Problème du rectangle inscrit

Emanuel Morille

1 Janvier 1980

Table des matières

0	2
1.1. Axiomes d'Eilenberg-Steenrod · · · · · · · · · · · · · · · · · · ·	2
1.2. Homologie singulière · · · · · · · · · · · · · · · · · · ·	2
1.2.1. Simplexes • • • • • • • • • • • • • • • • • • •	2
1.2.2. Chaînes • • • • • • • • • • • • • • • • • • •	3
1.2.3. Complexes de chaînes · · · · · · · · · · · · · · · · · · ·	4
1.2.4. Morphismes de chaînes · · · · · · · · · · · · · · · · · · ·	4
1.2.5. Paires d'espaces topologiques · · · · · · · · · · · · · · · · · · ·	4

1. Homologie

1.1. Axiomes d'Eilenberg-Steenrod

Définition 1.1. Une *théorie de l'homologie* sur la catégorie des paires d'espaces topologiques Top_2 dans la catégorie des groupes abéliens Ab est une suite de foncteurs $(H_n : \mathsf{Top}_2 \to \mathsf{Ab})_{n \in \mathbb{Z}}$ munie de transformations naturelles $(\partial_n : H_n(X,A) \to H_{n-1}(A) := H_{n-1}(A,\emptyset))_{n \in \mathbb{Z}}$ vérifiant les axomes suivants pour toutes paires d'espaces topologiques (X,A), (Y,B) et $n \in \mathbb{Z}$:

- *Dimension*: Soit P l'espace constitué d'un unique point. Alors le groupe $H_n(P)$ est non-trivial si et seulement si n = 0.
- Exactitude: La suite suivante est exacte:

$$\dots \to H_{n+1}(X,A) \stackrel{\partial_{n+1}}{\to} H_n(A) \stackrel{i_A}{\to} H_n(X) \stackrel{i_X}{\to} H_n(X,A) \stackrel{\partial_n}{\to} H_{n-1}(A) \to \dots$$

- Homotopie : Soit $f_0, f_1: (X,A) \to (Y,B)$ deux applications homotopes. Alors les applications induites en homologie $f_{0*}, f_{1*}: H_n(X,A) \to H_n(Y,B)$ sont égales.
- Excision: Soit U un sous-ensemble de A tel que l'adhérence de U est contenue dans l'intérieur de A. On note i: (X \ U,A \ U) → (X,A) l'inclusion canonique. Alors l'application induite en homologie i_{*}: H_n(X \ U,A \ U) → H_n(X,A) est un isomorphisme.

1.2. Homologie singulière

1.2.1. Simplexes

Définition 1.2. Soit E un \mathbb{R} -espace vectoriel et A un sous-ensemble de E. On dit que A est *convexe* si :

$$\forall p, q \in A, [p, q] := \{(1 - t)p + tq \mid t \in [0, 1]\} \subset A.$$

Définition 1.3. Soit E un \mathbb{R} -espace vectoriel, A un sous-ensemble de E et $p_0, ..., p_n$ des éléments de A. On appelle *combinaison convexe* une combinaison de la forme $t_0p_0 + \cdots + t_np_n$, telle que $t_0, ..., t_n \in [0, 1]$ et $t_0 + \cdots + t_n = 1$.

Proposition 1.4. Soit E un \mathbb{R} -espace vectoriel, A un sous-ensemble de E et $p_0, ..., p_n$ des éléments de A. Alors si A est convexe toute combinaison convexe de $p_0, ..., p_n$ appartient à A.

Démonstration. Soit $t_0, ..., t_n \in [0,1]$ tels que $t_0 + \cdots + t_n = 1$. Notons $H(n): t_0p_0 + \cdots + t_np_n \in A$. Pour n=1. On pose $t:=t_1$, alors puisque A est convexe $t_0p_0 + t_1p_1 = (1-t)p_0 + tp_1 \in A$. Pour n>1. On suppose que H(n-1) est vérifiée. Sans perte de généralité, on suppose que $t_n \neq 0$, et on pose

$$p \coloneqq \frac{t_0}{1 - t_n} p_0 + \dots + \frac{t_{n-1}}{1 - t_n} p_{n-1}$$

alors d'après H(n-1) on a $p \in A$. Par convexité on a $t_0p_0 + \cdots + t_np_n = (1-t_n)p + t_np_n \in A$. \square

Définition 1.5. Soit E un \mathbb{R} -espace vectoriel et A un sous-ensemble de E. On appelle *enveloppe convexe de A*, notée [A], l'ensemble des combinaisons convexes de sous-ensembles finis de A.

Proposition 1.6. Soit E un \mathbb{R} -espace vectoriel et A un sous-ensemble de E. Alors l'enveloppe convexe de A est le plus petit ensemble convexe contenant A.

Démonstration. Soit $p, q \in [A]$ et $t \in [0, 1]$. Puisque (1 - t)p + tq est une combinaison convexe d'un sous-ensemble fini de A, on a bien $(1 - t)p + tq \in [A]$. Donc [A] est convexe.

