072 식물 병의 관리

충남대 응용생물학과 유승헌 명예교수

⁷목차

- 1.식물 병의 관리란?
- 2.식물검역
- 3.경종적 방제, 물리적 방제
- 4.병 저항성 품종의 이용, 생물적 방제
- 5.화학적 방제, 종합적 방제

식물 병의 관리란?

1 식물 병의 관리란?

- 병의 관리: 식물을 병의 피해로부터 지키고 병의 정도를 일정수준 이하로 제어하는 것을 의미
- 병 관리에는 예방과 치료 (방제)의 2 단계가 있다.
- 식물 병은 치료보다 예방에 중점을 두고 개체보다는 <mark>집단</mark>에 중점을 둔다
- 발병에 필요한 3요인 (병 삼각형)인 병원체, 기주 식물, 환경 중 어느 한 요
 인을 배제시키면 병 발생을 제어할 수 있다.

발병정도 환경

병 삼각형

식물 검역

 식물 검역: 법적인 규제에 의하여 외국으로 부터 병해충의 국내 침입을 막고, 국내 다른 지역으로의 이동, 확산을 예방하여 식물을 병해충으로 부터 보호하고자 하는 것.

1	丑	9-11	연도별	외래병해충의	국내	유입	현황
---	---	------	-----	--------	----	----	----

(단위: 종)

구분	1945년 이전	1946~1970년	1971~1990년	1991~2007년	계
병	10	2	6	4	22
해충	12	3	7	11	33
계	22	5	13	15	55

※ 자료: 식물점역 발달사(2008).

병명	병원체	유입 추정연도	경로
감자더뎅이병	Streptomyces scabies	1913년	일본
목화탄저병	Glomerella gossypii	1914년	미국
사과나무근두암종병	Agrobacterium tumefaciens	1915년	일본
감자역병	Phytophthora infestans	1919년	일본
벼흰잎마름병	Xanthomonas oryzae pv. oryzae	1930년	일본
감귤궤양병	X. axonopodis pv. citri	1935년	일본
고구마검은무늬병	Ceratocystis fimbriata	1942년	일본
사과나무검은별무늬병	Venturia inaqualis	1972년	미국
벼검은줄오갈병	Rice black-streaked dwarf virus	1973년	일본
세균성벼알마름병	Burkholderia glumae	1987년	일본
호접란잎썩음병	Pectobacterium chrysanthemi	1991년	태국, 대만
박과류검은점뿌리썩음병	Monosporascus cannonballus	1986~1987년	일본

- 세계 최초의 식물 검역: 1859년 미국에서 수입한 포도 묘목과 더불어 포도 해충 필록세라 (Phylloxera)가 프랑스에 퍼짐에 따라 1872년 독일에서 "포도 해충 예방령"을 공포하고 포도 묘목의 수입을 금지.
- 국내 최초의 식물 검역: 1912년 과수 및 벚나무 묘목 검사규정을 제정하고 수입묘목의 검역을 실시.

- 식물방역법 (1961년 제정 후 여러 차례 개정)에 따라 식물 검역 실시.
- 식물 검역은 국제검역과 국내검역으로 나누고 국제검역은 수입식물 검역과 수출식물검역이 있음.

1. 국제 검역

- 수입 식물의 검역: 화물, 휴대품, 우편물 등을 통하여 외국으로 부터 수입 되는 모든 식물류를 대상으로 함.
- 금지 병해충이 발견된 식물은 폐기, 또는 반송 조치, 관리병해충, 규제 비 검역 병해충이 발견된 식물은 소독 처리.

