中国海洋大学全日制本科课程期中考试试卷

2015 年 春季学期 考试科目: 微积分 11 学院: 数学科学学院

试卷夹型: _A 卷 今题人: _《微积分》课程组 审核人: 文化十字》

考试说明:本课程为闭卷考试. 满分 为: 100 分

题号	_	=	Ξ	99	五	总分
得分						

- 一、选择题(每题3分,共18分)
 - 1. 下列广义积分收敛的是()

(A)
$$\int_1^{+\infty} \frac{dx}{x}$$
; (B) $\int_1^{+\infty} \frac{dx}{x\sqrt{x}}$; (C) $\int_0^1 \frac{dx}{x^2}$; (D) $\int_1^1 \frac{dx}{x^2}$.

2. 设
$$z = f(x, y)g(x)$$
, f, g 可微, 则 $\frac{\partial z}{\partial x} = ($)

- (A) fg': (B) f'_1g' : (C) $f'_1g' + fg'$: (D) $fg' + f'_1g$.
- 3. 二元函数 $z = x^3 y^3 + 3x^2 + 3y^2 9x$ 的极小值点是 ()

- (A) (1,0): (B) (1,2): (C) (-3,0): (D) (-3,2).

4.
$$D = \{(x,y)|x^2+y^2 \le R^2\}$$
, $\coprod \iint_D \sqrt{R^2-x^2-y^2}d\sigma = \pi$, $\coprod R = ($

- (A) 1: (B) $\sqrt[3]{\frac{2}{3}}$: (C) $\sqrt[3]{\frac{3}{2}}$: (D) $\sqrt[4]{\frac{4}{3}}$.

5. 函数
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
 在 $(0,0)$ 处 $(0,0)$

- (A) 不连续: (B) 连续不可微: (C) 偏导数不存在: (D) 可微。
- 表面积为a² 而体积最大的长方体的体积是()

- (A) a^3 : (B) $\frac{1}{6}a^3$: (C) $\frac{1}{6\sqrt{6}}a^3$: (D) $\frac{1}{6\sqrt{3}}a^3$.

二、填空题(每空3分,共21分)

1.
$$\lim_{\substack{x \to +\infty \\ y \to +\infty}} \frac{x^2 + y^2}{x^4 + y^4} = \underline{\hspace{1cm}}$$

2. 交換积分次序
$$\int_0^1 dx \int_0^x f(x,y) dy + \int_1^2 dx \int_0^{2-x} f(x,y) dy = _____.$$

3. 三元方程
$$z^2 = x^2 - y^2$$
 表示的曲面叫______。

4. 设
$$e^{-sy}-2z+e^{-z}=0$$
,则 $\frac{\partial z}{\partial x}=$ _____.

5. 设
$$z = uv + \sin t$$
, 而 $u = e'$, $v = \cos t$, 则 $\frac{dz}{dt} =$ ____.

6. 点
$$(x_0, y_0, z_0)$$
到平面 $Ax + By + Cz + D = 0$ 的距离是_____。

7. 设
$$z = e^{\cos(xy)}$$
,则 $dz = ____$

三、计算题 (第5题11分,其余每题10分,共61分)

1. 求椭圆
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
绕 y 轴旋转所得旋转体的体积。

2. 设
$$u = \frac{x+z}{y+z}$$
, 而 $z = z(x,y)$ 由方程 $ze^z = xe^x + ye^y$ 确定, 求 $\frac{\partial u}{\partial x}$ 。

3. 设
$$z = f(xy, \frac{y}{x})$$
, f 具有二阶连续偏导数,求 $\frac{\partial^2 z}{\partial x \partial y}$.

4. 求介于曲线r = R之外, $r = 2R\cos\theta$ 以内的闭区域的面积。

5. 计算二重积分
$$\iint_{D} |\sin(x+y)| d\sigma$$
, 其中 $D = \{(x,y)|0 \le x \le \pi, 0 \le y \le 2\pi\}$.

