

Universidade Federal do Paraná Departamento de Química

QUÍMICA ANALÍTICA FUNDAMENTAL

Métodos gravimétricos de análise

Prof. Dr. Patricio Peralta-Zamora Profa. Dra. Noemi Nagata Prof. Dr. Gilberto Abate

GRAVIMETRIA:

Método analítico fundamentado em medidas de massa de um composto puro ao qual o analito está quimicamente relacionado.

A medida é realizada com uma balança analítica, instrumento que fornece dados altamente exatos e precisos.

O método é absoluto, de baixo custo e fácil controle.

Porém, precisa de prática laboratorial.

Balança egípcia (1550 a 1307 a.C)

Balança de Lavoisier (1743-1794)

Sensibilidade: 0,0001 g

Preço: R\$ 2.500-15.000

Pecados?

TIPOS DE GRAVIMETRIA

- Gravimetria por volatilização/combustão
- Gravimetria por extração
- Eletrogravimetia
- •Gravimetria por precipitação

Gravimetria por volatilização/combustão:

Analito é isolado dos outros constituintes da amostra pela conversão a um gás de composição química conhecida.

O peso do gás (ou do resíduos) serve como medida da concentração do analito.

Gravimetria por volatilização

Determinação de água em sólidos (alimentos)

Água não essencial

Adsorção (superficial)

Absorção (interstícios coloidais)

De oclusão (cavidades de sólidos cristalinos)

Secagem (105-110°C)

Gravimetria por combustão

• Determinação de resíduos de calcinação (perda ao rubro): Amostra é calcinada em forno-mufla, a temperatura de 800-900°C.

$$CaCO_3 \rightarrow CaO + CO_2$$

ANÁLISE TERMOGRAVIMÉTRICA (TGA)

A análise termogravimétrica é uma técnica de análise instrumental que mede a variação de massa da amostra em relação a temperatura, enquanto é submetida a uma programação controlada.

ANÁLISE TERMOGRAVIMÉTRICA (TGA)

EVENTOS TÉRMICOS

Caracterização de materiais

Gravimetria por extração (separação)

• O analito é extraído (separado) da amostra (solvente) e sua massa medida diretamente.

DETERMINAÇÃO DE SÓLIDOS DETERMINAÇÃO DE ÓLEOS E GRAXAS

GRAVIMETRIA POR SEPARAÇÃO

Determinação de sólidos (na água)

Sólidos Totais: Todas as substâncias que permaneçam na cápsula após a total secagem de um determinado volume de amostra

Sólidos Fixos: Todas as substâncias que permaneçam na cápsula após calcinação em forno-mufla na determinação dos sólidos totais

Sólidos Voláteis: Resultado da subtração entre os sólidos totais e os sólidos fixos. Todas substâncias que se volatilizaram após a calcinação no fornomufla

GRAVIMETRIA POR SEPARAÇÃO

Determinação de sólidos (na água)

Sólidos em Suspensão: Todas as substâncias que após filtração e secagem, permaneçam retidas na membrana (fibra de vidro com porosidade 1,2 µm)

Sólidos em Suspensão Fixos

Sólidos em Suspensão Voláteis

GRAVIMETRIA POR EXTRAÇÃO

EXTRATOR SOXHLET

Franz von Soxhlet (Alemanha, 1848-1926)

GRAVIMETRIA POR EXTRAÇÃO

DETERMINAÇÃO DE ÓLEOS E GRAXAS

ELETROGRAVIMETRIA

Separação do analito pela sua deposição em um eletrodo por meio do uso de uma corrente elétrica. A massa depositada fornece a medida de concentração do analito.

Moritz von Jacobi (Alemanha, 1801-1874)

ELETROGRAVIMETRIA 6 to 12 V dc

Início da eletrólise de Cobre

Fim da eletrólise de cobre

GRAVIMETRIA POR PRECIPITAÇÃO

Analito é isolado dos outros constituintes da amostra pela formação de um composto de solubilidade limitada (Kps< 1 x 10⁻¹⁰), que precipita no meio reacional

ANÁLISE GRAVIMÉTRICAQuem precipita? Porque??

