자율주행 및 C-ITS

- 지능형교통체계(ITS) 개요 -

수업 개요

- □ 수업 내용
 - □ 지능형교통체계(Intelligent Transport Systems, ITS) 개요 및 발전 과정
 - □ ITS 시스템 구성 및 적용 예시
 - □ ITS 관련 법령 및 계획
 - □ ITS 서비스 분야 및 구분
- □ 수업목적
 - □ ITS의 개념과 ITS 서비스 및 시스템에 대하여 이해하고자 함

ITS 개요 및 발전 과정

ITS 개요 ITS 발전 과정 ITS 효과

- □ ITS 정의
 - □ "국가통합교통체계효율화법" 제2조(정의)
 - "지능형교통체계"란 교통수단 및 교통시설에 대하여 전자・제어 및 통신등 첨단교통기술과 교통정보를 개발・활용함으로써 교통체계의 운영 및 관리를 과학화・자동화하고, 교통의 효율성과 안전성을 향상시키는 교통체계를 말함
 - □ 미국 교통부 ITS JPO (Joint Program Office)
 - ITS는 사람과 화물의 이동과 관계된 정보의 수집, 저장, 처리 및 배분하는 것으로, 이에는 교통관리, 대중교통관리, 긴급관리, 여행자 정보, 첨단차량 제어 및 안전, 첨단화물운송, 전자지불 및 철도 건널목 안전을 위한 시스템 등이 포함됨

- □ ITS 정의 (계속)
 - □ ITS는 중요한 교통의 한 분야로서 교통문제를 해결하기 위하여 대량의 교통 정보 수집, 교통정보 가공, 교통정보 제공 및 이용을 집중적으로 다루는 분야
 - □ ITS의 사전적 의미
 - 지능형교통체계(Intelligent Transport Systems, ITS)란 전통적인 교통수단과 교통시설에 첨단 교통기술을 적용하고, 교통에 관한 정보를 효율적으로 관리하여 교통체계의 운영과 관리를 과학화하고 자동화함으로써 교통의 효율성과 안정성을 향상시키는 교통체계

🗖 ITS 개념도

주: RSE = 노변장치 또는 노변기지국(Road-Side Equipment), OBE = 차내단말기(On-Board Equipment) VMS = 가변정보판(Variable Message Sign), CNS = 개인단말기 (Car Navigation System)

□ 참고자료: 차량 검지기

수집체계	분류	검지기 종류	
지점	매설형검지기	• 루프(8각, 32각, 원형), 지자기(능동형과 수동형), 압전	
검지	비매설형검지기	• 튜브, 전기접촉, 광전자, 초음파, 극초단파, 적외선, 영상, 음향	
구간	차량+노변장치	• 위성기반 위치시스템, 노변통신방식, 휴대폰 활용기술	
검지	노변장치	• AVI, AVL, ETC	

출처: https://transpro.tistory.com/

출처: http://www.ezled.co.kr/

- □ 참고자료: 차량 검지기
 - 지자기 검지기

출처: 교통업계의 쉐프, 무선차량검지기 시공., 2018. 7 .13

- □ 참고자료: 차량 검지기
 - □ 영상 검지기

출처: https://transpro.tistory.com/

출처: PulkitS, A Practical Guide to Object Detection using the Popular YOLO Framework, December 6, 2018

- □ 용어 변천사
 - Intelligent Vehicle and Highway System (IVHS)
 - 1990년대부터 사용되던 이름
 - Intelligent Transportation Systems
 - 미국을 중심으로 사용되던 이름
 - Advanced Transport Telematics
 - 유럽에서 초창기에 사용되던 이름
 - Telematics는 Telecommunication과 Informatics의 합성어임
 - Intelligent Transport Systems (ITS)
 - 전세계적으로 표준화된 용어
 - 국내에서는 지능형교통체계 또는 첨단교통체계라고 불림

- □ ITS 추진 배경
 - 지속적 경제개발에 따른 승용차 보유대수 증가는 교통인프라 등 도로교통 전반에 큰 부담
 - 교통혼잡, 교통사고, 공기오염, 연료소비, 이동성, 생산성 등
 - □ 기존 해결 대안
 - 교통인프라 건설
 - 기존 교통시설 효율성 증대
 - 교통수요관리 등
 - □ 지속적 도로건설이나 효율성 증대 등 기존 접근방법 한계
 - 정부 시설 투자 규모 증가 예산상 제한적
 - 정보 없이는 효율성 증대 달성 난망 등
 - 새로운 대안으로 첨단기술을 적용하여 교통문제를 해결하기 위한 대안인 ITS 개념 등장
 - 안전성, 효율성, 신뢰성 증대, 사회적 비용의 절감, 관련 산업 활성화

□ ITS 추진 배경 (계속)

출처: ITS국가교통정보센터 홈페이지(https://www.its.go.kr/)

□ 국내 ITS 발전 과정 총괄

추진단계	기반조성	개발 및 사업추진 - 고속국도 ITS 구축 시범사업(1994) - 일반국도/과천 ITS구축 시범사업(1997)	
1단계 (ITS 도입) 1993~1998	■ 청와대 SOC 기획단 ITS 도입검토(1993) ■ 제5회 ITS 세계대회 서울 개최(1998)		
2단계 (제도 및 기반조성) 1999~2004	 교통체계효율화법 제정(1999) 지능형교통체계 기본계획21 수립(2001) 	■ 첨단교통모델도시 구축사업(2003) ■ 서울시 도시고속국도 ITS 구축(2004)	
3단계 (성장 및 확산) 2005~2012	 국가통합교통체계효율화법 전부개정(2009) 지능형교통체계 기본계획 2020 수립(2011) 자동차 도로교통분야 ITS 계획 2020수립(2012) 	 사당수원축 광역BIS 시범사업(2005) 5개 국토지방관리청 ITS 센터구축(2006) 전국 고속도로 하이패스 개통(2007) 제17회 ITS 세계대회 부산 개최(2010) 54개 교통정보센터(BIS정보센터 포함) 구축 운영(2012) 	
4단계 (ITS 변화기) 2013~현재	 차세대 ITS(C-ITS) 기본계획 수립(2013년) 교통정보 무상제공(Open-API) 실시(2013년) 민관 교통정보 공유체계 마련(2014) 	■ 스마트하이웨이 사업(2014) ■ 차세대 ITS 시범사업 진행 중(2016 현재)	

출처: 한국지능형교통체계협회(2017)

- □ ITS 초기 개념
 - □ 첨단 기술(컴퓨터, 통신, 인공지능, S/W, 센서 등)의 등장 및 보급
 - 전통적인 도로 시설(차량, 수송로, 수송대상)에 시스템 개념을 부여
 - □ 시스템 구성요소 간의 상호작용을 통하여 공동 목표(안전성, 효율성 등) 추구
- □ 1960년대 이후
 - 차량과 도로시스템의 통합을 통한 서비스 능력 극대화 연구 및 시스템 구축 활발
 - □ 따라서 도로와 차량을 하나의 시스템으로 통합
 - 통신시스템을 통하여 상호 정보교환 함으로써 교통네트워크 및 시스템의 효율성과 안전성 증대 도모

- □ 1970년대 : ITS 발전 1단계 (초기 연구)
 - □ 부분적인 ITS개념 / 기술 탐색, 개발 및 평가진행
 - 미국 ERGS(Electronic Route Guidance System) (1960년대 말)
 - 독일 Ali-Scout (1970년대 후반)
 - 일본 CACS(Comprehensive Automobile Traffic Control System) (1973-1978)
 - 통합시스템에서 요구하는 신기술의 일부 선택적 기능을 보여주는 수준

- □ 1980년대 중반~90년대 초반 : ITS 발전 2단계 (부문별 기술 개발)
 - □ ITS가 국가 차원의 정책대안으로 등장
 - 유럽, 일본은 1980년대 중반, 미국은 1980년대 말부터 기술개발, 운영실험, 관련 활동이 활발히 전개됨
 - European Union: Dedicated Road Infrastructure for Vehicle Safety in Europe (DRIVE), Program for a European Traffic System with Higher Efficiency and Unprecedented Safety (PROMETHEUS)
 - 일본 : Road/Automobile Communication System (RACS)
 - 미국: Intelligent Vehicle-Highway Systems (IVHS), Advanced driver assistance systems (ADAS)
 - □ 미국: 1990년대 들어 ITS America(1990) 창립, ITS 전략 계획 수립(1992), 국가 ITS 아키텍처 개발 (1993-1996), ITS 표준 개발(1996년 부터) 등
 - Top-down(하향방식) 접근
 - □ 한국: 첨단 교통신호시스템(1991-1993), 고속도로교통관리 시스템(1992-1995), 전자도로지도(1992~) 개발, 국가 ITS 기본계획 연구(1994-1996) 등
 - Bottom-up(상향방식)과 Top-down 병행

