

Part 4: Calculus of Variations

W8C1 Lecture 12 (Feb 25)

4.1 Variational Problems

Consider the minimization of

$$J[y] = \int_a^b F(x,y,y') \, dx$$

among all functions y(x) on [a,b] with some BC $y(a)=y_a$, $y(b)=y_b$.

Here, F(x,y,z) is a continuous function of three variables $x\in [a,b], y,z\in \mathbb{R}.$

Poly Def. A function of functions (or curves) such as J[y] is called a functional.

Ex 1.

a)
$$J[y] = \int_a^b (y'(x))^2 \, dx \implies F(x,y,z) = z^2$$

b)
$$J[y]=\int_a^b\sqrt{1+(y'(x))^2}\,dx\implies F(x,y,z)=\sqrt{1+z^2}$$

Ex 2.

Let $A(a, y_a)$ and $B(b, y_b)$ be two fixed points. Find the curve joining A and B that:

a) has the shortest length

We consider the minimization $\min \int_a^b \sqrt{1+y'(x)^2} \, dx$

The answer is a

straight line.

b) it takes the shortest time for a particle to slide down the curve under the influence of gravity.

The curve is called a brachistochrone, Greek for shortest time.

Ex 3. (Isoperimetric problem).

Among all closed curves of a given length l_i , the curve enclosing the greatest area is a circle.

Define
$$\vec{r}(s) = (x(s), y(s))$$
 with $0 \le s \le l$.

Impose
$$|\vec{r}'(s)| = 1$$
 and $\vec{r}(0) = \vec{r}(l)$.

The area is
$$\int_0^l \frac{1}{2} (x(s) \frac{dy}{ds} - y(s) \frac{dx}{ds}) \, ds$$

We want to maximize area subject to the constraints:

•
$$x,y:[0,l]\mapsto \mathbb{R}$$

•
$$x'(s)^2 + y'(s)^2 = 1$$
 for all s .

$$J = \int_0^l F(s,x,y,x',y') \, ds = \int_0^l F(s,ec{r},ec{r}') \, dx$$

where
$$ec{r},ec{r}'\in\mathbb{R}^2$$
 and $F=rac{1}{2}(xy'-yx').$

4.2 Function Spaces

To talk about continuity of J[y], we need a space for y(x) with distance. It is usually a subset of a normed linear space $(Y, \|\cdot\|)$. It is only a subset since we have boundary conditions, etc.

A norm satisfies:

1.
$$||y|| = 0 \iff y = 0$$

2.
$$\|\alpha y\| = |\alpha| \cdot \|y\|$$
 for $\alpha \in \mathbb{R}, y \in Y$

3.
$$||x+y|| \le ||x|| + ||y||$$

a)
$$Y=\mathbb{R}^n, \|y\|=egin{cases} \sqrt{y_1^2+\cdots+y_n^2}\ |y_1|+\cdots+|y_n|\ \max_{1\leq j\leq n}|y_j| \end{cases}$$

b)
$$C^0([a,b])=\{ ext{continuous functions on } [a,b]\}$$

For
$$k \in \mathbb{N}_0$$
,

$$C^k([a,b]) = \{y: y, y^1, \dots, y^{(k)} \in C^0([a,b])\}$$

It has a norm:

$$\|y\|_{C^k([a,b])} = \sum_{i=0}^k \max_{a \leq x \leq b} |y^{(j)}(x)|$$

 $extcolor{}{m{y}}$ **Def.** The functional J[y] defined in a normed space Y is said to be <u>continuous</u> at the point $\hat{y} \in Y$ if for any $\varepsilon>0$, there is a $\delta>0$ such that $|J[y]-J[\hat{y}]|<\varepsilon$ if $\|y-\hat{y}\|<\delta.$

Ex 5. The functional $J[y]=\int_0^1(y')^2(x)\,dx$ is not continuous at $\hat{y}=0$ in $Y=C^0([0,1])$ because $\|y-\hat{y}\|_{C^0}\leq \delta$ does not imply J[y] is defined. It is however continuous in $y\in C^1([0,1])$:

Fix $\hat{y} \in Y$ and let $A = \|\hat{y}\|_{C^1}$. If both $y, \hat{y} \in C^1([0,1])$ and $\|y - \hat{y}\|_{C^1} \leq \delta$, then $\|y\|_{C^1} \le \|\hat{y}\|_{C^1} + \|y - \hat{y}\|_{C^1} \le A + \delta.$ $|J[y] - J[\hat{y}]|| = |\int_0^1 y'^2 - \hat{y}'^2(x) \, dx|$ $\leq \int_0^1 |y'-\hat{y}|\cdot |y'+\hat{y}'|\,dx$ $\leq \int_0^1 \delta(A+\delta+A) \, dx$ $=(2A+\delta)\delta<arepsilon$

if $\delta \leq 1$ and $\delta \leq \frac{\varepsilon}{2A+1}$.

W8C2 Lecture 13 (Feb 27)

4.3 The Variation of a Functional

 $m{y}$ **Def.** A functional J[y] on a normed linear space Y is a <u>linear functional</u> if

- $J[\alpha y] = \alpha Y[j], \quad \forall \alpha \in \mathbb{R}, \quad \forall y \in Y$
- $J[y_1 + y_2] = J[y_1] + J[y_2]$
- J[y] is continuous

Ex 6. Examples of linear functionals:

- a) $J[y]=y(rac{1}{2})$ for $y\in C^0([0,1])$
- b) $J[y]=\int_a^b y(x)\,dx$ for $y\in C^0([a,b])$
- c) $J[y]=\int_a^b lpha(x)y(x)\,dx$ for $y\in C^0([a,b])$, where lpha(x) is fixed in $C^0([a,b])$
- d) $J[y]=\int_a^b [lpha_0(x)y(x)+lpha_1(x)y'(x)+\cdots+lpha_ky^{(k)}(x)]\,dx$ where $lpha_j\in C^0([a,b])$ is a linear functional on $C^k([a,b])$, for $j=0,\ldots,k$

Lemma 1. Let $\alpha(x)$ be continuous in [a,b].

a) If $\int_a^b lpha(x)h(x)\,dx=0$ for every $h(x)\in C^0([a,b])$ with h(a)=h(b)=0, then lpha(x)=0 in

b) If $\int_a^b lpha(x)h'(x)\,dx=0$ for every $h(x)\in C^1([a,b])$ with h(a)=h(b)=0, then $lpha(x)=\mathrm{const}$ in [a,b].