GRAVIMETRIA POR PRECIPITAÇÃO

Regras de solubilidade

Compostos solúveis	Exceções
Quase todos os sais de Na ⁺ , K ⁺ , NH ₄ ⁺	
Haletos: sais de Cl ⁻ , Br ⁻ e I ⁻	Haletos de Ag ⁺ , Hg ₂ ²⁺ e
	Pb^{2+}
Fluoretos	Fluoretos de Mg ²⁺ , Ca ²⁺ ,
	Sr ²⁺ , Ba ²⁺ , Pb ²⁺
Sais de NO ₃ -, ClO ₃ -, ClO ₄ -, C ₂ H ₃ O ₂ ² -	
Sulfatos	Sulfatos de Sr ²⁺ , Ba ²⁺ , Pb ²⁺
	e Ca ²⁺
Ácidos inorgânicos	

GRAVIMETRIA POR PRECIPITAÇÃO

Regras de solubilidade

Exceções
Sais de NH ₄ ⁺ e de cátions
de metais alcalinos
Sais de NH ₄ ⁺ , Ca ²⁺ , Sr ²⁺ e
de cátions de metais
alcalinos
Hidróxidos e óxidos de
Ca ²⁺ , Sr ²⁺ , Ba ²⁺ e os
cátions de metais alcalinos
-

PROPRIEDADES DO PRECIPITADO E DOS REAGENTES PRECIPITANTES

- Reagente precipitante de elevada seletividade
 (Problema)
- Formação de precipitado com características físicas adequadas: filtração e lavagem (Natureza da espécie em análise)
- Produto com solubilidade suficientemente baixa para evitar perda significativa do analito durante o processo de separação e lavagem
- Produto n\u00e3o reativo com os constituintes da atmosfera
- Produto de composição conhecida após a secagem ou calcinação.

ANÁLISE GRAVIMÉTRICA FORMAÇÃO DE PRECIPITADOS Como forçar o crescimento?

CONDIÇÕES DE PRECIPITAÇÃO

EQUAÇÃO DE VON WEIMARN

Grau de dispersão = K(Q-S)/S

K=Constante

Q= Conc. De íons em solução antes da precipitação

S=Solubilidade do precipitado

(Q-S)=grau de supersaturação

Para diminuir o grau de dispersão (Aumentar tamanho das partículas)

Diminuir Q:

Uso de soluções diluídas

Diminuir (Q-S):

Adição lenta dos reagentes, sob agitação Precipitação homogênea

Aumentar S:

Precipitação à quente ou em meio ácido

CONDIÇÕES DE PRECIPITAÇÃO

Precipitação homogênea

Técnica na qual o reagente precipitante é gerado no meio reacional, através de uma reação lenta.

$$CO(NH_3)_2 + H_2O (100 \, ^{\circ}C) \rightarrow 2NH_3 + CO_2$$

$$CH_3CSNH_2 + H_2O (Calor) \rightarrow CH_3COONH_4 + H_2S$$

CONDIÇÕES DE PRECIPITAÇÃO

Precipitação homogênea

TABELA 12-1

Agente		Elementos	
Precipitante	Reagente	Reação de Geração	Precipitados
OH-	Uréia	$(NH_2)_2CO + 3H_2O \rightarrow CO_2 + 2NH_4^+ + 2OH^-$	Al, Ga, Th, Bi, Fe, Sn
PO-	Fosfato de trimetila	$(CH_3O)_3PO + 3H_2O \rightarrow 3CH_3OH + H_3PO_4$	Zr, Hf
C ₂ O ₄ ²⁻	Oxalato de etila	$(C_2H_5)_2C_2O_4 + 2H_2O \rightarrow 2C_2H_5OH + H_2C_2O_4$	Mg, Zn, Ca
SO ₄ ²	Sulfato de dimetila	$(CH_3O)_2SO_2 + 4H_2O \rightarrow 2CH_3OH + SO_4^{2-} + 2H_3O^{+}$	Ba, Ca, Sr, Pb
CO3-	Ácido tricloroacético	$\text{Cl}_3\text{CCOOH} + 2\text{OH}^- \rightarrow \text{CHCl}_3 + \text{CO}_3^{2-} + \text{H}_2\text{O}$	La, Ba, Ra
H_2S	Tioacetamida*	$CH_3CSNH_2 + H_2O \rightarrow CH_3CONH_2 + H_2S$	Sb, Mo, Cu, Cd
DMG†	Biacetil + hidroxilamina	$CH_3COCOCH_3 + 2H_2NOH \rightarrow DMG + 2H_2O$	Ni
HOQt	8-Acetoxiquinolina§	CH ₃ COOQ + H ₂ O → CH ₃ COOH + HOQ	Al, U, Mg, Zn

OUTROS FATORES QUE INFLUEM NO CRESCIMENTO DOS PRECIPITADOS

Envelhecimento do Precipitado (Digestão)

Tempo em que o precipitado fica em contato com a solução mãe e que permite o aperfeiçoamento dos cristais.

