

This presentation is released under the terms of the **Creative Commons Attribution-Share Alike** license.

You are free to reuse it and modify it as much as you want as long as:

- (1) you mention Ian Howard and Séverin Lemaignan as being the original authors,
 - (2) you re-share your presentation under the same terms.

You can download the sources of this presentation here: github.com/severin-lemaignan/module-introduction-sensors-actuators

ROBOTICS WITH PLYMOUTH UNIVERSITY

ROCO222 Intro to Sensors and Actuators

Force and Torque Sensors

Séverin Lemaignan

Centre for Neural Systems and Robotics **Plymouth University**

LABS ASSESSMENT

- o Coursework: 60% of final mark
- Complete lab journal submitted Thursday 16:00, 11th January 2018

LABS ASSESSMENT

- o Coursework: 60% of final mark
- Complete lab journal submitted Thursday 16:00, 11th
 January 2018

Marking scheme for the lab journal:

- o DC motor + encoder project: 35%
- o Robotic arm project: 35%
- Other (GIT, command-line, stepper motors): 10%
- Presentation (Markdown syntax, photos, videos), use of GIT:
 20%

Following and reporting on each of the steps in the lab instruction sheets should give you a 75% mark. Good analysis of your motor/arm supported by drawings and pictures, and design explorations/programming beyond what was requested bring you above that mark.

LABS ASSESSMENT

I will pay particular attention to:

- Demonstration of actual understanding of the principles (with drawings/equations where needed)
- Reporting on the performance of your motor/arm, reflections on how to improve it
- Reflection on encountered pitfalls

Less important:

 The design of your robot arm (the design of the DC motor armature is important, though!)

Individual reports, but I accept a level of similarity within groups (e.g. photos). Please put the name of your teammate in your report.

LAST LECTURE NEXT WEEK

Go to www.menti.com and use the code 57 51 24

TODAY'S OBJECTIVES

- o Know how to measure force and torque
- (lots more on sensors during ROCO318 next year)

DEFINITION OF FORCE

- A push or a pull
- The ability to do work
- Is is a vector quantity
- Has magnitude and direction

push pull signs com ()

Measured in Newtons (N)

- Newton's Second Law
- · A force acting on a mass will accelerate or decelerate it
- F = ma

where F is Force (N), m is mass (Kg), a is acceleration (ms⁻²)

FOUR FUNDAMENTAL FORCES IN NATURE

1. Gravity
Dominates at large distances

Electromagnetic forces
 Observed in the interactions between atoms

3 . & 4. Nuclear forces Strong & weak Both very short range

FORCE ARISES FROM GRAVITY ACTING ON A MASS

- Force arises from gravity acting on a mass
- F = mg
 - where F is Force (N),
 - m is mass (Kg),
 - g is acceleration due to gravity ≈ 9

MEASURING FORCE BY BALANCING KNOWN FORCE

 Use gravity acting on a known mass as source of known force

 Search for equilibrium position to find gravitational mass of test object

MEASURING FORCE BY MEASURING STRAIN

- Stress defined as "force per area"
- Strain is defined as: "deformation of a solid due to stress"
- When we apply force
- · Induced stress results in a strain

$$E = stress / strain = (F / A_0) / (\Delta L / L_0)$$

Where

E is the Young's modulus (modulus of elasticity) F is the force exerted on an object under tension A_0 is the cross-sectional area ΔL is the amount by which object length changes L_0 is the original length of the object

By measuring strain of a material of known properties can estimate force

PIEZO-ELECTRIC EFFECT

Some materials generate electric charge under mechanical stress

- Force results in a separation of charges with in structure
- Capacitive effect generates output voltage.
- · Leakage causes charge dissipation and voltage decay over time
- · Suitable for dynamic measurements

MEASUREMENT OF ELASTIC DEFORMATION

Hooke's law: F = -kx

Hooke's law only holds over the elastic region

DIRECT MEASUREMENT OF ELASTIC DEFORMATION

Can simply observe extension to estimate force

Other mechanical methods Proving ring - Displacement measured directly using micrometer or dial gauge

STRAIN GAUGE

- This is an electrical method of force measurement
- The gauge measures strain of substrate to which it is attached
 - Provided substrate load operated in elastic region of the material, this is linearly relates to the applied force by Young's modulus
- Strain gauge measures strain because when film stretches it becomes narrower and longer and this increases its resistance
- Gauge is much more sensitive to strain is direction along the longer thin regions
- Overall during use such a sensor delivers only a fraction of percent change in resistance
- Resistance change is usually measured using a Wheatstone bridge

WHEATSTONE BRIDGE CIRCUIT

 Wheatstone bridge converts change in resistance to change in voltage

$$I_{LeftBranch} = \frac{V_s}{R_1 + R_2}$$

$$V_{R2} = \frac{V_s R_2}{R_1 + R_2}$$

$$I_{RightBranch} = \frac{V_s}{R_2 + R_2}$$

$$V_{Rx} = \frac{V_s R_x}{R_3 + R_x}$$

$$V = \left(\frac{R_x}{R_3 + R_x} - \frac{R_2}{R_1 + R_2}\right) V_s$$

WHEATSTONE BRIDGE CIRCUIT

$$V = \left(\frac{R_x}{R_3 + R_x} - \frac{R_2}{R_1 + R_2}\right) V_s$$

 By placing strain gauges into the bridge, changes in their resistance resulting from the strain in the substrate gives rise to changes in voltage that can be measured

Half-bridge strain gauge circuit

- Bridge arrangement cancels out changes that occur in all the resistive elements
- This compensates for resistance changes due to changes on temperature and also for strains in unwanted directions

SIMPLE CANTILEVER LOAD CELL

- If gauges are centrally mounted then
- · no change in output voltage due to a side load

MEASURING TORQUE

- Two common ways to obtain torque measurements are by strain-gauging the shaft and by using in-line torque cells.
- Both have two technical obstacles: getting power to the gauges over the stationary/rotating gap and getting the signal back.

MEASURING TORQUE USING A GAUGE ON SHAFT

 The gauges lie perpendicular to one another at 45 deg to the plane about which the tensional moment is applied.

6 DOF LOAD CELLS

1 translational DOF

3 translational & 3 rotational DOFs

INSIDE A LARGE 6 DOF FT

Signal conditioning circuitry

Silicon strain gauges

Massive structure which deforms under stress

INSIDE A SMALL 6 DOF FT

Silicon strain gauges

A SIGNAL CONDITIONING AMPLIFIER IS NEEDED

- The amplifier needed because voltage changes generates by Wheatstone bridge are small
- · Need differential input to cancel interference
- Also it can filter unwanted signal outside the bandwidth of interest

That's all, folks!

Questions:

Portland Square B316 or severin.lemaignan@plymouth.ac.uk

Slides:

github.com/severin-lemaignan/module-introduction-sensors-actuators