Analisi di un circuito RLC serie in regime sinusoidale

Davide Perniola

University of Cambridge james@LaTeXTemplates.com

Laboratorio di Elettromagnetismo e Ottica 18 Luglio, 2022

Davide Perniola RLC sinusoidale 18 Luglio, 2022 1/15

Presentazione

Apparato sperimentale

Circuito
Acquisizione
Analisi dati

2 Risultati

Studio qualitativo Analisi dell'ampiezza Analisi della fase

- 3 Conclusioni
- 4 Referencing

Circuito

$$R_I = 50\Omega$$

$$\textit{R} = (330.0 \pm 0.3)\Omega$$

$$R_L = (34.5 \pm 0.1)\Omega$$

$$L = (10.3 \pm 0.1) mH$$

$$\textit{C} = (45.5 \pm 0.4)\textit{nF}$$

Davide Perniola RLC sinusoidale 18 Luglio, 2022 3/15

Acquisizione

Analisi dati

Heading

- Statement
- 2 Explanation
- 3 Example

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer lectus nisl, ultricies in feugiat rutrum, porttitor sit amet augue. Aliquam ut tortor mauris. Sed volutpat ante purus, quis accumsan dolor.

Studio qualitativo

Treatments	Response 1	Response 2
Treatment 1	0.0003262	0.562
Treatment 2	0.0015681	0.910
Treatment 3	0.0009271	0.296

Table: Table caption

Analisi dell'ampiezza

Analisi della fase

Conclusioni

Definition

A prime number is a number that has exactly two divisors.

Example

- 2 is prime (two divisors: 1 and 2).
- 3 is prime (two divisors: 1 and 3).
- 4 is not prime (three divisors: 1, 2, and 4).

You can also use the theorem, lemma, proof and corollary environments.

Theorem, Corollary & Proof

Theorem (Mass-energy equivalence)

$$E = mc^2$$

Corollary

$$x + y = y + x$$

Proof.

$$\omega + \phi = \epsilon$$

Equation

$$\cos^3\theta = \frac{1}{4}\cos\theta + \frac{3}{4}\cos 3\theta \tag{1}$$

Davide Perniola RLC sinusoidale 18 Luglio, 2022 11/15

Verbatim

Example (Theorem Slide Code)

```
\begin{frame}
\frametitle{Theorem}
\begin{theorem} [Mass--energy equivalence]
$E = mc^2$
\end{theorem}
\end{frame}
```

Citing References

An example of the \cite command to cite within the presentation:

This statement requires citation [Smith, 2022, Kennedy, 2023].

References

John Smith (2022) Publication title Journal Name 12(3), 45 – 678.

Annabelle Kennedy (2023) Publication title Journal Name 12(3), 45 – 678.

The End

Questions? Comments?