M2 MIASHS

Année universitaire: 2024 / 2025

Projet AAA

Enseignant référent : Salvatore Anzalone Dominique Archambault

Poubelle Connectée

Sofiane Lhiyat

Sommaire

Algorithme d'apprentissage Introduction Problématique Développement logiciel Composants et architecture du Tests et validations système Flux de données et communications Conclusion et perspectives

Introduction

Contexte:

- Croissance importante du tri des déchets
- Difficultés pour les personnes malvoyantes ou ayant des troubles sensoriels
- Conséquences du non tri des déchets ?

Problématique

- Statistiques alarmantes :
 - 40% des déchets ménagers mal triés
 - Seulement 50% sont recyclés
 - 70% des personnes malvoyantes et non voyantes ont des difficultés pour trier
 - Taux d'erreur pour ces personnes de 60%
 - Impact économique et environnemental (40M€ / an pour les collectivités)

Comment faire une poubelle qui aide au tri des déchets ?

Solution : Poubelle intelligente combinant vision par ordinateur, tri automatique et application mobile accessible

Composants et architecture du système

ESP32-S2

Servomoteur MG996R

Caméra USB

Mécanisme rotatif

Composants et architecture du système

1ère étape :

Phase de capture d'image avec traitement

2ème étape :

Analyse via le modèle ResNet18

3ème étape :

Validation utilisateur via l'application Android

4ème étape :

Action physique sur le plateau

Types de communications

Application - Serveur Flask	Serveur Flask - ESP32	Caméra - Serveur Flask
HTTP-REST Deux endpoints :	HTTP Trois endpoints:	Connexion USB OpenCV

Flux de données et communications Serveur Flask :

Caractéristiques :

- Serveur web
- HTTP
- Traitement des requêtes GET, POST, PUT, DELETE
- Gestion des routes

Endpoints:

- GET /predict
- POST /feedback
- GET /servo/{action}

API REST (Representational State Transfer)

Algorithme d'apprentissage Architecture ResNet 18

- Réseau de neurones convolutionnels
- 18 couches de convolution
- Connexions résiduelles
- Batch Normalization
- Utilisation d'une dataset de 500 images par classes
- Création d'un modèle entraîné

Structure:

Algorithme d'apprentissage Classification d'images

Algorithme d'apprentissage Apprentissage continu

Développement logiciel Android

- Architecture MVVM
- Communication API REST
- Composant clé : Retrofit
- Gestion d'état

Développement logiciel Android

Tests et validations

Tests Unitaires :	Tests d'intégrations :
Validation modèle : • Précision : 95,26% • F1-Score : 0.94	Performance : Temps réponse = 3s Fiabilité des détections > 70% Tests longue durée

Conclusion et perspectives

Résultats clés :

- Augmentation des réponses des prédictions
- Interface accessible
- Apprentissage continu efficace

Limites:

- Pas de maquette
- Sous réseau WiFi
- 2 compartiments seulements

Perspectives:

- Déploiement Cloud
- Intégration d'une mémoire
- Enlevez le feedback de l'utilisateur
- Retour vocaux

Merci de m'avoir écouter Avez-vous des questions ?