# Lei de Ohm e curva característica do diodo

Eduardo Parducci - 170272 Lucas Koiti Geminiani Tamanaha - 182579 Rodrigo Seiji Piubeli Hirao - 186837 Tanus Vaz Szabo - 187308

28 de Março de 2017

# Conteúdo

| 1 | Resumo                                               | 4                  |
|---|------------------------------------------------------|--------------------|
| 2 | Objetivo                                             | 4                  |
| 3 | Metodologia    3.1 Material Utilizado                | <b>4</b><br>4      |
|   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 5<br>5<br>5<br>6   |
| 4 | Resultados    4.1 Resistor ixU                       | 8<br>8<br>10<br>12 |
| 5 | Análise                                              | 13                 |
| 6 | Discussão                                            | 13                 |
| 7 | Conclusão                                            | 14                 |
| 8 | Referencias                                          | 14                 |

# Lista de Figuras

| 1  | Circuito para medição de resistências pequenas                | 6  |
|----|---------------------------------------------------------------|----|
| 2  | Circuito para medição de resistências grandes                 | 6  |
| 3  | Circuito de montagem do diodo na polarização direta           | 7  |
| 4  | Circuito de montagem do diodo na polarização reversa          | 7  |
| 5  | Tabela de dados da corrente adiquirida ao aumentar tensão em  |    |
|    | resistor                                                      | 8  |
| 6  | Gráfico da corrente adiquirida ao aumentar tensão em resistor | 9  |
| 7  | Gráfico da corrente adiquirida ao aumentar tensão em diodo    | 10 |
| 8  | Gráfico da corrente adiquirida ao aumentar tensão em diodo    | 11 |
| 9  | Gráfico da corrente adiquirida ao aumentar tensão em diodo    | 12 |
| 10 | Gráfico da corrente adiquirida ao aumentar tensão em diodo    | 13 |
|    |                                                               |    |

### 1 Resumo

O experimento em questão foi realizado em busca de analisar o comportamento de um resistor e do diodo. Com o uso dos aparelhos necessários pode-se verificar o comportamento ohmico dos resistores, da mesma forma, o diodo mostrou, através do grafico obtido pelos pontos experimentais, seu comportamento exponencial da corrente em relação a uma certa tensão, quando polarizado diretamente. Também, provou-se um dispositivo retificador assim que foi polarizado inversamente, impedindo a passagem de corrente. Dessa forma, os resultados obtidos para o resistor confirmam seu valor nominal, pois, de acordo com a regressão linear, temos 99.8898  $\Omega$ . Pelo multimetro chegou-se a 99.6  $\Omega$ , e, o esperado é de 100  $\Omega$ .

# 2 Objetivo

O experimento "Condutividade de dispositivos" tem como principal objetivo estudar o comportamento de componentes resistivos analisando a condutividade (corrente) quando uma tensão é aplicada em seus terminais, a fim de determinar se esse dispositivo é, ou não, Ôhmico.

## 3 Metodologia

### 3.1 Material Utilizado

- 1 Resistor de  $100\Omega$
- 1 Resistor de  $10\Omega$
- 1 Resistor de  $220\Omega$
- 2 multímetros
- 1 Protoboard
- 1 Diodo de silício
- 1 Fonte de tensão contínua
- Cabos de plug "banana"

### 3.2 Especificações do Multímetro digital MD-6680

Para a medição das **tensões**, coloca-se a chave seletora para a posição  $V \simeq D$  e pressiona-se o botão **DC** conectando duas das pontas de prova nos terminais **V** e **COM** e as outras em paralelo com o dispositivo a ser medido.

**Obs:**Resistência interna do voltímetro:  $R_{Vint} = 10^6 \Omega$ 

Resolução da escala utilizada:  $\Delta V = 10^{-2} V$ 

Para a medição das **correntes**, coloca-se a chave seletora para a posição ' $mA \simeq$ ' e pressiona-se o botão **DC** conectando duas das pontas de prova nos terminais  $\mu$ **A**, **mA** e **COM** e as outras em série com o dispositivo a ser medido. **Obs:**Resistência interna do amperímetro:  $R_{Iint} = 10\Omega$ 

Resolução da escala utilizada:  $\Delta I = 10^{-4} V$ 

Para a medição das **resistências**, coloca-se a chave seletora para a posição ' $\Omega$ ' e pressiona-se o botão **SELECT** conectando duas das pontas de prova nos terminais  $\mathbf{Hz}\ \Omega\ \mathbf{mV}$  e  $\mathbf{COM}$  e as outras em paralelo com o dispositivo a ser medido.

**Obs:** Resolução da escala utilizada:  $\Delta\Omega = 10^{-1}\Omega$ 

### 3.3 Procedimento

### 3.3.1 Medição das Resistências

Com o uso do Multímetro, mediu-se as resistências nominais de  $10\Omega, 100\Omega, 220\Omega$  a fim de comparar os valores obtidos e suas incertezas com o nominal.

