

ML5515 SERIES NB-IoT Module

Hardware Guide

Title		ML5515 SERIES NB-IoT Module Hardware Guide			
Revision		1.0			
Date		2018/8/24			
Doc ID		ML5515	ML5515_HWG_R1.0		
Status		Release			
拟制	钟志武	审核	李锦坤	批准	吴德青

Revision History

Revision	Date	Subjects (major changes)
1.0	2018/08/24	Initial Release

版权和许可声明

版权所有©2012-2018 厦门骐俊物联科技股份有限公司,保留所有权利。

未经书面许可,任何人不得以任何方式或形式对本文档内的任何部分进行复制、摘录、备份、修改、传播、翻译成其它语言、将其全部或部分用于商业用途。

免责声明

本文档依据现有信息制作,其内容如有更改,恕不另行通知。本公司在编写该文档时已努力使其内容准确可靠,但不对本文档中的遗漏、不准确或编排错误导致的损失和损害承担任何责任。

内容目录

内容	泪录		2
图表	目录		4
1	序		5
	1.1	相关文档	5
	1.2	缩写	5
2	产品概述	<u> </u>	7
	2.1	主要规格	7
	2.2	型号说明	7
3	应用接口	1	8
	3.1	接口概览	8
	3.2	工作状态	8
	3.3	状态指示	9
	3.3	.1 RI	9
		.2 NETLIGHT	
	3.4	状态控制	10
	3.4	·.1 启动	10
	3.4	·.2 关闭	10
	3.4	3 复位	10
	3.4	4 PSM 模式	11
	3.5	供电输入	12
	3.5	.1 供电设计	12
	3.6	异步串行接口	12
	3.7	ADC	13
	3.8	USIM卡	14
	3.9	天线	15
4	电气特性	ŧ	16
	4.1	引脚功能	16
	4.2	限值	20
	4.3	DC 特性	20
	4.4	工作电流	20
	4.5	射频指标	20
	4.6	建议运行条件	20
5	机械特性	E	21
		结构	
	5.2	推荐封装	23

			ייים ביי
	5.3	可靠性	24
6	应用设计	十参考	24
	6.1	防护	24
	6.2	布局	24
	6.3	射频	24
7	附件		25
	7.1	包材	25
8	联系我们	ìj	25

图表目录

表 1 缩写对照	5
表 2 关键特性	7
表 3 型号说明	7
表 4 工作状态	8
表 5 RI 工作状态	9
表 6 NETLIGHT 工作状态	9
表 7 供电输入滤波电容器	12
表 8 UART 引脚	13
表 9 USIM 卡连接引脚	14
表 10 引脚功能	17
表 11 数字 I/O 口	20
表 12 功耗	20
表 13 主要射频指标表	20
表 14 建议运行条件表	20
表 15 结构可靠性	24
表 16 工作可靠性	24
图 1 模块接口	
图 2 RI 时序	9
图 3 NETLIGHT 参考设计电路	
图 4 启动时序	10
图 5 关闭时序	10
图 6 复位参考电路	
图 7 功耗参考图	11
图 8 UART1/2 串口连接	13
图 9 调试串口连接	13
图 10 外部 USIM 参考电路图	14
图 11 天线参考电路图	15
图 12 模块顶视图	16
图 13 ML5515 侧视图	21
图 14 ML5515 规格图	21
图 15 ML5515 底部尺寸图	22
图 16 ML5515 推荐封装图	23
图 17 ML5515 托盘	25

1 序

本文档详细描述了 ML5515 系列 NB-IoT 无线通信模块的规格、功能,提供了应用设计参考建议,可以帮助您迅速了解 ML5515 系列模块的接口、电气和机械特性,在短时间内开发出基于 ML5515 系列模块的应用产品。

