ĆWICZENIE **20**

SKALOWANIE TERMOPARY I WYZNACZANIE TEMPERATURY KRZEPNIĘCIA STOPU

Instrukcja wykonawcza

1. Wykaz przyrządów

- 1) Kuchenka elektryczna
- 2) Termometry (o zakresie od 0 do 100 °C) lub miernik temperatury
- 3) Naczynie do podgrzewania wody (czasem z elektrycznym mieszadełkiem)
- 4) Termos
- 5) Termopara
- 6) Tygiel ze stopem Wooda (50% Bi, 25% Pb, 12,5%Cd, 12,5% Sn)
- 7) Stoper

2. Cel ćwiczenia

- 1) Skalowanie termopary oraz wyznaczenie współczynnika termoelektrycznego termopary.
- 2) Wyznaczenie temperatury krzepnięcia stopu metali.

3. Schemat układu pomiarowego

Rys. 1. Schemat układu pomiarowego służącego do skalowania termopary.

Rys.2. Stanowisko pomiarowe

4. Przebieg pomiarów

- **4.1. Skalowanie termopary,** tzn. wyznaczenie zależności U = f(T), czyli zależności napięcia termoelektrycznego U mierzonego w układzie termopary od zmienianej temperatury T jednego ze złącz podczas gdy drugie złącze utrzymywane będzie w stałej temperaturze odniesienia $T_o = 0$ °C:
- a) Napełnić termos mieszaniną wody z lodem.
- b) Do stalowego garnka nalać wodę do około 2 cm poniżej górnej krawędzi. Ustawić garnek na kuchence elektrycznej i przykryć pokrywką.
- c) Jedno spojenie termopary umieścić w termosie, a drugie przez otwór w pokrywce garnka zanurzyć w wodzie.
- d) Włączyć cyfrowy termometr i przez drugi otwór w pokrywce garnka zanurzyć jego czujnik w wodzie.
- e) Zgodnie ze schematem przedstawionym na rys. 1 podłączyć termoparę do miliwoltomierza i włączyć go.
- f) Włączyć kuchenkę elektryczną do sieci.
- g) Przeprowadzić skalowanie, tzn. w zakresie od temperatury pokojowej do 90°C notować co 2°C wartości temperatury i odpowiadające im wartości napięcia.
- h) Po skończonym skalowaniu zmniejszyć grzanie kuchenki do minimum, by **woda nie zagotowała się.**
- i) Zanotować niepewności użytych mierników.

4.2. Wyznaczenie temperatury krzepnięcia stopu metali:

a) Spojenie termopary wyjąć z pokrywy garnka i umieścić w tyglu ze stopem metali. Zdjąć pokrywe z garnka

b) Umieścić tygiel na garnku z gorącą wodą stojącym na kuchence, tak by tygiel był do połowy zanurzony w gorącej wodzie i ogrzewać stop dopóki nie uzyska płynnego stanu w całej objętości.

Uwaga:

- w trakcie topienia stopu Wooda utrzymywać temperaturę wody w ok. 90°C przez zmniejszenie lub zwiększenie mocy kuchenki, ale nie doprowadzając do wrzenia wody
- wartość napięcia na miliwoltomierzu nie powinna przekraczać wartości odpowiadającej temperaturze 85℃ zanotowanej podczas skalowania termopary.
 - c) **Wyłączyć kuchenkę**, Zdjąć tygiel garnka i umieścić go na metalowej podstawce. W czasie procesu chłodzenia stopu co **30 s** notować czas i napięcie termoelektryczne do wartości napięcia odpowiadającej temperaturze ok. **40°C** zanotowanej podczas skalowania termopary.

5. Opracowanie wyników

5.1. Skalowanie termopary i wyznaczenie współczynnika termoelektrycznego lpha

- 1. Sporządzić wykres cechowania termopary U = f(T) przedstawiający zależność napięcia termoelektrycznego od temperatury spoiny zanurzonej w podgrzewanej wodzie.
- 2. Dla kilku wybranych punktów narysować prostokąt niepewności przyjmując za niepewności U oraz T dokładności mierników .
- 3. Metodą regresji liniowej wyznaczyć współczynnik kierunkowy A prostej najlepiej dopasowanej do wykresu U=f(T) oraz jego niepewność u(A). Ponieważ napięcie termoelektryczne U zależy od temperatury T zgodnie z równaniem $U=\alpha\cdot (T-T_o)$, to zauważamy, że wyznaczony współczynnik kierunkowy A jest jednocześnie współczynnikiem termoelektrycznym $\alpha_{\bf r}$ więc niepewność współczynnika kierunkowego u(A) jest też niepewnością współczynnika termoelektrycznego $u(\alpha)$:

$$\alpha = A$$
, $u(\alpha) = u(A)$. (1)

- 1. Sporządzić wykres zależności siły termoelektrycznej od czasu schładzania badanego stopu U=f(t).
- 2. Jeżeli prowadzący nie wskaże metody ustalenia wartości napięcia krzepnięcia U_k oraz niepewności jej wyznaczenia $u(U_k)$, to można wykorzystać jeden z poniższych sposobów:

Napięcie U_k odczytać z wykresu tak jak przedstawiono na rys. 3. Niepewność $u(U_k)$ wyznaczyć tak jak przedstawiono na z rys. 3.

Rys.3. Wyznaczenie wartości napięcia U_k oraz niepewności $u(U_k)$. Rzeczywisty wykres może się różnić od przedstawionego. W trakcie krzepnięcia mierzona temperatura może nawet nieznacznie wzrastać.

Sposób 2 (rachunkowy)

Napięcie U_k obliczyć jako średnią arytmetyczną napięć mieszczących się w obszarze plateau.

Niepewność $u(U_k)$ obliczyć wyznaczając najpierw niepewność standardową typu A wartości średniej napięć mieszczących się w obszarze plateau:

$$u_A(\overline{U}) = \sqrt{\frac{\sum_{i=1}^n (U_i - \overline{U}_i)^2}{n \cdot (n-1)}},$$
 (2)

a następnie niepewność standardową typu B:

$$u_B(U) = \frac{\Delta_p U}{\sqrt{3}} \,, \tag{3}$$

gdzie $\Delta_p U$ jest niepewnością pomiaru woltomierzem (lub wartością średnią niepewności mierzonych napięć mieszczących się w obszarze plateau).

Niepewność napięcia krzepnięcia obliczyć ze wzoru:

$$u(U_k) = \sqrt{\left(u_A(\bar{U})\right)^2 + \left(u_B(U)\right)^2}.$$
 (4)

3. Wyznaczyć temperaturę krzepnięcia stopu metali T_k ze wzoru:

$$T_k = \frac{U_k}{\alpha} \,. \tag{5}$$

4. Znając niepewności $u(U_k)$ i $u(\alpha)$ obliczyć niepewność złożoną temperatury krzepnięcia stopu $u_c(T_k)$.

6. Proponowane tabele pomiarowe

6.1. Skalowanie termopary

T	<i>u</i> (<i>T</i>)	U	u(U)	α	<i>u</i> (α)	$\frac{u(\alpha)}{\alpha} \cdot 100\%$
[°C]	[°C]	[mV]	[mV]	[mV/°C]	[mV/°C]	[%]
•••		•••				

6.2. Wyznaczenie temperatury krzepnięcia stopu

				[
t	U	u(U)	U_k	$u(U_k)$	T_k	$u_c(T_k)$	$\frac{u_c(T_k)}{T_k} \cdot 100\%$
[s]	[mV]	[mV]	[mV]	[mV]	[°C]	[°C]	[%]
• • •	• • •	•••					