Importing The Important Modules From The Library

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report
```

Load The Dataset

```
df=pd.read_csv("Titanic-Dataset.csv")#Load the dataset
df.head()#Check the head
   PassengerId Survived
                          Pclass \
0
             1
                       0
                                3
             2
1
                       1
                                1
2
             3
                       1
                                3
3
             4
                       1
                                1
4
             5
                       0
                                3
                                                 Name
                                                          Sex
                                                                 Age
SibSp \
                             Braund, Mr. Owen Harris
                                                         male 22.0
1
1
   Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0
1
2
                               Heikkinen, Miss. Laina female 26.0
0
3
        Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0
1
4
                             Allen, Mr. William Henry
                                                         male 35.0
0
   Parch
                                Fare Cabin Embarked
                    Ticket
0
       0
                 A/5 21171
                             7.2500
                                       NaN
                                                  S
1
                  PC 17599
                            71.2833
                                                  C
       0
                                       C85
2
       0
         STON/02. 3101282
                                                  S
                             7.9250
                                       NaN
3
                                                  S
       0
                    113803
                             53.1000
                                      C123
       0
                    373450
                             8.0500
                                       NaN
# check the total row and the column of the dataset
df.shape
(891, 12)
```

Data Cleaning

```
#check the missing value
mv=df.isnull().sum()
print(mv)
PassengerId
                 0
Survived
                 0
Pclass
                 0
                 0
Name
Sex
                 0
Age
               177
SibSp
                 0
                 0
Parch
                 0
Ticket
                 0
Fare
Cabin
               687
Embarked
dtype: int64
# Fill missing values in 'Age' with their respective means
df['Age'].fillna(df['Age'].mean(), inplace=True)
# Let's also fill 'Embarked' with its mode, as it's categorical
df['Embarked'].fillna(df['Embarked'].mode()[0], inplace=True)
# Drop 'Cabin' due to too many missing values
df.drop(columns=['Cabin'], inplace=True)
# Check if any missing values remain
ms = df.isnull().sum()
ms
PassengerId
               0
Survived
               0
Pclass
               0
               0
Name
Sex
               0
               0
Age
               0
SibSp
Parch
               0
Ticket
               0
Fare
               0
Embarked
dtype: int64
df.head()
   PassengerId Survived Pclass \
0
                                3
             1
                       0
1
                       1
                                1
             2
2
                                3
             3
                       1
```

```
3
                       0
4
             5
                                3
                                                 Name
                                                           Sex
                                                                 Age
SibSp \
                              Braund, Mr. Owen Harris
                                                          male 22.0
1
1
   Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0
1
2
                               Heikkinen, Miss. Laina female 26.0
0
3
        Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0
1
4
                             Allen, Mr. William Henry
                                                          male 35.0
0
   Parch
                    Ticket
                                Fare Embarked
0
       0
                 A/5 21171
                              7.2500
                                            S
                  PC 17599
                                            C
1
       0
                             71.2833
2
       0
                                            S
          STON/02. 3101282
                              7.9250
                                            S
3
       0
                    113803
                             53,1000
4
                                            S
       0
                    373450
                              8.0500
df.info() #for knowing the information
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 11 columns):
#
     Column
                  Non-Null Count
                                   Dtype
 0
     PassengerId
                  891 non-null
                                   int64
1
     Survived
                  891 non-null
                                   int64
 2
     Pclass
                  891 non-null
                                   int64
 3
                  891 non-null
     Name
                                   object
 4
                  891 non-null
                                   object
     Sex
 5
                                   float64
                  891 non-null
     Age
 6
     SibSp
                  891 non-null
                                   int64
 7
     Parch
                  891 non-null
                                   int64
 8
     Ticket
                  891 non-null
                                   object
 9
                  891 non-null
     Fare
                                   float64
    Embarked
                  891 non-null
                                   object
dtypes: float64(2), int64(5), object(4)
memory usage: 76.7+ KB
```

Encode the dataset

```
print(df.columns)
Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age',
'SibSp',
```

```
'Parch', 'Ticket', 'Fare', 'Embarked'],
      dtype='object')
#for binary categories like Sex put Male equals to 0 and female equals
to 1
df['Sex'] = df['Sex'].map({'male': 0, 'female': 1})
# for Embarked, which has more than two values like C, Q, S so we use
dummy veriable
df = pd.get dummies(df, columns=['Embarked'], drop first=True)
#It automatically dropped the first category (likely 'C') to avoid the
dummy variable trap (multicollinearity).
# Embarked Q = 1 \rightarrow Passenger embarked at Queenstown
# Embarked S = 1 \rightarrow Passenger embarked at Southampton
# If both are 0, it means the passenger embarked at Cherbourg (C).
df.head()
   PassengerId Survived
                          Pclass \
0
                       0
             1
                                3
1
             2
                        1
                                1
2
             3
                       1
                                3
3
             4
                        1
                                1
             5
4
                                3
                                                  Name
                                                        Sex Age SibSp
Parch \
                              Braund, Mr. Owen Harris
                                                       0 22.0
                                                                       1
1
   Cumings, Mrs. John Bradley (Florence Briggs Th...
                                                          1 38.0
                                                                       1
0
2
                               Heikkinen, Miss. Laina
                                                          1 26.0
                                                                       0
0
3
        Futrelle, Mrs. Jacques Heath (Lily May Peel)
                                                          1 35.0
                                                                       1
0
4
                             Allen, Mr. William Henry
                                                          0 35.0
                                                                       0
0
             Ticket
                         Fare
                               Embarked Q
                                           Embarked S
0
          A/5 21171
                      7.2500
                                                     1
                                        0
1
           PC 17599
                     71.2833
                                                     0
                                        0
2
   STON/02. 3101282
                                                     1
                      7.9250
                                        0
3
             113803
                     53.1000
                                        0
                                                     1
4
             373450
                      8.0500
                                                     1
```

Find the Correlation

