GRASP

Aplicado ao problema de aterrissagem de aviões

Bruno Fiss Kauê Silveira

Instituto de Informática - UFRGS

23 de junho de 2010

- Definição do problema
 - Formalização
 - Descrição como programa inteiro
 - Representação de uma solução
- 2 GRASP
 - Algoritmo
 - Geração de soluções
 - Busca local
- 3 Experimentos
 - Resultados
 - Análise

• O problema de aterrissagem de aviões consiste em definir um momento no tempo para a aterrissagem de cada avião $i \in P$, sendo P o conjunto de aviões. Cada avião possui os seguintes dados:

- O problema de aterrissagem de aviões consiste em definir um momento no tempo para a aterrissagem de cada avião $i \in P$, sendo P o conjunto de aviões. Cada avião possui os seguintes dados:
- E_i : Momento mais prematuro em que o avião i pode realizar pouso.

- O problema de aterrissagem de aviões consiste em definir um momento no tempo para a aterrissagem de cada avião i ∈ P, sendo P o conjunto de aviões. Cada avião possui os seguintes dados:
- E_i : Momento mais prematuro em que o avião i pode realizar pouso.
- T_i : Momento ideal para pouso do avião i.

Formalização

- O problema de aterrissagem de aviões consiste em definir um momento no tempo para a aterrissagem de cada avião i ∈ P, sendo P o conjunto de aviões. Cada avião possui os seguintes dados:
- E_i : Momento mais prematuro em que o avião i pode realizar pouso.
- T_i: Momento ideal para pouso do avião i.
- L_i : Momento mais tardio em que o avião i pode realizar pouso.

- O problema de aterrissagem de aviões consiste em definir um momento no tempo para a aterrissagem de cada avião i ∈ P, sendo P o conjunto de aviões. Cada avião possui os seguintes dados:
- E_i : Momento mais prematuro em que o avião i pode realizar pouso.
- T_i: Momento ideal para pouso do avião i.
- L_i : Momento mais tardio em que o avião i pode realizar pouso.
- g_i: Penalidade por unidade de tempo da diferença do pouso para o tempo ideal se o avião chegar mais cedo do que o ideal.

- O problema de aterrissagem de aviões consiste em definir um momento no tempo para a aterrissagem de cada avião i ∈ P, sendo P o conjunto de aviões. Cada avião possui os seguintes dados:
- E_i : Momento mais prematuro em que o avião i pode realizar pouso.
- T_i: Momento ideal para pouso do avião i.
- L_i : Momento mais tardio em que o avião i pode realizar pouso.
- g_i: Penalidade por unidade de tempo da diferença do pouso para o tempo ideal se o avião chegar mais cedo do que o ideal.
- h_i: Penalidade por unidade de tempo da diferença do pouso para o tempo ideal se o avião chegar mais tarde do que o ideal.

- O problema de aterrissagem de aviões consiste em definir um momento no tempo para a aterrissagem de cada avião i ∈ P, sendo P o conjunto de aviões. Cada avião possui os seguintes dados:
- E_i : Momento mais prematuro em que o avião i pode realizar pouso.
- T_i: Momento ideal para pouso do avião i.
- L_i : Momento mais tardio em que o avião i pode realizar pouso.
- g_i: Penalidade por unidade de tempo da diferença do pouso para o tempo ideal se o avião chegar mais cedo do que o ideal.
- h_i: Penalidade por unidade de tempo da diferença do pouso para o tempo ideal se o avião chegar mais tarde do que o ideal.
- S_{ij} : Distância de tempo requerida após o pouso do avião i para que o avião j possa pousar.

- O objetivo é encontrar uma solução com somatório de todas as penalidades mais baixo possível.
- E_i : Momento mais prematuro em que o avião i pode realizar pouso.
- T_i: Momento ideal para pouso do avião i.
- L_i : Momento mais tardio em que o avião i pode realizar pouso.
- g_i: Penalidade por unidade de tempo da diferença do pouso para o tempo ideal se o avião chegar mais cedo do que o ideal.
- h_i: Penalidade por unidade de tempo da diferença do pouso para o tempo ideal se o avião chegar mais tarde do que o ideal.
- S_{ij}: Distância de tempo requerida após o pouso do avião i para que o avião j possa pousar.

•00 00 Descrição como programa inteiro

Variáveis

Definição do problema

• Variáveis x_i representam o momento de aterrissagem do avião i.

