МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский Авиационный Институт

(Национальный Исследовательский Университет)» ФАКУЛЬТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И ПРИКЛАДНОЙ МАТЕМАТИКИ

Кафедра вычислительной математики и программирования

КУРСОВАЯ РАБОТА

по курсу «Дискретная математика» на тему «Теория графов»

Студент: Саженов К. С. Группа M8O-108Б

Руководитель: Смерчинская С. О.

1 Задание

1.1 Вариант 22

1. Определить для орграфа, заданной матрицей смежности:

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

- а) матрицу односторонней связности
- б) матрицу сильной связности
- в) компоненты сильной связности
- г) матрицу контуров
- 2. Используя алгоритм Терри, определить замкнутый маршрут, проходящий ровно по два раза (по одному в каждом направлении) через каждое ребро графа.

3. Используя алгоритм "фронта волны", найти все минимальные пути из первой вершины в последнюю орграфа, заданного матрицей смежности.

$$A = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

4. Используя алгоритм Форда, найти минимальные пути из первой вершины во все достижимые вершины в нагруженном графе, заданном матрицей длин дуг.

1

$$A = \begin{pmatrix} \infty & 2 & 7 & 8 & \infty & \infty & \infty \\ 12 & \infty & 4 & \infty & 6 & \infty & \infty \\ \infty & 4 & \infty & 1 & 3 & 5 & 7 \\ \infty & \infty & 1 & \infty & \infty & 3 & \infty \\ \infty & \infty & 3 & \infty & \infty & \infty & 5 \\ \infty & \infty & 5 & \infty & \infty & \infty & 2 \\ 2 & \infty & \infty & 3 & 4 & 6 & 7 \end{pmatrix}$$

5. Найти остовное дерево с минимальной суммой длин входящих в него ребер.

6. Пусть каждому ребру неориентированного графа соответствует некоторый элемент электрической цепи. Составить линейно независимые системы уравнений Кирхгофа для токов и напряжений. Пусть первому и пятому ребру соответствуют источники тока с ЭДС E_1 и E_2 (полярность выбирается произвольно), а остальные элементы являются сопротивлениями. Используя закон Ома, и, предполагая внутренние сопротивления источников тока равными нулю, получить систему уравнений для токов.

7. Построить максимальный поток по транспортной сети. Начинать с окаймляющих цепей

8. Раскраска вершин гиперграфа

2 Задание I

а) Найдем матрицу односторонней связности по формуле $T = E \vee A \vee A^2 \vee A^3$:

$$E = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$A^2 = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} * \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

$$A^3 = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} * \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \vee \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \vee \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$
 - матрица односторонней связности

б) Найдем матрицу сильной связности по формуле $S = T \& T^T$:

$$\bar{S} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} \& \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\bar{S} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$
 - матрица сильной связности

в) Компоненты сильной связности:

$$\bar{S} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

 $\{v_1, v_4\}$ – первая компонента сильной связности

$$\bar{S}_1 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $\{v_2, v_3\}$ – вторая компонента сильной связности

 $\bar{S}_2 = O \Rightarrow \bar{S}_2$ — нулевая матрица, значит компонент больше нет

г) Матрица контуров $K = \bar{S} \& A$

$$K = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \& \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \Rightarrow \text{дуги: } \langle v_1, v_4 \rangle \,, \langle v_4, v_1 \rangle \,, \langle v_2, v_3 \rangle \,, \langle v_3, v_2 \rangle$$

3 Задание II

$$1 \rightarrow 4 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 6 \rightarrow 1 \rightarrow 6 \rightarrow 5 \rightarrow 3 \rightarrow 4 \rightarrow 1$$

4 Задание III

$$\begin{vmatrix} v_1 \in W_0 \\ \Gamma_{W_1}(v1) = \{v_5, v_6\} \\ \Gamma_{W_2}(v1) = \{v_2, v_3\} \\ \Gamma_{W_3}(v1) = \{v_4\} \\ \Gamma_{W_4}(v1) = \{v_7\} \end{vmatrix} \Rightarrow$$
 длина кратчайшего пути равна 4.

