Lecture 14a: Perceptron Learning

CSCI 360 Introduction to Artificial Intelligence USC

Here is where we are...

3/1		Project 2 Out						
3/4	3/5	Quantifying Uncertainty	[Ch 13.1-13.6]					
3/6	3/7	Bayesian Networks	[Ch 14.1-14.2]					
3/11	3/12	(spring break, no class)						
3/13	3/14	(spring break, no class)						
3/18	3/19	Inference in Bayesian Networks	[Ch 14.3-14.4]					
3/20	3/21	Decision Theory	[Ch 16.1-16.3 and 16.5]					
3/23		Project 2 Due						
3/25	3/26	Advanced topics (Chao traveling to National Science Foundation)						
3/27	3/28	Advanced topics (Chao traveling to National Science Foundation)						
3/29		Homework 2 Out						
4/1	4/2	Markov Decision Processes	[Ch 17.1-17.2]					
4/3	4/4	Decision Tree Learning	[Ch 18.1-18.3]					
4/5		Homework 2 Due						
4/5		Proiect 3 Out						
4/8	4/9	Perceptron Learning	[Ch 18.6]					
4/10	4/11	Neural Network Learning	[Ch 18.7]					
4/15	4/16	Statistical Learning	[Ch 20.2.1-20.2.2]					
4/17	4/18	Reinforcement Learning	[Ch 21.1-21.2]					
4/22	4/23	Artificial Intelligence Ethics						
4/24	4/25	Wrap-Up and Final Review						
4/26		Project 3 Due						
5/3	5/2	Final Exam (2pm-4pm)						
	3/4 3/6 3/11 3/13 3/18 3/20 3/23 3/25 3/27 3/29 4/1 4/3 4/5 4/5 4/5 4/10 4/15 4/17 4/22 4/24 4/26	3/4 3/5 3/6 3/7 3/11 3/12 3/13 3/14 3/18 3/19 3/20 3/21 3/23 3/26 3/27 3/28 3/29 4/1 4/2 4/3 4/4 4/5 4/4 4/5 4/5 4/10 4/11 4/15 4/16 4/17 4/18 4/22 4/23 4/24 4/25 4/26 4/26	3/4 3/5 Quantifying Uncertainty 3/6 3/7 Bayesian Networks 3/11 3/12 (spring break, no class) 3/13 3/14 (spring break, no class) 3/18 3/19 Inference in Bayesian Networks 3/20 3/21 Decision Theory 3/23 Project 2 Due 3/25 3/26 Advanced topics (Chao traveling to Na Advanced topics (Chao traveling to					

Outline

- What is Al?
- Part I: Search
- Part II: Logical reasoning
- Part III: Probabilistic reasoning
- Part IV: Machine learning

- Decision Tree Learning
- Perceptron Learning
- Neural Network Learning
- Statistical Learning
- Reinforcement Learning

Recap: Forms of learning -- Prior knowledge

Inductive learning

 Learning a general function, or a general rule, from specific inputoutput pairs

$$\mathcal{D} = \left\{ \mathbf{x}(n), y(n) \right\}_{n=1...N} \Longrightarrow \left(A \Longrightarrow C \right)$$

Deductive learning

 Going from a known general rule to a new rule that is logically entailed, but is useful because it allows more efficient processing

$$(A \Rightarrow B \Rightarrow C) \Rightarrow (A \Rightarrow C)$$

Recap: Forms of learning - Feedback to learn from

- Unsupervised learning
 - Learn "patterns in the input" without explicit feedback
- Supervised learning
 - Given example input-output pairs, learn an input-output function
- Reinforcement learning
 - Learn from reinforcements (rewards or punishments)

Recap: Forms of learning - Feedback to learn from

- Unsupervised learning
 - Learn "patterns in the input" without explicit feedback
- Supervised learning
 - Given example input-output pairs, learn an input-output function
 - Decision Tree / Regression / Classification
- Reinforcement learning
 - Learn from reinforcements (rewards or punishments)

Recap: Decision tree -- Expressiveness

- Decision trees can express any function of the input attributes.
 - e.g., for Boolean functions, truth table row → path to leaf:

- In general, if there is a path to leaf for each example in the training set, it probably won't generalize well to new examples
- Prefer to find more compact decision trees

Recap: Decision tree learning – input/output pairs

- Examples described by attribute values (Boolean, discrete, continuous)
 - E.g., situations where I will/won't wait for a table:

Example	Attributes									Target	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1											Т
X_2											F
X_3											Т
X_4											Т
X_5											F
X_6											Т
X_7											F
X_8											Т
$egin{array}{c} X_5 \ X_6 \ X_7 \ X_8 \ X_9 \ \end{array}$											F
X_{10}											F
X_{11}											F
X_{12}											Т

Classification of examples is positive (T) or negative (F)

Recap: Decision tree learning – input/output pairs

- Examples described by attribute values (Boolean, discrete, continuous)
 - E.g., situations where I will/won't wait for a table:

Example	Attributes								Target		
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

Classification of examples is positive (T) or negative (F)

Recap: Decision tree learning - Greedy algorithm

- Top-down construction of a decision tree by recursively selecting the "best attribute" to use at the current node in tree (with the largest information gain)
 - Once attribute is <u>selected</u> for current node, generate child nodes: one for each possible value of selected attribute
 - Partition examples using the possible values of this attribute, and assign these subsets of the examples to the appropriate child node
 - Repeat for each child node, until all examples associated with a node are either all positive or all negative

Recap: Decision tree learning - Choosing an attribute

 Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Recap: Decision tree learning - Choosing an attribute

 Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Recap: Decision tree learning - Choosing an attribute

 Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Patrons? is a better choice

Recap: Decision tree learning – Iterative process

Recap: Decision tree learning - Final result

Recap: Forms of learning - Feedback to learn from

- Unsupervised learning
 - Learn "patterns in the input" without explicit feedback
- Supervised learning
 - Given example input-output pairs, learn an input-output function
 - Decision Tree / Regression / Classification
- Reinforcement learning
 - Learn from reinforcements (rewards or punishments)

Recap: Forms of learning - Feedback to learn from

- Unsupervised learning
 - Learn "patterns in the input" without explicit feedback
- Supervised learning
 - Given example input-output pairs, learn an input-output function
 - Decision Tree / Regression / Classification
- Reinforcement learning
 - Learn from reinforcements (rewards or punishments)

Regression with linear models

 Used for hundred of years: linear functions of continuousvalued inputs

$$h_{\mathbf{w}}(\mathbf{x}) = w_1 \mathbf{x} + w_0$$

weight $\mathbf{w} = [w_0, w_1]$

Linear regression: finding $h_w(x)$ that best fits training data $\{(x, f(x))\}$

Linear regression

• Finding $h_w(x)$ that best fits the training data $\{(x, f(x))\}$

$$h_{\mathbf{w}}(\mathbf{x}) = w_1 \mathbf{x} + w_0$$

Find the values of $[w_0, w_1]$ that minimize empirical loss

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} Loss(h_{\mathbf{w}}).$$

Question: How to define the "empirical loss"?

Square loss function (L₂)

• **Gauss**: If the f(x) values have normally distributed noise, the most likely values of w_1 and w_0 can be obtained by minimizing the sum of the squares of the errors

$$Loss(h_{\mathbf{w}}) = \sum_{j=1}^{N} L_2(y_j, h_{\mathbf{w}}(x_j))$$

$$= \sum_{j=1}^{N} (y_j - h_{\mathbf{w}}(x_j))^2$$

$$= \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2$$

Portrait of Gauss published in Astronomische Nachrichten (1828)

Square loss function (L₂)

 Gauss: If the f(x) values have normally distributed noise, the most likely values of w₁ and w₀ can be obtained by minimizing the sum of the squares of the errors

Minimizing L₂

- Two options:
 - Hand calculation (closed-form solution)
 - Hill-climbing search (gradient descent)

Recap: Derivative

 The derivative of a function f(x) measures the sensitivity to change of the output w.r.t. a change in its input value

 For a univariate function, it's the slope of the tangent line

The derivative at different points of a differentiable function https://en.wikipedia.org/wiki/Derivative

Recap: Derivative - Rules for basic functions

· Derivatives of powers: if

$$f(x) = x^r$$

where r is any real number, then

$$f'(x) = rx^{r-1},$$

• Sum rule:

$$(\alpha f + \beta g)' = \alpha f' + \beta g'$$

Product rule:

$$(fg)' = f'g + fg'$$

Exponential and logarithmic functions:

$$rac{d}{dx}e^x = e^x.$$

$$rac{d}{dx}a^x=a^x\ln(a).$$

• Trigonometric functions:

$$rac{d}{dx}\sin(x) = \cos(x).$$

$$rac{d}{dx}\cos(x) = -\sin(x).$$

• Chain rule for composite functions: If f(x) = h(g(x)), then $f'(x) = h'(g(x)) \cdot g'(x)$.

