姜晓千 2023 年强化班笔记

数学笔记

Weary Bird

2025年7月16日

相见欢·林花谢了春红

林花谢了春红,太匆匆。无奈朝来寒雨晚来风。胭脂泪,相留醉,几时重。自是人生长恨水长东。

2025年7月16日

目录

第一章	函数极限连续	1
1.1	函数的性态	1
1.2	极限的概念	3
1.3	函数极限的计算	3
1.4	已知极限反求参数	7
1.5	无穷小阶的比较	8
1.6	数列极限的计算	1
1.7	间断点的判定	3
<i>≿</i>	二元粉件八兴	_
第二章	一元函数微分学 1	
2.1	导数与微分的概念 1	5
2.2	导数与微分的计算 1	8
2.3	导数应用-切线与法线 2	4
2.4	导数应用-渐近线 2	6
2.5	导数应用-曲率 2	8
2.6	导数应用-极值与最值 2	9
2.7	导数应用-凹凸性与拐点 3	2
2.8	导数应用-证明不等式 3	3
2.9	导数应用-求方程的根 3	5
2.10	微分中值定理证明题	7
第三章	一元函数积分学 4	2
3.1	定积分的概念 4	.2
3.2	不定积分的计算 4	2

3.3	定积分的计算	43
3.4	反常积分的计算	43
3.5	反常积分敛散性的判定	43
3.6	变限积分函数	44
3.7	定积分应用求面积	44
3.8	定积分应用求体积	45
3.9	定积分应用求弧长	45
3.10	定积分应用求侧面积	45
3.11	一定积分物理应用	45
3.12	二证明含有积分的等式或不等式	46
第四章	常微分方程	47
4.1	一阶微分方程的解法	47
4.2	二阶常系数线性微分方程	49
4.3	高阶常系数线性齐次微分方程	49
4.4	二阶可降阶微分方程	50
4.5	欧拉方程	50
4.6	变量代换求解二阶变系数线性微分方程	50
4.7	微分方程综合题	50
第五章	多元函数微分学	52
5.1	多元函数的概念	52
5.2	多元复合函数求偏导数与全微分	53
5.3	多元隐函数求偏导数与全微分	53
5.4	变量代换化简偏微分方程	54
5.5	求无条件极值	54
5.6	求条件极值 (边界最值)	55
第六章	二重积分	56
6.1	二重积分的概念	56
6.2	交换积分次序	57
6.3	一重和分的计算	57

6.4	其他题型	58
第七章	无穷级数	59
7.1	数项级数敛散性的判定	59
7.2	交错级数	59
7.3	任意项级数	59
7.4	幂级数求收敛半径与收敛域	60
7.5	幂级数求和	60
7.6	幂级数展开	61
7.7	无穷级数证明题	61
7.8	傅里叶级数	62
笙八音	多元函数积分学	63
第八章	多元函数积分学 三重和公的计算	63
8.1	三重积分的计算	63
8.1 8.2	三重积分的计算	63 63
8.1 8.2 8.3	三重积分的计算	63 63 64
8.1 8.2	三重积分的计算 第一类曲线积分的计算 第二类曲线积分的计算 第一类曲面积分的计算	63 63
8.1 8.2 8.3	三重积分的计算	63 63 64
8.1 8.2 8.3 8.4	三重积分的计算 第一类曲线积分的计算 第二类曲线积分的计算 第一类曲面积分的计算	63 63 64 64
8.1 8.2 8.3 8.4 8.5	三重积分的计算	63 63 64 64 64

第一章 函数极限连续

1.1 函数的性态

Remark. (有界性的判定)

- (1) 连续函数在闭区间 [a,b] 上必然有界
- (2) 连续函数在开区间 (a,b) 上只需要判断端点处的左右极限,若 $\lim_{x\to a^+} \neq \infty$ 且 $\lim_{x\to b^-} \neq \infty$,则连续函数在该区间内有界.
- (3) f'(x) 在有限区间 (a,b) 内有界.

Proof: $\forall x \in (a,b)$, 由拉格朗日中值定理, ∃ξ

$$f(x) - f(\frac{a+b}{2}) = f'(\xi)(x - \frac{a+b}{2})$$
$$|f(x)| \le |f'(\xi)| \left| x - \frac{a+b}{2} \right| + \left| f(\frac{a+b}{2}) \right|$$
$$|f(x)| \le \frac{b-a}{2} |f'(\xi)| + \left| f(\frac{a+b}{2}) \right| \le M$$

1. 下列函数无界的是

A
$$f(x) = \frac{1}{x}\sin x, x \in (0, +\infty)$$
 B $f(x) = x\sin\frac{1}{x}, x \in (0, +\infty)$

C
$$f(x) = \frac{1}{x} \sin \frac{1}{x}, x \in (0, +\infty)$$
 D $f(x) = \int_0^x \frac{\sin t}{t} dt, x \in (0, 2022)$

- (A) $\lim_{x\to 0^+} f(x) = 1$, $\lim_{x\to +\infty} = 0$ 均为有限值, 故 A 在区间 $(0,+\infty)$ 有界
- (B) $\lim_{x\to 0^+} f(x) = 0$, $\lim_{x\to +\infty} = 1$ 均为有限值, 故 B 在区间 $(0,+\infty)$ 有界
- (C) $\lim_{x\to 0^+} f(x) = +\infty$, $\lim_{x\to +\infty} = 0$ 在 0 点的极限不为有限值, 故 C 在区间 $(0,+\infty)$ 无界

(D) $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \int_0^x 1 dt = 0$, $\lim_{x\to 2022^-} f(x) = \int_0^{2022} \frac{\sin t}{t} dt =$ 有限值 故 D 在 区间 (0,2022) 有界

无穷 VS 无界

无界 只有有一个子列趋于无穷即可

无穷 任意子列均趋于无穷.

例如 A 选项, 当 $x_n = \frac{1}{2n\pi + \pi/2}, f(x_n) = 2n\pi + \pi/2, n \rightarrow \infty, f(x_n) \rightarrow \infty$; 当 $x_n = \pi/2$ $\frac{1}{2n\pi}$, $f(x_n) = 0$, $n \to \infty$, $f(x_n) \to 0$ 不为无穷大, 仅仅是无界.

Remark. (导函数与原函数的奇偶性与周期性)

连续奇函数的所有原函数 $\int_0^x f(t)dt + C$ 都是偶函数

连续偶函数仅有一个原函数 $\int_0^x f(t)dt$ 为奇函数

连续周期函数的原函数为周期函数 $\iff \int_0^T f(x) dx = 0$

- 2. (2002, 数二) 设函数 f(x) 连续, 则下列函数中, 必为偶函数的是
 - A $\int_0^x f(t^2)dt$ B $\int_0^x f^2(t)dt$
- - C $\int_0^x t[f(t) f(-t)]dt$ D $\int_0^x t[f(t) + f(-t)]dt$

Solution. 这种题可以采用奇偶性的定义直接去做,如下面选项 A,B 的解法,也可以按 照上述的函数奇偶性的性质判断

(A) $\Leftrightarrow F(x) = \int_0^x f(t^2)dt$

$$F(-x) = \int_0^{-x} f(t^2)dt = -\int_0^x f(t^2)dt = -F(x)$$

则 A 选项是奇函数

(B)

$$F(-x) = \int_0^{-x} f^2(t)dt = -\int_0^x f^2(-t)dt$$

推导不出 B 的奇偶性

- (C) t[f(t) f(-t)] 是一个偶函数, 故 C 选项是一个奇函数
- (D) t[f(t) + f(-t)] 是一个奇函数, 故 D 选项是一个偶函数

1.2 极限的概念

Definition 1.2.1 (函数极限的定义). 设函数 f(x) 在点 x_0 的某去心邻域内有定义。 若存在常数 A,使得对于任意给定的正数 ϵ ,总存在正数 δ ,使得当 x 满足

$$0 < |x - x_0| < \delta$$

时,必有

$$|f(x) - A| < \epsilon$$

则称 A 为函数 f(x) 当 x 趋近于 x_0 时的极限,记作

$$\lim_{x \to x_0} f(x) = A$$

或

$$f(x) \to A \quad (x \to x_0).$$

3. (2014, 数三) 设 $\lim_{n\to\infty} a_n = a$, 且 $a \neq 0$, 则当 n 充分大时有

(A)
$$|a_n| > \frac{|a|}{2}$$
 (B) $|a_n| < \frac{|a|}{2}$ (C) $a_n > a - \frac{1}{n}$ (D) $a_n < a + \frac{1}{n}$

Solution. $\diamondsuit \epsilon = |a|/2$, $\mathbb{N} |a_n - a| < |a|/2 \ge ||a_n| - |a|| \mathbb{N}$

$$|a|/2 < |a_n| < \frac{3|a|}{2}$$

对于 CD 考虑当

$$a_n = a - \frac{2}{n}$$
 和 $a_n = a + \frac{2}{n}$ 简单来说 $\forall \epsilon$ 这里面的 ϵ 与 n 是无关的.

