

Generalizations of Roth's criteria for solvability of matrix equations

*Tetiana Klymchuk*Universitat Politècnica de Catalunya

XXV CEDYA / XV CMA June 26–30, 2017

Semilinear mappings

A mapping ${\mathcal A}$ from a complex vector space ${\mathcal U}$ to a complex vector space ${\mathcal V}$ is semilinear if

$$A(u+u') = Au + Au', \qquad A(\alpha u) = \overline{\alpha}Au$$

for all $u, u' \in U$ and $\alpha \in \mathbb{C}$.

We write

- \blacksquare $\mathcal{A}: U \longrightarrow V$ if \mathcal{A} is a linear mapping, and
- $A: U \dashrightarrow V$ if A is a semilinear mapping.

Cycles of linear and semilinear mappings

We give a canonical form of matrices of a cycle of linear and semilinear mappings

$$V_1 \underbrace{\stackrel{\mathcal{A}_1}{\smile} V_2 \stackrel{\mathcal{A}_2}{\smile} \dots \stackrel{\mathcal{A}_{t-2}}{\smile} V_{t-1} \stackrel{\mathcal{A}_{t-1}}{\smile} V_t}_{\mathcal{A}_t}$$

in which each line is

- \blacksquare a full arrow \longrightarrow , \longleftarrow , or
- a dashed arrow ----, ←--.

My talk is based on:

- T. Klimchuk, D. Kovalenko, T. Rybalkina, V.V. Sergeichuk, Tame systems of linear and semilinear mappings), Contemp. Math. 658 (2016) 103-114.
- D. Duarte de Oliveira, V. Futorny, T. Klimchuk, D. Kovalenko, V.V. Sergeichuk, Cycles of linear and semilinear mappings), Linear Algebra Appl. 438 (2013) 3442-3453.
- D. Duarte de Oliveira, R.A. Horn, T. Klimchuk, V.V. Sergeichuk, Remarks on the classification of a pair of commuting semilinear operators, Linear Algebra Appl. 436 (2012) 3362-3372.

Empty matrices

- $\forall n = 0, 1, 2, ...$ $\exists !$ matrices of sizes $0 \times n$ and $n \times 0$, which correspond to linear mappings $\mathbb{C}^n \to 0$ and $0 \to \mathbb{C}^n$.
- They are denoted by 0_{0n} and 0_{n0} and are considered as zero matrices
- For every $p \times q$ matrix M_{pq} :

$$M_{pq} \oplus 0_{n0} = \begin{bmatrix} M_{pq} & 0 \\ 0 & 0_{n0} \end{bmatrix} = \begin{bmatrix} M_{pq} & 0_{p0} \\ 0_{nq} & 0_{n0} \end{bmatrix} = \begin{bmatrix} M_{pq} \\ 0_{nq} \end{bmatrix}$$

$$M_{pq} \oplus 0_{0n} = \begin{bmatrix} M_{pq} & 0 \\ 0 & 0_{0n} \end{bmatrix} = \begin{bmatrix} M_{pq} & 0_{pn} \\ 0_{0q} & 0_{0n} \end{bmatrix} = \begin{bmatrix} M_{pq} & 0_{pn} \end{bmatrix}$$

Sooooo baaad without empty matrices

$$\forall A \exists \text{ nonsingular } R, S \colon RAS = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}$$

Observation

■ Each matrix is equivalent to a direct sum of indecomposable matrices of the form

$$[1], [10], [100], \ldots, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ldots$$

This direct sum is not uniquely determined:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 10 \end{bmatrix} \oplus \begin{bmatrix} 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \oplus \begin{bmatrix} 00 \end{bmatrix}$$

Goood with empty matrices

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} \oplus \begin{bmatrix} 0 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \oplus 0_{01} \oplus 0_{01} \oplus 0_{10}$$
$$= \begin{bmatrix} 1 \end{bmatrix} \oplus \begin{bmatrix} 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \oplus 0_{01} \oplus 0_{01} \oplus 0_{10}$$

A la Jordan Theorem

- Each matrix is equivalent to a direct sum of indecomposable matrices of the form [1], 0_{01} , 0_{10} .
- This direct sum is uniquely determined, up to permutation of summands.

