eDNA

Jay T. Lennon, Mario E. Muscarella, ... 12 February, 2017

Analysis of community sequence data to test whether the structure and composition of bacterial communities is affected by extracellular DNA

Setup Work Environment

```
rm(list=ls())
getwd()
## [1] "/Users/mmuscarella/GitHub/eDNA/code"
setwd("~/GitHub/eDNA/code")
# Load dependencies
require("vegan")
## Loading required package: vegan
## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.4-1
require("plyr")
## Loading required package: plyr
require("car")
## Loading required package: car
require("grid")
## Loading required package: grid
require("png")
## Loading required package: png
require("ape")
## Loading required package: ape
require("picante")
## Loading required package: picante
## Loading required package: nlme
require("ade4")
## Loading required package: ade4
```

```
##
## Attaching package: 'ade4'
## The following object is masked from 'package:vegan':
##
##
       cca
#require("phytools")
require("phangorn")
## Loading required package: phangorn
##
## Attaching package: 'phangorn'
## The following objects are masked from 'package:vegan':
##
##
       diversity, treedist
# Source code functions
source("../bin/DiversityFunctions.R")
source("../bin/MothurTools.R")
## Loading required package: reshape
##
## Attaching package: 'reshape'
## The following objects are masked from 'package:plyr':
##
       rename, round_any
source("../bin/phylodiversity2.R")
# Small custom functions
sem <- function(x, ...){sd(x, na.rm = TRUE)/sqrt(length(na.omit(x)))}</pre>
# Save Default Plot Settings
opar <- par(no.readonly = TRUE) # Saves plot defauxlts</pre>
# Run All: Select if all section are to be re-run
run.all <- FALSE</pre>
```

Phylogenetic Diversity Notes

A multi-fasta file was generated with representative sequences for each OTU. Representatives were picked based on the most abundant unique sequence in each OTU. FastTree was used to construct a phylogenetic tree. Note: This must be done before performing the following analyses. The following parameters were used:

```
Note: eDNA.bac.final.0.03.rep.fasta is larger than the github limits. Please obtain the file from SDA o

Note: The names must be renamed so that they match the OTU names:

> python ./bin/name_change.py "./eDNA.bac.final.0.03.rep.fasta" "./eDNA.bac.final.0.03.rep.rename.fasta

> FastTree -gtr -nt -gamma -fastest eDNA.bac.final.0.03.rep.rename.fasta > eDNA.bac.rename.tree

Output:
```

```
ML-NNI round 14: LogLk = -5469747.038 NNIs 18759 max delta 6.95 Time 4888.39 (final)ax delta 6.954) Optimize all lengths: LogLk = -5469663.971 Time 5006.96 Gamma(20) LogLk = -5470984.148 alpha = 1.037 rescaling lengths by 1.659 Total time: 5529.61 seconds Unique: 174292/174292 Bad splits: 903/174289 Worst delta-LogLk 10.311
```

Data Input Section

Define Inputs

Import Design

```
design <- read.delim(design, header=T, row.names=1)</pre>
```

Import Shared, Taxonomy, and Phylogeny Files

```
OTU <- read.otu(shared = shared, cutoff = "0.03")
OTU.tax <- read.tax(taxonomy = tax, format = "rdp")
OTU.tre <- read.tree("../mothur/output/eDNA.bac.rename.tree")
```

Remove OTUs with less than two occurences across all sites

```
OTU <- OTU[, which(colSums(OTU) >= 2)]
```

Calculate Coverage Stats

```
mean.good.c <- mean(goods.c.eDNA) # 0.99
min.good.c <- min(goods.c.eDNA) # 0.98</pre>
```

Alpha Diversity

Calculate Alpha diversity using Resampling

```
# Mario's resampling code to estimate alpha diversity (used if run.all = T)
if (run.all == TRUE){
  rich <- round(richness.iter(input = OTU, size = 30000,
                               iters = 100, shared = "FALSE"), 3)
  even <- round(evenness.iter(input = OTU, size = 30000,</pre>
                               iters = 100, shared = "FALSE",
                               method = "simp_even"), 3)
 rare <- rarefy(OTU, 30000, se = FALSE, MARGIN = 1)
  # Write output to files
  write.table(rich, "../data/rich.txt", sep = "\t",
              col.names = T, row.names = T)
  write.table(even, "../data/even.txt", sep = "\t",
              col.names = T, row.names = T)
}
# Read in alpha diversity files from above
rich2 <- read.table("../data/rich.txt", sep = "\t")</pre>
even2 <- read.table("../data/even.txt", sep = "\t")</pre>
# Merge data to design and calculate mean and sem per sample
rich.data <- merge(design, rich2, by = "row.names")</pre>
row.names(rich.data) <- rich.data$Row.names</pre>
rich.data <- rich.data[sort(row.names(rich.data)), ]</pre>
rich.mean <- round(apply(rich.data[8:(7 + dim(rich2)[2])], 1, mean, na.rm = TRUE),3)
rich.sem <- round(apply(rich.data[8:(7 + dim(rich2)[2])], 1, sem, na.rm = TRUE), 3)
even.data <- merge(design, even2, by = "row.names")
row.names(even.data) <- even.data$Row.names</pre>
even.data <- even.data[sort(row.names(even.data)), ]</pre>
even.mean <- round(apply(even.data[8:(7 + dim(even2)[2])], 1, mean, na.rm = TRUE),3)
even.sem <- round(apply(even.data[8:(7 + dim(even2)[2])], 1, sem, na.rm = TRUE),4)
# Make new dataframe merging design file and mean diversity
eDNA.div <- data.frame(design[sort(row.names(design)), ], rich.mean, even.mean)
# Take averages of technial reps
rich.rep.ave <- ddply(eDNA.div, .(env, treat, qPCR.match), summarize, rich = mean(rich.mean))
even.rep.ave <- ddply(eDNA.div, .(env, treat, qPCR.match), summarize, even = mean(even.mean))
# Reshape data
rich.2 <- reshape(rich.rep.ave[,1:4], timevar = "treat",
```

Richness: differences among sites?

```
rich.anova <- aov(rich.2$rich.C ~rich.2$env)
summary(rich.anova)
                   Sum Sq Mean Sq F value
## rich.2$env
              3 34630542 11543514 14.95 5.08e-05 ***
## Residuals
             17 13122506
                            771912
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
TukeyHSD(rich.anova)
    Tukey multiple comparisons of means
##
      95% family-wise confidence level
##
##
## Fit: aov(formula = rich.2$rich.C ~ rich.2$env)
##
## $\rich.2\env\
##
                    diff
                               lwr
                                          upr
                                                  p adj
## sed-feces 2700.5429 1088.4587 4312.6271 0.0009436
## soil-feces 1379.7157 -295.6113 3055.0428 0.1276911
## water-feces -447.6879 -2059.7721 1164.3963 0.8582474
## soil-sed -1320.8272 -2833.0962
                                    191.4418 0.0989233
## water-sed -3148.2308 -4590.1228 -1706.3389 0.0000519
## water-soil -1827.4037 -3339.6727 -315.1347 0.0151328
```

Richness: does eDNA "inflate" diversity?

```
# Richness table
rich.2.ag.mean <- aggregate(rich.ratio ~ env, rich.2, mean)
rich.2.ag.sem <- aggregate(rich.ratio ~ env, rich.2, sem)
rich.2.ag.95 <- aggregate(rich.ratio ~ env, rich.2,
                  FUN = function(x) t.test(x)$conf.int[1:2])
rich.table <- data.frame(rich.2.ag.mean$env, rich.2.ag.mean$rich.ratio,
                         rich.2.ag.sem$rich.ratio, rich.2.ag.95$rich.ratio)
colnames(rich.table) <- c("env", "mean", "sem", "LCI", "UCI")</pre>
# Regression: richness ratio vs. proportion eDNA
eDNA.prop <- read.table("../data/eDNA.prop.txt", sep = "\t", header = T)
eDNA.prop.sub <- eDNA.prop[eDNA.prop$sample.number %in% rich.2$qPCR.match, ]
eDNA.prop.sub2 <- eDNA.prop.sub[order(eDNA.prop.sub$sample.number), ]
rich.reg <- lm(rich.2[order(rich.2$qPCR.match), ]$rich.ratio ~ eDNA.prop.sub2$env + eDNA.prop.sub2$prop
summary(rich.reg)
##
## Call:
## lm(formula = rich.2[order(rich.2$qPCR.match), ]$rich.ratio ~
       eDNA.prop.sub2$env + eDNA.prop.sub2$prop)
##
## Residuals:
                  1Q
                      Median
       Min
## -0.24381 -0.09627 -0.00581 0.08514 0.32615
## Coefficients:
                           Estimate Std. Error t value Pr(>|t|)
##
                                               8.584 2.2e-07 ***
## (Intercept)
                           1.07902
                                       0.12570
## eDNA.prop.sub2$envsed
                          -0.18874
                                       0.10774 - 1.752
                                                         0.0989 .
## eDNA.prop.sub2$envsoil -0.10213
                                       0.12196 -0.837
                                                         0.4147
## eDNA.prop.sub2$envwater -0.09194
                                       0.10728 -0.857
                                                         0.4040
## eDNA.prop.sub2$prop
                          -0.06588
                                       0.19859 -0.332
                                                         0.7444
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1659 on 16 degrees of freedom
## Multiple R-squared: 0.1663, Adjusted R-squared: -0.04211
## F-statistic: 0.798 on 4 and 16 DF, p-value: 0.5438
Anova(rich.reg)
## Anova Table (Type II tests)
## Response: rich.2[order(rich.2$qPCR.match), ]$rich.ratio
                        Sum Sq Df F value Pr(>F)
## eDNA.prop.sub2$env 0.08657 3
                                   1.048 0.3984
## eDNA.prop.sub2$prop 0.00303 1
                                    0.110 0.7444
## Residuals
                       0.44055 16
# MEM: what is the Anova() function? = prints the anova like table for the model
#
                                        Anova uses type II sums of squares
# answer => no correlation between proportion eDNA and richness ratio.
```

Evennes: differences among sites?

```
even.anova <- aov(even.2$even.C ~even.2$env)
summary(even.anova)
              Df Sum Sq Mean Sq F value Pr(>F)
## even.2$env
              3 0.1247 0.04158
                                6.497 0.00397 **
             17 0.1088 0.00640
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
TukeyHSD (even.anova)
##
    Tukey multiple comparisons of means
##
      95% family-wise confidence level
##
## Fit: aov(formula = even.2$even.C ~ even.2$env)
##
## $`even.2$env`
##
                     diff
                                  lwr
                                              upr
                                                      p adj
## sed-feces -0.17916667 -0.32595852 -0.03237482 0.0140884
## soil-feces -0.12695000 -0.27950056 0.02560056 0.1222474
## water-feces -0.21808333 -0.36487518 -0.07129148 0.0029099
## soil-sed
              0.05221667 -0.08548629 0.18991963 0.7071690
## water-sed -0.03891667 -0.17021129 0.09237795 0.8335247
## water-soil -0.09113333 -0.22883629 0.04656963 0.2723574
```

Evenness: does eDNA "inflate" diversity?

```
# Take averages of technial reps
even.rep.ave <- ddply(eDNA.div, .(env, treat, qPCR.match),
                      summarize, even = mean(even.mean))
# Reshape data
even.2 <- reshape(even.rep.ave[,1:4], timevar = "treat",
                   idvar = c("qPCR.match", "env"), direction = "wide")
\# Calcualte means +/- SEM of control and treated richness
even.2.ag.mean.control <- aggregate(even.C ~ env, even.2, mean)
even.2.ag.sem.control <- aggregate(even.C ~ env, even.2, sem)</pre>
even.2.ag.mean.treatment <- aggregate(even.E ~ env, even.2, mean)
even.2.ag.sem.treatment <- aggregate(even.E ~ env, even.2, sem)
# Calculate ratios
even.2$even.ratio <- even.2$even.E / even.2$even.C
# Evennes table
even.2.ag.mean <- aggregate(even.ratio ~ env, even.2, mean)
even.2.ag.sem <- aggregate(even.ratio ~ env, even.2, sem)</pre>
```

```
even.2.ag.95 <- aggregate(even.ratio ~ env, even.2,
                 FUN = function(x) t.test(x)$conf.int[1:2])
even.table <- data.frame(even.2.ag.mean$env, even.2.ag.mean$even.ratio,
                        even.2.ag.sem$even.ratio, even.2.ag.95$even.ratio)
colnames(even.table) <- c("env", "mean", "sem", "LCI", "UCI")</pre>
# Regression: evennes ratio vs. proportion eDNA
even.reg <- lm(even.2[order(even.2$qPCR.match), ]$even.ratio ~ eDNA.prop.sub2$prop + eDNA.prop.sub2$env
summary(even.reg)
##
## Call:
## lm(formula = even.2[order(even.2$qPCR.match), ]$even.ratio ~
      eDNA.prop.sub2$prop + eDNA.prop.sub2$env)
##
## Residuals:
                     Median
       Min
                 1Q
                                  3Q
                                          Max
## -0.18494 -0.04681 -0.02213 0.05598 0.33792
## Coefficients:
##
                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                          ## eDNA.prop.sub2$prop
                          0.1413973 0.1416141 0.998
                                                         0.333
## eDNA.prop.sub2$envsed
                         0.0618303 0.0768245
                                               0.805
                                                         0.433
                                              0.474
## eDNA.prop.sub2$envsoil 0.0411972 0.0869705
                                                         0.642
## eDNA.prop.sub2$envwater 0.0006756 0.0764959 0.009
                                                         0.993
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1183 on 16 degrees of freedom
## Multiple R-squared: 0.105, Adjusted R-squared: -0.1188
## F-statistic: 0.4692 on 4 and 16 DF, p-value: 0.7576
# answer => no correlation between proportion eDNA and evenness ratio.
```

Calculate Phylogenetic Alpha Diversity

```
# Test if all OTUs are in tree
sum(colnames(OTU) %in% OTU.tre$tip.label) == length(colnames(OTU) %in% OTU.tre$tip.label)
## [1] TRUE
# Root Tree if Needed
is.rooted(OTU.tre)

## [1] FALSE
OTU.tre.rooted <- midpoint(OTU.tre)

if (run.all == TRUE){
   OTU.2 <- rrarefy(OTU, 30000)
   OTU.2 <- OTU.2[,which(colSums(OTU.2) > 0)]
   OTU.tre.2 <- prune.sample(OTU.2, OTU.tre.rooted)</pre>
```

```
# Calculate Faith's D
  eDNA.pd <- pd(OTU.2, OTU.tre.2, include.root = F)</pre>
  # Write output to files
  write.table(eDNA.pd, "../data/phylo.txt", sep = "\t",
              col.names = T, row.names = T)
}
# Read in alpha diversity files from above
eDNA.pd2 <- read.table("../data/phylo.txt", sep = "\t")
# Make new dataframe merging design file and phylo diversity
eDNA.phylo <- data.frame(design[sort(row.names(design)), ],</pre>
                          pd = eDNA.pd2$PD)
# Take averages of technial reps
pd.rep.ave <- ddply(eDNA.phylo, .(env, treat, qPCR.match),</pre>
                       summarize, phylo = mean(pd))
# Reshape data
phylo.2 <- reshape(pd.rep.ave[,1:4], timevar = "treat",</pre>
                    idvar = c("qPCR.match", "env"), direction = "wide")
# Calcualte means +/- SEM of control and treated richness
phylo.2.ag.mean.control <- aggregate(phylo.C ~ env, phylo.2, mean)</pre>
phylo.2.ag.sem.control <- aggregate(phylo.C ~ env, phylo.2, sem)</pre>
phylo.2.ag.mean.treatment <- aggregate(phylo.E ~ env, phylo.2, mean)</pre>
phylo.2.ag.sem.treatment <- aggregate(phylo.E ~ env, phylo.2, sem)</pre>
```

Phylogenetic: differences among sites?

```
faith.anova <- aov(phylo.2$phylo.C ~phylo.2$env)</pre>
summary(faith.anova)
##
              Df Sum Sq Mean Sq F value
                                          Pr(>F)
                                  21.92 4.46e-06 ***
## phylo.2\senv 3 693939 231313
## Residuals
              17 179413
                          10554
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
TukeyHSD(faith.anova)
##
     Tukey multiple comparisons of means
       95% family-wise confidence level
##
##
## Fit: aov(formula = phylo.2$phylo.C ~ phylo.2$env)
## $`phylo.2$env`
##
                   diff
                               lwr
                                                  p adj
                                          upr
## sed-feces
               492.7041 304.20628 681.20192 0.0000054
## soil-feces 262.8600
                         66.96729 458.75265 0.0068654
## water-feces 126.1452 -62.35265 314.64299 0.2638046
```

```
## soil-sed -229.8441 -406.67076 -53.01750 0.0088154

## water-sed -366.5589 -535.15651 -197.96136 0.0000546

## water-soil -136.7148 -313.54143 40.11183 0.1637189
```

Phylogenetic Diversity: does eDNA "inflate" diversity?

```
# Calculate ratios
phylo.2$phylo.ratio <- phylo.2$phylo.E / phylo.2$phylo.C
# Richness table
phylo.2.ag.mean <- aggregate(phylo.ratio ~ env, phylo.2, mean)</pre>
phylo.2.ag.sem <- aggregate(phylo.ratio ~ env, phylo.2, sem)</pre>
phylo.2.ag.95 <- aggregate(phylo.ratio ~ env, phylo.2,</pre>
                  FUN = function(x) t.test(x)$conf.int[1:2])
phylo.table <- data.frame(phylo.2.ag.mean$env, phylo.2.ag.mean$phylo.ratio,
                         phylo.2.ag.sem$phylo.ratio, phylo.2.ag.95$phylo.ratio)
colnames(phylo.table) <- c("env", "mean", "sem", "LCI", "UCI")</pre>
# Regression: PD ratio vs. proportion eDNA
phylo.reg <- lm(phylo.2[order(phylo.2$qPCR.match), ]$phylo.ratio ~ eDNA.prop.sub2$prop * eDNA.prop.sub2
summary(phylo.reg)
##
## Call:
## lm(formula = phylo.2[order(phylo.2$qPCR.match), ]$phylo.ratio ~
       eDNA.prop.sub2$prop * eDNA.prop.sub2$env)
##
##
## Residuals:
                  1Q
                      Median
                                    3Q
## -0.13873 -0.05357 -0.01196 0.05997 0.22201
## Coefficients:
                                               Estimate Std. Error t value
## (Intercept)
                                                1.12141 0.15416 7.275
## eDNA.prop.sub2$prop
                                               -0.15341 0.30092 -0.510
## eDNA.prop.sub2$envsed
                                               -0.09207 0.18954 -0.486
## eDNA.prop.sub2$envsoil
                                               -0.15157
                                                         0.19583 -0.774
## eDNA.prop.sub2$envwater
                                               -0.24347 0.18909 -1.288
## eDNA.prop.sub2$prop:eDNA.prop.sub2$envsed
                                               -0.20327
                                                         0.38449 -0.529
## eDNA.prop.sub2$prop:eDNA.prop.sub2$envsoil
                                                0.04565
                                                           0.57247
                                                                     0.080
## eDNA.prop.sub2$prop:eDNA.prop.sub2$envwater 0.32164
                                                           0.37402
                                                                    0.860
##
                                               Pr(>|t|)
                                               6.23e-06 ***
## (Intercept)
## eDNA.prop.sub2$prop
                                                  0.619
## eDNA.prop.sub2$envsed
                                                  0.635
## eDNA.prop.sub2$envsoil
                                                  0.453
                                                  0.220
## eDNA.prop.sub2$envwater
## eDNA.prop.sub2$prop:eDNA.prop.sub2$envsed
                                                  0.606
## eDNA.prop.sub2$prop:eDNA.prop.sub2$envsoil
                                                  0.938
## eDNA.prop.sub2$prop:eDNA.prop.sub2$envwater
                                                  0.405
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 0.1148 on 13 degrees of freedom
## Multiple R-squared: 0.3883, Adjusted R-squared: 0.05886
## F-statistic: 1.179 on 7 and 13 DF, p-value: 0.378
# answer => no correlation between proportion eDNA and evenness ratio.
```

Alpha Diversity Plots

Richness plot

pdf ## 2

```
png(filename="../figures/ratio.richness.png",
   width = 800, height = 600, res = 96*2)
par(mar=c(3, 4, 1, 1) + 0.1)
rich.plot <- plot(rich.table$mean, ylim = c(0.5, 1.5),
     xlim = c(0.5, 4.5), pch = 22, bg = "white", lwd = 2,
      cex = 3, yaxt = "n", xaxt = "n", cex.lab = 2, cex.axis = 1.5,
     las = 1, ylab = "", xlab = "")
     box(lwd = 2)
abline(h = 1, lty = 3, lwd = 2)
arrows(x0 = c(1,2,3,4), y0 = rich.table$mean, y1 = rich.table$LCI, angle = 90,
      length = 0.1, lwd = 2)
arrows(x0 = c(1,2,3,4), y0 = rich.table\$mean, y1 = rich.table\$UCI, angle = 90,
      length=0.1, lwd = 2)
points(c(1:4), rich.table mean, pch = 22, cex = 3, bg = "gray90", lwd = 2)
mtext(expression('Richness Ratio'), side = 2,
      outer = F, cex = 1.5, line = 2.5, adj = 0.5)
# Major Axes
axis(side = 2, lwd.ticks = 2, cex.axis = 1, las = 1,
   labels = T, at = c(0.5, 1, 1.5))
axis(side = 4, lwd.ticks = 2, cex.axis = 1, las = 1,
   labels = F, at = c(0.5, 1, 1.5))
axis(side = 1, lwd.ticks = 2, cex.axis = 0.9, las = 1,
   labels = c("Gut", "Sediment", "Soil", "Water"), at = c(1, 2, 3, 4))
axis(side = 3, lwd.ticks = 2, cex.axis = 1.5, las = 1,
   at = c(1, 2, 3, 4), labels = F)
# Minor ticks
axis(side = 2, lwd.ticks = 2, tck = 0.02, labels = F, at = c(0.5, 1, 1.5))
axis(side = 4, lwd.ticks = 2, tck = 0.02, labels = F, at = c(0.5, 1, 1.5))
axis(side = 1, lwd.ticks = 2, tck = 0.02, labels = F, at = c(1, 2, 3, 4))
axis(side = 3, lwd.ticks = 2, tck = 0.02, labels = F, at = c(1, 2, 3, 4))
# Close Plot Device
dev.off()
```

```
graphics.off()
# Show Plot
img <- readPNG("../figures/ratio.richness.png")
grid.raster(img)</pre>
```

Evenness plot

```
png(filename="../figures/ratio.evenness.png",
   width = 800, height = 600, res = 96*2)
par(mar=c(3, 4, 1, 1) + 0.1)
even.plot <- plot(even.table\frac{s}{m}ean, ylim = c(0.5, 1.5),
      xlim = c(0.5, 4.5), pch = 22, bg = "white", lwd = 2,
      cex = 3, yaxt = "n", xaxt = "n", cex.lab = 2, cex.axis = 1.5,
      las = 1, ylab = "", xlab = "")
      box(lwd = 2)
abline(h = 1, lty = 3, lwd = 2)
arrows(x0 = c(1,2,3,4), y0 = even.table mean, y1 = even.table LCI, angle = 90,
       length = 0.1, lwd = 2)
arrows(x0 = c(1,2,3,4), y0 = even.table\$mean, y1 = even.table\$UCI, angle = 90,
       length=0.1, lwd = 2)
points(c(1:4), even.table\$mean, pch = 22, cex = 3, bg = "gray90", lwd = 2)
mtext(expression('Evenness Ratio'), side = 2,
        outer = F, cex = 1.5, line = 2.5, adj = 0.5)
# Major Axes
axis(side = 2, lwd.ticks = 2, cex.axis = 1, las = 1,
   labels = T, at = c(0.5, 1, 1.5))
axis(side = 4, lwd.ticks = 2, cex.axis = 1, las = 1,
   labels = F, at = c(0.5, 1, 1.5))
axis(side = 1, lwd.ticks = 2, cex.axis = 0.9, las = 1,
   labels = c("Gut", "Sediment", "Soil", "Water"), at = c(1, 2, 3, 4))
axis(side = 3, lwd.ticks = 2, cex.axis = 1.5, las = 1,
   at = c(1, 2, 3, 4), labels = F)
# Minor ticks
axis(side = 2, lwd.ticks = 2, tck = 0.02, labels = F, at = c(0.5, 1, 1.5))
axis(side = 4, lwd.ticks = 2, tck = 0.02, labels = F, at = c(0.5, 1, 1.5))
axis(side = 1, lwd.ticks = 2, tck = 0.02, labels = F, at = c(1, 2, 3, 4))
axis(side = 3, lwd.ticks = 2, tck = 0.02, labels = F, at = c(1, 2, 3, 4))
# Close Plot Device
dev.off()
```

pdf ## 2

```
graphics.off()
# Show Plot
img <- readPNG("../figures/ratio.evenness.png")
grid.raster(img)</pre>
```

Faith's D plot

```
png(filename="../figures/ratio.phylo.png",
   width = 800, height = 600, res = 96*2)
par(mar=c(3, 4, 1, 1) + 0.1)
phylo.plot <- plot(phylo.table\frac{s}{m}ean, ylim = c(0.5, 1.5),
      xlim = c(0.5, 4.5), pch = 22, bg = "white", lwd = 2,
      cex = 3, yaxt = "n", xaxt = "n", cex.lab = 2, cex.axis = 1.5,
      las = 1, ylab = "", xlab = "")
      box(lwd = 2)
abline(h = 1, lty = 3, lwd = 2)
arrows(x0 = c(1,2,3,4), y0 = phylo.table$mean, y1 = phylo.table$LCI, angle = 90,
       length = 0.1, lwd = 2)
arrows(x0 = c(1,2,3,4), y0 = phylo.table\$mean, y1 = phylo.table\$UCI, angle = 90,
       length=0.1, lwd = 2)
points(c(1:4), phylo.table\$mean,pch = 22, cex = 3, bg = "gray90", lwd = 2)
mtext(expression('Faiths D Ratio'), side = 2,
        outer = F, cex = 1.5, line = 2.5, adj = 0.5)
# Major Axes
axis(side = 2, lwd.ticks = 2, cex.axis = 1, las = 1,
   labels = T, at = c(0.5, 1, 1.5))
axis(side = 4, lwd.ticks = 2, cex.axis = 1, las = 1,
  labels = F, at = c(0.5, 1, 1.5))
axis(side = 1, lwd.ticks = 2, cex.axis = 0.9, las = 1,
   labels = c("Gut", "Sediment", "Soil", "Water"), at = c(1, 2, 3, 4))
axis(side = 3, lwd.ticks = 2, cex.axis = 1.5, las = 1,
   at = c(1, 2, 3, 4), labels = F)
# Minor ticks
axis(side = 2, lwd.ticks = 2, tck = 0.02, labels = F, at = c(0.5, 1, 1.5))
axis(side = 4, lwd.ticks = 2, tck = 0.02, labels = F, at = c(0.5, 1, 1.5))
axis(side = 1, lwd.ticks = 2, tck = 0.02, labels = F, at = c(1, 2, 3, 4))
axis(side = 3, lwd.ticks = 2, tck = 0.02, labels = F, at = c(1, 2, 3, 4))
# Close Plot Device
dev.off()
```

pdf ## 2

```
graphics.off()

# Show Plot
img <- readPNG("../figures/ratio.phylo.png")
grid.raster(img)</pre>
```

