A Penalty Alternating Direction Method of Multipliers for Decentralized Composite Optimization

Jiaojiao Zhang

Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong

> Joint work with Anthony Man-Cho So (CUHK) Qing Ling (SYSU)

> > ICASSP 2020

- Background
- Penalized Approximation Formulation
- 3 Algorithm Development
- 4 Convergence and Rate of Convergence
- 5 Numerical Experiments
- 6 Conclusions

- Background
- 2 Penalized Approximation Formulation
- 3 Algorithm Development
- 4 Convergence and Rate of Convergence
- 5 Numerical Experiments
- 6 Conclusions

Background

Distributed Network

Background

• Consider the composite optimization problem:

$$\hat{x}^* = \arg\min_{x \in \mathbb{R}^p} \sum_{i=1}^n (f_i(x) + g_i(x))$$

• Such a finite sum problem is common in machine learning. For example, f_i represents loss function and g_i represents regularization.

Background

Fig 1. Centralized network

Fig 2. Decentralized network

- Centralized network: master collects/broadcasts x.
- Decentralized network: equivalent formulation

$$\{\hat{x}_i^*\} = \arg\min_{x_i \in \mathbb{R}^p} \sum_{i=1}^n (f_i(x_i) + g_i(x_i)),$$

s.t. $x_1 = \dots = x_n.$

Each node holds its own x_i and only communicates with its neighbors.

Related Work

- Primal domain
 - Decentralized Gradient Descent (DGD) [Yuan 2016]
 - Second-order methods for the penalized approximation [Mokhtari 2016]
- Dual domain
 - Alternating Direction Method of Multipliers (ADMM) for smooth problem with linear rate [Shi 2014]
 - Proximal decentralized linearized ADMM with ergodic rate O(1/k) [Aybat 2017]
 - The augmented Lagrangian method (ALM) for smooth problem wih linear rate [Jakovetic 2014]
- Other methods
 - PG-EXTRA and NIDS for nonsmooth problem with rate O(1/k) and o(1/k) [Shi 2016, Li 2019]
 - gradient tracking [Lorenzo 2016, Scutari 2019]
 - PGA [Alghunaim 2019] and SONATA [Sun 2019] with linear rate under the assumption that nonsmooth term is common

- Background
- Penalized Approximation Formulation
- 3 Algorithm Development
- 4 Convergence and Rate of Convergence
- 5 Numerical Experiments
- 6 Conclusions

Penalized Approximation Formulation

Aggregated variables and functions:

• stack all x_i into matrix \mathbf{x}

$$\mathbf{x} \triangleq \begin{pmatrix} - & x_1^T & - \\ & \vdots & \\ - & x_n^T & - \end{pmatrix} \in \mathbb{R}^{n \times p}$$

• define $f(\mathbf{x}) = \sum_{i=1}^{n} f_i(x_i)$ and $g(\mathbf{x}) = \sum_{i=1}^{n} g_i(x_i)$.

Consensus constraint:

- (Assumption 1) Introduce the mixing matrix W with elements $w_{ij} \geq 0$. $w_{ij} = 0$ if and only if $j \notin \mathcal{N}_i \cup \{i\}$. Further, $W^T = W$, $W\mathbf{1}_{n\times 1} = \mathbf{1}_{n\times 1}$ and $null(I W) = span(\mathbf{1}_{n\times 1})$.
- $x_1 = \cdots = x_n$ is equivalent to $(I W)\mathbf{x} = 0$. Since $I W \succeq 0$, $(I W)^{\frac{1}{2}}\mathbf{x} = 0$.

Penalized Approximation Formulation

Consider the penalized approximation:

$$\hat{\mathbf{x}}^* = \arg\min_{\mathbf{x} \in \mathbb{R}^p} \sum_{i=1}^n \left(f_i(\mathbf{x}) + g_i(\mathbf{x}) \right)$$

$$\mathbf{\hat{x}}^* = \arg\min_{\mathbf{x} \in \mathbb{R}^{n \times p}} f(\mathbf{x}) + g(\mathbf{x})$$
s.t. $(I - W)^{\frac{1}{2}}\mathbf{x} = 0$

$$\mathbf{Penalized Approximation}$$

$$\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathbb{R}^{n \times p}} f(\mathbf{x}) + g(\mathbf{x}) + \frac{1}{2\epsilon} \|(I - W)^{\frac{1}{2}}\mathbf{x}\|_{\mathcal{F}}^2$$

- $\epsilon > 0$ is penalty parameter.
- smaller ϵ brings higher accuracy, i.e. \mathbf{x}^* is close to $\hat{\mathbf{x}}^*$.

