Bases estadísticas del reconocimiento de patrones

César Martínez cmartinez _AT_ fich.unl.edu.ar

Inteligencia Computacional FICH-UNL

Tarea muuuuy simple: ¿Cuántas llaves hay?

Tarea simple: ¿Cuántas llaves hay?

Tarea no tan simple: ¿Cuántas llaves hay?

Tarea compleja: ¿Cuántas llaves hay?

Aprendizaje maquinal

Problema: ¿Cómo enseñarle a una máquina a que emule las tareas humanas de detección, percepción, identificación, reconocimiento, etc.?

Aprendizaje maquinal

Objetivo: Programar máquinas para

- aprender a realizar una tarea,
- mejorando su desempeño
- basado en la experiencia.

Restricciones adicionales:

- mínima intervención humana posible
- con reducido conjunto de ejemplos
- etc...

Aprendizaje maquinal

Objetivo: Programar máquinas para

- aprender a realizar una tarea,
- mejorando su desempeño
- basado en la experiencia.

Restricciones adicionales:

- mínima intervención humana posible,
- con reducido conjunto de ejemplos,
- etc...

Contexto de la disciplina

Podemos considerar dos ramas de la Inteligencia Artificial (IA):

- IA clásica:
 - Modelado del proceso de razonamiento humano mediante técnicas de la Lógica.
 - Aprendizaje deductivo.
- Reconocimiento de Formas
 - Modelado del proceso de percepción humano mediante técnicas de la Teoría de la Decisión Estadística y de la Teoría de los Lenguajes Formales.
 - Aprendizaje inductivo.

Contexto de la disciplina

Podemos considerar dos ramas de la Inteligencia Artificial (IA):

- IA clásica:
 - Modelado del proceso de razonamiento humano mediante técnicas de la Lógica.
 - Aprendizaje deductivo.
- Reconocimiento de Formas:
 - Modelado del proceso de percepción humano mediante técnicas de la Teoría de la Decisión Estadística y de la Teoría de los Lenguajes Formales.
 - Aprendizaje inductivo.

Contexto de la disciplina

Vista como una disciplina de la IA...

- Adquisición y representación del conocimiento: conformación y almacenamiento de conjuntos de patrones o prototipos.
- Aprendizaje: algoritmos de aprendizaje inductivo a partir de un conjunto de entrenamiento.
- Clasificación: etiquetado de patrones nuevos utilizando el conjunto de clases disponible.
- Evaluación: mecanismos para evaluar la bondad, confianza o error del sistema.

- Patrón:
 - Objeto de interés que es identificable del resto.
 - Posiblemente difusos, no bien definidos, no visibles o tangibles.
 - Ej: una huella digital, la voz de una persona, una cara, etc.
- Reconocimiento de patrones (RP):
 - Estudio de los procesos de percepción y razonamiento humanos:
 - capacidad de distinguir y aislar los patrones,
 - reunirlos en grupos,
 - asignarles un nombre identificatorio a cada grupo.
 - Objetivo del RP: crear sistemas informáticos que imiten el comportamiento descripto.

Paradigma de trabajo conceptual

- (a) Adquisición: transducción del mundo real a la representación digital.
- (b) Procesamiento digital: acondicionamiento y representación alternativa.
- (c) Clasificación: decisión sobre la clase.

Paradigma de trabajo funcional

Aproximaciones

- Aproximación geométrica o estadística:
 - Basada en la Teoría Estadística de la Decisión.
 - Representación de patrones como vectores numéricos.
 - Representación de clases mediante patrones prototipo.
 - Tipos de clasificadores: gaussianos, basados en distancia, etc.
- Aproximación estructural o sintáctica:
 - Basada en la Teoría de Lenguajes Formales.
 - Representación de patrones como cadenas de símbolos
 - Utilización de reglas sintácticas para especificar los patrones válidos de una clase.
 - Tipos de clasificadores: autómatas, gramáticas, HMM, etc.

Aproximaciones

- Aproximación geométrica o estadística:
 - Basada en la Teoría Estadística de la Decisión.
 - Representación de patrones como vectores numéricos.
 - Representación de clases mediante patrones prototipo.
 - Tipos de clasificadores: gaussianos, basados en distancia, etc.
- Aproximación estructural o sintáctica:
 - Basada en la Teoría de Lenguajes Formales.
 - Representación de patrones como cadenas de símbolos.
 - Utilización de reglas sintácticas para especificar los patrones válidos de una clase.
 - Tipos de clasificadores: autómatas, gramáticas, HMM, etc.

