9.1 案例分析报告指导——巧克力销量影响因素研究

2023年9月18日

案例分析报告 ——研究巧克力销量的影响因素分析

1背景介绍

【商品图片】下载开源图片,开源图片网站有:

1. unsplash: https://unsplash.com/

2. pexels: https://www.pexels.com/zh-cn/

图片来源:Jessica Loaiza@unsplash.com

【商品介绍】

巧克力是以可可制品(包括可可脂、可可粉或可可浆)和糖为主要原材料制成的一种甜食,口感细腻甜美,并伴随一股浓郁的香气,是休闲零食的一大品类。

【行业、市场现状、产量、产值、人均消费量等,以及数据来源】

2010年以来,全球巧克力产品销售规模稳步增长,Statista 数据显示,2019年全球巧克力产品销售规模达 1186.2亿美元,同比 2018年增长 4.4%,预计 2020年全年销售额可达 1237.0亿美元,到 2023年全球销售额将超过 1350亿美元。按照消费量计,2019年全球巧克力产品消费量达 1042.4万吨,同比 2018年增长 1.8%,预计 2020年全年消费量可达 1060.1万吨,到 2023年全球消费量将超过 1100万吨。

【商品的特点】

按照产品中使用代可可脂及是否添加辅料,可将巧克力产品进一步细分。常见的纯巧克力有黑巧克力、白巧克力、牛奶巧克力等,巧克力制品则有果仁巧克力、夹心巧克力、威化巧克力、酒心巧克力等。

【商品的品牌、即市场参与者】

目前国内巧克力的品牌主要有:德芙、费列罗、好时、Meiji、歌帝梵等,这些品牌的主要销售渠道为超市、电商平台等。

【商品所在行业的发展趋势、存在的问题】(非必需)

2 研究的问题

本文主要研究 JD 电商平台上影响巧克力销量的因素有哪些,以及这些因素和销量之间的数量关系。 所考虑的因素如下:

变量类型	变量名	详细说明	单位
因变量Y	巧克力的销量	JD 平台的巧克力的销量,这里使用评价数量作为代理	评价数
自变量 X1	价格	每 500g 巧克力的价格	元
自变量 X2	巧克力的品牌	德芙、好时等,	虚拟变量 0, 1
自变量 X3	巧克力的口味	黑巧克力、牛奶巧克力	虚拟变量 0, 1
		等	

3数据读取与处理

3.1 数据采集

本文通过应用数据采集软件(八爪鱼),从JD平台上采集和巧克力相关的数据。

采集方法如下: 1. 搜索 JD 平台, 使用关键词"巧克力", 获取到链接地址 2. 应用八爪鱼上智能爬取

功能,采集第 1 步的链接地址 3. 采集样本数为 400+ 个样本,并保存为 xlsx 格式 4. 转换 xlsx 格式文件为 csv 格式文件

3.2 数据读取

我们使用 pandas 库来读取相关的数据集文件: 巧克力数据集.CSV

- [1]: import pandas as pd
- [2]: data = pd.read_csv('datasets/巧克力小数据集.csv')
 data.head(1)
- [2]: 价格 价格 1 名称 _ 链接 \
 - 0 56.9 56.9 https://item.jd.com/2020621.html

名称 skcolor_ljg promowords pcommit_u

O 士力架花生夹心巧克力 1000g 量贩装 王嘉尔代言 礼物礼品横扫饥饿 (新旧包装随机发放) 巧克力 NaN NaN

店铺 链接 店铺 关键词

- O https://mall.jd.com/index-1000078502.html?from=pc 德芙京东自营旗舰店 自营
- [3]: import warnings warnings.filterwarnings('ignore')
- [4]: 价格 名称 评价数
 - O 56.9 士力架花生夹心巧克力 1000g 量贩装 王嘉尔代言 礼物礼品横扫饥饿 (新旧包装随机发放) NaN
 - 1 30.9 德芙 Dove 丝滑牛奶巧克力分享碗装 252g 代言人同款 休闲零食婚庆糖果礼品 (新旧包装随机发放) NaN
 - 2 30.9 德芙 Dove 香浓黑巧克力分享碗装 252g 代言人同款办可可脂公室零食婚庆喜糖(新旧包装随机发放) NaN
 - 3 139.9 费列罗 (FERRERO) 榛果威化糖果巧克力制品 婚庆喜糖零食伴手礼 节日礼物员工 福利 48 粒... NaN

