Machine Learning

A. G. Schwing & M. Telgarsky

University of Illinois at Urbana-Champaign, 2018

L22: Autoregressive Methods (RNNs/LSTMs/GRUs)

• Getting to know Recurrent Neural Nets (RNNs)

- Getting to know Recurrent Neural Nets (RNNs)
- Getting to know Long short term memory (LSTM)

- Getting to know Recurrent Neural Nets (RNNs)
- Getting to know Long short term memory (LSTM)
- Getting to know Gated recurrent unit (GRU)

- Getting to know Recurrent Neural Nets (RNNs)
- Getting to know Long short term memory (LSTM)
- Getting to know Gated recurrent unit (GRU)
- Seeing how to apply them

- Getting to know Recurrent Neural Nets (RNNs)
- Getting to know Long short term memory (LSTM)
- Getting to know Gated recurrent unit (GRU)
- Seeing how to apply them

Reading Material

- Goodfellow et al.; Deep Learning; Chapter 10
- Papers cited on the slides

Pixel Recurrent Neural Networks

Discriminative

Discriminative

Discriminative

$$p(\mathbf{y}|x)$$

Generative

Discriminative

$$p(\mathbf{y}|x)$$

Generative

Discriminative

$$p(\mathbf{y}|x)$$

Generative

Discriminative

$$p(\mathbf{y}|x)$$

Generative

What's missing?

Sequences of inputs

- Sequences of inputs
- Sequences of outputs

- Sequences of inputs
- Sequences of outputs

Length of sequences may vary

- Sequences of inputs
- Sequences of outputs

Length of sequences may vary

one to one

- Sequences of inputs
- Sequences of outputs

Length of sequences may vary

one to one one to many

- Sequences of inputs
- Sequences of outputs

Length of sequences may vary

one to one one to many many to one

- Sequences of inputs
- Sequences of outputs

Length of sequences may vary

one to one one to many many to one many to many

- Sequences of inputs
- Sequences of outputs

Length of sequences may vary

one to one one to many many to one many to many many to many

• input depends on previous output

• input depends on previous output

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

• input depends on previous output

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

• input depends on previous output

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

• input depends on previous output

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

Applications:

Natural language processing

input depends on previous output

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

- Natural language processing
- Speech recognition

input depends on previous output

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

- Natural language processing
- Speech recognition
- Image processing

input depends on previous output

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

- Natural language processing
- Speech recognition
- Image processing
- Video processing

Important concept: Parameter sharing

Important concept: Parameter sharing

$$\begin{array}{ll}
h^{(t)} & = f(h^{(t-1)}, x^{(t)}, \mathbf{w}) \\
y^{(t)} & = g(h^{(t)})
\end{array}$$

$$\begin{array}{ll}
h^{(t)} &= f(h^{(t-1)}, x^{(t)}, \mathbf{w}) \\
y^{(t)} &= g(h^{(t)})
\end{array}$$

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})
 y^{(t)} = g(h^{(t)})$$

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

 $y^{(t)} = g(h^{(t)})$

unfolded/unrolled network performs identical operations easier to understand

Mathematical description in general:

Mathematical description in general:

$$egin{array}{ll} h^{(t)} &= f(h^{(t-1)}, x^{(t)}, \, m{w}) \ y^{(t)} &= g(h^{(t)}) \end{array}$$

Mathematical description in general:

$$\begin{array}{ll}
 h^{(t)} & = f(h^{(t-1)}, x^{(t)}, \mathbf{w}) \\
 y^{(t)} & = g(h^{(t)})
 \end{array}$$

Note that f and g are independent of time

Any differentiable function can be used

Any differentiable function can be used

Useful functions:

Any differentiable function can be used

Useful functions:

Original recurrent nets

Any differentiable function can be used

Useful functions:

- Original recurrent nets
- LSTM nets

Any differentiable function can be used

Useful functions:

- Original recurrent nets
- LSTM nets
- GRU nets

(Jordan network is slightly different)

Generally: Specifically:

(Jordan network is slightly different)

Generally:

Specifically:

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

(Jordan network is slightly different)

Generally:

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

$$h^{(t)} = \sigma_h(W_{hx}x^{(t)} + W_{hh}h^{(t-1)} + W_{hb})$$

(Jordan network is slightly different)

Generally:

