```
DIALOG(R) File 351: Derwent WPI
(c) 2002 Thomson Derwent. All rts. reserv.
012884381 **Image available**
WPI ACC No: 2000-056214/ 200005
XRAM ACC NO: C00-014946
  3-hydroxy and 5-(difluoro phenoxy) polyester - useful for making
  biodegradable plastic
Patent Assignee: NAGOYA-SHI (NAGO-N); NAGOYA SHI (NAGO-N)
Number of Countries: 001 Number of Patents: 002
Patent Family:
                 Kind
                                                                         week
Patent No
                         Date
                                   Applicat No
                                                      Kind
                                                              Date
JP 2989175
                       19991213
                                                                        200005
                                   JP 98262447
                                                            19980831
                                                                                  В
                  в1
                                                       Α
JP 2000072865 A
                                   JP 98262447
                                                            19980831
                                                                        200023
                       20000307
                                                       Α
Priority Applications (No Type Date): JP 98262447 A 19980831
Patent Details:
                              Main IPC
                                             Filing Notes
Patent No Kind Lan Pg
                           C08G-063/682
JP 2989175
               в1
JP 2000072865 A
                          7 C08G-063/682
Abstract (Basic): JP 2989175 B
          NOVELTY - The structure of polyester has the 3-hydroxy and 5-(mono
     fluoro phenoxy)-group as the repeating unit which is given by the
     formula (1). DETAILED DESCRIPTION - AN INDEPENDENT CLAIM is also
     included for the manufacturing method of polyester by fermentation
     synthesis using a microorganism.
    USE - The polyester is useful for making biodegradable plastic.

ADVANTAGE - Since fluorine group is introduced in the phenoxy
group, 100% of the copolymer is synthesized. The melting point of the
obtained polymer is more than 100 deg. C. Improved water repellent
     optical resolution property and characteristic stereo regularity are
     expectable.
          Dwg.0/0
Title Terms: HYDROXY; PHENOXY; POLYESTER; USEFUL; BIODEGRADABLE; PLASTIC
Derwent Class: A23; D16
International Patent Class (Main): C08G-063/682
International Patent Class (Additional): C12N-001/20; C12P-007/62;
   C12R-001-40
File Segment: CPI
Manual Codes (CPI/A-N): A05-E02; A10-D05; D05-A04; D05-C
Polymer Indexing (PS):
   <01>
   *001* 018; D11 D10 D19 D18 D31 D76 D50 D90 F- 7A D69 F34 D63; P0839-R F41
  D01 D63; H0293; L9999 L2528 L2506; L9999 L2404; L9999 L2573 L2506
*002* 018; B9999 B3021 B3010; B9999 B5607 B5572; B9999 B3509 B3485 B3372;
B9999 B4240-R; B9999 B4944-R B4922 B4740; ND03
```

(19)日本国特許庁 (JP)

C 0 8 G 63/682

(51) Int.Cl.*

(12) 特 許 公 報(B1)

FΙ

C 0 8 G 63/682

(11)特許番号

第2989175号

(45)発行日 平成11年(1999)12月13日

識別配号

(24)登録日 平成11年(1999)10月8日

最終更に続く

0 0 0 0 00,00	-					
C 1 2 N 1/20 C 1 2 P 7/62 // (C 1 2 N 1/20		C12N 1/	20	Α		
		C12P 7/	C 1 2 P 7/62			
		0121 .,	O 1 2 1 1/d2			
C12R 1:40)					
			請求項	の数11(全 7 頁)	最終頁に続く	
(21)出職番号	特觀平10-282447	(73)特許権者	591270	0556		
<u>;</u>			名古屋	th		
(22)出版日	平成10年(1998) 8月31日		爱知识	名古屋市中区三	0丸3丁目1番1	
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		号		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Strategic D	平成11年(1999) 1月27日	(72)発明者	高木	mic bib		
曾其明水口	十版11十(1999) 1.7(2) 日	(12)769719				
M				(名台屋印北区上)	阪田北町1丁目65	
微生物の受託書号	FERM P-16953		番			
		(72)発明者	安田	良		
			爱知课	名古屋市千種区	屋ヶ丘1丁目23番	
			地の4			
		(74)代理人	加藤	輝政		
		審査官	大熊	幸治		
•		li .				

