VGGNet 의 이해

Very Deep Convolutional Networks for Large-Scale Image Recognition

Agenda

- 개요
- 기본 구조 (Architecture)
- Kernel의 특징
- 네트워크의 깊이
- Training & Testing
- Results
- 결언

개요

- Simonyan & Zisserman, 2014
- 2014 Image Net 대회 2위
- 3x3 Convolution Filter
- **Increasing Depth of Layers**

28.2

25.8

Architecture (VGG-16)

224x224x3 이미지 입력

Convolution & Max Pooling 반복

• Filter 크기: 3x3 고정

• Padding = 'same' 이미지 사이즈 변화 없음

FC Layer

Conv 3x3 Filter vs. 5x5 Filter

- 동일한 effective receptive field
- 파라미터 수 감소
 - → 빠른 학습속도
 - → Overfitting 감소
- 더 깊은 network
 - → 더 많은 ReLu 의 사용
 - → Non-linearity 증가
 - → Better feature selection

Deeper Network

Number of

Train & Test

- Data augmentation
 - ILSVRC 1000 Classes, Class 당 약 1000장
 - Scaling → 좌우반전 & RGB 조작
- Training
 - Pre-initialization
 - Single Scale → Multi Scale (Scale Jittering)
- Testing
 - Single / multi test scale
 - Multi-crop / Dense / Fusion

Training - Pre-initialization

- 11 layer 모델 먼저 학습
- 기존 학습된 파라미터를 기반으로, 레이어 추가하여 학습
- 학습 시간 감소
- Vanishing gradient 문제 해결

Training - Parameters

Hyper Parameters

- Cost function: Multinomial logistic regression
- Batch size: 256
- Optimizer: Momentum = 0.9
- Regularization: L2 regularization = 5 · e−4
- **Dropout** = 0.5
- Learning rate: e-2

Trainable Parameters Network A, A-LRN B C D E # params 133M 133M 134M 138M 144M

Single Scale

Original Image 512x930

or

S=256 256x465

S=384 384x698

Multi Scale

Original Image 512x930

Isotropically-Rescaled

S=256 256x465

S=512 512x930

Multi-crop & Dense Evaluation

- Multi-crop evaluation
 - 50 crops / (5x5, 2flips) x 3 scales = Total 150 crops
 - Voting
 - 이미지수 증가에 따른 연산량 증가
- Dense evaluation
 - Max Pooling 을 밀집하게 (densely) 적용하여 resolution의 떨어짐을 보완
 - 연산량 측면에서 효율적
 - 픽셀 간격의 크기 문제로 인한 학습 결과 떨어짐
- ConvNet Fusion
 - Multi-crop + Dense
 - 동시에 사용함으로써 각각의 단점 보완

Testing - FC layer --- Conv. layer

Image scale 과 상관없이 class 를 구분할 수 있도록, FC layer를 Conv. layer로 변경

최종 feature 가 1x1 이 아니더라도, 평균을 내어 1x1 feature map 생성

Test 결과 비교

Table 3: ConvNet performance at a single test scale.

Table 5. Convitet performance at a single test scale.								
ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)				
	train(S)	test(Q)						
A	256	256	29.6	10.4				
A-LRN	256	256	29.7	10.5				
В	256	256	28.7	9.9				
С	256	256	28.1	9.4				
	384	384	28.1	9.3				
	[256;512]	384	27.3	8.8				
D	256	256	27.0	8.8				
	384	384	26.8	8.7				
	[256;512]	384	25.6	8.1				
Е	256	256	27.3	9.0				
	384	384	26.9	8.7				
	[256;512]	384	25.5	8.0				

Table 4: ConvNet performance at multiple test scales.

ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)
	train(S)	test(Q)		
В	256	224,256,288	28.2	9.6
С	256	224,256,288	27.7	9.2
	384	352,384,416	27.8	9.2
	[256; 512]	256,384,512	26.3	8.2
D	256	224,256,288	26.6	8.6
	384	352,384,416	26.5	8.6
	[256; 512]	256,384,512	24.8	7.5
Е	256	224,256,288	26.9	8.7
	384	352,384,416	26.7	8.6
	[256; 512]	256,384,512	24.8	7.5

Single test scale

- Test 이미지 사이즈 고정
- S=Single Scale,
 - S=Q
- S=Multi Scale,
 - 0.5x(256+512) = 384 고정

Multi test scale

- 하나의 S 사이즈에 대해 여러 test image 사용
- S=Single Scale,
 - Q={S-32,S,S+32}
- S=Multi Scale,
 - $Q = \{Smin, 0.5(Smin + Smax), Smax\}$

Test 결과 비교

Table 5: ConvNet evaluation techniques comparison. In all experiments the training scale S was sampled from [256; 512], and three test scales Q were considered: $\{256, 384, 512\}$.

ConvNet config. (Table 1)	Evaluation method	top-1 val. error (%)	top-5 val. error (%)
	dense	24.8	7.5
D	multi-crop	24.6	7.5
	multi-crop & dense	24.4	7.2
	dense	24.8	7.5
E	multi-crop	24.6	7.4
	multi-crop & dense	24.4	7.1

Dense, Multi-crop & ConvNet Fusion

- Image Size 세팅은 모두 동일
 S=Multi Scale
 Q={256, 384, 512}

Multi Scaling Training, multi scaling testing, dense 와 multi-crop 을 모두 사용할 때, 가장 좋은 결과를 보여줌

결언

- Network depth의 영향력을 확인하기 위해 3x3 Convolution을 활용한 단순한 구조의 모델
- 다양한 경우에 대한 수치를 발표하며 Deep CNN에 대한 이해를 도움
- 파라미터의 수가 매우 많아
 학습 시간이 오래걸리는 문제점

감사합니다.

References

- 1. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
- 2. VGGNet Organize everything I know documentation. (n.d.). Read the Docs. Retrieved September 23, 2020, from https://oi.readthedocs.io/en/latest/computer-vision/cnn/vggnet.html
- 3. Tsang, S. (2020, September 1). Review: VGGNet 1st Runner-Up (Image Classification), Winner (Localization) in ILSVRC 2014. Medium. https://medium.com/coinmonks/paper-review-of-vggnet-1st-runner-up-of-ilsvlc-2014-image-classification-d02355543a11
- 4. Do-Woo-Ner, D. (2020, January 23). *7. VGGNet.* Time Traveler. https://89douner.tistory.com/61?category=873854