

CBSE NCERT Solutions for Class 9 Mathematics Chapter 11

Back of Chapter Questions

Exercise: 11.1

1. Construct an angle of 90° at the initial point of a given ray and justify the construction.

Solution:

Steps of construction:

- (i) Draw a ray OA.
- (ii) Taking O as center and any radius, draw an arc cutting OA at B.
- (iii) Now, taking B as center and with the same radius as before, draw an arc intersecting the previously drawn arc at point C.
- (iv) With C as center and the same radius,draw an arc cutting the arc at D
- (v) With C and D as centers and radius more than $\frac{1}{2}$ CD, draw two arcs intersecting at P.
- (vi) Join OP.

Thus, $\angle AOP = 90^{\circ}$

Justification

We need to prove $\angle AOP = 90^{\circ}$

Join OC and BC

Thus,

OB = BC = OC (Radius of equal arcs-By Construction)

∴ ∆OCB is an equilateral triangle

$$BOC = 60^{\circ}$$

Join OD, OC and CD

Thus, OD = OC = DC (Radius of equal arcs-By Construction)

: ΔDOC is an equilateral triangle

$$DOC = 60^{\circ}$$

Join PD and PC

Now,

In ΔODP and ΔOCP

OD - OC (Radius of some arcs)

DP = CP (Arc of same radii)

OP = OP (Common)

∴ \triangle ODP \cong \triangle OCP (SSS Congruency)

 $\therefore \angle DOP = \angle COP (CPCT)$

So, we can say that

$$\angle DOP = \angle COP = \frac{1}{2} \angle DOC$$

 $\angle DOP = \angle COP = \frac{1}{2} \times 60^{\circ} = 30^{\circ}$ (We proved earlier that $\angle DOC = 60^{\circ}$)

Now,

$$\angle AOP = \angle BOC + \angle COP$$

$$\angle AOP = 60^{\circ} + 30^{\circ}$$

$$\angle AOP = 90^{\circ}$$

Hence justified

2. Construct an angle of 45° at the initial point of a given ray and justify the construction.

Solution:

Steps of construction:

- (i) Draw a ray OA.
- (ii) Taking O as center and any radius, draw an arc cutting OA at B.
- (iii) Now, taking B as center and with the same radius as before, draw an arc intersecting the previously drawn arc at point C.
- (iv) With C as center and the same radius,

Draw two arcs intersecting at P

(v) With C and D as centers and radius more than $\frac{1}{2}$ CD,

Draw two arcs intersecting at P.

(vi) Join OP

Thus,
$$\angle AOP = 90^{\circ}$$

Now we draw bisector of ∠AOP

- (vii) Let OP intersect the original arc at point Q
- (viii) Now, taking B and Q as centers, and the radius greater than $\frac{1}{2}$ BQ, Draw two arcs intersecting at R.

(ix) Join OR.

Thus,
$$\angle AOR = 45^{\circ}$$

Justification

We need to prove $\angle AOR = 45^{\circ}$

Join OC & OB

Thus,

$$OB = BC = OC$$

∴ ∆OCB is an equilateral triangle

$$\therefore \angle BOC = 60^{\circ}$$

Join OD, OC and CD

Thus,
$$OD = OC = DC$$

: ΔDOC is an equilateral triangle

Join PD and PC

Now,

In \triangle ODP and \triangle OCP

OD = OC (Radius of same arcs)

DP = CP (Arc of same radii)

OP = OP (Common)

$$\therefore \triangle ODP \cong \triangle OCP (SSS Congruency)$$

$$\therefore \angle DOP = \angle COP (CPCT)$$

So, we can say that

$$\angle DOP = \angle COP = \frac{1}{2} \angle DOC$$

$$\angle DOP = \angle COP = \frac{1}{2} \times 60^{\circ} = 30^{\circ}$$
 (We proved earlier that $\angle DOC = 60^{\circ}$)

Now,

$$\angle AOP = \angle BOC + \angle COP$$

$$\angle AOP = 60^{\circ} + 30^{\circ}$$

$$= 90^{\circ}$$

Now,

Join $\triangle OQR$ and $\triangle OBR$

OQ = OR (Radius of same arcs)

OQ = BR (Arc of same radii)

OQ = OR (Common)

