Trombocitopenia fetal/neonatal aloinmune. Revisión a propósito de un caso

Foetal/neonatal alloimmune thrombocytopenia. A review and case report

P. Rodríguez Wilhelmi¹, A. Aranguren¹, E. Muñiz³, E. Aranburu¹, I. Ezpeleta², M.F. Ardanaz¹, M.L. Ayape¹

RESUMEN

La trombocitopenia fetal/neonatal aloinmune (TFNA) es la causa más frecuente de trombocitopenia grave en el recién nacido. Es un proceso agudo donde las plaquetas fetales son destruidas durante la gestación por un anticuerpo de tipo IgG presente en la madre aloinmunizada. En la raza caucásica, tiene especificidad frente al antigeno específico plaquetar HPA-1a en más del 80% de los casos. La hemorragia intracraneal, que ocurre hasta en un 30%, es la complicación más grave, con un 10% de mortalidad y un 20% de secuelas neurológicas irreversibles. El alto riesgo de repetición de hemorragia grave en futuras gestaciones obliga a plantearse profilaxis o tratamiento antenatal. El diagnóstico precoz puede permitir administrar un tratamiento eficaz basado en la transfusión de plaquetas de fenotipo HPA compatible o de inmunoglobulinas endovenosas.

Presentamos el caso de una gestante de 27 años, que en la semana 35 de su segunda gestación fue diagnosticada por ecografía de hidrocefalia fetal bilateral. En la cesárea realizada en la semana 36, el neonato presentó hematomas en hombro y glúteo izquierdos, macrocefalia con fontanelas a tensión y salida de líquido cefalorraquídeo hemorrágico tras la colocación de un catéter de derivación externo. El hemograma reveló trombocitopenia grave (9 x 10°/L). Ante sospecha clínica de TFNA, se transfundieron plaquetas de donante no fenotipado para el HPA-1a y se inició tratamiento con inmunoglobulinas endovenosas, con recuperación de la trombocitopenia, pero con secuelas neurológicas probablemente irreversibles. El estudio inmunohematológico confirmó el fenotipo materno HPA-1a negativo, el fenotipo neonatal HPAla positivo y la presencia de aloanticuerpos anti-HPA-1a en el suero materno.

La profilaxis y el tratamiento continúan siendo, en la actualidad, motivo de discusión y controversia, así como la posibilidad de realizar un cribado antenatal.

Palabras clave. Trombocitopenia aloinmune. Neonatal. Hemorragia intracraneal.

ABSTRACT

Foetal/neonatal alloimmune thrombocytopenia is the most common cause of severe thrombocytopenia in the newborn. It is an acute disorder which implies that foetal platelets are destroyed during the pregnancy due to a maternal alloimmune IgG antibody. More than 80% of Caucasians are HPA-1a specific. Intracranial haemorrhage, which occurs in 30% of cases, is the most serious complication, with a 10% mortality rate or a 20% rate of irreversible neurological sequels. The high risk of a recurrence of serious bleeding in future pregnances led us to consider prophylaxis or prenatal treatment. An early diagnosis of this process allows an effective therapy to be carried out based on the infusion of compatible phenotype HPA platelets or endovenous immunoglobulins.

We present the case of a 27 year old pregnant woman, who in the 35th week of a second pregnancy was diagnosed using echography with a bilateral foetal hydrocephaly. After caesarean delivery in the 36th week, the newborn presented haematomas in the left shoulder and gluteus, macrocephalia with tension of the fontanellas and hemorrhagic cerebrospinal fluid after insertion of an external ventricular derivation catheter. The haemogram revealed a severe trombocytopenia (9 x $10^{\circ}/\text{LD}$). In the light of clinical suspicion of foetal/neonatal alloimmune thrombocytopenia, infusion was made of platelets from a non-phenotyped donor for the HPA-1a system, and an endovenous immunoglobulin treatment was followed, with a recovery of platelet counts, but with neurological sequels that are probably irreversible. The immunohaematologal study confirmed the negative HPA-1a maternal phenotype, the neonatal HPA-1a positive phenotype and the presence of anti-HPA-1a alloantibodies in the maternal serum.

Nowadays, the prophylaxis and treatment continue to be a controversial issue that is open to discussion, as is the possibility of implementing antenatal screening.