Ejemplo de aproximación geométrica

OCR de dígitos manuscritos:

Ejemplo de aproximación geométrica

OCR de dígitos manuscritos:

Característica simple: cálculo de brillo de partes superior e inferior

Ejemplo de aproximación geométrica

Clasificador geométrico con funciones lineales:

Ejemplo de aproximación sintáctica

Descripción de dígitos mediante cadenas de contorno:

Ejemplo de aproximación sintáctica

Clasificador sintáctico basado en autómatas:

Conceptos de clasificación estadística

 Adquisición y preproceso de datos: vector numérico que representa al patrón natural.

Formalmente, un patrón es una variable aleatoria n-dimensional $\mathbf{y} = [y_1 \ y_2 \ \dots \ y_n]^T$, con $y_i \in \mathbb{R}$ para $i = 1, 2, \dots, n$, que representa un punto en el espacio de patrones $P \in \mathbb{R}^n$.

- Adquisición y preproceso de datos: vector numérico que representa al patrón natural.
 - Formalmente, un patrón es una variable aleatoria n-dimensional $\mathbf{y} = [y_1 \ y_2 \ \dots \ y_n]^T$, con $y_i \in \mathbb{R}$ para $i = 1, 2, \dots, n$, que representa un punto en el espacio de patrones $P \in \mathbb{R}^n$.
- Extracción de características: información relevante para la clasificación.
 - Formalmente, dado un conjunto de patrones n-dimensionales \mathbf{y} se trata de obtener un nuevo conjunto de representaciones $\mathbf{x} = [x_1 \ x_2 \ \dots \ x_d]^T$, donde $d \le n$.
 - Cambio en el espacio de representación: transformaciones lineales que maximizan la varianza (d = n).
 - Reducción de dimensionalidad de los datos (d < n).
- Espacio de características: $E \in \mathbb{R}^d$.

- Extracción de características: propiedades deseables
 - Precisión: representaciones diferentes para objetos diferentes.
 - Unicidad o determinismo: representación única para cada objeto.
 - Continuidad en el espacio: inmunidad al ruido y capacidad de generalización.
- Clases informacionales: salidas del sistema
 - Número de clases: a
 - Conjunto de (etiquetas de) clases: $\Omega = \{\omega_1, \omega_2, \dots, \omega_c\}$
 - Conjunto extendido: $\Omega^* = \{\omega_1, \omega_2, \dots, \omega_c, \omega_0\}$, donde ω_0 es la *clase de rechazo*.

- Extracción de características: propiedades deseables
 - Precisión: representaciones diferentes para objetos diferentes.
 - Unicidad o determinismo: representación única para cada objeto.
 - Continuidad en el espacio: inmunidad al ruido y capacidad de generalización.
- Clases informacionales: salidas del sistema
 - Número de clases: c
 - Conjunto de (etiquetas de) clases: $\Omega = \{\omega_1, \omega_2, \dots, \omega_c\}$
 - Conjunto extendido: $\Omega^* = \{\omega_1, \omega_2, \dots, \omega_c, \omega_0\}$, donde ω_0 es la *clase de rechazo*.

• Clasificador estadístico: máquina formada por c (funciones) discriminantes

$$g_i: E \to \mathbb{R}, 1 \le i \le c$$

tal que dado un patrón $\mathbf{x} \in E$,

 ${\bf x}$ se asigna a la clase ω_i si $g_i({\bf x})>g_j({\bf x}) \ \forall j\neq i$

Regiones y fronteras de decisión

• Regiones de decisión: un clasificador divide el espacio en c regiones de decisión R_1, R_2, \ldots, R_c , tal que

$$R_i = \{ \mathbf{x} \in E : g_i(\mathbf{x}) > g_j(\mathbf{x}) \ \forall j \neq i \}$$

 Fronteras de decisión: superficies del espacio que separan regiones de decisión contiguas.

Hipersuperficies definidas por: $g_i(\mathbf{x}) - g_j(\mathbf{x}) = 0, \ i \neq j, \ 1 \leq i, j \leq c$

Clasificadores estadísticos básicos

Las FD son combinaciones lineales o cuadráticas de las componentes del vector de características.

Clasificador lineal:

$$g(\mathbf{x}) = \sum_{i=1}^{d} w_i x_i + w_0 = \mathbf{w}^t \mathbf{x} + w_0$$

Parámetros: d + 1. Fronteras: hiperplanos.

