Sistem Bus

- Penghubung bagi keseluruhan komponen komputer dalam menjalankan tugasnya
- ☐ Komponen komputer :
 - CPU
 - Memori
 - Perangkat I/O
- □ Transfer data antar komponen komputer.
 - Data atau program yang tersimpan dalam memori dapat diakses dan dieksekusi CPU melalui perantara bus
- Melihat hasil eksekusi melalui monitor juga menggunakan sistem bus
- Kecepatan komponen penyusun komputer harus diimbangi kecepatan dan manajemen bus yang baik

Sistem Bus

- Mikroprosesor
 - Melakukan pekerjaan secara paralel
 - Program dijalankan secara multitasking
 - Sistem bus tidak hanya lebar tapi juga cepat
- Interkoneksi komponen sistem komputer dalam menjalankan fungsinya
 - Interkoneksi bus
 - Pertimbangan-pertimbangan perancangan bus

Elemen Perancangan Elemen Bus

- Parameter dasar perancangan bus dapat diklasifikasikan berdasarkan jenis
 - Dedicated
 - Mulitiplexed
- Metode arbitrasi
 - Tersentralisasi
 - Terdistribusi
- Timing
 - Sinkron
 - Tak sinkron
- Lebar bus
 - Lebar address
 - Lebar data
- Jenis transfer data
 - read
 - write
 - read-modify-write
 - read-alter-write, block

Jenis Bus

- Dedicated bus
 - Bus dibedakan menjadi bus yang khusus menyalurkan data tertentu, misalnya paket data saja, atau alamat saja.
- Multiplexed bus
 - Bus dilalukan informasi yang berbeda baik data, alamat maupun sinyal kontrol dengan metode mulipleks data maka bus ini disebut
 - Keuntungan adalah hanya memerlukan saluran sedikit sehingga dapat menghemat tempat
 - Kerugiannya adalah kecepatan transfer data menurun dan diperlukan mekanisme yang komplek untuk mengurai data yang telah dimulitipleks

Metode Arbitrasi

- Pada metode tersentral diperlukan pengontrol bus sentral atau arbiter yang bertugas mengatur penggunaan bus oleh modul. Arbiter bisa suatu modul atau bagian fungsi CPU.
- Pada metode terdistribusi, setiap modul memiliki logika pengontrol akses (access control logic) yang berfungsi mengatur pertukaran data melalui bus.
- Kedua metode arbitrasi intinya menugaskan suatu perangkat bisa modul I/O ataupun CPU bertindak sebagai master kontrol pertukaran

Timing-Sinkron

- Metode pewaktuan sinkron terjadinya event pada bus ditentukan oleh sebuah pewaktu (clock).
- □ Sebuah transmisi 1 0 disebut siklus waktu atau siklus bus dan menentukan besarnya slot waktu.
- Semua perangkat modul pada bus dapat membaca atau pengetahui siklus clock.
- Biasanya satu siklus untuk satu event.
- Model ini mudah diimplementasikan dan cepat namun kurang fleksibel menangani peralatan yang beda kecepatan operasinya.
- Biasanya digunakan untuk modul-modul tertentu yang sudah jelas karakteristiknya

Contoh pewaktuan sinkron

Timing-Asinkron

- Kerja modul yang tidak serempak kecepatannya.
- Event yang terjadi pada bus tergantung event sebelumnya sehingga diperlukan sinyal – sinyal validasi untuk mengidentifikasi data yang ditransfer.
- Sistem ini mampu menggabungkan kerja modul-modul yang berbeda kecepatan maupun teknologinya, asalkan aturan transfernya sama

Contoh pewaktuan asinkron

Lebar Bus

- Semakin lebar bus maka semakin besar data yang dapat ditransfer sekali waktu.
- Semakin besar bus alamat, akan semakin banyak range lokasi yang dapat direfensikan

Jenis Transfer Data

- Operasi transfer data adalah pertukaran data antar modul sebagai tindak lanjut atau pendukung operasi yang sedang dilakukan.
- □ Saat operasi baca (read), terjadi pengambilan data dari memori ke CPU, begitu juga sebaliknya pada operasi penulisan maupun operasi – operasi kombinasi.
- Bus harus mampu menyediakan layanan saluran bagi semua operasi komputer

Contoh Bus - Bus ISA

- Industry Standar Architecture
- ☐ Bus PC/AT yang beroperasi pada 8,33 MHz
- Keuntungannya adalah bahwa pendekatan ini tetap mempertahankan kompatibilitas dengan mesin-mesin dan kartu-kartu yang ada.
- Pendekatan ini juga didasarkan pada sebuah bus yang telah dilisensikan secara bebas oleh IBM kepada banyak perusahaan dalam rangka untuk menjamin bahwa sebanyak mungkin pihak ketiga dapat memproduksi kartu-kartu untuk PC pertama, sesuatu yang kembali menghantui IBM.

