USN					

RV COLLEGE OF ENGINEERING Autonomous Institution affiliated to VTU

II Semester B.E. October-2023 Examinations DEPARTMENT OF MATHEMATICS

VECTOR CLACULUS, LAPLACE TRANSFORM AND NUMERICAL METHODS (2022 SCHEME)

MODEL QUESTION PAPER (Branches: EE, EC, EI, ET)

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8, and 9 and 10.

PART-A (Objective type for one or two marks) (True & false and match the following questions are not permitted)

	1	(True & false and match the following questions are not permitted)	
1	1.1	If \vec{r} is the position vector of the point (x, y, z) , then $\text{curl } \vec{r} = \underline{\hspace{1cm}}$.	1
	1.2	If ϕ is a harmonic function in cylindrical coordinates, then the Laplacian $\nabla^2 \phi =$	1
	1.3	The region of convergence for $L[\cosh 2t] = \frac{s}{s^2-4}$ to hold good is	1
	1.4	Given Laplace transform of the signal $f(t)$ is $\left[\frac{5s}{(s^2+9)^2}\right]$, then Laplace of $f(3t)$ is	1
	1.5	If $L^{-1}[F(s)] = \sin 2t$, then $L^{-1}\left[\frac{F(s)}{s}\right]$ is	1
	1.6	Find $L^{-1}\left[\frac{5e^{-3s}}{s}\right]$.	1
	1.7	The root of the equation $xlog_{10}(x) = 2$ lies in the interval	1
	1.8	In Newton- Raphson method for finding a real root of an equation $f(x) = 0$, the curve $y = f(x)$ is replaced by	1
	1.9	Find the value of 'c' so that the vector $\vec{f} = (x + y)\hat{\imath} + (y + 2)\hat{\jmath} - cz\hat{k}$ is solenoidal.	2
	1.10	Evaluate $\int_{c} \vec{f} \cdot d\vec{r}$, where $\vec{f} = x^{2}\hat{\imath} - y\hat{\jmath}$, $\vec{r} = x\hat{\imath} + y\hat{\jmath}$ and c is the straight line $y = x$ passing through the points (1,1) and (3,3).	2
	1.11	If V is the volume bounded by a closed surface S and \vec{F} is a vector point function having continuous partial derivatives, then divergence theorem converts to	2
	1.12	$L\{t2^t\} = \underline{\qquad}.$	2
	1.13	Transform the function $\frac{e^{-4s}}{s^2+4}$ into time domain.	2
	1.14	The approximate solution of $\frac{dy}{dx} = 3x + y^2$ with $y(0) = 1$ at $x = 0.1$ using Taylor series up to second degree term is	2

	UNIT-I					
2	a	Obtain the directional derivative of $f(x, y, z) = xy^3 + yz^3$ at the point $(2, -1, 1)$ in the direction of the vector $\hat{i} + 2\hat{j} + 2\hat{k}$.	4			
	b	Show that the field $\vec{F} = 2xyz^2\hat{\imath} + (x^2z^2 + z\cos yz)\hat{\jmath} + (2x^2yz + y\cos yz)\hat{k}$ is conservative vector field. Hence determine its scalar potential.	6			
	С	Compute gradient and Laplacian of the scalar field $\psi(r, \theta, z) = r + z \cos \theta$ in the cylindrical coordinates (r, θ, z) .	6			

		UNIT-II	
3	a	Verify Green's theorem for $\oint_C \{(2xy - x^2)dx + (x^2 + y^2)dy\}$, where C is the boundary of the region bounded by the parabolas $y = x^2$ and $y^2 = x$ described in positive direction.	8
	b	Employing the divergence theorem, evaluate $\iint_S \vec{F} \cdot \hat{n}$ ds, where $\vec{F} = 4x\hat{i} - 2y^2\hat{j} + z^2\hat{k}$ and S is the surface bounded by the region $x^2 + y^2 = 4$, $z = 0$ and $z = 3$.	8
		OR	
4	a	Determine the total work done by a force $\vec{F} = (2y-x^2)\hat{i} + 6yz\hat{j} - 8xz^2\hat{k}$ from the point $(0,0,0)$ to the point $(1,1,1)$ along the straight line joining these points.	8
	b	Verify Stokes' theorem for $\vec{F} = (2x - y)\hat{\imath} - yz^2\hat{\jmath} - y^2z\hat{k}$, where S is the upper half of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary.	8