Alpha Diversity Multi-Panel Plot

```
png(filename="../figures/alpha.ratios.png",
   width = 800, height = 1600, res = 96*2)
layout(matrix(c(1:3), byrow = T))
par(mar = c(0.5, 4, 0.5, 1), oma = c(3, 1, 1, 1))
# Richness Panel
rich.plot \leftarrow plot(rich.table$mean, ylim = c(0.5, 1.5),
      xlim = c(0.5, 4.5), pch = 22, bg = "white", lwd = 2,
      cex = 3, yaxt = "n", xaxt = "n", cex.lab = 2, cex.axis = 1.5,
      las = 1, ylab = "", xlab = "")
      box(lwd = 2)
abline(h = 1, lty = 3, lwd = 2)
arrows(x0 = c(1,2,3,4), y0 = rich.table\$mean, y1 = rich.table\$LCI, angle = 90,
       length = 0.1, lwd = 2)
arrows(x0 = c(1,2,3,4), y0 = rich.table\$mean, y1 = rich.table\$UCI, angle = 90,
       length=0.1, lwd = 2)
points(c(1:4), rich.table\$mean, pch = 22, cex = 3, bg = "gray90", lwd = 2)
mtext(expression('Richness Ratio'), side = 2,
      outer = F, cex = 1.5, line = 3, adj = 0.5)
# Major Axes
axis(side = 2, lwd.ticks = 2, tck = -0.02, cex.axis = 1.5, las = 1,
   labels = T, at = c(0.5, 1, 1.5))
axis(side = 4, lwd.ticks = 2, cex.axis = 1, las = 1,
   labels = F, at = c(0.5, 1, 1.5)
axis(side = 1, lwd.ticks = 2, tck = -0.02, cex.axis = 0.9, las = 1,
   labels = F, at = c(1, 2, 3, 4))
axis(side = 3, lwd.ticks = 2, cex.axis = 1.5, las = 1,
   at = c(1, 2, 3, 4), labels = F)
# Minor ticks
axis(side = 2, lwd.ticks = 2, tck = 0.02, labels = F, at = c(0.5, 1, 1.5))
axis(side = 4, lwd.ticks = 2, tck = 0.02, labels = F, at = c(0.5, 1, 1.5))
axis(side = 1, lwd.ticks = 2, tck = 0.02, labels = F, at = c(1, 2, 3, 4))
axis(side = 3, lwd.ticks = 2, tck = 0.02, labels = F, at = c(1, 2, 3, 4))
# Evenness Panel
even.plot <- plot(even.table\frac{s}{m}ean, ylim = c(0.5, 1.5),
      xlim = c(0.5, 4.5), pch = 22, bg = "white", lwd = 2,
      cex = 3, yaxt = "n", xaxt = "n", cex.lab = 2, cex.axis = 1.5,
      las = 1, ylab = "", xlab = "")
      box(lwd = 2)
```

```
abline(h = 1, lty = 3, lwd = 2)
arrows(x0 = c(1,2,3,4), y0 = even.table mean, y1 = even.table LCI, angle = 90,
       length = 0.1, lwd = 2)
arrows(x0 = c(1,2,3,4), y0 = even.table\$mean, y1 = even.table\$UCI, angle = 90,
       length=0.1, lwd = 2)
points(c(1:4), even.table\$mean, pch = 22, cex = 3, bg = "gray90", lwd = 2)
mtext(expression('Evenness Ratio'), side = 2,
        outer = F, cex = 1.5, line = 3, adj = 0.5)
# Major Axes
axis(side = 2, lwd.ticks = 2, cex.axis = 1.5, las = 1,
   labels = T, at = c(0.5, 1, 1.5))
axis(side = 4, lwd.ticks = 2, cex.axis = 1, las = 1,
   labels = F, at = c(0.5, 1, 1.5)
axis(side = 1, lwd.ticks = 2, tck = -0.02, cex.axis = 0.9, las = 1,
   labels = F, at = c(1, 2, 3, 4))
axis(side = 3, lwd.ticks = 2, tck = -0.02, cex.axis = 1.5, las = 1,
    at = c(1, 2, 3, 4), labels = F)
# Minor ticks
axis(side = 2, lwd.ticks = 2, tck = 0.02, labels = F, at = c(0.5, 1, 1.5))
axis(side = 4, lwd.ticks = 2, tck = 0.02, labels = F, at = c(0.5, 1, 1.5))
axis(side = 1, lwd.ticks = 2, tck = 0.02, labels = F, at = c(1, 2, 3, 4))
axis(side = 3, lwd.ticks = 2, tck = 0.02, labels = F, at = c(1, 2, 3, 4))
# Phylo Panel
phylo.plot \leftarrow plot(phylo.table mean, ylim = c(0.5, 1.5),
      xlim = c(0.5, 4.5), pch = 22, bg = "white", lwd = 2,
      cex = 3, yaxt = "n", xaxt = "n", cex.lab = 2, cex.axis = 1.5,
      las = 1, ylab = "", xlab = "")
      box(lwd = 2)
abline(h = 1, lty = 3, lwd = 2)
arrows(x0 = c(1,2,3,4), y0 = phylo.table\$mean, y1 = phylo.table\$LCI, angle = 90,
       length = 0.1, lwd = 2)
arrows(x0 = c(1,2,3,4), y0 = phylo.table\$mean, y1 = phylo.table\$UCI, angle = 90,
       length=0.1, lwd = 2)
points(c(1:4), phylo.table mean, pch = 22, cex = 3, bg = "gray90", lwd = 2)
mtext(expression('Faiths D Ratio'), side = 2,
        outer = F, cex = 1.5, line = 3, adj = 0.5)
# Major Axes
axis(side = 2, lwd.ticks = 2, cex.axis = 1.5, las = 1,
   labels = T, at = c(0.5, 1, 1.5))
axis(side = 4, lwd.ticks = 2, cex.axis = 1, las = 1,
  labels = F, at = c(0.5, 1, 1.5)
axis(side = 1, lwd.ticks = 2, cex.axis = 1.5, las = 1,
   labels = c("Gut", "Sediment", "Soil", "Water"), at = c(1, 2, 3, 4))
```

```
axis(side = 3, lwd.ticks = 2, tck = -0.02, cex.axis = 1.5, las = 1,
    at = c(1, 2, 3, 4), labels = F)

# Minor ticks
axis(side = 2, lwd.ticks = 2, tck = 0.02, labels = F, at = c(0.5, 1, 1.5))
axis(side = 4, lwd.ticks = 2, tck = 0.02, labels = F, at = c(0.5, 1, 1.5))
axis(side = 1, lwd.ticks = 2, tck = 0.02, labels = F, at = c(1, 2, 3, 4))
axis(side = 3, lwd.ticks = 2, tck = 0.02, labels = F, at = c(1, 2, 3, 4))

# Close Plot Device
dev.off()

## pdf
## 2
graphics.off()

# Show Plot
img <- readPNG("../figures/alpha.ratios.png")
grid.raster(img)</pre>
```

Beta diversity

Taxonomic Beta Diversity

```
# Make presence-absence matrix
OTU.PA <- (OTU > 0) * 1
\# Make relative abundence matrix
OTU.REL <- OTU
for (i in 1:dim(OTU)[1]){
 OTU.REL[i,] <- OTU[i,]/sum(OTU[i,])
 }
# Log-transform relative abundances
OTU.REL.log <- decostand(OTU, method="log")
eDNA.bc.dis <- vegdist(OTU.REL.log, method = "bray", binary = "FALSE")
eDNA.dis.mean <- mean(eDNA.bc.dis)
# Principal Coordinates Analysis (PCoA)
eDNA.PCoA <- cmdscale(eDNA.bc.dis, eig = TRUE, k = 3)
explainvar1 <- round(eDNA.PCoA$eig[1] / sum(eDNA.PCoA$eig), 3) * 100
explainvar2 <- round(eDNA.PCoA$eig[2] / sum(eDNA.PCoA$eig), 3) * 100
explainvar3 <- round(eDNA.PCoA$eig[3] / sum(eDNA.PCoA$eig), 3) * 100
sum.eig <- sum(explainvar1, explainvar2, explainvar3)</pre>
# OTU Scores
otu.scores <- t(cor(eDNA.PCoA$points, OTU.REL))</pre>
otu.scores <- as.matrix(otu.scores)[,1:2]</pre>
otu.scores <- otu.scores[abs(otu.scores[,1]) > 0.7 | abs(otu.scores[,2]) > 0.7,]
```

Phylogenetic Beta Diversity

```
phylo.dist <- read.delim("../mothur/output/eDNA.bac.tree.weighted.phylip.dist",</pre>
                          skip = 1, row.names = 1, header = F, strip.white = T)
phylo.dist <- as.dist(phylo.dist)</pre>
# Principal Coordinates Analysis (PCoA)
eDNA.phylo.PCoA <- cmdscale(phylo.dist, eig = TRUE, k = 3)
explainvar1 <- round(eDNA.phylo.PCoA$eig[1] /
                        sum(eDNA.phylo.PCoA$eig), 3) * 100
explainvar2 <- round(eDNA.phylo.PCoA$eig[2] /</pre>
                        sum(eDNA.phylo.PCoA$eig), 3) * 100
explainvar3 <- round(eDNA.phylo.PCoA$eig[3] /</pre>
                        sum(eDNA.phylo.PCoA$eig), 3) * 100
sum.eig <- sum(explainvar1, explainvar2, explainvar3)</pre>
# OTU Scores
otu.scores <- t(cor(eDNA.phylo.PCoA$points, OTU.REL))</pre>
otu.scores <- as.matrix(otu.scores)[,1:2]</pre>
otu.scores <- otu.scores[abs(otu.scores[,1]) > 0.7|
                            abs(otu.scores[,2]) > 0.7,]
```

PCoA Plots

Taxonomic PcoA Plot (Supplemental)

```
png(filename="../figures/ordination.png",
    width = 1200, height = 800, res = 96*2)
layout(matrix(1:2, 1, 2), widths = c(9, 3))
par(mar = c(4, 5, 1, 0) + 0.5)
plot(eDNA.PCoA$points[ ,1], eDNA.PCoA$points[ ,2],
     ylim = c(-0.4, 0.4), xlim = c(-0.5, 0.4),
     xlab = paste("PCoA 1 (", explainvar1, "%)", sep = ""),
     ylab = paste("PCoA 2 (", explainvar2, "%)", sep = ""),
     #xlab = "", ylab = "", xaxt = "n", yaxt = "n",
     pch = 22, cex = 2.0, type = "n", cex.lab = 1.5, cex.axis = 1,
     axes = FALSE)
# Add Axes
axis(side = 1, labels = T, lwd.ticks = 2, cex.axis = 1.25, las = 1)
axis(side = 2, labels = T, lwd.ticks = 2, cex.axis = 1.25, las = 1)
axis(side = 3, labels = F, lwd.ticks = 2, cex.axis = 1, las = 1, tck=-0.02)
axis(side = 4, labels = F, lwd.ticks = 2, cex.axis = 1, las = 1, tck=-0.02)
axis(side = 1, labels = F, lwd.ticks = 2, cex.axis = 1, las = 1, tck=0.01)
axis(side = 2, labels = F, lwd.ticks = 2, cex.axis = 1, las = 1, tck=0.01)
axis(side = 3, labels = F, lwd.ticks = 2, cex.axis = 1, las = 1, tck=0.01)
axis(side = 4, labels = F, lwd.ticks = 2, cex.axis = 1, las = 1, tck=0.01)
abline(h = 0, v = 0, lty = 3)
box(lwd = 2)
```

```
# Subset data
eDNA.div.sort <- eDNA.div[order(eDNA.div[,1]) ,]
all.equal(row.names(eDNA.PCoA$points), rownames(eDNA.div.sort))
eDNA.points <- data.frame(eDNA.PCoA$points, eDNA.div.sort)
eDNA.gut.C <- eDNA.points[ which(eDNA.points$env == "feces" &
                                   eDNA.points$treat == "C"), ]
eDNA.gut.E <- eDNA.points[ which(eDNA.points$env == "feces" &
                                   eDNA.points$treat == "E"), ]
# Sed
eDNA.sed.C <- eDNA.points[ which(eDNA.points$env == "sed" &
                                   eDNA.points$treat == "C"), ]
eDNA.sed.E <- eDNA.points[ which(eDNA.points$env == "sed" &
                                   eDNA.points$treat == "E"), ]
# Soil
eDNA.soil.C <- eDNA.points[ which(eDNA.points$env == "soil" &
                                    eDNA.points$treat == "C"), ]
eDNA.soil.E <- eDNA.points[ which(eDNA.points$env == "soil" &
                                    eDNA.points$treat == "E"), ]
# Water
eDNA.water.C <- eDNA.points[ which(eDNA.points$env == "water" &
                                     eDNA.points$treat == "C"), ]
eDNA.water.E <- eDNA.points[ which(eDNA.points$env == "water" &
                                     eDNA.points$treat == "E"), ]
# Add points
# Gut C
points(eDNA.gut.C[ ,1], eDNA.gut.C[ ,2], pch = 21,
       cex = 2, col = "red", bg = "white", lwd = 2)
# Gut E
points(eDNA.gut.E[ ,1], eDNA.gut.E[ ,2], pch = 21,
       cex = 2, col = "red", bg = "red", lwd = 2)
points(eDNA.sed.C[ ,1], eDNA.sed.C[ ,2], pch = 22,
      cex = 2, col = "darkgreen", bg = "white", lwd = 2)
# Sed E
points(eDNA.sed.E[ ,1], eDNA.sed.E[ ,2], pch = 22,
      cex = 2, col = "darkgreen", bg = "darkgreen", lwd = 2)
# Soil C
points(eDNA.soil.C[ ,1], eDNA.soil.C[ ,2], pch = 24,
      cex = 2, col = "brown", bg = "white", lwd = 2)
# Soil E
points(eDNA.soil.E[ ,1], eDNA.soil.E[ ,2], pch = 24,
      cex = 2, col = "brown", bg = "brown", lwd = 2)
points(eDNA.water.C[ ,1], eDNA.water.C[ ,2], pch = 23,
       cex = 2, col = "blue", bg = "white", lwd = 2)
# Soil E
points(eDNA.water.E[ ,1], eDNA.water.E[ ,2], pch = 23,
       cex = 2, col = "blue", bg = "blue", lwd = 2)
# Add Legend Outside
```

Phylogenetic PcoA Plot (Supplemental)

```
png(filename="../figures/phylo.ordination.png",
    width = 1200, height = 800, res = 96*2)
layout(matrix(1:2, 1, 2), widths = c(9, 3))
par(mar = c(4, 5, 1, 0) + 0.5)
plot(eDNA.phylo.PCoA$points[ ,1], eDNA.phylo.PCoA$points[ ,2],
     ylim = c(-0.3, 0.5), xlim = c(-0.3, 0.6),
     xlab = paste("PCoA 1 (", explainvar1, "%)", sep = ""),
     ylab = paste("PCoA 2 (", explainvar2, "%)", sep = ""),
     \#xlab = "", ylab = "", xaxt = "n", yaxt = "n",
     pch = 22, cex = 2.0, type = "n", cex.lab = 1.5, cex.axis = 1,
     axes = FALSE)
# Add Axes
axis(side = 1, labels = T, lwd.ticks = 2, cex.axis = 1.25, las = 1)
axis(side = 2, labels = T, lwd.ticks = 2, cex.axis = 1.25, las = 1)
axis(side = 3, labels = F, lwd.ticks = 2, cex.axis = 1, las = 1, tck=-0.02)
axis(side = 4, labels = F, lwd.ticks = 2, cex.axis = 1, las = 1, tck=-0.02)
axis(side = 1, labels = F, lwd.ticks = 2, cex.axis = 1, las = 1, tck=0.01)
axis(side = 2, labels = F, lwd.ticks = 2, cex.axis = 1, las = 1, tck=0.01)
axis(side = 3, labels = F, lwd.ticks = 2, cex.axis = 1, las = 1, tck=0.01)
axis(side = 4, labels = F, lwd.ticks = 2, cex.axis = 1, las = 1, tck=0.01)
abline(h = 0, v = 0, lty = 3)
box(lwd = 2)
# Subset data
eDNA.div.sort <- eDNA.div[order(eDNA.div[,1]) ,]</pre>
all.equal(row.names(eDNA.phylo.PCoA$points), rownames(eDNA.div.sort))
eDNA.points <- data.frame(eDNA.phylo.PCoA$points, eDNA.div.sort)
# Gut
eDNA.gut.C <- eDNA.points[ which(eDNA.points$env == "feces" &
```

```
eDNA.points$treat == "C"), ]
eDNA.gut.E <- eDNA.points[ which(eDNA.points$env == "feces" &
                                   eDNA.points$treat == "E"), ]
# Sed
eDNA.sed.C <- eDNA.points[ which(eDNA.points$env == "sed" &
                                   eDNA.points$treat == "C"), ]
eDNA.sed.E <- eDNA.points[ which(eDNA.points$env == "sed" &
                                   eDNA.points$treat == "E"), ]
# Soil
eDNA.soil.C <- eDNA.points[ which(eDNA.points$env == "soil" &
                                    eDNA.points$treat == "C"), ]
eDNA.soil.E <- eDNA.points[ which(eDNA.points$env == "soil" &
                                    eDNA.points$treat == "E"), ]
# Water
eDNA.water.C <- eDNA.points[ which(eDNA.points$env == "water" &
                                     eDNA.points$treat == "C"), ]
eDNA.water.E <- eDNA.points[ which(eDNA.points$env == "water" &
                                     eDNA.points$treat == "E"), ]
# Add points
# Gut C
points(eDNA.gut.C[ ,1], eDNA.gut.C[ ,2], pch = 21,
       cex = 2, col = "red", bg = "white", lwd = 2)
# Gut E
points(eDNA.gut.E[ ,1], eDNA.gut.E[ ,2], pch = 21,
       cex = 2, col = "red", bg = "red", lwd = 2)
points(eDNA.sed.C[ ,1], eDNA.sed.C[ ,2], pch = 22,
       cex = 2, col = "darkgreen", bg = "white", lwd = 2)
# Sed E
points(eDNA.sed.E[ ,1], eDNA.sed.E[ ,2], pch = 22,
       cex = 2, col = "darkgreen", bg = "darkgreen", lwd = 2)
# Soil C
points(eDNA.soil.C[ ,1], eDNA.soil.C[ ,2], pch = 24,
       cex = 2, col = "brown", bg = "white", lwd = 2)
points(eDNA.soil.E[ ,1], eDNA.soil.E[ ,2], pch = 24,
       cex = 2, col = "brown", bg = "brown", lwd = 2)
# Water C
points(eDNA.water.C[ ,1], eDNA.water.C[ ,2], pch = 23,
       cex = 2, col = "blue", bg = "white", lwd = 2)
# Soil E
points(eDNA.water.E[ ,1], eDNA.water.E[ ,2], pch = 23,
       cex = 2, col = "blue", bg = "blue", lwd = 2)
# Add Labels to Test Outgroups
\# text(eDNA.gut.C[\ ,1],\ eDNA.gut.C[\ ,2],\ labels = eDNA.gut.C$label)
\# text(eDNA.gut.E[\ ,1],\ eDNA.gut.E[\ ,2],\ labels = eDNA.gut.E\$label)
# Add Legend Outside
par(mar = c(4, 0, 1, 1) + 0.5)
plot.new()
legend(0, 1, c("Gut", "Sediment", "Soil", "Water"),
```

```
pch = c(21, 22, 24, 23),
    pt.bg = c("red", "darkgreen", "brown", "blue"),
    bty = "n", y.intersp = 1.5)

legend(0, 0.25, c("Control", "DNase"), pch = 22,
    pt.bg = c("white", "black"),
    bty = "n", y.intersp = 1.5)

# Close Plot Device
dev.off()
graphics.off()

# Show Plot
img <- readPNG("../figures/phylo.ordination.png")
grid.raster(img)</pre>
```

Beta Diversity Statistics

PERMANOVA: Taxonomic

```
# Check Order of Dataframes
all.equal(row.names(eDNA.div), row.names(OTU.REL.log))
## [1] TRUE
eDNA.permanova <- adonis(OTU.REL.log ~ eDNA.div$env * eDNA.div$treat,
                        method = "bray", binary = FALSE)
eDNA.permanova
##
## Call:
## adonis(formula = OTU.REL.log ~ eDNA.div$env * eDNA.div$treat, method = "bray", binary = FALSE)
## Permutation: free
## Number of permutations: 999
## Terms added sequentially (first to last)
##
##
                              Df SumsOfSqs MeanSqs F.Model
                                                               R2 Pr(>F)
## eDNA.div$env
                                   7.6829 2.56095 9.3326 0.35195 0.001
                                    0.1142 0.11422 0.4163 0.00523 1.000
## eDNA.div$treat
                               1
## eDNA.div$env:eDNA.div$treat 3
                                   0.3119 0.10398 0.3789 0.01429 1.000
## Residuals
                                   13.7205 0.27441
                              50
                                                         0.62853
## Total
                                   21.8295
                                                           1.00000
                              57
##
## eDNA.div$env
                              ***
## eDNA.div$treat
## eDNA.div\env:eDNA.div\treat
## Residuals
## Total
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
eDNA.bc.dis <- vegdist(OTU.REL.log, method = "bray", binary = "FALSE")
beta.disp <- betadisper(d = eDNA.bc.dis, group = eDNA.div$env)
permutest(beta.disp, 99)
## Permutation test for homogeneity of multivariate dispersions
## Permutation: free
## Number of permutations: 999
##
## Response: Distances
##
            Df Sum Sq Mean Sq
                                   F N.Perm Pr(>F)
             3 0.2137 0.071233 13.787
                                         999 0.001 ***
## Groups
## Residuals 54 0.2790 0.005167
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Pairwise comparisons:
## (Observed p-value below diagonal, permuted p-value above diagonal)
##
             feces
                          sed
                                    soil water
                   2.0000e-03 1.0000e-03 0.004
## feces
## sed
        5.7913e-04
                              4.4000e-02 0.221
## soil 2.0056e-05 4.2912e-02
## water 2.2807e-03 2.2940e-01 1.9272e-03
TukeyHSD(beta.disp)
##
    Tukey multiple comparisons of means
##
      95% family-wise confidence level
##
## Fit: aov(formula = distances ~ group, data = df)
## $group
##
                     diff
                                  lwr
              -0.11233229 -0.18206456 -0.04260002 0.0004509
## sed-feces
## soil-feces -0.17047994 -0.24324545 -0.09771443 0.0000005
## water-feces -0.08725668 -0.15462445 -0.01988891 0.0061528
## soil-sed -0.05814765 -0.13310759 0.01681228 0.1806561
## water-sed
               0.02507561 -0.04465666 0.09480788 0.7762587
              0.08322326  0.01045775  0.15598877  0.0189601
## water-soil
PERMANOVA: Phylogenetic
# Check Order of Dataframes
all.equal(row.names(eDNA.div), row.names(as.matrix(phylo.dist)))
## [1] TRUE
eDNA.permanova <- adonis(phylo.dist ~ eDNA.div$env * eDNA.div$treat,
                        binary = FALSE)
eDNA.permanova
```

binary = FALSE)

adonis(formula = phylo.dist ~ eDNA.div\env * eDNA.div\treat,

Call:

```
##
## Permutation: free
## Number of permutations: 999
## Terms added sequentially (first to last)
##
                              Df SumsOfSqs MeanSqs F.Model
##
                                                               R2 Pr(>F)
                                   4.1920 1.39733 31.821 0.65359 0.001
## eDNA.div$env
                               3
## eDNA.div$treat
                               1
                                   ## eDNA.div$env:eDNA.div$treat
                                   0.0171 0.00571 0.130 0.00267 1.000
                              3
## Residuals
                              50
                                   2.1956 0.04391
                                                          0.34233
## Total
                              57
                                   6.4138
                                                          1.00000
## eDNA.div$env
                              ***
## eDNA.div$treat
## eDNA.div$env:eDNA.div$treat
## Residuals
## Total
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
beta.disp <- betadisper(d = phylo.dist, group = eDNA.div$env)
permutest(beta.disp, 99)
## Permutation test for homogeneity of multivariate dispersions
## Permutation: free
## Number of permutations: 999
##
## Response: Distances
##
            Df Sum Sq Mean Sq
                                    F N.Perm Pr(>F)
## Groups
             3 0.26109 0.087030 13.403
                                         999 0.001 ***
## Residuals 54 0.35064 0.006493
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Pairwise comparisons:
## (Observed p-value below diagonal, permuted p-value above diagonal)
##
             feces
                          sed
                                   soil water
                   0.00100000 0.00200000 0.001
## feces
                              0.46900000 0.999
## sed
       0.00025791
## soil 0.00165032 0.43147784
                                        0.525
## water 0.00016369 0.99827983 0.49095914
TukeyHSD(beta.disp)
##
    Tukey multiple comparisons of means
      95% family-wise confidence level
##
##
## Fit: aov(formula = distances ~ group, data = df)
##
## $group
##
                       diff
                                    lwr
## sed-feces -1.535453e-01 -0.23171919 -0.07537138 0.0000179
## soil-feces -1.398666e-01 -0.22144095 -0.05829226 0.0001797
```

```
## water-feces -1.535844e-01 -0.22910759 -0.07806125 0.0000093

## soil-sed 1.367868e-02 -0.07035574 0.09771310 0.9728051

## water-sed -3.913702e-05 -0.07821304 0.07813477 1.0000000

## water-soil -1.371782e-02 -0.09529216 0.06785653 0.9701593
```

