④公開 平成4年(1992)3月3日

② 公開特許公報(A) 平4-67490

識別記号 庁内整理番号 @Int. Cl. 5 G 11 B 27/00 D 8224-5D ĎZ 302 8842-5H G 10 K 15/04 9197-5D G 11 B 20/00 9074-5D 20/12 8224-5D 27/10 Α

審査請求 未請求 請求項の数 4 (全14頁)

9発明の名称 情報記憶装置及び情報再生装置

١

₹.)

②特 願 平2-179797

②出 願 平2(1990)7月6日

@発 明 者 山 内 慶 一 埼玉県川越市大字山田字西町25番地1 パイオニア株式会

社川越工場内

@発 明 者 清 水 敏 彦 埼玉県川越市大字山田字西町25番地1 パイオニア株式会

社川越工場内

@発 明 者 須 藤 三 十 三 埼玉県川越市大字山田字西町25番地1 パイオニア株式会

社川越工場内

⑪出 願 人 パイオニア株式会社 東京都目黒区目黒1丁目4番1号

個代 理 人 弁理士 石川 泰男 外1名

明 和 書

1. 発明の名称

情報記憶装置及び情報再生装置

2. 特許請求の範囲

1. 複数の楽章情報を含むディジタルオーディオ情報と、当該複数の楽章情報の内容に関するディジタル内容情報を含むディジタル内容情報テーブルと、を記憶する記憶領域を有する情報記憶装置であって、

前記記憶領域は複数のセクションに分割されており、かつ、当該複数のセクションのうちいずれかのセクションには前記ディジタル内容情報テーブルが記憶されるとともに、当該いずれかセクション以外のセクションには前記ディジタルオーディオ情報が記憶されていることを特徴とする情報記憶装置。

2. 前記いずれかのセクションは、前記複数 のセクションにおいて時間的に先行する位置に配 置されていることを特徴とする請求項1記載の情報記録装置。

3. 楽曲ディジタルオーディオ情報と当該楽曲ディジタルオーディオ情報を検索するための検索情報を有する複数の楽曲情報とを含むディジタルオーディオ情報と、当該複数の楽曲情報の名称を画像情報又は音声情報で表現した曲名情報を含むディジタル内容情報テーブルと、を記憶する記憶領域を有する情報記憶装置であって、

前記記憶領域は複数のセクションに分割されており、かつ、当該複数のセクションのうちの時間的に先行する位置に配置されたいずれかの先行セクションには前記ディジタル内容情報テーブルが記憶されるとともに、当該先行セクション以外のセクションには前記ディジタルオーディオ情報が記憶されていることを特徴とする情報記憶装置。

4. 請求項3記載の情報記憶装置から情報を再生する情報再生装置であって、

前記情報記憶装置から情報を読み取る情報続取手段と、

前記複数の楽曲情報のうちのいずれかを前記検索情報により選択して読み取るように、前記情報 続取手段の読取動作を制御する制御手段と、を備えてことを特徴とする情報再生装置。

3. 発明の詳細な説明

[産業上の利用分野]

本発明は情報記憶装置及び情報再生装置に係り、 特に、いわゆるカラオケ演奏に好適なディジタル オーディオ情報記憶装置及びディジタルオーディ オ情報再生装置に関する。

[従来の技術]

従来、いわゆるカラオケ演奏装置としては、作奏で変のみが記録された磁気テープやにより伴を表を再生する形式のものがれている。これとのかったないでは、増幅器ととによりでれる。 で変を再生する形式のが知れている。これとのかったないでは、増幅器としてよりではないでは、 でのカラオケ装置は、増幅器とによりではないである。 でのカラオケ装置は、増幅器とはないではないできたがある。 でのカラオケ装置は、増幅器とはないではないできたがある。 でいるのかったがあることによりによりになるようにないた。 では、かつ、増幅して出力するようにな

々の記憶領域の先頭にはサブコードというコード 情報が記録されている。このサブコードを高速で 検索することにより、所望の曲をすばやく選択す る「頭出し」という操作が可能であり、これが、 CDの特徴の一つとなっている。この場合、 TOC (Table of Contents) と呼ばれ、各曲目 のサブコードの「目次」に相当するものがCDデ ィスクの最内間のリードインと呼ばれる部分(最 初に読み取られる部分)に収録されている。CD のTOCは9パイトの内容を有している。CDプ レーヤは、あらかじめこのTOCの内容を読み取 っておく。ユーザが所望の曲の「頭」の部分のサ プコードを示す操作指令を入力すると、 CDプレ - ヤは、そのサブコードを有するディスク上のア ドレス位置を検索し、情報を読み取る光学式ピッ グァップを移動させ所定のアドレス位置から再生 を開始するのである。

