CS244: Theory of Computation

Fu Song

ShanghaiTech University

Fall 2020

Outline

- ① Linear temporal logic (LTL)
- 2 LTL model checking: Automata theoretical approach
- 3 Computation tree logic (CTL)
- (Weak) alternating tree automata
- 5 CTL model checking: Automata theoretical approach

Temporal logics: The general background

A brief history

- Introduced by a philosopher Arthur Prior in 1950's (known as tense logic).
- Introduced to computer science (Linear temporal logic) by Amir Pnueli in 1977.

Temporal logics: The general background

A brief history

- Introduced by a philosopher Arthur Prior in 1950's (known as tense logic).
- Introduced to computer science (Linear temporal logic) by Amir Pnueli in 1977.

Classifications

Linear time versus branching time

- Linear time: Each moment has a unique future.
- Branching time: Each moment may have several possible futures.

Time point versus intervals

- Refer to the time by time points: Linear temporal logic, Computation tree logic, Modal μ -calculus,
- Refer to the time by time intervals: Interval temporal logics.

Temporal logics: The general background

A brief history

- Introduced by a philosopher Arthur Prior in 1950's (known as tense logic).
- Introduced to computer science (Linear temporal logic) by Amir Pnueli in 1977.

Classifications

Linear time versus branching time

- Linear time: Each moment has a unique future.
- Branching time: Each moment may have several possible futures.

Time point versus intervals

- Refer to the time by time points: Linear temporal logic, Computation tree logic, Modal μ -calculus,
- Refer to the time by time intervals: Interval temporal logics.

Extensions

Timed, probabilistic, ...

Syntax of LTL:

$$\varphi \coloneqq p(p \in AP) \mid \varphi_1 \vee \varphi_2 \mid \neg \varphi_1 \mid X\varphi_1 \mid \varphi_1 U\varphi_2.$$

Syntax of LTL:

$$\varphi \coloneqq p(p \in AP) \mid \varphi_1 \vee \varphi_2 \mid \neg \varphi_1 \mid X\varphi_1 \mid \varphi_1 U\varphi_2.$$

Semantics of LTL:

Let $w \in (2^{AP})^{\omega}$ and φ be a LTL formula. Then

- $(w,i) \models p \text{ iff } p \in w_0,$
- $(w,i) \vDash \varphi_1 \lor \varphi_2$ iff $(w,i) \vDash \varphi_1$ or $(w,i) \vDash \varphi_2$,
- $(w,i) \vDash \neg \varphi_1$ iff not $(w,i) \vDash \varphi_1$,
- $(w,i) \models X\varphi_1 \text{ iff } (w,i+1) \models \varphi_1,$
- $(w,i) \models \varphi_1 U \varphi_2$ iff $\exists j \text{ s.t. } j \geq i, (w,j) \models \varphi_2 \text{ and } \forall k : i \leq k < j, (w,k) \models \varphi_1.$

Syntax of LTL:

$$\varphi \coloneqq p(p \in AP) \mid \varphi_1 \vee \varphi_2 \mid \neg \varphi_1 \mid X\varphi_1 \mid \varphi_1 U\varphi_2.$$

Semantics of LTL:

Let $w \in (2^{AP})^{\omega}$ and φ be a LTL formula. Then

- $(w,i) \models p \text{ iff } p \in w_0,$
- $(w,i) \vDash \varphi_1 \lor \varphi_2$ iff $(w,i) \vDash \varphi_1$ or $(w,i) \vDash \varphi_2$,
- $(w,i) \vDash \neg \varphi_1$ iff not $(w,i) \vDash \varphi_1$,
- $(w,i) \models X\varphi_1 \text{ iff } (w,i+1) \models \varphi_1,$
- $(w,i) \models \varphi_1 U \varphi_2$ iff $\exists j \text{ s.t. } j \geq i, (w,j) \models \varphi_2 \text{ and } \forall k : i \leq k < j, (w,k) \models \varphi_1.$

 $w \vDash \varphi \text{ iff } (w,0) \vDash \varphi.$

Syntax of LTL:

$$\varphi \coloneqq p(p \in AP) \mid \varphi_1 \vee \varphi_2 \mid \neg \varphi_1 \mid X\varphi_1 \mid \varphi_1 U\varphi_2.$$

Semantics of LTL:

Let $w \in (2^{AP})^{\omega}$ and φ be a LTL formula. Then

- $(w,i) \models p \text{ iff } p \in w_0,$
- $(w,i) \vDash \varphi_1 \lor \varphi_2$ iff $(w,i) \vDash \varphi_1$ or $(w,i) \vDash \varphi_2$,
- $(w,i) \vDash \neg \varphi_1$ iff not $(w,i) \vDash \varphi_1$,
- $(w,i) \models X\varphi_1 \text{ iff } (w,i+1) \models \varphi_1,$
- $(w,i) \vDash \varphi_1 U \varphi_2$ iff $\exists j \text{ s.t. } j \ge i, (w,j) \vDash \varphi_2$ and $\forall k : i \le k < j, (w,k) \vDash \varphi_1$.

 $w \vDash \varphi \text{ iff } (w,0) \vDash \varphi.$

$$L(\varphi)$$
: $\{w \in (2^{AP})^{\omega} \mid w \vDash \varphi\}.$

Syntax of LTL:

$$\varphi \coloneqq p(p \in AP) \mid \varphi_1 \vee \varphi_2 \mid \neg \varphi_1 \mid X\varphi_1 \mid \varphi_1 U\varphi_2.$$

Semantics of LTL:

Let $w \in (2^{AP})^{\omega}$ and φ be a LTL formula. Then

- $(w,i) \models p \text{ iff } p \in w_0,$
- $(w,i) \vDash \varphi_1 \lor \varphi_2$ iff $(w,i) \vDash \varphi_1$ or $(w,i) \vDash \varphi_2$,
- $(w,i) \vDash \neg \varphi_1$ iff not $(w,i) \vDash \varphi_1$,
- $(w,i) \models X\varphi_1 \text{ iff } (w,i+1) \models \varphi_1,$
- $(w,i) \vDash \varphi_1 U \varphi_2$ iff $\exists j \text{ s.t. } j \ge i, (w,j) \vDash \varphi_2$ and $\forall k : i \le k < j, (w,k) \vDash \varphi_1$.

 $w \vDash \varphi \text{ iff } (w,0) \vDash \varphi.$

$$L(\varphi)$$
: $\{w \in (2^{AP})^{\omega} \mid w \vDash \varphi\}$.

