Predicting Human Activity using Smartphone Sensors

By: David Estoque

Human Activity Recognition Data

- Experiment carried out by:
 - Smartlab
 - Non-Linear Complex Systems Laboratory
 - CETpD
 - Technical Research Centre for Dependency and Autonomous Living
 - Polytechnic University of Catalonia
- 30 subjects were tracked performing six activities:
 - Walking
 - Walking Upstairs
 - Walking Downstairs
 - Sitting
 - Standing
 - Laying
- Data was collected using the accelerometer and gyroscope of a Samsung Galaxy S II
 Smartphone
 - Captured 3-axial linear acceleration and 3-axial angular angular velocity

Data Attributes

- Total of 561 features
- All features were normalized and bounded between -1 and 1
- Triaxial acceleration signal obtained from phone's accelerometer
 - Separated into:
 - Body acceleration- tBodyAcc-XYZ
 - Gravity Acceleration- tGravityAcc-XYZ
- The 't' represents time domain signals
- Body linear velocity and angular velocity derived to obtain jerk signals
 - tBodyAccJerk-XYZ and tBodyGyroJerk-XYZ
 - Magnitude of signals collected as well
 - tBodyAccMag
 - GravityAccMag
 - tBodyAccJerkMag
 - tBodyGyroMag
 - tBodyGyroJerkMag

Data Attributes

- The signals were then separated into the 3-axial signals of X, Y, and Z vectors
- These signals were then estimated to create a set of variables:
 - Variables related to Central Tendency
 - Mean, median, quartiles
 - Example, tBodyAcc-mean()-X
 - Distribution Measurements
 - Skewness, kurtosis
 - Example, fBodyBodyGyroJerkMag-kurtosis()
 - Correlation coefficients between signals
 - Example, tBodyAccJerkMag-arCoeff
- All these led to a features count of 561

Data Exploration

- The Target Variable was the "Activity" column
 - "Subject" column removed
- The data contained a Test set and Training set
 - Training Set Size
 - 7352 rows, 563 columns
 - Test Set Size
 - 40% of training set data
 - No need to do split the test data
 - **2947** rows, 563 columns

	Check the Data for Balance							
In [25]:	(samsung_train_data	['Activity'].va						
Out[25]:	LAYING	0.191376						
	STANDING	0.186888						
	SITTING	0.174918						
	WALKING	0.166757						
	WALKING_UPSTAIRS	0.145947						
	WALKING_DOWNSTAIRS	0.134113						
	Name: Activity, dty	pe: float64						

Research Questions

- Can models accurately predict human activity?
- What models are the most accurate?
- What are the top 10 features for predicting Human Activity?

Random Forest Classifier

Model	Random Forest							
Variable Size	561	300	200	100	50	20		
Variable Size (%)	100	53.5	35.7	17.8	8.9	3.6		
Test (%)	90.7	89.3	91.3	90.4	87.4	83.0		
Train (%)	90.8	90.8	91.0	90.3	89.3	87.3		
Runtime (s)	4.73	3.4	2.88	1.87	1.28	0.86		

- RFC with defaults
 - Yielded 90% accuracy
 - Run time 4.8 seconds
- Using feature importance I examined the top 20, 50, 100, 200, 300 features
- Weakest performing was top 20
 - o Accuracy 83%

- Top performing was an RFC with 200 Features
 - 91.3 percent accuracy
 - Run time 2.8 seconds

10 Most Important RFC Features

• Used feature importance built-in function from the Random Forest SKLearn Package

Gradient Boosting

Model	GBM			
Variable Size	561	200		
Variable Size (%)	100	35.7		
Test (%)	94.5	94.5		
Train (%)	92.9	92.5		
Runtime (s)	1720	734		

- GB with all features has high accuracy
- Like SVC I examined GBM with a variable size of 200
 - Similar accuracy and 58% faster!

