Electromagnetism and Optics

The Lab Manual for PHY 103N Engineering Physics II Laboratory

Department of Physics University of Texas at Austin, Austin, TX 78712 2005--2006

May 17, 2015

Contents

	Pre	ce	r
0	Intr	duction 1	L
	0.1	General Lab Procedures	L
	0.2	Error Estimation and Propagation	2
		0.2.1 Definition of Uncertainty	}
		0.2.2 Estimating Parameters and Their Uncertainties 5	í
		0.2.3 Propagating and Reporting Uncertainties 10)
	0.3	The Lab Worksheet	Į
		0.3.1 In-Lab Procedure	í
		0.3.2 In-Lab Computer Work	;
		0.3.3 Pre-Classroom Checklist	7
		0.3.4 In-Classroom Calculations & Analysis	3
		0.3.5 In-Classroom Discussion and Conclusion 19)
	0.4	Jsing KaleidaGraph for Data Analysis)
		0.4.1 Introduction)
		0.4.2 Entering Data	L
		0.4.3 Entering Formulas)
		0.4.4 Plotting Data	3
		0.4.5 Performing a Weighted Least-Squares Fit on Plotted	
		Data	Į
	0.W	Error Analysis Worksheet	7
		0.W1.1In-Lab Procedure	7
		0.W1.2In-Classroom Calculations	7
	0.W	KaleidaGraph & Graphing By Hand	3
		0.W2.1In-Lab Computer Work	}
		0.W2.2In-Classroom Calculation & Analysis	,)

iv CONTENTS

Preface

Welcome to Physics 103N, Engineering Physics II Lab. This class is the continuation of Physics 103M, and is a corequisite to Physics 303L, Engineering Physics II Lecture. Although this class is a corequisite to Physics 303L, the topics we discuss here are not necessarily exactly those discussed in lecture. There are several reasons for this: the first is that timing the labs with the lectures is impossible; second, you don't always need a detailed theoretical description of phenomena to measure and characterize their properties. It is this empirical approach that we want to emphasize here. Third, there are important physical phenomena that are not covered in detail in the lecture, because of a lack of time. We will examine some of these in this course. So, don't expect a mere repeat of the lectures here.

There are two essential reasons for this course. First, it should give you some general background knowledge of how experimental work is actually done. You will learn how to use equipment such as multimeters, frequency generators, and oscilloscopes among others. Further, you will see how to measure various properties of electronic circuits and optical systems. These are all very practical skills. Secondly, it should help you see that all the conjectures and calculations that you learn about in lecture do describe events in the real world. You will quantitatively verify some of the formulas derived in the lecture to check the professor and make sure you haven't been lied to. If not, then you will probably believe what else is said in lecture, whereas if you've been told lies, that makes everything else the professor expounds is liable to suspicion. So be on the lookout for discrepancies!

Most of the equipment you need will be provided in lab. You should bring a pen and pencil (sketches should always be done in pencil) and paper, a scientific calculator (*i.e.*, one with logs and trigonometric functions, not necessarily a graphing calculator), and this manual to each lab meeting.

You might want to keep a notebook instead of writing observations and calculations on loose paper. A notebook will help you to keep organized so that you don't lose your notes or confuse your data. Your reports will be turned in on the worksheets printed in this manual. So if you do use a notebook, make sure it has perforated sheets, as you will turn in any extra sheets with your worksheet. In any case, *avoid* the hardbound laboratory notebooks (the ones with the carbon paper), since they are unnecessarily expensive (>\$10). We expect that you have the textbook assigned to the 303L lecture course available; the reference is

R. A. Serway and J. W. Jewitt, *Physics for Scientists & Engineers*, 6th edition (updated), Thomson Publishing, Belmont, CA (2004).

An additional reference, that we'll refer to repeatedly in our discussion of error analysis in Chapter 0, but is by no means required reading, is

P. R. Bevington and D.K. Robinson, *Data Reduction and Error Analysis for the Physical Sciences*, 2nd. edition, McGraw-Hill, Inc., New York (1992).

On a final note, we add that this is a new lab manual, and as such, is just now meeting the tests and demands of students. Some typos, ambiguities, or other inadequacies are bound to have slipped our grasp. Please bring any errors or confusing parts of the manual to the attention of your instructor. Student input is invaluable to the production of a document that students depend on for learning. As an alternative, feel free to E-mail your comments and suggestions to 103n@physics.utexas.edu.

Chapter 0

Introduction

This introductory chapter describes some general information you need to know about how to perform laboratory procedures, how to write a lab worksheet and how to analyze data correctly. Please read these through carefully; your instructor will cover these items quickly on the first day of lab, and you should already be familiar with these ideas before you come to class.

0.1 General Lab Procedures

Physics 103N is a three hour lab designed to be self-contained. This means that your only homework is to prepare for the next lab. You must do this preparation. The type of laboratory report you will submit at the end of the class period is a worksheet lab. You will fill out a worksheet as you proceed through the experiment. You will spend two hours in lab collecting data and plotting graphs. At the end of the second hour, you will move to a classroom and complete your calculations and discussions for that day's lab and turn in the finished worksheet to your instructor. If you are unprepared and unable to complete the worksheet, you must hand it in by the end of the third hour anyway. We designed this format to help you focus on the physical meaning of the experiments and avoid sinking into a morass of meaningless calculations.

To help you avoid many hours of tedious number crunching, we have placed computers in the lab. You should use these to do most, if not all, of your graphing and major numerical manipulations. However, the computer cannot think for you; you have to assess whether the computer is handing you garbage or if the results are reliable. Here are some things to keep in mind about the computer

- It cannot keep track of units.
- It must be taught how to deal with uncertainties.
- It will not automatically place error bars on your graphs.

You must complete the worksheet by the end of class; therefore, your instructor may deem a quiz unnecessary, since you must be prepared to complete the worksheet on time. The possibility of a quiz exists, however, so know the rudiments of the procedure of the day. To prepare, you should read the manual over very carefully before you come to class. This means you should understand the lab goals and important equations.

0.2 Error Estimation and Propagation

Error is everywhere, and you must not only acknowledge it, but understand it and control it. Webster defines "error" as the "difference between an observed or calculated value and the true value." The problem with this definition is that we usually have no idea what the "true" answer should be. Previous experiments or theoretical calculations may give us a clue, but somehow we must extract an estimate of the true value from our data. In addition, we should also determine to what extent we should take our answer seriously. This last point embodies what we call error estimation.