DGD to Solve Penalized Problem

• When $g(\mathbf{x}) = 0$, penalized problem can be solved by GD:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \frac{\gamma}{\gamma} (\nabla f(\mathbf{x}^k) + \frac{1}{\epsilon} (I - W) \mathbf{x}^k),$$

where $\gamma > 0$ is the step size.

- GD is not efficient, why?
 - When ϵ is very small, the Lipschitz constant is in the order of $O(\frac{1}{\epsilon})$. To converge, γ must be in the order of $O(\epsilon)$.
 - Setting $\gamma = \epsilon$ recovers the DGD update $\mathbf{x}^{k+1} = W\mathbf{x}^k \epsilon \nabla f(\mathbf{x}^k)$.
 - Proximal DGD faces with the same problem.
- To tackle the unfavorable accuracy-speed tradeoff, we use ADMM-based method.

- Background
- 2 Penalized Approximation Formulation
- 3 Algorithm Development
- 4 Convergence and Rate of Convergence
- 5 Numerical Experiments
- 6 Conclusions

Introduce an auxiliary variable z:

$$\hat{\mathbf{x}}^* = \arg\min_{\mathbf{x} \in \mathbb{R}^p} \sum_{i=1}^n \left(f_i(\mathbf{x}) + g_i(\mathbf{x}) \right)$$

$$\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathbb{R}^{n \times p}} f(\mathbf{x}) + g(\mathbf{x})$$

$$\mathrm{s.t.} \ (I - W)^{\frac{1}{2}} \mathbf{x} = 0$$

$$\mathbf{penalized Approximation}$$

$$\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathbb{R}^{n \times p}} f(\mathbf{x}) + g(\mathbf{x}) + \frac{1}{2\epsilon} \| (I - W)^{\frac{1}{2}} \mathbf{x} \|_{\mathcal{F}}^2$$

$$\mathbf{Equivalent}$$

$$(\mathbf{x}^*, \mathbf{z}^*) = \arg\min_{\mathbf{x}, \mathbf{z} \in \mathbb{R}^{n \times p}} f(\mathbf{x}) + g(\mathbf{x}) + \frac{1}{2\epsilon} \| \mathbf{z} \|_{\mathcal{F}}^2$$

$$\mathrm{s.t.} \ (I - W)^{\frac{1}{2}} \mathbf{x} = \mathbf{z}$$

• The augmented Lagrangian function is $L_{\alpha}(\mathbf{x}, \mathbf{z}, \Pi) = f(\mathbf{x}) + g(\mathbf{x}) + \frac{1}{2\epsilon} \|\mathbf{z}\|_{\mathcal{F}}^2 + \left\langle \Pi, (I - W)^{\frac{1}{2}}\mathbf{x} - \mathbf{z} \right\rangle + \frac{\alpha}{2} \|(I - W)^{\frac{1}{2}}\mathbf{x} - \mathbf{z}\|_{\mathcal{F}}^2.$

- $\Pi \in \mathbb{R}^{n \times p}$ is the Lagrange multiplier (also called dual variable).
- $\alpha > 0$ is a parameter.
- Traditional ADMM iterates as

$$\begin{split} \mathbf{x}^{k+1} &= \arg\min_{\mathbf{x}} L_{\alpha}(\mathbf{x}, \mathbf{z}^k, \Pi^k), \\ \mathbf{z}^{k+1} &= \arg\min_{\mathbf{z}} L_{\alpha}(\mathbf{x}^{k+1}, \mathbf{z}, \Pi^k) \\ &= \frac{1}{\alpha + \frac{1}{\epsilon}} \big[\Pi^k + \alpha (I - W)^{\frac{1}{2}} \mathbf{x}^{k+1} \big], \\ \Pi^{k+1} &= \Pi^k + \alpha \big[(I - W)^{\frac{1}{2}} \mathbf{x}^{k+1} - \mathbf{z}^{k+1} \big]. \end{split}$$

• \mathbf{x}^{k+1} does not have a closed form solution \rightarrow *linearization*

Separate the augmented Lagrangian function as

$$L_{\alpha}(\mathbf{x}, \mathbf{z}^k, \Pi^k) \triangleq \underbrace{g(\mathbf{x})}_{\text{nonsmooth}} + \underbrace{\tilde{L}_{\alpha}(\mathbf{x}, \mathbf{z}^k, \Pi^k)}_{\text{smooth}}.$$

