# Air Quality Forecasting

Datena Amedeo, Dell'Atti Martina, Palummo Alessandro

November 20, 2020



## Wiseair

Wiseair is a startup born in 2018 from some students of Politecnico di Milano, who focused on the problem of **air quality**.

They designed low-cost sensor called **Arianna** 



# Wiseair

ARPA has installed four Ar quality measurement stations in Milan. There are  $\,50\,$  Arianna stations.



## Wiseair

ARPA has installed four Ar quality measurement stations in Milan. There are 50 Arianna stations.



Wiseair own 68 air quality sensor in Milan at the moment, active from July 2020, and they are increasing day by day thanks to the involvement of citizens who installed them. Our data go from September 2020 to November 2020

|                     | pot_id | pm1SPS    | pm2p5SPS  | pm4SPS    | pm10SPS   | temperature_sht | humidity_sht | latitude  | longitude | weekend | wind | rain |
|---------------------|--------|-----------|-----------|-----------|-----------|-----------------|--------------|-----------|-----------|---------|------|------|
| created_at          |        |           |           |           |           |                 |              |           |           |         |      |      |
| 2020-09-01 00:00:00 | 1024   | 3.745000  | 4.500000  | 6.127500  | 6.322500  | 15.095000       | 65.825       | 45.458286 | 9.167560  | 0       | 1.5  | 0.0  |
| 2020-09-01 01:00:00 | 1024   | 2.270000  | 2.000000  | 2.400000  | 2.400000  | 14.320000       | 70.000       | 45.458286 | 9.167560  | 0       | 1.3  | 0.0  |
| 2020-09-01 02:00:00 | 1024   | 4.610000  | 5.000000  | 5.910000  | 6.010000  | 12.700000       | 70.000       | 45.458286 | 9.167560  | 0       | 8.0  | 0.0  |
| 2020-09-01 03:00:00 | 1024   | 5.853333  | 5.333333  | 6.186667  | 6.186667  | 12.486667       | 70.000       | 45.458286 | 9.167560  | 0       | 0.5  | 0.0  |
| 2020-09-01 04:00:00 | 1024   | 6.062500  | 6.000000  | 7.497500  | 7.595000  | 12.260000       | 70.000       | 45.458286 | 9.167560  | 0       | 0.1  | 0.0  |
|                     |        |           |           |           |           |                 |              |           |           |         |      |      |
| 2020-11-04 19:00:00 | 1023   | 46.535000 | 52.500000 | 74.445000 | 76.710000 | 20.545000       | 70.000       | 45.402550 | 9.203925  | 0       | 0.9  | 0.0  |
| 2020-11-04 20:00:00 | 1023   | 45.565000 | 48.500000 | 66.525000 | 68.165000 | 21.705000       | 70.000       | 45.402550 | 9.203925  | 0       | 0.4  | 0.0  |
| 2020-11-04 21:00:00 | 1023   | 51.440000 | 56.000000 | 77.760000 | 79.850000 | 17.630000       | 70.000       | 45.402550 | 9.203925  | 0       | 0.3  | 0.0  |
| 2020-11-04 22:00:00 | 1023   | 51.000000 | 54.500000 | 75.330000 | 77.245000 | 22.730000       | 70.000       | 45.402550 | 9.203925  | 0       | 0.1  | 0.0  |
| 2020-11-04 23:00:00 | 1023   | 43.575000 | 43.500000 | 58.040000 | 59.110000 | 22.645000       | 70.000       | 45.402550 | 9.203925  | 0       | 0.3  | 0.0  |

▶ **pot-id** identifies which sensor has taken the measurement. The ID is useful to geolocate the measurement

- ▶ **pot-id** identifies which sensor has taken the measurement. The ID is useful to geolocate the measurement
- created-at gives the time coordinate for the measurement, up to the second. The format is "yyyy-mm-dd hh:MM:ss"

- ▶ **pot-id** identifies which sensor has taken the measurement. The ID is useful to geolocate the measurement
- created-at gives the time coordinate for the measurement, up to the second. The format is "yyyy-mm-dd hh:MM:ss"
- ▶ pm1SPS, pm2p5SPS, pm10SPS are the Particular Matter, pollutant of the air, which have dimensions, respectively, less or equal than  $1\mu m$ ,  $2.5\mu m$ ,  $10\mu m$ . They are measured in  $\mu g/m^3$

- ▶ **pot-id** identifies which sensor has taken the measurement. The ID is useful to geolocate the measurement
- created-at gives the time coordinate for the measurement, up to the second. The format is "yyyy-mm-dd hh:MM:ss"
- ▶ pm1SPS, pm2p5SPS, pm10SPS are the Particular Matter, pollutant of the air, which have dimensions, respectively, less or equal than  $1\mu m$ ,  $2.5\mu m$ ,  $10\mu m$ . They are measured in  $\mu g/m^3$
- ► temperature-sht, humidity-sht are the temperature and the humidity for each sensor's measurement of Arianna

