

Diode

VE311 Electronic Circuits (Fall 2021)

Dr. Chang-Ching Tu

Brief Introduction of Semiconductor Physics

Although not going to be covered in the exams, this part lays a foundation for understanding the working principles of the semiconductor devices.

Silicon Atom

- Pauli exclusion principle requires that each electron must have a distinct energy state defined by an unique set of quantum numbers.
- The allowed states and associated wavefunctions can be described by 4 quantum numbers: principle quantum number (n), angular momentum quantum number (l), magnetic quantum number (m) and electron spin (s).

Silicon has its inner shell (1s, 2s and 2p orbitals) totally filled with electrons. It's outer shell has 2 valence electrons in 3s orbital and 2 valence electrons in 3p orbital.

Effect of Lattice (I)

When two silicon atoms are far away from each other, there is no interaction.

When two silicon atoms are close enough to each other: (1) wavefunctions overlap. (2) Potential wells are influenced by neighboring nucleus. (3) The valence electrons become delocalized (e.g. through tunneling). (4) By Pauli exclusion principle, each state splits into N substates, where N is number of atoms.

Effect of Lattice (II)

Discrete states grow into bands when N is large.

Band Formation for Si

Intrinsic (i.e. no impurity) Si (I)

n and p for Intrinsic Si (II)

of states/(cm³ · J)

(the probability of the state occupied with an electron)

$$f(E) = \frac{1}{\exp\left(\frac{E - E_f}{kT}\right) + 1}$$

$$\mathbf{n} = \int_{E_C}^{\infty} \mathbf{f}(\mathbf{E}) \mathbf{N}(\mathbf{E}) d\mathbf{E} = \mathbf{n_i}$$

$$\mathbf{p} = \int_{-\infty}^{E_V} [\mathbf{1} - \mathbf{f}(\mathbf{E})] \mathbf{N}(\mathbf{E}) d\mathbf{E} = \mathbf{n_i}$$

 $(1 / cm^3)$

n and p for Intrinsic Si (III)

Source: Microelectronic Circuit Design, 4th Edition, by R. C. Jaeger and T. N. Blalock

$$np = n_i^2 = B_i^{T^3} exp\left(-\frac{E_G}{k_i^T}\right) = constant$$

k (Boltzmann's Constant) = 1.38×10^{-23} J/K = 8.62×10^{-5} eV/K

At 300 K:

$$n_i^2 = (1.08 \times 10^{31})300^3 e^{\frac{-1.12}{(8.62 \times 10^{-5}) \times 300}}$$

= $4.52 \times 10^{19} (1/cm^6)$

$$n_i = 6.73 \times 10^9 \, (1/\text{cm}^3) \cong 10^{10} \, (1/\text{cm}^3)$$

	B (K ⁻³ • cm ⁻⁶)	$E_G(eV)$
Si	1.08×10^{31}	1.12
Ge	2.31×10^{30}	0.66
GaAs	1.27×10^{29}	1.42

Figure 2.4 Intrinsic carrier density versus temperature from Eq. (2.1).

n and p for n-type Si (I)

300 K

At room temperature, nearly all phosphorus dopants are ionized.

Each dopant donates one electron away, which creates an electron in the conduction band.

If the n-type dopant (e.g. $mathred{m}$ phosphorus) concentration $N_d \gg n_i$, $n = N_d$ and $p = n_i^2/N_d$ (1 / cm³)

n and p for n-type Si (II)

Density of States # of states/(cm³ · J)

(the probability of the state occupied with an electron)

$$f(E) = \frac{1}{exp\left(\frac{E - E_f}{kT}\right) + 1}$$

$$\begin{split} n &= \int_{E_C}^{\infty} f(E) N(E) dE = n_i \, e^{\frac{E_f - E_i}{kT}} \\ p &= \int_{-\infty}^{E_V} [1 - f(E)] N(E) dE = n_i \, e^{\frac{E_i - E_f}{kT}} \end{split}$$

 $(1 / cm^3)$

n and p for p-type Si (I)

300 K

At room temperature, nearly all boron dopants are ionized.

Each dopant takes one electron away from neighboring silicon, which creates a hole in the valence band.