Derived temporal operators:

$$\top \coloneqq p \vee \neg p, \ F\varphi \coloneqq \top U\varphi, \ G\varphi \coloneqq \neg F \neg \varphi, \ \varphi_1 R\varphi_2 \coloneqq \neg (\neg \varphi_1 U \neg \varphi_2), \ \dots$$

Remark: X: neXt, U: Until, F: Future, G: Global, R: Release.

Examples: Xp, pUq, $G(p \rightarrow Fq)$, FGp, $GFp \rightarrow GFq$.

Proposition. The property "event p occurs at least at all even time points" is not expressible in LTL.

How about the formula $p \wedge G(p \rightarrow Xq) \wedge G(q \rightarrow Xp)$?

Examples: Xp, pUq, $G(p \rightarrow Fq)$, FGp, $GFp \rightarrow GFq$.

Proposition. The property "event p occurs at least at all even time points" is not expressible in LTL.

How about the formula $p \land G(p \rightarrow Xq) \land G(q \rightarrow Xp)$?

Lemma. Let $AP = \{p\}$. Then for every LTL formula φ of size n over AP and every $m, m' \ge n$, $\{p\}^m (\emptyset \{p\})^\omega \models \varphi$ iff $\{p\}^{m'} (\emptyset \{p\})^\omega \models \varphi$.

Proof (Proposition).

For contradiction, suppose that "event p occurs at least at all even time points" can be defined by a LTL formula φ .

Let $n = |\varphi|$.

From the lemma, $\{p\}^n (\varnothing \{p\})^\omega \vDash \varphi$ iff $\{p\}^{n+1} (\varnothing \{p\})^\omega \vDash \varphi$.

On the other hand, either not $\{p\}^n (\varnothing \{p\})^\omega \models \varphi$ or not $\{p\}^{n+1} (\varnothing \{p\})^\omega \models \varphi$.

We get a contradiction.

Theorem. $LTL \equiv FO[AP, +1, <]$ (monadic first-order logic of order).

Proof of the lemma $(\{p\}^m(\varnothing\{p\})^\omega \vDash \varphi \text{ iff } \{p\}^{m'}(\varnothing\{p\})^\omega \vDash \varphi).$

Induction on the structure of φ .

- $\varphi = p$ and $m, m' \ge n = 1$: $\{p\}^m (\varnothing \{p\})^\omega \models p \text{ iff } \{p\}^{m'} (\varnothing \{p\})^\omega \models p$,
- $\varphi = \varphi_1 \vee \varphi_2$ or $\varphi = \neg \varphi_1$: easy,
- $\varphi = X\varphi_1$: $\{p\}^m (\varnothing \{p\})^\omega \models X\varphi_1 \text{ iff } \{p\}^{m-1} (\varnothing \{p\})^\omega \models \varphi_1 \text{ iff } \{p\}^{m'-1} (\varnothing \{p\})^\omega \models \varphi_1 \text{ iff } \{p\}^{m'} (\varnothing \{p\})^\omega \models X\varphi_1,$
- $\varphi = \varphi_1 U \varphi_2$: By symmetry, it is sufficient to show $\{p\}^m (\varnothing \{p\})^\omega \models \varphi_1 U \varphi_2$ $\Rightarrow \{p\}^{m'} (\varnothing \{p\})^\omega \models \varphi_1 U \varphi_2$. There are three situations.

6 / 35

Proof of the lemma $(\{p\}^m(\varnothing\{p\})^\omega \vDash \varphi \text{ iff } \{p\}^{m'}(\varnothing\{p\})^\omega \vDash \varphi).$

Induction on the structure of φ .

- $\varphi = p$ and $m, m' \ge n = 1$: $\{p\}^m (\varnothing \{p\})^\omega \models p \text{ iff } \{p\}^{m'} (\varnothing \{p\})^\omega \models p$,
- $\varphi = \varphi_1 \vee \varphi_2$ or $\varphi = \neg \varphi_1$: easy,
- $\varphi = X\varphi_1$: $\{p\}^m (\varnothing \{p\})^\omega \models X\varphi_1 \text{ iff } \{p\}^{m-1} (\varnothing \{p\})^\omega \models \varphi_1 \text{ iff } \{p\}^{m'-1} (\varnothing \{p\})^\omega \models \varphi_1 \text{ iff } \{p\}^{m'} (\varnothing \{p\})^\omega \models X\varphi_1,$
- $\varphi = \varphi_1 U \varphi_2$: By symmetry, it is sufficient to show $\{p\}^m (\varnothing \{p\})^\omega \models \varphi_1 U \varphi_2$ $\Rightarrow \{p\}^{m'} (\varnothing \{p\})^\omega \models \varphi_1 U \varphi_2$. There are three situations.

To exemplify the proof, consider the second situation:

$$(\varnothing\{p\})^{\omega} \vDash \varphi_1 \text{ and } \forall j' : 1 \le j' \le m.\{p\}^{j'} (\varnothing\{p\})^{\omega} \vDash \varphi_1.$$

Then

$$\{p\}^m (\varnothing \{p\})^\omega \vDash \varphi_1 \Rightarrow \forall n \le j' \le m'. \{p\}^{j'} (\varnothing \{p\})^\omega \vDash \varphi_1 \ (By \ IH) \Rightarrow \forall 1 \le j' \le m'. \{p\}^{j'} (\varnothing \{p\})^\omega \vDash \varphi_1 \Rightarrow \{p\}^{m'} (\varnothing \{p\})^\omega \vDash \varphi_1 U \varphi_2.$$

The arguments for the other two situations are similar.

Outline

- 1 Linear temporal logic (LTL)
- 2 LTL model checking: Automata theoretical approach
- 3 Computation tree logic (CTL)
- (Weak) alternating tree automata
- (5) CTL model checking: Automata theoretical approach

Kripke structure

A Kripke structure S is a tuple $(S, AP, \rightarrow, I, L)$, where

- S: the set of states,
- AP: the set of atomic propositions,
- $\rightarrow \subseteq S \times S$: the transition relation s.t. $\forall s \exists s'.s \rightarrow s'$,
- $I \subseteq S$: The set of initial states,
- $L: S \to 2^{AP}$: The labelling function.

A path π in S: An infinite sequence of states $s_0s_1...$ s.t. $\forall i.s_i \rightarrow s_{i+1}$.

A path $s_0 s_1 \dots$ is *initial* if $s_0 \in I$.

 $L(S) = \{L(\pi) \mid \pi \text{ is an initial path in } S\}, \text{ where } L(\pi) = L(s_0)L(s_1)\dots \text{ if } \pi = s_0s_1\dots$

Let $S = (S, AP, \rightarrow, I, L)$ be a Kripke structure and φ be an LTL formula. Then $S \models \varphi$ iff for every initial path π in S, $L(\pi) \models \varphi$.

