

Supervised Topic Models

Advanced Machine Learning for NLP Jordan Boyd-Graber

Single Language: Supervised LDA

- Normal LDA generative story
- Document also has label y_d

$$y_d \sim \mathcal{N}(y_d, \eta^{\top} \mathbb{E}_{\theta}[\bar{Z}], \sigma^2)$$
 (1)

How does this change topics?

Multiple Languages

- For each topic k = 1...K, draw correlated multilingual word distribution $\{\boldsymbol{\beta}_k, \boldsymbol{\omega}_k, \boldsymbol{\phi}_k\}$
- ② For each document d, $\theta_d \sim \text{Dir}(\alpha)$

 - 2 Draw path $\lambda_{d,n}$ through multilingual tree $z_{d,n}$, emit $w_{d,n}$
- 3 $y_d \sim \text{Norm}(\eta^{\top} \bar{z}, \sigma^2)$

Multiple Languages

- **1** For each topic k = 1...K, draw correlated multilingual word distribution $\{\boldsymbol{\beta}_k, \boldsymbol{\omega}_k, \boldsymbol{\phi}_k\}$
- ② For each document d, $\theta_d \sim \text{Dir}(\alpha)$
 - $z_{d,n} \sim \text{Discrete}(\theta_d)$
 - 2 Draw path $\lambda_{d,n}$ through multilingual tree $z_{d,n}$, emit $w_{d,n}$
- 3 $y_d \sim \text{Norm}(\eta^{\top} \bar{z}, \sigma^2)$

Multiple Languages

- For each topic k = 1...K, draw correlated multilingual word distribution $\{\boldsymbol{\beta}_k, \boldsymbol{\omega}_k, \boldsymbol{\phi}_k\}$
- 2 For each document d, $\theta_d \sim \text{Dir}(\alpha)$
 - $z_{d,n} \sim \text{Discrete}(\theta_d)$
 - 2 Draw path $\lambda_{d,n}$ through multilingual tree $z_{d,n}$, emit $w_{d,n}$
- 3 $y_d \sim \text{Norm}(\eta^{\top} \bar{z}, \sigma^2)$

- Statistical NLP typically uses Dirichlet distributions because of conjugacy
- Parameter of Dirichlet encode mean and variance

- Statistical NLP typically uses Dirichlet distributions because of conjugacy
- Parameter of Dirichlet encode mean and variance
- But we want correlations!

Statistical NLP typically uses Dirichlet distributions because of conjugacy

Parameter of Dirichlet encode mean and variance

Statistical NLP typically uses Dirichlet distributions because of conjugacy

- Parameter of Dirichlet encode mean and variance
- But we want correlations!

gut hǎo good

Dictionary

- CEDICT (Chinese/English)?
- HanDeDict (Chinese/German) ?
- Ding (German/English) ?

Multilingual Ontology

GermaNet ??

ullet Jointly sample z and path λ through multilingual tree

$$\begin{split} p(z_n = k, \lambda_n = r | \boldsymbol{z}_{-n}, \boldsymbol{\lambda}_{-n}, w_n, \eta, \sigma, \Theta) &= \\ p(y_d | \boldsymbol{z}, \eta, \sigma) p(\lambda_n = r | z_n = k, \boldsymbol{\lambda}_{-n}, w_n, \tau, \boldsymbol{\kappa}, \pi) \\ p(z_n = k | \boldsymbol{z}_{-n}, \alpha). \end{split}$$

- Collapse out multinomial distributions in tree
- Slice sample hyperparameters
- After pass of z, update η

Multilingual Supervised LDA

Evaluation: Learned Topics (Chinese - German)

Evaluation: Prediction Accuracy

- Take large corpus (6000) of English movie reviews rated from 0-100 ?
- Combine them with smaller German corpus (300) rated using same system
- Compute mean squared error (lower is better) on held out data

Train	Test	GermaNet	Dictionary	Flat
DE	DE	73.8	24.8	92.2
EN	DE	7.44	2.68	18.3
EN + DE	DE	1.17	1.46	1.39

Moral: More data, even in another language, helps