4 30.9 德芙什锦碗装三种口味混合 249g 代言人同款 休闲零食礼物礼品 (新旧包装随机发放) NaN

397 25.8 德国进口 RitterSport 瑞特滋 (原瑞特斯波德) 加纳系列 81% 特浓黑巧克力 休闲零食... 10 万 + 条评价

398 39.9 好时 (Hershey's) 巧克力排块 30g*9 条 270g 盒装 曲奇奶香好时脆乐多 30g*9 条 1000+ 条评价

399 12.5 Solove100% 纯黑巧克力纯脂礼盒装极苦送女友零食纯可可脂 120g 72% 可可-苦中略甜... 500+ 条评价

400 79.9 好时之吻 Kisses 曲奇奶香好时脆乐多 休闲零食 糖果巧克力 结婚糖果 婚庆喜糖 散装 ... 50 万 + 条评价

 401
 32.0
 日本进口明治 Meiji 杏仁坚果 夹心巧克力 杏仁夹心巧克力

 88g
 1000+ 条评价

[402 rows x 3 columns]

3.3 标题提取信息

下面准备从名称这一列提取信息,提取方法如下:

```
[5]: # 将以下代码封装成函数

def func(data, key_word):
    result = []
    for i in data['名称']:
        if key_word in i:
            result.append(1)
        else:
        result.append(0)
    return result
```

```
[6]: data3 = data2[['价格', '评价数']]
```

```
[7]: data3['德芙'] = func(data2, '德芙')
    data3['好时'] = func(data2, '好时')
    data3['费列罗'] = func(data2, '费列罗')
    data3['Meiji'] = func(data2, 'Meiji')
    data3['歌帝梵'] = func(data2, '歌帝梵')
```

```
data3['牛奶巧克力'] = func(data2, '牛奶巧克力')
data3['夹心巧克力'] = func(data2, '夹心巧克力')
data3['黑巧克力'] = func(data2, '黑巧克力')
data3['榛果'] = func(data2, '榛果')
```

[8]: data3

```
价格
[8]:
                  评价数 德芙 好时
                                  费列罗 Meiji 歌帝梵 牛奶巧克力 夹心巧克
   力
      黑巧克力 榛果
   0
        56.9
                             0
                 NaN
                      0
                         0
                                   0
                                       0
                                            0
                                                  1
                                                       0
                                                          0
   1
        30.9
                 {\tt NaN}
                      1
                         0
                             0
                                   0
                                       0
                                            1
                                                          0
   2
        30.9
                             0
                                       0
                 NaN
                         0
                                   0
                                            0
                                                  0
                                                       1 0
   3
       139.9
                 NaN
                         0
                             1
                                   0
                                       0
                                                  0
                                                       0 1
                      0
                                            0
   4
        30.9
                 NaN 1
                         0
                             0
                                   0
                                       0
                                            0
                                                  0
                                                       0 0
               10 万 + 条评价
                                                 0
   397
        25.8
                           0
                              0
                                  0
                                        0
                                            0
                                                       0
                                                            1
   398
        39.9 1000+ 条评价
                        0
                           1
                                0
                                      0
                                          0
                                               0
                                                     0
                                                          0
   399
        12.5 500+ 条评价 0
                           0
                                0
                                      0
                                          0
                                               0
                                                     0
   400
       79.9 50 万 + 条评价
                              1
                                        0
                                            0
                                                       0
                                                            0
                           0
                                  0
                                                 0
   401
        32.0 1000+ 条评价 0
                                0
                                          0
                            0
                                      1
                                               0
                                                     1
                                                          0
```