Mantel Test: Taxonomic

```
# Check order of design
all.equal(row.names(eDNA.div), row.names(OTU.REL.log))
## [1] TRUE
# Subset OTU Matrix for Each Molecule
OTU.REL.c <- OTU.REL.log[which(eDNA.div$treat == "C"), ]
OTU.REL.e <- OTU.REL.log[which(eDNA.div$treat == "E"), ]
# Subset the Design Matrix
eDNA.div.c <- eDNA.div[which(eDNA.div$treat == "C"), ]
eDNA.div.e <- eDNA.div[which(eDNA.div$treat == "E"), ]
# Check Order of Subsets
all.equal(sort(eDNA.div.c$samp.code), sort(eDNA.div.e$samp.code))
## [1] TRUE
# Make Sure Subset OTU Matrices are Aligned by Sample Code
OTU.REL.c2 <- OTU.REL.c[order(eDNA.div.c$samp.code), ]
OTU.REL.e2 <- OTU.REL.e[order(eDNA.div.e$samp.code), ]
# Calculate Bray-Curtis Distances
dist.c <- vegdist(OTU.REL.c2, "bray")</pre>
dist.e <- vegdist(OTU.REL.e2, "bray")</pre>
# Run Mantel Test of Distance Matrix
mantel.rtest(dist.c, dist.e, nrepet = 999)
## Monte-Carlo test
## Observation: 0.9589581
## Call: mantel.rtest(m1 = dist.c, m2 = dist.e, nrepet = 999)
## Based on 999 replicates
## Simulated p-value: 0.001
```

Mantel Test: Phylogenetic

```
# Turn into square matrix
phylo.dist.m <- as.matrix(phylo.dist)

# Check order of design
all.equal(row.names(eDNA.div), row.names(phylo.dist.m))

## [1] TRUE

# Subset Phylo Distance Matrix Based on Design
dist.c <- phylo.dist.m[which(eDNA.div$treat == "C"),</pre>
```

```
which(eDNA.div$treat == "C")]
dist.e <- phylo.dist.m[which(eDNA.div$treat == "E"),</pre>
                        which(eDNA.div$treat == "E")]
# Define Order Based on Pairs
ord.c <- order(as.numeric(eDNA.div$pair[which(eDNA.div$treat =="C")]))</pre>
ord.e <- order(as.numeric(eDNA.div$pair[which(eDNA.div$treat =="E")]))</pre>
# Reorder Distance Matices
dist.c <- dist.c[ord.c, ord.c]</pre>
dist.e <- dist.e[ord.e, ord.e]</pre>
# Turn Square into Lower Triangle Matrix
dist.c <- as.dist(dist.c)</pre>
dist.e <- as.dist(dist.e)</pre>
# Run Mantel Test of Distance Matrix
mantel.rtest(dist.c, dist.e, nrepet = 999)
## Monte-Carlo test
## Observation: 0.9955652
## Call: mantelnoneuclid(m1 = m1, m2 = m2, nrepet = nrepet)
## Based on 999 replicates
## Simulated p-value: 0.001
```

Centroid Distances Ratios: Taxonomic

```
# Data Check
all.equal(row.names(eDNA.div), row.names(OTU.REL.log))
## [1] TRUE
eDNA.dist <- vegdist(OTU.REL.log, method = "bray")
eDNA.env <- eDNA.div$env
eDNA.group <- paste(eDNA.div$env, eDNA.div$treat, sep = "")
disp.env <- betadisper(eDNA.dist, eDNA.env)</pre>
disp.group <- betadisper(eDNA.dist, eDNA.group)</pre>
# Soil.
env.soi <- which(eDNA.env == "soil")</pre>
cent.soil <- as.data.frame(matrix(NA, nrow = length(env.soi), ncol = 3))</pre>
colnames(cent.soil) <- c("T", "C", "E")</pre>
rownames(cent.soil) <- rownames(eDNA.div)[env.soi]</pre>
for (i in 1:length(env.soi)){
  cent.soil[i, 1] <- dist(rbind(disp.env$vectors[env.soi[i]]),</pre>
                      disp.env$centroids[3, ]), method = "euclidean")
  cent.soil[i, 2] <- dist(rbind(disp.group$vectors[env.soi[i]],</pre>
                      disp.group$centroids[5, ]), method = "euclidean")
  cent.soil[i, 3] <- dist(rbind(disp.group$vectors[env.soi[i]],</pre>
                      disp.group$centroids[6, ]), method = "euclidean")
}
```

```
pairs.soil \leftarrow eDNA.div[env.soi, c(3,4,5,7)]
cent.soil.ratio <- as.data.frame(matrix(NA,
                    nrow = length(unique(pairs.soil$pair)), ncol = 3))
colnames(cent.soil.ratio) <- c("T", "C", "E")</pre>
rownames(cent.soil.ratio) <- paste(pairs.soil$env, pairs.soil$pair,</pre>
                               sep = "")[which(pairs.soil$treat == "E") ]
for (i in 1:dim(cent.soil.ratio)[1]){
  pair <- as.numeric(gsub("soil", "", rownames(cent.soil.ratio)[i]))</pre>
  ratio.temp.1 <- (cent.soil[, 1][which(pairs.soil$pair == pair &</pre>
                                           pairs.soil$treat == "C")]) /
                   (cent.soil[, 1][which(pairs.soil$pair == pair &
                                           pairs.soil$treat == "E")])
  cent.soil.ratio[i, 1] <- ratio.temp.1</pre>
  ratio.temp.2 <- (cent.soil[, 2][which(pairs.soil$pair == pair &
                                           pairs.soil$treat == "C")]) /
                   (cent.soil[, 2][which(pairs.soil$pair == pair &
                                          pairs.soil$treat == "E")])
  cent.soil.ratio[i, 2] <- ratio.temp.2</pre>
  ratio.temp.3 <- (cent.soil[, 3][which(pairs.soil$pair == pair &
                                           pairs.soil$treat == "C")]) /
                   (cent.soil[, 3][which(pairs.soil$pair == pair &
                                           pairs.soil$treat == "E")])
  cent.soil.ratio[i, 3] <- ratio.temp.3</pre>
}
# Water
env.wat <- which(eDNA.env == "water")</pre>
cent.water <- as.data.frame(matrix(NA, nrow = length(env.wat), ncol = 3))</pre>
colnames(cent.water) <- c("T", "C", "E")</pre>
rownames(cent.water) <- rownames(eDNA.div)[env.wat]</pre>
for (i in 1:length(env.wat)){
  cent.water[i, 1] <- dist(rbind(disp.env$vectors[env.wat[i]]),</pre>
                       disp.env$centroids[4, ]), method = "euclidean")
  cent.water[i, 2] <- dist(rbind(disp.group$vectors[env.wat[i]],</pre>
                       disp.group$centroids[7, ]), method = "euclidean")
  cent.water[i, 3] <- dist(rbind(disp.group$vectors[env.wat[i]],</pre>
                       disp.group$centroids[8, ]), method = "euclidean")
}
pairs.water \leftarrow eDNA.div[env.wat, c(3,4,5,7)]
cent.water.ratio <- as.data.frame(matrix(NA,
                     nrow = length(unique(pairs.water$pair)), ncol = 3))
colnames(cent.water.ratio) <- c("T", "C", "E")</pre>
rownames(cent.water.ratio) <- paste(pairs.water$env, pairs.water$pair,</pre>
                                sep = "")[which(pairs.water$treat == "E") ]
for (i in 1:dim(cent.water.ratio)[1]){
  pair <- as.numeric(gsub("water", "", rownames(cent.water.ratio)[i]))</pre>
  ratio.temp.1 <- (cent.water[, 1][which(pairs.water$pair == pair &
```

```
pairs.water$treat == "C")]) /
                   (cent.water[, 1][which(pairs.water$pair == pair &
                                           pairs.water$treat == "E")])
  cent.water.ratio[i, 1] <- ratio.temp.1</pre>
  ratio.temp.2 <- (cent.water[, 2][which(pairs.water$pair == pair &</pre>
                                           pairs.water$treat == "C")]) /
                   (cent.water[, 2][which(pairs.water$pair == pair &
                                           pairs.water$treat == "E")])
  cent.water.ratio[i, 2] <- ratio.temp.2</pre>
  ratio.temp.3 <- (cent.water[, 3][which(pairs.water$pair == pair &
                                           pairs.water$treat == "C")]) /
                   (cent.water[, 3][which(pairs.water$pair == pair &
                                           pairs.water$treat == "E")])
  cent.water.ratio[i, 3] <- ratio.temp.3</pre>
# Sediments
env.sed <- which(eDNA.env == "sed")</pre>
cent.sed <- as.data.frame(matrix(NA, nrow = length(env.sed), ncol = 3))</pre>
colnames(cent.sed) <- c("T", "C", "E")</pre>
rownames(cent.sed) <- rownames(eDNA.div)[env.sed]</pre>
for (i in 1:length(env.sed)){
  cent.sed[i, 1] <- dist(rbind(disp.env$vectors[env.sed[i]],</pre>
                          disp.env$centroids[2, ]), method = "euclidean")
  cent.sed[i, 2] <- dist(rbind(disp.group$vectors[env.sed[i]],</pre>
                          disp.group$centroids[3, ]), method = "euclidean")
  cent.sed[i, 3] <- dist(rbind(disp.group$vectors[env.sed[i]],</pre>
                          disp.group$centroids[4, ]), method = "euclidean")
}
pairs.sed <- eDNA.div[env.sed, c(3,4,5,7)]
cent.sed.ratio <- as.data.frame(matrix(NA,
                   nrow = length(unique(pairs.sed$pair)), ncol = 3))
colnames(cent.sed.ratio) <- c("T", "C", "E")</pre>
rownames(cent.sed.ratio) <- paste(pairs.sed$env, pairs.sed$pair,</pre>
                             sep = "")[which(pairs.sed$treat == "E") ]
for (i in 1:dim(cent.sed.ratio)[1]){
  pair <- as.numeric(gsub("sed", "", rownames(cent.sed.ratio)[i]))</pre>
  ratio.temp.1 <- (cent.sed[, 1][which(pairs.sed$pair == pair &
                                         pairs.sed$treat == "C")]) /
                   (cent.sed[, 1][which(pairs.sed$pair == pair &
                                         pairs.sed$treat == "E")])
  cent.sed.ratio[i, 1] <- ratio.temp.1</pre>
  ratio.temp.2 <- (cent.sed[, 2][which(pairs.sed$pair == pair &
                                         pairs.sed$treat == "C")]) /
                   (cent.sed[, 2][which(pairs.sed$pair == pair &
                                         pairs.sed$treat == "E")])
  cent.sed.ratio[i, 2] <- ratio.temp.2</pre>
  ratio.temp.3 <- (cent.sed[, 3][which(pairs.sed$pair == pair &
                                         pairs.sed$treat == "C")]) /
```

```
(cent.sed[, 3][which(pairs.sed$pair == pair &
                                         pairs.sed$treat == "E")])
  cent.sed.ratio[i, 3] <- ratio.temp.3</pre>
# Feces
env.fec <- which(eDNA.env == "feces")</pre>
cent.feces <- as.data.frame(matrix(NA, nrow = length(env.fec), ncol = 3))</pre>
colnames(cent.feces) <- c("T", "C", "E")</pre>
rownames(cent.feces) <- rownames(eDNA.div)[env.fec]</pre>
for (i in 1:length(env.fec)){
  cent.feces[i, 1] <- dist(rbind(disp.env$vectors[env.fec[i]]),</pre>
                            disp.env$centroids[1, ]), method = "euclidean")
  cent.feces[i, 2] <- dist(rbind(disp.group$vectors[env.fec[i]],</pre>
                            disp.group$centroids[1, ]), method = "euclidean")
  cent.feces[i, 3] <- dist(rbind(disp.group$vectors[env.fec[i]],</pre>
                           disp.group$centroids[2, ]), method = "euclidean")
}
pairs.feces <- eDNA.div[env.fec, c(3,4,5,7)]
cent.feces.ratio <- as.data.frame(matrix(NA,
                     nrow = length(unique(pairs.feces$pair)), ncol = 3))
colnames(cent.feces.ratio) <- c("T", "C", "E")</pre>
rownames(cent.feces.ratio) <- paste(pairs.feces$env, pairs.feces$pair,</pre>
                                sep = "")[which(pairs.feces$treat == "E") ]
for (i in 1:dim(cent.feces.ratio)[1]){
  pair <- as.numeric(gsub("feces", "", rownames(cent.feces.ratio)[i]))</pre>
  ratio.temp.1 <- (cent.feces[, 1][which(pairs.feces$pair == pair &</pre>
                                              pairs.feces$treat == "C")]) /
                    (cent.feces[, 1][which(pairs.feces$pair == pair &
                                              pairs.feces$treat == "E")])
  cent.feces.ratio[i, 1] <- ratio.temp.1</pre>
  ratio.temp.2 <- (cent.feces[, 2][which(pairs.feces$pair == pair &
                                              pairs.feces$treat == "C")]) /
                    (cent.feces[, 2][which(pairs.feces$pair == pair &
                                              pairs.feces$treat == "E")])
  cent.feces.ratio[i, 2] <- ratio.temp.2</pre>
  ratio.temp.3 <- (cent.feces[, 3][which(pairs.feces$pair == pair &
                                             pairs.feces$treat == "C")]) /
                    (cent.feces[, 3][which(pairs.feces$pair == pair &
                                              pairs.feces$treat == "E")])
  cent.feces.ratio[i, 3] <- ratio.temp.3</pre>
# Ratio Data Table
ratio.list <- list(cent.feces.ratio[,1], cent.sed.ratio[,1],
                      cent.soil.ratio[,1], cent.water.ratio[,1])
cent.dist.table <- as.data.frame(matrix(NA, nrow = 4, ncol = 5))</pre>
colnames(cent.dist.table) <- c("env", "mean", "sem", "LCI", "UCI")</pre>
cent.dist.table$env <- c("Gut", "Sediment", "Soil", "Water")</pre>
```

```
cent.dist.table$mean <- unlist(lapply(ratio.list, mean))</pre>
cent.dist.table$sem <- unlist(lapply(ratio.list, sem))</pre>
cent.dist.table$LCI <- unlist(lapply(ratio.list, FUN = function(x) t.test(x)$conf.int[1]))</pre>
cent.dist.table$UCI <- unlist(lapply(ratio.list, FUN = function(x) t.test(x)$conf.int[2]))</pre>
t.cent.dist.table <- as.data.frame(cent.dist.table)</pre>
# Regression: centroid ratio vs. proportion eDNA
# Combine Centroid Distances
centroid.dists <- c(cent.feces.ratio$T, cent.sed.ratio$T, cent.soil.ratio$T,</pre>
                     cent.water.ratio$T)
names(centroid.dists) <- c(rownames(cent.feces.ratio), rownames(cent.sed.ratio),</pre>
                       rownames(cent.soil.ratio), rownames(cent.water.ratio))
# Reorganize
names(centroid.dists) %in% paste(eDNA.div.c$env, eDNA.div.c$pair, sep = "")
## [29] TRUE
all.equal(names(centroid.dists), paste(eDNA.div.c$env, eDNA.div.c$pair, sep = ""))
## [1] "28 string mismatches"
cent.dist <- centroid.dists[match(names(centroid.dists),</pre>
                   paste(eDNA.div.c$env, eDNA.div.c$pair, sep = ""))]
# Combine Centroid Distance and Design Information
centroid.div <- cbind(eDNA.div.c[,c(1:3, 5:7)], cent.dist)</pre>
centroid.div$qPCR.match %in% eDNA.prop$sample.number
## [29] TRUE
centroid.div$prop <- NA
for (i in 1:length(centroid.div$prop)){
 centroid.div$prop[i] <- eDNA.prop$prop[which(eDNA.prop$sample.number ==</pre>
                                           centroid.div$qPCR.match[i])]
}
t.cent.reg <- lm(cent.dist ~ prop * env, data = centroid.div)</pre>
summary(t.cent.reg)
##
## Call:
## lm(formula = cent.dist ~ prop * env, data = centroid.div)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -0.45682 -0.18318 -0.03164 0.10082 0.60954
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
               1.3761
## (Intercept)
                       0.2560 5.375 2.48e-05 ***
```

```
## prop
                 -0.7145
                             0.4997 - 1.430
                                              0.1675
                             0.3596 -2.179
                                              0.0409 *
## envsed
                 -0.7833
## envsoil
                 -0.3089
                             0.3821 -0.809
                                              0.4278
## envwater
                 -0.5149
                             0.3470 -1.484
                                              0.1527
## prop:envsed
                  1.5065
                             0.7163
                                      2.103
                                              0.0477 *
                             1.2275
## prop:envsoil
                  1.7538
                                      1.429
                                              0.1678
                                              0.2224
## prop:envwater
                  0.8900
                             0.7079
                                      1.257
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2696 on 21 degrees of freedom
## Multiple R-squared: 0.3892, Adjusted R-squared: 0.1855
## F-statistic: 1.911 on 7 and 21 DF, p-value: 0.1185
# answer => no correlation between proportion eDNA and centroid dist ratio.
```

