

L3G4200D

MEMS motion sensor: three-axis digital output gyroscope

Preliminary data

Features

- Three selectable full scales (250/500/2000 dps)
- I²C/SPI digital output interface
- 16 bit-rate value data output
- 8-bit temperature data output
- Two digital output lines (interrupt and data ready)
- Integrated low- and high-pass filters with userselectable bandwidth
- Embedded self-test
- Wide supply voltage: 2.4 V to 3.6 V
- Low voltage-compatible IOs (1.8 V)
- Embedded power-down and sleep mode
- Embedded temperature sensor
- 96 levels of 16-bit data output (FIFO)
- High shock survivability
- Extended operating temperature range (-40 °C to +85 °C)
- ECOPACK[®] RoHS and "Green" compliant

Applications

- Gaming and virtual reality input devices
- Motion control with MMI (man-machine interface)
- GPS navigation systems
- Appliances and robotics

Description

The L3G4200D is a low-power three-axis angular rate sensor.

It includes a sensing element and an IC interface capable of providing the measured angular rate to the external world through a digital interface (I²C/SPI).

The sensing element is manufactured using a dedicated micro-machining process developed by STMicroelectronics to produce inertial sensors and actuators on silicon wafers.

The IC interface is manufactured using a CMOS process that allows a high level of integration to design a dedicated circuit which is trimmed to better match the sensing element characteristics.

The L3G4200D has a full scale of ±250/±500/ ±2000 dps and is capable of measuring rates with a user-selectable bandwidth.

The L3G4200D is available in a plastic land grid array (LGA) package and can operate within a temperature range of -40 °C to +85 °C.

Table 1. Device summary

Order code Temperature range (°C)		Package	Packing	
L3G4200D	-40 to +85	LGA-16 (4x4x1.1 mm)	Tray	
L3G4200DTR	-40 to +85	LGA-16 (4x4x1.1 mm)	Tape and reel	

September 2010 Doc ID 17116 Rev 2 1/29

Contents L3G4200D

Contents

1	Bloc	Block diagram and pin description 6			
	1.1	Pin description			
2	Mec	hanical and electrical characteristics			
	2.1	Mechanical characteristics			
	2.2	Electrical characteristics			
	2.3	Temperature sensor characteristics			
	2.4	Communication interface characteristics			
		2.4.1 SPI - serial peripheral interface			
		2.4.2 I2C - inter IC control interface			
	2.5	Absolute maximum ratings			
	2.6	Terminology 14			
		2.6.1 Sensitivity			
		2.6.2 Zero-rate level			
		2.6.3 Self-test			
	2.7	Soldering information			
3	Mair	n digital blocks15			
	3.1	Block diagram			
	3.2	FIFO			
		3.2.1 Bypass mode			
		3.2.2 FIFO mode			
		3.2.3 Stream mode			
		3.2.4 Bypass-to-stream mode			
		3.2.5 Stream-to-FIFO mode			
		3.2.6 Retrieve data from FIFO			
4	Арр	lication hints			
5	Digit	tal interfaces			
	5.1	I2C serial interface			
		5.1.1 I2C operation			
	5.2	SPI bus interface			

L3G4200D		Contents
	5.2.1	SPI read
	5.2.2	SPI write
	5.2.3	SPI read in 3-wire mode
6	Package inf	ormation
7	Revision his	story

List of tables L3G4200D

List of tables

Table 1.	Device summary	1
Table 2.	Pin description	
Table 3.	Filter values	8
Table 4.	Mechanical characteristics @ Vdd = 3.0 V, T = 25 °C, unless otherwise noted	9
Table 5.	Electrical characteristics @ Vdd =3.0 V, T=25 °C, unless otherwise noted	10
Table 6.	Temp. sensor characteristics @ Vdd =3.0 V, T=25 °C, unless otherwise noted	10
Table 7.	SPI slave timing values	11
Table 8.	I2C slave timing values (TBC)	12
Table 9.	Absolute maximum ratings	13
Table 10.	PLL low-pass filter component values	19
Table 11.	Serial interface pin description	20
Table 12.	I2C terminology	20
Table 13.	SAD+read/write patterns	21
Table 14.	Transfer when master is writing one byte to slave	21
Table 15.	Transfer when master is writing multiple bytes to slave	22
Table 16.	Transfer when master is receiving (reading) one byte of data from slave	22
Table 17.	Transfer when master is receiving (reading) multiple bytes of data from slave	22
Tahla 18	Document revision history	28

