

(https://www.cambridgesemantics.com)

PRODUCTS ~

ANZO® ~ ANZOGRAPH® ~ SOLUTIONS ~ ABOUT US ~

Learn OWL and RDFS

Request a Demo (/request-a-demo/)

RESOURCES V

WEBINARS (/CATEGORY/WEBINARS/) BLOG (HTTP://BLOG.CAMBRIDGESEMANTICS.COM/)

CASE STUDIES (/CATEGORY/CASE-STUDIES/) WHITE PAPERS (/CATEGORY/WHITE-PAPERS/)

ARTICLES (/CATEGORY/ARTICLES/) VIDEOS (/VIDEOS/) TRAINING (/TRAINING/)

SEMANTIC UNIVERSITY (/BLOG/SEMANTIC-UNIVERSITY/)

OWL References for Humans

(HTTPS://WWW.CAMBRIDGESEMANTICS.COM/BLOG/SEMANTIC-

WINVERSITY/LEARN-OWL
This lesson provides an introduction to the most useful stuff in OWL. It's not intended to be RDFs/OWL-101/)

comprehensive, but it does contain quite a few of the constructs that you're likely run into.

RDFS VS. OWL Note: many of the examples in this lesson came from the more technical OWL Primer

 $\textbf{(HTTPS://WWW.CAMBRIDGESEMAN INCOM/BLOGG/SE/MAN INCOM/BLOGG/SE/MAN$

UNIVERSITY/LEARN-OWL- of making them more accessible to those newer to OWL.

RDFS/RDFS-VS-OWL/)

Today's Lesson

(HTTPS://WWW.CAMBRIDGESEMANTICS.COM/BLOG/SEMANTICS

UNIVERSITY/LEARN-OWL• Properties

RDFS/FLAVORS-OF-OWL/) • Restrictions

OWL REFERENCES FOR

HUMANS

Classes and Resources

(https://www.cambridgesemantics.com/blog/semanticuniversitry/Learn-owl-RDFs/OWL-REFERENCES- (https://www.cambridgesemantics.com/semantic-univer

HUMANS/)

(https://www.cambridgesemantics.com/semantic-university/rdfs-vs-owl) is that it allows you to construct some fairly complex, but useful, relationships among classes. Some of the most common building blocks for doing so are listed below.

Classes and Resources				
Property	Used to say that	Example		
intersectionOf	any instance of the first class is also an instances of all classes in the specified list	:Mother owl:intersectionOf (:Woman :Parent)		
unionOfany instance	any instance of the first class is an instance of at least	:Parent owl:unionOf		
	one of the classes in the specified list	(:Mother:Father)		
complementOf	the first class is equivalent to everything not in the second class	:Parent owl:complementOf :NonParent		
disjointWith	the first class and second class have no members in common	:Man owl:disjointWith :Woman		
equivalent Class	the first class and the second class contain all the same members	:AdultFemaleHuman owl:equivalentClass :Woman		
sameAs	the first resource refers to the exact same thing as the second resource	:JimFromWork owl:sameAs :MyNeighborJim		
differentFrom	the first resource refers to something different from the second resource	:BobFromWork owl:differentFrom :MyNeighborBob		

Properties

As with RDFS, properties in OWL are used to link things together. OWL provides a rich and complex vocabulary for saying things about these links.

Basic Property Type	es						
Kind of Property Used to say		Exa	Example Explanation				
DatatypeProperty data values		nple ex:h	asBirth	This property simple data v		late, which is a	
ObjectPropertythat this property links to another resource		other ex:h	asSpou	se This property		person, which is	
Logical Relationship	os						
Kind of Property	Used to say			Example	Explanatio	n	
TransitiveProperty	that if this property to C, then it also links		, and B	ex:tallerThan	Bob is talle	ller than Bob, and er than Chuck, then er than Chuck	
SymmetricProperty	that if the property then it always relates			ex-hasSnouse		b's spouse, then 's spouse too	
AsymmetricPropert	that if the property then it never relates E		В,	ex:tallerThan		ller than Bob, then be taller than Ann	
ReflexiveProperty	that this property al something to itself.	ways links		ex:livesWith	Everybody themselve		
IrreflexivePropertythat this property never links something to itself.		ever links		ex:hasSpouse	Nobody is their own spouse		
FunctionalProperty	that this property of most one thing.	nly ever link	ks to at	ex:hasBirthday	You only h		ala ui al ar a
InverseFunctionalPi				ex:hasDLNumber	I am the o drivers lic	Welcome to Cam Semantics! What here?	

07/04/2020 (2) New Messages!

	Property	Used to say that	Example
	PRODUCTS ~		:hasChild
	inverseOf	the two properties are the inverse of each other. For example, if	owl:inverseOf
m)		Ann 3 Child 15 Dob, then Dob's parent 15 Ann.	:hasParent
	ANZO® ∨	ANZOGRAPH® ✓ SOLUTIONS ✓ ABOUT US	Y :hases⊕NARGES Y
	equivalentProperty	two properties are exactly the same	owl:equivalentProperty
			:hasBirthLocation

Request a Demo (/request-a-demo/)

Restrictions

In RDFS, you could impose constraints on properties simply by specifying the domain and range. For example, if you asserted the range of :hasBirthday is xsd:date, then all statements using :hasBirthday should have an xsd:date as their object.

OWL lets you do this too, but it also introduces the concepts of restrictions, enumerations, and dataranges which are much more powerful.

 $(Note: In the Turtle\ RDF\ syntax, these\ constructs\ are\ usually\ specified\ using\ the\ bracketed\ blank\ node)$ syntax, which we'll use below.)

Restrictions and Parameter		Example	Explanation	
cardinality min-cardinality max-cardinality	that the property can have a certain number of values (objects).	:Automobile owl:equivalentclass [
		rdf:type owl:Restriction ;		
		owl:cardinality "4"^^xsd:int;	All automobiles have 4 wheels (e.g., as opposed to a bicycle).	
		owl:onProperty :hasWheel		
].		
		:BobsChildren owl:equivalentClass [
	that all instances of a sless same	rdf:type owl:Class;	The class 'BobsChildren' has the	
oneOf	'	owl:oneOf (:Bill :John :Mary)	three items: Bill, John, and Mary	
].		
	that all objects of that property have the specified value	:BobsChildren owl:equivalentClass [
		rdf:type owl:Restriction ;	Each instance of BobsChildren	
hasValue			has 'Bob' as the object of its :hasParent property.	
		owl:hasValue :Bob		
].		
		:Parent owl:equivalentClass [
someValuesFron	that at least one object of that property is a member of the specified class.	rdf:type owl:Restriction ;		
		owl:onProperty :hasChild ;	Any instance of the 'Parent' class has at least one child that is a Person	
		owl:someValuesFrom :Person		
		1.		
allValuesFrom	that all objects of that property are members of the specified class	:Vegetarian owl:equivalentClass [
		rdf:type owl:Restriction ;		
		owl:onProperty	The class 'Vegetarian' is equivalent to the class of thing that only eat non-meat.	
			char only car non-inear.	
		owl:allValuesFrom :NonMeat		

Conclusion

That's the end of our general overview of some basic OWL constructs. We hope this tutorial has been helpful.

< PREVIOUS LESSON (HTTPS://WWW.CAMBRIDGESEMANTICS.COM/BLOG/SEMANTIC-UNIVERSITY/LEARN-OWL-RDFS/FLAVORS-OF-

Solutions (/solutions/) Semantic Layer for Cloud Data Lakes & Hadoop (/solutions/anzo/#semanticlayer) Self-service Data Access &

Advanced Analytics

(/about-us/) Customers (/aboutus/customers/) Partners (/about-us/partners/) Analyst Coverage (/category/analyst-coverage/)

About Us Resources (/blog/)

Webinars (/category/webinars/) Blog Semantics! What brought you (https://blog.cambridgesemantics.com/ps://twitt

Case Studies (/category/case-

studies/)

(https://www Welcome to Cambridge

OCAMBRIDGE SEVANTOS

- I - I' - - - ' - ' - 'f-service) SEMANTICS ment & ML and https://www.ors/anzo/#data-

management) Industry Solutions (/solutions/#industry-usecases)

Financial Services (/solutions/financial/)

(/solutions/government-solutions/) Healthcare (/solutions/healthcare/) Insurance (/solutions/insurance/) Life Sciences (/solutions/life-

Material Sciences (/solutions/material-sciences/) Retail (/solutions/retail/)

In The News (/cappegory/news/) Events (/category/events/)

Press Releases Awards & Recognition (/category/awardsrecognition/) Culture & Careers (/about-

us/careers/) Management Team (/aboutus/#team)

Articles (/category/articles/) Videos (/videos/) (/category/press-releases/20GRAPDocumentation/TIONS >

(/category/white-papers/)

semantics/)

in

(https://www.linkedin.com/company/cambridge-

ABO (https://www.youtube.com/channel/UCu6WgFr6nmwtMsFpqDOY

(https://docs.cambridgesemantics.com/) (https://www.slideshare.net/camsemantics)

(/blog/semantic-university/) Getting Started: Understanding Request a Demo (/request-a-demo/)
Semantic Technologies

(/blog/semantic-university/introsemantic-web/) Semantic Technologies Compared (/blog/semantic-university/comparing-semantictechnologies/)

Semantic Technologies Applied (/blog/semantic-university/semantic technologies-applied/)

1 Beacon St | 15th Floor | Boston, MA 02108

 $Copyright @ 2020 \ Cambridge \ Semantics. \ All \ Rights \ Reserved. \ | \ Boston \ Web \ Design \ (http://www.yellingmule.com)$

Privacy Policy (https://www.cambridgesemantics.com/privacy-policy/)

Welcome to Cambridge Semantics! What brought you here?