Séance 7: Les phénomènes démographiques : La Mortalité

Vissého ADJIWANOU 8 octobre 2023

PLAN

- Définition
- Mesures
 - Taux brut de mortalité et ses limites
 - Taux de mortalité par âge
 - Quotient de mortalité
 - Notion de table de mortalité
- Construction de la table de mortalité
 - Selon l'approche longitudinale
 - Utilisation des quotients
 - Selon l'approche transversale
 - Transformations des taux en quotients

Définition

La mortalité est l'étude des décès

Il s'agit d'un évènement non renouvelable

Mesures de la mortalité

Mesure	Natalité/fécondité	Mortalité
Transversale	1. Taux brut de natalité	1. Taux brut de mortalité
	2. Taux de fécondité par âge	2. Taux de mortalité par âge
Longitudinale	Taux de fécondité par génération	Quotient de mortalité

Mesures de la mortalité

Mesure	Natalité/fécondité	Mortalité
Transversale 1. Taux brut de natalité		1. Taux brut de mortalité
	2. Taux de fécondité par âge	2. Taux de mortalité par âge
Longitudinale	Taux de fécondité par génération	Quotient de mortalité

Le taux brut de mortalité: définition et interprétation

• **Définition**: rapporte les décès survenus au cours d'une année à la population moyenne de l'année

TBM = (Décès /population moyenne) x 1000

• Interprétation: mesure la <u>proportion</u> de personnes décédées au cours d'une année (c.a.d la fréquence annuelle des décès au sein d'une population)

Le taux brut de mortalité: méthode de calcul

Le taux de mortalité en 2006 rapporte:

- les décès de personnes au cours de 2006 (rectangle ABCD)
- la population moyenne au cours de 2006 (ligne AD+ligne BC /2)

Le taux brut de mortalité: méthode de calcul

Le taux de mortalité en 2006 rapporte:

- les décès de personnes au cours de 2006 (rectangle ABCD)
- la population moyenne au cours de 2006 (ligne AD+ligne BC /2)

Figure 1: Évolution du taux brut de mortalité dans le monde, 1950-2020

Le taux brut de mortalité dans le monde, 2005

- Top 5:
 - Botswana (29.4),
 - Angola (25.9),
 - Swaziland (25.3),
 - Lesotho (25.0),
 - Zimbabwe (24.7)
- Canada: 7.7 (no. 103)
- États-Unis: 8.3 (no. 97)
- France: 9.1 (no. 81)
- *Bottom 5*:
 - Koweit (2.4),
 - Arabie Saoudite (2.6),
 - Jordanie (2.6),
 - Brunei (3.4),
 - Libye (3.5)

Figure 2: Taux brut de mortalité, 1950-2020

SDG regions

Le taux brut de mortalité: avantages et limites

- Avantage: très simple à calculer
- <u>Limite</u>: ne résume pas le risque global de mortalité car il porte le poids de la **structure par âge** du pays <u>et</u> du **taux de mortalité par âge**
- → il ne constitue pas un bon indicateur de comparaison de la mortalité
 - entre pays, ou
 - pour le même pays à différents moments dans le temps

La standardisation du taux brut de mortalité

- Pour isoler l'effet de la structure par âge
- Le taux standardisé de mortalité est utilisé pour les comparaisons:
 - lorsque les structures par âge varient
 - lorsque les phénomènes varient fortement avec l'âge
- →Elle permet de comparer les niveaux de mortalité entre des pays en éliminant l'effet de structure caractéristique du TBM de chaque pays
- Deux méthodes: Population type (ou standardisation direct) et Mortalité type (ou standardisation indirecte)

Standardisation: Méthode de Population Type

- La méthode consiste à choisir une population dont on connaît la structure par âge des effectifs, à laquelle on va affecter les taux de mortalité par âge des pays qui font l'objet de la comparaison.
 - On dispose des taux de mortalité par âge de deux pays (A et B) à comparer
 - On choisit une structure par âge de la population d'un pays type (On peut choisir l'un des deux pays ou un autre pays)
 - On applique les taux de mortalité par âge de chaque pays à la structure de la population type pour recalculer le TBM de chacun des deux pays.
 - On obtient des Taux Comparatifs de Mortalité

Mesures de la mortalité

Mesure	Natalité/fécondité	Mortalité		
Transversale	1. Taux brut de natalité	1. Taux brut de mortalité		
	2. Taux de fécondité par âge	2. Taux de mortalité par âge		
Longitudinale Taux de fécondité par génération		Quotient de mortalité		

