北京邮电大学 实 验 报 告

课程名称:	数	据库系统原理	
实验名称:	实验四:	数据查询与修改	实验
<u>计算机科学与技术</u> 系 <u>1</u>	班 姓名	当: 李智	盛
计算机科学与技术 系 1	班 姓名	当: 李明	Ξ
教师: 吴启凡	L 得多	 'रो :	
2019	年 4 月 12 日		

1 目录

T	日来		2
2	实验目的:		4
3	实验内容:		4
4	实验环境:		4
5	实验要求:		4
6	实验步骤:		5
	6.1 Basic struc	cture of SQL Queries	5
		on a A Single RelationThe select, where Clause	
		on multiple relations——The from Clause	
		join	
	6 2 Additional	I Basic Operations	7
		name Operation	
		Operations & Attribute Specification	
		g the Display of Tuples	
		Clause Predicates	
	6.3 Set Onera	tion	10
	6.4 Null Value	es	12
(6.5 Aggregate	e Functions	13
	6.5.1 分组聚	集,降序排列	13
	6.5.2 Max,min	n,avg	14
(6.6 Nested (嵌	反套) Subqueries	15
		mbership	
		nparison – "some" Clause	
	6.6.3 Test for	Empty RelationsUse of "not exists" Clause	16
	6.6.4 Test for	Absence of Duplicate Tuples	17
	6.6.5 Subquer	ries in the From Clause	18
	6.6.6 With Cla	ause	19

6.6.7 Scalar Subquery——Subqueries in the Select Clause	20
6.7 综合查询语句	21
6.8 Modification of the Database	
6.8.1 Deletion	22
6.8.2 Insertion	23
6.8.3 Updates	23
7 实验总结	26
7.1 分组聚集	26
7.2 Null values	27
7.3 查找失败	27
7.4 查询结果中有空值	27
7.5 Exists Not exists	27
7.6 Unique 结构	27
7.7 With as	27

2 实验目的:

对实验三中建立的 GSM 数据库关系表和视图进行各种类型的查询操作和修改操作,加深对 SQL 语言中 DML 的了解,掌握相关查询语句和数据修改语句的使用方法。

3 实验内容:

1. 简单的查询操作,包括单表的查询、选择条件、结果排序等的练习;

班级: 2016211301

- 2. 复杂的查询操作,包括等值连接、自然连接等;
- 3. 统计查询操作,包括带有分组、集函数的查询操作;
- 4. 嵌套查询操作,包括带有 in、exists、not exists、集合操作的嵌套查询;
- 5. 练习对关系表的其他操作如插入、删除、更新;
- 6. 练习视图查询、视图修改等视图操作。

4 实验环境:

- 1. Windows10 操作系统
- 2. Micorsoft SQL Server 2012 数据库管理系统

5 实验要求:

1. 用 Transact_SQL 语句完成以上操作。

- 2. 要求学生独立完成以上内容。
- 3. 实验完成后完成要求的实验报告内容。

6 实验步骤:

6.1 Basic structure of SQL Queries

6.1.1 Query on a A Single Relation---The select, where Clause

根据路测 ATU 数据表,使用 distinct 语句列出服务小区频点为 38400 的所有去重后的服务小区 ID。

select distinct CellID from dbo.tbATUData where EARFCN = 38400

6.1.2 Query on multiple relations——The from Clause

根据路测 ATU C2I 干扰矩阵表和路测 ATU 切换统计矩阵表,查询主小区 ID 为 "238397-1" 的小区的同站干扰小区 ID 和切换目标小区 ID。

6.1.3 natural join

使用 nature join 语句重写 1.2 中的查询。

6.2 Additional Basic Operations

6.2.1 The Rename Operation

班级: 2016211301

```
select T. SCELL, T. NCELL
from tbC2I as T, tbC2I as S
where T. C2I_Mean > S. C2I_Mean
and S. SCELL = '124673-0' and S. NCELL='259772-0'
```


6.2.2 String Operations & Attribute Specification

根据小区 PCI 优化调整结果表,使用 like 语句查询小区名中包含 "三门峡" 的相关信息。

```
select SECTOR_NAME
from tbPCIAssignment
where SECTOR NAME like '%三门峡%';
```


6.2.3 Ordering the Display of Tuples

根据路测 ATU 切换统计矩阵表,查询各小区的最大切换次数及相应的切换目标小区 ID,并按降序排列。

为了便于验证,将符合条件的 SSECTOR ID, NSECTOR ID, HOATT 一并输出

对于第二条数据 (259772-0, 253935-2, 9) ,在源数据 8. tbATUHandOver.csv 中查

得:

SSECTO -T	NSECTC -	HOATT 💌	
259772-0	253935-2	9	
259772-0	253935-0	5	
259772-0	259772-1	3	
259772-0	253923-2	1	
259772-0	253890-1	1	

其 HOATT 最大值为 9,与数据库查询结果一致

6.2.4 Where Clause Predicates

根据小区/基站工参表和基于 MR 测量报告的干扰分析表, 使用 between 语句查询经度位于 111 到 112 之间、纬度位于 34.7 到 34.9 之间的小区的 C2I 干扰的均值最大的邻小区 ID。

```
/*
with sector_id as (
                      select SECTOR_ID
                      from
                             tbCell
                      where (LONGITUDE between 111 and 112)
                             (LATITUDE between 34.7 and 34.9)),
                      and
     max_c2i as (
                      select max(C2I_Mean) as max_c2i_mean
                            tbC2I
                      from
                      where SCELL IN (
                              select SECTOR ID
                              from tbCell
                              where (LONGITUDE between 111 and 112)
                                      (LATITUDE between 34.7 and 34.9) )
                              and
*/
    select NCELL
    from
           tbC2I
    where C2I Mean in (
                          select max(C2I_Mean) as max_c2i_mean
                          from
                                 tbC2I
                          where SCELL IN (
                                   select SECTOR ID
                                   from
                                         tbCell
                                   where (LONGITUDE between 111 and 112)
                                          (LATITUDE between 34.7 and 34.9) )
                                            9 / 27
```

上面的绿字部分便于让自己能够看清结构,嵌套时条理清晰; (使用 AS 语句实现失败)

班级: 2016211301

```
-- 使用between语问宣调
-- 经度位于111到112之间、纬度位于34.7到34.9之间的小区
           的C2I干扰的均值最大的
               邻小区ID
  ⊟with sector_id as (
                      select SECTOR_ID
                       where (LONGITUDE between 111 and 112)
                             (LATITUDE between 34.7 and 34.9)),
                       and
        max_c2i as (
                      select max(C2I_Mean) as max_c2i_mean
                       from tbC2I
                       where SCELL IN
                              select SECTOR_ID
                              from tbCell
                              where (LONGITUDE between 111 and 112)
                              and
                                   (LATITUDE between 34.7 and 34.9) )
    select NCELL
    where C2I_Mean in (
                      select max(C2I_Mean) as max_c2i_mean
                       from
                             tbC2I
                       where SCELL IN (
                              select SECTOR_ID
                              where (LONGITUDE between 111 and 112)
                                     (LATITUDE between 34.7 and 34.9) )
                              and
🎹 结果 🛅 消息
     NCELL
    253787-1
☑ 查询已成功执行。
                                                                                 DESKTOP-1TRJ0C9 (11.0 RTM) | DESKTOP-1TRJ0C9\李智盛 (52) | test | 00:00:00 | 1 行
```

6.3 Set Operation

6.3.1 Union

根据小区/基站工参表,使用 union 语句中查询所属城市为宜阳、频点为 38544,或所属城市为三门峡、频点为 38400 的小区。

```
select SECTOR_ID from test. dbo. tbCell where CITY = '宜阳' and EARFCN = 38544 union select SECTOR_ID from dbo. tbCell where CITY = '三门峡' and EARFCN = 385400;
```

班级: 2016211301

6.3.2 interset

根据小区一阶邻区关系表和二阶(同频)邻区关系表,使用 interset 语句查询一阶邻区和二阶邻区相同的小区。

6.3.3 except

根据一阶邻区关系表和二阶(同频)邻区关系表,使用 except 语句查询二阶邻区不是一阶邻区

的小区。

```
--NOTES:EXCEPT 仅返回那些不存在于第二个 SELECT 语句结果的记录 (差集)
select tbAdjCell.S_SECTOR_ID
from tbAdjCell
where N SECTOR ID in (select N SECTOR ID from tbAdjCell except select N SECTOR ID from tbSecAdjCell)
```


6.3.4 Except

根据路测 ATU C2I 干扰矩阵表,使用 except 语句查询主小区和邻小区间干扰强度最大的小

X

```
select NCELL_ID
from tbATUC2I
where RANK IN (select RANK from tbATUC2I except select RANK from tbATUC2I where RANK >1)
```


6.4 Null Values

根据路测 ATU 数据表, 查询第1邻小区/干扰小区物理小区标识不为空的服务小区 ID、服务

小区 PCI。

```
select NCell_ID_1, CellID, PCI
from tbATUData
where NCell ID 1 is not null
```