6. 求函数
$$f(x,y) = e^{x-y}(x^2-2y^2)$$
 的极值。

共3页 第1页

考试说明:本课程为闭卷考试,满分为: 100 分。

题号	-	=	三	四	五	总分
得分						

- 一、选择题(每题 3 分,共 18 分)
- 1. 下列广义积分发散的是(

(A)
$$\int_{-\infty}^{\infty} \frac{dx}{x}$$
: (B) $\int_{-\infty}^{\infty} \frac{dx}{x\sqrt{x}}$; (C) $\int_{-\infty}^{\infty} \frac{dx}{x^2}$; (D) $\int_{-\infty}^{\infty} \frac{dx}{x^2\sqrt{x}}$.

2. 设 z = f(ax + by), f 可微,则()

(A)
$$a\frac{\partial z}{\partial x} = b\frac{\partial z}{\partial y}$$
; (B) $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y}$; (C) $b\frac{\partial z}{\partial x} = a\frac{\partial z}{\partial y}$; (D) $\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial y}$.

- 3. 二元函数 $z = x^3 y^3 + 3x^2 + 3y^2 9x$ 的极小值点是 (

- (A) (1,0): (B) (1,2): (C) (-3,0): (D) (-3,2).
- 4. 点(0,0,0)到平面x+y+z=1的距离是()

- (A) $\frac{1}{\sqrt{5}}$; (B) $\frac{1}{6}$; (C) $\frac{1}{\sqrt{3}}$; (D) $\frac{a^3}{6\sqrt{6}}$.
- 5. 函数 $z = \sqrt{|xy|}$ 在(0,0)处()
 - (A) 不连续: (B) 连续不可微: (C) 偏导数不存在: (D) 可微。

命题负责人签字

年月 日

院系负责人 签字

年月日

6. 设
$$f(x,y)$$
 连续, 且 $f(x,y)=xy+\iint_D f(u,v)dudv$, 其中 D 由

$$y=0, y=x^2, x=1$$
 所围成的有界闭区域,则 $f(x,y)=($)

$$(C)xy+1$$
:

(A)
$$xy$$
; (B) $2xy$; (C) $xy+1$; (D) $xy+\frac{1}{8}$.

二、填空题(每空3分,共21分)

1.
$$\lim_{\substack{x \to 2 \\ y \to 0}} \frac{xy}{\sqrt{xy+1}-1} = \underline{\hspace{1cm}}$$

3. 三元方程
$$z^2 = x^2 + y^2$$
 表示的曲面叫 ______.

4. 曲面
$$z = x^2 + y^2$$
 在 $(0,1,1)$ 处的切平面方程是 ______.

5.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 所图图形的面积是_____.

6. 对生产函数
$$Q = AK^{\alpha}L^{\beta}$$
,则 Q 对 K 的偏弹性是_____。

7.
$$\partial u = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$
, $\emptyset du = \underline{\hspace{1cm}}$

三、计算题 (每题 9 分,共 54 分)

1. 计算积分 [ln² xdx .

(求出一个即可)。

$$g_{x} = f(x + v, xy)$$
, f 具有二阶连续偏导数, 求 $\frac{\partial^2 z}{\partial x \partial y}$.

- 4. 求由 $z = 4 x^2 y^2$ 与 $z = x^2 + y^2$ 所围立体的体积。
- 5. 计算二重积分 $\iint_D \frac{\sin y}{y} d\sigma$, 其中 D 是由 $x = y^2$ 和 x = y 所围成的有界闭区域。
- 6. 求体积是 V 而表面积最小的长方体的表面积。

四、证明题 (7分)

设 z = f(x,y) 在点 (x_0,y_0) 的某邻域内处处有偏导数 $f_x'(x,y)$, $f_y'(x,y)$, 且 在该邻域内各偏导数有界,证明: z = f(x,y) 在 (x_0,y_0) 点处连续。