(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 17 May 2001 (17.05.2001)

PCT

(10) International Publication Number WO 01/34802 A2

- (51) International Patent Classification7: C12N 15/12, 15/62, 15/11, 1/21, 5/10, C07K 14/47, 16/18, 19/00, A61K 38/17, 31/70, 39/395, 48/00, G01N 33/68, C12Q 1/68
- (21) International Application Number: PCT/US00/30904
- (22) International Filing Date:

9 November 2000 (09.11.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

09/439,313

12 November 1999 (12.11.1999)

09/443,686

18 November 1999 (18.11.1999)

- (71) Applicant (for all designated States except US): CORIXA CORPORATION [US/US]; Suite 200, 1124 Columbia Street, Seattle, WA 98104 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): XU, Jiangchun [US/US]; 15805 SE 43rd Place, Bellevue, WA 98006

(US). DILLON, Davin, C. [US/US]; 18112 NW Montreux Drive, Issaquah, WA 98027 (US). MITCHAM, Jennifer, L. [US/US]; 16677 NE 88th Street, Redmond, WA 98052 (US). HARLOCKER, Susan, L. [US/US]; 7522 - 13th Avenue W., Seattle, WA 98117 (US). JIANG, Yuqiu [CN/US]; 5001 South 232nd Street, Kent, WA 98032 (US). REED, Steven, G. [US/US]; 2843 - 122nd Place NE, Bellevue, WA 98005 (US). KALOS, Michael, D. [US/US]; 8116 Dayton Ave. N., Seattle, WA 98103 (US). RETTER, Marc, W. [US/US]; 33402 NE 43rd Place, Carnation, WA 98014 (US). STOLK, John, A. [US/US]; 7436 Northeast 144th Place, Bothell, WA 98011 (US). DAY, Craig, H. [US/US]; 11501 Stone Ave. N., C122, Seattle, WA 98133-8317 (US). SKEIKY, Yasir, A.W. [CA/US]; 15106 SE 47th Place, Bellevue, WA 98006 (US). WANG, Aijun [CN/US]; 3106 213th Place SE, Issaquah, WA 98029 (US).

- (74) Agents: POTTER, Jane, E., R.; Seed Intellectual Property Law Group PLLC, Suite 6300, 701 Fifth Avenue, Seattle, WA 98104-7092 et al. (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,

[Continued on next page]

(54) Title: COMPOSITIONS AND METHODS FOR THE THERAPY AND DIAGNOSIS OF PROSTATE CANCER

(57) Abstract: Compositions and methods for the therapy and diagnosis of cancer, such as prostate cancer, are disclosed. Compositions may comprise one or more prostate-specific proteins, immunogenic portions thereof, or polynucleotides that encode such portions. Alternatively, a therapeutic composition may comprise an antigen presenting cell that expresses a prostate-specific protein, or a T cell that is specific for cells expressing such a protein. Such compositions may be used, for example, for the prevention and treatment of diseases such as prostate cancer. Diagnostic methods based on detecting a prostate-specific protein, or mRNA encoding such a protein, in a sample are also provided.

WO 01/34802 A2

THE RESIDENCE OF STATE STATES AND THE REAL PROPERTY OF THE STATES AND THE STATES

DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,

IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, Cl, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

COMPOSITIONS AND METHODS FOR THE THERAPY AND DIAGNOSIS OF PROSTATE CANCER

5 TECHNICAL FIELD

10

15

20

25

The present invention relates generally to therapy and diagnosis of cancer, such as prostate cancer. The invention is more specifically related to polypeptides comprising at least a portion of a prostate-specific protein, and to polynucleotides encoding such polypeptides. Such polypeptides and polynucleotides may be used in vaccines and pharmaceutical compositions for prevention and treatment of prostate cancer, and for the diagnosis and monitoring of such cancers.

BACKGROUND OF THE INVENTION

Prostate cancer is the most common form of cancer among males, with an estimated incidence of 30% in men over the age of 50. Overwhelming clinical evidence shows that human prostate cancer has the propensity to metastasize to bone, and the disease appears to progress inevitably from androgen dependent to androgen refractory status, leading to increased patient mortality. This prevalent disease is currently the second leading cause of cancer death among men in the U.S.

In spite of considerable research into therapies for the disease, prostate cancer remains difficult to treat. Commonly, treatment is based on surgery and/or radiation therapy, but these methods are ineffective in a significant percentage of cases. Two previously identified prostate specific proteins - prostate specific antigen (PSA) and prostatic acid phosphatase (PAP) - have limited therapeutic and diagnostic potential. For example, PSA levels do not always correlate well with the presence of prostate cancer, being positive in a percentage of non-prostate cancer cases, including benign prostatic hyperplasia (BPH). Furthermore, PSA measurements correlate with prostate volume, and do not indicate the level of metastasis.

In spite of considerable research into therapies for these and other cancers, prostate cancer remains difficult to diagnose and treat effectively. Accordingly, there is a need in the art for improved methods for detecting and treating such cancers. The present invention fulfills these needs and further provides other related advantages.

30 SUMMARY OF THE INVENTION

Briefly stated, the present invention provides compositions and methods for the

diagnosis and therapy of cancer, such as prostate cancer. In one aspect, the present invention provides polypeptides comprising at least a portion of a prostate-specific protein, or a variant thereof. Certain portions and other variants are immunogenic, such that the ability of the variant to react with antigen-specific antisera is not substantially diminished. Within certain embodiments, the polypeptide comprises at least an immunogenic portion of a prostate-specific protein, or a variant thereof, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of: (a) sequences recited in any one of SEQ ID NOs:1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382,384-476, 524, 526, 530, 531, 533, 535 and 536; (b) sequences that hybridize to any of the foregoing sequences under moderately stringent conditions; and (c) complements of any of the sequence of (a) or (b). In certain specific embodiments, such a polypeptide comprises at least a portion, or variant thereof, of a protein that includes an amino acid sequence selected from the group consisting of sequences recited in any one of SEQ ID NO: 112-114, 172, 176, 178, 327, 329, 331, 336, 339, 376-380, 383, 477-483, 496, 504, 505, 519, 520, 522, 525, 527, 532, 534, 537-550.

10

15

20

25

30

The present invention further provides polynucleotides that encode a polypeptide as described above, or a portion thereof (such as a portion encoding at least 15 amino acid residues of a prostate-specific protein), expression vectors comprising such polynucleotides and host cells transformed or transfected with such expression vectors.

Within other aspects, the present invention provides pharmaceutical compositions comprising a polypeptide or polynucleotide as described above and a physiologically acceptable carrier.

Within a related aspect of the present invention, vaccines for prophylactic or therapeutic use are provided. Such vaccines comprise a polypeptide or polynucleotide as described above and an immunostimulant.

The present invention further provides pharmaceutical compositions that comprise: (a) an antibody or antigen-binding fragment thereof that specifically binds to a prostate-specific protein; and (b) a physiologically acceptable carrier. In certain embodiments, the present invention provides monoclonal antibodies that specifically bind to an amino acid sequence selected from the group consisting of SEQ ID NO: 496, 504, 505, 509-517, 522 and 541-550, together with monoclonal antibodies comprising a complementarity determining region selected from the group consisting of SEQ ID NO: 502, 503 and 506-508.

Within further aspects, the present invention provides pharmaceutical compositions comprising: (a) an antigen presenting cell that expresses a polypeptide as described above and (b) a pharmaceutically acceptable carrier or excipient. Antigen presenting cells include dendritic cells, macrophages, monocytes, fibroblasts and B cells.

Within related aspects, vaccines are provided that comprise: (a) an antigen presenting cell that expresses a polypeptide as described above and (b) an immunostimulant.

5

10

15

25

30

The present invention further provides, in other aspects, fusion proteins that comprise at least one polypeptide as described above, as well as polynucleotides encoding such fusion proteins.

Within related aspects, pharmaceutical compositions comprising a fusion protein, or a polynucleotide encoding a fusion protein, in combination with a physiologically acceptable carrier are provided.

Vaccines are further provided, within other aspects, that comprise a fusion protein, or a polynucleotide encoding a fusion protein, in combination with an immunostimulant.

Within further aspects, the present invention provides methods for inhibiting the development of a cancer in a patient, comprising administering to a patient a pharmaceutical composition or vaccine as recited above.

The present invention further provides, within other aspects, methods for removing tumor cells from a biological sample, comprising contacting a biological sample with T cells that specifically react with a prostate-specific protein, wherein the step of contacting is performed under conditions and for a time sufficient to permit the removal of cells expressing the protein from the sample.

Within related aspects, methods are provided for inhibiting the development of a cancer in a patient, comprising administering to a patient a biological sample treated as described above.

Methods are further provided, within other aspects, for stimulating and/or expanding T cells specific for a prostate-specific protein, comprising contacting T cells with one or more of:
(i) a polypeptide as described above; (ii) a polynucleotide encoding such a polypeptide; and/or (iii) an antigen presenting cell that expresses such a polypeptide; under conditions and for a time sufficient to permit the stimulation and/or expansion of T cells. Isolated T cell populations comprising T cells prepared as described above are also provided.

Within further aspects, the present invention provides methods for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a T cell population as described above.

The present invention further provides methods for inhibiting the development of a cancer in a patient, comprising the steps of: (a) incubating CD4⁺ and/or CD8⁺ T cells isolated from a patient with one or more of: (i) a polypeptide comprising at least an immunogenic portion of a prostate-specific protein; (ii) a polypucleotide encoding such a polypeptide; and (iii) an antigen-presenting cell that expressed such a polypeptide; and (b) administering to the patient an effective amount of the proliferated T cells, and thereby inhibiting the development of a cancer in the patient. Proliferated cells may, but need not, be cloned prior to administration to the patient.

Within further aspects, the present invention provides methods for determining the presence or absence of a cancer in a patient, comprising: (a) contacting a biological sample obtained from a patient with a binding agent that binds to a polypeptide as recited above; (b) detecting in the sample an amount of polypeptide that binds to the binding agent; and (c) comparing the amount of polypeptide with a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient. Within preferred embodiments, the binding agent is an antibody, more preferably a monoclonal antibody. The cancer may be prostate cancer.

The present invention also provides, within other aspects, methods for monitoring the progression of a cancer in a patient. Such methods comprise the steps of: (a) contacting a biological sample obtained from a patient at a first point in time with a binding agent that binds to a polypeptide as recited above; (b) detecting in the sample an amount of polypeptide that binds to the binding agent; (c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and (d) comparing the amount of polypeptide detected in step (c) with the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.

20

25

The present invention further provides, within other aspects, methods for determining the presence or absence of a cancer in a patient, comprising the steps of: (a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a prostate-specific protein; (b) detecting in the sample a level of a polynucleotide, preferably mRNA, that hybridizes to the oligonucleotide; and (c) comparing the level of polynucleotide that hybridizes to the oligonucleotide with a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient. Within certain

embodiments, the amount of mRNA is detected via polymerase chain reaction using, for example, at least one oligonucleotide primer that hybridizes to a polynucleotide encoding a polypeptide as recited above, or a complement of such a polynucleotide. Within other embodiments, the amount of mRNA is detected using a hybridization technique, employing an oligonucleotide probe that hybridizes to a polynucleotide that encodes a polypeptide as recited above, or a complement of such a polynucleotide.

In related aspects, methods are provided for monitoring the progression of a cancer in a patient, comprising the steps of: (a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a prostate-specific protein; (b) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide; (c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and (d) comparing the amount of polynucleotide detected in step (c) with the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.

Within further aspects, the present invention provides antibodies, such as monoclonal antibodies, that bind to a polypeptide as described above, as well as diagnostic kits comprising such antibodies. Diagnostic kits comprising one or more oligonucleotide probes or primers as described above are also provided.

These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

BRIEF DESCRIPTION OF THE DRAWINGS AND SEQUENCE IDENTIFIERS

15

20

25

Figure 1 illustrates the ability of T cells to kill fibroblasts expressing the representative prostate-specific polypeptide P502S, as compared to control fibroblasts. The percentage lysis is shown as a series of effector:target ratios, as indicated.

Figures 2A and 2B illustrate the ability of T cells to recognize cells expressing the representative prostate-specific polypeptide P502S. In each case, the number of γ -interferon spots is shown for different numbers of responders. In Figure 2A, data is presented for fibroblasts pulsed with the P2S-12 peptide, as compared to fibroblasts pulsed with a control E75 peptide. In Figure 2B, data is presented for fibroblasts expressing P502S, as compared to fibroblasts expressing HER-2/neu.

Figure 3 represents a peptide competition binding assay showing that the P1S#10 peptide, derived from P501S, binds HLA-A2. Peptide P1S#10 inhibits HLA-A2 restricted presentation of fluM58 peptide to CTL clone D150M58 in TNF release bioassay. D150M58 CTL is specific for the HLA-A2 binding influenza matrix peptide fluM58.

Figure 4 illustrates the ability of T cell lines generated from P1S#10 immunized mice to specifically lyse P1S#10-pulsed Jurkat A2Kb targets and P501S-transduced Jurkat A2Kb targets, as compared to EGFP-transduced Jurkat A2Kb. The percent lysis is shown as a series of effector to target ratios, as indicated.

Figure 5 illustrates the ability of a Ticell clone to recognize and specifically lyse Jurkat A2Kb cells expressing the representative prostate-specific polypeptide P501S, thereby demonstrating that the P1S#10 peptide may be a naturally processed epitope of the P501S polypeptide.

Figures 6A and 6B are graphs illustrating the specificity of a CD8⁺ cell line (3A-1) for a representative prostate-specific antigen (P501S). Figure 6A shows the results of a ⁵¹Cr release assay. The percent specific lysis is shown as a series of effector:target ratios, as indicated. Figure 6B shows the production of interferon-gamma by 3A-1 cells stimulated with autologous B-LCL transduced with P501S, at varying effector:target rations as indicated.

Figure 7 is a Western blot showing the expression of P501S in baculovirus.

Figure 8 illustrates the results of epitope mapping studies on P501S.

Figure 9 is a schematic representation of the P501S protein showing the location of transmembrane domains and predicted intracellular and extracellular domains.

Figure 10 is a genomic map showing the location of the prostate genes P775P, P704P, B305D, P712P and P774P within the Cat Eye Syndrome region of chromosome 22q11.2

Figure 11 shows the results of an ELISA assay of antibody specificity to P501S peptides.

SEQ ID NO: 1 is the determined cDNA sequence for F1-13

5

20

25

SEQ ID NO: 2 is the determined 3' cDNA sequence for F1-12

SEQ ID NO: 3 is the determined 5' cDNA sequence for F1-12

SEQ ID NO: 4 is the determined 3' cDNA sequence for F1-16

SEQ ID NO: 5 is the determined 3' cDNA sequence for H1-1

SEQ ID NO: 6 is the determined 3' cDNA sequence for H1-9

SEQ ID NO: 7 is the determined 3' cDNA sequence for H1-4

SEQ ID NO: 8 is the determined 3' cDNA sequence for J1-17 SEQ ID NO: 9 is the determined 5' cDNA sequence for J1-17 SEQ ID NO: 10 is the determined 3' cDNA sequence for L1-12 SEQ ID NO: 11 is the determined 5' cDNA sequence for L1-12 SEQ ID NO: 12 is the determined 3' cDNA sequence for N1-1862 SEQ ID NO: 13 is the determined 5' cDNA sequence for N1-1862 SEQ ID NO: 14 is the determined 3' cDNA sequence for J1-13 SEQ ID NO: 15 is the determined 5' cDNA sequence for J1-13 SEQ ID NO: 16 is the determined 3' cDNA sequence for J1-19 10 SEQ ID NO: 17 is the determined 5' cDNA sequence for J1-19 SEQ ID NO: 18 is the determined 3' cDNA sequence for J1-25 SEQ ID NO: 19 is the determined 5' cDNA sequence for J1-25 SEQ ID NO: 20 is the determined 5' cDNA sequence for J1-24 SEQ ID NO: 21 is the determined 3' cDNA sequence for J1-24 15 SEQ ID NO: 22 is the determined 5' cDNA sequence for K1-58 SEQ ID NO: 23 is the determined 3' cDNA sequence for K1-58 SEQ ID NO: 24 is the determined 5' cDNA sequence for K1-63 SEQ ID NO: 25 is the determined 3' cDNA sequence for K1-63 SEQ ID NO: 26 is the determined 5' cDNA sequence for L1-4 SEQ ID NO: 27 is the determined 3' cDNA sequence for L1-4 SEQ ID NO: 28 is the determined 5' cDNA sequence for L1-14 SEQ ID NO: 29 is the determined 3' cDNA sequence for L1-14 SEQ ID NO: 30 is the determined 3' cDNA sequence for J1-12 SEQ ID NO: 31 is the determined 3' cDNA sequence for J1-16 SEQ ID NO: 32 is the determined 3' cDNA sequence for J1-21 SEQ ID NO: 33 is the determined 3' cDNA sequence for K1-48 SEQ ID NO: 34 is the determined 3' cDNA sequence for K1-55 SEQ ID NO: 35 is the determined 3' cDNA sequence for L1-2 SEQ ID NO: 36 is the determined 3' cDNA sequence for L1-6 SEQ ID NO: 37 is the determined 3' cDNA sequence for N1-1858 SEQ ID NO: 38 is the determined 3' cDNA sequence for N1-1860 SEQ ID NO: 39 is the determined 3' cDNA sequence for N1-1861

SEQ ID NO: 40 is the determined 3' cDNA sequence for N1-1864

- SEQ ID NO: 41 is the determined cDNA sequence for P5
- SEQ ID NO: 42 is the determined cDNA sequence for P8
- SEQ ID NO: 43 is the determined cDNA sequence for P9
- SEQ ID NO: 44 is the determined cDNA sequence for P18
 - SEQ ID NO: 45 is the determined cDNA sequence for P20
 - SEQ ID NO: 46 is the determined cDNA sequence for P29
 - SEQ ID NO: 47 is the determined cDNA sequence for P30
 - SEQ ID NO: 48 is the determined cDNA sequence for P34
- 0 SEQ ID NO: 49 is the determined cDNA sequence for P36
 - SEQ ID NO: 50 is the determined cDNA sequence for P38
 - SEQ ID NO: 51 is the determined cDNA sequence for P39
 - SEQ ID NO: 52 is the determined cDNA sequence for P42
 - SEQ ID NO: 53 is the determined cDNA sequence for P47
- 15 SEQ ID NO: 54 is the determined cDNA sequence for P49
 - SEQ ID NO: 55 is the determined cDNA sequence for P50
 - SEQ ID NO: 56 is the determined cDNA sequence for P53
 - SEQ ID NO: 57 is the determined cDNA sequence for P55
 - SEQ ID NO: 58 is the determined cDNA sequence for P60
- 0 SEQ ID NO: 59 is the determined cDNA sequence for P64
 - SEQ ID NO: 60 is the determined cDNA sequence for P65
 - SEQ ID NO: 61 is the determined cDNA sequence for P73
 - SEQ ID NO: 62 is the determined cDNA sequence for P75
 - SEQ ID NO: 63 is the determined cDNA sequence for P76
- SEQ ID NO: 64 is the determined cDNA sequence for P79
 - SEQ ID NO: 65 is the determined cDNA sequence for P84
 - SEQ ID NO: 66 is the determined cDNA sequence for P68
 - SEQ ID NO: 67 is the determined cDNA sequence for P80
 - SEQ ID NO: 68 is the determined cDNA sequence for P82
- SEQ ID NO: 69 is the determined cDNA sequence for U1-3064
 - SEQ ID NO: 70 is the determined cDNA sequence for U1-3065
 - SEQ ID NO: 71 is the determined cDNA sequence for V1-3692

SEQ ID NO: 72 is the determined cDNA sequence for 1A-3905 SEQ ID NO: 73 is the determined cDNA sequence for V1-3686 SEQ ID NO: 74 is the determined cDNA sequence for R1-2330 SEQ ID NO: 75 is the determined cDNA sequence for 1B-3976 SEQ ID NO: 76 is the determined cDNA sequence for V1-3679 SEQ ID NO: 77 is the determined cDNA sequence for 1G-4736 SEQ ID NO: 78 is the determined cDNA sequence for 1G-4738 SEQ ID NO: 79 is the determined cDNA sequence for 1G-4741 SEQ ID NO: 80 is the determined cDNA sequence for 1G-4744 SEQ ID NO: 81 is the determined cDNA sequence for 1G-4734 SEQ ID NO: 82 is the determined cDNA sequence for 1H-4774 SEQ ID NO: 83 is the determined cDNA sequence for 1H-4781 SEQ ID NO: 84 is the determined cDNA sequence for 1H-4785 SEQ ID NO: 85 is the determined cDNA sequence for 1H-4787 15 SEQ ID NO: 86 is the determined cDNA sequence for 1H-4796 SEQ ID NO: 87 is the determined cDNA sequence for 1I-4807 SEO ID NO: 88 is the determined cDNA sequence for 1I-4810 SEQ ID NO: 89 is the determined cDNA sequence for 1I-4811 SEQ ID NO: 90 is the determined cDNA sequence for 1J-4876 SEQ ID NO: 91 is the determined cDNA sequence for 1K-4884 SEQ ID NO: 92 is the determined cDNA sequence for 1K-4896 SEO ID NO: 93 is the determined cDNA sequence for 1G-4761 SEQ ID NO: 94 is the determined cDNA sequence for 1G-4762 SEQ ID NO: 95 is the determined cDNA sequence for 1H-4766 SEQ ID NO: 96 is the determined cDNA sequence for 1H-4770 SEQ ID NO: 97 is the determined cDNA sequence for 1H-4771 SEQ ID NO: 98 is the determined cDNA sequence for 1H-4772 SEQ ID NO: 99 is the determined cDNA sequence for 1D-4297 SEQ ID NO: 100 is the determined cDNA sequence for 1D-4309 SEQ ID NO: 101 is the determined cDNA sequence for 1D.1-4278 SEQ ID NO: 102 is the determined cDNA sequence for 1D-4288 SEQ ID NO: 103 is the determined cDNA sequence for 1D-4283

```
SEQ ID NO: 104 is the determined cDNA sequence for 1D-4304
     SEQ ID NO: 105 is the determined cDNA sequence for 1D-4296
     SEQ ID NO: 106 is the determined cDNA sequence for 1D-4280
     SEQ ID NO: 107 is the determined full length cDNA sequence for F1-12 (also referred to as P504S)
 5
     SEQ ID NO: 108 is the predicted amino acid sequence for F1-12
     SEQ ID NO: 109 is the determined full length cDNA sequence for J1-17
    SEQ ID NO: 110 is the determined full length cDNA sequence for L1-12 (also referred to as P501S)
    SEQ ID NO: 111 is the determined full length cDNA sequence for N1-1862 (also referred to as
    P503S)
10
    SEQ ID NO: 112 is the predicted amino acid sequence for J1-17
    SEQ ID NO: 113 is the predicted amino acid sequence for L1-12 (also referred to as P501S)
    SEQ ID NO: 114 is the predicted amino acid sequence for N1-1862 (also referred to as P503S)
    SEQ ID NO: 115 is the determined cDNA sequence for P89
15 SEQ ID NO: 116 is the determined cDNA sequence for P90
    SEQ ID NO: 117 is the determined cDNA sequence for P92
    SEQ ID NO: 118 is the determined cDNA sequence for P95
    SEQ ID NO: 119 is the determined cDNA sequence for P98
    SEQ ID NO: 120 is the determined cDNA sequence for P102
    SEQ ID NO: 121 is the determined cDNA sequence for P110
    SEQ ID NO: 122 is the determined cDNA sequence for P111
    SEQ ID NO: 123 is the determined cDNA sequence for P114
    SEQ ID NO: 124 is the determined cDNA sequence for P115
    SEQ ID NO: 125 is the determined cDNA sequence for P116
   SEQ ID NO: 126 is the determined cDNA sequence for P124
    SEQ ID NO: 127 is the determined cDNA sequence for P126
    SEQ ID NO: 128 is the determined cDNA sequence for P130
    SEQ ID NO: 129 is the determined cDNA sequence for P133
    SEQ ID NO: 130 is the determined cDNA sequence for P138
   SEQ ID NO: 131 is the determined cDNA sequence for P143
```

SEQ ID NO: 132 is the determined cDNA sequence for P151 SEQ ID NO: 133 is the determined cDNA sequence for P156

SEQ ID NO: 134 is the determined cDNA sequence for P157 SEQ ID NO: 135 is the determined cDNA sequence for P166 SEQ ID NO: 136 is the determined cDNA sequence for P176 SEQID NO: 137 is the determined cDNA sequence for P178 SEQ ID NO: 138 is the determined cDNA sequence for P179 SEQ ID NO: 139 is the determined cDNA sequence for P185 SEQ ID NO: 140 is the determined cDNA sequence for P192 SEQ ID NO: 141 is the determined cDNA sequence for P201 SEQ ID NO: 142 is the determined cDNA sequence for P204 SEQ ID NO: 143 is the determined cDNA sequence for P208 SEQ ID NO: 144 is the determined cDNA sequence for P211 SEO ID NO: 145 is the determined cDNA sequence for P213 SEQ ID NO: 146 is the determined cDNA sequence for P219 SEQ ID NO: 147 is the determined cDNA sequence for P237 SEQ ID NO: 148 is the determined cDNA sequence for P239 SEQ ID NO: 149 is the determined cDNA sequence for P248 SEQ ID NO: 150 is the determined cDNA sequence for P251 SEQ ID NO: 151 is the determined cDNA sequence for P255 SEQ ID NO: 152 is the determined cDNA sequence for P256 SEQ ID NO: 153 is the determined cDNA sequence for P259 SEQ ID NO: 154 is the determined cDNA sequence for P260 SEQ ID NO: 155 is the determined cDNA sequence for P263 SEQ ID NO: 156 is the determined cDNA sequence for P264 SEO ID NO: 157 is the determined cDNA sequence for P266 SEQ ID NO: 158 is the determined cDNA sequence for P270. SEQ ID NO: 159 is the determined cDNA sequence for P272 SEQ ID NO: 160 is the determined cDNA sequence for P278 SEQ ID NO: 161 is the determined cDNA sequence for P105 SEQ ID NO: 162 is the determined cDNA sequence for P107 SEQ ID NO: 163 is the determined cDNA sequence for P137 SEQ ID NO: 164 is the determined cDNA sequence for P194 SEQ ID NO: 165 is the determined cDNA sequence for P195

.;

SEQ ID NO: 166 is the determined cDNA sequence for P196 SEQ ID NO: 167 is the determined cDNA sequence for P220 SEQ ID NO: 168 is the determined cDNA sequence for P234 SEQ ID NO: 169 is the determined cDNA sequence for P235 5 SEQ ID NO: 170 is the determined cDNA sequence for P243 SEQ ID NO: 171 is the determined cDNA sequence for P703P-DE1 SEQ ID NO: 172 is the predicted amino acid sequence for P703P-DE1 SEQ ID NO: 173 is the determined cDNA sequence for P703P-DE2 SEQ ID NO: 174 is the determined cDNA sequence for P703P-DE6 SEQ ID NO: 175 is the determined cDNA sequence for P703P-DE13 SEQ ID NO: 176 is the predicted amino acid sequence for P703P-DE13 SEQ ID NO: 177 is the determined cDNA sequence for P703P-DE14 SEQ ID NO: 178 is the predicted amino acid sequence for P703P-DE14 SEQ ID NO: 179 is the determined extended cDNA sequence for 1G-4736 SEQ ID NO: 180 is the determined extended cDNA sequence for 1G-4738 SEQ ID NO: 181 is the determined extended cDNA sequence for 1G-4741 SEQ ID NO: 182 is the determined extended cDNA sequence for 1G-4744 SEQ ID NO: 183 is the determined extended cDNA sequence for 1H-4774 SEQ ID NO: 184 is the determined extended cDNA sequence for 1H-4781 SEQ ID NO: 185 is the determined extended cDNA sequence for 1H-4785 SEQ ID NO: 186 is the determined extended cDNA sequence for 1H-4787 SEQ ID NO: 187 is the determined extended cDNA sequence for 1H-4796 SEQ ID NO: 188 is the determined extended cDNA sequence for 1I-4807 SEQ ID NO: 189 is the determined 3' cDNA sequence for 1I-4810 SEQ ID NO: 190 is the determined 3' cDNA sequence for 1I-4811 SEQ ID NO: 191 is the determined extended cDNA sequence for 1J-4876 SEQ ID NO: 192 is the determined extended cDNA sequence for 1K-4884 SEQ ID NO: 193 is the determined extended cDNA sequence for 1K-4896 SEQ ID NO: 194 is the determined extended cDNA sequence for 1G-4761 SEQ ID NO: 195 is the determined extended cDNA sequence for 1G-4762 SEQ ID NO: 196 is the determined extended cDNA sequence for 1H-4766 SEQ ID NO: 197 is the determined 3' cDNA sequence for 1H-4770

Ų,

SEQ ID NO: 198 is the determined 3' cDNA sequence for 1H-4771 SEQ ID NO: 199 is the determined extended cDNA sequence for 1H-4772 SEQ ID NO: 200 is the determined extended cDNA sequence for 1D-4309 SEQ ID NO: 201 is the determined extended cDNA sequence for 1D.1-4278 5 SEQ ID NO: 202 is the determined extended cDNA sequence for 1D-4288 SEQ ID NO: 203 is the determined extended cDNA sequence for 1D-4283 SEQ ID NO: 204 is the determined extended cDNA sequence for 1D-4304 SEQ ID NO: 205 is the determined extended cDNA sequence for 1D-4296 SEQ ID NO: 206 is the determined extended cDNA sequence for 1D-4280 10 SEQ ID NO: 207 is the determined cDNA sequence for 10-d8fwd SEQ ID NO: 208 is the determined cDNA sequence for 10-H10con SEQ ID NO: 209 is the determined cDNA sequence for 11-C8rev SEQ ID NO: 210 is the determined cDNA sequence for 7.g6fwd SEQ ID NO: 211 is the determined cDNA sequence for 7.g6rev 15 SEQ ID NO: 212 is the determined cDNA sequence for 8-b5fwd SEQ ID NO: 213 is the determined cDNA sequence for 8-b5rev SEQ ID NO: 214 is the determined cDNA sequence for 8-b6fwd SEQ ID NO: 215 is the determined cDNA sequence for 8-b6 rev SEQ ID NO: 216 is the determined cDNA sequence for 8-d4fwd 20 SEQ ID NO: 217 is the determined cDNA sequence for 8-d9rev SEQ ID NO: 218 is the determined cDNA sequence for 8-g3fwd SEQ ID NO: 219 is the determined cDNA sequence for 8-g3rev SEQ ID NO: 220 is the determined cDNA sequence for 8-h11rev SEQ ID NO: 221 is the determined cDNA sequence for g-f12fwd SEQ ID NO: 222 is the determined cDNA sequence for g-f3rev SEQ ID NO: 223 is the determined cDNA sequence for P509S SEQ ID NO: 224 is the determined cDNA sequence for P510S SEQ ID NO: 225 is the determined cDNA sequence for P703DE5 SEQ ID NO: 226 is the determined cDNA sequence for 9-A11 SEQ ID NO: 227 is the determined cDNA sequence for 8-C6 SEQ ID NO: 228 is the determined cDNA sequence for 8-H7 SEQ ID NO: 229 is the determined cDNA sequence for JPTPN13

SEQ ID NO: 230 is the determined cDNA sequence for JPTPN14 SEQ ID NO: 231 is the determined cDNA sequence for JPTPN23 SEQ ID NO: 232 is the determined cDNA sequence for JPTPN24 SEQ ID NO: 233 is the determined cDNA sequence for JPTPN25 SEQ ID NO: 234 is the determined cDNA sequence for JPTPN30 SEQ ID NO: 235 is the determined cDNA sequence for JPTPN34 SEQ ID NO: 236 is the determined cDNA sequence for PTPN35 SEQ ID NO: 237 is the determined cDNA sequence for JPTPN36 SEQ ID NO: 238 is the determined cDNA sequence for JPTPN38 SEQ ID NO: 239 is the determined cDNA sequence for JPTPN39 10 SEQ ID NO: 240 is the determined cDNA sequence for JPTPN40 SEQ ID NO: 241 is the determined cDNA sequence for JPTPN41 SEQ ID NO: 242 is the determined cDNA sequence for JPTPN42 SEQ ID NO: 243 is the determined cDNA sequence for JPTPN45 SEQ ID NO: 244 is the determined cDNA sequence for JPTPN46 15 SEQ ID NO: 245 is the determined cDNA sequence for JPTPN51 SEQ ID NO: 246 is the determined cDNA sequence for JPTPN56 SEQ ID NO: 247 is the determined cDNA sequence for PTPN64 SEQ ID NO: 248 is the determined cDNA sequence for JPTPN65 SEQ ID NO: 249 is the determined cDNA sequence for JPTPN67 SEQ ID NO: 250 is the determined cDNA sequence for JPTPN76 SEQ ID NO: 251 is the determined cDNA sequence for JPTPN84 SEQ ID NO: 252 is the determined cDNA sequence for JPTPN85 SEQ ID NO: 253 is the determined cDNA sequence for JPTPN86 SEQ ID NO: 254 is the determined cDNA sequence for JPTPN87 SEQ ID NO: 255 is the determined cDNA sequence for JPTPN88 SEQ ID NO: 256 is the determined cDNA sequence for JP1F1 SEQ ID NO: 257 is the determined cDNA sequence for JP1F2 SEQ ID NO: 258 is the determined cDNA sequence for JP1C2 SEQ ID NO: 259 is the determined cDNA sequence for JP1B1 SEQ ID NO: 260 is the determined cDNA sequence for JP1B2 SEQ ID NO: 261 is the determined cDNA sequence for JP1D3

SEQ ID NO: 262 is the determined cDNA sequence for JP1A4 SEQ ID NO: 263 is the determined cDNA sequence for JP1F5 SEQ ID NO: 264 is the determined cDNA sequence for JP1E6 SEQ ID NO: 265 is the determined cDNA sequence for JP1D6 SEQ ID NO: 266 is the determined cDNA sequence for JP1B5 SEQ ID NO: 267 is the determined cDNA sequence for JP1A6 SEQ ID NO: 268 is the determined cDNA sequence for JP1E8 SEQ ID NO: 269 is the determined cDNA sequence for JP1D7 SEQ ID NO: 270 is the determined cDNA sequence for JP1D9 SEQ ID NO: 271 is the determined cDNA sequence for JP1C10 SEQ ID NO: 272 is the determined cDNA sequence for JP1A9 SEQ ID NO: 273 is the determined cDNA sequence for JP1F12 SEQ ID NO: 274 is the determined cDNA sequence for JP1E12 SEQ ID NO: 275 is the determined cDNA sequence for JP1D11 SEQ ID NO: 276 is the determined cDNA sequence for JP1C11 SEQ ID NO: 277 is the determined cDNA sequence for JP1C12 SEQ ID NO: 278 is the determined cDNA sequence for JP1B12 SEQ ID NO: 279 is the determined cDNA sequence for JP1A12 SEQ ID NO: 280 is the determined cDNA sequence for JP8G2 SEQ ID NO: 281 is the determined cDNA sequence for JP8H1 SEQ ID NO: 282 is the determined cDNA sequence for JP8H2 SEQ ID NO: 283 is the determined cDNA sequence for JP8A3 SEQ ID NO: 284 is the determined cDNA sequence for JP8A4 SEQ ID NO: 285 is the determined cDNA sequence for JP8C3 SEQ ID NO: 286 is the determined cDNA sequence for JP8G4 SEQ ID NO: 287 is the determined cDNA sequence for JP8B6 SEO ID NO: 288 is the determined cDNA sequence for JP8D6 SEQ ID NO: 289 is the determined cDNA sequence for JP8F5 SEQ ID NO: 290 is the determined cDNA sequence for JP8A8 SEQ ID NO: 291 is the determined cDNA sequence for JP8C7 SEQ ID NO: 292 is the determined cDNA sequence for JP8D7 SEQ ID NO: 293 is the determined cDNA sequence for P8D8

SEQ ID NO: 294 is the determined cDNA sequence for JP8E7

SEQ ID NO: 295 is the determined cDNA sequence for JP8F8

SEQ ID NO: 296 is the determined cDNA sequence for JP8G8

SEQ ID NO: 297 is the determined cDNA sequence for JP8B10

5 SEQ ID NO: 298 is the determined cDNA sequence for JP8C10

SEQ ID NO: 299 is the determined cDNA sequence for JP8E9

SEQ ID NO: 300 is the determined cDNA sequence for JP8E10

SEQ ID NO: 301 is the determined cDNA sequence for JP8F9

SEQ ID NO: 302 is the determined cDNA sequence for JP8H9

0 SEQ ID NO: 303 is the determined cDNA sequence for JP8C12

SEQ ID NO: 304 is the determined cDNA sequence for JP8E11

SEQ ID NO: 305 is the determined cDNA sequence for JP8E12

SEQ ID NO: 306 is the amino acid sequence for the peptide PS2#12

SEQ ID NO: 307 is the determined cDNA sequence for P711P

SEQ ID NO: 308 is the determined cDNA sequence for P712P

SEQ ID NO: 309 is the determined cDNA sequence for CLONE23

SEQ ID NO: 310 is the determined cDNA sequence for P774P

SEQ ID NO: 311 is the determined cDNA sequence for P775P

SEQ ID NO: 312 is the determined cDNA sequence for P715P

20 SEQ ID NO: 313 is the determined cDNA sequence for P710P

SEQ ID NO: 314 is the determined cDNA sequence for P767P

SEQ ID NO: 315 is the determined cDNA sequence for P768P

SEQ ID NO: 316-325 are the determined cDNA sequences of previously isolated genes

SEQ ID NO: 326 is the determined cDNA sequence for P703PDE5

SEQ ID NO: 327 is the predicted amino acid sequence for P703PDE5

SEQ ID NO: 328 is the determined cDNA sequence for P703P6.26

SEQ ID NO: 329 is the predicted amino acid sequence for P703P6.26

SEQ ID NO: 330 is the determined cDNA sequence for P703PX-23

SEQ ID NO: 331 is the predicted amino acid sequence for P703PX-23

SEQ ID NO: 332 is the determined full length cDNA sequence for P509S

SEQ ID NO: 333 is the determined extended cDNA sequence for P707P (also referred to as 11-C9)

SEQ ID NO: 334 is the determined cDNA sequence for P714P

SEQ ID NO: 335 is the determined cDNA sequence for P705P (also referred to as 9-F3)

- SEQ ID NO: 336 is the predicted amino acid sequence for P705P
- SEQ ID NO: 337 is the amino acid sequence of the peptide P1S#10
- SEQ ID NO: 338 is the amino acid sequence of the peptide p5
- SEQ ID NO: 339 is the predicted amino acid sequence of P509S
 - SEQ ID NO: 340 is the determined cDNA sequence for P778P
 - SEQ ID NO: 341 is the determined cDNA sequence for P786P
 - SEQ ID NO: 342 is the determined cDNA sequence for P789P
 - SEQ ID NO: 343 is the determined cDNA sequence for a clone showing homology to Homo
- 10 sapiens MM46 mRNA
 - SEQ ID NO: 344 is the determined cDNA sequence for a clone showing homology to Homo sapiens TNF-alpha stimulated ABC protein (ABC50) mRNA
 - SEQ ID NO: 345 is the determined cDNA sequence for a clone showing homology to Homo sapiens mRNA for E-cadherin
- SEQ ID NO: 346 is the determined cDNA sequence for a clone showing homology to Human nuclear-encoded mitochondrial serine hydroxymethyltransferase (SHMT)
 - SEQ ID NO: 347 is the determined cDNA sequence for a clone showing homology to Homo sapiens natural resistance-associated macrophage protein2 (NRAMP2)
 - SEQ ID NO: 348 is the determined cDNA sequence for a clone showing homology to Homo
- sapiens phosphoglucomutase-related protein (PGMRP)
 - SEQ ID NO: 349 is the determined cDNA sequence for a clone showing homology to Human mRNA for proteosome subunit p40
 - SEQ ID NO: 350 is the determined cDNA sequence for P777P
 - SEQ ID NO: 351 is the determined cDNA sequence for P779P
- SEQ ID NO: 352 is the determined cDNA sequence for P790P
 - SEQ ID NO: 353 is the determined cDNA sequence for P784P
 - SEQ ID NO: 354 is the determined cDNA sequence for P776P
 - SEQ ID NO: 355 is the determined cDNA sequence for P780P
 - SEQ ID NO: 356 is the determined cDNA sequence for P544S
- SEQ ID NO: 357 is the determined cDNA sequence for P745S
 - SEQ ID NO: 358 is the determined cDNA sequence for P782P
 - SEQ ID NO: 359 is the determined cDNA sequence for P783P

SEQ ID NO: 360 is the determined cDNA sequence for unknown 17984

SEQ ID NO: 361 is the determined cDNA sequence for P787P

SEQ ID NO: 362 is the determined cDNA sequence for P788P

SEQ ID NO: 363 is the determined cDNA sequence for unknown 17994

SEQ ID NO: 364 is the determined cDNA sequence for P781P

SEQ ID NO: 365 is the determined cDNA sequence for P785P

SEQ ID NO: 366-375 are the determined cDNA sequences for splice variants of B305D.

SEQ ID NO: 376 is the predicted amino acid sequence encoded by the sequence of SEQ ID NO: 366.

SEQ ID NO: 377 is the predicted amino acid sequence encoded by the sequence of SEQ ID NO: 372.

SEQ ID NO: 378 is the predicted amino acid sequence encoded by the sequence of SEQ ID NO: 373.

SEQ ID NO: 379 is the predicted amino acid sequence encoded by the sequence of SEQ ID NO:

15 374.

SEQ ID NO: 380 is the predicted amino acid sequence encoded by the sequence of SEQ ID NO: 375.

SEQ ID NO: 381 is the determined cDNA sequence for B716P.

SEQ ID NO: 382 is the determined full-length cDNA sequence for P711P.

SEQ ID NO: 383 is the predicted amino acid sequence for P711P.

SEQ ID NO: 384 is the cDNA sequence for P1000C.

SEQ ID NO: 385 is the cDNA sequence for CGI-82.

SEQ ID NO:386 is the cDNA sequence for 23320.

SEQ ID NO:387 is the cDNA sequence for CGI-69.

25 SEQ ID NO:388 is the cDNA sequence for L-iditol-2-dehydrogenase.

SEQ ID NO:389 is the cDNA sequence for 23379.

SEQ ID NO:390 is the cDNA sequence for 23381.

SEQ ID NO:391 is the cDNA sequence for KIAA0122.

SEQ ID NO:392 is the cDNA sequence for 23399.

30 SEQ ID NO:393 is the cDNA sequence for a previously identified gene.

SEQ ID NO:394 is the cDNA sequence for HCLBP.

SEQ ID NO:395 is the cDNA sequence for transglutaminase.

SEQ ID NO:396 is the cDNA sequence for a previously identified gene.

- SEQ ID NO:397 is the cDNA sequence for PAP.
- SEQ ID NO:398 is the cDNA sequence for Ets transcription factor PDEF.
- SEQ ID NO:399 is the cDNA sequence for hTGR.
- 5 SEQ ID NO:400 is the cDNA sequence for KIAA0295.
 - SEQ ID NO:401 is the cDNA sequence for 22545.
 - SEQ ID NO:402 is the cDNA sequence for 22547.
 - SEQ ID NO:403 is the cDNA sequence for 22548:
 - SEQ ID NO:404 is the cDNA sequence for 22550.
- SEQ ID NO:405 is the cDNA sequence for 22551.
 - SEQ ID NO:406 is the cDNA sequence for 22552.
 - SEQ ID NO:407 is the cDNA sequence for 22553.
 - SEQ ID NO:408 is the cDNA sequence for 22558.
 - SEQ ID NO:409 is the cDNA sequence for 22562.
- 15 SEQ ID NO:410 is the cDNA sequence for 22565.
 - SEQ ID NO:411 is the cDNA sequence for 22567.
 - SEQ ID NO:412 is the cDNA sequence for 22568.
 - SEQ ID NO:413 is the cDNA sequence for 22570.
 - SEQ ID NO:414 is the cDNA sequence for 22571.
- SEQ ID NO:415 is the cDNA sequence for 22572.
 - SEQ ID NO:416 is the cDNA sequence for 22573.
 - SEQ ID NO:417 is the cDNA sequence for 22573.
 - SEQ ID NO:418 is the cDNA sequence for 22575.
 - SEQ ID NO:419 is the cDNA sequence for 22580.
- 25 SEQ ID NO:420 is the cDNA sequence for 22581.
 - SEQ ID NO:421 is the cDNA sequence for 22582.
 - SEQ ID NO:422 is the cDNA sequence for 22583.
 - SEQ ID NO:423 is the cDNA sequence for 22584.
 - SEQ ID NO:424 is the cDNA sequence for 22585.
- SEQ ID NO:425 is the cDNA sequence for 22586.
 - SEQ ID NO:426 is the cDNA sequence for 22587.
 - SEQ ID NO:427 is the cDNA sequence for 22588.

- SEQ ID NO:428 is the cDNA sequence for 22589.
- SEQ ID NO:429 is the cDNA sequence for 22590.
- SEQ ID NO:430 is the cDNA sequence for 22591.
- SEQ ID NO:431 is the cDNA sequence for 22592.
- 5 SEQ ID NO:432 is the cDNA sequence for 22593.
 - SEO ID NO:433 is the cDNA sequence for 22594.
 - SEQ ID NO:434 is the cDNA sequence for 22595.
 - SEQ ID NO:435 is the cDNA sequence for 22596.
 - SEQ ID NO:436 is the cDNA sequence for 22847.
- o SEQ ID NO:437 is the cDNA sequence for 22848.
 - SEQ ID NO:438 is the cDNA sequence for 22849.
 - SEQ ID NO:439 is the cDNA sequence for 22851.
 - SEO ID NO:440 is the cDNA sequence for 22852.
 - SEQ ID NO:441 is the cDNA sequence for 22853.
- 5 SEQ ID NO:442 is the cDNA sequence for 22854.
 - SEQ ID NO:443 is the cDNA sequence for 22855.
 - SEQ ID NO:444 is the cDNA sequence for 22856.
 - SEQ ID NO:445 is the cDNA sequence for 22857.
 - SEQ ID NO:446 is the cDNA sequence for 23601.
- SEQ ID NO:447 is the cDNA sequence for 23602.
 - SEQ ID NO:448 is the cDNA sequence for 23605.
 - SEQ ID NO:449 is the cDNA sequence for 23606.
 - SEQ ID NO:450 is the cDNA sequence for 23612.
 - SEQ ID NO:451 is the cDNA sequence for 23614.
- 25 SEQ ID NO:452 is the cDNA sequence for 23618.
 - SEQ ID NO:453 is the cDNA sequence for 23622.
 - SEQ ID NO:454 is the cDNA sequence for folate hydrolase.
 - SEQ ID NO:455 is the cDNA sequence for LIM protein.
 - SEQ ID NO:456 is the cDNA sequence for a known gene.
- SEO ID NO:457 is the cDNA sequence for a known gene.
 - SEQ ID NO:458 is the cDNA sequence for a previously identified gene.
 - SEQ ID NO:459 is the cDNA sequence for 23045.

- SEQ ID NO:460 is the cDNA sequence for 23032.
- SEQ ID NO:461 is the cDNA sequence for 23054.
- SEQ ID NO:462-467 are cDNA sequences for known genes.
- SEQ ID NO:468-471 are cDNA sequences for P710P.
- 5 SEQ ID NO:472 is a cDNA sequence for P1001C.
 - SEQ ID NO: 473 is the determined cDNA sequence for a first splice variant of P775P (referred to as 27505).
 - SEQ ID NO: 474 is the determined cDNA sequence for a second splice variant of P775P (referred to as 19947).
- SEQ ID NO: 475 is the determined cDNA sequence for a third splice variant of P775P (referred to as 19941).
 - SEQ ID NO: 476 is the determined cDNA sequence for a fourth splice variant of P775P (referred to as 19937).
- SEQ ID NO: 477 is a first predicted amino acid sequence encoded by the sequence of SEQ ID NO: 474.
 - SEQ ID NO: 478 is a second predicted amino acid sequence encoded by the sequence of SEQ ID NO: 474.
 - SEQ ID NO: 479 is the predicted amino acid sequence encoded by the sequence of SEQ ID NO: 475.
- SEQ ID NO: 480 is a first predicted amino acid sequence encoded by the sequence of SEQ ID NO: 473.
 - SEQ ID NO: 481 is a second predicted amino acid sequence encoded by the sequence of SEQ ID NO: 473.
 - SEQ ID NO: 482 is a third predicted amino acid sequence encoded by the sequence of SEQ ID NO:
 - SEQ ID NO: 483 is a fourth predicted amino acid sequence encoded by the sequence of SEQ ID NO: 473.
 - SEQ ID NO: 484 is the first 30 amino acids of the M. tuberculosis antigen Ra12.
 - SEQ ID NO: 485 is the PCR primer AW025.
- SEQ ID NO: 486 is the PCR primer AW003.

473.

25

- SEQ ID NO: 487 is the PCR primer AW027.
- SEQ ID NO: 488 is the PCR primer AW026.

SEQ ID NO: 489-501 are peptides employed in epitope mapping studies.

SEQ ID NO: 502 is the determined cDNA sequence of the complementarity determining region for the anti-P503S monoclonal antibody 20D4.

SEQ ID NO: 503 is the determined cDNA sequence of the complementarity determining region for the anti-P503S monoclonal antibody JA1.

SEQ ID NO: 504 & 505 are peptides employed in epitope mapping studies.

SEQ ID NO: 506 is the determined cDNA sequence of the complementarity determining region for the anti-P703P monoclonal antibody 8H2.

SEQ ID NO: 507 is the determined cDNA sequence of the complementarity determining region for the anti-P703P monoclonal antibody 7H8.

SEQ ID NO: 508 is the determined cDNA sequence of the complementarity determining region for the anti-P703P monoclonal antibody 2D4.

SEQ ID NO: 509-522 are peptides employed in epitope mapping studies.

SEQ ID NO: 523 is a mature form of P703P used to raise antibodies against P703P.SEQ ID NO:

15 524 is the putative full-length cDNA sequence of P703P.

SEQ ID NO: 525 is the predicted amino acid sequence encoded by SEQ ID NO: 524.

SEQ ID NO: 526 is the full-length cDNA sequence for P790P.

SEQ ID NO: 527 is the predicted amino acid sequence for P790P.

SEQ ID NO: 528 & 529 are PCR primers.

20 SEQ ID NO: 530 is the cDNA sequence of a splice variant of SEQ ID NO: 366.

SEQ ID NO: 531 is the cDNA sequence of the open reading frame of SEQ ID NO: 530.

SEQ ID NO: 532 is the predicted amino acid encoded by the sequence of SEQ ID NO: 531.

SEQ ID NO: 533 is the DNA sequence of a putative ORF of P775P.

SEQ ID NO: 534 is the predicted amino acid sequence encoded by SEQ ID NO: 533.

SEQ ID NO: 535 is a first full-length cDNA sequence for P510S.

SEQ ID NO: 536 is a second full-length cDNA sequence for P510S.

SEQ ID NO: 537 is the predicted amino acid sequence encoded by SEQ ID NO: 535.

SEQ ID NO: 538 is the predicted amino acid sequence encoded by SEQ ID NO: 536.

SEQ ID NO: 539 is the peptide P501S-370.

30 SEQ ID NO: 540 is the peptide P501S-376.

SEQ ID NO: 541-550 are epitopes of P501S.

SEQ ID NO: 551 corresponds to amino acids 543-553 of P501S.

DETAILED DESCRIPTION OF THE INVENTION

10

15

20

25

30

As noted above, the present invention is generally directed to compositions and methods for the therapy and diagnosis of cancer, such as prostate cancer. The compositions described herein may include prostate-specific polypeptides, polynucleotides encoding such polypeptides, binding agents such as antibodies, antigen presenting cells (APCs) and/or immune system cells (e.g., T cells). Polypeptides of the present invention generally comprise at least a portion (such as an immunogenic portion) of a prostate-specific protein or a variant thereof. A "prostate-specific protein" is a protein that is expressed in normal prostate and/or prostate tumor cells at a level that is at least two fold, and preferably at least five fold, greater than the level of expression in a non-prostate normal tissue, as determined using a representative assay provided herein. Certain prostate-specific proteins are proteins that react detectably (within an immunoassay, such as an ELISA or Western blot) with antisera of a patient afflicted with prostate cancer. Polynucleotides of the subject invention generally comprise a DNA or RNA sequence that encodes all or a portion of such a polypeptide, or that is complementary to such a sequence. Antibodies are generally immune system proteins, or antigen-binding fragments thereof, that are capable of binding to a polypeptide as described above. Antigen presenting cells include dendritic cells, macrophages, monocytes, fibroblasts and B-cells that express a polypeptide as described above. T cells that may be employed within such compositions are generally T cells that are specific for a polypeptide as described above.

The present invention is based on the discovery of human prostate-specific proteins. Sequences of polynucleotides encoding certain prostate-specific proteins, or portions thereof, are provided in SEQ ID NOs:1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382, 384-476, 524, 526, 530, 531, 533, 535 and 536. Sequences of polypeptides comprising at least a portion of a prostate-specific protein are provided in SEQ ID NOs:112-114, 172, 176, 178, 327, 329, 331, 336, 339, 376-380, 383, 477-483, 496, 504, 505, 519, 520, 522, 525, 527, 532, 534 and 537-550.

PROSTATE-SPECIFIC PROTEIN POLYNUCLEOTIDES

Any polynucleotide that encodes a prostate-specific protein or a portion or other variant thereof as described herein is encompassed by the present invention. Preferred

1

polynucleotides comprise at least 15 consecutive nucleotides, preferably at least 30 consecutive nucleotides and more preferably at least 45 consecutive nucleotides, that encode a portion of a prostate-specific protein. More preferably, a polynucleotide encodes an immunogenic portion of a prostate-specific protein. Polynucleotides complementary to any such sequences are also encompassed by the present invention. Polynucleotides may be single-stranded (coding or antisense) or double-stranded, and may be DNA (genomic, cDNA or synthetic) or RNA molecules. RNA molecules include HnRNA molecules, which contain introns and correspond to a DNA molecule in a one-to-one manner, and mRNA molecules, which do not contain introns. Additional coding or non-coding sequences may, but need not, be present within a polynucleotide of the present invention, and a polynucleotide may, but need not, be linked to other molecules and/or support materials.

Polynucleotides may comprise a native sequence (i.e., an endogenous sequence that encodes a prostate-specific protein or a portion thereof) or may comprise a variant of such a sequence. Polynucleotide variants may contain one or more substitutions, additions, deletions and/or insertions such that the immunogenicity of the encoded polypeptide is not diminished, relative to a native protein. The effect on the immunogenicity of the encoded polypeptide may generally be assessed as described herein. Variants preferably exhibit at least about 70% identity, more preferably at least about 80% identity and most preferably at least about 90% identity to a polynucleotide sequence that encodes a native prostate-specific protein or a portion thereof. The term "variants" also encompasses homologous genes of xenogenic origin.

Two polynucleotide or polypeptide sequences are said to be "identical" if the sequence of nucleotides or amino acids in the two sequences is the same when aligned for maximum correspondence as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity. A "comparison window" as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, 40 to about 50, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.

20

Optimal alignment of sequences for comparison may be conducted using the
Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison,
WI), using default parameters. This program embodies several alignment schemes described in the
following references: Dayhoff, M.O. (1978) A model of evolutionary change in proteins – Matrices

24

for detecting distant relationships. In Dayhoff, M.O. (ed.) Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, Washington DC Vol. 5, Suppl. 3, pp. 345-358; Hein J. (1990) Unified Approach to Alignment and Phylogenes pp. 626-645 *Methods in Enzymology* vol. 183, Academic Press, Inc., San Diego, CA; Higgins, D.G. and Sharp, P.M. (1989) *CABIOS* 5:151-153; Myers, E.W. and Muller W. (1988) *CABIOS* 4:11-17; Robinson, E.D. (1971) *Comb. Theor 11*:105; Santou, N. Nes, M. (1987) *Mol. Biol. Evol.* 4:406-425; Sneath, P.H.A. and Sokal, R.R. (1973) *Numerical Taxonomy – the Principles and Practice of Numerical Taxonomy*, Freeman Press, San Francisco, CA; Wilbur, W.J. and Lipman, D.J. (1983) *Proc. Natl. Acad., Sci. USA* 80:726-730.

Preferably, the "percentage of sequence identity" is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide or polypeptide sequence in the comparison window may comprise additions or deletions (*i.e.*, gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid bases or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (*i.e.*, the window size) and multiplying the results by 100 to yield the percentage of sequence identity.

10

15

20

25

30

Variants may also, or alternatively, be substantially homologous to a native gene, or a portion or complement thereof. Such polynucleotide variants are capable of hybridizing under moderately stringent conditions to a naturally occurring DNA sequence encoding a native prostate-specific protein (or a complementary sequence). Suitable moderately stringent conditions include prewashing in a solution of 5 X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50°C-65°C, 5 X SSC, overnight; followed by washing twice at 65°C for 20 minutes with each of 2X, 0.5X and 0.2X SSC containing 0.1% SDS.

It will be appreciated by those of ordinary skill in the art that, as a result of the degeneracy of the genetic code, there are many nucleotide sequences that encode a polypeptide as described herein. Some of these polynucleotides bear minimal homology to the nucleotide sequence of any native gene. Nonetheless, polynucleotides that vary due to differences in codon usage are specifically contemplated by the present invention. Further, alleles of the genes comprising the polynucleotide sequences provided herein are within the scope of the present invention. Alleles are endogenous genes that are altered as a result of one or more mutations, such

as deletions, additions and/or substitutions of nucleotides. The resulting mRNA and protein may, but need not, have an altered structure or function. Alleles may be identified using standard techniques (such as hybridization, amplification and/or database sequence comparison).

Polynucleotides may be prepared using any of a variety of techniques. For example, a polynucleotide may be identified, as described in more detail below, by screening a microarray of cDNAs for tumor-associated expression (*i.e.*, expression that is at least five fold greater in a prostate-specific than in normal tissue, as determined using a representative assay provided herein). Such screens may be performed using a Synteni microarray (Palo Alto, CA) according to the manufacturer's instructions (and essentially as described by Schena et al., *Proc. Natl. Acad. Sci. USA 93*:10614-10619, 1996 and Heller et al., *Proc. Natl. Acad. Sci. USA 94*:2150-2155, 1997). Alternatively, polypeptides may be amplified from cDNA prepared from cells expressing the proteins described herein, such as prostate-specific cells. Such polynucleotides may be amplified via polymerase chain reaction (PCR). For this approach, sequence-specific primers may be designed based on the sequences provided herein, and may be purchased or synthesized.

10

15

20

25

30

An amplified portion may be used to isolate a full length gene from a suitable library (e.g., a prostate-specific cDNA library) using well known techniques. Within such techniques, a library (cDNA or genomic) is screened using one or more polynucleotide probes or primers suitable for amplification. Preferably, a library is size-selected to include larger molecules. Random primed libraries may also be preferred for identifying 5' and upstream regions of genes. Genomic libraries are preferred for obtaining introns and extending 5' sequences.

For hybridization techniques, a partial sequence may be labeled (e.g., by nick-translation or end-labeling with ³²P) using well known techniques. A bacterial or bacteriophage library is then screened by hybridizing filters containing denatured bacterial colonies (or lawns containing phage plaques) with the labeled probe (see Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989). Hybridizing colonies or plaques are selected and expanded, and the DNA is isolated for further analysis. cDNA clones may be analyzed to determine the amount of additional sequence by, for example, PCR using a primer from the partial sequence and a primer from the vector. Restriction maps and partial sequences may be generated to identify one or more overlapping clones. The complete sequence may then be determined using standard techniques, which may involve generating a series of deletion clones. The resulting overlapping sequences are then assembled into

a single contiguous sequence. A full length cDNA molecule can be generated by ligating suitable fragments; using well known techniques.

Alternatively, there are numerous amplification techniques for obtaining a full length coding sequence from a partial cDNA sequence. Within such techniques, amplification is generally performed via PCR. Any of a variety of commercially available kits may be used to perform the amplification step. Primers may be designed using, for example, software well known in the art. Primers are preferably 22-30 nucleotides in length, have a GC content of at least 50% and anneal to the target sequence at temperatures of about 68°C to 72°C. The amplified region may be sequenced as described above, and overlapping sequences assembled into a contiguous sequence.

10

15

20

25

30

One such amplification technique is inverse PCR (see Triglia et al., Nucl. Acids Res. 16:8186, 1988), which uses restriction enzymes to generate a fragment in the known region of the gene. The fragment is then circularized by intramolecular ligation and used as a template for PCR with divergent primers derived from the known region. Within an alternative approach, sequences adjacent to a partial sequence may be retrieved by amplification with a primer to a linker sequence and a primer specific to a known region. The amplified sequences are typically subjected to a second round of amplification with the same linker primer and a second primer specific to the known region. A variation on this procedure, which employs two primers that initiate extension in opposite directions from the known sequence, is described in WO 96/38591. Another such technique is known as "rapid amplification of cDNA ends" or RACE. This technique involves the use of an internal primer and an external primer, which hybridizes to a polyA region or vector sequence, to identify sequences that are 5' and 3' of a known sequence. Additional techniques include capture PCR (Lagerstrom et al., PCR Methods Applic. 1:111-19, 1991) and walking PCR (Parker et al., Nucl. Acids. Res. 19:3055-60, 1991). Other methods employing amplification may also be employed to obtain a full length cDNA sequence.

In certain instances, it is possible to obtain a full length cDNA sequence by analysis of sequences provided in an expressed sequence tag (EST) database, such as that available from GenBank. Searches for overlapping ESTs may generally be performed using well known programs (e.g., NCBI BLAST searches), and such ESTs may be used to generate a contiguous full length sequence. Full length DNA sequences may also be obtained by analysis of genomic fragments.

Certain nucleic acid sequences of cDNA molecules encoding at least a portion of a prostate-specific protein are provided in SEQ ID NO:1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382, 384-476, 524, 526, 530, 531, 533, 535 and 536.

Isolation of these polynucleotides is described below. Each of these prostate-specific proteins was overexpressed in prostate tumor tissue.

Polynucleotide variants may generally be prepared by any method known in the art, including chemical synthesis by, for example, solid phase phosphoramidite chemical synthesis. Modifications in a polynucleotide sequence may also be introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis (see Adelman et al., DNA 2:183, 1983). Alternatively, RNA molecules may be generated by in vitro or in vivo transcription of DNA sequences encoding a prostate-specific protein, or portion thereof, provided that the DNA is incorporated into a vector with a suitable RNA polymerase promoter (such as T7 or SP6). Certain portions may be used to prepare an encoded polypeptide, as described herein. In addition, or alternatively, a portion may be administered to a patient such that the encoded polypeptide is generated in vivo (e.g., by transfecting antigen-presenting cells, such as dendritic cells, with a cDNA construct encoding a prostate-specific polypeptide, and administering the transfected cells to the patient).

10

15

20

25

30

A portion of a sequence complementary to a coding sequence (*i.e.*, an antisense polynucleotide) may also be used as a probe or to modulate gene expression. cDNA constructs that can be transcribed into antisense RNA may also be introduced into cells of tissues to facilitate the production of antisense RNA. An antisense polynucleotide may be used, as described herein, to inhibit expression of a protein. Antisense technology can be used to control gene expression through triple-helix formation, which compromises the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors or regulatory molecules (*see* Gee et al., *In* Huber and Carr, *Molecular and Immunologic Approaches*, Futura Publishing Co. (Mt. Kisco, NY; 1994)). Alternatively, an antisense molecule may be designed to hybridize with a control region of a gene (*e.g.*, promoter, enhancer or transcription initiation site), and block transcription of the gene; or to block translation by inhibiting binding of a transcript to ribosomes.

A portion of a coding sequence, or of a complementary sequence, may also be designed as a probe or primer to detect gene expression. Probes may be labeled with a variety of reporter groups, such as radionuclides and enzymes, and are preferably at least 10 nucleotides in length, more preferably at least 20 nucleotides in length and still more preferably at least 30 nucleotides in length. Primers, as noted above, are preferably 22-30 nucleotides in length.

Any polynucleotide may be further modified to increase stability *in vivo*. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3'

ends; the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages in the backbone; and/or the inclusion of nontraditional bases such as inosine, queosine and wybutosine, as well as acetyl- methyl-, thio- and other modified forms of adenine, cytidine, guanine, thymine and uridine.

5

20

25

30

Nucleotide sequences as described herein may be joined to a variety of other nucleotide sequences using established recombinant DNA techniques. For example, a polynucleotide may be cloned into any of a variety of cloning vectors, including plasmids, phagemids, lambda phage derivatives and cosmids. Vectors of particular interest include expression vectors, replication vectors, probe generation vectors and sequencing vectors. In general, a vector will contain an origin of replication functional in at least one organism, convenient restriction endonuclease sites and one or more selectable markers. Other elements will depend upon the desired use, and will be apparent to those of ordinary skill in the art.

Within certain embodiments, polynucleotides may be formulated so as to permit entry into a cell of a mammal, and expression therein. Such formulations are particularly useful for therapeutic purposes, as described below. Those of ordinary skill in the art will appreciate that there are many ways to achieve expression of a polynucleotide in a target cell, and any suitable method may be employed. For example, a polynucleotide may be incorporated into a viral vector such as, but not limited to, adenovirus, adeno-associated virus, retrovirus, or vaccinia or other pox virus (e.g., avian pox virus). The polynucleotides may also be administered as naked plasmid vectors. Techniques for incorporating DNA into such vectors are well known to those of ordinary skill in the art. A retroviral vector may additionally transfer or incorporate a gene for a selectable marker (to aid in the identification or selection of transduced cells) and/or a targeting moiety, such as a gene that encodes a ligand for a receptor on a specific target cell, to render the vector target specific. Targeting may also be accomplished using an antibody, by methods known to those of ordinary skill in the art.

Other formulations for therapeutic purposes include colloidal dispersion systems, such as macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. A preferred colloidal system for use as a delivery vehicle *in vitro* and *in vivo* is a liposome (*i.e.*, an artificial membrane vesicle). The preparation and use of such systems is well known in the art.

-- 4

PROSTATE-SPECIFIC POLYPEPTIDES

10

15

20

25

Within the context of the present invention, polypeptides may comprise at least an immunogenic portion of a prostate-specific protein or a variant thereof, as described herein. As noted above, a "prostate-specific protein" is a protein that is expressed by normal prostate and/or prostate tumor cells. Proteins that are prostate-specific proteins also react detectably within an immunoassay (such as an ELISA) with antisera from a patient with prostate cancer. Polypeptides as described herein may be of any length. Additional sequences derived from the native protein and/or heterologous sequences may be present, and such sequences may (but need not) possess further immunogenic or antigenic properties.

An "immunogenic portion," as used herein is a portion of a protein that is recognized (*i.e.*, specifically bound) by a B-cell and/or T-cell surface antigen receptor. Such immunogenic portions generally comprise at least 5 amino acid residues, more preferably at least 10, and still more preferably at least 20 amino acid residues of a prostate-specific protein or a variant thereof. Certain preferred immunogenic portions include peptides in which an N-terminal leader sequence and/or transmembrane domain have been deleted. Other preferred immunogenic portions may contain a small N- and/or C-terminal deletion (*e.g.*, 1-30 amino acids, preferably 5-15 amino acids), relative to the mature protein.

Immunogenic portions may generally be identified using well known techniques, such as those summarized in Paul, Fundamental Immunology, 3rd ed., 243-247 (Raven Press, 1993) and references cited therein. Such techniques include screening polypeptides for the ability to react with antigen-specific antibodies, antisera and/or T-cell lines or clones. As used herein, antisera and antibodies are "antigen-specific" if they specifically bind to an antigen (i.e., they react with the protein in an ELISA or other immunoassay, and do not react detectably with unrelated proteins). Such antisera and antibodies may be prepared as described herein, and using well known techniques. An immunogenic portion of a native prostate-specific protein is a portion that reacts with such antisera and/or T-cells at a level that is not substantially less than the reactivity of the full length polypeptide (e.g., in an ELISA and/or T-cell reactivity assay). Such immunogenic portions may react within such assays at a level that is similar to or greater than the reactivity of the full length polypeptide. Such screens may generally be performed using methods well known to those of ordinary skill in the art, such as those described in Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. For example, a polypeptide may be immobilized on a solid support and contacted with patient sera to allow binding of antibodies within the sera to the

immobilized polypeptide. Unbound sera may then be removed and bound antibodies detected using, for example, ¹²⁵I-labeled Protein A.

As noted above, a composition may comprise a variant of a native prostate-specific protein. A polypeptide "variant," as used herein, is a polypeptide that differs from a native prostate-specific protein in one or more substitutions, deletions, additions and/or insertions, such that the immunogenicity of the polypeptide is not substantially diminished. In other words, the ability of a variant to react with antigen-specific antisera may be enhanced or unchanged, relative to the native protein, or may be diminished by less than 50%, and preferably less than 20%, relative to the native protein. Such variants may generally be identified by modifying one of the above polypeptide sequences and evaluating the reactivity of the modified polypeptide with antigen-specific antibodies or antisera as described herein. Preferred variants include those in which one or more portions, such as an N-terminal leader sequence or transmembrane domain, have been removed. Other preferred variants include variants in which a small portion (e.g., 1-30 amino acids, preferably 5-15 amino acids) has been removed from the N- and/or C-terminal of the mature protein. Polypeptide variants preferably exhibit at least about 70%, more preferably at least about 90% and most preferably at least about 95% identity (determined as described above) to the identified polypeptides.

10

15

20

25

30

Preferably, a variant contains conservative substitutions. A "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. Amino acid substitutions may generally be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the residues. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; and serine, threonine, phenylalanine and tyrosine. Other groups of amino acids that may represent conservative changes include: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his. A variant may also, or alternatively, contain nonconservative changes. In a preferred embodiment, variant polypeptides differ from a native sequence by substitution, deletion or addition of five amino acids or fewer. Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino

acids that have minimal influence on the immunogenicity, secondary structure and hydropathic nature of the polypeptide.

As noted above, polypeptides may comprise a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

Polypeptides may be prepared using any of a variety of well known techniques. Recombinant polypeptides encoded by DNA sequences as described above may be readily prepared from the DNA sequences using any of a variety of expression vectors known to those of ordinary skill in the art. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast, higher eukaryotic and plant cells. Preferably, the host cells employed are *E. coli*, yeast or a mammalian cell line such as COS or CHO. Supernatants from suitable host/vector systems which secrete recombinant protein or polypeptide into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify a recombinant polypeptide.

10

15

20

. 30

Portions and other variants having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may also be generated by synthetic means, using techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield, J. Am. Chem. Soc. 85:2149-2146, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Perkin Elmer/Applied BioSystems Division (Foster City, CA), and may be operated according to the manufacturer's instructions.

Within certain specific embodiments, a polypeptide may be a fusion protein that comprises multiple polypeptides as described herein, or that comprises at least one polypeptide as described herein and an unrelated sequence, such as a known prostate-specific protein. A fusion partner may, for example, assist in providing T helper epitopes (an immunological fusion partner),

preferably T helper epitopes recognized by humans, or may assist in expressing the protein (an expression enhancer) at higher yields than the native recombinant protein. Certain preferred fusion partners are both immunological and expression enhancing fusion partners. Other fusion partners may be selected so as to increase the solubility of the protein or to enable the protein to be targeted to desired intracellular compartments. Still further fusion partners include affinity tags, which facilitate purification of the protein.

Fusion proteins may generally be prepared using standard techniques, including chemical conjugation. Preferably, a fusion protein is expressed as a recombinant protein, allowing the production of increased levels, relative to a non-fused protein, in an expression system. Briefly, DNA sequences encoding the polypeptide components may be assembled separately, and ligated into an appropriate expression vector. The 3' end of the DNA sequence encoding one polypeptide component is ligated, with or without a peptide linker, to the 5' end of a DNA sequence encoding the second polypeptide component so that the reading frames of the sequences are in phase. This permits translation into a single fusion protein that retains the biological activity of both component polypeptides.

15

25

30

A peptide linker sequence may be employed to separate the first and the second polypeptide components by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well known in the art. Suitable peptide linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., *Gene 40*:39-46, 1985; Murphy et al., *Proc. Natl. Acad. Sci. USA 83*:8258-8262, 1986; U.S. Patent No. 4,935,233 and U.S. Patent No. 4,751,180. The linker sequence may generally be from 1 to about 50 amino acids in length. Linker sequences are not required when the first and second polypeptides have non-essential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric interference.

The ligated DNA sequences are operably linked to suitable transcriptional or translational regulatory elements. The regulatory elements responsible for expression of DNA are

located only 5' to the DNA sequence encoding the first polypeptides. Similarly, stop codons required to end translation and transcription termination signals are only present 3' to the DNA sequence encoding the second polypeptide.

Fusion proteins are also provided that comprise a polypeptide of the present invention together with an unrelated immunogenic protein. Preferably the immunogenic protein is capable of eliciting a recall response. Examples of such proteins include tetanus, tuberculosis and hepatitis proteins (see, for example, Stoute et al. New Engl. J. Med., 336:86-91, 1997).

Within preferred embodiments, an immunological fusion partner is derived from protein D, a surface protein of the gram-negative bacterium Haemophilus influenza B (WO 91/18926). Preferably, a protein D derivative comprises approximately the first third of the protein (e.g., the first N-terminal 100-110 amino acids), and a protein D derivative may be lipidated. Within certain preferred embodiments, the first 109 residues of a Lipoprotein D fusion partner is included on the N-terminus to provide the polypeptide with additional exogenous T-cell epitopes and to increase the expression level in E. coli (thus functioning as an expression enhancer). The lipid tail ensures optimal presentation of the antigen to antigen presenting cells. Other fusion partners include the non-structural protein from influenzae virus, NS1 (hemaglutinin). Typically, the N-terminal 81 amino acids are used, although different fragments that include T-helper epitopes may be used.

In another embodiment, the immunological fusion partner is the protein known as LYTA, or a portion thereof (preferably a C-terminal portion). LYTA is derived from *Streptococcus pneumoniae*, which synthesizes an N-acetyl-L-alanine amidase known as amidase LYTA (encoded by the LytA gene; *Gene 43*:265-292, 1986). LYTA is an autolysin that specifically degrades certain bonds in the peptidoglycan backbone. The C-terminal domain of the LYTA protein is responsible for the affinity to the choline or to some choline analogues such as DEAE. This property has been exploited for the development of *E. coli* C-LYTA expressing plasmids useful for expression of fusion proteins. Purification of hybrid proteins containing the C-LYTA fragment at the amino terminus has been described (*see Biotechnology 10*:795-798, 1992). Within a preferred embodiment, a repeat portion of LYTA may be incorporated into a fusion protein. A repeat portion is found in the C-terminal region starting at residue 178. A particularly preferred repeat portion incorporates residues 188-305.

20

25

30

In general, polypeptides (including fusion proteins) and polynucleotides as described herein are isolated. An "isolated" polypeptide or polynucleotide is one that is removed from its

original environment. For example, a naturally-occurring protein is isolated if it is separated from some or all of the coexisting materials in the natural system. Preferably, such polypeptides are at least about 90% pure, more preferably at least about 95% pure and most preferably at least about 99% pure. A polynucleotide is considered to be isolated if, for example, it is cloned into a vector that is not a part of the natural environment.

BINDING AGENTS

15

20

30

The present invention further provides agents, such as antibodies and antigen-binding fragments thereof, that specifically bind to a prostate-specific protein. As used herein, an antibody, or antigen-binding fragment thereof, is said to "specifically bind" to a prostate-specific protein if it reacts at a detectable level (within, for example, an ELISA) with a prostate-specific protein, and does not react detectably with unrelated proteins under similar conditions. As used herein, "binding" refers to a noncovalent association between two separate molecules such that a complex is formed. The ability to bind may be evaluated by, for example, determining a binding constant for the formation of the complex. The binding constant is the value obtained when the concentration of the complex is divided by the product of the component concentrations. In general, two compounds are said to "bind," in the context of the present invention, when the binding constant for complex formation exceeds about 10³ L/mol. The binding constant may be determined using methods well known in the art.

Binding agents may be further capable of differentiating between patients with and without a cancer, such as prostate cancer, using the representative assays provided herein. In other words, antibodies or other binding agents that bind to a prostate-specific protein will generate a signal indicating the presence of a cancer in at least about 20% of patients with the disease, and will generate a negative signal indicating the absence of the disease in at least about 90% of individuals without the cancer. To determine whether a binding agent satisfies this requirement, biological samples (e.g., blood, sera, urine and/or tumor biopsies) from patients with and without a cancer (as determined using standard clinical tests) may be assayed as described herein for the presence of polypeptides that bind to the binding agent. It will be apparent that a statistically significant number of samples with and without the disease should be assayed. Each binding agent should satisfy the above criteria; however, those of ordinary skill in the art will recognize that binding agents may be used in combination to improve sensitivity.

Any agent that satisfies the above requirements may be a binding agent. For example, a binding agent may be a ribosome, with or without a peptide component, an RNA molecule or a polypeptide. In a preferred embodiment, a binding agent is an antibody or an antigen-binding fragment thereof. Most preferably, antibodies employed in the inventive methods have the ability to induce lysis of tumor cells by activation of complement and mediation of antibody-dependent cellular cytotoxicity (ADCC). Antibodies of different classes and subclasses differ in these properties. For example, mouse antibodies of the IgG2a and IgG3 classes are capable of activating serum complement upon binding to target cells which express the antigen against which the antibodies were raised, and can mediate ADCC.

10

15

20

25

Antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In general, antibodies can be produced by cell culture techniques, including the generation of monoclonal antibodies as described herein, or via transfection of antibody genes into suitable bacterial or mammalian cell hosts, in order to allow for the production of recombinant antibodies. In one technique, an immunogen comprising the polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep or goats). In this step, the polypeptides of this invention may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a superior immune response may be elicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined schedule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.

Monoclonal antibodies specific for an antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein, Eur. J. Immunol. 6:511-519, 1976, and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (i.e., reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells

and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and their culture supernatants tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.

10

15

20

25

30

The preparation of mouse and rabbit monoclonal antibodies that specifically bind to polypeptides of the present invention is described in detail below. However, the antibodies of the present invention are not limited to those derived from mice. Human antibodies may also be employed in the inventive methods and may prove to be preferable. Such antibodies can be obtained using human hybridomas as described by Cote *et al.* (Monoclonal Antibodies and Cancer Therapy, Alan R. Lisa, p. 77, 1985). The present invention also encompasses antibodies made by recombinant means such as chimeric antibodies, wherein the variable region and constant region are derived from different species, and CDR-grafted antibodies, wherein the complementarity determining region is derived from a different species, as described in US Patents 4,816,567 and 5,225,539. Chimeric antibodies may be prepared by splicing genes for a mouse antibody molecule having a desired antigen specificity together with genes for a human antibody molecule having the desired biological activity, such as activation of human complement and mediation of ADCC (Morrison *et al. Proc. Natl. Acad. Sci. USA 81*:6851, 1984; Neuberger *et al. Nature 312*:604, 1984; Takeda *et al. Nature 314*:452, 1985).

Within certain embodiments, the use of antigen-binding fragments of antibodies may be preferred. Such fragments include Fab fragments, which may be prepared using standard techniques. Briefly, immunoglobulins may be purified from rabbit serum by affinity chromatography on Protein A bead columns (Harlow and Lane, *Antibodies: A Laboratory Manual*,

Cold Spring Harbor Laboratory, 1988) and digested by papain to yield Fab and Fc fragments. The Fab and Fc fragments may be separated by affinity chromatography on protein A bead columns.

Monoclonal antibodies of the present invention may be coupled to one or more therapeutic agents. Suitable agents in this regard include radionuclides, differentiation inducers, drugs, toxins, and derivatives thereof. Preferred radionuclides include ⁹⁰Y, ¹²³I, ¹²⁵I, ¹³¹I, ¹⁸⁶Re, ¹⁸⁸Re, ²¹¹At, and ²¹²Bi. Preferred drugs include methotrexate, and pyrimidine and purine analogs. Preferred differentiation inducers include phorbol esters and butyric acid. Preferred toxins include ricin, abrin, diptheria toxin, cholera toxin, gelonin, Pseudomonas exotoxin, Shigella toxin, and pokeweed antiviral protein.

A therapeutic agent may be coupled (e.g., covalently bonded) to a suitable monoclonal antibody either directly or indirectly (e.g., via a linker group). A direct reaction between an agent and an antibody is possible when each possesses a substituent capable of reacting with the other. For example, a nucleophilic group, such as an amino or sulfhydryl group, on one may be capable of reacting with a carbonyl-containing group, such as an anhydride or an acid halide, or with an alkyl group containing a good leaving group (e.g., a halide) on the other.

10

15

20

25

30

Alternatively, it may be desirable to couple a therapeutic agent and an antibody via a linker group. A linker group can function as a spacer to distance an antibody from an agent in order to avoid interference with binding capabilities. A linker group can also serve to increase the chemical reactivity of a substituent on an agent or an antibody, and thus increase the coupling efficiency. An increase in chemical reactivity may also facilitate the use of agents, or functional groups on agents, which otherwise would not be possible.

It will be evident to those skilled in the art that a variety of bifunctional or polyfunctional reagents, both homo- and hetero-functional (such as those described in the catalog of the Pierce Chemical Co., Rockford, IL), may be employed as the linker group. Coupling may be effected, for example, through amino groups, carboxyl groups, sulfhydryl groups or oxidized carbohydrate residues. There are numerous references describing such methodology, e.g., U.S. Patent No. 4,671,958, to Rodwell et al.

Where a therapeutic agent is more potent when free from the antibody portion of the immunoconjugates of the present invention, it may be desirable to use a linker group which is cleavable during or upon internalization into a cell. A number of different cleavable linker groups have been described. The mechanisms for the intracellular release of an agent from these linker groups include cleavage by reduction of a disulfide bond (e.g., U.S. Patent No. 4,489,710, to

Spitler), by irradiation of a photolabile bond (e.g., U.S. Patent No. 4,625,014, to Senter et al.), by hydrolysis of derivatized amino acid side chains (e.g., U.S. Patent No. 4,638,045, to Kohn et al.), by serum complement-mediated hydrolysis (e.g., U.S. Patent No. 4,671,958, to Rodwell et al.), and acid-catalyzed hydrolysis (e.g., U.S. Patent No. 4,569,789, to Blattler et al.).

It may be desirable to couple more than one agent to an antibody. In one embodiment, multiple molecules of an agent are coupled to one antibody molecule. In another embodiment, more than one type of agent may be coupled to one antibody. Regardless of the particular embodiment, immunoconjugates with more than one agent may be prepared in a variety of ways. For example, more than one agent may be coupled directly to an antibody molecule, or linkers which provide multiple sites for attachment can be used. Alternatively, a carrier can be used.

A carrier may bear the agents in a variety of ways, including covalent bonding either directly or via a linker group. Suitable carriers include proteins such as albumins (e.g., U.S. Patent No. 4,507,234, to Kato et al.), peptides and polysaccharides such as aminodextran (e.g., U.S. Patent No. 4,699,784, to Shih et al.). A carrier may also bear an agent by noncovalent bonding or by encapsulation, such as within a liposome vesicle (e.g., U.S. Patent Nos. 4,429,008 and 4,873,088). Carriers specific for radionuclide agents include radiohalogenated small molecules and chelating compounds. For example, U.S. Patent No. 4,735,792 discloses representative radiohalogenated small molecules and their synthesis. A radionuclide chelate may be formed from chelating compounds that include those containing nitrogen and sulfur atoms as the donor atoms for binding the metal, or metal oxide, radionuclide. For example, U.S. Patent No. 4,673,562, to Davison et al. discloses representative chelating compounds and their synthesis.

A variety of routes of administration for the antibodies and immunoconjugates may be used. Typically, administration will be intravenous, intramuscular, subcutaneous or in the bed of a resected tumor. It will be evident that the precise dose of the antibody/immunoconjugate will vary depending upon the antibody used, the antigen density on the tumor, and the rate of clearance of the antibody.

T CELLS

5

20

30

Immunotherapeutic compositions may also, or alternatively, comprise T_{\setminus} cells specific for a prostate-specific protein. Such cells may generally be prepared *in vitro* or *ex vivo*, using standard procedures. For example, T cells may be isolated from bone marrow, peripheral

blood, or a fraction of bone marrow or peripheral blood of a patient, using a commercially available cell separation system, such as the ISOLEXTM system, available from Nexell Therapeutics Inc., Irvine, CA (see also U.S. Patent No. 5,240,856; U.S. Patent No. 5,215,926; WO 89/06280; WO 91/16116 and WO 92/07243). Alternatively, T cells may be derived from related or unrelated humans, non-human mammals, cell lines or cultures.

T cells may be stimulated with a prostate-specific polypeptide, polynucleotide encoding a prostate-specific polypeptide and/or an antigen presenting cell (APC) that expresses such a polypeptide. Such stimulation is performed under conditions and for a time sufficient to permit the generation of T cells that are specific for the polypeptide. Preferably, a prostate-specific polypeptide or polynucleotide is present within a delivery vehicle, such as a microsphere, to facilitate the generation of specific T cells.

T cells are considered to be specific for a prostate-specific polypeptide if the T cells specifically proliferate, secrete cytokines or kill target cells coated with the polypeptide or expressing a gene encoding the polypeptide. T cell specificity may be evaluated using any of a variety of standard techniques. For example, within a chromium release assay or proliferation assay, a stimulation index of more than two fold increase in lysis and/or proliferation, compared to negative controls, indicates T cell specificity. Such assays may be performed, for example, as described in Chen et al., Cancer Res. 54:1065-1070, 1994. Alternatively, detection of the proliferation of T cells may be accomplished by a variety of known techniques. For example, T cell proliferation can be detected by measuring an increased rate of DNA synthesis (e.g., by pulselabeling cultures of T cells with tritiated thymidine and measuring the amount of tritiated thymidine incorporated into DNA). Contact with a prostate-specific polypeptide (100 ng/ml - 100 µg/ml, preferably 200 ng/ml - 25 µg/ml) for 3 - 7 days should result in at least a two fold increase in proliferation of the T cells. Contact as described above for 2-3 hours should result in activation of the T cells, as measured using standard cytokine assays in which a two fold increase in the level of cytokine release (e.g., TNF or IFN-y) is indicative of T cell activation (see Coligan et al., Current Protocols in Immunology, vol. 1, Wiley Interscience (Greene 1998)). T cells that have been activated in response to a prostate-specific polypeptide, polynucleotide or polypeptide-expressing APC may be CD4+ and/or CD8+. Prostate-specific protein-specific T cells may be expanded using standard techniques. Within preferred embodiments, the T cells are derived from either a patient or a related, or unrelated, donor and are administered to the patient following stimulation and expansion.

15

25

For therapeutic purposes, CD4⁺ or CD8⁺ T cells that proliferate in response to a prostate-specific polypeptide, polynucleotide or APC can be expanded in number either *in vitro* or *in vivo*. Proliferation of such T cells *in vitro* may be accomplished in a variety of ways. For example, the T cells can be re-exposed to a prostate-specific polypeptide, or a short peptide corresponding to an immunogenic portion of such a polypeptide, with or without the addition of T cell growth factors, such as interleukin-2, and/or stimulator cells that synthesize a prostate-specific polypeptide. Alternatively, one or more T cells that proliferate in the presence of a prostate-specific protein can be expanded in number by cloning. Methods for cloning cells are well known in the art, and include limiting dilution.

10

25

30

PHARMACEUTICAL COMPOSITIONS AND VACCINES

Within certain aspects, polypeptides, polynucleotides, T cells and/or binding agents disclosed herein may be incorporated into pharmaceutical compositions or immunogenic compositions (*i.e.*, vaccines). Pharmaceutical compositions comprise one or more such compounds and a physiologically acceptable carrier. Vaccines may comprise one or more such compounds and an immunostimulant. An immunostimulant may be any substance that enhances an immune response to an exogenous antigen. Examples of immunostimulants include adjuvants, biodegradable microspheres (*e.g.*, polylactic galactide) and liposomes (into which the compound is incorporated; *see e.g.*, Fullerton, U.S. Patent No. 4,235,877). Vaccine preparation is generally described in, for example, M.F. Powell and M.J. Newman, eds., "Vaccine Design (the subunit and adjuvant approach)," Plenum Press (NY, 1995). Pharmaceutical compositions and vaccines within the scope of the present invention may also contain other compounds, which may be biologically active or inactive. For example, one or more immunogenic portions of other tumor antigens may be present, either incorporated into a fusion polypeptide or as a separate compound, within the composition or vaccine.

A pharmaceutical composition or vaccine may contain DNA encoding one or more of the polypeptides as described above, such that the polypeptide is generated *in situ*. As noted above, the DNA may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacteria and viral expression systems. Numerous gene delivery techniques are well known in the art, such as those described by Rolland, *Crit. Rev. Therap. Drug Carrier Systems* 15:143-198, 1998, and references cited therein. Appropriate nucleic acid expression systems contain the necessary DNA sequences for expression

in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as Bacillus-Calmette-Guerrin) that expresses an immunogenic portion of the polypeptide on its cell surface or secretes such an epitope. In a preferred embodiment, the DNA may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective), replication competent virus. Suitable systems are disclosed, for example, in Fisher-Hoch et al., Proc. Natl. Acad. Sci. USA 86:317-321, 1989; Flexner et al., Ann. N.Y. Acad. Sci. 569:86-103, 1989; Flexner et al., Vaccine 8:17-21, 1990; U.S. Patent Nos. 4,603,112, 4,769,330, and 5,017,487; WO 89/01973; U.S. Patent No. 4,777,127; GB 2,200,651; EP 0,345,242; WO 91/02805; Berkner, Biotechniques 6:616-627, 1988; Rosenfeld et al., Science 252:431-434, 1991; Kolls et al., Proc. Natl. Acad. Sci. USA 91:215-219, 1994; Kass-Eisler et al., Proc. Natl. Acad. Sci. USA 90:11498-11502, 1993; Guzman et al., Circulation 88:2838-2848, 1993; and Guzman et al., Cir. Res. 73:1202-1207, 1993. Techniques for incorporating DNA into such expression systems are well known to those of ordinary skill in the art. The DNA may also be "naked," as described, for example, in Ulmer et al., Science 259:1745-1749, 1993 and reviewed by Cohen, Science 259:1691-1692, 1993. The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.

15

20

30

While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. Compositions of the present invention may be formulated for any appropriate manner of administration, including for example, topical, oral, nasal, intravenous, intracranial, intraperitoneal, subcutaneous or intramuscular administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactate polyglycolate) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Patent Nos. 4,897,268 and 5,075,109.

Such compositions may also comprise buffers (e.g., neutral buffered saline or phosphate buffered saline), carbohydrates (e.g., glucose, mannose, sucrose or dextrans), mannitol, proteins, polypeptides or amino acids such as glycine, antioxidants, chelating agents such as EDTA

4

or glutathione, adjuvants (e.g., aluminum hydroxide) and/or preservatives. Alternatively, compositions of the present invention may be formulated as a lyophilizate. Compounds may also be encapsulated within liposomes using well known technology.

Any of a variety of immunostimulants may be employed in the vaccines of this invention. For example, an adjuvant may be included. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, *Bortadella pertussis* or *Mycobacterium tuberculosis* derived proteins. Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF or interleukin-2, -7, or -12, may also be used as adjuvants.

Within the vaccines provided herein, the adjuvant composition is preferably designed to induce an immune response predominantly of the Th1 type. High levels of Th1-type cytokines (e.g., IFN-γ, TNFα, IL-2 and IL-12) tend to favor the induction of cell mediated immune responses to an administered antigen. In contrast, high levels of Th2-type cytokines (e.g., IL-4, IL-5, IL-6 and IL-10) tend to favor the induction of humoral immune responses. Following application of a vaccine as provided herein, a patient will support an immune response that includes Th1- and Th2-type responses. Within a preferred embodiment, in which a response is predominantly Th1-type, the level of Th1-type cytokines will increase to a greater extent than the level of Th2-type cytokines. The levels of these cytokines may be readily assessed using standard assays. For a review of the families of cytokines, see Mosmann and Coffman, Ann. Rev. Immunol. 7:145-173, 1989.

15

20

25

30

Preferred adjuvants for use in eliciting a predominantly Th1-type response include, for example, a combination of monophosphoryl lipid A, preferably 3-de-O-acylated monophosphoryl lipid A (3D-MPL), together with an aluminum salt. MPL adjuvants are available from Ribi ImmunoChem Research Inc. (Hamilton, MT; see US Patent Nos. 4,436,727; 4,877,611; 4,866,034 and 4,912,094). CpG-containing oligonucleotides (in which the CpG dinucleotide is unmethylated) also induce a predominantly Th1 response. Such oligonucleotides are well known and are described, for example, in WO 96/02555. Another preferred adjuvant is a saponin, preferably QS21, which may be used alone or in combination with other adjuvants. For example,

an enhanced system involves the combination of a monophosphoryl lipid A and saponin derivative, such as the combination of QS21 and 3D-MPL as described in WO 94/00153, or a less reactogenic composition where the QS21 is quenched with cholesterol, as described in WO 96/33739. Other preferred formulations comprises an oil-in-water emulsion and tocopherol. A particularly potent adjuvant formulation involving QS21, 3D-MPL and tocopherol in an oil-in-water emulsion is described in WO 95/17210. Any vaccine provided herein may be prepared using well known methods that result in a combination of antigen, immune response enhancer and a suitable carrier or excipient.

The compositions described herein may be administered as part of a sustained release formulation (*i.e.*, a formulation such as a capsule, sponge or gel (composed of polysaccharides for example) that effects a slow release of compound following administration). Such formulations may generally be prepared using well known technology and administered by, for example, oral, rectal or subcutaneous implantation, or by implantation at the desired target site. Sustained-release formulations may contain a polypeptide, polynucleotide or antibody dispersed in a carrier matrix and/or contained within a reservoir surrounded by a rate controlling membrane. Carriers for use within such formulations are biocompatible, and may also be biodegradable; preferably the formulation provides a relatively constant level of active component release. The amount of active compound contained within a sustained release formulation depends upon the site of implantation, the rate and expected duration of release and the nature of the condition to be treated or prevented.

Any of a variety of delivery vehicles may be employed within pharmaceutical compositions and vaccines to facilitate production of an antigen-specific immune response that targets tumor cells. Delivery vehicles include antigen presenting cells (APCs), such as dendritic cells, macrophages, B cells, monocytes and other cells that may be engineered to be efficient APCs. Such cells may, but need not, be genetically modified to increase the capacity for presenting the antigen, to improve activation and/or maintenance of the T cell response, to have anti-tumor effects per se and/or to be immunologically compatible with the receiver (i.e., matched HLA haplotype). APCs may generally be isolated from any of a variety of biological fluids and organs, including tumor and peritumoral tissues, and may be autologous, allogeneic, syngeneic or xenogeneic cells.

20

25

30

Certain preferred embodiments of the present invention use dendritic cells or progenitors thereof as antigen-presenting cells. Dendritic cells are highly potent APCs (Banchereau and Steinman, *Nature 392*:245-251, 1998) and have been shown to be effective as a physiological adjuvant for eliciting prophylactic or therapeutic antitumor immunity (*see* Timmerman and Levy,

Ann. Rev. Med. 50:507-529, 1999). In general, dendritic cells may be identified based on their typical shape (stellate in situ, with marked cytoplasmic processes (dendrites) visible in vitro), their ability to take-up, process and present antigens with high efficiency, and their ability to activate naïve T cell responses. Dendritic cells may, of course, be engineered to express specific cell-surface receptors or ligands that are not commonly found on dendritic cells in vivo or ex vivo, and such modified dendritic cells are contemplated by the present invention. As an alternative to dendritic cells, secreted vesicles antigen-loaded dendritic cells (called exosomes) may be used within a vaccine (see Zitvogel et al., Nature Med. 4:594-600, 1998).

Dendritic cells and progenitors may be obtained from peripheral blood, bone marrow, tumor-infiltrating cells, peritumoral tissues-infiltrating cells, lymph nodes, spleen, skin, umbilical cord blood or any other suitable tissue or fluid. For example, dendritic cells may be differentiated *ex vivo* by adding a combination of cytokines such as GM-CSF, IL-4, IL-13 and/or TNFα to cultures of monocytes harvested from peripheral blood. Alternatively, CD34 positive cells harvested from peripheral blood, umbilical cord blood or bone marrow may be differentiated into dendritic cells by adding to the culture medium combinations of GM-CSF, IL-3, TNFα, CD40 ligand, LPS, flt3 ligand and/or other compound(s) that induce differentiation, maturation and proliferation of dendritic cells.

10

15

20

25

30

Dendritic cells are conveniently categorized as "immature" and "mature" cells, which allows a simple way to discriminate between two well characterized phenotypes. However, this nomenclature should not be construed to exclude all possible intermediate stages of differentiation. Immature dendritic cells are characterized as APC with a high capacity for antigen uptake and processing, which correlates with the high expression of Fcy receptor and mannose receptor. The mature phenotype is typically characterized by a lower expression of these markers, but a high expression of cell surface molecules responsible for T cell activation such as class I and class II MHC, adhesion molecules (e.g., CD54 and CD11) and costimulatory molecules (e.g., CD40, CD80, CD86 and 4-1BB).

APCs may generally be transfected with a polynucleotide encoding a prostate-specific protein (or portion or other variant thereof) such that the prostate-specific polypeptide, or an immunogenic portion thereof, is expressed on the cell surface. Such transfection may take place ex vivo, and a composition or vaccine comprising such transfected cells may then be used for therapeutic purposes, as described herein. Alternatively, a gene delivery vehicle that targets a dendritic or other antigen presenting cell may be administered to a patient, resulting in transfection

that occurs *in vivo*. *In vivo* and *ex vivo* transfection of dendritic cells, for example, may generally be performed using any methods known in the art, such as those described in WO 97/24447, or the gene gun approach described by Mahvi et al., *Immunology and cell Biology* 75:456-460, 1997. Antigen loading of dendritic cells may be achieved by incubating dendritic cells or progenitor cells with the prostate-specific polypeptide, DNA (naked or within a plasmid vector) or RNA; or with antigen-expressing recombinant bacterium or viruses (*e.g.*, vaccinia, fowlpox, adenovirus or lentivirus vectors). Prior to loading, the polypeptide may be covalently conjugated to an immunological partner that provides T cell help (*e.g.*, a carrier molecule). Alternatively, a dendritic cell may be pulsed with a non-conjugated immunological partner, separately or in the presence of the polypeptide.

CANCER THERAPY

30

In further aspects of the present invention, the compositions described herein may be used for immunotherapy of cancer, such as prostate cancer. Within such methods, pharmaceutical compositions and vaccines are typically administered to a patient. As used herein, a "patient" refers to any warm-blooded animal, preferably a human. A patient may or may not be afflicted with cancer. Accordingly, the above pharmaceutical compositions and vaccines may be used to prevent the development of a cancer or to treat a patient afflicted with a cancer. A cancer may be diagnosed using criteria generally accepted in the art, including the presence of a malignant tumor. Pharmaceutical compositions and vaccines may be administered either prior to or following surgical removal of primary tumors and/or treatment such as administration of radiotherapy or conventional chemotherapeutic drugs.

Within certain embodiments, immunotherapy may be active immunotherapy, in which treatment relies on the *in vivo* stimulation of the endogenous host immune system to react against tumors with the administration of immune response-modifying agents (such as polypeptides and polynucleotides disclosed herein).

Within other embodiments, immunotherapy may be passive immunotherapy, in which treatment involves the delivery of agents with established tumor-immune reactivity (such as effector cells or antibodies) that can directly or indirectly mediate antitumor effects and does not necessarily depend on an intact host immune system. Examples of effector cells include T cells as discussed above, T lymphocytes (such as CD8+ cytotoxic T lymphocytes and CD4+ T-helper tumor-infiltrating lymphocytes), killer cells (such as Natural Killer cells and lymphokine-activated killer

cells), B cells and antigen-presenting cells (such as dendritic cells and macrophages) expressing a polypeptide provided herein. T cell receptors and antibody receptors specific for the polypeptides recited herein may be cloned, expressed and transferred into other vectors or effector cells for adoptive immunotherapy. The polypeptides provided herein may also be used to generate antibodies or anti-idiotypic antibodies (as described above and in U.S. Patent No. 4,918,164) for passive immunotherapy.

Effector cells may generally be obtained in sufficient quantities for adoptive immunotherapy by growth in vitro, as described herein. Culture conditions for expanding single antigen-specific effector cells to several billion in number with retention of antigen recognition in vivo are well known in the art. Such in vitro culture conditions typically use intermittent stimulation with antigen, often in the presence of cytokines (such as IL-2) and non-dividing feeder cells. As noted above, immunoreactive polypeptides as provided herein may be used to rapidly expand antigen-specific T cell cultures in order to generate a sufficient number of cells for immunotherapy. In particular, antigen-presenting cells, such as dendritic, macrophage, monocyte, fibroblast or B cells, may be pulsed with immunoreactive polypeptides or transfected with one or more polynucleotides using standard techniques well known in the art. For example, antigenpresenting cells can be transfected with a polynucleotide having a promoter appropriate for increasing expression in a recombinant virus or other expression system. Cultured effector cells for use in therapy must be able to grow and distribute widely, and to survive long term in vivo. Studies have shown that cultured effector cells can be induced to grow in vivo and to survive long term in substantial numbers by repeated stimulation with antigen supplemented with IL-2 (see, for example, Cheever et al., Immunological Reviews 157:177, 1997).

10

15

30

Alternatively, a vector expressing a polypeptide recited herein may be introduced into antigen presenting cells taken from a patient and clonally propagated *ex vivo* for transplant back into the same patient. Transfected cells may be reintroduced into the patient using any means known in the art, preferably in sterile form by intravenous, intracavitary, intraperitoneal or intratumor administration.

Routes and frequency of administration of the therapeutic compositions disclosed herein, as well as dosage, will vary from individual to individual, and may be readily established using standard techniques. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration) or orally. Preferably, between 1 and 10 doses may be administered

over a 52 week period. Preferably, 6 doses are administered, at intervals of 1 month, and booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of a compound that, when administered as described above, is capable of promoting an anti-tumor immune response, and is at least 10-50% above the basal (i.e., untreated) level. Such response can be monitored by measuring the anti-tumor antibodies in a patient or by vaccine-dependent generation of cytolytic effector cells capable of killing the patient's tumor cells in vitro. Such vaccines should also be capable of causing an immune response that leads to an improved clinical outcome (e.g., more frequent remissions, complete or partial or longer disease-free survival) in vaccinated patients as compared to non-vaccinated patients. In general, for pharmaceutical compositions and vaccines comprising one or more polypeptides, the amount of each polypeptide present in a dose ranges from about 25 µg to 5 mg per kg of host. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.1 mL to about 5 mL.

In general, an appropriate dosage and treatment regimen provides the active compound(s) in an amount sufficient to provide therapeutic and/or prophylactic benefit. Such a response can be monitored by establishing an improved clinical outcome (e.g., more frequent remissions, complete or partial, or longer disease-free survival) in treated patients as compared to non-treated patients. Increases in preexisting immune responses to a prostate-specific protein generally correlate with an improved clinical outcome. Such immune responses may generally be evaluated using standard proliferation, cytotoxicity or cytokine assays, which may be performed using samples obtained from a patient before and after treatment.

METHODS FOR DETECTING CANCER

15

20

In general, a cancer may be detected in a patient based on the presence of one or more prostate-specific proteins and/or polynucleotides encoding such proteins in a biological sample (for example, blood, sera, urine and/or tumor biopsies) obtained from the patient. In other words, such proteins may be used as markers to indicate the presence or absence of a cancer such as prostate cancer. In addition, such proteins may be useful for the detection of other cancers. The binding agents provided herein generally permit detection of the level of antigen that binds to the agent in the biological sample. Polynucleotide primers and probes may be used to detect the level of mRNA encoding a tumor protein, which is also indicative of the presence or absence of a cancer.

.#<u>1</u>

In general, a prostate tumor sequence should be present at a level that is at least three fold higher in tumor tissue than in normal tissue

There are a variety of assay formats known to those of ordinary skill in the art for using a binding agent to detect polypeptide markers in a sample. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In general, the presence or absence of a cancer in a patient may be determined by (a) contacting a biological sample obtained from a patient with a binding agent; (b) detecting in the sample a level of polypeptide that binds to the binding agent; and (c) comparing the level of polypeptide with a predetermined cut-off value.

10

20

25

30

In a preferred embodiment, the assay involves the use of binding agent immobilized on a solid support to bind to and remove the polypeptide from the remainder of the sample. The bound polypeptide may then be detected using a detection reagent that contains a reporter group and specifically binds to the binding agent/polypeptide complex. Such detection reagents may comprise, for example, a binding agent that specifically binds to the polypeptide or an antibody or other agent that specifically binds to the binding agent, such as an anti-immunoglobulin, protein G, protein A or a lectin. Alternatively, a competitive assay may be utilized, in which a polypeptide is labeled with a reporter group and allowed to bind to the immobilized binding agent after incubation of the binding agent with the sample. The extent to which components of the sample inhibit the binding of the labeled polypeptide to the binding agent is indicative of the reactivity of the sample with the immobilized binding agent. Suitable polypeptides for use within such assays include full length prostate-specific proteins and portions thereof to which the binding agent binds, as described above.

The solid support may be any material known to those of ordinary skill in the art to which the protein may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681. The binding agent may be immobilized on the solid support using a variety of techniques known to those of skill in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "immobilization" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the agent and functional groups on the support or may be a linkage by way of a cross-linking agent). Immobilization by adsorption to a well in a microtiter plate or to a

membrane is preferred. In such cases, adsorption may be achieved by contacting the binding agent, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and about 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of binding agent ranging from about 10 ng to about 10 μ g, and preferably about 100 ng to about 1 μ g, is sufficient to immobilize an adequate amount of binding agent.

Covalent attachment of binding agent to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the binding agent. For example, the binding agent may be covalently attached to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the binding partner (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).

In certain embodiments, the assay is a two-antibody sandwich assay. This assay may be performed by first contacting an antibody that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that polypeptides within the sample are allowed to bind to the immobilized antibody. Unbound sample is then removed from the immobilized polypeptide-antibody complexes and a detection reagent (preferably a second antibody capable of binding to a different site on the polypeptide) containing a reporter group is added. The amount of detection reagent that remains bound to the solid support is then determined using a method appropriate for the specific reporter group.

15

20

30

More specifically, once the antibody is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin or Tween 20^{TM} (Sigma Chemical Co., St. Louis, MO). The immobilized antibody is then incubated with the sample, and polypeptide is allowed to bind to the antibody. The sample may be diluted with a suitable diluent, such as phosphate-buffered saline (PBS) prior to incubation. In general, an appropriate contact time (*i.e.*, incubation time) is a period of time that is sufficient to detect the presence of polypeptide within a sample obtained from an individual with prostate cancer. Preferably, the contact time is sufficient to achieve a level of binding that is at least about 95% of that achieved at equilibrium between bound and unbound polypeptide. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium may be readily determined by

assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20TM. The second antibody, which contains a reporter group, may then be added to the solid support. Preferred reporter groups include those groups recited above.