9 / 35

Let $S = (S, AP, \rightarrow, I, L)$ be a Kripke structure and φ be an LTL formula. Then $S \models \varphi$ iff for every initial path π in S, $L(\pi) \models \varphi$.

Model checking (MC) problem:

Given a Kripke structure S and an LTL formula φ , decide whether $S \vDash \varphi$.

Let $S = (S, AP, \rightarrow, I, L)$ be a Kripke structure and φ be an LTL formula. Then $S \models \varphi$ iff for every initial path π in S, $L(\pi) \models \varphi$.

Model checking (MC) problem:

Given a Kripke structure S and an LTL formula φ , decide whether

Automata-theoretical approach to MC problem

The idea:

 $S = (S, AP, \rightarrow, I, L)$ can be viewed as a Büchi automaton $A_S = (S, 2^{AP}, \delta, I, S)$, where $(s, P, s') \in \delta$ iff $s \rightarrow s'$ and P = L(s).

The algorithm:

- **①** Construct an equivalent Büchi automaton $\mathcal{A}_{\neg\varphi}$ from $\neg\varphi$.
- **②** Construct \mathcal{A}' as a product of $\mathcal{A}_{\mathcal{S}}$ and $\mathcal{A}_{\neg\varphi}$ accepting $L(\mathcal{A}_{\mathcal{S}}) \cap L(\mathcal{A}_{\neg\varphi})$.
- **3** Decide whether L(A') is empty.

Let $S = (S, AP, \rightarrow, I, L)$ be a Kripke structure and φ be an LTL formula. Then $S \models \varphi$ iff for every initial path π in S, $L(\pi) \models \varphi$.

Model checking (MC) problem:

Given a Kripke structure S and an LTL formula φ , decide whether

Automata-theoretical approach to MC problem

The idea:

 $S = (S, AP, \rightarrow, I, L)$ can be viewed as a Büchi automaton $A_S = (S, 2^{AP}, \delta, I, S)$, where $(s, P, s') \in \delta$ iff $s \rightarrow s'$ and P = L(s).

The algorithm:

- Construct an equivalent Büchi automaton $\mathcal{A}_{\neg \varphi}$ from $\neg \varphi$.
- **②** Construct \mathcal{A}' as a product of $\mathcal{A}_{\mathcal{S}}$ and $\mathcal{A}_{\neg\varphi}$ accepting $L(\mathcal{A}_{\mathcal{S}}) \cap L(\mathcal{A}_{\neg\varphi})$.
- **3** Decide whether L(A') is empty.

Question: How to construct $\mathcal{A}_{\neg \varphi}$ from $\neg \varphi$?

Generalised Büchi automata (GBA)

A GBA \mathcal{A} is a tuple $(Q, 2^{AP}, \delta, I, \mathcal{F})$, where

- Q: the set of states,
- δ : the transition relation,
- *I*: the set of initial states,
- $\mathcal{F} \subseteq 2^Q$: the acceptance component.

The runs of a GBA over ω -words are defined similarly to those of BA.

A run $r = q_0 q_1 \dots$ of a GBA \mathcal{A} is accepting if $\forall F \in \mathcal{F}$, $Inf(r) \cap F \neq \emptyset$.

Example:

$\overline{GBA} \equiv \overline{BA}$

Proposition. Given a GBA \mathcal{A} , an equivalent BA \mathcal{A}' can be constructed in quadratic time.

$GBA \equiv BA$

Proposition. Given a GBA \mathcal{A} , an equivalent BA \mathcal{A}' can be constructed in quadratic time.

Proof.

Let $\mathcal{A} = (Q, 2^{AP}, \delta, I, \mathcal{F})$ be a GBA.

Suppose $\mathcal{F} = \{F_1, \dots, F_k\}$, we construct a BA $\mathcal{A}' = (Q', 2^{AP}, \delta', I', F')$ as follows.

- $Q' = Q \times \{0, \dots, k\},$
- $\bullet \ I' = I \times \{0\},$
- $\bullet \ F' = Q \times \{k\},$
- δ' is defined by the following rules,
 - for every $(q, P, q') \in \delta$ and every $i : 1 \le i \le k$ s.t. $q' \in F_i$, $((q, i-1), P, (q', i)) \in \delta'$,
 - for every $(q, P, q') \in \delta$, $((q, k), P, (q', 0)) \in \delta'$.

Closure of LTL formulas

For an LTL formula φ , let $\operatorname{sub}(\varphi)$ denote the set of subformulas of φ . Given an LTL formula φ , the *closure* of φ , denoted by $\operatorname{cl}(\varphi)$, is $\operatorname{sub}(\varphi) \cup \{\neg \psi \mid \psi \in \operatorname{sub}(\varphi)\}$ (where $\neg \neg \psi$ and ψ are identified).

Example:

Suppose
$$\varphi = G(p \to Fq) = \neg (true\ U \neg (\neg p \lor Fq))$$
. Then
$$\operatorname{cl}(\varphi) = \left\{ \begin{array}{l} p, \neg p, q, \neg q, true, \neg true, \\ Fq, \neg Fq, \\ \neg p \lor Fq, \neg (\neg p \lor Fq), \\ true\ U \neg (\neg p \lor Fq), \varphi \end{array} \right\},$$
 where $true = p \lor \neg p, Fq = true\ Uq$.

Elementary sets of formulas

Let φ be an LTL formula and $B \subseteq cl(\varphi)$.

Then B is said to be *elementary* if B satisfies the following conditions,

- Consistency wrt. Boolean operators: For every $\psi_1 \vee \psi_2, \psi \in cl(\varphi)$,
 - $\psi_1 \vee \psi_2 \in B$ iff $\psi_1 \in B$ or $\psi_2 \in B$,
 - if $\psi \in B$, then $\neg \psi \notin B$,
- Local consistency wrt. Until operators: For every $\psi_1 U \psi_2 \in cl(\varphi)$,
 - if $\psi_2 \in B$, then $\psi_1 U \psi_2 \in B$,
 - if $\psi_1 U \psi_2 \in B$ and $\psi_2 \notin B$, then $\psi_1 \in B$,
- Maximality: For every $\psi \in cl(\varphi)$, if $\psi \notin B$, then $\neg \psi \in B$.

Example:

Let $\varphi = G(p \to Fq) = \neg (true\ U \neg (\neg p \lor Fq))$. Suppose $B = \{\neg p, q, true, Fq, \neg p \lor Fq, true\ U \neg (\neg p \lor Fq)\}$. Then B is elementary.