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

$$\mathbf{y}^{(t)} = \mathbf{g}(\mathbf{h}^{(t)})$$

Specifically:

$$h^{(t)} = \sigma_h(W_{hx}x^{(t)} + W_{hh}h^{(t-1)} + w_{hb})$$

(Jordan network is slightly different)

Generally:

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

$$\mathbf{v}^{(t)} = \mathbf{g}(\mathbf{h}^{(t)})$$

Specifically:

$$h^{(t)} = \sigma_h(W_{hx}x^{(t)} + W_{hh}h^{(t-1)} + W_{hb})$$

$$y^{(t)} = \sigma_y(W_{yh}h^{(t)} + W_{yb})$$

(Jordan network is slightly different)

Generally:

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

$$h^{(t)} = \sigma_h(W_{hx}X^{(t)} + W_{hh}h^{(t-1)} + W_{hb})$$

$$y^{(t)} = g(h^{(t)})$$

$$y^{(t)} = \sigma_y(W_{yh}h^{(t)} + W_{yb})$$

What is σ_h and σ_y ?

(Jordan network is slightly different)

Generally:

Specifically:

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

$$h^{(t)} = \sigma_h(W_{hx}x^{(t)} + W_{hh}h^{(t-1)} + W_{hb})$$

$$y^{(t)} = g(h^{(t)})$$

$$y^{(t)} = \sigma_y(W_{yh}h^{(t)} + W_{yb})$$

What is σ_h and σ_v ?

Activation functions:

(Jordan network is slightly different)

Generally:

Specifically:

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

$$h^{(t)} = \sigma_h(W_{hx}x^{(t)} + W_{hh}h^{(t-1)} + W_{hb})$$

$$y^{(t)} = g(h^{(t)})$$

$$y^{(t)} = \sigma_y(W_{yh}h^{(t)} + W_{yb})$$

What is σ_h and σ_y ?

Activation functions: tanh, sigmoid

Affine transformations and point-wise non-linearity

What are the problems?

Vanishing gradients

- Vanishing gradients
- Long term dependency

- Vanishing gradients
- Long term dependency

Particular functional relation

- Particular functional relation
- Shown to better capture long-term dependencies

- Particular functional relation
- Shown to better capture long-term dependencies
- Shown to address the vanishing gradient problem

- Particular functional relation
- Shown to better capture long-term dependencies
- Shown to address the vanishing gradient problem

Generally:

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

 $y^{(t)} = g(h^{(t)})$

- Particular functional relation
- Shown to better capture long-term dependencies
- Shown to address the vanishing gradient problem

Generally:

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

 $y^{(t)} = g(h^{(t)})$

$$i^{(t)} = \sigma_i(W_{ix}x^{(t)} + W_{ih}h^{(t-1)} + w_{bi})$$
 Input gate

- Particular functional relation
- Shown to better capture long-term dependencies
- Shown to address the vanishing gradient problem

Generally:

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

 $y^{(t)} = g(h^{(t)})$

$$i^{(t)} = \sigma_i(W_{ix}x^{(t)} + W_{ih}h^{(t-1)} + w_{bi})$$
 Input gate $f^{(t)} = \sigma_f(W_{fx}x^{(t)} + W_{fh}h^{(t-1)} + w_{bf})$ Forget gate

- Particular functional relation
- Shown to better capture long-term dependencies
- Shown to address the vanishing gradient problem

Generally:

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

 $y^{(t)} = g(h^{(t)})$

$$i^{(t)} = \sigma_i(W_{ix}x^{(t)} + W_{ih}h^{(t-1)} + w_{bi})$$
 Input gate $f^{(t)} = \sigma_f(W_{fx}x^{(t)} + W_{fh}h^{(t-1)} + w_{bf})$ Forget gate $o^{(t)} = \sigma_o(W_{ox}x^{(t)} + W_{oh}h^{(t-1)} + w_{bo})$ Output/Exposure gate

- Particular functional relation
- Shown to better capture long-term dependencies
- Shown to address the vanishing gradient problem

Generally:

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

 $y^{(t)} = g(h^{(t)})$

$$i^{(t)} = \sigma_i(W_{ix}x^{(t)} + W_{ih}h^{(t-1)} + w_{bi})$$
 Input gate $f^{(t)} = \sigma_f(W_{fx}x^{(t)} + W_{fh}h^{(t-1)} + w_{bf})$ Forget gate $o^{(t)} = \sigma_o(W_{ox}x^{(t)} + W_{oh}h^{(t-1)} + w_{bo})$ Output/Exposure gate $\tilde{c}^{(t)} = \sigma_c(W_{cx}x^{(t)} + W_{ch}h^{(t-1)} + w_{bc})$ New memory cell