L3G4200D List of figures

List of figures

Figure 1.	Block diagram	6
Figure 2.	Pin connection	6
Figure 3.	L3G4200D external low-pass filter values	7
Figure 4.	SPI slave timing diagram	11
Figure 5.	I2C slave timing diagram	12
Figure 6.	Block diagram	15
Figure 7.	Bypass mode	16
Figure 8.	FIFO mode	
Figure 9.	Stream mode	17
Figure 10.	Bypass-to-stream mode	17
Figure 11.	Trigger stream mode	18
Figure 12.	L3G4200D electrical connections and external component values	19
Figure 13.	Read and write protocol	23
Figure 14.	SPI read protocol	23
Figure 15.	Multiple byte SPI read protocol (2-byte example)	24
Figure 16.	SPI write protocol	24
Figure 17.	Multiple byte SPI write protocol (2-byte example)	25
Figure 18.	SPI read protocol in 3-wire mode	
Figure 19.	LGA-16: mechanical data and package dimensions	27

1 Block diagram and pin description

Figure 1. Block diagram

The vibration of the structure is maintained by drive circuitry in a feedback loop. The sensing signal is filtered and appears as a digital signal at the output.

1.1 Pin description

Figure 2. Pin connection

6/29 Doc ID 17116 Rev 2

Table 2. Pin description

Pin#	Name	Function
1	Vdd_IO	Power supply for I/O pins
2	SCL SPC	I ² C serial clock (SCL) SPI serial port clock (SPC)
3	SDA SDI SDO	I ² C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)
4	SDO SA0	SPI serial data output (SDO) I ² C least significant bit of the device address (SA0)
5	CS	SPI enable I ² C/SPI mode selection (1:I ² C mode; 0: SPI enabled)
6	DRDY/INT2	Data ready/FIFO interrupt
7	INT1	Programmable interrupt
8	Reserved	Connect to GND
9	Reserved	Connect to GND
10	Reserved	Connect to GND
11	Reserved	Connect to GND
12	Reserved	Connect to GND
13	GND	0 V supply
14	PLLFILT	Phase-locked loop filter (see Figure 3)
15	Reserved	Connect to Vdd
16	Vdd	Power supply

Figure 3. L3G4200D external low-pass filter values (a)

Doc ID 17116 Rev 2

a. Pin 14 PLLFILT maximum voltage level is equal to Vdd.

Table 3. Filter values

Parameter	Typical value
C1	10 nF
C2	470 nF
R2	10 kΩ

2 Mechanical and electrical characteristics

2.1 Mechanical characteristics

Table 4. Mechanical characteristics @ Vdd = 3.0 V, T = 25 °C, unless otherwise noted⁽¹⁾

Symbol	Parameter	Test condition	Min.	Typ. ⁽²⁾	Max.	Unit
	Measurement range			±250		
FS		User-selectable		±500		dps
				±2000		
		FS = 250 dps		8.75		
So	Sensitivity	FS = 500 dps		17.50		mdps/digit
		FS = 2000 dps		70		
SoDr	Sensitivity change vs. temperature	From -40 °C to +85 °C		±2		%
	Digital zero-rate level	FS = 250 dps		±10		dps
DVoff		FS = 500 dps		±15		
		FS = 2000 dps		±75		
OffDr	Zero-rate level change	FS = 250 dps		±0.03		dps/°C
Olibi	vs. temperature ⁽³⁾	FS = 2000 dps		±0.04		dps/°C
NL	Non linearity ⁽⁴⁾	Best fit straight line		0.2		% FS
		FS = 250 dps		130		
DST	Self-test output change	FS = 500 dps		200		dps
		FS = 2000 dps		530		
Rn	Rate noise density	BW = 40 Hz		0.03		dps/
ODR	Digital output data rate			100/200/ 400/800		Hz
Тор	Operating temperature range		-40		+85	°C

^{1.} The product is factory calibrated at 3.0 V. The operational power supply range is specified in *Table 5*.

