Computer Networks

Networks intro

- Definition of Computer Networks
 - o Components:

Distributed systems (applications)

Networks (messages)

Communications (bits)

- Example Networks:
 - car key with car; sensors network withtheir controllers (either one-way or two-ways)
- Design principle:
 - Dumb network & Smart users
 - networks don't store too much info but just pass the info
- Internet 'preferred' protocol stack
 - o Application
 - delivery functionality
 - Transport
 - ensure end-to-end performance
 - Network
 - send packet over multiple links
 - o Physical & Link
 - transmit frames
- Messages in Layers
 - Overview

Layer	What it transports (Protocol Data Unit)	How they connect
Application	Messages/Data	Proxy, gateway
Transport	Segments/Datagrams	
Network	Packets (!!)	Router
Link	Frames (cells, circuits)	Switch, Bridge
Physical	Bits	Hub (repeater)

Messages Encapsulation on Each Layers

• e.g. Ethernet frame's payload contains IP packet(s)

Information Transmission - Communication

- Problems:
 - Attenuation loss of energy
 - Noise gain of energy
 - Delay distortion smearing
 - Frequency cut-offs loss of information
 - Frequency-specific attenuation
- Approaches:
 - Circuit switching
 - Communication priented
 - Pros:

hardware level guarantee fixed (reliable) quality during the communication

Cons:

lots of waste of capacity (no sharing) & explicity resouce allocation \Rightarrow expensive to scale networks need to store state (info of connection) \Rightarrow multiple single-points of failure

- Multiplexing
 - Spatial division multiplexing (more wires)
 - Time division multiplexing (take turns)
 - Frequency, Amplitude, Phase multiplexing
- Analog vs. Digital
 - o Digital
 - easy to represent, store and regenerate
 - Analogue
 - represent the natural world
 - Sine wave appears every where ⇒ Fourier transformation
 - ∘ ⇒ Measureing & Creating Sine wave
 - encoding the feature of sine wavee.g. frequency, amplitude and phase
 - use Sine wave as carrier
 (especially in wireless communication, yet constant voltage is easier in wired transmission)
- Encoding of Bits into Signal
 - o Modulation & Demodulation
 - Modulation: turning bits into signals

- Demodulation: turning signals into bits
- o Single Bit Encoding in Modulation
 - Amplitude modulation (AM)
 - Frequency modulation (FM)
 - Phase modulation (PM)

(detect phase shift: need sync \Rightarrow clock line can be represented by freq or in other forms)

- Symbol Encoding in Modulation
 - Symbol: bit pattern
 - \Rightarrow 1 symbol / second > 1 bit / second
 - Multi-level modulation

Multi-level AM = Amplitude Shift Keying (ASK)

Multi-level FM = Frequency Shift Keying (FSK)

Multi-level PM = Phase Shift Keying (PSK)

e.g.:

- Phase + Amplitude Modulation:
 - \Rightarrow Constellation diagram:

⇒ Quadrature Amplitude Modulation (QAM):

Other Modulation:

256-QAM CableTV system

4096-OAM Powerline data

65535-QAM ADSL

x-QAM depnding on the needs and techniques available

Note:

phase-amplitute-frequency modulation (on 3 axis) not commonly used

Because: frequency usually used to denote channel (using carriers)

⇒ frequency to avoid interference & harder to change

o Bands

- Baseband: constant voltage
 - 1. Baseband signal: lowpass signal, using constant voltage as carrier
 - ⇒ non-modulated signal
 - ⇒ only non-zero near the origin of frequency spectrum
 - e.g. ASK, OOK (On-off keying)
 - 2. Baseband channel: lowpass channel, typically an unfiltered wire
 - 3. Baseband transimission: <u>transferring bit steam in line coding on typically an unfiltered</u> <u>wire</u>
- Passband: the range of frequencies that can pass through a filter
 - 1. Passband signal: use single frequency as carrier
 - ⇒ a signal with energy only in a passband, up-converted to higher frequency
 - \Rightarrow digital modulation employed
 - ⇒ integrate low-frequency wave (info wave) into a higher-frequency carrier wave
 - 2. Passband channel: channel of range of frequency after bandpass filters employed
 - 3. Passband transmission: (carrier-modulated transmission)
 using passband signal to transfer info, typically in wireless transmission
- Broadband:
 - 1. Broadband signal: use multiple frequency carries across a range
 - $\Rightarrow \mathsf{FSK}$

- Bandwidth: a specific range of frequencies
 can be divided at your choice & capacity of the technology allowed
- Limitation in Transmission Quality:
 - Shannon "Capacity Limit"
 - lowest sampling frequency of twice as the imcoming signal to get a perfect reconstruction
 - Expressing Transmission Quality
 - Signal:Noise Rate (SNR) = Signal Energy : Noise Energy
 - \Rightarrow SNR in deciBel = $10 * \log_{10}(Signal/Noise) dB$
- Encoding of Bits Sequency into Bits Patterns (regardless of modulation)
 - Key Concepts:
 - Map bits into patterns to reduce repetition
 - Signal each pattern with a transition
 - o Bits Pattern Example: 4b/5b Code:
 - Mapping Table:

Given	Send	Given	Send
0000	11110	0100	01010
0001	01001	1000	10010
0010	10100	1101	11011
0011	10101	1111	11101

- Features:
 - 1. avoid runs of 0, but can have maximal 6 1's in a row...
 - 2. trade bandwidth for reliability \Rightarrow enable self-checking
- o Transition Example: Manchester Code:
 - Example:

- self-clocking:
 - 1. a sync pattern in the front to denote the start (sync)
 - 2. the receiver can then identify if it is misaligned by half a bit period (prevent phase shift)