1.1 相关文档

- (1) 3GPP TS 04.08: Digital cellular telecommunications system (Phase 2+); Mobile radio interface layer 3 specification
- (2) 3GPP TS 05.08: Digital cellular telecommunications system (Phase 2+); Radio subsystem link control
- (3) 3GPP TS 07.05: Digital cellular telecommunications system (Phase 2+); Use of Data Terminal Equipment Data Circuit terminating; Equipment (DTE DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)
- (4) 3GPP TS 07.07: Digital cellular telecommunications system (Phase 2+); AT Command set for NB-IoT Mobile Equipment (ME)
- (5) 3GPP TS 11.11: Digital cellular telecommunications system (Phase 2+); Specification of the Subscriber Identity Module Mobile Equipment (USIM-ME) Interface
- (6) ITU-T Recommendation V.24: List of definitions for interchange circuits between data terminal equipment (DTE) and data circuit-terminating equipment (DCE)
- (7) ITU-T Recommendation V.250: Serial asynchronous automatic dialling and control
- (8) ITU-T Recommendation V.251: Procedure for DTE-controlled call negotiation

1.2 缩写

表 1 缩写对照

缩写	全称	中文
NB-IoT	Narrow Band Internet of Things	窄带物联网
ADC	Analog to Digital Converter	模数转换
ASC	Asynchronous Serial Communication interface	异步串行通信接口
DCE	Data Communications Equipment	数据通信设备
DRX	Discontinues Reception	不连续接收
DTE	Data Terminal Equipment	数据终端设备
EMC	Electro Magnetic Compatibility	电磁兼容性
EMI	Electro Magnetic Interference	电磁干扰
ESD	Electro-Static Discharge	静电放电
GPIO	General Purpose Input Output	通用输入/输出
MODEM	Modulator Demodulator	调制解调器

MTBF	Mean Time Between Failures	平均故障间隔时间
PMU	Power Management Unit	电源管理单元
RAM	Random Access Memory	随机存储器
RF	Radio Frequency	射频
RI	Ring Indicator	振铃指示
ROM	Read Only Memory	只读存储器
Rx	Receive	接收
USIM	Universal Subscriber Identified Module	通用用户标识模块
SMT	Surface Mount Technology	表面贴装技术
SSC	Synchronous Serial Communication interface	同步串行通信接口
TTL	Transistor-Transistor Logic	逻辑门电路
Tx	Transmit	发送
UART	Universal Asynchronous Receiver Transmitter	通用异步收发装置
PSM	Power Saving Mode	省电模式
eDRX	Extended Discontinuous Reception	增强型非连续性接收

2 产品概述

ML5515 系列模块集成数据传输、电源管理等功能,通过 NB-IoT 无线电通信协议(3GPP Rel-14), ML5515 系列模块可与移动网络运营商的基础设备建立通信,轻松搭建完整应用终端。

2.1 主要规格

表 2 关键特性

功能块	功能描述
NB-IoT	遵从 NB-IoT 无线电通信协议(3GPP Rel-14)
140 101	网络制式:H-FDD 支持 B1/B3/B5/B8
发射功率	Class3(23dBm±2dB)
	UART: 3 组异步串口,一组主串口,一组副串口,一组调试串口
硬件接口	USIM 卡: 支持 1.8/3.0V USIM 卡
咬口 好口	ADC: 10 位模数转换接口
	NETLIGHT:网络指示灯接口
封装	LCC+LGA 外形尺寸: 19.9 × 23.6 × 2.5mm
电源	VBAT 供电电压范围: 3.1V~4.2V
七//示	典型供电电压:3.6V
省电模式	PSM 下最大耗流:5uA
短信	PDU模式
网络协议	支持 IPv4/IPv6/TCP/UDP/CoAP/LwM2M/Non-IP/DTLS 协议
数据传输	支持 Single-tone, 子载波 15kHz和 3.75kHz: 25.2kbps(DL),
	15.625kbps (UL)
	支持 Multi-tone,子载波 15kHz:25.2kbps(DL),54kbps(UL)
天线接口特征阻抗	50Ω
	正常工作温度:-35°C~75°C
温度	扩展工作温度: -40°C ~85°C
 皿 又	备注:当模块工作于扩展温度时 , 可能发生偏离 NB-IoT 规范的现象 ,
	例如频偏或相位误差会加大等。

