

Catalog No. 182

Thermometrics... The Source of Thermistor Expertise

THERMOMETRICS has established a position in the electronics and general technical community as "THE SOURCE OF THERMISTOR EXPERTISE." Our reputation for the HIGHEST QUALITY products at low, competitive prices continues as an axiom of our business posture.

Our continuous R&D efforts have pioneered many noteworthy developments. Some are: The first precision Thermistor Standard, called the Series S-10; the Series SP-1 ultra-stable thermistors; a high temperature series for use above 450°C; the Fastip Thermoprobes which offer response times of 7 milliseconds; the Unitherm interchangeable thermistor line; the Series BR ruggedized beads for high reliability sensor assembly operations; special process Medical Catheter Thermistors; the A919a Fluid Temperature Sensors; and Precision Temperature Calibration to .0015°C.

The Thermometrics engineering staff routinely (and graciously) offers applications assistance. From a one time experiment to a large

volume OEM requirement, you will find us interested and informed with imaginative thermistor expertise at your disposal. Your new ideas and requirements are welcome challenges for us at Thermometrics to continue to advance the thermistor State-of-the-Art even further in the future

This Thermistor Handbook is designed to offer our customers a comprehensive range of thermistor types to suit every purpose. Every attempt has been made to organize this book to serve you rapidly and accurately. The "THERMISTOR SELECTION GUIDE" located at the front of this book will give you a broad overview of our standard thermistor lines, which are described in detail in the following chapters. If you don't see the thermistor which meets your specific requirements, we probably have the version you need listed in our nonstandard files. Please call us with any information requests, questions, or if you just want to talk about thermistors and temperature measurement.

Thermometrics, Inc., manufactures a Thermistor or Sensor Assembly to satisfy your requirements for any of the thermistor applications listed below. Please contact us for assistance in matching the proper thermistor to your application or to obtain information on new applications.

I. THERMISTOR APPLICATIONS BASED ON R-vs-T CHARACTERISTICS

(Temperature Measurement & Control)

General Industrial Applications

Industrial Process Controls
Plastic Laminating Equipment
Hot Glue Dispensing Equipment
Auto & Truck Tire Curing
Fiber Processing & Manufacturing
Pyrometers (Non-Contact)
Photographic Processing
Copy Machines
Soldering Irons (Controlled)
Hot Mold Equipment (Thermoplastics)
Solar Energy Equipment

Consumer Appliances and Household Applications

Thermostats
Small Appliance Controls
Burglar Alarm Detectors
Oven Temperature Control
Refrigeration & Air Conditioning Equipment
Fire Detection

Medical Applications

Fever Thermometers
Dialysis Equipment
Rectal Temperature Monitoring
Myocardial Probes
Esophageal Tubes
Skin & Muscle Temperature
Thermodilution Catheters
Respiration Rate Measurement
Blood Analysis Equipment
Respirators
Hypodermic Needle Probes
Fluid Temperature

Instrumentation Applications (Compensation)

Motor Winding Temperature Compensation Infrared Sensing Temperature Compensation Instrument Winding Temperature Compensation

Automotive and Transportation Applications

Emission Controls
Differential Temperature Controls
Fire Protection and Safety Equipment
Engine Temperatures
Aircraft Temperatures
Rotor/Bearing Temperatures

Laboratory & Scientific Applications

Temperature Standards
Chemical Analysis
Oceanographic Research
Meteorology
Bathythermography
Calorimetry
Titration Studies
Geological Temperature Studies
Spectrophotometers
Bolometry
Osmometers

Food Handling Applications

Fast Food Processing Perishable Shipping Oven Temperature Control Food Storage Coffee Makers Freezing Point Studies

High Reliability and Military Applications

Missiles & Spacecraft Temperatures Aircraft Temperatures Submarines & Underwater Monitoring Fire Control Equipment

Communications Applications

Transistor Temperature Compensation Gain Stabilization Piezo Electric Temperature Compensation Ambient Temperature Compensation

II. THERMISTOR APPLICATIONS BASED ON E-vs-I CHARACTERISTICS

General Industrial Applications

Liquid Level Control
Voltage Regulation
Anemometers
Power Indicators
Gas Chromatography Equipment
Microwave Power Measurement

Flow Sensing Equipment Vacuum Manometers Overload Protection Gas Detection Amplifier Gain or Level Stabilization

III. THERMISTOR APPLICATIONS BASED ON CURRENT-vs-TIME CHARACTERISTICS

Time Delay Devices Sequential Switching

Surge Suppression

THERMISTOR SELECTION GUIDE

N.T.C.

Page	Series	Thermistor Type	Dimen	sions	Lead Diameter	Minimum Lead Length	Lead Material	Maximum Power Rating (Watts)	Maximum Continuous Temperature (°C)	Resistance Range @ 25°C (ohms)
THE	RMOFL	AKES	Thickness	Size						
D-1	1F	Flake	0.001" .02	0" x .020"	.0007"	1/4"	Pt Alloy	.030	105° C	50K-2M
D-1	2F	thermistors (with leads)	0.002" .12	0" x .120"	.001"	1/4"	Pt Alloy	.035	105° C	50K-2M
D-5	FM	Microcircuit Flake thermi	* stors	*	*	*	Pt Alloy	.050	105° C	1K-1M
THE	H TEMPI RMOBE RMOPR		Maximum Diameter L	ength					,	Resistance Range @ 125°C
E-1	HTBR55	Hi-Temp Beads	0.060"		0.004"	5/16"	Pt Alloy	.040	450° C	100K to 2M
				= 1				•		
E-3	HTP60	Hi-Temp	0.060"	1/4-1/2"	0.008"	1/2"	Pt Alloy	.060	450° C	100K to 2M
E-3	HTP65	Probe Thermistors	0.065"	1/4-1/2"	0.008"	1/2"	Pt Alloy	.065	450° C	100K to 2M
E-3	HTP85	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.085"	1/4-1/2"	0.008"	1/2"	Pt Alloy	.075	450° C	100K to 2M
E-3	HTP100		0.100"	1/4-1/2"	0.008"	1/2"	Pt Alloy	.100	450° C	100K to 2M
FAS1	IP THE	RMOPROB	BES							Resistance Range @ 25°C
F-1	FP07	Fast	0.085"	1/2"	0.012"	7/8"	Tinned	.006	300° C	1K to 10M
F-1	FP10	Response Probe	0.085"	1/2"	0.012"	7/8"	Dumet	.010	300° C	1K to 10M
F-1	FP14	Thermistors	0.085"	1/2"	0.012"	7/8"	1	.014	300° C	1K to 10M
CRY	OGENIC	THERMO	PROBES							Resistance Range @ – 196°C
G-1	CTP60	Cryogenic	0.060"	1/8-1/2"	0.008"	7/8"	Tinned	.060	125° C 1	00K to 1M
G-1	CTP65	Probe Thermistors	0.065"	1/8-1/2"	0.008"	7/8"	Dumet	.065	125° C 1	00K to 1M
G-1	CTP85	THOTHIOLOTO	0.085"	1/8-1/2"	0.012"	7/8"		.075	125° C 1	00K to 1M
G-1	CTP100		0.100"	1/8-1/2"	0.012"	7/8″		.100	125° C 1	00K to 1M
G-1	CTFP07		0.085"	1/2"	0.012"	7/8"		.006	125° C 1	00K to 1M
G-1	CTFP10	Fast Response	0.085"	1/2"	0.012"	7/8"	Tinned	.010	125° C 1	00K to 1M
G-1	CTFP14		0.085"	1/2"	0.012"	7/8"	Dumet	.014	125° C 1	00K to 1M
THE	RMOCH	IIP	Nomina	ıl Size						
1-9	DC95F	Epoxy coate interchange able chip		' DIA	0.012	1½"	Tinned Copper	.075	105° C	

Thermometrics... The Source of Thermistor Expertise

THERMOMETRICS has established a position in the electronics and general technical community as "THE SOURCE OF THERMISTOR EXPERTISE." Our reputation for the HIGHEST QUALITY products at low, competitive prices continues as an axiom of our business posture.

Our continuous R&D efforts have pioneered many noteworthy developments. Some are: The first precision Thermistor Standard, called the Series S-10; the Series SP-1 ultra-stable thermistors; a high temperature series for use above 450°C; the Fastip Thermoprobes which offer response times of 7 milliseconds; the Unitherm interchangeable thermistor line; the Series BR ruggedized beads for high reliability sensor assembly operations; special process Medical Catheter Thermistors; the A919a Fluid Temperature Sensors; and Precision Temperature Calibration to .0015°C.

The Thermometrics engineering staff routinely (and graciously) offers applications assistance. From a one time experiment to a large

volume OEM requirement, you will find us interested and informed with imaginative thermistor expertise at your disposal. Your new ideas and requirements are welcome challenges for us at Thermometrics to continue to advance the thermistor State-of-the-Art even further in the future

This Thermistor Handbook is designed to offer our customers a comprehensive range of thermistor types to suit every purpose. Every attempt has been made to organize this book to serve you rapidly and accurately. The "THERMISTOR SELECTION GUIDE" located at the front of this book will give you a broad overview of our standard thermistor lines, which are described in detail in the following chapters. If you don't see the thermistor which meets your specific requirements, we probably have the version you need listed in our nonstandard files. Please call us with any information requests, questions, or if you just want to talk about thermistors and temperature measurement.

Thermometrics, Inc., manufactures a Thermistor or Sensor Assembly to satisfy your requirements for any of the thermistor applications listed below. Please contact us for assistance in matching the proper thermistor to your application or to obtain information on new applications.

I. THERMISTOR APPLICATIONS BASED ON R-vs-T CHARACTERISTICS

(Temperature Measurement & Control)

General Industrial Applications

Industrial Process Controls
Plastic Laminating Equipment
Hot Glue Dispensing Equipment
Auto & Truck Tire Curing
Fiber Processing & Manufacturing
Pyrometers (Non-Contact)
Photographic Processing
Copy Machines
Soldering Irons (Controlled)
Hot Mold Equipment (Thermoplastics)
Solar Energy Equipment

Consumer Appliances and Household Applications

Thermostats

Small Appliance Controls Burglar Alarm Detectors Oven Temperature Control Refrigeration & Air Conditioning Equipment Fire Detection

Medical Applications

Fever Thermometers
Dialysis Equipment
Rectal Temperature Monitoring
Myocardial Probes
Esophageal Tubes
Skin & Muscle Temperature
Thermodilution Catheters
Respiration Rate Measurement
Blood Analysis Equipment
Respirators
Hypodermic Needle Probes
Fluid Temperature

Instrumentation Applications (Compensation)

Motor Winding Temperature Compensation Infrared Sensing Temperature Compensation Instrument Winding Temperature Compensation

Automotive and Transportation Applications

Emission Controls
Differential Temperature Controls
Fire Protection and Safety Equipment
Engine Temperatures
Aircraft Temperatures
Rotor/Bearing Temperatures

Laboratory & Scientific Applications

Temperature Standards
Chemical Analysis
Oceanographic Research
Meteorology
Bathythermography
Calorimetry
Titration Studies
Geological Temperature Studies
Spectrophotometers
Bolometry
Osmometers

Food Handling Applications

Fast Food Processing Perishable Shipping Oven Temperature Control Food Storage Coffee Makers Freezing Point Studies

High Reliability and Military Applications

Missiles & Spacecraft Temperatures Aircraft Temperatures Submarines & Underwater Monitoring Fire Control Equipment

Communications Applications

Transistor Temperature Compensation Gain Stabilization Piezo Electric Temperature Compensation Ambient Temperature Compensation

II. THERMISTOR APPLICATIONS BASED ON E-vs-I CHARACTERISTICS

General Industrial Applications

Liquid Level Control
Voltage Regulation
Anemometers
Power Indicators
Gas Chromatography Equipment
Microwave Power Measurement

Flow Sensing Equipment Vacuum Manometers Overload Protection Gas Detection Amplifier Gain or Level Stabilization

III. THERMISTOR APPLICATIONS BASED ON CURRENT-vs-TIME CHARACTERISTICS

Time Delay Devices Sequential Switching

Surge Suppression

THERMISTOR SELECTION GUIDE

N.T.C. THERMISTORS (ALL THERMISTORS IN THIS CATALOG ARE NEGATIVE TEMPERATURE COEFFICIENT)

Page	Series	Thermistor Type	Dimensions	Available Lengths	Lead Diameter	Minimum Lead Length	Lead Material	Maximum Power Rating (Watts)	Maximum Continuous Temperature (°C)	Resistance Range @25°C (ohms)	Applications			still air	on Constant still water tts per °C)
THE	RMOBI	EADS	Diameter												750
B-1	BB05	Bare Bead	0.005"		0.0007"	5/16"	Pt Alloy	.004	150° C	1K to 10M	LOW COST. Ultrafast response times. Not as stable as glass	0.11	4.5	.05	.25
B-1	BB07	Thermistors	0.007"		0.001"	5/16"	Pt Alloy	.006	150° C	300 to 10M	coated units. Limited temperature range. Used in catheters,	0.2	6	.07	.35
B-1	BB11		0.011"		0.002"	5/16"	Pt Alloy	.008	150° C	300 to 10M	microwave power measurements, hypodermic needle assemblies, general temperature measurement and control.	0.65	11	.095	.47
B-2	B05	Small	0.005"		0.0007"	5/16"	Pt Alloy	.006	300° C	1K to 10M	Ultrafast response time. Good stability. Used in microwave	0.12	5	.045	.23
3-2	B07	Glass Coated	0.007"		0.0007"	5/16"	Pt Alloy	.008	300° C	1K to 10M	power measurements, catheters, hypodermic needle	0.23	7	.06	.30
B-4	B10	Thermistors	0.010"		0.001"	5/16"	Pt Alloy	.010	300° C	300 to 10M	assemblies, general temperature measurement and control, gas analysis and flow sensing.	0.5	10	.09	.45
B-4	B14		0.014"		0.001"	5/16"	Pt Alloy	.014	300° C	300 to 10M	,	1.0	15	.10	.50
3-6	B35	Large	0.035"		0.004"	5/16"	Pt Alloy	.035	300° C	30Ω to 20M	Fast response. Good stability. Used for general temperature	4.5	100	.30	1.5
B-6	B43	Glass Coated			0.004"	⁵ /16"	Pt Alloy	.035	300° C	30Ω to 20M	compensation, measurement and control.	5.5	140	.35	2.0
		Thermistors				, 10				0012 to 20101					
3-8	BR11	Ruggedized	0.011"		0.0007"	5/16"	Pt Alloy	.007	300° C	1K to 10M	More stable than glass coated counterparts. Highly reliable and	0.8	12	.065	.33
3-10	BR14	Thermistors	0.014"		0.001"	5/16"	Pt Alloy	.015	300° C	300 to 10M	easy to handle. Offer excellent stability. Recommended for use in all of the applications listed above; particularly suitable for	1.0	14	.10	.50
3-10	BR16		0.016"		0.001"	5/16"	Pt Alloy	.015	300° C	300 to 10M	assembly in a wide range of sensors and housings.	1.2	16	.12	.60
3-12	BR23		0.023"		0.002"	5/16"	Pt Alloy	.020	300° C	300 to 10M		1.7	40	.18	.90
3-14	BR32		0.032"		0.003"	5/16"	Pt Alloy	.035	300° C	100 Ω to 10M		4.5	90	.28	1.4
B-16	BR42		0.042"		0.004"	5/16"	Pt Alloy	.042	300° C	30Ω to 20M		5.0	140	.33	1.65
B-18	BR55		0.055"		0.004"	5/16"	Pt Alloy	.050	300° C	30Ω to $20M$		7.0	200	.50	2.5
THE	RMOP	ROBES & TI	HERMORG	ODS		THE REAL PROPERTY.					These fast response probes have improved stability over glass			1	
C-1	P20	Small	0.020"	1/16-1/4"	0.001"	1/4"	Pt Alloy	.020	300° C	300 to 10M	beads. The longer stem length makes them easy to handle.	1.6	18	.14	.70
C-1	P25	Glass Probes		1/8-1/4"	0.002"	1/4"	Pt Alloy	.025	300° C	300 to 10M	Suitable for use in small assemblies. They are also used for fluid flow measurement, liquid level sensing and control; and	2.0	23	.16	.80
C-3	P30		0.030"	1/8-1/4"	0.003"	1/4"	Pt Alloy	.035	300° C	100 to 10M	general temperature and control.	3.0	60	.30	1.5
		Lorgo	0.060"	1/8-1/2"	0.008"	7/8"	Tinned	.060	300° C	30Ω to 20M	Low cost units offer high reliability, fast response, tinned leads.	12	300	.6	3.0
C-5	P60	Large Glass Probes	0.000	1/8-1/2"	0.008"	7/8"	Dumet	.065	300° C	30Ω to $20M$	They are rugged, easy to handle and are the most stable thermistors. Used in larger assemblies and immersion probes.	13	320	.65	3.3
C-5	P65			1/8-1"	0.000	7/8"	Tinned	.075	300° C	30Ω to 20M	thermistors. Used in larger assemblies and immersion probes.	16	400	.8	4.0
C-5 C-5	P85 P100		0.085"	1/8-2"	0.012"	7/8"	Dumet	.100	300° C	30Ω to 20M		22	650	1.0	5.0
			7.5			7/8"	Tinned	.060	300° C	30Ω to 20M	These units have an axial lead configuration.	12	300	.6	3.0
C-7	R60	Bead in Glass Rods	0.060"	1/4" only			Dumet	.065	300° C	30Ω to 20M	They have the same applications as the probes listed above.	13	320	.65	3.3
C-7	R65	with	0.065"	1/4" only		7/8"	Tinned	.005	300° C	30Ω to 20M		16	400	.8	4.0
C-7	R85	axial leads	0.085"	1/4" only	0.012"	7/8" 7/8"	Dumet	.100	300° C	30Ω to 20M		22	650	1.0	5.0
C-7	R100		0.100"	74 Offity	0.012					44-11-11-11-11-11-11-11-11-11-11-11-11-1	Chanielly agod and processed ultreatable arches for laboratory	10	000		0.0
C-9	SP60	Ultrastable	0.060"	1/4-1/2"	0.008"	7/8"	Tinned Dumet	.060		30Ω to 20M	Specially aged and processed ultrastable probes for laboratory standards, calorimetry studies, precision measurement and	12	300	.6	3.0
C-9	SP65	probes	0.065"	1/4-1/2"	0.008"	7/8"	Daniet	.065		30Ω to $20M$	control.	13	320	.65	3.3
C-9	SP85		0.085"	1/4-1/2"	0.012"	7/8"		.075		30Ω to $20M$	Stability Class A (To 105° C) Tinned Dumet Leads Stability Class B (To 200° C) .008 Pt. Alloy	16	400	.8	4.0
C-9	SP100		0.100"	1/4-1/2"	0.012"	7/8"		.100	•	30Ω to $20M$	Stability Class C (To 300° C) .008 Pt. Alloy	22	650	1.0	5.0

THERM()METRICS

THERMISTORS (ALL THERMISTORS IN THIS CATALOG ARE NEGATIVE TEMPERATURE COEFFICIENT)

		Time	Constant	Dissipa	ation Constant
Δ		still air (seconds)	water plunge (milliseconds)	still air	still water watts per °C)
	ppiroditorio	(0000)			
	Fast response, limited temperature range. Used in infrared	0.065	_	.30	
d	letection, non-contact temperature sensing, intruder alarms,			.50	
g	eneral purpose temperature measurement and control. For mounting in hybrid microcircuits, temperature control	0.075		.50	<u></u>
	and compensation.	0.123			
g m m ir	The only thermistor available for continuous operation with lood stability above 300°C. Used in high temperature neasurement and control such as oven temperature nonitoring and control, soldering station control. They have a mproved range and better stability at high temperatures than onventional thermistors.		_	.50	
		12		.60	· •
	broken aukihit hattar atability and are used in larger	13	<u> </u>	.65	_
	Probes exhibit better stability and are used in larger assemblies.	16	·	.80	
		22	_	1.0	
S f	Small bead thermistor sealed at the tip of a glass probe. The eature the ultra-fast response times of small beads in a more	y e .10	7	.05	.25
e	easily handled package. High speed temperature	.12	10	.09	.45
	measurement and control, as well as bathythermography, flomeasurement and control.	.15	16	.10	.50
E	or very low temperature measurement and control. Cryoger	nic 12	<u>·</u>	.60	
lic	quid level and flow measurement. Ruggedized, high stability alibration available. Use to -196°C .	. 13		.65	
C	raiibi ation available. Ose to – 196°C.	16	_	.80	_
		22	_	1.0	_
	Itrafast response times are the feature of these probes used	.1	_	.05	
in	high speed cryogenic temperature measurements and ontrol. Calibration available. Use to -196°C.	.12		.09	
CC	ontroi. Calibration available. Use to – 196°C.	.15	_	.10	
	lose tolerance interchangeable chips. 252, 3000, 5000, 10000 OHMS	10	1 SEC (STIRRED OIL	1.0	8.0 (STIRRED OIL)

	TABLE OF CONTENTS	
SECTION		
	Technical Applications and Data	D A G
	Calibration Services	
	Thermistor Terminology Thermistor Equations and Curve Tolerances	Page A-2
	Linear Thermistor Voltage Divider Designs	
	Ohmmeter Thermometer Design	
	Wheatstone Bridge Thermometer Design	Pages A-5 to A-6
SECTION	R	
SECTION	Thermobeads	
	Small Bare Bead Thermistors Series BB05, BB07, BB11	Page B-1
	Small Glass Coated Thermistors Series B05, B07	Pages B-2 to B-3
	Small Glass Coated Thermistors Series B10, B14	Pages B-4 to B-5
	Large Glass Coated Thermistors Series B35, B43	Pages B-6 to B-7
	Ruggedized Thermistors Series BR11	Pages B-8 to B-9
	Ruggedized Thermistors Series BR14, BR16	Pages B-10 to B-11
	Ruggedized Thermistors Series BR23	Pages B-12 to B-13
	Ruggedized Thermistors Series BR32	Pages B-14 to B-15
	Ruggedized Thermistors Series BR42	Pages B-16 to B-17
	Ruggedized Thermistors Series BR55	Fages b-10 to b-19
SECTION		
	Thermoprobes & Thermorods	
	Small Glass Probes Series P20, P25	Pages C-1 to C-2
	Small Glass Probes Series P30	Pages C-3 to C-4
	Large Glass Probes Series P60, P65, P85, and P100 Large Glass Rods Series R60, R65, R85, and R100 Large Glass Rods Series R60, R65, R85, and R100	Pages C-5 to C-6
	Ultrastable Probes Series SP60, SP65, SP85, and SP100	Pages C-9 to C-10
	Ultrastable Probes Series SP60, SP65, SP65, and SP100	rages 0-9 to 0-10
SECTION	D	
	Thermoflakes	
	Infrared Flake Thermistors	
	Flake Kits	
	Microcircuit Flake Thermistors	Pages D-5 to D-6
SECTION	F	
02011011	High Temperature Thermoprobes and Thermobeads	
	Series HTBR55	Pages E-1 to E-2
	Series HTP60, HTP65, HTP85, and HTP100	Pages E-3 to E-4
SECTION		
	Fastip Thermoprobes	D E-1 t- E-0
	Fast Response Probe Thermistors Series FP07, FP10 and FP14	Pages F-1 to F-2
SECTION	G	
	Cryogenic Thermoprobes	
	Large Glass Probe Thermistors Series CTP60, CTP65, CTP85, and CTP100	Pages G-1 to G-2
	Fast Response Series CTFP07, CTFP10, and CTFP14	Pages G-1 to G-2
CECTION	H	
SECTION	Assemblies	
	Series AB6 Thermobead & Thermoprobe Assemblies	Pages H-1 to H-4
	Series A800 Armored Sheath Assemblies	Pages H-5 to H-6
	Octies A000 Affiliated Officially A000 Indiana	
SECTION		
	Unitherm Interchangeable Thermistors	
	Unitherm Thermistors	Pages I-1 to I-4
	Series A919a Assemblies	Pages I-5 to I-6
	Series A990 Interchangeables	Pages I-7 to I-6
		Fages 1-9 to 1-10
SECTION		
	Ultrastable Temperature Standards	
	Series CSP	Pages J-1 to J-2
	Series S, AS, & ES	Pages J-3 to J-5
SECTION	K	
	Technical Data	
	Resistance Ratio vs. Temperature Tables	Pages K-1 to K-2
	S Curves	Page K-3
	Resistance Ratio Curves	Back inside cover.

THERMISTOR SELECTION GUIDE

N.T.C. THERMISTORS (ALL THERMISTORS IN THIS CATALOG ARE NEGATIVE TEMPERATURE COEFFICIENT)

Dimensions ickness Size 001" .020" x .020 002" .120" x .120 * ** rs ximum meter Length 060" — 060" 1/4-1/2" 065" 1/4-1/2" 085" 1/4-1/2"	0.004" 0.008" 0.008"	1/4" 1/4" * 5/16" 1/2" 1/2" 1/2"	Pt Alloy Pt Alloy Pt Alloy Pt Alloy Pt Alloy	.030 .035 .050	Temperature (°C) 105° C 105° C 105° C	e @ 25°C (ohms) 50K-2M 50K-2M 1K-1M Resistance Range @ 125°C 100K to 2M		0.065 0.075 0.125	water plunge (milliseconds)	.30 .50 .50	still water watts per °C) — — —
001" .020" x .020 002" .120" x .120 ** ** ** ** ** ** ** ** **	0.004" 0.008" 0.008"	1/4" * 5/16" 1/2" 1/2"	Pt Alloy Pt Alloy Pt Alloy	.035	105° C 105° C 450° C	50K-2M 1K-1M Resistance Range @ 125°C	detection, non-contact temperature sensing, intruder alarms, general purpose temperature measurement and control. For mounting in hybrid microcircuits, temperature control and compensation. The only thermistor available for continuous operation with good stability above 300°C. Used in high temperature measurement and control such as oven temperature monitoring and control, soldering station control. They have an improved range and better stability at high temperatures than	0.075 0.125	-	.50 .50	
ximum meter Length 060" — 060" 1/4-1/2" 065" 1/4-1/2"	0.004" 0.008" 0.008"	1/4" * 5/16" 1/2" 1/2"	Pt Alloy Pt Alloy Pt Alloy	.035	105° C 105° C 450° C	50K-2M 1K-1M Resistance Range @ 125°C	detection, non-contact temperature sensing, intruder alarms, general purpose temperature measurement and control. For mounting in hybrid microcircuits, temperature control and compensation. The only thermistor available for continuous operation with good stability above 300°C. Used in high temperature measurement and control such as oven temperature monitoring and control, soldering station control. They have an improved range and better stability at high temperatures than	0.075 0.125		.50 .50	
002" .120" x .120 x	0.004" 0.008" 0.008"	5/16" 1/2" 1/2"	Pt Alloy Pt Alloy	.040	105° C	Resistance Range @ 125°C	detection, non-contact temperature sensing, intruder alarms, general purpose temperature measurement and control. For mounting in hybrid microcircuits, temperature control and compensation. The only thermistor available for continuous operation with good stability above 300°C. Used in high temperature measurement and control such as oven temperature monitoring and control, soldering station control. They have an improved range and better stability at high temperatures than	0.125		.50	
ximum meter Length 060" — 060" 1/4-1/2" 065" 1/4-1/2"	0.008" 0.008"	5/ ₁₆ " 1/ ₂ " 1/ ₂ "	Pt Alloy	.040	450° C	Resistance Range @ 125°C	The only thermistor available for continuous operation with good stability above 300°C. Used in high temperature measurement and control such as oven temperature monitoring and control, soldering station control. They have an improved range and better stability at high temperatures than	7			_
meter Length 060" — 060" 1/4-1/2" 065" 1/4-1/2"	0.008" 0.008"	1/2"	Pt Alloy			Range @ 125℃	good stability above 300°C. Used in high temperature measurement and control such as oven temperature monitoring and control, soldering station control. They have ar improved range and better stability at high temperatures than	,	_	.50	_
060" 1/4-1/2" 065" 1/4-1/2"	0.008" 0.008"	1/2"	Pt Alloy			100K to 2M	good stability above 300°C. Used in high temperature measurement and control such as oven temperature monitoring and control, soldering station control. They have ar improved range and better stability at high temperatures than	,	_	.50	-
065" 1/4-1/2"	0.008"	1/2"	•	.060	45000						
			Pt Alloy		450° C	100K to 2M		12	. -	.60	_
085" 1/4-1/2"	0.008"	1/5"		.065	450° C	100K to 2M	Probes exhibit better stability and are used in larger	13	-	.65	_
		72	Pt Alloy	.075	450° C	100K to 2M	assemblies.	16		.80	-
100" 1/4-1/2"	0.008"	1/2"	Pt Alloy	.100	450° C	100K to 2M		22	_	1.0	-
S						Resistance Range @ 25°C					
085" ½"	0.012"	7/8"	Tinned	.006	300° C	1K to 10M	Small bead thermistor sealed at the tip of a glass probe. They feature the ultra-fast response times of small beads in a more	.10	7	.05	.25
085" ½"	0.012"	7/8"	Dumet I	.010	300° C	1K to 10M	easily handled package. High speed temperature	.12	10	.09	.45
085" ½"	0.012"	7/8"	1	.014	300° C	1K to 10M	measurement and control, as well as bathythermography, flow measurement and control.	.15	16	.10	.50
OBES						Resistance Range @ – 196°C					
060" 1/8-1/2"	0.008"	7/8"	Tinned	.060	125° C	100K to 1M	For very low temperature measurement and control. Cryogenic	c 12	<u>·</u>	.60	
065" 1/8-1/2"	0.008"	7/8"	Dumet	.065		100K to 1M	liquid level and flow measurement. Ruggedized, high stability.	13	_	.65	
085" 1/8-1/2"	0.012"	7/8"		.075	125° C	100K to 1M	Calibration available. Use to −196°C.	16	_	.80	
100" 1/8-1/2"	0.012"	7/8"		.100	125° C	100K to 1M		22		1.0	_
085" 1/2"	0.012"	7/8"		.006	125° C	100K to 1M	Ultrafast response times are the feature of these probes used	.1	_	.05	
085" ½"	0.012"	7/8"	Tinned	.010	125° C	100K to 1M	in high speed cryogenic temperature measurements and	.12	_		
	0.012"	7/8"	Dumet	.014	125° C	100K to 1M	Control. Calibration available. Use to -196° C.	.15	_	.10	
085" ½"		1½"	Tinned Copper	.075	105° C		Close tolerance interchangeable chips. 2252, 3000, 5000, 10000 OHMS	10	1 SEC (STIRRED OIL)	1.0	8.0 (STIRRED OIL)
100	0" 1/8-1/2" 5" 1/2" 5" 1/2" 5" 1/2" Wominal Size	0" 1/8-1/2" 0.012" 5" 1/2" 0.012" 5" 1/2" 0.012" 5" 1/2" 0.012"	0" 1/8-1/2" 0.012" 7/8" 5" 1/2" 0.012" 7/8" 5" 1/2" 0.012" 7/8" 5" 1/2" 0.012" 7/8" Nominal Size	0" 1/8-1/2" 0.012" 7/8" 5" 1/2" 0.012" 7/8" 5" 1/2" 0.012" 7/8" Tinned Dumet Nominal Size 0.095" DIA 0.012 11/2" Tinned	0" 1/8-1/2" 0.012" 7/8" .100 5" 1/2" 0.012" 7/8" .006 5" 1/2" 0.012" 7/8" Tinned .010 Dumet .014 Nominal Size 0.095" DIA 0.012 11/2" Tinned .075	0" 1/8-1/2" 0.012" 7/8" .100 125° C 5" 1/2" 0.012" 7/8" .006 125° C 5" 1/2" 0.012" 7/8" Tinned .010 125° C 5" 1/2" 0.012" 7/8" Dumet .014 125° C Nominal Size 0.095" DIA 0.012 11/2" Tinned .075 105° C	100 125° C 100K to 1M 100 125° C 100K to 1M	100 125° C 100K to 1M 100 125° C 100K to 1M	22 100 12" 7/8" .100 125° C 100K to 1M 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	100 125° C 100K to 1M 22	1.0