Le taux de mortalité par âge

Le taux de mortalité à 2 ans révolus en 2006 rapporte:

- les décès de personnes de 2 ans révolus au cours de 2006 (carré ABCD)
- la population moyenne de 2 ans révolus au cours de 2006 (ligne AD+ligne BC /2)

Le taux de mortalité par âge

Le taux de mortalité à 2 ans révolus en 2006 rapporte:

- les décès de personnes de 2 ans révolus au cours de 2006 (carré ABCD)
- la population moyenne de 2 ans révolus au cours de 2006 (ligne AD+ligne BC /2)

Le quotient de mortalité

Le quotient de mortalité à 2 ans en 2006 rapporte:

- les décès survenus entre les âges 2 et 3 atteints (parallélogramme EFGH)
- les effectifs d'âge 2 atteint en 2006 (ligne EF)

Le quotient de mortalité

Le quotient de mortalité à 2 ans en 2006 rapporte:

- les décès survenus entre les âges 2 et 3 atteints (parallélogramme EFGH)
- les effectifs d'âge 2 atteint en 2006 (ligne EF)

Taux de mortalité par âge et quotients de mortalité

TAUX

- <u>Définition</u>: rapporte les décès de personnes d'âge Xen années révolues à la population moyenne de Xans révolus au cours de l'année N
- Interprétation: mesure la fréquence annuelle des décès au sein d'une population d'âge Xen années révolues

QUOTIENT

- <u>Définition</u>: rapporte les décès survenus entre les âges X et X+A aux effectifs d'âge X
- Interprétation: mesure le risque (ou probabilité) pour une personne ayant atteint l'âge X de décéder avant l'âge X+A

Exception: la mortalité infantile

- rapporte les décès qui surviennent avant 1 an (soit 0 an révolu) au cours de l'année t aux naissances vivantes de l'année (pas à la population moyenne de 0 an révolu)
- Taux de mortalité néonatale: rapporte les décès des 28 premiers jours de vie des nouveaux-nés au cours de l'année t aux naissances vivantes de l'année

Les composantes de la mortalité infantile

La table de mortalité de génération: introduction

- « Une table de mortalité décrit, selon une échelle d'âges, la survenance des décès dans une génération » (R. Pressat)
- Par définition, une table de mortalité concerne une génération entière, que le démographe suit de la naissance à la mort
- La table de mortalité de génération est fondée sur une approche longitudinale
- Mesure le calendrier de la mortalité

La table de mortalité de génération: construction

- Éléments principaux:
 - âge (x)
 - quotients de mortalité entre l'âge x et l'âge x+a (_aq_x), calculés sur la base de l'enregistrement des décès à chaque âge pour une génération.
 - Complément: probabilité de survie $_{a}p_{x} = 1 - _{a}q_{x} = S_{x+a} / S_{x}$
- Éléments dérivés:
 - Survivants d'âge x (S_x ou I_x)
 - Décès entre l'âge x et l'âge x+a (adx)
 - Somme des années vécues entre x et x+a (_aL_x)
 - Espérance de vie à l'âge x (e_x)

Signification des indices

- <u>Indice derrière</u> définit l'amplitude (écart) de l'intervalle
 - Ex. ₁₀d_x : intervalle d'amplitude 10
- <u>Indice devant</u> définit le début de l'intervalle
 - Ex. _ad₁₅: intervalle commençant par 15 ans
- **S**_x, **T**_x, **e**_x n'ont pas d'indices derrière car ils concernent des âges exacts.

Relation entre S_x, ad_x, aq_x

Âge	$_{a}q_{x}$	S _x	$_{a}d_{x}$	$_{a}L_{x}$	T _x	e _x
0-1		100000				
1-4						
5-9						
10-14						
15-19						
20-24						

Racine de la table:

Multiple de 10, souvent 100000

Âge	$_{a}q_{x}$	S _x	$_{a}d_{x}$	$_{a}L_{x}$	T _x	e _x
0-1	0.06493	100000	6493			
1-4	0.04478		$d_{0,1}=1$.00000*.06	5493	
5-9	0.00729					
10-14	0.00510					
15-19	0.03693					
20-24	0.11699					

Âge	$_{a}q_{x}$	S _x	$_{a}d_{x}$	$_{a}L_{x}$	T _x	e _x
0-1	0.06493	100000	6493			
1-4	0.04478	93507	$-S_1=10$	 00000-649	3	
5-9	0.00729					
10-14	0.00510					
15-19	0.03693					
20-24	0.11699					