An example will show why this process is so important. Suppose you measure the acceleration of a free-falling body and the answer you obtain is 10.5 m/s^2 . Have you contradicted the accepted value of $9.7990\pm0.0014 \text{ m/s}^2$? The answer depends on the size of the error in your answer. If your result was $10.5 \pm 1.0 \text{ m/s}^2$ then your answer is no, because the accepted value lies within your error. If, on the other hand, you had performed a fairly precise measurement and obtained $10.5 \pm 0.1 \text{ m/s}^2$, then your answer would have to be yes; you should then start looking for what went wrong in the experiment itself, since many, many other measurements conducted over the last 300 years have established the accepted value $9.7990\pm0.0014 \text{ m/s}^2$. So, the amount of effort and trust you put into an answer depends critically on ascertaining the correct overall uncertainty.

Rarely is what you measure directly comparable to other experimental results or theoretical calculations; typically, you must process your data through various formulas to extract a parameter you can compare with others. Therefore, it is critically important to accurately *propagate* the uncertainties in the original data through the calculations and arrive at a reasonable uncertainty for the final value. This is the process of error propagation. These are the issues that we now discuss.

0.2.1 Definition of Uncertainty

The first step involved in error estimation is to identify the possible types of errors that can occur in your experiment. There are three basic types you need to be aware of: illegitimate errors, systematic errors, and random errors. Illegitimate errors are faults in experimental procedures or calculational blunders. We will make every effort to avoid making these kinds of errors, but if we do blunder, we can easily find and correct them; we will assume that we have eliminated all illegitimate errors from our experiments. This is a formidable assumption since the time to perform our experiments is limited; however, the procedures are not all that complicated; so this assumption should not be a bad one. Under this assumption therefore, we cannot use illegitimate errors as reasonable explanations for any discrepancies that ultimately occur in our analysis. To discuss the other types of errors, we must more carefully distinguish between accuracy and precision.

Accuracy represents how close a measurement is to the true value. Precision indicates how well the results of an experiment have been determined, independently of how well the results agree with the true value. This tells us about the self-consistency of a measurement. When judging the results of an experiment, we must consider both the accuracy and the precision. In general, when we quote the uncertainty of an experimental result, we are referring to the precision with which the result has been determined.

Systematic errors are errors that make our results different from the true value in a reproducible way. They are usually due to the faulty calibration of equipment or some unknown bias on the part of the experimenter. They can be subtle and hard to quantify. Knowledge of the apparatus and the experimental procedure is the central manner of minimizing the impact of systematic errors in our results. Such errors affect the accuracy of our results, since they contribute the same amount of discrepancy each time we perform the experiment. Random errors, on the other hand, constitute the major

source of imprecision in an experiment. These are the random fluctuations in measurements from experiment to experiment, primarily due to the finite resolution of our apparatus. To control random errors, we must perform the experiment many times and use a statistical analysis to extract our results. A given accuracy implies at least an equivalent precision; thus, accuracy depends on these fluctuations too.

To clarify the difference between these two types of errors, consider the simple experiment of determining the average speed of a rolling ball as it passes by a meter stick, by using a handheld timer. A systematic error involved in this experiment could be due to the calibration of our instruments. For instance, assume that the intervals on the meter stick are 1% larger than they should. Then, every time we record a distance of 50 cm the actual distance travelled by the ball is 50.5 cm. The distinct feature of systematic errors, such as this, is their repeatability. No matter how many times we perform the same measurement, if we are using the same instrument, we will always make the same "mistake." Random errors don't share this property. In the rolling ball experiment a random error is due to the timer operator. No matter how hard he or she tries, a human operator cannot be entirely consistent on when to press the start/stop button on the timer. Sometimes, he or she will start the timer just a little before the ball passes by the predetermined mark on the ruler, some times a little after. The same thing will happen when it is time to stop the timer. The end result is that, if we perform many attempts at the experiment (and assuming that the ball is always launched at the same speed,) the times we will get will vary randomly around the correct value. A random error is also introduced by the finite resolution of the devices we are using. Suppose that we have replaced the timer's human operator with a "perfect" photogate setup. If the smallest time increment on our timer is 0.01 s and we measure a time of 50.23 s then we only know that the actual time is between 50.225 s and 50.235 s. Every value in between these two will be rounded and displayed on our instrument as 50.23 s. If we perform the measurement many times and we always get the same reading of 50.23 s, the reasonable thing to assume is that, in every attempt, the actual time was different, but within the abovementioned limits.

We also distinguish between what we call absolute and relative uncertainty. Absolute uncertainty is the uncertainty in a quantity expressed in the

same units as the quantity. For example, if we write

$$g = 9.7990 \pm 0.0014 \text{ m/s}^2$$

then the absolute uncertainty in the measurement of g is $\Delta g = 0.0014 \text{ m/s}^2$. Note that we always consider the absolute uncertainty to be a positive number. The relative uncertainty is the uncertainty expressed as a fraction or percentage of the quantity. The relative uncertainty of g in our example is

$$\frac{\Delta g}{g} = \frac{0.0014 \text{ m/s}^2}{9.7990 \text{ m/s}^2} = 0.00014 = 0.014\%.$$

0.2.2 Estimating Parameters and Their Uncertainties

Now that we know what constitutes error, we should describe how to estimate it given a data set. Let's consider the most common situation in which we need to extract an estimate for the error; this occurs when we've made several measurements of the same quantity and we want to extract an average value and a corresponding uncertainty. For concreteness, suppose we have a set of N data points x_i with uncertainty Δx_i which we do not assume is the same for each of the measurements. (We need this generality because the uncertainty can vary independently of the quantity being measured; for example, if you measure a current value on two different scales on a meter, then the uncertainties of the two measurements are different.) Then you can show (c.f. Bevington and Robinson, see the Preface for the reference) that, assuming a Gaussian error distribution, the **most probable value** is the mean, or average, value, \overline{x} :

$$\overline{x} = \frac{\sum_{i=1}^{N} \frac{x_i}{(\Delta x_i)^2}}{\sum_{i=1}^{N} \frac{1}{(\Delta x_i)^2}}.$$
 (0.1)

This formula may look complicated, but all it does is give prominence to those measurements with the smallest uncertainty, a very reasonable thing to do. Notice that, if all the values have the same uncertainty, $\Delta x_i = \Delta x$ for i = 1 to N, this formula reduces to the usual $\overline{x} = (1/N) \sum_{i=1}^{N} x_i$. The corresponding uncertainty in the average value is the **standard deviation**, σ , and comes from the relation

$$\boxed{\frac{1}{\sigma^2} = \sum_{i=1}^{N} \frac{1}{(\Delta x_i)^2}}.$$
(0.2)

We can see from this formula that the uncertainty of the combination is always less than the smallest uncertainty of the component measurements. We should certainly hope so! After all, the more measurements we do, the better we should know what the answer is. In the case that all the uncertainties are equal to Δx , this expression reduces to $\sigma = \Delta x/\sqrt{N}$, showing that the uncertainty decreases at the relatively slow rate of one over the square root of the number of measurements.

