Sección 5.2

570

- **1.** (a) $\frac{7}{12}$.
- (a) $\frac{7}{12}$. (b) e-2. (c) $\frac{1}{9} \sin 1$. (d) $2 \ln 4 2$.
- **3.** 0.
- 5.

- **7.** 1/4.
- 9. Utilizar el teorema de Fubini para escribir

$$\iint_{R} [f(x)g(y)] dx dy = \int_{c}^{d} g(y) \left[\int_{a}^{b} f(x) dx \right] dy,$$

y observar que $\int_a^b f(x) dx$ es una constante, por lo que se puede sacar de la integral.

- **11.** 11/6.
- **13.** Por el Ejercicio 2(a), tenemos:

$$f(m,n) = \iint_R x^m y^n dx dy = \left(\frac{1}{m+1}\right) \left(\frac{1}{n+1}\right).$$

Entonces, cuando $m, n \rightarrow \infty$, vemos que $\lim f(m,n) = 0.$

15. Dado que $\int_0^1 dy = \int_0^1 2y \, dy = 1$, tenemos que $\int_0^1 \left[\int_0^1 f(x,y) \, dy \right] \, dx = 1$. En cualquier partición de $R = [0,1] \times [0,1]$, cada rectángulo R_{jk} contiene puntos $\mathbf{c}_{jk}^{(1)}$ con x racional y $\mathbf{c}_{jk}^{(2)}$ con x irracional. Si en la partición regular de orden n, seleccionamos $\mathbf{c}_{jk} = \mathbf{c}_{jk}^{(1)}$ en aquellos rectángu-

los con $0 \le y \le \frac{1}{2}$ y $\mathbf{c}_{jk} = \mathbf{c}_{jk}^{(2)}$ cuando $y > \frac{1}{2}$, las sumas de aproximación son las mismas que

$$g(x,y) = \begin{cases} 1 & 0 \le y \le \frac{1}{2} \\ 2y & \frac{1}{2} < y < 1. \end{cases}$$

Puesto que g es integrable, las sumas de aproximación tienen que converger a $\int_R g \, dA = 7/8$. Sin embargo, si hemos elegido todos los \mathbf{c}_{ij} = $\mathbf{c}_{jk}^{(1)},$ todas las sumas de aproximación tendrán

17. El teorema de Fubini no se aplica porque el integrando no es continuo ni está acotado en (0,0).

Sección 5.3

- **1.** (a) (III) (b) (IV)

 - (c) (II) (d) (I)
- **3.** (a) 1/3, ambos.
- (b) 5/2, ambos.
- (c) $(e^2 1)/4$, ambos. (d) 1/35, ambos.
- **5.** $A = \int_{-r}^{r} \int_{-\sqrt{r^2 x^2}}^{\sqrt{r^2 x^2}} dy \ dx = 2 \int_{-r}^{r} \sqrt{r^2 x^2} \ dx =$ $r^{2}[\arcsin 1 - \arcsin(-1)] = \pi r^{2}.$
- **7.** 756 m^3 .
- **9.** 0.
- **11.** *y*-simple; $\pi/2$.
- **13.** $\frac{2}{3}$.
- **15.** 50 π .
- **17.** $\pi/24$.
- **19.** Calcular la integral primero con respecto a y. Dividir esta integral en dos integrales sobre $[-\phi(x),0]$ y $[0,\phi(x)]$ y hacer un cambio de variables en la primera, o utilizar simetría.
- **21.** Sea $\{R_{ij}\}$ una partición de un rectángulo R que contiene D y sea f igual a 1 en D. Luego, f^* es 1 en D y 0 en $R \backslash D$. Sea $\mathbf{c}_{jk} \in R \backslash D$ si R_{ij} no no está completamente contenido en D. La suma de aproximación de Riemann es la suma de las áreas de aquellos rectángulos de la partición que están contenidos en D.