Physical Layer

Copper

- Characteristics
 - o Physical:
 - Soft & bendable around the corner
 - Light; Malleable; Easy to make thin wire

- Easy to add insulation & preotection; Reasonably robust to oxidation
- Social:
 - Cheap, compared to fibber (yet price is increasing)
- o Electrical
 - Shared medium (one voltage over the whole line)
 - Receive (RX) & Transmit (TX) on the wire:
 - 1. Half-duplex each side takes turns to transmit & receive Time Division Multiplexing
 - 2. Full-duplex both ends can transmit & receive in parallel Frequency Division Multiplexing
 - Reference of 'zero' ⇒ cables tend to have a pair of wires
 - Resistance:
 - 1. impedance, inductance (hate frequency change), etc...
 - 2. frequency related resistance: skin effect
 - ⇒ in alternating current, higher frequency, higher resistance, more current close to skin
 - \Rightarrow frequency attenuation
 - 3. Varies from cross-section: thinner wires, bigger resistance
 - Attenuation:
 - 1. loss of energy (in the form of heat, light and etc.)
 - 2. loss of frequency and etc...
- Noise in Signalling:
 - o Random Wire Antenna: straight wires on the ground as an antenna
 - receiver for other signals
 - transmitter of its own signals
 - Electro-magnetic Interference (EMI, 电磁干扰) & Radio-frequency interference (RFI)
 - Coupling with adjacent wires ⇒ cross talk (expecially at near & far end NEXT&FEXT)
 - Solving Antenna Problem
 - Pretection "Coaxical" cables

Pros: well sheilded - protection from noise & security (much less sending out), robust

Cons: single RX/TX, expensive

■ Spatial Division Multiplexing ⇒ more wire in a cable

Pros: full duplex, inverse multiplexing - multiple path to share (one-to-many & many-to-one)

Cons:

too many adjacent wires \Rightarrow cross talk

long straight unsheilded wires ⇒ antennas problems remains

- Differential signalling
- Twisting wires

Assumption: noise source has a direction

- ⇒ twisting to make sure noise added evenly
- ⇒ use the reference line to record the noise and then fileter it out

Example: UTP (unshielded twisted paris - 网线)

⇒ combin with shielding: STP/FTP (shielded twisted / foiled twisted pair)

- Skew between Pairs:
 - Different lenghts between multiple pairs can result in un-aligned signal
 - ⇒ affects inverse multiplexing
 - ⇒ have to be in the same length within tolerance
- Resistance (Inpedance) Mismatch
 - Results in signal bouncing back to the sender
- Transmission on Copper
 - o Speed:
 - kHz to MHz, enhanced by different keying & multiplexing technology
 - o Distance:
 - Low data rate (< 1Mb/s) for longer distances (km)
 - High data rate (~100Mbs) for short distances (~500's m) E.g. DSL+
 - o Downside:
 - Propagation delay (speed of electricity in copper = ~3us / km)
 - ⇒ collision of two sender signalling at the same time
- Costs
 - o Deployment
 - Protect Damage
 - easy to have a shared backbone
 - last mile exposed in the real world insects, weathers, stealing, etc...
 - Last Mile Trad-off (last mile also refered as local loops sometimes)
 - cost of exchanges, distance for the final cable, quality of signal throught the wire
 Note: up tp 4+ km from their exchanges
 - scalability
- Existing Last Mile Technology

- o DSL based on existing telephone wires
 - evolving from ADSL to VDSL etc...

later, DSL+: 16-bits (65535) QAM, FDM, ...

Assymetric: more on downstream performance

- Pros: using the existing telephone line; co-exit with POTS (plain old telephone service)
- Cons: limited performance; performance decreases over the distance
 - ⇒ may deploy more DSLAM to make average distance shorter
- DSL Example:
 - 1. Computer -> modem (add info onto carrier)
 - 2. modem (s) -> DSLAM (aggregate signal from modems)
 - 3. DSLAM -> switch (decide which LAN it is in)
 - 4. switch -> router / switch (go to outer internet / transfer to another switch)
- o NBN National
 - Spectrum in Real World

- Mixed-Technology
 - 1. NBN FTTx (Fiber to the x)
 - 2. Hybrid Fiber Coax and etc...

Fiber

Characteristics

o Physical:

- Light weight, very robust to oxidation and water
- Easy to make thin cable
- Fragile when twisting & bending, hard to connect (need to melt it)
- Good at distance (several km is trivial)

Social:

Expensive, compared to copper (yet price is decreasing)
 Note: fiber itself is okay, yet the end-point is expensive (⇒ usually use FTTx)

Electrical

- Robust to electircal interference
- High throughput: much higher frequency (light) signal start at THz
- Noise in Signalling:
 - Oblique Light Leaks
 - use another layer of glasses to reflec the light (with in a 'critical angle'), wrapped with jacket

- Modal Distortion (varying distance for light to travel because of reflection)
 - use graded-index (缓变折射率) fiber instead of step-index (阶跃折射率) fiber
 - \Rightarrow different kind of glass at different layer so that...
 - ⇒ speed up the light bouncing in the fiber & slow down the light going straight
 - ⇒ receiver can line up the light more easily

- Multi-mode vs. Single-mode (each ray = a 'mode')
 - 1. multimode fiber (MMF) step-index: more bandwidth, significant modal distortion

2. multimode fiber (MMF) graded-index: a few bandwidth, less modal distortion

3. singlemode fiber (SMF): less bandwidth, good at travelling on long distance

Note: from 1. \rightarrow 3. the performance increases, so does cost does not mix up different cables \Rightarrow performance suffers

- Fiber Connectors
 - Factors: dust; reflection at the end point
 - Solution: use curved faces at end point ⇒ focusing the light on one point
- Attenuation
 - Scattering: structures + materials in the fiber
 - Absorption: materials in fiber
 - Can be frequency dependent:

- o Chromatic dispersion (色散):
 - Factors: refraction index varies with wave length; hard to have a pure single wavelength lazer
 - Solution: Soliton pulses
- o Polarization mode dispersion (偏振模色散)
 - Core shape helps
- Setting up Fiber
 - o Multi-core Cable Design
 - Factors
 - 1. individual fibers are fragile \Rightarrow cable bundles up to 1024
 - 2. costs the same to deploy one or a bundle of fibers
 - 3. people wants their own cable for security..., though one fiber can carry whole internet
- Transmission over Light
 - o Electronic Data to Optical Signal

- Keying in optical signal:
 - E.g. OOK (on-off keying), QPDM (quatrature polarization division multiplexing)
- Pulse an LED: cheap, yet broad wavelength range, no nice pulse ⇒ though used in MMF
- chop a laser: can be small & at a high rate
 - 1. Cut the light using thin pins \Rightarrow noise at the edge of square wave (pysical effect)
 - 2. use the inveretd wave to cancel out the info wave
 - \Rightarrow wavelength tunable on the fly \Rightarrow used in SMF

o Speed

starts at THz, able to carry the whole internet traffic in on fiber (device can't catch up)

Distance

- Normally...MMF: 1-2 km; SMF: 50-100 km
- Regenerate/repeat: every 50-100 km
 using expensive optics & electronics for OEO interfaces (optical-electronical-optical)
- Amplify: every 50-100 km using cheap electronics OR optics ⇒ amplifies both signal AND noise

o Downside:

- Not easily a shared medium ⇒ point-to-point
 - \Rightarrow crosstalk still exists when sharing, in connectors and within fiber
- Can use one fiber for RX & TX
 - ⇒ need optical splitters at both ends; crosstalk effects
- Last Mile with Fiber
 - o Costs
 - existing copper vs. deployment fiber
 - deployment copper vs. deployment fiber
 - maintain copper vs. maintain fiber
 - o (G)PON Passive Optical Network
 - Technology used in the fiber part of the backbone, just before the last mile
 - Comparison with active network
 - 1. traffic from backbone splitted by splitters into cabinet depending on their destinations
 - 2. cabinet starts the last mile, sending only your info to you
 - Passive network
 - 1. traffic from backbone not splitted, sends all traffic on this fiber to all ends of this fiber (BFS)
 - 2. use TDM (time division multiplexing) at all fiber ends, to check if this piece of info is yours
 - 3. potentially RX&TX on the same fiber, using WDM (wavelength division multiplexing)
 - 4. security may suffer, yet business gains
 - General Approaches:
 - Push fiber as near as can afford / achieve

- FTTx (Fiber to the x)
 - ⇒ FTTP/B/C/N: Fiber to the Premises/ Building/ Curb/ Node
 - ⇒ fiber node -> FDU (fiber distribution unit) -> copper cable into house

Note: the position of FDU differes between 'x'

- Combine with copper
 - 1. using DSL
 - 2. HFC (hybrid fiber coax): share coax copper

Note: though coax affords 10 Gb/s, yet is shared

- ⇒ fiber node -> trunk coax -> trunk amplifier -> cable into house
- ⇒ peak speed might influenced

Wireless Communication

- Characteristics
 - Distance
 - can go a very, very long way (satellite transmission)
 - Electronic
 - sensitive to atmospheric conditions and EM interference
 - Unguided transmission
 - on a broadcast & shared medium (free space)
- Noise in Signalling
 - Absorption
 - Gases, dusts
 - Structure & terrains
 - o Reflection, Refraction (折射) & Diffraction (衍射)
 - Temperature difference
 - Turbulance
 - Structure and terrains
 - ⇒ causes multipath reception (multiple delayed refelcted waves interferes)
 - Even varies with time and different wavelengths
 - o Noise
 - Extraneous signal in the free space
- Transmission in Wireless: Improvements
 - Transmiter & Receiver ⇒ Antennas
 - Omnidirectional (Broadcasting) antenna
 - ⇒ broadcasting to all direction, yet poor coverage for directly under the antenna
 - Directional antenna ⇒ more focus

Note: generally, O[n] in size, with n = wavelength

- Clearer Signals
 - More power shout louder
 - Decrease bitrate slow down
- Smarter to Deal with Environment
 - Frequency hopping (⇔ channel changing)
 - 1. detect traffic jam (lost / wrong messages)
 - 2. ask for re-allocation & try re-association (either actively or after the connection is lost)
 - 3. re-enter the session with the AP (access point), using the same credential info (Note: hopefully the APs reserve the same IP and session for a while)
 - Beam-shaping (directional antennas)
- Select the Right Wavelength (Frequency) & Power
 - Long wavelength (low frequency):
 - 1. Go around corner, through walls and waters \Rightarrow long distance & through obstacles
 - 2. Low data rate as a trad-off
 - Short wavelength (high frequency)
 - 1. high data rate
 - 2. need line of sight (easily blocked)
 - ⇒ Consider requirement of point-to-point vs. area coverage; obstacles; effective distance
- Use the Right (Allowed) Spectrum
 - Spectrum allocation sets the rule of using the shared free space (some are reserved for special use, e.g. military use)
 - Channel allocation with each spectrum
 - E.g. FM radio (85-108 MHz) in Canberra has 0.8 MHz channel spacing
- Covering Large Area with Wireless
 - Repeaters
 - Mixed with lined networks (link wireless to wired)
 - Coverage type
 - 1. fixed vs. mobile client \Rightarrow directional vs. broadcast
 - 2. point-to-point vs. cell coverage

