## 1. 有机导电聚合物太阳能电池材料介绍

## 1.1 有机导电聚合物的研究进展

有机导电聚合物在通过掺杂等手段处理后,会使其导电性能介于半导体与导体之间。它既有 传统的聚合物所具备的柔韧性、机械性和功能结构易于控制等特性,同时拥有不逊于金属的导电 性。[1] 有机导电聚合物可以分为两大类,共轭聚合物与复合型聚合物。如果聚合物本身拥有或 经过掺杂处理后具有导电性,这类聚合物称为共轭聚合物;如果聚合物本身无法通过简单的掺杂 等手段使其具有导电性,这类聚合物称为复合型聚合物。复合型聚合物在一定方式下通过加入导 电材料复合而成。[2-4]

有机导电聚合物链一般由单双键交替组成了一种共轭体系,这种共轭体系称为π 体系。这种体系下的电子可以在聚合物链上运动而使得该聚合物具备了导电性。虽然π 电子的存在为聚合物的导电性提供了基础,但正如前文提到过的一样,并非所有聚合物都拥有易导电的特性。这还需要从能带结构来给予解释:如果在聚合物链中,派尔斯不稳定性会使得导带与价带之间的能隙比较大,导致π 电子通过简单的激发并达到导带的几率非常低。因此,在室温常压等条件下,导带中的电子占据就会很少,所以电导率会变得非常低,没有表现出可观的导电性。如果通过氧化反应使得聚合物链失去电子(或者通过还原反应使得聚合物链得到电子),聚合物链的能隙中间就会出现新的载流子:激子,极化子或者双极化子;从而使得聚合物链产生导电性。[5-6]除了对聚合物进行氧化还原反应激发新的载流子使其导电以外,A.J. Heeger, A.G. MacDiarmid 和Hideki Shirakawa 等在 1977 年发现,聚乙炔中掺杂碘后其导电性提高了几个甚至几十个数量级。这一发现不仅让这三位科学奖共同获得了 2000 年诺贝尔化学奖 [7-9],而且使得有机导电聚合物得到了空前的关注,并逐渐使其发展为一个新型的交叉学科领域。在随后的研究中发现,除了聚乙炔具备掺杂后的强导电性,还有非常多的具有共轭π 体系的有机聚合物在掺杂后获得了良好的导电性,例如聚对苯,聚对苯撑乙烯,聚噻吩等。

有机导电聚合物优良的导电性以及特殊的光学特性使其本身在自然科学领域中成为理想的应 用材料。