[402 rows x 11 columns]

3.4 评价数处理

[12]: len(result)

[12]: 402

```
[13]: data3['评价数'] = result data3
```

价格 评价数 费列罗 Meiji 歌帝梵 牛奶巧克力 夹心巧克 [13]: 德芙 好时 黑巧克力 榛果 56.9 NaN 30.9 NaN30.9 NaN 139.9 NaN30.9 ${\tt NaN}$ 25.8 100000.0 39.9 1000.0 12.5 500.0 79.9 500000.0 0 32.0 1000.0

[402 rows x 11 columns]

3.5 价格处理

因为价格中有存在着暂无报价, 所以将其过滤并赋值为 NaN。

```
[14]: result = []
for i in data3['价格']:
    if i != '暂无报价':
        result.append(float(i))
    else:
        result.append(np.nan)
```

[15]: data3['价格'] = result

3.6 删除缺失值

观察发现,data3的评价数这一列有很多 NaN 这种缺失值,我们将其删除掉,也就是如果一行有缺失值,就将这一行全部删除。

```
[16]: data3=data3.dropna() data3
```

```
价格
                        评价数 德芙 好时
                                           费列罗 Meiji 歌帝梵 牛奶巧克力
                                                                           夹心巧
[16]:
          黑巧克力 榛果
     克力
     30
           56.9 1000000.0
                            0
                                     0
                                            0
                                                0
                                                       0
                                                              1
                                                                    0
                                                                       0
           30.9 5000000.0
     31
                                0
                                                0
                                                       1
                                                              0
                                     0
                                            0
                                                                    0
                                                                       0
     32
           30.9 5000000.0
                            1
                                0
                                     0
                                            0
                                                0
                                                       0
                                                              0
                                                                       0
     33
          139.9 2000000.0
                            0
                                     1
                                            0
                                                0
                                                       0
                                                                        1
           30.9
                                                       0
     34
                5000000.0
                                0
                                     0
                                            0
                                                0
                                                                    0
                                                                       0
     397
           25.8
                  100000.0
                            0
                                0
                                     0
                                            0
                                                0
                                                       0
                                                              0
                                                                    1
                                                                       0
     398
           39.9
                    1000.0
                                     0
                                            0
                                                0
                                                       0
                                                              0
                                                                    0
                                                                       0
     399
           12.5
                    500.0
                                0
                                     0
                                            0
                                                0
                                                       0
                                                              0
                            0
                                                                    1
                                                                       0
     400
           79.9
                  500000.0
                            0
                                     0
                                                       0
                                                                       0
     401
           32.0
                    1000.0
                            0
                                0
                                     0
                                            1
                                                0
                                                       0
                                                              1
                                                                    0
                                                                       0
```

[233 rows x 11 columns]

[17]: data3.to_csv('Chocolate.csv', index=False)

4 描述性统计

下面我们使用描述性统计的方法生成结果,

```
[18]: cleaned_data = data3
  cleaned_data.describe()
```

[18]:		价格	李	价数	德芙	好时	费列罗 🔟
[20]	⇔ \	VI 11	- '1	01 796	100	74 . 4	7/1/ 0
	count	233.000000	2.330000e+02	233.000000	233.000000	233.000000	
	mean	76.399957	3.627750e+05	0.193133	0.042918	0.133047	
	std	71.799304	9.528221e+05	0.395606	0.203110	0.340357	
	min	5.900000	0.000000e+00	0.000000	0.000000	0.000000	
	25%	29.900000	1.000000e+04	0.000000	0.000000	0.000000	
	50%	53.000000	5.000000e+04	0.000000	0.000000	0.000000	
	75%	109.000000	2.000000e+05	0.000000	0.000000	0.000000	

max	409.000000	5.000000e+0	6 1.00000	0 1.00000	0 1.00000	0
力	Meiji 榛果	歌帝	梵 牛奶	5巧克力	夹心巧克力	黑巧克
count	233.000000	233.000000	233.000000	233.000000	233.000000	233.000000
mean	0.021459	0.055794	0.171674	0.111588	0.287554	0.107296
std	0.145221	0.230018	0.377909	0.315537	0.453596	0.310156
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
50%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
75%	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000

