

Supporting Queries Spanning Across Phases of Evolving Artifacts using Steiner Forests

Siarhei Bykau bykau@disi.unitn.eu

joint work with John Mylopoulos, Flavio Rizzolo and Yannis Velegrakis University of Trento via Sommarive 18, 38050 Povo, Trento – Italy

The Problem of Evolution

- Schema evolution [McBrien et al. 2002]
- Data evolution [Chawathe et al. 1998]
- Data transformation [Velegrakis et al. 2005]
- Temporal databases [Buneman et al. 2002]

• ...

The Problem of Evolution

- Schema evolution [McBrien et al. 2002]
- Data evolution [Chawathe et al. 1998]
- Data transformation [Velegrakis et al. 2005]
- Temporal databases [Buneman et al. 2002]

• ...

Evolution doesn't span different concepts

AT&T Labs History

Motivating Example

Find the patents of AT&T Labs Inc.:

Motivating Example

Query: find the patents of AT&T Labs Inc.:

Motivating Example

Query: find the patents of AT&T Labs Inc.:

Entity Coalescence

Query: find the patents of AT&T Labs Inc.:

Entity Coalescence

Query: find the patents of AT&T Labs Inc.:

Variable Assignments

\$x(name:AT&T Labs Inc; isHolder:\$y)

\$x	\$ y	Possible World	Answer	Cost
e1	P2P Video	Q	e1(isHolder:"P2P Video")	0
Sk(e1,e2)	P2P Video	e1,e2	Not generated	
Sk(e1,e2,e3)	P2P Video	e1,e2,e3	Not generated	2
Sk(e1,e2,e3)	ASR	e1,e2,e3	Sk(e1,e2,e3)(isHolder:"ASR")	
Sk(e1,e2,e3,e4)	Laser	e1,e2,e3,e4	Sk(e1,e2,e3,e4)(isHolder:"Laser")	3

Brute force: generate all possible worlds

Brute force: generate all possible worlds

computationally expensive

Brute force: generate all possible worlds

computationally expensive

Materialize possible worlds

Brute force: generate all possible worlds

computationally expensive

Materialize possible worlds

needs too much space

Brute force: generate all possible worlds

computationally expensive

Materialize possible worlds

needs too much space

Materialize only the maximum possible world

Brute force: generate all possible worlds

computationally expensive

Materialize possible worlds

needs too much space

Materialize only the maximum possible world

redundant coalescences

doesn't distinguish different evolution phases of an entity

Step1: \$x(name:"AT&T Labs Inc."),\$x(isHolder:\$y)

Step1: \$x(name:"AT&T Labs Inc."),\$x(isHolder:\$y)

Step2:

{\$x}	{\$x,\$y}	
{e1}	{e1, "P2P Video"}	
	{e3, ASR}	
	{e4, Laser}	
	{e5, VoIP}	

Step1: \$x(name:"AT&T Labs Inc."),\$x(isHolder:\$y)

Step2:

{\$x}	{\$x,\$y}	
{e1}	{e1, "P2P Video"}	
	{e3, ASR}	
	{e4, Laser}	
	{e5, VoIP}	

Step3:

{\$x,\$x,\$y}		
{e1,e1, "P2P Video"}		
{e1,e3, ASR}		
{e1,e4, Laser}		
{e1,e5, VoIP}		

Step1: \$x(name:"AT&T Labs Inc."),\$x(isHolder:\$y)

Step2:

{\$x}	{\$x,\$y}	
{e1}	{e1, "P2P Video"}	
	{e3, ASR}	
	{e4, Laser}	
	{e5, VoIP}	

Step3:

{\$x,\$x,\$y}		
{e1,e1, "P2P Video"}		
{e1,e3, ASR}		
{e1,e4, Laser}		
{e1,e5, VoIP}		

Step5:

Steiner Forest Problem

$$V1=(x,y) V2=(u,v)$$

Steiner forest problem is NP-hard [Gassner 2010]

Steiner Tree Algorithm

Optimal dynamic programming algorithm for Steiner trees [Ding et al. 2007]:

$$O(3^{\sum l_i}n + 2^{\sum l_i}((\sum l_i + logn)n + m))$$

ST(x,y)

ST(u,v)

ST(x,y,u,v)

Steiner Forest Algorithm

$$SF(V) = ST(V_i)$$

$$SF(V) = min_{H \subseteq V} (ST(maxflat(H)) + SF(V \setminus H))$$

$$SF((x,y),(u,v))$$
:

$$O(3^L-2^L(L/2-1)-1)$$

<u>Lemma</u>: for two sets of sets of nodes V' and V'' on graph G if $V' \subseteq V''$ then $cost(SF(V')) \leq cost(SF(V''))$

<u>Lemma</u>: for two sets of sets of nodes V' and V'' on graph G if $V' \subseteq V''$ then $cost(SF(V')) \leq cost(SF(V''))$

Lemma: for two sets of sets of nodes V' and V'' on graph G if $V' \subseteq V''$ then $cost(SF(V')) \leq cost(SF(V''))$

<u>Lemma</u>: for two sets of sets of nodes V' and V'' on graph G if $V' \subseteq V''$ then $cost(SF(V')) \leq cost(SF(V''))$

Experiments

- Synthetic Data:
 - Evolution Graph: Erdös-Rényi generator
 - Attribute/Association Data: Zipfian distribution
- Real Data:
 - Evolution Graph: Extracted from the US Trademark dataset
 - REAL_CHAIN
 - REAL_STAR

Steiner Forest Experiments

Query Evaluation Experiments

of connected components and data distribution experiments

# of Branches	s=2.5	s=3.0	s=3.0
1	93,845	44,098	35,382
2	2,400	1,414	4,686
3	374	637	485
4	485	20	91
5	124	260	16

(a) (b)

Conclusion

- A new insight into evolution: evolution spans different concepts
- Possible worlds are used to define the semantics of evolution
- A strategy to evaluate a query over possible worlds
- A new optimal algorithm for the Steiner forest problem
- Top-k optimization technique
- Experimental evaluation

Thank you for you attention!

Backup slides

Motivating Query with Associations

Query: find all the partners of AT&T Labs Inc

Motivating Query with Associations

Query: find all the partners of AT&T Labs Inc

Motivating Query with Associations

Query: find all the partners of AT&T Labs Inc

Trademark Dataset*

- 16K unique companies
- 200K attributes
- evolution graph with 573 components of sizes between 5 and 373

References

- 1. P. Buneman, S. Khanna, K. Tajima, and W. Tan. Archiving scientific data. In SIGMOD, pages 1–12, 2002.
- 2. S. Chawathe, S. Abiteboul, and J. Widom. Representing and Querying Changes in Semistructured Data. In ICDE, pages 4–19, 1998.
- 3. Bolin Ding, J Xu Yu, Shan Wang, Lu Qin, Xiao Zhang, and Xuemin Lin. Finding Top-k Min-Cost Connected Trees in Databases. ICDE, pages 836–845, 2007.
- 4. Elisabeth Gassner. The Steiner Forest Problem revisited. Journal of Discrete Algorithms, 8(2):154–163, June 2010.
- P. McBrien and A. Poulovassilis. Schema Evolution in Heterogeneous Database Architectures, A Schema Transformation Approach. In CAiSE, pages 484–499, 2002.
- 6. Y. Velegrakis, R. J. Miller, and J. Mylopoulos. Representing and Querying Data Transformations. In ICDE, pages 81–92, 2005.