APPRENTISSAGE SUPERVISÉ : THÉORIE ET ALGORITHMES — COURS 2

CES DATA SCIENTIST, TÉLÉCOM PARISTECH

Aurélien Bellet

Inria Lille

March 30, 2016

MENU D'AUJOURD'HUI

- 1. Rappels sur l'apprentissage supervisé
- Arbres de décision et de régression
 Une structure efficace : les arbres
 Séparateurs élémentaires
 Algorithme CART
- Sélection et évaluation de modèles
 Sélection de modèles
 Évaluation de modèles

RAPPELS SUR L'APPRENTISSAGE SUPERVISÉ

APPRENTISSAGE SUPERVISÉ : CADRE PROBABILISTE ET STATISTIQUE

- · X : variable explicative, vecteur aléatoire dans $\mathcal{X} = \mathbb{R}^p$
- Y : variable à prédire, aléatoire dans $\mathcal{Y} = \{1, \dots, C\}$ (classification) ou $\mathcal{Y} = \mathbb{R}$ (régression)
- P: loi de probabilité jointe de (X, Y), fixée mais **inconnue**
- $\mathcal{S} = \{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i=1}^n$: échantillon i.i.d. tiré selon la loi P
- \mathcal{H} : collection de classifieurs / modèles, $h \in \mathcal{H}$
- · L : perte mesurant les erreurs d'un classifieur / modèle
 - Exemple (classification) : $L(y, h(x)) = \begin{cases} 1 & \text{si } h(x) \neq y \\ 0 & \text{sinon} \end{cases}$
 - Exemple (régression): $L(y, h(x)) = (y h(x))^2$
- Objectif: déterminer à partir de S la fonction $h \in \mathcal{H}$ qui minimise $R(h) = \mathbb{E}_{(X,Y) \sim P}[L(Y,h(X))]$

Définir:

· l'espace de représentation des données

- · l'espace de représentation des données
- · la classe des classifieurs considérés

- · l'espace de représentation des données
- · la classe des classifieurs considérés
- la fonction de perte à minimiser pour obtenir le meilleur classifieur dans cette classe

- · l'espace de représentation des données
- · la classe des classifieurs considérés
- la fonction de perte à minimiser pour obtenir le meilleur classifieur dans cette classe
- · l'algorithme de minimisation de cette fonction de perte

- · l'espace de représentation des données
- · la classe des classifieurs considérés
- la fonction de perte à minimiser pour obtenir le meilleur classifieur dans cette classe
- · l'algorithme de minimisation de cette fonction de perte
- une méthode de sélection de modèle pour choisir les hyperparamètres

- · l'espace de représentation des données
- · la classe des classifieurs considérés
- la fonction de perte à minimiser pour obtenir le meilleur classifieur dans cette classe
- · l'algorithme de minimisation de cette fonction de perte
- une méthode de sélection de modèle pour choisir les hyperparamètres
- · une méthode d'évaluation des performances

ARBRES DE DÉCISION ET DE RÉGRESSION

- Invention quasi simultanée entre 1979 et 1983 par L. Breiman et al. (CART, Berkeley, USA) et R. Quinlan (ID3, Sydney, Australie)
- Dans 2 communautés différentes: en statistique (CART), et dans une discipline nouvelle, le *machine learning* (ID3)

Première idée:

Utiliser non pas un, mais plusieurs séparateurs linéaires pour construire des frontières de décision non linéaires

Deuxième idée:

Utiliser des séparateurs linéaires orthogonaux aux axes, i.e. des hyperplans $\{x \in \mathcal{X} : x^j = \tau\}$ pour l'interprétabilité / efficacité

Troisième idée:

Utiliser un prédicteur représenté par un arbre: chaque noeud est associé à un hyperplan séparateur $\{x \in \mathcal{X} : x^j = \tau\}$; chaque feuille est associée à une fonction constante, i.e. une classe

SÉPARATEUR LINÉAIRE ORTHOGONAL AUX AXES

- Rappel: $x = (x^1, ..., x^p)$, p variables
- Pour une variable continue : j-ème variable x^j , seuil τ :

$$t_{j,\tau}(x) = \operatorname{sign}(x^j - \tau)$$

• Pour une variable catégorielle à M modalités $\{v_1^j,\ldots,v_M^j\}$:

$$t_{j,v,m}(x) = \mathbb{1}(x^j = v_m^j)$$

• L'arbre final encode un ensemble de règles logiques de type: "si $(x^{j_1} > \tau_1)$ et $(x^{j_2} \le \tau_2)$ et . . . alors x est de la classe k"

