1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura :

Ciencia e Ingeniería de Materiales

Carrera : Ingeniería Mecatrónica

Clave de la asignatura :

SATCA¹

3-2-5

_

2.- PRESENTACIÓN Caracterización de la asignatura.

Esta asignatura aporta al perfil del ingeniero Mecatrónico, el conocimiento de las propiedades y aplicaciones de los materiales para la selección y uso eficiente en componentes mecatrónicos utilizados en la industria.

Para integrar esta asignatura se debe tener el conocimiento y manejo adecuado de la tabla periódica que integran los diferentes materiales utilizados en las industrias de la transformación.

Puesto que esta materia dará soporte a otras, más directamente vinculadas con desempeños profesionales; se inserta en la primera mitad de la trayectoria escolar; antes de cursar aquéllas a las que da soporte. De manera particular, lo trabajado en esta asignatura se aplica en el estudio de los temas: propiedades mecánicas, eléctricas, magnéticas y térmicas,

Intención didáctica.

Se organiza el temario en seis unidades:

- En la primera unidad se abarca los conceptos básicos de estructura atómica, así como los defectos e imperfecciones y movimientos de átomos por difusión
- En la segunda unidad se analizan las propiedades mecánicas, magnéticas y térmicas de los materiales usados en la ingeniería y se sugiere realizar las prácticas correspondientes para comprobar estas propiedades.
- En la tercera unidad se estudia uno de los materiales más utilizados en el campo industrial como es el hierro y sus aleaciones, obtención, y designación así como el estudio de los metales y aleaciones no ferrosas.
- En la cuarta unidad se trata el control de la microestructura por medio de los tratamientos térmicos: temple, revenido, carburizado y nitruración. En esta parte se recomienda realizar prácticas de los tratamientos térmicos anteriormente mencionados.
- En la quinta unidad sedará el conocimiento de los materiales, polímeros, termoplásticos, termofijos y elastómeros; sus propiedades y aplicaciones

¹ Sistema de Asignación y Transferencia de Créditos Académicos

en la industria. Así también sedará el conocimiento de materiales cerámicos, como el vidrio, la arcilla y productos refractarios de aplicación industrial.

• En la sexta unidad se tratará el efecto que causa la corrosión y el deterioro de los materiales. En esta parte el alumno conocerá los mecanismos existentes de la corrosión y su prevención.

En el transcurso de las actividades programadas es muy importante que el estudiante aprenda a valorar las actividades que lleva a cabo y entienda que está construyendo su hacer futuro y en consecuencia actúe de una manera profesional; de igual manera, aprecie la importancia del conocimiento y los hábitos de trabajo.

Para realizar todas las actividades antes mencionada, se requiere que el profesor ponga atención y cuidado en los aspectos del desarrollo de las actividades de aprendizaje de esta asignatura.

3.- COMPETENCIAS A DESARROLLAR

Competencias específicas:

Explicar la importancia de los materiales en diferentes condiciones de trabajo y medio ambiente requeridas en el campo de la mecatronica.

Tomar decisiones, con base en los elementos teóricos adquiridos, que permitan hacer una selección apropiada de materiales de acuerdo a sus propiedades y requerimiento de trabajo.

Aplicar las diferentes pruebas destructivas y no destructivas necesarias para la selección de los materiales.

Competencias genéricas:

Competencias instrumentales

- Capacidad de análisis y síntesis
- Capacidad de organizar y planificar
- Conocimientos básicos de la carrera de Mecatrónica
- Comunicación oral y escrita
- Habilidades básicas de manejo de la computadora
- Habilidad para buscar y analizar información proveniente de fuentes diversas
- Solución de problemas
- Toma de decisiones.

