PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-352298

(43)Date of publication of application: 21.12.2001

(51)Int.CI.

H04B 13/00

G02F 1/03

H04B 5/00

(21)Application number: 2000-172574

(71)Applicant: NIPPON TELEGR & TELEPH CORP

<NTT>

(22)Date of filing:

08.06.2000

(72)Inventor: SHINAGAWA MITSURU

KURAKI OKU YAMADA JUNZO

(54) TRANSCEIVER

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a transceiver which can perform data communication surely between wearable computers without requiring any wire and without relying upon the ground.

SOLUTION: The level of transmission data received from a wearable computer 3 is regulated by a level converting circuit 15 and fed through a buffer circuit 17 to a transmitting/receiving antenna 19. An electric field is induced in living body 5 from the transmitting/receiving antenna through an insulation film 21 and transmitted through the living body. On the receiving side, the electric field induced in the living body is coupled with an electrooptic crystal 27 through the

transmitting/receiving antenna 19. Variation in the polarization of laser light from a laser 31 irradiating the electrooptic crystal 27 coupled with the electric field is converted, through a polarization detecting optical system 29, into intensity variation of laser light which is further converted, through a photodetector 35, into a

further converted, through a photodetector 35, into a detection signal of the intensity variation of an electric signal and outputted through a low noise amplifier 37, a filter 39 and a shaper circuit 41.

LEGAL STATUS

[Date of request for examination]

15.11.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]
[Date of final disposal for application]

[Patent number]

[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-352298 (P2001-352298A)

(43)公開日 平成13年12月21日(2001.12.21)

(51) Int.Cl.7	識別記号	FΙ	テーマュード(多考)
H 0 4 B 13/00		H 0 4 B 13/00	2H079
G02F 1/03	502	G 0 2 F 1/03	502 5K012
H 0 4 B 5/00		H 0 4 B 5/00	Z

審査請求 未請求 請求項の数8 OL (全 9 頁)

(21)出廣番号	特顧2000-172574(P2000-172574)	(71)出顧人	000004226
		V	日本電信電話株式会社
(22)出顧日	平成12年6月8日(2000.6.8)		東京都千代田区大手町二丁目3番1号
		(72)発明者	品川 潢
			東京都千代田区大手町二丁目3番1号 日
			本電信電話株式会社内
		(72)発明者	久良木 億
			東京都千代田区大手町二丁目3番1号 日
			本電信電話株式会社内
		(74)代理人	100083806
			弁理士 三好 秀和 (外1名)
		t .	

最終頁に続く

(54) 【発明の名称】 トランシーパ

(57)【要約】

【課題】 電線を必要とせず、また大地グランドに依存せずにウェアラブルコンピュータ間のデータ通信を適確に行い得るトランシーバを提供する。

【解決手段】 ウェアラブルコンピュータ3から受け取った送信データのレベルをレベル変換回路15で調整し、バッファ回路17を介して送受信アンテナ19に供給し、送受信アンテナから絶縁膜21を介して生体5に電界を誘起し、電界として生体内を伝達させ、受信側では生体に誘起された電界を送受信アンテナ19を介して電気光学結晶27に結合させ、この電界を結合された電気光学結晶27に対して照射されたレーザ31からのレーザ光の偏光変化を偏光検出光学系29でレーザ光の強度変化に変換し、更にレーザ光の強度変化をフォトディテクタ35で電気信号の強度変化の検出信号に変換し、低雑音アンプ37、フィルタ39、波形整形回路41を介して出力する。

【特許請求の範囲】

【請求項1】 送信すべき情報に基づく電界を電界伝達 媒体に誘起させ、この誘起した電界を用いて情報の送受 信を行うトランシーバであって、

電界伝達媒体に対して電界を誘起するとともに、電界伝 達媒体に誘起された電界を受信すべく電界伝達媒体に近 接して設けられる送受信アンテナと、

送信すべき情報に基づく電界を前記送受信アンテナを介 して電界伝達媒体に誘起させるべく前記送受信アンテナ に供給される送信情報のレベルを調整するレベル調整手 10 段と.

前記送受信アンテナを介して電界伝達媒体に誘起された 電界を結合させる電気光学結晶と、

前記電界を結合された電気光学結晶に対してレーザ光を 照射するレーザと、

前記電気光学結晶から反射されてきたレーザ光の偏光変 化をレーザ光の強度変化に変換する偏光検出光学手段 ٤.