(54) 【発明の名称】 ポリエステル及びその製造方法

1

(57)【特許請求の範囲】

【請求項1】3-ヒドロキシ、5-(モノフルオロフェノキシ)ペンタノエート(3H5(MFP)P)ユニットのみからなるポリエステル。

【化1】

3H5 (MFP) P

【請求項2】3-ヒドロキシ、5-(ジフルオロフェノキシ) ペンタノエート (3H5 (DFP) P) ユニット

のみからなるポリエステル。

【化2】

10

3H5 (DPP) P

【請求項3】3-ヒドロキシ、5-(モノフルオロフェノキシ)ペンタノエート(3H5(MFP)P)ユニットを70モル%から99モル%、3-ヒドロキシ、7-(モノフルオロフェノキシ)ヘプタノエート(3H7(MFP)Hp)ユニットを30モル%から1モル%含

10

20

3

む共重合体ポリエステル。

【化3】

3H7 (MFP) Hp

【請求項4】3ーヒドロキシ、5ー(ジフルオロフェノキシ)ペンタノエート(3H5(DFP)P)ユニットを70モル%から99モル%、3ーヒドロキシ、7ー(ジフルオロフェノキシ)ヘプタノエート(3H7(DFP)Hp)ユニットを30モル%から1モル%含む共重合体ボリエステル。

【化4】

3H7 (DFP) Hp

【請求項5】少なくとも3-ヒドロキシ、5-(モノフルオロフェノキシ)ペンタノエート(3H5(MFP)P)ユニットを含有する3成分系のモノマーユニットからなる共重合体ポリエステル。

「【請求項6】少なくとも3ーヒドロキシ、5-(ジフルオロフェノキシ)ペンタノエート(3H5(DFP)P)ユニットを含有する3成分系のモノマーユニットからなる共重合体ポリエステル。

【請求項7】第2および第3成分として、3-ヒドロキ して芳香環 シヘキサノエート(3HHx)ユニット、3-ヒドロキ シ基を分子 シヘプタノエート(3HHp)ユニット、3-ヒドロキ 源の制限下 シオクタノエート(3HO)ユニット、3-ヒドロキシ ン、5-(ジェナノエート(3HN)ユニットおよび3-ヒドロキシ (3H5(ジェナカノエート(3HD)ユニットからなる群から選ばれ 40 の製造方法 る2つのユニットを有する請求項5記載の共重合ポリエ ステル。

【化5】

【化6】

(化7) 3HD CH₃ (CH₂)₆ O

(化9) cH, (CH), Q — o-CH-CH,-C—

【請求項8】第2および第3成分として、3-ヒドロキシヘキサノエート(3HHx)ユニット、3-ヒドロキシヘプタノエート(3HHp)ユニット、3-ヒドロキシオクタノエート(3HO)ユニット、3-ヒドロキシノナノエート(3HN)ユニットおよび3-ヒドロキシデカノエート(3IID)ユニットからなる群から選ばれる2つのユニットを有する請求項6記載の共重合ポリエステル。

【請求項9】請求項1、2、3または4に記載されたポリエステルを合成するシュードモナス・プチダ。

【請求項10】シュードモナス属の微生物を、炭素源として芳香環にフッ素原子が1個、結合しているフェノキシ基を分子内に持つ脂肪酸を用いて、炭素源以外の栄養源の制限下で培養することを特徴とする、3ーヒドロキシ、5-(モノフルオロフェノキシ)ペンタノエート(3H5(MFP)P)ユニットを有するポリエステルの製造方法

【請求項11】シュードモナス属の微生物を、炭素源として芳香環にフッ素原子が2個、結合しているフェノキシ基を分子内に持つ脂肪酸を用いて、炭素源以外の栄養源の制限下で培養することを特徴とする、3ーヒドロキシ、5ー(ジフルオロフェノキシ)ペンタノエート(3H5(DFP)P)ユニットを有するボリエステルの製造方法

【発明の詳細な説明】

[0001]

50 【産業上の利用分野】本発明は新規ポリエステルおよび

これを発酵合成する微生物およびその製造方法に関す る、詳しくは自然環境(土中、河川、海中)の下で微生 物の作用を受けて分解するプラスチック様高分子および その製造方法に関するものである。

[0002]

【従来の技術・発明が解決しようとする課題】現在まで 数多くの微生物において、エネルギー貯蔵物質としてポ リエステルを歯体内に蓄積することが知られている。そ の代表例がポリー3-ヒドロキシブチレート(以下、P (3HB)と略す)であり、下記の式で示されるモノマ 10 ーユニット (3HB) からなるホモポリマーである。