	TABLE OF CONTENTS	
SECTION		
	Technical Applications and Data Calibration Services	Page A-0
	Thermistor Terminology	Page A-1
	Thermistor Equations and Curve Tolerances	Page A-2
	Linear Thermistor Voltage Divider Designs	Page A-3
	Ohmmeter Thermometer Design	Page A-4
	wheatstone Bridge Thermometer Design	Pages A-5 to A-6
SECTION		
	Thermobeads	
	Small Bare Bead Thermistors Series BB05, BB07, BB11	
	Small Glass Coated Thermistors Series B05, B07Small Glass Coated Thermistors Series B10, B14	Pages B-2 to B-3
	Large Glass Coated Thermistors Series B35, B43	Pages B-6 to B-7
	Ruggedized Thermistors Series BR11	Pages B-8 to B-9
	Ruggedized Thermistors Series BR14, BR16	Pages B-10 to B-1
	Ruggedized Thermistors Series BR23	
	Ruggedized Thermistors Series BR32	
	Ruggedized Thermistors Series BR55	Pages B-18 to B-19
SECTION		
SECTION	Thermoprobes & Thermorods	
	Small Glass Probes Series P20, P25	Pages C-1 to C-2
	Small Glass Probes Series P30	Pages C-3 to C-4
	Large Glass Probes Series P60, P65, P85, and P100	Pages C-5 to C-6
	Large Glass Rods Series R60, R65, R85, and R100	Pages C-7 to C-8
	Ultrastable Probes Series SP60, SP65, SP85, and SP100	Pages C-9 to C-10
SECTION	D .	
	Thermoflakes	
	Infrared Flake Thermistors	
	Flake KitsMicrocircuit Flake Thermistors	
		Pages D-5 to D-6
SECTION		
	High Temperature Thermoprobes and Thermobeads	
	Series HTBR55	Pages E-1 to E-2
	Series HTP60, HTP65, HTP85, and HTP100	Pages E-3 to E-4
SECTION	F	
	Fastip Thermoprobes	
	Fast Response Probe Thermistors Series FP07, FP10 and FP14	Pages F-1 to F-2
SECTION	G	
0	Cryogenic Thermoprobes	
	Large Glass Probe Thermistors Series CTP60, CTP65, CTP85, and CTP100	
	Fast Response Series CTFP07, CTFP10, and CTFP14	Pages G-1 to G-2
SECTION	R of the statement of t	
	Assemblies	
	Series AB6 Thermobead & Thermoprobe Assemblies	Pages H-1 to H-4
	Series A800 Armored Sheath Assemblies	Pages H-5 to H-6
SECTION		
	Unitherm Interchangeable Thermistors	
	Unitherm Thermistors	Pages I-1 to I-4
	Series A919a Assemblies	
	Series A990 Interchangeables	
CECTION		Pages 1-9 to 1-10
SECTION		
	Ultrastable Temperature Standards	Deres 14ts 10
	Series CSPSeries S, AS, & ES	Pages J-3 to J-5
SECTION		rages 0-0 to 0-0
SECTION	Technical Data	
	Resistance Ratio vs. Temperature Tables	Page K-1 to K 2
	S Curves	Page K-3
	Besistance Ratio Curves	Back inside cover.

CALIBRATION FACILITIES AND SERVICES

A complete range of resistance versus temperature calibration is available for any of the products offered for sale by Thermometrics, Inc. We are one of the few companies in the world that has the facilities and technical expertise required for the manufacture of thermistor temperature standards. Thermometrics Inc. is the only manufacturer in the world that offers a line of thermistor standards with calibration accuracy of 0.0015° C.

Temperature measurements at Thermometrics are traceable to the International Practical Temperature Scale of 1968 (IPTS-68) as maintained by the National Bureau of Standards (NBS). Traceability is achieved by means of triple point of water cells for the defining fixed point of 0.01°C (273.16K) and through the use of standard platinum resistance thermometers (SPRT) calibrated by NBS at other points. In the text of IPTS-68, the standard platinum resistance thermometer is specified as the standard interpolation instrument for realizing the scale between the defining fixed points.

The range of -140° C to +260° C is defined by fixed points at the boiling point of oxygen (-182.962° C), triple point of water (0.01° C), freezing point of tin (231.9681° C) and freezing point of zinc (419.58° C). The temperature uncertainties for calibrations at Thermometrics are 0.0002° C at the triple point of water, 0.0015° C between 0° C and 60° C, 0.003° C between 60° C and 125° C, and 0.005° C for other temperatures in the range of -140° C to 260° C.

RESISTANCE - TEMPERATURE STANDARDS

Standards maintained at Thermometrics include the following:

- Triple point of water cells (fixed point primary standard); Jarrett Instrument Co., type A.
- Standard platinum resistance thermometers (periodically calibrated by NBS): Leeds and Northrup, model 8163.
- Standard resistors, four wire (.001% accuracy, and periodically calibrated by NBS); Leeds and Northrup, models 4020-B, 4025-B, 4030-B, 4035-B, & 4040-B.
- Comparison bridge, four wire (±0.2 PPM, traceable to National Research Council of Canada, accuracy verified by NBS traceable ratio measurements on standard resistors); Guildline model 9975.
- Thermistor Standards (Calibrated against standard platinum resistance thermometer); Thermometrics, series S-10, S-15, S-20, S-25 and S-50.
- Ohmic Standard precision resistance decade (0.005% accuracy verified against 0.001% standard resistors); Vishay, model 130.
- Guarded Wheatstone Bridge (0.005% accuracy, verified against .001% standard resistors) Leeds and Northrup model 4737, (used with model 9828 Null detector).
- Constant Temperature Baths (control varies between .0002°C and .003°C depending upon temperature setting, bath fluid and use of integrating block).

SERVICES AVAILABLE:

CALIBRATION: Resistance versus temperature calibration is available at one or more temperature points within the range of -140°C to +260°C in accordance with any of the calibration schedules shown in table A and described as follows:

SCHEDULE 1: Available only for thermistor standards, ultrastable thermistor probes or assemblies which incorporate these devices. Calibrations are made in an integrating block submerged in a precision constant temperature bath. The bath and block temperature is established using an SPRT, resistor standards and four wire comparison bridge. Resistance measurements of the thermistors are made using a precision Wheatstone bridge verified against standard resistors and an ohmic standard precision resistance decade.

SCHEDULE 1A: Available only for thermistor standards, ultrastable thermistor probes or assemblies which incorporate these devices. The bath and block temperature is established using two or more thermistor temperature standards which have been calibrated against an SPRT. Resistance measurements are performed the same as for schedule 1.

SCHEDULE 2: Available for all glass probe thermistors or assemblies which incorporate these devices. Stability requirements with respect to temperature range and time span must be verified prior to calibration. The bath and block temperature is established using two or more thermistor temperature standards which have been calibrated against an SPRT. Resistance measurements are performed using a precision Wheatstone bridge verified against an ohmic standard resistance decade.

SCHEDULE 3: Available for all glass enclosed beads and probes as well as epoxy encapsulated discs or chips and sensor assemblies using these devices. It is advised that stability required be verified prior to calibration. A precision constant temperature bath is set using two or more thermistor temperature standards. Resistance measurements are performed using a precision Wheatstone bridge verified against an ohmic standard resistance decade.

SCHEDULE 4: Available for all thermistors and sensor assemblies. A constant temperature bath is set using two or more thermistor standards. Resistance measurements are performed using a calibrated Wheatstone bridge or digital meter, or data acquisition system.

SCHEDULE 5: Available for all thermistors and sensor assemblies. A production temperature bath is set using two or more thermistor standards. Resistance measurements are performed using a digital meter.

EQUATION CONSTANTS

Depending upon the temperature range and accuracy desired, the equations shown on page A2 of the catalog may be used to describe the resistance-temperature characteristic of a thermistor. In addition to calibration, the equation constants can be furnished for these equations.

The accuracy of equation (1) varies between .01° C and 0.1° C for temperature spans of 10° C to 30° C. Its use is not recommended over wider spans. For example, the uncertainty increases to .3° C for a 50° C span. The uncertainty of equations (2a) and (2b) is equal to the calibration uncertainty for a span of 50° C and is approximately twice the calibration uncertainty for a 100° C span. The uncertainty of equations (3a) and (3b) is equal to the calibration uncertainty for a span of 100° C and is approximately twice the calibration uncertainty for a 150° C span. When more than four calibration points are requested, the constants for equation (3a) and (3b) are obtained from a polynomial regression analysis which statistically improves the accuracy of the calibration data.

Additional information on the exactness of fit of thermistor resistance temperature data is available in Thermometrics Inc. Application Note 216.

RESISTANCE VS TEMPERATURE TABLES

In addition to calibrations and equation constants, Thermometrics can furnish computer generated tables of resistance versus temperature for any calibrated thermistor or sensor assembly. Such tables are available with temperature increments from .001°C to 1°C. Since the tables are generated from the thermistor equations, the accuracy of the tables is consistent with the equation accuracy.

TRACEABILITY DOCUMENTATION

Upon request, for a nominal fee, documentation for traceability to the National Bureau of Standards can be furnished for all calibrations performed at Thermometrics.

TABLE A

CALIBRATION	RESISTANCE	TEMPERATURE ACCURACY (± °C) FOR RANGES SHOWN:										
SCHEDULE	ACCURACY	-140°C to -80°C	-80°C to 0°C	0°C to 60°C	60°C to 125°C	125°C to 260°C						
1	0.005 %	.005	.003	.0015	.003	.005						
1A	0.005 %		.005	.005	.005							
2	0.01%	.005	.005	.005	.005	.005						
3	0.01%	.01	.01	.01	.01	.01						
4	0.05.%	.05	.05	.05	.05	.05						
5	0.1%	.05	.05	.05	.05	.05						

TECHNICAL APPLICATIONS AND DATA

THERMISTOR TERMINOLOGY REPRINTED FROM MIL-T-23648A

3.3 Definitions

3.31 Thermistor. A thermistor is a thermally sensitive resistor whose primary function is to exhibit a change in electrical resistance with a change in body temperature.

3.3.2 Standard reference temperature.

The standard reference temperature is the thermistor body temperature at which nominal zero-power resistance is specified (25°C).

- 3.3.3 Zero-power resistance (RT). The zero-power resistance is the dc resistance value of a thermistor measured at a specified temperature with a power dissipation by the thermistor low enough that any further decrease in power will result in not more than 0.1 percent (or 1/10 of the specified measurement tolerance, whichever is smaller) change in resistance.
- **3.3.4** Resistance ratio characteristic. The resistance ratio characteristic identifies the ratio of the zero-power resistance of a thermistor measured at 25°C to that resistance measured at 125°C.
- **3.3.5** Zero-power temperature coefficient of resistance (alpha ≈ T). The Zero-power temperature coefficient of resistance is the ratio at a specified temperature (T), of the rate of change of zero-power resistance with temperature to the zero-power resistance of the thermistor.

- **3.3.5.1** Negative temperature coefficient (NTC). A NTC thermistor is one in which the zero-power resistance decreases with an increase in temperature.
- **3.3.5.2** Positive temperature coefficient (PTC). A PTC thermistor is one in which the zero-power resistance increases with an increase in temperature.
- **3.3.6** Maximum operating temperature. The maximum operating temperature is the maximum body temperature at which the ther-

mistor will operate for an extended period of time with acceptable stability of its characteristics. This temperature is the result of internal or external heating, or both, and should not exceed the maximum value specified.

- **3.3.7** *Maximum power rating.* The maximum power rating of a thermistor is the maximum power which a thermistor will dissipate for an extended period of time with acceptable stability of its characteristics.
- **3.3.8** Dissipation constant. The dissipation constant is the ratio, (in milliwatts per degree C) at a specified ambient temperature, of a change in power dissipation in a thermistor to the resultant body temperature change.
- 3.3.9 Thermal time constant. The thermal time constant is the time required for a thermistor to change 63.2 percent of the total difference between its initial and final body temperature when subjected to a step function change in temperature under zero-power conditions.
- **3.3.10** Resistance-temperature characteristic. The resistance-temperature characteristic is the relationship between the zero-power resistance of a thermistor and its body temperature.
- **3.3.11** Temperature wattage characteristics. The temperature-wattage characteristic of a thermistor is the relationship at a specified ambient temperature between the thermistor temperature and the applied steadystate wattage.
- **3.3.12** Current-time characteristic. The current-time characteristic is the relationship at a specified ambient temperature between the current through a thermistor and time, upon application or interruption of voltage to it.
- **3.3.13** *Stability.* Stability of a thermistor is the ability of a thermistor to retain specified characteristics after being subjected to designated environmental or electrical test conditions.

Technical Applications and Data

THERMISTOR EQUATIONS

The following simplified equations may be used in most applications to define the Resistance-vs-Temperature characteristics of a thermistor.

$$R_T = R_{T_0} \exp \left\{ \beta \left(\frac{1}{T} - \frac{1}{T_0} \right) \right\} \tag{1}$$

R_T = zero power resistance at absolute temperature T; T = t(°C) + 273.15

 R_{T_0} = zero power resistance at absolute temperature T_0 ; $T_0 = t_0(^{\circ}C) + 273.15$

β = beta, a constant that depends on the thermistor material.

 $\exp \{x\} = e$, the naperian base (2.71828...), raised to the power x.

Equation (1) is valid only over a narrow temperature range since the material constant, β , actually increases with increasing temperatures. The error introduced by this equation increases as the temperature span is widened. An error of $\pm 0.3^{\circ}\mathrm{C}$ for a typical thermistor operated over the range of 0°C to 50°C would result from the use of this equation. A minimum of two calibration points are required or a single calibration point and a specified value for beta, β . See the paragraph on Curve Tolerances for the effect of β tolerance.

$$R_T = \exp \left\{ A_0 + A_1/T + A_3/T^3 \right\}$$
 (2a)

$$R_{T} = \exp\{A_{0} + A_{1}/T + A_{2}/T^{2} + A_{3}/T^{3}\}$$
 (3a)

$$1/T = a_0 + a_1 \ln R_T + a_3 [\ln R_T]^3$$
 (2b)

$$1/T = a_0 + a_1 \ln R_T + a_2 [\ln R_T]^2 + a_3 [\ln R_T]^3$$
 (3b)

 A_0 , A_1 and A_3 are unique constants for Equation (2a) a_0 , a_1 and a_3 are unique constants for Equation (2b) R_T = zero power resistance at absolute temperature T; T = t(°C) + 273.15

Equations (2a) and (2b) require a minimum of three calibration points in order to determine the unique set of constants. These equations may be used over moderately wide temperature spans. Errors introduced by these equations do not exceed measurement uncertainties for ranges of up to 100°C.

Equations (3a) and (3b) require a minimum of four calibration points in order to determine the unique set of constants. These equations may be used over wider temperature spans with an improved curve fit. A maximum error of 0.0015°C was encountered for a typical thermistor operated over the range of 0°C to 100°C.

CURVE TOLERANCES:

Since only nominal RESISTANCE VS. TEMPERATURE curves are normally published (see back sheet), the effect of β tolerance is frequently overlooked in specifying the proper thermistor for a given application. The chart below, taken from MIL-T-23648A, shows the effect on resistance tolerance due to standard manufacturing tolerances on β . Note that if a \pm 1% resistance tolerance is specified (characteristic F) @ 25° C, this tolerance can go to \pm 10% @ -55° C and 125° C.

This suggests that it is often more desirable to specify nominal resistance and resistance tolerance values at the temperatures of interest, rather than at 25° C. Many Thermometrics thermistors designed for specific customer requirements are specified in this manner.

Temperature (°C)	F (± %)	G (± %)	J (± %)	K (± %)	Temperature (°C)	F (± %)	G (± %)	J (± %)	K (± %)
-55	10	12	15	20	75	5	6	9	14
-15	5	6	9	14	100	7	9	12	17
0	3	4	7	12	125	10	12	15	20
25	1	2	5	10	200	15	18	25	30
50	3	4	7	12	275	20	25	35	40

LINEAR THERMISTOR VOLTAGE DIVIDER DESIGN

The output of the voltage divider is given by:

$$e_o(T) = e_s [R/(R+R_T)] = e_s/[1+(R_T/R)]$$

The RESISTANCE-TEMPERATURE CURVES on the inside back cover of this catalog provide $R_{\rm T}/R_{\rm 25}$ at any temperature, T.

Let
$$r_T = R_T/R_{25}$$
 and $s = R_{25}/R$. (5)
Then $R_T = R_{25} r_T$ and $R = R_{25}/s$. (6)

Therefore,
$$e_o(T)/e_s=1/[1+s(r_T)]=F(T)$$
.

The s-curves on page K-3 can be used to obtain the best value of R for a specified thermistor and temperature range when good linearity is desired. The optimum value of s, for a specified temperature range, $T_L \!\!\!\! \leq \! T \!\!\! \leq \! T_H$, may also be obtained from equations (8a), (8b), and (8c) for which r_{T_L} and r_{T_H} correspond to T_L and T_H respectively and the constants A_1 and A_3 may be obtained from equation (2a). When using equations (8a), (8b), and (8c), it is possible to let $s=R_{T_o}/R$ and $r_T=R_T/R_{T_o}$ where $T_o=(T_L+T_H)/2$ (the midtemperature of the range).

$$s=(X-Y)/(Yr_{T_L}-Xr_{T_H})$$
 (8a)

$$X=T_{H}[r_{T_{I}}(A_{1}+3A_{3}/T_{H}^{2})]^{1/2}$$
 (8b)

$$Y = T_{L} [r_{T_{L}} (A_{1} + 3A_{3}/T_{L}^{2})]^{1/2}$$
(8c)

If T_1 , R_{T_1} , T_2 , R_{T_2} , T_3 , R_{T_3} represent three thermistor calibration points such that $T_1 \leqslant T_L \leqslant T \leqslant T_H \leqslant T_2$ then the constants for equation (2a) are given by

$$D = (T_1 - T_3) (T_2 - T_1) (T_3 - T_2) (T_1 T_2 + T_1 T_3 + T_2 T_3) / (T_1 T_2 T_3)^3$$
(9a)

$$A_{3} = \left\{ [(T_{2} - T_{1})/T_{1}T_{2}] \ln (R_{T_{3}}/R_{T_{1}}) - [(T_{3} - T_{2})/T_{2}T_{3}] \ln (R_{T_{1}}/R_{T_{2}}) \right\} / D$$
(9b)

$$A_{1} = \left\{ \left[(T_{3} - T_{1}) (T_{3}^{2} + T_{2}T_{3} + T_{2}^{2}) / (T_{2}T_{3})^{3} \right] \ln (R_{T_{1}} / R_{T_{2}}) - \left[(T_{2} - T_{1}) (T_{2}^{2} + T_{1}T_{2} + T_{1}^{2}) / (T_{1}T_{2})^{3} \right] \ln (R_{T_{2}} / R_{T_{3}}) \right\} / D$$
(9c)

$$A_0 = InR_{T_1} - (A_1/T_1) - (A_3/T_3^3)$$
 (9d)

In the above equations, T is absolute temperature in kelvins (T=°C+273.15). Linear voltage dividers are frequently used in telemetry circuits.

(4)

(7)

OHMMETER THERMOMETER DESIGN

The circuit shown is a general form of Thermistor Ohmmeter Thermometer. The use of the trimpot, R_p , is optional and depends upon cost factors. The source at terminals A-B may be replaced by a Thevenin equivalent circuit comprising a source voltage $E_{\mathsf{THEV}} = \mathsf{ER}_1 / (\mathsf{R}_1 + \mathsf{R}_2)$ and source resistance $\mathsf{R}_{\mathsf{THEV}} = \mathsf{R}_1 \mathsf{R}_2 / (\mathsf{R}_1 + \mathsf{R}_2)$. When the equivalent circuit is considered, it is apparent that the ohmmeter circuit is equivalent to the voltage divider shown on page A-3 . If the output voltage is taken across the meter terminals, then $\mathsf{I} = \mathsf{e}_0(\mathsf{T})/\mathsf{R}_\mathsf{M}$ is linear when $\mathsf{e}_0(\mathsf{T})$ is linear.

A typical application for a low cost thermistor ohmmeter circuit is an automobile water temperature gauge. Such gauges were originally designed to operate over the range of 100° F to 220° F (37.8° C to 104.4° C). Although water temperature gauges use lights, at present, a meter output will be considered to illustrate the design procedure. A suitable meter which is both rugged and inexpensive is a 0-1 mA meter ($R_{\rm M}$ is approximately 50 ohms). If we let E=12 volts and $E_{\rm THEV}$ =6 volts, the design will be suitable for both types of batteries.

DESIGN PROCEDURE

- 1. From the s-curves (p.K-3) $s=R_{25}/R$ is in the range, $6 \le s \le 10$, where $R=R_{THFU}+R_3+R_n+R_M$.
- 2. Let s=8 (midway between 6 and 10).
- 3. Set the mid range temperature, 160° F=71.1° C, to the mid-scale meter reading of I=0.5mA. For this condition, R+R_{71.1}= $6v/0.5mA=12k\Omega$.
- 4. Use a THM series P100 Thermoprobe (p. C-5). Such glass probes may be operated at temperatures in excess of 300°C and will not be damaged if the engine overheats. They also are rugged and relatively inexpensive. The dissipation and time constants are 5mW/°C and 1 second respectively in still water.
- 5. From the R-T curves (see inside back cover) we find that $0.13 \le R_{71.1}/R_{25} \le 0.19$ for $10k\Omega \le R_{25} \le 1M\Omega$. Assume that $R_{71.1}/R_{25} = 0.16$ (midway between 0.13 and 0.19).
- 6. $12K\Omega = R + R_{71.1} = (R_{25}/s) + 0.16 R_{25} = 0.125 R_{25} + 0.16R_{25} = 0.285 R_{25}$. Hence, $R_{25} = 42.11k\Omega$.
- 7. From Table C, (p. C-5) we see that the closest standard value is $43k\Omega$ at 25° C.
- 8. From curve 10(p. K-2), we find that R_{30} = (.8017) (43k Ω)= 34 473 Ω , R_{70} =(0.167) (43k Ω)=7181 Ω , R_{110} =(.04691) (43k Ω)=2017 Ω .
- 9. From equations (9a), (9b), (9c), and (9d), we obtain $A_0 = -3.934938830$, $A_1 = 4528.707767$, and $A_3 = -15488865.20$.
- 10. From equation (2a), we obtain $R_{37.8}$ =24686, $R_{71.1}$ =6909.7, and $R_{104.4}$ =2373.8 which yields $R_{37.8}/R_{25}$ =0.5741, $R_{71.1}/R_{25}$ =0.1607, and $R_{104.4}/R_{25}$ =0.055205.
- 11. Substituting in equations (8a), (8b), and (8c) yields s=43k/R=7.75, from which we obtain $R=R_{THEV}+R_3+R_p+R_M=5548\Omega$ and $I_{mid}=0.482mA$.
- 12. The design parameters are E=12V, R_1 = R_2 =10 k Ω , E_{THEV} =6v, R_{THEV} =5K Ω , R_3 + R_p =498 Ω , and R_T =P100DB433M thermoprobe.

FIGURE A

FIGURE B

Thermistors are frequently used for temperature measurements in a large variety of biomedical applications. To illustrate the use of the linear voltage divider and the design equations, a complete design of a direct reading biomedical thermistor thermometer will be provided. This design is suitable for use as a fast-response thermometer over the range of 33° C to 43° C. The design procedure is suitable for any temperature range for which satisfactory linearity can be achieved (see s-curves on p. K-3).

For the purpose of illustration, the sensor selected will be a THM series A990 fast-response, interchangeable sub-assembly (see p. I-7). For this design, the A990BUN223SX1 will be used which has a curve tolerance of 0.05° C within the design operating range. The dissipation constants are 0.36mW/° C and 1.0 mW/° C respectively, for still air and still water. The time constant for still air is 1.5 seconds while that for a plunge into water is 0.15 second. A digital panel meter or laboratory DVM will be used for the output detector. Since the input resistances for such detectors generally exceed $10\text{M}\Omega$, we may consider the bridge load to be an open circuit. Under these conditions, the basic bridge of Figure A is a pair of voltage dividers. The output voltage is the difference between the two divider circuits.

DESIGN PROCEDURE:

- 1. Let the output detector be a 0-100 mV DVM.
- 2. For maximum application flexibility, assume that the dissipation constant is 0.36 mW/° C (its lowest anticipated value).
- 3. We begin by designing the voltage divider e_s, R_T, R.
- 4. From the R-T tables for the series A990 (p. I-8), we obtain R_{25} =11k Ω , R_{35} =7531.1 Ω , and R_{50} =4435.6 Ω (UN223 table).
- 5. From equations (9a), (9b), (9c), and (9d) we obtain $A_0 = -3.328203678$, $A_1 = 3917.051236$, and $A_3 = -13357800.88$.
- 6. From equation (2a) we obtain $R_{T_L} = R_{33} = 8109.829488\Omega$, $R_{T_O} = R_{38} = 6750.109743\Omega$, $R_{T_H} = R_{43} = 5647.251706\Omega$, $r_{T_1} = R_{33}/R_{38} = 1.201436687$, and $r_{T_H} = R_{43}/R_{38} = 0.836616281$.
- 7. From equations (8a), (8b), and (8c) we obtain X=20470.34967, Y=16604.63244, $s=R_{T_0}/R=6750.109743/R=1.369080369$, and R=4930.396999.
- 8. Allow a self-heating error, Δt =0.01° C. Then P_{MAX} =0.36 (10-3) W/° C X 0.01° C, ($e_s^2/4R$)=0.36 (10-5)= $e_s^2/4$ (4930.40) and e_s <0.26645 volt.
- 9. Using equation (2a) for R_T , $r_T = R_T/R_{T_O} = R_T/R_{38}$, and equation (7) for F(T), perform a linear regression for $F(T) = e_0(T)/e_s = a_0 + a_1 t$ where $a_1 = [(n\Sigma t_i F(t_i) \Sigma t_i \Sigma F(t_i)]/[n\Sigma t_i^2 (\Sigma t_i)^2]$, $a_0 = [\Sigma F(t_i) a_1 \Sigma t_i]/n$, and n is the number of temperature points, t_i , used for the range specified. Using 1° C increments between 33° C and 43° C, we obtain $a_1 = 8.809268178$ (10-3) and $a_0 = 8.735164300$ (10-2).
- 10. The output voltage is given by $e_0(T) = e_s F(T) = a_0 e_s + a_1 e_s t$. Set the slope of the output $a_1 e_s$, to 1mV/°C. Hence, $a_1 e_s = 8.809268178$ (10-3) $e_s = 10^{-3} \text{V/°C}$, $e_s = 0.1135168075$ volt, and e_0 (t)=9.915879643 (10-3)+10-3t volts or $e_0(T) = 9.915879643 + t$ mV. The actual maximum self-heating error is 0.001°C.
- 11. The output of the divider e_s , R_A , R_B provides a bias, $e_b = e_s R_A / (R_A + R_B)$ and the bridge output is $e_{0B} = e_0(T) e_b$. For the bridge output in mV to be direct reading in °C, we require that $e_{0B} = 10^{-3}$ t volt=9.915879643 (10-3)+10-3 t- e_b . Hence, $e_b = e_s R_A / (R_A + R_B) = 0.1135168075R_A / (R_A + R_B) = 9.915879643$ (10-3).
- 12. Let $R_A = 1000\Omega$. Then $R_B = R_A [(e_s/e_b)-1] = 10447.9816\Omega$.
- 13. Convert the circuit of Figure A to the practical circuit of Figure B using E=any desired voltage source, R_1 = RE/e_s , R_2 = RR_1 / $(R_1$ - R_3), R_3 = any desired value, and R_4 = R_3 { $[E/(e_b+E-e_s)]-1$ }. In computing R_4 it is assumed that R_p =0. The values of R_3 and R_4 should be selected such that $E/(R_3+R_4)$ is consistent with the allowable current drain for the supply available. The use of R_p permits standard values for R_3 and R_4 . For E=5 volts, R_1 =217166 Ω and R_2 =50441.93 Ω .
- 14. In the absence of any specific constraint, let $E/(R_3+R_4)=1$ mA. Then $10^{-3}=5/(R_3+R_4)$, $R_3+R_4=5000\Omega$, and $R_4=R_3$ {[5/ (9.915879643X10-3+5-0.1135168075)]-1} =0.021158595R₃. This results in $R_3=4896.399\Omega$ and $R_4=103.601\Omega$. Since these are non-standard values, let $R_3=4700\Omega$ which requires that $R_4=99.445\Omega$ for proper bias. Since R_4 is non-standard, let $R_4=100\Omega$ and $R_0=10\Omega$.