Âge	$_{a}q_{x}$	S _x	$_{a}d_{x}$	$_{a}L_{x}$	T _x	e _x
0-1	0.06493	100000	6493			
1-4	0.04478	93507	4187			
5-9	0.00729		d _{1,4} =93507*.04478			
10-14	0.00510					
15-19	0.03693					
20-24	0.11699					
	•••					

Âge	$_{a}\mathbf{q}_{\mathbf{x}}$	S _x	$_{a}d_{x}$	$_{a}L_{x}$	T _x	e _x
0-1	0.06493	100000	6493			
1-4	0.04478	93507	4187			
5-9	0.00729	89320	_ S ₅ =9	3 507-418 7	,	
10-14	0.00510					
15-19	0.03693					
20-24	0.11699					
•••						

Âge	$_{a}q_{x}$	S _x	$_{a}d_{x}$	$_{a}L_{x}$	T _x	e _x
0-1	0.06493	100000	6493			
1-4	0.04478	93507	4187			
5-9	0.00729	89320	651			
10-14	0.00510	88669	452			
15-19	0.03693	88216	3258			
20-24	0.11699	84959	9939			
			•••			

Âge	$_{a}q_{x}$	S _x	$_{a}d_{x}$	$_{a}L_{x}$	T _x	e _x
0-1	0.06493	100000	6493			
1-4	0.04478	93507	4187			
5-9	0.00729	89320	651			
75-79	0.30150	13256	3997			
80-84	0.45693	9259	4231			
85+	1.0000	5028	5028			

Âge	$_{a}q_{x}$	S _x	$_{a}d_{x}$	$_{a}L_{x}$	T _x	e _x
0-1	0.06493	100000	6493	96754		
1-4	0.04478	93507	4187	(10000)	00-0-1	
5-9	0.00729	8932U	, ₁ =0.5 *	(100000+	93507)	
10-14	0.00510	88669	452			
15-19	0.03693	88216	3258			
20-24	0.11699	84959	9939			
			•••			

Âge	$_{a}q_{x}$	S _x	$_{a}d_{x}$	$_{a}L_{x}$	T _x	e _x
0-1	0.06493	100000	6493	96754		
1-4	0.04478	93507	4187	365654		
5-9	0.00729	89320	651			
10-14	0.00510	88669	45Z	* (93507-	+89320)	
15-19	0.03693	88216	3258			
20-24	0.11699	84959	9939			
			•••			

Âge	$_{a}\mathbf{q}_{\mathbf{x}}$	S _x	$_{a}d_{x}$	$_{a}L_{x}$	T _x	e _x
0-1	0.06493	100000	6493	96754		
1-4	0.04478	93507	4187	365654		
5-9	0.00729	89320	651	444971		
10-14	0.00510	88669	452			
15-19	0.03693	88216	2.5 3258	* (89320-	-88669)	
20-24	0.11699	84959	9939			

Âge	$_{a}q_{x}$	S _x	$_{a}d_{x}$	$_{a}L_{x}$	T _x	e _x
0-1	0.06493	100000	6493	96754		
1-4	0.04478	93507	4187	365654		
5-9	0.00729	89320	651	444971		
10-14	0.00510	88669	452	442213		
15-19	0.03693	88216	3258	432937		
20-24	0.11699	84959	9939	399945		
			•••			

Âge	_a q _x	S _x	$_{a}d_{x}$	$_{a}L_{x}$	T _x	e _x
0-1	0.06493	100000	6493	96754		
1-4	0.04478	93507	4187	365654		
5-9	0.00729	89320	651	444971		
75-79	0.30150	13256	3997	56288		
80-84	0.45693	9259	4231	35719		
85+	1.0000	5028	5028	17278		

Âge	$_{a}\mathbf{q}_{\mathbf{x}}$	S _x	$_{a}d_{x}$	$_{a}L_{x}$	T _x	e _x
0-1	0.06493	100000	6493	96754		
1-4	0.04478	93507	4187	365654		
5-9	0.00729	89320	651	444971		
75-79	0.30150	13256	3997	56288	L ₈₅ =1727	'8
80-84	0.45693	9259	4231	35719		
85+	1.0000	5028	5028	17278	17278	

Âge	$_{a}q_{x}$	S _x	$_{a}d_{x}$	$_{a}L_{x}$	T _x	e _x
0-1	0.06493	100000	6493	96754		
1-4	0.04478	93507	4187	365654		
5-9	0.00729	89320	651	444971		
				T ₈₀ =	17278 + 3	5719
•••	•••	•••	•••	•••		
75-79	0.30150	13256	3997	56288		
80-84	0.45693	9259	4231	35719	52997	
85+	1.0000	5028	5028	17278	17278	