- APs networks (mobile + cell coverage) ⇒ cell handovers
 - 1. negotiate with current APs to re-association (while the connection is still okay)
 - 2. APs aware the re-association keep the same IP & session
 - 3. enter the same session with credential info
- Spave wireless
 - 1. Forms: satellite to satellite; satellite to/from ground
 - 2. Handing over needed: satellite orbits
 - 3. Potentially high delay: long distance
- Wireless between earth and space (e.g. Google balloon)
 - 1. Pros: stable-ish location with greater coverage
 - 2. Cons: power & maintaining
- Longe range wireless: MIMO (multiple input multiple output, for 5G), MUSA-MIMO

Link Layer

- Focus & Role
 - o Message Frame
 - various length:
 - 1. length specified in the frame
 - 2. start & end of the content denoted
 - targeted messages:
 - 1. destination address
 - 2. source address

LANs

- Definition:
 - o LAN: local area network
 - o WAN: wide area network
 - o PAN: personal area network
 - \Rightarrow Start of any kind comminication
- Design Principles:
 - o Simple
 - no guaranteed message delivery, correction or other specialized fedtures (real-time or etc.)
 - \Rightarrow left to the software
 - focusing on transmitting one message from A to B
 - Efficient
 - multiplexing
- Multiplex in LAN
 - Fair Multiplexing vs. Statistical Multiplexing
 - not everyone talking at the same time
 - no one always spamming don't need all the bandwidth or all the time

- demand on capacity varies with time
- ⇒ Statistical multiplexing reduces capacity waste

(more time / channels / wires for the current users)

- Fair Access to Network
 - rules for trying to send
- Example Desings
 - o Simple Frame: need to be in synchronization

Framelength	Payload (addresses+message)
rrannoiong	r ayroda (dadrossos mossago)

• Frame with Flag: need an escape symbol to distinguish (e.g. the "\" to denote "\n" in C)

Flag+addresses	Payload (message)	Flag
riagradalesses	rayloda (message)	riag

- MAC (Media Access Control) & Sharing
 - o Address Scheme
 - hardwired to the network interface
 - Access Scheme Randomized Access on Shared Media
 - send and then detect
 - 1. send the frame
 - 2. detect collision on the wire
 - 3. wait for acknowledgement
 - 4. on collision or no acknowledgement \Rightarrow back-off for a random time & re-send

Pros: simple, effective in low traffic networks

Cons: actual performance depends on back-off scheme, not scalable

- Carrier-Sense Multiple Access / Collection Detection (CSMA/CD)
 - 1. sense for carrier till no collision
 - 2. send frame
 - 3. detect potential collision because transmit on wires takes time
 - ⇒ upper limit time for any potential collision to occur (bounded by wire length)
 - ⇒ can have a minimum frame size (need to wait for collision detection anyway)
 - 4. back-off for a random time in collision detected

Pros: good for wired network

Cons: not working in wireless

- Carrier-Sense Multiple Access / Collection Avoidance (CSMA/CA)
 - 1. sense for carrier till no collision
 - 2. wait for a random time \Rightarrow reduce the possibility of sending frame at the same time
 - 3. send frame
 - 4. detect collision & re-try on detected

Pros: better for wired network as wait before send

Cons: not working in wireless either

- o Back-off Scheme
 - Limitation: not too short & not too long
 - Ideal back-off time: depends on the number of devices in the LAN
 - Approximating the ideal time: Binary Exponential Back-off (BEB):
 - 1. counting the detected collision in a relatively recent history
 - 2. for the $n^{\rm th}$ collision, wait for a random number between $[0,2^n-1]$
- Access Scheme Wireless
 - Problem of wireless environment
 - 1. cannot detect the whole network from a corner
 - ⇒ because of limited coverage of each cell
 - ⇒ different Tx can transmit to one Rx with out noticing interference
 - ⇒ hidden terminals: A, C are hidden from each other and can talk to B at the same time

- 2. local Tx (e.g. its own Tx) are much louder than remote Tx
 - ⇒ detect fake collision, thus wasting bandwidth
 - ⇒ exposed terminal: C detects collision because of B talking to A

- Multiple Access Collision Avoidance (MACA) handsahe before yelling
 - 1. sender: request to send (RTS), providing the frame length N
 - 2. anyone hears RTS stay silent for receiver's CTS
 - 3. receiver: clear to send (CTS), providing frame length N
 - 4. sender transmits the frame & everyone hears CTS stay silent for N

Pros: now, the receiver decides the collision instead of the sender itself

⇒ fixing hidden terminals problem: C knows A is sending after CTS

⇒ fixing exposed terminal problem: B, C not influenced by others' CTS

- Access Scheme Contention-free access
 - Token rings
 - 1. generates tokens rings (special frame)
 - 2. pass the token along the rings, under the path-selecting scheme
 - 3. only talk when token at hands

Pros: time multiplexing ⇒ guaranteed no contention

Cons: token may lost & hard to detect and re-generate & not adaptive to topologies change

⇒ fragile to error & not scalable

- Topologies
 - Bus topologies
 - needs repeater if too long
 - too much collision if many devices
 - ⇒ does NOT scale
 - Switch
 - a device sitting in the center to learn the source / destination addresses from traffic
 - makes every link point-to-point: source -> switch -> destination
 - ⇒ more scalable

yet, people may employ policy on switch (slowing down the traffic)

- Different LANs design
 - o General LAN (customer level)
 - bluetooth, 4G, Ethernet standards ...
 - o Carrier-grade LAN (service level guaranteed performance)
 - ATM (Asynchronous Transfer Mode), GPON (Gigabit-capable Passive Optical Networks), ...
 - o Dat-center LAN (specific for high volumn, short distance)
 - FibberChannel, ...
- Switches

