```
In [1]:
import numpy as np
import matplotlib.pyplot as plt
from emnist import extract training samples, extract test samples
import tensorflow as tf
from tensorflow.keras import regularizers#type:ignore
from tensorflow.keras.models import Sequential#type:ignore
from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, BatchNormalizat
ion, Dropout #type:ignore
from tensorflow.keras.utils import to categorical#type:ignore
from sklearn.metrics import classification report, confusion matrix, accuracy score
from tensorflow.keras.preprocessing.image import ImageDataGenerator# type: ignore
import seaborn as sns
import pandas as pd
import cv2
In [2]:
train images, train labels = extract training samples('letters')
test images, test labels = extract test samples('letters')
In [3]:
train images = train images.reshape(train images.shape[0], 28, 28, 1)
test images = test images.reshape(test images.shape[0], 28, 28, 1)
In [4]:
train images = train images.astype('float32') / 255
test images = test images.astype('float32') / 255
In [5]:
train labels = to categorical(train labels)
test labels = to categorical(test labels)
In [6]:
print(f"Training data shape: {train images.shape}")
print(f"Test data shape: {test images.shape}")
Training data shape: (124800, 28, 28, 1)
Test data shape: (20800, 28, 28, 1)
In [7]:
datagen = ImageDataGenerator(
    rotation range=9,
    width shift range=0.05,
    height shift range=0.05,
# Fit the generator to the data
datagen.fit(train_images)
In [8]:
test datagen = ImageDataGenerator()
test datagen.fit(test images)
In [9]:
```

