

SEQUENCE LISTING

```
<110> Boutiler, Kim
      Ouellet, Therese
      Custers, Jan
      Hattori, Jiro
      Miki, Brian
      Van Lookeren Campagne, Michiel
<120> Use of the BNM3 Transcriptional Activator to Control
      Plant Embryogenesis and Regenergation Processes
<130> 270.62USWO
<140> 09/980,364
<141> Herewith
<150> EP 99201745.9-2106
<151> 1999-06-02
<160> 14
<170> PatentIn Ver. 2.1
<210> 1
<211> 2014
<212> DNA
<213> Brassica napus
<400> 1
qttcatctct cttctttaag accaaaacct ttttctcctc ctcttcatgc atgaacccta 60
actaagttct tcttctttta ccttttacca agaactcgtt agatcactct ctgaactcaa 120
tgaataataa ctggttaggc ttttctctct ctccttatga acaaaatcac catcgtaagg 180
acgtctactc ttccaccacc acaaccgtcg tagatgtcgc cggagagtac tgttacgatc 240
cgaccgctgc ctccgatgag tcttcagcca tccaaacatc gtttccttct ccctttggtg 300
teqteqteqa tqettteace agaqacaaca ataqteacte eegagattgg gacatcaatg 360
gttgtgcatg caataacatc cacaacgatg agcaagatgg accaaagctt gagaatttcc 420
ttggccgcac caccacgatt tacaacacca acgaaaacgt tggagatgga agtggaagtg 480
gctgttatgg aggaggagac ggtggtggtg gctcactagg actttcgatg ataaagacat 540
ggctgagaaa tcaacccgtg gataatgttg ataatcaaga aaatggcaat gctgcaaaag 600
gcctgtccct ctcaatgaac tcatctactt cttgtgataa caacaacgac agcaataaca 660
acgttgttgc ccaagggaag actattgatg atagcgttga agctacaccg aagaaaacta 720
ttgagagttt tggacagagg acgtctatat accgcggtgt tacaaggcat cggtggacag 780
gaagatatga ggcacattta tgggataata gttgtaaaag agaaggccaa acgcgcaaag 840
gaagacaagt ttatttggga ggttatgaca aagaagaaaa agcagctagg gcttatgatt 900
tagccgcact caagtattgg ggaaccacca ctactactaa cttccccatg agcgaatatg 960
aaaaaqaqqt aqaaqaqatq aaqcacatqa caaqqcaaqa qtatqttqcc tcactqcqca 1020
ggaaaagtag tggtttctct cgtggtgcat cgatttatcg tggagtaaca agacatcacc 1080
aacatqqaag atqqcaaqct aggataqqaa qagtcqccqg taacaaaqac ctctacttqg 1140
gaacttttgg cacacaagaa gaagctgcag aggcatacga cattgcggcc atcaaattca 1200
gaggattaac cgcagtgact aacttcgaca tgaacagata caacgttaaa gcaatcctcg 1260
aaagccctag tetteetatt ggtagegeeg caaaaegtet caaggagget aacegteegg 1320
ttccaagtat gatgatgatc agtaataacg tttcagagag tgagaatagt gctagcggtt 1380
ggcaaaacgc tgcggttcag catcatcagg gagtagattt gagcttattg caccaacatc 1440
aagagaggta caatggttat tattacaatg gaggaaactt gtcttcggag agtgctaggg 1500
cttgtttcaa acaagaggat gatcaacacc atttcttgag caacacgcag agcctcatga 1560
```

1

ctaatatcqa tcatcaaaqt tctqtttcgg atgattcggt tactgtttgt ggaaatgttg 1620 ttggttatgg tggttatcaa ggatttgcag ccccggttaa ctgcgatgcc tacgctgcta 1680 gtgagtttga ttataacgca agaaaccatt attactttgc tcagcagcag cagacccagc 1740 agtcgccagg tggagatttt cccgcggcaa tgacgaataa tgttggctct aatatgtatt 1800 accatgggga aggtggtgga gaagttgctc caacatttac agtttggaac gacaattaga 1860 aaaaatagtt aaagatettt agttatatge gttgttgtgt getggtgaae agtgtgatae 1920 tttgattatg ttttttctt tctcttttc tttttcttgg ttaatttctt aagacttatt 1980 tttagtttcc attagttgga taaattttca gact

