Problem Sheet 9 for the Tutorial, November 24. (Integrals and Vector Fields)

Problem 1. Evaluate $\int_C (x+\sqrt{y}) \ ds$ where C is given in the accompanying figure.

Problem 2. Integrate $f(x,y) = x^2 - y$ over the curve $C: x^2 + y^2 = 4$ in the first quadrant from (0,2) to $(\sqrt{2}, \sqrt{2})$.

Problem 3. Along the curve $\mathbf{r}(t) = t\mathbf{i} - \mathbf{j} + t^2\mathbf{k}, \ 0 \le t \le 1$, evaluate each of the following integrals: a) $\int_C (x+y-z) \ dx$; b) $\int_C (x+y-z) \ dy$; c) $\int_C (x+y-z) \ dz$.

Problem 4. Find the flow of the velocity field $\mathbf{F} = (x+y)\mathbf{i} - (x^2+y^2)\mathbf{j}$ along each of the following paths from (1,0) to (-1,0) in the xy-plane.

- a) The upper half of the circle $x^2 + y^2 = 1$.
- b) The line segment from (1,0) to (-1,0).
- c) The line segment from (1,0) to (0,-1) followed by the line segment from (0,-1) to (-1,0).

Problem 5. Find the work done by $\mathbf{F} = (x^2 + y)\mathbf{i} + (y^2 + x)\mathbf{j} + ze^z\mathbf{k}$ over the following paths from (1,0,0) to (1,0,1).

- a) The line segment $x = 1, y = 0, 0 \le z \le 1$.
- b) The helix $\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + (t/2\pi)\mathbf{k}, \ \ 0 \le t \le 2\pi.$
- c) The x-axis from (1,0,0) to (0,0,0) followed by the parabola $z=x^2,\ y=0$ from (0,0,0) to (1,0,1).

