Graphs

What is a Graph?

 \blacksquare A graph G = (\lor ,E) is composed of:

V: set of vertices

E: set of edges connecting the vertices in V

An edge e = (u,v) is a pair of vertices

Applications

electronic circuits

CS16

networks (roads, flights, communications)

Terminology Adjacent and Incident

- If (v₀, v₁) is an edge in an undirected graph,
 - vo and vo are adjacent (w.r.t.vertices)
 - The edge (v₀, v₁) is **incident** on vertices v₀
 and v₁ (w.r.t.edges)
- If $\langle v_0, v_1 \rangle$ is an edge in a directed graph
 - vo is adjacent to vo, and vo is adjacent from vo
 - The edge $\langle v_0, v_1 \rangle$ is incident on v_0 and v_1

Degree of a Vertex

- The degree of a vertex is the number of edges incident to that vertex
- For directed graph,
 - the in-degree of a vertex v is the number of edges that have v as the head
 - the out-degree of a vertex v is the number of edges that have v as the tail

Examples

directed graph in-degree out-degree

 G_3

Path

path: sequence of vertices $v_1, v_2, \dots v_k$ such that consecutive vertices v_i and v_{i+1} are adjacent.

More Terminology

simple path: no repeated vertices

cycle: simple path, except that the last vertex is the same
 as the first vertex

Even More Terminology

•connected graph: any two vertices are connected by some path

subgraph: subset of vertices and edges forming a graph

Subgraphs Examples

Connectivity

- Let n = #vertices, and m = #edges
- A complete graph: one in which all pairs of vertices are adjacent
- How many total edges in a complete graph?
 - Each of the n vertices is incident to n-1 edges, however, we would have counted each edge twice! Therefore, intuitively, m = n(n-1)/2.
- Therefore, if a graph is not complete, m < n(n I)/2

$$n = 5$$

 $m = (5 * 4)/2 = 10$

More Connectivity

- n = #vertices
- m = #edges
- For a tree m = n 1

$$\mathbf{n} = 5$$

$$\mathbf{m} = 4$$

If m < n - 1, G is not connected

$$\mathbf{n} = 5$$

$$\mathbf{m} = 3$$

Directed vs. Undirected Graph

- An undirected graph is one in which the pair of vertices in a edge is unordered, $(v_0, v_1) = (v_1, v_0)$
- A directed graph is one in which each edge is a directed pair of vertices, $< v_0$, $v_1 > != < v_1, v_0 > tail$ head

Graph Representations

- Adjacency Matrix
- Adjacency Lists

Adjacency Matrix

- Let G=(V,E) be a graph with n vertices.
- The adjacency matrix of G is a two-dimensional n by n array, say adj_mat
- If the edge (vi, vj) is in E(G), adj_mat[i][j]=1
- If there is no such edge in E(G), adj_mat[i][j]=0
- The adjacency matrix for an undirected graph is symmetric; the adjacency matrix for a digraph need not be symmetric

 G_4

Adjacency Lists (data structures

Each row in adjacency matrix is represented as an adjacency list.

```
#define MAX_VERTICES 50

typedef struct node *node_pointer;

typedef struct node {
    int vertex;
    struct node *link;
};
node_pointer graph[MAX_VERTICES];
```


An undirected graph with n vertices and e edges ==> n head nodes and 2e list nodes

Linked Representation of Graph

S. Graceline Jasmine, SCSE, VIT

Drawbacks of sequential representation of G in memory

Sparse matrix
Great deal

of space will be wasted

Adjacency List

Nod	Adjacency List
е	
Α	B, C, D
В	С
С	
D	C, E
Е	С

Adjacency Matrix

	A	В	С	D	Е	
Α	0	I	I	I	0	
В	0	0	Ī	0	0	
С	0	0	0	0	0	
D	0	0	I	0	Ī	
Ε	0	0	ı	0	0	

Linked Representation

NODE LIST

Linked Representation

EDGE LIST

DEST LINK Pointer to the Other next node in the information, like same adjacency Point to the INDEGREE, list location in the **OUTDEGREE** NODE List of the and the STATUS destination node of the node of the edge during execution of an algorithm

Graph G in memory

12

	l
	2
STAR	3
4	→ 4
	5
	6
	7
	8
	9
	10

Node NEXTADJ			
	3		
С	9	0	
	8		
Α	7	3	
	I		
Е	0	11	
В	2	6	
	10		
D	6	I	
	0		

	DEST	LINK
. [2 (c)	7
2		5
3	7 (B)	10
4	9 (D)	0
5		8
6	2 (C)	0
7	6 (E)	0
8		9
9		12
10	2 (C)	4
П	2 (c)	0