Università degli Studi di Salerno. Corso di Laurea in Informatica. Corso di Ricerca Operativa A.A. 2004-2005. Esame del 15/9/2005

Nome	Cognome
Matricola /	

1. (4 punti) Dato il grafo in figura, determinare il taglio di capacità minima ed il flusso massimo tra *S* e *T* che la rete può sostenere applicando l'algoritmo del grafo ausiliario. Scrivere **il procedimento** descrivendo i grafi ausiliari utilizzati.

2. Considerare il seguente problema di programmazione lineare:

max
$$-2x_1 + x_2$$

con i vincoli:

$$x_1 \leq 5$$

$$x_1 + x_2 \leq 6$$

$$x_1 + x_2 \le 6$$

 $-x_1 + x_2 \le 4$

$$x_1, x_2 \ge 0$$

- a) (Punti 3) Determinare graficamente la soluzione ottima
- b) (Punti 4) Formulare il duale
- c) (Punti 3) Calcolare le coordinate di tutti i vertici della regione ammissibile del primale
- d) (Punti 4) Riscrivere il problema utilizzando il teorema della rappresentazione

3.	(6 punti) Definire e formulare il problema del massimo flusso.
4.	Una società produttrice di televisori deve decidere la quantità di televisori a colori e la quantità di televisori in
т.	bianco e nero da produrre. Una ricerca di mercato indica di non produrre più di 4000 unità al mese di TV a colori e
	non più di 5000 unità al mese di TV in bianco e nero. Inoltre le unità di TV in bianco e nero prodotte deve essere almeno pari al doppio di quelle a colori. Una TV a colori richiede 20 h di manodopera mentre una TV in bianco e
	nero ne richiede 15. Il massimo numero di ore di manodopera a disposizione della società ogni mese è pari a 8000.
	Il profitto unitario per la produzione di TV a colori ed in bianco e nero è pari rispettivamente a 60 EURO e 30 EURO. La società vuole determinare l'ammontare di TV da produrre per massimizzare i propri profitti.
	a) (4 punti) si formuli il corrispondente modello di programmazione lineare (n.b. non risolvere il problema).

5. Si consideri il seguente problema di programmazione lineare :

max x₂

con i vincoli:

$$\begin{array}{l} x_1 + x_2 \leq \, 6 \\ \text{-}x_1 + x_2 \, \leq \, k \\ x_1 \, , \, x_2 \! \geq \! 0 \end{array}$$

- a) (Punti 3) determinare tutti i valori di k per cui la base B=(2,3) risulti ammissibile
- b) (Punti 4) Verificare se per k=1 la base B=(2,3) è ottima ed in caso negativo effettuare **una** iterazione del simplesso per determinare la nuova soluzione ammissibile.

Università degli Studi di Salerno. Corso di Laurea in Informatica. Corso di Ricerca Operativa A.A. 2004-2005. Esame del 15/9/2005

Nome	Cognome
Matricola	=

Università degli Studi di Salerno. Corso di Laurea in Informatica. Corso di Ricerca Operativa A.A. 2004-2005. Esame del 15/9/2005

Nome	Cognome
Matricola /	