Complete design parameters for Figure B are shown in the table below for all of the thermistors available for use with the series A990 Interchangeable Sub-Assemblies for the range of 33°C to 43°C.

DESIGN			RESISTANCE CODES												
PARAMETER	UN103	UT103	UN223	UT223	UN443	UT443									
E (VOLTS)	5	5	5	5	5	5									
R ₁ ohms	97225.3	389028.0	217166.0	868216.0	443291.0	1773289.0									
R ₂ ohms	228.91	9158.10	5044.93	20168.00	9930.03	39722.42									
R ₃ ohms	4700	4700	4700	4700	4700	4700									
R ₄ ohms	100	100	100	100	100	100									
R _p ohms	10	10	10	10	10	10									
MAX ERROR (°C)	0.005	0.005	0.004	0.005	0.005	0.005									

THERMOBEADS SERIES BB05, BB07 & BB11

STYLE: The series BB05, BB07 and BB11 THERMOBEADS consist of miniature bead thermistors which are sintered onto fine platinum alloy wires. These thermistor beads are the bare counterparts of the glass coated bead thermistor series BR11, BR16 and BR23 series, respectively.

APPLICATIONS: The bare bead thermistors are not as stable as their glass coated counterparts. They offer the advantages of faster response and lower cost than the glass coated THERMOBEADS. Their use in high temperatures or severe environments is not recommended. They may be used in microwave power measurement applications or for general temperature measurement and control applications when the environmental exposures are limited or controlled by such means as encapsulation into a housing.

MAXIMUM TEMPERATURE: The series BB05, BB07 and BB11 THERMOBEADS exhibit best stability characteristics when the temperature is 105°C or less. Degraded stability will occur if the devices are operated or stored at temperatures up to 150°C. The use of bare bead thermistors is not recommended above 150°C.

RESISTANCE VS. TEMPERATURE CHARACTERISTIC - The bare bead thermistor standard resistance values, the nominal resistance ratio between 25°C and 125°C, the material system code letter and curve number may be obtained by referring to the appropriate glass coated thermistor bead data sheets:

SERIES BB05 - See TABLE A (SERIES BR11) PAGE B-8 SERIES BB07 - See TABLE B (SERIES BR16) PAGE B-10 SERIES BB11 - See TABLE B (SERIES BR23) PAGE B-12

THERMAL AND ELECTRICAL PROPERTIES (Definitions and test methods per MIL-T-23648)

		Series BB05	Series BB07	Series BB11
Thermal Time Constant	in still air water plunge	0.11 sec 4.5 mSec	0.2 sec 6 mSec	0.65 sec 11 mSec
Dissipation Constant	in still air in still water	.05mW/°C .25mW/°C	.07mW/°C .35mW/°C	.095 mW/°C .47 mW/°C
Resistance Range		1K to 10M	300 to 10M	300 to 10M
Maximum Power Rating		.004 watts	.006 watts	.008 watts

ORDERING INFORMATION

The Code Number to be ordered may be specified as follows:

For example, a 0.005 inch nominal diameter BARE THERMOBEAD with opposite leads having a zero-power resistance of 2000 Ω and a tolerance of $\pm 25\%$ would be specified as BB05PA202N

OPTIONS:

The standard units may be modified to suit the users particular needs by specifying any of the following options:

- Non-standard resistance values.
- Reference temperature(s) other than 25°C.
- Non-standard tolerances (at one or more temperatures).
- Solderable or weldable and solderable leads.
- · Special mountings and enclosures.
- · Calibration specify temperature(s).

SERIES BO5 and BO7

All THERMOBEADS are designed to meet or exceed the performance requirements of MIL-T-23648.

STYLE: The series B05 and B07 THERMOBEADS consist of miniature bead thermistors which are hermetically sealed by means of specially selected glass coatings. These units exhibit excellent stability and are unaffected by severe environmental exposures, including high density nuclear radiation.

The series B05 and B07 THERMOBEADS are characterized by very fast response times and relatively high power sensitivity. As such, they are particularly well suited for temperature measurement and control applications requiring very small, low heat capacity sensors, as well as self-heated applications such as gas chromatography, liquid level measurement and control, thermal conductivity analysis and gas flow measurement.

RESISTANCE VS. TEMPERATURE CHARACTERISTIC - The nominal standard values for the Zero-Power Resistance at 25°C, R_{25} , are shown in Table A. Also shown are the nominal Resistance Ratio between 25°C and 125°C, R_{25}/R_{125} , and the material system code letter (MS).

TABLE A - STANDARD RESISTANCE VALUES*

R_{25} $K\Omega$	R ₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅ R ₁₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅	R-T Curve	MS
1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1	12.5	2	A	10 11 12 13 15 16 18 20 22 24 27 30 33 36 39 43 47 51 56 62 68 75 82 91	19.8	5	A	100 110 120 130 150 160 180 200 220 240 270 300 330 360 390 430 470 510 560 620 680 750 820 910	22.7 29.4 30.8 32.3 35.7	7 8 8 9 10 11	T B	1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1	35.7 38.1 45.0 48.1	111 12 12 13	ω —

^{*}The resistance values shown are from the standard 24-value series decade shown in MIL-T-23648. Other values, as well as values specified at other reference temperatures, are available on request.

Thermobeads — Series BO5 and BO7

TABLE 1 - STANDARD TOLERANCES

Tolerance Code Letter	F	G	J	K	L	М	N	Р	Q	R	S
±% Tolerance @25°C	1	2	5	10	15	20	25	30	40	50	Non-Standard (Specify value)

Series BO5

Series B07

THERMAL AND ELECTRICAL PROPERTIES

(Definitions and test methods per MIL-T-23648)

0.23 sec. 0.12 sec. **Thermal Time Constant** in still air 5 mSec. 7 mSec. water plunge .045mW/°C .06mW/°C in still air **Dissipation Constant**

.30mW/°C in still water .23mW/°C

1K to 10M ohms 1K to 10M ohms See Table A for **Resistance Range** standard values

.006 watts .008 watts

Maximum Temperature - All THERMOBEADS are aged at 300°C for extended periods of time. As such, they exhibit excellent stability for all temperatures at or below 300°C. Intermittent operation at temperatures up to 600°C is permissible. When additional pre-conditioning is specified, compliance with the performance requirements of MIL-T-23648 can be guaranteed.

ORDERING INFORMATION

Maximum Power Rating

The Code Number to be ordered may be specified as follows:

Notes: 1) Special tolerances are available on request. To specify a non-standard tolerance, use the letter "S" followed by the desired tolerance (i.e., $S3 = \pm 3\%$).

2) The zero-power resistance at 25°C, expressed in ohms, is identified by a three digit number. The first two digits represent significant figures, and the last digit specifies the number of zeros to follow.

For example, a 0.005 inch nominal diameter glass coated THERMOBEAD with opposite leads having a zero-power resistance of 2000 Ω and a tolerance of $\pm 25\%$ would be specified as B05PA202N.

OPTIONS:

The standard units may be modified to suit the users particular needs by specifying any of the following options:

- Non-standard resistance values.
- · Reference temperature(s) other than 25°C.
- Non-standard tolerances (at one or more temperatures).
- Longer continuous leads.
- · Welded or soldered extension leads specify lead material, diameter, length, and insulation, if any.
- Solderable or weldable and solderable leads.
- · Special mountings and enclosures.
- · Calibration specify temperature(s).
- · Interchangeable pairs, sets; curve matching specify temperature(s) and tolerance(s).
- Special aging for high reliability applications.

SERIES B10 and B14

All THERMOBEADS are designed to meet or exceed the performance requirements of MIL-T-23648.

STYLE: The series B10 and B14 THERMOBEADS consist of miniature bead thermistors which are hermetically sealed by means of specially selected glass coatings. These units exhibit excellent stability and are unaffected by severe environmental exposures. Special designs are available (series BH10 and BH14) for continuous exposure to highly reactive gases, such as hydrogen. The series B10 and B14 THERMOBEADS are characterized by very fast response times and relatively high power sensitivity. As such, they are particularly well suited for temperature measurement and control applications requiring very small, low heat capacity sensors, as well as self-heated applications such as gas chromatography, liquid level measurement and control, thermal conductivity analysis and gas flow measurement. For high frequency applications, such as microwave power measurement, units are available with controlled capacitance (Series BC10 and BC14).

RESISTANCE VS. TEMPERATURE CHARACTERISTIC – The nominal standard values for the Zero-Power Resistance at 25°C, R_{25} , are shown in Table B. Also shown are the nominal Resistance Ratio between 25°C and 125°C, R_{25}/R_{125} , and the material system code letter (MS).

TABLE B - STANDARD RESISTANCE VALUES*

R_{25} Ω	R ₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅ R ₁₂₅	R-T Curve	MS	R ₂₅ Κ Ω	R ₂₅	R-T Curve	MS.	R ₂₅ Κ Ω	R ₂₅	R-T Curve	MS
300 330 360 390 430 470 510 560 620 680 750 820 910	11.8	1 2	A	1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1	12.5	3 4 5	A	10 11 12 13 15 16 18 20 22 24 27 30 33 36 39 43 47 51 56 62 68 75 82 91	22.7	7	A	100 110 120 130 150 160 180 200 220 240 270 300 330 360 390 430 470 510 560 620 680 750 820 910	30.8 30.8 32.3 35.7	9 10 11 11	В	1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1	45.0 45.0 45.5	13 13 14 15	В

^{*}The resistance values shown are from the standard 24-value series decade shown in MIL-T-23648. Other values, as well as values specified at other reference temperatures, are available on request.

Thermobeads — Series B10 and B14

TABLE 1 - STANDARD TOLERANCES

Tolerance Code Letter	F	G	J	K	L	М	N	Р	Q	R	S
±% Tolerance @ 25°C	1	2	5	10	15	20	25	30	40	50	Non-Standard (Specify value)

THERMAL AND ELECTRICAL PROPERTIES

(Definitions and test methods per MIL-T-23648)

in still air

0.5 sec. 10 mSec.

Series B10

Series B14

Thermal Time Constant in st

water plunge 10 m

1.0 sec. 15 mSec.

Dissipation Constant

in still air in still water

.09mW/°C .10mW/°C .45mW/°C .50mW/°C

Resistance Range 300 to 10M ohms 300 to 10M ohms See Table B for

standard values

Maximum Power Rating

.010 watts

.014 watts

All THERMOBEADS are aged at 300°C for extended periods of time. As such, they exhibit excellent stability for all temperatures at or below 300°C. Intermittent operation at temperatures up to 600°C is permissible. When additional pre-conditioning is specified, compliance with the performance requirements of MIL-T-23648 can be guaranteed.

ORDERING INFORMATION

The Code Number to be ordered may be specified as follows:

Notes: 1) Special tolerances are available on request. To specify a non-standard tolerance, use the letter "S" followed by the desired tolerance (i.e., $S3 = \pm 3\%$).

2) The zero-power resistance at 25°C, expressed in ohms, is identified by a three digit number. The first two digits represent significant figures, and the last digit specifies the number of zeros to follow.

For example, a 0.014 inch nominal diameter glass coated THERMOBEAD with opposite leads having a zero-power resistance of 2000 Ω and a tolerance of $\pm 25\%$ would be specified as B14PA202N.

OPTIONS:

The standard units may be modified to suit the users particular needs by specifying any of the following options:

- Non-standard resistance values.
- Reference temperature(s) other than 25°C.
- Non-standard tolerances (at one or more temperatures).
- Longer continuous leads.
- Welded or soldered extension leads specify lead material, diameter, length, and insulation, if any.
- · Solderable or weldable and solderable leads.
- Special mountings and enclosures.
- Calibration specify temperature(s).
- Interchangeable pairs, sets; curve matching specify temperature(s) and tolerance(s).
- Special aging for high reliability applications.

SERIES B35 and B43

All THERMOBEADS are designed to meet or exceed the performance requirements of MIL-T-23648.

STYLE: The series B35 and B43 THERMOBEADS consist of a bead thermistor hermetically sealed with a shock resistant glass coating. These units exhibit excellent stability and are unaffected by severe environmental exposures. The units are elliptical in shape with nominal diameters of 0.035 and 0.043 inches, respectively.

APPLICATIONS: The series B35 and B43 THERMOBEADS are recommended for applications where smaller dimensions and fast response times are required. The series B35 and B43 THERMOBEADS are ideally suited for most low cost applications involving temperature measurement, control, compensation, liquid level or flow sensing.

MAXIMUM TEMPERATURE: All THERMOBEADS are aged at 300 °C for extended periods of time. As such, they exhibit excellent stability for all temperatures at or below 300 °C. Intermittent operation at temperatures up to 600 °C is permissible. When additional pre-conditioning is specified, compliance with the performance requirements of MIL-T-23648 can be guaranteed.

OPTIONS - The standard units may be modified to suit the users particular needs by specifying any of the following options:

- Non-standard resistance values.
- Reference temperature(s) other than 25 °C.
- Non-standard tolerances (at one or more temperatures).
- Longer continuous leads.
- Welded or soldered extension leads specify lead material, diameter, length, and insulation, if any.
- Tinned leads for improved solderability.
- Special mountings and enclosures.
- Calibration specify temperature(s).
- Interchangeable pairs, sets; curve matching specify temperature(s) and tolerance(s).
- Special aging for high reliability applications.

THERMAL AND ELECTRICAL PROPERTIES

(Definitions and test methods per MIL-T-23648)

DISSIPATION CONSTANT

THERMAL TIME CONSTANT

RESISTANCE RANGE
MAXIMUM POWER RATING

 SERIES B35
 SERIES B43

 (Still air @ 25 °C)
 0.30 mW/ °C
 0.35 mW/ °C

 (Still water @ 25 °C)
 1.50 mW/ °C
 2.00 mW/ °C

 (Still air)
 4.5 seconds
 5.5 seconds

 (Plunge into water)
 100 msec
 140 msec

30 ohms to 20 megohm - see Table C for standard values.

.035 watts max. - 100% of max. power up to 150 °C then derate linearly to 0% at 300 °C.

Thermobeads - Series B35 and B43

RESISTANCE VS. TEMPERATURE CHARACTERISTIC — The nominal standard values for the Zero-Power Resistance at 25 °C, R_{25} , are shown in Table C. Also shown are the nominal Resistance Ratio between 25 °C and 125 °C, R_{25} / R_{125} , and the material system code letter (MS).

TABLE C - STANDARD RESISTANCE VALUES*

R_{25} Ω	R ₂₅ R ₁₂₅	R-T Curve	MS	R_{25} Ω	R ₂₅ R ₁₂₅	R-T Curve	MS	R_{25} Κ Ω	R ₂₅	R-T Curve	MS	R_{25} Κ Ω	R ₂₅ R ₁₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅	R-T Curve	MS	R_{25} $M\Omega$	R ₂₅	R-T Curve	MS
30 33 36 39 43 47 51 56 62 68 75 82 91 100 110 120 130 150 160 180 200 220 240 270	11.8	1 1 2	E A	300 330 360 390 430 470 510 560 620 680 750 910 1000 1100 1200 1300 1500 1600 1800 2000 2200 2400 2700	12.5		A .	3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 10 11 12 13 15 16 18 20 22 24 27	19.8	5 8 9	A — A — B — B	30 33 36 39 43 47 51 56 62 68 75 82 91 100 110 120 130 150 160 180 200 220 240 270	30.8	†	B	300 330 360 390 430 470 510 560 620 680 750 820 910 1000 1100 1200 1300 1500 1600 1800 2000 2200 2400 2700	38.1 45.0 48.1 48.1	13 14 15 15	В	3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 10.0 11.0 12.0 13.0 15.0 15.0 16.0 18.0 20.0	75.6	16	D

^{*}The resistance values shown are from the standard 24-value series decade shown in MIL-T-23648. Other values, as well as values specified at other reference temperatures, are available on request.

TABLE 1 - STANDARD TOLERANCES

Tolerance Code Letter	F	G	J	K	L	M	N	Р	Q	R	S
± % Tolerance @ 25° C	1	2	5	10	15	20	25	30	40	50	Non-Standard (Specify value)

ORDERING INFORMATION

The Code Number to be ordered may be specified as follows:

Notes: 1) Special tolerances are available on request. To specify a non-standard tolerance, use the letter "S" followed by the desired tolerance (i.e., $S3 = \pm 3\%$).

2) The zero-power resistance at 25 °C, expressed in ohms, is identified by a three digit number, the first two digits represent significant figures, and the last digit specifies the number of zeros to follow. For example, a 0.043 inch nominal diameter glass coated THERMOBEAD with opposite leads, having a zero power resistance at 25 °C of 2000 Ω , and a tolerance of \pm 20 %, would be specified as B43PA202M.

SERIES BR11

Ruggedized

All ruggedized THERMOBEADS are designed to meet or exceed the performance requirements of MIL-T-23648. Their use is recommended for military applications and commercial applications for which high reliability is a requirement.

STYLE: The series BR11 THERMOBEADS are a ruggedized version of the glass coated bead thermistors (series B05 and B07). These ruggedized THERMOBEADS exhibit greater stability than their conventional glass coated counterparts in that a much better strain relief is provided for the lead wireglass interface as well as a superior hermetic seal. The series BR11 THERMOBEADS are the smallest, fastest response, ruggedized bead thermistors available.

APPLICATIONS: The series BR11 ruggedized THERMOBEADS are ideally suited for applications in which the thermistor lead wires may be inadvertantly tugged. With conventional glass coated bead thermistors, the glass seal may be ruptured and, in some cases, the strain may be transmitted to the lead wire-ceramic interface during assembly operations. The ruggedized THERMOBEADS were developed to eliminate such problems.

MAXIMUM TEMPERATURE: All ruggedized THERMO-BEADS are aged at 300 °C for extended periods of time. As such, they exhibit excellent stability for all temperatures at or below 300 °C. Intermittent operation at temperatures up to 600 °C is permissible. When additional pre-conditioning is specified, compliance with the performance requirements of MIL-T-23648 can be guaranteed.

OPTIONS - The standard units may be modified to suit the users particular needs by specifying any of the following options:

- Non-standard resistance values.
- Reference temperatures other than 25 °C.
- Non-standard tolerances (at one or more temperatures).
- Longer continuous leads.
- Welded or soldered extension leads specify lead material, diameter, length, and insulation, if any.
- Tinned leads for improved solderability.
- Special mountings and enclosures.
- Calibration specify temperature(s).
- Special aging for high reliability applications.
- Interchangeable pairs, sets; curve matching specify temperature(s) and tolerance(s).

THERMAL AND ELECTRICAL PROPERTIES

(Definitions and test methods per MIL-T-23648).

DISSIPATION CONSTANT

THERMAL TIME CONSTANT

RESISTANCE RANGE
MAXIMUM POWER RATING

SERIES BR11

(Still air @ 25 °C) .065 mW/ °C (Still water @ 25 °C) .33 mW/ °C (Still air) 0.8 sec (Plunge into water) 12 msec

1.0K ohm to 10 megohm - see Table A for standard values.

.007 watts max. - 100% of max. power up to 125°C then derate linearly to 0% at 300°C.

Thermobeads - BR11

RESISTANCE VS. TEMPERATURE CHARACTERISTIC - The nominal standard values for the Zero-Power Resistance at 25 °C, R_{25} , are shown in Table A. Also shown are the nominal Resistance Ratio between 25 °C and 125 °C, R_{25}/R_{125} , and the material system code letter (MS).

TABLE A - STANDARD RESISTANCE VALUES*

^{*}The resistance values shown are from the standard 24-value series decade shown in MIL-T-23648. Other values, as well as values specified at other reference temperatures, are available on request.

TABLE 1 - STANDARD TOLERANCES

Tolerance Code Letter	F	G	J	K	L	М	N	Р	Q	R	S
± % Tolerance @ 25°C	1	2	5	10	15	20	25	30	40	50	Non-Standard (Specify value)

ORDERING INFORMATION

The Code Number to be ordered may be specified as follows:

Notes: 1) Special tolerances are available on request. To specify a non-standard tolerance, use the letter "S" followed by the desired tolerance (i.e., $S3 = \pm 3\%$).

2) The zero-power resistance 25 °C, expressed in ohms, is identified by a three digit number. The first two digits represent significant figures, and the last digit specifies the number of zeros to follow.

For example, a 0.011 inch nominal diameter ruggedized THERMOBEAD with adjacent leads, having a zero-power resistance of 2000 Ω , and a tolerance of \pm 25 %, would be specified as BR11KA202N.

SERIES BR14 and BR16 Ruggedized

All ruggedized THERMOBEADS are designed to meet or exceed the performance requirements of MIL-T-23648. Their use is recommended for military applications and commercial applications for which high reliability is a requirement.

STYLE: The series BR14 and BR16 ruggedized THERMO-BEADS are actually a cross between the glass coated bead thermistor (series B14 THERMOBEADS) and the miniature glass probe thermistor (series P20 THERMO-PROBES). As such they combine the ruggedness and high reliability of the probe design with the smaller size offered by the bead design. These ruggedized THERMOBEADS exhibit greater stability than their conventional glass coated counterparts in that a much better strain relief is provided for the lead wire-glass interface as well as a superior hermetic seal.

APPLICATIONS: The series BR14 and BR16 ruggedized THERMOBEADS are ideally suited for applications in which the thermistor lead wires may be inadvertantly tugged. With conventional glass coated bead thermistors, the glass seal may be ruptured and, in some cases, the strain may be transmitted to the lead wire-ceramic interface during assembly operations. The ruggedized THERMOBEADS were developed to eliminate such problems.

MAXIMUM TEMPERATURE: All ruggedized THERMO-BEADS are aged at 300 °C for extended periods of time. As such, they exhibit excellent stability for all temperatures at or below 300 °C. Intermittent operation at temperatures up to 600 °C is permissible. When additional pre-conditioning is specified, compliance with the performance requirements of MIL-T-23648 can be guaranteed.

OPTIONS The standard units may be modified to suit the users particular needs by specifying any of the following options:

- Non-standard resistance values.
- Reference temperatures other than 25°C
- Non-standard tolerances (at one or more temperatures).
- Longer continuous leads.
- Welded or soldered extension leads specify lead material, diameter, length, and insulation, if any.
- Tinned leads for improved solderability.
- Special mountings and enclosures.
- Calibration specify temperature(s)
- Special aging for high reliability applications.
- Interchangeable pairs, sets; curve matching specify temperature(s) and tolerance(s).

THERMAL AND ELECTRICAL PROPERTIES

(Definitions and test methods per MIL-T-23648).

DISSIPATION CONSTANT

THERMAL TIME CONSTANT

RESISTANCE RANGE
MAXIMUM POWER RATING

(Still air @ 25°C) (Still water @ 25°C)

(Still air) (Plunge into water) 0.10 mW/°C 0.50 mW/°C

1.0 sec 14 msec

SERIES BR14

SERIES BR16 0.12 mW/°C

0.60 mW/°C 1.2 sec 16 msec

300 ohm to 10 megohm - see Table B for standard values.

.015 watts max. - 100% of max. power up to 125°C then derate linearly to 0% at 300°C.

Thermobeads Series BR14 and BR16

RESISTANCE VS. TEMPERATURE CHARACTERISTIC - The nominal standard values for the Zero-Power Resistance at 25 °C, R_{25} , are shown in Table B. Also shown are the nominal Resistance Ratio between 25 °C and 125 °C, R_{25}/R_{125} , and the material system code letter (MS).

TABLE B - STANDARD RESISTANCE VALUES*

R_{25} Ω	R ₂₅ R ₁₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅ R ₁₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅	R-T Curve	MS	R_{25} $K\Omega$	R ₂₅	R-T Curve	MS
300 330 360 390 430 470 510 560 620 680 750 820 910	11.8	1 2	4	1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.2 6.8 7.5 8.2 9.1	12.5	3 4 4 5 5	A	10 11 12 13 15 16 18 20 22 24 27 30 33 36 39 43 47 51 56 62 68 75 82 91	19.8	5 7 8 ¥	A T W A B W	100 110 120 130 150 160 180 200 220 240 270 300 330 360 390 430 470 510 620 680 750 820 910	30.8 30.8 32.3 35.7	9 10 11 12	B -	1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.2 6.2 7.5 8.2 9.1	38.1 45.0 48.1 56.5	12 13 14 14	В

^{*}The resistance values shown are from the standard 24-value series decade shown in MIL-T-23648. Other values, as well as values specified at other reference temperatures, are available on request.

TABLE 1 - STANDARD TOLERANCES

Tolerance Code Letter	F	G	J	K	L	М	N	Р	Q	R	S
± % Tolerance @ 25°C	1	2	5	10	15	20	25	30	40	50	Non-Standard (Specify value)

ORDERING INFORMATION

The Code Number to be ordered may be specified as follows:

Notes: 1) Special tolerances are available on request. To specify a non-standard tolerance, use the letter "S" followed by the desired tolerance (i.e., $S3 = \pm 3\%$).

2) The zero-power resistance 25 °C, expressed in ohms, is identified by a three digit number. The first two digits represent significant figures, and the last digit specifies the number of zeros to follow.

For example, a 0.016 inch nominal diameter ruggedized THERMOBEAD with adjacent leads, having a zero-power resistance of 2000 Ω , and a tolerance of $\pm 25\%$, would be specified as BR16KA202N.

SERIES BR23

Ruggedized

All ruggedized THERMOBEADS are designed to meet or exceed the performance requirements of MIL-T-23648. Their use is recommended for military applications and commercial applications for which high reliability is a requirement.

STYLE: The series BR23 THERMOBEAD is a ruggedized bead version of the P25 THERMOPROBE. As such, it combines the ruggedness and high reliability of the probe design with the smaller size offered by the bead design. These ruggedized THERMOBEADS exhibit greater stability than conventional glass coated thermistors in that a much better strain relief is provided for the lead wire-glass interface as well as a superior hermetic seal.

APPLICATIONS: The series BR23 ruggedized THERMOBEADS are ideally suited for applications in which the thermistor lead wires may be inadvertantly tugged. With conventional glass coated bead thermistors, the glass seal may be ruptured and, in some cases, the strain may be transmitted to the lead wire-ceramic interface during assembly operations. The ruggedized THERMOBEADS were developed to eliminate such problems.

MAXIMUM TEMPERATURE: All ruggedized THERMO-BEADS are aged at 300 °C for extended periods of time. As such, they exhibit excellent stability for all temperatures at or below 300 °C. Intermittent operation at temperatures up to 600 °C is permissible. When additional pre-conditioning is specified, compliance with the performance requirements of MIL-T-23648 can be guaranteed.

OPTIONS The standard units may be modified to suit the users particular needs by specifying any of the following options:

- Non-standard resistance values.
- Reference temperatures other than 25 °C.
- Non-standard tolerances (at one or more temperatures).
- Longer continuous leads.
- Welded or soldered extension leads specify lead material, diameter, length, and insulation, if any.
- Tinned leads for improved solderability.
- Special mountings and enclosures.
- Calibration specify temperature(s).
- Special aging for high reliability applications.
- Interchangeable pairs, sets; curve matching specify temperature(s) and tolerance(s).

Leads are platinum alloy 0.002" dia.

THERMAL AND ELECTRICAL PROPERTIES

(Definitions and test methods per MIL-T-23648).

DISSIPATION CONSTANT

THERMAL TIME CONSTANT

RESISTANCE RANGE
MAXIMUM POWER RATING

SERIES BR23

(Still air @ 25 °C) 0.18 mW/°C (Still water @ 25 °C) 0.90 mW/°C

(Still air) 1.7 sec (Plunge into water) 40 msec

300 ohm to 10 megohm - see Table B for standard values.

.020 watts max. - 100% of max. power up to 125°C then derate linearly to 0% at 300°C.

Thermobeads - SERIES BR23

RESISTANCE VS. TEMPERATURE CHARACTERISTIC The nominal standard values for the Zero-Power Resistance at 25 °C, R_{25} , are shown in Table B. Also shown are the nominal Resistance Ratio between 25 °C and 125 °C, R_{25}/R_{125} , and the material system code letter (MS).

