Random Graph theory

Benjamin Chu

February 26, 2020

Most materials from this note is taken from [1, 3]

1 Erdos-Renyi Graph Model

- We use G(n, p) to denote an undirected (Erdos-Renyi) graph with n nodes.
- An edge is formed between 2 nodes with probability $p \in (0,1)$ independently of other edges.
- A graph is **connected** when there is a path between every pair of vertices.

When p = p(n) is a function of n, we may be interested in the behavior of G(n, p(n)) as $n \to \infty$.

1.1 Warm-up

- **Q1.** What is the probability that a vertex is isolated in G(n, p)? Ans: A given node i cannot form an edge with each of the remaining n-1 nodes. Thus the probability is $(1-p)^{n-1}$.
- **Q2.** What is the expected number of edges in G(n, p)? The total number of edges in a graph is $\binom{n}{2}$, and each of these edges form with probability p. So we expect $p\binom{n}{2}$ edges overall.

2 Sharp Threshold for Connectivity

The first lecture will be a proof of the following result. This proof uses several techniques you learned in this class.

Theorem 2.1 Erdos-Renyi 1961

Consider a graph $g \sim G(n, p(n))$ where $p(n) = \lambda \frac{\ln(n)}{n}$. Then as $n \to \infty$,

 $P(g \text{ connected}) \rightarrow 0 \text{ if } \lambda < 1$

 $P(g \text{ connected}) \rightarrow 1 \text{ if } \lambda > 1$

Proof. Suppose $\lambda < 1$. Since P(connected) = 1 - P(disconnected), we will show $P(\text{disconnected}) \to 1$ by showing that **there is at least 1 isolated node**. Define

- \bullet X_n to be a random variable that counts the number of isolated nodes
- I_i to be a (Bernoulli) indicator random variable such that $I_i = 1$ when node i is isolated and is 0 otherwise
- Let p = p(n) and $q = q(n) = (1 p(n))^{n-1}$ be the probability of a node being isolated

We want to show $P(X_n > 0) \to 1$, or equivalently, $P(X_n = 0) \to 0$ by rules of probability complements. To get a bound on $P(X_n = 0)$, we observe:

$$Var(X_n) = E(X_n - E(X_n))$$

$$= P(X_n = 0)(0 - E(X_n)^2 + P(X_n = 1)(1 - E(X_n))^2 + \dots$$

$$\geq P(X_n = 0)E(X_n)^2.$$

Thus

$$\frac{\operatorname{Var}(X_n)}{E(X_n)^2} \ge P(X_n = 0). \tag{2.1}$$

We will now calculate $Var(X_n)$ and $E(X_n)$ explicitly to show that the left hand side of (2.1) goes to 0. By linearity of expectation and applying definition of indicators,

$$\mathbb{E}(X_n) = \mathbb{E}\left(\sum_{i=1}^n I_i\right) = \sum_{i=1}^n \mathbb{E}(I_i) = \sum_{i=1}^n P(I_i) = nq.$$

Since indicators I_i are **not independent** (why?), we use equation (1.10) in your book [2]:

$$\begin{aligned} \operatorname{Var}(X_n) &= \operatorname{Var}\left(\sum_{i=1}^n I_i\right) = \sum_{i=1}^n \operatorname{Var}(I_i) + \sum_{i=1}^n \sum_{j \neq i} \operatorname{Cov}(I_i, I_j) \\ &= \sum_{i=1}^n q(1-q) + \sum_{i=1}^n \sum_{j \neq i} \left[E(I_i I_j) - E(I_i) E(I_j) \right] \quad \text{(since Var(Bernoulli)} = p(1-p)) \\ &= nq(1-q) + \sum_{i=1}^n \sum_{j \neq i} \left[P(I_i \cap I_j) - P(I_i) P(I_j) \right] \\ &= nq(1-q) + \sum_{i=1}^n \sum_{j \neq i} \left[(1-p)^{n-1} (1-p)^{n-2} - (1-p)^{n-1} (1-p)^{n-1} \right] \\ &= nq(1-q) + \sum_{i=1}^n \sum_{j \neq i} \left[\frac{q^2}{1-p} - q^2 \right] \\ &= nq(1-q) + n(n-1)q^2 \frac{p}{1-p}. \end{aligned}$$

Thus

$$\frac{\operatorname{Var}(X_n)}{E(X_n)^2} = \frac{nq(1-q) + n(n-1)q^2 \frac{p}{1-p}}{(nq)^2} = \frac{1-q}{nq} + \frac{n-1}{n} \frac{p}{1-p}.$$

