10 класс

Первый день

10.1. Для произвольного натурального числа n через d(n) обозначим количество всех натуральных делителей числа n, включая 1 и само число n, а через s(n) — сумму $d(1)+d(2)+\ldots+d(n)$.

Найдите количество нечётных чисел среди $s(1), s(2), \ldots, s(100)$.

10.2. Действительные числа x и y удовлетворяют равенству

$$x\sqrt{y^2+1} + y\sqrt{x^2+1} = \frac{3}{4}.$$

Найдите все возможные значения выражения $\sqrt{x^2+1} \cdot \sqrt{y^2+1} + xy$.

- **10.3.** В треугольнике ABC точка M середина стороны AC, а H точка пересечения высот. Окружность с диаметром BH повторно пересекается в точке N с окружностью, которая проходит через H и касается прямой AC в точке C. Докажите, что точки H, M и N лежат на одной прямой.
- **10.4.** На координатной плоскости xOy отмечено множество P точек (a,b), для которых a,b- целые неотрицательные числа, не большие 2023. Элементы множества P разбили на пары и в каждой паре точки соединили отрезком так, что никакие два построенных отрезка не пересекаются. Назовём отрезок мелким, если его длина равна 1. Найдите минимальное возможное количество мелких отрезков.

10 класс

Второй день

- **10.5.** Высоты остроугольного треугольника ABC пересекаются в точке H. На стороне BC отметили точку P такую, что $\angle HPC = \angle BAC$. Докажите, что центр описанной окружности треугольника BHP лежит на прямой AB.
- **10.6.** Найдите все пары (p,q) простых чисел, удовлетворяющих равенству

$$p^{2q+1} = q^p + 2023.$$

- **10.7.** В выпуклом n-угольнике провели несколько диагоналей так, что каждая проведённая диагональ пересекается во внутренних точках не более, чем с одной другой. В результате n-угольник разбился на меньшие многоугольники. Определите, какое максимальное количество треугольников могло оказаться среди них.
- 10.8. На доске записали три многочлена с действительными коэффициентами:

$$x^4+a_1x^3+b_1x^2-2x+1,$$

$$x^4+a_2x^3+b_2x^2-2x+1 \quad \mathbf{u} \quad x^4+a_3x^3+b_3x^2-2x+1.$$

Оказалось, что $a_1b_2>a_2b_1$, $a_2b_3>a_3b_2$ и $a_3b_1>a_1b_3$. Докажите, что хотя бы один из записанных на доске многочленов имеет действительный корень.