ALGORITHME RÉCURSIF DE CONSTRUCTION (CART)

Cas d'un arbre binaire, avec $\mathcal S$ ensemble d'apprentissage

- 1. Construire un noeud racine
- 2. Chercher la meilleure séparation $t: \mathcal{X} \to \{0,1\}$ à appliquer sur \mathcal{S} telle que le coût local $L(t,\mathcal{S})$ soit minimal
- 3. Associer le séparateur choisi au noeud courant et séparer l'ensemble d'apprentissage courant $\mathcal S$ en $\mathcal S^d$ et $\mathcal S^g$ à l'aide de ce séparateur
- 4. Construire un noeud à droite et un noeud à gauche
- 5. Mesurer le critère d'arrêt à droite, s'il est vérifié, le noeud droit devient une feuille sinon aller en 3 avec \mathcal{S}^d comme ensemble courant
- 6. Mesurer le critère d'arrêt à gauche, s'il est vérifié, le noeud gauche devient une feuille sinon aller en 3 avec S^g comme ensemble courant

EXEMPLE VISUEL

EXEMPLE VISUEL

EXEMPLE VISUEL

COUPURE

Pour un ensemble d'exemples d'apprentissage \mathcal{S} et une fonction de séparation binaire $t_{j,\tau}$ avec $t_{j,\tau}(x) = \operatorname{sign}(x^j - \tau)$, notons

$$S^{d}(j,\tau) = \{(x,y) \in \mathcal{S}, t_{j,\tau}(x) > 0\}$$

$$S^{g}(j,\tau) = \{(x,y) \in \mathcal{S}, t_{j,\tau}(x) \leq 0\}$$

COUPURE

Pour un ensemble d'exemples d'apprentissage \mathcal{S} et une fonction de séparation binaire $t_{j,\tau}$ avec $t_{j,\tau}(x) = \operatorname{sign}(x^j - \tau)$, notons

$$S^{d}(j,\tau) = \{(x,y) \in \mathcal{S}, t_{j,\tau}(x) > 0\}$$

$$S^{g}(j,\tau) = \{(x,y) \in \mathcal{S}, t_{j,\tau}(x) \leq 0\}$$

COUPURE

Pour un ensemble d'exemples d'apprentissage \mathcal{S} et une fonction de séparation binaire $t_{j,\tau}$ avec $t_{j,\tau}(x) = \operatorname{sign}(x^j - \tau)$, notons

$$S^{d}(j,\tau) = \{(x,y) \in \mathcal{S}, t_{j,\tau}(x) > 0\}$$

$$S^{g}(j,\tau) = \{(x,y) \in \mathcal{S}, t_{j,\tau}(x) \leq 0\}$$

FONCTION DE COÛT LOCALE

• Parmi tous les paramètres $(j, \tau) \in \{1, \dots, p\} \times \{\tau_1, \dots, \tau_r\}$, on cherche \hat{j} et $\hat{\tau}$ qui minimisent une fonction de coût :

$$L(t_{j,\tau}, \mathcal{S}) = \frac{n_g}{n} H(\mathcal{S}^g(j,\tau)) + \frac{n_d}{n} H(\mathcal{S}^d(j,\tau))$$
$$n_g = |\mathcal{S}^g(j,\tau)| \quad \text{et} \quad n_d = |\mathcal{S}^d(j,\tau)|$$

- · H est une fonction "d'impureté"
- Le coût total est la somme de l'impureté de chaque sous partie, pondérée par le nombre d'échantillons

CRITÈRES DE COÛT POUR LA CLASSIFICATION

· Pour un ensemble ${\cal S}$ de n exemples étiquetés, on définit

$$p_c(\mathcal{S}) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(y_i = c)$$

· Entropie

$$H(S) = -\sum_{c=1}^{C} p_c(S) \log p_c(S)$$

· Index de Gini

$$H(\mathcal{S}) = \sum_{c=1}^{C} p_c(\mathcal{S})(1 - p_c(\mathcal{S}))$$

· Erreur de classification

$$H(S) = 1 - p_{c(S)}(S), \quad c(S)$$
: classe majoritaire dans S

CRITÈRES DE COÛT POUR LA CLASSIFICATION

CRITÈRES D'ARRÊT

- On peut s'arrêter localement (dans une branche), dès qu'on atteint :
 - · la profondeur maximale
 - · le nombre maximale de feuilles
 - · le nombre minimal d'exemples dans un noeud
- Remarque: si le nombre minimal d'exemples est 1, l'ensemble d'apprentissage est appris jusqu'au bout (dans les limites computationnelles et de mémoire) → risque de sur-apprentissage!
- Ces hyperparamètres sont à déterminer par validation croisée (voir plus loin)

