

AD A102770

LEVEL 1  
75

12

AD

TECHNICAL REPORT ARBRL-TR-02330

A METHOD FOR REDUCING DATA FROM  
RADIOGRAPHS OF SHAPED-CHARGE JETS

H. John Blische  
Brian M. Simmons

June 1981



US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND  
BALLISTIC RESEARCH LABORATORY  
ABERDEEN PROVING GROUND, MARYLAND

DMG FILE COPY

Approved for public release; distribution unlimited.

818 13005

Destroy this report when it is no longer needed.  
Do not return it to the originator.

Secondary distribution of this report by originating  
or sponsoring activity is prohibited.

Additional copies of this report may be obtained  
from the National Technical Information Service,  
U.S. Department of Commerce, Springfield, Virginia  
22161.

The findings in this report are not to be construed as  
an official Department of the Army position, unless  
so designated by other authorized documents.

*The use of trade names or manufacturers' names in this report  
does not constitute endorsement of any commercial product.*

## UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | READ INSTRUCTIONS BEFORE COMPLETING FORM                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------|
| 1. REPORT NUMBER<br><i>11</i><br>TECHNICAL REPORT ARBRL-TR-02330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2. GOVT ACCESSION NO.<br><i>AD-A102</i> | 3. RECIPIENT'S CATALOG NUMBER<br><i>770</i>                                        |
| 4. TITLE (and Subtitle)<br>A METHOD FOR REDUCING DATA FROM RADIOPHOTOGRAPHS OF SHAPED-CHARGE JETS.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | 5. TYPE OF REPORT & PERIOD COVERED<br><i>/ Final</i>                               |
| 7. AUTHOR(s)<br>H. John Blische<br>Brian M. Simmons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 6. PERFORMING ORG. REPORT NUMBER                                                   |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS<br>U.S. Army Ballistic Research Laboratory<br>ATTN: DRDAR-BLT)<br>Aberdeen Proving Ground, MD 21005                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS<br><i>1L162618AH80</i> |
| 11. CONTROLLING OFFICE NAME AND ADDRESS<br>U.S. Army Armament Research and Development Command<br>U.S. Army Ballistic Research Laboratory<br>(ATTN: DRDAR-BL)<br>Aberdeen Proving Ground, MD 21005                                                                                                                                                                                                                                                                                                                                                 |                                         | 12. REPORT DATE<br><i>11 JUN 1981</i>                                              |
| 14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | 13. NUMBER OF PAGES<br><i>45</i>                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 15. SECURITY CLASS. (of this report)<br><i>UNCLASSIFIED</i>                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE                                         |
| 16. DISTRIBUTION STATEMENT (of this Report)<br>Approved for public release, distribution unlimited.                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                    |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                    |
| 18. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                                                                    |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br>Shaped-Charge Jet<br>Radiograph<br>Data Reduction                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                                                                    |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) (hib) This report is a users' guide intended for those involved in reducing data from radiographs of shaped-charge jets. The procedure for setting-up and reading radiographs is listed step-by-step. A computer code listing and description of the calculations are included. Jet particle velocities, break-up time, kinetic energies, lengths, diameters, length-to-diameter ratios, masses, momentums, and jet virtual origin are all included in the code. |                                         |                                                                                    |

## TABLE OF CONTENTS

|                                                         | Page |
|---------------------------------------------------------|------|
| I. INTRODUCTION . . . . .                               | 5    |
| II. COMPUTATIONS AND EQUATIONS . . . . .                | 5    |
| III. SUMMARY . . . . .                                  | 10   |
| APPENDICES                                              |      |
| A. Procedures for Preparing and Reading Radiographs . . | 11   |
| B. Input to the Program . . . . .                       | 17   |
| C. Program Listing. . . . .                             | 21   |
| D. Alphabetical Listing of Program Variable Names . . . | 29   |
| E. Output from a Sample Run . . . . .                   | 33   |
| DISTRIBUTION LIST. . . . .                              | 45   |

|                    |                                     |
|--------------------|-------------------------------------|
| Accession For      | _____                               |
| NTIS GR121         | <input checked="" type="checkbox"/> |
| DFIG TAB           | <input type="checkbox"/>            |
| Unannounced        | <input type="checkbox"/>            |
| Justification      | _____                               |
| By                 | _____                               |
| Distribution/      | _____                               |
| Availability Codes | _____                               |
| AVAIL and/or       | _____                               |
| Dist Special       | _____                               |

A

## I. INTRODUCTION

With measurements taken directly from flash radiographs of shaped-charge jets before and after breakup, quantitative information describing particulated jet characteristics can be derived. The measurements are used to calculate such properties as particle length, diameter, velocity, mass and break-up time. It is, however, a very tedious and time consuming operation to take the measurements by hand and subsequently perform the calculations at one's desk. To alleviate much of this work, a method using digitizing equipment and a computer program has been developed and is the subject of this report. This method has proven to be very useful, especially in projects involving many rounds and requiring short turn-around time for measurements and computations.<sup>1,2</sup> The equations used in the computations will be discussed in the next section. Appendices for film reading procedures and for the computer program operation are included.

## II. COMPUTATIONS AND EQUATIONS

The program was designed to calculate as many quantities as possible with the data extracted from radiographs. This includes individual particles as well as the whole jet measurements. Since this report is intended as a user's guide, the calculations will be described briefly. All computations are tabulated in the output with proper headings. A typical output is shown in Appendix E.

All radiographs contain slightly magnified images of the particles of a shaped-charge jet. The positions of the particles are likewise altered from their true positions relative to the base of the shaped-charge liner. This difference is taken into account by the magnification factor, M, which is determined by the ratio of the distance, a, from the face of the x-ray tube to the jet path, to the distance, b, from the tube face to the film, as depicted in Figure 1. Thus,  $M = a/b$ . This factor is used in determining particle lengths, diameters, and positions. To calculate lengths and diameters, the measurements taken from the particle images on film are simply multiplied by the magnification factor.

To calculate change in position the magnification factor is used in the determination of a particle's true position during a given flash. Two cases must be considered regarding the film location in

<sup>1</sup>R. L. Jameson, and H. J. Blische, "A Study of a Light Anti-tank Weapon," report in preparation.

<sup>2</sup>D. Dorfman, and S. K. Golaski, "Electro Formed Shaped Charge Liner Evaluation," report in preparation. Martin Marietta Corp.  
Contract #DAAK 11-77-0088.

the determination of position. Refer to Figure 1 for the locations of the terms involved. Note that on all films the distance,  $p$ , from the fiducial to the particle is positive below the fiducial and negative above.

Case I: Film numbers 1 and 2.

$$s = F - [(f-p) M] ,$$

where  $s$  is the true position,  $F$  is the distance from the shaped-charge liner base to the x-ray tube focal level,  $f$  is the location of the y fiducial relative to the focal level,  $p$  is the point on the particle measured from  $f$ , and  $M$  is the magnification factor.

Case II: Film numbers 3 and 4

$$s = F + [(f+p) M] .$$

Once the positions have been determined for all flashes, velocity is calculated by

$$v = \frac{s_b - s_a}{T_b - T_a} ,$$

where  $s_b - s_a$  is the distance of jet travel between the earlier (a) and later (b) flashes, and  $T_b - T_a$  is the change in time between the flashes.

Break-up time is determined by the equation developed by Simon.<sup>3</sup>

$$t_b = \frac{\sum_{i=1}^n l_i}{v_1 - v_n}$$

where  $l_i$  is the individual particle length,  $v_1$  is the velocity of the first particle and  $v_n$  is the velocity of the nth particle.

---

<sup>3</sup>J. Simon, "The Effect of Explosive Detonation Characteristics on Shaped Charge Performance," BRL Memorandum Report 2414 (1974). (AD #B000337L).



Figure 1. Typical Flash X-ray Set-Up Showing Relative Positions of the Apparatus

Mass calculations involve the equation for the volume of a truncated cone. As described in Appendix A, points located around the film image of a particle outline a pair of trapezoids. This is also shown in Figure 2. The program interprets the coordinates of the points as measurements for truncated cones and applies the equation for mass,  $m$ , where

$$m = \rho \frac{\pi}{3} [H_1(R_1^2 + R_1R_2 + R_2^2) + H_2(R_2^2 + R_2R_3 + R_3^2)] .$$

Here,  $\rho$  is the density of the shaped-charge liner material,  $H_1$  and  $H_2$  are the heights of the truncated cones, and  $R_1$ ,  $R_2$  and  $R_3$  are the radii.

Momentum ( $mv$ ) and kinetic energy ( $\frac{1}{2} mv^2$ ) are finally calculated using velocity and mass previously computed.