Maturação de Ostwald Maturação Interna de Ostwald.

OUTROS FATORES QUE INFLUEM NO CRESCIMENTO DOS PRECIPITADOS

Emprego de eletrólitos para neutralizar carga total de precipitados coloidais: Peptização vs Agregação

CONTAMINAÇÃO DOS PRECIPITADOS

Os precipitados podem arrastar da solução outros constituintes que são normalmente solúveis, causando assim sua contaminação

Co-precipitação

Formação de soluções sólidas: substituição na rede cristalina

BaSO4 contaminado com BaCrO4

A purificação não é possível: Eliminar interferência antes da precipitação.

$$\text{CrO}_4^- \rightarrow \text{Cr}^{3+}$$

ANÁLISE GRAVIMÉTRICA CONTAMINAÇÃO DOS PRECIPITADOS

Co-precipitação

Adsorção superficial: significativa em ppts com áreas superficiais elevadas (p.ex.: coloidais). Em soluções iônicas este tipo de co-precipitação geralmente é de origem elétrica.

A purificação não é possível por lavagem, a menos que o precipitado seja coloidal (não cresce)

CONTAMINAÇÃO DOS PRECIPITADOS

Oclusão ou aprisionamento mecânico: composto é aprisionado durante o crescimento rápido de um cristal.

Solução: Diminuir a velocidade de formação dos ppts, realização de digestão sob elevada temperatura.

CONTAMINAÇÃO DOS PRECIPITADOS

PÓS-PRECIPITAÇÃO

Processo de contaminação menos usual, decorrente principalmente de pequenas diferenças de solubilidade e cinéticas de precipitação entre compostos.

P.ex.: CaC₂O₄ na presença de Mg²⁺

Equipamentos: Filtração

Equipamentos: Filtração

Materais filtrantes (Papeis e membranas)

- •Quantitativo e Qualitativo
- •Filtração rápida e lenta
- •Faixa preta e azul
- •Baixo teor de cinzas

Materiais filtrantes (membranas)

Determinação gravimétrica de Níquel

1 Ni²⁺ + 2 NOH + 2 OH - 2 H₂O N
$$\oplus$$
 Ni \oplus N \oplus

Determinação gravimétrica de Níquel

Determinação gravimétrica de Níquel

Deixar o precipitado em repouso (envelhecer) por um período de 30 minutos, sem retirar o bastão de vidro do béquer.

Filtração:

Filtrar o precipitado em um cadinho de Gooch de porosidade fina (previamente seco e pesado). Utilizar uma trompa de vácuo e um kitassato com conexão de borracha. Lavar o material com água destilada em pequenas porções. Colocar para secar em estufa a uma temperatura de 105 -110°C por um período de 1 hora.

Determinação gravimétrica de Níquel

Determinação gravimétrica de Níquel

Massa de precipitado (Ni(DMG)₂)

= mol de Ni(DMG)₂ (ou Ni) x **58,69 g/mol**

288,69 g/mol

g de Ni em 100 mL ou % m/v

EXERCÍCIOS

1. O cromato de prata (MM 331,73 g mol⁻¹) apresenta solubilidade de 0,0279 g L⁻¹.

Qual o valor da constante do produto de solubilidade (K_{ps})?

- **2.** Calcule a solubilidade do AgCl em água e em uma solução 0,1 mol L⁻¹ de NaCl (Kps=1 x 10⁻¹⁰).
- **3.** Uma solução contém 40,0 gL⁻¹ de cloreto (35,5 g/mol) e 133,0 gL⁻¹ de CrO₄⁻² (168,0 g/mol)

Demonstre numericamente qual é a espécie que precipitará primeiro pela adição de AgNO₃.

a. Demonstre numericamente se a separação das duas espécies é possível.

KPS
$$(Ag_2CrO_4) = 1.9 \times 10^{-12}$$

KPS $(AgCI) = 1.2 \times 10^{-10}$

