Parametricity properties of purely functional code

Sergei Winitzki

Academy by the Bay

2020-02-01

Parametricity properties and naturality laws

Four main results about *purely functional* programs:

- Parametricity theorem: programs automatically obey naturality laws
 - Example: headOption: List[A] => Option[A] satisfies
 list.map(f).headOption == list.headOption.map(f)

```
f^{\uparrow \mathsf{List}}\, \mathring{\mathfrak{g}}\, \mathsf{headOpt} = \mathsf{headOpt}\, \mathring{\mathfrak{g}}\, f^{\uparrow \mathsf{Opt}}
```

- Recipe for writing the naturality law, given a function's type signature
 - Dinatural transformation t: P[A, A] => Q[A, A] where P[X, Y] and
 Q[X, Y] are profunctors (contravariant in X and covariant in Y) has the
 naturality law t(pba.xmap(f, identity)).xmap(identity, g) ==
 t(pba.xmap(identity, g)).xmap(f, identity)
- 3 Liftings with respect to different type parameters always commute
 - ► Example: IO[E, A] and io.map(f).mapError(g) == io.mapError(g).map(f)
- Functors and contrafunctors are uniquely derived from types
 - Example: type F[A] = Either[(A, Int), String => A] has functor
 instance def fmap[A, B](f: A => B): Either[(A, Int), String => A] =>
 Either[(B, Int), String => B] = { case Left(a, n) => Left(f(a), n);
 case Right(g) => Right(g andThen f) }

Purely functional programs are written using the 9 code constructions:

- Use Unit value (or a "named Unit"), e.g. (), Nil, or None. Notation: 1
- $oldsymbol{\circ}$ Use bound variable (a given argument of the function). Notation: x
- Oreate function: { x => expr(x) }
- **1** Use function: f(x). Notation: f(x) or $x \triangleright f$
- **5** Create tuple: (a, b). Notation: $a \times b$
- **6** Use tuple: p._1. Notation: $\nabla_1 p$ or $p \triangleright \nabla_1$
- Create disjunctive value: Left[A, B](x). Notation: $x^{A} + 0^{B}$
- Use disjunctive value: { case ... } (pattern-matching).
- Use recursive call: fmap(f)(tail). Notation: $\overline{fmap_{List}}(f)(t)$

Naturality laws: motivation

A "naturality law" expresses the programmer's intuitions about the properties of **fully parametric** code:

• Code is written once and works in the same way for all types

```
def headOpt[A]: List[A] => Option[A] = {
  case Nil => None
  case head :: tail => Some(head)
}
```

Fully parametric code:

- All argument types are combinations of type parameters
- All type parameters are treated as unknown, arbitrary types
- No hard-coded values of specific types (123: Int or "abc": String)
- No side effects (printing, var x assignment, writing files, networking)
- No null, no throwing of exceptions, no run-time type comparison
- No run-time code loading, no external libraries with unknown code

Naturality laws: equations

Naturality law for a transformation t is an equation involving an arbitrary function f that permutes the order of application of t and of a lifted f

- Lifting f before transformation equals to lifting f after transformation
 Intuition: t rearranges data in a collection regardless of value types
- More examples:
- Reversing a list; reverse^A: List^A \rightarrow List^A

$$\begin{split} & \texttt{list.map(f).reverse} == \texttt{list.reverse.map(f)} \\ & (f^{:A \to B})^{\uparrow \mathsf{List}} \, \mathring{\S} \, \mathsf{reverse}^B = \mathsf{reverse}^A \, \mathring{\S} \, (f^{:A \to B})^{\uparrow \mathsf{List}} \end{split}$$

• The pure method, pure[A]: A => L[A]. Notation: $pu_L: A \to L^A$ pure(x).map(f) == pure(f(x))

Why do we need to know about naturality laws

Typeclasses: type constructors with methods map, filter, fold, flatMap To be useful for programming, the methods must satisfy certain laws

- map: identity, composition
- filter: identity, composition, partial function, naturality
- fold (traverse): identity, composition, naturality
- flatMap: identity, composition, naturality

We need to check the laws when implementing a new typeclass instance

- The parametricity theorem guarantees that all naturality laws hold as long as the method's code is purely functional
- This saves us time: *no need* to check the naturality laws

Proving the parametricity theorem is difficult

- The "theorems for free" (Reynolds; Wadler) approach needs to replace functions (one-to-one or many-to-one) by "relations" (many-to-many)
 - ▶ Derive a law with relation variables, then replace them by functions
 - Alternative approach: analysis of dinatural transformations derives the naturality laws directly (Bainbridge et al.; Backhouse; de Lataillade)

