# Mobile Security and Cryptography 101 Handout



# **Check Your Understanding Questions**

# **Mobile Security**

- 1. Why are smartphones such a high-value target for attackers?
- 2. Which of the following best describes the role of cryptography in mobile security?
  - a. It prevents your phone from overheating.
  - b. It helps improve battery life by optimizing app usage.
  - c. It silently protects your data, identity, and communication.
  - d. It speeds up your internet connection by compressing data.

\_\_\_\_\_

## **Transposition Ciphers**

- 1. Which of the following best describes how a transposition cipher works?
  - a. It replaces each letter with a different letter or symbol.
  - b. It scrambles the positions of characters without changing them.
  - c. It hides the message using a numeric key.
  - d. It converts plaintext into binary code.

# Caesar and Classical Ciphers

- 1. If "FRGH" is the ciphertext of Caesar cipher using a shift of 3, what's the original message?
- 2. Are classical ciphers difficult to break?

#### The Enigma Machine and Alan Turing

- 1. Why was the Enigma machine so hard to break during WWII?
  - a. It used random numbers.
  - b. It changed its settings every day.

- c. It worked only in Morse code.d. It was hidden underground.
- 2. What made Alan Turing's approach to codebreaking different from earlier efforts?
- 3. Is it hard to crack an encryption like the Enigma Machine using contemporary computation power?

\_\_\_\_\_\_

# Asymmetric (Public Key) Encryption

- 1. What makes public key encryption different from classical encryption?
  - a. Everyone shares one key.
  - b. You use two different keys: one to encrypt and one to decrypt.
  - c. The key changes every second.
  - d. You don't need a key at all.
- 2. Put these steps in the correct order for sending a secure message:
  - a. Alice encrypts a message.
  - b. Bob sends Alice his public key.
  - c. Bob uses his private key to decrypt it.

## Cryptographic Handshake

- 1. Why is asymmetric (public key) encryption often used during the cryptographic handshake phase, even though symmetric encryption is more efficient?
  - a. Because asymmetric encryption is faster.
  - b. To securely exchange a shared private key for symmetric encryption.
  - c. Because symmetric encryption doesn't work over the internet.
  - d. To avoid using any keys at all.

\_\_\_\_\_

- 2. In a typical cryptographic handshake, what happens after the shared key is securely exchanged?
  - a. The connection is terminated.
  - b. Public key encryption continues to be used for all communication.
  - c. Symmetric encryption is used for the rest of the session.
  - d. The shared key is discarded.

\_\_\_\_\_

#### Modulo

1. What is 9 mod 4?

2. What is 23 mod 5?

#### RSA Cryptosystem

1. Match the following notations with their definition:

| M | Plaintext message               |
|---|---------------------------------|
| С | Ciphertext message              |
| e | Public exponent                 |
| d | Private exponent                |
| n | Modulus (product of two primes) |
|   |                                 |

2. What makes RSA an asymmetric (public key) cryptosystem?

- a. It's easy to lose your keys.
- b. It can only be used once.
- c. It's easy to encrypt using the public key, but hard to decrypt without the private key.
- d. It opens literal doors.

\_\_\_\_\_\_

# Cracking Modern Cryptosystem

1. If someone figures out how to factor large integers efficiently, does that mean they can break RSA and decrypt all our secrets?

\_\_\_\_\_

# **Answer Key**

## Mobile Security

- 1. Smartphones store personal and sensitive data and are always connected, making them a valuable target.
- 2. c. It silently protects your data, identity, and communication.

## **Transposition Ciphers**

1. b. It scrambles the positions of characters without changing them.

## Caesar and Classical Ciphers

- 1. CODE
- 2. Once the method is known, they are easy to break.

## The Enigma Machine and Alan Turing

- 1. b. It changed its settings every day.
- 2. He used mathematics, designed and used electromechanical machines (like the Bombe) to automate codebreaking.
- 3. No, modern computers can break it easily. A smartwatch has much more computation power than the massive Bombe machine.

## Asymmetric (Public Key) Encryption

- 1. b. You use two different keys: one to encrypt and one to decrypt.
- 2. b, a, c

## Cryptographic Handshake

- 1. b. To securely exchange a shared private key for symmetric encryption.
- 2. c. Symmetric encryption is used for the rest of the session.

#### Modulo

- 1. The answer is 1.
- 2. The answer is 3.

## RSA Cryptosystem

- 1. M: Plaintext message
  - C: Ciphertext message
  - e: Public exponent
  - d: Private exponent
  - n: Modulus (product of two primes)
- 2. c. It's easy to encrypt using the public key, but hard to decrypt without the private key.

# **Cracking Modern Cryptosystem**

1. Yes