Minimizing L₂ – closed-form solution

 The sum of the squares of the errors (L2) is minimized when its partial derivatives w.r.t. w₀ and w₁ are zero.

$$\sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2$$

$$\frac{\partial}{\partial w_0} \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2 = 0$$

$$\frac{\partial}{\partial w_1} \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2 = 0$$

$$?$$

$$w_1 = \frac{N(\sum x_j y_j) - (\sum x_j)(\sum y_j)}{N(\sum x_j^2) - (\sum x_j)^2}$$

$$w_0 = (\sum y_j - w_1(\sum x_j))/N$$

Minimizing L₂ – closed-form solution

 The sum of the squares of the errors (L2) is minimized when its partial derivatives w.r.t. w₀ and w₁ are zero.

$$\sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2$$

$$w_1 = \frac{N(\sum x_j y_j) - (\sum x_j)(\sum y_j)}{N(\sum x_j^2) - (\sum x_j)^2}$$

$$w_0 = (\sum y_j - w_1(\sum x_j))/N$$

$$w_1 = 0.232, w_0 = 246$$

$$\frac{\partial}{\partial w_0} \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2 =$$

$$\frac{\partial}{\partial w_1} \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2$$

$$\frac{\partial}{\partial w_0} \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2 = \frac{\partial}{\partial w_1} \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2$$

$$\frac{\partial}{\partial w_i} Loss(\mathbf{w}) = \frac{\partial}{\partial w_i} (y - h_{\mathbf{w}}(x))^2$$

$$= 2(y - h_{\mathbf{w}}(x)) \times \frac{\partial}{\partial w_i} (y - h_{\mathbf{w}}(x))$$

$$= 2(y - h_{\mathbf{w}}(x)) \times \frac{\partial}{\partial w_i} (y - (w_1 x + w_0))$$

$$\frac{\partial}{\partial w_0} Loss(\mathbf{w}) = -2(y - h_{\mathbf{w}}(x))$$

$$\frac{\partial}{\partial w_0} \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2$$

$$\frac{\partial}{\partial w_1} \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2$$

$$\frac{\partial}{\partial w_0} \sum_{j=1}^N (y_j - (w_1 x_j + w_0))^2$$

$$\frac{\partial}{\partial w_1} \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2$$

$$\frac{\partial}{\partial w_i} Loss(\mathbf{w}) = \frac{\partial}{\partial w_i} (y - h_{\mathbf{w}}(x))^2$$

$$= 2(y - h_{\mathbf{w}}(x)) \times \frac{\partial}{\partial w_i} (y - h_{\mathbf{w}}(x))$$

$$= 2(y - h_{\mathbf{w}}(x)) \times \frac{\partial}{\partial w_i} (y - (w_1 x + w_0))$$

$$\frac{\partial}{\partial w_0} Loss(\mathbf{w}) = -2(y - h_{\mathbf{w}}(x))$$

Minimizing L₂

- Two options:
 - Hand calculation (closed-form solution)
 - Hill-climbing search (gradient descent)

Minimizing L₂ – gradient descent

- General search technique: a hill-climbing algorithm that follows the gradient of the function to be optimized
 - **Initialization**: choose any starting point (w_0, w_1)
 - Iteration: move to a neighboring point that is downhill

 $\mathbf{w} \leftarrow$ any point in the parameter space

loop until convergence do

for each w_i in w do

$$w_i \leftarrow w_i - \alpha \frac{\partial}{\partial w_i} Loss(\mathbf{w})$$

(a) is step size (or learning rate)

$$w_0 \leftarrow w_0 + \alpha (y - h_{\mathbf{w}}(x));$$

 $w_1 \leftarrow w_1 + \alpha (y - h_{\mathbf{w}}(x)) \times x$

Minimizing L₂ – gradient descent

- General search technique: a hill-climbing algorithm that follows the gradient of the function to be optimized
 - **Initialization**: choose any starting point (w_0, w_1)
 - Iteration: move to a neighboring point that is downhill

