Libraries

```
In [2]: # -----
      # System utilities
      # -----
      import os
      import joblib
      # -----
      # Data manipulation libraries
      # ------
      import pandas as pd # Data manipulation and analysis
      import numpy as np # Support for large, multi-dimensional arrays and matrices
      # Data visualization libraries
      # -----
      import matplotlib.pyplot as plt # 2D plotting library
      import plotly.graph objects as go # Low-level interface for creating more complex Plotly visualizations
      # Machine learning models and metrics from scikit-learn
      # -----
      from sklearn.preprocessing import MinMaxScaler, StandardScaler # Feature scaling methods
      from sklearn.model selection import train test split, GridSearchCV, cross validate, StratifiedKFold # Model se
      from sklearn.linear_model import LogisticRegression # Logistic regression model
      from sklearn.ensemble import RandomForestClassifier # Random Forest classifier
      from sklearn.metrics import (
         classification_report, confusion_matrix,
         roc_curve, roc_auc_score,
         mean_squared_error, mean_absolute_error, r2_score,
         accuracy_score, precision_score, recall_score, f1_score,
         make_scorer)
      # Libraries for handling imbalanced datasets
      # ------
      from imblearn.over sampling import SMOTE # Synthetic Minority Over-sampling Technique for class imbalance
      from imblearn.pipeline import Pipeline  # Pipeline for combining steps in model training and evaluation
      # Advanced visualization utilities for interactive plots
      # ------
      from plotly.subplots import make subplots # Create complex multi-plot visualizations
In [3]: # Get the current working directory
      directorio_actual = os.getcwd()
      # Specify the relative path from the current directory
      ruta csv relativa = os.path.join('...', 'data', '03 primary', '3.spotify.csv')
      # Load the CSV file
      spotify = pd.read_csv(ruta_csv_relativa)
In [4]: spotify
```

t[4]:		duration_ms_scaled	popularity_scaled	speechiness_scaled	acousticness_scaled	instrumentalness_scaled	liveness_scaled
	0	0.461947	0.920689	0.494433	0.751530	0.050533	0.780650
	1	0.387347	0.849624	0.328098	0.994567	0.136151	0.510439
	2	0.446450	0.858572	0.244770	0.887294	0.000000	0.541840
	3	0.439024	0.913703	0.131397	0.993063	0.309253	0.567599
	4	0.436375	0.949954	0.229607	0.945470	0.000000	0.468269
	113794	0.550216	0.611400	0.171275	0.967978	0.994591	0.476852
	113795	0.550216	0.622734	0.157759	0.999854	0.998242	0.518733
	113796	0.490010	0.622734	0.170017	0.989957	0.000000	0.470829
	113797	0.497723	0.776273	0.078262	0.930424	0.000000	0.720409
	113798	0.470088	0.622734	0.314571	0.972473	0.000000	0.484149
	113799 r	rows × 15 columns					
	4						•

Classification Model

Predictor sets

Four sets of predictors were created, which will be trained by multiple classification models.

Train Model

```
In [5]: def train_multiple_baseline_models(X, y):
            This function trains multiple classification models with default parameters (baseline models)
            and displays performance metrics for each model, including the ROC curve and AUC.
            Parameters:
            - X: Feature set.
            - y: Target labels.
            Return:
            - results: List of dictionaries containing model performance metrics.
            # Split the data into training and testing sets
            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
            # Models to be trained
            models = {
                'Logistic Regression': LogisticRegression(max iter=1000),
                 'Random Forest': RandomForestClassifier(random_state=42),
                'Decision Tree': DecisionTreeClassifier(random_state=42),
            # Store results for ROC curves
            roc_curves = []
            # Iterate over the models and train each one
            results = []
            for model name, model in models.items():
                print(f"\nTraining and evaluation: {model_name}")
                # Train the model
                model.fit(X_train, y_train)
                # Make predictions
                y pred = model.predict(X test)
                # Predict probabilities for ROC curve (if the model supports it)
```

```
if hasattr(model, "predict_proba"):
       y_prob = model.predict_proba(X_test)[:, 1] # Probability of the positive class
    else:
       y prob = None # For models without predict proba (e.g, SVM with Linear kernel)
   # Calculate metrics
    accuracy = accuracy_score(y_test, y_pred)
    precision = precision_score(y_test, y_pred, average='weighted')
    recall = recall_score(y_test, y_pred, average='weighted')
    f1 = f1_score(y_test, y_pred, average='weighted')
    confusion_mtx = confusion_matrix(y_test, y_pred)
    # Calculate ROC curve and AUC if probabilities are available
    if y prob is not None:
        fpr, tpr, _ = roc_curve(y_test, y_prob)
       auc = roc auc score(y test, y prob)
        # Store the ROC curve results
        roc_curves.append((fpr, tpr, model_name, auc))
    else:
       auc = 'N/A'
    # Save the results
    results.append({
        'model': model_name,
        'accuracy': accuracy,
        'precision': precision,
        'recall': recall,
        'f1_score': f1,
        'confusion matrix': confusion mtx,
        'AUC': auc
   # Display the metrics
   print(f"Accuracy: {accuracy:.4f}")
   print(f"Precision: {precision:.4f}")
   print(f"Recall: {recall:.4f}")
   print(f"F1 Score: {f1:.4f}")
   print(f"AUC: {auc}")
   print("Confusion Matrix:")
   print(confusion_mtx)
# Plot all ROC curves at the end
plt.figure()
for fpr, tpr, model_name, auc in roc_curves:
    plt.plot(fpr, tpr, label=f'{model_name} (AUC = {auc:.2f})')
plt.plot([0, 1], [0, 1], color='gray', linestyle='--') # Diagonal reference line
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate (FPR)')
plt.ylabel('True Positive Rate (TPR)')
plt.title('ROC Curves')
plt.legend(loc="lower right")
plt.show()
return results
```

