

System/370 Reference Summary

GX20-1850-6 File No. S370/4300-01

Seventh Edition (July 1986)

This major revision obsoletes GX20-1850-5. Additions include information about expanded storage, the vector facility, and new tape and DASD command codes. Minor technical and editorial revisions have been made throughout.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in all countries in which IBM operates. Any reference to an IBM program product in this publication is not intended to state or imply that only IBM's program product may be used. Any functionally equivalent program may be used instead.

Requests for copies of this and other IBM publications should be made to your IBM representative or to the IBM branch office serving your locality.

Please direct any comments on the contents of this publication to IBM Corporation, Product Publications, Department B98, PO Box 390, Poughkeepsie, NY, USA 12602. IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1986

PREFACE

This publication is intended primarily for use by System/370 assembler language application programmers. It contains basic machine information summarized from the *IBM System/370 Principles of Operation*, GA22-7000, about System/370 Models 115 through 195; the 3031, 3032, 3033, 3081, 3083, 3084, and 3090 Processor Complexes; and the 4321, 4331, 4341, 4361, and 4381 Processors. It also contains frequently used information from *IBM System/370 Vector Operations*, SA22-7125, and the OS/VS, DOS/VSE, and VM/370 assembler language manual, GC33-4010, command codes for various I/O devices, and a multicode translation table. This publication will be updated from time to time. However, the above publications and others cited in this publication are the authoritative reference sources and will be first to reflect changes.

The floating-point instructions, as well as the instructions listed below, are not provided on every model. For instructions that are provided on a particular model, either as standard or optional features on that model, the user should refer to the appropriate System Library publication.

Instructions
BAS, BASR
CONCS, DISCS
CS, CDS
SCKC, SPT, STCKC, STPT
RDD, WRD
EPAR, ESAR, IAC, IVSK, LASP,
MVCP, MVCS, MVCK, PC, PT,
SAC, SSAR
IPTE, TPROT
AXR, LRDR, LRER, MXR, MXDR,
MXD, SXR
MVCIN
SPX, SIGP, STAP, STPX
IPK, SPKA
ISKE, RRBE, SSKE
RIO
TB
LRA, PTLB, RRB, STNSM, STOSM
(All instructions with mnemonics that start with "V")

The operation of the following I/O instructions may differ depending on the model, the designated channel, and the installed facilities: CLRCH, CLRIO, HDV, and SIOF. To determine the operation, the user should refer to the appropriate System Library publications.

For information about System/370 extended architecture, refer to IBM System/370 Extended Architecture Principles of Operation, SA22-7085, IBM System/370 Extended Architecture Interpretive Execution, SA22-7095, and IBM System/370 Extended Architecture Reference Summary, GX20-0157.

CONTENTS

Machine Instruction Formats
Machine Instructions
By Mnemonic
By Operation Code
Condition Codes
Assembler Instructions
Extended Mnemonic Instructions
CNOP Alignment
Summary of Constants
Fixed Storage Locations
Control Registers
Vector-Status Register
Program-Status Word (EC Mode)
Program-Status Word (BC Mode)
External-Interruption Codes
Program-Interruption Codes
Exception-Extension Code
Dynamic Address Translation
Dynamic-Address-Translation Format
Segment-Table Entry
Page-Table Entry (4K)
Page-Table Entry (2K)
Translation-Exception Identification
Dual-Address-Space Control
Program-Call Number
Linkage-Table Entry
Entry-Table Entry
ASN-First-Table Entry
ASN-Second-Table Entry
Trace-Table-Entry Header
Machine-Check Interruption Code
External-Damage Code
Channel-Address Word
Channel-Command Word
Channel-Status Word
Limited Channel Logout
I/O Command Codes
Standard Command-Code Assignments
Standard Meanings of Bits of First Sense Byte
Console Printer Channel Commands
Card Reader and Card Punch Channel Commands 28
Printer Channel Commands
Direct Access Storage Devices
DASD Channel Commands
Magnetic-Tape Channel Commands
Code Assignments
Two-Character BSC Data Link Controls
Commonly Used Editing Pattern Characters
ANSI-Defined Printer Control Characters
Control Character Representations
Formatting Character Representations
Code Tables
Hexadecimal and Decimal Conversion
Powers of 2 and 16

00 88 12 16 200 01 51 51 0	

	STREETINGS.
	Vaccoir-Status Register
	Program-Status Word (EC Made)
	THE PROPERTY OF THE PARTY OF TH
	Dynamic-Address-Translation Format
	ASN-Second Table Entry
	Standard Magnings of Bits of First Sense Byte

MACHINE INSTRUCTION FORMATS

MACHINE INSTRUCTION FORMATS (Cont'd)

1, 2, 3: Denotes association with first, second, or third operand

B₁, B₂: Base register designation field D₁, D₂: Displacement field

D₁, D₂: Displacement field GR₂: Register designation field (general register)

l₂: Immediate operand field

L, L₁, L₂: Length field

QR₃: Register designation field (equivalent to GR₃ if general register, or

FR₃ if floating-point register)

R₁, R₂, R₃: Register designation field RS₂: Register designation field (starting address of vector)

RT₂: Register designation field (stride of vector) VR₁, VR₂, VR₃: Register designation field (vector register)

X2: Index register designation field

MACHINE INSTRUCTIONS

By Mnemonic

Mne- monic	Operands	Name	For- mat	Op Code	Class & Notes
A	R ₁ ,D ₂ (X ₂ ,B ₂)	Add	RX	5A	С
AD	R ₁ ,D ₂ (X ₂ ,B ₂)	Add Normalized (L)	RX	6A	C
ADR	R ₁ ,R ₂	Add Normalized (L)	RR	2A	C
AE	R ₁ ,D ₂ (X ₂ ,B ₂)	Add Normalized (S)	RX	7A	C
AER	R ₁ ,R ₂	Add Normalized (S)	RR	3A	C
AH	R ₁ ,D ₂ (X ₂ ,B ₂)	Add Halfword	RX	4A	C
AL	R ₁ ,D ₂ (X ₂ ,B ₂)	Add Logical	RX	5E	C
ALR	R ₁ ,R ₂	Add Logical	RR	1E	C
AP	D1(L1,B1),D2(L2,B2)	Add Decimal	SS	FA	C
AR	R ₁ ,R ₂	Add	RR	1A	C
AU	R ₁ ,D ₂ (X ₂ ,B ₂)	Add Unnormalized (S)	RX	7E	C
AUR	R ₁ ,R ₂	Add Unnormalized (S)	RR	3E	C
AW	R ₁ ,D ₂ (X ₂ ,B ₂)	Add Unnormalized (L)	RX	6E	C
AWR	R ₁ ,R ₂	Add Unnormalized (L)	RR	2E	C
AXR	R ₁ ,R ₂	Add Normalized (E)	RR	36	C
BAL	R ₁ ,D ₂ (X ₂ ,B ₂)	Branch and Link	RX	45	
BALR		Branch and Link	RR	05	
	R ₁ ,R ₂				
BAS	R ₁ ,D ₂ (X ₂ ,B ₂)	Branch and Save	RX	4D	
BASR	R ₁ ,R ₂	Branch and Save	RR	OD	
BC	M ₁ ,D ₂ (X ₂ ,B ₂)	Branch on Condition	RX	47	
BCR	M ₁ ,R ₂	Branch on Condition	RR	07	
ВСТ	R ₁ ,D ₂ (X ₂ ,B ₂)	Branch on Count	RX	46	
BCTR	R ₁ ,R ₂	Branch on Count	RR	06	
ВХН	R ₁ ,R ₃ ,D ₂ (B ₂)	Branch on Index High	RS	86	
BXLE	R ₁ ,R ₃ ,D ₂ (B ₂)	Branch on Index Low or Equal	RS	87	
C	R ₁ ,D ₂ (X ₂ ,B ₂)	Compare	RX	59	C
CD	R ₁ ,D ₂ (X ₂ ,B ₂)	Compare (L)	RX	69	C
CDR	R ₁ ,R ₂	Compare (L)	RR	29	C
CDS	R ₁ ,R ₃ ,D ₂ (B ₂)	Compare Double and Swap	RS	BB	C
CE	R ₁ ,D ₂ (X ₂ ,B ₂)	Compare (S)	RX	79	C
CER	R ₁ ,R ₂	Compare (S)	RR	39	C
СН	R ₁ ,D ₂ (X ₂ ,B ₂)	Compare Halfword	RX	49	C
CL	R ₁ ,D ₂ (X ₂ ,B ₂)	Compare Logical	RX	55	C
CLC	D ₁ (L,B ₁),D ₂ (B ₂)	Compare Logical	SS	D5	C
CLCL	R ₁ ,R ₂	Compare Logical Long	RR	OF.	ic
CLI			SI	95	
CLM	D ₁ (B ₁),l ₂	Compare Logical			C
CLIVI	R ₁ ,M ₃ ,D ₂ (B ₂)	Compare Logical Char- acters under Mask	RS	BD	C
CLR	R ₁ ,R ₂	Compare Logical	RR	15	C
CLRCH	D ₂ (B ₂)	Clear Channel	S	9F01	рс
CLRIO	D ₂ (B ₂)	Clear I/O	S	9D01	pc
CONCS	D ₂ (B ₂)	Connect Channel Set	S	B200	
CP				F9	pc
	D ₁ (L ₁ ,B ₁),D ₂ (L ₂ ,B ₂)	Compare Decimal	SS		C
CR	R ₁ ,R ₂	Compare	RR	19	C
CS	R ₁ ,R ₃ ,D ₂ (B ₂)	Compare and Swap	RS	ВА	C
CVB	R ₁ ,D ₂ (X ₂ ,B ₂)	Convert to Binary	RX	4F	
CVD	$R_1,D_2(X_2,B_2)$	Convert to Decimal	RX	4E	
D	$R_1,D_2(X_2,B_2)$	Divide	RX	5D	
DD	$R_1,D_2(X_2,B_2)$	Divide (L)	RX	6D	
DDR	R ₁ ,R ₂	Divide (L)	RR	2D	
DE	R ₁ ,D ₂ (X ₂ ,B ₂)	Divide (S)	RX	7D	
DER	R ₁ ,R ₂	Divide (S)	RR	3D	
DISCS	D ₂ (B ₂)	Disconnect Channel Set	S	B201	рс
DP	D1(L1,B1),D2(L2,B2)	Divide Decimal	SS	FD	-
DR	R ₁ ,R ₂	Divide	RR	1D	
D	D ₁ (L,B ₁),D ₂ (B ₂)	Edit Management and all the	SS	DE	c
EDMK		Edit and Mark	SS	DF	
	$D_1(L,B_1),D_2(B_2)$		22	DF	C
	0	Francis Dates - A CAL	DDE	0000	
EPAR ESAR	R ₁	Extract Primary ASN Extract Secondary ASN	RRE	B226 B227	q

MACHINE INSTRUCTIONS (Cont'd) By Mnemonic (Cont'd)

Mne- monic	Operands	Name	For- mat	Op Code	Class & Notes
HDR	R ₁ ,R ₂	Halve (L)	RR	24	8287
HDV	D ₂ (B ₂)	Halt Device	S	9E01	рс
HER	R ₁ ,R ₂	Halve (S)	RR	34	
HIO	D ₂ (B ₂)	Halt I/O	S	9E00	рс
IAC	R ₁	Insert Address Space Control	RRE	B224	qc
IC	R ₁ ,D ₂ (X ₂ ,B ₂)	Insert Character	RX	43	
ICM	R ₁ ,M ₃ ,D ₂ (B ₂)	Insert Characters under Mask	RS	BF	С
IPK		Insert PSW Key	S	B20B	q
IPTE	R ₁ ,R ₂	Invalidate Page Table Entry	RRE	B221	р
ISK	R ₁ ,R ₂	Insert Storage Key	RR	09	р
ISKE	R ₁ ,R ₂	Insert Storage Key Extended	RRE	B229	р
IVSK	R ₁ ,R ₂	Insert Virtual Storage Key	RRE	B223	q
	R ₁ ,D ₂ (X ₂ ,B ₂)	Load	RX	58	10/6/
LA	R ₁ ,D ₂ (X ₂ ,B ₂)	Load Address	RX	41	
LASP	D ₁ (B ₁),D ₂ (B ₂)	Load Address Space Parameters	SSE	E500	рс
LCDR	R ₁ ,R ₂	Load Complement (L)	RR	23	c
LCER	R ₁ ,R ₂	Load Complement (S)	RR	33	C
LCR	R ₁ ,R ₂	Load Complement	RR	13	C
LCTL	R ₁ ,R ₃ ,D ₂ (B ₂)	Load Control	RS	B7	р
LD	R ₁ ,D ₂ (X ₂ ,B ₂)	Load (L)	RX	68	
LDR	R ₁ ,R ₂	Load (L)	RR	28	
LE	R ₁ ,D ₂ (X ₂ ,B ₂)	Load (S)	RX	78	
LER	R ₁ ,R ₂	Load (S)	RR	38	
LH	R ₁ ,D ₂ (X ₂ ,B ₂)	Load Halfword	RX	48	
LM	R ₁ ,R ₃ ,D ₂ (B ₂)	Load Multiple	RS	98	
LNDR	R ₁ ,R ₂	Load Negative (L)	RR	21	С
LNER	R ₁ ,R ₂	Load Negative (S)	RR	31	C
LNR	R ₁ ,R ₂	Load Negative	RR	11	C
LPDR	R ₁ ,R ₂	Load Positive (L)	RR	20	C
LPER	R ₁ ,R ₂	Load Positive (S)	RR	30	C
LPR	R ₁ ,R ₂	Load Positive	RR	10	C
LPSW	D ₂ (B ₂)	Load PSW	S	82	pn
LR .	R ₁ ,R ₂	Load	RR	18	
LRA LRDR	R ₁ , D ₂ (X ₂ , B ₂) R ₁ , R ₂	Load Real Address Load Rounded (E/L)	RX	B1 25	рс
1000	112.51	THE ADDOMESTIC THE SECTION OF THE SE		da Blad	

Floati	ng-point operand lengths:	Notes:
(E)	Extended source and result.	c. Condition code set.
(E/L)	Extended source, long result.	i. Interruptible instruction.
(L/E)	Long source, extended result.	n. New condition code loaded.
(L)	Long source and result.	p. Privileged instruction.
(L/S)	Long source, short result.	q. Semiprivileged instruction.
(S/L)	Short source, long result.	x. Execution in problem state and
(S)	Short source and result.	supervisor state differs.
		y. Condition code may be set.

Class (for instructions subject to vector-control bit, CR 0 bit 14)

IC: Interruptible; (VCT - VIX) elements processed.

IG: Interruptible; either (bit count in a general register) elements or (section-size - VIX) elements processed, whichever is fewer.

(section-size — VIX) elements processed, whichever is rewer.

IM: Interruptible; (VCT — VIX) elements processed, vector-mask mode.

IP: Interruptible; (partial-sum-number - VIX) elements processed.

IZ: Interruptible; (section-size) elements processed.

NC: Not interruptible; (VCT) elements processed.

NZ: Not interruptible; (section-size) elements processed.

NO: Not interruptible; no elements processed (VSR/VAC housekeeping).

N1: Not interruptible; one element processed.

