

國立清華大學 計量財務金融學系 碩一 陳冠維

大綱

前言

• 著重在風險的配置(allocation of risk),而非資本配置

	風險配置	資產配置
目標	使投資組合內個別資產 風險貢獻達到某一 目標水準	在某一預期報酬率, 極小化 投資組合波動度

Markowitz model: Global Minimum Variance Portfolio

Markowitz model

$$\min_{w} \quad w^T \sum w$$

subject to
$$\mathbf{1}^T w = 1$$

 $\mathbf{w}^T E(r) = \mu$

缺點

- > 只考慮極小化整個portfolio的風險
- ➤ portfolio風險來源可能只來自少數資產

Risk Parity

$$w_i(\sum W)_i = \frac{1}{N} * W' \sum W$$

Risk Parity: "Leverage Aversion and Risk Parity", 2012

股債比 60/40 基金

風險分散?

88%的風險都來自於股票

市值權重投資組合

1926年-2010年 股、債之平均權重分別為 68%、32%

模型推導

Homogeneous function

<u>Def</u> If f(x, y) is a homogeneous function of n, then we have:

$$f(tx, ty) = t^n * f(x, y)$$

- Now we define the portfolio variance as $Var(w_1, ..., w_N) = W' \sum W$
 - ightharpoonup Since $Var(tw_1, ..., tw_N) = t^2 * Var(w_1, ..., w_N)$
 - $\triangleright Var(w_1, ..., w_N)$ is a homogeneous function of n = 2
- ightharpoonup 為了方便計算,我們設計了 $\sigma(w_1,...,w_N) = \sqrt{W'\Sigma W}$
 - \triangleright Since $\sigma(tw_1, ..., tw_N) = t * \sigma(w_1, ..., w_N)$
 - $\succ \sigma(w_1, ..., w_N)$ is a homogeneous function of n = 1

Homogeneous function

$$f(tx,ty) = t^n * f(x,y) \cdots$$
 將兩邊對t取偏微分

$$n * t^{n-1} * f(x,y) = \frac{\partial f}{\partial tx} * \frac{\partial tx}{\partial t} + \frac{\partial f}{\partial ty} * \frac{\partial ty}{\partial t} = x * \frac{\partial f}{\partial tx} + y * \frac{\partial f}{\partial ty}$$

- 》則當t = 1 & n = 1時, $f(x,y) = x * \frac{\partial f}{\partial x} + y * \frac{\partial f}{\partial y}$
- ightharpoonup 因此我們可以將 $\sigma(w_1,...,w_N) = \sqrt{W'\Sigma W}$ 改寫為:

$$\sigma(W) = \sum_{i=1}^{N} w_i * \frac{\partial \sigma}{\partial w_i}$$

$$\sigma(W) = \sqrt{W' \Sigma W} = \sum_{i=1}^{N} w_i * \frac{\partial \sigma}{\partial w_i} \cdots$$
 因為 Σ 是 symmetric
$$\frac{\partial \sigma}{\partial w_i} = \frac{1}{2} * (W' \Sigma W)^{-0.5} * 2(\Sigma W)_i$$

▶ 因此 σ(W)可以改寫為:

$$\sigma(W) = \sum_{i=1}^{N} \frac{w_i(\sum W)_i}{\sqrt{W'\sum W}}$$

> 可以發現投資組合的波動度可以被拆分為個別資產的風險貢獻之和

$$\sigma(W) = \sum_{i=1}^{N} \frac{w_i(\sum W)_i}{\sqrt{W'\sum W}}$$

Def Risk Contribution (風險貢獻)

$$RC_{i} = \frac{w_{i}(\sum W)_{i}}{\sqrt{W'\sum W}}$$

$$\sum_{i=1}^{N} RC_{i} = \sum_{i=1}^{N} \frac{w_{i}(\sum W)_{i}}{\sqrt{W'\sum W}} = \sigma(W)$$

Def Relative Risk Contribution

$$b_i = \frac{w_i(\sum W)_i}{W'\sum W}$$

$$\sum_{i=1}^{N} b_i = \sum_{i=1}^{N} w_i(\sum W)_i * \frac{1}{W'\sum W} = 1$$

註:
$$\sum_{i=1}^{N} RC_i = \sum_{i=1}^{N} \frac{w_i(\sum W)_i}{\sqrt{W'\sum W}} = \sigma(W) = \frac{W'\sum W}{\sqrt{W'\sum W}} = \sqrt{W'\sum W}$$

$$b_i = \frac{w_i(\sum W)_i}{W'\sum W}$$

➤ Risk Parity的核心:使個別資產的風險貢獻相同

$$b_i = b_j = \frac{1}{N}$$
 for $i \neq j$

- ▶ 我們也可以指定要分派給各個資產的風險貢獻:
 - ightharpoonup Example: 有3個資產,let $b_1 = 0.3, b_2 = 0.5, b_3 = 0.2$
 - > 註: $\sum_{i=1}^{N} b_i = 1$

$$b_i = \frac{w_i(\sum W)_i}{W'\sum W}$$
, $b_i * W'\sum W = w_i(\sum W)_i$

- ightharpoonup In general, our goal is to let $\mathbf{w}_i(\sum \mathbf{W})_i = b_i * \mathbf{W}' \sum \mathbf{W}$ for i = 1, ..., N
 - ▶ 註1: b_i是研究者自行給定的
 - ightharpoonup 註2: $b_i = \frac{1}{N}$ 時,代表我們希望每個資產的風險貢獻相同

Goal:
$$w_i(\sum w)_i = b_i * w' \sum w \text{ for } i = 1, \dots, N$$

s.t. $w \ge 0$, $\mathbf{1}' w = 1$

》 變數變換,令
$$x = \frac{w}{\sqrt{w' \Sigma w}}$$
, $i.e.$, $x_i = \frac{w_i}{\sqrt{w' \Sigma w}}$
1) $: x = \frac{w}{\sqrt{w' \Sigma w}} \Rightarrow \Sigma x = \frac{\Sigma w}{\sqrt{w' \Sigma w}}$, $: (\Sigma x)_i = \frac{(\Sigma w)_i}{\sqrt{w' \Sigma w}}$

Goal:
$$w_i(\sum w)_i = b_i * w' \sum w \text{ for } i = 1, \dots, N$$

s.t. $w \ge 0$, $\mathbf{1}' w = 1$

》 變數變換,令
$$\mathbf{x} = \frac{\mathbf{w}}{\sqrt{\mathbf{w}' \Sigma \mathbf{w}}}$$
, i.e., $x_i = \frac{\mathbf{w}_i}{\sqrt{\mathbf{w}' \Sigma \mathbf{w}}}$

1)
$$x = \frac{w}{\sqrt{w' \Sigma w}} \Rightarrow \sum x = \frac{\sum w}{\sqrt{w' \Sigma w}}, \quad \therefore (\sum x)_i = \frac{(\sum w)_i}{\sqrt{w' \Sigma w}}$$

2)
$$w_i(\sum w)_i = b_i * w' \sum w \Rightarrow \frac{w_i(\sum w)_i}{w' \sum w} = b_i \Rightarrow \frac{w_i}{\sqrt{w' \sum w}} \frac{(\sum w)_i}{\sqrt{w' \sum w}} = b_i$$

Goal:
$$w_i(\sum w)_i = b_i * w' \sum w \text{ for } i = 1, \dots, N$$

 $s, t, w \ge 0, \quad \mathbf{1}'w = 1$

》 變數變換,令
$$x = \frac{w}{\sqrt{w' \sum w}}$$
, i.e., $x_i = \frac{w_i}{\sqrt{w' \sum w}}$

1)
$$x = \frac{w}{\sqrt{w' \Sigma w}} \Rightarrow \sum x = \frac{\sum w}{\sqrt{w' \Sigma w}}, \quad \therefore (\sum x)_i = \frac{(\sum w)_i}{\sqrt{w' \Sigma w}}$$

