

TABLE 15: 169 GENES WITH SEQUENCE INFORMATION DEPICTED IN TABLE 16

Table 15 depicts UnigeneID, UnigeneTitle, Primekey, Predicted Cellular Localization, and Exemplar Accession for all of the sequences in Table 16. The information in Table 15 is linked by EosCode to Table 16.

Pkey:	Unique Eos probeset identifier number				
ExAccn:	Exemplar Accession number, Genbank accession number				
UnigeneID:	Unigene number				
Unigene Title:	Unigene gene title				
EosCode:	Internal Eos name				
Localization:	Predicted cellular localization of gene product				
Pkey	ExAccn	UnigeneID	Unigene Title	EosCode	Localization
100394	D84276	Hs.66052	CD38 antigen (p45)	PBC1	plasma membrane
100452	D87742	Hs.241552	KIAA0268 protein	PAB7	not determined
101249	L33881	Hs.1904	protein kinase C, iota	OAA1	cytoplasmic
101485	M24736		selectin E (endothelial adhesion molecule)	ACC5	plasma membrane
101514	M28214	Hs.123072	RAB3B, member RAS oncogene family	PFJ2	cytoplasmic
101851	M94250	Hs.82045	midkine (neurite growth-promoting factor	LBH9	secreted
102398	U42359		gb:Human N33 protein form 1 (N33) gene,	PDG3	
102522	U53347	Hs.183556	solute carrier family 1 (neutral amino acid)	PFJ4	plasma membrane
102669	U71207	Hs.29279	eyes absent (Drosophila) homolog 2	LEM9	cytoplasmic
103119	X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta)	LBG2	plasma membrane
103709	AA037316	Hs.13804	hypothetical protein dj462023.2	PDO6	
104080	AA402971	Hs.57771	kallikrein 11	PBA6	secreted
104144	AA447439	Hs.183390	hypothetical protein FLJ13590	PDM3	
104691	AA011176	Hs.37744	Homo sapiens beta-1 adrenergic receptor	PAV1	plasma membrane
105370	AA236476	Hs.22791	transmembrane protein with EGF-like and	PDM9	plasma membrane
106149	AA424881	Hs.256301	hypothetical protein MGC13170	PDO8	
106579	AA456135	Hs.23023	ESTs	PAA4	plasma membrane
107102	AA609723	Hs.30652	KIAA1344 protein	PA3	not determined
107217	D51095		DKFZP586E1621 protein	PDG8	
108153	AA054237	Hs.40808	ESTs	PBF1	plasma membrane
109014	AA156790	Hs.262036	ESTs, Weakly similar to Z223_HUMAN ZINC	PDG7	
109112	AA169379	Hs.257924	hypothetical protein FLJ13782	BCU4	not determined
109890	HO4649	Hs.20843	Homo sapiens cDNA FLJ11245 fis, clone PL	PDG4	
110151	H18836	Hs.31608	hypothetical protein FLJ20041	PAV9	plasma membrane
112971	T17185	Hs.83883	transmembrane, prostate androgen induced	CHA1	not determined
113021	T23855	Hs.129836	KIAA1028 protein	PDO3	
114908	AA236545	Hs.54973	cadherin-like protein VR20	PFJ6	
114965	AA250737	Hs.72472	ESTs	BCY2	
116393	AA599463		hypothetical protein MGC2648	PDV3	
116416	AA609219	Hs.39982	ESTs	OAB6	
117698	N41002	Hs.45107	ESTs	PDT9	
117984	N51919	Hs.106778	ATPase, Ca++ transporting, type 2C, memb		
118985	N94303	Hs.55028	ESTs, Weakly similar to I54374 gene NF2	PDM8	
119018	N95796	Hs.278695	Homo sapiens protein mRNA, complete cds		
119126	R45175	Hs.117183	ESTs	PBF8	
120992	AA398246	Hs.97594	KIAA1210 protein	PDG5	
121710	AA419011		prostate androgen-regulated transcript 1	PDV5	
121913	AA428062		ESTs; protease inhibitor 15 (PI15)	BCU7	
122041	AA431407	Hs.98732	Homo sapiens Chromosome 16 BAC clone CIT		
122593	AA455310	Hs.128749	alpha-methylacyl-CoA racemase	PDO1	
123209	AA489711	Hs.203270	ESTs, Weakly similar to ALU1_HUMAN ALU S		
124526	N62096	Hs.293185	ESTs, Weakly similar to JC7328 amino aci	PAV4	
126399	AA128075		transmembrane, prostate androgen induced	PDY4	
126645	AI167942	Hs.61635	six transmembrane epithelial antigen of	PAA5	plasma membrane
126966	R38438	Hs.182575	solute carrier family 15 (H+/peptide tra	PDO5	plasma membrane
127537	AA569531	Hs.162859	ESTs	PAA6	not determined
128790	AA291725	Hs.105700	secreted frizzled-related protein 4	BCX2	secreted
129109	AA491295	Hs.108708	calcium/calmodulin-dependent protein kin	PFJ7	
129184	W26769	Hs.109201	CGI-86 protein	PAV6	vesicular
129389	AA621604		spondin 2, extracellular matrix protein	CJA5	not determined

	129404	AA172056	ESTs	PAB4	
	129534	R73640	Hs.11260	hypothetical protein FLJ11264	PAJ3
	130760	AA128997	Hs.18953	phosphodiesterase 9A	PEE6
5	131425	AA219134	Hs.26691	ESTs	PBA7
	132964	AA031360	ESTs	PAAT	secreted
	132967	AA032221	Hs.61635	six transmembrane epithelial antigen of	PM17
	133179	U81599	Hs.66731	homeo box B13	PFJ5
	133330	U42360	Hs.71119	Putative prostate cancer tumor suppressor	PDM1
	133520	X74331	Hs.74519	primase, polypeptide 2A (58kD)	PDM2
10	133724	U07919	Hs.75746	aldehyde dehydrogenase 1 family, member	PDT1 mitochondrial
	133724	U07919	Hs.75746	aldehyde dehydrogenase 1 family, member	PDT1 mitochondrial
	133944	AA045870	Hs.7780	Homo sapiens mRNA; cDNA DKFZp564A072 (fr	PAB9 cytoplasmic
	134110	U41060	Hs.79136	LIV-1 protein, estrogen regulated	BCR4
	301805	AI800004	Hs.142846	hypothetical protein	PEU4
15	302005	AI869666	Hs.123119	MAD (mothers against decapentaplegic, DrPBJ6	
	302881	AA508353	Hs.105314	relaxin 1 (H1)	PBH3
	303506	AA340605	Hs.105887	ESTs, Weakly similar to Homolog of rat Z	PEG4
	303699	D30891	Hs.19525	hypothetical protein FLJ22794	PBM4
	303753	AW503733	Hs.9414	KIAA1488 protein	PBY3
20	308050	AI460004	Hs.31608	hypothetical protein FLJ20041	PEU5
	310382	AI734009	Hs.127699	KIAA1603 protein	PCQ8
	310431	AI420227	Hs.149358	ESTs, Weakly similar to A46010 X-linked	PBH1
	310573	AW292180	Hs.156142	ESTs	PEN3
	310598	AI338013	Hs.140546	ESTs	PCW3
25	310816	AI973051	Hs.224965	ESTs	PET5
	311596	AI682088	Hs.79375	holocarboxylase synthetase (biotin-[prop	PBH8
	313676	AA861697	Hs.120591	ESTs	PBY2
	314121	AI732100	Hs.187619	ESTs	PBY1
	314691	AW207206	Hs.136319	ESTs	BFF8
30	314785	AI538226	Hs.32976	guanine nucleotide binding protein 4	CBO7
	314907	AI672225	Hs.222886	ESTs, Weakly similar to TRHY_HUMAN TRICH	PBM2not determined
	315051	AW292425	ESTs	PBM9	
	315052	AA876910	Hs.134427	ESTs	PBJ7
	316442	AA760894	Hs.153023	ESTs	PBJ9
35	317548	AI654187	Hs.195704	ESTs	PBQ6
	317869	AW295184	Hs.129142	deoxyribonuclease II beta	PBQ7
	318524	AW291511	Hs.159068	hypothetical protein FLJ10188	PBJ1
	319191	AF071538		prostate epithelium-specific Ets transcr	PEN1
	319763	AA460775	Hs.6295	ESTs, Weakly similar to T17248 hypotheti	PEO7
40	320324	AF071202	Hs.139336	ATP-binding cassette, sub-family C (CFTR	PBH5
	320561	NM_006953	Hs.159330	uroplakin 3	PEL9
	320796	AF038966	Hs.31218	secretory carrier membrane protein 1	PBY4
	321441	AW297633	Hs.118498	Homo sapiens LUCA-15 protein mRNA, splic	
	322303	W07459	Hs.157601	ESTs	CBF9
45	322782	AA056060	Hs.202577	Homo sapiens cDNA FLJ12166 fis, clone MA	
	322818	AW043782	Hs.293616	ESTs	PCQ7
	323226	AF055019	Hs.21906	Homo sapiens clone 24670 mRNA sequence	
	323287	AA639902	Hs.104215	ESTs, Moderately similar to SPCN_HUMAN S	
50	324295	AI146686	Hs.143691	ESTs	PBQ9
	324430	AA464018	Hs.184598	Homo sapiens cDNA: FLJ23241 fis, clone C	
	324603	AW016378	Hs.292934	ESTs	PBM3
	324617	AA508552	Hs.195839	ESTs, Weakly similar to I38022 hypotheti	PBH4
	324626	AI685464	gb:tt88104.x1 NCI_CGAP_Pr28	Homo sapiens	PCW6
55	324658	AI694767	Hs.129179	Homo sapiens cDNA FLJ13581 fis, clone PL	PBJ4 plasma membrane
	324718	AI557019	Hs.116467	small nuclear protein PRAC	nuclear
	330211			CBK1	not determined
	330546	U31382	Hs.299867	guanine nucleotide binding protein 4	PEW1
	330762	AA449677	Hs.15251	hypothetical protein	PBM1
60	330790	T48536	Hs.122764	TMPRSS2, transmembrane protease, serine	PEL3 plasma membrane
	330892	AA149579	Hs.91202	ESTs	PBQ4
	331099	R36671	Hs.14846	Homo sapiens mRNA; cDNA DKFZp564D016 (fr	plasma membrane
	331490	N32912	Hs.291039	ESTs	PCQ1cytoplasmic
	331889	AA431407	Hs.98802	ESTs, Moderately similar to T14342 NSD1	nuclear
	332247	N58172	gb:za21f09.s1 Soares fetal liver spleen	PBQ5	not determined
65	332396	AA340504	gb:hw31a09.x1 NCI_CGAP_Kid11	Homo sapien	nuclear
	332697	T94885	transgelin 2	PBQ8	PBJ8 not determined
	332798			PBH2	secreted
	334447			PBY9	nuclear
	338255			PBY7	not determined

	401424			PFG2	mitochondrial
	407122	H20276	Hs.31742	ESTs	PEW7
	408430	S79876	Hs.44926	dipeptidylpeptidase IV (CD26, adenosine dipeptidylpeptidase IV (CD26, adenosine PEZ3	plasma membrane
	408826	AF216077	Hs.48376	Homo sapiens clone HB-2 mRNA sequence	PEY1
5	409262	AK000631	Hs.52256	hypothetical protein FLJ20624	PFG1
	409361	NM_005982	Hs.54416	sine oculis homeobox (Drosophila) homolog	PEW3
	411096	U80034	Hs.68583	mitochondrial intermediate peptidase	PEZ9
	413125	BE244589	Hs.75207	glyoxalase I	PFJ3
	413623	AA825721	Hs.246973	ESTs	OBH6
10	414422	AA147224	Hs.337232	Homeo box A13	PFC6
	415263	AA948033	Hs.130853	ESTs	PEZ5
	417153	X57010	Hs.81343	"collagen, type II, alpha 1 (primary ost	PFJ1
	418601	AA279490	Hs.86368	calmegin	PFA1
	418848	AI820961	Hs.193465	ESTs	PEY4
15	418882	NM_004996	Hs.89433	ATP-binding cassette, sub-family C (CFTR)	OBH2
	419839	U24577	Hs.93304	"phospholipase A2, group VII (platelet-a	PFH9
	421887	AW161450	Hs.109201	CGI-86 protein	PFH2
	422083	NM_001141	Hs.111256	"arachidonate 15-lipoxygenase, second ty	PFH5
20	424565	AW102723	Hs.75295	guanylate cyclase 1, soluble, alpha 3	PFA3
	425071	NM_013989	Hs.154424	"deiodinase, iodothyronine, type II"	PFH6
	425710	AF030880		solute carrier family, member 4	PFD4
	427958	AA418000	Hs.98280	potassium intermediate/small conductance	PFH1
	428819	AL135623	Hs.193914	KIAA0575 gene product	PFD6
25	429900	AA460421	Hs.30875	ESTs	PEZ7
	429918	AW873986	Hs.119383	ESTs	PEY5
	430226	BE245562	Hs.2551	adrenergic, beta-2-, receptor, surface	PEZ4
	431217	NM_013427	Hs.250830	Rho GTPase activating protein 6	PFG6
	431716	D89053	Hs.268012	fatty-acid-Coenzyme A ligase, long-chain	PEZ1
30	431992	NM_002742	Hs.2891	protein kinase C, mu	PFH4
	432189	AA527941		gb:nh30c04.s1 NCI_CGAP_Pr3 Homo sapiens	PFA2
	432244	AI669973	Hs.200574	ESTs	PEW8
	432437	W07088	Hs.293685	ESTs	PFG3
	432966	AA650114	Hs.325198	ESTs	PEY3
35	439176	AI446444	Hs.190394	ESTs, Weakly similar to B28096 line-1 pr	PEW5
	440260	AI972867	Hs.7130	copine IV	PEW6
	440901	AA909358	Hs.128612	ESTs	PFC8
	445424	AB028945		cortactin SH3 domain-binding protein	PEZ6
40	446320	AF126245	Hs.14791	"acyl-Coenzyme A dehydrogenase family, m	PFH7
	447210	AF035269		phosphatidylserine-specific phospholipas	PFH8
	449156	AF103907	Hs.171353	prostate cancer antigen 3, non-coding DD	PEZ8
	449625	NM_014253		odz (odd Ozten-m, Drosophila) homolog 1	PEZ2
	449650	AF055575	Hs.23838	calcium channel, voltage-dependent, L ty	PFD2
	451939	U80456	Hs.27311	single-minded (Drosophila) homolog 2	PFJ8
45	451982	F13036	Hs.27373	Homo sapiens mRNA; cDNA DKFZp564O1763 (f	PFG9 plasma membrane
	452039	AI922988		ESTs	PFD8
	452340	NM_002202	Hs.505	ISL1 transcription factor, LIM/homeodoma	PFG4
	452784	BE463857	Hs.151258	hypothetical protein FLJ21062	PFC5
	452946	X95425	Hs.31092	EphA5	PFH3

TABLE 15A shows the accession numbers for those primekeys lacking a unigeneID in Table 15. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