MACHINE INSTRUCTIONS (Cont'd) By Mnemonic (Cont'd)

MACHINE INSTRUCTIONS (Cont'd) By Mnemonic (Cont'd)

Mne- monic	Operands	Name	For- mat	Op Code	Class & Notes	Mne- monic	Operands	Name	For- mat	Op Code	Class & Notes
LRER	R ₁ ,R ₂	Load Rounded (L/S)	RR	35	USU -	SPKA	D ₂ (B ₂)	Set PSW Key from	S	B20A	q
LTDR	R ₁ ,R ₂	Load and Test (L)	RR	22	C			Address		State of	
LTER	R ₁ ,R ₂	Load and Test (S)	RR	32	C	SPM	R ₁	Set Program Mask	RR	04	n
LTR	R ₁ ,R ₂	Load and Test	RR	12	C	SPT	D ₂ (B ₂)	Set CPU Timer	S	B208	p
M	R ₁ ,D ₂ (X ₂ ,B ₂)	Multiply	RX	5C		SPX	D ₂ (B ₂)	Set Prefix	S	B210	р
MC	D ₁ (B ₁),l ₂	Monitor Call	SI	AF		SR	R ₁ ,R ₂	Subtract	RR	1B	C
MD	R ₁ ,D ₂ (X ₂ ,B ₂)	Multiply (L)	RX	6C		SRA	R ₁ ,D ₂ (B ₂)	Shift Right Single	RS	8A	C
MDR	R ₁ ,R ₂	Multiply (L)	RR	2C		SRDA	R ₁ ,D ₂ (B ₂)	Shift Right Double	RS	8E	C
ME	R ₁ ,D ₂ (X ₂ ,B ₂)	Multiply (S/L)	RX	7C		SRDL	R ₁ ,D ₂ (B ₂)	Shift Right Double Logical	RS	8C	
MER	R ₁ ,R ₂	Multiply (S/L)	RR	3C		SRL	R ₁ ,D ₂ (B ₂)	Shift Right Single Logical	RS	88	
MH	R ₁ ,D ₂ (X ₂ ,B ₂)	Multiply Halfword	RX	4C		SRP	D1(L1,B1),D2(B2),l3	Shift and Round Decimal	SS	FO	C
MP	D1(L1,B1),D2(L2,B2)	Multiply Decimal	SS	FC		SSAR	R ₁	Set Secondary ASN	RRE	B225	q
MR	R ₁ ,R ₂	Multiply	RR	1C		SSK	R ₁ ,R ₂	Set Storage Key	RR	08	р
MVC	D ₁ (L,B ₁),D ₂ (B ₂)	Move	SS	D2		SSKE	R ₁ ,R ₂	Set Storage Key Extended	RRE	B22B	р
MVCIN	D ₁ (L,B ₁),D ₂ (B ₂)	Move Inverse	SS	E8		SSM	D ₂ (B ₂)	Set System Mask	S	80	p
MVCK	D1(R1,B1),D2(B2),R3	Move with Key	SS	D9	qc	ST	R ₁ ,D ₂ (X ₂ ,B ₂)	Store	RX	50	-M/28/LV
MVCL	R ₁ ,R ₂	Move Long	RR	OE	ic	STAP	D ₂ (B ₂)	Store CPU Address	S	B212	p
MVCP	D1(R1,B1),D2(B2),R3		SS	DA	qc	STC	R ₁ ,D ₂ (X ₂ ,B ₂)	Store Character	RX	42	DI DESV
MVCS	D1(R1,B1),D2(B2),R3		SS	DB	qc	STCK	D ₂ (B ₂)	Store Clock	S	B205	C
MVI	D ₁ (B ₁),l ₂	Move	SI	92	do	STCKC	D ₂ (B ₂)	Store Clock Comparator	S	B207	р
MVN	D ₁ (L,B ₁),D ₂ (B ₂)	Move Numerics	SS	D1		STCM	R ₁ ,M ₃ ,D ₂ (B ₂)	Store Characters	RS	BE	
MVO	D ₁ (L ₁ ,B ₁),D ₂ (L ₂ ,B ₂)	Move with Offset	SS	F1		STCIVI	H1, W3, D2(D2)	under Mask	110	BR. ALE	
MVZ	D ₁ (L,B ₁),D ₂ (B ₂)	Move Zones	SS	D3		STCTL	D D D /P-1	Store Control	RS	B6	p
MXD	R ₁ ,D ₂ (X ₂ ,B ₂)		RX	67			R ₁ ,R ₃ ,D ₂ (B ₂)	Store (L)	RX	60	
		Multiply (L/E)				STD	R ₁ ,D ₂ (X ₂ ,B ₂)			70	
MXDR	R ₁ ,R ₂	Multiply (L/E)	RR	27		STE	$R_1, D_2(X_2, B_2)$	Store (S)	RX		
MXR	R ₁ ,R ₂	Multiply (E)	RR	26		STH	$R_1, D_2(X_2, B_2)$	Store Halfword	RX	40	
N	$R_1,D_2(X_2,B_2)$	AND	RX	54	C	STIDC	D ₂ (B ₂)	Store Channel ID	S	B203	рс
NC	$D_1(L,B_1),D_2(B_2)$	AND	SS	D4	C	STIDP	D ₂ (B ₂)	Store CPU ID	S	B202	p
NI	D ₁ (B ₁),l ₂	AND	SI	94	C	STM	R ₁ ,R ₃ ,D ₂ (B ₂)	Store Multiple	RS	90	
NR	R ₁ ,R ₂	AND	RR	14	C	STNSM	D ₁ (B ₁),l ₂	Store Then AND	SI	AC	р
0	$R_1,D_2(X_2,B_2)$	OR	RX	56	C			System Mask			
oc	$D_1(L,B_1),D_2(B_2)$	OR	SS	D6	C	STOSM	D1(B1),12	Store Then OR	SI	AD	p
01	D ₁ (B ₁),l ₂	OR	SI	96	C			System Mask			
OR	R ₁ ,R ₂	OR	RR	16	C	STPT	D ₂ (B ₂)	Store CPU Timer	S	B209	. р
PACK	D1(L1,B1),D2(L2,B2)	Pack	SS	F2		STPX	D ₂ (B ₂)	Store Prefix	S	B211	p
PC	D ₂ (B ₂)	Program Call	S	B218	q	SU	R ₁ ,D ₂ (X ₂ ,B ₂)	Subtract Unnormalized (S)	RX	7F	C
PT	R ₁ ,R ₂	Program Transfer	RRE	B228	q	SUR	R ₁ ,R ₂	Subtract Unnormalized (S)	RR	3F	C
PTLB		Purge TLB	S	B20D	р	SVC	PASA	Supervisor Call	RR	OA	
RDD	D1(B1),12	Read Direct	SI	85	p	SW	R ₁ ,D ₂ (X ₂ ,B ₂)	Subtract Unnormalized (L)	RX	6F	C
RIO	D ₂ (B ₂)	Resume I/O	S	9002	pc	SWR	R ₁ ,R ₂	Subtract Unnormalized (L)	RR	2F	C
RRB	D ₂ (B ₂)	Reset Reference Bit	S	B213	рс	SXR	R ₁ ,R ₂	Subtract Normalized (E)	RR	37	C
RRBE	R ₁ ,R ₂	Reset Reference Bit	RRE	B22A	рс	The second					PATE U
		Extended			o desilence	Floating-	point operand lengths:	Notes:			
S	R ₁ ,D ₂ (X ₂ ,B ₂)	Subtract	RX	5B	C	(E) Ex	tended source and res	ult. c. Condition	n code	set.	
SAC	D ₂ (B ₂)	Set Address Space Control	S	B219	q	(E/L) Ex	tended source, long re	sult. i. Interrupt	ible ins	truction.	
SCK	D ₂ (B ₂)	Set Clock	S	B204	DC		ng source, extended re		dition	code load	ded.
SCKC	D ₂ (B ₂)	Set Clock Comparator	S	B206	p		ing source and result.	p. Privilege			
SD	R ₁ ,D ₂ (X ₂ ,B ₂)	Subtract Normalized (L)	RX	6B	C		ing source, short result	g. Semipriv	ileaed	instructio	on.
SDR	R ₁ ,R ₂	Subtract Normalized (L)	RR	2B	C		nort source, long result				
SE	R ₁ ,D ₂ (X ₂ ,B ₂)	Subtract Normalized (S)	RX	7B	C	,	nort source and result.	supervis			NESSEL ST
SER	R ₁ ,R ₂	Subtract Normalized (S)	RR	3B	C	(0)	iore godroo drid rosait.	y. Condition			set
SH	R ₁ ,D ₂ (X ₂ ,B ₂)	Subtract Halfword	RX	4B	C			y. Contanto	T COUC	may bo	0011
SIGP	R ₁ ,R ₃ ,D ₂ (B ₂)	Signal Processor	RS	AE		Class (fo	r instructions subject t	o vector-control bit, CR 0 bit	14)		
SIO	D ₂ (B ₂)	Start I/O	S	9C00	pc		erruptible; (VCT - VI)		plante		
SIOF				9C00	pc			ount in a general register) ele	ements	or	
	D ₂ (B ₂)	Start I/O Fast Release	S		pc			ments processed, whichever			
SL	R ₁ ,D ₂ (X ₂ ,B ₂)	Subtract Logical	RX	5F	С			() elements processed, vector			
SLA	R ₁ ,D ₂ (B ₂)	Shift Left Single	RS	8B	C			-number — VIX) elements pr			
	R ₁ ,D ₂ (B ₂)	Shift Left Double	RS	8F	in c				JUGSSE	w.	
			DC	8D		IZ: Int	terruptible; (section-size	e) elements processed.			
SLDA SLDL	R ₁ ,D ₂ (B ₂)	Shift Left Double Logical	RS			410					
SLDL		Shift Left Double Logical Shift Left Single Logical	RS	89			ot interruptible; (VCT) e	elements processed.			
	R ₁ ,D ₂ (B ₂)				C	NZ: No	ot interruptible; (VCT) ent interruptible; (section		SETTING (FB)	CR. RV	

MACHINE INSTRUCTIONS (Cont'd)

By Mnemonic (Cont'd)

Mne- monic	Operands	Name	For- mat	Op Code	Clas	ss
ТВ	R ₁ ,R ₂	Test Block	RRE	B22C		ipc
TCH	D ₂ (B ₂)	Test Channel	S	9F00		pc
TIO	D ₂ (B ₂)	Test I/O	S	9D00		pc
TM	D ₁ (B ₁),l ₂	Test under Mask	SI	91		C
TPROT	D ₁ (B ₁),D ₂ (B ₂)	Test Protection	SSE	E501		рс
TR	D ₁ (L,B ₁),D ₂ (B ₂)	Translate	SS	DC		
TRT	D ₁ (L,B ₁),D ₂ (B ₂)	Translate and Test	SS	DD		C
TS	D ₂ (B ₂)	Test and Set	S	93		C
UNPK	D1(L1,B1),D2(L2,B2)	Unpack	SS	F3		
VA	VR ₁ , VR ₃ , RS ₂ (RT ₂)	Add	VST	A420	IM	
VACD	VR ₁ ,RS ₂ (RT ₂)	Accumulate (L)	VST	A417	IM	
VACDR	VR ₁ ,VR ₂	Accumulate (L)	VV	A517	IM	
VACE	VR ₁ ,RS ₂ (RT ₂)	Accumulate (S/L)	VST	A407	IM	
VACER	VR ₁ ,VR ₂	Accumulate (S/L)	VV	A507	IM	
VACRS	D ₂ (B ₂)	Restore VAC	S	A6CB		p
VACSV	D ₂ (B ₂)	Save VAC	S	A6CA	NO	p
VAD	VR ₁ , VR ₃ , RS ₂ (RT ₂)	Add (L)	VST	A410	IM	b
VADQ	VR ₁ ,FR ₃ ,VR ₂	Add (L)	QV	A590	IM	
VADR	VR ₁ ,VR ₃ ,VR ₂	Add (L)				
VADS			VV	A510	IM	
	VR ₁ ,FR ₃ ,RS ₂ (RT ₂)	Add (L)	QST	A490	IM	
VAE	VR ₁ , VR ₃ , RS ₂ (RT ₂)	Add (S)	VST	A400	IM	
VAEQ	VR ₁ ,FR ₃ ,VR ₂	Add (S)	QV	A580	IM	
VAER	VR ₁ ,VR ₃ ,VR ₂	Add (S)	VV	A500	IM	
VAES	VR ₁ ,FR ₃ ,RS ₂ (RT ₂)	Add (S)	QST	A480	IM	
VAQ	VR ₁ ,GR ₃ ,VR ₂	Add	QV	A5A0	IM	
VAR	VR ₁ ,VR ₃ ,VR ₂	Add	VV	A520	IM	
VAS	$VR_1,GR_3,RS_2(RT_2)$	Add	QST	A4A0	IM	
VC	$M_1, VR_3, RS_2(RT_2)$	Compare	VST	A428	IC	
VCD	$M_1, VR_3, RS_2(RT_2)$	Compare (L)	VST	A418	IC	
VCDQ	M ₁ ,FR ₃ ,VR ₂	Compare (L)	QV	A598	IC	
VCDR	M ₁ ,VR ₃ ,VR ₂	Compare (L)	VV	A518	IC	
VCDS	$M_1,FR_3,RS_2(RT_2)$	Compare (L)	QST	A498	IC	
VCE	$M_1, VR_3, RS_2(RT_2)$	Compare (S)	VST	A408	IC	
VCEQ	M ₁ ,FR ₃ ,VR ₂	Compare (S)	QV	A588	IC	
VCER	M ₁ , VR ₃ , VR ₂	Compare (S)	VV	A508	IC	
VCES	M ₁ ,FR ₃ ,RS ₂ (RT ₂)	Compare (S)	QST	A488	IC	
VCOVM	GR ₁	Count Ones in VMR	RRE	A643	NC	C
vca	M ₁ ,GR ₃ ,VR ₂	Compare	QV	A5A8	IC	
VCR	M ₁ ,VR ₃ ,VR ₂	Compare	VV	A528	IC	
VCS	M1, GR3, RS2(RT2)	Compare	QST	A4A8	IC	
VCVM		Complement VMR	RRE	A641	NC	
VCZVM	GR ₁	Count Left Zeros in VMR	RRE	A642	NC	.с
VDD	VR ₁ , VR ₃ , RS ₂ (RT ₂)	Divide (L)	VST	A413	IM	
VDDQ	VR ₁ ,FR ₃ ,VR ₂	Divide (L)	QV	A593	IM	
VDDR	VR ₁ , VR ₃ , VR ₂	Divide (L)	VV	A513	IM	
VDDS	VR ₁ ,FR ₃ ,RS ₂ (RT ₂)	Divide (L)	QST	A493	IM	
VDE	VR ₁ , VR ₃ , RS ₂ (RT ₂)	Divide (S)	VST	A403	IM	
VDEQ	VR ₁ ,FR ₃ ,VR ₂	Divide (S)	QV	A583	IM	
VDER	VR ₁ , VR ₃ , VR ₂	Divide (S)	VV	A503	IM	
VDES	VR ₁ ,FR ₃ ,RS ₂ (RT ₂)	Divide (S)	QST	A483	IM	
VL	VR ₁ ,RS ₂ (RT ₂)	Load	VST	A409	IC	
VLBIX	VR ₁ ,GR ₃ ,D ₂ (B ₂)	Load Bit Index	RSE	E428	IG	
VLCDR	VR ₁ , VR ₂					C
		Load Complement (L)	VV	A552	IM	
VLCER	VR ₁ ,VR ₂	Load Complement (S)	VV	A542	IM	
VLCR	VR ₁ ,VR ₂	Load Complement	VV	A562	IM	
VLCVM	RS ₂	Load VMR Complement	VS	A681	NC	
VLD	VR ₁ ,RS ₂ (RT ₂)	Load (L)	VST	A419	IC	
VLDQ	VR ₁ ,FR ₂	Load (L)	QV	A599	IC	
VLDR	VR ₁ ,VR ₂	Load (L)	VV	A519	IC	
VLE	VR ₁ ,RS ₂ (RT ₂)	Load (S)	VST	A409	IC	
VLEL	VR ₁ ,GR ₃ ,GR ₂	Load Element	VR	A628	N1	
VLELD	VR ₁ ,FR ₃ ,GR ₂	Load Element (L)	VR	A618	N1	

MACHINE INSTRUCTIONS (Cont'd)

By Mnemonic (Cont'd)

