Éléments de mathématiques pour la physique

JÉRÔME - - FILIO Paul

$14\ {\rm septembre}\ 2024$

Table des matières

1	Syst	tèmes (de coordonnées	
	1.1	Coord	onnées cartésiennes	2
		1.1.1	Vecteur position	2
		1.1.2	Vecteur vitesse	2
		1.1.3	Vecteur accélération	2
		1.1.4	Différentielles des vecteurs de base	2
		1.1.5	Déplacement élémentaire	2
		1.1.6	Volume élémentaire	2
	1.2	Coord	onnées cylindriques	2
		1.2.1	Vecteur position	2
		1.2.2	Vecteur vitesse	2
		1.2.3	Vecteur accélération	
		1.2.4	Différentielles des vecteurs de base	
		1.2.5	Déplacement élémentaire	
		1.2.6	Volume élémentaire	
		1.2.7	Matrice de changement de base	
	1.3		onnées shériques	
	1.0	1.3.1	Vecteur position	
		1.3.2	Vecteur vitesse	
		1.3.3	Vecteur accélération	
		1.3.4	Différentielles des vecteurs de base	
		1.3.5	Déplacement élémentaire	
		1.3.6	Volume élémentaire	
		1.3.7	Matrice de changement de base	
				_
2	Vec		et différentiation 4	1
	2.1	Opéra	teurs vectoriels	1
		2.1.1	Nabla	1
		2.1.2	Gradient	1
		2.1.3	Divergence	1
		2.1.4	Rotationnel	1
		2.1.5	Laplacien scalaire	5
		2.1.6	Propriétés	5
	2.2	Différe	entielle d'une fonction de plusieurs variables	5
	2.3		ation d'un champ vectoriel	5
		2.3.1	Circulation le long d'une courbe fermée	5
		2.3.2	Circulation d'un gradient	5
3	Équ	ations	différentielles	
	3.1		on différentielle linéaire d'ordre 1	
	3.2	-	ion différentielle linéaire d'ordre 2 à coefficients constants	3
		3.2.1	Dans $\mathbb C$	
		3.2.2	Dans $\mathbb R$	3
		3.2.3	Quelques solutions particulières	3

1 Systèmes de coordonnées

1.1 Coordonnées cartésiennes

1.1.1 Vecteur position

$$\overrightarrow{OM} = x\overrightarrow{\mathbf{u}_x} + y\overrightarrow{\mathbf{u}_y} + z\overrightarrow{\mathbf{u}_z}$$

1.1.2 Vecteur vitesse

$$\frac{\mathrm{d}\overrightarrow{OM}}{\mathrm{d}t} = \dot{x}\overrightarrow{\mathbf{u}_x} + \dot{y}\overrightarrow{\mathbf{u}_y} + \dot{z}\overrightarrow{\mathbf{u}_z}$$

1.1.3 Vecteur accélération

$$\frac{\mathrm{d}^2 \overrightarrow{OM}}{\mathrm{d}t^2} = \ddot{x} \overrightarrow{u_x} + \ddot{y} \overrightarrow{u_y} + \ddot{z} \overrightarrow{u_z}$$

1.1.4 Différentielles des vecteurs de base

$$d\overrightarrow{u_x} = dx\overrightarrow{u_x}$$
$$d\overrightarrow{u_y} = dy\overrightarrow{u_x}$$
$$d\overrightarrow{u_z} = dz\overrightarrow{u_z}$$

1.1.5 Déplacement élémentaire

$$\overrightarrow{\mathrm{d}\ell} = \mathrm{d}x\overrightarrow{\mathrm{u}_x} + \mathrm{d}y\overrightarrow{\mathrm{u}_y} + \mathrm{d}z\overrightarrow{\mathrm{u}_z}$$

1.1.6 Volume élémentaire

$$d\tau = dx dy dz$$

1.2 Coordonnées cylindriques

1.2.1 Vecteur position

$$\overrightarrow{OM} = r\overrightarrow{\mathbf{u}_r}$$

1.2.2 Vecteur vitesse

$$\frac{\mathrm{d}\overrightarrow{OM}}{\mathrm{d}t} = \dot{r}\overrightarrow{\mathbf{u}_r} + r\dot{\theta}\overrightarrow{\mathbf{u}_\theta} + \dot{z}\overrightarrow{\mathbf{u}_z}$$

1.2.3 Vecteur accélération

$$\frac{\mathrm{d}^2 \overrightarrow{OM}}{\mathrm{d}t^2} = \left(\ddot{r} - r\dot{\theta}^2\right) \overrightarrow{\mathbf{u}_r} + \left(r\ddot{\theta} + 2\dot{r}\dot{\theta}\right) \overrightarrow{\mathbf{u}_\theta} + \ddot{z} \overrightarrow{\mathbf{u}_z}$$

