

-2- BASIC CCC.-

10402 162

Publication number:

0 329 997

A2

Office européen des brevets

(3)

EUROPEAN PATENT APPLICATION

(1) Application number: 89101892.1

(1) Int. Cl. H04Q 7/04 , H04B 7/26

(2) Date of filing: 03.02.89

(3) Priority: 22.02.88 US 158960

(1) Applicant: MOTOROLA, INC.
1303 East Algonquin Road
Schaumburg Illinois 60196(US)

(4) Date of publication of application:
30.08.89 Bulletin 89/35

(1) Inventor: Schaeffer, Dennis R.
266 Mohawk Trail
Buffalo Grove Illinois 60089(US)

(5) Designated Contracting States:
AT BE CH DE ES FR GB GR IT LI LU NL SE

(1) Representative: Dunlop, Hugh Christopher et al
Motorola European Intellectual Property
Operations Jays Close Viables Industrial
Estate
Basingstoke, Hampshire RG22 4PD(GB)

(6) Reuse groups for scan monitoring in digital cellular systems.

(7) An improved TDMA radiotelephone cellular communication system (122, 115, 199) employs an improved cell site scan monitoring technique. The technique includes monitoring radiotelephone calls, and tracking and recording their signal qualities. The records are used to maintain and determine which frequencies and which time partitions at the base site equipment (115, 119) are being utilized for radiotelephone communication. When a new call assignment is required at a cell site (115 or 119), it is assigned to a time partition of a base site equipment frequency in a frequency prioritized manner such that radiotelephone calls are concentrated within each frequency so as to reduce the number of frequencies carrying radiotelephone calls.

Good for claims

TDMA system

11 & 17

EP 0 329 997 A2

REUSE GROUPS FOR SCAN MONITORING IN DIGITAL CELLULAR SYSTEMS

Field of the Invention

The present invention relates generally to radio communication systems, and, more particularly, to digital cellular communication systems and a technique for improving the channel usage efficiency in such systems during the process of assigning channels and performing "handoffs", i.e., transferring a radiotelephone call from a voice channel within one coverage area to a voice channel within an adjacent coverage area.

Background

In conventional analog cellular communication systems, a plurality of base sites are used to provide associated geographical coverage areas within which radiotelephones communicate. Each base site is controlled by the system's central switch controller. When a radiotelephone call is to be handed-off from a communication channel at the host base site (the base site currently sustaining the call) to a communication channel at an adjacent base site, the system must determine which adjacent base site provides the best coverage area for the handoff. This is typically accomplished by instructing the equipment at each adjacent base site to monitor the channel used by the radiotelephone to be handed-off. Using scan receivers to monitor the radiotelephone channels, the equipment at each adjacent base site reports the signal strength of the radiotelephone's signal to the system's switch controller. The switch controller then compares the strongest reported signal strength with the signal strength from the radiotelephone at the host base site. When the latter falls below that of the former, the radiotelephone is instructed to reconfigure its transceiver to effect the handoff.

In a time division multiplex access (TDMA) cellular communication system, there are typically a plurality of radio frequencies employed at each base site to provide the appropriate allocation of voice communication channels for the base site's associated coverage area. Each frequency is time partitioned into several time slots, each of which may carry radiotelephone communication.

When a radiotelephone call is to be handed-off between coverage areas in a TDMA cellular communication system, the system also determines to which base site the call should be handed-off by the adjacent base sites monitoring the channel used by the radiotelephone. However, because each frequency may be carrying a radiotelephone

communication, the base sites' scan receivers can become excessively busy monitoring each time slot in each frequency for each radiotelephone's signal strength.

5 This problem is aggravated when each base site includes only a few scan receivers which are time shared to monitor the frequencies. For each frequency on which at least one radiotelephone is a handoff candidate, the scan receiver must adjust its oscillator to that frequency and receive the information transmitted thereon. Such oscillator adjustment introduces a significant delay which is inherent in most every receiver. As the number of potential handoff candidates increases, this inherent delay can become unacceptable.

10 Accordingly, a scan receiver monitoring technique for such base sites in a TDMA cellular communication system is needed which overcomes the above described deficiencies.

20

Objects of the Present Invention

25 It is a general object of the present invention to provide a TDMA cellular communication system which overcomes the above described shortcomings.

30 It is a more particular object of the present invention to provide a cellular communication system which increases the usage efficiency of scan receivers in such systems by assigning radiotelephone calls to time partitions of the cell sites in a frequency prioritized manner such that radiotelephone calls are concentrated within each frequency so as to reduce the number of frequencies carrying radiotelephone calls.

35 An additional object of the present invention includes increasing the usage efficiency of scan receivers in a radiotelephone frequency hopping TDMA cellular system by assigning radiotelephone calls to time partitions of the cell sites's frequencies in a frequency prioritized manner and by measuring radiotelephone call signals by the scan receiver in a delayed manner such that the amount of frequency programing to each scan receiver is minimized.

Brief Description of the Drawings

50

The features of the present invention which are believed to be novel are set forth with particularity in the appended claims. The invention, together with further objects and advantages thereof, may best be understood by making reference to the

following description taken together with the accompanying drawings, in which reference numerals identify the elements, and wherein:

Fig. 1a is a diagram of a cellular communication system including two base sites and their respective equipment, according to the present invention;

Fig. 1b is an expanded diagram of the base site equipment 115 or 119 of Fig. 1a., according to the present invention;

Fig. 2 is diagram illustrating a frequency assignment for the scan receiver 146 or 148 of Fig. 1b, according to the present invention;

Fig. 3 is a flowchart illustrating a frequency assignment for the scan receiver 146 or 148 of Fig. 1b, according to the present invention;

Fig. 4 is a flowchart illustrating a switch controller technique for executing time slot and frequency assignments for the scan receiver 146 or 148 of Fig. 1b, according to the present invention; and

Fig. 5 is a flowchart illustrating an alternative frequency assignment for the scan receiver 146 or 148 of Fig. 1b, according to the present invention.