2)
$$w_i(\sum w)_i = b_i * w' \sum w \implies \frac{w_i(\sum w)_i}{w' \sum w} = b_i \implies \frac{w_i}{\sqrt{w' \sum w}} \frac{(\sum w)_i}{\sqrt{w' \sum w}} = b_i$$

 $\Rightarrow x_i(\sum x)_i = b_i \implies (\sum x)_i = \frac{b_i}{x_i}, \text{ or in vector form: } \sum x = \frac{b}{x}$

▶ 限制式 $w \ge 0$, 1'w = 1 亦需轉換

P 限制式 $w \ge 0$, $\mathbf{1}'w = 1$ 亦需轉換

1) $:: x_i = \frac{w_i}{\sqrt{w' \sum w}}$, $:: \mathbf{1}'x = \sum_{i=1}^n x_i = \frac{\sum_{i=1}^n w_i}{\sqrt{w' \sum w}} = \frac{1}{\sqrt{w' \sum w}}$ $\Rightarrow x_i = w_i * \mathbf{1}'x \Rightarrow w = \frac{x}{\mathbf{1}'x}$

▶ 限制式 $w \ge 0$, 1'w = 1 亦需轉換

1)
$$x_i = \frac{w_i}{\sqrt{w' \Sigma w}}, \quad \therefore \mathbf{1}' \mathbf{x} = \sum_{i=1}^n x_i = \frac{\sum_{i=1}^n w_i}{\sqrt{w' \Sigma w}} = \frac{1}{\sqrt{w' \Sigma w}}$$

$$\Rightarrow x_i = w_i * \mathbf{1}' \mathbf{x} \quad \Rightarrow \quad \mathbf{w} = \frac{x}{\mathbf{1}' \mathbf{x}}$$

2)
$$w = \frac{x}{1'x} \ge 0 \implies x \ge 0$$

Note: $\mathbf{1}'w = \frac{1'x}{1'x} = 1$

▶ 限制式 $w \ge 0$, 1'w = 1 亦需轉換

1)
$$x_i = \frac{w_i}{\sqrt{w' \Sigma w}}, \quad \therefore \mathbf{1}' \mathbf{x} = \sum_{i=1}^n x_i = \frac{\sum_{i=1}^n w_i}{\sqrt{w' \Sigma w}} = \frac{1}{\sqrt{w' \Sigma w}}$$

$$\Rightarrow x_i = w_i * \mathbf{1}' \mathbf{x} \quad \Rightarrow \quad \mathbf{w} = \frac{x}{\mathbf{1}' \mathbf{x}}$$

2)
$$w = \frac{x}{1'x} \ge 0 \implies x \ge 0$$

Note: $\mathbf{1}'w = \frac{1'x}{1'x} = 1$

ightharpoonup 經過變數變換後,新目標式: $\sum x = \frac{b}{x}$, s.t. $x \ge 0$

New Goal: $\sum x = \frac{b}{x}$, s.t. $x \ge 0$

▶ 上述目標式仍無從解起,因此設計出下列 convex optimization problem:

$$\min_{\mathbf{x} \geq \mathbf{0}} \frac{1}{2} \mathbf{x}' \sum_{i=1}^{n} x_i \log x_i$$

New Goal: $\sum x = \frac{b}{x}$, s.t. $x \ge 0$

▶ 上述目標式仍無從解起,因此設計出下列 convex optimization problem:

$$\min_{\mathbf{x} \geq \mathbf{0}} \frac{1}{2} \mathbf{x}' \sum_{i=1}^{n} \mathbf{x} - \sum_{i=1}^{n} b_i \log x_i$$

▶ 原因:

Let
$$f(x) = \frac{1}{2}x' \sum x - b' \log x$$

 $\Rightarrow f'(x) = \sum x - \frac{b}{x} = 0 \Rightarrow \sum x = \frac{b}{x}$, equal to our new goal!

