

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

Лабораторная работа №1 по курсу "Моделирование" по теме "Генераторы случайных чисел"

Студент: Уласик Е.А.

Группа: ИУ7-71

Преподаватель: Рудаков И.В.

Оглавление

1. Формализация	3
1.1. Линейный конгруэнтный метод	3
1.2. Табличный метод	4
1.3 Критерий равномерности	4
2. Результат работы программы	4
3. Вывод	

1. Формализация

Для алгоритмической генерации случайных чисел был выбран линейный конгруэнтный метод.

1.1. Линейный конгруэнтный метод

Получим последовательность случайных чисел $\langle X_n \rangle$, полагая

$$X_{n+1} = (aX_n + c) \mod m, \ n \ge 0,$$

где m — модуль; a — множитель; c — приращение; X_0 — начальное значение. Эта последовательность называется линейной конгруэнтной последовательностью.

Например, при m=10 и $X_0=a=c=7$ будет получена последовательность:

Данный пример иллюстрирует тот факт, что такая последовательность не может быть "случайной", то есть обязательно существует цикл, повторяющийся бесконечное число раз. Повторяющиеся циклы называются *периодами*. В данном примере длина периода последовательности равна 4.

Выбор параметров

Линейная конгруэнтная последовательность имеет период длинной m тогда и только тогда, когда выполняются следующие условия:

- числа с и m взаимно простые;
- а 1 кратно p для некоторого простого p, являющегося делителем m;
- а 1 кратно 4, если т кратно 4.

Тогда пусть $m=2^{48}$, c=11, a=25214903917, $X_0=1$.

1.2. Табличный метод

В табличных генераторах в качестве источника случайных чисел используются специальным образом составленные таблицы, которые должны обеспечивать необходимый уровень случайности.

1.3 Критерий равномерности

Рассмотрим критерий равномерности (критерий частот). Выбирается некоторое число d. Такое, чтобы для каждого $r, 0 \le r \le d$, подсчитывается число случаев, когда $Y_j = r$, для $0 \le j \le n$, а затем применяется χ^2 критерий, принимая k = d, а вероятность $p_s = \frac{1}{d}$ для каждой категории.

Для вычисления значения χ^2 можно воспользоваться формулой:

$$V = \sum_{s=1}^{k} \frac{(Y_s - np_s)^2}{np_s} \sim \chi_{k-1}^2,$$

где k — количество категорий; n — количество независимых наблюдений; p_s — вероятность принадлежности наблюдения категории; Y_s — число наблюдений s.

Затем с помощью функции распределения χ^2 получим значение оценки "случайности" последовательности.

2. Результат работы программы

Длина последовательности случайных чисел равна 100 для каждого разряда.

Оценка проводилась для всех 100 чисел, но в таблицах приведены только первые 10 чисел полученных последовательностей.

Linear congruential generator

N	0-9	10-99	100-999
1	1	61	133
2	8	90	432
3	3	13	535
4	0	18	622
5	1	95	369
6	8	24	792
7	1	33	883
8	6	96	918
9	1	25	909
10	2	12	156
Eval	15.232	7.034	50.595

Рисунок 1. Результат генерации случайных чисел линейным конгруэнтным методом

Table generator

N	0-9	10-99	100-999
1	4	70	873
2	0	67	610
3	1	53	509
4	3	72	264
5	1	63	810
6	4	55	598
7	3	88	274
8	9	12	417
9	3	74	114
10	7	96	928
Eval	9.587	62.785	81.531

Рисунок 2. Результат генерации случайных чисел табличным методом Приведённые оценки на рисунках 1-2 были получены при значениях $d=10,\,100,\,1000$ для каждого столбца соответственно.

3. Вывод

Были рассмотрены алгоритмический (линейный конгруэнтный метод) и табличный генераторы случайных чисел. Оба способа удовлетворяют критерию равномерности, то есть полученные оценки лежат в 5-95%.

Числа, полученные с помощью алгоритмических генераторов случайных чисел, всегда являются псевдослучайными, то есть каждое следующее генерируемое число зависит от предыдущего. Достоинствами подобных генераторов являются их быстродействие и малое количество занимаемых ресурсов памяти. Недостаток: зависимость каждого последующего числа от предыдущего из-за чего последовательности нельзя в полной мере назвать случайными.

Табличный метод даёт действительно случайные числа, так как таблица содержит проверенные некоррелированные числа, однако таблицы требуют большого количества памяти.