Chapter 10 實驗設計簡介

10.1 基本原理

實驗可有多種不同的因子組合(factor level combinations),又稱為處理 (treatments) •

實驗設計:設計及收集所關心的觀測值(у)以研究各可能因子對品質特性的 影響。

分析各因子效果的方法:

早期常被使用的一種方法是一次變換一個因子水準(one factor at a time) 的方法。

No.	A	В	С	Y
1	1	1	1	y_1
2	2	1	1	y_2
3	2	2	1	y_3
4	2	2	2	y_4

y₂ - y₁: A 因子的效果

y₂ - y₂: B 因子的效果

 $y_4 - y_3$: C 因子的效果

優點:簡單

缺點:其他因子水準固定不變,每一個因子水準的重複次數並不相同,

因此實驗是不平衡的(unbalance)

因子效果是可靠的效果

:是指該因子效果具有高的再現性(reproducibility),也就是說,即使其他 因子水準有所改變,該因子對於實驗的影響是一致的。

若實驗設計是考慮所有可能的因子水準組合,則此設計稱為全因子設計(full factorial design); 若實驗設計本身由於成本的限制(或其他原因),只考慮一完 整實驗的其中一部份進行實驗,則此實驗稱為部分因子實驗設計(fractional factorial design) •

Full factorial design
Fractional factorial design Design Of Experimental

10.2 全因子實驗

全因子實驗的目的是為檢視一產品 (製程),其含有一些重要的設計因子對系統的影響程度,以便決定最佳因子水準組合。對於k個因子,若每個因子可設定 2 個水準,這樣的設計稱為 2^k 設計。

範例1:

2 ² design	+:高	-:低
-----------------------	-----	-----

No.	A	В	AB	y_i
1	-	ı	+	30
2	+	-	-	50
3	-	+	-	60
4	+	+	+	20

$$\overline{y}(A_{-}) = \frac{y_1 + y_3}{2} = \frac{30 + 60}{2} = 45;$$

$$\overline{y}(A_+) = \frac{y_2 + y_4}{2} = \frac{50 + 20}{2} = 35$$

當因子A從"—"水準改變至"+"水準,其平均觀測值減少 $10(45 \rightarrow 35)$,即因子A對於輸出回應值的效果(The effect of factor A on the response)為- $10 \circ y(A) = [(-30) + 50 + (-60) + 20] = -20$

$$\overline{y}(A) = \frac{y(A)}{2 \cdot 1} = \frac{-20}{2} = -10$$

註:

2::表示各因子水準實驗次數;

1:表示每因子組合的觀測值個數。

因此, A 因子的效果 =
$$\frac{1}{2 \times n} [(-1) + a + (-b) + ab]$$

B 因子的效果 =
$$\frac{1}{2 \times n} [(-1) + (-a) + b + ab]$$

AB 因子的效果 =
$$\frac{1}{2 \times n} [(1) + (-a) + (-b) + ab]$$

若因子A的效果隨著B因子水準之改變而產生變化,則稱因子A和因子B之間存在交互作用(interaction)。

A 因子的效果 =
$$\frac{1}{2 \times 1} [-30 + 50 - 60 + 20] = -10$$

B 因子的效果 =
$$\frac{1}{2 \times 1} [-30 - 50 + 60 + 20] = 0$$

AB 因子的效果 =
$$\frac{1}{2 \times 1} [30 - 50 - 60 + 20] = -30$$

直線相交:表示兩因子間存在交互作用

範例 2:

實驗有三個因子,每因子皆為2水準。依據標準順序 (Standard order),則實驗配置符號表如下所示:

23 符號表 C ACBC**ABC** Y A В AB (1) (*a*) + (*b*) ++ +(*ab*) ++(c) + (ac)+(*bc*) +(abc)

A 因子的效果=
$$\frac{1}{4\times1}[(-1)+a+(-b)+ab+(-c)+ac+(-bc)+abc]$$

B 因子的效果 =
$$\frac{1}{4\times1}[(-1)+(-a)+b+ab+(-c)+(-ac)+bc+abc]$$

AB 因子的效果 =
$$\frac{1}{4 \times 1} [1 + (-a) + (-b) + ab + c + (-ac) + (-bc) + abc]$$

變異數分析(Analysis of Variance; ANOVA)

變異數分析表(ANOVA table):可用來總結實驗的結果,假設實驗因子數為 k,則變異數分析表為:

 $H_0: \mu_1 = \mu_2 = \mu_3 = \dots = \mu_k$

 H_1 : At least one μ_i not equal

Source	S.S.	d.f	M.S.	F-ratio
Treatment	SSR	<i>k</i> −1	SSR	MSR
			$\overline{k-1}$	\overline{MSE}
Error	SSE	N-k	SSE	
			$\overline{N-k}$	
Total	SST	N-1		-

