TD 6 : Primitives et équations différentielles

Primitives et intégration :

Exercice 1. (*)

Calculer les primitives des fonctions suivantes

1.
$$x \mapsto e^x \cos x$$

3.
$$x \mapsto x\sqrt[3]{1+x}$$

2.
$$x \mapsto \sqrt{e^x - 1}$$

4.
$$x \mapsto e^{ax} \sin bx$$

Exercice 2. (**)

Calculer les intégrales suivantes :

1.
$$\int_0^1 x \tan(x^2) dx$$

1.
$$\int_0^1 x \tan(x^2) dx$$
 2. $\int_0^1 \sqrt{1 - y^2} dy$

Exercice 3. (**)

Calculer les intégrales suivantes :

1.
$$\int_0^1 \frac{dt}{1+e^t}$$
 en posant $x = e^t$;

2.
$$\int_{1}^{3} \frac{\sqrt{t}}{t+1} dt$$
 en posant $x = \sqrt{t}$;

3.
$$\int_{-1}^{1} \sqrt{1 - t^2} dt$$
 en posant $t = \sin \theta$.

Exercice 4. (**)

1. Calculer
$$\int_0^2 \frac{2u}{\sqrt{1+u}} du$$
.

2. En déduire
$$\int_0^3 \frac{dt}{\sqrt{1+\sqrt{1+t}}}.$$

Exercice 5. (**)

Calculer les intégrales suivantes :

$$\int_0^{\pi/4} \frac{\sin^3(t)}{1 + \cos^2 t} dt \qquad \int_{\pi/3}^{\pi/2} \frac{dx}{\sin x}$$

$$\int_0^{\pi/3} (1 + \cos(x)) \tan(x) dx.$$

Exercice 6. (**)

Calculer les intégrales suivantes :

$$\int_0^{\pi/4} \frac{\tan x}{\sqrt{2}\cos x + 2\sin^2 x} dx \qquad \int_0^{\pi/2} \frac{dx}{2 + \sin x}.$$

Exercice 7. (*)

Déterminer une primitive des fonctions suivantes :

$$x \mapsto \arctan(x)$$
 $x \mapsto (\ln x)^2$ $x \mapsto \sin(\ln x)$.

Exercice 8. (**)

Calculer les intégrales suivantes :

$$I = \int_1^2 \frac{\ln(1+t)}{t^2} dt \qquad J = \int_0^1 x(\arctan x)^2 dx$$
$$K = \int_0^1 \frac{x \ln x}{(x^2+1)^2} dx$$

Exercice 9. (**)

Soient $(\alpha, \beta, n) \in \mathbb{R}^2 \times \mathbb{N}$. Calculer

$$\int_{\alpha}^{\beta} (t-\alpha)^n (t-\beta)^n dt.$$

Exercice 10. (***)

Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^{\frac{\pi}{2}} \cos^n(t) dt$.

- 1. Calculer I_0 et I_1
- 2. Pour tout $n \in \mathbb{N}$, trouver une relation entre I_{n+2} et I_n .
- 3. En déduire que pour tout $p \in \mathbb{N}$:

$$I_{2p} = \frac{(2p)!}{(2^p p!)^2} \cdot \frac{\pi}{2}$$
 $I_{2p+1} = \frac{(2^p p!)^2}{(2p+1)!}$

Équations différentielles linéaires d'ordre 1 :

Exercice 11. (*)

La fonction $x \mapsto \arccos x$ est-elle solution de

$$y' + \frac{1}{\sqrt{1 - x^2}}y = 0$$

Exercice 12. (*)

Résoudre l'équation y' – $\arctan(x)y = 0$.

Exercice 13. (*)

Résoudre $y'(x) - y(x) = x^2 - 1$ avec la condition initiale $y(0) = \alpha$ en cherchant une solution polynomiale $ax^2 + bx + c$.

Exercice 14. (**)

Existe-t-il une fonction bornée définie sur R^{+*} solution de l'équation $y' + y = \ln x$?

Exercice 15. (**)

Résoudre $y'(x) - y(x) = e^{-2x}$ avec la condition initiale y(0) = a par la méthode de variation de la constante.