^{2.} Typical specifications are not guaranteed.

^{3.} Min/max values have been estimated based on the measurements of the current gyros in production.

^{4.} Guaranteed by design.

2.2 Electrical characteristics

Table 5. Electrical characteristics @ Vdd =3.0 V, T=25 °C, unless otherwise noted⁽¹⁾

Symbol	Parameter	Test condition	Min.	Typ. ⁽²⁾	Max.	Unit
Vdd	Supply voltage		2.4	3.0	3.6	V
Vdd_IO	I/O pins supply voltage ⁽³⁾		1.71		Vdd+0.1	V
ldd	Supply current			6.1		mA
IddSL	Supply current in sleep mode ⁽⁴⁾	Selectable by digital interface		1.5		mA
IddPdn	Supply current in power-down mode	Selectable by digital interface		5		μΑ
Тор	Operating temperature range		-40		+85	°C

^{1.} The product is factory calibrated at 3.0 V.

2.3 Temperature sensor characteristics

Table 6. Temp. sensor characteristics @ Vdd =3.0 V, T=25 °C, unless otherwise noted⁽¹⁾

Symbol	Parameter	Test condition	Min.	Typ. ⁽²⁾	Max.	Unit
TSDr	Temperature sensor output change vs. temperature			-1		°C/digit
TODR	Temperature refresh rate			1		Hz
Тор	Operating temperature range		-40		+85	°C

^{1.} The product is factory calibrated at 3.0 $\ensuremath{\text{V}}$.

^{2.} Typical specifications are not guaranteed.

^{3.} It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses, in this condition the measurement chain is powered off.

^{4.} Sleep mode introduces a faster turn-on time compared to power-down mode.

^{2.} Typical specifications are not guaranteed.

2.4 Communication interface characteristics

2.4.1 SPI - serial peripheral interface

Subject to general operating conditions for Vdd and Top.

Table 7. SPI slave timing values

Symbol	Parameter	Valu	Unit	
	Parameter	Min.	Max.	Onit
tc(SPC)	SPI clock cycle	100		ns
fc(SPC)	SPI clock frequency		10	MHz
tsu(CS)	CS setup time	5		
th(CS)	CS hold time	8		
tsu(SI)	SDI input setup time	5		
th(SI)	SDI input hold time	15		ns
tv(SO)	SDO valid output time		50	
th(SO)	SDO output hold time	6		
tdis(SO)	SDO output disable time		50	

^{1.} Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results; not tested in production.

Figure 4. SPI slave timing diagram^(b)

b. Measurement points are done at 0.2-Vdd_IO and 0.8-Vdd_IO, for both input and output ports.

Doc ID 17116 Rev 2

2.4.2 I²C - inter IC control interface

Subject to general operating conditions for Vdd and Top.

Table 8. I²C slave timing values (TBC)

Cumbal	Parameter	I ² C standard mode ⁽¹⁾		I ² C fast mode ⁽¹⁾		Unit
Symbol	Farameter	Min	Max	Min	Max	Unit
f _(SCL)	SCL clock frequency	0	100	0	400	kHz
t _{w(SCLL)}	SCL clock low time	4.7		1.3		
t _{w(SCLH)}	SCL clock high time	4.0		0.6		– µs
t _{su(SDA)}	SDA setup time	250		100		ns
t _{h(SDA)}	SDA data hold time	0	3.45	0	0.9	μs
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time		1000	20 + 0.1C _b ⁽²⁾	300	
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time		300	20 + 0.1C _b ⁽²⁾	300	ns
t _{h(ST)}	START condition hold time	4		0.6		
t _{su(SR)}	Repeated START condition setup time	4.7		0.6		Ī
t _{su(SP)}	STOP condition setup time	4		0.6		μs
t _{w(SP:SR)}	Bus free time between STOP and START condition	4.7		1.3		

- 1. Data based on standard I²C protocol requirement; not tested in production.
- 2. Cb = total capacitance of one bus line, in pF.