The detection reagent is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound polypeptide. An appropriate amount of time may generally be determined by assaying the level of binding that occurs over a period of time. Unbound detection reagent is then removed and bound detection reagent is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.

10

15

20

30

To determine the presence or absence of a cancer, such as prostate cancer, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value. In one preferred embodiment, the cut-off value for the detection of a cancer is the average mean signal obtained when the immobilized antibody is incubated with samples from patients without the cancer. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for the cancer. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., Clinical Epidemiology: A Basic Science for Clinical Medicine, Little Brown and Co., 1985, p. 106-7. Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (i.e., sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (i.e., the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along

the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for a cancer.

In a related embodiment, the assay is performed in a flow-through or strip test format, wherein the binding agent is immobilized on a membrane, such as nitrocellulose. In the flow-through test, polypeptides within the sample bind to the immobilized binding agent as the sample passes through the membrane. A second, labeled binding agent then binds to the binding agent-polypeptide complex as a solution containing the second binding agent flows through the membrane. The detection of bound second binding agent may then be performed as described above. In the strip test format, one end of the membrane to which binding agent is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing second binding agent and to the area of immobilized binding agent. Concentration of second binding agent at the area of immobilized antibody indicates the presence of a cancer. Typically, the concentration of second binding agent at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of binding agent immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of polypeptide that would be sufficient to generate a positive signal in the two-antibody sandwich assay, in the format discussed above. Preferred binding agents for use in such assays are antibodies and antigen-binding fragments thereof. Preferably, the amount of antibody immobilized on the membrane ranges from about 25 ng to about 1µg, and more preferably from about 50 ng to about 500 ng. Such tests can typically be performed with a very small amount of biological sample.

Of course, numerous other assay protocols exist that are suitable for use with the proteins or binding agents of the present invention. The above descriptions are intended to be exemplary only. For example, it will be apparent to those of ordinary skill in the art that the above protocols may be readily modified to use prostate-specific polypeptides to detect antibodies that bind to such polypeptides in a biological sample. The detection of such prostate-specific protein specific antibodies may correlate with the presence of a cancer.

20

30

A cancer may also, or alternatively, be detected based on the presence of T cells that specifically react with a prostate-specific protein in a biological sample. Within certain methods, a biological sample comprising CD4⁺ and/or CD8⁺ T cells isolated from a patient is incubated with a prostate-specific polypeptide, a polynucleotide encoding such a polypeptide and/or an APC that

expresses at least an immunogenic portion of such a polypeptide, and the presence or absence of specific activation of the T cells is detected. Suitable biological samples include, but are not limited to, isolated T cells. For example, T cells may be isolated from a patient by routine techniques (such as by Ficoll/Hypaque density gradient centrifugation of peripheral blood lymphocytes). T cells may be incubated *in vitro* for 2-9 days (typically 4 days) at 37°C with prostate-specific polypeptide (e.g., 5 - 25 µg/ml). It may be desirable to incubate another aliquot of a T cell sample in the absence of prostate-specific polypeptide to serve as a control. For CD4⁺ T cells, activation is preferably detected by evaluating proliferation of the T cells. For CD8⁺ T cells, activation is preferably detected by evaluating cytolytic activity. A level of proliferation that is at least two fold greater and/or a level of cytolytic activity that is at least 20% greater than in disease-free patients indicates the presence of a cancer in the patient.

10

15

20

25

As noted above, a cancer may also, or alternatively, be detected based on the level of mRNA encoding a prostate-specific protein in a biological sample. For example, at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify a portion of a prostate-specific cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for (*i.e.*, hybridizes to) a polynucleotide encoding the prostate-specific protein. The amplified cDNA is then separated and detected using techniques well known in the art, such as gel electrophoresis. Similarly, oligonucleotide probes that specifically hybridize to a polynucleotide encoding a prostate-specific protein may be used in a hybridization assay to detect the presence of polynucleotide encoding the protein in a biological sample.

To permit hybridization under assay conditions, oligonucleotide primers and probes should comprise an oligonucleotide sequence that has at least about 60%, preferably at least about 75% and more preferably at least about 90%, identity to a portion of a polynucleotide encoding a prostate-specific protein that is at least 10 nucleotides, and preferably at least 20 nucleotides, in length. Preferably, oligonucleotide primers and/or probes will hybridize to a polynucleotide encoding a polypeptide disclosed herein under moderately stringent conditions, as defined above. Oligonucleotide primers and/or probes which may be usefully employed in the diagnostic methods described herein preferably are at least 10-40 nucleotides in length. In a preferred embodiment, the oligonucleotide primers comprise at least 10 contiguous nucleotides, more preferably at least 15 contiguous nucleotides, of a DNA molecule having a sequence recited in SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382, 384-476, 524, 526, 530, 531, 533, 535 and 536. Techniques for both PCR based assays and hybridization assays

are well known in the art (see, for example, Mullis et al., Cold Spring Harbor Symp. Quant. Biol., 51:263, 1987; Erlich ed., PCR Technology, Stockton Press, NY, 1989).

One preferred assay employs RT-PCR, in which PCR is applied in conjunction with reverse transcription. Typically, RNA is extracted from a biological sample, such as biopsy tissue, and is reverse transcribed to produce cDNA molecules. PCR amplification using at least one specific primer generates a cDNA molecule, which may be separated and visualized using, for example, gel electrophoresis. Amplification may be performed on biological samples taken from a test patient and from an individual who is not afflicted with a cancer. The amplification reaction may be performed on several dilutions of cDNA spanning two orders of magnitude. A two-fold or greater increase in expression in several dilutions of the test patient sample as compared to the same dilutions of the non-cancerous sample is typically considered positive.

In another embodiment, the disclosed compositions may be used as markers for the progression of cancer. In this embodiment, assays as described above for the diagnosis of a cancer may be performed over time, and the change in the level of reactive polypeptide(s) or polynucleotide evaluated. For example, the assays may be performed every 24-72 hours for a period of 6 months to 1 year, and thereafter performed as needed. In general, a cancer is progressing in those patients in whom the level of polypeptide or polynucleotide detected increases over time. In contrast, the cancer is not progressing when the level of reactive polypeptide or polynucleotide either remains constant or decreases with time.

Certain *in vivo* diagnostic assays may be performed directly on a tumor. One such assay involves contacting tumor cells with a binding agent. The bound binding agent may then be detected directly or indirectly via a reporter group. Such binding agents may also be used in histological applications. Alternatively, polynucleotide probes may be used within such applications.

20

25

As noted above, to improve sensitivity, multiple prostate-specific protein markers may be assayed within a given sample. It will be apparent that binding agents specific for different proteins provided herein may be combined within a single assay. Further, multiple primers or probes may be used concurrently. The selection of protein markers may be based on routine experiments to determine combinations that results in optimal sensitivity. In addition, or alternatively, assays for proteins provided herein may be combined with assays for other known tumor antigens.

DIAGNOSTIC KITS

10

The present invention further provides kits for use within any of the above diagnostic methods. Such kits typically comprise two or more components necessary for performing a diagnostic assay. Components may be compounds, reagents, containers and/or equipment. For example, one container within a kit may contain a monoclonal antibody or fragment thereof that specifically binds to a prostate-specific protein. Such antibodies or fragments may be provided attached to a support material, as described above. One or more additional containers may enclose elements, such as reagents or buffers, to be used in the assay. Such kits may also, or alternatively, contain a detection reagent as described above that contains a reporter group suitable for direct or indirect detection of antibody binding.

Alternatively, a kit may be designed to detect the level of mRNA encoding a prostate-specific protein in a biological sample. Such kits generally comprise at least one oligonucleotide probe or primer, as described above, that hybridizes to a polynucleotide encoding a prostate-specific protein. Such an oligonucleotide may be used, for example, within a PCR or hybridization assay. Additional components that may be present within such kits include a second oligonucleotide and/or a diagnostic reagent or container to facilitate the detection of a polynucleotide encoding a prostate-specific protein.

The following Examples are offered by way of illustration and not by way of limitation.

EXAMPLES

EXAMPLE 1

ISOLATION AND CHARACTERIZATION OF PROSTATE-SPECIFIC POLYPEPTIDES

5

10

20

25

30

This Example describes the isolation of certain prostate-specific polypeptides from a prostate tumor cDNA library.

A human prostate tumor cDNA expression library was constructed from prostate tumor poly A+ RNA using a Superscript Plasmid System for cDNA Synthesis and Plasmid Cloning kit (BRL Life Technologies, Gaithersburg, MD 20897) following the manufacturer's protocol. Specifically, prostate tumor tissues were homogenized with polytron (Kinematica, Switzerland) and total RNA was extracted using Trizol reagent (BRL Life Technologies) as directed by the manufacturer. The poly A+ RNA was then purified using a Qiagen oligotex spin column mRNA purification kit (Qiagen, Santa Clarita, CA 91355) according to the manufacturer's protocol. First-strand cDNA was synthesized using the Notl/Oligo-dT18 primer. Double-stranded cDNA was synthesized, ligated with EcoRI/BAXI adaptors (Invitrogen, San Diego, CA) and digested with Notl. Following size fractionation with Chroma Spin-1000 columns (Clontech, Palo Alto, CA), the cDNA was ligated into the EcoRI/Notl site of pCDNA3.1 (Invitrogen) and transformed into ElectroMax *E. coli* DH10B cells (BRL Life Technologies) by electroporation.

Using the same procedure, a normal human pancreas cDNA expression library was prepared from a pool of six tissue specimens (Clontech). The cDNA libraries were characterized by determining the number of independent colonies, the percentage of clones that carried insert, the average insert size and by sequence analysis. The prostate tumor library contained 1.64 x 10⁷ independent colonies, with 70% of clones having an insert and the average insert size being 1745 base pairs. The normal pancreas cDNA library contained 3.3 x 10⁶ independent colonies, with 69% of clones having inserts and the average insert size being 1120 base pairs. For both libraries, sequence analysis showed that the majority of clones had a full length cDNA sequence and were synthesized from mRNA, with minimal rRNA and mitochondrial DNA contamination.

cDNA library subtraction was performed using the above prostate tumor and normal pancreas cDNA libraries, as described by Hara et al. (Blood, 84:189-199, 1994) with some modifications. Specifically, a prostate tumor-specific subtracted cDNA library was generated as

follows. Normal pancreas cDNA library (70 μ g) was digested with EcoRI, NotI, and SfuI, followed by a filling-in reaction with DNA polymerase Klenow fragment. After phenol-chloroform extraction and ethanol precipitation, the DNA was dissolved in 100 μ l of H₂O, heat-denatured and mixed with 100 μ l (100 μ g) of Photoprobe biotin (Vector Laboratories, Burlingame, CA). As recommended by the manufacturer, the resulting mixture was irradiated with a 270 W sunlamp on ice for 20 minutes. Additional Photoprobe biotin (50 μ l) was added and the biotinylation reaction was repeated. After extraction with butanol five times, the DNA was ethanol-precipitated and dissolved in 23 μ l H₂O to form the driver DNA.

To form the tracer DNA, 10 μg prostate tumor cDNA library was digested with BamHI and XhoI, phenol chloroform extracted and passed through Chroma spin-400 columns (Clontech). Following ethanol precipitation, the tracer DNA was dissolved in 5 μl H₂O. Tracer DNA was mixed with 15 μl driver DNA and 20 μl of 2 x hybridization buffer (1.5 M NaCl/10 mM EDTA/50 mM HEPES pH 7.5/0.2% sodium dodecyl sulfate), overlaid with mineral oil, and heat-denatured completely. The sample was immediately transferred into a 68 °C water bath and incubated for 20 hours (long hybridization [LH]). The reaction mixture was then subjected to a streptavidin treatment followed by phenol/chloroform extraction. This process was repeated three more times. Subtracted DNA was precipitated, dissolved in 12 μl H₂O, mixed with 8 μl driver DNA and 20 μl of 2 x hybridization buffer, and subjected to a hybridization at 68 °C for 2 hours (short hybridization [SH]). After removal of biotinylated double-stranded DNA, subtracted cDNA was ligated into BamHI/XhoI site of chloramphenicol resistant pBCSK+ (Stratagene, La Jolla, CA 92037) and transformed into ElectroMax *E. coli* DH10B cells by electroporation to generate a prostate tumor specific subtracted cDNA library (referred to as "prostate subtraction 1").

10

20

To analyze the subtracted cDNA library, plasmid DNA was prepared from 100 independent clones, randomly picked from the subtracted prostate tumor specific library and grouped based on insert size. Representative cDNA clones were further characterized by DNA sequencing with a Perkin Elmer/Applied Biosystems Division Automated Sequencer Model 373A (Foster City, CA). Six cDNA clones, hereinafter referred to as F1-13, F1-12, F1-16, H1-1, H1-9 and H1-4, were shown to be abundant in the subtracted prostate-specific cDNA library. The determined 3' and 5' cDNA sequences for F1-12 are provided in SEQ ID NO: 2 and 3, respectively, with determined 3' cDNA sequences for F1-13, F1-16, H1-1, H1-9 and H1-4 being provided in SEQ ID NO: 1 and 4-7, respectively.

The cDNA sequences for the isolated clones were compared to known sequences in the gene bank using the EMBL and GenBank databases (release 96). Four of the prostate tumor cDNA clones, F1-13, F1-16, H1-1, and H1-4, were determined to encode the following previously identified proteins: prostate specific antigen (PSA), human glandular kallikrein, human tumor expression enhanced gene, and mitochondria cytochrome C oxidase subunit II. H1-9 was found to be identical to a previously identified human autonomously replicating sequence. No significant homologies to the cDNA sequence for F1-12 were found.

Subsequent studies led to the isolation of a full-length cDNA sequence for F1-12. This sequence is provided in SEQ ID NO: 107, with the corresponding predicted amino acid sequence being provided in SEQ ID NO: 108.

10

15

20

25

To clone less abundant prostate tumor specific genes, cDNA library subtraction was performed by subtracting the prostate tumor cDNA library described above with the normal pancreas cDNA library and with the three most abundant genes in the previously subtracted prostate tumor specific cDNA library: human glandular kallikrein, prostate specific antigen (PSA), and mitochondria cytochrome C oxidase subunit II. Specifically, 1 µg each of human glandular kallikrein, PSA and mitochondria cytochrome C oxidase subunit II cDNAs in pCDNA3.1 were added to the driver DNA and subtraction was performed as described above to provide a second subtracted cDNA library hereinafter referred to as the "subtracted prostate tumor specific cDNA library with spike".

Twenty-two cDNA clones were isolated from the subtracted prostate tumor specific cDNA library with spike. The determined 3' and 5' cDNA sequences for the clones referred to as J1-17, L1-12, N1-1862, J1-13, J1-19, J1-25, J1-24, K1-58, K1-63, L1-4 and L1-14 are provided in SEQ ID NOS: 8-9, 10-11, 12-13, 14-15, 16-17, 18-19, 20-21, 22-23, 24-25, 26-27 and 28-29, respectively. The determined 3' cDNA sequences for the clones referred to as J1-12, J1-16, J1-21, K1-48, K1-55, L1-2, L1-6, N1-1858, N1-1860, N1-1861, N1-1864 are provided in SEQ ID NOS: 30-40, respectively. Comparison of these sequences with those in the gene bank as described above, revealed no significant homologies to three of the five most abundant DNA species, (J1-17, L1-12 and N1-1862; SEQ ID NOS: 8-9, 10-11 and 12-13, respectively). Of the remaining two most abundant species, one (J1-12; SEQ ID NO:30) was found to be identical to the previously identified human pulmonary surfactant-associated protein, and the other (K1-48; SEQ ID NO:33) was determined to have some homology to *R. norvegicus* mRNA for 2-arylpropionyl-CoA epimerase. Of the 17 less abundant cDNA clones isolated from the subtracted prostate tumor specific cDNA

library with spike, four (J1-16, K1-55, L1-6 and N1-1864; SEQ ID NOS:31, 34, 36 and 40, respectively) were found to be identical to previously identified sequences, two (J1-21 and N1-1860; SEQ ID NOS: 32 and 38, respectively) were found to show some homology to non-human sequences, and two (L1-2 and N1-1861; SEQ ID NOS: 35 and 39, respectively) were found to show some homology to known human sequences. No significant homologies were found to the polypeptides J1-13, J1-19, J1-24, J1-25, K1-58, K1-63, L1-4, L1-14 (SEQ ID NOS: 14-15, 16-17, 20-21, 18-19, 22-23, 24-25, 26-27, 28-29, respectively).

Subsequent studies led to the isolation of full length cDNA sequences for J1-17, L1-12 and N1-1862 (SEQ ID NOS: 109-111, respectively). The corresponding predicted amino acid sequences are provided in SEQ ID NOS: 112-114. L1-12 is also referred to as P501S.

10

15

20

25

30

In a further experiment, four additional clones were identified by subtracting a prostate tumor cDNA library with normal prostate cDNA prepared from a pool of three normal prostate poly A+ RNA (referred to as "prostate subtraction 2"). The determined cDNA sequences for these clones, hereinafter referred to as U1-3064, U1-3065, V1-3692 and 1A-3905, are provided in SEQ ID NO: 69-72, respectively. Comparison of the determined sequences with those in the gene bank revealed no significant homologies to U1-3065.

A second subtraction with spike (referred to as "prostate subtraction spike 2") was performed by subtracting a prostate tumor specific cDNA library with spike with normal pancreas cDNA library and further spiked with PSA, J1-17, pulmonary surfactant-associated protein, mitochondrial DNA, cytochrome c oxidase subunit II, N1-1862, autonomously replicating sequence, L1-12 and tumor expression enhanced gene. Four additional clones, hereinafter referred to as V1-3686, R1-2330, 1B-3976 and V1-3679, were isolated. The determined cDNA sequences for these clones are provided in SEQ ID NO:73-76, respectively. Comparison of these sequences with those in the gene bank revealed no significant homologies to V1-3686 and R1-2330.

Further analysis of the three prostate subtractions described above (prostate subtraction 2, subtracted prostate tumor specific cDNA library with spike, and prostate subtraction spike 2) resulted in the identification of sixteen additional clones, referred to as 1G-4736, 1G-4738, 1G-4741, 1G-4744, 1G-4734, 1H-4774, 1H-4781, 1H-4785, 1H-4787, 1H-4796, 1I-4810, 1I-4811, 1J-4876, 1K-4884 and 1K-4896. The determined cDNA sequences for these clones are provided in SEQ ID NOS: 77-92, respectively. Comparison of these sequences with those in the gene bank as described above, revealed no significant homologies to 1G-4741, 1G-4734, 1I-4807, 1J-4876 and 1K-4896 (SEQ ID NOS: 79, 81, 87, 90 and 92, respectively). Further analysis of the isolated

clones led to the determination of extended cDNA sequences for 1G-4736, 1G-4738, 1G-4741, 1G-4744, 1H-4774, 1H-4781, 1H-4785, 1H-4787, 1H-4796, 1I-4807, 1J-4876, 1K-4884 and 1K-4896, provided in SEQ ID NOS: 179-188 and 191-193, respectively, and to the determination of additional partial cDNA sequences for 1I-4810 and 1I-4811, provided in SEQ ID NOS: 189 and 190, respectively.

Additional studies with prostate subtraction spike 2 resulted in the isolation of three more clones. Their sequences were determined as described above and compared to the most recent GenBank. All three clones were found to have homology to known genes, which are Cysteine-rich protein, KIAA0242, and KIAA0280 (SEQ ID NO: 317, 319, and 320, respectively). Further analysis of these clones by Synteni microarray (Synteni, Palo Alto, CA) demonstrated that all three clones were over-expressed in most prostate tumors and prostate BPH, as well as in the majority of normal prostate tissues tested, but low expression in all other normal tissues.

An additional subtraction was performed by subtracting a normal prostate cDNA library with normal pancreas cDNA (referred to as "prostate subtraction 3"). This led to the identification of six additional clones referred to as 1G-4761, 1G-4762, 1H-4766, 1H-4770, 1H-4771 and 1H-4772 (SEQ ID NOS: 93-98). Comparison of these sequences with those in the gene bank revealed no significant homologies to 1G-4761 and 1H-4771 (SEQ ID NOS: 93 and 97, respectively). Further analysis of the isolated clones led to the determination of extended cDNA sequences for 1G-4761, 1G-4762, 1H-4766 and 1H-4772 provided in SEQ ID NOS: 194-196 and 199, respectively, and to the determination of additional partial cDNA sequences for 1H-4770 and 1H-4771, provided in SEQ ID NOS: 197 and 198, respectively.

20

30

Subtraction of a prostate tumor cDNA library, prepared from a pool of polyA+ RNA from three prostate cancer patients, with a normal pancreas cDNA library (prostate subtraction 4) led to the identification of eight clones, referred to as 1D-4297, 1D-4309, 1D.1-4278, 1D-4288, 1D-4283, 1D-4304, 1D-4296 and 1D-4280 (SEQ ID NOS: 99-107). These sequences were compared to those in the gene bank as described above. No significant homologies were found to 1D-4283 and 1D-4304 (SEQ ID NOS: 103 and 104, respectively). Further analysis of the isolated clones led to the determination of extended cDNA sequences for 1D-4309, 1D.1-4278, 1D-4288, 1D-4283, 1D-4304, 1D-4296 and 1D-4280, provided in SEQ ID NOS: 200-206, respectively.

cDNA clones isolated in prostate subtraction 1 and prostate subtraction 2, described above, were colony PCR amplified and their mRNA expression levels in prostate tumor, normal prostate and in various other normal tissues were determined using microarray technology (Synteni,

á

Palo Alto, CA). Briefly, the PCR amplification products were dotted onto slides in an array format, with each product occupying a unique location in the array. mRNA was extracted from the tissue sample to be tested, reverse transcribed, and fluorescent-labeled cDNA probes were generated. The microarrays were probed with the labeled cDNA probes, the slides scanned and fluorescence intensity was measured. This intensity correlates with the hybridization intensity. Two clones (referred to as P509S and P510S) were found to be over-expressed in prostate tumor and normal prostate and expressed at low levels in all other normal tissues tested (liver, pancreas, skin, bone marrow, brain, breast, adrenal gland, bladder, testes, salivary gland, large intestine, kidney, ovary, lung, spinal cord, skeletal muscle and colon). The determined cDNA sequences for P509S and P510S are provided in SEQ ID NO: 223 and 224, respectively. Comparison of these sequences with those in the gene bank as described above, revealed some homology to previously identified ESTs.

Additional, studies led to the isolation of the full-length cDNA sequence for P509S. This sequence is provided in SEQ ID NO: 332, with the corresponding predicted amino acid sequence being provided in SEQ ID NO: 339. Two variant full-length cDNA sequences for P510S are provided in SEQ ID NO: 535 and 536, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 537 and 538, respectively.

15

20

25

30

EXAMPLE 2

DETERMINATION OF TISSUE SPECIFICITY OF PROSTATE-SPECIFIC POLYPEPTIDES

Using gene specific primers, mRNA expression levels for the representative prostate-specific polypeptides F1-16, H1-1, J1-17 (also referred to as P502S), L1-12 (also referred to as P501S), F1-12 (also referred to as P504S) and N1-1862 (also referred to as P503S) were examined in a variety of normal and tumor tissues using RT-PCR.

Briefly, total RNA was extracted from a variety of normal and tumor tissues using Trizol reagent as described above. First strand synthesis was carried out using 1-2 μg of total RNA with SuperScript II reverse transcriptase (BRL Life Technologies) at 42 °C for one hour. The cDNA was then amplified by PCR with gene-specific primers. To ensure the semi-quantitative nature of the RT-PCR, β-actin was used as an internal control for each of the tissues examined. First, serial dilutions of the first strand cDNAs were prepared and RT-PCR assays were performed using β-actin specific primers. A dilution was then chosen that enabled the linear range amplification of the β-actin template and which was sensitive enough to reflect the differences in the initial copy numbers. Using these conditions, the β-actin levels were determined for each

reverse transcription reaction from each tissue. DNA contamination was minimized by DNase treatment and by assuring a negative PCR result when using first strand cDNA that was prepared without adding reverse transcriptase.

mRNA Expression levels were examined in four different types of tumor tissue (prostate tumor from 2 patients, breast tumor from 3 patients, colon tumor, lung tumor), and sixteen different normal tissues, including prostate, colon, kidney, liver, lung, ovary, pancreas, skeletal muscle, skin, stomach, testes, bone marrow and brain. F1-16 was found to be expressed at high levels in prostate tumor tissue, colon tumor and normal prostate, and at lower levels in normal liver, skin and testes, with expression being undetectable in the other tissues examined. H1-1 was found to be expressed at high levels in prostate tumor, lung tumor, breast tumor, normal prostate, normal colon and normal brain, at much lower levels in normal lung, pancreas, skeletal muscle, skin, small intestine, bone marrow, and was not detected in the other tissues tested. J1-17 (P502S) and L1-12 (P501S) appear to be specifically over-expressed in prostate, with both genes being expressed at high levels in prostate tumor and normal prostate but at low to undetectable levels in all the other tissues examined. N1-1862 (P503S) was found to be over-expressed in 60% of prostate tumors and detectable in normal colon and kidney. The RT-PCR results thus indicate that F1-16, H1-1, J1-17 (P502S), N1-1862 (P503S) and L1-12 (P501S) are either prostate specific or are expressed at significantly elevated levels in prostate.

Further RT-PCR studies showed that F1-12 (P504S) is over-expressed in 60% of prostate tumors, detectable in normal kidney but not detectable in all other tissues tested. Similarly, R1-2330 was shown to be over-expressed in 40% of prostate tumors, detectable in normal kidney and liver, but not detectable in all other tissues tested. U1-3064 was found to be over-expressed in 60% of prostate tumors, and also expressed in breast and colon tumors, but was not detectable in normal tissues.

20

25

30

RT-PCR characterization of R1-2330, U1-3064 and 1D-4279 showed that these three antigens are over-expressed in prostate and/or prostate tumors.

Northern analysis with four prostate tumors, two normal prostate samples, two BPH prostates, and normal colon, kidney, liver, lung, pancrease, skeletal muscle, brain, stomach, testes, small intestine and bone marrow, showed that L1-12 (P501S) is over-expressed in prostate tumors and normal prostate, while being undetectable in other normal tissues tested. J1-17 (P502S) was detected in two prostate tumors and not in the other tissues tested. N1-1862 (P503S) was found to be over-expressed in three prostate tumors and to be expressed in normal prostate, colon and kidney,

but not in other tissues tested. F1-12 (P504S) was found to be highly expressed in two prostate tumors and to be undetectable in all other tissues tested.

The microarray technology described above was used to determine the expression levels of representative antigens described herein in prostate tumor, breast tumor and the following normal tissues: prostate, liver, pancreas, skin, bone marrow, brain, breast, adrenal gland, bladder, testes, salivary gland, large intestine, kidney, ovary, lung, spinal cord, skeletal muscle and colon. L1-12 (P501S) was found to be over-expressed in normal prostate and prostate tumor, with some expression being detected in normal skeletal muscle. Both J1-12 and F1-12 (P504S) were found to be over-expressed in prostate tumor, with expression being lower or undetectable in all other tissues tested. N1-1862 (P503S) was found to be expressed at high levels in prostate tumor and normal prostate, and at low levels in normal large intestine and normal colon, with expression being undetectable in all other tissues tested. R1-2330 was found to be over-expressed in prostate tumor and normal prostate, and to be expressed at lower levels in all other tissues tested. 1D-4279 was found to be over-expressed in prostate tumor and normal prostate, expressed at lower levels in normal spinal cord, and to be undetectable in all other tissues tested.

Further microarray analysis to specifically address the extent to which P501S (SEQ ID NO: 110) was expressed in breast tumor revealed moderate over-expression not only in breast tumor, but also in metastatic breast tumor (2/31), with negligible to low expression in normal tissues. This data suggests that P501S may be over-expressed in various breast tumors as well as in prostate tumors.

20

25

The expression levels of 32 ESTs (expressed sequence tags) described by Vasmatzis et al. (Proc. Natl. Acad. Sci. USA 95:300-304, 1998) in a variety of tumor and normal tissues were examined by microarray technology as described above. Two of these clones (referred to as P1000C and P1001C) were found to be over-expressed in prostate tumor and normal prostate, and expressed at low to undetectable levels in all other tissues tested (normal aorta, thymus, resting and activated PBMC, epithelial cells, spinal cord, adrenal gland, fetal tissues, skin, salivary gland, large intestine, bone marrow, liver, lung, dendritic cells, stomach, lymph nodes, brain, heart, small intestine, skeletal muscle, colon and kidney. The determined cDNA sequences for P1000C and P1001C are provided in SEQ ID NO: 384 and 472, respectively. The sequence of P1001C was found to show some homology to the previously isolated Human mRNA for JM27 protein. No significant homologies were found to the sequence of P1000C.

The expression of the polypeptide encoded by the full length cDNA sequence for F1-12 (also referred to as P504S; SEQ ID NO: 108) was investigated by immunohistochemical analysis. Rabbit-anti-P504S polyclonal antibodies were generated against the full length P504S protein by standard techniques. Subsequent isolation and characterization of the polyclonal antibodies were also performed by techniques well known in the art. Immunohistochemical analysis showed that the P504S polypeptide was expressed in 100% of prostate carcinoma samples tested (n=5).

The rabbit-anti-P504S polyclonal antibody did not appear to label benign prostate cells with the same cytoplasmic granular staining, but rather with light nuclear staining. Analysis of normal tissues revealed that the encoded polypeptide was found to be expressed in some, but not all normal human tissues. Positive cytoplasmic staining with rabbit-anti-P504S polyclonal antibody was found in normal human kidney, liver, brain, colon and lung-associated macrophages, whereas heart and bone marrow were negative.

This data indicates that the P504S polypeptide is present in prostate cancer tissues, and that there are qualitative and quantitative differences in the staining between benign prostatic hyperplasia tissues and prostate cancer tissues, suggesting that this polypeptide may be detected selectively in prostate tumors and therefore be useful in the diagnosis of prostate cancer.

20 EXAMPLE 3

10

15

25

30

ISOLATION AND CHARACTERIZATION OF PROSTATE-SPECIFIC POLYPEPTIDES BY PCR-BASED SUBTRACTION

A cDNA subtraction library, containing cDNA from normal prostate subtracted with ten other normal tissue cDNAs (brain, heart, kidney, liver, lung, ovary, placenta, skeletal muscle, spleen and thymus) and then submitted to a first round of PCR amplification, was purchased from Clontech. This library was subjected to a second round of PCR amplification, following the manufacturer's protocol. The resulting cDNA fragments were subcloned into the vector pT7 Blue T-vector (Novagen, Madison, WI) and transformed into XL-1 Blue MRF' *E. coli* (Stratagene). DNA was isolated from independent clones and sequenced using a Perkin Elmer/Applied Biosystems Division Automated Sequencer Model 373A.

Fifty-nine positive clones were sequenced. Comparison of the DNA sequences of these clones with those in the gene bank, as described above, revealed no significant homologies to 25 of these clones, hereinafter referred to as P5, P8, P9, P18, P20, P30, P34, P36, P38, P39, P42, P49, P50, P53, P55, P60, P64, P65, P73, P75, P76, P79 and P84. The determined cDNA sequences for these clones are provided in SEQ ID NO: 41-45, 47-52 and 54-65, respectively. P29, P47, P68, P80 and P82 (SEQ ID NO: 46, 53 and 66-68, respectively) were found to show some degree of homology to previously identified DNA sequences. To the best of the inventors' knowledge, none of these sequences have been previously shown to be present in prostate.

10

15

20

25

30

Further studies using the PCR-based methodology described above resulted in the isolation of more than 180 additional clones, of which 23 clones were found to show no significant homologies to known sequences. The determined cDNA sequences for these clones are provided in SEQ ID NO: 115-123, 127, 131, 137, 145, 147-151, 153, 156-158 and 160. Twenty-three clones (SEQ ID NO: 124-126, 128-130, 132-136, 138-144, 146, 152, 154, 155 and 159) were found to show some homology to previously identified ESTs. An additional ten clones (SEQ ID NO: 161-170) were found to have some degree of homology to known genes. Larger cDNA clones containing the P20 sequence represent splice variants of a gene referred to as P703P. The determined DNA sequence for the variants referred to as DE1, DE13 and DE14 are provided in SEQ ID NOS: 171, 175 and 177, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 172, 176 and 178, respectively. The determined cDNA sequence for an extended spliced form of P703 is provided in SEQ ID NO: 225. The DNA sequences for the splice variants referred to as DE2 and DE6 are provided in SEQ ID NOS: 173 and 174, respectively.

mRNA Expression levels for representative clones in tumor tissues (prostate (n=5), breast (n=2), colon and lung) normal tissues (prostate (n=5), colon, kidney, liver, lung (n=2), ovary (n=2), skeletal muscle, skin, stomach, small intestine and brain), and activated and non-activated PBMC was determined by RT-PCR as described above. Expression was examined in one sample of each tissue type unless otherwise indicated.

P9 was found to be highly expressed in normal prostate and prostate tumor compared to all normal tissues tested except for normal colon which showed comparable expression. P20, a portion of the P703P gene, was found to be highly expressed in normal prostate and prostate tumor, compared to all twelve normal tissues tested. A modest increase in expression of P20 in breast tumor (n=2), colon tumor and lung tumor was seen compared to all normal tissues except lung (1 of

°4

2). Increased expression of P18 was found in normal prostate, prostate tumor and breast tumor compared to other normal tissues except lung and stomach. A modest increase in expression of P5 was observed in normal prostate compared to most other normal tissues. However, some elevated expression was seen in normal lung and PBMC. Elevated expression of P5 was also observed in prostate tumors (2 of 5), breast tumor and one lung tumor sample. For P30, similar expression levels were seen in normal prostate and prostate tumor, compared to six of twelve other normal tissues tested. Increased expression was seen in breast tumors, one lung tumor sample and one colon tumor sample, and also in normal PBMC. P29 was found to be over-expressed in prostate tumor (5 of 5) and normal prostate (5 of 5) compared to the majority of normal tissues. However, substantial expression of P29 was observed in normal colon and normal lung (2 of 2). P80 was found to be over-expressed in prostate tumor (5 of 5) and normal prostate (5 of 5) compared to all other normal tissues tested, with increased expression also being seen in colon tumor.

10

15

20

25

30

Further studies resulted in the isolation of twelve additional clones, hereinafter referred to as 10-d8, 10-h10, 11-c8, 7-g6, 8-b5, 8-b6, 8-d4, 8-d9, 8-g3, 8-h11, 9-f12 and 9-f3. The determined DNA sequences for 10-d8, 10-h10, 11-c8, 8-d4, 8-d9, 8-h11, 9-f12 and 9-f3 are provided in SEQ ID NO: 207, 208, 209, 216, 217, 220, 221 and 222, respectively. The determined forward and reverse DNA sequences for 7-g6, 8-b5, 8-b6 and 8-g3 are provided in SEQ ID NO: 210 and 211; 212 and 213; 214 and 215; and 218 and 219, respectively. Comparison of these sequences with those in the gene bank revealed no significant homologies to the sequence of 9-f3. The clones 10-d8, 11-c8 and 8-h11 were found to show some homology to previously isolated ESTs, while 10-h10, 8-b5, 8-b6, 8-d4, 8-d9, 8-g3 and 9-f12 were found to show some homology to previously identified genes. Further characterization of 7-G6 and 8-G3 showed identity to the known genes PAP and PSA, respectively.

mRNA expression levels for these clones were determined using the micro-array technology described above. The clones 7-G6, 8-G3, 8-B5, 8-B6, 8-D4, 8-D9, 9-F3, 9-F12, 9-H3, 10-A2, 10-A4, 11-C9 and 11-F2 were found to be over-expressed in prostate tumor and normal prostate, with expression in other tissues tested being low or undetectable. Increased expression of 8-F11 was seen in prostate tumor and normal prostate, bladder, skeletal muscle and colon. Increased expression of 10-H10 was seen in prostate tumor and normal prostate, bladder, lung, colon, brain and large intestine. Increased expression of 9-B1 was seen in prostate tumor, breast tumor, and normal prostate, salivary gland, large intestine and skin, with increased expression of 11-C8 being seen in prostate tumor, and normal prostate tumor, and normal prostate tumor, and normal prostate tumor, and normal prostate tumor.

ij

An additional cDNA fragment derived from the PCR-based normal prostate subtraction, described above, was found to be prostate specific by both micro-array technology and RT-PCR. The determined cDNA sequence of this clone (referred to as 9-A11) is provided in SEQ ID NO: 226. Comparison of this sequence with those in the public databases revealed 99% identity to the known gene HOXB13.

Further studies led to the isolation of the clones 8-C6 and 8-H7. The determined cDNA sequences for these clones are provided in SEQ ID NO: 227 and 228, respectively. These sequences were found to show some homology to previously isolated ESTs.

10

15

20

25

30

PCR and hybridization-based methodologies were employed to obtain longer cDNA sequences for clone P20 (also referred to as P703P), yielding three additional cDNA fragments that progressively extend the 5' end of the gene. These fragments, referred to as P703PDE5, P703P6.26, and P703PX-23 (SEQ ID NO: 326, 328 and 330, with the predicted corresponding amino acid sequences being provided in SEQ ID NO: 327, 329 and 331, respectively) contain additional 5' sequence. P703PDE5 was recovered by screening of a cDNA library (#141-26) with a portion of P703P as a probe. P703P6.26 was recovered from a mixture of three prostate tumor cDNAs and P703PX_23 was recovered from cDNA library (#438-48). Together, the additional sequences include all of the putative mature serine protease along with part of the putative signal sequence. The putative full-length cDNA sequence for P703P is provided in SEQ ID NO: 524, with the corresponding predicted amino acid sequence being provided in SEQ ID NO: 525.

Further studies using a PCR-based subtraction library of a prostate tumor pool subtracted against a pool of normal tissues (referred to as JP: PCR subtraction) resulted in the isolation of thirteen additional clones, seven of which did not share any significant homology to known GenBank sequences. The determined cDNA sequences for these seven clones (P711P, P712P, novel 23, P774P, P775P, P710P and P768P) are provided in SEQ ID NO: 307-311, 313 and 315, respectively. The remaining six clones (SEQ ID NO: 316 and 321-325) were shown to share some homology to known genes. By microarray analysis, all thirteen clones showed three or more fold over-expression in prostate tissues, including prostate tumors, BPH and normal prostate as compared to normal non-prostate tissues. Clones P711P, P712P, novel 23 and P768P showed over-expression in most prostate tumors and BPH tissues tested (n=29), and in the majority of normal prostate tissues (n=4), but background to low expression levels in all normal tissues. Clones P774P, P775P and P710P showed comparatively lower expression and expression in fewer prostate tumors and BPH samples, with negative to low expression in normal prostate.

The full-length cDNA for P711P was obtained by employing the partial sequence of SEQ ID NO: 307 to screen a prostate cDNA library. Specifically, a directionally cloned prostate cDNA library was prepared using standard techniques. One million colonies of this library were plated onto LB/Amp plates. Nylon membrane filters were used to lift these colonies, and the cDNAs which were picked up by these filters were denatured and cross-linked to the filters by UV light. The P711P cDNA fragment of SEQ ID NO: 307 was radio-labeled and used to hybridize with these filters. Positive clones were selected, and cDNAs were prepared and sequenced using an automatic Perkin Elmer/Applied Biosystems sequencer. The determined full-length sequence of P711P is provided in SEQ ID NO: 382, with the corresponding predicted amino acid sequence being provided in SEQ ID NO: 383.

Using PCR and hybridization-based methodologies, additional cDNA sequence information was derived for two clones described above, 11-C9 and 9-F3, herein after referred to as P707P and P714P, respectively (SEQ ID NO: 333 and 334). After comparison with the most recent GenBank, P707P was found to be a splice variant of the known gene HoxB13. In contrast, no significant homologies to P714P were found.

10

20

Clones 8-B3, P89, P98, P130 and P201 (as disclosed in U.S. Patent Application No. 09/020,956, filed February 9, 1998) were found to be contained within one contiguous sequence, referred to as P705P (SEQ ID NO: 335, with the predicted amino acid sequence provided in SEQ ID NO: 336), which was determined to be a splice variant of the known gene NKX 3.1.

Further studies on P775P resulted in the isolation of four additional sequences (SEQ ID NO: 473-476) which are all splice variants of the P775P gene. The sequence of SEQ ID NO: 474 was found to contain two open reading frames (ORFs). The predicted amino acid sequences encoded by these ORFs are provided in SEQ ID NO: 477 and 478. The cDNA sequence of SEQ ID NO: 475 was found to contain an ORF which encodes the amino acid sequence of SEQ ID NO: 479. The cDNA sequence of SEQ ID NO: 473 was found to contain four ORFs. The predicted amino acid sequences encoded by these ORFs are provided in SEQ ID NO: 480-483.

Subsequent studies led to the identification of a genomic region on chromosome 22q11.2, known as the Cat Eye Syndrome region, that contains the five prostate genes P704P, P712P, P774P, P775P and B305D. The relative location of each of these five genes within the genomic region is shown in Fig. 10. This region may therefore be associated with malignant tumors, and other potential tumor genes may be contained within this region. These studies also led

to the identification of a potential open reading frame (ORF) for P775P (provided in SEQ ID NO: 533), which encodes the amino acid sequence of SEQ ID NO: 534.

EXAMPLE 4 SYNTHESIS OF POLYPEPTIDES

Polypeptides may be synthesized on a Perkin Elmer/Applied Biosystems 430A peptide synthesizer using FMOC chemistry with HPTU (O-Benzotriazole-N,N,N',N'tetramethyluronium hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugation, binding to an immobilized surface, or labeling of the peptide. Cleavage of the peptides from the solid support may be carried out using the following cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0%-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the peptides. Following lyophilization of the pure fractions, the peptides may be characterized using electrospray or other types of mass spectrometry and by amino acid analysis.

20

15

5

EXAMPLE 5 FURTHER ISOLATION AND CHARACTERIZATION OF PROSTATE-SPECIFIC

POLYPEPTIDES BY PCR-BASED SUBTRACTION

25

30

A cDNA library generated from prostate primary tumor mRNA as described above was subtracted with cDNA from normal prostate. The subtraction was performed using a PCR-based protocol (Clontech), which was modified to generate larger fragments. Within this protocol, tester and driver double stranded cDNA were separately digested with five restriction enzymes that recognize six-nucleotide restriction sites (MluI, MscI, PvuII, SalI and StuI). This digestion resulted in an average cDNA size of 600 bp, rather than the average size of 300 bp that results from digestion with Rsal according to the Clontech protocol. This modification did not affect the

subtraction efficiency. Two tester populations were then created with different adapters, and the driver library remained without adapters.

The tester and driver libraries were then hybridized using excess driver cDNA. In the first hybridization step, driver was separately hybridized with each of the two tester cDNA populations. This resulted in populations of (a) unhybridized tester cDNAs, (b) tester cDNAs hybridized to other tester cDNAs, (c) tester cDNAs hybridized to driver cDNAs and (d) unhybridized driver cDNAs. The two separate hybridization reactions were then combined, and rehybridized in the presence of additional denatured driver cDNA. Following this second hybridization, in addition to populations (a) through (d), a fifth population (e) was generated in which tester cDNA with one adapter hybridized to tester cDNA with the second adapter. Accordingly, the second hybridization step resulted in enrichment of differentially expressed sequences which could be used as templates for PCR amplification with adaptor-specific primers.

10

20

25

30

The ends were then filled in, and PCR amplification was performed using adaptorspecific primers. Only population (e), which contained tester cDNA that did not hybridize to driver cDNA, was amplified exponentially. A second PCR amplification step was then performed, to reduce background and further enrich differentially expressed sequences.

This PCR-based subtraction technique normalizes differentially expressed cDNAs so that rare transcripts that are overexpressed in prostate tumor tissue may be recoverable. Such transcripts would be difficult to recover by traditional subtraction methods.

In addition to genes known to be overexpressed in prostate tumor, seventy-seven further clones were identified. Sequences of these partial cDNAs are provided in SEQ ID NO: 29 to 305. Most of these clones had no significant homology to database sequences. Exceptions were JPTPN23 (SEQ ID NO: 231; similarity to pig valosin-containing protein), JPTPN30 (SEQ ID NO: 234; similarity to rat mRNA for proteasome subunit), JPTPN45 (SEQ ID NO: 243; similarity to rat norvegicus cytosolic NADP-dependent isocitrate dehydrogenase), JPTPN46 (SEQ ID NO: 244; similarity to human subclone H8 4 d4 DNA sequence), JP1D6 (SEQ ID NO: 265; similarity to G. gallus dynein light chain-A), JP8D6 (SEQ ID NO: 288; similarity to human BAC clone RG016J04), JP8F5 (SEQ ID NO: 289; similarity to human subclone H8 3 b5 DNA sequence), and JP8E9 (SEQ ID NO: 299; similarity to human Alu sequence).

Additional studies using the PCR-based subtraction library consisting of a prostate tumor pool subtracted against a normal prostate pool (referred to as PT-PN PCR subtraction) yielded three additional clones. Comparison of the cDNA sequences of these clones with the most

recent release of GenBank revealed no significant homologies to the two clones referred to as P715P and P767P (SEQ ID NO: 312 and 314). The remaining clone was found to show some homology to the known gene KIAA0056 (SEQ ID NO: 318). Using microarray analysis to measure mRNA expression levels in various tissues, all three clones were found to be over-expressed in prostate tumors and BPH tissues. Specifically, clone P715P was over-expressed in most prostate tumors and BPH tissues by a factor of three or greater, with elevated expression seen in the majority of normal prostate samples and in fetal tissue, but negative to low expression in all other normal tissues. Clone P767P was over-expressed in several prostate tumors and BPH tissues, with moderate expression levels in half of the normal prostate samples, and background to low expression in all other normal tissues tested.

10

Further analysis, by microarray as described above, of the PT-PN PCR subtraction library and of a DNA subtraction library containing cDNA from prostate tumor subtracted with a pool of normal tissue cDNAs, led to the isolation of 27 additional clones (SEQ ID NO: 340-365 and 381) which were determined to be over-expressed in prostate tumor. The clones of SEQ ID NO: 341, 342, 345, 347, 348, 349, 351, 355-359, 361, 362 and 364 were also found to be expressed in normal prostate. Expression of all 26 clones in a variety of normal tissues was found to be low or undetectable, with the exception of P544S (SEQ ID NO: 356) which was found to be expressed in small intestine. Of the 26 clones, 10 (SEQ ID NO: 340-349) were found to show some homology to previously identified sequences. No significant homologies were found to the clones of SEQ ID NO: 350, 351 and 353-365.

Further studies on the clone of SEQ ID NO: 352 (referred to as P790P) led to the isolation of the full-length cDNA sequence of SEQ ID NO: 526. The corresponding predicted amino acid is provided in SEQ ID NO: 527. Data from two quantitative PCR experiments indicated that P790P is over-expressed in 11/15 tested prostate tumor samples and is expressed at low levels in spinal cord, with no expression being seen in all other normal samples tested. Data from further PCR experiments and microarray experiments showed over-expression in normal prostate and prostate tumor with little or no expression in other tissues tested. P790P was subsequently found to show significant homology to a previously identified G-protein coupled prostate tissue receptor.

٠,

EXAMPLE 6

PEPTIDE PRIMING OF MICE AND PROPAGATION OF CTL LINES

6.1. This Example illustrates the preparation of a CTL cell line specific for cells expressing the P502S gene.

5

10

15

20

25

30

Mice expressing the transgene for human HLA A2Kb (provided by Dr L. Sherman, The Scripps Research Institute, La Jolla, CA) were immunized with P2S#12 peptide (VLGWVAEL; SEQ ID NO: 306), which is derived from the P502S gene (also referred to herein as J1-17, SEQ ID NO: 8), as described by Theobald et al., Proc. Natl. Acad. Sci. USA 92:11993-11997, 1995 with the following modifications. Mice were immunized with 100µg of P2S#12 and 120µg of an I-Ab binding peptide derived from hepatitis B Virus protein emulsified in incomplete Freund's adjuvant. Three weeks later these mice were sacrificed and using a nylon mesh single cell suspensions prepared. Cells were then resuspended at 6 x 106 cells/ml in complete media (RPMI-1640; Gibco BRL, Gaithersburg, MD) containing 10% FCS, 2mM Glutamine (Gibco BRL), sodium pyruvate (Gibco BRL), non-essential amino acids (Gibco BRL), 2 x 10⁻⁵ M 2-mercaptoethanol, 50U/ml penicillin and streptomycin, and cultured in the presence of irradiated (3000 rads) P2S#12-pulsed (5mg/ml P2S#12 and 10mg/ml β2-microglobulin) LPS blasts (A2 transgenic spleens cells cultured in the presence of 7µg/ml dextran sulfate and 25µg/ml LPS for 3 days). Six days later, cells (5 x 10⁵/ml) were restimulated with 2.5 x 10⁶/ml peptide pulsed irradiated (20,000 rads) EL4A2Kb cells (Sherman et al, Science 258:815-818, 1992) and 3 x 106/ml A2 transgenic spleen feeder cells. Cells were cultured in the presence of 20U/ml IL-2. Cells continued to be restimulated on a weekly basis as described, in preparation for cloning the line.

P2S#12 line was cloned by limiting dilution analysis with peptide pulsed EL4 A2Kb tumor cells (1 x 10⁴ cells/ well) as stimulators and A2 transgenic spleen cells as feeders (5 x 10⁵ cells/ well) grown in the presence of 30U/ml IL-2. On day 14, cells were restimulated as before. On day 21, clones that were growing were isolated and maintained in culture. Several of these clones demonstrated significantly higher reactivity (lysis) against human fibroblasts (HLA A2Kb expressing) transduced with P502S than against control fibroblasts. An example is presented in Figure 1.

This data indicates that P2S #12 represents a naturally processed epitope of the P502S protein that is expressed in the context of the human HLA A2Kb molecule.

6.2. This Example illustrates the preparation of murine CTL lines and CTL clones specific for cells expressing the P501S gene.

This series of experiments were performed similarly to that described above. Mice were immunized with the P1S#10 peptide (SEQ ID NO: 337), which is derived from the P501S gene (also referred to herein as L1-12, SEQ ID NO: 110). The P1S#10 peptide was derived by analysis of the predicted polypeptide sequence for P501S for potential HLA-A2 binding sequences as defined by published HLA-A2 binding motifs (Parker, KC, et al, J. Immunol., 152:163, 1994). P1S#10 peptide was synthesized as described in Example 4, and empirically tested for HLA-A2 binding using a T cell based competition assay. Predicted A2 binding peptides were tested for their ability to compete HLA-A2 specific peptide presentation to an HLA-A2 restricted CTL clone (D150M58), which is specific for the HLA-A2 binding influenza matrix peptide fluM58. D150M58 CTL secretes TNF in response to self-presentation of peptide fluM58. In the competition assay, test peptides at 100-200 µg/ml were added to cultures of D150M58 CTL in order to bind HLA-A2 on the CTL. After thirty minutes, CTL cultured with test peptides, or control peptides, were tested for their antigen dose response to the fluM58 peptide in a standard TNF bioassay. As shown in Figure 3, peptide P1S#10 competes HLA-A2 restricted presentation of fluM58, demonstrating that peptide P1S#10 binds HLA-A2.

Mice expressing the transgene for human HLA A2Kb were immunized as described by Theobald et al. (*Proc. Natl. Acad. Sci. USA 92*:11993-11997, 1995) with the following modifications. Mice were immunized with 62.5μg of P1S #10 and 120μg of an I-A^b binding peptide derived from Hepatitis B Virus protein emulsified in incomplete Freund's adjuvant. Three weeks later these mice were sacrificed and single cell suspensions prepared using a nylon mesh. Cells were then resuspended at 6 x 10⁶ cells/ml in complete media (as described above) and cultured in the presence of irradiated (3000 rads) P1S#10-pulsed (2μg/ml P1S#10 and 10mg/ml β2-microglobulin) LPS blasts (A2 transgenic spleens cells cultured in the presence of 7μg/ml dextran sulfate and 25μg/ml LPS for 3 days). Six days later cells (5 x 10⁵/ml) were restimulated with 2.5 x 10⁶/ml peptide-pulsed irradiated (20,000 rads) EL4A2Kb cells, as described above, and 3 x 10⁶/ml A2 transgenic spleen feeder cells. Cells were cultured in the presence of 20 U/ml IL-2. Cells were restimulated on a weekly basis in preparation for cloning. After three rounds of *in vitro* stimulations, one line was generated that recognized P1S#10-pulsed Jurkat A2Kb targets and P501S-transduced Jurkat targets as shown in Figure 4.

20

A P1S#10-specific CTL line was cloned by limiting dilution analysis with peptide pulsed EL4 A2Kb tumor cells (1 x 10⁴ cells/ well) as stimulators and A2 transgenic spleen cells as feeders (5 x 10⁵ cells/ well) grown in the presence of 30U/ml IL-2. On day 14, cells were restimulated as before. On day 21, viable clones were isolated and maintained in culture. As shown in Figure 5, five of these clones demonstrated specific cytolytic reactivity against P501S-transduced Jurkat A2Kb targets. This data indicates that P1S#10 represents a naturally processed epitope of the P501S protein that is expressed in the context of the human HLA-A2.1 molecule.

EXAMPLE 7

PRIMING OF CTL *IN VIVO* USING NAKED DNA IMMUNIZATION WITH A PROSTATE ANTIGEN

The prostate-specific antigen L1-12, as described above, is also referred to as P501S. HLA A2Kb Tg mice (provided by Dr L. Sherman, The Scripps Research Institute, La Jolla, CA) were immunized with 100 µg P501S in the vector VR1012 either intramuscularly or intradermally. The mice were immunized three times, with a two week interval between immunizations. Two weeks after the last immunization, immune spleen cells were cultured with Jurkat A2Kb-P501S transduced stimulator cells. CTL lines were stimulated weekly. After two weeks of *in vitro* stimulation, CTL activity was assessed against P501S transduced targets. Two out of 8 mice developed strong anti-P501S CTL responses. These results demonstrate that P501S contains at least one naturally processed HLA-A2-restricted CTL epitope.

EXAMPLE 8

ABILITY OF HUMAN T CELLS TO RECOGNIZE PROSTATE-SPECIFIC POLYPEPTIDES

25

30

20

10

This Example illustrates the ability of T cells specific for a prostate tumor polypeptide to recognize human tumor.

Human CD8⁺ T cells were primed *in vitro* to the P2S-12 peptide (SEQ ID NO: 306) derived from P502S (also referred to as J1-17) using dendritic cells according to the protocol of Van Tsai et al. (*Critical Reviews in Immunology 18*:65-75, 1998). The resulting CD8⁺ T cell microcultures were tested for their ability to recognize the P2S-12 peptide presented by autologous fibroblasts or fibroblasts which were transduced to express the P502S gene in a γ-interferon

ELISPOT assay (see Lalvani et al., J. Exp. Med. 186:859-865, 1997). Briefly, titrating numbers of T cells were assayed in duplicate on 10⁴ fibroblasts in the presence of 3 μg/ml human β₂microglobulin and 1 µg/ml P2S-12 peptide or control E75 peptide. In addition, T cells were simultaneously assayed on autologous fibroblasts transduced with the P502S gene or as a control, fibroblasts transduced with HER-2/neu. Prior to the assay, the fibroblasts were treated with 10 ng/ml y-interferon for 48 hours to upregulate class I MHC expression. One of the microcultures (#5) demonstrated strong recognition of both peptide pulsed fibroblasts as well as transduced fibroblasts in a γ-interferon ELISPOT assay. Figure 2A demonstrates that there was a strong increase in the number of γ -interferon spots with increasing numbers of T cells on fibroblasts pulsed with the P2S-12 peptide (solid bars) but not with the control E75 peptide (open bars). This shows the ability of these T cells to specifically recognize the P2S-12 peptide. As shown in Figure 2B, this microculture also demonstrated an increase in the number of γ-interferon spots with increasing numbers of T cells on fibroblasts transduced to express the P502S gene but not the HER-2/neu gene. These results provide additional confirmatory evidence that the P2S-12 peptide is a naturally processed epitope of the P502S protein. Furthermore, this also demonstrates that there exists in the human T cell repertoire, high affinity T cells which are capable of recognizing this epitope. These T cells should also be capable of recognizing human tumors which express the P502S gene.

20

25

30

15

10

EXAMPLE 9

ELICITATION OF PROSTATE ANTIGEN-SPECIFIC CTL RESPONSES IN HUMAN BLOOD

This Example illustrates the ability of a prostate-specific antigen to elicit a CTL response in blood of normal humans.

Autologous dendritic cells (DC) were differentiated from monocyte cultures derived from PBMC of normal donors by growth for five days in RPMI medium containing 10% human serum, 50 ng/ml GMCSF and 30 ng/ml IL-4. Following culture, DC were infected overnight with recombinant P501S-expressing vaccinia virus at an M.O.I. of 5 and matured for 8 hours by the addition of 2 micrograms/ml CD40 ligand. Virus was inactivated by UV irradiation, CD8⁺ cells were isolated by positive selection using magnetic beads, and priming cultures were initiated in 24-well plates. Following five stimulation cycles using autologous fibroblasts retrovirally transduced

to express P501S and CD80, CD8+ lines were identified that specifically produced interferongamma when stimulated with autologous P501S-transduced fibroblasts. The P501S-specific activity of cell line 3A-1 could be maintained following additional stimulation cycles on autologous B-LCL transduced with P501S. Line 3A-1 was shown to specifically recognize autologous B-LCL transduced to express P501S, but not EGFP-transduced autologous B-LCL, as measured by cytotoxicity assays (51Cr release) and interferon-gamma production (Interferon-gamma Elispot; *see* above and Lalvani et al., *J. Exp. Med. 186*:859-865, 1997). The results of these assays are presented in Figures 6A and 6B.

10 EXAMPLE 10

20

30

IDENTIFICATION OF A NATURALLY PROCESSED CTL EPITOPE CONTAINED WITHIN A PROSTATE-SPECIFIC ANTIGEN

The 9-mer peptide p5 (SEQ ID NO: 338) was derived from the P703P antigen (also referred to as P20). The p5 peptide is immunogenic in human HLA-A2 donors and is a naturally processed epitope. Antigen specific human CD8+ T cells can be primed following repeated *in vitro* stimulations with monocytes pulsed with p5 peptide. These CTL specifically recognize p5-pulsed and P703P-transduced target cells in both ELISPOT (as described above) and chromium release assays. Additionally, immunization of HLA-A2Kb transgenic mice with p5 leads to the generation of CTL lines which recognize a variety of HLA-A2Kb or HLA-A2 transduced target cells expressing P703P.

Initial studies demonstrating that p5 is a naturally processed epitope were done using HLA-A2Kb transgenic mice. HLA-A2Kb transgenic mice were immunized subcutaneously in the footpad with 100 µg of p5 peptide together with 140 µg of hepatitis B virus core peptide (a Th peptide) in Freund's incomplete adjuvant. Three weeks post immunization, spleen cells from immunized mice were stimulated *in vitro* with peptide-pulsed LPS blasts. CTL activity was assessed by chromium release assay five days after primary *in vitro* stimulation. Retrovirally transduced cells expressing the control antigen P703P and HLA-A2Kb were used as targets. CTL lines that specifically recognized both p5-pulsed targets as well as P703P-expressing targets were identified.

Human *in vitro* priming experiments demonstrated that the p5 peptide is immunogenic in humans. Dendritic cells (DC) were differentiated from monocyte cultures derived

from PBMC of normal human donors by culturing for five days in RPMI medium containing 10% human serum, 50 ng/ml human GM-CSF and 30 ng/ml human IL-4. Following culture, the DC were pulsed with 1 ug/ml p5 peptide and cultured with CD8+ T cell enriched PBMC. CTL lines were restimulated on a weekly basis with p5-pulsed monocytes. Five to six weeks after initiation of the CTL cultures, CTL recognition of p5-pulsed target cells was demonstrated. CTL were additionally shown to recognize human cells transduced to express P703P, demonstrating that p5 is a naturally processed epitope.

EXAMPLE 11

EXPRESSION OF A BREAST TUMOR-DERIVED ANTIGEN IN PROSTATE

10

15

20

25

30

Isolation of the antigen B305D from breast tumor by differential display is described in US Patent Application No. 08/700,014, filed August 20, 1996. Several different splice forms of this antigen were isolated. The determined cDNA sequences for these splice forms are provided in SEQ ID NO: 366-375, with the predicted amino acid sequences corresponding to the sequences of SEQ ID NO: 292, 298 and 301-303 being provided in SEQ ID NO: 299-306, respectively. In further studies, a splice variant of the cDNA sequence of SEQ ID NO: 366 was isolated which was found to contain an additional guanine residue at position 884 (SEQ ID NO: 530), leading to a frameshift in the open reading frame. The determined DNA sequence of this ORF is provided in SEQ ID NO: 531. This frameshift generates a protein sequence (provided in SEQ ID NO: 532) of 293 amino acids that contains the C-terminal domain common to the other isoforms of B305D but that differs in the N-terminal region.

The expression levels of B305D in a variety of tumor and normal tissues were examined by real time PCR and by Northern analysis. The results indicated that B305D is highly expressed in breast tumor, prostate tumor, normal prostate and normal testes, with expression being low or undetectable in all other tissues examined (colon tumor, lung tumor, ovary tumor, and normal bone marrow, colon, kidney, liver, lung, ovary, skin, small intestine, stomach).

EXAMPLE 12

GENERATION OF HUMAN CTL *IN VITRO* USING WHOLE GENE PRIMING AND STIMULATION TECHNIQUES WITH PROSTATE-SPECIFIC ANTIGEN

Using in vitro whole-gene priming with P501S-vaccinia infected DC (see, for example, Yee et al, The Journal of Immunology, 157(9):4079-86, 1996), human CTL lines were derived that specifically recognize autologous fibroblasts transduced with P501S (also known as L1-12), as determined by interferon-y ELISPOT analysis as described above. Using a panel of HLA-mismatched B-LCL lines transduced with P501S, these CTL lines were shown to be likely restricted to HLAB class I allele. Specifically, dendritic cells (DC) were differentiated from monocyte cultures derived from PBMC of normal human donors by growing for five days in RPMI medium containing 10% human serum, 50 ng/ml human GM-CSF and 30 ng/ml human IL-4. Following culture, DC were infected overnight with recombinant P501S vaccinia virus at a multiplicity of infection (M.O.I) of five, and matured overnight by the addition of 3 µg/ml CD40 ligand. Virus was inactivated by UV irradiation. CD8+ T cells were isolated using a magnetic bead system, and priming cultures were initiated using standard culture techniques. Cultures were restimulated every 7-10 days using autologous primary fibroblasts retrovirally transduced with P501S and CD80. Following four stimulation cycles, CD8+ T cell lines were identified that specifically produced interferon-y when stimulated with P501S and CD80-transduced autologous fibroblasts. A panel of HLA-mismatched B-LCL lines transduced with P501S were generated to define the restriction allele of the response. By measuring interferon-y in an ELISPOT assay, the P501S specific response was shown to be likely restricted by HLA B alleles. These results demonstrate that a CD8+ CTL response to P501S can be elicited.

10

15

20

25

30

To identify the epitope(s) recognized, cDNA encoding P501S was fragmented by various restriction digests, and sub-cloned into the retroviral expression vector pBIB-KS. Retroviral supernatants were generated by transfection of the helper packaging line Phoenix-Ampho. Supernatants were then used to transduce Jurkat/A2Kb cells for CTL screening. CTL were screened in IFN-gamma ELISPOT assays against these A2Kb targets transduced with the "library" of P501S fragments. Initial positive fragments P501S/H3 and P501S/F2 were sequenced and found to encode amino acids 106-553 and amino acids 136-547, respectively, of SEQ ID NO: 113. A truncation of H3 was made to encode amino acid residues 106-351 of SEQ ID NO: 113, which was unable to stimulate the CTL, thus localizing the epitope to amino acid residues 351-547. Additional fragments encoding amino acids 1-472 (Fragment A) and amino acids 1-351 (Fragment B) were also constructed. Fragment A but not Fragment B stimulated the CTL thus localizing the epitope to amino acid residues 351-472. Overlapping 20-mer and 18-mer peptides representing this region were tested by pulsing Jurkat/A2Kb cells versus CTL in an IFN-gamma assay. Only peptides

P501S-369(20) and P501S-369(18) stimulated the CTL. Nine-mer and 10-mer peptides representing this region were synthesized and similarly tested. Peptide P501S-370 (SEQ ID NO: 539) was the minimal 9-mer giving a strong response. Peptide P501S-376 (SEQ ID NO: 540) also gave a weak response, suggesting that it might represent a cross-reactive epitope.

In subsequent studies, the ability of primary human B cells transduced with P501S to prime MHC class I-restricted, P501S-specific, autologous CD8 T cells was examined. Primary B cells were derived from PBMC of a homozygous HLA-A2 donor by culture in CD40 ligand and IL-4, transduced at high frequency with recombinant P501S in the vector pBIB, and selected with blastocidin-S. For in vitro priming, purified CD8+ T cells were cultured with autologous CD40 ligand + IL-4 derived, P501S-transduced B cells in a 96-well microculture format. These CTL microcultures were re-stimulated with P501S-transduced B cells and then assayed for specificity. Following this initial screen, microcultures with significant signal above background were cloned on autologous EBV-transformed B cells (BLCL), also transduced with P501S. Using IFN-gamma ELISPOT for detection, several of these CD8 T cell clones were found to be specific for P501S, as demonstrated by reactivity to BLCL/P501S but not BLCL transduced with control antigen. It was further demonstrated that the anti-P501S CD8 T cell specificity is HLA-A2-restricted. First, antibody blocking experiments with anti-HLA-A,B,C monoclonal antibody (W6.32), anti-HLA-B,C monoclonal antibody (B1.23.2) and a control monoclonal antibody showed that only the anti-HLA-A.B.C antibody blocked recognition of P501S-expressing autologous BLCL. Secondly, the anti-P501S CTL also recognized an HLA-A2 matched, heterologous BLCL transduced with P501S, but not the corresponding EGFP transduced control BLCL.

EXAMPLE 13

IDENTIFICATION OF PROSTATE-SPECIFIC ANTIGENS BY MICROARRAY ANALYSIS

25

30

5

10

15

20

This Example describes the isolation of certain prostate-specific polypeptides from a prostate tumor cDNA library.

A human prostate tumor cDNA expression library as described above was screened using microarray analysis to identify clones that display at least a three fold over-expression in prostate tumor and/or normal prostate tissue, as compared to non-prostate normal tissues (not including testis). 372 clones were identified, and 319 were successfully sequenced. Table I presents a summary of these clones, which are shown in SEQ ID NOs:385-400. Of these sequences

SEQ ID NOs:386, 389, 390 and 392 correspond to novel genes, and SEQ ID NOs: 393 and 396 correspond to previously identified sequences. The others (SEQ ID NOs:385, 387, 388, 391, 394, 395 and 397-400) correspond to known sequences, as shown in Table I.

Table I
Summary of Prostate Tumor Antigens

Known Genes	Previously Identified Genes	Novel Genes
T-cell gamma chain	P504S	23379 (SEQ ID NO:389)
Kallikrein	P1000C	23399 (SEQ ID NO:392)
Vector	P501S	23320 (SEQ ID NO:386)
CGI-82 protein mRNA (23319; SEQ ID NO:385)	P503S	23381 (SEQ ID NO:390)
PSA	P510S	
Ald. 6 Dehyd.	P784P	·
L-iditol-2 dehydrogenase (23376; SEQ ID NO:388)	P502S	
Ets transcription factor PDEF (22672; SEQ ID NO:398)	P706P	
hTGR (22678; SEQ ID NO:399)	19142.2, bangur.seq (22621; SEQ ID NO:396)	
KIAA0295(22685; SEQ ID NO:400)	5566.1 Wang (23404; SEQ ID NO:393)	
Prostatic Acid Phosphatase(22655; SEQ ID NO:397)	P712P	
transglutaminase (22611; SEQ ID NO:395)	P778P	
HDLBP (23508; SEQ ID NO:394)		
CGI-69 Protein(23367; SEQ ID NO:387)		
KIAA0122(23383; SEQ ID NO:391)		
TEEG		

CGI-82 showed 4.06 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 43% of prostate tumors, 25% normal prostate, not detected in other normal tissues tested. L-iditol-2 dehydrogenase showed 4.94 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 90% of prostate tumors, 100% of normal prostate, and not detected in other normal tissues tested. Ets transcription factor PDEF showed 5.55 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 47% prostate tumors, 25% normal prostate and not detected in other normal tissues tested. hTGR1 showed 9.11 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 63% of prostate tumors and is not detected in normal tissues tested including normal prostate. KIAA0295 showed 5.59 fold overexpression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 47% of prostate tumors, low to undetectable in normal tissues tested including normal prostate Prostatic acid phosphatase showed 9.14 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 67% of prostate tumors, 50% of normal prostate, and not detected in other normal tissues tested. Transglutaminase showed 14.84 fold over-expression in prostate tissues as compared to other normal tissues tested. It was overexpressed in 30% of prostate tumors, 50% of normal prostate, and is not detected in other normal tissues tested. High density lipoprotein binding protein (HDLBP) showed 28.06 fold overexpression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 97% of prostate tumors, 75% of normal prostate, and is undetectable in all other normal tissues tested. CGI-69 showed 3.56 fold over-expression in prostate tissues as compared to other normal tissues tested. It is a low abundant gene, detected in more than 90% of prostate tumors, and in 75% normal prostate tissues. The expression of this gene in normal tissues was very low. KIAA0122 showed 4.24 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 57% of prostate tumors, it was undetectable in all normal tissues tested including normal prostate tissues. 19142.2 bangur showed 23.25 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 97% of prostate tumors and 100% of normal prostate. It was undetectable in other normal tissues tested. 5566.1 Wang showed 3.31 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 97% of prostate tumors, 75% normal prostate and was also over-expressed in normal bone marrow, pancreas, and activated PBMC. Novel clone 23379 showed 4.86 fold overexpression in prostate tissues as compared to other normal tissues tested. It was detectable in 97%

10

15

20

25

of prostate tumors and 75% normal prostate and is undetectable in all other normal tissues tested. Novel clone 23399 showed 4.09 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 27% of prostate tumors and was undetectable in all normal tissues tested including normal prostate tissues. Novel clone 23320 showed 3.15 fold over-expression in prostate tissues as compared to other normal tissues tested. It was detectable in all prostate tumors and 50% of normal prostate tissues. It was also expressed in normal colon and trachea. Other normal tissues do not express this gene at high level.

10

25

EXAMPLE 14

IDENTIFICATION OF PROSTATE-SPECIFIC ANTIGENS BY ELECTRONIC SUBTRACTION

This Example describes the use of an electronic subtraction technique to identify prostate-specific antigens.

Potential prostate-specific genes present in the GenBank human EST database were identified by electronic subtraction (similar to that described by Vasmatizis et al., *Proc. Natl. Acad. Sci. USA 95*:300-304, 1998). The sequences of EST clones (43,482) derived from various prostate libraries were obtained from the GenBank public human EST database. Each prostate EST sequence was used as a query sequence in a BLASTN (National Center for Biotechnology Information) search against the human EST database. All matches considered identical (length of matching sequence >100 base pairs, density of identical matches over this region > 70%) were grouped (aligned) together in a cluster. Clusters containing more than 200 ESTs were discarded since they probably represented repetitive elements or highly expressed genes such as those for ribosomal proteins. If two or more clusters shared common ESTs, those clusters were grouped together into a "supercluster," resulting in 4,345 prostate superclusters.

Records for the 479 human cDNA libraries represented in the GenBank release were downloaded to create a database of these cDNA library records. These 479 cDNA libraries were grouped into three groups: Plus (normal prostate and prostate tumor libraries, and breast cell line libraries, in which expression was desired), Minus (libraries from other normal adult tissues, in which expression was not desirable), and Other (libraries from fetal tissue, infant tissue, tissues found only in women, non-prostate tumors and cell lines other than prostate cell lines, in which

expression was considered to be irrelevant). A summary of these library groups is presented in Table II.

5

10

<u>Table II</u>

<u>Prostate cDNA Libraries and ESTs</u>

Library	# of Libraries	# of ESTs
Plus	25	43,482
Normal	11	. 18,875
Tumor	11	21,769
Cell lines	3	2,838
Minus	166	
Other	287	

Each supercluster was analyzed in terms of the ESTs within the supercluster. The tissue source of each EST clone was noted and used to classify the superclusters into four groups: Type 1- EST clones found in the Plus group libraries only; no expression detected in Minus or Other group libraries; Type 2- EST clones derived from the Plus and Other group libraries only; no expression detected in the Minus group; Type 3- EST clones derived from the Plus, Minus and Other group libraries, but the number of ESTs derived from the Plus group is higher than in either the Minus or Other groups; and Type 4- EST clones derived from Plus, Minus and Other group libraries, but the number derived from the Plus group is higher than the number derived from the Minus group. This analysis identified 4,345 breast clusters (*see* Table III). From these clusters, 3,172 EST clones were ordered from Research Genetics, Inc., and were received as frozen glycerol stocks in 96-well plates.

<u>Table III</u>

<u>Prostate Cluster Summary</u>

Туре	# of Superclusters	# of ESTs Ordered
1	688	677
2	2899	2484
3	85	11
4	673	0
Total	4345	3172

The EST clone inserts were PCR-amplified using amino-linked PCR primers for Synteni microarray analysis. When more than one PCR product was obtained for a particular clone, that PCR product was not used for expression analysis. In total, 2,528 clones from the electronic subtraction method were analyzed by microarray analysis to identify electronic subtraction breast clones that had high levels of tumor vs. normal tissue mRNA. Such screens were performed using a Synteni (Palo Alto, CA) microarray, according to the manufacturer's instructions (and essentially as described by Schena et al., *Proc. Natl. Acad. Sci. USA 93*:10614-10619, 1996 and Heller et al., *Proc. Natl. Acad. Sci. USA 94*:2150-2155, 1997). Within these analyses, the clones were arrayed on the chip, which was then probed with fluorescent probes generated from normal and tumor prostate cDNA, as well as various other normal tissues. The slides were scanned and the fluorescence intensity was measured.

Clones with an expression ratio greater than 3 (i.e., the level in prostate tumor and normal prostate mRNA was at least three times the level in other normal tissue mRNA) were identified as prostate tumor-specific sequences (Table IV). The sequences of these clones are provided in SEQ ID NO: 401-453, with certain novel sequences shown in SEQ ID NO: 407, 413, 416-419, 422, 426, 427 and 450.

<u>Table IV</u>

<u>Prostate-tumor Specific Clones</u>

SEQ ID NO.	Sequence Designation	Comments	
401	22545	previously identified P1000C	
402	22547	previously identified P704P	
403	22548	known	
404	22550	known	
405	22551	PSA	
406	22552	prostate secretory protein 94	
407	22553	novel	
408	22558	previously identified P509S	
409	22562	glandular kallikrein	
410	22565	previously identified P1000C	
411	22567	PAP	
412	22568	B1006C (breast tumor antigen)	
413	22570	novel	
414	22571	PSA	
415	22572	previously identified P706P	
416	22573	novel	
417	22574	novel	
418	22575	novel	
419	22580	novel	
420	22581	PAP	
421	22582	prostatic secretory protein 94	
422	22583	novel	
423	22584	prostatic secretory protein 94	
424	22585	prostatic secretory protein 94	
425	22586	known	
426	22587	novel	
427	22588	novel	
428	22589	PAP	
429	22590	known	
430	22591	PSA	
431	22592	known	
432	22593	Previously identified P777P	
433	22594	T cell receptor gamma chain	
434	22595	Previously identified P705P	
435	22596	Previously identified P707P	
436	22847	PAP	
437	22848	known	
438	22849	prostatic secretory protein 57	
439	22851	PAP	

440	22852	PAP	
441	22853	PAP	
442	22854	previously identified P509S	
443	22855	previously identified P705P	
444	22856	previously identified P774P	
445	22857	PSA	
446	23601	previously identified P777P	
447	23602	PSA	
448	23605	PSA	
449	23606	PSA	
450	23612	novel	
451	23614	PSA	
452	23618	previously identified P1000C	
453	23622	previously identified P705P	

EXAMPLE 15

FURTHER IDENTIFICATION OF PROSTATE-SPECIFIC ANTIGENS BY MICROARRAY

ANALYSIS

This Example describes the isolation of additional prostate-specific polypeptides from a prostate tumor cDNA library.

A human prostate tumor cDNA expression library as described above was screened using microarray analysis to identify clones that display at least a three fold over-expression in prostate tumor and/or normal prostate tissue, as compared to non-prostate normal tissues (not including testis). 142 clones were identified and sequenced. Certain of these clones are shown in SEQ ID NO: 454-467. Of these sequences, SEQ ID NO: 459-461 represent novel genes. The others (SEQ ID NO: 454-458 and 461-467) correspond to known sequences.

15

20

10

5

EXAMPLE 16 FURTHER CHARACTERIZATION OF PROSTATE-SPECIFIC ANTIGEN P710P

This Example describes the full length cloning of P710P.

The prostate cDNA library described above was screened with the P710P fragment described above. One million colonies were plated on LB/Ampicillin plates. Nylon membrane

filters were used to lift these colonies, and the cDNAs picked up by these filters were then denatured and cross-linked to the filters by UV light. The P710P fragment was radiolabeled and used to hybridize with the filters. Positive cDNA clones were selected and their cDNAs recovered and sequenced by an automatic Perkin Elmer/Applied Biosystems Division Sequencer. Four sequences were obtained, and are presented in SEQ ID NO: 468-471 These sequences appear to represent different splice variants of the P710P gene.

EXAMPLE 17

PROTEIN EXPRESSION OF THE PROSTATE-SPECIFIC ANTIGEN P501S

10

15

This example describes the expression and purification of the prostate-specific antigen P501S in *E. coli*, baculovirus and mammalian cells.

a) Expression in E. coli

Expression of the full-length form of P501S was attempted by first cloning P501S without the leader sequence (amino acids 36-553 of SEQ ID NO: 113) downstream of the first 30 amino acids of the *M. tuberculosis* antigen Ra12 (SEQ ID NO: 484) in pET17b. Specifically, P501S DNA was used to perform PCR using the primers AW025 (SEQ ID NO: 485) and AW003 (SEQ ID NO: 486). AW025 is a sense cloning primer that contains a HindIII site. AW003 is an antisense cloning primer that contains an EcoRI site. DNA amplification was performed using 5 μl 10X Pfu buffer, 1 μl 20 mM dNTPs, 1 μl each of the PCR primers at 10 μM concentration, 40 μl water, 1 μl Pfu DNA polymerase (Stratagene, La Jolla, CA) and 1 μl DNA at 100 ng/μl. Denaturation at 95°C was performed for 30 sec, followed by 10 cycles of 95°C for 30 sec, 60°C for 1 min and by 72°C for 3 min. 20 cycles of 95°C for 30 sec, 65°C for 1 min and by 72°C for 3 min, and lastly by 1 cycle of 72°C for 10 min. The PCR product was cloned to Ra12m/pET17b using HindIII and EcoRI. The sequence of the resulting fusion construct (referred to as Ra12-P501S-F) was confirmed by DNA sequencing.

The fusion construct was transformed into BL21(DE3)pLysE, pLysS and CodonPlus E. coli (Stratagene) and grown overnight in LB broth with kanamycin. The resulting culture was induced with IPTG. Protein was transferred to PVDF membrane and blocked with 5% non-fat milk (in PBS-Tween buffer), washed three times and incubated with mouse anti-His tag antibody (Clontech) for 1 hour. The membrane was washed 3 times and probed with HRP-Protein A

(Zymed) for 30 min. Finally, the membrane was washed 3 times and developed with ECL (Amersham). No expression was detected by Western blot. Similarly, no expression was detected by Western blot when the Ra12-P501S-F fusion was used for expression in BL21CodonPlus by CE6 phage (Invitrogen).

An N-terminal fragment of P501S (amino acids 36-325 of SEQ ID NO: 113) was cloned down-stream of the first 30 amino acids of the *M. tuberculosis* antigen Ra12 in pET17b as follows. P501S DNA was used to perform PCR using the primers AW025 (SEQ ID NO: 485) and AW027 (SEQ ID NO: 487). AW027 is an antisense cloning primer that contains an EcoRI site and a stop codon. DNA amplification was performed essentially as described above. The resulting PCR product was cloned to Ra12 in pET17b at the HindIII and EcoRI sites. The fusion construct (referred to as Ra12-P501S-N) was confirmed by DNA sequencing.

10

15

20

25

The Ra12-P501S-N fusion construct was used for expression in BL21(DE3)pLysE, pLysS and CodonPlus, essentially as described above. Using Western blot analysis, protein bands were observed at the expected molecular weight of 36 kDa. Some high molecular weight bands were also observed, probably due to aggregation of the recombinant protein. No expression was detected by Western blot when the Ra12-P501S-F fusion was used for expression in BL21CodonPlus by CE6 phage.

A fusion construct comprising a C-terminal portion of P501S (amino acids 257-553 of SEQ ID NO: 113) located down-stream of the first 30 amino acids of the *M. tuberculosis* antigen Ra12 (SEQ ID NO: 484) was prepared as follows. P501S DNA was used to perform PCR using the primers AW026 (SEQ ID NO: 488) and AW003 (SEQ ID NO: 486). AW026 is a sense cloning primer that contains a HindIII site. DNA amplification was performed essentially as described above. The resulting PCR product was cloned to Ra12 in pET17b at the HindIII and EcoRI sites. The sequence for the fusion construct (referred to as Ra12-P501S-C) was confirmed.

The Ra12-P501S-C fusion construct was used for expression in BL21(DE3)pLysE, pLysS and CodonPlus, as described above. A small amount of protein was detected by Western blot, with some molecular weight aggregates also being observed. Expression was also detected by Western blot when the Ra12-P501S-C fusion was used for expression in BL21CodonPlus induced by CE6 phage.

b) Expression of P501S in Baculovirus

The Bac-to-Bac baculovirus expression system (BRL Life Technologies, Inc.) was used to express P501S protein in insect cells. Full-length P501S (SEQ ID NO: 113) was amplified by PCR and cloned into the XbaI site of the donor plasmid pFastBacI. The recombinant bacmid and baculovirus were prepared according to the manufacturer's isntructions. The recombinant baculovirus was amplified in Sf9 cells and the high titer viral stocks were utilized to infect High Five cells (Invitrogen) to make the recombinant protein. The identity of the full-length protein was confirmed by N-terminal sequencing of the recombinant protein and by Western blot analysis (Figure 7). Specifically, 0.6 million High Five cells in 6-well plates were infected with either the unrelated control virus BV/ECD_PD (lane 2), with recombinant baculovirus for P501S at different amounts or MOIs (lanes 4-8), or were uninfected (lane 3). Cell lysates were run on SDS-PAGE under reducing conditions and analyzed by Western blot with the anti-P501S monoclonal antibody P501S-10E3-G4D3 (prepared as described below). Lane 1 is the biotinylated protein molecular weight marker (BioLabs).

The localization of recombinant P501S in the insect cells was investigated as follows. The insect cells overexpressing P501S were fractionated into fractions of nucleus, mitochondria, membrane and cytosol. Equal amounts of protein from each fraction were analyzed by Western blot with a monoclonal antibody against P501S. Due to the scheme of fractionation, both nucleus and mitochondria fractions contain some plasma membrane components. However, the membrane fraction is basically free from mitochondria and nucleus. P501S was found to be present in all fractions that contain the membrane component, suggesting that P501S may be associated with plasma membrane of the insect cells expressing the recombinant protein.

25 c) Expression of P501S in mammalian cells

15

20

Full-length P501S (553AA) was cloned into various mammalian expression vectors, including pCEP4 (Invitrogen), pVR1012 (Vical, San Diego, CA) and a modified form of the retroviral vector pBMN, referred to as pBIB. Transfection of P501S/pCEP4 and P501S/pVR1012 into HEK293 fibroblasts was carried out using the Fugene transfection reagent (Boehringer Mannheim). Briefly, 2 ul of Fugene reagent was diluted into 100 ul of serum-free media and incubated at room temperature for 5-10 min. This mixture was added to 1 ug of P501S plasmid DNA, mixed briefly and incubated for 30 minutes at room temperature. The Fugene/DNA mixture

was added to cells and incubated for 24-48 hours. Expression of recombinant P501S in transfected HEK293 fibroblasts was detected by means of Western blot employing a monoclonal antibody to P501S.

Transfection of p501S/pCEP4 into CHO-K cells (American Type Culture Collection, Rockville, MD) was carried out using GenePorter transfection reagent (Gene Therapy Systems, San Diego, CA). Briefly, 15 µl of GenePorter was diluted in 500 µl of serum-free media and incubated at room temperature for 10 min. The GenePorter/media mixture was added to 2 µg of plasmid DNA that was diluted in 500 µl of serum-free media, mixed briefly and incubated for 30 min at room temperature. CHO-K cells were rinsed in PBS to remove serum proteins, and the GenePorter/DNA mix was added and incubated for 5 hours. The transfected cells were then fed an equal volume of 2x media and incubated for 24-48 hours.

FACS analysis of P501S transiently infected CHO-K cells, demonstrated surface expression of P501S. Expression was detected using rabbit polyclonal antisera raised against a P501S peptide, as described below. Flow cytometric analysis was performed using a FaCScan (Becton Dickinson), and the data were analyzed using the Cell Quest program.

EXAMPLE 18

PREPARATION AND CHARACTERIZATION OF ANTIBODIES AGAINST PROSTATE-SPECIFIC POLYPEPTIDES

20 a) Preparation and Characterization of Antibodies against P501S

5

10

A murine monoclonal antibody directed against the carboxy-terminus of the prostatespecific antigen P501S was prepared as follows.

A truncated fragment of P501S (amino acids 355-526 of SEQ ID NO: 113) was generated and cloned into the pET28b vector (Novagen) and expressed in *E. coli* as a thioredoxin fusion protein with a histidine tag. The trx-P501S fusion protein was purified by nickel chromatography, digested with thrombin to remove the trx fragment and further purified by an acid precipitation procedure followed by reverse phase HPLC.

Mice were immunized with truncated P501S protein. Serum bleeds from mice that potentially contained anti-P501S polyclonal sera were tested for P501S-specific reactivity using ELISA assays with purified P501S and trx-P501S proteins. Serum bleeds that appeared to react specifically with P501S were then screened for P501S reactivity by Western analysis. Mice that contained a P501S-specific antibody component were sacrificed and spleen cells were used to

..9

generate anti-P501S antibody producing hybridomas using standard techniques. Hybridoma supernatants were tested for P501S-specific reactivity initially by ELISA, and subsequently by FACS analysis of reactivity with P501S transduced cells. Based on these results, a monoclonal hybridoma referred to as 10E3 was chosen for further subcloning. A number of subclones were generated, tested for specific reactivity to P501S using ELISA and typed for IgG isotype. The results of this analysis are shown below in Table V. Of the 16 subclones tested, the monoclonal antibody 10E3-G4-D3 was selected for further study.

Table V

Isotype analysis of murine anti-P501S monoclonal antibodies

10

Hybridoma clone	Isotype	Estimated [Ig] in supernatant (µg/ml)
4D11	IgG1	14.6
1G1	IgG1	0.6
4F6	IgG1	72
4H5	IgG1	13.8
4H5-E12	IgG1	10.7
4H5-EH2	IgG1	9.2
4H5-H2-A10	IgG1	10
4H5-H2-A3	IgG1	12.8
4H5-H2-A10-G6	IgG1	13.6
4H5-H2-B11	IgG1	12.3
10E3	IgG2a	3.4
10E3-D4	IgG2a	3.8
10E3-D4-G3	IgG2a	9.5
10E3-D4-G6	IgG2a	10.4
10E3-E7	IgG2a	6.5
8H12	IgG2a	0.6

The specificity of 10E3-G4-D3 for P501S was examined by FACS analysis.

Specifically, cells were fixed (2% formaldehyde, 10 minutes), permeabilized (0.1% saponin, 10 minutes) and stained with 10E3-G4-D3 at 0.5 – 1 µg/ml, followed by incubation with a secondary, FITC-conjugated goat anti-mouse Ig antibody (Pharmingen, San Diego, CA). Cells were then analyzed for FITC fluorescence using an Excalibur fluorescence activated cell sorter. For FACS analysis of transduced cells, B-LCL were retrovirally transduced with P501S. For analysis of infected cells, B-LCL were infected with a vaccinia vector that expresses P501S. To demonstrate

specificity in these assays, B-LCL transduced with a different antigen (P703P) and uninfected B-LCL vectors were utilized. 10E3-G4-D3 was shown to bind with P501S-transduced B-LCL and also with P501S-infected B-LCL, but not with either uninfected cells or P703P-transduced cells.

To determine whether the epitope recognized by 10E3-G4-D3 was found on the surface or in an intracellular compartment of cells, B-LCL were transduced with P501S or HLA-B8 as a control antigen and either fixed and permeabilized as described above or directly stained with 10E3-G4-D3 and analyzed as above. Specific recognition of P501S by 10E3-G4-D3 was found to require permeabilization, suggesting that the epitope recognized by this antibody is intracellular.

The reactivity of 10E3-G4-D3 with the three prostate tumor cell lines Lncap, PC-3 and DU-145, which are known to express high, medium and very low levels of P501S, respectively, was examined by permeabilizing the cells and treating them as described above. Higher reactivity of 10E3-G4-D3 was seen with Lncap than with PC-3, which in turn showed higher reactivity that DU-145. These results are in agreement with the real time PCR and demonstrate that the antibody specifically recognizes P501S in these tumor cell lines and that the epitope recognized in prostate tumor cell lines is also intracellular.

10

15

20

25

30

Specificity of 10E3-G4-D3 for P501S was also demonstrated by Western blot analysis. Lysates from the prostate tumor cell lines Lncap, DU-145 and PC-3, from P501S-transiently transfected HEK293 cells, and from non-transfected HEK293 cells were generated. Western blot analysis of these lysates with 10E3-G4-D3 revealed a 46 kDa immunoreactive band in Lncap, PC-3 and P501S-transfected HEK cells, but not in DU-145 cells or non-transfected HEK293 cells. P501S mRNA expression is consistent with these results since semi-quantitative PCR analysis revealed that P501S mRNA is expressed in Lncap, to a lesser but detectable level in PC-3 and not at all in DU-145 cells. Bacterially expressed and purified recombinant P501S (referred to as P501SStr2) was recognized by 10E3-G4-D3 (24 kDa), as was full-length P501S that was transiently expressed in HEK293 cells using either the expression vector VR1012 or pCEP4. Although the predicted molecular weight of P501S is 60.5 kDa, both transfected and "native" P501S run at a slightly lower mobility due to its hydrophobic nature.

Immunohistochemical analysis was performed on prostate tumor and a panel of normal tissue sections (prostate, adrenal, breast, cervix, colon, duodenum, gall bladder, ileum, kidney, ovary, pancreas, parotid gland, skeletal muscle, spleen and testis). Tissue samples were fixed in formalin solution for 24 hours and embedded in paraffin before being sliced into 10 micron sections. Tissue sections were permeabilized and incubated with 10E3-G4-D3 antibody for 1 hr.

HRP-labeled anti-mouse followed by incubation with DAB chromogen was used to visualize P501S immunoreactivity. P501S was found to be highly expressed in both normal prostate and prostate tumor tissue but was not detected in any of the other tissues tested.

5

10

20

25

To identify the epitope recognized by 10E3-G4-D3, an epitope mapping approach was pursued. A series of 13 overlapping 20-21 mers (5 amino acid overlap; SEQ ID NO: 489-501) was synthesized that spanned the fragment of P501S used to generate 10E3-G4-D3. Flat bottom 96 well microtiter plates were coated with either the peptides or the P501S fragment used to immunize mice, at 1 microgram/ml for 2 hours at 37 °C. Wells were then aspirated and blocked with phosphate buffered saline containing 1% (w/v) BSA for 2 hours at room temperature, and subsequently washed in PBS containing 0.1% Tween 20 (PBST). Purified antibody 10E3-G4-D3 was added at 2 fold dilutions (1000 ng - 16 ng) in PBST and incubated for 30 minutes at room temperature. This was followed by washing 6 times with PBST and subsequently incubating with donkey anti-mouse IgG (H+L)Affinipure F(ab') fragment (Jackson HRP-conjugated Immunoresearch, West Grove, PA) at 1:20000 for 30 minutes. Plates were then washed and incubated for 15 minutes in tetramethyl benzidine. Reactions were stopped by the addition of 1N sulfuric acid and plates were read at 450 nm using an ELISA plate reader. As shown in Fig. 8, reactivity was seen with the peptide of SEQ ID NO: 496 (corresponding to amino acids 439-459 of P501S) and with the P501S fragment but not with the remaining peptides, demonstrating that the epitope recognized by 10E3-G4-D3 is localized to amino acids 439-459 of SEQ ID NO: 113.

In order to further evaluate the tissue specificity of P501S, multi-array immunohistochemical analysis was performed on approximately 4700 different human tissues encompassing all the major normal organs as well as neoplasias derived from these tissues. Sixty-five of these human tissue samples were of prostate origin. Tissue sections 0.6 mm in diameter were formalin-fixed and paraffin embedded. Samples were pretreated with HIER using 10 mM citrate buffer pH 6.0 and boiling for 10 min. Sections were stained with 10E3-G4-D3 and P501S immunoreactivity was visualized with HRP. All the 65 prostate tissues samples (5 normal, 55 untreated prostate tumors, 5 hormone refractory prostate tumors) were positive, showing distinct perinuclear staining. All other tissues examined were negative for P501S expression.

30 b) Preparation and Characterization of Antibodies against P503S

A fragment of P503S (amino acids 113-241 of SEQ ID NO: 114) was expressed and purified from bacteria essentially as described above for P501S and used to immunize both rabbits

and mice. Mouse monoclonal antibodies were isolated using standard hybridoma technology as described above. Rabbit monoclonal antibodies were isolated using Selected Lymphocyte Antibody Method (SLAM) technology at Immgenics Pharmaceuticals (Vancouver, BC, Canada). Table VI, below, lists the monoclonal antibodies that were developed against P503S.

5

20

Table VI

Antibody	Species
20D4	Rabbit
JA1	Rabbit
1A4	Mouse
1C3	Mouse
1C9	Mouse
1D12	Mouse
2A11	Mouse
2H9	Mouse
4H7	Mouse
8A8	Mouse
8D10	Mouse
9C12	Mouse
6D12	Mouse

The DNA sequences encoding the complementarity determining regions (CDRs) for the rabbit monoclonal antibodies 20D4 and JA1 were determined and are provided in SEQ ID NO: 502 and 503, respectively.

In order to better define the epitope binding region of each of the antibodies, a series of overlapping peptides were generated that span amino acids 109-213 of SEQ ID NO: 114. These peptides were used to epitope map the anti-P503S monoclonal antibodies by ELISA as follows. The recombinant fragment of P503S that was employed as the immunogen was used as a positive control. Ninety-six well microtiter plates were coated with either peptide or recombinant antigen at 20 ng/well overnight at 4 °C. Plates were aspirated and blocked with phosphate buffered saline containing 1% (w/v) BSA for 2 hours at room temperature then washed in PBS containing 0.1% Tween 20 (PBST). Purified rabbit monoclonal antibodies diluted in PBST were added to the wells and incubated for 30 min at room temperature. This was followed by washing 6 times with PBST and incubation with Protein-A HRP conjugate at a 1:2000 dilution for a further 30 min. Plates were washed six times in PBST and incubated with tetramethylbenzidine (TMB) substrate for a further

15 min. The reaction was stopped by the addition of 1N sulfuric acid and plates were read at 450 nm using at ELISA plate reader. ELISA with the mouse monoclonal antibodies was performed with supernatants from tissue culture run neat in the assay.

All of the antibodies bound to the recombinant P503S fragment, with the exception of the negative control SP2 supernatant. 20D4, JA1 and 1D12 bound strictly to peptide #2101 (SEQ ID NO: 504), which corresponds to amino acids 151-169 of SEQ ID NO: 114. 1C3 bound to peptide #2102 (SEQ ID NO: 505), which corresponds to amino acids 165-184 of SEQ ID NO: 114. 9C12 bound to peptide #2099 (SEQ ID NO: 522), which corresponds to amino acids 120-139 of SEQ ID NO: 114. The other antibodies bind to regions that were not examined in these studies.

10

Subsequent to epitope mapping, the antibodies were tested by FACS analysis on a cell line that stably expressed P503S to confirm that the antibodies bind to cell surface epitopes. Cells stably transfected with a control plasmid were employed as a negative control. Cells were stained live with no fixative. 0.5 ug of anti-P503S monoclonal antibody was added and cells were incubated on ice for 30 min before being washed twice and incubated with a FITC-labelled goat anti-rabbit or mouse secondary antibody for 20 min. After being washed twice, cells were analyzed with an Excalibur fluorescent activated cell sorter. The monoclonal antibodies 1C3, 1D12, 9C12, 20D4 and JA1, but not 8D3, were found to bind to a cell surface epitope of P503S.

In order to determine which tissues express P503S, immunohistochemical analysis was performed, essentially as described above, on a panel of normal tissues (prostate, adrenal, breast, cervix, colon, duodenum, gall bladder, ileum, kidney, ovary, pancreas, parotid gland, skeletal muscle, spleen and testis). HRP-labeled anti-mouse or anti-rabbit antibody followed by incubation with TMB was used to visualize P503S immunoreactivity. P503S was found to be highly expressed in prostate tissue, with lower levels of expression being observed in cervix, colon, ileum and kidney, and no expression being observed in adrenal, breast, duodenum, gall bladder, ovary, pancreas, parotid gland, skeletal muscle, spleen and testis.

Western blot analysis was used to characterize anti-P503S monoclonal antibody specificity. SDS-PAGE was performed on recombinant (rec) P503S expressed in and purified from bacteria and on lysates from HEK293 cells transfected with full length P503S. Protein was transferred to nitrocellulose and then Western blotted with each of the anti-P503S monoclonal antibodies (20D4, JA1, 1D12, 6D12 and 9C12) at an antibody concentration of 1 ug/ml. Protein was detected using horse radish peroxidase (HRP) conjugated to either a goat anti-mouse monoclonal antibody or to protein A-sepharose. The monoclonal antibody 20D4 detected the

appropriate molecular weight 14 kDa recombinant P503S (amino acids 113-241) and the 23.5 kDa species in the HEK293 cell lysates transfected with full length P503S. Other anti-P503S monoclonal antibodies displayed similar specificity by Western blot.

c) Preparation and Characterization of Antibodies against P703P

Rabbits were immunized with either a truncated (P703Ptr1; SEQ ID NO: 172) or full-length mature form (P703Pfl; SEQ ID NO: 523) of recombinant P703P protein was expressed in and purified from bacteria as described above. Affinity purified polyclonal antibody was generated using immunogen P703Pfl or P703Ptr1 attached to a solid support. Rabbit monoclonal antibodies were isolated using SLAM technology at Immgenics Pharmaceuticals. Table VII below lists both the polyclonal and monoclonal antibodies that were generated against P703P.

Table VII

Antibody	Immunogen	Species/type
Aff. Purif. P703P (truncated); #2594	P703Ptrl	Rabbit polyclonal
Aff. Purif. P703P (full length); #9245	P703Pfl	Rabbit polyclonal
2D4	P703Ptrl	Rabbit monoclonal
8H2	P703Ptrl	Rabbit monoclonal
7H8	P703Ptrl	Rabbit monoclonal

15

20

25

10

The DNA sequences encoding the complementarity determining regions (CDRs) for the rabbit monoclonal antibodies 8H2, 7H8 and 2D4 were determined and are provided in SEQ ID NO: 506-508, respectively.

Epitope mapping studies were performed as described above. Monoclonal antibodies 2D4 and 7H8 were found to specifically bind to the peptides of SEQ ID NO: 509 (corresponding to amino acids 145-159 of SEQ ID NO: 172) and SEQ ID NO: 510 (corresponding to amino acids 11-25 of SEQ ID NO: 172), respectively. The polyclonal antibody 2594 was found to bind to the peptides of SEQ ID NO: 511-514, with the polyclonal antibody 9427 binding to the peptides of SEQ ID NO: 515-517.

The specificity of the anti-P703P antibodies was determined by Western blot analysis as follows. SDS-PAGE was performed on (1) bacterially expressed recombinant antigen; (2) lysates of HEK293 cells and Ltk-/- cells either untransfected or transfected with a plasmid

Ą

expressing full length P703P; and (3) supernatant isolated from these cell cultures. Protein was transferred to nitrocellulose and then Western blotted using the anti-P703P polyclonal antibody #2594 at an antibody concentration of 1 ug/ml. Protein was detected using horse radish peroxidase (HRP) conjugated to an anti-rabbit antibody. A 35 kDa immunoreactive band could be observed with recombinant P703P. Recombinant P703P runs at a slightly higher molecular weight since it is epitope tagged. In lysates and supernatants from cells transfected with full length P703P, a 30 kDa band corresponding to P703P was observed. To assure specificity, lysates from HEK293 cells stably transfected with a control plasmid were also tested and were negative for P703P expression. Other anti-P703P antibodies showed similar results.

Immunohistochemical studies were performed as described above, using anti-P703P monoclonal antibody. P703P was found to be expressed at high levels in normal prostate and prostate tumor tissue but was not detectable in all other tissues tested (breast tumor, lung tumor and normal kidney).

15 EXAMPLE 19

10

CHARACTERIZATION OF CELL SURFACE EXPRESSION AND CHROMOSOME LOCALIZATION OF THE PROSTATE-SPECIFIC ANTIGEN P501S

This example describes studies demonstrating that the prostate-specific antigen P501S is expressed on the surface of cells, together with studies to determine the probable chromosomal location of P501S.

The protein P501S (SEQ ID NO: 113) is predicted to have 11 transmembrane domains. Based on the discovery that the epitope recognized by the anti-P501S monoclonal antibody 10E3-G4-D3 (described above in Example 17) is intracellular, it was predicted that following transmembrane determinants would allow the prediction of extracellular domains of P501S. Fig. 9 is a schematic representation of the P501S protein showing the predicted location of the transmembrane domains and the intracellular epitope described in Example 17. Underlined sequence represents the predicted transmembrane domains, bold sequence represents the predicted extracellular domains, and italized sequence represents the predicted intracellular domains. Sequence that is both bold and underlined represents sequence employed to generate polyclonal rabbit serum. The location of the transmembrane domains was predicted using HHMTOP as

described by Tusnady and Simon (Principles Governing Amino Acid Composition of Integral Membrane Proteins: Applications to Topology Prediction, *J. Mol. Biol.* 283:489-506, 1998).

Based on Fig. 9, the P501S domain flanked by the transmembrane domains corresponding to amino acids 274-295 and 323-342 is predicted to be extracellular. The peptide of SEQ ID NO: 518 corresponds to amino acids 306-320 of P501S and lies in the predicted extracellular domain. The peptide of SEQ ID NO: 519, which is identical to the peptide of SEQ ID NO: 518 with the exception of the substitution of the histidine with an asparginine, was synthesized as described above. A Cys-Gly was added to the C-terminus of the peptide to facilitate conjugation to the carrier protein. Cleavage of the peptide from the solid support was carried out using the following cleavage mixture: trifluoroacetic acid:ethanediol:thioanisol:water:phenol (40:1:2:2:3). After cleaving for two hours, the peptide was precipitated in cold ether. The peptide pellet was then dissolved in 10% v/v acetic acid and lyophilized prior to purification by C18 reverse phase hplc. A gradient of 5-60% acetonitrile (containing 0.05% TFA) in water (containing 0.05% TFA) was used to elute the peptide. The purity of the peptide was verified by hplc and mass spectrometry, and was determined to be >95%. The purified peptide was used to generate rabbit polyclonal antisera as described above.

10

15

20

25

30

Surface expression of P501S was examined by FACS analysis. Cells were stained with the polyclonal anti-P501S peptide serum at 10 µg/ml, washed, incubated with a secondary FITC-conjugated goat anti-rabbit Ig antibody (ICN), washed and analyzed for FITC fluorescence using an Excalibur fluorescence activated cell sorter. For FACS analysis of transduced cells, B-LCL were retrovirally transduced with P501S. To demonstrate specificity in these assays, B-LCL transduced with an irrelevant antigen (P703P) or nontransduced were stained in parallel. For FACS analysis of prostate tumor cell lines, Lncap, PC-3 and DU-145 were utilized. Prostate tumor cell lines were dissociated from tissue culture plates using cell dissociation medium and stained as above. All samples were treated with propidium iodide (PI) prior to FACS analysis, and data was obtained from PI-excluding (i.e. intact and non-permeabilized) cells. The rabbit polyclonal serum generated against the peptide of SEQ ID NO: 519 was shown to specifically recognize the surface of cells transduced to express P501S, demonstrating that the epitope recognized by the polyclonal serum is extracellular.

To determine biochemically if P501S is expressed on the cell surface, peripheral membranes from Lncap cells were isolated and subjected to Western blot analysis. Specifically, Lncap cells were lysed using a dounce homogenizer in 5 ml of homogenization buffer (250 mM)

sucrose, 10 mM HEPES, 1mM EDTA, pH 8.0, 1 complete protease inhibitor tablet (Boehringer Mannheim)). Lysate samples were spun at 1000 g for 5 min at 4 °C. The supernatant was then spun at 8000g for 10 min at 4 °C. Supernatant from the 8000g spin was recovered and subjected to a 100,000g spin for 30 min at 4 °C to recover peripheral membrane. Samples were then separated by SDS-PAGE and Western blotted with the mouse monoclonal antibody 10E3-G4-D3 (described above in Example 17) using conditions described above. Recombinant purified P501S, as well as HEK293 cells transfected with and over-expressing P501S were included as positive controls for P501S detection. LCL cell lysate was included as a negative control. P501S could be detected in Lncap total cell lysate, the 8000g (internal membrane) fraction and also in the 100,000g (plasma membrane) fraction. These results indicate that P501S is expressed at, and localizes to, the peripheral membrane.