```
# Correlation with Survived
correlation = df[['Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'Sex',
```

```
'Embarked_Q', 'Embarked_S', 'Survived']].corr()
print(correlation['Survived'].sort values(ascending=False)) #
ascending = false means order will be highest to lowest
Survived
              1.000000
Sex
              0.543351
Fare
              0.257307
Parch
              0.081629
Embarked_Q 0.003650
SibSp -0.035322
            -0.069809
Age
Embarked_S -0.149683
Pclass -0.338481
Name: Survived, dtype: float64
```

Split the dataset

```
# Define features (X) and target (y)
X = df[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare',
'Embarked_Q', 'Embarked_S']]
y = df['Survived']

#Split data (70% train, 30% test)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# check the shape of the training data
X_train.shape
(623, 8)

# check the shape of the testing data
X_test.shape
(268, 8)
```

Model Buiding

At the first time I use logistic regression model and then I use the random forest model for better model prediction making

Logistic Regression Model

```
# Initialize and train the model
model = LogisticRegression(max_iter=1000, random_state=42)
model.fit(X_train, y_train)

# Predict on test set
y_pred = model.predict(X_test)
```

Test the model

```
from sklearn.metrics import accuracy score, classification report,
confusion matrix
# Evaluate Logistic Regression
print("Logistic Regression Performance:")
print("Accuracy:", accuracy_score(y_test, y_pred))
print("\nClassification Report:\n", classification report(y test,
y pred))
print("\nConfusion Matrix:\n", confusion matrix(y test, y pred))
Logistic Regression Performance:
Accuracy: 0.8097014925373134
Classification Report:
                            recall f1-score
               precision
                                               support
           0
                   0.82
                             0.87
                                       0.84
                                                   157
           1
                   0.79
                             0.73
                                       0.76
                                                   111
                                       0.81
                                                  268
    accuracy
                             0.80
                                       0.80
                                                   268
                   0.81
   macro avg
weighted avg
                   0.81
                             0.81
                                       0.81
                                                  268
Confusion Matrix:
 [[136 21]
 [ 30 81]]
```

Checking the model with new data

Random Forest

```
from sklearn.ensemble import RandomForestClassifier
# Initialize and train Random Forest
rf model = RandomForestClassifier(n estimators=100, random state=42)
rf model.fit(X train, y train)
# Predict on test set
y pred rf = rf model.predict(X test)
from sklearn.metrics import accuracy score, classification report,
confusion matrix
# Optionally, evaluate Random Forest
print("\nRandom Forest Performance:")
print("Accuracy:", accuracy_score(y_test, y_pred_rf))
print("\nClassification Report:\n", classification report(y test,
y pred rf))
print("\nConfusion Matrix:\n", confusion matrix(y test, y pred rf))
Random Forest Performance:
Accuracy: 0.7910447761194029
Classification Report:
                            recall f1-score
               precision
                                               support
                   0.81
                             0.84
                                       0.83
                                                   157
           1
                   0.76
                             0.72
                                       0.74
                                                   111
                                       0.79
                                                   268
    accuracy
   macro avg
                   0.79
                             0.78
                                       0.78
                                                   268
weighted avg
                   0.79
                             0.79
                                       0.79
                                                  268
Confusion Matrix:
 [[132 25]
 [ 31 80]]
new passenger = pd.DataFrame({
    'Pclass': [3], 'Sex': [0], 'Age': [25], 'SibSp': [0], 'Parch':
[0],
    'Fare': [7.5], 'Embarked 0': [0], 'Embarked S': [1]
})
prediction = model.predict(new passenger)
print("Survived" if prediction[0] == 1 else "Did Not Survive")
Did Not Survive
```

Conclusion

When to choose Logistic Regression (accuracy = 0.81):

Simpler, faster, and easier to interpret.

Works well if the relationship between features and outcome is linear.

Less prone to overfitting with smaller datasets.

Good if you want to explain results clearly.

When to choose Random Forest (accuracy = 0.79):

Handles non-linear relationships and interactions better.

More robust to outliers and noisy data.

Better if your data is large, complex, or includes categorical features.

Can rank feature importance.

So, I thik logistic regression is slightly better then random forest model. I always prefer the logistic regression model