Proof of a):

Suppose $\alpha(x)>0$ somewhere. Then $\alpha(x)>0$ in some $[c,d]\subset [a,b]$.

Let
$$h(x) = egin{cases} (x-c)(d-x) & c \leq x \leq d \\ 0 & ext{elsewhere} \end{cases}$$

It satisfies the conditions $\int_a^b \alpha(x)h(x)\,dx = \int_c^d \alpha(x)(x-c)(d-x)\,dx > 0.$

This contradiction shows that $\alpha(x) \leq 0$ for all x. Similarly, $\alpha(x) \geq 0$ for all x.

Proof of b):

Let
$$k=rac{1}{b-a}\int_a^b lpha(x)\,dx$$
 and $h(x)=\int_a^x [lpha(\zeta)-k]\,d\zeta.$

Then
$$h(x) \in C^1([a,b])$$
 and $h(a) = 0 = h(b)$.

$$\int_a^b (lpha(x)-k)h'(x)\,dx=\int_a^b (lpha(x)-k)^2\,dx\geq 0$$

But also
$$\int_a^b (\alpha(x)-k)h'(x)\,dx=\int_a^b \alpha(x)h'(x)\,dx-k[h]_a^b=0-0=0$$

Hence we must have $\alpha(x) = k$ for all x.

Lemma 2. If $\alpha(x)$ and $\beta(x)$ are continuous in [a,b], and if

$$\int_a^b [\alpha(x)h(x) + \beta(x)h'(x)] dx = 0$$

for every $h \in C^1([a,b])$ with h(a) = h(b) = 0, then $\beta(x)$ is differentiable and $\beta'(x) = \alpha(x)$ for all $x \in [a,b]$.

Remarks:

i) $\beta \in C^1$ is a conclusion, not an assumption.

ii) For intuition, we can assume $\beta\in C^1$, then by IBP, $\int_a^b(lpha(x)-eta'(x))h(x)\,dx=0$ for all h. By Lemma 1(a), $\alpha(x) - \beta'(x) = 0.$

Proof:

Let
$$A(x)=\int_a^x lpha(\zeta)\,d\zeta$$
. By IBP, $\int_a^b lpha(x)h(x)\,dx=-\int_a^b A(x)h'(x)\,dx.$

Thus,
$$\int_a^b [eta(x)-A(x)]h'(x)\,dx=0$$
 for all $h.$

By Lemma 1(b), $\beta(x)-A(x)=\mathrm{const}$, then by the definition of A, $\beta'=lpha$.

For a functional J[y], consider its increment:

$$\Delta J[y] = J[y+h] - J[y]$$

corresponding to a perturbation h(x) of y(x).

Solution Def. If there is a linear functional arphi[y] such that

$$\Delta J[h] = \varphi[h] + \varepsilon \|h\|$$

where $\varepsilon(h) o 0$ as $\|h\| o 0$, we say that J[y] is differentiable at y and denote $\varphi[h] = \delta J[h]$ as the principle linear part, also called the variation or differential of J[y] at y.

Remarks:

- i) It is unique if it exists
- ii) To specify y, it is also denoted as $\delta J[y;h].$

Ex 7. Let $Y=\mathbb{R}^2, f\in C^1(\mathbb{R}^2)$ and J[y]=f(y) for $y=(y_1,y_2).$

For small $h = (h_1, h_2)$,

$$\Delta J[h] = f(y+h) - f(y) = f_{y_1}(y)h_1 + f_{y_2}(y)h_2 + ext{error}$$

by a Taylor expansion. Thus,

$$\delta J[h] = f_{y_1}(y)h_1 + f_{y_2}(y)h_2.$$

Thm 1. A necessary condition for a differentiable function J[y] to have an extrema at $y=\hat{y}$ is that its variation vanishes at $y = \hat{y}$.

$$\delta J[h]=0$$
 for $y=\hat{y}$ and all admissible $h.$

Remarks:

- i) In Calc 1, if f(x) attains extrema at $x=x_0$, then $f'(x_0)=0$
- ii) We may consider a minimum by considering $\tilde{J}[y] = -J[y]$ if necessary.
- iii) h is not arbitrary. For example, if $Y=C^1([a,b])$ and we want y and \hat{y} to have the same BC, then we need h(a) = 0 = h(b). Which h is admissible depends on each problem.

Proof:

Suppose \hat{y} minimizes J[y]. By definition, at \hat{y}_i

$$\Delta J[h] = \delta J[h] + arepsilon \|h\|$$
 where $arepsilon o 0$ as $\|h\| o 0$.

Suppose $\delta J[h_0] \neq 0$ for some h_0 .

Then
$$\Delta J[lpha h_0] = \delta J[lpha h_0] + arepsilon \|lpha h_0\|$$
 (\bigstar)

For sufficiently small $\alpha \in \mathbb{R}$, $|\alpha| < \alpha_1$, we have $|\varepsilon| |\alpha h_0| || < \frac{1}{2} |\delta J[\alpha h_0]|$.

So the RHS of (\star) has the same sign as $\alpha \delta J[h_0]$ which can be + or - depending on the sign of α .

However, LHS ≥ 0 for all $\alpha \in (-\alpha_1, \alpha_1)$ since \hat{y} is a minimizer.

This contradiction shows that $\delta J[h]=0$ for all h.

W9C1 Lecture 14 (Mar 4)

4.4 Euler-Lagrange Equations

1) Consider the special case again: look for minimization of $J[y]=\int_a^b F(x,y(x),y'(x))\,dx$ among all functions y(x) in the admissible class.

2)
$$\mathcal{A} = \{y \in C^1([a,b]), y(a) = y_a, y(b) = y_b\}$$

We require $y \in C^1$ so that J[y] is defined.

Consider **(T1)** for (1)-(2): we need to compute the variation δJ .