		UNIT-III				
5	a	Evaluate $L\left[\frac{2sint\ sin2t}{t} + 2^t\right]$.	6			
	b	Determine Laplace transform of the triangular wave given by $f(t) = \begin{cases} \frac{1}{a}t, & 0 < t < a \\ \frac{1}{a}(2a-t), & a < t < 2a \end{cases} \text{ with } f(t) = f(t+2a).$	5			
	с	Using Laplace transform show that $\int_0^\infty (t \ e^{-t} \sin 2t \ dt) = \frac{4}{25}$.	5			
	OR					
6	a	Obtain the Laplace transform of $f(t) = cosh^2 2t - 3e^{-3t} sin 5t$.	6			
	b	Evaluate $L\left\{\int_0^t \frac{e^{-t}\sin 3t}{t} dt\right\}$.	5			
	С	Express $f(t) = \begin{cases} sint, & 0 < t \le \frac{\pi}{2} \\ cost, & t > \frac{\pi}{2} \end{cases}$ in terms of the unit step function and hence find its Laplace transform.	5			

		UNIT-IV	
7	a	Using convolution theorem, transform the following function in time domain: $F(s) = \left[\frac{s}{(s^2 + a^2) (s^2 + b^2)} \right].$	8
	b	Solve the differential equation $\frac{d^2y}{dt^2} - 3\frac{dy}{dx} + 2y = 1 - e^{2t}$ under the conditions $y(0) = 1$, $y'(0) = 0$ applying Laplace transform technique.	8
		OR	
8	a	Determine the inverse Laplace transform of the following: $\frac{s+3}{s^2-4s+13}$ (ii) $\frac{e^{-3s}}{(s^2+1)(s^2+9)}$	8
	b	A voltage $E(t) = Ee^{-at}$ is applied at $t = 0$ to a circuit of inductance L and resistance	
		R satisfying the equation $L\frac{di}{dt} + Ri = E(t)$. Show that the current at any time t is $\frac{E}{R-aL} \left[e^{-at} - e^{-\frac{Rt}{L}} \right].$	8

		UNIT-V	
9	a	Using Newton-Raphson method, find the root of the equation	5
		$3x = \sqrt{1 + \sin(x)}$ correct to 3 decimal places choosing the initial guess	
		$x_0 = 0.5$	
	b	Applying Runge-Kutta method of 4 th order, solve the initial value problem	5
		$y' = \frac{y^2 - x^2}{y^2 + x^2}$ with $y(0) = 1$ at $x = 0.2$.	
	С	Use Milne predictor-corrector method to find the solution of the differential	6
		equation $\frac{dy}{dx} = x^2 - y$ at $x = 0.4$ given that $y(0) = 1, y(0.1) = 0.9051$,	
		$y(0.2) = 0.8212, \ y(0.3) = 0.7491.$	
		OR	
10	a	Find a real root of $xe^x = \cos(x)$ correct to 4 decimal places by using Regula - Falsi method that lies between 0 and 1. Perform four iterations.	5
	b	Apply Taylor series method to obtain $y(0.1)$ considering up to fourth degree	
		term if $y(x)$ satisfies the equation $\frac{dy}{dx} = x - y^2$; $y(0) = 1$.	5
	c	Use the Runge-Kutta method of fourth order with $h = 0.1$ to find approximate	6
		solution of the initial value problem $\frac{dy}{dx} + 2y = x^3 e^{-2x}$; $y(0) = 1$ at $x = 0.1$.	6

α.	CC	, · ·
Vionatiire	Of Scri	111117er
Signature		atmizet.

Signature of Chairman

Name: