DSC 214 Topological Data Analysis

Topic 4-B: Persistent Homology for PCD and Functions

Instructor: Zhengchao Wan

Persistence-based feature representation

Persistence-based feature representation

Persistence-based feature representation

Persistence-based feature representation

Persistence-based feature representation

Persistence-based feature representation

- Recently, many methods for mapping persistence diagrams to a finite vector space or a Hilbert space
 - Persistence landscapes
 - ▶ [Bubenik 2012]
 - Persistence scale space kernel
 - ► [Reininghause et al., 2014]
 - Persistence images
 - [Adams et al., 2015, 2017]
 - Persistence weighted Gaussian kernel
 - [Kusano et al., 2017]
 - Sliced Wasserstein kernel
 - Carriere et al., 2017
 - Persistence Fisher kernel
 - ► [Le and Yamada 2018]

- how do we use persistent homology that introduced last time to different types of data?
- Two examples:
 - Point cloud data
 - Functions on triangulated spaces

Section 1: PH for Point Cloud Data

Type I: Point Cloud Data

Type I: Point Cloud Data

Type I: Point Cloud Data

Type I: Point Cloud Data

• Goal:

- Construct certain family of simplicial complexes spanned by these input points *P* at multiple scales
- Will mention two choices:
 - Čech complex and Rips complex induced by filtrations

Offset – Union of Balls

- $X \subset \mathbb{R}^d$: a compact subset of \mathbb{R}^d
 - a hidden space of interests
- $\rightarrow X^r$: r-offset of X

$$X^{r} = \left\{ y \in R^{d} \mid d(y, X) \le r \right\} = \bigcup_{x \in X} B(x, r)$$

▶ Target filtration: $X^{\alpha_0} \subseteq X^{\alpha_1} \subseteq \cdots X^{\alpha} \subseteq \cdots$

ightharpoonup PH induced by this filtration provides a summary of X

▶ Target filtration: $X^{\alpha_0} \subseteq X^{\alpha_1} \subseteq \cdots X^{\alpha} \subseteq \cdots$

ightharpoonup PH induced by this filtration provides a summary of X

- ▶ Target filtration: $X^{r_0} \subseteq X^{r_1} \subseteq \cdots X^r \subseteq \cdots$
- Instead of X, we are only given PCD P

$$P^r = \bigcup_{p \in P} B(p, r)$$

Intuitively, P^r approximates X^r

- ▶ Target filtration: $X^{r_0} \subseteq X^{r_1} \subseteq \cdots X^r \subseteq \cdots$
- Instead of X, we are only given PCD P

$$P^r = \bigcup_{p \in \mathcal{P}} B(p, r)$$

- Intuitively, P^r approximates X^r
- As we increase *r*:
- Intermediate filtration: $P^{r_0} \subseteq P^{r_1} \subseteq \cdots P^r \subseteq \cdots$

- ▶ Target filtration: $X^{r_0} \subseteq X^{r_1} \subseteq \cdots X^r \subseteq \cdots$
- Instead of X, we are only given PCD P

$$P^r = \bigcup_{p \in P} B(p, r)$$

- Intuitively, P^r approximates X^r
- As we increase *r*:
- Intermediate filtration: $P^{r_0} \subseteq P^{r_1} \subseteq \cdots P^r \subseteq \cdots$

- ▶ Target filtration: $X^{r_0} \subseteq X^{r_1} \subseteq \cdots X^r \subseteq \cdots$
- Instead of X, we are only given PCD P

$$P^r = \bigcup_{p \in P} B(p, r)$$

- Intuitively, P^r approximates X^r
- As we increase *r*:
- Intermediate filtration: $P^{r_0} \subseteq P^{r_1} \subseteq \cdots P^r \subseteq \cdots$

Recall: Čech Complex

- Given a set of points $P = \{ p_1, p_2, ..., p_n \} \subset \mathbb{R}^d$
- Given a real value r > 0, the Čech complex $C^r(P)$ is the nerve of the set $\left\{B(p_i,r)\right\}_{i \in [1,n]}$

i.e,
$$\sigma = \left\{ p_{i_0}, ..., p_{i_s} \right\} \in C^r(P) \text{ iff } \bigcap_{j \in [0,s]} B\left(p_{i_j}, r\right) \neq \emptyset$$

ightharpoonup The definition can be extended to a finite sample P of a metric space.

