1.933 122 esp'4

SEP 1 ALL.

DETERMINATION OF SIZE OF SERVICE OR SECONDARY CONDUCTOR TO PREVENT FLICKER

by
S. Lubin
Engineer, Technical Standards Division

U. S. DEPARTMENT OF AGRICULTURE RURAL ELECTRIFICATION ADMINISTRATION TECHNICAL STANDARDS DIVISION

DETERMINATION OF SIZE OF SERVICE OR SECONDARY CONDUCTOR TO PREVENT FLICKER

Increased use of motors and other industrial loads on rural lines has, on some systems, introduced flicker problems. The solution to the problem of flicker presented in this bulletin employs a set of nomograms to determine the proper size of secondary or service conductor to be used when the load and service transformer specifications as well as the length of secondary or service circuits are known.

The following considerations should be taken into account in using the attached charts:

- 1. The values obtained from the charts are valid provided the primary regulation is sufficient to take care of the starting current. In cases where primary regulation is poor other corrective measures may have to be applied.
- 2. Since in some cases the method outlined here would require the use of service conductors or transformers of larger sizes than is usual in REA usage, some judgment should be used in its application. It should be applied only where motor loads are coincident with lighting demands.
- 3. When a current-limiting starting device is used, the value of starting current used in the calculations should be the value as limited by the starting device. Tables of average starting currents and starting power factors of various types of motors are included in this bulletin. The tables contain average values as listed by several motor manufacturers and are useful when more precise data are not available.

USE OF THE CHARTS

The following information must be on hand before the secondary size can be determined from the charts:

- 1. Number of starts per hour, minute, or second, of the motor.
- 2. Make and size of distribution transformer to be used.
- 3. The supply voltage (E) on the secondary or service.
- 4. The starting current (I) of the motor.
- 5. Power factor of the motor at starting (cos 0)
- 6. Length of secondary or service circuit (L)

The general procedure is then as follows:

- 1. Determine the allowable percent of voltage fluctuation from Chart I.
- 2. Determine the percent R and percent X of the transformer from Table III.
- 3. Convert the allowable percent voltage fluctuation to allowable percent of transformer and secondary impedance drop by use of Chart II.
- 4. Determine the percent voltage drop in the transformer and the percent resistance drop in the secondary or service conductor from Chart III.
- 5. Obtain the required conductor size or resistance in ohms per 1000 feet from Chart IV.

Detailed steps and examples are given in the following pages.

TABLE I

AVERAGE STARTING CURRENTS OF MOTORS

Type of Motor	HP	Voltage (Line to Line)	Starting Current (amps)
Single Phase			
Condenser Start	1/6 1/4 1/3	110	22 23 23
	1./3 1/2 3/4	220	12 16 23 30
Single Phase			
Split Phase	1/8 1/6 1/4 1/3 1/2 3/4	110	17 28 29 30 37 60
Single Phase			
Repulsion-Induction	1/8 1/6 1/4 1/3 1/2 3/4	110	13 13 14 19 26 38
	1/2 3/4 1 1 1/2 2 3 5 7 1/2	220	14 20 25 34 41 58 95 150

TABLE I (continued)

AVERAGE STARTING CURRENTS OF MOTORS

Type of Motor	HP	Voltage (Line to Line)	Starting Current (amps)
Polyphase			
Induction (Squirrel Cage)	1/2 3/4 1 1 1/2 2 3 5 7 1/2	110	19 29 41 58 72 105
	5 7 1/2 10 15 20 25 30 40		165 235 300 415 490 660 775
	40 50 60 75 100 125 150 200 250		1370 1650 2010 2940 3380 4610 6580 7300
	3 5 7 1/2 10 15 20 25 30 40 50	208	57 88 115 155 225 285 360 410 530 715
	1/8 1/6 1/4 1/3 1/2 3/4	220	3.7 4.6 6.4 9.6 10 15
	1-1/2	Core - was core and 310	31. 38

TABLE I (continued)

AVERAGE STARTING CURRENTS OF MOTORS

Type of Motor	HP	Voltage (Line to Line)	Starting Current (amps)
Polyphase Induction (Squirrel Cage)	3 7-1/2 10 15 20 25 30 40 50 60 75 100 125 150 200 250	220	52 82 120 150 220 275 355 415 555 690 865 1050 1500 1800 2390 3290 3650
	1/2 3/4 1 1 1/2 2 3 5 7 1/2 10 15 20 25 30 40 50 60 75 100 125 150 200 250	440	4.8 7.1 10 15 18 25 41 57 74 105 130 165 190 275 345 410 500 735 845 1155 1635 1825
	1/2 3/4 1 1 1/2	550	3.8 5.7 7.9

TABLE I (continued)

AVERAGE STARTING CURRENTS OF MOTORS

Type of Motor	HP. Carlotte	(Line to Line)	Starting Current (amps)
Polyphase Induction (Squirrel Cage)	2 3 5 7 1/2 10 15 20 25 30 40 50 60 75 100 125 150 200 250	550	15 20 36 46 59 84 105 135 155 220 290 340 395 590 675 920 1320 1460
	30 40 50 60 75 100 125 150 200 250 300	2200	40 55 68 95 110 150 195 255 295 365 475

TABLE II

AVERAGE STARTING POWER FACTOR OF MOTORS

Type of Motor		Average	Starting Power Fa	actor
Single Phase				
Capacitor Start Split Phase Repulsion-Induction			0.85 0.75 0.65	
Three Phase - Squirrel	Cage			
Over 3 HP:				
(a) Normal Torque (b) High Torque (c) High Slip			0.35 0.60 0.65	
Under 3 HP		7	0.40	