	Pkey:	Unique Eos probeset identifier number	
	CAT number:	Gene cluster number	
	Accession:	Genbank accession numbers	
<hr/>			
10			
15			
20			
25			
30			
35			
40			
45			
50			
55			
60			
65			
	Pkey	CAT number	Accession
	116393	131543_1	AI972402 AI634409 AI523716 AI799749 W44518 AI424438 AI688513 AI971048 AI686324 AW013854 AA588483 AA528111 AI627428 AI582200 AI669296 AI826926 AI620526 AI669958 AI972458 AI924500 AA512903 W44517 AA335363 AW238997 BE300165 BE250665 AA284195 AA523420 W52834 AI471970 AI952824 AW003820 AW009463 AA669796 AA114966 AI653342 AA115038 AI342150 AI092100 AI968211 W51994 AI804005 AI201420 AI123210 AI738405 AI674964 AI970341 AW027500 AI493316 AI333193 AI139353 AA599463 AI656163 AI804200 AI365321 AI990213 AI657011 AA650025 AI968810 AI341978 AA599839 AW592602 AI644289 AI468578 AI565265 AI565228 BE221535 AW973052
	101485	18113_1	AA296520 AL021940 M30640 NM_000450 M24736 M61894 AL047443 H39560 AI694691 AA916787 AI214796 AA939085 AI150616 AA412553 AA412545 AI051015 T27654 AA694430
	126399	17331_1	AA088767 AF224278 AA128075 AL035541 AA027926 AI761441 AI972096 AW071693 AI742327 AI377498 AI804815 AI640802 AI885001 AI921394 AA595115 N71820 AI921217 AW007283 AI467828 AI369306 AA917446 AI493698 AA088701 AA126899 AI936228 AW204238 AI039567 AI925027 BE138909 AW452945 AW135998 AA310984 AA027860 AW073519 AI537597 AA953976 AI521341 AW273569 AW050740 AA536113 AA559064 AI474392 AW135709 AA535181 AW572959 AA570597 AI905464 AI677810 AI587642 AW975102 AA424310 AA482527 N64192 AA658276 AW889117 AA486591 AW889172 AI381990 AI381991 AI673419 AI990950 AA487031 AI272934 AI150565 AA229168 AW316722 AI142707 BE222396 AA614168 AA122026 AW338227 AA632457 AI968726 AW369662 AA512956 AA541675 AA451748 AI250993 BE146418 AA122025
	132964	94346_1	AI362575 AI805082 AW263421 AI432462 AA135870 AA031380 AA031604 AA298475 AA298464
	129389	21074_1	NM_012445 AB027466 BE407510 BE047605 AA047125 AW084003 AA149494 AA149490 AA292528 AA570505 AA526186 AW006250 AW007762 AI341576 AI799666 AI972710 AI377966 AI962810 AI084783 AI458032 AI190971 AW148913 AA372354 AW970032 AW007426 AA650188 AI123203 AI122890 AI280975 W73595 W73495 AI863238 AA374109 AA603986 AW149089 AW957523 AI307748 AI921067 AI336463 F24537 AI380460 AI367500 AI189309 AI814701 AI766921 AW572106 AA037024 AW072576 AA578293 AI288103 AA235464 AW450642 AA574230 AW294024 AI589229 AI580733 AW512227 AA877009 AI660255 AW188597 AA558228 AI572782 AA658397 AI274628 AI866359 AA864573 AI264439 AA621604 AW515493 AW243333 Z39737 AI567038 AA573997 AA573559 AW236431 AI652870 AI684973 AA034505 AA047126
	129404	156454_1	AI267700 AI720344 AA191424 AI023543 AI469633 AA172056 AW958465 AA172236 AW953397 AA355086
	107217	9836_1	AL080235 AA031750 D81382 AI480231 AI095947 AI560953 BE010721 AI870290 AA374945 AA125792 D51527 D51556 AI685541 D51559 AW117286 AA195741 AI675138 AW593439 AI201885 T30590 AW952100 D51095 AA523864 W70043 AA987586 AI421515 AI205532 AA127069 AI337367 D51595 AI453785 AW075677 AW088359 C14287 C14284
	121710	19266_1	AF163474 NM_016590 AI163475 AI761105 AI770098 AA410580 AA411616 AI590343 AI739050 AL050198 AI862645 AA419104 AA513809 AA333032 AI816915 AW139625 AA640889 AI311391 AI627693 AW135514 AA419011 AI269149 AI245259 AI970008 AI970017 AW139445 AA569503 AI761072 AI766179 AI759995 AI300776 AI870129 AW150770 AA226501 AA226220
	121913	291015_1	AI249368 AI742316 AA428062 AA442089 AI864189 BE349478 AI803475 AI584049 BE552085 AI088609 AI264197 AI886144 AI129474 AI307145 BE181300 AW058403 AI696838 AW748598 AA442196 AI216428
	102398	entrez_U42359U42359	AW292425 BE467167 AI702953 BE550961 BE222309 AI299348 AI693336 AA541708
	315051	347217_1	AW292425 BE467167 AI702953 BE550961 BE222309 AI299348 AI693336 AA541708
	324626	336411_1	AI685464 AW971336 AA513587 AA525142
	319191	16065_1	NM_012391 AF071538 AB031549 AI685592 AI745526 AA662204 AW130657 AA662164 AW971121 AI668916 AA513274 AI991223 AI979170 AW298436 AA639821 AI859010 AW513942 AI687669 AA662521 AA548598 AI345056 AI305374 BE043418 AI432856 AI334840 AI379796 AI492693 AI307915 BE042082 AI307834 AI307858 AI309488 BE042210 AI435670 AI371605 AI862491 AI284563 AI306872 AI255044 AI254601 AI251236 AI473073 AI473042 AI432760 AI435664 AI336826 AI289365 AI369096 AI862274 AI334871 AI349863 AI250405 AI377617 AI309895 AI313017 AI862291 AI311936 AI378718 AI305722 AI306769 AI308888 AI334565 AI862296 AI344230 AI435685 AI344087 AI378696 AI311209 AI435775 AI310611 AI311154 AI432289 AI431561 AI492681 AI432867 AI335288 AI492796 AI432769 AI310299 AI432273 AI379820 AI275319 AI435753 AI609441 AI432767 AI369100 AI311420 AI349974 AI247157 AI334677 AI270910 AI224320 AI305608 AI334489 AI377152 AI350012 AI370086 AI335053 AI306781 AI306750 AI334849 AI334874 AI340380 AI307876 AI305974 AI305972 AI311521 AI334872 AI862509 AI311498 AI335051 AI289684 AI310859 AI311862 AI862483 AI492775 AI307906 AI492708 AI289693 AI340373 AI307910 AI311359 AI435653 AI334865 AI311492 AI492809 AI492690 AI431576 AI862268 AI311879 AI308435 AI492792 AI862512 AI275321 AI431568 AI431564 AI307885 AI307926 AI435692 AI435778 AI310182 AI308894 AI492707 AI492713 AI308560 AI307829 AI343234 AI580598 AW472796 AI340918 AI310243 AI309368 AI307920 AI289665

AI306777 AW086318 AW086292 AW086378 AI310027 AI275293 AI369082 AI340900 AI306749 AI371558 AW086287 BE043803
 AI306793 AI306272 AI287948 AI270917 AI284816 AI336813 AI284546 AI308044 AI275290 AI270872 AI306795 AI289687 AI223570
 AI305303 AI289677 AI287742 AI275284 AI306812 AI336701 AI371554 AI378719 AI349988 AI223631 AI335141 AI343222 AI284568
 AI305357 AI275270 AI345932 AI436549 AI307925 AI311502 AI344238 AI343182 AI308508 AI305988 AI270790 AI379792 AI305647
 5 AI305410 AI432251 AI436517 AI343227 AI305534 AI340387 AI271043 AI305499 AI271046 AI305962 AI289485 AI305378 AI289725
 AI310848 AI305848 AI289362 AI252964 AI307049 AI310831 AI306993 AI306796 AI224659 AI305969 AI349855 AI306164 AI306948
 AI284676 AI309155 AI343202 AI432785 AI306815 AI369081 AI270863 AI289699 AI3435704 AI305716 AI311281 AI287927
 AI472995 AI340423 AI270958 AI307069 AI305364 AI270807 AI275306 AI311890 AI275263 AI432750 AI289371 AI432861 AI255113
 AI305709 AI473008 AI311168 AI309711 AI377164 AI271201 AI289560 AI309710 AI306195 AI311201 AI287741 AI271066 AI432876
 10 AI275281 AI379795 AI472972 AI311967 AI306826 AI305465 AI270792 AI473019 AI305340 AI270922 AI305995 AI305462 AI254144
 AI270969 AI473012 AI305390 AI275278 AI223644 AI289692 AI250318 AI305372 AI289691 AI250521 AI306283 AI306814 AI307933
 AI473160 AI432903 AI223720 AI254979 AI34862 AI306926 AI289541 AI432248 AI435722 AI435698 AI432859 AI310683 AI473175
 AI335144 AI289467 AI436489 AI306928 AI473033 AI305763 AI307868 AI307882 AI348959 AI435736 AI432857 AI432896 AI435735
 AI432283 AI432086 AI432863 AI473081 AI432825 AI307840 AI473164 AI432885 AI473166 AI472982 AI435734 AI473060 AI473171
 15 AI432279 AI432882 AI334670 AI436512 AI432827 AI432852 AI473051 AI473077 AI435697 AI271509 AI492781 AI472983 AI473018
 AI432897 AI473043 AI432871 AI436536 AI473157 AI349715 AI432777 AI473016 AI473158 AI340369 AI307941 AI432773 AI377146
 AI492791 AI270950 AI305342 AI284604 AI306269 AI284811 AI270811 AI289347 AI334869 AI334852 AI311759 AI250382 AI309520
 AI289550 AI305721 AI340870 AI270901 AI308575 AI307904 AI340715 AI270941 AI309808 AI246867 AI473014 AI307039 AI289360
 AI473069 AI492786 AI344013 AI305876 AI436510 AI340742 AI473028 AI307891 BE041871 BE041268 BE042340 BE041946
 20 BE041783 AI306173 AI201948 AI926972 AI275769

338255 CH22_6856FG_LINK_EM:AC00
 330211 c_5_p2
 332798 CH22_14FG_6_5_LINK_C4G1.G
 334447 CH22_1746FG_387_7_LINK_EM
 25 332247 372969_1 AA669097 AA513815 AA026798 AA676526 AA704429 AA704269 AW118292 AA579216 N58172
 332396 20265_1 AW579842 BE156562 BE156690 BE156489 BE081033 AK001559 BE149402 M85387 AW367811 AW367798 R17370 AI908947
 AA382932 R58449 H18732 AA371231 AW962899 AA713530 AW892946 R53463 H11063 AW068542 Z40761 BE176212 BE176155
 W23952 W92188 AW374883 AA303497 AW954769 AA036808 BE168063 AW382073 AW382085 AL041475 H80748 AI078161
 BE463983 AI805213 AI761264 W94885 N94502 AI623772 AI419532 AI810302 AI634190 AW002516 AW150777 AI352312 AI367474
 30 AW204807 AI675502 AI337026 AW134715 BE228451 AA123157 AI560020 AI300745 AI608631 AI248873 AA742484 AW051635
 H18646 AI245045 AA507111 AI640510 AI925594 AA115747 AA143035 AA151106

332697 13699_1 X51405 NM_001873 T11322 AL118886 BE328175 AW136009 BE457445 AW470313 AA774852 BE504139 AW501046 AA082792
 AW389231 AA370044 R36841 AA371457 C04813 R25791 R25556 AW895854 AW903819 AW895671 AW895677 BE159723
 35 AW895664 AW895597 AW895595 AW895665 AW888518 AI903724 F06081 F08503 AL119462 AW895730 AW888516 R26511
 R26489 AA334128 AA327626 N85713 AW895998 AA223622 F05468 AA370749 W05590 M78202 AA371073 AW498607 R15017
 T16991 AA00128 AA001138 AA551566 AA330159 AI922855 AA383512 AA029603 D82246 D82171 T94933 H56545 AA348060
 AA176888 R98764 AW451817 AA385766 AA452618 AI690057 AA98822 BE549928 AA150901 W57992 AW899925 C05281
 AA932042 AA370980 AW962877 W074741 AA369982 AW385948 AA922466 N75882 AI422070 AI361256 AI680224 D57122 T94885
 R53266 R46713 T19071 AW796277 AA325333 F04719 F02334 AA358146 AA626597 AA358304 AW028099 AL119570 D57290
 D58273 D57796 N48555 AI361969 AA329457 D57225 AW024046 AA992606 AW022118 AW021538 AA935845 H89870 H56546
 40 AW961219 AA453239 AW837541 N45521 BE218029 AA318877 AA327740 AW961809 T92139 D53216 D52365 D53363 D53312
 D53116 AI547267 AA679935 AW026552 AW026418 AW190507 AI927710 AW244108 D50948 AW054991 AW021063 AW022511
 AA493436 A1365636 BE64751 AW149384 AA102442 AW771368 AI818251 AI126368 D51049 AI421542 AI559467 AW079779
 AW021048 AW023968 AW044214 AI458264 AA027274 AI620254 AW028917 BE219511 AA326242 N67561 AI971273 AA878328
 D57131 AA770662 AI309299 AI796767 AA613338 W58076 AI566287 AI445573 AI880260 AA001919 AW339259 AI492610 AI492611
 R97692 AI301425 AA722603 D58361 AI350323 AA973926 AI431263 AA516126 AA865467 AI925177 N39443 AA001943 AI299371
 AI082412 AA665090 AA583433 H89871 AA977231 AI362219 AI056096 AI270446 N67524 N22103 AW614224 AA744054 AW243622
 45 AI613188 AI929173 AI350243 AI362138 AA744004 AA176661 AI56787 AI956623 AI393109 AI094769 AI479728 AI423107 AI955617
 AI034036 AI582196 AW264534 AI418961 AA570761 AI343538 AA650341 AA992503 AA770004 AL039666 AI862675 AW190335
 50 AA610274 AW418627 BE467472 D56786 T28749 AI217610 AI359556 T23523 AL040189 AA846222 AA651636 D51280 AI888986
 AI521167 AI340177 AW612815 AI625285 AA621607 AA177059 AA229768 AA829788 AI749682 AW190631 N75299 AA230089
 AI915632 BE069542 AA890020 AA528397 AA995390 BE503860 AA570812 AW339396 AI197986 AI203725 AI282379 AA670375
 AA461513 F01728 AW243599 C00856 N75567 R95995 AA150932 R95961 AA648060 AA933800 AA927073 AA101126 AA864190
 T93566 BE167472

55 425710 25529_1 AF030880 NM_000441 AC002467 AA385554 H23053 AW891838 AI139968 AA653057 AI695233
 432189 342819_1 AA527941 AI810608 AI620190 AA635266
 445424 6391_1 AB028945 T77648 F13328 AL157605 Z46212 AA304736 F11855 T66098 T30174 AW954164 AW176301 AW748243 AA456428
 AI369958 AA938565 AW959613 Z42008 AA994779 AI683909 F11019 F10926 AI769597 AI752550 T65015 AI884314 AA643954
 60 Z41838 AW020147 AI038822 AW571822 AA299781 AA894928 AF131790 BE005411 AI902476 AW082695 AA464384 R42750
 AW902301 AA464273 R05837 Z38294 H41098 AL134507 M86079
 447210 7119_1 AF035269 AF035268 NM_015900 T96213 U37591 AA156832 AA299371 AI084325 H95977 AI765967 BE221465 AA156726 AI969563
 AW024539 AI436791 AI949451 AA843093 AI452756 AA824232 AI306667 T96131 AW207447 AW243556 AW957032 AI084332
 H95978 U30998

65 449625 8113_1 NM_014253 AF100772 BE088769 AL022718 BE161779 AW863569 BE161640 AL039060 BE168542 AW296554 AA323193 AA235370
 AW779760 N48674 AI375997 R45432 D59344 AI203107 F07491 R35360 R25094 AI913631 AI498402 T61382 AI016320 N45526
 452039 89513_1 AI922988 H05475 AA021608 AW169947 AA913750 Z41614 AW800012

TABLE 15B shows the genomic positioning for those primekeys lacking unigene ID's and accession numbers in Table 15. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

	Pkey:	Unique number corresponding to an Eos probeset
	Ref:	Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA
10		sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495.
	Strand:	Indicates DNA strand from which exons were predicted.
	Nt_position:	Indicates nucleotide positions of predicted exons.

15	Pkey	Ref	Strand	Nt_position
	334447	Dunham, I. et.al.	Plus	14308764-14308824
	332798	Dunham, I. et.al.	Minus	232147-231974
	338255	Dunham, I. et.al.	Minus	15242294-15242231
20	330211	6013592	Plus	59158-59215
	401424	8176894	Plus	24223-24428

TABLE 11 AND SEQUENCE LISTING

SEQ ID NO:1 BCU4 DNA SEQUENCE

5	Nucleic Acid Accession #: NM_024915 Coding sequence: 13-1890 (underlined sequences correspond to start and stop codons)
10	1 11 21 31 41 51 ATTGGATCAA ACATGTCACA AGAGTCGGAC AATAATAAAA GACTAGTGGC CTTAGTGCCC 60 ATGCCAGTG ACCCTCATT CAATACCGA AGAGCCTACA CCAGTGAAGGA TGAAGCTGG 120 AACTCATCT TGAGAACATCC CTCGACAGCA GCCACCAAGG CCATGATGAT CATTAAATGGT 180 GATGAGGACA GTGCTGCTGC CCTCGGCTG CTCTATGACT ACTACAAGGT TCCTCGAGAC 240 AAGAGGCTGC TGTCTGTAAG CAAAGCAAGT GACAGCCAAG AAGACCAGGA GAAAAGAAC 300 TGCCITGGCA CCAGTGAAGC CCAGAGATAAT TTGAGTGGAG GAGAAAACCG AGTGCAGTC 360
15	CTAAAGACTG TTCCAGTGA CTTCTCTTAA AATCAAGATC ACCTGGAGAA TTCCAAGCGG 420 GAACAGTACA GCATCAGCTT CCCCAGAGAC TCTGCCATCA TCCCGGTGTC GGGATACAG 480 GTGGTGAAGG CTGAAGATT CACACCAGTT TTCATGGCCC CACCTGTGCA CTATCCCCG 540 GGAGATGGGG AAGAGCACAC AGTGGTTACCT TTIGAACAGA CTCAGTATGA CGTGCCTCG 600 CTGGCACCC ACAGCGCTA TCTCAAGAC GACCAGCGCA GCACCTCGGA CAGCACATAC 660 AGCGAGAGCT TCAAGGACGC AGCCACAGAG AAATTICGGA GTGCTTCAGT TGGGGCTGAG 720 GAGTACATGT ATGATCAGAC ATCAAGTGGC ACATTTCACT ACACCTGGA AGCCACAAA 780 TCTCTCCGTC AGAACGCAGG GGAGGGCCCC ATGACCTACC TCAACAAAGG ACAGTTCTAT 840 GCCATAACAC TCAGCGAGAC CGGAGAACAC AAATGCTTC GACACCCCAT CAGCAAAGTC 900 AGGAGTGTGG TGATGGTGGT CTTCACTGAA GACAAAAACA GAGATGAACA GCTCAAATAC 960 TGGAAATACT GCGACTCTCG GCAGCATACG GCGAACAGACA GGGTCTTGA CATTGCCAT 1020 TACAAGGAGA GCTTTAACAC GATTGGAAAC ATTGAAGAGA TTGCAATATAA TGCTGTTCC 1080 TTTACCTGGG ACCTGAATAG AGAGGGCAAG ATTTTCATCA CCGTGAATTG CTTGAGCACA 1140 GATTCTCTT CCCCCAAAAGG GGTGAAAGGA CTTCCTTGA TGATTCAAGT TGACACATAC 1200 AGTTATAACA ATCGTAGCAA TAAACCAATT CATAGAGCTT ATTGCCAGAT CAAGGCTTC 1260 TGTGACAAAG GAGCAGAAAG AAAATCCGA GATGAGAGAC AGAACAGAA CAGGAGAAC 1320 GGGAAAGGCC AGGCCTCCA AACTCAATGC AACAGCTCCT CTGATGGGAA GTTGGCTGCC 1380 ATACCTTAAAC AGAACAGAG TGACATCACC TACTTCAAAA CCATGCCCTGA TCTCCACTCA 1440 CAGCCAGTTC TCTCATCACC TGATGTTCAC TTGCAAACCC TGCAGAGGAC CGGACAGGTG 1500 TATTACAAAC CGGATGATGA AGCAGAAAGGT GGCACTGTC TTGTTAACAG GATGTTCCGG 1560 CCCATGGAAG AGGAGTTGG TCCGGTGCT TCAAAGCAGA TGAAAGAAGA AGGGACAAAG 1620 CGAGTGTCT TGACGTGAG GAGGGAGACT GACGATGTTG TGATGCAATT GATGTTGAAG 1680 TCTCCACAG TGATGGGCT GATGGAAGCG ATATCTAGA AATATGGGCT GCCCCGTGGAG 1740 AAGATAGCAA AGCTTACAA AAAAGCAAA AAAGGCATCT TGGTGAACAT GGATGACAAC 1800 ATATCGAGC ACTACTCGAA CGAGGACACC TTCACTCCATCA ACATGGAGAG CATGGTGGAG 1860 GGCTCAAGG TCACTGCTCAT GAAAATCTAG CCCTGGGTTT GGCATCCGCT TTGGCTGGAG 1920 CTCTAGTG CTTCTCCCT GAGAGAGACA GAAGCCCCAG CCCCAGAACCC TTGAGACCCA 1980 TCTCCCCAT CTACAACATG CTGTTACAAG ACCGTGCTGG GGAGTGGGGC AAGGGACAGG 2040 CCCCAGCTC GGTGTCACG GGGCATCAC TGGCACCTAC CACGGAGCCG AAGCCTGAGC 2100 CCCCTAGGAA GGTGCTCTAG GCCTGTGGA TTCCCTATTAA TTGCCCCACT TTTCCTGGAG 2160 CCCCAGGTTCA GGGCCGCCAG GACTCTGCAG GTCACTGCTA GCTCCAGATG AGACCGTCCA 2220 GCGTCCCCC TTCAAGAGAA ACACATCTCC CGAACAGCCT AAAAATTC CATCCCTCT 2280 TCTCACCCCC TCCATATCA TATCTCCGA GTCGGCTGGAC AAAAATGAGCT ACGTCTGGGT 2340 GCAGTAGTTA TAGGTGGGGC AAGAGGTGGA TGCCCCATT CTGGTCAGAC ACCTTAGGT 2400 TGCTCTGGGG AAGGCTGTCT TGCTAAATAC CTCCAGGGTT CCCAGCAAGT GGGCACCCAGG 2460 CCTCTGACAG GAAGACATTC AGTCACTGGT TAATTAGTAA CACAGAAAGT CTGCTGTCT 2520 GCATGTACA TAGTGTATT AATATTTAA TAATATATTAC TACCTGTGGT ATGTTGGCAT 2580 GTTTACTGCC ACTGGCTAG AGGAGACACA GACCTGGAGA CCGTTTAAT GGGGGTTTT 2640 GCCCTGTGTC CTGTTACAAGA GACTTGCAGG GCTAGGTAAGA GGGCTTTGG GATGTTAAGG 2700 TGACTGCAGC TGATGCAAGA ATGGACTCTG CAATGGGCAT ACCTGGGGC TCCTCCCTG 2760 TCCCCAGAGG AAGCCCCCTC TCCTTCTCCA TGGGCATGAC TCTCTCTGA GGGCACCCAG 2820 TTATCTCTG AATGATGTGT TTGCTCTGAC TTCCCTTGG CGCTGCTCTG TGGGAAAGGT 2880 CATCTGTCT GAGACCCAG CTCTTCTCC AGCTTGGCT GCGGGCATGG CCTGAGCTT 2940 CTGGAGAGCCTC TCTGAGGGG TCTGCACTC AGGGCCCTGT GGTGGGGTCT GCTGAGAGC 3000 TCTTGGCTA TCAGGAGAACT CCTGGACACT GTACTGTGCC TCCCAGTTA CAAACACGCC 3060 CTTCATCTCA AGTGGCCCTT TAAAGGCCTG GCTGCTCATGAG GAGAGCTGG AACAGCTCAG 3120 CTCTGAGTCG CGACAGCTGG GCTTCCCTCT GGGCCACAG ATGGAAAGGG GGTATTGTT 3180 GCCCTACTCC TGAGATGCTGC GTTTAAGGA AGTGAAGTGG AAAAATGTTG CCAAGATACC 3240 TGGCTCTGT GAAACCCAGCC TCAGGAGGGAA AACTGGGAGA GAGAACGCTGT GGTCTCCCTG 3300 TACATGCCCTA AGGAGCTGGA AGAGAAAAAC ACTCCCCCTAA ACAATGCCAA AATGATGAAC 3360 CATCATGGGC CACTGTTCTC TTGAGGGGA CAGGTTAGG GGTGGCGTT CGCCCTTGTG 3420 GGCTGAAGCA CTAGCTTTT GGTAGCTAGA CACATCTGC ACCCAAAGGT TCTCTACAAA 3480 GGCCAGATT TTGTTGTAAC GCACTTGTGAC TCTTACCTGG AGGCCCCGCTC TCTAAGGGCT 3540 TCTCTGCTC CCACCTCATC TGTCTCTGAG ATGCAAGAGCA GGATGGAGGG TCTGTTCTA 3600 GCTCAGCTGT TTCTCTTGA GTTGGGGAG GAATTGAAAT GAATGGGACA GAGGGCAGGT 3660 GCTGTTGGCA AGAAGATCTC CGAGCAGCA TGACGGGGCA CCTTGCTGTG TGTCCTCTGG 3720 GCATGTTAAC CCTCTGTGG GGCCAAAGGT TTGCACTGAG GATCCAGCTG TGCTCCAGTC 3780 TGTCCTCTCC TTCTCTACTC TGACTGCTCAC GCCCCGGACCC AGCAGCTGG GGACCCCTCA 3840 GGGTACTAAT GGGGCTCTGT TCTGAGATGG ACAAAATTCA GGTGGAAT ACATGTGTA 3900 CTATGCACCTT CCCATGCTCC TAGGGTTAGG AATAGTTCA AACATGTTG GCAGACATAA 3960 CAACGGCAAA TACTCGGACT GGGGCTAGG ACTCCAGAGT AGGAAAAAGA CAAAAGATT 4020 GGCAGCCTGA CACAGGCAAC CTACCCCTCT CTCTCCAGGC TTGTTATGAA ACTGTTGTT 4080 TGCCAGTCCT GCCTAAGGC AGAAGATGAA TTGAGATGC TGTGATGTT TCCCTAAGTCC 4140 TTGAGCAATC ATGGTGGTGA CAATTGCCAC AAGGGATATG AGGCCAGTGC CACCAGAGGG 4200
70	
75	

5 TGGTGCAAG TGCCACATCC CTCGGATCC ATCCCCCT GTATCCTCGG AGCACCCAG 4260
 TTTGCCTTG ATGTGTCGGC TGTGTATGTT AGCTGAACCT TGATGAGCAA AATTCCTGA 4320
 CGAAACACT CCAAAGAGAT AGGAAAACCT GCCGCTCTT CTTTTTGTG CCTTAATCAA 4380
 ACTCAAATAA GCTAAAAAA AATCATGGA AGATCATGGA CATGTGAAAT GAGCATTTT 4400
 TTCTTCTT TTCTTCTT TTCTTCTTAAAC AAAGTCTGAA CTGAACAGAA CAAGACTTT 4500
 TCCTCATACA TCTCCAATT GTTAAACTT ACCTTATGAG TGTTGTTA GAAGTTCGGA 4560
 CCAACAGAAA AATGCAGTC GATGTCATCT TGGAATTGGT TTCTAAAAGA GTAAGGCATG 4620
 TCCCTGCCA GAAACTTAGG AAGCATGAA TAAATCAAAT GTTATTITC TTCTTATT 4680
 AAAATCATGC TAATGCAACA GAAATAGAGG GTTGTGCA AATGCTATGA ACGGCCCTT 4740
 10 CTTAAAGACA AGCAAGGGAG ATTGATATAT GTACAATTG CTCTCATGTT TTT

SEQ ID NO:2 BCU4 Protein sequence:

Protein Accession #: NP_079191.1

1 11 21 31 41 51

MSQESDNNKR LVALVPMPSD PPFNTRRAYT SEDEAWKSYL ENPLTAATKA MMIINGDEDS 60
 AAALGLLYDY YKVPRDKRLL SVSKASDSQE DQEKRNLCLGT SEAQSNLSSG ENRVQVLKTV 120
 20 PVNVLNQDH LENSKEQYS ISFPESSAI PVSGLTVVKA EDFTPVFMAP PVHYPRGDGE 180
 EQRVIIFEQT QYDVPSLATH SAYLKDDQRS TPDSTYSESF KDAATEKFRS ASVGAEYMY 240
 DQTSSGTQY TLEATKSLRQ KQGEGPMTYL NKQFQYAITL SETGDNKCR HPISKVRSVV 300
 MVVFSEDKRN DEQLKYWKW HSRQHTAKQR VLDIADYKES FNTIGNIEEAYNAVSFTWD 360
 25 VNEEAKIFIT VNCLSTDFF QKGVKGLPLM IQIDTYSYNN RSNKPIHRAY CQIKVFCDKG 420
 AERKIRDEEQ KQNRKNGKGQ ASQTOCNSS DGKLAAIPQ KKSDDITYFKT MPDLHSQPV 480
 FIPDVHFANL QRTGQVYYNT DDEREGGSVL VKRMFRPMEE EFGPVPSKQM KEEGTKRVL 540
 YVRKETDDVF DALMLKSPTV MGLMEAISEK YGLPVEKIAK LYKKSSKGIL VNMDNNIEH 600
 YSNEDTFILN MESMVEGFKV TLMEI

SEQ ID NO:3 BCU7 DNA SEQUENCE VARIANT 1:

Nucleic Acid Accession #: AA428062

Coding sequence: 1-777 (entire sequence represents open reading frame)

1 11 21 31 41 51

ATGATAGCAA TCTCTGCCGT CAGCAGTGC CTCCTGTTCT CCCTCTCTG TGAAGCAAGT 60
 ACCGTCCTCC TACTCAATT CACTGACTCA TCCCCGCCAA CCAATAATT CACTGATATT 120
 40 GAAGCAGCTC TGAAAGCACA ATTAGATTCA GCGGATATCC CCAAAGCCAG GCGGAAGCGC 180
 TACATTTCGAG AGAATGACAT GATGCCATT CTTGATTATC ATAATCAAGT TCGGGCAAA 240
 GTGTTCCAC CGGCAGCAAAT TATGGAATAT ATGGTTTGGG ATGAAAATCT TGCAAAATCG 300
 GCAGAGCCTT GGGCGCTAC TTGATTTGG GACCATGGAC CTTCTTACTT ACTGAGATT 360
 TTGGCCAAA ATCTATCTGT ACCGACTGGA AGATATGCT CTATTCCTCA GTTGGTCAG 420
 CCATGGTATG ATGAAGTGAAG ATGATTATGCT TTTCATATC CCCAGGATTG CAACCCCAGA 480
 TGTCTATGAG ATGTTTTGG TCCCATGTC ACACATTATA CGCAGATGGT TTGGCCACT 540
 TCCAATCGGA TAGGATGCGC AATTCACT TGCCAAAACA TGAATGTTTG GGGATCTGTG 600
 TGGCAGCTG CAGTTTACTT GGATGCAAC TATGCCCAA AGGCAATGG GATTGGAGAA 660
 50 GCACCATATA AAGTAGGGGT ACCATGTTCA TCTTGTCTC CAAGTTATGG GGGATCTTGT 720
 ACTGACAATC TGTGTTTCC AGGAGTTACG TCAAACCTACC TGTACTGGTT TAAATAA

SEQ ID NO:4 BCU7 DNA SEQUENCE VARIANT 2:

Nucleic Acid Accession #: AA428062

Coding sequence: 1-777 (entire sequence represents open reading frame)

1 11 21 31 41 51

ATGATAGCAA TCTCTGCCGT CAGCAGTGC CTCCTGTTCT CCCTCTCTG TGAAGCAAGT 60
 ACCGTCCTCC TACTCAATT CACTGACTCA TCCCCGCCAA CCAATAATT CACTGATATT 120
 60 GAAGCAGCTC TGAAAGCACA ATTAGATTCA GCGGATATCC CCAAAGCCAG GCGGAAGCGC 180
 TACATTTCGAG AGAATGACAT GATGCCATT CTTGATTATC ATAATCAAGT TCGGGCAAA 240
 GTGTTCCAC CGGCAGCAAAT TATGGAATAT ATGGTTTGGG ATGAAAATCT TGCAAAATCG 300
 GCAGAGCCTT GGGCGCTAC TTGATTTGG GACCATGGAC CTTCTTACTT ACTGAGATT 360
 TTGGCCAAA ATCTATCTGT ACCGACTGGA AGATATGCT CTATTCCTCA GTTGGTCAG 420
 CCATGGTATG ATGAAGTGAAG ATGATTATGCT TTTCATATC CCCAGGATTG CAACCCCAGA 480
 TGTCTATGAG ATGTTTTGG TCCCATGTC ACACATTATA CGCAGATGGT TTGGCCACT 540
 TCCAATCGGA TAGGATGCGC AATTCACT TGCCAAAACA TGAATGTTTG GGGATCTGTG 600
 TGGCAGCTG CAGTTTACTT GGATGCAAC TATGCCCAA AGGCAATGG GATTGGAGAA 660
 70 GCACCATATA AAGTAGGGGT ACCATGTTCA TCTTGTCTC CAAGTTATGG GGGATCTTGT 720
 ACTGACAATC TGTGTTTCC AGGAGTTACG TCAAACCTACC TGTACTGGTT TAAATAA

SEQ ID NO:5 BCU7 Protein sequence Variant 1:

Protein Accession #: none

1 11 21 31 41 51

MIAISAVSSA LLFSLLEAS TVVLLNSTDS SPPTNNFTDI EAALKAQLDS ADIPKARRKR 60

YISQNDMIAI LDYHNQVRGK VFFPAANMEY MVWDENLAKS AEAWAATCIW DHGPSYLLRF 120
 LGONLSVRTG RYRSILOLVK PWYDEVKDYA FPYPQDCNPR CPMRFCFGPMC THYTQMVWAT 180
 SNRIGCAIHA CQNMNVWGSV WRRAVYLVCN YAPKGNWIGE APYKVGVPSCS SCPPSYGGSC 240
 TDNLCPFGVT SNLYWFK

5

SEQ ID NO:6 BCU7 Protein sequence Variant 2:

Protein Accession #: none

10

1	11	21	31	41	51	
MIAISAVSSA	LLFSLLCEAS	TUVLLNSTDS	SPPTNNFTDI	EAALKAQLDS	ADIPKARRKR	60
YISQNDMIAI	LDYHNQVRGK	VFFPAANMEY	MVWDENLAKS	AEAWAATCIW	DHGPSYLLRF	120
LGONLSVRTG	RYRSILOLVK	PWYDEVKDYA	FPYPQDCNPR	CPMRFCFGPMC	THYTQMVWAT	180
SNRIGCAIHT	CQNMNVWGSV	WRRAVYLVCN	YAPKGNWIGE	APYKVGVPSCS	SCPPSYGGSC	240
TDNLCPFGVT SNLYWFK						

15

SEQ ID NO:7 BCX2 DNA SEQUENCE

20

Nucleic Acid Accession #: NM_003014
 Coding sequence: 238-1278 (underlined sequences correspond to start and stop codons)

