Problem Set 7 – Solutions Linear Systems of ODES; independence

Math 51 Fall 2021

due Monday 2022-03-07 at 11:59 PM

Problems

- 1. For each of the following systems of ODEs, decide whether it is linear. For each linear system, do also the following:
 - indicate whether it is homogeneous
 - find a matrix A and a vector E such that the system can be rewritten in the form

$$Dx = Ax + E$$

where
$$\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 (or $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$).

(a)
$$\begin{cases} x' = ty - z \\ y' = -\frac{x}{t} - z + 1 \\ z' = -x - t^2 y + z + 2t \end{cases}$$
 (b)
$$\begin{cases} x' = 2x - 3y \\ y' = 3x^2 y + y + 1 \end{cases}$$
 (c)
$$\begin{cases} x' = 7x + 11y \\ y' = -2x + y \end{cases}$$

Solution:

(a) The system is linear, but is not homogeneous. It can be written

$$D\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 & t & -1 \\ \frac{-1}{t} & 0 & -1 \\ \frac{-1}{t} & -t^2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 2t \end{bmatrix}$$

- (b) The system is not linear, because the dependence $y' = 3x^2y + y + 1$ is not linear (it involves the non-linear term x^2y).
- (c) The system is linear and homogeneous. It can be written

$$D\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 7 & 11 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2. Let $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and consider the non-homogeneous system

$$(\clubsuit) \quad D\begin{bmatrix} x \\ y \end{bmatrix} = A\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t \\ -1 \end{bmatrix}.$$

1

a. Show that $\mathbf{h}_1(t) = \begin{bmatrix} \sin(t) \\ \cos(t) \end{bmatrix}$, $\mathbf{h}_2(t) = \begin{bmatrix} \cos(t) \\ -\sin(t) \end{bmatrix}$ are solutions to the corresponding homogeneous system $D\begin{bmatrix} x \\ y \end{bmatrix} = A\begin{bmatrix} x \\ y \end{bmatrix}$.

Solution:

To check that h_1 is a solution, we compute

$$D\mathbf{h}_1 = \begin{bmatrix} \frac{d}{dt}\sin(t) \\ \frac{d}{dt}\cos(t) \end{bmatrix} = \begin{bmatrix} \cos(t) \\ -\sin(t) \end{bmatrix}$$

and

$$A\mathbf{h}_1 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} \sin(t) \\ \cos(t) \end{bmatrix} = \begin{bmatrix} 0\sin(t) + 1\cos(t) \\ -1\sin(t) + 0\cos(t) \end{bmatrix} = \begin{bmatrix} \cos(t) \\ -\sin(t) \end{bmatrix}.$$

Since these expressions agree, h_1 is a solution.

To check that h_2 is a solution, we compute

$$D\mathbf{h}_2 = \begin{bmatrix} \frac{d}{dt}\cos(t) \\ \frac{d}{dt}[-\sin(t)] \end{bmatrix} = \begin{bmatrix} -\sin(t) \\ -\cos(t) \end{bmatrix}$$

and

$$A\mathbf{h}_1 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} \cos(t) \\ -\sin(t) \end{bmatrix} = \begin{bmatrix} 0\cos(t) + 1(-\sin(t)) \\ -1\cos(t) + 0(-\sin(t)) \end{bmatrix} = \begin{bmatrix} -\sin(t) \\ -\cos(t) \end{bmatrix}.$$

Since these expressions agree, h₂ is a solution.

b. Show that $\mathbf{p}(t) = \begin{bmatrix} 0 \\ -t \end{bmatrix}$ is a particular solution to the ().

Solution:

Compute

$$D\mathbf{p} = \begin{bmatrix} 0\\-1 \end{bmatrix}$$

and

$$A\mathbf{p} + \begin{bmatrix} t \\ -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ -t \end{bmatrix} + \begin{bmatrix} t \\ -1 \end{bmatrix} = \begin{bmatrix} -t \\ 0 \end{bmatrix} + \begin{bmatrix} t \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

Since these expressions are equation, p is a solution to (\clubsuit)

c. Show that the initial vectors $\mathbf{h}_1(0)$ and $\mathbf{h}_2(0)$ are linearly independent. Find the general solution to (\clubsuit) .

Solution:

Note that $h_1(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $h_2(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$; since $\det \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = -1 \neq 0$, these vectors are linearly independent. Thus h_1 and h_2 generate the general solution to the homogeneous system Dx = Ax and so the the general solution to the inhomogeneous system is given by

$$\begin{split} \mathbf{x}(t) &= \mathbf{p}(t) + c_1 \mathbf{h}_1(t) + c_2 \mathbf{h}_2(t) \\ &= \begin{bmatrix} 0 \\ -t \end{bmatrix} + c_1 \begin{bmatrix} \sin(t) \\ \cos(t) \end{bmatrix} + c_2 \begin{bmatrix} \cos(t) \\ -\sin(t) \end{bmatrix} \end{split}$$

3. Consider the linear ODE

(N)
$$(D-3)^2x = e^{3t}$$
 i.e. $(D^2 - 6x + 9)x = e^{3t}$.

a. Find the equivalent linear system (S_N) of ODEs. Write this system in matrix form.

Solution:

We set $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. For a solution x of (N) we set $x_1 = x$ and $x_2 = x'$.

We have that $x_1' = x_2$ and

$$x_2' = x'' = -9x + 6x' + e^{3t} = -9x_1 + 6x_2 + e^{3t}.$$

Thus we the system in matrix form

$$D\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -9 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ e^{3t} \end{bmatrix}$$

is equivalent to (N).

b. Note that the general solution to the homogeneous equation (H) $(D-3)^2x=0$ is generated by $h_1(t)=e^{3t}$ and $h_2(t)=te^{3t}$. Find the corresponding vector solutions \mathbf{h}_1 and \mathbf{h}_2 to the homogeneous system (S_H).

Solution:

$$\mathbf{h}_1 = \begin{bmatrix} h_1(t) \\ h_1'(t) \end{bmatrix} = \begin{bmatrix} e^{3t} \\ 3e^{3t} \end{bmatrix} \quad \text{and} \quad \mathbf{h}_2 = \begin{bmatrix} h_2(t) \\ h_2'(t) \end{bmatrix} = \begin{bmatrix} te^{3t} \\ (1+3t)e^{3t} \end{bmatrix}$$

c. Find a particular solution p(t) to the equation $(D-3)^2x=e^{3t}$, and find the corresponding vector solution p(t) to the system (S_N) .

Solution:

We can use the method of undetermined coefficients. We take A(D) = D - 3. The general solution to $A(D)(D-3)^2 = (D-3)^3$ is generated by e^{3t} , te^{3t} , t^2e^{3t} but the first two functions are already solutions to the homogeneous equation (H) and may be eliminated.

Thus our simplified guess for a particular solution is kt^2e^{3t} and we must find the constant k.

For this, we apply the operator $(D-3)^2$ and use the exponential shift formula:

$$(D-3)^2[kt^2e^{3t}]=ke^{3t}(D+3-3)^2[t^2]=ke^{3t}D^2[t^2]=2ke^{3t}.$$

We need $2ke^{3t}=e^{3t}$ so k=1/2 and our particular solution is $p(t)=\frac{1}{2}t^2e^{3t}$.

In vector form we have

$$\mathbf{p} = \begin{bmatrix} p(t) \\ p'(t) \end{bmatrix} = \begin{bmatrix} \frac{1}{2}t^2e^{3t} \\ e^{3t}(t + \frac{3}{2}t^2) \end{bmatrix} = e^{3t} \begin{bmatrix} t^2/2 \\ (3t^2 + 2t)/2 \end{bmatrix}.$$

3

d. The general solution to (N) is given by $x(t) = p(t) + c_1 h_1(t) + c_2 h_2(t)$. What is the general solution to the system (S_N)?