Key words. Alloimmune thrombocytopenia. Neonatal. Intracraneal haemorrhage.

An. Sist. Sanit. Navar. 2008; 31 (3): 281-287.

- Centro de Transfusión Sanguínea de Navarra. Pamplona.
- Servicio de Hemoterapia. Hospital Virgen del Camino. Pamplona.
- Banc de Sang i Teixits de Barcelona. Vall d´ Hebrón.

Recepción el 8 de mayo de 2008 Aceptación provisional el 25 de junio de 2008 Aceptación definitiva el 3 de julio de 2008

Correspondencia:

Pablo Rodríguez Wilhelmi Centro de Transfusión Sanguínea de Navarra Irunlarrea, 3 31008 Pamplona Tíno. 848428434 Fax 848422528

INTRODUCCIÓN

La trombocitopenia fetal/neonatal aloinmune (TFNA) presenta una incidencia que varía desde 1,5/1.000 hasta 1/5.000 recién nacidos de raza caucásica^{1,2}, y es la causa más frecuente de trombocitopenia grave intrauterina y en el recién nacido^{2,3}. La TFNA se considera el proceso equivalente a la enfermedad hemolítica del recién nacido por incompatibilidad Rh. sin embargo, a diferencia de esta última, la TFNA puede aparecer durante la primera gestación hasta en un 30-50% de los casos. Es un proceso agudo donde las plaquetas fetales son destruidas durante la gestación por un anticuerpo circulante de tipo IgG presente en la madre, que atraviesa la barrera placentaria y va dirigido contra un antígeno específico plaquetar (HPA) heredado del padre. En la raza caucásica, más del 80% de los casos tienen especificidad HPA-1a⁴, seguida de HPA-5b (10%) y otros (Tabla 1).

Aunque la mayoría de los casos de TFNA no presentan clínica hemorrágica importante, es un proceso potencialmente muy grave, siendo la hemorragia intracraneal (HIC) la complicación más grave, con una incidencia de 7-26%, con un 10% de mortalidad y un 20% de secuelas neurológicas irreversibles⁵. El alto riesgo de aparición de hemorragia cerebral en las siguientes gestaciones obliga a plantearse profilaxis o tratamiento antenatal. El diagnóstico precoz de este proceso permite administrar un tratamiento eficaz

Tabla 1. Tipos de antígenos específicos plaquetares.

Antígeno HPA	Denominación clásica	Glicoproteína/CD	Comentarios
HPA-1a	Zw ^a , Pl ^{A1}	IIIa/CD61	85% Caucásicos
HPA-1b	Zw ^b , Pl ^{A2}		~ 2% Caucásicos
HPA-2a	Ko ^b	Iba/CD42b	
HPA-2b	Kob, Siba		Muy raro, más severo que anti-HPA-1a
HPA-3a	Bak ^a , Lek ^a	IIb/CD41	~ 2-3 %, más severo que anti-HPA-1a
HPA-3b	Bakb, Lekb		
HPA-4a	Pen ^a , Yuk ^b	IIIa/CD61	20% casos en Asia (1:9000 asiáticos)
HPA-4b	Pen ^b , Yuk ^a		1 caso TFNA detectado en España ⁸
HPA-5a	Brb, Zavb	Ia/CD49b	
HPA-5b	Br ^a , Zav ^a , Hc ^a		10-15% Caucásicos y Asiáticos, a menudo más leve que anti-HPA-1a Causa más frecuente de TFNA en Brasil°
HPA-6bw	Caª, Tuª	IIIa/CD61	
HPA-7bw	$\mathrm{Mo^a}$	IIIa/CD61	
HPA-8bw	Sra	IIIaCD61	
HPA-9bw	Max ^a	IIb/CD41	
HPA-10bw	Laª	IIIa/CD61	
HPA-11bw	Groa	IIIa/CD61	
HPA-12bw	Iy ^a	Ibb/CD42c	
HPA-13bw	Sita	Ia/CD49b	
HPA-14bw	Oe^a	IIIa/CD61	
HPA-15a	Gov ^a	CD109	2 casos TFNA detectados en España, uno asociado a anemia ¹⁰
HPA-15b	Gov^b		
HPA-16bw	Duv ^a	IIIa/CD61	
HPA-17bw	Swi^a	Ia/CD49b	

HPA: Human Platelet Antigen

basado en la transfusión de plaquetas de fenotipo compatible, o de inmunoglobulinas intravenosas cuando no existen manifestaciones hemorrágicas graves. La profilaxis en futuras gestaciones puede evitar la trombocitopenia grave y la hemorragia cerebral.

