FeLMi: Few shot Learning with hard Mix-up

-Summary-

Introduction

• In supervised learning, we train model based on 'training set' and classify them into (already) given classes (from labels)

• But, what if we need to classify 'unseen' class (not in training set)?

Introduction

• In real worlds, we have (almost) unlimited classes to classify animals (cat, dog, dog with brown fur, tiger, Siberian tiger...)

=> It is impossible to classify them in supervised learning (due to data scarcity and unlimited model output size)

- One technique to detour this problem: 'Few shot learning' (type of meta-learning)
 - Goal: check whether they are same class rather what class they are in.

Basic concept of Few shot learning (FSL)

• In FSL, we have 'support set' and 'query' instead of 'training set' and 'test sample'

• Out precise goal: Given support set (typically 'few' data), select most similar class (among support set) of query sample.

(i.e : we train model so that it can capture the similarity of samples)

Basic concept of Few shot learning (FSL)

- In general, the given support set is very small.
 (because, we only have few unseen dataset in real worlds.)
- Conventional format of supports set: K-way N-shot
 (K = # of class in support set, N = # of samples of each class in support set)

Few shot learning (Episodic training)

- Then, How to form support set or train model?
 - Current SOTA method for FSL: episodic training / transfer learning
- **Episodic training** [Vinalys., 2016]: (*K*-way *N*-shot, *l* episodes)
 - 1. Given training dataset, randomly pick K classes among training classes.
 - 2. Given selected K classes, pick N samples from training classes. (This forms support set of size NK for 1^{st} episode)
 - 3. Given selected K classes, pick remaining samples from training classes (This forms query set for 1^{st} episode)
 - 4. Train model using support set and compute criterion by query set.
 - 5. Repeat this l times to finish training.

(L = label sets, S = support set, Q = query set)

One possible criterion? :
$$\theta = argmax_{\theta} \mathbb{E}_{L \sim T} \left[\mathbb{E}_{S \sim L, Q \sim L} \left[\sum_{(x,y) \in Q} \log P_{\theta}(y|x,S) \right] \right]$$

Few shot learning (Episodic training)

 Episodic training (4 Way 2 Shot) $L = \{1,2,5,6\}$ *i*th episode class 2 class 5 class 6 class 1 class 1 20 3 1 1 20 class 2 20 19 20 Support set class 1 class 2 class 5 class 6 20 class 10 • • •

19

Query set

20

20

19

Few shot learning (transfer learning)

- One problem of episodic training :
 - **Time consuming** (for large episode, typically 1 million episode) and suffers from inductively generated **bias from previous episode** (unavoidable property of episodic learning)

- Another SOTA method for FSL (adopting transfer learning) [Tian et al., 2020]
 - 1. Pretrain model (ex : ResNet-18) based on huge training dataset (ex : ImageNet) to learn a good representation
 - 2. Now, for each support set, attach simple linear classifier and learn corresponding support set. (Transfer learning => Note : fix the pretrained model)
 - 3. Use this model to predict query set.

Few shot learning (transfer learning)

- Intuitively, the model performance on FSL increases as the # of shots(N) increase.
 - In practical, increasing shots in support set requires high cost => Use mix-up to augment the # of shots! (fundamental idea of FeLMi)

- Overall steps for FeLMI: Learning representations using training dataset.
 - 1. Pseudo-labeling of training dataset using classifier trained on support set. (pseudo-labels will be used for knowledge distillation on step 5)
 - 2. Entropy based pseudo-label filtering of training dataset
 - 3. Mix-up sample generation
 - 4. Hard mix-up sample generation
 - 5. Fine-tune on entire dataset

- Intuitively, the model performance on FSL increases as the # of shots(N) increase.
 - In practical, increasing shots in support set requires high cost => **Use mix-up to augment the # of shots!** (fundamental idea of FeLMi)

