

Базовая математика

Урок 3. Последовательности: виды числовых последовательностей и примеры

Определение 1. Функции, областью определения которых является множество натуральных чисел или его часть, называются *числовыми последовательностями*.

Числа, записанные в последовательности, называются членами последовательности. Обычно их обозначают маленькими буквами, например, $a_1, a_2, a_3, \ldots, a_n$, где индекс $1, 2, 3, \ldots, n$ после буквы a указывает на порядковый номер каждого члена последовательности.

Общий вид последовательности: (a_n) , или $a_1, a_2, a_3, \ldots, a_n$. Выражение a_n называется общим членом последовательности, или n-м членом, где n— порядковый номер члена последовательности.

На практике последовательность обычно задаётся формулой общего члена, например:

$$a_n = 2n$$

У натуральных чисел, считая от 1, десятый член последовательности — это $a_{10} = 10$.

Последовательность можно задать, указав все её члены или указав общую формулу. Формула показывает, как найти любой член последовательности, если известен порядковый номер n.

Пример 1. В последовательности, где общая формула имеет вид $a_n = 3n$, выписать: 1) первые четыре члена; 2) двадцатый член.

Решение.

- 1. Если n=1, то $a_1=3\cdot 1=3$, $a_2=3\cdot 2=6$, $a_3=3\cdot 3=9$, $a_4=3\cdot 4=12$.
- 2. Если n = 20, то $a_{20} = 3 \cdot 20 = 60$.

Числовая последовательность бесконечна, если вместо n можно подставлять любые другие натуральные числа (бесконечное множество).

Определение 2. Последовательность называется возрастающей, если для любого $n \in \mathbb{N}$ выполняется неравенство $a_n < a_{n+1}$.

Последовательность называется убывающей, если для любого $n \in \mathbb{N}$ выполняется неравенство $a_n > a_{n+1}$.

Возрастающие и убывающие последовательности называются монотонными.

Пример 2. Определите, является ли монотонной (возрастающей или убывающей) последовательность, заданная формулой: $a_n = \frac{n}{n+1}$.

Peшение. Последовательность, заданная формулой $a_n = \frac{n}{n+1}$, является монотонной, возрастающей, т.к.

$$a_{n+1} - a_n = \frac{n+1}{n+2} - \frac{n}{n+1} = \frac{1}{(n+1)\cdot(n+2)} > 0,$$

T.e. $a_n < a_{n+1}$.

Определение 3. Последовательность называется *ограниченной сверху*, если существует такое число $M \in \mathbb{R}$, что $a_n \leq M$. При этом число M называется верхней границей последовательности.

Последовательность называется *ограниченной снизу*, если существует такое число $m \in \mathbb{R}$, что $a_n \geq m$. Число m называется нижней границей последовательности.

Последовательность называется *ограниченной*, если она одновременно ограничена и сверху, и снизу.

Пример 3.

- Последовательность, заданная формулой $a_n = n \ (1, 2, 3, \ldots, n, \ldots)$, ограничена снизу, но не ограничена сверху.
- Последовательность, заданная формулой $a_n = (-1)^n \cdot n \ (-1, 2, -3, 4, \ldots, (-1)^n \cdot n, \ldots)$, не ограничена ни сверху, ни снизу.

Последовательность можно задать несколькими способами:

1. Аналитически, или, проще говоря, формулой. Например, последовательность натуральных чисел:

$$a_n = n, n \in \mathbb{N}$$

2. Рекуррентно. В этом случае задается один или несколько первых элементов последовательности, а остальные определяются по некоторому правилу на основании одного или нескольких предыдущих значений. Например, известен первый член a_1 последовательности и известно, что $a_{n+1} = f(a_n)$, т.е. $a_2 = f(a_1)$, $a_3 = f(a_2)$ и т.д. до нужного члена. Примером рекуррентно заданной последовательности является последовательность чисел Фибоначчи: $1,1,2,3,5,8,13,\ldots$, в которой каждое последующее число, начиная с третьего, является суммой двух предыдущих: 2 = 1 + 1; 3 = 2 + 1 и т.д. Данную последовательность можно задать рекуррентно:

$$a_{n+2} = a_{n+1} + a_n, n \in \mathbb{N}, a_1 = a_2 = 1$$

3. Описательно, т.е. простым перечислением всех элементов последовательности.

Рассмотрим самые известные примеры последовательностей: арифметическую и геометрическую прогрессии (с геометрической прогрессией мы познакомимся на следующем уроке).

Определение 4. Арифметическая прогрессия — это числовая последовательность, каждый член которой равен предыдущему, сложенному с одним и тем же числом. Это число называется разностью арифметической прогрессии и обозначается d.

Если известен первый член арифметической прогрессии a_1 и разность d, то возможно вычислить любой член арифметической прогрессии:

$$a_2 = a_1 + d$$

$$a_3 = a_2 + d = a_1 + 2d$$

и т.д., а n-й член арифметической прогрессии можно получить, если к первому члену прогрессии добавить n-1 разностей, т.е.

$$a_n = a_1 + d \cdot (n-1),$$

где n — порядковый номер члена прогрессии, a_1 — первый член прогрессии, d — разность. Это равенство называется общей формулой арифметической прогрессии. Её используют, чтобы вычислить n-й член арифметической прогрессии (например, десятый, сотый и др.), если известны первый член последовательности и разность.

Пример 4. Дана арифметическая прогрессия (a_n) , где $a_1=0, d=2$. Найдите девятый член прогрессии.

Решение. Используем общую формулу $a_n = a_1 + d \cdot (n-1)$:

$$a_9 = 0 + 2 \cdot (9 - 1) = 16$$

Omeem: 16.

Cумму первых n членов арифметической прогрессии можно найти, используя формулу:

$$S_n = \frac{(a_1 + a_n) \cdot n}{2},$$

где n — число членов последовательности.

Пример 5. Дана арифметическая прогрессия (a_n) , где $a_1 = 0$, d = 2. Найдите сумму первых четырёх членов последовательности.

Решение. Используем общую формулу $a_n = a_1 + d \cdot (n-1)$:

$$a_4 = 0 + 2 \cdot (4 - 1) = 6$$

Затем формулу суммы:

$$S_4 = \frac{(a_1 + a_4) \cdot 4}{2} = (0+6) \cdot 2 = 12$$

Omeem: 12.

Домашнее задание

- 1. Определите, является ли монотонной (возрастающей или убывающей) последовательность, заданная формулой $a_n = 1 + (-1)^n$.
- 2. Последовательность задана при помощи рекуррентного соотношения: $a_{n+2} = 0.5 \cdot (a_{n+1} + a_n)$, $a_1 = 2$, $a_2 = 4$. Выписать третий и четвёртый члены этой последовательности.
- 3. Дана арифметическая прогрессия (a_n) , где $a_1 = 1$, d = 2. Найдите седьмой, восьмой член прогрессии и сумму первых семи членов последовательности.