

Typicality and OOD Detection

Eric Lei

Introduction

- Typicality is a tool from information theory that provides properties about the structure of the n-fold product distribution $P^{\otimes n}$
- Allows straightforward existence proofs in information theory, for channel coding and source coding
- Recently, typicality has received attention in the OOD detection literature
- Idea is to test whether a batch of samples is typical w.r.t $P^{\otimes n}$, rather than seeing if they have a high likelihood

Warm Up

Warm Up

- Let $X_i \sim \text{Ber}(3/4)$ be i.i.d., and consider the following sequences of n=10 realizations $(X_1, ..., X_n) = X^n$:
 - \bullet $x^n = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0$
 - $y^n=0, 1, 0, 1, 1, 0, 1, 1, 1, 1$
 - $z^n = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$

Warm Up

- Let $X_i \sim \text{Ber}(3/4)$ be i.i.d., and consider the following sequences of n = 10 realizations $(X_1, ..., X_n) = X^n$:
 - \bullet $x^n = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0$
 - $y^n=0, 1, 0, 1, 1, 0, 1, 1, 1, 1$
 - \bullet $z^n=1, 1, 1, 1, 1, 1, 1, 1, 1, 1$
- Which sequence is more likely?
 - \bullet Pr($X^n = x^n$) = $(1/4)^{10}$
 - $Pr(X^n = y^n) = (1/4)^3 (3/4)^7$
 - $Pr(X^n = z^n) = (3/4)^{10}$

Explanation

- There is only one sequence of all ones, but there are $\binom{10}{7}$ sequences with 3 zeros and 7 ones $\{X^n: X^n \text{ has 7 ones and 3 zeros}\}$
- This set has probability $\Pr(X^n : X^n \text{ has 7 ones and 3 zeros}) = \binom{10}{7} (3/4)^7 (1/4)^3 \approx 0.25$
- Is this set that much larger than a single sequence?
 - No. It takes up $\frac{\binom{10}{7}}{2^{10}} \approx 11.7 \%$ of the space
 - This effect becomes greater as *n* increases

Typical Sets

- Asymptotic Equipartiton Property (AEP): For $\{X_i\}_{i=1}^n \sim P \in \mathcal{P}(\mathcal{X})$ i.i.d., $-\frac{1}{n} \sum_{i=1}^n \log P(X_i) \longrightarrow H(X) := -\mathbb{E}_{X \sim P}[\log P(X)] \text{ in probability.}$
- The typical set of P considers sequences of \mathcal{X}^n that approximately satisfy the AEP.
- \bullet ϵ -typical set of P: $A_{\epsilon}^{(n)}(P) := \left\{ x^n \in \mathcal{X}^n : \left| -\frac{1}{n} \log P^{\otimes n}(x^n) H(P) \right| < \epsilon \right\}$

Properties of $A_{\epsilon}^{(n)}$

$$\bullet^{A_{\epsilon}^{(n)}(P)} := \left\{ x^n \in \mathcal{X}^n : \left| -\frac{1}{n} \log P^{\otimes n}(x^n) - H(P) \right| < \epsilon \right\}$$

$$1. \ x^n \in A_{\epsilon}^{(n)} \implies 2^{-n(H(P)+\epsilon)} \le P^{\otimes n}(x_1, ..., x_n) \le 2^{-n(H(P)-\epsilon)}$$

- 2. $P^{\otimes n}(A_{\epsilon}^{(n)}) \ge 1 \epsilon$ for n sufficiently large.
- 3. $(1 \epsilon)2^{n(H(P) \epsilon)} \le |A_{\epsilon}^{(n)}(P)| \le 2^{n(H(P) + \epsilon)}$ for n sufficiently large.

Interpretation: As n grows, the product distribution $P^{\otimes n}$ concentrates on $A_{\epsilon}^{(n)}$, and is approximately uniform (assigns probability $\approx 2^{-nH(P)}$ to sequences on a small set of size $\approx 2^{nH(P)}$).

Proofs

- First two properties are due to WLLN and definition of the typical set
- For the size:

$$1 = \sum_{x^n \in \mathcal{X}^n} P^{\otimes n}(x^n)$$

$$\geq \sum_{x^n \in A_{\epsilon}^{(n)}} P^{\otimes n}(x^n) \qquad 1 - \epsilon < P^{\otimes n}(A_{\epsilon}^{(n)})$$

$$\leq \sum_{x^n \in A_{\epsilon}^{(n)}} 2^{-n(H(P) + \epsilon)} \qquad \leq \sum_{x^n} 2^{-n(H(P) - \epsilon)} |A_{\epsilon}^{(n)}|$$

