Roteiro para Relatório 2: Circuito RLC

Introdução

Neste experimento serão caracterizados circuitos contendo indutores, capacitores e resistores em série. O indutor é um elemento formado por uma sucessão de espiras, e reage a mudanças no campo magnético. Como a corrente que flui pela espira é a fonte do campo magnético, o indutor reage às variações na corrente elétrica através da criação de uma diferença de potencial entre os seus terminais, que busca resistir à variações da corrente. Esta tensão é proporcional à mudança na corrente,

$$V(t) = L \frac{dI}{dt} \tag{1}$$

em que I(t) é a corrente elétrica que flui pelo indutor e L é sua indutância. Investigaremos um circuito composto por um resistor, um indutor e um capacitor (RLC). No primeiro experimento faremos uma varredura de frequência no sinal senoidal de entrada, que resultará em uma modificação da amplitude e na fase da tensão de saída. Para compreender estes fenômenos é importante entender a resposta em frequência de resistores, capacitores e indutores. Como no caso do circuito RC, as previsões teóricas podem ser feitas com a abordagem da impedância complexa e da Lei de Ohm para impedâncias. Mais detalhes sobre estes tópicos podem ser encontrados nos livros e apostilas sugeridos na bibliografia do curso.

Objetivos de Aprendizagem

- Montar corretamente um experimento para caracterização de um circuito RLC em série utilizando gerador de função, osciloscópio, placa de montagem de circuitos, componentes (resistores, indutores e capacitores) e cabos (BNC/banana).
- Observar e caracterizar como a amplitude e a fase da tensão de saída variam com relação à amplitude e fase da tensão de entrada à medida que a frequência de excitação do circuito é variada.

Verificar validade do modelo que descreve resposta em frequência de um circuito
RLC em série.

Caracterização da resposta em frequência de um circuito RLC

Neste roteiro trataremos de como um circuito RLC formado por um resistor, um capacitor e um indutor ligados em série, como ilustrado na Figura 1, responde a um sinal de corrente alternada senoidal à medida que sua frequência é variada. Nesta montagem devem ser utilizados cabos coaxiais com conectores BNC/banana para excitar a entrada do circuito com uma tensão fornecida por um gerador de função e para leitura das tensões de entrada (V1) e saída (V2) no osciloscópio, conforme ilustrado na Figura 1. Todas as tensões medidas no osciloscópio possuem como referência a terra (ponto de tensão igual a zero). As tensões de entrada e saída devem ser medidas nos canais 1 e 2 do osciloscópio, respectivamente. Neste experimento será explorada a resposta em frequência de um circuito RLC em série com sinal de saída correspondente a queda de tensão no resistor. Vídeo montagem RLC: (872) F429-2S2021-Experimento 3- Montagem Circuito RLC - YouTube.

Figura 1: Montagem experimental para determinação da resposta no domínio da frequência e do tempo de um circuito RLC em série. Sinal de saída, V₂, corresponde a queda de tensão no resistor.

Na elaboração do relatório referente a este experimento, a resposta em frequência do circuito RLC caracterizado experimentalmente deve ser apresentada na forma de diagramas de Bode, onde o coeficiente de transmissão e a diferença de fase são dados respectivamente por:

$$T_{dB}(\omega) = 10\log(|H(\omega)|^2) = 20\log\frac{|V_{saida}(\omega)|}{|V_{entrada}(\omega)|}$$
(2)

$$\varphi(\omega) = \arctan\left[\frac{Im[H(\omega)]}{Re[H(\omega)]}\right]$$
 (3)

onde $H(\omega) = \frac{V_{saida}(\omega)}{V_{entrada}(\omega)} = \left| \frac{V_{saida}(\omega)}{V_{entrada}(\omega)} \right| exp(i\varphi(\omega))$ é a função de transferência. Para o circuito mostrado na Figura 1, os coeficientes de transmissão (em dB) e a fase relativa entre as tensões de saída e entrada em função da frequência são dadas por

$$T_{dB}(\omega) = -10\log_{10}(1 + f(\omega)^2)$$
 (4)

$$\varphi(\omega) = \arctan[f(\omega)] \tag{5}$$

,
$$com f(\omega) = \frac{\omega L}{R} - \frac{1}{\omega RC}$$
 (6)