該偏光検出光学手段で変換されたレーザ光の強度変化を 電気信号の強度変化の検出信号に変換する光検出手段 Ł.

前記検出信号を受信情報として出力する出力手段とを有 することを特徴とするトランシーバ。

【請求項2】 前記送受信アンテナに供給される送信情 報が前記送受信アンテナおよび電界伝達媒体の負荷容量 を含む要因により変動することを防止して安定化させる 安定化手段を有することを特徴とする請求項1記載のト ランシーバ。

【請求項3】 前記安定化手段は、バッファ回路である ことを特徴とする請求項2記載のトランシーバ。

【請求項4】 前記バッファ回路は、エミッタフォロア 回路であることを特徴とする請求項3記載のトランシー バ。

【請求項5】 前記レベル調整手段は、LC共振回路で あることを特徴とする請求項1記載のトランシーバ。

【請求項6】 前記レベル調整手段は、パルスアンプで あることを特徴とする請求項1記載のトランシーバ。

【請求項7】 前記光検出手段からの検出信号を増幅す る低雑音増幅手段および該低雑音増幅手段からの出力信 号の帯域を制限して不要な雑音を除去するフィルタ手段 40 を有することを特徴とする請求項1記載のトランシー

【請求項8】 前記送受信アンテナが電界伝達媒体に直 接接触することを防止するように送受信アンテナと電界 伝達媒体との間に設けられる絶縁膜を有することを特徴 とする請求項1記載のトランシーバ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、送信すべき情報に 基づく電界を電界伝達媒体に誘起させ、との誘起した電 50 達媒体に対して電界を誘起するとともに、電界伝達媒体

界を用いて情報の送受信を行うトランシーバに関する。 [0002]

【従来の技術】従来、例えばビルあるいは地下等におけ る工事現場のように、通信環境の整備されていない場所 での通信は劣悪であることが多い。このような環境下で あっても、本来の作業を防げないためにも、安定した通 信環境の確保が求められている。

【0003】一方、携帯端末の小型化および高性能化に よりウェアラブルコンピュータ(身体につけたコンピュ ータ)という分野のコンピュータが注目されてきている が、このようなウェアラブルコンピュータの実用化のた めには、ウェアラブルコンピュータ間のデータ通信方式 が非常に重要であると考えられる。

【0004】従来、このようなウェアラブルコンピュー タ間のデータ通信は、例えば図8に示すようにウェアラ ブルコンピュータにトランシーバを接続し、このトラン シーバ間をデータ線とグランド線の2本の電線で接続し て有線通信で行う方法、図9に示すようにトランシーバ 間を無線で接続して無線通信で行う方法、および図10 20 に示すように生体を信号線とし、生体が接触している大 地グランドをグランド線として利用した2線でデータの 送受信を行う方法(PAN:Personal Area Network,IB M SYSTEMS JOURNAL, Vol. 35, NOS. 3&4, pp. 609-617, 1996 参照)などがある。

[0005]

【発明が解決しようとする課題】上述した従来技術のう ち、図8に示す有線通信方法は、トランシーバ間を2線 で電線で接続する必要があるため、離れたウェアラブル コンピュータ間や複数のウェアラブルコンピュータ間で 30 データの送受信を行う場合には、電線を体中に引き回さ なければならず、実用的でないという問題がある。

【0006】また、図9に示す無線通信方法は、無線周 波数とパワーによっては近くに存在する他のシステムと 混信する恐れがあるという問題がある。

【0007】更に、図10に示す生体を信号経路として 利用する通信方法は、一般的にウェアラブルコンピュー タを上半身に取り付けるものが多いと考えられるが、例 えばウェアラブルコンピュータのトランシーバを大地グ ランドから離れた頭部などに配置した場合には、通信が 不可能になり、実用上大きな問題がある。

【0008】本発明は、上記に鑑みてなされたもので、 その目的とするところは、データ通信用の特別な電線を 必要とせず、また大地グランドに依存せずにデータ通信 を適確に行い得るトランシーバを提供することにある。 [0009]

【課題を解決するための手段】上記目的を達成するた め、請求項1記載の本発明は、送信すべき情報に基づく 電界を電界伝達媒体に誘起させ、この誘起した電界を用 いて情報の送受信を行うトランシーバであって、電界伝