$$= 2^{-n(H(P) + \epsilon)} |A_{\epsilon}^{(n)}|$$

Usage in Information Theory

- Q: Minimum number of bits to represent $X_1, ..., X_n \sim P$, iid?
- ullet Technique: break up \mathcal{X}^n into typical and non-typical sequences, and order them
- If X^n is typical, its index requires no more than $n(H(P) + \epsilon) + 1$ bits. Prepend with 0.
- Otherwise, index requires no more than $n \log |\mathcal{X}| + 1$ bits. Prepend with 1.
- $\bullet \mathbb{E}[\mathcal{E}(X^n)] \le \Pr(A_{\epsilon}^{(n)})(n(H(P) + \epsilon) + 2) + \Pr(A_{\epsilon}^{(n)^{\complement}})(n \log |\mathcal{X}| + 2)$
- $\bullet \mathbb{E}[\ell(X^n)] \le n(H(P) + \epsilon) + \epsilon n \log |\mathcal{X}| + 2 = n(H(P) + \epsilon + \epsilon \log |\mathcal{X}| + \frac{2}{n})$
- $\forall \epsilon' > 0$, $\mathbb{E}\left[\frac{1}{n}\ell(X^n)\right] \leq H(P) + \epsilon'$ for n sufficiently large.

Non-product distributions

• Non-product distributions on \mathcal{X}^n may not satisfy AEP:

• Let
$$\mathcal{X}^n = \{0,1,2\}^n$$
. Define $Q_n(x^n) = \begin{cases} \frac{1}{2}2^{-n} & \text{if } x^n \text{ contains only 0s or 1s} \\ \frac{1}{2} \cdot \frac{1}{3^n - 2^n} & \text{o.w.} \end{cases}$

When
$$n$$
 is large, $Q_n(x^n) \approx \begin{cases} \frac{1}{2}2^{-n} & \text{if } x^n \text{ contains only 0s or 1s} \\ \frac{1}{2} \cdot \frac{1}{3^n} & \text{o.w.} \end{cases}$

• But
$$Q_n(\{x^n: Q_n(x^n) = 2^{-n+o(n)}\}) = Q_n(\{x^n: Q_n(x^n) = 3^{-n+o(n)}\}) = 1/2$$

ullet In general, ergodic distributions on \mathcal{X}^n satisfy the AEP

Other High Probability Sets on \mathcal{X}^n

- Consider $C_{\epsilon}(P^{\otimes n}) := \min\{|B| : B \subseteq \mathcal{X}^n, P^{\otimes n}(B) > 1 \epsilon\}$, the size of the smallest 1ϵ probability set under $P^{\otimes n}$.
- Fact: $C_{\epsilon}(P^{\otimes n}) = 2^{nH(P) + o(n)}$ for n sufficiently large.
- Remark: The smallest high probability set has the same size as the typical set, up to first order in the exponent.
- Proof: (UB) Choose sequence ϵ_n such that $P^{\otimes n}(A_{\epsilon_n}^{(n)}) \to 1$ as $n \to \infty$. For n large enough, $C_{\epsilon}(P^{\otimes n}) \leq |A_{\epsilon_n}^{(n)}(P)|$. But $1 \geq P^{\otimes n}(A_{\epsilon_n}^{(n)}(P)) = \sum_{x^n \in A_{\epsilon_n}^{(n)}(P)} P^{\otimes n}(x^n) \geq |A_{\epsilon_n}^{(n)}(P)| 2^{-nH(P) \epsilon_n n}$.

(LB): Similar argument.

DGMs

- Consider flow-based generative models
- Can sample from the data distribution *and* estimate densities
- Experiment: when trained on one distribution, can they detect OOD samples?
- Surprisingly, the likelihoods of OOD samples are higher than on in-distribution samples
 - But: the DGM never generates OOD samples

Fig. 2. Illustration of a normalizing flow model, transforming a simple distribution $p_{-}0(\mathbf{z}_{-}0)$ to a complex one $p_{-}K(\mathbf{z}_{-}K)$ step by step.

Data Set	Avg. Bits Per Dimension					
Glow Trained on CIFAR-10						
CIFAR10-Train	3.386					
CIFAR10-Test	3.464					
SVHN-Test	2.389					
Glow Trained on SVHN						
SVHN-Test	2.057					

Do Deep Generative Models Know What They Don't Know? *Nalisnick et.*

The Typical Set Hypothesis

- Conjecture: The failure of DGMs to detect OOD samples via likelihood estimates is due to typicality.
 - Recall: $A_{\epsilon}^{(n)}$ does not necessarily intersect with regions of the highest likelihood
 - Ex: Under $\mathcal{N}(0,\sigma^2)$, typical set concentrates on the sphere of radius $\sigma\sqrt{n}$.
 - But doesn't include regions around the mean.
- Idea: instead of comparing likelihoods, test
 OOD samples for typicality

Nalisnick et. al.., Detecting Out-of-Distribution Inputs to Deep Generative Models Using Typicality.

