Auslegung eines Schiffsgetriebes

26.05.2019

Tobias Metzger

2025852

Inhaltsverzeichnis

- o Übersicht Kräfte/Momente
- o 3D Gesamtansicht
- o Detailansicht
- o Nachweis Querpressverband
- Nachweis Lager
- o Nachweis Radialwellendichtringe
- o Auslegung/Nachweis Schrauben
- o Wellenberechnung
- o Zeichnung Unterkasten
- Zeichnung Oberkasten
- Schweißnähte Unterkasten
- o Schweißnähte Oberkasten
- Wanddicken und Ölstand
- o Öl-/Schmiersystem
- o Verzahnung

		Über	sicht				
Motorwelle	N [1/min]	800		Lager	Fradial [N]	Faxial [_
	P [kW] T [Nm]		Festlager Loslager		848! 844		35923
Propellerwelle	N [1/min]	280		Lager	Fradial [kN]	Faxial [kN]
	P [kW]		Festlager		8859		46387
	T [Nm]		Loslager		1524	58	
Bremswelle	N [1/min]	800		Lager	Fradial [kN]	Faxial [kN]
	P [kW]		Festlager		994:	_	46387
	T [Nm]	15000	Loslager		1163	14	
Gehäuseschrauben	M24		Deck	kelschrauben	M10	M5	
Spannkraft [kN]	188		Spannkraf	t [kN]	29	,6	7,2
Anzugsmoment [Nm]			Anzugsmo	ment [Nm]			5,9

Querpressverband	<i>l</i>					
$\Xi_A \coloneqq 210000 \; \frac{N}{mm^2}$	$E_I = 21000$	00 <u>N</u>	$K_A \coloneqq 1.1$	$S_H \coloneqq 1.8$	$\mu = 0$.19
		1				
$D_F \coloneqq 225 \boldsymbol{mm} - D$						
$Q_I \coloneqq 0 \qquad Q_A \coloneqq \frac{I}{L}$	$\frac{O_F}{O_{Aa}} = 0.253$	$\nu_I \coloneqq 0.3$	$\nu_A = 0.3$	$Rz_{Ai} = 6.3$	3 μm	$Rz_{Ia} = 6.3 \ \mu m$
$F_{res} \coloneqq \sqrt{\left(rac{2\ T}{D_F} ight)}$	$\left(\frac{1}{r}\right)^{2} + F_{a}^{2} = 714$.259.282 /	v			
	S_H) • F_{res} = 1414		N			
$p_{FK} \coloneqq rac{P_{RR}}{D_F \cdot oldsymbol{\pi}}$	$\frac{res}{\cdot l_F \cdot \mu} = 61.58 - \frac{1}{6}$	$\frac{N}{mm^2}$				
$K \coloneqq \frac{E_A}{E_I} \cdot \left(\frac{1+C_A}{1-C_A}\right)$	$+\frac{{Q_I}^2}{-{Q_I}^2}- u_I + \frac{1}{1}$	$rac{+Q_{A}^{-2}}{-Q_{A}^{-2}} + u_{A}^{-2}$	$_{A}$ = 2.137			
$Z_k \coloneqq rac{p_{FK} \! \cdot \! D_F}{E_A} \! \cdot \! K \! = \!$	141.01 μm					
$G \coloneqq 0.8 \cdot \left(Rz_{Ai} + \right)$	$Rz_{Ia} = 10.08$	um				
$leinstes_erforder$	$cliches_\ddot{U}berme$	aß	$\ddot{U}_u\!\coloneqq\! Z_k +$	G = 151.09	•	
$R_{eNA} \coloneqq 900 - 7$	$egin{array}{c} N \ \hline mm^2 \ N \ \hline mm^2 \ \end{array} egin{array}{c} K_{tA} \coloneqq \ K_{tI} \coloneqq \ \end{array}$	= 0.57	$S_{FA} \coloneqq 1.15$	R_{eA}	$\coloneqq\! K_{tA} ullet$	$R_{eNA} = 513 \frac{N}{mn}$ $R_{eNI} = 510 \frac{N}{mm}$
	10110		$S_{FI} \coloneqq 1.15$	R_{eI} :	$=K_{tI}ullet I$	$R_{eNI} = 510 \frac{1}{mm}$
$r\ddot{o}eta te_zul\ddot{a}ssige_z$	Fugenpressung	9				
$p_{FgA}\!\coloneqq\!rac{R_{eA}}{S_{FA}}oldsymbol{\cdot}$	$\frac{1 - Q_A^2}{\sqrt{3}} = 241.0$	$014 \frac{N}{mm^2}$	_	Nabe		
p_{FgI} := $rac{R_{eI}}{S_{FI}}$ • $rac{1}{\sqrt{1}}$	$\frac{2}{\sqrt{3}} = 512.085 - \frac{1}{2}$	$rac{N}{mm^2}$		Welle		
$Z_g \coloneqq rac{p_{FgA} \! \cdot \! D_F}{E_A} \! \cdot \! K =$	= 551.889 μm					
$gr\"{o}eta tes_erforderl$	$iches_\ddot{U}berma$	ß	$\ddot{U}_o\!\coloneqq\!Z_g+$	$G\!=\!561.969$) μm	

				Lageraus	legung						
				Propelle	rwelle						
	Radialkraft [N]	Axialkraft [N]		Festlager							
Festlager	88592	46387		Axialkraft [N]	42170,00	Cerf [kN]	1009,35	Creal [kN]	1270		
Loslager	152458			Radialkraft [N]	80538,182	Fa / Fr [-]	0,52	P [kN]	176,25		
		_		P [kN]	176,25	e [-]	0,23				
KA	1,1			n [1/min]	280						
n [1/min]	280			L10h [h]	20000						
L10h [h]	20000			p (3 oder 10/3)	3,33		Nachweis	L10h [h]	43010,71		
				Y [-]	2,9						
		_		X [-]	0,67						
			Gewählt:	23040-E1A-XL-M							
					L	oslager					
						Radiallag	ger				
				Radialkraft [N]	138598,18	Cerf [kN]	793,71	Creal [kN]	1220		
				P [kN]	138,60			P [kN]	138,60		
				n [1/min]	280						
				L10h [h]	20000						
		_		p (3 oder 10/3)	3,33						
			Gewählt:	NJ2240-E-M1			Nachweis	L10h [h]	83823,36		

			Motorw	velle			
	Radialkraft [N]	Axialkraft [N]		Festlager			
Festlager	84893	35923		Radial-	-/Axiallager		
Loslager	84476		Radialkraft [N]	77175,45 Cerf [kN]	936,16	Creal [kN]	950
			Axialkraft [N]	32657,27 Fa/Fr [-]	0,42	P [kN]	119,31
			P [kN]	119,31			
			Y [-]	2,07			
KA	1,1		X [-]	0,67			
n [1/min]	800		n [1/min]	800			
L10h [h]	20000		L10h [h]	20000			
			p (3 oder 10/3)	3,33			
	e - Wert [-]	Gewählt:	22322-E1-XL		Nachweis	L10h [h]	21002,50
PR-Lager	0,33			Loslager			
				Rad	liallager		
			Radialkraft [N]	76796,36 Cerf [kN]	602,59	Creal [kN]	610
			P [kN]	76,80		P [kN]	76,80
			n [1/min]	800			
			L10h [h]	20000			
			p (3 oder 10/3)	3,33			
		Gewählt:	NJ324-E-XL-TVP2		Nachweis	L10h [h]	20831,60

