Response to the submission (#1741) of KDD 2024

Table A: The existing representative Riemannian batch normalization methods, where M, V, CM, and CV represent the Mean, Variance, Controllable Mean, and Controllable Variance, respectively.

Methods	Statistics	СМ	cv	Scenarios
SPDNetBN [7]	М	\checkmark	N/A	SPD Manifolds-AIM
ManifoldNorm [8]	M + V	×	×	Riemannian homogeneous space
SPDBN [R1]	M + V	\checkmark	√	SPD Manifolds-AIM
SPDMBN [R2]	M + V	\checkmark	\checkmark	SPD Manifolds-AIM
Ours (SPDNetCBN)	M + V	\checkmark	√	SPD manifolds-LCM

Table B: Accuracy comparison (%) of different RBN methods on the HDM05 and large scale NTU-60 [R3] datasets.

Methods	HDM05	NTU-60 [R3]		
SPDNetBN [7]	64.89 ± 1.40	52.89 ± 1.22		
ManifoldNorm [8]	57.26 ± 0.89	50.60 ± 0.52		
SPDBN [R1]	65.60 ± 0.80	54.07 ± 0.41		
SPDMBN [R2]	66.58 ± 0.58	54.59 ± 1.01		
Ours (SPDNetCBN)	$\textbf{69.85} \pm \textbf{0.52}$	$\textbf{55.93} \pm \textbf{0.41}$		

The results given in Table B further verify the efficacy of our CBN over other RBN methods on the HDM05 and large-scale NTU-60 datasets.

Table C: Summary of Riemannian operators related to AIM and LCM.

Manifold	AIM on the SPD manifold	Metric on the Cholesky manifold		
Metric	AIM: $\mathcal{T}_X\mathcal{M} imes \mathcal{T}_X\mathcal{M}$	LCM: $\sum_{i>j}\mathbf{A}_{ij}\mathbf{B}_{ij} + \sum_{j=1}^d\mathbf{A}_{jj}\mathbf{B}_{jj}\mathbf{L}_{jj}^{-2}$		
Distance	$rac{1}{2} \log(X_1^{-rac{1}{2}}X_2X_1^{-rac{1}{2}}) _{ ext{F}}$	$\{ \ \ \lfloor \mathbf{L} \rfloor - \lfloor \mathbf{A} \rfloor \ \ _{\mathrm{F}}^2 + \ \ \mathrm{log}\mathbb{D}(\mathbf{L}) - \mathrm{log}\mathbb{D}(\mathbf{A}) \ \ _{\mathrm{F}}^2 \}^{\frac{1}{2}}$		
Logarithmic Map (LM)	$Q^{rac{1}{2}} { m log}(Q^{rac{1}{2}} X Q^{-rac{1}{2}}) Q^{rac{1}{2}}$	$\lfloor \mathbf{A} floor - \lfloor \mathbf{L} floor + \mathbb{D}(\mathbf{L}) \mathrm{log} \left\{ \mathbb{D}(\mathbf{L})^{-1} \mathbb{D}(\mathbf{A}) ight\}$		
Exponential Map (EM)	$X^{rac{1}{2}} { m exp}(X^{rac{1}{2}}QX^{-rac{1}{2}})X^{rac{1}{2}}$	$\lfloor \mathbf{A} floor + \lfloor \mathbf{L} floor + \mathbb{D}(\mathbf{A}) \mathrm{exp} \left\{ \mathbb{D}(\mathbf{L}) \mathbb{D}(\mathbf{A})^{-1} ight\}$		
Parallel Transport (PT)	$(X_2X_1^{-1})^{\frac{1}{2}}Q(X_2X_1^{-1})^{\frac{1}{2}}$	$\lfloor \mathbf{A} floor + \mathbb{D}(\mathbf{L}_2) \mathbb{D}(\mathbf{L}_1)^{-1} \mathbb{D}(\mathbf{A})$		
Riemannian Mean (RM)	No closed form	Closed form		

Figure A: Convergence performance of different RBN methods on the HDM05 dataset.

Figure B: The accuracy of our method versus the value of λ on the MAMEM dataset.

In the proposed CBN module, the weight λ (Alg.1 in the main paper) is the only hyperparameter. From Fig. B, we can see that our method seems to be insensitive to this parameter, and the suggested proper value range is $0.08 \sim 0.12$.

Table D: The accuracy of our method versus different Gaussian noise on the MAMEN dataset.

Gaussian Noise	None	$\mathcal{N}(0, 0.1)$	$\mathcal{N}(0, 0.2)$	$\mathcal{N}(0, 0.3)$	$\mathcal{N}(0, 0.5)$	$\mathcal{N}(0, 1.0)$	$\mathcal{N}(0, 2.0)$
Acc. (%)	64.95	64.38	64.09	63.25	61.67	59.84	56.67

From Table D, it can be found that within a reasonable range, our method has certain robustness to the added Gaussian noise. Note that the Gaussian noise is added to the original signals.

References:

- **[R1]** Kobler, R. J., Hirayama, J. I., & Kawanabe, M. Controlling the fréchet variance improves batch normalization on the symmetric positive definite manifold. In *ICASSP*, 2022, pp. 3863-3867.
- **[R2]** Kobler, R., Hirayama, J. I., Zhao, Q., & Kawanabe, M. SPD domain-specific batch normalization to crack interpretable unsupervised domain adaptation in EEG. In *NeurIPS*, 2022, pp. 6219-6235.
- [R3] Shahroudy, A., Liu, J., Ng, T. T., & Wang, G. Ntu rgb+d: A large scale dataset for 3d human activity analysis. In *CVPR*, 2016, pp. 1010-1019.