Testing for Typicality

- We have a trained DGM P_{θ} , trained from data $\{X_s\}_{s=1}^{S}$
- Want to determine if $\tilde{X}^M = \{\tilde{X}_1, ..., \tilde{X}_M\}$ is OOD from P_A
- Hypothesis test: $H_0: \tilde{X}^M \in A_{\epsilon}^{(M)}(P_{\theta})$ $H_1: \tilde{X}^M \notin A_{\epsilon}^{(M)}(P_{\theta})$

• to determine if
$$\tilde{X}^M$$
 came from P i.i.d., check if
$$\left| \frac{1}{M} \sum_{m=1}^M -\log P_{\theta}(\tilde{X}_i) - H(P_{\theta}) \right| < \epsilon, \text{ where } H(P_{\theta}) \text{ is estimated from samples, i.e.}$$

$$H(P_{\theta}) \approx -\frac{1}{S} \sum_{s=1}^S \log P_{\theta}(X_s)$$

$$H(P_{\theta}) \approx -\frac{1}{S} \sum_{s=1}^{S} \log P_{\theta}(X_s)$$

Bootstrap Test

Algorithm 1 A Bootstrap Test for Typicality

Input: Training data X, validation data X', trained model $p(\mathbf{x}; \boldsymbol{\theta})$, number of bootstrap samples K, significance level α , M-sized batch of possibly OOD inputs \widetilde{X} .

Offline prior to deployment

- 1. Compute $\hat{\mathbb{H}}^N[p(\mathbf{x}; \boldsymbol{\theta})] = \frac{-1}{N} \sum_{n=1}^N \log p(\boldsymbol{x}_n; \boldsymbol{\theta})$.
- 2. Sample K M-sized data sets from \mathbf{X}' using bootstrap resampling.
- **3. For all** $k \in [1, K]$:

Compute
$$\hat{\epsilon}_k = \left| \frac{-1}{M} \sum_{m=1}^M \log p(\boldsymbol{x}'_{k,m}; \boldsymbol{\theta}) - \hat{\mathbb{H}}^N[p(\mathbf{x}; \boldsymbol{\theta})] \right|$$
 (Equation 6)

4. Set
$$\epsilon_{\alpha}^{M} = \text{quantile}(F(\epsilon), \alpha)$$
 (e.g. $\alpha = .99$)

Online during deployment

If
$$\left| \frac{-1}{M} \sum_{m=1}^{M} \log p(\tilde{\boldsymbol{x}}_m) - \hat{\mathbb{H}}^N[p(\mathbf{x}; \boldsymbol{\theta})] \right| > \epsilon_{\alpha}^M$$
:

 \mathbf{Return} $\widetilde{\mathbf{X}}$ is out-of-distribution

Else:

 $oldsymbol{Return}$ $oldsymbol{\widetilde{X}}$ is in-distribution

Results

- SVHN, CIFAR-10, ImageNet
- Train DGM on one dataset, evaluate the other two as OOD
- ImageNet is toughest

Table 2: Natural Images: Fraction of M-Sized Batches Classified as OOD.