Suppose you have three measurements of the resistance of a resistor that have come from three different techniques. This data appears in Table 0.1. The nominal value is the value printed on the resistor; the multimeter measurement comes from an ohmmeter measurement; and the current and voltage measurements come from a detailed analysis using Ohm's law. Each technique has its own associated uncertainty. We want to combine these separate measurements into a single estimate of the resistance. Since the errors are distributed symmetrically (*i.e.*, another measurement's value is equally likely to fall on either side of the current measurement's value), we can reliably use our formulas based on a Gaussian distribution, *i.e.*, the ones given above. We find the resistance to be

$2.5866 \pm 0.0027 \text{ k}\Omega.$

This answer reflects several general features of these formulas mentioned above. First, it is closest to the measurement with the smallest uncertainty. Second, the uncertainty of the combined measurements is less than the smallest measured uncertainty, but not by much. This reflects the fact that the other measurements' uncertainties were much larger than the last. This is good intuition that you should incorporate into your thinking patterns; it will help you identify the important sources of error in your experiments.

Experimental Technique	Value
Nominal Value	$2.70 \pm 0.14 \text{ k}\Omega$
Multimeter	$2.69 \pm 0.01 \text{ k}\Omega$
Current and Voltage Measurements	$2.5785 \pm 0.0028 \text{ k}\Omega$

Table 0.1: Resistance values for a single resistor from different measurements.

For more sophisticated experiments, we don't necessarily measure the same quantity over and over. We might change one parameter and measure another, to investigate the effects of one on the other. When we do this, we are looking for correlations between the different parameters. One of the most effective ways to spot correlations is to graph the parameters and look for some functional relationship. The easiest and most reliable functional relationship to recognize and quantify is a linear one, i.e., when you plot the parameters, the data points fall along a line. In fact, this type of correlation is so important that we sometimes alter the parameters that we plot to force the graphed data into a line, as in a log-log plot or a semi-log plot. Here, we don't just plot the data, but certain functions of the data that are linearly related. This can't always be done, but for our labs it can; so, we will focus solely on analyzing linear correlations. In this case, the correlation between the two quantities is described in terms of two numbers: the slope of the line and its y-intercept. For most purposes, the slope is the more important of the two, but the intercept can also contain important physical information. Once the data suggests a linear relationship, we want to extract the slope and intercept of the "best fit" line.

There are many complicated definitions of "best fit" that one can use to extract a consistent slope and intercept from a set of data. The most often used method goes by the name of *least squares* fit. The reason for the popularity of this particular method has to do with its relative simplicity and statistical significance. It will provide the slope and intercept of the most probable line to fit a set of data, assuming a Gaussian distribution for the errors. Thus you can think of this as analogous to extracting the average quantity for a larger class of measurements.

We can derive the formulas for the linear least squares fit to a set of data with the following assumptions: first, that the uncertainty is symmetrically distributed about the data values, and second, the uncertainty in the dependent variable is more significant than the uncertainty in the independent variable. These assumptions are discussed at length in Bevington and Robinson, and we will simply take them for granted. With these assumptions in mind, we can proceed as follows: given N data points $(x_i, y_i \pm \Delta y_i), i = 1, ..., N$, we want to determine the parameters of the line y = ax + b so that the square of the vertical distance between the y coordinates of the line and the data, weighted by the uncertainty Δy_i and summed over all the data points, is a minimum. The geometry of this construction is shown in Figure 0.1. That

is, we want to minimize the function of 2 variables

$$e(a,b) = \sum_{i=1}^{N} \left(\frac{1}{\Delta y_i} (y_i - ax_i - b) \right)^2$$

To minimize this function, we take the partial derivatives with respect to a

Figure 0.1: The least squares method determines the line that minimizes the square of the vertical distances between the line and the data.

and b and set them equal to zero. This yields the following system of linear equations for a and b:

$$a \sum_{i=1}^{N} \frac{x_i^2}{(\Delta y_i)^2} + b \sum_{i=1}^{N} \frac{x_i}{(\Delta y_i)^2} = \sum_{i=1}^{N} \frac{x_i y_i}{(\Delta y_i)^2}$$
$$a \sum_{i=1}^{N} \frac{x_i}{(\Delta y_i)^2} + b \sum_{i=1}^{N} \frac{1}{(\Delta y_i)^2} = \sum_{i=1}^{N} \frac{y_i}{(\Delta y_i)^2}$$

Using your favorite technique, you can show that the solution of this linear system of equations is

$$a = \frac{1}{D} \left[\left(\sum_{i=1}^{N} \frac{1}{(\Delta y_i)^2} \right) \left(\sum_{i=1}^{N} \frac{x_i y_i}{(\Delta y_i)^2} \right) - \left(\sum_{i=1}^{N} \frac{x_i}{(\Delta y_i)^2} \right) \left(\sum_{i=1}^{N} \frac{y_i}{(\Delta y_i)^2} \right) \right],$$

$$b = \frac{1}{D} \left[\left(\sum_{i=1}^{N} \frac{x_i^2}{(\Delta y_i)^2} \right) \left(\sum_{i=1}^{N} \frac{y_i}{(\Delta y_i)^2} \right) - \left(\sum_{i=1}^{N} \frac{x_i}{(\Delta y_i)^2} \right) \left(\sum_{i=1}^{N} \frac{x_i y_i}{(\Delta y_i)^2} \right) \right] (0.3)$$

where

$$D = \left(\sum_{i=1}^{N} \frac{1}{(\Delta y_i)^2}\right) \left(\sum_{i=1}^{N} \frac{x_i^2}{(\Delta y_i)^2}\right) - \left(\sum_{i=1}^{N} \frac{x_i}{(\Delta y_i)^2}\right)^2.$$
(0.4)

The corresponding uncertainties in the fit parameters are

$$(\Delta a)^{2} = \frac{1}{D} \sum_{i=1}^{N} \frac{1}{(\Delta y_{i})^{2}},$$

$$(\Delta b)^{2} = \frac{1}{D} \sum_{i=1}^{N} \frac{x_{i}^{2}}{(\Delta y_{i})^{2}}.$$
(0.5)

Let's take a look at these equations in action. Consider the data given in Table 0.2; this data came from current and voltage measurements across a resistor of unknown resistance. Ohm's law indicates that, for most resistors, the voltage is linearly related to the current, the proportionality constant being the resistance. We've plotted this data in Figure 0.2, which strongly suggests a linear relationship between current and voltage. So, it makes sense to apply our least squares equations directly to the current-voltage data. Considering the data again, we see that the errors appear symmetrically distributed around each point, and the independent variable's (the current's) uncertainty is much smaller than the corresponding uncertainty in the voltage data. So, this data satisfies both conditions for applying the least squares analysis.