To demonstrate that the rabbit polyclonal antiserum generated to the peptide of SEQ ID NO: 519 specifically recognizes this peptide as well as the corresponding native peptide of SEQ ID NO: 518, ELISA analyses were performed. For these analyses, flat-bottomed 96 well microtiter plates were coated with either the peptide of SEQ ID NO: 519, the longer peptide of SEQ ID NO: 520 that spans the entire predicted extracellular domain, the peptide of SEQ ID NO: 521 which represents the epitope recognized by the P501S-specific antibody 10E3-G4-D3, or a P501S fragment (corresponding to amino acids 355-526 of SEQ ID NO: 113) that does not include the immunizing peptide sequence, at 1 µg/ml for 2 hours at 37 °C. Wells were aspirated, blocked with phosphate buffered saline containing 1% (w/v) BSA for 2 hours at room temperature and subsequently washed in PBS containing 0.1% Tween 20 (PBST). Purified anti-P501S polyclonal rabbit serum was added at 2 fold dilutions (1000 ng - 125 ng) in PBST and incubated for 30 min at room temperature. This was followed by washing 6 times with PBST and incubating with HRPconjugated goat anti-rabbit IgG (H+L) Affinipure F(ab') fragment at 1:20000 for 30 min. Plates were then washed and incubated for 15 min in tetramethyl benzidine. Reactions were stopped by the addition of 1N sulfuric acid and plates were read at 450 nm using an ELISA plate reader. As shown in Fig. 11, the anti-P501S polyclonal rabbit serum specifically recognized the peptide of SEQ ID NO: 519 used in the immunization as well as the longer peptide of SEQ ID NO: 520, but did not recognize the irrelevant P501S-derived peptides and fragments.

20

30

In further studies, rabbits were immunized with peptides derived from the P501S sequence and predicted to be either extracellular or intracellular, as shown in Fig. 9. Polyclonal rabbit sera were isolated and polyclonal antibodies in the serum were purified, as described above.

To determine specific reactivity with P501S, FACS analysis was employed, utilizing either B-LCL transduced with P501S or the irrelevant antigen P703P, of B-LCL infected with vaccinia virus-expressing P501S. For surface expression, dead and non-intact cells were excluded from the analysis as described above. For intracellular staining, cells were fixed and permeabilized as described above. Rabbit polyclonal serum generated against the peptide of SEQ ID NO: 548, which corresponds to amino acids 181-198 of P501S, was found to recognize a surface epitope of P501S. Rabbit polyclonal serum generated against the peptide SEQ ID NO: 551, which corresponds to amino acids 543-553 of P501S, was found to recognize an epitope that was either potentially extracellular or intracellular since in different experiments intact or permeabilized cells were recognized by the polyclonal sera. Based on similar deductive reasoning, the sequences of SEQ ID NO: 541-547, 549 and 550, which correspond to amino acids 109-122, 539-553, 509-520, 37-54, 342-359, 295-323, 217-274, 143-160 and 75-88, respectively, of P501S, can be considered to be potential surface epitopes of P501S recognized by antibodies.

The chromosomal location of P501S was determined using the GeneBridge 4 Radiation Hybrid panel (Research Genetics). The PCR primers of SEQ ID NO: 528 and 529 were employed in PCR with DNA pools from the hybrid panel according to the manufacturer's directions. After 38 cycles of amplification, the reaction products were separated on a 1.2% agarose gel, and the results were analyzed through the Whitehead Institute/MIT Center for Genome Research web server (http://www-genome.wi.mit.edu/cgi-bin/contig/rhmapper.pl) to determine the probable chromosomal location. Using this approach, P501S was mapped to the long arm of chromosome 1 at WI-9641 between q32 and q42. This region of chromosome 1 has been linked to prostate cancer susceptibility in hereditary prostate cancer (Smith et al. Science 274:1371-1374, 1996 and Berthon et al. Am. J. Hum. Genet. 62:1416-1424, 1998). These results suggest that P501S may play a role in prostate cancer malignancy.

25

20

From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the present invention is not limited except as by the appended claims.

CLAIMS

1. An isolated polypeptide comprising at least an immunogenic portion of a prostate-specific protein, or a variant thereof, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:

(a) sequences recited in any one of SEQ ID NO: 2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471, 472-476, 524, 526, 530, 531, 533, 535 and 536;

10

15

20

25

- (b) sequences that hybridize to any of the foregoing sequences under moderately stringent conditions; and
 - (c) complements of any of the sequence of (a) or (b).
- 2. An isolated polypeptide according to claim 1, wherein the polypeptide comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID No: 2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471, 472-476, 524, 526, 530, 531, 533, 535 and 536, or a complement of any of the foregoing polynucleotide sequences.
- 3. An isolated polypeptide comprising a sequence recited in any one of SEQ ID NO: 108, 112, 113, 114, 172, 176, 178, 327, 329, 331, 339, 383, 477-483, 496, 504, 505, 519, 520, 522, 525, 527, 532, 534 and 537-550.

Ġ

4. An isolated polynucleotide encoding at least 15 contiguous amino acid residues of a prostate-specific protein, or a variant thereof that differs in one or more substitutions, deletions, additions and/or insertions such that the ability of the variant to react with antigen-specific antisera is not substantially diminished, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide comprising a sequence recited in any one of SEQ ID NO: 2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471, 472-476, 524, 526, 530, 531, 533, 535 and 536, or a complement of any of the foregoing sequences.

- 5. An isolated polynucleotide encoding a prostate-specific protein, or a variant thereof, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide comprising a sequence recited in any one of SEQ ID NO: 2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471, 472-476, 524, 526, 530, 531, 533, 535 and 536, or a complement of any of the foregoing sequences.
- 6. An isolated polynucleotide comprising a sequence recited in any one of SEQ ID NO: 2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471, 472-476, 524, 526, 530, 531, 533, 535 and 536.

Ş

7. An isolated polynucleotide comprising a sequence that hybridizes under moderately stringent conditions to a sequence recited in any one of SEQ ID NO: 2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471, 472-476, 524, 526, 530, 531, 533, 535 and 536.

- 8. An isolated polynucleotide complementary to a polynucleotide according to any one of claims 4-7.
 - 9. An expression vector comprising a polynucleotide according to any one of claims 4-8.

15

10. A host cell transformed or transfected with an expression vector according to claim 9.

20

11. An isolated antibody, or antigen-binding fragment thereof, that specifically binds to a prostate-specific protein, the protein comprising an amino acid sequence encoded by a polynucleotide sequence recited in any one of SEQ ID NO: 2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471, 472-476, 524, 526, 530, 531, 533, 535 and 536 or a complement of any of the foregoing polynucleotide sequences.

12. A monoclonal antibody that specifically binds to an amino acid sequence selected from the group consisting of SEQ ID NO: 496, 504, 505, 509-517, 519, 520, 522 and 539-551.

- 5 13. A monoclonal antibody comprising a complementarity determining region selected from the group consisting of SEQ ID NO: 502, 503 and 506-508.
- 14. A fusion protein comprising at least one polypeptide according to 10 claim 1.
 - 15. A fusion protein according to claim 14, wherein the fusion protein comprises an expression enhancer that increases expression of the fusion protein in a host cell transfected with a polynucleotide encoding the fusion protein.

- 16. A fusion protein according to claim 14, wherein the fusion protein comprises a T helper epitope that is not present within the polypeptide of claim 1.
- 17. A fusion protein according to claim 14, wherein the fusion protein comprises an affinity tag.
 - 18. An isolated polynucleotide encoding a fusion protein according to claim 14.
- 25 19.. A pharmaceutical composition comprising a physiologically acceptable carrier and at least one component selected from the group consisting of:
 - (a) a polypeptide according to claim 1;
 - (b) a polynucleotide according to claim 4;
 - (c) an antibody according to any one of claims 11-13;
- 30 (d) a fusion protein according to claim 14; and

- (e) a polynucleotide according to claim 18.
- 20. A vaccine comprising an immunostimulant and at least one component selected from the group consisting of:
 - (a) a polypeptide according to claim 1;
 - (b) a polynucleotide according to claim 4;
 - (c) an antibody according to any one of claims 11-13;
 - (d) a fusion protein according to claim 14; and
 - (e) a polynucleotide according to claim 18.

10

5

- 21. A vaccine according to claim 20, wherein the immunostimulant is an adjuvant.
- 22. A vaccine according to claim 20, wherein the immunostimulant induces a predominantly Type I response.
 - 23. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a pharmaceutical composition according to claim 19.

- 24. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a vaccine according to claim 20.
- 25. A pharmaceutical composition comprising an antigen-presenting cell that expresses a polypeptide according to claim 1, in combination with a pharmaceutically acceptable carrier or excipient.
 - 26. A pharmaceutical composition according to claim 25, wherein the antigen presenting cell is a dendritic cell or a macrophage.

10

20

30

- 27. A vaccine comprising an antigen-presenting cell that expresses a polypeptide according to claim 1, in combination with an immunostimulant.
- 5 28. A vaccine according to claim 27, wherein the immunostimulant is an adjuvant.
 - 29. A vaccine according to claim 27, wherein the immunostimulant induces a predominantly Type I response.

30. A vaccine according to claim 27, wherein the antigen-presenting cell is a dendritic cell.

31. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of an antigen-presenting cell that expresses a polypeptide encoded by a polynucleotide recited in any one of SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535 and 536, and thereby inhibiting the development of a cancer in the patient.

32. A method according to claim 31, wherein the antigen-presenting cell is a dendritic cell.

- 33. A method according to any one of claims 23, 24 and 31, wherein the cancer is prostate cancer.
 - 34. A method for removing tumor cells from a biological sample, comprising contacting a biological sample with T cells that specifically react with a prostate-specific protein, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:

(i) polynucleotides recited in any one of SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535 and 536; and

- (ii) complements of the foregoing polynucleotides;
- wherein the step of contacting is performed under conditions and for a time sufficient to permit the removal of cells expressing the prostate-specific protein from the sample.
- 35. A method according to claim 34, wherein the biological sample is blood or a fraction thereof.
 - 36. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient a biological sample treated according to the method of claim 50.

15

20

25

- 37. A method for stimulating and/or expanding T cells specific for a prostate-specific protein, comprising contacting T cells with at least one component selected from the group consisting of:
 - (i) a polypeptide according to claim 1;
- (ii) a polypeptide encoded by a polynucleotide comprising a sequence provided in any one of SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535 and 536;
 - (iii) a polynucleotide encoding a polypeptide of (i) or (ii); and
- (iv) an antigen presenting cell that expresses a polypeptide of (i) or (ii), under conditions and for a time sufficient to permit the stimulation and/or expansion of T cells.
- 38. An isolated T cell population, comprising T cells prepared according to the method of claim 37.

30

ş

39. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a T cell population according to claim 38.

- 5 40. A method for inhibiting the development of a cancer in a patient, comprising the steps of:
 - (a) incubating CD4⁺ and/or CD8+ T cells isolated from a patient with at least one component selected from the group consisting of:
 - (i) a polypeptide according to claim 1;
- (ii) a polypeptide encoded by a polynucleotide comprising a sequence of any one of SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535 and 536;
 - (iii) a polynucleotide encoding a polypeptide of (i) or (ii); or
 - (iv) an antigen-presenting cell that expresses a polypeptide of (i) or (ii);

such that T cells proliferate; and

(b) administering to the patient an effective amount of the proliferated T cells, and thereby inhibiting the development of a cancer in the patient.

20

25

- 41. A method for inhibiting the development of a cancer in a patient, comprising the steps of:
- (a) incubating CD4⁺ and/or CD8+ T cells isolated from a patient with at least one component selected from the group consisting of:
 - (i) a polypeptide according to claim 1;
- (ii) a polypeptide encoded by a polynucleotide comprising a sequence of any one of SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535 and 536;
- 30 (iii) a polynucleotide encoding a polypeptide of (i) or (ii); or

WO 01/34802

5

25

(iv) an antigen-presenting cell that expresses a polypeptide of (i) or (ii);

such that T cells proliferate;

- (b) cloning at least one proliferated cell to provide cloned T cells; and
- (c) administering to the patient an effective amount of the cloned T cells, and thereby inhibiting the development of a cancer in the patient.
 - 42. A method for determining the presence or absence of a cancer in a patient, comprising the steps of:
- 10 (a) contacting a biological sample obtained from a patient with a binding agent that binds to a prostate-specific protein, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:
- (i) polynucleotides recited in any one of SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535 and 536; and
 - (ii) complements of the foregoing polynucleotides;
 - (b) detecting in the sample an amount of polypeptide that binds to the binding agent; and
- 20 (c) comparing the amount of polypeptide to a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.
 - 43. A method according to claim 42, wherein the binding agent is an antibody.
 - 44. A method according to claim 43, wherein the antibody is a monoclonal antibody.
- 45. A method according to claim 42, wherein the cancer is prostate 30 cancer.

WO 01/34802

- 46. A method for monitoring the progression of a cancer in a patient, comprising the steps of:
- (a) contacting a biological sample obtained from a patient at a first point in time with a binding agent that binds to a prostate-specific protein, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence of any one of SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535 and 536, or a complement of any of the foregoing polynucleotides;
- 10 (b) detecting in the sample an amount of polypeptide that binds to the binding agent;
 - (c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and
- (d) comparing the amount of polypeptide detected in step (c) to the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.
 - 47. A method according to claim 46, wherein the binding agent is an antibody.

- 48. A method according to claim 47, wherein the antibody is a monoclonal antibody.
- 49. A method according to claim 46, wherein the cancer is a prostate 25 cancer.
 - 50. A method for determining the presence or absence of a cancer in a patient, comprising the steps of:
- (a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a prostate-specific protein,

wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence of any one of SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535 and 536, or a complement of any of the foregoing polynucleotides;

- (b) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide; and
- (c) comparing the amount of polynucleotide that hybridizes to the oligonucleotide to a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.

10

25

- 51. A method according to claim 50, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a polymerase chain reaction.
- 52. A method according to claim 50, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a hybridization assay.
- 53. A method for monitoring the progression of a cancer in a patient, comprising the steps of:
 - (a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a prostate-specific protein, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence of any one of SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535 and 536, or a complement of any of the foregoing polynucleotides;
 - (b) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide;
- (c) repeating steps (a) and (b) using a biological sample obtained from
 the patient at a subsequent point in time; and

(d) comparing the amount of polynucleotide detected in step (c) to the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.

- 5 54. A method according to claim 53, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a polymerase chain reaction.
- 55. A method according to claim 53, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a hybridization assay.
 - 56. A diagnostic kit, comprising:
 - (a) one or more antibodies according to claim 11; and
- 15 (b) a detection reagent comprising a reporter group.
 - 57. A kit according to claim 56, wherein the antibodies are immobilized on a solid support.
- 20 58. A kit according to claim 56, wherein the detection reagent comprises an anti-immunoglobulin, protein G, protein A or lectin.
- 59. A kit according to claim 56, wherein the reporter group is selected from the group consisting of radioisotopes, fluorescent groups, luminescent groups,
 enzymes, biotin and dye particles.
 - 60. An oligonucleotide comprising 10 to 40 contiguous nucleotides that hybridize under moderately stringent conditions to a polynucleotide that encodes a prostate-specific protein, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NO: 2, 3, 8-29, 41-45,

47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-476, 524, 526, 530, 531, 533, 535 and 536, or a complement of any of the foregoing polynucleotides.

61. A oligonucleotide according to claim 60, wherein the oligonucleotide comprises 10-40 contiguous nucleotides recited in any one of SEQ ID NO: 2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-476, 524, 526, 530, 531, 533, 535 and 536.

15

- 62. A diagnostic kit, comprising:
- (a) an oligonucleotide according to claim 61; and
- (b) a diagnostic reagent for use in a polymerase chain reaction or hybridization assay.

- 63. A host cell according to claim 10, wherein the cell is selected from the group consisting of: *E. coli*, baculovirus and mammalian cells.
- 64. A recombinant protein produced by a host cell according to claim 25 10.

Effector: Target Ratio

Fig. 1

Fig. 2A

Fig. 2B

Fig. 4

Fig. 5

Expression of P501S by the Baculovirus Expression System

0.6 million high 5 cells in 5-well plate were infected with an unrelated control virus BV/ECD_PD (lane 1) without virus (lane 3), or with recombinant baculovirus for P501 at different NiOis (lane 4 - 8). Cell lysates were run on SDS-PAGE under the reducing conditions and analyzed by Western blot with a monoclonal antibody against F51 S [F501S-10E3-G4D3). Lane 1 is the biotinylated protein molecular weight marker. Sioilabs).

Fig. 7

Fig. 8

Ç

Schematic of P501S with predicted transmembrane, cytoplasmic, and extracellular regions

MVQRLWVSRLLRHRK AQLLLVNLLTFGLEVCLAAGIT YVPPLLLEVGVEEKFM TMVLGIGPVLGLVCYPLLGSAS

DHWRGRYGRRP FIWALSLGILLSLFLIPRAGWL AGLLCPDPRPLE LALLILGVGLLDFCGQVCFTPL

EALLSDLFRDPDHCRQ AYSVYAFMISLGGCLGYLLPAI DWDTSALAPYLGTQEE

CLFGLLTLIFLTCVAATLLV AEEAALGPTEPAEGLSAPSLSPHCCPCRARLAFRNLGALLPRL

HQLCCRMPRTLRR LFVAELCSWMALMTFTLFYTDF VGEGLYQGVPRAEPGTEARRHYDEGVR

MGSLGLFLQCAISLVFSLVM DRLVQRFGTRAVYLAS VAAFPVAAGATCLSHSVAVVTA SAA

LTGFTFSALQILPYTLASLY HREKQVFLPKYRGDTGGASSEDSLMTSFLPGPKPGAPFPNGHVGAGGSGL

LPPPPALCGASACDVSVRVVVGEPTEARVVPGRG ICLDLAILDSAFLLSQVAPSLF MGSIVQLSQS

VTAYMVSAAGLGLVAIYFAT *QVVFDKSDLAKYSA*

<u>Underlined sequence</u>: Predicted transmembrane domain; **Bold sequence**: Predicted extracellular domain; *Italic sequence*: Predicted intracellular domain. Sequence in bold/underlined: used generate polyclonal rabbit serum

Localization of domains predicted using HMMTOP (G.E. Tusnady an I. Simon (1998) Principles Governing Amino Acid Composition of Integral Membrane Proteins: Applications to topology Prediction.J.Mol Biol. 283, 489-506.

Fig. 9

řig. 10

Fig.

SEQUENCE LISTING

```
<110> Corixa Corporation
            Xu, Jiangchun
             Dillon, Davin C.
            Mitcham, Jennifer L.
             Harlocker, Susan Louise
             Jiang Yuqui
            Reed, Steven G.
            Kalos, Michael
            Fanger, Gary
Retter, Mark
            Solk, John
            Day, Craig
            Skeiky, Yasir A.W.
            Wang, Aijun
      <120> COMPOSITIONS AND METHODS FOR THE THERAPY AND
            DIAGNOSIS OF PROSTATE CANCER
      <130> 210121.42720PC
      <140> PCT
      <141> 2000-11-09
      <160> 551
      <170> FastSEQ for Windows Version 3.0
      <210> 1
      <211> 814
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(814)
      <223> n = A, T, C \text{ or } G
      <400> 1
ttttttttt tttttcacag tataacagct ctttatttct gtgagttcta ctaggaaatc
                                                                        60
atcaaatctg agggttgtct ggaggacttc aatacacctc cccccatagt gaatcagctt
                                                                        120
ccagggggtc cagtccctct ccttacttca tccccatccc atgccaaagg aagaccctcc
                                                                        180
ctccttggct cacagccttc tctaggcttc ccagtgcctc caggacagag tgggttatgt
tttcagctcc atccttgctg tgagtgtctg gtgcgttgtg cctccagctt ctgctcagtg
                                                                        300
cttcatggac agtgtccagc acatgtcact ctccactctc tcagtgtgga tccactagtt
                                                                        360
ctagagegge egecacegeg gtggagetee agettttgtt eeetttagtg agggttaatt
                                                                        420
gcgcgcttgg cgtaatcatg gtcataactg tttcctgtgt gaaattgtta tccgctcaca
                                                                        480
attccacaca acatacgage eggaageata aagtgtaaag eetggggtge etaatgagtg
                                                                        540
anctaactca cattaattgc gttgcgctca ctgnccgctt tccagtcngg aaaactgtcg
                                                                        600
tgccagetge attaatgaat cggccaacge neggggaaaa geggtttgeg ttttggggge
                                                                        660
tetteegett etegeteact nanteetgeg eteggtentt eggetgeggg gaaeggtate
                                                                        720
actcctcaaa ggnggtatta cggttatccn naaatcnggg gatacccngg aaaaaanttt
                                                                        780
aacaaaaggg cancaaaggg cngaaacgta aaaa
                                                                        814 \
```

<210> 2

<211> 816

<212> DNA

```
<213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(816)
      <223> n = A, T, C or G
      <400> 2
acagaaatgt tggatggtgg agcacctttc tatacgactt acaggacagc agatggggaa
ttcatggctg ttggagcaat agaaccccag ttctacgagc tgctgatcaa aggacttgga
                                                                       120
ctaaagtctg atgaacttcc caatcagatg agcatggatg attggccaga aatgaagaag
                                                                       180
aagtttgcag atgtatttgc aaagaagacg aaggcagagt ggtgtcaaat ctttgacggc
                                                                       240
acagatgcct gtgtgactcc ggttctgact tttgaggagg ttgttcatca tgatcacaac
                                                                       300
aaggaacggg getegtttat caccagtgag gagcaggacg tgagcccccg ccctgcacct
                                                                       360
ctgctgttaa acaccccagc catcccttct ttcaaaaggg atccactagt tctagaagcg
                                                                       420
gccgccaccg cggtggagct ccagcttttg ttccctttag tgagggttaa ttgcgcgctt
                                                                       480
ggcgtaatca tggtcatagc tgtttcctgt gtgaaattgt tatccgctca caattccccc
                                                                       540
aacatacgag ccggaacata aagtgttaag cctggggtgc ctaatgantg agctaactcn
                                                                       600
cattaattgc gttgcgctca ctgcccgctt tccagtcggg aaaactgtcg tgccactgcn
                                                                       660
ttantgaatc ngccaccccc cgggaaaagg cggttgcntt ttgggcctct tccgctttcc
                                                                       720
tegeteattg atcetngene eeggtetteg getgeggnga aeggtteaet ceteaaagge
                                                                       780
ggtntnccgg ttatccccaa acnggggata cccnqa
                                                                       81.6
      <210> 3
      <211> 773
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) . . . (773)
      \langle 223 \rangle n = A,T,C or G
      <400> 3
cttttgaaag aagggatggc tggggtgttt aacagcagag gtgcagggcg ggggctcacg
                                                                        60
tectgetect caetggtgat aaacgageee egtteettgt tgtgateatg atgaacaace
                                                                       120
tectcaaaag teagaacegg agteacaeag geatetgtge egteaaagat ttqacaeeae
                                                                       180
tetgeetteg tettetttge aaatacatet geaaacttet tetteattte tggeeaatea
                                                                       240
tccatgctca tctgattggq aaqttcatca qactttaqtc canntccttt qatcaqcaqc
                                                                       300
tegtagaact ggggttetat tgeteeaaca gecatqaatt ceceatetqe tqteetqtaa
                                                                       360
gtogtataga aaggtgotoc accatocaac atgttotqto otogaqqqqq qqocqqtac
                                                                       420
ccaattcgcc ctatantgag tcgtattacg cgcgctcact ggccgtcgtt ttacaacqtc
                                                                       480
gtgactggga aaaccctggg cgttaccaac ttaatcgcct tgcagcacat ccccctttcg
                                                                       540
ccagctgggc gtaatancga aaaggcccgc accgatcgcc cttccaacag ttgcgcacct
                                                                       600
gaatgggnaa atgggacccc cctgttaccg cgcattnaac ccccgcnggg tttngttgtt
                                                                       660
acceccaent nnacegetta caetttgeca gegeettane gecegeteee ttteneettt
                                                                       720
cttcccttcc tttcncnccn ctttcccccg gggtttcccc cntcaaaccc cna
                                                                       773
      <210> 4
      <211> 828
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1) ... (828)
     <223> n = A, T, C or G
```

```
<400> 4
 ceteetgagt cetaetgace tgtgetttet ggtgtggagt ceagggetge taggaaaagg
                                                                         60
 aatgggcaga cacaggtgta tgccaatgtt tctgaaatgg gtataatttc gtcctctcct
                                                                        120
 toggaacact ggotgtotot gaagacttot ogotoagttt cagtgaggac acacacaaag
                                                                        180
 acgtgggtga ccatgttgtt tgtggggtgc agagatggga ggggtggggc ccaccctgga
                                                                        240
 agagtggaca gtgacacaag gtggacactc tctacagatc actgaggata agctggagcc
                                                                        300
 acaatgcatg aggcacacac acagcaagga tgacnctgta aacatagccc acgctgtcct
                                                                        360
 gngggcactg ggaagcctan atnaggccgt gagcanaaag aaggggagga tccactagtt
                                                                        420
 ctanagegge egecacegeg gtgganetee anettttgtt eeetttagtg agggttaatt
                                                                        480
 gegegettgg entaateatg gteataneth ttteetgtgt gaaattgtta teegeteaca
                                                                        540
 attccacaca acatacganc cggaaacata aantgtaaac ctggggtgcc taatgantga
                                                                        600
 ctaactcaca ttaattgcgt tgcgctcact gcccgctttc caatcnggaa acctgtcttq
                                                                        660
 concttgcat tnatgaaton gocaaccccc ggggaaaagc gtttgcgttt tgggcgctct
                                                                        720
 teegetteet eneteantta nteectnene teggteatte eggetgenge aaaceggtte
                                                                        780
 accnected aagggggtat teeggtttee cenaateegg ggananee
                                                                        828
       <210> 5
       <211> 834
       <212> DNA
       <213> Homo sapien
       <220>
      <221> misc feature
      <222> (1)...(834)
      <223> n = A, T, C or G
      .<400> 5
ttttttttt tttttactga tagatggaat ttattaagct tttcacatgt gatagcacat
                                                                        60
agttttaatt gcatccaaag tactaacaaa aactctagca atcaagaatg gcagcatgtt
                                                                       120
attttataac aatcaacacc tgtggctttt aaaatttggt tttcataaga taatttatac
                                                                       180
tgaagtaaat ctagccatgc ttttaaaaaa tgctttaggt cactccaagc ttggcagtta
                                                                       240
acatttggca taaacaataa taaaacaatc acaatttaat aaataacaaa tacaacattg
                                                                        300
taggccataa tcatatacag tataaggaaa aggtggtagt gttgagtaag cagttattag
                                                                       360
aatagaatac cttggcctct atgcaaatat gtctagacac tttgattcac tcagcctga
                                                                       420
cattcagttt tcaaagtagg agacaggttc tacagtatca ttttacagtt tccaacacat
                                                                       480
tgaaaacaag tagaaaatga tgagttgatt tttattaatg cattacatcc tcaagagtta
                                                                       540
tcaccaaccc ctcagttata aaaaattttc aagttatatt agtcatataa cttggtgtgc
                                                                       600
ttattttaaa ttagtgctaa atggattaag tgaagacaac aatggtcccc taatgtgatt
                                                                       660
gatattggtc atttttacca gcttctaaat ctnaactttc aggcttttga actggaacat
                                                                       720
tgnatnacag tgttccanag ttncaaccta ctggaacatt acagtgtgct tgattcaaaa
                                                                       780
tqttattttg ttaaaaatta aattttaacc tggtggaaaa ataatttgaa atna
                                                                       834
      <210> 6
      <211> 818
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(818)
      \langle 223 \rangle n = A,T,C or G
      <400> 6
ttttttttt tttttttt aagaccctca tcaatagatg gagacataca gaaatagtca
                                                                        60
aaccacatct acaaaatgcc agtatcaggc ggcggcttcg aagccaaagt gatgtttgga
                                                                       120
tgtaaagtga aatattagtt ggcggatgaa gcagatagtg aggaaagttg agccaataat
                                                                       180
gacgtgaagt ccgtggaagc ctgtggctac aaaaaatgtt gagccgtaga tgccgtcgga
                                                                       240
aatggtgaag ggagactcga agtactctga ggcttgtagg agggtaaaat agagacccag
                                                                       300
```

```
taaaattgta ataagcagtg cttgaattat ttqqtttcqq ttqttttcta ttaqactatq
                                                                        360
 gtgagctcag gtgattgata ctcctgatqc qaqtaatacq qatqtqttta qqaqtqqqac
                                                                        420
 ttctagggga tttagcgggg tgatgcctqt tgggggccag tgccctccta qttqqqqqt
                                                                        480
 aggggctagg ctggagtggt aaaaggctca qaaaaatcct qcqaaqaaaa aaacttctqa
                                                                        540
 ggtaataaat aggattatcc cgtatcgaag gcctttttqq acaqqtqqtq tqtqqtqcc
                                                                        600
 ttggtatgtg ctttctcgtg ttacatcgcg ccatcattgg tatatggtta gtgtgttggg
                                                                        660
 ttantanggc ctantatgaa gaacttttgg antggaatta aatcaatngc ttggccggaa
                                                                        720
 gtcattanga nggctnaaaa ggccctgtta ngggtctggg ctnggtttta cccnacccat
                                                                        780
 ggaatnenee eeceggaena ntgnateeet attettaa
                                                                        818
       <210> 7
       <211> 817
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1) ... (817)
       <223> n = A,T,C or G
       <400> 7
 tttttttttt ttttttttt tggctctaga gggggtagaq qgggtgctat aqqqtaaata
                                                                         60
cgggccctat ttcaaagatt tttaggggaa ttaattctag gacgatgggt atgaaactqt
                                                                        120
ggtttgctcc acagatttca gagcattgac cgtagtatac ccccggtcgt gtagcggtga
                                                                        180
aagtggtttg gtttagacgt ccgggaattg catctgtttt taagcctaat gtggggacag
                                                                        240
ctcatgagtg caagacgtct tgtgatgtaa ttattatacn aatgggggct tcaatcggga
                                                                        300
gtactactcg attgtcaacg tcaaggagtc gcaggtcgcc tggttctagg aataatgggg
                                                                       360
gaagtatgta ggaattgaag attaatccgc cgtagtcggt gttctcctag gttcaatacc
                                                                        420
artggtggcc aattgatttg atggtaaggg gagggatcgt tgaactcgtc tgttatgtaa
                                                                        480
aggatneett ngggatggga aggenatnaa ggactangga tnaatggegg geangatatt
                                                                       540
tcaaacngtc tctanttcct gaaacgtctg aaatgttaat aanaattaan tttnqttatt
                                                                       600
gaatnttnng gaaaagggct tacaggacta gaaaccaaat angaaaanta atnntaangg
                                                                       660
enttatentn aaaggtnata aceneteeta tnateeeace caatngnatt ceccaenenn
                                                                       720
acnattggat necessantte canaaangge encessegg tgnanneens ettttgttes
                                                                       780
cttnantgan ggttattene ecetngentt ateance
                                                                       817
      <210> 8
      <211> 799
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(799)
      \langle 223 \rangle n = A,T,C or G
      <400> 8
catttccggg tttactttct aaggaaagcc gagcggaagc tgctaacgtg ggaatcggtg
                                                                        60
cataaggaga actttctgct ggcacgcgct agggacaagc gggagagcga ctccgagcgt
                                                                       120
ctgaagcgca cgtcccagaa ggtggacttg gcactgaaac agctgggaca catccgcgag
                                                                       180
tacgaacage geetgaaagt getggagegg gaggteeage agtgtageeg egteetgggg
                                                                       240
tqqqtqqccq angcctganc cqctctqcct tqctqcccc angtqqqccq ccacccctq
                                                                       300
acctgcctgg gtccaaacac tgagccctgc tggcggactt caagganaac ccccacangg
                                                                       360
ggattttgct cctanantaa ggctcatctg ggcctcggcc cccccacctg gttggccttg
                                                                       420
tetttgangt gagececatg tecatetggg ceaetgteng gaccacettt ngggagtgtt
                                                                       480
ctccttacaa ccacannatg cccggctcct cccggaaacc anteccanec tqnqaaqqat
                                                                       540
caagneetgn atecaetnnt netanaaceg geeneeneeg engtggaace encettntgt
                                                                       600
teettttent tnagggttaa tnnegeettg geettneean ngteetnene ntttteennt
```

```
gttnaaattg ttangeneec neennteeen ennennenan eeegaeeenn annttnnann
                                                                         720
 neetgggggt neennengat tgacconnec neeetntant tgenttnggg nnenntgeee
                                                                         780
 ctttccctct nggganncq
                                                                         799
       <210> 9
       <211> 801
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(801)
       <223> n = A, T, C or G
       <400> 9
 acgccttgat cctcccaggc tgggactggt tctgggagga gccgggcatg ctgtggtttg
                                                                         60
 taangatgac actcccaaag gtggtcctga cagtggccca gatggacatg gggctcacct
                                                                        120
 caaggacaag gccaccaggt gcgggggccg aagcccacat gatccttact ctatgagcaa
                                                                        180
 aateceetgt gggggettet cettgaagte egecancagg geteagtett tggacceang
                                                                        240
 caggtcatgg ggttgtngnc caactggggg ccncaacgca aaanggcnca gggcctcngn
                                                                        300
 cacccatece angaegegge tacactnetg gaecteeene tecaccaett teatgegetg
                                                                        360
ttentacceg egnatntgte ceanctgttt engtgeenae tecanettet nggaegtgeg
                                                                        420
ctacatacge eeggantene netecegett tgteectate eaegtneean caacaaattt
                                                                        480
encentantg cacenattee caentttnne agnttteene nnegngette ettntaaaag
                                                                        540
ggttganccc cggaaaatnc cccaaagggg gggggccngg tacccaactn ccccctnata
                                                                        600
gctgaantcc ccatnaccnn gnctcnatgg ancentcent tttaannacn ttctnaactt
                                                                        660
gggaanance etegneenth ecceenttaa teceneettg enangment ecceentee
                                                                        720
necennntng gentntnann enaaaaagge eennnancaa teteetnnen eeteantteg
                                                                        780
ccancecteg aaateggeen e
                                                                        801
      <210> 10
      <211> 789
       <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(789)
      \langle 223 \rangle n = A,T,C or G
      <400> 10
cagtetaint ggccagtgtg gcagetttee etgtggetge eggtgeeaca tgcctgteee
                                                                        60
acagtgtggc cgtggtgaca gcttcagccg ccctcaccgg gttcaccttc tcagccctgc
                                                                       120
agatectgee ctacacactg geetecetet accaceggga gaageaggtg tteetgeeca
                                                                       180
aataccgagg ggacactgga ggtgctagca gtgaggacag cctgatgacc agcttcctgc
                                                                       240
caggecetaa geetggaget ceetteeeta atggacaegt gggtgetgga ggeagtggee
                                                                       300
tgctcccacc tccacccgcg ctctgcgggg cctctgcctg tgatgtctcc gtacgtgtgg
                                                                       360
tggtgggtga gcccaccgan gccagggtgg ttccgggccg gggcatctgc ctggacctcg
                                                                       420
ccatcetgga tagtgettee tgetgteeca ngtggeecca tecetgtta tgggetecat
                                                                       480
tgtccagctc agccagtctg tcactgccta tatggtgtct gccgcaggcc tgggtctggt
                                                                       540
cccatttact ttgctacaca ggtantattt gacaagaacg anttggccaa atactcagcg
                                                                       600
ttaaaaaatt ccagcaacat tgggggtgga aggcctgcct cactgggtcc aactccccgc
                                                                       660
tcctgttaac cccatggggc tgccggcttg gccgccaatt tctgttgctg ccaaantnat
                                                                       720
gtggctctct gctgccacct gttgctggct gaagtgcnta cngcncanct nggggggtng
                                                                       780
ggngttccc
                                                                       789
```

<210> 11 <211> 772

```
<212> DNA
      <213> Homo sapien
      <221> misc feature
      <222> (1) . . . (772)
      <223> n = A, T, C or G
      <400> 11
cccaccctac ccaaatatta gacaccaaca cagaaaaqct aqcaatqqat tcccttctac
tttgttaaat aaataagtta aatatttaaa tgcctgtqtc tctqtqatgq caacaqaaqq
                                                                        120
accaacaggc cacatcctga taaaaggtaa gaggggggtg gatcagcaaa aagacagtgc
                                                                        180
tgtgggctga ggggacctgg ttcttgtgtg ttgcccctca ggactcttcc cctacaaata
                                                                        240
actiticatat giticaaatco catggaggag tgiticatco tagaaactco catgcaaqaq
                                                                        300
ctacattaaa cgaagctgca ggttaagggg cttanagatg ggaaaccaqg tgactqaqtt
                                                                        360
tattcagctc ccaaaaaccc ttctctaggt gtgtctcaac taggaggcta gctgttaacc
                                                                        420
ctgagcctgg gtaatccacc tgcagagtcc ccgcattcca gtgcatggaa cccttctqqc
                                                                        480
ctccctgtat aagtccagac tgaaaccccc ttggaaggnc tccagtcagg cagccctana
                                                                        540
aactggggaa aaaagaaaag gacgccccan cccccagctg tgcanctacg cacctcaaca
                                                                        600
gcacagggtg gcagcaaaaa aaccacttta ctttggcaca aacaaaaact ngggggggca
                                                                        660
accccggcac cccnangggg gttaacagga ancngggnaa cntggaaccc aattnaggca
                                                                        720
ggcccnccac cccnaatntt gctgggaaat ttttcctccc ctaaattntt tc
                                                                        772
      <210> 12
      <211> 751
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
    .. <222> (1)...(751)
      \langle 223 \rangle n = A,T,C or G
      <400> 12
gccccaattc cagctgccac accacccacg gtgactgcat tagttcggat gtcatacaaa
                                                                         60
agetgattga ageaaccete tactttttgg tegtgageet tttgettggt geaggtttea
                                                                        120
ttggctgtgt tggtgacgtt gtcattgcaa cagaatgggg gaaaggcact gttctctttg
                                                                        180
aagtanggtg agtcctcaaa atccgtatag ttggtgaagc cacagcactt gagccctttc
                                                                        240
atggtggtgt tccacacttg agtgaagtct tcctgggaac cataatcttt cttgatggca
                                                                       300
ggcactacca gcaacgtcag ggaagtgctc agccattgtg gtgtacacca aggcqaccac
                                                                       360
agcagctgcn acctcagcaa tgaagatgan gaggangatg aagaaqaacg tcncqaqqqc
                                                                       420
acacttgctc tcagtcttan caccatanca gcccntgaaa accaananca aagaccacna
                                                                       480
cnccggctqc gatqaaqaaa tnaccccncq ttgacaaact tqcatqqcac tqqqanccac
                                                                       540
agtggcccna aaaatcttca aaaaggatgc cccatcnatt gaccccccaa atgcccactq
                                                                       600
ccaacagggg ctgccccacn cncnnaacga tganccnatt gnacaagatc tncntggtct
                                                                       660
tnatnaacnt gaaccetgen tngtggetee tgtteaggne ennggeetga ettetnaann
                                                                       720
aangaacton gaagnoocca enggananne g
                                                                       751
      <210> 13
      <211> 729
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (729)
      <223> n = A,T,C or G
```

```
<400> 13
  gagccaggcg tecetetgce tgeccaetea gtggcaacae cegggagetg ttttgteett
                                                                          60
  tgtggancet cagcagtnee etettteaga acteantgee aaganeeetg aacaggagee
                                                                         120
  accatgcagt gcttcagctt cattaagacc atgatgatcc tcttcaattt gctcatcttt
                                                                         180
  ctgtgtggtg cagccctgtt ggcagtgggc atctgggtgt caatcgatgg ggcatccttt
                                                                         240
  ctgaagatet tegggeeact gtegteeagt geeatgeagt ttgteaacgt gggetaette
                                                                         300
  ctcatcgcag ccggcgttgt ggtcttagct ctaggtttcc tgggctgcta tggtgctaag
                                                                         360
  actgagagca agtgtgccct cgtgacgttc ttcttcatcc tcctcctcat cttcattqct
                                                                         420
  gaggttgcaa tgctgtggtc gccttggtgt acaccacaat ggctgagcac ttcctgacgt
                                                                         480
  tgctggtaat gcctgccatc aanaaaagat tatgggttcc caggaanact tcactcaagt
                                                                         540
 gttggaacac caccatgaaa gggctcaagt gctgtggctt cnnccaacta tacggatttt
                                                                         600
 gaagantcac ctacttcaaa gaaaanagtg cctttccccc atttctgttg caattgacaa
                                                                         660
 acgtccccaa cacagccaat tgaaaacctg cacccaaccc aaangggtcc ccaaccanaa
                                                                         720
 attnaaggg
                                                                         729
       <210> 14
       <211> 816
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc feature
       <222> (1) ... (816)
       <223> n = A, T, C or G
       <400> 14
tgctcttcct caaagttgtt cttgttgcca taacaaccac cataggtaaa gcgggcgcag
                                                                        - 60
 tgttcgctga aggggttgta gtaccagcgc gggatgctct ccttgcagag tcctgtgtct
                                                                        120
 ggcaggtcca cgcagtgccc tttgtcactg gggaaatgga tgcgctggag ctcgtcaaag
                                                                        180
 ccactcgtgt atttttcaca ggcagcctcg tccgacgcgt cggggcagtt gggggtgtct
                                                                        240
 tcacactcca ggaaactgtc natgcagcag ccattgctgc agcggaactg ggtgggctga
                                                                        300
 cangigecag ageacactgg atggegeett tecatgnnan gggeeetgng ggaaagteee
                                                                        360
 tganccccan anetgeetet caaangeeee acettgeaca eecegacagg etagaatgga
                                                                        420
 atcttcttcc cgaaaggtag ttnttcttgt tgcccaancc anccccntaa acaaactctt
                                                                        480
gcanatctgc tccgnggggg tcntantacc ancgtgggaa aagaacccca ggcngcgaac
                                                                        540
 caancttgtt tggatncgaa gcnataatct nctnttctgc ttggtggaca gcaccantna
                                                                        600
 ctgtnnanct ttagnccntg gtcctcntgg gttgnncttg aacctaatcn ccnntcaact
                                                                        660
gggacaaggt aantngcent cetttnaatt ecenanentn eeeeetggtt tggggttttn
                                                                        720
 cnenetecta ecceagaaan neegtgttee ecceeaacta ggggeenaaa cenntintte
                                                                        780
cacaaccctn ccccacccac gggttcngnt ggttng
                                                                        816
       <210> 15
       <211> 783
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (783)
      <223> n = A, T, C \text{ or } G
      <400> 15
ccaaggcctg ggcaggcata nacttgaagg tacaacccca ggaacccctg gtgctgaagg
                                                                        60
atgtggaaaa cacagattgg cgcctactgc ggggtgacac ggatgtcagg gtagagagga
                                                                       120
aagacccaaa ccaggtggaa ctgtggggac tcaaggaang cacctacctg ttccagctga
                                                                       180
cagtgactag ctcagaccac ccagaggaca cggccaacgt cacagtcact gtgctgtcca
                                                                       240
ccaagcagac agaagactac tgcctcgcat ccaacaangt gggtcgctgc cggggctctt
                                                                       300
teccaegetg gtactatgae eccaeggage agatetgeaa gagtttegtt tatggagget
                                                                       360
```

```
gcttgggcaa caaqaacaac taccttcggg aagaagagtg cattctancc tgtcnqqqtq
                                                                       420
tgcaaggtgg gcctttgana ngcanctctg gggctcangc gactttcccc caggqcccct
                                                                       480
ccatggaaag gcgccatcca ntqttctctg gcacctgtca gcccacccag ttccgctgca
                                                                       540
ncaatggctg ctgcatcnac antttcctng aattgtgaca acaccccca ntgccccaa
                                                                       600
ccctcccaac aaagcttccc tgttnaaaaa tacnccantt ggcttttnac aaacncccgg
                                                                       660
                                                                       720
cneeteentt tteecenntn aacaaaggge netngenttt gaactgeeen aaccenggaa
tetneenngg aaaaantnee eeceetggtt eetnnaance eeteenenaa anetneeeee
                                                                       780
ccc
                                                                       783
      <210> 16
      <211> 801
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(801)
      <223> n = A, T, C \text{ or } G
      <400> 16
gccccaattc cagctgccac accacccacg gtgactgcat tagttcggat gtcatacaaa
                                                                        60
agetgattga ageaaccete taetttttgg tegtgageet tttgettggt geaggtttea
                                                                       120
ttggctgtgt tggtgacgtt gtcattgcaa cagaatgggg gaaaggcact gttctctttg
                                                                       180
aagtagggtg agtcctcaaa atccgtatag ttggtgaagc cacagcactt gagccctttc
                                                                       240
atggtggtgt tccacacttg agtgaagtct tcctggggaac cataatcttt cttgatggca
                                                                       300
ggcactacca gcaacgtcag gaagtgctca gccattgtgg tgtacaccaa ggcgaccaca
                                                                       360
gcagctgcaa cctcagcaat gaagatgagg aggaggatga agaagaacgt cncgagggca
                                                                       420
cacttgctct ccgtcttagc accatagcag cccangaaac caagagcaaa gaccacaacg
                                                                       480
congotgoga atgaaagaaa ntacccacgt tgacaaactg catggccact ggacgacagt
                                                                       540 .
tggcccgaan atcttcagaa aagggatgcc ccatcgattq aacacccana tgcccactqc
                                                                       600
cnacagggct geneenenen gaaagaatga gecattgaag aaggatente ntggtettaa
                                                                       660
tgaactgaaa contgoatgg tggcccctgt tcagggctct tggcagtgaa ttctganaaa
                                                                       720
aaggaacngc ntnagccccc ccaaangana aaacaccccc gggtgttgcc ctgaattggc
                                                                       780
ggccaaggan ccctgccccn g
                                                                       801
      <210> 17
      <211> 740
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(740)
      <223> n = A, T, C or G
      <400> 17
gtgagageca ggegteecte tgeetgeeca eteagtggea acaeeeggga getgttttgt
                                                                        60
cetttgtgga geetcageag tteeetettt cagaacteac tgeeaagage eetgaacagg
                                                                       120
agccaccatg cagtgettca getteattaa gaccatgatg atcetettca atttgeteat
                                                                       180
ctttctgtgt ggtgcagccc tgttggcagt gggcatctgg gtgtcaatcg atggggcatc
                                                                       240
ctttctgaag atcttcgggc cactgtcgtc cagtgccatg cagtttgtca acgtgggcta
                                                                       300
cttecteate geageeggeg ttgtggtett tgetettggt tteetggget getatggtge
                                                                       360
taagacggag agcaagtgtg ccctcgtgac gttcttcttc atcctcctcc tcatcttcat
                                                                       420
tgctgaagtt gcagctgctg tggtcgcctt ggtgtacacc acaatggctg aaccattcct
                                                                       480
gacgttgctg gtantgcctg ccatcaanaa agattatggg ttcccaggaa aaattcactc
                                                                       540
aantntggaa caccnccatg aaaagggctc caatttctgn tggcttcccc aactataccg
                                                                       600
gaattttgaa aganteneee taetteeaaa aaaaaanant tqeetttnee eeenttetgt
                                                                       660
tgcaatgaaa acntcccaan acngccaatn aaaacctgcc cnnncaaaaa ggntcncaaa
```

```
caaaaaant nnaagggttn
                                                                         740
        <210> 18
        <211> 802
        <212> DNA
        <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1) ... (802)
       \langle 223 \rangle n = A,T,C or G
       <400> 18
 ccgctggttg cgctggtcca gngnagccac gaagcacgtc agcatacaca gcctcaatca
                                                                          60
 caaggtette cagetgeege acattacgea gggcaagage etecageaac actgeatatg
                                                                         120
 ggatacactt tactttagca gccagggtga caactgagag gtgtcgaagc ttattcttct
                                                                         180
 gageetetgt tagtggagga agatteeggg etteagetaa gtagteageg tatgteecat
                                                                         240
 aagcaaacac tgtgagcagc cggaaggtag aggcaaagtc actctcagcc agctctctaa
                                                                         300
 cattgggcat gtccagcagt tctccaaaca cgtagacacc agnggcctcc agcacctgat
                                                                         360
 ggatgagtgt ggccagcgct gcccccttgg ccgacttggc taggagcaga aattgctcct
                                                                         420
 ggttctgccc tgtcaccttc acttccgcac tcatcactgc actgagtgtg ggggacttgg
                                                                         480
 getcaggatg tecagagacg tggtteegee cectenetta atgacacegn ccanneaace
                                                                         540
 gtcggctccc gccgantgng ttcgtcgtnc ctgggtcagg gtctgctggc cnctacttgc
                                                                        600
 aancttegte nggeeeatgg aatteacene aceggaactn gtangateea etnnttetat
                                                                        660
 aaccggnege caccgennnt ggaactecae tettnttnee tttacttgag ggttaaggte
                                                                        720
 accettnncg ttacettggt ccaaacentn centgtgteg anatngtnaa tenggneena
                                                                        780
tnccancene atangaagee ng
                                                                        802
       <210> 19
       <211> 731.
       <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(731)
      <223> n = A, T, C \text{ or } G
      <400> 19
cnaagettee aggtnaeggg eegenaanee tgaeeenagg tancanaang eagnengegg
                                                                         60
gagcccaccg tcacgnggng gngtctttat nggagggggc ggagccacat cnctggacnt
                                                                        120
entgacecca acteccence nencantgea gtgatgagtg cagaactgaa ggtnacgtgg
                                                                        180
caggaaccaa gancaaanno tgotoonnto caagtoggon nagggggggg ggotggcac
                                                                        240
geneateent enagtģetgn aaageeeenn eetgtetaet tgtttggaga aengennnga
                                                                        300
catgcccagn gttanataac nggcngagag tnantttgcc tctcccttcc ggctgcgcan
                                                                        360
cgngtntgct tagnggacat aacctgacta cttaactgaa cccnngaatc tnccnccct
                                                                        420
ccactaaget cagaacaaaa aacttegaca ccacteantt gteacetgne tgeteaagta
                                                                        480
aagtgtaccc catneccaat gtntgetnga ngetetgnee tgenttangt teggteetgg
                                                                        540
gaagacctat caattnaagc tatgtttctg actgcctctt gctccctgna acaancnacc
                                                                        600
cnncnntcca aggggggnc ggccccaat cccccaacc ntnaattnan tttancccn
                                                                        660
cccccnggcc cggcctttta cnancntcnn nnacngggna aaaccnnngc tttncccaac
                                                                        720
nnaatccncc t
      <210> 20
      <211> 754
      <212> DNA
      <213> Homo sapien
```

```
<220>
      <221> misc feature
      <222> (1)...(754)
      <223> n = A, T, C \text{ or } G
      <400> 20
ttttttttt tttttttt taaaaacccc ctccattnaa tgnaaacttc cgaaattgtc
                                                                        60
caaccccctc ntccaaatnn contttccgg gngggggttc caaacccaan ttanntttqq
                                                                       120
annttaaatt aaatnttnnt tggnggnnna anccnaatgt nangaaagtt naacccanta
tnancttnaa tncctggaaa cengtngntt ccaaaaatnt ttaaccetta anteceteeq
                                                                       240
aaatngttna nggaaaaccc aanttetent aaggttgttt gaaggntnaa tnaaaanccc
                                                                       300
nnccaattgt ttttngccac gcctgaatta attggnttcc gntgttttcc nttaaaanaa
                                                                       360
ggnnancccc ggttantnaa tccccccnnc cccaattata ccganttttt ttngaattgg
                                                                       420
ganceenegg gaattaaegg ggnnnnteee tnttgggggg enggnneece eccenteggg
                                                                       480
ggttngggnc aggncnnaat tgtttaaggg tccgaaaaat ccctccnaga aaaaaanctc
                                                                       540
ccaggntgag nntngggttt ncccccccc canggcccct ctcgnanagt tggggtttgg
                                                                       600
ggggcctggg attttntttc ccctnttncc tcccccccc ccnggganag aggttngngt
                                                                       660
tttgntcnnc ggccccnccn aaganctttn ccganttnan ttaaatccnt gcctnggcga
                                                                       720
agtccnttgn agggntaaan ggccccctnn cggg
                                                                       754
      <210> 21
      <211> 755
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (755)
      <223> n = A, T, C \text{ or } G
      <400> 21
atcancccat gaccccnaac nngggaccnc tcanccggnc nnncnaccnc cggccnatca
                                                                        60
nngtnagnne actnennttn nateaeneee encenactae geeenenane enaegeneta
                                                                       120
nncanatnce actganngcg cgangtngan ngagaaanct nataccanag ncaccanacn
                                                                       180
ccagctgtcc nanaangcct nnnatacngg nnnatccaat ntgnancctc cnaagtattn
                                                                       240
nncnncanat gattttcctn anccgattac contnecce tanccectec ecceaacna
                                                                       300
cgaaggenet ggneenaagg nngegnenee eegetagnte eeenneaagt eneneneeta
                                                                       360
aactcancon nattacnogo ttontgagta toactcocog aatctcacco tactcaacto
                                                                       420
aaaaanatcn gatacaaaat aatncaagcc tgnttatnac actntgactg ggtctctatt
                                                                       480
ttagnggtcc ntnaanchtc ctaatacttc cagtctncct tcnccaattt ccnaanggct
                                                                       540
ctttcngaca gcatnttttg gttcccnntt qggttcttan ngaattqccc ttcntngaac
                                                                       600
gggctcntct tttccttcgg ttancctggn ttcnnccqqc caqttattat ttcccntttt
                                                                       660
aaattentne entttanttt tggenttena aacceeegge ettgaaaaeg geeecetggt
                                                                       720
aaaaggttgt tttganaaaa tttttgtttt gttcc
                                                                       755
      <210> 22
      <211> 849
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(849)
      <223> n = A, T, C \text{ or } G
      <400> 22
ttttttttt tttttangtg tngtcgtgca ggtagaggct tactacaant gtgaanacgt
                                                                       60
acgetnggan taangegace eganttetag ganneneest aaaateanac tgtgaagatn
                                                                      120
```

```
atcctgnnna cggaanggtc accggnngat nntgctaggg tgnccnctcc cannnenttn
                                                                          180
  cataacteng nggeeetgee caccacette ggeggeeeng ngneegggee egggteattn
                                                                          240
  gnnttaacen caetnngena neggttteen neecenneng accenggega teeggggtne
                                                                          300
  tetgtettee cetgnagnen anaaantggg ceneggneee etttaceeet nnacaageea
                                                                         360
  engeenteta neenengeee eeetteeant nngggggaet geenannget eegttnetng
                                                                         420
  nnacccennn gggtncctcg gttgtcgant cnaccgnang ccanggattc cnaaggaagg
                                                                         480
  tgcgttnttg gcccctaccc ttcgctncgg nncacccttc ccgacnanga nccgctcccg
  enennegning cetenecteg caacacege netentengt neggninece ceccacege
                                                                         540
                                                                         600
  necetenene ngnegnanen eteeneenee gteteannea ecacecegee eegecaggee
                                                                         660
  nteanceach ggnngaenng nagenennte geneegegen gegneneett egeenengaa
  ctncntcngg ccantnncgc tcaanconna cnaaacgccg ctgcgcggcc cgnagcgncc
                                                                         720
                                                                         780
  nceteenega gteeteeegn etteenaeee angnntteen egaggaeaen nnaeeeegee
                                                                         840
  nncangcgg
                                                                         849
        <210> 23
        <211> 872
        <212> DNA
        <213> Homo sapien
        <220>
       <221> misc_feature
       <222> (1)...(872)
       <223> n = A,T,C or G
       <400> 23
 gcgcaaacta tacttcgctc gnactcgtgc gcctcgctnc tcttttcctc cgcaaccatg
                                                                         60
 tetgacnane cegattngge ngatatenan aagntegane agtecaaaet gantaacaca
                                                                        120
 cacacnenan aganaaatee netgeettee anagtanaen attgaaenng agaaeeange
                                                                        180
 nggcgaatcg taatnaggcg tgcgccgcca atnigtcncc gtttattntn ccagcntenc
 etnecnacce tachtetten nagetgtenn acceetngth egnaceeece naggteggga
                                                                        240
 tegggtttnn nntgacegng ennecettee eccentecat nacganeene eegcaceace
                                                                        300
                                                                        360
 nanngenege necessanet ettegeenee etgteetntn eeestginge etggenengn
                                                                        420
 accigcattga ccctcgccnn ctncnngaaa ncgnanacgt ccgggttgnn annancgctg
                                                                        480
 tgggnnngeg tetgencege gtteetteen nennetteea ceatettent taengggtet
                                                                        540
 cenegeente tennneaene cetgggaege tntcetntge ecceettnae tecceceett
                                                                        600
 cgncgtgncc cgnccccacc ntcatttnca nacgntette acaannnect ggntnnetee
                                                                        660
 enancingnen gteancenag ggaagggngg ggnneenntg nttgaegttg nggngangte
                                                                        720
cgaanantce tencentcan enctaceet egggegnnet etengttnee aacttaneaa
                                                                        780
ntetecceeg ngngemente teagectene ceneceenet etetgeantg thetetgete
                                                                        840
tnaccnntac gantnttcgn cnccctcttt cc
                                                                        872
      <210> 24
      <211> 815
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(815)
      <223> n = A, T, C or G
      <400> 24
gcatgcaagc ttgagtattc tatagngtca cctaaatanc ttggcntaat catggtcnta
                                                                        60
nctgncttcc tgtgtcaaat gtatacnaan tanatatgaa tctnatntga caaganngta
tentneatta gtaacaantg tnntgteeat eetgtengan canatteeca tnnattnegn
                                                                       120
                                                                       180
cgcattenen geneantatn taatngggaa ntennntnnn neacenneat etatentnee
                                                                       240
geneeetgae tggnagagat ggatnantte tnntntgace nacatgttea tettggattn
                                                                       300
aananceece egengneeae eggttngnng enageennte ceaagacete etgtggaggt
                                                                       360
```

```
aacctgcgtc aganncatca aacntgggaa acccgcnncc angtnnaagt ngnnncanan
                                                                         420
 gatcccqtcc aggnttnacc atcccttcnc agggccccct ttnqtqcctt anagnqnagc
                                                                         480
 gtqtccnanc cnctcaacat ganacqcqcc agnccanccq caattnqqca caatqtcqnc
                                                                         540
 qaaccccta qqqqantna tncaaanccc caggattqtc cncncanqaa atcccncanc
                                                                         600
 concectae connettigg gacngigace aanteegga ginecaqiee gqcenqnete
                                                                         660
 ccccaccgqt nnccntgggg gggtgaanct cngnntcanc cngncqaqqn ntcqnaaqqa
                                                                         720
 accggneetn ggnegaanng anenntenga agngeenent egtataacce ecceteneea
                                                                         780
 nccnacngnt agntccccc cngggtncgg aangg
                                                                         815
        <210> 25
        <211> 775
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc feature
       <222> (1)...(775)
       <223> n = A, T, C or G
       <400> 25
 cegagatgte tegeteegtg geettagetg tgetegeget actetetett tetggeetgg
                                                                         60
 aggetateca gegtaeteca aagatteagg tttaeteaeg teateeagea gagaatggaa
                                                                        120
 agtcaaattt cctgaattgc tatgtgtctg ggtttcatcc atccgacatt gaanttgact
                                                                        180
 tactgaagaa tgganagaga attgaaaaag tggagcattc agacttgtct ttcagcaagg
                                                                        240
 actggtcttt ctatctcntg tactacactg aattcacccc cactgaaaaa gatgagtatg
                                                                        300
 cctgccgtgt gaaccatgtg actttgtcac agcccaagat agttaagtgg gatcgagaca
                                                                        360
 tgtaagcagn Cnncatggaa gtttgaagat gccgcatttg gattggatga attccaaatt
                                                                        420
 ctgcttgctt gcnttttaat antgatatgc ntatacaccc taccctttat gnccccaaat
                                                                        480
 tgtaggggtt acatnantgt tenentngga catgatette etttataant cencentteg
                                                                        540
 aattgcccgt cncccngttn ngaatgtttc cnnaaccacg gttggctccc ccaggtcncc
                                                                        600
 tettaeggaa gggeetggge enetttneaa ggttggggga acenaaaatt tenettntge
                                                                        660
 concorned enniciting nnencantit ggaaccette enatteeest tggestenna
                                                                        720
ncettnneta anaaaacttn aaanegtnge naaanntttn actteecece ttace
                                                                        775
       <210> 26
       <211> 820
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc feature
       <222> (1) ... (820)
       \langle 223 \rangle n = A,T,C'or G
       <400> 26
 anattantac agtgtaatct tttcccagag gtgtgtanag ggaacggggc ctagaggcat
                                                                         60
 cccanagata ncttatanca acagtgcttt gaccaagagc tgctgggcac atttcctgca
                                                                        120
 gaaaaggtgg cggtccccat cactcctcct ctcccatagc catcccagag gggtgagtag
                                                                        180
 ccatcangcc ttcggtggga gggagtcang gaaacaacan accacagagc anacagacca
                                                                        240
 ntgatgacca tgggcgggag cgagcctctt ccctgnaccg gggtggcana nganagccta
                                                                        300
 nctgaggggt cacactataa acgttaacga ccnagatnan cacctgcttc aagtgcaccc
                                                                        360
 ttcctacctg acnaccagng accnnnaact gcngcctggg gacagenctg ggancageta
                                                                        420
 acnnagcact cacctgccc cccatggccg tncgcntccc tggtcctgnc aagggaagct
                                                                        480
 ccctgttgga attncgggga naccaaggga ncccctcct ccanctgtga aggaaaaann
                                                                        540
 gatggaattt tncccttccg gccnntcccc tcttccttta cacgccccct nntactcntc
                                                                        600
 tecetetntt nteetgnene aettttnace cennnattte eettnattga teggannetn
                                                                        660
 ganattecae throgeethe entenateng naanachaaa nacthtetha eeengggat
                                                                        720
 gggnnccteg ntcatectet etttttenet acencenntt etttgeetet eettngatea
```

```
tecaacente gntggeentn cececennn teetttneee
                                                                          820
        <210> 27
        <211> 818
        <212> DNA
        <213> Homo sapien
        <220>
        <221> misc_feature
        <222> (1)...(818)
        <223> n = A,T,C or G
        <400> 27
  tetgggtgat ggcetettee teeteaggga cetetgactg etetgggeea aagaatetet
  tgtttcttct ccgagcccca ggcagcggtg attcagccct gcccaacctg attctgatga
                                                                          60
  ctgcggatgc tgtgacggac ccaaggggca aatagggtcc cagggtccag ggaggggcgc
                                                                         120
  ctgctgagca cttccgcccc tcaccctgcc cagcccctgc catgagctct gggctgggtc
                                                                         180
  tecgeeteca gggttetget ettecangea ngceaneaag tggegetggg ceacactgge
                                                                         240
 ttetteetge ecentecetg getetgante tetgtettee tgteetgte angeneettg
                                                                         300
 gateteagtt tecetenete anngaaetet gtttetgann tetteantta aetntgantt
                                                                         360
 tatnaccnan tggnctgtnc tgtcnnactt taatgggccn gaccggctaa tccctccetc
                                                                         420
 netecettee anttennnna accegettne ententetee centaneceg cengggaane
                                                                         480
 ctectttgcc ctnaccangg gccnnnaccg cccntnnctn ggggggcnng gtnnctncnc
                                                                         540
 etgntnnece enetenennt theetegtee ennennegen nngcanntte nengteeenn
                                                                         600
 tnnetetten ngtntegnaa ngntenentn tnnnnngnen ngntnntnen teeetetene
                                                                         660
 cnuntgnang tnnttnnnnc ncngnncccc nnnncnnnnn nggnnntnnn tctncncngc
                                                                         720
                                                                         780
 cccnnccccc ngnattaagg cctccnntct ccggccnc
       <210> 28
       <211> 731
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1) ... (731)
       <223> n = A, T, C \text{ or } G
      <400> 28
aggaagggcg gagggatatt gtangggatt gagggatagg agnataangg gggaggtgtg
teccaacatg anggtgnngt tetettttga angagggttg ngtttttann cenggtgggt
                                                                         60
gattnaaccc cattgtatgg agnnaaaggn tttnagggat ttttcggctc ttatcagtat
                                                                        120
ntanatteet gtnaategga aaatnatntt tennenggaa aatnttgete ecateegnaa
                                                                        180
attneteceg ggtagtgcat nttngggggn engecangtt teccaggetg etanaategt
                                                                        240
actaaagntt naagtgggan tncaaatgaa aacctnncac agagnatcon tacccgactg
                                                                        300
tnnnttneet tegecetntg actetgenng ageceaatae cenngngnat gtenecengn
                                                                       360
nnngegnene tgaaannnne tegnggetnn gancateang gggtttegea teaaaagenn
                                                                       420
cgtttencat naaggeactt tngceteate caacenetng ecetenneca tttngcegte
                                                                       480
nggttenect acgetnntng encetnnntn ganattttne eegeetnggg naaneeteet
                                                                       540
gnaatgggta gggncttntc ttttnaccnn gnggtntact aatcnnctnc acgcntnctt
                                                                       600
tetenaceee eccettttt caateeeane ggenaatggg gteteeeenn egangggggg
                                                                       660
                                                                       720
nnncccannc c
                                                                       731'.
      <210> 29
      <211> 822
      <212> DNA
     <213> Homo sapien
```

```
<220>
      <221> misc_feature
      <222> (1) . . . (822)
      <223> n = A, T, C \text{ or } G
      <400> 29
actagtccag tgtggtggaa ttccattgtg ttggggncnc ttctatgant antnttagat
                                                                        60
cgctcanacc tcacancete cenachange etataangaa nannaataga netgtnennt
                                                                        120
athintache teatanneet ennnaceeae teeetettaa eeentactgt geetathgen
                                                                        180
tnnctantct ntgccgcctn cnanccaccn gtgggccnac cncnngnatt ctcnatctcc
                                                                        240
tenecatntn geetananta ngtneatace etatacetae necaatgeta nnnetaanen
                                                                       300
tocatnantt annntaacta ccactgacnt ngactttene atnaneteet aatttgaate
                                                                       360
tactctgact cccacngcct annnattagc anchtccccc nachathtct caaccaaatc
                                                                       420
ntcaacaacc tatctanctq ttcnccaacc nttncctccq atcccnnac aaccccctc
                                                                       480
ccaaataccc nccacctgac ncctaacccn caccatcccg gcaagccnan ggncatttan
                                                                       540
ccactggaat cacnatngga naaaaaaaac ccnaactctc tancncnnat ctccctaana
                                                                       600
aatneteetn naatttaetn neantneeat caaneeeaen tgaaaennaa eeeetgtttt
                                                                       660
tanatecett etttegaaaa eenaeeettt annneeeaac etttngggee eeeeenetne
                                                                       720
ccnaatgaag gncncccaat cnangaaacg nccntgaaaa ancnaggcna anannntccg
                                                                       780
canatectat ceettanttn ggggneeett neeengggee ee
                                                                       822
      <210> 30
      <211> 787
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(787)
      <223> n = A, T, C or G
      <400> 30
eggeegeetg etetggeaca tgeeteetga atggeateaa aagtgatgga etgeecattg
                                                                        60
ctagagaaga ccttctctcc tactgtcatt atggagccct gcagactgag ggctcccctt
                                                                       120
gtctgcagga tttgatgtct gaagtcgtgg agtgtggctt ggagctcctc atctacatna
                                                                       180
getggaagee etggagggee tetetegeea geeteeeet teteteeaeg eteteeangg
                                                                       240
acaccagggg ctccaggcag cccattattc ccagnangac atggtgtttc tccacgcgga
                                                                       300
cccatggggc ctgnaaggcc agggtctcct ttgacaccat ctctcccgtc ctgcctggca
                                                                       360
ggccgtggga tccactantt ctanaacggn cgccaccncg gtgggagctc cagcttttgt
                                                                       420
tecenttaat gaaggttaat tgenegettg gegtaateat nggteanaac tnttteetgt
                                                                       480
gtgaaattgt ttntcccctc ncnattccnc ncnacatacn aacccggaan cataaagtgt
                                                                       540
taaageetgg gggtngeetn nngaatnaac tnaactcaat taattgegtt ggetcatgge
                                                                       600
ccgctttccn ttcnggaaaa ctgtcntccc ctgcnttnnt gaatcggcca cccccnggg
                                                                       660
aaaagcggtt tgcnttttng ggggntcctt ccncttcccc cctcnctaan ccctncgcct
                                                                       720
cggtcgttnc nggtngcggg gaangggnat nnnctcccnc naagggggng agnnngntat
                                                                       780
ccccaaa
                                                                       787
     <210> 31
     <211> 799
     <212> DNA
     <213> Homo sapien
     <220>
     <221> misc feature
     <222> (1) ... (799)
     <223> n = A, T, C or G
     <400> 31
```

```
ttttttttt ttttttggc gatgctactg tttaattgca ggaggtgggg gtgtgtgtac
                                                                         60
  catgtaccag ggctattaga agcaagaagg aaggagggag ggcagagcgc cctgctgagc
  aacaaaggac teetgeagee ttetetgtet gtetettgge geaggeacat ggggaggeet
                                                                        120
  eccgcagggt gggggccacc agtccagggg tgggagcact acanggggtg ggagtgggtg
                                                                        180
                                                                        240
  gtggctggtn cnaatggcct gncacanatc cctacgattc ttgacacctg gatttcacca
                                                                        300
  ggggacette tgttetecca nggnaactte ntnnateten aaagaacaca actgtttett
                                                                        360
  engeanttet ggetgtteat ggaaageaca ggtgteenat ttnggetggg acttggtaca
                                                                        420
  tatggttccg gcccacctct cccntcnaan aagtaattca ccccccccn centctnttg
                                                                        480
  cctgggccct taantaccca caccggaact canttantta ttcatcttng gntgggcttg
                                                                        540
  ntnatencen cetgaangeg ceaagttgaa aggeeaegee gtnecenete eccatagnan
  nttttnncnt canctaatgc ccccccnggc aacnatccaa tccccccccn tgggggcccc
                                                                        600
                                                                        660
  ageceangge eccegneteg ggnnneengn enegnantee ceaggntete ceantengne
  connigence ecegeacgea gaacanaagg ntngageene egeanninnn nggtnnenae
                                                                        720
                                                                        780
  ctcgccccc ccnncgnng
                                                                        799
        <210> 32
        <211> 789
        <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(789)
       \langle 223 \rangle n = A,T,C or G
       <400> 32
 60
 ttttnccnag ggcaggttta ttgacaacct cncgggacac aancaggctg gggacaggac
                                                                       120
 ggcaacaggc teeggeggeg geggeggegg ceetacetge ggtaccaaat ntgcageete
                                                                       180
 egeteceget tgatntteet etgeagetge aggatgeent aaaacaggge eteggeentn
 ggtgggcacc ctgggatttn aatttccacg ggcacaatgc ggtcgcancc cctcaccacc
                                                                       240
 nattaggaat agtggtntta cccnccnccg ttggcncact ccccntggaa accacttntc
                                                                       300
 geggeteegg catetggtet taaacettge aaacnetggg geeetetttt tggttantnt
                                                                       360
 ncengecaca ateatnacte agaetggene gggetggeee caaaaaanen eeccaaaace
                                                                       420
 ggnccatgtc ttnncggggt tgctgcnatn tncatcacct cccgggcnca ncaggncaac
                                                                       480
                                                                       540
 ccaaaagttc ttgnggcccn caaaaaanct ccggggggnc ccagtttcaa caaagtcatc
                                                                       600
ccccttggcc cccaaatcct cccccgntt nctgggtttg ggaacccacg cctctnnctt
tggnnggcaa gntggntccc ccttcgggcc cccggtgggc ccnnctctaa ngaaaacncc
                                                                      660
ntectnnnea ceateceee nngnnaegne tancaangna teeettttt tanaaaeggg
                                                                      720
                                                                      780
cccccncq
                                                                      789
      <210> 33
      <211> 793
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (793)
      \langle 223 \rangle n = A,T,C or G
      <400> 33
gacagaacat gttggatggt ggagcacctt tctatacgac ttacaggaca gcagatgggg
aattcatggc tgttggagca atanaacccc agttctacga gctgctgatc aaaggacttg
                                                                      60
gactaaagtc tgatgaactt cccaatcaga tgagcatgga tgattggcca gaaatgaana
                                                                     120
agaagtttgc agatgtattt gcaaagaaga cgaaggcaga gtggtgtcaa atctttgacg
                                                                     180
                                                                     240
gcacagatgc ctgtgtgact ccggttctga cttttgagga ggttgttcat catgatcaca
acaangaacg gggctcgttt atcaccantg aggagcagga cgtgagcccc cgccctgcac
                                                                     300
                                                                     360
```

```
ctctgctgtt aaacacccca gccatccctt ctttcaaaag ggatccacta cttctaqaqc
                                                                        420
ggncgccacc gcggtggagc tccagctttt gttcccttta gtgagggtta attgcgcqct
                                                                        480
tggcgtaatc atggtcatan ctgtttcctg tgtgaaattq ttatccqctc acaattccac
                                                                        540
acaacatacg anccggaagc atnaaatttt aaagcctggn ggtngcctaa tgantgaact
                                                                        600
nactcacatt aattggettt gegeteactg cocqetttee agteeggaaa acctgteett
                                                                        660
gecagetgee nttaatgaat enggecaeee eeeggggaaa aggengtttg ettnttgggg
                                                                        720
egenetteee getttetege tteetgaant cetteeece qqtettteqq ettqeqqena
                                                                        780
acggtatcna cct
                                                                        793
      <210> 34
      <211> 756
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(756)
      \langle 223 \rangle n = A,T,C or G
      <400> 34
gccgcgaccg gcatgtacga gcaactcaag ggcgagtgga accgtaaaag ccccaatctt
                                                                         60
ancaagtgcg gggaanagct gggtcgactc aagctagttc ttctggagct caacttcttg
                                                                        120
ccaaccacag ggaccaagct gaccaaacag cagctaattc tggcccgtga catactggag
                                                                        180
ateggggeec aatggageat cetacgeaan gacateceet cettegageg etacatggee
                                                                        240
cagctcaaat gctactactt tgattacaan gagcagctcc ccqaqtcaqc ctatatqcac
                                                                        300
cagetettgg geeteaacet cetetteetg etgteecaga acegggtgge tgantnecae
                                                                        360
acgganttgg ancggctgcc tgcccaanga catacanacc aatgtctaca tcnaccacca
                                                                        420
gtgtcctgga gcaatactga tgganggcag ctaccncaaa gtnttcctgg ccnaqqqtaa
                                                                        480
catececege egagagetae acettettea ttgacatect getegacaet atcagggatg
                                                                        540
aaaatcgcng ggttgctcca gaaaggctnc aanaanatcc ttttcnctga aggcccccgg
                                                                        600
atnonctagt notagaateg geoegecate geggtggane etceaacett teqttneect
                                                                        660
ttactgaggg ttnattgccg cccttggcgt tatcatggtc acncengttn cctqtqttqa
                                                                       720
aattnttaac ccccacaat tccacgccna cattng
                                                                        756
      <210> 35
      <211> 834
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(834)
      \langle 223 \rangle n = A,T,C or G
      <400> 35
ggggatetet anatenacet gnatgeatgg ttgteggtgt ggtegetgte gatgaanatg
                                                                        60
aacaggatet tgeeettgaa getetegget getgtnttta agttgeteag tetgeegtea
                                                                       120
tagtcagaca cnctcttggg caaaaaacan caggatntga gtcttgattt cacctccaat
                                                                       180
aatettengg getgtetget eggtgaacte gatgaenang ggeagetggt tgtgtntgat
                                                                       240
aaantccanc angtteteet tggtgacete eeetteaaag ttgtteegge etteateaaa
                                                                       300
cttctnnaan angannancc canctttgtc gagctggnat ttgganaaca cgtcactqtt
                                                                       360
ggaaactgat cccaaatggt atgtcatcca tcgcctctgc tgcctgcaaa aaacttgctt
                                                                       420
ggcncaaatc cgactccccn tccttgaaag aagccnatca caccccctc cctggactcc
                                                                       480
nncaangact ctnccgctnc cccntccnng cagggttggt ggcannccgg gcccntgcgc
                                                                       540
ttcttcagcc agttcacnat nttcatcagc ccctctgcca gctgttntat tccttggggg
                                                                       600
ggaanccgtc tetecettee tgaannaact ttgaccgtng gaatageege gentencent
                                                                       660
achtnetggg ccgggttcaa anteceteen ttgnennten cetegggcea ttetggattt
                                                                       720
ncenaacttt ttccttcccc cncccnegg ngtttggntt tttcatnggg ccccaactct
                                                                       780
```

```
getnttggcc anteceetgg gggentntan eneceeetnt ggteeentng ggce
                                                                         834
        <210> 36
        <211> 814
        <212> DNA
        <213> Homo sapien
        <220>
        <221> misc_feature
        <222> (1)...(814)
        <223> n = A, T, C or G
        <400> 36
 eggnegettt cengeegege eeegttteea tgacnaagge teeetteang ttaaataenn
 cctagnaaac attaatgggt tgctctacta atacatcata cnaaccagta agcctgccca
                                                                          60
 naacgccaac tcaggccatt cctaccaaag gaagaaaggc tggtctctcc acccctgta
                                                                         120
 ggaaaggcct gccttgtaag acaccacaat ncggctgaat ctnaagtctt gtgttttact
                                                                         180
 aatggaaaaa aaaaataaac aanaggtttt gttctcatgg ctgcccaccg cagcctggca
                                                                        240
 ctaaaacanc ccagcgctca cttctgcttg ganaaatatt ctttgctctt ttggacatca
                                                                        300
 ggettgatgg tateactgce aentttecae ecagetggge necettecee catnittgte
                                                                        360
                                                                        420
 antganctgg aaggeetgaa nettagtete caaaagtete ngeecacaag aceggeeace
 aggggangtc ntttncagtg gatctgccaa anantacccn tatcatcnnt gaataaaaag
                                                                        480
 gcccctgaac ganatgcttc cancancctt taagacccat aatcctngaa ccatggtgcc
                                                                        540
 cttccggtct gatccnaaag gaatgttcct gggtcccant ccctcctttg ttncttacgt
                                                                        600
 tgtnttggac centgetngn atnacecaan tganatecee ngaageacee tneeeetgge
                                                                        660
 atttganttt cntaaattct ctgccctacn nctgaaagca cnattccctn ggcnccnaan
                                                                        720
                                                                        780
 ggngaactca agaaggtctn ngaaaaacca cncn
                                                                        814
       <210> 37
       <211> 760
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(760)
       <223> n = A,T,C or G
      <400> 37
gcatgctgct cttcctcaaa gttgttcttg ttgccataac aaccaccata ggtaaagcgg
gegeagtgtt egetgaaggg gttgtagtae cagegeggga tgeteteett geagagteet
                                                                        60
gtgtctggca ggtccacgca atgccctttg tcactgggga aatggatgcg ctggagetcg
                                                                       120
tenaaneeae tegtgtattt tteacangea geeteeteeg aagenteegg geagttgggg
                                                                       180
gtgtcgtcac actccactaa actgtcgatn cancagccca ttgctgcagc ggaactgggt
                                                                       240
gggctgacag gtgccagaac acactggatn ggcctttcca tggaagggcc tgggggaaat
                                                                       300
encetnance caaactgeet etcaaaggee acettgeaca eccegacagg etagaaatge
                                                                       360
actettette ccaaaggtag ttgttettgt tgeecaagea neetecanea aaccaaaane
                                                                       420
ttgcaaaatc tgctccgtgg gggtcatnnn taccanggtt ggggaaanaa acccggcngn
                                                                       480
gancencett gtttgaatge naaggnaata ateeteetgt ettgettggg tggaanagea
                                                                       540
caattgaact gttaacnttg ggccgngttc cnctngggtg gtctgaaact aatcaccgtc
                                                                       600
actggaaaaa ggtangtgcc ttccttgaat tcccaaantt cccctngntt tgggtnnttt
                                                                       660
ctectetnee ctaaaaateg tntteceee centanggeg
                                                                       720
                                                                       760
      <210> 38
      <211> 724
      <212> DNA
      <213> Homo sapien
```

```
<220>
      <221> misc feature
      <222> (1)...(724)
      <223> n = A, T, C or G
      <400> 38
ttttttttt tttttttt tttttttt tttttaaaaa cccctccat tgaatgaaaa
                                                                         60
cttccnaaat tgtccaaccc cctcnnccaa atnnccattt ccgggggggg gttccaaacc
                                                                        120
caaattaatt ttgganttta aattaaatnt tnattngggg aanaanccaa atgtnaagaa
                                                                        180
aatttaaccc attatnaact taaatnoctn gaaacccntg gnttccaaaa atttttaacc
                                                                        240
cttaaatccc tccgaaattg ntaanqqaaa accaaattcn cctaaqqctn tttqaaqqtt
                                                                        300
ngatttaaac ccccttnant tnttttnacc cnngnctnaa ntatttngnt tccqqtqttt
                                                                        360
tectnttaan entnggtaac teeegntaat gaannneet aanceaatta aaceqaattt
                                                                        420
tttttgaatt ggaaatteen ngggaattna ceggggtttt tecentttqq qqqccatnee
                                                                        480
cccnctttcg gggtttgggn ntaggttgaa tttttnnang ncccaaaaaa ncccccaana
                                                                        540
aaaaaactcc caagnnttaa ttngaatntc ccccttccca ggccttttgg gaaaqqnqqq
                                                                        600
tttntggggg cengggantt entteecen ttneeneece ceceeenggt aaanggttat
                                                                        660
ngnntttggt ttttgggccc cttnanggac cttccggatn gaaattaaat ccccgggncg
                                                                        720
gccg
                                                                        724
      <210> 39
      <211> 751
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(751)
      \langle 223 \rangle n = A,T,C or G
      <400> 39
ttttttttt tttttctttg ctcacattta atttttattt tgatttttt taatgctgca
                                                                        60
caacacaata tttatttcat ttgtttcttt tatttcattt tatttqtttq ctqctqctqt
                                                                       120
tttatttatt tttactgaaa gtgagaggga acttttgtgg ccttttttcc tttttctgta
                                                                       180
ggccgcctta agctttctaa atttggaaca tctaagcaag ctgaanggaa aaggqqgttt
                                                                       240
cgcaaaatca ctcgggggaa nggaaaggtt gctttgttaa tcatgcccta tggtgggtga
                                                                       300
ttaactgctt gtacaattac ntttcacttt taattaattg tgctnaangc tttaattana
                                                                       360
cttgggggtt ccctcccan accaacccn ctgacaaaaa gtgccngccc tcaaatnatg
                                                                       420
teceggennt enttgaaaca caengengaa ngtteteatt nteceenene caggtnaaaa
                                                                       480
tgaagggtta ccatntttaa cnccacctcc acntggcnnn qcctgaatcc tcnaaaancn
                                                                       540
ccctcaancn aattnetnng ccccggtene gentnngtee eneccggget ecggqaantn
                                                                       600
cacccconga annountnuc naacnaaatt cogaaaatat toccnutono toaattooco
                                                                       660
cnnagactnt cctcnncnan cncaattttc ttttnntcac qaacncqnnc cnnaaaatqn
                                                                       720
nnnnencete enetngteen naateneean e
                                                                       751
      <210> 40
      <211> 753
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1) ... (753)
      \langle 223 \rangle n = A,T,C or G
      <400> 40
gtggtatttt ctgtaagatc aggtgttcct ccctcgtagg tttagaggaa acaccctcat
                                                                        60
agatgaaaac cccccgaga cagcagcact gcaactgcca agcagccggg gtaggagggg
                                                                       120
```

```
cgccctatgc acagctgggc ccttgagaca gcagggcttc gatgtcaggc tcgatgtcaa
  tggtctggaa gcggcggctg tacctgcgta ggggcacacc gtcagggccc accaggaact
                                                                          180
  tetcaaagtt ccaggcaacn tegttgegac acaceggaga ccaggtgatn agettggggt
                                                                         240
  cggtcataan cgcggtggcg tcgtcgctgg gagctggcag ggcctcccgc aggaaggcna
                                                                         300
  ataaaaggtg cgccccgca ccgttcanct cgcacttctc naanaccatg angttgggct
                                                                         360
  cnaacccacc accanneegg actteettga nggaatteec aaatetette gntettggge
                                                                         420
  ttetnetgat gecetanetg gttgeeengn atgecaanea neceeaanee eeggggteet
                                                                         480
  aaancaccon cotcotontt toatotgggt tnttntcccc ggaccntggt toctotcaag
                                                                         540
  ggancccata tetenaccan tacteacent necececent gnnacccane ettetanngn
                                                                         600
  ttcccncccg ncctctggcc cntcaaanan gcttncacna cctgggtctg ccttccccc
                                                                         660
  tnecetatet gnacecenen tttgtetean tnt
                                                                         720
                                                                         753
        <210> 41
        <211> 341
        <212> DNA
        <213> Homo sapien
        <400> 41
 actatatcca tcacaacaga catgettcat cccatagact tettgacata gettcaaatg
 agtgaaccca teettgattt atatacatat atgtteteag tattttggga geettteeac
                                                                         60
 ttctttaaac cttgttcatt atgaacactg aaaataggaa tttgtgaaga gttaaaaagt
                                                                        120
 tatagettgt ttacgtagta agtttttgaa gtctacatte aatccagaca ettagttgag
                                                                        180
 tgttaaactg tgatttttaa aaaatatcat ttgagaatat tctttcagag gtattttcat
                                                                        240
 ttttactttt tgattaattg tgttttatat attagggtag t
                                                                        300
                                                                        341
       <210> 42
       <211> 101
       <212> DNA
       <213> Homo sapien
       <400> 42
acttactgaa tttagttctg tgctcttcct tatttagtgt tgtatcataa atactttgat
gtttcaaaca ttctaaataa ataattttca gtggcttcat a
                                                                        60
                                                                       101
       <210> 43
      <211> 305
      <212> DNA
      <213> Homo sapien
      <400> 43
acatctttgt tacagtctaa gatgtgttct taaatcacca ttccttcctg gtcctcaccc
tccagggtgg tctcacactg taattagagc tattgaggag tctttacagc aaattaagat
                                                                        60
tcagatgcct tgctaagtct agagttctag agttatgttt cagaaagtct aagaaaccca
                                                                       120
cetettgaga ggtcagtaaa gaggaettaa tattteatat etacaaaatg accacaggat
                                                                       180
tggatacaga acgagagtta tcctggataa ctcagagctg agtacctgcc cgggggccgc
                                                                       240
                                                                       300
                                                                       305
      <210> 44
      <211> 852
      <212> DNA
     <213> Homo sapien
     <220>
     <221> misc_feature
     <222> (1)...(852)
     <223> n = A, T, C or G
     <400> 44
```

```
acataaatat cagagaaaag tagtotttga aatatttacg tocaggagtt otttqtttot
                                                                        60
gattatttqg tgtgttttt ggttttgtgtc caaagtattg gcagcttcag ttttcatttt
                                                                       120
ctctccatcc tcqqqcattc ttcccaaatt tatataccaq tcttcqtcca tccacacqct
                                                                       180
ccagaatttc tcttttgtag taatatctca tagctcggct gagcttttca taggtcatqc
                                                                       240
tqctqttqtt cttcttttta ccccataqct qaqccactqc ctctqatttc aaqaacctqa
                                                                       300
agacgccctc agatcggtct tcccatttta ttaatcctgg gttcttgtct gggttcaaga
                                                                       360
ggatgtcgcg gatgaattcc cataagtgag tccctctcgg gttgtgcttt ttggtqtqqc
                                                                       420
acttggcagg ggggtcttgc tcctttttca tatcaggtga ctctgcaaca ggaaggtgac
                                                                       480
tggtggttgt catggagatc tgagcccggc agaaagtttt gctgtccaac aaatctactq
                                                                       540
tgctaccata gttggtgtca tataaatagt tctngtcttt ccaggtgttc atgatqqaag
                                                                       600
gctcagtttg ttcagtcttg acaatgacat tgtgtgtgga ctggaacagg tcactactgc
                                                                       660
actggccgtt ccacttcaga tgctgcaagt tgctgtagag gagntgcccc gccgtccctq
                                                                       720
cegecegggt gaacteetge aaacteatge tgeaaaggtg etegeegttg atgtegaact
                                                                       780
cntggaaagg gatacaattg gcatccagct ggttggtgtc caggaggtga tggagccact
                                                                       840
cccacacctg gt
                                                                       852
      <210> 45
      <211> 234
      <212> DNA
      <213> Homo sapien
      <400> 45
acaacagacc cttgctcgct aacgacctca tgctcatcaa gttggacgaa tccgtgtccg
                                                                        60 .
agtotgacac cateoggage atcagcattg ottogcagtg coctacogog gggaactott
                                                                       120
gcctcgtttc tggctggggt ctgctggcga acggcagaat gcctaccqtq ctqcaqtqcg
                                                                       180
tgaacgtgtc ggtggtgtct gaggaggtct gcagtaagct ctatgacccg ctgt
                                                                       234
      <210> 46
      <211> 590
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(590)
      <223> n = A, T, C or G
      <400> 46
actitttatt taaatgttta taaggcagat ctatgagaat gatagaaaac atggtgtgta
                                                                        60
atttgatage aatattttgg agattacaga gttttagtaa ttaccaatta cacagttaaa
                                                                       120
aagaagataa tatattccaa qcanatacaa aatatctaat gaaaqatcaa qqcaqqaaaa
                                                                       180
tgantataac taattgacaa tggaaaatca attttaatqt qaattqcaca ttatccttta
                                                                       240
aaagetttea aaanaaanaa ttattgeagt etanttaatt caaacagtgt taaatggtat
                                                                       300
caggataaan aactgaaggg canaaagaat taattttcac ttcatgtaac ncacccanat
                                                                       360
ttacaatggc ttaaatgcan ggaaaaagca gtggaagtag ggaagtantc aaggtctttc
                                                                       420
tggtctctaa tctgccttac tctttgggtg tggctttgat cctctggaga cagctgccag
                                                                       480
ggctcctgtt atatccacaa tcccagcagc aagatgaagg gatgaaaaag gacacatgct
                                                                       540
gccttccttt gaggagactt catctcactg gccaacactc agtcacatgt
                                                                       590
      <210> 47
      <211> 774
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(774)
      <223> n = A, T, C \text{ or } G
```

```
<400> 47
   acaagggggc ataatgaagg agtggggana gattttaaag aaggaaaaaa aacgaggccc
   tgaacagaat tttcctgnac aacggggctt caaaataatt ttcttgggga ggttcaagac
   getteactge ttgaaactta aatggatgtg ggacanaatt ttetgtaatg accetgaggg
                                                                          120
   cattacagac gggactctgg gaggaaggat aaacagaaag gggacaaagg ctaatccaa
                                                                          180
   aacatcaaag aaaggaaggt ggcgtcatac ctcccagcct acacagttct ccagggctct
                                                                          240
   ceteateeet ggaggacgae agtggaggaa caactgacca tgtccccagg etcetgtgtg
                                                                          300
   ctggctcctg gtcttcagcc cccagctctg gaagcccacc ctctgctgat cctgcgtggc
                                                                          360
   ccacactcct tgaacacaca tccccaggtt atattcctgg acatggctga acctcctatt
                                                                          420
   cctacttccg agatgccttg ctccctgcag cctgtcaaaa tcccactcac cctccaaacc
                                                                          480
   acggcatggg aagcetttet gaettgeetg attactecag catettggaa caateeetga
                                                                          540
   ttccccactc cttagaggca agatagggtg gttaagagta gggctggacc acttggagcc
                                                                          600
  aggetgetgg etteaaattn tggeteattt acgagetatg ggaeettggg caagtnatet
                                                                          660
  tcacttctat gggcntcatt ttgttctacc tgcaaaatgg gggataataa tagt
                                                                          720
                                                                          774
        <210> 48
        <211> 124
        <212> DNA
        <213> Homo sapien
        <220>
        <221> misc_feature
        <222> (1)...(124)
       \langle 223 \rangle n = A,T,C or G
        <400> 48
  canaaattga aattttataa aaaggcattt ttctcttata tccataaaat gatataattt
  ttgcaantat anaaatgtgt cataaattat aatgtteett aattacaget caaegcaaet
                                                                          60
                                                                         120
                                                                         124
       <210> 49
       <211> 147
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(147)
       <223> n = A,T,C or G
       <400> 49
 gccgatgcta ctattttatt gcaggaggtg ggggtgtttt tattattctc tcaacagctt
 tgtggctaca ggtggtgtct gactgcatna aaaanttttt tacgggtgat tgcaaaaatt
                                                                         60
 ttagggcacc catatcccaa gcantgt
                                                                        120
                                                                        147
       <210> 50
      <211> 107
      <212> DNA
      <213> Homo sapien
      <400> 50
acattaaatt aataaaagga ctgttggggt tctgctaaaa cacatggctt gatatattgc
atggtttgag gttaggagga gttaggcata tgttttggga gaggggt
                                                                        60
                                                                       107
      <210> 51
      <211> 204
      <212> DNA
```

<213> Homo sapien <400> 51 gtcctaggaa gtctagggga cacacgactc tggggtcacg gggccgacac acttgcacgg 60 cgggaaggaa aggcaqagaa qtgacaccqt caqqgggaaa tgacagaaaq qaaaatcaaq 120 gccttgcaag gtcagaaagg ggactcaggg cttccaccac agccctgccc cacttqqcca 180 cctccctttt gggaccagca atgt 204 <210> 52 <211> 491 <212> DNA <213> Homo sapien <220> <221> misc feature <222> (1)...(491) $\langle 223 \rangle$ n = A,T,C or G <400> 52 acaaagataa catttatctt ataacaaaaa tttgatagtt ttaaaggtta gtattgtgta 60 gggtattttc caaaagacta aagagataac tcaggtaaaa agttagaaat gtataaaaca 120 ccatcagaca ggtttttaaa aaacaacata ttacaaaatt agacaatcat ccttaaaaaa 180 aaaacttctt gtatcaattt cttttgttca aaatgactga cttaantatt tttaaatatt 240 tcanaaacac ttcctcaaaa attttcaana tggtagcttt canatgtncc ctcagtccca 300 atgttgctca gataaataaa tctcgtgaga acttaccacc caccacaagc tttctggggc 360 atgcaacagt gtcttttctt tnctttttct tttttttttt ttacaggcac agaaactcat 420 caattttatt tggataacaa agggtctcca aattatattq aaaaataaat ccaaqttaat 480 atcactcttg t 491 <210> 53 <211> 484 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (1)...(484) <223> n = A, T, C or G<400> 53 acataattta gcagggctaa ttaccataag atgctattta ttaanaggtn tatgatctqa 60 gtattaacag ttgctgaagt ttggtatttt tatqcagcat tttctttttg ctttqataac 120 actacagaac ccttaaggac actgaaaatt agtaagtaaa gttcagaaac attagctgct 180 caatcaaatc tctacataac actatagtaa ttaaaacgtt aaaaaaaagt gttgaaatct 240 gcactagtat anaccgctcc tgtcaggata anactgcttt ggaacagaaa gggaaaaanc 300 agetttgant ttetttgtge tgatangagg aaaggetgaa ttacettgtt geeteteeet 360 aatgattggc aggtcnggta aatnccaaaa catattccaa ctcaacactt cttttccncq 420 tancttgant ctgtgtattc caggancagg cggatggaat gggccagccc ncggatgttc 480 cant 484 <210> 54 <211> 151 <212> DNA <213> Homo sapien <400> 54 actaeacctc gtgcttgtga actccataca gaaaacggtg ccatccctga acacggctgg 60 ccactgggta tactgctgac aaccgcaaca acaaaaacac aaatccttgg cactggctag 120

totatgtoot otcaagtgoo tttttgtttg t	151
<210> 55	
<211> 91	
<212> DNA	
<213> Homo sapien	
. <400> 55	
acctggettg teteegggtg gtteeeggeg eeeeceaegg teeecagaac ggacaettte	60
gccctccagt ggatactcga gccaaagtgg t	91
<210> 56	
<211> 133	
<212> DNA	
<213> Homo sapien	
<400> 56	
ggcggatgtg cgttggttat atacaaatat gtcattttat gtaagggact tgagtatact	60
tygattity grantinggg gttgggggga cqqtccaqqa accaataccc catqqatacc	120
aagggacaac tgt	133
<210> 57	
<211> 147	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)(147)	
<223> n = A, T, C or G	
<400> 57	
actotggaga acctgagoeg ctgctccgcc tctgggatga ggtgatgcan gcngtggcgc	60
guotgagage tgagecette cettigegee tgeeteagag gattgttgee gaentgeans	120
totcantggg ctggatncat gcagggt	147
<210> 58	
<211> 198	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)(198)	
<223> n = A,T,C or G	
<400> 58	
acagggatat aggtttnaag ttattgtnat tgtaaaatac attgaatttt ctgtatactc	60
cyalladala Cattlateet ttaaaaaaaga tgtaaatett aattittata ggatgtatata	120
weetaceaat gagetacett graaatgaga agteatgata geactgaatt ttaactagtt	180
ttgacttcta agtttggt	198
<210> 59	
<211> 330	
<212> DNA	
<213> Homo sapien	
<400> 59	

acaacaaatg ggttgtgagg aagtcttatc agcaaaactg gtgatggcta ctgaaaagat	60
ccattgaaaa ttatcattaa tgattttaaa tgacaagtta tcaaaaactc actcaatttt	120
cacctgtgct agcttgctaa aatgggagtt aactctagag caaatatagt atcttctgaa	180
tacagtcaat aaatgacaaa gccagggcct acaggtggtt tccagacttt ccagacccag	240
cagaaggaat ctattttatc acatggatct ccgtctgtgc tcaaaatacc taatgatatt	300
tttcgtcttt attggacttc tttgaagagt	330
<210> 60	
<211> 175	
<212> DNA	
<213> Homo sapien	
<400> 60	
accgtgggtg ccttctacat tcctgacggc tccttcacca acatctggtt ctacttcggc	60
gtcgtgggct ccttcctctt catcctcatc cagctggtgc tgctcatcga ctttgcgcac	
	120
teetggaace ageggtgget gggcaaggee gaggagtgeg atteeegtge etggt	175
<210> 61	
<211> 154	
<212> DNA	
<213> Homo sapien	
tara nomo oupron	
<400> 61	
accecaettt teeteetgtg ageagtetgg aetteteaet getacatgat gagggtgagt	60
ggttgttgct cttcaacagt atcctcccct ttccggatct gctgagccgg acagcagtgc	120
tggactgcac agccccgggg ctccacattg ctgt	154
<210> 62	
<211> 30	
<212> DNA	
<213> Homo sapien	
<400> 62	
cgctcgagcc ctatagtgag tcgtattaga	30
<210> 63	
<211> 89	
<212> DNA	
<213> Homo sapien	•
(213) Rollo Saptell	
<400> 63	
acaagtcatt tcagcaccct ttgctcttca aaactgacca tcttttatat ttaatgcttc	60
ctgtatgaat aaaaatggtt atgtcaagt	89
<210> 64	
<211> 97	
<212> DNA	
<213> Homo sapien	
<400> 64	
accggagtaa ctgagtcggg acgctgaatc tgaatccacc aataaataaa ggttctgcag	60
aatcagtgca tccaggattg gtccttggat ctggggt	97
<210> 65	
<211> 377	
<211> 377 <212> DNA	
<213> Homo sapien	
/PT3/ IIUIIU DADIEII	

```
<220>
         <221> misc_feature
         <222> (1) ... (377)
         <223> n = A, T, C or G
  acaacaanaa ntcccttctt taggccactg atggaaacct ggaaccccct tttgatggca
  gcatggcgtc ctaggccttg acacagcggc tggggtttgg gctntcccaa accgcacacc
  ccaaccctgg tctacccaca nttctggcta tgggctgtct ctgccactga acatcagggt
                                                                         120
  tcggtcataa natgaaatcc caanggggac agaggtcagt agaggaagct caatgagaaa
                                                                         180
  ggtgctgttt gctcagccag aaaacagctg cctggcattc gccgctgaac tatgaacccg
                                                                         240
  tgggggtgaa ctaccccan gaggaatcat gcctgggcga tgcaanggtg ccaacaggag
                                                                         300
  gggcgggagg agcatgt
                                                                         360
                                                                         377
        <210> 66
        <211> 305
        <212> DNA
        <213> Homo sapien
        <400> 66
 acgcetttcc ctcagaattc agggaagaga ctgtcgcctg ccttcctccg ttgttgcgtg
 agaacccgtg tgccccttcc caccatatcc accctcgctc catctttgaa ctcaaacacg
 aggaactaac tgcaccetgg tecteteece agtececagt teacceteca teceteacet
 tectecacte taagggatat caacactgee cageacaggg geeetgaatt tatgtggttt
                                                                        180
 ttatatattt tttaataaga tgcactttat gtcatttttt aataaagtct gaagaattac
                                                                        240
                                                                        300
       <210> 67
       <211> 385
       <212> DNA
       <213> Homo sapien
       <400> 67
actacacaca ctccacttgc ccttgtgaga cactttgtcc cagcacttta ggaatgctga
ggtcggacca gccacatctc atgtgcaaga ttgcccagca gacatcaggt ctgagagttc
cccttttaaa aaaggggact tgcttaaaaa agaagtctag ccacgattgt gtagagcagc
                                                                       120 .
tgtgctgtgc tggagattca cttttgagag agttctcctc tgagacctga tctttagagg
                                                                       180
ctgggcagtc ttgcacatga gatggggctg gtctgatctc agcactcctt agtctgcttg
                                                                       240
ceteteccag ggccccagce tggccacace tgcttacagg gcactetcag atgcccatae
                                                                       300
catagtttct gtgctagtgg accgt
                                                                       360
                                                                       385
      <210> 68
      <211> 73
      <212> DNA
     <213> Homo sapien
      <400> 68
acttaaccag atatatttt accccagatg gggatattct ttgtaaaaaa tgaaaataaa
                                                                       73
      <210> 69
     <211> 536
     <212> DNA
     <213> Homo sapien
     <220>
     <221> misc_feature
     <222> (1)...(536)
```