我们观察到,价格的最小值和最大值分别是 5.9 元和 409 元,价格区间跨度较大。巧克力价格的平均值为 75 元,标准差为 70 元,价格的的差异较大。

评论数的最小值和最大值分别为0和50万份,平均值在3.63万份,标准差为9.53万份。

4.2 价格的分布 (单一变量)

```
[19]: import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = 'SimHei'

Z = cleaned_data['价格']
fig, ax = plt.subplots(figsize=(7,4))
ax.hist(Z, bins=50)
ax.set_title('价格的分布')
ax.grid()
plt.show()
```


通过观察上述价格分布,样布的价格大部分落在了 0 到 150 元这个区间里,有极少部分的样布大于 150 元。

接下来,我们使用箱型图进一步了解价格的分布。

```
[20]: Z = cleaned_data['价格']
fig, ax = plt.subplots(figsize=(7,4))
ax.boxplot(Z)
ax.set_title('价格的箱型图')
ax.grid()
plt.show()
```


通过绘制箱型图,我们可以清晰地看到 75% 的数据在 100 元以下,绝大多数的数据在 200 元以内,极少的样本价格在 200 元以上。

4.3 品牌的占比 (单一变量)

以下通过绘制饼状图,来观察德芙、好时和费列罗等品牌的市场占有率。

```
[21]: labels = ['德芙', '好时', '费列罗', 'Meiji', '歌帝梵']

X = cleaned_data[labels].sum()
autopct='%1.1f%%'
explode = (0.1, 0, 0, 0, 0)
```

不同品牌的市场占比

通过观察,我们可以知道德芙市场占有率最高,占比超过XX%,其次是费列罗,市场占有率为XX%,最少的为好时巧克力,市场占有率为X%。

产生以上的原因,可能是: 1. 德芙的市场营销做的比较好 2. 德芙的巧克力收到消费者的偏好(价格、口味、品牌等) 3. 经济学原理里的非完全竞争市场造成的,这种市场出现寡头、垄断等现象,部分品牌较高的市场占有率较高,具有市场支配地位

以上的猜测有待进一步分析和证实

```
[23]: labels = ['牛奶巧克力', '夹心巧克力', '黑巧克力', '榛果']

X = cleaned_data[labels].sum()
autopct='%1.1f%%'
explode = (0, 0, 0.1, 0)
```

plt.show()

通过观察,我们可以知道黑巧克力口味占有率最高,占比超过 XX%,其次是牛奶巧克力,市场占有率为 XX%,其次是榛果口味的巧克力,市场占有率为 XX%,最少的为杏仁巧克力,市场占有率为 X%。

我们猜测有以下原因: 1. 消费者的口味是不同的,三种口味的喜好的人群数量接近 2. 在电商平台上,市场具有高度的自由选择权,不存在渠道,或者商家强制销售或支配消费者的情况,消费者具有很强的自主权 3. 地区原因,国内消费者的特殊偏好

以上的猜想需要进一步分析和证实

4.4 价格和销售量的关系(两个变量)

我们希望通过绘制散点图来观察价格和销量之间的关系。

[25]: X = cleaned_data['价格']
Y= cleaned_data['评价数']

[26]: fig, ax = plt.subplots(figsize=(7,4))
ax.scatter(X, Y, marker='x') # 散点图的语句

```
ax.set_xlabel('价格')
ax.set_ylabel('销售量')
ax.set_title('价格和销量的散点图')
plt.show()
```