The virtual origin of the shaped-charge jet is found by fitting a least-squares line through the particle velocity/particle position data for each flash. Theoretically, the position of the virtual origin corresponds to a particle velocity of zero.<sup>4</sup>

Tabulations of the above mentioned quantities are performed and listed in the output as averages. However, for the purpose of trouble-shooting, and to gain insight into the accuracy of the average computed quantities, velocities between the flashes and masses for each flash are also listed.

---

<sup>4</sup>R. DiPersio, J. Simon and A. B. Merendino, "Penetration of Shaped-Charge Jets Into Metallic Targets," BRL Report 1296 (1965). (AD #476717).



Figure 2. Particle Shape Approximation. Dashed lines outline two trapezoids that are interpreted as truncated cones in the program.

### III. SUMMARY

As indicated earlier, this method quickly yields valuable information necessary for the evaluation of shaped charge designs. A large number of radiographs can be data reduced in a few days, whereas the same number would take months if reduced by hand. This has the advantage of giving the shaped charge investigator more flexibility by allowing more time to assess designs and make decisions.

For accuracy considerations, comparisons of some measurements were made with other findings, and an error estimate of one measurement was performed. Velocity, length, diameter and break-up time calculations for the round in Appendix E were compared to data of several similar rounds as reported by Majerus<sup>5</sup>. The quantities in Appendix E were found to be within the range of Majerus' data. There is a problem, however, with particle mass calculations. An error estimate for the mass of a selected particle revealed that the measurement could be incorrect by approximately 60%. Several factors are involved in this large error including magnification measurements, digitizing equipment accuracy, image clarity and coordinate point locations. Referring back to Figure 2, note that the group of points surrounding the particle does not represent a contour mapping of the particle shape but approximates two truncated cone geometries. This is where the largest part of the error occurs. Ideally, a much larger number of digitized points would give a better approximation of shape, but the equipment currently in use limits the number to six. One solution would be the use of a digitizer with a rapid and continuous mode point reader connected to a tape or disc data storage device. This would enable the operator to trace the image of a particle and produce a closer geometric approximation. The computer program could subsequently be modified to compute mass more accurately.

<sup>5</sup>J. N. Majerus, "A Model for Studying the Influence of Various Packages Upon Shaped Charge Warhead Performance," R&D Report, AD-76-1000 (1976). (AD#B015299L).

**APPENDIX A**  
**PROCEDURES FOR PREPARING AND READING RADIOGRAPHS**

The standard BRL flash radiographic test site contains holders for film cassettes, each cassette containing either three or four films. As a rule the films bear the flash number and the film number.

After developing the films, they are arranged according to their positions in the cassettes. The jet particles are then numbered starting with the jet tip and working back, with each particle having the same designated number for every flash.

Once the particles are identified, a set of six points, outlining a pair of trapezoids, is obtained for each particle. When measurements are taken of these points, the configuration will be interpreted as a pair of truncated cones in order to calculate mass. Figure A-1 describes the preparation of the jet particle images.

The film reading machine that is presently used for this procedure is the Data Reducer 099, manufactured by the Telecomputing Corp. Signals are sent from the 099 to a digitizer, developed for BRL by Mr. Donald F. Merritt. The digitizer then transmitts this information, in the form of data units per inch, to a MAI Equipment Corp. 523 Gang Summary Unit which punches the data onto computer cards.

The following procedures will enable the user to operate the film reading equipment:

1. Insert the wired circuit board labeled "JET", label down, into the connection frame of the Gang Summary Unit.
2. Load the Gang Summary Unit feeder with blank computer cards.
3. Turn all three machines on, in any order.
4. Beginning with the first flash, place the film containing the jet tip onto the lighted reading surface of the 099. Arrange the film so that the jet is aligned horizontally on the lighted surface. The horizontal fiducial should run parallel to a line marked across the lighted surface as indicated in Figure 2. This is the x-direction. The vertical fiducial will indicate the y - direction.
5. By adjusting the large wheels located on either side of the console, place the cursor cross-hairs on the intersection of the x and y fiducials and press the button marked " $\phi$ " on the right of the console. This will assign (0,0) to the x/y intersection.
6. Located at the bottom-center of the digitizer console is a set of twelve registers with star-wheel adjustments. Reading from left to right, enter the round number in the first five registers, film number in the seventh and flash number in the eleventh.

7. The frame count windows in the center of the digitizer console should read zero in all units. If not, press the reset buttons until all units are zeroed.

8. Position the other switches and registers on the digitizer console as indicated in Table A-1.

9. With the cursor at (0,0), press the foot switch repeatedly until the number "1" appears in the frame count window. This will zero-out the memory in the card punch machine.

10. To read a particle place the cursor on each point, beginning with  $p_1$  (Figure A-1), and press the foot switch for reading at each point. Repeat this step for every particle on the film.

Table A-1. Positions of Switches and Other Adjustments on the Electronic Digitizer

| <u>SWITCH</u>        | <u>POSITION</u> |
|----------------------|-----------------|
| Multiplier (x and y) | 4               |
| Direction (x)        | Down            |
| Direction (y)        | Down            |
| Normal/Test (x)      | Normal          |
| Normal/Test (y)      | Normal          |
| Printer (paper tape) | User's choice   |
| Punch                | on              |
| Skip/Print Constants | Print (on)      |
| Frame Count Advance  | 6               |

11. Repeat steps 4 through 10 for each film.

12. Change registers seven, film number, and eleven, flash number, when the film is changed.

13. After the particles are read for all flashes, sort the cards out by "reading the holes" in columns 77 through 80, and remove only the card for each particle that has punched holes for a "+" character over column 76. This will be the sixth (last) card for the particle.



Figure A-1. Typical Radiograph of a Shaped-Charge Jet  
Mounted on Film Reading Device and Showing  
the Sequence for Reading a Particle

**APPENDIX B**  
**INPUT TO THE PROGRAM**

Card 1:

Columns 1-5: ICASES - Number of rounds to be run.

6-10: LCL - Option for printing out the shaped-charge liner density. Enter 1 if print out is not desired. Otherwise, leave blank.

Card 2: Case Identifier and some constants.

Columns 1-5: NROUND - Round Number  
6-10: NPART - Number of jet particles  
11-15:NFLASH - Number of flashes  
16-20: RHO - Shaped-charge liner density  
21-30: XMAG1 - Magnification factor for first flash  
31-40: XMAG2 - Magnification factor for second flash  
41-50: XMAG3 - Magnification factor for third flash  
51-60: Flash 1 - Delay time for first flash  
61-70: Flash 2 - Delay time for second flash  
71-80: Flash 3 - Delay time for third flash.

Card 3: More constants.

Columns 1-10: FOCUS 1 - Distance from the shaped-charge liner base to the focal level of the first x-ray tube.

11-20: FOCUS 2 - Distance from the shaped-charge liner base to the focal level of the second x-ray tube.

21-30: FOCUS 3 - Distance from the shaped-charge liner base to the focal level of the third x-ray tube.

31-40: F1A } Distances of film "y" fiducials to the

41-50: F2A } focal level of Flash A. Digit is film

51-60: F3A } number and letter (A, B or C) is flash.

61-70 F4A This also applies for Card 4 constants.

Card 4: More constants for fiducial measurements.

Columns 1-10: F1B  
11-20: F2B  
21-30: F3B  
31-40: F4B  
41-50: F1C  
51-60: F2C  
61-70: F3C  
71-80: F4C

Card 5: First particle card. All particle cards are identical in format. x and y coordinates are data units/inch in integer form.

Columns 1-5: IX(1) - x coordinate of p<sub>1</sub>  
6-10: IY(1) - y coordinate of p<sub>1</sub>  
11-15: IX(2) - x coordinate of p<sub>2</sub>  
16-20: IY(2) - y coordinate of p<sub>2</sub>  
21-25: IX(3) - x coordinate of p<sub>3</sub>  
26-30: IY(3) - y coordinate of p<sub>3</sub>  
31-35: IX(4) - x coordinate of p<sub>4</sub>  
36-40: IY(4) - y coordinate of p<sub>4</sub>  
41-45: IX(5) - x coordinate of p<sub>5</sub>  
46-50: IY(5) - y coordinate of p<sub>5</sub>  
51-55: IX(6) - x coordinate of p<sub>6</sub>  
56-60: IY(6) - y coordinate of p<sub>6</sub>

65: L - Flash number (1,2 or 3)  
70: IFILM - Film number  
71-75: IROUND - Round number  
77-80: IPART - Particle number

APPENDIX C  
PROGRAM LISTING

The program is written in FORTRAN IV and is currently on file  
in the BRL Control Data Corporation's CYBER 170/7600 system.

```

1      PROGRAM MAIN(INPUT,OUTPUT,TAPES=INPUT,TAPEo=OUTPUT)          MAIN    2
2      DIMENSION S1(100),S2(100),S3(100),VOL(100),XL(100),DIA(100),   MAIN    3
3      LV1(100),V2(100),V3(100),VEL(100),XMASS(100),XKE(100),SUMKE(100),   MAIN    4
4      ZFLOC(100),XXL(100),SUML(100),IX(6),IY(6),ZX(4),ZY(4),   MAIN    5
5      ZMPEAK(100),SUMMAS(100),B(10000),DA(3),DR(3),XMAG(3)   MAIN    6
6      DIMENSION AA(2,3),CC(2),MR(500),AF(500),SIG(2),TT(2)   COFFMA  1
7      DIMENSION SA(10),SB(10),SC(10),SD(10),SE(10),SF(10),SL1(10)   MAIN    7
8      ISL2(10),SL3(10),ST(10),L1(100),L2(100),L3(100)   MAIN    8
9      DIMENSION P(100),TOTP(100),SUMDIA(100),SUMLEN(100),XDIA(100),DELV(   MAIN    9
10     1100),SDELV(100),SUMDEL(100)   MAIN   10
11     DIMENSION XVOL(3,100)   MAIN   11
12     DIMENSION AZ(100,100)   COPRF   1
13     DATA SA(1),SA(2),SA(3)/10HVELOCITY (.+10HMM/MICROSE+3HC)>/   MAIN   12
14     DATA SB(1),SB(2),SB(3)/10HCUMULATIVE,10H MASS (GRA.+4HMS)>/   MAIN   13
15     DATA SC(1),SC(2),SC(3),SC(4)/10HPOSITION A.+10HLONG JET L.+10HENUTH   MAIN   14
16     1(MW).1H/>   MAIN   15
17     DATA SD(1),SD(2),SD(3)/10HCUMULATIVE,10H R.E. (JOU.+5HLES)>/   MAIN   16
18     DATA SE(1),SE(2),SE(3),SE(4)/10HDISTANCE F.+10HMM CHARGE.+10H BASE   MAIN   17
19     1(MW).1H/>   MAIN   18
20     DATA SF(1),SF(2),SF(3)/10HWEAK=UP T.+10HINE (MICRC.+5HSEC)>/   MAIN   19
21     DATA SL1(1)/0HFLASH 1>/   MAIN   20
22     DATA SL2(1)/0HFLASH 2>/   MAIN   21
23     DATA SL3(1)/0HFLASH 3>/   MAIN   22
24     1 FORMAT(3IS,FS,2+6F10.5)   MAIN   23
25     2 FORMAT(7F10.5)   MAIN   24
26     6 FORMAT(8F10.5)   MAIN   25
27     21 FORMAT(2IS)   MAIN   26
28     30 FORMAT(12IS,2X,11,2X,3IS)   MAIN   27
29     HEAD(5,21) ICASES,LCL
30     IF.EOF(5)) 23,23   MAIN   28
31     23 DO 500 IJ=1,ICASES   MAIN   29
32     22 READ(5,1)NROUND,NPAHT,NFLASH,RHO,(XMAG(I),I=1+3),FLASH1,FLASH2,   MAIN   30
33     1FLASH3
34     IF.EOF(5)) 24,24   MAIN   31
35     24 ENCODE(21+20,ST(1)) NROUND   MAIN   32
36     20 FORMAT(10HROUND NUMB,+HER +15.2H >)   MAIN   33
37     HEAD(5,2) FOCUS1,FOCUS2,FOCUS3,F1A,F2A,F3A,F4A
38     IF.EOF(5)) 25,25   MAIN   34
39     25 HEAD(5,6) F1B,F2B,F3B,F4B,F1C,F2C,F3C,F4C   MAIN   35
40     IF.EOF(5)) 26,26   MAIN   36
41     26 R0=RHO   MAIN   37
42     IF(LCL,NE,1) GO TO 29   MAIN   38
43     RHO=0.   MAIN   39
44     C
45     C       ROUND INFORMATION CARD NFAT   MAIN   40
46     C       POINT S   MAIN   41
47     C       LET NT 3, NROUND+RHO,(XMAG(N),N=1+3),FOCUS1,FOCUS2,FOCUS3,FLASH1,FL   MAIN   42
48     C       14SH2,FLASH3   MAIN   43
49     C       3 FORMAT(1//,20X,ROUND NUMBER +,IS,/,20X,LINEAR DENSITY(GM/CC)-   MAIN   44
50     C       1 ,F4.1/,20X,MAGNIFICATION FACTOR-+3F9.5,/,20X,DISTANCE F'UM L   MAIN   45
51     C       21E BASE TO FOCAL POINT(MM)+,25X,FLASH 1= ,F6.1/,25A,FLASH   MAIN   46
52     C       32- ,F6.1/,25X,FLASH 3= ,F6.1/,20A,DELAY TIMES (MICROSEC)+/,   MAIN   47
53     C       425X,FLASH 1= ,F6.1/,25X,FLASH 2= ,F6.1/,25X,FLASH 3= ,F6.1   MAIN   48
54     C
55     C       RHO=0.0   MAIN   49
56     C       POINT S   MAIN   50
57     5 FORMAT(1H1)   MAIN   51

```

```

      PRINT *
  4 FORMAT(2X,'PARTICLE AVG. VELOCITY TOTAL JET BREAK-UP',/2
  12X,'NUMBER',/4X,'(MM/MICROSEC)',/3X,'LENGTH(MM)',/3X,'(MICROSEC)',/)

  60      P1=3.14159
  61      DO 150 I=1,NFLASH
  62      DO 149 J=1,NPAHT
  63      RFAD(5,30)(IX(K),IY(K),K=1,6)=L*IFILM*IROUND(IPAHT
  64      IF(EGF(S)) 32,32
  65      32 DO 35 M=1,6
  66      ZX(M)=FLOAT(IX(M))/15.4906
  67      ZY(M)=FLOAT(IY(M))/15.4906
  68      IF(ZX(1).EQ.ZX(2)) GO TO 40
  69      R1=.5*SQRT((ZX(1)-ZX(6))*2+(ZY(1)-ZY(6))*2)*XMAG(I)
  70      R2=.5*SQRT((ZX(2)-ZX(5))*2+(ZY(2)-ZY(5))*2)*XMAG(I)
  71      R3=.5*SQRT((ZX(3)-ZX(4))*2+(ZY(3)-ZY(4))*2)*XMAG(I)
  72      P1X=(ZX(1)+ZX(6))/2.
  73      P1Y=(ZY(1)+ZY(6))/2.
  74      P2X=(ZX(3)+ZX(4))/2.
  75      P2Y=(ZY(3)+ZY(4))/2.
  76      P3X=(ZX(2)+ZX(5))/2.
  77      AZ(I+J)=(ZY(2)+ZY(5))/2.
  78      P3Y=(ZY(2)+ZY(5))/2.
  79      XH1=SQRT((P1X-P3X)**2+(P1Y-P3Y)**2)*XMAG(I)
  80      XH2=SQRT((P3X-P2X)**2+(P3Y-P2Y)**2)*XMAG(I)
  81      P1Z=P1X
  82      P1X=P2X
  83      GOTO 45
  84      40 P1X=ZX(1)
  85      IF(L.EQ.2) GOTO 55
  86      IF(L.EQ.3) GOTO 65
  87      IF(IFILM.EQ.2) GO TO 67
  88      IF(IFILM.EQ.3) GO TO 68
  89      IF(IFILM.EQ.4) GO TO 69
  90      S1(J)=FOCUS1-(F1A-P1X)*XMAG(I)
  91      GO TO 15
  92      47 S1(J)=FOCUS1-(F2A-P1X)*XMAG(I)
  93      GO TO 15
  94      48 S1(J)=FOCUS1-(F3A+P1X)*XMAG(I)
  95      GO TO 15
  96      49 S1(J)=FOCUS1-(F4A+P1X)*XMAG(I)
  97      15 IF(ZX(1).EQ.ZX(2)) GO TO 50
  98      L1(J)=0
  99      GOTO 75
 100      50 L1(J)=1
 101      GOTO 40
 102      55 IF(IFILM.EQ.2) GO TO 57
 103      IF(IFILM.EQ.3) GO TO 58
 104      IF(IFILM.EQ.4) GO TO 59
 105      S2(J)=FOCUS2-(F1B-P1X)*XMAG(I)
 106      GO TO 16
 107      57 S2(J)=FOCUS2-(F2B-P1X)*XMAG(I)
 108      GO TO 16
 109      58 S2(J)=FOCUS2-(F3B+P1X)*XMAG(I)
 110      GO TO 16
 111      59 S2(J)=FOCUS2-(F4B+P1X)*XMAG(I)
 112      16 V1(J)=(S2(J)-S1(J))/(FLASH2-FLASH1)
 113      IF(ZX(1).EQ.ZX(2)) GO TO 50

