3. Espaços topológicos

- **3.1.** Definição. Seja X um conjunto. Chamaremos de topologia em X uma família τ de subconjuntos de X com as seguintes propriedades:
 - (a) \emptyset e X pertencem a τ .
 - (b) A união de uma família arbitrária de membros de τ pertence a τ .
 - (c) A interseção de uma família finita de membros de τ pertence a τ .

Os membros de τ são chamados de *abertos*. O par (X, τ) é chamado de *espaço topológico*. Com freqüência diremos que X é um espaço topológico.

3.2. Exemplos.

- (a) Se (X,d) é um espaço métrico, então segue da Proposição 2.6 que os abertos de (X,d) formam uma topologia τ_d em X.
 - (b) Se $X = \mathbf{R}^n$, então a topologia τ_d dada pela métrica euclideana

$$d(x,y) = \sqrt{\sum_{j=1}^{n} (x_j - y_j)^2}$$

é chamada de topologia usual.

- (c) Seja X um conjunto qualquer, e seja τ a família de todos os subconjuntos de X. Claramente τ é uma topologia em X, chamada de topologia discreta.
- (d) Seja X um conjunto qualquer, e seja $\tau=\{\emptyset,X\}$. Claramente τ é uma topologia em X, chamada de topologia trivial.
- **3.3. Definição.** Diremos que um espaço topológico (X, τ) é *metrizável* se existir uma métrica d em X tal que $\tau = \tau_d$.

Notemos que a topologia discreta é sempre metrizável, e vem dada pela métrica discreta.

3.4. Definição. Dadas duas topologias τ_1 e τ_2 num conjunto X, diremos que τ_1 é mais fraca que τ_2 , ou que τ_2 é mais forte que τ_1 , ou que τ_2 é mais fina que τ_1 se $\tau_1 \subset \tau_2$.

A topologia trivial em X é mais fraca que qualquer outra topologia em X. A topologia discreta em X é mais fina que qualquer outra topologia em X.

- **3.5.** Definição. Seja X um espaço topológico. Diremos que um conjunto $F \subset X$ é fechado se $X \setminus F$ é aberto.
 - **3.6.** Proposição. Seja X um espaço topológico. Então:
 - (a) $X \in \emptyset$ são fechados.
 - (b) A interseção de uma família arbitrária de fechados é um fechado.
 - (c) A união de uma família finita de fechados é um fechado.

Demonstração. Basta aplicar as leis de de Morgan.

Reciprocamente temos:

- **3.7.** Proposição. Seja X um conjunto, e seja \mathcal{F} uma família de subconjuntos de X com as seguintes propriedades:
 - (a) $X \in \emptyset$ pertencem a \mathcal{F} .
 - (b) A interseção de uma família arbitrária de membros de \mathcal{F} pertence a \mathcal{F} .
 - (c) A união de uma família finita de membros de \mathcal{F} pertence a \mathcal{F} .

Seja $\tau = \{X \setminus F : F \in \mathcal{F}\}$. Então τ é uma topologia em X, e \mathcal{F} coincide com a família dos fechados de (X, τ) .

Demonstração. Basta aplicar as leis de De Morgan.

Exercícios

- **3.A.** Prove que as métricas dos Exemplos 2.2(b), 2.2(c) e 2.2(d) definem a mesma topologia em \mathbb{R}^n .
 - **3.B.** Seja $X = \{a, b\}$, com $a \neq b$, e seja

$$\tau = \{\emptyset, \{a\}, X\}.$$

Prove que τ é uma topologia em X. O espaço (X,τ) é chamado de $espaço\ de\ Sierpinski$.

3.C. Seja X um conjunto, e seja

$$\mathcal{F} = \{X\} \cup \{F \subset X : F \text{ \'e finito}\}.$$

Prove que \mathcal{F} é a família de fechados de uma topologia em X, conhecida como topologia cofinita. Vocé reconhece esta topologia quando X é finito?

3.D. Seja X um conjunto, e seja

$$\mathcal{F} = \{X\} \cup \{F \subset X : F \text{ \'e enumerável}\}.$$

Prove que \mathcal{F} é a família de fechados de uma topologia em X, conhecida como topologia coenumerável. Você reconhece esta topologia quando X é enumerável?

3.E. Seja X um conjunto, seja $A \subset X$, e seja

$$\tau_A = \{\emptyset\} \cup \{U : A \subset U \subset X\}.$$

- (a) Prove que τ_A é uma topologia em X.
- (b) Descreva os fechados de (X, τ_A) .
- (c) Você reconhece τ_A quando $A=\emptyset$ e quando A=X?