に誘起された電界を受信すべく電界伝達媒体に近接して設けられる送受信アンテナと、送信すべき情報に基づく電界を前記送受信アンテナを介して電界伝達媒体に誘起させるべく前記送受信アンテナに供給される送信情報のレベルを調整するレベル調整手段と、前記送受信アンテナを介して電界伝達媒体に誘起された電界を結合させる電気光学結晶と、前記電界を結合された電気光学結晶に対してレーザ光を照射するレーザと、前記電気光学結晶に対してレーザ光を照射するレーザと、前記電気光学結晶から反射されてきたレーザ光の偏光変化をレーザ光の強度変化に変換する偏光検出光学手段と、該偏光検出光学手段で変換されたレーザ光の強度変化を電気信号の強度変化の検出信号に変換する光検出手段と、前記検出信号を受信情報として出力する出力手段とを有することを要旨とする。

【0010】請求項1記載の本発明にあっては、送信情報のレベルを調整して送受信アンテナに供給し、送受信アンテナから電界伝達媒体に電界を誘起し、電界として電界伝達媒体内を伝達させ、受信側では電界伝達媒体に誘起された電界を送受信アンテナを介して電気光学結晶に結合させ、この電界を結合された電気光学結晶に対し 20 て照射されたレーザ光の偏光変化をレーザ光の強度変化に変換し、更にレーザ光の強度変化を電気信号の強度変化の検出信号に変換して出力するため、従来のような電線を必要としない通信、他システムと混信のない通信、大地グランドに依存しない通信が可能となる。

【0011】また、請求項2記載の本発明は、請求項1 記載の発明において、前記送受信アンテナに供給される 送信情報が前記送受信アンテナおよび電界伝達媒体の負 荷容量を含む要因により変動することを防止して安定化 させる安定化手段を有することを要旨とする。

【0012】請求項2記載の本発明にあっては、送受信アンテナに供給される送信情報が送受信アンテナおよび電界伝達媒体の負荷容量を含む要因により変動することを安定化手段で防止して安定化させるため、送受信アンテナが電界伝達媒体に接触した時の負荷容量の変動によって送受信アンテナの出力が変動し、その結果電界伝達媒体に誘起される電界が変動することを防止し、効率良く電界伝達媒体に電界を誘起でき、通信品質を向上させることができる。

【0013】更に、請求項3記載の本発明は、請求項2 記載の発明において、前記安定化手段が、バッファ回路 であることを要旨とする。

【0014】請求項3記載の本発明にあっては、安定化手段としてバッファ回路を使用することにより、送受信アンテナが電界伝達媒体に接触した時の負荷容量の変動によって送受信アンテナの出力が変動し、その結果電界伝達媒体に誘起される電界が変動することを防止し、効率良く電界伝達媒体に電界を誘起でき、通信品質を向上させることができる。

【0015】請求項4記載の本発明は、請求項3記載の 50

発明において、前記バッファ回路が、エミッタフォロア 回路であることを要旨とする。

【0016】請求項4記載の本発明にあっては、バッファ回路としてエミッタフォロア回路を使用することにより、送受信アンテナが電界伝達媒体に接触した時の負荷容量の変動によって送受信アンテナの出力が変動し、その結果電界伝達媒体に誘起される電界が変動することを防止し、効率良く電界伝達媒体に電界を誘起でき、通信品質を向上させることができる。

) 【0017】また、請求項5記載の本発明は、請求項1 記載の発明において、前記レベル調整手段が、LC共振 回路であることを要旨とする。

【0018】請求項5記載の本発明にあっては、レベル 調整手段としてLC共振回路を使用することにより、送 受信アンテナに供給される送信情報のレベル調整を経済 的に行うことができる。

【0019】更に、請求項6記載の本発明は、請求項1 記載の発明において、前記レベル調整手段が、パルスア ンプであることを要旨とする。

20 【0020】請求項6記載の本発明にあっては、レベル 調整手段としてパルスアンプを使用することにより、L C共振回路では送受信アンテナが電界伝達媒体に触れた 場合の負荷容量の変化により出力が低下しやすいという 問題を解消し、安定化したレベル調整を行うことができ

【0021】請求項7記載の本発明は、請求項1記載の 発明において、前記光検出手段からの検出信号を増幅す る低雑音増幅手段および該低雑音増幅手段からの出力信 号の帯域を制限して不要な雑音を除去するフィルタ手段 30 を有することを要旨とする。