观察上图,可以得知销量最高的价格在 40 元到 50 元,销售量较高的商品价格分布较大,在 0 到 150 元左右。

定价在200元以上的巧克力销量普遍较低,在10万份以下。

结合电商平台不披露商品销量、但是披露消费者对于商品的评价数这个原因,我们容易理解为什么散点图里,散点呈阶梯式分布。

从消费者的角度,观察上图,价格分布在100元左右及以下的商品,呈现一个特点:价格越低,销量越好。销量最高可以达到5百万。但是价格继续下跌,销量反而下降了,产生这个的原因可能有:

- 1. 价格低的品牌或口味不受欢迎 2. 消费者担心质量问题
- 3. 消费者群体对于价格区间的认同,30-40元;并且存在跟随、羊群效应以上的猜想有待进一步证实。

我们还能够观察到,在50元左右样本数较多,但是销量普遍不高,产生的原因可能有:商家在这一

价格区间上竞争很激烈,但是总的市场份额又有限,造成每一个商家销量反而不高。

当价格超过 50 元,消费量呈现一直下跌的趋势,当价格接近 400 元,销量下滑到接近 0。这种下滑的原因可能有: 1.符合经济学规律,价格越高,销量越低,价格越高会抑制消费意愿 2.较高价格的商品本身并不受消费喜欢(口味、包装等),受众不高。

以上的猜想有待进一步证实

5数据集的划分

根据随机对照试验的理论,我们通常将数据集划分为训练集(training sets)和测试集(test sets),前者负责模型的训练任务,后者用来评价模型的表现。两者的划分比例按照经验,设置为 0.8:0.2。

[27]: cleaned_data.head(5)

[27]: 价格 评价数 德芙 好时 费列罗 Meiji 歌帝梵 牛奶巧克力 夹心巧克 黑巧克力 榛果 力 56.9 1000000.0 30 0 0 0 0 0 1 0 0 30.9 5000000.0 31 0 0 0 0 1 0 0 0 32 30.9 5000000.0 0 0 0 0 0 0 1 0 33 139.9 2000000.0 0 0 0 0 0 1 0 0 1 30.9 5000000.0 1 0 0 0 0 0 0 34 0 0

[28]: cleaned_data.columns

[28]: Index(['价格','评价数','德芙','好时','费列罗','Meiji','歌帝梵','牛奶巧克力','夹心巧克力',

'黑巧克力','榛果'],

dtype='object')

[29]: x = cleaned_data[['价格', '德芙', '好时', '费列罗', 'Meiji', '歌帝梵', '牛奶巧克力', '夹心巧克力',

'黑巧克力', '榛果']]

y = cleaned data['评价数']

一般将 80% 的原始数据集的子样本集作为样本内 (In-sample, IS),剩余 20% 作为样本外 (Out-of-sample, OOS)。样本总数为 500 个,一种简单的切割方法是直接指定前 80% 个样本为 IS,后面 20% 为 OOS,但是这种采样方法存在弊端。

当我们并不了解原始数据集是不是被刻意排列了,最好的办法是使用随机抽样,即随机抽 80% 为 IS,剩余的 20% 为 OOS。我们使用生成随机数的方法,生成随机序列,来从总体样本中随机抽取样 本:

6 多元回归分析模型

6.1 各个变量之间的相关系数

首先,我们计算单个自变量和因变量之间的相关系数,使用 pearson 相关系数来计算。

```
[31]: import scipy.stats as stats

[32]: r = stats.pearsonr(train_x['价格'], train_y)
print('pearson r:', r[0])
```

pearson r: -0.1321179802803698

接着,我们使用相关系数矩阵来刻画多个变量之间的关系。

```
[33]: train_df = train_x.copy()
train_df['评价数'] = train_y
```

