Trace

Definition: Trace

Let $A \in M_n$. The *trace* of A is given by:

$$\operatorname{tr}(A) = \sum_{k=1}^{n} a_{kk}$$

In other words, the trace is the sum of the diagonal entries.

Properties: Trace

- 1). tr(A + B) = tr(A) + tr(B)
- 2). $tr(A) = tr(A^T)$
- 3). $\operatorname{tr}(cA) = c \operatorname{tr}(A)$

Theorem

Let $f: M_n \to \mathbb{C}$ be a linear transformation such that f(AB) = f(BA):

$$f(I_n) = n \iff f$$
 is the trace

Proof

Assume
$$f(I_n) = n$$

Assume
$$A \in M_n$$

Let
$$f(A) = f\left(\sum_{i,j} a_{ij} E_{ij}\right) = \sum_{i,j} a_{ij} f(E_{ij})$$

Case 1:
$$i \neq j$$

$$f(E_{ij}) = f(E_{i1}E_{1j}) = f(E_{1j}E_{i1}) = f(0) = 0$$

Case 2:
$$i = j$$

$$f(E_{ii}) = f(E_{i1}E_{1i}) = f(E_{1i}E_{i1}) = f(E_{11}) = \alpha$$

So, after discarding the zero $f(E_{ij})$ entries and replacing the $f(E_{ii})$ entries with α :

$$f(A) = \alpha \sum_{i=1}^{n} a_{ii}$$

But
$$f(I) = \alpha n = n$$

So
$$\alpha = 1$$

$$\therefore f(A) = \sum_{i=1}^{n} a_{ii} = \operatorname{tr}(A)$$

Assume f is the trace

$$f(I_n) = tr(I_n) = n \cdot 1 = n$$