On the separation of hydrodynamic and acoustic waves in linear free-shear flows

A. Agarwal, G. Gabard and S. Sinayoko

University of Southampton Institute of Sound and Vibration Research

EURONOISE, 2008

- Introduction
 - Objective
 - Motivation
 - Introduction to filtering in time domain
 - Filter characteristics
- Wave-operator filter
 - The wave-operator filter
 - Filtering of a two-dimensional shear layer problem
- Corrective filter
 - Rationale
 - Proof of concept based on the two-dimensional shear layer problem
 - General solution based on Green's functions

- Introduction
 - Objective
 - Motivation
 - Introduction to filtering in time domain
 - Filter characteristics
- Wave-operator filter
 - The wave-operator filter
 - Filtering of a two-dimensional shear layer problem
- 3 Corrective filter
 - Rationale
 - Proof of concept based on the two-dimensional shear layer problem
 - General solution based on Green's functions

Objective Motivation Introduction to filtering in time domain

Objective

- filter out the acoustic waves
- leave the hydrodynamic waves unchanged

- Introduction
 - Objective
 - Motivation
 - Introduction to filtering in time domain
 - Filter characteristics
- Wave-operator filter
 - The wave-operator filter
 - Filtering of a two-dimensional shear layer problem
- Corrective filter
 - Rationale
 - Proof of concept based on the two-dimensional shear layer problem
 - General solution based on Green's functions

Motivation

Frequency based methods

- Direct solver → Agarwal
- Pseudo time-matching → Karabasov

Time domain methods

Approximate method valid at high frequencies → Ewert

⇒ lack for a general method in time domain.

Motivation

Frequency based methods

- Direct solver → Agarwal
- Pseudo time-matching → Karabasov

Time domain methods

Approximate method valid at high frequencies → Ewert

⇒ lack for a general method in time domain.

- Introduction
 - Objective
 - Motivation
 - Introduction to filtering in time domain
 - Filter characteristics
- Wave-operator filter
 - The wave-operator filter
 - Filtering of a two-dimensional shear layer problem
- 3 Corrective filter
 - Rationale
 - Proof of concept based on the two-dimensional shear layer problem
 - General solution based on Green's functions

Introduction to filtering in time domain

Flow decomposition

Flow decomposition

$$p = \tilde{p} + p'$$

 \tilde{p} base flow obtained by filtering p

p' fluctuating part

What we wan

- \tilde{p} : no acoustic fluctuations \Rightarrow non-propagating base flow
- p': acoustic fluctuations only.

Introduction to filtering in time domain

Flow decomposition

Flow decomposition

$$p = \tilde{p} + p'$$

- \tilde{p} base flow obtained by filtering p
- p' fluctuating part

What we want

- \tilde{p} : no acoustic fluctuations \Rightarrow non-propagating base flow
- p': acoustic fluctuations only.

Objective
Motivation
Introduction to filtering in time domain
Filter characteristics

Introduction to filtering in time domain

Convolution filter example

Motivation
Introduction to filtering in time domain

Introduction to filtering in time domain

Convolution filter example

Convolution filter example: 2 dimensional signal

Image s

Motivation
Introduction to filtering in time domain

Introduction to filtering in time domain

Differential filter example

Differential filter example

Image s

- Introduction
 - Objective
 - Motivation
 - Introduction to filtering in time domain
 - Filter characteristics
- Wave-operator filter
 - The wave-operator filter
 - Filtering of a two-dimensional shear layer problem
- 3 Corrective filter
 - Rationale
 - Proof of concept based on the two-dimensional shear layer problem
 - General solution based on Green's functions

Filter characteristics

Defining property

$$ilde{P}(\mathbf{k},\omega) = 0 \quad ext{for} \quad |\mathbf{k}| = rac{|\omega|}{c_0}$$

Other requirements

- Causality
- Easy to implement

Filter characteristics

Filter characteristics

Defining property

$$\tilde{P}(\mathbf{k},\omega) = 0$$
 for $|\mathbf{k}| = \frac{|\omega|}{c_0}$

Other requirements

- Causality
- Easy to implement

- Introduction
 - Objective
 - Motivation
 - Introduction to filtering in time domain
 - Filter characteristics
- Wave-operator filter
 - The wave-operator filter
 - Filtering of a two-dimensional shear layer problem
- Corrective filter
 - Rationale
 - Proof of concept based on the two-dimensional shear layer problem
 - General solution based on Green's functions