- Learn the Address on the Air
 - Recording all source address of incoming message
 - New / Unknown address:
 - 1. broadcast to find the address & record the address \Rightarrow may suffer if cyclic
 - 2. hope that address show up (send incoming message)
- Cyclic Swtiches Hierarchy
 - Reasons:
 - 1. spaicial multiplexing more wires
 - 2. redundancy
 - 3. short cuts
 - Broadcasting storm: with no global view, leads to recursive broadcasting
 - Spanning tree: disable some path ⇒ reduce to tree architecture
 - 1. everyone think itself as root
 - 2. broadcasting & forward its current info to select a root on set-up (flooding)
 - 3. select the shortest path from root using hop count
 - 4. turn off ports not on the tree

Compared to flooding: maintain the reduced topologies instead of the whole map

- Virtual Lan
 - o Reasons
 - Separation of traffic : logically separated network on the same infrastructure
 - 1. protect confidential info
 - 2. ensure devices in communication are compatible (computer cannot talk to phone)
 - 3. easy re-configure the LAN Structure on the
 - Prioritization of traffic
 - 1. drop frames accordingly when busy
 - o Implementation
 - Tagging the port address into groups
 - Tagging the frames accordingly

LAN - Ethernet

- Advantages:
 - o scalablity:
 - plug-and-play
 - backward compatbility
 - negotiate on connection
- Auto-Negotiation
 - o Capability Negotiation
 - both ends communicate in "fast link pulse", containing requirement of:
 - 1. Speed

- 2. Duplex
- 3. Rx & Tx Detection
- Topologies Change devices connect / disconnect
 - Heatbeat: device sends out a "normal link pulse" to remind the network of me

• Fthernet Frame

Preamble				802.1Q tag [opt]	1 / 1 .	Payload	Checksum
7 byte	1 byte	6 byte	6 byte	4 byte	2 byte	42-1500 byte	4 byte

- o Preamble:
 - 1-0 bits sequence
 - wake up the receiver & synchronize
- MAC Addressing
 - originally plan to offer globally unique address
 - some address for sepcial use, e.g. "all ones" for broadcasting
 - have special bit for: multi-cast ⇒ send / receive messages from a group
- o Tag:
 - virtual lan tags
- o Type / Length:
 - different types of frame denoting the purpose
- Bigger Frames
 - Overhead of Ethernet Frame
 - ~30 bytes meta-data / 1500 bytes data \Rightarrow 3~5% bandwidth lost
 - more bandwidth \Rightarrow more frames \Rightarrow more read/write \Rightarrow traffic jam
 - o Jumbo Frames
 - 9000 bytes payload
- Protocol:
 - o Listening all frameson the wire until destination is my address
 - o Can collect all frames transfering on the wire
- Link Aggregation / Trunking

- o Advantages:
 - performance
 - redundancy
- o Restriction:
 - need to use identical link for each port
 - frames order not changed
 - no partial frame (independent interfaces / devices / netwrok cards at other ends)

- o Protocol:
 - on set-up, checking if using aggregation
- o Model for Aggregation: selecting the path for frames
 - Round-robin: using each path in turns
 - Active back-up: use one path till broken
 - Random: randomly choose

LAN - Wireless LAN: WLAN

- Interference
 - o Dealing noise
 - Adapt power: shout louder
 - Adapt rate: slow down e.g. 1b/10b (encoding 1 bit into 10 bits)
 - Statistical Multiplexing and Frequency Hopping (⇔ channel changing)
 - choose the frequency to change to using statistical random method
 - Beam-Forming and Spaical Multiplexing
 - multiple input multiple output (MIMO) ⇒ multiple antennas for beam-forming
- Channels
 - o 2.4GHz
 - most channels overlapped
 - o 5GHz
 - larger spectrum space

Y Mh/s

- channels does NOT overlap
- can bind channels into a wider channel ⇒ higher bandwidth for each channel
- built-in frequecy hopping in the standard

V 116/2

• Frames in WLAN

/\ /VI	D/3	1 1/10/5			
Preamble	Start Frame	PLCP	Header	Payload	Checksum
7/16 byte	1 byte	6 byte	30 byte	0-2312 byte	4 byte

Frame Control	Duration/ Connection	Addr 1	Addr 2	Addr 3	Seq Ctrl	Addr 4
2 byte	2 byte	6 byte	6 byte	6 byte	2 byte	6 byte

- o Preamble
 - wake up the receiver
 - need to negotiate the frequency for EACH frame
 - \Rightarrow to start the negotiation, Preamble is sent under a standard specific speed
- o Frame Control
 - denote the encoding / meaning of the rest of this frame

- 1. control frame: control the communication with AP (acess point)
 - e.g.request to send (RTS), clear to send (CTS), acknowledgement (ACK), ...
- 2. management frame: manage relations with AP (acess point)
- 3. data frame: sending the data
- o Reliability
 - detect error & drop frames
 - detect error & fix frames at receiver
 - detect error & sender sends again (WLAN default, as using acknowledgement)
 - 1. when resending, need to tag the frame as "resending", because acknowledge may lost
 - 2. may delay the performance because of delay
- Association with AP
 - need to know:
 - 1. connection service (service set identifier SSID)
 - 2. APs that accept this SSID
 - beacon / probe-request
 - 1. beacon: AP broadcast
 - 2. probe-request: client broadcast
 - authentication

AP: connect to service database to check the ID-key (instead of storing info in local)

- associate on to AP
 - 1. resource allocation
 - 2. re-associate
 - 3. dis-connect (free resource)