Clasificador cuadrático:

$$g(\mathbf{x}) = \sum_{i=1}^{d} \sum_{j=1}^{d} w_{ij} x_i x_j + \sum_{i=1}^{d} w_i x_i + w_0 = \mathbf{x}^t W \mathbf{x} + \mathbf{w}^t \mathbf{x} + w_0$$

Parámetros: $\frac{1}{2}d(d+1)+d+1$. Fronteras: hipercuádricas.

Ejemplo: OCR de dígitos manuscritos

Unidimensional: brillo global.

Ejemplo: OCR de dígitos manuscritos

• Bidimensional: brillo de mitad superior (x_1) e inferior (x_2) .

Fin

• Probabilidad a priori $P(\omega_i)$ de una clase ω_i : probabilidad de que una muestra arbitraria pertenezca a ω_i .

"Probabilidad de observar la etiqueta \emph{c} sin saber qué muestra es"

Puede verse como la proporción de muestras de ω_i respecto al total (conocimiento que se tiene antes de hacer los experimentos).

Condiciones:

- $0 \le P(\omega_i) \le 1$, para i = 1, ..., c. - $\sum_{i=1}^{c} P(\omega_i) = 1$.

Clasificador trivial de dos clases basado en probabilidades a priori:

- Decidir por ω_1 si $P(\omega_1) > P(\omega_2)$
- Decidir por ω_2 si $P(\omega_1) < P(\omega_2)$

• Densidad condicional $P(\mathbf{x}|\omega_i)$ de una clase ω_i : función de densidad de probabilidad que caracteriza la distribución estadística de las muestras de ω_i .

"Probabilidad de observar la muestra ${f x}$ sabiendo que la etiqueta es c"

El vector de características $\mathbf x$ se considera una variable aleatoria d-dimensional de función de densidad $P(\mathbf x|\omega_i)$ cuando las muestras pertenecen a ω_i .

Condiciones:

- $P(\mathbf{x}|\omega_i) \geq 0$, para $i = 1, \dots, c$.
- $\int_E P(\mathbf{x}|\omega_i) d\mathbf{x} = 1.$

ullet La probabilidad conjunta $P(\mathbf{x},\omega_i)$ muestra-clase se define como

$$P(\mathbf{x}, \omega_i) = P(\omega_i)P(\mathbf{x}|\omega_i)$$

"Probabilidad de observar la muestra ${f x}$ con la etiqueta c"

ullet La densidad incondicional $P(\mathbf{x})$ de las muestras se define como

$$P(\mathbf{x}) = \sum_{j=1}^{c} P(\mathbf{x}, \omega_j) = \sum_{j=1}^{c} P(\mathbf{x}|\omega_j) P(\omega_j)$$

"Probabilidad de observar la muestra \mathbf{x} sin saber cuál es su etiqueta" La densidad incondicional caracteriza la distribución estadística de las muestras con independencia de las clases a las que pertenecen.

Se cumple que: $P(\mathbf{x}) \geq 0$, y $\int_E P(\mathbf{x}) d\mathbf{x} = 1$.

ullet La probabilidad conjunta $P(\mathbf{x},\omega_i)$ muestra-clase se define como

$$P(\mathbf{x}, \omega_i) = P(\omega_i)P(\mathbf{x}|\omega_i)$$

"Probabilidad de observar la muestra $\mathbf x$ con la etiqueta c"

ullet La densidad incondicional $P(\mathbf{x})$ de las muestras se define como

$$P(\mathbf{x}) = \sum_{j=1}^{c} P(\mathbf{x}, \omega_j) = \sum_{j=1}^{c} P(\mathbf{x}|\omega_j) P(\omega_j)$$

"Probabilidad de observar la muestra ${\bf x}$ sin saber cuál es su etiqueta" La densidad incondicional caracteriza la distribución estadística de las muestras con independencia de las clases a las que pertenecen.

Se cumple que: $P(\mathbf{x}) \geq 0$, y $\int_E P(\mathbf{x}) d\mathbf{x} = 1$.

Definiciones de teoría de la decisión

Significado de:
$$P(\omega=0)=0.5;\ P(x=45|\omega=0)=0.033;$$

$$P(x=45,\omega=0)=0.016;\ P(x=45)=0.054.$$

Definiciones de teoría de la decisión

Supongamos que tenemos conocidas $P(\omega_i)$, $P(\mathbf{x}|\omega_i)$ y una medida de \mathbf{x} . ¿Cómo influye este conocimiento sobre la decisión del clasificador?