1.2.4 Différentielles des vecteurs de base

$$d\overrightarrow{u_r} = d\theta \overrightarrow{u_\theta}$$

$$d\overrightarrow{u_\theta} = -d\theta \overrightarrow{u_r}$$

$$d\overrightarrow{u_z} = dz \overrightarrow{u_z}$$

1.2.5 Déplacement élémentaire

$$\overrightarrow{d\ell} = dr \overrightarrow{u_r} + r d\theta \overrightarrow{u_\theta} + dz \overrightarrow{u_z}$$

1.2.6 Volume élémentaire

$$d\tau = r dr d\theta dz$$

1.2.7 Matrice de changement de base

$$P = \begin{pmatrix} \overrightarrow{\mathbf{u}_r} & \overrightarrow{\mathbf{u}_\theta} & \overrightarrow{\mathbf{u}_z} \\ \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \overrightarrow{\overrightarrow{\mathbf{u}_x}} \quad \text{avec } P^{-1} = P^{\top}$$

1.3 Coordonnées shériques

$$\theta, \varphi) \in [0, \pi[\times [0, 2\pi[$$

1.3.1 Vecteur position

$$\overrightarrow{OM} = r\overrightarrow{\mathbf{u}_r}$$

1.3.2 Vecteur vitesse

$$\frac{\mathrm{d}\overrightarrow{OM}}{\mathrm{d}t} = \dot{r}\overrightarrow{\mathbf{u}_r} + r\dot{\theta}\overrightarrow{\mathbf{u}_\theta} + r\sin(\theta)\dot{\varphi}\overrightarrow{\mathbf{u}_\varphi}$$

1.3.3 Vecteur accélération

$$\frac{\mathrm{d}^2 \overrightarrow{OM}}{\mathrm{d}t^2} = \left(\ddot{r} - r \left(\dot{\theta}^2 + \sin^2(\theta) \dot{\varphi}^2 \right) \right) \overrightarrow{\mathbf{u}_r} + \left(\frac{1}{r} \frac{\mathrm{d}(r^2 \dot{\theta})}{\mathrm{d}t} - r \sin(\theta) \cos(\theta) \dot{\varphi}^2 \right) \overrightarrow{\mathbf{u}_{\theta}} + \frac{1}{r \sin(\theta)} \frac{\mathrm{d}}{\mathrm{d}t} \left(r^2 \sin^2(\theta) \dot{\varphi} \right) \overrightarrow{\mathbf{u}_{\varphi}}$$

1.3.4 Différentielles des vecteurs de base

$$d\overrightarrow{u_r} = d\theta \overrightarrow{u_\theta} + \sin(\theta) d\varphi \overrightarrow{u_\varphi}$$

$$d\overrightarrow{u_\theta} = -d\theta \overrightarrow{u_r} + \cos(\theta) d\varphi \overrightarrow{u_\varphi}$$

$$d\overrightarrow{u_\varphi} = -d\varphi (\sin(\theta) \overrightarrow{u_r} + \cos(\theta) \overrightarrow{u_\theta})$$

1.3.5 Déplacement élémentaire

$$\overrightarrow{\mathrm{d}\ell} = \mathrm{d}r\overrightarrow{\mathrm{u}_r} + r\,\mathrm{d}\theta\overrightarrow{\mathrm{u}_\theta} + r\sin(\theta)\,\mathrm{d}\varphi\overrightarrow{\mathrm{u}_\varphi}$$

3

Volume élémentaire

$$d\tau = r^2 \sin(\theta) dr d\theta d\varphi$$

Matrice de changement de base

$$P = \begin{pmatrix} \overrightarrow{\mathbf{u}_r} & \overrightarrow{\mathbf{u}_\theta} & \overrightarrow{\mathbf{u}_\varphi} \\ \sin(\theta)\cos(\varphi) & \cos(\theta)\cos(\varphi) & -\sin(\varphi) \\ \sin(\theta)\sin(\varphi) & \cos(\theta)\sin(\varphi) & \cos(\varphi) \\ \cos(\theta) & -\sin(\theta) & 0 \end{pmatrix} \vec{\overrightarrow{\mathbf{u}_x}} \quad \text{avec } P^{-1} = P^{\top}$$

