There are a total of four problems. You have to solve them all.

Problem 1: Finite Automata and the Regular Operations (10 points)

Let $\Sigma = \{0, 1, \#\}$. Consider the following two languages.

 $L_1 = \{w \in \Sigma^* : w \text{ does not contain # and the number of 0s in } w \text{ is not a multiple of 3} \}$

 $L_2 = \{w \in \Sigma^* : \text{the substring between any two successive occurrences of #s in } w \text{ is in } L_1\}$

Now solve the following problems.

- (a) Write down a string $w \in L_2$ such that the length of w is ten. (1 point)
- (b) Give the state diagram for a DFA that recognizes L_1 . (4 points)
- (c) Give the state diagram for a DFA that recognizes L_2 . (3 points)
- (d) If you use the "cross product" construction shown in class to obtain a DFA for $L_1 \cap L_2$, how many states will it have? (1 point)
- (e) Give an upper bound on the number of states in the smallest DFA that recognizes $L_1 \cap L_2$. (1 point)

Problem 2: Regular Expressions (10 points)

Mike and Willy recently learned how to write regular expressions. Mike wrote the regular expression 10^*1^* for a language L_1 on the board and Willy wrote the regular expression 1^*01^* for another language L_2 below that.

- (a) Write down a string that is present in the language L_1 but not in the language L_2 . (2 points)
- (b) Write down a string that is not present in the language L_1 but present in the language L_2 . (2 points)
- (c) Write down a string that is neither present in the language L₁ nor in the language L₂. (2 points)
- (d) Mike and Willy asked their friend Dustin to write a regular expression for the language $L_1 \cap L_2$. Dustin came up with 1*0*1*. Is Dustin's regular expression correct? If you think it's not correct, then write down a correct regular expression for $L_1 \cap L_2$. (4 points)

Problem 3: Converting DFAs to Regular Expressions (10 points)

Convert the following DFA into an equivalent regular expression using the state elimination method. First eliminate q_1 , then q_2 and so on. You must show work.

Problem 4: Converting Regular Expressions to NFAs (10 points)

Convert the following regular expression into an equivalent NFA.

$$(a*b* + (ac + b*c)b)*$$