【0022】請求項7記載の本発明にあっては、光検出手段からの検出信号を低雑音増幅手段で増幅し、この増幅出力に含まれる不要な雑音をフィルタ手段で除去するため、微弱でS/Nが悪い検出信号を雑音のない信頼性の高い検出信号とすることができ、信頼性を向上することができる。

【0023】また、請求項8記載の本発明は、請求項1 記載の発明において、前記送受信アンテナが電界伝達媒体に直接接触することを防止するように送受信アンテナ 40 と電界伝達媒体との間に設けられる絶縁膜を有することを要旨とする。

【0024】請求項8記載の本発明にあっては、送受信アンテナと電界伝達媒体との間に絶縁膜が設けられ、これにより送受信アンテナが電界伝達媒体に直接接触することがないため、送受信アンテナを介して電界伝達媒体に電流が流れることが防止できるとともに、また送受信アンテナの金属が電界伝達媒体としての生体に触れることによるアレルギーを防止することができる。

[0025]

【発明の実施の形態】以下、図面を用いて本発明の実施

の形態を説明する。図1は、本発明の一実施形態に係る トランシーバの回路構成を示すブロック図である。同図 に示すトランシーバ1は、ウェアラブルコンピュータ3 に接続され、該コンピュータ3に対するデータの送受信 を電界伝達媒体である生体5を介して仲介するために有 効なものであるが、とのような生体5を仲介してデータ の送受信を行うために、例えば特開平5-72299号 公報や特開平6-94807号公報に開示されている集 積回路の内部ノードの信号計測システムおよび特開平8 -262117号公報に開示されているプリントボード 10 上の波形計測システムに用いられているレーザ光と電気 光学結晶を用いた電気光学的手法による信号検出技術を 利用しているものである。

【0026】図1に示すトランシーバは、コンピュータ 3に対するデータの入力出を行う [/O回路 1 1 を有 し、この I/O回路 1 1を介してコンピュータ3から受 信したデータは送信部13のレベル変換回路15に供給 し、この受信データの振幅レベルを増大するようになっ ている。なお、I/O回路11は、例えばLAN (Loca 1 Area Network) に広く用いられているEtherne 20 t (登録商標)に対応する I/O回路などを使用するこ

【0027】また、レベル変換回路15は、I/O回路 11からのデータの振幅を調整するレベル調整手段を構 成するものであるが、具体的には 1/0回路 1 1 からの データの振幅が小さいので、生体5内の通信距離に応じ てデータの振幅を例えば1~30Vの電圧信号に増大す るものである。この増大する電圧信号の大きさは、生体 5内の通信距離により決められるものであり、例えば指 先から手首のように20cm程度の短い距離の場合には 30 5 V程度に増大され、また両手首間のように1.5m程 度の少し離れた距離の場合には30V程度とかなり増大 される。

【0028】レベル変換回路15で増大されたデータ信 号は、バッファ回路17を介して送受信アンテナ19に 供給され、送受信アンテナ19から絶縁膜21を介して 生体5に電界を誘起するようになっている。絶縁膜21 は、送受信アンテナ19を介してバッファ回路17から 生体5に電流が流れることを防止するとともに、また送 受信アンテナ19の金属が生体5に直接触れることによ 40 りアレルギーを防止するために設けられている。なお、 バッファ回路17は、レベル変換回路15から送受信ア ンテナ19に供給されるデータが送受信アンテナ19、 絶縁膜21および生体5の負荷容量を含む要因により変 動することを防止して安定化させるものであり、本発明 の安定化手段を構成している。

【0029】送受信アンテナ19から絶縁膜21を介し て生体5に誘起された電界は、生体5内を伝わり、生体 5の他の部位に取り付けられている他のトランシーバ1 の送受信アンテナ19により絶縁膜21を介して受信さ 50 換回路15をオフにして送信部13を休止させ、レーザ

れ、トランシーバ1の受信部25の電気光学結晶27に 結合される。この電気光学結晶27には偏光検出光学系 29を介してレーザ31からレーザ光が照射されるよう になっている。また、レーザ31は、レーザドライバ3 3によって駆動されて発光し、レーザ光を出力するよう になっている。

【0030】電気光学結晶27は、詳細には図2に示す ように、レーザ31からのレーザ光が入射される側に反 射防止膜51がコーティングされ、反対側の他端には誘 電体ミラー53がコーティングされ、これにより反射防 止膜51を通って電気光学結晶27内に入射したレーザ 光は誘電体ミラー53で反射され、再度反射防止膜51 を通って出射されるようになっている。