- □ 90년대 중반~2000년대 : ITS 발전과정 3단계 (통합 및 국제표준화)
 - □ 일본, 유럽은 미국 추진방식(Top-down) 벤치마킹, ITS 통합을 위한 아키텍처 개발, 기술개발 지속 및 시스템 구축 단계적 착수
 - □ ITS국제표준화 위원회인 ISO/TC204 Intelligent Transport Systems 발족(1992)으로 선진국들의 국제표준화 활동 활성화
 - WTO 체제하의 TBT 협정(Agreement on Technical Barrier to Trade) 발효(1995)로 ITS 국제표준의 중요성 부각
 - □ 유럽, 미국은 ITS 표준 개발 본격화
 - 유럽은 CEN/TC278(1991), 미국은 5개 SDO(Standards Development Organization)에서 표준 개발(1996-2000)
 - □ ITS세계대회(World Congress on ITS) 창설(1994) : 국가간 ITS 정책, 기술, 경험 공유 및 ITS 도입 촉진
 - 한국은 국가 ITS 기본계획 수립(1997, 2000), 교통체계효율화법 제정(1999), 기술개발 및 ITS 시범사업(과천시 ITS 등) 착수

- □ 2000년대 이후 : ITS 발전과정 4단계 (ITS 사업 확산 및 C-ITS 개념 등장)
 - □ 미국, 유럽 등은 2000년을 전후해서 본격적인 ITS시스템 구축 및 서비스 제공
 - 일본 : VICS, ETCS 등 전국서비스 제공, 'Smart Way' 기술 개발 등 추진
 - 미국: 511 NTIS 전국 서비스, 단거리전용통신 기술(WAVE) 개발 및 이에 기반한 차세대 자동차·도로 통합시스템(VII, Intelli– Drive, Connected Vehicle) 개발 추진
 - 유럽 : FM교통방송(RDS/TMC) 유럽전역 확산, 2006년부터 차세대 자동차· 도로 통합시스템 기술개발(CVIS, SAFESPOT, COOPERS 등) 및 C-ITS (Cooperative-ITS)의 국제 표준화 추진
 - □ 우리나라 동향
 - FTMS, 첨단신호, 하이패스, 버스카드, 버스정보시스템, UTIS, 교통정보 및 내비게이션 서비스 확산
 - 2007년부터 차세대 ITS 기술개발 추진(u-교통, Smart Highway 등)
 - 2014년 Smart Highway 시범사업(서울-수원간 고속도로)

ITS 효과

🗖 ITS 효과

- □ 예상편익 항목
 - 여행자 : 안전증대, 양질의 정보, 편리성 증대, 여행시간 단축 및 비용절감
 - 네트워크 / 상용차량 운영자 : 효율적 운영 및 서비스 제공, 운영비 절감
 - 정부기관 : 지속 가능한 교통체계 확보, 예산절감
 - 기타: 환경보호,에너지절감,생산성증대로사회비용저감 및국가경쟁력제고

□ 기대효과

- ITS 적용시 예상되는 기대효과
 - 교통사고 감소, 교통혼잡 감소, 운영비 절감, 공기오염 감소 면에서 20~30% 개선효과 보고됨
- "ITS+도로구축"대안은대도시에서 "도로구축"대안대비 35%비용절감효과
- ITS 사업 편익/비용(Benefit/Cost, B/C) 분석 결과
 - 2 8범위 (높은 값은 도시부 경우)