### 3.3.2 Curva Característica do Resistor ( $100\Omega$ )

Para levantar a curva característica (V x I) do resistor, montou-se o circuito 01 utilizando  $R_p=10\Omega$  e tomou-se 21 medidas de V e I variando a tensão com o uso da Fonte entre  $V_{min}=0V$  e  $V_{max}=10V$  aumentando-a gradativamente em 0,5V a fim de verificar a característica ôhmica do resistor respeitando a lei de Ohm ( $V=R\times I$ )

#### 3.3.3 Curva Característica do Diodo

Para a curva característica (V x I) do diodo de silício montou-se, inicialmente, o circuito 02 utilizando  $R_p=10\Omega$  e tomou-se 5 medidas de V e I variando a tensão entre  $V_{min}=-10V$  e  $V_{max}=0V$  (polarização reversa) e 3 medidas variando a tensão entre  $V_{min}=0,2V$  e  $V_{max}=0,5V$  (polarização direta).

Montou-se o circuito 03 utilizando  $R_p=220\Omega$  e tomou-se 8 medidas de V e I variando a tensão entre  $V_{min}=0,5V$  e  $V_{max}=0,75V$ .

**Obs:**Para tensões acima de 0V foi realizada uma redução do intervalo de medição bem como a troca do circuito para tensões acima de 0,5V pois sabe-se que o intervalo de disparo do diodo encontra-se entre 0V e 1V, no qual ocorre um crescimento exponencial da corrente elétrica.

## 3.4 Circuitos Utilizados



Figura 1: Circuito para medição de resistências pequenas



Figura 2: Circuito para medição de resistências grandes



Figura 3: Circuito de montagem do diodo na polarização direta



Figura 4: Circuito de montagem do diodo na polarização reversa

# 4 Resultados

### 4.1 Resistor ixU

| U(V)  | i(A)    |
|-------|---------|
| 0.001 | 0.001   |
| 0.506 | 0.00489 |
| 1.014 | 0.01004 |
| 1.503 | 0.01497 |
| 1.944 | 0.01957 |
| 2.533 | 0.02549 |
| 3.004 | 0.03002 |
| 3.528 | 0.03551 |
| 3.951 | 0.03978 |
| 4.517 | 0.04541 |
| 4.929 | 0.04940 |
| 5.415 | 0.05450 |
| 5.916 | 0.05916 |
| 6.460 | 0.06490 |
| 6.98  | 0.07001 |
| 7.55  | 0.07580 |
| 7.99  | 0.08020 |
| 8.48  | 0.08520 |
| 9.06  | 0.09090 |
| 9.45  | 0.09490 |
| 10.10 | 0.10140 |

Figura 5: Tabela de dados da corrente adiquirida ao aumentar tensão em resistor



Figura 6: Gráfico da corrente adiquirida ao aumentar tensão em resistor

## 4.2 Diodo ixU

| U(V) | i(A)  |
|------|-------|
| 0    | -0.5  |
| 0.27 | 0.02  |
| 0.47 | 0.12  |
| 0.55 | 0.16  |
| 0.59 | 1.13  |
| 0.65 | 6.73  |
| 0.67 | 8.47  |
| 0.70 | 17.18 |
| 0.71 | 25.24 |
| 0.72 | 26.24 |
| 0.73 | 43.15 |
| 0.74 | 43.15 |

Figura 7: Gráfico da corrente adiquirida ao aumentar tensão em diodo



Figura 8: Gráfico da corrente adiquirida ao aumentar tensão em diodo

# 4.3 Diodo RxU

| U(V) | $R(\Omega)$ |
|------|-------------|
| -0.5 | 0           |
| 0.27 | 13.50       |
| 0.47 | 3.910       |
| 0.59 | 0.522       |
| 0.65 | 0.096       |
| 0.67 | 0.079       |
| 0.70 | 0.040       |
| 0.71 | 0.028       |
| 0.72 | 0.027       |
| 0.73 | 0.016       |
| 0.74 | 0.017       |

Figura 9: Gráfico da corrente adiquirida ao aumentar tensão em diodo



Figura 10: Gráfico da corrente adiquirida ao aumentar tensão em diodo

## 5 Análise

## 6 Discussão

Os resultados obtidos comprovam o fato do resistor utilizado ser ôhmico, sendo isso visível pela figura 6 que mostrou uma função linear com o aumento da tensão.

A figura 8 comprovou que o diodo apresenta um comportamento exponencial com o aumento da tensão, o que significa que o diodo não é ôhmico. Além disso ele apresenta corrente nula ao passar uma tensão menor que 0V, ou seja, ao usá-lo na polarização reversa. Demonstrando características de um componente retificador.

### 7 Conclusão

Os resultados obtidos no experimento condizem com o esperado teóricamente. Dessa forma, podemos dizer que o experimento foi bem sucedido. Pois, ao verificarmos os valores definidos pelo multimetro, regressao linear e nominal do resistor, chegou-se a valores correspondentes a 100Ohms, e, assim, definimos um grafico experimental que prova sua caracteristica ohmica. No caso do diodo, encontrou-se um grafico experimental no qual verificou-se seu comportamento exponencial para a corrente de acordo com um certo aumento de tensão. E, da mesma forma, sua polarização inversa mostrou-se compativel com a teoria, pois manteve sua ação como um dispositivo retificador.

### 8 Referencias

- ICEL. Manual de Instruções do Multímetro Manual de Bancada Modelo MD-6880
- Minipa. Fonte de Alimentação Regulada MLP-1303M