```

|     |                                                                          |      |     |
|-----|--------------------------------------------------------------------------|------|-----|
| 115 | L2(J)=0                                                                  | MAIN | 113 |
|     | GOTO 75                                                                  | MAIN | 114 |
| 60  | L2(J)=1                                                                  | MAIN | 115 |
|     | GOTO 80                                                                  | MAIN | 116 |
| 65  | IF(IFFLASH.EQ.2) GOTO 80                                                 | MAIN | 117 |
| 120 | IF(IFILM.EQ.2) GO TO 67                                                  | MAIN | 118 |
|     | IF(IFILM.EQ.3) GO TO 68                                                  | MAIN | 119 |
|     | IF(IFILM.EQ.4) GO TO 69                                                  | MAIN | 120 |
|     | S3(J)=FOCUS3-(F1C-P1X)*XMAG(I)                                           | MAIN | 121 |
|     | GO TO 17                                                                 | MAIN | 122 |
| 125 | 67 S3(J)=FOCUS3-(F2C-P1X)*XMAG(I)                                        | MAIN | 123 |
|     | GO TO 17                                                                 | MAIN | 124 |
|     | 68 S3(J)=FOCUS3-(F3C-P1X)*XMAG(I)                                        | MAIN | 125 |
|     | GO TO 17                                                                 | MAIN | 126 |
| 69  | S3(J)=FOCUS3-(F4C-P1X)*XMAG(I)                                           | MAIN | 127 |
| 130 | 17 V2(J)=(S3(J)-S2(J))/(FLASH3-FLASH2)                                   | MAIN | 128 |
|     | V3(J)=(S3(J)-S1(J))/(FLASH3-FLASH1)                                      | MAIN | 129 |
|     | IF(ZX(1).EQ.ZX(2)) GO TO 70                                              | MAIN | 130 |
|     | L3(J)=0                                                                  | MAIN | 131 |
|     | GOTO 75                                                                  | MAIN | 132 |
| 135 | 70 L3(J)=1                                                               | MAIN | 133 |
|     | GOTO 80                                                                  | MAIN | 134 |
| 75  | VOL(J)= VOL(J)*(PI*XH1/3.*((H)**2*R1*R2*R2**2)+PI*XH2/3.*((H2**2+H2**2)* | MAIN | 135 |
|     | (R1+R3**2))                                                              | MAIN | 136 |
|     | PI*XH1*Z                                                                 | MAIN | 137 |
| 140 | XVOL(I,J)= PI*XH1/3.*((R1**2+R1*R2+R2**2)+H1*XH2/3.*((H2**2+H2**2)*      | MAIN | 138 |
|     | (R2**2))                                                                 | MAIN | 139 |
|     | XVOL(I,J)= XVOL(I,J)*.001*RH0                                            | MAIN | 140 |
|     | XL(J)=XL(J)+SQR((P1X-P2X)**2+(P1Y-P2Y)**2)*XMAG(I)                       | MAIN | 141 |
|     | DIA(J)=DIA(J)+2.*R2                                                      | MAIN | 142 |
| 145 | H0 CONTINUE                                                              | MAIN | 143 |
|     | IF(I.LT.NFLASH) GOTO 149                                                 | MAIN | 144 |
|     | IF(IFFLASH.EQ.2) GOTO 95                                                 | MAIN | 145 |
|     | IF(L1(J).EQ.1.AND.L2(J).EQ.1.AND.L3(J).EQ.1) GO TO 149                   | MAIN | 146 |
| 150 | IF(L1(J).EQ.0.AND.L2(J).EQ.0.AND.L3(J).EQ.0) GO TO 90                    | MAIN | 147 |
|     | IF(L2(J).EQ.1.AND.L3(J).EQ.1) GO TO 95                                   | MAIN | 148 |
|     | IF(L1(J).EQ.1.AND.L3(J).EQ.1) GO TO 95                                   | MAIN | 149 |
|     | IF(L1(J).EQ.0.AND.L2(J).EQ.1) GO TO 95                                   | MAIN | 150 |
|     | IF(L2(J).EQ.0.AND.L3(J).EQ.1) GO TO 100                                  | MAIN | 151 |
| 155 | IF(L1(J).EQ.0.AND.L3(J).EQ.0) GO TO 100                                  | MAIN | 152 |
|     | IF(L1(J).EQ.0.AND.L2(J).EQ.0) GO TO 100                                  | MAIN | 153 |
| 160 | 45 IF(L1(J).EQ.1.AND.L2(J).EQ.1) GO TO 149                               | MAIN | 154 |
|     | IF(L1(J).EQ.0.AND.L2(J).EQ.0) GO TO 100                                  | MAIN | 155 |
|     | IF(L1(J).EQ.0.0H.L2(J).EQ.0) GO TO 95                                    | MAIN | 156 |
| 165 | 90 XMASS(J)=VOL(J)*.001/3.*RH0                                           | MAIN | 157 |
|     | XL(J)=XL(J)/3.                                                           | MAIN | 158 |
|     | DIA(J)=DIA(J)/3.                                                         | MAIN | 159 |
|     | GOTO 149                                                                 | MAIN | 160 |
|     | 45 XMASS(J)=VOL(J)*.001*RH0                                              | MAIN | 161 |
|     | GOTO 149                                                                 | MAIN | 162 |
| 170 | 130 XMASS(J)=VOL(J)*.001/2.*RH0                                          | MAIN | 163 |
|     | XL(J)=XL(J)/2.                                                           | MAIN | 164 |
|     | DIA(J)=DIA(J)/2.                                                         | MAIN | 165 |
| 175 | 149 CONTINUE                                                             | MAIN | 166 |
|     | 150 CONTINUE                                                             | MAIN | 167 |
|     | GO 170 N=1.NPAHT                                                         | MAIN | 168 |
|     | IF(IFFLASH.EQ.2) GOTO 155                                                | MAIN | 169 |

```

VEL(N)=V1(N)+V2(N)+V3(N))/3.0.
GOTO 160
175 VFL(N)=V1(N)*.1
160 SUML(N)=XL(N)+SUML(N-1)
SUMMAS(N)=XMASS(N)+SUMMAS(N-1)
ELOD(N)=XL(N)/DIA(N)
VEL(N)=VEL(N)*10.
XKE(N)=.5*XMASS(N)*.001*(VEL(N)*1000.)**2
SUMKE(N)=XKE(N)+SUMKE(N-1)
P(N)=VEL(N)*XMASS(N)
TOTP(N)=P(N)+TOTP(N-1)
SUMDIA(N)=SUMDIA(N-1)+DIA(N)
IF(N.EQ.1)GOTO 165
145 HREAK(N)=SUML(N)/(VEL(1)-VEL(N))
GOTO 170
165 HREAK(1)=0.0
170 PRINT 171, N,VEL(N),SUML(N),HREAK(N)
171 FORMAT(23X,I2.10X,F6.3,9X,F6.2,7X,F6.1)
172 PRINT 52
52 FORMAT(1H1,20X,'PARTICLE',4X,'VELOCITY1',4X,'VELOCITY2',4X,
1'VELOCITY3',4X,'NUMBER',3X,'(MM/MICROSEC)',2X,'(MM/MICROSEC)',1,
22X,'(MM/MICROSEC)',1,/)
DO 172 J=1,NPART
172 PRINT 173, J,V1(J),V2(J),V3(J)
173 FORMAT(23X,I2,9X,F6.3,9X,F6.3,9X,F6.3)
PRINT 175
175 FORMAT(1H1,20X,'PARTICLE LENGTH DIA. L/D MASS TOTAL J MAIN
1ET',4X,'NUMBER',5X,'(MM)',4X,'(MM)',9X,'(GRAMS)',2X,'MASS(GRAMS)'1,
2)',1)
DO 176 I=1,NPART
176 PRINT 177, I,XL(I),DIA(I),ELOD(I),AMASS(I)+SUMMAS(I)
177 FORMAT(23X,I2,6X,F4.1,4X,F4.1,2X,F4.1,4X,F5.2,5X,F4.2)
PRINT 603
205 603 FORMAT(1H1,20X,'PARTICLE',4X,'MASS1',9X,'MASS2',9X,'MASS3',4X,22X,
1'NUMBER',4X,'(GRAMS)',7X,'(GRAMS)',7X,'(GRAMS)',1,/)
DO 600 J=1,NPART
600 I=1
500 WRITE(6,602) I,J,XVOL(I+J),XVOL(I+1+J),XVOL(I+2+J)
602 FORMAT(23X,I2,6X,F8.4,6X,F8.4,6X,F8.4)
PRINT 180
180 FORMAT(1H1,20X,'PARTICLE K.E. TOTAL JET [INSTANCE FROM CM MAIN
1ARGE BASE',4X,'NUMBER',4X,'(JOULES)',3X,'*KE(JOULES)',2X,'FLASH CORPA
21',2X,'FLASH 2',2X,'FLASH 3',1,/)
DO 181 I=1,NPART
181 PRINT 182, I,XKE(I),SUMKE(I),S1(I),S2(I),S3(I)
182 FORMAT(23X,I2,7X,F8.0,4X,F8.0,4X,F5.0,4X,F5.0,4X,F5.0)
PRINT 183
183 FORMAT(1H1,20X,'PARTICLE',4X,'MOMENTUM',4X,'TOTAL JET',4X,23X,'NUMB CORPA
1ER',4X,'(KG-M/SEC)',3X,'MOMENTUM',1,/)
DO 185 I=1,NPART
185 PRINT 186,I,P(I),TOTP(I)
186 FORMAT(23X,I2,9X,F6.2,7X,F6.2)
PRINT 33
33 FORMAT(1H1,21X,'PARTICLE',4X,'DEVIANCE FROM PATH (MM)',4X,23X,
1'NUMBER',6X,'FLASH 1 FLASH 2 FLASH 3',1,/)
DO 800 JJJ=1,NPART
800 WRITE (6,36) JJJ,AZ(1,JJJ),AZ(2,JJJ),AZ(3,JJJ)