Detailed Description of the Preferred Embodiment

The arrangement disclosed in this specification has particular use for handing-off radiotelephone calls between cells in a TDMA cellular telephone infrastructure. More particularly, the arrangement disclosed herein is directed to improving the usage efficiency of scan receivers with respect to channel assignments in such systems for call initiations and handoffs.

Fig. 1a illustrates a novel cellular system which includes base site equipment 115 and 119 for two geographic radio frequency (RF) coverage areas (cells) 110 and 112, respectively. For cell 110, the base site equipment 115 includes a set of base transceivers 114 and a base site (1) controller 116. For cell 112, the base site equipment 119 includes a set of base transceivers 118 and a base site (2) controller 120 with substantially identical circuitry as the base site equipment 115.

For purposes of exemplifying a handoff operation according to the present invention, a radiotelephone unit 130 is depicted in transition from cell 110 to cell 112.

Overall control of the base site equipment 115 and 119 is provided by a signal processing unit 121 of a cellular switch controller 122. The switch controller 122 also includes a digital switching network 123 for controlling the call switching operation between a public switched telephone network (PSTN) 131 and the base site equipment 115 and

119. A set of pulse code modulation (PCM) converters 125 are included in the cellular switch controller 122 for interfacing the system to the PSTN 131. For general details of a conventional cellular system, reference may be made to "Cellular Voice and Data Radiotelephone System", Labedz et. al., U.S. patent no. 4,654,867. For further details of a conventional cellular switch controller, reference may be made to U.S. Pat. No. 4,268,722, Little et al. Both of the above U.S. patents are assigned to the same assignee and incorporated herein by reference.

In Fig. 1b, the base site equipment 115 or 119 is shown in expanded form. The radio portion of the base site equipment is conventional. It includes a set of transmit antennas 132, a set of receive antennas 134, a transmitter-combiner 136, a receiver interface equipment 138, a transceiver 140 and audio paths 141 directed to/from the switch controller 122 of Fig. 1a. Transceiver functions such as frequency programming, transmit keying, transmit power control, alarm and status monitoring, and message passing are controlled by a microcomputer 142 through a microcomputer interface 144. A conventional scan receiver 146 or 148 monitors the signal strength of radiotelephone transmissions in adjacent cells and provides an output 150 which is used by the microcomputer 142 to determine when radiotelephones in such adjacent cells are handoff candidates. Measuring radiotelephone signal strength with scan receivers is typical in most analog cellular systems. For example, in U.S. Pat. No. 4,485,486, Webb et al., a scan receiver implementation for such a system is described. For further details of conventional base site equipment, reference may be made to U.S. Pat. No. 4,485,486. Both of the above referenced U.S. patents are assigned to the same assignee and incorporated herein by reference.

According to the present invention, the microcomputer 142 also controls the scan receivers 146 and 148. The particular method of control, which is unique to the present invention, is discussed in more detail with Figs. 2,3 and 4. An analog to digital converter (ADC) 152 is used to convert the outputs 150 provided by the scan receivers 146 and 148 to digital form for analysis by the microcomputer 142.

Each scan receiver 146 or 148 generates an additional (audio) output 154 which is used by a creambie detector 156 or 158 to detect the beginning of a radiotelephone transmission. In a TDMA cellular communication system, the radiotelephones are typically synchronized with the base site equipment at each of the cell sites. A radiotelephone transmits and receives messages by accessing a timeslot of a particular frequency, as assigned by the base site equipment. Each message,

received or transmitted, begins with a preamble consisting of a predetermined signal pattern. For more detail, reference may be made to "A Digital FD/TDMA System for a New Generation", pages 41-46 of "Primer for the Future ... DIGITAL TECHNOLOGY", L.M. Ericsson Telephone Company, June, 1987. The preamble detector 156 or 158 may be implemented using a conventional multi-bit digital comparator circuit.

Accordingly, the preamble detector 156 or 158 detects the preamble of each radiotelephone message received by the respective scan receiver 146 or 148. After each such detection, the preamble detector 156 or 158 informs the microcomputer 142, via the microcomputer interface 144, so that the microcomputer knows when the signal strength should be measured from the received data at the outputs 150 of the scan receivers. Measurements performed by the microcomputer 142 are stored in a database in a memory circuit 143.

The microcomputer 142 operation for the scan receiver 146 or 148 is illustrated in Fig. 2 and in the corresponding flowchart of Figure 3. The illustrations in Figs. 2 and 3 particularly involve the operation of a TDMA cellular communication system in which radiotelephone frequency hopping is employed, i.e., where radiotelephones communicate on the system in a designated time slot while rotating between a predetermined group of frequencies. Such a system is described in more detail in "A Digital FD/TDMA System for a New Generation", supra.

The flowchart of Fig. 3 begins at block 310 where the microcomputer establishes the frequency hopping patterns and groups for radiotelephone communication within the associated coverage area. Fig. 2 illustrates an example of a system frequency hopping group assignment, according to the present invention, for N groups in which M frequencies per hopping pattern (group) are employed. Each employed frequency includes 8 time slots ($T_1 - T_8$). In this example, the 8 time slots ($T_1 - T_8$) establish a set which is equal to 1 frame. There are a total of $(N \times M)$ frequencies used. A solid line 210, which rotates through each frequency in each group from left to right and top to bottom is depicted to represent the flow of the scan receiver through each time slot and each frequency. Mathematically, the scan receiver assignment changes from frequency $f_{1,1}$ to frequency $f_{1,M}$, with X being reinitialized to 1 after the Mth frequency. A series of vertical dotted lines 220, are depicted to illustrate the frequency transition for a hopping radiotelephone in a particular time slot of a group during communication.