- Boolean cosistency: $\neg p \in B \Rightarrow true, \neg p \lor Fq \in B, \ldots,$
- Local consistency wrt. Until: $q \in B \Rightarrow Fq \in B$, $true \ U \neg (\neg p \lor Fq) \in B$, $\neg (\neg p \lor Fq) \notin B \Rightarrow true \in B$,
- Maximality: $\varphi \notin B \Rightarrow true\ U \neg (\neg p \lor Fq) \in B, \ldots$

From LTL to GBA

Theorem. Given an LTL formula φ , an equivalent GBA $\mathcal{A} = (Q, 2^{AP}, \delta, I, \mathcal{F})$ s.t. $|Q| = 2^{O(|\varphi|)}$ and $|\mathcal{F}| = O(|\varphi|)$ can be constructed.

Proof.

Let φ be an LTL formula.

Define a GBA $\mathcal{A} = (Q, 2^{AP}, \delta, I, \mathcal{F})$ as follows.

- Q is the set of elementary set of formulas $B \subseteq cl(\varphi)$,
- $I = \{B \mid \varphi \in B\},$
- δ is the set of tuples (B, P, B') s.t.
 - $P = \{ p \in AP \mid p \in B \},$
 - for every $\psi, X\psi \in \operatorname{cl}(\varphi), X\psi \in B \text{ iff } \psi \in B'$,
 - for every $\psi_1 U \psi_2 \in \operatorname{cl}(\varphi)$,

$$\psi_1 U \psi_2 \in B \Leftrightarrow (\psi_2 \in B \text{ or } (\psi_1 \in B, \psi_1 U \psi_2 \in B')).$$

• $\mathcal{F} = \{ F_{\psi_1 U \psi_2} \mid \psi_1 U \psi_2 \in \operatorname{cl}(\varphi) \}, \text{ where}$

$$F_{\psi_1 U \psi_2} = \{ B \in Q \mid \psi_1 U \psi_2 \in B \Rightarrow \psi_2 \in B \}.$$

Claim. For every $w \in (2^{AP})^{\omega}$, $w \models \varphi$ iff $w \in L(A)$.

From LTL to GBA

Claim. For every $w \in (2^{AP})^{\omega}$, $w \models \varphi$ iff $w \in L(\mathcal{A})$.

Proof.

"Only if" direction: Suppose $w \models \varphi$.

For every $i \in \mathbb{N}$, let $B_i = \{ \psi \in \operatorname{cl}(\varphi) \mid (w, i) \models \psi \}$.

Then $B_0B_1...$ is a run of \mathcal{A} over w.

 $B_0B_1...$ is also an accepting run:

For every $\psi_1 U \psi_2 \in \operatorname{cl}(\varphi)$,

- if $\exists i. \forall j: j \geq i. \ \psi_1 U \psi_2 \notin B_j$, then $\forall j: j \geq i. \ B_j \in F_{ib_1 U_1 b_2} \Rightarrow \operatorname{Inf}(B_0 B_1 \dots) \cap F_{ib_1 U_2 b_2} \neq \emptyset$,
- if \exists infinitely many i s.t. $\psi_1 U \psi_2 \in B_i$, in other words, $(w, i) \vDash \psi_1 U \psi_2$, then \exists infinitely many i' s.t. $(w, i') \vDash \psi_2$, thus, $\psi_2, \psi_1 U \psi_2 \in B_{i'}$, so, $B_{i'} \in F_{\psi_1 U \psi_2}$

$$\Rightarrow$$

$$\operatorname{Inf}(B_0B_1\dots)\cap F_{\psi_1U\psi_2}\neq\varnothing.$$

From LTL to GBA

Claim. For every $w \in (2^{AP})^{\omega}$, $w \models \varphi$ iff $w \in L(\mathcal{A})$.

Proof.

"If" direction: Suppose $w \in L(A)$.

Then there is an accepting run $B_0B_1...$ of \mathcal{A} over w.

It is sufficient to show that for every $\psi \in cl(\varphi)$, the following holds,

for every $i \in \mathbb{N}$ s.t. $\psi \in B_i$, $(w, i) \models \psi$.

Induction on the structure of formulas.

- $\psi = p$: Then $p \in B_i$, so $p \in w_i$ (from the construction of \mathcal{A}), $(w, i) \models \psi$,
- $\psi = \psi_1 \vee \psi_2$ or $\psi = \neg \psi_1$: Easy.
- $\psi = X\psi_1$: Then $\psi_1 \in B_{i+1}$, so $(w, i+1) \models \psi_1$ (by induction hypothesis), $(w, i) \models X\psi_1$.
- $\psi = \psi_1 U \psi_2$: Then either $\psi_2 \in B_i$ or $(\psi_1 \in B_i \text{ and } \psi_1 U \psi_2 \in B_{i+1})$. From $\text{Inf}(B_0 B_1 \dots) \cap F_{\psi_1 U \psi_2} \neq \emptyset$, we know $\exists j : j \geq i. \ \psi_2 \in B_j \text{ and } \forall k : i \leq k < j. \ \psi_1 \in B_k.$

By induction hypothesis, $(w, j) \models \psi_2$ and $\forall k : i \leq k < j$. $(w, k) \models \psi_1$. We deduce that $(w, i) \models \psi_1 U \psi_2$.

From LTL to GBA: Quiz

Let
$$\varphi = G(p \to Fq) = \neg (true \ U \neg (\neg p \lor Fq)).$$

From LTL to GBA: Quiz

Let
$$\varphi = G(p \to Fq) = \neg (true \ U \neg (\neg p \lor Fq)).$$

Outline

- 1 Linear temporal logic (LTL)
- 2 LTL model checking: Automata theoretical approach
- 3 Computation tree logic (CTL)
- 4 (Weak) alternating tree automata
- (5) CTL model checking: Automata theoretical approach

Syntax:

$$\varphi \coloneqq p(p \in AP) \mid \varphi_1 \vee \varphi_2 \mid \neg \varphi_1 \mid EX\varphi_1 \mid AX\varphi_1 \mid E\varphi_1 U \varphi_2 \mid A\varphi_1 U \varphi_2$$

Syntax:

$$\varphi \coloneqq p(p \in AP) \mid \varphi_1 \vee \varphi_2 \mid \neg \varphi_1 \mid EX\varphi_1 \mid AX\varphi_1 \mid E\varphi_1 U\varphi_2 \mid A\varphi_1 U\varphi_2$$

Semantics:

Given a Kripke structure $S = (S, AP, \rightarrow, I, L)$ and a CTL formula φ ,

- $(S, s) \models p \text{ iff } p \in L(s),$
- $(S,s) \vDash \varphi_1 \lor \varphi_2$ iff $(S,s) \vDash \varphi_1$ or $(S,s) \vDash \varphi_2$,
- $(S, s) \vDash \neg \varphi_1$ iff not $(S, s) \vDash \varphi_1$,
- $(S, s) \models EX\varphi_1$ iff there exists s' s.t. $s \to s'$ and $(S, s') \models \varphi_1$,
- $(S, s) \models AX\varphi_1$ iff for all s' s.t. $s \rightarrow s'$, it holds $(S, s') \models \varphi_1$,
- $(S, s) \models E\varphi_1U\varphi_2$ iff there exists a path π of S starting from s s.t. $\pi \models \varphi_1U\varphi_2$,
- $(S, s) \models A\varphi_1U\varphi_2$ iff for every path π of S starting from $s, \pi \models \varphi_1U\varphi_2$, where $\pi \models \varphi_1U\varphi_2$ iff $\exists i \geq 0, (S, \pi(i)) \models \varphi_2$ and $\forall j : 0 \leq j < i, (S, \pi(j)) \models \varphi_1$.

Syntax:

$$\varphi \coloneqq p(p \in AP) \mid \varphi_1 \vee \varphi_2 \mid \neg \varphi_1 \mid EX\varphi_1 \mid AX\varphi_1 \mid E\varphi_1 U\varphi_2 \mid A\varphi_1 U\varphi_2$$

Semantics:

Given a Kripke structure $S = (S, AP, \rightarrow, I, L)$ and a CTL formula φ ,

- $(S, s) \models p \text{ iff } p \in L(s),$
- $(S, s) \vDash \varphi_1 \lor \varphi_2$ iff $(S, s) \vDash \varphi_1$ or $(S, s) \vDash \varphi_2$,
- $(S, s) \vDash \neg \varphi_1$ iff not $(S, s) \vDash \varphi_1$,
- $(S, s) \models EX\varphi_1$ iff there exists s' s.t. $s \to s'$ and $(S, s') \models \varphi_1$,
- $(S, s) \models AX\varphi_1$ iff for all s' s.t. $s \rightarrow s'$, it holds $(S, s') \models \varphi_1$,
- $(S, s) \models E\varphi_1U\varphi_2$ iff there exists a path π of S starting from s s.t. $\pi \models \varphi_1U\varphi_2$,
- $(S, s) \models A\varphi_1U\varphi_2$ iff for every path π of S starting from $s, \pi \models \varphi_1U\varphi_2$, where $\pi \models \varphi_1U\varphi_2$ iff $\exists i \geq 0, (S, \pi(i)) \models \varphi_2$ and $\forall j : 0 \leq j < i, (S, \pi(j)) \models \varphi_1$. $S \models \varphi$ iff for every $s_0 \in I$, $(S, s_0) \models \varphi$.

Syntax:

$$\varphi \coloneqq p(p \in AP) \mid \varphi_1 \vee \varphi_2 \mid \neg \varphi_1 \mid EX\varphi_1 \mid AX\varphi_1 \mid E\varphi_1 U\varphi_2 \mid A\varphi_1 U\varphi_2$$

Semantics:

Given a Kripke structure $S = (S, AP, \rightarrow, I, L)$ and a CTL formula φ ,

- $(S, s) \models p \text{ iff } p \in L(s),$
- $(S, s) \models \varphi_1 \lor \varphi_2$ iff $(S, s) \models \varphi_1$ or $(S, s) \models \varphi_2$,
- $(S, s) \vDash \neg \varphi_1$ iff not $(S, s) \vDash \varphi_1$,
- $(S, s) \models EX\varphi_1$ iff there exists s' s.t. $s \to s'$ and $(S, s') \models \varphi_1$,
- $(S, s) \models AX\varphi_1$ iff for all s' s.t. $s \rightarrow s'$, it holds $(S, s') \models \varphi_1$,
- $(S, s) \models E\varphi_1U\varphi_2$ iff there exists a path π of S starting from s s.t. $\pi \models \varphi_1U\varphi_2$,
- $(S, s) \models A\varphi_1U\varphi_2$ iff for every path π of S starting from $s, \pi \models \varphi_1U\varphi_2$, where $\pi \models \varphi_1U\varphi_2$ iff $\exists i \geq 0, (S, \pi(i)) \models \varphi_2$ and $\forall j : 0 \leq j < i, (S, \pi(j)) \models \varphi_1$. $S \models \varphi$ iff for every $s_0 \in I$, $(S, s_0) \models \varphi$.

Example: AFq, $AG(p \rightarrow AFq)$.

Positive normal form (PNF) of CTL

Recall: R (Release) operator, $\varphi_1 R \varphi_2 = \neg(\neg \varphi_1 U \neg \varphi_2)$. Let $w \in (2^{AP})^{\omega}$ and $\varphi_1 R \varphi_2$ be a LTL formula, then $(w, i) \models \varphi_1 R \varphi_2$ iff

- either for every $j: i \leq j$, $(w, j) \models \varphi_2$,
- or there exists $j: i \le j$ s.t. $(w, j) \models \varphi_1$ and for every $k: i \le k \le j$, $(w, k) \models \varphi_2$.

Fact. $\neg(\varphi_1 U \varphi_2) \equiv (\neg \varphi_1) R(\neg \varphi_2)$ and $\neg(\varphi_1 R \varphi_2) \equiv (\neg \varphi_1) U(\neg \varphi_2)$.

Positive normal form for CTL:

$$\varphi \coloneqq \begin{array}{c} \mathit{true} \mid \mathit{false} \mid p \mid \neg p \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \wedge \varphi_2 \mid \mathit{EX} \varphi_1 \mid \mathit{AX} \varphi_1 \mid \\ \mathit{E} \varphi_1 \mathit{U} \varphi_2 \mid \mathit{A} \varphi_1 \mathit{U} \varphi_2 \mid \mathit{E} \varphi_1 \mathit{R} \varphi_2 \mid \mathit{A} \varphi_1 \mathit{R} \varphi_2 \end{array}$$

Proposition. Every CTL formula can be transformed into an equivalent formula in positive normal form.

Proof.

The idea: Push \neg to the front of atomic positions.

