Wednesday 880,05 On left board (for returnce): $Z = Tr e^{gH} = \int dx < x 1e^{gH} \times \int (rote: the will tak the definition)$ $= \int dx \int g(xr) e^{-\frac{1}{2}} \int_{0}^{g} dr \left[\frac{dxr}{dr} r^{2} + V(xr) \right] \int (rote: the will tak the definition)$ $= \int dx \int g(xr) e^{-\frac{1}{2}} \int dr \left[\frac{dxr}{dr} r^{2} + V(xr) \right] \int (rote: the will tak the definition)$ $= \int dx \int g(xr) e^{-\frac{1}{2}} \int dr \left[\frac{dxr}{dr} r^{2} + V(xr) \right] \int (rote: the will tak the definition)$ $= \int dx \int g(xr) e^{-\frac{1}{2}} \int dr \left[\frac{dxr}{dr} r^{2} + V(xr) \right] \int (rote: the will tak the definition)$ $= \int dx \int g(xr) e^{-\frac{1}{2}} \int dr \left[\frac{dxr}{dr} r^{2} + V(xr) \right] \int (rote: the will tak the definition)$ $= \int dx \int g(xr) e^{-\frac{1}{2}} \int dr \left[\frac{dxr}{dr} r^{2} + V(xr) \right] \int (rote: the will tak the definition)$ $= \int dr \int g(xr) e^{-\frac{1}{2}} \int dr \left[\frac{dxr}{dr} r^{2} + V(xr) \right] \int (rote: the will tak the definition)$ $= \int dr \int g(xr) e^{-\frac{1}{2}} \int dr \left[\frac{dxr}{dr} r^{2} + V(xr) \right] \int (rote: the will tak the definition)$ $= \int dr \int g(xr) e^{-\frac{1}{2}} \int dr \left[\frac{dxr}{dr} r^{2} + V(xr) \right] \int (rote: the will tak the definition)$ $= \int_{X_0}^{X_0} |x| = \int_$ = Note (Monday No was M but notation is too confusing)
= XNT. The trajectories X(T) > [X(Te)], begin and end at some X

or of a x is a confusing labels

Recall That the Em west among · Recall that the firm went away can be obsorbed in defining Z B=NAE Note: Using reliplo, pt] instead of relo, pt is often simpler. - Plan for today! @ Quick comments on MATLAB PS#1 Decap of into to stochastic evaluation of path integrals 3) Brief Follow-ups to are-particle path integral spectral decomposition, perturbation Please, correlation functions (1) Generalization to many particle states - (anti) symmetrization issues for numerical evaluation (5) Into to alternative based on coherent states and Reld operators

10/14/09

· Recup & intro to stochastic evaluation of path integrals

See Tarquis Dont rotes.

Recor from Honday

- (I) Numerical (in particular stochastic) methods are necessary to determine the properties of interacting many-body generaline systems, because pert. Hierry and saddle paint approximations Can fail (and they do in many interesting coses).
- (I) Stochostic methods we the path sitegral formulation of QM. This means that appetation values are computed like so:

$$\langle O \rangle = \frac{1}{2} \int D(x(x)) e^{-\sum_{E} [x(x)]} O(x(x))$$
Example:
$$X_{E} = \frac{1}{2} \int D(x(x)) e^{-\sum_{E} [x(x)]} O(x(x))$$

For each two,

For each trajectory we compute $\frac{1}{B} \int_{0}^{B} \chi^{2}(z) dz$ and odd it with weight lesp $\{-S_{E}[x(c)]\}$

Gebudation right V

14
I Stochastic methods are based on the central limit theorem
Example: Causider y distributed according to P(y)
P(y)>0 Pvn AT
(PC)dy=A
Drawing samples of y according to Ply) and softing thous is him
Drawing samples of y according to Ply) and putting them in bins according to their value will eventually reproduce Ply) as a histogram.
Now consider (0) = Joy O(x) P(x) = "True mean"
62 = (192) - (0)2 = "True Laughed Lews Done" (com.)
Quedran: Can I approximate (0) v 12 0(4) = 0
(See Phots)
P(O)) With std devolutions of, in the limit of large Noungles. Weamples
arge Nountes. Weamples

 $\langle 0 \rangle \simeq \bar{0} \pm \frac{5}{\bar{W}_{suples}}$

We don't know the true (0), so this fluorem fells us how to estimate it.

