

Overview of ITER Vacuum Systems

D A. Rasmussen², R J H. Pearce¹, A. Antipenkov¹, JL. Bersier¹, B. Boussier¹, S. Bryan¹, M. Dremel¹, S Hughes¹, R Kersevan¹, C. Mayaux¹, L. Worth¹, M. Wykes¹, L R. Baylor², R C. Duckworth², W L. Gardner², M. Hechler², S J. Meitner², R. Peters², W. Owens², M. Williams², R. Laesser³, G. Piazza³, S Papastergiou³, C. Day⁴, J-M Poncet⁵

¹ITER Organisation, Route de Vinon, CS 90 046, 13067 Saint-Paul-lez-Durance Cedex, France

²US ITER Project Office Oak Ridge National Laboratory, Oak Ridge, TN, USA

³Fusion for Energy, Josef Pla, 2, Torres Diagonal Litoral B3, 08019 Barcelona

⁴Karlsruhe Institute for Technology, Institute for Technical Physics, Karlsruhe, Germany

⁵CEA, 17 rue des Martyrs, 38054 Grenoble, Cedex 9 France

Third Workshop on Operation of Large Vacuum Systems

July 11-14, 2011
Oak Ridge, Tennessee

Fusion Energy Production Requires a Sustained Burning Plasma with a Closed Cycle

ITER will allow us to study

- He plasma self heating and control
- neutron damage/capture processes
- tritium recycling
- **Efficient Pumping of Light Gases**

ITER Design Features and Performance Goals

- ITER will be the worlds largest fusion experiment and first to generate a burning plasma
- Allows the study of physics and technology for this regime
- Fusion power generation goals:
500 MWs for 7 minutes; $Q \sim 10$
350 MW for 1 hour; $Q \sim 5$
- Plasma heating systems are need to initiate, heat and control ITER.
- 10 MAs of plasma current
70 MWs wave and beam systems
- Plasma facing tiles require advanced materials and efficient cooling

ITER Tokamak Building

ITER site is Cadarache in South of France

The ITER Complex

Technical Buildings

Tokamak Hall

Electrical Supplies

18 Buildings

180 Hectares

10 Years of Construction

20 Years of Operation

ITER site construction is well underway

Nearly all Major Systems Require Vacuum

Cryostat vacuum($<10^{-4}$ Pa) **8500 m³**
Torus vacuum(~ 10^{-6} Pa) **1330 m³**
Neutral Beam vacuums(~ 10^{-7} Pa) **860 m³**
Cryogenic Guard Vacuum

**Service Vacuum System
Ion and Electron Cyclotron
Heating Systems Vacuums**

Torus Vacuum Vessel Features

Vacuum vessel & In-vessel components: ~8000 t

Eiffel Tower ~7300 t

19.4 m diameter
11.3 m tall

9 each 40° sectors
(~600 t each)

Double-wall structure

Shielding and cooling water between shells

304 SS + 1 - 2 % boron, SS 430 ferromagnetic

34 Ports (upper equatorial and divertor)

In-vessel Components (First Wall)

440 blanket modules ($<5 \text{ MW/m}^2$) and 54 divertor cassettes (20 MW/m^2) providing:-

- 1) High heat flux neutralizing surfaces.
- 2) Neutron shielding
- 3) Thermal shielding
- 4) Start up limiter

	Shield	First Wall
Vacuum exposed area (m^2)	2200	1760
Pressurized wetted area (m^2)	2200	1380
Pressurized wetted weld length (m)	2200	274

Plasma Heating Systems (Vessel Ports)

3 Neutral beams
systems

1 MeV source
Up to 50MW

1 Diagnostic
Neutral beams
systems

Plasma Heating Systems (Vessel Ports)

20MW Electron
Cyclotron
Heating

170GHz

5 launchers

20MW Ion
Cyclotron
Heating

40-55 MHz

2 antennas

Pellet Injection Fueling System

Pellet injectors for fueling and ELM pacing

- Provide deuterium and tritium fuel to plasma core
- Mitigate impact of edge localized modes (ELMs)
- Mitigate disruptions with large “shotgun” pellets

Magnet Systems

48 superconducting coils:-

- 18 Toroidal Field coils
- 6 Central Solenoid coils
- 6 Poloidal Field coils
- 9 pairs of Correction Coils

In-vessel ELM coils

System	Energy GJ	Peak Field	Total MAT	Cond length km	Total weight t
Toroidal Field TF	41	11.8	164	82.2	6540
Central Solenoid	6.4	13.0	147	35.6	974
Poloidal Field PF	4	6.0	58.2	61.4	2163
Correction Coils CC	-	4.2	3.6	8.2	85

