Devoir à la maison n° 07

À rendre le 26 novembre

I. Polygone régulier inscrit dans un cercle

Soit A_0, \ldots, A_{n-1} les n sommets d'un polygone régulier inscrit dans un cercle \mathscr{C} . Soit M un point de \mathscr{C} . Montrer que la quantité $MA_0^2 + \ldots + MA_{n-1}^2$ ne dépend pas de M.

II. Injectivité, surjectivité et composition

Soit E et F deux ensembles, $f: E \to F$ une application et G un troisième ensemble, ayant au moins deux éléments. On construit deux nouvelles applications :

$$f_*: \left\{ \begin{array}{ccc} E^G & o & F^G \\ \varphi & \mapsto & f \circ \varphi \end{array} \right. \text{ et } f^*: \left\{ \begin{array}{ccc} G^F & \to & G^E \\ \varphi & \mapsto & \varphi \circ f \end{array} \right.$$

Montrer l'équivalence suivante :

f est injective $\iff f_*$ est injective $\iff f^*$ est surjective.

III. Étude d'une application

Soit $f: x \mapsto \operatorname{Arcsin}\left(\frac{x+1}{\sqrt{2}\sqrt{x^2+1}}\right)$.

- 1) Préciser l'ensemble de définition de f.
- 2) Préciser l'ensemble de dérivabilité de f et calculer f'.
- 3) En déduire une expression simplifiée de f(x) en fonction de Arctan(x).

IV. Étude d'équations différentielles linéaires, avec recollement

- 1) On cherche à déterminer les solutions $y \in \mathcal{D}(\mathbb{R}, \mathbb{R})$ de l'équation $x^2y' + xy = 1$.
 - a) Déterminer les solutions de cette équation qui sont définies et dérivables sur \mathbb{R}_+^* (resp. \mathbb{R}_-^*).
 - b) Conclure.
- 2) Même question avec l'équation $x^3y' = 2y$.

V. Équation différentielle non linéaire

Résoudre l'équation différentielle suivante :

$$xy' + y = \frac{1}{x^2y^2}$$

on pourra poser u(x) = xy(x).

VI. Un théorème de point fixe

Soit $f:[0,1] \to [0,1]$ une application croissante. On veut montrer que f possède un point fixe, *i.e.* qu'il existe $t \in [0,1]$ tel que f(t) = t.

- 1) On note $T = \{x \in [0,1] \mid f(x) \leq x\}.$
 - a) Montrer que T possède une borne inférieure, notée t.
 - **b)** Montrer que $f(T) \subset T$.
 - c) Montrer que f(t) minore T.
 - d) Déduire de tout ceci que f(t) = t.
- 2) Ce résultat est-il toujours vrai :
 - a) pour $f: [0,1] \rightarrow]0,1]$ croissante?
 - **b)** pour $f: [0,1] \rightarrow [0,1]$ croissante?

- FIN -