25

1	11	21	31	41	51	
GGCGGGITCG	CGCCCCGAAG	GCTGAGAGCT	GGCGCTGTC	GTGCCCTGTG	TGCCAGACGG	60
CGGAGCTCCG	CGGCCGGACC	CCGGGGCCCC	GCTTGTGTC	CGACTGGAGT	TTGGGGAAAG	120
AAACTCTCCT	GGCCCGGAGA	AGATCTCTIC	CTCGGCGAAG	GGACAGCGAA	AGATGAGGGT	180
GGCAGGAGA	GAAGGGCTT	TCTGTGTC	GGGGTCGAG	CGCGAGAGGG	CAGTGCATG	240
TTCTCTCCA	TCTTAGTGG	GCTGTGCTG	TGGCTGAC	TGGCGCTGGG	CGTGCACGGC	300
GCACCCCTGCG	AGGCCTGCG	CATCCCTATG	TGCCGGACA	TGCCCTGAA	CATCACCGGG	360
ATGCCAACACC	ATCTGACCA	CAGCACGCG	GAGAACGCCA	TCCCTGGCAT	CGAGCAGTAC	420
GAGGAGCTGG	TGGACGCTAA	CTGCAGGCC	GTGCTGCCG	TCTTCTCTG	TGCCATGTAC	480
GGCCCATTT	GCACCCCTGGA	GTTCCTGCAC	GACCTATCA	AGCCGTGCAA	GTGGTGTGC	540
CAACCGCGC	CGCACGACTG	CGAGCCCCTC	ATGAAGATGT	ACAACACAG	CTGGCCCGAA	600
AGCTGCTTCA	GGCACGCGT	GGCTGTCTAT	GACCGTGGCG	TGTGCAATTTC	GCCTGAAGCC	660
ATCGTCACGG	ACCTCCCGGA	GGATGTTAAAG	TGGATAGACA	TCACACAGA	CATGATGTTA	720
CAGGAAAGGC	CTCTTGATGT	TGACTGTAAA	CGCCTAAGCC	CCGATCGGT	CAAGTGTAAA	780
AAGGTGAAGC	CAACTTTGGC	AACTGATCTC	AGCAAAAAC	ACAGCTATGT	TATTGATGCC	840
AAAATAAAAG	CTGTGAGAG	GAGTGTGTC	AATGAGGTCA	CAACGGTGGT	GGATGTTAAA	900
GAGATCTTCA	AGTCCCTCATC	ACCCATCTCT	CGAACTAAG	CTCCGCTCAT	TACAAATTCT	960
TCTTGCAGT	GTCCACACAT	CCTGCCCAT	CAAGATGTC	TCATCATGTG	TTACGAGTGG	1020
CGTCTAAGGA	TGATGCTTCT	TGAAATTTGC	TAGTTGAAAC	AATGGAGAGA	TCAGCTTGT	1080
AAAAGATCCA	TACAGTGGGA	AGAGAGGCTG	CAGAACACG	GGAGAACAGT	TCAGGACAAG	1140
AAAAGAAACAG	CCGGCGCAC	CAGTCGTAGT	AATCCCCCA	ACCAAAAGGG	AAAGCCTCT	1200
GCTCCCAAAC	CAGCCAGTCC	CAAGAAGAAC	ATTAACAACTA	GGAGTGC	GAAGAGAACAA	1260
AACCGGAAAC	AAGTGTGAGC	TAACTAGTT	CCAAAGCGGA	GACTTCGAC	TTCCCTACAG	1320
GATGAGGCTG	GGCATTGCG	GGGACAGCCT	ATGTAAGGGC	ATGTCGCCCC	TGCCCTAACAA	1380
ACTCACTGCA	GTGCTCTTCA	TAGACACATC	TTGCACTT	TTCTTAAGG	CTATGCTTCA	1440
GTTCCTTCT	GTAGGCTACAT	GGTGGAGCTT	TGCCCTTGTG	TACAGAACGGT		1500
GAGTTAAAGC	TGGTGGAAAA	GGCTTATTGC	ATTGCATTCA	GAGTAACCTG	TGTGCTACT	1560
CTAGAAGAGT	AGGGAAAATA	ATGCTTGT	CAATTCGACC	TAATATGTGC	ATTGTTAAAT	1620
AAATGCCATA	TTTCAACACAA	AAACCGTAAT	TTTTTACAG	TATGTTTAT	TACCTTTGAA	1680
TATCTGTTG	TGCAATGTTA	GTGATGTTT	AAAATGTGAT	GAAAATATAA	TGTTTTAAG	1740
AAGGAACAGT	AGTGGAAATGA	ATGTTAAAAG	ATCTTATG	GTTTATGGTC	TGCAAGAGA	1800
TTTTGTGAT	GAAAGGGAT	TTTTGAAAAA	ATTAGAGAAG	TAGCATATGG	AAAATTATAA	1860
TGTTTTTTT	TACCAATGAC	TTCAGTTCT	GTTTTAGCT	AGAAAGCTTAA	AAACAAAAAAAT	1920
AATAATAAAG	AAAATAAAT	AAAAGAGGA	GGCAGACAAAT	GTCTGGATTTC	CTGTTTTTG	1980
GTTCACCTGAT	TTCATGATC	ATGATGCTTC	TGTCACAC	CCTCTTAAGC	AGCACCAGAA	2040
ACAGTGAAGT	TGTCGTACC	ATTAGGAGT	AGGTACTAA	TAGTTGGCTA	ATGCTCAAGT	2100
ATTTTACCC	CACAGAGAG	GTATGCACT	CATCTTACTT	CCCAGGACAT	CCACCTGAG	2160
AATAATTGTA	CAAGCTTAA	AAATGCCCTTC	ATGTGAGTC	CAAATTGTT	TTTCTTCAT	2220
TTAAATATT	TCTTGCCTA	AATACATGTG	AGAGGAGTTA	AAATATAATG	TACAGAGAGG	2280
AAATGTTAGT	TCCACCTCTG	AAATGAGAAAT	TACTTGACAG	TTGGGATACT	TTAATCAGAA	2340
AAAAAGAACT	TATTCGAGC	ATTITACAA	AAATTCTCAT	AATTGTGGAC	AATGGAGGC	2400
ATTITATTAA	AAAAACAATT	TTATTGGCCT	TTGCTAACAA	CAGTAAGCAT	GTATTTATA	2460
AGGCATCAAA	TAATGCAACA	ACGCCAAAG	GAAATAAAAT	CCTATCTAAT	CTTACTCTCC	2520
ACTACACAGA	GGTAATCACT	ATTAGTATT	TGGCATATTA	TTCTCCAGGT	TTTGCTTAT	2580
GCACCTATAAA	AATGATTGTA	ACAAATAAA	CTAGGAACCT	GTATACATGT	TTTCTACAAAC	2640
CTGCTCTT	TGCTTGGCC	TTATTGAGA	TAAGTTTCC	TGTCAAGAAA	GCAGAAACCA	2700
TCTCATTCT	AACAGCTGTG	TTATATTCCA	TAGTATGCA	TACTCAACAA	ACTGTGTG	2760
TATTGGATAC	TTAGGTGGTT	TCTTCACTGA	CAATACTGAA	AAACATCTC	ACCGGAATT	

70

SEQ ID NO:8 BCX2 Protein sequence:
 Protein Accession #: NP_003005.1

75

1	11	21	31	41	51	
MFLSILVALC	LWLHLALGVR	GAPCEAVRIP	MCRHMPWNIT	RMPNHLHHST	QENAILAIEQ	60

YEELVDVNCS AVLFFFFCAM YAPICTLEFL HDPIKPKCSV CQRARDDCEP LMKMYNHSWP 120
 ESLACDELPV YDRGVCISPE AIVTDLPEDV KWIDITPDMM VQERPLDVDC KRLSPDRCKC 180
 KKVKPTLATY LSKNYSYVIH AKIKAVQRSG CNEVTTVVDV KEIFKSSSPI PRTQVPLITN 240
 5 SSCQCPHLIP HQDVLIMCYE WRSRMMLEN CLVEKWRDQL SKRSIQWEER LQEQRRTVQD 300
 KKKTAGRTSR SNPPKPKGKP PAPKASPDKK NIKTRSAQKR TNPKRV

SEQ ID NO:9 CBK1 DNA SEQUENCE

10 Nucleic Acid Accession #: NM_032391
 Coding sequence: 129-302 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51
GTCCTTCCTC	TCCTAGCC	AGGCGTGCAA	ACAGAGCGCC	ACTGGGAGGC	TGAAACCTTT
15	TTGCGATGC	TTGCTTGCGC	GCTGAGATTCT	GGTCCCCACC	TTTGCAGAGA
GAACACGGAT	CATTCTCAG	ATCAAGGACC	GGCCCACATT	ACTACCTCCA	180
AGAGTGCTT	TCTCTCTAA	AAGAAAACAT	CTACTTTGAA	ACATCTACTG	GGCGAGACCA
20	GGAGTGATGG	CTCAGCCGTG	AATTCTGGAA	TTTCGGGAGG	CCGAGGGCAGG
GAGCACAGGA	GTTCCAGACC	AGCCTGGCA	ATGTAGCAAG	ACGCTGTCTC	300
ATAAAATTT	TTTAAAAAAAG	G			360

SEQ ID NO:10 CBK1 Protein sequence:

Protein Accession #: NP_115767

1	11	21	31	41	51
MLCAHFSDQG	PAHLLTSKSA	FLSNKKTSTL	KHLLGETRSD	GSACNSGISG	GRGRKIP

SEQ ID NO:11 CHA1 DNA SEQUENCE

25 Nucleic Acid Accession #: NM_020182
 Coding sequence: 96-854 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51
TCCTGGTT	CGGGTGAAG	CGCCTGGGG	TTCTGGCCA	TGATCCCCGA	GCTGCTGGAG
40	AACTGAAGGC	GGACAGTCTC	CTCGCAAACC	AGGCA <u>ATGGC</u>	GGAGCTGGAG
TCATCATCAT	CTGGTGGTG	ATGATGGTA	TGGTGGTGGT	GATCACGTG	TTGTTCAAGA
45	ACTACAAGCT	GTCTGCACGG	TCCCTCATCA	GCCGGCACAG	CCAGGGCGG
ATGCCCTGTC	CTCAGAAGGA	TGCTGTGGC	CTCTGGAGAG	CACAGTGCA	AGGAGAGAAG
50	TCCCAGAGCC	GCAGGTCTAC	GCCCGCCTC	GGCCCAACCGA	GGCAACGGAA
TCGCCAGCG	GGAGCGCTTC	CACCGTTCC	AGCCCACCTA	TCCGTACCTG	360
TCGACCTGCG	ACCCACCATC	TCCCTGTAG	ACGGGGAGGA	TACCAAGGGCC	420
CCTGCACCC	CCACCTTCAG	GACCCGAGAC	AGCCACTGGA	ACTGAACCGG	480
GGCGACCCCC	AAACAGAAC	ATCTTCGACA	GTGACCTGAT	GGATAGTGCC	540
55	GCCCCGCCC	CCCCAGCAGT	AACTCGGGCA	TCAGGCCAC	AGCGGCGGGC
GCATGGAGGG	GGCCGCC	ACTACAGCG	AGGTCTACCGG	CCACTACCCG	660
TCCAGCACCA	GCAGAGCAGT	GGCCGCC	CCTTGCTGGA	GGGGACCCG	720
CACACATCGC	GGCCCTAGAG	AGGCCAGCA	TCTGGAGCAA	CTCCACCCACA	780
GACACCTCT	CTAGGTCCC	GACCCGAGAC	AGAGAAGGAT	AAACAGAAAG	840
60	ACACTCGCG	CTTCTAGAA	GAGGAGTGAG	AAAAGGCAGA	900
GTGGCCCTCC	CTCTCCACCT	CCCTGTGTAT	AAATATTTAC	ATGTGATGTC	960
GCACAAAGCTA	AGAGAGCTTG	AAAAAAAAAA	AGAAAAAAAG	TGGTCTGAAT	1020
TTTGTGAGC	TGTGCTTGA	AGGCAAAAGA	AAAAAAATTT	CTACAGTAAA	1080
A					1140

SEQ ID NO:12 CHA1 Protein sequence:

Protein Accession #: NP_064567

1	11	21	31	41	51
MAELEFVQII	IIVVVMMVMV	VVITCLLSHY	KLSARSFISR	HSQRRREDA	LSSEGCLWPS
65	ESTVSGNIP	EPQVYAPP	RDRALAVPPFA	QRERPHRFQP	TYPYLQHEID
EEPPPYQGPG	TLOLRDPEQQ	LELNRESVRA	PPNRIFTFDS	LPTTISLSDG	120
70	ATCYGSGRM	EGPPPTYSEV	IGHYPGSSFQ	HQSSGPPSL	CPPSSNSGIS
SKEKDQKGH	PL				180

SEQ ID NO:13 CJA5 DNA SEQUENCE

75 Nucleic Acid Accession #: NM_012445
 Coding sequence: 276-1271 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51
---	----	----	----	----	----

5 GCACGAGGGAA AGAGGGTGAT CGCACCCGGG GAAAGGTCGCT GGGCAGGGCG AGTTGGGAAA 60
 GCGGCAGCCC CCCCGCCCC CGCAGCCCC TCTCCCTCTT TCTCCCACGT CCTATCTGCC 120
 TCTCCGTGGA GGCAGGCGG TGCAGCATCG AAGACAGGG GAACCTGGAGC CTCATTGGCC 180
 GGCAGGGGGC GCGGCCTCG GGCTTAAATA GGAGCTCCGG GCTCTGGCTG GGACCCGACC 240
 GCTGGGGCC GCGCTCCCGC TGCCTCTGCG GGATGATGGA AAACCCCGAG CCGGCGGCC 300
 CCCTGGGCAA GGCCTCTGC GCTCTCTCC TGCCACTCT CGGCGGCC 360
 TTGGGGAGA GTCCATCTGT TCGCCAGAG CCCCGCCAA ATACAGCATC ACCTTCACGG 420
 GCAACTGGAG CCAGACGCC TTCCCCAACG AGTACCCCT GTTCCGCC 480
 GGTCTTCGCT GCTGGGGCGC CGCATAGCT CGGACTACAG CATGTGGAGG AGAAACCGT 540
 AGTCAGTAA CGGGCTCGCC GACTTTGCGG AGCGGGCGA GGCGCTGGCG CTGATGAAGG 600
 AGATCGAGGC GGCGGGGGAG GCGCTGCAGA GCGTGCACGC GGTGTTTCG GCGCCGCC 660
 TCCCGAGCG CACCGGGCG AGCTCGGAGG AGCTCGGAGT GCAGCGCAGG CACTCGCTGG 720
 TCTCGTTGTG GGTGCGCATC GTGCCCGAGCC CGGACTGGTT CGTGGGCGTG SAGACCTGG 780
 10 ACCTTGCGA CGGGGACCGT TGCGGGAAC AGGCAGCGCT GGACCTGTAC CCCTACGACG 840
 CCGGGACGGA CAGCGCTTC ACCTTCCTCC CCCCAACTT CGCCACCATC CGGCAGGACA 900
 CGGTGACCC GATAACGTC TCCCTCTTCA GCAACCCGGC CAACTCTTC TACTACCCGC 960
 GGCTGAAGGC CCTCTCTCC ATCGCCAGGG TGACACTGGT GCGCTGCAGA CAGAGCCCCA 1020
 GGGCTTCAT CCCTCCCGCC CGAGCTCTGC CGAGCAGGGAA CAATGAGATT GTAGACAGCG 1080
 CCTCACTTCC AGAAACGGG CTGACTGCG AGGCTCCCT GTGGTCGTC TGGGGACTGT 1140
 15 CGGGGAGCCA CTGTGGGAGG CTGGGACCA AGAGCAGGAC TCGCTACGTC CGGGTCCAGC 1200
 CGGCCAACAA CGGGAGGCC TGCCCCGAGC TCAGAAGAAGA GGCTGAGTGC CTCCCTGATA 1260
 ACTGCTCTTA AGAACAGAGC CGCGCAGCCC CTGGGGCCCC CGGAGCCATG GGGTGTGCGG 1320
 GGCTCTCTG CAGGCTCATG CTGAGGCGG CGAGGCACA GGGGGTTTCG CGCTGCTCTC 1380
 GACCGGGGTG AGGGCGGCC GACCATCTCT GCACTGAAGG GCCCTCTGTG GGGCGGCACG 1440
 GGCATTGGGA AACAGCCTCC TCCCTTCCCA ACCTTGCTTC TTAGGGGCC CGGTGTCCCG 1500
 TCTGCTCTCA GCTCTTCCCA CTGGCAGGAT AAAGTCATCC CAAAGGCTCC AGCTACTCTA 1560
 AATTATGGT TCCCTTAAAG TTATTCGTC TCAGGAGAT TGTCTCTCAT CTCCAGGGG 1620
 CCTGGCTCCC ACGTGGTTGC AGATACCTCA GACCTGGTGC TCTAGGCTGT GCTGAGGCCA 1680
 CTCTCCCGAG GGCCATCCA AGGGGGGGCC ACTTGAGAAG TGAATAAAATG GGGCGGTTTC 1740
 20 GGAAGCGTCA GTTTTCCAT GTTATGGATC TCTCTGCGTT TGAATAAAAGA CTATCTGT 1800
 TGCTCAC

35 SEQ ID NO:14 CJA5 Protein sequence:
 Protein Accession #: NP_036577

40 1 11 21 31 41 51
 | | | | | |
 MENPSPAAL GKALCALLLA TLGAAGQPLG GESICSRAP AKYSITFTGK WSQTAFPKQY 60
 PLFRPPAQWS SLLGAHSSD YSMWRKNQYV SNGLRDFAER GEAWALMKEI EAAGEALQSV 120
 HAVFSAPAVP SGTQTSABL EVQRHSLVS FVVRIVPSPD WFVGVDSDL CDGDRWREQA 180
 ALDLVYPYDAG TDSGFTFSSP NFATIPQDTV TEITSSSPSH PANSFYYPLR KALPPIARVT 240
 45 LVRLRQSPRA FIPPAPVLPS RDNEIVDSAS VPETPLDCEV SLWSSWGLCG GHCGRLGTKS 300
 RTRYVRVQPA NNGSPCPELE EEAECVPDNC V

50 SEQ ID NO:15 LBH9 DNA SEQUENCE
 Nucleic Acid Accession #: NM_002391
 Coding sequence: 26-457 (underlined sequences correspond to start and stop codons)

55 1 11 21 31 41 51
 | | | | | |
 CGGGCGAACG AGCGGGGGCA GCGAGATGCA GCACCGAGGC TTCTCTCTCC TCACCCCTCT 60
 CGCCCTGCTG GCGCTCACCT CCCCGGTGCG CAAAAAGAAA GATAAGGTGA AGAAGGGCGG 120
 CCCGGGGAGC GAGTGCCTG AGTGGGCTG GGGGCGCTGC ACCCCCAGCA GCAAGGATTG 180
 CGGGCTGGGT TTCCCGGAGG GCACCTGCGG GGGCCAGAGCC CAGGGCATCC GGTGCAAGGGT 240
 60 CGCCCTGGAAC TGGAGAAAG AGTTGGAGC CGACTGCAAG TACAAGTTG AGAACCTGGGG 300
 TGCGTGTGAT GGGGGCACAG GCACCAAAGT CGGCCAAGGC ACCCTGAAGA AGGCGCGCTA 360
 CAATGCTCA GGGCAGGAGA CCATCCGGT CACCAAGGCC TGCAACCCCCA AGACCAAAGC 420
 AAAGGCAAA GCCAAGAAAG GGAAGGAAA GGACTAGACG CCAAGGCTGG ATGCAAGGAA 480
 GCCCCCTGGT TCACATGGGG CCTGGGCCAGC CCCTCCCTCT CCCAGGGCCG AGATGTGACC 540
 CACCAAGTGC TTCTGTCTGC TCGTTAGCTT TAATCAATCA TGCCCTGCCT TGTCCCTCTC 600
 65 ACTCTCCCGA CCCACCCCTA AGTGGGCAAA GTGGGGAGGG ACAAGGGATT CTGGGAAGGT 660
 TGAGCCCTCCC CCAAAGCAAT GTGAGTCCCA GAGCCCCGCTT TTGTTCTTCC CCACAAATTCC 720
 ATTACTAAGA AACACATCAA ATAAACTGAC TTTTCCCCC CAATAAAAGC TCTTCTTTTT 780
 TAATAT

70 SEQ ID NO:16 LBH9 Protein sequence:
 Protein Accession #: NP_002382

75 1 11 21 31 41 51
 | | | | | |
 MQHRGFLLLT LLALLALTSA VAKKKDKVKK GGPGESECAEW AWGPCTPSSK DCGVGFREGT 60
 CGAQTORIRC RVP CNWKKEF GADCKYKFEN WGACDGGTGT KVRQGTLKA RYNAQCQETI 120
 RVTKPCTPKT KAKAKAKKGK GKD

SEQ ID NO:17 LEM9 DNA SEQUENCE

Nucleic Acid Accession #: NM_005244

Coding sequence: 1-1617 (underlined sequences correspond to start and stop codons)

	5	11	21	31	41	51	
	ATGGTAGAAC	TAGTGATCTC	ACCCAGCCTC	ACTGTAAACA	GCGATTGTC	GGATAAACTG	60
10	AAGTTAACCC	<u>GTCTTACCC</u>	TGCTGTGTC	ACTCTGACTG	ACAGACAAAGG	CATCACCAAA	120
	TCGGGCCCCC	TGAGAGTGT	CCAGGCTTTC	TCCAGATCTT	GCCCACCTGT	CCTCCCCCGC	180
15	CAGCCCTCCA	CAGCCATGGC	AGCTCACGGC	CAGACGCAGT	ACAGTGCAGG	GATCCAGCAG	240
	GCTACCCCT	ATACAGCTTA	CCCACTTCCA	GCACAAGGC	ATGGAATCCC	TTCCTACAGC	300
20	ATCAAGACAG	AAGACAGCT	GAACCATTC	CTTGGCCAGA	GTGGAATTCT	CAGCTATGGC	360
	TCCACCTTC	GCACCTTAC	CACTGGACAG	AGCCCATACA	CCTACCCAGAT	GCACGGCACA	420
25	ACAGGGTCT	ATCAAGGAGG	AAATGGACTG	GGCAACGAG	CCGGTTTCGG	GAGTGTGCAC	480
	CAGGACTATC	CTTCTTACCT	CCGGCTTCCC	CAGAGCCAGT	ACCCCCAGTA	TTACGGCTCA	540
30	TCCTACAAAC	CTCCCTACGT	CCGGGCCAGC	AGCACATCTG	CTTCGCCCC	CTCCACGTCC	600
	ACCTACGTCC	TCCAGGAGGC	ATCTCACAAAC	GTCCCCAAC	AGAGTTCCGA	GTCACTTGCT	660
35	GGTGAATAAC	ACACACACAA	TGGACCTTC	ACACAGCGCA	AAAGGGAGA	CACAGACAGG	720
	CCGGCCAGGG	CCTCGAGCG	GAAGCTCCGA	GGCCGCTCA	AGAGGAGCAG	TGACCCGTCC	780
40	CCGGCAGGGG	ACAACTGAGAT	TGAGCCTGTG	TTCTGTGAGG	ACTTGGATGA	GACAATAATT	840
	ATTTTCACT	CCTTACTCAC	GGGGACATT	GCATCCAGAT	ACGGGAAGGA	CACCAAGCAG	900
45	TCCGTGCGA	TTGGCTTAT	GATGGAAGAG	ATGATCTCA	ACCTTGCGAGA	TACACATCTG	960
	TTCTTCAATG	ACCTGGAGGA	TTGTGACCCAG	ATCCACGTTG	ATGACGTCTC	ATCAGATGAC	1020
50	AATGGCCAAG	ATTTAAGCAC	ATACAACCTC	TCGCCTGACG	GCTTCCACAG	TTCGGCCCCA	1080
	GGAGGCAACC	TGTGCTGGG	CTCTGGCTG	CACGGCCGG	TGACTTGAT	GAGGAAGCTG	1140
55	GCCTTCGGCT	ACCGGGGGGT	GAAGGAGATG	TACAATACCT	ACAAGAACAA	CTTGGTGGG	1200
	TTGATAGGCA	CTCCCCAAAAG	GGAGACCTGG	CTACAGCTCC	GAGCTGAGCT	GGAAGCTCTC	1260
60	ACAGACCTCT	GGCTGACCCA	CTCCCTGAAG	GCACAAAC	TCATCAACTC	CCGGCCCAAAC	1320
	TGTGTAATG	TGCTGGTCAC	CAACACTCAA	CTAATTCTG	CCCTGGCCAA	AGTCCTGCTA	1380
65	TATGGCTGG	GGTGTGTTG	TCCTATTGAG	AAACATCTACA	GTCAACCAA	GACAGGGAA	1440
	GAGAGCTGCT	TGAGAGGAT	ATNGCAGAGA	TTCCGGAGAA	AAAGCTGCTA	CGTGGTGATC	1500
70	GGTGTGTTG	TGGAAGAGGA	GAACAGGAGC	AAAAAGCACA	ACATGCCATT	CTGGCGGATA	1560
	TCCTGCCACG	CAGACCTGGA	GGCACTGAGG	CACGCCCTGG	AACTGGAGTA	TITATAG	

SEQ ID NO:18 LEM9 Protein sequence:

Protein Accession #: NP_005235

	40	11	21	31	41	51	
	MVELVISPL	TVNSCDLDKL	KFNRADAIVW	TLSDRQGITK	SAPLRLVSQLF	SRSCPRLVPR	60
45	QPSTAMAAYG	QTQYSAGIQQ	ATPYTAYPPP	AQAYGIPSYSS	IKTEDSLNHS	PQOSGFLSYG	120
	SSFTSPTGQ	SPYTYQMHG	TGTYQGGNGL	GNAAGFGSVH	QDYPSPYPGFP	QSQYPQYYGS	180
50	SYNPVVPAS	SICSPPLSTS	TYVLQEASHN	VFNQSSESLA	GEYNTHNGPS	TPAKEGDTDR	240
	PHRASDGKLR	GRSKRSDPDS	PAGDNEIERV	FWDLDETDII	IFHSLLTGTF	ASRYGKDTTT	300
55	SVRIGLMEE	MIFNLADTHL	FFNDLEDCDQ	IHVDDVSSDD	NGQDLSTYNF	SADGFHSSAP	360
	GANLCLGSGV	HGGVDMRKL	AFFYRRVKEM	VNTYKNNVGG	LIGTPKRETW	LQLRAEAL	420
60	TDLWLTHSLK	ALNLINSRPN	CVNVLVTTTQ	LIPALAKVLL	YGLGSVFPIE	NIYSATKTGK	480
	ESCFERIMQR	FGRKAVVVVI	GDGVEEEQGA	KKHNMPFWRI	SCHADLEALR	HALELEYL	

SEQ ID NO:19 OAA1 DNA SEQUENCE

Nucleic Acid Accession #: NM_002740

Coding sequence: 178-1968 (underlined sequences correspond to start and stop codons)

	60	11	21	31	41	51	
	CCGGGTTCC	GGCTGCTCCG	GGCAGGGCGAC	CCTTGGGTG	GGCGTGCAGGG	CGAGGTGGG	60
65	AGGTAGTGG	GGGACAGGCC	GGGGTCTCC	GGCAAGCGCA	GGCGGCGGAG	TCCCCCACGG	120
	CGCCCGAACG	GGCCCGCCCA	CCCCCGGCC	CCAGCGTTGA	GGCGGGGAG	TGAGGAGATG	180
70	CCGACCCAGA	GGGACAGCAG	CACCATGTC	CACACGGTC	CAGCGGGCG	CAGCGGGGAC	240
	CATCTCCACC	GAAGGCTTAC	ATATCATGAT	AAACATTTT	AAACATTTT	AAACATTTT	300
75	GAACCTTCCA	TCTCTTTGA	GGGGCTTGTG	AATGAGGTT	GAGACATGTG	TTCTTTGAC	360
	AACGAACAGC	TCTTCACCAT	GAAATGGATA	GATGAGGAAG	GAGACCCGTG	TACAGTATCA	420
80	TCTCAGTTGG	AGTTAGAAGA	AGCCTTTAGA	CTTTATGAGC	TAAACAAGGA	TTCTGAACTC	480
	TTGATTCTATG	TGTTCCCTG	TGACCGAGAA	CGTCCTGGGA	TGCTTGTTC	AGGAGAAAGAT	540
85	AAATCCATCT	ACCCGTAGAGG	TGACCGCCGC	TGGAGAAAGC	TTTATTGTC	CAATGCCAC	600
	ACTTCCAAG	CCAAGCGTTT	CAACAGGGT	CCTCACTGTG	CCATCTGCAC	AGACCGAATA	660
90	TGGGGACTTG	GACGCCAAGG	ATATAAGTGC	ATCAACTGCA	AACCTTTGTT	TCATAAAGAAG	720
	TGCCATAAAC	TCGTCACAAAT	TGAATGTTGG	CGGCATTCCTT	TGCCCCAGGA	ACCACTGATG	780
95	CCCATGGATC	AGTCATCCAT	GCATTCTGAC	CATGCACAGA	CAGTAATTCC	ATATAATCC	840
	TCAAGTCATG	AGAGTTTGGG	TCAAGTTGCTG	GAAGAAAAAG	AGGAATGAA	CACCAGGGAA	900
100	AGTGGCAAAG	CTTCATCCAG	TCTAGGTCTT	CAGGATTTTG	ATTTCCTGG	GTTAATAGGA	960
	AGAGGAAGT	ATGCAAAGT	ACTGTTGGTT	CGATTTAAAAA	AAACAGATCG	TATTTATGCA	1020
105	ATGAAAGTTG	TGAAAAAAAGA	GCTTGTTAAT	GATGATGAGG	ATATTGATTG	GGTACAGACAA	1080
	GAGAAGCATG	TGTTTGAGCA	GGCATTCAAT	CATCCTTCC	TTGTTGGGCT	GCATTCTTGC	1140
110	TTTCAGACAG	AAAGCAGATT	GTTCCTTTGT	ATAGACTATG	TAAATGGAGG	AGACCTAATG	1200
	TTTCATATGC	AGCGACAAAG	AAAATCTCT	GAAGAACATG	CCAGATTTA	CTCTGCAGAA	1260

ATCAGTCTAG CATTAAATTA TCTTCATGAG CGAGGGATAA TTTATAGAGA TTTGAAAAGTG 1320
 GACAATGTAT TACTGGACTC TGAAAGGCCAC ATTAAAATC A CTGACTACGG CATGTGAAG 1380
 GAAGGATTAC GGCAGGAGA TACAACCAGC ACTTTCTGTG GTACTCCTAA TTACATTGCT 1440
 CCTGAAATT TAAGAGGAGA AGATTATGGT TTCAGTGTG ACTGGTGGC TCTTGGAGTG 1500
 5 CTCATGTTTG AGATGATGGC AGGAAGGTCT CCATTTGATA TTGTTGGAG CTCCGATAAC 1560
 CCTGACCAAGA ACACAGAGA TTATCTCTTC CAAGTTATT TGAAAAAAC AATTCGCATA 1620
 CCACGTTCTC TGCTCTAAA AGCTGCAAGT GTTCTGAAGA GTTTCTTAA TAAGGACCC 1680
 10 AAGAACCGAT TGGGTTGTCA TCCTCAAACA GGATTTGCTG ATATTCAAGG ACACCGTTC 1740
 TTCCGAAATG TGAATGGGA TATGATGGAG CAAAAACAGG TGGTACCTCC CTTAAACCA 1800
 AATATTCTG GGGAAATTGGG TTGATGACAC TTGATGCTC AGTTTACTAA TGAACTGTC 1860
 CAGCTCACTC CAGATGACGA TGACATTGTG AGGAAGATTG ATCAGTCTGA ATTTGAAGGT 1920
 TTTGAGTATA TCAATCCTATC TTGATGCTG GCAGAAAGAT GTGCTCTGATC CTCACTTTTC 1980
 15 AACCATGTA TCTACTCATG TTGCCATTAA ATGATGGAT AAACCTGCTG CAAGCCTGGA 2040
 TACAATTAAAC CATTTTATAT TTGCCACCTA CAAAAAAACAA CCCAATATCT TCTCTTGTAG 2100
 ACTATATGAA TCAATTATTA CATCTGTTT ACTATGAAA AAAAATTAAT ACTACTAGCT 2160
 TCCAGACAAAT CATGTAAAAA TTAGTTGAA CTGGTTTTC AGTTTTAAA AGGCCTACAG 2220
 ATGAGTAATG AAGTACCTT TTGTTTAA AAAAAAAAAA G

SEQ ID NO:20 QAA1 Protein sequence:

Protein Accession #: NP_002731

1	11	21	31	41	51
MSHTVAGGGS	GDHSHQVRVK	AYYRGDIMIT	HFEPSISFEG	LCNEVRDMCS	PDNEQLFTMK
WIDEEDGPDT	VSSQLEELERA	FRLYELNKS	ELLIVFPCV	PERPGMPCPG	EDKSIYRRGA
RRWRKLYCAN	GHTFQAKRFN	RRAHKCAITD	RIWGLGRQGY	KCINCKLLVH	KKCHKLVTIE
CGRHSLPQEY	VMPMDQSSMH	SDHAQTVIPI	NPSSHESLDQ	VGEKEEAMNT	RESGKASSL
GLQDFDLRLR	IGRGSYAVKL	LVRKKTDRI	YAMKVVKKEL	VNDDEDEDIDWV	QTEKHVFQEA
SNHPLFLVGLH	SCFQTESRLF	FVIEVNNGGD	LMFHMQQRQRK	LPEEHARFYS	AEISLALNYL
HERGIIYRDL	KLDNVLLDSE	GHIKLTDYGM	CKEGLRPGDT	TSTFCGTPNY	TAPEILRGED
YGFSDVWWAL	GVLMFEMMAG	RSPFDIVGSS	DNPQNTEDY	LFQVILEKQI	RIPRSLSVKA
ASVLKSFLNK	DPKERBLGCHP	QIGFADIQGH	FFFRNVDWDM	MEQKQVVPFF	KPNISGEFGL
DNFDSQFTNE	PVQLTPDDDD	IVRKIDQSEF	EGFEYINPLL	MSAEECV	540

