Section 4

Michael Brodskiy

Professor: A. Martsinkovsky

November 28, 2022

Contents

1	Vector Fields	3
2	Line Integrals	3
3	Conservative Vector Fields	4
4	Green's Theorem	4
5	Flux Through a Surface	5
6	The Divergence Theorem	5

1 Vector Fields

- A vector field in \mathbb{R}^n is an assignment that goes from $\mathbb{R}^n \to \mathbb{R}^n$, where the former is viewed as a bunch of points, and the latter is a bunch of vectors
 - Two examples: a force field (e.g. gravity, electrostatic, magnetic) or a velocity field (e.g. fluid mechanics)
- Ex. A gravitational field, with two masses, one fixed (M), and one floating (m)

- The pull = magnitude
$$\cdot$$
 direction $\to G \frac{Mm}{|\overline{d}|^2} \cdot \frac{\overline{d}}{|\overline{d}|} = G \frac{Mm}{|\overline{d}|^3} \overline{d}$

• Ex. Gradient vector fields

$$- f(\overline{x}) \to \nabla f = \left\langle \frac{\delta f}{\delta x_1}, \frac{\delta f}{\delta x_2}, \cdots, \frac{\delta f}{\delta x_n} \right\rangle$$

- Not every vector field can be realized as a gradient vector field of some function
- The 'del' operator is as follows: $\nabla := \left\langle \frac{\delta}{\delta x_1}, \frac{\delta}{\delta x_2}, \cdots, \frac{\delta}{\delta x_n} \right\rangle$
- Apply ∇ to a function f to obtain a gradient vector field (use dot product)

$$- \nabla \cdot F = \frac{\delta F_1}{\delta x_1} + \frac{\delta F_2}{\delta x_2} + \dots + \frac{\delta F_n}{\delta x_n} = \operatorname{div}(F)$$

- * This is the divergence of F
- $-\nabla \times F$ describes the curl of F (how the vector field curls in three dimensions)

Using the ∇ operator:

input	output	significance
function f	∇f	gradient of f (a vector field)
vector field of f	$\nabla \cdot f$	divergence of f (a function)
n=3 vector field of f	$\nabla \times f$	curl of f (a vector field)

- To view 2D vector fields as 3D vector fields, convert $F = \langle P(x,y), Q(x,y) \rangle \rightarrow \langle P(x,y), Q(x,y), 0 \rangle$
- The curl of a two dimensional vector field, converted to three dimensions, is $\operatorname{curl}(F) = Q_x P_y$

2 Line Integrals

• Can find Work, W, done by a force (a.k.a. a vector field) on an object along an oriented curve, C

- $W = \int_C \overline{F} \cdot dr$ This is the line integral of \overline{F} along the oriented curve C
- \bullet To compute the line integral, parametrize C, and reduce it to a Calculus II integral

$$- d\overline{r} = \overline{r}'(t) dt$$
$$- \int_{0}^{b} \overline{F}(\overline{r}(t)) \cdot \overline{r}'(t) dt$$

- Conservative vector fields are independent of path (taking any path from one point to another will always yield the same value)
- Alternative notation: $\int_C P dx + Q dy + R dz \rightarrow \int_C P \cdot x'(t) dt + Q \cdot y'(t) dt + R \cdot z'(t) dt$

3 Conservative Vector Fields

- A vector field \overline{F} is said to be conservative if $\overline{F} = \nabla f$ for some function f
- The fundamental theorem of line integrals: Supposed \overline{F} is conservative with potential f. $\overline{F} = \nabla f$. Let C be an oriented curve starting at A and ending at B, then: $\int_C \overline{F} \cdot d\overline{r} = f(B) f(A)$
- Any constant vector field is conservative
- $\bullet\,$ Before doing a line integral, check if \overline{F} is conservative
- \overline{F} is conservative if and only if $\operatorname{curl}(\overline{F})=0$

4 Green's Theorem

• Let R be a region in \mathbb{R}^2 bounded by a simple, closed, oriented, counter-clockwise, piecewise-regular curve δR . Let $\overline{F} = \langle P(x,y), Q(x,y) \rangle$ be a continuous, differentiable vector field on an open set containing R, then:

$$\int_{\delta R} \overline{F} \, d\overline{r} = \iint_{R} Q_x - P_y \, dA$$

- Simple: The curve can not fold in on itself
- Closed: The curve starts and ends at the same point
- Because, in \mathbb{R}^2 , $Q_x P_y = \text{curl}(\overline{F}) = \nabla \times \overline{F}$, the integral can be rewritten as $\int_{\delta R} \overline{F} \, d\overline{r} = \iint_{R} \delta \overline{F} \, dA$

5 Flux Through a Surface

- To find the volume of fluid flowing through a surface, M, per unit time, a normal unit vector, \overline{n} is needed; \overline{n} is supposed to vary continuously through M; when such a choice for \overline{n} is possible, M is said to be orientable
- Volume = $(\overline{V} \cdot \overline{n}) dS$
- Flux of V through $M = \iint_M (\overline{V} \cdot \overline{n}) dS$

$$- \overline{n} = \frac{\overline{r}_u \times \overline{r}_v}{|\overline{r}_u \times \overline{r}_v|}$$

- Remark: If \overline{n} produces an incorrect orientation, flip the sign
- The final formula becomes $\iint_{D(u,v)} V(\overline{r}(u,v)) \cdot (\overline{r}_u \times \overline{r}_v) \, du \, dv$

6 The Divergence Theorem

- This theorem computes the flux of a vector field through the boundary of a solid
- \bullet Theorem: The flux through E equals the flux through δE

$$\iint_{\delta E} (\overline{F} \cdot \overline{n}) \, dS = \iiint_{E} \operatorname{div}(\overline{F}) \, dV$$

- Where \overline{n} should point outward from E
- If $\operatorname{div}(\overline{F}) = 0$, \overline{F} is incompressible
- If $\operatorname{curl}(\overline{F}) = 0$, \overline{F} is irrotational (no rotation)
- Symmetry \Rightarrow Conservation Laws (Noether's theorem)