<222> (1)...(511) <223> n = A,T,C or G

```
<223> n = A, T, C or G
      <400> 69
actagtocag tgtggtggaa ttocattgtg ttgggggctc tcaccctcct ctcctqcaqc
                                                                        60
tocaqctttq tqctctqcct ctqaqqaqac catqqcccaq catctqaqta ccctqctqct
                                                                       120
cetgetggcc accetagetg tggccetggc etggageece aaggaggagg ataggataat
                                                                       180
cccgggtggc atctataacg cagacctcaa tgatgagtgg gtacagcqtg cccttcactt
                                                                       240
cgccatcage gagtataaca aggccaccaa agatgactae tacagacgte cqctqcqqqt
                                                                       300
actaagagcc aggcaacaga ccgttggggg ggtgaattac ttcttcgacg tagaggtggg
                                                                       360
ccgaaccata tgtaccaagt cccagcccaa cttggacacc tgtgccttcc atgaacagcc
                                                                       420
agaactgcag aagaaacagt tgtgctcttt cgagatctac gaagttccct ggggagaaca
                                                                       480
gaangteeet gggtgaaate caggtgteaa gaaateetan ggatetgttq eeagge
                                                                       536
      <210> 70
      <211> 477
      <212> DNA
      <213> Homo sapien
     <400> 70
atgaccccta acaggggccc tctcagccct cctaatgacc tccggcctag ccatgtgatt
                                                                       60
teaetteeae teeataaege teeteataet aggeetaeta accaacaea taaccatata
                                                                       120
ccaatgatgg cgcgatgtaa cacgagaaag cacataccaa ggccaccaca caccacctgt
                                                                       180
ccaaaaaggc cttcgatacg ggataatcct atttattacc tcagaagttt ttttcttcgc
                                                                       240
agggattttt ctgagcettt taccactcca gcctagcccc taccccccaa ctaggagggc
                                                                      300
actggccccc aacaggcatc accccgctaa atcccctaga agtcccactc ctaaacacat
                                                                      360
ccgtattact cgcatcagga gtatcaatca cctgagctca ccatagtcta atagaaaaca
                                                                      420
accgaaacca aattattcaa agcactgctt attacaattt tactgggtct ctatttt
                                                                       477.
      <210> 71
      <211> 533
      <212> DNA
      <213> Homo sapien
     <220>
      <221> misc_feature
      <222> (1) ... (533)
     <223> n = A, T, C or G
     <400> 71
agagetatag gtacagtgtq ateteaqett tqcaaacaca ttttetacat aqataqtaet
                                                                       60
aggtattaat agatatgtaa agaaaqaaat cacaccatta ataatqqtaa qattqqttta
                                                                      120
tgtgatttta gtggtatttt tggcaccctt atatatqttt tccaaacttt caqcaqtqat
                                                                      180
attatttcca taacttaaaa agtgagtttg aaaaagaaaa tctccagcaa gcatctcatt
                                                                      240
taaataaagg tttgtcatct ttaaaaatac agcaatatgt gactttttaa aaaagctgtc
                                                                      300
aaataggtgt gaccctacta ataattatta gaaatacatt taaaaacatc gagtacctca
                                                                      360
agtcagtttg ccttgaaaaa tatcaaatat aactcttaga gaaatgtaca taaaagaatg
                                                                      420
cttcgtaatt ttggagtang aggttccctc ctcaattttg tatttttaaa aagtacatgg
                                                                      480
taaaaaaaaa aattcacaac agtatataag gctgtaaaat gaagaattct gcc
                                                                      533
     <210> 72
     <211> 511
     <212> DNA
     <213> Homo sapien
     <220>
     <221> misc feature
```

```
<400> 72
  tattacggaa aaacacacca cataattcaa ctancaaaga anactgcttc agggcgtgta
                                                                        60
  aaatgaaagg cttccaggca gttatctgat taaagaacac taaaagaggg acaaggctaa
                                                                       120
  aagccgcagg atgtctacac tatancaggc gctatttggg ttggctggag gagctgtgga
  aaacatggan agattggtgc tgganatcgc cgtggctatt cctcattgtt attacanagt
                                                                       180
                                                                       240
  gaggttetet gtgtgcccac tggtttgaaa accgttetne aataatgata gaatagtaca
                                                                       300
  cacatgagaa ctgaaatggc ccaaacccag aaagaaagcc caactagatc ctcagaanac
  gettetaggg acaataaccg atgaagaaaa gatggeetee ttgtgeecee gtetgttatg
                                                                       360
  atttetetee attgeagena naaaceegtt ettetaagea aacneaggtg atgatggena
                                                                       420
                                                                       480
  aaatacaccc cctcttgaag naccnggagg a
                                                                       511
       <210> 73
       <211> 499
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(499)
       <223> n = A, T, C or G
       <400> 73
 cagtgccagc actggtgcca gtaccagtac caataacagt gccagtgcca gtgccagcac
 cagtggtggc ttcagtgctg gtgccagcct gaccgccact ctcacatttg ggctcttcgc
                                                                       60
                                                                      120
 tggccttggt ggagctggtg ccagcaccag tggcagctct ggtgcctgtg gtttctccta
                                                                      180
 caagtgagat tttagatatt gttaatcctg ccagtctttc tcttcaagcc agggtgcatc
 ctcagaaacc tactcaacac agcactctag gcagccacta tcaatcaatt gaagttgaca
                                                                      240
                                                                      300
360
antitagagg gcccgtttaa acccgctgat cagcctcgac tgtgccttct anttgccagc
catctgttgt ttgcccctcc cccgntgcct tccttgaccc tggaaagtgc cactcccact
                                                                      420
                                                                      480
 gtcctttcct aantaaaat
                                                                      499
      <210> 74
      <211> 537
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) . . . (537)
      <223> n = A,T,C or G
      <400> 74
tttcatagga gaacacactg aggagatact tgaagaattt ggattcagcc gcgaagagat
ttatcagctt aactcagata aaatcattga aagtaataag gtaaaagcta gtctctaact
                                                                      60
tecaggeeca eggeteaagt gaatttgaat actgeattta eagtgtagag taacacataa
                                                                     120
cattgtatgc atggaaacat ggaggaacag tattacagtg tcctaccact ctaatcaaga
                                                                     180
                                                                     240
aaagaattac agactctgat tctacagtga tgattgaatt ctaaaaaatgg taatcattag
                                                                     300
ggcttttgat ttataanact ttgggtactt atactaaatt atggtagtta tactgccttc
                                                                     360
cagtttgctt gatatatttg ttgatattaa gattcttgac ttatattttg aatgggttct
actgaaaaan gaatgatata ttcttgaaga catcgatata catttattta cactcttgat
                                                                     420
tctacaatgt agaaaatgaa ggaaatgccc caaattgtat ggtgataaaa gtcccgt
                                                                     480
                                                                     537
     <210> 75
     <211> 467
     <212> DNA
     <213> Homo sapien
```

```
<220>
       <221> misc feature
       <222> (1)...(467)
      <223> n = A, T, C or G
      <400> 75
caaanacaat tgttcaaaag atgcaaatga tacactactg ctgcagctca caaacacctc
                                                                        60
tgcatattac acgtacctcc tcctgctcct caagtagtgt ggtctatttt gccatcatca
                                                                       120
cctgctgtct gcttagaaga acggctttct gctgcaangg agagaaatca taacaqacqq
                                                                       180
tggcacaagg aggccatctt ttcctcatcg gttattgtcc ctagaagcgt cttctgagga
                                                                       240
totagttggg ctttctttct gggtttgggc catttcantt ctcatgtgtg tactattcta
                                                                       300
tcattattgt ataacggttt tcaaaccngt gggcacncag agaacctcac tctgtaataa
                                                                       360
caatgaggaa tagccacggt gatctccagc accaaatctc tccatgttnt tccagagctc
                                                                       420
ctccagccaa cccaaatagc cgctgctatn gtgtagaaca tccctgn
                                                                       467
      <210> 76
      <211> 400
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(400)
      <223> n = A, T, C or G
      <400> 76
aagctgacag cattcgggcc gagatgtctc gctccgtggc cttagctgtg ctcgcgctac
                                                                        60
tototottto tggcctggag gctatocagc gtactocaaa gattcaggtt tactcacgto
                                                                       120
atccagcaga gaatggaaag tcaaatttcc tgaattgcta tgtgtctggg tttcatccat
                                                                       180
ccgacattga agttgactta ctgaagaatg gagagagaat tgaaaaagtq gagcattcaq
                                                                       240
acttqtcttt cagcaaggac tggtctttct atctcttgta ctacactgaa ttcacccca
                                                                       300
ctgaaaaaga tgagtatgcc tgccgtgtga accatqtqac tttqtcacaq cccaaqatnq
                                                                       360
ttnagtggga tcganacatg taagcagcan catgggaggt
                                                                       400
      <210> 77
      <211> 248
      <212> DNA
      <213> Homo sapien
      <400> 77
ctggagtgcc ttggtgtttc aagcccctgc aggaagcaga atgcaccttc tqaqqcacct
ccagctgccc cggcggggga tgcgaggctc ggagcaccct tgcccggctq tqattqctqc
                                                                       120
caggcactgt tcatctcagc ttttctgtcc ctttgctccc ggcaagcgct tctgctgaaa
                                                                       180
gttcatatet ggageetgat gtettaaega ataaaggtee catgeteeae eegaaaaaa
                                                                       240
aaaaaaaa
                                                                       248
      <210> 78
      <211> 201
      <212> DNA
      <213> Homo sapien
      <400> 78
actagtccag tgtggtggaa ttccattgtg ttgggcccaa cacaatggct acctttaaca
                                                                       60
teacceagae ecegecetge eegtgeecea egetgetget aacgacagta tgatgettae
                                                                       120
tetgetacte ggaaactatt tttatgtaat taatgtatge tttettgttt ataaatgeet
                                                                      180
gatttaaaaa aaaaaaaaa a
                                                                       201
```

```
<210> 79
        <211> 552
        <212> DNA
        <213> Homo sapien
        <220>
        <221> misc_feature
        <222> (1)...(552)
        <223> n = A, T, C or G
        <400> 79
 tccttttgtt aggtttttga gacaacccta gacctaaact gtgtcacaga cttctgaatg
                                                                          60
 tttaggcagt gctagtaatt tcctcgtaat gattctgtta ttactttcct attcttatt
                                                                         120
 cctctttctt ctgaagatta atgaagttga aaattgaggt ggataaatac aaaaaggtag
                                                                         180
 tgtgatagta taagtatcta agtgcagatg aaagtgtgtt atatatatcc attcaaaatt
                                                                         240
 atgcaagtta gtaattactc agggttaact aaattacttt aatatgctgt tgaacctact
 ctgttccttg gctagaaaaa attataaaca ggactttgtt agtttgggaa gccaaattga
 taatattota tgttotaaaa gttgggotat acataaanta tnaagaaata tggaatttta
                                                                         360
                                                                         420
 ttcccaggaa tatggggttc atttatgaat antacccggg anagaagttt tgantnaaac
                                                                         480
 cngttttggt taatacgtta atatgtcctn aatnaacaag gcntgactta tttccaaaaa
                                                                         540
 aaaaaaaaa aa
                                                                         552
       <210> 80
       <211> 476
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(476)
       <223> n = A, T, C \text{ or } G
       <400> 80
 acagggattt gagatgctaa ggccccagag atcgtttgat ccaaccctct tattttcaga
ggggaaaatg gggcctagaa gttacagagc atctagctgg tgcgctggca cccctggcct
                                                                        120
cacacagact cccgagtagc tgggactaca ggcacacagt cactgaagca ggccctgttt
gcaattcacg ttgccacctc caacttaaac attcttcata tgtgatgtcc ttagtcacta
                                                                        180
aggttaaact ttcccaccca gaaaaggcaa cttagataaa atcttagagt actttcatac
                                                                        240
                                                                        300
tettetaagt cetettecag ceteactitg agteeteett gggggttgat aggaaninte
tettggettt etcaataaaa tetetateea teteatgttt aatttggtae gentaaaaat
                                                                        360
                                                                        420
gctgaaaaaa ttaaaatgtt ctggtttcnc tttaaaaaaa aaaaaaaa aaaaaa
                                                                        476
      <210> 81
      <211> 232
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(232)
      <223> n = A, T, C or G
      <400> 81
tttttttttg tatgccntcn ctgtggngtt attgttgctg ccaccctgga ggagcccagt
ttettetgta tetttettt etgggggate tteetggete tgeeceteca tteecageet
                                                                       120
ctcatcccca tettgcactt ttgctagggt tggaggcgct ttcctggtag cccctcagag
actcagtcag cgggaataag tcctaggggt ggggggtgtg gcaagccggc ct
                                                                       180
                                                                       232
```

```
<210> 82
      <211> 383
       <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (383)
      \langle 223 \rangle n = A,T,C or G
      <400> 82
aggcgggagc agaagctaaa gccaaagccc aagaagagtg gcagtgccag cactqqtqcc
                                                                         60
agtaccagta ccaataacat gccagtgcca gtgccagcac cagtggtggc ttcagtgctg
                                                                        120
gtgccagect gaccgccact etcacatttg ggctettege tggcettggt ggagetggtg
                                                                        180
ccagcaccag tggcagctct qqtqcctqtq qtttctccta caaqtqaqat tttaqatatt
                                                                        240
gttaatcctg ccagtctttc tcttcaaqcc aqqqtqcatc ctcaqaaacc tactcaacac
                                                                        300
agcactcing gragcracta traatraatt gaaqttqaca cictqcatta aatctatttq
                                                                        360
ccatttcaaa aaaaaaaaaa aaa
                                                                        383
      <210> 83
      <211> 494
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (494)
      <223> n = A, T, C or G
      <400> 83
accgaattgg gaccgctggc ttataagcga tcatgtcctc cagtattacc tcaacqaqca
                                                                         60
gggagatega gtetataege tgaagaaatt tgaceegatg ggacaacaga cetgeteage
                                                                        120
ccatcctgct cggttctccc cagatgacaa atactctcga caccgaatca ccatcaagaa
                                                                        180
acgetteaag gtgeteatga ceeageaace gegeeetgte etetgagggt cettaaactg
                                                                        240
atgtetttte tgecacetgt tacceetegg agaeteegta accaaactet teggactgtg
                                                                        300
agocotgatg cotttttgcc agocatactc tttggcntcc agtototogt ggcgattgat
                                                                        360
tatgettgtg tgaggcaatc atggtggcat cacccatnaa gggaacacat ttganttttt
                                                                        420
tttcncatat tttaaattac naccagaata nttcagaata aatgaattga aaaactctta
                                                                        480
aaaaaaaaa aaaa
                                                                        494
      <210> 84
      <211> 380
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(380)
      <223> n = A, T, C \text{ or } G
      <400> 84
gctggtagcc tatggcgtgg ccacggangg gctcctgagg cacgggacag tgacttccca
agtatectge geogegtett etacegtece tacetgeaga tettegggea gatteceeag
                                                                        120
gaggacatgg acgtggccct catggagcac agcaactgct cgtcggagcc cqqcttctqq
                                                                        180
geacaceete etggggeeca ggegggeace tgegtetece agtatgeeaa etggetggtg
                                                                        240
gtgctgctcc tcgtcatctt cctgctcgtg gccaacatcc tgctggtcac ttgctcattg
                                                                        300
ccatgttcag ttacacattc ggcaaagtac agggcaacag cnatctctac tgggaaggcc
                                                                        360
agcgttnccg cctcatccgg
                                                                        380
```

```
<210> 85
        <211> 481
        <212> DNA
        <213> Homo sapien
        <220>
        <221> misc feature
        <222> (1)...(481)
        \langle 223 \rangle n = A,T,C or G
        <400> 85
 gagttagete etecacaace ttgatgaggt egtetgeagt ggeetetege tteatacege
 tnccatcgtc atactgtagg tttgccacca cctcctgcat cttggggcgg ctaatatcca
                                                                          120
 ggaaactete aatcaagtea eegtenatna aacetgtgge tggttetgte tteegetegg
                                                                          180
 tgtgaaagga tctccagaag gagtgctcga tcttccccac acttttgatg actttattga
                                                                          240
 gtcgattctg catgtccagc aggaggttgt accagctctc tgacagtgag gtcaccagcc
                                                                          300
 ctatcatgcc nttgaacgtg ccgaagaaca ccgagccttg tgtggggggt gnagtctcac
                                                                          360
 ccagattctg cattaccaga nagccgtggc aaaaganatt gacaactcgc ccaggnngaa
                                                                          420
 aaagaacacc teetggaagt getngeeget eetegteent tggtggnnge gentneettt
                                                                          480
                                                                          481
       <210> 86
       <211> 472
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(472)
       \langle 223 \rangle n = A,T,C or G
       <400> 86
aacatettee tgtataatge tgtgtaatat egateegatn ttgtetgetg agaatteatt
                                                                          60 -
acttggaaaa gcaacttnaa gcctggacac tggtattaaa attcacaata tgcaacactt
                                                                         120
taaacagtgt gtcaatctgc tcccttactt tgtcatcacc agtctgggaa taagggtatg
                                                                         180
ccctattcac acctgttaaa agggcgctaa gcatttttga ttcaacatct ttttttttga
                                                                         240
cacaagteeg aaaaaageaa aagtaaacag ttnttaattt gttageeaat teaetttett
                                                                         300
catgggacag agccatttga tttaaaaaagc aaattgcata atattgagct ttgggagctg
                                                                         360
atatntgage ggaagantag cetttetaet teaceagaea caacteettt catattggga
                                                                         420
tgttnacnaa agttatgtct cttacagatg ggatgctttt gtggcaattc tg
                                                                         472
      <210> 87
      <211> 413
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(413)
      \langle 223 \rangle n = A, T, C or G
      <400> 87
agaaaccagt atctctnaaa acaacctctc ataccttgtg gacctaattt tgtgtgcgtg
                                                                         60
tgtgtgtgcg cgcatattat atagacaggc acatcttttt tacttttgta aaagcttatg
                                                                        120
cctctttggt atctatatct gtgaaagttt taatgatctg ccataatgtc ttggggacct
                                                                        180
ttgtcttctg tgtaaatggt actagagaaa acacctatnt tatgagtcaa tctagttngt
                                                                        240
tttattcgac atgaaggaaa tttccagatn acaacactna caaactctcc cttgactagg
                                                                        300
```

```
ggggacaaaq aaaaqcanaa ctqaacatna gaaacaattn cctqqtqaqa aattncataa
                                                                        360
acaqaaattq qqtnqtatat tqaaananng catcattnaa acqttttttt ttt
                                                                        413
       <210> 88
      <211> 448
       <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(448)
      <223> n = A, T, C \text{ or } G
      <400> 88
cgcagcgggt cctctctatc tagctccagc ctctcgcctg ccccactccc cgcgtcccgc
                                                                         60
gtcctagccn accatggccg ggcccctgcg cgccccgctg ctcctgctgg ccatcctggc
                                                                        120
cgtggccctg gccgtgagcc ccgcggccgg ctccagtccc ggcaagccgc cgcgcctggt
                                                                        180
gggaggccca tggaccccgc gtggaagaag aaggtgtgcg gcgtgcactg gactttgccg
                                                                        240
teggenanta caacaaacce geaacnactt ttacenagen egegetgeag gttgtgeege
                                                                        300
cccaancaaa ttgttactng gggtaantaa ttcttggaag ttgaacctgg gccaaacnng
                                                                        360
tttaccagaa ccnagccaat tngaacaatt ncccctccat aacaqcccct tttaaaaaaqq
                                                                        420
gaancantcc tgntcttttc caaatttt
                                                                        448
      <210> 89
      <211> 463
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(463)
      <223> n = A, T, C \text{ or } G
gaattttgtg cactggccac tgtgatggaa ccattgggcc aggatgcttt gagtttatca
                                                                        60
gtagtgattc tgccaaagtt ggtgttgtaa catgagtatg taaaatgtca aaaaattagc
                                                                        120
agaggtctag gtctgcatat cagcagacag tttgtccgtg tattttgtag ccttgaagtt
                                                                        180
ctcagtgaca agttnnttct gatgcgaagt tctnattcca gtgttttagt cctttgcatc
                                                                        240
tttnatgttn agacttgcct ctntnaaatt gcttttgtnt tctgcaqqta ctatctqtqq
                                                                        300
tttaacaaaa tagaannact tetetgettn gaanatttga atatettaca tetnaaaatn
                                                                        360
aattctctcc ccatannaaa acccangccc ttggganaat ttgaaaaang gntccttcnn
                                                                        420
aattennana antteagntn teatacaaca naaenggane eee
                                                                        463
      <210> 90
      <211> 400
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1) ... (400)
      <223> n = A, T, C \text{ or } G
      <400> 90
agggattgaa ggtctnttnt actgtcggac tgttcancca ccaactctac aagttgctgt
                                                                        60
cttccactca ctgtctgtaa gcntnttaac ccagactgta tcttcataaa tagaacaaat
                                                                       120
tetteaceag teacatette taggacettt ttggatteag ttagtataag etetteeact
                                                                       180
tcctttgtta agacttcatc tggtaaagtc ttaagttttg tagaaaggaa tttaattgct
                                                                       240
```

```
cgttctctaa caatgtcctc tccttgaagt atttggctga acaacccacc tnaagtccct
                                                                         300
  ttgtgcatcc attttaaata tacttaatag ggcattggtn cactaggtta aattctgcaa
                                                                         360
  gagtcatctg tctgcaaaag ttgcgttagt atatctgcca
                                                                         400
        <210> 91
        <211> 480
        <212> DNA
        <213> Homo sapien
        <220>
        <221> misc_feature
        <222> (1)...(480)
        \langle 223 \rangle n = A,T,C or G
        <400> 91
 gageteggat ceaataatet ttgtetgagg geageacaea tatneagtge eatggnaact
                                                                         60
 ggtctacccc acatgggagc agcatgccgt agntatataa ggtcattccc tgagtcagac
                                                                         120
 atgeetettt gaetacegtg tgecagtget ggtgattete acacacetee nneegetett
                                                                         180
 tgtggaaaaa ctggcacttg nctggaacta gcaagacatc acttacaaat tcacccacga
                                                                        240
 gacacttgaa aggtgtaaca aagcgactct tgcattgctt tttgtccctc cggcaccagt
                                                                        300
 tgtcaatact aaccegetgg tttgcctcca tcacatttgt gatctgtage tctggataca
                                                                        360
 teteetgaca gtactgaaga acttettett ttgttteaaa agcaactett ggtgeetgtt
                                                                        420
 ngatcaggtt cccatttccc agtccgaatg ttcacatggc atatnttact tcccacaaaa
                                                                        480
       <210> 92
       <211> 477
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc feature
       <222> (1)...(477)
       <223> n = A, T, C or G
       <400> 92
 atacagecea nateceacea egaagatgeg ettgttgaet gagaacetga tgeggteact
                                                                         60
ggtcccgctg tagccccagc gactctccac ctgctggaag cggttgatgc tgcactcctt
                                                                        120
cccacgcagg cagcagcggg gccggtcaat gaactccact cgtggcttgg ggttgacggt
                                                                        180
taantgcagg aagaggctga ccacctcgcg gtccaccagg atgcccgact gtgcgggacc
                                                                        240
tgcagcgaaa ctcctcgatg gtcatgagcg ggaagcgaat gangcccagg gccttgccca
                                                                        300
gaacetteeg cetgttetet ggegteacet geagetgetg cegetnacae teggeetegg
                                                                        360
accageggae aaacggegtt gaacageege aceteaegga tgeecantgt gtegegetee
                                                                        420
aggaacggcn ccagcgtgtc caggtcaatg tcggtgaanc ctccgcgggt aatggcg
                                                                        477
      <210> 93
      <211> 377
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(377)
      <223> n = A,T,C or G
      <400> 93
gaacggctgg accttgcctc gcattgtgct gctggcagga ataccttggc aagcagctcc
                                                                        60
agtecgagea geceeagace getgeegeee gaagetaage etgeetetgg cetteecete
                                                                       120
cgcctcaatg cagaaccant agtgggagca ctgtgtttag agttaagagt gaacactgtn
                                                                       180
```

```
tqattttact tqqqaatttc ctctgttata taqcttttcc caatqctaat ttccaaacaa
                                                                        240
caacaacaaa ataacatgtt tqcctqttna qttqtataaa agtanqtqat tctqtatnta
                                                                        300
aaqaaaatat tactqttaca tatactqctt gcaanttctq tatttattqq tnctctqqaa
                                                                        360
ataaatatat tattaaa
                                                                        377
      <210> 94
      <211> 495
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(495)
      \langle 223 \rangle n = A,T,C or G
      <400> 94
ccctttgagg ggttagggtc cagttcccag tggaagaaac aggccaggag aantgcgtgc
                                                                        60
cgagctgang cagatttccc acagtgaccc cagagccctg ggctatagtc tctgacccct
                                                                        120
ccaaggaaag accaccttct ggggacatgg gctggagggc aggacctaga ggcaccaagg
                                                                        180
gaaggcccca ttccggggct gttccccgag gaggaaggga aggggctctg tgtgccccc
                                                                        240
acgaggaana ggccctgant cctgggatca nacacccctt cacgtgtatc cccacacaaa
                                                                        300
tgcaagetca ccaaggtece eteteagtee ettecetaca ecetgaacgg neactggece
                                                                        360
acacccaccc agancancca cccgccatgg ggaatgtnct caaggaatcg cngggcaacg
                                                                        420
tggactetng tecennaagg gggcagaate tecaatagan gganngaace ettgetnana
                                                                        480
aaaaaaana aaaaa
                                                                        495
      <210> 95
      <211> 472
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(472)
      \langle 223 \rangle n = A,T,C or G
      <400> 95
ggttacttgg tttcattgcc accacttagt ggatgtcatt tagaaccatt ttgtctgctc
                                                                        60
cctctggaag ccttqcqcaq aqcqqacttt qtaattqttq qaqaataact qctqaatttt
                                                                       120
tagetgtttt gagttgatte geaceaetge accaeaete aatatgaaaa etatttnact
                                                                       180
tatttattat cttgtgaaaa gtatacaatg aaaattttgt tcatactgta tttatcaagt
                                                                       240
atgatgaaaa gcaatagata tatattettt tattatqttn aattatqatt qccattatta
                                                                       300
ateggeaaaa tgtggagtgt atgttetttt cacagtaata tatgeetttt qtaactteae
                                                                       360
ttggttattt tattgtaaat gaattacaaa attcttaatt taagaaaatg gtangttata
                                                                       420
tttanttcan taatttcttt ccttgtttac gttaattttg aaaagaatgc at
                                                                       472
      <210> 96
      <211> 476
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(476)
      <223> n = A, T, C or G
      <400> 96
ctgaaqcatt tcttcaaact tntctacttt tqtcattqat acctqtaqta aqttqacaat
                                                                        60
```

gtggtgaaat ttcaaaatta tatgtaactt ctactag ttttaactca tgatttttac acacacaatc cagaact attcttcaca gtagatgatg aaagagtcct ccagtgt agctggatac atacngtggg agttctataa actcata tgtgttagtc tcaattccta ccacactgag ggagcct gcaggtactc ctccagaaaa acngacaggg caggctt tacaaaagtct atcttcctca nangtctgtn aaggaac	tat tatatageet etaagtettt 180 cett gngcanaatg ttetagntat 240 cet cagtgggaet naaccaaaat 300 cee aaatcactat attettatet 360 gea tgaaaaagtn acatetgegt 420
<210> 97 <211> 479 <212> DNA <213> Homo sapien	
<220> <221> misc_feature <222> (1)(479) <223> n = A,T,C or G	
<pre><400> 97 actctttcta atgctgatat gatcttgagt ataagaa aaataatgct gcaaacttaa tgttcttatg caaaatg caatcgcaaa tcaaaactca caagtgctca tctgttg gattgtgctc cttcggatat gattgtttct canatct caggctacta gaattctgtt attggatatn tgagagc gtgattatna aattaatcac aaatttcact tatacct ntnnttttta natcaaagta ttttgtgttt ggaantg ttcnatctta ttttttcccn gacnactant tnctttt</pre>	gaa cgctaatgaa acacagctta 120 tag atttagtgta ataagactta 180 tgg gcaatnttcc ttagtcaaat 240 atg aaatttttaa naatacactt 300 gct atcagcagct agaaaaacat 360 tnn aaatgaaatc tgaatgtggg 420
<210> 98 <211> 461 <212> DNA <213> Homo sapien	
<400> 98 agtgacttgt cctccaacaa aaccccttga tcaagtt tgctagttcc tgtcatctat tcgctactaa atgcaga tcaactccag ctggattatt ttggagcctg caaatct agtgattcag tttcctctac ggatgagaga ctggctc tgaagccact ctgaacacgc tggttatcta gatgaga ttacctggag aaaagaggct ttggctgggg accatcc ttaagaaaaa ctaccacatg ttgtgtatcc tggtgcc tttggaataa tcttgacgct cctgaacttg ctcctct	ctg gaggggacca aaaaggggca 120 att cctacttgta cggactttga 180 aag aatatcctca tgcagcttta 240 aca gagaaataaa gtcagaaaat 300 cat tgaaccttct cttaaggact 360 ggc cgtttatgaa ctgaccacc 420
<210> 99 <211> 171 <212> DNA <213> Homo sapien	
<pre><400> 99 gtggccgcgc gcaggtgttt cctcgtaccg cagggccccggcgctct gcgggcccga ggaggagcgg ctggcgggcgtgagaaa agccttctct agcgatctga gaggcgtg <210> 100 <211> 269 <212> DNA <213> Homo sapien</pre>	gtg gggggagtgt gacccaccct 120

	> 100					
			tgcggacgaa			60
			caggtgcagc			120
			cacgtcccac			180
			gcctcgggga	geeeereggg	aagggcggcc	240
cgagagatac	gcaggtgcag	grggeegee				269
<210	> 101					
	> 405					
	> DNA					
	> Homo sapi	en				
<400	> 101				•	
tttttttt	ttttggaatc	tactgcgagc	acagcaggtc	agcaacaagt	ttattttgca	60
gctagcaagg	taacagggta	gggcatggtt	acatgttcag	gtcaacttcc	tttgtcgtgg	120
ttgattggtt	tgtctttatg	ggggcggggt	ggggtagggg	aaacgaagca	aataacatgg	180
			tacaaagctt			240
tgaccgtcat	tttcttgaca	tcaatgttat	tagaagtcag	gatatctttt	agagagtcca	300
			caaatccaac			360
			tcatatcggt		- •	405
	> 102					
	> 470					
	> DNA					
<213	> Homo sapi	en				
<400	> 102					
		ttetttttt	tttttttt	ttttttttt	trtttttt	60
			ctacaaattt			120
		_	tccttaccaa			180
		_	aattaaaaaa			240
			ttttaaggaa			300
			tttacaacac			360
			gatcttaact			420
			ggaatccccc			470
	5 555		33			
<210	> 103					
<211	> 581					
	> DNA					
<213:	Homo sapie	en				
<400	102					
		ccccctctt	ataaaaaaca	agttaggatt	ttatttaat	60
			atattcaaaa			60
			ttaggaatta			120
			atttttgact			180
			ttccattttt			240
_						300
_			ctactattag			360
			aacaaacatt gctcaaaaga			420
_	_			-	_	480
	_		ccagaatgca		gaacatttat	540
ccaaaagcta	acacaagata	LLLCACATAC	tcatctttct	У		581
<210>	104					
<211>						
<212>	DNA					
<213>	Homo sapie	en				

```
<400> 104
 60
 cactetetag atagggeatg aagaaaacte atetttecag etttaaaata acaateaaat
                                                                     120
 ctcttatgct atatcatatt ttaagttaaa ctaatgagtc actggcttat cttctcctga
                                                                     180
 aggaaatctg ttcattcttc tcattcatat agttatatca agtactacct tgcatattqa
                                                                     240
 gaggtttttc ttctctattt acacatatat ttccatgtga atttgtatca aacctttatt
                                                                     300
 ttcatgcaaa ctagaaaata atgtttcttt tgcataagag aagagaacaa tatagcatta
                                                                     360
 caaaactgct caaattgttt gttaagttat ccattataat tagttggcag gagctaatac
                                                                     420
 aaatcacatt tacgacagca ataataaaac tgaagtacca gttaaatatc caaaataatt
                                                                     480
 aaaggaacat ttttagcctg ggtataatta gctaattcac tttacaagca tttattagaa
                                                                     540
 tgaattcaca tgttattatt cctagcccaa cacaatgg
                                                                     578
      <210> 105
      <211> 538
      <212> DNA
      <213> Homo sapien
      <400> 105
ttttttttt tttttcagta ataatcagaa caatatttat ttttatattt aaaattcata
gaaaagtgcc ttacatttaa taaaagtttg tttctcaaag tgatcagagg aattagatat
                                                                     120
gtcttgaaca ccaatattaa tttgaggaaa atacaccaaa atacattaag taaattattt
                                                                     180
aagatcatag agcttgtaag tgaaaagata aaatttgacc tcagaaactc tgagcattaa
                                                                     240
aaatccacta ttagcaaata aattactatg gacttcttgc tttaattttg tgatgaatat
                                                                     300
ggggtgtcac tggtaaacca acacattctg aaggatacat tacttagtga tagattctta
                                                                     360
tgtactttgc taatacgtgg atatgagttg acaagtttct ctttcttcaa tcttttaagg
                                                                     420
ggcgagaaat gaggaagaaa agaaaaggat tacgcatact gttctttcta tggaaggatt
                                                                     480
agatatgttt cctttgccaa tattaaaaaa ataataatgt ttactactag tgaaaccc
                                                                     538
      <210> 106
      <211> 473
      <212> DNA
      <213> Homo sapien
      <400> 106
tttttttttt ttttttagtc aagtttctat ttttattata attaaagtct tggtcatttc
                                                                     60
atttattagc tctgcaactt acatatttaa attaaagaaa cgttttagac aactgtacaa
                                                                     120
tttataaatg taaggtgcca ttattgagta atatattcct ccaagagtgg atgtgtccct
                                                                     180
tctcccacca actaatgaac agcaacatta gtttaatttt attagtagat atacactgct
                                                                    240
gcaaacgcta attetettet ccatececat gtgatattgt gtatatgtgt gagttggtag
                                                                    300
aatgcatcac aatctacaat caacagcaag atgaagctag gctgggcttt cggtgaaaat
                                                                    360
agactgtgtc tgtctgaatc aaatgatctg acctatcctc ggtggcaaga actcttcgaa
                                                                    420
ccgcttcctc aaaggcgctg ccacatttgt ggctctttgc acttgtttca aaa
                                                                    473
      <210> 107
     <211> 1621
      <212> DNA
      <213> Homo sapien
      <400> 107
cgccatggca ctgcagggca tctcggtcat ggagctgtcc ggcctggccc cgggcccgtt
                                                                     60
ctgtgctatg gtcctggctg acttcggggc gcgtgtggta cgcgtggacc ggcccggctc
                                                                    120
ccgctacgac gtgagccgct tgggccgggg caagcgctcg ctagtgctgg acctgaagca
                                                                    180
gccgcgggga gccgccgtgc tgcggcgtct gtgcaagcgg tcggatgtgc tgctggagcc
                                                                    240
cttccgccgc ggtgtcatgg agaaactcca gctgggccca gagattctgc aqcqqqaaaa
                                                                    300
tccaaggett atttatgcca ggetgagtgg atttggccag tcaggaaget tctgccqqtt
                                                                    360
agctggccac gatatcaact atttggcttt gtcaggtgtt ctctcaaaaa ttggcagaag
                                                                    420
tggtgagaat ccgtatgccc cgctgaatct cctggctgac tttgctggtg gtggccttat
                                                                    480
gtgtgcactg ggcattataa tggctctttt tgaccgcaca cgcactgaca aqqqtcaqqt
                                                                    540
```

cattgatgca aatatggtgg aaggaacagc atatttaagt tetttetgt ggaaaactca 600 gaaatcgagt ctgtgggaag cacctcgagg acagaacatg ttggatggtg gagcaccttt 660 ctatacgact tacaggacag cagatgggga attcatggct gttggagcaa tagaacccca 720 gttctacgag ctgctgatca aaggacttgg actaaagtct gatgaacttc ccaatcagat 780 gagcatggat gattggccag aaatgaagaa qaagtttgca gatgtatttq caaaqaaqac 840 gaaggcagag tggtgtcaaa tctttgacgg cacagatgcc tqtqtqactc cqqttctqac 900 ttttgaggag gttgttcatc atgatcacaa caaggaacgg ggctcgttta tcaccagtga 960 ggagcaggac gtgagcccc gccctgcacc tctgctgtta aacaccccaq ccatcccttc 1020 tttcaaaagg gatcctttca taggagaaca cactgaggag atacttgaag aatttggatt 1080 Cagccgcgaa gagatttatc agcttaactc agataaaatc attgaaaqta ataaqqtaaa 1140 agctagtete taaetteeag geeeaegget caagtgaatt tgaataetge atttacaqtq 1200 tagagtaaca cataacattg tatgcatgga aacatggagg aacagtatta caqtgtccta 1260 ccactctaat caagaaaaga attacagact ctgattctac agtqatgatt qaattctaaa aatggttatc attagggctt ttgatttata aaactttggg tacttatact aaattatggt 1380 agttattctg ccttccagtt tgcttgatat atttgttgat attaagattc ttgacttata 1440 ttttgaatgg gttctagtga aaaaggaatg atatattctt gaagacatcg atatacattt 1500 atttacactc ttgattctac aatgtagaaa atgaggaaat gccacaaatt gtatggtgat 1560 1620 а 1621

<210> 108

<211> 382

<212> PRT

<213> Homo sapien

<400> 108

Met Ala Leu Gln Gly Ile Ser Val Met Glu Leu Ser Gly Leu Ala Pro 5 10 Gly Pro Phe Cys Ala Met Val Leu Ala Asp Phe Gly Ala Arg Val Val 20 25 Arg Val Asp Arg Pro Gly Ser Arg Tyr Asp Val Ser Arg Leu Gly Arg 40 Gly Lys Arg Ser Leu Val Leu Asp Leu Lys Gln Pro Arg Gly Ala Ala 55 60 Val Leu Arg Arg Leu Cys Lys Arg Ser Asp Val Leu Leu Glu Pro Phe 70 75 Arg Arg Gly Val Met Glu Lys Leu Gln Leu Gly Pro Glu Ile Leu Gln 90 Arg Glu Asn Pro Arg Leu Ile Tyr Ala Arg Leu Ser Gly Phe Gly Gln 105 Ser Gly Ser Phe Cys Arg Leu Ala Gly His Asp Ile Asn Tyr Leu Ala . 120 125 Leu Ser Gly Val Leu Ser Lys Ile Gly Arg Ser Gly Glu Asn Pro Tyr 135 Ala Pro Leu Asn Leu Leu Ala Asp Phe Ala Gly Gly Leu Met Cys 150 155 Ala Leu Gly Ile Ile Met Ala Leu Phe Asp Arg Thr Arg Thr Asp Lys 165 170 Gly Gln Val Ile Asp Ala Asn Met Val Glu Gly Thr Ala Tyr Leu Ser 185 190 Ser Phe Leu Trp Lys Thr Gln Lys Ser Ser Leu Trp Glu Ala Pro Arg 200 205 Gly Gln Asn Met Leu Asp Gly Gly Ala Pro Phe Tyr Thr Thr Tyr Arg 215 220 Thr Ala Asp Gly Glu Phe Met Ala Val Gly Ala Ile Glu Pro Gln Phe 230 235 Tyr Glu Leu Leu Ile Lys Gly Leu Gly Leu Lys Ser Asp Glu Leu Pro 245 250 255

60

```
Asn Gln Met Ser Met Asp Asp Trp Pro Glu Met Lys Lys Phe Ala
             260
                                 265
 Asp Val Phe Ala Lys Lys Thr Lys Ala Glu Trp Cys Gln Ile Phe Asp
         275
                             280
 Gly Thr Asp Ala Cys Val Thr Pro Val Leu Thr Phe Glu Glu Val Val
                         295
                                             300
 His His Asp His Asn Lys Glu Arg Gly Ser Phe Ile Thr Ser Glu Glu
 305
                     310
                                         315
 Gln Asp Val Ser Pro Arg Pro Ala Pro Leu Leu Leu Asn Thr Pro Ala
                                     330
 Ile Pro Ser Phe Lys Arg Asp Pro Phe Ile Gly Glu His Thr Glu Glu
                                 345
 Ile Leu Glu Glu Phe Gly Phe Ser Arg Glu Glu Ile Tyr Gln Leu Asn
                             360
                                                 365
 Ser Asp Lys Ile Ile Glu Ser Asn Lys Val Lys Ala Ser Leu
                         375
       <210> 109
       <211> 1524
       <212> DNA
       <213> Homo sapien
       <400> 109
ggcacgaggc tgcgccaggg cctgagcgga ggcgggggca gcctcgccag cgggggcccc
                                                                        60
gggcctggcc atgcctcact gagccagcgc ctgcgcctct acctcgccga cagctggaac
                                                                       120
cagtgcgacc tagtggctct cacctgcttc ctcctgggcg tgggctgccg gctgaccccg
                                                                       180
ggtttgtacc acctgggccg cactgtcctc tgcatcgact tcatggtttt cacggtgcgg
                                                                       240
ctgcttcaca tcttcacggt caacaaacag ctggggccca agatcgtcat cgtgagcaag
                                                                       300
atgatgaagg acgtgttctt cttcctcttc ttcctcggcg tgtggctggt agcctatggc
                                                                       360
gtggccacgg aggggctcct gaggccacgg gacagtgact tcccaagtat cctgcgccgc
                                                                       420
gtettetace gtecetacet geagatette gggeagatte eccaggagga catggaegtg
                                                                       480
geocteatgg ageacageaa etgetegteg gageeegget tetgggeaca eceteetggg
                                                                       540
gcccaggcgg gcacctgcgt ctcccagtat gccaactggc tggtggtgct gctcctcgtc
                                                                       600
atcttcctgc tcgtggccaa catcctgctg gtcaacttgc tcattgccat gttcagttac
                                                                       660
acatteggea aagtaeaggg caacagegat etetaetgga aggegeageg ttaeegeete
                                                                       720
atccgggaat tccactctcg gcccgcgctg gccccgccct ttatcgtcat ctcccacttg
                                                                       780
egecteetge teaggeaatt gtgeaggega eeeeggagee eeeageegte eteeeeggee
                                                                       840
ctcgagcatt tccgggttta cctttctaag gaagccgagc ggaagctgct aacgtgggaa
                                                                       900
tcggtgcata aggagaactt tctgctggca cgcgctaggg acaagcggga gagcgactcc
                                                                       960
gagcgtctga agcgcacgtc ccagaaggtg gacttggcac tgaaacagct gggacacatc
                                                                      1020
cgcgagtacg aacagcgcct gaaagtgctg gagcgggagg tccagcagtg tagccgcgtc
                                                                      1080
ctggggtggg tggccgaggc cctgagccgc tctgccttgc tgcccccagg tgggccgcca
                                                                      1140
ccccctgacc tgcctgggtc caaagactga gccctgctgg cggacttcaa ggagaagccc
                                                                      1200
ccacagggga ttttgctcct agagtaaggc tcatctgggc ctcggccccc gcacctggtg
                                                                      1260
geettgteet tgaggtgage cecatgteea tetgggeeac tgteaggace acetttggga
                                                                      1320
gtgtcatcct tacaaaccac agcatgcccg gctcctccca gaaccagtcc cagcctggga
                                                                      1380
ggatcaaggc ctggatcccg ggccgttatc catctggagg ctgcagggtc cttggggtaa
                                                                      1440
cagggaccac agacccctca ccactcacag attcctcaca ctggggaaat aaagccattt
                                                                      1500
cagaggaaaa aaaaaaaaaa aaaa
                                                                      1524
      <210> 110
      <211> 3410
      <212> DNA
      <213> Homo sapien
      <400> 110
```

gggaaccagc ctgcacgcgc tggctccggg tgacagccgc gcgcctcggc caggatctga

gtgatgagac gtgtccccac tgaggtgccc cacagcagca ggtgttgagc atgggctgag

aagctggacc	ggcaccaaag	ggctggcaga	aatgggcgcc	tggctgattc	ctaggcagtt	180
ggcggcagca	aggaggagag	gccgcagctt	ctggagcaga	gccgagacga	agcagttctg	240
gagtgcctga	acggccccct	gagccctacc	cgcctggccc	actatggtcc	agaggctgtg	300
ggtgagccgc	ctgctgcggc	accggaaagc	ccagctcttg	ctggtcaacc	tgctaacctt	360
tggcctggag	gtgtgtttgg	ccgcaggcat	cacctatgtg	ccgcctctgc	tgctggaagt	420
gggggtagag	gagaagttca	tgaccatggt	gctgggcatt	ggtccagtgc	tgggcctggt	480
ctgtgtcccg	ctcctaggct	cagccagtga	ccactggcgt	ggacgctatg	gccgccgccg	540
gcccttcatc	tgggcactgt	ccttgggcat	cctgctgagc	ctctttctca	tcccaagggc	600
cggctggcta	gcagggctgc	tgtgcccgga	tcccaggccc	ctggagctgg	cactgctcat	660
cctgggcgtg	gggctgctgg	acttctgtgg	ccaggtgtgc	ttcactccac	tggaggccct	720
gctctctgac	ctcttccggg	acccggacca	ctgtcgccag	gcctactctg	tctatgcctt	780
catgatcagt	cttgggggct	gcctgggcta	cctcctgcct	gccattgact	gggacaccag	840
tgccctggcc	ccctacctgg	gcacccagga	ggagtgcctc	tttggcctgc	tcaccctcat	900
	tgcgtagcag					960
	gaagggctgt					1020
ccgcttggct	ttccggaacc	tgggcgccct	gcttccccgg	ctgcaccagc	tgtgctgccg	1080
	accctgcgcc					1140
	ctgttttaca					1200
	ggcaccgagg					1260
	ctgcagtgcg					1320
	ggcactcgag					1380
	tgcctgtccc					1440
	tcagccctgc					1500
	ttcctgccca					1560
cctgatgacc	agcttcctgc	caggccctaa	gcctggagct	cccttcccta	atggacacgt	1620
	ggcagtggcc					1680
	gtacgtgtgg					1740
	ctggacctcg					1800
	atgggctcca					1860
	ctgggtctgg					1920
	aaatactcag					1980
	cageteeeeg					2040
	gccaaagtaa					2100
	tgggggctgg					2160
	ttccaagggg					2220
	atgcggggac					2280
	agacacacct					2340
	tctaagcccc					2400
	gaaacactcc					2460
	gcaacacaca					2520
gatccacccc	cctcttacct	tttatcagga	tgtggcctgt	tggtccttct	gttgccatca	2580
cagagacaca	ggcatttaaa	tatttaactt	atttatttaa	caaagtagaa	gggaatccat	2640
	tctgtgttgg					2700
ggtcccctga	gatagctggt	cattgggctg	atcattgcca	gaatcttctt	ctcctggggt	2760
	aaaatgccta					2820
tccaaatgct	gttacccaag	gttagggtgt	tgaaggaagg	tagagggtgg	ggcttcaggt	2880
ctcaacggct	tccctaacca	cccctcttct	cttggcccag	cctggttccc	cccacttcca	2940
	ctctctctag					3000
cccaactttc	ccctaccccc	aactttcccc	accagctcca	caaccctgtt	tggagctact	3060
gcaggaccag	aagcacaaag	tgcggtttcc	caagcctttg	tccatctcag	ccccagagt	3120
atatctgtgc	ttggggaatc	tcacacagaa	actcaggagc	accccctgcc	tgagctaagg	3180
gaggtcttat	ctctcagggg	gggtttaagt	gccgtttgca	ataatgtcgt	cttatttatt	3240
	aatatttat					3300
	ctttcttata					3360
aaaaaaara	aaaaaaaaa	aaaaaaaaa	aaaaaataa	aaaaaaaaa		3410

<212> DNA <213> Homo sapien

<400> 111 agccaggcgt ccctctgcct gcccactcag tggcaacacc cgggagctgt tttgtccttt 60 gtggagcctc agcagttccc tctttcagaa ctcactgcca agagccctga acaggagcca 120 ccatgcagtg cttcagcttc attaagacca tgatgatcct cttcaatttg ctcatctttc 180 tgtgtggtgc agccctgttg gcagtgggca tctgggtgtc aatcqatqqq qcatcctttc 240 tgaagatett egggeeactg tegteeagtg ceatgeagtt tgteaacgtg ggetaettee 300 tcatcgcagc cggcgttgtg gtctttgctc ttggtttcct gggctgctat ggtgctaaga 360 ctgagagcaa gtgtgccctc gtgacgttct tcttcatcct cctcctcatc ttcattgctg 420 aggttgcage tgctgtggte gccttggtgt acaccacaat ggctgagcac ttcctgacgt 480 tgctggtagt gcctgccatc aagaaagatt atggttccca ggaagacttc actcaagtgt 540 ggaacaccac catgaaaggg ctcaagtgct gtggcttcac caactatacg gattttgagg 600 actcacccta cttcaaagag aacagtgcct ttcccccatt ctgttgcaat gacaacgtca 660 ccaacacagc caatgaaacc tgcaccaagc aaaaggctca cgaccaaaaa gtagagggtt 720 gcttcaatca gcttttgtat gacatccgaa ctaatgcagt caccgtgggt ggtgtggcag 780 ctggaattgg gggcctcgag ctggctgcca tgattgtgtc catgtatctg tactgcaatc 840 tacaataagt ccacttctgc ctctgccact actgctgcca catgggaact gtgaagaggc 900 accetggeaa geageagtga ttgggggagg ggacaggate taacaatqte acttgggeea 960 gaatggacct gccctttctg ctccagactt ggggctagat agggaccact ccttttagcg 1020 atgcctgact ttccttccat tggtgggtgg atgggtgggg ggcattccag agcctctaag 1080 gtagccagtt ctgttgccca ttcccccagt ctattaaacc cttgatatgc cccctaggcc 1140 tagtggtgat cccagtgctc tactggggga tgagagaaag gcattttata gcctgggcat 1200 aagtgaaatc agcagagcct ctgggtggat gtgtagaagg cacttcaaaa tqcataaacc 1260 tgttacaatg ttaaaaaaaa aaaaaaaaa 1289

<210> 112

<211> 315

<212> PRT

<213> Homo sapien

<400> 112

Met Val Phe Thr Val Arg Leu Leu His Ile Phe Thr Val Asn Lys Gln 1 5 10 Leu Gly Pro Lys Ile Val Ile Val Ser Lys Met Met Lys Asp Val Phe 20 25 Phe Phe Leu Phe Phe Leu Gly Val Trp Leu Val Ala Tyr Gly Val Ala 35 40 45 Thr Glu Gly Leu Leu Arg Pro Arg Asp Ser Asp Phe Pro Ser Ile Leu 55 Arg Arg Val Phe Tyr Arg Pro Tyr Leu Gln Ile Phe Gly Gln Ile Pro 75 Gln Glu Asp Met Asp Val Ala Leu Met Glu His Ser Asn Cys Ser Ser 90 Glu Pro Gly Phe Trp Ala His Pro Pro Gly Ala Gln Ala Gly Thr Cys 110 Val Ser Gln Tyr Ala Asn Trp Leu Val Val Leu Leu Val Ile Phe 120 125 Leu Leu Val Ala Asn Ile Leu Leu Val Asn Leu Leu Ile Ala Met Phe 135 Ser Tyr Thr Phe Gly Lys Val Gln Gly Asn Ser Asp Leu Tyr Trp Lys 150 155 Ala Gln Arg Tyr Arg Leu Ile Arg Glu Phe His Ser Arg Pro Ala Leu 165 170 Ala Pro Pro Phe Ile Val Ile Ser His Leu Arg Leu Leu Leu Arg Gln 180 185 Leu Cys Arg Arg Pro Arg Ser Pro Gln Pro Ser Ser Pro Ala Leu Glu

200 195 His Phe Arg Val Tyr Leu Ser Lys Glu Ala Glu Arg Lys Leu Leu Thr 215 220 Trp Glu Ser Val His Lys Glu Asn Phe Leu Leu Ala Arg Ala Arg Asp 230 235 Lys Arg Glu Ser Asp Ser Glu Arg Leu Lys Arg Thr Ser Gln Lys Val . 245 250 Asp Leu Ala Leu Lys Gln Leu Gly His Ile Arg Glu Tyr Glu Gln Arg 265 Leu Lys Val Leu Glu Arg Glu Val Gln Gln Cys Ser Arg Val Leu Gly 280 Trp Val Ala Glu Ala Leu Ser Arg Ser Ala Leu Leu Pro Pro Gly Gly 295 Pro Pro Pro Pro Asp Leu Pro Gly Ser Lys Asp

<210> 113

<211> 553

<212> PRT

<213> Homo sapien

<400> 113 Met Val Gln Arg Leu Trp Val Ser Arg Leu Leu Arg His Arg Lys Ala 10 Gln Leu Leu Val Asn Leu Leu Thr Phe Gly Leu Glu Val Cys Leu 25 Ala Ala Gly Ile Thr Tyr Val Pro Pro Leu Leu Glu Val Gly Val 40 Glu Glu Lys Phe Met Thr Met Val Leu Gly Ile Gly Pro Val Leu Gly 55 Leu Val Cys Val Pro Leu Leu Gly Ser Ala Ser Asp His Trp Arg Gly 75 Arg Tyr Gly Arg Arg Pro Phe Ile Trp Ala Leu Ser Leu Gly Ile 85 90 Leu Leu Ser Leu Phe Leu Ile Pro Arg Ala Gly Trp Leu Ala Gly Leu 100 105 Leu Cys Pro Asp Pro Arg Pro Leu Glu Leu Ala Leu Leu Ile Leu Gly 120 125 Val Gly Leu Leu Asp Phe Cys Gly Gln Val Cys Phe Thr Pro Leu Glu 135 Ala Leu Leu Ser Asp Leu Phe Arg Asp Pro Asp His Cys Arg Gln Ala 150 155 Tyr Ser Val Tyr Ala Phe Met Ile Ser Leu Gly Gly Cys Leu Gly Tyr 165 170 Leu Leu Pro Ala Ile Asp Trp Asp Thr Ser Ala Leu Ala Pro Tyr Leu 185 Gly Thr Gln Glu Glu Cys Leu Phe Gly Leu Leu Thr Leu Ile Phe Leu 200 Thr Cys Val Ala Ala Thr Leu Leu Val Ala Glu Glu Ala Ala Leu Gly 215 Pro Thr Glu Pro Ala Glu Gly Leu Ser Ala Pro Ser Leu Ser Pro His 230 235 Cys Cys Pro Cys Arg Ala Arg Leu Ala Phe Arg Asn Leu Gly Ala Leu 245 250 Leu Pro Arg Leu His Gln Leu Cys Cys Arg Met Pro Arg Thr Leu Arg 265 Arg Leu Phe Val Ala Glu Leu Cys Ser Trp Met Ala Leu Met Thr Phe 280

Thr Leu Phe Tyr Thr Asp Phe Val Gly Glu Gly Leu Tyr Gln Gly Val 295 Pro Arg Ala Glu Pro Gly Thr Glu Ala Arg Arg His Tyr Asp Glu Gly 310 315 Val Arg Met Gly Ser Leu Gly Leu Phe Leu Gln Cys Ala Ile Ser Leu 325 330 Val Phe Ser Leu Val Met Asp Arg Leu Val Gln Arg Phe Gly Thr Arg 345 Ala Val Tyr Leu Ala Ser Val Ala Ala Phe Pro Val Ala Ala Gly Ala 360 Thr Cys Leu Ser His Ser Val Ala Val Val Thr Ala Ser Ala Ala Leu 375 380 Thr Gly Phe Thr Phe Ser Ala Leu Gln Ile Leu Pro Tyr Thr Leu Ala 390 395 Ser Leu Tyr His Arg Glu Lys Gln Val Phe Leu Pro Lys Tyr Arg Gly 405 410 Asp Thr Gly Gly Ala Ser Ser Glu Asp Ser Leu Met Thr Ser Phe Leu 420 425 Pro Gly Pro Lys Pro Gly Ala Pro Phe Pro Asn Gly His Val Gly Ala 440 Gly Gly Ser Gly Leu Leu Pro Pro Pro Pro Ala Leu Cys Gly Ala Ser 455 460 Ala Cys Asp Val Ser Val Arg Val Val Gly Glu Pro Thr Glu Ala 470 475 Arg Val Val Pro Gly Arg Gly Ile Cys Leu Asp Leu Ala Ile Leu Asp 485 490 Ser Ala Phe Leu Leu Ser Gln Val Ala Pro Ser Leu Phe Met Gly Ser 505 Ile Val Gln Leu Ser Gln Ser Val Thr Ala Tyr Met Val Ser Ala Ala 515 . 520 525 Gly Leu Gly Leu Val Ala Ile Tyr Phe Ala Thr Gln Val Val Phe Asp 535 Lys Ser Asp Leu Ala Lys Tyr Ser Ala 550

<210> 114

<211> 241

<212> PRT

<213> Homo sapien

<400> 114

Met Gln Cys Phe Ser Phe Ile Lys Thr Met Met Ile Leu Phe Asn Leu 5 Leu Ile Phe Leu Cys Gly Ala Ala Leu Leu Ala Val Gly Ile Trp Val 20 25 Ser Ile Asp Gly Ala Ser Phe Leu Lys Ile Phe Gly Pro Leu Ser Ser 40 Ser Ala Met Gln Phe Val Asn Val Gly Tyr Phe Leu Ile Ala Ala Gly 55 Val Val Val Phe Ala Leu Gly Phe Leu Gly Cys Tyr Gly Ala Lys Thr 70 75 Glu Ser Lys Cys Ala Leu Val Thr Phe Phe Phe Ile Leu Leu Leu Ile 85 90 Phe Ile Ala Glu Val Ala Ala Ala Val Val Ala Leu Val Tyr Thr Thr 100 105 Met Ala Glu His Phe Leu Thr Leu Leu Val Val Pro Ala Ile Lys Lys 115 120 125 Asp Tyr Gly Ser Gln Glu Asp Phe Thr Gln Val Trp Asn Thr Thr Met

<400> 117

```
140
Lys Gly Leu Lys Cys Cys Gly Phe Thr Asn Tyr Thr Asp Phe Glu Asp
                  150
                                       155
Ser Pro Tyr Phe Lys Glu Asn Ser Ala Phe Pro Pro Phe Cys Cys Asn
               165
                                   170
                                                       175
Asp Asn Val Thr Asn Thr Ala Asn Glu Thr Cys Thr Lys Gln Lys Ala
                               185
His Asp Gln Lys Val Glu Gly Cys Phe Asn Gln Leu Leu Tyr Asp Ile
                           200
Arg Thr Asn Ala Val Thr Val Gly Gly Val Ala Ala Gly Ile Gly Gly
                       215
Leu Glu Leu Ala Ala Met Ile Val Ser Met Tyr Leu Tyr Cys Asn Leu
225
                   230
                                       235
Gln
      <210> 115
      <211> 366
      <212> DNA
      <213> Homo sapien
      <400> 115
getetttete tecceteete tgaatttaat tettteaaet tgeaatttge aaggattaca
                                                                     60
120
ttggtttgtg aatccatctt gctttttccc cattggaact aqtcattaac ccatctctqa
                                                                    180
actggtagaa aaacatetga agagetagte tateageate tgacaggtga attggatggt
                                                                    240
teteagaace attteaceca gaeageetgt ttetateetg tttaataaat tagtttgggt
                                                                    300
tetetacatg cataacaaac cetgetecaa tetgteacat aaaagtetgt gaettgaagt
                                                                    360
ttagtc
                                                                    366
     <210> 116
     <211> 282
     <212> DNA
     <213> Homo sapien
     <220>
     <221> misc_feature
     <222> (1)...(282)
     <223> n = A, T, C or G
     <400> 116
acaaagatga accatttcct atattataqc aaaattaaaa tctacccqta ttctaatatt
                                                                    60
gagaaatgag atnaaacaca atnttataaa gtctacttag agaagatcaa gtgacctcaa
                                                                   120
agactttact attttcatat tttaagacac atgatttatc ctattttagt aacctggttc
                                                                   180
atacgttaaa caaaggataa tgtgaacagc agagaggatt tgttggcaga aaatctatgt
                                                                    240
tcaatcinga actatciana tcacagacat tictaticci ti
                                                                    282
     <210> 117
     <211> 305
     <212> DNA
     <213> Homo sapien
     <220>
     <221> misc_feature
     <222> (1) ... (305)
     <223> n = A, T, C or G
```

```
acacatgtcg cttcactgcc ttcttagatg cttctggtca acatanagga acagggacca
                                                                          60
tatttateet eeeteetgaa acaattgeaa aataanacaa aatatatgaa acaattgeaa
                                                                          120
aataaggcaa aatatatgaa acaacaggtc tcgagatatt ggaaatcagt caatgaagga
                                                                          180
tactgatece tgateactgt cetaatgeag gatgtgggaa acagatgagg teacetetgt
                                                                         240
gactgcccca gcttactgcc tgtagagagt ttctangctg cagttcagac agggagaaat
                                                                          300
tgggt
                                                                         305
       <210> 118
       <211> 71
       <212> DNA
       <213> Homo sapien
      <220>
       <221> misc_feature
       <222> (1)...(71)
       <223> n = A, T, C \text{ or } G
      <400> 118
accaaggtgt ntgaatctct gacgtgggga tctctgattc ccgcacaatc tgagtggaaa
                                                                          60
aantcctggg t
      <210> 119
      <211> 212
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(212)
      <223> n = A, T, C \text{ or } G
      <400> 119
actocggttg gtgtcagcag cacgtggcat tgaacatngc aatgtggagc ccaaaccaca
                                                                         60
gaaaatgggg tgaaattggc caactttcta tnaacttatg ttggcaantt tgccaccaac
                                                                         120
agtaagctgg cccttctaat aaaagaaaat tgaaaggttt ctcactaanc ggaattaant
                                                                         180
aatggantca aganactccc aggcctcagc gt
                                                                         212
      <210> 120
      <211> 90
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(90)
      <223> n = A,T,C \text{ or } G
      <400> 120
actcgttgca natcaggggc cccccagagt caccgttgca ggagtccttc tggtcttgcc
                                                                         60
ctccgccggc gcagaacatg ctggggtggt
                                                                          90
      <210> 121
      <211> 218
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature /
```

```
<222> (1) . . . (218)
      <223> n = A, T, C \text{ or } G
tqtancqtqa anacqacaqa naqqqttqtc aaaaatqqaq aanccttqaa qtcattttqa
                                                                         60
gaataagatt tgctaaaaga tttggggcta aaacatggtt attgggagac atttctqaaq
                                                                        120
atatncangt aaattangga atgaattcat ggttcttttg ggaattcctt tacgatngcc
                                                                        180
agcatanact tcatgtgggg atancagcta cccttgta
                                                                         218
      <210> 122
      <211> 171
      <212> DNA
      <213> Homo sapien
      <400> 122
taggggtgta tgcaactgta aggacaaaaa ttgagactca actggcttaa ccaataaagg
                                                                         60
catttgttag ctcatggaac aggaagtcgg atggtggggc atcttcagtg ctgcatgagt
                                                                        120
caccaccccg gcggggtcat ctgtgccaca ggtccctgtt gacagtgcgg t
                                                                        171
      <210> 123
      <211> 76
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(76)
      \langle 223 \rangle n = A,T,C or G
      <400> 123
tgtagcgtga agacnacaga atggtgtgtg ctgtgctatc caggaacaca tttattatca
                                                                         60
ttatcaanta ttgtgt
                                                                         76 .
      <210> 124
      <211> 131
      <212> DNA
      <213> Homo sapien
      <400> 124
acctttcccc aaggccaatq tcctgtgtgc taactqqccq qctqcaqqac aqctqcaatt
                                                                         60
caatgtgctg ggtcatatgg aggggaggag actctaaaat agccaatttt attctcttgg
                                                                        120
ttaagatttg t
                                                                        131
      <210> 125
      <211> 432
      <212> DNA
      <213> Homo sapien
      <400> 125
actitateta etggetatga aatagatggt ggaaaattge gttaccaact ataccactgg
                                                                         60
cttgaaaaag aggtgatagc tcttcagagg acttgtgact tttgctcaga tgctgaagaa
                                                                        120
ctacagtctg catttggcag aaatgaagat gaatttggat taaatgagga tgctgaagat
                                                                        180
ttgcctcacc aaacaaagt gaaacaactg agagaaaatt ttcaggaaaa aagacagtgg
                                                                        240
ctcttgaagt atcagtcact tttgagaatg tttcttagtt actgcatact tcatggatcc
                                                                        300
catggtgggg gtcttgcatc tgtaagaatg gaattgattt tgcttttgca agaatctcag
                                                                        360
caggaaacat cagaaccact attttctagc cctctgtcag agcaaacctc agtgcctctc
                                                                        420
ctctttgctt gt .
                                                                        432
```

```
<210> 126
        <211> 112
        <212> DNA
        <213> Homo sapien
        <400> 126
 acacaacttg aatagtaaaa tagaaactga gctgaaattt ctaattcact ttctaaccat
                                                                           60
 agtaagaatg atatttcccc ccagggatca ccaaatattt ataaaaattt gt
                                                                          112
       <210> 127
       <211> 54
       <212> DNA
       <213> Homo sapien
       <400> 127
 accacgaaac cacaaacaag atggaagcat caatccactt gccaagcaca gcag
                                                                           54
       <210> 128
       <211> 323
       <212> DNA
       <213> Homo sapien
       <400> 128
 acctcattag taattgtttt gttgtttcat ttttttctaa tgtctcccct ctaccagctc
                                                                           60
 acctgagata acagaatgaa aatggaagga cagccagatt tctcctttgc tctctgctca
                                                                         120
 ttctctctga agtctaggtt acccattttg gggacccatt ataggcaata aacacagttc
                                                                         180
 ccaaagcatt tggacagttt cttgttgtgt tttagaatgg ttttcctttt tcttagcctt
                                                                         240
 ttcctgcaaa aggctcactc agtcccttgc ttgctcagtg gactgggctc cccagggcct
                                                                         300
 aggetgeett etttteeatg tee
                                                                         323
       <210> 129
       <211> 192
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
      <222> (1)...(192)
      <223> n = A, T, C \text{ or } G
      <400> 129
acatacatgt gtgtatattt ttaaatatca cttttgtatc actctgactt tttagcatac
                                                                          60
tgaaaacaca ctaacataat ttntgtgaac catgatcaga tacaacccaa atcattcatc
                                                                         120
tagcacattc atctgtgata naaagatagg tgagtttcat ttccttcacg ttggccaatg
                                                                         180
gataaacaaa gt
                                                                         192
      <210> 130
      <211> 362
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1) . . . (362)
      \langle 223 \rangle n = A, T, C or G
      <400> 130
ccctttttta tggaatgagt agactgtatg tttgaanatt tanccacaac ctctttgaca
                                                                         60
```

```
tataatgacg caacaaaaag gtgctgttta gtcctatggt tcagtttatg cccctgacaa
                                                                        120
gtttccattg tgttttgccg atcttctggc taatcgtggt atcctccatg ttattagtaa
                                                                        180
ttctgtattc cattttgtta acqcctqqta qatqtaacct qctanqaqqc taactttata
                                                                        240
cttatttaaa agctcttatt ttqtqqtcat taaaatqqca atttatqtqc aqcactttat
                                                                        300
tgcagcagga agcacqtqtq qqttqqttqt aaaqctcttt qctaatctta aaaaqtaatq
                                                                        360
                                                                        362
      <210> 131
      <211> 332
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(332)
      <223> n = A, T, C or G
      <400> 131
ctttttgaaa gatcgtgtcc actcctgtgg acatcttgtt ttaatggagt ttcccatgca
                                                                         60
gtangactgg tatggttgca gctgtccaga taaaaacatt tgaagagctc caaaatgaga
                                                                        120
gttctcccag gttcgccctg ctgctccaag tctcagcagc agcctctttt aggaggcatc
                                                                        180
ttctgaacta gattaaggca gcttgtaaat ctgatgtgat ttggtttatt atccaactaa
                                                                        240
cttccatctg ttatcactgg agaaagccca gactccccan gacnggtacg gattgtgggc
                                                                        300
atanaaggat tgggtgaagc tggcgttgtg gt
                                                                        332 .
      <210> 132
      <211> 322
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1) ... (322)
      <223> n = A, T, C \text{ or } G
      <400> 132
acttttgcca ttttgtatat ataaacaatc ttgggacatt ctcctgaaaa ctaggtgtcc
                                                                         60
agtggctaag agaactcgat ttcaagcaat tctgaaagga aaaccagcat gacacagaat
                                                                        120
ctcaaattcc caaacagggg ctctgtggga aaaatgaggg aggacctttg tatctcgggt
                                                                        180
tttagcaagt taaaatgaan atgacaggaa aggcttattt atcaacaaag agaagagttg
                                                                        240
ggatgcttct aaaaaaaact ttggtagaga aaataggaat gctnaatcct agggaaqcct
                                                                        300
gtaacaatct acaattggtc ca
                                                                        322
      <210> 133
      <211> 278
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1) ... (278)
      \langle 223 \rangle n = A,T,C or G
      <400> 133
acaagcette acaagtttaa etaaattggg attaatettt etgtanttat etgeataatt
                                                                        60
cttgtttttc tttccatctg gctcctgggt tgacaatttg tggaaacaac tctattgcta
                                                                       120
ctatttaaaa aaaatcacaa atctttccct ttaagctatg ttnaattcaa actattcctg
                                                                       180
ctattcctgt tttgtcaaag aaattatatt tttcaaaata tgtntatttg tttgatgggt
                                                                       240
```

```
cccacgaaac actaataaaa accacagaga ccagcctg
                                                                        278
        <210> 134
        <211> 121
        <212> DNA
        <213> Homo sapien
       <220>
       <221> misc feature
       <222> (1)...(121)
       <223> n = A,T,C \text{ or } G
       <400> 134
 gtttanaaaa cttgtttagc tccatagagg aaagaatgtt aaactttgta ttttaaaaca
 tgattetetg aggttaaact tggttttcaa atgttatttt tacttgtatt ttgettttgg
                                                                        120
                                                                        121
       <210> 135
       <211> 350
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1) ... (350)
       <223> n = A,T,C or G
                                        ....
      <400> 135
acttanaacc atgcctagca catcagaatc cctcaaagaa catcagtata atcctatacc
                                                                        60
atancaagtg gtgactggtt aagcgtgcga caaaggtcag ctggcacatt acttgtgtgc
                                                                       120
aaacttgata cttttgttct aagtaggaac tagtatacag tncctaggan tggtactcca
                                                                       180
gggtgccccc caactcctgc agccgctcct ctgtgccagn ccctgnaagg aactttcgct
                                                                       240
ccacctcaat caagccctgg gccatgctac ctgcaattgg ctgaacaaac gtttgctgag
                                                                       300
ttcccaagga tgcaaagcct ggtgctcaac tcctggggcg tcaactcagt
                                                                       350
      <210> 136
      <211> 399
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(399)
     <223> n = A, T, C \text{ or } G
      <400> 136
tgtaccgtga agacgacaga agttgcatgg cagggacagg gcagggccga ggccagggtt
                                                                       60
gctgtgattg tatccgaata ntcctcgtga gaaaagataa tgagatgacg tgagcagcct
                                                                      120
gcagacttgt gtctgccttc aanaagccag acaggaaggc cctgcctgcc ttggctctga
                                                                      180
cetggeggee ageeageeag ceacaggtgg gettetteet tttgtggtga caacnecaag
                                                                      240
aaaactgcag aggeccaggg tcaggtgtna gtgggtangt gaccataaaa caccaggtgc
                                                                      300
teccaggaac cegggeaaag gecateecca ectacageca geatgeecae tggegtgatg
                                                                      360".
ggtgcagang gatgaagcag ccagntgttc tgctgtggt
                                                                      399 ,
      <210> 137
     <211> 165
     <212> DNA
     <213> Homo sapien
```

```
<220>
       <221> misc feature
       <222> (1)...(165)
       <223> n = A, T, C or G
      <400> 137
actggtgtgg tngggggtga tgctggtggt anaagttgan gtgacttcan gatggtgtgt
                                                                         60
ggaggaagtg tgtgaacgta gggatgtaga ngttttgqcc qtqctaaatq aqcttcqqqa
                                                                        120
ttggctggtc ccactggtgg tcactgtcat tggtggggtt cctgt
                                                                        165
      <210> 138
      <211> 338
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(338)
      <223> n = A, T, C or G
      <400> 138
actcactgga atgccacatt cacaacagaa tcagaggtct gtgaaaacat taatggctcc
                                                                         60
ttaacttctc cagtaagaat cagggacttg aaatggaaac gttaacagcc acatgcccaa
                                                                        120
tgctgggcag tctcccatgc cttccacagt gaaagggctt gagaaaaatc acatccaatg
                                                                        180
tcatgtgttt ccagccacac caaaaggtgc ttggggtgga gggctggggg catananggt
                                                                        240
cangceteag gaageeteaa gtteeattea getttgeeae tgtacattee ceatntttaa
                                                                        300
aaaaactgat gccttttttt tttttttttt taaaattc
                                                                        338
      <210> 139
      <211> 382
      <212> DNA
      <213> Homo sapien
      <400> 139
gggaatcttg gtttttggca tctggtttgc ctatagccga ggccactttg acagaacaaa
                                                                        60
gaaagggact tcgagtaaga aggtgattta cagccagcct agtgcccgaa gtgaaggaga
                                                                        120
attcaaacag acctegteat teetggtgtg ageetggteg geteacegee tatcatetge
                                                                        180
atttgcctta ctcaggtgct accggactct ggcccctgat gtctgtagtt tcacaggatg
                                                                        240
cettatttgt cttctacacc ccacagggcc ccctacttct tcggatgtgt ttttaataat
                                                                        300
gtcagctatg tgccccatcc tccttcatgc cctccctccc tttcctacca ctgctgagtg
                                                                        360
gcctggaact tgtttaaagt gt
                                                                        382
      <210> 140
      <211> 200
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1) ... (200)
      \langle 223 \rangle n = A,T,C or G
      <400> 140
accaaanctt ctttctgttg tgttngattt tactataqqq qtttnqcttn ttctaaanat
                                                                        60
actiticati taacanctit tgttaagtgt caggetgcac titgetecat anaattattg
                                                                       120
ttttcacatt tcaacttgta tgtgtttgtc tcttanagca ttggtgaaat cacatatttt
                                                                       180
atattcagca taaaggagaa
                                                                       200
```

```
<210> 141
       <211> 335
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1) ... (335)
       <223> n = A, T, C \text{ or } G
       <400> 141
 actttatttt caaaacactc atatgttgca aaaaacacat agaaaaataa agtttggtgg
                                                                         60
 gggtgctgac taaacttcaa gtcacagact tttatgtgac agattggagc agggtttgtt
                                                                        120
 atgcatgtag agaacccaaa ctaatttatt aaacaggata gaaacaggct gtctgggtga
                                                                        180
 aatggttetg agaaccatee aatteacetg teagatgetg atanactage tetteagatg
                                                                        240
 tttttctacc agttcagaga tnggttaatg actanttcca atggggaaaa agcaagatgg
                                                                        300
 attcacaaac caagtaattt taaacaaaga cactt
                                                                        335
       <210> 142
      <211> 459
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(459)
      <223> n = A,T,C or G
      <400> 142
accaggttaa tattgccaca tatatccttt ccaattgcgg gctaaacaga cgtgtattta
                                                                         60.
gggttgttta aagacaaccc agcttaatat caagagaaat tgtgaccttt catggagtat
                                                                        120
ctgatggaga aaacactgag ttttgacaaa tcttatttta ttcagatagc agtctgatca
                                                                        180
cacatggtcc aacaacactc aaataataaa tcaaatatna tcagatgtta aagattggtc
                                                                        240
ttcaaacatc atagccaatg atgccccgct tgcctataat ctctccgaca taaaaccaca
                                                                        300
tcaacacctc agtggccacc aaaccattca gcacagcttc cttaactgtg agctgtttga
                                                                        360
agetaceagt etgageacta ttgactatnt ttttcanget etgaataget etagggatet
                                                                        420
cagcangggt gggaggaacc agctcaacct tggcgtant
                                                                        459
      <210> 143
      <211> 140
      <212> DNA
   < <213> Homo sapien
      <400> 143
acattteett ecaecaagte aggacteetg gettetgtgg gagttettat eacetgaggg
                                                                        60
aaatccaaac agtctctcct agaaaggaat agtgtcacca accccaccca tctccctgag
                                                                       120
accateegae tteeetgtgt
                                                                       140
      <210> 144
      <211> 164
      <212> DNA
      <213> Homo sapien
      <220>
     <221> misc feature
     <222> (1)...(164)
     \langle 223 \rangle n = A,T,C or G
```

4

```
<400> 144
acttcaqtaa caacatacaa taacaacatt aagtgtatat tqccatcttt qtcattttct
                                                                         60
atctatacca etetecette tgaaaacaan aatcaetane caatcaetta tacaaatttq
                                                                        120
aggcaattaa tocatatttg ttttcaataa ggaaaaaaag atgt
      <210> 145
      <211> 303
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(303)
      <223> n = A, T, C or G
      <400> 145
acgtagacca tecaactttg tatttgtaat ggcaaacate cagnagcaat tectaaacaa
                                                                         60
actggagggt atttataccc aattatccca ttcattaaca tgccctcctc ctcaggctat
                                                                        120
gcaggacagc tatcataagt cggcccaggc atccagatac taccatttgt ataaacttca
                                                                        180
gtaggggagt ccatccaagt gacaggtcta atcaaaggag gaaatggaac ataagcccag
                                                                        240
tagtaaaatn ttgcttagct gaaacagcca caaaagactt accgccgtgq tqattaccat
                                                                        300
caa
                                                                        303
      <210> 146
      <211> 327
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1) ... (327)
      \langle 223 \rangle n = A,T,C or G
      <400> 146
actgcagctc aattagaagt ggtctctgac tttcatcanc ttctccctqq gctccatgac
                                                                         60
actggcctgg agtgactcat tgctctggtt ggttgagaga gctcctttqc caacaqqcct
                                                                        120
ccaagtcagg gctgggattt gtttcctttc cacattctag caacaatatq ctqqccactt
                                                                        180
cctgaacagg gagggtggga ggagccagca tggaacaagc tgccactttc taaaqtaqcc
                                                                        240
agacttgccc ctgggcctgt cacacctact gatgaccttc tgtgcctgca ggatggaatq
                                                                        300
taggggtgag ctgtgtgact ctatggt
                                                                        327
      <210> 147
      <211> 173
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(173)
      <223> n = A, T, C \text{ or } G
      <400> 147
acattgtttt tttgagataa agcattgana gagctctcct taacgtgaca caatggaagg
                                                                        60
actggaacac atacccacat ctttgttctg agggataatt ttctqataaa qtcttqctqt
                                                                        120
atattcaagc acatatgtta tatattattc agttccatgt ttatagccta qtt
                                                                        173
      <210> 148
```

```
<211> 477
         <212> DNA
         <213> Homo sapien
        <220>
        <221> misc_feature
        <222> (1)...(477)
        \langle 223 \rangle n = A,T,C or G
        <400> 148
  acaaccactt tatctcatcg aatttttaac ccaaactcac tcactgtgcc tttctatcct
                                                                          60
  atgggatata ttatttgatg ctccatttca tcacacatat atgaataata cactcatact
  geectactae etgetgeaat aateacatte cetteetgte etgaceetga agecattggg
                                                                         120
 gtggtcctag tggccatcag tccangcctg caccttgagc ccttgagctc cattgctcac
                                                                         180
 nceancecae etcacegace ceatectett acacagetae etcettgete tetaacecea
                                                                         240
 tagattatnt ccaaattcag tcaattaagt tactattaac actctacceg acatgtccag
                                                                         300
 caccactggt aagcettete cagecaacae acacacaca acacneacae acacacatat
                                                                         360
 ccaggcacag gctacctcat cttcacaatc acccctttaa ttaccatgct atggtgg
                                                                         420
                                                                         477
        <210> 149
        <211> 207
        <212> DNA
       <213> Homo sapien
       <400> 149
 acagttgtat tataatatca agaaataaac ttgcaatgag agcatttaag agggaagaac
 taacgtattt tagagagcca aggaaggttt ctgtggggag tgggatgtaa ggtggggcct
                                                                          60
                                                                         120
 gatgataaat aagagtcagc caggtaagtg ggtggtgtgg tatgggcaca gtgaagaaca
                                                                         180
 tttcaggcag agggaacagc agtgaaa
                                                                         207
       <210> 150
       <211> 111
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(111)
       <223> n = A,T,C or G
       <400> 150
accttgattt cattgctgct ctgatggaaa cccaactatc taatttagct aaaacatggg
                                                                         60
cacttaaatg tggtcagtgt ttggacttgt taactantgg catctttggg t
                                                                        111
      <210> 151
      <211> 196
      <212> DNA
      <213> Homo sapien
      <400> 151
agcgcggcag gtcatattga acattccaga tacctatcat tactcgatgc tgttgataac
agcaagatgg ctttgaactc agggtcacca ccagctattg gaccttacta tgaaaaccat
ggataccaac cggaaaaccc ctatcccgca cagcccactg tggtccccac tgtctacgag
                                                                       120
                                                                       180
gtgcatccgg ctcagt
                                                                       196
      <210> 152
      <211> 132
      <212> DNA
```

<212> DNA

```
<213> Homo sapien
      <400> 152
acagcacttt cacatgtaag aagggagaaa ttcctaaatg taggagaaag ataacagaac
                                                                         60
cttccccttt tcatctagtg gtggaaacct gatgctttat gttgacagga atagaaccag
                                                                         120
gagggagttt gt
                                                                        132
      <210> 153
      <211> 285
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1) ... (285)
      \langle 223 \rangle n = A,T,C or G
      <400> 153
acaanaccca nganaggcca ctggccgtgg tgtcatggcc tccaaacatg aaagtgtcag
                                                                         60
cttctgctct tatgtcctca tctgacaact ctttaccatt tttatcctcg ctcagcagga
                                                                        120
gcacatcaat aaagtccaaa gtcttggact tggccttggc ttggaggaag tcatcaacac
                                                                        180
cctggctagt gagggtgcgg cgccgctcct ggatgacggc atctgtgaag tcgtgcacca
                                                                        240
gtctgcaggc cctgtggaag cgccgtccac acggagtnag gaatt
                                                                        285
      <210> 154
      <211> 333
      <212> DNA
      <213> Homo sapien
      <400> 154
accacagtee tgttgggeca gggetteatg accetttetg tgaaaageca tattateace
                                                                         60
accccaaatt tttccttaaa tatctttaac tgaaggggtc agcctcttga ctgcaaagac
                                                                        120
cctaagccgg ttacacagct aactcccact ggccctgatt tgtgaaattg ctgctgcctg
                                                                        180
attggcacag gagtcgaagg tgttcagctc ccctcctccg tggaacgaga ctctgatttg
                                                                        240
agtttcacaa attctcgggc cacctcgtca ttgctcctct gaaataaaat ccggagaatg
                                                                        300
gtcaggcctg tctcatccat atggatcttc cgg
                                                                        333
      <210> 155
      <211> 308
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(308)
      <223> n = A, T, C \text{ or } G
      <400> 155
actggaaata ataaaaccca catcacagtg ttgtgtcaaa gatcatcagg gcatggatgg
                                                                         60
gaaagtgctt tgggaactgt aaagtgccta acacatgatc gatgattttt gttataatat
                                                                        120
ttgaatcacg gtgcatacaa acteteetge etgeteetee tgggeeecag ecceageece
                                                                        180
atcacagete aetgetetgt teatecagge ecageatgta gtggetgatt ettettgget
                                                                        240
gettttagee tecanaagtt tetetgaage caaccaaace tetangtgta aggeatgetg
                                                                        300
gccctggt
                                                                        308
      <210> 156
      <211> 295
```

480

<213> Homo sapien <400> 156 accttgctcg gtgcttggaa catattagga actcaaaata tgagatgata acagtgccta 60 ttattgatta ctgagagaac tgttagacat ttagttgaag attttctaca caggaactga 120 gaataggaga ttatgtttgg ccctcatatt ctctcctatc ctccttgcct cattctatgt 180 ctaatatatt ctcaatcaaa taaggttagc ataatcagga aatcgaccaa ataccaatat 240 aaaaccagat gtctatcctt aagattttca aatagaaaac aaattaacag actat 295 <210> 157 <211> 126 <212> DNA <213> Homo sapien <400> 157 acaagtttaa atagtgctgt cactgtgcat gtgctgaaat gtgaaatcca ccacatttct 60 gaagagcaaa acaaattctg tcatgtaatc tctatcttgg gtcgtgggta tatctgtccc 120 cttaqt 126 <210> 158 <211> 442 <212> DNA <213> Homo sapien <220> <221> misc feature <222> (1) ... (442) <223> n = A, T, C or G<400> 158 acceactggt cttggaaaca cccatcetta atacgatgat ttttctgtcg tgtgaaaatg aanccagcag gctgccccta gtcagtcctt ccttccagag aaaaagagat ttgagaaagt 120 geotgggtaa tteaccatta attteeteee ecaaactete tgagtettee ettaatatt 180 ctggtggttc tgaccaaagc aggtcatggt ttgttgagca tttggggatcc cagtgaagta : 240 natgtttgta gccttgcata cttagccctt cccacgcaca aacggagtgg cagagtggtg ccaaccetgt tttcccagte cacgtagaca gattcacagt geggaattet ggaagetgga 300 360 nacagacggg ctctttgcag agccgggact ctgagangga catgagggcc tctgcctctg 420 tgttcattct ctgatgtcct qt 442 <210> 159 <211> 498 <212> DNA <213> Homo sapien · <220> <221> misc feature <222> (1) ... (498) $\langle 223 \rangle$ n = A,T,C or G <400> 159 acttccaggt aacgttgttg tttccgttga gcctgaactg atgggtgacg ttgtaggttc 60 tccaacaaga actgaggttg cagagcgggt agggaagagt gctgttccag ttgcacctgg getgetgtgg actgttgttg attecteact acggcccaag gttgtggaac tggcanaaag 120 180 gtgtgttgtt gganttgage tegggegget gtggtaggtt gtgggetett caacagggge 240 tgctgtggtg ccgggangtg aangtgttgt gtcacttgag cttggccagc tctggaaagt 300 antanattet teetgaagge cagegettgt ggagetggea ngggteantg ttgtgtgtaa 360 cgaaccagtg ctgctgtggg tgggtgtana tcctccacaa agcctgaagt tatggtgtcn 420 tcaggtaana atgtggtttc agtgtccctg ggcngctgtg gaaggttgta nattgtcacc

aagggaataa gctgtggt	498
<210> 160	
<211> 380	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)(380)	
<223> n = A,T,C or G	
<400> 160	
acctgcatcc agcttccctg ccaaactcac aaggagacat caacctctag acagggaaac	60
agetteagga tactteeagg agacagagee accageagea aaacaaatat teecatgeet	120
ggagcatggc atagaggaag ctganaaatg tggggtctga ggaagccatt tgagtctggc cactagacat ctcatcagcc acttgtgtga agagatgccc catgacccca gatgcctctc	180 240
ccaccettac etecatetca cacacttgag etttecacte tgtataatte taacateetg	300
gagaaaaatg gcagtttgac cgaacctgtt cacaacggta gaggctgatt tctaacgaaa	360
cttgtagaat gaagcctgga	380
<210> 161	
<211> ·114	
<212> DNA	
<213> Homo sapien	
<400> 161	
actccacate ecetetgage aggeggttgt egtteaaggt gtatttggee ttgeetgtea	60
cactgtccac tggcccctta tccacttggt gcttaatccc tcgaaagagc atgt	114
<210> 162	
<211> 177	
<212> DNA	
<213> Homo sapien	
<400> 162	
actttctgaa tcgaatcaaa tgatacttag tgtagtttta atatcctcat atatatcaaa	60
gttttactac tctgataatt ttgtaaacca ggtaaccaga acatccagtc atacagcttt	120
tggtgatata taacttggca ataacccagt ctggtgatac ataaaactac tcactgt	177
<210> 163	
<211> 137	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)(137) <223> n = A,T,C or G	
(223) II = A,1,C OF G	
<400> 163	60
catttataca gacaggegtg aagacattea egacaaaaac gegaaattet atecegtgac canagaagge agetaegget actectacat eetggegtgg gtggeetteg eetgeacett	60 120
catcagogge atgatgt	137
<210> 164	
<211> 469	
<212> DNA	

```
<213> Homo sapien
         <220>
         <221> misc_feature
         <222> (1) ... (469)
        <223> n = A,T,C or G
        <400> 164
  cttatcacaa tgaatgttct cctgggcagc gttgtgatct ttgccacctt cgtgacttta
  tgcaatgcat catgctattt catacctaat gagggagttc caggagattc aaccaggaaa
  tgcatggatc tcaaaggaaa caaacaccca ataaactcgg agtggcagac tgacaactgt
                                                                          120
  gagacatgca cttgctacga aacagaaatt tcatgttgca cccttgtttc tacacctgtg
                                                                          180
  ggttatgaca aagacaactg ccaaagaatc ttcaagaagg aggactgcaa gtatatcgtg
                                                                          240
  gtggagaaga aggacccaaa aaagacctgt tctgtcagtg aatggataat ctaatgtgct
                                                                         300
  tetagtagge acagggetee caggecagge etcattetee tetggeetet aatagteaat
                                                                         360
  gattgtgtag ccatgcctat cagtaaaaag atntttgagc aaacacttt
                                                                         420
                                                                         469
        <210> 165
        <211> 195
        <212> DNA
        <213> Homo sapien
        <220>
       <221> misc_feature
       <222> (1) ... (195)
       <223> n = A, T, C or G
       <400> 165
 acagtttttt atanatatcg acattgccgg cacttgtgtt cagtttcata aagctggtgg
 atcogctgtc atcoactatt cottggctag agtaaaaatt attottatag cocatgtccc
                                                                         -60
 tgcaggccgc ccgcccgtag ttctcgttcc agtcgtcttg gcacacaggg tgccaggact
                                                                         120
                                                                        180
 tcctctgaga tgagt
                                                                        195
       <210> 166
       <211> 383
       <212> DNA
       <213> Homo sapien
       <220>
      <221> misc_feature
      <222> (1) . . . (383)
      <223> n = A,T,C \text{ or } G
      <400> 166
acatettagt agtgtggcae atcagggge cateagggte acagteacte atageetege
cgaggtcgga gtccacacca ccggtgtagg tgtgctcaat cttgggcttg gcgcccacct
                                                                        60
ttggagaagg gatatgctgc acacacatgt ccacaaagcc tgtgaactcg ccaaagaatt
                                                                        120
tttgcagacc agcctgagca aggggcggat gttcagcttc agctcctcct tcgtcaggtg
                                                                        180
gatgccaacc tegtetangg teegtgggaa getggtgtee aenteaceta caacetggge
                                                                        240
gangatetta taaagagget eenagataaa etecaegaaa ettetetggg agetgetagt
                                                                       300
nggggccttt ttggtgaact ttc
                                                                       360
                                                                       383
      <210> 167
      <211> 247
      <212> DNA
      <213> Homo sapien
     <220>
```

1

```
<221> misc_feature
      <222> (1) ... (247)
      <223> n = A, T, C or G
      <400> 167
acagagecag acettggeca taaatgaane agagattaag actaaacece aaqteganat
tggagcagaa actggagcaa gaagtgggcc tggggctgaa gtagagacca aggccactgc
                                                                         120
tatanccata cacagageca acteteagge caaggenatg gttggggeag anceagagae
                                                                         180
tcaatctgan tccaaagtgg tggctggaac actggtcatg acanaggcag tgactctgac
                                                                         240
tgangtc
                                                                         247
      <210> 168
      <211> 273
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(273)
      <223> n = A, T, C \text{ or } G
      <400> 168
acttctaagt tttctagaag tggaaggatt gtantcatcc tgaaaatggg tttacttcaa
                                                                         60
aatccctcan ccttgttctt cacnactgtc tatactgana gtgtcatgtt tccacaaagg
                                                                         120
gctgacacct gagcctgnat tttcactcat ccctgagaag ccctttccag tagggtgggc
                                                                         180
aatteecaae tteettgeea caagetteee aggetttete ceetggaaaa eteeagettg
                                                                         240
agteccagat acacteatgg getgecetgg gea
                                                                         273
      <210> 169
      <211> 431
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(431)
      \langle 223 \rangle n = A,T,C or G
      <400> 169
acageettgg ettecceaaa etecacagte teagtgeaga aagateatet tecageagte
                                                                         60
agctcagacc agggtcaaag gatgtgacat caacagtttc tggtttcaga acaggttcta
                                                                        120
ctactgtcaa atgaccccc atacttcctc aaaggctgtg gtaagttttg cacaggtgag
                                                                        180
ggcagcagaa agggggtant tactgatgga caccatcttc tctgtatact ccacactgac
                                                                        240
cttgccatgg gcaaaggccc ctaccacaaa aacaatagga tcactgctgg gcaccagctc
                                                                        300
acgcacatca ctgacaaccg ggatggaaaa agaantgcca actttcatac atccaactgg
                                                                        360
aaagtgatct gatactggat tettaattae etteaaaage ttetggggge cateagetge
                                                                        420
tcgaacactg a
                                                                        431
      <210> 170
      <211> 266
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (266)
     <223> n = A, T, C \text{ or } G
```

```
<400> 170
   acctgtgggc tgggctgtta tgcctgtgcc ggctgctgaa agggagttca gaggtggagc
   tcaaggaget etgeaggeat tttgccaane etetecanag canagggage aacetacaet
                                                                           60
   ccccgctaga aagacaccag attggagtcc tgggaggggg agttggggtg ggcatttgat
                                                                          120
   gtatacttgt cacctgaatg aangagccag agaggaanga gacgaanatg anattggcct
                                                                          180
                                                                          240
   tcaaagctag gggtctggca ggtgga
                                                                         266
         <210> 171
         <211> 1248
         <212> DNA
         <213> Homo sapien
        <220>
        <221> misc_feature
        <222> (1)...(1248)
        \langle 223 \rangle n = A,T,C or G
        <400> 171
  ggcagccaaa tcataaacgg cgaggactgc agcccgcact cgcagccctg gcaggcggca
  ctggtcatgg aaaacgaatt gttctgctcg ggcgtcctgg tgcatccgca gtgggtgctg
  tragccgcac actgtttcca gaagtgagtg cagagetect acaccatcgg getgggeetg
                                                                         120
  cacagtettg aggecgacca agagecaggg agecagatgg tggaggecag ceteteegta
                                                                         180
  cggcacccag agtacaacag accettgete getaacgace teatgeteat caagttggac
                                                                         240
 gaatccgtgt ccgagtctga caccatccgg agcatcagca ttgcttcgca gtgccctacc
                                                                        300
 geggggaact ettgeetegt ttetggetgg ggtetgetgg egaacggeag aatgeetace
                                                                        360
 gtgctgcagt gcgtgaacgt gtcggtggtg tctgaggagg tctgcagtaa gctctatgac
                                                                        420
 cegetgtace acceeageat gttetgegee ggeggaggge aagaceagaa ggaeteetge
                                                                        480
 aacggtgact ctggggggcc cctgatctgc aacgggtact tgcagggcct tgtgtctttc
                                                                        540
 ggaaaagccc cgtgtggcca agttggcgtg ccaggtgtct acaccaacct ctgcaaattc
                                                                        600
 actgagtgga tagagaaaac cgtccaggcc agttaactct ggggactggg aacccatgaa
                                                                        660
 attgacccc aaatacatcc tgcggaagga attcaggaat atctgttccc agcccctcct
                                                                        720
 ccctcaggcc caggagtcca ggcccccagc ccctcctccc tcaaaccaag ggtacagatc
                                                                        780
 cccagccctt cctccctcag acccaggagt ccagaccccc cagcccctcc tccctcagac
                                                                        840
 ccaggagtec agecectect ceeteagace caggagteca gacececcag ecetectee
                                                                        900
 ctcagaccca ggggtccagg cccccaaccc ctcctccctc agactcagag gtccaagccc
                                                                        960
 ccaaccente attecccaga cccagaggte caggteccag eccetentee etcagaccea
                                                                       1020
 geggtecaat gecaectaga etnteeetgt acacagtgee eeettgtgge acgttgaece
                                                                       1080
 aaccttacca gttggttttt catttttngt ccctttcccc tagatccaga aataaagttt
                                                                       1140
aagagaagng caaaaaaaaa aaaaaaaaa aaaaaaaa
                                                                       1200
                                                                       1248
       <210> 172
       <211> 159
       <212> PRT
       <213> Homo sapien
      <220>
      <221> VARIANT
      <222> (1)...(159)
      <223> Xaa = Any Amino Acid
      <400> 172
Met Val Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro
                                    10
Leu Leu Ala Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser
            20
                                25
Glu Ser Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr
                            40
Ala Gly Asn Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Gly
```

```
55
Arg Met Pro Thr Val Leu Gln Cys Val Asn Val Ser Val Val Ser Glu
                    70
Glu Val Cys Ser Lys Leu Tyr Asp Pro Leu Tyr His Pro Ser Met Phe
                                    90
Cys Ala Gly Gly Gln Kaa Gln Kaa Asp Ser Cys Asn Gly Asp Ser
                                105
Gly Gly Pro Leu Ile Cys Asn Gly Tyr Leu Gln Gly Leu Val Ser Phe
                            120
Gly Lys Ala Pro Cys Gly Gln Val Gly Val Pro Gly Val Tyr Thr Asn
                        135
                                            140
Leu Cys Lys Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Ala Ser
                    150
      <210> 173
      <211> 1265
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(1265)
      <223> n = A,T,C or G
      <400> 173
ggcagcccgc actcgcagcc ctggcaggcg gcactggtca tggaaaacga attgttctgc
                                                                        60
tegggegtee tggtgeatee geagtgggtg etgteageeg caeaetgttt ceagaactee
                                                                       120
tacaccateg ggctgggcct gcacagtett gaggccgace aagagccagg gagccagatg
                                                                       180
gtggaggcca gcctctccgt acggcaccca gagtacaaca gacccttgct cgctaacgac
                                                                       240
ctcatgctca tcaagttgga cgaatccgtg tccgagtctg acaccatccg gagcatcagc
                                                                      300
attgettege agtgeectae egeggggaae tettgeeteg tttetggetg gggtetgetg
                                                                       360
gcgaacggtg agctcacggg tgtgtgtctg ccctcttcaa ggaggtcctc tgcccagtcg
                                                                      420
cgggggctga cccagagctc tgcgtcccag gcagaatgcc taccgtgctg cagtgcgtga
                                                                      480
acgtgtcggt ggtgtctgag gaggtctgca gtaagctcta tgacccqctg taccacccca
                                                                      540
gcatgttctg cgccggcgga gggcaagacc agaaggactc ctgcaacggt gactctgggg
                                                                      600
ggcccctgat ctgcaacggg tacttgcagg gccttgtgtc tttcggaaaa gccccgtgtg
                                                                      660
gccaagttgg cgtgccaggt gtctacacca acctctgcaa attcactgag tggatagaga
                                                                      720
aaaccgtcca ggccagttaa ctctggggac tgggaaccca tgaaattgac ccccaaatac
                                                                      780
atcctgcgga aggaattcag gaatatctgt tcccaqccc tcctccctca qqcccaqqaq
                                                                      840
tecaggece cagecetee teeteaaac caagggtaca gateeecage cecteetee
                                                                      900
teagacecag gagtecagae eccecagece etectecete agacecagga gtecagecee
                                                                      960
tecteentea gacceaggag tecagaceee ceageceete eteceteaga eecaggggtt
                                                                     1020
gaggececca acceetecte etteagagte agaggtecaa gececeaace ectegtteee
                                                                     1080
cagacccaga ggtnnaggtc ccagcccctc ttccntcaga cccagnggtc caatgccacc
                                                                     1140
tagattttcc ctgnacacag tgcccccttg tggnangttg acccaacctt accagttggt
                                                                     1200
ttttcatttt tngtcccttt cccctagatc cagaaataaa gtttaagaga ngngcaaaaa
                                                                     1260
aaaaa
                                                                     1265
      <210> 174
      <211> 1459
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
     <222> (1)...(1459)
     <223> n = A,T,C or G
```

```
<400> 174
   ggtcagccgc acactgtttc cagaagtgag tgcagagctc ctacaccatc gggctgggcc
   tgcacagtet tgaggeegae caagageeag ggageeagat ggtggaggee ageeteteeg
                                                                           60
   tacggcaccc agagtacaac agaccettge tegetaacga ceteatgete atcaagttgg
                                                                          120
   acgaatcegt gtccgagtct gacaccatcc ggagcatcag cattgcttcg cagtgcccta
                                                                          180
   ccgcggggaa ctcttgcctc gtttctggct ggggtctgct ggcgaacggt gagctcacgg
                                                                          240
   gtgtgtgtet gecetettea aggaggteet etgeeeagte gegggggetg acceagaget
                                                                          300
  ctgcgtccca ggcagaatgc ctaccgtgct gcagtgcgtg aacgtgtcgg tggtgtctga
                                                                          360
  ngaggtetge antaagetet atgaceeget gtaceacece ancatgttet gegeeggegg
                                                                          420
  agggcaagac cagaaggact cctgcaacgt gagagaggg aaaggggagg gcaggcgact
                                                                          480
  cagggaaggg tggagaaggg ggagacagag acacacaggg ccgcatggcg agatgcagag
                                                                          540
  atggagagac acacagggag acagtgacaa ctagagagag aaactgagag aaacagagaa
                                                                         600
  ataaacacag gaataaagag aagcaaagga agagagaaac agaaacagac atggggaggc
                                                                         660
  agaaacacac acacatagaa atgcagttga ccttccaaca gcatggggcc tgagggcggt
                                                                         720
  gacctccacc caatagaaaa tcctcttata acttttgact ccccaaaaac ctgactagaa
                                                                         780
  atagectaet gttgaegggg ageettaeea ataacataaa tagtegattt atgeataegt
                                                                         840
  tttatgcatt catgatatac ctttgttgga attttttgat atttctaagc tacacagttc
                                                                         900
  gtctgtgaat ttttttaaat tgttgcaact ctcctaaaat ttttctgatg tgtttattga
                                                                         960
  aaaaatccaa gtataagtgg acttgtgcat tcaaaccagg gttgttcaag ggtcaactgt
                                                                        1020
  gtacccagag ggaaacagtg acacagattc atagaggtga aacacgaaga gaaacaggaa
                                                                        1080
  aaatcaagac tctacaaaga ggctgggcag ggtggctcat gcctgtaatc ccagcacttt
                                                                        1140
 gggaggcgag gcaggcagat cacttgaggt aaggagttca agaccagcct ggccaaaatg
                                                                        1200
 gtgaaatcct gtctgtacta aaaatacaaa agttagctgg atatggtggc aggcgcctgt
                                                                        1260
 aatcccagct acttgggagg ctgaggcagg agaattgctt gaatatggga ggcagaggtt
                                                                        1320
 gaagtgagtt gagatcacac cactatactc cagetggggc aacagagtaa gactetgtet
                                                                        1380
                                                                        1440
 Caaaaaaaa aaaaaaaaa
                                                                        1459
       <210> 175
       <21.1> 1167
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(1167)
       <223> n = A,T,C \text{ or } G
       <400> 175
gegeageest ggeaggegge actggteatg gaaaacgaat tgttetgete gggegteetg
gtgcatccgc agtgggtgct gtcagccgca cactgtttcc agaactccta caccatcggg
                                                                         60
ctgggcctgc acagtcttga ggccgaccaa gagccaggga gccagatggt ggaggccagc
                                                                        120
ctctccgtac ggcacccaga gtacaacaga ctcttgctcg ctaacgacct catgctcatc
                                                                        180
aagttggacg aatccgtgtc cgagtctgac accatccgga gcatcagcat tgcttcgcag
                                                                        240
tgccctaccg cggggaactc ttgcctcgtn tctggctggg gtctgctggc gaacggcaga
                                                                       300
atgectaceg tgetgeactg cgtgaacgtg teggtggtgt etgaggangt etgeagtaag
                                                                       360
ctctatgacc cgctgtacca ccccagcatg ttctgcgccg gcggagggca agaccagaag
                                                                       420
gacteetgea aeggtgacte tggggggeee etgatetgea aegggtactt geagggeett
                                                                       480
gtgtctttcg gaaaagcccc gtgtggccaa cttggcgtgc caggtgtcta caccaacctc
                                                                       540
tgcaaattca ctgagtggat agagaaaacc gtccagncca gttaactctg gggactggga
                                                                       600
acccatgaaa ttgaccccca aatacatcct gcggaangaa ttcaggaata tctgttccca
                                                                       660
gecectecte ecteaggee aggagtecag gececage ecteeteet caaaccaagg
                                                                       720
gtacagatec ccageceete eteceteaga eccaggagte cagacecece ageceetent
                                                                       780
centeagace caggagteca geceetecte enteagaege aggagtecag acceeceage
                                                                       840
cententeeg teagacecag gggtgeagge ecceaacece tenteentea gagteagagg
                                                                       900
tecaageeee caaceeeteg tteeceagae ceagaggtne aggteecage ceeteetee
                                                                       960
tcagacccag cggtccaatg ccacctagan tntccctgta cacagtgccc ccttgtggca
                                                                      1020
ngttgaccca accttaccag ttggtttttc attttttgtc cctttcccct agatccagaa
                                                                      1080
                                                                      1140
ataaagtnta agagaagcgc aaaaaaa
                                                                      1167
```

```
<210> 176
      <211> 205
      <212> PRT
      <213> Homo sapien
      <220>
      <221> VARIANT
      <222> (1)...(205)
      <223> Xaa = Any Amino Acid
      <400> 176
Met Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln Trp
                5
                                    10
Val Leu Ser Ala Ala His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu
            20
                                25
Gly Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val
                            40
                                                45
Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Leu Leu
                        55
                                            60
Ala Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser Glu Ser
                    70
                                        75
Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr Ala Gly
                85
                                    90
Asn Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Gly Arg Met
                                105
                                                    110
Pro Thr Val Leu His Cys Val Asn Val Ser Val Val Ser Glu Xaa Val
                            120
                                                125
Cys Ser Lys Leu Tyr Asp Pro Leu Tyr His Pro Ser Met Phe Cys Ala
                        135
Gly Gly Gln Asp Gln Lys Asp Ser Cys Asn Gly Asp Ser Gly Gly
                    150
                                        155
Pro Leu Ile Cys Asn Gly Tyr Leu Gln Gly Leu Val Ser Phe Gly Lys
                165
                                    170
Ala Pro Cys Gly Gln Leu Gly Val Pro Gly Val Tyr Thr Asn Leu Cys
                                185
Lys Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Xaa Ser
                            200
      <210> 177
      <211> 1119
      <212> DNA
      <213> Homo sapien
      <400> 177
gcgcactcgc agccctggca ggcggcactg gtcatggaaa acgaattgtt ctgctcgggc
gtcctggtgc atccgcagtg ggtgctgtca gccgcacact gtttccagaa ctcctacacc
                                                                       120
ategggetgg geetgeacag tettgaggee gaccaagage cagggageea gatggtggag
gccagcctct ccgtacggca cccagagtac aacagaccct tgctcgctaa cgacctcatg
                                                                       240
ctcatcaagt tggacgaatc cgtgtccgag tctgacacca tccggagcat cagcattgct
                                                                      300
tegeagtgee ctacegeggg gaactettge etegtttetg getggggtet getggegaac
                                                                      360
gatgctgtga ttgccatcca gtcccagact gtgggaggct gggagtgtga gaagctttcc
                                                                      420
caaccetgge agggttgtac cattteggea acttecagtg caaggacgte etgetgeate
                                                                      480
ctcactgggt gctcactact gctcactgca tcacccggaa cactgtgatc aactagccag
                                                                      540
caccatagtt etcegaagte agactateat gattactgtg ttgactgtgc tgtetattgt
                                                                      600
actaaccatg ccgatgttta ggtgaaatta gcgtcacttg gcctcaacca tcttggtatc
                                                                      660
cagttatect caetgaattg agattteetg etteagtgte agecatteee acataattte
                                                                      720
tgacctacag aggtgaggga tcatatagct cttcaaggat gctggtactc ccctcacaaa
                                                                      780
```

```
ttcatttctc ctgttgtagt gaaaggtgcg ccctctggag cctcccaggg tgggtgtgca
   ggtcacaatg atgaatgtat gatcgtgttc ccattaccca aagcctttaa atccctcatg
                                                                          840
   ctcagtacac cagggcaggt ctagcatttc ttcatttagt gtatgctgtc cattcatgca
                                                                          900
   accacctcag gactcctgga ttctctgcct agttgagctc ctgcatgctg cctccttggg
                                                                          960
   gaggtgaggg agagggccca tggttcaatg ggatctgtgc agttgtaaca cattaggtgc
                                                                         1020
   ttaataaaca gaagctgtga tgttaaaaaa aaaaaaaaa
                                                                         1080
                                                                         1119
         <210> 178
         <211> 164
         <212> PRT
         <213> Homo sapien
        <220>
        <221> VARIANT
        <222> (1)...(164)
        <223> Xaa = Any Amino Acid
        <400> 178
  Met Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln Trp
                  5
                                      10
  Val Leu Ser Ala Ala His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu
                                  25
  Gly Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val
                              40
  Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro Leu Leu
                          55
 Ala Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser Glu Ser
                                             60
                     70
                                        .75
 Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr Ala Gly
                                     90 🙏
 Asn Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Asp Ala Val .
                                 105
 Ile Ala Ile Gln Ser Xaa Thr Val Gly Gly Trp Glu Cys Glu Lys Leu
                             120
                                                 125
 Ser Gln Pro Trp Gln Gly Cys Thr Ile Ser Ala Thr Ser Ser Ala Arg
                         135
                                             140
 Thr Ser Cys Cys Ile Leu Thr Gly Cys Ser Leu Leu Leu Thr Ala Ser
                     150
                                         155
 Pro Gly Thr Leu
                                                             160
      <210> 179
      <211> 250
      <212> DNA
      <213> Homo sapien
      <400> 179
ctggagtgcc ttggtgtttc aagcccctgc aggaagcaga atgcaccttc tgaggcacct
ccagctgccc ccggccgggg gatgcgaggc tcggagcacc cttgcccggc tgtgattgct
                                                                        60
gccaggcact gttcatctca gcttttctgt ccctttgctc ccggcaagcg cttctgctga
                                                                       120
aagttcatat ctggagcctg atgtcttaac gaataaaggt cccatgctcc acccgaaaaa
                                                                       180
                                                                       240
                                                                       250
      <210> 180
      <211> 202
     <212> DNA
     <213> Homo sapien
```

```
<400> 180
actaqtccaq tqtgqtqqaa ttccattqtg ttqqqcccaa cacaatqqct acctttaaca
                                                                        60
teacceagae eeegeeeetg eeegtgeeee acgetgetge taacgacagt atgatgetta
                                                                        120
ctctqctact cqqaaactat ttttatgtaa ttaatqtatq ctttcttqtt tataaatqcc
                                                                        180
tgatttaaaa aaaaaaaaaa aa
                                                                        202
      <210> 181
      <211> 558
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(558)
      <223> n = A,T,C \text{ or } G
      <400> 181
tccytttgkt naggtttkkg agacamccck agacctwaan ctgtgtcaca gacttcyngg
                                                                        60
aatgtttagg cagtgctagt aatttcytcg taatgattct gttattactt tcctnattct
                                                                       120
ttattcctct ttcttctgaa gattaatgaa gttgaaaatt gaggtggata aatacaaaaa
                                                                       180
ggtagtgtga tagtataagt atctaagtgc agatgaaagt gtgttatata tatccattca
                                                                       240
aaattatgca agttagtaat tactcagggt taactaaatt actttaatat gctqttqaac
                                                                       300
ctactctqtt ccttqqctaq aaaaaattat aaacaqqact ttqttaqttt qqqaaqccaa
                                                                       360
attgataata ttctatgttc taaaagttgg gctatacata aattattaag aaatatggaw
                                                                       420
ttttattccc aggaatatgg kgttcatttt atgaatatta cscrggatag awgtwtgagt
                                                                       480
aaaaycagtt ttggtwaata ygtwaatatg tcmtaaataa acaakgcttt gacttatttc.
                                                                       540
caaaaaaaa aaaaaaaa
                                                                       558
      <210> 182
      <211> 479
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(479)
      <223> n = A, T, C \text{ or } G
      <400> 182
acagggwttk grggatgcta agsccccrga rwtygtttga tccaaccctg gcttwttttc
agaggggaaa atggggccta gaagttacag mscatytagy tggtgcgmtg gcacccctgg
                                                                       120
esteacacag asteeegagt agetgggact acaggeacac agteactgaa geaggeectg
                                                                       180
ttwgcaattc acgttgccac ctccaactta aacattcttc atatgtgatg tccttagtca
                                                                       240
ctaaggttaa actttcccac ccagaaaagg caacttagat aaaatcttag agtactttca
                                                                       300
tactmttcta agtcctcttc cagcctcact kkgagtcctm cytgggggtt gataggaant
                                                                       360
ntctcttggc tttctcaata aartctctat ycatctcatg tttaatttgg tacgcatara
                                                                       420
awtgstgara aaattaaaat gttctggtty mactttaaaa araaaaaaaa aaaaaaaaa
                                                                       479
      <210> 183
      <211> 384
      <212> DNA
      <213> Homo sapien
      <400> 183
aggcgggagc agaagctaaa gccaaagccc aagaagaqtq qcaqtqccaq cactqqtqcc
                                                                        60
agtaccagta ccaataacag tgccagtgcc agtgccaqca ccagtgqtqq cttcaqtgct
                                                                       120
ggtgccagcc tgaccgccac tctcacattt gggctcttcg ctggccttgg tggagctggt
                                                                       180
gccagcacca gtggcagctc tggtgcctgt ggtttctcct acaagtgaga ttttagatat
                                                                       240
```

```
tgttaatcct gccagtcttt ctcttcaagc cagggtgcat cctcagaaac ctactcaaca
   cagcactcta ggcagccact atcaatcaat tgaagttgac actctgcatt aratctattt
                                                                           300
   gccatttcaa aaaaaaaaaa aaaa
                                                                           360
                                                                           384
          <210> 184
         <211> 496
         <212> DNA
         <213> Homo sapien
         <220>
         <221> misc_feature
         <222> (1)...(496)
         \langle 223 \rangle n = A,T,C or G
         <400> 184
   accgaattgg gaccgctggc ttataagcga tcatgtyynt ccrgtatkac ctcaacgagc
  agggagatcg agtctatacg ctgaagaaat ttgacccgat gggacaacag acctgctcag
                                                                           60
  cecatectge teggttetee ceagatgaca aatactetsg acacegaate accateaaga
                                                                          120
  aacgetteaa ggtgeteatg acceageaac egegeeetgt eetetgaggg teeettaaac
                                                                          180
  tgatgtcttt tctgccacct gttacccctc ggagactccg taaccaaact cttcggactg
                                                                          240
  tgagccctga tgcctttttg ccagccatac tctttggcat ccagtctctc gtggcgattg
                                                                          300
  attatgcttg tgtgaggcaa tcatggtggc atcacccata aagggaacac atttgacttt
                                                                          360
  tttttctcat attttaaatt actacmagaw tattwmagaw waaatgawtt gaaaaactst
                                                                          420
  taaaaaaaaa aaaaaa
                                                                          480
                                                                          496
        <210> 185
        <211> 384
        <212> DNA
        <213> Homo sapien
        <400> 185
 gctggtagcc tatggcgkgg cccacggagg ggctcctgag gccacggrac agtgacttcc
 caagtatcyt gcgcsgcgtc ttctaccgtc cctacctgca gatcttcggg cagattcccc
                                                                          60
 aggaggacat ggacgtggcc ctcatggagc acagcaactg ytcgtcggag cccggcttct
                                                                         120
 gggcacaccc tcctggggcc caggcgggca cctgcgtctc ccagtatgcc aactggctgg
                                                                         180
 tggtgctgct cctcgtcatc ttcctgctcg tggccaacat cctgctggtc aacttgctca
                                                                         240
 ttgccatgtt cagttacaca ttcggcaaag tacagggcaa cagcgatctc tactgggaag
                                                                         300
 gcgcagcgtt accgcctcat ccgg
                                                                         360
                                                                         384
       <210> 186
       <211> 577
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1) ... (577)
      <223> n = A,T,C or G
      <400> 186
gagttagete etceacaace ttgatgaggt egtetgeagt ggeetetege tteatacege
tnecategic atactgtagg titgecacea cytectggca tettggggcg gentaatatt
                                                                         60
ccaggaaact ctcaatcaag tcaccgtcga tgaaacctgt gggctggttc tgtcttccgc
                                                                        120
teggtgtgaa aggatetece agaaggagtg etegatette eccaeaettt tgatgaettt
                                                                        180
attgagtcga ttctgcatgt ccagcaggag gttgtaccag ctctctgaca gtgaggtcac
                                                                        240
cagccctatc atgccgttga mcgtgccgaa garcaccgag ccttgtgtgg gggkkgaagt
                                                                        300
ctcacccaga ttctgcatta ccagagagcc gtggcaaaag acattgacaa actcgcccag
                                                                        360
gtggaaaaag amcameteet ggargtgetn geegeteete gtemgttggt ggeagegetw
                                                                        420
                                                                       480
```

```
tecttttgac acacaaacaa gttaaaggca ttttcagece ceagaaantt gteateatee
                                                                        540
aagatntcqc acagcactna tccaqttggg attaaat
                                                                        577
      <210> 187
      <211> 534
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(534)
      <223> n = A,T,C \text{ or } G
      <400> 187
aacatcttcc tgtataatgc tgtqtaatat cgatccgatn ttqtctgstg aqaatycatw
                                                                         60
actkggaaaa gmaacattaa agcctggaca ctggtattaa aattcacaat atgcaacact
                                                                        120
ttaaacagtg tgtcaatctg ctcccyynac tttgtcatca ccagtctggg aakaagggta
                                                                        180
tgccctattc acacctgtta aaagggcgct aagcattttt gattcaacat ctttttttt
                                                                        240
gacacaagtc cgaaaaaagc aaaagtaaac agttatyaat ttgttagcca attcactttc
                                                                        300
ttcatgggac agagccatyt gatttaaaaa gcaaattgca taatattgag cttygggagc
                                                                        360
tgatatttga geggaagagt ageettteta etteaceaga cacaaeteee ttteatattg
                                                                        420
ggatgttnac naaagtwatg tctctwacag atgggatgct tttgtggcaa ttctgttctg
                                                                        480
aggatetece agtttattta ceaettgeae aagaaggegt tttetteete agge
                                                                        534
      <210> 188
      <211> 761
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1) ... . (761)
      \langle 223 \rangle n = A,T,C or G
      <400> 188
agaaaccagt atctctnaaa acaacctctc ataccttgtg gacctaattt tgtgtgcgtg
                                                                         60
tgtgtgtgcg cgcatattat atagacaggc acatcttttt tacttttgta aaagcttatg
                                                                      . 120
cctctttggt atctatatct gtgaaagttt taatgatctg ccataatgtc ttggggacct
                                                                        180
ttgtcttctg tgtaaatggt actagagaaa acacctatnt tatgagtcaa tctagttngt
                                                                        240
tttattcgac atgaaggaaa tttccagatn acaacactna caaactctcc ctkgackarg
                                                                        300
ggggacaaag aaaagcaaaa ctgamcataa raaacaatwa cctgqtqaqa arttqcataa
                                                                        360
acagaaatwr ggtagtatat tgaarnacag catcattaaa rmgttwtktt wttctccctt
                                                                        420
gcaaaaaaca tgtacngact tcccgttgag taatgccaag ttgtttttt tatnataaaa
                                                                        480
cttgcccttc attacatgtt tnaaagtggt gtggtgggcc aaaatattga aatgatggaa
                                                                        540
ctgactgata aagctgtaca aataagcagt gtgcctaaca agcaacacag taatgttgac
                                                                        600
atgcttaatt cacaaatgct aatttcatta taaatgtttg ctaaaataca ctttgaacta
                                                                        660
tttttctgtn ttcccagagc tgagatntta gattttatgt agtatnaagt gaaaaantac
                                                                        720
gaaaataata acattgaaga aaaananaaa aaanaaaaaa a
                                                                        761
      <210> 189
      <211> 482
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(482)
      <223> n = A, T, C or G
```

```
<400> 189
   ttttttttt tttgccgatn ctactattt attgcaggan gtgggggtgt atgcaccgca
   caccggggct atnagaagca agaaggaagg agggaggca cagcccttg ctgagcaaca
                                                                           60
   aageegeetg etgeettete tgtetgtete etggtgeagg cacatgggga gaeetteeee
                                                                          120
   aaggcagggg ccaccagtcc aggggtggga atacaggggg tgggangtgt gcataagaag
                                                                          180
  tgataggcac aggccacccg gtacagaccc ctcggctcct gacaggtnga tttcgaccag
                                                                          240
  gtcattgtgc cctgcccagg cacagcgtan atctggaaaa gacagaatgc tttccttttc
                                                                          300
  aaatttgget ngteatngaa ngggeanttt tecaanttng getnggtett ggtaenettg
                                                                          360
  gttcggccca gctccncgtc caaaaantat tcacccnnct ccnaattgct tgcnggnccc
                                                                          420
                                                                          480
                                                                          482
        <210> 190
        <211> 471
        <212> DNA
        <213> Homo sapien
        <220>
        <221> misc_feature
        <222> (1)...(471)
        <223> n = A,T,C \text{ or } G
        <400> 190
 ttttttttt ttttaaaaca gtttttcaca acaaaattta ttagaagaat agtggttttg
 aaaactctcg catccagtga gaactaccat acaccacatt acagctngga atgtneteca
                                                                          60
 aatgtctggt caaatgatac aatggaacca ttcaatctta cacatgcacg aaagaacaag
                                                                         120
 cgcttttgac atacaatgca caaaaaaaaa agggggggg gaccacatgg attaaaattt
                                                                         180
 taagtactca tcacatacat taagacacag ttctagtcca gtcnaaaatc agaactgcnt
                                                                         240
 tgaaaaattt catgtatgca atccaaccaa agaacttnat tggtgatcat gantnctcta
                                                                        300
 ctacatcnac cttgatcatt gccaggaacn aaaagttnaa ancacnengt acaaaaanaa
                                                                        360
 totgtaattn anttcaacct cogtacngaa aaatnttnnt tatacactcc c
                                                                        420
                                                                        471
       <210> 191
       <211> 402
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1) ... (402)
      <223> n = A,T,C \text{ or } G
      <400> 191
gagggattga aggtctgttc tastgtcggm ctgttcagcc accaactcta acaagttgct
gtottccact cactgtctgt aagottttta acccagacwg tatottcata aatagaacaa
                                                                        60
attetteace agteacatet tetaggacet ttttggatte agttagtata agetetteca
                                                                       120
cttcctttgt taagacttca tctggtaaag tcttaagttt tgtagaaagg aattyaattg
                                                                       180
ctcgttctct aacaatgtcc tctccttgaa gtatttggct gaacaaccca cctaaagtcc
                                                                       240
ctttgtgcat ccattttaaa tatacttaat agggcattgk tncactaggt taaattctgc
                                                                       300
aagagtcate tgtctgcaaa agttgcgtta gtatatctgc ca
                                                                       360
                                                                       402
      <210> 192
      <211> 601
      <212> DNA
     <213> Homo sapien
     <220>
     <221> misc_feature
```

```
<222> (1) ... (601)
      \langle 223 \rangle n = A,T,C or G
gageteggat ecaataatet ttgtetgagg geageacaea tatneagtge catggnaact
                                                                         60
ggtctacccc acatgggagc agcatgccgt agntatataa qqtcattccc tqaqtcaqac
                                                                        120
atgcytyttt gaytaccgtg tgccaagtgc tggtgattct yaacacacyt ccatcccgyt
                                                                        180
cttttgtgga aaaactggca cttktctgga actagcarga catcacttac aaattcaccc
                                                                        240
acgagacact tgaaaggtgt aacaaagcga ytcttgcatt gctttttgtc cctccggcac
                                                                        300
cagttgtcaa tactaacccg ctggtttgcc tccatcacat ttgtgatctg tagctctgga
                                                                        360
tacatetect gacagtactg aagaaettet tettttgttt caaaageare tettggtgee
                                                                        420
tgttggatca ggttcccatt tcccagtcyg aatgttcaca tggcatattt wacttcccac
                                                                        480
aaaacattgc gatttgaggc tcagcaacag caaatcctgt tccggcattg gctgcaagag
                                                                        540
cetegatgta geeggeeage geeaaggeag gegeegtgag eeceaceage ageagaagea
                                                                        600
                                                                        601
      <210> 193
      <211> 608
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(608)
      <223> n = A, T, C or G
      <400> 193
atacagecca nateccaeca egaagatgeg ettgttgaet gagaacetga tgeggteaet
                                                                        60
ggtcccgctg tagccccagc gactctccac ctgctggaaq cggttgatqc tgcactcytt
                                                                        120
cccaacgcag gcagmagcgg gsccggtcaa tgaactccay tcgtggcttg gggtkgacgg
                                                                        180
tkaagtgcag gaagaggctg accacctcgc ggtccaccag gatgcccgac tgtgcgggac
                                                                        240
ctgcagcgaa actcctcgat ggtcatgagc gggaagcgaa tgaggcccag ggccttgccc
                                                                        300
agaacettee geetgttete tggegteace tgeagetget geegetgaea eteggeeteg
                                                                        360
gaccagegga caaacggert tgaacagecg cacetcaegg atgeecagtg tgtegegete
                                                                        420
caggammgsc accagegtgt ccaggtcaat gteggtgaag cecteeqegg gtratqqeqt
                                                                        480
ctgcagtgtt tttgtcgatg ttctccaggc acaggctggc cagctgcggt tcatcgaaga
                                                                        540
gtcgcgcctg cgtgagcagc atgaaggcgt tgtcggctcg cagttcttct tcaggaactc
                                                                        600
cacqcaat
                                                                        608
      <210> 194
      <211> 392
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (392)
      <223> n = A, T, C \text{ or } G
      <400> 194
gaacggctgg accttgcctc gcattgtgct tgctggcagg gaataccttg gcaagcagyt
                                                                        60
ccagtccgag cagccccaga ccgctgccgc ccgaagctaa gcctgcctct ggccttcccc
                                                                       120
tccgcctcaa tgcagaacca gtagtgggag cactgtgttt agagttaaga gtgaacactg
                                                                       180
tttgatttta cttgggaatt tcctctgtta tataqctttt cccaatqcta atttccaaac
                                                                       240
aacaacaaca aaataacatg tttgcctgtt aagttgtata aaagtaggtg attctgtatt
                                                                       300
taaagaaaat attactgtta catatactgc ttgcaatttc tgtatttatt gktnctstgg
                                                                       360
aaataaatat agttattaaa ggttgtcant cc
                                                                       392
```

