PATENT

DOCKET NO.: MAX-0010 **Application No.:** 10/637,208

Office Action Dated: October 13, 2004

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Currently Amended) A heat exchanger for use with an electronic heat pump, said heat exchanger comprising:

a thermally conductive base having a first surface and a second surface, said first surface being adapted to make intimate surface contact with a surface of said electronic heat pump;

a thermally conductive cover spaced from said base;

a plurality of thermally conductive walls of thickness T between said base and said cover;

a plurality of narrow channels defined between adjacent walls, said base and said cover through which a heat transfer liquid flows when said heat exchanger is in use;

wherein each narrow channel has a width W(mm),

an inlet end, and an outlet end, and;

wherein the minimum number of channels/meter N is defined by the approximation:

$$N = 195*W+5$$
.

- 2. (Original) A heat exchanger according to claim 1 wherein the height of each narrow channel is less than about 10mm.
- 3. (Original) A heat exchanger according to claim 1 wherein the thermal resistance of said heat exchanger is less than 0.1°C/W for a 40mm heat exchanger width.
- 4. (Currently Amended) A heat exchanger for use with an electronic heat pump, said heat exchanger comprising:
- a thermally conductive base having a first surface and a second surface, said first surface being adapted to make intimate surface contact with a surface of said electronic heat pump;
 - a thermally conductive cover spaced from said base;

Office Action Dated: October 13, 2004

a plurality of thermally conductive walls of thickness T between said base and said cover;

a plurality of narrow channels defined between adjacent walls, said base and said cover through which a heat transfer liquid flows when said heat exchanger is in use;

wherein each narrow channel has a width W(mm),

an inlet end and an outlet end, and;

wherein the minimum thickness M(mm) of each wall is defined by the approximation:

$$M = 0.308*W + 0.055$$
.

- 5. (Original) A heat exchanger according to claim 4 wherein the height of each narrow channel is less than about 10mm.
- 6. (Original) A heat exchanger according to claim 4 wherein the thermal resistance of said heat exchanger is less than 0.1°C/W for a 40mm heat exchanger width.
- 7. (Currently Amended) A heat exchanger for use with an electronic heat pump, said heat exchanger comprising:
- a thermally conductive base having a first surface and a second surface, said first surface being adapted to make intimate surface contact with a surface of said electronic heat pump;
 - a thermally conductive cover spaced from said base;
- a plurality of thermally conductive walls of thickness T between said base and said cover;
- a plurality of narrow channels defined between adjacent walls, said base and said cover through which a heat transfer liquid flows when said heat exchanger is in use;

wherein each narrow channel has a width W(mm),

an inlet end and an outlet end,

wherein the minimum number of channels/meter N is defined by the approximation:

$$N = 195*W+5$$
, and;

wherein the minimum thickness M(mm) of each wall is defined by the approximation:

PATENT

DOCKET NO.: MAX-0010 **Application No.:** 10/637,208

Office Action Dated: October 13, 2004

$$M = 0.308*W + 0.055$$
.

- 8. (Original) A heat exchanger according to claim 7 wherein the height of each narrow channel is less than about 10mm.
- 9. (Original) A heat exchanger according to claim 7 wherein the thermal resistance of said heat exchanger is less than 0.1°C/W for a 40mm heat exchanger width.
- 10. (Currently Amended) A heat exchanger for use with an electronic heat pump, said heat exchanger comprising:

a thermally conductive base having a first surface and a second surface, said first surface being adapted to make intimate surface contact with a surface of said electronic heat pump;

a thermally conductive cover spaced from said base;

a plurality of thermally conductive walls of thickness T between said base and said cover;

a plurality of narrow channels defined between adjacent walls, said base and said cover through which a heat transfer liquid flows when said heat exchanger is in use;

wherein each narrow channel has a width W,

an inlet end and an outlet end, and;

wherein the channel width W(mm) and the minimum number (N) of channels per meter are within the following ranges:

W	, N
0.1	25
0.2	50
0.3	70
0.4	85
0.5	100
0.6	125
0.7	150
1.0	200

Office Action Dated: October 13, 2004

wherein the number of channels per meter is equal to or greater than the value N for a given range of width (W) in the following table:

W	<u>N</u>
0.05 - 0.09	<u>25</u>
0.1 - 0.19	<u>55</u>
0.2 - 0.29	<u>80</u>
0.3 - 0.39	<u>110</u>
0.4 - 0.49	<u>145</u>
0.5 - 0.59	<u>170</u>
0.6 - 0.69	<u>200</u>
<u>0.7 - 1.0</u>	<u>310</u>

- 11. (Original) A heat exchanger according to claim 10 wherein the height of each narrow channel is less than about 10mm.
- 12. (Original) A heat exchanger according to claim 10 wherein the thermal resistance of said heat exchanger is less than 0.1°C/W for a 40mm heat exchanger width.
- 13. (Currently Amended) A heat exchanger for use with an electronic heat pump, said heat exchanger comprising:
- a thermally conductive base having a first surface and a second surface, said first surface being adapted to make intimate surface contact with a surface of said electronic heat pump;
 - a thermally conductive cover spaced from said base;
- a plurality of thermally conductive walls of thickness T between said base and said cover;
- a plurality of narrow channels defined between adjacent walls, said base and said cover through which a heat transfer liquid flows when said heat exchanger is in use;

wherein each narrow channel has a width W,

an inlet end and an outlet end, and;

wherein the channel width W(mm) and the minimum wall thickness T(mm) are within the following ranges:

Office Action Dated: October 13, 2004

W	Ŧ
0.1	0.08
0.2	0.1
0.3	0.15
0.4	0.19
0.5	0.22
0.6	0.25
0.7	0.27
1.0	0.33

wherein the thickness (mm) of the walls is equal to or greater than the T for a given range of channel width W (mm) in the following table:

W	Ţ
0.05 - 0.09	0.025
0.1 - 0.19	<u>0.05</u>
0.2 - 0.29	<u>0.10</u>
0.3 - 0.39	<u>0.15</u>
0.4 - 0.49	0.175
0.5 - 0.59	0.20
0.6 - 0.69	0.235
<u>0.7 - 1.0</u>	0.25

- 14. (Original) A heat exchanger according to claim 13 wherein the height of each narrow channel is less than about 10mm.
- 15. (Original) A heat exchanger according to claim 13 wherein the thermal resistance of said heat exchanger is less than 0.1°C/W for a 40mm heat exchanger width.
- 16. (Currently Amended) A heat exchanger for use with an electronic heat pump, said heat exchanger comprising:
- a thermally conductive base having a first surface and a second surface, said first surface being adapted to make intimate surface contact with a surface of said electronic heat pump;
 - a thermally conductive cover spaced from said base;
- a plurality of thermally conductive walls of thickness T between said base and said cover;

Office Action Dated: October 13, 2004

a plurality of narrow channels defined between adjacent walls, said base and said cover through which a heat transfer liquid flows when said heat exchanger is in use;

wherein each narrow channel has a width W (mm),

an inlet end and an outlet end, and;

wherein the channel width W(mm) and the minimum wall thickness T(mm) are within the following ranges:

W	Ŧ
0.1	0.08
0.2	0.1
0.3	0.15
0.4	0.19
0.5	0.22
0.6	0.25
0.7	0.27
1.0	0.33

wherein the thickness (mm) of the walls is equal to or greater than the T for a given range of channel width W (mm) in the following table:

W	T
0.05 - 0.09	0.025
0.1 - 0.19	0.05
0.2 - 0.29	0.10
0.3 - 0.39	0.15
0.4 - 0.49	0.175
0.5 - 0.59	0.20
0.6 - 0.69	0.235
0.7 - 1.0	0.25

and wherein the channel width W(mm) and the minimum number (N) of channels per meter are within the following ranges:

₩.	N
0.1	25
0.2	50
0.3	70
0.4	85
0.5	100

Page 8 of 16

Office Action Dated: October 13, 2004

0.6	125
0.7	150
1.0	200

wherein the number of channels per meter is equal to or greater than the value N for a given range of width (W) in the following table:

W	N
0.05 - 0.09	<u>25</u>
0.1 - 0.19	<u>55</u>
0.2 - 0.29	80
0.3 - 0.39	110
0.4 - 0.49	145
0.5 - 0.59	<u>170</u>
0.6 - 0.69	<u>200</u>
<u>0.7 - 1.0</u>	<u>310</u>

- 17. (Original) A heat exchanger according to claim 16 wherein the height of each narrow channel is less than about 10mm.
- 18. (Original) A heat exchanger according to claim 16 wherein the thermal resistance of said heat exchanger is less than 0.1°C/W for a 40mm heat exchanger width.
- 19. (New) A heat exchanger for use with a heat source, said heat exchanger comprising:
- a thermally conductive base having a first surface and a second surface, said first surface being adapted to make intimate surface contact with a surface of said heat source;
 - a thermally conductive cover spaced from said base;
- a plurality of thermally conductive walls of thickness T between said base and said cover;
- a plurality of narrow channels defined between adjacent walls, said base and said cover through which a heat transfer liquid flows when said heat exchanger is in use;

wherein each narrow channel has a width W(mm),

an inlet end, and an outlet end, and;

PATENT

DOCKET NO.: MAX-0010 **Application No.:** 10/637,208

Office Action Dated: October 13, 2004

wherein the minimum number of channels/meter N is defined by the approximation:

N = 195*W+5.

20. (New) A heat exchanger comprising:

a thermally conductive base;

a thermally conductive cover spaced from said base;

a plurality of thermally conductive walls of thickness T extending between said base and said cover;

a plurality of narrow channels defined between adjacent walls, said base and said cover through which a heat transfer liquid flows when said heat exchanger is in use;

wherein each narrow channel has a width W(mm),

an inlet end, and an outlet end;

wherein the minimum number of channels/meter N is defined by the approximation:

$$N = 195*W+5$$
; and

wherein the thermal resistance of said heat exchanger is less than 0.1°C/W for a 40mm heat exchanger width.

21. (New) A heat exchanger comprising:

a thermally conductive base;

a thermally conductive cover spaced from said base;

a plurality of thermally conductive walls of thickness T extending between said base and said cover;

a plurality of narrow channels defined between adjacent walls, said base and said cover through which a heat transfer liquid flows when said heat exchanger is in use;

wherein each narrow channel has a width W(mm),

wherein a height of each narrow channel is less than about 3.15mm, an inlet end, and an outlet end; and

wherein the minimum number of channels/meter N is defined by the approximation:

N = 195*W+5.

Office Action Dated: October 13, 2004

22. (New) A heat exchanger comprising:

- a thermally conductive base;
- a thermally conductive cover spaced from said base;
- a plurality of thermally conductive walls of thickness T extending between said base and said cover;
- a plurality of narrow channels defined between adjacent walls, said base and said cover through which a heat transfer liquid flows when said heat exchanger is in use;

wherein each narrow channel has a width W(mm),

an inlet end, and an outlet end;

wherein the minimum number of channels/meter N is defined by the approximation:

N = 195*W+5; and

wherein liquid flow through said heat exchanger is in the laminar region.