```

|     |                                                                                                                                                                                                                                  |       |     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
|     | 36 FORMAT(24X,I2,8X,F6.3,3X,F8.3+3X,F8.3)                                                                                                                                                                                        | CORRA | H   |
| 230 | 400 CONTINUE                                                                                                                                                                                                                     | CORRA | 9   |
|     | DO 192 N=2,NPART                                                                                                                                                                                                                 | MAIN  | 219 |
|     | SUMLEN(N)=SUMLEN(N-1)+XL(N)                                                                                                                                                                                                      | MAIN  | 220 |
|     | XDIA(N)=XDIA(N-1)+DIA(N)                                                                                                                                                                                                         | MAIN  | 221 |
|     | IF(N.EQ.2) GO TO 191                                                                                                                                                                                                             | MAIN  | 222 |
|     | DELV(N)=VEL(N-1)-VEL(N)                                                                                                                                                                                                          | MAIN  | 223 |
|     | GO TO 192                                                                                                                                                                                                                        | MAIN  | 224 |
|     | 191 DELV(N)=VEL(1)-VEL(N)                                                                                                                                                                                                        | MAIN  | 225 |
|     | 192 SVELV(N)=SDELV(N-1)+DFLV(N)                                                                                                                                                                                                  | MAIN  | 226 |
|     | DO 195 J=3,NPART                                                                                                                                                                                                                 | MAIN  | 227 |
| 240 | 195 SUMDEL(J)=DELV(J)+SUMDEL(J-1)                                                                                                                                                                                                | MAIN  | 228 |
|     | AVL1=SUML(NPART)/FLOAT(NPART)                                                                                                                                                                                                    | MAIN  | 229 |
|     | AVL2=SUMLEN(NPART)/FLOAT(NPART-1)                                                                                                                                                                                                | MAIN  | 230 |
|     | AVD1=SUMDIA(NPART)/FLOAT(NPART)                                                                                                                                                                                                  | MAIN  | 231 |
|     | AVD2=XDIA(NPART)/FLOAT(NPART-1)                                                                                                                                                                                                  | MAIN  | 232 |
| 245 | ADELV1=SDELV(NPART)/FLOAT(NPART-1)                                                                                                                                                                                               | MAIN  | 233 |
|     | ADELV2=SUMDEL(NPART)/FLOAT(NPART-2)                                                                                                                                                                                              | MAIN  | 234 |
|     | PRINT 200, AVL1,AVL2,AVD1,AVD2,ADELV1,ADELV2                                                                                                                                                                                     | MAIN  | 235 |
| 250 | 200 FORMAT(1H1, //, 4TX, 'WITH JET TIP', //, 2DX, 'AVERAGE PART',<br>1ICLE LENGTH', 7X, F6.2, 7X, F6.2, //, 2DX, 'AVERAGE PARTICLE DIAMETER', 6A,<br>2F5.2, 8A, F5.2, //, 2DX, 'AVERAGE CHANGE IN VELOCITY', 6X, F4.2, 9A, F4.2) | MAIN  | 236 |
|     | PRINT 505                                                                                                                                                                                                                        | MAIN  | 237 |
|     | NRA=2                                                                                                                                                                                                                            | CORRA | 238 |
|     | NN=1                                                                                                                                                                                                                             | CORRA | 24  |
|     | IC=0                                                                                                                                                                                                                             | CORRA | 25  |
| 255 | CALL POLYLS(VEL,S1,NPART,AA,NRA,NN,CC,RR,AF,ERMS,SIG,TT,DET,IC)                                                                                                                                                                  | CORRA | 26  |
|     | *WHITE(6,41) CC(1)                                                                                                                                                                                                               | CORRA | 27  |
|     | *1 FORMAT(20X, ' VIRTUAL ORIGIN FOR FLASH 1', F12.6)                                                                                                                                                                             | CORRA | 28  |
|     | CALL POLYLS(VEL,S2,NPART,AA,NRA,NN,CC,RR,AF,ERMS,SIG,TT,DET,IC)                                                                                                                                                                  | CORRA | 29  |
|     | *WHITE(6,42) CC(1)                                                                                                                                                                                                               | CORRA | 30  |
| 260 | *2 FORMAT(20X, ' VIRTUAL ORIGIN FOR FLASH 2', F12.6)                                                                                                                                                                             | CORRA | 31  |
|     | IF(L.LT.3) GO TO 515                                                                                                                                                                                                             | CORRA | 32  |
|     | CALL POLYLS(VEL,S3,NPART,AA,NRA,NN,CC,RR,AF,ERMS,SIG,TT,DET,IC)                                                                                                                                                                  | CORRA | 33  |
|     | *WHITE(6,43) CC(1)                                                                                                                                                                                                               | CORRA | 34  |
|     | *3 FORMAT(20X, ' VIRTUAL ORIGIN FOR FLASH 3', F12.6)                                                                                                                                                                             | CORRA | 35  |
| 265 | 515 CONTINUE                                                                                                                                                                                                                     | CORRA | 36  |
|     | 505 FORMAT(1H1)                                                                                                                                                                                                                  | MAIN  | 240 |
|     | DO 510 JN= 1,NPART                                                                                                                                                                                                               | MAIN  | 241 |
|     | VOL(JN)=0.                                                                                                                                                                                                                       | MAIN  | 242 |
|     | XL(JN)=0.                                                                                                                                                                                                                        | MAIN  | 243 |
| 270 | 510 DIA(JN)=0.                                                                                                                                                                                                                   | MAIN  | 244 |
|     | 500 CONTINUE                                                                                                                                                                                                                     | MAIN  | 245 |
|     | STOP                                                                                                                                                                                                                             | MAIN  | 246 |
|     | END                                                                                                                                                                                                                              | MAIN  | 247 |

APPENDIX D  
ALPHABETICAL LISTING OF PROGRAM VARIABLE NAMES

ADELV1: Average change in velocity between particles.

ADELV2: Average change in velocity between particles, excluding the jet tip.

AVD1: Average diameter of all particles.

AVD2: Average diameter of particles, excluding the jet tip.

BREAK: Break-up time.

DELVA: Change in velocity between particles.

DIA: Diameter of a particle.

ELOD: Length-to-diameter ratio of a particle.

L1, L2, L3: Flags for flashes 1,2 and 3 used for determining the average length, diameter and mass of a particle.

P: Momentum of a particle.

P1X, P2X, P3X: Computed x coordinates of points between  $p_1$  and  $p_6$ ,  $p_3$  and  $p_4$ , and  $p_2$  and  $p_5$ , respectively.

P1Y, P2Y, P3Y: Computed y coordinates of points between  $p_1$  and  $p_6$ ,  $p_3$  and  $p_4$ , and  $p_2$  and  $p_5$ , respectively.

R1: Radius of the front end of a particle.

R2: Radius of the mid-section of a particle.

R3: Radius of the back end of a particle.

S1: Computed distance from the shaped-charge liner base to the back end of a particle for the first flash.

S2: Computed distance from the shaped-charge liner base to the back end of a particle for the second flash.

S3: Computed distance from the shaped-charge liner base to the back end of a particle for the third flash.

SDELV: Summation of the changes in velocities between particles, used in the calculation of average change in velocity.

SUMDEL: Summation of the changes in velocities between particles excluding the jet tip.

SUMDIA: Summation of the diameters of all particles, used to compute average diameter.

SUMKE: Summation of all particle kinetic energies.