- Particular functional relation
- Shown to better capture long-term dependencies
- Shown to address the vanishing gradient problem

Generally:

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

 $y^{(t)} = g(h^{(t)})$

$$\begin{array}{lll} \emph{i}^{(t)} & = & \sigma_{\emph{i}}(\textit{W}_{\emph{ix}}\textit{x}^{(t)} + \textit{W}_{\emph{ih}}\textit{h}^{(t-1)} + \textit{w}_{\emph{bi}}) & \text{Input gate} \\ \emph{f}^{(t)} & = & \sigma_{\emph{f}}(\textit{W}_{\emph{fx}}\textit{x}^{(t)} + \textit{W}_{\emph{fh}}\textit{h}^{(t-1)} + \textit{w}_{\emph{bf}}) & \text{Forget gate} \\ \emph{o}^{(t)} & = & \sigma_{\emph{o}}(\textit{W}_{\emph{ox}}\textit{x}^{(t)} + \textit{W}_{\emph{oh}}\textit{h}^{(t-1)} + \textit{w}_{\emph{bo}}) & \text{Output/Exposure gate} \\ \ddot{\emph{c}}^{(t)} & = & \sigma_{\emph{c}}(\textit{W}_{\emph{cx}}\textit{x}^{(t)} + \textit{W}_{\emph{ch}}\textit{h}^{(t-1)} + \textit{w}_{\emph{bc}}) & \text{New memory cell} \\ \emph{c}^{(t)} & = & \emph{f}^{(t)} \circ \emph{c}^{(t-1)} + \emph{i}^{(t)} \circ \ddot{\emph{c}}^{(t)} & \text{Final memory cell} \end{array}$$

Long short term memory (LSTM)

- Particular functional relation
- Shown to better capture long-term dependencies
- Shown to address the vanishing gradient problem

Generally:

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

 $y^{(t)} = g(h^{(t)})$

Specifically: (\circ denotes Hadamard product; σ is activation function)

$$\begin{array}{lll} i^{(t)} &=& \sigma_i(W_{ix}x^{(t)}+W_{ih}h^{(t-1)}+w_{bi}) & \text{Input gate} \\ f^{(t)} &=& \sigma_f(W_{fx}x^{(t)}+W_{fh}h^{(t-1)}+w_{bf}) & \text{Forget gate} \\ o^{(t)} &=& \sigma_o(W_{ox}x^{(t)}+W_{oh}h^{(t-1)}+w_{bo}) & \text{Output/Exposure gate} \\ \tilde{c}^{(t)} &=& \sigma_c(W_{cx}x^{(t)}+W_{ch}h^{(t-1)}+w_{bc}) & \text{New memory cell} \\ c^{(t)} &=& f^{(t)}\circ c^{(t-1)}+i^{(t)}\circ \tilde{c}^{(t)} & \text{Final memory cell} \\ h^{(t)} &=& o^{(t)}\circ\sigma_h(c^{(t)}) & \end{array}$$

$$\begin{array}{lll} i^{(t)} &=& \sigma_i(W_{ix}x^{(t)}+W_{ih}h^{(t-1)}+W_{bi}) & \text{Input gate} \\ f^{(t)} &=& \sigma_f(W_{fx}x^{(t)}+W_{fh}h^{(t-1)}+W_{bf}) & \text{Forget gate} \\ o^{(t)} &=& \sigma_o(W_{ox}x^{(t)}+W_{oh}h^{(t-1)}+W_{bo}) & \text{Output/Exposure gate} \\ \tilde{c}^{(t)} &=& \sigma_c(W_{cx}x^{(t)}+W_{ch}h^{(t-1)}+W_{bc}) & \text{New memory cell} \\ c^{(t)} &=& f^{(t)}\circ c^{(t-1)}+i^{(t)}\circ \tilde{c}^{(t)} & \text{Final memory cell} \\ h^{(t)} &=& o^{(t)}\circ \sigma_h(c^{(t)}) & \end{array}$$

$$i^{(t)} = \sigma_i(W_{ix}x^{(t)} + W_{ih}h^{(t-1)} + w_{bi})$$
 Input gate $f^{(t)} = \sigma_f(W_{fx}x^{(t)} + W_{fh}h^{(t-1)} + w_{bf})$ Forget gate $o^{(t)} = \sigma_o(W_{ox}x^{(t)} + W_{oh}h^{(t-1)} + w_{bo})$ Output/Exposure gate $\tilde{c}^{(t)} = \sigma_c(W_{cx}x^{(t)} + W_{ch}h^{(t-1)} + w_{bc})$ New memory cell $c^{(t)} = f^{(t)} \circ c^{(t-1)} + i^{(t)} \circ \tilde{c}^{(t)}$ Final memory cell $h^{(t)} = o^{(t)} \circ \sigma_h(c^{(t)})$

