In-tutorial exercise sheet 5

supporting the lecture Mathematical Statistics

(Discussion in the tutorial on 2. December 2015)

Exercise 1.

Let X be poisson with parameter $\lambda \in (0, \infty)$. We consider the loss function

$$L(\lambda, a) = (\lambda - a)^2 / \lambda.$$

Show that g(X) = X is a Minimax estimator for λ . Proceed as following:

- a) Consider a Gamma distribution $\pi_{p,b} = \gamma(p,b)$ as a prior for the parameter λ . Determine the a posteriori distribution.
- b) Calculate the a posteriori risk

$$R_{\pi_{a,b}}^{x}(a) := \int_{\Theta} L(\lambda, a) Q^{\lambda|X=x}(d\lambda)$$

with $a \in \mathbb{R}$ and p > 1.

Hint: You may use that for $\Lambda \sim \gamma(p, b)$ we have

$$\mathbb{E}[\Lambda] = \frac{p}{b}, \qquad \mathbb{E}[1/\Lambda] = \frac{b}{p-1}.$$

- c) Minimize $R^x_{\pi_{a,b}}(a)$ over $a \in \mathbb{R}$. Compute $R^x_{\pi_{a,b}}(a^*(x))$ if $a^*(x)$ is the minimizing function.
- d) Calculate $R(\lambda, X)$ and thereby finish the proof.