Mapas Auto-organizáveis (Self-organizing Maps - SOM)

Aluizio Fausto Ribeiro Araújo
Universidade Federal de Pernambuco
Centro de Informática

Conteúdo

- Introdução
- Mapas Auto-organizáveis (SOM)
 - Propriedades
- Aprendizagem no Mapa de Características
- Exemplos e Ilustrações do SOM
- Limitações do SOM

- Em aprendizagem não-supervisionada, busca-se descobrir padrões ou características significativas a partir de dados de entrada sem rótulos.
- Há duas perspectivas principais para aprendizagem nãosupervisionada:
 - Aprendizagem auto-organizada: Caracterizada por regras de comportamento local, em vizinhança considerada, para produzir mapeamentos entrada-saída;
 - Teoria de aprendizagem estatística: Utiliza-se ferramentas matemáticas bem-estabelecidas, geralmente provindas da estatística clássica, para lidar com grandes massas de dados.

- Princípios de Auto-organização:
 - Auto-amplificação nos pesos sinápticos devido ao postulado de Hebb;
 - Competição entre sinapses de um único neurônio ou um conjunto deles de modo que aquele que responda de modo mais vigoroso seja selecionado como vitorioso;
 - Cooperação entre as sinapses, no nível dos neurônios, e dos neurônios no nível da rede, que se modificam;
 - Informação estrutural, ordenamento e estrutura dos dados de entrada, é adquirida por um sistema auto-organizável.

- Inspiração neurofisiológica:
 - Um neurônio ativado que dispara um pulso causa a excitação de outros neurônios que distam dele entre 50 e 100 μm.
 - A propagação da excitação para áreas não relacionadas com o processo excitatório é impedida por inibição de região em torno da excitada.

- A localização espacial de cada unidade de saída em um mapa topológico representa, em um domínio ou característica particular, os dados extraídas do espaço de entrada (Kohonen 1990).
- Willshaw e von der Malsburg discutem a fundamentação neurobiológica desta abordagem.
- Kohonen trata do procedimento (modelagem para computadores) que pode realizar redução de dados.

FIGURE 9.1 Two selforganized feature maps.

- Um Mapa Auto-organizável visa transformar um sinal de entrada de dimensão arbitrária em um mapa discreto de uma ou duas dimensões. Esta transformação é realizada adaptativamente de modo a conservar a ordenação topológica.
- Algumas características do SOM decorrem da observação de neurônios operando no cérebro:
 - O disparo de um neurônio influencia disparos de neurônios próximos;
 - Neurônios distantes entre si parecem se inibir mutuamente;
 - Neurônios parecem ter tarefas não redundantes.

- Kohonen (1982) propôs SOM que
 - Mapeia espaços de sinais de altas dimensões em estruturas topológicas de dimensões mais baixas.
 - Preserva vizinhanças de sinais.
 - Representa regiões de alta densidade de sinais por regiões de alta densidade de nodos.
 - Provê similaridade explícita entre diferentes agrupamentos.
- Áreas de aplicações:
 - Reconhecimento de discurso (Kohonen, 1988)
 - Compressão de dados (Schweizer et al., 1991)
 - Otimização combinatória (Favat & Walker, 1991)

- A proposta do SOM por Kohonen se baseia em Quantização Vetorial (VQ, do inglês, "Vector Quantization") e nos mapas cerebrais biológicos (KOHONEN, 2013).
- VQ é técnica clássica de processamento de sinais:
 - Iniciada por colocação de vetores protótipos dentro do espaço de informações (espaço de entrada) em processamento;
 - O treinamento faz os protótipos se aproximarem dos dados de entrada, gerando uma PDF do conjunto de dados original
- Analogamente ao VQ, SOM consegue:
 - Posicionar vetores protótipos pelo espaço de entrada;
 - Aproximar os protótipos dos grupos de dados processados.

- Mapas cerebrais naturais são formados por neurônios próximos e conectados entre si que visam processar e interrelacionar impulsos oriundos de órgãos sensoriais biológicos :
 - Por exemplo, ocorrem no córtex de mamíferos para processar estímulos visuais recebidos pelas células foto-receptoras;
 - O mapa retinotópico processa sinais multidimensionais captados pela retina e produz sinais portando correlações topológicas que emergem das inter-relações locais dos neurônios;
- Com base na fundamentação biológica:
 - Ocorre relação topológica entre os vetores que formam os protótipos dos mapas.