SEQ ID NO:21 OBH2 DNA SEQUENCE

Nucleic Acid Accession #: L05628

Coding sequence: 197-4792 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51
CCAGGGCGCG	TTGGGGCCCC	GGCCCCGGCT	CCCTCGCGCG	CCGGCGCGCG	CGCCGCGGCC
GCCGGCGCG	CCGGCGCGAG	CCCTAGGGCC	AGCACCGGG	CCCGATCACC	CGCCGCGCGG
TGCCCGCGC	CGCCCGCGC	AGAACCCGG	CCCGATCACC	CCGGCGCCGG	TGCCCGCCGC
CGCCCGCGC	ACCCGATGG	CGCTCCGGGT	CTCTGCAAGC	CCGGATGGCT	CCGACCCGCT
CTGGGACTGG	AATTCACCTG	GGATACCCAG	CAACCCCGAC	TTCACCAAGT	GCTTTAGAAA
CACGGCTCT	GTGTGGGTG	CTTGTGTTTA	CCCTCTGGCC	TGTTTCCCT	TCTACTCCCT
CTATCTCTC	CGACATGACC	GAGGCTACAT	TCAGATGACA	CCCTCTCAACA	AAACCAAAAC
TGCTTGGGA	TTTTGCTGT	GGATCGCTG	CTGGGCGAGAC	CTCTTCTACT	CTTTCTGGGA
AAGAAGTCGG	GGCATATTCC	TGGCCCGAGT	GTTCTGGTC	AGCCCAACTC	TCTTGGGCAT
CACCAACCTG	CTTCTACTT	TTTAAATTCA	GCTGGAGAGG	AGGAAGGGAG	TTCAGTCTTC
AGGGATCATG	CTCAGCTTCT	GGCTGGTAGC	CTTACTGTGT	GGCCCTAGCCA	TCTTGAGATC
55 CAAAATTATG	ACACGCTTAA	AAAGGATGTC	CCAGGTTGGAC	CTGTTTCTG	ACATCACTTT
CTACGTCTAC	TTTCCCTCT	TACTCATTCA	GCTCGCTCTG	TCCCTGTTCT	CAGATCGCTC
ACCCCTGTT	TGCGAAACCA	TCCACGACCA	TAATCCCTGC	CCAGATGCTCA	GGCCTTCTT
CCTGTCGAGG	ATCACCTCTT	GGTGGATGAC	AGGGTTGATT	GTCCGGGGCT	ACGCCAGCC
CCTGGAGGGC	AGTGACCTCT	GGTCCTTAAA	CAAGGAGGAC	ACGTGGAAAC	AAAGTCGTGCC
TGTTTGGTA	AAGAACGTGA	AGAAGGAATG	AGGAAGGACAG	CGGGTAAGGTT	1020
TGTGTACTCC	TCCAAGGATC	CTGCCCCAGC	GAAGAGAGAT	TCCAAGGTTG	ATGCGAATGA
GGAGGTGGAG	GCTTGTATCG	TCAAGTCCCC	ACAGAAGGAG	TGGAACCCCT	CTCTGTTAA
GCTGTATAC	AAGACCTTTC	GGCCCTACTT	CCCTCATGAGC	TTCTCTTCTCA	AGGCCATCTCA
CGACCTGATG	ATGTTTCCG	GGCCGAGCAT	CTTAAAGTTG	CTCATCAAGT	TGGTGAATGA
60 CACGAAGGCC	CCACGACTGCC	AGGGCTACTT	CTACACCGTC	CTGCTGTTTG	TCACTGCCTG
CCTGCAGACC	CTCGTGTG	ACCACTACTT	CCACATCTGC	TCCTGTCAGTG	CGATGAGGAT
CAAGACCGCT	GTCAATTGGG	CTCTCTATCG	GAAGGCCCTG	GTGATCACC	ATTCAGCCAG
AAAATCTCC	ACGGCTGGGG	AGATTGTCAA	CTCTCATGCT	GTGGACGCTC	AGAGGTTCAT
GGACTTGGCC	ACGTACATTA	AGATGATCTG	GTCAAGCCCC	CTGCAAGTCA	TCTTGTCTCT
70 CTACCTCTG	TGGCTGAATC	TGGCCCTTC	CGTCTGGCTG	GGACTGGCCG	TGATGGTCTCT
CATGGTGCC	GTCAATGCTG	TGATGGCGAT	GAAGACCAAG	ACGTATCAGG	TGCCCCACAT
GAAGACCAA	GACAATCGGA	TCAGCTGAT	CAACGAAATT	CTCAATGGGA	TCAAAAGTGCT
AAAGCTTAT	GCCTGGAGC	TGCCATTCAA	GGACAAAGGTG	CTGGCCATCA	GGCAGGAGGA
GCTGAAGGTG	CTGAAGAAGT	CTGCCCTACCT	GTCAAGCCGTG	GGCACCTTCA	CCTGGGTCTG
75 CACGCCCTT	CTGGTGGCCT	TGTCACATT	TGCCGTCTAC	GTGACCATTTG	ACGAGAACAA
CATCCTGGAT	GCCCAGACAG	CCTCTGTGTC	TTTGGCTTG	TTCACACATCC	TCCGGTTTCC
CCTGAACATT	CTCCCATG	TCATCAGCAG	CATCGTGCAG	GGAGGTGTCT	CCCTCAAACG
CCTGAGGATC	TTTCTCTCC	ATGAGGAGCT	GGAACCTGAC	AGCATCGAGC	GACGGCTGTG
CAAAGACGGC	GGGGCACGA	ACAGCATCAC	CGTGAGGAAT	GGCACATTCA	CCTGGGCCAG
80 GAGGACCCCT	CCCACACTGA	ATGGCATTAC	CTTCTCCATC	CCCGAAGGTG	CTTGGTGGC

CGTGGTGGGC CAGGTGGCT CGGGAAAGTC GTCCCTGCTC TCAGCCCTCT TGGCTGAGAT 2280
 GGACAAAGTG GAGGGCACG TGGCTATCAA GGCTCCGTG GCCTATGTC CACAGCAGGC 2340
 CTGGATTCA GATGATTCTC TCCGAGAAAA CATCTTTTG GGATGTCAGC TGGAGGAACC 2400
 5 ATATTACAGG TCCGTATAC AGGGCTGTGC CCTCTCCCA GACCTGGAAA TCCTGCCAG 2460
 TGGGATCGG ACAGAGATG CGGAGAAGGG CGTAACCTG TCTGGGGGCC AGAACGAGCC 2520
 CGTGAGCCTG GCCCGGGCG TGACTCCAA CGCTGACATT TACCTCTCG ATGATCCCCCT 2580
 10 CTCACAGTG GATGCCATG TGGGAAACAA CATTTGAA ATGATGATTG CCCCAAGGG 2640
 GATGCTGAAG AACAGACGC GGATCTGGT CACGCACAGC ATGAGCTACT TGCCGCAGGT 2700
 GGAGCTCATC ATCGTATCA GTGCGGCCA GATCTCTGAG ATGGCTCTCT ACCAGGAGCT 2760
 15 GCTGGCTCGA GAGCGGCCCT CGCTGAGTT CCTGGTACCA TATGCCAGCA CAGACGAGGA 2820
 GCAGGATGCA GAGGAGAACG GGGTCACGGG CGTCAGCGGT CCAGGGAAGG AAGCAAAGCA 2880
 AATGAGAAAT GGCATGCTTG TGCAAGGACAG CAACTGAGA GACAGCTCAG 2940
 CAGCTCTCC TCCTATAGTG GGGACATCAG CAGGCACCC AACAGCACCG CAGAACTGCA 3000
 20 GAAAGCTGAG GCCAAGAAGG AGGAGACCTG GAAGCTGATG GAGGCTGACA AGGCGCAGAC 3060
 AGGGCAGGTC AAGGTTTCGG TGACTGGGA CTACATGAGA GGCATCGGAC TCTTCATCTC 3120
 CTTCTCAGG ATCTCCCTG TCATGTTGAA CCATGTCGCG CGCTGGCTT CCAACTATTG 3180
 GCTCAGCCTG TGGACTGATG ACCCCATCGT CAACCGGACT CAGGAGCACCA CGAAAGTCCG 3240
 GCTGAGCCTG TATGGAGCCC TGGCATTTC ACAAGGGATC GCGGTGTTG GCTACTCCAT 3300
 25 GGGCTGTCTG ATCGGGGGCA TCTGGCTTC CGCGTGTCTG CACGTGGACC TGCTGACAG 3360
 CATCCTCGGG TCACCCATGA GCTCTTGTG CGGGACCCCC AGTGGGAACC TGTTGAACCG 3420
 CTTCTCAGG GAGCTGGACA CAGTGGACTC CATGATCCCC GAGGTCATCA AGATGTTCAT 3480
 GGGCTCCCTG TTCAACGCTA TTGGTGCCTG CATCGTTATC CTGCTGGCCA CGCCCATCGC 3540
 CGGATCATC ATCCGCGGCT TTGGCCTCAT CTACTCTTC GTCTGAGGGT TCTACGTGGC 3600
 TTCCCTCCGG CAGCTGAAGC GCTCTGAGTC GGTCAGCCGC TCCCCGGTCT ATTCCCATTT 3660
 30 CAACGAGACC TTGCTGGGGG TCAGCGTCAT TCAGGCCTTC GAGGAGCAGG AGCGCTTCAT 3720
 CCACAGAGT GACCTGAAGG TGAGCAGAA CGAACAGGCC TATTACCCCA SCATCTGGC 3780
 CAACAGGTG CGGCCGCTG GGCTGGAGTG TGTTGGCAAC TGTCATGTTG TTGTTGCTGC 3840
 CCTGTTGCG GTGATCTCCA GGACACAGCT CAGTGTGCG TTGGTGGGCC TCTCAGTGTG 3900
 TTACTCATTG CAGGTCACCA CGTACTTGAA CTGGCTGGTT CGGATGTCAT CTGAAATGGA 3960
 35 AACAAACATC GTGGCGTGG AGAGCTCAA GGAGTATTCA GAGACTGAGA AGGAGGCGCC 4020
 CTGGCAATC CAGGAGACAG CTCCGCCCG CAGCTGGCCC CAGGTGGGCC GAGTGGAAATT 4080
 CCGGAACTAC TGCTCGCGT ACCGAGAGGA CCTGGACTTC GTTCTCAGGC ACATCAATGT 4140
 CACGATCAAT GGGGAGAAA AGTCGCGAT CGTGGGGCGG ACGGGAGCTG GGAAGTCGTC 4200
 CCTGACCTG GGCTTATTTC GGATCAACGA CTCTGCCGA GGAGAGATCA TCATCGATGG 4260
 CATCAACATC GCCAAGATCG GGCTGCACGA CCTCCGCTTC AAATCACCA TCATCCCCCA 4320
 GGACCTGTT TTGTTTCTGG TTGCTCCCTCG AATGAACTC GACCCCATTC GCCAGTACTC 4380
 40 GGATGAGAA GTCTGGACCT CCTCTGGAGCT GGCCCCACCTG AAGGACTTCG TTGTCAGCCCT 4440
 TCTCTGACAAG CTAGGACATC AAATGTCGAGA AGGGGGGGAG AACCTCAGTG TCGGGCAGCG 4500
 CCAGCTTG TGCTTAGCCC GGGCCCTGCT GAGGAAGACG AGATCCCTG TTGTTGGATGA 4560
 GGCACCGGCA GCGCTGGACCC TGAAAGACGA CGACCTCATC CAGTCCACCA TCCGGACACA 4620
 GTTCGAGGAC TGCAACCGTCC TCACCATCGC CCACCCGGCTC AACACCATCA TGGACTACAC 4680
 AAGGGTATC GTCTGGACA AAGGAGAAAT CCAGGAGTAC GGCGCCCTCAT CGGACCTCCT 4740
 GCAGCAGAGA GGTCTTTCTC ACAGCATGCC CAAAGACGCC GGCTTGGTGT GAGCCCCAGA 4800
 GCTGGCATAT CTGGTCAGAA CTGCAAGGGC TATATGCCAG CGCCCAAGGGG GGAGTCAGTA 4860
 CCCCTGTTAA ACCAACGCTC CCACACTGAA ACCAAACAT AAAAACAAA CCCAGACAAC 4920
 45 CAAACATAT TCAAAGCAGC AGGACACGCC ATCCGCTCCC CTGCTGGAA CTGCTGTGA 4980
 AGACCCAGGA GAGACAGAGA TCGGAACAC C

50 SEQ ID NO:22 OBH2 Protein sequence:
Protein Accession #: AAB46616

	1	11	21	31	41	51	
55	MLRGFCSD	GSDPLWDWNV	TWNTSNPDT	KCFQNTVLVV	VPCFYLWACF	PFYFLYLSRH	60
	DRGYIQMTP	NKTKTALGFL	LWIVCWADLW	YSFWERSRG	FLAPVFLVSP	TLLGITLTLA	120
	TFPLIQLERR	GVQSSGIMLT	FLWVALVCAL	AILRSKIMTA	LKDEAQVDFL	RDITFYVYFS	180
	LLLIQLVLSC	FSDRSPLFSE	TIHDPNCPCE	SSASFLSRIT	FWWITGLIVR	GYQPLEGSD	240
60	LWSLINKEDT	EQVPVPLVKN	WKECAKTRK	QPVKVVYSSK	DPAQPKESSK	VDAEEVEAL	300
	IVKSPQKEWN	PSLFLKVLYK	FGPYFLMSFF	PKAIHDLMM	SGPOILKLII	KFVNNDTAKP	360
	WQGYIFTVLL	FVTACLQTLV	LHQYFHICFV	SGMRKTPAVI	GAVYRKALVI	TNSARKSSTV	420
	GEIVNLMVSD	AQRFDMLATSE	INMIWSAPLQ	VILALYLLWL	NLGPSVLAGV	AVMVLMPVNV	480
	AVMAMKTKTY	QVAHKMSKDN	RIKLMNEILN	GKVLKLYELA	EFLAKDKVLA	IRQBELKVLK	540
65	KSAYLSAVGT	FTWVCTPFLV	ALCTFAVYVT	IDENNIILDAQ	TAFVSLALFN	ILRFLPLNLIP	600
	MVISSIVQAS	VSLKRLRIFL	SHEELEPDISI	ERRRPVKDGGG	TNSITVRNAT	FTWARSDDPT	660
	LNGITFSIPE	GALVAVVGQV	GGCKSSLSSA	LIAEMDKVEG	HVAIKGSVAY	VPQQAQIOND	720
	SLRNLILFQ	QLEPEYRSV	IQCACALLPD	EILPMSGDRTE	IGEKGVNLSG	GQKQRVSLAR	780
	AVVSYNADIYL	FDDPLSAVDV	HVGKHIFENV	IGFPKGMKLN	TRILVTHSMS	YLPOVDVIIIV	840
70	MSGGKISEMG	SYQUELLARDG	AFAEFLRTYA	STEQEQAEE	NGVTGVSGPG	KEAKQMENGM	900
	LVTDSAGKQL	QRQLSSSSVY	SGDISRHHS	TAELQKAEEAK	KEETWKLMEA	DKAQTGQVKL	960
	SVYWDYMKAI	GLFISFLSIF	LFMCNHVSAL	ASNYWLSLWT	DDPIVNGTQE	HTKVRLSVYG	1020
	ALGISQGIAV	FGYSMAVSIG	GILASRCLHV	DLLHSILRSP	MSFFERTPSG	NLVNRFSKEL	1080
	DTVDSMIEPV	IKMFMGSLFV	VIGACIVILL	ATPIAAIIIP	PLGLIYFFFVQ	RFYVASSRQL	1140
75	KRLESVSRSP	VYSHFNETLL	GVSVIRAFEE	QERFIHQSDL	KVDENQKAYY	PSIVANRWLA	1200
	VRLECVGNCI	VLFALFAV	SRHSLSLAGLV	GLSVSYSLQV	TTYNLWLRM	SSEMETHNIVA	1260
	VERLKEYSET	EKEAPWQIQE	TAPPSSWPQV	GRVEFRNYCL	RYREDDLFVL	RHINTVTING	1320
	EVKGIVGRTG	AGKSSSLTGL	FRINESAEGE	IIIDGINIAK	IGLHDLRFKI	TIIPQDFVLF	1380
	SGSLRMNLDP	FSQYSDEEVW	TSLELAHKD	FVSLAPDKLD	HECAEGGENL	SVGQRQLVCL	1440
80	ARALLRKTKI	LVLDEATAAV	DLETDDLIQS	TIRTQFEDCT	VLTIAHRLNT	IMDYTRVIVL	1500
	DKGEIQEYGA	PSDLLQQRGL	FYSMAKDAGL	V			

