3.4.5. Петля гистерезиса (динамический метод).

Дорогинин Д.В.

18 октября 2019 г.

Цель работы: изучение петель гистерезиса ферромагнитных материалов с помощью осциллографа.

В работе используются: автотрансофрматор, понижающий трансформатор, амперметр и вольтметр (мультиметры), резистор, делитель напряжения, интегрирующая цепочка, электронный осциллограф, тороидальные образцы с двумя обмотками.

Теория

Магнитную индукцию удобно определять с помощью ЭДС, возникающей при изменении потока в катушке, намотанной на образец. Пусть катушка плотно обхватывает образец, а индукция \vec{B} однородна. Тогда

$$\varepsilon\mathscr{E} = -rac{d\Phi}{dt}, \Phi = BSN_{\scriptscriptstyle \mathrm{M}} \Rightarrow |B| = rac{1}{SN_{\scriptscriptstyle \mathrm{M}}}\int \mathscr{E}dt,$$

где $N_{\rm u}$ — число витков в измерительной катушке, S — площадь витка. То есть для определения B нужно проинтегрировать сигнал, наведённый на измерительную катушку.

Используя интегрирующую схему из конденсатора C опротивления $R\gg \frac{1}{\Omega C}$ (Ω – частота сигнала в сети), с учётом $U_{\text{вых}}\ll U_{\text{вх}}$, получим

$$U_{\scriptscriptstyle
m BMX} = rac{1}{C} \int I dt pprox rac{1}{RC} \int U_{\scriptscriptstyle
m BX} dt$$

Если $R_{\rm u}$ и $C_{\rm u}$ – параметры интегрирующей ячейки, то получим

$$|B| = \frac{R_{\scriptscriptstyle \rm I\! I} C_{\scriptscriptstyle \rm I\! I}}{S N_{\scriptscriptstyle \rm I\! I}} U_{\scriptscriptstyle \rm B bix}$$

Описание работы

Схема установки представлена на рисунке. Напряжение сети с помощью регулировочного трансформатора Ат через разделительный понижающий трансформатор Тр подаётся на намагничивающую обмотку N_0 образца. Значение тока в обмотке измеряется амперметром

А, с ним последовательно сопротивление R_0 , напряжение с которого подается на вход X электронного осциллографа (ЭО). Это напряжение пропорционально току в обмотке N_0 , а значит и напряжённости магнитного поля H в образце.

Для измерения магнитной индукции B в обмотке $N_{\rm u}$ на вход интегрирующей цепочки подаётся напряжение $U_{\rm u}$, пропорциональное $\frac{dB}{dt}$, а с выхода снимается напряжение U_C , пропорциональное B, которое подаётся на вход Y ЭО.

Кривая, возникающая на экране, воспроизводит петлю гистерезиса. По формулам

$$H = \frac{IN_0}{2\pi R}, B = \frac{R_{\scriptscriptstyle \rm H}C_{\scriptscriptstyle \rm H}U_{\scriptscriptstyle \rm BMX}}{SN_{\scriptscriptstyle \rm H}}$$

где $I = K_X/R_0, U_{\text{вых}} = K_Y, K_X, K_Y$ – чувствительность усилителя ЭФ соответствующих шкал, можно провести калиброку ЭО.

При закороченной обмотке N_0 амперметр измеряет эффективное значение синусоидального тока $I_{9\phi}$ через сопротивление R_0 . Если 2x – длина горизонтальной прямой на экране, то чувствительность канала X

$$m_X = \frac{2\sqrt{2}R_0I_{\theta\phi}}{2x}$$

При отключённом тороиде сигнал с обмотки 12.6 В подаётся на делитель, и его часть снимается с делителя с каоэффициетном деления и подаётся на Y ЭО вместо U_C . Вольтметр измеряет напряжение $U_{\text{эф}}$ на этих клеммах делителя. Если 2y – длина вертикальной прямой на экране, то чувствительность канал Y

$$m_Y = \frac{2\sqrt{2}U_{9\Phi}}{2y}$$

Если измерить с помощью ЭО поочерёдно амлитуды сигналов $U_{\text{вх}}$ и $U_{\text{вых}}$ RC-цепочки, можно рассчитать постоянную времени

$$\tau = RC = \frac{U_{\text{bx}}}{\Omega U_{\text{bhx}}}$$

Ход работы

1. Собираем схему, подключаем в сеть. Параметры установки $R_{\rm u}=20$ кОм, $C_{\rm u}=20$ мк $\Phi,R_0=0.22$ Ом. Параметры образцов:

	Феррит 1000нм	Пермаллой	Кремнистое железо
N_0	42	20	25
$N_{\scriptscriptstyle \mathrm{II}}$	400	300	250
S, m^2	3	0.76	2
$2\pi R$, cv	25	13.3	11

- 2. Подбираем ток питания и коэффициенты усиления ЭО так, чтобы предельная петля гистерезиса занимала большую часть экрана. Зарисуем предельную петлю на кальке.
- 3. Снимаем на ту же кальку начальную кривую намагничивания: плавно уменьшая ток намагничивания до нуля, будем отмечать на кальке вершины наблюдаемых частных петель. Кривая, соединяющая эти вершины, проходит вблизи начальной кривой намагничивания.

	Феррит 1000нм		Пермаллой		Кремнистое железо	
	Значение	σ	Значение	σ	Значение	σ
K_X , B	0.050	0.002	0.020	0.002	0.100	0.002
K_Y , B	0.020	0.001	0.045	0.002	0.020	0.001
I, A	0.227	0.009	0.091	0.001	0.455	0.009
H, A/M	38.2	1.5	13.67	0.15	103	2
В, Тл	0.067	0.003	0.79	0.04	0.16	0.008
x	3.00	0.05	3.00	0.05	3.00	0.05
y	3.00	0.05	3.00	0.05	2.00	0.05
$I_{\Theta\Phi}, A$	0.430	0.001	0.197	0.001	0.970	0.001
m_X	0.0446	0.0001	0.0204	0.0001	0.1006	0.0001
2y	6.0	0.1	6.0	0.1	6.0	0.1
$U_{\Theta\Phi}$, B	0.0424	0.0001	0.1000	0.0001	0.0424	0.0001
m_Y	0.0200	0.0003	0.0471	0.0008	0.0200	0.0003

- 4. Восстановим предельную петлю. Измерим на экране двойные амплитуды для коэрцитивной силы и индукции насыщения. Соответствующие значения K_X и K_Y . Вычислим цену деления ЭО для петли в A/M по оси X и в теслах на деление для оси Y.
- 5. Отключим намагничивающую обмотку от цепи, соединив оба провода, идущих к обмотке, на одной из её клемм. Рассчитаем чувствительность канала X.
- 6. Разберём цепь тороида. Соединим вход $Y \ni O$ с клеммами делителя "1/100-земля"и подключим вольтметр к тем же точкам делителя. Рассчитаем чувствительность канала X.
- 7. Для определения напряжений на входе и выходе интегрирующей соединим вход ячейки с обмоткой "6,3 В"трансформатора. Подключим Y-вход ЭО ко входу интегрирующей ячейки и отключим X-вход ЭО. Определим входное напряжение на RC-цепочке: $U_{\rm Bx}=16.0\pm0.2$ В. Не меняя тока, переключим Y-вход ЭО к выходу ячейки и аналогичным образом определим напряжение $U_{\rm вых}=0.120\pm0.002$ В. Тогда (с учётом $\nu=50$ Гц)

$$\boxed{\tau = \frac{U_{\text{bx}}}{\Omega U_{\text{bhx}}} = 0.42 \pm 0.09 \text{ c}}$$

Рассчитывая через параметры цепи, $\tau = R_{\rm u} C_{\rm u} = 0.4$ с, что близко к полученному.

8. Рассчитаем коэрцитивную силу и индукцию насыщения для каждого образца и сравним с табличными:

	Феррит 1000нм		Пермаллой		Кремнистое железо	
	Значение	σ	Значение	σ	Значение	σ
H_c , A/M	229	11	82.0	1.6	620	16
Таблица	8 - 600		4		80	
B_s , Тл	0.40	0.02	4.7	0.2	0.64	0.04
Таблица	0.2 - 0.4		1.08		2.0	