Suppose we give $y(x) \in \mathcal{A}$ an increment h(x).

Since $y,y+h\in\mathcal{A}_t$ we must have $h\in C^1([a,b])$ and h(a)=h(b)=0. Then:

$$egin{aligned} \Delta J &= \int_a^b [F(x,y+h,y'+h') - F(x,y,y')] \, dx \ &= \int_a^b [F_y(x,y,y') + F_z(x,y,y')h' + ext{error}] \, dx &= \delta J[h] + ext{error} \end{aligned}$$

where we have used a Taylor expansion for small h.

By **(T1)**, a necessary condition for y(x) to be an extrema is:

$$\delta J[y;h] = \int_a^b [F_u(\cdots)h + F_z(\cdots)h'] dx$$
 for all admissible h .

By **(L2)**,
$$F_z(x,y,y')$$
 is C^1 and $rac{d}{dx}F_z(x,y,y')=F_y.$

igsquare Thm 2. Let J[y] be defined for $y\in \mathcal{A}$ as in (1) and (2). A necessary condition for y(x) to be an extrema is that y(x) satisfies the Euler-Lagrange equation:

$$F_y(x,y,y')-rac{d}{dx}F_z(x,y(x),y'(x))=0$$
 (Eq. 3)

Note that $\frac{d}{dx}$ is a total derivative, and the expanded form of (3) is

$$F_y-F_{zx}-F_{zy}y^{\prime}-F_{zz}y^{\prime\prime}=0$$
 (Eq. 4)

This is a 2nd order DE, linear in y, nonlinear in y, y.

Ex 8. Minimize arclength in Ex 2a): $J[y] = \int_a^b \sqrt{1 + (y'(x))^2} \, dx$

$$F(x,y,z) = \sqrt{1+z^2}$$

$$F_{y} = 0, F_{zx} = 0, F_{zy} = 0$$

$$F_z = rac{z}{\sqrt{1+z^2}}$$

$$F_{zz} = rac{1}{\sqrt{1+z^2}} + rac{-rac{1}{2}z}{(1+z^2)^{3/2}} \cdot 2z = rac{1+z^2-z^2}{(1+z^2)^{3/2}} = rac{1}{(1+z^2)^{3/2}}$$

By E-L (4), we have

$$-rac{1}{(1+y')^{3/2}}y''=0 \implies y''=0 \implies y(x)=mx+k$$

Hence, the straight line is the only candidate for a minimizer (need to check that it is a minimizer separately) because E-L equations are a necessary condition.

Existence problem of minimizers:

(T2) says a minimizer satisfies E-L equation, with given BC. However, it may have no solution in \mathbb{C}^2 . Otherwise, y" will be discontinuous, and the solution will satisfy E-L equation as distributions (out of scope of

MATH 401).

In MATH 215/255, we studied IVPs for the same equation with IC

$$egin{cases} y(a) = y_0 \ y'(a) = y_1 \end{cases}$$

at same point. We have a solution y(x) for $a - \delta < x < a + \delta$ for some δ .

Ex 9. Minimize $J[y] = \int_{-1}^{1} y^2 (2x - y')^2 dx$ among $y \in C^1, y(-1) = 0, y(1) = 1$.

Clearly, $J[y] \geq 0$, and in particular $\min J[y] = 0$ attained by:

$$y(x) = egin{cases} 0 & -1 \leq x \leq 0 \ x^2 & 0 \leq x \leq 1 \end{cases}$$
 which satisfies the required conditions.

Note that $y, y' \in C^0$ but y'' does not exist at x = 0.

If we examine the E-L equation:

$$F(x,y,z) = y^2(2x-z)^2$$

$$F_y = 2y(2x-z)^2$$

$$F_z = -2y^2(2x-z)$$

both of which equal zero. So the E-L equation is empty/degenerate.

Remark: minimizer may not be in C^2 . We need $F_{zz} \neq 0$, where F_{zz} is the coefficient of y'' in (4).

Thm 3. Suppose $F(x,y,z)\in C^2$, and $y(x)\in C^1$ solves the E-L equation

$$F_y - rac{d}{dx}[F_z(x,y,y')] = 0$$

Then $y(x) \in C^2$ at x where $F_{zz}(x,y,y') \neq 0$.

Idea: by (4),

$$y^{\prime\prime}=rac{1}{F_{z}z}(F_{y}-F_{zx}-F_{zy}y^{\prime})$$

Check that the limit $\frac{\Delta y'(x)}{\Delta x}$ exists and equals the RHS. Then y'' exists and is C^0 .

Special Cases:

1. $F = F(x,y'), F_y = 0$. E-L equations $\Rightarrow 0 - \frac{d}{dx}(F_z(x,y,y')) = 0 \implies F_z(x,y,y') = c$.

First order equation and we call it first integral (order reduction).

2. $F = F(y, y'), F_x = 0$. E-L equation $\Rightarrow F_y - 0 - F_{zy}y' - F_{zz}y'' = 0$.

Multiply by y' and integrate:

$$egin{aligned} F_y y' - F_{zy} (y')^2 - F_{zz} y' y'' &\iff F_y y' + F_z y'' - y'' F_z - y' (F_{zy} y' + F_{zz} y'') \ &\iff rac{d}{dx} (F(y,y') - y' F_z (y,y')) = 0 \end{aligned}$$

This is also first integral, F-y' $F_z={
m const.}$ (Relates to classical mechanics, where x is time)

3. $F=F(x,y), F_z=0$. E-L equation $\Rightarrow F_y(x,y)=0$, which is an algebraic equation.

$$\begin{array}{l} \text{4. } F(x,y,z) = f(x,y)\sqrt{1+z^2}. \\ \text{Let } A = \sqrt{1+z^2}, A' = \frac{z}{A}, A'' = \frac{1}{A^3}. \\ F_y - \frac{d}{dx}F_z = f_yA - \frac{d}{dx}(f\frac{y'}{A}) \\ = f_yA - f_x\frac{y'}{A} - f_yy' \cdot \frac{y'}{A} - f(\frac{y''}{A} - \frac{y'}{A^2} \cdot \underbrace{\frac{y'}{A} \cdot y''}_{\frac{dA}{dz}\frac{dz}{dz}}) \\ = f_yA - f_x\frac{y'}{A} - f_y\frac{y'^2}{A} - f\frac{y''}{A^3} \\ = \frac{1}{A}[f_y(1+y'^2) - f_xy' - f_yy'^2 - \frac{fy''}{1+y'^2}] \end{array}$$

Hence, $f_y-f_xy'-rac{fy''}{1+y'^2}=0.$

Comparing with (4): still second order, linear in y", nonlinear in y, y'. Not obviously easier.