∴ \triangle OQR \cong \triangle OBR (SSS Congruency)

$$\therefore \angle OQR = \angle BOR (CPCT)$$

$$\angle OQR = \angle BOR = \frac{1}{2} \angle AOP$$

$$\angle DOP = \angle COP = \frac{1}{2} \times 90^{\circ}$$

$$= 45^{\circ}$$

Thus,
$$\angle AOR = 45^{\circ}$$

Hence justified

- **3.** Construct the angles of the following measurements:
 - (1) 30°
 - (2) $22\frac{1}{2}^{0}$
 - (3) 15°

Solution:

(1) 30°

First we make 60°,

And then its bisector

Steps of construction:

(i) Draw a ray OA.

- (ii) Taking O as center and any radius,

 Draw an arc cutting OA to B.
- (iii) Now, taking B as center and with the same radius as before,Draw an arc intersecting the previously drawn arc at point C.
- (iv) Draw the ray OD passing trough C Thus, $\angle AOD = 60^{\circ}$

Now we draw bisector of ∠AOD

D

- (v) Taking C and D as center,

 With radius more than $\frac{1}{2}$ CD, draw arcs intersecting at E.
- (vi) Join OE

 Thus $\angle AOE = 30^{\circ}$
- (2) $22\frac{1}{2}^{0}$ $22\frac{1}{2} = \frac{45}{2}$

So, we make $45^{\rm o}$ and then its bisector

Steps of construction:

- (i) Draw a ray OA.
- (ii) Taking O as center and any radius, draw an arc cutting OA at B.
- (iii) Now, taking B as center and with the same before, draw an arc intersecting the previously drawn arc at point C.
- (iv) With C as center and the same radius,

Draw an arc cutting the arc at D

- (v) With C and D as centers and radius more than $\frac{1}{2}$ CD, Draw two arcs intersecting at P.
- (vi) Join OP. Thus, $\angle AOP = 90^{\circ}$
- (vii) Let OP intersect the original arc at point Q
- (viii) Now, taking B and Q as centers, and radius greater than $\frac{1}{2}$ BQ Draw two arcs intersecting at R.
- (ix) Join OR.Thus ∠AOR = 45°Now we draw bisector of ∠AOR
- (x) Mark point S where ray OR intersects the arc
- (xi) Now, taking B and S as centers, and radius greater than $\frac{1}{2}$ BS, Draw two arcs intersecting at T.
- (xii) Join OT. Thus, $\angle AOT = 22\frac{1}{2}^{0}$
- $(3) 15^{\circ}$ First we make 30° ,

And then its bisector

Steps of construction:

- (i) Draw a ray **OA**.
- (ii) Taking O as center and any radius,

 Draw an arc cutting OA and B.
- (iii) Now, taking B as center and with the same radius as before,

 Draw an arc intersecting the previously drawn arc at point C.
- (iv) Draw the ray OD passing through C
 Thus, ∠AOD = 60°
 Now we draw bisector of ∠AOD

(v) Taking C and D as center,

With radius more than $\frac{1}{2}$ CD draw arcs intersecting at E.

(vi) Join OE

Thus $\angle AOE = 30^{\circ}$

Now we know draw bisector of ∠AOD

- (vii) Taking P and B as center,

 With radius more than $\frac{1}{2}$ PB, draw arcs intersecting at F.
- (viii) Taking P and B as center, With radius more than $\frac{1}{2}$ PB, draw arcs intersecting at F.
- (ix) Join OF

 Thus, $\angle AOF = 15^{\circ}$
- 4. Construct the following angles and verify by measuring them by a protractor:
 - (1) 75°
 - (2) 105°
 - (3) 135°

Solution:

(1) 75°

$$75^{\circ} = 60^{\circ} + 15^{\circ}$$

$$75^{\circ} = 60^{\circ} + \frac{30^{\circ}}{2}$$

So, to we make 75°, we make 60° and then bisector of 30°

Step of construction

- (i) Draw a ray OA.
- (ii) Taking O as center and any radius, draw an arc cutting OA at B.
- (iii) Now, with B as center, and same radius as before,Draw another arc intersecting the previously drawn arc at point C.
- (iv) Now, with C as center, and same radius,Draw another arc intersecting the previously drawn arc at point D
- (v) Draw ray OE passing through C and ray OF passing through D