Mne- monic	Operands	Name Name	For- mat	Op Code	Class & Notes
VLELE	VR ₁ ,FR ₃ ,GR ₂	Load Element (S)	VR	A608	N1
VLEQ	VR ₁ ,FR ₂	Load (S)	QV	A589	IC
VLER	VR ₁ ,VR ₂	Load (S)	VV	A509	IC
VLH	VR ₁ ,RS ₂ (RT ₂)	Load Halfword	VST	A429	IC
VLI	VR ₁ , VR ₃ , D ₂ (B ₂)	Load Indirect	RSE	E400	IC
VLID	VR ₁ , VR ₃ , D ₂ (B ₂)	Load Indirect (L)	RSE	E410	IC
VLIE	VR ₁ , VR ₃ , D ₂ (B ₂)	Load Indirect (S)	RSE	E400	IC
VLINT	VR ₁ ,RS ₂ (RT ₂)	Load Integer Vector	VST	A42A	IC
VLM	VR ₁ ,RS ₂ (RT ₂)	Load Matched	VST	A40A	IC
VLMD	VR1,RS2(RT2)	Load Matched (L)	VST	A41A	IC
VLMDQ	VR ₁ ,FR ₂	Load Matched (L)	QV	A59A	IC
VLMDR	VR ₁ , VR ₂	Load Matched (L)	VV	A51A	IC
VLME	VR1,RS2(RT2)	Load Matched (S)	VST	A40A	IC
VLMEQ	VR ₁ ,FR ₂	Load Matched (S)	QV	A58A	IC
VLMER	VR ₁ , VR ₂	Load Matched (S)	VV	A50A	IC
VLMQ	VR ₁ ,GR ₂	Load Matched	QV	ASAA	IC
VLMR	VR ₁ ,VR ₂	Load Matched	VV	A50A	IC
VLNDR	VR ₁ ,VR ₂	Load Negative (L)	VV	A551	IM
VLNER	VR ₁ ,VR ₂	Load Negative (S)	VV	A541	IM
VLNR	VR ₁ , VR ₂	Load Negative	VV	A561	IM
VLPDR	VR ₁ ,VR ₂	Load Positive (L)	VV	A550	IM
VLPER	VR ₁ , VR ₂	Load Positive (S)	VV	A540	IM
VLPR	VR ₁ , VR ₂	Load Positive	VV	A560	IM
VLQ	VR ₁ ,GR ₂	Load	QV	A5A9	IC
VLR	VR ₁ ,VR ₂	Load	VV	A509	IC
VLVCA	D ₂ (B ₂)	Load VCT from Address	S	A6C4	NO c
VLVCU	GR ₁	Load VCT and Update	RRE	A645	NO c
VLVM	RS ₂	Load VMR	VS	A680	NC
VLY	VR ₁ ,RS ₂ (RT ₂)	Load Expanded	VST	A40B	IC
VLYD	VR ₁ ,RS ₂ (RT ₂)	Load Expanded (L)	VST	A41B	IC
VLYE	VR ₁ ,RS ₂ (RT ₂)	Load Expanded (S)	VST	A40B	IC
VLZDR	VR ₁	Load Zero (L)	VV	A51B	IC
VLZER	VR ₁	Load Zero (S)	VV	A50B	IC
VLZR	VR ₁	Load Zero	VV	A50B	IC
VM	VR ₁ , VR ₃ , RS ₂ (RT ₂)	Multiply	VST	A422	IM
VMAD	VR ₁ , VR ₃ , RS ₂ (RT ₂)	Multiply and Add (L)	VST	A414	IM
VMADQ	VR ₁ ,FR ₃ ,VR ₂	Multiply and Add (L)	QV	A594	IM
VMADS	VR1,FR3,RS2(RT2)	Multiply and Add (L)	QST	A494	IM
VMAE	VR ₁ , VR ₃ , RS ₂ (RT ₂)	Multiply and Add (S/L)	VST	A404	IM
VMAEQ	VR ₁ ,FR ₃ ,VR ₂	Multiply and Add (S/L)	QV		IM

Floating-point	amauand	lamasha.

E)	Extended source and result.
E/L)	Extended source, long result.
L/E)	Long source, extended result

⁽L) Long source and result.
(L/S) Long source, short result.
(S/L) Short source, long result.
(S) Short source and result.

Notes:

- c. Condition code set.
 i. Interruptible instruction.
- n. New condition code loaded.
 p. Privileged instruction.
 - q. Semiprivileged instruction.
 - Execution in problem state and supervisor state differs.
 - y. Condition code may be set.
- Class (for instructions subject to vector-control bit, CR 0 bit 14)
- IC: Interruptible; (VCT VIX) elements processed.
- IG: Interruptible; either (bit count in a general register) elements or (section-size — VIX) elements processed, whichever is fewer.
- $\begin{array}{ll} \text{IM:} & \text{Interruptible; (VCT} \text{VIX) elements processed, vector-mask mode.} \\ \text{IP:} & \text{Interruptible; (partial-sum-number} \text{VIX) elements processed.} \\ \end{array}$
- IZ: Interruptible; (section-size) elements processed.
- NC: Not interruptible; (VCT) elements processed.
- NZ: Not interruptible; (section-size) elements processed.
- NO: Not interruptible; no elements processed (VSR/VAC housekeeping).
- N1: Not interruptible; one element processed.

MACHINE INSTRUCTIONS (Cont'd)

By Mnemonic (Cont'd)

Mne- monic	Operands	Name	For- mat	Op Code	Clas	
VMAES	VR ₁ ,FR ₃ ,RS ₂ (RT ₂)	Multiply and Add (S/L)	QST	A484	IM	
VMCD	VR ₁ ,VR ₃ ,RS ₂ (RT ₂)	Multiply and Accumulate (L)	VST	A416	IM	
VMCDR	VR ₁ ,VR ₃ ,VR ₂	Multiply and Accumulate (L)	VV	A516	IM	
VMCE	$VR_1, VR_3, RS_2(RT_2)$	Multiply and Accumulate (S/L)		A406	IM	
VMCER	VR ₁ ,VR ₃ ,VR ₂	Multiply and Accumulate (S/L)	VV	A506	IM	
VMD	VR ₁ , VR ₃ , RS ₂ (RT ₂)	Multiply (L)	VST	A412	IM	
VMDQ	VR ₁ ,FR ₃ ,VR ₂	Multiply (L)	QV	A592	IM	
VMDR	VR ₁ , VR ₃ , VR ₂	Multiply (L)	VV	A512	IM	
VMDS	VR1,FR3,RS2(RT2)	Multiply (L)	QST	A492	IM	
VME	VR ₁ , VR ₃ , RS ₂ (RT ₂)	Multiply (S/L)	VST	A402	IM	
VMEQ	VR ₁ ,FR ₃ ,VR ₂	Multiply (S/L)	QV	A582	IM	
VMER	VR ₁ ,VR ₃ ,VR ₂	Multiply (S/L)	VV	A502	IM	
VMES	VR1,FR3,RS2(RT2)	Multiply (S/L)	QST	A482	IM	
VMNSD	VR ₁ ,FR ₃ ,GR ₂	Minimum Signed (L)	VR	A611	IM	
VMNSE	VR ₁ ,FR ₃ ,GR ₂	Minimum Signed (S)	VR	A601	IM	
VMQ	VR ₁ ,GR ₃ ,VR ₂	Multiply	QV	A5A2	IM	
VMR	VR ₁ , VR ₃ , VR ₂	Multiply	VV	A522	IM	
VMRRS	D ₂ (B ₂)	Restore VMR	S	A6C3	NZ	
VMRSV	D ₂ (B ₂)	Save VMR	S	A6C1	NZ	
VMS	VR ₁ ,GR ₃ ,RS ₂ (RT ₂)	Multiply	QST	A4A2	IM	
VMSD	$VR_1, VR_3, RS_2(RT_2)$	Multiply and Subtract (L)	VST	A415	IM	
VMSDQ	VR ₁ ,FR ₃ ,VR ₂	Multiply and Subtract (L)	QV	A595	IM	
VMSDS	VR ₁ ,FR ₃ ,RS ₂ (RT ₂)	Multiply and Subtract (L)	QST	A495	IM	
VMSE	$VR_1, VR_3, RS_2(RT_2)$	Multiply and Subtract (S/L)	VST	A405	IM	
VMSEQ	VR ₁ ,FR ₃ ,VR ₂	Multiply and Subtract (S/L)	QV	A585	IM	
VMSES	VR ₁ ,FR ₃ ,RS ₂ (RT ₂)	Multiply and Subtract (S/L)	QST	A485	IM	
VMXAD	VR ₁ ,FR ₃ ,GR ₂	Maximum Absolute (L)	VR	A612	IM	
VMXAE	VR ₁ ,FR ₃ ,GR ₂	Maximum Absolute (S)	VR	A602	IM	
VMXSD	VR ₁ ,FR ₃ ,GR ₂	Maximum Signed (L)	VR	A610	IM	
VMXSE	VR ₁ ,FR ₃ ,GR ₂	Maximum Signed (S)	VR	A600	IM	
VN	VR ₁ , VR ₃ , RS ₂ (RT ₂)	AND	VST	A424 A5A4	IM	
VNQ	VR ₁ ,GR ₃ ,VR ₂ VR ₁ ,VR ₃ ,VR ₂	AND	VV	A524	IM	
VNR	VR ₁ , GR ₃ , RS ₂ (RT ₂)	AND	QST	A4A4	IM	
VNVM	RS ₂	AND to VMR	VS	A684	NC	
VO	VR ₁ , VR ₃ , RS ₂ (RT ₂)	OR OR	VST	A425	IM	
voa	VR ₁ , GR ₃ , VR ₂	OR	QV	A5A5	IM	
VOR	VR ₁ , VR ₃ , VR ₂	OR	VV	A525	IM	
VOS	VR ₁ , GR ₃ , RS ₂ (RT ₂)	OR	QST	A4A5	IM	
VOVM	RS ₂	OR to VMR	VS	A685	NC	
VRCL	D ₂ (B ₂)	Clear VR	S	A6C5	IZ	
VRRS	GR ₁	Restore VR	RRE	A648	IZ	хс
VRSV	GR ₁	Save VR	RRE	A64A	IZ	C
VRSVC	GR ₁	Save Changed VR	RRE	A649	IZ	рс
VS	VR1, VR3, RS2(RT2)	Subtract	VST	A421	IM	
VSD	VR ₁ , VR ₃ , RS ₂ (RT ₂)	Subtract (L)	VST	A411	IM	
VSDQ	VR ₁ ,FR ₃ ,VR ₂	Subtract (L)	QV	A591	IM	
VSDR	VR ₁ , VR ₃ , VR ₂	Subtract (L)	VV	A511	IM	
VSDS	VR1,FR3,RS2(RT2)	Subtract (L)	QST	A491	IM	
VSE	VR ₁ , VR ₃ , RS ₂ (RT ₂)	Subtract (S)	VST	A401	IM	
VSEQ	VR ₁ ,FR ₃ ,VR ₂	Subtract (S)	QV	A581	IM	
VSER	VR ₁ , VR ₃ , VR ₂	Subtract (S)	VV	A501	IM	
VSES	VR1,FP3,RS2(RT2)	Subtract (S)	QST	A481	IM	
VSLL	VR ₁ , VR ₃ , D ₂ (B ₂)	Shift Left Single Logical	RSE	E425	IM	
VSPSD	VR ₁ ,FR ₂	Sum Partial Sums (L)	VR	A61A	IP	
VSQ	VR ₁ ,GR ₃ ,VR ₂	Subtract	QV	A5A1	IM	
VSR	VR ₁ , VR ₃ . VR ₂	Subtract	VV	A521	IM	
VSRL	VR ₁ , VR ₃ , D ₂ (B ₂)	Shift Right Single Logical	RSE	E424	IM	

MACHINE INSTRUCTIONS (Cont'd)

By Mnemonic (Cont'd)

Mne- monic	Operands	Name	For- mat	Op Code	Clas	
VSRRS	D ₂ (B ₂)	Restore VSR	S	A6C2	IZ	×
VSRSV	D ₂ (B ₂)	Save VSR	S	A6C0	NO	x
VSS	VR ₁ ,GR ₃ ,RS ₂ (RT ₂)	Subtract	QST	A4A1	IM	
VST	VR ₁ ,RS ₂ (RT ₂)	Store	VST	A40D	IC	
VSTD	VR ₁ ,RS ₂ (RT ₂)	Store (L)	VST	A41D	IC	
VSTE	VR ₁ ,RS ₂ (RT ₂)	Store (S)	VST	A40D	IC	
VSTH	VR ₁ ,RS ₂ (RT ₂)	Store Halfword	VST	A42D	IC	
VSTI	VR ₁ , VR ₃ , D ₂ (B ₂)	Store Indirect	RSE	E401	IC	
VSTID	VR ₁ , VR ₃ , D ₂ (B ₂)	Store Indirect (L)	RSE	E411	IC	
VSTIE	VR ₁ , VR ₃ , D ₂ (B ₂)	Store Indirect (S)	RSE	E401	IC	
VSTK	VR ₁ ,RS ₂ (RT ₂)	Store Compressed	VST	A40F	IC	
VSTKD	VR ₁ ,RS ₂ (RT ₂)	Store Compressed (L)	VST	A41F	IC	
VSTKE	VR ₁ ,RS ₂ (RT ₂)	Store Compressed (S)	VST	A40F	IC	
VSTM	VR ₁ ,RS ₂ (RT ₂)	Store Matched	VST	A40E	IC	
VSTMD	VR ₁ ,RS ₂ (RT ₂)	Store Matched (L)	VST	A41E	IC	
VSTME	VR ₁ ,RS ₂ (RT ₂)	Store Matched (S)	VST	A40E	IC	
VSTVM	RS ₂	Store VMR	VS	A682	NC	
VSTVP	D ₂ (B ₂)	Store Vector Parameters	S	A6C8	NO	
VSVMM	D ₂ (B ₂)	Set Vector Mask Mode	S	A6C6	NO	
VTVM		Test VMR	RRE	A640	NC	C
VX	VR ₁ , VR ₃ , RS ₂ (RT ₂)	Exclusive OR	VST	A426	IM	
VXEL	VR ₁ ,GR ₃ ,GR ₂	Extract Element	VR	A629	N1	
VXELD	VR ₁ ,FR ₃ ,GR ₂	Extract Element (L)	VR	A619	N1	
VXELE	VR ₁ ,FR ₃ ,GR ₂	Extract Element (S)	VR	A609	N1	
VXQ	VR ₁ ,GR ₃ ,VR ₂	Exclusive OR	QV	A5A6	IM	
VXR	VR ₁ , VR ₃ , VR ₂	Exclusive OR	VV	A526	IM	
VXS	VR ₁ ,GR ₃ ,RS ₂ (RT ₂)	Exclusive OR	QST	A4A6	IM	
VXVC	GR ₁	Extract VCT	RRE	A644	NO	
VXVM	RS ₂	Exclusive OR to VMR	VS	A686	NC	
VXVMM	GR ₁	Extract Vector Mask Mode	RRE	A646	NO	
VZPSD	VR ₁	Zero Partial Sums (L)	VR	A61B	IP	
WRD	D ₁ (B ₁),l ₂	Write Direct	SI	84		p
X	R ₁ ,D ₂ (X ₂ ,B ₂)	Exclusive OR	RX	57		
XC	D ₁ (L,B ₁),D ₂ (B ₂)	Exclusive OR	SS	D7		
XI	D ₁ (B ₁),l ₂	Exclusive OR	SI	97		
XR	R ₁ ,R ₂	Exclusive OR	RR	17		
ZAP	D1(L1,B1),D2(L2,B2)	Zero and Add	SS	F8		C
-	Model-dependent	Diagnose	0.0	83		ру

Floating-point	operand	lengths:
----------------	---------	----------

- (E) Extended source and result.
- (E/L) Extended source, long result.
- (L/E) Long source, extended result. (L)
- Long source and result. (L/S) Long source, short result.
- (S/L) Short source, long result.
- (S) Short source and result.

c. Condition code set.

Notes:

- i. Interruptible instruction.
- n. New condition code loaded.
- Privileged instruction.
- q. Semiprivileged instruction.
- x. Execution in problem state and supervisor state differs.
- y. Condition code may be set.

Class (for instructions subject to vector-control bit, CR 0 bit 14)

- IC: Interruptible; (VCT VIX) elements processed.
- Interruptible; either (bit count in a general register) elements or (section-size - VIX) elements processed, whichever is fewer.
- Interruptible; (VCT VIX) elements processed, vector-mask mode.
- Interruptible; (partial-sum-number VIX) elements processed.
- Interruptible; (section-size) elements processed.
- Not interruptible; (VCT) elements processed.
- Not interruptible; (section-size) elements processed.
- Not interruptible; no elements processed (VSR/VAC housekeeping).
- Not interruptible; one element processed.

