US Housing Market Prediction

BIG DATA - HANDS ON PROJECT USUC ALEXANDRU

Introduction

- ☐ The housing market plays a crucial role in the US economy, affecting everything from personal wealth to national financial stability
- ☐ Predicting housing prices is a challenge due to the vast amount of data and the complex factors involved, such as location, economy, demographics and market trends.

Objectives

The objectives for this project are:

- Analyze the large dataset with millions of records and over 3GB of real estate data
- Preprocess the data
- Generate helpful diagrams which will help us understand the dataset better
- Choose the relevant features for the training process

Dataset

- The current dataset contains information from year 2012 until 2024, having features such as:
 - period of time
 - region
 - state code
 - property type
 - median sale price
 - median list price
 - median days on the market
 - medina price per square foot
 - pending sales
 - homes sold, etc...
- Out of all 58 features that this dataset has, I chose just the relevant columns which will help the model predict the median sale price better.

region $ abla$	city ₹	state ♡ ÷	state_code ♂ ÷	property_type ♥ ÷
Chicago, IL	Chicago	Illinois	IL	Multi-Family (2-4 Unit)
Parsippany, NJ	Parsippany	New Jersey	NJ	All Residential
Oakbrook, KY	Oakbrook	Kentucky	кү	All Residential
Dunstable, MA	Dunstable	Massachusetts	MA	All Residential
Kalamazoo, MI	Kalamazoo	Michigan	MI	All Residential
Tysons, VA	Tysons	Virginia	VA	Condo/Co-op
Myrtle Creek, OR	Myrtle Creek	Oregon	OR	Single Family Residential
Valencia West, AZ	Valencia West	Arizona	AZ	Single Family Residential
Erda, UT	Erda	Utah	UT	All Residential

homes_sold √ ÷	homes_sold_mom
284.0	-0.2303523035230352
14.0	0.75
17.0	0.1333333333333333
6.0	0.0
42.0	-0.4473684210526315
11.0	-0.3529411764705882
5.0	1.5
25.0	0.3157894736842106
3.0	-0.25

median_sale_price ▽ ÷	median_sale_price_mom ♡ ÷	median_sale_price_yoy ♡ ÷	median_list_price ▽ ÷
259500.0	0.0176470588235293	0.1662921348314607	285000.0
485000.0	-0.0673076923076922	-0.0351801179467439	477500.0
265000.0	-0.0363636363636363	0.4887640449438202	260000.0
522500.0	0.1578947368421053	-0.0141509433962264	529900.0
187500.0	0.2798634812286688	0.25	179900.0
325000.0	0.0483870967741935	0.0420006412311637	439450.0
308000.0	0.3508771929824561	0.4322250639386189	209500.0
159000.0	-0.1740259740259739	0.0192307692307691	163386.0
630000.0	0.0637220139803464	-0.0631970260223048	699900.0

median_dom ∇ ÷	median_dom_mom $ abla$ \Rightarrow
42.0	6.0
33.0	3.0
5.0	2.0
50.0	41.0
22.0	-1.0
23.0	-64.0
18.0	6.0
72.0	-55.0
163.0	37.0

Tools

Tools used during the implementation of this project:

- Libraries
 - numpy
 - pandas
 - matplotlib
 - seaborn
 - sklearn
- Development environments
 - Pycharm
 - Jupyter notebook
 - Google colab

Implementation

The implementation process consists of multiple steps:

- 1. Analyze the dataset
- 2. Cleansing
- 3. Add new relevant columns
- 4. Normalize the data
- 5. Generate helpful diagrams
- 6. Choose the most relevant columns for the training process
- 7. Train the model

1. Analyze the data

2. Cleansing

drop records with null features

```
import numpy as np
   import pandas as pd
   np.random.seed(0)
   file_path = "dataset/us_city_market_tracker.csv"
   us_ds = pd.read_csv(file_path, sep='\t')
1 us_ds = us_ds.dropna()
```

median_sale_price	₹ \$	median_sale_price_mom	了	
	35000		<nul< td=""><td>.l></td></nul<>	.l>
	123145	0.2198613174	83903	803
	37478	-0.6561651376	14678	887
	142000		<nul< td=""><td>.1></td></nul<>	.1>
	166945		<nul< td=""><td>l></td></nul<>	l>
	121500	0.5947497949	13863	82
	949000	-0.6604651162	79069	79
	<null></null>		<nul< td=""><td>.1></td></nul<>	.1>
	475000	-0.008350730688	93532	261
	177500	-0.4435736677	11598	378
	119900		<nul< td=""><td>.1></td></nul<>	.1>

3. Add new relevant columns

```
us_ds['sale_to_list_ratio'] = us_ds['median_sale_price'] / us_ds['median_list_price']
us_ds['year'] = us_ds['period_begin'].dt.year
us_ds['month'] = us_ds['period_begin'].dt.month
us_ds['sales_to_new_listings_ratio'] = us_ds['homes_sold'] / us_ds['new_listings']
us_ds['price_increased_mom'] = (us_ds['median_sale_price_mom'] > 0).astype(int)
us_ds['price_increased_yoy'] = (us_ds['median_sale_price_yoy'] > 0).astype(int)
us_ds['inventory_turnover'] = us_ds['homes_sold'] / us_ds['inventory']
us_ds['sale_to_list_ppsf_ratio'] = us_ds['median_ppsf'] / us_ds['median_list_ppsf']
us_ds['supply_demand_balance'] = us_ds['new_listings'] - us_ds['pending_sales']
us_ds['fast_selling'] = (us_ds['median_dom'] <= 30).astype(int)
[7]</pre>
```