Contoh Bus - Bus PCI

- ☐ Peripheral Component Interconnect (PCI)
- Bus yang tidak tergantung prosesor dan berfungsi sebagai bus
- mezzanine atau bus peripheral
- PCI memiliki kinerja tinggi untuk sistem I/O berkecepatan tinggi seperti : video adaptor, NIC, disk controller, sound card, dan lainlain.
- ☐ Standard PCI adalah 64 saluran data pada kecepatan 33 MHz, laju transfer data 264 MB per detik atau 2,112 Gbps.
- Keunggulan PCI tidak hanya pada kecepatannya saja tetapi murah dengan keping yang sedikit
- Intel mulai menerapkan PCI pada tahun 1990 untuk sistem pentiumnya.
- Untuk mempercepat penggunaan PCI, Intel mempatenkan PCI bagi domain publik sehingga vendor dapat mengeluarkan produk dengan PCI tanpa royalti

Contoh Bus - Bus USB

- Semua perangkat peripheral tidak efektif apabila dipasang pada bus berkecepatan tinggi PCI
- Banyak peralatan yang memiliki kecepatan rendah seperti keyboard, mouse, dan printer.
- Solusi : tujuh vendor komputer (Compaq, DEC, IBM, Intel, Microsoft, NEC, dan Northern Telecom) bersama-sama merancang bus untuk peralatan I/O berkecepatan rendah.
- Standard yang dihasilkan dinamakan Universal Standard Bus (USB).

Keuntungan USB

- Pemakai tidak harus memasang tombol atau jumper pada PCB atau peralatan
- Pemakai tidak harus membuka casing untuk memasang peralatan I/O baru
- Hanya satu jenis kabel yang diperlukan sebagai penghubung
- Dapat mensuplai daya pada peralatan-peralatan I/O
- Memudahkan pemasangan peralatan-peralatan yang hanya sementara dipasang pada komputer
- Tidak diperlukan reboot pada pemasangan peralatan baru dengan USB
- Murah

Pengkabelan USB

- □ Bandwidth total USB adalah 1,5 MB per detik.
- Bandwidth itu sudah mencukupi peralatan I/O berkecepatan rendah seperti keyboard, mouse, scanner, telepon digital, printer, dan sebagainya.
- □ Kabel pada bus terdiri dari 4 kawat, 2 untuk data, 1 untuk power (+5 volt), dan 1 untuk ground.
- Sistem pensinyalan mentransmisikan sebuah bilangan nol sebagai transisi tegangan dan sebuah bilangan satu bila tidak ada transmisi tegangan

Contoh Bus - Bus SCSI

- ☐ Small Computer System Interface (SCSI)
- Perangkat peripheral eksternal yang dipopulerkan oleh macintosh pada tahun 1984.
- SCSI merupakan interface standard untuk drive CD-ROM, peralatan audio, hard disk, dan perangkat penyimpanan eksternal berukuran besar.
- □ SCSI menggunakan interface paralel dengan 8, 16, atau 32 saluran data
- Perangkat SCSI memiliki dua buah konektor
 - Konektor input
 - Konektor output.
- Seluruh perangkat berfungsi secara independen dan dapat saling bertukar data
 - misalnya hard disk dapat mem-back up diri ke tape drive tanpa melibatkan prosesor

Contoh Bus - Bus SCSI

- Beberapa macam versi SCSI.
 - SCSI-1 dibuat tahun 1980 memiliki 8 saluran data, dan beroperasi pada kecepatan 5 MHz. Versi ini memungkinkan sampai 7 perangkat dihubungkan secara daisy-chain.
 - SCSI-2 diperkenalkan tahun 1992 dengan spesifikasi 16 atau 32 saluran data pada kecepatan 10 MHz.
 - SCSI-3 yang mendukung kecepatan yang lebih tinggi sampai saat ini masih dalam tahap penelitian

Contoh Bus -Bus P1394 / Fire Wire

- Kebutuhan bus I/O berkecepatan tinggi dan Semakin cepatnya prosesor saat ini yang mencapai 1 GHz
 - Perlu diimbangi dengan bus berkecepatan tinggi
 - Dikembangkan bus performance tinggi yang dikenal dengan Fire Wire (P1394 standard IEEE)

Kesimpulan

- 1. Komputer tersusun atas beberapa komponen penting seperti CPU, memori, perangkat I/O. Sistem bus adalah penghubung bagi keseluruhan komponen komputer dalam menjalankan tugasnya.
- Kumpulan lintasan atau saluran berbagai modul disebut struktur interkoneksi. Rancanagan struktur interkoneksi sangat bergantung pada jenis dan karakteristik pertukaran datanya.
- 3. Secara umum fungsi saluran bus dikatagorikan dalam tiga bagian, yaitu saluran data, saluran alamat dan saluran kontrol.

Kesimpulan

- 4. Saat ini terdapat banyak implementasi sistem bus, tetapi parameter dasar perancangan bus dapat diklasifikasikan berdasarkan jenis (dedicated dan mulitiplexed), metode arbitrasi (tersentralisasi dan terdistribusi), timing (sinkron dan tak sinkron), lebar bus (lebar address dan lebar data) dan jenis transfer datanya(read, write, read-modify-write, readalterwrite, block).
- 5. Diantara jenis bus yang beredar di pasaran saat ini adalah PCI, ISA, USB, SCSI, FuturaBus+, FireWire, dll

Kuis Sistem BUS – Pertemuan ke-3

- 1. Jelaskan Pengertian Sistem Bus?
- 2. Jelaskan uraian secara umum fungsi saluran Bus yang dikategorikan menjadi 3 bagian?
- 3. Berikan analisa anda penyebab bila terlalu banyak modul atau perangkat yang dihubungkan pada bus maka akan terjadi penurunan kinerja?

Note: Kerjakan di selembar kertas/buku catatan mata kuliah Arsikom kalian!