Variáveis

- Variáveis x_i representam o momento de aterrissagem do avião i.
- Variáveis α_i e β_i representam o quão adiantado ou atrasado, respectivamente, o avião i chega em relação ao seu tempo ideal.

Figura: Exemplo da variável β_i

Variáveis

•00

- Variáveis x_i representam o momento de aterrissagem do avião i.
- Variáveis α_i e β_i representam o quão adiantado ou atrasado, respectivamente, o avião i chega em relação ao seu tempo ideal.

Figura: Exemplo da variável β_i

ullet Variáveis binárias δ_{ij} indicam se o avião i aterrissa antes do avião j.

000

Restrições

$$\sum_{i\in P} g_i\alpha_i + h_i\beta_i$$

sujeito a

$$x_i = -\alpha_i + \beta_i + T_i,$$

$$E_i < x_i < L_i.$$

$$x_i - x_i \ge S_{ii}\delta_{ii} + (E_i - L_i)\delta_{ii},$$

$$\delta_{ii} + \delta_{ii} = 1$$
,

$$x_i > 0, x_i \in \mathbb{R}$$

$$\alpha_i \geq 0, \alpha_i \in \mathbb{R},$$

$$\beta_i \geq 0, \beta_i \in \mathbb{R},$$

$$\delta_{ii} \in \mathbb{B}$$
,

$$\forall i \in P$$

 $\forall i, j \in P$

 $\forall i \in P$

 $\forall i \in P$

 $\forall i, j \in P$

 $\forall i, i \in P$

 $\forall i \in P$ $\forall i \in P$

Descrição como programa inteiro

Restrições

As variáveis δ_{ij} e as restrições $x_j - x_i \ge S_{ij}\delta_{ij} + (E_j - L_i)\delta_{ji}, \forall i, j \in P$ podem ser desnecessárias de acordo com as relações entre os aviões i e j.

Figura: Diferentes situações entre aviões

Variáveis inteiras

• A parte mais complicada do problema está na definição das variáveis inteiras, δ_{ii} .

Variáveis inteiras

- A parte mais complicada do problema está na definição das variáveis inteiras, δ_{ii} .
- A solução do problema será considerada a instanciação dessas variáveis, pois com essa podemos resolver o problema linear resultante, de forma eficiente, com o método Simplex.

Sequência de aviões

 Para representar a solução, decidimos utilizar uma representação de sequência de aviões, na qual a ordem dos aviões diz a ordem de chegada desses ao aeroporto.

Sequência de aviões

 Para representar a solução, decidimos utilizar uma representação de sequência de aviões, na qual a ordem dos aviões diz a ordem de chegada desses ao aeroporto.

Figura: Uma sequência de aviões

Sequência de aviões

 Para representar a solução, decidimos utilizar uma representação de sequência de aviões, na qual a ordem dos aviões diz a ordem de chegada desses ao aeroporto.

Figura: Uma sequência de aviões

• A partir dessa representação podemos definir as variáveis δ_{ij} , e vice-versa.

• A idéia principal da meta-heurística GRASP é construir soluções iniciais de uma forma gulosa porém aleatória.

- A idéia principal da meta-heurística GRASP é construir soluções iniciais de uma forma gulosa porém aleatória.
- Em vez de selecionar-se o melhor elemento a ser inserido numa solução, escolhe-se um entre alguns dos melhores de forma aleatória.

- A idéia principal da meta-heurística GRASP é construir soluções iniciais de uma forma gulosa porém aleatória.
- Em vez de selecionar-se o melhor elemento a ser inserido numa solução, escolhe-se um entre alguns dos melhores de forma aleatória.
- Após isso se faz uma busca local em torno da solução inicial gerada.

- A idéia principal da meta-heurística GRASP é construir soluções iniciais de uma forma gulosa porém aleatória.
- Em vez de selecionar-se o melhor elemento a ser inserido numa solução, escolhe-se um entre alguns dos melhores de forma aleatória.
- Após isso se faz uma busca local em torno da solução inicial gerada.
- A melhor solução encontrada durante a execução do algoritmo é retornada como resultado.

Algoritmo

Função principal

```
procedimento GRASP(alpha, semente)
    melhorSolucao = INF;
    enquanto nao criterio—de—parada faca
        sol = gerarSolucaoInicial(alpha, semente);
        res = buscaLocal(sol);
        se res < melhorSolução então
            melhorSolucao = res:
        fim-se:
    fim-enquanto;
    retornar melhorSolucao:
fim-procedimento;
```


Sequência ideal

• De forma a construir soluções com um algoritmo semi-guloso foi necessário definir o conceito de sequência ideal.

