Projecto 3: Contagem de palavras mais frequentes

Samuel Vieira, 89055

Abstract – The frequenct items problem is approached in this project. The aim of this project is to count the number of words from a given text, explore what happens if we change the parameters of the function containing the lossy algorithm and compare with the exact count results.

Resumo – O problema dos items frequentes é abordado neste projeto. O objetivo deste projeto é contar o número de palavras de um determinado texto, explorar o que acontece se mudar os parâmetros da função que contém o algoritmo Lossy e comparar estes resultados com os reultados do algoritmo de contagem exata.

Keywords – Words, datastream, Frequency counts, lossy counting

Palavras chave – Palavras, "datastream", contagem de frequência, contagem Lossy

I. Introdução

Dados do tipo datastream, são bastante usados em áreas de telecomunicações. Esta "datastream" pode ser visto como uma colecção de dados transmitidos continuamente. No contexto deste trabalho, será feita a contagem de uma "stream" de palavras, que serão os nossos items em análise, figura 1. Este problema é bastante famoso na área de "datastream". [1,2,3,4]

Fig. 1 - Esquema de uma "stream" de items cuja as diferentes frequencias de cada item forma uma certa distribuição.

Na secção II é feita uma breve abordagem à explicação do algoritmo Lossy, na secção III irá ser feita uma análise dos dados, assim como uma breve discussão. Finalmente na ultima secção faz-se um breve resumo do trabalho e retira-se pequenas conclusões.

II. ALGORITMO DE CONTAGEM LOSSY

O algoritmo de contagem Lossy, ver algoritmo 1, consiste na divisão de uma "stream" em várias partes. Cada parte da "stream" é denominado por "bucket" e este tem uma largura (que é o inverso do erro) e um índice associado ao mesmo. Este índice é definido como

o tamanho atual da "stream" dividido pela largura dos "buckets" [1,2]. Cada iteração feita por cada palavra na "stream", é

adicionada uma entrada ao dicionário caso a palavra não exista, e incrementa-se o contador associado a essa palavra caso esta já esteja presente no dicionário [1,2]. Cada vez que o resto da divisão entre o tamanho atual da "datastream" e largura do "bucket" for igual a zero, todas as entradas que tenham a sua contagem menor ou igual ao valor delta, são eliminadas e o valor do índice do "bucket" é atualizado [1,2].

Algorithm 1 Lossy

```
\begin{array}{l} \operatorname{bucketId} \leftarrow 1 \\ \operatorname{currentLenght} \leftarrow 1 \\ \operatorname{entries} \leftarrow \operatorname{um} \operatorname{dicion\acute{a}rio} \operatorname{vazio} \\ \operatorname{bucketWidth} \leftarrow 1/\operatorname{erro} \\ \\ \text{for word in datastream do} \\ \text{if word in entries then} \\ \text{entries[word][0]} \leftarrow \operatorname{entries[word][0]} + 1 \\ \text{else} \\ \text{entries[word]} \leftarrow [1, \operatorname{bucketId-1}] \\ \\ \text{if currentLenght mod bucketWidth is 0 then} \\ \text{bucketId} \leftarrow \operatorname{currentLenght/bucketWidth} \\ \text{oldEntries} \leftarrow \operatorname{c\acute{o}pia} \operatorname{de} \operatorname{entries} \\ \text{for word in oldEntries} \operatorname{do} \\ \text{count} \leftarrow \operatorname{oldEntries[word][0]} \end{array}
```

III. IMPLEMENTAÇÃO DAS BIBLIOTECAS

 $\begin{aligned} & \text{delta} \leftarrow \text{bucketId-oldEntries[word][1]} \\ & \textbf{if} \ \text{count less or equal delta } \textbf{then} \\ & \text{the entry is deleted} \\ & \text{currentLenght} \leftarrow \text{currentLenght} + 1 \end{aligned}$

A. Biblioteca Book

Esta biblioteca contém três funções: Load(), Filter-Letters() e RemoveStopWords(). A função Load() carrega o texto do ficheiro que vai ser analisado, retorna o seu conteúdo numa string. A função FilterLetters() faz o tratamento do texto em sí, removendo pontuações, acentos entre outros e converte todas as letras para minúsculas. A ultima função remove "stop-words" (tal como "the", "i", "me", ect.)

B. Biblioteca WordCounters

Nesta biblioteca foram inseridas as funções que fazem a contagem de palavras. A primeira função, *Exact()*,

que faz a contagem exata das palavras do texto enquanto que a função Lossy() faz uso do algoritmo Lossy para fazer a contagem de palavras dentro de uma lista de palavras.