Type constructors with two type parameters

In particular: bifunctors and profunctors

- In Scala syntax: L[A, B]. Example: type L[A, B] = Either[(A, B), B]
- In the type notation: $L^{A,B}$. Example: $L^{A,B} \triangleq A \times B + B$
- If a type constructor is **purely functional**, its type parameters will be either in covariant or in contravariant positions
- Bifunctors: both type parameters are always in covariant positions
 - ► Example: L[A, B] defined above is a bifunctor
 - ► Method bimap[A, B, C, D](f: A => C, g: B => D): L[A, B] => L[C, D]
 - Laws: identity and composition for bimap
- Profunctors: one type parameter contravariant, the other covariant
 - ▶ Example: type P[X, Y] = Option[X] => (Y, Y) or $P^{X,Y} \triangleq \mathbb{1} + X \rightarrow Y \times Y$
 - ► Method xmap[A, B, C, D](f: C => A, g: B => D): P[A, B] => P[C, D]
 - ► Laws: identity and composition for xmap
- If L[A, B] is a functor separately in A and B, is it a bifunctor?
- If P[A, B] is contravariant in A and covariant in B, is it a profunctor?
- They are but only if all liftings in A commute with liftings in B.
 - ▶ These are the "commutativity laws" of bifunctors and profunctors

Applying .map to bifunctors and profunctors

The .map method can be applied with respect to one type parameter

- In a bifunctor L[A,B], fix B. Denote the resulting functor by $L^{\bullet,B}$
 - ► In the Scala syntax with "kind projector": L[?, B]
 - ▶ Lifting a function $f^{:U \to V}$ is denoted by $f^{\uparrow L^{\bullet,B}}: L^{U,B} \to L^{V,B}$
 - ▶ If fixing A instead, a lifting is denoted by $f^{\uparrow L^{A, \bullet}}: L^{A, U} \to L^{A, V}$
 - ▶ Commutativity law for bifunctors: $f^{\uparrow L^{\bullet},B}$; $(g^{:B\to C})^{\uparrow L^{V,\bullet}} = g^{\uparrow L^{U,\bullet}}$; $f^{\uparrow L^{\bullet,C}}$
- In a profunctor P[A,B], fix B. The resulting contrafunctor is $P^{\bullet,B}$
 - ▶ Lifting a function $f^{:U\to V}$ is denoted by $f^{\downarrow P^{\bullet,B}}: P^{V,B} \to P^{U,B}$
 - ▶ If fixing A instead, a lifting is denoted by $f^{\uparrow P^{A, ullet}}: P^{A, U} o P^{A, V}$
 - \star For brevity, we may denote these liftings by $f^{\downarrow P}$ and $f^{\uparrow P}$ unambiguously
 - ► **Commutativity law** for profunctors: $f^{\downarrow P}$, $g^{\uparrow P} = g^{\uparrow P}$, $f^{\downarrow P}$

$$P^{A,B} \xrightarrow{\times \mathsf{map}_{P}(\mathsf{id},g^{:B\to D})} P^{C,B}$$

$$\downarrow \mathsf{map}_{P}(\mathsf{id},g^{:B\to D})$$

$$\downarrow \mathsf{p}^{A,D} \xrightarrow{\times \mathsf{map}_{P}(f,\mathsf{id})} P^{C,D}$$

- Commutativity laws hold for all purely functional type constructors
 - It is not necessary to verify the bifunctor and profunctor laws!

Natural transformations and their generalizations

A **natural transformation** is a function t with type signature $F^A o G^A$ that satisfies the naturality law $f^{\uparrow F}$; t = t; $f^{\uparrow G}$

- Many standard methods have the form of a natural transformation
- ullet pure, headOption, lastOption, reverse, swap, map, flatMap
- If there are several type parameters, use one at a time:
 - For flatMap, denote by ${\sf flm}_M: (A \to M^B) \to M^A \to M^B$, fix A
 - ▶ flm_M : $F^B \to G^B$ where $F^B \triangleq A \to M^B$ and $G^B \triangleq M^A \to M^B$
 - The naturality law is then written as the equation

$$\mathsf{flm}_M(p^{:A o M^B} \, \mathring{\,}\, f^{\uparrow M}) = \mathsf{flm}_M(p^{:A o M^B}) \, \mathring{\,}\, f^{\uparrow M}$$