1.3 函数极限的计算

这一个题型基本上是计算能力的考察,对于常见未定式其实也没必要区分的那么明显,目标都是往最简单 $\frac{0}{0}$ 或者 $\frac{1}{\infty}$ 模型上面靠,辅助以 Taylor 公式,拉格朗日中值定理结合夹逼准则来做就可以.

Remark. (类型 $-\frac{0}{0}$ 型)

4. (2000, 数二) 若 $\lim_{x\to 0} \frac{\sin 6x + xf(x)}{x^3} = 0$, 则 $\lim_{x\to 0} \frac{6+f(x)}{x^2}$ 为

- (A) 0
- (B) 6 (C) 36
- (D) ∞

Solution. 这个题第一次见可能想不到, 但做多了就一个套路用 Taylor 就是了.

 $\sin 6x = 6x - 36x^2 + o(x^3)$, 带入题目极限有

$$\lim_{x \to 0} \frac{6x + xf(x) + o(x^3)}{x^3} = \lim_{x \to 0} \frac{6x + xf(x)}{x^3} = 36$$

5. (2002, 数二) 设 y=y(x) 是二阶常系数微分方程 $y''+py'+qy=e^{3x}$ 满足初始条件 y(0)=y'(0)=0 的特解, 则当 $x\to 0$ 时, 函数 $\frac{\ln(1+x^2)}{y(x)}$ 的极限

- (A)不等于 (B)等于 1 (C)等于 2 (D)等于 3

Solution. 由微分方程和 y(0) = y'(0) = 0 可知 y''(0) = 1, 则 $y(x) = \frac{1}{2}x^2 + o(x^2)$, 则

$$\lim_{x \to 0} \frac{\ln(1+x^2)}{y(x)} = \lim_{x \to 0} \frac{x^2}{\frac{1}{2}x^2} = 2$$

Remark. (类型二 ≈ 型)

6. (2014, 数一、数二、数三) 求极限

$$\lim_{x \to \infty} \frac{\int_1^x \left[t^2 \left(e^{\frac{1}{t}} - 1 \right) - t \right] dt}{x^2 \ln\left(1 + \frac{1}{x}\right)}$$

Solution.

$$\lim_{x \to \infty} \frac{\int_{1}^{x} \left[t^{2}(e^{\frac{1}{t}} - 1) - t \right] dt}{x} = \lim_{x \to \infty} x^{2}(e^{\frac{1}{x}} - 1) - x$$

$$= \lim_{t \to 0} \frac{e^{t} - 1 - x}{x^{2}}$$

$$= \frac{1}{2}$$

Remark. (类型三 $0 \cdot \infty$ 型)

7. 求极限 $\lim_{x\to 0^+} \ln(1+x) \ln \left(1+e^{1/x}\right)$

 \square

Remark. (类型四 $\infty - \infty$ 型)

8. 求极限 $\lim_{x\to\infty} (x^3 \ln \frac{x+1}{x-1} - 2x^2)$

Remark. (类型五 0^0 与 ∞^0 型)

9. (2010, 数三) 求极限 $\lim_{x\to+\infty} (x^{1/x}-1)^{1/\ln x}$

Remark. (类型六 1[∞] 型)

10. 求极限 $\lim_{x\to 0} \left(\frac{a^x+a^{2x}+\cdots+a^{nx}}{n}\right)^{1/x}$ $(a>0,n\in\mathbb{N})$

Solution.

1.4 已知极限反求参数

Remark. (方法)

11. (1998, 数二) 确定常数 a,b,c 的值, 使 $\lim_{x\to 0} \frac{ax-\sin x}{\int_b^x \frac{\ln(1+t^3)}{t} dt} = c$ $(c \neq 0)$

1.5 无穷小阶的比较

Remark. (方法)

12. (2002, 数二) 设函数 f(x) 在 x = 0 的某邻域内具有二阶连续导数,且 $f(0) \neq 0, f'(0) \neq 0, f''(0) \neq 0$ 。证明:存在唯一的一组实数 $\lambda_1, \lambda_2, \lambda_3$,使得当 $h \to 0$ 时, $\lambda_1 f(h) + \lambda_2 f(2h) + \lambda_3 f(3h) - f(0)$ 是比 h^2 高阶的无穷小。

13. (2006, 数二) 试确定 A,B,C 的值, 使得 $e^x(1+Bx+Cx^2)=1+Ax+o(x^3)$, 其中 $o(x^3)$ 是当 $x\to 0$ 时比 x^3 高阶的无穷小量。

14. (2013, 数二、数三) 当 $x \to 0$ 时, $1 - \cos x \cdot \cos 2x \cdot \cos 3x$ 与 ax^n 为等价无穷小, 求 n 与 a 的值。

1.6 数列极限的计算

Remark. (方法)

- (1) 单调有界准则 (三步走, 先确定单调性, 在确定有界性, 最后解方程求极限) 确定单调性, 可以考虑作差/做商/求导
- (2) 压缩映射原理
- (3) 夹逼准则
- (4) 定积分的定义 (n 项和/n 项积)
- 15. (2011, 数一、数二)
 - (i) 证明: 对任意正整数 n, 都有 $\frac{1}{n+1} < \ln \left(1 + \frac{1}{n}\right) < \frac{1}{n}$
 - (ii) 设 $a_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n} \ln n \ (n = 1, 2, \cdots)$, 证明数列 $\{a_n\}$ 收敛。

Solution. (1) 是基本不等式的证明,考虑拉格朗日中值即可

(2) 考研大题, 特别是分成几个小问的题目, 都需要合理利用前面的结论 考虑 $a_{n+1} - a_n$ 有

$$a_{n+1} - a_n = \frac{1}{n+1} - \ln(n+1) + \ln(n) = \frac{1}{n+1} - \ln(1+n/1) < 0$$

即 $\{a_n\}$ 单调递减,考虑其有界性

$$a_n = 1 + 1/2 + 1/3 + \dots + 1/n - \ln(n)$$

$$< \ln(1+1) + \ln(1+1/2) + \dots + \ln(1+n/1) - \ln(n)$$

$$= \ln(n+1) - \ln(n) > 0$$

即 $\{a_n\}$ 有上界, 故由单调有界定理知数列 $\{a_n\}$ 收敛.

16. (2018, 数一、数二、数三) 设数列 $\{x_n\}$ 满足: $x_1 > 0, x_n e^{x_{n+1}} = e^{x_n} - 1$ $(n = 1, 2, \cdots)$ 。 证明 $\{x_n\}$ 收敛, 并求 $\lim_{n\to\infty} x_n$ 。

Solution. 这道题的难度在于如何处理条件. 考虑1 的妙用. 有

$$e^{x_{n+1}} = \frac{e^{x_n} - 1}{x} = \frac{e^{x_n} - e^0}{1}$$

= $e^{\xi}, \xi \in (0, x_n)$

而由于 e^x 是单调递增的函数则必然有 $\xi = x_{n+1}$ 即 $0 < x_{n+1} < x_n$ 从而单调递减有下界. 此时 $\{x_n\}$ 极限存在.

不妨设 $\lim_{n\to\infty} x_n = a$ 问题转换为求方程 $ae^a = e^a - 1$ 的解的问题. 显然 a = 0 是其一个根. 考虑函数 $f(x) = e^x(1-x) - 1$ 其导数为 $-xe^x$ 在 $(0,\infty)$ 上单调递减故 x = a 是 f(x) 唯一零点, 即 a = 0 是唯一解. 故

$$\lim_{n\to\infty} x_n = 0$$

常见的等价代换有

 $\underline{1}$: e^0 , $\sin(\pi/2)$, $\cos(0)$, $\ln(e)$ 具体情况还得看题目, 题目有啥用啥替换

 $\underline{0}$: $\sin(0)$, $\cos(pi/2)$, $\ln(1)$

- 17. (2019, 数一、数三) 设 $a_n = \int_0^1 x^n \sqrt{1-x^2} dx \ (n=0,1,2,\cdots)$ 。
 - (i) 证明数列 $\{a_n\}$ 单调减少,且 $a_n = \frac{n-1}{n+2} a_{n-2} \ (n=2,3,\cdots)$
 - (ii) $\vec{x} \lim_{n \to \infty} \frac{a_n}{a_{n-1}}$

Solution. 这道题第一问比较重要, 第二问比较简单

(1) 方法一:

$$a_n = \int_0^{\pi/2} \sin^n(t) \cos^2(t) dt$$

$$= \int_0^{\pi/2} \sin^n(t) - \int_0^{\pi/2} \sin^{n+2}(t) dt$$

$$\frac{4\pi + 2\pi + 2\pi}{n+2} \frac{1}{n+2} \frac{n-1}{n} \dots \frac{1}{2} \frac{\pi}{2}, \text{ if } n \text{ If } m \text{$$

当 n 为奇数的时候同理可得

(1) 方法二:

也可以考虑分部积分法

$$a_n = \int_0^1 x^n (1 - x^2)^{1/2} dx$$

$$= -\frac{1}{3} \left[x^{n-1} (1 - x^2)^{3/2} \Big|_0^1 - \int_0^1 (1 - x^2)^{\frac{3}{2}} dx^{n-1} \right]$$

$$= \frac{n-1}{3} \int_0^1 \sqrt{1 - x^2} (1 - x^2) x^{n-2} dx$$

$$= \frac{n-1}{3} a_{n-2} - \frac{n-1}{3} a_n$$

$$\implies a_n = \frac{n-1}{n+2} a_{n-2}$$

(2)

由(1)可知

$$\frac{n-1}{n+2} < \frac{a_n}{a_{n-1}} = \frac{n-1}{n-2} \frac{a_{n-2}}{a_{n-1}} < 1$$

当 $n \to \infty$ 由夹逼准则可知 $\lim_{n \to \infty} \frac{a_n}{a_{n-1}} = 1$

18. (2017, 数一、数二、数三) 求 $\lim_{n\to\infty} \sum_{k=1}^{n} \frac{k}{n^2} \ln \left(1 + \frac{k}{n}\right)$

Solution. 这是最普通的定积分的定义的应用

原式 =
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{k}{n} \ln(1 + \frac{k}{n})$$

$$\frac{\text{定积分定义}}{\text{constant}} \int_{0}^{1} x \ln(1 + x) dx$$

$$= \frac{1}{2} \int_{0}^{1} \ln(1 + x) dx^{2}$$

$$= \frac{1}{4}$$

间断点的判定 1.7

19. (2000, 数二) 设函数 $f(x) = \frac{x}{a + e^{bx}}$ 在 $(-\infty, +\infty)$ 内连续, 且 $\lim_{x \to -\infty} f(x) = 0$, 则常数 a,b 满足

A
$$a < 0, b < 0$$

B
$$a > 0, b > 0$$

A
$$a < 0, b < 0$$
 B $a > 0, b > 0$ C $a < 0, b > 0$ D $a > 0, b < 0$

$$D \quad a > 0, b < 0$$

第二章 一元函数微分学

2.1 导数与微分的概念

- 1. (2000, 数三) 设函数 f(x) 在点 x = a 处可导,则函数 |f(x)| 在点 x = a 处不可导的充分 条件是

 - A $f(a) = 0 \perp f'(a) = 0$ B $f(a) = 0 \perp f'(a) \neq 0$
 - C $f(a) > 0 \perp f'(a) > 0$ D $f(a) < 0 \perp f'(a) < 0$

2. (2001, 数一) 设 f(0) = 0, 则 f(x) 在 x = 0 处可导的充要条件为

- (A) $\lim_{h\to 0} \frac{1}{h^2} f(1-\cos h)$ 存在 (B) $\lim_{h\to 0} \frac{1}{h} f(1-e^h)$ 存在
- (C) $\lim_{h\to 0} \frac{1}{h^2} f(h-\sin h)$ 存在 (D) $\lim_{h\to 0} \frac{1}{h} [f(2h)-f(h)]$ 存在

3. (2016, 数一) 已知函数 $f(x) = \begin{cases} x, & x \leq 0 \\ \frac{1}{n}, & \frac{1}{n+1} < x \leq \frac{1}{n}, n = 1, 2, \cdots \end{cases}$ (A) x = 0 是 f(x) 的第一类间断点 (B) x = 0 是 f(x) 的第二类间断点

- (C) f(x) 在 x = 0 处连续但不可导 (D) f(x) 在 x = 0 处可导

2.2 导数与微分的计算

Remark (类型一分段函数求导).

4. (1997, 数一、数二) 设函数 f(x) 连续, $\varphi(x) = \int_0^1 f(xt)dt$, 且 $\lim_{x\to 0} \frac{f(x)}{x} = A(A$ 为常数), 求 $\varphi'(x)$, 并讨论 $\varphi'(x)$ 在 x=0 处的连续性。

Remark (类型二复合函数求导).

5. (2012, 数三) 设函数
$$f(x) = \begin{cases} \ln \sqrt{x}, & x \ge 1 \\ 2x - 1, & x < 1 \end{cases}$$
, $y = f(f(x))$, 求 $\frac{dy}{dx}\Big|_{x=e}$

Remark (类型三隐函数求导).

6. (2007, 数二) 已知函数 f(u) 具有二阶导数,且 f'(0) = 1,函数 y = y(x) 由方程 $y - xe^{y-1} = 1$ 所确定。设 $z = f(\ln y - \sin x)$,求 $\frac{dz}{dx}\Big|_{x=0}$ 和 $\frac{d^2z}{dx^2}\Big|_{x=0}$

Remark (类型四反函数求导).

- 7. (2003, 数一、数二) 设函数 y = y(x) 在 $(-\infty, +\infty)$ 内具有二阶导数,且 $y' \neq 0, x = x(y)$ 是 y = y(x) 的反函数。
 - (i) 将 x = x(y) 所满足的微分方程 $\frac{d^2x}{dy^2} + (y + \sin x) \left(\frac{dx}{dy}\right)^3 = 0$ 变换为 y = y(x) 满足的 微分方程
 - (ii) 求变换后的微分方程满足初始条件 $y(0) = 0, y'(0) = \frac{3}{2}$ 的解

Remark (类型五参数方程求导).

Remark (类型五参数万程求导).

8. (2008, 数二) 设函数
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = x(t) \\ y = \int_0^{t^2} \ln(1+u) du \end{cases}$$
 确定, 其中 $x(t)$ 是初值问题
$$\begin{cases} \frac{dx}{dt} - 2te^{-x} = 0 \\ x|_{t=0} = 0 \end{cases}$$
 的解, 求 $\frac{d^2y}{dx^2}$

值问题
$$\begin{cases} \frac{dx}{dt} - 2te^{-x} = 0 \\ x|_{t=0} = 0 \end{cases}$$
 的解, 求 $\frac{d^2y}{dx^2}$

Remark (类型六高阶导数).

2.3 导数应用-切线与法线

Remark (类型一直角坐标表示的曲线).

10. (2000, 数二) 已知 f(x) 是周期为 5 的连续函数,它在 x=0 的某个邻域内满足关系式 $f(1+\sin x)-3f(1-\sin x)=8x+\alpha(x)$,其中 $\alpha(x)$ 是当 $x\to 0$ 时比 x 高阶的无穷小,且 f(x) 在 x=1 处可导,求曲线 y=f(x) 在点 (6,f(6)) 处的切线方程。

Remark (类型二参数方程表示的曲线).

