TESTUL nr. 1

							-				F	
1. Să se afle	valoarca	numerică	3	expresici	E	=	V 2	+ 15	+	₹2	- √5	

a) /:

b) $\sqrt{2}$; c) $\frac{1}{2}$; d) $\sqrt{2}$; e) 2;

1) 3.

2. Dacă $z_1, z_2 \in C$ sunt rădăcinile ecuației $z^2 - iz + 2i = 0$, să se afle ecuația care admite rădăcinile z₁2 și z₂2:

a) $u^2 - 4iu + 4 = 0$; b) $u^2 - 2iu + 4 = 0$; c) $u^2 - (4i + 1)u - 4 = 0$;

d) $u^2 + (4i+1)u - 4 = 0$; e) $u^2 + 2u - i = 0$; f) $u^2 + 4iu + 6 = 0$.

3. Să se afle valoarea numerică a sumei $S = C_n^0 - C_n^1 + C_n^2 - ... + (-1)^n C_n^n$:

a) 2^n ; b) $2^n - 1$; c) 0; d) $2^n + 1$; e) 1; f) 2n.

4. Sā se rezolve in cuația $\log_{x}(x-1) > 1$:

a) $x \in (1,4)$; b) $x \in (1,e)$;

c) $x \in (1, 2)$;

d) $x \in \left(1, \frac{3}{2}\right)$; c) nu are soluție;

 $0 x \in (1, 2e).$

5. Câți termeni raționali conține dezvoltarea binomului $(\sqrt{x} + \sqrt[4]{x^3})^{10}$?

a) 3 termeni;

b) 12 termeni;

c) 2 termeni:

d) nici un termen nu este rațional;

e) un singur termen;

1) 6 termeni.

6. Să se determine polinomul P∈R[X] de grad doi pentru care $P(1)+P(X)+P(X^{2})=(1+X+X^{2})P(X)$ si P(-1)=2:

a) $X^2 + X + 1$:

d) X2 - X:

b) $X^2 + 1$; c) $1 - X^2$; e) $X^2 - X + 2$; f) $X^2 - 4$.

7. Sã dã matricea $A = \begin{pmatrix} \alpha & \beta \\ 1 & 0 \end{pmatrix}$. Sã se determine $\alpha, \beta \in \mathbb{R}$, astfel ca

 $(A-1)^2=0$:

a) $\alpha = 1$, $\beta = 1$;

b) $\alpha = -1$, $\beta = 1$; c) $\alpha = 1$, $\beta = -1$;

d) $\alpha = 2, \beta = -1;$

c) $\alpha = 0$, $\beta = 1$; f) $\alpha = -1$, $\beta = -1$.

8. Aflați valoarea determinantului $\begin{vmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{vmatrix}$:

a) $x_1^2 + x_2^2 + x_1^2$;

b) $(x_3 - x_1)(x_3 - x_1)(x_3 - x_2)$;

c) $(x_1 - x_1)(x_1 + x_2 + x_3)$;

d) $x_1 + x_2 + x_3$;

e) $x_1x_2 + x_1x_3 + x_2x_3$;

f) $(x_2-x_1)(x_1-x_1)(x_1-x_2)$.

9. Pentru ca $f: G \rightarrow H$ să fie un izomorfism între două grupuri (G, \bullet) și (H, \cdot) ce condiții trebuie să îndeplinescă f?

a) / să fie bijectivă;

b) / surjectivă;

c) f injectivă;

d) $f(x \circ y) = f(x) \cdot f(y)$ şi f injectivä;

e) $f(x \circ y) = f(x) \cdot f(y)$ si f surjectivă;

f) $f(x * y) = f(x) \cdot f(y)$ şi f bijectivă.

10. Care este limita șirului $(x_n)_{n\in\mathbb{N}}$ cu $x_n = \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + ... + \frac{1}{(n-1)n}$:

a) 1; b) $\frac{1}{2}$; c) $\frac{1}{2^2}$; d) $\frac{1}{3}$; e) $\frac{2}{3}$; f) $\frac{3}{4}$.

11. Să se afle $\lim_{z\to 1} \frac{a^{z-z}-1}{\sin(z-1)}, a>0$:

a) 1:

b) $\ln a$; c) e; d) -1:

e) a:

12. Derivata de ordin "n" a funcției $f(x) = \sin x$ este:

a) $\sin(x + n\pi)$;

b) $(-1)^n \sin x$; c) $(-1)^n \cos x$:

d)
$$(-1)^n \sin\left(x + \frac{\pi}{n}\right)$$
; e) $\sin\left(x + \frac{n\pi}{2}\right)$; f) $\cos(x + n\pi)$.

13. Pentru ce valori ale lui $\alpha \in \mathbb{R}$ funcția $f(x) = \begin{cases} 3, x \le 1 \\ 2x + \alpha, x > 1 \end{cases}$ admite primitive?

a)
$$\alpha = 2$$
; b) $\alpha = 1$; c) $\alpha = 0$; d) $\alpha = -1$; e) $\alpha = \frac{1}{2}$;

f) nu admite primitive pentru nici o valoare a lui $\alpha \in \mathbb{R}$.

14. Care dintre următoarele proprietăți este satisfăcută în mod obligatoriu de funcțiile continue $f:(a,b)\subset\mathbb{R}\to\mathbb{R}$?

a) f este derivabilă; b) f este injectivă; c) f este mărginită;

d) f este surjectivă și injectivă; e) f are proprietatea Darboux;

f) / işi atinge marginile.

si

15. Sã se determine $f([0, \infty))$ pentru $f(x) = xe^{-x}$:

a)
$$[0,1]$$
; b) $\left[0,\frac{1}{e}\right]$; c) $[0,e]$; d) $\left[1,\frac{1}{e}\right]$; e) $[0,\infty)$; f) $[0,1)$.

16. Să se afle $\lim_{n\to\infty} \left(\frac{\ln(n+1)}{\ln n} \right)^n$:

a) 0; b)
$$\infty$$
; c) 1; d) 2; e) -1; f) e.

17. Să se determine valoarea integralei $\int_{0}^{1} x - \frac{1}{3} dx$:

a)
$$\frac{2}{3}$$
; b) $\frac{5}{18}$; c) $\frac{5}{3}$; d) $\frac{1}{18}$; e) $\frac{1}{6}$; f) $\frac{6}{5}$.

18. Folosind integrala definită să se calculeze $\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{n+n} \right)$:

a)
$$\ln 2$$
; b) e; c) $\frac{\pi}{2}$; d) $\frac{\pi}{4}$; e) 2π ; f) $\frac{2\pi}{3}$.