Part 4: Calculus of Variations

8

$$igcap {f Ex}$$
 Ex 10. Minimize $J[y]=\int_1^2rac{\sqrt{1+y'^2}}{x}\,dx$, $y(1)=0,y(2)=1.$

This satisfies both case 1 and case 4. Case 1 is first order and easier, so use that.

 $F_z = c$ for some constant.

$$rac{y'}{x\sqrt{1+y'^2}} = c \implies y'^2 = c^2 x^2 (1+y'^2) \implies (1-c^2 x^2) y'^2 = c^2 x^2$$

$$y' = \frac{cx}{\sqrt{1 - c^2 x^2}}.$$

$$y = \int rac{cx \, dx}{\sqrt{1 - c^2 x^2}} = rac{1}{c} \sqrt{1 - c^2 x^2} + c_1 \implies (y - c_1)^2 = rac{1}{c^2} - x^2$$

This is a circle with center $(0, c_1)$ with radius $\frac{1}{c}$.

Plugging in boundary conditions, we get $c_1=2$, $\frac{1}{c^2}=5$.

Alternatively, we can use case 4 with

$$f(x,y) = \frac{1}{x}$$
.

$$f_y-f_xy'-rac{f}{1+z^2}y''=0$$

$$0 + \frac{1}{x^2}y' - \frac{1}{x(1+y'^2)}y'' = 0$$

$$y''=rac{1}{x}y'(1+y'^2)$$

We have z=y' and $y''=\frac{dz}{dx}$.

$$rac{dz}{dx} = rac{1}{x}z(1+z^2) \implies rac{dz}{z(1+z^2)} = rac{dx}{x}$$

$$\ln x = \int rac{1}{x} \, dx = \int rac{dz}{z(1+z^2)} = \int (rac{1}{z} - rac{z}{z^2+1}) \, dz = \ln z - rac{1}{2} \ln(z^2+1) + C$$

Hence $cx=rac{z}{\sqrt{z^2+1}}=rac{y^{,}}{\sqrt{y^{,2}+1}}$, and we are back to the beginning of case 1.

Remark: Case 4 is useful when it is not also case 1 or 2 which is 1st integral. It is the case when $F(x,y,z)=f(x,y)\sqrt{1+z^2}$ and f(x,y) depends on both x and y, such as F(x,y,z)= $xy\sqrt{1+z^2}$.

W9C2 Midterm (Mar 7)

Midterm in class.

W10C1 Lecture 15 (Mar 11)

Ex 11. $J[y]=2\pi\int_a^b y\sqrt{1+y'^2}\,dx$ with $y(a)=y_0,y(b)=y_1$ is the area of the surface of revolution by rotating y=y(x) about the x-axis.

It is case 2 and 4. Using case 2:

 $F_x=0$, we have the first integral equation $F-y{}^{{}^{{}^{{}^{{}}}}}\!F_z=c.$

$$y\sqrt{1+y^{'2}}-y^{'}\cdot yrac{y^{'}}{\sqrt{1+y^{'2}}}=c$$
 $y=c\sqrt{1+y^{'2}}$ $y^{'}=rac{\pm\sqrt{y^{2}-c^{2}}}{c}$

We can drop the \pm by changing the sign of C:

$$egin{aligned} dx &= rac{c\,dy}{\sqrt{y^2-c^2}} \ x-c_1 &= c\lnrac{y+\sqrt{y^2-C^2}}{C} \ y &= c\coshrac{x-c_1}{c}. \end{aligned}$$

The resulting curve is called a catenary, and the surface is called a catenoid.

With the boundary conditions $y(a)=y_0$ and $y(b)=y_1$, we get:

$$\cosh \frac{a-c_1}{c} = \frac{y_0}{c} \text{ and } \cosh \frac{b-c_1}{c} = \frac{y_1}{c}.$$

We have two equations with two unknowns (c and c_1). There are three possibilities:

- 1. exactly one single solution
- 2. (at least) two solutions, only one of them is the area minimizer
- 3. no solution

Consider the symmetric case for illustration:

$$a=-1,b=1,y_0=y_1$$
: then $c_1=0$ and $c=rac{1}{k}>0$.

$$y=rac{1}{k}\cosh kx$$
 and $y_0=y_1=rac{1}{k}\cosh k.$

Let
$$g(k) = \frac{1}{k} \cosh k$$
.

 $y_* = \min g(k)$ occurs at:

$$rac{dg}{dk} = rac{1}{k^2} (k \sinh k - \cosh k) = 0 \implies k anh k = 1 \implies k_* = 1.1997$$

Then $y_{st}=1.51.$ We summarize as:

$$egin{cases} y_0 = y_* & ext{one solution } k \ y_0 > y_* & ext{two solutions} \ y_0 < y_* & ext{none} \end{cases}$$

In fact, when $|y_0|+|y_1|\ll b-a$, we get a degenerate surface:

Ex 12. Consider $J[y] = \int_a^b (x-y)^2 \, dx$.

This is case 3, and we have the equation $F_y(x-y)=0$.

We have $2(x-y)=0 \implies y(x)=x$. However, we cannot impose boundary conditions.

Ex 13. (Brachistochrone problem).

Find the curve that allows for the shortest time to travel from A to B under gravity with zero initial speed and no friction.

Let's choose coordinates so that A is at the origin. Point the y-axis downwards so that $y(x) \geq 0$.

Define C as the curve: $y = y(x), y(0) = 0, y(x_1) = y_1$.

We seek to minimize time $T=\int_C dt=\int_C rac{ds}{v}$, where s is the arclength and $ds=\sqrt{1+y'^2}\,dx$.