11. 曲线
$$\begin{cases} x = \int_0^{1-t} e^{-u^2} du \\ y = t^2 \ln(2 - t^2) \end{cases}$$
 在 $(0,0)$ 处的切线方程为___

Solution. 【详解

Remark (类型三极坐标表示的曲线).

12. (1997, 数一) 对数螺线 $r=e^{\theta}$ 在点 $(e^{\frac{\pi}{2}},\frac{\pi}{2})$ 处切线的直角坐标方程为__

2.4 导数应用-渐近线

- 13. (2014, 数一、数二、数三) 下列曲线中有渐近线的是
 - (A) $y = x + \sin x$ (B) $y = x^2 + \sin x$

 - (C) $y = x + \sin \frac{1}{x}$ (D) $y = x^2 + \sin \frac{1}{x}$

14. (2007, 数一、数二、数三) 曲线 $y=\frac{1}{x}+\ln(1+e^x)$ 渐近线的条数为

- (A) 0 (B) 1 (C) 2 (D) 3

2.5 导数应用-曲率

2.6 导数应用-极值与最值

- 17. (2000, 数二) 设函数 f(x) 满足关系式 $f''(x) + [f'(x)]^2 = x$, 且 f'(0) = 0, 则
 - (A) f(0) 是 f(x) 的极大值
 - (B) f(0) 是 f(x) 的极小值
 - (C) 点(0, f(0)) 是曲线 y = f(x) 的拐点
 - (D) f(0) 不是 f(x) 的极值, 点(0, f(0)) 也不是曲线 y = f(x) 的拐点

18. (2010, 数一、数二) 求函数 $f(x) = \int_1^{x^2} (x^2 - t)e^{-t^2} dt$ 的单调区间与极值 **Solution**.

19. (2014, 数二) 已知函数 y=y(x) 满足微分方程 $x^2+y^2y'=1-y',$ 且 y(2)=0, 求 y(x) 的极大值与极小值

2.7 导数应用-凹凸性与拐点

20. (2011, 数一) 曲线 $y = (x-1)(x-2)^2(x-3)^3(x-4)^4$ 的拐点是 (A) (1,0) (B) (2,0) (C) (3,0) (D) (4,0)

Solution.

2.8 导数应用-证明不等式

21. (2017, 数一、数三) 设函数 f(x) 可导,且 f(x)f'(x) > 0,则 $(A) \ f(1) > f(-1) \quad (B) \ f(1) < f(-1) \quad (C) \ |f(1)| > |f(-1)| \quad (D) \ |f(1)| < |f(-1)|$

22. (2015, 数二) 已知函数 f(x) 在区间 $[a, +\infty)$ 上具有二阶导数, f(a) = 0, f'(x) > 0, f''(x) > 0。设 b > a,曲线 y = f(x) 在点 (b, f(b)) 处的切线与 x 轴的交点是 $(x_0, 0)$,证明 $a < x_0 < b$ 。

2.9 导数应用-求方程的根

23. (2003, 数二) 讨论曲线 $y = 4 \ln x + k$ 与 $y = 4x + \ln^4 x$ 的交点个数。

24. (2015, 数二) 已知函数 $f(x) = \int_x^1 \sqrt{1+t^2} dt + \int_1^{x^2} \sqrt{1+t} dt$, 求 f(x) 零点的个数。

2.10 微分中值定理证明题

Remark (类型一证明含有一个 ξ 的等式).

- 25. (2013, 数一、数二) 设奇函数 f(x) 在 [-1,1] 上具有二阶导数, 且 f(1)=1。证明:
 - (i) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 1$;
 - (ii) 存在 $\eta \in (-1,1)$, 使得 $f''(\eta) + f'(\eta) = 1$ 。

26. 设函数 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,f(1)=0,证明:存在 $\xi\in(0,1)$,使得 $(2\xi+1)f(\xi)+\xi f'(\xi)=0$ 。

Remark (类型二证明含有两个点的等式).

- 27. 设 f(x) 在 [0,1] 上连续, 在 (0,1) 内可导, 且 f(0) = 0, f(1) = 1。证明:
 - (i) 存在两个不同的点 $\xi_1, \xi_2 \in (0,1)$, 使得 $f'(\xi_1) + f'(\xi_2) = 2$;
 - (ii) 存在 $\xi, \eta \in (0,1)$, 使得 $\eta f'(\xi) = f(\eta) f'(\eta)$ 。

Remark (类型三证明含有高阶导数的等式或不等式).

- 28. (2019, 数二) 已知函数 f(x) 在 [0,1] 上具有二阶导数, 且 $f(0) = 0, f(1) = 1, \int_0^1 f(x) dx = 1$ 。证明:
 - (i) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 0$;
 - (ii) 存在 $\eta \in (0,1)$, 使得 $f''(\eta) < -2$ 。

第三章 一元函数积分学

3.1 定积分的概念

1. 例 1 (2007, 数一、数二、数三) 如图, 连续函数 y = f(x) 在区间 [-3,-2],[2,3] 上的图形分别是直径为 1 的上、下半圆周, 在区间 [-2,0],[0,2] 的图形分别是直径为 2 的下、上半圆周. 设 $F(x) = \int_0^x f(t)dt$, 则下列结论正确的是:

$$(A)F(3) = -\frac{3}{4}F(-2)$$

Solution. 【详解】 □

2. 例 2 (2009, 数三) 使不等式 $\int_1^x \frac{\sin t}{t} dt > \ln x$ 成立的 x 的范围是

(A) (0,1) (B)
$$\left(1, \frac{\pi}{2}\right)$$
 (C) $\left(\frac{\pi}{2}, \pi\right)$ (D) $(\pi, +\infty)$

Solution.【详解】 □

3. 例 3 (2003, 数二) 设 $I_1 = \int_0^{\frac{\pi}{4}} \frac{\tan x}{x} dx, I_2 = \int_0^{\frac{\pi}{4}} \frac{x}{\tan x} dx,$ 则

$$(A)I_1 > I_2 > 1$$
 $(B)1 > I_1 > I_2$

$$(C)I_2 > I_1 > 1$$
 $(D)1 > I_2 > I_1$

Solution.【详解】 □

3.2 不定积分的计算

4. 例 5 (2009, 数二、数三) 计算不定积分 $\int \frac{1}{1+\sqrt{\frac{1+x}{x}}} dx(x>0)$

5. 例 6 求 $\int \frac{1}{1+\sin x+\cos x} dx$

Solution.【详解】 □

3.3 定积分的计算

6. 例 7 (2013, 数一) 计算 $\int_0^1 \frac{f(x)}{\sqrt{x}} dx$, 其中 $f(x) = \int_1^x \frac{\ln(t+1)}{t} dt$

Solution.【详解】 □

7. 例 8 求下列积分:

(1)
$$\int_0^{\frac{\pi}{2}} \frac{1}{1 + (\tan x)^{\sqrt{2}}} dx$$

Solution.【详解】 □

8. 例 9 求 $\int_0^{\frac{\pi}{4}} \ln(1 + \tan x) dx$

Solution.【详解】 □

3.4 反常积分的计算

9. 例 10 (1998, 数二) 计算积分 (题目内容缺失)

Solution. 【详解】 □

3.5 反常积分敛散性的判定

10. 例 11 (2016, 数一) 若反常积分 $\int_0^{+\infty} \frac{1}{x^a(1+x)^b} dx$ 收敛, 则

$$(A) \ a < 1 \ b > 1$$

(B)
$$a > 1$$
 $b > 1$

$$(C) \ a < 1 \ a + b > 1$$

(D)
$$a > 1$$
 $a + b > 1$

Solution. 【详解】

11. 例 12 (2010, 数一、数二) 设 m,n 均为正整数, 则反常积分 $\int_0^1 \frac{\sqrt[n]{\ln^2(1-x)}}{\sqrt[n]{x}} dx$ 的收敛性

- (A) m
- (B) n
- (C) m, n
- (D) m, n

Solution. 【详解】

3.6 变限积分函数

12. 例 13 (2013, 数二) 设函数 $f(x) = \begin{cases} \sin x, & 0 \le x < \pi \\ & , F(x) = \int_0^x f(t) dt, \\ 2, & \pi \le x \le 2\pi \end{cases}$

$$(A) x = \pi \qquad F(x)$$

(B)
$$x = \pi$$
 $F(x)$

$$(C) F(x) \quad x = \pi$$

(D)
$$F(x)$$
 $x = \pi$

Solution. 【详解】

- 13. 例 14 (2016, 数二) 已知函数 f(x) 在 $[0,3\pi]$ 上连续, 在 $(0,3\pi)$ 内是函数的一个原函数, 且 f(0)=0.
 - (i) 求 f(x) 在区间 $[0,\frac{3\pi}{2}]$ 上的平均值;
 - (ii) 证明 f(x) 在区间 $\left[0, \frac{3\pi}{2}\right]$ 内存在唯一零点.