Replace the smooth part by a quadratic approximation

$$\begin{split} & \mathcal{L}_{\alpha}(\mathbf{x}, \mathbf{z}^k, \boldsymbol{\Pi}^k) \approx \underbrace{g(\mathbf{x})}_{\substack{\text{nonsmooth}}} \\ & + \underbrace{\tilde{\mathcal{L}}_{\alpha}(\mathbf{x}^k, \mathbf{z}^k, \boldsymbol{\Pi}^k) + \left\langle \nabla_{\mathbf{x}} \tilde{\mathcal{L}}_{\alpha}(\mathbf{x}^k, \mathbf{z}^k, \boldsymbol{\Pi}^k), \mathbf{x} - \mathbf{x}^k \right\rangle + \frac{1}{2c} \|\mathbf{x} - \mathbf{x}^k\|_{\mathcal{F}}^2}_{\substack{\text{quadratic approximation}}}. \end{split}$$

• The primal update is the proximal mapping of g defined as $\operatorname{prox}_{cg}(y) \triangleq \operatorname{argmin}_x \{g(x) + \frac{1}{2c} \|x - y\|^2\}$, where c > 0 is a scalar.

The proposed penalty ADMM (PAD) updates as

$$\mathbf{x}^{k+1} = \operatorname{prox}_{cg} \left(\mathbf{x}^k - c \left[\nabla f(\mathbf{x}^k) + \alpha (I - W)^{\frac{1}{2}} ((I - W)^{\frac{1}{2}} \mathbf{x}^k - \mathbf{z}^k + \frac{\Pi^k}{\alpha}) \right] \right),$$

$$\mathbf{z}^{k+1} = \frac{1}{\alpha + \frac{1}{\epsilon}} \left[\Pi^k + \alpha (I - W)^{\frac{1}{2}} \mathbf{x}^{k+1} \right],$$

$$\Pi^{k+1} = \Pi^k + \alpha \left[(I - W)^{\frac{1}{2}} \mathbf{x}^{k+1} - \mathbf{z}^{k+1} \right].$$

• Simplify updates by introducing $\bar{\Pi}^k = (I - W)^{\frac{1}{2}}\Pi^k$ and $\bar{\mathbf{z}}^k = (I - W)^{\frac{1}{2}}\mathbf{z}^k$.

Algorithm 1 PAD run by agent i

Require: Choose the parameters ϵ , α and c. Initialize the local variables to x_i^0 , $\bar{z_i}^0$ and $\bar{\pi}_i^0$.

- 1: **for** $k = 1, 2, \cdots$ **do**
- 2: Update local variable x_i^{k+1} by

$$x_i^{k+1} = \operatorname{prox}_{cg_i} \left(x_i^k - c \left[\nabla f_i(x_i^k) + \alpha(x_i^k - \sum_{j \in \mathcal{N}_i} w_{ij} x_j^k - \bar{z}_i^k) + \bar{\pi}_i^k \right] \right).$$

- 3: Transmit x_i^{k+1} / receive x_j^{k+1} from neighbors $j \in \mathcal{N}_i$.
- 4: Update local auxiliary variable \bar{z}_i^{k+1} by

$$\bar{z}_{i}^{k+1} = \frac{1}{\alpha + \frac{1}{\epsilon}} \left[\bar{\pi}_{i}^{k} + \alpha (x_{i}^{k+1} - \sum_{j \in \mathcal{N}_{i}} w_{ij} x_{j}^{k+1}) \right].$$

5: Update local dual variable $\bar{\pi}_i^{k+1}$ by

$$\bar{\pi}_i^{k+1} = \bar{\pi}_i^k + \alpha \left[(x_i^{k+1} - \sum_{j \in \mathcal{N}_i} w_{ij} x_j^{k+1}) - \bar{z}_i^{k+1} \right].$$

6: end for

- Background
- 2 Penalized Approximation Formulation
- Algorithm Development
- 4 Convergence and Rate of Convergence
- 5 Numerical Experiments
- 6 Conclusions

Convergence and Rate of Convergence

For convergence, assume

- (Assumption 2) Each $g_i(x)$ is convex and nonsmooth. The proximal mapping of $g_i(x)$ can be computed easily.
- (Assumption 3) Each $f_i(x)$ is convex and differentiable with a Lipschitz continuous gradient such that

$$\|\nabla f_i(x) - \nabla f_i(y)\| \le L_f \|x - y\|, \ \forall x, y \in \mathbb{R}^p,$$

where $L_f > 0$ is the Lipschitz constant.

For linear convergence rate, further assume

• (Assumption 4) Each $f_i(x)$ is strongly convex such that

$$\langle x - y, \nabla f_i(x) - \nabla f_i(y) \rangle \ge \mu_f ||x - y||^2, \ \forall x, y \in \mathbb{R}^p,$$

where $\mu_f > 0$ is the strong convexity constant.