Models

predictors_essential

```
In [6]: # Example usage
# X and y are your data (X: features, y: labels)
X = spotify[predictors_essential] # Your features
y = spotify['popularity_class'] # Your label or target variable
results = train_multiple_baseline_models(X, y)
```

Training and evaluation: Logistic Regression

Accuracy: 0.5577
Precision: 0.5556
Recall: 0.5577
F1 Score: 0.5524
AUC: 0.5809036012628297
Confusion Matrix:
[[7889 4041]
[6026 4804]]

Training and evaluation: Random Forest

Accuracy: 0.7305 Precision: 0.7314 Recall: 0.7305 F1 Score: 0.7306 AUC: 0.8314641464250911 Confusion Matrix: [[8635 3295]

[2839 7991]]

Training and evaluation: Decision Tree

Accuracy: 0.7009
Precision: 0.7015
Recall: 0.7009
F1 Score: 0.7010
AUC: 0.6992302899570363
Confusion Matrix:
[[8350 3580]
[3228 7602]]

predictors_simplified

```
In [7]: X = spotify[predictors_simplified]
y = spotify['popularity_class']

results = train_multiple_baseline_models(X, y)
```

Training and evaluation: Logistic Regression

Accuracy: 0.5486
Precision: 0.5460
Recall: 0.5486
F1 Score: 0.5381
AUC: 0.5580833718389591
Confusion Matrix:
[[8252 3678]
[6595 4235]]

Training and evaluation: Random Forest

Accuracy: 0.7055 Precision: 0.7061 Recall: 0.7055 F1 Score: 0.7057 AUC: 0.8099754067084153

Confusion Matrix: [[8410 3520] [3182 7648]]

Training and evaluation: Decision Tree

Accuracy: 0.6901 Precision: 0.6907 Recall: 0.6901 F1 Score: 0.6902 AUC: 0.6875314759303075 Confusion Matrix: [[8241 3689]

predictors_moderate

```
In [8]: X = spotify[predictors_moderate]
y = spotify['popularity_class']

results = train_multiple_baseline_models(X, y)
```

Training and evaluation: Logistic Regression

Accuracy: 0.5790
Precision: 0.5777
Recall: 0.5790
F1 Score: 0.5741
AUC: 0.601860777589184
Confusion Matrix:
[[8105 3825]
[5758 5072]]

Training and evaluation: Random Forest

Accuracy: 0.7442 Precision: 0.7446 Recall: 0.7442 F1 Score: 0.7443 AUC: 0.845620702946319 Confusion Matrix: [[8878 3052] [2771 8059]]

Training and evaluation: Decision Tree

Accuracy: 0.7072 Precision: 0.7075 Recall: 0.7072 F1 Score: 0.7073 AUC: 0.7050543258264776 Confusion Matrix: [[8525 3405] [3258 7572]]

predictors_complete

```
In [9]: X = spotify[predictors_complete]
y = spotify['popularity_class']

results = train_multiple_baseline_models(X, y)
```