2. 국내 검역

- 국내에 처음으로 침입하였거나, 이미 국내의 일부 지역에 발생하고 있는 중요 병해충의 이동, 확산을 막기 위한 것이 국내 검역임.
- 국내 방역 행정 조치의 예
 - 1974년: 배나무 붉은별무늬병의 대 발생을 저지하기 위해 배나무 재배단지 주변에 중간기주인 향나무 재배 금지 조치
 - 2015년: 배나무 들불병 (화상병)이 발생한 충남, 경기 일대의 발병 포장 및 인 근 과수의 소각 조치
- 건전종묘 공급을 위한 종묘검사

1. 경종적 방제

- 재배 환경을 개선하거나 재배법을 조절하여 병을 예방하거나 발병을 줄이는 방제 법.
- 병 방제의 목표를 환경보존과 경제적 피해수준 이하로 발병을 억제하는데 둔다면 효과적이고 실질적인 방법이 될 수 있음.

(1) 포장 위생과 건전 종묘의 사용

- ① 포장 위생: 포장이나 주변의 전염원 제거는 병의 예방 조치로 중요
 - 사과 검은별무늬병, 단감 둥근무늬낙엽병: 병든 낙엽의 제거
 - 사과 탄저병, 사과 부란병, 감귤 궤양병: 전정, 가지치기로 병든 가지나 줄기 제거
- ② 건전 종묘의 사용
 - 건전 종자 및 철저한 종자 소독: 벼 키다리병, 맥류 깜부기병
 - Virus free 등 무병 종묘의 선택

(2) 윤작

- 연작토양: 토양병균의 밀도 증가, 연작 장해의 원인 (인삼 연작시 인삼 뿌리썩음병균의 밀도 증가)
- 토양 서식균 (soil inhabitants): 여러 작물의 모잘록병균, Fusarium 시들음병균, 윤작 효과가 비실용적임
- 토양 침입균 (soil invaders): 맥류 마름병균, 강낭콩 탄저병균, 배추 검은썩음 병균 등은 비기주 작물을 2-3년간 윤작함으로서 접종원 제거
- 윤작 효과가 큰 병: 토양 침입균, 병원균의 기주범위가 좁은 병
- 기주범위가 넓은 흰비단병균, 풋마름병균 등은 윤작으로 벼과 작물 재배

(3) 재배시기의 조절

- 병의 발생 최성기를 피하여 작물을 재배
 - 벼 잎집무늬마름병: 파종, 이앙 시기 빠르면 피해 심함
 - 여러 작물의 시들음병, 세균병: 고온 토양에서 다발
 - 여러 작물의 역병, 균핵병: 저온 토양에서 다발
 - 무, 배추 순무모자이크병: 바이러스 매개하는 진딧물의 활동시기를 피하여 파종기를 늦춘다.

(4) 접목재배

- 토양병 (토양 서식균) 방제에 효과적
 - 박과 작물 (오이, 수박) 덩굴쪼김병, 토마토 풋마름병: 병에 저항성인 박, 호박을 대목으로 접목재배

(5) 수분 관리

- 과습 토양에서 피해가 심한 병: 고추 역병, 배추 뿌리혹병 (무사마귀병), 여러 작물 모잘록병, 각 종 세균병
- 토양의 물대기 (담수): 여러 작물의 균핵병 (6 8주 담수), Fusarium 시들음병 (6 18개월 담수) 발병율이 줄어듬.
- 과습한 시설환경에서 피해가 심한 병: 여러 작물의 노균병, 역병, 잿빛곰팡이병

(6) 토양의 비배 관리

- 질소질 비료의 과다시용: 벼 도열병, 맥류 녹병, 맥류 흰가루병, 오이 탄저병,토마 토 역병 등 발병 심함
- 질소 결핍 토양: 오이 노균병, 벼 깨씨무늬병 발병 심함

(6) 토양의 비배 관리

표 9 . 질소질 비료의 시용과 잎도열병 발생과의 관계

(농기연, 1974~1979)

조사월일	주당 잎도열병 병반수*				
工小百百	보 비 구	다 비 구			
7. 5	16. 6개	60. 7개			
12	33. 6	113. 5			
19	39. 3	143. 4			
26	26. 7	95. 3			
8. 2	7.8	46. 9			

