Kravspecifikation

Redaktör: Dennis Ljung

Version 0.1

Status

Granskad	Andreas Runefall	-
Godkänd	Andreas Runefall	-

PROJEKTIDENTITET

 $\label{eq:VT1} VT1,\,2015,\,Grupp\,\,2$ Linköpings Tekniska Högskola, ISY

Grupp deltagare

Namn	Ansvar	Telefon	E-post
Adam Sestorp	Team leader	070 9987270	adase035@student.liu.se
Dennis Ljung	Dokumentansvarig	070 8568148	denlj069@student.liu.se
Alexander Yngve	Utvecklingsansvarig	076 2749762	aleyn573@student.liu.se
Martin Söderén	Analysansvarig	070 8163241	marso329@student.liu.se
Ruben Das	Kvalitetssamordnare	073 7355892	rubda680@student.liu.se
Sebastian Fast	Arkitekt	073 3885208	sebfa861@student.liu.se
Johan Isaksson	Testledare	070 2688785	johis024@student.liu.se

 \mathbf{Kund} : SAAB

Kontaktperson hos kund: Daniel Simon Kursansvarig: Kristian Sandahl Handledare: Andreas Runefall INNEHÅLL 5 februari 2015

Innehåll

1	Inledning	1
	1.1 Parter	1
	1.2 Syfte och mål	1
	1.3 Användning	1
	1.4 Bakgrundsinformation	1
	1.5 Definitioner	1
2	Översikt av systemet	1
	2.1 Grov beskrivning av produkten	1
	2.2 Produktkomponenter	1
	2.3 Beroenden till andra system	2
	2.4 Ingående delsystem	2
	2.5 Avgränsningar	2
	2.6 Designfilosofi	2
	2.7 Generella krav på hela systemet	2
3	Prestandakrav	3
4	Krav på vidareutveckling	3
5	Tillförlitlighet	3
6	Ekonomi	3
7	Leveranskrav och delleveranser	3
8	Dokumentation	4
_	8.1. Kray på dakumentation	1

INNEHÅLL 5 februari 2015

Dokumenthistorik

Version	Datum	Utförda förändringar	Utförda av	Granskad
0.1	2014-09-09	Första utkast	hansn314	
0.2	2014-09-10	Andra utkast	hansn314	2014-09-11
0.3	2014-09-12	Tredje utkast	hansn314	2014-09-15
0.3.1	2014-09-13	Nu med logotyp!	hansn314	
0.4	2014-09-15	Fjärde utkast	hansn314	2014-09-15
0.5	2014-09-16	Femte utkast	hansn314	2014-09-16
1.0	2014-09-16	Första version	hansn314	2014-09-16
1.1	2014-12-08	Första revision av första version	hansn314	2014-12-08
1.1.1	2014-12-08	Rättade datum försättsblad	hansn314	

1 Inledning

Dagens flygplan får mer och mer komplexa styrsystem, vilket medför att det krävs mer assistans för piloten. Vi har fått i uppgift av beställaren att välja och implementera en algoritm för lösa att ett kvadratiskt konvext optimeringsproblem. Detta problemet kommer ifrån den predektiva reglering som kan tillämpas i moderna flygplans styrsystem.

1.1 Parter

Systemet har beställts av SAAB, där kontaktperson är Daniel Simon. Leverantör är Grupp 2.

1.2 Syfte och mål

Målet med projektet är att välja och implementera en algoritm för lösning av kvadratiska konvexa optimeringsproblem.

1.3 Användning

Implementationen ska vara generell och kunna lösa problemet tillräckligt snabbt för att kunna användas i ett realtidssytem. Den ska köras på Mac, Windows och Linux.

1.4 Bakgrundsinformation

Vi är studenter vid Linköpings Universitet som läser kursen TDDD77. Vår beställare är SAAB AB där vår kontaktperson är Daniel Simon, industridoktorand vid Linköpings universitet.

1.5 Definitioner

- Vi har beslutat att kalla vårt program för QuadOpt
- Prioritetsnivå 1: Krav som programmet ska uppfylla
- Prioritetsnivå 2: Krav som programmet skall uppfylla om tid finns

2 Översikt av systemet

2.1 Grov beskrivning av produkten

Systemet representerar en lagerrobot som ska kunna navigera autonomt med hjälp av en tejplinje och hitta paketstationer. Ett manuellt läge skall finnas där robotens alla rörelser skall kunna styras av användaren.

2.2 Produktkomponenter

Den färdiga produkten kommer innehålla följande komponenter

- Robot
- Programvara för robot
- Programvara för att styra roboten från en dator
- Teknisk dokumentation
- Användarhandledning

2.3 Beroenden till andra system

Gloria kommer behöva en PC för att kunna fjärrstyras trådlöst.