Training and evaluation: Logistic Regression Accuracy: 0.5906

Precision: 0.5895 Recall: 0.5906 F1 Score: 0.5884 AUC: 0.6266213964345726 Confusion Matrix: [[7877 4053] [5264 5566]]

Training and evaluation: Random Forest

Accuracy: 0.7630 Precision: 0.7634 Recall: 0.7630 F1 Score: 0.7631 AUC: 0.8655014554739522 Confusion Matrix: [[9085 2845]

[2550 8280]]

Training and evaluation: Decision Tree

Accuracy: 0.7184
Precision: 0.7188
Recall: 0.7184
F1 Score: 0.7185
AUC: 0.7168112117546258
Confusion Matrix:
[[8612 3318]

Comparing the 4 models and their predictors, the best model found is the random forest model with the predictors_complete set. This model will be run through Hyperparameters to improve its metrics.

Hyperparameter - GridSerachCV

```
# Create GridSearchCV
grid search = GridSearchCV(model, param grid, cv=5, scoring=scoring, n jobs=-1)
# Train the model with the training data
grid_search.fit(X_train, y_train)
# Get the best model
best_model = grid_search.best_estimator_
# Make predictions on the test set
y_pred = best_model.predict(X_test)
# Calculate the metrics
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average='weighted')
recall = recall_score(y_test, y_pred, average='weighted')
f1 = f1 score(y test, y pred, average='weighted')
# Create a dictionary with the metrics
metrics = {
    'accuracy': accuracy,
    'precision': precision,
    'recall': recall,
    'f1 score': f1,
    'confusion_matrix': confusion_matrix(y_test, y_pred)
# Display results
print(f"Best hyperparameters: {grid_search.best_params_}")
print(f"Accuracy: {accuracy:.4f}")
print(f"Precision: {precision:.4f}")
print(f"Recall: {recall:.4f}")
print(f"F1 Score: {f1:.4f}")
print("Confusion Matrix:")
print(metrics['confusion_matrix'])
return best_model, metrics
```

Train Hyperparameter

```
In [11]: # Example usage:
         # Parameters to optimize for RandomForest
         param grid rf = {
             'n estimators': [100, 150],
             'max depth': [None, 10],
             'min samples split': [2, 5],
             'min_samples_leaf': [1, 2]
         }
         # Assume you already have your features (X) and target variable (y)
         X = spotify[predictors_complete] # Your features -- predictors_complete
                                          # Your target variable
         y = spotify['popularity_class']
         # Call the function to optimize the model
         best model rf, metrics rf = optimize simple model(
             RandomForestClassifier(random state=50),
             param_grid_rf,
             Χ,
             test_size=0.2,
             scoring='accuracy'
        Best hyperparameters: {'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 150}
        Accuracy: 0.7660
        Precision: 0.7666
        Recall: 0.7660
        F1 Score: 0.7662
        Confusion Matrix:
        [[9101 2829]
         [2496 8334]]
```

As the model has not performed as expected, the SMOTE library will be tested to balance the data with its hyperparameters.

SMOTE with Hyperparameter

```
Parameters:
- model: The model to be trained (e.g., RandomForestClassifier()).
- param grid: A dictionary of hyperparameters for GridSearchCV.
- X: Feature set.
- y: Target labels (dependent variable).
- model path: File path where the best model will be saved (default is 'best model.pkl').
- test size: Proportion of data for the test set (default is 0.2).
- scoring: Metric to optimize (default is 'accuracy').
Returns:
- best_model: The model with the best hyperparameters.
- metrics: A dictionary containing performance metrics (accuracy, precision, recall, f1 score).
# Split the data into training and testing sets
X train, X test, y train, y test = train test_split(X, y, test_size=test size, random state=42)
# Create a pipeline that applies SMOTE and then trains the model
pipeline = Pipeline([
    ('smote', SMOTE(random_state=42)), # Apply SMOTE to the training set
    ('model', model) # The model to be optimized
# Create GridSearchCV on the pipeline
grid_search = GridSearchCV(pipeline, param_grid, cv=5, scoring=scoring, n_jobs=-1)
# Train with the training data
grid search.fit(X train, y train)
# Get the best model
best model = grid search.best estimator
# Make predictions on the test set
y pred = best model.predict(X test)
# Calculate the metrics
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average='weighted')
recall = recall_score(y_test, y_pred, average='weighted')
f1 = f1_score(y_test, y_pred, average='weighted')
# Create a dictionary with the metrics
metrics = {
    'accuracy': accuracy,
    'precision': precision,
    'recall': recall,
    'f1 score': f1,
    'confusion matrix': confusion matrix(y test, y pred)
}
# Display results
print(f"Best hyperparameters: {grid_search.best_params_}")
print(f"Accuracy: {accuracy:.4f}")
print(f"Precision: {precision:.4f}")
print(f"Recall: {recall:.4f}")
print(f"F1 Score: {f1:.4f}")
print("Confusion Matrix:")
print(metrics['confusion matrix'])
# Save the model to a file
trv:
    joblib.dump(best_model, model_path)
    print(f"Model saved at: {model path}")
except Exception as e:
    print(f"Error saving the model: {e}")
return best model, metrics
```