Найдем кратчайший путь:

- 1. v_7
- 2. $\Gamma_{v_7}^{-1} \cap W_3(v_1) = \{v_4\} \cap \{v_4\} = \{v_4\}$
- 3. $\Gamma_{v_4}^{-1} \cap W_2(v_1) = \{v_3, v_7\} \cap \{v_2, v_3\} = \{v_3\}$
- 4. $\Gamma_{v_3}^{-1} \cap W_1(v_1) = \{v_2, v_4, v_6\} \cap \{v_5, v_6\} = \{v_6\}$
- 5. $\Gamma_{v_6}^{-1} \cap W_0(v_1) = \{v_1, v_2, v_4, v_5\} \cap \{v_1\} = \{v_1\}$

 $v_1 \to v_6 \to v_3 \to v_4 \to v_7$ - единственный кратчайший путь. Длина кратчайшего пути 4

5 Задание IV

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	$\lambda_i^{(0)}$	$\lambda_i^{(1)}$	$\lambda_i^{(2)}$	$\lambda_i^{(3)}$	$\lambda_i^{(4)}$	$\lambda_i^{(5)}$	$\lambda_i^{(6)}$
v_1	∞	2	7	8	∞	∞	∞	0	0	0	0	0	0	0
v_2	12	∞	4	∞	6	∞	∞	∞	2	2	2	2	2	2
v_3	∞	4	∞	1	3	5	7	∞	7	6	6	6	6	6
v_4	∞	∞	1	∞	∞	3	∞	∞	8	8	7	7	7	7
v_5	∞	∞	3	∞	∞	∞	5	∞	∞	8	8	8	8	8
v_6	∞	∞	5	∞	∞	∞	2	∞	∞	11	11	10	10	10
$\overline{v_7}$	2	∞	∞	3	4	6	7	∞	∞	14	13	13	12	12

- 2. Длины минимальных путей из вершины v_1 во все остальные вершины определены в последнем столбце таблицы.
- 3. Найдем вершины, входящие в минимальные пути из v_1 во все остальные вершины графа:
 - 3.1. Минимальный путь из v_1 в v_2 : $v_1 \rightarrow v_2$, его длина 2

$$\lambda_1^{(0)} + c_{12} = 0 + 2 = \lambda_2^{(1)}$$

3.2. Минимальный путь из v_1 в v_3 : $v_1 o v_2 o v_3$, его длина – 6

$$\lambda_1^{(0)} + c_{13} = 0 + 7 = 7 = \lambda_3^{(1)}$$

 $\lambda_2^{(1)} + c_{23} = 2 + 4 = 6 = \lambda_3^{(2)}$

3.3. Минимальный путь из v_1 в v_4 : $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4$, его длина – 7

$$\lambda_3^{(2)} + c_{34} = 6 + 1 = 7 = \lambda_4^{(3)}$$

$$\lambda_2^{(1)} + c_{23} = 2 + 4 = 6 = \lambda_3^{(2)}$$

$$\lambda_1^{(0)} + c_{12} = 0 + 2 = 2 = \lambda_2^{(1)}$$

3.4. Минимальный путь из v_1 в v_5 : $v_1 \to v_2 \to v_5$, его длина – 8

$$\lambda_2^{(1)} + c_{25} = 2 + 6 = 6 = \lambda_5^{(2)}$$

 $\lambda_1^{(0)} + c_{12} = 0 + 2 = 2 = \lambda_2^{(1)}$

3.5. Минимальный путь из v_1 в v_6 : $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v_6$, его длина – 10

$$\lambda_4^{(3)} + c_{46} = 7 + 3 = 10 = \lambda_6^{(4)}$$

$$\lambda_3^{(2)} + c_{34} = 6 + 1 = 7 = \lambda_4^{(3)}$$

$$\lambda_2^{(1)} + c_{23} = 2 + 4 = 6 = \lambda_3^{(2)}$$

$$\lambda_1^{(0)} + c_{12} = 0 + 2 = 2 = \lambda_2^{(1)}$$

3.6. Минимальный путь из v_1 в v_7 : $v_1 \to v_2 \to v_3 \to v_4 \to v_6 \to v_7$, его длина – 12

