

TMA4183 Opt. II Spring 2017

Exercise set 1

Norwegian University of Science and Technology Department of Mathematical Sciences

Reading material: Chapter 1 & Section 2.1–2.2 from [Tröltsch].

1 We consider a(n artificial) finite-dimensional optimal control problem for $y \in \mathbb{R}^2$ with a control parameter $u \in \mathbb{R}$.

The state equation is:

$$y_1 + y_2 = u,$$
 (1)
 $y_2 = 2u,$

and the const functional is

$$J(y,u) = \frac{1}{2}[(y_1 - 1)^2 + (y_2 - 2)^2] + \frac{\lambda}{2}u^2,$$
 (2)

where $\lambda > 0$.

- a) Derive the explicit expressions for the reduced cost functional and its gradient.
- **b)** Formulate the adjoint problem and compute the reduced gradient with the help of the adjoint state.
- c) Assuming $U_{\text{ad}} = \mathbb{R}$ state the first order necessary optimality conditions for this problem.
- 2 Let V be a normed space and V^* be its dual. Verify the fact that the expression

$$||f||_{V^*} = \sup_{x \in V \setminus \{0\}} \frac{|f(x)|}{||x||_V}$$

defines a norm on V^* .

- Let H be a Hilbert space, and consider an arbitrary. Consider an arbitrary $y \in H$. Show that the function f(x) = (x, y) defines a bounded linear functional.
- Let H be a Hilbert space, and consider an arbitrary $f \in H^* \setminus \{0\}$. Let us define $C = \{x \in H \mid f(x) = 1\}$.
 - a) Show that C is a non-empty closed convex set.
 - **b)** Let $\hat{y} \in H$ be an arbitrary vector in C. Show that $C = \hat{y} + \ker f$, where $\ker f = \{x \in H \mid f(x) = 0\}$.

- c) Let $\bar{y} \in H$ be the shortest vector in C, that is, $\bar{y} = \arg\min_{y \in C} \|y\|_H^2$. Show that $\bar{y} \perp \ker f$, that is, $(\bar{y}, z) = 0$ for all $z \in \ker f$. Hint: consider perturbations of $\bar{y} \pm \delta z$, where $\delta \in \mathbb{R}$ and $z \in \ker f$. Use the optimality of \bar{y} .
- **d)** Show that $f(x) = (\tilde{y}, x)$, where $\tilde{y} = \bar{y}/\|\bar{y}\|^2$. Hint: consider two cases: $x \in \ker f$ and $x \notin \ker f$. In the latter case $x/f(x) \in C$, to which the result from **b**) can be applied.
- e) Show that $||f||_{H^*} = ||\tilde{y}||_H$.

The last exercise is known as the Riesz representation theorem, which constructs an isometry from H^* into H.