Train SMOTE with Hyperparameter

```
In []: # Call the function to optimize and save the model
best_model, metrics = optimize_model_smote(
    model = RandomForestClassifier(random_state=42),
    param_grid = {
        'model__n_estimators': [100, 150],
        'model__max_depth': [None, 10],
        'model__min_samples_split': [2, 5],
        'model__min_samples_leaf': [1, 2]
        },
        X = X,
        y = y,
```

```
model_path='../data/06_models/random_forest_model.pkl'
)
```

The results were not as expected, so it was decided to continue working with the base model, as this way the execution will be much faster than with the hyperparameters.

Random Forest Model

```
In [9]: # Define features (predictors_complete) and the target (popularity_class)
X = spotify[predictors_complete] # Your features
y = spotify['popularity_class'] # Your target variable

# Split into training and testing sets
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Train a model (RandomForestClassifier)
rf = RandomForestClassifier(n_estimators=100, random_state=42)
rf.fit(X_train, y_train)

# Define the path to save the model
model_path = '../data/06_models/simple_random_forest_model.pkl'

# Save the trained model
joblib.dump(rf, model_path)
print(f"Model saved as {model_path}")
```

Model saved as ../data/06 models/simple random forest model.pkl

The model is stored so that it can be used without the need for continuous training.

simple random forest model metrics

```
In [10]: # Load the saved model
         rf = joblib.load('../data/06 models/simple random forest model.pkl')
         print("Model loaded successfully")
         # Make predictions on the test set
         y_pred = rf.predict(X_test)
         # 1. Accuracy
         accuracy = accuracy_score(y_test, y_pred)
         print(f"Accuracy: {accuracy:.4f}")
         # 2. Classification report
         print("Classification Report:")
         print(classification_report(y_test, y_pred))
         # 3. Confusion Matrix
         conf matrix = confusion_matrix(y_test, y_pred)
         print("Confusion Matrix:")
         print(conf matrix)
         # 4. ROC-AUC (For binary classification)
         if len(set(y test)) == 2:
             y_pred_proba = rf.predict_proba(X_test)[:, 1] # Probability of the positive class
             roc_auc = roc_auc_score(y_test, y_pred_proba)
             print(f"ROC-AUC: {roc_auc:.4f}")
             # Get ROC curve values
             fpr, tpr, thresholds = roc curve(y test, y pred proba)
             # Create subplots to show the confusion matrix and ROC curve together
             fig, ax = plt.subplots(1, 2, figsize=(16, 6))
             # Subplot 1: Confusion Matrix
             sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=['Class 0', 'Class 1'], yticklabels=
             ax[0].set_xlabel('Prediction')
             ax[0].set ylabel('Actual')
             ax[0].set_title('Confusion Matrix')
             # Subplot 2: ROC Curve
             ax[1].plot(fpr, tpr, label=f'ROC Curve (AUC = {roc_auc:.2f})')
             ax[1].plot([0, 1], [0, 1], linestyle='--', color='gray')
             ax[1].set_xlabel('False Positive Rate')
             ax[1].set_ylabel('True Positive Rate')
             ax[1].set_title('ROC Curve')
             ax[1].legend(loc='best')
```

```
# Show both plots
     plt.tight_layout()
     plt.show()
Model loaded successfully
Accuracy: 0.7630
Classification Report:
               precision
                             recall f1-score
                                                  support
                    0.78
                                0.76
                                           0.77
            0
                                                     11930
            1
                    0.74
                                0.76
                                           0.75
                                                     10830
    accuracy
                                           0.76
                                                     22760
                    0.76
                                0.76
                                          0.76
                                                     22760
   macro avg
                    0.76
                                0.76
                                           0.76
                                                     22760
weighted avg
Confusion Matrix:
[[9085 2845]
 [2550 8280]]
ROC-AUC: 0.8655
                    Confusion Matrix
                                                                                          ROC Curve
                                                                   --- ROC Curve (AUC = 0.87)
                                                              1.0
```


The performance of the model will be evaluated using cross-validation, k-fold cross-validation and stratified cross-validation techniques.