Centroid Distances Ratios: Phylogenetic

```
# Data Check
all.equal(row.names(eDNA.div), row.names(phylo.dist.m))

## [1] TRUE

eDNA.dist <- as.dist(phylo.dist.m)
eDNA.env <- eDNA.div$env
eDNA.group <- paste(eDNA.div$env, eDNA.div$treat, sep = "")

disp.env <- betadisper(eDNA.dist, eDNA.env)
disp.group <- betadisper(eDNA.dist, eDNA.group)

disp.group$vectors</pre>
```

```
##
                PCoA1
                             PCoA2
                                          PCoA3
                                                       PCoA4
                                                                     PCoA5
## eDNA_01 -0.13887108 -0.113744265 0.148915828 -0.0187348393
                                                              3.229884e-04
## eDNA 02 -0.14432245 0.045760113 -0.092823923 0.0911463532 1.329472e-02
## eDNA_03 -0.13347184 0.019785511 -0.081307708 0.0964246861 2.062611e-02
## eDNA 04 -0.17372768 0.004956970 -0.067521221 0.1492361538 2.050991e-02
## eDNA_05 -0.14740165 -0.084168080 0.182728764 -0.0313473532 -1.818740e-02
## eDNA_06 0.45819121 -0.035639120 -0.015356712 0.0005375485 1.263160e-01
## eDNA_07 -0.08974623 0.018964339 -0.104419835 0.1466444586 1.304599e-02
## eDNA 08 -0.15040514 -0.087445637 0.180724842 -0.0264791122 -1.634051e-02
## eDNA 09 -0.15576427 -0.064524158 0.099536567 0.0002918775 -2.659837e-03
## eDNA_10 0.35786453 -0.126809628 -0.012969061 -0.0619094968 1.152163e-01
## eDNA 11 0.35186294 0.384284549 0.175650888 0.0566234249 -7.220159e-02
## eDNA_12 -0.14703301 -0.078771528 0.147484251 -0.0465827280 -9.900697e-03
## eDNA_13 0.39127600 -0.129312846 -0.024796196 -0.0223439585 1.221936e-01
## eDNA_14 0.44206721 -0.082891258 -0.032157599 -0.0007412091 1.104368e-01
## eDNA_15 0.45496212 -0.082913477 -0.020162441 0.0179377124 1.292853e-01
## eDNA_16 0.46853197 -0.054256805 -0.008367318 0.0156497209 1.437989e-01
## eDNA_17 -0.17608872 0.013122425 -0.062174286 0.0997215035 1.575171e-02
## eDNA_18 -0.14807533 0.086492529 -0.121935470 -0.0054977632 9.192956e-03
## eDNA 19 -0.14272123 -0.089141638 0.154927597 -0.0565422183 -8.919142e-03
## eDNA_20 -0.15465025 0.077572001 -0.115958902 0.0204696922 1.074766e-02
## eDNA_21 -0.16578271 -0.049511758 0.098578089 -0.0115604085 -4.909437e-03
```

```
## eDNA_22 -0.17219486 0.031807886 -0.098361623 0.1141303986 1.857999e-02
## eDNA_23 -0.11041976 -0.102187826 0.055647846 0.0324638239 1.609050e-02
## eDNA 24 -0.11612508 -0.093058323 0.042926097 0.0351115733 1.568372e-02
## eDNA_25 0.30785981 -0.171408873 -0.103526202 0.0032092297 -2.338961e-01
## eDNA_26  0.33403702  0.347440988  0.160835874  0.0541657651 -5.099250e-02
## eDNA 27 -0.06006449 0.135072027 -0.126146457 -0.1842597747 4.697203e-03
## eDNA 28 -0.16559047 -0.078716662 0.152356549 -0.0227536927 -4.244886e-03
## eDNA_29 -0.15756180 0.051118855 -0.038334090 -0.1083715400 -1.755319e-03
## eDNA_30 -0.15838179 0.051663319 -0.035416894 -0.1117616115 -2.455067e-03
## eDNA_31 0.30650883 -0.183486778 -0.100735851 0.0062625963 -2.427458e-01
## eDNA_32 0.34489255 -0.156251158 -0.096239424 0.0074124011 -2.159014e-01
## eDNA_33 -0.05836522 0.133277549 -0.118453616 -0.1949018342 2.492396e-03
## eDNA_34 -0.17145252 0.033055144 -0.099688981 0.1136270064 1.894753e-02
## eDNA_35 -0.16682467 -0.083335244 0.151747418 -0.0143969314 -2.445223e-03
## eDNA_36 -0.15623972 0.082634741 -0.081942896 -0.1012535080 -8.565257e-05
## eDNA_37 -0.14079384 0.088262193 -0.069853679 -0.1696581338 -9.686604e-03
## eDNA_38 -0.14860794 -0.080698010 0.174314413 -0.0321870685 -1.639609e-02
## eDNA 39 -0.15272153 -0.083483936 0.171573213 -0.0273405802 -1.455097e-02
## eDNA_40 0.34946122 0.365871669 0.177840357 0.0804402896 -5.966594e-02
## eDNA_41 -0.17339488 0.016381250 -0.063427103 0.0836172199 1.686201e-02
## eDNA_42 -0.15147358 0.086708077 -0.083081911 -0.1209415415 -2.849224e-03
## eDNA_43 -0.14791033 0.087767347 -0.074780218 -0.1562359456 -6.082842e-03
## eDNA_44 -0.16432929 -0.076944554 0.102897286 -0.0255434767 5.510990e-03
## eDNA_45 0.31485364 -0.185455321 -0.100591424 0.0074105109 -2.359080e-01
## eDNA_46 -0.14801951 -0.111011226 0.139661885 -0.0097495967 1.457497e-03
## eDNA_47 -0.04003714 0.137473461 -0.117780281 -0.2150447065 -1.300527e-03
## eDNA_48 0.33927146 -0.138505246 -0.036791434 -0.0490148993 1.000670e-01
## eDNA_49 -0.14586016 0.026727690 -0.081840798 0.1123185564 1.398562e-02
## eDNA_50 -0.16386689 0.009824799 -0.080469406 0.1590369626 2.147929e-02
## eDNA_51 -0.17180480 0.005516216 -0.055797040 0.1106095390 1.783409e-02
## eDNA_52 -0.07099080 0.050005250 -0.115286169 0.1086473579 9.079120e-03
## eDNA_53 -0.06926685 0.129146016 -0.110350150 -0.1983343776 3.201907e-03
## eDNA_54 0.33412287 0.321800217 0.157048370 0.0715676929 -4.239369e-02
## eDNA_55 -0.14776790 -0.111428197 0.143654063 -0.0194012192 1.303598e-03
## eDNA_56 0.37909964 -0.121710938 -0.021892683 -0.0380869543 1.179231e-01
## eDNA_57 -0.17028834 0.009121198 -0.073849899 0.1277328518 2.068884e-02
## eDNA 58 -0.16644730 0.005198155 -0.074461296 0.1585295727 1.985107e-02
                                            PCoA8
                  PCoA6
                              PCoA7
## eDNA_01 0.0016338620 -0.019609578 0.0096218904 2.688449e-02
## eDNA_02 -0.0359885813 0.045306409 0.0424549814 -1.993553e-04
## eDNA 03 0.0644458905 -0.014279183 -0.0578159263 -1.163173e-02
## eDNA_04 0.0109430733 -0.029852960 -0.0074591384 -1.504662e-02
## eDNA_05 -0.0327992221 -0.001837232 0.0228021420 -6.351836e-02
## eDNA_06 -0.0439166536 -0.112445989 -0.0514265136 -2.009659e-02
## eDNA_07 -0.1438317639 0.040989519 0.0552596389 -4.419240e-03
## eDNA_08 -0.0249328895 -0.012566976 0.0266094086 -5.353080e-02
## eDNA_09 -0.0423399252 0.031796370 -0.1175743027 1.009166e-01
## eDNA_10 0.0224962703 0.078631555 0.0413615196 2.255719e-02
## eDNA_11 0.0236773398 0.008632553 0.0101957501 1.982284e-02
## eDNA_12 -0.0475121701 0.047841935 -0.0678258915 7.906557e-03
## eDNA_13 0.0299005460 0.083011266 0.0274643851 5.858388e-03
## eDNA_14 -0.0181826766 -0.058355828 -0.0400860786 -2.410674e-02
## eDNA_15 0.0021803014 -0.028387709 -0.0409299865 -3.045176e-02
## eDNA_16 -0.0092941503 -0.056403098 -0.0452681407 -2.643809e-02
```

```
## eDNA_17 0.0793423243 -0.054255517 -0.0282188398 -2.716187e-02
## eDNA_18 0.0175033047 0.069429834 -0.0270078907 3.038935e-02
## eDNA 19 -0.0299253467 0.032763640 -0.0365545944 -1.864893e-02
## eDNA_20 0.0254975104 0.052554475 -0.0118883334 1.566946e-02
## eDNA_21 -0.0518326927 0.044313159 -0.1233029290 8.701100e-02
## eDNA 22 -0.0020715093 0.001392134 -0.0438221591 7.635016e-05
## eDNA 23 0.0876429650 -0.057646355 0.1184035282 8.234861e-02
## eDNA_24 0.0886070212 -0.075055880 0.1205692711 8.551374e-02
## eDNA_25 -0.0006266059 -0.002691174 0.0005298785 1.982630e-03
## eDNA_26 0.0121422473 0.007255251 0.0052440133 7.487237e-03
## eDNA_27 -0.0575081976 -0.074986634 0.0010362742 2.528342e-02
## eDNA_28 -0.0203506990 0.008541791 0.0187765106 -5.127172e-02
## eDNA_29 0.0612139171 0.036420313 -0.0052891164 -4.745949e-02
## eDNA_30 0.0616921536 0.036355673 -0.0053040353 -4.904813e-02
## eDNA_31 0.0087061259 0.001320261 -0.0088155731 -4.092760e-03
## eDNA_32 -0.0055816087 -0.017989604 -0.0076552118 -3.005899e-03
## eDNA_33 -0.0539545420 -0.076858623 0.0129230600 1.734522e-02
## eDNA 34 -0.0027078941 0.001119881 -0.0405281115 -1.883438e-04
## eDNA_35 -0.0116048566 0.003088284 0.0022183821 -3.488150e-02
## eDNA_36 0.0525239958 0.054776318 -0.0146238296 -2.535990e-04
## eDNA_37 0.0350047431 0.038013059 0.0094035294 -3.208103e-02
## eDNA_38 -0.0270245339 -0.009068394 0.0301552862 -6.292899e-02
## eDNA_39 -0.0141169866 -0.017366085 0.0339065498 -5.270927e-02
## eDNA_40 0.0157702262 0.011906395 0.0092340166 1.029985e-02
## eDNA 41 0.0832517121 -0.020872502 -0.0499166824 -1.007866e-02
## eDNA 42 0.0523634220 0.057787377 -0.0100838524 -1.028667e-02
## eDNA_43  0.0367028127  0.030760164  0.0065317993  -2.565771e-02
## eDNA_44 -0.0018409376 -0.042950918 -0.0008169888 3.966586e-02
## eDNA_45 0.0105136869 0.002111162 -0.0102841515 -5.005653e-03
## eDNA_46 0.0080643443 -0.029185149 -0.0017913136 4.889566e-02
## eDNA_47 -0.0606663523 -0.076225550 0.0188985866 2.371086e-02
## eDNA_48  0.0167548754  0.081713448  0.0418468290  1.957848e-02
## eDNA_49 -0.0332293256 0.026244261 0.0463037317 -5.603277e-03
## eDNA_50 -0.0324355950 -0.009390412 0.0137849007 -9.808737e-03
## eDNA_51 0.0830666471 -0.059998801 -0.0163599305 -2.347848e-02
## eDNA_52 -0.1492251202 0.051971011 0.0819823207 7.237150e-03
## eDNA 53 -0.0507990107 -0.060625882 0.0154873003 1.223096e-02
## eDNA_54 0.0058410983 0.013029014 0.0069882220 -3.747693e-03
## eDNA_55 0.0063753091 -0.017627928 0.0016573764 3.501957e-02
## eDNA_56  0.0208993765  0.075881969  0.0361576063  1.752844e-02
## eDNA 57 0.0087042854 -0.017419553 -0.0142579865 -1.195463e-02
## eDNA_58 -0.0291615407 -0.021004966 0.0170988189 -1.242761e-02
                PCoA10
                         PCoA11
                                     PCoA12
## eDNA_01 0.024021703 -5.133890e-03 0.0204391920 0.0238877249
## eDNA_02 0.047570762 -3.511342e-02 0.0122560834 0.0012001612
## eDNA_03 -0.028605292 -5.201966e-02 0.0388949314 -0.0496491757
## eDNA_04 -0.031173906 2.626122e-02 -0.0157379851 0.0379134624
## eDNA_05 -0.014928752 -3.969598e-02 -0.0501515521 -0.0097030325
## eDNA_06 0.061488825 -2.977847e-03 0.0096768923 -0.0115576810
## eDNA_07 0.022538566 1.904297e-02 0.0104337559 -0.0400070322
## eDNA_08 -0.014849757 -4.039063e-02 -0.0440502964 -0.0088334406
## eDNA_09 -0.000925671 6.555052e-03 -0.0497429321 -0.0242836078
## eDNA_10 -0.041229208 5.353806e-03 0.0044348366 -0.0041321481
## eDNA_11 0.007808336 2.996740e-03 0.0191019643 0.0182865631
```

```
## eDNA_12 -0.002418567 4.075164e-02 0.0657996127 -0.0326053527
## eDNA_13 -0.054537698 -5.427675e-03 -0.0037307145 0.0109396602
## eDNA 14 0.032199603 -1.886252e-03 -0.0066401903 -0.0030182660
## eDNA_15 0.052377897 6.331978e-03 -0.0155192305 0.0070618883
## eDNA_16 0.062933609 6.415434e-03 -0.0084675402 0.0067460314
## eDNA_17 -0.040562438 -8.537188e-03 0.0072450596 -0.0326600194
## eDNA 18 0.048578645 -6.238044e-02 -0.0010375193 0.0117862948
## eDNA_19 0.002827383 4.230367e-02 0.0575438216 -0.0277999782
## eDNA_20 0.040416997 -5.875014e-02 0.0009568382 0.0051811642
## eDNA_21 -0.005528948 3.539678e-03 -0.0518393381 -0.0098969066
## eDNA_22 -0.034632985 2.713478e-02 -0.0317086812 0.0052169946
## eDNA_23 0.035195091 2.520837e-02 -0.0164828310 -0.0305404659
## eDNA_24 0.034094661 1.993170e-02 -0.0161321524 -0.0260339489
## eDNA_25 -0.002359715 -3.892424e-03 0.0037291865 -0.0030874771
## eDNA_26  0.002855288 -1.910143e-03 -0.0012313651  0.0010058764
## eDNA_27 -0.048880696 -6.566685e-03 0.0094698828 -0.0008173060
## eDNA_28 -0.010930560 6.698701e-03 0.0489274553 0.0186775580
## eDNA 29 0.025796417 7.897704e-02 -0.0189223324 -0.0275191749
## eDNA_30 0.023503912 7.851801e-02 -0.0152869830 -0.0241148289
## eDNA_31 -0.003575084 6.303433e-04 -0.0025123240 0.0023996388
## eDNA_32 0.019308391 1.036123e-03 0.0065733879 -0.0004516448
## eDNA_33 -0.044476243 -4.475989e-03 0.0012826494 -0.0061104058
## eDNA_34 -0.034016659 2.456598e-02 -0.0284882973 0.0068106459
## eDNA_35 -0.008968516 -4.080839e-03 0.0459403010 0.0260533076
## eDNA_36 0.036963668 -1.509006e-02 -0.0038635281 0.0176985469
## eDNA_37 0.035698568 1.800599e-02 -0.0110930379 0.0164298236
## eDNA_38 -0.009687343 -3.440764e-02 -0.0468034972 -0.0085645510
## eDNA_39 -0.008761610 -3.334874e-02 -0.0393323410 -0.0119547055
## eDNA_40 -0.021209297 3.019325e-03 -0.0009720696 0.0046949794
## eDNA_41 -0.016778265 -4.673119e-02 0.0411543850 -0.0135517766
## eDNA_42 0.050583194 -2.527828e-02 -0.0025768266 0.0235775903
## eDNA_43 0.020856172 1.464289e-02 -0.0103891609 0.0131672443
## eDNA_44 -0.005429068 -5.949592e-03 0.0172307806 0.0352623418
## eDNA_45 -0.005050847 2.848692e-03 -0.0068455581 0.0074661650
## eDNA_46  0.018039550  -6.061671e-03  0.0164227574  0.0351859382
## eDNA_47 -0.036889539 -1.457880e-02 0.0041773152 -0.0031623639
## eDNA_48 -0.076918032 -1.052199e-02 0.0040022590 0.0001543353
## eDNA_49 0.034055620 -2.007944e-02 0.0024526508 -0.0198073878
## eDNA_50 -0.016197872 3.128045e-02 -0.0069956224 0.0519447672
## eDNA_51 -0.037418987 -6.627373e-03 0.0204329234 -0.0319678492
## eDNA 52 0.030819458 2.305175e-03 0.0183681417 -0.0254556754
## eDNA_53 -0.024836825 -9.155484e-04 0.0081023596 0.0045598276
## eDNA_54 -0.018624609 7.263762e-03 -0.0127472657 -0.0215079850
## eDNA_55 0.024043836 -7.662799e-05 0.0344316338 0.0332837763
## eDNA_56 -0.050779271 -4.591402e-03 0.0056484865 0.0033987346
## eDNA_57 -0.023513763 1.454861e-02 -0.0054345510 0.0341442765
## eDNA_58 -0.019880128 4.132942e-02 -0.0103938205 0.0446588687
                 PCoA14
                               PCoA15
                                             PCoA16
## eDNA_01 0.0303783157 1.671978e-03 -1.365818e-02 0.0079074975
## eDNA_02 -0.0037273997 1.686180e-02 -3.566190e-03 0.0021587737
## eDNA_03  0.0320913404 -1.583357e-02  1.275687e-02  0.0216122082
## eDNA_04 -0.0137822141 2.073378e-02 9.745178e-03 -0.0084722679
## eDNA_05 -0.0070190395 3.669966e-03 6.141829e-03 0.0021387138
## eDNA 06 -0.0152223091 -7.075294e-03 4.085037e-02 -0.0387231939
```

```
## eDNA_07 0.0182663388 2.277032e-04 4.652688e-03 0.0028862241
## eDNA_08 -0.0028007672 4.917110e-03 4.172632e-03 0.0060222743
## eDNA 09 0.0120969579 1.246926e-02 1.761961e-02 0.0050863652
## eDNA_10 0.0045415537 -3.541527e-03 7.752090e-03 0.0016864592
## eDNA_11 -0.0025885802 -8.133641e-03 7.020893e-02 0.0169344185
## eDNA 12 -0.0573323749 2.711996e-02 -1.492742e-02 0.0193567099
## eDNA 13 0.0086359605 7.186226e-03 -8.545110e-03 0.0276488375
## eDNA 14 -0.0056447818 3.866801e-03 -1.916339e-02 -0.0229622695
## eDNA_15 0.0059632082 1.547086e-03 -2.388273e-02 0.0272413402
## eDNA_16 -0.0001654146 -3.249077e-03 -2.196808e-03 0.0290236866
## eDNA_17 -0.0102194529 3.382606e-02 -7.789082e-03 -0.0101093054
## eDNA_18 -0.0237280131 -2.949708e-02 -5.712462e-03 -0.0162720650
## eDNA_19 -0.0496065294 -4.468569e-03 2.471389e-03 0.0118236040
## eDNA_20 -0.0284776381 -1.269781e-02 -2.194183e-02 -0.0165757847
## eDNA_21 0.0169730027 1.318495e-02 1.299468e-02 -0.0159515412
## eDNA_22 -0.0274803080 -6.045582e-02 -9.523255e-03 0.0087545229
## eDNA_23 -0.0230329017 -1.228629e-02 8.485747e-03 0.0033510692
## eDNA 24 -0.0274048962 -1.096271e-02 -3.151843e-03 -0.0017659857
## eDNA_25 -0.0013155961 -1.531829e-04 9.503385e-03 -0.0093841995
## eDNA_26 -0.0011677689 9.168207e-05 -7.089620e-03 -0.0011159685
## eDNA_27 -0.0051513020 -2.484128e-03 -6.559343e-03 -0.0002200829
## eDNA_28 -0.0104231598 -3.012915e-02 3.379169e-03 -0.0228405261
## eDNA_29 0.0382586917 -1.442134e-03 1.087475e-04 -0.0226502736
## eDNA_30 0.0410670361 -7.858714e-03 -7.228448e-04 -0.0211135004
## eDNA_31 -0.0021352291 -1.934564e-04 1.556784e-03 -0.0016057074
## eDNA_32  0.0043792043 -8.239723e-04 -9.188319e-03  0.0133543996
## eDNA_33 -0.0054017869 -3.553079e-03 -7.640323e-03 0.0013066181
## eDNA_34 -0.0274551099 -6.121869e-02 -1.320612e-02 0.0091424739
## eDNA_35 -0.0022557695 -2.739000e-02 4.775526e-03 -0.0269493324
## eDNA_36 -0.0169733547 3.432246e-02 -5.462585e-03 -0.0205055915
## eDNA_37 0.0044485827 -2.762839e-03 1.785803e-02 0.0308950292
## eDNA_38 -0.0015991630 -4.880816e-03 4.522081e-03 0.0034348856
## eDNA_39 -0.0022347488 8.650674e-05 4.098895e-03 0.0042127638
## eDNA_40 -0.0025243646 5.529614e-03 -8.596153e-03 -0.0027437183
## eDNA_41 0.0441344288 -1.697817e-02 9.763337e-03 0.0075328157
## eDNA_42 -0.0140318596 1.536661e-02 1.929134e-03 -0.0096077053
## eDNA 43 -0.0005842972 -1.591869e-03 8.508352e-03 0.0348376893
## eDNA_44 0.0270019643 6.260450e-03 -1.972060e-02 0.0156871748
## eDNA_45 -0.0020623979 4.288653e-05 -4.380896e-03 -0.0008448824
## eDNA_46  0.0363098271 -1.369760e-03 -1.161504e-02 -0.0065786262
## eDNA 47 -0.0033095247 3.976071e-03 5.683443e-03 -0.0078727371
## eDNA 48 -0.0063407147 5.804487e-03 1.918775e-02 -0.0315169510
## eDNA_49 -0.0242241207 3.420331e-02 1.790055e-03 0.0138907333
## eDNA_50 -0.0029269475 2.170028e-02 4.704648e-03 -0.0054096505
## eDNA_51 0.0110321023 3.404355e-02 3.286056e-03 -0.0035609080
## eDNA_52 0.0523347076 -1.352883e-02 1.800880e-03 -0.0036673430
## eDNA_53 0.0051716911 5.908209e-03 -7.638026e-03 0.0129967591
## eDNA_54 0.0099813570 2.977533e-03 -6.551865e-02 -0.0152991949
## eDNA_55 0.0296972848 -3.591946e-03 -1.272628e-02 -0.0026596414
## eDNA_56 0.0025185117 -7.985169e-04 -1.248655e-06 -0.0010090626
## eDNA_57 0.0059798158 4.739107e-03 9.037542e-03 0.0086495390
## eDNA_58 -0.0109120467 2.661518e-02 4.778526e-03 -0.0015855700
                                      PCoA20
                 PCoA18
                              PCoA19
## eDNA 01 2.343733e-02 -0.0016219990 -2.075460e-03 -0.0095080179
```

```
## eDNA_02 -2.462970e-04 -0.0412676689 -1.391355e-02 -0.0064423192
## eDNA_03 8.797513e-03 -0.0082747558 9.834250e-04 0.0184752332
## eDNA 04 1.141968e-02 0.0077990153 2.408075e-02 0.0164570858
## eDNA_05 8.378250e-03 0.0052841336 5.010824e-03 -0.0018388133
## eDNA_06 2.080348e-02 -0.0193867576 6.520018e-03 -0.0126131484
## eDNA 07 -3.148164e-03 0.0340838758 4.482734e-03 -0.0075566945
## eDNA 08 1.368196e-02 0.0038583258 5.681936e-03 -0.0010524834
## eDNA 09 -1.571690e-02 -0.0109321226 -2.012251e-04 0.0123058243
## eDNA_10 -6.782872e-03 0.0005915104 1.882494e-02 0.0057651483
## eDNA_11 7.812327e-03 0.0155099591 -1.470718e-02 -0.0198111137
## eDNA_12 3.201339e-02 0.0095841772 5.527588e-03 -0.0032502353
## eDNA_13 1.067939e-03 0.0087693774 -1.290157e-02 -0.0142860704
## eDNA_14 -1.074974e-04 -0.0124200299 -5.511094e-03 0.0210143382
## eDNA_15 -1.678517e-02 0.0166953649 -6.213998e-03 0.0082612778
## eDNA_16 -7.790701e-03 0.0199045211 -6.071998e-03 -0.0032820279
## eDNA_17 -2.456396e-02 0.0204652410 -6.499690e-03 -0.0315984797
## eDNA_18 -1.774435e-03 0.0027565179 -4.130075e-04 -0.0043049738
## eDNA 19 -6.249816e-04 -0.0100677313 4.578813e-04 0.0158107309
## eDNA_20 6.157044e-04 0.0091012727 -9.776719e-03 -0.0130631347
## eDNA_21 -2.843812e-02 0.0018583178 -9.874528e-04 0.0009594615
## eDNA_22 1.215311e-02 0.0017627274 -2.013019e-05 -0.0146689126
## eDNA_23 -1.061229e-02 -0.0015995387 6.958982e-03 0.0158799152
## eDNA_24 -3.103512e-06  0.0087753002 -1.028197e-03  0.0078198021
## eDNA_25 4.305669e-04 -0.0137174856 1.361474e-02 -0.0118344920
## eDNA 26 -1.608081e-03 0.0102547283 -1.014015e-02 0.0097423522
## eDNA 27 -5.043143e-03 -0.0008706450 -8.852743e-03 -0.0102472957
## eDNA_28 -3.919410e-02 0.0009981233 -4.012874e-03 0.0065082027
## eDNA_29 1.515574e-02 -0.0050400857 -6.498082e-03 -0.0149813554
## eDNA_30 1.315360e-02 -0.0075882279 -8.583462e-03 -0.0122142429
## eDNA_31 7.896579e-03 0.0117119378 -2.902257e-02 0.0153247818
## eDNA_32 -2.015502e-02 -0.0174652617 5.426229e-02 -0.0276304303
## eDNA_33 3.084752e-03 0.0015589355 -4.948643e-03 -0.0059293447
## eDNA_34 1.031213e-02 0.0001521340 -1.119237e-03 -0.0147784043
## eDNA_35 -4.131580e-02 0.0031410685 -1.434791e-03 0.0080443180
## eDNA_36 1.550176e-02 0.0311181305 1.475837e-02 0.0004550892
## eDNA_37 -2.626548e-02 -0.0171530510 -8.023057e-04 0.0143839173
## eDNA 38 7.183772e-03 0.0012827505 8.338928e-04 -0.0013237950
## eDNA_39 2.188750e-03 -0.0006209452 7.757656e-04 -0.0011050591
## eDNA_40 -2.995046e-04 -0.0068053159 2.160945e-02 -0.0042190072
## eDNA_41 3.576791e-03 -0.0071726546 3.571776e-03 0.0172007819
## eDNA 42 5.297893e-03 0.0190404654 2.159169e-02 0.0116105473
## eDNA_43 -1.693541e-02 -0.0151096950 -4.393710e-03 0.0039498525
## eDNA_44 1.299162e-02 -0.0071201413 -1.467228e-02 -0.0275488424
## eDNA_45 8.295406e-03 0.0175827884 -3.414523e-02 0.0199581784
## eDNA_46 7.733819e-03 0.0037327633 -2.569445e-03 -0.0101088848
## eDNA_47 4.980658e-03 -0.0051388617 1.595352e-03 0.0044575580
## eDNA_48 1.570027e-02 -0.0095094223 -2.238324e-02 0.0072410002
## eDNA_49 1.316711e-03 -0.0395622840 -2.369641e-02 -0.0130179155
## eDNA_50 -1.461524e-02 -0.0093265588 -6.555181e-03 0.0044621399
## eDNA_51 -2.061655e-02 0.0140813531 9.174259e-04 -0.0059894155
## eDNA_52 1.444564e-03 0.0186517721 9.242448e-03 0.0116193998
## eDNA 53 -3.913249e-03 0.0098355198 6.939224e-03 0.0166587146
## eDNA_54 -4.253365e-03 -0.0216810647 9.754456e-05 0.0187858999
## eDNA_55 1.353369e-02 0.0012075129 -2.700215e-04 -0.0054000951
```

```
## eDNA_56 -3.977470e-03 -0.0072263339 2.351892e-02 -0.0149068424
## eDNA_57 4.184143e-02 -0.0113969675 2.171421e-02 0.0322963850
## eDNA 58 -1.701426e-02 -0.0030740152 -9.150526e-03 -0.0009360887
                         PCoA23
                                            PCoA24
                 PCoA22
                                                          PCoA25
## eDNA_01 0.0159572420 -0.0006136865 -0.0022640925 -1.108936e-02
## eDNA 02 -0.0108884602 -0.0257334708 0.0039570570 -9.645022e-03
## eDNA 03 0.0117892963 -0.0100458822 0.0056996241 -8.303572e-03
## eDNA_04 -0.0224668377 0.0136126811 0.0047160613 -1.363016e-02
## eDNA_05 0.0036403972 0.0039656147 -0.0073605405 7.062220e-03
## eDNA_06  0.0144142199 -0.0034558324  0.0134453574  1.124698e-02
## eDNA_07 0.0180530648 0.0144106986 0.0089424849 -9.012854e-03
## eDNA_08 0.0015778040 -0.0022669753 -0.0100861626 3.249333e-03
## eDNA_09 -0.0032327896 0.0039393392 0.0007745108 5.027365e-03
## eDNA_10 -0.0131952043 -0.0214086647 -0.0002889249 2.277982e-03
## eDNA_11 -0.0168848539 -0.0014849796 -0.0174613970 -5.597915e-03
## eDNA_12 0.0059814008 0.0010437719 -0.0146808927 7.539283e-04
## eDNA_13 -0.0026871714 0.0024920215 0.0053363259 5.578391e-03
## eDNA 14 0.0041152608 0.0061377912 -0.0255473788 -1.115286e-02
## eDNA_15 -0.0049449866  0.0043833712 -0.0013023370 -1.135673e-02
## eDNA_16 -0.0088221574 -0.0036194663 0.0133649126 2.799609e-03
## eDNA_17 -0.0059092399 0.0109210090 0.0125169239 -1.164282e-03
## eDNA_18 -0.0051992488 0.0295734553 -0.0092717040 9.417521e-03
## eDNA_19 -0.0014326827 0.0110767060 0.0055925567 1.264658e-02
## eDNA 20 -0.0092153376 0.0259176755 0.0026709495 1.096466e-02
## eDNA 21 -0.0065722866 -0.0093950299 0.0055080580 -6.681769e-03
## eDNA_22 0.0086422865 -0.0174612937 -0.0019515624 -7.980177e-03
## eDNA_23 0.0018310355 0.0048312149 -0.0038830618 1.858929e-07
## eDNA_24 -0.0007427253 -0.0049746148 0.0033376828 2.298615e-03
## eDNA_25 0.0131487705 0.0176525924 -0.0074473504 -3.300648e-02
## eDNA_26 -0.0151896699 -0.0018471470 -0.0218128838 -2.301560e-03
## eDNA_27 -0.0138687877 0.0090070789 0.0014237785 -1.213092e-03
## eDNA_28 -0.0122628005 -0.0122026921 0.0093308871 -1.166859e-02
## eDNA_29 -0.0111027155 0.0023288586 -0.0009316015 5.166156e-04
## eDNA_30 -0.0077457843 0.0015524306 -0.0039636690 7.934622e-03
## eDNA_31 -0.0038625825 -0.0082246081 0.0077451907 1.256227e-02
## eDNA_32 -0.0130531012 -0.0035318525 -0.0116836644 9.287602e-03
## eDNA 33 -0.0107381210 0.0027431919 -0.0008873684 2.676446e-03
## eDNA_34 0.0107232189 -0.0174132350 -0.0031122592 -7.203126e-03
## eDNA_35 -0.0143416278 -0.0037954968 0.0081077568 -1.991033e-03
## eDNA_36  0.0002169072 -0.0297903534  0.0009700752 -5.954018e-03
## eDNA 37 0.0195240004 0.0101952079 0.0065361217 -5.867785e-03
## eDNA_38  0.0010870242  0.0015363471 -0.0008319875  1.586098e-03
## eDNA_39 -0.0018227355 0.0002972303 0.0029423607 3.186199e-04
## eDNA_40 0.0344463874 0.0051070385 0.0389348850 6.947238e-03
## eDNA_41 0.0085045243 -0.0029208336 -0.0167699332 1.921915e-02
## eDNA_42  0.0178345968 -0.0196178526  0.0045779628 -4.682263e-03
## eDNA_43 0.0104440170 0.0198980383 0.0040399873 -1.882698e-03
## eDNA_44 -0.0063099733 -0.0017233928 0.0133564533 -4.222591e-03
## eDNA_45 0.0002728595 -0.0080285148 0.0131623253 1.251212e-02
## eDNA_46  0.0049269602  0.0083396517 -0.0024132691 -4.221016e-04
## eDNA_47 0.0040104788 -0.0118670444 0.0057808592 1.208790e-02
## eDNA_48 0.0195967129 0.0153915244 -0.0008172273 -1.856188e-02
## eDNA_49 -0.0167312154 -0.0133937030 0.0040347387 -4.798884e-03
## eDNA_50 0.0222871407 -0.0017672454 -0.0154598302 1.800763e-02
```

```
## eDNA_51 0.0042094466 -0.0007272151 -0.0070024629 -5.101804e-03
## eDNA_52 -0.0063515272 -0.0004492586 -0.0014082963 6.396795e-03
## eDNA 53 0.0049305013 -0.0056562597 -0.0120577733 -1.078192e-02
## eDNA_54 -0.0012059557 -0.0007872146 -0.0015997457 -1.166162e-03
## eDNA_55 0.0078778358 0.0011157286 -0.0033127791 1.627215e-03
## eDNA 56 -0.0066523357 0.0003565591 -0.0049973532 1.750944e-02
## eDNA_57 -0.0370121234 0.0176851853 0.0196256073 -1.841584e-03
## eDNA 58 0.0204016482 -0.0013081982 -0.0158239858 1.576913e-02
##
                 PCoA26
                               PCoA27
                                             PCoA28
                                                          PCoA29
## eDNA_01 1.752012e-02 2.328511e-03 0.0010068059 0.0024429797
## eDNA_02 5.938828e-06 9.967441e-03 -0.0033277364 0.0002462371
## eDNA_03 2.058964e-02 -8.008062e-03 0.0182083004 -0.0011379620
## eDNA_04 9.569906e-03 2.006063e-02 -0.0184327442 0.0077910817
## eDNA_05 5.224104e-03 -9.606583e-04 0.0080626657 0.0039031963
## eDNA_06 3.825808e-03 6.762535e-05 -0.0027216490 -0.0021177059
## eDNA_07 -5.265030e-03 -2.212223e-02 -0.0126656927 -0.0097128658
## eDNA_08 8.177578e-04 5.924965e-03 -0.0035796290 0.0011977772
## eDNA 09 -3.908768e-03 6.483779e-04 0.0011633468 0.0038277422
## eDNA_10 1.243135e-02 -7.771283e-03 0.0026644004 0.0013460765
## eDNA_11 4.961814e-03 -6.421282e-03 -0.0040614142 0.0006807783
## eDNA_12 3.380410e-03 8.106056e-03 -0.0067340278 0.0002831559
## eDNA_13 -1.471891e-02 8.941975e-03 -0.0044530143 -0.0155672631
## eDNA_14 1.054698e-02 -1.840085e-02 -0.0130361579 -0.0015717248
## eDNA_15 -6.503153e-03 -3.514896e-03 0.0016390638 0.0031096349
## eDNA 16 -8.079173e-03 2.163185e-02 0.0133586515 0.0034133975
## eDNA 17 1.669585e-03 -1.236705e-02 0.0060139431 0.0035577721
## eDNA_18 -1.676376e-04 1.170597e-03 -0.0007482842 0.0086238815
## eDNA_19 -8.468964e-03 -3.379651e-03 0.0105808572 0.0006129789
## eDNA_20 1.369447e-02 5.917145e-03 0.0065747392 -0.0100239082
## eDNA_21 1.106596e-03 9.064093e-04 -0.0011669006 -0.0026606441
## eDNA_22 -2.767711e-03 -1.300005e-03 -0.0036706874 -0.0007937139
## eDNA_23 1.268844e-02 1.267609e-02 0.0011660451 -0.0229636995
## eDNA_24 -1.602929e-02 -1.195389e-02 0.0013667615 0.0216525485
## eDNA_25 -2.022055e-02 7.698624e-03 0.0150515986 -0.0019986020
## eDNA_26 -6.126328e-03 -2.175581e-03 0.0086970023 -0.0057731325
## eDNA_27 5.471085e-03 1.865083e-03 -0.0016236299 0.0034951576
## eDNA 28 8.728334e-03 3.499331e-03 0.0009812832 0.0020388207
## eDNA_29 2.387338e-03 3.896724e-03 0.0016341606 -0.0011884945
## eDNA_30 -3.350184e-03 2.253776e-03 0.0031959945 0.0011329395
## eDNA_31 7.796744e-03 1.960280e-03 -0.0008120906 0.0036305769
## eDNA 32 1.903631e-03 -4.111450e-03 -0.0009602887 -0.0014552767
## eDNA 33 -3.372602e-03 1.662988e-03 0.0047861035 0.0018833314
## eDNA_34 8.450672e-04 1.918003e-03 -0.0029461940 -0.0003055332
## eDNA_35 -1.272572e-02 -3.432591e-03 -0.0030200214 -0.0044003859
## eDNA_36 -4.224703e-03 -8.295559e-03 0.0065215682 -0.0003328023
## eDNA_37 6.133158e-03 -4.374005e-03 -0.0039618002 -0.0040661467
## eDNA_38 1.024041e-03 -1.690954e-03 0.0038809539 -0.0049636871
## eDNA_39 -8.526226e-03 -1.594721e-03 -0.0063832387 0.0019176390
## eDNA_40 1.862992e-03 6.738803e-03 -0.0032853288 0.0060947441
## eDNA_41 -2.730118e-02 4.523993e-03 -0.0140885596 0.0023027462
## eDNA_42 -8.723947e-03 -9.230941e-04 -0.0015477368 -0.0033891283
## eDNA_43 5.783433e-03 -4.354852e-03 -0.0108667861 0.0084576552
## eDNA_44 3.080980e-04 -1.110979e-02 0.0028375591 0.0002445803
## eDNA 45 9.528110e-03 -3.348358e-03 -0.0116151768 -0.0002216989
```

```