For N training examples, the batch gradient descent converges to the unique global minimum, but is very slow

w ← any point in the parameter space **loop** until convergence **do**

for each w_i in w do

$$w_i \leftarrow w_i - \alpha \frac{\partial}{\partial w_i} Loss(\mathbf{w})$$

Stochastic gradient descent, which considers only a single training point at a time, is often faster, but doesn't guarantee convergence.

$$w_0 \leftarrow w_0 + \alpha \sum_j (y_j - h_{\mathbf{w}}(x_j)); \quad w_1 \leftarrow w_1 + \alpha \sum_j (y_j - h_{\mathbf{w}}(x_j)) \times x_j.$$

Recap: Forms of learning - Feedback to learn from

- Unsupervised learning
 - Learn "patterns in the input" without explicit feedback
- Supervised learning
 - Given example input-output pairs, learn an input-output function
 - Decision Tree / Regression / Classification
- Reinforcement learning
 - Learn from reinforcements (rewards or punishments)

Linear classifiers with a hard threshold

 A decision boundary is a line (or surface) that separates the two classes.

Classifier h_w(x)

- The classifier is meant to return either 1 (true) or 0 (false)
 - Think of it as the result of passing the linear function (w*x) through a threshold function

$$h_{\mathbf{w}}(\mathbf{x}) = Threshold(\mathbf{w} \cdot \mathbf{x})$$
 where $Threshold(z) = 1$ if $z \ge 0$ and 0 otherwise.

Classifier h_w(x)

- The classifier is meant to return either 1 (true) or 0 (false)
 - Think of it as the result of passing the linear function (w*x) through a threshold function

$$h_{\mathbf{w}}(\mathbf{x}) = Threshold(\mathbf{w} \cdot \mathbf{x})$$
 where $Threshold(z) = 1$ if $z \ge 0$ and 0 otherwise.

Perceptron learning rule:

$$w_i \leftarrow w_i + \alpha \left(y - h_{\mathbf{w}}(\mathbf{x}) \right) \times x_i$$

- 0 if the output is correct: no update
- +1 if y is 1 but $h_w(x)$ is 0: increase w_i
- -1 if y is 0 but $h_w(x)$ is 1: decrease w_i

Perceptron learning rule

 Theorem: Perceptron learning rule converges to a perfect linear separator when data points are linearly separable.

Perceptron learning rule

 Theorem: Perceptron learning rule converges to a perfect linear separator when data points are linearly separable.

Logistic function as the threshold

- The classifier is meant to return either 1 (true) or 0 (false)
 - Think of it as the result of passing the linear function (w*x) through a threshold function

$$\frac{h_{\mathbf{w}}(\mathbf{x}) = Threshold(\mathbf{w} \cdot \mathbf{x})}{h_{\mathbf{w}}(\mathbf{x})} = \frac{1}{h_{\mathbf{w}}(z)} = \frac{1$$

$$h_{\mathbf{w}}(\mathbf{x}) = Logistic(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}}.$$

Logistic regression

Derivation of the gradient

$$\frac{\partial}{\partial w_i} Loss(\mathbf{w}) = \frac{\partial}{\partial w_i} (y - h_{\mathbf{w}}(\mathbf{x}))^2$$
$$= 2(y - h_{\mathbf{w}}(\mathbf{x})) \times \frac{\partial}{\partial w_i} (y - h_{\mathbf{w}}(\mathbf{x}))$$

$$w_i \leftarrow w_i + \alpha (y - h_{\mathbf{w}}(\mathbf{x})) \times h_{\mathbf{w}}(\mathbf{x}) (1 - h_{\mathbf{w}}(\mathbf{x})) \times x_i$$

$$h_{\mathbf{w}}(\mathbf{x}) = Logistic(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}}.$$

Outline of today's lecture

- Linear regression
- Linear classification
- Logistic regression versus linear classification
 - Examples

- Objective: Learn the weights for a given perceptron.
 - For ease of presentation:
 - binary (feature and class) values only (O=false, 1=true).

Inductive Learning for Classification

Training examples

Feature_1	Feature_2	Class
true	true	true
true	false	false
false	true	false

```
Learn f(Feature_1, Feature_2) = Class from f(true, true) = true f(true, false) = false f(false, true) = false
```

It must be *consistent* with all training examples, and make the *fewest mistakes* on the test examples.

Test examples

Feature_1	Feature_2	Class	
false	false	?	

