MLJ5U8C - Electromagnétisme

Licence MI L3

TD 2 : Calculs de champs magnétiques

Exercice 1 Ordres de grandeur

Dans un tube cathodique les électrons d'énergie 3.10^{-15} J se déplacent en ligne droite de la face arrière du tube vers sa face avant. Ce tube est situé près d'un cable électrique parcouru par un courant d'intensité 12 A, parallèle à la trajectoire des électrons et à une distance de 30 cm de celle-ci. Quelle est la force magnétique qui s'exerce sur chaque électron? Quelle est l'accélération transverse correspondante?

Exercice 2 Analyse dimensionnelle

Déterminer la dimension des champs électrique \vec{E} et magnétique \vec{B} , de μ_0 et ϵ_0 dans le système MKSA.

Exercice 3 Champ magnétique d'un fil rectiligne

Considérons un fil conducteur rectiligne de longueur let de section s, parcouru par un courant I.

- 1. Calculer le champ magnétique créé par le courant I circulant dans le fil en un point L quelconque de l'espace situé à une distance d du fil.
- 2. En faisant tendre l'vers l'infini, retrouver l'expression du champ magnétique obtenue dans le cas d'un fil rectiligne infini.
- 3. Donner l'expression du champ si M appartient au plan médian du conducteur de longueur finie l.

Exercice 4 Champ magnétique d'une spire circulaire

Considérons une spire circulaire de rayon R parcourue par un courant constant I.

- 1. Calculer le champ magnétique créé par ce courant en un point M quelconque de son axe de révolution.
- 2. Que devient l'expression du champ au centre de la spire?

Exercice 5 Champ magnétique d'une spire carrée

Considérons une spire carrée de côté I, d'axe Oz et de centre O, parcourue par un courant constant I.

- 1. Calculer le champ magnétique créé par ce courant en un point M quelconque de l'axe Oz, à la distance z de O.
- 2. Que devient l'expression du champ :
 - · au centre de la spire,
 - à grande distance de la spire (z » 1)?

ESCARTES MLJ5U8C - Electromagnétisme

Licence MI L3

Exercice 6 Portions de circuit

Calculer le champ magnétique créé au point M par les 2 circuits suivants, parcourus par un courant d'intensité I :

Exercice 7 Champ magnétique dans un solénoïde

Calculer le champ magnétique créé sur l'axe d'un solénoïde constitué de N spires par unité de longueur, parcouru par un courant d'intensité I. Que devient cette expression si la longueur L du solénoïde est grande devant son diamètre ?

Exercice 8 Bobines de Helmholtz

- 1. Une bobine circulaire de centre O, d'axe Ox, et de rayon R comporte N spires parcourues par un courant d'intensité I. On néglige l'épaisseur des spires.
 - a) Exprimer le champ magnétique créé en un point M de l'axe en fonction de $u = \frac{x}{R}$.
 - b) Tracer l'allure du champ et montrer qu'elle présente un point d'inflexion pour une distance x que l'on exprimera en fonction de R.
- 2. Deux bobines identiques à la précedente, de centres O et O', et parcourues dans le même sens par un courant d'intensité I, sont disposées sur un même axe. Trouver la distance qui doit séparer les centres O et O' pour obtenir un champ constant à l'ordre 4.
- 3. Tracer l'allure du champ sur l'axe entre les deux bobines.