

1º Relatório Experimental

Física Geral II

Engenharia Informática (2012)

nº	29263	E
	nº	nº 29263

Relatório Fisica Geral II

Introdução

A experiência realizada no âmbito da disciplina de Física Geral II tem como objectivo verificar a conservação da energia mecânica e estudar a trajectória de um corpo sob a acção do campo gravítico.

A primeira fase experimental consiste em verificar a conservação da energia mecânica ao abandonar uma esfera de massa m a uma determinada altura h sobre uma calha inclinada. A altura onde a esfera é abandonada (ponto A) e a altura da extremidade inferior da calha que está nivelada horizontalmente (ponto B) são denominadas respectivamente por h_a e h_b , permitem-nos calcular a velocidade média entre estes dois pontos, ou simplesmente a velocidade no ponto B. Saliente-se que a partir do ponto B a esfera inicia uma trajectória balística até atingir o alvo.

A segunda fase experimental resume-se a interceptar a esfera na sua trajectória balística e repetir o processo múltiplas vezes a diferentes distâncias. Após registarmos os dados, iremos proceder à execução do gráfico das trajectórias (x, y) e (x^2, y) , fazer a regressão linear deste segundo gráfico e determinar os valores de a e c para podermos retirar as devidas conclusões.

Figura 1

Fase 1

Nesta 1ª fase da experiência foram registadas as massas, os diametros, as posições onde cada esfera caiu e as velocidades das respectivas esferas, tendo sido repetida 15 vezes para cada esfera obtendo assim uma melhor precisão para os valores das posições e velocidades.

	Хp	$\mathbf{V}_{\mathbf{p}}$	ХG	V_G
1	0.251	1.154	0.293	1.347
2	0.254	1.167	0.292	1.342
3	0.254	1.167	0.286	1.314
4	0.2545	1.170	0.279	1.282
5	0.251	1.154	0.288	1.324
6	0.249	1.144	0.288	1.324
7	0.252	1.158	0.295	1.356
8	0.2495	1.147	0.298	1.370
9	0.254	1.167	0.296	1.360
10	0.251	1.154	0.289	1.328
11	0.244	1.121	0.293	1.347
12	0.242	1.112	0.293	1.347
13	0.251	1.154	0.289	1.328
14	0.248	1.140	0.255	1.172
15	0.251	1.154	0.28	1.287
Média	0.2506	1.152	0.2876	1.322

Massa _p	Massa _G	Diâmetrop	$Diâmetro_G$	$\mathbf{h_a}$	$\mathbf{h_b}$
0.0281	0.0446	0.016	0.022	0.395	0.232

 $V_{b1(velocidade da esfera p no fim da calha)} = Média_{(Vp)} = 1.152 \text{ m.s}^{-1}$

 $V_{b2(velocidade da esfera G no fim da calha)} = Média_{(VG)} = 1.322 \text{ m.s}^{-1}$

 X_p – Posições da esfera_p (pequena)(m) X_G – Posições da esfera_G (grande)(m)

 V_p – Velocidades da esfera $_p$ no ponto B (m/s) V_G – Velocidades da esfera $_G$ no ponto B (m/s)

Massa₀ – Massa da esfera₀ (kg) Massa_G – Massa da esfera_G (kg)

Diâmetro_p – Diâmetro da esfera_p(m) Diâmetro_G – Diâmetro da esfera_G (m)

$$\Delta x_{P (lim. \ superior \ do \ erro)} = \sqrt{\frac{\sum |\bar{x} - x_l|^2}{n \times (n-1)}} = 9.276 \times 10^{-4} \ m$$

$$\Delta x_{G(lim. \ superior \ do \ erro)} = \sqrt{\frac{\sum |\bar{x} - x_l|^2}{n \times (n-1)}} = 2.709 \times 10^{-3} \ m$$

Procedemos depois ao cálculo das energias recorrendo aos valores das posições, velocidades, massas e diâmetros adquiridos.

Esfera p

$$\Delta E_{p} = mg\Delta h = mg(h_{b} - h_{a})$$

$$\Delta E_{p} = 0.0281 \times 9.8 \times (0.232 - 0.395)$$

$$= -0.045 J$$

$$\Delta E_{c} = \Delta E_{c(transl.)} + \Delta E_{c(rot.)} =$$

$$= \Delta \left(\frac{1}{2}mv^{2}\right) + \Delta \left(\frac{1}{2}IW^{2}\right)$$

$$I = \frac{2}{5}mr^{2} = \frac{2}{5} \times 0.0281 \times \left(\frac{0.016}{2}\right)^{2} =$$