Labeled examples

Feature_1	Feature_2	Class
true	true	true
true	false	false
false	true	false

Unlabeled examples (note: classification is very fast)

Feature_1	Feature_2	Class
false	false	? (guess: false)

Can perceptrons represent all Boolean functions?

f (Feature_1, ..., Feature_n) ≡ some propositional sentence

Can perceptrons represent all Boolean functions?

```
f (Feature_1, ..., Feature_n) ≡ some propositional sentence
```

- Linearly separable
 - Need to find an n-dimensional plane that separates the labeled examples (true from false)
 - This **plane** determines the weights and the threshold of the perceptron

Can perceptrons represent all Boolean functions?

f (Feature_1, ..., Feature_n) = some propositional sentence

- Linearly separable
 - $w_1 x_1 + w_2 x_2 = threshold$
 - $w_1 x_1 = threshold w_2 x_2$
 - $x_1 = (threshold / w_1) (w_2 / w_1) x_2 = (1.5 / 1) (1 / 1) x_2 = 1.5 x_2$

Can perceptrons represent all Boolean functions?

- Linearly separable
 - $w_1 x_1 + w_2 x_2 = threshold$
 - $w_1 x_1 = threshold w_2 x_2$
 - $x_1 = (threshold / w_1) (w_2 / w_1) x_2 = (1.5 / 1) (1 / 1) x_2 = 1.5 x_2$

Can perceptrons represent all Boolean functions?
 f (Feature_1, ..., Feature_n) = some propositional sentence

- Linearly separable
 - $w_1 x_1 + w_2 x_2 = threshold$
 - $w_1 x_1 = threshold w_2 x_2$
 - $x_1 = (threshold / w_1) (w_2 / w_1) x_2 = (1.5 / 1) (1 / 1) x_2 = 1.5 x_2$

- Can perceptrons represent all Boolean functions? NO
 f (Feature_1, ..., Feature_n) = some propositional sentence
- An XOR cannot be represented with a single perceptron!
- It does not mean single perceptrons should not be used
 - They will make some mistakes for some Boolean functions but they often work well, that is, make few mistakes on the training and test examples.
 - Of course, you only want to use them if they do not make too many mistakes in the test examples.

- The threshold can be expressed as a weight too
 - This way, an algorithm only needs to learn weights instead of the threshold and the weights. (The new threshold is always zero.)

AND

	Feature f ₁	Feature f ₂	 Class
E(xample) 1: <i>l</i> =1	f ₁₁	f ₁₂	 c_1
E(xample) 2: <i>l</i> =2	f_{21}	f_{22}	 c_2
E(xample) 3: <i>l</i> =3	f ₃₁	f_{32}	 c_3

• Learn the weights w_1, w_2, \dots so that the resulting perceptron is consistent with all training examples

Gradient Descent

Finding a local minimum of a differentiable function f(x₁, x₂, ..., x_n) with gradient descent

Learn weights w₁, w₂, ... with gradient descent (for a small positive learning rate α) so that perceptron is consistent with all training examples

Threshold function

Slope (= 0) does not give gradient descent an indication whether to increase or decrease x to find a local minimum

the output is either 0 or 1

Sigmoid function

Slope (> 0) gives gradient descent an indication to decrease x to find a local minimum

the output is any real value in the range (0,1)

no: not differentiable at x=0

$$g(x) = 1 / (1 + e^{-x})$$
$$g'(x) = e^{-x} / (1 + e^{-x})^2 = g(x) (1 - g(x))$$

Recap: Derivative – quotient rule

Let
$$f(x) = g(x)/h(x)$$
,

$$f'(x) = rac{g'(x)h(x) - g(x)h'(x)}{[h(x)]^2}.$$

•
$$g(x) = 1 / (1 + e^{-x})$$

•
$$g'(x) = e^{-x} / (1 + e^{-x})^2$$

$$= g(x) (1 - g(x))$$

• **Example**: Learn weights w_1 , w_2 , ... with an approximation of gradient descent (for $\alpha = 0.01$) so that the resulting perceptron is consistent with an AND

	Feature f ₁	Feature f ₂	Feature f ₃	Class
E(xample) 1: l=1	0	0	1	0
E(xample) 2: l=2	0	1	1	0
E(xample) 3: l=3	1	0	1	0
E(xample) 4: l=4	1	1	1	1