The naturality law for $t^A: F^A \to G^A$ when F^A , G^A are contrafunctors:

$$F^{A} \xrightarrow{t^{A}} G^{A}$$

$$\downarrow (f^{:B\to A})^{\downarrow F} f^{\downarrow G} \downarrow$$

$$F^{B} \xrightarrow{t^{B}} G^{B}$$

$$(f^{:B\to A})^{\downarrow F} \, \stackrel{\circ}{\circ} \, t^B = t^A \, \stackrel{\circ}{\circ} \, (f^{:B\to A})^{\downarrow G}$$

then t is a natural transformation $F \rightsquigarrow G$

Dinatural transformations and profunctors

Some methods do not have the type signature of the form $F^A o G^A$

- find[A]: (A => Boolean) => List[A] => Option[A]
- fold[A, B]: List[A] => B => (A => B => B) => B with respect to B
 - ▶ The type parameter is in contravariant and covariant positions at once
 - ▶ This gives us neither a functor nor a contrafunctor

A **dinatural transformation** is a function t with type signature $P^{A,A} \to Q^{A,A}$ that satisfies the naturality law $f^{\downarrow P}$, t, $f^{\uparrow Q} = f^{\uparrow P}$, t, $f^{\downarrow Q}$ where $P^{X,Y}$ and $Q^{X,Y}$ are suitable profunctors

- All pure functions have the type signature of a dinatural transformation
- The corresponding naturality law is guaranteed by parametricity
- All naturality laws (also for find, fold) are derived in this way

The naturality law for dinatural transformations

Given two profunctors $P^{X,Y}$ and $Q^{X,Y}$ and a function $t^A: P^{A,A} \to Q^{A,A}$ The naturality law is an equation for functions $P^{B,A} \to Q^{A,B}$:

$$f^{\downarrow P^{\bullet,A}} \circ t^A \circ f^{\uparrow Q^{A,\bullet}} \stackrel{!}{=} f^{\uparrow P^{B,\bullet}} \circ t^B \circ f^{\downarrow Q^{\bullet,B}}$$

Both sides must give the same result when applied to arbitrary $p: P^{B,A}$

Example: writing the naturality law for filter

def filter[A]: (A => Boolean) => F[A] => F[A] for a filterable functor F Notation: filt^A: $(A \to 2) \to F^A \to F^A$

Rewrite in the form of a dinatural transformation:

$$\mathsf{filt}^A: P^{A,A} \to Q^{A,A} \quad , \quad P^{X,Y} \triangleq (X \to 2) \quad , \quad Q^{X,Y} \triangleq F^X \to F^Y$$

Write the code for the liftings using the specific types of P and Q:

$$(f^{:A \to B})^{\downarrow P^{\bullet,A}} = p^{:B \to 2} \to f \, {}^{\circ}_{\,\,} p \quad , \qquad f^{\uparrow P^{B,\bullet}} = \mathrm{id} \quad ,$$

 $(f^{:A \to B})^{\downarrow Q^{\bullet,B}} = q^{:F^B \to F^B} \to f^{\uparrow F} \, {}^{\circ}_{\,\,} q \quad , \qquad f^{\uparrow Q^{A,\bullet}} = q^{:F^A \to F^A} \to q \, {}^{\circ}_{\,\,} f^{\uparrow F}$

Rewrite the naturality law $f^{\downarrow P^{\bullet,A}}$; filt^A ; $f^{\uparrow Q^{A,\bullet}} \stackrel{!}{=} f^{\uparrow P^{B,\bullet}}$; filt^B ; $f^{\downarrow Q^{\bullet,B}}$ as

$$(p o f \, \mathring{\,}\, p) \, \mathring{\,}\, \mathsf{filt}_F \, \mathring{\,}\, (q o q \, \mathring{\,}\, f^{\uparrow F}) \stackrel{!}{=} \mathsf{id} \, \mathring{\,}\, \mathsf{filt}_F \, \mathring{\,}\, (q o f^{\uparrow F} \, \mathring{\,}\, q) \quad .$$

To simplify the form of the naturality law, apply both sides to an arbitrary value $p^{:P^{B,A}}=p^{:B\to 2}$

Evaluate the results and obtain the naturality law of filter,

$$\operatorname{filt}_{F}(f \, \mathring{\circ} \, p) \, \mathring{\circ} \, f^{\uparrow F} \stackrel{!}{=} f^{\uparrow F} \, \mathring{\circ} \, \operatorname{filt}_{F}(p)$$

Uniqueness of functor implementations

Statement 1: For any purely functional type constructor F^A covariant in A, there is a unique lawful and purely functional implementation of fmap with type signature fmap[A, B]: (A => B) => F[A] => F[B] **Statement 2**: For any purely functional type constructor F^A contravariant in A, there is a unique lawful and purely functional implementation of fmap with type signature fmap[A, B]: (B => A) => F[A] => F[B]

 Note: many typeclasses may admit several lawful, purely functional, but non-equivalent implementations of a typeclass instance for the same type constructor F[A]. For example, Filterable, Monad, Applicative instances are not always unique.

