Automação no Processo de Impressão de Placas de Circuito Impresso

1st Gustavo Cavalcante Linhares Universidade de Brasília 16/0007810 2nd Luiz Eduardo Alves Machado Universidade de Brasília 16/0013623

Resumo — O presente documento tem como objetivo mostrar todos aspectos da proposta de projeto final relacionado a disciplina de Eletrônica Embarcada. No caso trata-se de uma semi automação no processo de fabricação de placas de circuito impresso (PCI's), tendo como partida tornar a qualidade e o método de fabricação tanto mais fáceis quanto eficientes.

Keywords—CNC machine, PCI, PCB

I. Introducão

A ideia do projeto veio da intenção de estudar o processo de fabricação das PCIs (Placas de Circuito Impresso). O interesse pelos circuitos aumentou durante o período de estudo sobre circuitos eletrônicos. Juntando isso com a necessidade de criar um projeto que ajudasse com a prototipação de projetos ao longo da vida acadêmica, surgiu uma ideia que facilitasse a produção (impressão) de uma placa de circuito impresso.

Existem vários tipos de métodos de fabricação caseira de PCI, como por exemplo a transferência térmica [1] ou o método usando tinta fotossensível [2], mas devido à complexidade no processo de fabricação destas placas geralmente, quando feitas em casa, o resultado não é satisfatório. Problemas estes geralmente em relação a qualidade, durabilidade e eficiência das placas decorrentes da falta de equipamentos certos e do seguimento correto dos métodos para a confecção das mesmas.

Então devido os motivos apresentados acima torna-se necessario tornar o método de impressão de PCI mais simples e mais automatizado com passos e com processos bem definidos, mas mesmo assim mantendo o máximo de qualidade e confiabilidade possíveis.

Figura 01 - Placa PCB com acabamento em baixa qualidade

Outra possível justificativa seria a não existência de um equipamento, que seja acessível para a maioria dos projetistas, e que possa ajudá-los na produção do produto em pequena escala. Máquinas de gravação de placas de circuito [3] ainda estão inviáveis devido seu alto preço e a necessidade de montagem de todo equipamento pelo próprio usuário.

Figura 02 - Máquina de Gravação de Placas de Circuito

II. Objetivos

- Projetar um equipamento que facilite a impressão de PCIs
- Que o equipamento seja capaz de pintar placas de cobre de tamanho 10X10cm
- A capacidade de printar a imagem do circuito na placa através de seu GCode

III. DESENVOLVIMENTO

Como se pode notar os objetivos do PC2 foram mudados em relação ao presente documento, isso ocorreu dado uma conversa com o professor e com a obtenção da estrutura (Figura 03) para o nosso projeto.

Dado o fato do objetivo anterior de pintar a placa exigir muito da calibração e criação de uma máquina muito complexa, foi pensado que com uma CNC seria mais viável a impressão do circuito diretamente por GCode cuja é uma linguagem que instrui máquinas e para onde elas devem se moyer.

Assim a construção de uma CNC machine [6] juntamente com todo funcionamento será o novo foco do projeto.

Figura 03 - Estrutura para CNC machine

A plataforma usada para o desenvolvimento dos códigos, nessa etapa do projeto, foi o software chamado Code Composer. Essa IDE tem como objetivo o completo transparência do funcionamento das launchpads da texas instruments, no caso a placa usada foi a MSP430G2ET.

OBJETIVOS CUMPRIMENTO DE REQUISITOS

HARDWARE

Para cumprir os requisitos do projeto não serão necessários o uso de sensores, o que traz a parte fundamental e de maior dificuldade do desenvolvimento, os motores. Lista dos equipamentos de hardware utilizados na prototipagem:

- MSP430G2ET
- Drive ponte H L298N
- Micro servo Motor SG90
- 2 motores de passo
- 2 Drivers Motor de Passo EasyDriver A3967
- Estrutura para CNC Machine
- Fonte externa de 12V

O controle de todo sistema e seus periféricos será realizado pelo MSP430. Para a impressão da placa serão necessários dois motores de passo, 2 drivers Motor de Passo EasyDriver A3967 e uma ponte H para o controle dos mesmos, sendo construído assim uma CNC machine, assim cada motor de passo estaria relacionado a um eixo de movimento. Com relação a subida e descida do lápis o micro servo motor será o indicado pelo motivo de não necessitar de mais uma ponte H e pelo seu baixo custo.