Nerves

- Given a finite set F, its nerve complex Nrv(F) is
 - \blacktriangleright defined as all non-empty subset of F with non-empty common intersection

i.e,
$$Nrv(F) = \left\{ X \subseteq F \mid \bigcap_{\sigma \in X} \sigma \neq \emptyset \right\}$$

Nerves

- Given a finite set F, its nerve complex Nrv(F) is
 - \blacktriangleright defined as all non-empty subset of F with non-empty common intersection

i.e,
$$Nrv(F) = \left\{ X \subseteq F \mid \bigcap_{\sigma \in X} \sigma \neq \emptyset \right\}$$

- Hence Čech complex $C^r(P)$
 - is the nerve of $F = \left\{ B(p, r) \mid p \in P \right\}$
 - i.e, $C^r(P) = Nrv(F)$

Nerve Lemma

- Nerve Lemma (a simplified version):
 - Let $\mathcal U$ be a finite collection of closed, convex subsets in R^d . Then $|Nrv(\mathcal U)| \simeq \cup_{\alpha \in A} U_\alpha \subset \mathbb R^d$.

Nerve Lemma

- Nerve Lemma (a simplified version):
 - Let \mathcal{U} be a finite collection of closed, convex subsets in R^d . Then $|Nrv(\mathcal{U})| \simeq \bigcup_{\alpha \in A} U_\alpha \subset \mathbb{R}^d$.
- Corollary:
 - $|C^r(P)| \simeq \bigcup_{p \in P} B(p, r)$, i.e, $|C^r(P)|$ is homotopy equivalent to the union of r-balls around points in P

Persistent Homology Inference from PCD

Input:

A set of points $P \subseteq \mathbb{R}^d$ sampled on/around X

Question:

How to approximate the persistence module induced by F_X ?

$$\begin{array}{ll} \text{Target filtration } (F_X) \colon & X^{r_0} \subseteq X^{r_1} \subseteq \cdots X^r \subseteq \cdots \\ \text{Intermediate filtration:} & P^{r_0} \subseteq P^{r_1} \subseteq \cdots P^r \subseteq \cdots \\ & \cong \ \downarrow \ \text{By Nerve Lemma} \\ \\ \text{Čech filtration } (\mathscr{C}_X) \colon & C^{r_0} \subseteq C^{r_1} \subseteq \cdots C^r \subseteq \cdots \end{array}$$

Persistent Homology Inference from PCD

- Input:
 - A set of points $P \subseteq R^d$ sampled on/around X
- Question:
 - How to approximate the persistence module induced by F_X ?

Target filtration
$$(F_X)$$
: $X^{r_0} \subset X^{r_1} \subset \cdots X^r \subset \cdots$

The approximation of their persistence diagrams can be made precise by using the so-called interleaving distance.

$$= \bigcup_{x \in X} \operatorname{Dy} \operatorname{Nerve} \operatorname{Lemma}$$

Čech filtration (\mathscr{C}_X) : $C^{r_0} \subseteq C^{r_1} \subseteq \cdots C^r \subseteq \cdots$

- Figure Given a set of points $P = \{ p_1, p_2, ..., p_n \} \subset \mathbb{R}^d$
- Given a real value r > 0, the *Vietoris-Rips (Rips) complex* $R^r(P)$ is:
 - $\{ (p_{i_0}, p_{i_1}, ..., p_{i_k}) \mid B_r(p_{i_l}) \cap B_r(p_{i_j}) \neq \emptyset, \ \forall \ l, \ j \in [0, k] \}.$

- Figure Given a set of points $P = \{ p_1, p_2, ..., p_n \} \subset \mathbb{R}^d$
- Given a real value r > 0, the *Vietoris-Rips (Rips) complex* $R^r(P)$ is:

$$\{ (p_{i_0}, p_{i_1}, ..., p_{i_k}) \mid B_r(p_{i_l}) \cap B_r(p_{i_j}) \neq \emptyset, \ \forall \ l, \ j \in [0, k] \}.$$

- For Given a set of points $P = \{p_1, p_2, ..., p_n\} \subset \mathbb{R}^d$
- Given a real value r > 0, the *Vietoris-Rips (Rips) complex* $R^r(P)$ is:

$$\{ (p_{i_0}, p_{i_1}, ..., p_{i_k}) \mid B_r(p_{i_l}) \cap B_r(p_{i_j}) \neq \emptyset, \ \forall \ l, \ j \in [0, k] \}.$$