- ▶ **pot-id** identifies which sensor has taken the measurement. The ID is useful to geolocate the measurement
- created-at gives the time coordinate for the measurement, up to the second. The format is "yyyy-mm-dd hh:MM:ss"
- ▶ pm1SPS, pm2p5SPS, pm10SPS are the Particular Matter, pollutant of the air, which have dimensions, respectively, less or equal than  $1\mu m$ ,  $2.5\mu m$ ,  $10\mu m$ . They are measured in  $\mu g/m^3$
- temperature-sht, humidity-sht are the temperature and the humidity for each sensor's measurement of Arianna
- latitude, longitude

- ▶ **pot-id** identifies which sensor has taken the measurement. The ID is useful to geolocate the measurement
- created-at gives the time coordinate for the measurement, up to the second. The format is "yyyy-mm-dd hh:MM:ss"
- ▶ pm1SPS, pm2p5SPS, pm10SPS are the Particular Matter, pollutant of the air, which have dimensions, respectively, less or equal than  $1\mu m$ ,  $2.5\mu m$ ,  $10\mu m$ . They are measured in  $\mu g/m^3$
- ► temperature-sht, humidity-sht are the temperature and the humidity for each sensor's measurement of Arianna
- latitude, longitude
- weekend is a dummy variable which indicate if the measurement is in a day of the week or not

- **pot-id** identifies which sensor has taken the measurement. The ID is useful to geolocate the measurement
- created-at gives the time coordinate for the measurement, up to the second. The format is "yyyy-mm-dd hh:MM:ss"
- ▶ pm1SPS, pm2p5SPS, pm10SPS are the Particular Matter, pollutant of the air, which have dimensions, respectively, less or equal than  $1\mu m$ ,  $2.5\mu m$ ,  $10\mu m$ . They are measured in  $\mu g/m^3$
- ► temperature-sht, humidity-sht are the temperature and the humidity for each sensor's measurement of Arianna
- latitude, longitude
- weekend is a dummy variable which indicate if the measurement is in a day of the week or not
- wind, rain are the wind speed and the rain level measured by ARPA sensors

# **Data Exploration**



From domain knowledge we know that sensors tends to measure higher PM values if humidity increases a lot. The clustermap, which plot a matrix dataset as a hierarchically-clustered heatmap, put in evidence the correlation between humidity and pm2p5 values, which is higher w.r.t. the correlation between the other features.

## Goal

Our main **goal** is to predict future PM values. We will tackle the problem in two steps:

- ▶ Univariate analysis: focus on a single time series without taking into account any spatial correlation between different sensors.
- ▶ Multivariate analysis: derive a vectorial model which uses information from all the sensors, this time taking into account the spatial correlation between them.



## The model

The first proposed model for Univariate Analysis is an AR(2) model:

$$y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \epsilon_t$$
  $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$ 

where  $\epsilon_t$  is a sequence of uncorrelated error terms and the  $\phi_i$  are constant parameters.

#### LIKELIHOOD

$$y|\underline{\phi}, \beta \sim \mathcal{N}(\underline{\phi}^T \beta, \sigma^2)$$
 $\sigma^2 \text{ not known}$ 

#### **PRIORS**

$$\begin{split} \underline{\phi}|\sigma^2 &\sim \mathcal{N}_2(\underline{\mu}_0, \sigma^2 B_0) \\ \sigma^2 &\sim \textit{inv} \Gamma\Big(\frac{\nu_0}{2}, \frac{\nu_0 \sigma_0^2}{2}\Big) \\ \mu_0, B_0, \nu_0, \sigma_0^2 \text{ fixed} \end{split}$$

# Why AR(2)?



ACF tends to zero only asymptotically, while PACF drops to zero at lag 2. An autoregressive model of order 2 seems the most appropriate choice.

## The model

Since the model is a standard conjugate linear model, the POSTERIORS are:

$$\mu_n = \mu_0 + B_0 \Phi [\Phi^T B_0 \Phi + I_n]^{-1} (Y - \Phi^T \mu_0)$$
  

$$B_n = B_0 - B_0 \Phi [\Phi^T B_0 \Phi + I_n]^{-1} \Phi^T B_0$$

$$v_n = v_0 + n$$

$$\sigma_n^2 = \frac{1}{v_n} \left[ v_0 \sigma_0^2 + (Y - \Phi^T \mu_0)^T [\Phi^T B_0 \Phi + I_n]^{-1} (Y - \Phi^T \mu_0) \right]$$



# Future model development

We do not expect that a simple AR(p) model will work. This is just a first attempt to understand the structure of the time series. Next steps:

- try to fit more "complex" classical TS models as ARMA/ARIMA
- include seasonality in the model by fitting a SARIMA model (we have spotted a daily seasonal component)
- pass to a Dynamic Linear Model formulation (poi spiego meglio...)
- extend the scalar case to the vectorial case, introducing spatial correlation between different sensors

# **Bibliography**

- ▶ Time Series Modeling, Computation,and Inference. West Mike, Prado Raquel
- Quadro di riferimento ambientale, Componente Atmosfera Istituto superiore per la protezione e la ricerca ambientale(ISPRA)