We find (and you should verify with units!) the following values for the sums involved:

$$\sum_{i=1}^{10} \frac{x_i}{(\Delta y_i)^2} = 1.5212 \cdot 10^6$$

$$\sum_{i=1}^{10} \frac{y_i}{(\Delta y_i)^2} = 4.4578 \cdot 10^6$$

$$\sum_{i=1}^{10} \frac{x_i^2}{(\Delta y_i)^2} = 7.0201 \cdot 10^5$$

$$\sum_{i=1}^{10} \frac{x_i y_i}{(\Delta y_i)^2} = 2.0107 \cdot 10^6$$

Current	Voltage		
(mA)	(V)		
0.1936 ± 0.0001	0.719 ± 0.001		
0.289 ± 0.001	0.813 ± 0.001		
0.388 ± 0.001	1.093 ± 0.001		
0.575 ± 0.001	1.620 ± 0.001		
0.946 ± 0.001	2.66 ± 0.01		
1.042 ± 0.001	2.93 ± 0.01		
1.144 ± 0.001	3.22 ± 0.01		
1.196 ± 0.001	3.37 ± 0.01		
1.484 ± 0.001	4.17 ± 0.01		
1.750 ± 0.001	4.93 ± 0.01		

Table 0.2: Current and voltage data for computing the resistance of a resistor using Ohm's law.

$$\sum_{i=1}^{10} \frac{1}{(\Delta y_i)^2} = 4.0600 \cdot 10^6$$

from which we find $D = 5.3607 \cdot 10^{11}$ and then

$$a = 2.5785 \pm 0.0028 \text{ k}\Omega$$

 $b = 0.1319 \pm 0.0011 \text{ V}$

The line with this slope and intercept is the line drawn in Figure 0.2. We see that this line is a very good representation of the data. Working through the units, the slope is in $k\Omega$ and the intercept is in V. This calculation is the source of the last entry in Table 0.1. The intercept has an interesting interpretation here. It is not zero, since the average value is bigger than the error. This means that if we put the current to zero, we would still measure a voltage across the resistor. This fact should make us very suspicious about any other conclusions we might make from this data, until we have an explanation for this apparent contradiction of Ohm's law.

0.2.3 Propagating and Reporting Uncertainties

At this point, you should have a clear idea of what uncertainty is and how to estimate it in some simple cases. Once you have your estimates of the

Figure 0.2: Plot of voltage versus current for the data in Table 0.2.

parameters of interest and their uncertainties, you will likely want to run them through some formulas to arrive at numbers you can compare to other people's measurements. This brings us to discuss the propagation of uncertainties through functions and formulas.

To keep things simple, we will make the assumption that the uncertainties in your parameters are symmetrically distributed about the average and that the parameters are independent of each other. That is, two measurements of different parameters are uncorrelated. This is not always true; for example, in an ideal gas at fixed pressure, the density and temperature fluctuations are linked by the equation of state. However, the added complications needed to account for these effects are typically intimately tied to the physical system you're studying, making a general treatment cumbersome. By ignoring correlations and assuming symmetry, we can reduce all the necessary error propagation down to some simple calculus.

Suppose we have a parameter with its uncertainty: $x \pm \Delta x$. The question we want to answer is "What is the uncertainty of some function, f, of this data?" Under our assumptions, the answer comes from the Taylor series expansion of f (c.f. Bevington and Robinson): $f(x+\Delta x) = f(x)+f'(x)\Delta x+O(\Delta x^2)$. From this we find the uncertainty Δf in the function value f(x) is

$$\Delta f = \left| \frac{df}{dx} \Delta x \right|,$$

with the derivative evaluated at the point x. We can generalize this result to functions of several variables as follows: given the data $x \pm \Delta x, y \pm \Delta y, \ldots$, the function $f(x, y, \ldots)$ has the associated uncertainty

$$\Delta f = \left| \frac{\partial f}{\partial x} \Delta x \right| + \left| \frac{\partial f}{\partial y} \Delta y \right| + \dots,$$

where all the derivatives are evaluated at the point x, y, \dots If we recall that we defined absolute uncertainties to be positive, we can write this as

$$\Delta f = \left| \frac{\partial f}{\partial x} \right| \Delta x + \left| \frac{\partial f}{\partial y} \right| \Delta y + \dots,$$
 (0.6)

From this relationship, we can derive all the familiar results of error propagation.

Example: Addition and Subtraction

Given: f(x, y) = 3x + y - z + 5

Find: Δf

$$\Delta f = \left| \frac{\partial f}{\partial x} \right| \Delta x + \left| \frac{\partial f}{\partial y} \right| \Delta y + \left| \frac{\partial f}{\partial z} \right| \Delta z$$
$$= \left| 3 \right| \Delta x + \left| 1 \right| \Delta y + \left| -1 \right| \Delta z$$
$$= 3\Delta x + \Delta y + \Delta z$$

Example: Multiplication and Division

Given: $f(x, y) = x^2 y / (5z)$

Find: Δf

$$\Delta f = \left| \frac{\partial f}{\partial x} \right| \Delta x + \left| \frac{\partial f}{\partial y} \right| \Delta y + \left| \frac{\partial f}{\partial z} \right| \Delta z$$
$$= \left| \frac{2xy}{(5z)} \right| \Delta x + \left| \frac{x^2}{(5z)} \right| \Delta y + \left| -\frac{x^2y}{(5z^2)} \right| \Delta z$$

Example: Ohm's Law

Given: V = IR

Find: ΔR

$$\Delta R = \left| \frac{\partial R}{\partial V} \right| \Delta V + \left| \frac{\partial R}{\partial I} \right| \Delta I$$
$$= \left| \frac{1}{I} \right| \Delta (V) + \left| \frac{-V}{I^2} \right| \Delta I$$

Now that we have a clear idea of what constitutes the uncertainty of a measurement, how to estimate it, and how to propagate it, we should talk about the proper way to report the uncertainty of a measurement. This forms the subject of *significant figures*. Here is how you should determine the number of significant figures:

- 1. Calculate the uncertainty in the quantity.
- 2. Round off the uncertainty to one or two digits.
- 3. Express the uncertainty in the same units as the quantity measured.
- 4. Round off the quantity to the last decimal place of the uncertainty.
- 5. Always write down the final result of a calculation with the uncertainty and the units included.

