MIDTERM MOCK TEST - MI1016 - SEMESTER 20241

Questions with only one correct answer

Question 1. Which of the following functions is odd?

A. $y = \arccos x$.

C. $y = \cos x$.

B. $y = \arcsin x$.

D. $y = \sin x^2$.

Question 2. Determine the range of the function $y = \operatorname{arccot}(\tan^2 x)$.

A. $(0, \pi)$.

C. $\left[\frac{\pi}{2}, \pi\right)$.

B. $(0, \frac{\pi}{2}]$.

D. \mathbb{R} .

Question 3. Determine the value $a \in \mathbb{R}$ such that the function $y = \begin{cases} 2^{\frac{1}{\arcsin x}}, x \neq 0, \\ a, x = 0 \end{cases}$ is continuous from the left.

A. a = -1.

C. a = 1.

B. a = 0.

D. a = 2.

Question 4. Compute the following indefinite integral $\int \frac{dx}{(x+1)\ln(x+1)}, x > -1.$

A. $\ln(x+1) + C, C \in \mathbb{R}$.

C. $\ln^2(x+1) + C, C \in \mathbb{R}$.

B. $\ln |\ln(x+1)| + C, C \in \mathbb{R}$.

D. $\frac{1}{\ln(x+1)} + C, C \in \mathbb{R}.$

Question 5. Consider $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \arctan x - \frac{\pi}{4} + x^3$ and let $g(x) = f^{-1}(x) + x^2$. Compute g'(1).

A. $g'(1) = \frac{7}{2}$.

C. $g'(1) = \frac{2}{7}$.

B. $g'(1) = \frac{11}{2}$.

D. $g'(1) = \frac{16}{7}$.

Question 6. Suppose that the function $y = \begin{cases} \frac{mx - \sin(2x)}{x^2}, & x \neq 0 \\ 0 \end{cases}$ is differentiable at x = 0

and f'(0) = n. Compute $\lambda = m \cdot n$?

A. $\lambda = \frac{4}{3}$.

C. $\lambda = \frac{8}{3}$.

B. $\lambda = 2$.

D. $\lambda = 0$.

Question 7. Consider the sequence $u_n = \frac{\cos n}{n!}$, $n \ge 1$. Which of the following statements is true?

A. (u_n) is increasing.

C. $\lim_{n\to\infty} u_n$ does not exists.

B. (u_n) is bounded.

D. (u_n) is decreasing.

Question 8. Which of the following functions is bounded over its domain of definition?

A.
$$y = e^{x^2}$$
.

C.
$$y = \tan x$$
.

B.
$$y = \arctan \frac{1}{x}$$
.

D.
$$y = e^{\frac{1}{x^2}}$$
.

Questions with multiple correct answers

Question 9. Which of the following functions is an infinitesimal as $x \to 0^+$.

A.
$$y = x \ln x$$
.

$$C. \ y = \frac{x}{\ln x}.$$

B.
$$y = \frac{\ln x}{x}$$
.

D.
$$y = x^{\ln x}$$
.

Question 10. Given $f:[0;2] \to \mathbb{R}$ be a continuously differentiable function. Which of the following statements is always correct?

- A. If f(2)f(0) < 0 then $\exists c \in (0,2)$ such that f'(c) = 0.
- B. If f(2)f(0) < 0 then $\exists c \in (0,2)$ such that f(c) = 0.
- C. If f(0) = 0 then $\exists c \in (0, 2)$ such that f(2) = 2f'(c).
- D. Function f cannot attain its maximum in [0; 2].

Question 11. Which of the following functions is an infinitesimal of higher order than $\alpha(x) = e^{\sqrt{x}} - 1$ as $x \to 0^+$.

A.
$$y = \sqrt[3]{1+x} - 1$$
.

D.
$$y = \cos \sqrt{x}$$
.

B.
$$y = \arctan \sqrt{x}$$
.

$$E. \ y = 1 - \cos \sqrt{x}.$$

C.
$$y = \sin x$$
.

F.
$$y = \sqrt{1 + \sqrt{x}} - \cos x$$
.

Question 12. Which of the following functions is convex over $(0, +\infty)$?

A.
$$y = \ln x$$
.

D.
$$y = -\ln(1+x^2)$$
.

B.
$$y = e^x$$
.

E.
$$y = \arctan x$$
.

C.
$$y = \sin^2 x$$
.

F.
$$y = \operatorname{arccot} x$$
.

Constructed-repsonse questions

Question 13. Compute the Maclaurin polynomial of order 6 of $\frac{1}{1+x^2}$.

Question 14. Determine the local extremes of $y = \sin x + \cos x$.

Question 15. Show that if n is odd then the equation $x^n + x - 10 = 0$ has at least one solution.