Esercizi - Informazione 1

E7.1 Siano $X_1,\ldots,X_n,\ n$ misure dell'altezza μ di una persona (in centimetri). Assumiamo che X_i siano indipendenti e identicamente distribuite con media μ e deviazione standard $\sigma=1$ cm. La media delle misure $\frac{1}{n}\sum_{i=1}^n X_i$ costituisce una stima dell'altezza μ . Utilizzando la disuguaglianza di Chebyshev, calcolare il numero di misure n necessarie per determinare μ con una precisione di 0.5 cm e con una confidenza pari al 90%.

Soluzione:

Data la disuguaglianza di Chebyshev:

$$\forall \epsilon > 0, P\{|X - \mu| \ge \epsilon\} \le \frac{\sigma^2}{\epsilon^2}$$

nel nostro caso abbiamo che $E(\sum_i \frac{X_i}{n}) = \mu$ e che $Var(\sum_i \frac{X_i}{n}) = \frac{\sigma^2}{n}$, quindi:

$$P\left\{\left|\sum_{i} \frac{X_i}{n} - \mu\right| \ge 0.5\right\} \le \frac{\sigma^2}{n0.25} = \frac{4\sigma^2}{n}$$

quindi per imporre una precisione di 0.5 cm con una confidenza pari al 90% bisogna porre $\frac{4\sigma^2}{n}=10\%$. Quindi il numero di misure necessarie é $n=40\sigma^2$

E7.2 Supponiamo di avere 27 palline uguali per forma e colore, una delle quali è di peso inferiore delle altre 26. Avendo a disposizione una bilancia a due piatti, determina una strategia capace di individuare la pallina più leggera con tre pesate.

Soluzione:

Sono sufficienti 3 pesate. La pallina più leggera è una qualunque delle 27. Per massimizzare l'informazione di Shannon che otteniamo con ogni pesata dobbiamo dividere le 27 palline in tre gruppi da 9. Confrontando i primi due gruppi riduciamo il problema al caso di 9 palline (la pallina è nel gruppo più leggero o nel terzo se i piatti sono in equilibrio). Dividiamo le 9 palline in tre gruppi da 3. Confrontando i primi due gruppi riduciamo il problema al caso di 3 palline...

E7.3 Il bosone di Higgs H é una particella fondamentale che puó decadere in diversi stati finali con le seguenti preobabilitá: due quark bottom $b\bar{b}$ (P=0.57), due bosoni W^+W^- (P=0.21), due gluoni gg (P=0.09), due leptoni tau $\tau\bar{\tau}$ (P=0.06), due quark charm $c\bar{c}$ (P=0.03), due bosoni ZZ (P=0.03) o altro (chiamiamo questo stato γ) con P=0.01. Calcolare l'informazione di Shannon per ogni stato, l'entropia di Shannon e l'entropia grezza.

1

Soluzione:

•
$$S(b\bar{b}) = -\log_2(0.57) = 0.811$$
, $S(W^+W^-) = 2.25$, $S(gg) = 4.06$, $S(\tau\bar{\tau}) = 4.06$, $S(c\bar{c}) = 5.06$, $S(ZZ) = 5.06$, $S(\gamma) = 6.64$.

•
$$H = \sum_{i=1}^{7} P_i \log P_i^{-1} = 1.79$$

• $H_0 = \log N = 2.81$, con N = 7 possibili stati finali.

E7.4 Se H(X) = 4, H(Y) = 3 e H(X, Y) = 5, calcola le entropie condizionate.

Soluzione:

Poiché

$$H(X,Y) = H(Y) + H(X|Y)$$

per trovare H(X|Y) e H(Y|X) posso scrivere che

$$H(X|Y) = H(X,Y) - H(Y) = 2 e H(Y|X) = H(X,Y) - H(X) = 1$$

E7.5 Siano X e Y variabili casuali discrete indipendenti. Usando solo la definizione di entropia, dimostrare che H(X,Y)=H(X)+H(Y).

Soluzione:

Dalla definizione di entropia possiamo scrivere che

$$H(X,Y) = \sum_{i} \sum_{j} p(x_i, y_j) log_2\left(\frac{1}{p(x_i, y_j)}\right)$$

se X e Y sono indipendenti si avrá che $p(x_i, y_j) = p(x_i)p(y_j)$, per cui sostituendo nella definizione si ottiene:

$$H(X,Y) = \sum_{i} \sum_{j} p(x_i)p(y_j)log_2\left(\frac{1}{p(x_i)p(y_j)}\right)$$

proseguendo con i calcoli possiamo scrivere

$$H(X,Y) = \sum_{i} \sum_{j} p(x_i)p(y_j) \left[log_2\left(\frac{1}{p(x_i)}\right) + log_2\left(\frac{1}{p(y_j)}\right) \right] =$$

$$= \sum_{i} p(x_i) \left\{ \sum_{j} p(y_j)log_2\left(\frac{1}{p(x_i)}\right) + \sum_{j} p(y_j)log_2\left(\frac{1}{p(y_j)}\right) \right\} =$$

$$= \sum_{i} p(x_i) \left\{ \sum_{j} p(y_j)log_2\left(\frac{1}{p(x_i)}\right) + H(Y) \right\} =$$

$$= \sum_{i} p(x_i)log_2\left(\frac{1}{p(x_i)}\right) + \sum_{i} p(x_i)H(Y) =$$

$$= H(X) + H(Y)$$

Nel caso, invece, in cui le due variabili non sono indipendenti, l'uguaglianza diventa H(X,Y) = H(X) + H(Y|X) o H(X,Y) = H(Y) + H(X|Y).

E7.6 Per quale motivo non possono esistere insiemi X e Y tali che H(X) = 3, H(Y) = 4 e H(X,Y) = 8? Che cosa puoi dire di X e Y se, invece, H(X,Y) = 7?

Soluzione:

Perché per ogni X e Y si ha che $H(X,Y) \leq H(X) + H(Y)$; il segno di uguaglianza si ha solo nel caso in cui X e Y sono indipendenti.