Estruturas comuns para o SOM:

Estrutura unidimensional e sua vizinhança

Estrutura bidimensional e sua vizinhança

Vizinhança do nodo vencedor *v*

Centro de Informática

Estrutura Básica

- Uma camada de entrada e outra de saída.
- O mapa resultante é codificado na camada de saída.
- A topologia da camada de saída é frequentemente um gradil bidimensional de nodos.
- Cada nó de entrada é conectado com todos nós de saída.
- Cada nó de saída é conectado com vizinhos topológicos.

Processamento:

- Apresenta-se uma excitação (vetor de características) nos nodos de entrada.
- Encontra-se o vencedor entre os vetores de pesos associados a cada unidade de processamento da camada de saída.
- Atualiza-se o vetor de pesos da unidade vencedora e de seus vizinhos com taxas de aprendizagem distintas.

- Aprendizagem inclui três tipos de operações:
 - Competição
 - Adaptação
 - Colaboração

- Aprendizagem inclui três tipos de operações:
 - Competição
 - Adaptação
 - Cooperação

Competição:

- Dado um vetor de entrada $\mathbf{x} = [x_1 \ x_2 \ ... \ x_m]^T$
- Considere os vetores de pesos: $\mathbf{w}_j = [w_{j1} \ w_{j2} \ ... \ w_{jm}]^T$, onde $j = 1,2,..., N_{un}$ (número total de unidades de processamento na camada de saída).
- Selecione a unidade com o maior valor para $\mathbf{w}_v^T \mathbf{x}$, isto é, $v(x) = \arg\min_j ||\mathbf{x} \mathbf{w}_j||$.
- Um espaço contínuo de padrões de entrada é mapeado para um espaço de saída discreto por este processo competitivo entre as unidades de processamento na camada de saída.

- Aprendizagem inclui três tipos de operações:
 - Competição
 - Adaptação
 - Cooperação

Adaptação:

- Etapa que compreende a modificação dos pesos sinápticos da unidade vencedora por uma regra de aprendizagem Hebbiana: $\mathbf{w}_{v}(n+1) = \mathbf{w}_{v}(n) + \eta(n) \, \mathbf{h}_{j,v(\mathbf{x})}(n)[\mathbf{x}-\mathbf{w}_{j}(n)]$, neste caso a função de vizinhança tem seu valor máximo (usualmente é igual a 1).
- O vetor de pesos sinápticos da unidade vencedora, \mathbf{w}_{v} , se move na direção do vetor de entrada \mathbf{x} . Com a repetição de apresentações dos dados de treinamento, cada um dos vetores de pesos sinápticos tende a reproduzir a distribuição do espaço de entrada devido à atualização dos vetores de pesos da vizinhança que leva ao ordenamento topológico.
- A taxa de aprendizagem, $\eta(n)$, deve variar no tempo para que ajustes iniciais grandes se transformem em ajustes pequenos mais tarde: $\eta(n) = \eta_0 \exp(-n/\tau_2)$, onde n = 0, 1, 2, ..., é a última época.

- Aprendizagem inclui três tipos de operações:
 - Competição
 - Adaptação
 - Cooperação

Cooperação

- Envolve a determinação de uma vizinhança topológica que seja "neurologicamente correta".
- Seja $h_{j,\nu(\mathbf{x})}(n)$ a vizinhança topológica centrada no vencedor, ν , e relativa a um grupo de unidades denotadas por j.
- A vizinhança topológica é simétrica com respeito ao ponto de máximo e sua amplitude decresce monotonicamente com o crescimento da distância lateral, e.g., $h_{j,\nu(\mathbf{x})}(n) = \exp(-d^2_{j,\nu}/2\sigma^2(n))$. para $\sigma(n) = \sigma_0 \exp(-n/\tau_1)$, n = 0,1,2,...

Cooperação

Variação da vizinhança ao longo do tempo:

Nodos vizinhos ao longo do tempo:

Cooperação

Outra forma de vizinhança que encolhe com o tempo: $t_0 < t_1 < t_N$:

Ordenamento

- Tipicamente, a fase de auto-organização ou ordenamento leva, no máximo, 1000 iterações.
- Valores sugeridos para os parâmetros: $\eta(n) = [0.1, 0.01], \tau_2 = 1000.$
- A função $h_{j,\nu(\mathbf{x})}(n)$ expressa um raio, a partir do vencedor, com respeito a um conjunto de unidades, os vizinhos, onde

$$\tau_1 = 1000 / \log \sigma_0$$
.

Convergência

- A fase de convergência envolve a sintonia fina do mapa e usualmente leva 500 vezes o número de unidades de saída da rede.
- Pode-se empregar $\eta(n) = 0.01$, e a vizinhança, $h_{j,\nu(\mathbf{x})}(n)$, passa a ter tamanho de uma ou nenhuma unidade vizinha.