Use the form

$$(2.34 \pm 0.23) \cdot 10^3$$
 m, or 2.34 ± 0.23 km,

not expressions such as

$$2.34 \cdot 10^3 \text{ m} \pm 0.23 \cdot 10^3 \text{ m},$$

 $2.34 \text{ km} \pm 23 \cdot 10^1 \text{ m},$
 $2340 \text{ m} \pm 0.23 \cdot 10^3 \text{ m}.$

These are the rules you will use most often in reporting your results. They become rather cumbersome, though, when you begin to make very precise measurements. Consider, for example, the charge on the electron; the best measurement we have of this number is

$$(1.60217733 \pm 0.00000049) \cdot 10^{-19} \text{ C}.$$

This is very annoying; so, we've developed a shorthand for reporting these kinds of measurements. You simply quote the result to the known uncertainty and place the uncertainty of the last few digits in parentheses after the number and before the power of ten. In this notation, the electron's charge is

$$1.60217733(49) \cdot 10^{-19} \text{ C},$$

which is much easier to deal with. If you begin to make measurements of such precision that you need to employ this convention, feel free to do so.

Finally, in various experiments we quote what are called "accepted values" for various physical parameters. These are the scientific community's best estimates of these numbers. They have been experimentally verified and checked for consistency with other measurements. Most you will find are very precise, typically 6 or 7 decimal places. You will discover in trying to do your own labs that making such high precision measurements is not easy. They also let you know that there is still some uncertainty in these parameters; they are not *exact*; but you will probably not be able to help narrow that using the equipment and techniques we have, which means they are exact as far as we can tell. So, keep in mind as you attempt to verify these numbers, that other folks had to do these measurements too.

0.3 The Lab Worksheet

The lab worksheets are preformated to be well organized, concise, and complete. The worksheets are designed to maximize your efficiency. The format of the worksheets includes the following:

- In-Lab Procedure
- In-Lab Computer Work

- Pre-Classroom Checklist
- In-Classroom Calculations & Analysis
- In-Classroom Discussion and Conclusion

Each item is described in detail below. Some may occur more than once in any given worksheet.

0.3.1 In-Lab Procedure

The In-Lab Procedure section will guide you through experimental set-up, data collection, and necessary calculations. This section will always be the first section of the worksheet, but there may be a few of them in any one worksheet. Each time you set-up a new experiment in that day's lab, a new in-lab procedure section will guide you. Since this lab is electronics and optics, you will be connecting circuits and manipulating optical equipment. Figures are provided and numbered to show you how to make connections and placements for these set-ups. The figures will become your friends in setting up the experiments. **Do not ignore them**. You cannot set-up without the figures.

After setting up the experiment, you will follow the directions given to begin data collecting. Sometimes you will be obtaining one piece of data, other times twenty. Any data collecting will be specified and organized by a table or space. Blank spaces above answers are to be used by you to **show your work** in reaching the answer below the space. This is **very important** as indicated by the **boldface**. Boldface will appear when an important point is being made vital to your grade.

When you are recording your data, be that in a table or on a line, you should present your raw data neatly and completely including **units**, uncertainties, and significant digits. Any calculations used in recording the data should be shown in the space provided above the answer. Show all calculations keeping numbers out of the calculations until the final step. How to do the calculations will be explained in the In-Classroom Calculations & Analysis section.

When showing your work, it is crucial that you *propagate* all units and uncertainties through the algebra. This will convince the reader that you're not trying to hide anything and it will help you check your answers as you go. Do not ignore units for several steps of a computation and then just write down what seems to be the proper units; you can loose many factors of 10 by not doing this.

Before moving on to the next section of the worksheet, double check that you have completed everything required of you. Remember that this section is not only for data recording. Just because there is no space for an answer does not mean there was nothing important to be done. You must complete everything in each section before moving on to the next one. You and your lab partner can divide the work to be more efficient but make sure you do everything.

0.3.2 In-Lab Computer Work

After collecting and recording data you will usually make a graph. You are not plotting the data to make more work for yourselves. The graphs will give you a vital piece of information that you will use in calculations, analysis, discussion or conclusion. Graphing is usually the easiest and most accurate way to get the information. You will be using the computers in lab, and that means that you must complete all the graphs in the two hour lab time. You will need them for the classroom period.

KaleidaGraph is the plotting program you will be using for all your graphs. You will spend part of the first two lab sections learning and practicing your KaleidaGraph skills. You need to become proficient in KaleidaGraph to complete the labs since you will include all graphs with your worksheet before leaving lab. You should title your graphs appropriately, include all units, and label axes. Despite the fact that the computer will be doing most of the work in graphing your data, you need to understand what the work entails.

In many labs you will have to graph sets of 5 to 15 data points and make linear fits to the data. If you graph by hand, as you will in § 0.W2, you should use graph paper of at least 4 boxes per inch and each graph should be large and clear. A full page graph of 10 points is not unreasonable. The scales on the axes should be appropriate for the data ranges, so that the data covers most of the graph. Having bunched up data points leads to difficulty in reading the graph and loss of precision in fitting lines and calculating slopes

and intercepts. Do not draw your axes across a full page and choose your scale in such a way that the data points occupy only a few cm^2 ! Also, take care to distinguish dependent and independent variables when graphing; the quantity which is the function of the other in the experiment is conventionally plotted along the vertical axis. If you are asked to plot y vs. x, for example, you should interpret y as the dependent variable and plot it on the vertical axis. Always label the axes with their appropriate physical parameters and include the correct units in the label.

When fitting data by hand, as opposed to the least squares method discussed earlier, be sure not to obscure any data points and do not "connect the dots." Doing so has no physical basis and yields no insight into the physics at hand. Using a straight edge, "eyeball" the line that best fits the data. This line will yield the best values for the slope and intercept of your fit. Furthermore, you should draw the steepest and shallowest lines that are consistent with both the trend of your data and with the error bars. These lines will yield the uncertainty in your fit parameters, through the formulae

$$\Delta a = \frac{|a_{\text{steep}} - a_{\text{shallow}}|}{2}$$
$$\Delta b = \frac{|b_{\text{steep}} - b_{\text{shallow}}|}{2}.$$

Remember that these lines represent the trend present in your data and might not pass through any data points. When calculating slopes for these lines, you want to choose two points on the lines that are not data points. The trend of the line is far more important than the slope between any two data points.

Although these instructions tell how to estimate the best fit line by hand, the computer is only doing a more sophisticated and reproducible version of this; thus, to fully employ the computer's power, you need to understand how to estimate these things independently of the computer. This will also help you check the results the computer gives you.