The speed is $v=\frac{ds}{dt}$ and has the condition v=0 at A.

To find v, we use conservation of energy: total energy = KE + PE.

 $E_0=rac{1}{2}mv^2-mgy$ (note the negative sign on mgy because y is pointing downwards)

Hence, $v=\sqrt{2gy}.$ Let's define J[y] (with a factor of $\sqrt{2g}$ for convenience) as:

$$J[y] = \sqrt{2g} \int_C rac{ds}{V} = \int_C rac{ds}{\sqrt{y}} = \int_0^b \sqrt{rac{1+y'^2}{y}} \, dx$$

So
$$F(x,y,z)=\sqrt{rac{1+z^2}{y}}$$
 and $F_x=0.$

This is case 2 and 4. Using the first integral equation for case 2:

$$F-y^{\prime}F_z=c$$

$$egin{align} \sqrt{rac{1+y'^2}{y}} - y' rac{y'}{\sqrt{y}\sqrt{1+y'^2}} &= c \ (1+y'^2) - y'^2 &= c\sqrt{y}\sqrt{1+y'^2} \ \sqrt{y}\sqrt{1+y'^2} &= rac{1}{c} > 0 \ \end{array}$$

$$y(1+y'^2)=k ext{ where } k=rac{1}{c^2}>0$$

Hence,
$$y'^2=rac{k}{y}-1=rac{k-y}{y}\implies rac{dy}{dx}=\pm\sqrt{rac{k-y}{y}}\implies \pm dx=\sqrt{rac{y}{k-y}}\,dy$$

Let
$$k-y=kw^2$$
 , so $y=k-kw^2=k(1-w^2)$ and $dy=-2kw\,dw$.

$$\pm dx = \sqrt{rac{k(1-w^2)}{kw^2}}(-2kw\,dw) = -2k\sqrt{1-w^2}\,dw.$$

Let $w = \cos t$, so $dw = -\sin t \, dt$.

$$\pm dx = 2k\sin t \cdot \sin t \, dt = k(1-\cos 2t) \, dt$$

Integrating, we get $\pm x = k(t - \frac{1}{2}\sin 2t)$. Now let $2t = \theta$ and $\frac{k}{2} = R$.

 $+x=R(heta-\sin heta)+x_0$, where we have chosen the positive sign so that $rac{dx}{d heta}=y\geq 0$.

From previously, we have:

$$y=k-kw^2=k-k\cos^2rac{ heta}{2}=k-rac{k}{2}(\cos heta+1)=R(1-\cos heta)$$

Hence,
$$(x,y) = \vec{r}(heta) = \left(R(heta - \sin heta) + x_0, R(1 - \cos heta)
ight)$$

For the boundary conditions, we have, for some $\theta_0 < \theta_1$:

$$A=(x(heta_0),y(heta_0))=(0,0)$$

$$B=(x(\theta_1),y(\theta_1))=(x_1,y_1)$$

Hence
$$y(heta_0)=0 \implies 1-\cos heta_0=0 \implies heta_0=0$$

We also have $x_0 = x(0) = 0$.

The trajectory becomes $\vec{r}(\theta) = R((\theta,1) - (\sin\theta,\cos\theta))$.

This is the trajectory of a spot on a rolling wheel.

AB has slope $rac{y_1}{x_1}=m(heta)=rac{y(heta)}{x(heta)}\in (0,\infty).$

For each $m\in(0,\infty)$, there is a unique $heta_1$ such that $rac{y_1}{x_1}=m(heta_1).$

After θ_1 is found, we can solve for R.

W10C2 Lecture 16 (Mar 13)

4.5 Functions of Several Variables

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain, n=2,3. Consider the minimization problem of:

$$J[y]=\int_{\Omega}F(x,u,
abla u)\,dx$$
, among $\{u:\Omega o\mathbb{R},u\in C^2,u|_{\partial\Omega}=g\}$

where the Lagrangian is:

$$F(x,y,p):\Omega imes\mathbb{R} imes\mathbb{R}^n o\mathbb{R}$$
, and $x=(x_1,\dots x_n)\in\Omega, p=(p_1,\dots,p_n)$

Ex 14. Let $\Omega=\mathbb{R}^3$, and consider $J[y]=\int_\Omega(rac12|
abla u|^2+q(x)u(x))\,dx$, where $u\in C^1(\overline\Omega)$ and

We have $F(x,u,p)=rac{1}{2}|p|^2+q(x)u.$

The necessary condition **Thm 1** that $\delta J[u;h]=0 \, \forall \, h$ is still valid, but **Thm 2** (Euler-Lagrange equation) only applies to $x \in \mathbb{R}$ and needs modification.

Lemma 3. Let $x\in\Omega\subset\mathbb{R}^n$. If $lpha(x)\in C(\overline\Omega)$ and $\int_\Omegalpha(x)h(x)\,dx=0$ for all $h\in C^2(\overline\Omega)$ with $h|_{\partial\Omega}=0$, then lpha(x)=0 in Ω .

Proof:

Suppose $lpha(x_0)>0$ for some $x_0\in\Omega.$ Then lpha(x)>0 in some ball with radius arepsilon>0

$$B_arepsilon(x_0): |x-x_0|$$

Let
$$h(x) = egin{cases} (arepsilon^2 - |x - x_0|^2)^3 & |x - x_0| < arepsilon \ 0 & ext{else} \end{cases}$$

Then $\int_{\Omega} lpha h \, dx = \int_{B_{arepsilon}(x_0)} lpha h \, dx > 0.$

This contradiction shows that $\alpha(x) \leq 0$. Likewise, we can show that $\alpha(x) \geq 0$, so $\alpha(x) = 0$.