* 공시품종:진흥

(7) 토양산도의 조절

- 배추 뿌리혹병 (무사마귀병), 토마토 Fusarium시들음병: 산성토양에서 발병심함, 석회 시용하여 토양 산도 (pH)를 7.0 이상으로 조절.
- 감자 더뎅이병: 토양산도(pH) 5.2 8 사이에 발병이 심함. 토양 pH를 5.2 이하로 조절하면 발병이 줄어 듬

(8) 중간기주의 제거

■ 배나무 붉은별무늬병, 사과나무 붉은별무늬병: 과수원 주위 4 – 5 ha (1.5 – 2 km) 안에 중간 기주인 향나무 제거.

2. 물리적 방제

■ 물리적 방법으로 병원체를 죽이든지 불활성화 시키는 것

(1) 열을 이용한 종자 소독

- 건열 소독 (건열멸균기 이용): 토마토 종자의 ToMV 소독
- 온탕침법 (52 -55 ℃ 온탕에 종자 침지): 맥류 종자의 각 종 깜부기병균 종자 소독

(2) 토양소독

- 고압멸균 소독, 훈증 소독: 소량의 토양 소독이나, 경제적 가치가 높은 작물 재 배시 이용
 - 선충, 일부 난균류: 50 ℃에서 사멸
 - 대부분 식물병원 균류와 세균: 60 72 ℃ 에서 사멸
 - 식물바이러스: 82 ℃에서 불활성화, TMV: 95 100 ℃에서 불활성화
- 태양열 토양소독: 여름철에 토양습도를 포화상태로 유지하면서 태양열로 토양 온도를 높여 토양전염성 병원체를 사멸 또는 불활성화 시키는 것
 - 오이, 딸기와 같이 뿌리가 얕게 뻗는 작물을 침입하는 병원균에 효과가 큰 반면 토마토처럼 뿌리가 깊게 뻗는 작물에는 효과가 적다.

(2) 토양소독

비닐하우스 토양의 태양열 처리에 의한 지온 상승효과

- 태양열 토양소독의 장점
 - 비용이 적게 들고 별도의 고가 시설을 필요로 하지 않는다.
 - 훈증 소독이나 고압멸균 처럼 토양 내의 모든 생물을 죽이는 것이 아니므로 토양 내에 생물학적 공백을 만들지 않는다.

(3) 자외선 흡수 (제거) 필름의 사용

- 많은 균류의 포자 형성에는 파장 370 nm의 자외선 (근자외선)이 필요하다.
- 하우스의 피복에 자외선 흡수 필름 (UVA film)을 사용하면 잿빛곰팡이병 (Botrytis cinerea), 토마토 겹둥근무늬병 (Alternaria tomatophila) 같은 균류병의 발생이 억제된다.

1. 병 저항성 품종의 이용

■ 저항성 품종의 이용은 농약의 이용과 더불어 가장 유력한 병 방제 수단임

■ 장점

- 특별한 경비나 자재가 필요하지 않다
- 까다로운 방제 작업이 필요하지 않다
- 농약의 잔류 독성이나 약해를 걱정하지 않아도 된다

■ 문제점

- 한번 육성된 품종의 병 저항성이 영원히 지속되지 않는다.
- 병원균의 병원성 분화에 의하여 병 저항성 품종을 공격하는 새로운 계통 의 출현으로 저항성 품종이 감수성으로 전락한다.
- 1970년대 초 육성, 보급한 벼 도열병 고도저항성 품종인 통일계 품종이 1970년대 후반 감수성으로 전락하여 큰 피해를 줌.

