Syntaks og semantik

Lektion 2

7 februar 2008

Forord

- Ord
- SprogDe regulære operationer
- Regulære udtryk

- alfabet: en endelig mængde, normalt betegnet Σ
- bogstav / tegn / symbol: et element i Σ
- ord / streng: en endelig følge $(a_1, a_2, ..., a_k)$ af bogstaver. Normalt skrevet uden parenteser og komma: $a_1 a_2 ... a_k$
- ε: det tomme ord (med 0 bogstaver)
- at sammensætte ord: abe ∘ kat = abekat
- ε er identiteten for \circ : $w \circ \varepsilon = \varepsilon \circ w = w$ for alle ord w

- Sprog (over Σ): en mængde af ord med bogstaver fra Σ

Ord

- Σ^* : sproget bestående af *alle* ord over Σ
- ⇒ L er et sprog over Σ hvis og kun hvis $L \subseteq \Sigma^*$

Bemærk: Det kan godt være vi snakker om "ord" og "sprog" her, men vi tillægger dem ikke nogen betydning! Vi er (lige nu) *kun* interesseret i formen, ikke i betydningen.

Givet sprog $L_1, L_2 \subseteq \Sigma^*$, da kan vi danne sprogene

- $L_1 \cup L_2 = \{ w \mid w \in L_1 \text{ eller } w \in L_2 \}$
- $\bullet \ \, \underline{L_1} \circ \underline{L_2} = \{w_1 \circ w_2 \mid w_1 \in L_1, w_2 \in L_2\}$
- $L_1^* = \{ w_1 \circ w_2 \circ \cdots \circ w_k \mid \text{alle } w_i \in L_1 \}$

Disse 3 operationer (forening, sammensætning og stjerne) kaldes de regulære operationer på sprog.

(Der er andre operationer på sprog, ja.)

- formål: At beskrive sprog (som generelt er *uendelige* mængder) ved *endelige* udtryk.
- a (for $a \in \Sigma$), ε , \emptyset
- $R_1 \cup R_2$, $R_1 \circ R_2$, R_1^* , for R_1 , R_2 regulære udtryk
- en rekursiv definition
- forkortelser: $\Sigma = a_1 \cup a_2 \cup \cdots \cup a_n$ (for $\Sigma = \{a_1, a_2, \ldots, a_n\}$), $B^+ = B \circ B^*$
- $\llbracket a \rrbracket = \{a\}, \llbracket \varepsilon \rrbracket = \{\varepsilon\}, \llbracket \emptyset \rrbracket = \emptyset$
- $\bullet \ \ \llbracket R_1 \cup R_2 \rrbracket = \llbracket R_1 \rrbracket \cup \llbracket R_2 \rrbracket, \ \llbracket R_1 \circ R_2 \rrbracket = \llbracket R_1 \rrbracket \circ \llbracket R_2 \rrbracket, \ \llbracket R_1^* \rrbracket = \llbracket R_1 \rrbracket^*$
- ikke alle sprog kan beskrives ved regulære udtryk! (se lektion 4
 ...)

Anvendelse:

- tekstbehandling (grep, sed, etc.)
- leksikalsk analyse: at splitte en input stream op i tokens:

while
$$(xy < zp)$$
 { t = t * 1.2; }

• (flex)

Endelige automater

- Endelige automater
- Eksempler
- Sproget som genkendes af en endelig automat
- At designe endelige automater
- Regulære sprog

Endelige automater

- den mest simple maskine: endelig automat
- tilstande, og transitioner der læser bogstaver:

- eksempel: læs ordet "1101": $q_1 \xrightarrow{1} q_2 \xrightarrow{1} q_2 \xrightarrow{0} q_3 \xrightarrow{1} q_2$ \Rightarrow accept
- eksempel: læs ordet "0110": $q_1 \xrightarrow{0} q_1 \xrightarrow{1} q_2 \xrightarrow{1} q_2 \xrightarrow{0} q_3$ \Rightarrow afvis

