MA327 Homework 1

- 1. Find a parametrized curve $\alpha(t)$ whose trace is the circle $x^2 + y^2 = 1$ such that $\alpha(t)$ runs **clockwise** around the circle with $\alpha(0) = (0, 1)$.
- **2.** Let $\alpha(t)$ be a parametrized curve which does not pass through the origin. If $\alpha(t_0)$ is the point of the trace of α closest to the origin and $\alpha'(t_0) \neq 0$, show that the position vector $\alpha(t_0)$ is orthogonal to $\alpha'(t_0)$.
- **3.** Let $\alpha: I \to \mathbb{R}^3$ be a parametrized curve, with $\alpha'(t) \neq 0$ for all $t \in I$. Show that $|\alpha(t)|$ is nonzero constant if and only if $\alpha(t)$ is orthogonal to $\alpha'(t)$ for all $t \in I$.
- **4.** Show that the tangent lines to the regular parametrized curve $\alpha(t) = (3t, 3t^2, 2t^3)$ make a constant angle with the line which is the intersection of two planes y = 0 and z = x.
- 5. A circular disk of radius 1 in the plane xy rolls without slipping along the x axis. The figure described by a point of circumference of the disk is called a cycloid (See Figure-1 in the file "Week-1-figures").
- (a) Obtain a parametrized curve $\alpha: \mathbb{R} \to \mathbb{R}^2$ the trace of which is the cycloid, and determine its singular points.
 - (b) Compute the arc length of the cycloid corresponding to a complete rotation of the disk.
- **6.** Let $\alpha:(0,\pi)\to\mathbb{R}^2$ be given by

$$\alpha(t) = (\sin t, \cos t + \log \tan \frac{t}{2}),$$

where t is the angle that y axis makes with the vector $\alpha(t)$. The trace of α is called the tractrix (See Figure-2 in the file "Week-1-figures" and ignore the symbol t there). Show that:

- (a) α is a differentiable parametrized curve, regular except at $t = \frac{\pi}{2}$.
- (b) The length of the segment of the tangent of the tractrix between the point of tangency and the y axis is constantly equal to 1.
- 7. Let $\alpha(t) = (ae^{bt}\cos t, ae^{bt}\sin t), t \in \mathbb{R}, a \text{ and } b \text{ constants}, a > 0, b < 0, \text{ be a parametrized curve.}$
- (a) Show that as $t \to +\infty$, $\alpha(t)$ approaches the origin 0, spiraling around it (because of this, the trace of α is called the logarithmic spiral, see Figure-3 in the file "Week-1-figures").
 - (b) Show that $\alpha'(t) \to (0,0)$ as $t \to +\infty$ and that

$$\lim_{t \to +\infty} \int_{t_0}^t |\alpha'(\tau)| d\tau$$

is finite; that is, α has finite arc length in $[t_0, +\infty)$.

8. Given the parametrized curve (helix)

$$\alpha(s) = (a\cos\frac{s}{c}, a\sin\frac{s}{c}, b\frac{s}{c}), \quad s \in \mathbb{R}$$

1

where $c^2 = a^2 + b^2$.

- (a) Show that the parameter s is the arc length.
- (b) Determine the curvature and the torsion of α .
- (c) Determine the osculating plane of α .
- (d) Show that the lines containing n(s) and passing through $\alpha(s)$ meet the z axis under a constant angle equal to $\frac{\pi}{2}$.
 - (e) Show that the tangent lines to α make a constant angle with the z axis.
- 9. Show that the torsion τ of α (regular parametrized by arc length with $k \neq 0$ at all points) is given by

$$\tau(s) = -\frac{(\alpha' \wedge \alpha'') \cdot \alpha'''}{|k(s)|^2}.$$

- **10.** A translation by a vector v in \mathbb{R}^3 is the map $A: \mathbb{R}^3 \to \mathbb{R}^3$ that is given by $A(p) = p + v, p \in \mathbb{R}^3$. A linear map $\rho: \mathbb{R}^3 \to \mathbb{R}^3$ is an orthogonal transformation when $\rho u \cdot \rho v = u \cdot v$ for all vectors $u, v \in \mathbb{R}^3$. A rigid motion in \mathbb{R}^3 is the result of composing a translation with an orthogonal transformation with positive determinant (this last condition is included because we expect rigid motions to preserve orientation).
- (a) Demonstrate the norm of a vector and the angle θ between two vectors, $0 \le \theta \le \pi$, are invariant under orthogonal transformations with positive determinant.
- (b) Show that the vector product of two vectors in invariant under orthogonal transformations with positive determinant. Is the assertion still true if we drop the condition on the determinant?
- (c) Show that the arc length, the curvature, and the torsion of a parametrized curve are (whenever defined) invariant under rigid motions.
- 11. Let $\alpha: I \to \mathbb{R}^3$ be a regular parametrized curve (not necessarily by arc length) and let $\beta: J \to \mathbb{R}^3$ be a reparametrization of $\alpha(I)$ by the arc length s = s(t), measured from $t_0 \in I$. Let t = t(s) be the inverse function of s and set $\frac{d\alpha}{dt} = \alpha', \frac{d^2\alpha}{dt^2} = \alpha''$, etc. Prove that
 - (a) $\frac{dt}{ds} = \frac{1}{|\alpha'|}, \frac{d^2t}{ds^2} = -\frac{\alpha' \cdot \alpha''}{|\alpha'|^4}.$
 - (b) The curvature of α at $t \in I$ is

$$k(t) = \frac{|\alpha' \wedge \alpha''|}{|\alpha'|^3}.$$

(c) The torsion of α at $t \in I$ is

$$\tau(t) = -\frac{(\alpha' \wedge \alpha'') \cdot \alpha'''}{|\alpha' \wedge \alpha''|^2}.$$

(d) If $\alpha: I \to \mathbb{R}^2$ is a plane curve $\alpha(t) = (x(t), y(t))$, the **signed** curvature of α at t is

$$k(t) = \frac{x'y'' - x''y'}{((x')^2 + (y')^2)^{\frac{3}{2}}}.$$

12. Assume that $\tau(s) \neq 0$ and $k(s), k'(s) \neq 0$ for all $s \in I$ (s is the arc length). Show that a necessary and sufficient condition for $\alpha(I)$ to lie on a **sphere** is that

$$R^2 + (R')^2 T^2 = constant$$

where $R = \frac{1}{k}$, $T = \frac{1}{\tau}$, and R' is the derivative of R relative to s.