Competencias interpersonales

- Capacidad crítica y autocrítica
- Trabajo en equipo
- Habilidades interpersonales

Competencias sistémicas

- Capacidad de aplicar los conocimientos en la práctica
- Habilidades de investigación
- Capacidad de aprender
- Capacidad de generar nuevas ideas (creatividad)
- Habilidad para trabajar en forma autónoma
- Búsqueda del logro

4.- HISTORIA DEL PROGRAMA

Lugar y fecha de elaboración o revisión	Participantes	Evento	
Instituto Tecnológico Superior de Irapuato del 24 al 28 de agosto de 2009.	Representantes de los Institutos Tecnológicos de: Apizaco, Celaya, Ciudad Cuauhtémoc, Cuautla, Durango, Guanajuato, Hermosillo, Huichapan, Irapuato, Jilotepec, Jocotitlán, La Laguna, Oriente del Estado de Hidalgo, Pabellón de Arteaga, Parral, Reynosa, Saltillo, San Luis Potosí, Tlalnepantla, Toluca y Zacapoaxtla.	Reunión Nacional de Diseño e Innovación Curricular para el Desarrollo y Formación de Competencias Profesionales de la Carrera de Ingeniería Mecatrónica.	
Desarrollo de Programas en Competencias Profesionales por los Institutos Tecnológicos del 1 de septiembre al 15 de diciembre de 2009.	Academias de Ingeniería Mecatrónica de los Institutos Tecnológicos de: Apizaco, Zacapoaxtla, Jocotitlan	Elaboración del programa de estudio propuesto en la Reunión Nacional de Diseño Curricular de la Carrera de Ingeniería Mecatrónica.	
Instituto Tecnológico de Mexicali del 25 al 29 de enero de 2010.	Representantes de los Institutos Tecnológicos de: Apizaco, Celaya, Ciudad Cuauhtémoc, Cuautla, Durango, Guanajuato, Hermosillo, Huichapan, Irapuato, Jilotepec, Jocotitlán, La Laguna, Mexicali, Oriente del Estado de Hidalgo, Pabellón de Arteaga, Reynosa, Saltillo, San Luis Potosí, Toluca y Zacapoaxtla.	Reunión Nacional de Consolidación de los Programas en Competencias Profesionales de la Carrera de Ingeniería Mecatrónica.	

5.- OBJETIVO GENERAL DEL CURSO

Comprender las propiedades y el comportamiento de diferentes materiales utilizados en ingeniería para poder seleccionar el material más adecuado de acuerdo a su aplicación.

6.- COMPETENCIAS PREVIAS

- Interpretar la tabla periódica
- Conocer la Teoría cuántica y estructura atómica.
- Conocer los Elementos químicos y su clasificación.
- Identificar los tipos de Enlaces químicos.

7.- TEMARIO

Unidad	Temas	Subtemas		
1	Estructura, arreglos y		Importancia y clasificación de los	
•	movimiento de los		materiales en ingeniería.	
	átomos.	1.2	Arreglos atómicos.	
	atomos.	1.3	Defectos e imperfecciones.	
		1.4	Movimiento de átomos (difusión)	
2	Propiedades mecánicas	2.1	Propiedades mecánicas de diferentes	
_	y físicas de los		materiales.	
	materiales.	2.2	Propiedades eléctricas, magnéticas y	
	materiales	2.3	térmicas	
			Materiales semiconductores.	
3	3 Metales y aleaciones.		El hierro y sus aleaciones	
			Procesos de obtención de hierros y	
			aceros.	
			Designaciones y Clasificaciones de los	
			aceros.	
		3.4	Metales y aleaciones no ferrosas.	
	Control de la	4.1	Endurecimiento por deformación.	
	4 microestructura		Tratamientos térmicos.	
4			Temples y revenidos.	
			Carburizado y nitrurizado.	
		5.1	Termoplásticos, termofijos y	
	_ , _ , .		elastómeros	
	Polímeros. Cerámicos y compuestos		Adhesivos y aditivos utilizados en	
5			polímeros.	
			Clasificación, estructura y aplicaciones de	
			las cerámicas (vidrios, arcilla y sus	
			productos, refractarios, materiales	

		compuestos)		
		6.1	Mecanismos de la corrosión.	
	Corrosión y deterioro de	6.2	Series de la fuerza electromotriz.	
		6.3	Tipos de corrosión.	
6 materiales.	6.4	Protección contra la corrosión.		
	6.5	Oxidación.		
	6.6	Otros tipos de deterioro de los		
			materiales.	