Soit B un sous-ensemble convexe de E contenant A. Soit $x \in [A]$, alors il existe $p_0, ..., p_n \in A$ et $t_0, ..., t_n \in [0, 1]$ tels que $t_0 + \cdots + t_n = 1$ et $x = t_0 p_0 + \cdots + t_n p_n$. D'après la Proposition 1.4 on a bien $x \in B$. Donc $[A] \subset B$.

Définition 1.7. Soit E un \mathbb{R} -espace vectoriel et F une famille libre de n+1 éléments de E. On appelle n-simplexe généré par F l'enveloppe convexe de F. On dit que les éléments de F sont les sommets de F et que F et

Définition 1.8. On appelle *n-simplexe standard*, noté Δ^n , le *n-*simplexe généré par la base canonique de \mathbb{R}^{n+1} .

Définition 1.9. Soit E un \mathbb{R} -espace vectoriel, [F] un n-simplexe et $x = t_0 p_0 + \cdots + t_n p_n$ un élément de [F]. On appelle *coordonnées barycentriques de x* les coefficients $t_0, ..., t_n$.

1.2.2. Chaînes

Définition 1.10. Soit X un espace topologique. On appelle *n-simplexe singulier sur* X une application continue de Δ^n dans X.

Définition 1.11. Soit X un espace topologique. On note $C_n(X)$ le groupe abélien libre engendré par les n-simplexes singuliers sur X, on appelle n-chaîne singulière un élément de $C_n(X)$.

Proposition 1.12. Soit X et Y deux espaces topologiques, $\sigma: \Delta^n \to X$ un n-simplexe singulier sur X et $f: X \to Y$ une application continue. Alors la composition $f \circ \sigma: \Delta^n \to Y$ est un n-simplexe singulier sur Y.

Définition 1.13. Soit X et Y deux espaces topologiques et $f: X \to Y$ une application continue. On appelle *implication induite par* f, notée f_* , le morphisme :

$$f_*: C_n(X) \to C_n(Y); \sum_{k=0}^n \lambda_k \sigma_k \mapsto \sum_{k=0}^n \lambda_k (f \circ \sigma_k).$$

Proposition 1.14. Soit X, Y et Z trois espaces topologiques, $f: X \to Y$ et $g: Y \to Z$ deux applications continues. Alors $(g \circ f)_* = g_* \circ f_*$.

Définition 1.15. Soit X un espace topologique et $\sigma: \Delta^n \to X$ un n-simplexe singulier sur X. On appelle *bord de* σ , noté $\partial_n \sigma$, le (n-1)-simplexe singulier sur X défini par :

$$\partial_n \sigma := \sum_{k=0}^n (-1)^k \sigma|_{[e_0, \dots, e_{k-1}, e_{k+1}, \dots, e_n]}.$$

On appelle *morphisme bord* l'application étendue $\partial_n : C_n(X) \to C_{n-1}(X)$.

Proposition 1.16. Soit X et Y deux espaces topologiques et $f: X \to Y$ une application continue. Alors pour tout $n \in \mathbb{N}$, on a $\partial_n f_* = f_* \partial_n$.

Démonstration. Soit $\sigma: \Delta^n \to X$ un *n*-simplexe singulier sur *X*. Alors on a :

$$\partial_n f_*(\sigma) = \partial_n (f \circ \sigma) = f_*(\partial_n \sigma).$$

Proposition 1.17. Soit *X* un espace topologique. Alors pour tout $n \in \mathbb{N}$, on a $\partial_n \circ \partial_{n+1} = 0$.

Démonstration. Soit $\sigma: \Delta^{n+1} \to X$ un (n+1)-simplexe singulier sur X. Alors on a :

$$\partial_{n+1}(\sigma) = \sum_{k=0}^{n+1} (-1)^k \sigma|_{[e_0,...,e_{k-1},e_{k+1},...,e_{n+1}]}$$

donc en appliquant ∂_n , on obtient :

$$(\partial_{n} \circ \partial_{n+1})(\sigma) = \partial_{n} \left(\sum_{k=0}^{n+1} (-1)^{k} \sigma |_{[e_{0}, \dots, e_{k-1}, e_{k+1}, \dots, e_{n+1}]} \right)$$

$$= \sum_{k=0}^{n+1} (-1)^{k} \partial_{n} \left(\sigma |_{[e_{0}, \dots, e_{k-1}, e_{k+1}, \dots, e_{n+1}]} \right)$$

$$= \sum_{0 \le k < l \le n+1} (-1)^{k+l} \sigma |_{[e_{0}, \dots, e_{k-1}, e_{k+1}, \dots, e_{l-1}, e_{l+1}, \dots, e_{n+1}]}$$

$$+ \sum_{0 \le l < k \le n+1} (-1)^{k+l-1} \sigma |_{[e_{0}, \dots, e_{l-1}, e_{l+1}, \dots, e_{k-1}, e_{k+1}, \dots, e_{n+1}]})$$

$$= 0$$

car les termes s'annulent deux à deux.

