Билеты по общей физике. 4-й семестр. Оптика.

Нехаев Александр

28 марта 2018 г.

Оглавление

1.	Спи	сок вопросов	5
2.	Вол	новое уравнение.	7
	2.1.	Волновое уравнение	7
		2.1.1. Плоская монохроматическая волна	7
			8
	2.2.	Комплексная амплитуда волны	8
		Уравнение Гельмгольца	9
3.	Пло	оские и сферические волны	11
	3.1.	Интерференция плоских волн	11
		Интерференция сферических волн	
	3.3.	Уравнение плоской и сферической волн	12
	3.4.	Интерференция монохроматических волн	12
	3.5.	Видность полос	13
4.	Пон	иятие о временной когерентности	15
	4.1.	Влияние немонохроматичности света на видность интер-	
		ференционных полос	15
	4.2.	Понятие о временной когерентности	15
	4.3.	Связь когерентности с шириной спектра: соотношение неопре-	-
		лелённостей.	16

Глава 1.

Список вопросов

- 1) Волновое уравнение. Монохроматические волны. Комплексная амплитуда. Уравнение Гельмгольца.
- 2) Монохроматические волны. Комплексная амплитуда. Уравнение плоской и сферической волн. Принцип суперпозиции, интерференция.
- Интерференция монохроматических волн. Интерференция плоской и сферической волн. Ширина интерференционных полос. Видность полос.
- 4) Влияние немонохроматичности света на видность интерференционных полос. Функция временной когерентности. Связь времени когерентности с шириной спектра. Теорема Винера-Хинчина. Соотношение неопределенностей.
- 5) Видность интерференционных полос и ее связь со степенью когерентности при использовании квазимонохроматических источников света. Оценка максимального числа наблюдаемых полос. Максимально допустимая разность хода в интерференционных опытах.
- 6) Апертура интерференционной схемы и влияние размеров источника на видность интерференционных полос. Функция пространственной когерентности. Радиус пространственной когерентности.
- 7) Связь радиуса пространственной когерентности с угловым размером протяженного источника. Теорема Ван-Циттерта-Цернике. Видность интерференционных полос при использовании протяженных источников света. Звездный интерферометр Майкельсона.

Глава 2.

Волновое уравнение.

2.1. Волновое уравнение

Волной называется процесс, обладающий некоторым свойством инвариантности, что некоторая физическая величина представляется профилем перемещающимся с постоянной скоростью:

$$S(x,t) \equiv S(x \pm ut) \tag{2.1}$$

Волновое уравнение можно получить дважды продифференцировав (2.1):

$$\frac{\partial^2 S}{\partial t^2} = \frac{u^2 \partial^2 S}{\partial x^2} \tag{2.2}$$

В общем трехмерном случае

$$\nabla^2 S - \frac{1}{u^2} \frac{\partial^2 S}{\partial t^2} = 0 \tag{2.3}$$

Монохроматическая волна — это строго синусоидальная волна с постоянной во времени частотой ω , амплитудой a и начальной частотой φ .

В общем случае имеет вид

$$S(\vec{r},t) = a(\vec{r})\cos(\omega t - \varphi(\vec{r})). \tag{2.4}$$

Несколько важных примеров простейших типов монохроматических волн:

2.1.1. Плоская монохроматическая волна

Описывается функцией координат и времени вида:

$$S(z,t) = a\cos(\omega t - kz - \varphi) \tag{2.5}$$

a — амплитуда волны, $\Phi = \omega t - kz - \varphi$ — фаза волны, $\varphi = \Phi \left(z=0,t=0\right)$ — начальная фаза.

Из уравнения (2.5) видно, что в плоскости z= const колебания происходят по одному и тому же закону с одной и той же частотой, амплитудой и одной и той же начальной фазой φ . Поверхности, на которых колебания возмущения S происходят синфазно называются **волновыми поверхностями**.

2.1.2. Сферическая волна

Волна, описываемая уравнением

$$S(\vec{r},t) = -\frac{a}{r}\cos(\omega t - kr - \varphi_0)$$
 (2.6)

называется сферической.

2.2. Комплексная амплитуда волны

В самом общем виде уравнение монохроматической волны

$$S(\vec{r},t) = a(\vec{r})\cos(\omega t - \varphi(\vec{r})) \tag{2.7}$$

Наряду с волной (2.7) рассмотрим волновой процесс вида

$$S_1(\vec{r}, t) = a(\vec{r}) \sin(\omega t - \varphi(\vec{r}))$$

Ясно, что линейная комбинация функций вида

$$V(\vec{r},t) = S(\vec{r},t) - iS_1(\vec{r},t)$$
(2.8)

также удовлетворяет волновому уравнению.

Используя тождество $\cos \alpha - i \sin \alpha = e^{-i\alpha}$, перепишем (2.8) в виде

$$V(\vec{r},t) = a(\vec{r}) e^{-i[\omega t - \varphi(\vec{r})]}$$

Получаем, что функцию $V\left(\vec{r},t\right)$ можно записать в виде произведения двух функций

$$V(\vec{r},t) = f(\vec{r}) e^{-i\omega t}$$

где $f\left(\vec{r}\right)=a\left(\vec{r}\right)e^{i\varphi\left(\vec{r}\right)}$ есть комлексная амплитуда волны.