[34]: <AxesSubplot:>

观察以上相关性的热力图,我们可以得出一些初步的结论: 1. 费列罗和榛果的相关性很高,数值为 XXX 2. Meiji 品牌和杏仁相关性很高,说明该品牌热衷于出品该口味的巧克力 3. 歌帝梵和价格相关性很高,说明相较其他品牌,其价格普遍偏高 4. 德芙和进口相关性为负,说明该品牌很有可能已经国产。

```
[35]: import statsmodels.api as sm
     cleaned_data['Intercept'] = 1.
     x = cleaned_data[['Intercept','德芙', '好时', '费列罗', 'Meiji', '歌帝梵', '牛奶
     巧克力','夹心巧克力',
            '黑巧克力', '榛果']]
     y = cleaned_data['评价数']
     x = x.astype(float)
     y.info()
     <class 'pandas.core.series.Series'>
     Int64Index: 233 entries, 30 to 401
     Series name: 评价数
     Non-Null Count Dtype
     233 non-null
                    float64
     dtypes: float64(1)
     memory usage: 3.6 KB
[36]: model = sm.OLS(y, x)
     result = model.fit()
     result.summary(alpha=0.05)
[36]: <class 'statsmodels.iolib.summary.Summary'>
     11 11 11
                                 OLS Regression Results
                                       评价数
     Dep. Variable:
                                               R-squared:
                                                                                0.
       →123
     Model:
                                       OLS
                                             Adj. R-squared:
                                                                              0.087
     Method:
                             Least Squares F-statistic:
                                                                              3.470
     Date:
                          Wed, 07 Jun 2023 Prob (F-statistic):
                                                                           0.000496
     Time:
                                  19:43:06 Log-Likelihood:
                                                                            -3522.6
     No. Observations:
                                            AIC:
                                                                              7065.
                                       233
                                             BIC:
     Df Residuals:
                                       223
                                                                              7100.
     Df Model:
                                         9
     Covariance Type:
                                 nonrobust
```

	coef		t 		[0.025	0.975]
Intercept	1.263e+05	1.24e+05			-1.18e+05	3.71e+05
德芙	8.237e+05	1.64e+05	5.036	0.000	5.01e+05	1.15e+06
好时	8.436e+04	3.03e+05	0.279	0.781	-5.12e+05	6.81e+05
费列罗	1.395e+05	2.66e+05	0.525	0.600	-3.84e+05	6.
⊶63e+05						
Meiji	-2.057e+05	4.26e+05	-0.483	0.629	-1.04e+06	6.33e+05
歌帝梵	-1.504e+05	2.68e+05	-0.561	0.576	-6.79e+05	3.
⊶78e+05						
牛奶巧克力	7.716e+	04 1.76e+05	0.439	0.66	61 -2.69e+0	05 4.
⊶23e+05						
夹心巧克力	9.186e+	04 2.11e+05	0.435	0.66	64 -3.24e+0	05 5.
⊶08e+05						
黑巧克力	3.505e+0	1.55e+05	0.226	0.82	2 -2.71e+0	5 3.
⊶41e+05						
榛果		2.81e+05				8.75e+05
Omnibus:	========	180.91				1.598
Prob(Omnib	us):	0.00	0 Jarque-B	era (JB):		1728.564
Skew:		3.16	2 Prob(JB)	:		0.00
Kurtosis:		14.75	O Cond. No	•		7.93
=======						======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

6.2 样本内训练模型

在样本内训练模型过程中,我们只能使用 train_x 和 train_y。

首先,初始化线性回归模型。

[37]: from sklearn import linear_model
model = linear_model.LinearRegression()

```
其次, 训练模型
```

```
[38]: model.fit(train_x, train_y)
[38]: LinearRegression()
    然后,生成预测结果
[39]: IS_predicted_y = model.predict(train_x)
    接着, 计算模型预测精度
[40]: IS_precision = model.score(train_x, train_y)
    最后,生成汇总信息(summary)
[41]: print('截距', model.intercept_)
     print("样本内 (IS) 训练集精度:%.2f" %IS_precision)
     截距 78451.01695632774
    样本内 (IS) 训练集精度:0.14
[42]: coef = ['%i*%s' %(model.coef_[i], train_x.columns[i])\
                        for i in range(len(model.coef_))]
     coef
[42]: ['-833* 价格',
      '869585* 德芙',
      '89594* 好时',
      '204314* 费列罗',
      '-210652*Meiji',
      '23402* 歌帝梵',
      '196495* 牛奶巧克力',
      '153875* 夹心巧克力',
      '168252* 黑巧克力',
      '342859* 榛果']
     '%i' %model.intercept_ + '+'.join(coef)
[43]:
```

