Thema Nr. 1

(Aufgabengruppe)

Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten.

Aufgabe 1 (Frühjahr 2006). Sei (G, +) eine abelsche Gruppe und U, V Untergruppen. Zeigen Sie, daß die folgenden beiden Aussagen äquivalent sind: (4 Punkte)

- (a) Die Gruppe G ist direkte Summe von U und V.
- (b) Für alle $a, b \in G$ haben die Nebenklassen a + U und b + V jeweils genau ein gemeinsames Element.

Lösung. "(b) \Rightarrow (a)": Wir bezeichnen mit 0 das neutrale Element von G. Für a=b=0 haben nach Voraussetzung die Nebenklassen 0+U und 0+V genau ein gemeinsames Element. Da $0 \in 0+U=U$ und $0 \in 0+V=V$ gilt also

$$U \cap V = (0 + U) \cap (0 + V) = \{0\}.$$

Wir müssen noch zeigen, daß U+V=G ist. Da U und V Untergruppen von G sind, ist klar, daß $U+V\subset G$. Sei also $g\in G$. Wir betrachten die Nebenklassen g+U und 0+V=V. Nach Voraussetzung enthält $(g+U)\cap V$ genau ein Element v. Dafür gilt v=g+u für ein $u\in U$. Es folgt $g=(-u)+v\in U+V$. Also $G\subset U+V$.

Dies zeigt, daß G direktes Produkt von U und V ist.

"(a) \Rightarrow (b)": Seien $a,b \in G$. Wir müssen zeigen, daß der Schnitt $(a+U) \cap (b+V)$ genau ein Element enthält. Es ist $a-b \in G$ und da U+V=G gibt es $u \in U$ und $v \in V$ mit u+v=a-b. Es folgt $a+(-u)=b+v \in (a+U) \cap (b+V)$. Dies zeigt, daß $(a+U) \cap (b+V)$ mindestens ein Element enthält. Um zu sehen, daß es genau ein solches gibt, sei $g \in (a+U) \cap (b+V)$ beliebig. Also g=a+u'=b+v' mit $u' \in U$ und $v' \in V$. Dann folgt v'-u'=a-b=u+v, also $u'+u=v'-v \in U \cap V$. Da aber $U \cap V=\{0\}$ nach Voraussetzung, folgt u=-u' und v=v'. Es folgt g=a+(-u)=b+v, also genau das Element von oben, welches demnach eindeutig ist.

Aufgabe 2 (Frühjahr 2012). Für welche $a, b \in \mathbb{Q}$ ist das Polynom $(x-1)^2$ ein Teiler von $f = ax^{30} + bx^{15} + 1$? (3 Punkte)

Lösung. Für $f \in \mathbb{Q}[x]$ wie angegeben mit $a,b \in \mathbb{Q}$ ist $(x-1)^2$ genau dann ein Teiler, wenn 1 eine doppelte Nullstelle von f ist. Dies ist genau dann der Fall, wenn f(1) = 0 und f'(1) = 0. Es ist $f'(x) = 30ax^{29} + 15bx^{14}$, also ist

$$f(1) = a + b + 1$$
$$f'(1) = 30a + 15b$$

Es gilt also:

$$(x-1)^{2} | f \Leftrightarrow f(1) = 0 = f'(1)$$

$$\Leftrightarrow a+b+1 = 0 \quad \text{und} \quad 30a+15b = 0$$

$$\Leftrightarrow a+b+1 = 0 \quad \text{und} \quad 2a+b = 0$$

$$\Leftrightarrow a+b+1 = 0 \quad \text{und} \quad b = -2a$$

$$\Leftrightarrow -a+1 = 0 \quad \text{und} \quad b = -2a$$

$$\Leftrightarrow a = 1 \quad \text{und} \quad b = -2$$

Also teilt $(x-1)^2$ genau dann f, wenn a=1 und b=-2.

Aufgabe 3 (Frühjahr 1995). Sei F/K eine nichttriviale endliche Galoiserweiterung mit auflösbarer Galoiseruppe. Zeigen Sie, daß es einen Zwischenkörper $K \subset E \subset F$ gibt, so daß E/K Galois'sch mit abelscher Galoiseruppe ist. (4 Punkte)

 $L\ddot{o}sung$. Sei $G = \operatorname{Gal}(F/K)$. Nach Vorraussetzung ist G auflösbar, sie besitzt also eine Normalreihe mit abelschen Faktoren, das heißt eine Folge von Untergruppen

$$G = H_0 \supset H_1 \supset \ldots \supset H_m = \{e\},\$$

 $m \ge 0$, so daß $H_{i+1} \triangleleft H_i$ und H_i/H_{i+1} abelsch ist für $0 \le i < m$.