TABLE B - STANDARD RESISTANCE VALUES*

R_{25} Ω	R ₂₅ R ₁₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅ R ₁₂₅	R-T Curve	MS	R_{25} $K\Omega$	R ₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅ R ₁₂₅	R-T Curve	MS
300 330 360 390 430 470 510 560 620 680 750 820 910	11.8	1 2	A	1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1	12.5	3 4	A	10 11 12 13 15 16 18 20 22 24 27 30 33 36 39 43 47 51 56 62 68 75 82 91	22.7	7 8	A T B T	100 110 120 130 150 160 180 200 220 240 270 300 330 360 390 430 470 510 680 750 820 910	30.8 30.8 32.3 35.7	9 10 11 12	B	1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1	38.1 45.0 48.1 56.5	12 13 14 15	В

^{*}The resistance values shown are from the standard 24-value series decade shown in MIL-T-23648. Other values, as well as values specified at other reference temperatures, are available on request.

TABLE 1 - STANDARD TOLERANCES

Tolerance Code Letter	F	G	J	K	L	М	N	Р	Q	R	S
± % Tolerance @ 25°C	1	2	5	10	15	20	25	30	40	50	Non-Standard (Specify value)

ORDERING INFORMATION

The Code Number to be ordered may be specified as follows:

Notes: 1) Special tolerances are available on request. To specify a non-standard tolerance, use the letter "S" followed by the desired tolerance (i.e., $S3 = \pm 3\%$).

2) The zero-power resistance 25 °C, expressed in ohms, is identified by a three digit number. The first two digits represent significant figures, and the last digit specifies the number of zeros to follow.

For example, a 0.023 inch nominal diameter ruggedized THERMOBEAD with adjacent leads, having a zero-power resistance of 2000 Ω , and a tolerance of $\pm 25\%$, would be specified as BR 23 KA202N.

SERIES BR32

Ruggedized

All ruggedized THERMOBEADS are designed to meet or exceed the performance requirements of MIL-T-23648. Their use is recommended for military applications as well as low cost high reliability applications.

STYLE: The series BR32 THERMOBEAD is a ruggedized bead version of the series P30 THERMOPROBE. As such, it combines the ruggedness and high reliability of the probe design with the smaller size offered by the bead design. The series BR32 THERMOBEAD exhibits greater stability than conventional glass coated bead thermistors in that the ruggedized glass version provides better strain relief for the lead wire-glass interface, as well as a superior hermetic seal.

APPLICATIONS: The series BR32 THERMOBEADS are ideally suited for assembly operations in which the thermistor lead wires may be inadvertantly tugged. With normal glass coated bead thermistors the glass seal may be ruptured during assembly operations and, in some cases, the strain may be transmitted to the lead wire - ceramic interface. The series BR32 THERMOBEADS were developed to eliminate such problems.

MAXIMUM TEMPERATURE: All THERMOBEADS are aged at 300 °C for extended periods of time. As such, they exhibit excellent stability for all service temperatures at or below 300 °C. Intermittent operation at temperatures up to 600 °C is permissible. When additional pre-conditioning is specified, compliance with the performance requirements of MIL-T-23648 can be guaranteed.

OPTIONS - Standard units may be modified to suit the users particular needs by specifying any of the following options:

- Non standard resistance values
- Non standard tolerance(s)
- Reference temperature(s) other than 25 °C
- Longer continuous leads
- Tinned leads for greatly improved solderability
- Welded or soldered extension leads specify lead and insulation material, and dimensions, if any.
- Special mountings and enclosures
- Calibration specify temperature(s)
- Special aging for high reliability applications
- Interchangeable pairs, sets; curve matching specify temperature(s) and tolerance(s)

THERMAL AND ELECTRICAL PROPERTIES

(Definitions and test methods per MIL-T-23648)

DISSIPATION CONSTANT

THERMAL TIME CONSTANT

RESISTANCE RANGE
MAXIMUM POWER RATING

SERIES BR32

(Still air @ 25°C) (Still water @ 25°C)

(Still air) (Plunge into water) 0.28 Milliwatt/°C 1.4 Milliwatt/°C

4.5 Seconds 90 Milliseconds

100 Ohms to 10 Megohms - see Table D for standard values.

.035 Watts max. - Derating curve; 100% of max. power to 150°C linearly derated to 0% at 300°C.

Thermobeads Series BR32

RESISTANCE VS. TEMPERATURE CHARACTERISTIC - The nominal standard values for the Zero-Power Resistance at 25 °C, R_{25} , are shown in Table D. Also shown are the nominal Resistance Ratio between 25 °C and 125 °C, R_{25}/R_{125} , and the material system code letter (MS).

TABLE D - STANDARD RESISTANCE VALUES*

R_{25} Ω	R ₂₅ R ₁₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅ R ₁₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅	R-T Curve	мѕ
100 110 120 130 150 160 180 200 220 240 270 300 330 360	11.8	1	A -	1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6	14.0	3 4 4	A	10 11 12 13 15 16 18 20 22 24 27 30 33 36	22.1	77	A T V	100 110 120 130 150 160 180 200 220 240 270 300 330 360	32.3	10	В	1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6	45.0	13	В
390 430 470 510 560 620 680 750 820 910	12.5 14.0	2		3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1	19.8	5		39 43 47 51 56 62 68 75 82 91	30.8	9	В	390 430 470 510 560 620 680 750 820 910	38.1	12		3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1	75.6	15	D

^{*}The resistance values shown are from the standard 24-value series decade shown in MIL-T-23648. Other values, as well as values specified at other reference temperatures, are available on request.

TABLE 1 - STANDARD TOLERANCES

Tolerance Code Letter	F	G	J	K	L	М	N	Р	Q	R	S
±% Tolerance @ 25°C	1	2	5	10	15	20	25	30	40	50	Non-Standard (Specify value)

ORDERING INFORMATION

The Code Number to be ordered may be specified as follows:

Notes: 1) Special tolerances are available on request. To specify a non-standard tolerance, use the letter "S" followed by the desired tolerance (i.e., $S3 = \pm 3\%$).

2) The zero-power resistance at 25 °C, expressed in ohms, is identified by a three digit number. The first two digits represent significant figures, and the last digit specifies the number of zeros to follow.

For example, a 0.032 inch nominal diameter glass coated THERMOBEAD with opposite leads, having a zero power resistance at 25 °C of 2000 Ω , and a tolerance of $\pm 20\%$, would be specified as BR32PA202M.

SERIES BR42

Ruggedized

All ruggedized THERMOBEADS are designed to meet or exceed the performance requirements of MIL-T-23648. Their use is recommended for military applications as well as low cost high reliability applications.

STYLE: The series BR42 THERMOBEAD is a ruggedized bead version of the glass coated bead thermistor series B35. The series BR42 THERMOBEAD exhibits better stability than its glass coated counterpart in that a much better strain relief is provided for the lead wire-glass interface, as well as a much better hermetic seal.

APPLICATIONS: The series BR42 THERMOBEADS are ideally suited for assembly operations in which the thermistor lead wires may be inadvertantly tugged. With normal glass coated bead thermistors the glass seal may be ruptured during assembly operations and, in some cases, the strain may be transmitted to the lead wire - ceramic interface. The series BR42 THERMOBEADS were developed to eliminate such problems.

MAXIMUM TEMPERATURE: All THERMOBEADS are aged at 300 °C for extended periods of time. As such, they exhibit excellent stability for all service temperatures at or below 300 °C. Intermittent operation at temperatures up to 600 °C is permissible. When additional pre-conditioning is specified, compliance with the performance requirements of MIL-T-23648 can be guaranteed.

OPTIONS - Standard units may be modified to suit the users particular needs by specifying any of the following options:

- Non standard resistance values
- Non standard tolerance(s)
- Reference temperature(s) other than 25 °C
- Longer continuous leads
- Tinned leads for greatly improved solderability
- Welded or soldered extension leads specify lead and insulation material, and dimensions, if any.
- Special mountings and enclosures
- Calibration specify temperature(s)
- Special aging for high reliability applications
- Interchangeable pairs, sets; curve matching specify temperature(s) and tolerance(s)

THERMAL AND ELECTRICAL PROPERTIES

(Definitions and test methods per MIL-T-23648)

DISSIPATION CONSTANT

THERMAL TIME CONSTANT

RESISTANCE RANGE
MAXIMUM POWER RATING

SERIES BR42

(Still air @ 25°C) (Still water @ 25°C)

(Still air) (Plunge into water) 0.33 Milliwatt/°C 1.65 Milliwatt/°C

5 Seconds 140 Milliseconds

30 Ohms to 20 Megohms - see Table C for standard values.

.042 Watts max. - Derating curve; 100% of max. power to 150°C linearly derated to 0% at 300°C.

Thermobeads - Series BR42

RESISTANCE VS. TEMPERATURE CHARACTERISTIC - The nominal standard values for the Zero-Power Resistance at 25 °C, R_{25} , are shown in Table C. Also shown are the nominal Resistance Ratio between 25 °C and 125 °C, R_{25}/R_{125} , and the material system code letter (MS).

TABLE C - STANDARD RESISTANCE VALUES*

R_{25} Ω	R ₂₅ R ₁₂₅	R-T Curve	MS	R ₂₅	R ₂₅ R ₁₂₅	R-T Curve	мs	R_{25} $K\Omega$	R ₂₅ R ₁₂₅	R-T Curve	MS	R_{25} $KΩ$	R ₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅	R-T Curve	MS	R_{25} $M\Omega$	R ₂₅	R-T Curve	MS
30 33 36 39 43 47 51 56 62 68 75 82 91 100 110 120 130 150 160 180 200 220 240 270	11.8		E _ A	300 330 360 390 430 470 510 560 620 680 750 910 1000 1100 1200 1300 1500 1600 1800 2000 2200 2400 2700	14.0	3 4 4	A	3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 10 11 12 13 15 16 18 20 22 24 27	19.8 19.8 22.1 22.7 1 29.4 30.8	6	A	30 33 36 39 43 47 51 56 62 68 75 82 91 100 110 120 130 150 160 180 200 220 240 270	30.8	10	B	300 330 360 390 430 470 510 560 620 680 750 820 910 1000 1200 1300 1500 1600 1800 2000 2200 2400 2700	45.0 45.0 48.1	12	В	3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 10.0 11.0 12.0 13.0 15.0 16.0 18.0 20.0	75.6	16	D

^{*}The resistance values shown are from the standard 24-value series decade shown in MIL-T-23648. Other values, as well as values specified at other reference temperatures, are available on request.

TABLE 1 - STANDARD TOLERANCES

Tolerance Code Letter	F	G	J	K	L	М	N	Р	Q	R	S
±% Tolerance @ 25°C	1	2	5	10	15	20	25	30	40	50	Non-Standard (Specify value)

ORDERING INFORMATION

The Code Number to be ordered may be specified as follows:

Notes: 1) Special tolerances are available on request. To specify a non-standard tolerance, use the letter "S" followed by the desired tolerance (i.e., S3 = ± 3%).

2) The zero-power resistance at 25 °C, expressed in ohms, is identified by a three digit number. The first two digits represent significant figures, and the last digit specifies the number of zeros to follow.

For example, a 0.042 inch nominal diameter glass coated THERMOBEAD with opposite leads, having a zero power resistance at 25 °C of 2000 Ω , and a tolerance of $\pm 20\%$, would be specified as BR42PA202M.

SERIES BR55 Ruggedized

All ruggedized THERMOBEADS are designed to meet or exceed the performance requirements of MIL-T-23648. Their use is recommended for military applications as well as low cost high reliability applications.

STYLE: The series BR55 THERMOBEAD is a ruggedized bead version of the series P60 THERMOPROBE. As such, it combines the ruggedness and high reliability of the probe design with the smaller size offered by the bead design. The series BR55 THERMOBEAD, exhibits greater stability than the series B43 glass coated THERMOBEAD, in that a much better strain relief is provided for the lead wire - glass interface, as well as a superior hermetic seal.

APPLICATIONS: The series BR55 THERMOBEADS are ideally suited for assembly operations in which the thermistor lead wires may be inadvertantly tugged. With normal glass coated bead thermistors the glass seal may be ruptured during assembly operations and, in some cases, the strain may be transmitted to the lead wire - ceramic interface. The series BR55 THERMOBEADS were developed to eliminate such problems.

MAXIMUM TEMPERATURE: All THERMOBEADS are aged at 300 °C for extended periods of time. As such, they exhibit excellent stability for all service temperatures at or below 300 °C. Intermittent operation at temperatures up to 600 °C is permissible. When additional pre-conditioning is specified, compliance with the performance requirements of MIL-T-23648 can be guaranteed.

OPTIONS Standard units may be modified to suit the users particular needs by specifying any of the following options:

- Non standard resistance values
- Non standard tolerance(s)
- Reference temperature(s) other than 25°C
- Longer continuous leads
- Tinned leads for greatly improved solderability
- Welded or soldered extension leads specify lead and insulation material, and dimensions, if any.
- Special mountings and enclosures
- Calibration specify temperature(s)
- Special aging for high reliability applications
- Interchangeable pairs, sets; curve matching specify temperature(s) and tolerance(s)

THERMAL AND ELECTRICAL PROPERTIES

(Definitions and test methods per MIL-T-23648)

DISSIPATION CONSTANT

THERMAL TIME CONSTANT

RESISTANCE RANGE
MAXIMUM POWER RATING

SERIES BR55

(Still air @ 25°C) (Still water @ 25°C)

(Still air) (Plunge into water) 0.50 Milliwatt/°C 2.50 Milliwatt/°C

7 Seconds 200 Milliseconds

30 Ohms to 20 Megohms - see Table C for standard values.

.050 Watts max. - Derating curve; 100% of max. power to 200°C linearly derated to 0% at 300°C.

Thermobeads - Series BR55

RESISTANCE VS. TEMPERATURE CHARACTERISTIC - The nominal standard values for the Zero-Power Resistance at 25 °C, R_{25} , are shown in Table C. Also shown are the nominal Resistance Ratio between 25 °C and 125 °C, R_{25}/R_{125} , and the material system code letter (MS).

TABLE C - STANDARD RESISTANCE VALUES*

R_{25} Ω	R ₂₅ R ₁₂₅	R-T Curve	MS	R_{25} Ω	R ₂₅ R ₁₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅ R ₁₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅	R-T Curve	MS	R_{25} $M\Omega$	R ₂₅	R-T Curve	MS
30 33 36 39 43 47 51 56 62 68 75 82 91 100 110 120 130 150 160 180 200 220 240 270	11.8	1	E - A	300 330 360 390 430 470 510 560 620 680 750 820 910 1000 1100 1200 1300 1500 1600 1800 2000 2200 2400 2700	12.5	3 4 4	A	3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 10 11 12 13 15 16 18 20 22 24 27	19.8	6	A	30 33 36 39 43 47 51 56 62 68 75 82 91 100 110 120 130 150 160 180 200 220 240 270	30.8	†	В	300 330 360 390 430 470 510 560 620 680 750 820 910 1000 1100 1200 1300 1500 1600 1800 2000 2200 2400 2700	45.0	13 13 14 15	ω	3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 10.0 11.0 12.0 13.0 15.0 16.0 16.0 18.0 20.0	75.6	16	D

^{*}The resistance values shown are from the standard 24-value series decade shown in MIL-T-23648. Other values, as well as values specified at other reference temperatures, are available on request.

TABLE 1 - STANDARD TOLERANCES

Tolerance Code Letter	F	G	J	K	L	М	N	Р	Q	R	S
±% Tolerance @ 25°C	1	2	5	10	15	20	25	30	40	50	Non-Standard (Specify value)

ORDERING INFORMATION

The Code Number to be ordered may be specified as follows:

Notes: 1) Special tolerances are available on request. To specify a non-standard tolerance, use the letter "S" followed by the desired tolerance (i.e., $S3 = \pm 3\%$).

2) The zero-power resistance at 25 °C, expressed in ohms, is identified by a three digit number. The first two digits represent significant figures, and the last digit specifies the number of zeros to follow.

For example, a 0.055 inch nominal diameter glass coated THERMOBEAD with opposite leads, having a zero power resistance at 25 °C of 2000 Ω , and a tolerance of $\pm 20\%$, would be specified as BR55PA202M.

PROBES & RODS

SERIES P20 and P25

All miniature THERMOPROBES are designed to meet or exceed the performance requirements of MIL-T-23648.

STYLE: The series P20 and P25 miniature THERMO-PROBES consist of a small bead thermistor hermetically sealed in the tip of a shock resistant solid glass rod. These units are rugged and unaffected by severe environmental exposures, including high density nuclear radiation. They exhibit excellent long term stability.

APPLICATIONS: The series P20 and P25 miniature THERMOPROBES feature high reliability, stability, easy handling, and very fast thermal response times. Their use is recommended for assemblies incorporating small housings, needles and catheter tubes. They are particularly well suited for immersion in fluids where fast response is a major requirement. The nominal diameters of the P20 and P25 THERMOPROBES are 0.020 and 0.025 inches respectively.

MAXIMUM TEMPERATURE: The series P20 and P25 THERMOPROBES are aged at 300 °C for extended periods of time. As such, they exhibit excellent stability for all temperatures at or below 300 °C. Intermittent operation at temperatures up to 600 °C is permissible. When additional pre-conditioning is specified, compliance with the performance requirements of MIL-T-23648 can be guaranteed.

OPTIONS: The standard units may be modified to suit the users particular needs by specifying any of the following options.

- Non-standard resistance values.
- Non-standard sizes.
- Reference temperature(s) other than 25 °C.
- Non-standard tolerances (at one or more temperatures).
- Tinned leads for improved solderability.
- Longer or shorter leads.
- Extension leads specify lead, material, diameter, length, and insulation, if any. Also specify if moisture proof seal is desired over joint.
- Special mountings and enclosures.
- Calibration specify temperature(s).
- Interchangeable pairs, sets: curve matching specify temperature(s) and tolerance(s).

Table 1 - Standard Sizes of Series P20 and P25 THERMOPROBES

Dimension	S	eries	Series P25				
Max. Dia.		0.020)''	0.0)25''		
L	1/16''	1/8''	1/4''	1/8''	1/4''		
Lead Diameter	0.00	1''	0.002''	0.002''			

THERMAL AND ELECTRICAL PROPERTIES

(Definitions and test methods per MIL-T-23648)

DISSIPATION CONSTANT

THERMAL TIME CONSTANT

RESISTANCE RANGE

(Still air @ 25°C) (Still water @ 25°C) (Still air) (Plunge into water)

0.14 mW/°C 0.70 mW/°C

SERIES P20

0.16 mW/°C 0.80 mW/°C

SERIES P25

2.0 sec. 1.6 sec 18 msec 23 msec

300 ohm to 10 megohm - see Table B for standard values.

MAXIMUM POWER RATING 100% of max. power up to 150 °C then derate linearly to 0% power at 300°C.

.020 watts

.025 watts

Probes & Rods - Series P20 and P25

RESISTANCE VS. TEMPERATURE CHARACTERISTIC - The nominal standard values for the Zero-Power Resistance at 25 °C, R₂₅, are shown in Table B. Also shown are the nominal Resistance Ratio between 25 °C and 125 °C, R₂₅/R₁₂₅, and the material system code letter (MS).

TABLE B - STANDARD RESISTANCE VALUES*

R_{25} Ω	R ₂₅ R ₁₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅	R-T Curve	MS
300 330 360 390 430 470 510 560 620 680 750 820 910	11.8	1 2	A	1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1	12.5 14.0 16.9 19.8	3 - 4 - 5 +	A	10 11 12 13 15 16 18 20 22 24 27 30 33 36 39 43 47 51 56 62 68 75 82 91	22.7	5 7 8 7	A	100 110 120 130 150 160 180 200 220 240 270 300 330 360 390 430 470 510 620 680 750 820 910	30.8 30.8 32.3 35.7	8	В	1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1	45.0 45.0 48.1 48.1	12 13 13 14 15	В

^{*}The resistance values shown are from the standard 24-value series decade shown in MIL-T-23648. Other values, as well as values specified at other reference temperatures, are available on request.

TABLE 1 - STANDARD TOLERANCES

Tolerance Code Letter	F	G	J	K	L	M	N	Р	Q	R	S
± % Tolerance @ 25° C	1	2	5	10	15	20	25	30	40	50	Non-Standard (Specify value)

ORDERING INFORMATION

The Code Number to be ordered may be specified as follows:

Notes: 1) Special tolerances are available on request. To specify a non-standard tolerance, use the letter "S" followed by the desired tolerance (i.e., $S0.5 = \pm 0.5\%$).

2) The zero-power resistance at 25 °C, expressed in ohms, is identified by a three digit number. The first two digits represent significant figures, and the last digit specifies the number of zeros to follow.

3) The nominal probe length, in inches, is specified by a letter, as follows:

NOMINAL PROBE LENGTH	1/16	1/8	1/4
ORDERING CODE LETTER	AA	А	В

(see Table 1 for available sizes)

For example a 0.020 inch max. diameter x 1/4 inch long glass probe, with a zero-power resistance at 25 °C of 2000 Ω , and a tolerance of ± 20 %, would be specified as P20BA202M.

PROBES & RODS

SERIES P30

All miniature THERMOPROBES are designed to meet or exceed the performance requirements of MIL-T-23648.

STYLE: The series P30 miniature THERMO-PROBES consist of small bead thermistors hermetically sealed in the tips of shock resistant solid glass rods. These units are rugged and unaffected by severe environmental exposures, including high density nuclear radiation. They exhibit excellent long term stability.

APPLICATIONS: The series P30 miniature THERMOPROBES feature high reliability, stability, easy handling, and very fast thermal response times. Their use is recommended for assemblies incorporating small housings, needles and catheter tubes. They are particularly well suited for immersion in fluids where fast response is a major requirement.

OPTIONS: The standard units may be modified to suit the users particular needs by specifying any of the following options.

- Non-standard resistance values.
- Non-standard sizes.
- Reference temperature(s) other than 25 °C.

- Non-standard tolerances (at one or more temperatures).
- Tinned leads for improved solderability.
- Longer or shorter leads.
- Extension leads specify lead, material, diameter, length, and insulation, if any. Also specify if moisture proof seal is desired over joint.
- Special mountings and enclosures.
- Calibration specify temperature(s).
- Interchangeable pairs, sets: curve matching specify temperature(s) and tolerance(s).

Standard Sizes of Series P30 THERMOPROBES

Dimension	Serie	s P30
Max. Dia.	0.0	30''
L	1/8''	1/4''
Lead Diameter	0.0	03"

THERMAL AND ELECTRICAL PROPERTIES

(Definitions and test methods per MIL-T-23648)

DISSIPATION CONSTANT

THERMAL TIME CONSTANT

RESISTANCE RANGE

(Still air @ 25°C) (Still water @ 25°C) .30 mW/°C 1.5 mW/°C

(Still air) (Plunge into water) 3.0 sec 60 msec

100 ohm to 10 megohm - see Table D for standard values.

MAXIMUM POWER RATING 100% of max. power up to 150 °C then derate linearly to 0% power at 300 °C.

.035 watts

Probes & Rods - SERIES P30

RESISTANCE VS. TEMPERATURE CHARACTERISTIC - The nominal standard values for the Zero-Power Resistance at 25 °C, R_{25} , are shown in Table D. Also shown are the nominal Resistance Ratio between 25 °C and 125 °C, R_{25} , and the material system code letter (MS).

TABLE D-STANDARD RESISTANCE VALUES*

R ₂₅ Ω	R ₂₅ R ₁₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅	R-T Curve	MS
100 110 120 130 150 160 180 200 220 240 270 300 330 360 390 430	11.8	1	>	1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3	16.9	3 4	>	10 11 12 13 15 16 18 20 22 24 27 30 33 36 39 43	22.1	77	A T Y	100 110 120 130 150 160 180 200 220 240 270 300 330 360 390 430	32.3	11	В	1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3	45.0 45.0 48.1 56.5	13	В
470 510 560 620 680 750 820 910	12.5	3		4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1	22.1	6		47 51 56 62 68 75 82 91	30.8	9		470 510 560 620 680 750 820 910	38.1	12		4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1	75.6	16	A D

^{*}The resistance values shown are from the standard 24-value series decade shown in MIL-T-23648. Other values, as well as values specified at other reference temperatures, are available on request.

TABLE 1 - STANDARD TOLERANCES

Tolerance Code Letter	F	G	J	K	L	М	N	Р	Q	R	S
± % Tolerance @ 25° C	1	2	5	10	15	20	25	30	40	50	Non-Standard (Specify value)

ORDERING INFORMATION

The Code Number to be ordered may be specified as follows:

- **Notes:** 1) Special tolerances are available on request. To specify a non-standard tolerance, use the letter "S" followed by the desired tolerance (i.e., $S0.5 = \pm 0.5\%$).
 - 2) The zero-power resistance at 25 °C, expressed in ohms, is identified by a three digit number. The first two digits represent significant figures, and the last digit specifies the number of zeros to follow.
 - 3) The nominal probe length, in inches, is specified by a letter, as follows:

NOMINAL PROBE LENGTH	1/8	1/4
ORDERING CODE LETTER	А	В

(see Table 1 for available sizes)

For example a 0.030 inch max. diameter x 1/4 inch long glass probe, with a zero-power resistance at 25 °C of 2000 Ω , and a tolerance of $\pm 20\%$, would be specified as P30BA 202M.

PROBES & RODS

SERIES P60, P65, P85, and P100

All THERMOPROBES are designed to meet or exceed the performance requirements of MIL-T-23648.

The THERMOPROBE consists of a bead thermistor hermetically sealed in the tip of a shock resistant glass rod. These units are rugged and unaffected by severe environmental exposures, including high density nuclear radiation. They exhibit excellent long term stability.

TABLE 2 STANDARD SIZES OF SERIES P60, P65, P85 and P100 THERMOPROBES

DIMENSIONS	SERIES P60	SERIES P65	SERIES P85	SERIES P100
D	0.060	0.065	0.085	0.100
L	1/8 to 1/2	1/8 to 1/2	1/8 to 1	1/8 to 2
LEAD DIAMETER	0.008	0.008	0.012	0.012

All dimensions are in inches.

RESISTANCE VS. TEMPERATURE CHARACTERISTIC — The nominal standard values for the Zero-Power Resistance at 25 °C, R_{25} , are shown in Table C. Also shown are the nominal Resistance Ratio between 25 °C and 125 °C, R_{25}/R_{125} , and the material system code letter (MS).

TABLE C - STANDARD RESISTANCE VALUES*

R ₂₅	R ₂₅ R ₁₂₅	R-T Curve	MS	R_{25} Ω		R-T Curve	MS	R ₂₅ ΚΩ		R-T Curve	MS	R ₂₅ ΚΩ		R-T Curve	MS	R ₂₅ ΚΩ		R-T Curve	MS	R_{25} $M\Omega$	R ₂₅ R ₁₂₅	R-T Curve	MS
30 33 36 39 43 47 51 56 62 68 75 82 91 100 120 130 150 160 180 200 220 240 270	11.8	1	E A	300 330 360 390 430 470 510 560 620 680 750 820 910 1000 1100 1200 1300 1500 1600 1800 2000 2200 2400 2700	1	3 4	A	3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 10 11 12 13 15 16 18 20 22 24 27	19.8 19.8 22.1 22.7 29.4 30.8	6 7 8 8	A T B	30 33 36 39 43 47 51 56 62 68 75 82 91 100 110 120 130 150 160 180 200 220 240 270	32.3	†	Δ	300 330 360 390 430 470 510 560 620 680 750 820 910 1000 1100 1300 1500 1500 1600 1800 2000 2200 2400 2700	48.1	13	В.	3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 10.0 11.0 12.0 13.0 15.0 16.0 18.0 20.0	75.6	16	D

^{*}The resistance values shown are from the standard 24-value series decade shown in MIL-T-23648 Other values, as well as values specified at other reference temperatures, are available on request.

Probes & Rods - Series P60, P65, P85, and P100

TABLE 1 - STANDARD TOLERANCES

Tolerance Code Letter	F	G	J	K	L	М	N	Р	Q	R	S
±% Tolerance @ 25°C	1	2	5	10	15	20	25	30	40	50	Non-Standard (Specify value)

THERMAL AND ELECTRICAL PROPERTIES

(Definitions and test methods per MIL-T-23648)

Thermal Time Constant	in still air	12 sec.	13 sec.	16 sec.	22 sec.
	water plunge	300 mSec.	320 mSec.	400 mSec.	650 mSec.
Dissipation Constant Resistance Range Maximum Power Rating	in still air in still water	.6 mW/°C 3.0 mW/°C 30-20M ohms .060 watts	.65 mW/°C 3.3 mW/°C 30-20M ohms .065 watts	.8 mW/°C 4.0 mW/°C 30-20M ohms .075 watts	1.0 mW/°C 5.0 mW/°C 30-20M ohms .100 watts

Maximum Temperature - All THERMOPROBES are aged at 300 °C for extended periods of time. As such, they exhibit excellent stability for all temperatures at or below 300 °C. Intermittent operation at temperatures up to 600 ° is permissible. When additional pre-conditioning is specified, compliance with the performance requirements of MIL-T-23648 can be guaranteed.

ORDERING INFORMATION

The Code Number to be ordered may be specified as follows:

Notes: 1) Special tolerances are available on request. To specify a non-standard tolerance, use the letter "S" followed by the desired tolerance (i.e., $S0.5 = \pm 0.5\%$).