We also don't know the true σ , but we can estimate it as $\sigma \simeq \overline{O^2} - \overline{O}^2$

In QM, where
$$\langle 0 \rangle = \frac{1}{7} \int \mathcal{D}[\chi(z)] e^{-S_{E}[\chi(z)]} \mathcal{O}[\chi(z)]$$

$$= \int \mathcal{D}[\chi(z)] \mathcal{D}[\chi(z)] \mathcal{D}[\chi(z)] \mathcal{D}[\chi(z)]$$

We can atomate

$$\langle O \rangle \simeq \overline{O} = \frac{1}{N_{\text{surples}}} \sum_{N=1}^{N_{\text{surples}}} \langle O[\chi_{\{t\}}] \rangle$$

P[mg]= e - SE[2017]

Formander: This works only if

P is well defend as a

probability: PRI >, 0 "postive samider"

[PRINTER = 1 "Normalizable"

Main problem: How to generate configurations distributed according to P[X(2)].

-> Sampling strategies

TO Sauce	dona	Strategies	
	سرس	Sulangle?	

- a Had-bath
- typical for Ising model! _ Horkov drain-based · Holes. dynamics
- . Hybrid

All of fleen can generate good samples if used property.

- . Equilobrated

· Uncorrelated

vival action functional

10/14/09 How does perturbation theory work in this case? That he more general us inste · In Re model partition function => 2/1= (2) = (2) + + + + (3) +)} Here: onalog is to add F(r) to H in puth integral: $H(\rho_{x}) \Rightarrow H(\rho_{x};t) = \frac{1}{2m}\rho^{2} + V(x) - xf(\gamma)$ · this is a time dependent driving (external) force > like a j at each time. · For concreteress, take $V(x) = \frac{1}{2}ax^2 + \frac{1}{4}x^4$ and Think about particle atten $\frac{1}{4}x^4$ about harmonic oscillator $\frac{1}{4}x^4$ $\frac{1}{4}ax^2$. In discrete version of Elf], f(r) > [F(r)]=(f;), i=1,...,Nr. $\frac{1}{2} \left[\frac{1}{2} \left$ a portienter; SO (Xix) = = = (EST, EST) 211] continuum limit $\langle \times (L^2) \times (L^2) \rangle = \frac{1}{5} \left[\frac{1}{5} \left(\frac{1}{5} \right) \right] \frac{1}{5} \left(\frac{1}{5} \right) \frac{1}{5} \left(\frac$ [Note (x(6)x(7)) = (T[x(7)x(7)]) When x(T) = e Th x e Th] - functional derivatives so make an integral go army! * Wat if just 2 f(7)? > = & & f_k = & & & > & (7-7) (Check that Sa(r-r')dr'=1 translates > SE(\frac{1}{6}\text{lik}) = \frac{5}{6}\text{lik} = 1 V)

Now he can also play be some game as before where he replace [xit = (\frac{1}{2} \frac{1}{2} \frac{1}{

 $I[5] = \int_{0}^{1} dy \cdot dy \cdot e^{\frac{1}{2}y \cdot A_{i,j}y_{i}} + y_{i} \lambda_{i} = 0 \text{ Total (let A)}^{-1/2} e^{\frac{1}{2}y \cdot A_{i,k}} J_{k}$ $I[5] = \int_{0}^{1} dy \cdot dy \cdot e^{\frac{1}{2}y \cdot A_{i,j}} \lambda_{i} \cdot y_{i} + y_{i} \lambda_{i} = 0 \text{ Total (let A)}^{-1/2} e^{\frac{1}{2}y \cdot A_{i,k}} J_{k}$ $I[5] = I[5] = I[5] e^{\frac{1}{2}y \cdot A_{i,k}} J_{k}$

·If u know I(0) from elsewhere, we are done, (Well) assume that here.)
·So what is ∑i and yi here? y:>x; J;>f;

What is Air ? It is the quadratic pat: so match xiAir, xy to teams in the exponent with two x's.

 $-\frac{1}{2}X_{1}^{2}A_{1}^{2}X_{2}^{2} = -\frac{1}{2}(A_{11}X_{2}^{2} + A_{12}X_{1}X_{2}^{2} + A_{13}X_{2}X_{1} + A_{32}X_{3}^{2}) = -\frac{1}{2}(A_{11}X_{2}^{2} + A_{12}X_{1}X_{2} + A_{32}X_{3}X_{1} + A_{32}X_{3}X_{2}^{2}) = -\frac{1}{2}(A_{11}X_{2}^{2} + A_{12}X_{1}X_{2} + A_{32}X_{2}X_{1} + A_{32}X_{3}X_{2}^{2}) = -\frac{1}{2}(A_{11}X_{2}^{2} + A_{12}X_{1}X_{2} + A_{32}X_{2}X_{1} + A_{32}X_{3}X_{2}^{2})$

 $-\epsilon \stackrel{\text{NS}}{\underset{\text{let}}{=}} \pm \alpha x_1^2 = -\frac{1}{3} \epsilon \alpha \left[x_1^2 + x_3^2 + x_3^2 + x_3^2 + \dots \right] \Rightarrow (A_{i'}) \text{ this term} = \epsilon \alpha \delta_{ij} = \begin{bmatrix} \epsilon \alpha & 0 \\ 0 & \epsilon \alpha \end{bmatrix}$