From block 310, flow proceeds to block 312 where the frequency of the scan receiver is set to the first frequency of group 1 ($f_{1,1}$ of Fig. 2).

At block 314, a software timer (internal to the microcomputer 144 of Fig. 1b) is set to begin timing a time interval equal to the time required to receive 1 frame of data. This timer is used to limit the length of time that the scan receiver will remain on any given frequency to receive data in a designated frame.

At block 316, tests are repeatedly performed to determine if either the timer has timed out or if the preestablished preamble has been detected in the received signal. As previously discussed, each radiotelephone transmission is preceded by a predetermined data pattern defining the preamble. However, although a transmission will be expected, there may not be a transmission to every time slot of a given frame.

If the preamble is detected before the timer times out, flow proceeds to block 318. At block 318, because the preamble has been detected, the microcomputer presumes that a valid radiotelephone transmission has been received. The quality of the data following the preamble is tested for signal strength and signal "integrity" (i.e., the data legibility or data bit error ratio) using conventional digital analysis methods. In addition, the microcomputer examines the data to determine the base station's unique identification code (to identify the radiotelephone's site), and determines in which time slot the transmission was made. The particular time slot can be determined from the local base equipment reference timing if the system has synchronized base stations.

If the system does not have synchronized base stations, the time slot can be determined by extracting time slot information from the received message. E.g., the radiotelephone's unique identification (ID) code can be extracted from the preamble and passed to the microcomputer which can then identify the time slot using a conventional memory look-up technique with the ID code as the address.

From block 318, flow proceeds to block 320 where the microcomputer's data base is updated to indicate the presence of a radiotelephone transmission in the detected time slot, and the measurements for that transmission are stored accordingly. From block 320, flow returns to block 316 so that a transmission in the next time slot can be detected.

If the preamble is not detected before the timer times out, flow proceeds from block 316 to block 322 where a test is performed to determine if the scan receiver has just finished receiving data in the frame of the last group. In Fig. 2, this test is satisfied after the scan receiver receives data from the eighth time slot of the Nth group.

If the scan receiver has not finished receiving data from the frame of the last group, flow proceeds from block 322 to block 324 where the scan

receiver is assigned to the frequency of the next group. In Fig. 2, this is a horizontal move along the solid line from the left to the right. From block 324, flow returns to block 314 so that the scan receiver can begin receiving data for a new frame.

If the scan receiver has finished receiving data for the frame of the last group, flow proceeds from block 322 to block 328 where a test is performed to determine if the scan receiver has completed receiving data from the frame of the last group. In Fig. 2, this test would comprise a determination as to whether or not the frequency being monitored is f_{NM} . If the scan receiver is not monitoring frequency f_{NM} at this point, flow proceeds to block 330 where the scan receiver is assigned to the next frequency of the first group. If the frequency is equal to f_{NM} at this point, flow returns to block 312 where the entire process is reinitiated from the first frequency of the first group.

As this process continues, the microcomputer's data base, as indicated at block 320, is continuously updated. Because the data base is being updated with measurements of signal quality and strength for any radiotelephone's transmission from an adjacent cell, the switch controller (Fig. 1a) is provided access with an up-to-date status of a radiotelephone's potential to be handed-off to the associated cell site.

This status information can be used in a conventional handoff process such as the ones described in U.S. Pat. Nos. 4,485,486 (Webb et al.), 4,654,867 (Ladeoz) and 4,696,027 (Bonta et al.), each assigned to the same assignee and incorporated herein by reference. It should be pointed out, however, that because this information is immediately available to the switch controller, the switch controller does not have to request the base site equipment at adjacent cells to first perform the requisite monitoring for each handoff candidate radiotelephone. The switch controller merely queries the adjacent cell site equipment to provide the information already stored in the database. Alternatively, the adjacent cell site equipment can continually provide this accumulated signal information to the switch controller to alleviate the extra step of having the switch controller first make the request. Using either implementation, this provides a significant advantage over known system scan monitoring techniques because it substantially reduces the time otherwise necessary to determine where and when to make a handoff.

Another aspect of the present invention involves the manner in which communication frequencies (channels) are assigned at each of the cell sites. As indicated previously, each time a scan receiver is assigned a new frequency, an inherent delay occurs before the scan receiver can actually receive data on the new frequency. In a

frequency hopping TDMA cellular system, a significant amount of data can be missed by a scan receiver if this delay becomes excessive.

To overcome this problem, the present invention employs a novel radiotelephone time slot/frequency assignment. Referring to Fig. 2, this assignment involves selecting an open time slot from a group frame such that the group frames are filled one frame at a time, and that each group is filled before another group is filled.

For example, presume that at a particular time the base site targeted for a handoff includes two designated groups (G1 and G2), and four corresponding frequencies (F11, F12, F21, F22). Further, at a given point in time presume that in the group frame F₁₁, radiotelephone calls are active in frames 1, 3, 5, 6, 7 and 8; in the group frame F₁₂ radiotelephone calls are active in frames 1, 2, and 3; and in the group frames F₂₁ and F₂₂, there are no active radiotelephone calls. According to the present invention, the first open time slot in this given frequency assignment (for a radiotelephone candidate or for a radiotelephone call initiation) is the second time slot of the group frame designated F₁₁. Thus, the second time slot of the group frame designated F₁₁ will be chosen.

