Examenul național de bacalaureat 2021 Proba E. c) Matematică *M_mate-info* BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(1+i)^2 - 2(1+i) + 2 = 1 + 2i + i^2 - 2 - 2i + 2 =$	3р
		_
	=1-1=0	2p
2.	$f(1) = 2 \Rightarrow 1 + a - 5 = 2$	3 p
	a=6	2 p
3.	$\log_4(x^2+1) = \log_4(x(x+1))$, deci $x^2+1=x^2+x$	3 p
	x=1, care convine	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre sunt 9 numere divizibile cu 2 și cu 5, deci sunt 9 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{9}{90} = \frac{1}{10}$	1p
5.	$m_{MN} = 1$ și, cum dreptele sunt paralele, obținem $m_d = 1$	3 p
	$P \in d$, deci ecuația dreptei d este $y - y_P = m_d (x - x_P)$, adică $y = x - 3$	2p
6.	$tg A = \frac{BC}{AC}$	2p
	$tg B = \frac{AC}{BC} = \frac{1}{\frac{BC}{AC}} = \frac{1}{tgA}$	3 p

SUBIECTUL al II-lea (30 de puncte)

0022	So de pe	
1.a)	$A(0) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} =$	2p
	=8+0+0-0-0-0=8	3р
b)	$A(a) - 2I_3 = \begin{pmatrix} a+2 & 0 & -a \\ 0 & 2 & 0 \\ 3a & 0 & 2-3a \end{pmatrix} - \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} a & 0 & -a \\ 0 & 0 & 0 \\ 3a & 0 & -3a \end{pmatrix}, \text{ pentru orice număr real } a$	3p
	$aB = a \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 3 & 0 & -3 \end{pmatrix}$, pentru orice număr real a , deci $B = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 3 & 0 & -3 \end{pmatrix}$	2p
c)	$A(n) \cdot A(-n) = \begin{bmatrix} 0 & 4 & 0 \\ 6n^2 & 0 & 4 - 6n^2 \end{bmatrix} \Rightarrow \det(A(n) \cdot A(-n)) = 64(1 - n^2), \text{ unde } n \text{ este număr}$	3p
	natural $64(1-n^2) > 0$ și, cum n este număr natural, obținem $n = 0$	2p

2.a)	$2*0 = \frac{1}{2}(2+0+ 2-0) =$	3p
	$=\frac{1}{2}(2+2)=2$	2p
b)	$a \le b \Rightarrow a - b = b - a$	2p
	$a*b = \frac{1}{2}(a+b+ a-b) = \frac{1}{2}(a+b+b-a) = \frac{1}{2} \cdot 2b = b$, pentru orice numere reale a și b	3 p
	astfel încât $a \le b$	
	$x^2 + 1 \ge 2x$ şi $x^2 + 1 \ge -2x$, pentru orice număr real x, deci $(2x)*(x^2 + 1)*(-2x) =$	•
	$=(x^2+1)*(-2x)=(-2x)*(x^2+1)=x^2+1$, pentru orice număr real x	3 p
	$x^2 + 1 = 10$, deci $x = -3$ sau $x = 3$	2p

SUBIECTUL al III-lea (30 de p		ıncte)
1.a)	$f'(x) = 1 - \frac{2x}{2\sqrt{x^2 + 3}} =$	3 p
	$=1-\frac{x}{\sqrt{x^2+3}} = \frac{\sqrt{x^2+3}-x}{\sqrt{x^2+3}}, \ x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(x - \sqrt{x^2 + 3} \right) = \lim_{x \to +\infty} \frac{x^2 - \left(x^2 + 3 \right)}{x + \sqrt{x^2 + 3}} = \lim_{x \to +\infty} \frac{-3}{x + \sqrt{x^2 + 3}} = 0$	3 p
	Dreapta de ecuație $y = 0$ este asimptota orizontală spre $+\infty$ la graficul funcției f	2 p
c)	f'(x) > 0, pentru orice număr real x, deci f este strict crescătoare	2p
	Cum $\lim_{x \to -\infty} f(x) = -\infty$, $\lim_{x \to +\infty} f(x) = 0$ și f este funcție continuă, ecuația $f(x) = a$ are	3 p
	soluție $\Leftrightarrow a \in (-\infty, 0)$	
2.a)	$\int_{0}^{2} (x^{2} + x + 3) f(x) dx = \int_{0}^{2} (x^{2} + x + 3) \frac{x}{x^{2} + x + 3} dx = \int_{0}^{2} x dx = \frac{x^{2}}{2} \Big _{0}^{2} =$	3 p
	$=\frac{4}{2}=2$	2p
b)	$\int_{1}^{2} g(x)dx = \int_{1}^{2} \frac{2x+1}{x^{2}+x+3} dx = \int_{1}^{2} \frac{\left(x^{2}+x+3\right)'}{x^{2}+x+3} dx =$	3 p
	$= \ln\left(x^2 + x + 3\right) \Big _{1}^{2} = \ln 9 - \ln 5 = \ln \frac{9}{5}$	2p
c)	$0 \le \frac{x}{x^2 + x + 3} \le \frac{1}{2}$, pentru orice $x \in [0, +\infty)$, deci $0 \le f^n(x) \le \left(\frac{1}{2}\right)^n$, pentru orice $x \in [0, +\infty)$ și orice număr natural nenul n	2p
	obținem că $\lim_{n \to +\infty} I_n = 0$ $\lim_{n \to +\infty} I_n = 0$	3 p