MACHINE INSTRUCTIONS (Cont'd)

Op Code	Mne- monic	Op Code	Mne- monic
04	SPM	47	BC
05	BALR	48	LH
06	BCTR	49	СН
07	BCR	4A	AH
08	SSK	4B	SH
09	ISK	4C	MH
OA	SVC	4D	BAS
OD	BASR	4E	CVD
		4F	
OE	MVCL	Contract of the Contract of th	CVB
OF	CLCL	50	ST
10	LPR	54	N
11	LNR	55	CL
12	LTR	56	0
13	LCR	57	X
14	NR	58	L
15	CLR	59	C
16	OR	5A	A
17	XR	5B	S
18	LR	5C	M
19	CR	5D	D
1A	AR	5E	AL
1B	SR	5F	SL
1C	MR	60	STD
1D	DR	67	MXD
1E	ALR	68	LD
1F	SLR	69	CD
20	LPDR	6A	AD
21	LNDR	6B	SD
22	LTDR	6C	MD
23	LCDR	6D	DD
24	HDR	6E	AW
		6F	
25	LRDR		SW
26	MXR	70	STE
27	MXDR	78	LE
28	LDR	79	CE
29	CDR	7A	AE
2A	ADR	7B	SE
2B	SDR	7C	ME
2C	MDR	7D	DE
2D	DDR	7E	AU
2E	AWR	7F	SU
2F	SWR	80	SSM
30	LPER	82.	LPSW
31	LNER	83	Diagnose
32	LTER	84	WRD
33	LCER	85	RDD
34	HER	86	вхн
35	LRER	87	BXLE
36	AXR	88	SRL
37	SXR	89	SLL
38	LER	8A	SRA
39	CER	8B	SLA
3A	AER	8C	SRDL
		00	01.01
3B	SER	80	SLDL
3C	MER	8E	SRDA
3D	DER	8F	SLDA
3E	AUR	90	STM
3F	SUR	91	TM
40	STH	92	MVI
41	LA	93	TS
42	STC	94	NI
43	IC	95	CLI
44	EX	96	01
45	BAL	97	XI
46	BCT	98	LM

TRUI BINHDAM By Mindmonth (I			NE INSTRU
Op Code	Mne- monic	Op Code	Mne- monic
9000	SIO	A493	VDDS
9C01	SIOF	A494	VMADS
9C02	RIO	A495	VMSDS
9D00	TIO	A498	VCDS
9D01	CLRIO	A4A0	VAS
9E00	HIO	A4A1	VSS
9E01	HDV	A4A2	VMS
9F00	TCH		
9F01	CLRCH	A4A4	VNS
A400	VAE	A4A5	VOS
A401	VSE	A4A6	VXS
A402	VME	A4A8	VCS
A403	VDE	A500	VAER
		A501	VSER
A404	VMAE	A502	VMER
A405	VMSE	A503	VDER
A406	VMCE	A506	VMCER

A506

A507

A508

A509

A509

A50A

A50A

A50B

A50B

A510

A511

A512

A513

A516

A517

A518

A519

A51A

A51B

A520

A521

A522

A524

A525

A526

A528

A540

A541

A542

A550

A551

A552

A560

A561

A562

A580

A581

A582

A583

A584

A585

A588

A589

A58A

A590

A591

A592

A593

A594

A595

VMCER

VACER

VCER

VLER

VLR

VLMER

VLMR

VLZER

VLZR

VADR

VSDR

VMDR

VDDR

VMCDR

VACDR

VCDR

VLDR

VLMDR

VLZDR

VAR

VSR

VMR

VNR

VOR

VXR

VCR

VLPER

VLNER

VLCER

VLPDR

VLNDR

VLCDR

VLPR

VLNR

VLCR

VAEQ

VSEQ

VMEQ

VDEQ

VMAEQ

VMSEQ

VCEQ

VLEQ

VLMEQ

VADQ

VSDQ

VMDQ

VDDQ

VMADQ

VMSDQ

A407

A408

A409

A409

A40A

A40A

A40B

A40B

A40D

A40D

A40E

A40E

A40F

A40F

A410

A411

A412

A413

A414

A415

A416

A417

A418

A419

A41A

A41B

A41D

A41E

A41F

A420

A421

A422

A424

A425

A426

A428

A429

A42A

A42D

A480

A481

A482

A483

A484

A485

A488

A490

A491

A492

VACE

VCE

VL

VLE

VLM

VLME

VLY

VLYE

VST

VSTE

VSTM

VSTME

VSTK

VSTKE

VAD

VSD

VMD

VDD

VMAD

VMSD

VMCD

VACD

VCD

VID

VLMD

VLYD

VSTD

VSTMD

VSTKD

VA

VS

VM

VN

VO

VX

VC

VLH

VLINT

VSTH

VAES

VSES

VMES

VDES

VMAES

VMSES

VCES

VADS

VSDS

VMDS

•				
Op Code	Mne- monic		Op Code	Mne- monic
A598	VCDQ		B208	SPT
A599	VLDQ		B209	STPT
A59A	VLMDQ		B20A	SPKA
A5A0	VAQ		B20B	IPK
A5A1	VSQ		B20D	PTLB
A5A2	VMQ		B210	SPX
A5A4	VNQ		B211	STPX
A5A5	VOQ		B212	STAP
A5A6	VXQ		B213	RRB
A5A8	vca		B218	PC
A5A9	VLQ		B219 B221	SAC
A5AA A600	VLMQ VMXSE		B223	IPTE
A600	VMNSE	(8)	B224	IAC
A602	VMXAE		B225	SSAR
A608	VLELE		B226	EPAR
A609	VXELE		B227	ESAR
A610	VMXSD		B228	PT
A611	VMNSD		B229	ISKE
A612	VMXAD	-	B22A	RRBE
A618	VLELD		B22B	SSKE
A619	VXELD		B22C	TB
A61A	VSPSD		B6	STCTL
A61B	VZPSD		B7	LCTL
A628	VLEL		BA	CS
A629	VXEL		BB	CDS
A640	VTVM VCVM		BD	CLM
A641 A642	VCZVM	161	BE BF	STCM
A643	VCOVM		D1	MVN
A644	VXVC		D2	MVC
A645	VLVCU		D3	MVZ
A646	VXVMM		D4	NC
A648	VRRS		D5	CLC
A649	VRSVC		D6	oc
A64A	VRSV		D7	XC
A680	VLVM		D9	MVCK
A681	VLCVM		DA	MVCP
A682	VSTVM		DB	MVCS
A684	VNVM		DC	TR
A685	VOVM		DD DE	TRT
A686 A6C0	VSRSV		DF	EDMK
A6C1	VMRSV		E400	VLI
A6C2	VSRRS		E400	VLIE
A6C3	VMRRS	1	E401	VSTI
A6C4	VLVCA		E401	VSTIE
A6C5	VRCL		E410	VLID
A6C6	VSVMM		E411	VSTID
A6C8	VSTVP		E424	VSRL
A6CA	VACSV		E425	VSLL
A6CB	VACRS		E428	VLBIX
AC	STNSM		E500	LASP
AD	STOSM	3	E501 E8	TPROT
AE	MC		FO	SRP
B1	LRA		F1	MVO
B200	CONCS		F2	PACK
B201	DISCS		F3	UNPK
B202	STIDP		F8	ZAP
B203	STIDC		F9	CP
B204	SCK		FA	AP
B205	STCK		FB	SP
B206	SCKC		FC	MP
B207	STCKC		FD	DP

MACHINE INSTRUCTIONS (Cont'd)	
By Operation Code (Cont'd)	

CONDITION CODES

Condition Code →	0	1	2	3
Mask Bit Value →	8	4	2 .	1
Binary and Logical Instructions (See Note)				
Add	Zero	< Zero	> Zero	Ove flow
Add Halfword	Zero	< Zero	> Zero	Overflow
Add Logical	Zero, no carry	Not zero, no carry	Zero, carry	Not zero, carry
AND	Zero	Not zero		
Compare	Equal	First op	First op high	
Compare and Swap	Equal	Not equal	'	anata stilida
Compare Double and Swap	Equal	Not equal		
Compare Halfword	Equal	First op low	First op high	
Compare Logical	Equal	First op low	First op high	-,-
Compare Logical Characters under Mask	Equal, or mask is zero	First op low	First op high	
Compare Logical Long	Equal, or lengths both = 0	First op low	First op high	
Exclusive OR	Zero	Not zero		
Insert Characters under Mask	All zero, or mask is zero	Leftmost bit = 1	Not zero, but with leftmost bit = 0	<u></u>
Load and Test	Zero	< Zero	> Zero	
Load Complement	Zero	< Zero	> Zero	Overflow
Load Negative	Zero	< Zero		
Load Positive	Zero		> Zero	Overflow
Move Long	Operand lengths equal	First op shorter	First op longer	Overlap
OR	Zero	Not zero		
Shift Left Double	Zero	< Zero	> Zero	Overflow
Shift Left Single	Zero	< Zero	> Zero	Overflow
Shift Right Double	Zero	< Zero	> Zero	
Shift Right Single	Zero	< Zero	> Zero	
Subtract	Zero	< Zero	> Zero	Overflow
Subtract Halfword	Zero	< Zero	> Zero	Overflow
Subtract Logical		Not zero, no carrry	Zero, carry	Not zero, carry
Test and Set	Leftmost bit zero	Leftmost bit one		
Test under Mask	All zeros, or mask is zero	Mixed O's and 1's		All ones
Translate and Test	All zeros	Not zero, scan incomplete	Not zero, scan complete	

CONDITION CODES (Cont'd)

Condition Code →	0	1	2	3
Masi: Bit Value →	8	4	2	1
Dec. al instructions				
Add Lincimal	Zero	< Zero	> Zero	Overflow
Compare Decimal	Equal	First op low	First op high	makes differen
Edit	Zero	< Zero	> Zero	
Edit and Mark	Zero	< Zero	> Zero	
Shift and Round Decimal	Zero	< Zero	> Zero	Overflow
Subtract Decimal	Zero	< Zero	> Zero	Overflow
Zero and Add	Zero	< Zero	> Zero	Overflow
Floating-Point Instructions (See Note)				.*
Add Normalized	Zero	< Zero	> Zero	
Add Unnormalized	Zero	< Zero	> Zero	
Compare	Equal	First op low	First op high	
Load and Test	Zero	< Zero	> Zero	
Load Complement	Zero	< Zero	> Zero	
Load Negative	Zero	< Zero		
Load Positive	Zero		> Zero	
Subtract Normalized	Zero	< Zero	> Zero	
Subtract Unnormalized	Zero	< Zero	> Zero	
General Instructions				
Count Left Zeros in VMR	Active bits all zeros	Active bits 0's and 1's		Active bits all ones
Count Ones in VMR	Active bits all zeros	Active bits 0's and 1's		Active bits all ones
oad Bit Index	VCT = 0 and bit count = 0	VCT = 0 and bit count < 0	VCT = section size and bit count > 0	VCT > 0 and bit count not > 0
oad VCT and Update	VCT = 0 and new count = 0	VCT = 0 and new count < 0	VCT = section size and new count > 0	VCT > 0 and new count = 0
oad VCT from Address	VCT = 0 and eff addr = 0	VCT = 0 and eff addr < 0	VCT = section size and eff addr > section size	VCT > 0 and eff addr ≤ section size
Restore VR	VR14-VR15 examined and not loaded	VR0-VR13 examined and not loaded	VR14-VR15 loaded	VRO-VR13 loaded

Note: Vector instructions with floating-point operands do not set the condition code.

CONDITION CODES (Cont'd)

Condition Code →	0	1	2	3
Mask Bit Value →	8	4	2	1
General Instructions (Continued)				
Save VR	VR14-VR15 examined and not stored	VR0-VR13 examined and not stored	VR14-VR15 stored	VR0-VR13 stored
Store Clock	Set state	Not-set state	Error state	Stopped state or not oper
Test VMR	Active bits all zeros	Active bits 0's and 1's		Active bits all ones
Control Instructions		1	_	,
Connect Channel Set	Successful	Connected to other CPU		Not oper
Diagnose	See Note	See Note	See Note	See Note
Disconnect Channel Set	Successful	Connected to other CPU		Not oper
Insert Address Space Control	Zero	One		
Load Address Space Parameters	Parameters loaded	Primary not available	Secondary not auth- orized or not available	Space- switch event
Load PSW	See Note	See Note	See Note	See Note
Load Real Address	Translation available	Segment- table entry invalid	Page- table entry invalid	Table length exceeded
Move to Primary	Length ≤ 256			Length > 256
Move to Secondary	Length ≤ 256			Length > 256
Move with Key	Length ≤ 256		-,-	Lengt
Reset Reference Bit	Ref = 0, Chg = 0	Ref = 0, Chg = 1	Ref = 1, Chg = 0	Ref = 1, Chg = 1
Reset Reference Bit Extended	Ref = 0, Chg = 0	Ref = 0, Chg = 1	Ref = 1, Chg = 0	Ref = 1, Chg = 1

Note: For Diagnose, the resulting condition code is model-dependent. For Load PSW, the condition code is loaded from a field of the second operand (the new PSW's condition code field).

CONDITION CODES (Cont'd)

Condition Code →	0	1	2	3
Mask Bit Value →	8	4	2	1
Control Instructions (Continued)				
Save Changed VR	VR14-VR15 examined and not stored	VR0-VR13 examined and not stored	VR14-VR15 stored	VR0-VR13 stored
Set Clock	Set	Secure		Not oper
Signal Processor	Accepted	Status stored	Busy	Not oper
Test Block	Usable	Unusable		
Test Protection	Fetch and store allowed	Fetch allowed; no store allowed	No fetch or store allowed	Translation not available
Input/Output Instructions				
Clear Channel	Reset signaled		Channel busy	Not oper
Clear I/O	No oper- ation in progress	CSW stored	Channel busy	Not oper
Halt Device	Busy or interruption pending	CSW stored	Channel working	Not oper
Halt I/O	Interruption pending	CSW stored	Burst op stopped	Not oper
Resume I/O	Successful	:		Not oper
Start I/O	Successful	CSW stored	Busy	Not oper
Start I/O Fast Release	Successful	CSW stored	Busy	Not oper
Stored Channel ID	Chan ID stored	CSW stored	Busy	Not oper
Test Channel	Available	Interruption pending	Working in burst mode	Not oper
Test I/O	Available	CSW stored	Busy	Not oper

ASSEMBLER INSTRUCTIONS

Function	Mnemonic	Meaning
Data definition	DC DS CCW CCW0**	Define constant Define storage Define channel command word Define format-0 channel command word Define format-1 channel command word
Program sectioning and linking	START LOCTR** CSECT DSECT DXD* CXD* COM AMODE** RMODE** ENTRY EXTRN WXTRN	Start assembly Specify multiple location counters Identify control section Identify dummy section Define external dummy section Cumulative length of external dummy section Identify blank common control section Specify addressing mode Specify residence mode Identify entry-point symbol Identify external symbol Identify weak external symbol
Base register assignment	USING DROP	Use base address register Drop base address register
Control of listings	TITLE EJECT SPACE PRINT	Identify assembly output Start new page Space listing Print optional data
Program Control	ICTL ISEQ PUNCH REPRO ORG EQU OPSYN* PUSH* POP* LTORG CNOP COPY END	Input format control Input sequence checking Punch a card Reproduce following card Set location counter Equate symbol Equate operation code Save current PRINT or USING status Restore PRINT or USING status Begin literal pool Conditional no operation Copy predefined source coding End assembly
Macro definition	MACRO MEXIT MEND AREAD**	Macro definition header Macro definition exit Macro definition trailer Assign card to SETC symbol
Conditional assembly	ACTR AGO AIF ANOP GBLA GBLB GBLC LCLA LCLB LCLC MNOTE MHELP** SETA SETB SETC	Conditional assembly loop counter Unconditional branch Conditional branch Assembly no operation Define global SETA symbol Define global SETE symbol Define global SETC symbol Define local SETE symbol Define local SETE symbol Define local SETE symbol Generate error message Trace macro flow Set arithmetic variable symbol Set binary variable symbol

Source: GC33-4010 for the OS/VS, VM/370, and DOS/VSE Assembler, and GC26-4037 for Assembler H Version 2.