SUML: Summation of the lengths of all particles.

SUMLEN: Summation of the lengths of particles excluding the jet tip.

SUMMAS: Summation of the masses of all particles.

TOTP: Summation of the momentums of all particles.

V1: Velocity computed between the first and second flashes.

V2: Velocity computed between the second and third flashes.

V3: Velocity computed between the first and third flashes.

VEL: Average velocity of V1, V2 and V3.

VOL: Summation of the volumes of a particle over all flashes.

XDIA: Summation of all particle diameters excluding the jet tip.

XH1: Height of the truncated cone on the front end of a particle.

XH2: Height of the truncated cone on the back end of a particle.

XKE: Kinetic energy of a particle.

XL: Length of a particle averaged over all flashes.

XMASS: Mass of a particle averaged over all flashes.

XVOL: Mass of a particle for a particular flash.

ZX: X coordinate converted from data units/inch to millimeters.

ZY: Y coordinates converted from data units/inch to millimeters.

APPENDIX E  
OUTPUT FROM A SAMPLE RUN

ROUND NUMBER 2203

LINER DENSITY(GM/CC)- 8.9

MAGNIFICATION FACTOR- .92000 .92000 .92000

DISTANCE FROM LINER BASE TO FOCAL POINT(MM)

FLASH 1- 914.4

FLASH 2- 914.4

FLASH 3- 914.4

DELAY TIMES (MICROSEC)

FLASH 1- 161.9

FLASH 2- 183.1

FLASH 3- 202.9

| PARTICLE<br>NUMBER | AVG. VELOCITY<br>(MM/MICROSEC) | TOTAL JET<br>LENGTH(MM) | BREAK-UP<br>(MICROSEC) |
|--------------------|--------------------------------|-------------------------|------------------------|
| 1                  | 7.741                          | 30.93                   | 0.0                    |
| 2                  | 7.549                          | 42.00                   | 214.8                  |
| 3                  | 7.476                          | 54.87                   | 207.1                  |
| 4                  | 7.371                          | 77.95                   | 210.4                  |
| 5                  | 7.123                          | 87.68                   | 141.4                  |
| 6                  | 7.046                          | 97.79                   | 140.7                  |
| 7                  | 6.918                          | 107.25                  | 130.3                  |
| 8                  | 6.899                          | 110.82                  | 131.6                  |
| 9                  | 6.863                          | 116.90                  | 133.2                  |
| 10                 | 6.776                          | 131.93                  | 136.8                  |
| 11                 | 6.625                          | 144.04                  | 129.0                  |
| 12                 | 6.614                          | 149.58                  | 132.7                  |
| 13                 | 6.501                          | 163.09                  | 131.4                  |
| 14                 | 6.323                          | 178.85                  | 126.1                  |
| 15                 | 6.291                          | 184.00                  | 126.4                  |
| 16                 | 6.188                          | 188.02                  | 121.0                  |
| 17                 | 6.163                          | 193.36                  | 122.4                  |
| 18                 | 6.124                          | 201.88                  | 124.8                  |
| 19                 | 5.951                          | 214.24                  | 114.7                  |
| 20                 | 5.898                          | 226.25                  | 122.0                  |
| 21                 | 5.772                          | 243.74                  | 123.0                  |
| 22                 | 5.613                          | 262.23                  | 123.0                  |
| 23                 | 5.432                          | 278.11                  | 120.3                  |
| 24                 | 5.295                          | 288.03                  | 117.8                  |
| 25                 | 5.247                          | 298.54                  | 119.7                  |
| 26                 | 5.160                          | 310.01                  | 120.8                  |
| 27                 | 5.075                          | 321.11                  | 120.4                  |
| 28                 | 4.944                          | 331.04                  | 118.4                  |
| 29                 | 4.842                          | 350.73                  | 121.0                  |
| 30                 | 4.674                          | 368.56                  | 120.0                  |
| 31                 | 4.588                          | 376.67                  | 114.4                  |
| 32                 | 4.501                          | 394.42                  | 121.1                  |
| 33                 | 4.414                          | 407.47                  | 122.0                  |
| 34                 | 4.213                          | 430.33                  | 122.1                  |
| 35                 | 4.084                          | 441.84                  | 120.4                  |
| 36                 | 4.046                          | 454.14                  | 122.0                  |
| 37                 | 3.872                          | 473.40                  | 122.1                  |
| 38                 | 3.629                          | 494.02                  | 120.1                  |
| 39                 | 3.556                          | 510.84                  | 122.0                  |
| 40                 | 3.333                          | 538.74                  | 122.0                  |
| 41                 | 3.177                          | 554.78                  | 121.6                  |
| 42                 | 3.066                          | 574.32                  | 122.4                  |
| 43                 | 2.822                          | 595.34                  | 121.1                  |

| PARTICLE<br>NUMBER | VELOCITY1<br>(MM/MICROSEC) | VELOCITY2<br>(MM/MICROSEC) | VELOCITY3<br>(MM/MICROSEC) |
|--------------------|----------------------------|----------------------------|----------------------------|
| 1                  | 7.773                      | 7.709                      | 7.742                      |
| 2                  | 7.573                      | 7.525                      | 7.550                      |
| 3                  | 7.483                      | 7.469                      | 7.476                      |
| 4                  | 7.586                      | 7.150                      | 7.376                      |
| 5                  | 7.244                      | 6.999                      | 7.126                      |
| 6                  | 7.163                      | 6.926                      | 7.049                      |
| 7                  | 7.048                      | 6.785                      | 6.921                      |
| 8                  | 7.009                      | 6.786                      | 6.901                      |
| 9                  | 6.987                      | 6.737                      | 6.866                      |
| 10                 | 6.886                      | 6.664                      | 6.779                      |
| 11                 | 6.728                      | 6.519                      | 6.627                      |
| 12                 | 6.580                      | 6.649                      | 6.613                      |
| 13                 | 6.555                      | 6.445                      | 6.502                      |
| 14                 | 6.370                      | 6.275                      | 6.324                      |
| 15                 | 6.325                      | 6.256                      | 6.292                      |
| 16                 | 6.239                      | 6.135                      | 6.189                      |
| 17                 | 6.206                      | 6.119                      | 6.144                      |
| 18                 | 6.178                      | 6.068                      | 6.125                      |
| 19                 | 6.014                      | 5.888                      | 5.943                      |
| 20                 | 5.950                      | 5.846                      | 5.900                      |
| 21                 | 5.849                      | 5.692                      | 5.774                      |
| 22                 | 5.699                      | 5.524                      | 5.615                      |
| 23                 | 5.532                      | 5.330                      | 5.435                      |
| 24                 | 5.362                      | 5.226                      | 5.257                      |
| 25                 | 5.307                      | 5.186                      | 5.248                      |
| 26                 | 5.227                      | 5.108                      | 5.170                      |
| 27                 | 5.123                      | 5.026                      | 5.074                      |
| 28                 | 5.020                      | 4.867                      | 4.944                      |
| 29                 | 5.823                      | 3.839                      | 4.015                      |
| 30                 | 4.797                      | 4.548                      | 4.677                      |
| 31                 | 4.694                      | 4.479                      | 4.641                      |
| 32                 | 4.621                      | 4.378                      | 4.503                      |
| 33                 | 4.509                      | 4.317                      | 4.416                      |
| 34                 | 4.330                      | 4.043                      | 4.216                      |
| 35                 | 4.204                      | 3.964                      | 4.040                      |
| 36                 | 4.175                      | 3.915                      | 4.049                      |
| 37                 | 3.974                      | 3.776                      | 3.851                      |
| 38                 | 3.787                      | 3.468                      | 3.623                      |
| 39                 | 3.699                      | 3.408                      | 3.554                      |
| 40                 | 3.457                      | 3.205                      | 3.334                      |
| 41                 | 3.305                      | 3.046                      | 3.150                      |
| 42                 | 3.253                      | 2.876                      | 3.071                      |
| 43                 | 2.953                      | 2.688                      | 2.825                      |

