GCT634: Musical Applications of Machine Learning

Fall 2021 Syllabus

Juhan Nam

Course Objective

- Understanding of machine learning with applications to the music and audio domains:
 - Music and audio classification
 - Automatic music transcription
 - Sound source separation and sound synthesis
 - Music generation
- Hand-on experiences with Python language and machine learning / deep learning libraries
- Gain experience of the full cycle of research

Class Format

- This course is served as an 100% online format due to the campus-wide
 COVID-19 policy
- There are two types of online sessions
 - Pre-Recorded videos
 - Cover lecture slides
 - Uploaded weekly in KLMS
 - Students must watch the videos before the weekly Zoom meeting
 - Weekly Zoom meeting
 - Focus on review, interactive Q&A and hand-on practice
 - Every Monday 1:00-2:15 PM

- Week 1
 - Course introduction: the first lecture is served on Aug 30 (Zoom meeting)
 - Audio representations
- Week 2
 - Audio Features
 - Unsupervised learning
- Week 3
 - Supervised learning
- Week 4
 - Introduction to Deep Learning
 - Chusuk (no class)

- Week 5
 - Convolutional neural network (CNN)
 - Music and audio classification
- Week 6
 - Recurrent neural network (RNN)
 - Automatic music transcription
- Week 7
 - Dynamic time warping and musical applications
- Week 8
 - Break (no class)

- Week 9
 - Auto-encoder and U-net
 - Source separation
- Week 10
 - Variational auto-encoder (VAE), Generative adversarial network (GAN)
 - WaveNet, DDSP
 - Sound synthesis
- Week 11
 - Symbolic music representation
 - Music language models using RNN
 - Music generation

- Week 12
 - Transformer for music generation
- Week 13
 - Student project meetings
- Week 14
 - Invited talk or advanced topics (TBD)
- Week 15
 - Invited talk or advanced topics (TBD)
- Week 16
 - Final project presentations

Pre-requisite

- Linear Algebra
- Probability and Statistics
- Basic understanding of machine learning and deep learning
- Digital Signal Processing: discrete Fourier transform and Filters
- Programming Language: Python

Software

- Scikit-learn
- PyTorch
- Librosa
- And more

Grading

- Assignments: 50%
- Final project (paper review, presentation and report): 50%

Course Website

https://mac.kaist.ac.kr/~juhan/gct634