Praktikum VI Sommer 2024

Mathematik II

1. Kurvendiskussion

Betrachten Sie die Funktion

$$f: \mathbb{R}_{>0} \to \mathbb{R}, \quad x \mapsto x^2 - 8 \cdot \ln(x).$$
 (1)

Bestimmen Sie alle Extrema der Funktion, und geben Sie deren Typ (Maxima oder Minima) an. Begründen Sie, warum f genau zwei reelle Nullstellen besitzt, und bestimmen Sie eine dieser Nullstellen auf 2 Stellen Genauigkeit hinter dem Komma.

2. Potenzreihen I

Unser Ziel ist es, eine Formel für die Potenzreihe $S(x) = \sum_{n=1}^{\infty} n \cdot x^{n-1}$ herzuleiten.

- (a) Bestimmen Sie den Konvergenzradius von S(x) und untersuchen Sie die Konvergenz an den Rändern des Konvergenzintervalls.
- (b) Sie wissen bereits, dass $1/(1-x)=\sum_{n=0}^{\infty}x^n$ für alle reellen x mit |x|<1. Tatsächlich gilt die (nicht-triviale) Aussage, dass

$$\left(\sum_{n=0}^{\infty} x^n\right)' = \sum_{n=0}^{\infty} (x^n)'. \tag{2}$$

Leiten Sie daraus eine Formel für S(x) ab.

(c) Können Sie auch eine Formel für die Reihe $T(x) = \sum_{n=1}^{\infty} n^2 x^n$ angeben?

3. Potenzreihen II

Entscheiden Sie, ob die folgenden allgemeinen Aussagen zu Potenzreihen

$$S(x) = \sum_{n=0}^{\infty} a_n \cdot x^n \tag{3}$$

wahr oder falsch sind, und begründen Sie Ihre Antwort.

- (a) Jede Potenzreihe konvergiert für wenigstens einen Wert $x \neq 0$.
- (b) Es gibt eine Potenzreihe, die für alle Werte $x \in]-1,2[$ konvergiert und für alle anderen Werte x divergiert.
- (c) Wenn S(x) für ein $x = x_0$ konvergiert, dann konvergiert S(x) auch für $x = -x_0$.
- (d) Wenn $|a_n| < 5$ für alle n gilt, dann konvergiert S(x) für x = 1/2.

4. Potenzreihen III

Begründen Sie, warum die Reihe $\sum_{n=1}^{\infty} f_n(x)$ wobei $f_n = \sin(n^2 \cdot x)/n^2$ für alle $x \in \mathbb{R}$ konvergiert. Bestimmen Sie alle $x \in \mathbb{R}$ für die $\sum_{n=1}^{\infty} f'_n(x)$ konvergiert.

5. Taylorreihen I

Gegeben sei die Funktion

$$f: \mathbb{R}_{>0} \to \mathbb{R}, \quad x \mapsto x + (\ln x)^2.$$
 (4)

- (a) Berechnen Sie das Taylorpolynom $T_2(x)$ vom Grad 2 der Funktion f um den Entwicklungspunkt $x_0 = 1$.
- (b) Berechnen Sie mit Hilfe des Polynoms T_2 eine Approximation an $1.5 + (ln1.5)^2$, und begründen Sie, warum diese Approximation vom exakten Wert um weniger als 0.2 abweicht. Geben Sie hierfür das Restglied des Taylorpolynoms T_2 an und schätzen Sie den Term entsprechend ab.

6. Taylorreihen II

Erinnern Sie sich an die Arkustangensfunktion

$$\arctan:]-\pi/2, \pi/2[\to \mathbb{R}$$
 (5)

mit $\arctan'(x) = 1/(1+x^2)$.

- (a) Berechnen Sie das Taylorpolynom $T_2(x)$ vom Grad 2 des arctan um den Entwicklungspunkt $x_0=0$ sowie das zugehörige Restglied.
- (b) Da $\pi = 4 \cdot \arctan(1) \approx 4 \cdot T_2(1)$, lässt sich π approximativ mit Hilfe des Taylorpolynoms berechnen. Schätzen Sie den Fehler mit Hilfe des entsprechenden Restglieds ab.
- (c) Können Sie die Taylorreihe von $\arctan(x)$ mit Entwicklungspunkt $x_0 = 0$ angeben? Hinweis: Verwenden Sie, dass $\arctan'(x) = 1/(1+x^2) = 1/(1-(-x^2)) = 1-x^2+x^4-\ldots$ für |x|<1 um die n-te Ableitung von $\arctan(x)$ an der Stelle x=0 zu bestimmen.
- (d) Warum ist es sinnvoller (anstatt die Formel $\pi=4\arctan(1)$) die auf Euler zurückgehende Formel

$$\pi = 20 \arctan(1/7) + 8 \arctan(3/79)$$
 (6)

zur approximativen Berechnung von π zu verwenden.

Version: 2024-06-27 01:23:02+02:00