第三册习题集

大青花鱼

目录

第一章	元穷	5
1.1	无穷集合的势	5
1.2	常见无穷集合的势	5
1.3	可数和不可数	5
第二章	连续函数的变化 "	7
2.1	函数在一点的变化 "	7
2.2	微变的运算法则	7
2.3	常见函数的微变	7
2.4	微变函数 "	7
2.5	多次微变 1:	3
第三章	证 研究函数 15	5
3.1	增减与极值 15	5
3.2	凹凸性质 18	5

4		E	录
;	3.3	局部性质	15
	3.4	曲线的性质	15
第四章		平直空间	17
4	4.1	平直空间的基本性质	17
4	4.2	子空间与和空间	17
4	4.3	生成空间	17
4	4.4	基底和维数	17
第五章		连续函数的和	19
ļ	5.1	函数图像的面积	19
ļ	5.2	函数的定合	19
ļ	5.3	合函数	19
第六	7章	级数	21
(6.1	正项级数	21
(6.2	收敛与发散	21
(6.3	函数的级数	21

第一章 无穷

- 1.1 无穷集合的势
- 1.2 常见无穷集合的势
- 1.3 可数和不可数

第二章 连续函数的变化

2.1 函数在一点的变化

定义 2.1.1. 散整式 如果整式 P 的系数在数域 \mathbb{A} 中,根也都在 \mathbb{A} 中,就 说 P 是 (在 \mathbb{A} 上的) **散整式**。或者说 P 是**散**的,在 \mathbb{A} 上**散开**。散整式 P 可以写成:

$$P(X) = c(X - x_1)^{m_1}(X - x_2)^{m_2} \cdots (X - x_k)^{m_k}$$

的形式。其中 $c \in \mathbb{A}$, $c \neq 0$, 根 $x_1 < x_2 < \cdots < x_k$ 是 A 中系数。 m_0, m_1, \cdots, m_k 是正整数。

- 2.2 微变的运算法则
- 2.3 常见函数的微变
- 2.4 微变函数

例子 2.4.1. 设 f 是开区间 I 上可微的函数,下面要证明微变函数 ∂f 在 I 上满足介值定理,即如果对 I 中两点 a,b 有 $\partial f(a) < \partial f(b)$,那么存在 $c \in I$

使得 $\partial f(a) < \partial f(c) < \partial f(b)$ 。

1. 设 $a,b \in I$, $\partial f(a) < \partial f(b)$, 对 $z \in (\partial f(a), \partial f(b))$, 证明: 有正实数 H, 使得只要 0 < h < H, 就有:

$$\frac{f(a+h)-f(a)}{h} < z < \frac{f(b+h)-f(b)}{h}.$$

2. 证明:存在 h > 0, $y \in I$, 使得 $y + h \in I$, 且

$$\frac{f(y+h) - f(y)}{h} = z.$$

- 3. 证明:存在 $x \in I$ 使得 $z = \partial f(x)$ 。
- 4. 证明 f 把区间 I 映射到一个区间。
- 5. 考虑函数 $x \mapsto x^2 \sin\left(\frac{1}{x^2}\right)$ 。证明 f 在 [0,1] 上可微。f 的微变函数是否在 [0,1] 上连续?给出集合 $\partial f([0,1])$ 的特征。你能得出什么结论?

解答. 1. 根据定义,微变率是变率的极限。因此,对任意实数 r > 0,总有 H > 0,使得只要 0 < h < H,就有:

$$\left| \frac{f(a+h) - f(a)}{h} - \partial f(a) \right| < r.$$

对 $\partial f(b)$ 也一样。选择 r 使得 $\partial f(a) + r < z$, $\partial f(b) - r > z$ 。比如 $z - \partial f(a)$ 和 $\partial f(b) - z$ 中较小者的一半。再选择使得相应变率足够接近 $\partial f(b)$ 、 $\partial f(b)$ 的 H。这样,只要 0 < h < H,就有:

$$\left| \frac{f(a+h) - f(a)}{h} - \partial f(a) \right| < r,$$

$$\left| \frac{f(b+h) - f(b)}{h} - \partial f(b) \right| < r.$$

从而就有:

$$\frac{f(a+h)-f(a)}{h} < z < \frac{f(b+h)-f(b)}{h}.$$

2. 给定 0 < h < H,考虑函数

$$\phi: x \mapsto \frac{f(x+h) - f(x)}{h}.$$

2.4 微变函数 9

则 ϕ 是 [a,b-h] 上的连续函数。因此,由于 $z \in (\phi(a),\phi(b))$,根据介值定理,有 $y \in (a,b-h)$,使得

$$\frac{f(y+h) - f(y)}{h} = z.$$

- 3. 根据微分零值定理, 存在 $x \in (y, y+h)$ 使得 $\partial f(x) = \frac{f(y+h)-f(y)}{h} = z$ 。
- 4. 考虑像集 $\partial f(I)$,我们在前几问中证明了:在 $\partial f(I)$ 任取两个元素 $\partial f(a) < \partial f(b)$,则开区间 $(\partial f(a), \partial f(b))$ 中任一点都在 $\partial f(I)$ 中。这说明 $\partial f(I)$ 是一个区间。
 - 5. 容易证明 f 在 (0,1] 上可微, 微变函数为:

$$\partial f(x) = 2x \sin\left(\frac{1}{x^2}\right) - \frac{2}{x} \cos\left(\frac{1}{x^2}\right)$$