Insbesondere ist H_1 ein Normalteiler in G. Definiere nun $E := \operatorname{Fix}_F(H_1)$. Dies ist der nach dem Hauptsatz der Galoistheorie zu H_1 korrespondierende Zwischenkörper, F/E ist Galois'sch und $\operatorname{Gal}(F/E) = H_1 \subset G$. Da aber H_1 Normalteiler von G ist, ist nach dem zweiten Teil des Hauptsatzes der Galoistheorie auch E/K Galois'sch mit Galoisgruppe $\operatorname{Gal}(E/K) \cong G/H_1$. Nach Voraussetzung ist $G = H_0$ und H_0/H_1 abelsch. Damit ist $\operatorname{Gal}(E/K)$ abelsch, und E/K abelsche Galoiserweiterung, wie gewünscht

Zusatzaufgabe (Frühjahr 1981). Man gebe für die folgenden Fälle jeweils ein Beispiel an oder begründe kurz, warum es ein derartiges Beispiel nicht gibt: (4 Punkte)

- (a) eine einfache nicht-abelsche Gruppe,
- (b) ein kommutativer Körper mit genau 6 Elementen,
- (c) ein maximales Ideal in $\mathbb{Q}[X,Y]$ das nicht Hauptideal ist,
- (d) ein irreduzibles Polynom 3. Grades in $\mathbb{R}[X]$.

Lösung. (a) Die alternierende Gruppe $A_5 \subset \mathfrak{S}_5$ ist die kleinste nicht-abelsche einfache Gruppe (enthält keine nicht-trivialen Normalteiler).

- (b) Die Ordnung jedes endlichen Körpers ist eine Primzahlpotenzm, also gibt es keinen Körper mit 6 Elementen.
- (c) Das Ideal (X, Y) is maximales Ideal (denn $\mathbb{Q}[X, Y]/(X, Y) \cong \mathbb{Q}$ ist ein Körper) aber kein Hauptideal (denn X und Y sind teilerfremd).
- (d) DIe Erweiterung $\mathbb{R}\subset\mathbb{C}$ hat Grad 2 und \mathbb{C} ist ein algebraischer Abschluß von \mathbb{R} . Also ist jedes Polynom vom Grad $\geqslant 3$ über \mathbb{R} reduzibel.

Thema Nr. 2

(Aufgabengruppe)

Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten.

Aufgabe 1 (Frühjahr 2014). Es seien A, B komplexe $(n \times n)$ -Matrizen mit AB = BA. (4 Punkte)

- (a) Man zeige, daß B jeden Eigenraum von A invariant lässt, d.h.: Für jeden Eigenraum U von A gilt $Bu \in U$ für alle $u \in U$.
- (b) Man zeige, daß A und B einen gemeinsamen Eigenvektor haben, d.h.: Es gibt $0 \neq v \in \mathbb{C}^n$ und $\lambda, \mu \in \mathbb{C}$ mit $Av = \lambda v$, $Bv = \mu v$.
- (c) Man zeige anhand eines Beispiels, daß die Aussage aus (b) ohne die Voraussetzung AB = BA im Allgemeinen nicht gilt.

Lösung. Zu (a): Sei $\lambda \in \mathbb{C}$ und $U \subset \mathbb{C}^n$ der Eigenraum von A zum Wert λ . Für $u \in U$ gilt dann

$$A(Bu) = (AB)u = (BA)u = B(Au) = B(\lambda u) = \lambda(Bu).$$

Also ist $Bu \in U$. Dies zeigt die Behauptung.