班级: 2016211301

但是查询结果有空值

6.5 Aggregate Functions

6.5.1 分组聚集,降序排列

根据优化小区/保护带小区表和小区一阶邻区关系表,查询一阶邻区数大于10的优化小

区,并将查询结果降序排列。

```
⊟select SECTOR_ID
     from tbOptCell
where CELL_TYPE='优化区'
        and SECTOR_ID IN (select SECTOR_ID
                            from tbOptCell
where EXISTS (select S_SECTOR_ID, count(N_SECTOR_ID) as num
                                              group by S_SECTOR_ID
having count( N_SECTOR_ID)>10) )
    order by SECTOR_ID desc
100 %
🎹 结果 🛅 消息
      SECTOR_ID
      7400-130
2
3
      7400-128
4
      7385-144
      7367-144
5
      7360-144
      7336-144
7
8
      7335-144
      7320-144
9
10
     7319-144
                                                                                                DESKTOP-1TRJ0C9 (11.0 RTM) | DESKTOP-1TRJ0C9\李智盛 (55) | test | 00:00:00 | 323 行
🧭 查询已成功执行。
```

6.5.2 Max,min,avg

根据小区/基站工参表和路测 ATU 数据表,查询所属基站为"253903"的小区的最大信噪比 SINR,最小信噪比 SINR,平均信噪比 SINR。

6.6 Nested (嵌套) Subqueries

6.6.1 Set Membership

根据优化小区/保护带小区表和小区 PCI 优化调整结果表,查询小区类型为"优化区"的小区经调整后的 PCI。

班级: 2016211301

6.6.2 Set Comparison – "some" Clause

1. 根据路测 ATU 数据表和小区/基站工参表,使用 some 语句查询"服务小区参考信号接收功率 RSRP"大于部分(至少一个)所属基站 ID 为 5660的小区的"服务小区参考信号接收功率 RSRP"的服务小区。

未能查找到结果,查看源数据得知,表tbATUData中没有符合条件的CellID

2.根据路测 ATU 切换统计矩阵表和 MRO 测量报告数据表,使用 all 语句查询切换次数最多的小区的干扰小区 ID,干扰小区 PCI。

未能查找到结果,表 tbMROData 没有 ServingSector=259311-1 的小区 ID

6.6.3 Test for Empty Relations---Use of "not exists" Clause

根据路测 ATU 数据表和优化小区表,使用 not exists 语句查询小区类型不为保护带小区的 16/27

班级: 2016211301

第1邻小区/干扰小区的标识、第1邻小区/干扰小区频点、第1邻小区/干扰小区物理小区标识、 第1邻小区/干扰小区参考信号接收强度。

```
select NCell ID 1, NCell EARFCN 1, NCell PCI 1, NCell RSRP 1
from
       tbATUData
where CellID in (
                      select SECTOR ID
                              tbOptCell
                      from
                      where CELL_TYPE in (
                                                  select CELL_TYPE
                                                         tbOptCell as T
                                                  where NOT EXISTS
                                                                     (select *
                                                                      from
                                                                             tbOptCell
                                                                              T. CELL_TYPE='保护带')
                                                                      where
```


但查询结果隔一段会有空行、空值,尚未解决

6.6.4 Test for Absence of Duplicate Tuples

根据基于 MR 测量报告的干扰分析表和路测 ATU 切换统计矩阵表,查询主小区 ID 在路测 ATU 切换统计矩阵表中只出现过一次的加权 C2I 干扰。

用 unique 结构实现:

```
| SELECT WeightedC2I | from tbC2I | where SCELL in ( select T. SSECTOR_ID | from tbATUHandOver as T | where unique (select count (S. SSECTOR_ID) | from tbATUHandOver as S | where I. SSECTOR_ID | s. SSECTOR_ID | s. SSECTOR_ID | j. SSECTOR
```

班级: 2016211301

提示有语法错误;

换另一种该方法:

```
□ SELECT WeightedC2I
     where SCELL in ( select T.SSECTOR_ID
                        from tbATUHandOver as T
                        where 1>= (select count(S.SSECTOR_ID)
                                        from tbATUHandOver as S
where T.SSECTOR_ID = S.SSECTOR_ID )
100 %
      + <
🏥 结果 🛅 消息
      WeightedC2I
      29400
      21780
2
3
      40572
4
       70462
5
      13824
6
      5264
      108006
      4888
8
🥝 查询已成功执行。
                                                                                         DESKTOP-1TRJ0C9 (11.0 RTM) | DESKTOP-1TRJ0C9\李智盛 (55) | test | 00:00:00 | 1635 行
```