2.2型号说明

表 3 型号说明

型号	说明
ML5515-A0	支持 Band3/5/8
ML5515-T0	支持 Band5(中国电信)
ML5515-M0	支持 Band8(中国移动)
ML5515-U0	支持 Band3/8(中国联通)

3 应用接口

3.1接口概览

ML5515 系列模块主要包括以下功能组件与接口:

图 1 模块接口

3.2工作状态

模块的主要工作状态有以下几种:

表 4工作状态

状态	描述
Active	模块处于活动状态;所有功能正常可用,可以进行数据发送和接收;
Active	模块在此模式下可切换到 Idle 模式或 PSM 模式。
Idle	模块处于浅睡眠状态,网络保持连接状态,可接收寻呼消息;模块
idle	在此模式下可切换至 Active 模式或者 PSM 模式。
DCM	模块只有 RTC 工作,处于网络非连接状态,不再接收寻呼消息;但
PSM	模块可通过 AT 命令唤醒或者定时器 T3412 超时后唤醒。

3.3 状态指示

3.3.1 RI

RI 信号工作状态如下表

表 5 RI 工作状态

模块状态	RI 信号状态
 待机	高电平
短信	当收到短信时,RI 变为低电平,持续 120 ms , 再变为高电平。
URC	特定的 URC 信息上报时,会触发 RI 拉低 120 ms

图 2 RI 时序

3.3.2 NETLIGHT

NETLIGHT 信号用来驱动指示网络状态的 LED 灯,该引脚的工作状态如下表:

表 6 NETLIGHT 工作状态

网络灯状态	模块工作状态
持续低电平 (灯灭)	模块没有运行或模块未注册到网络
高电平 (灯亮)	模块注册到网络

参考电路如下图:

图 3 NETLIGHT 参考设计电路

● 此功能待开发

3.4 状态控制

3.4.1 启动

当模块处于关机状态,模块 VBAT 上电后,外部控制 RESET 输入保持高电平,即可实现模块自动开机。

3.4.2 关闭

模块可以通过断开 VBAT 供电来实现关机。

3.4.3 复位

DTE 要复位模块时,可将 RESET 脚置为低电平 100ns 以上,模块将执行硬件复位。按键复位参考电路如下图所示:

图 6 复位参考电路

3.4.4 PSM 模式

模块在 PSM 下的最大耗流为 5uA。PSM 主要目的是降低模块功耗,延长电池的供电时间,下图显示了模块在不同模式下的功耗。

图 7 功耗参考图

模块进入 PSM 的过程如下:模块在与网络端建立连接或跟踪区更新(TAU)时,会在请求消息中申请进入 PSM,网络端在应答消息中配置 T3324 定时器数值返给模块,并启动定时器。当 T3324 定时器超时后,模块进入 PSM。模块在针对紧急业务进行连网或进行公共数据网络初始化时,不能申请进入 PSM。

当模块处于 PSM 模式时,将关闭大部分连网活动,包括停止搜寻小区消息、小区重选等;但是 T3412 定时器(与周期性 TAU 更新相关)仍然继续工作。T3324 定时器超时后,网络端将不能寻呼模块,直到下次模块启动连网程序或 TAU 时,才能发起寻呼。

模块有两种方式退出 PSM,一种是 DTE 主动发送上行数据,模块退出 PSM;另一种是当T3412 定时器超时后,TAU 启动,模块退出 PSM。

3.5 供电输入

模块的供电输入使用直流电压源,必须选择至少能够提供 0.5A 电流能力的电源。电源 VBAT 电压输入范围为 3.1V~4.2V,请确保即使在突发传输中,输入电压也不低于 3.1V;如果电源电压低于 3.1V,模块功能指标将出现异常,所以电源设计要有足够的余量应对异常环境产生的额外的电流消耗,如天线异常;应使用低压降的恒压源,发射脉冲引起压降后不应低于最低工作电压。

