${\bf Chapitre}~{\bf 1}$

intérêt composé			
Nom	notation	formule	
Facteur d'accumulation	a(t)	$a(t) = (1+i)^{t}$ $A(t) = A(0)(1+i)^{t}$	
Valeur accumulée	A(t)		
facteur d'actualisation	v^t	$v^t = \left(\frac{1}{1+i}\right)^t$	
Valeur actualisée	A(0)	$A(0) = A(t)v_i^t$	
intérêt			
Nom	notation	formule	
Facteur d'accumulation	a(t)	a(t) = (1+it)	
Facteur d'actualisation	v(t)	$a(t) = (1+it)$ $v(t) = \frac{1}{1+it}$	
Prix d'un bon du trésor canadien	T-Bills	$Prix = 100 \left(1 + \frac{it}{365}\right)^{-1}$	
	Conversion de taux		
Nom	notation	formule	
Taux intérêt <u>effectif</u> annuel	i	$i = \left(1 + \frac{i^{(m)}}{m}\right)^m - 1$ $i^{(m)} = m\left((1 + i)^{\frac{1}{m}} - 1\right)$	
Taux d'intérêt <u>nominal</u> annuel	$i^{(m)}$	$i^{(m)} = m\left((1+i)^{\frac{1}{m}} - 1\right)$	
Taux d'€	escompte		
Nom	notation	formule	
Conversion du taux d'intérêt	$i \rightarrow d$	$d = \frac{i}{1+i}$	
Conversion du taux d'escompte	$d \rightarrow i$	$i = \frac{d}{1-d}$	
Taux d'escompte <u>nominal</u> annuel	$d^{(m)}$	$d = \frac{i}{1+i} i = \frac{d}{1-d} d^{(m)} = m \left(1 - (1-d)^{\frac{1}{m}}\right)$	
Taux d'escompte <u>effectif</u> annuel	d	$d = 1 - \left(1 - \frac{d^{(m)}}{m}\right)^m$ $a(t) = (1 - d)^{-t}$ $v(t) = (1 - d)^t$	
Valeur accumulée	a(t)	$a(t) = (1-d)^{-t}$	
Valeur actualisée	v(t)	$v(t) = (1 - d)^t$	
Prix d'un bon du trésor américain		$Prix = 100 \left(1 - \frac{dt}{360}\right)^t$	
Contexte d'inflation			
Nom	notation	formule	
Taux d'intérêt réel (après inflation)	$i_{r\acute{ ext{e}el}}$	$i_{rcute{e}el} = rac{i-r}{1+r}$	

Force d'intérêt		
Nom	notation	formule
	$\delta = \lim_{m \to \infty} i^{(m)}$ $\delta = \lim_{m \to \infty} d^{(m)}$	$\delta = \ln(1+i)$
Force d'intérêt	$\delta = \lim_{m \to \infty} d^{(m)}$	$\delta = \ln(\frac{1}{1-d})$
		$\delta = \frac{a'(t)}{a(t)}$
Taux effectif	i	$i = e^{i^{(m)}}$
a(t)si force d'intérêt continue	$\delta_t = \delta$	$a(t) = e^{\delta t}$
a(t)si force d'intérêt variable	$\delta_t = \delta_t$	$a(t) = e^{\int_0^t \delta_s ds}$
facteur accumulation		$\frac{a(n)}{a(m)} = e^{\int_{m}^{n} \delta_{s} ds}$

Chapitre 2

Somme géométrique		
Définition somme géométrique	$\sum_{j=m}^{n} ar^m = \left(\frac{1-r^{n-m+1}}{1-r}\right)$	
Valeur accumulée d'une rente		
au moment	formule	
du dernier versement	$k \cdot s_{\overline{n} j}$	
	$s_{\overline{n} j} = \left(\frac{(1+j)^n - 1}{j}\right)$ $k \cdot s_{\overline{n} j}(1+j)^r$	
r période après le dernier versement	$k \cdot s_{\overline{n} j}(1+j)^r$	
équivalent à	$k \cdot \left(s_{\overline{n+r} j} - s_{\overline{n} j}\right)$	
Valeur actualisée d'u	ine rente	
au moment	formule	
fin de période	$k \cdot a_{\overline{n} j}$	
	$a_{\overline{n} j} = \left(\frac{1 - (1+j)^{-n}}{j}\right)$ $\ddot{a}_{\overline{n} j} = a_{\overline{n} j}(1+j)$	
début de période	$\ddot{a}_{\overline{n} j} = \dot{a}_{\overline{n} j}(1+j)$	
rente perpétuelle $(n \to \infty)$	$\frac{k}{j}$	
plusieurs paiements dans un même année		
$mPs_{\overline{n} i}^{(m)} = mP\left(\frac{(1+i)^n - 1}{i^{(m)}}\right)$	$mP\ddot{s}_{\overline{n} i}^{(m)} = \left(\frac{(1+i)^n - 1}{d^{(m)}}\right)$	
$mPa_{\overline{n} i}^{(m)} = mP\left(\frac{1 - (1+i)^{-n}}{i^{(m)}}\right)$	$mP\ddot{a}_{\overline{n} i}^{(m)} = \left(\frac{1 - (1+i)^{-n'}}{d^{(m)}}\right)$	

