Rua dos Andradas, 1614 - Santa Maria - RS - Brasil Cep. 97010-032 - www.ufn.edu.br

Plano de Ensino e de Aprendizagem

1) Identificação	
Curso	Sistemas de Informação - 414
Carga horária	40
Disciplina	G01Y7 - Fundamentos de Sistemas Operacionais
Semestre letivo	2024/2 - Graduação
Professor	Ana Paula Canal

2) Ementa

Introdução aos sistemas operacionais; Processos e threads; Sincronização de Processos; Memória real e virtual

3) Objetivo da Disciplina - Competências

Unidade 1 - Introdução aos sistemas operacionais

Compreender a evolução histórica dos sistemas operacionais e sua estrutura como sistema fundamental aos computadores modernos, de forma crítica.

Unidade 2 - Processos e threads

Aplicar processos e threads no contexto dos sistemas operacionais, de forma assertiva.

Unidade 3 - Sincronização de Processos

Aplicar mecanismos de sincronização de processos e threads na programação concorrente de forma assertiva.

Unidade 4 - Memória real e virtual

Compreender as gerências de memória real e virtual nos sistemas de computação modernos, de forma proativa.

4) Abertura da Disciplina

Sabemos que por meio de um Sistema Operacional conseguimos interagir com o computador, desenvolver e executar programas para os mais variados fins. É importante compreendermos como o Sistema Operacional está organizado, principalmente suas principais gerências e como estão constituídas. Você sabe como o sistema operacional proporciona a execução concorrente de processos e quais mecanismos são disponibilizados para controlar a concorrência? E em relação à memória, seu uso e proteção? Neste semestre, vamos conhecer, discutir e aprofundar essas temáticas durante o andamento da disciplina de Fundamentos de Sistemas Operacionais.

5) Caracterização da metodologia de ensino

As aulas serão em laboratórios de informática, com discussões envolvendo os alunos, estudos dirigidos, resolução de problemas por meio do desenvolvimento de algoritmos e construção de programas, com a linguagem C, no sistema operacional Linux, bem como com a linguagem Java. Também, haverá exercícios e atividades em sala de aula e extra-classe. O Ambiente Virtual de Aprendizagem Agenda será o nosso repositório de conteúdos e a forma de entrega dos trabalhos e produtos de aprendizagem.

6) Avaliação da aprendizagem

A avaliação da aprendizagem será formativa, ao longo do semestre. Haverá três momentos principais para fechamento de cada uma das três notas do semestre: a construção de três Produtos de Aprendizagem. Cada Produto de Aprendizagem contemplará avaliação escrita e avaliação prática. Os conteúdos que estarão envolvidos nos Produtos de Aprendizagem são conforme o cronograma de datas de cada um deles, descritos no plano de cada aula.

A média aritmética das três notas formará a média final da disciplina. Os critérios de nota e frequência para aprovação na disciplina são os definidos no Guia Acadêmico 2022, da Universidade Franciscana. Para o estudante ser

Rua dos Andradas, 1614 - Santa Maria - RS - Brasil

Cep. 97010-032 - www.ufn.edu.br

aprovado precisará de, no mínimo, 75% de frequência às aulas e média aritmética, das três avaliações, igual ou superior a 6,0.Em relação às ausências nas avaliações em sala de aula previstas, serão aceitas somente as justificativas de ausências conforme o Guia Acadêmico e apresentadas até 48 horas após a ocorrência.

7) Bibliografia básica

DEITEL, Harvey M.; DEITEL, Paul J.; CHOFFNES, D. R. Sistemas operacionais. 3. ed. São Paulo, SP: Pearson, 2005. 760 p.

OLIVEIRA, Rômulo Silva de; CARISSIMI, Alexandre da Silva; TOSCANI, Simão Sirineo. Sistemas operacionais. 2. ed. Porto Alegre: Sagra Luzzato, 2001. 247 p. (Livros Didáticos; 11).

SILBERSCHATZ, Abraham; GALVIN, Peter Baer; GAGNE, Greg. Sistemas operacionais: com Java. Rio de Janeiro, RJ: Elsevier, c2004. 670 p.

8) Bibliografia complementar

NUTT, Gary J. Operating systems: a modern perspective. Massachusetts: Addison-Werley, 1997. 630 p. SILBERSCHATZ, Abraham; GALVIN, Peter; GAGNE, Greg. Sistemas operacionais: conceitos e aplicações. Rio de Janeiro, RJ: Campus, 2000. 585 p.