Âge	$_{a}\mathbf{q}_{\mathbf{x}}$	S _x	$_{a}d_{x}$	$_{a}L_{x}$	Т	x	e _x
0-1	0.06493	100000	6493	96754			
1-4	0.04478	93507	4187	365654	_F20		F6300
5-9	0.00729	89320	651	444971	=529: 	9/ + 3	56288
						,	
75-79	0.30150	13256	3997	56288	109	285	
80-84	0.45693	9259	4231	35719	529	997	
85+	1.0000	5028	5028	17278	172	278	

Âge	$_{a}q_{x}$	S _x	$_{a}d_{x}$	$_{a}L_{x}$	T _x	e _x
0-1	0.06493	100000	6493	96754	3850000	38.5
1-4	0.04478	93507	4187	365654		
5-9	0.00729	89320	651	444971		
				$E_0=T_0$	/S ₀ = 38500	00/1000
75-79	0.30150	13256	3997	56288	109285	
80-84	0.45693	9259	4231	35719	52997	
85-89	0.64060	5028	3221	17278	17278	

Âge	$_{a}q_{x}$	S _x	$_{a}d_{x}$	$_{a}L_{x}$	T _x	e _x
0-1	0.06493	100000	6493	96754	3850000	38.5
1-4	0.04478	93507	4187	365654	3758981	40.2
5-9	0.00729	89320	651	444971		
				$E_1=T_1/S_1$	= 3758981	/93507
75-79	0.30150	13256	3997	56288	109285	
80-84	0.45693	9259	4231	35719	52997	
85-89	0.64060	5028	3221	17278	17278	

Âge	$_{a}q_{x}$	S _x	$_{a}d_{x}$	$_{a}L_{x}$	T _x	e _x
0-1	0.06493	100000	6493	96754	3850000	38.5
1-4	0.04478	93507	4187	365654	3758981	40.2
5-9	0.00729	89320	651	444971		38.0
75-79	0.30150	13256	3997	56288	109285	8.2
80-84	0.45693	9259	4231	35719	52997	5.7
85-89	0.64060	5028	5028	17278	17278	3.4

Hypothèse pour fermer la table e_{85} = 1/ t_{85}

$$T_{85} = e_{85}/S_{85} \rightarrow L_{85} = T_{85}$$

Autre mode de calcul de l'espérance de vie

• Espérance de vie = âge moyen au décès

- Somme des années vécues par les décédés entre 0 et 1 an = 0,5*₁d₀
- Somme des années vécues par les décédés entre 1 et 5 an =

•
$$e_0 = (0.5^*_{1}d_0 + 3^*_{4}d_1 + 7.5^*_{5}d_5 + 12.5^*_{5}d_{10} \dots + 92.5^*_{5}d_{90} + 97.5^*_{5}a_{95})/S_0$$

•
$$e_0 = [0.5*(S_0 - S_1) + 3*(S_1 - S_5) + 7.5*(S_5 - S_{10}) + \dots 92.5*(S_{90} - S_{95}) + 97.5*(S_{95} - S_{100})]/S_0$$

•
$$e_0 = 0.5 + [2.5S_1 + 4.5*S_5 + 5*(S_{10} + ... + S_{95})]/S_0$$

Exercice 1

Complétez la table de mortalité dans le Tableau 1.

La table de mortalité de génération: conclusion

- Très rare, parce que:
 - suppose un enregistrement sur une centaine d'années
 - pas utile pour caractériser la mortalité au moment présent

La table de mortalité du moment: introduction

• Les tables de mortalité les plus utilisées parce qu'elles caractérisent la mortalité à un moment donné

La table de mortalité du moment: construction

• Éléments principaux:

- âge (x)
- quotients de mortalité entre l'âge x et l'âge x+a (aqx), calculés sur la base des taux de mortalité par âge de l'année (méthode de la « cohorte fictive »)

• Éléments dérivés:

- survivants d'âge x (S_x ou I_x)
- décès entre l'âge x et l'âge x+a (ad_x)
- espérance de vie à l'âge x (e_x)
- Somme des années vécues entre x et x+a (_aL_x)
- Chacune des séries peut être obtenue à partir de l'autre