If the p-type dopant (e.g. \overline{m} boron) concentration $N_a \gg n_i$, $p = N_a$ and $n = n_i^2/N_a$ (1 / cm³)

n and p for p-type Si (II)

of states/(cm $^3 \cdot J$)

(the probability of the state occupied with an electron)

$$f(E) = \frac{1}{\exp\left(\frac{E - E_f}{kT}\right) + 1}$$

$$\begin{split} n &= \int_{E_C}^{\infty} f(E) N(E) dE = n_i \, e^{\frac{E_f - E_i}{kT}} \\ p &= \int_{-\infty}^{E_V} [1 - f(E)] N(E) dE = n_i \, e^{\frac{E_i - E_f}{kT}} \end{split}$$

 $(1 / cm^3)$

Summary

p-type

n-type

$$E_i = q \Phi_p \diamondsuit$$

$$\frac{ \sum_{i=1}^{n} E_{i}^{C}}{ \sum_{i=1}^{n} E_{i}}$$

$$p = N_a = n_i e^{\frac{E_i - E_f}{kT}} = n_i e^{\frac{q \phi_p}{kT}}$$

$$p = N_a = n_i e^{\frac{E_i - E_f}{kT}} = n_i e^{\frac{q\phi_p}{kT}}$$

$$n = \frac{n_i^2}{N_a} = n_i e^{\frac{E_f - E_i}{kT}} = n_i e^{\frac{-q\phi_p}{kT}}$$

$$np = n_i^2$$

$$n = N_d = n_i e^{\frac{E_f - E_i}{kT}} = n_i e^{\frac{q\phi_n}{kT}}$$

$$n = N_d = n_i e^{\frac{E_f - E_i}{kT}} = n_i e^{\frac{q\varphi_n}{kT}}$$

$$p = \frac{n_i^2}{N_d} = n_i e^{\frac{E_i - E_f}{kT}} = n_i e^{\frac{-q\varphi_n}{kT}}$$

$$np = n_i^2$$

Si PN Junction Diode

Qualitative Understanding

Si PN Junction in Thermal Equilibrium

Note:

- E_C , E_i and E_V are parallel to each other.
- E_C , E_i and E_V bending means there is electric field.
- E_f bending means there is current.

At first

- 1. Electrons/holes near the junction diffuse to the opposite sides.
- Ionized dopants, fixed in the lattice, are left behind. →
 Formation of built-in electric field and energy barrier (qφ_i) for diffusion.

Then

- 3. Some electrons/holes in the <u>neutral regions</u> with sufficient energy continuously diffuse to the opposite sides. → Formation of **diffusion current**.
- Some electrons/holes wandering into the in the <u>depletion region</u> get swept by the built-in electric field. → Formation of **drift** current.
- Diffusion current cancels drift current. No net current flowing.

Si PN Junction in Forward Bias

When $V_a > 0$ applied

- 1. The energy barrier formed by the built-in electric field becomes smaller, $\mathbf{q}(\mathbf{\phi_i} \mathbf{V_a})$.
- 2. More electrons/holes diffuse to the opposite sides. → **Diffusion** current increases, while drift current remains the same.
- 3. There is (+) net current flowing.
- 4. The depletion width becomes narrower.

Si PN Junction in Reverse Bias

When $V_a < 0$ applied

- 1. The energy barrier formed by the built-in electric field becomes larger, $\mathbf{q}(\boldsymbol{\varphi}_i + \mathbf{V}_a)$.
- 2. Less electrons/holes diffuse to the opposite sides. → **Diffusion current decreases**, while **drift current remains the same**.
- 3. There is (–) net current flowing.
- 4. The depletion width becomes wider.

Diode I-V Characteristics

Si Diode I-V Characteristics

$$I_{D} = I_{S} \left(e^{\frac{qV_{a}}{kT}} - 1 \right)$$

- Turn-on voltage typically 0.5 to 0.7 V
- Saturation current (I_S) typically 10^{-18} to 10^{-9} A
- kT/q = 0.025875 V at 300 K

Example

(a) Calculate V_a for a silicon diode with $I_S=0.1$ fA and I_D increasing from 300 μA to 10 mA at 300 K.

$$300 \times 10^{-6} = (0.1 \times 10^{-15}) \left(e^{\frac{V_a}{0.025875}} - 1 \right) \qquad V_a = 0.743 \text{ (V)}$$

$$10 \times 10^{-3} = (0.1 \times 10^{-15}) \left(e^{\frac{V_a}{0.025875}} - 1 \right) \qquad V_a = 0.834 \text{ (V)}$$

(b) Calculate I_S for a silicon diode with $I_D = 2.5$ mA and $V_a = 0.736$ V at 50°C.

$$2.5 \times 10^{-3} = I_{S} \left(e^{\frac{(1.6 \times 10^{-19}) \times 0.736}{(1.38 \times 10^{-23})(323)}} - 1 \right) \qquad I_{S} = 8.4 \times 10^{-15} \text{ (A)}$$

Example

Calculate the required V_a for I_D of a silicon diode to increase by a factor 10 at 300 K. Assume $I_D \gg I_S$.

