CS 440 Introduction to Artificial Intelligence

Lecture 12:

Logic and Intro to Probability

25 February 2020

true

 $- f(X) \wedge g(X) \rightarrow g(X)$

• $\neg \alpha(X) \land (\alpha(X) \lor \beta(X)) \rightarrow \beta(X)$ $- f(X) \wedge (g(X) \vee h(X)) \Leftrightarrow (f(X) \wedge g(X)) \vee (f(X) \wedge h(X))$ • $(\neg \alpha(X) \land \alpha(X)) \lor (\neg \alpha(X) \land \beta(X)) \rightarrow \beta(X)$ - $f(X) \wedge \neg f(X) \Leftrightarrow false$ • false $\vee (\neg \alpha(X) \land \beta(X)) \rightarrow \beta(X)$ - $f(X) \vee g(X) \Leftrightarrow g(X) \vee f(X)$ • $(\neg \alpha(X) \land \beta(X)) \lor false \rightarrow \beta(X)$ - $f(X) \vee false \Leftrightarrow f(X)$ • $\neg \alpha(X) \wedge \beta(X) \rightarrow \beta(X)$

Given list of rules could an AI agent make such a reduction?

Binary CSP example: Wumpus World

- Variables
 - Defined for each cell
 - $\quad \boldsymbol{S_{i,j'}} \; \boldsymbol{B_{i,j'}} \; \boldsymbol{P_{i,j'}} \; \boldsymbol{W_{i,j'}} \; \; \boldsymbol{G_{i,j}}$
- Define problem in terms of logical statements

$$- S_{i,j} \Leftrightarrow (W_{i-1,j} \vee W_{i+1,j} \vee W_{i,j-1} \vee W_{i,j+1})$$

$$- B_{i,j} \Leftrightarrow (P_{i-1,j} \lor P_{i+1,j} \lor P_{i,j-1} \lor P_{i,j+1})$$

Gold/Pit/Wumpus cannot be in same cell

$$- W_{i-,j} \rightarrow (\neg G_{i-,j} \land \neg P_{i-,j})$$

$$- G_{i-,i} \rightarrow (\neg W_{i-,i} \land \neg P_{i-,i})$$

$$- P_{i-,j} \rightarrow (\neg W_{i-,j} \land \neg G_{i-,j})$$

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2	3,2	4,2
OK			
1,1 A	2,1	3,1	4,1
OK	OK		

- Agent in 1,1
 - No breeze and no smell
- Use Entailment

-
$$B_{i,j} \Leftrightarrow (P_{i-1,j} \lor P_{i+1,j} \lor P_{i,j-1} \lor P_{i,j+1}), \neg B_{1,1} | = \neg P_{1,2}, \neg P_{2,1}$$

-
$$S_{i,j} \Leftrightarrow (W_{i-1,j} \lor W_{i+1,j} \lor W_{i,j-1} \lor W_{i,j+1}), \neg S_{1,1} | = \neg W_{1,2}, \neg W_{2,1}$$

Cells 1,2 and 2,1 are safe

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2 P?	3,2	4,2
0K 1,1	2,1	3,1 200	4,1
V OK	P OK	^{3,1} P?	

- Agent in 2,1
 - Breeze and no smell
- Use Entailment

-
$$B_{i,j} \Leftrightarrow (P_{i-1,j} \vee P_{i+1,j} \vee P_{i,j-1} \vee P_{i,j+1}), B_{2,1} = P_{2,2} \vee P_{3,1}$$

-
$$S_{i,j} \Leftrightarrow (W_{i-1,j} \lor W_{i+1,j} \lor W_{i,j-1} \lor W_{i,j+1}), \neg S_{2,1} | = \neg W_{2,2}, \neg W_{3,1}$$

- Don't move to 2, 2 or 3, 1
 - Go back and explore 1,2 instead

1,4	2,4	3,4	4,4
1,3 w!	2,3	3,3	4,3
1,2 A S OK	2,2 OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

- Agent in 2,1
 - Smell and no breeze

•
$$B_{i,j} \Leftrightarrow (P_{i-1,j} \vee P_{i+1,j} \vee P_{i,j-1} \vee P_{i,j+1}), \neg B_{2,1} \mid = \neg P_{1,3}, \neg P_{2,2}$$

•
$$P_{2,2} \vee P_{3,1}$$
, $\neg P_{2,2} \mid = P_{3,1}$

•
$$S_{i,j} \Leftrightarrow (W_{i-1,j} \vee W_{i+1,j} \vee W_{i,j-1} \vee W_{i,j+1}), S_{1,2}, \neg W_{2,2}, \neg W_{1,1} = W_{1,3}$$

Cell 2,2 is safe, move there

1,4	2,4 P?	3,4	4,4
1,3 W!	2,3 S G B	3,3 _{P?}	4,3
1,2 S V OK	2,2 V OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

- Agent visits 2,2
 - No smell and no breeze

•
$$B_{i,j} \Leftrightarrow (P_{i-1,j} \vee P_{i+1,j} \vee P_{i,j-1} \vee P_{i,j+1}), \neg B_{2,2} \mid = \neg P_{2,3}, \neg P_{3,2}$$

•
$$S_{i,j} \Leftrightarrow (W_{i-1,j} \vee W_{i+1,j} \vee W_{i,j-1} \vee W_{i,j+1}), \neg S_{2,2} \mid = \neg W_{2,3}, \neg W_{3,2}$$

- Cell 3,2 and 2,3 are safe
 - Move to 2,3
 - Find the gold there!!!!!