The wave-operator filter

Time domain

$$\tilde{p}(\mathbf{x},t) = \left(\frac{1}{c_0^2} \frac{\partial^2}{\partial t^2} - \nabla^2\right) p(\mathbf{x},t),$$

Frequency domain

$$\tilde{P}(\mathbf{k},\omega) = \left(|\mathbf{k}|^2 - \frac{\omega^2}{c_0^2} \right) P(\mathbf{k},\omega)$$

$$\Rightarrow \tilde{P}(\mathbf{k}, \omega) = 0 \text{ for } |\mathbf{k}| = \frac{|\omega|}{c_0}$$

The wave-operator filter

Time domain

$$\tilde{p}(\mathbf{x},t) = \left(\frac{1}{c_0^2} \frac{\partial^2}{\partial t^2} - \nabla^2\right) p(\mathbf{x},t),$$

Frequency domain

$$\tilde{P}(\mathbf{k},\omega) = \left(|\mathbf{k}|^2 - \frac{\omega^2}{c_0^2} \right) P(\mathbf{k},\omega)$$

$$\Rightarrow \tilde{P}(\mathbf{k}, \omega) = 0 \text{ for } |\mathbf{k}| = \frac{|\omega|}{c_0}$$

The wave-operator filter

Time domain

$$\tilde{p}(\mathbf{x},t) = \left(\frac{1}{c_0^2} \frac{\partial^2}{\partial t^2} - \nabla^2\right) p(\mathbf{x},t),$$

Frequency domain

$$\tilde{P}(\mathbf{k},\omega) = \left(|\mathbf{k}|^2 - \frac{\omega^2}{c_0^2} \right) P(\mathbf{k},\omega)$$

$$\Rightarrow \tilde{P}(\mathbf{k}, \omega) = 0 \quad \text{for} \quad |\mathbf{k}| = \frac{|\omega|}{c_0}$$

- Introduction
 - Objective
 - Motivation
 - Introduction to filtering in time domain
 - Filter characteristics
- Wave-operator filter
 - The wave-operator filter
 - Filtering of a two-dimensional shear layer problem
- Corrective filter
 - Rationale
 - Proof of concept based on the two-dimensional shear layer problem
 - General solution based on Green's functions

Filtering of a two-dimensional problem

Parallel flow & source definitions

- $M_i = 0.756$
- *T_i* = 600 K
- Gaussian harmonic energy source, $\omega_0 = 76 \text{rad/s}$

Filtering of a two-dimensional problem Results

Results

- acoustic waves are filtered successfully
- hydrodynamic waves are distorted

100

150

oof of concept based on the two-dimensional shear layer problem eneral solution based on Green's functions

- Introduction
 - Objective
 - Motivation
 - Introduction to filtering in time domain
 - Filter characteristics
- Wave-operator filter
 - The wave-operator filter
 - Filtering of a two-dimensional shear layer problem
- Corrective filter
 - Rationale
 - Proof of concept based on the two-dimensional shear layer problem
 - General solution based on Green's functions

roof of concept based on the two-dimensional shear layer problen General solution based on Green's functions

Rationale

Inverse filtering in frequency domain

$$\hat{P}(\mathbf{k},\omega) = \frac{1}{\left(|\mathbf{k}|^2 - \frac{\omega^2}{c_0^2}\right)} \tilde{P}(\mathbf{k},\omega)$$

Convolution filtering

- ① Time domain: $\hat{p} = h * \tilde{p}$
- Prequency domain: $\hat{P} = H\tilde{P}$

$$\Rightarrow H = \frac{1}{\left(|\mathbf{k}|^2 - \frac{\omega^2}{c_0^2}\right)}$$

oof of concept based on the two-dimensional shear layer problen eneral solution based on Green's functions

Rationale

Inverse filtering in frequency domain

$$\hat{P}(\mathbf{k},\omega) = \frac{1}{\left(|\mathbf{k}|^2 - \frac{\omega^2}{c_0^2}\right)} \tilde{P}(\mathbf{k},\omega)$$

Convolution filtering

- ① Time domain: $\hat{p} = h * \tilde{p}$
- ② Frequency domain: $\hat{P} = H\tilde{P}$

$$\Rightarrow H = \frac{1}{\left(|\mathbf{k}|^2 - \frac{\omega^2}{c_0^2}\right)}$$

