Most general unifier (MGU):

matching logical sentences is the first step in MP e.g., $Cat(x) \Rightarrow Mammal(x)$, $Cat(Felix) \mid - Mammal(Felix)$

UNIFY[P(A, B, y, z), P(x, y, z, B)]

same predicate P(), same arity of 4 arguments

unifier:
$$A \equiv x$$
, $B \equiv y$, $y \equiv z$, $z \equiv B$
 $\theta = \{ x / A, y / B, z / B \}$

UNIFY[Knows(x, x), Knows(Father(y), y)]

same predicate Knows(), same arity of 2 arguments

unifier:
$$x = Father(y), x = y$$

 $\theta = \{ x / Father(y), x / y \}$
implies $Father(y) = y ?!? F(y)=y ?$

- \rightarrow <u>impossible</u> if assuming the most obvious semantics i.e., "fatherhood"; then $\theta = \{ \}$
- → possible if assuming another semantics e.g., "provider" etc. (F not defined!)

Logical Inference

Backward chaining inference:

knowledge base (Horn clauses):

- (1) Sick(John, 2006)
- (2) Sick(Mary, y)
- (3) SitsNextTo(Ginger, Mary, 2006)
- SitsNextTo(a, b, y) \land Sick(b, y) \Rightarrow Sick(a, y) (4)
- Parent(a, b) \land HasCold(b, y) \Rightarrow HasCold(a, y) (5)
- HasCold(a, y) \Rightarrow Sick(a, y) (6)

backward chaining MP: ? Sick(x, 2006)

(1) under x=John

- |- Sick(John, 2006)
- (2) under x=Mary, y=2006 |- Sick(Mary, 2006)
- (3) fails
- (4) prove Sick(a, y) under x=a, y=2006
 - → SitsNextTo(a, b, 2006) and Sick(b, 2006)
 - → (3) under a=Ginger, b=Mary

 - (2) b=Mary |- Sick(Ginger, 2006)
- (5) fails
- (6) prove Sick(a, y) under x=a, y=2006
 - → HasCold(a, 2006)
 - → (5) Parent(a, b) ∧ HasCold(b, 2006) fails (no matching clause...)

Expert System for an electric network

constants: P for Power; F1, F2 for Fuse-1, Fuse-2

L1, L2 etc. for Light-1 ... , H for Heater

predicates:

On(d) "device d is turned on"

Working(d) "device d is working"

Broken(d) "device f is broken"

Connected(e, f) "devices e and f are connected"

Fuse(f) "device f is a fuse"

Hot(d) "device d is hot"

Device(d) ? → not needed (everything is...)

Knowledge base rules in FOL:

"All devices are on if there is power and off otherwise."

- (1) $\forall d \ On(Power) \Rightarrow On(d)$
- (2) $\forall d \neg On(Power) \Rightarrow \neg On(d)$ $or \forall d On(d) \Rightarrow On(Power)$

"If the room is hot, the heater is working."

(3)
$$\operatorname{Hot}(R) \Rightarrow \operatorname{Working}(H)$$

"If a device is on, connected to a fuse and the fuse is intact, but the device is not working, then it is broken."

(4)
$$\forall$$
 d,f On(d) Λ Connected(d, f) Λ Fuse(f) Λ Intact(f) $\Lambda \neg$ Working(d) \Rightarrow Broken(d)

"A fuse is intact if a device connected to it is working."

(5)
$$\forall$$
 d,f Fuse(f) \land Connected(d, f) \land Working(d) \Rightarrow Intact(f)

"If two different devices connected to the same fuse are on but not working, the fuse is not intact."

(6)
$$\forall$$
 d,e,f Connected(d,f) Λ Connected(e,f) Λ \neg d = e Λ Fuse(f) Λ On(d) Λ On(e) Λ \neg Working(d) Λ \neg Working(e) \Rightarrow \neg Intact(f)

"A working device is clearly on."

(7)
$$\forall d \text{ Working}(d) \Rightarrow \text{On}(d)$$

Knowledge base rules in CNF:

all \forall already on the left, no $\exists ...$ need convert all \Rightarrow replace $P \Rightarrow Q$ by $\neg P \lor Q$, distribute \neg , etc.

$$\mathsf{P_1} \; \Lambda \; \mathsf{P_2} \; \Lambda \; ... \; \Lambda \; \mathsf{P_N} \Rightarrow \mathsf{Q} \quad \Leftrightarrow \quad \neg \mathsf{P_1} \vee \neg \mathsf{P_2} \vee ... \vee \neg \mathsf{P_N} \vee \mathsf{Q}$$

- (1) \neg On(Power) \vee On(d)
- (2) On(Power) $\vee \neg$ On(d)
- (3) \neg Hot(R) \vee Working(H)
- (4) ¬ On(d) ∨ ¬ Connected(d, f) ∨ ¬ Fuse(f) ∨ ¬ Intact(f) ∨ Working(d) ∨ Broken(d)
- ¬ Fuse(f) ∨ ¬ Connected(d, f) ∨¬ Working(d) ∨ Intact(f)
- ¬ Connected(d, f) ∨ ¬ Connected(e, f) ∨
 d = e ∨ ¬ Fuse(f) ∨ ¬ On(d) ∨ ¬ On(e) ∨
 Working(d) ∨ Working(e) ∨ ¬ Intact(f)
- (7) \neg Working(d) \vee On(d)

Logical Inference

Knowledge base facts:

electric network information:

- (8) Connected(L1, F1)
- (9) Connected(L2, F1)
- (10) Connected(H, F1)
- (11) Connected(L3, F2)
- (12) Connected(L4, F2)
- (13) Connected(F1, P)
- (14) Connected(F2, P)
- (15) Fuse(F1)
- (16) Fuse(F2)

additional information:

"All lights except Light-2 are working ..."

- (17) Working(L1)
- (18) ¬ Working(L2)
- (19) Working(L3)
- (20) Working(L4)

"... and the room is hot."

(21) Hot(R)

c) Proof by resolution: "Is Light-2 broken?"

resolving (4) with (9), (15), and (18) under d=L2, f=F1:

(22)
$$\neg$$
 On(L2) \lor \neg Intact(F1) \lor Broken(L2)

resolving (5) with (8), (15) and (17) under d=L1, f=F1:

(23) Intact(F1)

resolving (22) with (23):

resolving (1) with (24) under d=L2:

(25)
$$\neg$$
 On(P) \lor Broken(L2)

resolving (3) with (7) and (21) under d=H:

(26) On(H)

resolving (2) with (26) under d=H:

(27) On(P)

resolving (25) and (27):

(28) Broken(L2) \rightarrow Light-2 is broken