New Goal:
$$\sum x = \frac{b}{x}$$
, s.t. $x \ge 0$

▶ 上述目標式仍無從解起,因此設計出下列 convex optimization problem:

$$\min_{\mathbf{x} \geq \mathbf{0}} \frac{1}{2} \mathbf{x}' \sum_{i=1}^{n} \mathbf{x}' \sum_{i=1}^{n} b_i \log x_i$$

▶ 原因:

Let
$$f(x) = \frac{1}{2}x' \sum x - b' \log x$$

 $\Rightarrow f'(x) = \sum x - \frac{b}{x} = 0 \Rightarrow \sum x = \frac{b}{x}$, equal to our new goal!

- ightharpoonup 若 f(x) 存在 global minimum,則最小化 f(x) 的解,同等於目標式的解
- \triangleright 接著需證明 f(x) 確實存在 global minimum

- > Step 1: We prove that f(x) is strictly convex. If it's done, then by definition, f(x) has at most one critical point.
- \triangleright Step 2: We prove that f(x) has at least one critical point.

證明 f(x) 存在 global minimum.

> Step 1: We prove that f(x) is strictly convex. If it's done, then by definition, f(x) has at most one critical point.

1)
$$f(x) = \frac{1}{2}x' \sum x - b' \log x$$

$$\Rightarrow f'(x) = \sum x - \frac{b}{x}$$

$$\Rightarrow f''(x) = \sum + diag(\frac{b}{x'x})$$

- > Step 1: We prove that f(x) is strictly convex. If it's done, then by definition, f(x) has at most one critical point.
 - 1) $f(x) = \frac{1}{2}x' \sum x b' \log x$ $\Rightarrow f'(x) = \sum x \frac{b}{x}$ $\Rightarrow f''(x) = \sum + diag(\frac{b}{x'x})$
 - 2) $\sum = E[(\mathbf{z} E(\mathbf{z}))(\mathbf{z} E(\mathbf{z}))']$ Let $\mathbf{a} = \mathbf{z} - E(\mathbf{z})$, $\mathbf{a}\mathbf{a}'$ is P.S.D, $\mathbf{E}(\mathbf{a}\mathbf{a}') = \sum$ is also P.S.D

- > Step 1: We prove that f(x) is strictly convex. If it's done, then by definition, f(x) has at most one critical point.
 - 3) $: \mathbf{b}, \ \mathbf{x} \ge \mathbf{0}, \ \therefore \operatorname{diag}\left(\frac{\mathbf{b}}{\mathbf{x}'\mathbf{x}}\right) \text{ is } P.D$

- > Step 1: We prove that f(x) is strictly convex. If it's done, then by definition, f(x) has at most one critical point.
 - 3) $: \mathbf{b}, \ \mathbf{x} \ge \mathbf{0}, \ \therefore \operatorname{diag}\left(\frac{\mathbf{b}}{\mathbf{r}'\mathbf{r}}\right) \text{ is } P.D$
 - 4) Note that $f''(x) = \sum + diag(\frac{b}{x'x})$
 - $\therefore P.S.D \ matrix + P.D \ matrix = P.D \ matrix,$
 - f(x) is strictly convex \Rightarrow f(x) has at most one critical point.

- > Step 2: We prove that f(x) has at least one critical point.
 - 1) $f(x) = \frac{1}{2}x'\Sigma x \sum_{i=1}^{n} b_i \log(x_i)$
 - 2) Assumption: Σ is full column rank, then Σ is P.D matrix.

證明 f(x) 存在 global minimum.

- Step 2: We prove that f(x) has at least one critical point.
 - 1) $f(x) = \frac{1}{2}x'\Sigma x \sum_{i=1}^{n} b_i \log(x_i)$
 - 2) Assumption: Σ is full column rank, then Σ is P.D matrix. Let λ_1 be the lowest eigenvalue of Σ .

By assumption, $\lambda_1 > 0$, we have $x' \Sigma x \ge \lambda_1 \sum_{i=1}^n x_i^2$

Definition: $\Sigma x = \lambda x$ $\Rightarrow x'\Sigma x = \lambda x'x$

證明 f(x) 存在 global minimum.

- \triangleright Step 2: We prove that f(x) has at least one critical point.
 - 1) $f(x) = \frac{1}{2}x'\Sigma x \sum_{i=1}^{n} b_i \log(x_i)$
 - 2) Assumption: Σ is full column rank, then Σ is P.D matrix. Let λ_1 be the lowest eigenvalue of Σ .