price_increased_yoy $ abla$		inventory_turnover ♡ ÷	sale_to_list_ppsf_ratio → •	supply_demand_balance ▽ ÷	fast_selling √ ÷
	1	0.21580547112462006	0.517396987426864	55.0	0
	0	0.7	0.9756112590691002	3.0	0
	1	1.7	0.9250675723341937	3.0	1
	0	0.4	1.1586413839521625	0.0	0
	1	0.4158415841584158	0.9964415983172793	-8.0	1
	1	0.12359550561797752	1.0343775541330438	16.0	1
	1	0.45454545454545453	0.9206754735792623	1.0	1
	1	0.26881720430107525	0.9594333074000767	-8.0	0
	0	0.17647058823529413	0.9560499441946902	2.0	Θ
	1	0.4308300395256917	0.9447901798458463	-3.0	1
	1	3.8	0.9025138623310607	-2.0	1
	1	0.5818181818181818	0.934585179102058	10.0	θ
	0	0.3	0.8344535203403132	0.0	1

4. Identify the outliers and replace them with moving average (MA)

```
exclude_columns = ['period_duration', 'region_type_id', 'table_id', 'property_type_id',
    numeric_columns = us_ds.select_dtypes(include=['number']).columns
    if exclude_columns:
        columns_for_outliers = [col for col in numeric_columns if col not in exclude_columns]
        columns_for_outliers = numeric_columns
16 z_scores = us_ds[columns_for_outliers].apply(zscore)
19 threshold = 5
22 outliers = (z_scores.abs() > threshold)
```

```
for col in columns_for_outliers:
    # Calculate EMA for the column
    # ema = us_ds_ca_copy[col].ewm(span=10, adjust=False).mean()

# calculate MA - moving average
ma = us_ds_copy[col].rolling(window=2, center=True).mean()

# Replace outliers with EMA
# us_ds_ca_copy.loc[outliers[col], col] = ema[outliers[col]]
us_ds_copy.loc[outliers[col], col] = ma[outliers[col]]
```

5. Normalize the data

```
def preprocess_entire_dataset(us_ds, mean, std):
    exclude_columns = ['period_duration', 'region_type_id', 'table_id', 'property_type_id',
    'parent_metro_region_metro_code', 'year', 'month', 'price_increased_mom',
    'price_increased_yoy', 'fast_selling']

numeric_columns = us_ds.select_dtypes(include=['number']).columns

if exclude_columns:
    columns_to_normalize = [col for col in numeric_columns if col not in exclude_columns]
else:
    columns_to_normalize = numeric_columns

# normalize
print("Start normalizing...")
print("In preprocess entire...")
us_ds_normalized = us_ds.copy()
us_ds_normalized[columns_to_normalize] = normalize(us_ds[columns_to_normalize], mean, std)
```

```
def normalize(us_ds, mean=None, std=None):
    print("In normalize function...")
    us_ds_normalized = us_ds.copy()

# Normalize only the selected numeric columns
us_ds_normalized = (us_ds_normalized - mean) / std

# us_ds_normalized = (us_ds - mean) / std
return us_ds_normalized
```

6. Generate diagrams

7. Encoding string columns

8. Select the most relevant columns

```
columns_for_model = [
    'state_code_0', 'state_code_1', 'state_code_2', 'state_code_3', 'state_code_4', 'state_code_5', 'property_type_0',
    'property_type_1', 'property_type_2', 'median_sale_price', 'median_dom', 'price_drops', 'inventory_turnover',
    'price_increased_mom', 'median_sale_price_mom', 'median_list_price', 'median_ppsf', 'median_list_ppsf',
    'avg_sale_to_list', 'sold_above_list', 'sale_to_list_ratio', 'sin_year', 'cos_year', 'sin_month', 'cos_month'
]
us_ds_for_model = us_ds[columns_for_model]
```

9. Model Training

```
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPRegressor
from sklearn.metrics import mean_squared_error
[10]

y = us_ds['median_sale_price']

X = us_ds.drop(columns=['median_sale_price'])

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
[11]

mlp_model = MLPRegressor(hidden_layer_sizes=(64, 32), max_iter=200, random_state=42)
mlp_model.fit(X_train, y_train)
mlp_predictions = mlp_model.predict(X_test)
mlp_mse = mean_squared_error(y_test, mlp_predictions)
print(f"MLP Mean Squared Error: {mlp_mse}")
[13]

MLP Mean Squared Error: 0.012069494427731918
```

```
from sklearn.metrics import mean_absolute_error

mae = mean_absolute_error(y_test, mlp_predictions)
print(f"MAE: {mae}")
[41]

MAE: 0.022050769570323953
```

```
from sklearn.metrics import r2_score

r2 = r2_score(y_test, mlp_predictions)
print(f"R2: {r2}")
[42]

R2: 0.9875581700356271
```


16/17

Bibliography

- https://contrib.scikit-learn.org/category_encoders/
- https://developer.nvidia.com/blog/three-approaches-to-encoding-time-information-as-features-for-ml-models/
- https://www.datacamp.com/tutorial/multilayer-perceptrons-in-machine-learning
- https://towardsdatascience.com/multilayer-perceptron-explained-a-visual-guide-with-mini-2d-dataset-
 - <u>0ae8100c5d1c#:~:text=A%20Multilayer%20Perceptron%20%28MLP%29%20is%20a%20type%2</u> <u>0of,connects%20to%20all%20nodes%20in%20the%20next%20layer.</u>
- https://pythongeeks.org/data-preprocessing-in-machine-learning/

Thank you!