ITS 효과

- □ ITS 효과 (계속)
 - ITS Benefit

1TS 구성 및 적용 예시

- 고속도로 교통관리 시스템 (Freeway Traffic Management System, FTMS)
 - 시스템 개요

<출처: ITS 국제협력센터(https://intl.its.go.kr/korea/systemFtms)>

□ 정보 수집:검지체계

불특정 차량의 존재여부만을 검지하는 수준

개별차량의 속성을 식별하는 수준으로 발전

□ 정보 가공 : 노드링크

Level	구성내용	설 명
1	기본 노드/링크 (Node/Link)	∘ 노드 : 모든 결절점 및 필요시 더미노드 ∘ 링크 : 노드와 노드 사이의 최하위 구간
	표준 링크[SL](Standard Link)	∘ 정보연계를 위한 구간(기본 링크와 매칭)
2	운영자관리구간[OMS] (Operator Management Section)	∘ 검지기 1~2개 정도 간격(약 1~2km)의 구간 (동일 교통특성, 기본 링크의 집합)
3	정보제공구간[IPS] (Information Provide Section)	∘ VMS 설치위치로부터 주요 지점까지로 구성 (기본 링크의 집합)
4	우회구간[AR] (Alternate Route)	∘ VMS 설치위치로부터 우회가능 지점까지로 구성 (기본 링크의 집합)

□ 정보 가공 : 노드링크

VMS 설치지점 다음 노드가 IPS 시점

□ 정보 가공

주: AVI = 자동차량인식장치 (Automatic Vehicle Identification), VDS = 차량검지기 (Vehicle Detection System)
DSRC = 단거리전용통신 (Dedicated Short-Range Communication)

□ 정보제공

<출처: 이 시각 교통상황, YTN, 2021. 3. 13>

<출처: 한국도로공사>

<출처: 김기훈,고속도로교통정보앱콘텐츠강화,연합뉴스,2021.4.20>

ITS 적용 예시

- □ 국내 ITS 적용 예시
 - 교통관리 서비스: 도로의 정체 및 사고 관련 정보를 수집하여 소통 및 안전 관리 등에 활용하고 국민에게 교통정보 제공

ITS 적용 예시

- □ 국내 ITS 적용 예시 (계속)
 - 교통관리 서비스: CCTV 등을 통해 돌발 상황을 실시간으로 파악하여 교통 소통을 개선하고, 실시간 교통상황, 소요시간 등을 제공하여 빠른 길로 안내

ITS 적용 예시

- □ 국내 ITS 적용 예시 (계속)
 - □ 교통관리 서비스: 버스 전용 차로 위반행위, 불법 주정차, 속도위반 등을 자동 단속시스템을 설치하여 불법으로 인한 교통사고를 방지

31 ITS 관련 법령 및 계획

ITS 관련 법령

출처: 한국지능형교통체계협회(2017)

□ 국내 ITS 관련 법령 체계

규분	법령	비고	제개정일
100	국가통합교통체계효율화법	법률 제13431호	'15.7.24. 일부개정
	국가통합교통체계효율화법 시행령	대통령령 제26927호	'16.1.22. 일부개정
	국가통합교통체계효율화법 시행규칙	국토교통부령 제281호	16.1.25. 일부개정
	대중교통의 육성 및 이용촉진에 관한 법률	법률 제13682호	'15.12.29. 일부개정
	자동차도로교통 분야 ITS 사업시행지침	국토교통부 고시 제2015-739호	'15.10.7. 제정
	자동차도로교통 분야 ITS 성능평가기준	국토교통부 고시 제2016-759호	'16.11.15. 제정
	지능형교통체계 표준화 및 인증 업무 규정	국토교통부 고시 제2016-67호	'16.2.17. 일부개정
	지능형교통체계 표준 노드링크 구축기준	국토교통부 고시 제2015-756호	'15.10.16. 일부개정
	지능형교통체계 표준 노드링크 구축 및 관리지침	국토교통부 고시 제2015-755호	'15.10.22. 전부개정
행경	버스정보시스템의 기반정보 구축 및 관리 요령	국토교통부 고시 제2013-252호	'13.4.11. 일부개정
급칙	기본교통정보 교환 기술기준	국토교통부 고시 제2016-206호	'16.4.15. 일부개정
	기본교통정보 교환 기술기준	국토교통부 고시 제2016-207호	'16.4.15. 일부개정
	기본교통정보 교환 기술기준 IV	국토교통부 고시 제2016-208호	'16.4.15. 일부개정
	대중교통(버스) 정보교환 기술기준	국토교통부 고시 제2016-186호	'16.4.7. 일부개정
	근거리 전용통신(DSRC)를 이용한 자동요금징수시스템(ETCS)의 정보교환 기술기준	국토교통부 고시 제2013-251호	'13.5.16 일부개정
	지능형교통체계 구축사업 지원 및 관리에 관한 규칙	경찰청 예규 제510호	'16.3.28. 일부개정

