Problem 1. (10pts) How many integers from 1 to 60 are multiples of 2 or 3 but not both?

Problem 2. (10pts) Consider the permutation

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 7 & 3 & 6 & 4 & 2 & 1 & 5 & 8 \end{pmatrix}$$

- a) Write it as a product of disjoint cycles.
- b) Write it as a product of transpositions.

```
Problem 7: Consider permutation (123456789)

a) Write it as product of disjoint cycles

1^{57} cycle; 1 \rightarrow 9 \rightarrow 8 \rightarrow 5 \rightarrow 4 \rightarrow 6 \rightarrow 2 \rightarrow 7 \rightarrow 1

2^{10} cycle: 3 \rightarrow 3

=) Permutation as product of cycles; (19854627)(3) or just (19854627)

b) Write it as product of transpositions

Every permutation \pi \in S_n as a product of transpositions are written as

(1,2), (1,3), \dots (2,n) or (1,2), (2,3), \dots (n-1,n)

=) Permutation as product of transpositions

\pi = (1,9)(9,8)(8,5)(5,4)(4,6)(6,2)(2,7)
```

Problem 3. (10pts) In how many ways can we rearrange the letters in the word "knackered"

- (a) with no restrictions?
- (b) if the first and last letter must be vowels?

Prot	plem 3: The word "knackered" has 2 sets of repeated elements which are 2 k
	1 2e. The word has 0 letters
9)	Han many arrangements without restriction?
	=) num of arrangements = 9! = 90720 different arrangments 2! 2!
6)	If the first and last letter must be vowels?
	There are 3 different possibilities of first and last vowels a-e, e-a, e-e
	The middle part of the word thus have 7 letters left. However it has 2k as well
	-) num of arrangements: $3 \times 7! = 7560$ different arrangements
	2!

Problem 4. (10pts) How many ways are there to tile dominos (with size 2×1) on a grid of size 2×20 ?

(This is a modified job interview question for a Quantitative Researcher position in a London based research firm, © G-Research

Hint (just a suggestion): Experiment with first 2×1 , 2×2 , 2×3 , 2×4 , etc. sized grids and try to come up with a way to relate

 $a_n = number of ways to tile a grid of size <math>2 \times n$

to the previous terms a_{n-1} and a_{n-2} . Apply this recursive relation then until you reach a_{20} .)