## eDNA_46 -8.544899e-04 -2.585118e-03 -0.0049361480 -0.0057794316
## eDNA_47 -1.030426e-02 1.939705e-03 -0.0043550816 -0.0137172586
## eDNA 48 -7.132961e-03 5.217061e-03 0.0047631431 0.0060639147
## eDNA_49 -6.042068e-03 -3.549486e-03 -0.0057197287 0.0021401804
## eDNA_50 5.459540e-03 -5.265957e-04 0.0176101554 0.0010477156
## eDNA 51 5.193353e-03 1.431933e-02 -0.0097710462 -0.0020935335
## eDNA 52 3.350427e-03 1.494398e-02 0.0061416423 0.0096586716
## eDNA 53 4.554647e-03 2.527983e-03 0.0047894829 0.0061455124
## eDNA_54 -1.111135e-03 -6.150516e-04 -0.0015287240 -0.0017587767
## eDNA_55 -1.740288e-03 2.539289e-03 -0.0022491802 0.0022805791
## eDNA_56 1.045570e-02 -7.485193e-03 -0.0042162760 0.0072105716
## eDNA_57 -7.307375e-03 -1.571564e-02 0.0087081607 -0.0081397011
## eDNA_58 -3.845950e-03 -3.764722e-03 0.0070805854 -0.0023014976
                 PCoA30
##
                              PCoA31
                                             PCoA32
## eDNA_01 9.164011e-03 0.0055410895 4.365473e-03 -0.0028366932
## eDNA_02 4.030028e-04 -0.0037923989 3.231901e-03 0.0046554555
## eDNA_03 9.742965e-04 0.0102378175 4.054576e-03 0.0022791850
## eDNA 04 -6.479899e-03 0.0107111184 1.554957e-02 0.0038172240
## eDNA_05 6.269572e-05 -0.0037541029 2.824906e-03 0.0023658219
## eDNA_06 3.708334e-04 0.0021281425 -7.094086e-04 -0.0051655740
## eDNA_07 -1.253515e-03 0.0102844641 6.877158e-04 0.0038820161
## eDNA_08 -1.143687e-03 -0.0007324861 -6.443455e-03 -0.0011309750
## eDNA_09 5.945540e-03 0.0009064582 -9.496556e-04 0.0018642604
## eDNA_10 -1.043215e-02 -0.0010902520 -6.453611e-03 -0.0062226497
## eDNA 11 3.328971e-03 -0.0072727725 2.158488e-03 0.0011898659
## eDNA 12 1.855979e-04 -0.0083654732 -6.747968e-03 -0.0057217745
## eDNA_13 1.448972e-02 0.0022320102 5.986507e-03 0.0057663896
## eDNA_14 5.333854e-03 -0.0058155714 -1.761713e-04 0.0106771075
## eDNA_15 -1.025650e-02 -0.0010674250 4.590584e-03 -0.0146859275
## eDNA_16 1.673597e-03 0.0014857583 -5.800329e-03 0.0083328718
## eDNA_17 -7.839851e-03 -0.0200870659 4.289930e-03 0.0047000682
## eDNA_18 -8.565085e-03 0.0083655107 -2.685042e-03 0.0041733317
## eDNA_19 -3.117564e-03 0.0085433950 1.109840e-02 0.0050215430
## eDNA_20 1.378171e-02 -0.0056803480 3.333029e-03 -0.0054622896
## eDNA_21 -1.400003e-03 -0.0032934524 2.452721e-03 -0.0013980905
## eDNA_22 -1.187293e-03 0.0007320226 -2.595828e-03 0.0034425440
## eDNA 23 -1.532173e-02 -0.0031592461 -6.292406e-03 0.0053714968
## eDNA_24 1.574340e-02 0.0018368588 6.520966e-03 -0.0046545708
## eDNA_25 -1.579193e-03 -0.0005281669 -7.126103e-04 -0.0035906414
## eDNA_26 -3.816155e-03 0.0105710861 3.774291e-03 -0.0028705308
## eDNA 27 -8.489779e-04 0.0053425207 -8.223348e-03 -0.0049251921
## eDNA 28 -4.873900e-04 -0.0062046328 6.186081e-03 -0.0031488570
## eDNA_29 4.043066e-03 0.0046814498 1.147408e-03 0.0034683931
## eDNA_30 -2.024172e-03 -0.0010074977 -8.319373e-04 0.0010094965
## eDNA_31 -1.204500e-03 0.0044030528 -5.251056e-03 0.0034708007
## eDNA_32 3.781500e-03 0.0006347257 2.575446e-03 0.0013239167
## eDNA_33 -7.185677e-03 0.0037649189 1.421026e-03 0.0054096631
## eDNA_34 2.525524e-03 -0.0047316404 -1.671494e-04 -0.0048638836
## eDNA_35 8.069926e-03 0.0069947714 -1.252485e-02 0.0030800507
## eDNA_36 -2.246951e-03 0.0085350472 -5.610598e-03 -0.0035796545
## eDNA_37 7.259065e-03 -0.0048971453 6.778469e-03 -0.0028521457
## eDNA_38 -1.466710e-03 0.0031625973 4.188345e-03 -0.0021673795
## eDNA_39 2.697266e-04 0.0008316986 -3.181576e-03 0.0005054393
## eDNA 40 -1.954772e-04 -0.0009447943 -6.537545e-03 0.0042339200
```

```
## eDNA_41 -8.472749e-03 -0.0047653440 7.912422e-04 0.0004059687
## eDNA_42 -2.871946e-03 -0.0049690298 4.413905e-03 0.0060210382
## eDNA 43 -7.035779e-03 0.0009447395 -9.229848e-03 -0.0071467147
## eDNA_44 -1.384799e-02 0.0049979764 3.334284e-03 0.0032671525
## eDNA_45 -9.524470e-04 -0.0037175238 2.794154e-03 -0.0012393502
## eDNA 46 4.669983e-04 0.0022897618 -5.985247e-03 -0.0033206624
## eDNA 47 6.004178e-04 -0.0024216599 1.282807e-02 -0.0103312466
## eDNA 48 -3.665524e-03 -0.0029264222 -7.780936e-04 -0.0008638449
## eDNA_49 -4.358468e-04 0.0035594338 -5.357395e-03 0.0004066505
## eDNA_50 1.606076e-03 0.0044065641 3.563754e-04 -0.0044839745
## eDNA_51 1.184586e-02 0.0090150543 -7.460911e-03 -0.0086049132
## eDNA_52 -1.224966e-03 -0.0115626595 -2.705532e-05 -0.0047980005
## eDNA_53 1.069031e-02 -0.0055160694 -5.457274e-03 0.0140815413
## eDNA_54 -1.752505e-04 -0.0015552619 1.180446e-03 -0.0028471442
## eDNA_55 -2.125401e-03 -0.0098135697 2.798609e-03 0.0034666091
## eDNA_56 1.920087e-03 0.0033231591 2.089423e-03 0.0019193488
## eDNA_57 7.444786e-03 -0.0097440022 -9.390749e-03 -0.0034480564
## eDNA 58 -3.120199e-03 -0.0010471894 -2.221232e-03 0.0027515664
                 PCoA34
                              PCoA35
                                            PCoA36
                                                          PCoA37
## eDNA 01 -0.0036562981 5.978413e-03 -0.0027468674 0.0023293969
## eDNA_02 0.0069448159 -6.093947e-03 0.0054946491 -0.0014875670
## eDNA 03 0.0073731366 -4.779715e-03 0.0027567986 0.0005567719
## eDNA_04 0.0028937577 3.329089e-03 0.0011467113 0.0007354773
## eDNA 05 0.0026746908 1.815578e-03 -0.0013520111 0.0019982183
## eDNA 06 0.0023287411 2.430732e-03 0.0008316570 -0.0003078633
## eDNA 07 0.0045686912 2.799676e-03 0.0002764380 0.0008722415
## eDNA_08  0.0044104419 -2.131857e-03 -0.0027998549  0.0007001620
## eDNA_09 -0.0068633424 1.170766e-02 0.0090011278 0.0008067811
## eDNA_10 -0.0004490519 3.498420e-03 0.0039665123 -0.0007611225
## eDNA_11 -0.0014346878 -2.637564e-03 0.0025182593 -0.0035635499
## eDNA_12 0.0106253639 -2.809361e-03 0.0021179680 0.0022214636
## eDNA_13 0.0070359714 3.402156e-03 -0.0011044752 0.0025871816
## eDNA_14 -0.0031200224 1.380826e-03 -0.0016210981 -0.0006560309
## eDNA_15 0.0015092633 -3.391120e-03 0.0022963709 -0.0049520551
## eDNA_16 -0.0013410914 -9.536753e-04 -0.0016117396 0.0046248875
## eDNA_17 0.0023439918 4.111883e-03 -0.0005330517 0.0044335170
## eDNA 18 0.0059614531 -8.306801e-03 -0.0024344890 0.0062081270
## eDNA_19 -0.0124335228 -2.030245e-03 -0.0026547326 -0.0039112614
## eDNA_20 -0.0052346960 5.502312e-03 0.0041767953 -0.0073755870
## eDNA_21 0.0065972033 -9.788673e-03 -0.0087539217 -0.0014993286
## eDNA 22 -0.0043092666 8.142333e-04 0.0010865987 0.0004445628
## eDNA 23 -0.0008505508 1.310436e-03 0.0000707971 0.0014196552
## eDNA_24 0.0066328468 -2.189190e-03 -0.0002914611 -0.0001177460
## eDNA_25 -0.0008159112 1.006141e-03 0.0021964318 0.0011921333
## eDNA_26 0.0007057519 3.805869e-03 -0.0019562543 0.0050549306
## eDNA_27 0.0021893910 6.305796e-03 -0.0006857178 0.0052044946
## eDNA_28 0.0003133501 6.699175e-03 -0.0059309135 0.0032653208
## eDNA_29 0.0017772826 1.106780e-03 0.0073275833 -0.0008483468
## eDNA_30 0.0020315098 -3.271912e-03 -0.0047196612 0.0026131744
## eDNA_31 0.0115444183 9.803152e-03 -0.0088346186 -0.0133458969
## eDNA_32 -0.0003416086 -6.611020e-04 -0.0006523708 0.0005570330
## eDNA_33 -0.0028680567 -6.485453e-03 -0.0017513995 -0.0082258783
## eDNA_34 -0.0019575656 4.119241e-04 -0.0026011841 -0.0013044073
## eDNA 35 0.0045845560 -2.720136e-03 0.0077945138 -0.0003622894
```

```
## eDNA_36 -0.0071981855 5.498947e-03 -0.0045639067 0.0032143024
## eDNA_37 -0.0006118224 -1.637284e-03 -0.0089091844 0.0013727912
## eDNA 38 -0.0035742796 -5.246744e-04 -0.0018306226 0.0003754240
## eDNA_39 -0.0025508172 -1.586977e-03 0.0085929858 -0.0036619258
## eDNA_40 -0.0013685744 -5.337040e-04 -0.0025574119 0.0007659664
## eDNA 41 -0.0020027982 7.912318e-03 -0.0031962464 0.0016418155
## eDNA 42 0.0007178373 -1.257486e-03 0.0051712377 -0.0055652492
## eDNA_43  0.0022263293  4.359460e-03  0.0056651397 -0.0015742366
## eDNA_44 -0.0026318419 -2.239010e-04 0.0051469577 -0.0040590940
## eDNA_45 -0.0102485413 -1.017818e-02 0.0076179512 0.0122192811
## eDNA_46 -0.0025205585 -6.093389e-03 -0.0078913181 0.0014951979
## eDNA_47  0.0036729857 -1.072691e-03  0.0016673186  0.0023149581
## eDNA_48 -0.0033947881 -1.504296e-03 -0.0008960657 -0.0011662325
## eDNA_49 -0.0075064900 4.204668e-03 -0.0078419680 0.0040296285
## eDNA_50 0.0069226408 1.736927e-03 0.0057547714 0.0066591757
## eDNA_51 -0.0091603587 -7.803970e-03 -0.0005859245 -0.0058932052
## eDNA_52 -0.0068167955 -4.981268e-04 -0.0006804175 -0.0020853002
## eDNA 53 -0.0015202588 -1.531345e-04 0.0008227566 0.0022699081
## eDNA_54  0.0020282333  -6.564796e-05  0.0019901848  -0.0022866083
## eDNA_55 0.0015410386 1.536745e-03 0.0026295279 -0.0013193115
## eDNA_56 -0.0033332703 -4.478291e-03 -0.0019774677 -0.0005081166
## eDNA_57 0.0005610696 -2.829109e-03 -0.0027814937 -0.0000409788
## eDNA_58 -0.0026017102 -3.777713e-03 -0.0013701941 -0.0073047900
                 PCoA38
                               PCoA39
                                             PCoA40
## eDNA 01 2.013847e-03 -4.620210e-03 2.810811e-03 -8.695169e-04
## eDNA 02 1.096651e-02 -1.556504e-03 -2.474158e-03 -2.718912e-03
## eDNA_03 -1.727536e-03 7.687365e-04 2.575613e-03 -1.185811e-04
## eDNA_04 -3.216135e-03 -2.700026e-05 1.500460e-04 -1.878347e-04
## eDNA_05 -3.788811e-03 1.133421e-03 -3.860451e-03 -3.334067e-03
## eDNA_06 2.055984e-04 2.213088e-04 9.827235e-04 -6.615952e-04
## eDNA_07 7.230831e-04 2.172235e-03 6.503017e-04 -3.274774e-04
## eDNA_08 3.784746e-03 1.047520e-02 -2.723305e-03 3.396623e-04
## eDNA_09 3.801796e-03 3.981352e-03 -1.167677e-04 2.735570e-03
## eDNA_10 -5.750307e-03 3.877003e-03 1.793625e-04 -1.302769e-03
## eDNA_11 -2.564666e-03 7.683694e-04 -3.162597e-03 -9.477079e-04
## eDNA_12 1.123283e-03 -1.654179e-03 1.940456e-03 1.415433e-03
## eDNA 13 -1.117452e-03 -9.703750e-04 -6.701635e-04 -2.160334e-03
## eDNA_14 1.575730e-04 -2.890211e-03 -1.230223e-03 -3.882404e-04
## eDNA_15 5.824693e-04 3.190056e-03 -3.269166e-03 7.765036e-04
## eDNA_16 -4.149064e-04 -8.560773e-04 2.291300e-03 2.099983e-04
## eDNA 17 1.827056e-03 -2.534897e-03 -1.765564e-03 2.005432e-03
## eDNA 18 -2.636069e-04 3.319666e-03 7.021824e-04 2.723798e-03
## eDNA_19 -8.667554e-04 -3.069297e-04 -4.238498e-03 -1.947828e-03
## eDNA_20 -2.213505e-03 4.600885e-04 1.167043e-03 -2.959491e-03
## eDNA_21 -3.087512e-03 -4.409353e-03 1.545484e-03 -3.528857e-03
## eDNA_22 4.162588e-03 -1.405243e-03 -7.088239e-03 -8.121432e-03
## eDNA_23 1.184136e-03 -1.388143e-03 -7.553020e-04 8.589141e-04
## eDNA_24 -4.722969e-05 5.855870e-04 9.483929e-04 -2.269803e-03
## eDNA_25 -1.203232e-03 6.039916e-04 9.311817e-04 -1.345085e-03
## eDNA_26 5.065961e-03 -3.242305e-03 5.700200e-03 2.253618e-03
## eDNA_27 4.597904e-03 1.675578e-03 1.978690e-03 -2.938653e-03
## eDNA_28 2.524672e-03 2.045602e-03 2.567265e-03 -3.956245e-04
## eDNA_29 1.043068e-03 4.785861e-03 -2.664251e-03 4.770656e-03
## eDNA_30 -2.870182e-03 -2.398798e-03 4.118989e-03 -4.498241e-03
```

```
## eDNA_31 4.493538e-04 -1.427906e-03 -2.054765e-03 2.195084e-03
## eDNA_32 2.823961e-04 -3.619592e-04 -5.990546e-05 1.144692e-04
## eDNA 33 1.447309e-03 -2.353738e-03 -3.043437e-03 2.781753e-03
## eDNA_34 -4.154216e-03 2.696381e-04 4.634712e-03 9.543735e-03
## eDNA_35 -2.361429e-03 -5.051905e-04 -8.314676e-04 7.093933e-04
## eDNA 36 5.890042e-03 -1.214261e-03 -3.334620e-03 -2.763156e-04
## eDNA 37 6.026302e-03 3.106514e-03 -2.464374e-03 5.879146e-03
## eDNA 38 -1.223207e-03 -1.807614e-03 3.306904e-03 -4.121587e-03
## eDNA_39 2.385052e-03 -9.924382e-03 3.508099e-03 7.671616e-03
## eDNA_40 5.208126e-04 5.991655e-04 -5.154409e-04 1.333937e-04
## eDNA_41 9.893364e-04 -1.035790e-03 -4.262998e-04 -1.157648e-03
## eDNA_42 -5.790053e-03 -5.482391e-04 2.767834e-03 3.209073e-04
## eDNA_43 -2.395636e-03 -6.207770e-03 1.615612e-03 -6.330407e-03
## eDNA_44 -5.706944e-04 2.027483e-03 9.509248e-04 7.555864e-04
## eDNA_45 3.445373e-04 1.356542e-03 1.644104e-03 -1.074256e-03
## eDNA_46 -3.384693e-03 -2.056497e-03 -6.035521e-03 1.730320e-03
## eDNA_47 -2.533770e-03 6.017675e-04 -1.917596e-04 5.606654e-04
## eDNA 48 1.535554e-03 -3.112648e-04 -5.326706e-04 1.329265e-03
## eDNA_49 -1.168230e-02 2.217586e-03 1.095900e-03 2.552032e-03
## eDNA 50 -4.079056e-03 -4.591634e-03 -8.101318e-03 3.144160e-03
## eDNA_51 1.708686e-04 1.734333e-03 -1.389704e-03 -6.898214e-04
## eDNA 52 3.060639e-04 -3.468487e-03 -1.405704e-03 6.048658e-04
## eDNA_53 -4.974888e-03 1.776437e-03 8.320424e-04 -4.880450e-04
## eDNA_54 -3.041172e-03 1.946410e-03 -1.840486e-03 -1.316711e-03
## eDNA 55 -6.253758e-04 5.680508e-03 1.229300e-03 -2.460756e-04
## eDNA_56 4.882255e-03 -2.395618e-03 2.090243e-03 2.293391e-03
## eDNA_57 2.756453e-03 -2.157066e-04 7.358944e-04 1.430059e-05
## eDNA_58 4.197702e-03 5.305843e-03 1.059455e-02 -3.700749e-03
                 PCoA42
                              PCoA43
                                             PCoA44
## eDNA_01 -2.285074e-05 2.171878e-04 7.076807e-05 1.616844e-03
## eDNA_02 -2.070204e-03 1.310490e-03 -1.921290e-03 5.343610e-04
## eDNA_03 -2.918883e-04 3.545673e-04 7.916899e-04 -2.983852e-04
## eDNA_04 1.827817e-04 9.100381e-04 6.588452e-05 -2.887728e-04
## eDNA_05 -1.966697e-03 2.364683e-03 1.016682e-03 7.373498e-04
## eDNA_06 -5.975352e-04 3.503910e-04 4.288385e-04 -1.004814e-04
## eDNA_07 -1.063838e-03 6.056331e-04 -3.272400e-04 1.368637e-04
## eDNA 08 -2.530193e-03 1.233611e-03 4.298591e-04 1.764833e-03
## eDNA_09 2.221147e-03 9.465996e-04 -9.589025e-04 8.181020e-04
## eDNA_10 -1.089988e-03 3.684600e-04 2.825882e-04 -2.346675e-04
## eDNA_11 -1.849510e-04 1.072394e-03 -7.364877e-04 -3.939351e-04
## eDNA 12 1.542729e-03 -1.660134e-03 3.453902e-04 -2.805345e-04
## eDNA 13 -3.099704e-03 1.396509e-03 5.112866e-04 -5.074843e-04
## eDNA_14 -2.021548e-03 1.943234e-04 -4.996527e-07 -3.742033e-04
## eDNA_15 3.232343e-03 7.810606e-04 -2.261793e-04 2.830042e-04
## eDNA_16 -7.457108e-04 -1.130132e-03 -2.986873e-04 7.960387e-05
## eDNA_17 8.553368e-04 -4.764907e-04 -7.360958e-04 6.134383e-04
## eDNA_18 2.650589e-03 2.547259e-04 -4.757711e-04 -5.620235e-04
## eDNA_19 -1.920893e-03 1.903455e-03 -8.870530e-04 2.912273e-04
## eDNA_20 -8.301605e-04 3.467149e-04 8.277769e-04 7.374326e-06
## eDNA_21 -3.056246e-03 -1.089145e-03 1.045181e-03 -7.687768e-04
## eDNA_22 6.997829e-03 -2.246062e-03 1.921202e-03 1.022887e-04
## eDNA 23 1.539178e-04 6.450501e-04 -1.413661e-04 -1.346482e-04
## eDNA_24 -1.444391e-03 -7.214795e-04 1.795078e-04 -2.323557e-05
## eDNA_25 -1.334954e-03 2.247184e-04 3.049355e-04 -1.055351e-04
```

```
## eDNA_26 9.893725e-04 -1.764260e-03 1.103277e-03 1.124284e-03
## eDNA_27 5.988875e-05 8.872954e-04 -2.934573e-04 -1.113863e-04
## eDNA 28 -1.259158e-03 -9.625835e-04 7.473141e-04 6.825772e-04
## eDNA_29 -3.506553e-03 -5.639291e-03 5.085772e-04 8.673078e-05
## eDNA_30 4.702357e-03 5.957351e-03 -5.429950e-04 3.239349e-04
## eDNA 31 3.513960e-03 -3.560566e-04 -7.452571e-04 -4.592162e-05
## eDNA 32 7.384105e-05 9.920519e-05 2.862984e-05 -8.663514e-05
## eDNA 33 -6.555460e-03 -1.076448e-03 1.540099e-03 4.240232e-05
## eDNA_34 -5.738621e-03 2.312931e-03 -2.099916e-03 8.308822e-06
## eDNA_35 1.226197e-03 4.356128e-04 -3.432245e-04 -2.293663e-05
## eDNA_36 -3.420226e-03 2.304702e-03 -2.711155e-04 -2.126149e-03
## eDNA_37 3.058308e-03 1.641162e-04 9.013143e-04 -1.085378e-03
## eDNA_38 1.862240e-03 -5.670748e-03 -3.541469e-03 -2.277326e-03
## eDNA_39 3.023879e-03 2.509358e-03 1.927048e-03 -1.050548e-03
## eDNA_40 -3.326348e-04 -1.886481e-04 1.196406e-04 -1.889347e-04
## eDNA_41 -2.705997e-03 -9.629111e-04 -4.130043e-05 -8.460116e-07
## eDNA_42 2.228617e-03 -1.810703e-03 2.957370e-05 2.633610e-03
## eDNA 43 -5.500647e-03 -9.465485e-04 -2.551451e-04 3.853459e-04
## eDNA_44 2.111983e-03 9.253077e-04 -1.894385e-04 -7.926054e-05
## eDNA_45 -2.346566e-03 -1.188410e-05 4.483248e-04 2.428352e-04
## eDNA_46 -5.502266e-04 -1.085530e-03 -8.628704e-04 2.001786e-03
## eDNA 47 4.088048e-03 -1.832094e-05 -4.718857e-04 3.172139e-04
## eDNA_48 1.694526e-03 -4.191921e-04 -3.669318e-04 1.840583e-04
## eDNA_49 2.428275e-03 -1.663547e-03 1.466941e-03 -5.782592e-05
## eDNA_50 -1.961537e-04 -1.848789e-04 -1.436240e-04 -4.708494e-04
## eDNA_51 1.980117e-03 4.072919e-04 -3.494435e-04 -3.204051e-04
## eDNA_52 5.337974e-04 -3.509755e-04 3.258979e-04 -1.517268e-04
## eDNA_53 3.159144e-03 3.589645e-04 -1.022783e-03 -1.413758e-04
## eDNA_54 -3.765111e-04 8.100757e-04 -4.540987e-04 -4.772985e-04
## eDNA_55 2.915677e-04 7.271897e-05 1.154160e-03 -3.491083e-03
## eDNA_56 2.760757e-03 -1.581704e-03 -3.823625e-04 6.382720e-04
## eDNA_57 -1.558977e-05 -5.341013e-04 -5.459296e-05 3.081380e-04
## eDNA_58 -8.474531e-04 -1.737677e-04 6.190952e-04 2.937822e-04
                               PCoA47
                 PCoA46
                                            PCoA48
                                                           PCoA49
## eDNA_01 -4.307939e-04 -3.757632e-03 -3.962273e-04 1.132929e-02
## eDNA_02 -1.154819e-03 -5.475520e-05 7.442641e-04 -3.340796e-03
## eDNA 03 5.160123e-04 1.349497e-03 -4.376440e-03 -1.107131e-03
## eDNA_04 5.145859e-04 -4.363245e-04 -3.944985e-03 -1.684098e-03
## eDNA_05 -6.088897e-03 1.680982e-03 -2.851872e-04 -4.930715e-03
## eDNA_06 3.940332e-05 -2.477605e-04 -1.075096e-03 -1.012437e-03
## eDNA 07 1.422394e-04 -9.085622e-04 2.693273e-03 -1.587581e-04
## eDNA 08 5.226608e-03 2.775946e-03 -4.122739e-04 5.246493e-03
## eDNA_09 4.114820e-04 -2.018829e-03 -2.870575e-03 -5.620106e-03
## eDNA_10 -4.020291e-04 -6.244517e-03 2.794069e-03 -6.103337e-03
## eDNA_11 3.728894e-05 -1.592672e-03 6.605398e-04 4.147875e-03
## eDNA_12 1.621111e-04 -3.396083e-03 -1.207222e-03 -2.807649e-03
## eDNA_13 6.319371e-05 -7.469645e-04 -3.372590e-04 -1.085338e-03
## eDNA_14 7.875221e-04 7.545893e-04 1.777008e-03 -3.397018e-03
## eDNA_15 -7.162337e-04 4.134580e-04 -2.421704e-03 6.180794e-03
## eDNA_16 3.376313e-05 -7.329994e-04 1.826285e-03 -9.229275e-04
## eDNA_17 3.347950e-04 8.077051e-04 -3.586156e-03 6.792516e-04
## eDNA_18 -1.698485e-03 -3.968698e-03 2.169202e-03 2.195191e-03
## eDNA_19 -3.230023e-04 3.697780e-03 2.734393e-03 3.240168e-03
## eDNA_20 1.704292e-03 -1.188463e-03 -5.228731e-04 4.361153e-05
```

```
## eDNA_21 1.936506e-04 1.948327e-03 3.448928e-03 6.806011e-03
## eDNA_22 9.522456e-05 -1.014047e-04 -9.947457e-04 -5.075632e-04
## eDNA 23 -3.403900e-04 1.081022e-03 -1.198828e-04 4.175704e-03
## eDNA_24 5.339953e-04 -9.974734e-04 6.750842e-04 -2.221133e-03
## eDNA_25 2.599634e-04 -8.782356e-04 4.101544e-04 -5.641408e-04
## eDNA 26 1.777511e-04 4.939237e-03 -8.788328e-04 -7.747982e-03
## eDNA 27 -9.043683e-04 5.243624e-03 6.883609e-03 7.334056e-05
## eDNA 28 1.259785e-04 -3.986600e-03 4.473192e-03 -9.937903e-04
## eDNA_29 -2.424473e-03 1.672459e-04 1.044511e-03 5.463239e-03
## eDNA_30 2.406977e-03 -1.422728e-03 -5.147164e-04 -4.029725e-03
## eDNA_31 -5.695410e-04 7.950223e-04 2.213823e-04 1.553005e-04
## eDNA_32 7.689146e-05 8.144269e-05 -3.361835e-04 5.259672e-04
## eDNA_33 2.234070e-03 -5.216813e-03 -2.966331e-03 -5.205272e-03
## eDNA_34 -6.623711e-04 3.254378e-03 -6.127326e-05 -9.737927e-04
## eDNA_35 3.784167e-04 1.787482e-03 -7.608546e-03 2.547742e-03
## eDNA_36 -3.090033e-04 -4.623695e-04 -4.323376e-03 3.309862e-03
## eDNA_37 3.437589e-04 -1.898398e-03 -1.960716e-04 -4.895011e-03
## eDNA 38 1.575181e-03 -2.329866e-03 -3.871897e-04 -3.429483e-03
## eDNA_39 -6.025677e-04 -2.490641e-03 3.058932e-03 2.654289e-03
## eDNA_40 5.544842e-05 -7.969495e-04 1.680687e-04 -6.805269e-04
## eDNA_41 -8.491112e-05 -3.185171e-03 2.489650e-03 4.093735e-03
## eDNA_42 8.557224e-04 3.695874e-03 5.689178e-03 -3.422718e-03
## eDNA_43 1.116308e-04 3.696882e-03 -3.317565e-03 -1.703419e-04
## eDNA_44 7.330588e-04 -1.215004e-03 5.024335e-03 -1.234324e-03
## eDNA 45 2.368198e-04 -3.026294e-04 -1.464302e-04 -6.134714e-05
## eDNA 46 -1.319126e-03 -9.729299e-04 -4.723813e-03 -9.354002e-03
## eDNA_47 -1.327261e-03 4.577488e-04 -3.209191e-03 3.386984e-03
## eDNA_48 -2.898493e-05 1.393174e-03 -7.361202e-04 1.496488e-03
## eDNA_49 3.787022e-04 1.531747e-03 -2.402511e-03 2.214543e-03
## eDNA_50 2.369575e-03 5.781821e-05 5.547661e-03 7.128729e-04
## eDNA_51 -1.076533e-03 1.229146e-03 6.132123e-03 -4.625175e-03
## eDNA_52 2.960430e-04 2.256179e-03 -2.287604e-03 -1.117150e-03
## eDNA_53 -5.835389e-04 -1.690085e-03 -7.905091e-04 5.439243e-03
## eDNA_54 -2.946654e-04 -2.277360e-03 9.680147e-05 3.915106e-03
## eDNA 55 1.075896e-04 8.207020e-03 -5.605225e-04 -4.112888e-03
## eDNA_56 3.184968e-04 5.178729e-03 -1.486811e-03 4.248754e-03
## eDNA 57 -5.166615e-04 1.704959e-04 3.064015e-03 1.218738e-03
## eDNA_58 -1.979587e-03 -3.133635e-03 -4.342433e-03 2.016078e-03
##
                 PCoA50
                               PCoA51
                                            PCoA52
                                                          PCoA53
## eDNA_01 -0.0095727561 -7.450487e-04 0.0089449626 -0.0053786135
## eDNA 02 -0.0004453259 -1.863236e-03 -0.0025815996 0.0001761155
## eDNA 03 0.0055891449 1.316716e-03 0.0022653086 0.0054786454
## eDNA_04 0.0040586373 1.775648e-03 -0.0007419782 -0.0030793700
## eDNA_05 -0.0055132615 8.132572e-03 -0.0054106542 -0.0032556781
## eDNA_06 -0.0011371739 -1.136625e-05 0.0008630637 -0.0004519912
## eDNA_07 -0.0016656107 6.621378e-04 -0.0084025140 0.0026030108
## eDNA_08  0.0023494513 -6.004934e-03  0.0000102342 -0.0035152795
## eDNA_09 -0.0035004779 7.608658e-04 0.0012713514 0.0073304565
## eDNA_10 0.0011869429 -7.242073e-03 0.0036904921 -0.0103093507
## eDNA_11 0.0019284370 2.419292e-03 0.0016675928 0.0034402425
## eDNA_12 0.0005936027 5.028186e-03 -0.0021161873 -0.0017371382
## eDNA_13 -0.0008075542 -2.401383e-03 0.0111087302 0.0046907779
## eDNA_14 0.0011261213 -2.301619e-03 0.0044621827 -0.0045229045
## eDNA 15 -0.0024783053 4.500023e-03 0.0029909960 0.0098736406
```

```
## eDNA_16 0.0028301925 -7.421772e-04 -0.0084225858 -0.0048119531
## eDNA_17 -0.0007185688 -4.648190e-03 0.0053577594 -0.0044275296
## eDNA 18 -0.0048227078 -7.348027e-03 0.0069686020 0.0015558823
## eDNA_19 0.0033021237 -6.119498e-03 0.0044120522 -0.0022958374
## eDNA_20 0.0049535915 2.389095e-03 -0.0095120165 -0.0029397272
## eDNA 21 0.0012945202 3.896907e-05 -0.0023697833 -0.0050201766
## eDNA 22 0.0002242544 -2.566634e-03 0.0007839037 -0.0005480711
## eDNA 23 -0.0016250305 3.649793e-03 -0.0002200010 0.0025530880
## eDNA_24 0.0020274056 8.651351e-04 -0.0001718806 -0.0021557677
## eDNA_25 0.0014399104 3.096248e-04 -0.0025399585 -0.0011703928
## eDNA_26 -0.0037312414 -5.582648e-03 -0.0030866177 -0.0066884221
## eDNA_27  0.0089526116  9.984763e-03  0.0126035554  0.0020272563
## eDNA_28 -0.0006440640 -2.697559e-03 -0.0058273598 0.0160643089
## eDNA_29 0.0033154676 -1.759392e-03 0.0007159108 -0.0005203163
## eDNA_30 -0.0025022024 2.373625e-03 -0.0015733264 0.0038934758
## eDNA_31 -0.0007141637 -2.570824e-03 -0.0006338108 -0.0004896720
## eDNA_32  0.0001304445 -3.916117e-04  0.0027183402  0.0010758651
## eDNA 33 -0.0102025149 5.286017e-03 0.0017688200 0.0064620733
## eDNA_34 -0.0014705255 3.478616e-04 -0.0004147925 -0.0022074341
## eDNA 35 -0.0038332282 6.996281e-03 0.0034833008 -0.0113848821
## eDNA_36  0.0022169025  6.498411e-04 -0.0024143192  0.0017935604
## eDNA_37  0.0018571143  5.507039e-03  0.0005242782 -0.0124904482
## eDNA_38 -0.0008743895 3.190427e-03 0.0045537189 0.0015956848
## eDNA_39  0.0084321947 -5.383755e-03  0.0015301745  0.0059203927
## eDNA 40 -0.0008551371 -3.685072e-04 0.0020346316 0.0014380052
## eDNA 41 0.0013354563 5.943014e-03 -0.0051832142 -0.0034801306
## eDNA_42 -0.0009887662 5.421829e-03 0.0087227855 0.0039240817
## eDNA_43 -0.0021442995 -8.151291e-03 -0.0046339728 0.0017335749
## eDNA_44 0.0009385614 2.894936e-03 -0.0074009219 -0.0132307261
## eDNA_45 -0.0008434932 2.680406e-03 -0.0003807837 0.0005499788
## eDNA_46 0.0124994358 -3.012059e-03 -0.0005578730 0.0078367676
## eDNA_47 -0.0007222173 -9.489152e-03 -0.0046159437 -0.0030765733
## eDNA_48  0.0001116027  1.292733e-03 -0.0027783494 -0.0012202267
## eDNA_49 -0.0015860859 2.361318e-03 0.0013156703 0.0037262252
## eDNA_50 -0.0013740923 1.398432e-03 -0.0019702925 0.0031072125
## eDNA_51 -0.0076260215 -4.468924e-03 -0.0013849182 -0.0008959914
## eDNA 52 0.0016341830 -4.738608e-04 0.0089828927 -0.0065619506
## eDNA_53 0.0012512258 -4.582980e-03 -0.0091894991 0.0024087574
## eDNA_54 0.0024596902 3.190311e-03 -0.0008691261 0.0010977561
## eDNA_55 -0.0053011891 -4.838000e-03 -0.0001610223 0.0072515174
## eDNA 56 -0.0007885689 6.481633e-03 -0.0123553955 0.0054264278
## eDNA_57 -0.0046915142 -1.518844e-03 -0.0006614507 0.0022433421
## eDNA_58  0.0051412611 -5.649299e-04  0.0048308382  0.0005884309
##
                 PCoA54
                               PCoA55
                                             PCoA56
                                                           PCoA57
## eDNA_01 1.512371e-03 -1.360979e-02 -2.014687e-05 -5.295121e-04
## eDNA_02 -7.918960e-03 -7.721453e-03 -3.790284e-04 4.075854e-03
## eDNA_03 4.677167e-03 3.083571e-03 5.017406e-03 2.790796e-03
## eDNA_04 -1.335585e-03 -2.482543e-03 -1.202101e-03 -2.594097e-04
## eDNA_05 1.102212e-03 2.343216e-03 2.095526e-03 2.472274e-03
## eDNA_06 -8.106486e-03 7.297289e-03 -1.660469e-02 -2.339848e-02
## eDNA_07 7.435055e-05 -1.048918e-02 3.935530e-03 -4.967435e-03
## eDNA_08 1.582824e-03 1.383527e-03 -4.015532e-04 1.710495e-04
## eDNA_09 5.385577e-03 2.448844e-03 5.259000e-04 6.899163e-04
## eDNA_10 -6.834679e-03 -1.617866e-02 -4.408381e-03 4.724248e-03
```

```
## eDNA_11 7.513391e-03 -1.887961e-03 1.434819e-03 1.087891e-03
## eDNA_12 1.302353e-03 5.205668e-03 1.953338e-03 2.668925e-03
## eDNA 13 -2.038685e-03 1.545075e-02 -8.990755e-03 -3.851257e-03
## eDNA_14 8.118780e-03 7.379740e-03 7.240759e-03 2.513190e-02
## eDNA_15 -1.504300e-02 2.059259e-03 3.682420e-03 1.094562e-02
## eDNA 16 1.715372e-02 -1.263868e-02 9.827565e-03 -2.611439e-03
## eDNA 17 -2.937003e-04 -5.560279e-03 -6.862663e-03 -6.490486e-03
## eDNA 18 5.165921e-03 5.189055e-03 -3.959304e-03 -6.156675e-04
## eDNA_19 -4.292250e-03 -4.646117e-03 -3.780319e-03 -7.853080e-04
## eDNA_20 -8.760865e-03 -4.821641e-03 5.785477e-03 6.152811e-03
## eDNA_21 -5.642288e-03 -5.356727e-04 -2.856563e-04 -4.343798e-04
## eDNA_22 1.709181e-03 -1.416769e-03 -1.542795e-03 -3.344646e-03
## eDNA_23 -3.026788e-05 4.267105e-03 2.518687e-04 5.698371e-04
## eDNA_24 2.254073e-04 2.554568e-03 2.123783e-03 1.215330e-03
## eDNA_25 4.831309e-03 -2.326985e-03 -2.375489e-02 1.663213e-02
## eDNA_26 -1.329692e-02 1.553456e-03 -2.684531e-04 -3.826022e-03
## eDNA_27 -8.692176e-04 -7.316282e-03 1.699345e-03 2.678821e-03
## eDNA 28 5.304917e-03 1.132324e-02 2.234546e-03 7.626995e-04
## eDNA_29 -3.361885e-03 2.675076e-03 2.899424e-03 6.978484e-03
## eDNA_30 -1.991384e-03 -2.428473e-03 4.140817e-03 7.084529e-03
## eDNA_31 1.305983e-03 -1.322465e-03 -3.126568e-03 1.430105e-03
## eDNA 32 -3.118456e-03 4.183345e-03 2.910412e-02 -1.620845e-02
## eDNA_33 4.162974e-04 -6.801637e-03 3.113471e-04 -6.529535e-04
## eDNA 34 -1.676558e-03 7.965323e-04 -7.043179e-05 1.337083e-07
## eDNA 35 -4.939338e-04 -1.922040e-03 1.604384e-03 3.516228e-03
## eDNA 36 5.069141e-03 7.182917e-03 1.256317e-03 -4.573286e-04
## eDNA_37 8.234949e-04 -3.931699e-03 -6.441375e-03 -9.359422e-03
## eDNA_38 -3.314381e-03 5.168981e-05 -4.330258e-04 9.771533e-04
## eDNA_39 -1.888447e-03 -5.228499e-03 -8.069973e-04 -1.417064e-03
## eDNA_40 -9.594044e-03 4.030468e-03 8.898614e-03 2.680385e-02
## eDNA_41 -6.871730e-03 -2.617252e-03 9.213241e-04 2.778662e-03
## eDNA_42 4.657845e-03 -1.456199e-03 -2.191859e-03 -6.926127e-03
## eDNA_43 6.474822e-03 6.607272e-03 8.170154e-05 -7.735134e-03
## eDNA_44 3.177217e-03 2.519518e-02 -5.816462e-05 -1.063936e-03
## eDNA_45 -3.319313e-03 -7.891190e-04 -2.641190e-03 -3.711322e-03
## eDNA_46 -2.291651e-03 -4.770643e-03 -2.742741e-03 -3.658502e-03
## eDNA 47 1.389341e-02 -1.450609e-03 9.771293e-03 1.744311e-02
## eDNA_48 -1.269955e-03 4.110763e-04 3.078369e-02 -1.917215e-02
## eDNA_49 -3.942249e-04 -9.758823e-04 1.001237e-03 3.978799e-03
## eDNA_50 -1.121844e-03 -1.131721e-03 1.107762e-03 2.037717e-03
## eDNA 51 3.308745e-03 3.837433e-03 -2.252194e-03 -2.464624e-03
## eDNA 52 4.785175e-03 1.523459e-02 -4.812032e-03 3.928125e-05
## eDNA_53 -2.091906e-02 6.330411e-03 -9.824647e-03 -9.978128e-03
## eDNA_54 1.555507e-02 -4.488680e-03 -1.076388e-02 -2.752978e-02
## eDNA_55 2.282552e-06 -1.492797e-02 9.738000e-05 -2.784300e-03
           7.033640e-03 -3.064485e-03 -2.199480e-02 9.529459e-03
## eDNA_56
## eDNA_57 9.588355e-04 6.394657e-04 7.266899e-04 -1.851723e-03
## eDNA_58 2.968322e-03 2.246524e-04 1.062543e-04 7.173720e-04
```