		$\mathbf{M} = 2$	O		M = 10		J	$\mathbf{M}=25$		
METHOD	SVHN	CIFAR-10	IMAGENET	SVHN	CIFAR-10	IMAGENET	SVHN	CIFAR-10	IMAGENET	
Glow Trained on SVHN										
Typicality Test	$0.01 \pm .00$	$0.98 \pm .00$	$1.00 \pm .00$	0.00±.00	$1.00 \pm .00$	$1.00 \pm .00$	0.02±.00	$1.00 \pm .00$	$1.00 \pm .00$	
t-Test	$0.00 \pm .00$	$0.95 \pm .00$	$1.00 \pm .00$	$0.04 \pm .00$	$1.00 \pm .00$	$1.00 \pm .00$	0.03±.00	$1.00 \pm .00$	$1.00 \pm .00$	
KS-Test	$0.00 \pm .00$	$0.00 \pm .00$	$0.00 \pm .00$	$0.08 \pm .00$	$1.00 \pm .00$	$1.00 \pm .00$	0.03±.00	$1.00 \pm .00$	$1.00 \pm .00$	
Annulus Method	$0.02{\scriptstyle\pm.01}$	$0.70 \pm .05$	$1.00 \pm .00$	$0.02 \pm .01$	$1.00 \pm .00$	$1.00 {\pm}.00$	0.00±.00	$1.00 {\pm}.00$	$1.00 \pm .00$	
Glow Trained on CIFAR-10										
Typicality Test	$0.42 \pm .09$	$0.01 \pm .01$	$0.64 \pm .04$	$1.00 \pm .00$	$0.01 \pm .01$	$1.00 \pm .00$	1.00±.00	$0.01 \pm .01$	$1.00 \pm .00$	
t-Test	$0.44 \pm .01$	$0.01 \pm .00$	$0.65 \pm .00$	$1.00 \pm .00$	$0.02 \pm .00$	$1.00 \pm .00$	1.00±.00	$0.02 \pm .00$	$1.00 \pm .00$	
KS-Test	$0.00 \pm .00$	$0.00 \pm .00$	$0.00 \pm .00$	$1.00 \pm .00$	$0.01 \pm .00$	$0.98 \pm .00$	1.00±.00	$0.01 \pm .00$	$1.00 \pm .00$	
Annulus Method	$0.09 {\pm}.03$	$0.02 \pm .00$	$0.87 {\scriptstyle \pm .05}$	$0.19 \pm .01$	$0.03 \pm .00$	$1.00 {\pm .00}$	$0.35 \pm .02$	$0.04 \pm .00$	$1.00 \pm .00$	
Glow Trained on ImageNet										
Typicality Test	$0.78 \pm .08$	$0.02 \pm .01$	$0.01 \pm .00$	1.00±.00	$0.20 \pm .06$	$0.01 \pm .01$	1.00±.00	$0.74 \pm .05$	0.01±.01	
t-Test	$0.76 \pm .00$	$0.02 \pm .00$	$0.01 \pm .00$	$1.00 \pm .00$	$0.18 \pm .01$	$0.01 \pm .00$	1.00±.00	$0.72 \pm .01$	$0.01 \pm .00$	
KS-Test	$0.00 \pm .00$	$0.00 \pm .00$	$0.00 \pm .00$	$1.00 \pm .00$	$0.29 \pm .01$	$0.01 \pm .00$	1.00±.00	$0.89 \pm .01$	$0.02 \pm .00$	
Annulus Method	$0.00 \pm .00$	$0.03 {\pm}.00$	$0.02 {\scriptstyle \pm .01}$	$0.02 \pm .02$	$0.15 {\scriptstyle \pm .04}$	$0.02 \pm .00$	$0.16 \pm .04$	$0.57 {\scriptstyle \pm .12}$	$0.02 {\pm}.00$	

Varying M

• Recall that typicality properties hold "for *M* sufficiently large"

Figure 4: Natural Image OOD Detection for Glow. The above plots show the fraction of M-sized batches rejected for three Glow models trained on SVHN, CIFAR-10, and ImageNet. The OOD distribution data sets are these three training sets as well as CIFAR-100.

Detractors

- Zhang, Lily, Mark Goldstein, and Rajesh Ranganath. "Understanding failures in out-of-distribution detection with deep generative models." ICML 2021.
 - Previous work is testing the model's typical set, not the data distribution's typical set —> model estimation errors
 - Mismatch typicality: What probability does $P^{\otimes n}$ assign to another distribution's typical set?
 - $\bullet P^{\otimes n}(A_{\epsilon}^{(n)}(Q)) \approx 2^{-nD_{KL}(P||Q)}$

Detractors (cont)

- Ambiguity of high probability sets
 - Recall: $C_{\epsilon}(P^{\otimes n}) := \min\{|B| : B \subseteq \mathcal{X}^n, P^{\otimes n}(B) > 1 \epsilon\} = 2^{nH(P) + o(n)}$
 - The *B* that achieved the min should include the highest likelihood sequence
 - There are other small sets containing most of the probability
 - No reason to prefer the typical set
 - (The "equipartition" property is also not really used)
- Instead: high likelihood samples that are never generated are due to model misestimation, not typicality.
 - Good DGMs are not sufficient for good OOD detection

Conclusion

- Typical sets absorb most of the probability, but are small relative to the size of the entire space
- Typical sets don't always align with regions of high likelihood
- DGMs fail to detect OOD using likelihood, but somewhat work with typicality
- But there are still potential flaws: model misestimation and arbitrariness of typical sets

Alternative Idea Using Compressors

- E. Sabeti, A. Host-Madsen, "Data Discovery and Anomaly Detection Using Atypicality: Theory".
- Suppose you have access to a text compressor, e.g. ZIP
- You have a "training" string $x^n \sim P^{\otimes n}$. Compress it using ZIP, achieving an length $\bar{\ell} = \frac{1}{n} \ell(x^n)$.
- To see if a new string y^m is OOD, append it to x^n and compress using ZIP. If $y^m \sim P^{\otimes m}$, then $\frac{1}{n+m} \ell(x^n y^m) \approx \bar{\ell}$.

Other Limitations

- $P^{\otimes n}$ is approximately uniform
- Says that x^n , y^n cannot have probability under $P^{\otimes n}$ that differ exponentially in n, but nothing more.
- Fact: The r.v. $P^{\otimes n}(X^n)$ exhibits fluctuations exponential in \sqrt{n} .