

P-Channel 60-V (D-S) MOSFET

PRODUCT SUMMARY								
Part Number	V _{(BR)DSS} Min (V)	r _{DS(on)} Max (Ω)	V _{GS(th)} (V)	I _D (A)				
TP0610L	-60	10 @ V _{GS} = -10 V	−1 to −2.4	-0.18				
TP0610T	-60	10 @ V _{GS} = -10 V	−1 to −2.4	-0.12				
VP0610L	-60	10 @ V _{GS} = -10 V	−1 to −3.5	-0.18				
VP0610T	-60	10 @ V _{GS} = -10 V	−1 to −3.5	-0.12				
BS250	-45	14 @ V _{GS} = -10 V	−1 to −3.5	-0.18				

FEATURES

High-Side Switching

Low On-Resistance: 8 Ω

Low Threshold: −1.9 V

Fast Switching Speed: 16 ns

• Low Input Capacitance: 15 pF

BENEFITS

- Ease in Driving Switches
- Low Offset (Error) Voltage
- Low-Voltage Operation
- High-Speed Switching
- Easily Driven Without Buffer

APPLICATIONS

- Drivers: Relays, Solenoids, Lamps, Hammers, Displays, Memories, Transistors, etc.
- Battery Operated Systems
- Power Supply, Converter Circuits
- Motor Control

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C UNLESS OTHERWISE NOTED)										
Parameter Drain-Source Voltage		Symbol	TP0610L -60	TP0610T	VP0610L	VP0610T -60	BS250 -45	Unit		
		V_{DS}		-60	-60					
Gate-Source Voltage		V_{GS}	±30	±30	±30	±30	± 25	1 °		
Continuous Drain Current (T _J = 150°C)	T _A = 25°C		-0.18	-0.12	-0.18	-0.12	-0.18			
	T _A = 100°C	l _D	-0.11	-0.07	-0.11	-0.07		Α		
Pulsed Drain Current ^a		I _{DM}	-0.8	-0.4	-0.8	-0.4				
Power Dissipation	T _A = 25°C		0.8	0.36	0.8	0.36	0.83			
	T _A = 100°C	P _D	0.32	0.14	0.32	0.14		w		
Thermal Resistance, Junction-to-Ambient		R_{thJA}	156	350	156	350	150	°C/W		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150							

Notes

a. Pulse width limited by maximum junction temperature.

For applications information see AN804.

TP0610L/T, VP0610L/T, BS250

Vishay Siliconix

						Lin	nits					
					TP0610L/T		VP0610L/T		BS250			
Parameter	Symbol	Test Conditions		Тура	Min	Max	Min	Max	Min	Max	Unit	
Static	•				•	•			•		•	
Drain-Source Breakdown Voltage	.,	$V_{GS} = 0 \text{ V}, I_D = -10 \mu\text{A}$		-70	-60		-60					
	V(BR)DSS	$V_{GS} = 0 \text{ V}, I_D = -100 \mu\text{A}$							-45		V	
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = -1 \text{ mA}$		-1.9	-1	-2.4	-1	-3.5	-1	-3.5		
		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$				±10		±10			1	
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}, T_{J} = 125 ^{\circ}\text{C}$				±50					nA	
,		V _{DS} = 0 V, V _{GS} = ±15 V								±20	1	
Zero Gate Voltage Drain Current		$V_{DS} = -48 \text{ V}, V_{GS} = 0 \text{ V}$				-1		-1				
	I _{DSS}	V _{DS} = -48 V, V _{GS} = 0 V, T _J = 125°C				-200		-200			μΑ	
Diam Current		$V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V}$								-0.5	1	
		$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}$		-180	-50							
On-State Drain Current ^b	I _{D(on)}	V _{DS} = -10 V, V _{GS} = -10 V	L Suffix	-750			-600				mA	
Current	` ,		T Suffix				-220				1	
	r _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D = -25 \text{ mA}$		11		25						
Drain-Source		V _{GS} = -10 V, I _D = -0.5 A	L Suffix	8		10		10			Ω	
On-Resistance ^b		$V_{GS} = -10 \text{ V}, I_D = -0.5 \text{ A}, T_J = 125^{\circ}\text{C}$	L Suffix	15		20		20				
		$V_{GS} = -10 \text{ V, } I_D = -0.2 \text{ A}$	T Suffix	6.5		10		10		14	1	
Forward		$V_{DS} = -10 \text{ V}, I_D = -0.5 \text{ A}$	L Suffix	20	80						mS	
Transconductance ^b	9fs	$V_{DS} = -10 \text{ V}, I_D = -0.1 \text{ A}$	T Suffix	90	60		70					
Diode Forward Voltage	V _{SD}	I _S = -0.5 A, V _{GS} = 0 V		-1.1							٧	
Dynamic				•								
Input Capacitance	C _{iss}	$V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V}$ f = 1 MHz		15		60		60			pF	
Output Capacitance	C _{oss}			10		25		25				
Reverse Transfer Capacitance	C _{rss}			3		5		5				
Switching ^c				•								
Turn-On Time	t _{ON}	V_{DD} = -25 V, R_L = 133 Ω I_D \cong -0.18 A, V_{GEN} = -10 V, R_g = 25 Ω		8						10		
Turn-Off Time	t _{OFF}			8	l	İ		 	l	10	ns	

Notes a. For DESIGN AID ONLY, not subject to production testing. b. Pulse test: $PW \le 300 \ \mu s$ duty cycle $\le 2\%$. c. Switching time is essentially independent of operating temperature.

VPDS06

Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

TP0610L/T, VP0610L/T, BS250

Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