$$\lambda_6^{(3)} + c_{67} = 10 + 2 = 12 = \lambda_7^{(5)}$$

$$\lambda_4^{(3)} + c_{46} = 7 + 3 = 10 = \lambda_6^{(4)}$$

$$\lambda_3^{(2)} + c_{34} = 6 + 1 = 7 = \lambda_4^{(3)}$$

$$\lambda_2^{(1)} + c_{23} = 2 + 4 = 6 = \lambda_3^{(2)}$$

$$\lambda_1^{(0)} + c_{12} = 0 + 2 = 2 = \lambda_2^{(1)}$$

6 Задание V

- 1. Добавляем дуги с весом 1: x_3, x_{13} . Циклов нет
- 2. Добавляем дуги с весом 2: x_1, x_8 . Циклов нет
- 3. Добавляем дуги с весом 3: x_7 . Циклов нет
- 4. Добавляем дуги с весом 4: x_6, x_{11} . Циклов нет
- 5. Добавялем дуги с весом 5: x_{16}, x_{12}, x_{15} . Если добавить ещё x_{17} , то будет цикл
- 6. Добавляем дуги с весом 6: x_5 . Циклов нет. Минимальное остовное дерево построено

$$L(D) = 1 \cdot 2 + 2 \cdot 2 + 3 \cdot 1 + 4 \cdot 2 + 5 \cdot 3 + 6 = 38$$

38 - минимальный вес остовного дерева

7 Задание VI

1. Зададим произвольную ориентацию:

2. Построим произвольное остовное дерево:

- 2.1. $D_1 = (U_1, \emptyset)$
- 2.2. $D_2 = (\{U_1, U_2\}, \{U_1, U_2\})$
- 2.3. $D_3 = (\{U_1, U_2, U_3\}, \{U_1, U_2\}, \{U_2, U_3\})$
- 2.4. $D_4 = D_3 + \{U_4\} + \{U_3, U_4\}$
- 2.5. $D_5 = D_4 + \{U_5\} + \{U_5, U_4\}$
- 2.6. $D_6 = D_5 + \{U_7\} + \{U_5, U_7\}$
- 2.7. $D_7 = D_6 + \{U_6\} + \{U_6, U_4\}$
- 3. Найдем базис циклов:

 - $3.3.\ \, (D+q_5): \mu_3: U_4-U_5-U_7-U_6-U_4 \Rightarrow C(\mu_3) = \begin{pmatrix} 0 & 0 & 0 & 1 & -1 & 0 & 0 & -1 & 0 & 1 & 0 & 0 \end{pmatrix}$
 - $3.4. \ (D+q_6): \mu_4: U_3-U_4-U_6-U_3 \Rightarrow C(\mu_4) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 \end{pmatrix}$
 - $3.5. \ (D+q_8): \mu_5: U_1-U_2-U_3-U_4-U_1 \Rightarrow C(\mu_5) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 1 & 0 \end{pmatrix}$

 - $3.7. \ (D+q_{13}): \mu_7: U_2-U_3-U_4-U_2 \Rightarrow C(\mu_7) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \end{pmatrix}$

4. Цикломатическая матрица графа имеет вид:

5. Выпишем закон Кирхгофа для напряжений:

6. Найдем матрицу инцидентности В орграфа:

	q_1	$ q_2 $	q_3	q_4	q_5	q_6	$ q_7 $	q_8	q_9	q_{10}	q_{11}	q_{12}	q_{13}
$\overline{U_1}$	-1	-1	0	0	0	0	0	-1	0	0	0	0	0
U_2	0	1	1	0	0	0	-1	0	0	0	0	0	-1
U_3	1	0	0	0	0	-1	1	0	0	0	0	-1	0
U_4	0	0	0	0	0	0	0	1	-1	1	-1	1	-1
U_5	0	0	-1	-1	0	0	0	0	0	0	1	0	0
U_6	0	0	0	0	-1	1	0	0	1	0	0	0	0
U_7	0	0	0	1	1	0	0	0	0	-1	0	0	0

$$B = \begin{pmatrix} -1 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 1 & -1 & 1 & -1 \\ 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \end{pmatrix}$$

7. Выпишем уравнения Кирхгофа для токов:

$$\begin{pmatrix} -1 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 1 & -1 & 1 & -1 \\ 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} I_1 \\ \vdots \\ I_{13} \end{pmatrix} = 0 \Rightarrow$$

$$\begin{cases}
I_1 + I_2 + I_8 = 0 \\
I_2 + I_3 - I_7 + I_{13} = 0 \\
I_1 - I_6 + I_7 - I_{12} = 0 \\
I_{11} - I_3 - I_4 = 0 \\
I_7 - I_6 + I_9 = 0 \\
I_5 + I_6 - I_{10} = 0
\end{cases}$$
(1)