8.- SUGERENCIAS DIDÁCTICAS

El profesor debe:

- Propiciar actividades de búsqueda, selección y análisis de información en distintas fuentes
- Relacionar los contenidos de la asignatura con el cuidado del medio ambiente; así como con las prácticas de una ingeniería con enfoque sustentable.
- Relacionar los contenidos de esta asignatura con las demás del plan de estudios para desarrollar una visión interdisciplinaria en el estudiante
- Hacer uso de los sistemas de cómputo para presentaciones didácticas.
- Visitar empresas donde se observe la utilización, procesamiento u obtención de los diferentes materiales utilizados en ingeniería.
- Proponer prácticas donde se observen los fenómenos tratados.
- Fomentar el trabajo grupal,, tanto para actividades practicas como teóricas.

9.- SUGERENCIAS DE EVALUACIÓN

- Examen diagnóstico.
- Participación individual y en equipo.
- Reporte en la participación por equipo
- Elaboración y exposición de trabajos de investigación.
- Exámenes orales y escritos.
- Reporte de las visitas a empresas.
- Reporte de prácticas realizadas

10.- UNIDADES DE APRENDIZAJE

Unidad 1: Estructura, arreglos y movimiento de los átomos.

Competencia específica a desarrollar	Actividades de Aprendizaje
Conocer la clasificación de los materiales, según su estructura atómica, así como también sus arreglos atómicos Que el alumno conozca los tipos de dislocaciones y su origen así como sus efectos en los materiales Conocer los movimientos atómicos que se tiene al aplicar a un material ciertos tratamientos y trabajos mecánicos que ocasionan la difusión	 Investigar los diferentes arreglos atómicos que existen en los materiales amorfos y cristalinos Clasificar los arreglos atómicos en los diferentes sistemas cristalinos de un material Realizar ensayos de tensión, compresión, doblez e impacto para determinar las propiedades mecánicas de dichos materiales. Realizar un tratamiento térmico a ciertos materiales para comparar el efecto que causa la difusión atómica en los materiales.

Unidad 2: Propiedades mecánicas y físicas de los materiales.

Competencia específica a desarrollar	Actividades de Aprendizaje		
Conocer la ley de Hooke y graficar el comportamiento de los materiales en un diagrama esfuerzo-deformación y determinar los puntos importantes de dicho diagrama. Determinar el módulo de	 Realizar ensayos de tensión, compresión, doblez, impacto, dureza, fatiga para determinar las propiedades mecánicas de dichos materiales. Que el alumno compare los resultados obtenidos en los diversos ensayos con los datos contenidos en manuales. Determinar la conductividad de diferentes materiales 		

	T
elasticidad de ciertos materiales. Conocer la ley de Ohm y el comportamiento eléctrico de diferentes materiales	 Determinar permeabilidad, magnetización de un material que se encuentra sometido a un campo magnético Analizar como varia la conductividad de un material al hacer variar la temperatura
Investigar los materiales semiconductores más comunes en la ingeniería.	Analizar la conductividad eléctrica materiales y la variación

Unidad 3: Metales y aleaciones.

Competencia específica a desarrollar	Actividades de Aprendizaje	
Conocer diferentes procesos de fundiciones para obtención del hierro y sus aleaciones	 Investigar y exponer las propiedades y aplicaciones de las fundiciones. Investigar y exponer las propiedades y aplicaciones de los aceros al carbono y aleados. 	
Conocer las diferentes normas para la designación y clasificación de los aceros	 investigar influencia de las ferroaleaciones en los aceros Investigar las normas SAE e AISI para la designación de los aceros. Investigar y exponer propiedades y 	
Conocer las propiedades y aplicación de aleaciones no ferrosas	aplicaciones de las aleaciones de: Aluminio, cobre, berilio, níquel, cobalto y titanio.	