Solution.【详解】

3.7 定积分应用求面积

14. 例 15 (2019, 数一、数二、数三) 求曲线 $y = e^{-x} \sin x (x \ge 0)$ 与 x 轴之间图形的面积.

3.8 定积分应用求体积

- 15. 例 16 (2003, 数一) 过原点作曲线 $y = \ln x$ 的切线, 该切线与曲线 $y = \ln x$ 及 x 轴围成平面图形 D.
 - (i) 求 D 的面积 A;
 - (ii) 求 D 绕直线 x = e 旋转一周所得旋转体的体积 V.

Solution.【详解】 □

16. 例 17 (2014, 数二) 已知函数 f(x,y) 满足 $\frac{\partial f}{\partial y} = 2(y+1)$, 且 $f(y,y) = (y+1)^2 - (2-y) \ln y$, 求曲线 f(x,y) = 0 所围图形绕直线 y = -1 旋转所成旋转体的体积.

Solution.【详解】 □

3.9 定积分应用求弧长

17. 例 18 求心形线 $r = a(1 + \cos \theta)(a > 0)$ 的全长.

Solution. 【详解】 □

3.10 定积分应用求侧面积

18. 例 19 (2016, 数二) 设 D 是由曲线 $y = \sqrt{1 - x^2} (0 \le x \le 1)$ 与 $x = \cos^3 t$ 围成的平面区域,求 D 绕 x 轴旋转一周所得旋转体的体积和表面积.

Solution. 【详解】 □

3.11 一定积分物理应用

19. 例 20 (2020,数二) 设边长为 2a 等腰直角三角形平板铅直地沉没在水中,且斜边与水面相齐,设重力加速度为 g,水密度为 ρ ,则该平板一侧所受的水压力为

3.12 二证明含有积分的等式或不等式

- 20. 例 21 (2000, 数二) 设函数 $S(x) = \int_0^x |\cos t| dt$.
 - (i) 当 n 为正整数, 且 $n\pi \le x < (n+1)\pi$ 时, 证明 $2n \le S(x) < 2(n+1)$;
 - (ii) $\vec{X} \lim_{x \to +\infty} \frac{S(x)}{x}$

Solution. 【详解】 □

- 21. 例 22 (2014, 数二、数三) 设函数 f(x), g(x) 在区间 [a, b] 上连续, 且 f(x) 单调增加, $0 \le g(x) \le 1$. 证明:
 - (i) $0 \le \int_a^x g(t)dt \le x a, x \in [a, b];$
 - (ii) $\int_a^{a+\int_a^b g(t)dt} f(x)dx \le \int_a^b f(x)g(x)dx$.

第四章 常微分方程

1. 例 1 (1998, 数一、数二) 已知函数 y = y(x) 在任意点 x 处的增量 $\Delta y = \frac{y\Delta x}{1+x^2} + \alpha$, 其中 α 是 Δx 的高阶无穷小, $y(0) = \pi$,则 y(1) 等于

(A)
$$2\pi$$
 (B) π (C) $e^{\frac{\pi}{4}}$ (D) $\pi e^{\frac{\pi}{4}}$

Solution.【详解】 □

2. 例 2 (2002, 数二) 已知函数 f(x) 在 $(0,+\infty)$ 内可导, f(x)>0, $\lim_{x\to+\infty}f(x)=1$, 且满足

$$\lim_{h \to 0} \left(\frac{f(x+hx)}{f(x)} \right)^{\frac{1}{h}} = e^{\frac{1}{x}}$$

求 f(x)。

Solution.【详解】 □

4.1 一阶微分方程的解法

Remark (类型一可分离变量).

3. 例 3 (1999, 数二) 求初值问题

$$\begin{cases} (y + \sqrt{x^2 + y^2})dx - xdy = 0 & (x > 0) \\ y|_{x=1} = 0 & \end{cases}$$

Remark (类型二一阶齐次).

4. 例 4 (2010, 数二、数三) 设 y_1, y_2 是一阶线性非齐次微分方程 y' + p(x)y = q(x) 的两个特解。若常数 λ, μ 使 $\lambda y_1 + \mu y_2$ 是该方程的解, $\lambda y_1 - \mu y_2$ 是该方程对应的齐次方程的解,则

(A)
$$\lambda = \frac{1}{2}$$
, $\mu = \frac{1}{2}$ (C) $\lambda = \frac{2}{3}$, $\mu = \frac{1}{3}$

Solution. 【详解】

Remark (类型三一阶线性).

- 5. 例 5 (2018, 数一) 已知微分方程 y' + y = f(x), 其中 f(x) 是 \mathbb{R} 上的连续函数。
 - (i) 若 f(x) = x, 求方程的通解;
 - (ii) 若 f(x) 是周期为 T 的函数, 证明: 方程存在唯一的以 T 为周期的解。

Solution.【详解】 □

Remark (类型四伯努利方程 (数一掌握)).

6. 例 6 求解微分方程 $y' = \frac{y}{x} + \sqrt{\frac{y^2}{x^2} - 1}$.

Solution.【详解】 □

Remark (类型五全微分方程 (数一掌握)).

7. 例 7 求解下列微分方程:

(1)
$$(2xe^y + 3x^2 - 1)dx + (x^2e^y - 2y)dy = 0;$$

(2)
$$\frac{2x}{y^3}dx + \frac{y^2 - 3x^2}{y^4}dy = 0.$$

4.2 二阶常系数线性微分方程

8. 例 8 (2017, 数二) 微分方程 $y'' - 4y' + 8y = e^{2x}(1 + \cos 2x)$ 的特解可设为 $y^* =$

(A)
$$Ae^{2x} + e^{2x}(B\cos 2x + C\sin 2x)$$

(B)
$$Axe^{2x} + e^{2x}(B\cos 2x + C\sin 2x)$$

(C)
$$Ae^{2x} + xe^{2x}(B\cos 2x + C\sin 2x)$$

(D)
$$Axe^{2x} + xe^{2x}(B\cos 2x + C\sin 2x)$$

Solution. 【详解】

9. 例 9 (2015, 数一) 设 $y = \frac{1}{2}e^{2x} + (x - \frac{1}{3})e^x$ 是二阶常系数非齐次线性微分方程 $y'' + ay' + by = ce^x$ 的一个特解, 则

(A)
$$a = -3, b = 2, c = -1$$

(B)
$$a = 3, b = 2, c = -1$$

$$(C)$$
 $a = -3, b = 2, c = 1$

(D)
$$a = 3, b = 2, c = 1$$

Solution. 【详解】

10. 例 10 (2016, 数二) 已知 $y_1(x) = e^x, y_2(x) = u(x)e^x$ 是二阶微分方程 (2x-1)y'' - (2x+1)y' + 2y = 0 的两个解。若 u(-1) = e, u(0) = -1,求 u(x),并写出该微分方程的通解。

Solution.【详解】 □

- 11. 例 11 (2016, 数一) 设函数 y(x) 满足方程 y'' + 2y' + ky = 0, 其中 0 < k < 1。
 - (i) 证明反常积分 $\int_0^{+\infty} y(x) dx$ 收敛;
 - (ii) 若 y(0) = 1, y'(0) = 1, 求 $\int_0^{+\infty} y(x)dx$ 的值。

Solution.【详解】 □

4.3 高阶常系数线性齐次微分方程

12. 例 12 求解微分方程 $y^{(4)} - 3y'' - 4y = 0$ 。

4.4 二阶可降阶微分方程

Remark (方法数一、数二掌握数三大纲不要求).