Un 50% de las hemorragias se producen durante la vida intrauterina, habitualmente entre las 30 y 35 semanas de gestación, pero, a veces, tan prematuramente como a las 20 semanas⁶. Aunque es poco frecuente, la forma de presentación puede coincidir con una hidrocefalia aislada⁷.

La objetivo de esta revisión es llamar la atención sobre un proceso potencialmente muy grave, que en la actualidad, probablemente, está infradiagnosticado en nuestro medio, y cuyo diagnóstico precoz puede evitar la aparición de complicaciones graves.

CASO CLÍNICO

Gestante de 27 años, del grupo sanguíneo A positivo, con antecedentes personales de meningitis a los 3 años, legrado por embarazo molar (G1P0A1) en su primera gestación en 2005 y fumadora de 10-20 cigarrillos/día. No antecedentes transfusionales previos.

En la ecografía realizada en la semana 35 de gestación se detectó una hidrocefalia fetal bilateral y oligoamnios, por lo que se programó una cesárea para la semana 36. En el estudio analítico previo destacaba una serología positiva (IgM) para el Parvovirus B19. La exploración de la recién nacida tras la cesárea, reveló un buen estado general, con un test de Apgar de 8 y 9 puntos en el 1º y 5º minuto, respectivamente, pequeños hematomas en hombro y glúteo izquierdos, macrocefalia con fontanela anterior a tensión y prominencia de las venas cefálicas. En el hemograma se constató una tombocitopenia grave (9 x 109/L). Ante la sospecha clínica de TFNA se transfundió una alícuota de concentrado de plaquetas de aféresis irradiado, de fenotipo HPA-1a desconocido y se inició tratamiento con inmunoglobulinas endovenosas (IGIV) a dosis de 1 g/Kg x 2 días, con muy buena respuesta (plaquetas > 100 x 109/L, que se mantuvieron a lo largo de todo el ingreso). Se solicitó estudio inmunohematológico al Centro de Transfusión Sanguínea de Navarra, así como búsqueda de plaquetas de donante HPA-1a negativo.

En la ecografía cerebral se apreció una hidrocefalia grave secundaria a hemorragia

intraventricular, que precisó de la colocación de un catéter de derivación externo, a través del cual se recogió líquido cefalorraquídeo hemorrágico a presión. Presentó una evolución posterior tórpida, con ventriculitis y crisis convulsivas, que precisó de tratamiento con antibioterapia y fenobarbital, respectivamente, e implantación de una válvula de derivación ventrículio peritoneal. Durante su ingreso se transfundió una alícuota de concentrado de hematíes leucodepleccionado e irradiado.

El estudio inmunohematológico realizado en el Centro de Transfusión Sanguínea de Navarra confirmó el fenotipo HPA-1a negativo materno y positivo en el neonato, así como la presencia de anticuerpos con especificidad anti-HPA-1a en el suero materno como en la recién nacida.

DISCUSIÓN

Como sucede en el caso clínico presentado, el caso más típico es el de un recién nacido de una madre sana, sin trombocitopenia, en la que tanto la gestación como el parto han transcurrido sin complicaciones. Al nacer, o pocas horas después, aparece en el neonato una púrpura cutánea en forma de petequias v/o equimosis que puede acompañarse en los casos más graves de HIC, siendo esta última, la causa más frecuente de mortalidad v morbilidad a largo plazo, que hasta un 80% ocurren durante la vida intrauterina y un 42% antes de la semana 3011. En estos casos más graves, la cifra de plaquetas suele ser < 20 × 10⁹/L. En otros muchos casos, la trombocitopenia se descubre de forma casual en una analítica solicitada por otras causas y siempre es preceptivo excluir otras causas de trombocitopenia neonatal (Tabla 2).

