(P \to Q(x)) = T(因为论域中有满足x \le 3的数字, T \to T = T)$$

$$R(a) = F(因为3 \ge 5)$$

$$(\exists x)(P \to Q(x)) \land R(a) = F$$