[0003]

【化10】

3 H B

3 H B

【0004】P(3HB)は確かに自然環境中で分解さ 晶性が高く、硬く、かつ脆い性質を持っており、実用的 には不十分であった。これを解決するために特開昭57 -150393号公報、特開昭58-69225号公 報、特開昭63-269989号公報、特開昭64-4 8821号公報、特開平1-156320号公報、特開 平5-93049号公報によればボリエステルを合成す るモノマーユニットとして3HB以外の構造的に異なる 炭素数が3から6のモノマーユニットを組み込むことで このような欠点を克服することが提案されている。

【0005】また、特開昭63-229291号公報に 30 よれば、炭化水素資化性菌であるシュードモナス・オレ オポランスATCC29347に炭素数6~12までの 3-ヒドロキシアルカノエート(3HAと略す)をモノ マーユニットとする共重合体P(3HA)を発酵合成で きることが報告されている。このタイプの共重合体は側 鎖のメチレン数が多く、性状は粘着性高分子である。

[0006]

【化11】

3 HA

【0007】このように現在のところ、側鎖の鎖長を変 えたタイプの共重合体が提示されている。即ち、側鎖の メチレン基数の多少による物性のコントロールである。 しかしながら、微生物を使用した発酵合成では化学的な 大量合成に比べると効率が悪く、一般的な汎用プラスチ ックのコストに対抗するのは困難であるといわれてき た。このため、機能性を併せ持つ付加価値の高いポリマ ーを合成できる菌体の探索が課題となっていた。 [0006]

【課題を解決するための手段】本発明者らは化学合成し た自然界に存在しない脂肪酸を資化して菌体内にポリエ ステルを生合成し、蓄積する微生物を探索していたとこ ろ、資化効率の高い微生物を発見し、さらに研究を重ね て本発明を完成するに至った。

【0007】即ち、本発明者らの見い出した微生物はフ ェノキシ基上にフッ素原子が1個あるいは2個置換した フェノキシアルカン酸を唯一の炭素源として生育しポリ エステルを合成させる27N01株である。この微生物 が発酵合成するポリマーのモノマーユニットを分析した れるポリマーであるが、高分子材料としてみた場合、結 20 ところ、フッ素原子が置換した構造である3-ヒドロキ シ、5-(モノフルオロフェノキシ)ペンタノエート (3H5(MFP)Pと略す)、3-ヒドロキシ、5-(ジフルオロフェノキシ) ペンタノエート (3H5 (D FP) Pと略す)、3-ヒドロキシ、7-(モノフルオ ロフェノキシ) ヘプタノエート (3H7 (MFP) Hp と略す)、3-ヒドロキシ、7-(ジフルオロフェノキ シ) ヘプタノエート (3H7 (DFP) Hpと略す) が 完全にポリマーとなっていることがNMR分析により確 「認された。 この微生物を同定したところ、 27N01株 はシュードモナス・プチダであることが判明した。

[0008]

【化12】 3H5 (MFP) P

【化13】 3H5 (DFP) P

【化14】 3H7 (MFP) Hp

【化15】 3H7 (DFP) Hp ·

【0009】本発明はこの微生物を見い出したことに基 づくものである。即ち、本発明の要旨は、(1)3-ヒ ドロキシ、5-(モノフルオロフェノキシ)ペンタノエ ート(3H5(MFP)P)ユニットのみからなるポリ 40 エステル、(2)3-ヒドロキシ、5-(ジフルオロフ ェノキシ)ペンタノエート(3H5(DFP)P)ユニ ットのみからなるポリエステル、(3)3-ヒドロキ シ、5-(モノフルオロフェノキシ)ペンタノエート (3H5 (MFP) P) ユニットを70モル%から99 モル%、3-ヒドロキシ、7-(モノフルオロフェノキ シ) ヘプタノエート (3H7 (MFP) Hp) ユニット を30モル%から1モル%含む共重合体ポリエステル、 (4) 3-ヒドロキシ、5-(ジフルオロフェノキシ) ペンタノエート(3H5(DFP)P)ユニットを70 50 モル%から99モル%、3ーヒドロキシ、7ー(ジフル

