CSIT5210

Outlier

Prepared by Raymond Wong Presented by Raymond Wong raywong@cse

Clustering:

	Computer	History
Raymond	100	40
Louis	90	45
Wyman	20	95

Cluster 2 (e.g. High Score in History and Low Score in Computer)

Outlier

(e.g. Low Score in Computer and Low Score in History)

auster 1

(e.g. High Score in Computer and Low Score in History)

Outlier

(e.g. High Score in Computer and High Score in History)

Problem: to find all outliers

- Applications
 - Fraud Detection
 - Detect unusual usage of credit cards or telecommunication services
 - Medical Analysis
 - Finding unusual response to various medical treatment
 - Customized Marketing
 - Customers with extremely low or extremely high incomes
 - Network
 - A potential network attack
 - Software
 - A potential bug

- Statistical Model
- Distance-based Model
- Density-Based Model

Statistical Model

- An outlier is an observation that is numerically distant from the rest of the data
- E.g.,
 - Consider 1-dimensional data
 - How is a data point considered as an outlier?

Statistical Model

 Assume the 1-dimensional data follows the normal distribution

- Disadvantage
 - Assume that the data follows a particular distribution

- Statistical Model
- Distance-based Model
- Density-Based Model

- Advantage
 - This model does not assume any distribution
- Idea
 - A point p is considered as an outlier if there are too few data points which are close to p

- Given a point p and a non-negative real number ε,
 - the ε-neighborhood of point p, denoted by N(p), is the set of points q (including point p itself) such that the distance between p and q is within ε.
- Given a non-negative integer N_o and a non-negative real number ε
 - A point p is said to be an outlier if
 - $N(p) <= N_0$

$$N_o = 2$$

Is the distance-based model "perfect" to find the outliers?

- Statistical Model
- Distance-based Model
- Density-Based Model

- Advantage:
 - This model can find some "local" outliers

Idea

The ratio of these densities is large → outlier

a ____ Density is very low

Idea

Density is high

 C_1

These densities are "similar" → NOT outlier

Density is high

a

- Formal definition
 - Given an integer k and a point p,
 - $N_k(p)$ is defined to be the ϵ -neighborhood of p (excluding point p)
 - where ε is the distance between p and the k-th nearest neighbor

k = 2

Density-Based Model

- Reachability Distance of p with respect to o
 - Given two points p and o and an integer k,
 - Reach_dist_k(p, o) is defined to be max{dist(p, o), ε}
 - where ε is the distance between p and the k-th nearest neighbor

Reach_dist₂(a, b) =?

Reach_dist₂(a, c) =?

Reach_dist₂(a, d) =?

Reach_dist₂(a, e) =?

- The average reachability distance of p among all k nearest neighbors is equal to $\hat{\epsilon}$
 - where ε is the distance between p and the k-th nearest neighbor

k = 2

 The local reachability density of p (denoted by lrd_k(p)) is defined to be 1/ε

Why?

 The local outlier factor (LOF) of a point p is equal to

$$\frac{\sum_{o \in N_k(p)} \frac{lrd_k(o)}{lrd_k(p)}}{k}$$