2. 생물적 방제

- 생물적 방제 (biocontrol): 생물농약을 이용하여 식물 병을 방제하는 것
- 생물농약: 자연생태계로부터 유래한 천연물, 천적, 및 유익미생물을 선발하여 식물 병, 해충, 잡초의 방제제로 제품화한 것 (미생물 농약, 생화학 농약)
 - <mark>미생물농약</mark>: 세균, 균류 등 살아있는 미생물과 바이러스, 원생동물 등을 이용한 농업용 미생물 방제제
 - Bacillus subtilis: 고추 흰가루병, 잔디 갈색잎마름병, 벼 잎집무늬마름병 방제제 Streptomyces griseofuscus: 고추 역병, 탄저병 방제제
 - Trichoderma harzianum: 과채류 잿빛곰팡이병, 균핵병, Rhizoctonia병 방제제
 - <mark>생화학농약</mark>: 자연계에서 생성된 천연화합물을 추출하여 이용한 농업용 항 생물질 또는 생약 방제제

미생물 농약의 장단점

■ 장점

- 인축 및 작물에 독성이 없거나 적다
- 생태계에 미치는 영향이 적다
- 병해충에 선택적으로 작용하며 기주식물에 미치는 영향이 적다
- 병해충에 알려진 약제저항성이 없다
- 화학잔류물질이 거의 없다

단점

- 화학농약에 비하여 약효가 떨어진다
- 치료효과가 낮아 예방위주로 처리해야 효과적이다
- 환경의 영향을 받기 때문에 처리효과가 균일하지 않다
- 약효 지속기간이 짧고, 비교적 고가이다
- 상온에서 보존기간이 짧고 활력이 저하되기 쉽다

생물 농약의 작용 기작

(1) 길항미생물의 이용

- 병원체에 대한 중복기생, 경합, 용균 등의 작용이 있는 미생물을 이용
- *Trichoderma harzianum*: 채소 모잘록병균 (*Rhizoctonia solani*), 여러작물 흰 비단
 - 병균 (Sclerotium rolfsii), Phytophthora, Fusarium 등에 길항작용
 - Ampelomyces quisqualis: 흰가루병균에 기생
- *Agrobacterium radiobacter* (agrocin 84 생산): *Agrobacterium tumefaciens*에 의한 과
 - 수 뿌리혹병 방제제
 - Bacillus subtilis: 흰가루병, 잿빛곰팡이병 방제제

(1) 길항미생물의 이용

흰가루병균 균사에 기생한 Ampelomyces quisqualis 균사 (박, 2011)

수박 잘록병균에 대한 *Burkholderia* gladioli의 길항작용 (박, 2011)

(2) 교차방어의 이용

- 교차방어 (cross protection): 한 종의 바이러스를 접종한 식물체에 같은 종 또는 근연 종의 바이러스를 접종하면 후에 접종한 바이러스의 감염이 일어나지 않는 현상. 이는 처음 접종한 바이러스가 후에 접종한 바이러스의 증식을 저해하는 현상으로 간섭 (interference)이라고도 함.
- 약독 바이러스를 이용한 토마토모자이크바이러스 (ToMV)의 방제가 실용화
- 약독바이러스 이용의 문제점
 - 효과가 큰 약독 바이러스 계통이 많지 않다
 - 약독 바이러스라 하더라도 돌연변이로 병원성을 나타낼 가능성이 있다

(3) 유도 저항성의 이용

- 유도 저항성 (induced resistance): 어떤 미생물을 식물에 접종하였을 때 그 자극으로 식물의 저항성이 강화되어 나중에 침입한 병원체에 대한 저항성이 나타나는 것.
- 유도 저항성은 미생물 뿐 아니라 살리실산 (salicylic acid)이나 디클로로이소니코 틴산과 같은 화학물질의 처리에 의하여도 유도된다.
- PGPR (식물생장촉진 근권세균) 균주의 이용: 오이 탄저병, 바이러스병에 저항성 유도.
- 식물 내생균 (endophytes), 수지상 균근균 (arbuscular mycorrhiza)의 이용에 관한 연구

- 화학적 방제: 화학농약 (식물 보호제)을 이용하여 병원체를 살멸하거나 증식을 억제시키는 것.
- 현재 식물 병 방제 기술의 주역. 단 실용적인 항바이러스제 농약은 아 직 없다.