[43]: '78451-833* 价格 +869585* 德芙 +89594* 好时 +204314* 费列罗 +-210652*Meiji+23402* 歌帝梵 +196495* 牛奶巧克力 +153875* 夹心巧克力 +168252* 黑巧克力 +342859* 榛果'

模型的回归方程:

$$=78451 - 833 * + 869585 * + 168252 * + \dots$$

根据方程可以得出以下结论,在保持其他自变量不变的情况下: 1. 价格每增加 1 元,销量减少 833 个单位 2. 如果品牌是德芙,销量将带来 86 万个单位的增加 3. 如果巧克力是黑巧克力,销量将带来 16.8 万个单位的增加 4. xxxxx

我们将样本内 IS 的 y 和预测出的 y 绘制到一张图片上

6.3 样本外表现

我们再来看看我们刚才训练的模型,在样本外的表现。

[45]: OOS_predicted_y = model.predict(test_x)

再次, 计算模型预测精度

[46]: OOS_precision = model.score(test_x, test_y)

最后,生成汇总信息 (summary)

[47]: print("样本外 (OOS) 测试集预测精度:%.2f" %OOS_precision)

样本外(00S)测试集预测精度:0.05

[49]: print("样本内 (IS) 训练集精度:%.2f" %IS_precision) print("样本外 (OOS) 测试集预测精度:%.2f" %OOS_precision)

样本内 (IS) 训练集精度:0.14

样本外 (DOS) 测试集预测精度:0.05

根据上述的回归分析结果,样本内和样本外的预测精度较为良好。

7结论与建议

7.1 结论

本报告基于京东平台的真实数据,采集了 XXX 个样本,分析和研究了巧克力销量的影响因素。

价格的最小值和最大值分别是 5.9 元和 409 元,价格区间跨度较大。巧克力价格的平均值为 75 元,标准差为 70 元,价格的的差异较大。评论数的最小值和最大值分别为 0 和 50 万份,平均值在 3.63 万份,标准差为 9.53 万份。通过分析,可以得知销量最高的价格在 40 元到 50 元,销售量较高的商品价格分布较大,在 0 到 150 元左右。定价在 200 元以上的巧克力销量普遍较低,在 10 万份以下。

通过分析,我们可以知道黑巧克力口味占有率最高,占比超过 XX%,其次是牛奶巧克力,市场占有率为 XX%,其次是榛果口味的巧克力,市场占有率为 XX%,最少的为杏仁巧克力,市场占有率为 X%。通过观察,我们可以知道德芙市场占有率最高,占比超过 XX%,其次是费列罗,市场占有率为 XX%,最少的为好时巧克力,市场占有率为 X%。

观察以上相关性的热力图,我们可以得出一些初步的结论:

- 1. 费列罗和榛果的相关性很高,数值为 XXX
- 2. Meiji 品牌和杏仁相关性很高,说明该品牌热衷于出品该口味的巧克力
- 3. 歌帝梵和价格相关性很高,说明相较其他品牌,其价格普遍偏高
- 4. 德芙和进口相关性为负,说明该品牌很有可能已经国产。

根据回归方程可以得出以下结论,在保持其他自变量不变的情况下:

- 1. 价格每增加1元,销量减少833个单位
- 2. 如果品牌是德芙,销量将带来86万个单位的增加
- 3. 如果巧克力是黑巧克力,销量将带来16.8万个单位的增加
- 4. xxxxx