Lemma 1.8
$$\Rightarrow \frac{1}{2}x'\Sigma x \geq \frac{1}{2}\lambda_1\sum_{i=1}^n x_i^2$$
 $\Rightarrow \frac{1}{2}x'\Sigma x \geq \frac{1}{2}\lambda_1\sum_{i=1}^n x_i^2$ $\Rightarrow f(x) \geq \frac{1}{2}\lambda_1\sum_{i=1}^n x_i^2 - \sum_{i=1}^n b_i \log(x_i)$ $\Rightarrow f(x) \geq \sum_{i=1}^n \left(\frac{1}{2}\lambda_1 x_i^2 - b_i \log(x_i)\right) = \sum_{i=1}^n g_i(x_i)$

Definition: $\Sigma x = \lambda x$ $\Rightarrow x' \Sigma x = \lambda x' x$

證明 f(x) 存在 global minimum.

> Step 2: We prove that f(x) has at least one critical point.

3)
$$g_i(t) := \frac{1}{2}\lambda_1 t^2 - b_i \log(t)$$
, $t > 0$, and it's convex

$$\Rightarrow$$
 It has a global minimum at $\mathbf{t}_i^* = \sqrt{\frac{b_i}{\lambda_1}}$

$$g''_{i}(t) = \lambda_{1} + \frac{b_{i}}{t^{2}}$$

$$g'_{i}(t) = \lambda_{1}t - \frac{b_{i}}{t} = 0$$

$$\Rightarrow t_{i}^{*} = \sqrt{\frac{b_{i}}{\lambda_{1}}}$$

證明 f(x) 存在 global minimum.

> Step 2: We prove that f(x) has at least one critical point.

3)
$$g_i(t) \coloneqq \frac{1}{2}\lambda_1 t^2 - b_i \log(t)$$
, $t > 0$, and it's convex

 \Rightarrow It has a global minimum at $t_i^* = \sqrt{\frac{b_i}{\lambda_1}}$, and satisfies

$$\lim_{t \to +\infty} g_i(t) = \lim_{t \to 0^+} g_i(t) = +\infty$$

$$g''_{i}(t) = \lambda_{1} + \frac{b_{i}}{t^{2}}$$

$$g'_{i}(t) = \lambda_{1}t - \frac{b_{i}}{t} = 0$$

$$\Rightarrow t_{i}^{*} = \sqrt{\frac{b_{i}}{\lambda_{1}}}$$

> Step 2: We prove that
$$f(x)$$
 has at least one critical point.

3)
$$g_i(t) \coloneqq \frac{1}{2}\lambda_1 t^2 - b_i \log(t)$$
, $t > 0$, and it's convex

$$\Rightarrow$$
 It has a global minimum at $t_i^* = \sqrt{\frac{b_i}{\lambda_1}}$, and satisfies

$$\lim_{t \to \infty} a(t) = \lim_{t \to \infty} a(t) = 100$$

$$\lim_{t \to +\infty} g_i(t) = \lim_{t \to 0^+} g_i(t) = +\infty \qquad \therefore g(\cdot) \text{ has a global minimum at } t_k^*$$

4)
$$: f(x) \ge \sum_{i=1}^{n} g_i(x_i), : f(x) \ge g_i(x_i) + \sum_{k \ne i} g_k(x_k) \ge g_i(x_i) + \sum_{k \ne i} g_k(t_k^*)$$

•
$$g''_{i}(t) = \lambda_{1} + \frac{b_{i}}{t^{2}}$$

• $g'_{i}(t) = \lambda_{1}t - \frac{b_{i}}{t} = 0$

$$\Rightarrow t_{i}^{*} = \sqrt{\frac{b_{i}}{\lambda_{1}}}$$

證明 f(x) 存在 global minimum.

$$\triangleright$$
 Step 2: We prove that $f(x)$ has at least one critical point.