Network Layer

- Focus & Role
 - Message Packets
 - Definition: fragments of message & smallest unit of data in the ne
 - Reasons: use spacial multiplexing more ⇒ more parallel
 - o Traffic Control
 - Optimized routing ⇒ no order guaranteed
 - Prioritization
 - Compared with LAN:
 - 1. LANs focus on similicity, instead of optimization
 - 2. Spanning Tree can NOT guarantee optimal topology
 - Scaling Problems
 - Internet accross the world
 - Compatible to diffrent underlying LANs
 - Compatible for Different LANs structure

- Routing as a layer upon LANs ⇒ network layer
- Adaptive to Change
 - Coping the evolving network topology
- o Simplicity & Best-effort
 - Connection stage stored at ends
 - Minimal service level agreement ⇒ no guarantee but best effort (reliability provided only where it needed)

Router

- Forwarding
 - Happens within each router, based on its forwarding table
 - Distributed decision making
- Routing
 - Happends on the globale level (in routers network)
 - ⇒ optimizing routing causes each router optimize its forwarding table
 - lacktriangle Focus on packet \Rightarrow packets usually arrive in different order than that of when it's sent
- Forwarding Table
 - packet forwarding table
 - 1. forward packet based on its destination address
 - 2. mor robust to router failure (find another path)
 - 3. learn / optimize forwarding table on the fly
 - circuit forwarding table
 - 1. forward packet based on the tag on packet
 - 2. storring states & policy in networks ⇒ virtual network
 - \Rightarrow separate traffic, guaranteed performance (bandwidth, path, delay...), prioritized routing
 - 3. overhead of setup / tear down the circuit (resource allocation / cleanup
 - 4. more guaranteed performance
 - 5. more fragile \Rightarrow not able to recover from nodes failure automatically

Netwrok

- Routing on Packtes
 - statistical multiplexing sharing links
 - decision made in destributed routers
 - no guarantee on arrived packets' order (or dependency)
- o Connectionless vs. Connetion-oriented
 - \blacksquare Connectionless \Rightarrow packet forwarding network makes all decisions, in each distributed router
 - Connetion-oriented ⇒ circuit forwarding
- Hosts

- Sending Packets
 - send to local LANs service (switches)
 - switche decides the forwarding direction
 - \Rightarrow router outer internet
 - \Rightarrow local hosts in my LANs
- Hosts Routing Table
 - longest matching prefix + broadcasting address
- Communicating with Link Layer
 - Reason
 - link layer deals with only MAC address
 - \Rightarrow communication across layers (IP \Leftrightarrow MAC)
 - link layer sends only its frames
 - ⇒ inter-changing of IP packet and link frames, especially address
 - The Address Resolution Protocol
 - source MAC: read from local hardware
 - destination MAC:
 - 1. sender broadcasts LAN frame to call for corresponding IP address
 - 2. receiver replies with its MAC address
 - optimizations
 - 1. caches the MAC address (with time-out)
 - 2. cache passing IP address (when others broadcast & reply)
 - 3. upon connection on LAN, broadcast my IP address (MAC address in frame's address feild)
- Allocation of Address
 - Consideration
 - globally-unique address
 - address aggregation
 - Authorities
 - allocate regional IP addresses blocks to regional internet registries
 - registries allocate IP addresses blocks to ISP
- Internet Control Message Protocol
 - o Aims
 - special packet for router to inform the hosts (usually senders, including routers)
 - Traceroute

ICMP TL expired (11/0)

- Sending message with increamenting TTL
 - \Rightarrow the $i^{ ext{th}}$ router sends back with corresponding exceptions (via control messge protocol)
- ⇒ host can find out the path its packet is taking
 - TTL: time to live (in hops count)
- Fragmentation in IP
 - Slicing Packets
 - packet bigger than LAN's payload ⇒ sliced packets

- Realizing the need of slicing:
 - packet size > MTU (maximum trasmission unit)
- Flags to inform the next router:
 - 1. Identification field: key to identify a packet uniquely
 - 2. Fragment offset: the offset of this packet in the original big packet
 - 3. MF: more fragment flag \Rightarrow more fragment of packets after me
 - 4. DF: don't fragment flag \Rightarrow no more fragment after me
- Trasmitting sliced packets
 - 1. <u>copy</u> IP Header, including identification each sliced packet belongs to the original packet
 - 2. adjust Length, Checksum & TTL (time to live) feilds of each sliced packet
 - 3. set fragment offset & MF/DF flags
 - 4. receiver re-assemble accordingly
- Potential problem
 - 1. more work for routers
 - 2. more potential internal packet loss
 - 3. security issue (injection within packet)
- \circ Avoiding fragment in IP \Rightarrow path MTU discovery
 - Using internet control message protocol similar to traceroute

ICMP Destination unreachable (Code 3)
Fragmentation required, and DF flag set (Type 4)
Data = next-hop MTU

- \Rightarrow sender send at the lowest MTU
- ⇒ router focuses on sending packets
- IP multicasting
 - Definition
 - mutilcast to only a group of users, compared to broadcast
 - o Challenge
 - sender may not be able to handle thousands of requests & data streams
 - Approach
 - usres subscribes to the sender, using special message / packet
 - \Rightarrow all routers on the path know the subscription
- Internet Protocol IP
 - o IP v4
 - Protocol overview (top-left -> bottom-right)

Note: checksum needs to be update at every router (hop counts changing)

Fixed Variable

1. total length - 32 bits

Addressing

- 2. prefix denoting a netwrok, containing a range of the address
 - ⇒ fewer entry in forwarding table
- 3. host addresses denoting the subnet under this network (denoted by prefix)
- 4. "/x" x bits for host addresses; (32-x) bits for prefix

Special addesses:

- 1. private networks, multicasting, broadcasting, experimental, local interface, ...
- 2. convention: sub-net wires, sub-net broadcast, local router, ...

Classes

- 1. denoted by first few bits of the address
- 2. denoting different function of current packet (broadcastin, ...)