The next radiotelephone call assignment at this site will be (presuming the same active calls as described earlier) the fourth time slot of the group frame designated F₁₁. Once the entire frame F₁₁ contains active calls, time slots from frame F₁₂ will be chosen from left to right, and then time slots from F₂₁ and then F₂₂.

As radiotelephone calls are dropped or handed off to adjacent cell sites, time slots from the group frames (F11, F12, F21, F22), will become free to enable additional radiotelephone call time slot assignments in a similar manner.

Additionally, the present invention provides a method of minimizing the amount of data passed between the base sites, while, at the same time, allowing each base site to more effectively scan the active communication frequencies of a particular group. As each new group (comprising at least one time partitioned frame) is established for communication use at each base site, a message is passed to the adjacent cell sites to inform them that the new group should be scan monitored. This allows the system to monitor active calls, or those calls about to become active, without requiring that all frequencies be scanned and without recurring instructions for scan monitoring to the adjacent cell sites each time a new active call is established. Similarly, as groups become unused (idle) a single message is communicated to the adjacent base sites to stop scanning the unused group.

In Fig. 4, a flow chart illustrates an example of the switch controller (Fig. 1a) directing a handoff

from site 1 to site 2 (referring to Fig. 1a), according to the present invention and consistant with the previous examples. The flow chart begins at block 410 where a test is performed to determine if there is a handoff candidate present at the site 1. If there is not a handoff candidate present, the procedure ends and similar tests are performed at another site.

If a handoff candidate is present at site 1, flow proceeds from block 410 to block 420 where the switch controller requests the relevant data base signal measurement information for the radiotelephone from the cell site that is adjacent the host cell site (site 2). As discussed previously (with blocks 318 and 320 of Fig. 3), each adjacent cell site can instantaneous provide a report to the switch controller on the radiotelephones communicating in adjacent cell sites. Thus, the switch controller informs site 2 of the frequency and time slot in which the radiotelephone handoff candidate is communicating (or alternatively informs site 2 of the radiotelephone's identification number depending on site 2's data base methodology).

Using the reports from each of the adjacent cell sites (site 2), at block 430 the switch controller determines the best cell site in which the radiotelephone handoff candidate should communicate next.

At block 440, the switch controller determines the first open time slot and frequency at the target site for the handoff assignment. As previously discussed, this entails filling each group frame one frame at a time, one group at a time so that the scan receiver will not be excessively burdened with changing frequencies to monitor an entire group frame serving merely one or two active calls.

At block 450, the switch controller informs the base site equipment of the assignment to effect the handoff at the target cell site.

Alternatively, since all time slot and frequency information is present at each cell site, the cell site can perform the determination indicated at block 440 and inform the switch controller of the first open time slot and frequency.

In yet another aspect of the present invention, usage efficiency of the scan receiver can be improved by slightly modifying the steps illustrated in Fig. 3 to delay the scan receiver within each group for M frames before the scan receiver moves to the next group. Figure 5 is illustrative.

In Fig. 5, the flow chart of Fig. 3 is shown in modified form to include four additional steps, depicted as blocks 513, 517, 519 and 521. Once again, the flow of the steps depicted in Fig. 5 will be illustrated using Fig. 2. Once the frequency hopping patterns for all groups has been established (block 310), and the scan receiver is tuned to the first frequency (F_{11}) of group 1 (block 513), a counting variable "COUNT" is set equal to M,

where M is the number of frequencies in each group.

From block 513 flow proceeds to block 314 where the timer is initiated, and the test to determine if the timer has expired or a preamble has been detected follows at block 316.

If the preamble is detected, flow proceeds through block 318 and block 320 to update the data base with the corresponding signal measurements.

When the timer expires, flow proceeds from block 316 to block 417 where COUNT is decremented.

At block 519, a test is performed to determine if COUNT has been decremented to zero. If COUNT has not been decremented to zero, flow proceeds from block 519 to block 521 where the microcomputer reinitializes the timer so that the scan receiver will continue to receive another eight time slots from the frame of the present frequency. This loop, established at blocks 316, 517, 519 and 521, cycles M times. For example, if M equals 3, the scan receiver will remain at the same frequency (F_{11}) until it receives three frames.

Once the COUNT variable has been decremented to zero, flow proceeds from block 519 to block 322 where the scan receiver frequency assignment continues as described with Fig. 3.

Delaying the scan receiver such that it continues to receive a single frequency for more than one frame can provide a significant advantage in a frequency hopping TDMA system. Referring to group 1 of Fig. 2, presuming that M equals 3 and there are eight active calls in F_{11} , F_{12} and F_{13} , then after receiving three frames at frequency F_{11} , the scan receiver will have received transmissions from a total of 24 mobiles without having to incur a single delay. This is because its frequency was never changed. In this manner, the scan receiver receives M frames of data at F_{11} , then M frames of data at F_{12} , then M frames of data at F_{13} , and then returns to group 1 to receive M frames of data at F_{11} , then M frames of data at F_{12} , etc.

The scan receiver preferably rotates between frequencies of each group, rather than always monitoring the same group frequency in the rotation, so that more accurate signal measurements can be made without introducing problems such as fading at a single frequency. For example, a radiotelephone call which is active in time slot 1 of group 1 will have its transmitted signal measured three times in frequency 11, then three times in frequency 12 then three times in frequency 13 before the scan receiver returns to frequency 11 for additional measurements.