120

```
<210> 195
          <211> 502
          <212> DNA
          <213> Homo sapien
         <220>
         <221> misc_feature
         <222> (1)...(502)
         <223> n = A, T, C or G
         <400> 195
   ccsttkgagg ggtkaggkyc cagttyccga gtggaagaaa caggccagga gaagtgcgtg
   ccgagctgag gcagatgttc ccacagtgac ccccagagcc stgggstata gtytctgacc
                                                                           60
   cetencaagg aaagaccaes ttetggggae atgggetgga gggcaggace tagaggcaee
                                                                          120
   aagggaaggc cccattccgg ggstgttccc cgaggaggaa gggaaggggc tctgtgtgcc
                                                                          180
   ccccasgagg aagaggccct gagtcctggg atcagacacc ccttcacgtg tatccccaca
                                                                          240
  caaatgcaag ctcaccaagg tcccctctca gtccccttcc stacaccctg amcggccact
                                                                          300
  gscscacac caccagage acgccaccg ccatggggar tgtgctcaag gartcgcngg
                                                                          360
  gcarcgtgga catctngtcc cagaaggggg cagaatctcc aatagangga ctgarcmstt
                                                                          420
  gctnanaaaa aaaaanaaaa aa
                                                                          480
                                                                          502
        <210> 196
        <211> 665
        <212> DNA
        <213> Homo sapien
        <220>
        <221> misc_feature
        <222> (1)...(665)
        <223> n = A, T, C \text{ or } G
        <400> 196
 ggttacttgg tttcattgcc accacttagt ggatgtcatt tagaaccatt ttgtctgctc
 cctctggaag ccttgcgcag agcggacttt gtaattgttg gagaataact gctgaatttt
                                                                          60
 wagetgtttk gagttgatts geaceactge acceacaact teaatatgaa aacyawttga
                                                                         120
 actwatttat tatcttgtga aaagtataac aatgaaaatt ttgttcatac tgtattkatc
                                                                         180
 aagtatgatg aaaagcaawa gatatatatt ettttattat gttaaattat gattgeeatt
                                                                         240
 attaatcggc aaaatgtgga gtgtatgttc ttttcacagt aatatatgcc ttttgtaact
                                                                         300
 tcacttggtt attttattgt aaatgartta caaaattctt aatttaagar aatggtatgt
                                                                         360
 watatttatt tcattaattt ctttcctkgt ttacgtwaat tttgaaaaga wtgcatgatt
                                                                        420
 tettgacaga aategatett gatgetgtgg aagtagtttg acceacatee etatgagttt
                                                                        480
 ttettagaat gtataaaggt tgtageecat cnaactteaa agaaaaaaat gaccacatae
                                                                        540
 tttgcaatca ggctgaaatg tggcatgctn ttctaattcc aactttataa actagcaaan
                                                                        600
 aagtg
                                                                        660
                                                                        665
       <210> 197
       <211> 492
       <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(492)
      <223> n = A, T, C or G
      <400> 197
ttttnttttt tttttttgc aggaaggatt ccatttattg tggatgcatt ttcacaatat
atgtttattg gagcgatcca ttatcagtga aaagtatcaa gtgtttataa natttttagg
                                                                        60
```

```
aaggcagatt cacaqaacat gctnqtcnqc ttgcaqtttt acctcqtana qatnacaqaq
                                                                        180
aattatagtc naaccagtaa acnaggaatt tacttttcaa aagattaaat ccaaactgaa
                                                                        240
caaaattcta ccctgaaact tactccatcc aaatattgga ataanagtca gcagtgatac
                                                                        300
attotottot gaactitaga tittotagaa aaatatgtaa tagtgatcag gaagagotot
                                                                        360
                                                                        420
tgttcaaaag tacaacnaag caatgttccc ttaccatagg ccttaattca aactttgatc
catttcactc ccatcacggg agtcaatgct acctgggaca cttgtatttt gttcatnctg
                                                                        480
ancntggctt aa
                                                                        492
      <210> 198
      <211> 478
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1) ... (478)
      \langle 223 \rangle n = A,T,C or G
      <400> 198
tttnttttgn atttcantct gtannaanta ttttcattat gtttattana aaaatatnaa
                                                                        60
tgtntccacn acaaatcatn ttacntnagt aagaggccan ctacattgta caacatacac
                                                                       120
tgagtatatt ttgaaaagga caagtttaaa gtanacncat attgccganc atancacatt
                                                                       180
tatacatggc ttgattgata tttagcacag canaaactga gtgagttacc agaaanaaat
                                                                       240
natatatgtc aatcngattt aagatacaaa acagatccta tggtacatan catcntgtag
                                                                       300
gagttgtggc tttatgttta ctgaaagtca atgcagttcc tgtacaaaga gatggccgta
                                                                       360
agcattctag tacctctact ccatggttaa gaatcgtaca cttatgttta catatgtnca
                                                                       420
gggtaagaat tgtgttaagt naanttatgg agaggtccan gagaaaaatt tgatncaa
                                                                       478
     <210> 199
      <211> 482
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) . . . (482)
     <223> n = A, T, C or G
      <400> 199
agtgacttgt cctccaacaa aaccccttga tcaagtttgt ggcactgaca atcagaccta 🕐
                                                                        60
tgctagttcc tgtcatctat tcgctactaa atgcagactg gaggggacca aaaaggggca
                                                                       120
tcaactccag ctggattatt ttggagcctg caaatctatt cctacttgta cggactttga
                                                                       180
agtgattcag tttcctctac ggatgagaga ctggctcaag aatatcctca tgcagcttta
                                                                       240
tgaagccnac tctgaacacg ctggttatct nagatgagaa ncagagaaat aaagtcnaga
                                                                       300
aaatttacct ggangaaaag aggetttngg etggggacca teecattgaa eettetetta
                                                                       360
anggacttta agaanaaact accacatgtn tgtngtatcc tggtgccngg ccgtttantg
                                                                       420
aachtngach neaccettht ggaatanant ettgachgen teetgaactt geteetetge
                                                                       480
                                                                       482
     <210> 200
      <211> 270
     <212> DNA
     <213> Homo sapien
     <220>
     <221> misc_feature
     <222> (1)...(270)
     <223> n = A, T, C or G
```

```
<400> 200
  cggccgcaag tgcaactcca gctggggccg tgcggacgaa gattctgcca gcagttggtc
  cgactgcgac gacggcggcg gcgacagtcg caggtgcagc gcgggcgcct ggggtcttgc
                                                                       60
  aaggetgage tgacgecgca gaggtegtgt cacgteccae gacettgaeg eegtegggga
                                                                       120
  cagceggaac agageeggt gaangeggga ggeetegggg ageeetegg gaagggegge
                                                                       180
                                                                       240
  ccgagagata cgcaggtgca ggtggccgcc
                                                                      270
        <210> 201
        <211> 419
        <212> DNA
        <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(419)
       <223> n = A, T, C or G
       <400> 201
 tttttttttt ttttggaatc tactgcgagc acagcaggtc agcaacaagt ttattttgca
 gctagcaagg taacagggta gggcatggtt acatgttcag gtcaacttcc tttgtcgtgg
                                                                      60
 ttgattggtt tgtctttatg ggggcggggt ggggtagggg aaancgaagc anaantaaca
                                                                     120
 tggagtgggt gcaccetece tgtagaacet ggttacnaaa gettggggca gttcacetgg
                                                                     180
 tetgtgaceg teatttett gacateaatg ttattagaag teaggatate ttttagagag
                                                                     240
 tccactgtnt ctggagggag attagggttt cttgccaana tccaancaaa atccacntga
                                                                     300
 aaaagttgga tgatncangt acngaatacc ganggcatan ttctcatant cggtggcca
                                                                     360
                                                                     419
       <210> 202
      <211> 509
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(509)
      <223> n = A,T,C or G
      <400> 202
tggcacttaa tccattttta tttcaaaatg tctacaaant ttnaatncnc cattatacng
                                                                     60
gtnattttnc aaaatctaaa nnttattcaa atntnagcca aantccttac ncaaatnnaa
                                                                    120
tacnoncaaa aatcaaaaat ataontntot ttoagcaaac ttngttacat aaattaaaaa
                                                                    180
aatatatacg gctggtgttt tcaaagtaca attatcttaa cactgcaaac atntttnnaa
                                                                    240
ggaactaaaa taaaaaaaaa cactnccgca aaggttaaag ggaacaacaa attcntttta
                                                                    300
caacancnnc nattataaaa atcatatctc aaatcttagg ggaatatata cttcacacng
                                                                    360
ggatcttaac ttttactnca ctttgtttat ttttttanaa ccattgtntt gggcccaaca
                                                                    420
caatggnaat nccnccncnc tggactagt
                                                                    480
                                                                    509
     <210> 203
     <211> 583
     <212> DNA
     <213> Homo sapien
     <220>
     <221> misc_feature
     <222> (1)...(583)
     <223> n = A,T,C or G
```

```
<400> 203
ttttttttt tttttttga ccccctctt ataaaaaaca agttaccatt ttattttact
                                                                        60
 tacacatatt tattttataa ttggtattag atattcaaaa ggcagctttt aaaatcaaac
                                                                       120
taaatggaaa ctgccttaga tacataattc ttaggaatta gcttaaaatc tgcctaaagt
                                                                       180
gaaaatcttc tctaqctctt ttqactqtaa atttttqact cttqtaaaac atccaaattc
                                                                       240
attiticity totttaaaat tatctaatct ticcattitt tooctaticc aagtcaatit
                                                                       300
gcttctctag cctcatttcc tagctcttat ctactattag taagtggctt ttttcctaaa
                                                                       360
agggaaaaca ggaagagana atggcacaca aaacaaacat tttatattca tatttctacc
                                                                       420
tacgttaata aaatagcatt ttgtgaagcc agctcaaaag aaggcttaga tccttttatg
                                                                       480
tccattttag tcactaaacg atatcnaaag tgccagaatg caaaaggttt gtgaacattt
                                                                       540
attcaaaagc taatataaga tatttcacat actcatcttt ctg
                                                                       583
      <210> 204
      <211> 589
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(589)
      <223> n = A, T, C or G
      <400> 204
tttttttttt ttttttttt ttttttnctc ttctttttt ttganaatga ggatcgagtt
                                                                        60
tttcactctc tagatagggc atgaagaaaa ctcatctttc cagctttaaa ataacaatca
                                                                       120
aatctcttat gctatatcat attttaagtt aaactaatga gtcactggct tatcttctcc
                                                                       180
tgaaggaaat ctgttcattc ttctcattca tatagttata tcaagtacta ccttgcatat
                                                                       240
tgagaggttt ttcttctcta tttacacata tatttccatg tgaatttgta tcaaaccttt
                                                                       300
attttcatgc aaactagaaa ataatgtntt cttttgcata agagaagaga acaatatnag
                                                                       360
cattacaaaa ctgctcaaat tgtttgttaa gnttatccat tataattagt tnggcaggag
                                                                       420
ctaatacaaa tcacatttac ngacnagcaa taataaaact gaagtaccag ttaaatatcc
                                                                       480
aaaataatta aaggaacatt tttagcctgg gtataattag ctaattcact ttacaagcat
                                                                       540
ttattnagaa tgaattcaca tgttattatt ccntagccca acacaatgg
                                                                       589
      <210> 205
      <211> 545
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(545)
      <223> n = A,T,C or G
      <400> 205
tttttntttt ttttttcagt aataatcaga acaatattta tttttatatt taaaattcat
                                                                        60
agaaaagtgc cttacattta ataaaagttt gtttctcaaa gtgatcagag gaattagata
                                                                       120
tngtcttgaa caccaatatt aatttgagga aaatacacca aaatacatta agtaaattat
                                                                       180
ttaagatcat agagcttgta agtgaaaaga taaaatttga cctcagaaac tctgagcatt
                                                                      240
aaaaatccac tattagcaaa taaattacta tggacttctt gctttaattt tgtgatgaat
                                                                      300
atggggtgtc actggtaaac caacacattc tgaaggatac attacttagt gatagattct
                                                                      360
tatgtacttt gctanatnac gtggatatga gttgacaagt ttctctttct tcaatctttt
                                                                      420
aaggggcnga ngaaatgagg aagaaaagaa aaggattacg catactgttc tttctatngg
                                                                      480
aaggattaga tatgtttcct ttgccaatat taaaaaaata ataatgttta ctactagtga
                                                                      540
aaccc
                                                                      545
      <210> 206
```

<210> 206 <211> 487

```
<212> DNA
         <213> Homo sapien
         <220>
         <221> misc_feature
         <222> (1) ... (487)
         <223> n = A,T,C or G
         <400> 206
   ttttttttt tttttagtc aagtttctna tttttattat aattaaagtc ttggtcattt
   catttattag ctctgcaact tacatattta aattaaagaa acgttnttag acaactgtna
                                                                          60
  caatttataa atgtaaggtg ccattattga gtanatatat tcctccaaga gtggatgtgt
                                                                         120
  cccttctccc accaactaat gaancagcaa cattagttta attttattag tagatnatac
                                                                         180
  actgctgcaa acgctaattc tcttctccat ccccatgtng atattgtgta tatgtgtgag
                                                                         240
  ttggtnagaa tgcatcanca atctnacaat caacagcaag atgaagctag gcntgggctt
                                                                         300
  toggtgaaaa tagactgtgt ctgtctgaat caaatgatct gacctatcct cggtggcaag
                                                                         360
  aactettega accgetteet caaaggenge tgecacattt gtggentetn ttgeacttgt
                                                                         420
                                                                         480
                                                                         487
        <210> 207
        <211> 332
        <212> DNA
        <213> Homo sapien
        <220>
        <221> misc_feature
        <222> (1) ... (332)
       <223> n = A,T,C or G
       <400> 207
 tgaattggct aaaagactgc atttttanaa ctagcaactc ttatttcttt cctttaaaaa
 tacatagcat taaatcccaa atcctattta aagacctgac agcttgagaa ggtcactact
                                                                         60
 gcatttatag gaccttctgg tggttctgct gttacntttg aantctgaca atcettgana
                                                                        120
 atetttgeat geagaggagg taaaaggtat tggattttea eagaggaana acaeagegea
                                                                        180
 gaaatgaagg ggccaggctt actgagcttg tccactggag ggctcatggg tgggacatgg
                                                                        240
 aaaagaaggc agcctaggcc ctggggagcc ca
                                                                        300
                                                                        332
       <210> 208
       <211> 524
       <212> DNA
       <213> Homo sapien
       <220>
      <221> misc_feature
      <222> (1) ... (524)
      <223> n = A, T, C or G
      <400> 208
agggcgtggt gcggagggcg ttactgtttt gtctcagtaa caataaatac aaaaagactg
gttgtgttcc ggccccatcc aaccacgaag ttgatttctc ttgtgtgcag agtgactgat
tttaaaggac atggagcttg tcacaatgtc acaatgtcac agtgtgaagg gcacactcac
                                                                       1/20
tcccgcgtga ttcacattta gcaaccaaca atagctcatg agtccatact tgtaaatact
                                                                       180
tttggcagaa tacttnttga aacttgcaga tgataactaa gatccaagat atttcccaaa
                                                                       240
gtaaatagaa gtgggtcata atattaatta cctgttcaca tcagcttcca tttacaagtc
                                                                      300
atgageceag acactgacat caaactaage ceaettagae teeteaceae cagtetgtee
                                                                      360
tgtcatcaga caggaggctg tcaccttgac caaattctca ccagtcaatc atctatccaa
                                                                      420
aaaccattac ctgatccact tccggtaatg caccaccttg gtga
                                                                      480
                                                                      524
```

```
<210> 209
      <211> 159
      <212> DNA
      <213> Homo sapien
      <400> 209
gggtgaggaa atccagagtt gccatggaga aaattccagt gtcagcattc ttgctccttg
                                                                         60
tggccctctc ctacactctg gccagagata ccacagtcaa acctggagcc aaaaaggaca
                                                                        120
caaaggactc tcgacccaaa ctgccccaga ccctctcca
                                                                        159
      <210> 210
      <211> 256
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(256)
      \langle 223 \rangle n = A,T,C or G
      <400> 210
actccctggc agacaaaggc agaggagaga gctctgttag ttctgtgttg ttgaactgcc
                                                                         60
actgaatttc tttccacttg gactattaca tgccanttga gggactaatg gaaaaacgta
                                                                        120
tggggagatt ttanccaatt tangtntgta aatggggaga ctggggcagg cgggagagat
                                                                        180
ttgcagggtg naaatgggan ggctggtttg ttanatgaac agggacatag gaggtaggca
                                                                        240
ccaggatgct aaatca
                                                                        256
      <210> 211
      <211> 264
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1) ... (264)
      <223> n = A, T, C or G
      <400> 211
acattgtttt tttgagataa agcattgaga gagctctcct taacgtgaca caatggaagg
                                                                         60
actggaacac atacccacat ctttgttctg agggataatt ttctgataaa gtcttgctgt
                                                                        120
atattcaagc acatatgtta tatattattc agttccatgt ttatagccta gttaaggaga
                                                                        180
ggggagatac attcngaaag aggactgaaa gaaatactca agtnggaaaa cagaaaaaga
                                                                        240
aaaaaaggag caaatgagaa gcct
                                                                        264
      <210> 212
      <211> 328
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(328)
      <223> n = A, T, C or G
      <400> 212
acccaaaaat ccaatgctga atatttggct tcattattcc canattcttt gattgtcaaa
                                                                         60
ggatttaatg ttgtctcagc ttgggcactt cagttaggac ctaaggatgc cagccggcag
                                                                        120
gtttatatat gcagcaacaa tattcaagcg cgacaacagg ttattgaact tgcccgccag
                                                                        180
```

```
ttnaatttca ttcccattga cttgggatcc ttatcatcag ccagagagat tgaaaattta
   cccctacnac tctttactct ctgganaggg ccagtggtgg tagctataag cttggccaca
                                                                          240
                                                                          300
   ttttttttc ctttattcct ttgtcaga
                                                                          328
         <210> 213
         <211> 250
         <212> DNA
         <213> Homo sapien
        <220>
        <221> misc feature
        <222> (1)...(250)
        <223> n = A,T,C or G
        <400> 213
  acttatgage agagegaeat atcenagtgt agaetgaata aaactgaatt eteteeagtt
  taaagcattg ctcactgaag ggatagaagt gactgccagg agggaaagta agccaaggct
                                                                          60
  cattatgcca aagganatat acatttcaat tetecaaaet tetteeteat tecaagagtt
                                                                         120
  ttcaatattt gcatgaacct gctgataanc catgttaana aacaaatatc tctctnacct
                                                                         180
  tctcatcggt
                                                                         240
                                                                         250
        <210> 214
        <211> 444
        <212> DNA
       <213> Homo sapien
  <220>
       <221> misc feature
       <222> (1)...(444)
       <223> n = A, T, C or G
       <400> 214
 acccagaatc caatgctgaa tatttggctt cattattccc agattctttg attgtcaaag
 gatttaatgt tgtctcagct tgggcacttc agttaggacc taaggatgcc agccggcagg
                                                                         60
 tttatatatg cagcaacaat attcaagcgc gacaacaggt tattgaactt geeegeeagt
                                                                        120
 tgaatttcat tcccattgac ttgggatcct tatcatcagc canagagatt gaaaatttac
                                                                        180
 coctacgact ctttactctc tggagagggc cagtggtggt agctataagc ttggccacat
                                                                        240
 ttttttttcc tttattcctt tgtcagagat gcgattcatc catatgctan aaaccaacag
                                                                        300
agtgactttt acaaaattcc tataganatt gtgaataaaa ccttacctat agttgccatt
                                                                        360
                                                                        420
actttgctct ccctaatata cctc
                                                                        444
       <210> 215
       <211> 366
       <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (366)
      <223> n = A,T,C or G
      <400> 215
acttatgage agagegaeat atccaagtgt anactgaata aaactgaatt etetecagtt
taaagcattg ctcactgaag ggatagaagt gactgccagg agggaaagta agccaaggct
                                                                        60
cattatgcca aagganatat acatttcaat tetecaaact tetteetcat tecaagagtt
                                                                       120
ttcaatattt gcatgaacct gctgataagc catgttgaga aacaaatatc tctctgacct
                                                                       180
teteateggt aageagagge tgtaggeaac atggaceata gegaanaaaa aaettagtaa
                                                                       240
tocaagetgt tttctacact gtaaccaggt ttccaaccaa ggtggaaatc tcctatactt
                                                                       300
                                                                       360
```

```
ggtgcc
                                                                         366
      <210> 216
      <211> 260
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(260)
      <223> n = A,T,C or G
      <400> 216
ctgtataaac agaactccac tgcangaggg agggccgggc caggagaatc tccgcttgtc
caagacaggg gcctaaggag ggtctccaca ctgctnntaa gggctnttnc attttttat
                                                                         120
taataaaaag tnnaaaaggc ctcttctcaa cttttttccc ttnggctgga aaatttaaaa
                                                                         180
atcaaaaatt teetnaagtt nteaagetat eatatataet ntateetgaa aaageaacat
                                                                         240
aattetteet teeeteettt
                                                                         260
      <210> 217
      <211> 262
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(262)
      \langle 223 \rangle n = A,T,C or G
      <400> 217
acctacgtgg gtaagtttan aaatgttata atttcaggaa naggaacgca tataattgta
                                                                          60
tcttgcctat aattttctat tttaataagg aaatagcaaa ttggggtggg gggaatgtag
                                                                         120
ggcattctac agtttgagca aaatgcaatt aaatgtggaa ggacagcact gaaaaatttt
                                                                         180
atgaataatc tgtatgatta tatgtctcta gagtagattt ataattagcc acttacccta
                                                                         240
atateettea tgettgtaaa gt
                                                                         262
      <210> 218
      <211> 205
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (205)
      \langle 223 \rangle n = A,T,C or G
      <400> 218
accaaggtgg tgcattaccg gaantggatc aangacacca tcgtggccaa cccctgagca
                                                                         60
cccctatcaa ctcccttttg tagtaaactt ggaaccttgg aaatgaccag gccaagactc
                                                                        120
aggeeteece agttetactg acctttgtee ttangtntna ngtecagggt tgetaggaaa
                                                                        180
anaaatcagc agacacaggt gtaaa
                                                                        205
      <210> 219
      <211> 114
      <212> DNA
      <213> Homo sapien
      <400> 219
```

tactgttttg teteagtaae aataaataea aaaagaetgg ttgtgtteeg geeceateea aeeaegaagt tgatttetet tgtgtgeaga gtgaetgatt ttaaaggaea tgga	60
	114
<210> 220 <211> 93	
<211> 93 <212> DNA	
<213> Homo sapien	
Sapten	
<400> 220	
actagecage acaaaaggea gggtageetg aattgettte tgetetttae atttetttta	
aaataagcat ttagtgetca gteectactg agt	60 93
<210> 221	
<211> 167	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)(167)	
<223> n = A, T, C or G	
<400> 221	
actangtgca ggtgcgcaca achailtí	
actangtgca ggtgcgcaca aatatttgtc gatattccct tcatcttgga ttccatgagg	60
tettttgece ageetgtgge tetaetgtag taagtttetg etgatgagga geeagnatge eecceactae etteeetgae geteeccana aateaeccaa cetetgt	120
duccacccaa ececege	167
<210> 222	
<211> 351 <212> DNA	
<213> Homo sapien	
<400> 222	
agggcgtggt gcggagggcg gtactgacct cattagtagg aggatgcatt ctggcacccc	
gttetteace tgteececaa teettaaaag gecataetge ataaagteaa caacagataa aggtttgetg aattaaagga tggatgaaaa aaattaataa baattaataa	60
atgtttgctg aattaaagga tggatgaaaa aaattaataa tgaatttttg cataatccaa	120 180
taggtgagca tgattagaga gottatagat	240
ctcgtatcaa aacaatagat tggtaaaggt ggtattattg tattgataag t	300
535 Sycarcatty Lattgataag t	351
<210> 223	
<211> 383 <212> DNA	
<213> Homo sapien	
Suprem Suprem	
<220>	
<221> misc_feature	
<222> (1) (383)	
$\langle 223 \rangle$ n = A,T,C or G	
<400> 223	
aaaacaaaca aacaaaaaa acaattatta	
tggtaattat ggtcaattta atwrtrttkt ggggcatttc cttacattgt cttgacaaga	60
ttaaaatgtc tgtgccaaaa ttttgtattt tatttggaga cttcttatca aaagtaatgc	120
tgccaaagga agtctaagga attagtagtg ttcccmtcac ttgtttggag tgtgctattc	180
taaaagattt tgattteetg gaatgacaat tatattttaa etttggtggg ggaaanagtt	240 300
ataggaccac agtetteact tetgatactt gtaaattaat etttagtggg ggaaanagtt accattaage tatatgtta aaa	360
	383

```
<210> 224
      <211> 320
      <212> DNA
      <213> Homo sapien
      <400> 224
cccctgaagg cttcttgtta gaaaatagta cagttacaac caataggaac aacaaaaaga
                                                                      60
aaaagtttgt gacattgtag tagggagtgt gtacccctta ctccccatca aaaaaaaaat
                                                                     120
ggatacatgg ttaaaggata raagggcaat attttatcat atqttctaaa aqaqaaggaa
                                                                     180
gagaaaatac tactttctcr aaatggaagc ccttaaaqqt qctttgatac tqaaqqacac
                                                                     240
aaatgtggcc gtccatcctc ctttaragtt gcatgacttg gacacggtaa ctgttgcagt
                                                                     300
tttaractcm gcattgtgac
                                                                     320
      <210> 225
      <211> 1214
      <212> DNA
      <213> Homo sapien
      <400> 225
gaggactgca gcccgcactc gcagccctgg caggcggcac tggtcatgga aaacgaattg
                                                                      60
ttctgctcgg gcgtcctggt gcatccgcag tgggtgctgt cagccgcaca ctgtttccag
                                                                     120
aactcctaca ccatcgggct gggcctgcac agtcttgagg ccgaccaaga gccagggagc
                                                                     180
cagatggtgg aggccagcct ctccgtacgg cacccagagt acaacagacc cttgctcgct
                                                                     240
aacgacctca tgctcatcaa gttggacgaa tccgtgtccg agtctgacac catccggagc
                                                                     300
atcagcattg cttcgcagtg ccctaccgcg gggaactctt gcctcgtttc tggctggggt
                                                                     360
ctgctggcga acggcagaat gcctaccgtg ctgcagtgcg tgaacgtgtc ggtggtgtct
                                                                     420
gaggaggtet geagtaaget etatgaeeeg etgtaeeaee eeageatgtt etgegeegge
                                                                     480
ggagggcaag accagaagga ctcctgcaac ggtgactctg gggggcccct gatctgcaac .
                                                                     540
gggtacttgc agggccttgt gtctttcgga aaagccccgt gtggccaagt tggcgtqcca
                                                                     600
ggtgtctaca ccaacctctg caaattcact gagtggatag agaaaaccgt ccaggccagt
                                                                    660
taactetggg gactgggaac ccatgaaatt gaccccaaa tacatectge ggaaggaatt
                                                                     720
caggaatate tgtteccage ecetecteee teaggeecag gagtecagge ececageece
                                                                     780
tectecetea aaccaagggt acagateece ageceeteet eeeteagace caggagteea
                                                                     840
gacccccag ccctcctcc ctcagaccca ggagtccagc ccctcctccc tcagacccag
                                                                     900
gagtccagac ccccagccc ctcctccctc agacccaggg gtccaggccc ccaacccctc
                                                                    960
ctccctcaga ctcagaggtc caagccccca acccctcctt ccccagaccc agaggtccag
                                                                   1020
gtcccagccc ctcctcctc agacccagcg gtccaatgcc acctagactc tccctgtaca
                                                                   1080
cagtgccccc ttgtggcacg ttgacccaac cttaccagtt ggtttttcat tttttgtccc
                                                                   1140
1200
aaaaaaaaa aaaa
                                                                   1214
      <210> 226
      <211> 119
      <212> DNA
      <213> Homo sapien
      <400> 226
acccagtatg tgcagggaga cggaacccca tgtgacagcc cactccacca gggttcccaa
                                                                     60
agaacctggc ccagtcataa tcattcatcc tgacagtggc aataatcacg ataaccagt
                                                                    119
     <210> 227
      <211> 818
      <212> DNA
     <213> Homo sapien
     <400> 227
acaattcata gggacgacca atgaggacag ggaatgaacc cggctctccc ccagccctga
                                                                     60
```

```
tttttgctac atatggggtc ccttttcatt ctttgcaaaa acactgggtt ttctgagaac
                                                                         120
  acggacggtt cttagcacaa tttgtgaaat ctgtgtaraa ccgggctttg caggggagat
                                                                         180
  aattttcctc ctctggagga aaggtggtga ttgacaggca gggagacagt gacaaggcta
                                                                         240
  gagaaagcca cgctcggcct tctctgaacc aggatggaac ggcagacccc tgaaaacgaa
                                                                         300
  gettgtcccc ttccaatcag ccacttctga gaacccccat ctaacttcct actggaaaag
                                                                         360
  agggcctcct caggagcagt ccaagagttt tcaaagataa cgtgacaact accatctaga
                                                                         420
  ggaaagggtg cacceteage agagaageeg agagettaae tetggtegtt tecagagaea
                                                                         480
  acctgctggc tgtcttggga tgcgcccagc ctttgagagg ccactacccc atgaacttct
                                                                         540
 gccatccact ggacatgaag ctgaggacac tgggcttcaa cactgagttg tcatgagagg
                                                                         600
  gacaggetet geceteaage eggetgaggg cageaaceae teteeteece ttteteaege
                                                                         660
  aaagccattc ccacaaatcc agaccatacc atgaagcaac gagacccaaa cagtttggct
                                                                         720
 caagaggata tgaggactgt ctcagcctgg ctttgggctg acaccatgca cacacaaag
                                                                         780
 gtccacttct aggttttcag cctagatggg agtcgtgt
                                                                         818
        <210> 228
       <211> 744
       <212> DNA
       <213> Homo sapien
       <400> 228
 actggagaca ctgttgaact tgatcaagac ccagaccacc ccaggtctcc ttcgtgggat
                                                                         60
 gtcatgacgt ttgacatacc tttggaacga gcctcctcct tggaagatgg aagaccgtgt
                                                                        120
 tcgtggccga cctggcctct cctggcctgt ttcttaagat gcggagtcac atttcaatgg
                                                                        180
 taggaaaagt ggcttcgtaa aatagaagag cagtcactgt ggaactacca aatggcgaga
                                                                        240
 tgctcggtgc acattggggt gctttgggat aaaagattta tgagccaact attctctggc
                                                                        300
 accagattet aggecagttt gttecactga agettttece acageagtee acetetgeag
                                                                        360
gctggcaget gaatggettg ceggtggete tgtggcaaga tcacactgag atcgatgggt
                                                                        420 -
 gagaaggcta ggatgcttgt ctagtgttct tagctgtcac gttggctcct tccaggttgg
                                                                        480
 ccagacggtg ttggccactc ccttctaaaa cacaggcgcc ctcctggtga cagtgacccg
                                                                        540
 ccgtggtatg ccttggccca ttccagcagt cccagttatg catttcaagt ttggggtttg
                                                                        600
 ttettttegt taatgtteet etgtgttgte agetgtette attteetggg etaageagea
                                                                        660
 ttgggagatg tggaccagag atccactcct taagaaccag tggcgaaaga cactttcttt
                                                                        720
 cttcactctg aagtagctgg tggt
                                                                        744
       <210> 229
       <211> 300
       <212> DNA
       <213> Homo sapien
       <400> 229
cgagtctggg ttttgtctat aaagtttgat ccctcctttt ctcatccaaa tcatgtgaac
                                                                        60
cattacacat cgaaataaaa gaaaggtggc agacttgccc aacgccaggc tgacatgtgc
                                                                       120
tgcagggttg ttgtttttta attattattg ttagaaacgt cacccacagt ccctgttaat
                                                                       180
ttgtatgtga cagccaactc tgagaaggtc ctatttttcc acctgcagag gatccagtct
                                                                       240
cactaggete etecttgece teacactgga gteteegeca gtgtgggtge ceactgacat
                                                                       300
      <210> 230
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 230
cagcagaaca aatacaaata tgaagagtgc aaagatctca taaaatctat gctgaggaat
                                                                        60
gagcgacagt tcaaggagga gaagcttgca gagcagctca agcaagctga ggagctcagg
                                                                       120
caatataaag teetggttea caeteaggaa egagagetga eecagttaag ggagaagttg
                                                                       180
cgggaaggga gagatgcctc cctctcattg aatgagcatc tccaggccct cctcactccg
                                                                       240
gatgaaccgg acaagtccca ggggcaggac ctccaagaaa cagacctcgg ccgcgaccac
                                                                       300
                                                                       301
```

```
<210> 231
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 231
gcaagcacgc tggcaaatct ctgtcaggtc agctccagag aagccattag tcattttagc
                                                                        60
caggaactec aagtecacat cettggcaac tggggaettg cgcaggttag cettgaggat
                                                                       120
ggcaacacgg gactteteat caggaagtgg gatgtagatg agetgateaa gacggccagg
                                                                       180
tetgaggatg geaggateaa tgatgteagg eeggttggta eegeeaatga tgaacacatt
                                                                       240
tttttttgtg gacatgccat ccatttctgt caggatctgg ttgatgactc ggtcagcagc
                                                                       300
                                                                       301
      <210> 232
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 232
agtaggtatt tegtgagaag tteaacaeca aaaetggaae atagttetee tteaagtgtt
                                                                        60
ggcgacagcg gggcttcctg attctggaat ataactttgt gtaaattaac agccacctat
                                                                       120
agaagagtcc atctgctgtg aaggagagac agagaactct gggttccgtc gtcctgtcca
                                                                       180
cgtgctgtac caagtgctgg tgccagcctg ttacctgttc tcactgaaaa tctggctaat
                                                                       240
gctcttgtgt atcacttctg attctgacaa tcaatcaatc aatggcctag agcactgact
                                                                       300
                                                                       301
      <210> 233
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 233
atgactgact tcccagtaag gctctctaag gggtaagtag gaggatccac aggatttgag
                                                                        60
atgctaaggc cccagagatc gtttgatcca accetettat tttcagaggg gaaaatgggg
                                                                       120
cctagaagtt acagagcatc tagctggtgc gctggcaccc ctggcctcac acagactccc
                                                                       180
gagtagetgg gactacagge acacagteae tgaagcagge cetgttagea attetatgeg
                                                                       240
tacaaattaa catgagatga gtagagactt tattgagaaa gcaagagaaa atcctatcaa
                                                                       300
С
                                                                       301
      <210> 234
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 234
aggtcctaca catcgagact catccatgat tgatatgaat ttaaaaaatta caagcaaaga
                                                                        60
cattttattc atcatgatgc tttcttttgt ttcttctttt cgttttcttc tttttctttt
                                                                       120
tcaatttcag caacatactt ctcaatttct tcaggattta aaatcttgag ggattgatct
                                                                       180
cgcctcatga cagcaagttc aatgtttttg ccacctgact gaaccacttc caggagtgcc
                                                                       240
ttgatcacca gettaatggt cagateatet getteaatgg ettegteagt atagttette
                                                                       300
                                                                       301
     <210> 235
     <211> '283
     <212> DNA
     <213> Homo sapien
```

```
<400> 235
 tggggctgtg catcaggcgg gtttgagaaa tattcaattc tcagcagaag ccagaatttg
                                                                         60
 aattccctca tcttttaggg aatcatttac caggtttgga gaggattcag acagctcagg
                                                                        120
 tgctttcact aatgtctctg aacttctgtc cctctttgtt catggatagt ccaataaata
                                                                        180
 atgttatett tgaactgatg etcataggag agaatataag aactetgagt gatateaaca
                                                                        240
 ttagggattc aaagaaatat tagatttaag ctcacactgg tca
                                                                        283
       <210> 236
       <211> 301
       <212> DNA
       <213> Homo sapien
       <400> 236
 aggteeteea ecaaetgeet gaageaeggt taaaattggg aagaagtata gtgeageata
                                                                        60
 aatactttta aatcgatcag atttccctaa cccacatgca atcttcttca ccagaagagg
                                                                        120
 tcggagcagc atcattaata ccaagcagaa tgcgtaatag ataaatacaa tggtatatag
                                                                        180
 tgggtagacg gcttcatgag tacagtgtac tgtggtatcg taatctggac ttgggttgta
                                                                        240
 aagcatcgtg taccagtcag aaagcatcaa tactcgacat gaacgaatat aaagaacacc
                                                                        300
                                                                        301
       <210> 237
       <211> 301
       <212> DNA
       <213> Homo sapien
       <400> 237
 cagtggtagt ggtggtggac gtggcgttgg tcgtggtgcc ttttttggtg cccgtcacaa
                                                                        60
actcaatttt tgttcgctcc tttttggcct tttccaattt gtccatctca attttctggg
                                                                       120
ccttggctaa tgcctcatag taggagtcct cagaccagcc atggggatca aacatatcct
                                                                       180
ttgggtagtt ggtgccaagc tcgtcaatgg cacagaatgg atcagcttct cgtaaatcta
                                                                       240
gggttccgaa attettett cetttggata atgtagttca tatccattce etcetttate
                                                                       300
                                                                       301
      <210> 238
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 238
gggcaggttt ttttttttt ttttttgatg gtgcagaccc ttgctttatt tgtctgactt
                                                                        60
gttcacagtt cagcccctg ctcagaaaac caacgggcca gctaaggaga ggaggaggca
                                                                       120
ccttgagact tccggagtcg aggctctcca gggttcccca gcccatcaat cattttctgc
                                                                       180
accecetgee tgggaageag etecetgggg ggtgggaatg ggtgactaga agggatttea
                                                                       240
gtgtgggacc cagggtctgt tcttcacagt aggaggtgga agggatgact aatttcttta
                                                                       300
                                                                       301
      <210> 239
      <211> 239
      <212> DNA
      <213> Homo sapien
      <400> 239
ataagcagct agggaattct ttatttagta atgtcctaac ataaaagttc acataactgc
                                                                       60
ttctgtcaaa ccatgatact gagctttgtg acaacccaga aataactaag agaaggcaaa
                                                                      120
cataatacct tagagatcaa gaaacattta cacagttcaa ctgtttaaaa atagctcaac
                                                                      180
attcagccag tgagtagagt gtgaatgcca gcatacacag tatacaggtc cttcaggga
                                                                      239
```

<210> 240

```
<211> 300
      <212> DNA
      <213> Homo sapien
      <400> 240
ggtcctaatg aagcagcagc ttccacattt taacgcaggt ttacggtgat actgtccttt
                                                                        60
gggatctgcc ctccagtgga accttttaag gaagaagtgg gcccaagcta agttccacat
                                                                       120
gctgggtgag ccagatgact tctgttccct ggtcactttc ttcaatgggg cgaatggggg
                                                                       180
ctgccaggtt tttaaaatca tgcttcatct tgaagcacac ggtcacttca ccctcctcac
                                                                       240
gctgtgggtg tactttgatg aaaataccca ctttgttggc ctttctgaag ctataatgtc
                                                                       300
      <210> 241
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 241
gaggtctggt gctgaggtct ctgggctagg aagaggagtt ctgtggagct ggaagccaga
                                                                        60
cctctttgga ggaaactcca gcagctatgt tggtgtctct gagggaatgc aacaaggctg
                                                                       120
ctcctccatg tattggaaaa ctgcaaactg gactcaactg gaaggaagtg ctgctgccag
                                                                       180
tgtgaagaac cagcctgagg tgacagaaac ggaagcaaac aggaacagcc agtctttct
                                                                       240
tecteeteet gteataeggt eteteteaag eateetttgt tgteagggge etaaaaggga
                                                                       300
                                                                       301
      <210> 242
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 242
ccgaggtcct gggatgcaac caatcactct gtttcacgtg acttttatca ccatacaatt
                                                                        60
tgtggcattt cctcattttc tacattgtag aatcaagagt gtaaataaat gtatatcgat
                                                                       120
gtcttcaaga atatatcatt cctttttcac tagaacccat tcaaaatata agtcaagaat
                                                                       180
cttaatatca acaaatatat caagcaaact ggaaggcaga ataactacca taatttagta
                                                                       240
taagtaccca aagttttata aatcaaaagc cctaatgata accattttta gaattcaatc
                                                                       300
                                                                       301
      <210> 243
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 243
aggtaagtcc cagtttgaag ctcaaaagat ctggtatgag cataggctca tcgacgacat
ggtggcccaa gctatgaaat cagagggagg cttcatctgg gcctgtaaaa actatgatgg
                                                                       120
tgacgtgcag tcggactctg tggcccaagg gtatggctct ctcggcatga tgaccagcgt
                                                                       180
gctggtttgt ccagatggca agacagtaga agcagaggct gcccacggga ctgtaacccg
                                                                       240
teactacege atgttecaga aaggacagga gacgtecace aateceattg ettecatttt
                                                                       300
                                                                       301
      <210> 244
      <211> 300
      <212> DNA
      <213> Homo sapien
     <400> 244
gctggtttgc aagaatgaaa tgaatgattc tacagctagg acttaacctt gaaatggaaa
                                                                       60
gtcatgcaat cccatttgca ggatctgtct gtgcacatgc ctctgtagag agcagcattc
                                                                       120
```

ccagggacct tggaaacagt tgacactgta aggtgcttgc tccccaagac acatcctaaa aggtgttgta atggtgaaaa cgtcttcctt ctttattgcc ccttcttatt tatgtgaaca actgtttgtc ttttgtgtat cttttttaaa ctgtaaagtt caattgtgaa aatgaatatc	180 240 300
<210> 245 <211> 301 <212> DNA <213> Homo sapien	
<400> 245 gtctgagtat ttaaaatgtt attgaaatta tccccaacca atgttagaaa agaaagaggt tatatactta gataaaaaat gaggtgaatt actatccatt gaaatcatgc tcttagaatt aaggccagga gatattgtca ttaatgtara cttcaggaca ctagagtata gcagccctat gttttcaaag agcagagatg caattaaata ttgtttagca tcaaaaaggc cactcaatac agctaataaa atgaaagacc taatttctaa agcaattctt tataatttac aaagttttaa g	60 120 180 240 300 301
<210> 246 <211> 301 <212> DNA <213> Homo sapien	
<400> 246 ggtctgtcct acaatgcctg cttcttgaaa gaagtcggca ctttctagaa tagctaaata acctgggctt attttaaaga actatttgta gctcagattg gttttcctat ggctaaaata agtgcttctt gtgaaaatta aataaaacag ttaattcaaa gccttgatat atgttaccac taacaatcat actaaatata ttttgaagta caaagtttga catgctctaa agtgacaacc caaatgtgtc ttacaaaaca cgttcctaac aaggtatgct ttacactacc aatgcagaaa c	60 120 180 240 300 301
<210> 247 <211> 301 <212> DNA <213> Homo sapien	
<pre><400> 247 aggtcctttg gcagggctca tggatcagag ctcaaactgg agggaaaggc atttcgggta gcctaagagg gcgactggcg gcagcacaac caaggaaggc aaggttgttt ccccacgct gtgtcctgtg ttcaggtgcg acacacaatc ctcatgggaa caggatcacc catgcgctgc ccttgatgat caaggttggg gcttaagtgg attaagggag gcaagttctg ggttccttgc cttttcaaac catgaagtca ggctctgtat ccctcctttt cctaactgat attctaacta a</pre>	60 120 180 240 300 301
<210> 248 <211> 301 <212> DNA <213> Homo sapien	
<pre><400> 248 aggtccttgg agatgccatt tcagccgaag gactcttctw ttcggaagta caccctcact attaggaaga ttcttagggg taatttttct gaggaaggag aactagccaa cttaagaatt acaggaagaa agtggtttgg aagacagcca aagaaataaa agcagattaa attgtatcag gtacattcca gcctgttggc aactccataa aaacatttca gattttaatc ccgaatttag ctaatgagac tggatttttg ttttttatgt tgtgtgtcgc agagctaaaa actcagttcc c</pre>	60 120 180 240 300 301
<210> 249 <211> 301	

```
<212> DNA
      <213> Homo sapien
      <400> 249
gtccagagga agcacctggt gctgaactag gcttgccctg ctgtgaactt gcacttggag
                                                                        60
ecctgacget getgttetee eegaaaaaee egaeegaeet eegegatete egteeegeee
                                                                       120
ccagggagac acagcagtga ctcagagctg gtcgcacact gtgcctccct cctcaccgcc
                                                                       180
catcgtaatg aattattttg aaaattaatt ccaccatcct ttcagattct ggatggaaag
                                                                       240
actgaatctt tgactcagaa ttgtttgctg aaaagaatga tgtgactttc ttagtcattt
                                                                       300
                                                                       301
      <210> 250
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 250
ggtctgtgac aaggacttgc aggctgtggg aggcaagtga cccttaacac tacacttctc
                                                                        60
cttatcttta ttggcttgat aaacataatt atttctaaca ctagcttatt tccagttgcc
                                                                       120
cataagcaca tcagtacttt tctctggctg gaatagtaaa ctaaagtatg gtacatctac
                                                                       180
ctaaaagact actatgtgga ataatacata ctaatgaagt attacatgat ttaaagacta
                                                                       240
caataaaacc aaacatgctt ataacattaa gaaaaacaat aaagatacat gattgaaacc
                                                                       300
                                                                       301
      <210> 251
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 251
gccgaggtcc tacatttggc ccagtttccc cctgcatcct ctccagggcc cctgcctcat
                                                                       60
agacaacctc atagagcata ggagaactgg ttgccctggg ggcaggggga ctgtctggat
                                                                       120
ggcaggggtc ctcaaaaaatg ccactgtcac tgccaggaaa tgcttctgag cagtacacct
                                                                       180
cattgggatc aatgaaaagc ttcaagaaat cttcaggctc actctcttga aggcccggaa
                                                                       240
cctctggagg ggggcagtgg aatcccagct ccaggacgga tcctgtcgaa aagatatcct
                                                                       300
                                                                       301
      <210> 252
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 252
gcaaccaatc actctgtttc acgtgacttt tatcaccata caatttgtgg catttcctca
                                                                        60
ttttctacat tgtagaatca agagtgtaaa taaatgtata tcgatgtctt caagaatata
                                                                       120
tcattccttt ttcactagga acccattcaa aatataagtc aagaatctta atatcaacaa
                                                                       180
atatatcaag caaactggaa ggcagaataa ctaccataat ttagtataag tacccaaagt
                                                                       240
tttataaatc aaaagcccta atgataacca tttttagaat tcaatcatca ctgtagaatc
                                                                       300
                                                                      301
      <210> 253
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 253
ttccctaaga agatgttatt ttgttgggtt ttgttccccc tccatctcga ttctcgtacc
                                                                       60
caactaaaaa aaaaaaataa agaaaaaatg tgctgcgttc tgaaaaataa ctccttagct
```

```
tggtctgatt gttttcagac cttaaaatat aaacttgttt cacaagcttt aatccatgtg
                                                                        180
 gattttttt cttagagaac cacaaaacat aaaaggagca agtcggactg aatacctgtt
                                                                        240
 tccatagtgc ccacagggta ttcctcacat tttctccata ggaaaatgct ttttccaaq
                                                                        300
                                                                        301
       <210> 254
       <211> 301
       <212> DNA
       <213> Homo sapien
       <400> 254
 cgctgcgcct ttcccttggg ggaggggcaa ggccagaggg ggtccaagtg cagcacgagg
                                                                         60
 aacttgacca attcccttga agcgggtggg ttaaaccctg taaatgggaa caaaatcccc
                                                                        120
 ccaaatctct tcatcttacc ctggtggact cctgactgta gaattttttg gttgaaacaa
                                                                        180
gaaaaaaata aagetttgga ettttcaagg ttgettaaca ggtactgaaa gaetggeete
                                                                        240
acttaaactg agccaggaaa agctgcagat ttattaatgg gtgtgttagt gtgcagtgcc
                                                                        300
t
                                                                        301
       <210> 255
       <211> 302
       <212> DNA
       <213> Homo sapien
       <400> 255
agettttttt ttttttttt ttttttttt tteattaaaa aatagtgete tttattataa
                                                                         60
attactgaaa tgtttctttt ctgaatataa atataaatat gtgcaaagtt tgacttggat
                                                                        120
tgggattttg ttgagttett caagcatete etaataceet caagggeetg agtagggggg
                                                                        180
aggaaaaagg actggaggtg gaatctttat aaaaaacaag agtgattgag gcagattgta
                                                                        240
aacattatta aaaaacaaga aacaaacaaa aaaatagaga aaaaaaccac cccaacacac
                                                                        300
aa
                                                                        302
      <210> 256
      <211> 301
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(301)
      \langle 223 \rangle n = A,T,C or G
      <400> 256
gttccagaaa acattgaagg tggcttccca aagtctaact agggataccc cctctagcct
                                                                        60
aggaccetee tecceacace teaatecace aaaceateca taatgeacee agataggeee
                                                                       120
acccccaaaa gcctggacac cttgagcaca cagttatgac caggacagac tcatctctat
                                                                       180
aggcaaatag ctgctggcaa actggcatta cctggtttgt ggggatgggg gggcaagtgt
                                                                       240
gtggcctctc ggcctggtta gcaagaacat tcagggtagg cctaagttan tcgtgttagt
                                                                       300
                                                                       301
      <210> 257
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 257
gttgtggagg aactctggct tgctcattaa gtcctactga ttttcactat cccctgaatt
                                                                        60
tececactta tttttgtett teactatege aggeettaga agaggtetae etgeeteeag
                                                                       120
tettacetag tecagtetae eccetggagt tagaatggee atectgaagt gaaaagtaat
```

```
gtcacattac tcccttcagt gatttcttgt agaagtgcca atccctgaat gccaccaaga
                                                                        240
tettaatett cacatettta atettatete tttgacteet etttacaceq gagaaggete
                                                                        300
                                                                        301
      <210> 258
      <211> 301
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(301)
      <223> n = A, T, C \text{ or } G
      <400> 258 °
cagcagtagt agatgccgta tgccagcacg cccagcactc ccaggatcag caccagcacc
                                                                        60
aggggcccag ccaccaggcg cagaagcaag ataaacagta ggctcaagac cagagccacc
                                                                        120
cccagggcaa caagaatcca ataccaggac tgggcaaaat cttcaaagat cttaacactg
                                                                        180
atgtctcggg cattgaggct gtcaataana cgctgatccc ctgctgtatg gtggtgtcat
                                                                        240
tggtgatccc tgggagcgcc ggtggagtaa cgttggtcca tggaaagcag cgcccacaac
                                                                        300
                                                                        301
      <210> 259
      <211> 301
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(301)
      <223> n = A, T, C or G
      <400> 259
teatatatge aaacaaatge agactangee teaggeagag actaaaggae atetettggg
                                                                        60
gtgtcctgaa gtgatttgga cccctgaggg cagacaccta agtaggaatc ccagtgggaa
                                                                       120
gcaaagccat aaggaagccc aggattcctt gtgatcagga agtgggccag gaaggtctgt
                                                                       180
tecageteae ateteatetg catgeageae ggaceggatg egeceaetgg gtettggett
                                                                       240
coctcocate ttetcaagea gtgtccttgt tgagccattt gcatccttgg ctccaggtgg
                                                                       300
C
                                                                       301
      <210> 260
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 260
tttttttttt ccctaaggaa aaagaaggaa caagtctcat aaaaccaaat aagcaatggt
                                                                        60
aaggtgtctt aacttgaaaa agattaggag tcactggttt acaagttata attgaatgaa
                                                                       120
agaactgtaa cagccacagt tggccatttc atgccaatgg cagcaaacaa caggattaac
                                                                       180
tagggcaaaa taaataagtg tgtggaagcc ctgataagtg cttaataaac agactgattc
                                                                       240
actgagacat cagtacctgc ccgggcggcc gctcgagccg aattctgcag atatccatca
                                                                       300
                                                                       301
      <210> 261
      <211> 301
      <212> DNA
      <213> Homo sapien
```

```
<400> 261
 aaatattcga gcaaatcctg taactaatgt gtctccataa aaggctttga actcagtgaa
                                                                         60
 tetgetteca tecaegatte tageaatgae eteteggaea teaaagetee tettaaggtt
                                                                        120
 agcaccaact attccataca attcatcagc aggaaataaa ggctcttcag aaggttcaat
                                                                        180
 ggtgacatcc aatttettet gataatttag attecteaca acetteetag ttaagtgaag
                                                                        240
 ggcatgatga tcatccaaag cccagtggtc acttactcca gactttctgc aatgaagatc
                                                                        300
                                                                        301
       <210> 262
       <211> 301
       <212> DNA
       <213> Homo sapien
       <400> 262
 gaggagagcc tgttacagca tttgtaagca cagaatactc caggagtatt tgtaattgtc
                                                                         60
 tgtgagcttc ttgccgcaag tctctcagaa atttaaaaag atgcaaatcc ctgagtcacc
                                                                        120
 cctagacttc ctaaaccaga tcctctgggg ctggaacctg gcactctgca tttgtaatga
                                                                        180
 gggctttctg gtgcacacct aattttgtgc atctttgccc taaatcctgg attagtgccc
                                                                        240
 catcattacc cccacattat aatgggatag attcagagca gatactctcc agcaaagaat
                                                                        300
                                                                        301
       <210> 263
       <211> 301
      <212> DNA
       <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(301)
      <223> n = A, T, C \text{ or } G
      <400> 263
tttagcttgt ggtaaatgac tcacaaaact gattttaaaa tcaagttaat gtgaattttg
                                                                        60
aaaattacta cttaatccta attcacaata acaatggcat taaggtttga cttgagttgg
                                                                       120
ttcttagtat tatttatggt aaataggctc ttaccacttg caaataactg gccacatcat
                                                                       180
taatgactga cttcccagta aggctctcta aggggtaagt angaggatcc acaggatttg
                                                                       240
agatgctaag gccccagaga tcgtttgatc caaccctctt attttcagag gggaaaatgg
                                                                       300
                                                                       301
      <210> 264
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 264
aaagacgtta aaccactcta ctaccacttg tggaactctc aaagggtaaa tgacaaascc
                                                                        60
aatgaatgac tctaaaaaca atatttacat ttaatggttt gtagacaata aaaaaacaag
                                                                       120
gtggatagat ctagaattgt aacattttaa gaaaaccata scatttgaca gatgagaaag
                                                                       180
ctcaattata gatgcaaagt tataactaaa ctactatagt agtaaagaaa tacatttcac
                                                                       240
accettcata taaattcact atcttggett gaggeactee ataaaatgta teaegtgeat
                                                                       300
                                                                       301
      <210> 265
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 265
```

tgcccaagtt atgtgtaagt gtatccgcac ccagaggtaa aact cttcttgtga cgcagtattt cttctctggg gagaagccgg gaag catattcttg gaagtctcta atcaactttt gttccatttg tttcttttcagttt gtcaacatgt tctctaacaa cacttgccca tttc cagtccaagg ctttgacatg tcaacaacca gcataactag agta c	tettet cetggeteta 120 atttet teaggaggga 180 tgtaaa gaateeaaag 240
<210> 266 <211> 301 <212> DNA <213> Homo sapien	
<400> 266	
taccgtetge cettectece atceaggeea tetgegaate taca acaccagate actettteet etacceacag gettgetatg agea	
ctcttctgtg ttccagcttc ttttcctgtt cttcccaccc ctta	agttet attectgggg 180
atagagacac caatacccat aacctctctc ctaagcctcc ttataccacagactcc tgacaactgg taaggccaat gaactgggag ctca	
a	301
<210> 267	
<211> 301	
<212> DNA <213> Homo sapien	
(213) Nomo Sapten	
<400> 267	ractor streets
aaagagcaca ggccagctca gcctgccctg gccatctaga ctcag gttctcagtg ctgagtccat ccaggaaaag ctcacctaga cctto	
atcctcacag gcagcttctg agagcctgat attcctagcc ttgat	
ctcattctga ttcctctcct tcttttcttt caagttggct ttcct	-
<pre>aattcgcttc agcttgtctg ctttagccct catttccaga agctt t</pre>	cttct ctttggcatc 300
•	
<210> 268 <211> 301	
<211> 301 <212> DNA	
<213> Homo sapien	
<400> 268	
aatgtctcac tcaactactt cccagcctac cgtggcctaa ttctg	
gatcttggga gagctggttc ttctaaggag aaggaggaag gacag	
tcgaagagga agtctaatgg aagtaattag tcaacggtcc ttgtt tgctgggtgg ctcagtgagc ccttttggag aaagcaagta ttatt	
cttcccattg ttctactttc taccatcatc aattgtatat tatgt	
a	301
<210> 269 <211> 301	
<212> DNA <213> Homo sapien	
-	
<pre><400> 269 taacaatata cactagctat ctttttaact gtccatcatt agcac</pre>	caatg aagattcaat 60
aaaattacct ttattcacac atctcaaaac aattctgcaa attct	tagtg aagtttaact 120
atagtcacag accttaaata ttcacattgt tttctatgtc tactg	aaaat aagttcacta 180
cttttctgga tattctttac aaaatcttat taaaattcct ggtat tacagtagca caaccacctt atgtagtttt tacatgatag ctctg	
t	301

```
<210> 270
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 270
cattgaagag cttttgcgaa acatcagaac acaagtgctt ataaaattaa ttaagcctta
cacaagaata catattcctt ttatttctaa ggagttaaac atagatgtag ctgatgtgga
                                                                       120
gagettgetg gtgeagtgea tattggataa cactatteat ggeegaattg atcaagteaa
                                                                       180
ccaactcctt gaactggatc atcagaagaa gggtggtgca cgatatactg cactagataa
                                                                       240
tggaccaacc aactaaattc tctcaccagg ctgtatcagt aaactggctt aacaqaaaac
                                                                       300
                                                                       301
      <210> 271
      <211> 301
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(301)
      <223> n = A, T, C or G
      <400> 271
aaaaggttct cataagatta acaatttaaa taaatatttg atagaacatt ctttctcatt
                                                                        60
tttatagete atetttaggg ttgatattea gtteatgett ceettgetgt tettgateea
                                                                       120
gaattgcaat cacttcatca gcctgtattc gctccaattc tctataaagt gggtccaagg
                                                                       180
tgaaccacag agccacagca cacctctttc ccttggtgac tgccttcacc ccatganggt
                                                                       240
teteteetee agatganaac tgateatgeg cecacatttt gggttttata gaagcagtea
                                                                       300
C
                                                                       301
      <210> 272
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 272
taaattgcta agccacagat aacaccaatc aaatggaaca aatcactgtc ttcaaatgtc
                                                                        60
ttatcagaaa accaaatgag cctggaatct tcataatacc taaacatgcc qtatttagga
                                                                       120
tecaataatt eeeteatgat gagcaagaaa aattetttge geaceeetee tgeatecaca
                                                                       180
geatettete caacaaatat aacettgagt ggettettgt aatetatgtt etttgtttte
                                                                       240
ctaaggactt ccattgcatc tcctacaata ttttctctac gcaccactag aattaagcag
                                                                       300
                                                                       301
      <210> 273
      <211> 301
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(301)
     <223> n = A,T,C or G
      <400> 273
acatgtgtgt atgtgtatct ttgggaaaan aanaagacat cttgtttayt atttttttgq
                                                                        60
agagangctg ggacatggat aatcacwtaa tttgctayta tyactttaat ctgactygaa
```

```
gaaccgtcta aaaataaaat ttaccatgtc dtatattcct tatagtatgc ttatttcacc
                                                                        180
ttytttctgt ccagagagag tatcagtgac ananatttma gggtgaamac atgmattggt
                                                                        240
gggacttnty tttacngagm accetgeceg sgcgcceteg makengantt ecgesanane
                                                                        300
                                                                        301
      <210> 274
      <211> 301
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(301)
      \langle 223 \rangle n = A,T,C or G
      <400> 274
cttatatact ctttctcaga ggcaaaagag gagatgggta atgtagacaa ttctttgagg
                                                                         60
aacagtaaat gattattaga gagaangaat ggaccaagga gacagaaatt aacttgtaaa
                                                                        120
tgattctctt tggaatctga atgagatcaa gaggccagct ttagcttgtg gaaaagtcca
                                                                        180
tctaggtatg gttgcattct cgtcttcttt tctgcagtag ataatgaggt aaccgaaggc
                                                                        240
aattgtgctt cttttgataa gaagctttct tggtcatatc aggaaattcc aganaaagtc
                                                                        300
                                                                        301
      <210> 275
      <211> 301
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(301)
      <223> n = A, T, C or G
      <400> 275
teggtgteag cageaegtgg cattgaacat tgeaatgtgg ageecaaace acagaaaatg
                                                                        60
gggtgaaatt ggccaacttt ctattaactt atgttggcaa ttttgccacc aacagtaagc
                                                                        120
tggcccttct aataaaagaa aattgaaagg tttctcacta aacggaatta agtagtggag
                                                                        180
tcaagagact cccaggcctc agcgtacctg cccgggcggc cgctcgaagc cgaattctgc
                                                                        240
agatatccat cacactggcg gncgctcgan catgcatcta gaaggnccaa ttcgccctat
                                                                        300
                                                                        301
      <210> 276
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 276
tgtacacata ctcaataaat aaatgactgc attgtggtat tattactata ctgattatat
                                                                        60
ttatcatgtg acttctaatt agaaaatgta tccaaaagca aaacagcaga tatacaaaat
                                                                       120
taaagagaca gaagatagac attaacagat aaggcaactt atacattgag aatccaaatc
                                                                       180
caatacattt aaacatttgg gaaatgaggg ggacaaatgg aagccagatc aaatttgtgt
                                                                       240
aaaactattc agtatgtttc ccttgcttca tgtctgagaa ggctctcctt caatggggat
                                                                       300
                                                                       301
q
      <210> 277
      <211> 301
      <212> DNA
      <213> Homo sapien
```

```
<220>
       <221> misc_feature
       <222> (1)...(301)
       <223> n = A, T, C \text{ or } G
       <400> 277
 tttgttgatg tcagtatttt attacttgcg ttatgagtgc tcacctggga aattctaaag
                                                                          60
 atacagagga cttggaggaa gcagagcaac tgaatttaat ttaaaagaag gaaaacattg
                                                                         120
 gaatcatggc actcctgata ctttcccaaa tcaacactct caatgcccca ccctcgtcct
                                                                         180
 caccatagtg gggagactaa agtggccacg gatttgcctt angtgtgcag tgcgttctga
                                                                         240
 gttcnctgtc gattacatct gaccagtctc ctttttccga agtccntccg ttcaatcttg
                                                                         300
 С
                                                                         301
       <210> 278
       <211> 301
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(301)
       <223> n = A, T, C \text{ or } G
       <400> 278
taccactaca ctccagcctg ggcaacagag caagacctgt ctcaaagcat aaaatggaat
                                                                          60
aacatatcaa atgaaacagg gaaaatgaag ctgacaattt atggaagcca gggcttgtca
                                                                        120
cagtetetae tgttattatg cattacetgg gaatttatat aageeettaa taataatgee
                                                                        180
aatgaacatc tcatgtgtgc tcacaatgtt ctggcactat tataagtgct tcacaggttt
                                                                        240
tatgtgttct tcgtaacttt atggantagg tactcggccg cgaacacgct aagccgaatt
                                                                        300
С
                                                                        301
      <210> 279
      <211> 301
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(301)
      <223> n = A, T, C \text{ or } G
      <400> 279
aaagcaggaa tgacaaagct tgcttttctg gtatgttcta ggtgtattgt gacttttact
                                                                         60
gttatattaa ttgccaatat aagtaaatat agattatata tgtatagtgt ttcacaaagc
                                                                        120
ttagacettt accttecage caccecacag tgettgatat tteagagtea gteattggtt
                                                                        180
atacatgtgt agttccaaag cacataagct agaanaanaa atatttctag ggagcactac
                                                                        240
catctgtttt cacatgaaat gccacacaca tagaactcca acatcaattt cattgcacag
                                                                        300
                                                                        301
      <210> 280
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 280
ggtactggag ttttcctccc ctgtgaaaac gtaactactg ttgggagtga attgaggatg
                                                                         60
tagaaaggtg gtggaaccaa attgtggtca atggaaatag gagaatatgg ttctcactct
                                                                        120
```

tgagaaaaaa acctaagatt agcccaggta gttgcctgta acttcagttt ttctgcctgg gtttgatata gtttagggtt ggggttagat taagatctaa attacatcag gacaaagaga cagactatta actccacagt taattaagga ggtatgttcc atgtttattt gttaaagcag t	180 240 300 301
<210> 281 <211> 301 <212> DNA <213> Homo sapien	
<400> 281	
aggtacaaga aggggaatgg gaaagagctg ctgctgtggc attgttcaac ttggatattc gccgagcaat ccaaatcctg aatgaagggg catcttctga aaaaggagat ctgaatctca atgtggtagc aatggcttta tcgggttata cggatgagaa gaactccctt tggagagaaa tgtgtagcac actgcgatta cagctaaata acccgtattt gtgtgtcatg tttgcatttc tgacaagtga aacaggatct tacgatggag ttttgtatga aaacaaagtt gcagtacctc g	60 120 180 240 300 301
<210> 282 <211> 301 <212> DNA <213> Homo sapien	
<400> 282	
caggtactac agaattaaaa tactgacaag caagtagttt cttggcgtgc acgaattgca	60
tccagaaccc aaaaattaag aaattcaaaa agacattttg tgggcacctg ctagcacaga	120
agegeagaag caaageecag geagaaceat getaacetta cageteagee tgeacagaag	180
cgcagaagca aagcccaggc agaaccatgc taaccttaca gctcagcctg cacagaagcg cagaagcaaa gcccaggcag aacatgctaa ccttacagct cagcctgcac agaagcacag	240 300
a	301
<210> 283 <211> 301 <212> DNA <213> Homo sapien	
<400> 283	
atctgtatac ggcagacaaa ctttatarag tgtagagagg tgagcgaaag gatgcaaaag	60
cactttgagg gctttataat aatatgctgc ttgaaaaaaa aaatgtgtag ttgatactca	120
gtgcatctcc agacatagta aggggttgct ctgaccaatc aggtgatcat tttttctatc acttcccagg ttttatgcaa aaattttgtt aaattctata atggtgatat gcatcttta	180 240
ggaaacatat acatttttaa aaatctattt tatgtaagaa ctgacagacg aatttgcttt	300
g	301
<210> 284 <211> 301 <212> DNA <213> Homo sapien	
<400> 284	
caggtacaaa acgctattaa gtggcttaga atttgaacat ttgtggtctt tatttacttt	60
gcttcgtgtg tgggcaaagc aacatcttcc ctaaatatat attaccaaga aaagcaagaa	120
gcagattagg tttttgacaa aacaaacagg ccaaaagggg gctgacctgg agcagagcat ggtgagaggc aaggcatgag agggcaagtt tgttgtggac agatctgtgc ctactttatt	180
actggagtaa aagaaaacaa agttcattga tgtcgaagga tatatacagt gttagaaatt	240 300
a	301

<210> 285

<211> 301

```
<211> 301
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(301)
       <223> n = A, T, C or G
 acatcaccat gatcggatcc cccacccatt atacgttgta tgtttacata aatactcttc
 aatgatcatt agtgttttaa aaaaaatact gaaaactcct tctgcatccc aatctctaac
                                                                        120
 caggaaagca aatgctattt acagacctgc aagccctccc tcaaacnaaa ctatttctgg
                                                                        180
 attaaatatg totgacttot tttgaggtca cacgactagg caaatgctat ttacgatctg
                                                                        240
 caaaagctgt ttgaagagtc aaagccccca tgtgaacacg atttctggac cctgtaacag
                                                                        300
                                                                        301
       <210> 286
       <211> 301
       <212> DNA
       <213> Homo sapien
       <400> 286
taccactgca ttccagcctg ggtgacagag tgagactccg tctccaaaaa aaactttgct
                                                                        60
tgtatattat ttttgcctta cagtggatca ttctagtagg aaaggacagt aagattttt
                                                                        120
atcaaaatgt gtcatgccag taagagatgt tatattcttt tctcatttct tccccaccca
                                                                       180
aaaataagct accatatagc ttataagtct caaatttttg ccttttacta aaatgtgatt
                                                                       240
gtttctgttc attgtgtatg cttcatcacc tatattaggc aaattccatt ttttcccttg
                                                                       300
                                                                       301
      <210> 287
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 287
tacagatctg ggaactaaat attaaaaatg agtgtggctg gatatatgga gaatgttggg
                                                                        60
cccagaagga acgtagagat cagatattac aacagctttg ttttgagggt tagaaatatg
                                                                       120
aaatgatttg gttatgaacg cacagtttag gcagcagggc cagaatcctg accctctgcc
                                                                       180
ccgtggttat ctcctccca gcttggctgc ctcatgttat cacagtattc cattttgttt
                                                                       240
gttgcatgtc ttgtgaagcc atcaagattt tctcgtctgt tttcctctca ttggtaatgc
                                                                       300
                                                                       301
      <210> 288
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 288
gtacacctaa ctgcaaggac agctgaggaa tgtaatgggc agccgctttt aaagaagtag
                                                                        60
agtcaatagg aagacaaatt ccagttccag ctcagtctgg gtatctgcaa agctgcaaaa
                                                                       120
gatetttaaa gacaatttea agagaatatt teettaaagt tggcaatttg gagateatae
                                                                       180
aaaagcatct gcttttgtga tttaatttag ctcatctggc cactggaaga atccaaacag
                                                                      240
tctgccttaa ttttggatga atgcatgatg gaaattcaat aatttagaaa gttaaaaaaa
                                                                      300
                                                                      301
      <210> 289
```

```
<212> DNA
      <213> Homo sapien
      <221> misc feature
      <222> (1) ... (301)
      <223> n = A, T, C or G
      <400> 289
ggtacactgt ttccatgtta tgtttctaca cattgctacc tcagtgctcc tggaaactta
                                                                        60
gettttgatg tetecaagta gtecacette atttaactet ttgaaactgt atcatetttg
                                                                        120
ccaagtaaga gtggtggcct atttcagctg ctttgacaaa atgactggct cctgacttaa
                                                                        180
cgttctataa atgaatgtgc tgaaqcaaaq tqcccatqqt qqcgqcgaan aaqaqaaaqa
                                                                       240
tgtgttttgt tttggactct ctgtggtccc ttccaatgct gtgggtttcc aaccagngga
                                                                       300
                                                                        301
      <210> 290
      <211> 301
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(301)
      <223> n = A,T,C or G
      <400> 290
acactgaget ettettgata aatatacaga atgettggea tatacaagat tetatactae
                                                                        60
tgactgatct gttcatttct ctcacagctc ttacccccaa aaqcttttcc accctaagtq
                                                                       120
ttctgacctc cttttctaat cacagtaggg atagaggcag anccacctac aatgaacatg
                                                                     180
gagttctatc aagaggcaga aacagcacag aatcccagtt ttaccattcg ctagcagtgc
                                                                       240
tgccttgaac aaaaacattt ctccatgtct cattttcttc atgcctcaag taacagtgag
                                                                       300
                                                                       301
      <210> 291
      <211> 301
      <212> DNA
     <213> Homo sapien
      <400> 291
caggtaccaa tttcttctat cctagaaaca tttcatttta tqttqttqaa acataacaac
                                                                        60
tatatcagct agattttttt tctatgcttt acctgctatg gaaaatttga cacattctgc
                                                                       120
tttactcttt tgtttatagg tgaatcacaa aatgtatttt tatgtattct gtagttcaat
                                                                       180
agccatggct gtttacttca tttaatttat ttagcataaa gacattatga aaaggcctaa
                                                                       240
acatgagett cactteecca etaactaatt ageatetgtt atttettaac egtaatgeet
                                                                       300
                                                                       301
     <210> 292
     <211> 301
     <212> DNA
     <213> Homo sapien
     <220>
     <221> misc_feature
     <222> (1) ... (301)
     <223> n = A, T, C \text{ or } G
     <400> 292
```

```
accttttagt agtaatgtct aataataaat aagaaatcaa ttttataagg tccatatagc
                                                                          60
tgtattaaat aatttttaag tttaaaagat aaaataccat cattttaaat gttggtattc
                                                                         120
aaaaccaaag natataaccg aaaggaaaaa cagatgagac ataaaatgat ttgcnagatg
                                                                        180
ggaaatatag tasttyatga atgttnatta aattccagtt ataatagtgg ctacacactc
                                                                        240
tcactacaca cacagacccc acagtcctat atgccacaaa cacatttcca taacttqaaa
                                                                        300
                                                                        301
       <210> 293
       <211> 301
       <212> DNA
       <213> Homo sapien
       <400> 293
ggtaccaagt gctggtgcca gcctgttacc tgttctcact gaaaagtctg qctaatqctc
                                                                         60
ttgtgtagtc acttctgatt ctgacaatca atcaatcaat ggcctagagc actgactqtt
                                                                        120
aacacaaacg tcactagcaa agtagcaaca gctttaagtc taaatacaaa gctgttctgt
                                                                        180
gtgagaattt tttaaaaggc tacttgtata ataacccttg tcatttttaa tgtacctcgg
                                                                        240
ccgcgaccac gctaagccga attctgcaga tatccatcac actggcggcc gctcgagcat
                                                                        300
                                                                        301
      <210> 294
      <211> 301
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> .(1) . . . (301)
      \langle 223 \rangle n = A,T,C or G
      <400> 294
tgacccataa caatatacac tagctatctt tttaactgtc catcattagc accaatgaag
                                                                         60
attcaataaa attaccttta ttcacacatc tcaaaacaat tctgcaaatt cttagtgaag
                                                                        120
tttaactata gtcacaganc ttaaatattc acattgtttt ctatgtctac tgaaaataag
                                                                        180
ttcactactt ttctgggata ttctttacaa aatcttatta aaattcctgg tattatcacc
                                                                        240
cccaattata cagtagcaca accaccttat gtagttttta catgatagct ctgtagaggt
                                                                        300
t
                                                                        301
      <210> 295
      <211> 305
      <212> DNA
      <213> Homo sapien
      <400> 295
gtactctttc tctcccctcc tctgaattta attctttcaa cttgcaattt gcaaggatta
                                                                         60
cacatttcac tgtgatgtat attgtgttgc aaaaaaaaa gtgtctttgt ttaaaattac
                                                                        120
ttggtttgtg aatccatctt gctttttccc cattggaact agtcattaac ccatctctga
                                                                        180
actggtagaa aaacrtctga agagctagtc tatcagcatc tgacaggtga attggatggt
                                                                        240
tctcagaacc atttcaccca gacagcctgt ttctatcctg tttaataaat tagtttgggt
                                                                        300
tctct
                                                                        305
      <210> 296
      <211> 301
      <212> DNA
      <213> Homo sapien
aggtactatg ggaagctgct aaaataatat ttgataqtaa aaqtatqtaa tqtqctatct
                                                                        60
```

```
cacctagtag taaactaaaa ataaactgaa actttatgga atctgaagtt attttccttq
                                                                        120
attaaataga attaataaac caatatqaqq aaacatqaaa ccatqcaatc tactatcaac
                                                                        180
tttgaaaaag tgattqaacg aaccacttag ctttcagatg atgaacactg ataagtcatt
                                                                        240
tgtcattact ataaatttta aaatctgtta ataagatggc ctatagggag gaaaaagggg
                                                                        300
С
                                                                        301
      <210> 297
      <211> 300
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(300)
      <223> n = A, T, C or G
      <400> 297
actgagtttt aactggacgc caagcaggca aggctggaag gttttgctct ctttgtgcta
                                                                         60
aaggttttga aaaccttgaa ggagaatcat tttgacaaga agtacttaag agtctagaga
                                                                        120
acaaagangt gaaccagetg aaageteteg ggggaanett acatgtgttg ttaggeetgt
                                                                        180
tccatcattg ggagtgcact ggccatccct caaaatttgt ctgggctggc ctgagtggtc
                                                                        240
accgcacctc ggccgcgacc acgctaagcc gaattctgca gatatccatc acactggcgg
                                                                       . 300
      <210> 298
      <211> 301
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (301)
      \langle 223 \rangle n = A,T,C or G
      <400> 298
tatggggttt gtcacccaaa agctgatgct gagaaaggcc tccctggggc ccctcccgcg
                                                                        60
ggcatctgag agacctggtg ttccagtgtt tctggaaatg ggtcccagtg ccgccggctg
                                                                        120
tgaagetete agateaatea egggaaggge etggeggtgg tggeeacetg gaaceaceet
                                                                        180
gtcctgtctg tttacatttc actaycaggt tttctctggg cattacnatt tgttccccta
                                                                        240
caacagtgac ctgtgcattc tgctgtggcc tgctgtgtct gcaggtggct ctcagcgagg
                                                                        300
                                                                        301
      <210> 299
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 299
gttttgagac ggagtttcac tcttgttgcc cagactggac tgcaatggca gggtctctgc
                                                                        60
teactgcace etetgeetee caggttegag caatteteet geeteageet eccaggtage
                                                                       120
tgggattgca ggctcacgcc accataccca gctaattttt ttgtattttt agtagagacg
                                                                       180
gagtttcgcc atgttggcca gctggtctca aactcctgac ctcaagcgac ctgcctgcct
                                                                       240
cggcctccca aagtgctgga attataggca tgagtcaaca cgcccagcct aaagatattt
                                                                       300
                                                                       301
      <210> 300
      <211> 301
      <212> DNA
      <213> Homo sapien
```

```
<400> 300
 attcagtttt atttgctgcc ccagtatctg taaccaggag tgccacaaaa tcttgccaga
                                                                         60
 tatgtcccac acccactggg aaaggctccc acctggctac ttcctctatc agctgggtca
                                                                        120
 gctgcattcc acaaggttct cagcctaatg agtttcacta cctgccagtc tcaaaactta
                                                                        180
 gtaaagcaag accatgacat tcccccacgg aaatcagagt ttgccccacc gtcttgttac
                                                                        240
 tataaagcet geetetaaca gteettgett etteacacea atecegageg catececeat
                                                                        300
                                                                        301
       <210> 301
       <211> 301
       <212> DNA
       <213> Homo sapien
       <400> 301
 ttaaattttt gagaggataa aaaggacaaa taatctagaa atgtgtcttc ttcagtctgc
                                                                         60
 agaggacccc aggtctccaa gcaaccacat ggtcaagggc atgaataatt aaaagttggt
                                                                        120
 gggaactcac aaagaccctc agagctgaga cacccacaac agtgggagct cacaaagacc
                                                                        180
 ctcagagctg agacacccac aacagtggga gctcacaaag accctcagag ctgagacacc
                                                                        240
 cacaacagca cctcgttcag ctgccacatg tgtgaataag gatgcaatgt ccagaagtgt
                                                                        300
                                                                        301
       <210> 302
       <211> 301
       <212> DNA
       <213> Homo sapien
       <400> 302
 aggtacacat ttagcttgtg gtaaatgact cacaaaactg attttaaaat caagttaatg
                                                                        60
 tgaattttga aaattactac ttaatcctaa ttcacaataa caatggcatt aaggtttgac
                                                                       120
 ttgagttggt tcttagtatt atttatggta aataggctct taccacttgc aaataactgg
                                                                       180
ccacatcatt aatgactgac ttcccagtaa ggctctctaa ggggtaagta ggaggatcca
                                                                       240
caggatitga gatgetaagg ccccagagat cgtttgatcc aaccetetta ttttcagagg
                                                                       300
                                                                       301
      <210> 303
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 303
aggtaccaac tgtggaaata ggtagaggat cattttttct ttccatatca actaagttgt
                                                                        60
atattgtttt ttgacagttt aacacatctt cttctgtcag agattctttc acaatagcac
                                                                       120
tggctaatgg aactaccgct tgcatgttaa aaatggtggt ttgtgaaatg atcataggcc
                                                                       180
agtaacgggt atgtttttct aactgatctt ttgctcgttc caaagggacc tcaagacttc
                                                                       240
catcgatttt atatctgggg tctagaaaag gagttaatct gttttccctc ataaattcac
                                                                       300
                                                                       301
      <210> 304
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 304
acatggatgt tattttgcag actgtcaacc tgaatttgta tttgcttgac attgcctaat
tattagtttc agtttcagct tacccacttt ttgtctgcaa catgcaraas agacagtgcc
                                                                       120
ctttttagtg tatcatatca ggaatcatct cacattggtt tgtgccatta ctggtgcagt
                                                                       180
gactttcagc cacttgggta aggtggagtt ggccatatgt ctccactgca aaattactga
                                                                      240
```

```
ttttcctttt gtaattaata agtgtgtgtg tgaagattct ttgagatgag gtatatatct
                                                                       300
                                                                       301
      <210> 305
      <211> 301
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(301)
      <223> n = A, T, C \text{ or } G
      <400> 305
gangtacagc gtggtcaagg taacaagaag aaaaaaatgt qaqtqgcatc ctqqqatqaq
                                                                        60
cagggggaca gacctggaca gacacgttgt catttgctgc tgtgggtagg aaaatgggcg
                                                                       120
taaaggagga gaaacagata caaaatctcc aactcagtat taaggtattc tcatgcctag
                                                                       180
aatattggta gaaacaagaa tacattcata tggcaaataa ctaaccatgg tggaacaaaa
                                                                       240
ttctgggatt taagttggat accaangaaa ttgtattaaa agagctgttc atggaataag
                                                                       300
                                                                       301
      <210> 306
      <211> 8
      <212> PRT
      <213> Homo sapien
      <400> 306
Val Leu Gly Trp Val Ala Glu Leu
 1
                 5
      <210> 307
      <211> 637
      <212> DNA
      <213> Homo sapien
      <400> 307
acagggratg aagggaaagg gagaggatga ggaaqccccc ctqqqqattt qqtttqqtcc
                                                                        60
ttgtgatcag gtggtctatg gggcttatcc ctacaaagaa gaatccagaa ataggggcac
                                                                       120
attgaggaat gatacttgag cccaaagagc attcaatcat tgttttattt gccttmtttt
                                                                       180
cacaccattg gtgagggagg gattaccacc ctggggttat gaagatggtt qaacaccca
                                                                       240
cacatagcac cggagatatg agatcaacag tttcttagcc atagagattc acagcccaga
                                                                       300
gcaggaggac gcttgcacac catgcaggat gacatggggg atgcgctcgg gattggtgtg
                                                                       360
aagaagcaag gactgttaga ggcaggcttt atagtaacaa gacggtgggg caaactctga
                                                                       420
tttccgtggg ggaatgtcat ggtcttgctt tactaagttt tgagactggc aggtagtgaa
                                                                       480
actcattagg ctgagaacct tgtggaatgc acttgaccca sctgatagag gaagtagcca
                                                                       540
ggtgggagcc tttcccagtg ggtgtgggac atatctggca agattttgtg gcactcctgg
                                                                       600
ttacagatac tggggcagca aataaaactg aatcttg
                                                                       637
      <210> 308
      <211> 647
      <212> DNA
      <213> Homo sapien
     <220>
     <221> misc feature
     <222> (1)...(647)
     <223> n = A, T, C or G
```

```
<400> 308
  acgattttca ttatcatgta aatcgggtca ctcaaggggc caaccacagc tgggagccac
                                                                          60
  tgctcagggg aaggttcata tgggactttc tactgcccaa ggttctatac aggatataaa
                                                                         120
  ggngcctcac agtatagatc tggtagcaaa gaagaagaaa caaacactga tctctttctg
                                                                         180
  ccacccctct gaccctttgg aactcctctg accctttaga acaagcctac ctaatatctg
                                                                         240
 ctagagaaaa gaccaacaac ggcctcaaag gatctcttac catgaaggtc tcagctaatt
                                                                         300
 cttggctaag atgtgggttc cacattaggt tctgaatatg gggggaaggg tcaatttgct
                                                                         360
 cattttgtgt gtggataaag tcaggatgcc caggggccag agcagggggc tgcttgcttt
                                                                         420
 gggaacaatg gctgagcata taaccatagg ttatggggaa caaaacaaca tcaaagtcac
                                                                         480
 tgtatcaatt gccatgaaga cttgagggac ctgaatctac cgattcatct taaggcagca
                                                                         540
 ggaccagttt gagtggcaac aatgcagcag cagaatcaat ggaaacaaca gaatgattgc
                                                                        600
 aatgteettt ttttteteet gettetgaet tgataaaagg ggaeegt
                                                                        647
       <210> 309
       <211> 460
       <212> DNA
       <213> Homo sapien
       <400> 309
 actttatagt ttaggctgga cattggaaaa aaaaaaaagc cagaacaaca tgtgatagat
                                                                         60
 aatatgattg gctgcacact tccagactga tgaatgatga acgtgatgga ctattgtatg
                                                                        120
 gagcacatet teagcaagag ggggaaatae teateatttt tggecageag ttgtttgate
                                                                        180
 accaaacatc atgccagaat actcagcaaa cettettage tettgagaag teaaagteeg
                                                                        240
 ggggaattta ttcctggcaa ttttaattgg actccttatg tgagagcagc ggctacccag
                                                                        300
 ctggggtggt ggagcgaacc cgtcactagt ggacatgcag tggcagagct cctggtaacc
                                                                        360
 acctagagga atacacaggc acatgtgtga tgccaagcgt gacacctgta gcactcaaat
                                                                        420
 ttgtcttgtt tttgtctttc ggtgtgtaag attcttaagt
                                                                        460
       <210> 310
       <211> 539
       <212> DNA
       <213> Homo sapien
       <400> 310
acgggactta tcaaataaag ataggaaaag aagaaaactc aaatattata ggcagaaatg
                                                                        60
ctaaaggttt taaaatatgt caggattgga agaaggcatg gataaagaac aaagttcagt
                                                                       120
taggaaagag aaacacagaa ggaagagaca caataaaagt cattatgtat tetgtgagaa
                                                                       180
gtcagacagt aagatttgtg ggaaatgggt tggtttgttg tatggtatgt attttagcaa
                                                                       240
taatctttat ggcagagaaa gctaaaatcc tttagcttgc gtgaatgatc acttgctgaa
                                                                       300
ttcctcaagg taggcatgat gaaggaggt ttagaggaga cacagacaca atgaactgac
                                                                       360
ctagatagaa agccttagta tactcagcta ggaatagtga ttctgagggc acactgtgac
                                                                       420
atgattatgt cattacatgt atggtagtga tggggatgat aggaaggaag aacttatggc
                                                                       480
atattttcac ccccacaaaa gtcagttaaa tattgggaca ctaaccatcc aggtcaaga
                                                                       539
      <210> 311
      <211> 526
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(526)
      <223> n = A,T,C or G
      <400> 311
caaatttgag ccaatgacat agaattttac aaatcaagaa gcttattctg gggccatttc
                                                                        60
ttttgacgtt ttctctaaac tactaaagag gcattaatga tccataaatt atattatcta
                                                                       120
catttacagc atttaaaatg tgttcagcat gaaatattag ctacagggga agctaaataa
                                                                       180
```

```
attaaacatg gaataaagat ttgtccttaa atataatcta caagaagact ttgatatttq
                                                                        240
tttttcacaa gtgaagcatt cttataaagt gtcataacct ttttggggaa actatgggaa
                                                                        300
aaaatgggga aactctgaag ggttttaagt atcttacctg aagctacaga ctccataacc
                                                                        360
tetetttaca gggageteet geageeeeta eagaaatgag tggetgagat tettgattge
                                                                        420
acagcaagag cttctcatct aaaccctttc cctttttagt atctgtgtat caagtataaa
                                                                        480
agttctataa actgtagtnt acttatttta atccccaaaq cacaqt
                                                                        526
      <210> 312
      <211> 500
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(500)
      \langle 223 \rangle n = A,T,C or G
      <400> 312
cetetetete eccaececet gaetetagag aactgggtit teteceagta etccagcaat
                                                                        60
tcatttctga aagcagttga gccactttat tccaaagtac actgcagatg ttcaaactct
                                                                       120
ccatttctct ttcccttcca cctgccagtt ttgctgactc tcaacttgtc atgagtgtaa
                                                                       180
gcattaagga cattatgctt cttcgattct gaagacaggc cctgctcatg gatgactctg
                                                                       240
gcttcttagg aaaatatttt tcttccaaaa tcagtaggaa atctaaactt atcccctctt
                                                                       300
tgcagatgtc tagcagettc agacatttgg ttaagaaccc atgggaaaaa aaaaaatcct
                                                                       360
tgctaatgtg gtttcctttg taaaccanga ttcttatttg nctqqtataq aatatcaqct
                                                                       420
ctgaacgtgt ggtaaagatt tttgtgtttg aatataggag aaatcagttt gctgaaaagt
                                                                       480
tagtcttaat tatctattgg
                                                                       500
      <210> 313
      <211> 718
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (718)
     <223> n = A, T, C or G
      <400> 313
ggagatttgt gtggtttgca gccgagggag accaggaaga tctqcatqqt qqgaaqqacc
                                                                        60
tgatgataca gaggtgagaa ataagaaaqq ctqctqactt taccatctga gqccacacat
                                                                       120
ctgctgaaat ggagataatt aacatcacta qaaacaqcaa qatqacaata taatqtctaa
                                                                       180
gtagtgacat gtttttgcac atttccaqcc cttttaaata tccacacaca caqqaaqcac
                                                                       240
aaaaggaagc acagagatcc ctgggagaaa tgcccggccg ccatcttggg tcatcgatga
                                                                       300
gcctegccct gtgcctgntc ccgcttgtga gggaaggaca ttagaaaatg aattgatgtg
                                                                       360
ttccttaaag gatggcagga aaacagatcc tgttgtggat atttatttga acgggattac
                                                                       420
agatttgaaa tgaagtcaca aagtgagcat taccaatgag aggaaaacag acgagaaaat
                                                                       480
cttgatggtt cacaagacat gcaacaaaca aaatggaata ctgtgatgac acgagcagcc
                                                                       540
aactggggag gagataccac ggggcagagg tcaggattct ggccctgctg cctaactgtg
                                                                       600
cgttatacca atcatttcta tttctaccct caaacaagct gtngaatatc tgacttacgg
                                                                       660
ttcttntggc ccacattttc atnatccacc contentttt aannttantc caaantgt
                                                                       718
     <210> 314
     <211> 358
     <212> DNA
     <213> Homo sapien
     <400> 314
```

gtttatttac attacagaaa aaacatcaag acaatgtata ctatttcaaa tatatccata	60
cataatcaaa tatagetgta gtacatgttt teattggtgt agattaceae aaatgcaagg	120
caacatgtgt agatctcttg tcttattctt ttgtctataa tactgtattg tgtagtccaa	180
gctctcggta gtccagccac tgtgaaacat gctcccttta gattaacctc gtggacgctc	240
ttgttgtatt gctgaactgt agtgccctgt attttgcttc tgtctgtgaa ttctgttgct	300
totggggcat ttoottgtga tgcagaggac caccacacag atgacagcaa totgaatt	358
<210> 315	
<211> 341	
<212> DNA	
<213> Homo sapien	
<400> 315	
taccacctcc ccgctggcac tgatgagccg catcaccatg gtcaccagca ccatgaaggc	60
araggreate argaggacat ggaatgggcc cccaaggatg gtctqtccaa agaagcgagt	120
gaccccart crgaagargt crggaaccrc taccagcagg argargatag ccccaargac	180
agtcaccagc tccccgacca gccggatatc gtccttaggg gtcatgtagg cttcctgaag	240
tagettetge tgtaagaggg tgttgteeeg ggggetegtg eggttattgg teetgggett	300
gagggggggg tagatgcagc acatggtgaa gcagatgatg t	341
<210> 316	
<211> 151	
<212> DNA	
<213> Homo sapien	
<400> 316	
agactgggca agactettae geceeacaet geaatttggt ettgttgeeg tatecattta	60
rgtgggeett tetegagitt etgattataa acaccaetgg agegatgigt tgaetggaet	120
cattcaggga gctctggttg caatattagt t	151
<210> 317	
<211> 151	
<212> DNA	
<213> Homo sapien	
<400> 317	
agaactagtg gatcctaatg aaatacctga aacatatatt ggcatttatc aatggctcaa	60
stotteattt atototggod ttaaccotgg ctootgaggo tgoggodago agatoggagg	120
ccagggetet gttettgeca cacetgettg a	151
<210> 318	
<211> 151	
<212> DNA	
<213> Homo sapien	
1400 270	
<400> 318	
ectggtggga ggcgctgttt agttggctgt tttcagaggg gtctttcgga gggacctcct	60
ctgcagget ggagtgtett tatteetgge gggagaeege acatteeaet getgaggetg	120
	151
<210> 319	
<211> 151	
<212> DNA	
<213> Homo sapien	
<400> 319	
actagtgga tccagagcta taggtacagt gtgatctcag ctttgcaaac acattttcta	60
atagatagt actaggtatt aatagatatg taaagaaaga aatcacacca ttaataatgg	120

taagattggg tttatgtgat tttagtgggt a	151
<210> 320	
<211> 150	
<212> DNA	
<213> Homo sapien	
<400> 320	•
aactagtgga tccactagtc cagtgtggtg gaattccatt gtgttggggt tctagatcgc gagcggctgc ccttttttt tttttttt gggggggaatt ttttttttt aatagttatt	60
gagtgttcta cagettacag taaataccat	120 150
	130
<210> 321	
<211> 151 <212> DNA	
<213> Homo sapien	
<400> 321	
agcaactttg ttttcatcc aggttatttt aggcttagga tttcctctca cactgcagtt	60
tagggtggca ttgtaaccag ctatggcata ggtgttaacc aaaggctgag taaacatggg tgcctctgag aaatcaaagt cttcatacac t	120 151
	171
<210> 322	
<211> 151 <212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)(151) <223> n = A,T,C or G	
1,77,4 02 0	
<400> 322	
atccagcatc ttctcctgtt tcttgccttc ctttttcttc ttcttasatt ctgcttgagg	60
tttgggcttg gtcagtttgc cacagggctt ggagatggtg acagtcttct ggcattcggc attgtgcagg gctcgcttca nacttccagt t	120 151
avigogougg goodgoodddoccoodgo c	131
<210> 323	
<211> 151 <212> DNA	
'<213> Homo sapien	
data in the same saperate	
<220>	
<221> misc_feature	
<222> (1)(151) <223> n = A,T,C or G	
<400> 323	
tgaggacttg tkttcttttt ctttattttt aatcctctta ckttgtaaat atattgccta	60
nagactcant tactacccag tttgtggttt twtgggagaa atgtaactgg acagttagct gttcaatyaa aaagacactt ancccatgtg g	120 151
geroune, an adagacacce aneceaegeg g	151
<210> 324	
<211> 461	
<212> DNA <213> Homo sapien	
Nomo Bapton	
<220>	

```
<221> misc_feature
       <222> (1)...(461)
       <223> n = A, T, C or G
       <400> 324
 acctgtgtgg aatttcagct ttcctcatgc aaaaggattt tgtatccccg gcctacttga
                                                                       60
 agaagtggtc agctaaagga atccaggttg ttggttggac tgttaatacc tttgatgaaa
                                                                      120
 agagttacta cgaatcccat cttggttcca gctatatcac tgacagcatg gtagaagact
                                                                      180
 gcgaacctca cttctagact ttcacggtgg gacgaaacgg gttcagaaac tgccaggggc
                                                                      240
 ctcatacagg gatatcaaaa taccctttgt gctacccagg ccctggggaa tcaggtgact
                                                                      300
 cacacaaatg caatagttgg tcactgcatt tttacctgaa ccaaagctaa acccggtgtt
                                                                      360
 gccaccatgc accatggcat gccagagttc aacactgttg ctcttgaaaa ttgggtctga
                                                                      420
 aaaaacgcac aagagcccct gccctgccct agctgangca c
                                                                      461
       <210> 325
       <211> 400
       <212> DNA
       <213> Homo sapien
       <400> 325
 acactgtttc catgttatgt ttctacacat tgctacctca gtgctcctgg aaacttagct
                                                                       60
 tttgatgtct ccaagtagtc caccttcatt taactctttg aaactgtatc atctttgcca
                                                                      120
 agtaagagtg gtggcctatt tcagctgctt tgacaaaatg actggctcct gacttaacgt
                                                                      180
 tctataaatg aatgtgctga agcaaagtgc ccatggtggc ggcgaagaag agaaagatgt
                                                                      240
 gttttgtttt ggactctctg tggtcccttc caatgctgtg ggtttccaac caggggaagg
                                                                      300
 gtcccttttg cattgccaag tgccataacc atgagcacta cgctaccatg gttctgcctc
                                                                      360
 ctggccaagc aggctggttt gcaagaatga aatgaatgat
                                                                      400
      <210> 326
      <211> 1215
      <212> DNA
      <213> Homo sapien
      <400> 326
ggaggactgc agcccgcact cgcagccctg gcaggcggca ctggtcatgg aaaacgaatt
                                                                      60
gttctgctcg ggcgtcctgg tgcatccgca gtgggtgctg tcagccgcac actgtttcca
                                                                     120
gaacteetae accateggge tgggeetgea cagtettgag geegaecaag ageeagggag
                                                                     180
ccagatggtg gaggccagcc tctccgtacg gcacccagag tacaacagac ccttgctcgc
                                                                     240
taacgacctc atgctcatca agttggacga atccgtgtcc gagtctgaca ccatccggag
                                                                     300
catcagcatt gettegeagt gecetacege ggggaactet tgeetegttt etggetgggg
                                                                     360
tetgetggeg aaeggeagaa tgeetaeegt getgeagtge gtgaaegtgt eggtggtgte
                                                                     420
tgaggaggte tgcagtaage tetatgacce getgtaccae eccagcatgt tetgegeegg
                                                                     480
cggagggcaa gaccagaagg actcctgcaa cggtgactct ggggggcccc tgatctgcaa
                                                                     540
cgggtacttg cagggccttg tgtctttcgg aaaagccccg tgtggccaag ttggcgtgcc
                                                                     600
aggtgtctac accaacctct gcaaattcac tgagtggata gagaaaaccg tccaggccag
                                                                     660
ttaactctgg ggactgggaa cccatgaaat tgacccccaa atacatcctg cggaaggaat
                                                                     720
tcaggaatat etgttcccag cccctcctcc ctcaggccca ggagtccagg cccccagccc
                                                                     780
ctcctccctc aaaccaaggg tacagatccc cagcccctcc tccctcagac ccaggagtcc
                                                                     840
agacececca geocetecte ecteagacee aggagtecag eccetectee etcagaceca
                                                                     900
ggagtccaga cccccagcc cctcctcct cagacccagg ggtccaggcc cccaacccct
                                                                     960
cctcctcag actcagaggt ccaagccccc aacccctcct tccccagacc cagaggtcca
                                                                    1020
ggtcccagcc cctcctccct cagacccagc ggtccaatgc cacctagact ctccctgtac
                                                                    1080
acagtgcccc cttgtggcac gttgacccaa ccttaccagt tggtttttca ttttttgtcc
                                                                    1140
1200
aaaaaaaaa aaaaa
                                                                    1215
```