 $-\epsilon \sum_{i=1}^{n} \frac{x_{i-x_{i-1}}}{x_{i}} = -\frac{1}{2} \frac{\epsilon_{n}}{\epsilon_{n}} \left[(x_{2} - x_{0})^{2} + (x_{2} - x_{1})^{2} + (x_{2} - x_{2})^{2} \right] = -\frac{1}{2} \frac{\epsilon_{n}}{\epsilon_{n}} \left[(x_{1}^{2} - x_{1} + x_{2}^{2} + x_{2}^{2} + x_{3}^{2} + x_{3}^{2}$

 $\Rightarrow A_{1} = \frac{m}{\varepsilon} + \varepsilon C , A_{2} = -\frac{m}{\varepsilon}, A_{2} = -\frac{m}{\varepsilon}, A_{2} = \frac{m}{\varepsilon}, 2 + \varepsilon C +$

note the pounding conditions 10/14/09 Then we have How do we understood the continuum version, (xp)=x0 = (0 dx [2(3x) 2 + 2ax - xf(x)] = 28 x(1) E (x+242) A (x+42) + for for 4(24) f(x) f(x) => Con #[\$\frac{1}{2} \rightar = \frac{1}{2} \rightar \frac{1}{2} \righ => AT(,7) is the inverse of the differential operator (2 the + 2a) (12 1) or the Green's traction, with the personic boundary condition.

=> solution to (-2 fr2+3a) A+(7) = S(7) with A+(6) = A+(B) (wire used A2 (7,7) = A1(7-7).). Can you solve this? Next week we'll look at diagrams: 12-12

	10/14/09
	How do no generalize to a two or many-body system.
	How do no generalize to a few or many-body system? For the quantum michanics opposed with Hamiltonian!
	[N (Mil)2 N
	$A = \frac{2}{2} \left(\frac{2}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{2}{2} \sqrt{(2^{10} - 2^{10})} + (3 + 1) + (3 +$
*	
	Par N particles with identical masses
	· Since they are identical particles, the partition fraction has
	to be a sum (truce) der a complete busis that
	Since they are identical particles, the partition fraction has to be a sum (truce) der a complete basis that has the correct symmetry (bosons-symmetric, formions-
	1 ON SIMIL (1, C).
	· So going from 1x7 to 1x2 /x22 - 1x22
	as a direct product seems problematic because it is not a definite symmetry
	[Note: The indices written as superscripts here.
* A	label the different particles. These are typically
	written as Xx Xx Xx Hunce The directly
	shows the same of
	The x's at different time steps. Newle and Orland state in the
	fuct us. It. stung actation for both.
	(note the curly backet)
	[1×(1) ×(1)] = (1) = (1) ×(
	where the P means a permutation of the particles and & fixes we
	where the P means a permutation of the particles and 3° fixes up bosons (7=1, all 5° line same sign) and Fermions (7=1, 1° = ±1 as P
	.The completeness relation is is exertado).
	$ \frac{1}{N_1} \sum_{(x_1, x_2, x_3)} x_2, x_3 = 1 $
	(m) (x, 'X)
* `)	· More generally, let x > 00 represent a single-particle basis, · Mis is not a normalized basis as yet, but that is not
1	. This is not a normalized basic as not but that is not
	montant france

10/14/09

At this stage we simply need this basis to define the trace:

Z= 1 (N particular (XO) (XO) (XN) = PA (XO) (XN) }

= 1 S S (X(N)) (PA) (XN) (PA) (XN)

Just as before, the "time interval" from 0 to B can be broken into Ny pieces and we insert complete sets of states.

- We can actually use either (onti) symmetrized or just product states. In the latter case, the final states of correct symmetry imposes the acrect forms or Bose statistics.

In the direct product case, [- San [2 (x/n) + 1 5 (x/n) - x/n)]

[2 - 1 5 \ 2 (x/n) - \(\) (x/n) = \(\) (x/n)

When we simulate fermions with this form, 2th filters out the lowest state of any symmetry > but the lowest symmetry will be lower than the anti-symmetric > noise agricum exporentially before projections on anti-symmetric states.

Alternative is to project at each E step!

= (m/2) 2/1) = (m/2) =

with $M_5 = e^{\frac{2\pi}{3\pi}[(x_1 - y_1)^2 - (x_1 - y_2)^2]}$

but Det M his minus signs! More laker on why this is bad.

10/4/09 trestend of continuing with this basis, we are gary to switch to a path integral over fulds, by considering a different complete set of states to use, which ar built from the occupation number basis.
This gives rise to Hamiltonians written in terms of creation and distriction operators. The De trained of p. x states)
Then he states we want are evaporators of here (noted of p. x states)

I charact states -50 lets do a bit of 2nd quantized formalism.