SEQ ID NO:23 PAA2 DNA SEQUENCE

Nucleic Acid Accession #: NM_013309

Coding sequence: 1-1290 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
5							
10	ATGGCCGGCT	CTGGCGCTG	GAAGGCCCTC	AAATCTATGC	TAAGGAAGGA	TGATGCCCGC	60
15	CTGTTTTAA	ATGACACCG	CCCTTTGAC	TTCTCGGATG	AGGCAGGGGA	CGAGGGGCTT	120
20	TCTCGTTCA	ACAAACTTCG	AGTGTGTTG	GCCGATGACG	GTTCGAAGC	CCCGAAAGG	180
25	CTGTAAACG	GGGGCACCC	GACCCCTCCAG	GCCGACGATG	ATTCCCTTACT	GGACCAAGAC	240
30	TTACCTTTGA	CCAAACAGTC	GCTGAGTTG	AAAGTGGACT	CCTGTGACAA	CTGCAGCAA	300
35	CAGAGAGAGA	TACTGAAGCA	GAGAAAGGTG	AAAGCCAGGT	TGACCATTTG	TGCCGTTCTG	360
40	TACTTGCTT	TCATGATTG	AGAACTTGT	GGTGGATACA	TTGCAAATAG	CCTAGCAATC	420
45	ATGACAGATG	CACTCAT	GTAACTGAC	TCAAAGCGCA	TCATACATC	CCTGCTTGCT	480
50	TTGGCTTAT	CATAAACATC	ACCAACAAA	AGATTCACCT	TTGGATTTC	TCGCTTAGAG	540
55	GTTTGTCAG	CTATGATTAG	TGTGCTGTTG	GTGATATAC	TTATGGGATT	CCTCTTATAT	600
60	GAAGCTGTGC	AAAGAACT	CCATATGAAC	TATGAAATAA	ATGGAGATAT	AATGCTCATC	660
65	ACCGCAGCT	TTGGAGTTG	AGTATATGT	ATATGGGT	TTCTGTTGAA	CCAGCTGTT	720
70	CACCGTCACT	CCCCATCCC	CTTCCCTGCCT	TCAAATTCCC	CTACCAGAGG	TTCTGGGTGT	780
75	GAACGTAACC	ATGGGCAGGA	TAGGCTGGCA	GTGAGAGCTG	CATTGTACA	TGCTTTGGGA	840
80	GATTGGTAC	AGAGTGTG	TGTGCTAATA	GCTGCATACATA	TCATACGATT	CAAGCCAGAA	900
85	TACAAGATTG	CTGATCCCAT	CTGTCATAC	GTATTTCTAC	TACTTGTGTC	TTTACAACA	960
90	TITCGAATCA	TATGGGATAC	AGTAGTTATA	ATACTAGAA	GTGTGCCAAG	CCATTGAAAT	1020
95	GTAGACTATA	TCAAAGAACG	CTTGATGAAA	ATAGAAAGATG	TATATTCACT	CGAAGATTTA	1080
100	AATATCTGGT	CTCTCACTTC	AGGAAATCTT	ACTGCCATAG	TTCACATACA	GCTAATTCCT	1140
105	GGAAAGTCAT	CTAAATGGGA	GGAAAGTACAG	TCCAAGGAA	ACCATTATT	ATTGAACACA	1200
110	TTTGGCATGT	ATAGATGTAC	TATTCAGTT	CAGAGTTACA	GGCAAGAA	GGACAGAACT	1260
115	TGTGCAATT	GTCAAGAGTC	TAAGTCCC <u>TGA</u>				

SEQ ID NO:24 PAA2 Protein sequence:

Protein Accession #: NP_037441

	1	11	21	31	41	51	
5							
10	MAGSGAWKRL	KSMLRKDDAP	LFLNNTSAFD	FSDEAGDEGL	SRFNKLRRVVV	ADDGSEAPER	60
15	PVNGAHTLQ	ADDDSLQDQ	LPLTNSQLSL	KVDSDCNCNSK	QREILKQRKV	KARLTIAAVL	120
20	YLLFIMIGELV	GGYIANSLAI	MTDALHMLTD	LSAIILTLLA	LWLSSKSPTK	RFTFGFHRLE	180
25	VLSAMISVLL	VYIILMFLY	EAVQRTIHMN	YEINGDIMLI	TAAVGVAVNV	IMGFLLNQSG	240
30	HRHSHSHSLP	SNSPTRGSGC	ERNHGQDSL	VRAAFVHALG	DLVQSVGVLI	AAIIRFKPE	300
35	YKIADPICTY	VFSLLVAFTT	FRIIWDTVVI	ILEGVPSHLN	VDIKEALMK	IEDVYSVEDL	360
40	NIWSLTSKGK	TAIVHIQLIF	GSSSKWEEVQ	SKANHLLNNT	FGMYRCTIQL	QSRYQEVDRT	420
45	CANCQSSSP						

SEQ ID NO:25 PAA3 DNA SEQUENCE

Nucleic Acid Accession #: AB037765
Coding sequence: 375-2798 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
55							
60	GCGGAGTCGG	TGGCGGCTGC	AGGCTGGGAG	GGAGAAAGTGC	TACGCCCTTG	CAGGTTGGCG	60
65	AAAGGGTCTC	AGGCTACCCG	GCTAGTCTGG	CAAGGGCCCG	TCTTCTGCT	CTTCCTCCGT	120
70	CGCGTGGCGG	CGGGAACTGT	TGGCCGCGCG	GCCCTCGGAA	CGGCCCGAGGT	CCCCGCCCGC	180
75	AGGCTCGGGG	CAGATAACAT	AGATCATCAG	TAGAAAACCT	CTTGAAGTTG	TTCAAGAAAA	240
80	ATTTGAAAGT	AGCAAAATAG	AAATAAAGA	ATTAACAGCA	GATACAGAGG	ACAGCATGGA	300
85	AGTGTGTC	TAGGAACACG	AAACACAGCG	TGAAAAAAAC	GACAAAATCC	GCTCAGATAC	360
90	AACTGCACT	GATAATGTTT	TCCCGCTTCA	ATGTCCTTACG	AGTTGGGATC	TCTTTTGTC	420
95	TAATGTGCA	TTTTTACATG	CCAACAGTAA	ACTCTTTAAC	AGAACTGACT	CCTCAGAAAT	480
100	ATTTTACTAC	ATTCGAACCA	GGTCTGAG	AACTGAATGA	GGCTGTTAGA	CCTCTGCAAGG	540
105	ACTATGAAAT	TTCACTGTC	AAAGTTTAAT	GTGTCAGAA	AGAAATATCA	AGATACTGTG	600
110	GAAAAGAAA	GGATTGATG	AAAGCATATT	TATTCAGGG	AAACATATTG	CTCAGAGAAAT	660
115	TCCCTACTGA	CACCTGTTT	GATGTGAAT	CCATTGTCGC	CCATGTTCTC	TTTGCTCTTC	720
120	TTTTAGTG	AGTAAATAT	ATTACCAAC	TGGAAGACCT	TCAGAACATA	GAAAATGTC	780
125	TGAAAGAAA	AGCAAAATAT	ATATCTCAT	ATGTAAGAGC	CATTGGAATA	CCAGAGCACA	840
130	GACCACTCAT	GGAAAGCCGGT	TTTGTGTTG	GGACTACATA	CCAATTGTC	TAAACACAG	900
135	AAATGCGCT	TTTGGAAAGA	ATTGGCTCTG	AGGATGTTGA	ATATGCACAT	CTCTACTTTT	960
140	TTCATTGTA	ACTAGTCTTG	GACTTGACCC	ACCAATGTA	AAGAACACTA	ATGGAACAGC	1020
145	CATTGACTAC	ACTGAACATT	CACCTGTTA	TTAAGACAAT	GAAGCCACCT	CTGTTGACTG	1080
150	AACTGCTGA	AGATCTCAA	CAAGTTCAA	CTGTCCATCT	CCAACTGGGC	TTACCAACTGG	1140
155	TTTTTATG	TAGGCAACAG	GCTACTTATG	AAAGCTGATAG	AGAACTGCA	GAATGGGTTG	1200
160	CTTGGCGCT	TCTGGGAAAA	GCAGGAGTTC	TACTCTGTT	AAAGGACTCT	TTGGAAGTGA	1260
165	ACATTCCTCA	AGATGCTAAT	GTGGCTCTCA	AAAGAGCAGA	AGAGGGAGTT	CCAGTGGAAAT	1320
170	TTTTGGTATT	ACATGATGTT	GATTAAATAA	TATCTCATGT	GGAAAATAAT	ATGCACATTG	1380
175	AGGAATAC	AGAGATGAA	GACAATGACA	TGGAAGGTC	AGATATAGAT	GTTCAGGATG	1440
180	ATGAAGTGGC	AGAAACTGTT	TTCAAGAGATA	GGAAGAGAAA	ATTACCTTTG	GAACCTACAG	1500

TGGAACTAAC AGAAGAAAACA TTTATGCAA CAGTGATGGC TTCTGACAGC ATAGTACTCT 1560
 TCTATGCTGG TTGGCAAGCA GTATCCATGG CATTGGCGA ATCCTATATT GATGTGGCAG 1620
 TTAAACTGAA AGCCACATCT ACTATGCTTC TTACTAGAAT AAACGTGCA GATTGGCTG 1680
 ATGTATGTC TAAAGCAAAAT GTTACTGAAT TTCTATCAT AAAGATGTC AAGAAAGGC 1740
 AGAACCCAGT ATCTTATGCT GGAATGTTAG GAACCCAAAGA TCTCCCTAAAAA TTTATCCAGC 1800
 TCAACAGGAT TTCTATCCA GTGAATATAA CATCGATCCA AGAAGCAGAA GAATATTAA 1860
 GTGGGAAATT ATATAAACAG CTCATCTTG ATTCTAGTGT GTCACTGTTG GGACTATTAA 1920
 GTCCAACCAC GAAAACAGCA AAAGAAGATT TTAGTGAAGC AGGAAACTAC CTAAAAGGAT 1980
 ATGTATCAC TGGAAATTCTG TCTGAAGAG ATGTTTGCTG ATCTGTCACCC AAATATGCTG 2040
 CAAGCTTCC AGGCCCTGCT CTTGCCAGAC ACACAGAAGG CAAAAATAGAG AGCATCCCAC 2100
 TAGCTAGCAC ACATGCACAA GACATAGTTC AAAATAAAAC AGATGCACAT CTGGAAATGT 2160
 TTCCCGAAAT CACTGTGCAA AATCTTCCCA GTTATTTAGC ACITTCAGAAA CCATTATTGA 2220
 TTTGTTCA TGATGGCACT GTAAATCCTC AAATAAAAAA AGCAATATTG ACACTGGTAA 2280
 AGCAGAAAAT CTTGGATTC TTTACTCCAT GCTGGTTAAA TCTAAAGAAT ACTCCAGTGG 2340
 GGAGAGGAAT CTTGGGGCA TATTGATC CTCTGCCCTCC CCTTCCTCTT CTTGTTTTGG 2400
 TGAATCTGCA TTCAGGTGCG CAAGTATTG CATTTCCTTC AGACCCAGGCT ATAATTGAAG 2460
 AAAACCTTGT ATTGTTGGCTG AAGAAATTAG AAGCAGGACT AGAAATATCAT ATCACAATT 2520
 TACCTGCTCA AGAATGGAAA CCTCCTCTTC CAGCTTATGA TTTCTAAGT ATGATAGATG 2580
 CGCGAACATC TCACGTGCG ACTAGGAAAG TTCCCAAGTG TATGAAAGAA ACAGATGTC 2640
 AGGAGATGA TAAAGAACAA CATGAAGATA AATCGGCAGT CAGAAAAGAA CGGATTGAAA 2700
 CTCTGAGAAT AAACCATTTG AATAGAAGTA ATTGGTTAA AGAAGCAGAA AAATCATTTA 2760
 GACGTGATAA AGAGTTAGG TGCTCAGAAAG TGAACTAATT TTATAGGCT GTGGTTTCCA 2820
 AAATTTTTTGGCTGATAG ACTTAATTAA TTTCCTTAAAGA GAATAATATT AAATCATTTC 2880
 AAGTTGCGAGT ACTAGTGCCTCA CCAATAGAA TTATAAATATA AGTCACATAT TTTATTTAA 2940
 ATTTCTAGT AACTACATTA AACAAAGTAA AAGTGAGCG AGGAAAATAA TTTTGATATT 3000
 ACTTTCACC CAGTAGTAA CCCCCAAATAG CGAAATATAG AAATTAATTAA TGAGATATT 3060
 TACATCTTCTT TTGTAACCAA GTCTCTTAA TGCACTGACAT ATTCTTATACT TACTGCATT 3120
 CTTACTCTCG AGTAGCCATA TTCAAGTGT TCATTGCCAC ATGTGGCCTG TGACTACTGT 3180
 ATTGGACAGT TCACTGACTACG ACAAACAACTA GCATAATTAA CTTAGTTCTA GCCATGATT 3240
 CTATTTGGCT TAATAAATAA CTCAATACAG ATTTAATTC ACAGTGCAATT CATGCAGCTG 3300
 ACAGTTATAT TTTGTTTATT GGAGTCTGAT TATTAAAATC AGCGTTTGTG AACCTCAGGG 3360
 GATATTTAGC AATTGTCGGG AGACATTTT GATGTATGA CTAGGGCAGT TATTGACATT 3420
 TAGTACTGAG AGGGCATGGA TTCTGCTAAA TAACCTGCAT TGGACAGCGC CCCACAACAA 3480
 AGAATTATCC TGCCCCAAAT GGTAGTCTG CCAAGGCTGA GTAACTTGT GTTAAAGTA 3540
 ACCTGTGCGA GACTAGGTTT CCAGAATTTC CTGGTTCTGC TCACGTATCA TGTTTGGAAA 3600
 AATTGTCGGCT ATTAAGAGATA TGTTAGTATG TGCTTCTATCC TGATTATTAC CTGGATACAA 3660
 CTTGATCTTCTT TCTAATATTTC TCAGAAAGTGC ATGGGATAAAC CTCAGAAGAG GACTCAGAAT 3720
 GATATTATATA TTTTAAGTGA GTCTCTTAAAC CTCCCTTTAT TTCTACAAAGT TATATGGCTA 3780
 AATTTCAGAT TGAACAGGGG TTCAAGCATTC TGCCCATCTCC TCATGAAAG AGAGGCTCCC 3840
 TCACTCTGAG CGTCTCTGAA ATCTACCTCTT GCAAGCCTTC GACAATATCG TTGATCTCCC 3900
 TGAGCCACAC GGCCCTCATTC TGTTGAGGAG GAAAAGATTAA GCCAAAGACT TAATTTCTAT 3960
 TCCAATCAC TTAGCTGTTA GACTGATCTG TTGTTAGCAG TTGTTGCT CATTGTTGCT 4020
 CTGTCGATTT TTGAGAGAT TGTTGAGAAA TATTCTATTG GTGCTCTAC TGTTTTTTC 4080
 TTTTAAATAT CTACTTGATA TCTCTTCTT TAATTTTCT TCACATATGG TTGCTGAT 4140
 ACAACTGATT TTATTAACATG AAATTTAAGG AATCTAACAG CTAAACACTA GTAAGTGCAT 4200
 MTATTTCCCTT ATAACATAGA CCCCTTGCTA CCTCTCAGCAC CCTCTCCCTCA ATTNTTTTTC 4260
 CTGTCGATG TGATGCTGA TTAAACTCAT TTTCATTG TGTTATTTCT AATATGGGAA 4320
 CAATGAGAGT GAACTCTAAA TATAGGTGT AGTAATAAAA CATCATTAGC CTAAATTATTA 4380
 GAAAATGCTA ATTAAGTACC AGCACATAGA AACATGAAAT TGCTTAGTCA TTGACCTTT 4440
 GTCAAGCAATT TTGAGAGTCA TTATGTTTGC TCATAATTAA AAATAAAAGTG TCTGGTTTC 4500
 AGAATACCTT CAAAAAAA AAAAAA

SEQ ID NO:26 PAA3 Protein sequence:

Protein Accession #: BAA92582

55	1	11	21	31	41	51
	MFSGFNVFRV	GISFVIMCIF	YMPVTNSLPE	LSPQKYFSTL	OPGLEELNEA	VRPLQDYGIS
60	VAKVNCVKEE	ISRYCGKEKD	LMKAYLFKGN	ILLREFPTDT	LFDVNAIVAH	VLFALLFSEV
	KYTINLEDQ	NIEHNALKGKA	NIFSYSVRAI	GIPFEHRAMVE	AGFVYGTYYQ	FVLTTEIALL
	ESIGSEDVQE	AHLYFFFHCKL	VLDLTQQCRR	TIMEQPLTTL	NIHLFIKTMK	APLLTEVAED
65	PQQVSTVHLQ	LGLPLVFIVS	QQATYEADRR	TAEWVAWRLL	KGAGVULLLR	DSLEVNPQD
	ANVVFKRAEE	GVPVEFLVLH	DVDLISHVE	NNMHIEEIQE	DEDDNDMEGPD	IDVQDDEVAE
	TVFRDRKRL	PLETVELTEL	ETFNATVIMAS	DSIVLFYAGW	QAVMSAFLQS	YIDVAVKLKG
70	TSTMLLTRIN	CADWSDVCTE	QNVTTEFPVIK	MYKKGENFVS	YLGMGLTKDL	LKFQIQLNRIS
	YPVNITSQIE	AEEYLSGELY	KDLILYSSVS	VLGFLSPFMK	TAKEDFSEAG	NYLKGYVITG
	YVNEEDVLL	STKYAASLPA	LLRARTEGK	IIESIPLASTH	AQDIVQIITD	ALLEMFPEIT
	VENLPFYRFL	QKPLLILFSD	GTVNPQYKKA	IILVLVKQYKL	DSFTPWCWLNL	KNTPVGRGIL
75	RAYFDPLPPL	PLLVVLVNLHS	GGQVFAFPSD	QAIIEENLVL	WLKKLEAGLE	NHITILPAOE
	WKPLPLPAYDF	LSMIDAATSQ	RGTRKVPKCM	KETDVQENDK	BQHEDKSAVR	KEPIETLRIK
	HWNRSNWFKE	AEKSFRRDKE	LGCSKVN			

