MULTI-LEVEL REGRESSION MODELS

FELIPE BUCHBINDER

PANEL DATA
REGRESSION
DOESN'T HAVE TO BE
ABOUT TIME

MANY RELEVANT PROBLEMS IN SOCIAL SCIENCES CAN BE TACKLED WITH PANEL DATA EVEN THOUGH THEY HAVE NOTHING TO DO WITH THINGS CHANGING IN TIME.

A MENTAL IMAGE FOR PANEL DATA (USING TIME)

Many entities. Each entity produces one value for each time period

FOR EXAMPLE... (USING TIME)

Many firms. Each firm produces one value for profit at each quarter

AN ANALOGOUS PROBLEM

(THAT DOESN'T USE TIME)

Many schools. Each school produces one SAT grade for each student

ANOTHER ANALOGOUS PROBLEM

(THAT DOESN'T USE TIME)

Many states. Each state produces one HDI for each municipality

A MENTAL IMAGE FOR PANEL DATA (USING TIME)

Many entities. Each entity produces one value for each time period

Panel data is analogous to multi-level data where level-1 is time and Level-2 is entity.

3 TYPES OF MULTI-LEVEL REGRESSION

Random Intercepts

Random Slopes

Random Intercepts & Slopes

3 TYPES OF MULTI-LEVEL REGRESSION

Random Intercepts is the most common, so let's focus on this one.

AN EXAMPLE WILL HELP...

- Suppose we wish to estimate the distribution of test scores for students at J different high schools.
- In each school j, where j=1,...,J, suppose we test a random sample of n_j students.
- Let Y_{ij} be the test score from the *i*-th student at school *j*, with $i=1,...,n_j$.

Level 1 equation: $Y_{ij} = \beta_{0j} + \beta_1 X_{ij} + \eta_{ij}$

Level 2 equation: $\beta_{0j} = \gamma_0 + \gamma_1 Z_j + \nu_j$

Level 1 equation: $Y_{ij}=\beta_{0j}+\beta_1 X_{ij}+\eta_{ij}$ Level 2 equation: $\beta_{0j}=\gamma_0+\gamma_1 Z_j+\nu_j$ Intercept of school j

MULTI-LEVEL REGRESSION SOLVES THIS PROBLEM BY USING A BAYESIAN APPROACH

Level 1 (students):
$$Y_{ij}|\mu_j, \sigma_j^2 \sim \mathcal{N}(\mu_j; \sigma_j^2)$$

Level 2 (schools): $\mu_j|\mu_0, \tau^2 \sim \mathcal{N}(\mu_0; \tau^2)$

 μ_0 and τ^2 are unknown and have to be estimated using Maximum Likelihood or Bayesian methods.

MULTI-LEVEL REGRESSION ARRIVES AT THE FOLLOWING SOLUTION FOR THE EFFECT OF EACH SCHOOL ON STUDENT'S GRADES:

$$\mu_{j}|Y_{ij} \sim \mathcal{N} \left(\frac{\frac{n_{j}}{s_{j}^{2}} \overline{y}_{j} + \frac{1}{\hat{\tau}^{2}} \overline{y}_{all}}{\frac{n_{j}}{s_{j}^{2}} + \frac{1}{\hat{\tau}^{2}}} ; \frac{1}{\frac{n_{j}}{s_{j}^{2}} + \frac{1}{\hat{\tau}^{2}}} \right)$$

MULTI-LEVEL REGRESSION ARRIVES AT THE FOLLOWING SOLUTION FOR THE EFFECT OF EACH SCHOOL ON STUDENT'S GRADES:

Suppose all schools have the same σ_j^2 . What happens if n_j is very large? What happens if it is very small?

Suppose all schools have the same n_j . What happens if σ_j^2 is very large? What happens if it is very small?

$$\mu_{j}|Y_{ij} \sim \mathcal{N} \left(\frac{\frac{n_{j}}{s_{j}^{2}} \overline{y}_{j} + \frac{1}{\hat{\tau}^{2}} \overline{y}_{all}}{\frac{n_{j}}{s_{j}^{2}} + \frac{1}{\hat{\tau}^{2}}} ; \frac{1}{\frac{n_{j}}{s_{j}^{2}} + \frac{1}{\hat{\tau}^{2}}} \right)$$

EFFECTS OF SCHOOL SIZE

Large
$$n_j (n_j \to +\infty)$$

$$\mu_j|Y_{ij}\sim\mathcal{N}(\bar{y}_j;0)$$

If there's a lot of data about a school, multilevel regression uses only this data to make inferences about it and ignores data of other schools.

Small
$$n_j (n_j \rightarrow 0)$$

$$\mu_j|Y_{ij}\sim\mathcal{N}(\bar{y}_{\rm all};\hat{\tau}^2)$$

If there's not much data about a school, multilevel regression uses information from other schools to infer about it.

EFFECTS OF SCHOOL HETEROGENEITY

Large
$$s_j^2 (s_j^2 \to +\infty)$$

$$\mu_j|Y_{ij}\sim\mathcal{N}(\bar{y}_{\rm all};\hat{\tau}^2)$$

The multi-level model shrinks estimates with high variance towards the grand mean.

Small
$$s_j^2(s_j^2 \to 0)$$

$$\mu_j|Y_{ij}\sim\mathcal{N}(\bar{y}_j;0)$$

SINCE THERE'S AN **ANALOGY BETWEEN** PANEL DATA AND **MULTI-LEVEL DATA**, **COULD I SOLVE THIS PROBLEM USING PANEL DATA METHODS?**

Level 1 equation: $Y_{ij} = \beta_{0j} + \beta_1 X_{ij} + \eta_{ij}$

Level 2 equation: $\beta_{0j} = \gamma_0 + \gamma_1 Z_j + \nu_j$

EXTREMELY ADVANCED & DIFFICULT MATH

Level 1 equation:
$$Y_{ij} = \beta_{0j} + \beta_1 X_{ij} + \eta_{ij}$$

Level 2 equation: $\beta_{0j} = \gamma_0 + \gamma_1 Z_j + \nu_j$
 \therefore
 $Y_{ij} = \gamma_0 + \beta_1 X_{ij} + \gamma_1 Z_j + \epsilon_{ij}$

NOW, COMPARE...

Model	Equation
Random Intercept Multi-Level Regression	$Y_{ij} = \gamma_0 + \beta_1 X_{ij} + \gamma_1 Z_j + \epsilon_{ij}$
Panel Data's Fundamental Equation	$Y_{it} = \beta_0 + \beta_1 X_{it} + U_i + \epsilon_{it}$

RANDOM EFFECTS

SINCE BOTH REQUIRE THAT CHARACTERISTICS OF STUDENTS AND SCHOOLS BE UNCORRELATED