Implementation

```
#include<stdio.h>
#include<math.h>
#define g(x) ((1.0/(1.0+exp(-x))))
#define gprime(x) ((g(x) * (1-g(x))))
main()
 float alpha = 0.01;
  int trainingexamples = 4;
  int features = 3;
  float f[4][3] = \{\{0, 0, 1\}, \{0, 1, 1\}, \{1, 0, 1\}, \{1, 1, 1\}\};
 float class [4] = \{0,0,0,1\};
  float w[3] = \{1.1, -2.1, 0.3\}; /* random values */
  int 1, j, epoch;
 float weightedsum;
  for (epoch = 0; 1; ++epoch)
    for (1 = 0; 1 < trainingexamples; ++1)</pre>
      weightedsum = 0.0;
      for (j = 0; j < features; ++j)
        weightedsum += w[j]*f[l][j];
      for (j = 0; j < features; ++j)
        w[j] -= alpha*(g(weightedsum) - class[1])*gprime(weightedsum)*f[1][j];
     printf("epoch = %d, weights = ", epoch);
     for(j = 0; j < features; ++j)
       printf("%.2f", w[j]);
     printf(", outputs =");
     for(1 = 0; 1 < trainingexamples; ++1)</pre>
       weightedsum = 0.0;
       for(j = 0; j < features; ++j)
         weightedsum += w[j]*f[l][j];
       printf(" %.2f", g(weightedsum));
     printf("\n");
}
```

-	f_1	f_2	f_3	class
l=1	0	0	1	0
l=2	0	1	1	0
l=3	1	0	1	0
l=4	1	1	1	1


```
> gcc -lm learning.c
> ./a.out
epoch = 0, weights = 1.10 -2.10 0.30, outputs = 0.57 0.14 0.80 0.33
epoch = 1, weights = 1.10 -2.10 0.30, outputs = 0.57 0.14 0.80 0.33
epoch = 2, weights = 1.10 -2.10 0.30, outputs = 0.57 0.14 0.80 0.33
epoch = 3, weights = 1.10 -2.09 0.29, outputs = 0.57 0.14 0.80 0.33
epoch = 4, weights = 1.10 -2.09 0.29, outputs = 0.57 0.14 0.80 0.33
epoch = 5, weights = 1.10 -2.09 0.29, outputs = 0.57 0.14 0.80 0.33
...
epoch = 100, weights = 1.12 -1.97 0.16, outputs = 0.54 0.14 0.78 0.33
...
epoch = 1000, weights = 1.15 -0.80 -0.84, outputs = 0.30 0.16 0.58 0.38
...
epoch = 10000, weights = 2.56 2.55 -3.96, outputs = 0.02 0.20 0.20 0.76
...
epoch = 100000, weights = 5.47 5.47 -8.30, outputs = 0.00 0.06 0.06 0.93
```

• **Example**: Learn weights w_1 , w_2 , ... with an approximation of gradient descent (for $\alpha = 0.01$) so that the resulting perceptron is consistent with an AND

	Feature f ₁	Feature f ₂	Feature f ₃	Class
E(xample) 1: l=1	0	0	1	0
E(xample) 2: l=2	0	1	1	0
E(xample) 3: l=3	1	0	1	0
E(xample) 4: l=4	1	1	1	1

Since the output is now any real value in the range (0,1), we consider a value less than 0.5 to be 0 and a value greater than 0.5 to be 1.

So we indeed learned an AND!

Epoch 0		Epoch 1		Epoch 2		Epoch 100		Epoch 100,000	
Weights	Outputs	Weights	Outputs	Weights	Outputs	Weights	Outputs	Weights	Outputs
$w_1 = 1.10$	$o_1 = 0.57$	1.10	0.57	1.10	0.57	1.12	0.54	5.47	0.00
$w_2 = -2.10$	$o_2 = 0.14$	-2.10	0.14	-2.10	0.14	-1.97	0.14	5.47	0.06
$w_3 = 0.30$	$o_3 = 0.80$	0.30	0.80	0.30	0.80	0.16	0.78	-8.30	0.06
	$o_4 = 0.33$		0.33		0.33		0.33		0.93

• **Example**: Learn weights w_1 , w_2 , ... with an approximation of gradient descent (for $\alpha = 0.01$) so that the resulting perceptron is consistent with an AND

Result:

• **Example**: Learn weights w_1 , w_2 , ... with an approximation of gradient descent (for $\alpha = 0.01$) so that the resulting perceptron is consistent with an AND

Result:

