ECGR 3090-R01 - Assignment 3

- 1. For each of the following 6 program fragments, give a Big-Oh analysis..of the running time -

$$sum = 0;$$

 $for(i = 0; i < n; ++i)$
++sum;

(2)

sum = 0;
for
$$(i = 0; i < n; ++i)$$

for $(j = 0; j < n$

= 0; j < n; j++++sum;

(3)

$$sum = 0;$$

$$for(i = 0; i < n; ++i)$$

$$for(j = 0; j < n*n; ++j)$$

++snm;

(4)

$$sum = 0;$$

sum = 0;
for
$$(i = 0; i < n; ++i)$$

for $(j = 0; j < i; ++j)$

for (j

++snm;

(5)

$$sum = 0;$$
 $for (i = 0; i < 0)$

or(i = 0; i < n; ++i)
$$\mathcal{C}$$

for(j = 0; j < i*i; ++

$$(i, +i)$$
 $(i, +i)$ $(i, +i)$ $(i, +i)$ $(i, +i)$ $(i, +k)$ $(i, +k)$ $(i, +k)$

$$\begin{array}{l}
(6) \\
\text{sum} = 0; \\
6, & (6)
\end{array}$$

for
$$(i = 1; i < n; ++i)$$
 n
for $(j = 1; j < i*i; ++j)$

if (j %i == 0)
$$\cap$$

for (k = 0; i < j; ++k) \cap
++sum;

- 2. Programs A and B are analyzed and found to have worst-case running times no greater than $150Nlog_2N$ and N^2 , respectively. Answer the following questions -
- a. Which program has the better guarantee on the running time for large values of N (N > 10,000)? A $|O_{OC}|$ How $|O_{OC}|$ (150 N) $|O_{OC}|$ b. Which program has the better guarantee on the running time for small values of N (N < 100)? A $|O_{OC}|$ How $|O_{OC}|$ $|O_{O$

- Algorithm 2 (N²) 3. Solve the following recurrence relations using the Master theorem
 - a. $T(n) = 3T(\frac{n}{c}) + \frac{n}{2}$ b. $T(n) = 4T(\frac{n}{2}) + n^{2.5}$
- top to bottom. Give an O(N) worst-case algorithm that decides if a number X is in the matrix 4. The input is an N by N matrix of numbers that is already in memory. Each individual row is increasing from left to right. Each individual column is increasing from

return Fal