Inverse filtering in frequency domain

$$\tilde{P}(\mathbf{k},\omega) = \left(|\mathbf{k}|^2 - \frac{\omega^2}{c_0^2} \right) P(\mathbf{k},\omega)$$

$$\hat{P}(\mathbf{k},\omega) = \frac{1}{\left(|\mathbf{k}|^2 - \frac{\omega^2}{c_0^2}\right)} \tilde{P}(\mathbf{k},\omega)$$

Convolution filtering

- Time domain: $\hat{p} = h * \tilde{p}$
- 2 Frequency domain: $\hat{P} = H\tilde{P}$

$$\Rightarrow H = \frac{1}{\left(|\mathbf{k}|^2 - \frac{\omega^2}{c_0^2}\right)}$$

- Introduction
 - Objective
 - Motivation
 - Introduction to filtering in time domain
 - Filter characteristics
- Wave-operator filter
 - The wave-operator filter
 - Filtering of a two-dimensional shear layer problem
- 3 Corrective filter
 - Rationale
 - Proof of concept based on the two-dimensional shear layer problem
 - General solution based on Green's functions

Proof of concepts based on the two-dimensional shear layer problem

Corrective filter

Two dimensional shear layer problem

•
$$k_x = \text{constant} = k_{x_0}$$

•
$$\omega = \text{constant} = \omega_0$$

$$\Rightarrow h(\mathbf{x},t) = \delta(x)\delta(t)\frac{e^{-\kappa|y|}}{2\kappa}$$

Proof of concepts based on the two-dimensional shear layer problem

Corrective filter

Two dimensional shear layer problem

•
$$k_x = \text{constant} = k_{x_0}$$

•
$$\omega = \text{constant} = \omega_0$$

$$\Rightarrow h(\mathbf{x},t) = \delta(x)\delta(t)\frac{e^{-\kappa|y|}}{2\kappa}$$

Proof of concepts based on the two-dimensional shear layer problem Results

Pressure p

Total pressure

Solution of the pressure of the pr

Reconstruction of the hydrodynamic wave from the filtered pressure seems possible.

- Introduction
 - Objective
 - Motivation
 - Introduction to filtering in time domain
 - Filter characteristics
- Wave-operator filter
 - The wave-operator filter
 - Filtering of a two-dimensional shear layer problem
- Corrective filter
 - Rationale
 - Proof of concept based on the two-dimensional shear laver problem
 - General solution based on Green's functions

General solution based on Green's function Green's function

Wave-operator filtering

$$\Box^2 p = \tilde{p}$$

- □² denotes the wave operator
- \tilde{p} is the source term

Inverse filtering with Green's function

$$p = G * \tilde{p}$$
,

G is a free field Green's function for operator \square^2 .

General solution based on Green's function

Corrective filter in two and three dimensions

Corrective filter in two dimensions

$$\hat{\rho}(\mathbf{x},t) = \int_{\mathcal{S}} \int_{\frac{|\mathbf{x}'|}{c_0}}^{+\infty} \frac{\tilde{\rho}(\mathbf{x} - \mathbf{x}', t - t')}{2\pi \sqrt{t'^2 - |\mathbf{x}'|^2/c_0^2}} dt' d^2\mathbf{x}',$$

Corrective filter in three dimensions

$$\hat{p}(\mathbf{x},t) = \int_{V} \frac{\tilde{p}(\mathbf{x} - \mathbf{x}', t - |\mathbf{x}'|/c_0)}{4\pi |\mathbf{x}'|} d^3\mathbf{x}'.$$

Summary

- Wave-operator allows to filter acoustic fluctuations easily
- It distorts the hydrodynamic fluctuations
- A corrective filter based on Green's function could be used to restore the hydrodynamic fluctuations.

For further reading

- Anurag Agarwal, Philip J. Morris, and Ramani Mani. Calculation of sound propagation in nonuniform flows: Suppression of instability waves.

 AIAA Journal, 42(1):80 88, 2004.
- SA Karabasov and TP Hynes.
 An Efficient Frequency-Domain Algorithm for Wave Scattering Problems with Application to Jet Noise.

 11 th AIAA/CEAS Aeroacoustics Conference(26 th Aeroacoustics Conference), pages 1–12, 2005.
- R. Ewert and W. Schröder. Acoustic perturbation equations based on flow decomposition via source filtering. Journal of Computational Physics, 188(2):365–398, 2003.