IV. Análise e discussão dos dados

A. Contagem exata

O autor da obra literária, analisada neste trabalho foi escrita por William Shakespeare com o título: A tragédia de António e Cleópatra com 26556 palavras (versão inglesa) incluindo as "stop-words". As linguagens escolhidas para analise foram inglês, francês e finlandês.

Antes de fazer a remoção das "stop-words", comparou-se as palavras mais comuns em inglês [5] e na obra literária em análise. Na tabela I é possível fazer essa comparação.

TABLE I Frequência de palavras no livro e de modo geral (OEC rank)

Palavra	Frequência no texto	Frequência no geral
the	1^{Ω} lugar	$1^{\underline{0}}$ lugar
and	$2^{\underline{o}}$ lugar	$5^{\underline{o}}$ lugar
to	$3^{\underline{0}}$ lugar	$3^{\underline{o}}$ lugar
i	4° lugar	10° lugar
of	$5^{\underline{o}}$ lugar	4° lugar

Observando os resultados da tabela, as 5 palavras mais frequentes no texto estão pelo menos dentro do top 10 de palavras mais frequentes na língua inglesa. A palavra "the" é a mais comum na língua inglesa assim como no livro.

Passando agora para a contagem exata, ao remover todas as "stop-words" do texto, os resultados diferem bastante. Na figura 2 observa-se que os nomes das personagens "antony", "cleopatra", "caesar" e "enobarbus" aparecem com bastante frequência.

Fig. 2 - As palavras mais comuns no livro em inglês.

Ao comparar a figura 2 com as figuras 3 e 4, nota-

se que a distribuição é semelhante à língua inglesa e também verifica-se que existe uma elevada semelhança entre as palavras mais frequentes, o que era de esperar já que se tratam de traduções.

Fig. 3 - As palavras mais comuns no livro em francês.

Fig. 4 - As palavras mais comuns no livro em finlandês.

B. Contagem Lossy

Ao contar o número de palavras usando o algoritmo 1 (Lossy), obtiveram-se resultados bastante semelhantes. Em primeiro lugar comparou-se as contagem exata com a contagem resultante do algoritmo Lossy, no entanto não se verificou diferença nas 15 palavras mais frequentes do texto. Isto deve-se ao facto de que o algoritmo nunca eliminou qualquer uma destas palavras ao processar o texto em si. No entanto as letras menos comuns acabam por ser eliminadas de acordo com a condição descrita na introdução do algoritmo.

Para analisar o número diferentes palavras a serem contadas, conta-se o número total de "keys" que o dicionário contém. Isto pode ser verificado na figura 4.

Ao verificar as três linhas da figura nota-se que para as três linguagens existem certas zonas dos gráficos em

Fig. 5 - Número total de "keys" do dicionário de acordo com o tamanho da stream. Azul - língua inglesa, amarelo - língua francesa, verde - língua finlandesa. Parâmetro erro = 0,001.

que a contagem de palavras diminui abruptamente. Essas zonas em que o número de palavras diminuem correspondem à mudança do índice do "bucket". Alterouse também o parâmetro erro, que por sua vez também altera o tamanho de cada "bucket". Nas figuras 6, 7 e 8 verifica-se as consequências de alterar o parâmetro erro.

Fig. 6 - Número total de "keys" do dicionário de acordo com o tamanho da stream na língua inglesa. Parâmetro erro =0,0005.

Como era de esperar com o aumento do parâmetro erro, existe uma diminuição no tamanho de cada "bucket" já que existe um relação de proporcionalidade inversa. Outra observação, é o facto de que existe uma diminuição da precisão quanto maior for o parâmetro do erro (logo "buckets" mais pequenos).

V. Conclusões

Neste projeto comparou-se os resultados da contagem exata de palavras em três textos, com a contagem lossy. Notou-se que os resultados de lossy desviaram-se mais quanto menor for o tamanho dos "buckets" que é controlado através do parâmetro erro definido na função Lossy.

Fig. 7 - Número total de "keys" do dicionário de acordo com o tamanho da stream na língua inglesa. Parâmetro erro =0.005.

Fig. 8 - As palavras mais comuns no livro em inglês usando a contagem exata (azul) e a contagem com o algoritmo Lossy (laranja).

VI. Referências

[1]Manku, Gurmeet Singh, and Rajeev Motwani. "Approximate frequency counts over data streams." VLDB'02: Proceedings of the 28th International Conference on Very Large Databases. Morgan Kaufmann, 2002.

[2]Cormode, Graham, and Marios Hadjieleftheriou. "Methods for finding frequent items in data streams." The VLDB Journal 19.1 (2010): 3-20.

 $[3] https://en.wikipedia.org/wiki/Lossy_Count_Algorithm$

[4]https://en.wikipedia.org/wiki/Data_stream

[5] https://en.wikipedia.org/wiki/Most_common_words_in_English