

Abstract

- Analyze how United States citizens vote with the help of multiple statistical analysis methods.
- Various datasets were collected to have a better understanding of the factors leading to how
 Americans cast their vote.
- Find subtle influences that cause United States citizens to make their decision when they cast their vote.

Introduction

- Investigate the influence of various factors on voting behavior.
- Our data consists of state, age, income, percentage of male/female, and percentage of race/ethnicity in each state
- Our methods of testing were data clustering and multidimensional scaling.
- The data clustering process involved clustering the factors and comparing them to see if there was a match for the Democratic and Republican voting groups.
- The multidimensional scaling process included running the MDS functions and examining how data grouped compared to voting history.
- The overall goal is to determine if these factors truly have significant impact on voting or if they are based on assumptions.

Data

	/ote chr>	Age H	HouseholdIncome <dbl></dbl>	Male <dbl></dbl>	4	Female <dbl></dbl>	WhiteTotalPerc	BlackTotalPerc	India	anTotalPerc
Alabama	Republican	39.5	51734	0.483		0.517	0.674986	0.265945		0.005061
Alaska I	Republican	35.3	75463	0.517		0.483	0.633606	0.032421		0.145590
Arizona	Democratic	38.5	62055	0.495		0.505	0.737727	0.045317		0.043353
Arkansas	Republican	38.6	48952	0.491		0.509	0.753670	0.152012		0.006357
California	Democratic	37.3	80440	0.498		0.502	0.560507	0.057209		0.007920
Colorado I	Democratic	37.3	77127	0.503		0.497	0.815192	0.041459		0.009441
Delaware I	Democratic	41.4	70176	0.482		0.518	0.674384	0.219902		0.003679
Florida I	Republican	42.7	59227	0.489		0.511	0.716390	0.159357		0.002623
Georgia I	Democratic	37.3	61980	0.482		0.518	0.572455	0.315677		0.003325
Hawaii I	Democratic	40.0	83102	0.488		0.512	0.241482	0.018814		0.002470
1-10 of 49 rows 1-5 of 12	2 •	AsianTotalPero	Hawaiia	nTotalPerc <dbl></dbl>		OtherTotalPer <dbl< td=""><td>C TwoOrMoreTota</td><td>alPerc Previous 1</td><td>2 3</td><td>4 5 Next</td></dbl<>	C TwoOrMoreTota	alPerc Previous 1	2 3	4 5 Next
		0.013878		0.000417		0.03971	2 0.03	24385		
		0.064165		0.014227		0.10999	2	93396		
		0.033341		0.002040		0.13822	2	69639		
		0.015316		0.003471		0.06917		39836		
		0.148282		0.003803		0.22227	8 0.0	79348		
		0.031968		0.001563		0.10037	8 0.0	59320		
		0.039815		0.000729		0.06149	0.0	38822		
		0.027839	a.	0.000629		0.09316	2 0.00	60189		
		0.041326	ii	0.000678		0.06654	0.0	37386		
		0.376402		0.104007		0.25682	4 0.24	42887		
	1-10 of 4	9 rows 10-12 of	12 columns		1 2	3 4 5 N	Next 2 3 4 5	Next		

Analysis

- K-means clustering was applied to the numeric data with the number of clusters set to two
- Data could be categorized into different groups based on their similarities
- A silhouette plot was also created to help visualize the form of the clustering result
- Variation of information and corrected rand index were both used to help compute the quality of the clustering results

Analysis

- Second method used was a non-metric multidimensional scaling
- The stress plot function was used to create a plot to help assess the solution
- NMDS results were transformed into a dataframe with rows representing the states and columns representing MDS1 and MDS2
- 2D scatter plot created, each point represents a state
- Used as visualization tool to help better understand the data

```
data_MDS <- metaMDS(data[,2:11], distance = "gower")</pre>
67
    stressplot(data_MDS)
69
    data_MDS$stress
    data_2D_df <- data_MDS$points %>%
      as_tibble(rownames = "States")
    colorVector <- c("blue".
    stateColorVector <- c()
76 - for (i in data$Vote)
     if (i == "Democratic")
78
        stateColorVector <- rbind(stateColorVector, "blue")
79 -
80 -
      else {
81
        stateColorVector <- rbind(stateColorVector, "red")
82 -
83 - 3
    data 2D df %>%
      ggplot(mapping = aes(x = MDS1, y = MDS2, color = stateColorVector)) +
85
      scale_colour_manual(values=colorVector) +
      geom_text(label = rownames(data), size = 2) +
      labs(x = "Dimension 1".
           y = "Dimension 2",
89
90
           title = "NMDS 2-D representation of Voting Dataset")
91 - ...
```

Analysis

- The K-means clustering was used because it can identify natural groupings in the data.
- It was a great way to understand if there were any obvious patterns or outliers.
- By clustering the data, K-means can expose the similarities and differences of how different demographics vote.
- Clustering the data helped interpret and analyze the data easier because of how it reduces the dimensions.
- Non-metric multidimensional scaling was also another great way to analyze this data.
- MDS was used to help uncover any underlying patterns within the data that might not have been seen or was overlooked.
- It was also used to provide a visual representation of any similarities or differences of voting patterns, but its primary purpose is to reduce the dimensions to reveal any obvious interpretations within the data.
- They are both statistical methods that are ingrained in the statistical analysis world and are widely used when searching for relationships in data.

	cluster <fctr></fctr>	size <int></int>	ave.sil.width <dbl></dbl>
1	1	16	0.62
2	2	33	0.66

Clusters silhouette plot Average silhouette width: 0.65

NMDS 2-D representation of Voting Dataset

Discussion

- Generally the two methods show positive results, but there are some outliers.
- Texas, which is completely surrounded by democratic states on MDS, could be republican because of targeted political campaigning in the area.
- MDS splits pretty well, but clustering is a lot less clear.
- Checking the rand index shows a slightly positive result
- Clustering may be a less proficient way to prove this, as it is random and the factors at play
 here affect the voting very slightly, but enough to matter to a politician.

Further Extension

- Add more factors said to affect voting, such as living in a rural or urban area or various mental factors like statewide depression.
- Testing under factor analysis to see how factors affect each other, like how if one population is higher there will be less of the other populations.
- Looking into the outliers like Texas and New Mexico.

Limitations

- Electoral votes are not a good measure of population or political makeup of a state.
- Data gathered is just a few of the factors that affect voting.

Conclusion

- The factors age, income, sex, and ethnicity do affect voting.
- This is important for politicians campaigning, as they need to guide their campaign towards getting votes.
- Limitations
 - Data gathered other factors could be used said to direct voting
 - Observations limited by state, take a closer look at counties
 - Electoral votes are not the best measure for population or political makeup of a state

References

- "Arkansas 2020 Election Results." CNN, Cable News Network, www.cnn.com/election/2020/results/state/arkansas. Accessed 6 Dec. 2023.
- "List of U.S. States and Territories by Median Age." *Wikipedia*, Wikimedia Foundation, 27 Sept. 2023, en.wikipedia.org/wiki/List of U.S. states and territories by median age.
- Team, Good Party Politics. "The Psychology of Voting: What Motivates the Electorate." Good Party, 24 Oct. 2023, goodparty.org/blog/article/psychology-of-voting-what-motivates-electorate.
- U.S. Census Bureau Quickfacts: Arkansas,
 www.census.gov/quickfacts/fact/table/AR/PST045222. Accessed 7 Dec. 2023.
- *US States by Race 2023*, worldpopulationreview.com/states/states-by-race. Accessed 6 Dec. 2023.