Intuition:

 \bullet $i^{(t)}$:

$$\begin{array}{lll} i^{(t)} &=& \sigma_i(W_{ix}x^{(t)}+W_{ih}h^{(t-1)}+W_{bi}) & \text{Input gate} \\ f^{(t)} &=& \sigma_f(W_{fx}x^{(t)}+W_{fh}h^{(t-1)}+W_{bf}) & \text{Forget gate} \\ o^{(t)} &=& \sigma_o(W_{ox}x^{(t)}+W_{oh}h^{(t-1)}+W_{bo}) & \text{Output/Exposure gate} \\ \tilde{c}^{(t)} &=& \sigma_c(W_{cx}x^{(t)}+W_{ch}h^{(t-1)}+W_{bc}) & \text{New memory cell} \\ c^{(t)} &=& f^{(t)}\circ c^{(t-1)}+i^{(t)}\circ \tilde{c}^{(t)} & \text{Final memory cell} \\ h^{(t)} &=& o^{(t)}\circ \sigma_h(c^{(t)}) & \end{array}$$

Intuition:

• $i^{(t)}$: Does $x^{(t)}$ matter?

$$i^{(t)} = \sigma_i(W_{ix}x^{(t)} + W_{ih}h^{(t-1)} + w_{bi})$$
 Input gate $f^{(t)} = \sigma_f(W_{fx}x^{(t)} + W_{fh}h^{(t-1)} + w_{bf})$ Forget gate $o^{(t)} = \sigma_o(W_{ox}x^{(t)} + W_{oh}h^{(t-1)} + w_{bo})$ Output/Exposure gate $\tilde{c}^{(t)} = \sigma_c(W_{cx}x^{(t)} + W_{ch}h^{(t-1)} + w_{bc})$ New memory cell $c^{(t)} = f^{(t)} \circ c^{(t-1)} + i^{(t)} \circ \tilde{c}^{(t)}$ Final memory cell $h^{(t)} = o^{(t)} \circ \sigma_h(c^{(t)})$

Intuition:

• $i^{(t)}$: Does $x^{(t)}$ matter?

$$\begin{array}{lll} i^{(t)} &=& \sigma_i(W_{ix}x^{(t)}+W_{ih}h^{(t-1)}+w_{bi}) & \text{Input gate} \\ f^{(t)} &=& \sigma_f(W_{fx}x^{(t)}+W_{fh}h^{(t-1)}+w_{bf}) & \text{Forget gate} \\ o^{(t)} &=& \sigma_o(W_{ox}x^{(t)}+W_{oh}h^{(t-1)}+w_{bo}) & \text{Output/Exposure gate} \\ \tilde{c}^{(t)} &=& \sigma_c(W_{cx}x^{(t)}+W_{ch}h^{(t-1)}+w_{bc}) & \text{New memory cell} \\ c^{(t)} &=& f^{(t)}\circ c^{(t-1)}+i^{(t)}\circ \tilde{c}^{(t)} & \text{Final memory cell} \\ h^{(t)} &=& o^{(t)}\circ \sigma_h(c^{(t)}) & \end{array}$$

- $i^{(t)}$: Does $x^{(t)}$ matter?
- \bullet $f^{(t)}$:

$$i^{(t)} = \sigma_i(W_{ix}x^{(t)} + W_{ih}h^{(t-1)} + w_{bi})$$
 Input gate $f^{(t)} = \sigma_f(W_{fx}x^{(t)} + W_{fh}h^{(t-1)} + w_{bf})$ Forget gate $o^{(t)} = \sigma_o(W_{ox}x^{(t)} + W_{oh}h^{(t-1)} + w_{bo})$ Output/Exposure gate $\tilde{c}^{(t)} = \sigma_c(W_{cx}x^{(t)} + W_{ch}h^{(t-1)} + w_{bc})$ New memory cell $c^{(t)} = f^{(t)} \circ c^{(t-1)} + i^{(t)} \circ \tilde{c}^{(t)}$ Final memory cell $h^{(t)} = o^{(t)} \circ \sigma_h(c^{(t)})$