Solution:

$$\mathbf{x} = \mathbf{p} + c_1 \mathbf{h}_1 + c_2 \mathbf{h}_2 = e^{3t} \begin{bmatrix} t^2/2 \\ (3t^2 + 2t)/2 \end{bmatrix} + c_1 \begin{bmatrix} e^{3t} \\ 3e^{3t} \end{bmatrix} + c_2 \begin{bmatrix} te^{3t} \\ (1+3t)e^{3t} \end{bmatrix}$$

- 4. Consider the following matrices A and lists of vector-valued functions h_i. In each case, answer the following questions:
 - Which of the functions h_i are solutions to the homogeneous equation Dx = Ax? Be sure to indicate how you reach your conclusion.
 - Consider the functions that are solutions. Do they generate the general solution to Dx = Ax? Why or why not?

$$\mathbf{a.} \ \ A = \begin{bmatrix} -3 & 8 \\ -3 & 7 \end{bmatrix}; \quad \mathbf{h}_1 = \begin{bmatrix} 2e^t \\ e^t \end{bmatrix}, \quad \mathbf{h}_2 = \begin{bmatrix} 2e^t - 4e^{3t} \\ e^t - 3e^{3t} \end{bmatrix}, \quad \mathbf{h}_3 = e^t \begin{bmatrix} 4 \\ 3 \end{bmatrix}.$$

Solution:

h₁ and h₂ are solutions while h₃ is not a solution.

Indeed, let's check.

$$\bullet \ \ D\mathbf{h}_1 = \begin{bmatrix} 2e^t \\ e^t \end{bmatrix} \ \text{and} \ A\mathbf{h}_1 = \begin{bmatrix} -3 & 8 \\ -3 & 7 \end{bmatrix} \begin{bmatrix} 2e^t \\ e^t \end{bmatrix} = \begin{bmatrix} -3 \cdot 2e^t + 8 \cdot e^t \\ -3 \cdot 2e^t + 7 \cdot e^t \end{bmatrix} = \begin{bmatrix} 2 \cdot e^t \\ e^t \end{bmatrix}$$

$$\begin{array}{l} \bullet \quad D\mathbf{h}_2 = D \begin{bmatrix} 2e^t - 4e^{3t} \\ e^t - 3e^{3t} \end{bmatrix} = \begin{bmatrix} 2e^t - 12e^{3t} \\ e^t - 9e^{3t} \end{bmatrix} \text{ and } A\mathbf{h}_2 = \begin{bmatrix} -3 & 8 \\ -3 & 7 \end{bmatrix} \begin{bmatrix} 2e^t - 4e^{3t} \\ e^t - 3e^{3t} \end{bmatrix} = \begin{bmatrix} -3 \cdot (2e^t - 4e^{3t}) + 8 \cdot (e^t - 3e^{3t}) \\ -3 \cdot (2e^t - 4e^{3t}) + 7 \cdot (e^t - 3e^{3t}) \end{bmatrix} = \begin{bmatrix} 2e^t - 12e^{3t} \\ e^t - 9e^{3t} \end{bmatrix}$$

Thus $Dh_1 = Ah_1$ and $Dh_2 = Ah_2$ so that h_1 and h_2 are solutions.

•
$$D\mathbf{h}_3 = D \begin{bmatrix} 4e^t \\ 3e^t \end{bmatrix} = \begin{bmatrix} 4e^t \\ 3e^t \end{bmatrix} = e^t \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$
 and $A\mathbf{h}_3 = e^t \begin{bmatrix} -3 & 8 \\ -3 & 7 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix} = e^t \begin{bmatrix} -3 \cdot 4 + 8 \cdot 3 \\ -3 \cdot 4 + 7 \cdot 3 \end{bmatrix} = e^t \begin{bmatrix} 12 \\ -9 \end{bmatrix}$

Since $Dh_3 \neq Ah_3$, h_3 is not a solution.