Figure 5. I²C slave timing diagram (c)

c. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.

Absolute maximum ratings 2.5

Any stress above that listed as "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 9. **Absolute maximum ratings**

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 4.8	V
T _{STG}	Storage temperature range	-40 to +125	°C
Sg	Acceleration g for 0.1 ms	10,000	g
ESD	Electrostatic discharge protection	2 (HBM)	kV

This is a mechanical shock sensitive device, improper handling can cause permanent damage to the part

This is an ESD sensitive device, improper handling can cause permanent damage to the part

2.6 Terminology

2.6.1 Sensitivity

An angular rate gyroscope is a device that produces a positive-going digital output for counterclockwise rotation around the sensitive axis considered. Sensitivity describes the gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and time.

2.6.2 Zero-rate level

Zero-rate level describes the actual output signal if there is no angular rate present. The zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and, therefore, the zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and time.

2.6.3 Self-test

Self-test allows testing of the mechanical and electric part of the sensor, allowing the seismic mass to be moved by means of an electrostatic test-force. When self-test is activated by the IC, an actuation force is applied to the sensor, emulating a definite Coriolis force. In this case the sensor output exhibits an output change.

When ST (self-test) is active, the device output level is given by the algebraic sum of the signals produced by the velocity acting on the sensor and by the electrostatic test-force.

2.7 Soldering information

The LGA package is compliant with the ECOPACK[®], RoHS and "Green" standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020.

Leave "pin 1 Indicator" unconnected during soldering.

Land pattern and soldering recommendations are available at www.st.com/.

L3G4200D Main digital blocks

Main digital blocks 3

Block diagram 3.1

Block diagram Figure 6.

3.2 **FIFO**

The L3G4200D embeds a 32-slot, 16-bit data FIFO for each of the three output channels: yaw, pitch, and roll. This allows consistent power saving for the system, as the host processor does not need to continuously poll data from the sensor. Instead, it can wake up only when needed and burst the significant data out from the FIFO. This buffer can work in five different modes. Each mode is selected by the FIFO_MODE bits in the FIFO_CTRL_REG. Programmable watermark level, FIFO_empty or FIFO_Full events can be enabled to generate dedicated interrupts on the DRDY/INT2 pin (configured through CTRL_REG3), and event detection information is available in FIFO_SRC_REG. The watermark level can be configured to WTM4:0 in FIFO CTRL REG.

3.2.1 Bypass mode

In bypass mode, the FIFO is not operational and for this reason it remains empty. As illustrated in Figure 7, only the first address is used for each channel. The remaining FIFO slots are empty. When new data is available, the old data is overwritten.

Main digital blocks L3G4200D

Figure 7. Bypass mode

3.2.2 FIFO mode

In FIFO mode, data from the yaw, pitch, and roll channels are stored in the FIFO. A watermark interrupt can be enabled (I2_WMK bit in CTRL_REG3), which is triggered when the FIFO is filled to the level specified in the WTM 4:0 bits of FIFO_CTRL_REG. The FIFO continues filling until it is full (32 slots of 16-bit data for yaw, pitch, and roll). When full, the FIFO stops collecting data from the input channels. To restart data collection, it is necessary to write FIFO_CTRL_REG back to bypass mode.

FIFO mode is represented in Figure 8.