しかし、このCDにおいても、TOCに収録されているのはTOCの記録容量の関係から曲名そのものではなくコード情報であるため、所望の曲

っている。

(発明が解決しようとする課題)

これらのカラオケ演奏装置では、ユーザが所留の曲を歌おうとする場合には、所望の曲が収録されているテーブやディスク等の記録媒体の番号とその記録媒体中における曲の順序番号等を、曲名リストや曲名目録といった印刷物の中からユーザが探し、所望の曲が収録された記録媒体を選択してれをカラオケ演奏とで表現したというステップを多む必要があった。

しかし、ユーザにおいては、乗用自動車内でカラオケ演奏装置を使用したい場合がある。このような場合、曲名リスト等がなくても所望の曲が選択できるようになれば便利である。

最近、ディジタルオーディオディスクの一つであるコンパクトディスク(以下、CDという。)をカラオケ用の記録媒体として用いる場合がある。 CDは、音楽情報をパルス符号変調して、時間的に分割された記憶領域に記録する。CDには、何

を選択的に演奏させるためには、曲目とコード情報とを対応させたリスト (印刷物等) がやはり必要となる。

本発明の目的は、収録されている曲に関する名称等の情報をユーザに報知又は出力しうる情報記憶装置、及びこの情報記憶装置から情報を再生する情報再生装置を提供することにある。

[課題を解決するための手段]

上記課題を解決するために、請求項1記載の現場は第1図に示すように構記にはなれている。請求記憶を報記になる。はは、この情報記憶を設めている。記憶数のセクションのようなののセクションには分別の方がでした。このでクションにはいる。れいのセクションにはいる。でイン以外のセクションにはディックルオークのが記憶を対している。でインタルので情報のの変を情報を入している。ディンクル内容情報でしている。ディンクル内容情報で「ジタルト」のは、

複数の楽章情報 A _I ~ A _n の内容に関するディジ タル内容情報 C _{I I} ~ C _{e n}を含んでいる。

請求項3記載の発明は、第3図に示すように構成されている。第3図において、この情報記憶装置102は、記憶領域202を育している。記憶領域202は、複数のセクションS₁ ~ S_γ に分

載の発明では、この情報記憶装置を演奏し、記憶 領域200内の情報を再生する場合、ディジタル 内容情報テーブル400を再生すると、ディジタ ルオーディオ情報300の内容に関するディジタ ル内容情報Cii~Cunを再生することができる。 ディジタルオーディオ情報300は、複数の楽章 情報A」~A。を含んでおり、ディジタル内容情 報 C _{1 1} ~ C _{m n} は楽章情報 A ₁ ~ A _n に対応する情 報である。例えば、ディジタル内容情報Ci1~ C_{in}は、楽章情報 A_l ~ A_n の名称を表現した情 報でありディジタル内容情報 C ijは楽意情報 A j の名称を表現している。このようにして、ディジ タル内容情報 C₁₁~ C_{an}は楽章情報 A₁ ~ A_n に 関するm種類の情報を表現している。したがって、 例えば、楽章情報A1~An の名称に関するディ ジタル内容情報 C _{| 1} ~ C _{| n}が文字コード情報で記 憶されていれば、ユーザは、このディジタル内容 情報Cil~Cinを画像表示装置等により画像出力 させることができる。画像表示は、漢字、かな混 り等の通常の文字表現で行なうことができるから、 請求項4 記載の発明は、第4 図に示すように構成されている。第4 図において、この情報再生装置は、情報読取手段600と、制御手段700と、を備えている。

(作用)

上記構成を有する本発明によれば、請求項」記

ユーザは画像表示装置の画面上に、楽意情報A ! ~ A n の通常の文字表現の名称リストを表示させることができる。これにより、ユーザは、例えば、この情報記憶装置に記憶されている曲の曲名目録(印刷物等)などがなくても、情報記憶装置自体から曲名リストを出力・表示させることができる。