0.3.3 Pre-Classroom Checklist

The checklist is included for you to use as a check against what you have to take out of the lab period. You only have 2 hours in lab during which time you may do several procedures and graphs. Before leaving the laboratory,

you will use this list to see that you have completed everything and have it with you to take to the classroom. Once you leave the lab, another class enters it so you can't go back to use the computers or redo a portion of the lab. The worksheet has been designed to be completed in parts. You will complete one procedure and do its computer work before moving on to the next procedure. In this manner, you will be able to do a complete analysis and discussion on at least some parts even if you don't finish the lab.

There are \bigcirc provided for you to physically check off. Do this. It will keep you organized when you get to the classroom. One hour is not a lot of time to finish all the calculations, discussions, and conclusion. Also make sure that each partner has her/his own data, graphs, tracings, etc.. Contact amongst you will be kept to a minimum.

0.3.4 In-Classroom Calculations & Analysis

At this point you have finished all In-Lab Procedures and In-Lab Computer Work. You have also checked all the circles in the **check list** to ensure that you have completed all the laboratory work. Once the two hour lab period is over, you will move to the classroom and finish the worksheet in **one hour**. If you complete all in-lab sections sooner than two hours you may begin the in-classroom sections.

The calculations you need to do are clearly stated with referenced equations, figures, and tables when appropriate. There is a line or space left for each answer. There is also room for you to **show your work**. You must show all the steps and reasoning behind your answers to get full credit. A sample calculation is done for you here as a future guide. Suppose the question in the in-classroom calculation & analysis section reads:

Calculate the resistance through a circuit given the voltage, $V = 5.00 \pm 0.01 \ V$, and current, $I = 20.0 \pm 0.2 \ mA$, with uncertainties and units. Show Work.

$$V = IR$$

$$R = \frac{V}{I}$$

$$R = \frac{5 V}{20 mA}$$

$$R = 250 \Omega$$

$$\Delta R = \left| \frac{1}{I} \right| \Delta(V) + \left| \frac{-V}{I^2} \right| \Delta I$$

$$\Delta R = \left| \frac{1}{20 \, mA} \right| 0.01 \, V + \left| \frac{-5 \, V}{400 \, (mA)^2} \right| 0.2 \, mA$$

$$\Delta R = 3 \, \Omega$$

$$R = 250 \pm 3 \, \Omega$$

The above is what you should show and report. Note that numbers were not used until the last line of each calculation and the uncertainties were treated separately from the values. You will be performing this calculation later in lab.

The In-Classroom Calculation & Analysis sections can also ask questions that lead you to an understanding of the reasoning behind the lab and the physical principles that the lab confirms. They are rarely in yes/no format. Answer all the questions completely, stating your reasoning leading to the answer and showing any calculations or drawings necessary. At the end of this section you should understand all aspects of the lab well enough to write a concluding statement.

0.3.5 In-Classroom Discussion and Conclusion

In the final section you will bring all your analysis together to answer questions and make specific, concrete conclusions about the parameters and physics developed in the lab. This includes a clear statement of the results of the lab, e.g. parameters that you've measured including units and uncertainty, comments on the physical implications of these parameters, etc. You should indicate whether your results are consistent with previous efforts and discuss the internal consistency of your experiment. You should candidly address the uncertainties that arose in the lab and attempt to unambiguously and uniquely identify the key source of error. Within the paradigm that we discussed before, this cannot include things like "human error" or "errors in the calculations." You should have these illegitimate errors tightly under control. With all these ideas clearly laid out, you should then state whether you believe the experiment to be a success or not, justifying yourself by referring to your previous discussions.

Your instructor may also assign additional questions for you to ponder. You should incorporate the answers to these questions into your discussion. They should fall naturally into your considerations, as you think about what might have gone wrong, or possible sources of discrepancy that were not in the original motivating theory. Typically, these questions have direct answers, but only after you have thought about the lab.

0.4 Using KaleidaGraph for Data Analysis

0.4.1 Introduction

What KaleidaGraph Does and Doesn't

The software package known as KaleidaGraph can be a useful tool for data analysis. Of course, it will only be useful if you learn how to tell it to do what you want it to do. This knowledge is best acquired by experience with using the software, and you will get plenty of that in the upcoming semester. That fact doesn't help you at the moment, though. Getting started is the difficult part. Hopefully, this section will help you with that.

This section is not meant to be a detailed guide to using KaleidaGraph. Instead, it hopes to demonstrate how to use those features of KaleidaGraph which will be most useful to you: plotting and fitting curves to data. To accomplish this, this section is designed to be a working example.

When you are using KaleidaGraph to analyze real data, you'll probably have to perform most of the tasks described below. In that spirit, we'll connect all the examples with...

... A Hypothetical Experiment.

Suppose an experiment has been performed that tests the well-known conjecture that the probability that a slice of toast buttered on one side will fall butter-side-up is inversely proportional to the value of the carpet on which it falls. This assertion can be represented by an equation:

$$U = a\frac{1}{V},$$

where U represents the probability of a piece of bread falling butter side up, a is a proportionality constant, and V is the price of the carpet in U.S. dollars. If you were to somehow measure the probabilities of the toast falling butter-side-up on several carpets, and plot these against the reciprocal of the price

of the carpet, you'd expect to see a straight line, with a slope equal to the proportionality constant. The following examples will lead you through the process of plotting data taken in such an experiment and finding the slope of the best fit line of the plot.

Now for some details. On each run of the experiment, a helicopter dropped 100,000 slices of buttered toast on a large sample of carpet. Then, the U.S. Dept. of Parks and Wildlife flew in with their own helicopter to take an aerial photograph of the result. From the photograph, the fraction of butter-side-up slices was measured, and reported as the probability.* Only five runs were accomplished before funding ran out. The results of the experiment are

V(\$)	U
100 ± 1	0.43 ± 0.01
250 ± 1	0.15 ± 0.01
500 ± 2	0.09 ± 0.01
750 ± 2	0.06 ± 0.01
1000 ± 3	0.04 ± 0.01

0.4.2 Entering Data

Actually Entering Data

KaleidaGraph holds data in a **data window.** One of these should appear when you start; it's default name is **Data 1**. To enter data,

- 1. Activate the data window by clicking on it.
- 2. Position the cursor on the cell you want to enter data into.
- 3. Type in a piece of data.
- 4. Move to another cell using mouse, arrow keys, Tab or Return.

Enter all the Buttered Toast data, entering values for V in column "A", the uncertainties for V in column "B", the values for U in column "C" and the uncertainties for U in column "D".

^{*}These results have met with some controversy. The Association of Premium Carpet Manufacturers has filed a lawsuit claiming that the results have been altered to make their products seem less desirable.

Note that KaleidaGraph plots data in a column vs. column fashion, so the x-coordinate and y-coordinate of a single piece of data should be placed in the same row, but different columns.