<210> 2

<211> 579

<212> PRT

<213> Brassica napus

<400> 2

Met Asn Asn Asn Trp Leu Gly Phe Ser Leu Ser Pro Tyr Glu Gln Asn

His His Arg Lys Asp Val Tyr Ser Ser Thr Thr Thr Val Val Asp

Val Ala Gly Glu Tyr Cys Tyr Asp Pro Thr Ala Ala Ser Asp Glu Ser 40

Ser Ala Ile Gln Thr Ser Phe Pro Ser Pro Phe Gly Val Val Asp

Ala Phe Thr Arg Asp Asn Asn Ser His Ser Arg Asp Trp Asp Ile Asn 70

Gly Cys Ala Cys Asn Asn Ile His Asn Asp Glu Gln Asp Gly Pro Lys

Leu Glu Asn Phe Leu Gly Arg Thr Thr Thr Ile Tyr Asn Thr Asn Glu 105

Asn Val Gly Asp Gly Ser Gly Ser Gly Cys Tyr Gly Gly Asp Gly 120

Gly Gly Gly Ser Leu Gly Leu Ser Met Ile Lys Thr Trp Leu Arg Asn 135 140

Gln Pro Val Asp Asn Val Asp Asn Glu Asn Gly Asn Ala Ala Lys 150

Gly Leu Ser Leu Ser Met Asn Ser Ser Thr Ser Cys Asp Asn Asn Asn 170

Asp Ser Asn Asn Val Val Ala Gln Gly Lys Thr Ile Asp Asp Ser

Val Glu Ala Thr Pro Lys Lys Thr Ile Glu Ser Phe Gly Gln Arg Thr

Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu

210 215 220

Ala 225	His	Leu	Trp	Asp	Asn 230	Ser	Cys	Lys	Arg	Glu 235	Gly	Gln	Thr	Arg	Lys 240
Gly	Arg	Gln	Val	Tyr 245	Leu	Gly	Gly	Tyr	Asp 250	Lys	Glu	Glu	Lys	Ala 255	Ala
Arg	Ala	Tyr	Asp 260	Leu	Ala	Ala	Leu	Lys 265	Tyr	Trp	Gly	Thr	Thr 270	Thr	Thr
Thr	Asn	Phe 275	Pro	Met	Ser	Glu	Tyr 280	Glu	Lys	Glu	Val	Glu 285	Glu	Met	Lys
His	Met 290	Thr	Arg	Gln	Glu	Tyr 295	Val	Ala	Ser	Leu	Arg 300	Arg	Lys	Ser	Ser
Gly 305	Phe	Ser	Arg	Gly	Ala 310	Ser	Ile	Tyr	Arg	Gly 315	Val	Thr	Arg	His	His 320
Gln	His	Gly	Arg	Trp 325	Gln	Ala	Arg	Ile	Gly 330	Arg	Val	Ala	Gly	Asn 335	Lys
Asp	Leu	Tyr	Leu 340	Gly	Thr	Phe	Gly	Thr 345	Gln	Glu	Glu	Ala	Ala 350	Glu	Ala
Tyr	Asp	Ile 355	Ala	Ala	Ile	Lys	Phe 360	Arg	Gly	Leu	Thr	Ala 365	Val	Thr	Asn
Phe	Asp 370	Met	Asn	Arg	Tyr	Asn 375	Val	Lys	Ala	Ile	Leu 380	Glu	Ser	Pro	Ser
Leu 385	Pro	Ile	Gly	Ser	Ala 390	Ala	Lys	Arg	Leu	Lys 395	Glu	Ala	Asn	Arg	Pro 400
Val	Pro	Ser	Met	Met 405	Met	Ile	Ser	Asn	Asn 410	Val	Ser	Glu	Ser	Glu 415	Asn
Ser	Ala	Ser	Gly 420	Trp	Gln	Asn	Ala	Ala 425	Val	Gln	His	His	Gln 430	Gly	Val
Asp	Leu	Ser 435	Leu	Leu	His	Gln	His 440	Gln	Glu	Arg	Tyr	Asn 445	Gly	Tyr	Tyr
Tyr	Asn 450	Gly	Gly	Asn	Leu	Ser 455	Ser	Glu	Ser	Ala	Arg 460	Ala	Cys	Phe	Lys
Gln 465	Glu	Asp	Asp	Gln	His 470	His	Phe	Leu	Ser	Asn 475	Thr	Gln	Ser	Leu	Met 480
Thr	Asn	Ile	Asp	His 485	Gln	Ser	Ser	Val	Ser 490	Asp	Asp	Ser	Val	Thr 495	Val
Cys	Gly	Asn	Val 500	Val	Gly	Tyr	Gly	Gly 505	Tyr	Gln	Gly	Phe	Ala 510	Ala	Pro

```
ValAsnCys<br/>515Asp<br/>AlaAlaAlaAlaSer<br/>520GluPheAsp<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br/>Fig<br
```

Asn Asp Asn

<210> 3 <211> 2011 <212> DNA <213> Brassica napus

<400> 3 ttcttctttt accttttacc aaqaactcqt taqatcattt tctgaactcg atgaataata 60 actgqttagq cttttctctc tctccttatg aacaaaatca ccatcgtaag gacgtctgct 120 cttccaccac cacaaccgcc gtagatgtcg ccggagagta ctgttacgat ccgaccgctg 180 cctccgatga gtcttcagcc atccaaacat cgtttccttc tccctttggt gtcgtcctcg 240 atgettteac cagagacaac aatagteact eccegagattg ggacateaat ggtagtgeat 300 gtaataacat ccacaatgat gagcaagatg gaccaaaact tgagaatttc cttggccgca 360 ccaccacgat ttacaacacc aacgaaaacg ttggagatat cgatggaagt gggtgttatg 420 gaggaggaga cggtggtggt ggctcactag gactttcgat gataaagaca tggctgagaa 480 atcaacccgt ggataatgtt gataatcaag aaaatggcaa tggtgcaaaa ggcctgtccc 540 totcaatgaa otoatotaot tottgtgata acaacaacta cagcagtaac aacottgttg 600 cccaagggaa gactattgat gatagcgttg aagctacacc gaagaaaact attgagagtt 660 ttggacagag gacgtctata taccgcggtg ttacaaggca tcggtggaca ggaagatatg 720 aggcacattt atgggataat agttgtaaac gagaaggcca aacgcgcaaa ggaagacaag 780 tttatttqqq aggttatgac aaagaagaaa aagcagctag ggcttatgat ttagccgcac 840 tcaagtattg gggaaccacc actactacta acttccccat gagcgaatat gagaaagaga 900 tagaagagat gaagcacatg acaaggcaag agtatgttgc ctcacttcgc aggaaaagta 960 gtggtttctc tcgtggtgca tcgatttatc gtggagtaac aagacatcac caacatggaa 1020 gatggcaagc taggatagga agagtcgccg gtaacaaaga cctctacttg ggaacttttg 1080 gcacacaaga agaagctgca gaggcatacg acattgcggc catcaaattc agaggattaa 1140 ccgcagtgac taacttcgac atgaacagat acaacgttaa agcaatcctc gaaagcccta 1200 qtcttcctat tqqtaqcqcc qcaaaacqtc tcaaggaggc taaccqtccg gttccaagta 1260 tgatgatgat cagtaataac gtttcagaga gtgagaataa tgctagcggt tggcaaaacg 1320 ctgcggttca gcatcatcag ggagtagatt tgagcttatt gcagcaacat caagagaggt 1380 acaatggtta ttattacaat ggaggaaact tgtcttcgga gagtgctagg gcttgtttca 1440 aacaagagga tgatcaacac catttettga geaacaegea gageeteatg actaatateg 1500 atcatcaaag ttctgtttca gatgattcgg ttactgtttg tggaaatgtt gttggttatg 1560 gtggttatca aggatttgca gccccggtta actgcgatgc ctacgctgct agtgagtttg 1620 actataacgc aagaaaccat tattactttg ctcagcagca gcagacccag cattcgccag 1680 gaggagattt tecegeggea atgaegaata atgttggete taatatgtat taecatgggg 1740 aaggtggtgg agaagttgct ccaacattta cagtttggaa cgacaattag aaataatagt 1800 taaagatctt tagttatatg cgttgttgtg tggtgttgaa cagtttgata ctttgattat 1860 gtttttttt ctcttttca ttttgttggt tagtttctta agacttattt tttgtttcca 1920 ttagttggat aaattttcgg acttaagggt cacttctgtt ctgacttctg tctaatacag 1980 2011 aaaaqttttc ataaaaaaaa aaaaaaaaaa a

