Adding/Deleting Elements/Relations To/From a Poset

Let $P = (X, \leq)$ be a partially order set (or poset). Here X is a set of *elements* and \leq is a reflexive, antisymmetric, transitive *relation* on X.

We wish to consider the following four operations: (1) add an element to a poset, (2) delete an element from a poset, (3) add a relation to a poset, and (4) delete a relation from a poset.

Adding/Deleting Elements

Operations on elements are relatively simple to describe. Let $P = (X, \leq)$ be a poset.

If $a \notin X$, then to add the element a to P results in a new poset that includes a in which a is related only to itself. Formally, let P' = P + a be the poset $P' = (X', \le')$ where we have the following:

- (1) $X' = X \cup \{a\}.$
- $(2) \le ' = \le \cup \{(a, a)\}.$ That is,
 - $\forall x, y \in X, x \leq' y \iff x \leq y$,
 - $\forall x \in X, x \nleq' a \text{ and } a \nleq' x, \text{ and }$
 - a <' a.

Element deletion is also easy to describe. Deleting an element a from P deletes a from the set X and all remaining elements have the same relations they had before. Formally, for $a \in X$, let P' = P - a be the poset $P' = (X', \le')$ where we have the following:

- (1) $X' = X \{a\}.$
- (2) $\forall x, y \in X', x \leq' y \iff x \leq y$.

Note that element addition and deletion operations need not commute. While it is true that (P + a) - a = P, in general we have $(P - a) + a \neq P$.

Adding/Deleting Relations

Adding a relation to a poset requires us to include additional relations implied by transitivity. Let $P = (X, \leq)$ be a poset containing incomparable elements a and b.

We define P+(a < b) to be the poset $P' = (X', \le')$ in which we have the following:

- X' = X.
- $\forall x, y \in X', x \le' y \iff (x \le y) \text{ or } (x \le a \text{ and } b \le y).$

Stated differently, \leq' is the minimal superset of \leq that includes the pair (a, b) and that is reflexive, antisymmetric, and transitive.

There does not appear to be "best" way to define relation deletion. Suppose $P = (X, \le)$ is a poset in which a < b; we want to define P' = P - (a < b). For example, suppose $P = ([3], \le)$ is the total order 1 < 2 < 3. How shall we define P - (1 < 3)? Since we delete (1, 3) from the relation, we cannot have both 1 < 2 and

2 < 3, so one of those must be deleted as well. This leads to two possible choices for \leq' are these:

- $\leq' = \{(1,1), (2,2), (3,3), (1,2)\}$ and
- $\bullet \le' = \{(1,1), (2,2), (3,3), (2,3)\}.$

There's no reasonable way to choose between these alternatives. Both are derived from \leq with a minimum number of changes. So we take another approach by deleting both 1 < 2 and 2 < 3. This results in the antichain on [3].

More generally, when we delete a < b from P we need to delete other relations. In particular, if there is an x with a < x < b, we cannot keep both a < x and x < b. Our solution is to delete both.

Thus we define P - (a < b) to be the poset $P' = (X', \le')$ in which X' = X and

$$\leq' = \leq -\{(a,b)\} - \{(a,x),(x,b) : a < x < b\}.$$

Claim. P' is a poset.

Proof. We need to check that \leq' is reflexive, antisymmetric, and transitive.

Since we have not deleted any relation of the form (x, x) from \leq , it follows that \leq' is reflexive.

Since $\leq' \subset \leq$ it follows that

$$(x \le' y \text{ and } y \le' x) \Rightarrow (x \le y \text{ and } y \le x) \Rightarrow x = y.$$

Finally, we must show that \leq' is transitive. Suppose x <' y <' z but we do not have x <' z. This means that (x, z) was a relation deleted from \leq and so we have one of the following:

- (1) (x,z) = (a,b),
- (2) a = x < z < b, or
- (3) a < x < z = b.

Case (1) cannot hold because then we have x = a < y < b = z in which case neither x <' y nor y <' z contradicting the supposition that x <' y <' z.

In case (2) we have that a = x < y < z < b contradicting x <' y, and a similar contradiction holds in case (3).