ICAT Day: Neural Network Doc Summarization

CS4624 Multimedia, Hypertext, and Information Access

Team: Junjie Cheng

Instructor: Dr. Edward A. Fox

Virginia Tech, Blacksburg VA 24061, Apr 30th, 2018

Outline

- Project Overview
- Data Preprocess
- Model Architecture
- Training
- Model Performance
- References and Acknowledgements

Project Overview

- Purpose: generate summarization from long document through deep learning.
- ► Model: sequence to sequence model with RNN.
- Dataset: CNN/Daily Mail news.

Data Preprocess

- ▶ Vocab size: 50000
- ► Input sequence max length: 400
- ► Target sequence max length: 100

Model Architecture

Sequence to Sequence Model

Encoder Architecture

Encoder

Shared embedding layer

Bidirectional LSTM layer

Encoder Workflow

Embedding layer

 Embedded Input sequence

- Context
- Last hidden vector
- Last LSTM cell state

Decoder Architecture

Decoder

Shared embedding layer

LSTM layer

MLP attention Layer

Dropout layer

Out layer

Decoder Workflow

Embedding layer

Embedded input sequence

LSTM layer

Context

Attention layer

 Attention applied context

Dropout layer

Attention applied context

Out layer

 Context with vocab size

Log softmax function

 Possibility of each token in the vocab

Training Workflow

Training Architecture

- Optimizer: SGD
- Criterion: NLLLoss

- ▶ Batch size: 3
- ► Epoch number: 100
- \triangleright Loss: 6.7 \rightarrow 1.4
- Learning rate: 1
- ► Hidden size: 256
- ► Word embedding size: 128

Model Performance

Demo

Acknowledgements

Client: Yufeng Ma

Reference

► Figure Encoder-Decoder: Encoder-decoder: https://theneuralperspective.com/2016/11/20/recurrent- neural-networks-rnn-part-3-encoder-decoder/