<210> 4

```
<211> 579
<212> PRT
<213> Brassica napus
<400> 4
Met Asn Asn Asn Trp Leu Gly Phe Ser Leu Ser Pro Tyr Glu Gln Asn
His His Arg Lys Asp Val Tyr Ser Ser Thr Thr Thr Thr Val Val Asp
                                 25
Val Ala Gly Glu Tyr Cys Tyr Asp Pro Thr Ala Ala Ser Asp Glu Ser
Ser Ala Ile Gln Thr Ser Phe Pro Ser Pro Phe Gly Val Val Val Asp
Ala Phe Thr Arg Asp Asn Asn Ser His Ser Arg Asp Trp Asp Ile Asn
                    70
Gly Cys Ala Cys Asn Asn Ile His Asn Asp Glu Gln Asp Gly Pro Lys
Leu Glu Asn Phe Leu Gly Arg Thr Thr Thr Ile Tyr Asn Thr Asn Glu
Asn Val Gly Asp Gly Ser Gly Ser Gly Cys Tyr Gly Gly Gly Asp Gly
Gly Gly Gly Ser Leu Gly Leu Ser Met Ile Lys Thr Trp Leu Arg Asn
Gln Pro Val Asp Asn Val Asp Asn Gln Glu Asn Gly Asn Ala Ala Lys
145
                    150
Gly Leu Ser Leu Ser Met Asn Ser Ser Thr Ser Cys Asp Asn Asn Asn
                165
                                    170
Asp Ser Asn Asn Val Val Ala Gln Gly Lys Thr Ile Asp Asp Ser
            180
                                185
Val Glu Ala Thr Pro Lys Lys Thr Ile Glu Ser Phe Gly Gln Arg Thr
Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu
Ala His Leu Trp Asp Asn Ser Cys Lys Arg Glu Gly Gln Thr Arg Lys
```

230

245

250

Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala

	Arg	Ala	Tyr	Asp 260	Leu	Ala	Ala	Leu	Lys 265	Tyr	Trp	Gly	Thr	Thr 270	Thr	Thr
	Thr	Asn	Phe 27.5	Pro	Met	Ser	Glu	Tyr 280	Glu	Lys	Glu	Val	Glu 285	Glu	Met	Lys
	His	Met 290	Thr	Arg	Gln	Glu	Tyr 295	Val	Ala	Ser	Leu	Arg 300	Arg	Lys	Ser	Ser
	Gly 305	Phe	Ser	Arg	Gly	Ala 310	Ser	Ile	Tyr	Arg	Gly 315	Val	Thr	Arg	His	His 320
	Gln	His	Gly	Arg	Trp 325	Gln	Ala	Arg	Ile	Gly 330	Arg	Val	Ala	Gly	Asn 335	Lys
ì	Asp	Leu	Tyr	Leu 340	Gly	Thr	Phe	Gly	Thr 345	Gln	Glu	Glu	Ala	Ala 350	Glu	Ala
	Tyr	Asp	Ile 355	Ala	Ala	Ile	Lys	Phe 360	Arg	Gly	Leu	Thr	Ala 365	Val	Thr	Asn
till, gour, water	Phe	Asp 370	Met	Asn	Arg	Tyr	Asn 375	Val	Lys	Ala	Ile	Leu 380	Glu	Ser	Pro	Ser
6 A	Leu 385	Pro	Ile	Gly	Ser	Ala 390	Ala	Lys	Arg	Leu	Lys 395	Glu	Ala	Asn	Arg	Pro 400
A	Val	Pro	Ser	Met	Met 405	Met	Ile	Ser	Asn	Asn 410	Val	Ser	Glu	Ser	Glu 415	Asn
	Ser	Ala	Ser	Gly 420	Trp	Gln	Asn	Ala	Ala 425	Val	Gln	His	His	Gln 430	Gly	Val
i.	Asp	Leu	Ser 435	Leu	Leu	His	Gln	His 440	Gln	Glu	Arg	Tyr	Asn 445	Gly	Tyr	Tyr
	Tyr	Asn 450	Gly	Gly	Asn	Leu	Ser 455	Ser	Glu	Ser	Ala	Arg 460	Ala	Cys	Phe	Lys
	Gln 465	Glu	Asp	Asp	Gln	His 470	His	Phe	Leu	Ser	Asn 475	Thr	Gln	Ser	Leu	Met 480
	Thr	Asn	Ile	Asp	His 485	Gln	Ser	Ser	Val	Ser 490	Asp	Asp	Ser	Val	Thr 495	Val
	Cys	Gly	Asn	Val 500	Val	Gly	Tyr	Gly	Gly 505	Tyr	Gln	Gly	Phe	Ala 510	Ala	Pro
	Val	Asn	Cys 515	Asp	Ala	Tyr	Ala	Ala 520	Ser	Glu	Phe	Asp	Tyr 525	Asn	Ala	Arg
	Asn	His 530	Tyr	Tyr	Phe	Ala	Gln 535	Gln	Gln	Gln	Thr	Gln 540	Gln	Ser	Pro	Gly
	Gly 545	Asp	Phe	Pro	Ala	Ala 550	Met	Thr	Asn	Asn	Val 555 6	Gly	Ser	Asn	Met	Tyr 560