				Bremswe	elle				
	Radialkraft [N]	Axialkraft [N]			L	oslager			
Lager I	99416	46387				Radiallager			
Lager II	116314			Radialkraft [N]	105740,00	Cerf [kN]	859,02	Creal [kN]	890
				P [kN]	105,74			P [kN]	105,74
				n [1/min]	1497				
				L10h [h]	12000				
KA	1,1			p (3 oder 10/3)	3,33				
n [1/min]	1497		Gewählt:	ZSL192322-TB-XL			Nachweis	L10h [h]	13504,01
L10h [h]	12000				Fe	estlager			
						Axiallager			
	e - Wert [-]			Axialkraft [N]	42170,00	Cerf [kN]	269,76	Creal [kN]	345
KR-Lager	0,35			P [kN]	45,12			P [kN]	45,12
				Y [-]	1,07				
				n [1/min]	1497				
				L10h [h]	12000				
				p (3 oder 10/3)	3,00				
			Gewählt:	QJ222-N2-MPA			Nachweis	L10h [h]	25102,36
						Radiallager			
				Radialkraft [N]	90378,18	Cerf [kN]	734,23	Creal [kN]	750
				P [kN]	90,38			P [kN]	90,38
				n [1/min]	1497				
				L10h [h]	12000				
				p (3 oder 10/3)	3,33				
			Gewählt:	NJ2322-E-XL-TVP2			Nachweis	L10h [h]	12881,09

Nachw	veis Radialwel	lendichtring	
Propellerwelle:	n [U/min]	280	
	d [mm]	200	
	Material	NBR	i.O.
Motorwelle:	n [U/min]	800	
	d [mm]	120	
	Material	NBR	i.O.
Propellerwelle:	n [U/min]	800	
	d [mm]	110	
	Material	NBR	i.O.

		Schraubenberechnung [ISO 4014] - Stahl: C45	5E								
	Propellerwelle - Rückseite Deckelschrauben											
FAXges [N]	42170											
YNT [-]	2,5	Voraus	legung									
NSchrauben [-]	8	l [mm]	20	gewählt:	20 mm							
FAX/Schraube [N]	13178	p [N/mm^2]	455	p < p _G ?	Ja							
Festigkeitsklasse	8,8											
Dnenn/Vorauswahl [mm]	10											
lk [mm]	10											
P [mm]	1,5											
le [mm]	10											
A _p [mm^2]	72,3											
pg [N/mm^2]	770											
Re [N/mm^2]	490											
µges [-]	0,12											
Fsp [kN]	29,6											
Msp [Nm]	47,8	"Anzugsmoment 70%-80% der Streckgrei	nze als Montagevorso	chrift" ??								
Montagevorspar	inung											
Fкі [kN]	0											
Es [N/mm^2]	210000	δs [mm]	1,869E-06	Fvm < Fsp ?	Ja							
lκ [mm]	5											
An [mm^2]	78,54											
l1 [mm]	0											
A _{D1} [mm ²]	78,54											
lg [mm]	10											
A ₃ [mm ²]	52,3											
Ige [mm]	5											
Iм [mm]	3,3											
Ем [N/mm^2]	210000											
dw [mm]	16	Fall:	3									
Da [mm]	30	Aers [mm^2]	207,80									
x [-]	0,62											

dh [mm]	11	δ⊤ [mm]	2,2916E-07		
n [-]	0,3	ф [-]	0,0328		
fz [μm]	11	Fz [N]	5243		
ka [mm]	1,5	Fvm [N]	26984		
statischer Nach	weis				
As [mm^2]	58	σzmax [N/mm^	473	SF > SFerf?	Ja
R _{p0,2} [N/mm ²]	640	σ_{red} [N/mm^2	520		
SFerf [-]	1	S _F [-]	1,23		
dynamischer Nac	hweis				
Fa [N]	432	σ _a [N/mm^2]	7	$\sigma_a < \sigma_A(sv)$?	Ja
		σa(sv) [N/ mm^	51		
		Sp [-]	6,85		
Nachweis Flächenp	ressung				
		p [N/mm^2]	415	p < p _G ?	Ja

i.O.

		Schraubenberechnur	ng [ISO 4014] - Stah	l: C45E	
FAXges [N]	65000				
Ynt [-]	2,5	Voraus			
n Schrauben [-]	4	l [mm]	44,4	gewählt:	50 mm
FAX/Schraube [N]	40625	p [N/mm^2]	587	p < p _G ?	Ja
Festigkeitsklasse	8,8				
Dnenn/Vorauswahl [mm]	24				
lk [mm]	30				
P [mm]	3				
le [mm]	14,4				
A _p [mm^2]	356				
pg [N/mm^2]	770				
Re [N/mm^2]	490				
µges [-]	0,12				
Fsp [kN]	188				
Msp [Nm]	714	"Anzugsmoment 70%-80% der	Streckgrenze als Mo	ontagevorschrift" ??	
Montagevorspan	nung				
Fкı [kN]	0				
Es [N/mm^2]	210000	δs [mm]	8,2639E-07	Fvm < Fsp ?	Ja
lκ [mm]	12				
An [mm^2]	452,39				
l ₁ [mm]	0				
Ad1 [mm^2]	452,39				
lg [mm]	30				
A3 [mm^2]	324,3				
Ige [mm]	12				
Iм [mm]	7,92				
Ем [N/mm^2]	210000				
dw [mm]	36	Fall:	3		
Da [mm]	70	Aers [mm^2]	1187,20		
x [-]	0,63				

dh [mm]	26	δ⊤ [mm]	1,2033E-07		
n [-]	0,7	ф [-]	0,0890		
fz [μm]	10	Fz [N]	10563		
ka [mm]	1,5	Fvm [N]	71360		
statischer Nachv	weis				
As [mm^2]	353	σzmax [N/mm^2]	212	$S_F > S_{Ferf}$?	Ja
R _{p0,2} [N/mm ²]	640	$\sigma_{red} [N/mm^2]$	234		
SFerf [-]	1	S _F [-]	2,74		
dynamischer Nacl	hweis				
Fa [N]	3614	σ_a [N/mm^2]	10	$\sigma_a < \sigma_A(sv)$?	Ja
		$\sigma_{A(SV)}[N/mm^2]$	43,5625		
		Sp [-]	4,25		
Nachweis Flächenp	ressung				
		p [N/mm^2]	538	p < p _G ?	Ja

i.O.

