Logik I Übungsblatt 2

Wir sagen dass eine Menge von Junktoren ein vollständiges Junktorensystem ist wenn sich jede Funktion $F: [W, F]^n \to \{W, F\}$ durch eine aussagenlogische Formel $f(p_1, \dots, p_n)$ darstellen lässt, also dass $F(\mu(p_1), \dots, \mu(p_n)) = \mu(f)$ für alle Belegungen $\mu: \{p_1, \dots, p_n\} \to \{W, F\}$.

Aufgabe 1. Zeigen Sie, dass der Sheffer'sche Strich $(f|g) := \neg (f \land g)$ ein vollständiges Junktorensystem bildet.

Aufgabe 2. Sei \mathcal{L} eine Sprache, die ein 1-stellige Relationsymbol P, ein 2-stellige Relationsymbol R und ein 2-stellige Funktionsymbol f enthält.

Sind die folgenden \mathcal{L} -Formeln allgemeingültig? Sind sie Tautologien?

- a) $(\forall x Rxy \to (\exists z Pz \to Px)) \leftrightarrow ((\forall x Rxy \land \exists z Pz) \to Px)$
- b) $(\exists x \forall y Rxy \rightarrow \forall y \exists x Rxy)$
- c) $(\forall z \, Rz fxz \rightarrow \exists x \forall z \, Rzx)$

Warum widerspricht das Ergebnis aus c) nicht dem \exists -Quantorenaxiom, das Sie in der Vorlesung kennengelernt haben?

Sei \mathcal{L} eine Sprache, dann sagt man, dass eine \mathcal{L} -Formel quantorenfrei ist wenn weder \exists noch \forall in ihr vorkommen.

Wir sagen, dass eine \mathcal{L} -Formel φ universell ist wenn sie von der Form $\forall v_0 \cdots \forall v_n \psi$ ist, wobei ψ eine quantorenfreie Formel ist.

Aufgabe 3. Sei \mathcal{A} ein \mathcal{L} -Struktur und $\mathcal{B} \subseteq \mathcal{A}$ eine Substruktur.

Zeigen Sie, dass für jede B-Belegung β und jede universelle Formel φ gilt, dass wenn $\mathcal{A} \models \varphi[\beta]$ stimmt, auch $\mathcal{B} \models \varphi[\beta]$ gelten muss.

Es sei $M := \{p_0, p_1, \dots\}$ eine Menge von Aussagenvariablen. Wir schreiben $\varphi(p_0, p_1, \dots, p_n)$ für eine aussagenlogische Formel die nur p_0, \dots, p_n enthält.

Einen aussagenlogische Formel hat konjunktive Normalform (KNF), wenn gilt:

$$\varphi = (\varphi_{0,0} \vee \cdots \vee \varphi_{0,k_0}) \wedge \cdots \wedge (\varphi_{l,0} \vee \cdots \vee \varphi_{l,k_l})$$

 $\text{für } \varphi_{r,s} \in \{p_i, \neg p_i \mid i \in \mathbb{N}\}.$

Analog hat eine aussagenlogische Formel φ disjunktive Normalform (DNF), wenn gilt

$$\varphi = (\varphi_{0,0} \wedge \cdots \wedge \varphi_{0,k_0}) \vee \cdots \vee (\varphi_{l,0} \wedge \cdots \wedge \varphi_{l,k_l})$$

für $\varphi_{r,s} \in \{p_i, \neg p_i \mid i \in \mathbb{N}\}.$

Zwei aussagenlogische Formeln φ und ψ sind logisch äquivalent, kurz $\varphi \sim \psi$, wenn sie unter gleichen Belegungen wahr werden.

Aufgabe 4. Zeigen Sie: Zu jeder aussagenlogischen Formel $\varphi(p_0, \dots, p_n)$ existieren Formeln φ_{DNF} und φ_{KNF} in DNF bzw. KNF so dass gilt:

$$\varphi \sim \varphi_{DNF} \sim \varphi_{KNF}$$