EXTENDED MNEMONIC INSTRUCTIONS

Use	Extended Mne- monic* (RX or RR)	Meaning	Machine Instr. (RX or RR)		
General	B or BR NOP or NOPR	Unconditional Branch No Operation	BC or BCR 15, BC or BCR 0,		
After Compare Instructions (A:B)	BH or BHR BL or BLR BE or BER BNH or BNHR BNL or BNLR BNE or BNER	Branch on A High Branch on A Low Branch on A Equal B Branch on A Not High Branch on A Not Low Branch on A Not Equal B	BC or BCR 2, BC or BCR 4, BC or BCR 8, BC or BCR 13, BC or BCR 11, BC or BCR 7,		
After Arithmetic Instructions	BP or BPR BM or BMR BZ or BZR BO or BOR BNP or BNPR BNM or BNMR BNZ or BNZR BNO or BNOR	Branch on Plus Branch on Minus Branch on Zero Branch on Overflow Branch on Not Plus Branch on Not Minus Branch on Not Zero Branch on No Overflow	BC or BCR 2, BC or BCR 4, BC or BCR 8, BC or BCR 1, BC or BCR 13, BC or BCR 11, BC or BCR 7, BC or BCR 7,		
After Test under Mask Instruction	BO OF BOR BM OF BMR BZ OF BZR BNO OF BNOR BNM OF BNMR BNZ OF BNZR	Branch if Ones Branch if Mixed Branch if Zeros Branch if Not Ones Branch if Not Mixed Branch if Not Zeros	BC or BCR 1, BC or BCR 4, BC or BCR 8, BC or BCR 14, BC or BCR 11, BC or BCR 7,		

Source: GC33-4010 for the OS/VS, VM/370, and DOS/VSE Assembler, and GC26-4037 for Assembler H Version 2.

CNOP ALIGNMENT

			DOUBL	EWORD				
	WORD				WORD			
HALF	WORD	HALI	WORD	HALF	WORD	HALI	FWORD	
BYTE	BYTE	BYTE	BYTE	BYTE	BYTE	BYTE	BYTE	
1		1		4_		A_		
0,4		2,4		0,4		2,4		
0,8		2,8		4,8		6,8		

Source: GC33-4010 for the OS/VS, VM/370, and DOS/VSE Assembler, and GC26-4037 for Assembler H Version 2.

SUMMARY OF CONSTANTS

Туре	Implied Length, Bytes	Alignment	Format	Trunca- tion/ Padding
С	-	byte	characters	right
X	-	byte	hexadecimal digits	left
В	- 1	byte	binary digits	left
F	4	word	fixed-point binary	left
Н	2	halfword	fixed-point binary	left
E	4	word	short floating-point	right
D	8	doubleword	long floating-point	right
L	16	doubleword	extended floating-point	right
Ρ .	-	byte	packed decimal	left
Z	_	byte	zoned decimal	left
Α	4	word	value of address	left
Y	2	halfword	value of address	left
S	2	halfword	address in base-displacement form	-
V	4	word	externally defined address value	left
Q*	4	word	symbol naming a DXD or DSECT	left

Source: GC33-4010 for the OS/VS, VM/370, and DOS/VSE Assembler, and GC26-4037 for Assembler H Version 2.

^{*}Not for use with the DOS/VSE Assembler.

^{**}Assembler H Version 2 only.

^{*}Second operand, not shown, is D₂(X₂,B₂) for RX format and R₂ for RR format.

^{*}Not for use with the DOS/VSE Assembler.

FIXED STORAGE LOCATIONS

Area, dec.	Addr type	Hex addr	EC only	Function
0- 7	Α	0		Initial-program-loading PSW
0- 7	R	0		Restart new PSW
8- 15	Α	8		Initial-program-loading CCW1
8- 15	R	8		Restart old PSW
16- 23	Α	10		Initial-program-loading CCW2
24- 31	R	18		External old PSW
32- 39	R	20		Supervisor-call old PSW
40- 47	R	28		Program old PSW
48- 55	R	30		Machine-check old PSW
56- 63	R	38		Input/output old PSW
64- 71	R	40		Channel-status word (see diagram)
72- 75	R	48		Channel-address word (see diagram)
80- 83	R	50		Interval timer
84- 87	L	54		Trace-table designation (0 control, 8-31 address)
88- 95	R	58		External new PSW
96-103	R	60		Supervisor-call new PSW
04-111	R	68		Program new PSW
12-119	R	70		Machine-check new PSW
20-127	R	78		Input/output new PSW
28-131	R	80		External-interruption parameter for service signal
32-133	R	84		CPU address associated with external interruption, or
				unchanged
32-133	R	84	X	CPU address associated with external interruption, or
				zeros
34-135	R	86	X	External-interruption code (see table)
36-139	R	88	X	SVC interruption (0-12 zeros, 13-14 ILC, 15:0, 16-31
				code)
40-143	R	8C	X	Program interruption (0-12 zeros, 13-14 ILC, 15:0,
				16-31 code)
44-147	R	90	X	Translation-exception ID (see table)
48-149	R	94		Monitor class (0-7 zeros, 8-15 class number)
50-151	R	96	X	PER code (0-3 code, 4-15 zeros)
52-155	R	98	Х	PER address (0-7 zeros, 8-31 address)
56-159	R	9C		Monitor code (0-7 zeros, 8-31 code)
68-171	R	A8		Channel ID (0-3 type, 4-15 model, 16-31 max. IOEL
				length)
72-175	R	AC		I/O-extended-logout address (0-7 unused, 8-31
				address)
76-179	R	BO		Limited channel logout (see diagram)
85	R	B9	X	Measurement byte (0-1 delay, 2-4 count, 5-7 zeros)
86-187	R	BA	X	I/O address
16-223	A	D8		Store-status CPU-timer save area
16-223	R	D8		Machine-check CPU-timer save area
24-231	Α	EO		Store-status clock-comparator save area
24-231	R	EO		Machine-check clock-comparator save area
32-239	R	E8		Machine-check-interruption code (see diagram)
44-247	R	F4		External-damage code (see diagram)
48-251	R	F8		Failing-storage address (0-5 zeros, 6-31 address)
52-255	R	FC		Region code*
56-263	A	100		Store-status PSW save area
56-351	R	100		Fixed-logout area*
64-267	A	108		Store-status prefix save area
68-271	A	10C		Store-status model-dependent save area*
52-383	A	160		Store-status floating-point-register save area
52-383	R	160		Machine-check floating-point-register save area
84-447	A	180		Store-status general-register save area
84-447	R	180		
48-511	A	1C0		Machine-check general-register save area
48-511	R	1C0		Store-status control-register save area
95	L	31B		Machine-check control-register save area CPU identity for DAS tracing
90	-	OID		or o identity for DAS tracing

A = Absolute address

L = Logical address

R = Real address

*May vary among models; see System Library manuals for specific model.

CONTROL REGISTERS

CR	Bits	Name of field	Associated with	Init
0	0	Block-multiplexing control	Block-multiplexing	0
	1	SSM-suppression control	SSM instruction	0
	2	TOD-clock-sync control	Multiprocessing	0
	3	Low-addr-protection control	Low address protection	0
	4	Extraction-authority control	Dual address space	0
	5	Secondary-space control	Dual address space	0
	7	Storage-key exception control	Storage-key 4K-byte block	0
	8-12	Translation format	Dynamic address trans	0
	14	Vector control	Vector facility	0
	16	Malfunc alert subclass mask	, , , , , , , , , , , , , , , , , , , ,	0
	17	Emergency-signal subcl mask		0
	18	External-call subclass mask	Multiprocessing	0
	19	TOD-clk sync-chk subcl mask		0
	1 - 1	Clk-comparator subclass mask	Clark	0
	20		Clock comparator	0
	21	CPU-timer subclass mask	CPU timer	-
	22	Service-signal subclass mask	Service signal	0
	24	Interval-timer subclass mask	Interval timer	1
	25	Interrupt-key subclass mask	Interrupt key	1
	26	External signal subcl mask	External signal	1
1	0-7	Primary segment-table length	Dynamic address trans	0
	8-25	Primary segment-table origin	<i>y</i> , , , , , , , , , , , , , , , , , , ,	0
	31	Space-switch-event control	Dual address space	0
2	0-31	Channel masks	Channels	1
3	0-15	PSW-key mask	Dual address space	0
	16-31	Secondary ASN	Dual address space	0
4	0-15	Authorization index		0
**	16-31	Primary ASN	Dual address space	0
-	-			0
5	0	Subsystem linkage control	0 1 11	0
	8-24	Linkage-table origin	Dual address space	
	25-31	Linkage-table length		0
7	0-7	Secondary segment-table length	Dual address space	0
	8-25	Secondary segment-table origin	Data data est space	0
8	16-31	Monitor masks	MC instruction	0
9	0	Successful-branching-event mask		0
	1	Instruction-fetching-event mask		0
	2	Storage-alteration-event mask	Program-event recording	0
	3	GR-alteration-event mask	3	0
	16-31	PER general-register masks		0
10	8-31	PER starting address	Program-event recording	0
11	8-31	PER ending address	Program-event recording	0
14	0	Check-stop control		1
	1	Synch. MCEL control	Machine-check handling	1
	3	I/O-extended-logout control	I/O extended logout	0
	4	Recovery subclass mask	o ontoneou regent	0
	5	Degradation subclass mask		0
	6	External damage subclass mask		1
	7	Warning subclass mask	Machine-check handling	0
	8	Asynch. MCEL control	-	0
	9			0
	12	Asynch fixed-log control		
	20-31	ASN translation control	Dual address space	0
-		ASN-first-table origin	2 CL. BOOT COS Space	0
15	8-28	MCEL address	Machine-check handling	51

^{*}Value after initial CPU reset.

VECTOR-STATUS REGISTER

0000 0000	0000 000 M	VCT		VIX	VII	J V	СН
0	1516		32		48	56	63

15 (M) Vector-mask-mode bit

16-31 (VCT) Vector count

32-47 (VIX) Vector interruption index 48-55 (VIU) Vector in-use bits

56-63 (VCH) Vector change bits

PROGRAM-STATUS WORD (EC Mode)

32 1 (R) Program-event-recording mask

-5 (T = 1) DAT mode

6 (I) Input/output mask

7 (E) External mask

12 (C = 1) Extended-control mode

13 (M) Machine-check mask

14 (W = 1) Wait state

15 (P = 1) Problem state

16 (S = 1) Secondary-space mode

18-19 (CC) Condition code

20 Fixed-point-overflow mask

21 Decimal-overflow mask 22 Exponent-underflow mask

23 Significance mask

PROGRAM-STATUS WORD (BC Mode)

ILC	СС	Program mask	Instruction address	
32 3	24	36 40		63

0.5 Channel 0 to 5 masks

6 Mask for channel 6 and up

7 (E) External mask

12 (C = 0) Basic-control mode

13 (M) Machine-check mask

14 (W = 1) Wait state

15 (P = 1) Problem state

32-33 (ILC) Instruction-length code

34-35 (CC) Condition code

36 Fixed-point-overflow mask

37 Decimal-overflow mask

38 Exponent-underflow mask

39 Significance mask

EXTERNAL-INTERRUPTION CODES

For EC mode, at real storage address 134-135 (hex 86-87) For BC mode, at real storage address 26-27 (hex 1A-1B)

Code (binary)		Condition	Code (binary)		Condition	
00000000	1eeceeee	Interval timer	00010010	00000000	Malfunction alert	
00000000	e1eeeeee	Interrupt key	00010010	00000001	Emergency signal	
00000000	ee 1 ee ee e	External sig 2	00010010	00000010	External call	
00000000	eee1eeee	External sig 3	00010000	00000011	TOD-clock-sync check	
00000000	eeee1eee	External sig 4	00010000	00000100	Clock comparator	
00000000	eeeee1ee	External sig 5				
00000000	eeeeee1e	External sig 6	00100100	00000001	Service signal	
00000000	eeeeeee1	External sig 7				

e- if 1, the bit indicates a concurrent external interruption condition.

PROGRAM-INTERRUPTION CODES

63

For EC mode, at real storage address 142-143 (hex 8E-8F) For BC mode, at real storage address 42-43 (hex 2A-2B)

Code	
(hex)	Condition
0001	Operation exception
0002	Privileged-operation exception
0003	Execute exception
0004	Protection exception
0005	Addressing exception
0006	Specification exception
0007	Data exception
nn08*	Fixed-point overflow exception
0009	Fixed-point divide exception
000A	Decimal-overflow exception
000B	Decimal-divide exception
nn0C*	Exponent-overflow exception
nnOD*	Exponent-underflow exception
nn0E*	Significance exception
nnOF*	Floating-point divide exception
0010	Segment-translation exception
0011	Page-translation exception
0012	Translation-specification exception
0013	Special-operation exception
0017	ASN-translation specification exception
0019	Vector-operation exception
001C	Space-switch event
nn1E*	Unnormalized-operand exception
001F	PC-translation specification exception
0020	AFX-translation exception
0021	ASX-translation exception
0022	LX-translation exception
0023	EX-translation exception
0024	Primary-authority exception
0025	Secondary-authority exception
0040	Monitor event
0080	PER event (code may be combined with another code)

^{*}Use the Exception-Extension Code table below for bits 0-7 (nn) of the programinterruption code.

EXCEPTION-EXTENSION CODE

0	7
Bit	Meaning

O(a) Arithmetic-partial-completion bit

O Completion or suppression of instruction and bits 1-7 of the exception-extension code are also zero

1 Partial completion of vector instruction

1(v) Arithmetic-result location

O Scalar register

1 Vector register

2-3(ww) Arithmetic-result width

01 4-byte result

10 8-byte result

4-7(rrrr) Register number of result designated by the interrupted instruction

DYNAMIC ADDRESS TRANSLATION

Dynamic-Address-Translation Format

				Virtual -Addre	irtual -Address Fields		
Cntl Reg 0 Bits 8 - 12	Segment Size	Page Size		Segment Index	Page Index	Byte	
0 1 0 0 0	64K	2K	「Bits]	8-15	16-20	21-31	
01010	1M	2K	0.7	8-11	12-20	21-31	
10000	64K	4K	are	8-15	16-19	20-31	
10010	1M	4K	ignored	8-11	12:19	20-31	

Any other combination of bits 8-12 of control register 0 is invalid for translation. 1M-byte segments are not provided on some models; 2K-byte pages are not provided on some models.

Segment-Table Entry

PT length	0000*		Page-table origin	 P	С	1
0	4	8		29	30	31

^{29 (}P) Segment-protection bit.

Page-Table Entry (4K)

Page-frame real address	1	EA	1
0	12	13	15

12 (I) Page- invalid bit

13-14 (EA) Extended-address bits

Page-Table Entry (2K)

Page-frame real address	1	0	
0	13	14	15

13 (I) Page-invalid bit

TRANSLATION-EXCEPTION IDENTIFICATION

At real storage location 144-147 (hex 90-93)

Interruption Code	Format of the Information Stored
0010 (4K pg)	O secondary address, 1-7 zeros, 8-19 address, 20-31 unpredictable
0010 (2K pg)	O secondary address, 1-7 zeros, 8-20 address, 21-31 unpredictable
0011 (4K pg)	O secondary address, 1-7 zeros, 8-19 address, 20-31 unpredictable
0011 (2K pg)	O secondary address, 1-7 zeros, 8-20 address, 21-31 unpredictable
001C	O old space-switch-event control, 1-15 zeros, 16-31 old PASN
0020	0-15 zeros, 16-31 address-space number
0021	0-15 zeros, 16-31 address-space number
0022	0-11 zeros, 12-31 program-call number
0023	0-11 zeros, 12-31 program call number
0024	0-15 zeros, 16-31 address-space number
0025	0-15 zeros, 16-31 address-space number

DUAL-ADDRESS-SPACE CONTROL

Program-Call Number

Linkage-Table Entry

0 (I) LX-invalid bit

26-31 (ETL) Entry-table length

Entry-Table Entry

	Entry parameter		Entry key mask		
64		96	1	112	127

63(P) Entry problem state

ASN-First-Table Entry

1	000 0000	ASN-second- table origin	00	00
1	8		28	3

0 (1) AFX-invalid bit

ASN-Second-Table Entry

1	000 0000	Authority- table origin	00	Authorization index	Authority- table length	00	00
)	1 :	8	30 3	32	48	60	63

STL	Segment- table origin	×	V	000 0000	Linkage- table origin	LTL	
64	72	90 95	96	97	104	121 127	,

0 (I) ASX-invalid bit

64-71 (STL) Segment-table length

95 (X) Space-switch-event bit 96 (V) Subsystem-linkage control

121-127 (LTL) Linkage-table length

Trace-Table-Entry Header

Current-entry	First-entry	Last-entry control
control		34 95

^{30 (}C) Common-segment bit

^{31 (}I) Segment-invalid bit

^{*}Normally zeros; ignored on some models.

