o-Minimality and its Variations

Vagios Vlachos

Graduate Program on Login and Theory of Algorithms and Computation

2014

o-Minimality

Now the logo is visiblezzzz

emergor¶ oženberg

Weakly o-minimal structures

Let $\mathcal{M} = (M, <, \dots)$ be a linearly ordered structure.

Definition

A set $C \subseteq M$ is called convex, if for any $a,b \in C$ with a < b, and $c \in M$ such that a < c < b, then $c \in C$.

Definition

A structure \mathcal{M} will be called weakly o-minimal, if the definable subsets of \mathcal{M} are finite unions of convex sets in (M,<).

We say that a complete theory T is weakly o-minimal if every model of T is weakly o-minimal.

Theorem

Expanding an o-minimal structure with unary predicates for convex subsets yields a structure with weakly o-minimal theory.

of Algorithms and the state of the state of

Monotonicity

Let $\mathcal{M} = (M, <, P, Q, f)$ such that.

- \bullet M is the disjoint union of the interpretations of the unary relations P and Q
- P is the interpretation of \mathbb{Q} with the usual order
- Q is the interpretation of $\mathbb{Q} \times \mathbb{Q}$, lexicographically ordered
- P proceeds Q in < on M
- $f: Q \to P, f((n,m)) = n \text{ for all } n, m \in \mathbb{Q}$

M is weakly o-minimal and also $Th(\mathcal{M})$ is weakly o-minimal.

Monotonicity

of Algorithms and solution of the solution of

Weakly o-minimal structures

- \star We have a local monotonicity theorem.
- ★ Weakly o-minimal structures do not neccesserily have weakly o-minimal theory.
- ★ Weakly o-minimal structures do not neccesserily have prime models.

Theorem

Every weakly o-minimal ordered group is divisible and abelian.

$\overline{\text{Theorem}}$

Every weakly o-minimal ordered field is real closed.

of Algorithms and Cooperation . 1997 $\mu \prod \lambda \forall \text{ distinct of } 1997$

A definition for minimality

Let $L \subset L^+$ be languages, and \mathcal{K} be an elementary class of L-structures.

Definition

An L^+ -structure \mathcal{M} is \mathcal{K} -minimal if the the reduct $\mathcal{M}|_L$ is in \mathcal{K} and every L^+ -definable subset of M is definable by a quantifier-free L-formula. A complete L^+ -theory is \mathcal{K} -minimal if all its models are \mathcal{K} -minimal.

- ★ o-minimality is a special case of the above definition but not weak o-minimality.
- \star K-minimality is closed under reducts to languages containg L, and under expansion by constants.

of Algorithms and Computation - 1997

C-minimality

Let C(x; y, z) be a ternary realation, $L = \{C\}$, and \mathcal{K}_C be the class of L-structures satisfying the following axioms.

- $(\forall xyz)[C(x;y,z) \to C(x;z,y)]$
- $(\forall xyz)[C(x;y,z) \to C(y;x,z)]$
- $\bullet \ (\forall xyzw)[C(x;y,z) \to (C(w;y,z) \lor C(x;w,z))]$
- $(\forall xy)[x \neq y \rightarrow (\exists z \neq y)C(x; y, z)]$
- $(\exists xy)(x \neq y)$

Definition

A structure $\mathcal{M} = (M, C, ...)$ is C-minimal if its theory is \mathcal{K}_C -minimal.

of Algorithms and Supplies of Participation of Participa

P-minimality

Definition

Let $L = (+, -, \cdot, 0, 1, (P_n)_{n>1})$, where P_n are unary predicates. Regard \mathbb{Q}_p as an L-structure, letting P_n picking the n^{th} powers in $mathbold Q_p$. Let \mathcal{K}_P be the class of L-structures elementarily equivalent to \mathbb{Q}_p . Then if $L^+ \supseteq L$, an L^+ -structure is P-minimal if all models of its theory are \mathcal{K}_P -minimal

of Algorithms and Computed to the part of the part of

Summary

	o-minimal	weakly	C-minimal	P-minimal
Monotonicity	✓	local	1	✓
CDT	✓	✓	✓	iff it has Skolem functions
Prime Model	✓	X	Х	Х
Groups	DAG	DAG		
Fields	RCF	RCF	ACVF	
Exchange	✓	Х	X	✓
IP	Х	X	X	Х