Forwarding by prefix

1. Prefix:

network address

2. Assumption:

addresses aggregated into ranges

3. Benefits:

aggregation benefit of hierarchical addresssing \Rightarrow less entries, routing efficiency more flexible for directing specific trafic

4. Forward by longest matching prefix

default behavior for shorter (less-specific) prefixes

specialized behavior for longer (more-specific) prefixes

 \Rightarrow allow to route sub-chunks (some specific) of address to other hops / routers choose the one that match the most \Rightarrow "best-effort service"

Addresses exhaust

- 1. problem \Rightarrow no more available addresses & large amount of wasted addresses
- 2. current solutions

re-allocating smaller chunk of addresses

- ⇒ addresses aggregation damaged
- ⇒ larger forwading table & more updates
- \Rightarrow routing efficiency \downarrow

NAT (Network Address Translation) - use private address space behind a public IP address

3. future solution: IPv6

- Potential & exisiting problems
 - 1. designed in a smaller & more trusting world
 - ⇒ lack of security, mobaliity and compatibility concern
 - 2. out of addresses & routing efficiency problem
- o IP v6
 - Protocol overview

0 1 2 3	4 5 6 7 0 1 2 3	4 5 6 7	0 1 2 3 4 5 6 7	0 1 2 3 4 5 6 7		
Version	Traffic class		Flow label			
Payload length			Next Header Hop Limit			
		Source	Address			
		(128	3-bit)			
		Destinatio	n Address			
		(128	3-bit)			
Payload ()						

1. larger address sapce: 128-bits

2.

Addressing

- 1. 3-bit header:
- 2. TLA: top level aggregator global ISP
- 3. Res: reserved
- 4. NLA: next level aggregator site
- 5. SLA: site level aggregator subnet
- 6. Interface: address in local subnet host

Advantage: explicit addresses aggregation

- Transferring to IPv6
 - 1. dual stack: routers run both (2 separate pathways)
 - 2. translate: convert $IPv4 \leftrightarrow IPv6$
 - 3. tunneling: pack IPv6 packet inside IPv4 packet until a router recognize IPv6 (v4 everywhere)

Transport Layer

- Focus & Role
 - o Message Segment

- Definition & components:
 - 1. functionality & quality (including reliability) for applications
 - 2. host-to-host message
- Main Services
 - Reliability
 - Communication between hosts (on their ports)
- Port and IP addresses
 - IP address for host
 - Port for applications ⇒ port binding:
 - 1. port allocated on memory;
 - 2. client connects to an exposed port;
 - 3. server maintain the concurrency from inside
- Service Types
 - Reliability:
 - 1. reliable: packet loss repaired at transport layer
 - 2. unreliable: reliability offload to applications
 - Communication froms:
 - 1. messages: self-contained command and response
 - 2. byte-stream: generic flow of bytes, chunked into segments

 \Rightarrow

	Unreliable	Reliable
Messages	UDP (datagrams)	
Byte-stream		TCP (Streams)

- TCP vs. UDP
 - Comparison
 - TCP: many features, able to negotiate
 - UDP: enhanced packet

TCP	UDP
Connection-oriented (significant state in transport layer)	Connectionless (minimal state in transport layer)
Delivers BYTES: once, reliably, in order	Delivers MESSAGES: 0-n times, any order
Any number of bytes	Fixed message size
Flow control (sender/receiver negotiate)	Don't care
Congestion control (sender/network negotiate)	Don't care

o Situation for UDP - multicasting

- connectionless
- Replicate segments or packets are fine
- Missing (some) segments or packets are fine
- o Sending Byte-stream TCP
 - Chunks of byte-stream in segments message boundaries not reserved
 - Read / write on buffer
- UDP Segment

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7	0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7					
Source Port	Destination Port					
Length	Checksum					
Payload ()						

- o Ports
 - associate segments with applications / sessions
 note: application can use multiple ports
- TCP Segment

- o Options
 - Maximum segment size
 - Window sacle upon window is full will acknowledgement sent
 - Time stamp
 - Selective acknowledgement advanced acknowledgement
- Reliability
 - Important components: sequency number, acknowledegement
 - Sequence number: byte count in a stream (in $\mod n$ space) \Rightarrow can be used as relative time stamp

Note: does NOT start from $0 \Rightarrow$ security reason

- Acknowledgements: with sliding windows with size w & selective repeat
 - \Rightarrow more parallel
 - 1. sender

allows w segments to be outstanding (no ACK provided) - sliding window a timer for every unACKed segment - re-send after time-out

2. receiver

buffers many segments ⇒

ACK received segments

request missing segments - which is in gap of segments stream & the future

- 3. Pros: no need to suspend on every segment \Rightarrow more parallel
- o Connection in TCP 3 Way Handshakes
 - Reasons:
 - 1. TCP is full-duplex \Rightarrow need to connect two independent paths for each direction
 - 2. need to start together ⇒ negotiate synchronization & initial Seq (sequence number)
 - Procedure:

- Connection between Applications
 - Necessary components:
 - source & destination IP addresses
 - source & destination ports
 - protocol
 - Socket API:

- Note: * = potential blocking calls
- o NAPT (Network Address and Port Translation)
 - NAT: hiding behind a public IP address
 - NAPT: hiding behind a public IP + translate outbound port into host's actual port

Application Layer

- Focus & Goal
 - Build Sessions
 - Sessions: a series of interactions
 - based on TCP reliable byte-stream or UDP unreliable messages, or combination / extension
 ...
 - Presentation of Content
 - Interpret content: interpret message/byte-stream inside TCP/UDP segments' payload
 - Handle Command: handle request & control from both ends
 - o UDP-based Application
 - Short messages ⇒ light server touch ⇒ simple request-response transaction
 - o TCP-based Application
 - Large content change \Rightarrow longer & complex sessions
- Dynamic Host Configuration Protocol (DHCP) Getting IP Address
 - o Goals:
 - allocate IP address
 - automatic configuration, instead of manual
 - Negotiation procedure