Thus,
$$\angle AOE = 60^{\circ}$$

And
$$\angle EOF = 60^{\circ}$$

Now we bisect ∠EOF twice

$$60^{\rm o} \rightarrow 30^{\rm o} \rightarrow 15^{\rm o}$$

- (vi) Taking C and D as center, with radius more than $\frac{1}{2}$ CD, draw arcs intersecting at P.
- (vii) Join OP
- (viii) Thus $\angle EOP = 30^{\circ}$ Now we bisect $\angle EOP$ i.e. $\frac{30^{\circ}}{2} = 15^{\circ}$
- (vii) Mark point Q where OP intersects the arc
- (viii) Taking Q and as center, with radius more than $\frac{1}{2}$ QC, Draw arcs intersecting at R.

Thus, $\angle AOR = 75^{\circ}$

On measuring the $\angle AOR$ by protractor, we can find that find that $\angle AOR = 75^{\circ}$

Thus, the construction is verified

(2) 105°

$$105^{\circ} = 90^{\circ} + 15^{\circ}$$

$$105^{\circ} = 90^{\circ} + \frac{30^{\circ}}{2}$$

So, to make 105° , we make 90° and then bisector of 30° Steps of constructions

(i) Draw a ray OA.

- (ii) Taking O as center and any radius, drawn an arc cutting OA to B.
- (iii) Now with B as center and same radius as before,Draw an arc intersecting the previously drawn arc at point D
- (iv) Draw ray OE passing through C

And ray OF passing through D

Thus,
$$\angle AOE = 60^{\circ}$$

And
$$\angle EOF = 60^{\circ}$$

Now we bisects ∠EOF twice

$$60^{\rm o} \rightarrow 30^{\rm o} \rightarrow 15^{\rm o}$$

- (v) Taking C and D as center, with radius more than $\frac{1}{2}$ CD,

 Draw arcs intersecting at P.
- (vi) Join OP

Thus,
$$\angle AOP = 90^{\circ}$$

And
$$\angle POD = 30^{\circ}$$

Now, we bisects
$$\angle POD$$
 i.e. $\frac{30^{\circ}}{2} = 15^{\circ}$

- (vii) Mark point Q where OP intersects the arc
- (viii) Taking Q and C as center, with radius more than $\frac{1}{2}$ QC, draw arcs intersecting at R.
- (ix) Join OR

Thus $\angle AOR = 105^{\circ}$

On measuring the $\angle AOR$ by protractor, we find that $\angle AOR = 105^{\circ}$ Thus, the construction is verified

(3) 135°

$$135^{\circ} = 90^{\circ} + 45^{\circ}$$

So, make 135°, we make 90° and then 45°

Step of construction

- (i) Draw a line OAA'
- (ii) Taking O as center and any radius draw an arc cutting OA at B.
- (iii) Now, with B as center and same radius as before,Draw an arc intersecting the previously drawn arc at point C.
- (vi) With C as center and then same radius,

Draw an arc cutting the arc at D.

(v) With C and D as centers and radius more than $\frac{1}{2}$ CD, draw two arcs intersecting at P.

Draw two arcs intersecting at P.

Thus,
$$\angle AOP = 90^{\circ}$$

Also,
$$\angle A'OP = 90^{\circ}$$

So, we bisect $\angle A'OP$

- (vi) Mark point Q where OP intersects the arc
- (vii) With B' and Q as centers and radius more than $\frac{1}{2}$ B'Q,

Draw two arcs intersecting at R.

(viii) Join OR.

$$\therefore \angle POR = 45^{\circ}$$

Thus,

$$\angle AOR = \angle AOP + \angle POR$$

$$= 90^{\circ} + 35^{\circ}$$

= 135°
∴ ∠AOR = 135°

5. Construct an equilateral triangle, given its side and justify the construction.

Solution:

Pt us construct an equilateral triangle, each of whose side = 3 cm (say).

Steps of construction:

Step I:

Draw \overline{OA} .

Step II:

Taking O as centre and radius equal to 3 cm, draw an arc to cut \overline{OA} at B such that OB = 3 cm

Step III:

Taking B as centre and radius equal to OB, draw an arc to intersect the previous arc at C.

Step IV:

Join OC and BC.

Thus \triangle OBC is the required equilateral triangle.

