Homework 13

Austin Frownfelter

Matthew Bialecki

February 12, 2018

1 Problem 19

1.1 Part a

```
EXACT INDSET = \{(G,k) \mid \text{The largest indep. set in } G \text{ has size exactly } k\}

EXACT INDSET = \{(G,k) \mid \forall r \exists s \text{ (s is an indep. set in G and } |s| = k) \land

(r is not an indep. set or |r| \leq |s|)
```

By definition of Π_2^p , $T \leftarrow \{(G, k)\}$

 \mathbf{S}

r

where s is the advice tape and r is the disadvice tape.

A trivial check whether a set is independent will take n iterations of (n-1) comparisons, which is polynomial. Therefore, there does exist a k where T(x, s, r) will accept in $|x|^k$ time.

Therefore, EXACT INDSET $\in \Pi_2^p$

1.2 Part b

SUCCINCT SET COVER = $\{(S,n,k)\mid \exists S' \ \forall i \ S'\subseteq \{1,2,...,|S|\} \land |S'|\leq k \land \lor_{i\in S'}\varphi_i\}$

By definition of Σ_2^p , $T \leftarrow \{(S, n, k)\}$

S'

i

where S' is the advice tape and i is the disadvice tape.

Checking whether a statement is a tautology takes polynomial time. Therefore, there does exist a k where T(x, S', i) will accept in $|x|^k$ time.

Therefore, SUCCINCT SET COVER $\in \Sigma_2^p$

1.3 Part c

```
 \begin{split} & \text{VC-DIMENSION} = \{(C,k) \mid \text{C is a collection } S \text{ such that } VC(C) \geq \mathbf{k} \} \\ & \text{VC-DIMENSION} = \{(C,k) \mid \exists X \forall s \forall X' \exists i \text{ where } X \subseteq U, \ s \subseteq U, \ |X| \geq |s|, \\ & X' \subseteq X, \ S_i \cap X = X' \ \} \\ & \text{By definition of } \Sigma_3^p, \\ & T \leftarrow \{(C,k) \\ & X \\ & (s,X') \\ & i \} \end{split}
```

All qualifiers take polynomial time, therefore there does exist a k where T(x, X, (s, X'), i) will accept in $|x|^k$ time.

Therefore, VC-DIMENSION $\in \Sigma_3^p$

1.4 Part d

```
Let L_1 = \{(G, k) \mid \exists s \text{(s is an independent set in G and } |s| = k)\}
Let L_2 = \{(G, k) \mid \forall r \text{(r is not an independent set in G or } |r| \leq k)\}
Let L = L_1 \cap L_2
```

 $L = \text{EXACT INDSET. Since } L_1 \in \Sigma_1^p \text{ and } L_2 \in \Pi_1^p, L \in DP.$

2 Problem 20

3SAT is NP-complete and has been proven as such. $\overline{3SAT}$ is coNP-complete by property that negation of quantifiers in Σ_1^p yield the quantifiers in Π_1^p .

If 3SAT is reducible to $\overline{3SAT}$ under poly time reductions, then there exists polynomial time conversions between the two classes. As a result, $\Sigma_1^p \subseteq \Pi_1^p$ since all Σ_1^p problems can be converted into Π_1^p problems, and $\Pi_1^p \subseteq \Sigma_1^p$ since all Π_1^p problems can be converted into Σ_1^p problems. Therefore, $\Sigma_1^p = \Pi_1^p$.

For a fixed value of the first quantifier in Σ_n^p , there exists a Π_{n-1}^p , making $\Sigma_n^p = \Sigma_1^p \Pi_{n-1}^p$. This can be expanded further into the form $\Sigma_1^p \Pi_1^p ... \Sigma_1^p$. Further, since $\Sigma_1^p = \Pi_1^p$, $\Sigma_n^p = (\Sigma_1^p)^n$ Each Σ_1^p has its own machine with access to an oracle machine. We can construct an NDTM M which is the concatenation of all of these machines. If M accepts, then the Σ_n^p problem is accepted. M non-deterministically decides Σ_n^p in polynomial time. Therefore, Σ_n^p can be reduced to a Σ_1^p problem. Therefore, $\Sigma_n^p \subseteq \Sigma_1^p$. Therefore, $\Sigma_n^p = \Sigma_1^p$. This logic holds for Π_n^p .

The result is all problems in the PH can be reduced to an NP problem. Therefore, if 3SAT is reducible to $\overline{3SAT}$, PH=NP.