Verfasser: Programm : MDESIGN Kunde: tmetzger

Modulversion: 16.0.7 Datum : 04.04.2019 Projekt:

Wellenberechnung basis

Eingabedaten:

Wellenberechnung in Anlehnung an DIN 743 - Standardversion

gesamte Geometrieschema

Wellengeometrie

Berechnungsgang dynamischer und

statischer

Festigkeitsnachweis

Geometrie

Wellengeometrie

Wellengeometrie

			_																
Nr.	D _{a I} mm	D _{i I} mm	D _{a r} mm	D _{i r} mm	L mm	R _z µm	r mm	d: mm	t: mm	α_{σ} zd:	$\alpha_{\sigma b}$	α _τ :	n _{zd} :	n _b :	n _t :	β _σ zddBk	β_{σ} bdBK	β_{τ} dBK:	d _{BK}
												7 1	, i			:	:		
1	110	0	110	0	40	25	5	0	0	0	0	0	0	0	0	0	0	0	0
2	122	0	122	0	41	25	5	0	0	0	0	0	0	0	0	0	0	0	0
3	130	0	130	0	173	25	5	0	0	0	0	0	0	0	0	0	0	0	0
4	122	0	122	0	28	25	5	0	0	0	0	0	0	0	0	0	0	0	0
5	110	0	110	0	40	25	5	0	0	0	0	0	0	0	0	0	0	0	0

Für die Wärmebehandlung maßgebender Durchmesser vorgeben ?

Nein

Berechnung der Durchbiegung für Stelle

x = 0mm

Drehzahl der Welle

n:0

1/min

Berücksichtigung Eigengewicht - horizontal oder vertikal

Nein

Lager

Nr		Typ =	Position x =	radiale	Torsions-	Kipp-
			mm		Lagersteifigkeit c_{α}	Lagersteifigkeit c_{β}
				=	=	·
				N/m	N*m	N*m
1	\ \ \	Festlager <>	20	1e+015	0	0
2		Loslager	291	1e+015	0	0

Verfasser: Programm : MDESIGN Kunde: tmetzger

Modulversion: 16.0.7 Datum : 04.04.2019 Projekt:

Wellenberechnung basis

Lastdaten

Beanspruchungsart Zug-Druck dynamisch rein wechselnd

Beanspruchungsart Biegung dynamisch rein wechselnd

Beanspruchungsart Torsion dynamisch rein wechselnd

Faktor für Maximallast (Zug-Druck) 2,727 Faktor für Maximallast (Biegung) 2,727 Faktor für Maximallast (Torsion) 2,727

Axialkräfte F...

-					
	Nr.	Position x =	Betrag =	Radius =	Winkel α =
		mm	N	mm	0
	1	162	-35923	155	180

Radialkräfte F,

Nr.	Position x =	Betrag =	Winkel α =
	mm	N	0
1	162	65139	0
2	162	-152796	90

Torsion

Nr.	Position x =	Torsionsmomente M _t :	Leistung P:	Übertragungsglied =
	mm	N*m	kW	
1	311	23607	0	Abtrieb
2	162	23607	0	Antrieb

Angaben zu den Belastungen/Beanspruchungen

Lastfall Konstantes Verhältnis

(Ausschlag/Mittelspannun

g) (Lastfall 2)

Ändern der Grenzlastspielzahl? Nein

 $S_{Dmin} = 1,35$

Mindestsicherheit gegen bleibende Verformung $S_{Fmin} = 1.5$

Werkstoffdaten

Mindestsicherheit gegen Dauerbruch

Modulversion: 16.0.7 Datum: 04.04.2019 Projekt:

Wellenberechnung basis

Festigkeitswerte nach MDESIGN Datenbank

(DIN 743)

Werkstoffbezeichnung 42CrMo4
Werkstoffnummer 1.7225

Bezugsdurchmesser $d_B = 16$ mm

Für den Bezugsdurchmesser

Zugfestigkeit $\sigma_{B'}(R_m) = 1100 \text{ N/mm}^2$ Streckgrenze $\sigma_{S'}(R_e) = 900 \text{ N/mm}^2$ N/mm²

Schubmodul $G = 83000 \quad N/mm^2$ Dichte $\rho = 7850 \quad kg/m^3$

Oberflächenverfestigung anwenden auf gesamte Welle
Werkstoffgrunge

Werkstoffgruppe Vergütungsstähle
Wärmebehandlung vergütet
Oberflächenverfestigung nein

Ergebnisse:

Elastizitätsmodul

Berechnungsgang: dynamischer und statischer Festigkeitsnachweis

Geometrie

Gesamtlänge der Welle	L	=	322	mm
Gesamtmasse der Welle	m	=	30,326	kg
Massenträgheitsmoment der Welle	J	=	0,05889	kg*m²
Geometrisches Trägheitsmoment der Welle	Ï	=	5014,261	cm4
Position des Schwerpunktes auf der X-Achse	X_S	=	161,461	mm
Verdrehwinkel der Welle	(f)	=	0.107	0

Zusätzliche Wellendaten:

Wellenabsatznr.		I_p	W_t	m	J	I	W_b
	mm	cm4	cm ³	kg	kg*m²	cm4	cm ³
1	40	1437,377	261,341	2,984	0,0045	718,688	130,671
2	41	2174,9	356,541	3,762	0,007	1087,45	178,27
3	173	2803,97	431,38	18,026	0,0381	1401,985	215,69
4	28	2174,9	356,541	2,569	0,0048	1087,45	178,27
5	40	1437,377	261,341	2,984	0,0045	718,688	130,671

E = 215000

N/mm²

Modulversion: 16.0.7 Datum: 04.04.2019 Projekt:

Wellenberechnung basis

Lastdaten

Berechnungsergebnisse für Stellex=0mmQuerkraftverlauf Q_X =0NDurchbiegung y_X =0,005551mmWinkel der Durchbiegung Θ =0,015903 $^{\circ}$

Lagerreaktionskräfte:

Nr	Тур	Positio	Radialkraft	Radialkraft	Result.	Axialkraft		Kippmo	Result.
		n	Y-Achse	Z-Achse	Radialkraft	X-Achse	ment	ment	Kippmo
		X	R_{v}	R_z	R	R _{ax}	Y-Achse	Z-Achse	ment
		mm	Ń	N	N	N	N*m	N*m	N*m
1	Festlager	20	-51553,491	72733,151	89150,848	35923	0	0	0
	<>					*			
2	Loslager	291	-13585,509	80062,849	81207,301	0	0	0	0

Result. max. Biegemoment:

Position	x	=	162	mm
Betrag	M_{bmax}	=	12659,42	N*m
Result. max. Torsionsmoment:				
Position	x	= /	162	mm
Betrag	M_{tmax}	= , 1	23607	N*m
Result. max. Zug-Druck-Kraft:				
Position	X	=	20	mm
Betrag	F _{zdmax}	=	-35923	N
Result. max. Zug-Druckspannung:				
Position	x	<i>=</i>	20	mm
Betrag	σ_{zdmax}	=	-3,78	N/mm²
Result. max. Biegespannung:	(7)			
Position	X	=	162	mm
Betrag	σ_{bmax}	=	58,693	N/mm²
Result. max. Torsionspannung:				
Position	×	=	311	mm
Betrag	^τ tmax	=	90,33	N/mm²
Result. max. Vergleichsspannung:				
Position	X	=	282	mm
Betrag	σ_{vmax}	=	426,929	N/mm²
Result. max. Durchbiegung:				
Position	X	=	152,72	mm
Betrag	y _{max}	=	0,023515	mm
Winkel der max. Durchbiegung:				
Position	X	=	14,72	mm
Betrag	Θ	=	0,015904	0
Mire Cieleade il see Flia Care				
Min. Sicherheit geg. Fließen:			202	
Position	X	=	282	mm

