Методы оптимизации. Семинар 4. Выпуклые функции.

Александр Катруца

Московский физико-технический институт

22 сентября 2020 г.

Напоминание

- Производная по скаляру
- Производная по вектору
- Производная по матрице
- ▶ Производная сложной функции
- Автоматическое дифференцирование

Определения функций

Выпуклая функция

Функция $f:\mathcal{X}\subset\mathbb{R}^n\to\mathbb{R}$ называется выпуклой (строго выпуклой), если \mathcal{X} — выпуклое множество и для $\forall \mathbf{x}_1,\mathbf{x}_2\in\mathcal{X}$ и $\alpha\in[0,1]$ ($\alpha\in(0,1)$) выполнено:

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le (<) \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)$$

Вогнутая функция

Функция f вогнутая (строго вогнутая), если -f выпуклая (строго выпуклая).

Сильно выпуклая функция

Функция $f:\mathcal{X}\subset\mathbb{R}^n\to\mathbb{R}$ называется сильно выпуклой с константой m, если \mathcal{X} — выпуклое множество и для $\forall \mathbf{x}_1,\mathbf{x}_2\in X$ и $\alpha\in[0,1]$ выполнено:

$$f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2) - \frac{m}{2}\alpha(1-\alpha)\|\mathbf{x}_1 - \mathbf{x}_2\|_2^2$$

для минимально возможного m > 0.

Определения множеств

Надграфик (эпиграф)

Надграфиком функции f называется множество ері $f=\{(\mathbf{x},y):\mathbf{x}\in\mathbb{R}^n,\ y\in\mathbb{R},\ y\geq f(\mathbf{x})\}\subset\mathbb{R}^{n+1}$

Множество подуровней (множество Лебега)

Множество подуровня функции f называется следующее множество $C_{\gamma}=\{\mathbf{x}|f(\mathbf{x})\leq\gamma\}.$

Квазивыпуклая функция

Функция f называется квазивыпуклой, если её область определения и множество подуровней для любых γ выпуклые множества.

Критерии выпуклости

Дифференциальный критерий первого порядка

Функция f выпукла \Leftrightarrow она определена на выпуклом множестве $\mathcal X$ и $\forall \mathbf x, \mathbf y \in \mathcal X \subset \mathbb R^n$ выполнено:

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle$$

Дифференциальный критерий второго порядка

Непрерывная и дважды дифференцируемая функция f выпукла \Leftrightarrow она определена на выпуклом множестве \mathcal{X} и $\forall \mathbf{x} \in \operatorname{relint}(\mathcal{X}) \subset \mathbb{R}^n$ выполнено: $f''(\mathbf{x}) \succ 0.$

Связь с надграфиком

Функция выпукла \Leftrightarrow её надграфик выпуклое множество.

Ограничение на прямую

Функция $f:\mathcal{X} \to \mathbb{R}$ выпукла тогда и только тогда, когда \mathcal{X} выпуклое множество и выпукла функция $g(t) = f(\mathbf{x} + t\mathbf{v})$ на множестве $\{t \mid \mathbf{x} + t\mathbf{v} \in \mathcal{X}\}$ для всех $\mathbf{x} \in \mathrm{dom}(f)$ и $\mathbf{v} \in \mathbb{R}^n(\mathbf{S}^n)$.

Критерии сильной выпуклости

Дифференциальный критерий первого порядка

Функция f сильно выпукла с константой $m\Leftrightarrow$ она определена на выпуклом множестве $\mathcal X$ и $\forall \mathbf x, \mathbf y \in \mathcal X \subset \mathbb R^n$ выполнено:

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{m}{2} ||\mathbf{y} - \mathbf{x}||^2$$

Дифференциальный критерий второго порядка

Непрерывная и дважды дифференцируемая функция f сильно выпукла с константой $m \Leftrightarrow$ она определена на выпуклом множестве $\mathcal X$ и $\forall \mathbf x \in \mathrm{relint}\,(\mathcal X) \subset \mathbb R^n$ выполнено:

$$f''(\mathbf{x}) \succeq m\mathbf{I}$$
.

1. Квадратичная функция: $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}\mathbf{P}\mathbf{x} + \mathbf{q}^{\top}\mathbf{x} + r$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{P} \in \mathbf{S}^n$

- 1. Квадратичная функция: $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}\mathbf{P}\mathbf{x} + \mathbf{q}^{\top}\mathbf{x} + r$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{P} \in \mathbf{S}^n$
- 2. Нормы в \mathbb{R}^n

- 1. Квадратичная функция: $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}\mathbf{P}\mathbf{x} + \mathbf{q}^{\top}\mathbf{x} + r$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{P} \in \mathbf{S}^n$
- 2. Нормы в \mathbb{R}^n
- 3. $f(\mathbf{x}) = \log{(e^{x_1} + \ldots + e^{x_n})}$, $\mathbf{x} \in \mathbb{R}^n$ гладкое приближение максимума

- 1. Квадратичная функция: $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}\mathbf{P}\mathbf{x} + \mathbf{q}^{\top}\mathbf{x} + r$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{P} \in \mathbf{S}^n$
- 2. Нормы в \mathbb{R}^n
- 3. $f(\mathbf{x}) = \log{(e^{x_1} + \ldots + e^{x_n})}$, $\mathbf{x} \in \mathbb{R}^n$ гладкое приближение максимума
- 4. Логарифм детерминанта: $f(\mathbf{X}) = -\log \det \mathbf{X}$, $\mathbf{X} \in \mathbf{S}^n_{++}$