$$\int I_{D1} = I_S \left(e^{\frac{qV_{a1}}{kT}} - 1 \right) \approx I_S e^{\frac{qV_{a1}}{kT}}$$

$$I_{D2} = I_S \left(e^{\frac{qV_{a2}}{kT}} - 1 \right) \approx I_S e^{\frac{qV_{a2}}{kT}}$$

$$\frac{I_{D2}}{I_{D1}} = 10 = \frac{I_{S}e^{\frac{qV_{a2}}{kT}}}{I_{S}e^{\frac{qV_{a1}}{kT}}} = e^{\frac{V_{a2} - V_{a1}}{0.025875}}$$

$$V_{a2} - V_{a1} = 0.025875 \times \ln 10$$

= 0.05958 (V) ≈ 60 (mV)

The diode voltage changes by about 60 mV per decade change in diode current.

Figure 3.11 Diode i-v characteristic on semilog scale.

Source: Microelectronic Circuit Design, 4th Edition, by R. C. Jaeger and T. N. Blalock

I_D and I_S versus V_a

Source: Microelectronic Circuit Design, 4th Edition, by R. C. Jaeger and T. N. Blalock

$$I_{D} = I_{S} \left(e^{\frac{qV_{a}}{kT}} - 1 \right)$$

- At the same I_D , when I_S increases by 10, V_a decreases by 60 mV.
- At the same I_S , when I_D increases by 10, V_a increases by 60 mV.

Diode Temperature Dependence

A Voltage Proportional to Absolute Temperature

• For a fixed $I_D \gg I_S$:

$$I_D = I_S \left(e^{\frac{qV_a}{kT}} - 1 \right) \implies V_a = \frac{kT}{q} \ln \left(\frac{I_D}{I_S} + 1 \right) \cong \frac{kT}{q} \ln \frac{I_D}{I_S}$$

Source: Microelectronic Circuit Design, 4th Edition, by R. C. Jaeger and T. N. Blalock

$$\begin{cases} V_{D1} = \frac{kT}{q} \ln \frac{I_1}{I_S} \\ V_{D2} = \frac{kT}{q} \ln \frac{I_2}{I_S} \end{cases}$$

I₁ and I₂ are ideal current source.

$$V_{PTAT} = V_{D1} - V_{D2} = \frac{kT}{q} \ln \frac{I_1}{I_2} = T \times constant$$

Diode in Reverse Bias

Avalanche Breakdown in Reverse Bias

- Si diode with breakdown voltages greater than about 5.6 V enter breakdown through an avalanche mechanism.
- Carriers accelerated by electric field gain sufficient energy to break covalent bonds upon impact, thereby creating electronhole pairs.

Zener Breakdown in Reverse Bias

- Si diode with very heavy doping (i.e. very narrow depletion region) easily enter into Zener breakdown under reverse bias.
- Electrons tunnel directly between valence and conduction bands.

Diode Spice Model and Layout

Diode Spice Model

$$I_{D} = \textbf{IS} \left[exp \left(\frac{qV_{a}}{\textbf{N}kT} \right) - 1 \right]$$

$$C_D = \text{TT} \frac{I_D}{\text{N}(kT/q)} \qquad C_j = \frac{\text{CJO}}{(1 - \frac{V_a}{\text{VJ}})^{\text{M}}} \text{RAREA}$$

Not covered in Ve311

TABLE 3.1

SPICE Diode Parameter Equivalences

PARAMETER	SPICE	TYPICAL DEFAULT VALUES
Saturation current	IS	10 fA
Ohmic series resistance	RS	0Ω
Ideality factor or emission	N	1
coefficient		
Transit time	TT	0 sec
Zero-bias junction capacitance	CJO	$\frac{0 \text{F}}{\text{m}^2}$
for a unit area diode $RAREA = 1$, III_
Built-in potential	VJ	1 V
Junction grading coefficient	M	0.5
Relative junction area	RAREA	1 m ²

Source: Microelectronic Circuit Design, 4th Edition, by R. C. Jaeger and T. N. Blalock

Diode Layout

pn junction diode

Source: Microelectronic Circuit Design, 4th Edition, by R. C. Jaeger and T. N. Blalock

Photodiode / Solar Cell

Short Circuit Current

Open Circuit Voltage

I-V Curve of Photodiode / Solar Cells

What are fill factor and power conversion efficiency?

Light Emitting Diode

Charge Injection

- **Direct bandgap** semiconductor is required. Note that silicon is indirect bandgap semiconductor.
- Under forward bias, charge carriers are injected and recombined in the depletion region to emit photons.