請求項2記載の発明では、この情報記憶装場を演奏し、記憶領域201内の情報を再生する場合と、ディジタル内容情報テーブル401を再生時間に ディジタル内容情報テーブル401に対しては対した。 ディジタル内容情報テーブル401に対しては対した。 に後301の内されているディジタタル内容に関するディジタル内容に関するでする。 では301の内生すること、ディルの内ではないの内では、カーに対しては、カーに対しては、カーに対しては、カーに対して、一、は、ア・インの名称を表現した情報であり、ディンの名称を表現した情報であり、ディンの名称を表現した情報であり、ディンの名称を表現した情報であり、ディンの名称を表現した情報であり、ディンの名称を表現した情報であり、ディンの名称を表現した情報であり、ディンの名称を表現した情報であり、この名称を表現した情報であり、この名称を表現した情報の名の名称を表現した情報であり、この名称を表現した情報であり、ディンの名称を表現した情報に対していません。

ル内容情報 C lit は楽章情報 A j の名称を表現して いる。このようにして、ディジタル内容情報 С 11 ~ C n は楽章情報 A _l ~ A _n に関するm 種類の情 報を表現している。したがって、例えば、楽章情 報A」~Anの名称に関するディジタル内容情報 Cil~Cinが文字コード情報で記憶されていれば、 ユーザは、このディジタル内容情報 C il~ C inを 画像表示装置等により画像出力させることができ る。画像表示は、漢字、かな混り等の通常の文字 表現で行なうことができるから、ユーザは顔像表 示装置の画面上に、楽章情報AL~Anの通常の 文字表現の名称リストを表示させることができる。 これにより、ユーザは、例えば、この情報記憶装 置に記憶されている曲の曲名目録(印刷物等)な どがなくても、情報記憶装置自体から曲名リスト を出力・表示させることができ、そのリストによ り所望の曲を選択して演奏させることができる。

請求項3記載の発明では、この情報記憶装置 102を演奏し、記憶領域202内の情報を再生 する場合、ディジタル内容情報テーブル402を

請求項 4 記載の発明では、この情報再生装置において、情報読取手段 6 0 0 は、情報記憶装置 1 0 2 から情報を読み取り、読取信号 R F として出力する。制御手段 7 0 0 は、情報記憶装置 1 0 2 に含まれる複数の楽曲情報 T U 1 ~ T U n

再生すると、ディジタル内容情報テーブル4Ω2 に対し時間的に後方に記憶されているディジタル オーディオ情報302の名称を簡像情報又は音声 情報で表現した曲名情報Ni~Nnを再生するこ とができる。ディジタルオーディオ情報302は 複数の楽曲情報 T U _n ~ T U _n を含んでいる。楽 曲情報TU(~TU)のうち、TU)は楽曲ディ ジタルオーディオ情報 A U i とこの楽曲ディジタ: ルオーディオ情報AU;を検索するための検索情 報1」とを有している。したがって、曲名情報 Ni~Nnが、例えば画像情報で表現されていれ は、ユーザは、この曲名情報Ni~Nnを画像表 - 示装置等により出力させることができる。 画像表 示は、漢字、分な混り等の通常の文字表現で行う ことができるから、ユーザは画像表示装置の画面 上に楽曲情報TUl~TUnの通常の文字表現の 曲名リストを表示させることができる。あるいは、 曲名情報Ni~Nn が音声情報で表現されている 場合には、ユーザは、この曲名情報Ni~Nnを 音響出力装置等により音声として出力させること

のうちのいずれかを検索情報!_| ~ I n を用いて 情報読取手段600が検索・選択して読み取るよ うに、外部からの制御信号C」又は内蔵するプロ グラム等により情報読取手段600の読取動作 を制御する。制御信号C,を出力し情報読取手段 600に伝達する。したがって、情報読取手段 6 0 0 はディジタル内容情報テーブル402とそ れに含まれる曲名情報Ni~Nnを読取信号RF として出力する。曲名情報Ni~Nnが、例えば 画像信号の形で表現されていれば、画像表示装置 等により文字画像として出力できる。ユーザは、 このディジタル内容情報テーブル402を曲名り ストとして、所望の曲を選択する。この選択操作 は、例えば制御信号C1 として制御手段700に 入力される。制御手段700は、選択された所望 の曲に対応する検索情報を探し出し、そのアドレ ス位置へ情報読取手段600を移動させる制御信 号 С 2 を 情報 統 取 手 段 6 0 0 に 出 力 す る 。 情 報 統 取手段600は制御信号C2 を受けて所望のアド レス位置に移動し、所望の楽曲ディジタルオーデ ィオ情報に対応する検索情報から演奏を開始し、 所望の曲である楽曲ディジタルオーディオ情報を 再生す かことができる。

(実施例)

第1実施例

第5図に、請求項1、2又は3記載の発明にかかる情報記憶装置の実施例を示す。第5図は、情報記憶装置であるCD-ROMXAディスクのデータ構造を示している。

CD-ROMとは、ディジタルオーディオディスクとして確立しているCDを、ディジタル情報の読み出し専用メモリ(ROM: Read Only Memoryの略)の情報記憶装置として利用するメディアである。1985年に規格が定められ、現在、各種分野への応用が進みつつある。CD-ROMの特徴としては、大記録容量、光信報性、高アクセス性、大量複写の可能性、再生システムの低兼性等が挙げられる。

この C D - R O M をベースとしたフォーマット として具体化しているものに、 C D - I (CD- Interactive の略)と、CD-ROMXAとがある。両者ともに音声・音響情報と画像情報を記録再生可能で、音声・音響情報については両者とも、適応差分パルス符号変調(以下、ADPCMという。ADPCM: Adptive DifferentialPulse Code Modulation の略)を用いている点で共通している。(日経エレクトロニクス1989年5月15日号(No. 473)195~200頁

第 5 図は、このCD-ROMXAディスクの記憶領域であるデータ・セクタ構造を示している。 CD信号フォーマットの場合、サブコード98フレーム分を1ブロックとして取扱い、1ブロックは1/75秒に相当する。したがって、

44. 1×10⁸×16×2×1/75×1/8=2352 より、CDの1プロックには2352パイトのデータを記録することができる。ここに、44. 1 ×10⁸ は標本化周波数を、16は量子化数を、 2はステレオのLとRを、1/75は時間(秒) を、1/8はビットとパイトの変換串を表してい

る。

CD-ROMXAでは、この1ブロックを 1セクタとして各セクタ中にユーザ・データを 記録する。ユーザ・データ領域の大きさ等により ModelとMode2の規格があり、Mode 2にはForm1とForm2の規格がある。

んでいる。シンクS SYNCは 1 2 バイトであり、セクタを区分する信号を記憶した部分である。ヘッダS II は 4 バイトであり、そのうち 3 バイトは C D のサブコードと同様なアドレス情報が記憶され、残りの 1 バイトにはモード情報が記憶される。サブヘッダS SII は 8 バイトであり、ファイナル・ナンバH L と、チャンネル・ナンバH 2 と、サブモードH 8 と、コーディング・フォーメーションH 4 とを備えている。各項目H L ~H 4 は各々 1 バイトであり、2 重響き(2 度繰返す)されてい

ユーザ・データ S UD は F o r m 2 では 2 3 2 4 パイトであり、データユニット U 1 ~ U n と スペアユニット U 5 P とを有している。 第 5 図は、 データユニット U 1 ~ U n が各々 1 2 8 パイトである。 インスペアユニット U 5 P が 2 0 パイトの例を示している。 したがって、 この場合は、 n = 1 8 である。 そして、 誤り検出符号 S EDC は 4 パイトから成っている。 データユニット U 1 ~ U 18 は計 2 3 0 4 パイトであり、音声・音響信号が A D P C M 方式で

符号化されて記憶される。

ADPCMの原理を第6図に示す。まず、過去の人力信号から現在の入力信号を適応予測器Dに示すり予測した信号yと現在の入力信号xとの差分eく=x-y)を減算器STで演数のによりを適応を行う。すなわち、符号化する。再生は記述を行う。すなわち、符号化信号Ceを、で、逆量子化器Qーによりを分eを加算器Anにより加算して出力信号xを得る。

このADPCM方式では、少ないビットで効率のよいオーディオデータの記憶が可能である。ビット節減率(データ圧縮率)によりオーディオ特性も異なる。第7図に、ADPCMとオーディオ特性等との関係を示す。第7図からわかるように、Aレベルのビット節減率は、ステレオ記憶で1/4である。Bレベルのビット節減率は、ステレオ記憶で1/4、モノラル記憶で1/8である。また、Cレベルでは、

ステレオ記憶で1/8、モノラル記憶で1/16 である。ピット節減串が例えば1/4ということは、従来の記録容量の1/4で済み、あとの 3/4は他のデータの記憶に用いることができる ことを意味する。

第 5 図において、データユニットUi は各々1 2 8 バイトであり、データユニットUi は、サウンドパラメーク部Pi と A D P C M サンブルデータ部Di を有している。サウンドパラメータ部Pi は 1 6 バイトであり、第 5 図に示す A D P C M の適応予測器 D の予測フィルタの係数等を 格納したものである。 A D P C M サンブルデータ を Di の容量は 1 1 2 バイトであり、 A D P C Mでサンブリングしたデータが 記憶される。 したがって、 1 つのセクタ全体では、 2 0 1 6 バイト(= 1 1 2 × 1 8)のデータ容量となる。 仮に A D P C M の方式として B レベルのステレオに を 行うとすると、