Modulversion: 16.0.7 Datum: 04.04.2019 Projekt:

Wellenberechnung basis

Betrag $S_F = 1,771$

Min. Sicherheit geg. Dauerbruch:

Position x = 282 mm

Betrag $S_D = 1,551$

Parameter der Querschnitte:

Zug-Druck Kraft F_{zd} und Zug/Druck Spannung σ_{zd}

Nr	Typ	Position		Amplitud	Mittel	Maximal	Amplitude	Mittel	Maximal
		x mm	F _{zdx} N	e F _{zda} N	F _{zdm} N	F _{zdmax} N	σ _{zda} N/mm²	σ_{zdm} N/mm²	σ _{zdmax} N/mm²
1	Wellenabsatz	40	-35923	-35923	0	-97962,021	-3,78	0	-10,308
2	Wellenabsatz	81	-35923	-35923	0	-97962,021	-3,073	0	-8,38
3	Wellenabsatz	254	0	0	0	0	0	0	0
4	Wellenabsatz	282	0	0	0	0	0	0	0
5	Berechnungsergebniss e für Stelle x	0	0	0	0	0	0	0	0

Biegemoment M_h und Biegespannung σ_h

Nr	Тур	Position	Result.	Amplitude	Mittel	Maximal	Amplitude	Mittel	Maximal
		x mm	M _{bx} N*m	M _{ba} N*m	M _{bm} N*m	M _{bmax} N*m	σ_{ba} N/mm²	σ _{bm} N/mm²	σ_{bmax} N/mm²
1	Wellenabsatz	40	1783,017	1783,017	0	4862,287	13,645	0	37,21
2	Wellenabsatz	81	5438,202	5438,202	0	14829,976	30,505	0	83,188
3	Wellenabsatz	254	3004,67	3004,67	0	8193,736	16,855	0	45,962
4	Wellenabsatz	282	730,866	730,866	0	1993,071	5,593	0	15,253
5	Berechnungsergebnis	0	0	0	0	0	0	0	0
	se für Stelle x			7					

Torsionsmoment M_t und Torsionsspannung τ_t

Nr	Typ	Position	Result.	Amplitud	Mittel	Maximal	Amplitude	Mittel	Maximal
		x mm	M _{tx} N*m	e M _{ta} N*m	M _{tm} N*m	M _{tmax} N*m	^τ ta N/mm²	^τ tm N/mm²	^τ tmax N/mm²
1	Wellenabsatz	40	0	0	0	0	0	0	0
2	Wellenabsatz	81	0	0	0	0	0	0	0
3	Wellenabsatz	254	23607	23607	0	64376,289	66,211	0	180,558
4	Wellenabsatz	282	23607	23607	0	64376,289	90,33	0	246,33
5	Berechnungsergebniss e für Stelle x	0	0	0	0	0	0	0	0

Werkstoffdaten

Werkstoffkenndaten für $d_{max} = 130$ mm

Modulversion: 16.0.7 Datum: 04.04.2019 Projekt:

Wellenberechnung basis

Werkstoffbezeichnung 42CrMo4 Werkstoffnummer 1.7225 N/mm² Zugfestigkeit 839,791 σ_{B} Streckgrenze 621,594 N/mm² σ_{S} Zug-Druck-Wechselfestigkeit 335,916 N/mm² σ_{zdW} Biege-Wechselfestigkeit 419,895 N/mm² σ_{bW} Torsions-Wechselfestigkeit 251,937 N/mm² τ_{tW} tech. Größeneinflussfaktor (Zugfestigkeit) 0,763 $K_{1B}(d_{max})$ tech. Größeneinflussfaktor (Streckgrenze) 0,691 $K_{1S}(d_{max})$

Festigkeitsnachweis

 $\mathrm{K}_1(\mathrm{d})$ - Technologischer Größeneinflussfaktor

 $K_2(d)$ - Geometrischer Größeneinflussfaktor

K_F - Einflussfaktor der Oberflächenrauheit

 α_{σ} - Formzahlen

Nr	Тур	Positio n x mm	K _{1B} (d)	K _{1S} (d)	ZD. K ₂ (d)	Biegun g und Torsion K ₂ (d)	ZD., Biegun g K _{Fσ}	Torsion K _{Fτ}	ZD. α _{σzd}	Biegun g α _{σb}	Torsion α_{τ}
1	Wellenabsatz	40	0,77	0,7	1	0,82	0,81	0,89	2,06	1,89	1,43
2	Wellenabsatz	81	0,76	0,69	1	0,81	0,81	0,89	1,95	1,77	1,36
3	Wellenabsatz	254	0,76	0,69	1	0,81	0,81	0,89	1,95	1,77	1,36
4	Wellenabsatz	282	0,77	0,7	7	0,82	0,81	0,89	2,06	1,89	1,43
5	Berechnungsergeb nisse für Stelle x	0	0,78	0,72	1	0,82	0,81	0,89	-	-	-

G' - Bezogenes Spannungsgefälle

n_{o z} - Stützzahl

10, T				_				
Nr	Тур	Position	ZD.	Biegung	Torsion	ZD.	Biegung	Torsion
		x mm	G ′ _{zd} 1/mm	G ′ _b 1/mm	G ′ _t 1/mm	n _{ozd}	n _{ob}	$n_{ au}$
1	Wellenabsatz	40	0,53	0,53	0,23	1,04	1,04	1,03
2	Wellenabsatz	81	0,54	0,54	0,23	1,05	1,05	1,03
3	Wellenabsatz	254	0,54	0,54	0,23	1,05	1,05	1,03
4	Wellenabsatz	282	0,53	0,53	0,23	1,04	1,04	1,03
5	Berechnungsergebnisse für Stelle x	0	-	-	-	-	-	-

Verfasser: Programm : MDESIGN Kunde: tmetzger

Datum Modulversion: 16.0.7 : 04.04.2019 Projekt:

Wellenberechnung basis

 $eta_{\sigma z d d B K'}$ $eta_{\sigma b d B K'}$ $eta_{\tau d B K}$ - Kerbwirkungszahl bei d $_{B K}$ $eta_{\sigma z d'}$ $eta_{\sigma b'}$ eta_{τ} - Kerbwirkungszahlen $m{K}_{y'}$ - Einflussfaktor zur Oberflächenverfestigung

[*] Nr	Тур	Position	ZD.	Biegun	Torsion	ZD.	Biegung	Torsion	ZD.	Biegun	Torsion
		x mm	β _σ zddBK	g β _{σbdBK}	β _{τdBK}	$\beta_{\sigma zd}$	β _{σb}	$eta_{ au}$	K _{vzd}	g K _{vb}	K _{ντ}
1	Wellenabsatz	40	-	-	-	1,97	1,81	1,39	1	1	1
2	Wellenabsatz	81	-	-	-	1,86	1,69	1,32	1	1	1
3	Wellenabsatz	254	-	-	-	1,86	1,69	1,32	1	1	1
4	Wellenabsatz	282	-	-	-	1,97	1,81	1,39	1	1	1
5	Berechnungsergebn isse für Stelle x	0	-	-	-	1	1	1	1	1	1