Figure 8. FIFO mode

3.2.3 Stream mode

In stream mode, data from yaw, pitch, and roll measurements are stored in the FIFO. A watermark interrupt can be enabled and set as in FIFO mode. The FIFO continues filling until full (32 slots of 16-bit data for yaw, pitch, and roll). When full, the FIFO discards the

L3G4200D Main digital blocks

older data as the new data arrives. Programmable watermark level events can be enabled to generate dedicated interrupts on the DRDY/INT2 pin (configured through CTRL_REG3).

Stream mode is represented in Figure 9.

Figure 9. Stream mode

3.2.4 Bypass-to-stream mode

In bypass-to-stream mode, the FIFO starts operating in bypass mode, and once a trigger event occurs (related to INT1_CFG register events), the FIFO starts operating in stream mode (see *Figure 10*).

Figure 10. Bypass-to-stream mode

Main digital blocks L3G4200D

3.2.5 Stream-to-FIFO mode

In stream-to-FIFO mode, data from yaw, pitch, and roll measurements are stored in the FIFO. A watermark interrupt can be enabled on pin DRDY/INT2, setting the I2_WTM bit in CTRL_REG3, which is triggered when the FIFO is filled to the level specified in the WTM4:0 bits of FIFO_CTRL_REG. The FIFO continues filling until full (32 slots of 16-bit data for yaw, pitch, and roll). When full, the FIFO discards the older data as the new data arrives. Once a trigger event occurs (related to INT1_CFG register events), the FIFO starts operating in FIFO mode (see *Figure 11*).

 $_{i},y_{i},z_{i}$ y_0 Z₁ У1 z₁ У1 z_2 2 У2 z_2 z₃₀ 30 y₃₀ X₃₁ Z₃₁ **y**31 31 z₃₁ У31 Stream Mode FIFO Mode Trigger event AM0723xv1

Figure 11. Trigger stream mode

3.2.6 Retrieve data from FIFO

FIFO data is read through the OUT_X, OUT_Y and OUT_Z registers. When the FIFO is in stream, trigger or FIFO mode, a read operation to the OUT_X, OUT_Y or OUT_Z registers provides the data stored in the FIFO. Each time data is read from the FIFO, the oldest pitch, roll, and yaw data are placed in the OUT_X, OUT_Y and OUT_Z registers and both single read and read_burst (X,Y & Z with auto-incremental address) operations can be used. In read_burst mode, when data included in OUT_Z_H is read, the system again starts to read information from addr OUT_X_L.

L3G4200D Application hints

4 Application hints

Figure 12. L3G4200D electrical connections and external component values

Power supply decoupling capacitors (100 nF ceramic or polyester +10 μ F) should be placed as near as possible to the device (common design practice).

If Vdd and Vdd_IO are not connected together, power supply decoupling capacitors (100 nF and 10 μ F between Vdd and common ground, 100 nF between Vdd_IO and common ground) should be placed as near as possible to the device (common design practice).

The L3G4200D IC includes a PLL (phase locked loop) circuit to synchronize driving and sensing interfaces. Capacitors and resistors must be added at the **PLLFILT** pin (as shown in *Figure 12*) to implement a second-order low-pass filter. *Table 10* summarizes the PLL low-pass filter component values.

Table 10. PLL low-pass filter component values

Component	Value
C1	10 nF ± 10 %
C2	470 nF ± 10 %
R2	10 kΩ± 10 %

Digital interfaces L3G4200D

5 Digital interfaces

The registers embedded in the L3G4200DH may be accessed through both the I²C and SPI serial interfaces. The latter may be software-configured to operate either in 3-wire or 4-wire interface mode.

The serial interfaces are mapped onto the same pins. To select/exploit the I²C interface, the CS line must be tied high (i.e., connected to Vdd_IO).

Pin name	Pin description
CS	SPI enable I ² C/SPI mode selection (1: I ² C mode; 0: SPI enabled)
SCL/SPC	I ² C serial clock (SCL) SPI serial port clock (SPC)
SDA/SDI/SDO	I ² C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)
SDO	SPI serial data output (SDO) I ² C least significant bit of the device address

5.1 I²C serial interface

The L3G4200DH I²C is a bus slave. The I²C is employed to write data to registers whose content can also be read back.