- $i^{(t)}$: Does $x^{(t)}$ matter?
- $f^{(t)}$: Should $c^{(t-1)}$ be forgotten?

$$\begin{array}{lll} i^{(t)} &=& \sigma_i(W_{ix}x^{(t)}+W_{ih}h^{(t-1)}+W_{bi}) & \text{Input gate} \\ f^{(t)} &=& \sigma_f(W_{fx}x^{(t)}+W_{fh}h^{(t-1)}+W_{bf}) & \text{Forget gate} \\ o^{(t)} &=& \sigma_o(W_{ox}x^{(t)}+W_{oh}h^{(t-1)}+W_{bo}) & \text{Output/Exposure gate} \\ \tilde{c}^{(t)} &=& \sigma_c(W_{cx}x^{(t)}+W_{ch}h^{(t-1)}+W_{bc}) & \text{New memory cell} \\ c^{(t)} &=& f^{(t)}\circ c^{(t-1)}+i^{(t)}\circ \tilde{c}^{(t)} & \text{Final memory cell} \\ h^{(t)} &=& o^{(t)}\circ \sigma_h(c^{(t)}) & \end{array}$$

- $i^{(t)}$: Does $x^{(t)}$ matter?
- $f^{(t)}$: Should $c^{(t-1)}$ be forgotten?
- $o^{(t)}$:

$$\begin{array}{lll} i^{(t)} &=& \sigma_i(W_{ix}x^{(t)}+W_{ih}h^{(t-1)}+W_{bi}) & \text{Input gate} \\ f^{(t)} &=& \sigma_f(W_{fx}x^{(t)}+W_{fh}h^{(t-1)}+W_{bf}) & \text{Forget gate} \\ o^{(t)} &=& \sigma_o(W_{ox}x^{(t)}+W_{oh}h^{(t-1)}+W_{bo}) & \text{Output/Exposure gate} \\ \tilde{c}^{(t)} &=& \sigma_c(W_{cx}x^{(t)}+W_{ch}h^{(t-1)}+W_{bc}) & \text{New memory cell} \\ c^{(t)} &=& f^{(t)}\circ c^{(t-1)}+i^{(t)}\circ \tilde{c}^{(t)} & \text{Final memory cell} \\ h^{(t)} &=& o^{(t)}\circ \sigma_h(c^{(t)}) & \end{array}$$

- $i^{(t)}$: Does $x^{(t)}$ matter?
- $f^{(t)}$: Should $c^{(t-1)}$ be forgotten?
- $o^{(t)}$: How much $c^{(t)}$ should be exposed?

$$\begin{array}{lll} i^{(t)} &=& \sigma_i(W_{ix}x^{(t)}+W_{ih}h^{(t-1)}+w_{bi}) & \text{Input gate} \\ f^{(t)} &=& \sigma_f(W_{fx}x^{(t)}+W_{fh}h^{(t-1)}+w_{bf}) & \text{Forget gate} \\ o^{(t)} &=& \sigma_o(W_{ox}x^{(t)}+W_{oh}h^{(t-1)}+w_{bo}) & \text{Output/Exposure gate} \\ \tilde{c}^{(t)} &=& \sigma_c(W_{cx}x^{(t)}+W_{ch}h^{(t-1)}+w_{bc}) & \text{New memory cell} \\ c^{(t)} &=& f^{(t)}\circ c^{(t-1)}+i^{(t)}\circ \tilde{c}^{(t)} & \text{Final memory cell} \\ h^{(t)} &=& o^{(t)}\circ \sigma_h(c^{(t)}) & \end{array}$$

- $i^{(t)}$: Does $x^{(t)}$ matter?
- $f^{(t)}$: Should $c^{(t-1)}$ be forgotten?
- $o^{(t)}$: How much $c^{(t)}$ should be exposed?
- \circ $\tilde{c}^{(t)}$:

$$i^{(t)} = \sigma_i(W_{ix}x^{(t)} + W_{ih}h^{(t-1)} + w_{bi})$$
 Input gate $f^{(t)} = \sigma_f(W_{fx}x^{(t)} + W_{fh}h^{(t-1)} + w_{bf})$ Forget gate $o^{(t)} = \sigma_o(W_{ox}x^{(t)} + W_{oh}h^{(t-1)} + w_{bo})$ Output/Exposure gate $\tilde{c}^{(t)} = \sigma_c(W_{cx}x^{(t)} + W_{ch}h^{(t-1)} + w_{bc})$ New memory cell $c^{(t)} = f^{(t)} \circ c^{(t-1)} + i^{(t)} \circ \tilde{c}^{(t)}$ Final memory cell $h^{(t)} = o^{(t)} \circ \sigma_h(c^{(t)})$