【0031】電気光学結晶27に電界が結合すると、一 次の電気光学効果であるボッケルス効果により電気光学 結晶27の複屈折率が変化する。このように電界を結合 されて複屈折率の変化した電気光学結晶27にレーザ光 を照射すると、レーザ光の偏光が変化する。

【0032】この偏光の変化したレーザ光は、電気光学 結晶27からの反射されたレーザ光として偏光検出光学 系29に供給され、偏光検出光学系29においてレーザ 光の強度変化に変換される。偏光検出光学系29は、詳 細には図3に示すように、2個の偏光ビームスプリッタ 29a, 29d、ファラデイ素子29b、λ/2波長板 29 c、λ/4波長板29 eから構成される差動検出光 学系であり、偏光ビームスプリッタ29a,29dで反 射されたレーザ光がフォトディテクタ素子35a,35 bからなるフォトディテクタ35に入射されるようにな っている。

【0033】フォトディテクタ35は、偏光検出光学系 29から入射されるレーザ光の強度変化を電気信号の強 度変化の検出信号に変換する。この検出信号は、微弱で S/Nが悪のいで、低雑音アンプ37で増幅されてか ら、フィルタ39に入力される。フィルタ39は、例え ばローパスフィルタ、ハイパスフィルタ、バンドパスフ ィルタなどで構成され、低雑音アンプ37で増幅された 検出信号に含まれている信号帯域外の不要な雑音成分を 除去し、これにより不要な雑音のない検出信号を出力す る。フィルタ39から出力される検出信号は、波形整形 回路41でI/O回路11のレベルに合った検出信号に 波形整形され、受信データとして I/O回路 11 に供給 され、1/0回路11からコンピュータ3に送信され

【0034】なお、送信部13と受信部25との間に設 けられている切替スイッチ43は、データの送信および 受信のタイミングを制御するものであり、データの送信 中はレベル変換回路15をオンにして送信部13を動作 させ、レーザドライバ33をオフにして受信部25を休 止させるように制御し、またデータの受信中はレベル変

ドライバ33をオンして受信部25を動作させるように 制御する。

【0035】以上のように構成されるトランシーバの利用形態の一例では、例えば図4(a)に示すように、生体5である人物の肩に第1のトランシーバ1aおよびウェアラブルコンピュータ3aを取り付け、手首の所に第2のトランシーバ1bおよびウェアラブルコンピュータ3bを取り付け、両コンピュータ3a,3b間でトランシーバ1a,1bおよび生体5を介してデータの送受信を行う。

【0036】具体的には、各ウェアラブルコンピュータ3a,3bが接続された各トランシーバ1a,1bは、図4(b)に示すように、その絶縁膜21a,21bを介してそれぞれ生体5に接触するように取り付けられている。そして、例えばウェアラブルコンピュータ3aからの送信データは、トランシーバ1aの送受信アンテナ19aから絶縁膜21aを介して生体5に電界として誘起され、この誘起された電界は生体5内を伝わり、別のトランシーバ1bの絶縁膜21bを介して送受信アンテナ19bで受信され、受信データとして別のコンピュー20タ3bで受信される。

【0037】更に詳しくは、ウェアラブルコンピュータ3aからの送信データは、トランシーバ1aのI/O回路11で受信され、I/O回路11から送信部13のレベル変換回路15に供給されて、振幅レベルを増大され、バッファ回路17から送受信アンテナ19および絶縁膜21aを介して生体5に電界として誘起される。この生体5に誘起された電界は、生体5内を伝わって、別のトランシーバ1bの送受信アンテナ19により絶縁膜21bを介して受信され、トランシーバ1bの電気光学30結晶27に結合され、電気光学結晶27に照射されるレーザ31のレーザ光の偏光を変化させる。

【0038】 このレーザ光の変化は偏光検出光学系29でレーザ光の強度変化に変換され、フォトディテクタ35で更に電気信号の強度変化の検出信号に変換され、低雑音アンプ37、フィルタ39、波形整形回路41を介して受信データとしてI/O回路11に入力され、I/O回路11からコンピュータ3bに受信データとして供給される。また、コンピュータ3bからの送信データも逆の経路で同様にコンピュータ3aで受信される。

【0039】図5(a),(b),(c)は、本実施形態のトランシーバの種々の利用形態を示す説明図である。図5(a)は、生体5a,5bなる2人の人物が手をつなぎ、一方の人物の肩にトランシーバ1aを介して取り付けたウェアラブルコンピュータ3aと他方の人物の肩にトランシーバ1bを介して取り付けたウェアラブルコンピュータ3bとの間で両人物5a,5bの腕および握手した手を通じてデータ通信を行う場合を示している。

【0040】また、図5(b)は、生体5なる人物の肩 50 の負荷容量の変化によって出力が低下しやすいという問

にトランシーバ1を介して取り付けたウェアラブルコン ピュータ3と人物の手が接続されたトランシーバ51a およびコンピュータ51bからなる情報処理システム5 1との間で人物の腕を通じてデータ通信を行う場合を示

している。更に、図5 (c)は、生体5a,5bなる2人の人物の肩にそれぞれトランシーバ1a,1bを介してウェアラブルコンピュータ3a,3bを取り付けるとともに、2人の人物の手を情報処理システム53のトランシーバ53a,53bに接触させて接続し、情報処理10システム53のコンピュータ53cと各ウェアラブルコ

システム53のコンピュータ53cと各ウェアラブルコンピュータ3a、3bとの間のデータ通信をトランシーバ1a、53a、人物の腕を介しておよびトランシーバ1b、53b、人物の腕を介してそれぞれ行い、ひいては情報処理システム53および2人の人物の腕を介して2人の肩に取り付けられたウェアラブルコンピュータ3a、3b間のデータ通信を行うものである。

【0041】図6は、本発明の他の実施形態に係るトランシーバの回路構成を示すブロック図である。同図に示すトランシーバは、図1に示した実施形態において送信部13を構成するレベル変換回路15およびバッファ回路17の代わりにそれぞれして共振回路151およびエミッタフォロア171を有する点が異なるのみであり、その他の構成および作用は同じであり、同じ構成要素には同じ符号を付している。

【0042】LC共振回路151は、コンピュータ3から1/〇回路11を介して供給された送信すべきデータの振幅レベルを10V以上に増大する場合にレベル変換回路15の代わりに使用されるものである。このLC共振回路151は、安価にレベル変換回路を構成することができるという利点を有する。また、エミッタフォロア171は、LC共振回路151からの出力信号が送受信アンテナ19、絶縁膜21および生体5の負荷容量を含む要因により変動することを防止して安定化させるためのものであり、具体的には送受信アンテナ19が絶縁膜21を介して生体5に接触した時の負荷容量の変動によって送受信アンテナ19の出力が変動すること、すなわち生体5に誘起される電界が変動することを防止して安定化するために使用されるものである。

【0043】また、図7は、本発明の別の実施形態に係 40 るトランシーバの回路構成を示すブロック図である。同図に示すトランシーバは、図6に示した実施形態においてLC共振回路151の代わりにパルスアンプ153を有する点が異なるのみであり、その他の構成および作用は同じであり、同じ構成要素には同じ符号を付している。

【0044】パルスアンプ153は、図6のLC共振回路151と同様にデータの振幅レベルを10V以上に増大する場合に使用されるものであるが、図6のLC共振回路151は送受信アンテナ19が生体5に触れた場合の負荷容量の変化によって出力が低下しやすいという問

題があるため、LC共振回路151の代わりにパルスア ンプ153が使用される。このパルスアンプ153は、 消費電力が多く、コストがかかるが、LC共振回路15 1のような問題がない。従って、LC共振回路151を 使用するかまたはパルスアンプ153を使用するかの使 い分けをトランシーバ間の距離、通信速度によって行う ことにより最適な装置を構成することができる。

【0045】なお、上記実施の形態では、電界伝達媒体 としてウェアラブルコンピュータの装着者としての生体 を例に説明を行なったが、本発明はこれに限定されると 10 Nが悪い検出信号を雑音のない信頼性の髙い検出信号と となく、例えば工事現場で使用される場合には現場内に 張りめぐらされた金属配管や、ケーブル等を保持する金 属製ラックあるいは液体が流されている配管を利用する ことができる。

【0046】この場合、アンテナ部分と金属配管または ラックとをワニ口クリップで挟持すると良く、また液体 の場合には液中に没するようすると良い。

[0047]

【発明の効果】以上説明したように、本発明によれば、 送信情報のレベルを調整して送受信アンテナに供給し、 送受信アンテナから電界伝達媒体に電界を誘起し、電界 として電界伝達媒体内を伝達させ、受信側では電界伝達 媒体に誘起された電界を送受信アンテナを介して電気光 学結晶に結合させ、との電界を結合された電気光学結晶 に対して照射されたレーザ光の偏光変化をレーザ光の強 度変化に変換し、更にレーザ光の強度変化を電気信号の 強度変化の検出信号に変換して出力するので、従来のよ うな電線を必要としない通信、他システムと混信のない 通信、大地グランドに依存しない通信が可能となり、デ ータ通信を適確かつ効率的に行うことができる。

【0048】また、本発明によれば、送受信アンテナに 供給される送信情報を安定化手段で安定化させているの で、送受信アンテナが電界伝達媒体に接触した時の負荷 容量の変動によって送受信アンテナの出力が変動し、そ の結果電界伝達媒体に誘起される電界が変動することを 防止し、効率良く電界伝達媒体に電界を誘起でき、通信 品質を向上させることができる。

【0049】更に、本発明によれば、安定化手段として バッファ回路を使用しているので、電界伝達媒体に誘起 される電界が変動することを防止し、効率良く電界伝達 40 媒体に電界を誘起でき、通信品質を向上させることがで きる。

【0050】本発明によれば、バッファ回路としてエミ ッタフォロア回路を使用しているので、電界伝達媒体に 誘起される電界が変動することを防止し、効率良く電界 伝達媒体に電界を誘起でき、通信品質を向上させること ができる。

【0051】また、本発明によれば、レベル調整手段と してLC共振回路を使用しているので、送受信アンテナ に供給される送信情報のレベル調整を経済的に行うこと 50 21 絶縁膜

ができる。

【0052】更に、本発明によれば、レベル調整手段と してパルスアンプを使用しているので、LC共振回路で は送受信アンテナが電界伝達媒体に触れた場合の負荷容 量の変化により出力が低下しやすいという問題を解消 し、安定化したレベル調整を行うことができる。

10

【0053】本発明によれば、光検出手段からの検出信 号を低雑音増幅手段で増幅し、この増幅出力に含まれる 不要な雑音をフィルタ手段で除去するので、微弱でS/ することができ、信頼性を向上することができる。

【0054】また、本発明によれば、送受信アンテナと 電界伝達媒体との間に絶縁膜が設けられ、これにより送 受信アンテナが電界伝達媒体に直接接触することがない ので、送受信アンテナを介して電界伝達媒体に電流が流 れることが防止できるとともに、また送受信アンテナの 金属が電界伝達媒体としての生体に触れることによるア レルギーを防止することができる。

【図面の簡単な説明】

【図1】本発明の一実施形態に係るトランシーバの回路 構成を示すブロック図である。

【図2】図1に示すトランシーバに使用されている電気 光学結晶の構成を示す図である。

【図3】図1に示すトランシーバに使用されている偏光 検出光学系の構成を示す図である。

【図4】図1に示すトランシーバの利用形態の一例を示 す説明図である。

【図5】図1に示すトランシーバの種々の利用形態を示 す説明図である。

30 【図6】本発明の他の実施形態に係るトランシーバの回 路構成を示すブロック図である。

【図7】本発明の別の実施形態に係るトランシーバの回 路構成を示すブロック図である。

【図8】ウェアラブルコンピュータ間の従来のデータ通 信の一例として有線通信を利用した場合を示す図であ る。

【図9】ウェアラブルコンピュータ間の従来のデータ通 信の一例として無線通信を利用した場合を示す図であ

【図10】ウェアラブルコンピュータ間の従来のデータ 通信の一例として大地グランドを利用した2線通信を利 用した場合を示す図である。

【符号の説明】

- 1 トランシーバ
- 3 コンピュータ
- 5 生体
- 15 レベル変換回路
- 17 バッファ回路
- 19 送受信アンテナ

(7)

特開2001-352298

12

11

27 電気光学結晶

29 偏光検出光学系

31 レーザ

35 フォトディテクタ

37 低雑音アンプ

*39 フィルタ

151 LC共振回路

153 パルスアンプ

171 エミッタフォロア

*

【図1】

【図2】

【図3】

【図4】

【図8】

(a) 3a 1a 1a 3a 4 5b 5b 5a 生体 5b 1 (情報処理システム トランシーパー・コンピュータ 151a 151b

【図7】

フロントページの続き

(72)発明者 山田 順三 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 F ターム(参考) 2H079 AA02 AA12 BA02 CA04 DA03 KA05 KA18 KA19 5K012 AB02 AB08 AC07 AC08 AC10 AE11 BA05 【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第7部門第3区分