- Need to broadcast to discover
- need to request the IP address after being offered (backward compatibility)
- can directly request the IP address in hand, when it is close to expired
- o DHCP relays (转接):
 - DHCP server in the middle;
 - Relays on router/switches...
 - lacktriangledown Relays forward the request to the server (broadcst ightarrow unicast)
- o Multiple DHCP
 - Reasons: performance, robustness
- o DHCP service with orther services
 - on the default router (to the internet)
 - with DNS service
- Domain Name Service (DNS)
 - o Goal & Reasons
 - Changing IP address
 - 1. IP address expired
 - 2. LANs re-configure
 - 3. physical movement to other places
 - Human readable name
 - o Definition
 - Names for humans
 - Addresses for underlying protocols and applications
 - Resolution finding the right servers (authority) to find the requested IP names

Note: 1 name can have multiple addresses; 1 addresses can have multiple names

- o Design
 - Distributed control
 - Hierarchical namespace delegate to authorities (for them to be responsible for, legally)
 - Automated protocol & handling
- o Namespace
 - Root: '.' (usually dropped)

- Top level domain (TLD):
 - 1. classification com, edu, org, net
 - 2. contry code au, us, jp, cn, ...
- running down the hierarchical to the local host

o Domain

- Delegated to authorities; authorities hold legal responsibility
- Responsibility covers the subtree starting form the delegated point

o Zone

- Shared pieces of DNS database through technology
- Recording the information about:
 - 1. meta data of the the zone
 - 2. further relations (delegations)
 - 3. resource records: addresses and corresponding DNS names, services & other meta data (includes time stamps used for cache)

o Example

- Resolving the IP address (Resolution)
 - Iterative query to resolve IP address
 - 1. example:

2. Improvement - Caching

- ⇒ cache information with an expired time
- \Rightarrow dirrectly knows the authorities / IP address for the next query (within a time) shortcut
- Nameserver, name & IP addresses replication:
 - 1. ask more than one server ⇒ spread the workload & risks
 - 2. more IP \Rightarrow more hosts, prevent nodes fail-over
 - 3. more names \Rightarrow less typo

Note: enable prioritization, with other addresses

Security issues

can change the cache in router - man-in-the-middle

- 1. make a query by yourself;
- 2. draft a reply, including a valid source address & guess the ID (enumeration will do);
- 3. (router usually check only destination addr, matching ID, is it answering query)
- More security: signature, public-private keys, ...
 - \Rightarrow validate along the way \Rightarrow building a trust chain
- lacktriangledown Policy: can change the query on the fly \Rightarrow enable policy, e.g. content check, DNS polluting
- Dynamic DNS NAPT
 - 1. register a DNS name on DNS server for my host \Rightarrow server handle the address change
 - 2. host address change: local IP address (private address) change \Rightarrow router port change
 - 3. message sent to me will find the right port through DNS (DNS will query my router)
- HTTP Protocol Most Common Used Web Application
 - Focus
 - Deliver associated content
 - Linking related content on the web, instead of fetching everything to local
 - Light weight (initially designed) used with UDP as transport layer sometimes
 - o URI vs. URL:
 - URI uniform resource identifiers: identifier, identifying anything
 - lacktriangledown URL uniform resource locator: an example of URI \Rightarrow location on internet

- o URLs Schemes
 - Various schemes
 - server name in DNS, IP addresses, HTTP protocol, resource on the host, query to server
- o Dynamic & Static Contents
 - Procedure

purple: communication & data between server and client

red & green: interpret & execute command on server side

blue: get input / command and execute program on the local - security concerns

- 1. parse URL & resolve DNS
- 2. connect to the host
- 3. make HTTP request
- 4. receiver contents
- 5. close TCP/UDP connection & render the page
- HTTP Request
 - Basic Command
 - 1. GET: get resource
 - HEAD: get the headers about the resource (meta-data)
 enable backward compatibility
 enable re-direction for performance reasons (e.g. redirect to closer server)
 - 3. POST: append my contribution to the host
 - Feedback
 - 1. 1xx not used currently;
 - 2. 2xx OK (successful); 3xx redirection (no longer in this address)
 - 3. 4xx hosts' problem, e.g. 403 bad request; 5xx server has problem
- States in HTTP
 - Default
 - 1. Stateless server should not hold state (too much each session needs a key)
 - 2. Stand along query
 - Session Key in URL
 - 1. Key: encoded in URL
 - 2. Passing the Key: as part of query \Rightarrow server interprets it from the query
 - Session Key in Cookies
 - 1. Key in cookies: set & offered by server; held by client

- 2. Passing the Key: include the cookies in the communication with server, if relevant
- 3. Type of Cookies

session cookies - deleted when page closed persisten cookies - static cookies with expire time

o Efficiency in HTTP

Parallelism

use idle bandwidth & potential distributed servers

Persistence

use one TCP connect for all requests
need only one connection set-up (3-way handshakes)

- Pipeline
 send all requests and wait for all resource from server (full-duplex)
- Caching
 - Browser (local) level
 cache on demand (cache the most popular one)
 - 2. Proxy level proxy cache (⇔ caching proxy) cache on routers on local LAN - closer to client share the cache in the LAN - enable security check & policies

- Network server level Content Distribution Network (CDN)
 - 1. distributed file system over internet DNS redirects client to the best cache
 ⇒ server offload; content closer to clients
 - 2. cache before the request \Rightarrow as a way of sharing distributed servers