STALLINGS, William. Arquitetura e organização de computadores. 8. ed. São Paulo, SP: Pearson, 2010. 624 p. TANENBAUM, Andrew S. Organização estruturada de computadores. 4. ed. Rio de Janeiro, RJ: Prentice-Hall do Brasil, 1999. 460 p.

TANENBAUM, Andrew S. Sistemas operacionais modernos. Rio de Janeiro, RJ: Prentice-Hall do Brasil, 1995. 493 p. TOSCANI, Simão Sirineo; OLIVEIRA, Rômulo Silva de; CARISSIMI, Alexandre da Silva. Sistemas operacionais e programação concorrentes. Porto Alegre: Sagra Luzzatto, 2003. 247 p. (Livros Didáticos; 14).

Roteiro de Estudos

Aula 1

Modalidade da aula: Presencial - 29 de julho de 2024

Introdução aos Sistemas Operacionais

Experiência formativa

O que estudaremos?

Estudaremos o histórico e estrutura de sistema de computação moderno e as estruturas de sistemas operacionais.

O que aprenderemos?

Aprenderemos a identificar a estrutura de sistemas de computação, no contexto da evolução histórica e a descrever estruturas de sistemas operacionais, nos sistemas de computação modernos.

Sobre o que refletiremos?

Como a evolução histórica dos Sistemas Operacionais e influenciou e é influenciada pela estrutura dos sistemas de computação modernos? Como os Sistemas Operacionais estão organizados em termos de estrutura?

Competências

Compreender a evolução histórica dos sistemas operacionais e sua estrutura como sistema fundamental aos computadores modernos, de forma crítica.

Histórico e estrutura de sistema de computação moderno

Rua dos Andradas, 1614 - Santa Maria - RS - Brasil

Cep. 97010-032 - www.ufn.edu.br

Objetivos

Identificar a estrutura de sistemas de computação, no contexto da evolução histórica.

Pontos de Aprendizagem

Procure compreender conceitos e gerências em Sistemas Operacionais que foram se desenvolvendo ao longo do tempo e são importantes atualmente.

Guia de Aprendizagem

Nesta aula, faremos a apresentação da disciplina e uma visão geral sobre evolução dos Sistemas Operacionais. Para aprimorar nossas discussões, no nosso Ambiente Virtual de Aprendizagem (AVA), está disponível o material para desta aula e o Capítulo 1 de Silberschatz (2008) que contempla esse conteúdo.

Encaminhamento próxima aula

A partir da Leitura do Capítulo 1 de DEITEL (2005) disponivel na biblioteca virtual, procure elaborar uma linha do tempo da evolução dos Sistemas Operacionais. Para tanto, pode criar um infográfico usando o PiktoChart (https://create.piktochart.com/) ou outra ferramenta de sua escolha.

Referência Bibliográfica

SILBERSCHATZ, Abraham; GALVIN, Peter; GAGNE, Greg. Sistemas operacionais: com Java. Rio de Janeiro: Campus, 2008.

DEITEL, H. M. et al. Sistemas operacionais. 3. ed. São Paulo, SP: Pearson, 2005. E-book. Disponível em: https://plataforma.bvirtual.com.br

(https://plataforma.bvirtual.com.br/Leitor/Publicacao/315/epub/288?code=z+pbzBENflWdry1cKdB1zoLvMegqEX+Jg1k +sZlcl84B7Ba+M97p43TOjxG/7XG+KCBxKPYwz3GwuWfDAJ1png==). Acesso em: 27 jul. 2023.

Arquivos

Aula 2

Modalidade da aula: Presencial - 5 de agosto de 2024

Introdução aos Sistemas Operacionais

Experiência formativa

Pontos de Aprendizagem

Procure identificar a estrutura de computação dos computadores modernos e os principais conceitos relacionados.

Guia de Aprendizagem

Nessa aula, vamos trabalhar a estrutura de um Sistema de Computação Moderno, relacionando conceitos de organização de computadores aos de sistemas operacionais. Para tanto, vamos trabalhar com o Capítulo 2 do livro de DEITEL (2005) da biblioteca virtual ou do livro de SILBERSCHATZ (2008) da biblioteca física. Desenvolveremos um estudo dirigido sobre esta temática.

Encaminhamento próxima aula

Para a próxima aula, continue o desenvolvimento do Estudo Dirigido iniciado em aula. Traga na próxima aula, para discutirmos.

Rua dos Andradas, 1614 - Santa Maria - RS - Brasil

Cep. 97010-032 - www.ufn.edu.br

Referência Bibliográfica

SILBERSCHATZ, Abraham; GALVIN, Peter; GAGNE, Greg. Sistemas operacionais: com Java. Rio de Janeiro: Campus, 2008.