$\mathbf{K}_{\sigma'}~\mathbf{K}_{\tau}$ - Gesamteinflussfaktor

 σ_{zdWK} , σ_{bWK} , τ_{tWK} - Wechselfestigkeit des gekerbten Bauteils K_{2F} - Statische Stützwirkung

Nr	Тур	Positio	ZD.	Biegun	Torsion	ZD.	Biege	Torsion	ZD.	Biegun	Torsio
		n x mm	K _σ	g K _σ	$\mathbf{K}_{ au}$	σ_{zdWK} N/mm²	о_вwк N/mm²	s ^t tWK N/mm²	K 2Fzd	g K _{2Fb}	n K _{2Ft}
1	Wellenabsatz	40	2,21	2,45	1,81	153,55	173,02	140,29	1	1,2	1,2
2	Wellenabsatz	81	2,1	2,31	1,75	159,97	181,53	143,86	1	1,2	1,2
3	Wellenabsatz	254	2,1	2,31	1,75	159,97	181,53	143,86	1	1,2	1,2
4	Wellenabsatz	282	2,21	2,45	1,81	153,55	173,02	140,29	1	1,2	1,2
5	Berechnungsergebn isse für Stelle x	0	1,24	1,46	1,34	277,13	294,59	191,99	1	1,2	1,2

γ_{F} - Erhöhung der Fließgrenze

 σ_{zdFK} , σ_{bFK} , τ_{tFK} - Bauteilfließgrenze

Nr	Тур	Position	ZD.	Biegung	Torsion	ZD.	Biegung	Torsion
		x mm	γFzd	γFb	γFt	σ_{zdFK} N/mm²	obFK N/mm²	^τ tFK N/mm²
1	Wellenabsatz	40	1,1	1,05	1	693,04	793,84	436,5
2	Wellenabsatz	81	1,05	1,05	1	652,67	783,21	430,65
3	Wellenabsatz	254	1,05	1,05	1	652,67	783,21	430,65
4	Wellenabsatz	282	1,1	1,05	1	693,04	793,84	436,5
5	Berechnungsergebnisse für Stelle x	0	1	1	1	643,79	772,55	446,03

Statische Sicherheit

Nr	Тур	Position x mm	S _F	in Punkt1 S _{F1}	in Punkt2 S _{F2}
1	Wellenabsatz	40	16,19	-	-
2	Wellenabsatz	81	8,4	-	-
3	Wellenabsatz	254	2,36	-	-
4	Wellenabsatz	282	1,77	-	-
5	Berechnungsergebnisse für Stelle x	0	10000	-	-

Modulversion: 16.0.7 Datum: 04.04.2019 Projekt:

Wellenberechnung basis

 $\boldsymbol{\psi}$ - Einflussfaktor der Mittelspannungsempfindlichkeit

 σ_{mv} , τ_{mv} - Vergleichsmittelspannung

Nr	Тур	Positio	ZD.	Biegung	Torsion		τ _{mv}	σ _{mv1}	τ _{mv1}	σ _{mv2}	τ _{mv2}
		n	$\Psi z d_{\sigma} K$	ΨbσΚ	Ψ_{τ} K	N/mm²	N/mm²	N/mm²	N/mm²	N/mm²	N/mm²
		x mm									
1	Wellenabsatz	40	0,1	0,11	-	0	0	-	-	-	-
2	Wellenabsatz	81	0,11	0,12	-	0	0	-	- ,		-
3	Wellenabsatz	254	-	0,12	0,09	0	0	-	-		-
4	Wellenabsatz	282	-	0,11	0,09	0	0	-		-	-
5	Berechnungsergebn isse	0	-	-	-	0	0	-		-	-
	für Stelle x										

Ausschlagdauerfestigkeit des Bauteils (Gestaltfestigkeit)

Nr	Тур	Positio	ZD.	Biegung	Torsion	ZD.	Biegun	Torsio	ZD.	Biegun	Torsio
		n x mm	σ_{zdADK} N/mm²	σ _{bADK} N/mm²	^τ tADK N/mm²	in Punkt1 σ		n in Punkt1	_		n in Punkt2
						zdADK1 N/mm²	σ bADK1 N/mm²	N/mm ²	zdADK2 N/mm²	σ bADK2 N/mm²	^τ tADK2 N/mm ²
1	Wellenabsatz	40	153,55	173,02	-		-	-	-	-	-
2	Wellenabsatz	81	159,97	181,53	-		-	-	-	-	-
3	Wellenabsatz	254	-	181,53	143,86	-	-	-	-	-	-
4	Wellenabsatz	282	-	173,02	140,29	-	-	-	1	-	-
5	Berechnungsergebn isse für Stelle x	0	-	-		-	-	-	-	-	-

Dynamische Sicherheit

Nr	Тур	Position X mm	S _D	in Punkt1 S _{D1}	in Punkt2 S _{D2}
1	Wellenabsatz	40	9,66	-	-
2	Wellenabsatz	81	5,34	-	-
3	Wellenabsatz	254	2,13	-	-
4	Wellenabsatz	282	1,55	-	-
5	Berechnungsergebnisse für Stelle x	0	10000	-	-

Modulversion: 16.0.7 Datum: 04.04.2019 Projekt:

Wellenberechnung basis

Modulversion: 16.0.7 Datum: 26.03.2019 Projekt:

Wellenberechnung basis

Eingabedaten:

Wellenberechnung in Anlehnung an DIN 743 - Standardversion

Geometrieschema gesamte

Wellengeometrie

Berechnungsgang dynamischer und

statischer

Festigkeitsnachweis

Geometrie

Wellengeometrie

Wellengeometrie

TTCIIC	gco	illeti i																	
Nr.	D _{a I} mm	D _{i I} mm	D _{a r} mm	D _{i r} mm	L mm	R _z µm	r mm	d: mm	t: mm	α_{σ} zd:	$\alpha_{\sigma b}$:	$\alpha_{\tau t}$:	n _{zd} :	n _b :	n _t :	β _σ zddBk :	β _σ S bdBK :	β_{τ} dBK:	d _{BK}
1	205	0	205	0	100	25	0,5	0	0	0	0	0	0	0	0	0	0	0	0
2	220	0	220	0	67	25	0,5	0	0	0	0	0	0	0	0	0	0	0	0
3	230	0	230	0	50	25	0,5	0	0	0	0	0	0	0	0	0	0	0	0
4	250	0	250	0	173	25	0,5	0	0	0	0	0	0	0	0	0	0	0	0
5	230	0	230	0	28	25	0,5	0	0	0	0	0	0	0	0	0	0	0	0
6	220	0	220	0	70	25	0,5	0	0	0.	0	0	0	0	0	0	0	0	0

Für die Wärmebehandlung maßgebender Durchmesser vorgeben ?