Para o encaixe dos motores na estrutura serão necessários o desenvolvimento de peças em 3D (Figura 04), que estão sendo projetadas no software CATIA e configuradas para impressão no software Cliever Studio Pro.

Figura 04 - Modelos 3D dos encaixes das rodas

Um esquemático da configuração do MSP430 com os motores de passo pode ser visto na figura 05. Os fios que ligam o MSP430 com Easydriver,ao lado direito, (fio verde e vermelho) são para o controle da direção dos motores e seus passos, já o fio azul é para habilitar a parada do motor, para que ele não esquente. Os quatro fios que saem do motor são ligados do lado esquerdo cuja tambem fica a alimentação de 12V ligação dos fios preto e vermelho na parte superior esquerda.

Figura 05 - Esquemático da ligação com motores

SOFTWARE

Com relação a parte de software, foi desenvolvido um código que controla o movimento dos motores de passo, sujo pode ser visto no apêndice. Agora com o entendimento do controle da direção dos motores o desafio é entender o funcionamento do GCode e assim começar a desenvolvê-lo, isso de forma mais rápida possível devido ao atraso causado na mudança dos objetivos do projeto.

IV. Conclusões

Ainda existe um grande caminho para a conclusão do projeto, devido a dificuldade da necessidade de sincronização de diversos motores e desenvolvimento do GCode. Fatores como a falta de experiência com microcontroladores e de equipamentos básicos estão atrasando significativamente o fluxo do projeto, porém o avanço na estrutura, na aquisição dos equipamentos e na familiarização das ferramentas de software foram alcançadas. Assim com a base sendo consolidada nessa parte, basta investir mais tempo na lógica e na programação para que o projeto continue a fluir positivamente.

V. REFERÊNCIAS

- [1] Transferência de Calor PCB, http://destro.todavia.com.br/tutorial_termico.php
- [2] Metodo de Transferência de Calor, www.youtube.com/watch?v=NtVEvFsT46I
- [3] Máquina de Gravura PCB, produto.mercadolivre.com.br/MLB-879960137-mini-gravad ora-de-mesa-router-cnc-3-eixos-completa-\ JM
- [4] Mini CNC machine, www.youtube.com/watch?v=kcz1ygh20c0
- [5] Como Fazer Placa de Circuito PCI PCB Profissional, www.youtube.com/watch?v=NtVEvFsT46I\&t=284s
- [6] O que é Usinagem CNC, https://www.mecanicaindustrial.com.br/689-o-que-e-usinage m-cnc/

APÊNDICE

```
1#include <msp430.h>
 2 #define PASSOS 1600
  3//-----Codigo Principal-----
 4 int main(void)
 5 {
      WDTCTL = WDTPW | WDTHOLD; // stop watchdog timer
 6
 7
      P10UT |= (BIT1|BIT2);
                                 // Pinos controladores do sentido e numero de passos
 8
      P1DIR |= (BIT1|BIT2);
 9
      volatile unsigned int p;
 10
      while(1){
          P10UT |= BIT2; // Sentido de rotação
 11
          for (p=0; p < PASSOS; p++) // Numero de passos andados
i 12
 13
           {
             P10UT |= BIT1;
 14
15
             atraso(2);
             P10UT &= ~BIT1;
16
17
             atraso(2);
18
 19
           atraso(1000);
 20
           P10UT &= ~BIT2; // Sentido de rotação
           for (p=0; p < PASSOS; p++) // Numero de passos andados
i 21
 22
            {
              P10UT |= BIT1;
 23
 24
              atraso(2);
 25
              P10UT &= ~BIT1;
              atraso(2);
 26
 27
            }
 28
            atraso(1000);
 29
 30
      }
 31
 32}
 33 // ------Funções-----
 34 void atraso(volatile unsigned int i)
 35 {
 36
      while((i--)>0);
 37}
```