- 2) The zero-power resistance at 25°C, expressed in ohms, is identified by a three digit number. The first two digits represent significant figures, and the last digit specifies the number of zeros to follow.
 - 3) The nominal probe length available for each series is indicated in the chart below:

NOMINAL PROBE LENGTH	1/8	1/4	3/8	1/2	3/4	1	11/4	11/2	1 3/4	2
ORDERING CODE LETTER	Α	В	С	D	F	Н	K	М	Р	R
Series P100										
Series P85										
Series P65										
Series P60										

O CIRCLED LENGTHS ARE NORMALLY STOCKED

For example, an 0.060 inch max. diameter x $^{1/4}$ inch long glass probe with a zero-power resistance at 25 °C of 2000 Ω and a tolerance of \pm 20% would be specified as P 60 BA 202 M.

OPTIONS The standard units may be modified to suit the users particular needs by specifying any of the following options:

- Non-standard resistance values.
- Non-standard sizes.
- Reference temperature(s) other than 25°C.
- Non-standard tolerances (at 1 or more temperatures).
- Special alloy leads for continuous lead exposure to high temperatures (in excess of 300°C).
- Longer or shorter leads.

- Special mountings and enclosures.
- Calibration specify temperatures.
- Interchangeable pairs, sets; curve matching specify temperature(s) and tolerance(s).
- Special aging for high reliability applications.
- Extension leads specify lead material, diameter, length, and insulation, if any. Also specify if moisture proof seal is desired over joint.

PROBES & RODS

SERIES R60, R65, R85, and R100 Ruggedized

All ruggedized THERMORODS are designed to meet or exceed the performance requirements of MIL-T-23648.

STYLE: The ruggedized THERMOROD consists of a bead thermistor hermetically sealed in the center of a shock resistant glass rod. Axial leads are provided to permit mounting in a manner similar to that used for resistors or diodes. These units are mechanically rugged and unaffected by severe environmental exposures, including high density nuclear radiation. They exhibit excellent long term stability.

DIMENSION	SERIES R60	SERIES R65	SERIES R85	SERIES R100
D	0.060	0.065	0.085	0.100
LEAD DIAMETER	0.008	0.008	0.012	0.012

All dimensions are in inches.

RESISTANCE VS. TEMPERATURE CHARACTERISTIC - The nominal standard values for the Zero-Power Resistance at 25°C, R₂₅, are shown in Table C. Also shown are the nominal Resistance Ratio between 25°C and 125°C, R₂₅/R₁₂₅, and the material system code letter (MS).

TABLE C - STANDARD RESISTANCE VALUES

R_{25} Ω		R-T Curve	MS	R_{25} Ω	R ₂₅ R ₁₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅ R ₁₂₅	R-T Curve	MS	R_{25} $K\Omega$	R ₂₅	R-T Curve	MS	R_{25} $M\Omega$	R ₂₅ R ₁₂₅	R-T Curve	MS
30 33 36 39 43 47 51 56 62 68 75 82 91 100 110 120 130 150 160 180 200 220 240 270	11.8	1 2	E A	1100 1200 1300 1500 1600 1800	12.5	3 4	A	3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 10 11 12 13 15 16 18 20 22 24 27	19.8 22.1 22.7 29.4 30.8	6 7 7 8 8	A	30 33 36 39 43 47 51 56 62 68 75 82 91 100 110 120 130 150 160 180 200 220 240 270	30.8	10	B	300 330 360 390 430 470 510 560 620 680 750 820 910 1100 1200 1300 1500 1500 1600 1800 2200 2400 2700	45.0	13 13 14 14 15	B	3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 10.0 11.0 12.0 13.0 15.0 16.0 18.0 20.0	75.6	16	D

^{*}The resistance values shown are from the standard 24-value series decade shown in MIL-T-23648. Other values, as well as values specified at other reference temperatures, are available on request.

Probes & Rods - Series R60, R65, R85, and R100

TABLE 1 - STANDARD TOLERANCES

Tolerance Code Letter	F	G	J	K	L	М	N	Р	Q	R	S
±% Tolerance @ 25°C	1	2	5	10	15	20	25	30	40	50	Non-Standard (Specify value)

THERMAL AND ELECTRICAL PROPERTIES

(Definitions and test methods per MIL-T-23648)

Thermal Time Constant	in still air water plunge	Series R60 12 sec. 300 mSec.	Series R65 13 sec. 320 mSec.	Series R85 16 sec. 400 mSec.	Series R100 22 sec. 650 mSec.
Dissipation Constant	in still air in still water	.6 mW/°C 3.0 mW/°C	.65 mW/ °C 3.3 mW/ °C	.8 mW/°C 4.0 mW/°C	1.0 mW/ °C 5.0 mW/ °C
Resistance Range		30-20M ohms	30-20M ohms	30-20M ohms	30-20M ohms
Maximum Power Rating		.060 watts	.065 watts	.075 watts	.100 watts

Maximum Temperature - All ruggedized THERMORODS are aged at 300 °C for extended periods of time. As such, they exhibit excellent stability for all temperatures at or below 300 °C. Intermittent operation at temperatures up to 600 °C is permissible. When additional pre-conditioning is specified, compliance with the performance requirements of MIL-T-23648 can be guaranteed.

ORDERING INFORMATION

The Code Number to be ordered may be specified as follows:

Notes: 1) Special tolerances are available on request. To specify a non-standard tolerance, use the letter "S" followed by the desired tolerance (i.e., $S3 = \pm 3\%$).

2) The zero-power resistance at 25°C, expressed in ohms, is identified by a three digit number. The first two digits represent significant figures and the last digit specifies the number of zeros to follow.

For example, a 0.100 inch max. diameter ruggedized THERMOROD with a zero-power resistance at 25 $^{\circ}$ C of 2000 $^{\Omega}$ and a tolerance of \pm 20 $^{\circ}$ W would be specified as R 100 A 202 M.

OPTIONS: The standard units may be modified to suit the users particular needs by specifying any of the following options:

- Non-standard resistance values.
- Non-standard sizes.
- Reference temperature(s) other than 25°C.
- Non-standard tolerances (at 1 or more temperatures).
- Special alloy leads for continuous lead exposure to high temperatures (in excess of 300°C).
- Longer or shorter leads.

- Special mountings and enclosures.
- Calibration specify temperatures.
- Interchangeable pairs, sets; curve matching specify temperature(s) and tolerance(s).
- Special aging for high reliability applications.
- Extension leads specify lead material, diameter, length, and insulation, if any. Also specify if moisture proof seal is desired over joint.

PROBES & RODS

ULTRASTABLE SERIES SP60, SP65, SP85, and SP100

All ULTRA-STABLE THERMOPROBES are designed to meet or exceed the performance requirements of MIL-T-23648.

STYLE: The ULTRA-STABLE THERMOPROBE consists of a bead thermistor hermetically sealed in the tip of a shock resistant glass rod. These units have been processed for maximum long term stability and reliability. They are rugged and unaffected by severe environmental exposures, including high density nuclear radiation.

STANDARD SIZES OF SERIES SP60, SP65, SP85 AND SP100 THERMOPROBES

DIMENSION	SERIE	S SP60	SERIE	S SP65	SERIE	S SP85	SERIES	S SP100
D	0.0	60	0.0	65	0.0	85	0.100	
L	1/4	1/4 1/2		1/2	1/4	1/2	1/4	1/2
LEAD DIAMETER	0.0	0.008		80	0.0	12	0.012	

All dimensions are in inches.

RESISTANCE VS. TEMPERATURE CHARACTERISTIC - The nominal standard values for the Zero-Power Resistance at 25°C, R₂₅, are shown in Table C on page C-3.

TABLE 1 - STANDARD TOLERANCES

Tolerance Code Letter	F	G	J	K	L	М	N	Р	Q	R	S
±% Tolerance @ 25°C	1	2	5	10	15	20	25	30	40	50	Non-Standard (Specify value)

THERMAL AND ELECTRICAL PROPERTIES

(Definitions and test methods per MIL-T-23648)

Thermal Time Constant	in still air water plunge	Series SP60 12 sec. 300 mSec.	Series SP65 13 sec. 320 mSec.	Series SP85 16 sec. 400 mSec.	Series SP100 22 sec. 650 mSec.
Dissipation Constant	in still air in still water	.6 mW/°C 3.0 mW/°C	.65 mW/ °C 3.3 mW/ °C	.8 mW/°C 4.0 mW/°C	1.0 mW/°C 5.0 mW/°C
Resistance Range		30-20M ohms	30-20M ohms	30-20M ohms	30-20M ohms

MAXIMUM TEMPERATURE - All THERMOPROBES are aged at 300°C for extended periods of time. As such, they exhibit excellent stability for all temperatures at or below 300°C. Special additional aging is often used to stabilize units for particular temperature applications. Units purchased for stability class A should not be used in the higher temperature stability classes B & C (see stability).

Probes & Rods - Series SP60, SP65, SP85, and SP100

STABILITY: The ULTRA-STABLE SERIES THERMISTOR PROBES are available in three temperature classes and five stability groups. Table 4 lists the possible combinations for each resistance range.

TABLE 4 - STABILITY CLASS

	STABILITY GROUP PERCENT RESISTANCE PER YEAR							1 = .02% 2 = .05% 3 = .075%					4 = .1% 5 = .2%					
RESISTANCE RANGE		TEMP. CLASS "A" = 105°C MAX.					TEMP. CLASS "B" = 200°C MAX.					TEMP. CLASS "C" = 300°C MAX.						
30Ω - 1ΚΩ		_	A3	A4	A5	HARDINGS.	_	_	B4	B5		Regulations		C4	C5			
1ΚΩ - 3ΚΩ	A1	A2	A3	A4	A5		B2	B3	B4	B5		C2	C3	C4	C5			
3ΚΩ - 6ΚΩ	A1	A2	А3	A4	A5		B2	В3	B4	B5	_	C2	C3	C4	C5			
6ΚΩ - 15ΚΩ	A1	A2	А3	A4	A5		B2	B3	B4	B5		C2	C3	C4	C5			
15ΚΩ - 36ΚΩ		A2	A3	A4	A5			B3	B4	B5		_		C4	C5			
36 K Ω - 20 M Ω	_	waster.	A3	A4	A5		_		B4	B5	_	_	_	C4	C5			

ORDERING INFORMATION

The Code Number to be ordered may be specified as follows:

Notes: 1) Special tolerances are available on request. To specify a non-standard tolerance, use the letter "S" followed by the desired tolerance (i.e., $SO.5 = \pm 0.5\%$).

- 2) The zero-power resistance at 25°C, expressed in ohms, is identified by a three digit number. The first two digits represent significant figures, and the last digit specifies the number of zeros to follow.
 - 3) The nominal probe length, in inches, is specified by a letter, as follows:

NOMINAL PROBE LENGTH	1/8	1/4	1/2
ORDERING CODE LETTER	Α	В	D

For example, an 0.060 inch maximum diameter x $\frac{1}{2}$ inch long glass probe with a zero-power resistance at 25° C of 2000 Ω , a tolerance of $\pm 20\%$, a desired stability of $\pm .05\%$ per year and a maximum temperature rating of 105° C would be specified as SP 60 BA 202 M A 2

OPTIONS The standard units may be modified to suit the users particular needs by specifying any of the following options.

- Non-standard resistance values.
- Non-standard sizes.
- Reference temperature(s) other than 25°C.
- Non-standard tolerances (at 1 or more temperatures).
- Solderable and weldable leads.
- Longer or shorter leads.

- Extension leads specify lead material, diameter, length, and insulation, if any. Also specify if moisture proof seal is desired over joint.
- Special mountings and enclosures.
- Calibration specify temperatures.
- Interchangeable pairs, sets; curve matching specify temperature(s) and tolerance(s).

CALIBRATION Calibration service is available for these units with temperature accuracy to 0.0015°C and resistance accuracy to 0.005%. Either specific temperature points or a selected temperature range may be chosen for calibration. For range calibration, a computer readout can be furnished at increments of .001°C to 1°C.

APPLICATIONS: The SP SERIES THERMOPROBES are used where maximum stability and reliability are required. They may be calibrated and used as secondary temperature standards. They may be used as thermal sensors, in the same manner as standard THERMOPROBES with the added assurance of known long term stability.

High Temperature, Low Noise & Infrared

STYLE

THERMOFLAKES consist of thick film thermistors which have no substrate backings. Since their lead wires are fired directly into their electrodes, solder leaching and diffusion are completely eliminated. This results in excellent, low noise ohmic contacts.

APPLICATIONS

The high surface-to-mass ratio associated with a THERMOFLAKE results in low heat capacity and fast response time. THERMOFLAKES are ideally suited for infrared detection. Since the thermistor materials used are good absorbers of IR energy, satisfactory results may be obtained without the use of special absorption coatings. Such coatings do, however, provide more uniform absorption over a specified spectral wave length band. THERMOFLAKES may also be used for high speed temperature measurement, control, and compensation.

STANDARD THICKNESSES

THERMOFLAKES are available in standard thicknesses of 25 microns (0.001") and 50 microns (0.002"). Thinner units for faster response and thicker units for lower cost and greater ruggedness are available upon request.

SIZES - EFFECTIVE AREA

THERMOFLAKES may be purchased in the following standard sizes:

0.5x0.5mm (.020x.020") 2x2 mm (.080x.080") 0.5x1.0mm (.020x.040") 2x3 mm (.080x.120") 1x1 mm (.040x.040") 3x3 mm (.120x.120") 1x2 mm (.040x.080")

THERMOFLAKES with larger and smaller cross sections are available on special request. When used for detecting IR energy, the flake is mounted in an inverted position so that its black side faces the incident radition and its electrodes face away from the IR source. This results in greater efficiency since the entire flake area becomes the effective area.

MOUNTINGS

FIGURE D1-1 — A500 Single Thermoflake on T0-5 Header

FIGURE D1-2 — A501
Matched Pair of Thermoflakes
Side-By-Side Mounting

FIGURE D1-3 — A502 Matched Pair of Thermoflakes Vertical Mounting, One Above Other

FIGURE D1-4 — A505 Matched Pair of Thermoflakes Side-By-Side Mounts, One in Center

COATINGS

Absorptive coatings, such as 3M Black Velvet, are available on request. The absorptivity of the uncoated THERMOFLAKE is reasonably flat at approximately 40-45% in the range of 5-15 microns. Although an absorptive coating will result in a somewhat flatter spectral response at almost twice the absorptivity, it will not necessarily improve the sensitivity. This is due to the fact that the increased absorptivity is obtained at the expense of increased thermal mass.

FILTERS

Coated germanium filters which exhibit a passband of 7.5-13 microns are available from stock. Other windows are available on request.

MAXIMUM AMBIENT TEMPERATURE

THERMOFLAKES may be operated at temperatures as high as 300°C although maximum stability is obtained at temperatures below 105°C.

THERMAL AND ELECTRICAL PROPERTIES

* DISSIPATION CONSTANT:

0.2-0.4 Milliwatt/°C

*THERMAL TIME CONSTANT:

35-75 Milliseconds

*Values specified are for the THERMOFLAKE mounted by its leads in still air at 25°C. The actual value, within the range provided, depends upon the cross section and thickness of the flake. Time constant values represent cooling response to an electrical pulse which does not heat the leads significantly.

* RESISTANCE RANGE:

50 K ohms to 2 Megohms, see Table D2-B for standard values. Values between 1 K ohm and 100 Megohms are available on special order.

TEMPERATURE COEFFICIENT

Varies between -3.9%/°C and -4.4%/°C depending on size, thickness and the resistance of the THERMOFLAKE.

LEAD CONFIGURATIONS

(FIGURE D1-5) A504X-THERMOFLAKE ARRAY — SPECIFY NUMBER OF ELEMENTS

Table D2-A THERMOFLAKE SIZES

C	ordering Code	F20	FB20	F40	FB40	F80	FA80	F120
L ₁	inches (mm)	.020	.020 (.5)	.040 (1)	.040 (1)	.080 (2)	.080 (2)	.120 (3)
L ₂	inches (mm)	.020	.040 (.5)	.040 (1)	.080 (2)	.080 (2)	.120 (3)	.120

Table D2-B STANDARD RESISTANCE VALUES

R _o @ 25°C (in ohms)	50K	100K	200K	500K	1 Meg	1.5 Meg	2 Meg
Ordering Code	503	104	204	504	105	155	205

Non-Standard Resistance Values are available on request. The resistance is identified by the three digit code per MIL-T-23648A.

TABLE 1 STANDARD TOLERANCES

Tolerance Code Letter	F	G	J	K	L	М	N	Р	Q	R	S
± % Tolerance @ 25° C	1	2	5	10	15	20	25	30	40	50	Non-Standard (Specify value)

ORDERING INFORMATION The ordering code should be specified as follows:

Ordering Examples:

- A 50 micron thick THERMOFLAKE with a cross section of 1mm x 1mm, mounted on a T0-5 header (mounting A-500, figure D1-1) and having a resistance of 1 meghom ±25% at 25°C would be specified as: A500-2F40M105N. If a coated germanium filter were required, the part number would be: A500-2F40M105N-GF.
- An unmounted THERMOFLAKE having a thickness of 25 microns, a cross section of 2mm x 2mm, double adjacent leads and a resistance of 500K ohms ± 20% at 25°C would be specified as 1F80D504M.

OPTIONS

Non-standard Resistance Values Custom Assemblies Calibration, specify temperature(s) Matched pairs Other Sizes Other style headers

KITS

APPLICATIONS:

All of the Thermoflakes in our Kits are suitable for use in non-contact temperature measurement, flow measurement, gas chromatography, and general temperature measurement and control.

THERMOFLAKE KIT #1

Components —

- One .040"x.040"x.002" thick Thermoflake, mounted by its leads, which are .0007" diameter platinum alloy, on a standard T05 header (Assembly A500).
 Resistance at 25°C = 1 megohm, ± 40% tolerance.
- Three (3) unmounted .040"x.040"x.002" Thermoflakes with platinum alloy leads, in resistance ranges

from 50 K ohms to 1.5 megohms. These units are ready for mounting to your specific configuration.

Please note: Any of the mounted Thermoflakes are available with coated germanium filters, add \$20.00 per unit.

Price: \$34.00

THERMOFLAKE KIT #2

Components —

- One .040"x.040"x.002" thick Thermoflake, mounted by its leads, which are .001" diameter platinum alloy, on a standard T05 header (assembly A500). Resistance at 25°C = 200K ohms, ± 40% tolerance.
- Three (3) unmounted .040"x.040"x.002" Thermoflakes with platinum alloy leads, in resistance ranges

from 50K ohms to 1.5 megohms. These units are ready for mounting to your specific configuration.

Please note: Any of the mounted Thermoflakes are available with coated germanium filters, add \$20.00 per unit.

Price \$34.00

THERMOFLAKE KIT #3

Components —

- One .040"x.040"x.002" thick Thermoflake, mounted on its leads, which are .0007" diameter platinum alloy, on a standard T05 header (Assembly A500). Resistance at 25°C = 1 megohm, ±40% tolerance.
- One .040"x.040"x.002" thick Thermoflake mounted by its leads, which are .001" diameter platinum alloy, on a standard T05 header (assembly A500). Resistance at 25°C = 200K ohms, ± 40% tolerance.

Three (3) unmounted .040"x.040"x.002" Thermoflakes with platinum alloy leads, in resistance ranges from 500K ohms to 1.5 megohms. These units are ready for mounting to your specific configuration.

Please note: Any of the mounted Thermoflakes are available with coated germanium filters, add \$20.00 per unit.

Price: \$68.00

Thermoflakes — Kits

THERMOFLAKE KIT #4

Components -

- Two .040"x.040"x.002" thick Thermoflakes, mounted by .001" platinum alloy leads, side by side, on a standard T05 header (Assembly A505, p. D-1). The flakes have a resistance at 25°C of 200K ohms and are ratio matched to 0.5% (R_{0°C}/R_{50°C}) and resistance matched to 10% at R_{25°C}. This matched set provides temperature compensation for the "sensor" thermistor over the operating range.
- Three (3) unmounted .040"x.040"x.002" Thermoflakes with platinum alloy leads, in resistance ranges from 50K ohms to 1.5 megohms. These units are ready for mounting to your specific configuration.

Please note: Any of the mounted Thermoflakes are available with coated germanium filters, add \$20.00 per unit.

Price: \$86.50

THERMOFLAKE KIT #5

Components -

• Two .040"x.040"x.002" thick Thermoflakes, mounted by .001" platinum alloy leads, one above the other, centered, on a standard T05 header (see Assembly A502, p. D-1). The flakes have a resistance at 25°C of 200K ohms and are ratio matched to 0.5% (R_{0°C}/R_{50°C}) and resistance matched to 10% at R_{25°C}. This configuration provides automatic radiation shielding for the reference (compensating) thermistor and temperature compensation for the

"sensor" thermistor over the operating range.

 Three (3) unmounted .040"x.040"x.002" Thermoflakes with platinum alloy leads, in resistance ranges from 50K ohms to 1.5 megohms. These units are ready for mounting to your specific configuration.

Please note: Any of the mounted Thermoflakes are available with coated germanium filters, add \$20.00 per unit.

Price: \$125.00

THERMOFLAKE KIT #6 (Matched)

Components -

- Two .040"x.040"x.002" thick Thermoflakes, mounted by .001" platinum alloy leads, side by side, on a standard T05 header (Assembly A505 see p. D-1). The flakes have a resistance at 25°C of 200K ohms and are ratio matched to 0.5% (R $_{0^{\circ}\text{C}}$ /R $_{50^{\circ}\text{C}}$) and resistance matched to 10% at R $_{25^{\circ}\text{C}}$.
- Two flakes, as above, mounted one above the other and centered, on a standard T05 header (Assembly A502, see p. D-1). These matched sets provide
- temperature compensation for the "sensor" thermistor over the operating range.
- Three (3) unmounted .040"x.040"x.002" Thermoflakes with platinum alloy leads, in resistance ranges from 50K ohms to 1.5 megohms. These units are ready for mounting to your specific configuration.

Please note: Any of the mounted Thermoflakes are available with coated germanium filters, add \$20.00 per unit.

Price: \$180.50

MICROCIRCUIT

STYLE

MICROCIRCUIT THERMOFLAKES are thick film thermistor flakes which have no substrate backing. They are supplied with two solderable electrodes on one surface, making them ideally suited for surface (substrate) or pin mounting. Through the use of newly developed fabrication techniques at Thermometrics, it has been possible to obtain high temperature, low noise devices which provide an order of magnitude reduction in noise, when compared with other commercially available flake thermistors.

MICROCIRCUIT THERMOFLAKES are available in standard thickness of 0.003"-0.005" for ease of handling in high production applications.

CONFIGURATION

MICROCIRCUIT THERMOFLAKES are made in standard square and rectangular forms as shown below.

Standard Sizes, Resistance Values and Ratio (R_{25°C} /R_{125°C}) for Microcircuit Thermoflakes.

Figure	Style Code	Configuration	STANDARD RESISTANCE VALUES @ 25°C ± 40% AND ASSOCIATED RATIO R 25°C /R 125°C								
1	FM20 FM40 FM80	Square Square Square Square	Dimension ("L" x "L") 0.020" × 0.020" 0.040" × 0.040" 0.080" × 0.080"	R _T 1K Ratio 9.0	5K	50K	500K 29.7				
2	FM120	Square Rectangular	0.120" x 0.120" Dimension ("W" x "L")								
	FMB20 FMB40 FMB60	Rectangular Rectangular Rectangular	0.020" x 0.040" 0.040" x 0.080" 0.060" x 0.120"	R _T 2K Ratio 9.0	10K 11.5	100K 19.8	1 Meg 29.7				

Thermoflakes — Microcircuit

MAXIMUM TEMPERATURE

All MICROCIRCUIT THERMOFLAKES are designed for continuous operation at temperatures up to 125°C. When additional pre-conditioning is specified units may be operated up to 300°C.

TEMPERATURE COEFFICIENTS & RESISTANCE-TEMPERATURE DATA

Varies between -3.3%/°C and -4.0%/°C, @ 25°C, depending on size, thickness and the resistance of the Thermoflake. Coefficients may be determined by referring to the chart on page D-5 for ratio values and then selecting the "Resistance-Temperature Characteristics Curve" on the inside back cover. Resistance-Temperature data is given on this same curve.

THERMAL AND ELECTRICAL PROPERTIES

(Definitions and test methods per MIL-T-23648) **Thermal Time Constant Microcircuit Flakes**

in still air 0.125 sec.

Dissiptation Constant

in still air 0.50 mW/°C

Resistance Range 1K to 1M ohms
Maximum Power Rating 0.050 watts

Ordering Information — the part number may be specified as follows:

NOTES:

- Special tolerances are available on request. To specify a non-standard tolerance, use the letter "S" followed by the desired tolerance (ie, S25 = ± 25%).
- 2. The zero-power resistance @25°C, expressed in ohms, is identified by a three digit number. The first two digits represent significant figures, the last digit is the number of zeroes to follow. Therefore a 0.040" x 0.040" unit of 10K ohms and standard tolerance would be specified as FM40N103Q.

OPTIONS:

Non-standard resistance values

Non-standard tolerances

Matched pairs — specify temperature(s)

and tolerance(s)

Non-standard sizes References temperatures other than 25°C Calibration — specify temperature

HIGH TEMP

(ON SPECIAL ORDER)

SERIES HTBR55

All THERMOBEADS are designed to meet or exceed the performance requirements of MIL-T-23648. The ruggedized HI-TEMP THERMOBEADS are recommended for use in severe environments and in high reliability applications.

STYLE: The ruggedized HI-TEMP THERMOBEADS consist of a bead thermistor hermetically sealed in a special shock resistant glass. The series HTBR55 THERMOBEAD has a nominal diameter of 0.055 inch. Unlike commercial bead thermistors, the HI-TEMP THERMOBEADS exhibit excellent long term stability at continuous operating temperatures up to 450 °C. They are also unaffected by severe nuclear radiation.

APPLICATIONS: The series HTBR55 THERMOBEADS are ideally suited for assembly operations in which the thermistor lead wires may be inadvertently tugged. With conventional glass coated bead thermistors the glass seal may be ruptured and, in some cases, the strain can be transmitted to the lead wire-ceramic interface. The ruggedized HTBR55 THERMOBEADS were developed to eliminate such problems and to remain unaffected by severe operating temperatures up to 450 °C.

MAXIMUM TEMPERATURE: The series HTBR55 THERMOBEADS are aged at 450 °C for extended periods of time. As such, they exhibit excellent stability for all temperatures at or below 450 °C. Intermittent operation at temperatures up to 600 °C is permissible.

OPTIONS: The standard units may be modified to suit the users particular needs by specifying any of the following options.

- Non-standard resistance values.
- Reference temperature(s) other than 125 °C.
- Non-standard tolerances (at one or more temperatures).
- Longer continuous leads.
- Welded extension leads specify lead material, diameter, length, and insulation, if any.
- Special mountings and enclosures.
- Calibration specify temperature(s).
- Special aging for high reliability applications.
- Interchangeable pairs, sets; curve matching specify temperature(s) and tolerance(s).

THERMAL AND ELECTRICAL PROPERTIES

(Definitions and test methods per MIL-T-23648)

DISSIPATION CONSTANT

THERMAL TIME CONSTANT

RESISTANCE RANGE

MAXIMUM POWER RATING

SERIES HTBR55

(Still air @ 25°C)

0.5 mW/°C

(Still air @ 25°C)

7 seconds

110 K to 1 meg. at 125 °C - see Table D for standard values.

.050 watts max. - 100% of max. power up to 300 °C then derate linearly to 0% at 450 °C.

High Temp - Series HTBR55

R-vs-T CHARACTERISTIC:

The nominal standard values for the Zero-Power Resistance at 125 °C, R₁₂₅, are shown in Table D.

Also shown is a curve of $R_{\rm T}/R_{\rm 125}$ vs. Temperature where $R_{\rm T}$ is the resistance at any temperature.

DATA

TEMP °C	R _T /R ₁₂₅	TEMP °C	R _T /R ₁₂₅
125	1.00000	300	.00793
150	.41087	325	.00487
175	.18272	350	.00310
200	.08720	375	.00203
225	.04430	400	.00138
250	.02380	425	.00096
275	.01344	450	.00068

TABLE D-STANDARD RESISTANCE VALUES

R _T @ 125°C	Resistance Cod
510K ohms	514
750K ohms	754
1.0 Megohm	105
1.5 Megohm	155

TABLE 1 - STANDARD TOLERANCES

~											
Tolerance Code Letter	-	G	J	K	L	М	N	Р	Q	K	5
± % Tolerance @ 125 °C	1	2	5	10	15	20	25	30	40	50	Non-Standard (Specify value)

ORDERING INFORMATION

The Code Number to be ordered may be specified as follows:

Notes: 1) Special tolerances are available on request. To specify a non-standard tolerance, use the letter "S" followed by the desired tolerance (i.e., $S3 = \pm 3\%$).

followed by the desired tolerance (i.e., $S3 = \pm 3\%$). 2) The zero-power resistance at 125°C, expressed in ohms, is identified by a three digit number. The first two digits represent significant figures, and the last digit specifies the number of zeros to follow.

For example, a 0.055 inch nominal diameter glass coated THERMOBEAD with opposite leads, having a zero power resistance at 125 °C of 510 K, and a tolerance of $\pm 20\%$, would be specified as HTBR55PD 514M.

SERIES HTP60, 65, 85 and 100

STYLE: The Hi-Temp THERMOPROBE consists of a bead thermistor hermetically sealed in the tip of a shock resistant glass rod. These units are rugged and unaffected by severe environmental exposures, including high density nuclear radiation. They exhibit excellent long term stability at continuous operating temperatures up to 450°C.