DEITEL, H. M. et al. Sistemas operacionais. 3. ed. São Paulo, SP: Pearson, 2005. E-book. Disponível em: https://plataforma.bvirtual.com.br/Acervo/Publicacao/315

Arquivos

Aula 3

Modalidade da aula:Presencial - 12 de agosto de 2024

Introdução aos Sistemas Operacionais

Experiência formativa

Estruturas de sistemas operacionais

Objetivos

Descrever estruturas de sistemas operacionais, nos sistemas de computação modernos.

Pontos de Aprendizagem

Procure descrever as principais estruturas dossistemas operacionais modernos.

Guia de Aprendizagem

Nessa aula, vamos abordar as estruturas de sistemas operacionais. Faremos uma visão geral sobre seus componentes e gerências, bem como a organização de sua estrutura. O material disponível em pdf, no AVA, norteará nossas discussões.

Encaminhamento próxima aula

Elabore um material, para sua consulta, que contenha:

- os principais comandos em modo texto, no Linux, para o gerenciamento de arquivos;
- como compilar e executar programas na linguagem C e na linguagem Java, no modo texto, no Linux;
- como editar programas no terminal Linux.

Referência Bibliográfica

DEITEL, H. M. et al. Sistemas operacionais. 3. ed. São Paulo, SP: Pearson, 2005. E-book. Disponível em: https://plataforma.bvirtual.com.br

(https://plataforma.bvirtual.com.br/Leitor/Publicacao/315/epub/288?code=z+pbzBENflWdry1cKdB1zoLvMegqEX+Jg1k +sZlcl84B7Ba+M97p43TOjxG/7XG+KCBxKPYwz3GwuWfDAJ1png==). Acesso em: 27 jul. 2023.

SILBERSCHATZ, Abraham; GALVIN, Peter; GAGNE, Greg. Sistemas operacionais: com Java. Rio de Janeiro: Campus, 2008.

Arquivos

Fechamento e Feedback da unidade

Como fechamento da Unidade 1, faremos uma pesquisa sobre a Estrutura de um Sistema Operacional específico. Procure identificar os principais componentes e gerências do sistema escolhido e representá-los de forma a conter um

Rua dos Andradas, 1614 - Santa Maria - RS - Brasil

Cep. 97010-032 - www.ufn.edu.br

diagrama ou gráfico da estrutura (Atividade de Fechamento da Unidade 1). Posteriormente, essa atividade será solicitada para entrega.

Aula 4

Modalidade da aula:Presencial - 19 de agosto de 2024

Processos e Threads

Experiência formativa

O que estudaremos?

Estudaremos processos e threads, no contexto de sistemas multiprogramados e o escalonamento do processador nas arquiteturas modernas.

O que aprenderemos?

Aprenderemos a desenvolver programas com processos e threads, no contexto de sistemas multiprogramados e a explicar o escalonamento do processador nas arquiteturas modernas.

Sobre o que refletiremos?

Como acontece a execução concorrente nos sistemas operacionais? Como é realizada a gestão do processador neste contexto?

Gerenciamento de processos e threads

Objetivos

Desenvolver programas com processos e threads, no contexto de sistemas multiprogramados.

Pontos de Aprendizagem

Procure compreender o que são processos, qual o seu ciclo de vida e como acontece a multiprogramação por meio dos processos.

Guia de Aprendizagem

Nessa aula, vamos iniciar o estudo sobre Processos e Threads na multiprogramação. O material disponível no nosso Ambiente Virtual de Aprendizagem (AVA) conduzirá nossas discussões. O capítulo 3 de Silberschatz (2008) traz as abordagens teóricas da área e servirá de embasamento para a aula.

Encaminhamento próxima aula

A partir das reflexões de nossa aula, desenvolva os exercícios disponíveis no Ambiente Virtual de Aprendizagem (AVA), associando-os aos pontos de aprendizagem elucidados.

Referência Bibliográfica

SILBERSCHATZ, Abraham; GALVIN, Peter; GAGNE, Greg. Sistemas operacionais: com Java. Rio de Janeiro: Campus, 2008.

OLIVEIRA, Rômulo Silva de; CARISSIMI, Alexandre da Silva; TOSCANI, Simão Sirineo. Sistemas operacionais. 2. Ed. Porto Alegre: Bookman, 2001.

Arquivos

Rua dos Andradas, 1614 - Santa Maria - RS - Brasil

Cep. 97010-032 - www.ufn.edu.br

Aula 5

Modalidade da aula: Presencial - 26 de agosto de 2024

Processos e Threads

Experiência formativa

O que estudaremos?

O que aprenderemos?