- <mark>장점</mark>: 효과가 신속, 정확하며, 사용이 간편하고 병이 발생한 후에도 효과를 나타낸다.
- 단점: 농약의 잔류독성 문제, 생태계 파괴, 약제 저항성 균의 출현 등 부작용.

1. 살균제의 분류

- ▶ 사용목적에 의한 분류: 종자소독제, 토양처리제, 경엽처리제 등
- ▶ 사용형태에 의한 분류: 살포제, 훈연제, 훈증제, 도포제, 연무제 등
- 제형에 의한 분류: 액제 (Lq), 유제 (EC), 분제 (D), 입제 (G), 수화제 (WP), 액상 수화제 (FL), 미립제 (MG) 등
- 화학조성 및 구조에 의한 분류: 무기화합물, 유기화합물, 항생물질 등
- 작용 특성에 따른 분류: 보호살균제, 직접치료제 (치료살균제)

(1) 보호살균제

- 식물 병의 예방효과를 나타내는 살균제, 발병 전에 살포하여 병원체의 식물체 부착, 침입을 막아준다
- 효과의 지속기간이 길어야 하며, 빗물에 잘 씻겨 내려가지 않고, 가수분해나 광분해 등에 안정한 화합물이어야 함. 즉 적당한 물리성과 화학적 안정성이 구비되어야.
- 구리화합물: 보르도액
- 디티오카바메이트계 살균제: 티람, 마네브, 지네브
- 퀴논계: 디클론
- 헤테로사이크릭계: 빈클로졸린

(2) 직접살균제 (치료살균제)

- 식물 병의 치료효과가 있는 살균제.
- 病原體가 기주식물에 감염된 후에도 균사 또는 포자에 접촉하여 이를 사멸시키는 것으로 강한 살균력과 높은 침투성이 요구된다.
- 작용기작: 식물병원균의 구성성분인 단백질, 인지질, 에르고스테롤, 키틴 등의 생합성 저해 및 균체 세포의 유사분열 저해 등
- 아실알라닌계 살균제: 메타락실 등
- 벤지미다졸계: 베노밀, 카벤다짐, 티아벤다졸 등
- 유기인계: 포세틸 알루미늄
- 스트로빈계: 아족시스트로빈
- 항생물질계: 가스가마이신, 폴리옥신 등

2. 살균제의 종류

(1) 무기화합물

① 구리화합물

- 보르도액: 구리황산염과 과산화칼슘 (석회)의 반응생성물로 세계 최초의 살균제 각 종 점무늬병, 마름병, 탄저병, 노균병, 궤양병 방제제
- ② 무기 황화합물
 - 황: 흰가루병, 녹병, 열매썩음병 등에 사용
 - 석회-황 합제: 탄저병, 흰가루병, 사과나무 검은별무늬병 핵과류 잿빛무늬병, 복숭 아나무, 잎오갈병 방제제
- ③ 카보네이트화합물
 - 흰가루병균, 흰비단병균, 잿빛곰팡이병균 등에 살균효과
- ④ 포스페이트와 포스포네이트화합물
 - 오이, 포도나무 흰가루병 방제제

(2) 유기화합물

- ① 유기 황화합물: 접촉성 보호살균제
 - 티람: 벼, 채소, 화훼의 종자소독제, 구근소독제
 - 마네브, 만코지: 광범위 살균제
 - 지네브: 다목적 엽면 및 토양 살균제
- ② 방향족화합물: 방향족 (벤젠) 고리를 가지고 있는 화합물
 - PCNB: 약효 지속기간이 긴 토양살균제
 - 클로로타로닐: 적용범위가 넓은 접촉형 살균제.