Berechnung der Durchbiegung für Stelle x=0 mm Drehzahl der Welle n:0 1/min

Berücksichtigung Eigengewicht - horizontal oder vertikal Nein

Lager

Nr.	Typ =	Position x = mm	radiale Lagersteifigkeit c _r	Torsions- Lagersteifigkeit c_{α}	Kipp- Lagersteifigkeit c
			= N/m	= N*m	= N*m
1	Festlager <>	192	1e+015	0	0
2	Loslager	451,5	1e+015	0	0

Modulversion: 16.0.7 Datum: 26.03.2019 Projekt:

Wellenberechnung basis

Lastdaten

Beanspruchungsart Zug-Druck dynamisch rein

wechselnd

Beanspruchungsart Biegung dynamisch rein

wechselnd

Beanspruchungsart Torsion dynamisch rein wechselnd

2 727

Faktor für Maximallast (Zug-Druck)
2,727
Faktor für Maximallast (Biegung)
2,727

Faktor für Maximallast (Torsion) 2,727

Axialkräfte F

Nr.	Position x = mm	Betrag = N	Radius = mm	Winkel $\alpha =$
1	303,5	-46387	444	0

Radialkräfte F,

Nr.	Position x =	Betrag =	Winkel α =
	mm	N	0
1	303,5	80574	0
2	303,5	198772	90

Torsion

Nr.	Position x =	Torsionsmomente M _t :	Leistung P:	Übertragungsglied =
	mm /	N*m	kW	
1	303,5	88255	0	Antrieb
2	50	88255	0	Abtrieb

Angaben zu den Belastungen/Beanspruchungen

Lastfall Konstantes Verhältnis (Ausschlag/Mittelspannun

g) (Lastfall 2)

Ändern der Grenzlastspielzahl?

Mindestsicherheit gegen Dauerbruch

S_{Dmin} = 1,35

Mindestsicherheit gegen bleibende Verformung

Mindestsicherheit gegen bleibende Verformung $S_{Fmin} = 1,5$

Modulversion: 16.0.7 Datum: 26.03.2019 Projekt:

Wellenberechnung basis

Werkstoffdaten

Festigkeitswerte nach MDESIGN Datenbank (DIN 743)

Werkstoffbezeichnung 42CrMo4
Werkstoffnummer 1.7225

Bezugsdurchmesser $d_B = 16$ mm

Für den Bezugsdurchmesser

Zugfestigkeit $\sigma_{B'} \left(R_m \right) = 1100 \qquad N/mm^2$ Streckgrenze $\sigma_{S'} \left(R_e \right) = 900 \qquad N/mm^2$

Biege-Wechselfestigkeit $\sigma_{bW'} = 550 \quad N/mm^2$ Zug-Druck-Wechselfestigkeit $\sigma_{zdW'} = 440 \quad N/mm^2$ Torsions-Wechselfestigkeit $\tau_{tW'} = 330 \quad N/mm^2$

Elastizitätsmodul $E = 215000 \quad N/mm^2$ Schubmodul $G = 83000 \quad N/mm^2$ Dichte $\rho = 7850 \quad kg/m^3$

Oberflächenverfestigung anwenden auf gesamte Welle

Werkstoffgruppe Vergütungsstähle Wärmebehandlung vergütet

Oberflächenverfestigung

Ergebnisse:

Berechnungsgang: dynamischer und statischer Festigkeitsnachweis

Geometrie

Gesamtlänge der Welle	Ļ	=	488	mm
Gesamtmasse der Welle	m	=	158,894	kg
Massenträgheitsmoment der Welle	J	=	1,07247	kg*m²
Geometrisches Trägheitsmoment der Welle	I	=	78315,441	cm4
Position des Schwerpunktes auf der X-Achse	x_s	=	254,759	mm
Verdrehwinkel der Welle	(0	_	-0.06	0

Modulversion: 16.0.7 Datum: 26.03.2019 Projekt:

Wellenberechnung basis

Zusätzliche Wellendaten:

Wellenabsatznr.	I	I _D	W _t	m	J	I	W_b
	mm	cm4	cm ³	kg	kg*m²	cm4	cm ³
1	100	1,734e+004	1691,576	25,91	0,1361	8669,326	845,788
2	67	2,3e+004	2090,73	19,993	0,121	1,15e+004	1045,365
3	50	2,747e+004	2388,985	16,307	0,1078	1,374e+004	1194,492
4	173	38349,52	3067,962	66,663	0,5208	19174,76	1533,981
5	28	2,747e+004	2388,985	9,132	0,0604	1,374e+004	1194,492
6	70	2,3e+004	2090,73	20,888	0,1264	1,15e+004	1045,365

Lastdaten

Berechnungsergebnisse für Stelle	x	=	0	mm
Querkraftverlauf	Q_{x}	=	0	N
Durchbiegung	y _x	=	0,004402	mm
Winkel der Durchbiegung	Θ	=	0,001314	0

Lagerreaktionskräfte:

Nr	Тур	Positio n x mm	Radialkraft Y-Achse R _y N	Radialkraft Z-Achse R _z N	Result. Radialkraft R N	Axialkraft X-Achse R _{ax} N	ment	Kippmo ment Z-Achse N*m	Result. Kippmo ment N*m
1	Festlager <>	192	33413,78	-1,134e+005	118186,876	46387	0	0	0
2	Loslager	451,5	-113987,78	-85406,852	142434,351	0	0	0	0

Result.	max.	Biegemoment:
---------	------	--------------

Position	x	=	303,5	mm
Betrag	M _{bmax}	=	21080,284	N*m
Result. max. Torsionsmoment:				
Position	x	=	50	mm
Betrag	M _{tmax}	=	88255	N*m
Result. max. Zug-Druck-Kraft:	, y			
Position	x	=	192	mm
Betrag	F_{zdmax}	=	-46387	N
Result. max. Zug-Druckspannung:				
Position	x	=	217	mm
Betrag	$\sigma_{\sf zdmax}$	=	-1,116	N/mm ²
Result. max. Biegespannung:				
Position	x	=	303,5	mm
Betrag	σ_{bmax}	=	13,742	N/mm²
Result. max. Torsionspannung:				
Position	x	=	50	mm
Betrag	^τ tmax	=	52,173	N/mm²
Result. max. Vergleichsspannung:				
Position	x	=	50	mm
Betrag	σ_{vmax}	=	246,43	N/mm²

Programm : MDESIGN | Verfasser : tmetzger | Kunde : tmetzger

Modulversion: 16.0.7 Datum: 26.03.2019 Projekt:

Wellenberechnung basis

Result. max. Durchbiegung:

Position Х mm Betrag y_{max} 0,004402 mm Winkel der max. Durchbiegung: Position 451,749 Х mm Betrag 0,001622 Θ Min. Sicherheit geg. Fließen: Position 100 mm Х

Betrag $S_F = 2,686$

Min. Sicherheit geg. Dauerbruch:

Position x = 100 mmBetrag $S_D = 1,394$

Parameter der Querschnitte:

Zug-Druck Kraft F_{zd} und Zug/Druck Spannung σ_{zd}

Nr	Тур	Position	Result.	Amplitud	Mittel	Maximal	Amplitude	Mittel	Maximal
		x mm	F _{zdx} N	e F _{zda} N	F _{zdm} N	F _{zdmax} N	σ_{zda} N/mm²	σ _{zdm} N/mm²	<mark>σzdmax</mark> N/mm²
1	Wellenabsatz	100	0	0	0	0	0	0	0
2	Wellenabsatz	167	0	0	0	0	0	0	0
3	Wellenabsatz	217	-46387	-46387	0	-1,265e+005	-1,116	0	-3,045
4	Wellenabsatz	390	0	0	0	0	0	0	0
5	Wellenabsatz	418	0	0	0	0	0	0	0
6	Berechnungsergebnis se für Stelle x	0	0	0	0	0	0	0	0

