Electro-Optic Coefficients Calculation (PyEOC)

Implementation of the method published by Cuniot-Ponsard et al. in JAP 109, 014107 (2011) https://doi.org/10.1063/1.3514083

Pr. Sidi Hamady Université de Lorraine, France

sidi.hamady@univ-lorraine.fr

Released under the MIT license ($\underline{\text{https://opensource.org/licenses/MIT}}$) See Copyright Notice in COPYRIGHT

Reference: Sidi Ould Saad Hamady, "PyEOC: a Python Code for Determining Electro-Optic Coefficients of Thin-Film Materials", 2022.

Presentation and Requirements

PyEOC calculates the electro-optic coefficients of an optical material by implementing the method published by Cuniot-Ponsard et al. in JAP 109, 014107 (2011) https://doi.org/10.1063/1.3514083.

Figure 1. The standard multilayer structure used to measure the electro-optic (and converse piezoelectric) coefficients of a thin-film material. The film to characterize is sandwiched between two thin metallic contacts (e.g. gold, platinum): a semitransparent top contact and a thick bottom contact. The voltage is applied between these two contacts and the reflectance measured with respect to the incident angle 0.

Figure 2. Intensity variation with the position in the Pt/SBN/Pt structure in both TE and TM polarization. The figures on the right represent a zoom in the active layer.

Figure 3. Experimental and theoretical calculated static reflectivity R (top-left), dynamic reflectivity ΔR (bottom-left) and the calculated TE derivatives (right). The symbols indicate the experimental data curves and the lines indicate the fitted curves.

To install PyEOC:

just download it from github: https://github.com/sidihamady/PyEOC

unzip and use.

You can also install the PyEOC module to use as usually done in Python:

```
python3 setup.py install
```

The distribution mainly includes:

Three main Python files:

- PyEOC.py implementing the program core functionality in the module classe.
- tmmCore.py S J Byrnes' transfer-matrix-method code

 (https://arxiv.org/abs/1603.02720)
- <u>Test.py</u> an example with a SBN structure by Cuniot-Ponsard et al. in JAP 109, 014107 (2011)

The basic requirements are found in any Linux distribution (and easily installed for Windows):

- Python version 2.7.x or later
- numpy version 1.5 or later
- scipy version 0.13.1 or later
- matplotlib version 1.3.x or later

PS: for Windows, you can download a complete Python distribution from https://www.anaconda.com/distribution/

HowTo

You can use the included Test.py and adapt it to your needs:

```
# -*- coding: utf-8 -*-
import sys, os
#sys.path.insert(0, "/path/to/PyEOC")
from PyEOC import * # import PyEOC core class
Structure = PyEOC(
    'SBN', # structure name included in the PyEOC class
   # measurement data: static reflectivity vs angle (TE and TM)
                       dynamic reflectivity vs angle (TE and TM)
                       four files with tab-separated columns
   # 'SBN' data extracted from Cuniot-Ponsard et al. in JAP 109, 014107 (2011)
   'SBN_Reflectivity_TE.txt',
                                 'SBN_Reflectivity_TM.txt',
    'SBN_Reflectivity_Dyn_TE.txt', 'SBN_Reflectivity_Dyn_TM.txt'
Structure.wavelength = 633 # laser wavelength in nm
Structure.voltage = 1.0
                          # applied voltage amplitude in volts
# the incident angle theta starting three values and range
# the choosen theta values should correspond to a "smooth" and "different" part of the
DR and delta_R / delta_? data
Structure.theta_manual = [35.0 * Structure.toradian, 40.0 * Structure.toradian, 45.0
* Structure.toradian]
Structure.thetaDelta = 2.0 * Structure.toradian
```

```
Structure.thetaStart = 30.0 * Structure.toradian

Structure.thetaEnd = 70.0 * Structure.toradian

Structure.thickness[1] = 22.6 # Pt thickness (nm)

Structure.thickness[2] = 758 # SBN thickness (nm)

Structure.refractiveindexo[2] = 2.30 + 0.0515624j

Structure.refractiveindexe[2] = 2.26 + 0.0515624j

Structure.fit_dynamic = True # fit the dynamic reflectivity?

Structure.fit(report = True) # start fitting and report

Structure.plot() # plot the fitted curves

#Structure.plotpoynting() # plot the intensity profile
```