る前記(1)~(9)のポリエステルの製造法に関する ものである。具体的には

p) ユニットを30モル%から1モル%含む共重合体ポ 1)シュードモナス属の微生物を、炭素源として芳香環 にフッ素原子が1個、結合しているフェノキシ基を分子 内に持つ脂肪酸を用いて、炭素源以外の栄養源の制限下 で培養することを特徴とする、3-ヒドロキシ、5-(モノフルオロフェノキシ) ペンタノエート (3H5) (MFP) P) ユニットを有するポリエステルの製造方 ステル、(7)第2および第3成分として、3-ヒドロ 10 2)シュードモナス属の微生物を、炭素源として芳香環

にフッ素原子が2個、結合しているフェノキシ基を分子 内に持つ脂肪酸を用いて、炭素源以外の栄養源の制限下 で培養することを特徴とする、3ーヒドロキシ、5ー (ジフルオロフェノキシ) ペンタノエート(3H5(D FP)P)ユニットを有するポリエステルの製造方法に 関するものである。

【0011】シュードモナス翼の微生物を用いた本発明 のポリエステルの製造方法は、従来より報告されていな

20 【0012】本発明の微生物であるシュードモナス・プ チダの菌学的性質は27N01について示される表1の とおりである。このような本発明の微生物として見いだ された27N01株は名古屋市西区堀越町の土壌から分 離されたものであり、27N01株は特許微生物センタ ー: 受託番号FERM P-16953号として客託さ れている。

【表1】

リエステル、(5)少なくとも3-ヒドロキシ、5-(モノフルオロフェノキシ)ペンタノエート(3H5 (MFP) P) ユニットを含有する3成分系のモノマー ユニットからなる共重合体ポリエステル、(6)少なく とも3-ヒドロキシ、5-(ジフルオロフェノキシ)ペ ンタノエート (3H5 (DFP) P) ユニットを含有す る3成分系のモノマーユニットからなる共重合体ポリエ キシヘキサノエート (3HHx) ユニット、3ーヒドロ キシヘプタノエート (3HHp) ユニット、3-ヒドロ キシオクタノエート (3HO) ユニット、3ーヒドロキ シノナノエート (3HN) ユニットおよび3ーヒドロキ シデカノエート (3HD) ユニットからなる群から選ば れる2つのユニットを有する(3H5(MFP)P)と の共重合ポリエステル、(8)第2および第3成分とし て、3-ヒドロキシヘキサノエート(3HHx)ユニッ ト、3-ヒドロキシヘプタノエート(3HHp)ユニッ ト、3-ヒドロキシオクタノエート(3HO)ユニッ ト、3-ヒドロキシノナノエート (3HN) ユニットお よび3-ヒドロキシデカノエート(3HD)ユニットか らなる群から選ばれる2つのユニットを有する3H5 (DFP) Pとの共重合ポリエステル、(9)前記 (1)~(8)に記載されたポリエステルを合成するシ ュードモナス・プチダ、並びに

【0010】(10)シュードモナス属の微生物を用い

於映項目	秋歌結果		
形體	福		
グラム染色性	-		
芽胞	- .		
運動性	. +		
オキシダーゼ	+		
カタラーゼ	+		
OF	_		
硝酸塩の還元	+		
インドールの生成	-		
グルコースからの黴の生成	_		
アルギニンジヒドロラーゼ	+		
ウレアーゼ	-		
βガラクトシダーゼ	<u>.</u>	٠	
シトクロームオキシダーゼ	+		
3 7 ℃での生育	+		
4.6℃での生實	_	•	
チロシン	+		
ゲラチン	-		
F化性	•		
グルコース	+		
アラビノース	_	•	
マンノース			
マンニトール	- .		
Nアセチルグルコサミン	-		
マルトース	_		
グルコン酸	· +		
カプロン酸	+		
アジピン酸	-		
マロン酸	+ .		
クエン酸	+		
フェニル酢酸	+		

【0013】このような本発明のシュードモナス・プチ ダ27NO1株は、公知の代表的なP(3HA)産生菌 であるシュードモナス・オレオボランスとポリエステル 生合成能力において差が見られる。即ち、ポリメラーゼ の3-ヒドロキシアルカニルCoAに対する特異性であ って、この27N01株は作用する基質の範囲がより広

【0014】本発明は前記のような性質を有するシュー ドモナスの微生物、及びこの微生物が発酵合成する微生 40 物産生ポリエステル及びその製造方法を開示するもので あり、フッ素基が導入されたポリエステルを作るための 技術的手段を提供するものである。

【0015】即ち、具体的にはシュードモナス属の微生 物に炭素源として炭素数5以上メチレン基の末端にフル オロフェノキシ基が置換した脂肪酸を炭素源として与 え、炭素源以外の栄養源の制限下、通常窒素制限下で好 気的に培養するだけで目的のポリエステルを得ることが できる。メチレン基のみのユニットの組成を高めたい場