disp.group\$centroids

```
## PCoA1 PCoA2 PCoA3 PCoA4 PCoA5

## fecesC 0.3878748 -0.05983260 -0.00827372 -0.002572693 4.520720e-02

## fecesE 0.3846140 -0.05281179 -0.01768682 -0.003620721 2.563516e-02

## sedC -0.1621571 0.01383030 -0.07574180 0.129742326 1.774716e-02
```

```
-0.1536365 0.02393042 -0.08484757 0.114095079 1.808900e-02
## soilC -0.1310322 0.09076200 -0.08660862 -0.124608286 8.663795e-05
## soilE -0.1272992 0.09265998 -0.08386905 -0.139828718 -2.432636e-03
## waterC -0.1520673 -0.08814663 0.13910634 -0.019183111 -3.623969e-03
  waterE -0.1477446 -0.09197941
                              0.14612311 -0.021572728 -4.926486e-03
##
                PCoA6
                            PCoA7
                                         PCoA8
                                                      PCoA9
                                                                  PCoA10
## fecesC 0.0098589442 0.016397777 -9.495006e-04 -0.002803429 -0.0005967342
## fecesE -0.0009809179 -0.002832237 -4.382681e-03 -0.002298915 -0.0032227201
## sedC
          0.0019230882 -0.018076518 -7.021646e-05 -0.012981242 -0.0190403798
## sedE
         -0.0016667448 0.001182872 -8.991959e-03 -0.006189935 -0.0097486094
## soilC
          0.0207659427
                      0.014086669 -1.810293e-03 -0.007799465
                                                           0.0113697682
          ## soilE
                                                            0.0238205868
## waterC -0.0067040486 -0.013388065
                                  3.212156e-03 0.005526618
                                                            0.0001780629
                                                           0.0064050182
## waterE -0.0113894267 -0.004726205
                                  3.909079e-03 0.001114462
##
               PCoA11
                          PCoA12
                                       PCoA13
                                                   PCoA14
                                                                PCoA15
## fecesC 0.003183113 -0.003963531 0.0020243773 0.002531363 -0.0005298405
## fecesE -0.003608571 0.002141896 0.0003440503 -0.002857064 0.0013013718
          0.014102263 -0.005045631 0.0031010033 -0.010395640 0.0137423428
         -0.005464704 0.006464936 0.0060758761 0.009384678 -0.0088932577
## sedE
## soilC
          0.005083942 -0.005300623 0.0029716511 -0.002363583 0.0044321589
## soilE
          0.001742570 \ -0.004551787 \ 0.0082913536 \ 0.001480640 \ -0.0003408614
## waterC -0.006252494 0.002339251 0.0061153259 0.003829896 -0.0030460972
## waterE -0.004545598
                     0.006421805 0.0064820664 0.004093985 -0.0018753856
               PCoA16
                            PCoA17
                                         PCoA18
                                                      PCoA19
## fecesC -0.008224039 0.0084617606 -0.0053131147 0.0056286235
## fecesE 0.007316486 -0.0093475111 0.0040293886 -0.0069442978
          0.001547744 -0.0005069016 -0.0050878748 0.0032158632
## sedC
## sedE
          0.002813347 0.0061489242 0.0091063204 -0.0099944064
        ## soilC
## soilE
          ## waterC -0.001176543 0.0004675680 -0.0026140779 -0.0015345967
## waterE -0.004077742 -0.0007148156 0.0050376444 0.0023202964
##
               PCoA20
                            PCoA21
                                         PCoA22
         1.871564e-03 0.003013167 -0.0044011219 -0.0046322545
## fecesC
## fecesE -5.434625e-04 -0.003286834 0.0035344766
                                               0.0047069736
         -2.851750e-04 -0.005990463 -0.0003391233
## sedC
                                               0.0006712215
## sedE
          2.273680e-03 0.009031973 -0.0010661459 -0.0051716875
## soilC
        -1.869136e-03 -0.004531683 -0.0027033546 0.0040171382
          ## waterC -1.642061e-03 -0.001620279 -0.0026177886 0.0021203775
  waterE 6.578565e-05 -0.002305885 0.0037932998 -0.0016959900
               PCoA24
                            PCoA25
##
                                         PCoA26
                                                       PCoA27
## fecesC 0.0046528856 0.0044767226 0.0032243942 0.0001289074
## fecesE -0.0068589271 -0.0052939926 -0.0026994272 -0.0016560634
## sedC
         -0.0004938348 -0.0029892349 0.0005104500 0.0012973139
         -0.0001994614 0.0018385272 -0.0008720932 -0.0006985110
## sedE
## soilC
          0.0015694339 -0.0002737461 0.0029289752 -0.0012816005
## soilE
          0.0003684004 -0.0007059869 -0.0013453850 -0.0004637273
         0.0024004004 0.0011297401 -0.0035325443 -0.0016815309
  waterE -0.0015916923 -0.0027233255
                                   0.0046684005
                                                0.0011911673
##
               PCoA28
                            PCoA29
                                         PCoA30
                                                      PCoA31
## fecesC 0.0007728879 0.0032624291 -0.003361671 0.0003789649
## fecesE -0.0014147490 -0.0029653558 0.003188719 -0.0006940785
## sedC
        -0.0051082562 0.0007276507 -0.001683197 0.0019425900
```

```
## sedE
          0.0046446095 -0.0005163410 0.001132926 -0.0026507819
        ## soilC
## soilE -0.0009291542 -0.0014376238 0.001516174 -0.0027138314
## waterC -0.0010066063 -0.0022936813 -0.001829522 0.0030269221
  waterE
         ##
               PCoA32
                           PCoA33
                                        PCoA34
                                                     PCoA35
## fecesC -0.0013059273 -0.001943739 -0.0005138131 -0.0010967522
## fecesE 0.0013108361 0.001941544 0.0001957928
                                               0.0010952512
## sedC
          0.0012836986 0.001619802 -0.0020419565
                                               0.0003208542
## sedE
         -0.0006910528 -0.001585903 0.0020532735 -0.0007074935
## soilC
        -0.0040256369 -0.002804686 -0.0013101646 0.0031776381
          ## soilE
## waterC -0.0030216159
                      0.001318552 -0.0018196958 -0.0012894450
## waterE 0.0031054014 -0.001198342 0.0012177101 0.0015232918
##
                            PCoA37
                                         PCoA38
               PCoA36
         0.0004016044 -0.0006053044 -1.470032e-04 8.496251e-04
## fecesC
## fecesE -0.0003741919 0.0003595004 2.107090e-04 -9.186449e-04
         -0.0010018429 -0.0008153850 -4.312031e-04 1.167712e-03
          0.0006294952  0.0007610820  6.198903e-04 -1.258176e-03
## sedE
## soilC
          0.0019571170 - 0.0011021402 1.194394e - 03 - 1.289248e - 03
## soilE
        ## waterC 0.0018718789 -0.0011305951 6.683771e-05 -1.935014e-05
                       0.0010388946 -1.089476e-04 -1.002142e-04
## waterE -0.0016902142
               PCoA40
                            PCoA41
                                         PCoA42
                                                      PCoA43
## fecesC
         1.080751e-05  0.0004003521  0.0008716828 -0.0002607005
## fecesE -3.741882e-05 -0.0003551539 -0.0008217638 0.0002395858
          8.338249e-04 -0.0014510852 0.0014757244 -0.0003460347
## sedC
         -5.563145e-04 0.0016365865 -0.0016387248 0.0003404978
  sedE
        -6.576134e-04 -0.0014593249 -0.0036800377 -0.0006346475
## soilC
## soilE
          7.302543e-04 0.0013620383 0.0031691596
                                                0.0005411815
## waterC -1.379796e-03 0.0017412925
                                   0.0005010704
                                                 0.0008559772
  waterE
         1.453107e-03 -0.0014752124 -0.0002709734 -0.0007859971
##
               PCoA44
                            PCoA45
                                         PCoA46
                                                      PCoA47
## fecesC -1.571741e-04 3.525010e-05 -2.939244e-04
                                                 0.0000696631
         1.512704e-04 -3.646330e-05
                                   1.531149e-04
                                                 0.0004055686
          4.323787e-04 7.442799e-05 -7.709173e-05 -0.0001688912
## sedC
## sedE
         -5.348709e-04 -1.301651e-05 1.090552e-04
                                                 0.0008936589
## soilC
          1.924022e-04 -4.424521e-04 -2.555528e-04 0.0001607612
         -5.122270e-05 3.135128e-04
                                   1.944968e-04 -0.0009056166
## waterC -6.862448e-05 4.640367e-04 7.697569e-04 0.0007055191
         1.107679e-04 -5.111751e-04 -1.345287e-04 -0.0008686371
##
                            PCoA49
               PCoA48
                                         PCoA50
                                                      PCoA51
## fecesC
        0.0001470747 3.473135e-04 -0.0004111759 -0.0005314460
## fecesE -0.0000429035 -7.783467e-04 -0.0001489254 -0.0008428236
## sedC
         -0.0013375844 -3.095198e-04 0.0003027371 -0.0014969960
          0.0014127665 -6.589522e-06 -0.0008708656 0.0005784394
## sedE
## soilC
         -0.0009371561 1.544345e-03 0.0014810810 0.0006483433
## soilE
          0.0010455542 -9.707283e-04 -0.0015220046 -0.0006286481
## waterC -0.0004774724 1.274815e-03 0.0019980741 -0.0013172151
          0.0004496811 -1.219755e-03 -0.0006554063
                                                0.0019986355
##
               PCoA52
                            PCoA53
                                         PCoA54
                                                      PCoA55
## fecesC -0.0010244745 -6.765172e-05 1.985580e-04 -0.0025363545
## fecesE 0.0019230797 -1.467412e-04 -7.821703e-04 0.0039068044
          0.0007216908 -5.083225e-04 1.109365e-03 -0.0018822708
## sedC
```

```
## sedE
         -0.0006868360 1.677050e-04 -1.305983e-03 0.0002159500
## soilC -0.0008457973 1.114935e-03 -6.922759e-05 0.0010052332
## soilE
           0.0016351417 1.514065e-05 1.152270e-03 0.0001913697
## waterC 0.0008151452 8.764571e-05 1.050853e-06 0.0008271082
## waterE -0.0003077652 -4.924643e-04 -3.484497e-04 0.0009596914
##
                 PCoA56
                                PCoA57
## fecesC -0.0027385306 0.0013860052
## fecesE 0.0010564733 -0.0026147247
        -0.0012657501 -0.0022066403
## sedC
## sedE
           0.0005512717 0.0009778711
## soilC
           0.0020974559 0.0017207758
## soilE -0.0013019983 -0.0004730241
## waterC -0.0007002882 -0.0001164310
## waterE 0.0012092374 0.0010468986
# Soil
env.soi <- which(eDNA.env == "soil")</pre>
cent.soil <- as.data.frame(matrix(NA, nrow = length(env.soi), ncol = 3))</pre>
colnames(cent.soil) <- c("T", "C", "E")</pre>
rownames(cent.soil) <- rownames(eDNA.div)[env.soi]</pre>
# Centriod Ratio Calculaed for 1: vs Env; 2: vs C; 3 vs E
for (i in 1:length(env.soi)){
  cent.soil[i, 1] <- dist(rbind(disp.env$vectors[env.soi[i]]),</pre>
                                disp.env$centroids[3, ]), method = "euclidean")
  cent.soil[i, 2] <- dist(rbind(disp.group$vectors[env.soi[i]]),</pre>
                                disp.group$centroids[5, ]), method = "euclidean")
  cent.soil[i, 3] <- dist(rbind(disp.group$vectors[env.soi[i]]),</pre>
                                disp.group$centroids[6, ]), method = "euclidean")
}
pairs.soil \leftarrow eDNA.div[env.soi, c(3,4,5,7)]
cent.soil.ratio <- as.data.frame(matrix(NA, nrow = length(unique(pairs.soil$pair)),</pre>
                                         ncol = 3)
colnames(cent.soil.ratio) <- c("T", "C", "E")</pre>
rownames(cent.soil.ratio) <- paste(pairs.soil$env, pairs.soil$pair,</pre>
                                    sep = "")[which(pairs.soil$treat == "E") ]
for (i in 1:dim(cent.soil.ratio)[1]){
  pair <- as.numeric(gsub("soil", "", rownames(cent.soil.ratio)[i]))</pre>
  cent.soil.ratio[i, 1] <- (cent.soil[, 1][which(pairs.soil$pair == pair &</pre>
                                                  pairs.soil$treat == "C")]) /
                            (cent.soil[, 1][which(pairs.soil$pair == pair &
                                                  pairs.soil$treat == "E")])
  cent.soil.ratio[i, 2] <- (cent.soil[, 2][which(pairs.soil$pair == pair &</pre>
                                                pairs.soil$treat == "C")]) /
                            (cent.soil[, 2][which(pairs.soil$pair == pair &
                                                pairs.soil$treat == "E")])
  cent.soil.ratio[i, 3] <- (cent.soil[, 3][which(pairs.soil$pair == pair &</pre>
                                                pairs.soil$treat == "C")]) /
                            (cent.soil[, 3][which(pairs.soil$pair == pair &
                                                pairs.soil$treat == "E")])
}
```

```
# Water
env.wat <- which(eDNA.env == "water")</pre>
cent.water <- as.data.frame(matrix(NA, nrow = length(env.wat), ncol = 3))</pre>
colnames(cent.water) <- c("T", "C", "E")</pre>
rownames(cent.water) <- rownames(eDNA.div)[env.wat]</pre>
for (i in 1:length(env.wat)){
  cent.water[i, 1] <- dist(rbind(disp.env$vectors[env.wat[i]]),</pre>
                                 disp.env$centroids[4, ]), method = "euclidean")
  cent.water[i, 2] <- dist(rbind(disp.group$vectors[env.wat[i]],</pre>
                                 disp.group$centroids[7, ]), method = "euclidean")
  cent.water[i, 3] <- dist(rbind(disp.group$vectors[env.wat[i]],</pre>
                                 disp.group$centroids[8, ]), method = "euclidean")
}
pairs.water <- eDNA.div[env.wat, c(3,4,5,7)]</pre>
cent.water.ratio <- as.data.frame(matrix(NA, nrow = length(unique(pairs.water$pair)),</pre>
                                          ncol = 3)
colnames(cent.water.ratio) <- c("T", "C", "E")</pre>
rownames(cent.water.ratio) <- paste(pairs.water$env, pairs.water$pair,
                                     sep = "")[which(pairs.water$treat == "E") ]
for (i in 1:dim(cent.water.ratio)[1]){
  pair <- as.numeric(gsub("water", "", rownames(cent.water.ratio)[i]))</pre>
  cent.water.ratio[i, 1] <- (cent.water[, 1][which(pairs.water$pair == pair &</pre>
                                                   pairs.water$treat == "C")]) /
                             (cent.water[, 1][which(pairs.water$pair == pair &
                                                   pairs.water$treat == "E")])
  cent.water.ratio[i, 2] <- (cent.water[, 2][which(pairs.water$pair == pair &</pre>
                                                 pairs.water$treat == "C")]) /
                             (cent.water[, 2][which(pairs.water$pair == pair &
                                                 pairs.water$treat == "E")])
  cent.water.ratio[i, 3] <- (cent.water[, 3][which(pairs.water$pair == pair &</pre>
                                                 pairs.water$treat == "C")]) /
                             (cent.water[, 3][which(pairs.water$pair == pair &
                                                 pairs.water$treat == "E")])
}
# Sediments
env.sed <- which(eDNA.env == "sed")</pre>
cent.sed <- as.data.frame(matrix(NA, nrow = length(env.sed), ncol = 3))</pre>
colnames(cent.sed) <- c("T", "C", "E")</pre>
rownames(cent.sed) <- rownames(eDNA.div)[env.sed]</pre>
for (i in 1:length(env.sed)){
  cent.sed[i, 1] <- dist(rbind(disp.env$vectors[env.sed[i]],</pre>
                                 disp.env$centroids[2, ]), method = "euclidean")
  cent.sed[i, 2] <- dist(rbind(disp.group$vectors[env.sed[i]],</pre>
                                 disp.group$centroids[3, ]), method = "euclidean")
  cent.sed[i, 3] <- dist(rbind(disp.group$vectors[env.sed[i]]),</pre>
                                 disp.group$centroids[4, ]), method = "euclidean")
}
```

```
pairs.sed <- eDNA.div[env.sed, c(3,4,5,7)]
cent.sed.ratio <- as.data.frame(matrix(NA, nrow = length(unique(pairs.sed$pair)),</pre>
                                          ncol = 3)
colnames(cent.sed.ratio) <- c("T", "C", "E")</pre>
rownames(cent.sed.ratio) <- paste(pairs.sed$env, pairs.sed$pair,</pre>
                                     sep = "")[which(pairs.sed$treat == "E") ]
for (i in 1:dim(cent.sed.ratio)[1]){
  pair <- as.numeric(gsub("sed", "", rownames(cent.sed.ratio)[i]))</pre>
  cent.sed.ratio[i, 1] <- (cent.sed[, 1][which(pairs.sed$pair == pair &</pre>
                                                   pairs.sed$treat == "C")]) /
                             (cent.sed[, 1][which(pairs.sed$pair == pair &
                                                   pairs.sed$treat == "E")])
  cent.sed.ratio[i, 2] <- (cent.sed[, 2][which(pairs.sed$pair == pair &</pre>
                                                 pairs.sed$treat == "C")]) /
                             (cent.sed[, 2][which(pairs.sed$pair == pair &
                                                 pairs.sed$treat == "E")])
  cent.sed.ratio[i, 3] <- (cent.sed[, 3][which(pairs.sed$pair == pair &</pre>
                                                 pairs.sed$treat == "C")]) /
                             (cent.sed[, 3][which(pairs.sed$pair == pair &
                                                 pairs.sed$treat == "E")])
}
# Feces
env.fec <- which(eDNA.env == "feces")</pre>
cent.feces <- as.data.frame(matrix(NA, nrow = length(env.fec), ncol = 3))</pre>
colnames(cent.feces) <- c("T", "C", "E")</pre>
rownames(cent.feces) <- rownames(eDNA.div)[env.fec]</pre>
for (i in 1:length(env.fec)){
  cent.feces[i, 1] <- dist(rbind(disp.env$vectors[env.fec[i]]),</pre>
                                 disp.env$centroids[1, ]), method = "euclidean")
  cent.feces[i, 2] <- dist(rbind(disp.group$vectors[env.fec[i]]),</pre>
                                 disp.group$centroids[1, ]), method = "euclidean")
  cent.feces[i, 3] <- dist(rbind(disp.group$vectors[env.fec[i]],</pre>
                                 disp.group$centroids[2, ]), method = "euclidean")
}
pairs.feces <- eDNA.div[env.fec, c(3,4,5,7)]
cent.feces.ratio <- as.data.frame(matrix(NA, nrow = length(unique(pairs.feces$pair)),</pre>
                                          ncol = 3))
colnames(cent.feces.ratio) <- c("T", "C", "E")</pre>
rownames(cent.feces.ratio) <- paste(pairs.feces$env, pairs.feces$pair,</pre>
                                     sep = "")[which(pairs.feces$treat == "E") ]
for (i in 1:dim(cent.feces.ratio)[1]){
  pair <- as.numeric(gsub("feces", "", rownames(cent.feces.ratio)[i]))</pre>
  cent.feces.ratio[i, 1] <- (cent.feces[, 1][which(pairs.feces$pair == pair &</pre>
                                                   pairs.feces$treat == "C")]) /
                             (cent.feces[, 1][which(pairs.feces$pair == pair &
                                                   pairs.feces$treat == "E")])
```

```
cent.feces.ratio[i, 2] <- (cent.feces[, 2][which(pairs.feces$pair == pair &</pre>
                                          pairs.feces$treat == "C")]) /
                        (cent.feces[, 2][which(pairs.feces$pair == pair &
                                         pairs.feces$treat == "E")])
 cent.feces.ratio[i, 3] <- (cent.feces[, 3][which(pairs.feces$pair == pair &</pre>
                                         pairs.feces$treat == "C")]) /
                        (cent.feces[, 3][which(pairs.feces$pair == pair &
                                         pairs.feces$treat == "E")])
}
# Ratio Data Table
ratio.list <- list(cent.feces.ratio[,1], cent.sed.ratio[,1],</pre>
                   cent.soil.ratio[,1], cent.water.ratio[,1])
cent.dist.table <- as.data.frame(matrix(NA, nrow = 4, ncol = 5))</pre>
colnames(cent.dist.table) <- c("env", "mean", "sem", "LCI", "UCI")</pre>
cent.dist.table$env <- c("Gut", "Sediment", "Soil", "Water")</pre>
cent.dist.table$mean <- unlist(lapply(ratio.list, mean))</pre>
cent.dist.table$sem <- unlist(lapply(ratio.list, sem))</pre>
cent.dist.table$LCI <- unlist(lapply(ratio.list, FUN = function(x) t.test(x)$conf.int[1]))</pre>
cent.dist.table$UCI <- unlist(lapply(ratio.list, FUN = function(x) t.test(x)$conf.int[2]))</pre>
p.cent.dist.table <- as.data.frame(cent.dist.table)</pre>
# Regression: centroid ratio vs. proportion eDNA
# Combine Centroid Distances
centroid.dists <- c(cent.feces.ratio T, cent.sed.ratio T, cent.soil.ratio T,
                     cent.water.ratio$T)
names(centroid.dists) <- c(rownames(cent.feces.ratio), rownames(cent.sed.ratio),</pre>
                        rownames(cent.soil.ratio), rownames(cent.water.ratio))
# Reorganize
names(centroid.dists) %in% paste(eDNA.div.c$env, eDNA.div.c$pair, sep = "")
## [29] TRUE
all.equal(names(centroid.dists), paste(eDNA.div.c$env, eDNA.div.c$pair, sep = ""))
## [1] "28 string mismatches"
cent.dist <- centroid.dists[match(names(centroid.dists),</pre>
                    paste(eDNA.div.c$env, eDNA.div.c$pair, sep = ""))]
# Combine Centroid Distance and Design Information
centroid.div <- cbind(eDNA.div.c[,c(1:3, 5:7)], cent.dist)</pre>
centroid.div$qPCR.match %in% eDNA.prop$sample.number
## [29] TRUE
centroid.div$prop <- NA
for (i in 1:length(centroid.div$prop)){
 centroid.div$prop[i] <- eDNA.prop$prop[which(eDNA.prop$sample.number ==</pre>
                                            centroid.div$qPCR.match[i])]
```

```
t.cent.reg <- lm(cent.dist ~ prop * env, data = centroid.div)</pre>
summary(t.cent.reg)
##
## Call:
## lm(formula = cent.dist ~ prop * env, data = centroid.div)
## Residuals:
##
       Min
                1Q Median
                                 30
                                         Max
## -0.16662 -0.05189 -0.01227 0.01581 0.26899
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                0.05988
                           0.20021
                                    0.299
                                             0.768
## prop
                           0.14406
## envsed
                0.14548
                                   1.010
                                             0.324
## envsoil
               -0.03073
                           0.15307 -0.201
                                            0.843
## envwater
                0.07209
                        0.13904 0.518
                                            0.610
## prop:envsed -0.25185
                           0.28697 -0.878
                                            0.390
## prop:envsoil
                0.39154
                           0.49179
                                   0.796
                                             0.435
                           0.28361 -0.521
                                             0.608
## prop:envwater -0.14768
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.108 on 21 degrees of freedom
## Multiple R-squared: 0.1243, Adjusted R-squared: -0.1677
## F-statistic: 0.4257 on 7 and 21 DF, p-value: 0.8752
# answer => no correlation between proportion eDNA and centroid dist ratio.
```