<210> 327 <211> 220

<212> PRT <213> Homo sapien <400> 327 Glu Asp Cys Ser Pro His Ser Gln Pro Trp Gln Ala Ala Leu Val Met 5 10 Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln Trp Val 20 25 Leu Ser Ala Ala His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu Gly 40 45 Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val Glu 60 55 Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro Leu Leu Ala 70 75 Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser Glu Ser Asp 85 90 Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr Ala Gly Asn 105 Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Gly Arg Met Pro 120 125 Thr Val Leu Gln Cys Val Asn Val Ser Val Val Ser Glu Glu Val Cys 135 140 Ser Lys Leu Tyr Asp Pro Leu Tyr His Pro Ser Met Phe Cys Ala Gly 150 155 Gly Gly Gln Asp Gln Lys Asp Ser Cys Asn Gly Asp Ser Gly Pro 165 170 175 Leu Ile Cys Asn Gly Tyr Leu Gln Gly Leu Val Ser Phe Gly Lys Ala 185 190 Pro Cys Gly Gln Val Gly Val Pro Gly Val Tyr Thr Asn Leu Cys Lys 200 Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Ala Ser 215 <210> 328 <211> 234 <212> DNA <213> Homo sapien <400> 328 cgctcgtctc tggtagetgc agccaaatca taaacggcga ggactgcagc ccgcactcgc agccctggca ggcggcactg gtcatggaaa acgaattgtt ctgctcgggc gtcctggtgc 120 atccgcagtg ggtgctgtca gccacacact gtttccagaa ctcctacacc atcgggctgg 180 gcctgcacag tcttgaggcc gaccaagagc cagggagcca gatggtggag gcca 234 <210> 329 <211> 77 <212> PRT <213> Homo sapien <400> 329 Leu Val Ser Gly Ser Cys Ser Gln Ile Ile Asn Gly Glu Asp Cys Ser Pro His Ser Gln Pro Trp Gln Ala Ala Leu Val Met Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln Trp Val Leu Ser Ala Thr 40 His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu Gly Leu His Ser Leu

55

60

```
Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val Glu Ala
        <210> 330
        <211> 70
        <212> DNA
        <213> Homo sapien
        <400> 330
  cccaacacaa tggcccgatc ccatccctga ctccgccctc aggatcgctc gtctctggta
                                                                         60
  gctgcagcca
                                                                         70
        <210> 331
        <211> 22
        <212> PRT
        <213> Homo sapien
        <400> 331
 Gln His Asn Gly Pro Ile Pro Ser Leu Thr Pro Pro Ser Gly Ser Leu
  1
                                     10
 Val Ser Gly Ser Cys Ser
             20
       <210> 332
       <211> 2507
       <212> DNA
     <213> Homo sapien
       <400> 332
 tggtgccgct gcagccggca gagatggttg agetcatgtt cccgctgttg etcetcette
 tgcccttcct tctgtatatg gctgcgccc aaatcaggaa aatgctgtcc agtggggtgt
                                                                       120
 gtacatcaac tgttcagctt cctgggaaag tagttgtggt cacaggagct aatacaggta
                                                                       180
 togggaagga gacagccaaa gagctggctc agagaggagc togagtatat ttagcttgcc
                                                                       240
 gggatgtgga aaagggggaa ttggtggcca aagagatcca gaccacgaca gggaaccagc
                                                                       300
 aggtgttggt gcggaaactg gacctgtctg atactaagtc tattcgagct tttgctaagg
                                                                       360
gcttcttagc tgaggaaaag cacctccacg ttttgatcaa caatgcagga gtgatgatgt
                                                                       420
gtccgtactc gaagacagca gatggctttg agatgcacat aggagtcaac cacttgggtc
                                                                       480
acttectect aacceatetg etgetagaga aactaaagga atcageecca teaaggatag
                                                                       540
taaatgtgtc ttccctcgca catcacctgg gaaggatcca cttccataac ctgcagggcg
                                                                       600
agaaattota caatgoaggo ctggoctact gtoacagoaa gotagocaac atcotottoa
                                                                       660
cccaggaact ggcccggaga ctaaaaggct ctggcgttac gacgtattct gtacaccctg
                                                                       720
gcacagtcca atctgaactg gttcggcact catctttcat gagatggatg tggtggcttt
                                                                       780
teteettttt catcaagact ceteageagg gageecagae cageetgeae tgtgeettaa
                                                                       840
cagaaggtet tgagatteta agtgggaate attteagtga etgteatgtg geatgggtet
                                                                       900
ctgcccaage tegtaatgag actatageaa ggeggetgtg ggaegteagt tgtgaeetge
                                                                       960
tgggcctccc aatagactaa caggcagtgc cagttggacc caagagaaga ctgcagcaga
                                                                      1020
ctacacagta cttcttgtca aaatgattct ccttcaaggt tttcaaaacc tttagcacaa
                                                                      1080
agagagcaaa accttccagc cttgcctgct tggtgtccag ttaaaactca gtgtactgcc
                                                                      1140
agattcgtct aaatgtctgt catgtccaga tttactttgc ttctgttact gccagagtta
                                                                      1200
ctagagatat cataatagga taagaagacc ctcatatgac ctgcacagct cattttcctt
                                                                      1260
ctgaaagaaa ctactaccta ggagaatcta agctatagca gggatgattt atgcaaattt
                                                                      1320
gaactagett etttgttcac aattcagtte etcecaacca accagtette acttcaagag
                                                                      1380
ggccacactg caacctcage ttaacatgaa taacaaagac tggctcagga gcagggcttg
                                                                      1440
cccaggcatg gtggatcacc ggaggtcagt agttcaagac cagcctggcc aacatggtga
                                                                      1500
aaccccacct ctactaaaaa ttgtgtatat ctttgtgtgt cttcctgttt atgtgtgcca
                                                                      1560
agggagtatt ttcacaaagt tcaaaacagc cacaataatc agagatggag caaaccagtg
                                                                     1620
ccatccagtc tttatgcaaa tgaaatgctg caaagggaag cagattctgt atatgttggt
                                                                     1680
aactacccac caagagcaca tgggtagcag ggaagaagta aaaaaagaga aggagaatac
                                                                     1740
```

tggaagataa tgcacaaaat	gaagggacta	gttaaggatt	aactagccct	ttaaggatta	1800
actagttaag gattaatagc					1860
agggcaagca cccaggactg					1920
aaaaaaaaa aaaaatccta	aaaacaaaca	aacaaaaaaa	acaattcttc	attcagaaaa	1980
attatcttag ggactgatat	tggtaattat	ggtcaattta	ataatattt	ggggcatttc	2040
cttacattgt cttgacaaga	ttaaaatgtc	tgtgccaaaa	ttttgtattt	tatttggaga	2100
cttcttatca aaagtaatgc	tgccaaagga	agtctaagga	attagtagtg	ttcccatcac	2160
ttgtttggag tgtgctattc	taaaagattt	tgatttcctg	gaatgacaat	tatattttaa	2220
ctttggtggg ggaaagagtt	ataggaccac	agtcttcact	tctgatactt	gtaaattaat	2280
cttttattgc acttgttttg	accattaagc	tatatgttta	gaaatggtca	ttttacggaa	2340
aaattagaaa aattctgata					2400
attgaactgt caatgacaaa	taaaaattct	ttttgattat	tttttgtttt	catttaccag	2460
aataaaaacg taagaattaa	aagtttgatt	acaaaaaaa	aaaaaaa		2507
-210- 222					
<210> 333					
<211> 3030 <212> DNA					
<212> DNA <213> Homo sapie	en				
Jack Home Super					
<400> 333					
gcaggcgact tgcgagctgg					60
ggagagcgag ctgggtgccc					120
gctccatgga gcccggcaat	tatgccacct	tggatggagc	caaggatatc	gaaggcttgc	180
tgggagcggg aggggggcgg	aatctggtcg	cccactcccc	tctgaccagc	cacccagcgg	240
cgcctacgct gatgcctgct	gtcaactatg	ccccttgga	tctgccaggc	tcggcggagc	300
cgccaaagca atgccaccca	tgccctgggg	tgccccaggg	gacgtcccca	gctcccgtgc	360
cttatggtta ctttggaggc					420
cctgtgccca ggcagccacc	ctggccgcgt	accccgcgga	gactcccacg	gccggggaag	480
agtaccccag ycgccccact	gagtttgcct	tctatccggg	atatccggga	acctaccagc	540
ctatggccag ttacctggac					600
gacatgactc cctgttgcct					660
acagccagat gtgttgccag					720
ttgcagactc cagcgggcag					780
aacgcattcc gtacagcaag					840
agttcatcac caaggacaag					900
agattaccat ctggtttcag					960
agaacagcgc taccccttaa					1020
gtcctgggga gaccaggaac					1080
cccctagaga caacaccctt					1140
tgggtaccca gtatgtgcag					1200
cccaaagaac ctggcccagt					1260
cagtactage tgccatgate					1320
cragaaaccg ctttcatgaa					1380
cagggaaget tteteteaga					1440 1500
gactgaggag aggggaacgg					1560
tctcagctga cagctgggta					1620
ccaccccata gggtgtaccc ctgtcgtgtg aaaatgaagc					1680
agagatttga gaaagtgcct					1740
tetteeetta atatttetgg					1800
ggatcccagt gaagtagatg					1860
gagtggcaga gtggtgccaa					1920
aattotggaa gotggagaca					1920
agggcctctg cctctgtgtt					2040
gactcatctc ctggccgcgc					2100
aggctggggg tggggggcct					2160
ctggacaacc cgcagaaccg					2220
tggcgagcag ttggtggtgg					2280
				35	

accaactate atagaaaaa amaaaa	
gecagetete etagaaacee egeggeggee geegeageea agtgtttatg geeegeggte	2340
333 333 co coagecerge electrone against agains	2400
additional accountiac cadagaggag cocaggacta aggassagg gassages	2460
-3-3-3-4-4-4 Cadddda adaddacdad daggacaaa ataacataaa	2520
The same canada accept to cade color of the contract cont	
cgccgctcag agcaggtcac tttctgcctt ccacgtcctc cttcaaggaa gccccatgtg	2580
ggtagettte aatategeag gttettaete etetgeetet ataageteaa acceaceae	2640
gatcagcaa graaaccaa tocatcaga attagetta ataagettaa accaccaac	2700
gategggeaa gtaaacccc tecetegeeg actteggaac tggegagagt teagegeaga	2760
tgggcctgtg gggaggggc aagatagatg agggggagcg gcatggtgcg gggtgaccc	2820
coggagagagagaggcc acaagagggg ctgccaccac cactaacga gatgaggata	2880
January Consumer Adda Colour Barronger Actor and an annual colour	2940
aggattitet ctgttttea ctcgcastaa aytgagaga	3000
aacaaaaaaa aaaaaaaaaa aaaactcgag	3030
	3030
<210> 334	
<211> 2417	
<212> DNA	
<213> Homo sapien	
1010 Sapien	
<4005 224	
<400> 334	
ggeggeeget etagagetag tgggateeee egggetgeae gaatteggea egagtgagtt	60
grant de la contrata del contrata de la contrata de la contrata del contrata de la contrata de l	120
January oguggaada qqtqtadada qqttqtacc totcaaacct cotatatata	180
and a decida decidade de la decidade decidade decidade de la decid	
June 300 carryaggar archadacti agarcaaffa caffffacaf agaagaaffa	240
ttacttatca atacaataat accaccttta ccaatctatt gttttgatac gagactcaaa	300
tatgccagat atatgtaaaa gcaacctaca agctctctaa tcatgctcac ctaaaagatt	360
cccgggatct aataggctca aagaaacttc tctagaaat ataaaagaga aaattggatt	420
atgcaaaaat tcattattaa tttttttat cottagadat ataaaagaga aaattggatt	480
atgcaaaaat tcattattaa tttttttcat ccatccttta attcagcaaa catttatctg	540
and the second of the second o	600
and a contract a digagging tangent of the same to contract of	660
may based agreement decident decident for and	720
billion and additional design and additional additional and additional additi	780
The object of the dadded and the contract of t	840
-3-33-43-6 caracterial atacadeact tedggagget gaggeaggaggaggaggaggaggaggaggaggaggaggag	900
solution of the state of the st	960
and the tacacaayya adyardadaa qaaaagttta atgaaagaat agagtataa	
acaaatctct tggacctaaa agtatttttg ttcaagccaa atattgtgaa tcacctctct	1020 .
Jegergagga tatagadtat Ctaadcccad daaachdadc adaaachtaa tataataa	1080
aatcaacccg aggcaaggca aaaatgagac taactaatca atccgaggca aggggcaaat	1140
tagacqqaac ctgactctgg tctattagg gacagttta acted accegaggea aggggcaaat	1200
tagacggaac ctgactctgg tctattaagc gacaactttc cctctgttgt atttttcttt	1260
tattcaatgt aaaaggataa aaactctcta aaactaaaaa caatgtttgt caggagttac	1320
aaaccatgac caactaatta tggggaatca taaaatatga ctgtatgaga tcttgatggt	1380
and the same of th	1440
33 3 4 3 5 3 5 4 4 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	1500
The same of the sa	1560
and a second second and the second se	1620
oggetateet eccacigegt geteacatga cetettata etectagaaa gaggatataa	1680
again	•
and a second contract of a second contract and a second contract a	1740
tggccaagat aaagcaacag aaaaatgtcc aaagctgtgc agcaaagaca agccaccgaa	1800
cagggatetg etcateagtg tggggacete caagteggee accetggagg caageeeca	1860
Cagageccat qeaagetgec ageageagaa geogreeath the cagage caageccea	1920
cagageceat geaaggtgge ageageagaa gaagggaatt gteettgtee ttggeacatt	1980
cctcaccgac ctggtgatgc tggacactgc gatgaatggt aatgtggatg agaatatgat	2040
bon sound adding and conductoring and tracking and the second and	2100
	2160
The state of the s	2220
atcaggette eeggagetgg tettgggaag ceageeetgg ggtgagttgg eteetgetgt	2280
1 11 1 3 3 1111190000	-200

		ataaattcaa				2340
		tatgcatact	agtctttgtt	agtgtttcta	ttcmacttaa	2400
tagagatatg	ttatact					2417
<210:	> 335					
	> 2984					
<212	> DNA			•		
<213	> Homo sapi	en				
	> 335				•	
		ctttccagaa				60
		ccaaggcttc				120
		actcaggtga				180
		cgggcccacc				240
		aacagacgct cactcctctt				300 360
		tataacagct				420
		tggtaatgcc				480
		ctatgaaaag				540
		gagatttgcg				600
		gaaagtttta				660
		tggctacctg				720
		gattttggat				780
		tgaatatcaa				840
gacaaccagg	atgaggatgt	caccaactga	attaaactta	agtccagaag	cctcctgttg	900
gccttggaat	atggccaagg	ctctctctgt	ccctgtaàaa	gagaggggca	aatagagagt	960
		gctcagcaca				1020
		ttcttattcc				1080
		ccaaatagaa				1140
		ctgcaagagg				1200
ccaagacagg	ggcctaagga	gggtctccac	actgctgcta	ggggctgttg	cattttttta	1260
		ctcttctcaa				1320
		tcaggctatc				1380 1440
		aaattttgtg tttagtctgg				1500
		tttttttt				1560
		gggggcagat				1620
		tttcctttaa				1680
		gaaggtcact				1740
		acaatccttg				1800
		agaacacagc				1860
tccagtggag	ggctcatggg	tgggacatgg	aaaagaaggc	agcctaggcc	ctggggagcc	1920
cagtccactg	agcaagcaag	ggactgagtg	agccttttgc	aggaaaaggc	taagaaaaag	1980
		acaagaaact				2040
		tgggtaacct				2100
		ccattttcat				2160
		acaacaaac				2220
	•	taattccgtt				2280
		ggtggcaaaa				2340
		ggtttgggct				2400 2460
		agccagcaca				2460 2520
		taagcattta tctttcaact				2520 2580
tgatgtatat						2640
		cccattggaa				2700
aaaaacatct						2760
ccatttcacc	cagacageet	gtttctatcc	totttaataa	attagtttgg	gttctctaca	2820
tgcataacaa	accetgetee	aatctgtcac	ataaaagtct	gtgacttgaa	gtttagtcag	2880
	-	-	-			

```
caccccacc aaactttatt tttctatgtg ttttttgcaa catatgagtg ttttgaaaat
  2984
       <210> 336
       <211> 147
       <212> PRT
       <213> Homo sapien
       <400> 336
 Pro Ser Phe Pro Thr Leu Leu Ser Arg Arg His Leu Gly Ser Tyr Leu
                                   10
 Leu Asp Ser Glu Asn Thr Ser Gly Ala Leu Pro Arg Leu Pro Gln Thr
 Pro Lys Gln Pro Gln Lys Arg Ser Arg Ala Ala Phe Ser His Thr Gln
                           40
 Val Ile Glu Leu Glu Arg Lys Phe Ser His Gln Lys Tyr Leu Ser Ala
                      55
 Pro Glu Arg Ala His Leu Ala Lys Asn Leu Lys Leu Thr Glu Thr Gln
                70
                                    75
 Val Lys Ile Trp Phe Gln Asn Arg Arg Tyr Lys Thr Lys Arg Lys Gln
                                  90
 Leu Ser Ser Glu Leu Gly Asp Leu Glu Lys His Ser Ser Leu Pro Ala
                              105
 Leu Lys Glu Glu Ala Phe Ser Arg Ala Ser Leu Val Ser Val Tyr Asn
                         120
 Ser Tyr Pro Tyr Tyr Pro Tyr Leu Tyr Cys Val Gly Ser Trp Ser Pro
                       135
 Ala Phe Trp
 145
      <210> 337
      <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 337
Ala Leu Thr Gly Phe Thr Phe Ser Ala
      <210> 338
      <211> 9
      <212> PRT
      <213> Homo sapien
    · <400> 338
Leu Leu Ala Asn Asp Leu Met Leu Ile
     <210> 339
     <211> 318
     <212> PRT
     <213> Homo sapien
     <400> 339
Met Val Glu Leu Met Phe Pro Leu Leu Leu Leu Leu Pro Phe Leu
1 ·
            5
                                10
Leu Tyr Met Ala Ala Pro Gln Ile Arg Lys Met Leu Ser Ser Gly Val
```

483

```
20
                               25
Cys Thr Ser Thr Val Gln Leu Pro Gly Lys Val Val Val Thr Gly
Ala Asn Thr Gly Ile Gly Lys Glu Thr Ala Lys Glu Leu Ala Gln Arg
                       55
Gly Ala Arg Val Tyr Leu Ala Cys Arg Asp Val Glu Lys Gly Glu Leu
                  70
Val Ala Lys Glu Ile Gln Thr Thr Thr Gly Asn Gln Gln Val Leu Val
              85
                                  90
Arg Lys Leu Asp Leu Ser Asp Thr Lys Ser Ile Arg Ala Phe Ala Lys
                105
Gly Phe Leu Ala Glu Glu Lys His Leu His Val Leu Ile Asn Asn Ala
                          120
                                             125
Gly Val Met Met Cys Pro Tyr Ser Lys Thr Ala Asp Gly Phe Glu Met
                       135
                                          140
His Ile Gly Val Asn His Leu Gly His Phe Leu Leu Thr His Leu Leu
                   150
                                     155
Leu Glu Lys Leu Lys Glu Ser Ala Pro Ser Arg Ile Val Asn Val Ser
               165
                                  170
Ser Leu Ala His His Leu Gly Arg Ile His Phe His Asn Leu Gln Gly
                               185
Glu Lys Phe Tyr Asn Ala Gly Leu Ala Tyr Cys His Ser Lys Leu Ala
                           200
Asn Ile Leu Phe Thr Gln Glu Leu Ala Arg Arg Leu Lys Gly Ser Gly
                       215
Val Thr Thr Tyr Ser Val His Pro Gly Thr Val Gln Ser Glu Leu Val
                   230
                                      235
Arg His Ser Ser Phe Met Arg Trp Met Trp Trp Leu Phe Ser Phe Phe
                                  250
               245
Ile Lys Thr Pro Gln Gln Gly Ala Gln Thr Ser Leu His Cys Ala Leu
                              265
                                                  270
Thr Glu Gly Leu Glu Ile Leu Ser Gly Asn His Phe Ser Asp Cys His
                          280
                                              285
Val Ala Trp Val Ser Ala Gln Ala Arg Asn Glu Thr Ile Ala Arg Arg
                      295
Leu Trp Asp Val Ser Cys Asp Leu Leu Gly Leu Pro Ile Asp
305
                   310
     <210> 340
     <211> 483
     <212> DNA
     <213> Homo sapien
     <400> 340
geogaggict geetteacae ggaggaeaeg agaetgette etcaaggget eetgeetgee
                                                                    60
tggacactgg tgggaggcgc tgtttagttg gctgttttca gaggggtctt tcggagggac
                                                                   120
ctcctgctgc aggctggagt gtctttattc ctggcgggag accgcacatt ccactgctga
                                                                   180
ggttgtgggg gcggtttatc aggcagtgat aaacataaga tgtcatttcc ttgactccgg
                                                                   240
cettcaattt tetetttgge tgaegaegga gteegtggtg teeegatgta actgaeecet
                                                                   300
gctccaaacg tgacatcact gatgctcttc tcgggggtgc tgatggcccg cttggtcacg
                                                                   360
tgctcaatct cgccattcga ctcttgctcc aaactgtatg aagacacctg actgcacgtt
                                                                   420
```

ttttctgggc ttccagaatt taaagtgaaa ggcagcactc ctaagctccg actccqatqc

<210> 341 <211> 344

<212> DNA

ctg

<213> Homo sapien

```
<400> 341
  ctgctgctga gtcacagatt tcattataaa tagcctccct aaggaaaata cactgaatgc
                                                                          60
  tatttttact aaccattcta tttttataga aatagctgag agtttctaaa ccaactctct
                                                                         120
  getgeettae aagtattaaa tattttaett ettteeataa agagtagete aaaatatgea
                                                                         180
  attaatttaa taatttctga tgatggtttt atctgcagta atatgtatat catctattag
                                                                         240
  aatttactta atgaaaaact gaagagaaca aaatttgtaa ccactagcac ttaagtactc
                                                                         300
  ctgattctta acattgtctt taatgaccac aagacaacca acag
                                                                         344
        <210> 342
        <211> 592
        <212> DNA
        <213> Homo sapien
        <400> 342
  acagcaaaaa agaaactgag aagcccaaty tgctttcttg ttaacatcca cttatccaac
  caatgtggaa acttettata ettggtteea ttatgaagtt ggacaattge tgetateaca
                                                                         60
 cctggcaggt aaaccaatgc caagagagtg atggaaacca ttggcaagac tttgttgatg
                                                                        120
 accaggattg gaattttata aaaatattgt tgatgggaag ttgctaaagg gtgaattact
                                                                        180
                                                                        240
 tccctcagaa gagtgtaaag aaaagtcaga gatgctataa tagcagctat tttaattggc
                                                                        300
 aagtgccact gtggaaagag ttcctgtgtg tgctgaagtt ctgaagggca gtcaaattca
                                                                        360
 tcagcatggg ctgtttggtg caaatgcaaa agcacaggtc tttttagcat gctggtctct
                                                                        420
 cccgtgtcct tatgcaaata atcgtcttct tctaaatttc tcctaggctt cattttccaa
 agttettett ggtttgtgat gtetttetg ettteeatta attetataaa atagtatgge
                                                                        480
 ttcagccacc cactcttcgc cttagcttga ccgtgagtct cggctgccgc tg
                                                                        540
                                                                        592
       <210> 343
       <211> 382
       <212> DNA
       <213> Homo sapien
       <400> 343
 ttcttgacct cctcctcctt caagctcaaa caccacctcc cttattcagg accggcactt
                                                                        60
 cttaatgttt gtggctttct ctccagcctc tcttaggagg ggtaatggtg gagttggcat
cttgtaactc tcctttctcc tttcttcccc tttctctgcc cgcctttccc atcctgctgt
                                                                       120
agacttettg attgtcagte tgtgtcacat ccagtgattg ttttggttte tgttccettt
                                                                       180
ctgactgccc aaggggctca gaaccccagc aatcccttcc tttcactacc ttcttttttg
                                                                       240
                                                                       300
ggggtagttg gaagggactg aaattgtggg gggaaggtag gaggcacatc aataaagagg
                                                                       360
aaaccaccaa gctgaaaaaa aa
                                                                       382
      <210> 344
      <211> 536
      <212> DNA
      <213> Homo sapien
      <400> 344
ctgggcctga agctgtaggg taaatcagag gcaggcttct gagtgatgag agtcctgaga
                                                                        60
caataggcca cataaacttg gctggatgga acctcacaat aaggtggtca cctcttgttt
gtttaggggg atgccaagga taaggccagc tcagttatat gaagagaagc agaacaaaca
                                                                       120
                                                                       180
agtettteag agaaatggat geaateagag tgggateeeg gteacateaa ggteacaete
caccttcatg tgcctgaatg gttgccaggt cagaaaaatc caccccttac gagtgcggct
                                                                       240
togaccotat atcccccgcc cgcgtccctt totccataaa attottctta gtagctatta
                                                                       300
cettettatt atttgateta gaaattgeee teettttace eetaceatga geeetacaaa
                                                                      360
caactaacct gccactaata gttatgtcat ccctcttatt aatcatcatc ctagccctaa
                                                                      420
                                                                      480
gtctggccta tgagtgacta caaaaaggat tagactgagc cgaataacaa aaaaaa
                                                                      536
      <210> 345
      <211> 251
```

```
<212> DNA
      <213> Homo sapien
      <400> 345
accttttgag gtctctctca ccacctccac agccaccqtc accqtqqqat gtqctqqatq
                                                                         60
tgaatgaagc coccatcttt gtgcctcctg aaaagagagt ggaagtgtcc gaggactttg
                                                                        120
gcgtgggcca ggaaatcaca tcctacactg cccaggagcc agacacattt atggaacaga
                                                                        180
aaataacata teggatttgg agagacaetg ceaactgget ggagattaat eeggacaetg
                                                                        240
gtgccatttc c
                                                                        251
      <210> 346
      <211> 282
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(282)
      <223> n = A,T,C or G
<400> 346
cgcgtctctg acactgtgat catgacaggg gttcaaacag aaagtgcctg ggccctcctt
                                                                        60
ctaagtettg ttaccaaaaa aaggaaaaag aaaagatett eteagttaca aattetggga
                                                                        120
agggagacta tacctggctc ttgccctaag tgagaggtct tccctcccgc accaaaaaat
                                                                        180
agaaaggett tetattteae tggeecaggt agggggaagg agagtaaett tgagtetgtg
                                                                        240
ggtctcattt cccaaggtgc cttcaatgct catnaaaacc aa
                                                                        282
      <210> 347
      <211> 201
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(201)
      \langle 223 \rangle n = A,T,C or G
      <400> 347
acacacataa tattataaaa tgccatctaa ttggaaggag ctttctatca ttgcaagtca
                                                                        60
taaatataac ttttaaaana ntactancag cttttaccta ngctcctaaa tgcttgtaaa
                                                                       120
totgagactg actggaccca cocagaccca gggcaaagat acatgttacc atatcatctt
                                                                       180
tataaagaat tttttttgt c
                                                                       201
      <210> 348
      <211> 251
      <212> DNA
      <213> Homo sapien
      <400> 348
ctgttaatca caacatttgt gcatcacttg tgccaagtga gaaaatqttc taaaatcaca
                                                                        60
agagagaaca gtgccagaat gaaactgacc ctaagtccca ggtgcccctg ggcaggcaga
                                                                       120
aggagacact cccagcatgg aggagggttt atcttttcat cctaggtcaq qtctacaatq
                                                                       180
ggggaaggtt ttattataga acteecaaca geceacetea eteetgeeae ecaceegatg
                                                                       240
gccctgcctc c
                                                                       251
      <210> 349
      <211> 251
      <212> DNA
```

<213> Homo sapien

<400> 349	
taaaaatcaa gccatttaat tgtatctttg aaggtaaaca atatatggga gctggatcac	60
aacccctgag gatgccagag ctatgggtcc agaacatggt gtggtattat caacagagtt	120
cagaagggtc tgaactctac gtgttaccag agaacataat gcaattcatg cattccactt	180
agcaattttg taaaatacca gaaacagacc ccaagagtct ttcaagatga ggaaaattca	240
	251
<210> 350	
<211> 908	
<212> DNA	
<213> Homo sapien	
buplet	
<400> 350	
etggacactt tgcgagggct tttgctggct gctgctgctg cccgtcatgc tactcatcgt	
agoccgoccg gtgaageteg etgettteee taceteetta agtgactge aaacgccac	60
cggctggaat tgctctggtt atgatgacag agaaaatgat ctcttcctct gtgacaccaa	120
cacctgtaaa tttgatgggg aatgtttaag aattggagac actgtgactt gcgtctgtca	180
gttcaagtgc aacaatgact atgtgcctgt gtgtggctcc aatggggaga gctaccagaa	240
tgagtgttac ctgcgacagg ctgcatgcaa acagcagagt gagatacttg tggtgtcaga	300
aggatcatgt gccacagtcc atgaaggctc tggagaaact agtcaaaagg agacatccac	360
ctgtgatatt tgccagtttg gtgcagaatg tgacgaagat gccgaggatg tctggtgtgt	420
gtgtaatatt gactgttctc aaaccaactt caatcccctc tgcgcttctg atgggaaatc	480
The same and the s	540
catgtetttg ggtegatgte aagataacae aactacaact actaagtetg aagatggca	600
ttatgcaaga acagattatg cagagaatgc taacaaatta gaagaaagtg ccagagaaca	660
attacation type type attacation certain categorates at a care-	720
the standard cuggaycoat citiquaddid idafactagt tataatagaa as as as the	780
aaaaaaggac tacagtgttc tatacgttgt teeeggteet gtacgattte agtatgtett	840
aatcgcag	900
	908
<210> 351	
<211> 472	•
<212> DNA	
<213> Homo sapien	•
<400> 351	
ccagttattt gcaagtggta agagcctatt taccataaat aatactaaga accaactcaa	60
beautiful training transport to the territory of the terr	120
accordada Caywillaya adroafffac cacaacataa atatata	180
	240
The second of th	300
5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	360
The state of the s	420
gtaatatata tttagggaag atgttgcttt gcccacacac gaagcaaagt aa	472
<210> 352	
<211> 251	
<211> 231 <212> DNA	
<213> Homo sapien	
ALLO MONIO BAPTEN	
<400> 352	
ctcaaagcta atctctcggg aatcaaacca gaaaagggca aggatcttag gcatggtgga	60
tgtggataag gccaggtcaa tggctgcaag catgcagaga aagaggtaca tcggagcgtg	120
caggetgegt teegteetta egatgaagae caegatgeag tttecaaaca ttgecaetae	180
atacatggaa aggagggga agccaaccca gaaatgggct ttctctaatc ctgggatacc aataagcaca a	240
	251

```
<210> 353
      <211> 436
      <212> DNA
      <213> Homo sapien
      <400> 353
ttttttttt tttttttt ttttttacaa caatgcagtc atttatttat tgagtatgtg
                                                                          60
cacattatgg tattattact atactgatta tatttatcat gtgacttcta attaraaaat
                                                                         120
gtatccaaaa gcaaaacagc agatatacaa aattaaagag acagaagata gacattaaca
                                                                         180
gataaggcaa cttatacatt gacaatccaa atccaataca tttaaacatt tgggaaatga
                                                                         240
gggggacaaa tggaagccar atcaaatttg tgtaaaacta ttcagtatgt ttcccttgct
                                                                         300
tcatgtctga raaggctctc ccttcaatgg ggatgacaaa ctccaaatgc cacacaaatg
                                                                         360
ttaacagaat actagattca cactggaacg ggggtaaaga agaaattatt ttctataaaa
                                                                         420
gggctcctaa tgtagt
                                                                         436
      <210> 354
      <211> 854
      <212> DNA
      <213> Homo sapien
      <400> 354
cettttetag tteaceagtt ttetgeaagg atgetggtta gggagtgtet geaggaggag
                                                                         60
caagtetgaa accaaateta ggaaacatag gaaacgagee aggeacaggg etggtgggee
                                                                         120
atcagggacc accetttggg ttgatatttt gettaatetg catettttga gtaagateat
                                                                         180
ctggcagtag aagctgttct ccaggtacat ttctctagct catgtacaaa aacatcctga
                                                                         240
aggactttgt caggtgcctt gctaaaagcc agatgcgttc ggcacttcct tggtctgagg
                                                                         300
ttaattgcac acctacagge actgggetca tgctttcaag tattttgtcc tcactttagg gtgagtgaaa gatcccatt ataggagcac ttgggagaga tcatataaaa gctgactctt
                                                                        360
                                                                       . 420
gagtacatgc agtaatgggg tagatgtgtg tggtgtgtct tcattcctqc aaqqqtqctt
                                                                        480
gttagggagt gtttccagga ggaacaagtc tgaaaccaat catgaaataa atggtaggtg
                                                                        540
tgaactggaa aactaattca aaagagagat cgtgatatca gtgtggttga tacaccttgg
                                                                        600
caatatggaa ggctctaatt tgcccatatt tgaaataata attcagcttt ttgtaataca
                                                                        660
aaataacaaa ggattgagaa tcatggtgtc taatgtataa aaqacccaqg aaacataaat
                                                                       - 720
atatcaactg cataaatgta aaatgcatgt gacccaagaa ggccccaaag tggcagacaa
                                                                        780
cattgtaccc attttccctt ccaaaatgtg agcggcgggc ctgctgcttt caaggctgtc
                                                                        840
acacgggatg tcag
                                                                        854
      <210> 355
      <211> 676
      <212> DNA
      <213> Homo sapien
      <400> 355
gaaattaagt atgagctaaa ttccctgtta aaacctctag gggtgacaga tctcttcaac
                                                                         60
caggicaaag cigatcitic iggaatgica ccaaccaagg gcctatatti atcaaaagcc
                                                                        120
atccacaagt catacctgga tgtcagcgaa gagggcacgg aggcagcagc agccactggg
                                                                        180
gacagcatcg ctgtaaaaag cctaccaatg agagctcagt tcaaggcgaa ccacccttc
                                                                        240
ctgttcttta taaggcacac tcataccaac acgatcctat tctgtggcaa gcttgcctct
                                                                        300
ccctaatcag atggggttga gtaaggctca gagttgcaga tgaggtgcag agacaatcct
                                                                        360
gtgactttcc cacggccaaa aagctgttca cacctcacgc acctctgtgc ctcagtttgc
                                                                        420
tcatctgcaa aataggtcta ggatttcttc caaccatttc atgagttgtg aagctaaggc
                                                                        480
tttgttaatc atggaaaaag gtagacttat gcagaaagcc tttctggctt tcttatctgt
                                                                        540
ggtgtctcat ttgagtgctg tccagtgaca tgatcaagtc aatgagtaaa attttaaggg
                                                                        600
attagatttt cttgacttgt atgtatctgt gagatcttga ataagtgacc tgacatctct
                                                                        660
gcttaaagaa aaccag
                                                                        676
```

```
<211> 574
        <212> DNA
        <213> Homo sapien
        <400> 356
  ttttttttt tttttcagga aaacattctc ttactttatt tgcatctcag caaaggttct
  catgtggcac ctgactggca tcaaaccaaa gttcgtaggc caacaaagat gggccactca
                                                                       60
  caagetteee atttgtagat etcagtgeet atgagtatet gacacetgtt cetetetea
                                                                      120
                                                                      180
  gtctcttagg gaggcttaaa tctgtctcag gtgtgctaag agtgccagcc caaggkggtc
                                                                      240
  aaaagtccac aaaactgcag tctttgctgg gatagtaagc caagcagtgc ctggacagca
                                                                      300
  gagttetttt ettgggcaac agataaccag acaggactet aatcgtgete ttatteaaca
                                                                      360
  ttcttctgtc tctgcctaga ctggaataaa aagccaatct ctctcgtggc acagggaagg
                                                                      420
  480
 gatagacggc acagggagct cttaggtcag cgctgctggt tggaggacat tcctgagtcc
                                                                      540
  agetttgcag cetttgtgca acagtaettt ecca
                                                                      574
        <210> 357
       <211> 393
       <212> DNA
       <213> Homo sapien
       <400> 357
 ttttttttt ttttttttt tacagaatat aratgettta teactgkact
                                                                      60
 taatatggkg kettgtteae tataettaaa aatgeaceae teataaatat ttaatteage
 aagccacaac caaracttga ttttatcaac aaaaacccct aaatataaac ggsaaaaaag
                                                                     120
 atagatataa ttattccagt ttttttaaaa cttaaaarat attccattgc cgaattaara
                                                                     180
                                                                     240
 araarataag tgttatatgg aaagaagggc attcaagcac actaaaraaa cctgaggkaa
                                                                     300
 gcataatctg tacaaaatta aactgtcctt tttggcattt taacaaattt gcaacgktct
                                                                     360
 tttttttttt tttctgtttt tttttttt tac
                                                                     393
       <210> 358
       <211> 630
       <212> DNA
       <213> Homo sapien
      <400> 358
acagggtaaa caggaggatc cttgctctca cggagcttac attctagcag gaggacaata
                                                                      60
ttaatgttta taggaaaatg atgagtttat gacaaaggaa gtagatagtg ttttacaaga
                                                                     120
gcatagagta gggaagctaa tccagcacag ggaggtcaca gagacatccc taaggaagtg
gagtttaaac tgagagaagc aagtgcttaa actgaaggat gtgttgaaga agaagggaga
                                                                     180
                                                                     240
gtagaacaat ttgggcagag ggaaccttat agaccctaag gtgggaaggt tcaaagaact
                                                                     300
gaaagagagc tagaacagct ggagccgttc tccggtgtaa agaggagtca aagagataag
                                                                     360
attaaagatg tgaagattaa gatcttggtg gcattcaggg attggcactt ctacaagaaa
tcactgaagg gagtaatgtg acattacttt tcacttcagg atggccattc taactccagg
                                                                     420
gggtagactg gactaggtaa gactggaggc aggtagacct cttctaaggc ctgcgatagt
                                                                     480
                                                                     540
gaaagacaaa aataagtggg gaaattcagg ggatagtgaa aatcagtagg acttaatgag
                                                                    600
caagccagag gttcctccac aacaaccagt
                                                                    630
      <210> 359
      <211> 620
      <212> DNA
      <213> Homo sapien
      <400> 359
acagcattcc aaaatataca tctagagact aarrgtaaat gctctatagt gaagaagtaa
                                                                     60
taattaaaaa atgctactaa tatagaaaat ttataatcag aaaaataaat attcagggag
                                                                    120
ctcaccagaa gaataaagtg ctctgccagt tattaaagga ttactgctgg tgaattaaat
                                                                    180
atggcattcc ccaagggaaa tagagagatt cttctggatt atgttcaata tttatttcac
```

```
aggattaact gttttaggaa cagatataaa gcttcgccac ggaagagatg gacaaagcac
                                                                       300
aaagacaaca tgatacctta ggaagcaaca ctaccctttc aggcataaaa tttqqaqaaa
                                                                       360
tgcaacatta tgcttcatga ataatatgta gaaagaaggt ctgatgaaaa tgacatcctt
                                                                       420
aatgtaagat aactttataa qaattctqqq tcaaataaaa ttctttqaaq aaaacatcca
                                                                       480
aatgtcattg acttatcaaa tactatcttg qcatataacc tatqaaqqca aaactaaaca
                                                                       540
aacaaaaagc tcacaccaaa caaaaccatc aacttatttt gtattctata acatacgaga
                                                                      600
ctgtaaagat gtgacagtgt
                                                                       620
      <210> 360
      <211> 431
      <212> DNA
      <213> Homo sapien
      <400> 360
aaaaaaaaaa agccagaaca acatgtgata gataatatga ttggctgcac acttccagac
                                                                       60
tgatgaatga tgaacgtgat ggactattgt atggagcaca tcttcagcaa qaqqqqaaa
                                                                       120
tactcatcat ttttggccag cagttgtttg atcaccaaac atcatgccag aatactcagc
                                                                       180
aaaccttctt agctcttgag aagtcaaagt ccgggggaat ttattcctgg caattttaat
                                                                       240
tggactcctt atgtgagagc agcggctacc cagctggggt ggtggagcga acccgtcact
                                                                      300
agtggacatg cagtggcaga gctcctggta accacctaga ggaatacaca ggcacatgtg
                                                                      360
tgatgccaag cgtgacacct gtagcactca aatttgtctt gtttttgtct ttcggtgtgt
                                                                       420
agattcttag t
                                                                       431
      <210> 361
      <211> 351
      <212> DNA
      <213> Homo sapien
      <400> 361
acactgattt ccgatcaaaa gaatcatcat ctttaccttg acttttcagg gaattactga
                                                                       60
actttettet cagaagatag ggeacageea ttgeettgge etcaettgaa gggtetgeat
                                                                      120
ttgggtcctc tggtctcttg ccaagtttcc cagccactcg agggagaaat atcgggaggt
                                                                      180
ttgactteet eeggggettt eeegaggget teacegtgag eeetgeggee eteagggetg
                                                                     . 240
caatcctgga ttcaatgtct gaaacctcgc tctctgcctg ctggacttct gaggccgtca
                                                                     . 300
etgecactet gteeteeage tetgacaget ceteatetgt ggteetgttg t
                                                                      351
      <210> 362
      <211> 463
      <212> DNA
      <213> Homo sapien
      <400> 362
acttcatcag gccataatgg gtgcctcccg tgagaatcca agcacctttg gactgcgcga
                                                                       60
tgtagatgag ccggctgaag atcttgcgca tgcgcggctt cagggcgaag ttcttggcgc
                                                                      120
ccccggtcac agaaatgacc aggttgggtg ttttcaggtg ccagtgctgg gtcagcagct
                                                                      180
cgtaaaggat ttccgcgtcc gtgtcgcagg acagacgtat atacttccct ttcttcccca
                                                                      240
gtgtctcaaa ctgaatatcc ccaaaggcgt cggtaggaaa ttccttggtg tgtttcttgt
                                                                      300
agttccattt ctcactttgg ttgatctggg tgccttccat gtgctggctc tgggcatagc
                                                                      360
cacacttgca cacattetee etgataagca egatggtgtg gacaggaagg aaggatttea
                                                                      420
ttgagcctgc ttatggaaac tggtattgtt agcttaaata gac
                                                                      463
      <210> 363
      <211> 653
      <212> DNA
     <213> Homo sapien
      <220>
     <221> misc feature
```

```
<222> (1)...(653)
         \langle 223 \rangle n = A,T,C or G
         <400> 363
  acccccgagt ncctgnctgg catactgnga acgaccaacg acacacccaa gctcggcctc
                                                                          60
  ctcttggnga ttctgggtga catcttcatg aatggcaacc gtgccagwga ggctgtcctc
  tgggaggcac tacgcaagat gggactgcgt cctggggtga gacatcctct ccttggagat
                                                                         120
                                                                         180
  ctaacgaaac ttctcaccta tgagttgtaa agcagaaata cctgnactac agacgagtgc
  ccaacagcaa cccccggaa gtatgagttc ctctrgggcc tccgttccta ccatgagasc
                                                                         240
  tagcaagatg naagtgttga gantcattgc agaggttcag aaaagagacc cntcgtgact
                                                                         300
  ggtetgcaca gttcatggag getgcagatg aggeettgga tgetetggat getgetgeag
                                                                         360
  ctgaggccga agcccgggct gaagcaagaa cccgcatggg aattggagat gaggctgtgt
                                                                         420
  ntgggccctg gagctgggat gacattgagt ttgagctgct gacctgggat gaggaaggag
                                                                         480
  attttggaga tccntggtcc agaattccat ttaccttctg ggccagatac caccagaatg
                                                                         540
  cccgctccag attccctcag acctttgccg gtcccattat tggtcstggt ggt
                                                                         600
                                                                         653
        <210> 364
        <211> 401
        <212> DNA
        <213> Homo sapien
        <400> 364
 actagaggaa agacgttaaa ccactctact accacttgtg gaactctcaa agggtaaatg
 acaaagccaa tgaatgactc taaaaacaat atttacattt aatggtttgt agacaataaa
                                                                         60
 aaaacaaggt ggatagatct agaattgtaa cattttaaga aaaccatagc atttgacaga
                                                                        120
 tgagaaagct caattataga tgcaaagtta taactaaact actatagtag taaagaaata
                                                                        180
 catttcacac cettcatata aattcactat ettggettga ggeaetecat aaaatgtate
                                                                        240
 acgtgcatag taaatcttta tatttgctat ggcgttgcac tagaggactt ggactgcaac
                                                                        300
                                                                        360
 aagtggatgc gcggaaaatg aaatcttctt caatagccca g
                                                                        401
       <210> 365
       <211> 356
       <212> DNA
       <213> Homo sapien
       <400> 365
 ccagtgtcat atttgggctt aaaatttcaa gaagggcact tcaaatggct ttgcatttgc
atgtttcagt gctagagcgt aggaatagac cctggcgtcc actgtgagat gttcttcagc
                                                                         60
taccagagca tcaagtctct gcagcaggtc attcttgggt aaagaaatga cttccacaaa
                                                                        120
ctetecatec cetggetttg getteggeet tgegtttteg geatcatete egttaatggt
                                                                        180
gactgtcacg atgtgtatag tacagtttga caagcctggg tccatacaga ccgctggaga
                                                                        240
                                                                       300
acatteggea atgreecett tgtagecagt ttettetteg ageteeegga gageag
                                                                       356
      <210> 366
      <211> 1851
      <212> DNA
      <213> Homo sapien
      <400> 366
tcatcaccat tgccagcagc ggcaccgtta gtcaggtttt ctgggaatcc cacatgagta
cttccgtgtt cttcattctt cttcaatagc cataaatctt ctagctctgg ctggctgttt
                                                                        60
teacticett taageettig tgaetettee tetgatgica getttaagte tigitetgga
                                                                       120
ttgctgtttt cagaagagat ttttaacatc tgtttttctt tgtagtcaga aagtaactgg
                                                                       180
caaattacat gatgatgact agaaacagca tactctctgg ccgtctttcc agatcttgag
                                                                       240
aagatacatc aacattttgc tcaagtagag ggctgactat acttgctgat ccacaacata
                                                                       300
cagcaagtat gagagcagtt cttccatatc tatccagcgc atttaaattc gctttttct
                                                                       360
tgattaaaaa tttcaccact tgctgttttt gctcatgtat accaagtagc agtggtgtga
                                                                       420
ggccatgett gttttttgat tegatateag caeegtataa gageagtget ttggccatta
                                                                       480
                                                                       540
```

	atttatcttc attgtagac	a gcatagtgta	gagtggtatt	tccatactca	tctqqaatat	600
	ttggatcagt gccatgttc					660
	cctttgtcag agctgtcct					720
	gcacgagttt tactacttc					780
	tttgcttgtc cctcttgtt					840
	ggactttacc ccaccagge					900
•	acctgggatc catgaaggc					960
						1020
	cgctcccctg cagcagggg					1020
	cttcacagag gagtcgttg					
	gtccatccag ggaggaaga					1140
	cagccatcaa acttctgga					1200
	acagaggatg agatccaga					1260
	cacaggtact gaaatcatg					1320
	aagagatgaa gacactgca					1380
	aatataattt teetetgga					1440
	ccagtcgcag agaagccac					1500
	tgtgtttctt ccccagtga					1560
	gctcctgaga aacacccca					1620
	tcacataaac agaattaaa					1680
	tttgacaaaa tccagcatc	c ttgtatttat	tgttgcagtt	ctcagaggaa	atgcttctaa	1740
	cttttcccca tttagtatt	a tgttggctgt	gggcttgtca	taggtggttt	ttattacttt	1800
	aaggtatgtc ccttctatg	ctgttttgct	gagggtttta	attctcgtgc	С	1851
	·					
	<210> 367					
	<211> 668					
	<212> DNA					
	<213> Homo sap	ien				•
	<400> 367					
	cttgagcttc caaataygg	a agactggccc	ttacacasgt	caatgttaaa	atgaatgcat	60
	ticagiatic tyaayataa	a attrgtagat	ctataccttg	ttttttgatt	cgatatcagc	120.
	ttcagtattt tgaagataa accrtataag agcagtgct					120. 180
	accrtataag agcagtgct	tggccattaa	tttatctttc	attrtagaca	gcrtagtgya	180
	accrtataag agcagtgct gagtggtatt tccatactc	tggccattaa tctggaatat	tttatctttc ttggatcagt	attrtagaca gccatgttcc	gcrtagtgya agcaacatta	180 240
	accrtataag agcagtgct gagtggtatt tccatactc acgcacattc atcttcctg	tggccattaa tctggaatat cattgtacgg	tttatctttc ttggatcagt cctgtcagta	attrtagaca gccatgttcc ttagacccaa	gcrtagtgya agcaacatta aaacaaatta	180 240 300
	accrtataag agcagtgct gagtggtatt tccatactc acgcacattc atcttcctg catatcttag gaattcaaa	tggccattaa tctggaatat cattgtacgg taacattcca	tttatctttc ttggatcagt cctgtcagta cagctttcac	attrtagaca gccatgttcc ttagacccaa caactagtta	gcrtagtgya agcaacatta aaacaaatta tatttaaagg	180 240 300 360
	accrtataag agcagtgct gagtggtatt tccatacto acgcacattc atcttcctg catatcttag gaattcaaa agaaaactca tttttatgc	tggccattaa tctggaatat cattgtacgg taacattcca atgtattgaa	tttatctttc ttggatcagt cctgtcagta cagctttcac atcaaaccca	attrtagaca gccatgttcc ttagacccaa caactagtta cctcatgctg	gcrtagtgya agcaacatta aaacaaatta tatttaaagg atatagttgg	180 240 300 360 420
	accrtataag agcagtgct gagtggtatt tccatactc acgcacattc atcttcctg catatcttag gaattcaaa agaaaactca tttttatgc ctactgcata cctttatca	tggccattaa tctggaatat cattgtacgg taacattcca atgtattgaa agctgtcctc	tttatctttc ttggatcagt cctgtcagta cagctttcac atcaaaccca tttttgttgt	attrtagaca gccatgttcc ttagacccaa caactagtta cctcatgctg caaggacatt	gcrtagtgya agcaacatta aaacaaatta tatttaaagg atatagttgg aagttgacat	180 240 300 360 420 480
	accrtataag agcagtgct gagtggtatt tccatacto acgcacattc atcttcctg catatcttag gaattcaaa agaaaactca tttttatgc ctactgcata cctttatca cgtctgtcca gcaggagtt	tggccattaa tctggaatat cattgtacgg taacattcca atgtattgaa g agctgtcctc tactacttct	tttatctttc ttggatcagt cctgtcagta cagctttcac atcaaaccca tttttgttgt gaattcccat	attrtagaca gccatgttcc ttagacccaa caactagtta cctcatgctg caaggacatt tggcagaggc	gcrtagtgya agcaacatta aaacaaatta tatttaaagg atatagttgg aagttgacat cagatgtaga	180 240 300 360 420 480 540
	accrtataag agcagtgct gagtggtatt tccatactor acgcacattc atcttcctg catatcttag gaattcaaa agaaaactca tttttatgc ctactgcata cctttatca cgtctgtcca gcaggagtt gcagtcctat gagagtgag	tggccattaa tctggaatat cattgtacgg taacattcca atgtattgaa gagctgtcctc tactacttcta	tttatctttc ttggatcagt cctgtcagta cagctttcac atcaaaccca tttttgttgt gaattcccat ggaaattgta	attrtagaca gccatgttcc ttagacccaa caactagtta cctcatgctg caaggacatt tggcagaggc gtgcactagc	gcrtagtgya agcaacatta aaacaaatta tatttaaagg atatagttgg aagttgacat cagatgtaga tacagccata	180 240 300 360 420 480 540
	accrtataag agcagtgct gagtggtatt tecatacte acgeacatte atetteetg catatettag gaatteaaa agaaaactea tttttatge etactgeata eetttatea egtetgteea geaggagtt geagteetat gagagtgag geaatgatte atgtaactge	tggccattaa tctggaatat cattgtacgg taacattcca atgtattgaa gagctgtcctc tactacttcta	tttatctttc ttggatcagt cctgtcagta cagctttcac atcaaaccca tttttgttgt gaattcccat ggaaattgta	attrtagaca gccatgttcc ttagacccaa caactagtta cctcatgctg caaggacatt tggcagaggc gtgcactagc	gcrtagtgya agcaacatta aaacaaatta tatttaaagg atatagttgg aagttgacat cagatgtaga tacagccata	180 240 300 360 420 480 540 600 660
	accrtataag agcagtgct gagtggtatt tccatactor acgcacattc atcttcctg catatcttag gaattcaaa agaaaactca tttttatgc ctactgcata cctttatca cgtctgtcca gcaggagtt gcagtcctat gagagtgag	tggccattaa tctggaatat cattgtacgg taacattcca atgtattgaa gagctgtcctc tactacttcta	tttatctttc ttggatcagt cctgtcagta cagctttcac atcaaaccca tttttgttgt gaattcccat ggaaattgta	attrtagaca gccatgttcc ttagacccaa caactagtta cctcatgctg caaggacatt tggcagaggc gtgcactagc	gcrtagtgya agcaacatta aaacaaatta tatttaaagg atatagttgg aagttgacat cagatgtaga tacagccata	180 240 300 360 420 480 540
	accrtataag agcagtget gagtggtatt tecatacte acgeacatte atetteetge catatettag gaatteaaa agaaaactea tttttatge etactgeata eetttatea egtetgteea geaggagtte geagteetat gagagtgaggagtageaatgatte atgtaactgeaaaaaaa	tggccattaa tctggaatat cattgtacgg taacattcca atgtattgaa gagctgtcctc tactacttcta	tttatctttc ttggatcagt cctgtcagta cagctttcac atcaaaccca tttttgttgt gaattcccat ggaaattgta	attrtagaca gccatgttcc ttagacccaa caactagtta cctcatgctg caaggacatt tggcagaggc gtgcactagc	gcrtagtgya agcaacatta aaacaaatta tatttaaagg atatagttgg aagttgacat cagatgtaga tacagccata	180 240 300 360 420 480 540 600 660
	accrtataag agcagtget gagtggtatt tecatacte acgeacatte atetteetge catatettag gaatteaaa agaaaactea tttttatge etactgeata eetttatea egtetgteea geagtgagtt geagteetat gagagtgagt geaatgatte atgtaactge aaaaaaaa	tggccattaa tctggaatat cattgtacgg taacattcca atgtattgaa gagctgtcctc tactacttcta	tttatctttc ttggatcagt cctgtcagta cagctttcac atcaaaccca tttttgttgt gaattcccat ggaaattgta	attrtagaca gccatgttcc ttagacccaa caactagtta cctcatgctg caaggacatt tggcagaggc gtgcactagc	gcrtagtgya agcaacatta aaacaaatta tatttaaagg atatagttgg aagttgacat cagatgtaga tacagccata	180 240 300 360 420 480 540 600 660
	accrtataag agcagtget gagtggtatt tecatacte acgeacatte atetteetge catactetag gaatteaaa agaaaactea tttttatge etactgeata eetttatea egtetgteea geagtgagtt geagteetat gagagtgagt geaatgatte atgtaactge aaaaaaaa <210> 368 <211> 1512	tggccattaa tctggaatat cattgtacgg taacattcca atgtattgaa gagctgtcctc tactacttcta	tttatctttc ttggatcagt cctgtcagta cagctttcac atcaaaccca tttttgttgt gaattcccat ggaaattgta	attrtagaca gccatgttcc ttagacccaa caactagtta cctcatgctg caaggacatt tggcagaggc gtgcactagc	gcrtagtgya agcaacatta aaacaaatta tatttaaagg atatagttgg aagttgacat cagatgtaga tacagccata	180 240 300 360 420 480 540 600 660
	accrtataag agcagtget gagtggtatt tecatacte acgeacatte atetteetg catatettag gaatteaaa agaaaactea tttttatge etactgeata cetttatea cetetgeeta geagtgagt geagteetat gagagtgag geaatgatte atgtaactge aaaaaaaa <210> 368 <211> 1512 <212> DNA	tggccattaa tctggaatat g cattgtacgg a taacattcca atgtattgaa agctgtcctc tactacttct agacttttta aaacactgaa	tttatctttc ttggatcagt cctgtcagta cagctttcac atcaaaccca tttttgttgt gaattcccat ggaaattgta	attrtagaca gccatgttcc ttagacccaa caactagtta cctcatgctg caaggacatt tggcagaggc gtgcactagc	gcrtagtgya agcaacatta aaacaaatta tatttaaagg atatagttgg aagttgacat cagatgtaga tacagccata	180 240 300 360 420 480 540 600 660
	accrtataag agcagtget gagtggtatt tecatacte acgeacatte atetteetge catactetag gaatteaaa agaaaactea tttttatge etactgeata eetttatea egtetgteea geagtgagtt geagteetat gagagtgagt geaatgatte atgtaactge aaaaaaaa <210> 368 <211> 1512	tggccattaa tctggaatat g cattgtacgg a taacattcca atgtattgaa agctgtcctc tactacttct agacttttta aaacactgaa	tttatctttc ttggatcagt cctgtcagta cagctttcac atcaaaccca tttttgttgt gaattcccat ggaaattgta	attrtagaca gccatgttcc ttagacccaa caactagtta cctcatgctg caaggacatt tggcagaggc gtgcactagc	gcrtagtgya agcaacatta aaacaaatta tatttaaagg atatagttgg aagttgacat cagatgtaga tacagccata	180 240 300 360 420 480 540 600 660
	accrtataag agcagtget gagtggtatt tecatacte acgeacatte atetteetg gaatteaaa agaaaactea tttttatge etactgeata eetttatea geagteetgteea geaggagtte geagteetat gagagtgag geaatgatte atgtaactge aaaaaaaa <210> 368 <211> 1512 <212> DNA <213> Homo sap:	tggccattaa tctggaatat g cattgtacgg a taacattcca atgtattgaa agctgtcctc tactacttct agacttttta aaacactgaa	tttatctttc ttggatcagt cctgtcagta cagctttcac atcaaaccca tttttgttgt gaattcccat ggaaattgta	attrtagaca gccatgttcc ttagacccaa caactagtta cctcatgctg caaggacatt tggcagaggc gtgcactagc	gcrtagtgya agcaacatta aaacaaatta tatttaaagg atatagttgg aagttgacat cagatgtaga tacagccata	180 240 300 360 420 480 540 600 660
	accrtataag agcagtget gagtggtatt tecatacte acgeacatte atetteetg catactetag gaatteaaa agaaaactea tttttatge etactgeata eetttatea egtetgteea geaggagtt geagteetat gagagtgag geaatgatte atgtaactge aaaaaaaa <210 > 368 <211 > 1512 <212 > DNA <213 > Homo sap:	tggccattaa tctggaatat g cattgtacgg a taacattcca a agctgtcctc tactacttcta agacttttta c aaacactgaa	tttatctttc ttggatcagt cctgtcagta cagctttcac atcaaaccca tttttgttgt gaattcccat ggaaattgta tagcctgcta	attrtagaca gccatgttcc ttagacccaa caactagtta cctcatgctg caaggacatt tggcagaggc gtgcactagc ttactctgcc	gcrtagtgya agcaacatta aaacaaatta tatttaaagg atatagttgg aagttgacat cagatgtaga tacagccata ttcaaaaaaa	180 240 300 360 420 480 540 600 660 668
	accrtataag agcagtget gagtggtatt tecatacte acgeacatte atetteetg catactetag gaatteaaa agaaaactea tttttatge etactgeata eetttatea egtetgteea geaggagtt geagteetat gagagtgag geaatgatte atgtaactge aaaaaaaa <210 > 368 <211 > 1512 <212 > DNA <213 > Homo sap: <400 > 368 gggtegeea gggggsgegg	tggccattaa tctggaatat g cattgtacgg a taacattcca a agctgtcctc tactacttcta agacttttta aaacactgaa .en	tttatctttc ttggatcagt cctgtcagta cagctttcac atcaaaccca tttttgttgt gaattcccat ggaaattgta tagcctgcta cgggtgggtg	attrtagaca gccatgttcc ttagacccaa caactagtta cctcatgctg caaggacatt tggcagaggc gtgcactagc ttactctgcc	gcrtagtgya agcaacatta aaacaaatta tatttaaagg atatagttgg aagttgacat cagatgtaga tacagccata ttcaaaaaaa	180 240 300 360 420 480 540 600 660 668
	accrtataag agcagtget gagtggtatt tecatacte acgeacatte atetteetg catactetag gaatteaaa agaaaactea tttttatge ctactgeata cetttatea cettgetea geaggagtt geagteetat gagagtgag geaatgatte atgtaactge aaaaaaaa <210 > 368 <211 > 1512 <212 > DNA <213 > Homo sap: <400 > 368 gggtegeea gggggsgegttgggetggge trgaateee	tggccattaa tctggaatat g cattgtacgg a taacattcca agctgtcctc tactacttcta agacttttta aaacactgaa	tttatctttc ttggatcagt cctgtcagta cagctttcac atcaaaccca tttttgttgt gaattcccat ggaaattgta tagcctgcta cgggtggtg ggcaggtttt	attrtagaca gccatgttcc ttagacccaa caactagtta cctcatgctg caaggacatt tggcagaggc gtgcactagc ttactctgcc	gcrtagtgya agcaacatta aaacaaatta tatttaaagg atatagttgg aagttgacat cagatgtaga tacagccata ttcaaaaaaa	180 240 300 360 420 480 540 600 660 668
	accrtataag agcagtget gagtggtatt tecatacte acgeacatte atetteetge catactetag gaatteaaa agaaaactea tttttatge etactgeata eetttatea egtetgteea geaggagtte geagteetat gagagtgag geaatgatte atgtaactge aaaaaaaa	tggccattaa tctggaatat g cattgtacgg a taacattcca a agctgtcctc tactacttcta agacttttta aaacactgaa .en .gggctttcct tgctgggtt ggagttacct	tttatctttc ttggatcagt cctgtcagta cagctttcac atcaaaccca tttttgttgt gaattcccat ggaaattgta tagcctgcta cgggtgggtg ggcaggtttt gctagttggt	attrtagaca gccatgttcc ttagacccaa caactagtta cctcatgctg caaggacatt tggcagaggc gtgcactagc ttactctgcc tgggttttcc ggctgggatt gaaactggtt	gcrtagtgya agcaacatta aaacaaatta tatttaaagg atatagttgg aagttgacat cagatgtaga tacagccata ttcaaaaaaa ctgggtgggg gacttttytc ggtagacgg	180 240 300 360 420 480 540 600 660 668
	accrtataag agcagtget gagtggtatt tecatacte acgeacatte atetteetge catactetag gaatteaaa agaaaactea tttttatge ctactgeata cetttatea cettgteca geaggagtt geagteetat gagagtgag geaatgatte atgtaactge aaaaaaaa <210 > 368 <211 > 1512 <212 > DNA <213 > Homo sap: <400 > 368 gggtegeeca gggggsgegttgggetggge trgaateeca ttgaaacea atetgttgge tactactgge atetgggaacea atetgttgge tactactgge tactactgge	tggccattaa tctggaatat g cattgtacgg a taacattcca agctgtcctc tactacttcta agacttttta aaacactgaa en gggctttcct tgctgggtt ggagttacct ttctcctggc	tttatctttc ttggatcagt cctgtcagta cagctttcac atcaaaccca tttttgttgt gaattcccat ggaaattgta tagcctgcta cgggtgggtg ggcaggtttt gctagttggt tgttaaaaagc	attrtagaca gccatgttcc ttagacccaa caactagtta cctcatgctg caaggacatt tggcagaggc gtgcactagc ttactctgcc tggctttccc ggctgggatt gaaactggtt agatggtggt	gcrtagtgya agcaacatta aaacaaatta tatttaaagg atatagttgg aagttgacat cagatgtaga tacagccata ttcaaaaaaa ctgggtgggg gacttttytc ggtagacgg tgaggttgat	180 240 300 360 420 480 540 600 660 668
	accrtataag agcagtget gagtggtatt tecatacte acgeacatte atetteetge catactetag gaatteaaa agaaaactea tttttatge ctactgeata cetttatea cettgteca geaggagtt geagteetat gagagtgag geaatgatte atgtaactge aaaaaaaa <210 > 368 <211 > 1512 <212 > DNA <213 > Homo sap: <400 > 368 gggtegeeca gggggsgegttgggetggge trgaateee tteaaacaga ttggaaacee atetgttge tactactggeteed tecatgeegg etgettette	tggccattaa tctggaatat g cattgtacgg a taacattcca agctgtcctc tactacttcta agacttttta aaacactgaa en gggctttcct tgctggggtt ggagttacct ttctcctggc tgtgaagaag	tttatctttc ttggatcagt cctgtcagta cagctttcac atcaaaccca tttttgttgt gaattcccat ggaaattgta tagcctgcta cgggtgggtg ggcaggtttt gctagttggt tgttaaaaagc ccatttggtc	attrtagaca gccatgttcc ttagacccaa caactagtta cctcatgctg caaggacatt tggcagaggc gtgcactagc ttactctgcc tggctttccc ggctgggatt gaaactggtt agatggtggt tcaggagcaa	gcrtagtgya agcaacatta aaacaaatta tatttaaagg atatagttgg aagttgacat cagatgtaga tacagccata ttcaaaaaaa ctgggtgggg gacttttytc ggtagacgcg tgaggttgat gatggcaag	180 240 300 360 420 480 540 600 660 668
	accrtataag agcagtget gagtggtatt tecatacte acgeacatte atetteetge catactetag gaatteaaa agaaaactea tttttatge ctactgeata cetttatea cettgeteca geaggagtt geagteetat gagagtgag geaatgatte atgtaactge aaaaaaaa <210 > 368 <211 > 1512 <212 > DNA <213 > Homo sap: <400 > 368 gggtegeea gggggsgegt tgggetgge trgaateee tteaaacaga ttggaaacea atetgttge tactactggeteeggeteeteeggeteeggeteeteeggeteeggeteeggeteete	tggccattaa tctggaatat g cattgtacgg a taacattcca agctgtcctc tactacttcta agacttttta aaacactgaa en gggctttcct tgctggggtt ggagttacct ttctcctggc tgtgaagaag ctgctgcagg	tttatctttc ttggatcagt cctgtcagta cagctttcac atcaaaccca tttttgttgt gaattcccat ggaaattgta tagcctgcta cgggtgggtg ggcaggtttt gctagttggt tgttaaaaagc ccatttggtc gagagcggca	attrtagaca gccatgttcc ttagacccaa caactagtta cctcatgctg caaggacatt tggcagaggc gtgcactagc ttactctgcc tgggttttcc ggctgggatt gaaactggtt agatggtggt tcaggagcaa agagcaacgt	gcrtagtgya agcaacatta aaacaaatta tatttaaagg atatagttgg aagttgacat cagatgtaga tacagccata ttcaaaaaaa ctgggtgggg gacttttytc ggtagacgcg tgaggttgat gatggcaag gggcacttct	180 240 300 360 420 480 540 600 660 668
	accrtataag agcagtget gagtggtatt tecatacted acgeacatte atetteetge catactetag gaatteaaa agaaaactea tttttatge ctactgeata cetttatea geagtgetgeatgeatgatte aggagtgagtgagtgaatgatte atgtaactgaaaaaaa	tggccattaa tctggaatat cattgtacgg taacattcca agctgtcctc tactacttcta agacttttta aaacactgaa en gggctttcct tgctggggtt tggagttacct ttctcctggc tgtgaagaag ctgctgcagg tatgaagaca	tttatctttc ttggatcagt cctgtcagta cagctttcac atcaaaccca tttttgttgt gaattcccat ggaaattgta tagcctgcta cgggtgggtg ggcaggtttt gctagttggt tgttaaaaagc ccatttggtc gagagcgca ctcaggagca	attrtagaca gccatgttcc ttagacccaa caactagtta cctcatgctg caaggacatt tggcagaggc gtgcactagc ttactctgcc tggctttcc ggctgggatt gaaactggtt agatggtggt tcaggagcaa agagcaacgt agatgggcaa	gcrtagtgya agcaacatta aaacaaatta tatttaaagg atatagttgg aagttgacat cagatgtaga tacagccata ttcaaaaaaa ctgggtgggg gacttttytc ggtagacgcg tgaggttgat gatgggcaag gggcacttct gtggtgcgc	180 240 300 360 420 480 540 600 660 668
	accrtataag agcagtget gagtggtatt tecatacte acgeacatte atetteetge catactetag gaatteaaa agaaaactea tttttatge ctactgeata cetttatea cettetgeata cetttatea geagteetat gagagtgagt geatgate atgtaactge aaaaaaa <210 > 368 <211 > 1512 <212 > DNA <213 > Homo saps <400 > 368 gggtegeea gggggsgegt tgggetgge trgaateee tteaaacaga ttggaaacea atetgttge tactactggetee gtgettete tggtgetgee gtgetteete ggagaecaeg acgaetetgee cetgetgees acgaetetgees acga	tggccattaa tctggaatat cattgtacgg taacattcca agctgtcctc tactacttcta agacttttta aaacactgaa en gggctttcct tgctggggtt tggagttacct ttctcctggc tgtgaagaag ctgctgcagg tatgaagaca ggggagtggc	tttatctttc ttggatcagt cctgtcagta cagctttcac atcaaaccca tttttgttgt gaattcccat ggaaattgta tagcctgcta cgggtgggtg ggcaggtttt gctagttggt tgttaaaagc ccatttggtc gagagcgca ctcaggagca aagagcaacg	attrtagaca gccatgttcc ttagacccaa caactagtta cctcatgctg caaggacatt tggcagaggc gtgcactagc ttactctgcc tgggttttcc ggctgggatt gaaactggtt agatggtggt tcaggagcaa agagcaacgt agatgggcaa tgggcgcttc	gcrtagtgya agcaacatta aaacaaatta tatttaaagg atatagttgg aagttgacat cagatgtaga tacagccata ttcaaaaaaa ctgggtgggg gacttttytc ggtagacgcg tgaggttgat gatgggcaag gggcacttct gtgggtgcgc tggggagaccac	180 240 300 360 420 480 540 600 660 668
	accrtataag agcagtget gagtggtatt tecatacted acgeacatte atetteetge catactetag gaatteaaa agaaaactea tttttatge ctactgeata cetttatea geagtgetgeatgeatgatte aggagtgagtgagtgaatgatte atgtaactgaaaaaaa	tggccattaa tctggaatat cattgtacgg taacattcca agctgtcctc tactacttcta agacttttta aaacactgaa en gggctttcct tgctggggtt tggagttacct ttctcctggc tgtgaagaag ctgctgcagg tatgaagaca ggggagtggc	tttatctttc ttggatcagt cctgtcagta cagctttcac atcaaaccca tttttgttgt gaattcccat ggaaattgta tagcctgcta cgggtgggtg ggcaggtttt gctagttggt tgttaaaagc ccatttggtc gagagcgca ctcaggagca aagagcaacg	attrtagaca gccatgttcc ttagacccaa caactagtta cctcatgctg caaggacatt tggcagaggc gtgcactagc ttactctgcc tgggttttcc ggctgggatt gaaactggtt agatggtggt tcaggagcaa agagcaacgt agatgggcaa tgggcgcttc	gcrtagtgya agcaacatta aaacaaatta tatttaaagg atatagttgg aagttgacat cagatgtaga tacagccata ttcaaaaaaa ctgggtgggg gacttttytc ggtagacgcg tgaggttgat gatgggcaag gggcacttct gtgggtgcgc tggggagaccac	180 240 300 360 420 480 540 600 660 668
	accrtataag agcagtget gagtggtatt tecatacte acgeacatte atetteetge catactetag gaatteaaa agaaaactea tttttatge ctactgeata cetttatea cettetgeata cetttatea geagteetat gagagtgagt geatgate atgtaactge aaaaaaa <210 > 368 <211 > 1512 <212 > DNA <213 > Homo saps <400 > 368 gggtegeea gggggsgegt tgggetgge trgaateee tteaaacaga ttggaaacea atetgttge tactactggetee gtgettete tggtgetgee gtgetteete ggagaecaeg acgaetetgee cetgetgees acgaetetgees acga	tggccattaa tctggaatat cattgtacgg taacattcca agctgtcctc tactacttcta agacttttta aaacactgaa en gggctttcct tgctggggtt tctctctggc ttctcctggc tgtgaagaag ctgctgcagg tatgaagaca ggggagtggc actcaggaac	tttatctttc ttggatcagt cctgtcagta cagctttcac atcaaaccca tttttgttgt gaattcccat ggaaattgta tagcctgcta cgggtgggtg ggcaggtttt gctagttggt tgttaaaagc ccatttggtc gagagcgca ctcaggagca aagagcaacg aagatgggca	attrtagaca gccatgttcc ttagacccaa caactagtta cctcatgctg caaggacatt tggcagaggc gtgcactagc ttactctgcc tggctttcc ggctgggatt gaaactggtt agatggtggt tcaggagcaa agagcaacgt agatgggcaa tgggcgcttc agtggtgctg	gcrtagtgya agcaacatta aaacaaatta tatttaaagg atatagttgg aagttgacat cagatgtaga tacagccata ttcaaaaaaa ctgggtgggg gacttttytc ggtagacgcg tgaggttgat gatgggcaag gggcacttct gtggtgcgc tgggagaccac ccactgcttc	180 240 300 360 420 480 540 600 660 668 60 120 180 240 300 360 420 480

```
gccttcatgg agcccaggta ccacgtccgt ggagaagatc tggacaagct ccacagagct
geetggtggg gtaaagteee cagaaaggat eteategtea tgeteaggga caetgaegtg
                                                                       660
aacaagaagg acaagcaaaa gaggactgct ctacatctgg cctctgccaa tgggaattca
                                                                       720
gaagtagtaa aactcstgct ggacagacga tgtcaactta atgtccttga caacaaaaag
                                                                       780
                                                                       840
aggacagete tgayaaagge egtacaatge caggaagatg aatgtgegtt aatgttgetg
gaacatggca ctgatccaaa tattccagat gagtatggaa ataccactct reactaygct
                                                                       900
rtctayaatg aagataaatt aatggccaaa gcactgctct tatayggtgc tgatatcgaa
                                                                       960
tcaaaaaaca aggtatagat ctactaattt tatcttcaaa atactgaaat gcattcattt
                                                                     1020
taacattgac gtgtgtaagg gccagtcttc cgtatttgga agctcaagca taacttgaat
                                                                     1080
gaaaatattt tgaaatgacc taattatctm agactttatt ttaaatattg ttatttcaa
                                                                     1140
agaagcatta gagggtacag ttttttttt ttaaatgcac ttctggtaaa tacttttgtt
                                                                     1200
gaaaacactg aatttgtaaa aggtaatact tactattttt caatttttcc ctcctaggat
                                                                     1260
ttttttcccc taatgaatgt aagatggcaa aatttgccct gaaataggtt ttacatgaaa
                                                                     1320
actccaagaa aagttaaaca tgtttcagtg aatagagatc ctgctccttt ggcaagttcc
                                                                     1380
                                                                     1440
taaaaaacag taatagatac gaggtgatgc gcctgtcagt ggcaaggttt aagatatttc
                                                                     1500
tgatctcgtg cc
                                                                     1512
     <210> 369
```

<211> 1853

<212> DNA

<213> Homo sapien

<400> 369

	gggtcgccc	a gggggsgcg	t gggctttcc	t cgggtgggt	g tgggttttc	ctgggtgggg	- 60
	222-233	o ergaacee.	- Lyclyddaci	c ddcadafffi	t aactaaast		120
			u yyayılaccı	. actaattaa	· @2220+~~++	- ~~+ ~	180
		- oaccacegg,	- LLCLCCLGG	: COLLABAACO	` aaataataa		240
		,	- cucuaauaac	i ccarrogr <i>i</i>	' topogogog		300
	33 3 - 3 - 3	- 500500000	- ctyctycauc	i dadadcooc:	2020000000		360
	JJ J	, wegaceeeg	- LatyaayaCa	l CLCAGGAGCA	adatodos.		420
		· occasion	, yyyyaytugo	: aagagcaacc	I taaaaaachte		480
•	J J	- cucyaaga	- actuaddaac	: aagargggg	1 20tootooto		540
		. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, caayaycaad	I GEGGGGGGEFF	***********		600
-	,	ance ceagging	i ccacyteert	ggagaagata	' taracaaaat	00000000	660
•	, ,,,,,	7	. cayaaayyat	cucarcorea	tactasaaas		720
		ucuugcaaaa	Haddactdct	CLACATOTOG	CCtCtCCCC	*	780
•	,		ччасачасца	EUICAACITA	atataattaa		840
	-555000	uga, aaagge	Lycacaalge	Caggaagatg	aatotocott	22+-++	900
-		Jacceaaa	raciccayat	qaqtatqqaa	ataccactet	rasatamen	960
		uugutaaatt	aatuuccaaa	gcactoctct	tatavootee	* L - L	1020
_		ageatggeet	Cacaccacto	VEacttootr	tacatoacoa		1080
_	3 - 3 - 3 - 4 - 4	cecuacyaa	Yaaaaaaacca	aarrraaaat	aarataasts		1140
	J	~~~cccgccq	Latettutuu	arcadcaadt	2120102		1200
_		Jacgcacccc	CLCaayalct	ggaaagacgg	CCacacacta		1260
			CCayccaccc	LCLGACEACA	220222222		1320
			LLLauadeaa	DACTTABAAC	tasastasas		1380
		waggaagtqa	aaacauccau	CCAGAGGGAL	~~~~~~~~~		1440
	33	~~5000000	CCCCCCCCCC	aacaaratta	Catactccc		1500
	5 5	-mgg-ceeega	yaattaatay	accenter	taagaatatt	++~~~+~~	1560
_	33-3	wegee eg eaa	Lucaycacc	LLGAGAGGCE	Cacctcccc.	~~b~~~~.	1620
		gagaccatcc	Lygetaacac	ggtgaaaccc	catctctact	222242	1680
		333 cg cgg cg	4C444CCE	GEAGE CCCAC	Ctactcacca		1740
٠.	J. J	acguactegg	yayyuqqaqq	ttqcaqtqaq	ccgagataga	0020t20ct	1800
C.(ageetggg	tgacagagca	agactctgtc	tcaaaaaaaa	aaaaaaaaa	aaa	1853
							1000

<210> 370

<211> 2184

<212> DNA

<213> Homo sapien

```
<400> 370
ggcacgagaa ttaaaaccct cagcaaaaca ggcatagaag ggacatacct taaagtaata
                                                                        60
aaaaccacct atgacaagcc cacagccaac ataatactaa atggggaaaa gttagaagca
                                                                       120
tttcctctga gaactgcaac aataaataca aggatgctgg attttgtcaa atgccttttc
                                                                       180
tgtgtctgtt gagatgctta tgtgactttg cttttaattc tgtttatgtg attatcacat
                                                                       240
ttattgactt gcctgtgtta gaccggaaga gctggggtgt ttctcaggag ccaccgtgtg
                                                                       300
ctgcggcagc ttcgggataa cttgaggctg catcactggg gaagaaacac aytcctgtcc
                                                                       360
gtggcgctga tggctgagga cagagettea gtgtggette tetgcgaetg gettettegg
                                                                       420
ggagttette etteatagtt catecatatg getecagagg aaaattatat tattttgtta
                                                                       480
tggatgaaga gtattacgtt gtgcagatat actgcagtgt cttcatctct tgatgtga
                                                                       540
ttgggtaggt tccaccatgt tgccgcagat gacatgattt cagtacctgt gtctggctga
                                                                       600
aaagtgtttg tttgtgaatg gatattgtgg tttctggatc tcatcctctg tgggtggaca
                                                                       660
gctttctcca ccttgctgga agtgacctgc tgtccagaag tttgatggct gaggagtata
                                                                       720
ccatcgtgca tgcatctttc atttcctgca tttcttcctc cctggatgga cagggggagc
                                                                       780
ggcaagagca acgtgggcac ttctggagac cacaacgact cctctgtgaa gacgcttggg
                                                                       840
agcaagaggt gcaagtggtg ctgccactgc ttcccctgct gcaggggagc ggcaagagca
                                                                       900
acgtggtcgc ttggggagac tacgatgaca gcgccttcat ggatcccagg taccacgtcc
                                                                       960
atggagaaga tetggacaag etecacagag etgeetggtg gggtaaagte eecagaaagg
                                                                      1020
atctcatcgt catgctcagg gacacggatg tgaacaagag ggacaagcaa aagaggactg
                                                                      1080
ctctacatct ggcctctgcc aatgggaatt cagaagtagt aaaactcgtg ctggacagac
                                                                      1140
gatgtcaact taatgtcctt gacaacaaaa agaggacagc tctgacaaag gccgtacaat
                                                                      1200
gccaggaaga tgaatgtgcg ttaatgttgc tggaacatgg cactgatcca aatattccag
                                                                     1260
atgagtatgg aaataccact ctacactatg ctgtctacaa tgaagataaa ttaatggcca
                                                                     1320
aagcactgct cttatacggt gctgatatcg aatcaaaaaa caagcatggc ctcacaccac
                                                                     1380
tgctacttgg tatacatgag caaaaacagc aagtggtgaa atttttaatc aagaaaaaag
                                                                     1440 :
cgaatttaaa tgcgctggat agatatggaa gaactgctct catacttgct gtatgttgtg
                                                                     1500
gatcagcaag tatagtcagc cetetacttg agcaaaatgt tgatgtatet tetcaagate
                                                                     1560
tggaaagacg gccagagagt atgctgtttc tagtcatcat catgtaattt gccagttact
                                                                     1620
ttctgactac aaagaaaaac agatgttaaa aatctcttct gaaaacagca atccagaaca
                                                                      1680
agacttaaag ctgacatcag aggaagagtc acaaaggctt aaaggaagtg aaaacagcca
                                                                     1740
gccagaggca tggaaacttt taaatttaaa cttttggttt aatgtttttt ttttttgcct
                                                                     1800
taataatatt agatagtccc aaatgaaatw acctatgaga ctaggctttg agaatcaata
                                                                     1860
gattetttt ttaagaatet tttggetagg ageggtgtet caegeetgta attecageae
                                                                     1920
cttgagaggc tgaggtgggc agatcacgag atcaggagat cgagaccatc ctggctaaca
                                                                     1980
cggtgaaacc ccatctctac taaaaataca aaaacttagc tgggtgtggt ggcgggtgcc
                                                                     2040
tgtagtccca gctactcagg argctgaggc aggagaatgg catgaacccg ggaggtggag
                                                                     2100
gttgcagtga gccgagatcc gccactacac tccagcctgg gtgacagagc aagactctgt
                                                                     2160
ctcaaaaaaa aaaaaaaaaa aaaa
                                                                     2184
      <210> 371
      <211> 1855
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(1855)
      <223> n = A, T, C or G
      <400> 371
tgcacgcatc ggccagtgtc tgtgccacgt acactgacgc cccctgagat gtgcacgccg
                                                                       60
cacgcgcacg ttgcacgcgc ggcagcggct tggctggctt gtaacggctt gcacgcgcac
                                                                      120
geegeeeeg cataacegte agaetggeet gtaacggett geaggegeac geegeacgeg
                                                                      180
cgtaacggct tggctgccct gtaacggctt gcacgtgcat gctgcacgcg cgttaacggc
                                                                      240
ttggctggca tgtagccgct tggcttggct ttgcattytt tgctkggctk ggcgttgkty
                                                                      300
```

tettggattg aegetteete ettggatkga egttteetee ttggatkgae gttteytyty

```
tegegtteet ttgetggact tgacetttty tetgetgggt ttggcattee tttggggtgg
   getgggtgtt tteteegggg gggktkgeee tteetggggt gggegtgggk egeeeceagg
                                                                         420
  gggcgtgggc tttccccggg tgggtgtggg ttttcctggg gtggggtggg ctgtgctggg
                                                                         480
  atccccctgc tggggttggc agggattgac ttttttcttc aaacagattg gaaacccgga
                                                                         540
  gtaacntgct agttggtgaa actggttggt agacgcgatc tgctggtact actgtttctc
                                                                         600
  ctggctgtta aaagcagatg gtggctgagg ttgattcaat gccggctgct tcttctgtga
                                                                         660
  agaagccatt tggtctcagg agcaagatgg gcaagtggtg cgccactgct tcccctgctg
                                                                         720
  cagggggagc ggcaagagca acgtgggcac ttctggagac cacaacgact cctctgtgaa
                                                                         780
  gacgettggg agcaagaggt gcaagtggtg etgeceactg etteceetge tgcaggggag
                                                                         840
  cggcaagagc aacgtggkcg cttggggaga ctacgatgac agcgccttca tggakcccag
                                                                         900
  gtaccacgtc crtggagaag atctggacaa gctccacaga gctgcctggt ggggtaaagt
                                                                         960
  ccccagaaag gatctcatcg tcatgctcag ggacactgay gtgaacaaga rggacaagca
                                                                        1020
  aaagaggact getetacate tggeetetge caatgggaat teagaagtag taaaactegt
                                                                        1080
  gctggacaga cgatgtcaac ttaatgtcct tgacaacaaa aagaggacag ctctgacaaa
                                                                       1140
  ggccgtacaa tgccaggaag atgaatgtgc gttaatgttg ctggaacatg gcactgatcc
                                                                       1200
  aaatattcca gatgagtatg gaaataccac tctacactat gctgtctaca atgaagataa
                                                                       1260
  attaatggcc aaagcactgc tcttatacgg tgctgatatc gaatcaaaaa acaaggtata
                                                                       1320
  gatctactaa ttttatcttc aaaatactga aatgcattca ttttaacatt gacgtgtgta
                                                                       1380
 agggccagtc ttccgtattt ggaagctcaa gcataacttg aatgaaaata ttttgaaatg
                                                                       1440
 acctaattat ctaagacttt attttaaata ttgttatttt caaagaagca ttagagggta
                                                                       1500
 cagttttttt tttttaaatg cacttctggt aaatactttt gttgaaaaca ctgaattgt
                                                                       1560
 aaaaggtaat acttactatt tttcaatttt tccctcctag gatttttttc ccctaatgaa
                                                                       1620
 tgtaagatgg caaaatttgc cctgaaatag gttttacatg aaaactccaa gaaaagttaa
                                                                       1680
 acatgittca gigaatagag atccigcico titiggcaagi toolaaaaaa cagtaataga
                                                                       1740
 tacgaggtga tgcgcctgtc agtggcaagg tttaagatat ttctgatctc gtgcc
                                                                       1800
                                                                       1855
       <210> 372
       <211> 1059
     . <212> DNA
       <213> Homo sapien
       <400> 372
gcaacgtggg cacttctgga gaccacaacg actcctctgt gaagacgctt gggagcaaga
ggtgcaagtg gtgctgccca ctgcttcccc tgctgcaggg gagcggcaag agcaacgtgg
                                                                        60
gegettgrgg agactmegat gacagygeet teatggagee caggtaceae gteegtggag
                                                                       120
aagatetgga caageteeac agagetgeee tggtggggta aagteeecag aaaggatete
                                                                       180
atcgtcatgc tcagggacac tgaygtgaac aagarggaca agcaaaagag gactgctcta
                                                                       240
catctggcct ctgccaatgg gaattcagaa gtagtaaaac tcstgctgga cagacgatgt
                                                                       300
caacttaatg teettgacaa caaaaagagg acagetetga yaaaggeegt acaatgeeag
                                                                       360
gaagatgaat gtgcgttaat gttgctggaa catggcactg atccaaatat tccagatgag
                                                                       420
tatggaaata ccactetrea etaygetrte tayaatgaag ataaattaat ggecaaagea
                                                                       480
ctgctcttat ayggtgctga tatcgaatca aaaaacaagg tatagatcta ctaatttat
                                                                       540
cttcaaaata ctgaaatgca ttcattttaa cattgacgtg tgtaagggcc agtcttccgt
                                                                       600
atttggaage teaageataa ettgaatgaa aatattttga aatgaeetaa ttatetaaga
                                                                       660
ctttatttta aatattgtta ttttcaaaga agcattagag ggtacagttt tttttttta
                                                                       720
aatgcacttc tggtaaatac ttttgttgaa aacactgaat ttgtaaaagg taatacttac
                                                                       780
tatttttcaa tttttccctc ctaggatttt tttcccctaa tgaatgtaag atggcaaaat
                                                                      840
ttgccctgaa ataggtttta catgaaaact ccaagaaaag ttaaacatgt ttcagtgaat
                                                                      900
agagatectg eteetttgge aagtteetaa aaaacagtaa tagataegag gtgatgegee
                                                                      960
tgtcagtggc aaggtttaag atatttctga tctcgtgcc
                                                                     1020
                                                                     1,059
     <210> 373
     <211> 1155
     <212> DNA
     <213> Homo sapien
```

aggagcaaga	tgggcaagtg	gtgctgccgt	tgcttcccct	gctgcaggga	gagcggcaag	120
agcaacgtgg	gcacttctgg	agaccacgac	gactctgcta	tgaagacact	caggagcaag	180
				ggagtggcaa		240
ggcgcttctg	gagaccacga	cgactctgct	atgaagacac	tcaggaacaa	gatgggcaag	300
tggtgctgcc	actgcttccc	ctgctgcagg	gggagcggca	agagcaaggt	gggcgcttgg	360
				acgtccgtgg		420
				gaaaggatct		480
				ggactgctct		540
tctgccaatg	ggaattcaga	agtagtaaaa	ctcctgctgg	acagacgatg	tcaacttaat	600
gtccttgaca	acaaaaagag	gacagetetg	ataaaggccg	tacaatgcca	ggaagatgaa	660
tgtgcgttaa	tgttgctgga	acatggcact	gatccaaata	ttccagatga	gtatggaaat	720
accactctgc	actacgctat	ctataatgaa	gataaattaa	tggccaaagc	actgctctta	780
tatggtgctg	atatcgaatc	aaaaaacaag	catggcctca	caccactgtt	acttggtgta	840
catgagcaaa	aacagcaagt	cgtgaaattt:	ttaatcaaga	aaaaagcgaa	tttaaatgca	900
ctggatagat	atggaaggac	tgctctcata	cttgctgtat	gttgtggatc	agcaagtata	960
gtcagccttc	tacttgagca	aaatattgat	gtatcttctc	aagatctatc	tggacagacg	1020
gccagagagt	atgctgtttc	tagtcatcat	catgtaattt	gccagttact	ttctgactac	1080
aaagaaaaac	agatgctaaa	aatctcttct	gaaaacagca	atccagaaaa	tgtctcaaga	1140
accagaaata	aataa					1155

<210> 374 <211> 2000 <212> DNA <213> Homo sapien

<400> 374

atggtggttg aggttgattc catgccggct gcctcttctg tgaagaagcc atttggtctc 60 aggagcaaga tgggcaagtg gtgctgccgt tgcttcccct gctgcaggga gagcggcaag 120 agcaacgtgg gcacttctgg agaccacgac gactctgcta tgaagacact caggagcaag 180 atgggcaagt ggtgccgcca ctgcttcccc tgctgcaggg ggagtggcaa gagcaacgtg 240 ggcgcttctg gagaccacga cgactctgct atgaagacac tcaggaacaa gatgggcaag 300 tggtgctgcc actgcttccc ctgctgcagg gggagcggca agagcaaggt gggcgcttgg 360 ggagactacg atgacagtgc ettcatggag eccaggtace acgtecgtgg agaagatetg 420 gacaagetee acagagetge etggtggggt aaagteecca gaaaggatet categteatg 480 ctcagggaca ctgacgtgaa caagaaggac aagcaaaaga ggactgctct acatctggcc 540 tctgccaatg ggaattcaga agtagtaaaa ctcctgctgg acagacgatg tcaacttaat 600 gtccttgaca acaaaaagag gacagctctg ataaaggccg tacaatgcca ggaagatgaa 660 tgtgcgttaa tgttgctgga acatggcact gatccaaata ttccagatga gtatggaaat 720 accactetge actacgetat etataatgaa gataaattaa tggeeaaage actgetetta 780 tatggtgctg atatcgaatc aaaaaacaag catggcctca caccactgtt acttggtgta 840 catgagcaaa aacagcaagt cgtgaaattt ttaatcaaga aaaaagcgaa tttaaatgca 900 ctggatagat atggaaggac tgctctcata cttgctgtat gttgtggatc agcaagtata 960 gtcagcette tacttgagea aaatattgat gtatettete aagatetate tggacagaeg 1020 gccagagagt atgctgtttc tagtcatcat catgtaattt gccagttact ttctgactac 1080 aaagaaaaac agatgetaaa aatetettet gaaaacagca atecagaaca agaettaaag 1140 ctgacatcag aggaagagtc acaaaggttc aaaggcagtg aaaatagcca gccagagaaa 1200 atgtctcaag aaccagaaat aaataaggat ggtgatagag aggttgaaga agaaatgaag 1260 aagcatgaaa gtaataatgt gggattacta gaaaacctga ctaatggtgt cactgctggc 1320 aatggtgata atggattaat teeteaaagg aagageagaa eacetgaaaa teageaattt 1380 cctgacaacg aaagtgaaga gtatcacaga atttgcgaat tagtttctga ctacaaagaa 1440 aaacagatgc caaaatactc ttctgaaaac agcaacccag aacaagactt aaagctgaca 1500 tcagaggaag agtcacaaag gcttgagggc agtgaaaatg gccagccaga gctagaaaat 1560 tttatggcta tcgaagaaat gaagaagcac ggaagtactc atgtcggatt cccagaaaac 1620 ctgactaatg gtgccactgc tggcaatggt gatgatggat taattcctcc aaggaagagc 1680 agaacacctg aaagccagca atttcctgac actgagaatg aagagtatca cagtgacgaa 1740 1800 · attctgattc atgaagaaaa gcagatagaa gtggttgaaa aaatgaattc tgagctttct 1860 cttagttgta agaaagaaaa agacatcttg catgaaaata gtacgttgcg ggaagaaatt 1920

```
gccatgctaa gactggagct agacacaatg aaacatcaga gccagctaaa aaaaaaaaa
                                                                      1980
  aaaaaaaaa aaaaaaaaaa
                                                                      2000
        <210> 375
        <211> 2040
        <212> DNA
        <213> Homo sapien
        <400> 375
  atggtggttg aggttgattc catgccggct gcctcttctg tgaagaagcc atttggtctc
                                                                        60
 aggagcaaga tgggcaagtg gtgctgccgt tgcttcccct gctgcaggga gagcggcaag
                                                                       120
 agcaacgtgg gcacttetgg agaccacgac gactetgeta tgaagacact caggagcaag
 atgggcaagt ggtgccgcca ctgcttcccc tgctgcaggg ggagtggcaa gagcaacgtg
                                                                       180
                                                                       240
 ggcgcttctg gagaccacga cgactctgct atgaagacac tcaggaacaa gatgggcaag
                                                                       300
 tggtgctgcc actgcttccc ctgctgcagg gggagcggca agagcaaggt gggcgcttgg
 ggagactacg atgacagtgc cttcatggag cccaggtacc acgtccgtgg agaagatctg
                                                                       360
                                                                       420
 gacaagetee acagagetge etggtggggt aaagteecea gaaaggatet categteatg
                                                                       480
 ctcagggaca ctgacgtgaa caagaaggac aagcaaaaga ggactgctct acatctggcc
                                                                      540
 tetgecaatg ggaatteaga agtagtaaaa eteetgetgg acagacgatg teaacttaat
                                                                      600
 gteettgaca acaaaaagag gacagetetg ataaaggeeg tacaatgeca ggaagatgaa
 tgtgcgttaa tgttgctgga acatggcact gatccaaata ttccagatga gtatggaaat
                                                                      660
                                                                      720
 accactetge actaegetat etataatgaa gataaattaa tggecaaage actgetetta
                                                                      780
 tatggtgctg atatcgaatc aaaaaacaag catggcctca caccactgtt acttggtgta
 catgagcaaa aacagcaagt cgtgaaattt ttaatcaaga aaaaagcgaa tttaaatgca
                                                                      840
 ctggatagat atggaaggac tgctctcata cttgctgtat gttgtggatc agcaagtata
                                                                      900
                                                                      960
 gtcagccttc tacttgagca aaatattgat gtatcttctc aagatctatc tggacagacg
                                                                     1020
 gccagagagt atgctgtttc tagtcatcat catgtaattt gccagttact ttctgactac
                                                                     1080
 aaagaaaaac agatgctaaa aatctcttct gaaaacagca atccagaaca agacttaaag
                                                                     1140
 ctgacatcag aggaagagtc acaaaggttc aaaggcagtg aaaatagcca gccagagaaa
                                                                     1200 .
 atgtctcaag aaccagaaat aaataaggat ggtgatagag aggttgaaga agaaatgaag
                                                                     1260
 aagcatgaaa gtaataatgt gggattacta gaaaacctga ctaatggtgt cactgctggc
 aatggtgata atggattaat tootcaaagg aagagcagaa cacctgaaaa tcagcaattt
                                                                     1320
                                                                     1380
 cetgacaacg aaagtgaaga gtatcacaga atttgcgaat tagtttctga ctacaaagaa
                                                                     1440
 aaacagatgc caaaatactc ttctgaaaac agcaacccag aacaagactt aaagctgaca
                                                                     1500
 tcagaggaag agtcacaaag gcttgagggc agtgaaaatg gccagccaga gaaaagatct
                                                                     1560
caagaaccag aaataaataa ggatggtgat agagagctag aaaattttat ggctatcgaa
                                                                     1620
gaaatgaaga agcacggaag tactcatgtc ggattcccag aaaacctgac taatggtgcc
actgctggca atggtgatga tggattaatt cctccaagga agagcagaac acctgaaagc
                                                                     1680
                                                                     1740
cagcaatttc ctgacactga gaatgaagag tatcacagtg acgaacaaaa tgatactcag
                                                                     1800
aagcaatttt gtgaagaaca gaacactgga atattacacg atgagattct gattcatgaa
                                                                     1860
gaaaagcaga tagaagtggt tgaaaaaatg aattetgage tttetettag ttgtaagaaa
gaaaaagaca tettgcatga aaatagtacg ttgcgggaag aaattgccat gctaagactg
                                                                     1920
1980
                                                                    2040
      <210> 376
      <211> 329
      <212> PRT
      <213> Homo sapien
      <400> 376
Met Asp Ile Val Val Ser Gly Ser His Pro Leu Trp Val Asp Ser Phe
                                   1.0
Leu His Leu Ala Gly Ser Asp Leu Leu Ser Arg Ser Leu Met Ala Glu
                               25
Glu Tyr Thr Ile Val His Ala Ser Phe Ile Ser Cys Ile Ser Ser Ser
                           40
Leu Asp Gly Gln Gly Glu Arg Gln Glu Gln Arg Gly His Phe Trp Arg
```

```
Pro Gln Arg Leu Leu Cys Glu Asp Ala Trp Glu Gln Glu Val Gln Val
Val Leu Pro Leu Pro Leu Leu Gln Gly Ser Gly Lys Ser Asn Val
             85
                      90
Val Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe Met Asp Pro Arg Tyr
                 105
His Val His Gly Glu Asp Leu Asp Lys Leu His Arg Ala Ala Trp Trp
               120
Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met Leu Arg Asp Thr Asp
                            140
           135
Val Asn Lys Arg Asp Lys Gln Lys Arg Thr Ala Leu His Leu Ala Ser
         150
                         155
Ala Asn Gly Asn Ser Glu Val Val Lys Leu Val Leu Asp Arg Arg Cys
           165
                              170 175
Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr Ala Leu Thr Lys Ala
                          185
Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met Leu Leu Glu His Gly
      195
              200
Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr
                  215
                                  220
Ala Val Tyr Asn Glu Asp Lys Leu Met Ala Lys Ala Leu Leu Tyr
                                  235
Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly Leu Thr Pro Leu Leu
                               250
Leu Gly Ile His Glu Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys
          260
                           265
Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu
       275 280 -
                                         285
Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile Val Ser Pro Leu Leu
                   295 300
Glu Gln Asn Val Asp Val Ser Ser Gln Asp Leu Glu Arg Arg Pro Glu
                310
                                 315
Ser Met Leu Phe Leu Val Ile Ile Met
```

<210> 377

<211> 148

<212> PRT

<213> Homo sapien

<220>

<221> VARIANT

<222> (1)...(148)