La posible intercurrencia de infección por Parvovirus B19 pudo contribuir en la trombocitopenia y anemia que presentó el neonato del caso presentado.

El diagnóstico de laboratorio se basa en confirmar, en el suero materno, el anticuerpo dirigido contra el antígeno HPA específico o poner de manifiesto la incompatibilidad maternofetal. El estudio debe incluir la detección e identificación del aloanticuerpo plaquetar específico en el suero materno y el genotipo plaquetario de ambos progenitores y del recién nacido. La realización de una prueba cruzada entre

Tabla 2. Etiología de la trombocitopenia neonatal.

Origen	Tipos		
Infecciosa	Congénita (síndrome TORCH), perinatal, etc.		
Alteración megacariopoyesis congénita	Trombopenia amegacariocítica Trombopenia con ausencia radio (TAR)		
Autoinmunidad materna	Púrpura trombocitopénica idiopática Lupus Eritematoso Diseminado		
Genéticas	Aneuploidías (Trisomías 13, 18, 21)		
Coagulopatías	CID, trombosis, hemorragias		
Vasculares	Enfermedad Kasabach-Merritt		
Otras	Insuficiencia placentaria, asfixia perinatal, enterocolitis necrotizante (ECN), fármacos, etc.		

TORCH: Toxoplasmosis, Otros, Rubéola, Citomegalovirus y Herpes; CID: Coagulación Intravascular Diseminada.

el suero de la madre frente a plaquetas del padre es fundamental para excluir una especificidad privada o antígenos de baja frecuencia, sobre todo cuando se han descartado los aloanticuerpos más comunes.

A pesar de los avances tecnológicos, el diagnóstico de esta enfermedad continúa siendo un reto, ya que los anticuerpos responsables son todavía indetectables en un número significativo de casos, incluso en aquellos en los que la incompatibilidad maternofetal para el HPA-1a es evidente. Cuando el diagnóstico clínico resulta evidente, pero la investigación de aloanticuerpos plaquetarios resulta negativa, el hallazgo de una incompatibilidad antigénica maternofetal puede ayudar a confirmar el diagnóstico.

Las técnicas de inmunofluorescencia (citometría de flujo), ELISA, fase sólida y MAIPA (monoclonal antibody immobilization platelet antigens) son las más utilizadas. En la actualidad, para la determinación del genotipo HPA plaquetario se realizan técnicas moleculares basadas en la reacción en cadena de la polimerasa (PCR). Al igual que para el genotipo Rh, se está desarrollando un test no invasivo para determinar el genotipo HPA-1 fetal a partir de una muestra de plasma materno.

La inmunogenicidad del antígeno HPA-1a está controlada genéticamente por el sistema HLA de clase II, existiendo una fuerte asociación con el alelo HLADRB3*0101 (HLADRw52a), de tal forma que la aloinmunización es rara en ausencia de este alelo¹². Sólo el 2,5% de la población es negativa para el antígeno HPA-1a (fenotipo HPA-1b/1b). Aproximadamente un 10% de las mujeres HPA-1a negativo desarrollan un anti-HPA-1a y, de ellas, cerca del 30% acaban teniendo un hijo afectado.

El tratamiento neonatal, como sucede en el caso clínico presentado, debe iniciarse sin dilación ante la mínima sospecha clínica, sobre todo, si existe diátesis hemorrágica y trombocitopenia graves.

En los casos graves (hemorragia o recuento plaquetar <30 x 10⁹/L) es precisa la transfusión, si están disponibles, de plaquetas HPA compatible. Pueden proceder de la madre y deben ser lavadas, para eliminar el aloanticuerpo, e irradiadas. para evitar la enfermedad injerto contra huésped postransfusional, aunque no suelen estar disponibles por problemas logísticos. Pueden ser de donante no familiar con fenotipo HPA conocido v disponibles en la red de donantes de fenotipos "raros". El tratamiento complementario más extendido en los casos severos es la administración de inmunoglobulinas IgG endovenosas a dosis altas (IGIV), 1 g/Kg/día x 2 días, que consigue, en la mayoría de los casos, remontar la cifra de plaquetas hasta niveles de seguridad (> 50 x 10⁹/L) en pocos días.

En nuestro caso, y al no poder disponer de plaquetas HPA-1a y HPA-5b negativo inmediatamente, se transfundieron plaquetas procedentes de donante único, ABO y Rh (D) compatible, irradiadas y desplasmatizadas en solución (T-Sol). Ese mismo día se inició tratamiento complementario con IGIV (1 g/Kg/día x 2 días). Con estas dos medidas se consiguieron, desde el primer día, niveles de plaquetas > 100 x 10°/L durante todo el ingreso hospitalario.

Desde el Centro de Transfusión se localizó telefónicamente a la única donante HPA-1a negativo disponible en nuestra comunidad, para la extracción por aféresis, de una unidad de plaquetas. Además, se contempló también la posibilidad de extracción de plaquetas a la madre.

La probabilidad de recurrencia de la TFNA en las siguientes gestaciones es muy elevada (hasta el 79%), sobre todo si en la gestación anterior se produjo HIC¹³. Este riesgo puede descender hasta un 7% si la historia de TFNA no estuvo acompañada de HIC. Estos datos pueden justificar el planteamiento de actitudes terapéuticas antenatales que reduzcan esta elevada morbimortalidad en casos seleccionados.

El tratamiento antenatal se basa principalmente en: transfusiones intraútero de plaquetas HPA compatible a intervalos regulares o administración de IGVI y/o corticoides a la madre.

Ambas estrategias tienen ventajas e inconvenientes y al revisar la literatura, se encuentran muchos datos controvertidos14. La cordocentesis (tanto para obtener una muestra de sangre como para transfundir plaquetas) es una técnica invasiva que puede suponer, en manos expertas, un riesgo de interrupción del embarazo del 1-3%, así como un aumento de la sensibilización materna frente a antígenos eritrocitarios, leucocitarios y plaquetarios. Por otra parte, es la única estrategia que permite un diagnóstico precoz y una valoración objetiva e inmediata de la eficacia del tratamiento. La transfusión semanal intraútero de plaquetas puede ser efectiva para prevenir la HIC en casos de TFNA grave. Aunque hay pocos datos sobre la efectividad de administración única de esteroides a la madre, existe mucha experiencia en el uso combinado de estos con IGIV, aunque los datos son dispares.

Recientemente, Berkowitz y col¹⁵, en dos estudios randomizados, han demostrado que la combinación de prednisolona con IGIV es claramente más efectiva que la administración única de IGVI en el grupo de "alto riesgo" (antecedentes fetales previos de HIC o recuento plaquetar < 20 x 10°/L) y que, tanto la administración de prednisolona como de IGIV, son igualmente efectivas en las pacientes de "riesgo estándar" (sin antecedentes fetales previos de HIC o recuento plaquetar entre 20-100 x 10°/L).

Todavía no existe un protocolo consensuado por las sociedades científicas, aunque la tendencia, según los estudios más recientes, es a mantener una actitud no invasiva, teniendo muy en cuenta la historia previa de TFNA^{16,17}.

En el momento actual se realiza cribado poblacional en algunos países, por ejemplo en Noruega, pero no hay consenso sobre la justificación de un programa de cribado poblacional, ni de la profilaxis antenatal en todas aquellas madres susceptibles, como el que se realiza a las gestantes con fenotipo Rh(D) negativo. No obstante, con los estudios prospectivos que se están realizando en los últimos años, la disponibilidad de pruebas cada vez más fiables para el diagnóstico fenotípico y genotípico, el tratarse de una enfermedad potencialmente muy grave con gran morbimortalidad y consumo de los recursos sanitarios, es probable que en un futuro no muy lejano, el cribado y la profilaxis antenatal sean una realidad.

La incidencia de mujeres de raza caucásica HPA-1a negativo es de 2,5%, sin embargo, sólo el 10% de éstas desarrollan anticuerpos anti-HPA-1a y la aloinmunización parece corresponderse casi exclusivamente a aquellas que son portadoras del HLADRB3*0101 (HLADRw51a). Basándonos en los 500.000 nacimientos anuales de nuestro país, el número de casos esperados de TFNA en España debería de rondar los 250-500 casos anuales. con una incidencia de 1/1.000-2.000 casos/año. La realidad es significativamente menor, con no más de 100 casos anuales declarados. Este dato nos hace sospechar

que la TFNA está infradiagnosticada en la práctica clínica^{18,19}.