For instance, $\neg (E\varphi_1U\varphi_2) \equiv A(\neg\varphi_1)R(\neg\varphi_2), \neg (E\varphi_1R\varphi_2) \equiv A(\neg\varphi_1)U(\neg\varphi_2).$

Outline

- ① Linear temporal logic (LTL)
- 2 LTL model checking: Automata theoretical approach
- 3 Computation tree logic (CTL)
- (Weak) alternating tree automata
- (5) CTL model checking: Automata theoretical approach

Alternating automata over binary trees

A notation:

Let X be a finite set. Then $\mathcal{B}^+(X)$ is the positive Boolean combinations of elements of X, formally,

$$\varphi \coloneqq true \mid false \mid x(x \in X) \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2$$

An alternating Büchi automaton over infinite binary trees (ABTA) \mathcal{A} is a tuple $(Q, 2^{AP}, \delta, q_0, F)$, where

- Q, q_0, F are similar to those of nondeterministic Büchi automata,
- $\delta \subseteq Q \times 2^{AP} \to \mathcal{B}^+(\{0,1\} \times Q)$.

Alternating automata over binary trees

A notation:

Let X be a finite set. Then $\mathcal{B}^+(X)$ is the positive Boolean combinations of elements of X, formally,

$$\varphi \coloneqq true \mid false \mid x(x \in X) \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2$$

An alternating Büchi automaton over infinite binary trees (ABTA) \mathcal{A} is a tuple $(Q, 2^{AP}, \delta, q_0, F)$, where

- Q, q_0, F are similar to those of nondeterministic Büchi automata,
- $\delta \subseteq Q \times 2^{AP} \to \mathcal{B}^+(\{0,1\} \times Q)$.

A run of a ABTA $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, F)$ over a binary tree t = (D, L) is an infinite tree $r_{\mathcal{A},t} = (D_r, L_r)$, where $D_r \subseteq \mathbb{N}^*$ is a tree domain and $L_r: D_r \to D \times Q$ satisfying the following conditions.

$$\forall y \in D_r \text{ s.t. } L_r(y) = (x,q) \text{ and } \delta(q,L(x)) = \theta.$$

Then there is $S = \{(b_0, q_0), \dots, (b_n, q_n)\} \subseteq \{0, 1\} \times Q$ s.t.

$$S \models \theta$$
, and $\forall i : 0 \le i \le n$, $yi \in D_r$ and $L_r(yi) = (xb_i, q_i)$.

In particular, if $\delta(q, L(x)) = true$, then S can be empty.

A run $r_{\mathcal{A},t}$ is accepting if for every infinite path π in $r_{\mathcal{A},t}$, $\operatorname{Inf}(L_r(\pi)) \cap F \neq \emptyset$.

CS244

20 / 35

ABTA over binary trees: Example

$$\begin{array}{c} AG(p_1 \to AFp_2) \\ A = (Q, 2^{\{p_1, p_2\}}, \delta, q_0, F) \\ Q = \{q_0, q_1\} \quad F = \{q_0\} \\ \delta(q_0, \emptyset) \\ \delta(q_0, \{p_2\}) = (0, q_0) \wedge (1, q_0) \\ \delta(q_0, \{p_1, p_2\}) \\ \delta(q_0, \{p_1\}) = (0, q_0) \wedge (0, q_1) \wedge (1, q_0) \wedge (1, q_1) \\ \delta(q_1, \emptyset) \\ \delta(q_1, \{p_1\}) = (0, q_1) \wedge (1, q_1) \\ \delta(q_1, \{p_2\}) = \delta(q_1, \{p_1, p_2\}) = true \end{array}$$

Finitely-branching trees

Recall: A tree domain $D \subseteq \mathbb{N}^*$ s.t.

- $\forall xi \in \mathbb{N}^*$, if $xi \in D$, then $x \in D$ as well,
- $\forall xi \in \mathbb{N}^*$, if $xi \in D$, then $xj \in D$ for every $j: 0 \le j < i$.

A tree domain D is finitely branching if

 $\forall x \in D, \exists n \in \mathbb{N} \ s.t. \ \forall m \ge n, \ xm \notin D.$

A finitely-branching tree t over 2^{AP} is a pair (D, L) s.t.

D is a finitely branching tree domain and $L: D \rightarrow 2^{AP}$.

Alternating automata over finitely-branching trees

Transition conditions over Q (TC^Q) :

- $true, false \in TC^Q$,
- $\bullet \ \forall p \in AP, \, p, \neg p \in TC^Q,$
- for every $q_1, q_2 \in Q$, $q_1 \vee q_2, q_1 \wedge q_2 \in TC^Q$,
- for every $q \in Q$, $q, \Diamond q, \Box q \in TC^Q$.

Alternating automata over finitely-branching trees

An alternating Büchi automaton over finitely-branching trees (ABTA) \mathcal{A} is a tuple $(Q, 2^{AP}, \delta, q_0, F)$ where $\delta: Q \to TC^Q$.

A run of an ABTA \mathcal{A} over a (finitely-branching) tree t = (D, L) is a winning strategy for Player 0 in the Büchi game $\mathcal{G} = (V_0, V_1, E, F \cup \{q_{\tau}\})$, where

- $(x,q) \in V_0$ iff
 - $\delta(q) = false$, or
 - $\delta(q) = p$ and $p \notin L(x)$, or
 - $\delta(q) = \neg p$ and $p \in L(x)$, or
 - $\delta(q) = q'$, or
 - $\delta(q) = q_1 \vee q_2$, or
 - $\delta(q) = \Diamond q'$.

- $V_0 \subseteq D \times Q \cup \{q_\top\}$ s.t. $q_\top \in V_0$, and $V_1 \subseteq D \times Q \cup \{q_\bot\}$ s.t. $q_\bot \in V_1$, and $(x,q) \in V_1$ iff
 - $\delta(q) = true$, or
 - $\delta(q) = p$ and $p \in L(x)$, or
 - $\delta(q) = \neg p$ and $p \notin L(x)$, or
 - $\delta(q) = q_1 \wedge q_2$, or
 - $\delta(q) = \Box q'$.

Alternating automata over finitely-branching trees

An alternating Büchi automaton over finitely-branching trees (ABTA) \mathcal{A} is a tuple $(Q, 2^{AP}, \delta, q_0, F)$ where $\delta: Q \to TC^Q$.