R-vs-T CHARACTERISTIC:

The nominal standard values for the Zero-Power Resistance at 125 °C, R₁₂₅, are shown in Table D.

Also shown is a curve of $R_{\rm T}/R_{\rm 125}$ vs. Temperature where $R_{\rm T}$ is the resistance at any temperature.

DATA

TEMP °C	R _T /R ₁₂₅	TEMP °C	R _T /R ₁₂₅
125	1.00000	300	.00793
150	.41087	325	.00487
175	.18272	350	.00310
200	.08720	375	.00203
225	.04430	400	.00138
250	.02380	425	.00096
275	.01344	450	.00068

TABLE D - STANDARD RESISTANCE VALUES

R _T @ 125°C	Resistance Code
510K ohms	514
750K ohms	754
1.0 Megohm	105
1.5 Megohm	155

High Temp - Series HTP60, 65, 85 and 100

TABLE 1 - STANDARD TOLERANCES

Tolerance Code Letter	F	G	J	K	L	М	N	Р	Q	R	S
±% Tolerance @ 125°C	1	2	5	10	15	20	25	30	40	50	Non-Standard (Specify value)

THERMAL AND ELECTRICAL PROPERTIES

(Definitions and test methods per MIL-T-23648)

Thermal Time Constant	in still air	Series HTP60 12 sec.	Series HTP65 13 sec.	Series HTP85 16 sec.	Series HTP100 22 sec.
Dissipation Constant Resistance Range @125°C Maximum Power Rating	in still air (ohms)	0.60mW/°C 100K - 2M 0.060 watts	0.65 mW/°C 100K - 2M 0.065 watts	0.80 mW/°C 100K - 2M 0.075 watts	1.0 mW/°C 100K - 2M 0.100 watts

MAXIMUM TEMPERATURE - All Hi-Temp THERMOPROBES are aged at 450°C for extended periods of time. As such, they exhibit excellent stability for all temperatures at or below 450°C. Intermittent operation at temperatures up to 600°C is permissible. When additional pre-conditioning is specified, compliance with the performance requirements of MIL-T-23648 can be guaranteed.

ORDERING INFORMATION

The Code Number to be ordered may be specified as follows:

Notes: 1) Special tolerances are available on request. To specify a non-standard tolerance, use the letter "S" followed by the desired tolerance (i.e., $SO.5 = \pm 0.5\%$).

- 2) The zero-power resistance at 125°C, expressed in ohms, is identified by a three digit number. The first two digits represent significant figures, and the last digit specifies the number of zeros to follow.
 - 3) The nominal probe length, in inches, is specified by a letter, as follows:

NOMINAL PROBE LENGTH	1/4	1/2
ORDERING CODE LETTER	В	D

EXAMPLE

For example, 0.06 inch max. diameter x ¼ inch long glass probe with a zero-power resistance at 125°C of 510K and a tolerance of ±20% would be specified as HT P60BD514M.

OPTIONS: The standard units may be modified to suit the users particular needs by specifying any of the following options.

- Non-standard resistance values.
- Non-standard sizes.
- Reference temperature(s) other than 125°C.
- Non-standard tolerances (at 1 or more temperatures).
- Longer or shorter leads.
- Extension leads specify lead material, diameter, length, and insulation, if any. Also specify if moisture proof seal is desired over joint.
- Special mountings and enclosures.
- Calibration specify temperatures.
- Special aging for high reliability applications.

FASTIP THERMOPROBES

SERIES FP07, FP10, and FP14

All THERMOBEADS are designed to meet or exceed the performance requirements of MIL-T-23648.

Style

The FASTIP THERMOPROBES consist of small diameter glass coated thermistor beads hermetically sealed at the tips of shock resistant glass rods. The small bead thermistor has a very thin glass coating which allows for relatively flat frequency response for flow applications. As much of the bead as possible is exposed at the tip of the glass rod to provide the fastest response times. The units are rugged and unaffected by severe environmental exposures including high density nuclear radiation.

Applications

The FASTIP THERMOPROBES are ideally suited for high speed measurement and control of fluid temperatures, fluid level or flow. They offer the ease of handling associated with large glass probe thermistors as well as ultra-fast response times of small glass coated bead thermistors. These units exhibit relatively flat response to flow input from 200Hz to 1000Hz.

Maximum Temperature - All THERMOPROBES are aged at 300°C for extended periods of time. As such, they exhibit excellent stability for all temperatures at or below 300°C. Intermittent operation at temperatures up to 600°C is permissible. When additional pre-conditioning is specified, compliance with the performance requirements of MIL-T-23648 can be guaranteed.

THERMAL AND ELECTRICAL PROPERTIES

(Definitions and test methods per MIL-T-23648)

	Series FPU/	Series FP10	Series FP14
in still air water plunge	0.10 sec. 7 mSec.	0.12 sec. 10 mSec.	0.15 sec. 16 mSec.
in still air in still water	0.05mW/°C 0.25mW/°C	0.09mW/°C 0.45mW/°C	0.10mW/°C 0.50mW/°C
	0.006 watts	0.010 watts	0.014 watts
	1K to 10M	1K to 10M	1K to 10M
	water plunge in still air	in still air 0.10 sec. water plunge 7 mSec. in still air 0.05mW/°C in still water 0.25mW/°C 0.006 watts	in still air 0.10 sec. 0.12 sec. water plunge 7 mSec. 10 mSec. in still air 0.05mW/°C 0.09mW/°C in still water 0.25mW/°C 0.45mW/°C 0.006 watts 0.010 watts

RESISTANCE VS. TEMPERATURE CHARACTERISTIC - The nominal standard values for the Zero-Power Resistance at 25°C, R₂₅, are shown in Table B. Also Shown are the nominal Resistance Ratio between 25°C and 125°C, R₂₅/R₁₂₅, and the material system code letter (MS).

Fastip Thermoprobes — Series FP07, FP10, and FP14

TABLE B - STANDARD RESISTANCE VALUES*

R_{25} Ω	R ₂₅ R ₁₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅ R ₁₂₅	R-T Curve	MS	R ₂₅ ΚΩ	R ₂₅	R-T Curve	MS	R ₂₅ Κ Ω	R ₂₅	R-T Curve	MS
300 330 360 390 430 470 510 560 620 680 750 820 910	11.8	1 2	A	1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1	12.5 14.0 16.9 19.8	3 4	A	10 11 12 13 15 16 18 20 22 24 27 30 33 36 39 43 47 51 56 62 68 75 82 91	22.7	7 8	A B V	100 110 120 130 150 160 180 200 220 240 270 300 330 360 390 430 470 510 560 620 680 750 820 910	30.8 30.8 32.3 35.7	8	В —	1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1	45.0 45.0 48.1 56.5	12	В

^{*}The resistance values shown are from the standard 24-value series decade shown in MIL-T-23648. Other values, as well as values specified at other reference temperatures, are available on request.

TABLE 1 - STANDARD TOLERANCES

	Tolerance Code Letter	F	G	J	K	L	М	N	Р	Q	R	S
i	±% Tolerance @ 25°C	1	2	5	10	15	20	25	30	40	50	Non-Standard (Specify value)

ORDERING INFORMATION

The Code Number to be ordered may be specified as follows:

Notes: 1) Special tolerances are available on request. To specify a non-standard tolerance, use the letter "S" followed by the desired tolerance (i.e., $SO.5=\pm0.5\%$).

2) The zero-power resistance at 25°C, expressed in ohms, is identified by a three digit number. The first two digits represent significant figures, and the last digit specifies the number of zeros to follow.

OPTIONS: The standard units may be modified to suit the users particular needs by specifying any of the following options

- · Non-standard resistance values.
- Non-standard sizes.
- · Reference temperature(s) other than 25°C.
- · Non-standard tolerances (at 1 or more temperatures).
- · Longer or shorter leads.
- Special alloy leads for continuous lead exposure to high temperatures (in excess of 300°C).
- · Special mountings and enclosures.
- Calibration specify temperatures.
- Interchangeable pairs, sets; curve matching specify temperature(s) and tolerance(s)
- · Special aging for high reliability applications.
- Extension leads specify lead material, diameter, length, and insulation, if any. Also specify if moisture proof seal is desired over joint.

CRYOGENIC THERMOPROBES

SERIES CTP60, CTP65, CTP85, CTP100

SERIES CTFP07, CTFP10, CTFP14

STANDARD SIZES OF SERIES

	CRYO	GENIC THERM	OPROBES	FIG. 1	CRYOG	FIG. 2	
DIMENSIONS	CTP 60	CTP 65	CTP 85	CTP 100	CTFP 07	CTFP 10	CTFP 14
D (MAX. DIA.)	.060	.065	.085	.100	.085	.085	.085
L (LENGTH)	1/4" or 1/2"	1/4" or 1/2"	1/4" or 1/2"	1/4" or 1/2"	1/2"	1/2"	1/2"
LEAD DIAMETER	.008	.008	.012	.012	.012	.012	.012

STYLE: Cryogenic Thermoprobes consist of bead thermistors hermetically sealed into shock resistant solid glass rods and come in 2 basic styles. The CTFP ... series features a very small glass coated bead extending from the tip of the glass rod while the CTP ... series features a larger bead sealed within the tip of the glass rod. Both styles are rugged easy to handle and unaffected by severe environmental exposures including high density nuclear radiation. The CTFP ... units offer ultrafast response times whereas the CTP ... units are more rugged and at lower cost.

APPLICATIONS: All Cryogenic series Thermoprobes are designed for use in the range of 25°C (room temperature) to -196°C (the boiling point of Liquid Nitrogen). These units are very stable, exhibit no hysteresis effects, and rapid temperature cycling

from 25°C to -196°C has no measurable effect on electrical, thermal or mechanical properties. These units are well suited for Cryogenic temperature measurement and control applications such as cryogenic fluid flow, liquid level or temperature sensing in the 25°C to -196°C range. They may be used at temperatures below the Nitrogen Point with suitable instrumentation.

MAXIMUM TEMPERATURE: Cryogenic series Thermoprobes may be exposed to 300°C for short periods. Units can be exposed to 105°C for extended periods, however long term storage at or above 60°C may result in some resistance change, therefore storage below 60°C is recommended for best stability.

THERMAL AND ELECTRICAL PROPERTIES (Definitions and test methods per MIL-T-23648)

THERMAL &	CR	YOGENIC TI	HERMOPROE	CRYOGENIC FASTIP			
ELECTRICAL PROPERTIES	CTP 60	CTP 65	CTP 85	CTP 100	CTFP 07	CTFP 10	CTFP 14
THERMAL TIME CONSTANT IN STILL AIR (SECONDS)	12 Sec.	13 Sec.	16 Sec.	22 Sec.	.1 Sec.	.12 Sec.	.15 Sec.
DISSIPATION CONSTANT IN STILL AIR (MILLIWATTS/°C)	.60 mW/° C	.65 mW/° C	.80 mW/° C	1.0 mW/° C	.05 mW/° C	.09 mW/° C	.10 mW/°C
MAXIMUM POWER (WATTS)	.060 W	.065 W	.075 W	.100 W	.006 W	.010 W	.014 W

STANDARD RESISTANCE VALUES

RESISTANCE IN OHMS AT - 196°C *	RESISTANCE CODE
100K	104
240K	244
510K	514
1 Megohm	105

^{*}Resistance is measured in liquid nitrogen.

OPTIONS: The standard units may be modified to suit the users particular needs by specifying any of the following options:

- Non-standard probe lengths.
- Welded or soldered extension leads specify lead material, lead diameter, length and insulation, if any.
- Calibration at Liquid Nitrogen Point.
- Calibration over range 0°C to -140°C specify points.
- NBS calibration and test report.
- Interchangeable matched pairs.
- Special housings or enclosures.

RESISTANCE TOLERANCE

Standard tolerance is $\pm\,50\%$ (tolerance code letter R at end of code number). For other tolerances, substitute letter from table 1 (below) for suffix R at end of code number in table above. The CTFP07DE105R is 1 Megohm $\pm\,50\%$ when measured in liquid nitrogen.

TABLE I — STANDARD TOLERANCES

Tolerance Code Letter	К	L	М	N	Р	Q	R	S
± % Tolerance @ -196°C	10	15	20	25	30	40	50	Non-Standard (Specify value)

-195.82° = 1.0000	-85° = .00073512 -80° = .00059637
-195° = .97129037	-75° = .00048810
-190° = .75784916	-70° = .00040283
-185° = .54321686	-65° = .00033510
-180° = .37080903	-60° = .00028084
-175° = .24676085	-55° = .00023703
-170° = .16254994	-50° = .00020139
-165° = .10705529	-45° = .00017219
-160° = .07094719	-40° = .00014811
-155° = .04750487	-35° = .00012811
-150° = .03221784	-30° = .00011141
-145° = .02216270	-2 5° = .00009739
-140° = .01547439	-20° = .00008554
-135° = .01096864	- 15° = .00007547
-130° = .00789193	-1 0° = .00006688
-125° = .00576173	- 5° = .00005952
-120° = .00426633	- 0° = .00005317
-115° = .00320214	+ 5° = .00004768
-110° = .00243470	+10° = .00004291
-105° = .00187414	+15° = .00003875
-100° = .00145960	+20° = .00003510
- 95° = .00114941	+25° = .00003190
- 90° = .00091467	

ASSEMBLIES

SERIES AB6 THERMOBEAD AND THERMOPROBE ASSEMBLIES

STYLE:

Series AB6 thermistor assemblies consist of small Thermoprobes or Thermobeads which are welded to insulated extension leads. The Thermobeads or Thermoprobes are hermetically sealed in glass and have fine diameter (.0007" to .004") platinum alloy leads. The platinum leads are cut short and welded to insulated extension leads and the joints are covered in one of several insulation types depending upon the application or environment. The assembly is then ready for insertion into hypodermic needles, catheters or other small housings which require extended leads. Any of the Thermobeads or Thermoprobes listed in Table I may be used in a Series AB6 assembly. Please consult the catalog pages shown for specific electrical or mechanical properties for the thermistor selected.

TYPE A INSULATION

AB6A8 -

THERMISTOR WELDED TO 38 GA., NICKEL ALLOY 200, BIFILAR, HEAVY ISOMID INSULATED EXTENSION LEADS, 6½ FT. ± ½ FT. LONG. LIQUID EPOXY RESIN WEB OVER WELD JOINTS PROVIDES SOME STRAIN RELIEF.

FOR INSERTION INTO PLASTIC TUBING OR OTHER INSULATORS.

MAXIMUM CONTINUOUS OPERATING TEMPERATURE 105° C.

TYPE B INSULATION

AB6B2 -

THERMISTOR WELDED TO 38 GA., NICKEL ALLOY 200, BIFILAR, HEAVY ISOMID INSULATED EXTENSION LEADS, 6% FT. $\pm\%$ FT. LONG. POLYIMIDE SLEEVE IS EPOXIED OVER WELD JOINTS AND THERMISTOR, FOR STRAIN RELIEF AND INSULATION.

FOR INSERTION INTO METAL HOUSINGS OR TUBINGS. BEAD COVERED FOR MAXIMUM STRAIN RELIEF AND PROTECTION.

MAXIMUM CONTINUOUS OPERATING TEMPERATURE 175° C.

APPLICATIONS:

Thermobead and Thermoprobe assemblies are used where the small thermistor must be further connected to longer leads, for insertion into deep wells and cavities, or threading into long tubes. They may also be used, as is, for applications which require fast response measurements in confined spaces. With these assemblies, the fast response of the small thermistor is available without sacrificing handleability. The added leads and insulation allows the minute assemblies to be handled in further assembly operations, such as insertion into catheter lumens. The same electical characteristics that apply to the selected thermistor: resistance value, resistance ratio, stability; are unaltered in the assembly.

TYPE B INSULATION

AB6B4 -

THERMISTOR WELDED TO 38 GA., NICKEL ALLOY 200, BIFILAR, HEAVY ISOMID INSULATED EXTENSION LEADS, 6½ FT. ± ½ FT. LONG. POLIMIDE SLEEVE IS EPOXIED OVER WELD JOINTS AND UP TO BACK OF THERMISTOR BEAD, FOR STRAIN RELIEF AND ELECTRICAL INSULATION.

FOR INSERTION INTO METAL HOUSINGS OR TUBINGS WITH CLOSE TOLERANCES. BEAD EXPOSED AS MUCH AS POSSIBLE FOR FASTER RESPONSE.

MAXIMUM CONTINUOUS OPERATING TEMPERATURE 175° C.

TYPE C INSULATION

AB6C8 -

THERMISTOR WELDED TO 38 GA., NICKEL ALLOY 200, BIFILAR, HEAVY ISOMID INSULATED EXTENSION LEADS, $6\frac{1}{2}$ FT. $\pm\frac{1}{2}$ FT. LONG. MULTIPLE CONFORMAL DIP COATS OR LIQUID EPOXY RESIN FOR COMPLETE INSULATION WHEN IMMERSED IN FLUIDS.

FOR USE WHERE FASTEST RESPONSE TIMES ARE REQUIRED AND ASSEMBLY WILL BE FULLY IMMERSED IN CONDUCTIVE FLUIDS.

MAXIMUM CONTINUOUS OPERATING TEMPERATURE 105° C.

TYPE D INSULATION

AB6D2 -

THERMISTOR WELDED TO 38 GA., NICKEL ALLOY 200, BIFILAR, HEAVY ISOMID EXTENSION LEADS, $6\frac{1}{2}$ FT., $\pm\frac{1}{2}$ FT. LONG. SMALL WEB OF EPOXY PAINTED OVER WELD JOINTS FOR ELECTRICAL ISOLATION AND STRAIN RELIEF, HEAT SEALED MYLAR SHEATH OVER BEAD.

FOR FAST RESPONSE TIMES, LIMITED DEPTH OF IMMERSION, AND BEST LONG TERM IMMERSION QUALITIES.

MAXIMUM CONTINUOUS OPERATING TEMPERATURE 125° C.

TYPE E INSULATION

AB6E3 -

THERMISTOR WELDED TO 38 GA., NICKEL ALLOY 200, BIFILAR, HEAVY ISOMID INSULATED EXTENSION LEADS, 6½ FT. ± ½ FT. LONG. POLIMIDE SLEEVE IS EPOXIED OVER WELDS FOR STRAIN RELIEF AND ELECTRICAL INSULATION, MULTIPLE CONFORMAL DIP COATINGS OF FORMVAR ENAMEL FOR COMPLETE IMMERSIBILITY IN CONDUCTIVE FLUIDS.

FOR USE IN APPLICATIONS WHERE FAST RESPONSE, GOOD STRAIN RELIEF AND FULL IMMERSION IS REQUIRED.

MAXIMUM CONTINUOUS OPERATING TEMPERATURE 105° C.

ORDERING INFORMATION:

- Select the appropriate thermistor bead or small probe from one of the thermistor series shown in Table I. Refer to the appropriate catalog page for electrical and mechanical properties of the thermistor selected and specific ordering information for that thermistor.
- Select one of the assembly styles shown and use the assembly prefix listed for that style followed

TYPE E INSULATION

AB6E5 -

THERMISTOR BEAD WELDED TO 38 GA., NICKEL ALLOY 200, BIFILAR, HEAVY ISOMID INSULATED EXTENSION LEADS, 6½ FT. ± ½ FT. LONG. POLYIMIDE SLEEVE IS EPOXIED OVER BEAD AND WELD JOINTS FOR STRAIN RELIEF AND INSULATION. LIQUID EPOXY RESIN CONFORMAL DIP COAT IS APPLIED FOR MOISTURE SEALING.

FOR USE WHERE ASSEMBLY WILL BE SUBJECTED TO LIMITED FLUID IMMERSIONS AND WHERE MAXIMUM STRAIN RELIEF IS ALSO REQUIRED WITH MINIMUM O.D.

MAXIMUM CONTINUOUS OPERATING TEMPERATURE 105° C.

TYPE E INSULATION

AB6E8 -

THERMISTOR WELDED TO 38 GA., NICKEL ALLOY 200, BIFILAR, HEAVY ISOMID INSULATED EXTENSION LEADS, 6½ FT. ± ½ FT. LONG. POLYIMIDE SLEEVE IS EPOXIED OVER WELDS AND THERMISTOR FOR STRAIN RELIEF AND ELECTRICAL INSULATION, MULTIPLE CONFORMAL DIP COATINGS OF LIQUID EPOXY RESIN FOR COMPLETE IMMERSIBILITY IN CONDUCTIVE FLUIDS.

FOR USE IN APPLICATIONS WHERE SUPERIOR STRAIN RELIEF AND FULL IMMERSION IS REQUIRED.

MAXIMUM CONTINUOUS OPERATING TEMPERATURE 105° C.

by the thermistor part number.

example: AB6A8 - BR16KA103N

This assembly uses a .016" nominal diameter, ruggedized Thermobead (series BR16, page B10) with adjacent cut leads, 10 K ohms \pm 25% at 25° C nominal resistance, welded to standard $6\frac{1}{2}\pm\frac{1}{2}$ foot long, 38 gauge, nickel alloy 200, bifilar, heavy isomid insulated extensions leads with epoxy resin web between the welded joints for strain relief.

SERIES AB6 - THERMOBEAD AND THERMOPROBE ASSEMBLIES.

TABLE I

STANDARD SIZES OF SERIES AB6 THERMISTOR ASSEMBLIES

THERMISTOR SERIES	CATALOG PAGE	MAXIMUM THERMISTOR DIAMETER		ER "D" BE INSER	ΓED					
			A8	B2	B4	C8	D2	E3	E 5	E8
B05	B-2	.0065	.013	.016	.014	.021	.033	.020	.019	.022
B07	B-2	.0085	.013	.016	.014	.021	.033	.020	.019	.022
B10	B-4	.0115	.013	.018	.014	.021	.033	.020	.022	.024
B14	B-4	.016	.016	.021	.016	.024	.036	.022	.025	.027
B35	B-6	.042	.042	.050	.042	.050	.062	.048	.054	.056
B43	B-6	.050	.050	.056	.050	.058	.070	.056	.060	.062
BR11	B-8	.012	.014	.018	.014	.022	.034	.020	.022	.024
BR14	B-10	.016	.016	.021	.016	.024	.036	.022	.025	.027
BR16	B-10	.017	.017	.022	.017	.025	.037	.023	.026	.028
BR23	B-12	.025	.025	.032	.025	.033	.045	.031	.036	.038
BR32	B-14	.033	.033	.040	.033	.041	.053	.039	.044	.046
BR42	B-16	.046	.046	.053	.046	.054	.066	.052	.057	.059
BR55	B-18	.060	.060	.070	.060	.068	.080	.066	.074	.076
P20	C-1	.020	.020	.026	.020	.028	.040	.026	.030	.032
P25	C-1	.025	.025	.031	.025	.033	.045	.031	.035	.037
P30	C-3	.030	.030	.036	.030	.038	.050	.036	.040	.042

NOTE: ALL DIMENSIONS ARE IN INCHES.

SPECIAL ORDERING INFORMATION:

The assembly styles shown represent the most standard selections of the many combinations of thermistors and materials which THM manufactures. These selected styles are suitable for many applications, however, there are always special requirements which need to be satisfied for some applications. A partial listing of alternate materials and options is given below to assist the designer for applications in which the standard units shown are not suitable. If assistance is required in the selection of materials or design of the assembly, please contact our Applications Engineering Department and detail the exact requirements or specifications desired.

OPTIONS: The standard units may be modified to suit the users particular needs by specifying any of the following options.

- Non-standard resistance values
- Reference temperature other than 25° C
- Non-standard tolerances (at one or more temperatures)
- Longer or shorter extension leads
- Special mountings or enclosures
- Special wire terminations and mountings
- Calibration specify calibration schedule see pg. (A-0) and temperatures.
- Interchangeable pairs, sets; curve matching specify temperatues and tolerances.

ALTERNATE MATERIALS SELECTION: The alternate materials listed are available for series AB6 thermistor assembly orders. Other materials may be available to the designer or user upon special order. Please allow additional time for the completion of special assembly orders.

TYPE A INSULATIONS - A web of insulating material is put over the weld joints for strain relief. Available insulating materials with maximum temperature ratings;

VINYL (60° C)
POLYURETHANE (105° C)
FORMVAR ENAMEL (105° C)
SILICONE RUBBER (260° C)
EPOXIES (FROM 105° C to 260° C) -

specify max temperature

required.

TYPE BINSULATIONS - A polyimide sleeve is epoxied over the weld joints for improved strain relief and electrical insulation. The bead may be covered for maximum strain relief or exposed for faster response. Epoxies are generally used to fill the polyimide sleeve and have temperature ratings from 105° C to 260° C.

TYPE C INSULATIONS - Multiple conformal dip coats over the thermistor and welds are used in order to provide fully immersible assemblies. Any of the Type A insulating materials may be used for the conformal dip coatings depending upon the application or environment.

TYPE D INSULATIONS - A thermoplastic tubing is heat sealed over the bead or probe thermistor. A small amount of insulating material is applied over the weld joints for electrical isolation. The assembly is not fully immersible over the back end of the tubing. Available heat sealed tubing materials with maximum temperature ratings:

POLYETHYLENE (80° C) MYLAR (125° C) **TYPE EINSULATIONS -** A polyimide sleeve is epoxied over the weld joints (as in the type B insulations) and then multiple conformal dip coatings are applied (as in the type C insulations) for fully immersible assemblies. The same insulating material options are available.

INSULATED EXTENSION LEADS - The standard insulated extension lead sub assembly would have 38 gauge (.004" dia.), nickel alloy 200, bifilar, heavy isomid insulation over conductors and a length of $6\pm1/2$ feet. The various options available are listed below. Unless otherwise specified parameters listed in boldface type are used. Other options, including any specified by the customer, are available upon special order.

WIRE GAUGES - #38 GA (.004"), #40GA (.0031")

CONDUCTORS-NICKEL ALLOY 200, nickel alloy 270

INSULATION **HEAVY ISOMID** - for use to 180° C, excellent abrasion resistance, our standard coating.

POLYURETHANE - for use to 105° C, easily stripped, exellent solderability.

POLYIMIDE- for use to 230° C, excellent thermal and dielectric properties, (not recommended for water and certain other conductive fluids)

CONSTRUCTION - **BIFILAR** - parallel conductors, our standard

SINGLE - individually insulated lead wires TWISTED PAIR - 0.1 inch lay typical

LENGTH - $6\% \pm \%$ feet is standard, specify other lengths as desired. All lengths over one foot are supplied on a plastic bobbin with the wires wrapped so that the thermistor end is removed last.

ASSEMBLIES

SERIES A800 — Armored Sheath Assembly

STYLE:

Series A800 ARMORED SHEATH ASSEMBLIES consist of a thermistor, hermetically sealed in a glass envelope; which has been assembled into a stainless steel housing. An armored sheath protects the extension leads. The assembly offers excellent protec-

tion against rough handling, abrasion, corrosive environment and extreme temperature exposure. Armored sheath assemblies are available with a large variety of thermistor sizes and resistance values. Any of the THERMOPROBES listed on pages C-5 and E-3 may be specified.

OPERATING TEMPERATURE:

Standard units are rated from -40°C to 300°C. Higher temperature units may be obtained on special order.

CONSTRUCTION:

The thermistor probe or probes are encapsulated into a stainless steel enclosure with a flexbile, protective armor sheath over the extension leads, and are available with a variety of materials and insulations based upon the specific application. The housing may be a straight tube, as shown in the figure, or may have an adaptor collar or threaded hex body as desired. Please consult the factory for assistance in the selection of construction materials and various options.

SIZE: - specify when ordering

STANDARD TUBE DIAMETERS are 1/8", 3/16", 1/4"

STANDARD TUBE LENGTHS: are 1" to 6" in 1" increments.

STANDARD LEAD LENGTH: The armored sheath lengths are 2' to 25' in 1' increments. The insulated

leads extend 1 foot beyond the sheath. Longer lengths are available upon special order. SHEATH DIAMETER is 1/4". Specify termintion or connector if any.

APPLICATIONS:

ARMORED SHEATH ASSEMBLIES are used where extreme temperatures and hard service are encountered. The probes may be immersed in any fluid up to 1/4" of the hub on the sheath. The materials are selected for corrosion resistance and designed for long service with high temperature variations. The SERIES A800 units find application for monitoring or controlling temperature of hot corrosive fluids, temperature of air or pastes, process control. The protected leads offer resistance against moving parts and other rubbing actions.

The same thermistor characteristics that apply to the selected thermistor: resistance value, resistance ratio, stability; are unaltered in the assembly. Response time is slowed by the assembly and should be considered in the design.

ORDERING INFORMATION

For example:

An assembly with a 1/4" diameter x 4 inch long stainless steel tube, a 4 foot long armored, flexible sheath, with one foot extended leads and a P100DB103M thermistor probe .100" diameter x 1/2" long, (10K ohm \pm 20% tolerance) is \$57.00/each in quantities of 1 to 9 pieces. This assembly may be ordered as part number A802-P100DB103M. Another

example would be an assembly with a 3/16" O.D. x 1-1/4" long closed end stainless steel tubing, with a 1/8-27 NPT body, a 3 foot armored flexible sheath, with one foot extended leads and a P60DB104M thermistor probe (.060" diameter x 1/2" long, 100K ohm \pm 20% tolerance) is \$66.00/each in quantities of 1 to 9 pieces. This assembly may be ordered as part number A801-P60DB104M.

OPTIONS:

The standard units may be modified to suit the users particular needs by specifying any of the following options:

THERMISTORS:

- Non-standard resistance values.
- Non-standard sizes.
- Reference temperature(s) other than 25°C.
- Non-standard tolerances (at 1 or more temperatures).
- Longer or shorter leads.
- Extension leads specify lead material, diameter, length, and insulation, if any. Also specify if moisture proof seal is desired over joint.
- Special mountings and enclosures.
- Calibration specify temperatures.
- Interchangeable pairs, sets; curve matching specify temperature(s) and tolerance(s).
- Special aging for high reliability applications.

PROBE:

- Non standard tube length or diameter.
- Non standard sheath or lead length.
- Non standard tube and materials.
- Hi-temp operation to 450°C.
- Interchangeability all probes exhibit same resistance vs. temperature characteristics.

INTERCHANGEABLE UNITHERM THERMISTORS

MATCHED

Resistance vs. Temperature Resistance Ratio vs. Temperature

- Thermobeads
- Thermoprobes
- Thermochips
- Micro-Miniature
- Sensor Assemblies

ULTRA FAST RESPONSE RUGGED CONSTRUCTION LONG TERM STABILITY

UNITHERM THERMISTORS

WHY USE THERMOMETRICS INTERCHANGEABLE UNITHERM THERMISTORS?

THERMOMETRICS Unitherm Thermistors are completely interchangeable. They permit the design engineer to freeze a circuit design and so eliminate the need for costly circuit adjustment, padding or calibration. Complete standardization is possible, minimizing maintenance or field replacement problems. The unit you purchase five or ten years from now will be identical to the one you use for today's design. There is a THERMOMETRICS Unitherm Thermistor to suit every temperature measurement, control or compensation application in the range of -140°C to $+300^{\circ}\text{C}$ (-220°F to $+572^{\circ}\text{F}$).

UNITHERM GROUPS

Group A Unitherm Thermistors consist of matched pairs of glass beads, probes or rods. Although each thermistor is not necessarily a close tolerance unit, the pairs are combined in series or

parallel to have completely interchangeable resistance vs. temperature curves over the entire temperature range selected to within the tolerance specified. Group A units which have been connected in series are identified as Types S, T, or R. Group A units which have been connected in parallel are identified as Types P, N or X. They are described in detail on page I-4.

Group B are single unit Unitherm Thermistors which exhibit completely interchangeable resistance vs. temperature curves over the entire temperature range specified.

Group C Unitherm Thermistors are single thermistors which have completely interchangeable resistance ratio vs. temperature characteristics over a specified temperature range. These units provide the designer with a low cost means of obtaining interchangeability. By matching a bridge or voltage divider resistor to the thermistor resistance at a specified reference temperature, complete circuit interchangeability can be obtained to within the tolerance specified for the resistance ratio characteristic.

RESISTANCE-TEMPERATURE CHARACTERISTIC

The resistance-temperature characteristic of a thermistor can be expressed as $R_T = R_{T0} \bullet r(T)$ where T_0 is a reference temperature, R_{T0} is the resistance at the reference temperature and r(T) is the resistance ratio characteristic normalized with respect to T_0 (i.e., $r(T_0) = 1$). Most manufacturers specify a nominal value and a percent tolerance for R_{TO} at a standard reference temperature of 25°C. A tolerance for r(T) (resistance ratio) is seldom provided. Only the nominal resistance ratio characteristic is generally specified. The tolerance for this characteristic is dependent on the control of materials and processing used. At THERMOMETRICS the greatest possible control is exercised. We even manufacture our own raw materials.

The conduction mechanism for thermistors is such that the tolerance on r(T) increases as the temperature deviation from the reference temperature increases. Even with good control, standard manufacturing tolerances can result in large uncertainties for applications which require wide temperature ranges. This is illustrated in Table 1 which shows the tolerance in r(T) permitted by MIL-T-23648 when $R_{\overline{10}}$ has a \pm 1% tolerance at 25°C. This table dramatically illustrates the need for THERMOMETRICS Unitherm Thermistors when close tolerance interchangeability is a requirement.

Table 1 — MIL-T-23648 Resistance Tolerance vs. Temperature

Temperature (°C)	-55	-15	0	25	50	75	100	125	200	275
Tolerance (±%)	10	5	3	1	3	5	7	10	15	20

UNITHERM TOLERANCES

Standard tolerances for THERMOMETRICS Unitherm Thermistors are shown in Table 2. The curve tolerance may be specified as a temperature deviation or a percentage of resistance or resistance ratio. For standard catalog items, which are stocked, the tolerance specified applies to all temperatures within the selected range. Although various tolerances are stocked for specific temperature ranges, it is more economical to specify the actual tolerance vs. temperature required for any specific application. For example, the US BR16KB443ACB5HA

is a standard item which follows a specified curve to within \pm 0.05°C between 25 and 50°C. The same unit with a \pm 0.05°C tolerance for the range of 33 to 43°C and a tolerance of \pm 0.1°C at all other temperatures in the ranges of 25 to 50°C would be significantly lower in cost. This is particularly true for large quantity applications.

TABLE 2 — STANDARD TOLERANCES*

TOLERANCE CODE LETTER	А	В	С	D	E	F	G	Н	J	K	S
± DEVIATION FROM NOMINAL	.05	.1	.2	.25	.5	1	2	3	5	10	Non- standard specify value

^{*}The interchangeability tolerance is expressed by means of a single or double code. The first letter, given in Table 2, designates the maximum deviation from the nominal curve. A letter C following the first letter is used to denote a deviation in °C. A letter F following the first denotes °F. A single letter code denotes percentage of reading.

RESISTANCE TOLERANCE VS. TEMPERATURE TOLERANCE

Most thermistors have negative temperature coefficients of resistance (TCR) which are in the range of 3 - 5%/°C at 25°C. In general, the higher resistance units have higher coefficients. Unlike resistors, however, the TCR values for thermistors are not constant but vary approximately as 1/K² where K is absolute temperature in Kelvins ($K = {}^{\circ}C$ + 273.15). Therefore, if a fixed value is specified for the temperature tolerance over the entire operating range, the resistance tolerance permitted will be lower at higher temperatures and obviously, higher at lower temperatures. Conversely, if the tolerance is specified as a fixed percentage of reading across the entire operating range, the allowable temperature error will be larger at the higher temperatures and vice versa.

TEMPERATURE RANGE

Any temperature within the overall span of -140 to 300° C (-220 to 572° F) may be specified for THERMOMETRICS Unitherm Thermistors. We maintain a large stock of units which are calibrated at standard bath temperatures. The serial number and calibration values for each unit are stored in our computer data files. In order to provide high measurement accuracy the temperature range, for any given thermistor type, must be limited. That temperature which corresponds to a resistance value below 1 megohm becomes the low temperature limit. The high temperature limit is determined at that point where the value of the nominal thermistor resistance is equal to 1,000 times the lead resistance. When temperature range limits are specified at points other than those used for calibration, the computer performs a polynomial regression analysis and calculates the resistance values at the specified points. The uncertainty of this computation is less than 0.005°C. When the temperature range, tolerance, type of interchangeability and circuit configuration are fed into the computer, the appropriate units are selected and identified. For a specified tolerance, a narrower range results in higher yield and lower cost. Similarly, a broader tolerance, for a specified range, also results in lower costs.

SELECTION & ORDERING INFORMATION

The following parameters must be specified when ordering Unitherm Thermistors:

1. Unitherm Sensor Assembly (if required)

When thermistors are not mounted directly to circuit boards or to customer product surfaces, they ultimately are assembled into any of a large variety of metal or plastic housings or tubes to suit the individual application needs. Thermometrics produces a complete line of housings to meet special requirements. Since almost all of the hardware is stocked, there are no set-up charges involved. A full range of the most commonly used configurations are shown in our Sensor Catalog & Handbook Immersion probes, catheter and needle subassemblies, threaded fittings, biomedical probes, and air probes are all included. Electrical connector terminations or wire leads of any desired length are also available.

2. Thermistor Selection

The choice of thermistor is dictated by the specific application requirements. Factors which should be considered are space or volume available, power level, time response, maximum temperature, stability and cost.

RUGGEDIZED BEADS (Thermobead Series BR) are small glass enclosed beads which offer fast response, good stability and high temperature operation to 300°C. They are available in sizes ranging from 0.011" diameter on 0.0007" wires to 0.055" diameter on 0.004" diameter wires. Larger diameter extension leads are available.

GLASS PROBES (Thermobead Series P) are the most stable and reliable thermistors available. They are used when a more rugged, longer configuration is desired. Glass probes are available in sizes ranging from 0.020" diameter x 0.125" long on 0.001" wires to 0.1" diameter x 2" long on 0.012" wires. Larger diameter probes (0.060" - 0.1") have tinned dumet leads which can be readily attached to circuit boards or extension leads.

ePOXY COATED CHIPS Series C50, 75, & 100 are the lowest cost interchangeable thermistors available. Since they are not sealed in glass, chips may not be operated above 150°C. For maximum stability, the temperature should not exceed 100°C. Leads are generally 0.008" or 0.012" diameter and can be easily handled. Chips are most frequently used in the range

of 0 to 70°C and offer a good compromise between stability and cost.

RESISTANCE AT 25°C is dictated by the operating temperature range specified. To minimize noise pick-up and measurement problems, the resistance at the lower temperature limit should generally be kept below 100K ohms. The resistance at the upper temperature limit should be high enough so that the thermistor lead resistance is negligible compared with the resistance change corresponding to the tolerance specified.

3. UNITHERM GROUPS

- UA Matched thermistor pairs, supplied loose.
- US Matched pair, connected in series, side by side configuration
- UP Matched pair, connected in parallel, side by side configuration
- UN Matched pair, connected in parallel, tandem configuration
- UT Matched pair, connected in series, tandem configuration
- UR Matched pair, connected in series, radial lead configuration
- UX Matched pair, connected in parallel, radial lead configuration
- UB Single thermistor, R-vs-T matched over a given range of temperatures
- UC Single thermistor, Ratio matched over a given temperature range.

4. NETWORK CONFIGURATION, specify figure letter.

5. TOLERANCE AND TEMPERATURE RANGE

Specify the temperature range desired and the tolerance required over the entire range or portions of the range. (See Table 2)

 Price and Delivery: submit above information to our Applications Engineering staff and price and delivery will be quoted.

SERIES A919a

FAST RESPONSE FLUID TEMPERATURE SENSOR for Laboratory, Medical Research & Industrial Use

Thermometrics, Inc., is the leading manufacturer of thermodilution thermistors and thermistor assemblies; and so is eminently qualified to introduce this major innovation in the temperature measurement of fluid streams:

the A919a "Y" FLUID TEMPERATURE SENSOR

Ultrastable and very sensitive to even small temperature changes, the A919a enables the user to obtain rapid, accurate and repeatable temperature measurements in moving or static streams without contaminating the stream or interferring with the flow. The standard sensor is suitable for use in the laboratory, test situations and disposable medical research products. The ruggedized version, the A919b is well suited for industrial applications.

Design:

Unitherm Thermistor Sensors enclosed in heat sealed plastic are encapsulated into a plastic luer to form a leakproof unit composed of inert, non-contaminating materials which are compatible with approved FDA materials. An electrical connector is molded in for convenient electrical hook-up on laboratory bridges or voltage divider circuits (depending on application). The sensor may be ethylene oxide sterilized. The A919a "Y" Fluid Temperature Sensor is a small, high volume, low cost unit. The size is approximately 2% inches long and 1% inch high. When used in an intravenous or similiar line it can be installed as rapidly as a hypodermic needle

Assemblies — A919a Fluid Temperature Sensor

Temperature versus Thermistor Resistance for Standard A919 Sensors

Deg. C.	Resistance in Ohms						
0.00	56341.02	12.50	32931.96	25.00	20000.00	37.50	12579.79
0.50	55100.98	. 13.00	32258.53	25.50	19619.70	38.00	12357.11
1.00	53891.82	13.50	31600.79	26.00	19247.70	38.50	12139.00
1.50	52712.66	14.00	30958.34	26.50	18883.81	39.00	11925.35
2.00	51562.71	14.50	30330.79	27.00	18527.82	39.50	11716.05
2.50	50441.16	15.00	29717.76	27.50	18179.56	40.00	11511.00
3.00	49347.23	15.50	29118.86	28.00	17838.82	40.50	11310.12
3.50	48280.17	16.00	28533.75	28.50	17505.43	41.00	11113.29
4.00	47239.27	16.50	27962.07	29.00	17179.21	41.50	10920.44
4.50	46223.79	17.00	27403.47	29.50	16859.98	42.00	10731.47
5.00	45233.07	17.50	26857.63	30.00	16547.59	42.50	10546.29
5.50	44266.43	18.00	26324.21	30.50	16241.87	43.00	10364.82
6.00	43323.24	18.50	25802.91	31.00	15942.65	43.50	10186.97
6.50	42402.85	19.00	25293.41	31.50	15649.79	44.00	10012.67
7.00	41504.66	19.50	24795.43	32.00	15363.13	44.50	9841.83
7.50	40628.07	20.00	24308.67	32.50	15082.52	45.00	9674.38
8.00	39772.52	20.50	23832.85	33.00	14807.83	45.50	9510.24
8.50	38937.45	21.00	23367.70	33.50	14538.91	46.00	9349.34
9.00	38122.30	21.50	22912.94	34.00	14275.62	46.50	9191.60
9.50	37326.56	22.00	22468.33	34.50	14017.84	47.00	9036.95
10.00	36549.71	22.50	22033.61	35.00	13765.44	47.50	8885.34
10.50	35791.26	23.00	21608.53	35.50	13518.29	48.00	8736.68
11.00	35050.72	23.50	21192.86	36.00	13276.27	48.50	8590.92
11.50	34327.63	24.00	20786.37	36.50	13039.25	49.00	8447.99
12.00	33621.52	24.50	20388.82	37.00	12807.13	49.50	8307.83
						50.00	8170.38

Interchangeability ± 0.25°C from 0°C to 30°C

Options: the following modifications to the standard unit are possible, and should be discussed with our Applications Engineering Staff for price and availability.

- Non-standard resistance values
- Non-standard tolerances (at one or more temperatures)
- Non-standard time constants
- Ruggedized version

INTERCHANGEABLE SUB-ASSEMBLIES

SERIES A990

Series A990 Interchangeable sub-assemblies consist of matched pairs of small, glass encapsulated thermistor beads which are connected in either series or parallel circuit configurations. These sub-assemblies are available in a variety of styles which will permit them to be used in measuring the temperature of liquids or solids or to be encapsulated into larger housings such as hypodermic needles or closed end sheaths.

The sub-assemblies provide interchangeable resistancetemperature characteristics in extremely small, fast response packages which are easy to handle. The units shown are available from stock or with fast delivery. Resistance,

Maximum Operating or Storage Temperature for Optimum Stability is 105°C.

Series A990 Interchangeable Sub-Assemblies

A990P*****

A990D*

A990B*

A990E**

A990C*****

ORDERING INFORMATION

T.C. = THERMAL TIME CONSTANT D.C. = DISSIPATION CONSTANT **†LONGER LEADS ARE AVAILABLE ON REQUEST**

TABLE A: CURVE TOLERANCES

		TEMPERATURE TO	ERANCE IN °C (±)	
TOL. CODE	0°C-25°C	25°C-50°C	50°C-70°C	70°C-105°C
Sx1	.1	.05	.1	.2
Sx2	.1	.1	.1	.2
Sx3	.2	.1	.2	.3
Sx4	.2	.2	.2	.3

TABLE B: RESISTANCE VS. TEMPERATURE CHARACTERISTICS

TEMP		RESIS	TANCE CODE	(DATA IN OF	IMS)	
(°C)	UN 103	UT 103	UN 223	UT 223	UN 443	UT 443
0	14129.9	56519.5	31452.1	125808	64394.4	257577.5
5	11335.1	45340.5	25168.0	100672	51167.4	204669.5
10	9152.8	36611.2	20273.6	81094.6	40931.5	163726.2
15	7437.4	29749.5	16435.7	65742.7	32956.3	131825.2
20	6080.3	24321.1	13406.3	53625.1	26701.3	106805.3
25	5000.0	20000.0	11000 0	44000.0	21764.2	87056.8
30	4134.9	16539.7	9077.0	36307.9	17843.2	71372.8
35	3438.1	13752.5	7531.1	30124.5	14710.6	58842.5
40	2873.8	11495.1	6281.4	25125.7	12193.5	48774.1
45	2414.2	9656.7	5265.6	21062.5	10159.7	40638.8
50	2038.0	8151.9	4435.6	17742.3	8507.6	34030.3
55	1728.4	6913.8	3753.9	15015.5	7154.4	28617.7
60	1472.6	5890.2	3191.3	12765.2	6043.0	24171.9
65	1260.0	5040.0	2724.8	10899.2	5126.1	20504.4
70	1082.7	4330.6	2336.2	9344.9	4366.4	17465.8
75	934.02	3736.1	2011.1	8044.5	3734.4	14937.8
80	808.93	3235.7	1738.0	6952.0	3206.5	12825.9
85	703.23	2812.9	1507.6	6030.3	2763.7	11054.7
90	613.55	2454.2	1312.4	5249.6	2390.8	9563.4
95	537.18	2148.7	1146.5	4586.0	2075.7	8303.0
100	471.90	1887.6	1004.9	4019.6	1808.5	7233.9
105	415.90	1663.6	883.67	3534.7	1580.9	6323.7

APPLICATIONS: A990B — For insertion into metal housing or close tolerance openings.

A990C — Fully immersible sub-assembly for use in conductive fluids.

A990D — Limited depth immersion or surface contact.

A990E — Fully immersible sub-assembly with additional mechanical strain relief.

A990M — Sub-assembly encapsulated into sharpened hypodermic needle with 3 foot extension leads of #28 GA PVC wire. For various laboratory temperature measurements.

A990P — Standard sub-assembly encapsulated into vinyl catheter tubing with #28 GA PVC wire extension leads.

A990T — Sub-assembly encapsulated into closed end stainless steel sheath with threaded hub. For various commercial applications or severe environments.

UNITHERM THERMOCHIP

epoxy coated interchangeable

STYLE:

Unitherm Interchangeable Thermistors, Thermometrics' Series DC95F, are manufactured using proven materials and techniques, making it possible to obtain close tolerances and resistance-temperature curve tracking at a low cost. The performance of THM's DC95F has been substantiated by extensive field use and long-term testing. The result is a rugged, stable and easy-to-handle device. All Series DC95F thermistors are epoxy-coated for stability and have a maximum diameter of .095 inch. Standard leads are 1% inches x .012 inches diameter. Standard resistance values at 25° C are 2252Ω , 3000Ω , 5000Ω , and $10,000\Omega$. Each unit tracks a specified curve to within $\pm 0.1^{\circ}$ C or $\pm 0.2^{\circ}$ C over the temperature range of 0° C to 70° C. Only $\pm 0.2^{\circ}$ C curve tracking is available over the temperature range of 0° C to 100° C. Narrower temperature ranges may be specified for effective cost savings or to accomplish even tighter curve tracking tolerances.

APPLICATIONS:

Unitherm Interchangeable Thermistors, Series DC95F, are designed for close tolerance resistance-temperature curve tracking over two standard temperature ranges. As such, they may be used in any general temperature measurement, control or compensation application where interchangeability and low cost are major considerations. Chip-style thermistors, such as the Series DC95F, have higher dissipation constants than glass-coated beads or probe-style thermistors and therefore can be used in circuits where there are moderate power levels. The thermal time constant for chip-style thermistors is comparable to that of large glass probes. The Series DC95F chip thermistor is especially suitable for disposable and permanent medical product usage, as well as in energy management systems, appliances, industrial equipment and automotive applications. Series DC95F thermistors are available in a large variety of sensor configurations and housings. Contact the factory for specific design or application information on mountings or enclosures.

MAXIMUM TEMPERATURE:

Series DC95F thermistors are designed to be interchangeable over 0° C to 70° C and 0° C to 100° C. They may be used at temperatures as low as -80° C and as high as 150° C, however, best overall stability is achieved with exposure or storage temperatures lower than 105° C. Resistance shifts and degraded stability will result if the devices are subjected to temperatures greater than 105° C and physical failure may result at temperatures in excess of 150° C.

OPTIONS:

- Non-standard resistance values.
- Non-standard temperature ranges (-80° C to 150° C limits).
- Non-standard interchangeability tolerances.
- Extension leads, specify length, materials etc.
- · Special mounting or enclosures.
- · Calibration specify temperatures.

THERMAL AND ELECTRICAL PROPERTIES:

DISSIPATION CONSTANT:

(STILL AIR) 1 mW/° C (STIRRED OIL) 8 mW/° C (STILL AIR) 10 SEC.

(STIRRED OIL)

THERMAL TIME CONSTANT:

MAXIMUM POWER RATING:

.075 WATTS (DERATED FROM 100% AT 25° C TO 0% AT 100° C)

ORDERING INFORMATION:

RESISTANCE VS. TEMPERATURE CHARACTERISTICS

A State of the Land of the Lan	Part de maria de la laca	Carlo Car	Same and Same	Marie Marie
temp °C	2252.0	3K.Ω	5ΚΩ	10ΚΩ/
-55	217036	289125	481875	963749
-54	201609	268574	447623	895245
—53	187379	249617	416028	832055
—52 —51	174245 162116	232720 215963	359936	773734 719877
50	150910	201035	335058	670115
-49	140550	187234	312057	624114
—48 —47	130968 122101	174469 162657	290782	581565
46	113891	151719	271094 252865	542189 505731
-45	106284	141587	235978	471956
_44	99234.8	132196	220326	440652
-43 -42	92697.4 86632.0	123487 115407	205811	411622
-42 -41	81001.8	107906	192345 179844	384689 359688
-40	75773.0	100941	168235	336470
-39	70914.6	94468.8	157448	314896
-38 -37	66398.2 62197.6	88452.3 82856.5	147420	294841
-36	58289.1	77649.8	138094 129416	276188 258833
-35	54650.5	72802.6	121338	242675
-34	51261.7	68288.2	113814	227627
-33 -32	48104.0 45160.4	64081.7	106803	213606
-31	42413.4	60160.4 56501.2	100267 94168.8	188337
-30	39853.5	53090.9	88484.8	176970
-29	37457.4	49899.9	83166.6	166333
26	35228.0	46929.3	78215.6	156431
-27 -26	33143.3 31193.4	44151.8	73586.4	147173 138514
—25	29370.0	39125.3	65208.8	130418
-24	27659.5	36847.3	61412.2	122824
-23	26061.2	34716.9	57861.5	115723
—22 —21	24573.5 23173.7	32735.6 30870.9	54559.4 51451.4	109119
-20	21862.1	29123.5	48539.2	97078.5
-19	20632.5	27485.6	45809.4	91618.8
—18 17	19479.5 18397.8	25949.6	43249.4	86498.8
—17 —16	17382.7	24508.7 23156.3	40847.8 38593.8	81695.6 77187.7
	16429.6	21886.6	36477.7	72955.4
- 14·	15534.4	20694.1	34490.1	68980.3
-13 -12	14693.2 13402.6	19573.6 18520.4	32622.7 30867.3	65245.3 61734.6
-11	13159.2	17530.1	29216.8	58433.6
-10	12460.0	16598.5	27664.2	55328.4
- 9	11801.9	15722.0	26203.3 24828.0	52406.5
- 7	10599.2	14119.8	23533.0	49656.0 47065.9
- 6	10049.8	13387.8	22313.0	44626.1
<u> </u>	9532.00	12698.1	21163.4	42326.8
- 4 - 3	9043.90	12047.8	20079.7 19057.8	40159.4
S. Carrier	8583.62 8149.42	11434.7 10856.2	18093.7	38115.5 36187.5
- 1	7739.68	10310.4	17184.0	34368.0
0	7352.90	9795.16	16325.3	32650.5
1	6988.42 6643.38	9309.62 8849.98	15516.0 14750.0	31032.1 29499.9
3	6317.41	8415.73	14026.2	28052.4
The same of	6009.39	8005.39	13342.3	26684.6
5	5718.10	7617.37	12695.6	25391.2
6 7	5442.68 5182.12	7250.46 6903.35	12084.1 11505.6	24168.2 23011.2
8	4935.54	6574.86	10958.1	21916.3
9	4702.12	6263.93	10439.9	20879.8
10	4481.09 4271.72	5969.48 5690.57	9949.14 9484.28	19898.3 18968.6
1/2	4073.33	5426.28	9043.80	18087.6
13	3885.28	5175.78	8626.30	17252.6
14	3706.99	4938.27	8230.45	16460.9
15 16:	3537.90 3377.47	4713.01 4499.30	7855.01 7498.83	15710.0 14997.7
17	3225.23	4296.48	7160.80	14321.6
18	3080.70	4103.95	6839.92	13679.8
19	2943.46	3921.13	6535.22	13070.4
±0 21	2813.11 2859.26	3747.4 8 3582.49	6245.80 5970.82	12491.6 11941.6
22	2571.54	3425.68	5709.47	11418.9
23	2459.64	3276.61	5461.01	10922.0
24 25	2353.22 2252.00	3134.84 3000.00	5224.74 5000.00	10449.5

100 m 100 m	the motion on the contraction also	and Michigan Challes, grass	and a state of the	Salah manadari
temp	2252 Ω	ЗК Ω	5Κ Ω	10ΚΩ
25	2252.00	3000.00	5000.00	10000.0
26	2155.69	2871.70	4786.16	9572.32
27 28	2064.02 1976.76	2749.59	4582.64	9165.29
29	1893.67	2633.34 2522.10	4388.89 4204.34	8777.79 8408.68
30	1814.51	2417.19	4028.66	8057.31
31 32	1739.09 1667.22	2316.73	3861.22	7722.43
33	1598.51	2220.99 2129.52	3701.65 3549.20	7403.29 7098.42
34	1533.20	2042.50	3404.18	6808.36
35 36	1470.89	1959.39	3265.65	6531.31
37	1354.91	1880.47 1804.94	3134.12 3008.23	6265.75 6016.47
38	1300.77	1732.82	2888.03	5776.05
39	1249.08 1199.72	1663.96	2773.26	5546.53
41	1152.57	1598:20 1535:39	2663.67 2558.99	5327.34 5117.97
42	1107.52	1475.38	. 2458,97	4917.94
43 44	1064.47 1023.30	1418.03	2363.39	4726.77
45	983.97	1363.17 1310.80	2271.95 2184.66	4543.91 4369.33
46	946.02	1260.25	2100.92	4200.84
47 48	909.99	1212.24	2020.40	4040.81
49	842.96	1122.95	1944.76 1871.59	3889.51 3743.17
50	811.42	1080.93	1801.55	3603.10
51 52	780.92	1040.30	1733.84	3467.69
53	752.29 724.59	1002.17 965.26	1670:28 1608.77	3340.55 3217.54
54	698.03	929.88	1549.80	3099.62
55 56	672.58 648.23	895.97	1493.29	2986.60
57	624.83	863.55 832.36	1439.24 1387.27	2878.49 2774.55
58	602.45	802.56	1337.60	2675.20
59 60	580.90 560.34	773.84	1289.75	2579.52
61	540.56	720.11	1200.18	2488.20 2400.36
62	521.58	694.82	1158.03	2316.05
63 64	503.35 485.85	670.54 647.22	1117.57 1078.71	2235.13
65	469.05	624.85	1041.42	2157.43 2082.84
66	452.92	603.35	1005.59	2011.18
67 68	437.42 422.52	582.70 562.86	971.17 938.11	1942.35 1876.21
69	408.21	543.80	906.33	1812.65
70	394.47	525.70	875.82	1751.65
71 72	381.22 368.50	507.85	846.41 818.16	1692.82 1636.33
73	356.27	474.61	791.01	1582.02
74	344.50	458.93	764.88	1529.77
75 76	333.13 322.24	443.78 429.27	739.64 715.45	1479.30 1430.90
77	311.74	415.28	692.13	1384.28
78	301.70	401.91	669.86	1339.73
79 80	292.02 282.64	389.02 376.52	648.37 627.54	1296.74 1255.08
81	273.65	364.54	607.57	1215.15
82 83	265.00 256.67	353.02 341.93	588.38 560.88	1176.76
84 84	250.67	341.93 331.19	569.88 551.98	1139.77 1103.96
85	240.91	320.93	534.89	1069.79
86 87	233.35 226.14	310.86 301.26	518.10 502.10	1036.21 1004.20
88	219.27	292.10	486.84	973.67
89	212.58	283.19	471.99	943.97
90	206.13 199.91	274.60 266.31	457.66 443.84	915.32 887.69
92	193.91	258.31	430.51	861.02
93	188.11	250.59	417.65	835.29
94 95	182.52 177.12	243.14 235.96	405.23 393.27	810.46 786.54
96	2000 171.91	229.00	381.67	763.35
97	166.87	222.30	370.50	741.00
98 99	162.01 157.32	215.82 209.57	359.71 349.28	719.41 698.57
100	157.52	203.53	339.21	678.42
101	148.40	197.69	329.48	658.96
102 103	144.17 140.07	192.05 186.59	320.08 310.98	640.17 621.97
104	136.11	181.32	302.19	604.39
105	132.28	176.22	293.70	587.39

The Series CSP Temperature Standards are ultrastable probe thermistors which have been calibrated to an accuracy of 0.01°C. The standard unit has a thin, conformal coating of silicone rubber over the entire unit; this makes it suitable for immersion in a water bath. They are also available with stainless steel sensor housings, or they can be encapsulated into various sheaths. See assemblies depicted above.