MACHINE-CHECK INTERRUPTION CODE

At real storage address 232-239 (hex E8-EF)

I E	0 A	0	0	0	0	0	0	0	0	0	0	0	C T	C		MCEL Length
32	34												46		48	6

Bit	Meaning

0	(SD) System damage	
4	(DD) Inchuseding accession	

- sing damage 2
- (SR) System recovery
- (TD) Interval-timer damage 3
- (CD) Timing-facility damage
- 5 (ED) External damage
- 6 (VF) Vector-facility failure
- (DG) Degradation
- В (W) Warning
- (SP) Service-processor damage
- (VS) Vector-facility source 13
- 14 (B) Backed up
- (D) Delayed 15

17

- (SE) Storage error uncorrected 16
 - (SC) Storage error corrected
- 18 (KE) Storage-key error uncorrected
- 19 (DS) Storage degradation
- 20 (WP) PSW-CMWP validity
- 21 (MS) PSW mask and key validity
- 22 (PM) PSW program-mask and condition-code validity
- 23 (IA) PSW-instruction-address validity
- 24 (FA) Failing-storage-address validity
- 25 (RC) Region-code validity
- 26 (EC) External-damage-code validity
- 27 (FP) Floating-point-register validity
- 28 (GR) General-register validity
- (CR) Control-register validity 29
- 30 (LG) Logout validity
- 31 (ST) Storage logical validity
- 32 (IE) Indirect storage error
- 34 (DA) Delayed access exception
- (CT) CPU-timer validity 46
- 47 (CC) Clock-comparator validity
- 48-63 Machine-check-extended-logout (MCEL) length

EXTERNAL-DAMAGE CODE

At real storage address 244-247 (hex F4-F7)

Bit Meaning

- 2 (ES) External secondary report
- (CN) Channel not operational 3
- (CC) Channel-control failure
- (ST) I/O-instruction timeout
- 6 (TT) I/O-interruption timeout
- 8 (XN) Expanded storage not operational
- (XF) Expanded storage control failure

CHANNEL-ADDRESS WORD

At real storage address 72-75 (hex 48-4B)

Key	S	000		Channel-Program Address	
0	4	-	8		31

4 (S) Suspend-control bit

CHANNEL-COMMAND WORD

CD - bit 32 (80) causes use of data-address portion of next CCW.

CC - bit 33 (40) causes use of command code and data address of next CCW.

SLI - bit 34 (20) causes suppression of possible incorrect-length indication.

Skip - bit 35 (10) suppresses transfer of information to main storage. PCI - bit 36 (08) causes a channel-program-controlled interruption.

IDA - bit 37 (04) causes bits 8-31 of CCW to specify location of first IDAW. Suspend - bit 38 (02 causes suspension before execution of this CCW.

CHANNEL-STATUS WORD

At real storage address 64-71 (hex 40-47)

Key	S	L	СС	CCW address	3
0	4	5	6	8	31

Unit status	Channel status	By	yte count	
32	40	48		63

4 Suspended (only in CSW stored by PCI)

5 Logout pending

6-7 Deferred condition code

32 (80) Attention

33 (40) Status modifier

34 (20) Control-unit end

35 (10) Busy

36 (08) Channel end

37 (04) Device end

38 (02) Unit check

39 (01) Unit exception

40 (80) Program-controlled interruption

41 (40) Incorrect length

42 (20) Program check

43 (10) Protection check

44 (08) Channel-data check

45 (04) Channel-control check

46 (02) Interface-control check

47 (01) Chaining check

48-63 Residual byte count for the last CCW used

LIMITED CHANNEL LOGOUT

At real storage address 176-179 (hex BO-BC)

	0	SCU id	Detect	Source	00	Field validity	flags	TT	0	IA	Sec	1.
()	1	4	8	13	15	- 2	24	26	27	29	31

4 CPU

5 Channel

6 Main-storage control

7 Main storage

8 CPU

9 Channel

10 Main-storage control

11 Main storage

12 Control unit

15 Full channel logout

16-18 Reserved (000) 19 Sequence code

20 Unit status

21 CCW address and key

22 Channel address 23 Device address

24-25 Type of termination

00 Interface disconnect

01 Stop, stack or normal

10 Selective reset

11 System reset

27 (I) Interface inoperative

28 (A) I/O-error alert

29-31 Sequence code

I/O COMMAND CODES

Standard Command-Code Assignments (CCW bits 0-7)

mmmm mmmm	mm0 1 mm1 0		1110	0 1 0 1	00	Sense - Basic Sense - Sense ID Transfer in Channel
mmmm 0 0 0 0		Control - Control No Operation				Read Backward

x - Bit ignored

Standard Meanings of Bits of First Sense Byte

Bit	Designation	Bit	Designation
0	Command reject	4	Data check
1	Intervention required	5	Overrun
2	Bus-out check	6	(Device-dependent)
3	Equipment check	7	(Device-dependent)

Console Printer Channel Commands

Write, No Carrier Return	01	Sense	04
Write, Auto Carrier Return	09	Audible Alarm	08
Read Inquiry	0A	No Operation	03

Card Reader and Card Punch Channel Commands

3504, 3505 Card Readers/3525 Card Punch (GA21-9124)

Channel Command	Bi	nary	Bit Meanings		
Sense	0000	0100	SS	Stacker	
Feed, Select Stacker	SS10	F 0 1 1	00	1	
Read Only*	11D0	F010	01/10	2	
Diagnostic Read (invalid for 3504)	1101	0010	01,10	-	
Read, Feed, Select Stacker*	SSDO	F010	F	Format Mode	
Write RCE Format*	0001	0001	0	Unformatted	
3504, 3505 only			'	Formatted	
Write OMR Format†	0011	0001	D o	Data Mode 1 — EBCDIC	
3525 only			1	2-Card image	
Write, Feed, Select Stacker	SSDO	0001		2 Card image	
Print Line*	LLLL	L 1 0 1	L (5-bit b	Line Position	

^{*}Special feature on 3525.

I/O COMMAND CODES (Cont'd)

Printer Channel Commands

COMMANDS VALID FOR ALL F		IMPACT PRINTERS - ADDITIONAL COMMANDS					
Except 3800-3 when in Page Mod	ie)	Printer C	olumn	Reference			
		1403-N1	A	GA24-3312			
No Operation	03	3203-1, -2	В	GA33-1515			
Space 1 Line Immediate	OB	3203-4	C	GA33-1515			
Space 2 Lines Immediate	13 1B	3203-5	C	GA33-1529			
Space 3 Lines Immediate		3211	C	GA24-3543			
Block Data Check	73	4248 <3211 mode>	C	GA24-3927			
Allow Data Check	7B	3262-1, -11	D	GA24-3733			
Skip to Channel 1 Immediate	8B	3262-5 <3262-1 mode>	D	GA24-3936			
Skip to Channel 2 Immediate	93	4245-1	D	GA33-1541			
Skip to Channel 3 Immediate	9B	4245-12, -20	D	GA33-1541			
Skip to Channel 4 Immediate	A3	3262 5 <4248 mode>	E	GA33-1579			
Skip to Channel 5 Immediate	AB	4248 <native mode=""></native>	E				
Skip to Channel 6 Immediate	B3		_	GA24-3927			
Skip to Channel 7 Immediate	BB	Use column A, B, C, D, or E		ABCDE			
Sa p to Channel 8 Immediate	C3	Unfold	23	x x x			
Sk p to Channel 9 Immediate	CB	Execute Order	33	×			
5x p to Channel 10 Immediate	D3	Fold	43	X X X			
Sk p to Channel 11 Immediate	DB	Advance to End of Sheet	5B	. x			
Sa p to Channel 12 Immediate	E3	Load Forms Control Buffer	63	. x x x x			
		Raise Cover	r = 6B	. 1 1 2			
Write Without Spacing	01	Signal Attention	€ 68 68	3			
Ar te and Space 1 Line	09	Skip to Channel 0 Immediate	83	4 . 2			
Write and Space 2 Lines	11	Clear Printer	87	x x			
Arte and Space 3 Lines	19	UCS Gate Load	EB	X 2			
Arrite and Skip to Channel 1	89	Load UCS Buffer and Fold		X X			
Arrite and Skip to Channel 2	91	Verify Band ID	- F3	x			
Write and Skip to Channel 3	99	Load UCS Buffer (No Fold)	CP ED	XXXX			
Arite and Skip to Channel 4	A1	Verify Band ID	FB FB	x			
Arite and Skip to Channel 5	A9	terry band 10	FB	^			
Arrite and Skip to Channel 6	B1	Release CU and Device	10	E			
Ante and Skip to Channel 7	89		14	5			
Am to and Skip to Channel 9		Sense Intermediate Buffer	14	X			
Arr te and Skip to Channel 8	C1 -	Release CU, Reserve Device	34				
At te and Skip to Channel 9	C9	Heserve CU, Release Device	54	5			
Ar te and Skip to Channel 10		Reserve CU and Device	74	5			
te and Skip to Channel 11	· D9	Release Device	94	5			
Ar re and Skip to Channel 12	E1	Reserve Device	B4	5			
		Release CU	D4	5			
Basic Sense	04	Sense ID Reserve CU	E4	. X . X X			
3800 3 PAGE MODE COMMAND See Note X)	S	Read Band ID	r→ 0A	x			
No Operation	0.3	Diagnostic Read PLB	02	X . X 6 2			
Load Font Index	OF	Diagnostic Write	05				
Load Font Control	1F	Diagnostic Check Read	06				
Load Font	2F						
Execute Order Any State	33	Diagnostic Gate	0/ 0A	X X 2			
Load Font Equivalence	3F	Diagnostic Read UCS Buffer Diagnostic Read FCB	12	X X X			
Delete Font	4F	Diagnostic Read FCB	12	x x x			
Deserte Fort	5F	V 1/11 1 11 11 11 11 11 11 11 11 11 11 11					
Begin Page Segment		X = Valid; . = Invalid; Blank	NA				
Delete Page Segment	6F	1 = No action occurs (except 3	211).				
include Page Segment	7F	2 = No action occurs.					
Execute Order Home State	8F	3 = No action occurs (except 4	248).				
Set Home State	97	4 = 3211 only (no action occur		8			
Load Copy Control	9F	<3211 mode ➤ and 321	03 4)				
Begin Page	AF	5 = Two-channel switch feature	e only.				
End Page	BF	6 = No action occurs (except 4	245).				
Load Page Description	CF	7 = 1403 N1 also uses comman	d codes (D, 15, 1D,			
Begin Overlay	DF	8D, 95, 9D, A5, AD, B5, B	D, C5, CI	D, D5, DD,			
Delete Overlay	EF	and E5. 8 = 3211 and 4248 <3211 mg					
Write Factored Text Control	OD .	0 3211 and 4246 \$3211 mo	ue > only				
Write Text	2D	3800 1 3 ADDITIONAL CO	OBABA A A	26			
		3800-1, -3 - ADDITIONAL CO	JMMAN(75			
Write Image Control	3D	(Except 3800-3 when in Page M	node; see	Note Y)			
Write Image	4D						
End	5D	End of Transmission		07			
Load Page Position	6D	Mark Form		17			
		Load Copy Number		23			
Basic Sense	04	Execute Order Any State		. 33			
Sense Intermediate Buffer	14	Initialize Printer		37			
Sense Error Log	24	Load Forms Overlay Seq Contr	ol	43			
Sense ID	E4	Select Translate Table 0		47			
		Load Writable Char Gen Modul	P	53			
9800 * Reterence GA26 1635		Select Translate Table 1		57			
3800 3 Reference GA32 0050		Load Forms Control Buffer		63			
		Select Translate Table 2		67			
Note X. Otther 3800-3 commands	are	Select Translate Table 3		77			
released with command retry to	ne	Load Translate Table		83			
reth and succeed because Page		Clear Printer		83			
and have been reset		G.C.G. Fringer		6/			
		Load Graphic Char Modificatio	n	25			
Note Y For 3800-3 only, the Set	Home	Load Copy Modification	11	35			
State (97) command will be reju	acted	cose copy would called		35			
ent command retry; the retry	auli	Sense Intermediate Buffer		14			
succeed because Page Mode w				24			
been set	Have	Sense Error Log Sense ID		24 FA			
		Settise ID					

m - Modifier bit for specific type of I/O device

[†]Special feature.

I/O COMMAND CODES (Cont'd)

Direct Access Storage Devices

Use this chart to find the proper column in the DASD Channel Commands table and to find order numbers for DASD reference manuals. See DASD manuals for the restrictions and details of operations.

		C	ount/K	ey/Data	Devic	08		FE	BA	
Controller	2305	3333 3333	3340 3344	3350	3375	3380 -0-A	3380 -D-E	3310	3370	Controller Manual
DASD-A1								col6		GA26-1660
DASD-A4			col2							GA33-1526
DASD-A6			col2							GA33-1566
DASD-A7									col6	GA33-1539
DDA-30		col2								GA33-1510
DDA-40			col2							GA33-1506
IFA		col2	col2							GA24-3632
ISC		col2	col2	col2						GA26-1620
ISC-SA		col2		col2						GA32-0036
2835	col1									GA26-1589
3830-1		*col2						-		GA26-1592
3830-2		col2	col2	col2						GA26-161
3830-3		col2		col2						GA32-0036
3880-1		col2	col2	col2	col4				col6	GA26-166
3880-2		col2	col2	col2	col4	col4			col6	GA26-166
3880-3						col4	col4			GA26-166
3880-4					col4				col6	GA26-166
3880-11 (ND)		col2		col2						GA32-006
3880-11 (PD)				col2						GA32-006
3880-11 (PP)				col3						GA32-006
3880-13						col5				GA32-0067
3880-21 (PD)				col2						GA32-008
3880-21 (PP)				col3						GA32-0081
3880-23						*col5	col5			GA32-0083
Device						GA26				
Manual	1589	1615	1619	1638	1666	4193	4193	1660	1657	

DASD-A1 = 4321/4331/4361 DASD Adapter for 3310

DASD-A4 = 4321/4331 DASD Adapter for 3340/3344 DASD-A6 = 4361 DASD Adapter for 3340/3344

DASD-A7 = 4321/4331/4361 DASD Adapter for 3370

DDA-30 = S/370 125-0, -2 3330/3333 Direct Disk Attachment

DDA-40 = S/370 115-0, -2, 125-0, -2 3340/3344 Direct Disk Attachment

IFA = S/370 135, 135-3, 138 Integrated File Adapter

ISC = Integrated Storage Controller

ISC-SA = Integrated Storage Controller with Staging Adapter

ND = Nonpaging director

PD = Paging director, direct mode = Paging director, paging mode

3380-0-A = 3380 Direct Access Storage Models AA4, A04, and B04

3380-D-E = 3380 Direct Access Storage Models AD4, AE4, BD4, and BE4

= 3333 does not attach to 3830-1, nor does 3380-A04 to 3880-23

I/O COMMAND CODES (Cont'd) **DASD Channel Commands**

Channel Command	Hex Code	2305	3330 3340 3350	Page Swap 3350	3375 3380	Data Cache 3380	FBA 3310 3370	Typical Transfer Count
Control		1	2	3	4	5	6	
No Operation Seek Seek Cylinder Space Count Recalibrate (No-Op on 2305-1, -2) Restore (executed as No-Op)	03 07 0B 0F 13	× × × × × × ×	X X X X X	×××	X X X X X	× × × × ×	×	None 6 6 3 None None
Seek Head Set File Mask Set Sector (3340 RPS is optional) vary Sensing Desent (No-Op on 2305-2) Set High Performance Storage Limits	1B 1F 23 27 2B 3B 43 47	X X X	X	×	X X	(a)	×	1 1 1 None 10 8
Locate Record Sepend Multipath Reconnection Define Extent Les Subsystem Mode Set Paging Parameters Liscard Block Set Path Group ID	5B 63 87 8B 8F AF		(e)	××	(d) (b)	×	×	None 16 2 10 2+(5 × n) 12
Search								
Search Key Equal (*A9) Search Home Address Equal (*B9) Search Key High (*B9) Search Key Equal or High (*E9) Search Key Equal or High (*E9)	29 31 39 49 51 69 71	X X X X X	X X X X X	×.	X X X X	X X X X X		KL 5 4 KL 5 KL
Read								
a Program Load (*86) * * & Data (*86) * * & Data (*92) Read Record Zero (*96) Read Count Key & Data (*98) * * * * * * * * * * * * * * * * * * *	02 06 0E 12 16 1A 1E 22 42 5E	X X X X X	X X X X X X X (f,g)	×	X X X X X	X X X X X X	×	DL or 512 DL KL+DL 8 8+KL+DL 5 8+KL+DL 1 512 × n n × (8+KL+D
name Special Count Key & Data and Data and Key & Data Flash and Record Zero and Home Address and Count Key & Data and Legal Da	01 05 0D 11 15 19 1D 41 85 8D 9D	X X X X X X	× × × × ×	X	X X X X X X X X (b) (b) (b)	X X X X X X (c)	×	8+KL+DL DL KL+DL 8+KL+DL 8+KL+DL 5, 7, or 11 8+KL+DL 512×n DL KL+DL 8+KL+DL
Basic Sense	04	×	×	×	×	X	X	24
unconditional Reserve Read Buffered Log Sense Path Group ID Sense Subsystem Status Read Device Characteristics Sense Subsystem Counts Device Release Read and Reset Suffered Log Device Reserve [9,] Sense ID Sense ID Sense ID	14 24 34 54 64 74 94 A4 B4	(p) (p)	(q) (q) (m,p X (m,p X		(d,m,p) (d) (d,m,p) X (d,m,p)	(c) X	(m,p) X (m,p) X (m,p) X	24 128 12 40 32 80 24 24 or 32
Diagnostic Write Home Address Diagnostic Read Home Address Diagnostic Sense # (k Diagnostic Load (k Diagnostic Write (k Diagnostic Sense/Read Diagnostic Control	53	X X X	(r) (r) (r) (s) (t)	3	X X (t)	X X X	X X	27 or 28 27 or 28 16 or 512 1 8 or 512 Variable 4+n

mic only for 3880-13

lipeed-matching-buffer feature

and only for 3880-23

Denamic path selection (only valid on 3380 AA4 AD4 AE4 strings) erging arms for 3880-21