The relevant I²C terminology is given in the table below.

Table 12. I²C terminology

Term	Description
Transmitter	The device which sends data to the bus
Receiver	The device which receives data from the bus
Master	The device which initiates a transfer, generates clock signals and terminates a transfer
Slave	The device addressed by the master

There are two signals associated with the I²C bus: the serial clock line (SCL) and the serial data line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both lines must be connected to Vdd_IO through an external pull-up resistor. When the bus is free both the lines are high.

The I^2C interface is compliant with fast mode (400 kHz) I^2C standards as well as with normal mode.

L3G4200D Digital interfaces

5.1.1 I²C operation

The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first 7 bits after a start condition with its address. If they match, the device considers itself addressed by the master.

The slave address (SAD) associated with the L3G4200DH is 110100xb. The SDO pin can be used to modify the least significant bit (LSb) of the device address. If the SDO pin is connected to the voltage supply, LSb is '1' (address 1101001b). Otherwise, if the SDO pin is connected to ground, the LSb value is '0' (address 1101000b). This solution permits the connection and addressing of two different gyroscopes to the same I²C bus.

Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.

The I²C embedded in the L3G4200DH behaves like a slave device, and the following protocol must be adhered to. After the START (ST) condition, a slave address is sent. Once a slave acknowledge (SAK) has been returned, an 8-bit sub-address is transmitted. The 7 LSb represent the actual register address while the MSB enables address auto-increment. If the MSb of the SUB field is 1, the SUB (register address) is automatically incremented to allow multiple data read/write.

The slave address is completed with a read/write bit. If the bit is '1' (read), a REPEATED START (SR) condition must be issued after the two sub-address bytes; if the bit is '0' (write) the master transmits to the slave with the direction unchanged. *Table 13* describes how the SAD+read/write bit pattern is composed, listing all the possible configurations.

Table 13. SAD+read/write patterns

Command	SAD[6:1]	SAD[0] = SDO	R/W	SAD+R/W
Read	110100	0	1	11010001 (D1h)
Write	110100	0	0	11010000 (D0h)
Read	110100	1	1	11010011 (D3h)
Write	110100	1	0	11010010 (D2h)

Table 14. Transfer when master is writing one byte to slave

ĺ	Master	ST	SAD + W		SUB		DATA		SP
Ī	Slave			SAK		SAK		SAK	

Digital interfaces L3G4200D

Table 15. Transfer when master is writing multiple bytes to slave

Master	ST	SAD + W		SUB		DATA		DATA		SP
Slave			SAK		SAK		SAK		SAK	

Table 16. Transfer when master is receiving (reading) one byte of data from slave

Master	ST	SAD + W		SUB		SR	SAD + R			NMAK	SP
Slave			SAK		SAK			SAK	DATA		

Table 17. Transfer when master is receiving (reading) multiple bytes of data from slave

Master	ST	SAD+W		SUB		SR	SAD+R			MAK		MAK		NMAK	SP
Slave			SAK		SAK			SAK	DATA		DATA		DATA		

Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the most significant bit (MSb) first. If a receiver cannot receive another complete byte of data until it has performed some other function, it can hold the clock line SCL LOW to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver does not acknowledge the slave address (i.e., it is not able to receive because it is performing some real-time function) the data line must be left HIGH by the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition.

In order to read multiple bytes, it is necessary to assert the most significant bit of the sub-address field. In other words, SUB(7) must be equal to 1, while SUB(6-0) represents the address of the first register to be read.

In the presented communication format, $\underline{\text{MAK}}$ is "master acknowledge" and $\underline{\text{NMAK}}$ is "no master acknowledge".

5.2 SPI bus interface

The SPI is a bus slave. The SPI allows writing and reading of the device registers. The serial interface interacts with the external world through 4 wires: **CS**, **SPC**, **SDI**, **and SDO**.