Justification

: The arcs OC and BC are drawn with the same radius

: OC = BC

 \Rightarrow OC = BC [Chords corresponding to equal to arcs are equal]

: OC = OB = BC

∴ OBC is an equilateral triangle.

Exercise: 11.2

Solution:

1. Construct a triangle ABC in which BC = 7cm, $\angle B = 75^{\circ}$ and AB + AC = 13 cm

Steps of constructions:

- (i) Draw base BC of length 7 cm
- (ii) Now, let's draw $B = 75^{\circ}$ Let the ray be BX
- (iii) Open the compass to length AB + AC = 13 cm.From point B as center, cut an arc on ray BX.Let the arc intersect BX at D
- (iv) Join CD
- (v) Now, we will draw perpendicular bisector of CD
- (vi) Mark point A where perpendicular bisector intersects BD
- (vii) Join AC

 \therefore \triangle ABC is the required triangle

2. Construct a triangle ABC in which BC = 8 cm, \angle B = 45° and AB - AC = 3.5 cm.

Solution:

Steps of construction:

- (i) Draw base BC of length 8 cm
- (ii) Now let's draw $\angle B = 45^{\circ}$ Let the ray be BX

(iii) Open the compass to length AB - AC = 3.5 cm

Note:

Since AB - AC = 3.5 cm is positive So, BD will be above line BC

From point B as center, cut an arc on ray BX.

Let the arc intersect BX at D

- (iv) Join CD
- (v) Now, we will draw perpendicular bisector of CD
- (vi) Mark point A where perpendicular bisector intersects BD
- (vii) Join AC

 \therefore \triangle ABC is the required triangle

3. Construct a triangle PQR in which QR = 6 cm, $\angle Q = 60^{\circ}$ and PR - PQ = 2 cm.

Solution:

Steps of construction:

- (i) Draw base QR of length 6 cm
- (ii) Now, let's draw $\angle Q = 60^{\circ}$

Let the ray ne QX

(iii) Open the compass to length PR - PQ = 2 cm.

Note:

Since
$$PR - PQ = 2 \text{ cm}$$
,

$$(PQ - PR)$$
 is negative

So, QD will be below line QR

From point Q as center, cut an arc on ray QX. (opposite side of QR).

Let the arc intersect QX at D

- (vi) Join RD
- (v) Now, we will draw perpendicular bisector of RD
- (vii) Mark Point P where perpendicular bisector intersects RD
- (viii) Join PR

 \therefore \triangle PQR is the required triangle

4. Construct a triangle XYZ in which $\angle Y = 30^{\circ}$, $\angle Z = 90^{\circ}$ and XY + YZ + ZX = 11 cm.

Solution:

Given $\angle Y = 30^{\circ}$, $\angle 90^{\circ}$ and XY + YZ + ZX = 11 cm.

Let's construct ΔXYZ

Steps of construction:

- (i) Draw a line segment AB equal to XY + YZ + ZX = 11 cm
- (ii) Make angle equal to $\angle Y = 30^{\circ}$ from the point A Let the angle be $\angle LAB$.

(iii) Make angle equal to $\angle Z = 90^{\circ}$ from the B

Let the angle be ∠MBA

- (vi) Bisect ∠LAB and ∠MBA.Let these bisector intersect at a point X.
- (v) Make perpendicular bisector of XA

Let it intersect AB at point Y

- (vi) Make perpendicular bisector of XBLet it intersect AB at the point Z
- (vii) Join XY & YZ

- ∴ ΔXYZ is the required triangle
- 5. Construct a right triangle whose base is 12 cm and sum of its hypotenuse and other side is 18 cm.

Solution:

Let ΔABC be the right angle triangle

Where BC = 12 cm

 $\angle B = 90^{\circ}$ and

AC + AB = 18 cm

Steps of construction:

- (i) Draw base BC of length 12 cm
- (ii) Now, let's draw $\angle B = 90^{\circ}$

Let the ray be BX

(iii) Open the compass to length AB + AC = 18 cm.

From point B as center, cut an arc on ray BX

Let the arc intersects BX at D

- (iv) Join CD
- (v) Now we will draw perpendicular bisector of CD

- (vi) Mark point A where perpendicular bisector intersects BD
- (vii) Join AC

 \therefore \triangle ABC is the required triangle