• Probabilidad a posteriori $P(\omega_i|\mathbf{x})$ de una clase ω_i : probabilidad de que una muestra particular x pertenezca a ω_i .

"Probabilidad de observar la etiqueta c sabiendo que la muestra es $\mathbf{x}^{"}$

Se calcula mediante la regla de Bayes:

$$P(\omega_i|\mathbf{x}) = \frac{P(\mathbf{x}|\omega_i)P(\omega_i)}{P(\mathbf{x})} = \frac{P(\mathbf{x}|\omega_i)P(\omega_i)}{\sum_{j=1}^{c} P(\mathbf{x}|\omega_j)P(\omega_j)}$$

Se cumple que: $0 \le P(\omega_i|\mathbf{x}) \le 1$, y $\sum_{i=1}^{c} P(\omega_i|\mathbf{x}) = 1$.

Puede verse como una actualización de $P(\omega_i)$ después de observar \mathbf{x} . \mathfrak{S}

Definiciones de teoría de la decisión

Idea para un clasificador...

Clasificador de Bayes

 Regla de clasificación de Bayes: asignar a x la clase con mayor probabilidad a posteriori.

$$\hat{\omega} = \arg\max_{\omega_i: 1 \le i \le c} P(\omega_i | \mathbf{x})$$

• Clasificador de Bayes: utiliza las probabilidades a posteriori como funciones discriminantes. Es de mínimo error basado en FD monótonas crecientes $f(\cdot)$.

$$g_i(\mathbf{x}) = P(\omega_i|\mathbf{x}) = \frac{P(\mathbf{x}|\omega_i)P(\omega_i)}{P(\mathbf{x})}$$

$$\equiv P(\mathbf{x}|\omega_i)P(\omega_i)$$

$$\equiv \log P(\mathbf{x}|\omega_i) + \log P(\omega_i)$$

Equivalencia entre clasificadores:

$$(g_1,\ldots,g_c)\equiv (f(g_1),\ldots,f(g_c))\equiv (g_1',\ldots,g_c')$$
 si $R_c=R_c'$ $\forall c.$

Clasificador de Bayes

Error de Bayes a posteriori: probabilidad de error puntual dado por

$$P(\text{error}|\mathbf{x}) = 1 - \max_{1 \le i \le c} P(\omega_i|\mathbf{x})$$

Probabilidad media de error del clasificador:

$$P(\text{error}) = \int_{E} P(\text{error}|\mathbf{x})P(\mathbf{x})d\mathbf{x}$$

- Problemas con el cálculo analítico del error:
 - $P(\omega_i)$ y $P(\mathbf{x}|\omega_i)$ desconocidas
 - Regiones de integración complejas.
- Solución: estimación del error.

Clasificador de Bayes

Error de Bayes a posteriori: probabilidad de error puntual dado por

$$P(\text{error}|\mathbf{x}) = 1 - \max_{1 \le i \le c} P(\omega_i|\mathbf{x})$$

Probabilidad media de error del clasificador:

$$P(\text{error}) = \int_{E} P(\text{error}|\mathbf{x})P(\mathbf{x})d\mathbf{x}$$

- Problemas con el cálculo analítico del error:
 - $P(\omega_i)$ y $P(\mathbf{x}|\omega_i)$ desconocidas.
 - Regiones de integración complejas.
- Solución: estimación del error.

OCR manuscrito:

Reconocimiento de señales de tráfico:

Reconicimiento facial, expresiones y emociones:

Detección de malezas en aplicaciones agrícolas:

Reconocimiento de sonidos masticatorios en rumiantes:

Reconocimiento de sonidos masticatorios en rumiantes:

Reconocimiento de sonidos masticatorios en rumiantes:

Reconocimiento de Imágenes

OCR - Análisis de documentos - Rec. de firmas - Identif. de patentes - Detección de defectos en piezas industriales (control de calidad) - Rec. de gestos faciales

Reconocimiento de Habla y Lenguaje

Rec. de palabras aisladas y discurso continuo - Identif. del locutor - Traducción automática - Comprensión

Aplicaciones Biomédicas

Segmentación de tejido en imágenes médicas - Bioidentificación (huellas dactilares, palma, iris, otros)

Economía

Minería de datos - Detección de patrones de fraude

Aplicaciones en astronomía, agricultura, protección civil, etc.

Fin

Bibliografía:

- Duda R., Hart P, Stork D., Pattern Classification, Second Edition. Wiley-Interscience, 2000. Capítulos 1, 2.1 a 2.6, 3.1 a 3.2.
- Lista de la cátedra

