LATEX TEMPLATE FOR GITHUB

PETRO KOLOSOV

1. Definitions

ams math Goldbach conjecture states that every even integer N greater than 2 is a sum of two primes.

$$N = p_i + p_i$$

where (p_i, p_j) is called Goldbach pair.

Goldbach pair is not unique for some even integers, meaning that there can be multiple goldbach pairs for even integer N.

For example: 10 = 3 + 7 and 10 = 5 + 5 and 10 = 7 + 3 where goldbach pairs are (3,7), (5,5), (7,3).

Minimal goldbach pair is the pair having minimal p_i across all goldbach pairs for even integer N.

For even integer 10 we have three pairs (3,7), (5,5), (7,3) while the minimal is (3,7) because 3 is the minimal value in the p_i set: 3,5,7

1.1. Function F. $F_n(P)$ counts the number of minimal goldbach pairs (p_i, p_j) such that $p_i = P$ within the interval $6 \le k \le n$, where P is a prime. For example, consider the case $F_{20}(3)$. First, we get a set of minimal goldbach pairs within the range $6 \le k \le 20$, that is $\frac{1}{2}$ Date: April 17, 2025.

$$6 = 3 + 3,$$

 $8 = 3 + 5,$
 $10 = 3 + 7,$
 $12 = 5 + 7,$
 $14 = 3 + 11,$
 $16 = 3 + 13,$
 $18 = 5 + 13,$

Therefore, the function $F_{20}(3)$ gives 6 because there are only six minimal goldbach pairs (p_i, p_j) such that $p_i = 3$, that are:

20 = 3 + 17

$$6 = 3 + 3,$$

 $8 = 3 + 5,$
 $10 = 3 + 7,$
 $14 = 3 + 11,$
 $16 = 3 + 13,$
 $20 = 3 + 17$

What is also interesting to notice, is that p_j in the example above produces the consecutive sequence of prime numbers, $p_j = 3, 5, 7, 11, 13, 17...$ In general, for every $n \ge 2$

$$\pi(n) = F_{n+3}(3) + 1$$

References