Derivation of Euler-Lagrange Equation

To compute the variation $\delta J[u;h]$, let $h(x)\in C^2(\overline{\Omega})$ with $h|_{\partial\Omega}=0$.

$$\Delta J = J[u+h] - J[u] = \int_{\Omega} [F(x,u+h,
abla u+
abla h) - F(x,u,
abla u)] \, dx.$$

By a Taylor expansion, we have:

$$\Delta J = \int_{\Omega} [F_u h + F_{p_1} \partial_1 h + \dots + F_{p_n} \partial_n h] \, dx + \int_{\Omega} (\text{higher order terms}) \, dx$$

Hence,
$$\delta J[h] = \int_{\Omega} [F_u h + \sum_{k=1}^n F_{p_k} \partial_k h] \, dx.$$

To remove the ∂_k on h, perform IBP by using the divergence theorem:

$$egin{aligned} \delta J[y] &= \int_{\Omega} [F_u h + \sum_{k=1}^n \partial_{x_k} (F_{p_k} h) - \sum_{k=1}^n (\partial_{x_k} F_{p_k}) h] \, dx \ &= \int_{\Omega} [F_u - \sum_{k=1}^n \partial_{x_k} F_{p_k}] h \, dx + \int_{\partial\Omega} \hat{p}_{k} F_{p_k} h \, dS \end{aligned}$$

where \hat{n} is the unit outer normal and the second integral vanishes because h=0 on the boundary.

We recover the Euler-Lagrange equation for higher dimensions:

$$F_u - \sum_{k=1}^n \partial_{x_k}(F_{p_k}(x,u,
abla u)) = 0.$$

P

Ex 14. (Revisit) Let $\Omega=\mathbb{R}^3$, and consider $J[y]=\int_\Omega(rac12|
abla u|^2+q(x)u(x))\,dx$, where $u\in C^1(\overline\Omega)$ and $u|_{\partial\Omega}=g$.

We have $F(x,u,p)=rac{1}{2}|p|^2+q(x)u.$

We have $F_u=q(x)$ And $F_{p_k}=p_k.$

The Euler-Lagrange equation becomes:

 $0=q(x)-\sum_{k=1}^3\partial_k(\partial_k u)=q(x)-\Delta u$ (we recover Laplace's equation)

Ex 15. (minimal surface problem)

The surface area of a membrane $u(x,y):\Omega \to \mathbb{R}, \quad \Omega \subset \mathbb{R}^2$ is given by:

$$J[u]=\int_\Omega \sqrt{1+u_x^2+u_y^2}\,dx\,dy.$$

We want to minimize J[y] subject to the given boundary height: $u|_{\partial\Omega}=g.$

The E-L equation gives:

$$egin{align*} F_u - \partial_x F_{p_1} - \partial_y F_{p_2} &= 0. \ 0 &= -0 + \partial_x \Big(rac{u_x}{\sqrt{1 + u_x^2 + u_y^2}} \Big) + \partial_y \Big(rac{u_y}{\sqrt{1 + u_x^2 + u_y^2}} \Big) \ &= rac{u_{xx}}{\sqrt{}} - rac{u_x}{2\sqrt{}^3} \cdot 2(u_x u_{xx} + u_y u_{yx}) + rac{u_{yy}}{\sqrt{}} - rac{u_y}{2\sqrt{}^3} \cdot 2(u_x u_{xy} + u_y u_{yy}) \ &= rac{1}{\sqrt{}^3} \left(rac{u_{xx}(1 + u_x^2 + u_y^2 - u_x^2)}{+ u_{xy}(-u_x u_y - u_y u_x)} \right) \ &+ u_{yy}(1 + u_x^2 + u_y^2 - u_y^2) \end{pmatrix}$$

Our resulting PDE is:

$$(1+u_y^2)u_{xx}-2u_xu_yu_{xy}+(1+u_x^2)u_{yy}=0.$$

Geometric meaning (MATH 424):

$$H=rac{1}{2}(\kappa_1+\kappa_2)=rac{(1+u_y^2)u_xx-2u_xu_yu_{xy}+(1+u_x^2)u_{yy}}{\sqrt{1+u_x^2+u_y^2}}$$
 is the mean curvature.

For the surface, the intersection curve with any normal plane has curvature $\kappa_1 = \max \kappa$ and $\kappa_2 = \min \kappa$.

A surface with zero mean curvature H=0 is called a minimal surface.

4.6 Variable Endpoint Problems

We want to minimize $J[y]=\int_a^b F(x,y,y')\,dx$ among $y\in C^1([a,b])$ without imposing boundary conditions.

In other words, the end points are allowed to slide up and down, and we now have a larger admissible set of y(x).

An admissible increment h satisfies: $h \in C^1([a,b])$, and there are no boundary conditions for h.

As before, the principle linear part for ΔJ is:

$$\delta J[h] = \int_a^b (F_y h + F_z h') \, dx.$$

However, we gain boundary terms by IBP:

$$\delta J[h] = \int_a^b (F_y - rac{d}{dx}F_z)h(x)\,dx + [F_z h]_{x=a}^b$$

If y is an extrema, then $\delta J=0$. In particular, $\delta J[h]=0$ for all $h\in C^1([a,b])$ with h(a)=h(b)=0 (a subset of admissible h).

Hence, y(x) still satisfies the Euler-Lagrange equation: $F_y - rac{d}{dx} F_z(x,y,y') = 0.$

Hence for all $h \in C^1([a,b])$, we have $0 = [F_z h]_{x=a}^b = F_z h|_{x=b} - F_z h|_{x=a}$

Since h(a) and h(b) are arbitrary, we get $F_z|_{x=a}=0$ and $F_z|_{x=b}=0$. These are the new boundary conditions for y(x).

Mixed Case Boundary Conditions

We can also consider a mixed case: where one end is fixed (say at x=a) and the other end is variable.

Then the boundary condition is $y(a)=y_a, F_z(b,y(b),y'(b))=0$ >

Ex 16. (Brachistochrone variant): we fix the point A but allow B on a line $x=x_1$.