model = Segmential([

```
MaxPooling2D(pool size=(2, 2)),
    Conv2D(64, (3, 3), activation='relu', kernel regularizer=regularizers.12(0.0001)),
    BatchNormalization(),
    MaxPooling2D(pool size=(2, 2)),
    Flatten(),
    Dense(128, activation='relu', kernel regularizer=regularizers.12(0.0001)),
    Dropout (0.5),
    Dense(27, activation='softmax', kernel regularizer=regularizers.12(0.0001)) # 26 let
ters + 1 extra class for indexing
])
In [10]:
model.compile(optimizer='adam', loss='categorical crossentropy', metrics=['accuracy'])
In [11]:
checkpoint callback1 = tf.keras.callbacks.ModelCheckpoint(filepath='bestloss.keras', moni
tor='val loss', save best only=True, verbose=1)
checkpoint callback2 = tf.keras.callbacks.ModelCheckpoint(filepath='bestacc.keras', monit
or='val_accuracy', save_best_only=True, verbose=1)
In [12]:
model.fit(datagen.flow(train images, train labels, batch size=97), epochs=12,
          validation data=test datagen.flow(test images, test labels, batch size=97),
          callbacks=[checkpoint callback1,checkpoint callback2])
Epoch 1/12
                     33:32 2s/step - accuracy: 0.0619 - loss: 5.8728
  1/1287 -
c:\Users\Asus\AppData\Local\Programs\Python\Python312\Lib\site-packages\keras\src\trainer
s\data adapters\py dataset adapter.py:121: UserWarning: Your `PyDataset` class should cal
l `super().__init__(**kwargs)` in its constructor. `**kwargs` can include `workers`, `use
_multiprocessing`, `max_queue_size`. Do not pass these arguments to `fit()`, as they will
be ignored.
 self. warn if super not called()
1286/1287 — Os 27ms/step - accuracy: 0.6241 - loss: 1.3268
Epoch 1: val loss improved from inf to 0.47263, saving model to bestloss.keras
Epoch 1: val accuracy improved from -inf to 0.86543, saving model to bestacc.keras
                        38s 28ms/step - accuracy: 0.6243 - loss: 1.3261 - val accu
racy: 0.8654 - val loss: 0.4726
Epoch 2/12
             ______ 0s 28ms/step - accuracy: 0.8492 - loss: 0.5223
1286/1287 —
Epoch 2: val loss improved from 0.47263 to 0.35365, saving model to bestloss.keras
Epoch 2: val accuracy improved from 0.86543 to 0.90346, saving model to bestacc.keras
1287/1287 - 37s 28ms/step - accuracy: 0.8493 - loss: 0.5222 - val_accu
racy: 0.9035 - val loss: 0.3537
Epoch 3/12
1285/1287 — 0s 28ms/step - accuracy: 0.8716 - loss: 0.4615
Epoch 3: val loss improved from 0.35365 to 0.31103, saving model to bestloss.keras
Epoch 3: val accuracy improved from 0.90346 to 0.92010, saving model to bestacc.keras
1287/1287 37s 29ms/step - accuracy: 0.8716 - loss: 0.4615 - val accu
racy: 0.9201 - val loss: 0.3110
Epoch 4/12
                    Os 27ms/step - accuracy: 0.8854 - loss: 0.4239
1286/1287 -
Epoch 4: val loss improved from 0.31103 to 0.30158, saving model to bestloss.keras
Epoch 4: val_accuracy improved from 0.92010 to 0.92260, saving model to bestacc.keras
                           - 36s 28ms/step - accuracy: 0.8854 - loss: 0.4239 - val_accu
1287/1287 ——
racy: 0.9226 - val loss: 0.3016
Epoch 5/12
                         ---- 0s 28ms/step - accuracy: 0.8911 - loss: 0.4064
Epoch 5: val loss did not improve from 0.30158
```

```
Epoch 6/12
                  1286/1287 -
Epoch 6: val loss improved from 0.30158 to 0.28016, saving model to bestloss.keras
Epoch 6: val accuracy improved from 0.92260 to 0.92904, saving model to bestacc.keras
1287/1287 — 38s 30ms/step - accuracy: 0.8986 - loss: 0.3821 - val accu
racy: 0.9290 - val loss: 0.2802
Epoch 7/12
1287/1287 ———
                 Os 29ms/step - accuracy: 0.9023 - loss: 0.3658
Epoch 7: val loss improved from 0.28016 to 0.27630, saving model to bestloss.keras
Epoch 7: val accuracy improved from 0.92904 to 0.93034, saving model to bestacc.keras
                        38s 30ms/step - accuracy: 0.9023 - loss: 0.3658 - val accu
1287/1287
racy: 0.9303 - val loss: 0.2763
Epoch 8/12
1285/1287 -
                        --- 0s 28ms/step - accuracy: 0.9052 - loss: 0.3559
Epoch 8: val loss did not improve from 0.27630
Epoch 8: val accuracy did not improve from 0.93034
                           - 36s 28ms/step - accuracy: 0.9051 - loss: 0.3559 - val accu
1287/1287 -
racy: 0.9273 - val loss: 0.2940
Epoch 9/12
                        --- Os 27ms/step - accuracy: 0.9066 - loss: 0.3514
1286/1287 -
Epoch 9: val loss did not improve from 0.27630
Epoch 9: val accuracy did not improve from 0.93034
1287/1287 -
                       ----- 36s 28ms/step - accuracy: 0.9066 - loss: 0.3514 - val accu
racy: 0.9232 - val_loss: 0.3011
Epoch 10/12
                         -- 0s 27ms/step - accuracy: 0.9090 - loss: 0.3453
1286/1287 -
Epoch 10: val loss did not improve from 0.27630
Epoch 10: val_accuracy did not improve from 0.93034
                        1287/1287 ———
racy: 0.9278 - val loss: 0.2894
Epoch 11/12
1287/1287 — 0s 27ms/step - accuracy: 0.9116 - loss: 0.3361
Epoch 11: val loss improved from 0.27630 to 0.25282, saving model to bestloss.keras
Epoch 11: val_accuracy improved from 0.93034 to 0.93808, saving model to bestacc.keras
                   36s 28ms/step - accuracy: 0.9116 - loss: 0.3361 - val accu
racy: 0.9381 - val loss: 0.2528
Epoch 12/12
1287/1287 — 0s 27ms/step - accuracy: 0.9133 - loss: 0.3336
Epoch 12: val loss did not improve from 0.25282
Epoch 12: val accuracy did not improve from 0.93808
1287/1287 36s 28ms/step - accuracy: 0.9133 - loss: 0.3336 - val accu
racy: 0.9367 - val_loss: 0.2569
Out[12]:
<keras.src.callbacks.history.History at 0x23a6446b050>
In [13]:
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(model.history.history['accuracy'], label='train accuracy')
plt.plot(model.history.history['val accuracy'], label='validation accuracy')
plt.title('Accuracy over epochs')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
# Plot loss over epochs
plt.subplot(1, 2, 2)
plt.plot(model.history.history['loss'], label='train loss')
```

```
plt.legend()
plt.show()
                 Accuracy over epochs
                                                                Loss over epochs
                                                 0.9
                                                                               train loss
  0.925
                                                                               validation loss
                                                 0.8
  0.900
                                                 0.7
  0.875
  0.850
                                                 0.6
  0.825
                                                 0.5
  0.800
                                                 0.4
  0.775
                               train accuracy
                                                 0.3
  0.750
                               validation accuracy
        0
              2
                                       10
                                                     0
                                                                       6
                                                                                    10
                       Epochs
                                                                    Epochs
In [14]:
y pred = model.predict(test images)
y pred classes = np.argmax(y pred, axis=1)
y true = np.argmax(test labels, axis=1)
650/650 -
                            - 1s 2ms/step
In [15]:
accuracy = accuracy score(y true, y pred classes)
print(f"Test Accuracy: {accuracy:}")
Test Accuracy: 0.9366826923076923
In [16]:
model.save("acc0933100273.keras")
In [17]:
conf matrix = confusion matrix(y true, y pred classes)
plt.figure(figsize=(10, 8))
sns.heatmap(pd.DataFrame(conf matrix), annot=True, fmt="g", cmap='Blues')
plt.title('Confusion Matrix')
plt.ylabel('True Label')
plt.xlabel('Predicted Label')
plt.show()
                                 Confusion Matrix
              7 2 2 0 3 0 0 0 0 1 2 3 0 8 1 0 0 5 0 0
   H-1776 0 1 2 0 1 9 0 0 0 2 0 1 0 1 0 4 0 0 0 0 0
   N-0 0 780 0 4 0 0 0 0 0 0 6 0 1 0 0 1 2 2
                                                          0 3 0
                                                                                     - 700
   m-1 1 0 760 0 0 2 1 0 3 0 0 0 1 15 9 4 0 0 3
   4 - 0 0 14 0 775 3
                      1
                         0 1 0 0 1
                                       0
                                          0
                                            0
                           0 0 0 0 0 0 0 4 0 2
   m-1 0 0 0 2 777
                                                                                      600
                    3 556 0 0 2 2 0 0 1 1 0 107 1
   N-3 3 0 1 0 0 0 767 0 1 4 3 2 14 0 0 0 0
```