Gradient Boosting Feature Importance

• Feature importance obtained using the feature_importances_ built-in function in sklearn

Support Vector Classifier

Model	SVM					
Variable Size	561	200	100			
Variable Size (%)	100	35.7	17.8			
Test (%)	96.4	96.2	93.5			
Train (%)	94.1	92.6	91.8			
Runtime (s)	13.6	4.4	2.3			

- Using all the features:
 - o 96 percent accuracy
 - o 13.6 s
- 200 features was the top performing RF, therefore, I looked at the SVC of the top 200 features
 - o 96 percent accuracy
 - Slightly lower than all features
 - o 4.6 s

Feature Importance Comparisons

- 6 Shared Important Features:
 - tGravityAcc-energy
 - tGravityAcc-max
 - fBodyAccJerk-bandEnergy
 - tGravityAcc-min
 - Angle(, gravityMean) (2)
- Top GBM Feature importance
 - tGravityAcc-Energy()-Y
- Top RF Feature Importance
 - angle(X, gravityMean)

Conclusions

- Results
- Findings
- Limitations
- Practical Applications

Results and Findings

Model	Random Forest						SVM		GBM		
Variable Size	561	300	200	100	50	20	561	200	100	561	200
Variable Size (%)	100	53.5	35.7	17.8	8.9	3.6	100	35.7	17.8	100	35.7
Test (%)	90.7	89.3	91.3	90.4	87.4	83.0	96.4	96.2	93.5	94.5	94.5
Train (%)	90.8	90.8	91.0	90.3	89.3	87.3	94.1	92.6	91.8	92.9	92.5
Runtime (s)	4.73	3.4	2.88	1.87	1.28	0.86	19.1	6	3.7	1720	734

- Gradient Boosting
 - Provides a high amount of accuracy
 - Runtime is extremely long about 28 minutes compared to the others
 - Allows for examination of feature importance
- Random Forest
 - Very Accurate
 - Allows for examination of feature importance
 - Runtime is relatively fast

- Support Vector Machine
 - Highest accuracy at 96%
 - Does not allow for examination of feature importance
- Which is best??
- •

Worst Performing Model by Activity (RFC 20)

col_0	LAYING	SITTING	STANDING	WALKING	WALKING_DOWNSTAIRS	1
Activity						
LAYING	537	0	0	0	0	
SITTING	0	380	111	0	0	
STANDING	0	111	421	0	0	
WALKING	0	0	0	414	41	
WALKING_DOWNSTAIRS	0	0	0	38	335	
WALKING_UPSTAIRS	0	0	0	98	13	

col_0	WALKING_UPSTAIRS
Activity	
LAYING	0
SITTING	0
STANDING	0
WALKING	41
WALKING_DOWNSTAIRS	47
WALKING_UPSTAIRS	360

Top Performing Model by Activity (SVM)

col_0	LAYING	SITTING	STANDING	WALKING	WALKING_DOWNSTAIRS	1
Activity						
LAYING	537	0	0	0	0	
SITTING	0	435	54	0	0	
STANDING	0	16	516	0	0	
WALKING	0	0	0	492	3	
WALKING_DOWNSTAIRS	0	0	0	4	410	
WALKING_UPSTAIRS	0	0	0	18	2	

col_0	WALKING_UPSTAIRS
Activity	
LAYING	0
SITTING	2
STANDING	0
WALKING	1
WALKING_DOWNSTAIRS	6
WALKING_UPSTAIRS	451

Accuracy by Activity

Model	R	F	SV	SVM		
Variable Size	20	200	200	561	200	
Activity		<i>X</i>	V-	Activity cum. Avg		
Laying	100%	100%	100%	100%	100%	100.0%
Sitting	77%	91%	95%	96%	93%	90.5%
Standing	79%	87%	90%	91%	90%	87.4%
Walking	75%	88%	97%	96%	94%	90.2%
Walking Downstairs	86%	95%	99.5%	99%	98%	95.7%
Walking Upstairs	80%	87%	97%	98%	92%	90.9%

Limitations

- With a dataset with so many features there may be many relationships that weaken the model
- Difficult to truly find the most important features
- A deeper dive into the features may improve the true accuracy of the models
- RBM and RF use different algorithms to choose important features
 - Thus, producing varying results
- Consider using XGBoost

Practical Applications

- Fitness tracking applications
 - Can use the model to improve the accuracy of fitness activity detection
 - Better estimates for energy expenditure
- Mobile phone companies
 - Can use the model to evaluate the accuracy of their hardware in detecting physical movement
 - Improve phone hardware efficiency
 - Increase the accuracy human behavior monitoring

Resources

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. A Public Domain Dataset for Human Activity Recognition Using Smartphones. 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013. Bruges, Belgium 24-26 April 2013. https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones/home