13. 例 13 求微分方程 $y''(x+y'^2)=y'$ 满足初始条件 y(1)=y'(1)=1 的特解。

Solution.【详解】 □

4.5 欧拉方程

Remark (方法数一掌握数二、数三大纲不要求).

14. 例 14 求解微分方程 $x^2y'' + xy' + y = 2 \sin \ln x$ 。

Solution. 【详解】 □

4.6 变量代换求解二阶变系数线性微分方程

17. 例 17 (2005, 数二) 用变量代换 $x = \cos t (0 < t < \pi)$ 化简微分方程 $(1-x^2)y'' - xy' + y = 0$, 并求其满足 $y|_{x=0} = 1, y'|_{x=0} = 2$ 的特解。

Solution. 【详解】 □

4.7 微分方程综合题

Remark (类型一综合导数应用).

18. 例 18 (2001, 数二) 设 L 是一条平面曲线, 其上任意一点 P(x,y)(x>0) 到坐标原点的距离, 恒等于该点处的切线在 y 轴上的截距, 且 L 经过点 $(\frac{1}{2},0)$ 。求曲线 L 的方程。

Remark (类型二综合定积分应用).

19. 例 19 (2009, 数三) 设曲线 y = f(x), 其中 f(x) 是可导函数, 且 f(x) > 0。已知曲线 y = f(x) 与直线 y = 0, x = 1 及 x = t(t > 1) 所围成的曲边梯形绕 x 轴旋转一周所得的 立体体积值是该曲边梯形面积值的 πt 倍, 求该曲线的方程。

Solution.【详解】 □

Remark (类型三综合变限积分).

20. 例 20 (2016, 数三) 设函数 f(x) 连续, 且满足 $\int_0^x f(x-t)dt = \int_0^x (x-t)f(t)dt + e^{-x} - 1$, 求 f(x)。

Solution. 【详解】 □

Remark (类型四综合多元复合函数).

21. 例 21 (2014, 数一、数二、数三) 设函数 f(u) 具有二阶连续导数, $z = f(e^x \cos y)$ 满足

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (4z + e^x \cos y)e^{2x}$$

若 f(0) = 0, f'(0) = 0, 求 f(u) 的表达式。

Solution.【详解】 □

Remark (类型五综合重积分).

22. 例 22 (2011, 数三) 设函数 f(x) 在区间 [0,1] 上具有连续导数,f(0)=1, 且满足

$$\iint_{D_t} f'(x+y)dxdy = \iint_{D_t} f(t)dxdy$$

其中 $D_t = \{(x,y) | 0 \le y \le t - x, 0 \le x \le t\} (0 < t \le 1)$, 求 f(x) 的表达式。

第五章 多元函数微分学

5.1 多元函数的概念

1. 例 1 求下列重极限:

(1)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^{\alpha} y^{\beta}}{x^2 + y^2} \quad (\alpha \ge 0, \beta \ge 0);$$
(2)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(x^2 - y^2)}{x^2 + y^2};$$

Solution. 【详解】

2. 例 2 (2012, 数一) 如果函数 f(x,y) 在点 (0,0) 处连续, 那么下列命题正确的是

$$(A)$$
 若极限 $\lim_{\substack{x\to 0\\x\to 0}} \frac{f(x,y)}{|x|+|y|}$ 存在,则 $f(x,y)$ 在点 $(0,0)$ 处可微

(B) 若极限
$$\lim_{\substack{x\to 0\\ y\to 0}} \frac{f(x,y)}{x^2+y^2}$$
存在,则 $f(x,y)$ 在点 $(0,0)$ 处可微

$$(C)$$
 若 $f(x,y)$ 在点 $(0,0)$ 处可微,则极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x,y)}{|x|+|y|}$ 存在

$$(D)$$
 若 $f(x,y)$ 在点 $(0,0)$ 处可微, 则极限 $\lim_{\substack{x\to 0\\y\to 0}}\frac{f(x,y)}{x^2+y^2}$ 存在

Solution. 【详解】

3. 例 3 (2012, 数三) 设连续函数 z = f(x, y) 满足

$$\lim_{\substack{x \to 0 \\ y \to 1}} \frac{f(x,y) - 2x + y - 2}{\sqrt{x^2 + (y-1)^2}} = 0$$

则 $dz|_{(0,1)} =$

5.2 多元复合函数求偏导数与全微分

4. 例 4 (2021, 数一、数二、数三) 设函数 f(x,y) 可微, 且

$$f(x+1, e^x) = x(x+1)^2,$$

 $f(x, x^2) = 2x^2 \ln x$

则 df(1,1) =

$$(A) dx + dy$$
 $(B) dx - dy$ $(C) dy$

Solution. 【详解】

5. 例 5 (2011, 数一、数二) 设 z = f(xy, yg(x)), 其中函数 f 具有二阶连续偏导数, 函数 g(x) 可导, 且在 x = 1 处取得极值 g(1) = 1, 求 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{x=1,y=1}$ 。

Solution. 【详解】 □

5.3 多元隐函数求偏导数与全微分

- 6. 例 6 (2005, 数一) 设有三元方程 $xy z \ln y + e^{xz} = 1$, 根据隐函数存在定理, 存在点 (0,1,1) 的一个邻域, 在此邻域内该方程
 - (A) 只能确定一个具有连续偏导数的隐函数z = z(x, y)
 - (B) 可确定两个具有连续偏导数的隐函数x = x(y, z)和z = z(x, y)
 - (C) 可确定两个具有连续偏导数的隐函数y = y(x, z)和z = z(x, y)
 - (D) 可确定两个具有连续偏导数的隐函数x = x(y, z)和y = y(x, z)

Solution. 【详解】 □

7. 例 7 (1999, 数一) 设 y = y(x), z = z(x) 是由方程 z = xf(x+y) 和 F(x,y,z) = 0 所确 定的函数, 其中 f 和 F 分别具有一阶连续导数和一阶连续偏导数, 求 $\frac{dz}{dr}$ 。

5.4 变量代换化简偏微分方程

8. 例 8 (2010, 数二) 设函数 u = f(x, y) 具有二阶连续偏导数, 且满足等式

$$4\frac{\partial^2 u}{\partial x^2} + 12\frac{\partial^2 u}{\partial x \partial y} + 5\frac{\partial^2 u}{\partial y^2} = 0$$

确定 a,b 的值, 使等式在变换 $\xi=x+ay, \eta=x+by$ 下简化为 $\frac{\partial^2 u}{\partial \xi \partial \eta}=0$ 。

Solution.【详解】 □

5.5 求无条件极值

9. 例 9 (2003, 数一) 已知函数 f(x,y) 在点 (0,0) 的某个邻域内连续, 且

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{f(x,y) - xy}{(x^2 + y^2)^2} = 1$$

则

- (A) 点(0,0)不是f(x,y)的极值点
- (B) 点(0,0)是f(x,y)的极大值点
- (C) 点(0,0)是f(x,y)的极小值点
- (D) 根据所给条件无法判别点(0,0)是否为f(x,y)的极值点

Solution.【详解】 □

10. 例 10 (2004, 数一) 设 z = z(x,y) 是由 $x^2 - 6xy + 10y^2 - 2yz - z^2 + 18 = 0$ 确定的函数, 求 z = z(x,y) 的极值点和极值。

5.6 求条件极值 (边界最值)

11. 例 11 (2006, 数一、数二、数三) 设 f(x,y) 与 $\varphi(x,y)$ 均为可微函数, 且 $\varphi'_y(x,y) \neq 0$ 。已 知 (x_0,y_0) 是 f(x,y) 在约束条件 $\varphi(x,y)=0$ 下的一个极值点, 下列选项正确的是

$$(C)$$
 若 $f'_x(x_0, y_0) \neq 0$, 则 $f'_y(x_0, y_0) = 0$

Solution. 【详解】 □

12. 例 12 (2013, 数二) 求曲线 $x^3 - xy + y^3 = 1 (x \ge 0, y \ge 0)$ 上的点到坐标原点的最长距离与最短距离。

Solution.【详解】 □

13. 例 13 (2014, 数二) 设函数 u(x,y) 在有界闭区域 D 上连续, 在 D 的内部具有二阶连续偏导数, 且满足 $\frac{\partial^2 u}{\partial x \partial y} \neq 0$ 及 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, 则