2 Vecteurs et différentiation

2.1 Opérateurs vectoriels

2.1.1 Nabla

$$\overrightarrow{\nabla} = \frac{\partial}{\partial x} \overrightarrow{\mathbf{u}_x} + \frac{\partial}{\partial y} \overrightarrow{\mathbf{u}_y} + \frac{\partial}{\partial z} \overrightarrow{\mathbf{u}_z}$$
 en coordonnées cartésiennes

$$\overrightarrow{\nabla} = \frac{\partial}{\partial r} \overrightarrow{\mathbf{u}_r} + \frac{1}{\theta} \frac{\partial}{\partial \theta} \overrightarrow{\mathbf{u}_\theta} + \frac{\partial}{\partial z} \overrightarrow{\mathbf{u}_z}$$

$$= \frac{\partial}{\partial r} \overrightarrow{\mathbf{u}_r} + \frac{1}{r} \frac{\partial}{\partial \theta} \overrightarrow{\mathbf{u}_\theta} + \frac{1}{r \sin(\theta)} \frac{\partial}{\partial \varphi} \overrightarrow{\mathbf{u}_\varphi}$$

en coordonnées cylindriques

en coordonnées sphériques

2.1.2Gradient

$$\overrightarrow{\operatorname{grad}} f = \overrightarrow{\nabla} f$$

$$\overrightarrow{\operatorname{grad}} f = \frac{\partial f}{\partial x} \overrightarrow{u_x} + \frac{\partial f}{\partial y} \overrightarrow{u_y} + \frac{\partial f}{\partial z} \overrightarrow{u_z}$$

$$= \frac{\partial f}{\partial r} \overrightarrow{u_r} + \frac{1}{\theta} \frac{\partial f}{\partial \theta} \overrightarrow{u_\theta} + \frac{\partial f}{\partial z} \overrightarrow{u_z}$$

$$= \frac{\partial f}{\partial r} \overrightarrow{u_r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \overrightarrow{u_\theta} + \frac{1}{r \sin(\theta)} \frac{\partial f}{\partial \varphi} \overrightarrow{u_\varphi}$$

en coordonnées cartésiennes en coordonnées cylindriques

en coordonnées sphériques

2.1.3 Divergence

$$\overrightarrow{\mathrm{div}\,\overrightarrow{A}} = \overrightarrow{\nabla}.\overrightarrow{A}$$

en coordonnées cartésiennes

2.1.4 Rotationnel

$$\overrightarrow{\operatorname{rot} A} = \overrightarrow{\nabla} \wedge \overrightarrow{A}$$

4

2.1.5 Laplacien scalaire

$$\begin{split} \Delta f &= \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} & \text{en coordonn\'es cart\'esiennes} \\ &= \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2} & \text{en coordonn\'es cylindriques} \\ &= \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin(\theta)} \frac{\partial}{\partial \theta} \left(\sin(\theta) \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2(\theta)} \frac{\partial^2 f}{\partial \varphi^2} & \text{en coordonn\'es sph\'eriques} \end{split}$$

2.1.6 Propriétés

$$\overrightarrow{\operatorname{rot}}\left(\overrightarrow{\operatorname{grad}}f\right) = \overrightarrow{\nabla} \wedge \overrightarrow{\nabla}f = 0$$
$$\operatorname{div}\left(\overrightarrow{\operatorname{rot}}\overrightarrow{A}\right) = \overrightarrow{\nabla}.\left(\overrightarrow{\nabla} \wedge \overrightarrow{A}\right) = 0$$

2.2 Différentielle d'une fonction de plusieurs variables

$$df = \overrightarrow{\operatorname{grad}}(f).\overrightarrow{d\ell}$$

$$\mathrm{d}f = \frac{\partial f}{\partial x}\,\mathrm{d}x + \frac{\partial f}{\partial y}\,\mathrm{d}y + \frac{\partial f}{\partial z}\,\mathrm{d}z \quad \text{en coordonn\'ees cart\'esiennes}$$

2.3 Circulation d'un champ vectoriel

Circulation d'un champ vectoriel \overrightarrow{v} du point A au point B le long d'une courbe \mathcal{C} :

$$\mathfrak{C} = \int_{A}^{B} \overrightarrow{v} . \overrightarrow{d\ell}$$

2.3.1 Circulation le long d'une courbe fermée

$$\oint_{\mathcal{C}} \overrightarrow{v}.\overrightarrow{d\ell} = \iint_{S} \overrightarrow{\operatorname{rot}}(\overrightarrow{v}).\overrightarrow{dS}$$

2.3.2 Circulation d'un gradient

$$\int_{A}^{B} \overrightarrow{\operatorname{grad}}(f) . \overrightarrow{\operatorname{d}\ell} = f(B) - f(A)$$

3 Équations différentielles

3.1 Équation différentielle linéaire d'ordre 1

$$y' + a(t)y = b(t)$$

$$y(t) = \left(\int b(t)e^{\int a(t)dt}dt + C\right)e^{-\int a(t)dt}$$

5

3.2 Équation différentielle linéaire d'ordre 2 à coefficients constants

$$y'' + ay' + by = c(t)$$

$$r^2 + ar + b = 0$$

- 3.2.1 Dans $\mathbb C$
- 3.2.2 Dans \mathbb{R}
- 3.2.3 Quelques solutions particulières