A run of an ABTA \mathcal{A} over a (finitely-branching) tree t = (D, L) is a winning strategy for Player 0 in the Büchi game $\mathcal{G} = (V_0, V_1, E, F \cup \{q_{\mathsf{T}}\})$, where

- E is defined as follows: $(q_{\perp}, q_{\perp}), (q_{\top}, q_{\top}) \in E$, and for every $(x, q) \in V_0 \cup V_1$,
 - if $\delta(q) = false$, or $\delta(q) = p$ and $p \notin L(x)$, or $\delta(q) = \neg p$ and $p \in L(x)$, then $((x,q),q_{\perp}) \in E$,
 - if $\delta(q) = true$, or $\delta(q) = p$ and $p \in L(x)$, or $\delta(q) = \neg p$ and $p \notin L(x)$, then $((x,q),q_{\top}) \in E$,
 - if $\delta(q) = q'$, then $((x,q),(x,q')) \in E$,
 - if $\delta(q) = q_1 \vee q_2$ (or $q_1 \wedge q_2$), then $((x,q),(x,q_1)),((x,q),(x,q_2)) \in E$,
 - if $\delta(q) = \Diamond q'$ (or $\Box q'$), then for every children xi of x, $((x,q),(xi,q')) \in E$.

Remark: (V_0, V_1, E) defined above may not be a bipartite graph.

Acceptance:

A accepts t iff Player 0 has a winning strategy in G starting from (ε, q_0) .

ABTA over finitely-branching trees: Example

Unwinding of Kripke structures

Let $S = (S, AP, \rightarrow, \{s_0\}, L)$ be a Kripke structure.

 $\forall s \in S$, let suc(s) denote the set of successors of s.

Moreover, we assume that the states in suc(s) are ordered.

 \mathcal{S} can be seen as an infinite tree $T_{\mathcal{S}} = (D_{\mathcal{S}}, L_{\mathcal{S}})$ as follows.

- $L_{\mathcal{S}}(\varepsilon) = s_0$,
- for every $y \in D_{\mathcal{S}}$, if $L_{\mathcal{S}}(y) = s$ and $suc(s) = \{s'_0, \dots, s'_k\}$, then for every $i : 0 \le i \le k$, $yi \in D_{\mathcal{S}}$ and $L_{\mathcal{S}}(yi) = s'_i$.

We can also view $T_{\mathcal{S}}$ as a tree over the alphabet 2^{AP} : Replace $L_{\mathcal{S}}(y) = s$ with $L_{\mathcal{S}}(y) = L(s)$.

Example:

ABTA interpreted over Kripke structures

Suppose $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, F)$ be an ABTA over finitely-branching trees and $\mathcal{S} = (S, AP, \rightarrow, s_0, L)$ be a Kripke structure.

A run of \mathcal{A} over \mathcal{S} is a run of \mathcal{A} over $T_{\mathcal{S}}$.

As a matter of fact, a run of \mathcal{A} over \mathcal{S} can be defined by the winning strategies of Player 0 in the Büchi game $\mathcal{G}' = (V_0', V_1', E', (S \times F) \cup \{q_{\top}\})$, where

- $V_0' \subseteq S \times Q \cup \{q_{\top}\}$ and $V_1' \subseteq S \times Q \cup \{q_{\bot}\}$ are defined similar to V_0 and V_1 in \mathcal{G} ,
- E is defined as follows: $(q_{\perp}, q_{\perp}), (q_{\top}, q_{\top}) \in E$, and for every $(s, q) \in V_0' \cup V_1'$,
 - if $\delta(q) = false$, or $\delta(q) = p$ and $p \notin L(s)$, or $\delta(q) = \neg p$ and $p \in L(s)$, then $((s,q),q_{\perp}) \in E$,
 - if $\delta(q) = true$, or $\delta(q) = p$ and $p \in L(s)$, or $\delta(q) = \neg p$ and $p \notin L(s)$, then $((s,q),q_\top) \in E$,
 - if $\delta(q) = q'$, then $((s, q), (s, q')) \in E$,
 - if $\delta(q) = q_1 \vee q_2$ (or $q_1 \wedge q_2$), then $((s,q),(s,q_1)),((s,q),(s,q_2)) \in E$,
 - if $\delta(q) = \Diamond q'$ (or $\Box q'$), then for every successor s' of s, $((s,q),(s',q')) \in E$.

ABTA over Kripke structures: Example

Weak alternating Büchi tree automata (WABTA)

A WABTA \mathcal{A} (over Kripke structures) is a ABTA $(Q, 2^{AP}, \delta, q_0, F)$ s.t.

- Q is partitioned into n pairwise-disjoint subsets Q_1, \ldots, Q_n ,
- there is partial order \leq among Q_1, \ldots, Q_n s.t. $\forall q \in Q_i, q' \in Q_j$, if q' occurs in $\delta(q)$, then $Q_j \leq Q_i$,
- for every Q_i , either $Q_i \subseteq F$ or $Q_i \cap F = \emptyset$.

Observation.

Every infinite path in a run finally get trapped in some Q_i . The infinite path satisfies the acceptance condition iff $Q_i \subseteq F$.

Example:

The ABTA \mathcal{A} for $AG(p_1 \to AFp_2)$ is in fact a WABTA:

•
$$\delta(q_0) = q_1 \wedge q_2$$
, $\delta(q_1) = q_3 \vee q_4$, $\delta(q_2) = \Box(q_0)$, $\delta(q_3) = \neg p_1$,

•
$$\delta(q_4) = q_5 \vee q_6$$
, $\delta(q_5) = p_2$, $\delta(q_6) = \Box q_4$,

•
$$F = \{q_0, q_2\}.$$

The partition and the partial order:

$$Q_1 = \{q_0, q_2\} \ge Q_2 = \{q_1\} \ge \begin{array}{c} Q_3 = \{q_3\} \\ Q_4 = \{q_4, q_6\} \ge Q_5 = \{q_5\} \end{array}.$$

Outline

- 1 Linear temporal logic (LTL)
- 2 LTL model checking: Automata theoretical approach
- 3 Computation tree logic (CTL)
- (Weak) alternating tree automata
- **6** CTL model checking: Automata theoretical approach

CTL model checking: Automata-theoretic approach

W.l.o.g. in CTL model checking problem for $S = (S, AP, \rightarrow, I, L)$ and φ , we assume that I is a singleton.

Automata-theoretical approach to CTL model checking:

Let $S = (S, AP, \rightarrow, s_0, L)$ be a Kripke structure and φ be a CTL formula.

- construct a WABTA $\mathcal{A}_{\varphi} = (Q, 2^{AP}, \delta, q_0, F)$ from φ in linear time,
- ② construct the Büchi game $\mathcal{G}' = (V_0', V_1', E', (S \times F) \cup \{q_{\top}\})$ in time $O(||\mathcal{A}_{\varphi}|| \times ||\mathcal{S}||)$,
- **3** decide whether Player 0 has a winning strategy in \mathcal{G}' starting from (s_0, q_0) in time $O(||\mathcal{G}'||)$.

