Worksheet-4 in R

Drake Francis M. Jaculina

2022-11-23

1. The table below shows the data about shoe size and height. Create a data frame.

##		${\tt Shoesize}$	Height	Gender	${\tt Shoesize2}$	Height2	Gender2
##	1	6.5	66.0	F	13.0	77	M
##	2	9.0	68.0	F	11.5	72	M
##	3	8.5	64.5	F	8.5	59	F
##	4	8.5	65.0	F	5.0	62	F
##	5	10.5	70.0	M	10.0	72	M
##	6	7.0	64.0	F	6.5	66	F
##	7	9.5	70.0	F	7.5	64	F
##	8	9.0	71.0	F	8.5	67	M
##	9	13.0	72.0	M	10.5	73	М
##	10	7.5	64.0	F	8.5	69	F
##	11	10.5	74.5	M	10.5	72	M
##	12	8.5	67.0	F	11.0	70	M
##	13	12.0	71.0	M	9.0	69	M
##	14	10.5	71.0	M	13.0	70	M

a. Describe the data.

The data shows the different shoe size and height of male and female. The data is likely have a linear correlation.

b. Find the mean of shoe size and height of the respondents. Copy the codes and results.

```
mean1 <- shoeDF$Shoesize
mean(mean1)
## [1] 9.321429
mean2 <-shoeDF$Shoesize2
mean(mean2)</pre>
```

[1] 9.5

```
both1 <- mean(c(mean1,mean2))
both1

## [1] 9.410714

mean3 <-shoeDF$Height
mean(mean3)

## [1] 68.42857

mean4 <-shoeDF$Height2
mean(mean4)

## [1] 68.71429

both2 <- mean(c(mean3,mean4))
both2

## [1] 68.57143</pre>
```

Is there a relationship between shoe size and height? Why?

Yes, there is a relationship or correlation between shoe size and height. It is because as you can see in the given data, taller male or female tend to have a larger shoe size while shorter male or female tend to have a smaller shoe size.

Factors

A nominal variable is a categorical variable without an implied order. This means that it is impossible to say that 'one is worth more than the other'. In contrast, ordinal variables do have a natural ordering.

Example

```
Gender <- c("M","F","F","M")
factor_Gender <- factor(Gender)
factor_Gender
## [1] M F F M
## Levels: F M</pre>
```

2. Construct character vector months to a factor with factor() and assign the result to factor_months_vector. Print out factor_months_vector and assert that R prints out the factor levels below the actual values.

Consider data consisting of the names of months: "March", "April", "January", "November", "January", "September", "October", "September", "November", "August", "January", "November", "November", "February", "May", "August", "July", "December", "August", "August", "September", "November", "February", "April")

```
[1] March
                 April
                            January
                                      November
                                                          September October
                                                January
## [8] September November
                            August
                                                                    February
                                      January
                                                November
                                                          November
## [15] May
                 August
                            July
                                      December August
                                                          August
                                                                    September
```

```
## [22] November February April
## 11 Levels: April August December February January July March May ... September
```

3. Then check the summary() of the months_vector and factor_months_vector.

```
summary(months_vector)
                               Mode
##
      Length
                   Class
##
           24 character character
summary(factor_months_vector)
##
       April
                 August
                          December
                                     February
                                                  January
                                                                July
                                                                          March
                                                                                        May
##
            2
                       4
                                             2
                                                        3
                                  1
                                                                    1
                                                                               1
                                                                                          1
##
    November
                October September
##
            5
                       1
```

Interpret the results of both vectors.

For the summary of months_vector, it shows the total Length, Class, and the Mode while for the summary of factor_months_vector, it specify directly the months, the sequence or arrangement was still the same, and the number from which it's used repeatedly.

Are they both equally useful in this case?

Yes, their are both equally useful in this case.

Levels: East West North

4. Create a vector and factor for the table below.

Note: Apply the factor function with required order of the level. new_order_data <- factor(factor_data,levels = c("East","West","North")) print(new_order_data)

```
factor_data <- c("East" = '1', "West" = '4', "North" = '3')
new_order_data <- factor(factor_data,levels = c("East","West","North"))
print(new_order_data)

## East West North
## <NA> <NA> <NA></NA>
```

###5. Enter the data below in Excel with file name = import_march.csv

a. Import the excel file into the Environment Pane using read.table() function. Write the code.

```
import <- read.table("/cloud/project/RWorksheet_JACULINA#4/import_march.csv",
header = TRUE, sep= ",")
import</pre>
```

```
Students Strategy.1 Strategy.2 Strategy.3
##
## 1
          Male
                          8
                                     10
                          4
                                      8
                                                   6
## 2
## 3
                          0
                                      6
                                                   4
## 4
        Female
                         14
                                      4
                                                  15
## 5
                         10
                                      2
                                                  12
                                      0
## 6
                          6
                                                   9
```

b. View the dataset. Write the code and its result.

view_dataset <- read.csv("/cloud/project/RWorksheet_JACULINA#4/import_march.csv")
view_dataset</pre>

##		${\tt Students}$	Strategy.1	Strategy.2	Strategy.3
##	1	Male	8	10	8
##	2		4	8	6
##	3		0	6	4
##	4	Female	14	4	15
##	5		10	2	12
##	6		6	0	9