Econ 205 - Slides from Lecture 12

Joel Sobel

September 8, 2010

Monotone Comparative Statics

- ► Loyalty to Stanford
- Comparative Statics Without Calculus
- Optimizer Set Valued
- No concavity
- No differentiability

Motivating Example

$$x^*(\theta) \equiv \arg \max f(x, \theta)$$
, subject to $\theta \in \Theta$; $x \in S(\theta)$

This problem is equivalent to

$$x^*(\theta) \equiv \arg\max\phi(f(x,\theta))$$
, subject to $\theta \in \Theta$; $x \in S(\theta)$

for any strictly increasing $\phi(\cdot)$.

 $\phi(\cdot)$ may destroy smoothness or concavity properties of the objective function.

Formulation

- ▶ Begin with problems in which $S(\theta)$ is independent of θ and both x and θ are real variables.
- Assume existence of a solution.
- Don't assume uniqueness.
- Generalize Notion of Increasing.

Strong Set Order

Definition

For two sets of real numbers A and B, we say that $A \ge_s B$ ("A is greater than or equal to B in the *strong set order*") if for any $a \in A$ and $b \in B$, $\min\{a,b\} \in B$ and $\max\{a,b\} \in A$.

From 205

Comments

- 1. According to this definition $A = \{1,3\}$ is not greater than or equal to $B = \{0,2\}$.
- 2. Includes the standard definition when sets are singletons.
- 3. $x^*(\cdot)$ is non-decreasing in μ if and only if $\mu < \mu'$ implies that $x^*(\mu') \ge_s x^*(\mu)$.
- 4. If $x^*(\cdot)$ is nondecreasing and $\min x^*(\theta)$ exists for all θ , then $\min x^*(\theta)$ is non decreasing.
- 5. An analogous statement holds for $\max x^*(\cdot)$.

Supermodular

Definition

The function $f: \mathbb{R}^2 \to \mathbb{R}$ is supermodular or has increasing differences in $(x; \mu)$ if for all x' > x, $f(x'; \mu) - f(x; \mu)$ is nondecreasing in μ .

- ▶ If f is supermodular in $(x; \mu)$, then the incremental gain to choosing a higher x is greater when μ is higher.
- Supermodularity is equivalent to the property that $\mu' > \mu$ implies that $f(x; \mu') f(x; \mu)$ is nondecreasing in x.

Differentiable Version

When f is smooth, supermodularity has a characterization in terms of derivatives.

Lemma

A twice continuously differentiable function $f: \mathbb{R}^2 \to \mathbb{R}$ is supermodular in $(x; \mu)$ if and only if $D_{12}f(x; \mu) \geq 0$ for all $(x; \mu)$.

The inequality in the definition of supermodularity is just the discrete version of the mixed-partial condition in the lemma.

Econ 205

Topkis's Monotonicity Theorem

Supermodularity is sufficient to draw comparative statics conclusions in optimization problems.

Theorem (Topkis's Monotonicity Theorem)

If f is supermodular in $(x; \mu)$, then $x^*(\mu)$ is non-decreasing.

From 205

Proof.

Suppose $\mu' > \mu$ and that $x \in x^*(\mu)$ and $x' \in x^*(\mu')$.

- 1. $x \in x^*(\mu)$ implies $f(x;) f(\min\{x, x'\}; \mu) \ge 0$.
- 2. This implies that $f(\max\{x, x'\}; \mu) f(x'; \mu) \ge 0$ (you need to check two cases, x > x' and x' > x).
- 3. By supermodularity, $f(\max\{x, x'\}; \mu') f(x'; \mu') \ge 0$,
- 4. Hence $\max\{x, x'\} \in x^*(\mu')$.
- 5. $x' \in x^*(\mu')$ implies that $f(x'; \mu') f(\max\{x, x'\}, \mu) \ge 0$,
- 6. or equivalently $f(\max\{x, x'\}, \mu) f(x'; \mu') \leq 0$.
- 7. This implies that $f(\max\{x, x'\}; \mu') f(x'; \mu') \ge 0$,
- 8. which by supermodularity implies $f(x; \mu) f(\min\{x, x'\}; \mu) \le 0$
- 9. and so $\min\{x, x'\} \in x^*(\mu)$.

Comment

Don't be surprised.

Theorem follows from the IFT whenever the standard full-rank condition in the IFT holds.

At a maximum, if $D_{11}f(x^*, \mu) \neq 0$, if must be negative (by the second-order condition), hence the IFT tells you that $x^*(\mu)$ is strictly increasing.

Example

A monopolist solves $\max p(q)q - c(q, \mu)$ by picking quantity q. $p(\cdot)$ is the price function and $c(\cdot)$ is the cost function, parametrized by μ .

Let $q^*(\mu)$ be the monopolist's optimal quantity choice. If $-c(q, \mu)$ is supermodular in (q, μ) then the entire objective function is. It follows that q^* is nondecreasing as long as the marginal cost of production decreases in μ .