<223> Xaa = Any Amino Acid

<400> 377

 Met Thr
 Xaa
 Pro
 Ser
 Trp
 Ser
 Pro
 Gly
 Thr
 Thr
 Ser
 Val
 Glu
 Lys
 Ile

 1
 5
 5
 8
 Trp
 Trp
 Trp
 Gly
 Lys
 Val
 Pro
 Arg
 Lys

 Trp
 Thr
 Ser
 Ser
 Thr
 Glu
 Leu
 Pro
 Trp
 Trp
 Gly
 Lys
 Val
 Pro
 Arg
 Lys
 Jys
 Jys</

Glu Cys Ala Leu Met Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro 100 105 110 Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr Ala Xaa Tyr Asn Glu Asp 115 - 120 125 Lys Leu Met Ala Lys Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu Ser 130 135 Lys Asn Lys Val 145

<210> 378

<211> 1719 <212> PRT <213> Homo sapien <400> 378 Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser Ser Val Lys Lys 1 5 10 Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys Cys Arg Cys Phe 25 Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp 40 His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp 55 Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn. Val Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Asn 85 90 Lys Met Gly Lys Trp Cys Cys His Cys Phe Pro Cys Cys Arg Gly Ser 100 105 110 Gly Lys Ser Lys Val Gly Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe 120 125 Met Glu Pro Arg Tyr His Val Arg Gly Glu Asp Leu Asp Lys Leu His 135 Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met 145 150 155 Leu Arg Asp Thr Asp Val Asn Lys Lys Asp Lys Gln Lys Arg Thr Ala 165 170 Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val Val Lys Leu Leu 185 190 Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr 195 200 205 Ala Leu Ile Lys Ala Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met 215 220 Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn 230 235 Thr Thr Leu His Tyr Ala Ile Tyr Asn Glu Asp Lys Leu Met Ala Lys 245 250 Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly 265 Leu Thr Pro Leu Leu Gly Val His Glu Gln Lys Gln Gln Val Val 275 280 285 Lys Phe Leu Ile Lys Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr 290 295 300 -Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile 305 310 315 320 Val Ser Leu Leu Glu Gln Asn Ile Asp Val Ser Ser Gln Asp Leu 330 335 Ser Gly Gln Thr Ala Arg Glu Tyr Ala Val Ser Ser His His Val

340 345 Ile Cys Gln Leu Leu Ser Asp Tyr Lys Glu Lys Gln Met Leu Lys Ile 355 360 Ser Ser Glu Asn Ser Asn Pro Glu Asn Val Ser Arg Thr Arg Asn Lys 375 Pro Arg Thr His Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser 390 395 Ser Val Lys Lys Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys 405 410 Cys Arg Cys Phe Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly 420 425 Thr Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys 440 Met Gly Lys Trp Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly 455 460 Lys Ser Asn Val Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys 470 475 Thr Leu Arg Asn Lys Met Gly Lys Trp Cys Cys His Cys Phe Pro Cys 485 490 Cys Arg Gly Ser Gly Lys Ser Lys Val Gly Ala Trp Gly Asp Tyr Asp 505 Asp Ser Ala Phe Met Glu Pro Arg Tyr His Val Arg Gly Glu Asp Leu 520 525 Asp Lys Leu His Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp 535 Leu Ile Val Met Leu Arg Asp Thr Asp Val Asn Lys Lys Asp Lys Gln 545 550 555 Lys Arg Thr Ala Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val 565 570 575 Val Lys Leu Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn 585 590 Lys Lys Arg Thr Ala Leu Ile Lys Ala Val Gln Cys Gln Glu Asp Glu 600 Cys Ala Leu Met Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp 615 620 Glu Tyr Gly Asn Thr Thr Leu His Tyr Ala Ile Tyr Asn Glu Asp Lys 635 Leu Met Ala Lys Ala Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys 645 650 Asn Lys His Gly Leu Thr Pro Leu Leu Gly Val His Glu Gln Lys 660 665 Gln Gln Val Val Lys Phe Leu Ile Lys Lys Lys Ala Asn Leu Asn Ala 680 685 Leu Asp Arg Tyr Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly 695 700 Ser Ala Ser Ile Val Ser Leu Leu Glu Gln Asn Ile Asp Val Ser 710 715 Ser Gln Asp Leu Ser Gly Gln Thr Ala Arg Glu Tyr Ala Val Ser Ser 725 730 His His His Val Ile Cys Gln Leu Leu Ser Asp Tyr Lys Glu Lys Gln 745 Met Leu Lys Ile Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys 760 765 Leu Thr Ser Glu Glu Glu Ser Gln Arg Phe Lys Gly Ser Glu Asn Ser 775 780 Gln Pro Glu Lys Met Ser Gln Glu Pro Glu Ile Asn Lys Asp Gly Asp 790 795 Arg Glu Val Glu Glu Met Lys Lys His Glu Ser Asn Asn Val Gly

						0.0						_								
	Le	u L	eu	Glu	1 2 c	80 n Le		h~ 7	\ cn	<u>ما</u>	. 37-	8.	LO -	1		_		81	15	
					82	U					82	5		la G			0.3	Λ		
				033						840				ro G		845	:			
		0:	5 U					- 8	55					le C	60					
	00	_					8.	/ 0					8	er S 75						000
	Pr	0 G)	lu (Gln	As	p Le 88	u Ly 5	s L	eu :	Thr	Ser	r Gl 89	u G	lu G	lu	Ser	Gl	n Ar 89	g	Leu
	Gl	u Gl	.у :	Ser	Gl: 900	ı As	n Gl	уG	ln I	Pro	Gl: 905	ı Le	u G	lu A	sn	Phe		t Al	э а :	Ile
	Gl	u Gl	u t	Met 915	Lys	s Ly	s Hi	s G	ly s	Ser 920	Thi	Hi	s Va	al G			910 Pro	o Gl	u i	Asn
	Lei	ı Th 93	ır A		Gly	/ Ala	a Th	r A	la (3ly	Asn	Gl	y As	sp A	sp	925 Gly	Let	ı Il	e 1	Pro
	Pro	o Ar	-	ys	Ser	Arg	Th	r P	35 ro G	lu	Ser	Gl	n Gl	ln Pl	10 1e	Pro	Asp	Th:	r (slu
		-	u G	lu	Туг	His	95 S S e		sp G	lu	Gln	Ası	95 n. As	55 SpTh	ır	Gln	Lys	Gl:	1 E	960 Phe
	Cys	G.l	u G	lu	Gln	96! Asr		r G	ly I	le	Leu	970 Hi:	O SAS	p Gl	u :	Ile	Leu	979 11e	5 2 H	lis
			u L	ys	200						985			t As			000			
		Se	r C	93						000				s Gl	-	1 0 0 5	:			
		10.	TO					10	115						20					
	102						ΤΟ.	30					10	3.5					7	040
	GIn	Sei	c G	ln	Leu	Pro	Aro	Th	r H	is i	Met	Val	. Va	1 G1	u.J	/al	Asp	Ser	M	et
						104	5					105	in .					105	•	
					106	0	va	. шу	э п	ys . :	106!	Pne 5	GI	y Le	u A		Ser 107		M	et
			Τ.	0/5					10	080				s Ar	7	lu	Ser	Gly		
			, ,					1 ()	45					Se:	r A	la				
	Leu	Arg	Se	er 1	Lys	Met	Gly	Ly	s Tr	p q	: :ys	Arg	His	S Cy	s P	he 1	Pro	Cys	C	/S
		_						.U					717	I E						
						112	•					113	n	Gly				1121	=	
				- 4	T-20	,				1	.145	1		/ Lys		1	150	١.		
				. 33					11	60				Lys	1 1	165				
		11/	U					117	/5					Arg	Δ.					
1	31y 1185	Glu	As	рL	eu	Asp	Lys 119	Leu	Hi.	s A	rg .	Ala	Ala	Trp	Tı	rp G	ly	Lys		
I	Pro	Arg	Ly	s A	sp	Leu 1205	Ile		Me	t L	eu ,	Arg	119 Asp	5 Thr	As	sp V			Ly	00 s
I	ys	Asp	Ly	s G	ln :			Thr	Ala	a L	eu 1	1210 His	Leu	Ala	Se	er A	la i	1215 Asn	G1	У
A	sn	Ser	Gl:	u V	220 al '	Val	Lys	Leu	Let	u L	225 eu <i>1</i>	Asp	Arg	Arg		s G	230 ln :	Leu	Ası	n
V	al .	Leu 1250	Asj		sn 1	Lys	Lys	Arg	124 Thi	±U rA	la I	Leu	Ile	Lys	Al	45 a V	al (Gln	Cy:	s
		1230	,					125	5					126 His	0					
						-							- -u	*****	31	A T	III A	ıομ.	r I (,

1270 1275 Asn Ile Pro Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr Ala Ile Tyr 1285 1290 1295 Asn Glu Asp Lys Leu Met Ala Lys Ala Leu Leu Leu Tyr Gly Ala Asp 1300 1305 1310 Ile Glu Ser Lys Asn Lys His Gly Leu Thr Pro Leu Leu Gly Val 1315 1320 1325 His Glu Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys Lys Lys Ala 1330 1335 1340 Asn Leu Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu Ile Leu Ala 1345 1350 1355 1360 Val Cys Cys Gly Ser Ala Ser Ile Val Ser Leu Leu Glu Gln Asn 1365 1370 1375 Ile Asp Val Ser Ser Gln Asp Leu Ser Gly Gln Thr Ala Arg Glu Tyr 1380 1385 1390 Ala Val Ser Ser His His His Val Ile Cys Gln Leu Leu Ser Asp Tyr 1395 1400 1405 Lys Glu Lys Gln Met Leu Lys Ile Ser Ser Glu Asn Ser Asn Pro Glu 1410 1415 1420 Gln Asp Leu Lys Leu Thr Ser Glu Glu Glu Ser Gln Arg Phe Lys Gly 1425 1430 1435 1440 Ser Glu Asn Ser Gln Pro Glu Lys Met Ser Gln Glu Pro Glu Ile Asn 1445 1450 1455 Lys Asp Gly Asp Arg Glu Val Glu Glu Glu Met Lys Lys His Glu Ser 1460 1465 1470 Asn Asn Val Gly Leu Leu Glu Asn Leu Thr Asn Gly Val Thr Ala Gly 1475 1480 1485 Asn Gly Asp Asn Gly Leu Ile Pro Gln Arg Lys Ser Arg Thr Pro Glu 1490 1495 1500 Asn Gln Gln Phe Pro Asp Asn Glu Ser Glu Glu Tyr His Arg Ile Cys 1505 1510 1515 1520 Glu Leu Val Ser Asp Tyr Lys Glu Lys Gln Met Pro Lys Tyr Ser Ser 1525 1530 1535 Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu Glu Glu 1540 1545 1550 Ser Gln Arg Leu Glu Gly Ser Glu Asn Gly Gln Pro Glu Lys Arg Ser 1555 1560 1565 Gln Glu Pro Glu Ile Asn Lys Asp Gly Asp Arg Glu Leu Glu Asn Phe 1570 1575 1580 Met Ala Ile Glu Glu Met Lys Lys His Gly Ser Thr His Val Gly Phe 1585 1590 1595 1600 Pro Glu Asn Leu Thr Asn Gly Ala Thr Ala Gly Asn Gly Asp Asp Gly 1605 1610 1615 Leu Ile Pro Pro Arg Lys Ser Arg Thr Pro Glu Ser Gln Gln Phe Pro 1620 1625 1630 Asp Thr Glu Asn Glu Glu Tyr His Ser Asp Glu Gln Asn Asp Thr Gln 1635 1640 1645 Lys Gln Phe Cys Glu Glu Gln Asn Thr Gly Ile Leu His Asp Glu Ile 1650 1655 1660 Leu Ile His Glu Glu Lys Gln Ile Glu Val Val Glu Lys Met Asn Ser 1665 1670 1675 1680 Glu Leu Ser Leu Ser Cys Lys Lys Glu Lys Asp Ile Leu His Glu Asn 1685 1690 1695 Ser Thr Leu Arg Glu Glu Ile Ala Met Leu Arg Leu Glu Leu Asp Thr 1700 1705 1710 Met Lys His Gln Ser Gln Leu 1715

. ::. •

<210> 379 <211> 656 <212> PRT <213> Homo sapien

<400> 379

Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser Ser Val Lys Lys 1.0 Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys Cys Arg Cys Phe 20 25 Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp 40 His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Asn 90 Lys Met Gly Lys Trp Cys Cys His Cys Phe Pro Cys Cys Arg Gly Ser 100 105 Gly Lys Ser Lys Val Gly Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe 120 125 Met Glu Pro Arg Tyr His Val Arg Gly Glu Asp Leu Asp Lys Leu His 135 140 Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met 150 155 Leu Arg Asp Thr Asp Val Asn Lys Lys Asp Lys Gln Lys Arg Thr Ala 165 170 Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val Val Lys Leu Leu 185 Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr 200 Ala Leu Ile Lys Ala Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met 215 Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn 230 235 Thr Thr Leu His Tyr Ala Ile Tyr Asn Glu Asp Lys Leu Met Ala Lys 245 250 Ala Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly 260 265 Leu Thr Pro Leu Leu Gly Val His Glu Gln Lys Gln Gln Val Val 280 Lys Phe Leu Ile Lys Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr 295 Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile 310 315 Val Ser Leu Leu Glu Gln Asn Ile Asp Val Ser Ser Gln Asp Leu 325 330 Ser Gly Gln Thr Ala Arg Glu Tyr Ala Val Ser Ser His His Val 340 345 Ile Cys Gln Leu Leu Ser Asp Tyr Lys Glu Lys Gln Met Leu Lys Ile 360 365 Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu 375 380 Glu Glu Ser Gln Arg Phe Lys Gly Ser Glu Asn Ser Gln Pro Glu Lys 390 395 Met Ser Gln Glu Pro Glu Ile Asn Lys Asp Gly Asp Arg Glu Val Glu 410

Glu Glu Met Lys Lys His Glu Ser Asn Asn Val Gly Leu Leu Glu Asn 425 Leu Thr Asn Gly Val Thr Ala Gly Asn Gly Asp Asn Gly Leu Ile Pro 440 445 Gln Arg Lys Ser Arg Thr Pro Glu Asn Gln Gln Phe Pro Asp Asn Glu 455 460 Ser Glu Glu Tyr His Arg Ile Cys Glu Leu Val Ser Asp Tyr Lys Glu 470 475 Lys Gln Met Pro Lys Tyr Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp 485 490 Leu Lys Leu Thr Ser Glu Glu Glu Ser Gln Arg Leu Glu Gly Ser Glu 505 510 Asn Gly Gln Pro Glu Leu Glu Asn Phe Met Ala Ile Glu Glu Met Lys 520 525 Lys His Gly Ser Thr His Val Gly Phe Pro Glu Asn Leu Thr Asn Gly 535 Ala Thr Ala Gly Asn Gly Asp Asp Gly Leu Ile Pro Pro Arg Lys Ser 550 Arg Thr Pro Glu Ser Gln Gln Phe Pro Asp Thr Glu Asn Glu Glu Tyr 565 570 575 His Ser Asp Glu Gln Asn Asp Thr Gln Lys Gln Phe Cys Glu Glu Gln 580 585 590 Asn Thr Gly Ile Leu His Asp Glu Ile Leu Ile His Glu Glu Lys Gln 595 600 605 Ile Glu Val Val Glu Lys Met Asn Ser Glu Leu Ser Leu Ser Cys Lys 615 620 Lys Glu Lys Asp Ile Leu His Glu Asn Ser Thr Leu Arg Glu Glu Ile 635 630 . Ala Met Leu Arg Leu Glu Leu Asp Thr Met Lys His Gln Ser Gln Leu

<210> 380

<211> 671

<212> PRT

<213> Homo sapien

<400> 380

Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser Ser Val Lys Lys 10 15 Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys Cys Arg Cys Phe 25 Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp 40 His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp 55 Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Asn 85 90 Lys Met Gly Lys Trp Cys Cys His Cys Phe Pro Cys Cys Arg Gly Ser 105 Gly Lys Ser Lys Val Gly Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe 120 Met Glu Pro Arg Tyr His Val Arg Gly Glu Asp Leu Asp Lys Leu His 135 140 Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met 150 155 Leu Arg Asp Thr Asp Val Asn Lys Lys Asp Lys Gln Lys Arg Thr Ala

170 175 Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val Val Lys Leu Leu 185 190 180 Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr 200 Ala Leu Ile Lys Ala Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met 215 220 Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn 230 235 Thr Thr Leu His Tyr Ala Ile Tyr Asn Glu Asp Lys Leu Met Ala Lys 245 250 255 Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly 265 Leu Thr Pro Leu Leu Gly Val His Glu Gln Lys Gln Gln Val Val 280 285 Lys Phe Leu Ile Lys Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr 290 295 300 Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile 305 310 315 . 320 Val Ser Leu Leu Glu Gln Asn Ile Asp Val Ser Ser Gln Asp Leu 325 330 335 Ser Gly Gln Thr Ala Arg Glu Tyr Ala Val Ser Ser His His Val 340 345 Ile Cys Gln Leu Leu Ser Asp Tyr Lys Glu Lys Gln Met Leu Lys Ile 355 360 365 Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu 375 380 Glu Glu Ser Gln Arg Phe Lys Gly Ser Glu Asn Ser Gln Pro Glu Lys 385 390 395 400 Met Ser Gln Glu Pro Glu Ile Asn Lys Asp Gly Asp Arg Glu Val Glu 410 415 Glu Glu Met Lys Lys His Glu Ser Asn Asn Val Gly Leu Leu Glu Asn 425 430 420 Leu Thr Asn Gly Val Thr Ala Gly Asn Gly Asp Asn Gly Leu Ile Pro 445 Gln Arg Lys Ser Arg Thr Pro Glu Asn Gln Gln Phe Pro Asp Asn Glu 450 455 Ser Glu Glu Tyr His Arg Ile Cys Glu Leu Val Ser Asp Tyr Lys Glu 465 470 475 480 Lys Gln Met Pro Lys Tyr Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp 485 490 495 Leu Lys Leu Thr Ser Glu Glu Glu Ser Gln Arg Leu Glu Gly Ser Glu 505 Asn Gly Gln Pro Glu Lys Arg Ser Gln Glu Pro Glu Ile Asn Lys Asp 520 Gly Asp Arg Glu Leu Glu Asn Phe Met Ala Ile Glu Glu Met Lys Lys 535 540 His Gly Ser Thr His Val Gly Phe Pro Glu Asn Leu Thr Asn Gly Ala 555 550 Thr Ala Gly Asn Gly Asp Asp Gly Leu Ile Pro Pro Arg Lys Ser Arg 570 565 Thr Pro Glu Ser Gln Gln Phe Pro Asp Thr Glu Asn Glu Glu Tyr His 580 585 Ser Asp Glu Gln Asn Asp Thr Gln Lys Gln Phe Cys Glu Glu Gln Asn 600 605 Thr Gly Ile Leu His Asp Glu Ile Leu Ile His Glu Glu Lys Gln Ile 615 620 Glu Val Val Glu Lys Met Asn Ser Glu Leu Ser Leu Ser Cys Lys Lys

```
625
                      630
                                          635
 Glu Lys Asp Ile Leu His Glu Asn Ser Thr Leu Arg Glu Glu Ile Ala
                 645
                                     650
 Met Leu Arg Leu Glu Leu Asp Thr Met Lys His Gln Ser Gln Leu
             660
                                  665
       <210> 381
       <211> 251
       <212> DNA
       <213> Homo sapien
       <400> 381
 ggagaagcgt ctgctggggc aggaaggggt ttccctgccc tctcacctgt ccctcaccaa
                                                                         60
 ggtaacatgc ttcccctaag ggtatcccaa cccaggggcc tcaccatgac ctctgagggg
                                                                        120
 ccaatatece aggagaagea ttgggggagtt gggggcaggt gaaggaceca ggactcacac
                                                                        180
 atcctgggcc tccaaggcag aggagagggt cctcaagaag gtcaggagga aaatccgtaa
                                                                        240
 caagcagtca g
                                                                        251
<210> 382
<211> 3279
<212> DNA
<213> Homo sapiens
<400> 382
cttcctgcag cccccatgct ggtgagggc acgggcagga acagtggacc caacatggaa 60
atgctggagg gtgtcaggaa gtgatcgggc tctggggcag ggaggagggg tggggagtgt 120
cactgggagg ggacateetg cagaaggtag gagtgagcaa acaceegetg caggggaggg 180
gagagccetg eggcacetgg gggagcagag ggagcagcac etgcecagge etgggaggag 240
gggcctggag ggcgtgagga ggagcgaggg ggctgcatgg ctggagtgag ggatcagggg 300
cagggcgcga gatggcctca cacagggaag agagggcccc tcctgcaggg cctcacctgg 360
gccacaggag gacactgctt ttcctctgag gagtcaggag ctgtggatgg tgctggacag 420
aagaaggaca gggcctggct caggtgtcca gaggctgtcg ctggcttccc tttgggatca 480
gactgcaggg agggagggcg gcagggttgt ggggggagtg acgatgagga tgacctgggg 540
gtggctccag gccttgcccc tgcctgggcc ctcacccagc ctccctcaca gtctcctggc 600
ceteagtete teccetecae tecatectee atetggeete agtgggteat tetgateaet 660
gaactgacca tacccagccc tgcccacggc cctccatggc tccccaatgc cctggagagg 720
ggacatetag teagagagta gteetgaaga ggtggeetet gegatgtgee tgtgggggea 780
geatectgea gatggteecg geeeteatee tgetgacetg tetgeaggga etgteeteet 840
ggaccttgcc cettgtgcag gagctggacc ctgaagtccc ctccccatag gccaagactg 900
gagecttgtt ceetetgttg gaeteeetge ceatattett gtgggagtgg gttetggaga 960
catttetgte tgtteetgag agetgggaat tgeteteagt catetgeetg egeggttetg 1020
agagatggag ttgcctaggc agttattggg gccaatcttt ctcactgtgt ctctcctcct 1080
ttaccettag ggtgattetg ggggtecaet tgtetgtaat ggtgtgette aaggtateae 1140
atcatggggc cctgagccat gtgccctgcc tgaaaagcct gctgtgtaca ccaaggtggt 1200
gcattaccgg aagtggatca aggacaccat cgcagccaac ccctgagtgc ccctgtccca 1260
cccctacctc tagtaaattt aagtccacct cacgttctgg catcacttgg cctttctgga 1320
tgctggacac ctgaagcttg gaactcacct ggccgaagct cgagcctcct gagtcctact 1380
gacctgtgct ttctggtgtg gagtccaggg ctgctaggaa aaggaatggg cagacacagg 1440
tgtatgccaa tgtttctgaa atgggtataa tttcgtcctc tccttcggaa cactggctgt 1500
ctctgaagac ttctcgctca gtttcagtga ggacacacac aaagacgtgg gtgaccatgt 1560
tgtttgtggg gtgcagagat gggaggggtg gggcccaccc tggaagagtg gacagtgaca 1620
caaggtggac actctctaca gatcactgag gataagctgg agccacaatg catgaggcac 1680
acacacagca aggttgacgc tgtaaacata gcccacgctg tcctggggggc actgggaagc 1740
ctagataagg ccgtgagcag aaagaagggg aggatcctcc tatgttgttg aaggagggac 1800
tagggggaga aactgaaagc tgattaatta caggaggttt gttcaggtcc cccaaaccac 1860
cgtcagattt gatgatttcc tagcaggact tacagaaata aagagctatc atgctgtggt 1920
ttattatggt ttgttacatt gataggatac atactgaaat cagcaaacaa aacagatgta 1980
tagattagag tgtggagaaa acagaggaaa acttgcagtt acgaagactg gcaacttggc 2040
```

```
tttactaagt tttcagactg gcaggaagtc aaacctatta ggctgaggac cttgtggagt 2100
  gtagctgatc cagctgatag aggaactagc caggtggggg cctttccctt tggatggggg 2160
  gcatatecga cagttattet etecaagtgg agaettaegg acagcatata attetecetg 2220
  caaggatgta tgataatatg tacaaagtaa ttccaactga ggaagctcac ctgatcctta 2280
  gtgtccaggg tttttactgg gggtctgtag gacgagtatg gagtacttga ataattgacc 2340
  tgaagteete agacetgagg tteectagag tteaaacaga tacageatgg tecagagtee 2400
  cagatgtaca aaaacaggga ttcatcacaa atcccatctt tagcatgaag ggtctggcat 2460
  ggcccaaggc cccaagtata tcaaggcact tgggcagaac atgccaagga atcaaatgtc 2520
  atctcccagg agttattcaa gggtgagccc tttacttggg atgtacaggc tttgagcagt 2580
  gcagggctgc tgagtcaacc ttttattgta caggggatga gggaaaggga gaggatgagg 2640
  aagcccccct ggggatttgg tttggtcttg tgatcaggtg gtctatgggg ctatccctac 2700
  aaagaagaat ccagaaatag gggcacattg aggaatgata ctgagcccaa agagcattca 2760
  atcattgttt tatttgcctt cttttcacac cattggtgag ggagggatta ccaccctggg 2820
  gttatgaaga tggttgaaca ccccacacat agcaccggag atatgagatc aacagtttct 2880
  tagccataga gattcacagc ccagagcagg aggacgctgc acaccatgca ggatgacatg 2940
  ggggatgcgc tcgggattgg tgtgaagaag caaggactgt tagaggcagg ctttatagta 3000
  acaagacggt ggggcaaact ctgatttccg tgggggaatg tcatggtctt gctttactaa 3060
 gttttgagac tggcaggtag tgaaactcat taggctgaga accttgtgga atgcagctga 3120
  cccagctgat agaggaagta gccaggtggg agcctttccc agtgggtgtg ggacatatct 3180
 ggcaagattt tgtggcactc ctggttacag atactggggc agcaaataaa actgaatctt 3240
 gttttcagac cttaaaaaaa aaaaaaaaa aaaagtttt
  <210> 383
 <211> 154
 <212> PRT
 <213> Homo sapiens
 <400> 383
 Met Ala Gly Val Arg Asp Gln Gly Gln Gly Ala Arg Trp Pro His Thr
                                      10
 Gly Lys Arg Gly Pro Leu Leu Gln Gly Leu Thr Trp Ala Thr Gly Gly
 His Cys Phe Ser Ser Glu Glu Ser Gly Ala Val Asp Gly Ala Gly Gln
Lys Lys Asp Arg Ala Trp Leu Arg Cys Pro Glu Ala Val Ala Gly Phe
Pro Leu Gly Ser Asp Cys Arg Glu Gly Gly Arg Gln Gly Cys Gly Gly
Ser Asp Asp Glu Asp Asp Leu Gly Val Ala Pro Gly Leu Ala Pro Ala
Trp Ala Leu Thr Gln Pro Pro Ser Gln Ser Pro Gly Pro Gln Ser Leu
                                105
Pro Ser Thr Pro Ser Ser Ile Trp Pro Gln Trp Val Ile Leu Ile Thr
Glu Leu Thr Ile Pro Ser Pro Ala His Gly Pro Pro Trp Leu Pro Asn
Ala Leu Glu Arg Gly His Leu Val Arg Glu
                    150
```

```
<210> 384
<211> 557
<212> DNA
<213> Homo sapiens
<400> 384
ggatcctcta gagcggccgc ctactactac taaattcgcg gccgcgtcga cgaagaagag 60
aaagatgtgt tttgttttgg actctctgtg gtcccttcca atgctgtggg tttccaacca 120
ggggaagggt cccttttgca ttgccaagtg ccataaccat gagcactact ctaccatggt 180
tctgcctcct ggccaagcag gctggtttgc aagaatgaaa tgaatgattc tacagctagg 240
acttaacctt gaaatggaaa gtcttgcaat cccatttgca ggatccgtct gtgcacatgc 300
ctctgtagag agcagcattc ccagggacct tggaaacagt tggcactgta aggtgcttqc 360
tececaagae acateetaaa aggtgttgta atggtgaaaa egtetteett etttattgee 420
ccttcttatt tatgtgaaca actgtttgtc ttttttttgta tcttttttaa actgtaaagt 480
tcaattgtga aaatgaatat catgcaaata aattatgcga ttttttttc aaagtaaaaa 540
aaaaaaaaa aaaaaaa
<210> 385
<211> 337
<212> DNA
<213> Homo sapiens
<400> 385
ttcccaggtg atgtgcgagg gaagacacat ttactatcct tgatggggct gattccttta 60
gtttctctag cagcagatgg gttaggagga agtgacccaa gtggttgact cctatgtgca 120
tctcaaagcc atctgctgtc ttcgagtacg gacacatcat cactcctgca ttgttgatca 180
aaacgtggag gtgcttttcc tcagctaaga agcccttagc aaaagctcga atagacttag 240
tateagacag gtecagttte egeaceaaca cetgetggtt ceetgtegtg gtetggatet 300
ctttggccac caattccccc ttttccacat cccggca
<210> 386
<211> 300
<212> DNA
<213> Homo sapiens
<400> 386
gggcccgcta ccggcccagg ccccgcctcg cgagtcctcc tccccggqtq cctgcccqca 60
gcccgctcgg cccagagggt gggcgcgggg ctgcctctac cggctggcgg ctgtaactca 120
gegacettgg cccgaagget etagcaagga cccaccgace ccageegegg eggeggegge 180
geggaetttg eeeggtgtgt ggggeggage ggaetgegtg teegeggaeg ggeagegaag 240
atgttageet tegetgeeag gaeegtggae egateeeagg getgtggtgt aaceteagee 300
<210> 387
<211> 537
<212> DNA
<213> Homo sapiens
<400> 387
gggccgagtc gggcaccaag ggactetttg caggetteet teeteggate ateaaggetg 60
ecceptectg typeateatg ateageacet atgagttegg caaaagette tteeagagge 120
tgaaccagga ccggcttctg ggcggctgaa aggggcaagg aggcaaggac cccgtctctc 180
ccacggatgg ggagaggca ggaggagacc cagccaagtg ccttttcctc agcactgagg 240
gagggggctt gtttcccttc cctcccggcg acaagctcca gggcagggct gtccctctgg 300
geggeecage acttecteag acacaactte tteetgetge tecagtegtg gggateatea 360
cttacccacc ccccaagttc aagaccaaat cttccagctg cccccttcgt gtttccctgt 420
gtttgctgta gctgggcatg tctccaggaa ccaagaagcc ctcagcctgg tgtagtctcc 480
ctgacccttg ttaattcctt aagtctaaag atgatgaact tcaaaaaaaa aaaaaaa
```

```
<210> 388
 <211> 520
 <212> DNA
 <213> Homo sapiens
 <400> 388
 aggataattt ttaaaccaat caaatgaaaa aaacaaacaa acaaaaaagg aaatgtcatg 60
 tgaggttaaa ccagtttgca ttcccctaat gtggaaaaag taagaggact actcagcact 120
 gtttgaagat tgcctcttct acagcttctg agaattgtgt tatttcactt gccaagtgaa 180
 ggaccccctc cccaacatgc cccagcccac ccctaagcat ggtcccttgt caccaggcaa 240
 ccaggaaact gctacttgtg gacctcacca gagaccagga gggtttggtt agctcacagg 300
 acttccccca ccccagaaga ttagcatccc atactagact catactcaac tcaactaggc 360
 tcatactcaa ttgatggtta ttagacaatt ccatttcttt ctggttatta taaacagaaa 420
 atctttcctc ttctcattac cagtaaaggc tcttggtatc tttctgttgg aatgatttct 480
 atgaacttgt cttattttaa tggtgggttt tttttctggt
 <210> 389
 <211> 365
 <212> DNA
 <213> Homo sapiens
 <400> 389
cgttgcccca gtttgacaga aggaaaggcg gagcttattc aaagtctaga gggagtggag 60
gagttaaggc tggatttcag atctgcctgg ttccagccgc agtgtgccct ctgctccccc 120
aacgactttc caaataatct caccagcgcc ttccagctca ggcgtcctag aagcgtcttg 180
aagectatgg ccagetgtet ttgtgtteee teteaceege etgteeteac agetgagaet 240
cccaggaaac cttcagacta ccttcctctg ccttcagcaa ggggcgttgc ccacattctc 300
tgagggtcag tggaagaacc tagactccca ttgctagagg tagaaagggg aagggtgctg 360
gggag
<210> 390
<211> 221
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(221)
<223> n = A,T,C or G
<400> 390
tgcctctcca tcctggcccc gacttctctg tcaggaaagt ggggatggac cccatctgca 60
tacacggntt ctcatgggtg tggaacatct ctgcttgcgg tttcaggaag gcctctggct 120
gctctangag tctgancnga ntcgttgccc cantntgaca naaggaaagg cggagcttat 180
tcaaagtcta gagggagtgg aggagttaag gctggatttc a
<210> 391
<211> 325
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(325)
<223> n = A,T,C or G
<400> 391
```

```
tggagcaggt cccgaggcct ccctagagcc tggggccgac tctgtgncga tqcanqcttt 60
ctctcgcgcc cagcctggag ctgctcctgg catctaccaa caatcagncg aggcgagcag 120
tagccagggc actgctgcca acagccagtc cnnataccat catgtnaccc qqtqnqctct 180
naanttngat ntccanagec etacecaten tagttetget eteceaeegg ntaceagece 240
cactgoccag gaatcotaca gocagtacco tgtoccgacg tototaccta coagtacqat 300
gagacctccg gctactacta tgacc
<210> 392
<211> 277
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(277)
<223> n = A, T, C or G
<400> 392
atattgttta actccttcct ttatatcttt taacattttc atggngaaag gttcacatct 60
agteteactt nggenagngn etectaettg agtetettee eeggeetgnn eeagtngnaa 120
antaccanga accgncatgn cttaanaacn neetggtttn tgggttnntc aatgactgca 180
tgcagtgcac caccetgtee actacgtgat getgtaggat taaagtetea cagtgggegg 240
ctgaggatac agcgccycgt cctgtgttgc tggggaa
<210> 393
<211> 566
<212> DNA
<213> Homo sapiens
<400> 393
actagtccag tgtggtggaa ttcgcggccg cgtcqacqqa caqqtcaqct qtctqqctca 60
gtgatctaca ttctgaagtt gtctgaaaat gtcttcatga ttaaattcag cctaaacgtt 120
ttgccgggaa cactgcagag acaatgctgt gagtttccaa ccttagccca tctgcgggca 180
gagaaggtet agtttgteea teageattat eatgatatea ggaetggtta ettggttaag 240
gaggggtcta ggagatctgt cccttttaga gacaccttac ttataatgaa gtatttqqqa 300
gggtggtttt caaaagtaga aatgteetgt atteegatga teateetgta aacattttat 360
catttattaa tcatccctgc ctgtgtctat tattatattc atatctctac gctggaaact 420
cattetetge etgagtttta atttttgtce aaagttattt taatetatae aattaaaage 540
ttttgcctat caaaaaaaa aaaaaa
<210> 394
<211> 384
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(384)
<223> n = A,T,C or G
<400> 394
gaacatacat gtcccggcac ctgagctgca gtctgacatc atcgccatca cgggcctcgc 60
tgcaaattng gaccgggcca aggctggact gctggagggt gtgaaggagc tacaggccna 120
gcaggaggac cgggctttaa ggagttttaa gctgagtgtc actgtagacc ccaaatacca 180
tcccaagatt atcgggagaa agggggcagt aattacccaa atccggttgg agcatgacgt 240
gaacatccag tttcctgata aggacgatgg gaaccagccc caggaccaaa ttaccatcac 300
agggtacgaa aagaacacag aagctgccag ggatgctata ctgagaattg tgggtgaact 360
```

```
tgagcagatg gtttctgagg acgt
                                                                       384
   <210> 395
   <211> 399
   <212> DNA
   <213> Homo sapiens
  <400> 395
  ggcaaaactg tgtgacctca ataagacctc gcagatccaa ggtcaagtat cagaagtgac 60
  totgacettg gactecaaga cetacateaa cageetgget atattagatg atgagecagt 120
  tatcagaggt ttcatcattg cggaaattgt ggagtctaag gaaatcatgg cctctgaagt 180
  attcacgtct ttccagtacc ctgagttctc tatagagttg cctaacacag gcagaattgg 240
  ccagctactt gtctgcaatt gtatcttcaa gaataccctg gccatccctt tgactgacgt 300
  caagttetet ttggaaagee tgggeatete etcaetacag acetetgace atgggaeggt 360
  gcagcctggt gagaccatcc aatcccaaat aaaatgcac
  <210> 396
  <211> 403
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> misc_feature
  <222> (1)...(403)
  <223> n = A, T, C or G
 <400> 396
 tggagttntc agtgcaaaca agccataaag cttcagtagc aaattactgt ctcacagaaa 60
 gacattttca acttctgctc cagctgctga taaaacaaat catgtgttta gcttgactcc 120
 agacaaggac aacctgttcc ttcataactc tctagagaaa aaaaggagtt gttagtagat 180
 actaaaaaaa gtggatgaat aatctggata tttttcctaa aaagattcct tgaaacacat 240
 taggaaaatg gagggcctta tgatcagaat gctagaatta gtccattgtg ctgaagcagg 300
 gtttagggga gggagtgagg gataaaagaa ggaaaaaaag aagagtgaga aaacctattt 360
 atcaaagcag gtgctatcac tcaatgttag gccctgctct ttt
                                                                     403
 <210> 397
 <211> 100
 <212> DNA
 <213> Homo sapiens
 <220>
<221> misc_feature
<222> (1)...(100)
\langle 223 \rangle n = A,T,C or G
<400> 397
actagtncag tgtggtggaa ttcgcggccg cgtcgaccta naanccatct ctatagcaaa 60
tccatccccg ctcctggttg gtnacagaat gactgacaaa
                                                                    100
<210> 398
<211> 278
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(278)
<223> n = A,T,C or G
```

```
<400> 398
geggeeget egacageagt teegeeageg etegeeeetg ggtggggatg tgetgeaege 60
ccacctggac atctggaagt cagcggcctg gatgaaagag cggacttcac ctggggcgat 120
teactactgt geetegacea gtgaggagag etggacegae agegaggtgg acteateatg 180
ctccgggcag cccatccacc tgtggcagtt cctcaaggag ttgctactca agccccacag 240
ctatggccgc ttcattangt ggctcaacaa ggagaagg
<210> 399
<211> 298
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(298)
\langle 223 \rangle n = A,T,C or G
<400> 399
acggaggtgg aggaagcgnc cctgggatcg anaggatggg tcctgncatt gaccncctcn 60
ggggtgccng catggagcgc atgggcgcgg gcctgggcca cggcatggat cgcgtgggct 120
ccgagatcga gcgcatgggc ctggtcatgg accgcatggg ctccgtggag cgcatgggct 180
ccggcattga gcgcatgggc ccgctgggcc tcgaccacat ggcctccanc attgancgca 240
tgggccagac catggagcgc attggctctg gcgtggagcn catgggtgcc ggcatggg
<210> 400
<211> 548
<212> DNA
<213> Homo sapiens
<400> 400
acatcaacta cttcctcatt ttaaggtatg gcagttccct tcatcccctt ttcctgcctt 60
gtacatgtac atgtatgaaa tttccttctc ttaccgaact ctctccacac atcacaaggt 120
tgagtctctt ttttccacgt ttaaggggcc atggcaggac ttagagttgc gagttaagac 240
tgcagagggc tagagaatta tttcatacag gctttgaggc cacccatgtc acttatcccg 300
tataccetet caccatecce ttgtctacte tgatgecece aagatgeaac tgggcageta 360
gttggcccca taattctggg cctttgttgt ttgttttaat tacttgggca tcccaggaag 420
ctttccagtg atctcctacc atgggccccc ctcctgggat caaqcccctc ccaqqccctq 480
tecccageec etectgeece ageccaeeeg ettgeettgg tgeteageec teccattggg 540
agcaggtt
<210> 401
<211> 355
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(355)
<223> n = A, T, C or G
<400> 401
actgtttcca tgttatgttt ctacacattg ctacctcagt gctcctggaa acttagcttt 60
tgatgtetee aagtagteea cetteattta actetttgaa aetgtateat etttgeeaag 120
taagagtggt ggcctatttc agctgctttg acaaaatgac tggctcctga cttaacgttc 180
tataaatgaa tgtgctgaag caaagtgccc atggtggcgg cgaagaagan aaagatgtgt 240
tttgttttgg actetetgtg gtccetteca atgetgnggg tttccaacca ggggaagggt 300
```

```
cccttttgca ttgccaagtg ccataaccat gagcactact ctaccatggn tctgc
                                                                     355
  <210> 402
  <211> 407
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> misc_feature
  <222> (1)...(407)
  <223> n = A,T,C or G
 <400> 402
 atggggcaag ctggataaag aaccaagacc cactggagta tgctgtcttc aagaaaccca 60
 teteacatge ggtggcatae ataggeteaa aataaaggaa tggagaaaaa tattteaage 120
 aaatggaaaa cagaaaaaag caggtgttgc actcctactt tctgacaaaa cagactatgc 180
 gaataaagat aaaaaagaga aggacattac aaaggtggtc ctgacctttg ataaatctca 240
 ttgcttgata ccaacctggg ctgttttaat tgcccaaacc aaaaggataa tttgctgagg 300
 ttgtggaget teteceetge agagagteee tgateteeea aaatttggtt gagatgtaag 360
 gntgattttg ctgacaactc cttttctgaa gttttactca tttccaa
 <210> 403
 <211> 303
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <222> (1)...(303)
 <223> n = A, T, C or G
 <400> 403
cagtatttat agccnaactg aaaagctagt agcaggcaag teteaaatee aggcaccaaa 60
tectaageaa gageeatgge atggtgaaaa tgcaaaagga gagtetggee aatetacaaa 120
tagagaacaa gacctactca gtcatgaaca aaaaggcaga caccaacatg gatctcatgg 180
gggattggat attgtaatta tagagcagga agatgacagt gatcgtcatt tggcacaaca 240
tettaacaac gaccgaaacc cattatttac ataaacctcc atteggtaac catgttgaaa 300
gga
<210> 404
<211> 225
<212> DNA
<213> Homo sapiens
<400> 404
aagtgtaact tttaaaaatt tagtggattt tgaaaattct tagaggaaag taaaggaaaa 60
attgttaatg cactcattta cctttacatg gtgaaagttc tctcttgatc ctacaaacag 120
acattttcca ctcgtgtttc catagttgtt aagtgtatca gatgtgttgg gcatgtgaat 180
ctccaagtgc ctgtgtaata aataaagtat ctttatttca ttcat
<210> 405
<211> 334
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ... (334)
```

WO 01/34802 PCT/US00/30904 140

```
\langle 223 \rangle n = A,T,C or G
<400> 405
gagctqttat actgtgagtt ctactaggaa atcatcaaat ctgagggttg tctggaggac 60
ttcaatacac ctcccccat agtgaatcag cttccagggg gtccagtccc tctccttact 120
teatececat eccatgeeaa aggaagaeee teeteettg geteacagee ttetetagge 180
ttcccaqtqc ctccaggaca gagtgggtta tgttttcagc tccatccttg ctgtgagtgt 240
ctggtgcggt tgtgcctcca gcttctgctc agtgcttcat ggacagtgtc cagcccatgt 300
cactetecae teteteanng tggateceae eect
<210> 406
<211> 216
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ... (216)
<223> n = A,T,C or G
<400> 406
tttcatacct aatgagggag ttganatnac atnnaaccag gaaatgcatg gatctcaang 60
gaaacaaaca cccaataaac teggagtggc agactgacaa etgtgagaca tgcaettget 120
acnaaacaca aatttnatgt tgcacccttg tttctacacc tgtgggttat gacaaagaca 180
actgccaaag aatnttcaag aaggaggact gccant
<210> 407
<211> 413
<212> DNA
<213> Homo sapiens
<400> 407
gctgacttgc tagtatcatc tgcattcatt gaagcacaag aacttcatgc cttgactcat 60
gtaaatgcaa taggattaaa aaataaattt gatatcacat ggaaacagac aaaaaatatt 120
gtacaacatt gcacccagtg tcagattcta cacctggcca ctcaggaagc aagagttaat 180
cccagaggtc tatgtcctaa tgtgttatgg caaatggatg tcatgcacgt accttcattt 240
ggaaaattgt catttgtcca tgtgacagtt gatacttatt cacatttcat atgggcaacc 300
tgccagacag gagaaagtet teccatgtta aaagacattt attatettgt ttteetgtea 360
tgggagttcc agaaaaagtt aaaacagaca atgggccagg ttctgtagta aag
<210> 408
<211> 183
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(183)
\langle 223 \rangle n = A,T,C or G
<400> 408
ggagetngee eteaatteet ecatniciat gitaneatat tiaatgiett tignnatiaa 60
tncttaacta gttaatcctt aaagggctan ntaatcctta actagtccct ccattgtgag 120
cattateett ecagtatten cettetnttt tatttaetee tteetggeta eccatgtaet 180
ntt
<210> 409
<211> 250
```

```
<212> DNA
   <213> Homo sapiens
   <220>
  <221> misc_feature
  <222> (1)...(250)
  \langle 223 \rangle n = A,T,C or G
  <400> 409
  cccacgcatg ataagctett tatttetgta agteetgeta ggaaateate aaatetgaeg 60
  gtggtttggg ggacctgaac aaacctcctg taattaatca gctttcagtt tctccccta 120
  gtccctcctt caacaacata ggaggatcct ccccttcttt ctgctcacgg ccttatctag 180
  getteceagt gececeagga cagegtggge tatgtttaca gegenteett getggggggg 240
  ggccntatgc
  <210> 410
  <211> 306
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> misc_feature
  <222> (1)...(306)
 <223> n = A,T,C or G
 <400> 410
 ggctggtttg caagaatgaa atgaatgatt ctacagctag gacttaacct tgaaatggaa 60
 agtettgeaa teccatttge aggateegte tgtgeacatg eetetgtaga gageageatt 120
 cccagggacc ttggaaacag ttggcactgt aaggtgcttg ctccccaaga cacatcctaa 180
 aaggtgttgt aatggtgaaa accgcttect tetttattge ceettettat ttatgtgaac 240
 nactggttgg ctttttttgn atcttttta aactggaaag ttcaattgng aaaatgaata 300
 tcntgc
                                                                     306
 <210> 411
 <211> 261
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <222> (1)...(261)
 <223> n = A,T,C or G
 <400> 411
agagatattn cttaggtnaa agttcataga gttcccatga actatatgac tggccacaca 60
ggatcttttg tatttaagga ttctgagatt ttgcttgagc aggattagat aaggctgttc 120
tttaaatgtc tgaaatggaa cagatttcaa aaaaaaaccc cacaatctag ggtgggaaca 180
aggaaggaaa gatgtgaata ggctgatggg caaaaaaacca atttacccat cagttccagc 240
cttctctcaa ggngaggcaa a
<210> 412
<211> 241
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(241)
```

```
<223> n = A, T, C or G
<400> 412
gttcaatqtt acctqacatt tctacaacac cccactcacc qatqtattcq ttqcccaqtq 60
ggaacatacc agcctgaatt tggaaaaaat aattgtgttt cttgcccagg aaatactacg 120
actgactttg atggctccac aaacataacc cagtgtaaaa acagaagatg tggagggag 180
ctgggagatt tcactgggta cattgaattc ccaaactacc cangcaatta cccagccaac 240
<210> 413
<211> 231
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(231)
\langle 223 \rangle n = A,T,C or G
<400> 413
aactettaca atecaagtga etcatetgtg tgettgaate etttecaetg teteatetee 60
ctcatccaag tttctagtac cttctctttg ttgtgaagga taatcaaact gaacaacaaa 120
aagtttactc teeteatttg gaacetaaaa actetettet teetgggtet gagggeteea 180
agaatccttg aatcanttct cagatcattg gggacaccan atcaggaacc t
                                                                    231
<210> 414
<211> 234
<212> DNA
<213> Homo sapiens
<400> 414
actgtccatg aagcactgag cagaagctgg aggcacaacg caccagacac tcacagcaag 60
gatggagctg aaaacataac ccactctgtc ctggaggcac tgggaagcct agagaaggct 120
gtgagccaag gagggagggt cttcctttgg catgggatgg ggatgaagta aggagaggga 180 .
ctggaccccc tggaagctga ttcactatgg ggggaggtgt attgaagtcc tcca
                                                                    234
<210> 415
<211> 217
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(217)
\langle 223 \rangle n = A,T,C or G
<400> 415
gcataggatt aagactgagt atcttttcta cattctttta actttctaag gggcacttct 60
caaaacacag accaggtagc aaatctccac tgctctaagg ntctcaccac cactttctca 120
cacctagcaa tagtagaatt cagtcctact tctgaggcca gaagaatggt tcagaaaaat 180
antggattat aaaaaataac aattaagaaa aataatc
                                                                    217
<210> 416
<211> 213
<212> DNA
<213> Homo sapiens
<220>
```

```
<221> misc_feature
  <222> (1)...(213)
  \langle 223 \rangle n = A,T,C or G
  <400> 416
  atgcatatnt aaagganact gcctcgcttt tagaagacat ctggnctgct ctctgcatga 60
  ggcacagcag taaagctctt tgattcccag aatcaagaac tctccccttc agactattac 120
  cgaatgcaag gtggttaatt gaaggccact aattgatgct caaatagaag gatattgact 180
  atattggaac agatggagtc tctactacaa aag
  <210> 417
  <211> 303
  <212> DNA
  <213> Homo sapiens
 <220>
 <221> misc feature
 <222> (1)...(303)
 <223> n = A, T, C or G
 <400> 417
 nagtottoag goccatcagg gaagttoaca ctggagagaa gtoatacata tgtactgtat 60
 gtgggaaagg ctttactctg agttcaaatc ttcaagccca tcagagagtc cacactggag 120
 agaagccata caaatgcaat gagtgtggga agagcttcag gagggattcc cattatcaag 180
 ttcatctagt ggtccacaca ggagagaaac cctataaatg tgagatatgt gggaagggct 240
 tcantcaaag ttcgtatctt caaatccatc ngaaggncca cagtatanan aaacctttta 300
 agt
                                                                     303
<210> 418
 <211> 328
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <222> (1)...(328)
 <223> n = A,T,C or G
 <400> 418
tttttggcgg tggtggggca gggacgggac angagtetea etetgttgee caggetggag 60
tgcacaggca tgatctcggc tcactacaac ccctgcctcc catgtccaag cgattcttgt 120
gcctcagcct tccctgtagc tagaattaca ggcacatgcc accacaccca gctagttttt 180
gtatttttag tagagacagg gtttcaccat gttggccagg ctggtctcaa actcctnacc 240
tcagnggtca ggctggtctc aaactcctga cctcaagtga tctgcccacc tcagcctccc 300
aaagtgctan gattacaggc cgtgagcc
<210> 419
<211> 389
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(389)
<223> n = A, T, C \text{ or } G
<400> 419
cetectcaag acggeetgtg gteegeetee eggeaaccaa gaageetgea gtgeeatatg 60
```

144

```
accectgage catggactgg agectgaaag geagegtaca ceetgeteet gatettgetg 120
cttgtttcct ctctgtggct ccattcatag cacagttgtt gcactgaggc ttgtgcaggc 180
cgagcaaggc caagctggct caaagagcaa ccagtcaact ctgccacggt gtqccaqqca 240
ceggttetec agecaceaac eteacteget ecegeaaatg geacateagt tettetacee 300
taaaggtagg accaaagggc atctgctttt ctgaagtcct ctgctctatc aqccatcacq 360
tggcagccac tcnggctgtg tcgacgcgg
<210> 420
<211> 408
<212> DNA
<213> Homo sapiens
<400> 420
gttcctccta actcctgcca gaaacagctc tcctcaacat gagagctgca ccctcctcc 60
tggccagggc agcaagcett agcettgget tettgtttet getttttte tggctagace 120
gaagtgtact agccaaggag ttgaagtttg tgactttggt gtttcggcat ggagaccgaa 180
gtcccattga cacctttccc actgacccca taaaggaatc ctcatggcca caaggatttg 240
gccaactcac ccagctgggc atggagcagc attatgaact tggagagtat ataagaaaga 300
gatatagaaa attettgaat gagteetata aacatgaaca ggtttatatt cgaagcacag 360
acgttgaccg gactttgatg aagtgctatg acaaacctgg caagcccg
<210> 421
<211> 352
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(352)
<223> n = A, T, C \text{ or } G
<400> 421
gctcaaaaat ctttttactg atnggcatgg ctacacaatc attgactatt acggaggcca 60
gaggagaatg aggcctggcc tgggagccct gtgcctacta naagcacatt agattatcca 120
ttcactgaca gaacaggtet tttttgggte ettettetee accaenatat acttgeagte 180
ctccttcttg aagattcttt ggcagttgtc tttgtcataa cccacaggtg tagaaacaag 240
ggtgcaacat gaaatttctg tttcgtagca agtgcatgtc tcacaagttg qcanqtctqc 300
cactccgagt ttattgggtg tttgtttcct ttgagatcca tgcatttcct gg
<210> 422
<211> 337
<212> DNA
<213> Homo sapiens
<400> 422
atgccaccat gctggcaatg cagcgggcgg tcgaaggcct gcatatccag cccaagctgg 60
cgatgatcga cggcaaccgt tgcccgaagt tgccgatgcc agccgaagcg gtggtcaagg 120
gcgatagcaa ggtgccggcg atcgcggcgg cgtcaatcct ggccaaggtc agccgtgatc 180
gtgaaatggc agctgtcgaa ttgatctacc cgggttatgg catcggcggg cataagggct 240
atccgacacc ggtgcacctg gaagccttgc agcggctggg gccgacgccg attcaccgac 300
gcttcttccg ccggtacggc tggcctatga aaattat
                                                                   337
<210> 423
<211> 310
<212> DNA
<213> Homo sapiens
```

<220>

```
<221> misc_feature
  <222> (1)...(310)
  <223> n = A, T, C or G
  <400> 423
  gctcaaaaat ctttttactg atatggcatg gctacacaat cattgactat tagaggccag 60
  aggagaatga ggcctggcct gggagccctg tgcctactan aagcncatta gattatccat 120
  tcactgacag aacaggtett ttttgggtee ttetteteca ccacgatata ettgcagtee 180
  teettettga agattetttg geagttgtet ttgteataac ceacaggtgt anaaacaagg 240
 gtgcaacatg aaatttctgt ttcgtagcaa gtgcatgtct cacagttgtc aagtctgccc 300
  tccgagttta
  <210> 424
  <211> 370
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <222> (1)...(370)
 <223> n = A, T, C \text{ or } G
 <400> 424
 gctcaaaaat ctttttactg ataggcatgg ctacacaatc attgactatt agaggccaga 60
 ggagaatgag gcctggcctg ggagccctgt gcctactaga agcacattag attatccatt 120
 cactgacaga acaggtettt tttgggteet tetteteeac cacgatatae ttgcagteet 180
 cettettgaa gattetttgg cagttgtett tgteataace cacaggtgta gaaacateet 240
 ggttgaatct cctggaactc cctcattagg tatgaaatag catgatgcat tgcataaagt 300
 cacgaaggtg gcaaagatca caacgctgcc cagganaaca ttcattgtga taagcaggac 360
 tccgtcgacg
 <210> 425
 <211> 216
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc feature
<222> (1)...(216)
<223> n = A, T, C \text{ or } G
<400> 425
aattgctatn ntttattttg ccactcaaaa taattaccaa aaaaaaaaa tnttaaatga 60
taacaacnca acatcaaggn aaananaaca ggaatggntg actntgcata aatnggccga 120
anattateca ttatnttaag ggttgaette aggntacage acacagacaa acatgeecag 180
gaggntntca ggaccgctcg atgtnttntg aggagg
<210> 426
<211> 596
<212> DNA
<213> Homo sapiens
<400> 426
cttccagtga ggataaccct gttgccccgg gccgaggttc tccattaggc tctgattgat 60
tggcagtcag tgatggaagg gtgttctgat cattccgact gccccaaggg tcgctggcca 120
gctctctgtt ttgctgagtt ggcagtagga cctaatttgt taattaagag tagatggtga 180
getgteettg tattttgatt aacetaatgg cetteecage acgaetegga tteagetgga 240
gacatcacgg caacttttaa tgaaatgatt tgaagggcca ttaagaggca cttcccgtta 300
```

```
ttaggcagtt catctgcact gataacttct tggcagctga gctggtcgga gctgtqgccc 360
aaacgcacac ttggcttttg gttttgagat acaactctta atcttttagt catgcttqag 420
ggtggatggc cttttcagct ttaacccaat ttgcactgcc ttgqaaqtqt aqccaqqaqa 480
atacactcat atactcgtgg gcttagaggc cacagcagat qtcattqqtc tactqcctqa 540
gtcccgctgg tcccatccca ggaccttcca tcggcgagta cctgggagcc cqtqct
<210> 427
<211> 107
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(107)
<223> n = A,T,C or G
<400> 427
gaagaattca agttaggttt attcaaaggg cttacngaga atcctanacc caggncccag 60
cccgggagca gccttanaga gctcctgttt gactgcccgg ctcagng
<210> 428
<211> 38
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(38)
<223> n = A,T,C or G
gaacttccna anaangactt tattcactat tttacatt
                                                                   38
<210> 429
<211> 544
<212> DNA
<213> Homo sapiens
<400> 429
ctttgctgga cggaataaaa gtggacgcaa gcatgacctc ctgatgaggg cgctgcattt 60
attgaagagc ggctgcagcc ctgcggttca gattaaaatc cgagaattgt atagacgccg 120
atatccacga actcttgaag gactttctga tttatccaca atcaaatcat cggttttcag 180
tttggatggt ggctcatcac ctgtagaacc tgacttggcc gtggctggaa tccactcgtt 240
gccttccact tcagttacac ctcactcacc atcctctcct gttggttctg tgctgcttca 300
agatactaag cccacatttg agatgcagca gccatctccc ccaattcctc ctgtccatcc 360
tgatgtgcag ttaaaaaatc tgccctttta tgatgtcctt gatgttctca tcaagcccac 420
gagtttagtt caaagcagta ttcagcgatt tcaagagaag ttttttattt ttgctttgac 480
acctcaacaa gttagagaga tatgcatatc cagggatttt ttgccaggtg gtaggagaga 540
ttat
<210> 430
<211> 507
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(507)
```

```
<223> n = A,T,C or G
  <400> 430
  cttatcncaa tggggctccc aaacttggct gtgcagtgga aactccgggg gaattttgaa 60
  gaacactgac acccatcttc caccccgaca ctctgattta attgggctgc agtgagaaca 120
  gagcatcaat ttaaaaagct gcccagaatg ttntcctggg cagcgttgtg atctttgccn 180
  cettegtgae tttatgcaat geateatget attteatace taatgaggga gtteeaggag 240
  attcaaccag gatgtttcta cncctgtggg ttatgacaaa gacaactgcc aaagaatntt 300
  caagaaggag gactgcaagt atatcgtggt ggagaagaag gacccaaaaa agacctgttc 360
  tgtcagtgaa tggataatct aatgtgcttc tagtaggcac agggctccca ggccaggcct 420
 catteteete tggeetetaa tagteaatga ttgtgtagee atgeetatea gtaaaaagat 480
 ttttgagcaa aaaaaaaaa aaaaaaa
 <210> 431
 <211> 392
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <222> (1)...(392)
 <223> n = A, T, C or G
 <400> 431
 gaaaattcag aatggataaa aacaaatgaa gtacaaaata tttcagattt acatagcgat 60
 aaacaagaaa gcacttatca ggaggactta caaatggaag tacactctan aaccatcatc 120
 tatcatggct aaatgtgaga ttagcacagc tgtattattt gtacattgca aacacctaga 180
aagagatggg aaacaaaatc ccaggagttt tgtgtgtgga gtcctgggtt ttccaacaga 240
catcattcca gcattctgag attagggnga ttggggatca ttctggagtt ggaatgttca 300
acaaaagtga tgttgttagg taaaatgtac aacttctgga tctatgcaga cattgaaggt 360
 gcaatgagte tggettttae tetgetgttt et
<210> 432
 <211> 387
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(387)
<223> n = A,T,C or G
<400> 432
ggtatccnta cataatcaaa tatagctgta gtacatgttt tcattggngt agattaccac 60
aaatgcaagg caacatgtgt agatetettg tettattett ttgtetataa tactgtattg 120
ngtagtccaa gctctcggna gtccagccac tgngaaacat gctcccttta gattaacctc 180
gtggacnetn ttgttgnatt gtctgaactg tagngccctg tattttgctt ctgtctgnga 240
attetgttge ttetggggca ttteettgng atgeagagga ccaccacaca gatgacagca 300
atetgaattg ntecaateae agetgegatt aagacataet gaaategtae aggaceggga 360
acaacgtata gaacactgga gtccttt
<210> 433
<211> 281
<212> DNA
<213> Homo sapiens
<221> misc feature
```

```
<222> (1)...(281)
<223> n = A, T, C or G
<400> 433
ttcaactagc anagaanact gcttcagggn gtgtaaaatg aaaggcttcc acgcagttat 60
ctgattaaag aacactaaga gagggacaag gctagaagcc gcaggatgtc tacactatag 120
caggcnetat ttgggttggc tggagggct gtggaaaaca tggagagatt ggcgctggag 180
ategeogtgg ctatteeten ttgntattac accagngagg ntetetgtnt geccaetggt 240
tnnaaaaccg ntatacaata atgatagaat aggacacaca t
<210> 434
<211> 484
<212> DNA
<213> Homo sapiens
<400> 434
ttttaaaata agcatttagt gctcagtccc tactgagtac tctttctctc ccctcctctg 60
aatttaattc tttcaacttg caatttgcaa ggattacaca tttcactgtg atgtatattg 120
tgttgcaaaa aaaaaaaagt gtctttgttt aaaattactt ggtttgtgaa tccatcttgc 180
tttttcccca ttggaactag tcattaaccc atctctgaac tggtagaaaa acatctgaag 240
agctagtcta tcagcatctg acaggtgaat tggatggttc tcagaaccat ttcacccaga 300
cagcctgttt ctatcctgtt taataaatta gtttgggttc tctacatgca taacaaaccc 360
tgctccaatc tgtcacataa aagtctgtga cttgaagttt agtcagcacc cccaccaaac 420
tttatttttc tatgtgtttt ttgcaacata tgagtgtttt gaaaataaag tacccatgtc 480
ttta
<210> 435
<211> 424
<212> DNA
<213> Homo sapiens
<400> 435
gegeegetea gageaggtea etttetgeet tecaegteet eetteaagga ageeceatgt 60
gggtagcttt caatatcgca ggttcttact cctctgcctc tataagctca aacccaccaa 120
cgatcgggca agtaaacccc ctccctcgcc gacttcggaa ctggcgagag ttcagcgcag 180
atgggcctgt ggggagggg caagatagat gagggggagc ggcatggtgc ggggtgaccc 240
cttggagaga ggaaaaaggc cacaagaggg gctgccaccg ccactaacgg agatggccct 300
ggtagagacc tttgggggtc tggaacctct ggactcccca tgctctaact cccacactct 360
gctatcagaa acttaaactt gaggattttc tctgtttttc actcgcaata aattcaqaqc 420
aaac
<210> 436
<211> 667
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(667)
<223> n = A, T, C or G
<400> 436
accttgggaa nactctcaca atataaaggg tcgtagactt tactccaaat tccaaaaagg 60
tectggeeat gtaateetga aagtttteee aaggtageta taaaateett ataagggtge 120
agcetettet ggaatteete tgattteaaa gteteactet caagttettg aaaacgaggg 180
cagttcctga aaggcaggta tagcaactga tcttcagaaa gaggaactgt gtgcaccggg 240
atgggctgcc agagtaggat aggattccag atgctgacac cttctggggg aaacagggct 300
gccaggtttg tcatagcact catcaaagtc cggtcaacgt ctgtgcttcg aatataaacc 360
```

```
tgttcatgtt tataggactc attcaagaat tttctatatc tctttcttat atactctcca 420
  agttcataat gctgctccat gcccagctgg gtgagttggc caaatccttg tggccatgag 480
  gattccttta tggggtcagt gggaaaggtg tcaatgggac ttcggtctcc atgccgaaac 540
  accaaagtca caaacttcaa ctccttggct agtacacttc ggtctagcca gaaaaaaagc 600
  agaaacaaga agccaaggct aaggcttgct gccctgccag gaggaggggt gcagctctca 660
  tgttgag
  <210> 437
  <211> 693
  <212> DNA
  <213> Homo sapiens
  <400> 437
 ctacgtctca acceteattt ttaggtaagg aatettaagt ecaaagatat taagtgaete 60
 acacagecag gtaaggaaag etggattgge acactaggae tetaceatae egggttttgt 120
 taaageteag gttaggagge tgataagett ggaaggaact teagacaget tttteagate 180
 ataaaagata attettagee catgttette tecagageag acetgaaatg acageacage 240
 aggtacteet etatttteae eeetettget tetaetetet ggeagteaga eetgtgggag 300
 gccatgggag aaagcagctc tctggatgtt tgtacagatc atggactatt ctctgtggac 360
 cattteteca ggttacceta ggtgteacta ttggggggae agecageate tttagettte 420
 atttgagttt ctgtctgtct tcagtagagg aaacttttgc tcttcacact tcacatctga 480
 acacctaact gctgttgctc ctgaggtggt gaaagacaga tatagagctt acagtattta 540
 tcctatttct aggcactgag ggctgtgggg taccttgtgg tgccaaaaca gatcctgttt 600
 taaggacatg ttgcttcaga gatgtctgta actatctggg ggctctgttg gctctttacc 660
 ctgcatcatg tgctctcttg gctgaaaatg acc
 <210> 438
 <211> 360
 <212> DNA
 <213> Homo sapiens
 <400> 438
 ctgcttatca caatgaatgt tctcctgggc agcgttgtga tctttgccac cttcgtgact 60
 ttatgcaatg catcatgcta tttcatacct aatgagggag ttccaggaga ttcaaccagg 120
atgtttctac acctgtgggt tatgacaaag acaactgcca aagaatcttc aagaaggagg 180
actgcaagta tatctggtgg agaagaagga cccaaaaaag acctgttctg tcagtgaatg 240
gataatctaa tgtgcttcta gtaggcacag ggctcccagg ccaggcctca ttctcctctg 300
gcctctaata gtcaataatt gtgtagccat gcctatcagt aaaaagattt ttgagcaaac 360
<210> 439
<211> 431
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(431)
<223> n = A, T, C or G
<400> 439
gttcctnnta actcctgcca gaaacagctc tcctcaacat gagagctgca cccctcctcc 60
tggccagggc agcaagcett agcettgget tettgtttet gettttttte tggctagace 120
gaagtgtact agccaaggag ttgaagtttg tgactttggt gtttcggcat ggagaccgaa 180
gtcccattga cacctttccc actgacccca taaaggaatc ctcatggcca caaggatttg 240
gccaactcac ccagctgggc atggagcagc attatgaact tggagagtat ataagaaaga 300
gatatagaaa attettgaat gagteetata aacatgaaca ggtttatatt egaageacag 360
acgttgaccg gactttgatg agtgctatga caaacctggc agcccgtcga cgcggccgcg 420
aatttagtag t
```

```
<210> 440
<211> 523
<212> DNA
<213> Homo sapiens
<400> 440
agagataaag cttaggtcaa agttcataga gttcccatga actatatgac tggccacaca 60
ggatettttg tatttaagga ttetgagatt ttgettgage aggattagat aaggetgtte 120
tttaaatgtc tgaaatggaa cagatttcaa aaaaaaaccc cacaatctag ggtgggaaca 180
aggaaggaaa gatgtgaata ggctgatggg caaaaaacca atttacccat cagttccagc 240
cttctctcaa ggagaggcaa agaaaggaga tacagtggag acatctggaa agttttctcc 300
actggaaaac tgctactatc tgtttttata tttctgttaa aatatatgag gctacagaac 360
taaaaattaa aacctctttg tgtcccttgg tcctggaaca tttatgttcc ttttaaagaa 420
acaaaaatca aactttacag aaagatttga tgtatgtaat acatatagca gctcttgaag 480
tatatatatc atagcaaata agtcatctga tgagaacaag cta
<210> 441
<211> 430
<212> DNA
<213> Homo sapiens
<400> 441
gttcctccta actcctgcca gaaacagctc tcctcaacat gagagctgca cccctcctcc 60
tggccagggc agcaagcett agcettgget tettgtttet getttttte tggctagace 120
gaagtgtact agccaaggag ttgaagtttg tgactttggt gtttcggcat ggagaccgaa 180
gtcccattga cacctttccc actgacccca taaaggaatc ctcatggcca caaggatttg 240
gccaactcac ccagctgggc atggagcagc attatgaact tggagagtat ataagaaaga 300
gatatagaaa attettgaat gagteetata aacatgaaca ggtttatatt cgaagcacag 360
acgttgaccg gactttgatg agtgctatga caaacctggc agcccgtcga cgcgqccgcg 420
aatttagtag
                                                                   430
<210> 442
<211> 362
<212> DNA
<213> Homo sapiens
<400> 442
ctaaggaatt agtagtgttc ccatcacttg tttggagtgt gctattctaa aagattttga 60
tttcctggaa tgacaattat attttaactt tggtggggga aagagttata qqaccacaqt 120
cttcacttct gatacttgta aattaatctt ttattgcact tgttttqacc attaaqctat 180
atgtttagaa atggtcattt tacggaaaaa ttagaaaaat tctgataata qtqcaqaata 240
aatgaattaa tgttttactt aatttatatt gaactgtcaa tgacaaataa aaattctttt 300
tgattatttt ttgttttcat ttaccagaat aaaaactaag aattaaaagt ttgattacag 360
tc
<210> 443
<211> 624
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(624)
<223> n = A,T,C or G
tttttttttt gcaacacaat atacatcaca gtgaaatgtg taatccttgc aaattgcaag 60
```

<222> (1)...(631)

```
ttgaaagaat taaattcaga ggaggggaga gaaagagtac tcagtaggga ctgagcacta 120
 aatgettatt ttaaaagaaa tgtaaagage agaaageaat teaggetace etgeettttg 180
  tgctggctag tactccggtc ggtgtcagca gcacgtggca ttgaacattg caatgtggag 240
 cccaaaccac agaaaatggg gtgaaattgg ccaactttct attaacttgg cttcctgttt 300
 tataaaatat tgtgaataat atcacctact tcaaagggca gttatgaggc ttaaatgaac 360
 taacgcctac aaaacactta aacatagata acataggtgc aagtactatg tatctggtac 420
 atggtaaaca teettattat taaagteaac getaaaatga atgtgtgtge atatgetaat 480
 agtacagaga gagggcactt aaaccaacta agggcctgga gggaaggttt cctggaaaga 540
 ngatgettgt getgggteca aatettggte tactatgace ttggccaaat tatttaaact 600
 ttgtccctat ctgctaaaca gatc
 <210> 444
 <211> 425
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc feature
 <222> (1)...(425)
 <223> n = A,T,C or G
 <400> 444
 gcacatcatt nntcttgcat tctttgagaa taagaagatc agtaaatagt tcagaagtgg 60
 gaagetttgt ccaggeetgt gtgtgaacce aatgttttge ttagaaatag aacaagtaag 120
ttcattgcta tagcataaca caaaatttgc ataagtggtg gtcagcaaat ccttgaatgc 180
 tgcttaatgt gagaggttgg taaaatcctt tgtgcaacac tctaactccc tgaatgtttt 240
gctgtgctgg gacctgtgca tgccagacaa ggccaagctg gctgaaagag caaccagcca 300
cctctgcaat ctgccacctc ctgctggcag gatttgtttt tgcatcctgt gaagagccaa 360
ggaggcacca gggcataagt gagtagactt atggtcgacg cggccgcgaa tttagtagta 420
gtaga
 <210> 445
<211> 414
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(414)
<223> n = A, T, C \text{ or } G
<400> 445
catgtttatg nttttggatt actttgggca cctagtgttt ctaaatcgtc tatcattctt 60
ttctgttttt caaaagcaga gatggccaga gtctcaacaa actgtatctt caagtctttg 120
tgaaattett tgcatgtggc agattattgg atgtagttte etttaactag catataaate 180
tggtgtgttt cagataaatg aacagcaaaa tgtggtggaa ttaccatttg gaacattgtg 240
aatgaaaaat tgtgtctcta gattatgtaa caaataacta tttcctaacc attgatcttt 300
ggatttttat aatcctactc acaaatgact aggcttctcc tcttgtattt tgaagcagtg 360
tgggtgctgg attgataaaa aaaaaaaaag tcgacgcggc cgcgaattta gtag
<210> 446
<211> 631
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
```

```
\langle 223 \rangle n = A,T,C or G
<400> 446
acaaattaga anaaagtgcc agagaacacc acataccttq tccqqaacat tacaatqqct 60
tetgeatgea tgggaagtgt gageatteta teaatatgea ggageeatet tgeaggtgtg 120
atgctggtta tactggacaa cactgtgaaa aaaaggacta cagtgttcta tacgttgttc 180
ceggtectgt acgattteag tatgtettaa tegeagetgt gattggaaca atteagattq 240
ctgtcatctg tgtggtggtc ctctgcatca caagggccaa actttaggta atagcattqq 300
actgagattt gtaaactttc caaccttcca ggaaatgccc cagaagcaac agaattcaca 360
gacagaagca aaatacaggg cactacagtt cagacaatac aacaagagcg tccacgaggt 420
taatctaaag ggagcatgtt tcacagtggc tggactaccg agagcttgga ctacacaata 480
cagtattata gacaaaagaa taagacaaga gatctacaca tgttgccttg catttgtggt 540
aatctacacc aatgaaaaca tgtactacag ctatatttga ttatgtatgg atatatttga 600
aatagtatac attgtcttga tgttttttct g
<210> 447
<211> 585
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(585)
<223> n = A, T, C or G
<400> 447
ccttgggaaa antntcacaa tataaagggt cgtagacttt actccaaatt ccaaaaaggt 60
cctggccatg taatcctgaa agttttccca aggtagctat aaaatcctta taagggtgca 120
gcctcttctg gaattcctct gatttcaaag tctcactctc aagttcttga aaacgagggc 180
agtteetgaa aggeaggtat ageaactgat etteagaaag aggaactgtg tgeaceggga 240
tgggctgcca gagtaggata ggattccaga tgctgacacc ttctggggga aacagggctg 300
ccaggtttgt catagcactc atcaaagtcc ggtcaacgtc tgtgcttcga atataaacct 360
gttcatgttt ataggactca ttcaagaatt ttctatatct ctttcttata tactctccaa 420
gttcataatg ctgctccatg cccagctggg tgagttggcc aaatccttgt ggccatgagg 480
attectttat ggggtcagtg ggaaaggtgt caatgggact teggteteca tgccgaaaca 540
ccaaagtcac aaacttcaac tccttggcta gtacacttcg gtcta
                                                                  585
<210> 448
<211> 93
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1) ... (93)
<223> n = A, T, C or G
<400> 448
tgctcgtggg tcattctgan nnccgaactg accntgccag ccctgccgan gggccnccat 60
ggctccctag tgccctggag agganggggc tag
<210> 449
<211> 706
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
```

```
<222> (1)...(706)
  \langle 223 \rangle n = A, T, C or G
  ccaagttcat gctntgtgct ggacgctgga cagggggcaa aagcnnttgc tcgtgggtca 60
  ttetganeae egaactgace atgeeageee tgeegatggt cetecatgge teeetagtge 120
 cctggagagg aggtgtctag tcagagagta gtcctggaag gtggcctctg ngaggagcca 180
  cggggacage atcetgcaga tggtcgggcg cgtcccattc gccattcagg ctgcgcaact 240
 gttgggaagg gcgatcggtg cgggcctctt cgctattacg ccagctggcg aaagggggat 300
 gtgctgcaag gcgattaagt tgggtaacgc cagggttttc ccagtcncga cgttgtaaaa 360
 cgacggccag tgaattgaat ttaggtgacn ctatagaaga gctatgacgt cgcatgcacg 420
 cgtacgtaag cttggatcct ctagagcggc cgcctactac tactaaattc gcggccgcgt 480
 cgacgtggga tccncactga gagagtggag agtgacatgt gctggacnct gtccatgaag 540
 cactgagcag aagctggagg cacaacgcnc cagacactca cagctactca ggaggctgag 600
 aacaggttga acctgggagg tggaggttgc aatgagctga gatcaggccn ctgcncccca 660
 gcatggatga cagagtgaaa ctccatctta aaaaaaaaa aaaaaa
 <210> 450
 <211> 493
 <212> DNA
 <213> Homo sapiens
 <400> 450
 gagacggagt gtcactctgt tgcccaggct ggagtgcagc aagacactgt ctaagaaaaa 60
 acagttttaa aaggtaaaac aacataaaaa gaaatatcct atagtggaaa taagagagtc 120
 aaatgagget gagaacttta caaagggate ttacagacat gtegecaata teaetgeatg 180
 agcctaagta taagaacaac ctttggggag aaaccatcat ttgacagtga ggtacaattc 240
 caagtcaggt agtgaaatgg gtggaattaa actcaaatta atcctgccag ctgaaacgca 300
 agagacactg tcagagagtt aaaaagtgag ttctatccat gaggtgattc cacagtcttc 360
 tcaagtcaac acatctgtga actcacagac caagttctta aaccactgtt caaactctgc 420
 tacacatcag aatcacctgg agagetttac aaacteecat tgccgagggt cgacgeggec 480
 gcgaatttag tag
                                                                    493
 <210> 451
 <211> 501
 <212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(501)
<223> n = A, T, C or G
<400> 451
gggcgcgtcc cattcgccat tcaggctgcg caactgttgg gaagggcgat cggtgcgggc 60
ctettegeta ttacgccage tggcgaaagg gggatgtget gcaaggcgat taagttgggt 120
aacgccaggg ttttcccagt cncgacgttg taaaacgacg gccagtgaat tgaatttagg 180
tgacnetata gaagagetat gacgtegeat geacgegtae gtaagettgg atcetetaga 240
geggeegeet actactacta aattegegge egegtegaeg tgggateene actgagagag 300
tggagagtga catgtgctgg acnetgteea tgaagcaetg agcagaaget ggaggcaeaa 360
cgcnccagac actcacagct actcaggagg ctgagaacag gttgaacctg ggaggtggag 420
gttgcaatga gctgagatca ggccnctgcn ccccagcatg gatgacagag tgaaactcca 480
tcttaaaaaa aaaaaaaaa a
<210> 452
<211> 51
<212> DNA
<213> Homo sapiens
```

```
<220>
<221> misc feature
<222> (1)...(51)
<223> n = A,T,C or G
<400> 452
agacggtttc accnttacaa cnccttttag gatgggnntt ggggagcaag c
                                                                   51
<210> 453
<211> 317
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(317)
<223> n = A,T,C or G
<400> 453
tacatcttgc tttttcccca ttggaactag tcattaaccc atctctgaac tggtagaaaa 60
acatctgaag agctagtcta tcagcatctg gcaagtgaat tggatggttc tcagaaccat 120
ttcacccana cagcctgttt ctatcctgtt taataaatta gtttgggttc tctacatgca 180
taacaaaccc tgctccaatc tgtcacataa aaqtctqtqa cttqaaqttt antcaqcacc 240
cccaccaaac tttattttc tatgtgtttt ttgcaacata tgagtgtttt gaaaataagg 300
tacccatgtc tttatta
<210> 454
<211> 231
<212> DNA
<213> Homo sapiens
<400> 454
ttcgaggtac aatcaactct cagagtgtag tttccttcta tagatgagtc agcattaata 60
taagccacgc cacgctcttg aaggagtctt gaattctcct ctgctcactc agtagaacca 120
agaagaccaa attettetge atcecagett geaaacaaaa ttgttettet aggteteeae 180
cetteetttt teagtgttee aaageteete acaattteat gaacaacage t
<210> 455
<211> 231
<212> DNA
<213> Homo sapiens
<400> 455
taccaaagag ggcataataa tcagtctcac agtagggttc accatcctcc aagtgaaaaa 60
cattgttccg aatgggcttt ccacaggcta cacacacaaa acaggaaaca tgccaagttt 120
gtttcaacgc attgatgact tetecaagga tetteetttg geategacea catteagggg 180
caaagaattt ctcatagcac agctcacaat acagggctcc tttctcctct a
<210> 456
<211> 231
<212> DNA
<213> Homo sapiens
<400> 456
ttggcaggta cccttacaaa gaagacacca taccttatgc gttattaggt ggaataatca 60
ttccattcag tattatcgtt attattcttg gagaaaccct gtctgtttac tgtaaccttt 120
tgcactcaaa ttcctttatc aggaataact acatagccac tatttacaaa gccattggaa 180
```

```
cctttttatt tggtgcagct gctagtcagt ccctgactga cattgccaag t
                                                                     231
  <210> 457
  <211> 231
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> misc_feature
  <222> (1)...(231)
  <223> n = A,T,C or G
 <400> 457
 cgaggtaccc aggggtctga aaatctctnn tttantagtc gatagcaaaa ttgttcatca 60
 gcattcctta atatgatctt gctataatta gatttttctc cattagagtt catacagttt 120
 tatttgattt tattagcaat ctctttcaga agacccttga gatcattaag ctttgtatcc 180
 agttgtctaa atcgatgcct catttcctct gaggtgtcgc tggcttttgt g
 <210> 458
 <211> 231
 <212> DNA
 <213> Homo sapiens
 <400> 458
 aggtctggtt ccccccactt ccactcccct ctactctctc taggactggg ctgggccaag 60
 agaagagggg tggttaggga agccgttgag acctgaagcc ccaccctcta ccttccttca 120
 acaccctaac cttgggtaac agcatttgga attatcattt gggatgagta gaatttccaa 180
 ggtcctgggt taggcatttt ggggggccag accccaggag aagaagattc t
 <210> 459
 <211> 231
 <212> DNA
 <213> Homo sapiens
<400> 459
ggtaccgagg ctcgctgaca cagagaaacc ccaacgcgag gaaaggaatg gccagccaca 60
cettegegaa acetgtggtg geceaceagt cetaaeggga eaggacagag agacagagca 120
geeetgeact gtttteeete caccacagee atcetgteee teattggete tgtgetttee 180
actatacaca gtcaccgtcc caatgagaaa caagaaggag caccctccac a
<210> 460
<211> 231
<212> DNA
<213> Homo sapiens
<400> 460
gcaggtataa catgctgcaa caacagatgt gactaggaac ggccggtgac atggggaggg 60
cetateacee tattettggg ggetgettet teacagtgat catgaageet ageageaaat 120
eccacetece cacaegeaca eggecageet ggageceaca gaagggteet eetgeageea 180
gtggagettg gtecageete cagtecacee etaccagget taaggataga a
<210> 461
<211> 231
<212> DNA
<213> Homo sapiens
<400> 461
cgaggtttga gaagctctaa tgtgcagggg agccgagaag caggcggcct agggagggtc 60
```

```
gcgtgtgctc cagaagagtg tgtgcatgcc agaggggaaa caggcgcctg tqtqtcctqq 120
gtggggttca gtgaggagtg ggaaattggt tcagcagaac caagccgttg qqtgaataaq 180
agggggattc catggcactg atagagecet atagtttcaq aqetqqqaat t
<210> 462
<211> 231
<212> DNA
<213> Homo sapiens
<400> 462
aggtaccctc attgtagcca tgggaaaatt gatgttcagt ggggatcagt gaattaaatg 60
gggtcatgca agtataaaaa ttaaaaaaaa aagacttcat gcccaatctc atatgatgtg 120
gaagaactgt tagagagacc aacagggtag tgggttagag atttccagag tcttacattt 180
tctagaggag gtatttaatt tcttctcact catccagtgt tgtatttagg a
<210> 463
<211> 231
<212> DNA
<213> Homo sapiens
<400> 463
actgagtaga caggtgtcct cttggcatgg taagtcttaa gtcccctccc agatctqtqa 120
catttgacag gtgtcttttc ctctggacct cggtgtcccc atctgagtga gaaaaggcag 180
tggggaggtg gatcttccag tcgaagcggt atagaagccc gtgtgaaaag c
<210> 464
<211> 231
<212> DNA
<213> Homo sapiens
<400> 464
gtactctaag attttatcta agttgccttt tctgggtggg aaagtttaac cttagtgact 60
aaggacatca catatgaaga atgtttaagt tggaggtggc aacgtgaatt gcaaacaggg 120
cctgcttcag tgactgtgtg cctgtagtcc cagctactcg ggagtctgtg tgaggccagg 180
ggtgccagcg caccagctag atgctctgta acttctaggc cccattttcc c
<210> 465
<211> 231
<212> DNA
<213> Homo sapiens
<400> 465
catgttgttg tagctgtggt aatgctggct gcatctcaga cagggttaac ttcagctcct 60
gtggcaaatt agcaacaaat totgacatca tatttatggt ttotgtatot ttgttgatga 120
aggatggcac aatttttgct tgtgttcata atatactcag attagttcag ctccatcaga 180
taaactggag acatgcagga cattagggta gtgttgtagc tctggtaatg a
<210> 466
<211> 231
<212> DNA
<213> Homo sapiens
<400> 466
caggtacctc tttccattgg atactgtgct agcaagcatg ctctccgggg tttttttaat 60
ggccttcgaa cagaacttgc cacataccca ggtataatag tttctaacat ttgcccagga 120
cctgtgcaat caaatattgt ggagaattcc ctagctggag aagtcacaaa gactataggc 180
aataatggag accagtccca caagatgaca accagtcgtt gtgtgcggct g
```

```
<210> 467
  <211> 311
  <212> DNA
  <213> Homo sapiens
  <400> 467
  gtacaccctg gcacagtcca atctgaactg gttcggcact catctttcat gagatggatg 60
  tggtggcttt tctccttttt catcaagact cctcagcagg gagcccagac cagcctgcac 120
  tgtgccttaa cagaaggtct tgagattcta agtgggaatc atttcagtga ctgtcatgtg 180
  gcatgggtct ctgcccaagc tcgtaatgag actatagcaa ggcggctgtg ggacgtcagt 240
  tgtgacctgc tgggcctccc aatagactaa caggcagtgc cagttggacc caagagaaga 300
  ctgcagcaga c
  <210> 468
  <211> 3112
  <212> DNA
  <213> Homo sapiens
  <400> 468
 cattgtgttg ggagaaaaac agaggggaga tttgtgtggc tgcagccgag ggagaccagg 60
 aagatetgea tggtgggaag gacetgatga tacagagttt gataggagac aattaaagge 120
 tggaaggcac tggatgcctg atgatgaagt ggactttcaa actggggcac tactgaaacg 180
 atgggatggc cagagacaca ggagatgagt tggagcaagc tcaataacaa agtggttcaa 240
 cgaggacttg gaattgcatg gagctggagc tgaagtttag cccaattgtt tactagttga 300
 gtgaatgtgg atgattggat gatcatttet catetetgag ceteaggtte cecatecata 360
 aaatgggata cacagtatga tctataaagt gggatatagt atgatctact tcactgygtt 420
 atttgaagga tgaattgaga taatttattt caggtgccta gaacaatgcc cagattagta 480
 catttggtgg aactgagaaa tggcataaca ccaaatttaa tatatgtcag atgttactat 540
 gattatcatt caatctcata gttttgtcat ggcccaattt atcctcactt gtgcctcaac 600
 aaattgaact gttaacaaag gaatctctgg tcctgggtaa tggctgagca ccactgagca 660
 tttccattcc agttggcttc ttgggtttgc tagctgcatc actagtcatc ttaaataaat 720
 gattaaataa agaacttgag aagaacaggt ttcattaaac ataaaatcaa tgtagacgca 840
 aattttctgg atgggcaata cttatgttca caggaaatgc tttaaaatat gcagaagata 900
attaaatggc aatggacaaa gtgaaaaact tagacttttt ttttttttt ggaagtatct 960
ggatgttcct tagtcactta aaggagaact gaaaaatagc agtgagttcc acataatcca 1020
acctgtgaga ttaaggctct ttgtggggaa ggacaaagat ctgtaaattt acagtttcct 1080
tccaaagcca acgtcgaatt ttgaaacata tcaaagctct tcttcaagac aaataatcta 1140
tagtacatct ttcttatggg atgcacttat gaaaaatggt ggctgtcaac atctagtcac 1200
tttagctctc aaaatggttc attttaagag aaagttttag aatctcatat ttattcctgt 1260
ggaaggacag cattgtggct tggactttat aaggtcttta ttcaactaaa taggtgagaa 1320
ataagaaagg ctgctgactt taccatctga ggccacacat ctgctgaaat ggagataatt 1380
aacatcacta gaaacagcaa gatgacaata taatgtctaa gtagtgacat gtttttgcac 1440
atttccagcc cetttaaata tecacacaca caggaagcac aaaaggaagc acagagatec 1500
ctgggagaaa tgcccggccg ccatcttggg tcatcgatga gcctcgcct gtgcctggtc 1560
ccgcttgtga gggaaggaca ttagaaaatg aattgatgtg ttccttaaag gatgggcagg 1620
aaaacagatc ctgttgtgga tatttatttg aacgggatta cagatttgaa atgaagtcac 1680
aaagtgagca ttaccaatga gaggaaaaca gacgagaaaa tettgatgge ttcacaagac 1740
atgcaacaaa caaaatggaa tactgtgatg acatgaggca gccaagctgg ggaggagata 1800
accacggggc agagggtcag gattctggcc ctgctgccta aactgtgcgt tcataaccaa 1860
atcatttcat atttctaacc ctcaaaacaa agctgttgta atatctgatc tctacggttc 1920
cttctgggcc caacattctc catatatcca gccacactca tttttaatat ttagttccca 1980
gatetgtact gtgacettte tacactgtag aataacatta eteattttgt teaaagacee 2040
ttcgtgttgc tgcctaatat gtagctgact gtttttccta aggagtgttc tggcccaggg 2100
gatctgtgaa caggctggga agcatctcaa gatctttcca gggttatact tactagcaca 2160
cagcatgatc attacggagt gaattatcta atcaacatca tectcagtgt etttgeecat 2220
actgaaattc atttcccact tttgtgccca ttctcaagac ctcaaaatgt cattccatta 2280
```

```
atatcacagg attaactttt ttttttaacc tggaagaatt caatgttaca tgcagctatg 2340
ggaatttaat tacatatttt gttttccagt gcaaagatga ctaagtcctt tatccctccc 2400
ctttgtttga tttttttcc agtataaagt taaaatgctt agccttgtac tgaggctgta 2460
tacagecaca geeteteece atecetecag cettatetgt cateaceate aacceetece 2520
atgcacctaa acaaaatcta acttgtaatt ccttgaacat gtcaggcata cattattcct 2580
tctgcctgag aagctcttcc ttgtctctta aatctagaat gatgtaaagt tttgaataag 2640
ttgactatct tacttcatgc aaagaaggga cacatatgag attcatcatc acatgagaca 2700
gcaaatacta aaagtgtaat ttgattataa gagtttagat aaatatatga aatgcaaqaq 2760
ccacagaggg aatgtttatg gggcacgttt gtaagcctgg gatgtgaagc aaaggcaggg 2820
aacctcatag tatcttatat aatatacttc atttctctat ctctatcaca atatccaaca 2880
agcttttcac agaattcatg cagtgcaaat ccccaaaggt aacctttatc catttcatqg 2940
tgagtgcgct ttagaatttt ggcaaatcat actggtcact tatctcaact ttgagatgtg 3000
tttgtccttg tagttaattg aaagaaatag ggcactcttg tgagccactt tagggttcac 3060
<210> 469
<211> 2229
<212> DNA
<213> Homo sapiens
<400> 469
agetettigt aaattettta tigeeaggag tgaaceetaa agiggeteae aagagigeee 60
tatttctttc aattaactac aaggacaaac acatctcaaa gttgagataa gtgaccagta 120
tgatttgcca aaattctaaa gcgcactcac catgaaatgg ataaaggtta cctttgggga 180
tttgcactgc atgaattctg tgaaaagctt gttggatatt gtgatagaga tagagaaatg 240
aagtatatta tataagatac tatgaggttc cetgeetttg etteacatee eaggettaca 300
aacgtgcccc ataaacattc cctctgtggc tcttgcattt catatattta tctaaactct 360
tataatcaaa tacactttta gtatttgctg tctcatgtga tgatgaatct catatgtgtc 420
ccttctttgc atgaagtaag atagtcaact tattcaaaac tttacatcat tctagattta 480
agagacaagg aagagcttct caggcagaag gaataatgta tgcctgacat gttcaaggaa 540
ttacaagtta gattttgttt aggtgcatgg gaggggttga tggtgatgac agataaggct 600
ggagggatgg ggagaggetg tggetgtata cageeteagt acaaggetaa geattttaac 660
tttatactgg aaaaaaaatc aaacaaaggg gagggataaa ggacttagtc atctttgcac 720
tggaaaacaa aatatgtaat taaatteeca tagetgeatg taacattgaa ttetteeagg 780
ttaaaaaaaa agttaatcct gtgatattaa tggaatgaca ttttgaggtc ttgagaatgg 840
gcacaaaagt gggaaatgaa tttcagtatg ggcaaagaca ctgaggatga tgttgattag 900
ataattcact ccgtaatgat catgctgtgt gctagtaagt ataaccctgg aaagatcttg 960
agatgettee cageetgtte acagateece tgggecagaa caeteettag gaaaaacagt 1020
cagctacata ttaggcagca acacgaaggg tctttgaaca aaatgagtaa tgttattcta 1080
cagtgtagaa aggtcacagt acagatctgg gaactaaata ttaaaaatga gtgtggctgg 1140
atatatggag aatgttgggc ccagaaggaa ccgtagagat cagatattac aacaqctttq 1200
ttttgagggt tagaaatatg aaatgatttg gttatgaacg cacagtttag qcaqcaqqqc 1260
cagaatcetg accetetgee cegtggttat etecteecea gettggetge eteatgteat 1320
cacagtattc cattitigtti gitgcatgic tigigaagcc atcaagatti totogictgi 1380
tttcctctca ttggtaatgc tcactttgtg acttcatttc aaatctgtaa tcccgttcaa 1440
ataaatatcc acaacaggat ctgttttcct gcccatcctt taaggaacac atcaattcat 1500
tttctaatgt ccttccctca caagcgggac caggcacagg gcgaggctca tcgatgaccc 1560
aagatggcgg ccgggcattt ctcccaggga tctctgtgct tccttttgtg cttcctgtgt 1620
gtgtggatat ttaaaggggc tggaaatgtg caaaaacatg tcactactta gacattatat 1680
tgtcatcttg ctgtttctag tgatgttaat tatctccatt tcagcagatg tgtggcctca 1740
gatggtaaag tcagcagcct ttcttatttc tcacctggaa atacatacga ccatttgagg 1800
agacaaatgg caaggtgtca gcataccctg aacttgagtt gagagctaca cacaatatta 1860
ttggtttccg agcatcacaa acaccctctc tgtttcttca ctgggcacag aattttaata 1920
cttatttcag tgggctgttg gcaggaacaa atgaagcaat ctacataaag tcactagtgc 1980
agtgcctgac acacaccatt ctcttgaggt cccctctaga gatcccacag gtcatatgac 2040
ttcttgggga gcagtggctc acacctgtaa tcccagcact ttgggaggct gaggcaggtg 2100
ggtcacctga ggtcaggagt tcaagaccag cctggccaat atggtgaaac cccatctcta 2160
```

ctaaaaatac aaaaattagc tgggcgtgct ggtgcatgcc tgtaatccca gccccaacac 2220

```
aatggaatt
                                                                    2229
 <210> 470
 <211> 2426
 <212> DNA
 <213> Homo sapiens
 <400> 470
 gtaaattett tattgecagg agtgaaceet aaagtggete acaagagtge cetatteet 60
 tcaattaact acaaggacaa acacatctca aagttgagat aagtgaccag tatgatttgc 120
 caaaattcta aagcgcactc accatgaaat ggataaaggt tacctttggg gatttgcact 180
 gcatgaattc tgtgaaaagc ttgttggata ttgtgataga gatagagaaa tgaagtatat 240
 tatataagat actatgaggt tccctgcctt tgcttcacat cccaggctta caaacgtgcc 300
 ccataaacat tccctctgtg gctcttgcat ttcatatatt tatctaaact cttataatca 360
 aattacactt ttagtatttg ctgtctcatg tgatgatgaa tctcatatgt gtcccttctt 420
 tgcatgaagt aagatagtca acttattcaa aactttacat cattctagat ttaagagaca 480
 aggaagaget teteaggeag aaggaataat gtatgeetga catgtteaag gaattacaag 540
 ttagattttg tttaggtgca tgggaggggt tgatggtgat gacagataag gctggaggga 600
 tggggagagg ctgtggctgt atacagcctc agtacaaggc taagcatttt aactttatac 660
 tggaaaaaaa atcaaacaaa ggggagggat aaaggactta gtcatctttg cactggaaaa 720
 caaaatatgt aattaaattc ccatagctgc atgtaacatt gaattcttcc aggttaaaaa 780
 aaaaagttaa tootgtgata ttaatggaat gacattttga ggtottgaga atgggcacaa 840
 aagtgggaaa tgaatttcag tatgggcaaa gacactgagg atgatgttga ttagataatt 900
 cacteegtaa tgateatget gtgtgetagt aagtataace etggaaagat ettgagatge 960
 ttcccagcct gttcacagat cccctgggcc agaacactcc ttaggaaaaa cagtcagcta 1020
 catattaggc agcaacacga agggtctttg aacaaaatga gtaatgttat tctacagtgt 1080
agaaaggtca cagtacagat ctgggaacta aatattaaaa atgagtgtgg ctggatatat 1140
ggagaatgtt gggcccagaa ggaaccgtag agatcagata ttacaacagc tttgttttga 1200
gggttagaaa tatgaaatga tttggttatg aacgcacagt ttaggcagca gggccagaat 1260
cetgaceete tgeceegtgg ttateteete eccagettgg etgeeteatg teateacagt 1320
attecatett geetgetgea egeetegea ageeateaag attetetege eegeetteet 1380 -
ctcattggta atgctcactt tgtgacttca tttcaaatct gtaatcccgt tcaaataaat 1440
atecacaaca ggatetgttt teetgeeeat eetttaagga acacateaat teatttteta 1500
atgteettee etcacaageg ggaseaggea cagggegagg etcategatg acceaagatg 1560
gcggccgggc atttetecca gggatetetg tgetteettt tgtgetteet gtgtgtgtgg 1620 -
atatttaaag gggctggaaa tgtgcaaaaa catgtcacta cttagacatt atattgtcat 1680
cttgctgttt ctagtgatgt taattatctc catttcagca gatgtgtggc ctcagatggt 1740
aaagtcagca gcctttctta tttctcacct ggaaatacat acgaccattt gaggagacaa 1800
atggcaaggt gtcagcatac cctgaacttg agttgagagc tacacacaat attattggtt 1860
tecgageate acaaacacee tetetgttte tteaetggge acagaatttt aataettatt 1920
tcagtgggct gttggcagga acaaatgaag caatctacat aaagtcacta gtgcagtgcc 1980
tgacacacac cattetettg aggteecete tagagateec acaggteata tgacttettg 2040
gggagcagtg gctcacacct gtaatcccag cactttggga ggctgaggca ggtgggtcac 2100
ctgaggtcag gagttcaaga ccagcctggc caatatggtg aaaccccatc tctactaaaa 2160
atacaaaaat tagctgggcg tgctggtgca tgcctgtaat cccagctact tgggaggctg 2220
aggcaggaga attgctggaa catgggaggc ggaggttgca gtgagctgta attgtgccat 2280
tgcactcgaa cctgggcgac agagtggaac tctgtttcca aaaaaacaaac aaacaaaaaa 2340
ggcatagtca gatacaacgt gggtgggatg tgtaaataga agcaggatat aaagggcatg 2400
gggtgacggt tttgcccaac acaatq
<210> 471
<211> 812
<212> DNA
<213> Homo sapiens
<400> 471
gaacaaaatg agtaatgtta ttctacagtg tagaaaggtc acagtacaga tctgggaact 60
aaatattaaa aatgagtgtg gctggatata tggagaatgt tgggcccaga aggaaccgta 120
```

```
gagatcagat attacaacag ctttgttttg agggttagaa atatgaaatq atttggttat 180
gaacgcacag tttaggcagc agggccagaa tcctgaccct ctgccccgtq qttatctcct 240
ccccagettg getgeeteat gteateacag tatteeattt tgtttgttge atgtettgtq 300
aagccatcaa gattttctcg tctgttttcc tctcattggt aatgctcact ttgtgacttc 360
atttcaaatc tgtaatcccg ttcaaataaa tatccacaac aggatctgtt ttcctgccca 420
teetttaagg aacacatcaa tteattttet aatgteette eetcacaage gggaccagge 480
acagggcgag gctcatcgat gacccaagat ggcggccggg catttctccc agggatctct 540
gtgcttcctt ttgtgcttcc tgtgtgtgtg gatatttaaa ggggctggaa atgtgcaaaa 600
acatgtcact acttagacat tatattgtca tcttgctgtt tctagtgatg ttaattatct 660
ccatttcage agatgtgtgg cctcagatgg taaagtcage agcetttett attteteace 720
totgtatcat caggicotto coaccatgoa gatottoctg giolocottog gotgoagoca 780
cacaaatctc ccctctgttt ttctgatgcc ag
<210> 472
<211> 515
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(515)
<223> n = A,T,C or G
<400> 472
acggagactt attttctgat attgtctgca tatgtatgtt tttaagagtc tggaaatagt 60
cttatgactt tcctatcatg cttattaata aataatacag cccagagaag atgaaaatgg 120
gttccagaat tattggtcct tgcagcccgg tgaatctcag caagaggaac caccaactga 180
caatcaggat attgaacctg gacaagagag agaaggaaca cctccgatcg aagaacgtaa 240
agtagaaggt gattgccagg aaatggatct ggaaaagact cggagtgagc gtggagatgg 300
ctctgatgta aaagagaaga ctccacctaa tcctaagcat gctaagacta aagaagcagg 360
agatgggcag ccataagtta aaaagaagac aagctgaagc tacacacatg gctgatgtca 420
cattgaaaat gtgactgaaa atttgaaaat tctctcaata aagtttgagt tttctctgaa 480
gaaaaaaaa naaaaaaaaa aaanaaaaan aaaaa
                                                                   515
<210> 473
<211> 5829
<212> DNA
<213> Homo sapiens
<400> 473
cgcatgccgg ggaagcccaa gctggctcga agagccacca gccacctgtg caagggtggg 60
cctggaccag ttggaccagc caccaagctc acctactcaa ggaagcaggg atggccaggt 120
tgcaacagcc tgagtggctg ccacctgata gctgatggag cagaggcctg aggaaaatca 180
gatggcacat ttagctettt aatggatett aagttaattt ttetataaag cacatggcae 240
cagtecatge ctcagagete gtatggcact geggaceaea geaggeegag tteceaggat 300
tgccatccag gggggccttc tgtagccctg gccagacctt gcagaggtgg ctgggtgctc 360
tttgagcgag ctcggcctcc ctggcatgca caggccccag gtactgacac gctgctctga 420
gtgagcttgt cctgccttgg ctgccaccta actgctgatg gagcagcggc cttaggaaaa 480
gcaaatggcg ctgtagccca actttagggt agaagaagat gtaccatgtc cggccgctag 540
ttggtgactg gtgcacctgc tcctggcgta cccttgcaga ggtgggtggt tgctctttgg 600
ccagcttggc cttgcctggc atgcacaagc ctcagtgcaa caactgtcct acaaatggag 660
acacagagag gaaacaagca gegggeteag gageagggtg tgtgetgeet ttggggetee 720
agtocatgoc togggtogta tggtactgoa ggottottgg ttgccaagag goggaccaca 780
ggccttcttg aggaggactt tacgttcaag tgcagaaagc agccaaaatt accatccatg 840
agactaagcc ttctgtggcc ctggcgagac ttaaaatttg tgccaaggca ggacaagctc 900
actcggagca gcgtgtcagt agctggggcc tatgcatgcc gggcagggcc gggctggctg 960
aaggagcaac cagccacctc tgcaagggtg cgcctagtgc aggcggagca tccaccacct 1020
caccegeteg aggaagtggg gatggecagg tteecacage etgagtgtet gecacettat 1080
```

tgctgatgga gcagaggcct taagaaaagc agatggcact gtggccctac ctttagggtg 1140 gaagaagtga tgtacatgtc cggacgctaa ttggtgactg gtacaccggc tcctgctaca 1200 cetttgcaga ggtggctggt tgetetttga gecagettgt eettgeeegg catgcacaag 1260 tttcagtgca acaactttgc cacaaatgga gccatataga ggaaacaaga agcaggttca 1320 ggagaagggt gtaccctgcc tttggggctc cagtccatgc ctcaggtgtc acatggcact 1380 gcgggcttct tggttgccag gaggcggacc acaggccatc ttggggagga ctttgtgttc 1440 aagtgcagaa agcagccagg attgccatcc agggggacct tctatagccc tggccaaacc 1500 ttgcaggggt gtctggttgc tctttgagcc ggcttggcct ccctggcatg cacgggcccc 1560 aggtgctggc acgctgctcc gagtgtgctt gtcctgcctt ggctgccacc tctgcggggg 1620 tgcgtctgga gggggtggac cggccaccaa ccttacccag tcaaggaagt ggatggccat 1680 gttcccacag cctgagtggc tgccacctga tggctgatgg agcaaaggcc ttaggaaaag 1740 cagatggccc ttggccctac ctttttgtta gaagaactga tgttccatgt cctgcagcga 1800 gtgaggttgg tggctgtgcc cccagctcct ggcgcgccct cgcagaggtg actggttgct 1860 ctttgggccc tcttggcctt gcccagcatg cacaagcctc agtgctacta ctgtgctaca 1920 aatggagcca tataggggaa acgagcagcc atctcaggag caaggtgtat gctgcctttg 1980 ggggctccag tccttgcctc aagggtctta tgtcactgtg ggcttcttgg ttgtcaagag 2040 gcagaccata ggccgtcttg agagggactt tatgttcaag tgcagaaagc agccaggatt 2100 gccaccctcg ggactctgcc ttctgtggcc ctggccaaac ttagaatttg gccgtagaca 2160 ggacaggete acttggagta gegtgteegt agetggggte tgtgcatgee gggcaaggee 2220 gggctggctc ggggagcaac cagccacctc tgcgggggtg cgcctggagc aggtggagca 2280 gccaccagct cacccactcc aggaageegg ggtageeagg tteccaagge etgagtgggt 2340 gccacctaat ggctgaagaa acagaggcet tgggaaaacc agatggcact gtggccctac 2400 ctttatggta gaagagctga tttagcctga ctggcagcgt gtggggttgg tggctggtct 2460 gcctgctgct ggcgcatccg tgcaaggatg gctggttgcc ctttgagcca gcttgccctt 2520 geceggeatg egeaageete agtgeaacaa etgtgetgea aatggggeea tatagaggaa 2580 aggageaget ggetetggag catggtgtge actecetttg ggeetteagt ceatgtetea 2640 tgggtcgtat gacactgcgg gcttgttggt tgccaagagg cagaccacag gtcatcttga 2700 ggaggacttt atgttccagt ccagaaagca gccagtggta ccacccaggg gacttgtgct 2760 tetgtgeeca ggecagaegt agaatttgae aaagteagga eggteteagt eagageggeg 2820 tgtcggtccc cggggcctgt gcatgccggg cagggccggg ctggcttggg gagcaagcag 2880 ccacctctgt taagggtgtg cctggagcag gtggagcagc caccaacctc acgcactgaa 2940 agaagcaggg atggccaggt tccaacatcc tgagtggctg ccacctgatg gctgatggag 3000 cagaggeetg aggaaaagea gatggeaetg etttgtagtg etgttetttg tetetettga 3060 tetttttcag ttaatgtetg ttttateaga gaetaggatt geaaaceetg etettttttg 3120 ctttccattt gcttggtaaa tattcctcca tccctttatt ttaagcctat gtgtgtcttt 3180 gcacatgaga tgggtctcct gaatacagga caacaatggg tctttactct ttatccaact 3240 tgccagtctg tgtcttttaa ctggggcatt tagcccattt acatttaagt ttagtattgt 3300 tacatgtgaa atttatcctg tcatgatgtt gctagctttt tatttttccc attagtttgc 3360 agtttcttta tagtgtcaat ggtctttaca attcgatatg tttttgtagt ggctggtact 3420 ggtttttcct ttctacgttt agtgtctcct tcaggagctc ttgtaacaca agaatgtgga 3480 tttatttctt gtaaggtaaa tatgtggatt tatttcttgg gactgtattc tatggccttt 3540 accccaagaa tcattacttt ttaaaatgca attcaaatta gcataaaaca tttacagcct 3600 atggaaaggc ttgtggcatt agaatcetta tttataggat tattttgtgt ttttttgaga 3660 tatggtettt gteategagg cagaagtgee gtggtttgat cataatteae caeageeetg 3720 aactettgag tecaageeat eettttgeet taateteeea accagttgga tetgeaggea 3780 taaggcatca tgcgtggcta attttttcac gttttttttt tttttttgtc gagattatgg 3840 tgtcactgtg ttgctctggc tgatctcaaa tgtttgacct caagggatct ttctgccacg 3900 gcctcctaaa gtgctaggat tatatgcatg atacaccatg cctattgtag agtattacat 3960 tattttcaaa gtcttattgt aagagccatt tattgccttt ggcctaaata actcaatata 4020 atatetetga aaettttttt tgacaaattt tggggegtga tgatgagaga agggggtttg 4080 aaactttcta ataagagtta acttagagcc atttaagaaa ggaaaaaaca caaattatca 4140 gaaaaacaac agtaagatca agtgcaaaag ttctgtggca aagatgatga gagtaaagaa 4200 tatatgtttg tgactcatgg tggcttttac tttgttcttg aatttctgag tacgggttaa 4260 catttaaaga atctacatta tagataacat tttattgcaa gtaaatgtat ttcaaaattt 4320 gttattggtt ttgtatgaga ttattctcag cctacttcat tatcaagcta tattatttta 4380 ttaatgtagt tcgatgatct tacagcaaag ctgaaagctg tatcttcaaa atatgtctat 4440 ttgactaaaa agttattcaa caggagttat tatctataaa aaaaatacaa caggaatata 4500 aaaaacttga ggataaaaag atgttggaaa aagtaatatt aaatcttaaa aaacatatgg 4560

```
aaactacaca atggtgaaga cacattggtg aagtacaaaa atataaattg gatctagaag 4620
aaagggcaat gcaggcaata gaaaaattag tagaaatccc tttaaaggtt agtttgtaaa 4680
atcaggtaag titatitata attigctitc attiatitca cigcaaatta tattiiggat 4740
atgtatatat attgtgcttc ctctgcctgt cttacagcaa tttgccttgc agagttctag 4800
gaaaaaggtg gcatgtgttt ttactttcaa aatatttaaa tttccatcat tataacaaaa 4860
tcaatttttc agagtaatga ttctcactgt ggagtcattt gattattaag acccqttqqc 4920
ataagattac atcctctgac tataaaaatc ctggaagaaa acctaggaaa tattcgtctg 4980
gacattgcac ttggcaatga atttatgggt aaccactgat ccacttccag tcactatcca 5040
tgagttttta tttccagata catgaaatca tatgagttga aactttcttt tgattgagca 5100
gtttggaaac cgtctttttg tagaatctgc aagtggatat ttggaaccct ttgaggccta 5160
tgctgaaaaa agaaatatct tcactacatg atgaccacca gcagcagctg gggaaaccag 5220
caccetgtgg aattecatae ggtgeataga atacateete cetteagteg gettgggtea 5280
acttaggtca tgggccacct ggctgatagc agtttccaca gaaatgcttc aagatgaaag 5340
tggatgaccg ggccaccctc caccactgcc ctgtaagacc atgggacaca caggccacca 5400
gttcttttca tgtggtcatc ccctgttaga tgggagaaaa tacacctgcc tcatttttgt 5460
accttctgtg tgaacattcc acggcagact gtcgctaaat gtggatgaag aattgaatga 5520
atgaatgaat atgagagaaa atgaataaat ggttcagatc ctgggctgga aggctgtgta 5580
tgaggatggt gggtagagga gggtctgttt ttcttgcctt taagtcacta attgtcactt 5640
tggggcagga gcacaggctt tgaatgcaga ccgactggac tttaattctg gctttactag 5700
ttgtgattgt gtgaccttgt gaaagttact taaaccctct gtgcctgttt ctttatctgt 5760
aaaatggaga taataagatg tcaaaggact gtggtaagaa ttaaatgctt taaaaaaaaa 5820
aaaaaaaa
<210> 474
<211> 1594
<212> DNA
<213> Homo sapiens
<400> 474
atttatggat cattaatgcc tctttagtag tttagagaaa acgtcaaaag aaatggcccc 60
agaataagct tottgatttg taaaattota tgtcattggc tcaaatttgt atagtatoto 120
aaaatataaa tatatagaca teteagataa tatatttgaa atageaaatt eetgttagaa 180
aataatagta cttaactaga tgagaataac aggtcgccat tatttgaatt gtctcctatt 240
cgtttttcat ttgttgtgtt actcatgttt tacttatgag ggatatatat aacttccact 300
gttttcagaa ttattgtatg cagtcagtat gagaatgcaa tttaagtttc cttgatgctt 360
tttcacactt ctattactag aaataagaat acagtaatat tggcaaagaa aattgaccag 420
ttcaataaaa ttttttagta aatctgattg aaaataaaca ttgcttatgg ctttcttaca 480
tcaatattgt tatgtcctag acaccttatc tgaaattacg gcttcaaaat tctaattatg 540
tgcaaatgtg taaaatatca atactttatg ttcaagctgg ggcctcttca ggcgtcctgg 600
gctgagagag aaagatgcta gctccgcaag ccggagaggg aacaccgcca cattgttaca 660
cggacacacc gccacgtgga cacatgacca gactcacatg tacagacaca cqqaqacatt 720
accacatgga gacaccgtca cacagtcaca cggacacact ggcatagtca catggacgga 780
cacacagaca tatggagaaa tcacatggac acaccaccac actatcacag ggacacagac 840
acacggagac atcaccacat ggacacactg tcacactacc acagggacac gagacatcac 900
actgtcacat ggacacacca tcacacacat gaacacaccg acacactgcc atatggacac 960
tggcacacac actgccacac tgtcacatgg acacacctcc acaccatcac accaccacac 1020
acactgcctg tggacacaag gacacacaga cactgtcaca cagatacaca aaacactgtc 1080
acacggagac atcaccatgc agatacacca ccactctggt gccgtctgaa ttaccctgct 1140
ggggggacag cagtggcata ctcatgccta agtgactggc tttcacccca gtagtgattg 1200
ccctccatca acactgccca ccccaggttg gggctacccc agcccatctt tacaaaacag 1260
ggcaaggtga actaatggag tgggtggagg agttggaaga aatcccagcg tcagtcaccg 1320
ggatagaatt cccaaggaac cctctttttg gaggatggtt tccatttctg gaggcgatct 1380
gccgacaggg tgaatgcctt cttgcttgtc ttctggggaa tcagagagag tccgttttgt 1440
ggtgggaaga gtgtggctgt gtactttgaa ctcctgtaaa ttctctgact catgtccaca 1500
aaaccaacag ttttgtgaat gtgtctggag gcaagggaag ggccactcag gatctatgtt 1560
gaagggaaga ggcctggggc tggagtattc gctt
```