We will now show these terms approach 0 as $n \to \infty$, then eq (2.1) will give us what we need. The first term is dominated by nq, and

$$\begin{split} &\lim_{n\to\infty} nq = \lim_{n\to\infty} n(1-p)^{n-1} = \lim_{n\to\infty} \exp\left\{\ln(n) + (n-1)\ln(1-p)\right\} \\ &= \lim_{n\to\infty} \exp\left\{\ln(n) + (n-1)\ln\left(1-\frac{\lambda\ln(n)}{n}\right)\right\} \\ &\approx \lim_{n\to\infty} \exp\left\{\ln(n) - \lambda\frac{n-1}{n}\ln(n)\right\} \quad \left(\ln(1-x) = 1 - x + \frac{x^2}{2} - \dots \approx -x + O(x^2) \text{ for small } x\right) \\ &= \lim_{n\to\infty} \exp\left\{\ln(n)\left(1-\lambda\frac{n-1}{n}\right)\right\} \\ &= \infty \quad \text{(since } \lambda < 1) \end{split}$$

For the second term, observe that $p = \lambda \frac{\ln(n)}{n} \to 0$ as $n \to \infty$. So $\frac{p}{1-p} \to 0$ as well. This completes the case for $\lambda < 1$.

Part II. Now suppose $\lambda > 1$. We want to show $P(\text{connected}) \to 1$, or equivalently $P(\text{disconnected}) \to 0$. A graph is disconnected if there is a subgraph of k nodes that does not connect to any of the other n-k nodes (draw a picture). By symmetry, we only have to consider $k \in \{1, 2, ... | n/2 | \}$. So

$$P(\text{disconnected}) = \bigcup_{k=1}^{\lfloor n/2 \rfloor} P(\text{some set of } k \text{ nodes not connected to the rest})$$

$$\leq \sum_{k=1}^{\lfloor n/2 \rfloor} P(\text{some set of } k \text{ nodes not connected to the rest}) \quad (\text{inclusion-exclusion picture})$$

$$= \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k} \left[(1-p)^{(n-k)} \right]^k$$

$$\leq \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k} e^{p(n-k)k} \quad \left(e^{-x} = 1 - x + \frac{x^2}{2} - \dots \approx 1 - x + O(x^2) \text{ for small } x \right)$$

$$= \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k} \exp\left\{ \frac{-\lambda \ln(n)(n-k)k}{n} \right\}$$

$$= \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k} n^{\frac{-\lambda}{n}(n-k)k}$$

$$= \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k} n^{\frac{-\lambda}{n}(n-k)k} + \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k} n^{\frac{-\lambda}{n}(n-k)k} \quad \left(\text{Choose } n^*s.t. \frac{\lambda(n-n^*)}{n} > 1 \iff n^* = \lfloor n(1-\frac{1}{\lambda}) \rfloor \right)$$

For the first term,

$$\sum_{k=1}^{n^*} \binom{n}{k} n^{\frac{-\lambda}{n}(n-k)k} \leq \sum_{k=1}^{n^*} n^k n^{\frac{-\lambda}{n}(n-k)k} = \sum_{k=1}^{n^*} \left[n^{1-\frac{\lambda}{n}(n-k)} \right]^k$$

$$\leq \sum_{k=1}^{n^*} \left[n^{1-\frac{\lambda}{n}(n-n^*)} \right]^k \quad \text{(want } n-k \text{ small, so want inside } k \text{ big)}$$

$$= \sum_{k=1}^{n^*} r^k \quad \left(\text{define } r = n^{1-\frac{\lambda}{n}(n-n^*)} \right)$$

$$= \left(\sum_{k=0}^{n^*} r^k \right) - 1$$

$$= \frac{r}{1-r} \quad \text{(geometric series; } 1 - \frac{\lambda}{n}(n-n^*) < 0, \text{ so } r < 1 \text{)}$$

References

[1] Acemoglu, D. and Ozdaglar, A. (2009). Lecture 3: Erdos-Renyi graphs and Branching Processes. http://economics.mit.edu/files/4621.

- [2] Lange, K. (2010). Applied probability. Springer Science & Business Media.
- [3] Ramchandran, K. (2009). Random Graphs. https://inst.eecs.berkeley.edu/~ee126/sp18/random-graphs.pdf.