CROOS VALIDATION

```
In [29]: def evaluate_model(model, X, y, cv_folds, metrics=['accuracy', 'precision', 'recall', 'roc_auc']):
            Function that takes a model, features (X), target (y), and evaluates it using cross-validation.
            Parameters:
            - model: The machine learning model (e.g., RandomForestClassifier()).
            - X: Input features.
            - y: Target or dependent variable.
            - metrics: List of metrics to evaluate (default: 'accuracy', 'precision', 'recall', 'roc auc').
            - cv_folds: Number of folds for cross-validation (default: 5).
            Returns:
            - Cross-validation results: Averages of metrics and timing information.
            # Scale the features
            scaler = StandardScaler()
            X scaled = scaler.fit transform(X)
            # Apply cross-validation
            # Display the results of the metrics and timing
            print("Cross-validation results:")
            for metric in metrics:
               print(f"Mean {metric.capitalize()}: {cv results[f'test {metric}'].mean():.4f}")
            print(f"Mean Training Time: {cv results['fit time'].mean():.4f} seconds")
            print(f"Mean Prediction Time: {cv_results['score_time'].mean():.4f} seconds")
            return cv results
```

Train cross validation

```
In [23]: # Example usage # Define features and target
```

```
X = spotify[predictors_complete]
y = spotify['popularity_class']

# Define the model
rf = RandomForestClassifier(n_estimators=100, random_state=42)

# Number of folds to train
cv_folds = 10 # 5 - 10

# Call the function to evaluate the model
results = evaluate_model(rf, X, y, cv_folds)

Cross-validation results:
Mean Accuracy: 0.7112
Mean Precision: 0.6835
Mean Recall: 0.7306
Mean Roc_auc: 0.8071
Mean Training Time: 30.4785 seconds
Mean Prediction Time: 0.4289 seconds
```

K-FOLD CROSS VALIDATION

```
In [13]: def perform_k_fold_cv(model, X, y, cv=5, scoring=None):
             This function performs K-Fold Cross-Validation on a given model and returns the metrics for each fold.
             Parameters:
             - model: The model to be evaluated (e.g., RandomForestClassifier()).
             - X: Feature set.
             - y: Target labels (dependent variable).
             - cv: Number of folds for K-Fold Cross-Validation (default is 5).
             - scoring: A dictionary of metrics to evaluate (optional).
             Returns:
             - results: A dictionary with the average metrics obtained.
             # If no scoring metrics are specified, we use accuracy, precision, recall, and F1 by default
             if scoring is None:
                 scoring = {
                      'accuracy': 'accuracy',
                      'precision': make_scorer(precision_score, average='weighted'),
                      'recall': make scorer(recall score, average='weighted'),
                     'f1': make_scorer(f1_score, average='weighted')
                 }
             # Perform cross-validation with the specified model
             results = cross\_validate(model, \ X, \ y, \ cv=cv, \ scoring=scoring, \ n\_jobs=-1, \ return\_train\_score= \textbf{True})
             # Display the metrics for each fold
             for i in range(cv):
                 print(f"Fold {i + 1}:")
                 for metric in scoring.keys():
                     print(f"
                                  {metric.capitalize()}: {results[f'test {metric}'][i]:.4f}")
                             Training Time: {results['fit_time'][i]:.4f} seconds")
                 print(f"
                 print(f"
                             Prediction Time: {results['score time'][i]:.4f} seconds")
                 print()
             # Calculate and display the average metrics
             metrics avg = {metric: results[f'test {metric}'].mean() for metric in scoring}
             metrics avg['mean training time'] = results['fit time'].mean()
             metrics avg['mean prediction time'] = results['score time'].mean()
             print("Average metrics:")
             for metric, avg in metrics avg.items():
                 print(f"{metric.replace('_', ' ').capitalize()} average: {avg:.4f} seconds" if 'time' in metric else f"
             return metrics_avg
```

Train K-FOLD

```
In [14]: # Load the saved model
    loaded_model = joblib.load('../data/06_models/simple_random_forest_model.pkl')

# Assume you already have your X and y data defined
# Call the cross-validation function with the loaded model
    average_results = perform_k_fold_cv(loaded_model, X, y, cv=10)

Fold 1:
        Accuracy: 0.7236
        Precision: 0.7236
```