ARBRES DE RÉGRESSION

Le fonctionnement pour la régression est pratiquement identique, pour construire l'arbre, seul le critère de coût change: on minimise

$$L(t_{j,\tau},\mathcal{S}) = \frac{n_g}{n} H(\mathcal{S}^g(j,\tau)) + \frac{n_d}{n} H(\mathcal{S}^d(j,\tau))$$

avec la variance comme mesure d'impureté

$$H(\mathcal{S}) = Var(\mathcal{S}) := \frac{1}{|\mathcal{S}|} \sum_{(x_i, y_i) \in \mathcal{S}} (y_i - \bar{y}_n)^2$$

οù

$$\bar{y}_n := \frac{1}{|\mathcal{S}|} \sum_{(x_i, y_i) \in \mathcal{S}} y_i$$

AVANTAGES ET INCONVÉNIENTS DES ARBRES DE DÉCISION

Avantages

- · Construit une fonction de décision non linéaire, interprétable
- · Fonctionne pour le multi-classe
- Prise de décision efficace: O(log F) (F : nombre de feuilles)
- · Fonctionne pour des variables continues et catégorielles

Inconvénients

- Pas d'optimisation globale
- Estimateur à large variance, instabilité: une petite variation dans l'ensemble d'apprentissage engendre un arbre complètement différent

RÉDUIRE LA VARIANCE : LES FORÊTS ALÉATOIRES

- Il s'agit d'une méthode ensembliste : on combine les prédictions de plusieurs classifieurs
- · Ici on va moyenner les prédictions de B arbres
- · Pour améliorer les performances, il faut générer de la diversité
- Pour l'arbre $b \in \{1, ..., B\}$ à partir de S:
 - · On construit S_b par tirage avec remise dans S (bootstrap)
 - On applique l'algorithme CART sur S_b , mais à chaque coupure on ne considère qu'un sous-ensemble des attributs tirés aléatoirement
- · Très efficace et utilisé en pratique

SÉLECTION ET ÉVALUATION DE MODÈLES

RAPPEL: APPRENTISSAGE SUPERVISÉ PAR APPROCHE RÉGULARISÉE

• Construire une fonction (classifieur, modèle) \hat{h} de \mathbb{R}^p vers $\{-1,1\}$ (ou $\{1\dots,C\}$) telle que

$$\hat{h} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} L(y_i, h(x_i)) + \lambda \Omega(h)$$

- L est une fonction de perte : mesure à quel point $h(x_i)$ est proche de y_i (la valeur de sortie désirée)
- $\sum_{i=1}^{n} L(y_i, h(x_i))$: terme d'attache aux données
- $\Omega(h)$: pénalité sur la complexité du modèle h, par exemple la norme au carré du vecteur de paramètres de h
- Note : l'approche régularisée n'est pas la seule approche possible, mais c'est la plus courante!

SÉLECTION OU ÉVALUATION DE MODÈLE?

- Sélection de modèle : estimer les performances de différents modèles afin de choisir le meilleur hyperparamètre
- Évaluation de modèle : ayant appris un modèle (pour un certain choix d'hyperparamètres), estimer ses performances
- Note : on choisit le même critère de performance (ex : erreur de prédiction) pour les deux étapes
- · Dans la suite, on va se concentrer sur ces deux questions

SÉLECTION DE MODÈLES: PREMIER EXEMPLE

· On souhaite apprendre un classifieur linéaire dans le plan

$$h_{\beta}(x) = \operatorname{sign}(\beta_1 x_1 + \beta_2 x_2 + \beta_0)$$

· Formulation du problème d'apprentissage

$$\underset{\beta_0,\beta_1,\beta_2 \in \mathbb{R}}{\arg \min} \sum_{i=1}^{n} L(y_i, h_{\beta}(x_i)) + \lambda \|\beta\|$$

avec
$$\|\beta\| = \|\beta\|_2^2$$
 ou $\|\beta\| = \|\beta\|_1$

· Quelle valeur de λ choisir?