Renaming Columns of Data

This might not seem important at first, but KaleidaGraph labels the axes on plots with the name of the columns it used in the plot. The default names of columns are "A", "B", "C", etc. These appear in the **column title** row of the data window, along with a number. To change the name of the column,

- 1. Double-click on the column title you wish to change.
- 2. In the "Column Format:" dialog box which appears there will be a list of column titles. Highlight the title you wish to alter by clicking on it.
- 3. Type in the new title of the column (for example "A" becomes V(\$)).
- 4. When you are finished changing names, click on the button labeled **Done.**

Make sure to name each column, include uncertainties (for example "B" becomes dV(\$)). Don't forget the units!

The number of any column can be set to zero merely by clicking on the title cell of that column. The columns to the right then take the numbers 1, 2, 3.... The columns to the left become unnumbered.

0.4.3 Entering Formulas

Often, the raw data you enter is not immediately in the form you need for plotting. Never fear, KaleidaGraph is capable of performing mathematical operations on the numbers you have entered. One way of using this feature is to define a formula for KaleidaGraph. Formulas tell KaleidaGraph to put in one column the result of operations on data in other columns.

The syntax of formulas you define should be

$$cx = f(cy, cz, ...)$$

where x, y, and z are the numbers of the columns which contain the numbers you wish to operate on, and f(...) is the mathematical expression you wish KaleidaGraph to calculate.

For example, since you want to plot U vs. 1/V, you need to make a column containing the reciprocal dollar values of the carpets. To actually enter and execute a formula,

- 1. From the **Windows** menu at the top of the screen, select the option *Formula Entry*.
- 2. In the "Formula Entry" window which appears, click on one of the buttons labeled **F1 F8.**
- 3. Type in the formula in the space provided in the "Formula Entry" window (in your case, c4 = 1/c0).
- 4. Click the button marked Run in the "Formula Entry" window.

The button labeled **F1-F8** you choose corresponds to one of the function keys at the top of the keyboard. Pressing that key will bring up the "Formula Entry" window again, this time containing the formula you defined **thus saving important formulas for you**. Make sure to rename the column you just made.

Of course, the uncertainties in 1/V are different from the uncertainties in V. So you'll need to get KaleidaGraph to calculate an uncertainty column for you. Try to figure out the necessary formula yourself.

0.4.4 Plotting Data

Making a Scatter Plot

These two sections on plotting and fitting data require little motivation. But a few important notes will be made. First, **Never** connect-the-dots when you plot data. Fortunately, if you follow these steps, you'll never forget and accidentally do it.

- 1. Activate the window containing the data you want to plot by clicking on it.
- 2. From the **Gallery** menu at the top of the screen, select the **Linear** submenu, and from that select the **Scatter** option.

- 3. A dialog box will appear. In it, there will be columns of circles labeled "X" and "Y." Under "X" click on the circle in the row containing the title of the column which contains the x-coordinates of your data. A solid black circle should appear.
- 4. Do the same with your y-coordinates in the column labeled "Y."
- 5. Click on the button labeled **New Plot.**

Note the conspicuous lack of error bars.

Adding Error Bars

- 1. Activate the window containing your plot by clicking on it.
- 2. From the **Plot** menu at the top of the screen, select the option "Error bars..."
- 3. In the "Error Bar Variables" dialog box which appears, click on the square labeled "X Err."
- 4. Click and hold on one of the two rectangles labeled "% of values," and select the option "Data Column."
- 5. Select the column which contains the uncertainties in the x-coordinates of your plotted data.
- 6. Click on button labeled **OK**.
- 7. Now, follow the same procedure starting with the square labeled "Y Err."
- 8. Click on button labeled **Plot**.

0.4.5 Performing a Weighted Least-Squares Fit on Plotted Data

Weighted Fit

We come to the moment of truth. Both the slope and y-intercept of a linear plot are often important pieces of information to obtain. Of course, they are meaningless without uncertainties. Therefore, you should make sure you take into account the uncertainties in your points when calculating the fit.

- 1. Activate the window containing your plot by clicking on it.
- 2. From the Curve Fit Menu at the top of the screen, select the General submenu, and from that, select the option fit1.
- 3. In the "Curve Fit Selections:" dialog box which appears, click on the button labeled **Define...**
- 4. In the new dialog box that appears, click on the square labeled "Weight Data" so that an X appears in it.
- 5. Click on the button labeled **OK**.
- 6. In the "Curve Fit Selections:" dialog box, click on the square next to the column title which contains the error in the y-coordinate of the data you are plotting.
- 7. A new dialog box will appear called "Weight Data From Column:". By clicking on the buttons labeled \ll and \gg , make sure the name of the column containing the uncertainties for the y-coordinate appears in the window.
- 8. Click on the button labeled **OK**.
- 9. Now click on this button window's labeled **OK**.

Now you need the numerical results of the fit. Simply choose the "Display Equations" option from the **Plot** menu, and a table containing the numbers you desire will appear. Note that, in this table, m1 is the y-intercept and m2 is the slope of the best fit line.

The Work You Should Turn In

After you have followed through the above example, you should attach the printout you have made to the worksheet that follows. This printout should at least contain: properly labeled axes, x and y error bars, and the best fit line plotted by KaleidaGraph through your plotted points. Also, somewhere on the page below the plot, you should report in a complete sentence what

you have found to be the constant of proportionality (with uncertainty!).

Of course, your TA may require more of you.

0.W1 Error Analysis Worksheet

Name:	Day/Time:

Instructions: Perform all of the following calculations using the techniques explained in Chapter 0 (Introduction) of the lab manual. Show all calculations explicitly, propagate uncertainties where appropriate, include the proper number of significant figures, and provide units.

0.W1.1 In-Lab Procedure

Perform the KaleidaGraph practice plot and analysis in the previous section § 0.4 and attach it the end of this worksheet.

0.W1.2 In-Classroom Calculations

1. Four independent measurements of the voltage supplied by a certain D-cell battery were made:

 $2.4 \pm 0.6 \text{ V}$ $2.96 \pm 0.08 \text{ V}$ $3.02 \pm 0.06 \text{ V}$ $2.968 \pm 0.004 \text{ V}$.

Referring to \S 0.2.2, calculate the *most probable value* of the D-cell voltage as well as the standard deviation of the measurements using equations (0.1) and (0.2). Write your answer as you would report the final result.

- 2. Refer to § 0.2.3 for the calculation and propagation of uncertainty. Two lengths have been measured to be $L_1=4.8\pm1.2$ cm and $L_2=3.2\pm1.6$ cm.
 - (a) Calculate the sum $L = L_1 + L_2$ and its absolute uncertainty, ΔL .

Use these to calculate the *relative* uncertainty in L.