对于 0点,考虑变率:

$$\left| \frac{f(h) - f(0)}{h} \right| \le |h| \left| \sin \left(\frac{1}{h^2} \right) \right| \le |h|$$

因此 h 趋于 0 时,变率趋于 0。这说明 f 在 0 处可微,微变率为 0。

另外,对任意正整数 n,取 $x = \frac{1}{\sqrt{2n\pi}}$,则 $\frac{1}{x^2} = 2n\pi$ 。它的正弦值为 0,余弦值为 1。于是 $\partial f(x) = -2\sqrt{2n\pi}$ 。这说明 x 按数列 $\{\frac{1}{\sqrt{2n\pi}}\}$ 趋于 0 时, ∂f 的值趋于负无穷大。因此 ∂f 在 0 处不连续。当然,我们也可以取使得 $\frac{1}{x^2}$ 的正弦值为 0,余弦值为 -1 的 x,类似可以让 ∂f 的值趋于正无穷大。使用前几问的结果可知: $\partial f([0,1])$ 是全体实数集。这也从另一方面印证 ∂f 不连续。

例子 2.4.2. 设 f 在闭区间 [a,b] 上连续,在开区间 (a,b) 上可微。f(a) = f(b) = 0。c 是数轴上不属于 [a,b] 的一点。证明:存在 (a,b) 上一点,函数 f 在该点的切线与横坐标轴交于 (c,0) 点。

证明: 对 (a,b) 上的点 t, f 过点 t 的切线方程为:

$$y = f(t) + \partial f(t)(x - t).$$

切线过 (c,0) 点,说明以下关系成立:

$$\partial f(t)(t-c) - f(t) = 0$$

考虑构造一个关于 t 的函数 g(t),使得 g(a) = g(b),且 $\partial g = 0$ 当且仅当上式等于 0。这样,我们使用微变零值定理,就能得到结论。

直接让 $\partial g = \partial f(t)(t-c) - f(t)$,发现没有简单的构造方法。考虑让 ∂g 为分式, $\partial f(t)(t-c) - f(t)$ 作为分母。这样思考下,我们构造:

$$g: t \mapsto \frac{f(t)}{t-c}$$
.

则 g(a) = g(b) = 0。 而求微得到:

$$\partial g = \frac{\partial f(t)(t-c) - f(t)}{(t-c)^2}.$$

这就是我们要找的 g。运用微变零值定理,存在 $x \in (a,b)$,使得 $\partial g = 0$,即 $\partial f(x)(x-c) - f(x) = 0$ 。因此 f 在 x 的切线过 (c,0) 点。

注意:本题结论在直观上很容易理解,即当点在 (a,b) 上运动时,f 过点的切线扫过整个数轴 [a,b] 以外的部分,不会有遗漏。

例子 2.4.3. 如果 $P \in \mathbb{R}$ 上的散整式,证明对任意实数 t, $\partial P + tP$ 也是散整式。

解答. 把 P 写成 $c(X-x_1)^{m_1}(X-x_2)^{m_2}\cdots(X-x_k)^{m_k}$ 的形式,它的次数是:

$$n = m_1 + m_2 + \dots + m_k$$

每个根 x_i 都是 ∂P 的 $m_i - 1$ 次根,那么它也是 $\partial P + tP$ 的 $m_i - 1$ 次根。 计算重根的话,我们已经找到了 $\partial P + tP$ 的 n - k 个根。 2.4 微变函数 11

现在继续找出其他的根。我们可以猜测,对每个 0 < i < k,区间 (x_i, x_{i+1}) 中都有一个根。

考虑函数 $f: x \mapsto P(x)e^{tx}$ 。f 在闭区间 $[x_i, x_{i+1}]$ 上连续,在开区间 (x_i, x_{i+1}) 上可微,根据微变零值定理, ∂f 在 (x_i, x_{i+1}) 上有零点。而

$$\partial f(x) = (\partial P(x) + tP(x))e^x,$$

 e^x 总大于零, 所以这个零点就是 $\partial P + tP$ 的根。

这样,我们又找到了 k-1 个根。合共 n-1 个根。如果 t=0,那么 $\partial P + tP$ 是 n-1 次多项式,这些根就是它所有的根。如果 $t \neq 0$,那么 $\partial P + tP$ 可以写成这 n-1 个根的散整式和一个一次式的乘积。于是最后一个根也是实数。这说明 $\partial P + tP$ 总是散的。

例子 2.4.4. $f \in \mathbb{R}^+$ 到 \mathbb{R} 的连续函数,且在 $(0, \infty)$ 上可微。已知 f(0) = 0, $\lim_{r \to \infty} f(x) = 0$ 。证明,存在正实数 c,使得 $\partial f(c) = 0$ 。