TABLE III

PERCENT RESISTANCE AND PERCENT REACTANCE

OF

DISTRIBUTION TRANSFORMERS*

	EX &	11.15 11.55 11.55 11.55 11.55 12.68 13.40 13.40 13.40	
WESTING- HOUSE	S Ru	2. 2. 2. 4. 7. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	
WES!	X X	1.31 1.88 1.99 1.199 1.090 1.090 1.090 1.090 1.090 1.090 1.090 1.090 1.090 1.090 1.0	
WAGNER	%R _T	2.25	
E R	%X _T	1.31 1.30 1.30 1.30 1.30 8.70 8.70 3.10	
STANDARD	% RT	2.60 2.27 2.28 2.15 1.72 1.51 1.31 1.10	
ž:	TX	1.67 1.08 1.09 1.09 1.09 1.09 1.09 1.09	
MOLONEY	% R.T.	2.42 2.42 2.42 2.02 2.02 1.53 1.53 1.33 1.34	
AL	X XT	11.00.00.00.00.00.00.00.00.00.00.00.00.0	
LINE	% RT	2.53 2.53 2.53 2.53 1.47 1.153 1.153	
MAN	% XT	4466 450 450 450 450 450 450 450 450 450 450	
KUHUMAN	% RT	11.23	
I.C.	% Xm	2.0.0.1.0.0.0.4.4 1.0.0.0.0.0.4.4 1.0.0.0.0.0.4.4 1.0.0.0.0.0.4.4 1.0.0.0.0.0.4.4	
GENERAL FIRCTRI C	8 BT	2.53	
ALLIS	% Xm		
5	% Rm	22.37 22.37 11.33 11.33 11.33 11.33 11.33 11.33 11.33	
RATING			
RAER	(k/A)	10 10 10	
TRAINSPORMER RATING		11.5 100 150 150 150 150 150 150 150 150 150	
-	- W		

* Rating from 1.5 KVA to 15 KVA inclusive are REA type. Rating of 25 KVA and above are conventional double bushing type. Values of Ry and Xy are from manufacturers' data as of January 1942.

ALLOWABLE PERCENT OF VOLTAGE FLUCTUATION

This chart shows the permissible percent of voltage fluctuation for a varying number of fluctuations (or motor starts) per unit time.

Example: A three phase $7\frac{1}{2}$ H.P. 220 Volt motor starts 6 times per hour.

Against 6 fluctuations per hour on the curve read 3.6% allowable voltage fluctuation.

TOTAL TOWNS OF A CONTROL OF A C

.

CHART II

For Conversion of Allowable Percent Voltage Fluctuation to Allowable Percent of Transformer and Coondary Impedance Drop.

Equation of nomogram: Z = 1000WV

- Z _ Allowable percent of transformer and secondary impedance drop
- W : Transformer KVA per phase
- V : Allowable percent voltage fluctuation
- I = Starting Current
- E I Rated secondary voltage, phase to neutral
- 1. Use value of V obtained from Chart I.
- 2. Connect V and W. Mark intersection on A.
- 3. Proceed from A to E. Mark intersection on B.
- 4. Connect B and I. Intersection on Z is allowable percent voltage fluctuation under actual bad conditions.
- Example: 3 3KVA Kuhlman transformers are used to serve the motor in the previous example. The starting current (from Table I) is 120 amps. Assume that the starter used limits the starting current to 35% of this value. Then, I = 42 amps.
 - 1. Connect V = 3.6% with W = 3 KVA per phase. Mark intersection on A.
 - 2. Proceed from A to E = 220/1.73 = 127 volts phase to neutral.

 Mark intersection on B.
 - 3. Connect B and I = 42 amps. Then Z = 2%.

CHART III

- (a) To Determine Percent Voltage Drop in Transformer
 - 1. Use values of RT and XT from Table III.
 - 2. Connect RT and Power Factor. Read value of intersection on C.
 - 3. Connect XT and Power Factor. Read value of intersection on D.
 - 4. Percent impedance drop in transformer: ZT = C D.
 - 5. Percent resistance drop in secondary conductor:

$$Z_S = Z_1 - Z_T$$

- (b) To Determine Percent Resistance Drop in Secondary or Service Conductor Circuit.
 - 1. Connect Zs and Power Factor
 - 2. Intersection on Rs is percent resistance drop in secondary or service circuit.
- Example: (a) From Table III, for the transformer in the previous example, R_T = 2.16%, X_T = 1.56%. Starting power factor for the motor, from Table II, is 0.35.
 - 1. Connect RT = 2.16% and Power Factor = 0.35. Read 0.7% on C.
 - 2. Connect XT = 1.56 and Power Factor = 0.35. Read 1% on D.
 - 3. ZT = C + D = 1 + 0.7 = 1.7%
 - 4. $Z_s = Z Z_T = 2 1.7 = 0.3\%$ (Z obtained from previous example in Chart II) (b)
 - 1. Connect Z_S = 0.3% and Power Factor = 0.35. Read R_S = 0.9%

CHART IV

TO DETERMINE SECONDARY OR SERVICE CONDUCTOR SIZE

- 1. Connect Rs and E. Mark intersection on A.
- 2. Connect L and I. Mark intersection on B.
- 3. Connect B and A. Mark intersection on "r".
- 4. Intersection on "r" shows resistance of conductor in ohms per 1000 ft. or copper equivalent.

Example: Length of service L = 100 feet.

- 1. Connect R_s = 0.9% and E = 127 volts. Mark intersection on A.
- 2. Connect L 100 feet and I = 42 amps. Mark intersection on B.
- Connect points on A and B. Intersection on r = 0.275 ohms/1000 feet., or No. 4 copper equivalent can be used.

