班级自动化 7 班 学号			
实验日期2024/3/20	预习成绩	总成绩	

实验名称 夫兰克-赫兹实验

一. 实验预习

- 1. 简要叙述波尔的原子能级理论;
- 2. 描述夫兰克-赫兹的实验原理。
- 答:1.1)原积能较长地停留在一些稳定状态(简称定态)。原驻这些状态时,按射或吸收能量。各定态有一定的能量,其数值是彼此分隔的。
 - 3原从一个定态跃迁到另一个定态而发射或吸收辐射时, 辐射的频率是一定的。 hu = Em En 其中 h为普明克索量。
 - 2、实验原理
 - 1)通过具有一定能量的好与原子相容重撞进行能量 交换的方法来使原子从低能级向高能级跃迁。
 - 以设初速度为o的时经以的电场加速,获得能量eU。根据eU。=Ez-E 计算量原子的基态和第一激绘

3、实验时使Uw电压逐渐增加并观察电流比的电流指示 如果原子能从确实存在,且基态和第一激发态之间确有能 最后的运动观察到如下 [4-16] 曲线。

二. 实验现象及原始数据记录

预设参数: $V_{G1K}=2.10V$, $V_{\text{T12}}=2.10V$,拒斥电压 $V_{G2A}=7.30V$ 与 7.80V

	 拒斥电压 7. 30V			₹ 7.80V
组数	$U_{G2K}(V)$ $I_A(nA)$		$U_{G2K}(V)$	I_A (nA)
1	0.5	0	0.5	0
2	1	0	1	0
3	1.5	0	1.5	0
4	2	0	2	0
5	2.5	0	2.5	0
6	3	0	3	0
7	3.5	0	3. 5	0
8	4	0	4	0
9	4.5	0	4.5	0
10	5	0	5	0
11	5.5	0	5. 5	0
12	6	0	6	0
13	6.5	0	6.5	0
14	7	0	7	0
15	7.5	0	7.5	0
16	8	0.3	8	0
17	8.5	2.3	8.5	0.6
18	9	7.7	9	2.2
19	9.5	13.9	9.5	5.8
20	10	23. 5	10	12.9
21	10.5	31.3	10.5	23.3
22	11	37. 5	11	33. 7
23	11.5	42.1	11.5	39.9
24	12	48. 5	12	48.1
25	12.5	53. 2	12.5	54.1
26	13	55.8	13	57.2
27	13.5	59.8	13.5	62.2
28	14	62. 5	14	66.5
29	14.5	64.5	14.5	67.8
30	15	66. 5	15	71. 1
31	15.5	67.8	15. 5	72.8
32	16	67. 5	16	66.2

33	16 . 5	66. 3	16 . 5	61.9
34	17	63. 7	17	56.9
35	17. 5	60. 1	17. 5	55.6
36	18	54. 7	18	52.6
37	18. 5	48. 3	18. 5	48.0
38	19	42. 3	19	43.3
39	19. 5	34.8	19.5	36. 7
40	20	27. 7	20	29.8
41	20.5	21.8	20. 5	23. 2
42	21	18.4	21	18.4
43	21.5	17.8	21.5	14. 1
44	22	24. 4	22	13.0
45	22. 5	35.8	22. 5	18.2
46	23	52.6	23	34. 1
47	23. 5	68. 9	23.5	51.9
48	24	80.4	24	66.9
49	24. 5	92.7	24. 5	82.9
50	25	102.1	25	96.5
51	25. 5	107.5	25. 5	104.6
52	26	112.5	26	111.8
53	26. 5	114.1	26. 5	116.1
54	27	113.2	27	117.1
55	27. 5	109.1	27.5	114.4
56	28	101.4	28	108.0
57	28. 5	92.0	28. 5	99.3
58	29	77.9	29	85.7
59	29.5	62.0	29.5	69.7
60	30	45.7	30	52.5
61	30. 5	32. 5	30. 5	38.7
62	31	20. 1	31	24.2
63	31.5	11.7	31.5	13. 1
64	32	8.9	32	6.9
65	32. 5	14. 3	32. 5	4.9
66	33	38. 2	33	13. 9
67	33. 5	56. 2	33. 5	32. 5
68	34	80. 1	34	58. 5
69	34. 5	101.0	34. 5	82. 1
70	35	114.8	35	99. 8
71	35. 5	129. 3	35. 5	119.8
72	36	141.4	36	135. 9
73	36. 5	148. 7	36. 5	145.5
74	37	154.8	37	154.4
75	37. 5	157. 0	37. 5	154. 4
76	38	155. 6	38	160. 0
77	38. 5	150. 4	38. 5	157. 2
78	39	141.3	39	149. 2
79	39. 5	130. 1	39. 5	138.8
		113. 2		
80 81	40	93. 3	40 40 5	122.5
81 82	40. 5 41		40. 5	102.7
82		71. 7	41	80. 8
83	41. 5	53. 6	41. 5	62
84	42	34. 5	42	41. 3
85 86	42. 5	19. 7	42. 5	23. 7
86	43	13. 3	43	12. 8
87	43. 5	18. 5	43. 5	7.3