Wumpus

Agent

Pit

Gold

+1000 for gold
-1000 falling into pit
-1 for each action
-10 for using arrow

Discussion

- How would you automate planning in environment like Wumpus World?
- What is the major difficulty?

Rutgers

Summary of First Third of Class

- End of section on deterministic reasoning
 - Problem Formalization
 - State/Action/Transition/Observation/ect.
 - Local Search
 - Hill Climbing
 - Gradient descent
 - Search
 - BFS/DFS/SPF
 - Heuristics
 - A* Search
 - Adversarial Search
 - Minimax Search
 - Alpha-Beta Pruning
 - Decision Trees
 - Constructing Decision Trees
 - Constraint Satisfaction
 - Backtracking Algorithm
 - Logic

- Thus far we have assumed environment is completely observable
 - Agent know state of environment after each step
 - Agent can generate state from environment
- What to do when environment not observable
 - Example Wumpus world

1,4	2,4	3,4	4,4
1,3 P?	2,3	3,3	4,3
1,2 B	2,2 P?	3,2	4,2
OK 1,1	2,1 A	3,1 P?	4,1
OK.	OK.		

Intro to Probability

- Probability
 - Likelihood something will happen
 - Examples
 - Probability you will get in a car accident
 - Probability you will have a heart attack
 - Probability you will win the lottery
 - Expected time for next bus to arrive
 - What factors impact probability of each of these?
 - Likelihood of an unobserved event
 - Examples
 - If I have a card in my hand what is the likelihood it is an ace
 - What is the likelihood you have cancer
 - What observations can help improve accuracy of this?

RUTGERS

Applications of Probability

- Games
 - Cards games: Poker, Blackjack, Magic
 - Games with dice: D&D, Monopoly
 - Roulette, slot machines
- Medicine
 - Likelihood you will contract a disease
 - Likelihood a cure will be effective
- Insurance
 - Likelihood you will need to file a claim
- Computer Hardware
 - Likelihood a component will fail (mean time to failure)
 - Supercomputers: MTF proportional to number of components
 - MTF measured in days or even hours

- Notation: p(x)
 - Wumpus World p(P_{3.1})
 - p(car_accident)
- Hint: Think about probabilities in terms of of total population

- p(car_accident)
 - Proportion of drivers that have gotten in a car accident
 - number of drivers who have gotten in car accident over total number of drivers
 - n accident_drivers / n drivers
- What are some limitations of this and who would we address them?
 - Hint think about a driver with a lot of accidents vs a driver with a clean record

Probability Given Observation

- Notation: p(x|y)
 - Probability of x given y
 - Example: probability you will get in a car accident given that you have a clean record
 - p(accident|clean_record)
- Compute proportion for population which condition holds
 - p(accident|clean_record) = n_{accident clean record}/n_{clean record}
 - Number of drivers with clean record that got into accident over total number of drivers with clean record
- More observations you can make more accurate your predicition

	Number	Lung Cancer
Smokers	300	105
Non- smokers	1700	20
Total	2000	125

- What is p(lung_cancer)?
- What is p(smoker)?
- What is p(lung _cancer|smoker)?
- What is p(lung _cancer | non-smoker) ?

241			
1,4	2,4	3,4	4,4
1,3 P?	2,3	3,3	4,3
1,2 B OK	2,2 P?	3,2	4,2
1,1 V OK	2,1 A B OK	3,1 P?	4,1

What is p(P_{1,3}), p(P_{2,2}) and p(P_{3,1})?

1,4	2,4	3,4	4,4
1,3 P?	2,3	3,3	4,3
1,2 B OK	2,2 P?	3,2	4,2
1,1 V OK	2,1 A B OK	3,1 P?	4,1

- What is p(P_{1,3}), p(P_{2,2}) and p(P_{3,1})?
 - Assume all valid states of Wumpus World are equally likely
 - $p(P_{1,3}|B_{1,2} \wedge B_{2,1})$
 - How can we compute this?

1,4	2,4	3,4	4,4
1,3 P?	2,3	3,3	4,3
1,2 B OK	2,2 P?	3,2	4,2
1,1 V OK	2,1 A B OK	3,1 P?	4,1

- What is p(P_{1,3}), p(P_{2,2}) and p(P_{3,1})?
 - Assume all valid states of Wumpus World are equally likely
 - $p(P_{1,3}|B_{1,2} \wedge B_{2,1})$
 - Number of states with $B_{1,2} \wedge B_{2,1} \wedge P_{1,3}$ over number of states with $B_{1,2} \wedge B_{2,1}$