SÉLECTION DE MODÈLES : DEUXIÈME EXEMPLE

- On souhaite utiliser un classifieur des K-plus-proches-voisins
- Comment choisir K?
 - K trop petit $\rightarrow h$ trop sensible aux données (variance importante)
 - K trop grand : $\rightarrow h$ peu sensible aux données (biais important)

(Hastie, Tibshirani & Friedman, 2009)

DÉCOMPOSITION BIAIS - VARIANCE

- · On suppose $Y = f(X) + \epsilon$ avec ϵ centré et de variance σ^2_{ϵ}
- Soit \hat{f} la fonction apprise à partir de \mathcal{S} , l'échantillon d'apprentissage
- · Erreur quadratique (régression) espérée après apprentissage:

$$\mathbb{E}_{X,Y,S}[(Y - \hat{f}(X))^{2}] = \mathbb{E}_{X}\left[\mathbb{E}_{Y|X,S}[(Y - \hat{f}(X))^{2}]\right]$$

$$= \mathbb{E}_{X}\left[\mathbb{E}_{Y|X,S}(Y - f(X))^{2} + \mathbb{E}_{Y|X,S}[(\bar{f}(X) - \hat{f}(X))^{2}] + \mathbb{E}_{Y|X}[(f(X) - \bar{f})^{2}]\right]$$

$$= \sigma_{\epsilon}^{2} + \mathbb{E}_{X}\left[\operatorname{Var}_{S}[\hat{f}(X)] + \operatorname{Biais}_{S}^{2}[\hat{f}(X)]\right]$$

 $\operatorname{avec} \bar{f}(X) = \operatorname{\mathbb{E}}_{\mathcal{S}} \hat{f}(X)$

- · Bruit des données : terme incompressible
- \cdot Biais au carré : mesure à quel point \hat{f} est loin de la cible
- Variance de $\hat{f}(X)$: mesure à quel point \hat{f} est sensible aux données d'apprentissage

DÉCOMPOSITION BIAIS - VARIANCE

· Faisons varier la complexité du modèle

- Dépend aussi de la taille n de l'échantillon d'apprentissage ${\cal S}$

DÉCOMPOSITION BIAIS - VARIANCE : K-PPV

• Posons $X = x_0$ pour que l'aléa ne vienne pas de x_0 . On a

$$\mathbb{E}[(Y - \hat{f}(x_0))^2] = \text{Var}[Y] + \text{Biais}^2[f(x_0)] + \text{Var}(\hat{f}(x_0))$$

· On fixe S, donc $\hat{f}(x_0)$ est déterministe

$$\mathbb{E}[(Y - \hat{f}(X_0))^2] = \sigma_{\epsilon}^2 + \left(f(X_0) - \frac{1}{K} \sum_{\ell=1}^K f(X_{(\ell)})\right)^2 + \frac{\sigma_{\epsilon}^2}{K}$$

- · Dilemme biais-variance:
 - K contrôle le terme de variance : plus K est grand, plus elle décroit
 - K contrôle aussi le biais : plus K est petit, plus celui-ci est faible
- · Le choix de K est donc primordial

DÉCOMPOSITION BIAIS - VARIANCE : K-PPV

Erreur de test en fonction de n/K

DÉCOMPOSITION BIAIS - VARIANCE : K-PPV

- Le classifieur *K*-PPV est "paresseux" : pas besoin d'algorithme d'apprentissage !
- · On a seulement besoin de S, d'une distance et d'une valeur de K

· Questions

- Comment choisir K?
- Ayant choisi K, comment estimer l'erreur en généralisation de ce classifieur?

SÉLECTION DE MODÈLE

- Stratégie classique : partager les données disponibles en 3 sous-échantillons
 - · Apprentissage : données pour entraîner les modèles
 - · Validation : données pour sélectionner les hyperparamètres
 - Test : données pour estimer l'erreur en généralisation du modèle
- · Les hyperparamètres sont pris dans une grille finie
- Exemple pour les K-PPV : on sélectionne la valeur de K qui donne l'erreur la plus faible sur l'ensemble de validation
- Comment faire pour "gaspiller" moins de données pour la validation ?

