Lecture

- Last time:
 - Boolean Algebra ⇔ Digital Circuits
 - Point: We can do a lot with just Combinational logic -- all true functions can be evaluated
 - Point: Digital Circuits can be built to evaluate all of these functions.
 - All we need is And (*), Or (+) and Not (')
 - Truth Table → Boolean Algebra
 - Boolean Algebra → Circuits → Boolean Algebra
 - Minimization of Circuits
 - Algebraic Transformations:
 - Karnaugh Maps
- Today: More Combinational Circuits

Combinational Logic

- Using just is tedious: AND (*), OR (+), NOT (')
- Solution: Build components and reuse!
 - \circ XOR: A \oplus B is equivalent to (A + B) * (A' + B')

 \circ Half-Adder: $S = A \oplus B, C = A * B$

- Bigger components and with more bits!
 - Binary Addition
 - Binary Subtraction
 - BCD Addition
 - Decoder
 - Multiplexer

XOR:

Α	В	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

4-bit Bitwise AND

• R = A & B

	1	0	1	1	Α
&	0	1	1	0	В
	0	0	1	0	R

- For a n-bit operation,
 - create n-duplicates of the base circuitry
 - layout duplicates in parallel
 - package it up

1-bit Binary Addition

Recall:

 \circ

$$A + B \rightarrow S, C$$

А	В	C _{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

4-bit Binary Addition

Recall:

$$\bigcirc \qquad C_{in} + A_x + B_x \rightarrow C_{out}, \ S_x$$

			0	0	
	1	0	1	1	Α
+	0	1	1	0	В
				1	S

Half-Adder is not sufficient!
 We need a Full-Adder

C _{in}	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

C _{in}	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

•
$$C_{out} = AB + C_{in}(A \oplus B)$$

• $S = C_{in} \oplus A \oplus B$

• S =
$$C_{in} \oplus A \oplus B$$

Note: Renamed C_{in} to be C

• $C_{out} = C'AB +$

Use Sum of Products

•	$C_{out} =$	C'AB	+ CA'B	+ CAB'	+ CAB
---	-------------	------	--------	--------	-------

С	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

	C'AB	
	CA'B	
	CAB'	
	CAB	

Use Sum of Products

С	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

C'AB

CA'B

CAB'

CAB

Use Commutative Property

•
$$C_{out} = C'AB + CAB + CA'B + CAB'$$

> $C_{out} = (C' + C)AB + CA'B + CAB'$

С	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

1 1 0 1 0

1 1 1 1 1

CAB'

CAB'

CAB'

C'AB

CA'B

•
$$C_{out} = (C' + C)AB + CA'B + CAB'$$

> $C_{out} = (true)AB + CA'B + CAB'$

С	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

	C'AB	
	CA'B	
	CAB'	
	CAB	
_		

Use Complement Property

•
$$C_{out} = (true)AB + CA'B + CAB'$$

> $C_{out} = AB + CA'B + CAB'$

С	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

C'AB

CA'B

CAB'

CAB

Use Identity Property

•
$$C_{out} = AB + CA'B + CAB'$$

> $C_{out} = AB + C(A'B + AB')$

С	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

C'AB

CA'B

CAB'

CAB

Use Distributive Property

•
$$C_{out} = AB + C(A'B + AB')$$
 $\checkmark C_{out} = AB + C(A \oplus B)$

С	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

C'AB

CA'B

CAB'

CAB

A ⊕	В⇔	A'B +	- AB'		

С	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

S	
0	
1	C'A'B
1	C'AB'
0	
1	CA'B'
0	
0	
1	САВ

✓
$$C_{out} = AB + C(A \oplus B)$$
• $S = C \oplus A \oplus B$

Sum of Products:

C'A'B + C'AB' + CA'B' + CAB

$$= C'(A'B + AB') + C(A'B' + AB)$$

$$= C'(A \oplus B) + C(A \oplus B)'$$

 $A \oplus B \Leftrightarrow A'B + AB'$

Court	= AB	+	C_{ir}	A^{\oplus}	B)
Out			- 11		

•	S	$= C_{in} \oplus A \oplus B$
---	---	------------------------------

C _{in}	Α	В	C _{out}	S	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

Note: Renamed C to be C_{in}

4-bit Binary Addition (aka: 4-bit Full Adder)

Binary Subtractor

- Recall: A B
 - = A + (2's complement of B)
 - = A + (1's complement of B) + 1
- 4-bit Binary Subtractor

			1
#	Encoding $S_3S_2S_1S_0$		Encoding $S_3S_2S_1S_0$
0	0000	8	1000
1	0001	9	1001
2	0010		1010
3	0011		1011
4	0100	a l i d	1100
5	0101	N V i	1101
6	0110		1110
7	0111		1111

- Perform Regular Binary Addition, but account for the invalid patterns
- Add six upon whenever you are in the deadzone or there is overflow

$$\circ \quad \text{Invalid} \quad = S_3 * (S_2 + S_1)$$

Overflow = C_{out}

0

Deadzone = $S_3 * (S_2 + S_1)$

Overflow =