- Problem setting of FeLMi: (N-way K-shot)
 - Training dataset (base dataset) : $\mathcal{D}^{base} = \left\{x_t^{base}, y_t^{base}\right\}_{t=1}^{N^{base}}$
 - Novel dataset (place where support sets are sampled) : $\mathcal{D}^{novel} = \{x_t^{novel}, y_t^{novel}\}_{t=1}^{N^{novel}}$
 - Assume $C^{base} \cap C^{novel} = \phi$ and $|C^{base}| \ge |C^{novel}|$, where C is class set
 - The training and testing is performed in episodes on novel class samples : FSL learner trained on $\mathcal{D}_i^{support}$ for N novel classes containing K samples and evaluated on query set \mathcal{D}_i^{query} on the same classes of $\mathcal{D}_i^{support}$ (size NK)

1. Learning representations using training dataset.

: Learn representation from training dataset \mathcal{D}_{base} using model $h_{\phi}(f_{\theta})$

 $(f_{\theta}: \text{representation learning model}, h_{\phi}: \text{final classification layer})$

Notation : B : training dataset (\mathcal{D}_{base})

2. Pseudo-labeling of training dataset using classifier trained on support set.

2-1 : Learn linear classifier ϕ_i using the support set of each i th episode (= $\mathcal{D}_i^{support}$) :

$$\phi_{i} = argmin_{\phi} \mathbb{E}_{\{x,y\} \in \mathcal{D}_{i}^{support}} \left[L_{CE} \left(g_{\phi} \left(f_{\theta^{base}}(x) \right), y \right) \right]$$

2-2 : Generated pseudo-labels on entire training dataset:

$$\widehat{y_t}^{base} = g_{\phi_i}(f_{\theta^{base}}(x_t))$$
 for $t = 1 \dots N^{base}$

Label Hallucination for Few-Shot classification [Jian et al., 2022]

2. Pseudo-labeling of training dataset using classifier trained on support set.

3. Entropy based pseudo-label filtering of training dataset

- Not all classes in base dataset will provide useful information for given support set (or under certain episode)
- For example :

In this case, pseudo-labeling for tiger and husky (which has similar representation) would be helpful => How to find helpful samples in training set?

3. Entropy based pseudo-label filtering of training dataset

- Suggested method: filtering based on entropy
 - High entropy => confusing samples
 - Low entropy => somewhat useful samples

- Recall : there is correlation : C-score ⇔ negative Entropy (proxy) ⇔ data valuation score Hence, we are choosing easy samples.
- Set (empirically) entropy threshold au, and filter \mathcal{D}^{base} to obtain D^{base_filt} for each episode

$$\mathcal{D}^{base_filt} = \{\widehat{y_t}^{base} | H(\widehat{y_t}^{base}) \le \tau \text{ where } t = 1, \dots, N^{base} \}$$

4. Mix-up sample generation

We now have pseudo-labeled (filtered) base samples and labeled support set samples.

- To augment samples related with support set, we perform two types of mix-up:
 - Novel-Novel mix-up: manifold mix-up of novel samples
 - Base-Novel mix-up: Hard mix-up between base and novel samples based on entropy

4. Mix-up sample generation (Novel – Novel mix up)

4-1. Select $\{(x^{novel}, y^{novel}), (\bar{x}^{novel}, \bar{y}^{novel})\} \in \mathcal{D}^{support}$ (ignore subscript i) and perform manifold mix-up right after feature extraction layer :

$$x_{mix}^{N-N} = \lambda_n.f_{\theta^{\text{base}}}(x^{\text{novel}}) + (1 - \lambda_n)f_{\theta^{\text{base}}}(\bar{x}^{\text{novel}})$$
$$y_{mix}^{N-N} = \lambda_n.y^{\text{novel}} + (1 - \lambda_n)\bar{y}^{\text{novel}}$$

where $\lambda_n \sim beta(\alpha, \alpha)$

4-2. Form pool of novel-novel mixup samples of size l:

$$P_{N,N} = \left\{ \left(x_{mix}^{N-N}, y_{mix}^{N-N} \right)_i \right\}_{i=1}^l$$

4. Mix-up sample generation (Base-Novel mixup)

To perform base-novel mixup, we employ following policies:

- 1) No mix-up between two base examples (obviously useless for support set training) Instead, perform mix-up between base novel samples.
- 2) Only mix with base samples that are close to novel samples (otherwise, generated mix-up samples would tend to be noisy or extremely hard)
- 3) Choose small mix-up parameter λ so that generated mix-up samples remain proximal to the distribution of novel samples.