3.5.1 供电设计

模块供电输入脚为 VBAT 脚,直接对基带芯片与 PA 芯片供电,因此输入电压中的压降、噪声、干扰等将直接影响模块的工作性能。为去除这些干扰,建议使用以下滤波电容器:

表 7 供电输入滤波电容器

电容器	作用
1000μF	确保发射脉冲用电
10nF, 100nF	滤除各种数字逻辑噪声
10pF/8.2pF	滤除 1800/1900MHz 频段传输干扰
39pF/33pF	滤除 850/900MHz 频段传输干扰

电容器位置应尽可能的靠近模块引脚端。

模块供电入口建议预留 5V/5.1V 的稳压二极管与 TVS 管,以下型号可供参考:

- ▶ 稳压管
 - PZ3D4V2H(PRISEMI)
 - MM1Z5V1(Semtech)
- ➤ TVS 管
 - ESD5Z3.3T1G (ONSEMI)
 - ESD5Z3V3-2/TR (WILLSEMI)

3.6 异步串行接口

模块提供三组异步串行接口(ASC)供客户使用:一组是 2 线主串口 UART1,一组是 4 线副串口 UART2,一组是单线 Debug UART。

- ▶ UART1:可用于 AT 命令通信和数据传输,波特率为 9600bps。它还可通过 UEUpdaterUI 工具进行固件升级,固件升级的波特率为 115200bps。
- ▶ UART2:可用于与外部通信,波特率为9600bps。
- ▶ Debug UART:可查看软件调试日志信息 ,波特率为 921600bps。

三组串口均遵循 TTL 电平 3.0V,可通过外接芯片转换至 RS232/422/485 电平。

表 8 UART 引脚			
	名称	模块端 ι/Ο	说明
UART1	UART1_TXD	0	UART1 数据发送
	UART1_RXD	1	UART1 数据接收
UART2	UART2_TXD	0	UART2 数据发送
	UART2_RXD	I	UART2 数据接收
	UART2_CTS	I	UART2 允许发送
	UART2_RTS	0	UART2 请求发送
Debug UART	DBG_TXD	0	调试串口数据发送

模块作为 DCE,通过 UART与 DTE 通信时,按下图进行连接:

图 8 UART1/2 串口连接

图 9 调试串口连接

3.7 ADC

模数模块提供一个 10 位模数转换输入接口来测量电压值。该数模转换接口在 Active 模式和 Idle 模式下工作。

此功能待开发

3.8 USIM 卡

表 9 USIM 卡连接引脚

引脚名称	功能
USIM_RST	USIM 卡复位
USIM_DATA	USIM 卡数据
USIM_CLK	USIM 卡时钟
USIM_VDD	USIM 卡供电
USIM_GND	USIM 卡专用地

模块支持外部 1.8/3.0V USIM 卡(可选内嵌 eSIM 方案),未插入 USIM 卡或取出 USIM 卡后, USIM 输出电压降为 0V,下图为 6PIN 外部 USIM 卡参考电路:

图 10 外部 USIM 参考电路图

为确保稳定性, USIM 卡布线应遵循以下准则:

- ▶ 从模块引脚至 USIM 卡座的走线长度应尽可能不超过 100mm, 以获得良好的 EMC 性能
- ▶ USIM 卡位置与走线应远离任何 EMI 源,如天线和数字信号线
- ▶ 应避免 USIM 卡时钟线和数据线交叉,建议走线分离,并用地线分隔
- ▶ USIM 卡信号线应使用低电容的 TVS 管,增强 ESD 防护。

3.9天线

模块的天线接口用于连接 NB-IoT 网络,特性阻抗 50 欧姆;为了能够更好地调节射频性能,建议预留 π 型匹配电路, π 型匹配电路元件应尽量靠近天线放置;天线连接参考电路如下图所示,其中 C1, C2 缺省不贴,只贴 0 欧姆 R1 电阻;应使用匹配的天线以获得最佳性能。

图 11 天线参考电路图

4 电气特性

4.1引脚功能

模块顶视图:

图 12 模块顶视图

表 10 引	 脚功能			NAIT
标号	名 称	I/O		
1	RESERVED	-	保留脚	
2	GND	-		
3	RESERVED	-	保留脚	
4	RESERVED	-	保留脚	
5	RESERVED	-	保留脚	
6	UART2_CTS	I	UART2 允许发送	
7	UART2_RTS	0	UART2 请求发送	
8	UART2_TXD	0	UART2 数据发送	
9	UART2_RXD	I	UART2 数据接收	
10	RESERVED	-	保留脚	
11	RESERVED	-	保留脚	
12	RESERVED	-	保留脚	
13	RESERVED	-	保留脚	
14	RESERVED	-	保留脚	
15	RESET	I	复位引脚	
16	RESERVED	-	保留脚	
17	RESERVED	-	保留脚	
18	NETLIGHT	0	网络状态指示	
19	RESERVED	-	保留脚	
20	DBG_TXD	0	调试串口数据发送	
21	ADC	I	通用模数转换	
22	RESERVED	-	保留脚	
23	RESERVED	-	保留脚	
24	RESERVED	_	保留脚	
25	RESERVED	-	保留脚	
26	VDD_EXT	0	3.0V 供电输出	1. 如果不用则悬空。 2. 如果用这个管脚给外 部供电,推荐并联一个 2.2~4.7uF的旁路电容。
27	RESERVED	-	保留脚	
28	RESERVED	_	保留脚	
29	UART1_RXD	I	UART1 数据接收	
30	UART1_TXD	0	UART1 数据发送	

17 / 25

			S VISIT
31	RESERVED	-	
32	RESERVED	-	保留脚
33	RESERVED	-	保留脚
34	RI	0	振铃指示
35	RESERVED	-	保留脚
36	RESERVED	-	保留脚
37	RESERVED	-	保留脚
38	USIM_VDD	0	USIM 卡供电
39	USIM_RST	0	USIM 卡复位
40	USIM_DATA	I/O	USIM 卡数据
41	USIM_CLK	0	USIM 卡时钟
42	USIM_GND	-	USIM 卡专用地
43	GND	-	
44	RESERVED	-	保留脚
45	VBAT	I	供电输入
46	VBAT	I	供电输入
47	GND	-	
48	GND	-	
49	RESERVED	-	保留脚
50	RESERVED	-	保留脚
51	GND	-	
52	GND	-	
53	RF_ANT	I/O	天线
54	GND	-	
55	RESERVED	-	保留脚
56	RESERVED	-	保留脚
57	RESERVED	-	保留脚
58	RESERVED	-	保留脚
59	GND	-	
60	GND	-	
61	GND	-	
62	GND	-	
63	GND	-	
64	GND	-	
65	GND	-	

66	GND	-	
67	RESERVED	-	保留脚
68	RESERVED	_	保留脚
69	RESERVED	_	保留脚
70	RESERVED	-	保留脚
71	GND	_	
72	GND	-	
73	GND	-	
74	GND	-	
75	RESERVED	-	保留脚
76	RESERVED	_	保留脚
77	RESERVED	-	保留脚
78	RESERVED	-	保留脚
79	RESERVED	-	保留脚
80	RESERVED	-	保留脚
81	GND	-	
82	GND	-	
83	GND	-	
84	RESERVED	-	保留脚
85	RESERVED	-	保留脚
86	RESERVED	-	保留脚
87	RESERVED	-	保留脚
88	RESERVED	-	保留脚
89	RESERVED	-	保留脚
90	RESERVED	-	保留脚
91	RESERVED	-	保留脚
92	GND	-	
93	GND	-	
94	GND	-	

未使用的功能引脚,可悬空处理。

19 / 25

4.2 限值

注意:下列限值在任何情况下都不可触及,无论是暂时或个别达到,否则可能导致模块的永久损坏!

