Grado en Ingeniería en Tecnologías de Telecomunicación

Notación:

• $\widehat{S}_{\mathrm{MMSE}}$: Estimador de mínimo error cuadrático medio.

• \widehat{S}_{MAP} : Estimador de máximo a posteriori.

ullet $\widehat{S}_{\mathrm{ML}}$: Estimador de máxima verosimilitud.

• \hat{S}_{LMSE} : Estimador lineal de mínimo error cuadrático medio.

1. La variable aleatoria X presenta la siguiente verosimilitud:

$$p_{X|\Theta}(x|\theta) = \theta x^{\theta-1}, \qquad 0 \le x \le 1$$

siendo θ es un parámetro determinista, de valor desconocido, tal que $\theta \geq 0$.

- (a) Se dispone de K muestras, $\left\{x^{(k)}\right\}_{k=1}^{K}$, tomadas independientemente, de la variable aleatoria X. Obtenga, a partir de dichas muestras, el estimador de máxima verosimilitud del parámetro θ , $\widehat{\theta}_{\mathrm{ML}}$.
- (b) Suponga ahora que se desea estimar el valor de otra variable S, relacionada con X, de la que se sabe que $\mathbb{E}(S) = 0$, $\mathbb{E}(S^2) = 1$ y $\mathbb{E}(SX) = 1/2$. Obtenga el estimador **lineal** de mínimo error cuadrático medio de S a la vista de X, \widehat{S}_{LMSE} .

Nota: Para la resolución de este apartado, suponga $\theta=2$.

Solution:

(a)
$$\hat{\theta}_{ML} = -\frac{K}{\sum_{k=1}^{K} \ln(x^{(k)})}$$

(b)
$$\hat{S}_{LMSE}(X) = -6 + 9X$$

2. Las variables aleatorias S y X están relacionadas a través de la distribución a posteriori:

$$p_{S|X}(s|x) = \frac{x+4s-s^2}{x+\frac{5}{3}}, \qquad 0 \le s \le 1, \qquad x \ge 0$$

- (a) Determine el estimador de mínimo error cuadrático medio, $\hat{S}_{\mathrm{MMSE}}.$
- (b) Determine el estimador de máximo a posteriori, $\hat{S}_{\text{MAP}}.$

Solution:

(a)

$$\hat{s}_{\text{MMSE}} = \mathbb{E}\{S|X=x\} = \int_0^1 s \frac{x+4s-s^2}{x+\frac{5}{3}} ds$$
$$= \frac{6x+13}{12x+20}$$

(b)

$$\begin{split} \hat{s}_{\text{MAP}} &= \underset{s}{\text{argmax}} \{p_{S|X}(s|x)\} = \underset{s \in [0,1]}{\text{argmax}} \left\{ \frac{x + 4s - s^2}{x + \frac{5}{3}} \right\} \\ &= \underset{s \in [0,1]}{\text{argmax}} \left\{ x + 4s - s^2 \right\} \end{split}$$

La parábola $x + 4s - s^2$ tiene derivada

$$-2s + 4$$

que se anula en s=2, que que da fuera del dominio de $p_{S|X}(s|x)$. Por tanto, \hat{s}_{MAP} de be coincidir con uno de los extremos del intervalo [0,1]. Dado que la derivada es positiva en ese intervalo, $p_{S|X}(s|x)$ es creciente en el dominio, y por tanto

$$\hat{s}_{\mathrm{MAP}} = 1$$