El riesgo de aparición de HIC en futuras gestaciones obliga a efectuar un programa profiláctico antenatal cuyo contenido todavía no ha sido totalmente consensuado.

En los últimos años se están dando pasos importantes en el estudio de la TFNA, donde se pueden destacar dos estudios prospectivos. En el primero, Williamson y col²⁰, después del cribado de 24.417 gestaciones consecutivas en el Reino Unido, demuestran que el porcentaje de gestantes HPA-1a negativo es del 2,5%, que la aloinmunización HPA-1a complica 1/350 embarazos al azar y que ésta es la causa de una trombocitopenia grave en uno de cada 1.200 neonatos. En el segundo estudio²¹, mucho más reciente, el grupo noruego presenta un programa de identificación, seguimiento e intervención en la inmunización por el antígeno plaquetar HPA-1a mediante la identificación de las gestantes HPA-1a negativo o sensibilizadas. El programa se aplicó a 100.448 gestantes, el 2,1% fueron HPA-1a negativo, de las cuales, un 10.6% estaban aloinmunizadas. Un total de 170 gestantes inmunizadas participaron en el programa. La práctica de cesáreas programadas 2-4 semanas pretérmino y la transfusión inmediata de plaquetas HPA negativo, cuando la cifra plaquetar en el recién nacido caía por debajo de 35 ×10⁹/L o se observaban signos de diátesis hemorrágica, formaron la base de la actuación, consiguiendo, una drástica reducción de la mortalidad neonatal por HIC.

Tras el estudio de este caso se puede concluir que la TFNA es la causa más frecuente de trombocitopenia neonatal grave, muchas veces poco conocida, donde la HIC es la complicación más temida y la causa más frecuente de morbimortalidad. Esta complicación debe de estar muy presente en el diagnóstico diferencial de toda trombocitopenia fetal/neonatal. A su vez, los centros y servicios de transfusión, conectados con los servicios hospitalarios que atienden estos casos (Ginecología, Neonatología y la Unidad de Cuidados Intensivos pediátrica), deberían mantener un registro de donantes fenotipados/genotipados para estos sistemas plaquetarios, con el fin de proveer plaquetas compatibles. Es importante realizar un estudio familiar materno de fenotipo plaquetar v animar a la madre o familiares HPA-1a negativo encontrados, para que se incorporen al programa de donación sanguínea como potenciales donantes de plaquetas de aféresis y, reservar hematíes HPA-1a negativo congelados para una probable futura autotransfusión, como profilaxis de la púrpura postransfusional (reacción transfusional muy grave típica en estos receptores). En el caso de una futura gestación en la madre del caso clínico presentado, habría que adoptar las siguientes medidas:

- Control estrecho de la gestación (ecografías de control y monitorización de los títulos de anticuerpo).
- Administración de IGIV y prednisolona antenatal a las dosis e intervalos recomendados como situación de "alto riesgo".
- 3. Programación de cesárea electiva a 2-4 semanas pretérmino
- Extracción y reserva de plaquetas HPA compatible de donantes preseleccionados.

El desarrollo de nuevos test de diagnóstico rápido y de más fácil aplicación, nos permitirá poder realizar un diagnóstico y tratamiento precoces que permitan evitar o minimizar las complicaciones graves.

BIBLIOGRAFÍA

- Dreyfus M, Kaplan C, Verdy E, Schlegel N, Durand-Zalesky I, Tchernia G. Frecuency of immune thrombocytopenia in newborns: a prospective study. Blood 1997; 89: 4402-4406.
- 2. Burrows RF, Kelton JG. Fetal thrombocytopenia and its relation to maternal thrombocytopenia. N Eng J Med 1993; 329: 1463-1466.
- 3. ROBERTS IAG, MURRIA NA. Management of thrombocytopenia in neonates. Br J Haematol 1999; 105: 864-870.
- 4. Davoren A, Curtis BR, Aster RH, McFarland JG. Human platelet antigen-specific alloantibodies in 1162 cases of neonatal alloimmune thrombocytopenia. Transfusion 2004; 44: 1220-1225.
- 5. Spencer JA, Burrows RF. Feto-maternal alloimmune thrombocytopenia: a literature