Definition 1.5: En endelig automat er en 5-tupel $(Q, \Sigma, \delta, q_0, F)$, hvor delene er

- Q: en endelig mængde af tilstande
- Σ : en endelig mængde af bogstaver (input-alfabetet)
- $\delta: Q \times \Sigma \to Q$: transitions-funktionen
- $q_0 \in Q$: starttilstanden
- $F \subset Q$: mængden af accepttilstande

Her har vi:

1 tilstande $Q = \{q_1, q_2, q_3\}$

Eksempler

- ② inputalfabetet $\Sigma = \{0, 1\}$
- **3** transitionsfunktionen $\delta: Q \times \Sigma \rightarrow Q$ givet ved

	0	1
q_1	q_1	q_2
q_2	<i>q</i> ₃	q_2
q_3	q_2	q_2

- 4 starttilstanden $q_0 = q_1$
- **o** acceptilistandene $F = \{q_2\}$

Eksempel 1.11:

Eksempel 1.11:

Endelige automater

Accepterer alle ord der starter og slutter med samme bogstav.

Eksempel 1.13:

Endelige automater

Accepterer alle ord hvor summen af cifrene efter det sidste "R" er deleligt med 3!

Endelige automater

Eksempel 1.15: En endelig automat over alfabetet $\{0, 1, 2, R\}$ der accepterer alle ord hvor summen af cifrene efter det sidste "R" er deleligt med et givet tal i:

$$Q = \{q_0, q_1, \dots, q_{i-1}\}$$
 $\Sigma = \{0, 1, 2, R\}$
 $q_0 = q_0$
 $F = \{q_0\}$
 $\delta(q_j, 0) = q_j$
 $\delta(q_j, 1) = q_{j+1 \bmod i}$
 $\delta(q_j, 2) = q_{j+2 \bmod i}$
 $\delta(q_j, R) = q_0$

– kan umiddelbart generaliseres til $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, R\}$ (Hvordan?)

Definition: Lad $M = (Q, \Sigma, \delta, q_0, F)$ være en endelig automat, og lad $w = w_1 w_2 \dots w_n \in \Sigma^*$. Da siges M at acceptere w hvis der findes en følge (r_0, r_1, \dots, r_n) af tilstande $r_i \in Q$ således at

- $\mathbf{0} r_0 = q_0,$
- 2 $r_{i+1} = \delta(r_i, w_{i+1})$ for alle i = 0, 1, ..., n-1, og
- \circ $r_n \in F$.

Sproget som genkendes af M er

$$[\![M]\!] = L(M) = \{w \mid M \text{ accepterer } w\}$$

 $w_1 + w_2 + \cdots + w_k \mod i = 0$.

Eksempel: Sætning: Sproget som genkendes af automaten M fra eksempel 1.15 er

 $L = \{ w \mid \text{summen af cifrene efter sidste "} R" \text{ er deleligt med } i \}$

Bevis: Lad $w \in \Sigma^*$, og skriv w som $w = \Sigma^* R w_1 w_2 \dots w_k$, hvor $w_1, w_2, ..., w_k \in \{0, 1, 2\}$. Dvs. $w_1 w_2 ... w_k$ er den del af w der står efter det sidste "R."

Efter at have læst det sidste "R," er M i tilstand q_0 . Lad nu r_1, r_2, \dots, r_k betegne de tilstande som M er i efter at have læst w_1, w_2, \ldots, w_k . Da er

$$r_1 = \delta(q_0, w_1) = q_{w_1 \mod i}$$
 $r_2 = \delta(r_1, w_2) = \delta(q_{w_1 \mod i}, w_2) = q_{w_1 + w_2 \mod i}$
 $r_3 = \delta(r_2, w_3) = \delta(q_{w_1 + w_2 \mod i}, w_3) = q_{w_1 + w_2 + w_3 \mod i}$
 \vdots
 $r_k = q_{w_1 + w_2 + \dots + w_k \mod i}$

Bemærk nu at w accepteres af M hvis og kun hvis $r_k = q_0$. Dvs. w accepteres af M hvis og kun hvis

Eksempel 1.21: En endelig automat der genkender sproget $\Sigma^*001\Sigma^*$, for $\Sigma = \{0, 1\}$.

starttilstand

Eksempler

- tilstand "jeg har lige set '0' "
- tilstand "jeg har lige set '00' "
- tilstand "jeg har lige set '001' " (accept!)