It should be pointed out that where M is large, as the scan receiver moves from one frequency hopping group to another (for example, from group

to group 2), a substantial number of signal measurements from active calls will be missed. In certain situations, this number may become unacceptable to overall system operation. For this type of situation, a second scan receiver, as illustrated in Fig. 1b, is employed to reduce this problem by a factor of 50%. The second scan receiver can be controlled in a manner identical to that depicted in Fig. 5, except that its individual frequency assignments follows the first scan receiver's individual frequency assignments by a time lag equal to one-half of the time it takes for a single scan receiver to cycle through each frequency, i.e. to flow from F_{11} , along the solid line 210 of Fig. 2 through F_{NM} . Additional scan receivers can be included to further reduce this problem.

It will be understood by those skilled in the art that various modifications and changes may be made to the present invention without departing from the spirit and scope thereof.

Claims

1. A time-division-multiplex-across (TDMA) radiotelephone cellular communication system having base site equipment at at least one site with an associated radiotelephone communication coverage area and having a switch controller for connecting radiotelephone communication, and wherein the base site equipment employs a plurality of frequencies which are used for radiotelephone communication in a time partitioned manner, comprising monitoring means coupled with the base site equipment for monitoring a signal quality parameter of at least one radiotelephone call on the system, and characterized by: processing means for maintaining a record of which frequencies and which time partitions at the base site equipment are having utilized for radiotelephone communication; and assigning means, responsive to said processing means and said monitoring means, for assigning radiotelephone calls to time partitions of the base site equipment frequencies based on a frequency prioritization technique that reduces the number of frequencies carrying radiotelephone calls.

2. A TDMA radiotelephone cellular communication system, according to claim 1, wherein the monitoring means includes means for monitoring the signal strength of said at least one radiotelephone call on the system.

3. A TDMA radiotelephone cellular communication system, according to claim 1, wherein the monitoring means includes means for monitoring the signal integrity of said at least one radiotelephone call on the system.