8. Подставим закон Ома:

$$\begin{cases}
E_{1} = I_{2}R_{2} + I_{7}R_{7} \\
E_{2} = I_{4}R_{4} - I_{9}R_{9} + I_{11}R_{11} \\
I_{3}R_{3} + I_{7}R_{7} + I_{11}R_{11} + I_{12}R_{12} = 0 \\
I_{6}R_{6} - I_{9}R_{9} - I_{12}R_{12} = 0 \\
I_{8}R_{8} - I_{7}R_{7} - I_{12}R_{12} = 0 \\
I_{10}R_{10} + I_{4}R_{4} + I_{11}R_{11} = 0 \\
I_{13}R_{13}I_{7}R_{7} + I_{12}R_{12} = 0
\end{cases} \tag{2}$$

9. Совместная система состоит из систем (1) и (2). 13 уравнений и 13 неизвестных — токи $I_1 \dots I_{13}$; ЭДС E_1, E_2 Сопротивления $R_2; R_3; R_4; R_5; R_6; R_7; R_8; R_9; R_{10}; R_{11}; R_{12}; R_{13}$ - известны

8 Задание VII

Текст задания Построить максимальный поток по транспортной сети. Начинать с окаймляющих цепей

1. Построение полного потока:

$$v_1 \to v_2 \to v_3 \to v_4 \to v_5 \\ \min\{6,6,7,9\} = 6$$

$$v_1 \to v_8 \to v_7 \to v_6 \to v_5 \\ \min\{3,3,9,16\} = 3$$

$$v_1 \to v_9 \to v_5 \\ \min\{6,5\} = 5$$

$$v_1 \to v_3 \to v_4 \to v_5 \\ \min\{8,7-6,9-6\} = 1$$

$$v_1 \to v_7 \to v_6 \to v_5 \\ \min\{9,9-3,16-3\} = 6$$

$$v_1 \to v_9 \to v_4 \to v_5 \\ \min\{6-5,3,9-7\} = 1$$

$$\Phi_{\text{полн.}} = 1+6+1+3+6+5 = 22$$

2. Построение максимального потока:

(a)
$$v_1 \rightarrow v_3 \rightarrow v_2 \rightarrow v_9 \rightarrow v_4 \rightarrow v_5$$

$$\Delta_1 = \min\{8 - 1, 6, 2, 2 - 1, 9 - 8\} = 1$$
(b) $v_1 \rightarrow v_3 \rightarrow v_2 \rightarrow v_9 \rightarrow v_6 \rightarrow v_5$

$$\Delta_2 = \min\{8 - 2, 5, 2 - 1, 4, 16 - 9\} = 1$$
(c) $v_1 \rightarrow v_7 \rightarrow v_8 \rightarrow v_9 \rightarrow v_6 \rightarrow v_5$

$$\Delta_3 = \min\{9 - 6, 3, 7, 6 - 1, 16 - 9\} = 3$$

$$\Phi_{\text{MAKC}} = 9 + 5 + 13 = 27$$

Величина |f| равна 27.

9 Задание VIII

9.1 Теоретические сведения

 Γ иперграф(H) – обобщение простого графа. В гиперграфе ребрами могут быть любые подмножества множества вершин графа.

Пусть V — конечное непустое множество, E — некоторое семейство непустых различных подмножеств множества V . Пара (V,E) называется гиперграфом с множеством вершин V и множеством ребер (гиперребер) E.

Если вершина $v \in V$ принадлежит ребру $e \in E$, то будем называть вершину и ребро *инци-*лентными друг другу. Число |E(v)| называется степенью вершины v, а |e| – степенью ребра e. Вершина гиперграфа, не инцидентная никакому ребру, называется изолированной.

Для любого гиперграфа можно определить граф инциденций – двудольный граф с множе-

ством вершин $V \cup E$ и множеством ребер $\{(v, e) : (v, e) \in V \times E, v \in e\}$.

Для гиперграфов также существует понятие вершинной раскраски. Раскраску вершин гиперграфа будем называть *правильной*, если две вершины v_i, v_j , принадлежащие одному ребру e_k имеют разные цвета $v_i, v_j \in e_k, i \neq j : Color(v_i) \neq Color(v_j)$.

Xроматическое число $\chi(H)$ — наименьшее число цветов, достаточное для правильной раскраски гиперграфа H.