- □ ITS 관련 계획
 - □ "자동차·도로교통 분야 지능형교통체계(ITS)계획 2020" (국토해양부, 2012)
 - 자동차·도로 ITS의 개념

- □ ITS 관련 계획 (계속)
 - □ "자동차·도로교통 분야 지능형교통체계(ITS)계획 2020" (국토해양부, 2012)
 - 자동차·도로 ITS의 추진방향

지속가능한 지능형교통체계의 성장과 성숙으로 전 생활형 스마트 도로교통 구현

정 책 목 표

- 실시간 모니터링체계로 교통사고 없는 안전한 도로교통
- 모든 이용자가 쉽게 이용할 수 있는 편리한 도로교통
- 여행자순응 교통정보체계로 정시성 높은 고효율 도로교통
- 환경 친화적 녹색교통 운영 및 지원 기능의 도로교통

		교통관리	• 안전하고 지속가능한 녹색교통관리체계 구축
추 진 계 회	,	40 40	• 이용자 맞춤형 대중교통서비스 제공
	=	스 전자지불 분	• 교통수단·시설의 전국호환으로 이용 효율성 극대화
	c	· 교통정보유통	• 교통정보의 실시간 연계 관리 제공 체계 구축
		부가 교통정 보제 공	•여행의 정시성이 보장된 교통정보체계 구축
		네	• 편안하고 안전한 주행을 위한 지능형 차량· 도로 구현
		화물운송	• 신속하고 안전한 화물운송체계 구축 지원

- □ ITS 관련 계획 (계속)
 - "제2차 자동차·도로교통분야 국가 ITS 기본계획 2030" (국토교통부, 2022)
 - 기본계획 2020을 개선하고 ITS 및 교통환경의 변화를 반영할 수 있는,
 구체적이고 실효성 있는 ITS 서비스와 사업을 제시
 - "자동차·도로교통 분야 지능형교통체계(ITS)계획 2020"의 발전 방안 제시
 - 해외에서 정의된 서비스 뿐만 아니라 국내 실정에 맞는 서비스 개발
 - 스마트시티(Smart City), C-ITS, 자율주행 등으로 확대

- □ ITS 관련 계획 (계속)
 - "제2차 자동차·도로교통분야 국

37

□ ITS 관련 계획 (계속)

■ "제2차 자동차·도로교통분이

비전

친환경 첨단 모빌리티 서비스를 지원하는 디지털 도로체계 구현

- DREAMS on ITS -

(Digital Road for Eco-friendly and Advanced, Mobility Service)

표 ① (안전성) 안전 사각지대 Zero화, 실시간 예방·대응 가능한 도로교통환경

② (효율성) 맞춤형 교통서비스 지원, 데이터·AI 융합 지능형 교통관리체계 구현

③ (혁신성) 스스로 상황을 진단, 제어하는 디지털 인프라 혁신

④ (편리성) 언제, 어디서나, 누구에게나 편리한 포용적 모빌리티 서비스 제공

핵심전략

자율차, MaaS 등 구현을 위한 디지털도로망 확충으로 도로서비스 혁신과 국제 기술경쟁력 강화

목표지표

교통사고 약 40% 절감, 교통비용 연간 1.5조원 절감 온실가스 연간 70만톤 절감, 세계 최고 수준 ITS 기술 확보

도로서비스 혁신 안전성 효율성 혁신성 편리성 응업이 작대 ③ AI기반 도로교통정보센터 ⑤ 디지털트위기반 교통관리 ⑦ 아마 맞충 스마트 고도화 가능한 생활만 체계면 체계 구현 멜리티 서비스 제공 ② 도로 위험상황 ④ 디지털 도로인프라 ⑥ 스스로 자기진단 및 ⑧ 형평성·공공성 강화를 쟶 祀·떄 구축을 통한 교통양 위험상황을 예방하는 퇐 첀 않 교통지 체계 마련 꾫뎦의막훽 최적화 제공 국제 기술경쟁력 강화

① 법제도 개선 / ② 표준화 / ③ 국제협력 강화 / ④ 전문인력 양성 / ⑤ 산업진흥

ITS 서비스 개요

🗖 ITS 개요도 예시

출처: 한국지능형교통체계협회

- □ 전통적인 ITS 응용 분야
 - Traveler information (여행자 정보)
 - Pre-trip information
 - On-trip driver information
 - On-trip public transport information
 - Personal information services
 - Route guidance and navigation
 - □ Traffic Management (교통 관리)
 - Transportation planning support
 - Traffic control
 - Incident management
 - Demand management
 - Policing/enforcing traffic regulations
 - Infrastructure maintenance management

- □ 전통적인 ITS 응용 분야 (계속)
 - □ Vehicle (차량)
 - Vision enhancement
 - Automated vehicle operation
 - Longitudinal collision avoidance
 - Lateral collision avoidance
 - Safety readiness
 - Pre-crash restraint deployment
 - Commercial Vehicle (사업용 차량)
 - Commercial vehicle pre-clearance
 - Commercial vehicle administrative processes
 - Automated roadside safety inspection
 - Commercial vehicle on-board safety monitoring
 - Commercial vehicle fleet management
 - Automated Diagnostic Systems

- □ 전통적인 ITS 응용 분야 (계속)
 - Public Transport (대중교통)
 - Public transport management
 - Demand responsive transport management
 - Shared transport management
 - □ Emergency (긴급상황)
 - Emergency notification and personal security
 - Emergency vehicle management
 - Hazardous materials and incident notification
 - Electronic Payment (전자지불)
 - Electronic financial transactions
 - □ Safety (안전)
 - Public travel security
 - Safety enhancement for vulnerable road users
 - Intelligent junctions

□ 7가지 서비스 분C

서비스 분야	정의 및 제공주체	서비스	
교통관리	 도로교통의 이동성, 정시성, 안전성, 지속가능성을 제고하기 위하여, 소통 및 안전과 관련된 정보를 수집하여 도로교통의 운영 및 관리에 이용하고 여행자에게 제공하는 서비스 도로의 관리청(국토교통부, 지방자치단체)과 경찰관서(경찰서, 지방경찰청, 경찰서)가 서비스를 제공 	 교통류제어 돌발상황관리 기본교통정보제공 주의운전구간관리 자동교통단속 교통행정지원 	
대중교통	 대중교통 운행의 정시성과 이용의 편의성을 제고하기 위하여, 대중교통 운행정보를 수집하여 대중교통의 운영 및 관리에 이용하고 여행자에게 제공하는 서비스 대중교통수단의 관할기관과 운영기관(운송사업자)이 서비스를 제공 	 대중교통정보제공 대중교통은행관리 대중교통예약 준대중교통이용지원 	
전자지불	 교통시설 및 수단의 이용요금 자불에 따른 자체, 이용자의 불편, 요금징수 업무의 비효율성 등을 해소하기 위하여 전자화폐로 요금을 징수하고 처리하는 서비스 교통시설 또는 수단의 운영기관과 전자화폐 사업자가 서비스를 제공 	 통행료전자지불 교통시설이용요금전자지불 대중교통요금전자지불 	
교통 정보유통	 지역수단 단위로 수집이용되는 교통정보를 효율적으로 공유활용하기 위하여, 시스템을 연계하고 정보를 취합분석 및 관리배포하여 여행자에게 제공하는 서비스 교통정보를 수집관리하는 기관의 협조를 얻을 수 있도록 중앙정부가 서비스를 제공 	■ 교통정보연계관리 ■ 통합교통정보제공	
부가교통 정보제공	 여행자가 빠르고 편리하게 통행할 수 있도록 교통정보를 제공하거나 정보를 분석하여 여행자의 이동수단 및 경로 선택을 도와주는 서비스 교통정보수집기관, 교통정보연계·관계기관의 협조를 얻어 민간의 교통정보사업자가 서비스를 제공 	■ 통행전여행정보제공 ■ 통행중여행정보제공	
지능형 차량도로	■ 도로교통의 안전성과 이동성, 운전자의 편의성을 제고하기 위하여, 차량 및 도로의 위험요소를 감지하여 운전자에게 알려주거나, 차량을 제어함으 로써 사고 발생을 예방하고, 차량이 자율적으로 도로를 운행하는 서비스 ■ 자동차를 생산, 판매하는 자동차제작사 또는 도로의 관리청이 서비스를 제공	 ● 안전운전치량 ● 안전운행도로 ■ 자율운행 	
화물운송	 화물차량운행의 안전성과 화물운송의 효율성을 제고하기 위하여, 화물차량, 위험물질 운송차량의 정보를 수집하고 화물차량의 운행최적화 및 안전관리에 이용하는 서비스 화물차량 물류시설의 운영기관이 서비스를 제공 	■ 회물차량운행지원 ■ 위험물질운송차량안전관리	