ITER Field ~10 Tesla

Cryostat

Diameter	29.2 meters
Height	~29 meters
Weight	~3300 tons
Operation Pressure	$< 10^{-4}$ Pa
Structure Material	Type 304 & 304L

Thermal Shield

- Provides the barrier for thermal loads from warm components (up to 350 C) to the superconducting coils and structures that operate at 4.5K.
- Operates at 80 K – maintained by gaseous He in the cooling pipes ~32 km - OD13.5mm - 304L - 2mm thick.
- Stainless steel panels are silver coated for low emissivity (0.05)
- Total mass nearly 1000T

Role of Fueling and Pumping in Tritium Cycle

Continuous D/T fuelling by pellet injection

Continuous pumping of H, D, T and He gases through cryogenic pumps, vacuum lines and roughing pumps

Closed loop tritium fuel cycle

Tritium recovery

Tritium Plant

Tritium separation

3 Different Custom Cryogenic Pumping Systems

Torus and Cryostat Cyropumps

Neutral Beam Cryo Panels

Roughing Cryogenic Viscous Compressor

Roughing System Performance

- Torus ~1400m³, 10⁵Pa to 10Pa in 24 Hours
- 1 torus cryopump, ~18m³, max 40KPam³ (Hydrogen isotopes) , to 10 Pa in 150 sec.
- Primary seals – metal
- Secondary seals (Service Vacuum) - EPDM

- Cryostat ~8500m³, 10⁵Pa to 10Pa in 24 Hours
- 1 cryostat, ~18m³, max 30KPam³ (Helium + Hydrogen) , to 10 Pa in 600 sec.

- NBIs ~ 170m³ + 170m³ + 170m³ + 120m³ ,10⁵Pa to 10Pa in 24 Hours.
- 4 NBI cryo pump ~170m³, max 300KPam³ (Hydrogen isotopes) , to 10 Pa in 1.5 secs.

Full Vacuum System – Block Diagram

Diagram Title: VACUUM PUMPING SYSTEM Overview Block Diagram
PES Level: 31
Sheet Title:

Roughing Pump Set can be Configured for Various Gas Flows

Tritium compatible backing pump trains for Torus and Neutral Beam Cryopumps

Cryogenic Viscous Compressor Pump

Scroll pump

Roots pump

Screw pump

Vacuum Systems and Roughing Pump room

Tokamak Building

Tritium Building

Containing ~ 400 vacuum pumps of ~10 different technologies

Vacuum Systems Extend to and Through all Floor Levels

Proposed Roughing Pump room layout.

Some Assembly Required

Leak Checking Opportunity!

Backup Slides

The Potential of Deuterium -Tritium Fusion (with $n \rightarrow$ Li breeding of T)

+

= 200,000 KWh

- Lithium from single laptop battery and deuterium from half a bathtub of water = fuel for 200,000 kilowatt hours of electricity
- 40 tonnes of coal equivalent
- Energy needs of one person for ~ 15-30 years

ITER is a very special partnership to address a global challenge and opportunity

- A unique facility and program for the study of the science and technology of self-heated “burning” plasmas
- An experiment in international collaboration on large science programs
- Participants represents more than 1/2 the worlds population

ITER is the next significant step Toward a Power Producing Fusion Reactor

JET
 80 m^3
 $\sim 16 \text{ MW}_{\text{th}}$

ITER
 800 m^3
 $\sim 500 \text{ MW}_{\text{th}}$

DEMO
 $\sim 1000 - 3500 \text{ m}^3$
 $\sim 2000 - 4000 \text{ MW}_{\text{th}}$

- Dominant self heating ----->

Proposed full Roughing System

Torus and Cryostat Cryopumps design

DT Molecular Flow Pumping Speeds

Main Chamber

8 pumps $\sim 140 \text{ m}^3/\text{s}$

4 pumps $\sim 110 \text{ m}^3/\text{s}$
(different ports)

Direct pump: $42 \text{ m}^3/\text{s}$
Branched pump: $30 \text{ m}^3/\text{s}$
Both pumps: $65 \text{ m}^3/\text{s}$

Torus Vacuum Vessel Subcomponents

Service Vacuum System has ~ 1800 Clients

- Distribution box and client ganging simplify and reduce interface connections
- 1800 clients reduced 20X to 90 distribution boxes with standard pump and purge interfaces