Asn Asp Asn

0,0

Ü

W

F

```
<210> 5
   <211> 4873
   <212> DNA
   <213> Brassica napus
   <220>
   <221> intron
   <222> (1846)..(2298)
   <220>
   <221> intron
   <222> (2720)..(2952)
   <220>
   <221> intron
T
   <222> (3036)..(3160)
   <220>
   <221> intron
   <222> (3170)..(3314)
   <220>
   <221> intron
    <222> (3404)..(3553)
   <220>
   <221> intron
   <222> (3628)..(3797)
   <220>
   <221> intron
   <222> (3849)..(3961)
   <220>
   <221> intron
   <222> (4039)..(4148)
   <220>
   <221> misc_feature
    <222> (1620)..(1622)
   <223> start codon
   <220>
    <221> misc feature
    <222> (4856)..(4858)
   <223> stop codon
   <400> 5
```

atctctccac	cgattcgtta	cccagtgctt	gaaaatatga	tgactacgaa	tcaattaaat	60
ggagaagctc	cactgcttgt	gtaggtggaa	gctcaagcaa	caaccggaaa	cctcggcgtt	120
atcaggaagtt	agcatcgtta	tttqccaaaa	tttccqccqc	agagatgaaa	cgattcaaga	180
gaaaccctca	aataggttag	ccataaaaca	gtgaattagt	atgatttaag	agataagaag	240
agaagatgag	ttcaagaaaa	gaaatactca	catctattta	tactgtttac	acaccgcctt	300
tcagatctaa	gcaaagcatt	gaagatgaat	cgtggaggag	agttaatagg	atttaacaca	360
aagccattaa	ccaaaccgtt	gcaggtcggg	agacgaaccg	caaaagtcac	gcctagccgt	420
cgcacgaaga	ggagcgatga	atttcgtttt	ctcgctgcag	tcgtattagg	gatagacgga	480
gctcattatc	gttgggccgg	aaacacttct	aatctcacag	cccatgaaca	cactaaagaa	540
cqaaaccqaa	aatgtttgaa	gtttaatgaa	acgtgcggtt	tgccttatgg	acacatgtca	600
ttacgatatg	aaatgattta	tctacgtgga	tcataggtgt	ctctctaagg	agagagcaaa	660
cctatacttt	atataaatag	atttgtatca	ttctaagagg	tgtttaagat	ttttgcataa	720
atattaaaaa	aaaatacaaa	tttttatgta	attagttttg	gttacataaa	ataacattaa	780
ataaaattaa	ttcaaccaat	aaaaaaatac	ggtattttat	aattggtcaa	aaataaaaat	840
aaaacattaa	atttcaccta	gaattacgag	aatgtcactt	attttgaaac	aaaatcaaaa	900
tctttaaaca	tcaattaaac	tgatacggat	ggagtatata	tctttacaga	gaacatatat	960
atatgttttt	cttgtaagcg	tccatctctt	cttagtcatg	tagttcaaat	accagctgca	1020
gtaaaaccat	gaatatttga	atttgttgta	aaatattcga	agcgactact	gcacgtttgg	1080
aagcaaaacg	ccaaacgcaa	tcgctcgctc	ggtcataggg	tcacacatac	acatgtgact	1140
agcattatgg	gtcttaattc	aacagcgagt	gattttggga	tttattatta	gttctcgtgt	1200
tactctcact	ttaacacaaa	gtcactaacc	ttatttacac	atgaagagag	gtttgaaagg	1260
gcttttgact	gattaattat	aatgtattaa	accaaactag	aattaagaga	ttaggcattg	1320
	ccaccaccac					
gtaaaacaac	ttttttttgt	tgttccttcg	gaatttaaat	aaatattcgt	ttatataaat	1440
gcgcatgata	tgacgcctcg	gaagaaatga	aacattatat	ctttgacttt	tcttctccta	1500
gttcatctct	cttctttaag	accaaaacct	ttttctcctc	ctcttcatgc	atgaacccta	1560
actaagttct	tcttcttta	ccttttacca	agaactcgtt	agatcactct	ctgaactcaa	1620
tgaataataa	ctggttaggc	ttttctctct	ctccttatga	acaaaatcac	catcgtaagg	1680
acgtctactc	ttccaccacc	acaaccgtcg	tagatgtcgc	cggagagtac	tgttacgatc	1740
	ctccgatgag					
	tgctttcacc					
ctacttgttt	ttttttgatt	tgtttatttg	tttagtttcc	tcttcttcca	atgcgtagaa	1920
caaagaccaa	tacacacgca	cgcatactag	ccctatttt	tccttgggct	tatttatcga	1980
	tttgagaata					
ctaaaacata	tgccagttat	acatagattt	tttttaaaga	tatacatgga	tatgaaatga	2100
	ttcctccttt					
	tttgtttctt					
	tgatgaaaag					
	ctttatagat					
	tggaccaaag					
ccaacgaaaa	cgttggagat	ggaagtggaa	giggeigila	rggaggagga	gacggtggtg	2520
gtggctcact	aggactttcg	acgacaaaga	carggergag	adattaactt	grayaraara	2520
tigalaalca	agaaaatggc taacaacaac	aatgetgeaa	aaggeetgte	taccessaga	aacccaccta	2640
ataataaaat	tgaagctaca	gadagdaata	acaacgicgi	ttttaaaaa	addactatty	2700
tataccaca	tgttacaagg	tacacttact	ttatttaatt	aaaatgtgta	aggacgccca	2760
	tcttcttggt					
gaaccgcca	ggtccttgat	atatactatc	aaarararat	attettatta	tagacttata	2880
tagaataata	catatatata	tatatataca	taataactat	tgatgacatg	tatgttcgta	2940
ttaaatmata	aggcatcggt	adacaddaad	atatgaggca	catttataga	ataatagttg	3000
	ggccaaacgc					
gatcatattt	tcatacacga	tttactttca	aactaatata	ggtttttcga	tcattottca	3120
tatttttatc	aaaatttgca	cctaataatt	gtcttctcag	tttatttaaa	taaqtaattt	3180
attataaatt	ggacgaagct	gtgatgggta	aatctaaatt	atataatcaa	attigtttat	3240
tttttqtqta	tacattcatt	atataatcaa	aatagcgata	cgatctacat	tcaattgttg	3300
tctatatcat	gcaggaggtt	atgacaaaga	agaaaaagca	gctagggctt	atgatttagc	3360
			8		_	