37. 8×10⁸×4×2×1/75×1/8=504 より、記憶に必要なパイト数は504パイトとな

る。

したがって、2016+504-4より、通常の記憶方式に比べて4倍のデータが記憶可能である。すなわち、全部で4チャンネル分の音声・音響信号を記憶することができる。この場合、第1チャンネルはセクタT₁、T₅、T₉…T_{4h+1}に記憶される。ここに、hは0以上の整数である。また第2チャンネルはセクタT₂、T₆、T₁₀、…T_{4h+2}に、第3チャンネルはセクタT₃、T₇、T₁₁、…T_{4h+8}に、そして第4チャンネルはセクタT₄、T₈、T₁₂、…T_{4h+4}にそれぞれ記憶される。

このようにして、 A D P C M サンブルデータ部 D _j に楽章情報又は楽曲情報であるカラオケの伴奏音楽をパルス符号変調して記憶する。この場合、シンク S _{SYNC}、ヘッダ S _H 、 サブヘッダ S _{SH}等が検索情報に相当する。

ユーザ・データ S_{UD}領域を利用してディジタル 内容情報テーブルであるファイル情報テーブル (以下、FILE - TOCという。)を記憶する

ことができる。この場合、FILE-TOCを格 〕 納するセクタT_{FT}は、第5図に示すようにポリュ ーム・ディスクリプタT_N に続く1セクタ、又は 2以上のセクタを用いることができる。FILE - TOCとして用いる場合は、Model又は Mode2Form1で記憶されるが、本実施例 ではModelを採用している。すなわち、用い るセクタが1個の場合はFILE-TOCとして 記憶できる容量は、第5図に示すように2048 バイトであり、用いるセクタがN側の場合は 2048×Nバイトとなる。Modelの場合は、 第5図に示すようにサブヘッダがなく、そのか わりに Z E R O 部 S _{ZERO}と 誤り 訂正符号部 S _{ECC} を有している。ZERO部S_{ZERO}は、8パイトで R E S E R V E D である。また、正符号部 S _{ECC} は 2 7 6 バイトであり、パリティ P 郁 S p (172パイト) と、パリティQ部S_n (104 バイト)とを有している。

第8図に、F1LE-TOCの設定例を示す。 第8図において、このFILE-TOC403

は1個のセクタを用い、XAアプリケーション情 報解X_Aと、XAデータ情報部X_Dと、を有して いる。、XAアプリケーション情報部X。は84バ **ずトであり、ディスクの内容全体に関する情報を** 記憶する部分であって、パートX_{A1}と、パート X_{A2} と、パート X_{A3} と、パート X_{A4} とを含んでい る。パートX」は4パイトであり、このCD-ROMXAディスクのタイプを記憶する部分であ る。CD-ROMXAティスクのタイプとは、 「カラオケ伴奏音楽のみを収録したタイプ」であ るとか、「カラオケと映像を収録したタイプ」等 である。パートX 42は16バイトであり、CD-ROMXAディスクの制作年月日を記録する部分 である。パートXAgは32バイトであり、著作権 者(製作者)に関する情報を記憶する部分である。 パートX**は32パイトであり、このディスクを 再生する装置に関する情報を記憶する部分である。 X A データ情報部X n は 2 2 4 0 バイトであり、 XAヘッダ部Xnuと、XAデータ部Xnnとを有し ている。XAヘッダ部XnHはXAデータ部に関す

る情報を記憶する部分であり、レイヤ数DHi、 データアドレスD H_5 、データサイズD H_8 、レ イヤアドレスDHq 、レイヤサイズDH 1 n 等を格 納する。XAデータ部XpDはディジタル内容情報 である各種情報データを記憶する部分である。 XAデータ部Xnnは、オーディオデータ部DAと、 グラフィックデータ部DGと、テロップデータ部 DTと、曲名デーク部DNとを有している。楽章 情報又は楽曲情報としてカラオケ伴奏音楽が記憶 されている場合は、主としてオーディオデータ部 DAにディジタル内容情報が記憶される。曲名情 報である曲名は曲名データ部DNに記憶される。 曲名情報は、JISコードのような文字コード情 報の場合は、通常8ピット(1パイト)単位で記 憶される。曲名を音声で発生した音声情報の場合 は、ADPCM方式(例えばCレベルモノラル記 録)でデータ圧縮されて記憶される。

第2実施例

次に、第9図に、請求項4記載の発明にかかる 情報再生装置の実施例を示す。第9回は、情報再

生装置であるカラオケ演奏装置501の構成を示 している。

第9図において、このカラオケ演奏装置501 は、情報読取手段である光学式ピックアップ61 と、制御手段である制御プロック7と、スピンド ルモータ51と、復調プロック8と、外部端子 52、53、54とを備えている。

制御プロック7は、システムコントロールマイ コン71と、RAM71Rと、サーポコントロー ルマイコン72と、サーボ回路73と、外部人力 部74とを備えている。

また、復調プロック8は、波形整形回路81と、 ディジタル信号処理部82と、RAM82Rと、 CD-ROMFJ-9832, RAM83R2, ADPCMFコーダ84と、RAM84Rと、 D / A コンバータ85と、ローパスフィルタ86 と、グラフィックコントローラ87と、RAM 87Rと、カラーパレット88とを有している。

外部端子52には外部アンプAMPを接続する ことができる。外部アンプAMPには、外部マイ クロフォンMC及び外郎スピーカSPを接続する ことができる。

外部端子53には画像表示装置GDを接続する ことができる。外部端子54には、外部のマイク ロコンピュータ等の制御機器を接続することがで

次に、このカラオケ演奏装置の動作を説明する。 まず、CD-ROMディスク11をスピンドル モータ51により回転させる。光学式ピックアッ プ61は、CD-ROMディスク11の紀録面か らピット列で表現されたディジタル信号を読み取 る。光学式ピックアップ61が読み取ったディジ タル信号 DS t は、被形整形回路 81 により波形 整形された後、信号DS。としてディジタル信号 処理部82へ入力される。ディジタル信号処理部 82においては、まず、水晶によって生成した基 単のクロックを用いて、EFM信号のエッジを検 出し、データ列を再生する。そして、このデータ 列の中から、フレーム同期信号を検出し、この同 期信号を基にしてフレームデータの構成を正確に

再生する。フレームデータは、EFM復濶を行って8ピット単位のシンボルデータとなり、RAM82Rに割き込まれる。次いで、RAM82Rに収納されたデータは、デインクリーブが行われる。次いで、誤り訂正処理が行われ、信号DS3としてCD-ROMデコーダ83に送られる。CD-ROMデコーダ83では、まずサブコードのシン時間によりアドレスが探索され、データ中のシンクが投出され、スクランが探索され、目的のセクタがアクセスをある。得られたユーザ・データは、合号DS4としてADPCMデコーダ84に出力される。

A D P C M デコーダ 8 4 は、適応逆量子化器 及び適応予測器(図示せず)を有し、信号 D S 4 をディジタル信号に復号し復号信号 D S 5 として D / A コンパータ 8 5 に伝達する。

D / A コンバータ 8 5 は復号信号 D S 5 をアナログ量に変換し信号 A S 1 としてローバスフィルタ 8 6 に送る。ローバスフィルタ 8 6 は、信号

例えば、CD-ROMディスク11のFILE-TOC403に記憶されている曲名情報N1~Nnが曲名を表現した文字コード情報の場合などである。グラフィック信号GS1はカラーパレット88に出力される。カラーパレット88に出力される。カラーパレット88に出力される。カラーパレット80と記憶として外部は、グラフィック信号GS2を画像として外であるがラフィック信号GS2を画像として出力さる。

一方、システムコントロールマイコン71は、外部入力部74から入力される制御信号 C S 12、外部端子54から入力される制御信号 C S 11、あるいは内蔵するプログラム等により、サーボコントロールマイコン72に制御信号 C S 13を出力して制御する。また、システムコントロールマイコン71は、 C D - R O M デコーダ83、ADPC M デコーダ84、グラフィックコントロ

A S ₁ を正確なアナログ信号 A S ₂ として外部端 子 5 2 へ出力する。

このカラオケ演奏装置501のオーディオ出力信号であるアナログ信号AS2は、外部マイクコスAMPに入力される。また、一方、外部マイクロフォンMCに入力された音声は、マイクロフォンMCに分かる。外部アンプAMPは、アナログインの局波数特性等を調整するとともにマイルによって増幅して信号AS3を介部スピーカSPは、入力された信号AS3を音響として出力する。

C D - R O M デコーダ 8 3 の出力 した 信号 D S 4 は、グラフィックコントローラ 8 7 は 5 られる。グラフィックコントローラ 8 7 は、C D - R O M ディスク 1 1 のユーザ・データ S UD に 画像情報が記憶されている場合に、信号 D S 4 内に含まれている 画像情報についての 画像信号を抽出し、グラフィック信号 G S 1 として出力する。

ーラ87等についても、制御信号CS₂₃、CS₂₄、CS₂₅により制御する。その他、システコントトロールマイコン71は、CDーROMデコーダ83からFILEITOCデータを制御入力ンクしている。サーボコントロールマ71から号処では、システカードではですが、でいるではいかでは、システカーがではできたができる。サードでの処理がある。サードでの制理がある。サードでの制御のでは、ジャルによりでは、ディングを対している。サードでは、シャングの側ででは、ジャングの制理がある。サードでは、シャングの制理がある。サードでは、シャングの制御では、シャングの制御では、シャングの制御では、シャングの制御では、シャングの制御では、シャングの制御では、シャングの制御では、シャングの制御では、対していていて、シャングの制御では、対していていていていていていていていていていていていていていていている。

次に、第10~13図を用いて、上記のようなカラオケ演奏装置501にCD-ROMディスク11を装填した場合の動作を説明する。

第10図において、カラオケ演奏装置501は、ステップ1000でスタートし、ディスクが装填されたか 否かを 判断する。 次いで、ステップ

1002に進む。ステップ1002はディスクの リードインに記憶されているTOCを読み取る TOC読取サブルーチンである。次いで、ステッ ザ1003において、ディスクが通常のCDディ スクか、CD-ROMディスクかを判別する。 通常のCDであればステップ1004に移行し、 C D - R O M ディスクであればステップ 1 🖯 0 5 に進む。ステップ1005はFILE-TOCデ - タを読み取るFILE-TOC 読取サブルーチ ンである。次いで、ステップ1006に移行する。 ステップ1006は、所望のカラオケ曲を選曲し 再生するサーチ/プレイサブルーチンである。 TOC読取サブルーチン1002の内容をステッ プ1020~1025に示す。また、FILE-TOC焼取サブルーチン1005の内容をステッ プ1050~1056に示す。

ここで、サーチ/ブレイサブルーチン 1 0 0 6 の内容について説明する。ステップ 1 0 6 1 において、 R A M 7 1 R に記憶された F I L E - T O C データは読み出され、システムコントロー

74Aで、カラオケ演奏装置502に向けて赤外線信号を発射して行ってもよい。この場合、ボーカル入力はワイヤレスマイクMC_」でカラオケ演奏装置504に向けて行う。

選曲操作は、また、第12図に示すように行ってもよい。この場合は、画像表示装置GD2の画面上の選曲リストを見ながら、歌唱者の手元のキーボード入力装置74Bでキー入力し、カラオケ演奏装置503に操作指令を伝達してもよい。あるいは、歌唱者の近傍にも別の画像表示装置GD3を起き、その画面直上に透明タッチパネル形式の入力装置74Cを設けて選曲操作を行ってもよい。ボーカル入力は外部マイクMC?で行う。

上記の実施例においては、楽章情報又は楽曲情報がカラオケの伴奏音楽について説明したが、これは、通常の曲、その他のディジタルオーディオ情報の集合であってもかまわない。

上記の実施例においては、ディジタル内容情報 としては、主としてカラオケ曲の曲名について説 明したが、これは、曲の作詞者名、曲の作曲者名、

ルマイコンフ1によりグラフィックコントローラ 87に転送される。次いで、ステップ1062に おいて、伝送されたFILE-TOCデータは、 グラフィックコントローラ87及びカラーパレッ ト88を経て、両像表示装置CDに送られ、 両面に ディジタル内容情報テーブルである遺曲リストが 表示される。画面上の遺曲リストの例を第11図 に示す。 CD-ROMディスク11内に記憶され ているn個のカラオケ曲は、リスト欄L。におい て1からnまで一連番号が付される。リスト欄 し,には曲名が表示される。曲名は例えば50音 順に配置される。リスト欄L。には曲の作詞者名、 作曲者名を表示する。リスト欄L」には歌手名を 表示する。リスト欄Lgには歌い始めのフレー ズ(例えば1行)が表示される。リスト側L。~ し、は、各々50音等で検索可能である。

次いで、ステップ1063において、ユーザは 選曲操作を行う。この選曲操作は、第11図に 示すように、外部端子CD₁の画面上の選曲リス トを見ながら、手元の赤外線リモコン人力装置

曲のすべての歌詞、この歌詞の各フレーズのアドレス、曲の制作年月日、受賞した音楽に関する賞、などであってもよい。

また、上記の実施例においては、ディジタル内容情報又は曲名情報が画像情報であって画像表示装置の画面上に表示される例について示したが、これは、音声として表現されてもよい。この場合、例えば曲名情報は第10図のステップ1061において、システムマイコン71によりRAM71RからADPCMデコーダ84に送られ、音声として外部スピーカSPから出力される。ユーザはこの音声を聞いて、所望の曲とその番号を知り選曲操作をすることができる。

そして、上記の実施例においては、情報記憶装置としてCD-ROMXAディスクの例について説明したが、これは、他の種類のCD-ROM、CD-I、通常のコンパクトディスク、あるいはICカード、他の形式の読み出し専用メモリなどであってもかまわない。

〔発明の効果〕

以上説明したように、本発明によればカラオケ演奏装置等において、ユーザは曲名目録等の印刷物がなくても画像表示装置の画面上で所望の曲を選択することができ、特に乗用自動車内で使用するのに好適である。

また、情報記憶装置として、CD-ROM XAディスクやコンパクトディスク等のディジタ ル記録媒体を用いるため、データアクセス時間が 早く、遺曲がすばやく行えるという利点も有する。

4. 図面の簡単な説明.

第 1 図は請求項 1 記載の発明の原理説明図、 第 2 図は請求項 2 記載の発明の原理説明図、 第 3 図は請求項 3 記載の発明の原理説明図、 第 4 図は請求項 4 記載の発明の原理説明図、 第 5 図は本発明の第 1 実施例である C D -R O M X A ディスクのデータ構造を示す図、

第6図はADPCM方式の原理を説明する図、 第7図はADPCMとオーディオ特性等との関

72…サーポコントロールマイコン、

73…サーボ回路、

74 … 外部入力部、

74A…赤外線リモコン装置、

74 B … キーポード入力装置、

74 C…透明タッチパネル入力装置、

81…被形成形间路、

82…ディジタル信号処理部、

83 ··· C D - R O M デコーダ、

84…ADPCMデコーダ、

85…グラフィックコントローラ、

86…ローパスフィルタ、

87…グラフィックコントローラ、

88…カーラパレット、

100、101、102…情報記憶装置、

200、201、202…記憶領域、

300、301、302…ディジタルオーディ

オ情報、

400、401、402…ディジタル内容情報 テーブル、 係を示す図、

第 8 図は F I L E - T O C の デー 夕 構造を示す 図、

第9図は本発明の第2実施例であるカラオケ演 塞装閣の構成を示す図、

第 1 () 図は第 9 図のカラオケ演奏装置における 制御プログラムの内容を示す図、

第11図は第9図のカラオケ演奏装置における 選曲リストの画像表示例を示す図、

第12、13図は、第9図のカラオケ演奏装置における外部人力部の例を示す図、

6 … 続取プロック、

フ…制御ブロック、

8…復鬻ブロック、

1 1 ··· C D - R O M ディスク、

21…記憶領域、

51…スピンドルモータ、

52~54 ... 外部端子、

71…システムコントロールマイコン、

7 1 R ... R A M .

4 0 3 ··· F I L E - T O C .

500…情報再生装置、

5 () 1 ~ 5 () 3 … カラオケ演奏装置、

600…情報読取手段、

700…制御手段、

1000~1068 ... プログラムステップ、

A, ~ A, ··· 楽章情報、

A U ₁ ~ A U _n … 楽曲ディジタルオーディオ 惰 報、

C _{i 1} ~ C _{m n} … ディジタル内容情報、

C、CS…制御信号

Ii ~ In … 検索情報、

MC、MC₁、MC₂…外部マイクロフォン、

 $S_1 \sim S_x$, $S_1 \sim S_y \sim t / 2 = 2$,

S P … 外部スピーカ、

TU, ~TU, ··· 楽曲情報。

第 4 図

第 9 図

						オーディア特性	
音 質の しべル		方式	標本化開放散 (kHz)	受け化数(ビット)	とっト 節派卒 (ステレオノモノ)	ダイナミック レンジ (dB)	間波教希域 (kHz)
CD ズンタルオーディ (現行 IGビット PCM 祖当の音音)		РСМ	44.1	16	1	98	20
A	ハイファイ (LPLコード祖当の音質)	ADPC M	37. 8	. 8	1/2 / 1/4	90	17
В	ミッド・ハイファイ (FM 灰丞招当の 育普)	ADPCM	37.8	4	1/4 / 1/8	90	17
С	スピーチ (AM 枚数相当の者費)	ADPCM	18. 9	4	1/8 / 1/16	50	8.5

第 7 図

-699-

第 11 図

第 12 図

第13 図