Simulation5

Mengqi Liu

Jul 31, 2023

Recap

- N: number of samples one time.
- *M*: number of bins.
- H0: $X \perp \!\!\! \perp Y \mid Z$, H1: $X \perp \!\!\! \perp Y \mid Z$
- Methods: (\tilde{Z} is the discretized Z, and the data belonging to the same group share the same \tilde{Z} .)
 - "Linear_reg_y": regress Y on X, \tilde{Z} and take the absolute coefficient of X as the test statistic.
 - "Linear_reg_x": regress X on Y, \tilde{Z} and take the absolute coefficient of Y as the test statistic.
 - "Double_reg": regress Y on \tilde{Z} and regress X on \tilde{Z} separately. Take the absolute correlation between residuals from two linear regressions as the test statistic.
 - "Linear_reg_y_z": regress Y on X, Z and take the absolute coefficient of X as the test statistic.
 - "Linear_reg_x_z": regress X on Y, Z and take the absolute coefficient of Y as the test statistic.
 - "Double_reg_z": regress Y on Z and regress X on Z separately. Take the *absolute* correlation between residuals from two linear regressions as the test statistic.
- $\alpha = 0.05$
- $X = f_x(Z) + \epsilon$, $Y = f_y(Z) + \epsilon$
- Noise ϵ :
 - various a
 - H0:
 - \circ normal: N(Z,a)
 - \circ skewed_normal: N(Z, a)
 - H1:

$$\begin{split} & \circ \; \text{ normal: } N \left([0,0], \left(\begin{matrix} a_1 & cor \cdot \sqrt{a_1 a_2} \\ cor \cdot \sqrt{a_1 a_2} & a_2 \end{matrix} \right) \right) \\ & \circ \; \text{ skewed_normal: } N \left([0,0], \left(\begin{matrix} a_1 & cor \cdot \sqrt{a_1 a_2} \\ cor \cdot \sqrt{a_1 a_2} & a_2 \end{matrix} \right) \right) \text{, skewness} = [5,-5] \end{aligned}$$

ullet $N=100, Z\sim \mathrm{Unif}([0,10))$, $M\in\{2,5,10,16,25,50\}$.

Gains

• When X|Z and Y|Z are both smooth, all methods have valid type-I error and notable power whichever variable is permutated (experiment 1). Moreover, there's no distinct difference in power between using Z and

 \hat{Z} (experiment 2). But "Double_reg" and "Double_reg_z" own higher power than methods using one-sided regression in some settings (experiment 3).

- When X|Z and Y|Z are neither smooth, all methods fail in controlling type-I error while "Double_reg" (double regression with Z) is barely acceptable if f_x and f_y are both linear in Z. (experiment 4&experiment 5)
- When X|Z is smooth and Y|Z is not, the choice of permutated variable is very important. All methods perform well if we permute the smooth one (X). If we permute the non-smooth one (Y), "Double_reg" and "Double_reg_z" can both work (experiment 7: f_x and f_y are non-linear in Z; experiment 9: f_x is linear in Z while f_y is non-linear in Z) or both fail to control type-I error. (experiment 6&experiment 8: f_x and f_y are linear in Z)
- From all experiments, counter-intuitively, it seems that using \tilde{Z} would be more aggressive (higher type-I and power) than using Z.

experiment 1

$$f_x(Z)=Z$$
 , $f_y(Z)=Z$, $\epsilon_x\sim N(\cdot,5)$, $\epsilon_y\sim N(\cdot,5)$, $cor=0.8$.

• permute Y:

permute X:

 $f_x(Z)=Z$, $f_y(Z)=Z$, $\epsilon_x\sim N(\cdot,5)$, $\epsilon_y\sim N(\cdot,5)$, $cor\in\{0.1,0.3,0.5,0.7\}$ and permute Y .

 $f_x(Z)=\log(Z+1)+2$, $f_y(Z)=7+\sqrt{Z}$, $\epsilon_x\sim N(\cdot,5)$, $\epsilon_y\sim N(\cdot,5)$, $cor\in\{0.1,0.3,0.5,0.7\}$ and permute Y.

$$f_x(Z)=Z$$
 , $f_y(Z)=Z$, $\epsilon_x\sim N(\cdot,0.1)$, $\epsilon_y\sim N(\cdot,0.1)$.

• permute X:

$$f_x(Z)=\log(Z+1)+2$$
, $f_y(Z)=7+Z^{rac{1}{2}}$, $\epsilon_x\sim N(\cdot,0.1)$, $\epsilon_y\sim N(\cdot,0.1)$.

$$f_x(Z)=Z$$
 , $f_y(Z)=Z$, $\epsilon_x\sim N(\cdot,5)$, $\epsilon_y\sim N(\cdot,0.1)$.

$$f_x(Z) = \log(Z+1) + 2$$
, $f_y(Z) = 7 + \sqrt{Z}$, $\epsilon_x \sim N(\cdot,5)$, $\epsilon_y \sim N(\cdot,0.1)$.

$$f_x(Z)=5Z$$
 , $f_y(Z)=5Z$, $\epsilon_x\sim N(\cdot,5)$, $\epsilon_y\sim N(\cdot,0.1)$.

• permute X:

$$f_x(Z)=Z$$
 , $f_y(Z)=7+\sqrt{Z}$, $\epsilon_x\sim N(\cdot,5)$, $\epsilon_y\sim N(\cdot,0.1)$.

