Дифференциальные уравнения

Дифференциальные уравнения

Дифференциальным уравнением называется уравнение, связывающее независимую переменную, искомую функцию и ее производные различных порядков по x.

Общий вид дифференциального уравнения *n*-го порядка:

$$F(x, y, y', ..., y^{(n)}) = 0$$

Готфрид Лейбниц

Исаак Ньютон

Жозеф-Луи Лагранж

Леонард Эйлер

Пьер-Симон Лаплас

Жозеф Лиувилль

Анри Пуанкаре

Карл Фридрих Гаусс

Порядок дифференциального уравнения

Порядок старшей производной, входящей в данное дифференциальное уравнение, называется **порядком** этого уравнения.

Примеры.

Первый порядок
$$y' = xy$$
 Второй порядок $y'' + 2y' + y = 0$ Третий порядок $y''' = e^{2x}$

Линейное дифференциальное уравнение

Дифференциальное уравнение называется **линейным**, если его левая часть является многочленом от неизвестной функции и ее производных различных порядков, то есть имеет общий вид:

Коэффициенты линейного уравнения Правая часть, свободный член

Однородное дифференциальное уравнение

Дифференциальное уравнение называется **однородным**, если его правая часть равна нулю. В противном случае оно называется **неоднородным**.

Однородное и неоднородное уравнения

Если функция g(x) тождественно равна нулю, уравнение называется **однородным**, в противном – **неоднородным**.

$$y' + f(x) \cdot y = 0$$

Однородное уравнение

$$y' + f(x) \cdot y = g(x)$$

Неоднородное уравнение

Линейное однородное уравнение решается методом разделения переменных. Линейное неоднородное уравнение решается методом вариации постоянных.

Решение дифференциального уравнения

Решением дифференциального уравнения называется всякая функция $y = \varphi(x)$, которая после подстановки в уравнение обращает его в тождество относительно x.

Решить, или **проинтегрировать**, данное дифференциальное уравнение — означает найти все его решения в заданной области.

График решения называется интегральной кривой.

Общее и частное решения

Общим решением дифференциального уравнения называется решение, которое содержит столько независимых произвольных постоянных, каков порядок этого уравнения:

$$y = \varphi(x, C_1, C_2, ..., C_n)$$

Частным решением дифференциального уравнения называется всякое решение, которое получается из общего, если приписать входящим в него произвольным постоянным определенные значения.

Пример

Дифференциальное уравнение второго порядка:

$$y'' + y = 0$$

Легко сообразить, что sin x и соs x являются решениями.

Общее решение:

$$y = C_1 \sin x + C_2 \cos x$$

Частное решение:

$$y = 2\sin x - 5\cos x$$

Проверка решений

Если в результате решения некоторого дифференциального уравнения найдена некоторая функция, то подставив эту функцию в уравнение, можно проверить правильность решения.

Пример. Функция:
$$y = (C_1 + C_2 x)e^x$$

есть решение

уравнения:

$$y'' - 2y' + y = 0$$

Проверка.

$$y' = (C_1 + C_2 + C_2 x)e^x$$

$$y'' = (C_1 + 2C_2 + C_2 x)e^x$$

$$y'' - 2y' + y = 0$$

Уравнение первого порядка

Уравнение, связывающее между собой независимую переменную x, искомую функцию y(x) и ее производную y'(x), называется дифференциальным уравнением первого порядка:

$$F(x, y, y') = 0$$

Если уравнение **разрешено относительно производной**, то оно имеет вид:

$$y' = f(x, y)$$

Постановка задачи Коши

Задача нахождения решения дифференциального уравнения:

$$y' = f(x, y)$$

удовлетворяющего начальному условию:

$$y(x_0) = y_0$$

где x_0 и y_0 - заданные числа, называется **задачей Коши** для уравнения первого порядка.

Геометрический смысл

Решить задачу Коши

$$y' = f(x, y)$$
$$y(x_0) = y_0$$

означает **найти интегральную кривую** дифференциального уравнения, проходящую через заданную точку M_0 (x_0 , y_0).

