CS 361 Machine Learning Exam 1 (January-May Session, 2021)

Total No.: 20 30 Minutes	Attempt all questions	Time:
	F	Points: 14/20
Which of the following ser (1/1 Point)	ntence is FALSE regarding regress	ion?
It relates inputs to outputs It is used for prediction It may be used for interpretation It discovers causal relationship		
In the case of supervised (1/1 Point)	learning, which statement(s) is/are	NOT TRUE?
It prefer the simplest hypothes Given a collection of examples	sis consistent with data s of f, return a function h that approximates	s f.

Feature	space	is a	always	same	as	input	space	/
			,					

Can be called as Inductive Learning

3

Which of the following is/are true about Maximum Likelihood Estimate (MLE)? (1/1 Point)

IVILL GOES HOL HECESSAINY EXIST.	✓	MLE does not necessarily exist.	/
----------------------------------	----------	---------------------------------	----------

- MLE always exists
- If exists/exist, it/they may not be unique <
- If exists/exist, it/they must be unique

102.9	16.7
109.9	18.7
116.1	20.7
121.7	22.9
127	25.3
132.2	28.1
137.5	31.4
140	32.2
147	37
153	40.9
160	47
166	52.6

Consider the given figure that shows a sample data consisting of two features X1 and X2, and a class label Y. Assume that k-NN is used for memorizing this data and performing classification on some test points. But observing the data and labels, there could be some problems if k-NN memorizes this given data. What operations can be done so that k-NN can generally work well with such data too?

(0/1 Point)

P is false but R is true

P is true but R is false

7

MLE can be considered as minimizing the dissimilarities between p_data and p_model, where the dissimilarity is measured by using (0/1 Point)

- MAP of p_data and p_model
- Argmax of gaussian distribution estimators
- ✓ KL Divergence ✓
- Log-likelihood of Bayes error between p_data, and p_model

8

In the given figure, for a sample data distribution, X-axis and Y-axis denote the independent and dependent variables respectively. Which of the following are true if we try to model this distribution? (1/1 Point)

- Simple linear regression will have low bias and high variance
- Learning a quadratic fit will have low bias and low variance.

https://forms.office.com/Pages/ResponsePage.aspx?id=jacKheGUxkuc84wRtTBwHCTd1h3zvShFq0ZkcCDdWudUQ0tBTUw1V0xa...

(0/1 Point)

14

Large values	of the	log-likelihood	statistic	indicate	that
(1/1 Point)					

the statistical model fits the data well
as the predictor variable increases, the likelihood of the outcome occurring decreases
there are a greater number of explained vs. unexplained observations
statistical model is a poor fit of the data <
15
Consider a univariate linear regression model. Which of the following are true? (1/1 Point)
Changing the input variable by 1 unit always affects the output by 1 unit too
Considering Mean Squared Error to compute the loss is a good idea as it reduces the effect of outliers
Since it is univariate, we need to estimate one coefficient for modelling the data
The decision boundary is a property of the data set given to us
None of the above ✓
16
If the cost function of Linear Regression is used for Logistic regression (1/1 Point)
Regularization for logistic regression may be hampered.
Hypothesis function becomes intractable
Cost function will be non convex in nature <

Cost function becomes logarithmic in nature
17
Which of the following about kNN classifiers are true? (1/1 Point)
Considering more neighbors for assessment of class votes improves classification accuracy.
✓ There is no explicit training phase ✓
Decision boundary is smoother with smaller values of k
✓ Can be used for both classification and regression ✓
18
K-fold cross-validation is (1/1 Point)
✓ Linear in K ✓
Quadratic in K
Cubic in K
Exponential in K
19
Bayesian networks allow the compact specification of (1/1 Point)
Conditional independence
Belief
✓ Joint probability distributions ✓
Propositional logic statements

20

$$\frac{1}{2N} \sum_{i=1}^{N} (y_i - \beta_0)^2$$

For the one-parameter model, mean-Square error (MSE) is defined as given. We have a half-term in the front because, (1/1 Point)

	scaling MSE by half makes gradient descent converge faster
	presence of half makes it easy to do grid search
/	it does not matter whether half is there or not \checkmark
	none of the above

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the privacy or security practices of its customers, including those of this form owner. Never give out your password.

Powered by Microsoft Forms | Privacy and cookies | Terms of use