Sequência ideal

- De forma a construir soluções com um algoritmo semi-guloso foi necessário definir o conceito de sequência ideal.
- Essa sequência serve de base para a determinação de quais são os melhores elementos a serem inseridos em um dado passo do algoritmo.

Sequência ideal

- De forma a construir soluções com um algoritmo semi-guloso foi necessário definir o conceito de sequência ideal.
- Essa sequência serve de base para a determinação de quais são os melhores elementos a serem inseridos em um dado passo do algoritmo.
- Essa sequência é incialmente definida como a ordem em que os aviões chegariam caso todos aterrissassem no seu momento ideal.

Sequência ideal

- De forma a construir soluções com um algoritmo semi-guloso foi necessário definir o conceito de sequência ideal.
- Essa sequência serve de base para a determinação de quais são os melhores elementos a serem inseridos em um dado passo do algoritmo.
- Essa sequência é incialmente definida como a ordem em que os aviões chegariam caso todos aterrissassem no seu momento ideal.
- Cada vez que uma solução melhor do que a atual é encontrada, durante a execução do algoritmo, a sequência ideal é atualizada para a sequência que gerou a nova solução.

Parâmetro α

• Parâmetro do método GRASP que define o quão "ruim" um elemento pode ser e ainda assim ser selecionado.

Parâmetro α

- Parâmetro do método GRASP que define o quão "ruim" um elemento pode ser e ainda assim ser selecionado.
- Na nossa implementação, esse parâmetro equivale à máxima distância aceitável entre a posição do avião na sequência ideal e a posição a ser preenchida na solução parcial.

Variação: Reactive GRASP

 \bullet A meta-heurística GRASP original mantinha o parâmetro α fixo durante todas as iterações do algoritmo.

Variação: Reactive GRASP

- A meta-heurística GRASP original mantinha o parâmetro α fixo durante todas as iterações do algoritmo.
- ullet Com base no Reactive GRASP, nosso algoritmo escolhe aleatoriamente, a cada iteração, um valor para lpha entre 0 e $lpha_{\it max}$, um novo parâmetro do nosso método.

Função geradora de soluções

```
procedimento gerarSolucaoInicial(alpha, semente)
    solucao = vazio;
    enquanto naoPronta(solucao) faca
        RCL = gerarRCL(alpha);
        elemento = sortear(RCL, semente);
        adicionarElemento(solucao, elemento);
    fim-enquanto;
    retornar solucao;
fim-procedimento;
```


RCL

• RCL (Resctricted candidate list) é a lista de todos os elementos (nesse caso aviões) que podem ser inseridos em um determinado passo da construção da solução.

RCL

- RCL (Resctricted candidate list) é a lista de todos os elementos (nesse caso aviões) que podem ser inseridos em um determinado passo da construção da solução.
- ullet Todos os elementos dessa lista satisfazem às restrições citadas na descrição do parâmetro lpha, e também atendem ao critério de que, se forem adicionados à solução, mantê-la-ão viável.

Geração de soluções

RCL - Exemplo

Nas figuras abaixo podemos ver um exemplo de sequência ideal e de uma solução parcial. Nesse exemplo, se α fosse 2, a RCL seria \Box .

Figura: Exemplo de sequência ideal

Figura: Exemplo de solução parcial

GRASP

Geração de soluções

RCL - Exemplo

Nas figuras abaixo podemos ver um exemplo de sequência ideal e de uma solução parcial. Nesse exemplo, se α fosse 2, a RCL seria $\{1,5,6\}$.

Figura: Exemplo de sequência ideal

Figura: Exemplo de solução parcial

Busca local

Vizinhança e busca local

 A segunda parte de cada iteração do método GRASP consiste em realizar uma busca local ao redor da solução gerada gulosa e aleatoriamente.

Busca local

Vizinhança e busca local

- A segunda parte de cada iteração do método GRASP consiste em realizar uma busca local ao redor da solução gerada gulosa e aleatoriamente.
- A definição de um vizinho de uma sequência é: uma sequência é vizinha de outra se for resultante da troca de posição entre dois aviões adjacentes e de mais nenhuma alteração.