Table de Mortalité du moment

Table de Mortalité du moment: Construction

- 1. Disposer des taux de mortalité par âge
- 2. Transformer les taux de mortalité en quotients de mortalité par âge
 - Formule de transformation

$$2*a*_a m_x$$
 $q_x = \frac{2*m_x}{2 + a*_a m_x}$
Pour a=1
 $q_x = \frac{2*m_x}{2 + 1.8*m_x}$

3. Continuer les étapes de l'approche précédente (table d'une génération)

Hypothèse pour fermer la table e_{85} = 1/ t_{85}

$$T_{85} = e_{85}/S_{85} \rightarrow L_{85} = T_{85}$$

Table de mortalité du moment: les éléments

X

X

X $_{a}m_{x}$ Obtenu par transformation des taux selon la méthode taux de mortalité actuarielle Χ

Méthode 1 : Méthode linéaire ou actuarielle

$$aq_x = \frac{2a}{2+a} \frac{am_x}{am_x}$$

X	_a m _x	$_{a}q_{x}$	S _x
X	taux de mortalité	Obtenu par transformation des taux selon la méthode actuarielle	S_0 et $S_{x+a} = S_x - a$

X	$_{a}$ m $_{x}$	$_{a}q_{x}$	S_x	$_{a}d_{x}$
X	taux de mortalité	Obtenu par transformation des taux selon la méthode actuarielle		$_{a}d_{x} = S_{x}^{*}aq_{x}$

X	_a m _x	$_{a}q_{x}$	S_x	$_{a}d_{x}$	_a L _x
X	taux de mortalité	Obtenu par transformation des taux selon la méthode actuarielle		$_{a}d_{x} = S_{x}^{*}aq_{x}$	$_{a}L_{x} =$ $a/2(S_{x} +$ $S_{x+a})$

X	$_{a}$ m $_{x}$	$_{a}q_{x}$	S_x	$_{a}d_{x}$	$_{a}L_{x}$	T _x
X	taux de mortalité	Obtenu par transformation des taux selon la méthode actuarielle	S_0 et $S_{x+a} = S_x - ad_x$	$_{a}d_{x} = S_{x}^{*}aq_{x}$	_a L _x = a/2(S _x + S _{x+a})	$T_{x} = \sum_{i=x}^{w-a} a L_{x}$

X	_a m _x	$_{a}q_{x}$	S_x	$_{a}d_{x}$	$_{a}L_{x}$	T_x	e _x
X	taux de mortalité	Obtenu par transformation des taux selon la méthode actuarielle	S_0 et $S_{x+a} = S_x - ad_x$	$_{a}d_{x} = S_{x}^{*}aq_{x}$	$_{a}L_{x} =$ $a/2(S_{x} +$ $S_{x+a})$	$T_{x} = \sum_{i=x}^{w-a} aL_{x}$	$e_{x} = \frac{T_{x}}{S_{x}}$

X	_a m _x	$_{a}\mathbf{q}_{x}$	S _x	$_{a}d_{x}$	_a L _x	T_x	e _x
X	taux de mortalité	Obtenu par transformation des taux selon la méthode actuarielle	S_0 et $S_{x+a} = S_x - a$	$_{a}d_{x} = S_{x}^{*} q_{x}$	$_{a}L_{x} =$ $a/2(S_{x} +$ $S_{x+a})$	$T_{x} = \sum_{i=x}^{w-a} aL_{x}$	$e_x = \frac{L_x}{S_x}$
							•

Table de mortalité du moment: Les éléments

x	_a m _x	$_{a}q_{x}$	S _x	$_{a}d_{x}$	$_{a}L_{x}$	T _x	e _x
Age x	Taux entre x et x+a	Quotie nt entre x et x+a	Surviv ant à l'âge x exact	Décès entre x et x+a	Années vécues entre x et x+a	Somme des années vécues depuis x	Espér ance de vie à l'âge x

L'interprétation de l'espérance de vie à la naissance

- Dans une table de mortalité de génération, e_o est l'âge moyen des décédés dans cette génération, ou nombre moyen d'années qu'une personne appartenant à cette génération peut espérer vivre à la naissance
- Dans une table de mortalité du moment, e_o est seulement une approximation de l'âge moyen au décès dans la population. Elle est basée sur la notion de cohorte fictive.

Discussion

- Thème de discussion: La longévité humaine
- Reading: Vallin, Jacques et France Meslé (2001). « Vivre au-delà de 100 ans», *Population & Sociétés* (Bulletin mensuel d'information de l'Institut national d'études démographiques), no 365.
- Question à discuter: Est-ce que la longévité humaine augmente?