|              | Student information     | Date       | Number of session |
|--------------|-------------------------|------------|-------------------|
|              | UO:UO293693             | 29/02/2024 | 3                 |
| Algorithmics | Surname: Castro Álvarez |            | ✓ Escuela de      |



University of Oviedo

Ingeniería Informática

#### Activity 2. Divide and Conquer by subtraction

In subtraction 1 it is at n = 8192 because the stack overflows

In subtraction 2 it is at n = 8192 because the stack overflows

Subtraction 3 - n=20\*\*TIME=60\*\*cont=1

Name: Ana

$$t_2 = \frac{2^{n_2}}{2^{n_1}} \cdot t_1 = \frac{2^{80}}{2^{20}} \cdot 0,076 = 8,76 \cdot 10^{15}$$

That is 2,79\*10<sup>9</sup> years

| N    | tSubtraction4 |
|------|---------------|
| 100  | 5             |
| 200  | 39            |
| 400  | 294           |
| 800  | 2330          |
| 1600 | 18707         |

| N  | tSubtraction5 |
|----|---------------|
| 30 | 625           |
| 32 | 1887          |
| 34 | 5642          |
| 36 | 16661         |

$$t_2 = \frac{3^{\frac{n_2}{2}}}{3^{\frac{n_1}{2}}} \cdot t_1 = \frac{3^{\frac{80}{2}}}{3^{\frac{30}{2}}} \cdot 625 = \frac{3^{40}}{3^{15}} \cdot 625 = 5,3 \cdot 10^{14}$$

That is 1,68 · 10<sup>4</sup> years

|              | Student information     | Date       | Number of session |
|--------------|-------------------------|------------|-------------------|
|              | UO:UO293693             | 29/02/2024 | 3                 |
| Algorithmics | Surname: Castro Álvarez |            |                   |
|              | Name: Ana               |            |                   |

# Activity 3. Divide and conquer by division

| N     | tDivision4  | tDivision5  |
|-------|-------------|-------------|
| 1000  | 22          | 56          |
| 2000  | 76          | 211         |
| 4000  | 301         | 796         |
| 8000  | 1179        | 3158        |
| 16000 | 4706        | 13036       |
| 32000 | 19484       | 52151       |
| 64000 | Out of time | Out of time |

| Algorithmics | Student information     | Date       | Number of session |
|--------------|-------------------------|------------|-------------------|
|              | UO:UO293693             | 29/02/2024 | 3                 |
|              | Surname: Castro Álvarez |            |                   |
|              | Name: Ana               |            |                   |

### Activity 4. Two basic examples

| N     | tVectorSum1 | tVectorSum2   | tVectorSum3 |
|-------|-------------|---------------|-------------|
| 3     | 0,000056    | 0,000110      | 0,000135    |
| 6     | 0,000079    | 0,000174      | 0,000236    |
| 12    | 0,000139    | 0,000290      | 0,000639    |
| 24    | 0,000245    | 0,000561      | 0,001012    |
| 48    | 0,000440    | 0,001088      | 0,002040    |
| 96    | 0,000842    | 0,002233      | 0,007619    |
| 192   | 0,001707    | 0,004980      | 0,011321    |
| 384   | 0,003505    | 0,010963      | 0,017985    |
| 768   | 0,006683    | 0,020522      | 0,045366    |
| 1536  | 0,013219    | 0,043699      | 0,098992    |
| 3072  | 0,026647    | 0,087821      | 0,202679    |
| 6144  | 0,052885    | 0,183813      | 0,322595    |
| 12288 | 0,103282    | Out of memory | Out of time |

Given the last row of the table for which the three algorithms have time, I can confirm that the most efficient one is the first one

|              | Student information     | Date       | Number of session |
|--------------|-------------------------|------------|-------------------|
|              | UO:UO293693             | 29/02/2024 | 3                 |
| Algorithmics | Surname: Castro Álvarez |            |                   |
|              | Name: Ana               |            |                   |

| N  | tFibonacci1 | tFibonacci2 | tFibonacci3 | tFibonacci4 |
|----|-------------|-------------|-------------|-------------|
| 10 | 0,000132    | 0,000178    | 0,000243    | 0,0033      |
| 15 | 0,000178    | 0,000249    | 0,000332    | 0,0336      |
| 20 | 0,000224    | 0,000335    | 0,000432    | 0,3942      |
| 25 | 0,000273    | 0,000399    | 0,000519    | 5,9885      |
| 30 | 0,000331    | 0,000467    | 0,000617    | 49,4352     |
| 35 | 0,000373    | 0,000541    | 0,000728    | Out of time |
| 40 | 0,000412    | 0,000615    | 0,000832    | Out of time |
| 45 | 0,000484    | 0,000686    | 0,001641    | Out of time |
| 50 | 0,000511    | 0,000761    | 0,001587    | Out of time |
| 55 | 0,000820    | 0,000836    | 0,001140    | Out of time |
| 59 | 0,000595    | 0,000893    | 0,001235    | Out of time |

Given the last row of the table for which the four algorithms have time, I can confirm that the most efficient one is the first one

|              | Student information     | Date       | Number of session |
|--------------|-------------------------|------------|-------------------|
|              | UO:UO293693             | 29/02/2024 | 3                 |
| Algorithmics | Surname: Castro Álvarez |            |                   |
|              | Name: Ana               |            |                   |

## Activity 5. Another task

| N          | Ordered | Reversed | Random (M) | Random (Q) |
|------------|---------|----------|------------|------------|
| 31 250     | LoR     | LoR      | LoR        | LoR        |
| 62 500     | 54      | 53       | 51         | LoR        |
| 125 000    | 115     | 97       | 111        | 64         |
| 250 000    | 225     | 207      | 238        | 136        |
| 500 000    | 499     | 431      | 500        | 290        |
| 1 000 000  | 1059    | 947      | 1069       | 618        |
| 2 000 000  | 2158    | 1881     | 2244       | 1312       |
| 4 000 000  | 4420    | 4107     | 4613       | 2848       |
| 8 000 000  | 9282    | 8586     | 9548       | 6503       |
| 16 000 000 | 18741   | 17323    | 19216      | 16823      |
| 32 000 000 | 41479   | 38096    | 40755      | 44656      |

#### The constant we obtain is between 1,6 and 1,75

| N          | Random (M) | Random (Q) | Merge/Quick |
|------------|------------|------------|-------------|
| 125 000    | 111        | 64         | 1,73        |
| 250 000    | 238        | 136        | 1,75        |
| 500 000    | 500        | 290        | 1,72        |
| 1 000 000  | 1069       | 618        | 1,73        |
| 2 000 000  | 2244       | 1312       | 1,71        |
| 4 000 000  | 4613       | 2848       | 1,62        |
| 8 000 000  | 9548       | 6503       | 1,47        |
| 16 000 000 | 19216      | 16823      | 1,14        |
| 32 000 000 | 40755      | 44656      | 0,91        |