4. A time-division-multiplex-access (TDMA) radiotelephone cellular communication system having at least first base site equipment and second base site equipment with associated radiotelephone communication coverage areas, wherein each base site equipment employs a plurality of frequencies which are used for radiotelephone communication in time partitioned frames, and wherein the system has identified a radiotelephone handoff candidate within the coverage area of the first base site equipment, characterised by:
 5 monitoring means included with the second base site equipment for monitoring frequencies from the first base site equipment to obtain signal quality parameters of radiotelephone calls, including the radiotelephone handoff candidate, active in the first base site equipment's coverage area;
 10 processing means for maintaining a record of which frequencies and which time partitions at the second base site equipment are being utilized for radiotelephone communication; and
 15 assigning means, responsive to said processing means and said monitoring means, for effecting a handoff to the coverage area of the second base site equipment by assigning the radiotelephone handoff candidate to a time partition in one of the second base site equipment frequencies based on a frequency prioritization technique that concentrates radiotelephone calls within each frequency to reduce the number of frequencies which carry radiotelephone calls.
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95
 100
 105
 110
 115
 120
 125
 130
 135
 140
 145
 150
 155
 160
 165
 170
 175
 180
 185
 190
 195
 200
 205
 210
 215
 220
 225
 230
 235
 240
 245
 250
 255
 260
 265
 270
 275
 280
 285
 290
 295
 300
 305
 310
 315
 320
 325
 330
 335
 340
 345
 350
 355
 360
 365
 370
 375
 380
 385
 390
 395
 400
 405
 410
 415
 420
 425
 430
 435
 440
 445
 450
 455
 460
 465
 470
 475
 480
 485
 490
 495
 500
 505
 510
 515
 520
 525
 530
 535
 540
 545
 550
 555
 560
 565
 570
 575
 580
 585
 590
 595
 600
 605
 610
 615
 620
 625
 630
 635
 640
 645
 650
 655
 660
 665
 670
 675
 680
 685
 690
 695
 700
 705
 710
 715
 720
 725
 730
 735
 740
 745
 750
 755
 760
 765
 770
 775
 780
 785
 790
 795
 800
 805
 810
 815
 820
 825
 830
 835
 840
 845
 850
 855
 860
 865
 870
 875
 880
 885
 890
 895
 900
 905
 910
 915
 920
 925
 930
 935
 940
 945
 950
 955
 960
 965
 970
 975
 980
 985
 990
 995
 1000
 1005
 1010
 1015
 1020
 1025
 1030
 1035
 1040
 1045
 1050
 1055
 1060
 1065
 1070
 1075
 1080
 1085
 1090
 1095
 1100
 1105
 1110
 1115
 1120
 1125
 1130
 1135
 1140
 1145
 1150
 1155
 1160
 1165
 1170
 1175
 1180
 1185
 1190
 1195
 1200
 1205
 1210
 1215
 1220
 1225
 1230
 1235
 1240
 1245
 1250
 1255
 1260
 1265
 1270
 1275
 1280
 1285
 1290
 1295
 1300
 1305
 1310
 1315
 1320
 1325
 1330
 1335
 1340
 1345
 1350
 1355
 1360
 1365
 1370
 1375
 1380
 1385
 1390
 1395
 1400
 1405
 1410
 1415
 1420
 1425
 1430
 1435
 1440
 1445
 1450
 1455
 1460
 1465
 1470
 1475
 1480
 1485
 1490
 1495
 1500
 1505
 1510
 1515
 1520
 1525
 1530
 1535
 1540
 1545
 1550
 1555
 1560
 1565
 1570
 1575
 1580
 1585
 1590
 1595
 1600
 1605
 1610
 1615
 1620
 1625
 1630
 1635
 1640
 1645
 1650
 1655
 1660
 1665
 1670
 1675
 1680
 1685
 1690
 1695
 1700
 1705
 1710
 1715
 1720
 1725
 1730
 1735
 1740
 1745
 1750
 1755
 1760
 1765
 1770
 1775
 1780
 1785
 1790
 1795
 1800
 1805
 1810
 1815
 1820
 1825
 1830
 1835
 1840
 1845
 1850
 1855
 1860
 1865
 1870
 1875
 1880
 1885
 1890
 1895
 1900
 1905
 1910
 1915
 1920
 1925
 1930
 1935
 1940
 1945
 1950
 1955
 1960
 1965
 1970
 1975
 1980
 1985
 1990
 1995
 2000
 2005
 2010
 2015
 2020
 2025
 2030
 2035
 2040
 2045
 2050
 2055
 2060
 2065
 2070
 2075
 2080
 2085
 2090
 2095
 2100
 2105
 2110
 2115
 2120
 2125
 2130
 2135
 2140
 2145
 2150
 2155
 2160
 2165
 2170
 2175
 2180
 2185
 2190
 2195
 2200
 2205
 2210
 2215
 2220
 2225
 2230
 2235
 2240
 2245
 2250
 2255
 2260
 2265
 2270
 2275
 2280
 2285
 2290
 2295
 2300
 2305
 2310
 2315
 2320
 2325
 2330
 2335
 2340
 2345
 2350
 2355
 2360
 2365
 2370
 2375
 2380
 2385
 2390
 2395
 2400
 2405
 2410
 2415
 2420
 2425
 2430
 2435
 2440
 2445
 2450
 2455
 2460
 2465
 2470
 2475
 2480
 2485
 2490
 2495
 2500
 2505
 2510
 2515
 2520
 2525
 2530
 2535
 2540
 2545
 2550
 2555
 2560
 2565
 2570
 2575
 2580
 2585
 2590
 2595
 2600
 2605
 2610
 2615
 2620
 2625
 2630
 2635
 2640
 2645
 2650
 2655
 2660
 2665
 2670
 2675
 2680
 2685
 2690
 2695
 2700
 2705
 2710
 2715
 2720
 2725
 2730
 2735
 2740
 2745
 2750
 2755
 2760
 2765
 2770
 2775
 2780
 2785
 2790
 2795
 2800
 2805
 2810
 2815
 2820
 2825
 2830
 2835
 2840
 2845
 2850
 2855
 2860
 2865
 2870
 2875
 2880
 2885
 2890
 2895
 2900
 2905
 2910
 2915
 2920
 2925
 2930
 2935
 2940
 2945
 2950
 2955
 2960
 2965
 2970
 2975
 2980
 2985
 2990
 2995
 3000
 3005
 3010
 3015
 3020
 3025
 3030
 3035
 3040
 3045
 3050
 3055
 3060
 3065
 3070
 3075
 3080
 3085
 3090
 3095
 3100
 3105
 3110
 3115
 3120
 3125
 3130
 3135
 3140
 3145
 3150
 3155
 3160
 3165
 3170
 3175
 3180
 3185
 3190
 3195
 3200
 3205
 3210
 3215
 3220
 3225
 3230
 3235
 3240
 3245
 3250
 3255
 3260
 3265
 3270
 3275
 3280
 3285
 3290
 3295
 3300
 3305
 3310
 3315
 3320
 3325
 3330
 3335
 3340
 3345
 3350
 3355
 3360
 3365
 3370
 3375
 3380
 3385
 3390
 3395
 3400
 3405
 3410
 3415
 3420
 3425
 3430
 3435
 3440
 3445
 3450
 3455
 3460
 3465
 3470
 3475
 3480
 3485
 3490
 3495
 3500
 3505
 3510
 3515
 3520
 3525
 3530
 3535
 3540
 3545
 3550
 3555
 3560
 3565
 3570
 3575
 3580
 3585
 3590
 3595
 3600
 3605
 3610
 3615
 3620
 3625
 3630
 3635
 3640
 3645
 3650
 3655
 3660
 3665
 3670
 3675
 3680
 3685
 3690
 3695
 3700
 3705
 3710
 3715
 3720
 3725
 3730
 3735
 3740
 3745
 3750
 3755
 3760
 3765
 3770
 3775
 3780
 3785
 3790
 3795
 3800
 3805
 3810
 3815
 3820
 3825
 3830
 3835
 3840
 3845
 3850
 3855
 3860
 3865
 3870
 3875
 3880
 3885
 3890
 3895
 3900
 3905
 3910
 3915
 3920
 3925
 3930
 3935
 3940
 3945
 3950
 3955
 3960
 3965
 3970
 3975
 3980
 3985
 3990
 3995
 4000
 4005
 4010
 4015
 4020
 4025
 4030
 4035
 4040
 4045
 4050
 4055
 4060
 4065
 4070
 4075
 4080
 4085
 4090
 4095
 4100
 4105
 4110
 4115
 4120
 4125
 4130
 4135
 4140
 4145
 4150
 4155
 4160
 4165
 4170
 4175
 4180
 4185
 4190
 4195
 4200
 4205
 4210
 4215
 4220
 4225
 4230
 4235
 4240
 4245
 4250
 4255
 4260
 4265
 4270
 4275
 4280
 4285
 4290
 4295
 4300
 4305
 4310
 4315
 4320
 4325
 4330
 4335
 4340
 4345
 4350
 4355
 4360
 4365
 4370
 4375
 4380
 4385
 4390
 4395
 4400
 4405
 4410
 4415
 4420
 4425
 4430
 4435
 4440
 4445
 4450
 4455
 4460
 4465
 4470
 4475
 4480
 4485
 4490
 4495
 4500
 4505
 4510
 4515
 4520
 4525
 4530
 4535
 4540
 4545
 4550
 4555
 4560
 4565
 4570
 4575
 4580
 4585
 4590
 4595
 4600
 4605
 4610
 4615
 4620
 4625
 4630
 4635
 4640
 4645
 4650
 4655
 4660
 4665
 4670
 4675
 4680
 4685
 4690
 4695
 4700
 4705
 4710
 4715
 4720
 4725
 4730
 4735
 4740
 4745
 4750
 4755
 4760
 4765
 4770
 4775
 4780
 4785
 4790
 4795
 4800
 4805
 4810
 4815
 4820
 4825
 4830
 4835
 4840
 4845
 4850
 4855
 4860
 4865
 4870
 4875
 4880
 4885
 4890
 4895
 4900
 4905
 4910
 4915
 4920
 4925
 4930
 4935
 4940
 4945
 4950
 4955
 4960
 4965
 4970
 4975
 4980
 4985
 4990
 4995
 5000
 5005
 5010
 5015
 5020
 5025
 5030
 5035
 5040
 5045
 5050
 5055
 5060
 5065
 5070
 5075
 5080
 5085
 5090
 5095
 5100
 5105
 5110
 5115
 5120
 5125
 5130
 5135
 5140
 5145
 5150
 5155
 5160
 5165
 5170
 5175
 5180
 5185
 5190
 5195
 5200
 5205
 5210
 5215
 5220
 5225
 5230
 5235
 5240
 5245
 5250
 5255
 5260
 5265
 5270
 5275
 5280
 5285
 5290
 5295
 5300
 5305
 5310
 5315
 5320
 5325
 5330
 5335
 5340
 5345
 5350
 5355
 5360
 5365
 5370
 5375
 5380
 5385
 5390
 5395
 5400
 5405
 5410
 5415
 5420
 5425
 5430
 5435
 5440
 5445
 5450
 5455
 5460
 5465
 5470
 5475
 5480
 5485
 5490
 5495
 5500
 5505
 5510
 5515
 5520
 5525
 5530
 5535
 5540
 5545
 5550
 5555
 5560
 5565
 5570
 5575
 5580
 5585
 5590
 5595
 5600
 5605
 5610
 5615
 5620
 5625
 5630
 5635
 5640
 5645
 5650
 5655
 5660
 5665
 5670
 5675
 5680
 5685
 5690
 5695
 5700
 5705
 5710
 5715
 5720
 5725
 5730
 5735
 5740
 5745
 5750
 5755
 5760
 5765
 5770
 5775
 5780
 5785
 5790
 5795
 5800
 5805
 5810
 5815
 5820
 5825
 5830
 5835
 5840
 5845
 5850
 5855
 5860
 5865
 5870
 5875
 5880
 5885
 5890
 5895
 5900
 5905
 5910
 5915
 5920
 5925
 5930
 5935
 5940
 5945
 5950
 5955
 5960
 5965
 5970
 5975
 5980
 5985
 5990
 5995
 6000
 6005
 6010
 6015
 6020
 6025
 6030
 6035
 6040
 6045
 6050
 6055
 6060
 6065
 6070
 6075
 6080
 6085
 6090
 6095
 6100
 6105
 6110
 6115
 6120
 6125
 6130
 6135
 6140
 6145
 6150
 6155
 6160
 6165
 6170
 6175
 6180
 6185
 6190
 6195
 6200
 6205
 6210
 6215
 6220
 6225
 6230
 6235
 6240
 6245
 6250
 6255
 6260
 6265
 6270
 6275
 6280
 6285
 6290
 6295
 6300
 6305
 6310
 6315
 6320
 6325
 6330
 6335
 6340
 6345
 6350
 6355
 6360
 6365
 6370
 6375
 6380
 6385
 6390
 6395
 6400
 6405
 6410
 6415
 6420
 6425
 6430
 6435
 6440
 6445
 6450
 6455
 6460
 6465
 6470
 6475
 6480
 6485
 6490
 6495
 6500
 6505
 6510
 6515
 6520
 6525
 6530
 6535
 6540
 6545
 6550
 6555
 6560
 6565
 6570
 6575
 6580