Trick

It is sometimes useful to "invent" an objective function in order to apply the theorem. For example, if one wishes to compare the solutions to two different maximization problems, $\max_{x \in S} g(x)$ and $\max_{x \in S} h(x)$, then we can apply the theorem to an artificial function, f

$$f(x, \mu) = \begin{cases} g(x) & \text{if } \mu = 0 \\ h(x) & \text{if } \mu = 1 \end{cases}$$

so that if f is supermodular (h(x) - g(x)) nondecreasing), then the solution to the second problem is greater than the solution to the first.

Single-Crossing

Definition

The function $f: \mathbb{R}^2 \to \mathbb{R}$ satisfies the *single-crossing condition* in $(x; \mu)$ if for all x' > x, $\mu' > \mu$

$$f(x'; \mu) - f(x; \mu) \ge 0$$
 implies $f(x'; \mu') - f(x; \mu') \ge 0$

and

$$f(x'; \mu) - f(x; \mu) > 0$$
 implies $f(x'; \mu') - f(x; \mu') > 0$.

From 205

Theorem

If f is single crossing in $(x; \mu)$, then $x^*(\mu) = \arg\max_{x \in S(\mu)} f(x; \mu)$ is nondecreasing. Moreover, if $x^*(\mu)$ is nondecreasing in μ for all choice sets S, then f is single-crossing in $(x; \mu)$.

Unconstrained Extrema of Real-Valued Functions

Definition

Take $f: \mathbb{R}^n \longrightarrow \mathbb{R}$.

 \mathbf{x}^* is a local maximizer $\iff \exists \, \delta > 0$ such that $\forall \, \mathbf{x} \in B_{\delta}(\mathbf{x}^*)$,

$$f(\mathbf{x}) \leq f(\mathbf{x}^*)$$

 \mathbf{x}^* is a local minimizer $\iff \exists \, \delta > 0$ such that $\forall \, \mathbf{x} \in B_{\delta}(\mathbf{x}^*)$,

$$f(\mathbf{x}) \geq f(\mathbf{x}^*)$$

 \mathbf{x}^* is a global maximizer $\iff \forall \mathbf{x} \in \mathbb{R}^n$, we have

$$f(\mathbf{x}) \leq f(\mathbf{x}^*)$$

 \mathbf{x}^* is a global minimizer $\iff \forall \mathbf{x} \in \mathbb{R}^n$

$$f(\mathbf{x}) \geq f(\mathbf{x}^*)$$

Econ 205

First-Order Conditions

Theorem (First Order Conditions)

If f is differentiable at \mathbf{x}^* , and \mathbf{x}^* is a local maximizer or minimizer then

$$Df(\mathbf{x}) = \mathbf{0}.$$

That is

$$\frac{\partial f}{\partial x_i}(\mathbf{x}^*) = 0,$$

 $\forall i = 1, 2, \ldots, n$.

Econ 205

Define $h: \mathbb{R} \longrightarrow \mathbb{R}$ by

$$h(t) \equiv f(\mathbf{x}^* + t\mathbf{v})$$

for any $\mathbf{v} \in \mathbb{R}^n$, $t \in \mathbb{R}$.

Take the case of a maximizer:

Fix a direction \mathbf{v} ($\|\mathbf{v}\| \neq 0$).

We have

$$f(\mathbf{x}^*) \geq f(\mathbf{x}),$$

 $\forall \mathbf{x} \in B_{\delta}(\mathbf{x}^*)$, for some $\delta > 0$. In particular for t small $(t < \delta \|\mathbf{v}\|)$ we have

$$f(\mathbf{x}^* + t\mathbf{v}) = h(t)$$

$$\leq f(\mathbf{x}^*)$$

Thus, h is maximized locally by $t^* = 0$.

Our F.O.C. from the $\mathbb{R} \longrightarrow \mathbb{R}$ case

$$\implies h'(0) = 0$$

So

$$\Longrightarrow \nabla f(\mathbf{x}^*) \cdot \mathbf{v} = 0$$

And since this must hold for every $\mathbf{v} \in \mathbb{R}^n$, this implies that

$$\nabla f(\mathbf{x}^*) = \mathbf{0}$$

We know that if f is differentiable, then Df is represented by the matrix of partial derivatives. Hence $Df(\mathbf{x}^*) = \mathbf{0}$.

Definition

If \mathbf{x}^* satisfies $Df(\mathbf{x}^*) = \mathbf{0}$, then it is a *critical point* of f.

Intuition

- 1. Like one-variable theorem.
- 2. If x^* is a local maximum, then the one variable function you obtain by restricting x to move along a fixed line through x^* (in the direction v) also must have a local maximum.
- 3. Hence all directional derivatives are zero.
- 4. The first-derivative test cannot distinguish between local minima and and local maxima, but an examination of the proof tells you that at local maxima derivatives decrease in the neighborhood of a critical point.
- 5. Critical points may fail to be minima or maxima.
- 6. One variable case: a function decreases if you reduce *x* (suggesting a local maximum) and increases if you increase *x* (suggesting a local minimum).
- 7. Generalization: this behavior could happen in any direction.
- 8. Also: the function restricted to direction has a local maximum, but it has a local minimum with respect to another direction.
- 9. Conclude: It is "hard" for critical point of a multivariable function to be a local extremum in the many variable case.