ITS 서브

1.1.

□ 7가지 서비 :

서비스 분야(7)	서비스(23)	단위서비스(48)	
	교통류제어	실시간신호제어 철도건널목연계제어	우선처리신호제어 고속도로교통류제어
	돌발상황관리	돌발상황관리	
	기본교통정보제공	기본교통정보제공	
교통관리	주의운전구간관리	감속구간관리 노면불량구간관리	시계불량구간관리 돌발장애물관리
	자동교통단속	제한속도위반단속 버스전용차로위반단속 제한중량초과단속	교통신호위반단속 불법주정차단속
	교통행정지원	도로시설관리지원 교통수요관리지원	교통공해관리지원
	대중교통정보제공	버스정보제공	
대중교통	대중교통운행관리	버스운행관리	
네공파용	대중교통예약	대중교통예약	
	준대중교통이용지원	준대중교통수단이용지원	
	통행료전자지불	유료도로통행료전자지불	혼잡통행료전자지불
전자지불	교통시설이용요금전자지불	주차요금전자지불	
	대중교통요금전자지불	대중교통요금전자지불	
2.500 - 200 - 200 - 200	교통정보연계관리	교통정보연계관리	
교통정보유통	통합교통정보제공	통합교통정보제공	
	교통자료관리-활용지원	교통행정의사결정지원	
	통행전여행정보제공	통행전여행정보세공	
부가교통정보제공	통행중여행정보제공	운전자여행정보제공 보행자, 자전거 이용자 여행정보제공	대중교통이용자여행정보제공
フルト教をはなってつ	안전운전차량	운전자시계향상 차량안전자동진단 충돌예방 보행자보호	위험운전예방 사고발생자동경보 차로이탈예방
지능형차량·도로	안전운행도로	교차로안전운행지원 주의운전구간안전운행지원	철도건널목안전운행지원
	자율운행	차량간격자동세어 자동주차	자동주행
화물운송	화물차량운행지원	화물차량경로안내	
시킬 근 승	위험물질운송차량안전관리	위험물질운송차량안전관리	

출처: 국가 ITS 아키텍쳐 홈페이지

종합토론

□ ITS가 우리 생활과 교통에 어떤 영향을 미쳤나?

□ 우리 주변에 어떤 ITS 서비스가 있나?

□ 어떤 ITS 서비스를 개발하고 싶나?

참고문헌

- □ 한국지능형교통체계협회 (2017), 자동차·도로부문 지능형교통체계 ITS 산업의 현황과 전망
- □ 국토해양부(2012), 자동차·도로교통 분야 지능형교통체계 계획 2020
- □ 국토교통부(2022), 자동차·도로교통 분야 지능형교통체계 계획 2030
- □ 한국지능형교통체계협회 홈페이지 (http://www.itskorea.kr)
- □ ITS 아키텍쳐 홈페이지 (http://architecture.its.go.kr)
- □ ITS 국가교통정보센터 (http://www.its.go.kr)
- □ ITS 국제협력센터 (https://intl.its.go.kr/korea/architecture)