| PARTICLE<br>NUMBER | LENGTH<br>(MM) | DIA.<br>(MM) | L/D | MASS<br>(GRAMS) | TOTAL JET<br>MASS (GRAMS) |
|--------------------|----------------|--------------|-----|-----------------|---------------------------|
| 1                  | 30.9           | 4.8          | 6.4 | 3.70            | 3.70                      |
| 2                  | 11.1           | 2.5          | 4.4 | .29             | 3.44                      |
| 3                  | 12.9           | 2.9          | 4.5 | .41             | 4.40                      |
| 4                  | 23.1           | 2.8          | 8.3 | .73             | 5.14                      |
| 5                  | 9.7            | 2.9          | 3.4 | .30             | 5.44                      |
| 6                  | 10.1           | 2.7          | 3.7 | .31             | 5.75                      |
| 7                  | 9.5            | 2.3          | 4.1 | .23             | 4.97                      |
| 8                  | 3.6            | 2.0          | 1.8 | .07             | 4.04                      |
| 9                  | 6.1            | 2.4          | 2.6 | .14             | 4.18                      |
| 10                 | 15.0           | 2.6          | 5.8 | .48             | 4.66                      |
| 11                 | 12.1           | 2.4          | 5.0 | .30             | 6.97                      |
| 12                 | 5.5            | 2.5          | 2.2 | .15             | 7.12                      |
| 13                 | 13.5           | 2.9          | 4.7 | .42             | 7.54                      |
| 14                 | 15.8           | 2.5          | 6.3 | .43             | 7.97                      |
| 15                 | 5.1            | 2.2          | 2.3 | .11             | 4.07                      |
| 16                 | 4.0            | 2.1          | 1.9 | .07             | 4.14                      |
| 17                 | 5.3            | 2.5          | 2.1 | .13             | 4.28                      |
| 18                 | 4.5            | 2.8          | 3.1 | .26             | 4.52                      |
| 19                 | 12.4           | 2.8          | 4.4 | .40             | 5.43                      |
| 20                 | 12.0           | 2.3          | 5.3 | .27             | 4.14                      |
| 21                 | 17.5           | 2.3          | 7.7 | .42             | 9.61                      |
| 22                 | 18.5           | 2.6          | 7.1 | .50             | 10.10                     |
| 23                 | 15.9           | 2.6          | 6.0 | .44             | 10.55                     |
| 24                 | 9.9            | 2.8          | 3.5 | .31             | 10.86                     |
| 25                 | 10.5           | 2.7          | 3.9 | .31             | 11.17                     |
| 26                 | 11.5           | 2.6          | 4.4 | .31             | 11.48                     |
| 27                 | 11.1           | 3.0          | 3.7 | .34             | 11.88                     |
| 28                 | 9.9            | 2.9          | 3.5 | .34             | 12.20                     |
| 29                 | 14.7           | 2.9          | 6.4 | .66             | 12.87                     |
| 30                 | 17.8           | 2.8          | 6.3 | .56             | 13.42                     |
| 31                 | 8.1            | 2.9          | 2.8 | .25             | 13.66                     |
| 32                 | 18.3           | 2.6          | 7.0 | .51             | 14.17                     |
| 33                 | 12.5           | 3.1          | 4.0 | .47             | 14.64                     |
| 34                 | 22.9           | 2.8          | 8.1 | .73             | 14.37                     |
| 35                 | 11.5           | 2.9          | 4.0 | .39             | 14.76                     |
| 36                 | 12.3           | 3.2          | 3.9 | .46             | 15.22                     |
| 37                 | 14.3           | 3.0          | 6.4 | .78             | 17.00                     |
| 38                 | 20.6           | 3.6          | 5.6 | .96             | 17.46                     |
| 39                 | 16.8           | 3.0          | 5.6 | .66             | 18.61                     |
| 40                 | 27.4           | 3.5          | 8.0 | 1.49            | 21.11                     |
| 41                 | 16.0           | 3.6          | 4.5 | .73             | 21.84                     |
| 42                 | 14.5           | 4.0          | 4.9 | 1.10            | 21.94                     |
| 43                 | 21.0           | 3.9          | 5.3 | 1.24            | 23.18                     |

| PARTICLE<br>NUMBER | MASS1<br>(GRAMS) | MASS2<br>(GRAMS) | MASS3<br>(GRAMS) |
|--------------------|------------------|------------------|------------------|
| 1                  | 3.2790           | 3.7919           | 4.0380           |
| 2                  | .2431            | .3145            | .3044            |
| 3                  | .3305            | .5462            | .3644            |
| 4                  | .7037            | 0.0000           | .7587            |
| 5                  | .2584            | .3559            | .2993            |
| 6                  | .2835            | .3017            | .3442            |
| 7                  | .1980            | .2552            | .2214            |
| 8                  | .0553            | .0600            | .0804            |
| 9                  | .1137            | .1287            | .1890            |
| 10                 | .4704            | .4470            | .5257            |
| 11                 | .2633            | .3399            | .3070            |
| 12                 | .1232            | .1771            | 0.0000           |
| 13                 | .3949            | .4784            | .3792            |
| 14                 | .4385            | .4003            | .4510            |
| 15                 | .0947            | .0979            | .1233            |
| 16                 | .0725            | .0615            | .0746            |
| 17                 | .0923            | .1691            | .1431            |
| 18                 | .2072            | .3005            | .2321            |
| 19                 | .2944            | .5067            | .4109            |
| 20                 | .2320            | .3066            | .2623            |
| 21                 | .2049            | .4622            | .4894            |
| 22                 | .4570            | .4864            | .5437            |
| 23                 | .4447            | .3612            | .5205            |
| 24                 | .3100            | .3123            | .3067            |
| 25                 | .2868            | .3094            | .3424            |
| 26                 | .3022            | .3063            | .3340            |
| 27                 | .4153            | .3907            | .3757            |
| 28                 | .3499            | .3318            | .2424            |
| 29                 | .6938            | 0.0000           | .6331            |
| 30                 | .6149            | .5427            | .4427            |
| 31                 | .3094            | .1883            | .2465            |
| 32                 | .7043            | .3562            | .4584            |
| 33                 | .4304            | .5044            | 0.0000           |
| 34                 | .7279            | .6434            | .6305            |
| 35                 | .3945            | .3630            | .4035            |
| 36                 | .4736            | .5001            | .3942            |
| 37                 | .9466            | .6912            | .7131            |
| 38                 | 1.2210           | .9140            | .7421            |
| 39                 | .5911            | .4527            | .9200            |
| 40                 | 1.6889           | 1.5623           | 1.1957           |
| 41                 | .7484            | .6758            | .7803            |
| 42                 | 1.2289           | 1.1217           | .9580            |
| 43                 | 1.3572           | 1.1849           | 1.1808           |

| PARTICLE<br>NUMBER | K.E.<br>(JOULES) | TOTAL JET<br>KE(JOULES) | DISTANCE FROM CHARGE BASE (MM) |         |         |
|--------------------|------------------|-------------------------|--------------------------------|---------|---------|
|                    |                  |                         | FLASH 1                        | FLASH 2 | FLASH 3 |
| 1                  | 110950.          | 110950.                 | 1005.                          | 1170.   | 1323.   |
| 2                  | 8188.            | 119138.                 | 980.                           | 1140.   | 1249.   |
| 3                  | 11561.           | 130699.                 | 964.                           | 1123.   | 1271.   |
| 4                  | 19862.           | 150560.                 | 930.                           | 1091.   | 1233.   |
| 5                  | 7726.            | 158286.                 | 915.                           | 1069.   | 1217.   |
| 6                  | 7690.            | 165976.                 | 902.                           | 1054.   | 1191.   |
| 7                  | 5384.            | 171360.                 | 888.                           | 1038.   | 1172.   |
| 8                  | 1552.            | 172912.                 | 884.                           | 1032.   | 1167.   |
| 9                  | 3387.            | 176299.                 | 876.                           | 1025.   | 1158.   |
| 10                 | 11045.           | 187345.                 | 859.                           | 1005.   | 1137.   |
| 11                 | 6657.            | 194002.                 | 841.                           | 983.    | 1112.   |
| 12                 | 3245.            | 197286.                 | 831.                           | 970.    | 1102.   |
| 13                 | 8821.            | 206108.                 | 816.                           | 955.    | 1083.   |
| 14                 | 8594.            | 214702.                 | 794.                           | 924.    | 1043.   |
| 15                 | 2083.            | 216785.                 | 788.                           | 922.    | 1046.   |
| 16                 | 1331.            | 218117.                 | 782.                           | 914.    | 1036.   |
| 17                 | 2560.            | 220677.                 | 776.                           | 907.    | 1025.   |
| 18                 | 4624.            | 225300.                 | 766.                           | 897.    | 1017.   |
| 19                 | 7154.            | 232455.                 | 749.                           | 874.    | 963.    |
| 20                 | 4644.            | 237099.                 | 736.                           | 862.    | 978.    |
| 21                 | 6924.            | 244023.                 | 715.                           | 839.    | 942.    |
| 22                 | 7807.            | 251830.                 | 699.                           | 810.    | 920.    |
| 23                 | 6524.            | 258354.                 | 684.                           | 784.    | 842.    |
| 24                 | 4341.            | 262695.                 | 655.                           | 762.    | 872.    |
| 25                 | 4309.            | 267004.                 | 645.                           | 757.    | 860.    |
| 26                 | 4196.            | 271200.                 | 633.                           | 743.    | 845.    |
| 27                 | 5073.            | 276273.                 | 621.                           | 734.    | 829.    |
| 28                 | 3969.            | 280242.                 | 608.                           | 714.    | 811.    |
| 29                 | 7777.            | 288020.                 | 587.                           | 711.    | 782.    |
| 30                 | 6009.            | 294024.                 | 566.                           | 688.    | 748.    |
| 31                 | 2611.            | 296640.                 | 557.                           | 667.    | 746.    |
| 32                 | 5145.            | 301784.                 | 538.                           | 634.    | 723.    |
| 33                 | 4554.            | 306338.                 | 523.                           | 614.    | 714.    |
| 34                 | 6515.            | 312853.                 | 500.                           | 595.    | 673.    |
| 35                 | 3234.            | 316087.                 | 488.                           | 577.    | 645.    |
| 36                 | 3733.            | 319820.                 | 475.                           | 562.    | 641.    |
| 37                 | 5495.            | 325715.                 | 452.                           | 537.    | 611.    |
| 38                 | 6315.            | 332030.                 | 425.                           | 504.    | 574.    |
| 39                 | 4141.            | 336172.                 | 409.                           | 487.    | 555.    |
| 40                 | 4287.            | 344454.                 | 381.                           | 464.    | 518.    |
| 41                 | 3709.            | 348167.                 | 366.                           | 434.    | 498.    |
| 42                 | 5182.            | 353344.                 | 344.                           | 414.    | 471.    |
| 43                 | 4942.            | 358292.                 | 323.                           | 394.    | 434.    |