<210> 6

```
cgcactcaag tattggggaa ccaccactac tactaacttc cccgtaagtc aatcaatgtt 3420
gtacaagatt tcataactta gaaccaattt tattcttttt ttataagatg ctattatctt 3480
attattaatt gccatgttta tatcgttaca tttattacaa taaaaagtac ttttggtttg 3540
atataatatg tagatgagcg aatatgaaaa agaggtagaa gagatgaagc acatgacaag 3600
qcaaqaqtat qttqcctcac tgcgcaggta tataatggaa cttctgatat tattgcatat 3660
ggcatctatt attatacatg tatattagta ttttatatat agaacccatc acgctcacgt 3720
ttatatttaa aaatatgtcc gtattcacgt cagattatca gcatacacct atatataata 3780
qacattaaaa tatgcaqqaa aaqtaqtqqt ttctctcqtq qtqcatcqat ttatcqtqqa 3840
gtaacaaggt attcatacag agagaacgaa tcctattttg ttacgtacat atatatataa 3900
aaatataatt ataagatatc acattttata ttatgaatat ttcttctaat gggtccaaaa 3960
gacatcacca acatggaaga tggcaagcta ggataggaag agtcgccggt aacaaagacc 4020
tetaettggg aacttttggt acgtttagte ttetettaet aaactteaca ateaaateta 4080
taacaaaaga tatcaactaa aaactacaac atatatctaa gtaagctgta catatattat 4140
atatgaaggc acacaagaag aagctgcaga ggcatacgac attgcggcca tcaaattcag 4200
aggattaacc gcagtgacta acttcgacat gaacagatac aacgttaaag caatcctcga 4260
aagccctagt cttcctattg gtagcgccgc aaaacgtctc aaggaggcta accgtccggt 4320
tccaagtatg atgatgatca gtaataacgt ttcagagagt gagaatagtg ctagcggttg 4380
gcaaaacgct gcggttcagc atcatcaggg agtagatttg agcttattgc accaacatca 4440
agagaggtac aatggttatt attacaatgg aggaaacttg tcttcggaga gtgctagggc 4500
ttgtttcaaa caagaggatg atcaacacca tttcttgagc aacacgcaga gcctcatgac 4560
taatatcgat catcaaagtt ctgtttcgga tgattcggtt actgtttgtg gaaatgttgt 4620
tggttatggt ggttatcaag gatttgcagc cccggttaac tgcgatgcct acgctgctag 4680
tgagtttgat tataacgcaa gaaaccatta ttactttgct cagcagcagc agacccagca 4740
gtcgccaggt ggagattttc ccgcggcaat gacgaataat gttggctcta atatgtatta 4800
ccatggggaa ggtggtggag aagttgctcc aacatttaca gtttggaacg acaattagaa 4860
aaaatagtta aag
```

```
<211> 5151
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> intron
<222> (2249)..(2578)
<220>
<221> intron
<222> (2994)..(3220)
<220>
<221> intron
<222> (3304)..(3420)
<220>
<221> intron
<222> (3429)..(3521)
<220>
<221> intron
<222> (3611)..(3770)
<220>
<221> intron
<222> (3845)..(3969)
```

```
<220>
<221> intron
<222> (4020)..(4151)
<220>
<221> intron
<222> (4229)..(4310)
<220>
<221> misc feature
<222> (2026)..(2028)
<223> start codon
<220>
<221> misc feature
<222> (5033)..(5035)
<223> stop codon
<400> 6
totcaaactc atocatotga ttttaataac agttttttct totttttctt ttgttgtttt 60
ttaccacttt tettetttt teteatttte tacttactte cagattttte atttteetat 120
ttttggtcac acgetettgt cagttgtaga tatetteate tacaggtgtt teettttatt 180
ttcaqatgga atctcaatct acaggtgttt ctcacttcaa taaattacgg cccccaaaaa 240
atttagtttt tgtatttaca agaaacatag cataatatga tacatatggt tttgaagtac 300
tgttttttac acaaaacttt gattataaaa cctcagccgt tctttcgtat ttagaattta 360
aacgcatgca atgaagtcat tcgtgaatga tatataaata gtttgtttat ttgttatata 420
tegteeegee eeggateaaa acetaaagta agtgaataaa attttettt gtagagataa 480
gaaaatttgt accgcgtatc gaaaatgtaa aacctatttt aatttctaga tctactaatt 540
gggtttgagg tattgaaata attgggtacc aaaggtttgg ggtactatat ataaaaagca 600
gataagaaca aattgttagg aaaaaataat atgattttgt aggtaccgag gcaattctag 660
aacgtgtgtt ggtggtgtt tagatattgc aggcataata atggaagaag tgaaattata 720
ttacaattaa ataggaagac gagaatccat tgaatcatat cttaccagtc caaacttttt 780
ttaaqtatat aaatctttqa aaqaqtataa acccatqcac atqcccactt tcqtctcatt 840
gatecatgtg tataccetat agttteetee etaattacte taatteeeet aaateatttt 900
ttaatttgat acaattagtc ggataagctc aaactacttt actattggtg cttagcatgt 960
acagtacata totagcatoc gaaccotact agocatocac atottatgta cataattatg 1020
actgttttaa gtactttttt actttcgttt acaatgtttg tttgaaaaatt tgaggcgttt 1080
tttactggtt gaactgtagc cactaagaca ctaagacttc aaaattcaaa taggaaaatc 1140
tatactttta caatatcttt gcatgtcaaa ttatttttaa cgtggttata cattttgcct 1200
tgaagttact atatgagata gttcatcgca ttgatcacgt ctgatgcgaa tcacatatcc 1320
tatatctagt tgaacatatg tttcgtggaa gacaggaacc atctcttaga cccgcacttc 1380
aaaatatcac aaaacacgaa accatgaatc ttttgagttt gttaaaaaat actaaaagtg 1440
acgagttcgc gtttggaaaa aatgccaaac taaatcgctg gctcgtgtca tacgttcaca 1500
catacacatg tototaagag acacagcate attggtotta aatcgacaac gagtgagttt 1560
ttggactttt acctattggt cctcgacatg tttacccatt tttgtcattt acatttaaca 1620
ttttatacgc atgaagagag agagacagaa agcagagatt tgaaatggtt tttgactgat 1680
taattaaagt gtcatcaaaa caaattggga ttacgagatt atccagttga aacgacatta 1740
ctacccctac ccttcaaacc gaccaataca tctccacatt tttcaagtaa atatttttc 1800
tttctgaatt taattgcaaa attctctaaa tgcgcataat atgtcgcctc ggaagaaatg 1860
aacattatat ttttgacttt tcttcttctt cttcctcttc tctcttcatt taacaccaaa 1920
acctttttct ttctcctctt catgcatgaa ccctaactaa gttcttttc ctattcttct 1980
teteteatet ateacaagga gtagttagaa tattatatga aetegatgaa taaetggtta 2040
ggettetete teteteetea tgateaaaat cateacegta eggatgttga eteeteeace 2100
accagaaccg ccgtagatgt tgccggaggg tactgttttg atctggccgc tccctccgat 2160
```

```
gaatcttctg ccgttcaaac atcttttctt tctcctttcg gtgtcaccct cgaagctttc 2220
accagagaca ataatagtca ctcccgaggt ttgtgtttta aaaatattta ttttatcttt 2280
qtttttgtta ttttttcccc ttcttccaat gcatagaaca aagaccaaga ctcacgcacg 2340
tagccctatt tttgtttttc attgtttatc gatttcatct cttttgagaa tttccatgag 2400
tggggtttag tgtttgttca catgatcaca tctcatgaat ttaaacttag taaaacatga 2460
aactagacat ttattttgta cccttttatc cttataaaat gaaaattcca tttcgtatat 2520
tatagatcgg tgatgaatca aacccaacgt tggggatcgc tttgtttttt gtctatagat 2580
tgggacatca atggtggtgc atgcaataca ttaaccaata acgaacaaaa tggaccaaag 2640
cttgagaatt tcctcggccg caccaccacg atttacaata ccaacgagac cgttgtagat 2700
ggaaatggcg attgtggagg aggagacggt ggtggtggcg gctcactagg cctttcgatg 2760
ataaaaacat ggctgagtaa tcattcggtt gctaatgcta atcatcaaga caatggtaac 2820
ggtgcacgag gcttgtccct ctctatgaat tcatctacta gtgatagcaa caactacaac 2880
aacaatgatg atgtcgtcca agagaagact attgttgatg tcgtagaaac tacaccgaag 2940
aaaactattg agagttttgg acaaaggacg tctatatacc gcggtgttac aaggttaatt 3000
tcattgatct atgtatattt ttattgtgct taaattgtga ttttcttggt attgtttggg 3060
acattctaat ggttcggttg agagagagtg caacggaatg tctctcaatg tatattaaag 3120
agaaacatta attagtgtac atgggtttat atatacaata atacgtcata tatatggtat 3180
gctcttgatc atagtatata atgtttgaat ttaatgtcag gcatcggtgg acaggtagat 3240
acgaggcaca tttatgggac aatagttgca aaagagaagg ccagactcgc aaaggaagac 3300
aaggtactat atataaaag ctaattttt aattttcatt taccatttat tttcaaacta 3360
atttaggttt tctttcatg tgtttcatca aaatttgcac ctgatggctc tcttttcagt 3420
ttatctgggt aagttcttga ttttaagcta taaattaata atagatgact attaaatcta 3480
ttctaagcaa aatataattg ttgtgttatc tgatcctaca ggaggttatg acaaagaaga 3540
aaaagcagct agggcttacg atttagccgc actaaagtat tggggaccca ccactactac 3600
taacttcccc gtatgttaat taatcaataa tatatacata aattcctaac ttctaaccaa 3660
ttttagtctg aataatgcca atctcttaaa ctagtattat cttactatta actgtcatgt 3720
ttatattgtt acaataaaaa ttagtaatgt tggttggata taatattcag ttgagtgaat 3780
atgagaaaga ggtagaagag atgaagcaca tgacgaggca agagtatgtt gcctctctgc 3840
qcaqqtacaq aatgaaactc ttgaatttat tgcattttag aaacccatca cgtatatatt 3900
tattaaaata tatcgtaaca ttgaataaat cattatttgg aaagatataa gaaacatgta 3960
aatatqcaqq aaaaqtaqtq gtttctctcg tggtgcatcg atttatcgag gagtaacaag 4020
gtacgtataa tccatctaga tatggaacga atactagtgt ttcattattt tttttgatgt 4080
ggttccaaaa ggcatcacca acatggaagg tggcaagcta ggatcggaag agtcgccggt 4200
aacaaagacc tctacttggg aactttcggt acattttcca ataaaatcta tatactataa 4260
gatattaaat atacacaaat atatctaagt gaatcataca aattatgtag gcacacagga 4320
agaggetget gaggettatg acattgcage cattaaatte agaggattaa gegeagtgae 4380
taacttcqac atqaacaqat acaatqttaa agcaatcctc gagagcccga gtctacctat 4440
tggtagttct gcgaaacgtc tcaaggacgt taacaatccg gttccagcta tgatgattag 4500
taataacgtt tcagagagtg caaataatgt tagcggttgg caaaacactg cgtttcagca 4560
tcatcaggga atggatttga gcttattgca gcaacagcag gagaggtacg ttggttatta 4620
caatggagga aacttgtcta ccgagagtac tagggtttgt ttcaaacaag aggaggaaca 4680
acaacacttc ttgagaaact cgccqaqtca catgactaat gttgatcatc atagctcqac 4740
ctctqatqat tctqttaccq tttqtqqaaa tqttqttagt tatgqtggtt atcaaggatt 4800
cgcaatccct gttggaacat cggttaatta cgatcccttt actgctgctg agattgctta 4860
caacgcaaga aatcattatt actatgctca gcatcagcaa caacagcaga ttcagcagtc 4920
gccgggagga gattttccgg tggcgatttc gaataaccat agctctaaca tgtactttca 4980
cggggaaggt ggtggagaag gggctccaac gttttcagtt tggaacgaca cttagaaaaa 5040
taaqtaaaaq atcttttagt tgtttgcttt gtatgttgcg aacagtttga ttctgttttt 5100
                                                                 5151
ctttttcctt tttttgggta attttcttat aacttttttc atagtttcga t
```