L3G4200D Digital interfaces

Figure 13. Read and write protocol

CS is the serial port enable and is controlled by the SPI master. It goes low at the start of the transmission and returns to high at the end. **SPC** is the serial port clock and is controlled by the SPI master. It is stopped high when **CS** is high (no transmission). **SDI** and **SDO** are, respectively, the serial port data input and output. These lines are driven at the falling edge of **SPC** and should be captured at the rising edge of **SPC**.

Both the read register and write register commands are completed in 16 clock pulses, or in multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of **SPC**. The first bit (bit 0) starts at the first falling edge of **SPC** after the falling edge of **CS** while the last bit (bit 15, bit 23, etc.) starts at the last falling edge of **SPC** just before the rising edge of **CS**.

Bit 0: RW bit. When 0, the data DI(7:0) is written to the device. When 1, the data DO(7:0) from the device is read. In the latter case, the chip drives **SDO** at the start of bit 8.

Bit 1: MS bit. When 0, the address remains unchanged in multiple read/write commands. When 1, the address is auto-incremented in multiple read/write commands.

Bit 2-7: address AD(5:0). This is the address field of the indexed register.

Bit 8-15: data DI(7:0) (write mode). This is the data that is written to the device (MSb first).

Bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

In multiple read/write commands, further blocks of 8 clock periods are added. When the $M\overline{S}$ bit is 0, the address used to read/write data remains the same for every block. When the $M\overline{S}$ bit is 1, the address used to read/write data is incremented at every block.

The function and the behavior of SDI and SDO remain unchanged.

5.2.1 SPI read

Figure 14. SPI read protocol

Digital interfaces L3G4200D

The SPI read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one.

Bit 0: READ bit. The value is 1.

Bit 1: MS bit. When 0, do not increment address; when 1, increment address in multiple reading.

Bit 2-7: address AD(5:0). This is the address field of the indexed register.

Bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

Bit 16-...: data DO(...-8). Further data in multiple byte reading.

Figure 15. Multiple byte SPI read protocol (2-byte example)

5.2.2 SPI write

Figure 16. SPI write protocol

The SPI write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one.

Bit 0: WRITE bit. The value is 0.

Bit 1: \overline{MS} bit. When 0, do not increment address; when 1, increment address in multiple writing.

Bit 2 -7: address AD(5:0). This is the address field of the indexed register.

Doc ID 17116 Rev 2

Bit 8-15: data DI(7:0) (write mode). This is the data that is written to the device (MSb first).

Bit 16-...: data DI(...-8). Further data in multiple byte writing.

L3G4200D Digital interfaces

Figure 17. Multiple byte SPI write protocol (2-byte example)

5.2.3 SPI read in 3-wire mode

3-wire mode is entered by setting the SIM (SPI serial interface mode selection) bit to 1 in CTRL_REG2.

Figure 18. SPI read protocol in 3-wire mode

The SPI read command is performed with 16 clock pulses:

Bit 0: READ bit. The value is 1.

Bit 1: \overline{MS} bit. When 0, do not increment address; when 1, increment address in multiple reading.

Bit 2-7: address AD(5:0). This is the address field of the indexed register.

Bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). The multiple read command is also available in 3-wire mode.

Package information L3G4200D

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at www.st.com. ECOPACK is an ST trademark.

L3G4200D Package information

Figure 19. LGA-16: mechanical data and package dimensions

	Dimensions									
Ref.	mm									
Nei.	Min.	Тур.	Max.							
A1			1.100							
A2		0.855								
АЗ		0.200								
d		0.300								
D1	3.850	4.000	4.150							
E1	3.850	4.000	4.150							
L2		1.950								
М		0.100								
N1		0.650								
N2		0.975								
P1		1.750								
P2		1.525								
T1		0.400								
T2		0.300								
k		0.050								

Outline and mechanical data

Revision history L3G4200D

7 Revision history

Table 18. Document revision history

Date	Revision	Changes			
01-Apr-2010	1	Initial release.			
03-Sep-2010	2	Complete datasheet review.			

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

