Project Report (July 15, 2021)

Ankita Ghosh¹ and Sahil Khose²

ABSTRACT

We discuss the progress on the fovea segmentation project after addition of various **metrics** to determine our performance and compare it to **2 other implementations**. We are also awaiting the **dataset** from Coudray for the lung cancer detection project.

Literature Review on DL papers

1. Paper 1: Tan et al

- Converted RGB -> LUV -> processing on L -> RGB
- LReLU, softmax, Xavier initialization is used
- 7-layer custom network is trained
- Results are mentioned in Table 1

2. Paper 2: Sedai et al

- 2 stage approach is used: **coarse network** followed by **fine network**
- ImageNet pre-trained VGG-16 model is used
- Class balanced cross entropy loss is used to fix the imbalance problem
- Results are mentioned in Table 1

Fovea Segmentation

- We graph and evaluate our results based on the loss and the metrics: Dice, Jaccard, Sensitivity, Specificity and Accuracy.
- Figures [1,2,3,4,5,6] shows our training progress using different learning rates [1, 1e-2, 1e-4, 1e-6, 1e-8] on DeepLabV3+ model with EfficientNet-B3 as the backbone.
- Table 1 shows a comparison between our model and the other methods based on the metrics stated above.

Method	Dice(F1score)	Jaccard(MIoU)	Sensitivity	Specificity	Accuracy
Traditional	0.8044	0.6881	0.8162	0.9984	0.996
Method					
(non-DL)					
Deep Learn-	0.8987	0.8315	0.8214	0.9978	0.996
ing(ours)					
Deep Learn-	-	-	0.8853	0.9914	-
ing (Tan et					
al)					
Deep Learn-	0.81	-	-	-	-
ing (Sedai et					
al)					

Table 1. Metrics Comparison

¹Research Assistant, ghoshankita0907@gmail.com, CSE, MIT Manipal

²Research Assistant, sahilkhose18@gmail.com, ICT, MIT Manipal

Coudray Data Update

- Coudray has successfully transfered the dataset to another student. He is currently on vacation, but we hope to retrive the dataset soon.
- GitHub Issue for the entire discussion

Discussion

- We trained 5 models with **lower range** for learning rates to observe the results.
- We overviewed 2 DL papers and were able to achieve better metrics than them.
- We also looked into unsupervised techniques like **Contrastive Predictive Coding V2** by DeepMind and are trying to collect unlabelled data to use these **self-supervised/semi-supervised** approaches that we have explored.
- As soon as we access to the coudray dataset, we will start experimenting on the implementation and try to **reproduce the benchmarks** that they have achieved in the paper.

Figure 1. Comparison of all models

Figure 2. Legend for models

Accuracy

Dice

Figure 3. Metrics-1

F1score

LOSS

Figure 4. Metrics-2

MIoU

Sensitivity

Figure 5. Metrics-3

Specificity

Figure 6. Metrics-4