Croissance des versements géométrique

$$valeur_{t=1} = P\gamma^{-1}a_{\overline{n}|j^*} valeur_{t=0} = P\ddot{a}_{\overline{n}|j^*}$$

$$valeur_{t=n} = P\gamma^{n-1}s_{\overline{n}|j^*} valeur_{t=n+1} = P\gamma^n\ddot{s}_{\overline{n}|j^*}$$

$$où j^* = \frac{1+j}{\gamma} - 1$$

si fréquence versements > que croissance géométrique

Si frequence versements > que croissance geometrique
$$Pa_{\overline{m}|j^*}\ddot{a}_{\overline{n}|j^*}$$
 où $j^* = \frac{(1+j)^m}{\gamma} - 1$

Modèle d'actualisation des dividendes

Prix = $\frac{D}{1+j-\gamma} = \frac{D}{j-g}$ où $\gamma = 1+g$

$$Prix = \frac{D}{1+i-\gamma} = \frac{D}{i-g} \qquad où \gamma = 1+g$$

Croissance arithmétique (increasing annuities)

$$(Ia)_{\overline{n}|j} = \frac{\ddot{a}_{\overline{n}|j} - nv^n}{\overset{j}{j}} \qquad (I\ddot{a})_{\overline{n}|j} = \frac{\ddot{a}_{\overline{n}|j} - nv^n}{\overset{d}{d}_j}$$

$$(Is)_{\overline{n}|j} = \frac{\ddot{s}_{\overline{n}|j} - n}{\overset{j}{d}_j} \qquad (I\ddot{s})_{\overline{n}|j} = \frac{\ddot{s}_{\overline{n}|j} - n}{\overset{d}{d}_j}$$

décroissance arithmétique ($decreasing\ annuities$)

$$(Da)_{\overline{n}|j} = \frac{n - a_{\overline{n}|j}}{j} \qquad (D\ddot{a})_{\overline{n}|j} = \frac{n - a_{\overline{n}|j}}{d_j}$$

$$(Ds)_{\overline{n}|j} = \frac{n(1+j)^n - s_{\overline{n}|j}}{j} \qquad (D\ddot{s})_{\overline{n}|j} = \frac{n(1+j)^n - s_{\overline{n}|j}}{d_j}$$
Rentes à paiement continu

$$VA = \int_0^n h(u) \underbrace{e^{-\int_0^n \delta_s ds}}_{e^{-\delta u} \text{ si } \delta_t = \delta \text{ } \forall \text{ } t} du \quad \text{Valeur}_{t=n} = \int_0^n h(u) \underbrace{e^{\int_u^n \delta_s ds}}_{e^{\delta(n-u)} \text{ si } \delta_t = \delta \text{ } \forall \text{ } t} du$$

$$(\bar{I}\bar{a})_{\overline{n}|i} = \frac{\bar{a}_{\overline{n}|i} - ne^{-\delta n}}{\delta}$$

$$(\bar{I}\bar{s})_{\overline{n}|i} = \frac{\bar{s}_{\overline{n}|i} - n}{\delta}$$

$$(\bar{D}\bar{a})_{\overline{n}|i} = \frac{n-\bar{a}_{\overline{n}|i}}{\delta}$$

$$(\bar{D}\bar{s})_{\overline{n}|i} = \frac{ne^{\delta n} - \bar{s}_{\overline{n}|i}}{\delta}$$

${\bf Chapitre}~{\bf 3}$

	Tableau synthèse des 2 comptes		
éléments	Relation avec prêteur (L)	Fonds d'amortissement (F)	
OB_0	$OB_0^L = L$	$OB_0^F = 0$	
OB_t	$OB_t^L = L$	OB_t^F	
OB_n	$OB_n^L = 0$	$OB_n^F = 0$	
K_t	$K_t^L = Lj_1$	$K_t^F = \frac{L}{s_{\overline{n} j_2}}$	
K_n	$K_n^L = Lj_1 + L$	$K_n^F = \frac{L}{s_{\overline{n} j_2}} - L$	
I_t	$I_t^L = Lj_1$	$I_t^F = \frac{-L}{s_{\overline{n} j_2}} [(1+j_2)^{t-1} - 1]$	
PR_t	$PR_t^L = 0$	$PR_t^F = \frac{L}{s-1}(1+j_2)^{t-1}$	
PR_n	$PR_n^L = L$	$PR_n^F = \frac{L}{s_{\overline{n} j_2}} (1 + j_2)^{n-1} - L$	

Chapitre 4

Prix obligation après un coupon		
première forme	$P = Fra_{\overline{n} j} + Cv^n$	
deuxième forme	$P = (Fr - \tilde{C}j)a_{\overline{n} j} + C$	
Prix obligation entre 2 coupons		
avec méthode rétrospective	$P_t = P_0(1+j)^t$	
avec méthode prospective	$P_t = (P_1 + Fr)(1+j)^{-(1-t)}$	
Prix du marché	$Prix_t = P_t - t \times Fr$	

	Amortissement d'une obligation		
OB_t		$OB_t = BV_t = (Fr - Cj)a_{\overline{n-t} j} + C$	
I_t	$I_t = OB_{t-1}j$	$I_t = (Fr - Cj)(1 - v_j^{n-t+1}) + Cj$	
PR_t	$PR_t = K_t - I_t$	$PR_t = (Fr - Cj)v_j^{n-t+1}$	
PR_n	$PR_n = K_t + C - I_t$	$PR_n = (Fr - Cj)(1 - v_j^{n-t+1}) + C$	

Chapitre 5

Taux de rendement pondéré en dollar		
$i = \frac{I}{A + \sum_{k=1}^{n} C_k (1 - t_k)}$	$I = B - (A + \sum_{k=1}^{n} C_k)$	

Taux de rendement pondéré par période
$$1 + i = \left(\frac{F_1}{A}\right) \times \left(\frac{F_2}{F_1 + C_1}\right) \times \left(\frac{F_3}{F_2 + C_2}\right) \times \dots \times \left(\frac{F_n}{F_{n-1} + C_{n-1}}\right) \times \left(\frac{B}{F_n + C_n}\right)$$

Chapitre 6

Structure par échéance des taux d'intérêt		
Prix Obligation Zero-Coupon	$P(0,t) = (1+s_0(t))^{-t}$	
Taux au comptant $(spot)$	$s_0(t)$	
Taux à terme (Forward)	$1 + i_0(t - 1, t) = \frac{(1 + s_0(t))^t}{(1 + s_0(t - 1)^{t - 1})^t} - 1$	
Relation entre les taux Spot et les taux Forward		
$(1+s_0(n))^n = \prod_{k=1}^n (1+i_0(k-1,k))$		

Chapitre 7

Duration de Macauley		
Duration	$\frac{\sum_{t=1}^{n} t K_t(1+s_0(t)) - t}{\sum_{t=1}^{n} K_t(1+s_0(t)) - t}$	
Convexité	$\frac{\sum_{t=1}^{n} t^2 K_t(1+s_0(t)) - t}{\sum_{t=1}^{n} K_t(1+s_0(t)) - t}$	
Duration modifiée	$-rac{P'(i)}{P(i)}$	$\frac{D}{1+i}$
Convexité modifiée	$\frac{P''(i)}{P(i)}$	$\frac{C+D}{(1+i)^2}$

Duration d'un obligation Zéro-coupon		
Duration	n	
Convexité	n^2	
MD	$\frac{n}{1+i}$	
MC	$\frac{n(n+1)}{(1+i)^2}$	

Approximation du prix dû à un changement de taux d'intérêt		
Approximation linéaire	$P(i) \approx P(i_0)(1 - h \cdot MD)$	
Approximation quadratique	$P(i) \approx P(i_0)(1 - h \cdot MD + \frac{1}{2}h^2 \cdot MC)$	
Approximation Macauley	$P(i) \approx P(i_0) \left(\frac{1+i_0}{1+i_0+h}\right)^D$	