| PARTICLE<br>NUMBER | MOMENTUM<br>(KG-M/SEC) | TOTAL JET<br>MOMENTUM |
|--------------------|------------------------|-----------------------|
| 1                  | 28.67                  | 28.67                 |
| 2                  | 2.17                   | 30.83                 |
| 3                  | 3.09                   | 33.93                 |
| 4                  | 5.39                   | 39.32                 |
| 5                  | 2.17                   | 41.49                 |
| 6                  | 2.18                   | 43.67                 |
| 7                  | 1.56                   | 45.23                 |
| 8                  | .45                    | 45.68                 |
| 9                  | .99                    | 46.66                 |
| 10                 | 3.26                   | 49.92                 |
| 11                 | 2.01                   | 51.93                 |
| 12                 | .99                    | 52.92                 |
| 13                 | 2.71                   | 55.64                 |
| 14                 | 2.72                   | 58.36                 |
| 15                 | .66                    | 59.02                 |
| 16                 | .43                    | 59.45                 |
| 17                 | .83                    | 60.28                 |
| 18                 | 1.51                   | 61.74                 |
| 19                 | 2.40                   | 64.10                 |
| 20                 | 1.57                   | 65.77                 |
| 21                 | 2.40                   | 68.17                 |
| 22                 | 2.78                   | 70.45                 |
| 23                 | 2.40                   | 73.35                 |
| 24                 | 1.64                   | 74.49                 |
| 25                 | 1.64                   | 76.64                 |
| 26                 | 1.62                   | 78.26                 |
| 27                 | 2.00                   | 80.26                 |
| 28                 | 1.61                   | 81.86                 |
| 29                 | 3.21                   | 85.08                 |
| 30                 | 2.57                   | 87.65                 |
| 31                 | 1.14                   | 88.74                 |
| 32                 | 2.29                   | 91.07                 |
| 33                 | 2.06                   | 93.13                 |
| 34                 | 3.04                   | 96.23                 |
| 35                 | 1.58                   | 97.81                 |
| 36                 | 1.84                   | 99.65                 |
| 37                 | 3.04                   | 102.69                |
| 38                 | 3.48                   | 106.17                |
| 39                 | 2.33                   | 108.50                |
| 40                 | 4.97                   | 113.48                |
| 41                 | 2.33                   | 115.81                |
| 42                 | 3.38                   | 114.14                |
| 43                 | 3.50                   | 122.64                |

|                                                 | WITH JET TIP | W/O TIP |
|-------------------------------------------------|--------------|---------|
| AVERAGE PARTICLE LENGTH (mm)                    | 13.85        | 13.44   |
| AVERAGE PARTICLE DIAMETER (mm)                  | 2.84         | 2.74    |
| AVERAGE CHANGE IN VELOCITY (mm/ $\mu$ sec) • 12 |              | .17     |

VIRTUAL ORIGIN FOR FLASH 1= -85.114956 MM  
VIRTUAL ORIGIN FOR FLASH 2= -81.133748 MM  
VIRTUAL ORIGIN FOR FLASH 3= -85.896955 MM

DISTRIBUTION LIST

| <u>No. of Copies</u> | <u>Organization</u>                                                                                                                  | <u>No. of Copies</u> | <u>Organization</u>                                                                                                                                                          |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12                   | Commander<br>Defense Technical Info Center<br>ATTN: DDC-DDA<br>Cameron Station<br>Alexandria, VA 22314                               | 1                    | Commander<br>US Army Communications Rsch and Development Command<br>ATTN: DRDCO-PPA-SA<br>Fort Monmouth, NJ 07703                                                            |
| 1                    | Commander<br>US Army Materiel Development and Readiness Command<br>ATTN: DRCDMD-ST<br>5001 Eisenhower Avenue<br>Alexandria, VA 22333 | 1                    | Commander<br>US Army Electronics Research and Development Command<br>Technical Support Activity<br>ATTN: DELSD-L<br>Fort Monmouth, NJ 07703                                  |
| 2                    | Commander<br>US Army Armament Research and Development Command<br>ATTN: DRDAR-TSS (2 cys)<br>Dover, NJ 07801                         | 2                    | Commander<br>US Army Missile Command<br>ATTN: DRSMI-R<br>DRSMI-YDL<br>Redstone Arsenal, AL 35809                                                                             |
| 1                    | Commander<br>US Army Armament Materiel Readiness Command<br>ATTN: DRSAR-LEP-L, Tech Lib<br>Rock Island, IL 61299                     | 1                    | Commander<br>US Army Tank Automotive Rsch and Development Command<br>ATTN: DRDTA-UL<br>Warren, MI 48090                                                                      |
| 1                    | Director<br>US Army ARRADCOM<br>Benet Weapons Laboratory<br>ATTN: DRDAR-LCB-TL<br>Watervliet, NY 12189                               | 1                    | Director<br>US Army TRADOC Systems Analysis Activity<br>ATTN: ATAA-SL, Tech Lib<br>White Sands Missile Range NM 88002                                                        |
| 1                    | Commander<br>US Army Aviation Research and Development Command<br>ATTN: DRSAV-E<br>P. O. Box 209<br>St. Louis, MO 61366              | 1                    | AFELM, The Rand Corporation<br>ATTN: Library-D<br>1700 Main Street<br>Santa Monica, CA 90406                                                                                 |
| 1                    | Director<br>US Army Air Mobility Research and Development Laboratory<br>Ames Research Center<br>Moffett Field, CA 94035              |                      | Aberdeen Proving Ground<br>Dir, USAMSAA<br>ATTN: DRXSY-D<br>DRXSY-MP, H. Cohen<br>Cdr, USATECOM<br>ATTN: DRSTE-TO-F<br>Dir, USA CSL<br>Bldg. E3516, EA<br>ATTN: DRDAR-CLB-PA |

### USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out this sheet, fold as indicated, staple or tape closed, and place in the mail. Your comments will provide us with information for improving future reports.

1. BRL Report Number \_\_\_\_\_

2. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.)  
\_\_\_\_\_  
\_\_\_\_\_

3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)  
\_\_\_\_\_  
\_\_\_\_\_

4. Has the information in this report led to any quantitative savings as far as man-hours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.  
\_\_\_\_\_  
\_\_\_\_\_

5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.)  
\_\_\_\_\_  
\_\_\_\_\_

6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information.

Name: \_\_\_\_\_

Telephone Number: \_\_\_\_\_

Organization Address: \_\_\_\_\_  
\_\_\_\_\_  
\_\_\_\_\_

— — — — — FOLD HERE — — — — —

Director  
US Army Ballistic Research Laboratory  
Aberdeen Proving Ground, MD 21005



NO POSTAGE  
NECESSARY  
IF MAILED  
IN THE  
UNITED STATES

OFFICIAL BUSINESS  
PENALTY FOR PRIVATE USE, \$300

**BUSINESS REPLY MAIL**  
FIRST CLASS PERMIT NO 12062 WASHINGTON, DC  
POSTAGE WILL BE PAID BY DEPARTMENT OF THE ARMY

Director  
US Army Ballistic Research Laboratory  
ATTN: DRDAR-TSB  
Aberdeen Proving Ground, MD 21005



— — — — — FOLD HERE — — — — —