Homework 15 of Introduction to Analysis (I), Honor Class

AM15 黃琦翔 111652028

February 19, 2024

1. (a) Since f is continuous on Q is compact, $\exists \delta > 0$ s.t. for all $\alpha_1, \alpha_2 \in Q$, $\|\alpha_1 - \alpha_2\| < \delta$,

$$|f(\alpha_1) - f(\alpha_2)| < \frac{\varepsilon}{b-a}.$$

Thus, for $y_0 \in [c,d]$,

$$|F(y) - F(y_0)| = |\int_a^b f(x, y) dx - \int_a^b f(x, y_0) dx|$$

$$\leq \int_a^b |f(x, y) - f(x, y_0)| dx$$

$$< (b - a) \cdot \frac{\varepsilon}{b - a} = \varepsilon$$

Thus,
$$\lim_{y \to y_0} \int_a^b f(x, y) dx = \int_a^b f(x, y_0) dx = \int_a^b \lim_{y \to y_0} f(x, y) dx$$
.

(b) Since $\frac{\partial F}{\partial y}$ is continuous on Q, then $\frac{\partial F}{\partial y}$ exists for all $y \in (c,d)$

$$F'(y) = \lim_{h \to 0} \frac{F(y+h) - F(y)}{h} = \int_a^b \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h} dx = \int_a^b \frac{\partial f}{\partial y}(x,y) dx.$$

2. (a) By 1(b),
$$g'(x) = \int_0^1 -2(t^2+1)x \frac{e^{-x^2(t^2+1)}}{t^2+1} dt = \int_0^1 -2xe^{-x^2(t^2+1)} dt$$
.

By Fundamental Theorem of Calculus, $f'(x) = 2e^{-x^2} (\int_0^x e^{-t^2} dt)$

Thus, take u = xt, du = xdt

$$f'(x) + g'(x) = 2e^{-x^2} \left(\int_0^x e^{-t^2} dt \right) + \int_0^1 -2xe^{-x^2(t^2)+1} dt$$

$$= 2e^{-x^2} \left(\int_0^x e^{-t^2} dt \right) - 2e^{-x^2} \int_0^1 xe^{-x^2t^2} dt$$

$$= 2e^{-x^2} \left(\int_0^x e^{-t^2} dt - \int_0^x e^{-u^2} du \right)$$

$$= 2e^{-x^2} \cdot 0 = 0$$

Since
$$f'(x) + g'(x) = 0$$
 for all x , $f(x) + g(x) = f(0) + g(0) + \int_0^x f'(x) + g'(x) dx = g(0) = \int_0^1 \frac{1}{t^2 + 1} dt = \int_0^{\frac{\pi}{4}} du = \frac{\pi}{4}$.

(b) Since
$$g(x) \to 0$$
 as $x \to \infty$, $f(x) \to \frac{\pi}{4}$. Then, $\lim_{x \to \infty} \int_0^x e^{-t^2} dt = \lim_{x \to \infty} \sqrt{f(x)} = \sqrt{\frac{\pi}{4}} = \frac{\sqrt{\pi}}{2}$.

3. (a) If $L = \lim_{x \to \infty} f(x) > 0$, we can find a $N \in \mathbb{N}$ s.t. $f(x) > \frac{L}{2}$ for all x > N.

Then, for t > N, $\int_0^t f(x) dx = \int_0^N f(x) dx + (t - N) \frac{L}{2}$. Thus, $\lim_{t \to \infty} \int_0^t f(x) dx = \infty$ doesn't exists(contradiction).

Using the same way, L < 0 also causes contradiction. Therefore, L = 0.

(b) First, for any $0 < \varepsilon < 1$, we can not find a $N \in \mathbb{N}$ s.t. $f(x) < \varepsilon$ for all x > N.

Then, let
$$n = [x]$$
, $\int_0^x f(t)dt \le \sum_{i=1}^n 1 \cdot 2^{-i}$.

Since $\sum_{i=1}^{\infty} 2^{-i} = 1 < \infty$, $\lim_{x \to \infty} \int_{0}^{x} f(t)dt \le 1$, f is improperly integrable.