10. Give an example of a family of intervals A_n , n = 1, 2, ..., such that $A_{n+1} < A_n$ (Here, < means real subset of, I can't find the correct symbol) for all n, and $\bigcap_{n=1}^{\infty} A_n$ consists of a single real number. Prove that your example has the stated property.

Solution: Let $A_n = (-\frac{1}{n}, \frac{1}{n})$, n = 1, 2, ..., then $A_{n+1} < A_n$ for all n, and $\bigcap_{n=1}^{\infty} A_n = \{0\}$ and thus has the stated property.

Proof: We need to prove the following two points:

- (1) $A_{n+1} < A_n$
- (2) $\bigcap_{n=1}^{\infty} A_n = \{0\}$

For any natural number n, $\forall x \in A_{n+1}$ by definition, -1/n < -1/(n+1) < x < 1/(n+1) < 1/n, hence, $x \in A_n$, hence, according to set theory, we have $A_{n+1} < A_n$, (1) is proved.

Because of $A_n = (-\frac{1}{n}, \frac{1}{n})$, n = 1, 2, ..., clearly, for any $n, 0 \in A_n$, hence, $0 \in \bigcap_{n=1}^{\infty} A_n$.

Next we only need to prove $(\forall x \neq 0)(x! \in \bigcap_{n=1}^{\infty} A_n)$.

so $(\forall x \leq 0)[x! \in \bigcap_{n=1}^{\infty} A_n]$. Then, in order to prove (2), we only need to prove that, $(\forall x > 0)[x! \in \bigcap_{n=1}^{\infty} A_n]$.

$$(\forall x \neq 0)$$
, let $n_0 = \left| \frac{1}{|x|} \right| \implies \frac{1}{|x|} - 1 < n_0 \le \frac{1}{|x|} \implies \frac{1}{|x|} < n_0 + 1$

Hence, $(\forall n > n_0)$, we have, $n+1 > n_0+1 > \frac{1}{|x|} \implies |x| > \frac{1}{n+1} \implies |x|! \in A_{n+1} = \bigcap_{k=1}^{n+1} A_k \implies x! \in \bigcap_{k=1}^{n+1} A_k$

By the definition of limit, $(\forall x \neq 0)[x! \in \lim_{n \to \infty} \bigcap_{k=1}^{n+1} A_k = \bigcap_{n=1}^{\infty} A_n]$.

Combining $0 \in \bigcap_{n=1}^{\infty} A_n$ with $(\forall x \neq 0)[x! \in \lim_{n \to \infty} \bigcap_{k=1}^{n+1} A_k = \bigcap_{n=1}^{\infty} A_n]$, we can conclude that $\bigcap_{n=1}^{\infty} A_n = \{0\}$, (2) is proved.

Hence, $A_n = (-\frac{1}{n}, \frac{1}{n})$, n = 1, 2, ..., has the stated property.

Q.E.D