Busca local

Vizinhança e busca local

- A segunda parte de cada iteração do método GRASP consiste em realizar uma busca local ao redor da solução gerada gulosa e aleatoriamente.
- A definição de um vizinho de uma sequência é: uma sequência é vizinha de outra se for resultante da troca de posição entre dois aviões adjacentes e de mais nenhuma alteração.
- O tipo de busca local escolhido foi o de primeiro incremento, isto é, pesquisa-se na vizinhança por uma solução melhor e, quando encontra-se a primeira solução melhor, passa-se a considerar essa nova solução como a solução atual, reiniciando a pesquisa nos vizinhos dessa.

Resultados I

Testamos, para todos os casos de entrada, o parâmetro α_{max} com valores entre 1 e 5, sempre utilizando sementes aleatórias diferentes.

Tabela: Tabela de resultados dos experimentos

Caso	$\alpha_{\sf max}$	Semente	Solução	Tempo (s)	Desvio (%)
airland1	1	14766	700	1	0
airland1	2	20024	700	2	0
airland1	3	19673	700	1	0
airland1	4	23915	700	2	0
airland1	5	710	700	2	0

Resultados II

Tabela: Tabela de resultados dos experimentos

Caso	α_{max}	Semente	Solução	Tempo (s)	Desvio (%)
airland2	1	22574	1.480	5	0
airland2	2	26494	1.480	9	0
airland2	3	11040	1.480	8	0
airland2	4	27382	1.480	9	0
airland2	5	11503	1.500	10	1.33

Resultados III

Tabela: Tabela de resultados dos experimentos

Caso	$\alpha_{\it max}$	Semente	Solução	Tempo (s)	Desvio (%)
airland3	1	15751	820	18	0
airland3	2	14185	820	21	0
airland3	3	31028	820	21	0
airland3	4	20012	820	21	0
airland3	5	17962	820	21	0

Resultados IV

Tabela: Tabela de resultados dos experimentos

Caso	$\alpha_{ extit{max}}$	Semente	Solução	Tempo (s)	Desvio (%)
airland4	1	26543	2.520	18	0
airland4	2	23571	2.520	21	0
airland4	3	21435	2.520	21	0
airland4	4	3896	2.520	21	0
airland4	5	21136	2.520	21	0

Resultados V

Tabela: Tabela de resultados dos experimentos

Caso	$\alpha_{ extit{max}}$	Semente	Solução	Tempo (s)	Desvio (%)
airland5	1	20362	3.100	21	0
airland5	2	19016	3.100	21	0
airland5	3	28928	3.100	21	0
airland5	4	13363	3.100	21	0
airland5	5	4087	3.100	21	0

Resultados VI

Tabela: Tabela de resultados dos experimentos

Caso	$\alpha_{\it max}$	Semente	Solução	Tempo (s)	Desvio (%)
airland6	1	27207	24.442	1	0
airland6	2	14705	24.442	1	0
airland6	3	31960	24.442	2	0
airland6	4	32355	24.442	1	0
airland6	5	15148	24.442	1	0

Resultados VII

Tabela: Tabela de resultados dos experimentos

Caso	$\alpha_{\it max}$	Semente	Solução	Tempo (s)	Desvio (%)
airland7	1	4734	1.550	12	0
airland7	2	11699	1.550	13	0
airland7	3	23048	1.550	13	0
airland7	4	30431	1.550	14	0
airland7	5	10183	1.550	14	0

Resultados VIII

Tabela: Tabela de resultados dos experimentos

Caso	$\alpha_{\it max}$	Semente	Solução	Tempo (s)	Desvio (%)
airland8	1	30714	1.950	21	0
airland8	2	13072	1.950	33	0
airland8	3	16746	1.950	40	0
airland8	4	20341	1.950	21	0
airland8	5	21053	1.950	28	0

Análise

Análise e conclusões

 A escolha dos parâmetros e funções envolvidas na construção gulosa-aleatória de soluções é fundamental para o sucesso do algoritmo.

Análise e conclusões

- A escolha dos parâmetros e funções envolvidas na construção gulosa-aleatória de soluções é fundamental para o sucesso do algoritmo.
- Aparentemente, a escolha de soluções iniciais próximas de uma sequência ideal pré-definida é eficaz para a solução desse problema.

Análise e conclusões

- A escolha dos parâmetros e funções envolvidas na construção gulosa-aleatória de soluções é fundamental para o sucesso do algoritmo.
- Aparentemente, a escolha de soluções iniciais próximas de uma sequência ideal pré-definida é eficaz para a solução desse problema.
- ullet A variação do parâmetro lpha, como proposto na meta-heurística Reactive GRASP, também parece ter sido importante para o sucesso da abordagem.

Perguntas?