Matrix pairs

First consider a very special case of cycles of linear and semilinear mappings: pairs of linear mappings

$$V_1 \xrightarrow{\mathcal{A}} V_2$$

Their matrices are reduced by equivalence transformations:

pairs of
$$m \times n$$
 matrices (A, B) and (C, D) are equivalent, $(A, B) \sim (C, D)$, if \exists nonsingular $R, S : (RAS, RBS) = (C, D)$.

The direct sum of matrix pairs:

$$(A,B) \oplus (C,D) = \begin{pmatrix} A & 0 \\ 0 & C \end{pmatrix}, \begin{bmatrix} B & 0 \\ 0 & D \end{pmatrix}.$$

Kronecker's theorem

Write

$$R_{n} := \begin{bmatrix} 0 & 1 & 0 \\ & \ddots & \ddots \\ 0 & 0 & 1 \end{bmatrix}, \quad L_{n} := \begin{bmatrix} 1 & 0 & 0 \\ & \ddots & \ddots \\ 0 & 1 & 0 \end{bmatrix}, \quad n \ge 1.$$

$$(R_{1}, L_{1}) = (0_{01}, 0_{01}).$$

Theorem (Kronecker, 1890)

Each pair of matrices of the same size is equivalent to a direct sum, determined uniquely up to permutation of summands, of pairs of the following form:

$$(I_n, J_n(\lambda)), (J_n(0), I_n), (R_n, L_n), (R_n^T, L_n^T).$$

Isomorphism of cycles

 ${\cal A}$ and ${\cal B}$ are isomorphic if there exist linear bijections

$$\varphi_1: V_1 \to W_1, \ldots, \varphi_t: V_t \to W_t$$

that transform A to B:

The direct sum of cycles

 $\mathcal{A}\oplus\mathcal{B}$:

The direct sum of cycles

 $\mathcal{A}\oplus\mathcal{B}$:

The Krull-Schmidt theorem holds for cycles of linear and semilinear mappings: each cycle is isomorphic to a direct sum of indecomposables, which is uniquely determined, up to permutation and isomorphisms of direct summands.

Thus, it suffices do classify all indecomposable cycles.

Let A be indecomposable into a direct sum and let all A_i be nonsingular

Then A is isomorphic to a cycle

Changing the basis in V, we can reduce the matrix of \mathcal{B}_t by

- similarity transformations (i.e., $V \supset \mathcal{B}_t$) if the number of dashed arrows in \mathcal{A} is even;
- **consimilarity transformations** (i.e., $V \subset \mathcal{B}_t$) if the number of dashed arrows in \mathcal{A} is odd.

A canonical form for similarity is given by Jordan's theorem.

A canonical form for consimilarity is given in

- Y.P. Hong, R.A. Horn, A canonical form for matrices under consimilarity, Linear Algebra Appl. 102 (1988) 143–168.
- R.A. Horn, C.R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press, New York, 2012.

Each square complex matrix is consimilar to a direct sum, uniquely determined up to permutation of direct summands, of matrices of the following types:

- $J_k(\lambda)$, in which $\lambda \ge 0$, and

Let A be indecomposable into a direct sum and let there exist a singular A_i

Lemma

There are bases of V_1, \ldots, V_t in which the matrix A_i of each A_i possesses the property: all entries are only 0's and 1's with at most one 1 in each row and each column.

Corollary

- Each A_i maps a basis vector to a basis vector or 0.
- Each A_i cannot map distinct basis vectors to the same basis vector:

Let there exist a singular A_i

Construct the directed graph,

- \blacksquare its vertices are basis vectors of V_1, \ldots, V_t from Lemma,
- there is an arrow from u to v if and only if $\exists A_i : u \mapsto v$.