- 1. Квадратичная функция: $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}\mathbf{P}\mathbf{x} + \mathbf{q}^{\top}\mathbf{x} + r$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{P} \in \mathbf{S}^n$
- 2. Нормы в \mathbb{R}^n
- 3. $f(\mathbf{x}) = \log{(e^{x_1} + \ldots + e^{x_n})}$, $\mathbf{x} \in \mathbb{R}^n$ гладкое приближение максимума
- 4. Логарифм детерминанта: $f(\mathbf{X}) = -\log \det \mathbf{X}$, $\mathbf{X} \in \mathbf{S}^n_{++}$
- 5. Множество выпуклых функций выпуклый конус

- 1. Квадратичная функция: $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}\mathbf{P}\mathbf{x} + \mathbf{q}^{\top}\mathbf{x} + r$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{P} \in \mathbf{S}^n$
- 2. Нормы в \mathbb{R}^n
- 3. $f(\mathbf{x}) = \log{(e^{x_1} + \ldots + e^{x_n})}$, $\mathbf{x} \in \mathbb{R}^n$ гладкое приближение максимума
- 4. Логарифм детерминанта: $f(\mathbf{X}) = -\log \det \mathbf{X}$, $\mathbf{X} \in \mathbf{S}^n_{++}$
- 5. Множество выпуклых функций выпуклый конус
- 6. Поэлементный максимум выпуклых функций: $f(\mathbf{x})=\max\{f_1(\mathbf{x}),f_2(\mathbf{x})\}\text{, dom }f=\text{dom }f_1\cap\text{dom }f_2$

- 1. Квадратичная функция: $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}\mathbf{P}\mathbf{x} + \mathbf{q}^{\top}\mathbf{x} + r$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{P} \in \mathbf{S}^n$
- 2. Нормы в \mathbb{R}^n
- 3. $f(\mathbf{x}) = \log{(e^{x_1} + \ldots + e^{x_n})}$, $\mathbf{x} \in \mathbb{R}^n$ гладкое приближение максимума
- 4. Логарифм детерминанта: $f(\mathbf{X}) = -\log \det \mathbf{X}$, $\mathbf{X} \in \mathbf{S}^n_{++}$
- 5. Множество выпуклых функций выпуклый конус
- 6. Поэлементный максимум выпуклых функций: $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), f_2(\mathbf{x})\}$, dom $f = \text{dom } f_1 \cap \text{dom } f_2$
- 7. Расширение на бесконечное множество функций: если для $\mathbf{y} \in \mathcal{A}$ функция $f(\mathbf{x},\mathbf{y})$ выпуклая функция по \mathbf{x} , тогда $\sup_{\mathbf{y} \in \mathcal{A}} f(\mathbf{x},\mathbf{y})$ выпукла по \mathbf{x}

- 1. Квадратичная функция: $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}\mathbf{P}\mathbf{x} + \mathbf{q}^{\top}\mathbf{x} + r$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{P} \in \mathbf{S}^n$
- 2. Нормы в \mathbb{R}^n
- 3. $f(\mathbf{x}) = \log (e^{x_1} + \ldots + e^{x_n})$, $\mathbf{x} \in \mathbb{R}^n$ гладкое приближение максимума
- 4. Логарифм детерминанта: $f(\mathbf{X}) = -\log \det \mathbf{X}$, $\mathbf{X} \in \mathbf{S}^n_{++}$
- 5. Множество выпуклых функций выпуклый конус
- 6. Поэлементный максимум выпуклых функций: $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), f_2(\mathbf{x})\}$, dom $f = \text{dom } f_1 \cap \text{dom } f_2$
- 7. Расширение на бесконечное множество функций: если для $\mathbf{y} \in \mathcal{A}$ функция $f(\mathbf{x},\mathbf{y})$ выпуклая функция по \mathbf{x} , тогда $\sup_{\mathbf{y} \in \mathcal{A}} f(\mathbf{x},\mathbf{y})$ выпукла по \mathbf{x}
- 8. Максимальное собственное значение: $f(\mathbf{X}) = \lambda_{\max}(\mathbf{X})$

Неравенство Йенсена

Неравенство Йенсена

Для выпуклой функции f выполнено следующее неравенство:

$$f\left(\sum_{i=1}^{n} \alpha_i \mathbf{x}_i\right) \le \sum_{i=1}^{n} \alpha_i f(\mathbf{x}_i),$$

где $\alpha_i \geq 0$ и $\sum_{i=1}^n \alpha_i = 1$.

или в бесконечномерном случае: $p(x) \geq 0$ и $\int\limits_X p(x) = 1$

$$f\left(\int\limits_X p(x)xdx\right) \le \int\limits_X f(x)p(x)dx$$

при условии, что интегралы существуют.

- 1. Неравенство Гёльдера
- 2. Неравенство о среднем арифметическом и среднем геометрическом
- 3. $f(E[\mathbf{x}]) \leq E[f(\mathbf{x})]$
- 4. Выпуклость множества $\left\{\mathbf{x} \mid \prod_{i=1}^n x_i \geq 1\right\}$

Резюме

- Выпуклая функция
- Надграфик и множество подуровня функции
- Критерии выпуклости функции
- Неравенство Йенсена