$$= 7.168 \times 10^{-7} kg.m^{2}$$

$$W = \frac{v}{r} = \left(\frac{1.152}{0.008}\right) = 144 rad. s^{-1}$$

$$\Delta E_{c(rot.)} = \frac{1}{2} \times 7.168 \times 10^{-7} \times 144^{2} =$$

$$= 7.432 \times 10^{-3}J$$

$$\Delta E_{c(trans.)} = \frac{1}{2} \times 0.0281 \times 1.152^{2} = 0.0186 J$$

$$\Delta E_{m} = (-0.045) + (7.432 \times 10^{-3} + 0.0186) =$$

$$= -0.01897 J$$

$$\frac{\Delta v}{\bar{v}} = \frac{\Delta x}{\bar{x}} + \frac{1}{2} \times \frac{\Delta h}{h} \iff$$

$$\frac{1}{4} \Delta v = 1.152 \times \left(\frac{9.276 \times 10^{-4}}{0.2506} + \frac{1}{2} \times \frac{0.2}{0.232}\right)$$

$$\frac{1}{4} \Delta v = 0.5008 \text{ m/s}$$

$$\bar{x} \pm \Delta x = 0.2506 \pm 9.276 \times 10^{-4} \text{ m}$$

$$\Delta v = 0.5008 \text{ m/s}$$
 $\bar{x} \pm \Delta x = 0.2506 \pm 9.276 \times 10^{-4} \text{ m}$
 $\bar{h} \pm \Delta h = 0.232 \pm 0.2 \text{ m}$
 $\bar{v} \pm \Delta v = 1.152 \pm 0.5008 \text{ m/s}$

Esfera G

$$\Delta E_p = mg\Delta h = mg(h_b - h_a)$$

$$\Delta E_p = 0.0281 \times 9.8 \times (0.232 - 0.395)$$

$$= -0.045 J$$

$$\Delta E_c = \Delta E_{c(transl.)} + \Delta E_{c(rot.)} =$$

$$= \Delta \left(\frac{1}{2}mv^2\right) + \Delta \left(\frac{1}{2}IW^2\right)$$

$$I = \frac{2}{5}mr^2 = \frac{2}{5} \times 0.0281 \times \left(\frac{0.016}{2}\right)^2 =$$

$$= 7.168 \times 10^{-7} kg.m^2$$

$$W = \frac{v}{r} = \left(\frac{1.152}{0.008}\right) = 144 \, rad. \, s^{-1}$$

$$\Delta E_{c(trans.)} = \frac{1}{2} \times 7.168 \times 10^{-7} \times 144^2 =$$

$$= 7.432 \times 10^{-3} J$$

$$\Delta E_m = (-0.045) + (7.432 \times 10^{-3} + 0.0186) =$$

$$= -0.01897 J$$

$$\Delta E_{c(trans.)} = \frac{\Delta v}{\bar{v}} + \frac{\Delta v}{\bar{v}} + \frac{1}{2} \times \frac{\Delta h}{h} \stackrel{d}{\Leftrightarrow}$$

$$\Delta v = 1.152 \times \left(\frac{9.276 \times 10^{-4}}{0.2506} + \frac{1}{2} \times \frac{0.2}{0.232}\right) \stackrel{d}{\Leftrightarrow} \Delta v = 0.5008 \, \text{m/s}$$

$$\bar{x} \pm \Delta x = 0.2506 \pm 9.276 \times 10^{-4} \, \text{m}$$

$$\Delta E_{c(trans.)} = \frac{1}{2} \times 0.0286 \times (0.232 - 0.395) =$$

$$= -0.071 J$$

$$\Delta E_{c(trans.)} + \Delta E_{c(trans.)} = \frac{1}{2} \times 0.0446 \times \left(\frac{0.022}{2}\right)^2 =$$

$$= 2.159 \times 10^{-6} \, kg.m^2$$

$$W = \frac{v}{r} = \left(\frac{1.322}{0.011}\right) = 120.182 \, rad. \, s^{-1}$$

$$\Delta E_{c(trans.)} = \frac{1}{2} \times 0.0446 \times 1.322^2 = 0.0390 \, J$$

$$\Delta E_{c(trans.)} = \frac{1}{2} \times 0.0446 \times 1.322^2 = 0.0390 \, J$$

$$\Delta E_{c(trans.)} = \frac{1}{2} \times 0.0446 \times 1.322^2 = 0.0390 \, J$$

$$\Delta E_{c(trans.)} = \frac{1}{2} \times 0.0446 \times 1.322^2 = 0.0390 \, J$$

$$\Delta E_{c(trans.)} = \frac{1}{2} \times 0.0446 \times 1.322^2 = 0.0390 \, J$$