- $i^{(t)}$: Does $x^{(t)}$ matter?
- $f^{(t)}$: Should $c^{(t-1)}$ be forgotten?
- $o^{(t)}$: How much $c^{(t)}$ should be exposed?

$$i^{(t)} = \sigma_i(W_{ix}x^{(t)} + W_{ih}h^{(t-1)} + w_{bi})$$
 Input gate $f^{(t)} = \sigma_f(W_{fx}x^{(t)} + W_{fh}h^{(t-1)} + w_{bf})$ Forget gate $o^{(t)} = \sigma_o(W_{ox}x^{(t)} + W_{oh}h^{(t-1)} + w_{bo})$ Output/Exposure gate $\tilde{c}^{(t)} = \sigma_c(W_{cx}x^{(t)} + W_{ch}h^{(t-1)} + w_{bc})$ New memory cell $c^{(t)} = f^{(t)} \circ c^{(t-1)} + i^{(t)} \circ \tilde{c}^{(t)}$ Final memory cell $h^{(t)} = o^{(t)} \circ \sigma_h(c^{(t)})$

Input gate Forget gate New memory cell Final memory cell

Long short term memory (LSTM):

Long short term memory (LSTM):

• Can be interpreted as a block in a neural net

Long short term memory (LSTM):

Can be interpreted as a block in a neural net

Performance similar to LSTM

- Performance similar to LSTM
- Fewer parameters compared to LSTM (no output gate)

- Performance similar to LSTM
- Fewer parameters compared to LSTM (no output gate)

Equations: (o denotes Hadamard product)

- Performance similar to LSTM
- Fewer parameters compared to LSTM (no output gate)

Equations: (o denotes Hadamard product)

$$z^{(t)} = \sigma_z(W_{zx}x^{(t)} + W_{zh}h^{(t-1)} + w_{bz})$$

Update gate

- Performance similar to LSTM
- Fewer parameters compared to LSTM (no output gate)

Equations: (o denotes Hadamard product)

$$z^{(t)} = \sigma_z(W_{zx}x^{(t)} + W_{zh}h^{(t-1)} + W_{bz})$$

$$r^{(t)} = \sigma_r(W_{rx}x^{(t)} + W_{rh}h^{(t-1)} + W_{br})$$

Update gate Reset gate

- Performance similar to LSTM
- Fewer parameters compared to LSTM (no output gate)

Equations: (o denotes Hadamard product)

$$z^{(t)} = \sigma_z(W_{zx}x^{(t)} + W_{zh}h^{(t-1)} + w_{bz})$$
 Update gate $r^{(t)} = \sigma_r(W_{rx}x^{(t)} + W_{rh}h^{(t-1)} + w_{br})$ Reset gate $\tilde{h}^{(t)} = \sigma_h(W_{hx}x^{(t)} + W_{rwh}(r^{(t)} \circ h^{(t-1)}) + w_{bh})$ New memory cell

- Performance similar to LSTM
- Fewer parameters compared to LSTM (no output gate)

Equations: (o denotes Hadamard product)

$$z^{(t)} = \sigma_z(W_{zx}x^{(t)} + W_{zh}h^{(t-1)} + w_{bz})$$
 Update gate $r^{(t)} = \sigma_r(W_{rx}x^{(t)} + W_{rh}h^{(t-1)} + w_{br})$ Reset gate $\tilde{h}^{(t)} = \sigma_h(W_{hx}x^{(t)} + W_{rwh}(r^{(t)} \circ h^{(t-1)}) + w_{bh})$ New memory cell $h^{(t)} = (1 - z^{(t)}) \circ \tilde{h}^{(t)} + z^{(t)} \circ h^{(t-1)}$ Hidden state

- Performance similar to LSTM
- Fewer parameters compared to LSTM (no output gate)