We want to find B and the curve with least time: $J[y]=\int_0^{x_1} rac{\sqrt{1+y^{,2}}}{\sqrt{y}}\,dx.$

Since y(x) satisfies the E-L equation, from ${\bf Ex}$ 13, we have

$$ec{r}(heta) = (x(heta), y(heta)) = (R(heta - \sin heta) + x_0, R(1 - \cos heta)).$$

$$A=ec{r}(heta_0) \implies heta_0=0, x_0=0.$$

To find $B=ec{r}(heta_1)$, we need:

$$0=F_z|_{x=x_1}=rac{y'}{\sqrt{y(1+y'^2)}}|_{x=x_1}.$$

Hence,
$$y'(heta_1)=0$$
, so $heta_1=\pi$.

$$\vec{r}(\theta_1) = (R(\pi - 0), R(1 - (-1)) = (x_1, y_1).$$

Thus,
$$R=rac{x_1}{\pi}$$
 and $y_1=2R=rac{2x_1}{\pi}.$

The trajectory is $ec{r}(heta) = rac{x_1}{\pi}(heta - \sin heta, 1 - \cos heta), 0 \leq heta \leq \pi.$

W11C1 Lecture 17 (Mar 18)

Remark on Extensions:

- a. Higher dimensions: $J[y] = \int_{\Omega} F(x,y,
 abla u) \, dx$
 - · Variable BC: no BC specified
 - Boundary integral $J[y]=\int_{\Omega}F(x,y
 abla u)\,dx+\int_{\partial\Omega}G(x,y,
 abla u)\,dx$ (HW7 Q2)
- b. Higher order derivatives (skipped):
 - $J[y] = \int_a^b F(x, y, y', y'') dx$
 - $J[u]=\int_{\Omega}|\Delta u|^2+q(x)u\,dx$ among $u\in C^4$, $u=rac{\partial u}{\partial n}=0$ on $\partial\Omega.$
- c. Vector valued functions (skipped):

$$u=(u_1,\ldots,u_m):\Omega\subset\mathbb{R}^n o\mathbb{R}^m$$

$$J[u] = \int_{\Omega} F(\underbrace{x}_{\mathbb{R}^m}, \underbrace{u}_{\mathbb{R}^m}, \underbrace{
abla u}_{\in \mathbb{R}^{n imes m}}) \, dx$$

Need for geodesics: minimal length curve on a surface between 2 points (MATH 424). See Gelfand-Fomin Ex 2, p. 49.

4.7 Variational Problems with Constraints

We studied the minimization of $J[u]=\int_{\Omega}F(x,u,\nabla u)\,dx$ in the admissible class $\mathcal{A}=\{u\in C^1(\overline{\Omega}),u|_{\partial\Omega}=0\}$

In addition to boundary conditions, we may add other conditions (constraints) to \mathcal{A} . For example, we may further impose $M[u] = \int_{\Omega} G(x,u,\nabla u) \, dx = m_0.$

Ex 17. (Isoperimetric problem)

- a. Among all closed curves of a given length ℓ , find the curve enclosing the greatest area (Ex 3 of
- b. Maximize $\int_a^b y(x)\,dx$ subject to $y(a)=y_0,y(b)=y_1$, and $\int_a^b \sqrt{1+y'^2(x)}\,dx=\ell$.

To state the theorem for constrained minimization, we introduce for intuition and convenience the variational derivative.

Recall the principle linear part of ΔJ is

$$\delta J[y;h] = \int_a^b (F_y h + F_z h') \, dx = \int_a^b (F_y - rac{d}{dx} F_z) h \, dx = \langle rac{\delta J}{\delta y}, h
angle$$

7 Def.

$$rac{\delta J}{\delta y}=J'[y]=F_y-rac{d}{dx}F_z$$
 is the variational derivative of J at y . It is the part of δJ without h .

Remarks:

1. In Calc 1,
$$\Delta f = f(x+h) - f(x) = f'(x)h + \mathrm{h.o.t.}$$

For higher dimensions,

$$\delta J[u;h]=\int_{\Omega}(F_uh+\sum_kF_{p_k}\partial_{x_k}h)\,dx=\int_{\Omega}rac{\delta J}{\delta u}h\,dx$$
 where $rac{\delta J}{\delta u}=F_u-\sum_k\partial_{x_k}F_{p_k}$

2. We computed $\delta J[u;h]$ by Taylor's expansion. It can also be computed as a directional derivative (HW6 Q3) $\delta J[u;h] = \lim_{t o 0} rac{1}{t} \{J[u+th] - J[u]\}$, which is weaker

Thm 4. If $u^*(x)$ is an extremal of $J[u] = \int_{\Omega} F(x,u,\nabla u)\,dx$ in

$$\mathcal{A}=\{u\in C^2(\overline{\Omega}), u|_{\partial\Omega}=g, M[u]=\int_{\Omega}G(x,y,
abla u)\,dx=m_0\}$$

and $\frac{\delta M}{\delta u}(u^*) \neq 0$. Then there exists a constant λ such that

$$rac{\delta J}{\delta u}(u^*) + \lambda rac{\delta M}{\delta u}(u^*) = 0.$$

 λ is called a Lagrange multiplier.

Ex 18.

In Calc 3, if $p=(x_0,y_0)$ minimizes f(x,y) on the curve g(x,y)=m and $\nabla g(p)
eq 0$, then $abla f(p) + \lambda
abla g(p) = 0$ for some $\lambda \in \mathbb{R}$.

a. $\min_{x-1=0} x^2 + y^2 = 1$ occurs at p=(1,0), with $\nabla f=(2,0), \nabla g=(1,0), \nabla f+(-1)\nabla g=(1,0)$

b. $\min_{(x-1)^4=0} x^2 + y^2 = 1$ occurs at p=(1,0), but $(x-1)^4=0$. abla f=(2,0),
abla g=(0,0)and λ does not exist. We need the condition abla g(p)
eq 0.