*を与えればよい。

【0016】このように本発明においては、シュードモ ナス属の微生物の特徴を利用してフェノキシ基にフッ素 が置換した種々のポリエステルを発酵合成することがで きる。現在のところ官能基を持つポリエステルを合成で きる微生物としてはシュードモナス・オレオボランスが 報告されている、即ち、Macromolecule s、1996、4572-4581ページによるとメチ ル基上に水素がフッ素に置換したカルボン酸を炭素源と してポリエステルを発酵合成した結果を報告している が、これによれば、ポリエステルは共重合体であって、 この微生物のようにホモポリマーを合成できる能力を有 してはいない。

【0017】本発明の微生物を用いてポリエステルを発 酵合成するには、炭素源以外の栄養源の制限下、通常、 従来から知られている窒素制限条件下で培養することに よって容易に得られるが、炭素源以外の必須栄養源、例 えば、リン、ミネラル、ビタミン等を制限してもポリエ 合は、炭素源として培養の終期に炭素数6以上の脂肪酸*50 ステルは誘導される。この場合、菌体の生育が制限され

るので、通常ポリエステルの発酵合成は2段方式でおこ なわれる。

【0018】1段目は萬体の増殖を目的とするものであ り、栄養源の豊富な条件下で培養される。この際、菌体 はポリエステル合成をほとんど行わないので、炭素源と しては脂肪酸に限らず、資化可能であるものなら自由に 選択できる。1段目で得られた菌体を洗浄回収して2段 目において新たに炭素源を加えてポリエステルを誘導培 養する。従って、この2段目の培養条件が重要であり、 原料であり、この炭素源の化学構造がポリエステルの構 造を決定するといってよい。従って、本発明において炭 素源とは、2段目で与えられる炭素源を意味しており、 炭素源を種々調整することにより、シュードモナス属の 微生物の特徴を利用して、前記のフッ素原子を含むポリ エステルを発酵合成することができる。また、2段目の 培養条件としては通常pH6~8、温度25~35℃、 通気量0.5~2 v v m、培養時間48~96 h r であ

【0019】発酵合成されたポリエステルの菌体からの 20 回収は、常法により行うことができる。例えば、培養終 了後、萬体を蒸留水およびメタノール等により洗浄し、 減圧乾燥して得られる乾燥菌体をクロロホルム等を用い て抽出処理し、遠心分離、ろ過等により菌体除去後、抽 出液にメタノールを加えてポリエステルを沈殿回収する ことができる。

[0020]

【実施例】以下、本発明を具体的に実施例により説明す るが、本発明は以下の実施例に何ら限定されるものでは ない。

実施例1

シュードモナス・プチダ27NO1株(特許微生物生物 センター: 受託番号FERM P-16953号) を以 下に示す倍地を用いて30℃、24時間振盪培養した。 即ち、次の倍地組成からなるものに水を加えて全量を1 リットルとし(pH7.0)、培地を調製した。

クエン酸	4 g	
Na ₂ HPO ₄	2 g	
	_	

KH2PO4 2 g

MgSO4 · 7H2O イーストエキス 0.3g

【0021】培養終了後、培養プロスを遠心分離して菌 体を回収し、さらに次に示す培地中に全量を加えて、3 ○℃、96時間振盪培養した。即ち、次の培地組成から なるものに水を加えて全量を1リットルとし(pH7. 0)、培地を調製した。