 \mathcal{L} вудольный граф — граф, множество вершин которого можно разбить на две части таким образом, что каждое ребро графа соединяет какую-то вершину из одной части с какой-то вершиной другой части, то есть не существует рёбер между вершинами одной и той же части.

 $K_n u \kappa a$ размера n (обозначается K_n) – полный подграф размера n обычного графа

9.2 Описание алгоритма

- 1. Гиперграф задается с помощью матрицы инцидентности, где любое число не равное 0 означает принадлежность вершины к ребру, а 0 отсутствие вершины в данном гиперребре.
- 2. Для начала требуется преобразовать матрицу смежности в список смежности, для этого:
 - (а) Преобразовываем матрицу инцидентности в матрицу смежности с кликами, вместо гиперребер
 - (b) Преобразуем матрицу смежности в матрицу инцидентности с обычными ребрами
 - (с) Преобразуем матрицу инцидентности в список смежности вершин
- 3. Раскрашиваем граф:
 - (a) Окрашиваем первую вершину в цвет c_0
 - (b) Выбрать цвет окраски c_0
 - (с) Пока не покрашены все вершины, повторять пункты і, іі:
 - і. Окрасить в выбранный цвет каждую вершину, которая не смежна с другой, уже окрашенной в этот цвет.
 - іі. Выбрать цвет $c_i = c_{i+1}, c_i$ предыдущий цвет

9.3 Блок-схема алгоритма

Программа написана на языке C++ с использованием фреймворка Qt версии 5.14 и набора утилит GraphViz

9.4 Оценка сложности алгоритма

В данном алгоритме происходят преобразования матриц/списков друг в друга. Данные операции выполняются за $O(n^2)$ времени. Также при основном алгоритме происходит перебор каждой вершины графа за O(n) и, затем для каждой вершины требуется найти минимальный цвет, что в худшем случае может иметь сложность $O(n^2)$. Следовательно, общее время работы алгоритма $O(n^3)$

9.5 Тестовые примеры. Скриншоты программ

Пример 1. Вводится частный случай гиперграфа с 6 вершинами и 3 ребрами. Граф представлен на Рис.:

Пример 2. Дан гиперграф:

10 Примеры прикладных задач

Для частного случая гиперграфа можно рассматривать задачу кадендарного/временного планирования каких-либо операций, например операций-преобразований в компьютере. Каждой операции следует сопоставить вершину графа, причем любые две вершины будут соединены ребром только тогда, когда соответствующие им операции-преобразования не могут быть осуществлены одновременно. Требуется составить такой план операций, который связан с наименьшими временными затратами. Задача эквивалентна задаче о раскраске вершин графа с использованием наименьшего числа цветов.

Для гиперграфа можно определить задачу распределения ключей безопасности для шифрования данных в сети Тог. Каждой подсети сети Тог будет соответствовать гиперребро, в то время как каждому узлу в каждой подсети (подсети могут пересекаться) будет соответствовать вершина гиперграфа. Тогда задача, с точки зрения безопасности данных, состоит в следующем: каким образом разбить данные на K независимых частей и эти части разбить на K_i зависимых частей, где i - номер подсети в сети Тог, чтобы каждый узел в каждой подсети имел только ту часть зашифрованных данных, которая нужна для полноценной безопасной передачи данных. Причем разбить данные следует "наилучшим"способом, то есть производя наименьшее количество итераций шифровки-дешифровки. Эта задача эквивалентна задаче о нахождении минимальной раскраски в гиперграфе.

Список литературы

- [1] Никос Кристофидес. Теория графов: алгоритмический подход. М.: Мир, 1978. 423 стр.
- [2] Емеличев В.А. Лекции по теории графов. М.: Наука, 1990. 384 стр.
- [3] ТРУДЫ МФТИ. 2012. Том 4, № 1 131 стр. Раскраски гиперграфов

Содержание

1	Задание 1.1 Вариант 22	1 1							
2	Задание І	3							
3	Задание II	4							
4	Задание III	4							
5	Задание IV	4							
6	Задание V	5							
7	7 Задание VI								
8	Задание VII	8							
9	Задание VIII 9.1 Теоретические сведения 9.2 Описание алгоритма 9.3 Блок-схема алгоритма 9.4 Оценка сложности алгоритма 9.5 Тестовые примеры. Скриншоты программ	9 9 10 10 10							
10	Примеры прикладных задач	12							
Л	Литература								