4722 Core Mathematics 2

1	(i) $\cos \theta = \frac{6.4^2 + 7.0^2 - 11.3^2}{2 \times 6.4 \times 7.0}$	M1		Attempt use of cosine rule (any angle)
	= -0.4211 $\theta = 115^{\circ} \text{ or } 2.01 \text{ rads}$	A1 A1	3	Obtain one of 115°, 34.2°, 30.9°, 2.01, 0.597, 0.539 Obtain 115° or 2.01 rads, or better
	(ii) area = $\frac{1}{2} \times 7 \times 6.4 \times \sin 115$	M1		Attempt triangle area using $(\frac{1}{2})ab\sin C$, or equiv
	$= 20.3 \text{ cm}^2$	A1	2	Obtain 20.3 (cao)
5				
2	(i) $a + 9d = 2(a + 3d)$	M1*		Attempt use of $a + (n-1)d$ or $a + nd$ at least once for u_4 , u_{10} or u_{20}
	$a = 3d$ $a + 19d = 44 \Rightarrow 22d = 44$	A1 M1de	p*	Obtain $a = 3d$ (or unsimplified equiv) and $a + 19d = 44$ Attempt to eliminate one variable from two simultaneous
	d = 2, a = 6	A1	4	equations in a and d, from u_4 , u_{10} , u_{20} and no others Obtain $d = 2$, $a = 6$
	(ii) $S_{50} = {}^{50}/_2 (2x6 + 49x2)$	M1		Attempt S_{50} of AP, using correct formula, with $n = 50$,
	= 2750	A1	2	allow 25(2 <i>a</i> + 24 <i>d</i>) Obtain 2750
6				
3	$\log 7^x = \log 2^{x+1}$	M1		Introduce logarithms throughout, or equiv with base 7 or 2
	$x\log 7 = (x+1)\log 2$	M1		Drop power on at least one side
	$x(\log 7 - \log 2) = \log 2$	A1 M1		Obtain correct linear equation (allow with no brackets) Either expand bracket and attempt to gather <i>x</i> terms,
	x = 0.553	A1	5	or deal correctly with algebraic fraction Obtain $x = 0.55$, or rounding to this, with no errors seen
5				
4	$(\mathbf{i})(x^2 - 5)^3 = (x^2)^3 + 3(x^2)^2(-5) + 3(x^2)(-5)^2 + (-5)^3$	M1*		Attempt expansion, with product of powers of x^2 and ± 5 , at least 3 terms
	$= x^6 - 15x^4 + 75x^2 - 125$	M1*		Use at least 3 of binomial coeffs of 1, 3, 3, 1
		Alde _l		Obtain at least two correct terms, coeffs simplified Obtain fully correct expansion, coeffs simplified
	OR	AI	4	Obtain runy correct expansion, coerts simplified
	$(x^2 - 5)^3 = (x^2 - 5)(x^4 - 10x^2 + 25)$ = $x^6 - 15x^4 + 75x^2 - 125$	M2		Attempt full expansion of all 3 brackets
	-x - 13x + 73x - 125	A1 A1		Obtain at least two correct terms Obtain full correct expansion
	(ii) $\int (x^2 - 5)^3 dx = \frac{1}{7}x^7 - 3x^5 + 25x^3 - 125x + c$	M1		Attempt integration of terms of form kx^n
		$A1\sqrt{}$		Obtain at least two correct terms, allow unsimplified coeffs
		A1		Obtain $\frac{1}{7}x^7 - 3x^5 + 25x^3 - 125x$
		B1	4	$+c$, and no dx or \int sign
8				

 $2x = 30^{\circ}, 150^{\circ}$ (i) $x = 15^{\circ}, 75^{\circ}$

- Attempt sin⁻¹ 0.5, then divide or multiply by 2 M1
- Obtain 15° (allow $^{\pi}/_{12}$ or 0.262) **A**1
- 3 Obtain 75° (not radians), and no extra solutions in range **A**1

- (ii) $2(1-\cos^2 x) = 2 \sqrt{3}\cos x$ $2\cos^2 x - \sqrt{3}\cos x = 0$ $\cos x (2\cos x - \sqrt{3}) = 0$ $\cos x = 0, \cos x = \frac{1}{2}\sqrt{3}$
- Use $\sin^2 x = 1 \cos^2 x$ M1
- **A**1 Obtain $2\cos^2 x - \sqrt{3}\cos x = 0$ or equiv (no constant terms)
- M1 Attempt to solve quadratic in cosx
- Obtain 30° (allow $\pi/6$ or 0524), and no extra solns in A1

- range
- $x = 90^{\circ}$, $x = 30^{\circ}$

- B1 5 Obtain 90° (allow $\pi/2$ or 1.57), from correct quadratic only
 - **SR** answer only B1 one correct solution
 - B1 second correct solution, and no others

8

- 6 $\int (3x^2 + a) dx = x^3 + ax + c$
- M1 Attempt to integrate
- **A**1 Obtain at least one correct term, allow unsimplified