Equations: (o denotes Hadamard product)

$$z^{(t)} = \sigma_z(W_{zx}x^{(t)} + W_{zh}h^{(t-1)} + w_{bz})$$
 Update gate $r^{(t)} = \sigma_r(W_{rx}x^{(t)} + W_{rh}h^{(t-1)} + w_{br})$ Reset gate $\tilde{h}^{(t)} = \sigma_h(W_{hx}x^{(t)} + W_{rwh}(r^{(t)} \circ h^{(t-1)}) + w_{bh})$ New memory cell $h^{(t)} = (1 - z^{(t)}) \circ \tilde{h}^{(t)} + z^{(t)} \circ h^{(t-1)}$ Hidden state

Can again be interpreted as a block in the computation graph

$$z^{(t)} = \sigma_z(W_{zx}x^{(t)} + W_{zh}h^{(t-1)} + w_{bz})$$
 Update gate $r^{(t)} = \sigma_r(W_{rx}x^{(t)} + W_{rh}h^{(t-1)} + w_{br})$ Reset gate $\tilde{h}^{(t)} = \sigma_h(W_{hx}x^{(t)} + W_{rwh}(r^{(t)} \circ h^{(t-1)}) + w_{bh})$ New memory cell $h^{(t)} = (1 - z^{(t)}) \circ \tilde{h}^{(t)} + z^{(t)} \circ h^{(t-1)}$ Hidden state

$$z^{(t)} = \sigma_z(W_{zx}x^{(t)} + W_{zh}h^{(t-1)} + w_{bz})$$
 Update gate $r^{(t)} = \sigma_r(W_{rx}x^{(t)} + W_{rh}h^{(t-1)} + w_{br})$ Reset gate $\tilde{h}^{(t)} = \sigma_h(W_{hx}x^{(t)} + W_{rwh}(r^{(t)} \circ h^{(t-1)}) + w_{bh})$ New memory cell $h^{(t)} = (1 - z^{(t)}) \circ \tilde{h}^{(t)} + z^{(t)} \circ h^{(t-1)}$ Hidden state

Intuition:

 \bullet $r^{(t)}$:

$$z^{(t)} = \sigma_z(W_{zx}x^{(t)} + W_{zh}h^{(t-1)} + w_{bz})$$
 Update gate $r^{(t)} = \sigma_r(W_{rx}x^{(t)} + W_{rh}h^{(t-1)} + w_{br})$ Reset gate $\tilde{h}^{(t)} = \sigma_h(W_{hx}x^{(t)} + W_{rwh}(r^{(t)} \circ h^{(t-1)}) + w_{bh})$ New memory cell $h^{(t)} = (1 - z^{(t)}) \circ \tilde{h}^{(t)} + z^{(t)} \circ h^{(t-1)}$ Hidden state

Intuition:

• $r^{(t)}$: Include $h^{(t-1)}$ in new memory?

$$z^{(t)} = \sigma_z(W_{zx}x^{(t)} + W_{zh}h^{(t-1)} + w_{bz})$$
 Update gate $r^{(t)} = \sigma_r(W_{rx}x^{(t)} + W_{rh}h^{(t-1)} + w_{br})$ Reset gate $\tilde{h}^{(t)} = \sigma_h(W_{hx}x^{(t)} + W_{rwh}(r^{(t)} \circ h^{(t-1)}) + w_{bh})$ New memory cell $h^{(t)} = (1 - z^{(t)}) \circ \tilde{h}^{(t)} + z^{(t)} \circ h^{(t-1)}$ Hidden state

- $r^{(t)}$: Include $h^{(t-1)}$ in new memory?
- $z^{(t)}$:

$$z^{(t)} = \sigma_z(W_{zx}x^{(t)} + W_{zh}h^{(t-1)} + w_{bz})$$
 Update gate $r^{(t)} = \sigma_r(W_{rx}x^{(t)} + W_{rh}h^{(t-1)} + w_{br})$ Reset gate $\tilde{h}^{(t)} = \sigma_h(W_{hx}x^{(t)} + W_{rwh}(r^{(t)} \circ h^{(t-1)}) + w_{bh})$ New memory cell $h^{(t)} = (1 - z^{(t)}) \circ \tilde{h}^{(t)} + z^{(t)} \circ h^{(t-1)}$ Hidden state

- $r^{(t)}$: Include $h^{(t-1)}$ in new memory?
- $z^{(t)}$: How much $h^{(t-1)}$ in next state?

Other variants:

Other variants:

 Bi-directional LSTMs [Schuster&Paliwal (1997), Graves&Schmidhuber (2005)]

Other variants:

- Bi-directional LSTMs [Schuster&Paliwal (1997), Graves&Schmidhuber (2005)]
- Continuous time RNNs

How do we learn the parameters in the network?