By Lemma, the graph is a DISJOINT UNION OF CHAINS!!!. Since \mathcal{A} is indecomposable, the graph is connected, and so it is a chain.

Consider chains for the cycle

Type I: A chain stops exactly before the starting point; an example

Then

$$\langle e_{11}, e_{12} \rangle$$
 $\langle e_{11}, e_{12} \rangle$
 $\langle e_{61}, e_{62} \rangle$
 $\langle e_{61}, e_{62} \rangle$
 $\langle e_{51}, e_{52} \rangle$
 $\langle e_{61}, e_{62} \rangle$
 $\langle e_{61}, e_{62} \rangle$
 $\langle e_{61}, e_{62} \rangle$

Type I: A chain stops exactly before the starting point; the general case

The singular Jordan can be over any arrow.

Type II: A chain does not stop exactly before the starting point; an example

gives the cycle

$$\begin{array}{c|c} & R_2 = \begin{bmatrix} 0 & 1 \end{bmatrix} & \langle e_{31}, e_{32} \rangle \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ \langle e_{11} \rangle & \begin{bmatrix} 1 \\ 0 \end{bmatrix} & \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & \langle e_{41}, e_{42} \rangle \\ \langle e_{61} \rangle - - - - - - & \langle e_{51}, e_{52} \rangle & \end{array}$$

Type II: A chain does not stop exactly before the starting point; the general case

Two arrows are assigned by M and N; the others by I:

$$(M,N) = \begin{cases} (R_n, L_n) \text{ or } (R_n^T, L_n^T), & \text{if } V \xrightarrow{M} W \\ (R_n, L_n^T) \text{ or } (R_n, L_n^T), & \text{if } V \xrightarrow{M} W \end{cases}$$
where
$$R_n := \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad L_n := \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

The classification of cycles

Theorem

Each cycle of linear and semilinear mappings is isomorphic to a direct sum, determined uniquely up to isomorphisms of summands, of indecomposable cycles of the following types:

in which \mathcal{B}_t is given by a Jordan block or an indecomposable canonical block under consimilarity if the number of dashed arrows is even or odd, respectively.

Cycles that are given by chains.

Known cases: the classification of

- $\bigvee \Longrightarrow W$ was given in
 - N.M. Dobrovol'skaya, V.A. Ponomarev, A pair of counter-operators (in Russian), Uspehi Mat. Nauk 20 (no. 6) (1965) 80–86;
 - R.A. Horn, D.I. Merino, Contragredient equivalence: a canonical form and some applications, Linear Algebra Appl. 214 (1995) 43–92.
- arbitrary cycles of linear mappings is well known in the theory of representations of quivers.
- $\bigvee \longrightarrow W$ was given in
 - D.Ž. Djoković, Classification of pairs consisting of a linear and a semilinear map, Linear Algebra Appl. 20 (1978) 147–165.

Future research: regularizing algorithm for cycles of linear and semilinear mappings

Paul Van Dooren in the article

■ The computation of Kroneckers canonical form of a singular pencil, Linear Algebra Appl. 27 (1979) 103–140.

gave an algorithm that for each matrix pencil constructs its regularizing decomposition into a direct sum of

- a nonsingular pencil;
- Kronecker's singular indecomposable canonical pencils.

The algorithm uses only unitary transformations, which improves its computational stability.

Future research: regularizing algorithm for cycles of linear and semilinear mappings

Van Dooren's algorithm was extended by Sergeichuk to cycles of linear mappings:

$$V_1$$
 V_2 \cdots V_{t-1} V_t

in which $V_1 \dots V_t$ are complex vector spaces and each line is

 \blacksquare a full arrow \longrightarrow or \longleftarrow .

I will give an analogous algorithm and construct a regularizing decomposition for cycles of linear and semilinear mappings:

$$V_1$$
 V_2 \cdots V_{t-1} V_t

in which each line is

 \blacksquare a full arrow \longrightarrow , \longleftarrow , or

Thank you for your attention!