4. Mix-up sample generation (Base-Novel mixup)

4-3. From \mathcal{D}^{base_filt} , select k-lowest entropy base samples $(x_{sel}^{base}, \hat{y}_{sel}^{base})$:

$$\left\{\left(x_{sel}^{base}, \hat{y}_{sel}^{base}\right)\right\} = \left\{\left(x_i, y_i\right) \middle| i \in \text{bottom_k}\left(H(\hat{y})\right)\right\}$$

(Choosing base examples that are close novel examples)

4-4. Perform mix-up with novel samples $(x^{novel}, y^{novel}) \in \mathcal{D}^{support}$ with selected base samples :

$$x_{mix}^{B-N} = \lambda_b.f_{\theta^{\text{base}}}(x_{sel}^{\text{base}}) + (1 - \lambda_b)f_{\theta^{\text{base}}}(x^{\text{novel}})$$
$$y_{mix}^{B-N} = \lambda_b.\hat{y}_{sel}^{\text{base}} + (1 - \lambda_b)y^{\text{novel}}$$

where $\lambda_b \sim uniform(0, 0.2)$, and set the pool of base-novel mix-up samples of size l

$$P_{B,N} = \left\{ \left(x_{mix}^{B-N}, y_{mix}^{B-N} \right)_i \right\}_{i=1}^l$$

5. Hard mix-up sample generation:

• Set $P_{mix} = P_{B,N} \cup P_{N,N}$ and choose hardest N samples based on a uncertainty measure

Here, we set 'difference in top-2 probabilities' as a measure for uncertainty (or margin)
 (Commonly adopted measure in active learning)

• Now, choose hardest k mix-up samples in P_{mix} and form P_{hard_mix} :

$$\mathcal{P}_{hard_mix} = \mathtt{bottom_k} \{ \mathtt{margin}(g_{\phi_i}(f_{\theta^{\mathtt{base}}}(x)) \,|\, (x,y) \in P_{mix} \}$$

(Recall: smaller margin => closer to decision boundary => harder examples)

6. Finetune on the entire dataset:

To preserve model from deviate drastically from pre-trained model (Knowledge distillation)

• Finally, the model is fine-tuned on a combined loss computed using \mathcal{D}^{base_filt} , \mathcal{D}^{novel} , $P_{hard\ mix}$:

$$\mathcal{L} = \mathbb{E}_{\{x,\hat{y}\} \in \mathcal{D}^{\text{base_filt}}} L_{KD}(g_{\phi}(f_{\theta}(x)), \hat{y})$$

$$+ \beta \mathbb{E}_{\{x,y\} \in \mathcal{D}^{\text{novel}}} L_{CE}(g_{\phi}(f_{\theta}(x)), y) + \gamma \mathbb{E}_{\{x,y\} \in \mathcal{P}_{\text{hard_mix}}} L_{CE}(g_{\phi}(f_{\theta}(x)), y)$$

To finetune on novel dataset

To learn mix-up samples (data augmentation on support set)

Note : $oldsymbol{eta}$, $oldsymbol{\gamma}$ is scaling parameter and $oldsymbol{\phi}$ and $oldsymbol{ heta}$ are trained for each episode i

Overview of FeLMi:

• Experiment result on CIFAR-FS (re-partitioned CIFAR-100 for FSL)

