Note: Your TA probably will not cover all the problems. This is totally fine, the discussion worksheets are not designed to be finished in an hour. They are deliberately made long so they can serve as a resource you can use to practice, reinforce, and build upon concepts discussed in lecture, readings, and the homework.

1 Asymptotic Notation Intro

In this class, we care a lot about the runtime of algorithms. However, we don't care too much about concrete performance on small input sizes (most algorithms do well on small inputs). Instead we want to compare the *long-term* (asymptotic) growth of the runtimes.

Asymptotic Notation: We define the following notation for two functions $f(n), g(n) \geq 0$:

- $f(n) = \mathcal{O}(g(n))$ if there exists a c > 0 where after large enough $n, f(n) \leq c \cdot g(n)$. (Asymptotically, f grows at most as much as g)
- $f(n) = \Omega(g(n))$ if $g(n) = \mathcal{O}(f(n))$. (Asymptotically, f grows at least as much as g)
- $f(n) = \Theta(g(n))$ if $f(n) = \mathcal{O}(g(n))$ and $g(n) = \mathcal{O}(f(n))$. (Asymptotically, f and g grow the same)

If we compare this to the order on the numbers, \mathcal{O} is a lot like \leq , Ω is a lot like \geq , and Θ is a lot like = (except all are with regard to asymptotic behavior).

For each of the following, state the order of growth using Θ notation, e.g. $f(n) = \Theta(n)$.

- (i) f(n) = 50
- (ii) $f(n) = n^2 2n + 3$
- (iii) $f(n) = n + \cdots + 3 + 2 + 1$
- (iv) $f(n) = n^{100} + 1.01^n$
- (v) $f(n) = n^{1.1} + n \log n$
- (vi) $f(n) = (g(n))^2$ where $g(n) = \sqrt{n} + 5$

2 Asymptotics and Limits

If we would like to prove asymptotic relations instead of just using them, we can use limits.

Asymptotic Limit Rules: If $f(n), g(n) \ge 0$:

- If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$, then $f(n) = \mathcal{O}(g(n))$.
- If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$, for some c>0, then $f(n) = \Theta(g(n))$.
- If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$, then $f(n) = \Omega(g(n))$.

Note that these are all sufficient conditions involving limits, and are not true definitions of \mathcal{O} , Θ , and Ω .

- (a) Prove that $n^3 = \mathcal{O}(n^4)$.
- (b) Find an $f(n), g(n) \ge 0$ such that $f(n) = \mathcal{O}(g(n))$, yet $\lim_{n \to \infty} \frac{f(n)}{g(n)} \ne 0$.
- (c) Prove that for any c>0, we have $\log n=\mathcal{O}(n^c)$.

 Hint: Use L'Hôpital's rule: If $\lim_{n\to\infty}f(n)=\lim_{n\to\infty}g(n)=\infty$, then $\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{f'(n)}{g'(n)}$ (if the RHS exists)

(d) Find an $f(n), g(n) \ge 0$ such that $f(n) = \mathcal{O}(g(n))$, yet $\lim_{n \to \infty} \frac{f(n)}{g(n)}$ does not exist. In this case, you would be unable to use limits to prove $f(n) = \mathcal{O}(g(n))$.

3 Runtime and Correctness of Mergesort

In general, this class is about design, correctness, and performance of algorithms. Consider the following algorithm called *Mergesort*, which you should hopefully recognize from 61B:

```
function MERGE(A[1,...,n], B[1,...,m])
    i, j \leftarrow 1
    C \leftarrow \text{empty array of length } n + m
    while i \leq n or j \leq m do
        if i \le n and (j > m \text{ or } A[i] < B[j]) then
             C[i+j-1] \leftarrow A[i]
             i \leftarrow i + 1
        else
             C[i+j-1] \leftarrow B[j]
             j \leftarrow j + 1
    return C
function MERGESORT(A[1, ..., n])
    if n \leq 1 then return A
    mid \leftarrow \lfloor n/2 \rfloor
    L \leftarrow \text{MERGESORT}(A[1, \dots, mid])
    R \leftarrow \text{MERGESORT}(A[mid + 1, \dots, n])
    return MERGE(L, R)
```

Recall that MERGESORT takes an arbitrary array and returns a sorted copy of that array. It turns out that MERGESORT is asymptotically optimal at performing this task (however, other sorts like Quicksort are often used in practice).

(a) Let T(n) represent the number of operations MERGESORT performs given a array of length n. Find a base case and recurrence for T(n), use asymptotic notation. Solve the recurrence using the Master theorem.

(b) Consider the correctness of MERGE. What is the desired property of C once MERGE completes? What is required of the arguments to MERGE for this to happen?

(c) Using the property you found for MERGE, show that MERGESORT is correct.

4 Master Theorem

For solving recurrence relations asymptotically, it often helps to use the Master Theorem:

Master Theorem. If $T(n) = aT(n/b) + \mathcal{O}(n^d)$ for a > 0, b > 1, and $d \ge 0$, then

$$T(n) = \begin{cases} \mathcal{O}(n^d) & \text{if } d > \log_b a \\ \mathcal{O}(n^d \log n) & \text{if } d = \log_b a \\ \mathcal{O}(n^{\log_b a}) & \text{if } d < \log_b a \end{cases}$$

Note: You can replace \mathcal{O} with Θ and you get an alternate (but still true) version of the Master Theorem that produces Θ bounds.

 $d_{crit} = \log_b a$ is called the *critical exponent*. Notice that whichever of d_{crit} and d is greater determines the growth of T(n), except in the case where they are perfectly balanced.

Solve the following recurrence relations and give a \mathcal{O} bound for each of them.

- (a) (i) T(n) = 3T(n/4) + 4n
 - (ii) $T(n) = 45T(n/3) + .1n^3$
- (b) $T(n) = 2T(\sqrt{n}) + 3$, and T(2) = 3.

Hint: Try repeatedly expanding the recurrence.

(c) Consider the recurrence relation $T(n) = 2T(n/2) + n \log n$. We can't plug it directly into the Master Theorem, so solve it by adding the size of each layer.

Hint: split up the $\log(n/(2^i))$ terms into $\log n - \log(2^i)$, and use the formula for arithmetic series.

5 Complex numbers review

A complex number is a number that can be written in the rectangular form a + bi (i is the imaginary unit, with $i^2 = -1$). The following famous equation (Euler's formula) relates the polar form of complex numbers to the rectangular form:

$$re^{i\theta} = r(\cos\theta + i\sin\theta)$$

In polar form, $r \ge 0$ represents the distance of the complex number from 0, and θ represents its angle. The *n* roots of unity are the *n* complex numbers satisfying $\omega^n = 1$. They are given by

$$\omega_k = e^{2\pi i k/n}, \qquad k = 0, 1, 2, \dots, n-1$$

(a) Let $x=e^{2\pi i 3/10}, y=e^{2\pi i 5/10}$ which are two 10-th roots of unity. Compute the product $x\cdot y$. Is this a root of unity? Is it an 10-th root of unity?

What happens if $x = e^{2\pi i 6/10}, y = e^{2\pi i 7/10}$?

(b) Show that for any *n*-th root of unity ω , $\sum_{k=0}^{n-1} \omega^k = 0$, when n > 1.

Hint: Use the formula for the sum of a geometric series $\sum_{k=0}^{n} \alpha^k = \frac{\alpha^{n+1}-1}{\alpha-1}$. It works for complex numbers too!

- (c) (i) Find all ω such that $\omega^2 = -1$.
 - (ii) Find all ω such that $\omega^4 = -1$.