Методы решения задачи Коши

- Метод Пикара
- Метод Эйлера
- Усовершенствованный метод Эйлера 2-го порядка
- Метод Эйлера-Коши 2-го порядка точности
- Метод Рунге-Кутты 4-го порядка точности
- Метод Адамса 4-го порядка точности

Метод Пикара – приближённый аналитический метод

Задача Коши: решить ОДУ y' = f(x,y) с начальным условием $y(x_0) = y_0$

Задача Коши имеет единственное решение, если функция f(x,y) непрерывна в окрестности точки (x_0,y_0) и имеет ограниченную частную производную по $y-f'_v(x,y)$

Формула Пикара:

$$y^{(n)}(x) = y_0 + \int_{x_0}^{x} f(x, y^{(n-1)}(x)) dx$$

В области $R=\{|x-x_0|<a;|y-y_0|<b\}$ погрешность оценивается формулой:

$$|y(x)-y^{(n)}(x)| \leq N^n M \frac{h^{n+1}}{(n+1)!},$$

где $M=\max |f(x,y)|$; $N=\max |f'_{y}(x,y)|$; $h=\min(a,b/M)$.

Метод Пикара – приближённый аналитический метод

• Методом Пикара найти три первых приближённых решения дифференциального уравнения и оценить погрешность:

$$y' = x-y$$
; $y(x=0)=1$; на отрезке [0;0,5].

$$y^{(1)}(x) = 1 + \int_{0}^{x} (x-1)dx = 1 - x + \frac{1}{2}x^{2}$$

$$y^{(2)}(x) = 1 + \int_{0}^{x} (x - 1 - \frac{1}{2}x^{2} + x)dx = 1 - x + x^{2} - \frac{1}{6}x^{3}$$

$$y^{(3)}(x) = 1 + \int_{0}^{x} (x - 1 + x - x^{2} + \frac{1}{6}x^{3}) dx = 1 - x + x^{2} - \frac{1}{3}x^{3} + \frac{1}{24}x^{4}$$

Метод Пикара – приближённый аналитический метод

X	X ²	X ³	X ⁴	Y ⁽¹⁾	Υ ⁽²⁾	Υ(3)
0	0	0	0	1,	1,	1,
0,1	0,01	0,001	0,0001	0,9050	0,9098	0,9098
0,2	0,04	0,008	0,0016	0,8200	0,8397	0,8377
0,3	0,09	0,027	0,0081	0,7450	0,7855	0,7650
0,4	0,16	0,064	0,0256	0,6800	0,7494	0,7397
0,5	0,25	0,125	0,0625	0,6250	0,7292	0,7109

Оценка погрешности:

<u>n=1</u> :	<u>n=2</u> :	<u>n=3</u> :
x=[0; 0,5]	x=[0;0,5];	x=[0;0,5];
y=[1; 0,625]	y=[1;0,7292];	y=[1;0,7109];
f(x,y)=x-y; M = max f(x,y) = 1	M=1;	M=1;
$f_y(x,y)=x-1; N = max f'(x,y) =1$	N=1;	N=1;
$h=min(x-x_0 =0.5; y-y_0 =0.375)=0.375$	h=min(0,5;0,2708)=0,2708;	h=min(0,5;0,29)=0,29;

$$\varepsilon^{(1)} = \frac{0,375^2}{2} = 7*10^{-2} \qquad \qquad \varepsilon^{(2)} = \frac{0,27^3}{6} = 3*10^{-3} \qquad \qquad \varepsilon^{(3)} = \frac{0,29^4}{24} = 9*10^{-4}$$

Метод Эйлера

- Простейший численный метод решения систем обыкновенных дифференциальных уравнений
- Является явным, одношаговым методом первого порядка точности
- Основан на аппроксимации интегральной кривой кусочно-линейной функцией

Метод Эйлера

Задача Коши: решить ОДУ y' = f(x,y) с начальным условием $y(x_0) = y_0$

Решение ищется на интервале $(x_0, b]$. На этом интервале введем узлы:

$$x_0 < x_1 < \ldots < x_n \le b.$$

Расчётная формула:

$$\boldsymbol{y}_{k+1} = \boldsymbol{y}_k + \Delta \boldsymbol{y}_k,$$

$$\Delta y_k = hf(x_k, y_k)$$

Оценка погрешности:

- Решение с шагом h в точке x_n : y_n
- Решение с шагом h/2 в точке $x_n y_n^*$
- Точное (неизвестное) решение: $y(x_n)$

Тогда:

$$|y_{n}^{*} - y(x_{n})| < |y_{n}^{*} - y_{n}|$$

Ломаная Эйлера (красная линия) — приближённое решение в пяти узлах задачи Коши и точное решение этой задачи (выделено синим цветом)