- Figure Given a set of points $P = \{ p_1, p_2, ..., p_n \} \subset \mathbb{R}^d$
- Given a real value r > 0, the *Vietoris-Rips (Rips) complex* $R^r(P)$ is:

$$\{ (p_{i_0}, p_{i_1}, ..., p_{i_k}) \mid B_r(p_{i_l}) \cap B_r(p_{i_j}) \neq \emptyset, \ \forall \ l, \ j \in [0, k] \}.$$

- Rips complex shares the same edge set as the Cech complex w.r.t same r.
- It is the clique complex induced by its edge set.

Rips and Čech Filtrations

- Relation in general metric spaces
 - $C^r(P) \subseteq R^r(P) \subseteq C^{2r}(P)$
 - Bounds better in Euclidean space

Image courtesy of T. K. Dey

(a) MotherChild model

Section 2: PH induced by Functions

Real-valued Functions

- Input data:
 - $f: X \to R$

Notations

Function: $f: X \to R$

Level set: $X^a = \{x \in X \mid f(x) = a\},$

Sub-level set: $X_{f} \stackrel{\leq a}{\uparrow} = \{x \in X \mid f(x) \leq a\}$

 $X^{\leq a} \subseteq X^{\leq b}$ for any $a \leq b$ X^{a}

Notations

Function: $f: X \to R$

Level set: $X^a = \{x \in X \mid f(x) = a\},$

Sub-level set: $X_{f} \stackrel{\leq a}{\uparrow} = \{x \in X \mid f(x) \leq a\}$

 $X^{\leq a} \subseteq X^{\leq b}$ for any $a \leq b$ $X^{\leq a}$

Notations

- Function: $f: X \to R$
- Level set: $X^a = \{x \in X \mid f(x) = a\},$
- Sub-level set: $X^{\leq a} = \{x \in X \mid f(x) \leq a\}$
 - $X^{\leq a} \subseteq X^{\leq b}$ for any $a \leq b$
- Interval-level set: $X^I = \{x \in X \mid f(x) \in I\}$

Function-induced Filtration

- Function: $f: X \to R$
- Level set: $X^a = \{x \in X \mid f(x) = a\},$
- Sub-level set: $X^{\leq a} = \{x \in X \mid f(x) \leq a\}$
 - $X^{\leq a} \subseteq X^{\leq b}$ for any $a \leq b$
- For any sequence $a_1 \le a_2 \le \cdots \le a_n$ (with $a_n \ge f_{max}$)
 - ▶ Sublevel set filtration of *X* w.r.t *f*:
 - $X^{\leq a_1} \subseteq X^{\leq a_2} \subseteq \cdots \subseteq X^{\leq a_n}$

Function-induced Filtration

- Function: $f: X \to R$
- Level set: $X^a = \{x \in X \mid f(x) = a\},$
- ▶ Sub-level set: $X^{\leq a} = \{x \in X \mid f(x) \leq a\}$
 - $X^{\leq a} \subseteq X^{\leq b}$ for any $a \leq b$
- For any sequence $a_1 \le a_2 \le \cdots \le a_n$ (with $a_n \ge f_{max}$)
 - ▶ Sublevel set filtration of *X* w.r.t *f*:
 - $X^{\leq a_1} \subseteq X^{\leq a_2} \subseteq \cdots \subseteq X^{\leq a_n}$
- Persistence module
 - $H_*(X^{\leq a_1}) \to H_*(X^{\leq a_2}) \to \cdots \to H_*(X^{\leq a_n})$

Function-induced Filtration

- Function: $f: X \to R$
- Level set: $X^a = \{x \in X \mid f(x) = a\},$
- ▶ Sub-level set: $X^{\leq a} = \{x \in X \mid f(x) \leq a\}$
 - $X^{\leq a} \subseteq X^{\leq b}$ for any $a \leq b$
- For any sequence $a_1 \le a_2 \le \cdots \le a_n$ (with $a_n \ge f_{max}$)
 - ▶ Sublevel set filtration of *X* w.r.t *f*:
 - $X^{\leq a_1} \subseteq X^{\leq a_2} \subseteq \cdots \subseteq X^{\leq a_n}$
- Persistence module

$$H_*(X^{\leq a_1}) \to H_*(X^{\leq a_2}) \to \cdots \to H_*(X^{\leq a_n})$$

- General persistence module indexed by real
 - $\mathcal{P}_f = \left\{ H_* \big(X^{\leq a} \, \big) \to H_* \big(X^{\leq b} \big) \right\}_{a \leq b}$