Unidad 4: Control de la microestructura

Competencia específica a desarrollar	Actividades de Aprendizaje	
Conocer el concepto de dislocación para endurecimiento por deformación en frio	 Investigar en concepto de dislocación para endurecimiento por deformación en frio y sus aplicaciones (trefilado y laminado). 	
Conocer los diferentes métodos de tratamientos térmicos para el control de la microestructura y sus propiedades	 Investigar los diferentes tratamientos térmicos Investigar los tratamientos térmicos de recocido, temple y normalizado. Investigar los tratamientos térmicos superficiales que se realizan en los 	

aceros (Carburizado y nitrurizado)		

Unidad 5: Polímeros. Cerámicos y compuestos

Conocer las estructuras y comportamiento de los termoplásticos, termofijos y elastómeros Conocer la clasificación, estructura y aplicaciones de los materiales cerámicos. • Investigar el comportamiento de los materiales termoplásticos, termofijos y elastómeros al aplicarles calor. • Investigar las aplicaciones de los polímeros • Realizar pruebas de materiales elastómeros y termoplásticos en cuanto a su dureza y resistencia a la deformación • Investigar los tipos de adhesivos y aditivos utilizados en los polímeros y verificar las nuevas propiedades obtenidas. • Investigar los productos que se fabrican con materiales cerámicos • Uso de los materiales cerámicos • Investigar el comportamiento de los materiales termoplásticos, termofijos y elastómeros al aplicarles calor. • Investigar los aplicaciones de los polímeros • Investigar los productos y electrónicos • Investigar los productos que se fabrican con materiales cerámicos • Uso de los materiales cerámicos como refractarios, eléctricos y electrónicos • Investigar el comportamiento de los materiales termoplásticos, termofijos y elastómeros al aplicarles calor.
compuestos como: reforzados con fibras y compuestos laminares.

Unidad 6: Corrosión y deterioro de materiales.

Competencia específica a desarrollar	Actividades de Aprendizaje	
Conocer los tipos de corrosión, sus efectos y su prevención.	 Investigar los ambientes que provocan la corrosión. investigar el efecto que causa la corrosión química, electroquímica investigar las formas de protección existentes para prevenir la corrosión. 	

11.- FUENTES DE INFORMACIÓN

- 1. Askeland, Donald R. y Phulé P.P., Ciencia e ingeniería de materiales, 3ar. Edición. México. Ed.THOMSON
- 2. Thornton y Colangelo, Ciencia de Materiales para Ingeniería.Ultima Edición. Ed.Prentice-Hall
- 3. Shackelford, James F., Ciencia de Materiales para Ingenieros. Última Edición. Ed.Prentice Hall Hispanoamericana.
- 4. Avner, Sydney H., Introducción a la metalurgia física. Última Edición. Ed.Mc. Graw-Hill.,
- 5. Flinn y Trojan, Materiales de Ingeniería y sus aplicaciones. Última edición. Ed. Mc Graw-Hill
- Keyser, Carl A., Ciencia de Materiales para ingeniería. Última Edición. Ed. Limusa
- 7. Guy, A.G., Fundamentos de ciencia de Materiales. Última Edición. Ed. Mc. Graw-Hill
- 8. Van Vlack, Lawrence H., Materiales para Ingeniería. Última Edición. Ed. CECSA
- 9. Marks Theodore B., Manual del Ingeniero Mecánico .Última Edición Ed. McGraw-Hill
- 10. Kazanas, Procesos Básicos de Manufactura. Ed. Mc Graw-Hill
- 11. King. Frank, El Aluminio y sus Aleaciones. Ed. Limusa
- 12. Estandares ASTM.
- 13. William D. Callister, *Introducción a la ciencia e ingeniería de los materiales*, volumen 1, Ultima edición, Ed. Reverte
- 14. William Smith, Fundamentos De Ingeniería Y Ciencias De Materiales, 4ª Edición, 2006. Ed. Mc Graw hill

12.- PRÁCTICAS PROPUESTAS

- 1. U Realizar un ensayo de tensión y construir el diagrama esfuerzo-deformación y determinar las propiedades mecánicas.
- 2. Ensayo de impacto.
- 3. Ensayo de dureza.
- 4. Análisis metalográfico.
- 5. Análisis de propiedades eléctricas, magnéticas y térmicas de materiales.
- 6. Realizar ensayo de termofluencia.
- 7. Ensayos no destructivos: Ultrasonido, partículas magnéticas y liquidos penetrantes.