3)
$$g_i(t) := \frac{1}{2}\lambda_1 t^2 - b_i \log(t)$$
, $t > 0$, and it's convex

$$\Rightarrow$$
 It has a global minimum at $t_i^* = \sqrt{\frac{b_i}{\lambda_1}}$, and satisfies

$$\lim_{t \to \infty} \sigma_t(t) = \sqrt{\frac{1}{\lambda_1}}, \quad \text{and satisfies}$$

 $\lim_{t \to +\infty} g_i(t) = \lim_{t \to 0^+} g_i(t) = +\infty \qquad \therefore g(\cdot) \text{ has a global minimum at } t_k^*$

 $g''_{i}(t) = \lambda_{1} + \frac{b_{i}}{t^{2}}$ $g'_{i}(t) = \lambda_{1}t - \frac{b_{i}}{t} = 0$

 $\Rightarrow t_i^* = \left| \frac{b_i}{\lambda} \right|$

選一個 i 使得 $\sum_{k\neq i} g_k(t_k^*)$ 是最小的

證明 f(x) 存在 global minimum.

- \triangleright Step 2: We prove that f(x) has at least one critical point.
 - 5) Let B > 0 an arbitrary threshold.

Whenever $t \notin [\alpha, \beta]$, $\exists t \text{ s.t. } g_i(t) = \infty$, then $g_i(t) > B - \mu$

證明 f(x) 存在 global minimum.

- \triangleright Step 2: We prove that f(x) has at least one critical point.
 - 5) Let B>0 an arbitrary threshold. Whenever $t \notin [\alpha,\beta]$, $\exists t \ s.t. \ g_i(t)=\infty$, then $g_i(t)>B-\mu$
 - 6) $\forall i, x_i \notin [\alpha, \beta]$, then $f(x) \ge g_i(x_i) + \mu > B \mu + \mu = B$, i.e., f(x) > B, f(x) has at least one critical point.

證明 f(x) 存在 global minimum.

- \triangleright Step 2: We prove that f(x) has at least one critical point.
 - 5) Let B > 0 an arbitrary threshold. Whenever $t \notin [\alpha, \beta]$, $\exists t \ s.t. \ g_i(t) = \infty$, then $g_i(t) > B - \mu$
 - 6) $\forall i, x_i \notin [\alpha, \beta]$, then $f(x) \ge g_i(x_i) + \mu > B \mu + \mu = B$, i.e., f(x) > B, f(x) has at least one critical point.
- f(x) has at most one critical point & at least one critical point. f(x) has global minimum.

透過牛頓法求極值,不斷迭代找到一階微分為零的點

1)
$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2$$

透過牛頓法求極值,不斷迭代找到一階微分為零的點

1)
$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2$$

 $\Rightarrow f'(x) = f'(x_0) + f''(x_0)(x - x_0) = 0$

透過牛頓法求極值,不斷迭代找到一階微分為零的點

1)
$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2$$

 $\Rightarrow f'(x) = f'(x_0) + f''(x_0)(x - x_0) = 0$

2) Let
$$\Delta x = x - x_0 \implies \Delta x = -\frac{f'(x_0)}{f''(x_0)}$$

 $x_1 = x_0 + \Delta x = x_0 - \frac{f'(x_0)}{f''(x_0)}$

透過牛頓法求極值,不斷迭代找到一階微分為零的點

1)
$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2$$

 $\Rightarrow f'(x) = f'(x_0) + f''(x_0)(x - x_0) = 0$

2) Let
$$\Delta x = x - x_0 \implies \Delta x = -\frac{f'(x_0)}{f''(x_0)}$$

 $x_1 = x_0 + \Delta x = x_0 - \frac{f'(x_0)}{f''(x_0)} \implies x_{n+1} = x_n + \Delta x = x_n - \frac{f'(x_n)}{f''(x_n)}$

