Please check the examination details belo	w before ente	ring your candidate i	nformation
Candidate surname		Other names	
Centre Number Candidate Nu	mber		
Pearson Edexcel Intern	nation	al Advan	ced Level
Tuesday 9 January 2	024		
Morning (Time: 1 hour 30 minutes)	Paper reference	WMA	11/01
Mathematics			♦ ♦
International Advanced Su	bsidiar	y/Advanced	Level
Pure Mathematics P1	`		
You must have:			Total Marks
Mathematical Formulae and Statistical	Tables (Ye	llow) calculator	TOTAL MIARKS
Wathernatical Formulae and Statistical	Tables (TC	iiovv _{//} carculator	

Candidates may use any calculator permitted by Pearson regulations.
Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

 Turn over

-4	т.	
	H 110	-
	1,111	

$\int (2x - 5)(3x + 2)(2x + 5) dx$	ĺ	(2x -	5)(3 <i>x</i>	+ 2)(2x	+	5)d:
------------------------------------	---	-------	---------------	---------	---	------

writing your	answer	in	simpl	est	form.
~ .					

(5)

Question 1 continued	
	(Total for Question 1 is 5 marks)

2. The triangle *ABC* is such that

- $AB = 15 \,\mathrm{cm}$
- $AC = 25 \,\mathrm{cm}$
- angle $BAC = \theta^{\circ}$
- area triangle $ABC = 100 \,\mathrm{cm}^2$
- (a) Find the value of $\sin \theta^{\circ}$

(2)

Given that $\theta > 90$

(b) find the length of BC, in cm, to 3 significant figures.

(3)

Question 2 continued	
	(Total for Question 2 is 5 marks)

3. The curve C has equation

$$y = \frac{5x^3 - 8}{2x^2} \qquad x > 0$$

(a) Find $\frac{dy}{dx}$ writing your answer in simplest form.

(4)

The point P(2, 4) lies on C.

(b) Find an equation for the tangent to C at P writing your answer in the form ax + by + c = 0, where a, b and c are integers.

(3)

н	
н	
н	
н	
н	
н	

Question 3 continued	
	(Total for Question 3 is 7 marks)
	(

4. In this question you must show all stages of your working.

Solutions relying on calculator technology are not acceptable.

(a) By substituting $p = 2^x$, show that the equation

$$2 \times 4^{x} - 2^{x+3} = 17 \times 2^{x-1} - 4$$

can be written in the form

$$4p^2 - 33p + 8 = 0$$

(3)

(b) Hence solve

$$2 \times 4^{x} - 2^{x+3} = 17 \times 2^{x-1} - 4$$

(3)

Question 4 continued
(Total for Question 4 is 6 marks)

Figure 1

In this question you must show all stages of your working.

Solutions relying on calculator technology are not acceptable.

The straight line l_1 , shown in Figure 1, passes through the points P(-2, 9) and Q(10, 6).

(a) Find the equation of l_1 , giving your answer in the form y = mx + c, where m and c are constants to be found.

(3)

The straight line $l_{\scriptscriptstyle 2}$ passes through the origin O and is perpendicular to $l_{\scriptscriptstyle 1}$

The lines l_1 and l_2 meet at the point R as shown in Figure 1.

(b) Find the coordinates of R

(4)

(c) Find the exact area of triangle OPQ.

(3)

Question 5 continued

Question 5 continued

Question 5 continued	
	(Total for Question 5 is 10 marks)

Figure 2

Figure 2 shows a plot of part of the curve C_1 with equation

$$y = 5\cos x$$

with *x* being measured in degrees.

The point P, shown in Figure 2, is a minimum point on C_1

(a) State the coordinates of P

(2)

The point Q lies on a different curve C_2

Given that point Q

- is a maximum point on the curve
- is the maximum point with the **smallest** x coordinate, x > 0
- (b) find the coordinates of Q when
 - (i) C_2 has equation $y = 5\cos x 2$
 - (ii) C_2 has equation $y = -5\cos x$

(4)

Question 6 continued	
(Total for Quest	ion 6 is 6 marks)

7. (a) Sketch the graph of the curve C with equation

$$y = \frac{4}{x - k}$$

where k is a positive constant.

Show on your sketch

- the coordinates of any points where C cuts the coordinate axes
- the equation of the vertical asymptote to C

(4)

Given that the straight line with equation y = 9 - x does not cross or touch C

(b) find the range of values of k.

(5)

Question 7 continued	
	(Total for Question 7 is 9 marks)

Figure 3

Figure 3 shows a sketch of the plan view of a platform.

The plan view of the platform consists of a sector *DOC* of a circle centre *O* joined to a sector *AOBEA* of a different circle, also with centre *O*.

Given that

- angle AOB = 0.8 radians
- arc length $CD = 9 \,\mathrm{m}$
- DA:AO = 3:5
- (a) show that AO = 7.03 m to 3 significant figures.

(3)

(b) Find the perimeter of the platform, in m, to 3 significant figures.

(3)

(c) Find the total area of the platform, giving your answer in m² to the nearest whole number.

(3)

Question 8 continued

Question 8 continued

Question 8 continued	
(To	otal for Question 8 is 9 marks)

9. The curve C_1 has equation y = f(x).

Given that

- f(x) is a quadratic expression
- C_1 has a maximum turning point at (2, 20)
- C_1 passes through the origin
- (a) sketch a graph of C_1 showing the coordinates of any points where C_1 cuts the coordinate axes,

(2)

(b) find an expression for f(x).

(3)

The curve C_2 has equation $y = x(x^2 - 4)$

Curve C_1 and C_2 meet at the origin, and at the points P and Q

Given that the x coordinate of the point P is negative,

(c) using algebra and showing all stages of your working, find the coordinates of P

(5)

Question 9 continued

Question 9 continued

Question 9 continued	
(Tot	eal for Question 9 is 10 marks)

10. In this question you must show all stages of your working.

The curve C has equation y = f(x), x > 0

Given that

- the point $P(2, 8\sqrt{2})$ lies on C
- $f'(x) = 4\sqrt{x^3} + \frac{k}{x^2}$ where k is a constant
- f''(x) = 0 at P
- (a) find the exact value of k,

(4)

(b) find f(x), giving your answer in simplest form.

(4)

Question 10 continued

Question 10 continued	
	(Total for Question 10 is 8 marks)
	TOTAL FOR PAPER IS 75 MARKS