1.2.3. Complexes de chaînes

Définition 1.18. Soit X un espace topologique. On appelle *complexe de chaînes singulières*, noté $C_{\bullet}(X)$, la suite de groupes abéliens libres $(C_n(X))_{n\in\mathbb{Z}}$ munie des morphismes de bords $(\partial_n:C_n(X)\to C_{n-1}(X))_{n\in\mathbb{Z}}$, avec pour convention $C_n(X)$ trivial si n<0.

Définition 1.19. Soit $C_{\bullet}(X)$ un complexe de chaînes singulières et $n \in \mathbb{Z}$.

- On appelle *n-cycle singulier* un élément de $Z_n(X) := \ker(\partial_n)$.
- On appelle *n*-bord singulier un élément de $B_n(X) := \operatorname{im}(\partial_{n+1})$.
- On appelle n^e -groupe d'homologie singulière le groupe quotient $H_n(X) := Z_n(X)/B_n(X)$.

Définition 1.20. Soit $C_{\bullet}(X)$ un complexe de chaînes singulières et $n \in \mathbb{Z}$.

- On dit que $C_{\bullet}(X)$ est exact en $C_n(X)$ si $H_n(X)$ est trivial.
- On dit que $C_{\bullet}(X)$ est exact s'il est exact en tout $(C_n(X))_{n \in \mathbb{Z}}$.
- On dit que $C_{\bullet}(X)$ est *acyclique* s'il est exact en tout $(C_n(X))_{n\in\mathbb{Z}}$ avec $n\neq 0$.

1.2.4. Morphismes de chaînes

Définition 1.21. Soit $C_{\bullet}(X)$ et $C_{\bullet}(Y)$ deux complexes de chaînes singulières. On appelle *morphisme* de chaînes, noté $\varphi_{\bullet}: C_{\bullet}(X) \to C_{\bullet}(Y)$, une suite de morphismes $(\varphi_n: C_n(X) \to C_n(Y))_{n \in \mathbb{Z}}$ telle que pour tout $n \in \mathbb{Z}$, on a $\partial_n \varphi_n = \varphi_{n-1} \partial_n$.

Proposition 1.22. Soit $C_{\bullet}(X)$ et $C_{\bullet}(Y)$ deux complexes de chaînes singulières, $\varphi_{\bullet}: C_{\bullet}(X) \to C_{\bullet}(Y)$ un morphisme de chaînes. Alors pour tout $n \in \mathbb{Z}$, le morphisme φ_n induit un morphisme entre les n^{e} -groupes d'homologie $H_n(\varphi): H_n(X) \to H_n(Y)$.

Proposition 1.23. Soit $C_{\bullet}(X)$ et $C_{\bullet}(Y)$ deux complexes de chaînes singulières, et $f: X \to Y$ une application continue. Alors l'application induite f_* est un morphisme de chaînes.

1.2.5. Paires d'espaces topologiques

Définition 1.24. Soit (X,A) une paire d'espaces topologiques. On appelle *complexe de chaînes* singulières de la paire (X,A) le complexe de chaînes singulières quotient $C_{\bullet}(X,A) := C_{\bullet}(X)/C_{\bullet}(A)$.

Définition 1.25. Soit (X,A) et (Y,B) deux paires d'espaces topologiques, et $f:X\to Y$ une application continue. On dit que f est un *morphisme de paires*, noté $f:(X,A)\to (Y,B)$, si f(A) est contenue dans B.

Proposition 1.26. Soit $C_{\bullet}(X,A)$ et $C_{\bullet}(Y,B)$ deux complexes de chaînes singulières, et $f:(X,A)\to (Y,B)$ un morphisme de paires. Alors l'application induite f_* est un morphisme de chaînes.

Définition 1.27. Soit $C_{\bullet}(X,A)$ un complexe de chaînes singulières. On appelle *morphisme connectant*, noté $\partial_n: H_n(X,A) \to H_{n-1}(A)$, la transformation naturelle induite par le morphisme de bord.

Théorème 1.28. La suite des $n^{\rm e}$ -groupe d'homologie singulière des paires d'espaces topologiques $(H_n: {\sf Top}_2 \to {\sf Ab})_{n \in \mathbb{Z}}$ munie des morphismes connectants $(\partial_n: H_n(X,A) \to H_{n-1}(A))_{n \in \mathbb{Z}}$ est une théorie de l'homogie vérifiant les axiomes d'Eilenberg-Steenrod.

Démonstration.

• Dimension : Il existe un unique *n*-simplexe singulier $\sigma_n : \Delta^n \to P$, alors on a :

$$\partial_n \sigma_n = \begin{cases} 0 & \text{si } n = 0 \text{ ou } n \text{ est impair} \\ \sigma_{n-1} & \text{si } n \neq 0 \text{ et } n \text{ est pair} \end{cases}$$

Si n = 0, alors $H_0 = \langle \sigma_0 \rangle / \{0\} \simeq \mathbb{Z}$.

Si $n \neq 0$ et n est impair, alors $H_n = \langle \sigma_n \rangle / \langle \sigma_n \rangle \simeq \{0\}$.

Si $n \neq 0$ et n est pair, alors $H_n = \{0\}/\{0\} \simeq \{0\}$.

- Exactitude:
- Homotopie:
- Excision: