Digital Electronic Circuits Section 1 (EE, IE)

Lecture 7

Five-Variable Karnaugh Map

Reflection Map

A	В	С	D	Ε	minterm	Notation
0	0	0	0	0	A'B'C'D'E'	m_0
0	0	0	0	1	A'B'C'D'E	m_1
•••	•••					
1	1	1	1	0	ABCDE'	m_{30}
1	1	1	1	1	ABCDE	m_{31}

Five-Variable Karnaugh Map Example

 $F(A,B,C,D,E) = \sum m(2,6,9,11,13,15,18,19,22,23,25,27,29,31)$

					. B	.D.E				10 16
CDE AB	000	001	011	010	110	1111	101	100	_	F = B.1
00	0	0	0	1	1	0	0	0		F = B.1
01	0	1	1	0	0	1	1	0	→ B.E	1 4 5 5
11	0	1	1	0	0	1	1	0		A.D.E
10	0	0	1	1	1	1	0	0	A B' D	
'			1		-	1			→ A.B'.D	

D' D E'

CDE AB	000	001	011	010	110	111	101	100
00	0	1	3	2	6	7	5	4
01	8	9	11	10	14	15	13	12
11	24	25	27	26	30	31	29	28
10	16	17	19	18	22	23	21	20

$$F = B.E + A.B'.D + B'.D.E'$$

Or
 $F = B.E + A.D.E + B'.D.E'$

Entered Variable (EV)

	A	В	C	Y
., .	0	0	0	0
<i>Y</i> =0	0	0	1	0
V 64	0	1	0	1
Y=C'	0	1	1	0
V-0	1	0	0	0
<i>Y</i> =0	1	0	1	0
Y=1 √	1	1	0	1
1-1	1	1	1	1

A	В	Υ
0	0	0
0	1	C'
1	0	0
1	1	1

	A	В	C	Y
1	0	0	0	0
	0	0	1	0
Y=0 <	0	1	0	1
	0	1	1	0
	1	0	0	0
Y=A <	1	0	1	0
	1	1	0	1
	1	1	1	1

В	C	Y
0	0	0
0	1	0
1	0	1
1	1	Α

$$F(A,B,C) = \sum m(2,6,7)$$

EV Map: SOP Simplification

$$F(A,B,C) = \sum m(2,6,7)$$

→A.B.(1)

В

$$F(A,B,C) = B.C' + A.B$$

$$F(A,B,C) = B.C' + A.C$$

B.(*A*)

B.C'.(1)

EV Map: POS Simplification

Also, C.C' = 0 can be considered by which C could be in one sum term and C' in another sum term to cover a 0.

Simplification: Five-Variable

	A	В	C	D	E	Y
0	1	0	0	0	0	0
U	1	0	0	0	1	0
1	1	0	0	1	0	1
Ť	1	0	0	1	1	1
0	1	0	1	0	0	0
U	1	0	1	0	1	0
1	1	0	1	1	0	1
_	1	0	1	1	1	1

 $F(A,B,C,D,E) = \sum m(2,6,9,11,13,15,18,19,22,23,25,27,29,31)$

Simplification: Five-Variable

A.D.E and B'.D.E' together cover

- Finding Prime Implicants (P.I.) through an iterative process.
- P.I is a product term that cannot be combined with any other product term (least no. of literals)
- Finding Essential P.I. to cover all minterms.
- Selecting minimal set.

$$Y = \sum m(0,1,2,3,10,11,12,$$
13,14,15)

	_		_	
A	В	C	D	Y
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Stage 1			
ABCD			
0 0 0 0	(0)		
0 0 0 1 0 0 1 0	(1) (2) (2) (2) (3)		
0 0 1 1 1 0 1 0 1 1 0 0	(3) (10) (12)		
1 0 1 1 1 1 0 1 1 1 1 0	(11) (13) (14)		
1111	(15)		

Grouping according to no. of 1s input variable combi. have in T.T. for Y = 1

Numbering of minterms to ensure all are included as its order changes

Stag	e 1
ABCD	
0000	(0)√
0 0 0 1	(1)√
0010	(2)√
0 0 1 1	(3)√
1010	(10)
1 1 0 0	(12)√
1011	(11)√
1 1 0 1	(13)√
1110	(14)√
1111	(15)√

	Stage 2
ABCD	
0 0 0 -	$(0,1)^{-1}$
0 0 - 0	$(0,2)^{-1}$
0 0 - 1	(1,3)
0 0 1 -	(2,3)
-010	(2,10)
- 0 1 1	(3,11)
101-	(10,11)
1 - 1 0	(10,14)
1 1 0 -	(12,13)
11-0	(12,14)
1 - 1 1	(11,15)
11-1	(13,15)
111-	(14,15)

- Grouping of terms from adjacent blocks of Stage 1 which differ in only one position of input variable combinations.
- Writing '-' (eqv. to don't care) in those positions.
- Ticking terms of Stage 1
 which could make it to
 Stage 2.

Stage 1	5	Stage 2
ABCD	ABCD	
$0\ 0\ 0\ 0$ (0) $$	0 0 0 -	(0,1)√
	0 0 - 0	(0,2)√
$0\ 0\ 0\ 1$ (1)	0 0 - 1	(1,3) √
0010 (2) $$	0 0 1 -	(2,3)
$0\ 0\ 1\ 1$ (3) $\sqrt{}$	-010	(2,10)√
1010 (10)	- 0 1 1	(3,11) √
$1 \ 1 \ 0 \ 0 \qquad (12)$	101-	(10,11)
	1 - 1 0	(10,14)
$1\ 0\ 1\ 1$ (11) $$	1 1 0 -	(12,13)√
$1\ 1\ 0\ 1$ (13) $$	11-0	(12,14)√
$1 \ 1 \ 1 \ 0 \qquad (14)$	1 - 1 1	(11,15)√
1 1 1 1 (15)√	11-1	(13,15)√
1111 (13)	111-	(14,15)√

	Stage 3
ABCD	
0 0	(0,1,2,3)
0 0	(0,2,1,3)
- 0 1 -	(2,10,3,11)
1 - 1 -	(10,11,14,15)
1 - 1 -	(10,14,11,15)
11	(12,13,14,15)
11	(12,14,13,15)

- Similar grouping of Stage 2 terms in Stage 3.
- Ticking terms of Stage 2 which could make it to Stage 3.
- This continues as long as grouping possible for next stages.
- In each stage no. of blocks reduce.

	Stage 3
ABCD	
0 0	(0,1,2,3)
0 0	(0,2,1,3)
- 0 1 -	(2,10,3,11)
1 - 1 -	(10,11,14,15)
1 - 1 -	(10,14,11,15)
11	(12,13,14,15)
11	(12,14,13,15)

- For this example, no further grouping and thus, no Stage 4.
- Every term in Stage 3 remains unticked. There were no unticked term in Stage 2 and Stage 1.
- Each unticked term of any stage is to contribute to generation of P.I.
- For this example, 4 P.I.s which are mutually exclusive for *ABCD* combinations 00--, -01-, 1-1-, 11--.

Stage 1		Stage 2		Stage 3		
ABCD	ABCD		ABCD			
$0\ 0\ 0\ 0$ (0) $$	0 0 0 -	(0,1)	0 0	(0,1,2,3)		
$0\ 0\ 0\ 1$ (1)	00-0	(0,2)√	0 0	(0,2,1,3)		
$0\ 0\ 1\ 0$ (2) $$	0 0 - 1 0 0 1 -	$(1,3) \sqrt{2}$ $(2,3) \sqrt{2}$	- 0 1 -	(2,10,3,11)		
0 0 1 1 (3)√	-010	(2,10)√	1 - 1 -	(10,11,14,15)		
$1\ 0\ 1\ 0$ (10)	-011	$(3,11) \sqrt{(10,11)}$	1-1-	(10,11,14,13) $(10,14,11,15)$		
1100 (12)	1 0 1 - 1 - 1 0	$(10,11)\sqrt{(10,14)}$	11 11	(12,13,14,15)		
$1\ 0\ 1\ 1$ (11) $$	1 1 0 - 1 1 - 0	$(12,13)\sqrt{(12,14)}$	11	(12,14,13,15)		
1101 (13)	l ———	(12,14)√				
1110 (14)	1 - 1 1 1 1 1 - 1	$(11,15)\sqrt{(13,15)}\sqrt{(13,15)}$				
1 1 1 1 (15)√	111-	$(13,13)\sqrt{(14,15)}\sqrt{(14,15)}$				

ABCD	P.I.	minterms
0 0	A'.B'	0,1,2,3
-01-	B'.C	2,3,10,11
1 - 1 -	A.C	10,11,14, 15
11	A.B	12,13,14,15

P.I. Table

(All stages together)

P.I. minterms

A'.B' 0,1,2,3

B'.C 2,3,**10,11**

A.C 10,11,14, 15

A.B 12,13,14,15

Essential P.I. Table

P.I.	0	1	2	3	10	11	12	13	14	15
A'.B'	٧	V	٧	٧						
B'.C			٧	٧	V	٧				
A.C					٧	٧			٧	٧
A.B							٧	٧	٧	٧

Essential P.I.: A'.B', A.B and any one of B'.C or A.C

Minimal set: Y = A'.B' + A.B + B'.C or Y = A'.B' + A.B + A.C

QM Algorithm with Don't Care

- Include don't care in finding P.I.
- Exclude don't care in finding Essential P.I.

P.I. minterms A'.B' (0),(1),2,3 B'.C 2,3,10,11

- **A.C** 10,11,14, 15
- A.B 12,13,14,15

Essential P.I. Table

P.I.	2	3	10	11	12	13	14	15
A'.B'	٧	٧						
<i>B'.C</i>	٧	٧	V	٧				
A.C			٧	٧			٧	٧
A.B					V	٧	٧	٧

Example:

$$Y = \sum m(2,3,10,11,12,13,$$

14,15) + d(0,1)

P.I. as before

Essential P.I.: B'.C and A.B Y = A.B + B'.C

References:

☐ Donald P. Leach, Albert P. Malvino, and Goutam Saha, Digital Principles &

Applications 8e, McGraw Hill