<210> 7

<211> 581

<212> PRT

<213> Arabidopsis thaliana

<400	0> 7														
Met 1	Asn	Asn	Trp	Leu 5	Gly	Phe	Ser	Leu	Ser 10	Pro	His	Asp	Gln	Asn 15	His
His	Arg	Thr	Asp 20	Val	Asp	Ser	Ser	Thr 25	Thr	Arg	Thr	Ala	Val 30	Asp	Val
Ala	Gly	Gly 35	_	Cys	Phe	Asp	Leu 40	Ala	Ala	Pro	Ser	Asp 45	Glu	Ser	Ser
Ala	Val 50	Gln	Thr	Ser	Phe	Leu 55	Ser	Pro	Phe	Gly	Val 60	Thr	Leu	Glu	Ala
Phe 65	Thr	Arg	Asp	Asn	Asn 70	Ser	His	Ser	Arg	Asp 75	Trp	Asp	Ile	Asn	Gly 80
Gly	Ala	Cys	Asn	Thr 85	Leu	Thr	Asn	Asn	Glu 90	Gln	Asn	Gly	Pro	Lys 95	Leu
Glu	Asn	Phe	Leu 100	Gly	Arg	Thr	Thr	Thr 105	Ile	Tyr	Asn	Thr	Asn 110	Glu	Thr
Val	Val	Asp 115	Gly	Asn	Gly	Asp	Cys 120	Gly	Gly	Gly	Asp	Gly 125	Gly	Gly	Gly
Gly	Ser 130	Leu	Gly	Leu	Ser	Met 135	Ile	Lys	Thr	Trp	Leu 140	Ser	Asn	His	Ser
Val 145	Ala	Asn	Ala	Asn	His 150	Gln	Asp	Asn	Gly	Asn 155	Gly	Ala	Arg	Gly	Leu 160
Ser	Leu	Ser	Met	Asn 165	Ser	Ser	Thr	Ser	Asp 170	Ser	Asn	Asn	Tyr	Asn 175	Asn
Asn	Asp	Asp	Val 180	Val	Gln	Glu	Lys	Thr 185	Ile	Val	Asp	Val	Val 190	Glu	Thr
Thr	Pro	Lys 195	Lys	Thr	Ile	Glu	Ser 200	Phe	Gly	Gln	Arg	Thr 205	Ser	Ile	Tyr
Arg	Gly 210	Val	Thr	Arg	His	Arg 215	Trp	Thr	Gly	Arg	Tyr 220	Glu	Ala	His	Leu
Trp 225	Asp	Asn	Ser	Cys	Lys 230	Arg	Glu	Gly	Gln	Thr 235	Arg	Lys	Gly	Arg	Gln 240
Val	Tyr	Leu	Gly	Gly 245	Tyr	Asp	Lys	Glu	Glu 250	Lys	Ala	Ala	Arg	Ala 255	Tyr
Asp	Leu	Ala	Ala	Leu	Lys	Tyr	Trp	Gly	Pro	Thr	Thr	Thr	Thr	Asn	Phe