Two types of Series CSP Thermoprobes are stocked for quick delivery: the CSP60BA252M with a nominal resistance of 2500 ohms @25°C; it is furnished with calibration over the range of 0 to 50°C. The CSP60BT103M has a nominal resistance of 10K ohms @25°C and is furnished with calibration over the range of 0 to 100°C. The calibration table normally furnished with the CSP60BA252M provides data every 0.25°C between 0 and 50°C. The table furnished with the CSP60BT103M provides data every 0.5°C over the range of 0 to 100°C. Both units are furnished with interpolation equations which are accurate to 0.01°C. Tables with calibration data furnished every 0.01, 0.05 or 0.1°C are also available.

All units can be supplied with calibrations over different temperature ranges, with longer leads; and with various coatings. Please contact our Applications Engineering staff for details.

Nomina			

Temperature °C	Resistance iture Ratio Temperature R_T/R_{25} °C			
0.00	2.84438	30.00	0.82461	
5.00	2.28160	35.00	0.68340	
10.00	1.84096	40.00	0.56913	
15.00	1.49390	45.00	0.47620	
20.00	1.21899	50.00	0.40025	
25.00	1.00000	30.00	3.40020	

Temperature Standards — Series CSP

		for CSP60BT103M	
Temperature °C	Resistance Ratio R _T /R ₂₅	Temperature °C	Resistance Ratio R _T /R ₂₅
0.00	2.94227	65.00	0.23773
5.00	2.33994	70.00	0.20279
10.00	1.87383	75.00	0.17368
15.00	1.51049	80.00	0.14932
20.00	1.22532	85.00	0.12886
25.00	1.00000	90.00	0.11159
30.00	0.82084	95.00	0.09697
35.00	0.67752	100.00	0.08455
40.00	0.56219	105.00	0.07397
45.00	0.46887	110.00	0.06490
50.00	0.39295	115.00	0.05711
55.00	0.33087	120.00	0.05041
60.00	0.27985	125.00	0.04462

PRICING

Ordering Code	Description	COST
		1-9 pieces
CSP60BA252M	Nominal resistance 2500 ohms @ 25°C, calibration table	
000000740014	every 0.25°C between 0 and 50°C	\$115.00/each
CSP60BT103M	Nominal resistance 10K ohms @ 25°C, calibration table	
	every 0.5°C between 0 and 100°C	\$140.00/each

OPTIONS:

A113 -* — Plastic tubing 60°C max	\$40.00 additional
A207A - * — Open tip stainless steel housing	\$50.00 additional
A733F - * — Closed end stainless steel housing	\$65.00 additional

^{- *} CSP60BA252M or CSP60BT103M

OTHER CALIBRATION TABLES ARE AVAILABLE AT ADDITIONAL COST CONSULT FACTORY FOR DETAILS

TEMPERATURE STANDARDS SERIES "S", "AS", "ES"

STYLE: Thermometrics temperature standards consist of ultra-stable thermistor probes assembled into thin wall stainless steel housings with shielded extension leads. The thermistors used receive special processing to ensure long term stability. All THM thermistor temperature standards are ruggedly constructed and are suitable for liquid immersion.

CONFIGURATION: THM temperature standards are enclosed in thin-wall stainless tubes, welded closed at one end. The shielded cable is encapsulated into the tube to provide a solid moisture-proof seal. Full immersion of the metal portion of the standard is permissible. The calibration data is given for an immersion depth of 8" on 9" housings, and 4" on 41/2" long housings.

TEMPERATURE RANGE: The "S" series and "AS" series are designed for operation over the range of 0° C to 60° C. The "ES" series is rated for 0° C to 100° C.

STABILITY: The stability of each THM temperature standard is guaranteed for a period of one year. When properly used, the following stability ratings apply:

"AS" series: 0.002° C/yr
"S" series: 0.005° C/yr series: 0.005° C/yr "ES" series: 0.005° C/yr

RESISTANCE VS. TEMPERATURE CHARACTERISTIC: The nominal resistance values are shown below:

SERIES		RESISTANCE IN OHMS				
	0°C	25° C	60° C	100°C		
"AS" & "S"	14250	5000	1458			
"AS" & "S"	11400	4000	1166			
"ES"	28500	10000	2915	925		

CALIBRATION: Precision calibration, traceable to the National Bureau of Standards, is provided for all THM temperature standards. A computer generated table in increments of 0.01° C is furnished with each calibration based on the interpolation formula, $R_T = \exp(A_0 + A_1/T + A_2/T^2 + A_3/T^3)$. The constants for the formula are obtained from a polynomial regression performed on the calibration data obtained. Over the range of 0° C to 60° C, calibration is performed at the triple point of water (0.01° C) and 15° C, 25° C, 30° C. 37° C, 50° C, and 60° C. For the range of 0° C to 100° C, calibrations are performed at the triple point of water. 25° C, 30° C, 37° C, 60° C, 80° C, and 100° C. Two-wire calibrations are performed using a Wheatstone Bridge calibrated to an accuracy of better than 0.005%. Four-wire calibrations are based on a comparison technique using a ratio bridge having an accuracy of 0.0002%. All resistance measurements are referenced to standard resistors calibrated by NBS. All temperature measurements are made using a standard platinum resistance thermometer which has been calibrated by NBS.

ACCURACY: The calibration accuracies of THM Temperature Standards (at-time of sale) are as follows:

SERIES	ACCURACY	
	0° C-60° C	60°C-100°C
"AS"	0.001° C	
"S"	0.0015° C	
"ES"	0.0015° C	0.0025° C

The uncertainties of the computer tables are 0.001° C for the series "AS" and 0.003° C for the series "S" and "ES".

READ-OUT DEVICES: Any suitable resistance measuring instrument may be used with THM TEMPERATURE STANDARDS. Care must be taken, however, to avoid excessive self-heating of the thermistor. A power dissipation of 4 microwatts will result in 0.001° C self-heat. Self-heat error can be minimized by duplicating the conditions of calibration which are provided with each THM certificate of calibration.

APPLICATIONS: THM thermistor standards are rugged, precision sensors suitable for use as secondary or working temperature standards for all laboratory metrology applications. They generally are not affected by shock and vibration and, consequently, are also suitable for field use. THM temperature standards fill the need for low cost temperature standards for general laboratory and hospital use, clinical applications and process temperature measurements. Special versions are available for military and space use. Standards are also available for other temperature ranges in a variety of sizes and enclosures. Our Applications Engineering Staff can assist you with your specific requirements.

AVAILABLE MODELS

THREE DIFFERENT SERIES ARE AVAILABLE EACH IN FOUR DIFFERENT SIZES TO ACCOMMODATE ALL STANDARD REQUIREMENTS:

SERIES "S" which includes S10, S15, S20, S25 offer standard 0.005° C/yr stability and temperature range 0° to 60° C.

SERIES "AS" which includes AS110, AS115, AS120, AS125 offer 0.002° C/yr stability and temperature range 0° to 60° C.

SERIES "ES" which includes ES210, ES215, ES220, ES225 offer 0.005° C/yr stability and temperature range 0° to 100° C.

DIMENSIONS AND SUMMARY INFORMATION

Dimensions in Inches () Dia x () Long	Standard Series "S"	Stability ºC/Year	Absolute Series "AS"	Stability ºC/Year	Temp. Range for "S" & "AS" "C	Extended Temp. Range	Stability º/Year ºC	Temp. Range "ES" ∘C
1/4" x 9"	S10	0.005	AS110	0.002	0-60	ES210	0.005	0-100
1/8" x 4 1/2"	S15	0.005	AS115	0.002	0-60	ES215	0.005	0-100
1/4" x 4 1/2"	S20	0.005	AS120	0.002	0-60	ES220	0.005	0-100
1/8" × 9"	S25	0.005	AS125	0.002	0-60	ES225	0.005	0-100

ORDERING INFORMATION All temperature standards series "S", "AS" & "ES" may be ordered by part number and are available in two-wire and four-wire terminations. Unless otherwise specified a two-wire termination will be supplied. If a four-wire termination is desired specify by adding the suffix "4 wire". Therefore an ES220 unit in 4-wire is ordered as "ES220-4 wire".

PRICING - INCLUDES CALIBRATION AND COMPUTER READ-OUT EVERY 0.01° C.

SERIES	2-WIRE	4-WIRE	SERIES	2-WIRE	4-WIRE	SERIES	2-WIRE	4-WIRE
S10	\$525.00	\$625.00	AS110	\$725.00	\$825.00	ES210	\$625.00	\$725.00
S15	\$525.00	\$625.00	AS115	\$725.00	\$825.00	ES215	\$625.00	\$725.00
S20	\$525.00	\$625.00	AS120	\$725.00	\$825.00	ES220	\$625.00	\$725.00
S25	\$525.00	\$625.00	AS125	\$725.00	\$825.00	ES225	\$625.00	\$725.00

RECALIBRATION SERVICES: Thermometrics offers a recalibration recertification service for temperature standards series "S" "AS" & "ES". For the series "S", the units are initially evaluated at the triple point of water and 25° C. The series "ES" are evaluated at the triple point of water, 37° C, and 100° C. If the calibrations repeat their original values within the published accuracy, then recertification is provided. If not, then complete recalibration is required if the stability has not been impaired. The series "AS" can only be recertified after complete recalibration.

PRICE SCHEDULE FOR RECALIBRATION

IN	ITIAL EVALUATI	ON	COMPLETE RECALIBRATION*		
SERIES	2-WIRE	4-WIRE	2-WIRE	4-WIRE	
"S"	\$225	\$300	\$375	\$475	
"AS"	N/A	N/A	\$575	\$675	
"ES"	\$325	\$400	\$475	\$575	

^{*}CREDIT FOR INITIAL EVALUATION IS APPLIED TO RECALIBRATION COST.

GENERAL INFORMATION

PRICING:

Since there are many possibilities of resistance, tolerance size, etc., and since prices are subject to change, it is not practical to furnish a detailed price list with the catalog. Please contact the factory for price and delivery information.

DELIVERY:

All items are shipped via UPS, F.O.B. Edison, New Jersey, unless other arrangements have been specified by the purchase order.

TERMS:

Our terms are strictly net 30 days for established credit accounts. New customers may submit 3 vendor reference and 1 bank reference in order to establish a credit account. To expedite delivery, a new customer may elect to pay in advance or to receive a C.O.D. shipment.

ORDERING:

Each thermistor series has an ordering information paragraph to explain the part number ordering code for catalog items only. When special handling, testing, assembly or other non-standard options are involved, please contact the factory for specific price, delivery and ordering information.

All orders require a written confirmation. Please be sure to specify purchase order number, shipping and billing addresses, name and telephone number of buyer and reference any quotations or documents. Include copies of drawing or specifications which are referenced on your purchase order.

REQUESTED INFORMATION:

Thermometrics, Inc., welcomes all requests for price and delivery quotation and requests for applications assistance. Whether for a one time experiment or for a large volume O.E.M. requirement you will find that we are proud of our reputation and of our ability to assist customers as "The Source of Thermistor Expertise."

When requesting information or assistance please try to specify as much of the following data as possible so that we may be better able to serve you quickly and completely.

THERMISTOR:

- configuration, style, special options, etc.
- dimensions; length, diameter, etc.
- nominal resistance and tolerance at reference temperature. (additional points)
- curve tracking, interchangeability, range.
- operating/storage temperature range.
- thermal and electrical properties; dissipation constant, thermal time constant, max. power.

ASSEMBLY:

- mount or housing configuration
- materials; metals, plastics, insulating, etc.
- dimensions; length, diameter, threads, etc.
- extension leads; size, length, insulation, etc.
- termination; stripped ends, connectors, etc.
- operating/storage temperature range.

APPLICATIONS:

- temperature measurement, temperature control, temperature compensation, flow sensing, liquid level sensing, gas analysis, infrared measurement or microwave power measurement.
- environment; solid, liquid or gas useage; industrial, biomedical, military, research lab, etc.
- linerarized networks, bridge circuits, etc.
- power sources, requirements.
- quality assurance; certificates of compliance, applicable mil-specs or standards, screening tests, inspection, etc.
- calibrations, equation constants, etc.

RESISTANCE RATIO VS. TEMPERATURE

To find the Thermistor Resistance at any specified temperature, multiply the Resistance Ratio given by the Resistance at 25°C.

				by the Hes					
TABLE NO.		1	2	3	4	5	6	7	8
BETA: 25-125° RATIO: 25° C/ RATIO: 0° C/5 TC: α25° C (%/	125° C 0° C	2930 11.80 5.177 -3.27	2997 12.48 5.344 -3.33	3133 14.01 5.658 -3.44	3359 16.94 6.362 -3.67	3548 19.86 7.038 -3.88	3672 22.06 7.438 -3.98	3708 22.73 7.583 -4.02	4015 29.43 9.115 -4.39
-112 -103	-80 -75	139.7 101.6	152.5 109.5	175.3 125.1	232.4 164.4				9
<u> </u>	-70	74.52	79.51	90.27	117.4 84.64	ret waser with	a de la descripción de la companya d	د المناهد د د	a a successive state of a side
- 85 - 76	-65 -60	55.15 41.19	58.40 43.36	65.87 48.58	61.59	76.05	87.56	91.62	143.2
- 67	-55	31.04	32.54	36.19	45.25 33.55	54.97	62.37 44.97	65.05 46.74	98.02 68.03
- 58 - 49	-45	23.61 18.12	24.66 18.87	27.24 20.70	25.11	40.15 29.62	32.79	33.97	47.83
- 40	-40	14.03	14.58 11.36	15.87 12.28	18.97	22.06 16.59	24.16 17.99	24.96 18.53	34.04 24.52
- 31 - 22	-35 -30	10.95 8.625	8.926	9.580	11.10	12.59	13.53	13.89	17.86
- 13	-25	6.848 5.479	7.071 5.645	7.536 5.974	8.604 6.721	9.632 7.433	10.27 7.863	10.51 8.025	13.14 9.772
- 4 + 5	-20 -15	4.418	4.540	4.772	5.291	5.783	6.072	6.181	7.337
14	-10	3.589	3.677 2.998	3.839 3.110	4.197 3.353	4.534 3.581	4.728 3.709	4.800 3.757	5.559 4.250
23 32	- 5 0	2.935 2.418	2.460	2.536	2.698	2.849	2.932	2.962	3.276
41	5	2.004	2.032 1.688	2.081 1.718	2.185	2.282 1.840	2.334 1.870	2.353 1.881	2.546 1. 994
50 59	10 15	1.672 1.403	1.410	1.427	1.461	1.493	1.509	1.515	1.573
68	20 25	1.185 1.000	1.000	1.192 1.000	1.206 1.000	1.218 1.000	1.224	1.227	1.250 1.000
77 86	30	.8572	.8494	.8440	.8344	.8262	.8215	.8197	.8051
95	35	.7338 . 629 5	.7239 .6197	.7155 . 6094	.6994 .5 892	.6860 .5725	.6785 . 5633	.6757 . 5600	.6524 .5318
104 113	45	.5414	.5329	.5215	.4987	.4802	.4701	.4665	.4360
122	50	.4671	.4603 .3993	.3869	.4241	.4048	.3942	.3906	.3594
131 140	60	.3515	.3479	.3353	.3108	.2917	.2811	.2776	.2481
149	65	.3068	.3042	.2917 .2548	.2677 . 2316	.2492	.2390	.2356	.2077 . 1747
158 167	70 75	.2367	.2355	.2234	.2011	.1842	.1748	.1719	.1476
176 185	80	.2093 .1859	.2083 .1849	.1965 .1735	. 1753 .1533	.1593 .1383	.1504	.1477	.1253
194	90	.1659	.1648	.1536	.1346	.1205	.1126	.1102	.09134
203 212	95	.1487	.1473 .1 321	.1365	.1185	.1054	.09794	.09575	.07846 .06766
221	105	.1212	.1188	.1088	.09285	.08138	.07484	.07298	.05856
230 239	110	, 1101 .1005	.1 <mark>072</mark> .09700	.09750 .08764	.08256 .07362	.07186	.06573	.06402	.05085
248	120	.09208	.08802	.07900	.06583	.05654	.05117	.04971	.03875
257 266	125	.08475	.08010	.07139 .06467	.05903	.05036	.04534 .04029	.04400	.03398
275	135	.07267	.06684	.05873	.04784	.04023	.03589	.03475	.02638
284 293	140 145	.06769	.06129	.0 5345 .04876	.04323 .03915	.03619	.03209	.03100	.02334
302	150	.05940	.05189	.04458	.03555	.02953	.02577	.02485	.01843
311 320	155	.05595	.04791	.04085	.03234	.02680	.02318	.02233	.01644 . 01470
329	165					.02224	.01887	.01815	.01318
338 347	170 175					.02033	.01708 .01550	.01642	.01184 .01066
356	180					.01713	.01409	.01353	.009623
365 374	185	Those	toblog ar	a plattad a		.01577 .01456	.01283	.01231	.008703
383	195			e plotted a nside back		.01347	.01071	.01027 .009401	.007164 .006519
392 401	200					.01248 .01159	.009811	.009401	.005943
410	210		of this catalog. The plotted curves facilitate interpolation				.008278	.007925	.005428
419 428	215 220					.01006	.007033	.006727	004552
437 446	225 230			mperature	points	.008790	.006499	.006214	.004179
455	235	given	in the tab	ies.		.007735	.005575	.005326	.003539
464 473	240 245					.007274 .006850	.005175	.004943	.003265
482	250					.006462	.004479	.004275	.002791
491 500	255 260					.006104 .005774	.004176 .003899	.003985	.002586 .002399
Same of the same o							1		

RESISTANCE RATIO VS. TEMPERATURE

To find the Thermistor Resistance at any specified temperature, multiply the Resistance Ratio given by the Resistance at 25°C.

given by the Resistance at 25°C.									
9 10 4069 4125 30.80 32.39 9.355 9.598 -4.44 -4.49		11	3 4320 68 38.05 11 10.43	4520 45.05 11.44 -4.84	14 4598 48.10 11.88 -4.91	4790 56.53 13.19 -5.12	16 5135 75.64 15.60 -5.46	TABLE NO. BETA: 25-125°C (KELVIN) RATIO: 25°C/125°C RATIO: 0°C/50°C TC: α 25°C (%/°C) °F	
		4243 35.68 10.11 -4.59							
	2. 2. 3. 40 W							-112 -103 94	-80 -75 -70
151.1 103.1	157.1 107.0	165.9 114.1	176.2 119.7	202.0 136.7	212.5 143.7	223.1 155.2	349.5 228.4	- 85 - 76 - 67	-65 -60 -55
71.27 49.94 35.42	73.88 51.66 36.57	79.22 55.52 39.27	82.32 57.30 40.34	93.51 64.71 45.26	98.20 67.83 47.34	108.1 75.55 53.04	151.1 101.2 68.51	- 58 - 49	-50 -45
25.42 18.45 13.53	26.19 18.97 13.88	28.05 20.23 14.73	28.72 20.67 15.03	31.99 22.84 16.47	33.37 23.76 17.08	37.44 26.58 19.00	46.89 32.43 22.65	- 40 - 31 - 22 - 13	-40 -35 -30 -25
10.03 7.507 5.671	10.26 7.663 5.774	10.82 8.029 6.010	11.03 8.175 6.114	11.99 8.806 6.526	12.39 9.072 6.700	13.68 9.924 7.252	15.97 11.37 .8.161	- 4 + 5 - 14	-20 -15 -10
4.322 3.322 2.574 2.010	4.390 3.364 2.600 2.027	4.538 3.452 2.654 2.056	4.612 3.508 2.689 2.078	4.878 3.676 2.792 2.137	4.989 3.746 2.835 2.161	5.340 3.963 2.964 2.233	5.910 4.315 3.175 2.355	23 32 41 50	- 5 0 5
1.582 1.253 1.000	1.591 1.258 1.000	1.605 1.262 1.000	1.617 1.268	1.647 1.279 1.000	1.661 1.284 1.000	1.696 1.297	1.759 1.323	59 68	15 20
.8033 .6493	.8017 .6462	.7963 .6387	.7946 .6352	.7872 .6235	.7844 .6190	1.000 .7756 .6066	1.000 .7638 .5868	77 86 95	25 30 35
5280 4318 3551	.5240 .4274 .3505	.5153 .4183 .3414	5109 4133 3362	4969 3984 3212	.4915 .3926 .3154	.4771 .3775 .3005	.4537 .3531 .2766	104 113 122	40 45 50
.2936 .2440 .2038	.2890 .2396 .1996	.2801 .2311 .1916	.2749 .2260 .1868	.2603 .2122 .1738	.2547 .2069 .1689	.2405 .1936 .1567	.2179 .1727 .1376	131 140 149	55 60 65
1710 1442 1221	.1670 .1405 .1186	1596 .1335 1122	.1550 .1293 1083	.1430 .1183 09826	.1385 1142 .09453	.1275 .1042 08559	.1103 .08884 .07193	158 167 176	70 75 80
.1038 .08862 .07596	.1006 .08572 .07331	.09774 .08031 .06835	.09115 .07701 .06533	.08199 .06870 .05781	.07863 .06568 .05509	.07064 .05857 .04877	.05854 .04786 .03932	185 194 203	85 90 95
.06535 .05644 .04891	.06294 .05424 .04691	.05839 .05008 .04309	.05563 .04755 .04079	.04883 .04141 .03525	.04640 .03923 ,03329	.04079 .03425 .02887	.03245 .02689 .02238	212 221 230	100 105 110
.04253 .03710 .03247	.04071 .03545 .03097	.03722 .03225 .02803	.03511 .03033 .02628	.03011 .02581 .02220	.02836 .02424 .02079	.02443 .02075 .01769	.01871 .01570 .01322	239 248 257	115 120 125
.02851 .02509 .02216	.02714 .02386 	.02445 .02138 .01876	.02284 .01992 .01742	.01915 .01658 .01440	.01789 .01545 .01338	.01514 .01299 .01120	.01118 .009485 .008077	266 275 284	130 135 140
.01962 .01742 .01551	.01860 .01649 .01466	.01650 .01456 .01287	.01528 .01344 .01185	.01254 .01095 .009588	.01162 .01012 .008844	.009680 .008394 .007300	.006901 .005916 .005088	293 302 311 320	145 150 155
.01384 .01238 .01111 .009986	.01307 .01167 .01046 .009387	.01142 .01015 .009044 .008078	.01048 .009286 .008251 .007349	.006543 .005790	.007748 .006806 .005994 .005293	.005568 .004883 .004292	.003799 .003297 .002870	329 338 347	160 165 170
.008998 .008126	.008447 .007617 .006884	.007232 .006489 .005835	.006561 .005870 .005264	.005136 .004566 .004068	.004685 .004156 .003696	.003783 .003342 .002959	.002505 .002193	356 365 374	180 185 190
.006669 .006060 .005518	.006234 .005657 .005144	.005258 .004747 .004294	.004730 .004259 .003843	.003633 .003251 .002915	.003294 .002942 .002633	.002626 .002335 .002081	.001693 .001494 .001321	383 392 401	195 200 205
.005034 .004600	.004686 .004276	.003892 .003534 .003215	.003474 .003146 .002855	.002620 .002359	.002362 .002123	.001858 .001662	.001021 .001171 .001040 0009259	410 419 428	210 215 220
003864 003550	003581 003285	.002930	.002595	.001923 .001741 .001579	.001724 .001559	.001338 .001204 .001085	.0008263 .0007389	437 446 455	225 230 235
.003267 .003011 .002780	.003019 .002779 .002561	.002446 .002240 .002055	.002155 .001969 .001802	.001579 .001434 .001305	.001411 .001280 .001163	.001085 .0009796 .0008858	.0005946 .0005349 .0004822	455 464 473 482	235 240 245 250
.002371 .002381 .002208	.002186 .002024	.001607 .001600	.001516 .001393	.001086	.0009649	.0006612	.0004355	491 500	255 260

Technical Data

S-CURVES

F(T) VS. TEMPERATURE - "A" MATERIAL

F (T) VS. TEMPERATURE - B" MATERIAL

THERM() METRICS

RESISTANCE - TEMPERATURE CHARACTERISTICS


```
PS * THERMOBEADS * THERMOPROBES * THERMOCHIPS * THERMOBEADS * THERMOPROBES
DS . THERMOFLAKES . THERMOFILMS . THERMORODS . THERMOFLAKES . THERMOFILMS
RS . THERMOSENSORS . UNITHERM THERMISTORS . THERMOSENSORS . UNITHERM
OBES * THERMOCHIPS * THERMOBEADS * THERMOPROBES * THERMOCHIPS * THERMOBEADS
ILMS . THERMORODS . THERMOFLAKES . THERMOFILMS . THERMORODS . THERMOFLAKE
HERM THERMISTORS . THERMOSENSORS . UNITHERM THERMISTORS . THERMOSENS
HERMOCHIPS . THERMOBEADS . THERMOPROBES . THERMOCHIPS . THERMOBEADS . THER
THERMORODS • THERMOFLAKES • THERMOFILMS • THERMORODS • THERMOFLAKES • THE
HERMISTORS - THERMOSENSORS - UNITHERM THERMISTORS - THERMOSENSORS -
OCHIPS THERMOBEADS • THERMOPROBES • THERMOCHIPS • THERMOBEADS • THERMOPF
ORODS . THERMOFLAKES . THERMOFILMS . THERMORODS . THERMOFLAKES . THERMOF
ISTORS * THERMOSENSORS * UNITHERM THERMISTORS * THERMOSENSORS *
S . THERMOBEADS . THERMOPROBES . THERMOCHIPS . THERMOBEADS . THERMOPROBES
S . THERMOFLAKES . THERMOFILMS . THERMORODS . THERMOFLAKES . THERMOFILMS
RS . THERMOSENSORS . UNITHERM THERMISTORS . THERMOSENSORS . UNITHERN
RMOPROBES . THERMOCHIPS . THERMOBEADS . THERMOPROBES . THERMOCHIPS .
ERMOFILMS . THERMORODS . THERMOFLAKES . THERMOFILMS . THERMORODS . THER
UNITHERM THERMISTORS . THERMOSENSORS . UNITHERM THERMISTORS . THER
* THERMOCHIPS * THERMOBEADS * THERMOPROBES * THERMOCHIPS * THERMOBEADS * T
* THERMORODS * THERMOFLAKES * THERMOFILMS * THERMORODS * THERMOFLAKES *
THERMISTORS . THERMOSENSORS . UNITHERM THERMISTORS . THERMOSENSORS
THERMOPROBES . THERMOCHIPS . THERMOBEADS . THERMOPROBES . THERMOCHIPS
THERMOFILMS . THERMORODS . THERMOFLAKES . THERMOFILMS . THERMORODS . T
S . UNITHERM THERMISTORS . THERMOSENSORS . UNITHERM THERMISTORS . T
MOCHIPS . THERMOBEADS . THERMOPROBES . THERMOCHIPS . THERMOBEADS . THERMOP
MORODS = THERMOFLAKES = THERMOFILMS = THERMORODS = THERMOFLAKES = THERMO
IISTORS . THERMOSENSORS . UNITHERM THERMISTORS . THERMOSENSORS
S . THERMOCHIPS . THERMOBEADS . THERMOPROBES . THERMOCHIPS . THERMOBEADS .
S . THERMORODS . THERMOFLAKES . THERMOFILMS . THERMORODS . THERMOFLAKES
M THERMISTORS . THERMOSENSORS . UNITHERM THERMISTORS . THERMOSENSO

    THERMOBEADS = THERMOPROBES = THERMOCHIPS = THERMOBEADS = THERMOPROBES =

* THERMOFLAKES * THERMOFILMS * THERMORODS * THERMOFLAKES * THERMOFILMS *
* THERMOSENSORS * UNITHERM THERMISTORS * THERMOSENSORS * UNITHERM
THERMOCHIPS * THERMOBEADS * THERMOPROBES * THERMOCHIPS * THERMOBEADS * THER
THERMORODS . THERMOFLAKES . THERMOFILMS . THERMORODS . THERMOFLAKES .
HERMISTORS . THERMOSENSORS . UNITHERM THERMISTORS . THERMOSENSORS .
ERMOBEADS . THERMOPROBES . THERMOCHIPS . THERMOBEADS . THERMOPROBES . THER
ERMOFLAKES . THERMOFILMS . THERMORODS . THERMOFLAKES . THERMOFILMS . THE
ERMOSENSORS . UNITHERM THERMISTORS . THERMOSENSORS . UNITHERM THER
CHIPS . THERMOBEADS . THERMOPROBES . THERMOCHIPS . THERMOBEADS . THERMOPRO
RODS = THERMOFLAKES = THERMOFILMS = THERMORODS = THERMOFLAKES = THERMOF
TORS . THERMOSENSORS . UNITHERM THERMISTORS . THERMOSENSORS . UNITH
S . THERMOBEADS . THERMOPROBES . THERMOCHIPS . THERMOBEADS . THERMOPROBES
S . THERMOFLAKES . THERMOFILMS . THERMORODS . THERMOFLAKES . THERMOFILMS
S . THERMOSENSORS . UNITHERM THERMISTORS . THERMOSENSORS . UNITHERM
RMOCHIPS = THERMOBEADS = THERMOPROBES = THERMOCHIPS = THERMOBEADS = THERMO
RMORODS . THERMOFLAKES . THERMOFILMS . THERMORODS . THERMOFLAKES .
RMISTORS = THERMOSENSORS = UNITHERM THERMISTORS = THERMOSENSORS = UI
   Thermometrics, Inc. 1985 Printed in U.S.A. THERMOCHIPS THERMOBEADS THERMOPROBES T
* THERMOFLAKES * THERMOFILMS * THERMORODS * THERMOFLAKES * THERMOFILMS
```