Eksempler

Eksempel 1.21: En endelig automat der genkender sproget $\Sigma^*001\Sigma^*$, for $\Sigma = \{0, 1\}$.

starttilstand	q _s
	starttilstand

- tilstand "jeg har lige set '0' " q_0
- tilstand "jeg har lige set '00' " q_{00}
- tilstand "jeg har lige set '001' " (accept!) **9**001

At designe endelige automater

Eksempel 1.21: En endelig automat der genkender sproget $\Sigma^*001\Sigma^*$, for $\Sigma = \{0, 1\}$.

•	starttilstand	q_{s}
•	tilstand "jeg har lige set '0' "	q 0
•	tilstand "jeg har lige set '00' "	a 00

• tilstand "jeg har lige set '001' " (accept!) q₀₀₁

$$\longrightarrow \overbrace{q_{\mathsf{S}}}^{0} \xrightarrow{0} \overbrace{q_{\mathsf{0}}}^{0} \xrightarrow{0} \overbrace{q_{\mathsf{00}}}^{1} \xrightarrow{1} \overbrace{q_{\mathsf{001}}}^{1}$$

Eksempler

Eksempel 1.21: En endelig automat der genkender sproget $\Sigma^*001\Sigma^*$, for $\Sigma = \{0, 1\}$.

•	starttilstand	<i>q</i> s	
		-10	

- tilstand "jeg har lige set '0' " q_0
- tilstand "jeg har lige set '00' " q_{00}
- tilstand "jeg har lige set '001' " (accept!) *q*₀₀₁

Endelige automater

Eller: Givet et alfabet Σ og $L \subseteq \Sigma^*$, da kaldes L et regulært sprog hvis der findes en endelig automat M over Σ således at $\llbracket M \rrbracket = L$.

Vigtig sætning 1.54: Et sprog er regulært hvis og kun hvis det kan beskrives ved et regulært udtryk.

(Beviset ser vi på næste gang.)

Klassen af regulære sprog er lukket under foreningsmængde ∪, sammensætning o og stjerne *.

Dvs. hvis A og B er regulære sprog, da er også

- \bullet $A \cup B$,
- A ∘ B og
- A*

Endelige automater

regulære sprog.

Beviserne skal vi se i dag og næste gang.

Sætning 1.25: Lad A_1 og A_2 være regulære sprog over et fælles alfabet Σ . Da er også $A_1 \cup A_2$ et regulært sprog.

Bevis: Lad $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1), M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ være endelige automater med $[M_1] = A_1$ og $[M_2] = A_2$. Konstruér en ny endelig automat $M = (Q, \Sigma, \delta, q_0, F)$ ved

- $Q = Q_1 \times Q_2$.
- $q_0 = (q_1, q_2),$
- $F = \{(r_1, r_2) \in Q \mid r_1 \in F_1 \text{ eller } r_2 \in F_2\},$
- og med $\delta: Q \times \Sigma \to Q$ defineret som

$$\delta((r_1,r_2),a)=(\delta(r_1,a),\delta(r_2,a))$$

For at vise at $\llbracket M \rrbracket = A_1 \cup A_2$, skal vi vise at

- \bullet ethvert $w \in [M_1]$ også er i [M],
- 2 ethvert $w \in [M_2]$ også er i [M], og at
- **3** ethvert $w \in [M]$ også er i $[M_1]$ eller i $[M_2]$.