Off-set filtration is a sub-level set filtration

- Given a compact set $X \subset \mathbb{R}^d$
- Function: $f: \mathbb{R}^d \to \mathbb{R}$ defined by f(x) := d(x, X)

Sub-level set:

$$(\mathbb{R}^d)^{\le a} = \{x \in \mathbb{R}^d : f(x) \le a\} = \{x \in \mathbb{R}^d : d(x, X) \le a\} = X^a$$

• o-th homology

o-th homology

• o-th homology

• o-th homology

o-th homology

o-th homology

• o-th homology_f

Observations

- $lacktriangledown H_*(a)$ only potentially changes at *critical values*
 - which, in the case of f is a smooth function defined on a smooth manifold, are exactly the function values of critical points of f

Observations

- $H_*(a)$ only potentially changes at *critical values*
 - which, in the case of f is a smooth function defined on a smooth manifold, are exactly the function values of critical points of f
 - $H_*(a) \to H_*(b)$ is isomorphism for a < b within two consecutive critical values

Persistence pairings for the sub-level set persistence module

$$\mathcal{P}_f = \left\{ H_*(X^{\leq a}) \to H_*(X^{\leq b}) \right\}_{a \leq b}$$

- real are of the form (b, d), with both b and d being critical values
- We sometimes also refer the pairing to between corresponding critical points.

- An example on images
 - By Chao Chen (Stony Brook Univ)

- An example on images
 - By Chao Chen (Stony Brook Univ)

Remarks 1: Sublevel set filtration

- In general, for a smooth function $f: X \to R$ defined on a d-manifold X, under sublevel-set filtration,
 - The persistence pairings are between critical values, induced by pairings between critical points whose indices differ by 1.
 - \triangleright E.g, for d = 2,
 - (min, saddle) or (saddle, max)
 - \triangleright E.g, for d = 3,
 - (min, index-1 saddle), (index-1 saddle, index-2 saddle), or (index-2 saddle, max)
 - Pairs of the form (a, ∞)
 - Correspond to homology of X, i.e, $H_*(X)$
 - This is because $X^{\leq \infty} = X$

Remark 2: Super-level set filtration

- Symmetrically, one can also consider super-level set filtration
- Super-level set: $X^{\geq a} = \{x \in X \mid f(x) \geq a\}$
 - $X^{\geq a} \subseteq X^{\geq b}$ for any $a \geq b$
- For any sequence $a_1 \ge a_2 \dots \ge a_n$ (s.t $a_1 \ge f_{max}$, $a_n \le f_{min}$)
 - ▶ Sublevel set filtration of *X* w.r.t *f*:
 - $X^{\geq a_1} \subseteq X^{\geq a_2} \subseteq \cdots \subseteq X^{\geq a_n}$
- Persistence module
 - $H_*(X^{\geq a_1}) \to H_*(X^{\geq a_2}) \to \cdots \to H_*(X^{\geq a_n})$
- General persistence module indexed by real
 - $\mathcal{P}_f = \left\{ H_*(X^{\geq a}) \to H_*(X^{\geq b}) \right\}_{a \geq b}$

Section 3: Computation in the PL-case

We cannot deal with smooth manifolds or smooth functions directly

Triangulate smooth manifolds to be simplicial complexes

Approximate smooth functions by piecewise linear functions

Computation – PL Function

- $lackbox{$K$}$: a simplicial complex, |K| its underlying space (e.g. a triangulation of a manifold)
- ▶ Piecewise linear (PL) function $f: |K| \rightarrow R$
 - f defined at vertices (0-simplices) V of K and linearly interpolated within each simplex $\sigma \in K$

Computation – PL Function

• Given PL-function $f: |K| \to R$, consider the persistence module induced by its sub-level set filtration

$$\mathcal{P}_f = \left\{ H_* \big(|K|^{\leq a} \, \big) \to H_* \big(|K|^{\leq b} \big) \right\}_{a \leq b}$$

- ▶ { $|K|^{\leq a} \subset |K|^{\leq b}$ } is still a filtration of topological spaces
- To compute persistence pairings for \mathcal{P}_f , we want to simulate sublevel set filtration by a **filtered simplicial complex**