引脚	最小	最大	单位
VBAT	-0.3	4.2	V
数字引脚输入电压	-0.3	3.3	V
模拟引脚输入电压	-0.3	4.2	V

4.3 DC 特性

Vpad 为引脚 IO 参考电平: VDD_EXT

表 11 数字 I/O 口

名称	符号	最小	典型值	最大	单位	条件
输入低电平	V_{IL}	0	-	0.2Vpad	V	
输入高电平	V_{IH}	0.7Vpad	-	1.1Vpad	V	
输入漏电流	I_{LI}	-	±10	-	μΑ	
输出低电平	V_{OL}	0	-	0.1Vpad	V	
输出高电平	V_{OH}	0.8Vpad		Vpad	V	

4.4工作电流

表 12 功耗

工作模式	描述	最小值	典型值	最大值	单位
PSM	睡眠状态			5	uA
Idle	空闲状态		2		mA
A ativo	射频发射状态		220		mA
Active	射频接收状态		50		mA

4.5 射频指标

表 13 主要射频指标表

频段	最大值	最小值(dBm)	偏差 (dB)
发射功率	23dBm	<-40dBm	±2
灵敏度		-129dBm	±2

4.6建议运行条件

表 14 建议运行条件表

名称	符号	最小	典型	最大	单位	条件
正常工作温度	T _{amb}	-35	25	75	°C	
扩展工作温度	T _{storage}	-40		85	°C	

5 机械特性

5.1结构

图 13 ML5515 侧视图

模块外形尺寸 19.9 × 23.6 × 2.5mm, 详见规格图:

图 14 ML5515 规格图

图 15 ML5515 底部尺寸图

5.2推荐封装

图 16 ML5515 推荐封装图

5.3 可靠性

表 15 结构可靠性

检验项	检验方式
高温存储	90°C 40%RH 16 小时
低温存储	-40°C 16 小时
恒定湿热	40°C 95%RH 48 小时
温度冲击	-35°C 与 75°C,各 45 分钟,循环 5 次
冲击	半正弦脉冲,加速度 300m/s2,持续 11ms,每轴线每方向 3次,共 18次半正弦脉冲,加速度 1000m/s2,持续 6ms,每轴线每方向 3次,共 18次
碰撞	正弦脉冲,加速度 250m/s2,持续 6ms,每轴线 1000 次,共 3000 次
随机振动	加速度谱密度 0.96m2/s3, 频率 2 ~ 20Hz, 每轴线 60min 加速度谱密度 2.88m2/s3, 频率 20 ~ 500Hz, 每轴线 60min

表 16 工作可靠性

项目	可靠程度
平均无故障工作时间(MTBF)	大于 150000h
静电防护	空气放电±8kV,接触放电±4kV
电快速瞬变脉冲群抗扰度	±2kV, 重复率 5kHz, 持续 1 分钟

6 应用设计参考

6.1 防护

应用设计应留意以下几点:

- ▶ 与外围通信接口建议预留 100 欧姆串联电阻提高抗浪涌能力
- ▶ 外围接口信号脚(如 USIM 卡)预留对地 ESD 器件,提高抗静电能力

6.2 布局

由于模块位置的钢网需要增加厚度,为避免对周边器件造成影响,应用产品设计时,**周边器件与模块** 之间应保持 2mm 以上的安全距离。若元件规格为 0201 或更小,则距离需要扩大到 3mm 以上。

6.3 射频

应用产品设计时,模块射频测试点下方及周围应净空。

射频微带线请做 50 欧姆阻抗控制,并预留π型匹配网络。对于无法做阻抗控制的两层板,射频线应尽可能短,线宽建议为 0.6~1.0mm。射频线走线应圆滑,两边要有完整铺地,地孔足够多,以确保接地良好。射频线与铺地间距与射频线等宽。**射频电路应尽可能远离信号线、电源线、音频线等,防止干扰与被干扰。**

24 / 25

7 附件

7.1包材

吸塑托盘为黑色防静电 PS 片材,规格如下:

图 17 ML5515 托盘

8 联系我们

厦门骐俊物联科技股份有限公司

电话:+86-592-5950030 传真:+86-592-5950028 主页:www.cheerzing.com

地址:厦门市思明区观音山国际商务营运中心7号楼8层