(b) Calculate the difference $L_0 = L_1 - L_2$, as well as its absolute and relative uncertainties.

Compare these uncertainties with those in the sum.

(c) Now calculate the product $P = L_1L_2$ and its absolute and relative uncertainties.

(d) Calculate the quotient $Q = L_1/L_2$, its absolute and relative uncertainties.

Compare the uncertainties to those in the product.

(e) Express L, L_0 , P, and Q in proper form, i.e. with units and uncertainties.

3. The area of a square has been measured to be $A = 50 \pm 6$ cm². What is the length of one side of the square?

4. Two resistors, with resistances $R_1 = 540 \pm 54 \Omega$ and $R_2 = 860 \pm 86 \Omega$, are connected in parallel. Calculate the equivalent resistance, $R_{\rm eq}$, of

the combination using the formula

$$\frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2}.$$

5. For $\phi=60\pm3^\circ,$ calculate $\sin\phi$ and $\tan\phi.$ Hint: Convert the angle to radians.

6. Given that $L=20\pm 4$ cm and $y=8\pm 2$ cm in the triangle

calculate $\sin \theta$.

Attach your KaleidaGraph plot to the end of this worksheet. Bring graph paper next week. End Error Analysis Worksheet

0.W2 KaleidaGraph & Graphing By Hand

Name:	ullet Day/Time: $ullet$
_ ,	

0.W2.1 In-Lab Computer Work

Two Exercises for Kaleidagraph

1. Imagine that you are riding in a car with your uncle Bob, his sister Sandy, and your cousins Rob and Gary. As you head down a back road in central Florida, a brilliant blue light suddenly bathes the car, and you fall unconscious. When you wake up, you find yourself in a room with no doors and plain grey walls. An unknown source of illumination allows you to see that your only company is a spark-tape apparatus, familiar to you from your first semester lab class. You immediately realize that you can conduct a simple experiment to determine the gravitational acceleration of the planet you are on. You conduct the experiment and find the following distance fallen versus time data:

Distance (d) vs. time (t) Measurements					
d (m)	t (s)				
$.20 \pm .01$	$.2 \pm .02$				
$.80 \pm .04$	$.4 \pm .02$				
$1.72 \pm .05$	$.6 \pm .02$				
$3.16 \pm .05$	$.8 \pm .02$				
$4.84 \pm .10$	$1.0 \pm .02$				
$6.96 \pm .10$	$1.2 \pm .02$				

Do the following

a) Plot d vs. t^2 and obtain a **weighted** least squares fit. (Remember, use **fit1** under the General option of the curve fit menu.) Error bars, properly labeled axes and units are essential! All partners should have their own plots. **Show** your work in finding $\Delta(t^2)$ below.

b) Determine the acceleration due to gravity from the results of your curve fit, including units and uncertainties. Show work.

$$g =$$

- c) Try to guess where you are....
- 2. In an experiment you will conduct in a few weeks, you will measure the voltage (V) of a discharging capacitor as a function of time (t). You will be required to plot

$$\ln\left(\frac{V}{V_0}\right)$$
 vs. t

where V_0 is the initial voltage (that is, the voltage measured at time t = 0.) Use the following sample data:

Voltage (V) vs. time (t) Measurements						
V(V)	t (ms)					
$4.0 \pm .10$	$0.0 \pm .02$					
$3.6 \pm .10$	$1.0 \pm .02$					
$3.4 \pm .10$	$2.2 \pm .02$					
$2.8 \pm .10$	$3.2 \pm .02$					
$2.6 \pm .10$	$3.8 \pm .02$					
$2.4 \pm .10$	$5.0 \pm .02$					

Do the following

a) Plot $\ln(V/V_0)$ vs. t and obtain a **weighted** least squares fit. Again, be sure to include error bars, units, and properly labeled axes. Remember, all partners must have their own plots. Show your work in finding $\Delta(\ln(V/V_0))$.

b) Report the slope and intercept of your plot. Units and uncertainties are a must!

Slope	Intercept		

Table 0.3: Slope and Intercept

0.W2.2 In-Classroom Calculation & Analysis

This half of the worksheet is your only practice in graphing by hand. You will be using KaleidaGraph to do all your graphing in Physics 103N. Before using KaleidaGraph indiscriminately, first you will learn what graphing and least squares is all about. Chapter 0 in the lab manual contains all the information required to do this worksheet, refer back to the appropriate sections.

In Lab 2 (Electron Dynamics), we will learn that an electron moving in a constant electric potential V and a constant magnetic field B (perpendicular to the electron's motion), moves in a circular path of radius R, given by the

36

formula

$$R^2 = \frac{2Vm}{eB^2},\tag{0.7}$$

where m and e are the mass and charge of the electron, respectively.

Hand-fit Graphing

A former group of 103N students set the magnetic field on their apparatus to $B=1.154\pm0.006$ mT (1 T = 1 Tesla = 1 kg/C s) and measured the path radius while varying the potential V:

V(V)	R (cm)
400 ± 2	5.6 ± 0.4
600 ± 2	7.4 ± 0.4
800 ± 2	8.2 ± 0.4
1000 ± 2	9.0 ± 0.4
1200 ± 2	10.2 ± 0.4

1. Plot R^2 versus V, including error bars on all points on your graph paper. Show your work in finding $\Delta(R^2)$ in the space provided here.

Is this linear?

Find the slope of the best line fit to the data. Use bounding lines to obtain the uncertainty in the slope. Show all your work in the space provided below.

Least Squares

2. Now use linear least squares to obtain the slope with uncertainty. Note that R^2 is the *dependent* variable; you'll need to fill the following table. Observe that there are two extra rows in it. One is for the units and one is for the sums of the elements of each column.

	Least Squares Method						
V_i	R_i^2	$\Delta(R_i^2)$	$\frac{1}{(\Delta(R_i^2))^2}$	$\frac{V_i}{(\Delta(R_i^2))^2}$	$\frac{R_i^2}{(\Delta(R_i^2))^2}$	$\frac{V_i^2}{(\Delta(R_i^2))^2}$	$\frac{V_i R_i^2}{(\Delta(R_i^2))^2}$

Now compute the sums required to find the slope, a, and the uncertainty in slope, Δa , as in your lab manual.

How does the least squares result compare with that obtained by hand? Comment on agreement (within uncertainty), the relative uncertainties in each result, and anything else you think is important.

3. Use equation (0.7) to calculate the charge-to-mass ratio of the electron, e/m, from the value of B and each of the slopes you obtained with uncertainty. Note that the accepted value of $e/m=1.758~819~62(53)\cdot 10^{11}$ C/kg

Attach your Kaleida Graph and hand plots to the end of this worksheet. End Worksheet