Усовершенствованный метод Эйлера 2-го порядка

Задача Коши: решить ОДУ y' = f(x,y) с начальным условием $y(x_0) = y_0$

Расчётная формула:

$$y_{k+1} = y_k + \Delta y_k,$$

 $\Delta y_k = hf(x_k + \frac{h}{2}, y_k + \frac{h}{2}f_k)$ $f_k = f(x_k, y_k)$

Оценка погрешности:

- Решение с шагом h в точке x_n : y_n
- Решение с шагом h/2 в точке $x_n y_n^*$
- Точное (неизвестное) решение: $y(x_n)$

Тогда:

$$|y_{n}^{*} - y(x_{n})| < 1/3 |y_{n}^{*} - y_{n}|$$

Метод Эйлера-Коши 2-го порядка точности

Задача Коши: решить ОДУ y' = f(x,y) с начальным условием $y(x_0) = y_0$

Расчётная формула:

$$y_{k+1} = y_k + \Delta y_k,$$

 $\Delta y_k = \frac{h}{2} (f(x_k, y_k) + f(x_k + h, y_k + hf_k))$ $f_k = f(x_k, y_k)$

Оценка погрешности:

- Решение с шагом h в точке x_n : y_n
- Решение с шагом h/2 в точке $x_n y_n^*$
- Точное (неизвестное) решение: $y(x_n)$

Тогда:

$$|y_{n}^{*} - y(x_{n})| < 1/3 |y_{n}^{*} - y_{n}|$$

Метод Рунге-Кутты 4-го порядка точности

Задача Коши: решить ОДУ y' = f(x,y) с начальным условием $y(x_0) = y_0$

Расчётная формула:

$$y_{i+1} = y_i + \Delta y_i$$

• На каждом і-ом шаге вычисляют 4 числа:

$$K_1 = hf(x_i, y_i)$$

 $K_2 = hf(x_i+h/2, y_i+K_1/2)$
 $K_3 = hf(x_i+h/2, y_i+K_2/2)$
 $K_4 = hf(x_i+h, y_i+K_3)$

• Определяют средневзвешенное по формуле:

$$\Delta y_i = 1/6(K_1 + 2K_2 + 2K_3 + K_4)$$

Оценка погрешности:

$$|y^*_i - y(x_i)| < 1/15|y^*_i - y_i|$$

Метод Адамса 4-го порядка точности

Задача Коши: решить ОДУ y' = f(x,y) с начальным условием $y(x_0) = y_0$

Необходимо для начала решения задать начальный отрезок $[y_0, y_1, y_2, y_3]$, который вычисляют одним из методов Рунге-Кутты.

Расчётная формула:

$$y_{k+1} = y_k + \Delta y_k$$

$$\Delta y_k = t_k + \frac{1}{2} \Delta t_{k-1} + \frac{5}{12} \Delta^2 t_{k-2} + \frac{3}{8} \Delta^3 t_{k-3}$$

По заданным значениям

$$(x_{0,}y_{0}),(x_{1},y_{1}),(x_{2},y_{2}),(x_{3},y_{3})$$

вычисляются:

$$t_{0} = hf(x_{0}, y_{0})$$

$$t_{1} = hf(x_{1}, y_{1})$$

$$t_{2} = hf(x_{2}, y_{2})$$

$$t_{3} = hf(x_{3}, y_{3})$$

					Конечные разности		
K	$\mathbf{x}_{\mathbf{k}}$	y _k	Δy_k	$t_k = hf_k$	$\Delta t_{ m k}$	$\Delta^2 t_k$	$\Delta^3 t_k$
0	\mathbf{x}_0	y_0		t_0	Δt_0	$\Delta^2 t_0$	$\Delta^3 t_0$
1	\mathbf{x}_1	y ₁		t_1	Δt_1	$\Delta^2 t_1$	$\Delta^3 t_1$
2	X ₂	y ₂		t_2	Δt_2	$\Delta^2 t_2$	$\Delta^3 t_2$
3	X 3	y ₃	Δy_3	t_3	Δt_3	$\Delta^2 t_3$	
4	X4	y ₄	Δy_4	t_4	Δt_4		
5	X 5	y ₅	Δy_5	t_5			
6	X 6	y ₆					