Note que quando ω é muito pequeno, $f(\omega) \approx -1/(\omega RC)$, consequentemente, o circuito se comporta como um filtro RC passa-alta: $T_{dB}(\omega \to 0) \to -\infty$ com inclinação de +20 dB/década e $\varphi(\omega \to 0) \to -90^{\circ}$. Por outro lado, quando ω é muito grande, $f(\omega) \approx \omega L/R$ e o circuito se comporta como um filtro RC passa-baixa: $T_{dB}(\omega \to \infty) \to -\infty$ com inclinação de -20 dB/década e $\varphi(\omega \to 0) \to +90^{\circ}$.

De acordo com as expressões acima, na frequência $\omega_0=1/\sqrt{LC}$ temos que $T_{dB}(\omega_0)=0$ dB e $\varphi(\omega_0)=0$. Duas frequências são interessantes: ω_\pm tais que $f(\omega_\pm)=\pm 1$, com $\omega_+>\omega_0$ e $\omega_-<\omega_0$. Estas frequências definem a largura à meia altura (largura de banda) do filtro RLC passa-banda: $\Delta\omega=\omega_+-\omega_-$. Nestas frequências $T_{dB}(\omega_\pm)=-3$ dB e $\varphi(\omega_\pm)=\pm 45^o$ e elas são dadas por:

$$\omega_{\pm} = \sqrt{{\omega_0}^2 + \gamma^2} \pm \gamma$$
, onde $\omega_0 = 1/\sqrt{LC} \ e \ \gamma = \frac{R}{2L}$ (5)

Portanto, $\Delta \omega = \omega_+ - \omega_- = 2\gamma$. Note que apenas estes dois parâmetros (ω_0 e γ) definem toda e qualquer característica espectral do filtro RLC passa-banda, pois podemos escrever $f(\omega)$ tendo apenas γ e ω_0 como parâmetros,

$$f(\omega) = \frac{\omega_0}{2\gamma} \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right) \tag{6}$$

Resposta espectral – Parte 1

Obtenção da transmissão (dB) em três frequências específicas a partir da leitura dos valores das tensões V1 e V2 no osciloscópio utilizando a funcionalidade de medidas automáticas para a configuração ilustrada na Fig. 1 (V2: queda de tensão no resistor). Determinem a transmissão, conforme a Eq.2, para as frequências em que as fases entre V2 e V1 são: - 45°, 0° e 45°. Esta caracterização deve ser feita para três combinações diferentes de valores dos componentes R, L e C de forma que seja possível avaliar a influência da indutância e capacitância. O valor da resistência deve ser mantido fixo. Uma das combinações deve conter os valores: R = 330 Ω, C = 220 nF, L = 19 mH. Não escolham, para as outras duas combinações, valores de L e C muito distintos destes valores!

A análise referente à Parte 1 deve conter os seguintes itens:

- Descrição do procedimento experimental com a função de todas as conexões feitas na montagem do circuito.
- 2. Os valores de V1, V2, T(dB), ω_0 e $\Delta\omega$ devem ser apresentados em uma tabela.
- 3. Comparação entre a frequência de ressonância e largura de banda segundo modelo apresentado no roteiro e valores extraídos experimentalmente.
- 4. Discussão sobre comportamento observado com a mudança dos valores de L e C. Exemplo de pontos a serem discutidos: Quais parâmetros (frequência de ressonância, largura de banda) mudaram com a variação de L e C? Essa mudança está de acordo com previsão feita pelo modelo apresentado?

Resposta espectral – Parte 2

Nesta segunda parte da aula experimental, serão realizadas duas atividades:

- 1. Caracterização de como a resposta espectral (sinal de saída medido no resistor) do circuito RLC varia com diferentes valores de resistência. Os 4 valores sugeridos para resistência são: 470 Ω; 1 kΩ; 2,2 kΩ; 4,7 kΩ. Valores de L e C: L = 19 mH, C = 220 nF.
- 2. Medição da resposta espectral no circuito RLC em três configurações distintas: a) onde o sinal de saída é a queda de tensão no resistor; b) onde o sinal de saída é a queda de tensão no indutor e c) onde o sinal de saída é a queda de tensão no capacitor. Valores R, L e C: 470 Ω, 19 mH e 220 nF.