Assume vertices $\{v_1, ..., v_n\}$ sorted in non-decreasing order by function value f

- Assume vertices $\{v_1, ..., v_n\}$ sorted in non-decreasing order by function value f
- Consider discrete values $a_1 \le \cdots \le a_n$ with $a_i = f(v_i)$
 - $K_i := \{ \sigma \in K \mid f(v) \le a_i, \ \forall v \in \sigma \}$
 - Consider filtration $\emptyset = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_n = K$

- Assume vertices $\{v_1, ..., v_n\}$ sorted in non-decreasing order by function value f
- Consider discrete values $a_1 \le \cdots \le a_n$ with $a_i = f(v_i)$
 - $K_i := \{ \sigma \in K \mid f(v) \le a_i, \ \forall v \in \sigma \}$
 - ▶ Consider filtration $\emptyset = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_n = K$
- Called lower star filtration as
 - $LowSt (v_i) = K_i \setminus K_{i-1}$
 - ▶ where $LowSt(v) := \{ \sigma \in K \mid v \in \sigma \text{ and } f(u) \leq f(v) \text{ for any } u \in \sigma \}$
 - $K_i = \bigcup_{j \le i} LowSt(v_j)$

Lower Star vs Star

- Consider discrete values $a_1 \le \cdots \le a_n$ with $a_i = f(v_i)$
 - $K_i := \{ \sigma \in K \mid f(v) \le a_i, \ \forall v \in \sigma \}$
 - Consider filtration $\emptyset = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_n = K$

Computation – PL Function

Goal: persistence pairings for

$$\mathcal{P}_f = \left\{ H_* \big(|K|^{\leq a} \, \big) \to H_* \big(|K|^{\leq b} \big) \right\}_{a \leq b}$$

- Simulate sub-level set filtration by *lower star filtration*
 - Assume vertices $\{v_1, ..., v_n\}$ sorted in non-decreasing order by function value f
 - Consider discrete values $a_1 \le \cdots \le a_n$ with $a_i = f(v_i)$
 - $K_i := \{ \sigma \in K \mid f(v) \le a_i, \ \forall v \in \sigma \}$
 - Consider filtration $\emptyset = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_n = K$

Computation – PL Function

Goal: persistence pairings for

$$\mathscr{P}_f = \left\{ H_* \big(|K|^{\leq a} \, \big) \to H_* \big(|K|^{\leq b} \big) \right\}_{a \leq b}$$

- Simulate sub-level set filtration by lower star filtration
 - $\triangleright \varnothing = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_n = K$
 - where $K_i := \{ \sigma \in K \mid f(v) \le a_i, \ \forall v \in \sigma \}$
 - $\Rightarrow H_*(K_0) \to H_*(K_1) \to H_*(K_2) \to \cdots \to H_*(K_n)$

Sub-level set vs Lower Star filtrations

For any a, if $a_i \le a < a_{i+1}$, then

 $|K|^{\leq a} \simeq K_i$

Sub-level set vs Lower Star filtrations

Lower star filtration

$$\triangleright \varnothing \subset K_1 \subset \cdots \subset K_n$$

Sub-level set filtration

$$\emptyset \subset |K|^{\leq a_1} \subset \cdots \subset |K|^{\leq a_n}$$

They induce isomorphic persistence modules

Computation of PD for lower star filtration

A simplex-wise filtration *realizes* the lower star filtration if

PL-implementation

- Given a PL function $f: K \to R$, perform the persistence algorithm for any simplex-wise lower star filtration.
 - Let *P* denote the output set of paired simplices
 - Then, $\mu^{i,j} > 0$ if and only if there exists $(\sigma, \tau) \in P$ such that $\sigma \in K_i \setminus K_{i-1}$, while $\tau \in K_j \setminus K_{j-1}$

 $\mu^{i,j} = 2$

 $\blacktriangleright \mu^{i,j}$ equals the cardinality of the set of such pairs.

PL-implementation

- Given a PL function $f: K \to R$, perform the persistence algorithm for any simplex-wise lower star filtration.
 - Let *P* denote the output set of paired simplices
 - Then, $\mu^{i,j} > 0$ if a What can we say about (σ, τ) ? Ich that $\sigma \in K_i \setminus K_{i-1}$, while $\tau \in K_j \setminus K_{j-1}$

 $u^{i,j} = 2$

 $\blacktriangleright \mu^{i,j}$ equals the cardinality of the set of such pairs.

A Simple Example

Critical points are paired

Recall: Critical points and local view

- For *d*-dimensional manifold *M*
- An open neighborhood $B_r(p)$ of p
 - $B_r(p)$ is an m-dimensional open ball
 - Consider the boundary of the closure of $B_r(p)$

- For *d*-dimensional manifold *M*
- An open neighborhood $B_r(p)$ of p
 - $B_r(p)$ is an d-dimensional open ball
 - Consider the boundary of the closure of $B_r(p)$ intersecting the sublevel set $M^{\leq f(p)-\epsilon}$ for some function $f:M\to\mathbb{R}$

$$\tilde{\beta}_0(X) = \beta_0(X) - 1 = 0$$

$$\beta_p(X) = 0 \text{ for } p \ge 1$$

- For *d*-dimensional manifold *M*
- An open neighborhood $B_r(p)$ of p
 - $B_r(p)$ is an d-dimensional open ball
 - Consider the boundary of the closure of $B_r(p)$ intersecting the sublevel set $M^{\leq f(p)-\epsilon}$ for some function $f:M\to\mathbb{R}$

$$\begin{split} \tilde{\beta}_0(X) &> 0 \\ \beta_p(X) &= 0 \text{ for } p \geq 1 \\ \text{Index=1} \end{split}$$

- For *d*-dimensional manifold *M*
- An open neighborhood $B_r(p)$ of p
 - \triangleright $B_r(p)$ is an d-dimensional open ball
 - Consider the boundary of the closure of $B_r(p)$ intersecting the sub-

level set $M^{\leq f(p)-\epsilon}$ for some function $f:M\to\mathbb{R}$

- For d-dimensional manifold M
- An open neighborhood $B_r(p)$ of p
 - $B_r(p)$ is an d-dimensional open ball
 - Consider the boundary of the closure of $B_r(p)$ intersecting the sub-

level set $M^{\leq f(p)-\epsilon}$ for some function $f:M\to\mathbb{R}$

Star and links

Star and links

- Given a simplex $\tau \in K$
 - Star: $St(\tau) = \{ \sigma \in K \mid \tau \subset \sigma \}$
 - Closed star: $clSt(\tau) = \bigcup_{\sigma \in St(\tau)} \{ \sigma' \mid \sigma' \subset \sigma \}$
 - $Link: Lk(\tau) = \left\{ \ \sigma \in clSt(\tau) \mid \sigma \cap \tau = \emptyset \ \right\}$

Upper and lower link

- ▶ $LowSt(v) := \{ \sigma \in K \mid v \in \sigma \text{ and } f(u) \leq f(v) \text{ for any } u \in \sigma \}$
- $Llk(v) = clLowSt(v) \setminus LowSt(v)$

- $UpSt(v) := \{ \sigma \in K | v \in \sigma \text{ and } f(u) \ge f(v), \forall u \in \sigma \}$
- $bclUpSt(v) := \{ \sigma \in K | \sigma \subset \tau \in UpSt(v) \}$
- $Ulk(v) = clUpSt(v) \setminus UpSt(v)$

Analogous to critical points in the smooth case.

Definition 1 (Reduced Betti number). $\tilde{\beta}_p(X) = \beta_p(X)$ for p > 0. For p = 0, $\tilde{\beta}_0(X) = \beta_0(X) - 1$ and $\tilde{\beta}_{-1}(X) = 0$ if X is not empty; otherwise, $\tilde{\beta}_0(X) = 0$ and $\tilde{\beta}_{-1}(X) = 1$.

 $\tilde{\beta}_0(X)$ = number of connected components - 1

Analogous to critical points in the smooth case.

Definition 1 (Reduced Betti number). $\tilde{\beta}_p(X) = \beta_p(X)$ for p > 0. For p = 0, $\tilde{\beta}_0(X) = \beta_0(X) - 1$ and $\tilde{\beta}_{-1}(X) = 0$ if X is not empty; otherwise, $\tilde{\beta}_0(X) = 0$ and $\tilde{\beta}_{-1}(X) = 1$.

Analogous to critical points in the smooth case.

Definition 1 (Reduced Betti number). $\tilde{\beta}_p(X) = \beta_p(X)$ for p > 0. For p = 0, $\tilde{\beta}_0(X) = \beta_0(X) - 1$ and $\tilde{\beta}_{-1}(X) = 0$ if X is not empty; otherwise, $\tilde{\beta}_0(X) = 0$ and $\tilde{\beta}_{-1}(X) = 1$.

Definition 2 (PL-critical points). Given a PL-function $f : |K| \to \mathbb{R}$, we say that a vertex $v \in K$ is a *regular* vertex or point if $\tilde{\beta}_p(\text{Llk}(v)) = 0$ and $\tilde{\beta}_p(\text{Ulk}(v)) = 0$ for any $p \ge -1$. It is called *PL-critical* (or simply *critical*) vertex or point otherwise.

Furthermore, we say that v has lower-link-index p if $\tilde{\beta}_{p-1}(\text{Llk}(v)) > 0$. Similarly v has upper-link-index p if $\tilde{\beta}_{p-1}(\text{Ulk}(v)) > 0$. The function value of a critical point is a *critical value for* f.

Definition 2 (PL-critical points). Given a PL-function $f : |K| \to \mathbb{R}$, we say that a vertex $v \in K$ is a *regular* vertex or point if $\tilde{\beta}_p(\text{Llk}(v)) = 0$ and $\tilde{\beta}_p(\text{Ulk}(v)) = 0$ for any $p \ge -1$. It is called *PL-critical* (or simply *critical*) vertex or point otherwise.

Furthermore, we say that v has lower-link-index p if $\tilde{\beta}_{p-1}(\text{Llk}(v)) > 0$. Similarly v has upper-link-index p if $\tilde{\beta}_{p-1}(\text{Ulk}(v)) > 0$. The function value of a critical point is a *critical value for* f.

$$\tilde{\beta}_0(X) = \beta_0(X) - 1 = 0$$

$$\beta_p(X) = 0$$
 for $p \ge 1$

Definition 2 (PL-critical points). Given a PL-function $f : |K| \to \mathbb{R}$, we say that a vertex $v \in K$ is a *regular* vertex or point if $\tilde{\beta}_p(\text{Llk}(v)) = 0$ and $\tilde{\beta}_p(\text{Ulk}(v)) = 0$ for any $p \ge -1$. It is called *PL-critical* (or simply *critical*) vertex or point otherwise.

Furthermore, we say that v has lower-link-index p if $\tilde{\beta}_{p-1}(\text{Llk}(v)) > 0$. Similarly v has upper-link-index p if $\tilde{\beta}_{p-1}(\text{Ulk}(v)) > 0$. The function value of a critical point is a *critical value for* f.

$$\begin{split} \tilde{\beta}_0(X) &> 0 \\ \beta_p(X) &= 0 \text{ for } p \geq 1 \\ \text{Index=1} \end{split}$$

0-

lower-link-index

	v1
lower-link-index	0

	v1	v2
lower-link-index	0	0

	v1	v2	v3
lower-link-index	0	0	NA

	v1	v2	v3	v4
lower-link-index	0	0	NA	NA

	v1	v2	v 3	v4	v5
lower-link-index	0	0	NA	NA	NA

	v1	v2	v3	v4	v5	v6
lower-link-index	0	0	NA	NA	NA	1

	v1	v2	v3	v4	v5	v6	v7
lower-link-index	0	0	NA	NA	NA	1	1

	v1	v2	v3	v4	v5	v6	v7	v8
lower-link-index	0	0	NA	NA	NA	1	1	NA

	v1	v2	v3	v4	v5	v6	v7	v8	V 9
lower-link-index	0	0	NA	NA	NA	1	1	NA	NA

Theorem

Given a PL function $f:|K|\to\mathbb{R}$, for any $2\le r\le n$ and dimension $p,K_{r-1}\subset K_r$ induces an isomorphism $H_p(K_{r-1})\cong H_p(K_r)$ unless v_r has lower-link-index p or p+1

Theorem

Given a PL function $f: |K| \to \mathbb{R}$, for any $2 \le r \le n$ and dimension $p, K_{r-1} \subset K_r$ induces an isomorphism $H_p(K_{r-1}) \cong H_p(K_r)$ unless v_r has lower-link-index p or p+1

▶ Theorem

Given a PL function $f: |K| \to \mathbb{R}$ and compute its persistent homology as described. Then for each persistence pair (i, j), both v_i and v_j must be PL-critical.

- Dionysus
- A GitHub repo

FIN