Zu (b): Sei $\chi_A \in \mathbb{C}[X]$ das charakteristische Polynom von A. Da \mathbb{C} algebraisch abgeschlossen ist, zerfällt es in Linearfaktoren. Also besitzt A mindestens einen Eigenwert $\lambda \in \mathbb{C}$. Sei $U \subset \mathbb{C}^n$ der zugehörige Eigenraum. Da die Matrix B den Eigenraum U nach Teil (a) invariant lässt, induziert ihre Einschränkung auf U einen Endomorphismus

$$\phi: U \to U, v \mapsto Bv.$$

Sei $\chi_{\phi} \in \mathbb{C}[X]$ das charakteristische Polynom von ϕ . Mit dem gleichen Argument wie oben zerfällt es in Linearfaktoren. Also hat auch ϕ mindestens einen Eigenwert $\mu \in \mathbb{C}$ und einen nichttrivialen zugehörigen Eigenraum $V \subset U \subset \mathbb{C}^n$. Sei $0 \neq v \in U$ ein Eigenvektor von ϕ zum Eigenwert μ . Dann gilt $Av = \lambda v$ und $Bv = \phi(v) = \mu v$. Also haben A und B einen gemeinsamen Eignevektor (mit möglischerweise unterschiedlichen Eigenwerten).

Zu (c): Sei n=2. Zwei Matrize die nciht miteinander vertauschen sind

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \text{und} \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

denn AB = -BA. Das charakteristische Polynom von A ist

$$\chi_A = (X - 1)(X + 1),$$

also sind die Eignewerte ± 1 und die zu gehörigen Eigenräume

$$\left\{ \left(\begin{array}{c} \alpha \\ 0 \end{array} \right) \mid \alpha \in \mathbb{C} \right\} \quad \text{für 1}$$

$$\left\{ \left(\begin{array}{c} 0 \\ \beta \end{array} \right) \mid \beta \in \mathbb{C} \right\} \quad \text{für } -1$$

Doch für $\alpha \in \mathbb{C} \setminus \{0\}$ ist

$$B\begin{pmatrix} \alpha \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \alpha \end{pmatrix}$$
$$B\begin{pmatrix} 0 \\ \beta \end{pmatrix} = \begin{pmatrix} \beta \\ 0 \end{pmatrix}$$

Also ist kein (nicht-trivialer) Eigenvektor von A ein Eignvektor von B.

Aufgabe 2. Sei $K = \mathbb{C}(t)$ der Quotientenkörper des Polynomrings $\mathbb{C}[t]$ und $f = x^3 - 2tx + t \in K[x]$. Zeigen Sie, daß f irreduzibel in K[x] ist. (3 Punkte)

 $L\ddot{o}sung$. Der Ring $R=\mathbb{C}[t]$ ist als Polynomring über einem Körper ein euklidischer Ring, wobei die euklidische Norm durch die Gradabbildung

$$\mathbb{C}[t]\setminus\{0\}\to\mathbb{N}_0, f\mapsto \deg(f)$$

gegeben ist. Das Element $t \in \mathbb{C}[t]$ ist irreduzibel, denn für jede Zerlegung $t = a \cdot b$ gilt

$$1 = \deg(t) = \deg(a) + \deg(b),$$

also deg(a) = 1 und deg(b) = 0 oder umgekehrt. Dies zeigt, daß t keine echten Teiler hat, also irreduzibel ist. Da R als euklidischer Ring faktoriell ist, ist t sogar ein Primelement.

Wir betrachten f nun als Polynom über dem Integriätsring R. Hier erfüllt es die Voraussetzungen für das Eisensteinkriterium für das Primelement t: da f normiert ist, teilt t nicht den Leitkoeffizienten, andererseits teilt t alles anderen Koeffizienten, aber den konstanten Koeffizienten nicht quadratisch. Also

$$t \nmid a_3 = 1,$$

$$t | a_2 = 0$$

$$t | a_1 = -2t$$

$$t | a_0 = t$$

$$t^2 \nmid a_0 = t$$

Also ist f irreduzibel in R[x] und nach dem Gauß'schen Lemma irreduzibel in K[x], da K der Quotientenkörper von R ist.