 $(-1, 2) \Rightarrow -1 - a + c = 2$

A1 Obtain $x^3 + ax$

 $(2, 17) \implies 8 + 2a + c = 17$

Hence $y = x^3 + 2x + 5$

a = 2, c = 5

- Substitute at least one of (-1, 2) or (2, 17) into integration M1 attempt involving a and c
- **A**1
 - Obtain two correct equations, allow unsimplified
 - M1 Attempt to eliminate one variable from two equations in a
- **A**1
 - Obtain a = 2, c = 5, from correct equations
 - 8 State $y = x^3 + 2x + 5$ **A**1

f(-2) = -16 + 36 - 22 - 8= -10

- M1 Attempt f(-2), or equiv
- 2 Obtain -10 **A**1
- (ii) $f(\frac{1}{2}) = \frac{1}{4} + \frac{2}{4} + \frac{5}{2} 8 = 0$ AG
- M1 Attempt $f(\frac{1}{2})$ (no other method allowed)
- 2 Confirm $f(\frac{1}{2}) = 0$, extra line of working required A1
- (iii) $f(x) = (2x-1)(x^2+5x+8)$
- M1 Attempt complete division by (2x-1) or $(x-\frac{1}{2})$ or equiv
- Obtain $x^2 + 5x + c$ or $2x^2 + 10x + c$ Α1 3 State $(2x-1)(x^2+5x+8)$ or $(x-\frac{1}{2})(2x^2+10x+16)$ Α1
- (iv) f(x) has one real root $(x = \frac{1}{2})$
- B1√
 - State 1 root, following their quotient, ignore reason
- because $b^2 4ac = 25 32 = -7$ hence quadratic has no real roots as -7 < 0,
- B1√
 - 2 Correct calculation, eg discriminant or quadratic formula, following their quotient, or cubic has max at (-2.15, -9.9)

A1

8 (i)
$$\frac{1}{2} \times r^2 \times 1.2 = 60$$

(ii)(a) $u_5 = 60 \times 0.6^4$

= 7.78

$$r = 10$$

$$r\theta = 10 \times 1.2 = 12$$

perimeter =
$$10 + 10 + 12 = 32$$
 cm

M1 Attempt (
$$\frac{1}{2}$$
) $r^2\theta = 60$

A1 Obtain
$$r = 10$$

B1
$$\sqrt{}$$
 State or imply arc length is 1.2 r , following their r

M1 Attempt
$$u_5$$
 using ar^4 , or list terms

(b)
$$S_{10} = \frac{60(1 - 0.6^{10})}{1 - 0.6}$$

(c) common ratio is less than 1, so series is

B1 series is convergent or
$$-1 < r < 1$$
 (allow $r < 1$) or reference to areas getting smaller / adding on less each time

2 Obtain 149, or better (allow 149.0 – 149.2 inclusive)

Attempt
$$S_{\infty}$$
 using \underline{a}

$$S_{\infty} = \frac{60}{1 - 0.6}$$
$$= 150$$

A1 **3** Obtain
$$S_{\infty} = 150$$

11

9 (i)

- B1 Sketch graph showing exponential growth (both quadrants)
- Β1 2 State or imply (0, 4)

(ii)
$$4k^x = 20k^2$$

$$k^x = 5k^2$$

$$x = \log_k 5k^2$$

$$x = \log_k 5 + \log_k k^2$$

$$x = 2\log_k k + \log_k 5$$

$$x = 2 + \log_k 5$$
 AG

- Equate $4k^x$ to $20k^2$ and take logs (any, or no, base) M1
- M1 Use $\log ab = \log a + \log b$
- Use $\log a^b = b \log a$ M1
- 4 Show given answer correctly Α1

$$OR \quad 4k^x = 20k^2$$

$$k^x = 5k^2$$

$$k^{x-2} = 5$$

$$x - 2 = \log_k 5$$

$$x = 2 + \log_k 5$$
 A

$$= 2 + \log_{10} 5$$
 A(

- M1 Attempt to rewrite as single index
- Obtain $k^{x-2} = 5$ or equiv eg $4k^{x-2} = 20$ **A**1
- Take logs (to any base) M1
- Show given answer correctly **A**1

(iii) (a) area
$$\approx \frac{1}{2} \times \frac{1}{2} \times \left(4k^0 + 8k^{\frac{1}{2}} + 4k^1 \right)$$

- M1Attempt y-values at x = 0, $\frac{1}{2}$ and 1, and no others
- M1 **A**1
- Attempt to use correct trapezium rule, 3 y-values, $h = \frac{1}{2}$ 3 Obtain a correct expression, allow unsimplified

$$\approx 1 + 2k^{\frac{1}{2}} + k$$

(b) $1+2k^{\frac{1}{2}}+k=16$

- M1
- Equate attempt at area to 16

- M1
- Attempt to solve 'disguised' 3 term quadratic

- $k^{\frac{1}{2}} = 3$
- k = 9

A1 3 Obtain k = 9 only

12