260 265

Pro Leu Ser Glu Tyr Glu Lys Glu Val Glu Glu Met Lys His Met Thr 280

285

Val Trp Asn Asp Thr

Arg	Gln 290		Tyr	Val	Ala	Ser 295		Arg	Arg	Lys	Ser 300	Ser	Gly	Phe	Ser
Arg 305		Ala	Ser	Ile	Tyr 310		Gly	Val	Thr	Arg 315		His	Gln	His	Gly 320
Arg	Trp	Gln	Ala	Arg 325		Gly	Arg	Val	Ala 330		Asn	Lys	Asp	Leu 335	Tyr
Leu	Gly	Thr	Phe 340		Thr	Gln	Glu	Glu 345	Ala	Ala	Glu	Ala	Tyr 350	Asp	Ile
Ala	Ala	Ile 355		Phe	Arg	Gly	Leu 360	Ser	Ala	Val	Thr	Asn 365	Phe	Asp	Met
Asn	Arg 370	Tyr	Asn	Val	Lys	Ala 375	Ile	Leu	Glu	Ser	Pro 380	Ser	Leu	Pro	Ile
Gly 385	Ser	Ser	Ala	Lys	Arg 390	Leu	Lys	Asp	Val	Asn 395	Asn	Pro	Val	Pro	Ala 400
Met	Met	Ile	Ser	Asn 405	Asn	Val	Ser	Glu	Ser 410	Ala	Asn	Asn	Val	Ser 415	Gly
Trp	Gln	Asn	Thr 420	Ala	Phe	Gln	His	His 425	Gln	Gly	Met	Asp	Leu 430	Ser	Leu
Leu	Gln	Gln 435	Gln	Gln	Glu	Arg	Tyr 440	Val	Gly	Tyr	Tyr	Asn 445	Gly	Gly	Asn
Leu	Ser 450	Thr	Glu	Ser	Thr	Arg 455	Val	Cys	Phe	Lys	Gln 460	Glu	Glu	Glu	Gln
Gln 465	His	Phe	Leu	Arg	Asn 470	Ser	Pro	Ser	His	Met 475	Thr	Asn	Val	Asp	His 480
His	Ser	Ser	Thr	Ser 485	Asp	Asp	Ser	Val	Thr 490	Val	Cys	Gly	Asn	Val 495	Val
Ser	Tyr	Gly	Gly 500	Tyr	Gln	Gly	Phe	Ala 505	Ile	Pro	Val	Gly	Thr 510	Ser	Val
Asn	Tyr	Asp 515	Pro	Phe	Thr	Ala	Ala 520	Glu	Ile	Ala	Tyr	Asn 525	Ala	Arg	Asn
His	Tyr 530	Tyr	Tyr	Ala	Gln	His 535	Gln	Gln	Gln	Gln	Gln 540	Ile	Gln	Gln	Ser
Pro 545	Gly	Gly	Asp	Phe	Pro 550	Val	Ala	Ile	Ser	Asn 555	Asn	His	Ser	Ser	Asn 560
Met	Tyr	Phe	His	Gly 565	Glu	Gly	Gly	Gly	Glu 570	Gly	Ala	Pro	Thr	Phe 575	Ser

	<210> 8	
	<211> 30	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<pre><223> Description of Artificial Sequence: Primer</pre>	
	V2257 Bobbliption of Interfedial boqueser frame-	
	<400> 8	
	gaggcagcgg tcggatcgta acagtactct	30
	.010. 0	
	<210> 9	
	<211> 30 <212> DNA	
	<213> Artificial Sequence	
	12132 Artificial Dequence	
F 1	<220>	
med from time from food from the	<223> Description of Artificial Sequence: Primer	
E E	<400> 9	
	cataaggaga gagagaaaag cctaaccagt	30
IĘ πa ma,		
	<210> 10	
mş.	<211> 19	
ngh. FFA	<212> DNA	
nte Ng	<213> Artificial Sequence	
And the States of States	•	
afi ag	<220>	
ef.	<223> Description of Artificial Sequence: Primer	
<u></u>	4400 10	
	<400> 10	19
	accaagaact cgttagatc	1 2
	<210> 11	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	.000	
	<220>	
	<223> Description of Artificial Sequence: Primer	
	<400> 11	
	aacgcatata actaaagatc	20
	<210> 12	
	<211> 26	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	> m (u) ∨ r	

	<223> Description of Artificial Sequence: Primer	
	<400> 12	
	ccatggatec agagacgaag cgaaac	26
	<210> 13	
	<211> 26	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: Primer	
	<400> 13	
	actccatgga taataactgg ttaggc	26
Q	<210> 14	
O	<211> 26	
m	<212> DNA	
	<213> Artificial Sequence	
<u>u</u>	<220>	
Ç:	<223> Description of Artificial Sequence: Primer	
#	<400> 14	
	aaattotcaa gotttggtoo atottg	26