Proof of Thm 4:

Let u^* be an extremal. Let $\{u_{arepsilon}(x)\}_{-arepsilon_1<arepsilon<arepsilon_1}\subset \mathcal{A}$ be a one-parameter family of functions in \mathcal{A} , with $u_0=u^*$. We have $u_arepsilon|_{\partial\Omega}=g, M[u_arepsilon]=m_0$ for all $arepsilon.\ u_arepsilon$ is a perturbation of $u^*.$

Let
$$\xi(x)=rac{d}{darepsilon}|_{arepsilon=0}u_{arepsilon}(x).$$

Since u^* is an extremal in \mathcal{A} ,

$$0=rac{d}{darepsilon}|_{arepsilon=0}J[u_arepsilon]=rac{d}{darepsilon}|_{arepsilon=0}\int_{\Omega}F(x,u_arepsilon,
abla u_arepsilon)\,dx=\int_{\Omega}rac{\delta J}{\delta u}[u^*]\xi\,dx.$$

If ξ were arbitrary, then $rac{\delta J}{\delta y}=0$. But ξ is not arbitrary: it needs to ensure the existence of $\{u_{arepsilon}\}_{arepsilon}$ such that $M[u_arepsilon]=m_0.$ A similar calculation gives

$$0=rac{d}{darepsilon}|_{arepsilon=0}M[u_arepsilon]=\int_{\Omega}rac{\delta M}{\delta u}[u^*]\xi\,dx.$$

Denote
$$(u,v)=\int_\Omega u(x)v(x)\,dx$$
, and let $f=rac{\delta J}{\delta u}[u^*]$ and $g=rac{\delta M}{\delta u}[u^*]$.

The last condition is $(g,\xi)=0, g\perp \xi$ (ξ is tangent to the level set $M[u]=m_0$, and g is normal).

Claim 1: when $(g,\xi)=0$, there is a family $\{u_{\varepsilon}\}_{\varepsilon}\subset\mathcal{A}$ such that $M[u_{\varepsilon}]=m_0$.

Proof of Claim 1:

Since $g \neq 0$ by assumption, there is $B_{\varepsilon}(x_0) \subset \Omega$ such that $g(x) \neq 0$ for $x \in B_{\varepsilon}(x_0)$. Hence g(x) has constant sign (always positive or always negative).

Fix
$$\zeta(x) = egin{cases} (arepsilon^2 - |x - x_0|^2)^3 & B_arepsilon(x_0) \ 0 & ext{else} \end{cases}$$

Hence $(g,\zeta) \neq 0$.

Try the correction $u_{\varepsilon}=u^*+\varepsilon\xi+\delta\zeta$ for $|\delta|\ll |\varepsilon|\ll 1$.

$$M[u_arepsilon] - M[u^*] = \int_\Omega g(arepsilon \xi + \delta \zeta) + O(arepsilon^2 + \delta^2) \, dx = 0 + \delta \underbrace{(g, \xi)}_{
eq 0} + \int_\Omega O(arepsilon^2 + \delta^2) \, dx$$

Hence $\delta=O(arepsilon^2)$ can be solved by the mean value theorem, which proves the claim.

Assume Claim 1. If $(g,\xi)=0$, then u_{ε} exists, so $(f,\xi)=0$.

For any
$$\eta\in C^2(\Omega), \eta|_{\partial\Omega}=0$$
, decompose $\eta=ag+ ilde{\eta}$, where $a=rac{(\eta,g)}{(g,g)}.$ Then $ilde{\eta}\perp g.$

By the previous conclusion,
$$0=\int_\Omega f(x) ilde{\eta}(x)\,dx=(f,\eta)-(f,ag)=(f-rac{(f,g)}{(g,g)}g,\eta)$$

Let $\lambda=-rac{(f,g)}{(g,g)}$, then $(f+\lambda g,\eta)=0$ for all $\eta.$ By Lemma 1, $f+\lambda g=0$, which completes the proof.

Ex 17(b). (again). To maximize
$$J[y]=\int_a^b y\,dx$$
 among $y(a)=y_0,y(b)=y_1,M[y]=\int_a^b \sqrt{1+y'^2}\,dx=\ell$, we have the E-L equation $J'[y]+\lambda L'[y]=0$.
$$1+\lambda(-\frac{d}{2}(\frac{y'}{2}))=0 \implies \frac{y'}{2}=cx+d \text{ where } c=\frac{1}{2}$$

$$1+\lambda(-rac{d}{dx}(rac{y'}{\sqrt{1+y'^2}}))=0 \implies rac{y'}{\sqrt{1+y'^2}}=cx+d$$
 where $c=rac{1}{\lambda}.$ $(y')^2=(cx+d)^2(1+y'^2)$

$$(1-(cx+d)^2)y'^2 = (cx+d)^2 \ y' = rac{cx+d}{\sqrt{1-(cx+d)^2}} \ y = \int rac{cx+d}{\sqrt{1-(cx+d)^2}} \, dx \ = -rac{1}{c}\sqrt{1-(cx+d)^2} + c_1$$

We get $(y-c_1)^2+(x+\frac{d}{c})^2=\frac{1}{c^2}$, a circle. We can solve for c,d,c_1 using the three conditions. The special case $y_0=y_1=0$ is similar to **Ex 19**.

W11C2 Lecture 18 (Mar 20)

Ex 19. (Minimizing surface area under a fixed volume). Let $\Omega\subset\mathbb{R}^2$ bounded, and $u:\Omega o\mathbb{R},u\geq0$

Minimize $J[y]=\int_\Omega \sqrt{1+|
abla u|^2}\,dx$ among $u|_{\partial\Omega}=0, M[u]=\int_\Omega u\,dx=m_0.$

The E-L equation for some $\lambda \in \mathbb{R}$ is:

$$egin{aligned} rac{\delta J}{\delta u} + \lambda rac{\delta M}{\delta u} &= 0 \ F_u - \sum_i \partial_{x_i} F_{p_i} + \lambda (G_u - \sum_i \partial_{x_i} G_{p_i}) &= 0 \ 0 - \sum \partial x_i rac{\partial_i u}{\sqrt{1+|
abla u|^2}} + \lambda (1-0) &= 0 \ \operatorname{div} rac{
abla u}{\sqrt{1+|
abla u|^2}} &= \lambda \end{aligned}$$

We consider the special case $\Omega=B_r(0)$.

We claim that $u(x) = \sqrt{R^2 - |x|^2} - \sqrt{R^2 - r^2}, R \geq r$ is a solution to the E-L equation.

The choice of R makes $M[u]=m_0$ possible if m_0 is not too large.

If $m_0 \sim 0$ then take $R \sim \infty$ and we get $\min J[u] \sim \pi r^2$

If $m_0 \uparrow$ then take R = r.