【発行日】平成14年4月5日(2002.4.5)

【公開番号】特開2001-352298 (P2001-352298A)

【公開日】平成13年12月21日(2001.12.21)

【年通号数】公開特許公報13-3523

502

Ζ

【出願番号】特願2000-172574 (P2000-172574)

【国際特許分類第7版】

H04B 13/00 1/03 502 G02F H04B 5/00 [FI] H04B 13/00 G02F

1/03

5/00

【手続補正書】

HO4B

【提出日】平成13年11月15日(2001.11.

15)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 送信すべき情報に基づく電界を電界伝達 媒体に誘起させ、この誘起した電界を用いて情報の送受 信を行うトランシーバであって、

電界伝達媒体に対して電界を誘起するとともに、電界伝 達媒体に誘起された電界を受信する送受信アンテナと、 送信すべき情報に基づく電界を前記送受信アンテナを介 して電界伝達媒体に誘起させるべく前記送受信アンテナ に供給される送信情報のレベルを調整するレベル調整手 段と、

前記送受信アンテナを介して電界伝達媒体に誘起された 電界を結合させる電気光学結晶と、

前記電界を結合された電気光学結晶に対してレーザ光を 照射するレーザと、前記電気光学結晶から反射されてき たレーザ光の偏光変化をレーザ光の強度変化に変換する 偏光検出光学手段と、

該偏光検出光学手段で変換されたレーザ光の強度変化を 電気信号の強度変化の検出信号に変換する光検出手段

前記検出信号を受信情報として出力する出力手段とを有 することを特徴とするトランシーバ。

【請求項2】 前記送受信アンテナに供給される送信情 報が前記送受信アンテナおよび電界伝達媒体の負荷容量 を含む要因により変動することを防止して安定化させる 安定化手段を有することを特徴とする請求項1記載のト

ランシーバ。

【請求項3】 前記安定化手段は、バッファ回路である ことを特徴とする請求項2記載のトランシーバ。

【請求項4】 前記バッファ回路は、エミッタフォロア 回路であることを特徴とする請求項3記載のトランシー バ。

【請求項5】 前記レベル調整手段は、LC共振回路で あることを特徴とする請求項1記載のトランシーバ。 【請求項6】 前記レベル調整手段は、パルスアンプで あることを特徴とする請求項1記載のトランシーバ。 【請求項7】 前記光検出手段からの検出信号を増幅す る低雑音増幅手段および該低雑音増幅手段からの出力信 号の帯域を制限して不要な雑音を除去するフィルタ手段

【請求項8】 前記送受信アンテナが電界伝達媒体に直 接接触することを防止するように送受信アンテナと電界 伝達媒体との間に設けられる絶縁膜を有することを特徴 とする請求項1記載のトランシーバ。

を有することを特徴とする請求項1記載のトランシー

【手続補正2】

バ。

【補正対象書類名】明細書

【補正対象項目名】0009

【補正方法】変更

【補正内容】

[0009]

【課題を解決するための手段】上記目的を達成するた め、請求項1記載の本発明は、送信すべき情報に基づく 電界を電界伝達媒体に誘起させ、この誘起した電界を用 いて情報の送受信を行うトランシーバであって、電界伝 達媒体に対して電界を誘起するとともに、電界伝達媒体 に誘起された電界を受信する送受信アンテナと、送信す べき情報に基づく電界を前記送受信アンテナを介して電 界伝達媒体に誘起させるべく前記送受信アンテナに供給される送信情報のレベルを調整するレベル調整手段と、前記送受信アンテナを介して電界伝達媒体に誘起された電界を結合させる電気光学結晶と、前記電界を結合された電気光学結晶に対してレーザ光を照射するレーザと、前記電気光学結晶から反射されてきたレーザ光の偏光変

化をレーザ光の強度変化に変換する偏光検出光学手段 と、該偏光検出光学手段で変換されたレーザ光の強度変 化を電気信号の強度変化の検出信号に変換する光検出手 段と、前記検出信号を受信情報として出力する出力手段 とを有することを要旨とする。