9

2.3. Уравнение Гельмгольца

Комплексная функция $V\left(\vec{r},t\right)=f\left(\vec{r}\right)e^{-i\omega t}$ должна быть решением волнового уравнения

$$\nabla^2 V - \frac{1}{u^2} \frac{\partial^2 V}{\partial t^2} = 0.$$

Дифференцируя $V\left(\vec{r},t\right)$ дважды по координатам получаем

$$\nabla^2 V = e^{-i\omega t} \nabla^2 f$$

Дифференцируя дважды по времени

$$\frac{\partial^2 V}{\partial t^2} = f(\vec{r}) (-i\omega)^2 e^{-i\omega t}$$

подставляя выражение $\nabla^2 V$ и $\frac{\partial^2 V}{\partial t^2}$ в волновое уравнение приходим к следующему равенству

$$\nabla^2 f + k^2 f = 0 \tag{2.9}$$

где $k=\frac{\omega}{v}$ волновое число. Полученное уравнение для комплексных амплитуд называется **уравнением Гельмгольца**.

Глава 3.

Плоские и сферические волны

3.1. Интерференция плоских волн

Рассмотрим результат интерференции двух плоских волн, волновые векторы \vec{k}_1 и \vec{k}_2 которых составляют углы $\pm \alpha$ с нормалью к плоскости.

$$f_1(x,z) = a_1 e^{i(kx\sin\alpha + kz\cos\alpha)}, \quad f_2(x,z) = a_2 e^{i(-kx\sin\alpha + kz\cos\alpha)}$$

Результирующую картину интенсивности найдем, используя **общее соотношение**

$$I(x) = a_1^2 + a_2^2 + 2a_1a_2\cos(2kx\sin\alpha)$$
(3.1)

Картина имеет вид чередующихся светлых и темных полос. Ширина полос:

$$\Delta x = \frac{\lambda}{2\sin\left(\alpha\right)} \tag{3.2}$$

3.2. Интерференция сферических волн

Две сферические волны излучаются точечными источниками S_1 и S_2 . Комплексные амплитуды волн в точке наблюдения есть

$$f_1 = \frac{a_0}{r_1} e^{ikr_1}, \quad f_2 = \frac{a_0}{r_2} e^{ikr_2}$$

Разность фаз в точке наблюдения $\Delta \varphi = k \cdot \Delta$, где $\Delta = r_2 - r_1$ — разность хода волн, приходящих в точку. Если рассматривать небольшую область наблюдения, в которой амплитуды двух слагаемых волн примерно одинаковы: $a_0/r_1 \approx a_0$, $a_0/r_2 \approx a_0$, то получаем

$$I = 2I_0 \left[1 + \cos\left(\frac{\omega}{c}\right) \Delta \right] \tag{3.3}$$

3.3. Уравнение плоской и сферической волн.

1) Для плоской

$$S(\vec{r},t) = a\cos\left(\omega t - \vec{k}\cdot\vec{r} - \varphi\right)$$

и в комплексной форме комплексная амплитуда для плоской волны имеет вид

$$f(\vec{r}) = ae^{i\varphi}e^{i\vec{k}\cdot\vec{r}} = ce^{i(k_xx + k_yy + k_zz)}$$

2) Для сферической волны

$$S(\vec{r},t) = -\frac{a}{r}\cos(\omega t - kr - \varphi_0)$$

и в комплексной форме комплексная амплитуда для сферической волны имеет вид

$$f(\vec{r}) = \frac{a}{r}e^{i\varphi_0}e^{ikr} = \frac{a_0}{r}e^{ikr+\varphi_0}$$

3.4. Интерференция монохроматических волн

Пусть в пространстве распространяются две монохроматические волны с одинаковой частотой ω :

$$E_1(\vec{r},t) = a_1(\vec{r})\cos(\omega t - \varphi_1(\vec{r})), \quad E_2(\vec{r},t) = a_2(\vec{r})\cos(\omega t - \varphi_2(\vec{r}))$$

Согласно принципу суперпозиции колебательный процесс в любой точке наблюдения есть сумма гармонических колебаний. Выведем формулу для результирующего колебания:

Нам известно, что суммарная проекция вектора $\vec{a}(t)$ равна сумме проекций на эту же ось. Поэтому результирующее колебание может быть изображено вектором амплитуды $\vec{a}(t) = \vec{a}_1(t) + \vec{a}_2(t)$, вращающимся вокруг точки O с той же угловой скоростью ω , что и \vec{a}_1 и \vec{a}_2 . Результирующее колебание должно быть также гармоническим с частотой ω : $x = a\cos(\omega t + \varphi)$. По правилу сложения векторов найдем суммарную амплитуду:

$$a(t)^{2} = (x_{1} + x_{2})^{2} + (y_{1} + y_{2})^{2} = x_{1}^{2} + 2x_{1}x_{2} + x^{2} + y_{1}^{2} + 2y_{1}y_{2} + y_{2}^{2} =$$

$$= a_{1}^{2}(t)\cos^{2}\varphi_{1} + 2a_{1}(t)a_{2}(t)\cos\varphi_{1}\cos\varphi_{1} + a_{2}^{2}(t)\cos^{2}\varphi_{2} + a_{1}^{2}(t)\sin^{2}\varphi_{1} +$$

$$+2a_{1}(t)a_{2}(t)\sin\varphi_{1}\sin\varphi_{2} + a_{2}^{2}(t)\sin^{2}\varphi_{2} = a_{1}^{2}(t) + a_{2}^{2}(t) + 2a_{1}(t)a_{2}(t) \cdot$$

$$\cdot \left[\frac{1}{2}\cos(\varphi_{2} - \varphi_{1}) - \frac{1}{2}\cos(\varphi_{2} + \varphi_{1}) + \frac{1}{2}\cos(\varphi_{2} - \varphi_{1}) + \frac{1}{2}\cos(\varphi_{2} + \varphi_{1}) \right] =$$

$$= a_1^2(t) + a_2^2(t) + 2a_1(t) a_2(t) \cos(\varphi_2 - \varphi_1).$$

Получили

$$a(t)^{2} = a_{1}^{2}(t) + a_{2}^{2}(t) + 2a_{1}a_{2}\cos\Delta(\vec{r})$$
(3.4)

где $\Delta(\vec{r}) = \varphi_2(\vec{r}) - \varphi_1(\vec{r})$ — разность фаз слагаемых колебаний в точке наблюдения. Явление наложения волн, при котором результирующая интенсивность оказывается не равной в общем случае сумме интенсивностей слагаемых волн, называется *интерференцией*.

3.5. Видность полос

Контраст интерференционной картины принято характеризовать величиной $\mathit{eud}\mathit{hocmu}\ V$, определяемой равенством

$$V = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}} = \frac{2a_1 a_2}{a_1^2 + a_2^2}.$$
 (3.5)

Глава 4.

Понятие о временной когерентности

4.1. Влияние немонохроматичности света на видность интерференционных полос.

С ростом τ — времени относительного запаздывания, видность (контраст) постепенно уменьшается. Наконец при $\tau \gtrsim \tau_0$ интерференционные полосы исчезают полностью.

4.2. Понятие о временной когерентности.

 au_0 — характерное время жизни атома в возбужденном состоянии.

Приходим к представлению о *квазимонохроматическом процессе* и можем записать колебания в виде

$$E(t) = a(t)\cos(\omega_0 t - \varphi(t))$$

где a(t) и $\varphi(t)$ — медленно и хаотически меняющиеся функции. Характерный временной масштаб их изменения τ_0 носит название *времени корреляции* или *времени когерентности*. Принято говорить, что значение a(t) и $a(t+\tau)$ коррелированы при $\tau < \tau_0$ и некоррелированы при $\tau > \tau_0$. Это же относится и к значениям фазы $\varphi(t)$ и $\varphi(t+\tau)$.

4.3. Связь когерентности с шириной спектра: соотношение неопределённостей.

Наиболее важной является связь между шириной спектра $\Delta\omega$ (интервалом частот, в котором спектральная интенсивность заметно отличается от нуля) и временем когерентности τ_0 (интервал значений τ , в котором отлична от нуля функция когерентности $\Gamma(\tau)$).

Рассмотрим простой пример. Пусть функция $I\left(\omega\right)$ имеет вид

$$I(\omega) = \begin{cases} I_0, & |\omega - \omega_0| < \Delta\omega/2, \\ 0, & |\omega - \omega_0| > \Delta\omega/2; \end{cases}$$

Тогда используя соотношение $dI = 2I\left(\omega\right)\left[1 + \cos\left(\frac{\omega}{c}\Delta\right)\right]d\omega$ найдем

$$I = 2I_0 \int_{\omega - \Delta\omega/2}^{\omega + \Delta\omega/2} \left(1 + \cos\left(\frac{\omega}{c}\Delta\right) \right) d\omega \tag{4.1}$$

В результате интегрирования получим

$$I = 2I_0 \left\{ 1 + \frac{\sin\left[\left(\Delta\omega/2c\right)\Delta\right]}{\left(\Delta\omega/2c\right)\Delta}\cos\left(\frac{\omega_0}{c}\Delta\right) \right\}$$
(4.2)

допустимую разность хода Δ_{\max} можно оценить из условия $\frac{\Delta\omega}{2c}\Delta_{\max}=\pi,$ когда выражение для огибающей обращается в нуль:

$$\Delta_{\rm max} \approx \frac{2\pi c}{\Delta \omega}$$

Сопоставляя выражения для максимально допустимой разности хода, полученные при временном ($\Delta_{\rm max} \approx c au_0$)