

Licenciatura em Engenharia Biomédica

MATEMÁTICA 1 (2023/2024) ÉPOCA DE RECURSO: 1ª PROVA DE AVALIAÇÃO

10 de fevereiro de 2024

Aluno no:	Nome
Aluno n-:	Nome

- Não é permitida a consulta de dispositivos eletrónicos (máquina de calcular, telemóvel, etc.).
- Só poderá consultar os formulários validados no início da prova.
- Todos os cálculos que efetuar e todas as conclusões que obtiver terão de ser devidamente justicados.
- Boa sorte!

Duração: 75 minutos

Cotações:	1.1 (10)	$1.2 \\ (15)$	$1.3 \\ (15)$	$2.1 \ (15)$	$2.2 \\ (15)$	3. (25)	4. (35)	5.1 (35)	5.2 (35)	Total) (200)
Cottagoes.										

- 1. Considere a função f, real de variável real, definida por, $f(x) = \log_5 \left(e^{x^2} 1\right)$.
 - 1.1 Determine o domínio da função.

1.2 Seja
$$z = -\frac{8}{9} + \left(\csc^2\left(\arccos\left(\frac{1}{3}\right)\right)\right)^{-1}$$
. Resolva a equação, $5^{f(x)} + \frac{1}{32}\left(\frac{1}{3}\right)^{5\log_3\left(\frac{1}{2}\right)} = e^z$.

- 1.3 Considerando $x \ge 0$, escreva uma equação da reta normal ao gráfico da curva f, no ponto de ordenada y = 0.
- 2. Considere a função g, real de variável real, definida por $g(x)=\pi \arcsin \left(e^x-2\right)+\frac{\pi^2}{3}$.
 - 2.1 Determine o domínio e o contradomínio da função.
 - 2.2 Caracterize a função inversa de q.
- 3. Usando o conceito de diferencial, calcule um valor aproximado de $\frac{\sqrt{0.99+4}}{e^{0.99}}$.
- 4. Calcule a primitiva da função $f(x) = \frac{x^2 1}{x^3 2x^2 + x}$ que passa no ponto $\left(\frac{3}{2}, 0\right)$.
- 5. Resolva os integrais seguintes:

$$5.1 \int x^3 \sqrt[4]{x^2 - 1} \, dx;$$

5.2
$$\int \sqrt{\left(e^{-2x}\right)^5} \operatorname{sen}\left(e^{-5x}\right) \, dx$$
, fazendo a substituição $e^x = t$.

ÉPOCA DE RECURSO: 2ª PROVA DE AVALIAÇÃO

10 de fevereiro de 2024

Aluno no: Nome:

- Não é permitida a consulta de dispositivos eletrónicos (máquina de calcular, telemóvel, etc.).
- Só poderá consultar os formulários validados no início da prova.
- Todos os cálculos que efetuar e todas as conclusões que obtiver deverão ser devidamente justificados.
- Boa sorte!

Duração: 1h15m

Cotações:	1. (22)	2.1 (33)	$2.2 \\ (15)$	3.1 (20)	$3.2 \\ (20)$	4. (15)	5.1 (30)	5.2 (10)	6. (35)	Total) (200)
e oragoes.										

- 1. Calcule o integral da função real de variável real, $f(x) = \frac{1}{x^2} \arctan(x)$, definido em $[1, +\infty[$.
- 2. Considere a região abaixo limitada por ramos das curvas indicadas.

- (1) $(x-2)^2 + (y-2)^2 = 4$
- (2) $y = \frac{-2 + \sqrt{7}}{7}x + 3$
- (3) $y = \frac{1}{2}(x+4)$
- (4) y = -5(x+4)
- (5) $x = -\frac{3}{25}y^2$
- $(6) \quad y = \frac{5}{2}x$

$$A = \left(\frac{7}{2}, 2 + \frac{\sqrt{7}}{2}\right)$$

As curvas (1) e (6) intersetam-se nos pontos de abcissas $x \approx 0.35 \lor x \approx 1.58$.

- 2.1 Escreva a expressão integral que permite calcular a área da região assinalada.
- 2.2 Calcule a área da região localizada nos 2° e 3° quadrantes, restrita ao intervalo [-4, -3].

- 3. Seja $a_n = f(n) \frac{2^{2n+1}}{4^{3n+1}}$, sendo f(n) uma função real de variável natural.
 - 3.1 Seja f(n) = 1 e calcule, se possível, a soma da série $\sum_{n=1}^{\infty} a_n$.
 - 3.2 Seja $f(n) = (-1)^n \frac{2^{4n+1}}{n}$, estude a série $\sum_{n=1}^{\infty} a_n$ quanto à sua convergência.
- 4. Estude a natureza da série $\sum_{n=1}^{\infty} \frac{\sqrt{n^4+1}}{n^3+n^2}.$
- 5. Seja y = f(x) uma função real de variável real, e considere o seu desenvolvimento em série de Taylor em torno de a = -1,

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{3^n(n+1)!} (x+1)^n, \forall x \in I.C.$$

- 5.1 Indique o centro de convergência e calcule o intervalo de convergência (I.C.) e o raio de convergência, da referida série.
- 5.2 Aplicando o polinómio de Taylor em torno de a=-1 de ordem n=3, da função y=f(x), calcule um valor aproximado de f(-2).
- 6. Determine a expressão da série de MacLaurin, para $x \in \left] \frac{1}{2}, \frac{1}{2} \right[$, representativa da função $f(x) = \frac{1}{(1-2x)^3}$.