Physical Attacks

-- Attacks & Countermeasures

Cybersecurity Specialization
-- Hardware Security

Invasive Attacks

- # Decapsulation and deprocessing
 - Remove the package to expose the silicon die
- # Reverse engineering
 - Reveal chip inner structure and functionality
- # Depassivation and microprobing
 - ▶ Probe single bus activity, submicron precision
- # Chip modification
 - Disable chip component (cut wire)
- #Cost varies, but is increasing very fast.

Invasive Attacks: Tools

- #IC soldering/desoldering station
- # Simple chemical lab
- #High-resolution optical microscope
- #Oscilloscope, logic analyser, signal generator
- # Wire bonding machine, laser cutting system, microprobing station
- # Scanning electron microscope
- # Focused ion beam (FIB) station

Semi-invasive Attacks: Tools

- #IC soldering/desoldering station
- # Simple chemical lab
- #High-resolution optical microscope
- #Oscilloscope, logic analyser, signal generator
- **#UV** light sources, lasers
- # Microscopes (laser scanning, infrared etc)
- #PC with data acquisition board, FPGA boards, prototyping boards

Semi-invasive Attacks

- # Decapsulation and deprocessing
 - Remove the package to expose the silicon die
 - But will not contact internal bus lines
- #Launching attacks
 - Imaging: optical and laser techniques, active photon probing, backside infrared imaging
 - Fault injection: Ultraviolet (UV) light attacks, optical fault injection, local heating, memory masking
 - Side channel analysis: optical emission, optically enhanced position-locked power analysis

Non-invasive Attacks: Tools

- #IC soldering/desoldering station
- #Oscilloscope, logic analyser, signal generator
- #PC with data acquisition board, FPGA boards, prototyping boards
- # Digital multimeter
- #Universal programmer and IC tester
- #Programmer power supplies

Non-invasive Attacks

- # Side channel analysis (passive)
 - Timing, power, EM emission, acoustics, NFC
- # Brute force (active)
 - Search for keys and passwords
 - Recover design (black-box attack)
 - Find backdoor access to factory test or programming mode
- # Data remanence (active)
- # Fault injection (active)

Data Remanence

- # Data remanence in SRAM
 - Retaining data after power down
 - Retrieve data after power down
 - Data "burned-in" after long time storage
 - Retrieve data right after power up
 - Data "frozen" at low temperature (-20°C)
 - Freeze data and read it
- # Data remanence in EEPROM and Flash
 - V_{th} changes after write/erase
 - Extract data after multiple write/erase cycles

Fault Injection Attacks

- # Idea
 - Have the chip/system execute with faulty or unexpected input/command
 - Dbserve chip/system execution
- #Fault generation techniques
 - = Glitches (clock, power)
 - **■** Temperature
 - White light, laser
 - X-ray and ion beams
 - Electromagnetic flux

Fault Injection Attacks: Glitch

- #Glitch is a fast change in chip's supply signals (power and clock).
 - Affect some transistors or flip-flops
 - Attack by a systematic search
- # Clock glitch
 - Incorrect instruction fetch
- # Power glitches
 - Corrupted EEPROM data read
 - Break AES on secure microcontroller

Countermeasures: Fault Injection

- # Software approach
 - Execution redundancy
 - Checksums on data transfers
 - Randomized execution
- # Hardware approach
 - Redundancy (e.g. fault tolerant computing)
 - Fault detector

Countermeasures: Invasive Attacks

- # Bus scrambling
 - Change the order/connection of data bus
- # Data encryption
 - Encrypt data and decrypt in a trusted zone
- # Glue logic design
 - Hide the data bus
- # Sensor mesh at top metal layer
 - Continuous monitor of all paths in the mesh
 - Microprobing will cause short circuits
 - Reset memory to preserve data