Notes

April 28, 2014

solution $w(\xi_0, \eta_o; x, y)$ is related to riemann function $v(\xi_0, \eta_0; x, y)$ for original problem by $v = e^{b(x-\xi_0) + a(y-\eta_0)} w(\xi_0, \eta_0; x, y).$ Introduced $x = (\xi_0 - x)(\eta_0 - y)$

$$w(x,y) = h(z)$$

 $zh''(z) + h'(z) + (c+ab)h(z) = 0$

with h(0) = 1 want h(z) on $z \ge 0$ try $h(z) = \sum_{n=0}^{\infty} h_n z^n$

$$0 = z \sum_{n=0}^{\infty} h_n n(n-1) z^{n-2} + \sum_{n=0}^{\infty} h_n n z^{n-1} + (c+ab) \sum_{n=0}^{\infty} h_n z^n$$

$$= \sum_{n=0}^{\infty} h_n n^2 z^{n-1} + \sum_{n=0}^{\infty} (c+ab) h_n z^n$$

$$= \sum_{n+1=1}^{\infty} h_{n+1} (n+1)^2 z^n + \sum_{n=0}^{\infty} (c+ab) h_n z^n$$

for $n \ge 0$ $(n+1)^2 h_{n+1} = (ab-c)h_n, h_0 = 1$ $n \ge 1$

$$h_n = \frac{ab - c}{n^2} h_{n-1} = \frac{ab - c}{n^2} \cdot \frac{ab - c}{(n-1)^2} \dots$$

so
$$h(z) = \sum_{n=0}^{\infty} \frac{(ab-c)^n}{n!n!} z^n$$
 that is $w(x,y) = \sum_{n=0}^{\infty} \frac{(ab-c)^n}{n!n!} (\xi_0 - x)^n (\eta_0 - y)^n$ note series converges for $|z| < \infty$

note $J_0(x) = \sum_{n=0}^{\infty} \frac{(-x^2/4)^n}{n!n!}$ and $I_0(x) = \sum_{n=0}^{\infty} \frac{(x^2/4)^n}{n!n!}$ so h(z) can be written as J_0 or I_0 depending on sign of ab - c

lesson 30

vibrating drumhead

PDE
$$u_{tt} = c^2(u_{xx} + u_{yy})$$
 $0 \le r \le 1$ $0 < \theta < 2\pi$
BC $u(1, \theta, t) = 0$ $0 < \theta < 2\pi$ $t > 0$
IC $u(r, \theta, 0) = f(r, \theta)$ $t > 0$

 $\nabla^2 u = u_{xx} + u_{yy}$ (cartesian) is laplacian operator $= u_{rr} + \frac{1}{r^2} u_{\theta\theta}$ (polar) remember $x = r \cos(\theta)$ and y is multiple of r also.

we will use separation of variables

$$u = U(r, \theta)T(t)$$
$$U = R(r)\Theta(\theta)$$

eigenfunction U = R(r). note that this is a circle. nodel line. add in Θ and get radial nodel lines $(U = R(r)\Theta(\theta))$

chladni came up with sprinkling sand on surface of these things.

$$u_r = u_x \cos(\theta)$$

PDE
$$\frac{T''(t)}{T(t)} = \left[U_{rr} + \frac{1}{r} U_r + \frac{1}{r^2} U_{\theta\theta} \right] = \text{separation constant} = -\lambda^2 \text{ will assume less than } 0$$

$$T'' + c^2 \lambda^2 T = 0 \leftarrow \text{trig solution}$$

$$U_{rr} + \frac{1}{r} U_r + \frac{1}{r^2} U_{\theta\theta} + \lambda^2 U = 0$$

$$U = R(r) \Theta(\theta)$$

$$R''(r) + \frac{1}{r} R'(r) + \frac{1}{r^2} R(r) \frac{\Theta''}{\Theta} + \lambda^2 R = 0$$

notice

$$\frac{\Theta''(\theta)}{Theta(\theta)} = \text{function of } r$$

$$= \text{function of } \theta$$

$$= \text{constant}$$

$$\Theta'' + \mu^2 \Theta = 0$$

 Θ must be 2π periodic

$$\cos(\mu\theta), \sin(\mu\theta)$$

by periocity

$$\mu = 1, 2,$$

$$\Theta(\theta) = a_n \cos(n\theta) + b_n \sin(n\theta)$$