透過牛頓法求極值,不斷迭代找到一階微分為零的點

- > 一維問題的解法:
 - 1) $f(x) = f(x_0) + f'(x_0)(x x_0) + \frac{1}{2}f''(x_0)(x x_0)^2$ $\Rightarrow f'(x) = f'(x_0) + f''(x_0)(x - x_0) = 0$
 - 2) Let $\Delta x = x x_0 \implies \Delta x = -\frac{f'(x_0)}{f''(x_0)}$ $x_1 = x_0 + \Delta x = x_0 \frac{f'(x_0)}{f''(x_0)} \implies x_{n+1} = x_n + \Delta x = x_n \frac{f'(x_n)}{f''(x_n)}$ 迭代直到 $\Delta x \to 0$, i.e., $f'(x_n) \to 0$

- > 多維問題的解法:
 - 1) $f(x) = f(x_0) + \nabla f(x_0)' (x x_0) + \frac{1}{2} (x x_0)' \nabla^2 f(x_0) (x x_0)$ $\Rightarrow \nabla f(\mathbf{x}) = \nabla f(\mathbf{x_0}) + \nabla^2 f(\mathbf{x_0}) (\mathbf{x} - \mathbf{x_0})$
 - 2) Let $\Delta x = x x_0 \Rightarrow \Delta x = -(\nabla^2 f(x_0))^{-1} \cdot \nabla f(x_0)$

$$\Rightarrow x_1 = x_0 + \Delta x = x_0 - \left(\nabla^2 f(x_0)\right)^{-1} \cdot \nabla f(x_0)$$

$$\Rightarrow x_{n+1} = x_n + \Delta x = x_n - \left(\nabla^2 f(x_n)\right)^{-1} \cdot \nabla f(x_n) \cdot r$$
, r 近於 0^+ Hessian matrix gradient step size of each iteration

迭代直到 $\|\nabla f(x_n)\| < \varepsilon$, where ε is arbitrary small

3

實作

標的:股+債回測環境

標的

公債:3到7年公債ETF(IEI)、7到10年公債ETF(IEF)

股票: APPLE(AAPL)、GOOGLE(GOOG)

● 日期

回測時間:2014/1/1~2020/12/13

移動窗格:240個交易日

更新時間:40個交易日

● 比較對象

- 1. Risk parity portfolio vs. Markowitz portfolio
- 2. Risk parity portfolio vs. S&P500
- 3. Risk parity portfolio vs. 加條件的Risk parity portfolio

R library

riskParityPortfolio

標的:股+債 風險貢獻度比例

Markowitz:

RC集中於" IEI" 及" AAPL" 分布較極端

Risk parity(4種條件下): 平均貢獻給兩檔債券和兩 檔股票

標的:股+債報酬累積及回落圖

Risk parity: 報酬較低,但穩定不易有急遽回落

Markowitz: 累積報酬與Risk parity相仿,但易受系統風險影響,吃到較大回落

標的:股+債 績效檢視比較

risk parity投組與markowitz 投組資產配置後的績效比較

> backtestSummary(BT) \$performance risk parity portfolio markowitz portfolio Sharpe ratio 1.646209e+00 5.430581e-01 3.358196e-01 max drawdown 4.142583e-02 annual return 6.767854e-02 6.815089e-02 annual volatility 4.139868e-02 1.246248e-01 Sterling ratio 1.645130e+00 2.015324e-01 Omega ratio 1.315226e+00 $1.146704e \pm 00$ ROT (bps) 3.751849e + 03 $2.176314e \pm 02$ VaR (0.95) 3.997888e-03 9.231557e-03 CVaR (0.95) 5.719619e-03 2.029539e-02

標的:股+債資產配置差異

Risk parity:投組建構比例穩定,債券成分較重

Markowitz:隨著市場波動而定時調整投組構造, 較Risk parity多出許多交易成本

標的:股+債 績效檢視比較

risk parity投組與 S&P500的績效比較

➤ 以2014年到今年的數據顯示,Risk parity夏 普比率較低,但在年化 波動度上遠低於 S&P500

> backtestSummary(BT2)\$performance 58P 5 0 0 Sharpe ratio 1.646209e+00 0.56710397 max drawdown 4.142583e-02 0.33924960 annual return 6.815089e-02 0.10607323 annual volatility 4.139868e-02 0.18704371 Sterling ratio 1.645130e+00 0.31267018 Omega ratio 1.315226e+00 1.14110802 ROT (bps) 3.751849e+03 VaR (0.95) 3.997888e-03 0.01701222 CVaR (0.95) 5.719619e-03 0.02946877