解答. 如果 f 恒等于 0, 那么任取正实数即可。

如果 f 不恒等于 0,不妨设 f 有正值 f(a)>0。由于 $\lim_{x\to\infty}f(x)=0$,所以对 $\frac{f(a)}{2}>0$,存在 R>0,使得只要 x>R,就有 $f(x)<\frac{f(a)}{2}$ 。比如, $f(R+1)<\frac{f(a)}{2}$ 。

因此,根据介值定理,区间 (0,a) 和 (a,R+1) 中,各有一点 x_1 、 x_2 ,使得 $f(x_1) = f(x_2) = \frac{f(a)}{2}$ 。

因此,根据微变零值定理,存在 $c \in (x_1, x_2)$,使得 $\partial f(c) = 0$ 。

例子 2.4.5. 函数 f、g 在闭区间 [a,b] 上连续,在开区间 (a,b) 上可微。

- 1. 如果 ∂g 在 (a,b) 上不等于 0, 证明 g 在 (a,b) 上不等于 g(b)。
- 2. 给定 $t \in [a,b)$ 。记 $v = \frac{f(t) f(b)}{g(t) g(b)}$ 。考虑定义在 [a,b] 上的函数 h:

$$h: x \mapsto f(x) - v \cdot g(x)$$

验证 h(t) = h(b), 从而证明:

$$\exists c \in [t,b), \$$
使得 $\frac{f(t)-f(b)}{g(t)-g(b)} = \frac{\partial f(c)}{\partial g(c)}.$

3. 如果有实数 l 使得

$$\lim_{x \to b^{-}} \frac{\partial f(x)}{\partial g(x)} = l,$$

证明:

$$\lim_{x \to b^{-}} \frac{f(x) - f(b)}{g(x) - g(b)} = l,$$

解答. 1. 使用反证法: 如果有 $t \in (a,b)$ 使得 g(t) = g(b), 那么根据微变零值定理, 存在 $c \in (t,b)$ 使得 $\partial g(c) = 0$, 矛盾!

2. 验证 h(t) = h(b):

$$\begin{split} h(t) &= f(t) - \frac{f(t) - f(b)}{g(t) - g(b)} \cdot g(t) \\ &= \frac{f(t) \cdot (g(t) - g(b)) - g(t) \cdot (f(t) - f(b))}{g(t) - g(b)} \\ &= \frac{f(t)g(t) - f(t)g(b) - g(t)f(t) + g(t)f(b)}{g(t) - g(b)} \\ &= \frac{f(b)g(t) - g(b)f(t)}{g(t) - g(b)} \end{split}$$

$$\begin{split} h(b) &= f(b) - \frac{f(t) - f(b)}{g(t) - g(b)} \cdot g(b) \\ &= \frac{f(b) \cdot (g(t) - g(b)) - g(b) \cdot (f(t) - f(b))}{g(t) - g(b)} \\ &= \frac{f(b)g(t) - f(b)g(b) - g(b)f(t) + g(b)f(b)}{g(t) - g(b)} \\ &= \frac{f(b)g(t) - g(b)f(t)}{g(t) - g(b)} \end{split}$$

2.5 多次微变

13

所以 h(t) = h(b)。

根据微变零值定理,存在 $c \in (t,b)$,使得 $\partial h(c) = 0$,因此:

$$\frac{f(t) - f(b)}{g(t) - g(b)} = \frac{\partial f(c)}{\partial g(c)}.$$

这里我们可以用 $\partial g(c)$ 做分母,是因为第一问的结论保证了它不等于 0。

3. 按照定义,对任意实数 r>0,存在 d>0,使得只要 $x\in (b-d,b)$,就有

$$\left| \frac{\partial f(x)}{\partial g(x)} - l \right| < r.$$

而根据第二问,存在 $c \in (x,b)$, 使得

$$\frac{f(x) - f(b)}{g(x) - g(b)} = \frac{\partial f(c)}{\partial g(c)}.$$

 $c \in (x,b)$, 故 $c \in (b-d,b)$, 于是

$$\left| \frac{f(x) - f(b)}{g(x) - g(b)} - l \right| = \left| \frac{\partial f(c)}{\partial g(c)} - l \right| < r.$$

这说明只要取 $x \in (b-d,b)$, 就有

$$\left| \frac{f(x) - f(b)}{g(x) - g(b)} - l \right| < r.$$

也就是说,

$$\lim_{x \to b^{-}} \frac{f(x) - f(b)}{g(x) - g(b)} = l.$$

2.5 多次微变

第三章 研究函数

- 3.1 增减与极值
- 3.2 凹凸性质
- 3.3 局部性质
- 3.4 曲线的性质

第四章 平直空间

- 4.1 平直空间的基本性质
- 4.2 子空间与和空间
- 4.3 生成空间
- 4.4 基底和维数

第五章 连续函数的和

- 5.1 函数图像的面积
- 5.2 函数的定合
- 5.3 合函数

第六章 级数

- 6.1 正项级数
- 6.2 收敛与发散
- 6.3 函数的级数