How do we learn the parameters in the network?

$$p(y_1,...,y_T) = \prod_{i=1}^T p(y_i|y_1,...y_{i-1})$$

How do we learn the parameters in the network?

$$p(y_1,...,y_T) = \prod_{i=1}^T p(y_i|y_1,...y_{i-1})$$

Maximum likelihood specifies loss function

How do we learn the parameters in the network?

$$p(y_1,...,y_T) = \prod_{i=1}^T p(y_i|y_1,...y_{i-1})$$

Maximum likelihood specifies loss function

Relation to structured models?

- How?
- What order?
- What information do we need to store?

- How?
- What order?
- What information do we need to store?

- How?
- What order?
- What information do we need to store?

Backpropagation through time (BPTT)

Pixel Recurrent Neural Networks

PixelRNN model (Autoregressive model):

Context

Multi-scale context

Variational Auto-encoders (VAEs):

Variational Auto-encoders (VAEs):

Generative Adversarial Nets (GANs):

Variational Auto-encoders (VAEs):

Generative Adversarial Nets (GANs):

Autoregressive models (RNNs):

- Variational Auto-encoders (VAEs):
 - Pro:
 - ► Con:
- Generative Adversarial Nets (GANs):
 - ► Pro:
 - Con:
- Autoregressive models (RNNs):
 - Pro:
 - Con:

- Variational Auto-encoders (VAEs):
 - Pro: probabilistic graphical model interpretation
 - Con:
- Generative Adversarial Nets (GANs):
 - Pro:
 - Con:
- Autoregressive models (RNNs):
 - Pro:
 - Con:

- Variational Auto-encoders (VAEs):
 - Pro: probabilistic graphical model interpretation
 - Con: slightly blurry examples
- Generative Adversarial Nets (GANs):
 - Pro:
 - Con:
- Autoregressive models (RNNs):
 - Pro:
 - Con:

- Variational Auto-encoders (VAEs):
 - Pro: probabilistic graphical model interpretation
 - Con: slightly blurry examples
- Generative Adversarial Nets (GANs):
 - Pro: generate sharp images
 - Con:
- Autoregressive models (RNNs):
 - Pro:
 - Con:

- Variational Auto-encoders (VAEs):
 - Pro: probabilistic graphical model interpretation
 - Con: slightly blurry examples
- Generative Adversarial Nets (GANs):
 - Pro: generate sharp images
 - Con: difficult to optimize (unstable) [at least early variants]
- Autoregressive models (RNNs):
 - Pro:
 - Con:

- Variational Auto-encoders (VAEs):
 - Pro: probabilistic graphical model interpretation
 - Con: slightly blurry examples
- Generative Adversarial Nets (GANs):
 - Pro: generate sharp images
 - Con: difficult to optimize (unstable) [at least early variants]
- Autoregressive models (RNNs):
 - Pro: stable training & good likelihoods
 - Con:

- Variational Auto-encoders (VAEs):
 - Pro: probabilistic graphical model interpretation
 - Con: slightly blurry examples
- Generative Adversarial Nets (GANs):
 - Pro: generate sharp images
 - Con: difficult to optimize (unstable) [at least early variants]
- Autoregressive models (RNNs):
 - Pro: stable training & good likelihoods
 - Con: inefficient sampling & no low-dimensional codes

- Variational Auto-encoders (VAEs):
 - Pro: probabilistic graphical model interpretation
 - Con: slightly blurry examples
- Generative Adversarial Nets (GANs):
 - Pro: generate sharp images
 - Con: difficult to optimize (unstable) [at least early variants]
- Autoregressive models (RNNs):
 - Pro: stable training & good likelihoods
 - Con: inefficient sampling & no low-dimensional codes

Very active research area

Describe the prediction process for an RNN?

- Describe the prediction process for an RNN?
- Describe the training process for RNNs?

- Describe the prediction process for an RNN?
- Describe the training process for RNNs?
- Contrast generative modeling techniques?

• Getting to know RNNs and its variants

- Getting to know RNNs and its variants
- Getting to know their use

- Getting to know RNNs and its variants
- Getting to know their use
- Contrasting RNNs to generative models

- Getting to know RNNs and its variants
- Getting to know their use
- Contrasting RNNs to generative models

Next up:

Reinforcement learning