Ner water for 3330 3333 on ISC-SA or

^{3830-1 3830-2. -3.} DDA-40, IFA, and SC require 3344 3350 microcode Serr sauce on DDA-30

Net wood or FA. ISC-SA, or 3830-1; nor wood or 3330 3333, 3340 3344

Exercised as Basic Sense on DASD-A1 AL AE A7 f no string-switch (for uncononional Reserve see note gi

Not valid on DDA-30, -40, DASD-A4, -A6

String-switching feature

p Channel-switching feature q Valid only for 3880-11 paging director and 3880-21

Not valid on 3880-21

Valid only for 3880-1, -2, -11, -21 Valid only for 3330/3350 on 3880-1, -2, and for 3380 on 3880-2, -3 without 3380-speedmatching-buffer feature

^{*} Multitrack command codes (standard)

[#] Also called "Read Diagnostic Status 1

I/O COMMAND CODES (Cont'd)

Magnetic-Tape Channel Commands

Channel Command	Hex Code	3410 3411	3420-3 3420-5 3420-7	3420-4 3420-6 3420-8	3422 3430	3480	8809
No Operation	03	X	X	X	X	X	X
Rewind	07	Î	x	x	â	x	x
Rewind Unload	OF	X	X	X	X	X	x
Modeset-1 (200/Odd/DC)	→ 13	(a)	(b)	(c)	/ .	(c)	
Set Long Gap	13	-	-			_	X
Erase Gap	17	X	X	X	X	X	X
Request Track-In-Error	1B	X	×	X	(d)		
Write Tape Mark	1F	X	X	X	X	X	X
Modeset-1 (200/Even/Normal)	→ 23	(a)	(b)	(c)		(c)	-
Set Normal Gap	23	-	-	-		-	X
Backspace Block	27	X	X	X	X	X	X
Modeset-1 (200/Even/TR)	2B	(a)	(b)	(c)		(c)	
Backspace File	2F	X	X	X	X	X	X
Modeset-1 (200/Odd/Normal)	→ 33	(a)	(b)	(c)		(c)	_
Set High Speed/Normal Gap	33	-	_	-			X
Forward Space Block	37	X	X	X	X	X	X
Modeset-1 (200/Odd/TR)	3B	(a)	(b)	(c)		(c)	
Forward Space File	3F	X	X	X	X	X	X
Synchronize	43					X	
Locate Block	4F					X	
Modeset-1 (556/Odd/DC)	→ 53	(a)	(a)	(c)		(c)	_
Set Low Speed/Long Gap	53	-	-				X
Suspend Multipath Reconnection	5B					(c)	
Modeset-1 (556/Even/Normal)	63	(a)	(a)	(c)		(c)	_
Set Low Speed/Normal Gap	63		_	_		_	X
Modeset-1 (556/Even/TR)	6B	(a)	(a)	(c)		(c)	
Modeset-1 (556/Odd/Normal)	73	(a)	(a)	(c)		(c)	
Modeset-1 (556/Odd/TR)	7B	(a)	(a)	(c)		(c)	
Set Low Speed	83	1	1-7	1.07		107	X
Modeset-1 (800/Odd/DC)	P 93	(a)	(a)	(c)		(c)	_
Set High Speed/Long Gap	93	-	_	-		_	X
Data Security Erase	97	X	X	X	X	х	x
Load Display	9F					X	^
Modeset-1 (800/Even/Normal)	A3	(a)	(a)	(c)		(c)	
Modeset-1 (800/Even/TR)	AB	(a)	(a)	(c)		(c)	
Set Path Group ID	AF	/	(4,	(0)		X	
Modeset-1 (800/Odd/Normal)	В3	(a)	(a)	(c)		(c)	
Assign	B7	120	/	107		X	
Modeset-1 (800/Odd/TR)	BB	(a)	(a)	(c)		(c)	
Modeset-2 (1600 bpi PE)	C3	(e)	(e)	(f)	X	-	(c)
Set Tape-Write-Immediate	C3	-	-	-	_	X	-
Unassign	C7					X	
Modeset-2 (800 bpi NRZI)	CB	(e)	(e)	(c)		(c)	
Modeset-2 (6250 bpi GCR)	D3	1-7	,	(f)	X	(c)	
Mode Set	DB			1.7		X	
Control Access	-> E3			1		X	
Set High Speed	- E3						X
Write	0.1	V .		.,			
vviite	01	X	X	X	X	X	X
Read	02	X	X	X	x	X	X
Read Buffer	12		^	^	^	x	^
Read Block ID	22	1				- x	
Read Backward	OC	X	X	X	X	X	
Basic Sense	04	X	X	x	×	X	×
Read Buffered Log	24	^	^	^	^	x	^
Sense Path Group ID	34					X	
Read/Reset Buffered Log	A4					^	X
Release	D4		(a)	(a)	(0)		
Sense ID	E4		(g)	(g)	(g) X	X	X
Reserve	F4		(a)	(a)		^	X
1030170	F4		(g)	(g)	(g)		
Diagnostic Mode Set	OB		X	X			
Set Diagnose	4B		X	X	(d)		
_oop Write-To-Read	8B		X	X	X	- 1	X

- Notes:

 a No action occurs unless 7-track feature is installed.
 b No action occurs unless 7-track feature is installed; if present, density set is 200 bpi by 3803-2 Tape Control, 556 bpi by 3803-1.
 c Valid command, but no action occurs.
- d Invalid command for 3422
- e No action occurs unless 800 bpi density feature is installed.
- No action occurs unless 1600 bpi density feature is installed.
- g Requires two-channel switch feature; invalid for 3430.

Where arrows appear, the meaning of the hex code depends on the machine type; hyphens signify that the alternative meaning is used.

Modeset-1 command (for 7-track drives): density (200, 556, 800 bpi)/parity (even, odd)/mode (Normal, DC = data converter, TR = translator). Modeset-2 command (for 9-track drives): density (800, 1600, 6250 bpi).

Sources: 3410/3411 (GA32-0022)

3420-3,	-5,	-7	(GA32-0020)
3420-4,	-6,	-8	(GA32-0021)

3422 (GA32-0089) 3430 (GA32-0076) 3480 (GA32-0042)

8809 (GA26-1659)

CODE ASSIGNMENTS

Two-Character BSC Data Link Controls

Function	EBCDIC	ASCII
ACK-0	DLE,X'70'	DLE,0
ACK-1	DLE, X'61'	DLE,1
WACK	DLE, X'68'	DLE,;
RVI	DLE,X'7C'	DLE,<

Commonly Used Editing Pattern Characters

Code (hex)	Meaning	Code (hex)	Meaning
20	digit selector	5B	dollar sign
21	start of significance	5C	asterisk
22	field separator	6B	comma
40	blank	C3D9	CR (credit)
4B	period	C4C2	DB (debit)

ANSI-Defined Printer Control Characters

A in RECFM field of DCB)

Code	Action before Printing Record				
blank	Space 1 line				
0	Space 2 lines				
	Space 3 lines				
	Suppress space				
1	Skip to line 1 on new page				

Control Character Representations

ACK	Acknowledge	IT	Indent Tab
BEL	Bell	IUS	Interchange Unit Separator
BS	Backspace	ITB	Intermediate Transmission Block
BYP		LF	Line Feed
CAN		MFA	Modify Field Attribute
CR	Carriage Return	NAK	Negative Acknowledge
CSP		NBS	Numeric Backspace
CU1	Customer Use 1	NL	New Line
CU3	Customer Use 3	NUL	Null
DC1	Device Control 1	POC	Program-Operator Communication
DC2	Device Control 2	PP	Presentation Position
DC3	Device Control 3	RES	Restore
DC4	Device Control 4	REF	Required Form Feed
DEL	Delete	RNL	Required New Line
DLE	Data Link Escape	RPT	Repeat
DS	Digit Select	SA	Set Attribute
EM	End of Medium	SBS	Subscript
ENP	Enable Presentation	SEL	Select
ENQ	Enquiry	SFE	Start Field Extended
EO	Eight Ones	SI	Shift In
EOT	End of Transmission	SM	Set Mode
ESC	Escape	SO	Shift Out
ETB	End of Transmission Block	SOH	Start of Heading
ETX	End of Text	SOS	Start of Significance
FF	Form Feed	SPS	Superscript
FS	Field Separator	STX	Start of Text
GE	Graphic Escape	SUB	Substitute
MT	Horizontal Tab	SW	Switch
IFS	Interchange File Separator	SYN	Synchronous Idle
GS	Interchange Group Separator	TRN	Transparent
0,0	Inhibit Presentation	UBS	Unit Backspace
IB	Index Return	VT	Vertical Tab
2 5	Interchange Record Separator	WUS	Word Underscore

Formatting Character Representations

11.52	Numeric Space	SP	Space
250	Recurred Space	SHY	Syllable Hyphen

CODE ASSIGNMENTS (Cont'd)

Code Tables

Dec.	Hex	Graphics and Con BCDIC EBCDIC	trols ASCII	7-Track Tape BCDIC	Card Code EBCDIC	Binary
0	00	NUL	NUL		12-0-1-8-9	0000 0000
1 2	01	SOH	SOH		12-1-9	0000 0000
3	03	STX ETX	ETX		12-2-9	0000 001
4	04	SEL	EOT		12-4-9	0000 010
5	05	HT	ENQ		12-4-9	0000 010
6	06	RNL	ACK		12-6-9	0000 010
7	07	DEL	BEL		12-7-9	0000 011
8	08	GE	BS		12-8-9	0000 100
9	09	SPS	HT		12-1-8-9	0000 100
10	OA	RPT	LF		12-2-8-9	0000 101
11	OB	VT	VT		12-3-8-9	0000 101
12	OC	FF	FF		12-4-8-9	0000 110
13	OD	CR	CR		12-5-8-9	0000 110
14	OE	so	SO		12-6-8-9	0000 111
15	OF	SI	SI		12-7-8-9	0000 111
16	10	DLE	DLE		12-11-1-8-9	0001 000
17	11	DC1 DC2	DC1 DC2		11-1-9	0001 000
19	13	DC3	DC3		11-3-9	0001 001
20	14	RES/ENP	DC4		11-4-9	0001 010
21	15	NI NI	NAK		11-5-9	0001 010
22	16	BS	SYN		11-6-9	0001 011
23	17	POC	ETB		11-7-9	0001 011
24	18	CAN	CAN		11-8-9	0001 100
25	19	EM	EM		11-1-8-9	0001 100
26	1A	UBS	SUB		11-2-8-9	0001 101
27	1B	CU1	ESC		11-3-8-9	0001 101
28	1C	IFS	FS		11-4-8-9	0001 110
29	1D	IGS	GS		11-5-8-9	0001 110
30	1E	IRS	RS		11-6-8-9	0001 1110
31	1F	ITB/IUS	US		11-7-8-9	0001 111
32	20	DS	SP !		11-0-1-8-9	0010 0000
34	22	SOS FS	:		0-1-9	0010 000
35	23	WUS	#		0-3-9	0010 001
36	24	BYP/INP	\$		0-4-9	0010 010
37	25	LF	%		0-5-9	0010 010
38	26	ETB	84		0-6-9	0010 0110
39	27	ESC	*		0-7-9	0010 011
40	28	SA	(0-8-9	0010 1000
41	29	SFE)		0-1-8-9	0010 100
42	2A	SM/SW	*		0-2-8-9	0010 1010
43	2B	CSP	+		0-3-8-9	0010 101
44	2C	MFA	,		0-4-8-9	0010 1100
45	2D	ENQ	-		0-5-8-9	0010 110
46	2E 2F	ACK BEL	,		0-6-8-9	0010 1110
	30	DEL				
48	31		0		12-11-0-1-8-9	0011 0000
50	32	SYN	2		2-9	0011 001
51	33	IR	3		3-9	0011 001
52	34	PP	4		4-9	0011 0100
53	35	TRN	5		5-9	0011 010
54	36	NBS	6		6-9	0011 0110
55	37	EOT	7		7-9	0011 011
56	38	SBS	8		8-9	0011 1000
57	39	IT	9		1-8-9	0011 100
58	3A	RFF	:		2-8-9	0011 1010
59	3B	CU3	;		3-8-9	0011 101
60	3C	DC4	<		4-8-9	0011 1100
61	3D	NAK	=		5-8-9	0011 110
62	3E	CLID	>		6-8-9	0011 1110
63	3F	SUB	?		7-8-9	0011 111

CODE ASSIGNMENTS (Cont'd)

Code Tables (Cont'd)

Dec.	Hex	Gra BCDI	phics a	nd Co DIC(1)		7-Track Tape BCDIC(2)	Card Code EBCDIC	Binary		
64	40	SP	SP	SP	@	(3)	no punches	0100 0000		
65	41		RSP		Α		12-0-1-9	0100 0001		
66	42				В		12-0-2-9	0100 0010		
67	43				С		12-0-3-9	0100 0011		
68	44				D	1	12-0-4-9	0100 0100		
69 70	45				E		12-0-5-9	0100 0101		
71	47				G		12-0-6-9	0100 0110		
72	48				Н			-		
73	48				H		12-0-8-9	0100 1000		
74	4A		¢	¢	J		12-2-8	0100 1001		
75	48				K	BA8 21	12-3-8	0100 1011		
76	4C	11)	<	<	L	B A 8 4	12-4-8	0100 1100		
77	4D	ī	ĺ.	1	M	BA84 1	12-5-8	0100 1101		
78	4E	<	+	+	N	BA842	12-6-8	0100 1110		
79	4F	#	1	1	0	BA8421	12-7-8	0100 1111		
80	50	&ı +	&	&	Р	ВА	12	0101 0000		
81	51				Q		12 11-1-9	0101 0001		
82	52				R		12-11-2-9	0101 0010		
83	53				S		12-11-3-9	0101 0011		
84	54				T		12-11-4-9	0101 0100		
85	55				U		12-11-5-9	0101 0101		
86	56				V		12-11-6-9	0101 0110		
87	57				W		12-11-7-9	0101 0111		
88	58				X		12-11-8-9	0101 1000		
99	59				Y		11-1-8	0101 1001		
90	5A 5B	\$!	!	Z	D 0 01	11-2-8	0101 1010		
_				\$	1	B 8.21	11-3-8	0101 1011		
92	5C	*	*	*	1	B 84	11-4-8	0101 1100		
93	5D 5E]))	}	B 84 1 B 842	11-5-8	0101 1101		
95	5F	Δ	;	:	^	B 8421	11-7-8	0101 1111		
96	60	_			-	В	11	0110 0000		
97	61	1	,	/	а	A 1	0-1	0110 0000		
98	62	'	,	,	b		11-0-2-9	0110 0010		
99	63				C		11-0-3-9	0110 0011		
100	64				d		11-0-4-9	0110 0100		
101	65				е		11-0-5-9	0110 0101		
102	66				f		11-0-6-9	0110 0110		
103	67				g		11-0-7-9	0110 0111		
104	68				h		11-0-8-9	0110 1000		
105	69				i		0-1-8	0110 1001		
106	6A		-		j		12-11	0110 1010		
107	6B	,	,	,	k	A 8 2 1	0-3-8	0110 1011		
108	6C	%(%	%	1	A 8 4	0-4-8	0110 1100		
109	6D	γ	-	_	m	A 8 4 1	0-5-8	0110 1101		
110	6E	**	> ?	>	n	A 8 4 2	0-6-8	0110 1110		
111	6F	m	- /	?	0	A 8 4 2 1	0-7-8	0110 1111		
112	70				р		12-11-0	0111 0000		
113	71				q		12-11-0-1-9	0111 0001		
115	73				S		12-11-0-2-9	0111 0010		
116	74				t		12-11-0-4-9	0111 0100		
117	75				u		12-11-0-4-9	0111 0101		
118	76				v		12-11-0-6-9	0111 0110		
118	73				w		12-11-0-7-9	0111 0111		
120	78				×		12-11-0-8-9	0111 1000		
121	79				ŷ		1-8	0111 1001		
122	7A	5	:	:	Z	A	2-8	0111 1010		
123	78	2 =	#	#	{	8 2 1	3-8	0111 1011		
124	70	@	@	@		8 4	4-8	0111 1100		
126	70			1	}	8 4 1	5-8	0111 1101		
	PE	>	=	=	~	8 4 2	6-8	0111 1110		
126	75	W			DEL	8 4 2 1	7-8	0111 1111		