여러 식물의 점무늬병, 탄저병, 균병, 녹병 더뎅이병 등의 방제제

- ③ 헤테로사이클릭화합물
 - 캡탄: 채소, 과수, 잔디 등의 점무늬병, 무름병, 뿌리썩음병 방제제
 - 이프로디온: 예방효과가 높고 적용범위가 넓은 접촉형 살균제.
 - 잿빛곰팡이병, 균핵병, Alternaria병 등에 효과
 - 빈클로졸린: 접촉형 보호살균제잿빛곰팡이병, 균핵병 등에 효과

(2) 유기화합물

④ 아실알라닌계

- 메타락실: 각 종 역병, 노균병 에 효과적인 침투성 살균제
- ⑤ 벤지미다졸계
 - 베노밀: 안정성이 높은 광범위 침투성 살균제 각 종 흰가루병, 핵과류 잿빛무늬병, 벼 도열병, 여러 작물의 잿빛곰팡이병, 균핵병 등에 효과가 있으나 역병, 노균병 같은 난균류 병에는 효과가 적다.
 - 티아벤다졸: 광범위 살균제로 잔디, 화훼류의 점무늬병과 구근병에 효과적
 - <mark>티오파네이트메틸</mark>: 광범위한 예방 및 치료제. 흰가루병, 노균병, 잿빛곰팡이병, 점무늬병 등의 방제제

⑥ 옥산틴계

- 카복신: 종자처리제. 라이족토니아 모잘록병, 맥류 깜부기병에 효과적
- 옥시카복신: 종자처리제, 경엽처리제, 각종 녹병에 효과적

(2) 유기화합물

- ⑦ 유기인계
 - 포세틸-알루미늄: 역병, 노균병, 피시움병 등 난균류병에 효과적인 침투성 살균제
 - 키타진: 벼 도열병 방제제
- ⑧ 피리미딘계
 - 디아메티리몰, 에티리몰: 여러 작물의 흰가루병 방제제
 - 페나리몰, 누아리몰: 각 종 흰가루병, 녹병, 깜부기병 등에 효과적
- ⑨ 트리아졸계
 - 트리아디메폰, 트리아디메놀, 디페노코나졸, 에타코나졸 등: 침투성 살균제 점무늬병, 잎마름병, 흰가루병, 녹병, 깜부기병 등에 예방효과와 치료효과
- ⑩ 스트로빌루린계
 - 아족시스트로빈, 크레속심 메틸, 피라클로스트로빈 등: 대부분의 균류병에 효과가 있는 광범위 살균제

(2) 유기화합물

- ⑪ 항생물질: 미생물이 생산하는 물질로서 다른 미생물에 독성을 나타내는 것. 주로 Streptomyces 같은 방선균과 Penicillium같은 균류에 의해 생성되는 물질
- *항생제 농약의 장점
 - 자연계에 존재하는 물질을 이용하는 것으로 환경오염이 적다
 - 선택독성이 높으므로 다른 생물에 영향이 적다
- *항생제 농약의 단점
 - 항생제를 연용할 경우 사용한 항생제에 약제 저항성을 갖는 균주가 생기기 쉽다

(2) 유기화합물

주요 항생제 농약의 종류와 적용 병해

종류	적용병해
항진균성 살균제 Blasticidin S Kasugamycin Polyoxins Validamycin	벼 도열병 벼 도열병, 벼 잎집무늬마름병, 토마토 잎곰팡이병 벼 잎집무늬마름병, 사과나무 점무늬낙엽병, 배 검은무늬병 벼 잎집무늬마름병, 벼 도열병, 벼 깨씨무늬병
항세균성 항생제 Streoptomycin Oxytetracycline Novobiocin	과수, 채소의 각 종 세균병 과수, 채소의 세균병, 대추나무 빗자루병 토마토 궤양병