(A) u(x,y)的最大值和最小值都在D的边界上取得

- (B) u(x,y)的最大值和最小值都在D的内部取得
- (C) u(x,y)的最大值在D的内部取得,最小值在D的边界上取得
- (D) u(x,y)的最小值在D的内部取得,最大值在D的边界上取得

Solution. 【详解】 □

14. 例 14 (2005, 数二) 已知函数 z=f(x,y) 的全微分 dz=2xdx-2ydy, 且 f(1,1)=2, 求 f(x,y) 在椭圆域 $D=\{(x,y)|x^2+\frac{y^2}{4}\leq 1\}$ 上的最大值和最小值。

第六章 二重积分

6.1 二重积分的概念

1. 例 1 (2010, 数一、数二)

$$\lim_{n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{n}{(n+i)(n^2+j^2)} =$$

$$(A) \int_0^1 dx \int_0^x \frac{1}{(1+x)(1+y^2)} dy \quad (B) \int_0^1 dx \int_0^x \frac{1}{(1+x)(1+y)} dy$$

$$(C) \int_0^1 dx \int_0^1 \frac{1}{(1+x)(1+y)} dy \quad (D) \int_0^1 dx \int_0^1 \frac{1}{(1+x)(1+y^2)} dy$$

Solution. 【详解】

2. 例 2 (2016, 数三) 设 $J_i = \iint_{D_i} \sqrt[3]{x-y} dx dy (i=1,2,3)$, 其中

$$D_1 = \{(x, y) | 0 \le x \le 1, 0 \le y \le 1\},$$

$$D_2 = \{(x, y) | 0 \le x \le 1, 0 \le y \le \sqrt{x}\},$$

$$D_3 = \{(x, y) | 0 \le x \le 1, x^2 \le y \le 1\},\$$

则

$$(A) J_1 < J_2 < J_3 \quad (B) J_3 < J_1 < J_2$$

(C)
$$J_2 < J_3 < J_1$$
 (D) $J_2 < J_1 < J_3$

6.2 交换积分次序

3. 例 3 (2001, 数一) 交换二次积分的积分次序:

$$\int_{-1}^{0} dy \int_{2}^{1-y} f(x,y) dx =$$

Solution. 【详解】 □

4. 例 5 交换 $I=\int_{-\frac{\pi}{4}}^{\frac{\pi}{2}}d\theta\int_{0}^{a\cos\theta}f(r,\theta)dr$ 的积分次序。

Solution.【详解】 □

6.3 二重积分的计算

6. 例 6 (2011, 数一、数二) 已知函数 f(x,y) 具有二阶连续偏导数, 且 $f(1,y) = 0, f(x,1) = 0, \iint_D f(x,y) dx dy = a$, 其中 $D = \{(x,y) | 0 \le x \le 1, 0 \le y \le 1\}$, 计算二重积分

$$I = \iint_D xy f_{xy}''(x, y) dx dy.$$

Solution. 【详解】 □

7. 例 7 计算 $\iint_D \sqrt{|y-x^2|} dx dy$, 其中 $D = \{(x,y)| -1 \le x \le 1, 0 \le y \le 2\}$ 。

Solution.【详解】 □

8. 例 8 (2018, 数二) 设平面区域 D 由曲线 $\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases}$ (0 $\leq t \leq 2\pi$) 与 x 轴围成, 计 算二重积分 $\iint_D (x + 2y) dx dy$ 。

Solution. 【详解】 □

9. 例 9 (2007, 数二、数三) 设二元函数

$$f(x,y) = \begin{cases} x^2, & |x| + |y| \le 1\\ \frac{1}{\sqrt{x^2 + y^2}}, & 1 < |x| + |y| \le 2 \end{cases}$$

计算二重积分 $\iint_D f(x,y) dx dy$, 其中 $D = \{(x,y) | |x| + |y| \le 2\}$ 。

Solution. 【详解】

10. 例 10 (2014, 数二、数三) 设平面区域 $D = \{(x,y)|1 \le x^2 + y^2 \le 4, x \ge 0, y \ge 0\}$, 计算

$$\iint_D \frac{x \sin(\pi \sqrt{x^2 + y^2})}{x + y} dx dy.$$

Solution. 【详解】 □

11. 例 11 (2019, 数二) 已知平面区域 $D = \{(x,y)||x| \leq y, (x^2 + y^2)^3 \leq y^4\}$, 计算二重积分

$$\iint_D \frac{x+y}{\sqrt{x^2+y^2}} dx dy.$$

Solution.【详解】 □

6.4 其他题型

13. 例 12 (2010, 数二) 计算二重积分 $I = \iint_D r^2 \sin \theta \sqrt{1 - r^2 \cos 2\theta} dr d\theta$, 其中 (题目描述不完整)

Solution.【详解】 □

14. 例 13 (2009, 数二、数三) 计算二重积分 $\iint_D (x-y) dx dy$, 其中

$$D = \{(x,y)|(x-1)^2 + (y-1)^2 \le 2, y \ge x\}.$$

第七章 无穷级数

7.1 数项级数敛散性的判定

1. 例 1 (2015, 数三) 下列级数中发散的是

$$(A) \sum_{n=1}^{\infty} \frac{n}{3^n} \quad (C) \sum_{n=2}^{\infty} \frac{(-1)^n + 1}{\ln n} \quad (D) \sum_{n=1}^{\infty} \frac{n!}{n^n}$$

Solution. 【详解】 □

2. 例 2 (2017, 数三) 若级数 $\sum_{n=1}^{\infty} \left[\sin \frac{1}{n} - k \ln \left(1 - \frac{1}{n} \right) \right]$ 收敛, 则 k =

$$(A) \ 1 \quad (B) \ 2 \quad (C) \ -1 \quad (D) \ -2$$

Solution.【详解】 □

7.2 交错级数

3. 例 3 判定下列级数的敛散性:

$$(1)\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n-\ln n} \quad (2)\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n} + (-1)^n}.$$

Solution.【详解】 □

7.3 任意项级数

4. 例 4 (2002, 数一) 设 $u_n \neq 0 (n = 1, 2, 3, \cdots)$, 且 $\lim_{n \to \infty} \frac{n}{u_n} = 1$, 则级数 $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{u_n} + \frac{1}{u_{n+1}} \right)$

 $(A) \qquad (B) \qquad (C) \qquad (D)$

Solution. 【详解】

5. 例 5 (2019, 数三) 若 $\sum_{n=1}^{\infty} \frac{v_n}{n}$ 条件收敛, 则

$$(A)$$
 $\sum_{n=1}^{\infty} u_n v_n$ 条件收敛 (B) $\sum_{n=1}^{\infty} u_n v_n$ 绝对收敛

$$(C)$$
 $\sum_{n=1}^{\infty} (u_n + v_n)$ 收敛 (D) $\sum_{n=1}^{\infty} (u_n + v_n)$ 发散

Solution. 【详解】

7.4 幂级数求收敛半径与收敛域

- 6. 例 6 (2015, 数一) 若级数 $\sum_{n=1}^{\infty} a_n$ 条件收敛, 则 $x = \sqrt{3}$ 与 x = 3 依次为幂级数 $\sum_{n=1}^{\infty} n a_n (x-1)^n$ 的
 - (A) , (B) ,
 - (C) , (D) ,

Solution.【详解】 □

7. 例 7 求幂级数 $\sum_{n=1}^{\infty} \frac{3n}{2n+1} x^n$ 的收敛域.

Solution.【详解】 □

7.5 幂级数求和

8. 例 8 (2005, 数一) 求幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \left[1 + \frac{1}{n(2n-1)}\right] x^{2n}$ 的收敛区间与和函数 f(x).

Solution.【详解】 □

9. 例 9 (2012, 数一) 求幂级数 $\sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1} x^{2n}$ 的收敛域及和函数.

Solution. 【详解】 □

10. 例 10 (2004, 数三) 设级数 $\frac{x^4}{2\cdot 4} + \frac{x^6}{2\cdot 4\cdot 6} + \frac{x^8}{2\cdot 4\cdot 6\cdot 8} + \cdots$ $(-\infty < x < +\infty)$ 的和函数为 S(x)。求:

- (i) S(x) 所满足的一阶微分方程;
- (ii) S(x) 的表达式.