Sobre o que refletiremos?

Pontos de Aprendizagem

Procure entender como pode ser implementada a programação concorrente com os processos e quais mecanismos de comunicação podem ser utilizados entre eles.

Guia de Aprendizagem

Nessa aula, aprofundaremos o estudo sobre Processos na multiprogramação, com atividades práticas em laboratório e iniciaremos o estudo sobre threads. O material disponível no nosso Ambiente Virtual de Aprendizagem (AVA), na aula anterior e nesta aula, conduzirá nossas discussões. O capítulo 3 de Silberschatz (2008) traz as abordagens teóricas da área e servirá de embasamento para a aula.

Encaminhamento próxima aula

A partir das reflexões de nossa aula, desenvolva a atividades práticas disponíveis no Ambiente Virtual de Aprendizagem (AVA), associando-os aos pontos de aprendizagem elucidados e identifique as chamadas ao sistema relacionadas à processos e threads.

Referência Bibliográfica

SILBERSCHATZ, Abraham; GALVIN, Peter; GAGNE, Greg. Sistemas operacionais: com Java. Rio de Janeiro: Campus, 2008.

OLIVEIRA, Rômulo Silva de; CARISSIMI, Alexandre da Silva; TOSCANI, Simão Sirineo. Sistemas operacionais. 2. Ed. Porto Alegre: Bookman, 2001.

Arquivos

Rua dos Andradas, 1614 - Santa Maria - RS - Brasil

Cep. 97010-032 - www.ufn.edu.br

Aula 6

Modalidade da aula: Presencial - 2 de setembro de 2024

Processos e Threads

Experiência formativa

Pontos de Aprendizagem

Procure entender como pode ser implementada a multiprogramação leve e quais mecanismos de comunicação podem ser utilizados entre eles.

Guia de Aprendizagem

Nessa aula, aprofundaremos o estudo sobre threads, com atividades práticas em laboratório. O material disponível no nosso Ambiente Virtual de Aprendizagem (AVA) conduzirá nossas discussões. O capítulo 4 de Silberschatz (2008) traz as abordagens teóricas da área e servirá de embasamento para a aula.

Encaminhamento próxima aula

A partir das reflexões de nossa aula, desenvolva os exercícios disponíveis no Ambiente Virtual de Aprendizagem (AVA), a Lista 1 e a Lista 2 de exercícios, associando-os aos pontos de aprendizagem relacionados aos processos.

Referência Bibliográfica

SILBERSCHATZ, Abraham; GALVIN, Peter; GAGNE, Greg. Sistemas operacionais: com Java. Rio de Janeiro: Campus, 2008.

OLIVEIRA, Rômulo Silva de; CARISSIMI, Alexandre da Silva; TOSCANI, Simão Sirineo. Sistemas operacionais. 2. Ed. Porto Alegre: Bookman, 2001.

Arquivos

Aula 7

Modalidade da aula: Presencial - 9 de setembro de 2024

Pontos de Aprendizagem

Procure compreender como aplicar a multiprogramação leve nos problemas propostos.

Guia de Aprendizagem

Nessa aula, continuaremos a estudar sobre threads, com atividades práticas em laboratório. O material disponível no nosso Ambiente Virtual de Aprendizagem (AVA) conduzirá nossas discussões. O capítulo 4 de Silberschatz (2008) traz as abordagens teóricas da área e servirá de embasamento para a aula.

Encaminhamento próxima aula

Continue o desenvolvimento da resolução dos problemas propostoscom a multiprogramação leve.

Referência Bibliográfica

SILBERSCHATZ, Abraham; GALVIN, Peter; GAGNE, Greg. Sistemas operacionais: com Java. Rio de Janeiro: Campus, 2008.

OLIVEIRA, Rômulo Silva de; CARISSIMI, Alexandre da Silva; TOSCANI, Simão Sirineo. Sistemas operacionais. 2. Ed. Porto Alegre: Bookman, 2001.

Rua dos Andradas, 1614 - Santa Maria - RS - Brasil

Cep. 97010-032 - www.ufn.edu.br

Arquivos

Roteiro de Atividades

Aula 8

Modalidade da aula: Presencial - 16 de setembro de 2024

Arquivos

Introdução

Compreender a evolução histórica dos sistemas operacionais e sua estrutura como sistema fundamental aos computadores modernos e aplicar a programação concorrente, com processos e threads é importante para o entendimento do funcionamento dos Sistemas Operacionais e a construção de programas concorrentes às arquiteturas de computadores modernas.

Na elaboração desse Produto de Aprendizagem, vamos sistematizar os conteúdos abordados, buscando vinculá-los a como influenciam o desenvolvimento de programas concorrentes.