Proof of Statement 1 (uniqueness of functor instances)

For a given functor F, we can construct the "standard" fmap $_F$ that is involved in the naturality laws. Suppose that there exists another lawful and purely functional implementation fmap $_F'(f)$. We need to show that fmap $_F' = \text{fmap}_F$.

$$\mathsf{fmap}_F': (A \to B) \to F^A \to F^B \quad , \qquad \mathsf{fmap}_F'(f^{:A \to B}) = ???^{:F^A \to F^B} \quad .$$

Now, fmap'_F has a naturality law with respect to B:

$$\mathsf{fmap}_F'(f^{:A\to B}\, \S\, g^{:B\to C}) \stackrel{!}{=} \mathsf{fmap}_F'(f)\, \S\, g^{\uparrow F} \quad .$$

Use the composition law for $fmap_F'$:

$$\mathsf{fmap}_F'(f\, \S\, g) = \mathsf{fmap}_F'(f)\, \S\, \mathsf{fmap}_F'(g) \stackrel{!}{=} \mathsf{fmap}_F'(f)\, \S\, g^{\uparrow F} \quad .$$

Since $f^{:A\to B}$ is arbitrary, we can choose A=B and $f=\operatorname{id}^{:B\to B}$ to obtain

$$\underline{\mathsf{fmap}'_F(\mathsf{id})}\, \S\, \mathsf{fmap}'_F(g) = \mathsf{fmap}'_F(g) \stackrel{!}{=} \mathsf{fmap}'_F(\mathsf{id})\, \S\, g^{\uparrow F} = g^{\uparrow F} = \mathsf{fmap}_F(g) \quad .$$

This must hold for arbitrary $g^{:B\to C}$, which proves that fmap $_F'=\text{fmap}_F$.

Plan for a proof of commutativity law for profunctors

- Main idea: induction on the type expression of a profunctor $P^{X,Y}$
- A purely functional $P^{X,Y}$ must be a combination of Unit type (1), parameters X and Y, products $A \times B$, co-products A + B, exponentials $A \to B$, and type recursion (use of P in its definition).
- For each of these cases, we need to show that the commutativity law holds given that it holds for all sub-expressions.
 - ▶ Base case: show that the law holds for $P^{X,Y} \triangleq 1$ and $P^{X,Y} \triangleq Y$
 - Induction steps: if the law holds for $P^{X,Y}$ and $Q^{X,Y}$, show that it also holds for $P^{X,Y} + Q^{X,Y}$ and $P^{X,Y} \times Q^{X,Y}$ and $P^{Y,X} \to Q^{X,Y}$; also show that the law holds for a recursively defined $P^{X,Y} \triangleq S^{X,Y,P^{X,Y}}$ for a type constructor $S^{X,Y,R}$ contravariant in X, covariant in Y and R.
 - ★ We need to use the code of functor and contrafunctor instances for products, co-products, exponentials, and recursive types.
 - * Example: Define $R^{X,Y} \triangleq P^{X,Y} \times Q^{X,Y}$, then the lifting to R is given by $f^{\uparrow R} \triangleq p \times q \rightarrow f^{\uparrow P}(p) \times f^{\uparrow Q}(q)$

Plan for a proof of parametricity theorem

ullet Need to prove the naturality law for $t^A:P^{A,A} o Q^{A,A}$ written as

- The code of t must be of the form $p \to \exp r$, where "expr" must be built up from the 9 purely functional code constructions
- Main idea: induction on the code of "expr", assuming that the naturality law holds for all sub-expressions
- Example: induction step for code construction 3 ("create function")
 - ▶ The code of t is $p \to z \to r$ and $Q^{X,Y} \triangleq Z^{Y,X} \to R^{X,Y}$
 - ▶ Inductive assumption is that any $x \rightarrow r$ satisfies the law; let $x = p \times z$
 - ▶ Assume that the law holds for $u \triangleq p \times z \rightarrow r$, $u : P^{A,A} \times Z^{A,A} \rightarrow R^{A,A}$
 - ▶ Derive the law for $t = p \rightarrow z \rightarrow u(p \times z)$ by a direct calculation
- There are some technical difficulties (dinatural transformations do not generally compose) but these difficulties can be overcome with tricks

Summary

- Purely functional code enables powerful mathematical reasoning:
 - ► Any type constructor F[A] has the form of a diagonal profunctor P[A, A]
 - Functor, contrafunctor, and profunctor instances are unique
 - Any purely functional code obeys a naturality law
 - ▶ Bifunctors and profunctors obey a commutativity law
- Full details and proofs are in the upcoming book (Appendix D)
 - ► Source (LATEX) for the book: https://github.com/winitzki/sofp