Nesta segunda parte do experimento, façam todas as medidas utilizando o PyLab.

Examinem as variações nas características espectrais do circuito quando a resistência é alterada. Para sua análise e posterior discussão no relatório, certifiquem-se de abordar, no mínimo, os pontos abaixo:

- 1. Observe a frequência onde o coeficiente de transmissão atinge seu valor máximo. Essa frequência se altera com a variação da resistência? E em relação à largura de banda? Como ela se modifica quando ajustamos a resistência?
- 2. Apresentem gráficos que mostrem as três transmissões T_{dB}(ω) relativas à tensão de saída medida no resistor, capacitor e indutor medidas no item 2. Analisem e discutam as características observadas nos três componentes, levando em consideração as dependências com a frequência das impedâncias individuais de cada componente (R, L e C). Além disso, conecte o comportamento da transmissão T_{dB}(ω) observado em cada componente à dependência de fase (utilizando PyLab) da tensão medida no resistor. Lembre-se: a tensão no resistor está sempre em sincronia com a corrente no circuito.

Apêndice:

Função transmitância, Diagrama de Bode

Função transmitância: Todo circuito de corrente alternada pode ser caracterizado por uma função de transferência $H(\omega)$, também conhecida como resposta espectral, definida a seguir:

$$H(\omega) = \frac{V_{saida}(\omega)}{V_{entrada}(\omega)} = \left| \frac{V_{saida}(\omega)}{V_{entrada}(\omega)} \right| exp(i\varphi(\omega))$$
(4)

;sendo $V_{saída}(\omega)$ e $V_{entrada}(\omega)$ os sinais de entrada e saída em sua forma complexa, ou seja, contendo informações de amplitude, frequência e a fase relativa entre os dois sinais. Nos experimentos de circuitos de corrente alternada, $V_{saída}(\omega)$ corresponde à queda de tensão medida em um dos componentes do circuito, e $V_{entrada}(\omega)$ à queda de tensão total no circuito imposta pelo gerador de função. Em muitas situações práticas estamos interessados na resposta do circuito em termos de potência transmitida, que é proporcional ao quadrada da queda de tensão medida ($[V_{saída}(\omega)]^2$) na resistência. Sendo assim, uma forma mais comum de caracterização de um circuito é dada pela Transmitância:

$$T_{linear}(\omega) = |H(\omega)|^2 = \left| \frac{V_{saida}(\omega)}{V_{entrada}(\omega)} \right|^2$$
 (5)

$$T_{dB}(\omega) = 10\log(|H(\omega)|^2) = 20\log\frac{|V_{saida}(\omega)|}{|V_{entrada}(\omega)|}$$
(6)

Figura 2 – Gráfico da transmitância em função da frequência angular normalizada pela frequência de corte (esquerda), e gráfico da transmissão em decibéis em função do log da frequência angular normalizada pela frequência de corte (direita). Adaptado de [1]

Diagrama de Bode: A representação da resposta espectral de um circuito em corrente alternada (AC) em termos do gráfico de transmissão em dB, e da fase relativa entre os sinais $V_{saída}(\omega)$ e $V_{entrada}(\omega)$, ambos com eixo de frequência em escala logarítmica, é denominado Diagrama de Bode. Esta representação contém a informação completa da resposta espectral do circuito AC em um formato que possibilita a identificação rápida e clara da resposta do circuito (transmissão e fase) em um amplo intervalo de frequência (composto por várias décadas). Uma década corresponde a um intervalo de frequência no qual a frequência vai de um determinado valor a 10 vezes este valor inicial. Como pode ser observado na Figura 2 à direita, cada unidade no eixo de frequências corresponde a uma década. Atenção: nesta figura foi utilizado o eixo de frequência normalizado pela frequência de corte para ilustrar o comportamento geral de um circuito RC em série. No relatório, o eixo de frequência deve estar em escala logarítmica, porém de forma que seja possível ler diretamente o valor da frequência.