ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA CƠ KHÍ BỘ MÔN THIẾT KẾ MÁY

BÁO CÁO BÀI TẬP LỚN CHI TIẾT MÁY

GVHD: GS. NGUYỄN HỮU LỘC

SINH VIÊN THỰC HIỆN:

Họ và tên	MSSV
Dương Quang Duy	2210497

Mục lục

1	Khảo sát tính ổn định của hệ thống 1.1 Biểu đồ Bode	6
2	Đánh giá chất lượng hệ thống điều khiển2.1 Các tiêu chuẩn về xác lập	4
3	Đánh giá chất lượng hệ thống điều khiển 3.1 Các tiêu chuẩn về xác lập	ָּ

Chương 1

Khảo sát tính ổn định của hệ thống

Ta có hàm truyền đã tìm được ở trên là:

$$G(s) = \frac{4.85}{s^2 + 53.51}$$

Hệ vòng kín với phản hồi là:

$$T(s) = \frac{G(s)}{1 + G(s)}$$

Phương trình đặc tính:

$$1 + G(s) = 0$$

$$\Leftrightarrow 1 + \frac{4.85}{s^2 + 53.51} = 0$$

$$\Leftrightarrow s^2 + 58.36 = 0$$

 \Leftarrow Hệ không ổn định do hệ số của s^1 là 0.

1.1 Biểu đồ Bode

$$G(s) = \frac{4.85}{s^2 + 53.51}$$

Phân tích:

- 1 khâu khuếch đại: K = 4.85.
- 1 khâu dao động bậc 2.

Tần số cộng hưởng:

$$\omega_n = \sqrt{53.51} = 7.315 (rad/s)$$

Đặc tính tần số:

$$G_1(j\omega) = \frac{4.85}{-\omega^2 + 53.51}$$

Biên độ:

$$\begin{split} M(\omega) &= |G(j\omega)| = \frac{4.85}{|-\omega^2 + 53.51|} \\ \Rightarrow L(\omega) &= 20log(M(\omega)) = 20log(4.85) - 20log(\left|-\omega^2 + 53.51\right|) \end{split}$$

- Khi 0 < ω < 7.315: biên độ tăng từ -20.85dB đến + ∞
- Với $\omega > 7.315$:

$$\begin{split} &20log(4.85)-20log(\left|-\omega^2+53.51\right|)\approx 20log(4.85)-20log(\omega^2)\\ &=20log(4.85)-40log(\omega)\\ &\Rightarrow \text{Dộ dốc giảm: }-40dB/decade\\ &\Rightarrow \text{Với }\omega>7.315: \text{ biên độ giảm từ }+\infty\text{ về }-\infty \end{split}$$

Pha:

$$\angle G(j\omega) = \begin{cases} 0 & ; \quad \omega < 7{,}315 \\ -180^\circ & ; \quad \omega > 7{,}315 \\ \text{Pha nhảy từ 0 xuống } -180^\circ \text{ tại } \omega = 7{.}315 \end{cases}$$

Nhân xét:

- Hệ thống vòng hở: G(s) có các cực trên trục ảo s=+-7.315 nên hệ thống ổn định biên. Đồ thị Bode cho thấy biên độ đạt đỉnh tại $\omega=7.315$ và pha nhảy xuống là -180° . Điều này xác nhận hệ thống dao động không suy giảm.
- Từ độ thị ta có thể thấy độ dữ trữ pha $G_M < 0dB$ nên đã vi phạm tiêu chuẩn ổn định của biểu đồ Bode \Rightarrow Hệ chưa ổn định.

Chi tiết máy

Chương 2

Đánh giá chất lượng hệ thống điều khiển

$$G(s) = \frac{4.85}{s^2 + 53.51}$$

2.1 Các tiêu chuẩn về xác lập

Hàm truyền vòng kín:

$$T(s) = \frac{G(s)}{1 + G(s)} = \frac{4.85}{s^2 + 58.36}$$

Xét với đầu vào bậc (step input, $R(s) = \frac{1}{s}$), sai số xác lập được tính bằng:

$$e_{xl} = \lim_{s \to 0} \frac{s \cdot R(s)}{1 + G(s)} = \lim_{s \to 0} \frac{1}{1 + k_p} \approx 0.92$$

Với k_p là hệ số vị trí, $k_p = \lim_{s \to 0} G(s) \approx 0.09$

Chương 3

Đánh giá chất lượng hệ thống điều khiển

$$G(s) = \frac{4.85}{s^2 + 53.51}$$

3.1 Các tiêu chuẩn về xác lập

Hàm truyền vòng kín:

$$T(s) = \frac{G(s)}{1 + G(s)} = \frac{4.85}{s^2 + 58.36}$$

Xét với đầu vào bậc (step input, $R(s) = \frac{1}{s}$), sai số xác lập được tính bằng:

$$e_{xl} = \lim_{s \to 0} \frac{s \cdot R(s)}{1 + G(s)} = \lim_{s \to 0} \frac{1}{1 + k_p} \approx 0.92$$

Với k_p là hệ số vị trí, $k_p = \lim_{s \to 0} G(s) \approx 0.09$