Palo Alto Policy

When Do You Need NAT?

You only need NAT if your networks require address translation to communicate properly. This typically happens in scenarios like: ✓ Internet Access (Outbound NAT) → If internal devices need to reach the internet using a public IP.

- Inbound NAT (Port Forwarding) → If external devices need access to internal services.
 - ✓ Overlapping Subnets → If two networks use the same subnet and require translation to avoid conflicts.
 - ☑ Different Security Zones Without Direct Routing → If traffic between zones needs NAT due to firewall policies.

Do You Need NAT in Your Setup?

Traffic Flow	Directly Routable?	Needs NAT?
Site A (10.1.0.0/24) → Site B (10.2.0.0/24)	✓ Routed via VPN	≫ No NAT
VLAN 20 (10.2.20.0/24) → VLAN 100 (10.2.100.0/24)	✓ Routed via Palo Alto	X No NAT
Site B → Internet (Outbound)	X Needs public IP	✓ Yes (Outbound NAT)
Internet → DMZ (Inbound from public services)	✗ Needs public IP translation	✓ Yes (Inbound NAT)

When You Don't Need NAT

- Internal VLANs (20, 100) communicate directly via routing → No NAT needed.
- Site A and Site B communicate via IPSec VPN \rightarrow No NAT needed.
- Devices in Site B already have direct routing between VLANs → No NAT needed.

NAT is **NOT** Needed for Directly Routed Networks

- Your Splunk components (Search Heads, Indexers, Heavy Forwarder, etc.) are on directly routable subnets (VLAN 20 and VLAN 100).
- Since these VLANs are already connected via routing and security policies on your Palo Alto firewall, NAT is unnecessary.
- If they can already ping and exchange data, NAT will actually break things by modifying the source IPs.

When Would NAT Be Needed for Splunk?

The only cases where NAT would be needed for Splunk communication are:

- 1. If Splunk instances are on overlapping subnets
 - Example: If Site A had 10.2.20.0/24 as well, then NAT would be needed to avoid IP conflicts.
 - Value of NOT your case.
- 2. If Splunk instances were trying to communicate across the internet
 - If an external Splunk instance (outside your network) needed access, you'd need NAT.
 - ✓ NOT your case.
- 3. If firewall rules were misconfigured, forcing NAT to "fix" them
 - If the firewall was accidentally blocking communication, NAT might be suggested as a workaround.
 - You already have firewall rules allowing Splunk communication, so this is NOT necessary.

Scenario	Needs NAT?	Why?
Internal VLANs (100 ↔ 20) communicating	X No	Firewall routes traffic naturally.
VLANs talking to the internet	✓ Yes	Outbound NAT required.
Overlapping subnets (e.g., two 10.2.20.0/24 networks)	✓ Yes	To avoid conflicts.
External access to DMZ services (e.g., Security Onion Web UI from the internet)	✓ Yes	Inbound NAT required.

Communication List (Splunk & Security Onion)

Source	Destination	Purpose	Port
Heavy Forwarder (VLAN 100 - DMZ)	Indexers (VLAN 20 - Tools)	Log Forwarding	9997 (TCP)
Indexers (VLAN 20 - Tools)	Cluster Manager (VLAN 20 - Tools)	Cluster Coordination	8089 (TCP)
Indexers (VLAN 20 - Tools)	Other Indexers (VLAN 20 - Tools)	Data Replication	9887 (TCP)
Search Heads (VLAN 20 - Tools)	Indexers (VLAN 20 - Tools)	Search Queries	8089 (TCP)
Search Heads (VLAN 20 - Tools)	Deployer (VLAN 20 - Tools)	Config Management	8089 (TCP)
User Workstations (VLAN 20 - Tools / Site A - Users)	Search Heads (VLAN 20 - Tools)	Splunk Web UI Access	8000 (TCP)
Security Onion Heavy Nodes (VLAN 100 - DMZ)	Security Onion Search Head Manager (VLAN 20 - Tools)	Log forwarding & search queries	9200 (TCP), 5601 (TCP)
Security Onion Heavy Nodes (VLAN 100 - DMZ)	Splunk Heavy Forwarder (VLAN 100 - DMZ)	Log forwarding to Splunk	9997 (TCP)
Security Onion Search Head Manager (VLAN 20 - Tools)	Security Onion Heavy Nodes (VLAN 100 - DMZ)	Querying & data retrieval	443 (TCP), 22 (TCP - SSH Admin Access)
User Workstations (VLAN 20 - Tools / Site A - Users)	Security Onion Search Head Manager (VLAN 20 - Tools)	Web access to Kibana	443 (TCP)

♦ Splunk Security Policies

Source Zone	Destination Zone	Source IP	Destination IP	Purpose	Port
DMZ (ethernet1/4 - 10.2.100.1)	Interior (ethernet1/3 - 10.2.20.1)	Splunk Heavy Forwarder	Splunk Indexers	Splunk Data Transfer	9997 (TCP)
Interior (ethernet1/3 - 10.2.20.1)	Interior (ethernet1/3 - 10.2.20.1)	Splunk Indexers	Splunk Indexers	Index Replicatio n	9887 (TCP)
Interior (ethernet1/3 - 10.2.20.1)	Interior (ethernet1/3 - 10.2.20.1)	Splunk Search Heads	Splunk Indexers	Search Queries	8089 (TCP)
Interior (ethernet1/3 - 10.2.20.1)	Interior (ethernet1/3 - 10.2.20.1)	Splunk Search Heads	Splunk Deployer	Config Sync	8089 (TCP)
Interior (Site A - ethernet1/2 - 10.1.0.0/24)	Interior (Site B - ethernet1/3 - 10.2.20.1)	Any	Splunk Search Heads	Splunk Web UI Access	8000 (TCP)

♦ Security Onion (SecO) Security Policies

Source Zone	Destination Zone	Source IP	Destination IP	Purpose	Port
DMZ (ethernet1/4 - 10.2.100.1)	Interior (ethernet1/3 - 10.2.20.1)	Security Onion Heavy Nodes	Security Onion Search Head Manager	Log Forwardin g	9200 (TCP), 5601 (TCP)
DMZ (ethernet1/4 - 10.2.100.1)	DMZ (ethernet1/4 - 10.2.100.1)	Security Onion Heavy Nodes	Splunk Heavy Forwarder	Log Forwardin g to Splunk	9997 (TCP)
Interior (ethernet1/3 - 10.2.20.1)	DMZ (ethernet1/4 - 10.2.100.1)	Security Onion Search Head Manager	Security Onion Heavy Nodes	Querying & Admin	443 (TCP), 22 (TCP - SSH Access)
Interior (Site A - ethernet1/2 - 10.1.0.0/24)	Interior (Site B - ethernet1/3 - 10.2.20.1)	Any	Security Onion Search Head Manager	Kibana Web UI Access	443 (TCP)

BL24 Basic Routing Table

Destination Network	Next Hop	Interface	Purpose
10.2.20.0/24 (Tools)	Directly Connected	ethernet1/3	Ensures local VLAN 20 traffic reaches the firewall
10.2.100.0/24 (DMZ)	Directly Connected	ethernet1/4	Ensures local VLAN 100 traffic reaches the firewall
10.1.0.0/24 (504 Network)	VPN Tunnel Interface	tunnel.1	Routes traffic from Site B to Site A over IPSec VPN
0.0.0.0/0 (Internet)	ISP Gateway (137.0.0.X)	ethernet1/2 (WAN)	Allows external internet access