Biegemoment M_h und Biegespannung σ_h

Nr	Тур	Position	Result.	Amplitude	Mittel	Maximal	Amplitude	Mittel	Maximal
		x mm	M _{bx} N*m	M _{ba} N*m	M _{bm} N*m	M _{bmax} N*m	σ_{ba} N/mm²	σ _{bm} N/mm²	თ _{bmax} N/mm²
1	Wellenabsatz	100	0	0	0	0	0	0	0
2	Wellenabsatz	167	0	0	0	0	0	0	0
3	Wellenabsatz	217	2954,672	2954,672	0	8057,39	2,474	0	6,745
4	Wellenabsatz	390	8759,713	8759,713	0	23887,736	7,333	0	19,998
5	Wellenabsatz	418	4771,551	4771,551	0	13012,019	4,564	0	12,447
6	Berechnungsergebnis	0	0	0	0	0	0	0	0
	se für Stelle x								

Programm : MDESIGN Verfasser : tmetzger Kunde: tmetzger

Modulversion: 16.0.7 Datum : 26.03.2019 Projekt:

Wellenberechnung basis

Torsionsmoment M_t und Torsionsspannung τ_t

Nr	Тур	Position	Result.	Amplitud	Mittel	Maximal	Amplitude	Mittel	Maximal
		x mm	M _{tx} N*m	e M _{ta} N*m	M _{tm} N*m	M _{tmax} N*m	^τ ta N/mm²	^τ tm N/mm²	τ <mark>tmax</mark> N/mm²
1	Wellenabsatz	100	88255	88255	0	240671,385	52,173	0	142,276
2	Wellenabsatz	167	88255	88255	0	240671,385	42,213	0	115,114
3	Wellenabsatz	217	88255	88255	0	240671,385	36,942	0	100,742
4	Wellenabsatz	390	0	0	0	0	0	0	0
5	Wellenabsatz	418	0	0	0	0	0	0	0
6	Berechnungsergebniss e für Stelle x	0	0	0	0	0	0	0	0

Werkstoffdaten

Werkstoffkenndaten für	d_{max}	=	250	mm
Werkstoffbezeichnung		42CrMo4		
Werkstoffnummer		1.7225		
Zugfestigkeit	σ_{B}	= /	758,567	N/mm²
Streckgrenze	σ_{S}	7	534,691	N/mm²
Zug-Druck-Wechselfestigkeit	$\sigma_{\sf zdW}$	=	303,427	N/mm²
Biege-Wechselfestigkeit	σ_{bW}	=	379,284	N/mm²
Torsions-Wechselfestigkeit	τ _{tW}	=	227,57	N/mm²
tech. Größeneinflussfaktor (Zugfestigkeit)	$K_{1B}(d_{max})$	=	0,69	
tech. Größeneinflussfaktor (Streckgrenze)	$K_{1S}(d_{max})$	7 =	0,594	

Festigkeitsnachweis

 ${\sf K}_1({\sf d})$ - Technologischer Größeneinflussfaktor ${\sf K}_2({\sf d})$ - Geometrischer Größeneinflussfaktor

 K_F - Einflussfaktor der Oberflächenrauheit $\alpha_{\alpha,\tau}$ - Formzahlen

^α σ, τ	Тур		14 (1)	17 (1)							
Nr	Тур	Positio	$K_{1B}(d)$	K _{1S} (d)	ZD.	Biegun	ZD.,	Torsio	ZD.	Biegun	Torsion
		n			K ₂	g	Biegun	n	$\alpha_{\sigma z d}$	g	$\alpha_{ au}$
		х			(ď)	und	g	$K_{F\tau}$		$\alpha_{\sigma \mathbf{b}}$	
		mm				Torsio	$K_{F\sigma}$				
	4					n	. •				
						K ₂ (d)					
1	Wellenabsatz	100	0,7	0,61	1	0,8	0,82	0,9	5,13	4,78	2,76
2	Wellenabsatz	167	0,7	0,61	1	0,8	0,82	0,9	4,58	4,36	2,51
3	Wellenabsatz	217	0,69	0,59	1	0,8	0,82	0,9	5,64	5,21	2,98
4	Wellenabsatz	390	0,69	0,59	1	0,8	0,82	0,9	5,64	5,21	2,98
5	Wellenabsatz	418	0,7	0,61	1	0,8	0,82	0,9	4,58	4,36	2,51
6	Berechnungsergebn	0	0,71	0,62	1	0,8	0,82	0,9	-	-	-
	isse										
	für Stelle x										

Verfasser : tmetzger Programm : MDESIGN Kunde: tmetzger

Datum : 26.03.2019 Modulversion: 16.0.7 Projekt:

Wellenberechnung basis

G' - Bezogenes Spannungsgefälle

n - Stützzahl

Nr	Тур	Position x mm	ZD. G' _{zd} 1/mm	Biegung G' _b 1/mm	Torsion G't 1/mm	ZD. n _{ozd}	Biegung n _{ob}	Torsion $n_{ au}$
1	Wellenabsatz	100	4,86	4,86	2,3	1,17	1,17	1,12
2	Wellenabsatz	167	4,91	4,91	2,3	1,18	1,18	1,12
3	Wellenabsatz	217	4,83	4,83	2,3	1,18	1,18	1,13
4	Wellenabsatz	390	4,83	4,83	2,3	1,18	1,18	1,13
5	Wellenabsatz	418	4,91	4,91	2,3	1,18	1,18	1,12
6	Berechnungsergebnisse für Stelle x	0	-	-	-	-		-

 $eta_{\sigma z d d B K'}$ $eta_{\sigma b d B K'}$ $eta_{\tau d B K}$ - Kerbwirkungszahl bei d $_{B K}$ $eta_{\sigma z d'}$ $eta_{\sigma b'}$ eta_{τ} - Kerbwirkungszahlen $oldsymbol{K}_{v}$ - Einflussfaktor zur Oberflächenverfestigung

	massiantoi zai obcini										
Nr	Тур	Position	ZD.	Biegun	Torsion	ZD.	Biegung	Torsion	ZD.	Biegun	Torsion
		x mm	β _σ zddBK	g β _{σbdBK}	$\beta_{ au dBK}$	$\beta_{\sigma z d}$	β _{σb}	$eta_{ au}$	K _{vzd}	g K _{vb}	K _{ντ}
1	Wellenabsatz	100	-	-	-	4,37	4,07	2,46	1	1	1
2	Wellenabsatz	167	-	-	-	3,89	3,7	2,24	1	1	1
3	Wellenabsatz	217	-	-	-	4,77	4,4	2,64	1	1	1
4	Wellenabsatz	390	-	-	-	4,77	4,4	2,64	1	1	1
5	Wellenabsatz	418	-	-	-	3,89	3,7	2,24	1	1	1
6	Berechnungsergebn isse für Stelle x	0	-	-	/_	1	1	1	1	1	1

