Example 0.1. Consider a binary symmetric channel, with probability matrix

$$P = \left(\begin{array}{cc} 1 - p & p \\ p & 1 - p \end{array}\right)$$

Find the capacity of the channel.

Solution:

We know, from the matrix P that the probability of a correct transmission is

$$Pr(Y = 0|X = 0) = P(Y = 1|X = 1) = 1 - p$$

and the probability of incorrect transmission for each symbol is given by

$$Pr(Y = 0|X = 1) = Pr(Y = 1|X = 0) = p.$$

We can choose the input distribution as: $Pr(X = 0) = \alpha$ and $Pr(X = 1) = 1 - \alpha$, $\alpha \in [0, 1]$.

We need H(Y) and H(Y|X) in order to derive I(X;Y) = H(Y) - H(Y|X).

To compute $H(Y) = \sum_{y \in \{0,1\}} \Pr(Y = y) \log_2(\Pr(Y = y))$, we need $\Pr(Y = 0)$ and $\Pr(Y = 1)$.

_

$$\begin{aligned} \Pr(Y = 0) &= \sum_{x \in \{0,1\}} \Pr(X = x) \cdot \Pr(Y = 0 | X = x) \\ &= \Pr(X = 0) \Pr(Y = 0 | X = 0) + \Pr(X = 1) \Pr(Y = 0 | X = 1) \\ &= \alpha \cdot (1 - p) + (1 - \alpha) \cdot p = p + \alpha \cdot (1 - 2p) = D. \end{aligned}$$

_

$$Pr(Y = 1) = \sum_{x \in \{0,1\}} Pr(X = x) \cdot P(Y = 1 | X = x)$$

$$= Pr(X = 0) Pr(Y = 1 | X = 0) + Pr(X = 1) Pr(Y = 1 | X = 1)$$

$$= \alpha \cdot p + (1 - \alpha) \cdot (1 - p) = 1 - p - \alpha \cdot (1 - 2p) = 1 - D.$$

Therefore we have:

$$\begin{split} H(Y) &= -\sum_{y \in \{0,1\}} \Pr(Y = y) \cdot \log_2(\Pr(Y = y)) \\ &= - \left[\Pr(Y = 0) \cdot \log_2(\Pr(Y = 0)) + \Pr(Y = 1) \cdot \log_2(\Pr(Y = 1)) \right] \\ &= - \left[D \cdot \log_2(D) + (1 - D) \cdot \log_2(1 - D) \right] \\ &= H(D) \quad \text{(the binary entropy function)} \end{split}$$

Next we compute the conditional entropy:

$$\begin{split} &H(Y|X) = \sum_{x \in \{0,1\}} \Pr(X = x) H(Y|X = x) \\ &= \Pr(X = 0) \cdot H(Y|X = 0) + \Pr(X = 1) \cdot H(Y|X = 1) \\ &= -\Pr(X = 0) \cdot \left[\Pr(Y = 0|X = 0) \log_2(\Pr(Y = 0|X = 0)) + \Pr(Y = 1|X = 0) \log_2(\Pr(Y = 1|X = 0)) \right] \\ &- \Pr(X = 1) \cdot \left[\Pr(Y = 0|X = 1) \log_2(\Pr(Y = 0|X = 1)) + \Pr(Y = 1|X = 1) \log_2(\Pr(Y = 1|X = 1)) \right] \\ &= -\alpha \cdot \left[(1 - p) \log_2(1 - p) + p \log_2 p \right] - (1 - \alpha) \cdot \left[p \log_2(p) + (1 - p) \log_2(1 - p) \right] \\ &= \alpha \cdot H(p) + H(p) - \alpha \cdot H(p) = H(p). \end{split}$$

Thus we have:

$$I(X;Y) = H(Y) - H(Y|X)$$

= $H(p + \alpha \cdot (1 - 2p)) - H(p)$

We have that $C = \max_X I(X;Y)$. Note that H(Y|X) = H(p) does not depend on α , therefore to compute the maximum of I(X;Y), we only need to find the value of α which maximizes $H(p+(1-2p)\cdot\alpha)$. Further, we know that the binary entropy function H(x) takes its maximum value when x=1/2 and that when $\alpha=1/2$, the value $p+\alpha\cdot(1-2p)=1/2$. Hence I(X;Y) reaches its maximum value when $\alpha=1/2$. Then

$$C = \max_{\alpha} \left(H(p + \alpha \cdot (1 - 2p)) - H(p) \right)$$
$$= H(1/2) - H(p) = 1 - H(p)$$

Note that when the crossover probability is p = 1/2, then C = 0, i.e. we have no information about the transmitted bit from the received bit.

Example 0.2. Given a Binary Erasure Channel with probability matrix

$$P = \left(\begin{array}{cc} 1 - p & 0\\ p & p\\ 0 & 1 - p \end{array}\right)$$

Find the capacity of the channel.

Solution: We can represent the BEC as follows:

We choose an input distribution $\Pr(X=0)=\alpha$ and $\Pr(X=1)=1-\alpha$. As before we have to compute H(Y)-H(Y|X).

$$H(Y|X) = \sum_{x \in \{0,1\}} \Pr(X = x) H(Y|X = x)$$

= $\Pr(X = 0) \cdot H(Y|X = 0) + \Pr(X = 1) \cdot H(Y|X = 1)$

Now we have that

$$\begin{split} H(Y|X=0) &= - \big[\Pr(Y=0|X=0) \log_2(\Pr(Y=0|X=0)) + \\ &\Pr(Y=\epsilon|X=0) \log_2(\Pr(Y=\epsilon|X=0)) + \\ &\Pr(Y=1|X=0) \log_2(\Pr(Y=1|X=0)) \big] \\ &= - \big[(1-p) \cdot \log_2(1-p) + p \log_2 p \big] = H(p) \end{split}$$

and in the same way H(Y|X=1)=H(p). So $H(Y|X)=\alpha H(p)+(1-\alpha)H(p)=H(p)$. Then $C=\max_{\alpha}(H(Y)-H(Y|X))=\max_{\alpha}(H(Y)-H(p))$. We know that $H(Y)\leq \log_2 3$ (because in general $H(Y)\leq \log_2 m$ and in this case m=3), but we cannot achieve this by any choice of the input distribution. So we have to work a bit harder, and compute H(Y).

•
$$\Pr(Y=0) = \Pr(X=0) \Pr(Y=0|X=0) + \Pr(X=1) \Pr(Y=0|X=1) = (1-\alpha)(1-p) + 0 = (1-\alpha)(1-p)$$
.

•
$$\Pr(Y = \epsilon) = \Pr(X = 0) \Pr(Y = \epsilon | X = 0) + \Pr(X = 1) \Pr(Y = \epsilon | X = 1) = p$$

•
$$\Pr(Y=1) = \Pr(X=0) \Pr(Y=1|X=0) + \Pr(X=1) \Pr(Y=1|X=1) = 0 + \alpha(1-p) = (\alpha)(1-p).$$

Then using these values to compute H(Y), we get

$$H(Y) = H(p) + (1 - p)H(\alpha)$$

and

$$C = \max_{\alpha} H(p) + (1-p)H(\alpha) - H(p) = \max_{\alpha} (1-p)H(\alpha).$$

The max of $H(\alpha)$ is reached for $\alpha = 1/2$ and H(1/2) = 1, so C = 1 - p.