ジフルオロフェノキシウンデカン酸

2 g Na₂HPO₄ KH2PO4 2 g

NaHCO₃

1 2

MgSO4 · 7H2O FeSO4 · 7H2O 0.2g 0.02

培養終了後、菌体を蒸留水およびメタノールで洗浄し、 減圧乾燥して乾燥薬体を得た。このようにして得られた 乾燥菌体を30℃で5時間抽出した。菌体除去後、クロ ロホルム抽出液にメタノールを10倍量加えてポリエス テルを沈殿回収した。得られたポリエステルを120 ℃、90分間メタノリシスを行ない、モノマー体をメチ 2段目において与えられる炭素源はポリエステル合成の 10 ルエステルとして光散乱分子量測定装置を備えたキャピ ラリーガスクロマトグラフにより昇温分析をした。キャ ピラリーガスクロマトグラフはHP5890 (Hew1 ett Packard社製)、光散乱分子量測定装置 はminiDAWN (ワイアットテクノロジー社)を用 いて行った。使用したカラムはJ&W社製のヒューズド ·シリカ·キャピラリーカラムDB-5(カラム内径 0.25mm、液層膜厚0.25μm、カラム長30 m)である。初発温度90℃、5分、昇温速度5℃/ 分、最終温度250℃、2分の条件で行った。図1は得 られたポリマーのメチルエステル化処理物のガスクロマ トグラフによる分析結果である。図2にはポリエステル の13 C-NMR (100MHz)の解析結果であるが、 この結果からこのポリエステルが3H5(DFP)Pユ ニットの1成分からなるホモポリマーであることが確認 された。

【0022】実施例2

実施例1の1段目の培養で炭素源としてクエン酸のかわ りにオクタン酸を用いて同様の実験を行った。その結 果、3HHx、3HO、3H5 (DFP) Pユニットか 30 らなる3成分系の共重合体が得られた。

【0023】実施例3

実施例1の2段目の培養で炭素源としてジフルオロフェ ノキシウンデカン酸のかわりにモノフルオロフェノキシ ウンデカン酸を用いて同様の実験を行った。その結果、 3H5 (MFP) Pユニットの1成分からなるホモポリ マーであることが確認された。

【0024】実施例4

実施例3の1段目の培養で炭素源としてクエン酸のかわ りにオクタン酸を用いて同様の実験を行った。その結 O. 2g 40 果、3HHx、3HO、3H5 (MFP) Pユニットか らなる3成分系の共重合体が得られた。

【0025】実施例5

実施例1の1段目の培養で炭素源としてクエン酸のかわ りにノナン酸を用いて同様の実験を行った。その結果、 3HHp、3HN、3H5 (DFP) Pユニットからな る3成分系の共重合体が得られた。

【0026】実施例6

実施例3の1段目の培養で炭素源としてクエン酸のかわ りにノナン酸を用いて同様の実験を行った。その結果、 1.5g 50 3HHp、3HN、3H5 (MFP) Pユニットからな

13

る3成分系の共重合体が得られた。

【0027】実施例7

フェノキシ基にフッ素基が導入されていないポリマーと 2個フッ素基が導入されている同じ構造をもつポリマー の融点を調べたところ約40℃の差があり、2個のフッ 素基をもつポリマーは100℃以上の融点を有してい た。

[0028]

【発明の効果】微生物の発酵合成するプラスチックは生 中にフッ素基を導入したものは従来より存在したが、ホ モポリマーとしてではなく共重合体ユニットとして50 %以下しか含有することができなかった。本発明では幅 広い資化性をもつシュードモナス・プチダを用いること とフェノキシ基の芳香環上にフッ素基を導入することに よりフッ素基をもつユニットを100%含むホモポリマ ーを合成できた。このポリマーは従来の置換基を含むポ リマーが達成できていない融点を100℃以上にするこ とができ、物性の改良が期待できる。さらに、このポリ

マー中に含まれるこれらユニットの量をコントロールす

ることにより、望ましい物性を得ることができる。ま た、飛水性、生体内合成に特有の立体規則性に由来する 光学分割性も期待することができる。

14

【要約】

【構成】3-ヒドロキシ、5-(モノフルオロフェノキ シ)ペンタノエート(3H5(MFP)P)ユニットあ るいは3-ヒドロキシ、5-(ジフルオロフェノキシ) ペンタノエート (3H5 (DFP) P) ユニットからな 分解性プラスチックとして、よく研究されてきた。側鎖 10 るホモボリマー、少なくとも 3 H 5 (MFP) Pユニッ トあるいは3H5 (DFP) Pユニットを含有するコポ リマー: これらのポリマーを合成するシュードモナス・ プチダ:シュードモナス属を用いた前記のポリマーの製 造法に関する.

> 【効果】置換基をもつ長鎖脂肪酸を資化して、側鎖末端 が1から2個のフッ素原子が置換したフェノキシ基をも つポリマーを合成することができ、融点が高く良い加工 性を保持しながら、立体規則性、飛水性を与えることが できる。

フロントページの続き

(51) Int. Cl. 6

識別記号

(C12P 7/62 C12R 1:40)

(58)調査した分野(Int.Cl.6, DB名)

CO8G 63/00 - 63/91

C12N 1/20 - 1/21

C12P 7/62

CA (STN)

REGISTRRY (STN)

FI