A Companion to an Implementation of the Rinocchio Protocol

Christian Knabenhans

July 2022

1 Notation

The pseudo-code described here (and the implementation) differ slightly from the protocol as introduced in the original paper.

Let R denote the ring of interest over which Rinocchio operates (e.g., $\mathbb{Z}_{q_1 \cdot \ldots \cdot q_L}[X]/(X^{2^n}+1)$ for RLWE-based FHE), A the exceptional set for R (e.g., \mathbb{Z}_{q_1}), and C the encoding space. Let E(r) denote the encoding of a ring element r, and $E^{-1}(E)$ the decoding of the encoding element E. We will use lowercase letters for elements of E and E, and uppercase letters for elements of E.

2 Building a QRP

A Quadratic Ring Program (QRP) is characterized by exceptional set elements $r_1, \ldots, r_{|I_{mid}|} \in A$, inputs and outputs $I_{io} \in R^{|I_{io}|}$, intermediate values $I_{mid} \in R^{|I_{mid}|}$, and four polynomials v, w, y, h, t.

Each r_i is associated with a multiplication gate, and for each $k \in 1$, $|I_{mid}|$, v_k (resp. w_k , y_k) are interpolated s.t. $v_k(r_i) = 1$ if the value a_k is a left input (resp. right input, output) the i-th multiplication gate, and $v_k(r_i) = 0$ otherwise (here, addition gates propagate left/right/output membership). We can then define $v(x) := \sum_{k=1}^{|I_{mid}|} a_k \cdot v_k(x)$, and similarly for w and v. Contrary to the Rinocchio paper, we drop the dummy input $v_k = 1$ for simplicity.

$$t(x) := \prod_{i=1}^{|I_{mid}|} (x - r_i)$$
, and $h(x) := \frac{v(x) \cdot w(x) - y(x)}{t(x)}$

For a circuit with $|I_{io}|$ inputs and inputs and $|I_{mid}|$ intermediate values (and thus $|I_{mid}| + 1$ multiplication gates), $\deg(v) = \deg(w) = \deg(y) = |I_{mid}| - 1$, $\deg(t) = |I_{mid}|$, and $\deg(h) < \deg(t)$.

3 The Rinocchio Protocol

Verifier.Setup(1^{κ})

$$\begin{split} s &\leftarrow \$ \, A^* \\ \alpha &\leftarrow \$ \, R^* \\ r_v, r_w &\leftarrow \$ \, R^*; r_y = r_v r_w \\ \beta &\leftarrow \$ \, R \setminus \{0\} \\ (\mathsf{pk}, \mathsf{sk}) &\leftarrow \mathsf{Gen}(1^\kappa) \\ \mathsf{crs} &= \left(\left\{ \mathsf{E} \left(s^i \right) \right\}_{i=0}^{|I_{mid}|}, \left\{ \mathsf{E} \left(\alpha s^i \right) \right\}_{i=0}^{|I_{mid}|}, \left\{ \mathsf{E} \left(\beta (r_v v_k(s) + r_w w_k(s) + r_y y_k(s))) \right)_{k \in I_{mid}}, \mathsf{pk} \right) \\ \mathsf{vk} &= \left(\mathsf{sk}, \mathsf{crs}, s, \alpha, \beta, r_v, r_w, r_y \right) \end{split}$$

Prover.Prove(crs, $(a_k)_{k \in I_{mid} \cup I_{io}}$)

$$\overline{A} = \mathsf{E}\left(v_{mid}(s)\right) = \mathsf{E}\left(\sum_{k \in I_{mid}} a_k \cdot v_k(s)\right) = \sum_{k \in I_{mid}} \sum_{i=0}^{|I_{mid}|} (a_k \cdot v_{k,i}) \cdot \mathsf{E}\left(s^i\right)$$

$$\widehat{A} = \mathsf{E}\left(v_{mid}(\alpha s)\right) = \mathsf{E}\left(\sum_{k \in I_{mid}} a_k \cdot v_k(\alpha s)\right) = \sum_{k \in I_{mid}} \sum_{i=0}^{|I_{mid}|} (a_k \cdot v_{k,i}) \cdot \mathsf{E}\left(\alpha s^i\right)$$

$$B = \mathsf{E}\left(w_{mid}(s)\right) = \mathsf{E}\left(\sum_{k \in I_{mid}} a_k \cdot w_k(s)\right) = \sum_{k \in I_{mid}} \sum_{i=0}^{|I_{mid}|} (a_k \cdot w_{k,i}) \cdot \mathsf{E}\left(s^i\right)$$

$$\widehat{B} = \mathsf{E}\left(v_{mid}(\alpha s)\right) = \mathsf{E}\left(\sum_{k \in I_{mid}} a_k \cdot w_k(\alpha s)\right) = \sum_{k \in I_{mid}} \sum_{i=0}^{|I_{mid}|} (a_k \cdot w_{k,i}) \cdot \mathsf{E}\left(\alpha s^i\right)$$

$$C = \mathsf{E}\left(y_{mid}(s)\right) = \mathsf{E}\left(\sum_{k \in I_{mid}} a_k \cdot y_k(s)\right) = \sum_{k \in I_{mid}} \sum_{i=0}^{|I_{mid}|} (a_k \cdot y_{k,i}) \cdot \mathsf{E}\left(s^i\right)$$

$$\widehat{C} = \mathsf{E}\left(y_{mid}(\alpha s)\right) = \mathsf{E}\left(\sum_{k \in I_{mid}} a_k \cdot y_k(\alpha s)\right) = \sum_{k \in I_{mid}} \sum_{i=0}^{|I_{mid}|} (a_k \cdot y_{k,i}) \cdot \mathsf{E}\left(\alpha s^i\right)$$

$$h(x) = \frac{v(x) \cdot w(x) - y(x)}{t(x)} = \sum_{i=0}^{|I_{mid}|} h_i x^i$$

$$D = \mathsf{E}\left(h(s)\right) = \sum_{i=0}^{|I_{mid}|} h_i \cdot \mathsf{E}\left(s^i\right) \qquad \widehat{D} = \mathsf{E}\left(h(\alpha s)\right) = \sum_{i=0}^{|I_{mid}|} h_i \cdot \mathsf{E}\left(\alpha s^i\right)$$

$$F = \mathsf{E}\left(\beta(r_v v_{mid} + r_w w_{mid}(s) + r_y y_{mid}(s)\right) = \sum_{k \in I_{mid}} \mathsf{E}\left(\beta(r_v v_k(s) + r_w w_k(s) + r_y y_k(s))\right)$$

$$\mathbf{return} \ \pi = \left(A, \widehat{A}, B, \widehat{B}, C, \widehat{C}, D, \widehat{D}, F\right)$$

Verifier. Verify(vk, $(a_k)_{k \in I_{io}}$, π)