Mapas Auto-organizáveis (SOM) Propriedades

- <u>Aproximação do espaço de entrada</u>: O mapa de características, formado pelo conjunto de vetores de pesos no espaço de saída (ou espaço matricial), se constitui em uma aproximação do espaço de entrada;
- Ordenamento topológico: O espaço de características resultante da aprendizagem no SOM tem nodos (ou neurônios) cuja localização espacial está associada a um dado domínio ou característica das amostras de entrada;
- <u>Casamento de densidades</u>: O espaço de característica captura distribuição de entrada: Regiões do espaço de entrada com maior densidade de amostras são mapeadas para domínios maiores do espaço de saída.
- <u>Seleção de características</u>: SOM pode selecionar um conjunto das melhores características para aproximar uma distribuição não-linear no espaço de entrada.

Aprendizagem no Espaço de Características do SOM

M nodos, cada um representa um grupo

SOM construindo um mapa

Nodos conectados com

vizinhança estabelecida

Aprendizagem no Espaço de Características do SOM

Movimentação dos nodos no SOM

Vetores de vizinhança tendem a se aglomerarem

Modelo 1-D

 Modelo 2D: O mapa de características tende a assumir a distribuição do conjunto de dados no espaço de entrada;

Dados de entrada

Um conjunto de vetores tridimensionais de valores RGB para descrever cores.

250	235	215	antique white
165	042	042	brown
222	184	135	burlywood
210	105	30	chocolate
255	127	80	coral
184	134	11	dark goldenrod
189	183	107	dark khaki
255	140		dark orange
233	150	122	dark salmon

Encontre o vencedor e seu vizinhos:

- Atualize o vetor de pesos do vencedor e de seus vizinhos:
 - O vetor de pesos do vencedor e de seus vizinhos se aproxima do vetor de entrada.

Resultados:

Exemplo de 100 primeiros passos de um processo de ordenamento no qual cada círculo corresponde a um nodo com o ângulo de seu vetor de pesos.

Resultados:

- Exemplo de 1000 primeiros passos de um processo de ordenamento no qual cada círculo corresponde a um nodo com o ângulo de seu vetor de pesos.

10000

1000

Mapa de cores:

- Mapa gerado pelo SOM a partir dos valores RGB de entrada.
- A BMU é rotulada de acordo com o que a rede encontrou e o rótulo é o nome das cores.
- Existência de unidades mortas.

• WEBSOM:

- Milhões de documentos a serem pesquisados a partir de palavras-chave ou frases-chave;
- Agrupamentos de acordo com similaridade ou contexto;
- Documentos codificados para armazenamento e processamento:
- Representação e estruturação:
 - Mapa de categoria da palavras;
 - Mapa de categoria do documentos;
- Modos de aprendizagem:
 - Supervisionada: Rótulos são informados;
 - Não supervisionada: rótulos não são informados;

WEBSOM:

- Algumas limitações:
 - A pré-definição da estrutura limita o mapeamento resultante,
 - Número fixo de nodos;
 - Conexões entre nodos pré-definidas;
 - Tipos limitados de topologia dos mapas,
 - Poucos tipos de vizinhanças;
 - Emprego de distância euclideana,
 - Mesma importância das dimensões;
 - Distâncias que podem perder capacidade de discriminação;
 - Processamento restrito a uma camada,
 - Dificuldades em perceber diferenças sutis intracategóricas;

Referências

- Heylighen, F. & Gershenson, C. (2003). The meaning of self-organization in computing, *IEEE Intelligent Systems, Section Trends & Controversies Self-organization and Information Systems*, 18 (4): 72-75.
- Kohonen, T. (2013). Essentials of the self-organizing map. *Neural Networks*, 37: 52–65.
- Kohonen, T. (2014). MATLAB Implementations and Applications of the Self-Organizing Map. Unigrafia.
- Van Hulle, M. M. (2012). Self-organizing Maps. *Handbook of Natural Computing*, 1: 585-622.

Sites e Pacotes

- http://www.cis.hut.fi/~jhollmen/dippa/node7.html
- http://www.mlab.uiah.fi/~timo/som/thesis-som.html
- https://www.youtube.com/watch?v=B2Z-IFHcMxg
- http://users.ics.aalto.fi/tho/stes/step96/lagus/
- SOM_PAK
 - http://www.cis.hut.fi/research/som-research/nnrc-programs.shtml
 - http://nacmos.sourceforge.net/installingSOMPAK.html
- Repositórios: https://github.com/topics/self-organizing-map
- Código (C++):
 - https://www.codeproject.com/Articles/21385/Kohonen-s-Self-Organizing-Maps-in-C-with-Applicati