Finally, we claim that h_1 and h_2 generate the general solution to Dx = Ax. For this, we use the Wronskian test. The Wronskian matrix W has columns h_1 and h_2 ; i.e.

$$W = \begin{bmatrix} 2e^t & 2e^t - 4e^{3t} \\ e^t & e^t - 3e^{3t} \end{bmatrix}.$$

Evaluating the matrix at t=0 gives $W|_{t=0}=\begin{bmatrix} 2 & -2 \\ 1 & -2 \end{bmatrix}$

Now

$$\det W|_{t=0} = -4 - (-2) = -2.$$

Since this determinant is non-0, the general solution is given by $x = c_1h_1 + c_2h_2$.

$$\text{b. } A = \begin{bmatrix} 0 & 1 & 0 \\ -2 & 2 & 0 \\ 0 & 0 & -2 \end{bmatrix}; \quad \mathbf{h}_1 = e^t \begin{bmatrix} \cos(t) + \sin(t) \\ 2\cos(t) \\ 0 \end{bmatrix}, \quad \mathbf{h}_2 = e^t \begin{bmatrix} 2\cos(t) + 2\sin(t) \\ 4\cos(t) \\ e^{-3t} \end{bmatrix}, \quad \mathbf{h}_3 = \begin{bmatrix} 0 \\ 0 \\ e^{-2t} \end{bmatrix}.$$

Solution:

A direct check confirms that h_i is a solution for $1 \le i \le 3$. To see that whether they generate the general solution, consider the vectors

$$v_i = h_i(0)$$
.

Thus

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 4 \\ 1 \end{bmatrix} \quad \mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

We now compute the determinant of the matrix whose columns are the vectors v_i:

$$\det \begin{bmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \det \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} = 0$$

This shows that v_1, v_2, v_3 are linearly dependent, and thus h_1, h_2 and h_3 do not generate the general solution to Dx = Ax.

5. Let

$$A = \begin{bmatrix} 0 & -1 \\ 4 & 0 \end{bmatrix}, \quad \mathbf{E} = \begin{bmatrix} 0 \\ -5e^t \end{bmatrix}.$$

The formulas

$$\begin{cases} x_1 = & c_1 \cos(2t) + c_2 \sin(2t) + e^t \\ x_2 = & -2c_2 \cos(2t) + 2c_1 \sin(2t) - e^t \end{cases}$$

describe a collection of solutions to the nonhomogeneous system Dx = Ax + E.

a. Write the collection (\clubsuit) of solutions in the form $\mathbf{x} = c_1 \mathbf{h}_1 + c_2 \mathbf{h}_2 + \mathbf{p}$ where \mathbf{h}_1 and \mathbf{h}_2 are solutions to the homogeneous system $D\mathbf{x} = A\mathbf{x}$.

Solution:

$$\mathbf{x} = c_1 \begin{bmatrix} \cos(2t) \\ \sin(2t) \end{bmatrix} + c_2 \begin{bmatrix} \sin(2t) \\ -2\cos(2t) \end{bmatrix} + \begin{bmatrix} e^t \\ e^{-t} \end{bmatrix}$$

b. Decide whether the collection (\clubsuit) is complete.

Solution:

The indicated solution will be complete provided that h_1 and h_2 generate the general solution to the homogeneous equation Dx = Ax.

To decide this, we consider the Wronskian matrix W whose columns are \mathbf{h}_1 and \mathbf{h}_2 ; thus

$$W = \begin{bmatrix} \cos(2t) & \sin(2t) \\ \sin(2t) & -2\cos(2t) \end{bmatrix}$$

We compute the determinant after evaluation at t = 0:

$$\det W|_{t=0} = \det \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} = -2.$$

Since this determinant is non-zero, h_1 and h_2 generate the general solution to the homogeneous equation Dx = Ax, and this confirms that (\clubsuit) is complete (since p is a particular solution).

6. Check the following list of vectors for linear independence:

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}.$$

Solution:

Suppose that c_1, c_2, c_3 are scalars and that

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 3 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} c_1 + c_2 + c_3 \\ c_3 \\ c_1 \\ c_1 + 3c_2 \end{bmatrix}$$

Examination of the 2nd and 3rd entries shows that $c_1 = c_3 = 0$. Then examination of the 1st (or 4th) entry shows that $c_2 = 0$.

Since all c_i must be zero, we have confirmed that the vectors are linearly independent.

Bibliography