Remark: In the third step above, the fact that \mathcal{A}_{φ} is a WABTA is used.

Therefore, by using automata-theoretic approach, we get the following result.

Theorem. Given a Kripke structure \mathcal{S} and a CTL formula φ , the problem whether $\mathcal{S} \vDash \varphi$ can be decided in time $O(||\mathcal{S}|| \times |\varphi|)$.

From CTL to WABTA

Proposition. Given a CTL formula φ , a WABTA \mathcal{A}_{φ} can be constructed in linear time s.t. $L(\mathcal{A}_{\varphi})$ is the set of Kripke structures satisfying φ .

Proof.

$$\mathcal{A}_{\varphi} = (sub(\varphi), 2^{AP}, \delta, q_0, F), \text{ where}$$

- $q_0 = \varphi$, $F = \{ \psi_1 R \psi_2 \mid \psi_1 R \psi_2 \in cl(\varphi) \}$,
- $\{\varphi_1\} \le \{\varphi_2\}$ iff $\varphi_1 \in sub(\varphi_2)$,
- and δ is defined as follows:
 - $\delta(true) = true$, $\delta(false) = false$,
 - $\delta(p) = p$, $\delta(\neg p) = \neg p$,
 - $\delta(\varphi_1 \vee \varphi_2) = \varphi_1 \vee \varphi_2$, $\delta(\varphi_1 \wedge \varphi_2) = \varphi_1 \wedge \varphi_2$,
 - $\delta(EX\varphi_1) = \Diamond \varphi_1, \ \delta(AX\varphi_1) = \Box \varphi_1,$
 - $\delta(E\varphi_1U\varphi_2) = \varphi_2 \vee (\varphi_1 \wedge \Diamond E\varphi_1U\varphi_2), \ \delta(A\varphi_1U\varphi_2) = \varphi_2 \vee (\varphi_1 \wedge \Box A\varphi_1U\varphi_2),$
 - $\delta(E\varphi_1R\varphi_2) = \varphi_2 \wedge (\varphi_1 \vee \Diamond E\varphi_1R\varphi_2), \ \delta(A\varphi_1R\varphi_2) = \varphi_2 \wedge (\varphi_1 \vee \Box A\varphi_1R\varphi_2).$

Remark: $\delta(E\varphi_1U\varphi_2) = \varphi_2 \vee (\varphi_1 \wedge \diamondsuit E\varphi_1U\varphi_2)$ are abbrev. of transitions $\delta(E\varphi_1U\varphi_2) = \varphi_2 \vee q$, $\delta(q) = \varphi_1 \wedge q'$, $\delta(q') = \diamondsuit E\varphi_1U\varphi_2$, where q, q' are new introduced states in the same partition as $E\varphi_1U\varphi_2$.

The special structure of Büchi game \mathcal{G}'

Let $S = (S, AP, \rightarrow, s_0, L)$ be a Kripke structure and $A_{\varphi} = (sub(\varphi), 2^{AP}, \delta, q_0, F)$ be a WABTA.

The special structure of \mathcal{A}_{φ} induces a special structure of the game $\mathcal{G}' = (V'_0, V'_1, E', (S \times F) \cup \{q_{\tau}\})$:

- $V'_0 \cup V'_1$ can be partitioned into $(S \times \{\psi\})_{\psi \in sub(\varphi)}, \{q_{\perp}\}, \{q_{\top}\}, \{q_{\top}\},$
- $S \times \{\psi_1\} \leq S \times \{\psi_2\}$ iff $\{\psi_1\} \leq \{\psi_2\}$, $\forall \psi \in sub(\varphi), q_{\mathsf{T}}, q_{\mathsf{L}} \leq S \times \{\psi\}$,
- E' is non-increasing wrt. \leq .

Weak Büchi game:

A Büchi game (V_0, V_1, E, F) is weak if $V_0 \cup V_1$ can be partitioned into subsets V'_1, \ldots, V'_n s.t.

- $\forall q \in V'_i, q' \in V'_j$. $(q, q') \in E$ implies $V'_j \leq V'_i$.
- $\forall i$. either $V_i' \subseteq F$ or $V_i' \cap F = \emptyset$.

Theorem. Weak Büchi game can be solved in linear time.

Solving weak Büchi game in linear time

Theorem. Weak Büchi game can be solved in linear time.

Proof.

Let $\mathcal{G} = (V_0, V_1, E, F)$ be a weak Büchi game with partitions V_1', \dots, V_n' . W.l.o.g. we assume that

- for every $v \in V_0 \cup V_1$, $vE \neq \emptyset$,
- for every i, j, if $V'_i \ge V'_j$, then $i \le j$.

Solving weak Büchi game in linear time

Theorem. Weak Büchi game can be solved in linear time.

Proof.

Let $\mathcal{G} = (V_0, V_1, E, F)$ be a weak Büchi game with partitions V_1', \dots, V_n' .

The algorithm.

Compute $I: V_0 \cup V_1 \to \{true, false\}$ as follows.

Initially, set $I(v) = \bot$ (undefined) for every $v \in V_0 \cup V_1$. For i from n to 1, do the following computation.

- For every $v \in V_i'$ s.t. $I(v) = \bot$, set I(v) = true iff $V_i' \subseteq F$.
- **2** Repeat the following procedure until I(v)'s no more updated: For every $v \in V_0 \cup V_1$,
 - $v \in V_0$:
 - if \exists a successor of v, say v', s.t. I(v') = true, then set I(v) = true,
 - if every successor v' of v satisfy I(v') = false, then set I(v) = false.
 - $v \in V_1$:
 - if \exists a successor v' of v satisfy I(v') = false, then set I(v) = false,
 - if every successor v' of v satisfy I(v') = true, then set I(v) = true.

Claim. Player 0 has a winning strategy in \mathcal{G} starting from q_0 iff $I(q_0) = true$.

References

The main references for these two lectures.

LTL model checking:

 Christel Baier, Joost-Pieter Katoen, Principles of Model Checking, The MIT Press, 2008.

CTL model checking:

- Orna Kupferman, Moshe Vardi, Pierre Wolper, An automata-theoretic approach to branching-time model checking, Journal of ACM, Vol. 47, No. 2, 312-360, 2000.
- Daniel Kirsten, Alternating tree automata and parity games, Chapter 9, Automata, logics, and infinite games, LNCS 2500, 2002.
- Javier Esparza, Orna Kupferman, Moshe Y. Vardi, Automata-theoretic verification, www.cs.rice.edu/~vardi/papers/hba11.pdf