- review and statistical analysis. Aust N Z J Obstet Gynaecol 2001; 41: 45-55.
- Muñiz-Díaz E, Ginovart Galiana G. Fetalneonatal alloimmune thrombocytopenia. An Pediatr 2003; 58: 262-267.
- 7. Murphy MF, Hambley H, Nicolaides K, Waters AH. Severe feto-maternal alloimmune thrombocytopenia presenting with fetal hydrocephalus. Prenatal Diagnos 1996; 16: 1152-1155.
- 8. Puig N, Muñiz-Diaz E, Monteagudo E, Ribera A, Montoso JA. Second case of neonatal alloimmune thrombocytopenia by anti-HPA-4b (Yuca) in Caucasian family. Transf Med 1993; 3: 164-165.
- 9. CASTRO V, KROLL H, ORIGA AF, FALCONI MA, MARQUES SBD, MARBA ST et al. A prospective study on the prevalence and risk factors for neonatal thrombocytopenia and platelet alloimmunization among 9332 unselected Brazilian newborns. Transfusion 2007; 47: 59-66
- 10. Nogués N, Garcia A, Juliá MR, Panandés M, Renovales A, Gracia M et al. Anti-HPA-15 antibodies detected in two cases of neonatal alloimmune thrombocytopenia and in one case of immune refractoriness to platelet transfusion. Vox Sang 2006; 91: 16.
- 11. Bussel JB, Zacharoulis S, Kramer K, McFarland JG, Paulini J, Kaplan C. Clinical and diagnostic comparison of neonatal alloimmune thrombocytopenia to non-immune causes of thrombocytopenia. Pediatr Blood Cancer 2005; 45: 176-183.
- 12. L'Albe D, Trembaly L, Goldman M, Decary F, Chartrand P. Alloimmunisation to platelet antigen HPA-1a (Zwa) association with HLADRw52a is not 100%. Transf Med 1992; 2: 251.
- RADDER CM, BRAND A, KANHAI HH. Will it ever be possible to balance the risk of intracraneal hemorrhage if fetal or neonatal

- alloimmune thrombocytopenia against the risk of treatment strategies to prevent it? Vox Sang 2003; 84: 318-325.
- 14. Muñiz-Díaz E. Diagnostic evaluation of FNAIT. Vox Sang 2007; 2: 48-55.
- 15. Berkowitz RL, Kolb EA, McFarland JG, Wissert M, Primani A, Lesser M et al. Parallel randomized trials of risk-based therapy for fetal alloimmune thrombocytopenia. Obstet Gynecol 2006; 107: 91-96.
- 16. BIRCHALL JE, MURPHY MF, KAPLAN C, KROLL H. European collaborative study for the antenatal management of fetomaternal alloimmune thrombocytopenia. Br J Haematol 2003; 122: 275-288.
- 17. Kanhai HHH, Porcelijn L, Engelfriet CP, Reesink HW, Pancer S, Ulm B et al. Management of alloimmune thrombocytopenia. Vox Sang 2007; 93: 370-385.
- 18. Murphy MF, Verjee S, Greaves M. Inadequacies in the postnatal management of fetomaternal alloimmune thrombocytopenia. Br J Haematol 1999; 105: 123-126.
- 19. DAVOREN A, MCPARLAND P, BARNES CA, MURPHY WG. Neonatal alloinmmune thrombocytopenia in the Irish population: a discrepancy between observed and expected cases. J Clin Apheresis 2002; 55: 289-292.
- 20. WILLIAMSON LM, HACKETT G, RENNIE J, PALMER CR, MACIVER C, HADFIELD R et al. The natural history of fetomaternal alloimmunization to the platelet-specific antigen HPA-1a (Pl^{A1}, Zw^a) as determined by antenatal screening. Blood 1998; 92: 2280-2287.
- 21. KJELDSEN-KRAGH J, KJAER KILLIE M, TOMTER G, GOLEBIOWSKA E, RANDEN I, HAUGE R et al. A screening and intervention program aimed to reduce mortality and serious morbidity associated with severe neonatal alloimmune thrombocytopenia. Blood 2007; 110: 833-839.