SÉLECTION DE MODÈLE : VALIDATION CROISÉE

- 1. Créer seulement 2 sous-échantillons : apprentissage et test
- 2. Diviser les données S_{app} en B parties de même taille (approximativement) et disjointes $S_{app}^1, \ldots, S_{app}^B$
- 3. Pour $B \in \{1, ..., B\}$
 - Entraîner sur toutes les données de \mathcal{S}_{app} sauf \mathcal{S}_{app}^{b} pour obtenir un modèle \hat{h}_{λ}^{b}
 - \cdot Calculer le risque empirique sur les données restantes \mathcal{S}^b_{app}

$$R^{b}(\lambda) = \frac{1}{|\mathcal{S}_{app}^{b}|} \sum_{i \in \mathcal{S}_{app}^{b}} L(x_{i}, y_{i}, \hat{h}_{\lambda}^{b})$$

4. Risque estimé par validation croisée

$$R_{CV}^{B}(\lambda) = \frac{1}{B} \sum_{b=1}^{B} R^{b}(\lambda)$$

SÉLECTION DE MODÈLE : VALIDATION CROISÉE

· Répéter la procédure pour tous les λ dans la grille Λ et choisir

$$\hat{\lambda}_{CV}^B = \operatorname*{arg\,min}_{\lambda \in \Lambda} R_{CV}^B(\lambda)$$

- R_{app} nous dit à quel point le classifieur a bien réussi à approcher les données d'apprentissage
- R_{CV}^B nous dit à quelle erreur en généralisation nous attendre en apprenant sur un ensemble de taille $|\mathcal{S}_{app}| |\mathcal{S}_{app}|/B$
- R_{test} nous dit à quel point le classifieur réussit à approcher des données nouvelles

ÉVALUATION DE MODÈLES

- · On choisit en général comme critère d'évaluation
 - · l'erreur quadratique pour la régression
 - · l'erreur de prédiction (0-1) pour la classification
- Cependant pour la classification binaire, l'erreur 0-1 est parfois insuffisante
 - · classes très déséquilibrées
 - besoin de détails sur la nature des erreurs (faux positifs, faux négatifs, etc)
- On se tourne alors vers la courbe ROC, ainsi que son résumé :
 l'aire sous la courbe ROC

COURBE ROC

	Prédit OUI	Prédit NON
POS	Vrais positifs	Faux négatifs
NEG	Faux positifs	Vrais négatifs

• TPR: taux de vrais positifs

$$TPR = \frac{TP}{TP + FN}$$

• FPR: taux de faux positifs

$$FPR = \frac{FP}{FP + TN}$$

COURBE ROC

· Soit h un classifieur défini par

$$h(x) = sign(f(x) - s)$$

- Habituellement, en classification binaire, s=0.5 si les sorties sont dans $\{0,1\}$, ou s=0 si dans $\{-1,1\}$
- · Le choix du seuil s fait varier TPR et FPR
- Tracer la courbe ROC consiste à faire varier s et à reporter le point (FPR(s), TPR(s)) sur un graphique 2D
- On associe ainsi plusieurs points à une même fonction f issue d'un algorithme d'apprentissage

COMPARER DES CLASSIFIEURS AVEC UNE COURBE ROC

 Sur un ensemble test, pour une fonction f donnée, on mesure (FPR(s), TPR(s)) en faisant varier s

AIRE SOUS LA COURBE ROC

- · L'aire sous la courbe ROC (AUC) est un résumé de la courbe ROC
 - · Compris entre 0 (pire) and 1 (meilleur)
 - · Indicateur très utilisé de la qualité d'un classifieur

D'AUTRES MESURES POUR ALLER PLUS LOIN

- En recherche d'information, on cherche à bien prédire mais aussi à ne pas manquer d'information pertinente
- Exemple : un moteur de recherche veut retourner une liste de documents pertinents la plus exhaustive possible
- On s'intéresse alors aux courbes Précision-Rappel

EXEMPLES DE COURBES ROC ET PR

 Les courbes ROC sont insensibles au déséquilibre de classes, alors que les courbes PR le sont

RÉFÉRENCES

- · Arbres de décision et de régression
 - Chapitre 9 de Elements of Statistical Learning (Hastie, Tibshirani & Friedman, 2009)
 - Article: Classification and regression trees (L. Breiman et al., Wadsworth Statistics/Probability Series 1984)
 - Article: Induction of decision trees (J. R. Quinlan, Machine Learning 1986)
 - · Article: Random Forests (L. Breiman, Machine Learning 2001)
- · Sélection et évaluation de modèles
 - Chapitres 4 et 7 de Elements of Statistical Learning (Hastie, Tibshirani & Friedman, 2009)
 - Article: Introduction to ROC analysis (T. Fawcett, Pattern Recognition Letters 2006)