Exercice 16. (**)

Résoudre les équations d'ordre 1 suivantes :

1.
$$y' - 3y = 2e^{3x}$$
;

1.
$$y' - 3y = 2e^{3x}$$
; 2. $y' - y = x + e^x$;

Équations différentielles linéaires d'ordre 2 à coefficients constants :

Exercice 17. (**)

Résoudre les équations différentielles suivantes :

- 1. $y'' y = e^{2x} e^x$:
- 2. $y'' + y' + y = \cos(x)$;
- 3. $y'' 2y' + y = \sin^2 x$;
- 4. $y'' + y' + y = e^x \cos(x)$.

Exercice 18. (**)

Déterminer les fonctions $y, z : \mathbb{R} \to \mathbb{R}$ dérivables et qui vérifient le système suivant :

$$\begin{cases} y' - y &= z \\ z' + z &= 3y \end{cases}$$

Exercice 19. (**)

Résoudre l'équation y''' - 2y'' + y' - 2y = 0 en se ramenant à une équation d'ordre 2.

Exercice 20. (**)

On cherche à résoudre sur \mathbb{R}_+^* l'équation différentielle:

$$x^2y'' - 3xy' + 4y = 0.$$
 (E)

- 1. Cette équation est-elle linéaire?
- 2. Analyse. Soit y une solution de (E) sur \mathbb{R}_+^* . Pour $t \in \mathbb{R}$, on pose $z(t) = y(e^t)$.
 - (a) Calculer pour $t \in \mathbb{R}$, z'(t) et z''(t).
 - (b) En déduire que z vérifie une équation différentielle linéaire d'ordre 2 à coefficients constants que l'on précisera (on pourra poser $x = e^t$ dans (E)).
 - (c) Résoudre l'équation différentielle trouvée à la question précédente.
 - (d) En déduire les expressions possibles de y.
- 3. Synthèse. Vérifier que, réciproquement, les fonctions trouvées sont bien toutes les solutions de (E) et conclure.

Groupe IPESUP Année 2022-2023

Exercices complémentaires:

Exercice 21. (***)

Soit $a \in \mathbb{R}$. Trouver les fonctions f de classe \mathscr{C}^2 vérifiant f'(x) = f(a-x) pour tout $x \in \mathbb{R}$.

Exercice 22. (***) (Lemme de Gronwall)

Soit $f: \mathbb{R}^+ \to \mathbb{R}, \ g: \mathbb{R}^+ \to \mathbb{R}^+$ continues et $A \geq 0$ tels que

$$\forall x \in \mathbb{R}^{*+}, \quad f(x) \le A + \int_0^x f(t)g(t)dt.$$

Montrer que

$$\forall x \in \mathbb{R}^{*+}, \quad f(x) \le A \exp\left(\int_0^x g(t)dt\right).$$

Exercice 23. (***) (Oscillateurs linéaires)

Un oscillateur linéaire (ou harmonique) est un système gouverné par une équation différentielle de la forme

(E)
$$y'' + 2\lambda y' + \omega_0^2 y = e(x),$$

avec $\lambda \ge 0$ et $\omega_0 > 0$. Le second membre est appelé excitation du système ; si l'équation est homogène, le système est appelé oscillateur libre. Le terme $2\lambda y'$ est le terme d'amortissement.

L'objectif est désormais de décrire quelques oscillateurs linéaires de conditions initiales

$$y(0) = a$$
 et $y'(0) = 0$.

- 1. Résoudre (E) associée aux conditions initiales données dans le cas d'un oscillateur libre (e = 0), non amorti $(\lambda = 0)$.
- 2. Résoudre (E) associée aux conditions initiales données dans le cas d'un oscillateur libre (e = 0), amorti. On introduit quelquefois la quantité $Q = \frac{\omega_0}{2\lambda}$ appelée facteur de qualité; on remarque que Q est décroissant en λ donc qu'un fort taux d'amortissement implique un faible facteur de qualité.
- 3. Résoudre (E) associée aux conditions initiales données dans le cas d'un oscillateur avec une excitation sinusoïdale $e(x) = \cos(\omega x)$ avec $\omega \neq 0$.

Chercher une solution particulière sous la forme d'un polynôme trigonométrique