通过观察,我们可以知道德芙市场占有率最高,占比超过 XX%,其次是费列罗,市场占有率为 XX%,最少的为好时巧克力,市场占有率为 X%。

7.2 不足

以上模型在样本内 (IS) 训练集精度:0.14, 样本外 (OOS) 测试集预测精度:0.05。说明整体预测精度 有限, 我们可以通过一下方式改进: 1. 增大样本数量 2. 增加更多能预测巧克力销量的信息, 例如商家的营销能力、消费者的偏好等等。

7.3 建议

对商家的建议: 1. 多销售一些德芙品牌巧克力,带来更多的销量,从而带来额外的利润 2. 多销售黑巧克力口味的巧克力,带来更多的销量,从而带来额外的利润 3. 找到价格和销量的平衡点,指定合理的价格,例如降低价格,提高销量,使得利润最大化。

附录: 绘制词云图

拼接名称为一个长字符串:

```
[51]: text = ''
for i in data['名称']:
    text += i
```

选择颜色:

```
[52]: from wordcloud import get_single_color_func
color_func = get_single_color_func('maroon')
```

选择图片:

图片来源: 百度,图片路径: 'image/chocolate.jpeg'

```
[53]: import imageio as imageio mask_img = imageio.imread('image/chocolate.jpeg') print('图片大小: ', mask_img.shape)
```

图片大小: (582, 800, 3)

```
min_font_size=5,
    width=1500,
    height=1500,
    background_color="white",
        color_func=color_func,
        repeat=True)
wc.generate(text)
```

[54]: <wordcloud.wordcloud.WordCloud at 0x13638a760>

```
[55]: import matplotlib.pyplot as plt
plt.imshow(wc)
plt.axis("off")
#plt.savefig("image/ciyun_cn.jpg", dpi=500) # 或者保存成.png .sug .pdf .eps 等
plt.show()
```


附录:决策树模型

决策树模型,作为一类用来进行分类任务的学习模型,它处理的标签需要离散型的变量,对于本文 中商品的销量,我们需要将其转换为几个类别。

划分销量等级

[246]: [5000.0, 20000.0, 100000.0, 500000.0]

初始化销量为'1级'

```
[247]: cleaned_data['销量等级'] = '1 级'
cleaned_data.loc[cleaned_data['评价数'] < quantile[0], '销量等级'] = '1 级'
cleaned_data.loc[cleaned_data['评价数'] > = quantile[0], '销量等级'] = '2 级'
cleaned_data.loc[cleaned_data['评价数'] > = quantile[1], '销量等级'] = '3 级'
cleaned_data.loc[cleaned_data['评价数'] > = quantile[2], '销量等级'] = '4 级'
cleaned_data.loc[cleaned_data['评价数'] > = quantile[3], '销量等级'] = '5 级'
```


构建决策树模型并训练

重新选取自变量x和因变量y

```
[250]: x = cleaned_data[['价格', '德芙', '好时', '费列罗', 'Meiji', '歌帝梵', '牛奶巧克力', '夹心巧克力', '黑巧克力', '榛果']]
y = cleaned_data['销量等级']
```

进行随机样本划分

构建决策树模型并训练

```
[252]: from sklearn import tree tree_clf = tree.DecisionTreeClassifier(criterion="gini", max_depth=20) # 增大树的深度,必然会提高 决策树的分类精度 tree_clf.fit(train_x, train_y)
```

[252]: DecisionTreeClassifier(max_depth=20)

计算决策树的分类精度

```
[253]: tree_clf.score(train_x, train_y)
```

[253]: 0.9193548387096774

绘制决策树,控制树的深度为3

观察决策树,我们可以了解到价格这个变量是首要的划分标准。总样本数为186,其中销量等级为5的样本为34个,其中20个样本价格小于42.895,价格大于42.9元的样本为14个。继续观察销量

等级 5, 其中的 18 个样本都是价格小于 31.4, 而 14 个样本都是黑巧克力小于 0.5, 即为 0, 也就是不是黑巧克力。总结,价格小于 31.4, 并且不是黑巧克力的样本容易出现超级销量。