CODE ASSIGNMENTS (Cont'd)

Code Tables (Cont'd)

Dec.	Hex	Graphics and Controls BCDIC EBCDIC(1) ASCII	7-Track Tape BCDIC	Card Code EBCDIC	Binary
128	80			12-0-1-8	1000 0000
129	81	в а		12-0-1	1000 0001
130	82	b b		12-0-2	1000 0010
131	83	СС		12-0-3	1000 0011
132	84	d d		12-0-4	1000 0100
133	85	e e		12-0-5	1000 0101
134	86	f f		12-0-6	1000 0110
135	87	g g		12-0-7	1000 0111
136	88	h h		12-0-8	1000 1000
137	89	i i		12-0-9	1000 1001
138	8A			12-0-2-8	1000 1010
139	8B	{		12-0-3-8	1000 1011
140	8C	<u>≤</u>		12-0-4-8	1000 1100
141	8D	See Note		12-0-5-8	1000 1101
142	8E	* See Note		12-0-6-8	1000 1110
143	8F	+		12-0-7-8	
144	90			12-11-1-8	1001 0000
145	91	i i		12-11-1	1001 0001
146	92	k k		12-11-2	1001 0010
147	93	1 1		12-11-3	1001 0011
148	94	m m		12-11-4	1001 0100
149	95	n n		12-11-5	1001 0101
150	96	0 0		12-11-6	1001 0110
151	97	р р		12-11-7	1001 0111
152	98	q q		12-11-8	1001 1000
153	99	r r		12-11-9	1001 1001
154	9A			12-11-2-8	1001 1010
155	9B			12-11-3-8	1001 1011
156	9C) Can Note		12-11-4-8	1001 1100
157	9D	See Note		12-11-5-8	1001 1101
158	9E	±		12-11-6-8	1001 1110
159	9F			12-11-7-8	1001 1111
160	AO	See Note		11-0-1-8	1010 0000
161	A1 A2	~		11-0-1	1010 0001
162 163	A3	s s		11-0-2	1010 0010
164	A4 A5	u u		11-0-4	1010 0100
165 166	A6	v v w w		11-0-6	1010 0110
167	A7	X X		11-0-7	1010 0111
				11-0-8	1010 1000
168 169	A8 A9	y y z z		11-0-8	1010 1000
170	AA	z z		11-0-2-8	1010 1001
171	AB			11-0-3-8	1010 1011
172	AC	r		11-0-4-8	1010 1100
173	AD	[11-0-4-8	1010 1100
174	AE	≥		11-0-6-8	1010 1110
175	AF	•		11-0-7-8	1010 1111
176	ВО	O See Note		12-11-0-1-8	1011 0000
177	B1	1 See Note		12-11-0-1	1011 0001
178	B2	² See Note		12-11-0-2	1011 0010
179	B3	³ See Note		12-11-0-3	1011 0011
180	B4	See Note		12-11-0-4	1011 0100
180	B5	5 See Note		12-11-0-4	1011 0100
182	B6	6 See Note		12-11-0-6	1011 0110
183	B7	7 See Note		12-11-0-7	1011 0111
_		See Note		12-11-0-8	1011 1000
184	B8	See Note		12-11-0-8	1011 1000
185	B9 BA	⁹ See Note		12-11-0-9	1011 1001
185	BB			12-11-0-2-8	1011 1010
					-
188	BC	,		12-11-0-4-8	1011 1100
189	BD] ≠		12-11-0-5-8	1011 1110
190	BE				

Note: This character is an EBCDIC superscript character.

CODE ASSIGNMENTS (Cont'd)

Code Tables (Cont'd)

Dec.	Hex	Grap BCDIC	hics an		trols ASCII	7-Track Tape BCDIC(2)	Card Code EBCDIC	Binary
192	CO	?	{			B A 8 2	12-0	1100 0000
193	C1	A	A B	A		BA 1	12-1	1100 0001
194	C2 C3	B	C	B		BA 2 BA 21	12-2 12-3	1100 0010
196	C4	D	D	D		BA 4	12-4	1100 0100
197	C5	E	E	E		BA 4 1	12-4	1100 0100
198	C6	F	F	F		BA 4.2	12-6	1100 0110
199	C7	G	G	G		BA 421	12-7	1100 0111
200	C8	H	H-	Н		B A 8	12-8	1100 1000
201	C9	1	1	. 1		B A 8 1	12-9	1100 1001
202	CA		SHY		4		12-0-2-8-9	1100 1010
204	CC		171.			- A - 3	12-0-4-8-9	1100 1100
205	CD						12-0-5-8-9	1100 1101
206	CE						12-0-6-8-9	1100 1110
207	CF	1 -		, i			12-0-7-8-9	1100 1111
208	DO	1	} ": "			B 8 2	11-0	1101 0000
210	D1	J	J	J .		B 1 B 2	11-1	1101 0001
211	D2	K	K	L		B 2 B 21	11-2	1101 0010
1.2	D4	M	M	M		B 4	11-4	1101 0100
113	D5	N	N	N		B 4 1	11-5	1101 0100
114	D6	0	0	0		B 42	11-6	1101 0110
115	D7	P	Р	Р		B 421	11-7	1101 0111
216	D8	Q	0	0		B 8	11-8	1101 1000
217	D9	R	R	R		B 8 1	11-9	1101 1001
218	DA						12-11-2-8-9	1101 1010 1101 1011
220	DC		-				12-11-3-8-9	1101 1100
221	DD						12-11-4-8-9	1101 1100
222	DE						12-11-6-8-9	1101 1110
223	DF						12-11-7-8-9	1101 1111
224	EO	+	\			A B 2	0-2-8	1110 0000
225	E1		NSP				11-0-1-9	1110 0001
227	E2 E3	S	S	S		A 2 1	0-2	1110 0010
128	E4	U	U	U		A 4	0-4	1110 0100
229	E5	V	V	V		A 4 1	0-5	1110 0100
230	E6	W	W	W		A 42	0-6	1110 0110
231	E7	X	X	Χ		A 421	0-7	1110 0111
232	E8	Υ	Υ	Υ :		A 8	0-8	1110 1000
233	E9	Z	Z	Z	1	A.8. 1	0-9	1110 1001
234	EA						11-0-2-8-9	1110 1010
236			1.			*	11-0-3-8-9	1110 1011
237	EC						11-0-4-8-9	1110 1100
238	EE						11-0-6-8-9	1110 1110
239	EF						11-0-7-8-9	1110 1111
240	FO	0	0	0		8 2	0	1111 0000
241	F1	1	1	1		1	1	1111 0001
242	F2 F3	2	2	2		2 2 1	3	1111 0010 1111 0011
244	F4	4	4	4		4	4	1111 0100
245	F5	5	5	5		4 1	5	1111 0100
246	F6	6	6	6		4 2	6	1111 0110
247	F7	7	7	7		4 2 1	7	1111 0111
248	F8	8	8	8		8	8	1111 1000
249	F9	9	9	9		8 1	9	1111 1001
250 251	FB						12-11-0-2-8-9	1111 1010
							12-11-0-3-8-9	1111 1011
252	FIC FID						12-11-0-4-8-9	1111 1100
	1100							
253	EE						12-11-0-6-8-9	1111 1110

The course of EBCDIC graphics are shown. The first gives IBM standard U.S. are assignments. The second shows the T-11 and TN text printing chains

I -as I also by for odd or even parity as needed, except as noted.

³ For even party use CA

HEXADECIMAL AND DECIMAL CONVERSION

From hex: locate each hex digit in its corresponding column position and note the decimal equivalents. Add these to obtain the decimal value.

From decimal: (1) locate the largest decimal value in the table that will fit into the decimal number to be converted, and (2) note its hex equivalent and hex column position. (3) Find the decimal remainder. Repeat the process on this and subsequent remainders.

Note: Decimal, hexadecimal, and binary equivalents of all numbers from 0 to 255 are listed in the code tables.

			4567	Hex Decimal	0	1	2 2	3	4 4	5	9 9	7 7		8									
		BYTE	0123	Decimal H	0	16	32	48	64	80	96	112		128	128	128	128 144 160 176	128 144 160 176 192	128 144 160 176 192 208	128 1144 1160 176 192 208 224	128 1144 1160 1176 192 208 224 240		
	ORD			Hex D	0	-	2	8	4	2	9	7		8	ထ တ	∞ の ∢	∞ o < ∞	∞	∞	8 6 4 B U D H	80 64 80 0 D H F		
	HALFWORD		4567	Decimal	0	256	512	768	1,024	1,280	1,536	1,792	0000	2,048	2,304	2,304	2,304 2,560 2,816	2,304 2,304 2,560 2,816 3,072	2,048 2,304 2,560 2,816 3,072 3,328	2,048 2,304 2,560 2,816 3,072 3,328 3,584	2,048 2,304 2,560 3,072 3,328 3,584 3,840		
		E		Hex	0	-	2	8	4	n n	9	7	8		6	o 4	6 4 B	o ∢ ∞ ∪	0 4 B C C	6 4 8 0 0 H	∞ ⋖ ® ∪ □ ш ⊩		
		BYTE	0123	Decimal	0	4,096	8,192	2,288	6,384	20,480	24,576	28,672	32,768		36,864	36,864	36,864 40,960 45,056	36,864 40,960 45,056 49,152	36,864 40,960 45,056 49,152 53,248	36,864 40,960 45,056 49,152 53,248 57,344	36,864 40,960 45,056 49,152 53,248 57,344 61,440		
			0	-	_	-		_	-	-					-								
				Hex	0	-	2	6	4	2	9	7	00	-	6	თ ∢	o ∢ æ	o 4 m ∪	6 4 B C C	6 A B C D A	8 A B O O A F		
MOND			4567	Decimal	0	65,536	131,072	196,608	262,144	327,680	393,216	458,752	524,288		589,824	589,824	589,824 655,360 720,896	589,824 655,360 720,896 786,432	589,824 655,360 720,896 786,432 851,968	589,824 655,360 720,896 786,432 851,968 917,504	589,824 655,360 720,896 786,432 851,968 917,504 983,040		
>			123	4567	4567	Нех	0	-	2	e	4	ro.	9	7	ω	0	n	n <	n ∢ m	n 4 m ∪	D A B D D	м 4 m O D m	» 4 80 0 0 W IL
		BYTE	0123	Decimal	0	1,048,576	2,097,152	3,145,728	4,194,304	5,242,880	6,291,456	7,340,032	8,388,608	0 437 184	2,101,104	10,485,760	10,485,760	10,485,760 11,534,336 12,582,912	10,485,760 11,534,336 12,582,912 13,631,488	10,485,760 11,534,336 12,582,912 13,631,488 14,680,064	10,485,760 11,534,336 12,582,912 13,631,488 14,680,064 15,728,640		
	0			Нех	0	-	2	3	4	2	9	7	8	6		A	⋖ ®	4 m U	A B O O	4 m O O m	4 m O O m r		
	HALFWORD	HALFWOR		4567	Decimal	0	16,777,216	33,554,432	50,331,648	67,108,864	83,886,080	100,663,296	117,440,512	134,217,728	150,994,944		167,772,160	167,772,160	167,772,160 184,549,376 201,326,592	167,772,160 184,549,376 201,326,592 218,103,808	167,772,160 184,549,376 201,326,592 218,103,808 234,881,024	167,772,160 184,549,376 201,326,592 218,103,808 234,881,024 251,658,240	
		ш		Нех	0	-	2	3	4	5	9	7	8	6		A	∀ ®	4 m U	4 8 U D	4 80 C) C) A)	4 8 U U H H		
		BYTE	0123	Decimal	0	268,435,456	536,870,912	805,306,368	1,073,741,824	1,342,177,280	1,610,612,736	1,879,048,192	2,147,483,648	2 415 010 104	401,818,104	2,684,354,560	2,684,354,560	2,684,354,560 2,952,790,016 3,221,225,472	2,684,354,560 2,952,790,016 3,221,225,472 3,489,660,928	2,684,354,560 2,952,790,016 3,221,225,472 3,489,660,928 3,758,096,384	2,684,354,560 2,952,790,016 3,221,225,472 3,489,660,928 3,758,096,384 4,026,531,840		
			BITS:	Hex	0	-	2	3	4	2	9	7	8		ח								

HEXADECIMAL AND DECIMAL CONVERSION (Cont'd)

Powers of 2 and 16

m	n	2 ^m and 16 ⁿ
0 1 2 3	0	1 2 4 8
4 5 6 7	1	16 32 64 128
8 9 10 11	2	256 512 1 024 2 048
12 13 14 15	3	4 096 8 192 16 384 32 768
6 6 6	4	65 536 131 072 262 144 524 288
20 21 22 23	5	1 048 576 2 097 152 4 194 304 8 388 608
14 15 16 17	6	16 777 216 33 554 432 67 108 864 134 217 728
28 29 30 31	7	268 435 456 536 870 912 1 073 741 824 2 147 483 648

m	n	Г		- :	2 ^m an	d 16"		
32	8				4	294	967	296
33					8	589	934	592
34		1			17	179	869	184
35					34	359	738	368
36	9				68	719	476	736
37					137	438	953	472
38					274	877	906	944
39					549	755	813	888
40	10			1	099	511	627	776
41				2	199	023	255	552
42				4	398	046	511	104
43				8	796	093	022	208
44	11			17	592	186	044	416
45				35	184	372	088	832
46				70	368	744	177	664
47				140	737	488	355	328
48	12			281	474	976	710	656
49				562	949	953	421	312
50			1	125	899	906	842	624
51			2	251	799	813	685	248
52	13		4	503	599	627	370	496
53			9	007	199	254	740	992
54			18	014	398	509	481	984
55			36	028	797	018	963	968
56	14		72	057	594	037	927	936
57			144	115	188	075	855	872
58			288	230	376	151	711	744
59			576	460	752	303	423	488
60	15	1	152	921	504	606	846	976
61		2	305	843	009	213	693	952
62		4	611	686	018	427	387	904
63		9	223	372	036	854	775	808

Symbol	Value
K (kilo)	1,024 = 210
M (mega)	$1,048,576 = 2^{20}$
G (giga)	1,073,741,824 = 2 ³⁰

		1	AL S	45		-					-				
							-								
					4										
										32					
										10. 10.					
										10. 10.					
										10					
										10. 10.					
										10. 10.					
										10. 10.					
										34 A A A A A A A A A A A A A A A A A A A					

GX20-1850-6

IBM

GX20-1850-06