Centroid Distance Plots

Taxonomic Centoid Distance Ratio Plot

```
length=0.1, lwd = 2)
points(c(1:4), cent.dist.table$mean,pch = 22, cex = 3, bg = "gray90", lwd = 2)
mtext(expression('Centroid Distance Ratio'), side = 2,
        outer = F, cex = 1.25, line = 2.5, adj = 0.5)
# Major Axes
axis(side = 2, lwd.ticks = 2, cex.axis = 1, las = 1,
   labels = T, at = c(0.5, 1, 1.5))
axis(side = 4, lwd.ticks = 2, cex.axis = 1, las = 1,
  labels = F, at = c(0.5, 1, 1.5))
axis(side = 1, lwd.ticks = 2, cex.axis = 0.9, las = 1,
   labels = c("Gut", "Sediment", "Soil", "Water"), at = c(1, 2, 3, 4))
axis(side = 3, lwd.ticks = 2, cex.axis = 1.5, las = 1,
   at = c(1, 2, 3, 4), labels = F)
# Minor ticks
axis(side = 2, lwd.ticks = 2, tck = 0.02, labels = F, at = c(0.5, 1, 1.5))
axis(side = 4, lwd.ticks = 2, tck = 0.02, labels = F, at = c(0.5, 1, 1.5))
axis(side = 1, lwd.ticks = 2, tck = 0.02, labels = F, at = c(1, 2, 3, 4))
axis(side = 3, lwd.ticks = 2, tck = 0.02, labels = F, at = c(1, 2, 3, 4))
# Close Plot Device
dev.off()
## pdf
##
graphics.off()
# Show Plot
img <- readPNG("../figures/ratio.centroid.png")</pre>
grid.raster(img)
```

Phylogenetic Centoid Distance Ratio Plot

```
png(filename="../figures/ratio.phylo.centroid.png",
    width = 800, height = 600, res = 96*2)

par(mar=c(3, 4, 1, 1) + 0.1)

cent.dist.table <- p.cent.dist.table

centroid.plot <- plot(cent.dist.table$mean, ylim = c(0.5, 1.5),
    xlim = c(0.5, 4.5), pch = 22, bg = "white", lwd = 2,
    cex = 3, yaxt = "n", xaxt = "n", cex.lab = 2, cex.axis = 1.5,
    las = 1, ylab = "", xlab = "")
    box(lwd = 2)

abline(h = 1, lty = 3, lwd = 2)

arrows(x0 = c(1,2,3,4), y0 = cent.dist.table$mean, y1 = cent.dist.table$LCI, angle = 90,
    length = 0.1, lwd = 2)</pre>
```

```
arrows(x0 = c(1,2,3,4), y0 = cent.dist.table mean, y1 = cent.dist.table UCI, angle = 90,
       length=0.1, lwd = 2)
points(c(1:4), cent.dist.table$mean,pch = 22, cex = 3, bg = "gray90", lwd = 2)
mtext(expression('Centroid Distance Ratio'), side = 2,
        outer = F, cex = 1.25, line = 2.5, adj = 0.5)
# Major Axes
axis(side = 2, lwd.ticks = 2, cex.axis = 1, las = 1,
   labels = T, at = c(0.5, 1, 1.5))
axis(side = 4, lwd.ticks = 2, cex.axis = 1, las = 1,
  labels = F, at = c(0.5, 1, 1.5))
axis(side = 1, lwd.ticks = 2, cex.axis = 0.9, las = 1,
   labels = c("Gut", "Sediment", "Soil", "Water"), at = c(1, 2, 3, 4))
axis(side = 3, lwd.ticks = 2, cex.axis = 1.5, las = 1,
   at = c(1, 2, 3, 4), labels = F)
# Minor ticks
axis(side = 2, lwd.ticks = 2, tck = 0.02, labels = F, at = c(0.5, 1, 1.5))
axis(side = 4, lwd.ticks = 2, tck = 0.02, labels = F, at = c(0.5, 1, 1.5))
axis(side = 1, lwd.ticks = 2, tck = 0.02, labels = F, at = c(1, 2, 3, 4))
axis(side = 3, lwd.ticks = 2, tck = 0.02, labels = F, at = c(1, 2, 3, 4))
# Close Plot Device
dev.off()
## pdf
##
graphics.off()
# Show Plot
img <- readPNG("../figures/ratio.phylo.centroid.png")</pre>
grid.raster(img)
```

Multipanel Centoid Distance Ratio Plot

```
png(filename="../figures/panel.ratio.centroid.png",
    width = 800, height = 1200, res = 96*2)

layout(matrix(1:2, 2, 1))
par(mar = c(0.5, 5, 0.5, 0) + 0.1, oma = c(4, 1, 1, 1))

# Bray Curtis Plot
cent.dist.table <- t.cent.dist.table
centroid.plot <- plot(cent.dist.table$mean, ylim = c(0.5, 1.6),
    xlim = c(0.5, 4.5), pch = 22, bg = "white", lwd = 2,
    cex = 3, yaxt = "n", xaxt = "n", cex.lab = 2, cex.axis = 1.5,
    las = 1, ylab = "", xlab = "")
    box(lwd = 2)

abline(h = 1, lty = 3, lwd = 2)</pre>
```

```
arrows(x0 = c(1,2,3,4), y0 = cent.dist.table$mean, y1 = cent.dist.table$LCI, angle = 90,
       length = 0.1, lwd = 2)
arrows(x0 = c(1,2,3,4), y0 = cent.dist.table$mean, y1 = cent.dist.table$UCI, angle = 90,
       length=0.1, lwd = 2)
points(c(1:4), cent.dist.table$mean,pch = 22, cex = 3, bg = "gray90", lwd = 2)
mtext('Centroid Distance Ratio\n(Bray Curtis Distance)', side = 2,
       outer = F, cex = 1.25, line = 2.5, adj = 0.5)
# Major Axes
axis(side = 2, lwd.ticks = 2, cex.axis = 1, las = 1,
   labels = T, at = c(0.7, 1, 1.3, 1.6))
axis(side = 4, lwd.ticks = 2, cex.axis = 1, las = 1,
   labels = F, at = c(0.7, 1, 1.3, 1.6), tck = -0.02)
axis(side = 1, lwd.ticks = 2, cex.axis = 0.9, las = 1,
   labels = F, at = c(1, 2, 3, 4), tck = -0.02)
axis(side = 3, lwd.ticks = 2, cex.axis = 1.5, las = 1,
    at = c(1, 2, 3, 4), labels = F, tck = -0.02)
# Minor ticks
axis(side = 2, lwd.ticks = 2, tck = 0.02, labels = F,
     at = c(0.7, 1, 1.3, 1.6))
axis(side = 4, lwd.ticks = 2, tck = 0.02, labels = F,
    at = c(0.7, 1, 1.3, 1.6)
axis(side = 1, lwd.ticks = 2, tck = 0.02, labels = F, at = c(1, 2, 3, 4))
axis(side = 3, lwd.ticks = 2, tck = 0.02, labels = F, at = c(1, 2, 3, 4))
# Phylogenetic Plot
cent.dist.table <- p.cent.dist.table</pre>
centroid.plot <- plot(cent.dist.table$mean, ylim = c(0.6, 1.4),</pre>
      xlim = c(0.5, 4.5), pch = 22, bg = "white", lwd = 2,
      cex = 3, yaxt = "n", xaxt = "n", cex.lab = 2, cex.axis = 1.5,
     las = 1, ylab = "", xlab = "")
     box(lwd = 2)
abline(h = 1, ltv = 3, lwd = 2)
arrows(x0 = c(1,2,3,4), y0 = cent.dist.table mean, y1 = cent.dist.table LCI, angle = 90,
       length = 0.1, lwd = 2)
arrows(x0 = c(1,2,3,4), y0 = cent.dist.table$mean, y1 = cent.dist.table$UCI, angle = 90,
       length=0.1, lwd = 2)
points(c(1:4), cent.dist.table$mean,pch = 22, cex = 3, bg = "gray90", lwd = 2)
mtext('Centroid Distance Ratio\n(UniFrac Distance)', side = 2,
       outer = F, cex = 1.25, line = 2.5, adj = 0.5)
# Major Axes
axis(side = 2, lwd.ticks = 2, cex.axis = 1, las = 1,
   labels = T, at = c(0.7, 1, 1.3)
axis(side = 4, lwd.ticks = 2, cex.axis = 1, las = 1,
   labels = F, at = c(0.7, 1, 1.3), tck = -0.02)
```

```
axis(side = 1, lwd.ticks = 2, cex.axis = 1, las = 1,
   labels = c("Gut", "Sediment", "Soil", "Water"), at = c(1, 2, 3, 4))
axis(side = 3, lwd.ticks = 2, cex.axis = 1.5, las = 1,
   at = c(1, 2, 3, 4), labels = F, tck = -0.02)
# Minor ticks
axis(side = 2, lwd.ticks = 2, tck = 0.02, labels = F, at = c(0.7, 1, 1.3))
axis(side = 4, lwd.ticks = 2, tck = 0.02, labels = F, at = c(0.7, 1, 1.3))
axis(side = 1, lwd.ticks = 2, tck = 0.02, labels = F, at = c(1, 2, 3, 4))
axis(side = 3, lwd.ticks = 2, tck = 0.02, labels = F, at = c(1, 2, 3, 4))
# Close Plot Device
dev.off()
## pdf
graphics.off()
# Show Plot
img <- readPNG("../figures/panel.ratio.centroid.png")</pre>
grid.raster(img)
```