Repertório profissional

Os Sistemas Operacionais são essenciais para a interação humano computador, a comunicação e execução de programas e aplicativos. Portanto, compreender como estão estruturados, como acontece a gerência de processos e threads e o escalonamento do processador, aplicando na programação concorrente é essencial para o profissional da área de TI.

Produto de aprendizagem

O Produto de Aprendizagem está organizado em duas partes:

Parte 1:

- desenvolver a atividade teórica em sala de aula e entregá-la até o término da aula.

Parte 2:

Desenvolver a pesquisa proposta sobre a comunicação inter processos e desenvolver a solução dos problemas propostos (implementá-los). Para tal, vamos, carregar arquivos com o código fonte dos programas concorrentes construídos para solucionar os problemas. A descrição da Parte 2 está no arquivo em anexo a esta aula.

Atividade

Entregue a Parte 2 do Produto de Aprendizagem 1, em arquivo único (arquivo compactado), conforme a descrição do arquivo que está em anexo a esta aula.

Data da entrega: 30 de setembro de 2024

Roteiro de Estudos

Aula 9

Modalidade da aula: Presencial - 23 de setembro de 2024

Processos e Threads

Experiência formativa

Rua dos Andradas, 1614 - Santa Maria - RS - Brasil

Cep. 97010-032 - www.ufn.edu.br

O que estudaremos?

O que aprenderemos?

Sobre o que refletiremos?

Escalonamento do processador

Objetivos

Explicar o escalonamento do processador nas arquiteturas modernas.

Pontos de Aprendizagem

Procure identificar os objetivos do escalonamento do processador e as diferenças conforme as políticas de escalonamento.

Guia de Aprendizagem

Nesta semana, começaremos o estudo sobre o Escalonamento do Processador. Para tanto, vamos discutir conjuntamente a respeito das políticas de escalonamento de processos, tendo por base o material disponibilizado no AVA.

Encaminhamento próxima aula

Realize uma revisão de conteúdos estudados, na próxima semana, realizaremos o nosso Produto de Aprendizagem 1.

Referência Bibliográfica

SILBERSCHATZ, Abraham; GALVIN, Peter; GAGNE, Greg. Sistemas operacionais: com Java. Rio de Janeiro: Campus, 2008.

OLIVEIRA, Rômulo Silva de; CARISSIMI, Alexandre da Silva; TOSCANI, Simão Sirineo. Sistemas operacionais. 2. Ed. Porto Alegre: Bookman, 2001.

Arquivos

Aula 10

Modalidade da aula: Presencial - 30 de setembro de 2024

Processos e Threads

Experiência formativa

O que estudaremos?

O que aprenderemos?

Sobre o que refletiremos?

Pontos de Aprendizagem

Procure compreender as políticas de escalonamento, suas principais caracteristicas e quais situações são mais adequadas de serem utilizadas.

Guia de Aprendizagem

Nesta semana, continuaremos o estudo sobre o Escalonamento do Processador. Para tanto, vamos discutir

Rua dos Andradas, 1614 - Santa Maria - RS - Brasil Cep. 97010-032 - www.ufn.edu.br

conjuntamente a respeito das políticas de escalonamento de processos, tendo por base o material disponibilizado no AVA.

Encaminhamento próxima aula

Aprofunde o estudo das políticas de escalonamento, com a leitura do Capítulo 5 de Silberschatz (2008) e a realização dos exercícios.

Referência Bibliográfica

SILBERSCHATZ, Abraham; GALVIN, Peter; GAGNE, Greg. Sistemas operacionais: com Java. Rio de Janeiro: Campus, 2008.

OLIVEIRA, Rômulo Silva de; CARISSIMI, Alexandre da Silva; TOSCANI, Simão Sirineo. Sistemas operacionais. 2. Ed. Porto Alegre: Bookman, 2001.

Arquivos

Aula 11

Modalidade da aula: Presencial - 7 de outubro de 2024

Processos e Threads

Experiência formativa

Pontos de Aprendizagem

Procure compreender as políticas de escalonamento, suas principais caracteristicas e quais situações são mais adequadas de serem utilizadas.

Guia de Aprendizagem

Nesta semana, continuaremos o estudo sobre o Escalonamento do Processador. Para tanto, vamos discutir conjuntamente a respeito das políticas de escalonamento de processos, tendo por base o material disponibilizado no AVA. Vamos resolver os exercícios propostos.

Encaminhamento próxima aula

Aprofunde o estudo das políticas de escalonamento, com a leitura do Capítulo 5 de Silberschatz (2008) e a realização dos exercícios.

Referência Bibliográfica

SILBERSCHATZ, Abraham; GALVIN, Peter; GAGNE, Greg. Sistemas operacionais: com Java. Rio de Janeiro: Campus, 2008.

OLIVEIRA, Rômulo Silva de; CARISSIMI, Alexandre da Silva; TOSCANI, Simão Sirineo. Sistemas operacionais. 2. Ed. Porto Alegre: Bookman, >

Aula 12

Modalidade da aula: Presencial - 21 de outubro de 2024

Sincronização de Processos

Rua dos Andradas, 1614 - Santa Maria - RS - Brasil

Cep. 97010-032 - www.ufn.edu.br

Experiência formativa

O que estudaremos?

Estudaremos os mecanismos de sincronização de processos e threads na programação concorrente, aplicando-os aos problemas clássicos de sincronização em Sistemas Operacionais.

O que aprenderemos?

Desenvolver a multiprogramação no contexto de processos cooperativos.

Construir soluções multiprogramadas aos problemas clássicos de sincronização.

Sobre o que refletiremos?

O que é uma seção crítica de código? Que requisitos uma boa solução à seção crítica de código deve satisfazer? Como os processos e threads podem ser sincronizados?

Competências

Aplicar mecanismos de sincronização de processos e threads na programação concorrente de forma assertiva.

Mecanismos de sincronização de processos

Objetivos

Desenvolver a multiprogramação no contexto de processos cooperativos.

Pontos de Aprendizagem

Procure compreender o que é aseção crítica, quais as consequências da execução de processos cooperativos coma seção crítica desprotegida e como pode ser feita a proteção da seção críticacom os Protocolos de Acesso.

Guia de Aprendizagem

Nesta aula, iniciaremos o estudo sobre a sincronização de processos/threads no contexto dos processos cooperativos. O material disponível no nosso Ambiente Virtual de Aprendizagem (AVA) conduzirá nossas discussões. O capítulo 7 de SILBERSCHATZ (2008) contém o embasamento para a aula

Encaminhamento próxima aula

A partir das reflexões de nossa aula, desenvolva os seguintes exercícios da Lista 5 e faça a entrega dos mesmos em arquivo único, com extensão pdf, nesta aula:

- Exercício 2
- Exercício 3
- Exercício 4
- Exercício 9
- Exercício 12
- Exercício 14.

Aula 13

Modalidade da aula: Presencial - 28 de outubro de 2024

Sincronização de Processos

Experiência formativa

O que estudaremos?

O que aprenderemos?

Sobre o que refletiremos?

Rua dos Andradas, 1614 - Santa Maria - RS - Brasil

Cep. 97010-032 - www.ufn.edu.br

Pontos de Aprendizagem

Procure compreender como funcionam os Monitores para a proteção da seção crítica, bem como, aplicá-los à problemas clássicos de sincronização dos sistemas operacionais.

Guia de Aprendizagem

Nesta aula, continuaremos o estudo sobre a sincronização de processos/threads no contexto dos processos cooperativos, abordando o mecanismo de sincronização Monitores. O material disponível no nosso Ambiente Virtual de Aprendizagem (AVA) conduzirá nossas discussões. O capítulo 7 de SILBERSCHATZ (2008) contém o embasamento para a aula.

Encaminhamento próxima aula

A partir das reflexões de nossa aula, continue a implementação iniciada na aula de hoje. Traga na próxima aula, suas dúvidas para discutirmos.

Referência Bibliográfica

SILBERSCHATZ, Abraham; GALVIN, Peter; GAGNE, Greg. Sistemas operacionais: com Java. Rio de Janeiro: Campus, 2008.

OLIVEIRA, Rômulo Silva de; CARISSIMI, Alexandre da Silva; TOSCANI, Simão Sirineo. Sistemas operacionais. 2. Ed. Porto Alegre: Bookman, 2001.

Aula 14

Modalidade da aula: Presencial - 4 de novembro de 2024

Produto de Aprendizagem 2 - parte 1 (avaliação teórica).

Experiência formativa

Problemas Clássicos de Sincronização

Objetivos

Construir soluções multiprogramadas aos problemas clássicos de sincronização.

Pontos de Aprendizagem

Procure desenvolver soluções aos problemas clássicos aplicando semáforos e/ou monitores, conforme considerarem mais adequado.

Guia de Aprendizagem

Nesta aula, vamos realizar a avaliação teórica dos conteúdos trabalhados até o momento.

Encaminhamento próxima aula

Continue o desenvolvimento da solução, iniciada na aula de hoje. Traga suas dúvidas para a próxima aula.