<211> 2414

```
<212> DNA
 <213> Homo sapiens
 <220>
 <221> unsure
 <222> (33)
 <223> n=A,T,C or G
 <400> 475
 cccaacacaa tggctttata agaatgcttc acntgtgaaa aacaaatatc aaagtcttct 60
 tgtagattat ttttaaggac aaatctttat tccatgttta atttatttag ctttccctqt 120
 agctaatatt tcatgctgaa cacattttaa atgctgtaaa tgtagataat gtaatttatg 180
 tatcattaat gcctctttag tagtttagag aaaacgtcaa aagaaatggc cccagaataa 240
gcttcttgat ttgtaaaatt ctatgtcatt ggctcaaatt tgtatagtat ctcaaaatat 300
aaatatatag acatctcaga taatatattt gaaatagcaa attcctgtta gaaaataata 360
gtacttaact agatgagaat aacaggtcgc cattatttga attgtctcct attcgttttt 420
catttgttgt gttactcatg ttttacttat ggggggatat atataacttc cgctgttttc 480
agaagtattg tatgcagtca gtatgagaat gcaatttaag tttccttgat gctttttcac 540
acttctatta ctagaaataa gaatacagta atattggcaa agaaaattga ccagttcaat 600
aaaatttttt agtaaatctg attgaaaata aacattgctt atggctttct tacatcaata 660
ttgttatgtc ctagacacct tatctgaaat tacggcttca aaattctaat tatgtgcaaa 720
tgtgtaaaat atcaatactt tatgttcaag ctggggcctc ttcaggcgtc ctgggctgag 780
agagaaagat gctagctccg caagccgggg agggaacacc gccacattgt tacatggaca 840
caccgccacg tggacacatg accagactca catgtacaga cacacggaga cattaccaca 900
tggagacacc gtcacacagt cacacgagca cactggcata gtcacatgga cggacacaca 960
gacatatgga gaaatcacac tgacacacca ccacactatc acagggacac agacacacgg 1020
agacatcacc acatggacac actgtcacac taccacaggg acacgagaca tcacactgtc 1080
acatggacac accatcacac acatgaacac accgacacac tgccatatgg acactgccac 1140
acacactgcc acactgtcac atggacacac ctccatacca tcacaccacc acacacactg 1200
ccatgtggac acaaggacac acagacactg tcacacagat acacaaaaca ctgtcacacg 1260
gagacatcac catgcagata caccaccaca tggacatagc accagacact ctgccacaca 1320
gatacaccac cacacagaaa tgcggacaca ctgccacaca gacaccacca catcgttgcc 1380
acactttcat gtgtcagctg gcggtgtggg ccccacgact ctgggctcta atcgagaaat 1440
tacttggaca tatagtgaag gcaaaatttt tttttatttt ctgggtaacc aagcgcgact 1500
ctgtctcaaa aaaagaaaaa aaaagcaata tactgtgtaa tcgttgacag cataattcac 1560
tattatgtag atcggagagc agaggattct gaatgcatga acatatcatt aacatttcaa 1620
tacattactc ataattactg atgaactaaa gagaaaccaa gaaattatgg tgatagttat 1680
attgacctgg agaaatgtag acacaaaaga accgtaagat gagaaatgtg ttaacacagt 1740
ctataagggc atgcaagaat aaaaataggg gagaaaacag gagagttttt caagagcttt 1800
ctggtcatgt aagtcaactt gtatcggtta atttttaaaa ggtttattta catgcaataa 1860
actgcacata cttcaattgt acattttggt aattcttggc atttgtagct ctataaaacc 1920
agcaacatat taaaatagca aacatatcca ttacctttac caccaaagtt ttcttgtgtt 1980
ttttctactc actttttcct gcctatcccc ccatctcttc cacaggtaac cactgatcca 2040
cttccagtca ctatccatga gtttttattt ccaaatacat gaaatcatat gaatttctgg 2100
tttttcctgt tggagcccaa ggagcaaggg cagaatgagg aacatgatgt ttcttwccga 2160
cagttactca tgacgtctcc atccaggact gaggggggca tccttctcca tctaggactg 2220
ggggcatect tetecateca gtattggggg teateettet ecatecagta ttgggggtea 2280
tectecteca tecaggaeet gaggggtgte etttetegeg etteettgga tggeagtett 2340
tecetteatg titatagtra ettaceatta aateaetgtg eegttitte etaaaataaa 2400
aaaaaaaaa aaaa
                                                                  2414
<210> 476
<211> 3434
<212> DNA
<213> Homo sapiens
```

<400> 476

ctgtgctgca aatggggcca tatagaggaa aggagcagct ggctctggag catqqtqtqc 60 actecettig ggeetteagt ceatgtetea tgggtegtat gacactgegg gettgttggt 120 tgccaagagg cagaccacag gtcatcttga ggaggacttt atgttccagt ccagaaagca 180 gccagtggta ccacccaggg gacttgtgct tctqtqqccc aqqccaqacq taqaatttqa 240 caaagtcagg acggtctcag tcagagcagc atqtcggtcc ccqqqqcctq tqcatqccqg 300 gcagggccag gctggcttaa ggagcaagca gccacctctg ttaggggtgt gcctggagca 360 ggtggagcag ccaccaacct cacgcactga aagaagcagg gatggccagg ttccaacatc 420 ctgagtggct gccacctgat ggctgatgga gcagaggcct gaggaaaagc agatggcact 480 getttgtagt getgttettt gtetetettg atetttttea gttaatgtet gttttateag 540 agactaggat tgcaaaccct gctctttttt gctttccatt tgcttggtaa atattcctcc 600 atccctttat tttaagccta tgtgtgtctt tgcacatgag atgggtctcc tgaatacagg 660 acaacaatgg gtctttactc tttatccaac ttgccagtct gtgtctttta actggggcat 720 ttagcccatt tacatttaag tttagtattt gttacatgtg aaatttatcc tgtcatgatg 780 ttgctagctt tttatttttc ccattagttt gcagtttctt tatagtgtca atggtcttta 840 caattcgata tgtttttgta gtggctggta ctggtttttc ctttctacgt ttagtgtctc 900 cttcaggagc tcttgtaaca caagaatgtg gatttatttc ttgtaaggta aatatgtgga 960 tttattctgg gactgtattc tatggccttt accccaagaa tcattacttt ttaaaatgca 1020 attcaaatta gcataaaaca tttacagcct atggaaaggc ttgtggcatt agaatcctta 1080 tttataggat tattttgtgt ttttttgaga tatggtcttt gtcatcgagg cagaagtgcc 1140 gtggtttgat cataattcac cacageeetg aactettgag tecaageeat cettttgeet 1200 taatctccca accagttgga tctacaagca taaggcatca tgcgtggcta atttttcac 1260 gtttttttt tttttgtcga gattatggta tcactgtgtt gctctggctg atctcaaatg 1320 tttgacctca agggatcttt ctgccacagc ctcctaaagt gctaggatta tatgcatgat 1380 acaccatgcc tattgtagag tattacatta ttttcaaagt cttattgtaa gagccattta 1440 ttgcctttgg cctaaataac tcaatataat atctctgaaa cttttttttg acaaattttg 1500 gggcgtgatg atgagagaag ggggtttgaa actttctaat aagagttaac ttagagccat 1560 ttaagaaagg aaaaaacaca aattatcaga aaaacaacag taagatcaag tgcaaaagtt 1620 ctgtggcaaa gatgatgaga gtaaagaata tatgtitgtg actcatggtg gcttttactt 1680 tgttcttgaa tttctgagta cgggttaaca tttaaagaat ctacattata gataacattt 1740 tattgcaagt aaatgtattt caaaatttgt tattggtttt gtatgagatt attctcaqcc 1800 tacttcatta tcaagctata ttattttatt aatgtagttc gatgatctta cagcaaagct 1860 gaaagctgta tcttcaaaat atgtctattt gactaaaaag ttattcaaca ggagttatta 1920 tctataaaaa aatacaacag gaatataaaa aacttgagga taaaaagatg ttggaaaaag 1980 taatattaaa tottaaaaaa catatggaaa ctacacaatg gtgaagacac attggtgaag 2040 tacaaaaata taaattggat ctagaagaaa gggcaatgca ggcaatagaa aaattagtag 2100 aaatcccttt aaaggttagt ttgtaaaatc aggtaagttt atttataatt tgctttcatt 2160 tatttcactg caaattatat tttggatatg tatatatatt gtgcttcctc tgcctgtctt 2220 acagcaattt gccttgcaga gttctaggaa aaaggtggca tgtgttttta ctttcaaaat 2280 atttaaattt ccatcattat aacaaaatca atttttcaga gtaatgattc tcactgtgga 2340 gtcatttgat tattaagacc cgttggcata agattacatc ctctgactat aaaaatcctg 2400 gaagaaaacc taggaaatat tegtetggac attgcaettg gcaatgaatt tatgggeget 2460 ttggaatcct gcagatataa taatgataat taaacaaaac actcagagaa actgccaacc 2520 ctaggatgaa gtatattgtt actgtgcttt gggattaaaa taagtaacta cagtttatag 2580 aacttttata ctgatacaca gacactaaaa agggaaaggg tttagatgag aagctctgct 2640 atgcaatcaa gaatctcagc cactcatttc tgtaggggct gcaggagctc cctgtaaaga 2700 gaggttatgg agtctgtagc ttcaggtaag atacttaaaa cccttcagag tttctccatt 2760 ttttcccata gtttccccaa aaaggttatg acactttata agaatgcttc acttgtgaaa 2820 aacaaatatc aaagtettet tgtagattat ttttaaggac aaatetttat tecatqttta 2880 atttatttag ctttccctgt agctaatatt tcatgctgaa cacattttaa atgctgtaaa 2940 tgtagataat gtaatttatg tatcattaat gcctctttag tagtttagag aaaacgtcaa 3000 aagaaatggc cccagaataa gcttcttgat ttgtaaaatt ctatgtcatt ggctcaaatt 3060 tgtatagtat ctcaaaatat aaatatatag acatctcaga taatatattt gaaatagcaa 3120 attectgtta gaaaataata gtaettaaet agatgagaat aacaggtege cattatttga 3180 attgtctcct attcgttttt catttgttgt gttactcatg ttttacttat ggggggatat 3240 atataacttc cgctgttttc agaagtattg tatgcagtca gtatgagaat gcaatttaag 3300. tttccttgat gctttttcac acttctatta ctagaaataa gaatacagta atattggcaa 3360 agaaaattga ccagttcaat aaaatttttt agtaaatctg attgaaaata aaaaaaaaa 3420 aaaaaaaaa aaaa

<210> 477 <211> 140 <212> PRT

<213> Homo sapiens

<400> 477

Met Asp Gly His Thr Asp Ile Trp Arg Asn His Met Asp Thr Pro Pro
5 10 15

His Tyr His Arg Asp Thr Asp Thr Arg Arg His His His Met Asp Thr 20 25 30

Leu Ser His Tyr His Arg Asp Thr Arg His His Thr Val Thr Trp Thr 35 40 45

His His His Thr His Glu His Thr Asp Thr Leu Pro Tyr Gly His Trp 50 55 . 60

His Thr His Cys His Thr Val Thr Trp Thr His Leu His Thr Ile Thr 65 70 75 80

Pro Pro His Thr Leu Pro Val Asp Thr Arg Thr His Arg His Cys His
85 90 95

Thr Asp Thr Gln Asn Thr Val Thr Arg Arg His His His Ala Asp Thr 100 105 110

Pro Pro Leu Trp Cys Arg Leu Asn Tyr Pro Ala Gly Gly Thr Ala Val

Ala Tyr Ser Cys Leu Ser Asp Trp Leu Ser Pro Gln 130 135 140

<210> 478

<211> 143

<212> PRT

<213> Homo sapiens

<400> 478

Met Tyr Arg His Thr Glu Thr Leu Pro His Gly Asp Thr Val Thr Gln $$ $$ $$ $$ $$ 15

Ser His Gly His Thr Gly Ile Val Thr Trp Thr Asp Thr Gln Thr Tyr 20 25 30

Gly Glu Ile Thr Trp Thr His His His Thr Ile Thr Gly Thr Gln Thr 35 40 45

His Gly Asp Ile Thr Thr Trp Thr His Cys His Thr Thr Thr Gly Thr 50 60

Arg Asp Ile Thr Leu Ser His Gly His Thr Ile Thr His Met Asn Thr 65 70 75 80

Pro Thr His Cys His Met Asp Thr Gly Thr His Thr Ala Thr Leu Ser 85 90 95 His Gly His Thr Ser Thr Pro Ser His His His Thr His Cys Leu Trp 100 105 110

Thr Gln Gly His Thr Asp Thr Val Thr Gln Ile His Lys Thr Leu Ser 115 120 125

His Gly Asp Ile Thr Met Gln Ile His His Ser Gly Ala Val 130 135 140

<210> 479

<211> 222

<212> PRT

<213> Homo sapiens

<400> 479

Met Tyr Arg His Thr Glu Thr Leu Pro His Gly Asp Thr Val Thr Gln
5 10 15

Ser His Glu His Thr Gly Ile Val Thr Trp Thr Asp Thr Gln Thr Tyr
20 25 30

Gly Glu Ile Thr Leu Thr His His His Thr Ile Thr Gly Thr Gln Thr 35 40 45

His Gly Asp Ile Thr Thr Trp Thr His Cys His Thr Thr Thr Gly Thr 50 60

Arg Asp Ile Thr Leu Ser His Gly His Thr Ile Thr His Met Asn Thr 65 70 75 80

Pro Thr His Cys His Met Asp Thr Ala Thr His Thr Ala Thr Leu Ser 85 90 95

His Gly His Thr Ser Ile Pro Ser His His His Thr His Cys His Val

Asp Thr Arg Thr His Arg His Cys His Thr Asp Thr Gln Asn Thr Val

Thr Arg Arg His His His Ala Asp Thr Pro Pro His Gly His Ser Thr 130 135 140

Arg His Ser Ala Thr Gln Ile His His His Thr Glu Met Arg Thr His 145 150 155 160

Cys His Thr Asp Thr Thr Thr Ser Leu Pro His Phe His Val Ser Ala 165 170 175

Gly Gly Val Gly Pro Thr Thr Leu Gly Ser Asn Arg Glu Ile Thr Trp 180 185 190

Thr Tyr Ser Glu Gly Lys Ile Phe Phe Tyr Phe Leu Gly Asn Gln Ala 195 200 205

Arg Leu Cys Leu Lys Lys Arg Lys Lys Lys Gln Tyr Thr Val 210 215 220

<210> 480

<211> 144

<212> PRT

<213> Homo sapiens

<400> 480

Met Glu Pro Tyr Arg Gly Asn Glu Gln Pro Ser Gln Glu Gln Gly Val
5 10 15

Cys Cys Leu Trp Gly Leu Gln Ser Leu Pro Gln Gly Ser Tyr Val Thr 20 25 30

Val Gly Phe Leu Val Val Lys Arg Gln Thr Ile Gly Arg Leu Glu Arg
35 40 45

Asp Phe Met Phe Lys Cys Arg Lys Gln Pro Gly Leu Pro Pro Ser Gly 50 55 60

Leu Cys Leu Leu Trp Pro Trp Pro Asn Leu Glu Phe Gly Arg Arg Gln 65 70 75 80

Asp Arg Leu Thr Trp Ser Ser Val Ser Val Ala Gly Val Cys Ala Cys
85 90 95

Arg Ala Arg Pro Gly Trp Leu Gly Glu Gln Pro Ala Thr Ser Ala Gly
100 105 110

Val Arg Leu Glu Gln Val Glu Gln Pro Pro Ala His Pro Leu Gln Glu 115 120 125

Ala Gly Val Ala Arg Phe Pro Arg Pro Glu Trp Val Pro Pro Asn Gly
130 135 140

<210> 481

<211> 167

<212> PRT

<213> Homo sapiens

<400> 481

Met His Gly Pro Gln Val Leu Ala Arg Cys Ser Glu Cys Ala Cys Pro 5 10 15

Ala Leu Ala Ala Thr Ser Ala Gly Val Arg Leu Glu Gly Val Asp Arg
20 25 30

Pro Pro Thr Leu Pro Ser Gln Gly Ser Gly Trp Pro Cys Ser His Ser 35 40 45

Leu Ser Gly Cys His Leu Met Ala Asp Gly Ala Lys Ala Leu Gly Lys 50 55 60

Ala Asp Gly Pro Trp Pro Tyr Leu Phe Val Arg Arg Thr Asp Val Pro

65 70 75 Cys Pro Ala Ala Ser Glu Val Gly Gly Cys Ala Pro Ser Ser Trp Arg Ala Leu Ala Glu Val Thr Gly Cys Ser Leu Gly Pro Leu Gly Leu Ala Gln His Ala Gln Ala Ser Val Leu Leu Cys Tyr Lys Trp Ser His 120 Ile Gly Glu Thr Ser Ser His Leu Arg Ser Lys Val Tyr Ala Ala Phe Gly Gly Ser Ser Pro Cys Leu Lys Gly Leu Met Ser Leu Trp Ala Ser Trp Leu Ser Arg Gly Arg Pro 165 <210> 482 <211> 143 <212> PRT <213> Homo sapiens <400> 482 Met Glu Pro Tyr Arg Gly Asn Lys Lys Gln Val Gln Glu Lys Gly Val Pro Cys Leu Trp Gly Ser Ser Pro Cys Leu Arg Cys His Met Ala Leu Arg Ala Ser Trp Leu Pro Gly Gly Gly Pro Gln Ala Ile Leu Gly Arg Thr Leu Cys Ser Ser Ala Glu Ser Ser Gln Asp Cys His Pro Gly Gly 55 Pro Ser Ile Ala Leu Ala Lys Pro Cys Arg Gly Val Trp Leu Leu Phe Glu Pro Ala Trp Pro Pro Trp His Ala Arg Ala Pro Gly Ala Gly Thr Leu Leu Arg Val Cys Leu Ser Cys Leu Gly Cys His Leu Cys Gly Gly 100 Ala Ser Gly Gly Gly Pro Ala Thr Asn Leu Thr Gln Ser Arg Lys 120 Trp Met Ala Met Phe Pro Gln Pro Glu Trp Leu Pro Pro Asp Gly

135

<210> 483

130

<211> 143

<212> PRT

```
<213> Homo sapiens
```

<400> 483

Met Glu Thr Gln Arg Gly Asn Lys Gln Arg Ala Gln Glu Gln Gly Val

Cys Cys Leu Trp Gly Ser Ser Pro Cys Leu Gly Ser Tyr Gly Thr Ala
20 25 30

Gly Phe Leu Val Ala Lys Arg Arg Thr Thr Gly Leu Leu Glu Glu Asp 35 40 45

Phe Thr Phe Lys Cys Arg Lys Gln Pro Lys Leu Pro Ser Met Arg Leu 50 55 60

Ser Leu Leu Trp Pro Trp Arg Asp Leu Lys Phe Val Pro Arg Gln Asp 65 70 75 80

Lys Leu Thr Arg Ser Ser Val Ser Val Ala Gly Ala Tyr Ala Cys Arg
85 90 95

Ala Gly Pro Gly Trp Leu Lys Glu Gln Pro Ala Thr Ser Ala Arg Val

Arg Leu Val Gln Ala Glu His Pro Pro Pro His Pro Leu Glu Glu Val

Gly Met Ala Arg Phe Pro Gln Pro Glu Cys Leu Pro Pro Tyr Cys 130 135 140

<210> 484

<211> 30

'<212> PRT

<213> Homo Sapien

<400> 484

Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gly Gln Gly Phe 1 5 10 10 15 .

Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile 20 25 30

<210> 485

<211> 31

<212> DNA

. <213> Artificial Sequence

<220>

<223> Made in a lab

<400> 485

gggaagctta tcacctatgt gccgcctctg c

<210> 486

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

```
<223> Made in a lab
      <400> 486
gcgaattctc acgctgagta tttggcc
                                                                       27
      <210> 487
      <211> 36
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 487
cccgaattct tagctgccca tccgaacgcc ttcatc
                                                                       36
      <210> 488
      <211> 33
      <212> DNA
      <213> Artificial Sequence
      <220>
     '<223> Made in a lab
     ·<400> 488
gggaagette tteecegget geaceagetg tge
                                                                       33
    <210> 489
      <211> 19
      <212> PRT
      <213> Artificial Sequence
     <220>
      <223> Made in a lab
     <400> 489
Met Asp Arg Leu Val Gln Arg Phe Gly Thr Arg Ala Val Tyr Leu Ala
1
               5
                                   10
Ser Val Ala
                                      i
      <210> 490
      <211> 20
      <212> PRT
     <213> Artificial Sequence
      <220>
     <223> Made in a lab
     <400> 490
Tyr Leu Ala Ser Val Ala Ala Phe Pro Val Ala Ala Gly Ala Thr Cys
                                  10
Leu Ser His Ser
           20
     <210> 491
      <211> 20
     <212> PRT
```

```
<213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 491
 Thr Cys Leu Ser His Ser Val Ala Val Val Thr Ala Ser Ala Ala Leu
                                 10
 Thr Gly Phe Thr
         20
      <210> 492
      <211> 20
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 492
Ala Leu Thr Gly Phe Thr Phe Ser Ala Leu Gln Ile Leu Pro Tyr Thr
                                 10
Leu Ala Ser Leu
        20
      <210> 493
     <211> 20
     <212> PRT
      <213> Artificial Sequence
     <220>
      <223> Made in a lab
     <400> 493
Tyr Thr Leu Ala Ser Leu Tyr His Arg Glu Lys Gln Val Phe Leu Pro
1
                                  10
Lys Tyr Arg Gly
     <210> 494
     <211> 20
     <212> PRT
     <213> Artificial Sequence
      <220>
     <223> Made in a lab
     <400> 494
Leu Pro Lys Tyr Arg Gly Asp Thr Gly Gly Ala Ser Ser Glu Asp Ser
1
                                 10
Leu Met Ile Ser
     <210> 495
     <211> 20
     <212> PRT
     <213> Artificial Sequence
```

<220>

```
<223> Made in a lab
     <400> 495
Asp Ser Leu Met Thr Ser Phe Leu Pro Gly Pro Lys Pro Gly Ala Pro
Phe Pro Asn Gly
        20
     <210> 496
     <211> 21
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> Made in a lab
     <400> 496
Ala Pro Phe Pro Asn Gly His Val Gly Ala Gly Gly Ser Gly Leu Leu
1 5
                     10
Pro Pro Pro Ala
          20
     <210> 497
     <211> 20
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> Made in a lab
    <400> 497
Leu Leu Pro Pro Pro Pro Ala Leu Cys Gly Ala Ser Ala Cys Asp Val
1
                   . 10
                                                  15
Ser Val Arg Val
         20
     <210> 498
     <211> 20
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> Made in a lab
     <400> 498
Asp Val Ser Val Arg Val Val Val Gly Glu Pro Thr Glu Ala Arg Val
1
                       10
Val Pro Gly Arg
          20
     <210> 499
     <211> 20
     <212> PRT
     <213> Artificial Sequence
     <220>
```

<212> DNA

```
<223> Made in a lab
       <400> 499
Arg Val Val Pro Gly Arg Gly Ile Cys Leu Asp Leu Ala Ile Leu Asp
                                     10
Ser Ala Phe Leu
             20
      <210> 500
      <211> 20
      <212> PRT
      <213> Artificial Sequence
      <223> Made in a lab
      <400> 500
Leu Asp Ser Ala Phe Leu Leu Ser Gln Val Ala Pro Ser Leu Phe Met
Gly Ser Ile Val
            20
      <210> 501
      <211> 20
      <212> PRT
      <213> Artificial Sequence
      <223> Made in a lab
      <400> 501
Phe Met Gly Ser Ile Val Gln Leu Ser Gln Ser Val Thr Ala Tyr Met
 1
                 5
                                     10
                                                         15
Val Ser Ala Ala
            20
      <210> 502
      <211> 414
      <212> DNA
      <213> Homo Sapien
      <220>
      <221> misc feature
      <222> (1) ... (414)
      <223> n = A,T,C or G
      <400> 502
caccatggag acaggcctgc gctggctttt cctggtcgct gtgctcaaag gtgtccaatg
                                                                        60
tcagtcggtg gaggagtccg ggggtcgcct ggtcacgcct gggacacctt tgacantcac
                                                                       120
ctgtagagtt tttggaatng acctcagtag caatgcaatg agctgggtcc gccaggctcc
                                                                       180
agggaagggg ctggaatgga tcggagccat tgataattgt ccacantacg cgacctgggc
                                                                       240
gaaaggccga ttnatnattt ccaaaacctn gaccacggtg gatttgaaaa tgaccagtcc
                                                                       300
gacaaccgag gacacggcca cctatttttg tggcagaatg aatactggta atagtggttq
                                                                       360
gaagaatatt tggggcccag gcaccctggt caccgtntcc tcagggcaac ctaa
                                                                       414
      <210> 503
      <211> 379
```

```
<213> Homo Sapiens
       <220>
       <221> misc_feature
       <222> (1)...(379)
       <223> n = A,T,C or G
       <400> 503
atnogatggt gcttggtcaa aggtgtccag tgtcagtcgg tggaggagtc cgggggtcgc
                                                                         60
ctggtcacgc ctgggacacc cctgacactc acctgcaccg tntctggatt ngacatcagt
                                                                        120
agctatggag tgagctgggt ccgccaggct ccagggaagg ggctggnata catcggatca
                                                                        180
ttagtagtag tggtacattt tacgcgagct gggcgaaagg ccgattcacc atttccaaaa
                                                                        240
cetngaceae ggtggatttg aaaateacea gtttgacaae egaggacaeg gecaectatt
                                                                        300
tntgtgccag aggggggttt aattataaag acatttgggg cccaggcacc ctggtcaccg
                                                                        360
tntccttagg gcaacctaa
                                                                        379
      <210> 504
      <211> 19
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 504
Gly Phe Thr Asn Tyr Thr Asp Phe Glu Asp Ser Pro Tyr Phe Lys Glu
                                     10
Asn Ser Ala
      <210> 505
      <211> 20
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 505
Lys Glu Asn Ser Ala Phe Pro Pro Phe Cys Cys Asn Asp Asn Val Thr
Asn Thr Ala Asn
            20
      <210> 506
      <211> 407
      <212> DNA
      <213> Homo Sapien
      <400> 506
atggagacag gcctgcgctg gcttctcctg gtcgctgcgc tcaaaggtgt ccagtgtcag
                                                                        60
tegetggagg agteeggggg tegeetggte aegeetggga caeccetgae aeteaeetge
                                                                       120
acceptetete gattetecet cagtageaat geaatgatet gggteegeea ggeteeaggg
                                                                       180
aaggggctgg aatacatcgg atacattagt tatggtggta gcgcatacta cgcgagctgg
                                                                       240
gtgaaaggcc gattcaccat ctccaaaacc tcgaccacgg tggatctgag aatgaccagt
                                                                       300
ctgacaaccg aggacacggc cacctatttc tgtgccagaa atagtgattt tagtggtatg
                                                                       360
ttgtggggcc caggcaccct ggtcaccgtc tcctcagggc aacctaa
                                                                       407
```

```
<210> 507
       <211> 422
       <212> DNA
       <213> Homo Sapien
       <400> 507
                                                                        60
 atggagacag gcctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag
                                                                        120
 teggtggagg agteeggggg tegeetggte aegeetggga caeceetgae aeteaeetgt
 acaqtetetq qatteteect cageaactac gacetgaact gggteegeea ggeteeaggg
                                                                        180
 aaggggctgg aatggatcgg gatcattaat tatgttggta ggacggacta cgcgaactgg
                                                                        240
 gcaaaaggcc ggttcaccat ctccaaaacc tcgaccaccg tggatctcaa gatcgccagt
                                                                        300
 ccgacaaccg aggacacggc cacctatttc tgtgccagag ggtggaagtg cgatgagtct
                                                                        360
 ggtccgtgct tgcgcatctg gggcccaggc accctggtca ccgtctcctt agggcaacct
                                                                        420
                                                                        422
       <210> 508
       <211> 411
       <212> DNA
       <213> Homo Sapiens
       <220>
       <221> misc feature
       <222> (1)...(411)
       <223> n = A,T,C or G
       <400> 508
atggagacag gcctcgctgg cttctcctgg tcgctgtgct caaaggtgtc cagtgtcagt
                                                                        60
 cggtggagga gtccgggggt cgcctggtca cgcctgggac acccctgaca ctcacctgca
                                                                        120
 cagtetetgg aategacete agtagetaet geatgagetg ggteegeeag geteeaggga
                                                                        180
 aggggctgga atggatcgga atcattggta ctcctggtga cacatactac gcgaggtggg
                                                                        240
 cgaaaggccg attcaccatc tccaaaacct cgaccacggt gcatntgaaa atcnccagtc
                                                                        300
                                                                        360
 cqacaaccqa qqacacqqcc acctatttct gtgccagaga tcttcgggat ggtagtagta
 ctggttatta taaaatctgg ggcccaggca ccctggtcac cgtctccttg g
                                                                        4.11
       <210> 509
       <211> 15
       <212> PRT
       <213> Artificial Sequence
       <220>
       <223> Made in a lab
       <400> 509
Leu Cys Lys Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Ala Ser
       <210> 510
       <211> 15
      <212> PRT
       <213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 510
Pro Glu Tyr Asn Arg Pro Leu Leu Ala Asn Asp Leu Met Leu Ile
```

```
<210> 511
     <211> 15
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> Made in a lab
     <400> 511
Tyr His Pro Ser Met Phe Cys Ala Gly Gly Gln Asp Gln Lys
     <210> 512
     <211> 15
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> Made in a lab
     <400> 512
Asp Ser Gly Gly Pro Leu Ile Cys Asn Gly Tyr Leu Gln Gly Leu
 1
                       10
     <210> 513
     <211> 15
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> Made in a lab
     <400> 513
Ala Pro Cys Gly Gln Val Gly Val Pro Asx Val Tyr Thr Asn Leu
                          10
   5
     <210> 514
     <211> 15
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> Made in a lab
    <400> 514
Leu Cys Lys Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Ala Ser
1 5
                                10
     <210> 515
     <211> 15
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> Made in a lab
```

```
<400> 515
   Met Val Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg
        5
                                    10
         <210> 516
         <211> 15
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Made in a lab
        <400> 516
   Val Ser Glu Ser Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln
        <210> 517
        <211> 15
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> Made in a lab
        <400> 517
  Glu Val Cys Ser Lys Leu Tyr Asp Pro Leu Tyr His Pro Ser Met
       5 10 15
       <210> 518
       <211> 15
       <212> PRT
       <213> Artificial Sequence
       <220>
       <223> Made in a lab
       <400> 518
 Arg Ala Glu Pro Gly Thr Glu Ala Arg Arg His Tyr Asp Glu Gly
                                  10
       <210> 519
       <211> 17
       <212> PRT
       <213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 519
 Arg Ala Glu Pro Gly Thr Glu Ala Arg Arg Asn Tyr Asp Glu Gly Cys
Gly
      <210> 520
      <211> 25
      <212> PRT
      <213> Artificial Sequence
```

```
<220>
      <223> Made in a lab
     <400> 520
Val Gly Glu Gly Leu Tyr Gln Gly Val Pro Arg Ala Glu Pro Gly Thr
Glu Ala Arg Arg His Tyr Asp Glu Gly
     <210> 521
     <211> 21
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> Made in a lab
     <400> 521
Ala Pro Phe Pro Asn Gly His Val Gly Ala Gly Gly Ser Gly Leu Leu
1 5
Pro Pro Pro Pro Ala
    . 20
     <210> 522
     <211> 20
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> Made in a lab
    <400> 522
Leu Leu Val Val Pro Ala Ile Lys Lys Asp Tyr Gly Ser Gln Glu Asp
1
                              10
Phe Thr Gln Val
          20
     <210> 523
     <211> 254
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> Made in a lab
     <220>
     <221> VARIANT
     <222> (1)...(254)
     <223> Xaa = any amino acid
     <400> 523
Met Ala Thr Ala Gly Asn Pro Trp Gly Trp Phe Leu Gly Tyr Leu Ile
            5 ..
                                10
Leu Gly Val Ala Gly Ser Leu Val Ser Gly Ser Cys Ser Gln Ile Ile
                      25
Asn Gly Glu Asp Cys Ser Pro His Ser Gln Pro Trp Gln Ala Ala Leu
                         40
```

```
Val Met Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln
                            55
    Trp Val Leu Ser Ala Thr His Cys Phe Gln Asn Ser Tyr Thr Ile Gly
                        70
                                            75
    Leu Gly Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met
                                        90
    Val Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro Leu
                100
                                    105
   Leu Ala Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser Glu
                                                        110
                                120
   Ser Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr Ala
                            135
   Gly Asn Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Gly Arg
                                               140
                       150
                                           155
   Met Pro Thr Val Leu Gln Cys Val Asn Val Ser Val Val Ser Glu Glu
                   165
                                       170
   Val Cys Ser Lys Leu Tyr Asp Pro Leu Tyr His Pro Ser Met Phe Cys
               180
                                   185
   Ala Gly Gly Gln Xaa Gln Xaa Asp Ser Cys Asn Gly Asp Ser Gly
           195
                               200
                                                   205
   Gly Pro Leu Ile Cys Asn Gly Tyr Leu Gln Gly Leu Val Ser Phe Gly
                           215
                                               220
   Lys Ala Pro Cys Gly Gln Val Gly Val Pro Gly Val Tyr Thr Asn Leu
                       230
                                          235
  Cys Lys Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Ala Ser
 <210> 524
 <211> 765
 <212> DNA
 <213> Homo sapien
 <400> 524
 atggccacag caggaaatcc ctggggctgg ttcctggggt acctcatcct tggtgtcgca
 ggatcgctcg tctctggtag ctgcagccaa atcataaacg gcgaggactg cagcccgcac
 tegeageest ggcaggegge actggteatg gaaaacgaat tgttetgete gggegteetg
                                                                       120
 gtgcatccgc agtgggtgct gtcagccgca cactgtttcc agaactccta caccatcggg
                                                                       180
 ctgggcctgc acagtcttga ggccgaccaa gagccaggga gccagatggt ggaggccagc
                                                                       240
ctctccgtac ggcacccaga gtacaacaga cccttgctcg ctaacgacct catgctcatc
                                                                       300
aagttggacg aatccgtgtc cgagtctgac accatccgga gcatcagcat tgcttcgcag
                                                                       360
tgccctaccg cggggaactc ttgcctcgtt tctggctggg gtctgctggc gaacggcaga
                                                                       420
atgectaceg tgetgeagtg egtgaaegtg teggtggtgt etgaggaggt etgeagtaag
                                                                       480
ctctatgacc cgctgtacca ccccagcatg ttctgcgccg gcggagggca agaccagaag
                                                                       540
gacteetgea aeggtgacte tggggggeee etgatetgea aegggtactt geagggeett
                                                                       600
gtgtctttcg gaaaagcccc gtgtggccaa gttggcgtgc caggtgtcta caccaacete
                                                                       660
tgcaaattca ctgagtggat agagaaaacc gtccaggcca gttaa
                                                                       720
                                                                       765
<210> 525
<211> 254
<212> PRT
<213> Homo sapien
<400> 525
Met Ala Thr Ala Gly Asn Pro Trp Gly Trp Phe Leu Gly Tyr Leu Ile
                                    10
Leu Gly Val Ala Gly Ser Leu Val Ser Gly Ser Cys Ser Gln Ile Ile
```

Asn Gly Glu Asp Cys Ser Pro His Ser Gln Pro Trp Gln Ala Ala Leu

```
45
Val Met Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln
Trp Val Leu Ser Ala Ala His Cys Phe Gln Asn Ser Tyr Thr Ile Gly
                    70
Leu Gly Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met
                                    90
Val Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro Leu
            100
                                105
                                                    110
Leu Ala Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser Glu
        115
                            120
Ser Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr Ala
    130
                        135
                                            140
Gly Asn Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Gly Arg
145
                    150
                                        155
Met Pro Thr Val Leu Gln Cys Val Asn Val Ser Val Val Ser Glu Glu
                165
                                    170
                                                        175
Val Cys Ser Lys Leu Tyr Asp Pro Leu Tyr His Pro Ser Met Phe Cys
            180
                                185
Ala Gly Gly Gln Asp Gln Lys Asp Ser Cys Asn Gly Asp Ser Gly
        195
                            200
                                                205
Gly Pro Leu Ile Cys Asn Gly Tyr Leu Gln Gly Leu Val Ser Phe Gly
                        215
Lys Ala Pro Cys Gly Gln Val Gly Val Pro Gly Val Tyr Thr Asn Leu
225
                    230
                                        235
Cys Lys Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Ala Ser
                245
                                    250
<210> 526
<211> 963
<212> DNA
<213> Homo sapiens
<400> 526
atgagtteet geaactteac acatgeeace tttgtgetta ttggtateec aggattagag 60
aaagcccatt tctgggttgg cttccccctc ctttccatgt atgtagtggc aatgtttgga 120
aactgcatcg tggtcttcat cgtaaggacg gaacgcagcc tgcacgctcc gatgtacctc 180
tttctctgca tgcttgcagc cattgacctg gccttatcca catccaccat gcctaagatc 240
cttgcccttt tctggtttga ttcccgagag attagctttg aggcctgtct tacccagatg 300
ttetttatte atgecetete agecattgaa tecaccatee tgetggeeat ggeetttgae 360
cgttatgtgg ccatctgcca cccactgcgc catgctgcag tgctcaacaa tacagtaaca 420
gcccagattg gcatcgtggc tgtggtccgc ggatccctct tttttttccc actgcctctg 480
ctgatcaagc ggctggcctt ctgccactcc aatgtcctct cgcactccta ttgtgtccac 540
caggatgtaa tgaagttggc ctatgcagac actttgccca atgtggtata tggtcttact 600
gccattctgc tggtcatggg cgtggacgta atgttcatct ccttgtccta ttttctgata 660
atacgaacgg ttctgcaact gccttccaag tcagagcggg ccaaggcctt tggaacctgt 720
gtgtcacaca ttggtgtggt actcgccttc tatgtgccac ttattggcct ctcagttgta 780
caccgctttg gaaacagcct tcatcccatt gtgcgtgttg tcatgggtga catctacctg 840
ctgctgcctc ctgtcatcaa tcccatcatc tatggtgcca aaaccaaaca gatcagaaca 900
cgggtgctgg ctatgttcaa gatcagctgt gacaaggact tgcaggctgt gggaggcaag 960
tga
                                                                  963
```

<210> 527

<211> 320

<212> PRT

<213> Homo sapiens

<400> 527

- Met Ser Ser Cys Asn Phe Thr His Ala Thr Phe Val Leu Ile Gly Ile 5 10 15
- Pro Gly Leu Glu Lys Ala His Phe Trp Val Gly Phe Pro Leu Leu Ser 20 25 30
- Met Tyr Val Val Ala Met Phe Gly Asn Cys Ile Val Val Phe Ile Val 35 40 45
- Arg Thr Glu Arg Ser Leu His Ala Pro Met Tyr Leu Phe Leu Cys Met 50 55 60
- Leu Ala Ala Ile Asp Leu Ala Leu Ser Thr Ser Thr Met Pro Lys Ile
 65 70 75 80
- Leu Ala Leu Phe Trp Phe Asp Ser Arg Glu Ile Ser Phe Glu Ala Cys 85 90 95
- Leu Thr Gln Met Phe Phe Ile His Ala Leu Ser Ala Ile Glu Ser Thr 100 105 110
- Ile Leu Leu Ala Met Ala Phe Asp Arg Tyr Val Ala Ile Cys His Pro 115 120 125
- Leu Arg His Ala Ala Val Leu Asn Asn Thr Val Thr Ala Gln Ile Gly 130 135 140
- Leu Ile Lys Arg Leu Ala Phe Cys His Ser Asn Val Leu Ser His Ser 165 170 175
 - Tyr Cys Val His Gln Asp Val Met Lys Leu Ala Tyr Ala Asp Thr Leu 180 185 190
 - Pro Asn Val Val Tyr Gly Leu Thr Ala Ile Leu Leu Val Met Gly Val
- Asp Val Met Phe Ile Ser Leu Ser Tyr Phe Leu Ile Ile Arg Thr Val 210 215 220
- Leu Gln Leu Pro Ser Lys Ser Glu Arg Ala Lys Ala Phe Gly Thr Cys 230 235 240
- Val Ser His Ile Gly Val Val Leu Ala Phe Tyr Val Pro Leu Ile Gly 245 250 255
- Leu Ser Val Val His Arg Phe Gly Asn Ser Leu His Pro Ile Val Arg 260 265 270
- Val Val Met Gly Asp Ile Tyr Leu Leu Leu Pro Pro Val Ile Asn Pro 275 280 285
- Ile Ile Tyr Gly Ala Lys Thr Lys Gln Ile Arg Thr Arg Val Leu Ala 290 295 300
- Met Phe Lys Ile Ser Cys Asp Lys Asp Leu Gln Ala Val Gly Gly Lys

```
305
                    310
                                        315
                                                             320
       <210> 528
       <211> 20
       <212> DNA
       <213> Homo Sapien
       <400> 528
 actatggtcc agaggctgtg
                                                                         20
       <210> 529
       <211> 20
       <212> DNA
       <213> Homo Sapien
       <400> 529
 atcacctatg tgccgcctct
                                                                         20
<210> 530
<211> 1852
<212> DNA
<213> Homo sapiens
<400> 530
ggcacgagaa ttaaaaccct cagcaaaaca ggcatagaag ggacatacct taaagtaata 60
aaaaccacct atgacaagcc cacagccaac ataatactaa atggggaaaa gttagaagca 120
tttcctctga gaactgcaac aataaataca aggatgctgg attttgtcaa atgccttttc 180
tgtgtctgtt gagatgctta tgtgactttg cttttaattc tgtttatgtg attatcacat 240
ttattgactt gcctgtgtta gaccggaaga gctggggtgt ttctcaggag ccaccgtgtg 300
ctgcggcagc ttcgggataa cttgaggctg catcactggg gaagaaacac aytcctgtcc 360
gtggcgctga tggctgagga cagagcttca gtgtggcttc tctgcgactg gcttcttcgg 420
ggagttette etteatagtt cateeatatg geteeagagg aaaattatat tattttgtta 480
tggatgaaga gtattacgtt gtgcagatat actgcagtgt cttcatctct tgatgtgtga 540 .
ttgggtaggt tccaccatgt tgccgcagat gacatgattt cagtacctgt gtctggctga 600 %
aaagtgtttg tttgtgaatg gatattgtgg tttctggatc tcatcctctg tgggtggaca 660
gettteteca cettgetgga agtgacetge tgtecagaag tttgatgget gaggagtata 720
ccatcgtgca tgcatctttc atttcctgca tttcttcctc cctggatgga cagggggggc 780
ggcaagagca acgtgggcac ttctggagac cacaacgact cctctgtgaa gacgcttggg 840
agcaagaggt gcaagtqgtg ctgccactqc ttcccctgct gcagggggaq cqgcaaqaqc 900
aacgtggtcg cttggggaga ctacgatgac agcgccttca tggatcccag gtaccacgtc 960
catggagaag atctggacaa gctccacaga gctgcctggt ggggtaaagt ccccagaaag 1020
gateteateg teatgeteag ggacaeggat gtgaacaaga gggacaagea aaagaggaet 1080
getetacate tggeetetge caatgggaat teagaagtag taaaactegt getggacaga 1140
cgatgtcaac ttaatgtcct tgacaacaaa aagaggacag ctctgacaaa ggccgtacaa 1200
tgccaggaag atgaatgtgc gttaatgttg ctggaacatg gcactgatcc aaatattcca 1260
gatgagtatg gaaataccac tctacactat gctgtctaca atgaagataa attaatggcc 1320
aaagcactgc tcttatacgg tgctgatatc gaatcaaaaa acaagcatgg cctcacacca 1380
ctgctacttg gtatacatga gcaaaaacag caagtggtga aatttttaat caagaaaaaa 1440
gcgaatttaa atgcgctgga tagatatgga agaactgctc tcatacttgc tgtatgttgt 1500
ggatcagcaa gtatagtcag ccctctactt gagcaaaatg ttgatgtatc ttctcaagat 1560
ctggaaagac ggccagagag tatgctgttt ctagtcatca tcatgtaatt tgccagttac 1620
tttctgacta caaagaaaaa cagatgttaa aaatctcttc tgaaaacagc aatccagaac 1680
aagacttaaa gctgacatca gaggaagagt cacaaaggct taaaggaagt gaaaacagcc 1740
agccagagct agaagattta tggctattga agaagaatga agaacacgga agtactcatg 1800
tgggattccc agaaaacctg actaacggtg ccgctgctgg caatggtgat ga
<210> 531
<211> 879
```

```
<212> DNA
   <213> Homo sapiens
   <400> 531
  atgcatcttt catttcctgc atttcttcct ccctggatgg acagggggag cggcaagagc 60
  aacgtgggca cttctggaga ccacaacgac tcctctgtga agacgcttgg gagcaagagg 120
  tgcaagtggt gctgccactg cttcccctgc tgcaggggga gcggcaagag caacgtggtc 180
  gcttggggag actacgatga cagcgccttc atggatccca ggtaccacgt ccatggagaa 240
  gatetggaca agetecacag agetgeetgg tggggtaaag teeccagaaa ggateteate 300
  gtcatgctca gggacacgga tgtgaacaag agggacaagc aaaagaggac tgctctacat 360
  ctggcctctg ccaatgggaa ttcagaagta gtaaaactcg tgctggacag acgatgtcaa 420
  cttaatgtcc ttgacaacaa aaagaggaca gctctgacaa aggccgtaca atgccaggaa 480
  gatgaatgtg cgttaatgtt gctggaacat ggcactgatc caaatattcc agatgagtat 540
  ggaaatacca ctctacacta tgctgtctac aatgaagata aattaatggc caaagcactg 600
  ctcttatacg gtgctgatat cgaatcaaaa aacaagcatg gcctcacacc actgctactt 660
  ggtatacatg agcaaaaaca gcaagtggtg aaatttttaa tcaagaaaaa agcgaattta 720
  aatgcgctgg atagatatgg aagaactgct ctcatacttg ctgtatgttg tggatcagca 780
  agtatagtca gccctctact tgagcaaaat gttgatgtat cttctcaaga tctggaaaga 840-
  cggccagaga gtatgctgtt tctagtcatc atcatgtaa
  <210> 532
  <211> 292
  <212> PRT
  <213> Homo sapiens
  <400> 532
 Met His Leu Ser Phe Pro Ala Phe Leu Pro Pro Trp Met Asp Arg Gly
                                      10
 Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp His Asn Asp Ser Ser
 Val Lys Thr Leu Gly Ser Lys Arg Cys Lys Trp Cys Cys His Cys Phe
 Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val Val Ala Trp Gly Asp
                          55
 Tyr Asp Asp Ser Ala Phe Met Asp Pro Arg Tyr His Val His Gly Glu
Asp Leu Asp Lys Leu His Arg Ala Ala Trp Trp Gly Lys Val Pro Arg
Lys Asp Leu Ile Val Met Leu Arg Asp Thr Asp Val Asn Lys Arg Asp
                                105
Lys Gln Lys Arg Thr Ala Leu His Leu Ala Ser Ala Asn Gly Asn Ser
Glu Val Val Lys Leu Val Leu Asp Arg Arg Cys Gln Leu Asn Val Leu
Asp Asn Lys Lys Arg Thr Ala Leu Thr Lys Ala Val Gln Cys Gln Glu
                    150
Asp Glu Cys Ala Leu Met Leu Leu Glu His Gly Thr Asp Pro Asn Ile
                                    170
```

```
Pro Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr Ala Val Tyr Asn Glu
            180
Asp Lys Leu Met Ala Lys Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu
                            200
Ser Lys Asn Lys His Gly Leu Thr Pro Leu Leu Gly Ile His Glu
                        215
Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys Lys Lys Ala Asn Leu
Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu Ile Leu Ala Val Cys
Cys Gly Ser Ala Ser Ile Val Ser Pro Leu Leu Glu Gln Asn Val Asp
                                265
Val Ser Ser Gln Asp Leu Glu Arg Arg Pro Glu Ser Met Leu Phe Leu
                            280
Val Ile Ile Met
    290
<210> 533
<211> 801
<212> DNA
<213> Homo sapiens
<400> 533
atgtacaagc ttcagtgcaa caactgtgct acaaatggag ccacagagag gaaacaagca 60
gcaggetcag gagcagggta tgcgctgcct tcggctctcc aatccatgcc tcagqqctcc 120 🖖
tatgccactg cacgattett ggttgccaag aggccaacca caggccatet tgagaaggaq 180
tttatgttcc actgcagaaa gcagccagga tcaccatcca ggggacttgg tcttctgtgg 240
ccctggccag acatagaatt tgtgccaagg caggacaagc tcactcagag cagcgtgtta 300
gtacctcaaa tctgtgcgtg ccagacaagg ccaaactggc tcaatgagca accagccacc 360
tetgeagggg tgegtetgga ggaggtggae cagecaceaa cettacecag teaaggaagt 420
ggatggccat gttcccacag cctgaqtggc tgccacctga tggctgatat agcaaaqgcc 480
ttaggaaaag cagatggccc ttggccctac ctttttgtta gaagaactga tgttccatgt 540
cctgcagcga gtgaggttgg tggctgtgcc cccagctcct ggcacaccct cgcagaggtq 600
actggttgct ctttgagccc tcttagcctt qcccaqcatq cacaaqcctc aqtqctacta 660
ctgtgctaca aatggagcca tataggggaa acgagcagcc atctcaggag caaggtgtat 720
gctgcctttg ggggctccag tccttgcctc aagggtctta tgtcactgtg ggcttcttgg 780
ttgccaagag gcagaccata g
<210> 534
<211> 266
<212> PRT
<213> Homo sapiens
<400> 534
Met Tyr Lys Leu Gln Cys Asn Asn Cys Ala Thr Asn Gly Ala Thr Glu
```

Arg Lys Gln Ala Ala Gly Ser Gly Ala Gly Tyr Ala Leu Pro Ser Ala

- Leu Gln Ser Met Pro Gln Gly Ser Tyr Ala Thr Ala Arg Phe Leu Val\$35\$ \$40\$ \$45\$
- Ala Lys Arg Pro Thr Thr Gly His Leu Glu Lys Glu Phe Met Phe His 50 55 60
- Cys Arg Lys Gln Pro Gly Ser Pro Ser Arg Gly Leu Gly Leu Leu Trp 65 70 75 80
- Pro Trp Pro Asp Ile Glu Phe Val Pro Arg Gln Asp Lys Leu Thr Gln 85 90 95
- Ser Ser Val Leu Val Pro Gln Ile Cys Ala Cys Gln Thr Arg Pro Asn 100 105 110
- Trp Leu Asn Glu Gln Pro Ala Thr Ser Ala Gly Val Arg Leu Glu Glu 115 120 125
- Val Asp Gln Pro Pro Thr Leu Pro Ser Gln Gly Ser Gly Trp Pro Cys
 130 140
- Ser His Ser Leu Ser Gly Cys His Leu Met Ala Asp Ile Ala Lys Ala 145 150 155 160
- Leu Gly Lys Ala Asp Gly Pro Trp Pro Tyr Leu Phe Val Arg Arg Thr
 165 170 175
- Asp Val Pro Cys Pro Ala Ala Ser Glu Val Gly Gly Cys Ala Pro Ser 180 185 190
- Ser Trp His Thr Leu Ala Glu Val Thr Gly Cys Ser Leu Ser Pro Leu 195 200 205
- Ser Leu Ala Gln His Ala Gln Ala Ser Val Leu Leu Cys Tyr Lys 210 215 220 .
- Trp Ser His Ile Gly Glu Thr Ser Ser His Leu Arg Ser Lys Val Tyr
 225 230 235 240
- Ala Ala Phe Gly Gly Ser Ser Pro Cys Leu Lys Gly Leu Met Ser Leu 245 250 255
- Trp Ala Ser Trp Leu Pro Arg Gly Arg Pro 265
- <210> 535
- <211> 6082
- <212> DNA
- <213> Homo sapiens
- <400> 535
- cetecaetat tacagettat aggaaattae aatecaettt acaggeetea aaggtteatt 60 etggeegage ggacaggegt ggeggeegga geeceageat eeetgettga ggteeaggag 120 eggageeege ggeeaetgee geetgateag egegaeeeeg geeeegeeeg 180
- gcaagatget gcccgtgtac caggaggtga agcccaaccc gctgcaggac gcgaacctct 240 gctcacgcgt gttcttctgg tggctcaatc ccttgtttaa aattggccat aaacggagat 300

tagaggaaga tgatatgtat tcagtgctgc cagaagaccg ctcacagcac cttggagagg 360 agttgcaagg gttctgggat aaagaagttt taagagctga gaatgacgca cagaagcctt 420 ctttaacaag agcaatcata aagtgttact ggaaatctta tttagttttg ggaattttta 480 cgttaattga ggaaagtgcc aaagtaatcc agcccatatt tttgggaaaa attattaatt 540 attttgaaaa ttatgatccc atggattctg tggctttgaa cacagcgtac gcctatgcca 600 cggtgctgac tttttgcacg ctcattttgg ctatactgca tcacttatat ttttatcacg 660 ttcagtgtgc tgggatgagg ttacgagtag ccatgtgcca tatgatttat cggaaggcac 720 ttcgtcttag taacatggcc atggggaaga caaccacagg ccagatagtc aatctgctgt 780 ccaatgatgt gaacaagttt gatcaggtga cagtgttctt acacttcctg tgggcaggac 840 cactgcaggc gatcgcagtg actgccctac tctggatgga gataggaata tcgtgccttg 900 ctgggatggc agttctaatc attctcctgc ccttgcaaag ctgttttggg aagttgttct 960 catcactgag gagtaaaact gcaactttca cggatgccag gatcaggacc atgaatgaag 1020 ttataactgg tataaggata ataaaaatgt acgcctggga aaagtcattt tcaaatctta 1080 ttaccaattt gagaaagaag gagatttcca agattctgag aagttcctgc ctcaggggga 1140 tgaatttggc ttcgtttttc agtgcaagca aaatcatcgt gtttgtgacc ttcaccacct 1200 acgtgctcct cggcagtgtg atcacagcca gccgcgtgtt cgtggcagtg acgctgtatg 1260 gggctgtgcg gctgacggtt accetettet teceetcage cattgagagg gtgtcagagg 1320 caatcgtcag catccgaaga atccagacct ttttgctact tgatgagata tcacagcgca 1380 acceptcaget gcceptcagat ggtaaaaaga tggtgcatgt gcaggatttt actgcttttt 1440 gggataaggc atcagagacc ccaactctac aaggcctttc ctttactgtc agacctggcg 1500 aattgttagc tgtggtegge ceegtgggag cagggaagtc atcactgtta agtgeegtge 1560 teggggaatt ggccccaagt cacgggetgg teagegtgea tggaagaatt gcctatgtgt 1620 acgaaaagga acgatatgaa aaagtcataa aggcttgtgc tctgaaaaag gatttacagc 1740 tgttggagga tggtgatctg actgtgatag gagatcgggg aaccacgctg agtggagggc 1800 agaaagcacg ggtaaacctt gcaagagcag tgtatcaaga tgctgacatc tatctcctgg 1860 acgatectet cagtgcagta gatgcggaag ttagcagaca ettgttegaa etgtgtattt 1920 gtcaaatttt gcatgagaag atcacaattt tagtgactca tcagttgcag tacctcaaag 1980 ctgcaagtca gattctgata ttgaaagatg gtaaaatggt gcagaagggg acttacactg 2040 agttcctaaa atctggtata gattttggct cccttttaaa gaaggataat gaggaaagtg 21.00 : aacaacetee agtteeagga acteecacae taaggaateg taeettetea gagtettegg 2160 tttggtctca acaatcttct agaccctcct tgaaagatgg tgctctggag agccaagata 2220 cagagaatgt cccagttaca ctatcagagg agaaccgttc tgaaggaaaa gttggttttc 2280 . aggectataa gaattactte agagetggtg etcaetggat tgtetteatt tteettatte 2340% tectaaacae tgeageteag gttgeetatg tgetteaaga ttggtggett teatactggg 2400 caaacaaaca aagtatgcta aatgtcactg taaatggagg aggaaatgta accgagaagc 2460 tagatettaa etggtaetta ggaatttatt eaggtttaae tgtagetaee gttetttttg 2520 gcatagcaag atctctattg gtattctacg tccttgttaa ctcttcacaa actttgcaca 2580 acaaaatgtt tgagtcaatt ctgaaagctc cggtattatt ctttgataga aatccaatag 2640 gaagaatttt aaatcgtttc tccaaagaca ttggacactt ggatgatttg ctgccgctga 2700 cgtttttaga tttcatccag acattgctac aagtggttgg tgtggtctct gtggctgtgg 2760 ccgtgattcc ttggatcgca atacccttgg ttccccttgg aatcattttc attttcttc 2820 ggcgatattt tttggaaacg tcaagagatg tgaagcgcct ggaatctaca actcggagtc 2880 cagtgttttc ccacttgtca tcttctctcc aggggctctg gaccatccgg gcatacaaag 2940 cagaagagag gtgtcaggaa ctgtttgatg cacaccagga tttacattca gaggcttggt 3000 tettgttttt gacaacgtcc cgctggttcg ccgtccgtct ggatgccatc tgtgccatgt 3060 ttgtcatcat cgttgccttt gggtccctga ttctggcaaa aactctggat gccgggcagg 3120 ttggtttggc actgtcctat gccctcacgc tcatggggat gtttcagtgg tgtgttcgac 3180 aaagtgctga agttgagaat atgatgatct cagtagaaag ggtcattgaa tacacagacc 3240 ttgaaaaaga agcaccttgg gaatatcaga aacgcccacc accagcctgg ccccatgaag 3300, gagtgataat ctttgacaat gtgaacttca tgtacagtcc aggtgggcct ctggtactga 3360 \ agcatctgac agcactcatt aaatcacaag aaaaggttgg cattgtggga agaaccggag 3420 ctggaaaaag ttccctcatc tcagcccttt ttagattgtc agaacccgaa ggtaaaattt 3480 ggattgataa gatcttgaca actgaaattg gacttcacga tttaaggaag aaaatgtcaa 3540 tcatacctca ggaacctgtt ttgttcactg gaacaatgag gaaaaacctg gatcccttta 3600 atgagcacac ggatgaggaa ctgtggaatg ccttacaaga ggtacaactt aaagaaacca 3660 ttgaagatet.teetggtaaa atggataetg aattageaga ateaggatee aattttagtg 3720 ttggacaaag acaactggtg tgccttgcca gggcaattct caggaaaaat cagatattga 3780

```
ttattgatga agcgacggca aatgtggatc caagaactga tgagttaata caaaaaaaat 3840
  ccgggagaaa tttgcccact gcaccgtgct aaccattgca cacagattga acaccattat 3900
  tgacagcgac aagataatgg ttttagattc aggaagactg aaagaatatg atgagccgta 3960
  tgttttgctg caaaataaag agagcctatt ttacaagatg gtgcaacaac tgggcaaggc 4020
  agaagccgct gccctcactg aaacagcaaa acaggtatac ttcaaaagaa attatccaca 4080
  tattggtcac actgaccaca tggttacaaa cacttccaat ggacagccct cgaccttaac 4140
  tattttcgag acagcactgt gaatccaacc aaaatgtcaa gtccgttccg aaggcatttg 4200
  ccactagttt ttggactatg taaaccacat tgtacttttt tttactttgg caacaaatat 4260
  ttatacatac aagatgctag ttcatttgaa tatttctccc aacttatcca aggatctcca 4320
  gctctaacaa aatggtttat ttttatttaa atgtcaatag ttgtttttta aaatccaaat 4380
  cagaggtgca ggccaccagt taaatgccgt ctatcaggtt ttgtgcctta agagactaca 4440
  gagtcaaagc tcatttttaa aggagtagga cagagttgtc acaggttttt gttgttgttt 4500
  ttattgcccc caaaattaca tgttaatttc catttatatc agggattcta tttacttgaa 4560
  gactgtgaag ttgccatttt gtctcattgt tttctttgac ataactagga tccattattt 4620
  cccctgaagg cttcttgtta gaaaatagta cagttacaac caataggaac aacaaaaaga 4680
  tggatacatg gttaaaggat agaagggcaa tattttatca tatgttctaa aagagaagga 4800
 agagaaaata ctactttctc aaaatggaag cccttaaagg tgctttgata ctgaaggaca 4860
 caaatgtgac cgtccatcct cctttagagt tgcatgactt ggacacggta actgttgcag 4920
 ttttagactc agcattgtga cacttcccaa gaaggccaaa cctctaaccg acattcctga 4980
 aatacgtggc attattettt tttggattte teatttatgg aaggetaace etetgttgac 5040
 tgtaagcett ttggtttggg ctgtattgaa atcettteta aattgcatga ataggetetg 5100
 ctaacgtgat gagacaaact gaaaattatt gcaagcattg actataatta tgcagtacgt 5160.
 totcaggatg catccagggg ttcattttca tgagcctgtc caggttagtt tactcctgac 5220
 cactaatagc attgtcattt gggctttctg ttgaatgaat caacaaacca caatacttcc 5280
 tgggaccttt tgtactttat ttgaactatg agtctttaat ttttcctgat gatggtggct 5340
 gtaatatgtt gagttcagtt tactaaaggt tttactatta tggtttgaag tggagtctca 5400
 tgacctctca gaataaggtg tcacctccct gaaattgcat atatgtatat agacatgcac 5460
 acgtgtgcat ttgtttgtat acatatattt gtccttcgta tagcaagttt tttgctcatc 5520
 agcagagage aacagatgtt ttattgagtg aagcettaaa aagcacacac cacacacage 5580
 taactgccaa aatacattga ccgtagtagc tgttcaactc ctagtactta gaaatacacg 5640.:
 tatggttaat gttcagtcca acaaaccaca cacagtaaat gtttattaat agtcatggtt 5700
 cgtattttag gtgactgaaa ttgcaacagt gatcataatg aggtttgtta aaatgatagc 5760 ...
 tatattcaaa atgtctatat gtttatttgg acttttgagg ttaaagacag tcatataaac 5820*.
 gtoctgtttc tgttttaatg ttatcataga attttttaat gaaactaaat tcaattgaaa 5880
 taaatgatag ttttcatctc caaaaaaaaa aaaaaaaagg gcggccgctc gagtctagag 5940
 ggcccgttta aacccgctga tcagcctcga ctgtgccttc tagttgccag ccatctgttg 6000
 tttgeceete eccegigeet teettgacee tggaaggtge caeteceact gteetteet 6060
 aataaaatga ggaaattgca tc
                                                                  6082
 <210> 536
<211> 6140
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> (4535)
<223> n=A,T,C or G
<400> 536
cagtggcgca gtctcagctc actgcagcct ccacctcctg tgttcaagca gtcctcctgc 60
ctcagccacc agactagcag gtctccccg cctctttctt ggaaggacac ttgccattgg 120
atttaggacc cacttggata atccaggatg atgtcttcac tccaacatcc tcagtttaat 180
tecatgtgca aataccettt teccaaataa catteaatte tttaccagga aaggtggete 240
aatcccttgt ttaaaattgg ccataaacgg agattagagg aagatgatat gtattcagtg 300
ctgccagaag accgctcaca gcaccttgga gaggagttgc aagggttctg ggataaagaa 360
gttttaagag ctgagaatga cgcacagaag ccttctttaa caagagcaat cataaagtgt 420
```

tactggaaat cttatttagt tttgggaatt tttacgttaa ttgaggaaag tgccaaagta 480 atccagccca tatttttggg aaaaattatt aattattttg aaaattatga tcccatggat 540 tctgtggctt tgaacacagc gtacgcctat gccacggtgc tgactttttg cacgctcatt 600 ttggctatac tgcatcactt atatttttat cacgttcagt gtgctgggat gaggttacga 660 gtagccatgt gccatatgat ttatcggaag gcacttcgtc ttagtaacat ggccatgggg 720 aagacaacca caggccagat agtcaatctg ctgtccaatg atgtgaacaa gtttgatcag 780 gtgacagtgt tettacaett cetgtgggca ggaccaetge aggegatege agtqaetgee 840 ctactctgga tggagatagg aatatcgtgc cttgctggga tggcagttct aatcattctc 900 ctgcccttgc aaagctgttt tgggaagttg ttctcatcac tgaggagtaa aactgcaact 960 ttcacggatg ccaggatcag gaccatgaat gaagttataa ctggtataag gataataaaa 1020 atgtacgeet gggaaaagte atttteaaat ettattacea atttgagaaa gaaggagatt 1080 tccaagattc tgagaagttc ctgcctcagg gggatgaatt tggcttcgtt tttcagtgca 1140 agcaaaatca tegtgtttgt gaeetteace acetaegtge teeteggeag tgtgateaca 1200 gccagccgcg tgttcgtggc agtgacgctg tatggggetg tgcggctgac ggttaccctc 1260 ttetteeeet cagecattga gagggtgtea gaggeaateg teageateeg aagaateeag 1320 acctttttgc tacttgatga gatatcacag cgcaaccgtc agctgccgtc agatggtaaa 1380 aagatggtgc atgtgcagga ttttactgct ttttgggata aggcatcaga gaccccaact 1440 ctacaaggcc tttcctttac tgtcagacct ggcgaattgt tagctgtggt cggccccgtg 1500 ggagcaggga agtcatcact gttaagtgcc gtgctcgggg aattggcccc aagtcacggg 1560 ctggtcagcg tgcatggaag aattgcctat gtgtctcagc agccctgggt gttctcggga 1620 actctgagga gtaatatttt atttgggaag aaatacgaaa aggaacgata tgaaaaagtc 1680 ataaaggctt gtgctctgaa aaaggattta cagctgttgg aggatggtga tctgactgtg 1740 ataggagatc ggggaaccac gctgagtgga gggcagaaag cacgggtaaa ccttgcaaga 1800: gcagtgtatc aagatgctga catctatctc ctggacgatc ctctcagtgc agtagatgcg 1860 gaagttagca gacacttgtt cgaactgtgt atttgtcaaa ttttgcatga gaagatcaca 1920 attttagtga ctcatcagtt gcagtacctc aaagctgcaa gtcagattct gatattgaaa 1980 gatggtaaaa tggtgcagaa ggggacttac actgagttcc taaaatctgg tatagatttt 2040 ggctcccttt taaagaagga taatgaggaa agtgaacaac ctccagttcc aggaactccc 2100 acactaagga atcgtacett etcagagtet teggtttggt etcaacaate ttetagacee 2160 tccttgaaag atggtgctct ggagagccaa gatacagaga atgtcccagt tacactatca 2220 gaggagaacc gttctgaagg aaaagttggt tttcaggcct ataagaatta cttcagagct 2280: ggtgctcact ggattgtctt cattttcctt attctcctaa acactgcagc tcaggttgcc 2340 tatgtgcttc aagattggtg gctttcatac tgggcaaaca aacaaagtat gctaaatgtc 2400 🐇 actgtaaatg gaggaggaaa tgtaaccgag aagctagatc ttaactggta cttaggaatt 2460 vtattcaggtt taactgtagc taccgttctt tttggcatag caagatctct attggtattc 2520 tacgtccttg ttaactcttc acaaactttg cacaacaaaa tgtttgagtc aattctgaaa 2580 gctccggtat tattctttga tagaaatcca ataggaagaa ttttaaatcg tttctccaaa 2640 gacattggac acttggatga tttgctgccg ctgacgtttt tagatttcat ccagacattg 2700 ctacaagtgg ttggtgggt ctctgtggct gtggccgtga ttccttggat cgcaataccc 2760 ttggttcccc ttggaatcat tttcattttt cttcggcgat attttttgga aacgtcaaga 2820 gatgtgaagc gcctggaatc tacaactcgg agtccagtgt tttcccactt gtcatcttct 2880 ctccaggggc tctggaccat ccgggcatac aaagcagaag agaggtgtca ggaactgttt 2940 gatgcacacc aggatttaca ttcagaggct tggttcttgt ttttgacaac gtcccgctgg 3000 ttegeegtee gtetggatge catetgtgee atgtttgtea teategttge etttgggtee 3060 ctgattctgg caaaaactct ggatgccggg caggttggtt tggcactgtc ctatgccctc 3120 acgeteatgg ggatgtttea gtggtgtgtt egacaaagtg etgaagttga gaatatgatg 3180 atctcagtag aaagggtcat tgaatacaca gaccttgaaa aagaagcacc ttgggaatat 3240 cagaaacgcc caccaccagc ctggccccat gaaggagtga taatctttga caatgtgaac 3300 ttcatgtaca gtccaggtgg gcctctggta ctgaagcatc tgacagcact cattaaatca 3360 caagaaaagg ttggcattgt gggaagaacc ggagctggaa aaagttccct catctcagcc 3420 ctttttagat tgtcagaacc cgaaggtaaa atttggattg ataagatctt gacaactgaa 3480 attggacttc acgatttaag gaagaaaatg tcaatcatac ctcaggaacc tgttttgttc 3540 actggaacaa tgaggaaaaa cctggatccc tttaatgagc acacggatga ggaactgtgg 3600 aatgccttac aagaggtaca acttaaagaa accattgaag atcttcctgg taaaatggat 3660 actgaattag cagaatcagg atccaatttt agtgttggac aaagacaact ggtgtgcctt 3720 gccagggcaa ttctcaggaa aaatcagata ttgattattg atgaagcgac ggcaaatgtg 3780 gatccaagaa ctgatgagtt aatacaaaaa aaaatccggg agaaatttgc ccactgcacc 3840 gtgctaacca ttgcacacag attgaacacc attattgaca gcgacaagat aatggtttta 3900

1

```
gattcaggaa gactgaaaga atatgatgag ccgtatgttt tgctgcaaaa taaagagaqc 3960
 ctattttaca agatggtgca acaactgggc aaggcagaag ccgctgccct cactgaaaca 4020
 gcaaaacaga gatggggttt caccatgttg gccaggctgg tctcaaactc ctgacctcaa 4080
 gtgatccacc tgccttggcc tcccaaactg ctgagattac aggtgtgagc caccacgccc 4140
 agcctgagta tacttcaaaa gaaattatcc acatattggt cacactgacc acatggttac 4200
 aaacacttcc aatggacagc cctcgacctt aactattttc gagacagcac tgtgaatcca 4260
 accaaaatgt caagtccgtt ccgaaggcat ttgccactag tttttggact atgtaaacca 4320
 cattgtactt ttttttactt tggcaacaaa tatttataca tacaagatgc tagttcattt 4380
 gaatatttct cccaacttat ccaaggatct ccagctctaa caaaatggtt tatttttatt 4440
 taaatgtcaa tagtkgkttt ttaaaatcca aatcagaggt gcaggccacc agttaaatgc 4500
 cgtctatcag gttttgtgcc ttaagagact acagnagtca gaagctcatt tttaaaggag 4560
 taggacagag ttgtcacagg tttttgttgg tgtttktatt gcccccaaaa ttacatgtta 4620
 atttccattt atatcagggg attctattta cttgaagact gtgaagttgc cattttgtct 4680
 cattgttttc tttgacatam ctaggatcca ttatttcccc tgaaggcttc ttgkagaaaa 4740
 tagtacagtt acaaccaata ggaactamca aaaagaaaaa gtttgtgaca ttgtagtagg 4800
gagtgtgtac cccttactcc ccatcaaaaa aaaaaatgga tacatggtta aaggatagaa 4860
gggcaatatt ttatcatatg ttctaaaaga gaaggaagag aaaatactac tttctcaaaa 4920
tggaagccct taaaggtgct ttgatactga aggacacaaa tgtgaccgtc catcctcctt 4980
tagagttgca tgacttggac acggtaactg ttgcagtttt agactcagca ttgtgacact 5040
teccaagaag gecaaacete taacegacat teetgaaata egtggeatta ttettttttg 5100
gatttctcat ttaggaaggc taaccctctg ttgamtgtam kccttttggt ttgggctgta 5160
ttgaaatcct ttctaaattg catgaatagg ctctgctaac cgtgatgaga caaactgaaa 5220
attattgcaa gcattgacta taattatgca gtacgttctc aggatgcatc caggggttca 5280 🕐
ttttcatgag cctgtccagg ttagtttact cctgaccact aatagcattg tcatttgggc 5340
tttctgttga atgaatcaac aaaccacaat acttcctggg accttttgta ctttatttga 5400
actatgagtc tttaattttt cctgatgatg gtggctgtaa tatgttgagt tcagtttact 5460
aaaggtttta ctattatggt ttgaagggag tctcatgacc tctcagaaaa ggtgcacctc 5520
cctgaaattg catatatgta tatagacatg cacacgtgtg catttgtttg tatacatata 5580
tttgtccttc gtatagcaag ttttttgctc atcagcagag agcaacagat gttttattga 5640
gtgaagcett aaaaagcaca caccacaca agctaactge caaaatacat tgaccgtagt 5700 .
agctgttcaa ctcctagtac ttagaaatac acgtatggtt aatgttcagt ccaacaaacc 5760 ::
acacacagta aatgtttatt aatagtcatg gttcgtattt taggtgactg aaattgcaac 5820
agtgatcata atgaggtttg ttaaaatgat agctatattc aaaatgtcta tatgtttatt 5880 - 5
tggacttttg aggttaaaga cagtcatata aacgtcctgt ttctgtttta atgttatcat 5940 🕫
agaatttttt aatgaaacta aattcaattg aaataaatga tagttttcat ctccaaaaaa 6000
aaaaaaaaag ggcggcccgc tcgagtctag agggcccggt ttaaacccgc tgatcagcct 6060
cgactgtgcc ttctagttgc cagccatctg ttgtttggcc ctccccgtg ccttccttga 6120
ccctggaagg ggccactccc
                                                                  6140
<210> 537
<211> 1228
<212> PRT
<213> Homo sapiens
<400> 537
Met Leu Pro Val Tyr Gln Glu Val Lys Pro Asn Pro Leu Gln Asp Ala
Asn Leu Cys Ser Arg Val Phe Phe Trp Trp Leu Asn Pro Leu Phe Lys
                                 25
Ile Gly His Lys Arg Arg Leu Glu Glu Asp Asp Met Tyr Ser Val Leu
         35
Pro Glu Asp Arg Ser Gln His Leu Gly Glu Glu Leu Gln Gly Phe Trp
```

Asp Lys Glu Val Leu Arg Ala Glu Asn Asp Ala Gln Lys Pro Ser Leu

65					70					75					80
Thr	Arg	Ala	Ile	Ile 85	Lys	Cys	Tyr	Trp	Lys 90		Tyr	Leu	Val	Leu 95	Gly
Ile	Phe	Thr	Leu 100	Ile	Glu	Glu	Ser	Ala 105	Lys	Val	Ile	Gln	Pro 110	Ile	Phe
Leu	Gly	Lys 115	Ile	Ile	Asn	Tyr	Phe 120	Glu	Asn	Tyr	Asp	Pro 125	Met	Asp	Ser
Val	Ala 130	Leu	Asn	Thr	Ala	Tyr 135	Ala	Tyr	Ala	Thr	Val 140	Leu	Thr	Phe	Cys
Thr 145	Leu	Ile	Leu	Ala	Ile 150	Leu	His	His	Leu	Tyr 155	Phe	Tyr	His	Val	Gln 160
Cys	Ala	Gly	Met	Arg 165	Leu	Arg	Val	Ala	Met 170	Cys	His	Met	Ile	Tyr 175	Arg
Lys	Ala	Leu	Arg 180	Leu	Ser	Asn	Met	Ala 185	Met	Gly	Lys	Thr	Thr 190	Thr	Gly
Gln	Ile	Val 195	Asn	Leu	Leu	Ser	Asn 200	Asp	Val	Asn	Lys	Phe 205	Asp	Gln	Val
Thr	Val 210	Phe	Leu	His	Phe	Leu 215	Trp	Ala	Gly	Pro	Leu 220	Gln	Ala	Ile	Ala
Val 225	Thr	Ala	Leu	Leu	Trp 230	Met	Glu	Ile	Gly	11e 235	Ser	Cys	Leu	Ala	Gly 240
Met	Ala	Val	Leu	Ile 245	Ile	Leu	Leu	Pro	Leu 250	Gln	Ser	Cys	Phe	Gly 255	Lys
Leu	Phe	Ser	Ser 260	Leu	Arg	Ser	Lys	Thr 265	Ala	Thr	Phe	Thr	Asp 270	Ala	Arg
Ile	Arg	Thr 275	Met	Asn	Glu	Val	Ile 280	Thr	Gly	Ile	Arg	Ile 285	Ile	Lys	Met
Tyr	Ala 290	Trp	Glu	Lys	Ser	Phe 295	Ser	Asn	Leu	Ile	Thr 300	Asn	Leu	Arg	Lys
Lys 305	Glu	Ile	Ser	Lys	Ile 310	Leu	Arg	Ser	Ser	Cys 315	Leu	Arg	Gly	Met	Asn 320
Leu	Ala	Ser	Phe	Phe 325	Ser	Ala	Ser	Lys	Ile 330	Ile	Val	Phe	Val	Thr 335	Phe
Thr	Thr	Tyr	Val 340	Leu	Leu	Gly	Ser	Val 345	Ile	Thr	Ala	Ser	Arg 350	Val	Phe
Val	Ala	Val 355	Thr	Leu	Tyr	Gly	A la 360	Val	Arg	Leu	Thr	Val 365	Thr	Leu	Phe
	Pro 370	Ser	Ala	Ile	Glu	Arg 375	Val	Ser	Glu	Ala	Ile 380	Val	Ser	Ile	Arg

- Arg Ile Gln Thr Phe Leu Leu Leu Asp Glu Ile Ser Gln Arg Asn Arg 385 390 395 400
- Gln Leu Pro Ser Asp Gly Lys Lys Met Val His Val Gln Asp Phe Thr 405 410 415
- Ala Phe Trp Asp Lys Ala Ser Glu Thr Pro Thr Leu Gln Gly Leu Ser 420 425 430
- Phe Thr Val Arg Pro Gly Glu Leu Leu Ala Val Val Gly Pro Val Gly 435
- Ala Gly Lys Ser Ser Leu Leu Ser Ala Val Leu Gly Glu Leu Ala Pro
 450 455 460
- Ser His Gly Leu Val Ser Val His Gly Arg Ile Ala Tyr Val Ser Gln 465 470 475 480
- Gln Pro Trp Val Phe Ser Gly Thr Leu Arg Ser Asn Ile Leu Phe Gly 485 490 495
- Lys Lys Tyr Glu Lys Glu Arg Tyr Glu Lys Val Ile Lys Ala Cys Ala 500 505 510
- Leu Lys Lys Asp Leu Gln Leu Leu Glu Asp Gly Asp Leu Thr Val Ile
 515 520 525
- Gly Asp Arg Gly Thr Thr Leu Ser Gly Gly Gln Lys Ala Arg Val Asn 530 540
- Leu Ala Arg Ala Val Tyr Gln Asp Ala Asp Ile Tyr Leu Leu Asp Asp 555 560
- Pro Leu Ser Ala Val Asp Ala Glu Val Ser Arg His Leu Phe Glu Leu 565 575
- Cys Ile Cys Gln Ile Leu His Glu Lys Ile Thr Ile Leu Val Thr His 580 585 590
- Gln Leu Gln Tyr Leu Lys Ala Ala Ser Gln Ile Leu Ile Leu Lys Asp 595 600 605
- Gly Lys Met Val Gln Lys Gly Thr Tyr Thr Glu Phe Leu Lys Ser Gly 610 615 620
- Ile Asp Phe Gly Ser Leu Leu Lys Lys Asp Asn Glu Glu Ser Glu Gln 625 630 635 640
- Pro Pro Val Pro Gly Thr Pro Thr Leu Arg Asn Arg Thr Phe Ser Glu 645 650 655
- Ser Ser Val Trp Ser Gln Gln Ser Ser Arg Pro Ser Leu Lys Asp Gly
 660 665 670
- Ala Leu Glu Ser Gln Asp Thr Glu Asn Val Pro Val Thr Leu Ser Glu 675 680 685

Glu Asn Arg Ser Glu Gly Lys Val Gly Phe Gln Ala Tyr Lys Asn Tyr 695 Phe Arg Ala Gly Ala His Trp Ile Val Phe Ile Phe Leu Ile Leu Leu Asn Thr Ala Ala Gln Val Ala Tyr Val Leu Gln Asp Trp Trp Leu Ser Tyr Trp Ala Asn Lys Gln Ser Met Leu Asn Val Thr Val Asn Gly Gly Gly Asn Val Thr Glu Lys Leu Asp Leu Asn Trp Tyr Leu Gly Ile Tyr 760 Ser Gly Leu Thr Val Ala Thr Val Leu Phe Gly Ile Ala Arg Ser Leu Leu Val Phe Tyr Val Leu Val Asn Ser Ser Gln Thr Leu His Asn Lys Met Phe Glu Ser Ile Leu Lys Ala Pro Val Leu Phe Phe Asp Arg Asn 805 Pro Ile Gly Arg Ile Leu Asn Arg Phe Ser Lys Asp Ile Gly His Leu 825 Asp Asp Leu Leu Pro Leu Thr Phe Leu Asp Phe Ile Gln Thr Leu Leu 835 840 Gln Val Val Gly Val Val Ser Val Ala Val Ala Val Ile Pro Trp Ile Ala Ile Pro Leu Val Pro Leu Gly Ile Ile Phe Ile Phe Leu Arg Arg 875 Tyr Phe Leu Glu Thr Ser Arg Asp Val Lys Arg Leu Glu Ser Thr Thr Arg Ser Pro Val Phe Ser His Leu Ser Ser Ser Leu Gln Gly Leu Trp 900 Thr Ile Arg Ala Tyr Lys Ala Glu Glu Arg Cys Gln Glu Leu Phe Asp 920 Ala His Gln Asp Leu His Ser Glu Ala Trp Phe Leu Phe Leu Thr Thr 930 Ser Arg Trp Phe Ala Val Arg Leu Asp Ala Ile Cys Ala Met Phe Val 955 Ile Ile Val Ala Phe Gly Ser Leu Ile Leu Ala Lys Thr Leu Asp Ala Gly Gln Val Gly Leu Ala Leu Ser Tyr Ala Leu Thr Leu Met Gly Met

Phe Gln Trp Cys Val Arg Gln Ser Ala Glu Val Glu Asn Met Met Ile

995 1000 1005

Ser Val Glu Arg Val Ile Glu Tyr Thr Asp Leu Glu Lys Glu Ala Pro 1010 1015 1020

Trp Glu Tyr Gln Lys Arg Pro Pro Pro Ala Trp Pro His Glu Gly Val 1025 1030 1035 1040

Ile Ile Phe Asp Asn Val Asn Phe Met Tyr Ser Pro Gly Gly Pro Leu 1045 1050 1055

Val Leu Lys His Leu Thr Ala Leu Ile Lys Ser Gln Glu Lys Val Gly 1060 1065 1070

Ile Val Gly Arg Thr Gly Ala Gly Lys Ser Ser Leu Ile Ser Ala Leu 1075 1080 1085

Phe Arg Leu Ser Glu Pro Glu Gly Lys Ile Trp Ile Asp Lys Ile Leu 1090 1095 1100

Thr Thr Glu Ile Gly Leu His Asp Leu Arg Lys Lys Met Ser Ile Ile 1105 1110 1115 1120

Pro Gln Glu Pro Val Leu Phe Thr Gly Thr Met Arg Lys Asn Leu Asp 1125 1130 1135

Pro Phe Asn Glu His Thr Asp Glu Glu Leu Trp Asn Ala Leu Gln Glu 1140 1145 1150

Val Gln Leu Lys Glu Thr Ile Glu Asp Leu Pro Gly Lys Met Asp Thr 1155 1160 1165

Glu Leu Ala Glu Ser Gly Ser Asn Phe Ser Val Gly Gln Arg Gln Leu 1170 1175 1180

Val Cys Leu Ala Arg Ala Ile Leu Arg Lys Asn Gln Ile Leu Ile Ile 1185 1190 1195 1200

Asp Glu Ala Thr Ala Asn Val Asp Pro Arg Thr Asp Glu Leu Ile Gln 1205 1210 1215

Lys Lys Ser Gly Arg Asn Leu Pro Thr Ala Pro Cys 1220 1225

<210> 538

<211> 1261

<212> PRT

<213> Homo sapiens

<400> 538

Met Tyr Ser Val Leu Pro Glu Asp Arg Ser Gln His Leu Gly Glu Glu 5 10 15

Leu Gln Gly Phe Trp Asp Lys Glu Val Leu Arg Ala Glu Asn Asp Ala
20 25 30

Gln Lys Pro Ser Leu Thr Arg Ala Ile Ile Lys Cys Tyr Trp Lys Ser

WO 01/34802 PCT/US00/30904

Tyr Leu Val Leu Gly Ile Phe Thr Leu Ile Glu Glu Ser Ala Lys Val Ile Gln Pro Ile Phe Leu Gly Lys Ile Ile Asn Tyr Phe Glu Asn Tyr Asp Pro Met Asp Ser Val Ala Leu Asn Thr Ala Tyr Ala Tyr Ala Thr Val Leu Thr Phe Cys Thr Leu Ile Leu Ala Ile Leu His His Leu Tyr Phe Tyr His Val Gln Cys Ala Gly Met Arg Leu Arg Val Ala Met Cys His Met Ile Tyr Arg Lys Ala Leu Arg Leu Ser Asn Met Ala Met Gly Lys Thr Thr Gly Gln Ile Val Asn Leu Leu Ser Asn Asp Val Asn 155 Lys Phe Asp Gln Val Thr Val Phe Leu His Phe Leu Trp Ala Gly Pro 170 Leu Gln Ala Ile Ala Val Thr Ala Leu Leu Trp Met Glu Ile Gly Ile Ser Cys Leu Ala Gly Met Ala Val Leu Ile Ile Leu Leu Pro Leu Gln 200 Ser Cys Phe Gly Lys Leu Phe Ser Ser Leu Arg Ser Lys Thr Ala Thr 210 215 Phe Thr Asp Ala Arg Ile Arg Thr Met Asn Glu Val Ile Thr Gly Ile 235 Arg Ile Ile Lys Met Tyr Ala Trp Glu Lys Ser Phe Ser Asn Leu Ile Thr Asn Leu Arg Lys Lys Glu Ile Ser Lys Ile Leu Arg Ser Ser Cys Leu Arg Gly Met Asn Leu Ala Ser Phe Phe Ser Ala Ser Lys Ile Ile Val Phe Val Thr Phe Thr Thr Tyr Val Leu Leu Gly Ser Val Ile Thr 295 Ala Ser Arg Val Phe Val Ala Val Thr Leu Tyr Gly Ala Val Arg Leu 305 Thr Val Thr Leu Phe Pro Ser Ala Ile Glu Arg Val Ser Glu Ala 330 Ile Val Ser Ile Arg Arg Ile Gln Thr Phe Leu Leu Asp Glu Ile 345

Ser	Glr	355		a Arg	g Gln	Lei	360		Asp	Gly	/ Lys	365		. Val	His
Val	Gln 370		Phe	Thr	Ala	Phe 375) Asp	Lys	ala	Ser 380		Thr	Pro	Thi
Leu 385		Gly	. Leu	Ser	Phe 390		Val	. Arg	Pro	Gly 395		. Lev	. Leu	ı Ala	Val
Val	Gly	Pro	Val	Gly 405	Ala	Gly	Lys	Ser	Ser 410		. Leu	Ser	Ala	Val 415	
Gly	Glu	Leu	Ala 420		Ser	His	Gly	Leu 425		Ser	Val	His	Gly 430	_	Ile
Ala	Tyr	Val 435		Gln	Gln	Pro	Trp 440		Phe	Ser	Gly	Thr 445		Arg	Ser
Asn	Ile 450		Phe	Gly	Lys	Lys 455	-	Glu	Lys	Glu	Arg 460	_	Glu	Lys	Val
11e 465	Lys	Ala	Cys	Ala	Leu 470	Lys	Lys	Asp	Leu	Gln 475		Leu	Glu	Asp	Gly 480
Asp	Leu	Thr	Val	Ile 485	Gly	Asp	Arg	Gly	Thr 490	Thr	Leu	Ser	Gly	Gly 495	
Lys	Ala	Arg	Val 500	Asn	Leu	Ala	Arg	Ala 505	Val	Tyr	Gln	Asp	Ala 510	Asp	Ile
Tyr		Leu 515	Asp	Asp	Pro	Leu	Ser 520	Ala	Val	Asp	Ala	Glu 525	Val	Ser	Arg
His	Leu 530	Phe	Glu	Leu	Cys	Ile 535	Cys	Gln	Ile	Leu	His 540	Glu	Lys	Ile	Thr
Ile 545	Leu	Val	Thr	His	Gln 550	Leu	Gln	Tyr	Leu	Lys 555	Ala	Ala	Ser	Gln	Ile 560
Leu	Ile	Leu	Lys	Asp 565	Gly	Lys	Met	Val	Gln 570	Lys	Gly	Thr	Tyr	Thr 575	Glu
Phe	Leu	Lys	Ser 580	Gly	Ile	Asp	Phe	Gly 585	Ser	Leu	Leu	Lys	Lys 590	Asp	Asn
Glu	Glu	Ser 595	Glu	Gln	Pro	Pro	Val 600	Pro	Gly	Thr	Pro	Thr 605	Leu	Arg	Asn
Arg	Thr 610	Phe	Ser	Glu	Ser	Ser 615	Val	Trp	Ser	Gln	Gln 620	Ser	Ser	Arg	Pro
Ser 625	Leu	Lys	Asp	Gly	Ala 630	Leu	Glu	Ser	Gln	Asp 635	Thr	Glu	Asn	Val	Pro 640
Val	Thr	Leu	Ser	Glu 645	Glu	Asn	Arg	Ser	Glu 650	Gly	Lys	Val	Gly	Phe 655	Gln

Ala Tyr Lys Asn Tyr Phe Arg Ala Gly Ala His Trp Ile Val Phe Ile

			660					665					670	ı	
Phe	Leu	Ile 675		Leu	Asn	Thr	Ala 680		Gln	Val	Ala	Tyr 685		Leu	Glr
Asp	Trp 690	Trp	Leu	Ser	Tyr	Trp 695		Asn	Lys	Gln	Ser 700		Leu	Asn	Va]
Thr 705	Val	Asn	Gly	Gly	Gly 710	Asn	Val	Thr	Glu	Lys 715		Asp	Leu	Asn	Trp 720
Tyr	Leu	Gly	Ile	Tyr 725		Gly	Leu	Thr	Val 730		Thr	Val	Leu	Phe 735	Gl
Ile	Ala	Arg	Ser 740	Leu	Leu	Val	Phe	Tyr 745	Val	Leu	Val	Asn	Ser 750	Ser	Glr
Thr	Leu	His 755	Asn	Lys	Met	Phe	Glu 760		Ile	Leu	Lys	Ala 765	Pro	Val	Leu
Phe	Phe 770	Asp	Arg	Asn	Pro	Ile 775	Gly	Arg	Ile	Leu	Asn 780	Arg	Phe	Ser	Lys
Asp 785	Ile	Gly	His	Leu	Asp 790	Asp	Leu	Leu	Pro	Leu 795	Thr	Phe	Leu	Asp	Phe 800
Ile	Gln	Thr	Leu	Leu 805	Gln	Val	Val	Gly	Val 810	Val	Ser	Val	Ala	Val 815	Ala
Val	Ile	Pro	Trp 820	Ile	Ala	Ile	Pro	Leu 825	Val	Pro	Leu	Gly	Ile 830	Ile	Phe
Ile	Phe	Leu 835	Arg	Arg	Tyr	Phe	Leu 840	Glu	Thr	Ser	Arg	Asp 845	Val	Lys	Arg
Leu	Glu 850	Ser	Thr	Thr	Arg	Ser 855	Pro	Val	Phe	Ser	His 860	Leu	Ser	Ser	Ser
Leu 865	Gln	Gly	Leu	Trp	Thr 870	Ile	Arg	Ala	Tyr	Lys 875	Ala	Glu	Glu	Arg	Cys 880
Gln	Glu	Leu	Phe	Asp 885	Ala	His	Gln	Asp	Leu 890	His	Ser	Glu	Ala	Trp 895	Phe
Leu	Phe	Leu	Thr 900	Thr	Ser	Arg	Trp	Phe 905	Ala	Val	Arg	Leu	Asp 910	Ala	Ile
Cys	Ala	Met 915	Phe	Val	Ile	Ile	Val 920	Ala	Phe	Gly	Ser	Leu 925	Ile	Leu	Ala
Lys	Thr 930	Leu	Asp	Ala	Gly	Gln 935	Val	Gly	Leu	Ala	Leu 940	Ser	Tyr	Ala	Leu
Thr 945	Leu	Met	Gly	Met	Phe 950	Gln	Trp	Cys	Val	Arg 955	Gln	Ser	Ala	Glu	Val 960
Glu	Asn	Met	Met	Ile 965	Ser	Val	Glu	Arg	Val 970	Ile	Glu	Tyr	Thr	Asp 975	Leu

- Glu Lys Glu Ala Pro Trp Glu Tyr Gln Lys Arg Pro Pro Pro Ala Trp 980 985 990
- Pro His Glu Gly Val Ile Ile Phe Asp Asn Val Asn Phe Met Tyr Ser 995 1000 1005
- Pro Gly Gly Pro Leu Val Leu Lys His Leu Thr Ala Leu Ile Lys Ser 1010 1015 1020
- Gln Glu Lys Val Gly Ile Val Gly Arg Thr Gly Ala Gly Lys Ser Ser 1025 1030 1035 1040
- Leu Ile Ser Ala Leu Phe Arg Leu Ser Glu Pro Glu Gly Lys Ile Trp 1045 1050 1055
- Ile Asp Lys Ile Leu Thr Thr Glu Ile Gly Leu His Asp Leu Arg Lys 1060 1065 1070
- Lys Met Ser Ile Ile Pro Gln Glu Pro Val Leu Phe Thr Gly Thr Met 1075 1080 1085
- Arg Lys Asn Leu Asp Pro Phe Asn Glu His Thr Asp Glu Glu Leu Trp 1090 1095 1100
- Asn Ala Leu Gln Glu Val Gln Leu Lys Glu Thr Ile Glu Asp Leu Pro 1105 1110 1115 1120
- Gly Lys Met Asp Thr Glu Leu Ala Glu Ser Gly Ser Asn Phe Ser Val 1125 1130 1135
- Gly Gln Arg Gln Leu Val Cys Leu Ala Arg Ala Ile Leu Arg Lys Asn 1140 1145 1150
- Gln Ile Leu Ile Ile Asp Glu Ala Thr Ala Asn Val Asp Pro Arg Thr 1155 1160 1165
- Asp Glu Leu Ile Gln Lys Lys Ile Arg Glu Lys Phe Ala His Cys Thr 1170 1175 1180
- Val Leu Thr Ile Ala His Arg Leu Asn Thr Ile Ile Asp Ser Asp Lys 1185 1190 1195 1200
- Ile Met Val Leu Asp Ser Gly Arg Leu Lys Glu Tyr Asp Glu Pro Tyr 1205 1210 1215
- Val Leu Leu Gln Asn Lys Glu Ser Leu Phe Tyr Lys Met Val Gln Gln 1220 1225 1230
- Leu Gly Lys Ala Glu Ala Ala Leu Thr Glu Thr Ala Lys Gln Arg 1235 1240 1245
- Trp Gly Phe Thr Met Leu Ala Arg Leu Val Ser Asn Ser 1250 1255 1260
- <210> 539
- <211> 10
- <212> PRT

```
<213> Artificial Sequence
<220>
<223> Made in a lab
<400> 539
Cys Leu Ser His Ser Val Ala Val Val Thr
               5
<210> 540
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Made in a lab
<400> 540
Ala Val Val Thr Ala Ser Ala Ala Leu
 1
                 5
<210> 541
<211> 14
<212> PRT
<213> Homo sapiens
<400> 541
Leu Ala Gly Leu Leu Cys Pro Asp Pro Arg Pro Leu Glu Leu
                  5
                                     10
<210> 542
<211> 15
<212> PRT
<213> Homo sapiens
<400> 542
Thr Gln Val Val Phe Asp Lys Ser Asp Leu Ala Lys Tyr Ser Ala
                  5
                                    10
<210> 543
<211> 12
<212> PRT
<213> Homo sapiens
<400> 543
Phe Met Gly Ser Ile Val Gln Leu Ser Gln Ser Val
<210> 544
<211> 18
<212> PRT
<213> Homo sapiens
<400> 544
Thr Tyr Val Pro Pro Leu Leu Glu Val Gly Val Glu Glu Lys Phe
```

5 10 15

Met Thr

<210> 545

<211> 18

<212> PRT

<213> Homo sapiens

<400> 545

Met Asp Arg Leu Val Gln Arg Phe Gly Thr Arg Ala Val Tyr Leu Ala

Ser Val

<210> 546

<211> 29

<212> PRT

<213> Homo sapiens

<400> 546

Phe Val Gly Glu Gly Leu Tyr Gln Gly Val Pro Arg Ala Glu Pro Gly

5 10 15

Thr Glu Ala Arg Arg His Tyr Asp Glu Gly Val Arg Met

<210> 547

<211> 58

<212> PRT

<213> Homo sapiens

<400> 547

Val Ala Glu Glu Ala Ala Leu Gly Pro Thr Glu Pro Ala Glu Gly Leu
5 10 15

Ser Ala Pro Ser Leu Ser Pro His Cys Cys Pro Cys Arg Ala Arg Leu 20 25 30

Ala Phe Arg Asn Leu Gly Ala Leu Leu Pro Arg Leu His Gln Leu Cys
35 40 45

Cys Arg Met Pro Arg Thr Leu Arg Arg Leu 50 55

<210> 548

<211> 18

<212> PRT

<213> Homo sapiens

<400> 548

Ile Asp Trp Asp Thr Ser Ala Leu Ala Pro Tyr Leu Gly Thr Gln Glu

5 10 15

Glu Cys

<210> 549

<211> 18

<212> PRT

<213> Homo sapiens

<400> 549

Leu Glu Ala Leu Leu Ser Asp Leu Phe Arg Asp Pro Asp His Cys Arg 5

Gln Ala

<210> 550

<211> 14

<212> PRT

<213> Homo sapiens

Ser Asp His Trp Arg Gly Arg Tyr Gly Arg Arg Arg Pro Phe

<210> 551

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 551

Phe Asp Lys Ser Asp Leu Ala Lys Tyr Ser Ala

Z,