Question 38 (18 marks)

Polymethyl methacrylate and polycarbonate are two polymers that are used as alternatives to glass. Polymethyl methacrylate is more commonly known as Perspex or plexiglass and is an addition polymer, while polycarbonate is a type of condensation polymer.

Both polymers are transparent to visible light and have other properties as listed below.

Polymethyl methacrylate	Polycarbonate
lightweight	moderate chemical resistance
moderate UV resistance	high heat resistance
low impact strength	high impact strength
low chemical resistance	low scratch resistance
low heat resistance	low UV resistance

(a)	For the following uses as an alternative to glass, identify which polymer would be the more appropriate. Justify your choice of polymer by comparing the effect of two relevan		
	properties	as listed for both polymers.	(4 marks)
	Hee	Chains of nolymor	Justification

Use	Choice of polymer	Justification
Skylight		
Safety glasses		

The monomer, methyl methacrylate, can be formed from the esterification of methanol and methacrylic acid (2-methylprop-2-enoic acid). The structural formula of methyl methacrylate is shown below.

$$H_3C$$
 $C-C$ $O-CH_3$

the full struc	tural formula of each species in the equation.	(4 marks

Draw a section of a polymethyl methacrylate showing all atoms a repeating units of the monomer.	(3 marks

Methyl methacrylate can undergo addition polymerisation to form polymethyl methacrylate.

One method for the production of methacrylic acid is by the following oxidation.

		oxidation		
	C_4H_8O	\longrightarrow	$C_4H_6O_2$	
	methylpropenol isomer		methacrylic acid	
(d)	Suggest an assumption that reactant for this reaction and to required to produce 1.50 tonn 65%. (Note: 1 tonne = 1000 kg.) Assumption:	then determine the mass te of methacrylic acid if to g.)	s of the methylpropenol isome he efficiency of this oxidation (5)	er
	Calculation:			
	9			
	<u></u>			
	N			

Polycarbonates are condensation-type polymers for which the by-product is hydrogen chloride instead of water.

The two monomers for polycarbonate are shown below.

(e)	Why is polymethyl methacrylate classified as an addition polymer, while polycarbonate is classified as a condensation polymer? (2 marks
	,