Convergence and Rate of Convergence

Theorem 1 (Convergence)

Under Assumptions 1, 2 and 3, if the parameters α and c are chosen such that $\mathbf{c} < \frac{1}{L_f + \alpha \lambda_{max}(I - W)}$, then PAD from any initial points converges to the optimal solution \mathbf{x}^* of the penalized approximation problem.

Theorem 2 (Convergence rate)

Under Assumption 1-4, if the parameters α and c are chosen such that $c<\frac{1}{\frac{L_f^2}{\mu_f}+\alpha\lambda_{max}(I-W)}$, then PAD from any initial points converges linearly to

the optimal solution \boldsymbol{x}^{\ast} of the penalized approximation problem.

- Since $L_f/\mu_f > 1$, the bound of Theorem 2 is smaller.
- Step sizes do not rely on ϵ . A sufficiently small ϵ can be used so that the penalized approximation error is negligible.

- Background
- 2 Penalized Approximation Formulation
- 3 Algorithm Development
- 4 Convergence and Rate of Convergence
- Numerical Experiments
- 6 Conclusions

Numerical Experiments

1 Decentralized Logistic Regression

- $\min_{x \frac{1}{n} \sum_{i=1}^{n} \left\{ \sum_{j=1}^{m_i} \ln \left(1 + \exp(-(M_{(i)j}x)y_{(i)j}) \right) \right\}$.
- n = 30, connectivity ratio = 0.5, p = 10 and $m_i = 5, \forall i$.
- Relative error $\|\mathbf{x}^k \hat{\mathbf{x}}^*\|_{\mathcal{F}}/\|\mathbf{x}^0 \hat{\mathbf{x}}^*\|_{\mathcal{F}}$.

Decentralized Logistic Regression

Fig 3. Relative error of DGD (with $\epsilon=10^{-3}$) and PAD (with $\epsilon=10^{-3}$, $\epsilon=10^{-6}$ and $\epsilon=10^{-12}$, respectively). For DGD, its step size is $\gamma=\epsilon$. For PAD, $\alpha=0.6$ and c=0.032 according to the condition in Theorem 1.

Decentralized Quadratic Programming

2 Decentralized Quadratic Programming

- $\min_{x = 1}^{n} \sum_{i=1}^{n} \frac{1}{2} x^{T} Q_{i} x + h_{i}^{T} x$, $s.t.a_{i}^{T} x \leq b_{i}, \forall i$.
- $g_i(x) = \begin{cases} 0 & \text{if } a_i^T x \leq b_i \\ +\infty & \text{otherwise} \end{cases}$
- n = 10, connectivity ratio = 0.4 and p = 50.
- Relative error $\|\mathbf{x}^k \hat{\mathbf{x}}^*\|_{\mathcal{F}}/\|\mathbf{x}^0 \hat{\mathbf{x}}^*\|_{\mathcal{F}}$.

Decentralized Quadratic Programming

Fig 4. Relative error of PG-EXTRA, NIDS, DL-ADMM and PAD. For PAD, $\epsilon=10^{-12}$, $\alpha=1.2$ and c=0.2 as suggested in Theorem 2. For PG-EXTRA, $c=2\lambda_{\min}((I+W)/2)/L_f$. For NIDS, $c=1.9/L_f$. The parameters of DL-ADMM are hand-optimized.

Application in Classification for Breast Cancer Data

3 Application in Classification for Breast Cancer Data

- $\min_{x} \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m_i} \ln \left(1 + \exp \left(\left(M_{(i)j} x \right) y_{(i)j} \right) \right) + \frac{1}{n} \sum_{i=1}^{n} \lambda_i \|x\|_1.$
- n = 50, connectivity ratio = 0.5, p = 10 and $\lambda_i = \frac{0.1}{n}$. Each node i holds $m_i = 10$ training samples.
- Percentage of correct predictions.

Application in Classification for Breast Cancer Data

Fig 5. Percentage of correct predictions of PAD. We set $\epsilon=10^{-12}$, $\alpha=0.2$ and c=0.9 by hand-optimization.

- Background
- 2 Penalized Approximation Formulation
- 3 Algorithm Development
- 4 Convergence and Rate of Convergence
- 5 Numerical Experiments
- **6** Conclusions

Conclusions

- Consider a penalized approximation of the decentralized composite problem. The penalty parameter can be very small.
- By linearization, PAD has low computational costs.
- PAD is provably convergent under convexity, and linearly convergent under strong convexity.

Thank you!