Recall: 0.7236 F1: 0.7236

Training Time: 45.4336 seconds Prediction Time: 0.3058 seconds

Fold 2:

Accuracy: 0.6787 Precision: 0.6802 Recall: 0.6787 F1: 0.6790

Training Time: 44.1614 seconds Prediction Time: 0.3301 seconds

Fold 3:

Accuracy: 0.7530 Precision: 0.7538 Recall: 0.7530 F1: 0.7531

Training Time: 45.4748 seconds Prediction Time: 0.3368 seconds

Fold 4:

Accuracy: 0.7200 Precision: 0.7215 Recall: 0.7200 F1: 0.7202

Training Time: 44.4743 seconds Prediction Time: 0.2905 seconds

Fold 5:

Accuracy: 0.7098 Precision: 0.7129 Recall: 0.7098 F1: 0.7098

Training Time: 45.2535 seconds Prediction Time: 0.3622 seconds

Fold 6:

Accuracy: 0.7053 Precision: 0.7121 Recall: 0.7053 F1: 0.7048

Training Time: 44.8763 seconds Prediction Time: 0.3018 seconds

Fold 7:

Accuracy: 0.6871 Precision: 0.6889 Recall: 0.6871 F1: 0.6873

Training Time: 45.6988 seconds Prediction Time: 0.3109 seconds

Fold 8:

Accuracy: 0.7487 Precision: 0.7487 Recall: 0.7487 F1: 0.7487

Training Time: 44.0519 seconds Prediction Time: 0.3161 seconds

Fold 9:

Accuracy: 0.7126 Precision: 0.7201 Recall: 0.7126 F1: 0.7120

Training Time: 43.8782 seconds Prediction Time: 0.3051 seconds

Fold 10:

Accuracy: 0.6736 Precision: 0.6756 Recall: 0.6736 F1: 0.6738

Training Time: 44.0454 seconds Prediction Time: 0.3227 seconds

Average metrics:

Accuracy average: 0.7112 Precision average: 0.7137 Recall average: 0.7112 F1 average: 0.7112

Mean training time average: 44.7348 seconds

STRATIFIED K-FOLD CROSS VALIDATION

```
In [27]: def evaluate stratified model(model, X, y, cv folds, metrics=['accuracy', 'precision', 'recall', 'roc auc']):
             Function that takes a model, features (X), target (y), and evaluates it using stratified cross-validation.
             - model: The machine learning model.
             - X: Input features.
             - y: Target or dependent variable.
             - metrics: List of metrics to evaluate (default: 'accuracy', 'precision', 'recall', 'roc auc').
             - cv_folds: Number of folds for cross-validation (default: 5).
             Returns:
             - Stratified cross-validation results: Averages of metrics and timing information.
             # Scale the features
             scaler = StandardScaler()
             X_scaled = scaler.fit_transform(X)
             # Define stratified cross-validation
             strat kfold = StratifiedKFold(n splits=cv folds, shuffle=True, random state=42)
             # Apply stratified cross-validation
             cv_results = cross_validate(model, X_scaled, y, cv=strat_kfold, scoring=metrics, return_train_score=True)
             # Display the results of the metrics and timing
             print("Stratified cross-validation results:")
             for metric in metrics:
                 print(f"Mean {metric.capitalize()}: {cv results[f'test {metric}'].mean():.4f}")
             print(f"Mean Training Time: {cv results['fit time'].mean():.4f} seconds")
             print(f"Mean Prediction Time: {cv_results['score time'].mean():.4f} seconds")
             return cv results
```

Train stratiefied

```
In [28]: # Example usage with a pre-defined model
         # Define features and target
         X = spotify[predictors_complete]
         y = spotify['popularity_class']
         # Load or use the model already trained or configured
         rf = RandomForestClassifier(n_estimators=100, random_state=42)
         cv folds = 5 # 5 - 10
         # Call the function to evaluate the model using stratified cross-validation
         stratified_results = evaluate_stratified_model(rf, X, y, cv_folds)
        Stratified cross-validation results:
        Mean Accuracy: 0.7641
        Mean Precision: 0.7454
        Mean Recall: 0.7629
        Mean Roc_auc: 0.8626
        Mean Training Time: 31.2205 seconds
        Mean Prediction Time: 0.9431 seconds
```

The best model in terms of performance is the one using Stratified Cross-Validation, with an average accuracy of 76% and training time 31 seconds.

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js