Old Code

```
# Delta Distance as Funciton of Proportion eDNA
eDNA.pairs
eDNA.prop
eDNA.pairs$prop <- eDNA.prop.sub2$prop[match(eDNA.prop.sub2$sample.number, eDNA.pairs$qPCR)]
# Reshape data
eDNA.pairs.2 <- reshape(eDNA.pairs[,1:4], timevar = "treat",</pre>
                   idvar = c("qPCR.match", "env"), direction = "wide")
# Regression: PD ratio vs. proportion eDNA
phylo.reg <- lm(phylo.2[order(phylo.2$qPCR.match), ]$phylo.ratio ~ eDNA.prop.sub2$prop * eDNA.prop.sub2
summary(phylo.reg)
# Separate by Treatments
eDNA.div.c <- eDNA.div[which(eDNA.div$treat == "C"), ]
eDNA.div.e <- eDNA.div[which(eDNA.div$treat == "E"), ]
OTU.REL.log.c <- OTU.REL.log[which(eDNA.div$treat == "C"), ]
OTU.REL.log.e <- OTU.REL.log[which(eDNA.div$treat == "E"), ]
# Order Each by Pairings
eDNA.div.c <- eDNA.div.c[order(eDNA.div.c$pair), ]
eDNA.div.e <- eDNA.div.e[order(eDNA.div.e$pair), ]
OTU.REL.log.c <- OTU.REL.log.c[order(eDNA.div.c$pair), ]
OTU.REL.log.e <- OTU.REL.log.e[order(eDNA.div.e$pair), ]
all.equal(eDNA.div.e$env, eDNA.div.c$env)
```

```
# Create Distance Matrix for Treatments
dist.c <- vegdist(OTU.REL.log.c, method = "bray", upper = T, diag = T)</pre>
dist.e <- vegdist(OTU.REL.log.e, method = "bray", upper = T, diag = T)
pcoa.c <- cmdscale(dist.c, k = 3)</pre>
pcoa.e <- cmdscale(dist.e, k = 3)</pre>
# Procrustes Analysis
eDNA.ProC <- protest(pcoa.c, pcoa.e, scores = "sites", permutations = how(nperm = 999))
eDNA.ProC
summary(eDNA.ProC)
# Delta Distances
## Taxonomic Distances Between Pairs
# Data Check
all.equal(row.names(eDNA.div), row.names(OTU.REL.log))
# Create Raw Distance Matrix
dist.raw <- as.matrix(vegdist(OTU.REL.log, method = "bray", upper = T, diag = T))</pre>
# Calculate Average Distance For Each Environment
mean.dist.env <- matrix(NA, length(unique(eDNA.div$env)), 3)</pre>
rownames(mean.dist.env) <- unique(eDNA.div$env)</pre>
colnames(mean.dist.env) <- c("Total", "C", "E")</pre>
for (i in 1:dim(mean.dist.env)[1]){
  mean.dist.env[i, 1] <- mean(dist.raw[eDNA.div$env == rownames(mean.dist.env)[i],</pre>
                                      eDNA.div\u00e9env == rownames(mean.dist.env)[i]])
 mean.dist.env[i, 2] <- mean(dist.raw[eDNA.div$env == rownames(mean.dist.env)[i] &</pre>
                                          eDNA.div$treat == "C",
                                      eDNA.div$env == rownames(mean.dist.env)[i] &
                                          eDNA.div$treat == "C"])
  mean.dist.env[i, 3] <- mean(dist.raw[eDNA.div$env == rownames(mean.dist.env)[i] &
                                          eDNA.div$treat == "E",
                                      eDNA.div$env == rownames(mean.dist.env)[i] &
                                          eDNA.div$treat == "E"])
}
# Create Pairing Matrix
pair.names <- levels(as.factor(eDNA.div$pair))</pre>
eDNA.pairs <- as.data.frame(matrix(NA, length(pair.names), 4))
colnames(eDNA.pairs) <- c("pair", "env", "dis", "qPCR")</pre>
eDNA.pairs$pair <- pair.names
# Calculate Distance for Pairs
for (i in 1:length(pair.names)){
  pair.temp <- eDNA.pairs$pair[i]</pre>
  samp.temp <- rownames(eDNA.div)[which(eDNA.div$pair == pair.temp)]</pre>
  if (length(samp.temp) != 2){
    stop("more than two samples in pair")
  dist.temp <- dist.raw[which(colnames(dist.raw) == samp.temp[1]),</pre>
                         which(colnames(dist.raw) == samp.temp[2])]
  eDNA.pairs$env[i] <- eDNA.div$env[which(row.names(eDNA.div) == samp.temp[1])]
```

```
eDNA.pairs$dis[i] <- dist.temp
  eDNA.pairs$qPCR[i] <- eDNA.div$qPCR.match[which(row.names(eDNA.div) == samp.temp[1])]
# Organize Data
pair.dis.mean <- aggregate(dis ~ env, eDNA.pairs, mean)</pre>
pair.dis.sem <- aggregate(dis ~ env, eDNA.pairs, sem)</pre>
pair.dis.95 <- aggregate(dis ~ env, eDNA.pairs,
                  FUN = function(x) t.test(x)$conf.int[1:2])
t.pair.dis.table <- data.frame(env = pair.dis.mean$env, mean = pair.dis.mean$dis,
                          sem = pair.dis.sem$dis, ci = pair.dis.95$dis)
colnames(t.pair.dis.table) <- c("env", "mean", "sem", "LCI", "UCI")</pre>
# Organize Data as Ratio
env.means <-
## Phylogenetic Distances between Pairs
# Data Check
all.equal(row.names(eDNA.div), row.names(as.matrix(phylo.dist.m)))
# Create Raw Distance Matrix
dist.raw <- phylo.dist.m</pre>
colnames(dist.raw) <- rownames(dist.raw)</pre>
# Create Pairing Matrix
pair.names <- levels(as.factor(eDNA.div$pair))</pre>
eDNA.pairs <- as.data.frame(matrix(NA, length(pair.names), 4))
colnames(eDNA.pairs) <- c("pair", "env", "dis", "qPCR")</pre>
eDNA.pairs$pair <- pair.names
# Calculate Distance for Pairs
for (i in 1:length(pair.names)){
  pair.temp <- eDNA.pairs$pair[i]</pre>
  samp.temp <- rownames(eDNA.div)[which(eDNA.div$pair == pair.temp)]</pre>
  if (length(samp.temp) != 2){
    stop("more than two samples in pair")
  }
  dist.temp <- dist.raw[which(colnames(dist.raw) == samp.temp[1]),</pre>
                         which(colnames(dist.raw) == samp.temp[2])]
  eDNA.pairs$env[i] <- eDNA.div$env[which(row.names(eDNA.div) == samp.temp[1])]
  eDNA.pairs$dis[i] <- dist.temp
  eDNA.pairs$qPCR[i] <- eDNA.div$qPCR.match[which(row.names(eDNA.div) == samp.temp[1])]
}
pair.dis.mean <- aggregate(dis ~ env, eDNA.pairs, mean)</pre>
pair.dis.sem <- aggregate(dis ~ env, eDNA.pairs, sem)</pre>
pair.dis.95 <- aggregate(dis ~ env, eDNA.pairs,</pre>
                  FUN = function(x) t.test(x)$conf.int[1:2])
p.pair.dis.table <- data.frame(env = pair.dis.mean$env, mean = pair.dis.mean$dis,</pre>
                          sem = pair.dis.sem$dis, ci = pair.dis.95$dis)
colnames(p.pair.dis.table) <- c("env", "mean", "sem", "LCI", "UCI")</pre>
```

```
# Delta Distance Plots
## Taxonomic Plot
png(filename="../figures/delta.dist.png",
   width = 800, height = 600, res = 96*2)
par(mar=c(3, 4, 1, 1) + 0.1)
distance.plot <- plot(t.pair.dis.table\frac{1}{2}mean, ylim = c(-0.1, 0.6),
      xlim = c(0.5, 4.5), pch = 22, bg = "white", lwd = 2,
      cex = 3, yaxt = "n", xaxt = "n", cex.lab = 2, cex.axis = 1.5,
      las = 1, ylab = "", xlab = "")
      box(lwd = 2)
abline(h = 0, lty = 3, lwd = 2)
arrows(x0 = c(1,2,3,4), y0 = delta.dis.table mean, y1 = delta.dis.table LCI,
       angle = 90, length = 0.1, lwd = 2)
arrows(x0 = c(1,2,3,4), y0 = delta.dis.table$mean, y1 = delta.dis.table$UCI,
       angle = 90, length=0.1, lwd = 2)
points(c(1:4), delta.dis.table$mean, pch = 22, cex = 3, bg = "gray90", lwd = 2)
mtext(expression('Distance'), side = 2,
      outer = F, cex = 1.5, line = 3, adj = 0.5)
# Major Axes
axis(side = 2, lwd.ticks = 2, cex.axis = 1, las = 1,
   labels = T, at = c(seq(-0.1, 0.3, 0.1))
axis(side = 4, lwd.ticks = 2, cex.axis = 1, las = 1,
   labels = F, at = c(-0.1, 0.3, 0.1))
axis(side = 1, lwd.ticks = 2, cex.axis = 0.9, las = 1,
   labels = c("Gut", "Sediment", "Soil", "Water"), at = c(1, 2, 3, 4))
axis(side = 3, lwd.ticks = 2, cex.axis = 1.5, las = 1,
    at = c(1, 2, 3, 4), labels = F)
# Minor ticks
axis(side = 2, lwd.ticks = 2, tck = 0.02, labels = F, at = c(0.5, 1, 1.5))
axis(side = 4, lwd.ticks = 2, tck = 0.02, labels = F, at = c(-0.1, 0.3, 0.1))
axis(side = 1, lwd.ticks = 2, tck = 0.02, labels = F, at = c(1, 2, 3, 4))
axis(side = 3, lwd.ticks = 2, tck = 0.02, labels = F, at = c(-0.1, 0.3, 0.1))
# Close Plot Device
dev.off()
graphics.off()
# Show Plot
img <- readPNG("../figures/delta.dist.png")</pre>
grid.raster(img)
## Phylogenetic Plot
png(filename="../figures/phylo.delta.dist.png",
   width = 800, height = 600, res = 96*2)
```

```
par(mar=c(3, 4, 1, 1) + 0.1)
distance.plot <- plot(delta.dis.table\frac{1}{2}mean, ylim = c(-0.1, 0.3),
      xlim = c(0.5, 4.5), pch = 22, bg = "white", lwd = 2,
      cex = 3, yaxt = "n", xaxt = "n", cex.lab = 2, cex.axis = 1.5,
      las = 1, ylab = "", xlab = "")
      box(lwd = 2)
abline(h = 0, lty = 3, lwd = 2)
arrows(x0 = c(1,2,3,4), y0 = delta.dis.table$mean, y1 = delta.dis.table$LCI,
       angle = 90, length = 0.1, lwd = 2)
arrows(x0 = c(1,2,3,4), y0 = delta.dis.table mean, y1 = delta.dis.table UCI,
       angle = 90, length=0.1, lwd = 2)
points(c(1:4), delta.dis.table$mean, pch = 22, cex = 3, bg = "gray90", lwd = 2)
mtext(expression('Distance'), side = 2,
      outer = F, cex = 1.5, line = 3, adj = 0.5)
# Major Axes
axis(side = 2, lwd.ticks = 2, cex.axis = 1, las = 1,
   labels = T, at = c(seq(-0.1, 0.3, 0.1))
axis(side = 4, lwd.ticks = 2, cex.axis = 1, las = 1,
  labels = F, at = c(-0.1, 0.3, 0.1))
axis(side = 1, lwd.ticks = 2, cex.axis = 0.9, las = 1,
   labels = c("Gut", "Sediment", "Soil", "Water"), at = c(1, 2, 3, 4))
axis(side = 3, lwd.ticks = 2, cex.axis = 1.5, las = 1,
   at = c(1, 2, 3, 4), labels = F)
# Minor ticks
axis(side = 2, lwd.ticks = 2, tck = 0.02, labels = F, at = c(0.5, 1, 1.5))
axis(side = 4, lwd.ticks = 2, tck = 0.02, labels = F, at = c(-0.1, 0.3, 0.1))
axis(side = 1, lwd.ticks = 2, tck = 0.02, labels = F, at = c(1, 2, 3, 4))
axis(side = 3, lwd.ticks = 2, tck = 0.02, labels = F, at = c(-0.1, 0.3, 0.1))
# Close Plot Device
dev.off()
graphics.off()
# Show Plot
img <- readPNG("../figures/phylo.delta.dist.png")</pre>
grid.raster(img)
## Delta-Abundances
# Check order of design
all.equal(row.names(eDNA.div), row.names(OTU.REL.log))
OTU.REL.c <- OTU.REL.log[which(eDNA.div$treat == "C"), ]
OTU.REL.e <- OTU.REL.log[which(eDNA.div$treat == "E"), ]
eDNA.div.c <- eDNA.div[which(eDNA.div$treat == "C"), ]
eDNA.div.e <- eDNA.div[which(eDNA.div$treat == "E"), ]
```

```
all.equal(sort(eDNA.div.c$samp.code), sort(eDNA.div.e$samp.code))
eDNA.div.c <- eDNA.div.c[order(eDNA.div.c$samp.code), ]
eDNA.div.e <- eDNA.div.e[order(eDNA.div.e$samp.code), ]
OTU.REL.c2 <- OTU.REL.c[order(eDNA.div.c$samp.code), ]</pre>
OTU.REL.e2 <- OTU.REL.e[order(eDNA.div.e$samp.code), ]</pre>
dim(OTU.REL.c2); dim(OTU.REL.e2)
all.equal(eDNA.div.e$samp.code, eDNA.div.c$samp.code)
delta.abund <- OTU.REL.c2 - OTU.REL.e2
eDNA.permanova <- adonis(delta.abund ~ eDNA.div.c$env,
                         method = "euclidean", binary = FALSE)
eDNA.permanova
# What is this stuff for?????? Check all calculations
# Variation Parititioning
# Turn Distance Matrices into Matrices
dist.raw <- as.matrix(dist.raw)</pre>
dist.e <- as.matrix(dist.e)</pre>
dist.c <- as.matrix(dist.c)</pre>
# Seperate by Habitat
eDNA.div.gut <- eDNA.div[which(eDNA.div$env == "feces"), ]
eDNA.div.sed <- eDNA.div[which(eDNA.div$env == "sed"), ]
eDNA.div.sol <- eDNA.div[which(eDNA.div$env == "soil"), ]
eDNA.div.wat <- eDNA.div[which(eDNA.div$env == "water"), ]
OTU.REL.log.gut <- OTU.REL.log[which(eDNA.div$env == "feces"), ]
OTU.REL.log.sed <- OTU.REL.log[which(eDNA.div$env == "sed"), ]
OTU.REL.log.sol <- OTU.REL.log[which(eDNA.div$env == "soil"), ]
OTU.REL.log.wat <- OTU.REL.log[which(eDNA.div$env == "water"), ]
# Order Each by Pairings
eDNA.div.gut <- eDNA.div.gut[order(eDNA.div.gut$pair), ]
eDNA.div.sed <- eDNA.div.sed[order(eDNA.div.sed$pair), ]</pre>
eDNA.div.sol <- eDNA.div.sol[order(eDNA.div.sol$pair), ]</pre>
eDNA.div.wat <- eDNA.div.wat[order(eDNA.div.wat$pair), ]</pre>
OTU.REL.log.gut <- OTU.REL.log.gut[order(eDNA.div.gut$pair), ]
OTU.REL.log.sed <- OTU.REL.log.sed[order(eDNA.div.sed$pair), ]</pre>
OTU.REL.log.sol <- OTU.REL.log.sol[order(eDNA.div.sol$pair), ]
OTU.REL.log.wat <- OTU.REL.log.wat[order(eDNA.div.wat$pair), ]
# Create Distance Matrix for Treatments
dist.gut <- vegdist(OTU.REL.log.gut, method = "bray", upper = F, diag = F)</pre>
```

```
dist.sed <- vegdist(OTU.REL.log.sed, method = "bray", upper = F, diag = F)
dist.sol <- vegdist(OTU.REL.log.sol, method = "bray", upper = F, diag = F)</pre>
dist.wat <- vegdist(OTU.REL.log.wat, method = "bray", upper = F, diag = F)</pre>
# Turn Distance Matrices into Matrices
dist.gut2 <- as.matrix(dist.gut)</pre>
dist.sed2 <- as.matrix(dist.sed)</pre>
dist.sol2 <- as.matrix(dist.sol)</pre>
dist.wat2 <- as.matrix(dist.wat)</pre>
# what are the factors I have to work with
head(eDNA.div.gut)
levels(eDNA.div.gut$treat)
levels(as.factor(eDNA.div.gut$qPCR.match))
# Variance Partitioning
var.gut <- varpart(Y = dist.gut, as.numeric(eDNA.div.gut$treat), (eDNA.div.gut$qPCR.match))</pre>
plot(var.gut)
gut.RDA <- capscale(dist.gut ~ eDNA.div.gut$treat + as.factor(eDNA.div.gut$qPCR.match))</pre>
anova(gut.RDA, by = "term")
RsquareAdj(gut.RDA)
# Adjusted RSquare by Terms
rda.aov <- (anova(gut.RDA, by = "term"))
r2 <- (rda.aov$SumOfSqs[1:2] / sum(rda.aov$SumOfSqs[1:3]))
m <- c(length(levels(eDNA.div.gut$treat)) - 1,</pre>
       length(levels(as.factor(eDNA.div.gut$qPCR.match))) - 1)
n <- nrow(gut.RDA$CCA$u)</pre>
adjr2 \leftarrow 1 - (1 - r2) * (n - 1)/(n - m - 1)
r2; adjr2; sum(r2); sum(adjr2)
var.r2 <- as.data.frame(matrix(NA, 4, 3))</pre>
colnames(var.r2) <- c("eDNA", "replicates", "unexplained")</pre>
row.names(var.r2) <- c("gut", "sed", "sol", "wat")
for (i in 1:dim(var.r2)[1]){
  env.temp <- rownames(var.r2)[i]</pre>
  dis.temp <- get(paste("dist", env.temp, sep = "."))</pre>
  dat.temp <- get(paste("eDNA.div", env.temp, sep = "."))</pre>
  rda.temp <- capscale(dis.temp ~ dat.temp$treat +
                          as.factor(dat.temp$qPCR.match))
  aov.temp <- anova(rda.temp, by = "term")</pre>
  r2 <- (aov.temp$SumOfSqs[1:2] / sum(aov.temp$SumOfSqs[1:3]))
  var.r2[i, 1] \leftarrow r2[1]
  var.r2[i, 2] <- r2[2]</pre>
  var.r2[i, 3] \leftarrow (1 - sum(r2))
png(filename="../figures/variation.png",
    width = 1200, height = 800, res = 96*2)
layout(matrix(1:2, 2, 1), heights = c(8, 2))
par(mar = c(2, 5, 1, 0) + 0.5, oma = c(0.5, 0.5, 0.5, 0.5))
```

```
barplot(t(as.matrix(var.r2)),
        names.arg = c("Gut", "Sediment", "Soil", "Water"),
        las = 1, ylab = "")
mtext("Proportion of Variation", side = 2, cex = 1.25, line = 3)
# Add Legend Outside
par(mar = c(1, 5, 0, 1) + 0.5)
plot.new()
legend("top", c("DNase", "Replicates", "Unexplained"),
       pch = 22, pt.bg = c("gray40", "gray60", "gray90"),
      bty = "n", y.intersp = 1.5, horiz = T)
# Close Plot Device
dev.off()
graphics.off()
# Show Plot
img <- readPNG("../figures/variation.png")</pre>
grid.raster(img)
# Variation based on Bray Curtis Distance
bc.var <- as.data.frame(matrix(NA, 4, 3))</pre>
colnames(bc.var) <- c("reps", "treat", "env")</pre>
row.names(bc.var) <- c("gut", "sed", "sol", "wat")</pre>
for (i in 1:dim(bc.var)[1]){
  env.temp <- rownames(bc.var)[i]</pre>
  dis.temp <- get(paste("dist", env.temp, sep = "."))</pre>
  dat.temp <- get(paste("eDNA.div", env.temp, sep = "."))</pre>
  dat.temp <- dat.temp[order(dat.temp$samp.num), ]</pre>
  if (all(attributes(dis.temp)$Labels != rownames(dat.temp))){
    stop("distance matix and data are not arranged properly")
  dis.temp.C <- as.matrix(dis.temp)[which(dat.temp$treat == "C"),</pre>
                                      which(dat.temp$treat == "C")]
  dis.temp.C <- as.dist(dis.temp.C)</pre>
  bc.var[i,3] <- mean(dis.temp.C)</pre>
  dis.pair <- as.data.frame(matrix(NA, length(unique(dat.temp$pair)), 3))</pre>
  colnames(dis.pair) <- c("C", "E", "dis")</pre>
  dis.pair[,1] <- rownames(dat.temp)[dat.temp$treat == "C"]</pre>
  for (j in 1:length(dis.pair$C)){
    pair <- dat.temp$pair[which(rownames(dat.temp) == dis.pair$C[j])]</pre>
    dis.pair[j, 2] <- rownames(dat.temp)[which(dat.temp$treat == "E" &</pre>
                                            dat.temp$pair == pair)]
    dis.pair[j, 3] <- as.matrix(dis.temp)[which(rownames(dat.temp) == dis.pair[j, 1]),</pre>
                                      which(rownames(dat.temp) == dis.pair[j, 2])]
  bc.var[i,2] <- mean(dis.pair[,3])</pre>
  reps <- names(which(table(dat.temp$qPCR.match) > 2))
  dis.rep <- as.data.frame(matrix(NA, length(reps), 3))</pre>
```

```
colnames(dis.rep) <- c("rep1", "rep2", "dis")</pre>
  for (k in 1:length(reps)){
    dis.rep[k, 1:2] <- rownames(dat.temp)[which(dat.temp$treat == "C" &</pre>
                                            dat.temp$qPCR.match == reps[k])]
    dis.rep[k, 3] <- as.matrix(dis.temp)[which(rownames(dat.temp) == dis.rep[k, 1]),</pre>
                                     which(rownames(dat.temp) == dis.rep[k, 2])]
 }
 bc.var[i, 1] <- mean(dis.rep[, 3])</pre>
bc.var
# bc.var <- bc.var/rowSums(bc.var)</pre>
# Standardized BC distances
bc.var.std <- bc.var/rowSums(bc.var)</pre>
## Distance Partitioning Plot
png(filename="../figures/BC_dist.png",
    width = 1200, height = 800, res = 96*2)
layout(matrix(1:2, 2, 1), heights = c(8, 2))
par(mar = c(2, 5, 1, 0) + 0.5, oma = c(0.5, 0.5, 0.5, 0.5))
barplot(t(as.matrix(bc.var)),
        names.arg = c("Gut", "Sediment", "Soil", "Water"),
        las = 1, ylab = "", ylim = c(0, 1))
mtext("Bray Curtis Distance", side = 2, cex = 1.25, line = 3)
# Add Legend Outside
par(mar = c(1, 5, 0, 1) + 0.5)
plot.new()
legend("top", c("Replicates", "Treatments", "Environments"),
       pch = 22, pt.bg = c("gray40", "gray60", "gray90"),
      bty = "n", y.intersp = 1.5, horiz = T)
# Close Plot Device
dev.off()
graphics.off()
# Show Plot
img <- readPNG("../figures/BC_dist.png")</pre>
grid.raster(img)
# PERMANOVA on Delta-Distances
# Check order of design
all.equal(row.names(eDNA.div), row.names(as.matrix(phylo.dist)))
OTU.REL.c <- OTU.REL.log[which(eDNA.div$treat == "C"), ]
```

```
OTU.REL.e <- OTU.REL.log[which(eDNA.div$treat == "E"), ]
eDNA.div.c <- eDNA.div[which(eDNA.div$treat == "C"), ]
eDNA.div.e <- eDNA.div[which(eDNA.div$treat == "E"), ]
all.equal(sort(eDNA.div.c$samp.code), sort(eDNA.div.e$samp.code))
eDNA.div.c <- eDNA.div.c[order(eDNA.div.c$samp.code), ]
eDNA.div.e <- eDNA.div.e[order(eDNA.div.e$samp.code), ]
OTU.REL.c2 <- OTU.REL.c[order(eDNA.div.c$samp.code), ]</pre>
OTU.REL.e2 <- OTU.REL.e[order(eDNA.div.e$samp.code), ]</pre>
dim(OTU.REL.c2); dim(OTU.REL.e2)
all.equal(eDNA.div.e$samp.code, eDNA.div.c$samp.code)
delta.abund <- OTU.REL.c2 - OTU.REL.e2</pre>
eDNA.permanova <- adonis(delta.abund ~ eDNA.div.c$env,
                          method = "euclidean", binary = FALSE)
eDNA.permanova
rowSums(delta.abund)
# Effect Size from lda
require(MASS)
eDNA.lda <- lda(delta.abund ~ eDNA.div.c$env, method = "euclidean")
anova(eDNA.dbRDA)
anova(eDNA.dbRDA, by = "terms")
# Distance Moved in PCoA Space
eDNA.points.c <- eDNA.points[which(eDNA.points$treat == "C"), ]
eDNA.points.e <- eDNA.points[which(eDNA.points$treat == "E"), ]
eDNA.points.env <- eDNA.points.c$env
eDNA.points.c <- eDNA.points.c[order(eDNA.points.c$samp.code), c(1:3)]
eDNA.points.e <- eDNA.points.e[order(eDNA.points.e$samp.code), c(1:3)]
delta.dis <- matrix(NA, dim(eDNA.points.c)[1], 2)</pre>
rownames(delta.dis) <- eDNA.points.c$samp.code</pre>
colnames(delta.dis) <- c("Abs", "Non_Abs")</pre>
for (i in 1:dim(eDNA.points.c)[1]){
 dis.temp <- matrix(NA, 3, 2)</pre>
 for (j in 1:3){
    dis.temp[j, 1] <- abs(eDNA.points.c[i,j] - eDNA.points.e[i,j])</pre>
    dis.temp[j, 2] <- (eDNA.points.c[i,j] - eDNA.points.e[i,j])</pre>
 }
 delta.dis[i, 1] <- sum(abs(dis.temp[,1]))</pre>
  delta.dis[i, 2] <- sum(abs(dis.temp[,2]))</pre>
}
```