e) means for assigning the selected frequency and time slot to effect the handoff at the target cell site.

6) A switch controller, according to claim 5, wherein said selecting means includes means for selecting a first group of frequencies which is considered for radiotelephone call assignments before other frequencies are considered for such assignments.

7) A switch controller, according to claim 6, wherein said selecting means further includes means for selecting a second group of frequencies which is considered for radiotelephone call assignments if the first group of frequencies cannot carry another radiotelephone call.

8. A base site controller for use in a time-division-multiplex-access (TDMA) cellular radiotelephone communication system having a plurality of cell sites including a first cell site, wherein each cell site has associated base site equipment and corresponding radiotelephone communication coverage areas and each cell site employs a plurality of frequencies which are used for radiotelephone communication in time partitioned frames, said base site controller at each cell site characterised by:

monitoring means coupled with the base site equipment for monitoring frequencies to obtain signal quality parameters of radiotelephone communications active on the system;

processing means for maintaining a record of which frequencies and which time partitions at the base site equipment are being utilized for radiotelephone communication; and

means, responsive to said processing means and to said monitoring means, for assigning radiotelephone calls to time partitions of the base site equipment frequencies based on a frequency prioritization technique that reduces the number of frequencies carrying radiotelephone calls.

9. A base site controller for use in a radiotelephone frequency-hopping time-division-multiplex-access (TDMA) cellular radiotelephone communication system having a plurality of cell sites including a first cell site, wherein each cell site has associated base site equipment and corresponding radiotelephone communication coverage areas and each cell site employs a plurality of frequencies which are used for radiotelephone communication in time partitioned frames, said base site controller at each cell site characterised by:

monitoring means coupled with the base site equipment for monitoring a signal quality parameter of radiotelephone communications in adjacent cell sites;

means for storing records of which time partitions and frequencies are carrying radiotelephone com-

munications; and

processing means, responsive to said means for storing and coupled with said monitoring means, for programming said monitoring means to monitor selected communication frequencies in adjacent cell sites such that said monitoring means continuously monitors one of said selected frequencies for a plurality of time partitioned frames.