$$\Delta E_{c(trans.)} = \frac{1}{2} \times 0.0446 \times 1.322^2 = 0.0390 \, J$$

$$\Delta E_{c(trans.)} = \frac{1}{2} \times 0.0446 \times 1.322^2 = 0.0390 \, J$$

$$\Delta E_{c(trans.)} = \frac{1}{2} \times 0.0446 \times 1.322^2 = 0.0390 \, J$$

$$\Delta E_{c(trans.)} = \frac{1}{2} \times 0.0446 \times 1.322^2 = 0.0390 \, J$$

$$\Delta E_{c(trans.)} = \frac{1}{2} \times 0.0446 \times 1.322^2 = 0.0390 \, J$$

$$\Delta E_{c(trans.)} = \frac{1}{2} \times 0.0446 \times 1.322^2 = 0.0390 \, J$$

$$\Delta E_{c(trans.)} = \frac{1}{2} \times 0.0446 \times 1.322^2 = 0.0390 \, J$$

$$\Delta E_{c(trans.)} = \frac{1}{2} \times 0.0446 \times 1.322^2 = 0.0390 \, J$$

$$\Delta E_{c(trans.)} = \frac{1}{2} \times 0.0446 \times 1.322^2 = 0.0390 \, J$$

$$\Delta E_{c(trans.)} = \frac{1}{2} \times 0.0446 \times 1.322^2 = 0.0390 \, J$$

$$\Delta E_{c(trans.)} = \frac{1}{2} \times 0.0446 \times 1.$$

 $\bar{h} \pm \Delta h = 0.232 \pm 0.2 \text{ m}$

 $\bar{v} \pm \Delta v = 1.322 \pm 0.5823 \text{ m/s}$

Fase 2

X_i	Yi	Z=X _i ²
(m)	(m)	(m)
0.03	0.245	0.0009
0.04	0.243	0.0016
0.05	0.246	0.0025
0.06	0.238	0.0036
0.07	0.233	0.0049
0.08	0.23	0.0064
0.10	0.217	0.01
0.11	0.211	0.0121
0.13	0.197	0.0169
0.14	0.186	0.0196
0.16	0.169	0.0256
0.17	0.155	0.0289
0.18	0.145	0.0324
0.19	0.134	0.0361
0.20	0.12	0.04

$$y = ax^2 + bx + c$$

$$y = -3.2303z + 0.2499 \stackrel{1}{\Leftrightarrow}$$

$$\stackrel{1}{\Leftrightarrow} y = -3.2303x^2 + 0.2499$$
 $a = -3.2303$
 $b = 0$
 $c = 0.2499$

$$y = h_b - \frac{1}{2} \times \frac{g}{v^2} \times x^2$$

$$a = -\frac{1}{2} \times \frac{g}{v^2} \stackrel{1}{\Leftrightarrow} -3.2303 = -\frac{9.8}{2v^2} \stackrel{1}{\Leftrightarrow} v^2 = 1.5169 \stackrel{1}{\Leftrightarrow} |v| = 1.2316 \approx 1.152 \text{ m/s}$$

$$c = h_b \stackrel{1}{\Leftrightarrow} 0.2499 \approx 0.2506 \text{ m}$$

Componentes vertical e horizontal do movimento do projéctil

$$\begin{cases} x = v_b t \\ y = h_b - \frac{1}{2}gt^2 & \Leftrightarrow \begin{cases} x = 1.152t \\ y = 0.2506 - 4.9t^2 \end{cases}$$

Conclusão

Tendo em conta os valores das energias obtidos anteriormente podemos afirmar que a perda de energia potencial gravítica é practicamente igual ao ganho de energia cinética no caso de ambas as esferas, ou seja, a soma das energias cinética e potencial gravítica é muito próxima de zero, não sendo exactamente zero devido aos erros cometidos (mesmo que quase insignificantes), aos objectos em contacto com as esferas assim como a outros factores físicos como, por exemplo, o atrito.

Na 2^a parte da experiência, tendo em conta os valores de \boldsymbol{a} e \boldsymbol{c} obtidos após a visualização da regressão linear, podemos observar que o declive \boldsymbol{a} , que representa aqui a velocidade, é um valor muito próximo de $\boldsymbol{v_b}$ já calculado anteriormente com uma diferença de 0.0796 m/s, e que \boldsymbol{b} , que representa a altura, é um valor também ele muito próximo da altura $\boldsymbol{h_b}$ com uma diferença de 0.0007 m. Esta diferença de valores deve-se principalmente ao facto de estarmos a lidar com medições com uma certa margem de erro. Convém indicar aqui que foi utilizada a esfera de menores dimensões para esta segunda parte da experiência.