Solution. 【详解】

7.6 幂级数展开

11. 例 11 (2007, 数三) 将函数 $f(x) = \frac{1}{x^2 - 3x - 4}$ 展开成 x - 1 的幂级数, 并指出其收敛区间.

Solution.【详解】 □

12. 例 12 将函数 $f(x) = \ln \frac{x}{x+1}$ 在 x = 1 处展开成幂级数.

Solution.【详解】 □

7.7 无穷级数证明题

- 13. 例 13 (2016, 数一) 已知函数 f(x) 可导, 且 $f(0) = 1,0 < f'(x) < \frac{1}{2}$ 。设数列 $\{x_n\}$ 满足 $x_{n+1} = f(x_n)(n = 1, 2, \cdots)$ 。证明:
 - (i) 级数 $\sum_{n=1}^{\infty} (x_{n+1} x_n)$ 绝对收敛;
 - (ii) $\lim_{n\to\infty} x_n$ 存在, 且 $0 < \lim_{n\to\infty} x_n < 2$.

Solution.【详解】 □

- 14. 例 14 (2014, 数一) 设数列 $\{a_n\}$, $\{b_n\}$ 满足 $0 < a_n < \frac{\pi}{2}, 0 < b_n < \frac{\pi}{2}, \cos a_n a_n = \cos b_n$, 且级数 $\sum_{n=1}^{\infty} b_n$ 收敛。
 - (i) 证明 $\lim_{n\to\infty} a_n = 0$;
 - (ii) 证明级数 $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ 收敛.

7.8 傅里叶级数

15. 例 15 设函数

$$f(x) = \begin{cases} e^x, & -\pi \le x < 0\\ 1, & 0 \le x < \pi \end{cases}$$

则其以 2π 为周期的傅里叶级数在 $x = \pi$ 收敛于?, 在 $x = 2\pi$ 收敛于?.

Solution. 【详解】由狄利克雷收敛定理知,f(x) 以 2π 为周期的傅里叶级数在 $x=\pi$ 收敛于

$$S(\pi) = \frac{f(\pi - 0) + f(-\pi + 0)}{2} = \frac{1 + e^{-\pi}}{2}$$

在 $x = 2\pi$ 收敛于

$$S(2\pi) = S(0) = \frac{f(0-0) + f(0+0)}{2} = \frac{1+1}{2} = 1$$

16. 例 16 将 $f(x) = 1 - x^2, 0 \le x \le \pi$, 展开成余弦级数, 并求级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ 的和.

Solution. 【详解】对 $f(x) = 1 - x^2$ 进行偶延拓, 由 $f(x) = 1 - x^2$ 为偶函数, 知 $b_n = 0$ 。

$$a_0 = \frac{2}{\pi} \int_0^{\pi} (1 - x^2) dx = 2\left(1 - \frac{\pi^2}{3}\right)$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} (1 - x^2) \cos nx dx = \frac{4(-1)^{n+1}}{n^2} \quad (n = 1, 2, \dots)$$

$$f(x) = 1 - x^{2} = \frac{a_{0}}{2} + \sum_{n=1}^{\infty} a_{n} \cos nx = 1 - \frac{\pi^{2}}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n^{2}} \cos nx$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = \frac{\pi^2}{12}$$

第八章 多元函数积分学

8.1 三重积分的计算

1. 例 1 (2013, 数一) 设直线 L 过 A(1,0,0),B(0,1,1) 两点,将 L 绕 z 轴旋转一周得到曲面

	Σ,Σ 与平面 $z=0,z=2$ 所围成的立体为 Ω .
	(I) 求曲面 Σ 的方程;
	(II) 求 Ω 的形心坐标.
	Solution.【详解】 □
2.	例 2 (2019, 数一) 设 Ω 是由锥面 $x^2+(y-z)^2=(1-z)^2(0\leq z\leq 1)$ 与平面 $z=0$ 围成的锥体,求 Ω 的形心坐标.
	Solution.【详解】 □
	8.2 第一类曲线积分的计算
3.	例 3 (2018, 数一) 设 L 为球面 $x^2+y^2+z^2=1$ 与平面 $x+y+z=0$ 的交线, 则 $\oint_L xyds=$
	Solution.【详解】 □
4.	例 4 设连续函数 $f(x,y)$ 满足 $f(x,y)=(x+3y)^2+\int_L f(x,y)ds$,其中 L 为曲线 $y=\sqrt{1-x^2}$,求曲线积分 $\int_L f(x,y)ds$.
	Solution.【详解】 □

8.3 第二类曲线积分的计算

Remark (类型一平面第二类曲线积分).

- 5. 例 5 (2021, 数一) 设 $D \subset \mathbb{R}^2$ 是有界单连通闭区域, $I(D) = \iint_D (4 x^2 y^2) dx dy$ 取得最大值的积分域记为 D_1 .
 - (I) 求 $I(D_1)$ 的值;
 - (II) 计算 $\oint_{\partial D_1} \frac{(xe^{x^2+4y^2}+y)dx+(4ye^{x^2+4y^2}-x)dy}{x^2+4y^2}$, 其中 ∂D_1 是 D_1 的正向边界.

Solution. 【详解】 □

Remark (类型二空间第二类曲线积分).

6. 例 6 (2011, 数一) 设 L 是柱面 $x^2 + y^2 = 1$ 与平面 z = x + y 的交线,从 z 轴正向往 z 轴负向看去为逆时针方向,则曲线积分 $\oint_L xzdx + xdy + \frac{y^2}{2}dz =$

Solution. 【详解】 □

8.4 第一类曲面积分的计算

Remark (方法).

7. 例 7 (2010, 数一) 设 P 为椭球面 $S: x^2 + y^2 + z^2 - yz = 1$ 上的动点,若 S 在点 P 的切平面与 xOy 面垂直,求 P 点的轨迹 C,并计算曲面积分

$$I = \iint_{\Sigma} \frac{(x+\sqrt{3})|y-2z|}{\sqrt{4+y^2+z^2-4yz}} dS,$$

其中 Σ 是椭球面 S 位于曲线 C 上方的部分.

Solution. 【详解】 □

8.5 第二类曲面积分的计算

Remark (方法).

8. 例 8 (2009, 数一) 计算曲面积分

$$I = \oint_{\Sigma} \frac{xdydz + ydzdx + zdxdy}{(x^2 + y^2 + z^2)^{\frac{3}{2}}},$$

其中 Σ 是曲面 $2x^2 + 2y^2 + z^2 = 4$ 的外侧.

Solution.【详解】 □

9. 例 9 计算

$$\iint_{\Sigma} \frac{axdydz + (z+a)^2 dxdy}{(x^2 + y^2 + z^2)^2},$$

其中 Σ 为下半球面 $z = -\sqrt{a^2 - x^2 - y^2}$ 的上侧, a 为大于零的常数.

Solution.【详解】 □

10. 例 10 (2020, 数一) 设 Σ 为曲面 $z=\sqrt{x^2+y^2}(1\leq x^2+y^2\leq 4)$ 的下侧,f(x) 为连续函数,计算

$$I = \iint_{\Sigma} [xf(xy) + 2x - y] dy dz + [yf(xy) + 2y + x] dz dx + [zf(xy) + z] dx dy.$$

第九章 补充知识-高等数学

补充知识来自于

- (1) 菲砖
- (2) 做题总结

9.1 平方数和的求和公式

$$\sum_{k=1}^{n} k^2 = \frac{n(n-1)(n-2)}{6}$$

9.2 莱布尼兹法则

$$F(x) = \int_{a(x)}^{b(x)} f(x, t) dt$$

那么 F(x) 的导数为

$$F'(x) = f(x, b(x)) \cdot b'(x) - f(x, a(x)) \cdot a'(x) + \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x, t) dt$$

特别的, 若上下限为常数有

$$F'(x) = \int_a^b \frac{\partial}{\partial x} f(x, t) dt$$

例如对于 $F(x) = \int_1^0 e^{-x^2t^2} dt$,则

$$F'(x) = 2x \int_0^1 t^2 e^{-x^2 t^2} dt$$