10. A base site controller for use in a radiotelephone frequency-hopping time-division-multiplex-access (TDMA) cellular radiotelephone communication system having a plurality of cell sites including a first cell site, wherein each cell site has associated base site equipment and corresponding radiotelephone communication coverage areas and each cell site employs a plurality of frequencies which are used for radiotelephone communication in time partitioned frames, said base site controller at each cell site characterised by:

monitoring means coupled with the base site equipment for monitoring a signal quality parameter of radiotelephone calls active on the system;

processing means, coupled with said monitoring means, and including:

means for programming said monitoring means to monitor selected frequencies used for carrying frequency-hopping radiotelephone calls in adjacent cell sites such that said monitoring means continuously measures said selected frequencies for a plurality of time partitioned frames, and

means for assigning radiotelephone calls to time partitioned frames of the base site equipment frequencies in a frequency prioritized manner such that radiotelephone calls are concentrated within each frequency so as to reduce the number of frequencies which carry radiotelephone calls.

11. A time-division-multiplex-access (TDMA) radiotelephone cellular communication system having base site equipment at at least one site with an associated radiotelephone communication coverage area and having a switch controller for connecting radiotelephone communication, and wherein the base site equipment employs a plurality of frequencies which are used for radiotelephone communication in a time partitioned manner, characterised by:

monitoring means coupled with the base site equipment for monitoring a signal quality parameter of at least one radiotelephone call on the system;

processing means for maintaining a record of which frequencies and which time partitions at the base site equipment are being utilized for radiotelephone communication;

means, responsive to said processing means and said monitoring means, for instructing base site

15

EP 0 329 997 A2

16

equipment to begin monitoring frequencies as they
become used for radiotelephone calls.

5

10

15

20

25

30

35

40

45

50

55

60

FIG. 1A

FIG. 1B

FIG. 2

FIG. 3

SWITCH CONTROLLER

FIG. 4

FIG. 5

H04Q7/04D10T

① Publication number:

0 329 997

Office européen des brevets

A3

EUROPEAN PATENT APPLICATION

② Application number: 89101892.1

③ Int. Cl.⁵: H04Q 7/04, H04B 7/26

③ Date of filing: 03.02.89

④ Priority: 22.02.88 US 158960

Schaumburg, IL 60196(US)

⑤ Date of publication of application:
30.08.89 Bulletin 89/35⑥ Inventor: Schaeffer, Dennis R.
266 Mohawk Trail
Buffalo Grove Illinois 60089(US)⑦ Designated Contracting States:
AT BE CH DE ES FR GB GR IT LI LU NL SE⑧ Representative: Dunlop, Hugh Christopher et al
Motorola European Intellectual Property
Operations Jays Close Viables Industrial
Estate
Basingstoke, Hampshire RG22 4PD(GB)⑨ Applicant: MOTOROLA, INC.
1303 East Algonquin Road

⑩ Reuse groups for scan monitoring in digital cellular systems.

⑪ An improved TDMA radiotelephone cellular communication system (122, 115, 199) employs an improved cell site scan monitoring technique. The technique includes monitoring radiotelephone calls, and tracking and recording their signal qualities. The records are used to maintain and determine which frequencies and which time partitions at the base site equipment (115, 119) are being utilized for

radiotelephone communication. When a new call assignment is required at a cell site (115 or 119), it is assigned to a time partition of a base site equipment frequency in a frequency prioritized manner such that radiotelephone calls are concentrated within each frequency so as to reduce the number of frequencies carrying radiotelephone calls.

FIG. 1A

EP 0 329 997 A3

EUROPEAN SEARCH REPORT

EP 89 10 1892

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.4)
X, P	US-A-4785450 (BOLGIANO ET AL) * column 2, lines 23 - 29 *	1-3, 8, 11	H04Q7/04 H04B7/26
A, P	* column 4, line 14 - column 5, line 45 * * column 6, line 49 - column 7, line 56 * ---	4-7, 9	
A	EP-A-233963 (ANT) * column 2, line 50 - column 3, line 10 * * column 3, line 25 - column 4, line 6 * * column 5, line 25 - column 6, line 49 * * column 8, lines 28 - 48 * * column 11, line 24 - column 15, line 5 * ---	1-11	
A	EP-A-209185 (T.R.T) * column 3, line 33 - column 4, line 15 * * column 9, line 16 - column 14, line 18 * * column 15, line 51 - page 16, line 33 * ---	1-11	
A	EP-A-202485 (NEC CORP.) * page 1, lines 5 - 15 * * page 2, line 24 - page 4, line 5 * ---	1, 4, 5, 8-11	
A	US-A-3764915 (COX ET AL) * column 2, line 11 - column 3, line 10 * * column 10, line 28 - column 12, line 58 * * column 17, lines 23 - 45 * -----	1, 4, 5, 8-11	
The present search report has been drawn up for all claims			
Place of search	Date of completion of the search	Examiner	
THE HAGUE	20 SEPTEMBER 1990	GERLING J.C.J.	
CATEGORY OF CITED DOCUMENTS			
X : particularly relevant if taken alone	T : theory or principle underlying the invention		
Y : particularly relevant if combined with another document of the same category	E : earlier patent document, but published on, or after the filing date		
A : technological background	D : document cited in the application		
O : non-written disclosure	I : document cited for other reasons		
P : intermediate document	& : member of the same patent family, corresponding document		