- 500

ω - 0 2 2 0 1 2 1 1 497 16 0 274 0 0 0 1 0 1 0 1 σ - 0 0 0 2 0 3 4 0 18 757 0 2 0 0 0 0 1 0 5 6

```
<u>m</u>-3 0 0 0 0 0 10 0 0 1 0 6 769 0 0 0 5 0 0 1 0 2 3 0 0
 ហ្ន-1 0 0 4 1 0 0 0 0 0 0 0 0 0 <mark>793</mark> 0 1 0 0 0 0 0 0 0
                                                      - 300
 蜭-15 1 0 0 5 3 73 0 0 0 0 0 0 0 2 2 594 1 0 0 1 0 0 0 2 1
 <u>5</u>-2 1 2 0 0 0 0 0 0 0 2 1 0 2 0 1 0 768 0 4 0 6 0 0 9 2
 <u>9</u>-1 0 1 0 2 14 0 0 1 1 0 0 0 0 1 0 0 1 0 772 0 0 0 3 1 2
                                                      - 200
 Q-00120003013122101010<mark>739</mark>372040
 ㅈ-0 0 0 2 0 0 0 0 0 1 0 1 1 0 0 0 1 6 0 0 15<mark>751</mark> 1 1 20 0
 - 100
 m-0 0 0 0 0 2 0 1 0 0 8 1 1 1 0 0 0
                                 0
                                   0 2 0 0 0 773 10 1
          0 1 8 2 0 2 0 0 0 0 0 0 3 1
                                   0 5 3 3 0 7 764 0
                     0 0 0 0 0 0
                                 0 0 3 0 0 0 1 0 786
 5-000050301
                                                      - 0
    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
```

