COMPUTATIONAL NEUROSCIENCE

Assignment 1

G Pradeep EE16B050

Question 1:

The threshold values of current (in microamperes) are reported as follows:

$$I_1 = 0.0223 \,\mu\text{A}$$

 $I_2 = 0.0622 \,\mu\text{A}$
 $I_3 = 0.3 \,\mu\text{A}$

Note: The value of I_3 was calculated by classifying only peaks with maxima greater than 20 mV as AP's.

It was observed that until I_1 no AP's were produced. After I_1 , only a finite number of AP's were produced until I_2 , after which periodic spike trains were observed. No AP's, according to our definition, were found after I_3 .

Question 2:

The notion of frequency is defined only after I_2 , after impulse trains are produced. Before I_2 , the plot has no meaning. Thus **the plot only portrays the behaviour in the region** I_2 **to** I_3 .

Observations:

- The response keeps dying down in its amplitude as *I* is increased. After a point, the AP's get distorted.
- It is observed that the frequency plot is a concave-downward curve. The rate of
 increase of spiking frequency keeps dropping and tends to saturate.
 Note that concave-upward curves are uncommon found in natural systems as the
 dependent variables of the system tend to infinity as the independent variable
 tends to infinity.