Referência Bibliográfica

SILBERSCHATZ, Abraham; GALVIN, Peter; GAGNE, Greg. Sistemas operacionais: com Java. Rio de Janeiro: Campus, 2008.

OLIVEIRA, Rômulo Silva de; CARISSIMI, Alexandre da Silva; TOSCANI, Simão Sirineo. Sistemas operacionais. 2. Ed. Porto Alegre: Bookman, 2001.

Rua dos Andradas, 1614 - Santa Maria - RS - Brasil

Cep. 97010-032 - www.ufn.edu.br

Roteiro de Atividades

Aula 15

Modalidade da aula: Presencial - 10 de novembro de 2024

Introdução

Além de compreender a estrutura de um Sistema Operacional, é necessário conhecermos e sabermos aplicar as diferentes formas de sincronização de processos cooperativos. Na elaboração desse Produto de Aprendizagem, vamos desenvolver a solução computacional, em software a um problema de sincronização, bem como experimentar diferentes situações que envolvam a sincronização de threads.

Repertório profissional

Com as arquiteturas multicore e manycore dos microprocessadores, ao profissional da Tecnologia da Informação, se faz essencial compreender e saber desenvolver a programação concorrente com processos/threads cooperativos.

Produto de aprendizagem

Desenvolver a solução computacional, em software, a um problema de sincronização dado, bem como experimentar diferentes situações que envolvam a sincronização de threads. Para tanto, cada estudante irá Carregar arquivos com o código fonte construído para solução dos problemas, no AVA e irá elaborar uma representação gráfica ou diagrama ilustrando a concorrência e a sincronização implementada no problema.

Neste sentido, o Produto de Aprendizagem 2 está organizado em duas atividades:

- 1) Avaliação escrita em sala de aula (Peso 6,0)
- 2) Desenvolvimento da Atividade descrita no arquivo em anexo. Para tal, os seguintes critérios de avaliação serão utilizados:

Conceitos empregados - 2,0 pontos

Programas implementados 3,0 pontos

Diagramas construidos 3,0 pontos

Abrangência da solução - 2,0 pontos

Roteiro de Estudos

Aula 16

Modalidade da aula: Presencial - 11 de novembro de 2024

Memória Real e Virtual

Experiência formativa

O que estudaremos?

Estudaremos as gerências de memória real e virtual nos sistemas de computação modernos.

O que aprenderemos?

Reconhecer as diferentes formas de gerência de memória, nos sistemas operacionais modernos.

Descrever a organização da memória virtual nos sistemas operacionais modernos.

Sobre o que refletiremos?

Como acontece a gerência de memória por paginação e segmentação e suas variações, nos sistemas operacionais, bem como a gerência de memória virtual? Quais estrategias são utilizadas para fazer a substituição de páginas no mecanismo de gerência de memória por memória virtual, bem como a gerência de espaço livre e alocação de espaço na memória?

Rua dos Andradas, 1614 - Santa Maria - RS - Brasil

Cep. 97010-032 - www.ufn.edu.br

Competências

Compreender as gerências de memória real e virtual nos sistemas de computação modernos, de forma proativa.

Organização da Memória Real

Objetivos

Reconhecer as diferentes formas de gerência de memória, nos sistemas operacionais modernos.

Pontos de Aprendizagem

Procure compreender como érealizada a gerência de memória por paginação simples.

Guia de Aprendizagem

: Nesta aula, abordaremos conceitos importantes para o entendimento da gerência de memória e iniciaremos o estudo sobre a gerência de memória por paginação, nos sistemas operacionais modernos. O material disponível no nosso Ambiente Virtual de Aprendizagem (AVA) conduzirá nossas discussões. O capítulo 9 de Silberschatz (2008) contém o embasamento para a aula.

Encaminhamento próxima aula

A partir das reflexões de nossa aula, faça a leitura doCapítulo 8 de OLIVEIRA (2001), a seção sobre Paginação.

Referência Bibliográfica

SILBERSCHATZ, Abraham; GALVIN, Peter; GAGNE, Greg. Sistemas operacionais: com Java. Rio de Janeiro: Campus, 2008.

OLIVEIRA, Rômulo Silva de; CARISSIMI, Alexandre da Silva; TOSCANI, Simão Sirineo. Sistemas operacionais. 2. Ed. Porto Alegre: Bookman, 2001.

Aula 17

Modalidade da aula: Presencial - 18 de novembro de 2024

Organização da Memória Virtual

Objetivos

Descrever a organização da memória virtual nos sistemas operacionais modernos.