2.4 Ingående delsystem

Systemet ska bestå av fyra delsystem. En PC-modul som skall bestå av mjukvara för att styra roboten manuellt. En huvudmodul som skall kommunicera med PC-modulen, läser sensordata från sensormodulen och bestämmer vad styrmodulen skall göra.

2.5 Avgränsningar

Roboten skall endast kunna köras på banor som följer banreglerna.

2.6 Designfilosofi

Funktionaliteten och driftsäkerheten av systemet prioriteras högst, dvs kunna leverera ett paket till rätt plats utan problem.

2.7 Generella krav på hela systemet

Krav	Förändring	Beskrivning	Prioritet
Krav 1	Orginal	Roboten skall kunna färdas autonomt längs en bana en-	1
		ligt Bilaga ??	
Krav 2	2014-09-16	Roboten skall, om olastad, endast stanna för pålastning	1
		vid nästkommande station om där finns ett paket	
Krav 3	2014-09-16	Roboten skall, om lastad, endast stanna för avlastning	1
		vid nästkommande station om där ej finns ett paket	
Krav 4	2014-09-12	Roboten skall, styrd av en användare, kunna plocka upp	1
		paket	
Krav 5	Orginal	Roboten skall sätta ner paket autonomt	1
Krav 6	Orginal	Roboten skall kunna ta emot kommandon trådlöst från	1
		en dator	
Krav 7	Orginal	Roboten skall skicka sensor- och debugdata trådlöst till	1
		dator	
Krav 8	Orginal	Det skall finnas programvara för att skicka och ta emot	1
		data från roboten	
Krav 9	Orginal	Det skall finnas möjlighet att ställa om roboten i ett läge	2
		där den detekterar och plockar upp ett paket autonomt	
Krav 10	2014-09-12	Alla moduler skall vara enkelt utbytbara	1
Krav 11	2014-09-12	Det skall finnas en brytare som startar roboten	1
Krav 12	2014-09-12	Det skall finnas möjlighet att ställa roboten i antingen	1
		ett autonomt läge eller ett manuellt läge där roboten	
		styrs av användaren	
Krav 13	2014-09-12	Varje enskild modul skall innehålla minst en processor	1
Krav 23	2014-12-08	Sensorerna skall kunna kalibreras	1

3 Prestandakrav

Algoritmen ska kunna lösa det givna problemet ungefär lika snabbt eller snabbare än Gurobi.

4 Krav på vidareutveckling

Krav	Förändring	Beskrivning	Prioritet
Krav 14	Orginal	Gränsnitten skall vara väl definierade	1
Krav 15	2014-09-12	Modulerna skall vara enkla att byta ut	1

${\bf 5}\quad {\bf Till f\"{o}r lit lighet}$

Krav	Förändring	Beskrivning	Prioritet
Krav 16	2014-09-12	Systemet skall ta sig igenom en bana, specifierad i ban-	1
		reglerna	
Krav 17	Orginal	Roboten skall navigera på ett sådant sätt att roboten	1
		befinner sig på banan vid varje givet tillfälle	
Krav 18	Orginal	Om roboten påverkas av yttre faktorer på ett sådant sätt	2
		att den hamnar utanför banan, skall den försöka hitta	
		tillbaks till banan	

6 Ekonomi

Krav	Förändring	Beskrivning	Prioritet
Krav 19	Orginal	Projektmedlemmar ska lägga ca 360 timmar vardera på	1
		projektet	

xcöl n
cö- m ${\bf v}$

7 Leveranskrav och delleveranser

Krav	Förändring	Beskrivning	Prioritet
Krav 20	Orginal	Inlämning av	2015-02-16
		förstudiedokument	
1 Krav	Orginal	Inlämning halvtids-dokument	2015-03-13
21		och utkast 1 av rapport	
1 Krav	Orginal	Inlämning dokument iteration	2015-04-20
22		2	
1 Krav	Orginal	Inlämning utkast 2 av rapport	2015-05-13
23			
1 Krav	Orginal	Inlämning av slutrapport	2015-05-27
24			
1 Krav	Orginal	Tidsrapport	Varje vecka fram till projektavslut
25			
1 Krav	Orginal	Statusrapport	Varje vecka fram till projekavslut
26			
1			

8 Dokumentation

Dokument	Språk	Syfte	Målgrupp	Format
Teknisk dokumentation	Svenska	Beskriv hur systemet är	Tekniskt ansvarig	PDF
		konstruerat		
Användarhandledning	Svenska	Introduktionsbeskrivning	Användare	PDF
		av systemet		

 ${\bf Tabell} \ {\bf 1} - {\rm Dokumentation}$

8.1 Krav på dokumentation

Krav	Förändring	Beskrivning	Prioritet
Krav 27	2014-09-12	All dokumentation enligt Tabell 1 skall levereras tre da-	1
		gar före slutleveransen	
Krav 28	Orginal	Dokumentationen skall följa LIPS-standarden	1
Krav 29	Orginal	All källkod skall vara väl dokumenterad	1