$\mathbf{K}_{\sigma'}$ \mathbf{K}_{τ} - Gesamteinflussfaktor

 $\sigma_{zdWK'}^{\sigma'}$ $\sigma_{bWK'}$ τ_{tWK} - Wechselfestigkeit des gekerbten Bauteils K_{2F} - Statische Stützwirkung

Nr Nr	Тур	Positio	ZD.	Biegun	Torsion	ZD.	Biege	Torsion	ZD.	Biegun	Torsio
		n	K_{σ}	g	Kτ	^σ zdWK	σbwκ N/mm ²	S	K	g	n
		x mm	0_	K _σ		N/mm²	N/mm²	^τ tWK N/mm²	2Fzd	K _{2Fb}	K _{2Ft}
1	Wellenabsatz	100	4,59	5,31	3,19	67,42	72,86	72,74	1	1,2	1,2
2	Wellenabsatz	167	4,11	4,84	2,92	74,86	79,38	79,09	1	1,2	1,2
3	Wellenabsatz	217	4,99	5,72	3,42	60,8	66,28	66,54	1	1,2	1,2
4	Wellenabsatz	390	4,99	5,72	3,42	60,8	66,28	66,54	1	1,2	1,2
5	Wellenabsatz	418	4,11	4,84	2,92	74,86	79,38	79,09	1	1,2	1,2
6	Berechnungsergebn isse für Stelle x	0	1,22	1,47	1,37	256,17	265,86	171,87	1	1,2	1,2

Modulversion: 16.0.7 Datum: 26.03.2019 Projekt:

Wellenberechnung basis

 γ_{F} - Erhöhung der Fließgrenze

 $\sigma_{\text{zdFK'}}$ $\sigma_{\text{bFK'}}$ τ_{tFK} - Bauteilfließgrenze

Nr	Typ	Position	ZD.	Biegung	Torsion	ZD.	Biegung	Torsion
		x mm	γFzd	γFb	γFt	σ_{zdFK} N/mm²	σ_{bFK} N/mm²	^τ tFK N/mm²
1	Wellenabsatz	100	1,15	1,15	1	634,43	761,32	382,21
2	Wellenabsatz	167	1,15	1,15	1	627,64	753,17	378,12
3	Wellenabsatz	217	1,15	1,15	1	614,89	737,87	370,44
4	Wellenabsatz	390	1,15	1,15	1	614,89	737,87	370,44
5	Wellenabsatz	418	1,15	1,15	1	627,64	753,17	378,12
6	Berechnungsergebnisse für Stelle x	0	1	1	1	561,06	673,28	388,72

Statische Sicherheit

Nr	Тур	Position X mm	S _F	in Punkt1 S _{F1}	in Punkt2 S _{F2}
1	Wellenabsatz	100	2,69	-	-
2	Wellenabsatz	167	3,28	-	-
3	Wellenabsatz	217	3,67	-	-
4	Wellenabsatz	390	36,9	-	-
5	Wellenabsatz	418	60,51	-	-
6	Berechnungsergebnisse für Stelle x	0	10000	-	-

 ψ - Einflussfaktor der Mittelspannungsempfindlichkeit

σ..... τ..... - Vergleichsmittelspannung

^O mv [*]	t _{my} - vergieichsmittels	parificing									
Nı	Тур	Positio	ZD.	Biegung	Torsion		τ _{mv}	σ _{mv1}	^τ mv1	σ _{mv2}	τ _{mv2}
		n	ΨzdσK	ΨbσΚ	Ψ_{τ} K	N/mm²	N/mm²	N/mm ²	N/mm²	N/mm²	N/mm²
		X									
		mm									
1	Wellenabsatz	100	-	71	0,05	0	0	-	-	-	-
2	Wellenabsatz	167	-	-	0,05	0	0	-	-	-	-
3	Wellenabsatz	217	0,04	0,05	0,05	0	0	-	-	-	-
4	Wellenabsatz	390		0,05	-	0	0	-	-	-	-
5	Wellenabsatz	418	-	0,05	-	0	0	-	-	-	-
6	Berechnungsergebn	0	-/	-	-	0	0	-	-	-	-
	isse										
	für Stelle x										

Modulversion: 16.0.7 Datum: 26.03.2019 Projekt:

Wellenberechnung basis

Ausschlagdauerfestigkeit des Bauteils (Gestaltfestigkeit)

Nr	Тур	Position	ZD.	Biegung	Torsion	ZD.	Biegun	Torsion	ZD.	Biegun	Torsion
		x mm	σ zdADK	σ_{bADK} N/mm²	^τ tADK N/mm²	in Punkt1		in Punkt1	in Punkt2		in Punkt2
			N/mm²			σ zdADK1 N/mm²	Punkt1 σ bADK1 N/mm²	τtADK1 N/mm²	σ zdADK2 N/mm²	Punkt2 σ bADK2 N/mm ²	N/mm²
1	Wellenabsatz	100	_	-	72,74	-	-	-	- /		-
2	Wellenabsatz	167	-	-	79,09	-	-	-	-	-/	-
3	Wellenabsatz	217	60,8	66,28	66,54	-	-	-	-	-	-
4	Wellenabsatz	390	-	66,28	-	-	-	-	-	-	ı
5	Wellenabsatz	418	-	79,38	-	-	-	0		-	-
6	Berechnungsergebn isse für Stelle x	0	-	-	-	-	-			-	-

Dynamische Sicherheit

Nr	Тур	Position	S _D	in	in
		X		Punkt1	Punkt2
		mm		S _{D1}	S _{D2}
1	Wellenabsatz	100	1,39	-	-
2	Wellenabsatz	167	1,87	-	-
3	Wellenabsatz	217	1,79	-	-
4	Wellenabsatz	390	9,04	-	-
5	Wellenabsatz	418	17,39	-	-
6	Berechnungsergebnisse	0	10000	-	-
	für Stelle x				

Modulversion: 16.0.7 Datum: 26.03.2019 Projekt:

Wellenberechnung basis

	Wa	anddicke und Ölst	tand			
Unterkaste	en					
ängsseite		ww [mm]	11,66	gew.:	12	
chräge		ww [mm]	9,625	gew.:	10	
Interseite		ww [mm]	8	gew.:	8	
eiten		ww [mm]	5,35	gew.:	6	
Oberkaste	en					
ängsseite		wh [mm]	10,128	gew.:	11	
chräge		wh [mm]	6	gew.:	6	
)berseite		wh [mm]	6,8	gew.:	7	
eiten		wh [mm]	5,08	gew.:	6	
Lagerblöcl	ke					
ropellerwelle hinten		Dg [mm]	504	gew.:	620	Platz für Verschraubung
ropellerwelle vorne		Dg [mm]	372	gew.:	492	Platz für Verschraubung
Notorwelle hinten		Dg [mm]	288	gew.:	288	
Motorwelle vorne		Dg [mm]	312	gew.:	312	
Bremsenwelle hinten		Dg [mm]	288	gew.:	288	
Bremsenwelle vorne		Dg [mm]	288	gew.:	288	
Ölberechnu	ung					
Ölmenge	P [kW]	1800	Pverlust [kW]	36 V	[۱] از	180 tatsächlich:
Spritzöl	v [m/s]	13	d [m]	0,89		189,9 i.O.