In [18]:

```
class_report = classification_report(y_true, y_pred_classes)
print("Classification Report:")
print(class_report)
```

Predicted Label

Classification Report:

0148011104010	precision	recall	f1-score	support
1	0.95	0.95	0.95	800
2	0.98	0.97	0.97	800
3	0.96	0.97	0.97	800
4	0.95	0.95	0.95	800
5	0.97	0.97	0.97	800
6	0.96	0.97	0.96	800
7	0.87	0.82	0.84	800
8	0.94	0.96	0.95	800
9	0.80	0.62	0.70	800
10	0.96	0.95	0.95	800
11	0.97	0.97	0.97	800
12	0.70	0.84	0.76	800
13	0.98	0.99	0.98	800
14	0.96	0.96	0.96	800
15	0.97	0.95	0.96	800
16	0.97	0.99	0.98	800
17	0.84	0.87	0.85	800
18	0.96	0.96	0.96	800
19	0.98	0.98	0.98	800
20	0.95	0.96	0.96	800
21	0.96	0.92	0.94	800
22	0.94	0.94	0.94	800
23	0.99	0.98	0.98	800
24	0.97	0.97	0.97	800
25	0.94	0.95	0.95	800
26	0.98	0.98	0.98	800
accuracy			0.94	20800
macro avg	0.94	0.94	0.94	20800
weighted avg	0.94	0.94	0.94	20800

In [19]:

```
def preprocess_image(img):
    """Preprocess the input image to the required format (28x28, grayscale)."""
    img = cv2.resize(img, (28, 28)) # Resize the image to 28x28 pixels
```

```
In [20]:
def segment characters(word image):
    """Segment the word image into individual character images."""
    # Convert to grayscale and apply binary threshold
    gray = cv2.cvtColor(word image, cv2.COLOR BGR2GRAY)
    , binary img = cv2.threshold(gray, 128, 255, cv2.THRESH BINARY INV)
    # Apply dilation to separate characters more clearly
    kernel = np.ones((2, 2), np.uint8)
    dilated = cv2.dilate(binary img, kernel, iterations=1)
    # Find contours in the image
    contours, = cv2.findContours(dilated, cv2.RETR EXTERNAL, cv2.CHAIN APPROX SIMPLE)
    # Sort contours left-to-right (based on x-coordinate)
    contours = sorted(contours, key=lambda ctr: cv2.boundingRect(ctr)[0])
    char images = []
    # Extract individual character images from contours
    for ctr in contours:
        x, y, w, h = cv2.boundingRect(ctr)
        # Filter out noise or very small contours by setting a minimum size
        if w > 4 and h > 6: # Adjust these values based on the character sizes
            char img = binary img[y:y+h, x:x+w]
            char img = preprocess image(char img) # Preprocess individual character
            char images.append(char img)
    return char images
In [21]:
def predict word(model, word image):
    """Predicts the characters in a word image by segmenting the characters first."""
    char images = segment characters(word image)
    predicted_chars = [np.argmax(model.predict(img.reshape(1, 28, 28, 1)), axis=-1)[0] f
or img in char images]
    # Convert numerical predictions back to characters (1: 'A', 26: 'Z')
    return ''.join([chr(65 + pred - 1) for pred in predicted chars])
In [22]:
#model = load model('path to your model.h5')
In [23]:
word image = cv2.imread('a.jpg')
In [24]:
predicted word = predict word(model, word image)
print("Predicted Word:", predicted word)
                       - 0s 65ms/step
1/1 -
1/1 -

    0s 15ms/step

1/1 -
                       0s 15ms/step
                        0s 16ms/step
1/1 .
                    Os 26ms/step
Predicted Word: ARYAN
In [25]:
def predict from image(word image):
    """Wrapper function to take an input image and return the predicted word."""
    predicted word = predict word(model, word image)
    return predicted word
```