88	44	37. 6	44	16. 1
89	44. 5	57. 9	44. 5	34. 0
90	45	83. 7	45	60. 7
91	45. 5	106. 8	45. 5	86. 9
92	46	124.8	46	106.9
93	46. 5	145. 0	46. 5	130.6
94	47	162. 0	47	150.5
95	47. 5	173. 4	47. 5	165.0
96	48	183. 2	48	179.6
97	48. 5	190. 3	48. 5	188.5
98	49	193. 1	49	193.5
99	49. 5	192. 5	49. 5	195.6
100	50	187. 5	50	193.0
101	50.5	178. 1	50.5	185.4
102	51	166. 7	51	175.3
103	51.5	149.6	51.5	159.4
104	52	129. 2	52	139.7
105	52 . 5	110.3	52. 5	120.9
106	53	87. 1	53	97. 1
107	53. 5	64. 9	53. 5	73. 2
108	54	49. 4	54	55. 1
109	54. 5	39. 2	54. 5	38. 4
110	55	43. 5	55	31.7
111	55. 5	56. 5	55. 5	38. 4
112	56	77. 7	56	56. 1
113	56 . 5	100.5	56. 5	77. 9
114	57	119.4	57	97.3
115	57. 5	141.8	57. 5	121.2
116	58	161.4	58	145.4
117	58. 5	176.6	58. 5	163.0
118	59	193.8	59	181.5
119	59. 5	208. 1	59. 5	199.0
120	60	218.6	60	202.3
121	60.5	224. 1	60.5	207.6
122	61	228.6	61	211.1
123	61.5	228.6	61.5	220.0
124	62	225. 3	62	227.6
125	62 . 5	217.5	62. 5	230.5
126	63	205.3	63	229.3
127	63.5	192. 2	63. 5	223.6
128	64	173.3	64	213.3
129	64.5	152. 2	64. 5	201.6
130	65	133.4	65	187.7
131	65.5	112.6	65. 5	166.8
132	66	96. 9	66	147.2
133	66. 5	91.0	66. 5	124.1
134	67	92.6	67	103.3
135	67.5	101.4	67.5	90.6
136	68	113.4	68	84.7
137	68. 5	131.2	68. 5	89. 2
138	69	150.2	69	98.7
139	69.5	166.7	69.5	114.7
140	70	186. 4	70	133.8
141	70.5	205.8	70.5	150.8
142	71	222.7	71	171.7

143	71.5	235.7	71.5	224.8
144	72	249.6	72	241.2
145	72.5	260.6	72. 5	255.4
146	73	267.0	73	265.0
147	73.5	271.7	73. 5	273.0
148	74	272.4	74	276.8
149	74. 5	269.9	74. 5	276.8
150	75	263.3	75	272.9
151	75. 5	253.0	75. 5	264.7
152	76	241.7	76	254.5
153	76. 5	225.5	76. 5	239.1
154	77	208.0	77	221.2
155	77. 5	193.9	77. 5	205.3
156	78	179.7	78	187.0
157	78. 5	170.3	78. 5	172.8
158	79	166.8	79	165.2
159	79. 5	168.0	79. 5	162
160	80	174.7	80	164.9
161	80.5	185. 2	80.5	173.2
162	81	196.3	81	183.1
163	81.5	211.9	81.5	197.6
164	82	228.9	82	214.4
165	82. 5	243.3	82. 5	229.4
166	83	260.9	83	247.9
167	83. 5	277.4	83. 5	265.7
168	84	290.6	84	280.0
169	84. 5	305.0	84. 5	296.4
170	85	317.2	85	310.9
171	85. 5	325.3	85. 5	321.3
172	86	332.7	86	331.4
173	86. 5	336.8	86. 5	338.3
174	87	337.8	87	341.1
175	87. 5	335.8	87. 5	341.4
176	88	330.3	88	337.9
177	88. 5	323. 7	88. 5	332.4
178	89	313.9	89	323.3
179	89. 5	305.5	89. 5	314.4
180	90	302.2	90	310.6

峰值 (V)	U_1	U_2	U_3	U_4	U_5	U_6	U_7
拒斥电压 7.30V	15.5	26.5	37.5	49	61	74	87
拒斥电压 7.80V	15.5	27	38	49.5	62.5	74	87.5

自动测量模式结果:

三. 数据处理

- 1. 利用计算机软件绘制 I_A - U_{G2K} 曲线;
- 2. 对曲线进行拟合,利用各峰值或波谷所对应的电压值,分别用逐差法和最小二乘法计算 氢原子的第一激发电位。

答: 手动测量的结果绘图:

 $V_{G2A} = 7.30V$ 时的 $I_A - U_{G2K}$ 曲线

 $V_{G2A} = 7.80V$ 时的 $I_A - U_{G2K}$ 曲线

2、

峰值 (V)	U_1	U_2	U_3	U_4	U_5	U_6	U_7
拒斥电压 7.30V	15.5	26.5	37.5	49	61	74	87
拒斥电压 7.80V	15.5	27	38	49.5	62.5	74	87.5

逐差法: 拒斥电压 7.30V: $\overline{\Delta U} = 11.92V$

拒斥电压 7.80V: $\overline{\Delta U} = 12.00V$

四. 实验结论及现象分析

在弗兰克-赫兹实验中,随 U_{G2K} 逐渐增大, I_A 先从 0 逐渐增大,后减小又增大后减小……如此反复,且 U_{G2K} 的波峰和波谷值逐渐增大。每两个波峰对应的电压 U_{G2K} 的差值近似是相同的,约为 12.0V,说明原子能级确实是存在的,而且基态和第一激发态之间有确定的能量差。这个相同的值就是氩的第一激发电位。

五. 讨论题

- 1. 在 I_A - U_{G2K} 曲线中,为什么随着 U_{G2K} 的增大,波谷电流逐渐增大?
- 2. 请分析拒斥电压改变对 IA-UG2K 曲线的影响。
- 3. 为什么弗兰克-赫兹实验只能测出第一激发态电位?

答:

1、在曲线的起始部分,电子能量不足以使汞原子激发到第一激发态,电子几乎不受损失地到达阳极,导致阳极电流增加。当 U_{G2K} 增加到一定值,电子获得足够的能量使汞原子激发,电子将其部分能量转移给汞原子,自身能量减少,无法克服拒斥电压到达阳极,导致阳极电流出现下降,形成波谷。

随着 U_{G2K} 继续增大,电子在到达阳极前有更多的距离和时间获得额外能量,即使发生碰撞损失能量后,也能再次加速并克服拒斥电压到达阳极。因此,随着 U_{G2K} 的增大,即使发生了激发汞原子的碰撞,更多的电子也能够到达阳极,导致波谷电流逐渐增大。

- 2、拒斥电压增大,曲线向右下方移动。因为拒斥电压起到了阻碍电子到达极板的作用。当拒斥电压增大时,电子穿越栅极所需要的动能增大,所以在相同电压 U_{G2K} 下到达极板电子数减少,曲线向右下方移动。
- 3、由于实验的加速区与碰撞区没有分离,使得电子在电场中加速到超过第一激发态所需能量之后就会与原子碰撞而损失能量,此时重新加速到一定程度又会与别的原子碰撞继续损失能量,所以这样就不能加速到第二激发态所需的能量,也无法测定第二激发态电位。