Pontos de Aprendizagem

Procure compreender a importância da memória virtual nos sistemas operacionais e como atuam os algoritmos de substituição de páginas de memória.

Guia de Aprendizagem

Nesta aula, estudaremos a gerência de memória virtual, a partir da paginação. O material disponível no nosso Ambiente Virtual de Aprendizagem (AVA) conduzirá nossas discussões. O capítulo 10 de Silberschatz (2008) contém o embasamento para a aula.

Encaminhamento próxima aula

Continue a resolução dos exercícios sobre gerência de memória.

Rua dos Andradas, 1614 - Santa Maria - RS - Brasil

Cep. 97010-032 - www.ufn.edu.br

Referência Bibliográfica

SILBERSCHATZ, Abraham; GALVIN, Peter; GAGNE, Greg. Sistemas operacionais: com Java. Rio de Janeiro: Campus, 2008.

OLIVEIRA, Rômulo Silva de; CARISSIMI, Alexandre da Silva; TOSCANI, Simão Sirineo. Sistemas operacionais. 2. Ed. Porto Alegre: Bookman, 2001.

Aula 18

Modalidade da aula: Presencial - 25 de novembro de 2024

Pontos de Aprendizagem

Procure compreender os algoritmos de substituição de páginas de memória e como esta forma de gerência pode promover melhoria de desempenho nos sistemas operacionais multiprogramados..

Guia de Aprendizagem

Nesta aula, continuaremos o estudo sobre a gerência de memória virtual. O material disponível no nosso Ambiente Virtual de Aprendizagem (AVA) conduzirá nossas discussões. O capítulo 10 de Silberschatz (2008) contém o embasamento para a aula.

Encaminhamento próxima aula

Continue a resolução dos exercícios sobre gerência de memória.

Referência Bibliográfica

SILBERSCHATZ, Abraham; GALVIN, Peter; GAGNE, Greg. Sistemas operacionais: com Java. Rio de Janeiro: Campus, 2008.

OLIVEIRA, Rômulo Silva de; CARISSIMI, Alexandre da Silva; TOSCANI, Simão Sirineo. Sistemas operacionais. 2. Ed. Porto Alegre: Bookman, 2001.

Roteiro de Atividades

Aula 19

Modalidade da aula: Presencial - 2 de dezembro de 2024

Introdução

Para elabóração do Produto de Aprendizagem 3, cada estudante deverá pesquisar e escolher uma forma de gerência de memória utilizadas nos sistemas operacionais modernos. Para caracterizá-la, procure comparar às formas de gerência estudadas, apresentar aspectos vantajosos identificados, bem como um exemplo ilustrativo (Diagrama) da gerência de memória escolhida. Também, represente o modelo de memória virtual utilizado, com os respectivos algoritmos de substituição de páginas.

Repertório profissional

Ao profissional da área de Tecnologia da Informação é essencial conhecer as formas de gerência de memória e como acontece e qual a finalidade da memória virtual. Para o desenvolvimento do Produto de Aprendizagem 3, utilize os recursos trabalhados em sala de aula e esteja atento para outros recursos que você identificar no decorrer de sua pesquisa. O Produto de Aprendizagem 3 deve ser entreque em arquivo .pdf.

Produto de aprendizagem

Rua dos Andradas, 1614 - Santa Maria - RS - Brasil

Cep. 97010-032 - www.ufn.edu.br

O Produto de Aprendizagem 3 é organizado em duas partes:

Parte 1 - atividade avaliativa em sala de aula, no dia 13/12/2023 (peso 6,0)

Parte 2 - atividade descrita no arquivo em anexo e também em anexo à aula de 29/11/2023 (peso 4,0)

Roteiro de Estudos

Aula 20

Modalidade da aula: Presencial - 9 de dezembro de 2024

Pontos de Aprendizagem

Procure compreender a gerência de memória por segmentação.

Guia de Aprendizagem

Nesta aula, estudaremos a gerência de memória por segmentação. O material disponível no nosso Ambiente Virtual de Aprendizagem (AVA) conduzirá nossas discussões. O capítulo 9 de Silberschatz (2008) contém o embasamento para a aula.

Encaminhamento próxima aula

Continue a resolução dos exercícios sobre gerência de memória.

Referência Bibliográfica

SILBERSCHATZ, Abraham; GALVIN, Peter; GAGNE, Greg. Sistemas operacionais: com Java. Rio de Janeiro: Campus, 2008.

OLIVEIRA, Rômulo Silva de; CARISSIMI, Alexandre da Silva; TOSCANI, Simão Sirineo. Sistemas operacionais. 2. Ed. Porto Alegre: Bookman, 2001.