3. 살균제의 작용기작

(1)에너지 대사 저해

- ① 다작용점 저해 (SH기 저해): TCA회로상의 SH기를 가진 효소를 불활성화 시킴
 - 디치오카바메이트, 캡탄, 클로로탈로닐, 디클로로플루아니드, 디티아논, 플루아지남
- ② 호흡저해: 전자전달계 저해
 - 옥시카복신, 페나진, 에트리디아졸, 아족시스트로빈 등

(2) 생합성 저해

- ① 핵산 합성 저해: 핵분열의 이상을 유기시킨다
 - 베노밀, 티오파네이트메칠, 티아벤다졸, 그리세오풀비 등
- ② 단백질 합성 저해
 - 블라스틴시딘-에스, 가스가마이신, 스트렙토마이신, 클로람페니콜 등

(2) 생합성 저해

- ③ 지질 합성 저해: 이프로벤포스 (IBP), 에디펜포스
- ④ 키틴 합성 저해: 폴리옥신, 디카복시마이드
- ⑤ 에르고스테롤 합성저해: 트리플루미졸, 헥사코나졸, 트리아디메폰 등
- ⑥ 멜라닌 합성 저해: 트리사이클라졸, 피로퀼론 등
- ⑦ 세포막 기능 저해: 도딘, 하이멕사졸

(3) 기주 식물체 저항성 유도

- 프로베나졸, 이프로벤포스, 포세틸-알루미늄, 트리사이클라졸 등

4. 병원균의 약제 저항성

(1) 약제 저항성균의 출현

- ① 약제 저항성균의 출현빈도가 높은 농약
 - 침투성 살균제로서 약제의 작용점이 적은 농약
 - 벤지미다졸계 (베노밀, 티오파네이트메칠), 유기인제 (IBP), 스트로빌루린계 (아족시스 트로빈)
 - 항생제 농약 (스트렙토마이신, 가스가마이신, 폴리옥신 등)
- ② 약제 저항성균의 출현빈도가 낮은 농약
 - 약제의 작용점이 여러 개인 비선택성 농약
 - 구리제 (보르도액), 유기황제 (티람, 마네브)

(2) 교차저항성, 부의상관 교차저항성

- ① 교차저항성: 병원균이 한 약제에 대하여 저항성을 획득하면 다른 종류의 약제에 대해서도 저항성이 되는 경우
 - 벤지미다졸계 농약인 베노밀에 저항성을 획득한 채소 잿빛곰팡이병균이 헤테로사이클린 계 농약인 이프로디온, 빈클로졸린에 대하여도 저항성을 가진다.
- ② 부의 상관 교차저항성: 한 약제에 대하여 저항성을 획득한 병원균이 다른 약제에 대하여는 오히려 감수성이 되는 경우
 - 베노밀 저항성의 잿빛곰팡이병균이 디에토펜카브에는 감수성이 된다.

(3) 약제저항성 대책

- 저항성이 생길 수 있는 선택성, 침투성 살균제의 사용횟수를 최소화한다
- 선택성, 침투성 살균제의 사용이 불가피할 경우 다른 선택성이 낮은 광범위 살균제
 와 교호 살포하거나 혼합 살포한다.
- 두 종류의 살균제를 혼합 살포할 경우 부의 상관 교차저항성 약제를 혼합한다.

5 종합적 방제

- 식물 병을 농약에만 의존하지 않고 경종적 방제, 물리적 방제, 생물적 방제, 화학적 방제 등을 합리적으로 조합하여 병원균의 밀도를 경제적 피해 수준 이하로 억제하는 방제법
- ▶ 농약의 과도한 사용에 의한 자연생태계에 주는 피해를 지양하고 병의 발생 과 피해를 경제적으로 손실되지 않도록 최소한으로 방제하는 것
- 병원체의 발생생태를 알고 정확한 발생 예찰에 의한 요 방제 수준을 설정하여 필요한 시기에 정확하고 합리적인 방제를 한다

수고하셨습니다.

7강

식물 병의 관리

레인지웨

8강

주요 농작물 및 수목의 병해 (1) 균류병