標的:股+債報酬累積及回落圖

Risk parity: 報酬較低,但穩定不易有急遽回落

S&P500: 有較高報酬,但易受系統風險影響,吃 到較大回落

標的:美股十大成分股回測環境

標的

2014年的美股十大成分股

'AAPL','MSFT','AMZN','FB','GOOGL','GOOG','BRK-B','JNJ','JPM','V'

● 日期

回測時間:2014/1/1~2020/12/13

移動窗格:240個交易日

更新時間:40個交易日

● 比較對象

- 1. Risk parity portfolio vs. Markowitz portfolio
- 2. Risk parity portfolio vs. S&P500

標的:美股十大成分股 風險貢獻度比例

Markowitz:

RC集中於占比較高之三 支個股上

Risk parity(4種條件下):

平均貢獻給十檔股票

標的:美股十大成分股績效檢視比較

risk parity投組與markowitz 資產配置後的績效比較

▶ 以2014年到今年的 數據顯示・Risk parity投組表現略 優一些。

> backtestSummary(bt)\$performance

	risk	parity portfolio	markowitz portfolio
Sharpe ratio		1.098776e+00	0.72856560
max drawdown		2.877405e-01	0.31197900
annual return		2.217428e-01	0.19450962
annual volatility		2.018089e-01	0.26697612
Sterling ratio		7.706346e-01	0.62347023
Omega ratio		1.237786e+00	1.17108101
ROT (bps)		5.438277e+03	495.77535255
VaR (0.95)		1.897366e-02	0.02496065
CVaR (0.95)		3.144827e-02	0.04179917

3

標的:美股十大成分股報酬累積及回落圖

➤ Risk parity 投組不論是在報酬上, 亦或是風險回落上,都較優於 Markowitz 投組的結果,而因沒加 入債券分散風險,會吃到2020疫情 影響的虧損。

標的:美股十大成分股資產配置差異

Risk parity: 投組建構比例穩定,架構平均

Markowitz: 隨著市場波動而定時調整投組構造, 有時甚至投組內只有一股。投組權重 變動劇烈,較Risk parity多出許多交 易成本。

標的:美股十大成分股績效檢視比較

risk parity投組與 S&P500的績效比較

▶ 以2014年到今年的數 據顯示,Risk parity投 組表現優於S&P500, 但可能是因為沒加入債 券避險的原因,年化波 動度略高一籌。

> backtestSummary(bt2) \$pertormance

		S&P 5 0 0
Sharpe ratio	1.098776e+00	
max drawdown	2.877405e-01	0.33924960
annual return	2.217428e-01	0.10607323
annual volatility		
Sterling ratio	7.706346e-01	
Dmega ratio	1.237786e+00	1.14110802
ROT (bps)	5.438277e+03	Inf
VaR (0.95)	1.897366e-02	0.01701222
CVaR (0.95)	3.144827e-02	0.02946877

標的:美股十大成分股報酬累積及回落圖

➤ Risk parity投組報酬上遠勝於大盤, 但在Drawdown的部分與S&P500 相近。

4

結論

Risk Parity

優勢

- a) 策略構造穩定
- b) 金融海嘯時, 維持穩定績效
- c) 不會過度集中 在特定資產上

- a) 資產相關性變化
- b) 資產波動度變化

未來我們可能要再思考 如何用適合的商品去套 用於Risk parity中,以 應變不斷改變的市場。

Reference

- 賀蘭芝, 行政院所屬各機關(央行)因公出國人員出國報告書: Risk Parity投資組合配置分析, 2015
- V. Chopra and W. Ziemba, "The effect of errors in means, variances and covariances on optimal portfolio choice", Journal of Portfolio Management, 1993
- FLORIN SPINU, "AN ALGORITHM FOR COMPUTING RISK PARITY WEIGHTS", 2013
- Clifford S. Asness, Andrea Frazzini, and Lasse H. Pedersen, "Leverage Aversion and Risk Parity", 2012