6.6.5 Subqueries in the From Clause

根据路测 ATU 数据表,查询服务小区参考信号接收功率 RSRP 的均值大于-70 的小区。

```
⊟select CellID, avg_rsrp
    from ( select CellID, avg(RSRP)
from tbATUData
             group by CellID)
    as look_up(cellid,avg_rsrp)
where avg_rsrp> -70;
100 % ▼ <
🎹 结果 🛅 消息
     CellID avg_rsrp
     253890-0 -69.2849303944316
     253890-2 -69, 7589473684213
2
     253891-2 -68.8670266315484
     253894-0 -64.960414691943
5
      253914-2 -69.9834121345655
     253931-2 -69.0024678022434
6
     253941-0 -68.8005282555283
     259775-1 -67.52041156142
☑ 查询已成功执行。
                                                                                            DESKTOP-1TRJ0C9 (11.0 RTM) | DESKTOP-1TRJ0C9\李智盛 (55) | test | 00:00:02 | 9 行
```

6.6.6 With Clause

根据路测 ATU 切换统计矩阵表和 MRO 测量报告数据表,使用 with 语句找出所有具有最低切换次数的小区的 MRO 测量信息

☑ 查询已成功执行。

DESKTOP-1TRJ0C9 (11.0 RTM) | DESKTOP-1TRJ0C9\李智盛 (55) | test | 00:00:12 | 453185 行

班级: 2016211301

一开始根据题目要求筛选出的数据过多,怀疑语句有错误

写简单的语句试错的过程不清楚 with as 的语法结构,网上资料也很少;自已写的用来检验结果的简单语句一直报错,花了大量时间研究 with as 的结构。几次简单验证后发现一开始写的应该没有错误:因为取得最小值的小区 ID 不止一个。

6.6.7 Scalar Subquery——Subqueries in the Select Clause

根据小区/基站工参表和一阶邻区关系表,列出频点为 38400 的所有小区的一阶邻区数目。

采用了标量子查询,将结果命名为 num1

普通的直接查询,将结果命名为 num1

```
select count (N_SECTOR_ID) as num2
from tbAdjCell
   where S EARFCN = 38400
```

结果相同

6.7 综合---查询语句

根据小区/基站工参表和小区切换统计性能表,查询具有最多二阶邻区数的小区的最大切换成功次数、相应的切换目标小区 ID、尝试切换次数。

DESKTOP-1TRJ0C9 (11.0 RTM) | DESKTOP-1TRJ0C9\李智盛 (54) | test | 00:00:01 | 1 行

班级: 2016211301

6.8 Modification of the Database

6.8.1 Deletion

☑ 查询已成功执行。

根据路测 ATU 切换统计矩阵表和小区切换统计性能表,删除切换次数均值小于 3 的小区切换性能统计数据。

删除前 删除后

6.8.2 Insertion

向小区/基站工参表中插入一条新信息

再次查询

班级: 2016211301

6.8.3 Updates

● 将优化小区/保护带小区表中, 小区 ID 为 "246506-3" 的小区的小区类型改为 "优化区"。

```
□update tbOptCell
set
where 表 test.dbo.tbOptCell
select SECTOR_ID, CELL_TYPE
from tbOptCell
where SECTOR_ID='246506-3'

100 % ▼

■ 结果 消息

SECTOR_ID CELL_TYPE
1 246506-3 优化区
```

● 用小区 PCI 优化调整结果表中"优化调整后的本小区 PCI 值",替换小区/基站工参表中小区的"物理小区标识"。

(5504 行受影响)

```
update tbCell
  set PCI = case
              when tbCELL.SECTOR_ID IN (select SECTOR_ID
                                        from tbPCIAssignment)
              then ( select PCI
                     from
                          tbPCIAssignment
                    where tbCell.SECTOR ID = tbPCIAssignment.SECTOR ID)
              else tbCell.PCI
              end
   □update tbCell
          PCI = case
     set
                 when tbCELL.SECTOR_ID IN (select SECTOR_ID
                                            from tbPCIAssignment)
                 then ( select PCI
                        from tbPCIAssignment
                        where tbCell.SECTOR_ID = tbPCIAssignment.SECTOR_ID)
                 else tbCell.PCI
                 end
100 %
🛅 消息
```

实际上 tbCELL 表项 5504,而 tbPCIAssignment 仅有 276 项;只有 tbCELL 的 SECTOR_ID 能在 tbPCIAssignment 中找到时,这些 ID 对应的 PCI 被修改,否则不变(等于它本身的值)简单的测试:

再选取部分,验证成功:

```
SELECT TOP 10 SECTOR_ID as Assign_id , PCI
FROM tbPCIAssignment
ORDER BY SECTOR_ID

SELECT TOP 150 SECTOR_ID as Cell_id , PCI
FROM tbCell
ORDER BY SECTOR ID
```

	Assign_id	PCI
3	124711-2	184
4	124712-0	188
5	124712-1	186
6	124712-2	187
7	124713-0	181
8	124713-1	182
9	124713-2	180
10	124818-0	174

	Cell_id	PCI
120	124712-0	188
121	124712-1	186
122	124712-2	187
123	124713-0	181
124	124713-1	182
125	124713-2	180
126	124716-0	61
127	124716-1	60
128	124716-2	62
129	124717-0	344
130	124717-1	343

针对路测 ATU C2I 干扰矩阵表表,使用 case 语句作出如下修改:如果主小区与干扰小区为同站小区且干扰强度排序不小于 1,则干扰强度排序减 1;如果主小区与干扰小区不为同站,干扰强度排序加 1。

班级: 2016211301

修改前:

						_					
	SECTOR_ID	NCELL_ID	RATIO_ALL	RANK	COSITE	18	238397-2	238397-1	6	0	1
1	15113-129	253890-1	51	1	0	19	238397-2	259772-2	0	3	0
2	15113-129	253914-1	26	2	0	20	238397-2	259778-1	0	4	0
3	15113-129	253899-0	7	3	0	21	238397-2	5641-129	0	5	0
4	15113-129	253935-1	5	4	0	22	238397-2	253905-1	0	6	0
5	15113-129	259775-1	0	5	0	23	238397-2	253806-1	0	7	0
6	15113-129	253904-1	0	6	0	24	238397-2	25393	0	8	0
7	15113-129	253936-1	0	7	0	25	253890-0	253934-1	31	1	0
8	238397-1	253931-0	31	1	0	26	253890-0	15113	11	2	0
9	238397-1	259772-2	21	2	0	27	253890-0	253890-2	3	0	1

班级: 2016211301

修改后:

	SECTOR_ID	NCELL_ID	RATIO_ALL	RANK	COSITE
1	15113-129	253890-1	51	2	0
2	15113-129	253914-1	26	3	0
3	15113-129	253899-0	7	4	0
4	15113-129	253935-1	5	5	0
5	15113-129	259775-1	0	6	0
6	15113-129	253904-1	0	7	0
7	15113-129	253936-1	0	8	0
8	238397-1	253931-0	31	2	0
9	238397-1	259772-2	21	3	0

	SECTOR_ID	NCELL_ID	RATIO_ALL	RANK	COSITE
18	238397-2	238397-1	6	NULL	1
19	238397-2	259772-2	0	4	0
20	238397-2	259778-1	0	5	0
21	238397-2	5641-129	0	6	0
22	238397-2	253905-1	0	7	0
23	238397-2	253806-1	0	8	0
24	238397-2	25393	0	9	0
25	253890-0	253934-1	31	2	0
26	253890-0	15113	11	3	0

7 实验总结

7.1 分组聚集

6.5.1 分组聚集,降序排列

当 SQL 查询使用分组时,一个很重要的事情时需要保证出现在 select 语句中但是没有被聚集的属性只能是出现在 group by 子句中的那些属性。

换句话说,任何没有出现在 **group by** 子句中的属性如果出现在 **select** 子句中的话,它只能出现在聚集函数(如 **avg**)内部,否则这样的查询就是错误的。

7.2 Null values

6.4Null Values

7.3 查找失败

- 6.6.2 Set Comparison "some" Clause
- 6.6.3 Test for Empty Relations---Use of "not exists" Clause

班级: 2016211301

7.4 查询结果中有空值

6.6.3 Test for Empty Relations---Use of "not exists" Clause

7.5 Exists Not exists

exists 对主表用 loop 逐条查询,每次查询都会查看 exists 的条件语句,当 exists 里的条件语句能够返回记录行时(无论记录行是的多少,只要能返回),条件就为真,返回当前 loop 到的这条记录,反之如果 exists 里的条件语句不能返回记录行,则当前 loop 到的这条记录被丢弃,exists 的条件就像一个 bool 条件,当能返回结果集则为 true,不能返回结果集则为 false。

7.6 Unique 结构

6.6.4 Test for Absence of Duplicate Tuples

7.7 With as

6.6.6 With Clause

一开始根据题目要求筛选出的数据过多,怀疑语句有错误

写简单的语句试错的过程不清楚 with as ,语句一直报错,花了大量时间研究 with as 的结构,几次简单验证后发现一开始写的应该没有错误:因为取得最小值的小区 ID 不止一个。