S.S.: The sum of squares (平方和)

d.f: The degree of freedom (自由度)

M.S.: The mean of squares (均方)

F-ratio:用來測試對應的變異來源是否顯著,若 $F-ration < F_{(1-lpha,k-1,N-k)}$,則未

拒絕(non-reject) H₀的假設。

$$SST = \sum \sum {y_{ij}}^2 - \frac{(\sum \sum y_{ij})^2}{N};$$

$$SSR = \sum n(y_{ij} - y_{i.})^2;$$

$$SSE = SST - SSR$$

Yates Method

當使用 Yates method 時,其因子水準組合必須以標準順序 (Standard order) 寫出。

Yates method 的步驟:

步驟 1: 將因子水準組合及其對應的觀測值總和各列成一行,並定義總和行為第 (0)行。

步驟 2: 構建行 (1), (2),...,(k)如下:

行(i)的上半部,由前一行(i-1)之相鄰二數兩兩相加而得;行(i)的下半部,由前一行(i-1)之相鄰二數兩兩相減(後一數值減前一數值)而得。

步驟 3: 第k 行的第一個數值,為此實驗之所有觀測值的總和。

主效果和交互作用效果為第k行的數值除以 $N(=n\cdot 2^{k-1})$;各因子的平方和為第k行的數值平方除以 $N(=n\cdot 2^k)$

範例 3:某化學反應擬檢定三個因子 (A, B, C),及其交互作用在反應過程中的效果。假設各因子皆含二2個水準,每一個因子水準組合各收集4個觀測值,收集資料如下:

				Obsevations				
A	В	С	y_1	y_2	y_3	\mathcal{Y}_4	$\sum y_i$	
-	-	-	9	4	12	6	31	
+	-	-	7	8	7	1	23	
-	+	1	8	9	11	16	44	
+	+	1	10	15	9	7	41	
-	-	+	1	4	7	4	16	
+	-	+	0	1	7	3	11	
-	+	+	5	9	6	6	26	
+	+	+	6	7	5	3	21	

Yates method (k = 3)

因子水準組合	觀測值總 y $(\sum y_i)$	(1)	(2)	(3)	效果名稱	效果估計 $= \frac{k value}{n \times 2^{k-1}}$	平方和 $= \frac{(k \ value)^2}{n \times 2^k}$
(1)	31	54	139	213	I	_	_
(a)	23	85	74	-21	A	-1.31	13.78
(b)	44	27	-11	51	В	3.19	81.28
(ab)	41	47	-10	5	AB	0.31	0.78
(c)	16	-8	31	-65	С	-4.06	132.03
(ac)	11	-3	20	1	AC	0.06	0.03
(bc)	26	-5	5	-11	BC	-0.69	3.78
(abc)	21	-5	0	-5	ABC	-0.31	0.78

$$SST = \sum y_{ij}^{2} - \frac{(\sum y_{ij})^{2}}{N} = (9^{2} + 7^{2} + ... + 3^{2}) - \frac{(213)^{2}}{32} = 437.22$$

$$SSE = SST - (SS_{A} + SS_{B} + SS_{AB} + SS_{C} + SS_{AC} + SS_{BC} + SS_{ABC})$$

$$= 437.22 - (13.78 + 81.28 + ... + 0.78)$$

$$= 204.76$$

ANOVA Table

Source	S.S.	d.f	M.S.	F – ratio
A	13.78	1	13.78	1.62
В	81.28	1	81.28	9.53
AB	0.78	1	0.78	0.09
С	132.03	1	132.03	15.48
AC	0.03	1	0.03	0.00
ВС	3.78	1	3.78	0.44
ABC	0.28	1	0.28	0.09
Error	204.76	24	8.53	
Total	437.22	31		

設顯著水準 $\alpha = 0.05$

經查表 $F_{(0.95,1,24)} = 4.26$

由變異數分析表可知,因子B和C具有顯著的效果,沒有顯著的交互作用發

生,如果化學反應的輸出值是越大越好,則將 B 因子設在較高的水準,而將 C 因子設在較低的水準。

10.3 部分實驗設計

在全因子設計中,我們可以獲得主效果和所有可能交互作用效果。然而,在實務上有些高次交互作用 (Higher-order interaction)不存在或可忽略,對於 2^k 設計,僅進行 $\frac{1}{2}$ 的實驗,稱為 2^{k-1} 設計;若僅進行 $\frac{1}{4}$ 次數的實驗,則稱為 2^{k-2} 設計。部分實驗設計:

通常是在實驗初期,先利用部分因子實驗法找出重要因子,然後在針對這些 重要因子進行分析。

例如:

k=4 , 每因子皆為 2 個水準,全因子實驗次數為 $2^4=16$ 次,若採用 2^{k-1} 設計,則實驗次數 $=\frac{16}{2}=8$ 次。

No.	A	В	С	D (=ABC)
1	_		_	_
2	+	1	_	+
3	_	+	_	+
4	+	+	_	_
5	_		+	+
6	+	_	+	_
7	_	+	+	_
8	+	+	+	+

第四行的符號同時用以表示因子 D 和交互作用 ABC, 很明顯地主效果(D)和相互作用效果 ABC 混在一起, 進行此符號表實驗時, D 和 ABC 的個別效果無法求出, 而只能找出 D 和 ABC 的混合效果, 這種現象稱為交絡 (confounding)。

交絡 (confounding):兩種或兩種以上的效果在實驗中無法被區分,此現象稱為交絡。

如果 ABC 的交互作用效果很小 (或可忽略),那麼所求出之第四行的效果即可用來表示因子 D 的效果,這就是部分因子實驗的真諦。

設計產生器 (Design generator):任何一行乘以自己將產生全是"+"符號的一

行,我們將全是"+"符號的行定義為 I (identity)。

 $A = A \times I$ $= A \times ABCD$ = BCD則 A 和 BCD 互為別名 (Alias)

因子水準組合	A	В	С	D
(1)				_
(a)	+	l		_
(b)		+		_
(ab)	+	+	_	_
(c)			+	_
(ac)	+		+	_
(bc)		+	+	_
(abc)	+	+	+	_
(<i>d</i>)				+
(ad)	+	l		+
(<i>bd</i>)		+		+
(abd)	+	+		+
(<i>cd</i>)			+	+
(acd)	+		+	+
(bcd)	_	+	+	+
(abcd)	+	+	+	+

設取"+"進行實驗

因子水準組合	A	В	С	D
(1)	_	_	_	_
(ab)	+	+	_	_
(ac)	+	_	+	_
(bc)	_	+	+	_
(ad = a)	+	_	_	+
(bd = b)	_	+	_	+
(cd = c)	_	_	+	+
(abcd = abc)	+	+	+	+

範例 4: 利用 Yates method 進行資料分析

某製造公司檢討其產品品質之影響因素可能來自作業員 (A)、材料(B)、機器(C)和加工方法(D),各因子均含有 2 個水準。假設三因子以上的交互作用可忽略不計,今以 2⁴⁻¹ 設計進行實驗,結果如下表所示:

ロフル人レ准		21			
因子組合水準	A	В	С	D	\mathcal{Y}_i
(1)	_	_			46
(ad)	+	_	1	+	100
(<i>bd</i>)	_	+	_	+	50
(ab)	+	+	_	_	65
(cd)	_	_	+	+	75
(ac)	+	_	+		65
(bc)	_	+	+		75
(abcd)	+	+	+	+	95

Yates Method

因子水準組合	y_i	(1)	(2)	(3)	效果名稱	效果估計	平方和
(1)	46	146	261	571	I	1	
(ad)	100	115	310	79	A+BCD	19.75	780.13
(<i>bd</i>)	50	140	69	-1	B+ACD	-0.25	0.13
(ab)	65	170	10	-9	AB+CD	-2.25	10.13
(cd)	75	54	-31	49	C+ABD	12.25	300.13
(ac)	65	15	30	-59	AC+BD	-14.75	435.13
(bc)	75	-10	-39	61	BC+AD	15.25	465.13
(abcd)	95	20	30	69	ABC+D	17.25	595.13

$$SST = \sum \sum y_{ij}^{2} - \frac{(\sum \sum y_{ij})^{2}}{N}$$
$$= (46^{2} + 100^{2} + \dots + 95^{2}) - \frac{(571)^{2}}{8}$$
$$= 2585.88$$

因為各處理組合僅收集一個觀測值,所以 SSE 的自由度無法獲得。因此,將較小的因子平方和予以合併以計算 SSE 的自由度。

ANOVA Table

Source	S.S.	d.f.	M.S.	F – ratio
A	780.13	1	780.13	152.07
В	0.13*	1	_	_
С	300.13	1	300.13	58.50
D	595.13	1	595.13	116.01
AB	10.13*	1	_	_
AC	435.13	1	435.13	84.82
AD	465.13	1	465.13	90.67
Pool Error	10.26	2	5.13	
Total	2585.88	7		

經查表, $F_{(0.95,1,2)} = 18.51$

對於 2^k 全因子實驗設計,若僅進行其中之 $\frac{1}{2^p}$ 次實驗,則稱為 2^{k-p} 部分因子實驗設計。

進行部分因子實驗設計步驟:

訂出定義關係→計算出別名→製作正負符號表→依據正負符號表隨機進行實 驗

訂出定義關係,就是要決定實驗的解析度 (resolution), Box and Hunter 將常用解析度分成三類:

1.解析度 III

:主效果之間不互為別名,但主效果與二因子交互作用效果之間互為別名。

2.解析度 IV

:主效果與二因子交互作用效果之間不互為別名,但二因子交互作用效果與其 他二因子交互作用效果互為別名。

3.解析度 V

: 主效果與二因子交互作用效果之間不互為別名,但二因子交互作用效果與三 因子交互作用效果互為別名。

10.4 變異數分析公式

1. 總平方和 (Total of Sum Squares; TSS)

$$SST = \sum \sum y_{ij}^{2} - CF$$

$$CF = \frac{(\sum \sum y_{ij})^{2}}{N}$$
CF : Corrtion factor

2. 主效果的平方和

其中 A_i 為因子A在水準i之觀測值總和,若每一水準的觀測值數目不同,設為 m_i , $i=1,2,\cdots,p$,則因子平方和為

$$SS_A = \left[\frac{(A_1)^2}{m_1} + \frac{(A_2)^2}{m_2} + \dots + \frac{(A_p)^2}{m_p}\right] - CF$$

對於一具有p水準的因子其自由度為p-1

3. 交互作用的平方和

$$SS_{AB} = \frac{(A_1B_1)^2 + (A_1B_2)^2 + \dots + (A_1B_b)^2 + (A_2B_1)^2 + \dots + (A_aB_b)^2}{m} - SS_A - SS_B - CF$$

$$SS_{AB}$$
 所對應的自由度為 $(a-1) \times (b-1)$

4. 誤差平方和

$$SSE = SST - (SS_A + SS_B + \cdots) - (SS_{AB} + SS_{AC} + \cdots)$$

$$= \underbrace{- \underbrace{}_{\text{EXR} + \text{F}} 5\pi}_{\text{EXR} + \text{F}} \frac{}{\text{EXR} + \text{EXR} + \text{F}} \frac{}{\text{EXR} + \text{EXR} + \text{$$

範例 5

No	設計因子				,,					
No.	A B C D Al		AB	\mathcal{Y}_i						
1					+	10	10	7	10	5
2	+		1	+		14	14	11	11	11
3	_	+		+	_	7	8	7	7	8
4	+	+	_	_	+	8	8	10	8	10
5	_	_	+	+	+	11	12	11	6	6
6	+		+			9	13	13	8	9
7	_	+	+	_	_	8	8	6	4	5
8	+	+	+	+	+	8	10	9	10	8

$$SST = \sum \sum y_{ij}^{2} - CF$$

$$= 3432 - 3204.1$$

$$= 227.9$$

$$CF = \frac{(\sum \sum y_{ij})^{2}}{N} = \frac{(358)^{2}}{40} = 3204.1$$

$$SS_A = \frac{(A_-)^2 + (A_+)^2}{4 \times 5} = \frac{(10 + 10 + \dots + 5)^2 + (14 + 14 + \dots + 8)^2}{20} - CF$$
= 52.9

相同地,
$$SS_B = 48.4$$
, $SS_C = 2.5$, $SS_D = 10$

$$SS_{AB} = \frac{(A_{-}B_{-})^{2} + (A_{-}B_{+})^{2} + (A_{+}B_{-})^{2} + (A_{+}B_{+})^{2}}{2 \times 5} - (SS_{A} + SS_{B}) - CF$$

$$= 0.4$$

$$SSE = SST - (SS_{A} + SS_{B} + SS_{C} + SS_{D}) - SS_{AB} - CF$$

$$= 113.7$$

ANOVA Table

Source	S.S.	d.f.	M.S.	F – ratio
SS_A	52.9	1	52.9	15.82
SS_B	48.4	1	48.4	14.47
SS_C	2.5	1	2.5	0.75
SS_D	10	1	10	2.99
SS_{AB}	0.4	1	0.4	0.12
SSE	113.7	34	3.344	
SST	227.9	39		

經查表, $F_{(0.95,1,34)} = 4.13$

因此,因子A和因子B具有顯著性,此結論可信度 95%

練習題 利用 Yates Method 計算下表中各因子的效果與平方和

處理組合		27		
	A	В	C	\mathcal{Y}_i
(1)	_	_	_	3
(a)	+	_	_	17
(b)	_	+	_	7
(ab)	+	+	_	25
(c)		1	+	10
(ac)	+	1	+	20
(bc)	_	+	+	10
(abc)	+	+	+	30