Theorem 4.1 (Commutativity of convolution). *Convolution is commutative. That is, for any two functions x and h,*

$$x * h = h * x. \tag{4.16}$$

In other words, the result of a convolution is not affected by the order of its operands.

Proof. We now provide a proof of the commutative property stated above. To begin, we expand the left-hand side of (4.16) as follows:

$$x*h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau.$$

$$h*x(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau.$$

Next, we perform a change of variable. Let $v = t - \tau$ which implies that $\tau = t - v$ and $d\tau = -dv$. Using this change of variable, we can rewrite the previous equation as

Remember that changing
$$= \int_{t-\infty}^{t-\infty} x(t-v)h(v)(-dv)$$
 infinity dominates sums
$$= \int_{-\infty}^{\infty} x(t-v)h(v)(-dv)$$
 integration variable
$$= \int_{-\infty}^{\infty} x(t-v)h(v)dv$$

$$= \int_{-\infty}^{\infty} x(t-v)h(v)dv$$
 rearrange factors
$$= \int_{-\infty}^{\infty} h(v)x(t-v)dv$$
 definition of convolution

(Note that, above, we used the fact that, for any function f, $\int_a^b f(x)dx = -\int_b^a f(x)dx$.) Thus, we have proven that convolution is commutative.