		CIFAR-FS 5-way	
Model	Backbone	1-shot	5-shot
ProtoNet [28] (NIPS'17)	ResNet-12	72.2 ± 0.7	83.5 ± 0.5
MetaOptNet [13] (CVPR'19)	ResNet-12	72.6 ± 0.7	84.3 ± 0.5
Shot-Free [19] (ICCV'19)	ResNet-12	$69.2 \pm n/a$	$84.7 \pm \text{n/a}$
DSN-MR [27] (CVPR'20)	ResNet-12	75.6 ± 0.9	86.2 ± 0.6
RFS-simple [31] (ECCV'20)	ResNet-12	71.5 ± 0.8	86.0 ± 0.5
RFS-distill [31] (ECCV'20)	ResNet-12	73.9 ± 0.8	86.9 ± 0.5
SKD-GEN1 [18] (Arxiv'20)	ResNet-12	76.6 ± 0.9	88.6 ± 0.5
IER-distill [22] (CVPR'21)	ResNet-12	77.6 ± 1.0	89.7 ± 0.6
PAL [15] (ICCV'21)	ResNet-12	77.1 ± 0.7	88.0 ± 0.5
Label-Halluc [11] (AAAI'22)	ResNet-12	$78.0 \pm 1.0^{\S}$	89.37 ± 0.6 §
FeLMi	ResNet-12	$\textbf{78.22} \pm \textbf{0.7}$	$\textbf{89.47} \pm \textbf{0.5}$

Test accuracy adopting 95% confidence interval

• Experiment result on FC-100 (another re-partitioned CIFAR-100 for FSL)

		FC-100 5-way	
Model	Backbone	1-shot	5-shot
ProtoNet [28] (NIPS'17)	ResNet-12	37.5 ± 0.6	52.5 ± 0.6
TADAM [17] (NIPS'18)	ResNet-12	40.1 ± 0.4	56.1 ± 0.4
MetaOptNet [13] (CVPR'19)	ResNet-12	41.1 ± 0.6	55.5 ± 0.6
MTL [29] (CVPR'19)	ResNet-12	45.1 ± 1.8	57.6 ± 0.9
DeepEMD [38] (CVPR'20)	ResNet-12	46.5 ± 0.8	63.2 ± 0.7
RFS-simple [31] (ECCV'20)	ResNet-12	42.6 ± 0.7	59.1 ± 0.6
RFS-distill [31] (ECCV'20)	ResNet-12	44.6 ± 0.7	60.9 ± 0.6
AssoAlign [1] (ECCV'20)	ResNet-18	45.8 ± 0.5	59.7 ± 0.6
SKD-GEN1 [18] (Arxiv'20)	ResNet-12	46.5 ± 0.8	64.2 ± 0.8
InfoPatch [10] (AAAI'21)	ResNet-12	43.8 ± 0.4	58.0 ± 0.4
IER-distill [22] (CVPR'21)	ResNet-12	48.1 ± 0.8	65.0 ± 0.7
PAL [15] (ICCV'21)	ResNet-12	47.2 ± 0.6	64.0 ± 0.6
Label-Halluc [11] (AAAI'22)	ResNet-12	$47.37 \pm 0.7^{\S}$	$67.92 \pm 0.7^{\S}$
FeLMi	ResNet-12	$\textbf{49.02} \pm \textbf{0.7}$	$\textbf{68.68} \pm \textbf{0.7}$

Test accuracy adopting 95% confidence interval

• Experiment result (Contribution of Mix-up and Hard selection + different mixup strategy):

Approach	Accuracy	
IER [22]	65.00	
+ pseudo-label [11]	67.92	
+ entropy filtering	67.96	
+ Mixup	68.49	
+ hard selection	68.68	

Mixup Approach	λ_b	λ_n	FC-100	CIFAR-FS
B-N + N-N	U(0, 0.2)	B(1, 1)	68.68	89.47
B-N+N-N	$\mathbf{B}(1,1)$	B(1,1)	68.49	89.26
N-N	-	B(1,1)	68.57	89.4
None	-	-	67.92	89.37

Results using different mix-up strategy

Contributions for each method for FSL

• IER: method for learning good representation from training dataset (step 1)

Experiment result (t-SNE after training of one episode)

t-SNE visualization of learned representation at the start of training and end for one random episode

• Mix-up samples offer a good training signal to learn better class boundaries