Proof of the irrationality of $\sqrt{2}$

David

August 13, 2025

1 Proof using contradiction

Let us assume $\sqrt{2}$ is a rational number, where a rational number is defined as follows:

A number r is rational if
$$r = \frac{p}{q}$$
 where $p, q \in \mathbb{Z}$ and $q \neq 0$ (1)

Now, assuming $\sqrt{2}$ is rational, we can write the following: $\sqrt{2}=\frac{p}{q}$ squaring both sides leads to: $2=\frac{p^2}{q^2}$:: $p^2=2q^2$

This is very important, as only an even number squared can give another even number, this leads to the following about p:

p even, so let
$$p = 2r$$
 : $(2r)^2 = 2q^2$: $2r^2 = q^2$ (2)

we now reach the same conclusion for q as for p, if q^2 is even, q is even as well, but if both p and q are even, both have a factor of 2, so $\frac{p}{q}$ cannot be in lowest terms, this leads to the contradiction proving $\sqrt{2}$ is an irrational number.