Aufgabe 3 (Herbst 2016). Finden Sie zwei Polynome $f, g \in \mathbb{Q}[X]$ gleichen Grades, so daß $\operatorname{Gal}(f)$ und $\operatorname{Gal}(g)$ gleich viele Elemente habe, aber $\operatorname{Gal}(f)$ abelsch und $\operatorname{Gal}(g)$ nicht abelsch ist. (4 Punkte)

 $L\ddot{o}sung$. Die Ordnung der gesuchten Gruppen kann keine Primzahl sein. Die kleinste mögliche nichtabelsche Gruppe ist \mathfrak{S}_3 und hat Ordnung 6. Wir kennen bereits eine Galoiserweiterung mit dieser Galoisgruppe:

Der Zerfällungskörper des Polynoms $X^3 - 2 \in \mathbb{Z}[X]$ ist $\mathbb{Q}(\sqrt[3]{2}, \zeta_3)$ und hat Ordnung 6 über \mathbb{Q} . (Im Examen müsste man das zeigen, hier verweise ich auf die Vorlesungsnotizen.)

$$\operatorname{Gal}(X^3 - 2/\mathbb{Q}) = \operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2}, \zeta_3)/\mathbb{Q}) \cong \mathfrak{S}_3.$$

Jede abelsche Gruppe der Odrnung 6 ist isomorph zu $\mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$. Diese ist zyklisch und insbesondere isomorph zu $(\mathbb{Z}/7\mathbb{Z})^{\times}$. Wir wissen, daß dies die Galoisgruppe der Erweiterung $\mathbb{Q}^{(7)}/\mathbb{Q}$ ist, also des siebten Kreistielungskörpers $\mathbb{Q}(\zeta_7)$ über \mathbb{Q} . Das Minimalpolynom der primitiven siebten Einheitswurzel ζ_7 ist das Kreisteilungspolynom $\phi_7 = X^6 + X^5 + X^4 + X^3 + X^2 + X + 1$.

$$\operatorname{Gal}(\phi_7/\mathbb{Q}) = \operatorname{Gal}(\mathbb{Q}(\zeta_7)/\mathbb{Q}) \cong \mathbb{Z}/6\mathbb{Z}.$$

Da nicht nach irreduziblen Polynomen gefragt war, können wir das Polynom X^3-2 mit linearen "trivialen" Polynomen in $\mathbb{Z}[X]$ multiplizieren, um Polynome gleichen Grades zu erhalten. Etwa:

$$f = \phi_7 = X^6 + X^5 + X^4 + X^3 + X^2 + X + 1$$

$$g = (X^3 - 2)(X - 2)(X - 3)(X - 5)$$

Dann gilt

$$Gal(f/\mathbb{Q}) = Gal(\mathbb{Q}(\zeta_7)/\mathbb{Q}) \cong \mathbb{Z}/6\mathbb{Z}$$
$$Gal(g/\mathbb{Q}) = Gal(\mathbb{Q}(\sqrt[3]{2}, \zeta_3)/\mathbb{Q}) \cong \mathfrak{S}_3$$

und
$$|\operatorname{Gal}(f/\mathbb{Q})| = |\operatorname{Gal}(g/\mathbb{Q})| = 6.$$

Zusatzaufgabe (Frühjahr 1981). Man gebe für die folgenden Fälle jeweils ein Beispiel an oder begründe kurz, warum es ein derartiges Beispiel nicht gibt: (4 Punkte)

- (a) eine auflösbare nicht-abelsche Gruppe,
- (b) eine nicht-abelsche Gruppe der Ordnung 7,
- (c) ein maximales Ideal in $\mathbb{Q}[X,Y]$ das nicht Hauptideal ist,
- (d) ein irreduzibles separables Polynom 2. Grades in $\mathbb{F}_2[X]$.
- Lösung. (a) Die symmetrische Gruppe \mathfrak{S}_3 ist nicht-abelsch, aber auflösbar mit Normalreihe mit abelschen Faktoren $\mathfrak{S}_3 \supset A_3 \supset \{e\}$.
 - (b) Jede Gruppe von Primzahlordnung ist zyklisch, also abelsch. Also gibt es keine nicht-abelsche Gruppe der Ordnung 7.
 - (c) Das Ideal (X, Y) is maximales Ideal (denn $\mathbb{Q}[X, Y]/(X, Y) \cong \mathbb{Q}$ ist ein Körper) aber kein Hauptideal (denn X und Y sind teilerfremd).
 - (d) Da der Körper \mathbb{F}_2 endlich ist, ist er vollkommen, also ist jedes irreduzible Polynom separabel. Ein irreduzibles Polynom ist zum Beispeil $X^2 + X + 1 \in \mathbb{F}_2[X]$, denn es hat keine Nullstelle in \mathbb{F}_2 .