SEQ ID NO:27 PAA5 DNA SEQUENCE

Nucleic Acid Accession #: NM_012449

Coding sequence: 66-1085 (underlined sequences correspond to start and stop codons)

80	1	11	21	31	41	51
	CCGAGACTCA	CGGTCAAGCT	AAGGCGAAGA	GTGGGTGGCT	GAAGCCATAC	TATTTTATAG
	AATTAATGGA	AACCAGAAAA	GACATCACAA	ACCAAGAAGA	ACTTTGGAAA	ATGAAGCCTA

GGAGAAATTT AGAAGAAAGAC GATTATTTGC ATAAGGACAC GGGAGAGACC AGCATGCTAA 180
 AAAGACCTGT GCTTTGCGAT TTGACCAAA CAGCCCATGC TGATGAATT GACTGCCCTT 240
 CAGAACCTCA GCACACACAG GAACTCTTTC CACAGTGGCA CTGCAATT AAAATAGCTG 300
 5 CTATATAGC ATCTCTGACT TTTCTTACA CTCTTCTGAG GGAAGTAATT CACCCCTTTAG 360
 CAACTCCCA TCAACAAATAT TTTTATAAAA TTCCAATCCT GTTCATCAAC AAAGTCTTGC 420
 CAATGGTTTC CATCACTCTC TTGGCATTGG TTACCTGCC AGGTGTGATA GCAGCAATTG 480
 10 TCCAACCTCA TAATGGAACC AAGTATAAGA AGTTTCCACA TTGGTGGAT AAGTGGATGT 540
 TAACAAGAAA GCAGTTGGG CTTCTCAGTT TCCTTTTGC TGTAACCTGAT GCAATTATA 600
 GTCTCTCTT CCCATGAGG CGATCTTACA GATAACAGT GCTAAACTGG CCATATCAAC 660
 15 AGGTCACAA AATAAAAGAA GATGCCCTGGA TTGACCATGA TTGAGGAGA ATGGAGATT 720
 ATGTTGCTCT GGGAAATTGTT GGATTGGAA TACTGGCTCT GTTGGCTGTG ACATCTATT 780
 CATCTGTGAG TGACTCTTGC ACATGGAGAG AATTTCACTA TATTCAAGAG AAGCTAGGAA 840
 TTGTTTCCCT TCTACTGGGC ACAATCACAGC CATTGATTIT TGCCCTGAAAT AAGTGGATAG 900
 20 ATATAAAACA ATTGTTGATGG TATACACCTC CAACTTTAT GATAGCTGTT TTCCCTCAA 960
 TTGTTGCTCT GATATTTAAA AGCATACATAT TCCTGCCATG CTTGAGGAAG AAGATACTGA 1020
 AGATAGACA TGGTGGGA GACGTCAACAA AAATTAACAA ACTGAGATA TGTTCCCAGT 1080
 25 TGTAGAATTAA CTGTTTACAC ACATTTTGT TCAATTATGA TATATTTTAT CACCAACATT 1140
 TCAAGTTGT ATTGTTAAT AATATGATTA TTCAGGAAA AAAAAAAA AAAAAA
SEQ ID NO:28 PAA5 Protein sequence
 Protein Accession #: NP_036581

1 11 21 31 41 51
 MESRKDITNQ EELWKMKPRR NLEEDDYLHK DTGETSMLKR PVLLHLHQTA HADEFDPCSE 60
 25 LQHTEQLFPQ WHLPIKIAAI LASPTFLYTL LREVIHPLAT SHQQYFYKIP ILVINKVLP 120
 VSITLLALVY LPGVIAIVQ LHNGTKYKF PHWLDKWMLT RKQFGLLSFF FAVLHAIYSL 180
 SYPMRSRSYR KLLNWAYQV QONKEDAWIE HDVWRMEIYV SLGIVGLAIL ALLAVTSIPS 240
 30 VSDSLTWREF HYIQSKLGIV SLLLGTIHAI FIAWNKWDI KQFVWYTPPT FMIAVFLPIV 300
 VLIFKSILFL PCLRKKILKI RHGWEDVTKI NKTEICSQL

SEQ ID NO:29 PAA7 DNA SEQUENCE

Nucleic Acid Accession #: NM_030774
 Coding sequence: 1-963 (underlined sequences correspond to start and stop codons)
 1 11 21 31 41 51
 ATGAGTTCTC GCAACTTCAC ACATGCCACC TTGTCCTTA TTGGTATCCC AGGATTAGAG 60
 25 AAAGCCATT TCTGGGTTGG CTTCCTCCCTC CTTCATGT ATGAGTGGC AATGTTGG 120
 AACTGCATCG TGGTCTTCAT CGTAAGGAGC GAAACGAGC TGGCACGCTCC GATGTACCTC 180
 30 TTTCTGCA TGCTTGAGC CATTGACCTG GCCTTATCCA CATCCCCAT GCCTAACATC 240
 CTTGGCTTTTCTC TCTGTTTGAT TTCCCGAGAG ATTAGCTTC AGGCTGTCT TACCCAGATG 300
 TTCTTATTCTC ATGGCCCTTC AGCCATTGAA TCCACCATCC TGCTGGCCAT GGCCTTTGAC 360
 CGTTATGTTG CCATCTGCCA CCACTGCGC CATGCTCGAG TGCTCAACAA TACAGTAACA 420
 35 GCCCAGATTG GCATCGTGGC TGTTGTCGGC GGATCCCTCT TTGTTTCCCT ACTGCTCTG 480
 CTGATCAAGC GGCTGGCTT CTGCCACTCC AATGTCCTCT CGCACTCCCTA TTGTTGTCAC 540
 CAGGATCTAA TGAATGTTGC ACATGCGACG ACTTTGCCC ATGTTGGTATA TGGCTTACT 600
 40 GCCATTCTGC TGTTGATGGG CGTGGACCTA ATGTTCATCT CCTTGTCTTA TTTTCTGATA 660
 ATACGAACGG TTCTGCAACT GCCTTCCAAG TCAGAGCGGG CCAAGGCCCTT TGGAACCTGT 720
 45 GTGTCACACA TTGTTGTTGGT ACTCGCCCTTC TATGTCGCCAC TTATTTGGCTT CTCACTGTTA 780
 CACCGCTTTG GAAACAGCCTC CTACCCATT GTGCGTGTGTCATGGGTGA CATCTACCTG 840
 CTGCTGCTTC CTGTCATCAA TCCCATCATC TATGGTGCCA AAACCAAAACA GATCAGAAC 900
 CGGGTGTG 50 CTATGTTCAA GATCAGCTGT GACAAGGACT TGCAGGCTGT GGGAGGAAG 960
 TGACCTTCAA CACTACACT CTCCCTTACT TTATTGCTT GATAAACATA ATTATTTCTA 1020
 55 ACACATGCTT ATTTCAGTT GCCCTATAAGC ACATCACTAC TTTTCTCTGG CTGGAATAGT 1080
 AAACATAAGT ATGGTACATC TACCTAAAGG ACTATTATGT GGAATAATAC ATACTAATGA 1140
 AGTAAACATC GATTATAAGA CTACAAATAA ACCAAACATG CTTATAAACAT TAAGAAAAC 1200
 60 AATAAAAGATA CATGATTGAA ACCAAGTTGA AAAATAGCAT ATGCTTGGG GGAATATGTC 1260
 TCAAAATTACT ATGATTTAG TTGTTGCTCT ACTTTCTCTC TCTTTTTCT TCTTTTTT 1320
 TTTATTATGG TTAGCTGTC AATACAACTT TTTTTTTTT TGAGATGGGG TCTCGCTCTG 1380
 65 TCACCAAGGCT GGAGTGCAGT CGGCGCATCT CGGCTCACTG CAACCTCCAC ATCCCATGTT 1440
 GAAGTAATTG TTCTGCTCA GCCTCCCGAG TAGCTGGGAC TAGAGGAACG TGCCACCATG 1500
 ACTGGCTAAT TTCTGTTATT TTGTTAGTGA GACAGACTTT CACCATGTTG GCCAGGATGG 1560
 TCTCGATCTC CTGACCTGT GATCCACCCG CCTCAGCCTC CCAAAAGTGT GGGATTACAG 1620
 70 GTGTAACCA CTGTCGCCGG CCTGTTGATACA ACTTTTTAAA TAGGAAATAT GATAGCTTCG 1680
 CATGGTGTG TGCACTTATA GCCCCCACTG CCTGGAAAGC TGAGGTGGGA GAATCGCTTG 1740
 AGTAGGAGG TTTGAGGTTA CAGTGTATCA CGATCGTAC ACTACACTCC AGCCCTGGGCA 1800
 ACAGAGCAAC ACCCTGTCTC AAAGCATAAA ATGGAATAAC ATATCAAATG AAACAGGGAA 1860
 75 AATGAAGCTG ACAATTATAG GAAGCCAGGG CTGTCACAG TCTCTACTGT TATTATGCAT 1920
 TACCTGGAA TTATATATAAG CCCTTAAATAA TARTGCCAAT GAACATCTCA TGTTGCTCA 1980
 CAATGTCCTG GCACATTAT AAGTGTCTCA CAGGTTTTAT TGTTCTTCG TAACTTTATG 2040
 GAGTAGGTAC CATTGTTGTC TCTTTTATTAT AAGTGTGAGA AATGAAGTTT ATATTATCAA 2100
 80 GGGGACTAAA GTCACACGGC TTGTTGGCAC TGTTGCAAGA TTAAATTAA AATTTGATGG 2160
 TTGAATACAG TTACTTAATG ACCATGTTAT ATTGCTCTCT GTGTAACATC TGCCATTAT 2220
 TTCCCTCAGCT TGTACAATCC TCTGTTTCT CTCGTTACA CACTAACATC AATGGCTT 2280
 TACTTGTGAT GAGAGATAAC CTGCCCCTAG TTGTTGGCAAC CACATGCGAGA ATAATCCTGT 2340
 TTTCACAGCTG CCTTCTGTA TCTTATTGCT TGCTTTTTTC CAGATTCAAG GAGAATGTTG 2400
 TTGCTTATTT GTCTCTTACA TCTCCTGAT CATGCTCTCA TTTTTAATG TGCTCTGTC 2460
 CTGTCAAAAA TTGAAATGT ACACACATG CTATTGCTG AACTTGAGTA TAAGATAAAA 2520
 TAAATTTA TTTAAATT T

SEQ ID NO:30 PAA7 PROTEIN SEQUENCE

Protein Accession #: NP_110401

5	1	11	21	31	41	51	
MSSCNFTHAT	FVLIGIPGLE	KAHFWVGFPL	LSMYVVAMPQ	NCIVVFIVRT	ERSLHAPMYL		60
FLCMILAAIDL	ALSTSTMPKI	LALFWFDSRE	ISFEACLTQM	FFIHALSEI	STILLAMAFD		120
RYVAICHPLR	HAAVLNNTVT	AQIGIVAVVR	GSLFFFPLPL	LIKRLAFCHS	NVLSHSYCVH		180
QDVMLAYAD	TLPNVVYGLT	AIIILVMGVDV	MFISLSYFLI	IRTVLQLPSK	SERAKFGTG		240
VSHIGVVLAF	YVPLIGLSVV	HRFGNSLHPI	VRVVMGDIYL	LLPPVINPII	YGAKTKQIRT		300
RVLAMFKISC	DKDLQAVGGK						

SEQ ID NO:31 PAV6 DNA SEQUENCE15 Nucleic Acid Accession #: XM_050837
Coding sequence: 1-1020 (underlined sequences correspond to start and stop codons)

20	1	11	21	31	41	51	
ATGAACGGG	AGCTGCTGCT	GTGCGCTGCG	GTGCTGTGCG	CGCTGCTCCT	GCTCTGGTG		60
CAGCTGCTG	GCTTCTCTGAG	GACCTGACGG	TACTATGGGC	CGAGTGGCAG			120
GGACGACGCC	CAGAATGGGA	GTCGACTGAT	ATGGGTGTTG	GGGTGACTGG	AGCCCTGGAGT		180
GGAATTGGTC	AGGAAGCTGGC	TTAACAGTTG	TCTAAACTAG	GAGTTTCTCT	TGTGCTGTCA		240
GCCAGAAAG	TGCATGAGCT	GGAAAGGGTG	AAAAGAAAGAT	GCCTAGAGAA	TGGCAATTAA		300
AAAGAAAAAG	ATATACTGT	TTTCCCCCTT	GACCTGACCC	ACATGGTTTC	CCATGAAGCG		360
GCTACCAAAAG	CTGTTCTCCA	GGAGTTTGGT	AGAATCGACA	TTCCTGGTCAA	CAATGGTGG		420
ATGTCCTCAGC	GTTCTCTGTG	CATGGATACC	AGCTTGGATG	TCTACAGAAA	GCTAATAGAG		480
CTTAACACT	TAGGGACGCT	GTCCTTGACAA	AAATGTGTTG	TGCTCTCACAT	GATCGAGAGG		540
AAGCAAGGAA	AGATGTTAC	TGTGAATAGC	ATCCCTGGGTA	TCATATCTGT	ACCTCTTTCC		600
ATTGGACT	GTGCTAGCAA	GCATGCTCTC	CGGGGTTTT	TTATGGCCT	TCGAACAGAA		660
CTTGGCACAT	ACCCAGGTAT	AAATGTTCT	AAACATTGCCC	CAGGACCTGTT	GCAATCAAAT		720
ATTGGAGA	ATTCCTCTAGC	TGGAGAACGT	ACAAAGACTA	TAGGCAATAA	TGGAGACCAAG		780
CTCCACAAGA	TGACACACAG	TCTCTGTTG	CGGCTGATGT	TAATCAGCAT	GGCCAATGAT		840
TTGAAAGAAG	TTTGGATCTC	AGAACAAACCT	TCTCTGTTAG	TAACATATTG	GTGGCAATAC		900
ATGCCAACCT	GGGGCTGTG	DAIAACCAAC	AGAGATGGGG	AGAAAAGGAT	TGAGAACTTT		960
AAAGAGTGTG	TGGATGCGAGA	CTCTCTTAT	TTTAAATCT	TAAAGACAAA	ACATGACTGA		

SEQ ID NO:32 PAV6 Protein sequence

Protein Accession #: XP_050837

40	1	11	21	31	41	51	
MNWELLWL	VLCALLLLL	QLRFLRLRAD	DLTLLWAEQW	GRRPEWE LTD	MVWWTGASS		60
GIGEELAYQL	SKLGVLVLVS	ARRVHELERV	KRRCLENGNL	KEKDILVPL	DLTDTSHEA		120
ATKAVLQEFG	RIDILVNNGG	MSQRSLCDMT	SLDVYRKLI	LNYLGTVS LT	KVLPHMIE		180
KQGKIVTVNS	ILGIISVPLS	YICGASKHAL	RGFFNGLRTE	LATYPGIIVS	NICPGPVQSN		240
IVENSLAGEV	TKTIGNNGDQ	SHKMMTTSRCV	RULMISMAND	LKEVWIS EQP	FLLVTYLWQY		300
MPTAWWITN	KMGKKRIENF	KSGVDADSSY	FKIFKTKHD				

SEQ ID NO:33 PBA6 DNA SEQUENCE50 Nucleic Acid Accession #: NM_006853
Coding sequence: 26-874 (underlined sequences correspond to start and stop codons)

55	1	11	21	31	41	51	
AGGAATCTGC	GCTCGGGTTC	CGCAGATGCA	GAGGTTGAGG	TGGCTGCGGG	ACTGGAAGTC		60
ATCGGGCAGA	GGTCTCACAG	CAGCAGGAGA	ACCTGGGGCC	CGCTCCTCCC	CCCTCCAGC		120
CATGAGGATT	CTGCACTTAA	TCCTGCTTGC	TCTGGCAACA	GGGCTTGTAG	GGGGAGAGAC		180
CAGGATCATC	AAGGGGTTCG	AGTCAAGGCC	TCACTCCCG	CCCTGGCAGG	CAGCCCTGTT		240
CGAGAAAGACG	CGGCTACTGC	TGGGGGCGAC	GCTCATGCC	CCAGATGGC	TCTTGACAGC		300
AGCCCACTGC	CTCAAGCCCC	GCTCACATAGT	TCACCTGGGG	CAGCACAAAC	TCCAGAAAGGA		360
GGAGGGCTGT	GAGCAGACCC	GGCAGAGCCAC	TAGTGTCTTC	CCCCAACCCCG	GTTTCAACAA		420
CAGCTCCCCC	AAACAAAGACCC	ACCGCAATGCA	CATCATGCTG	GTGAAGATGG	CATGCCAGT		480
CTCCATCACC	TGGGGCTGTG	GACCCCTCAC	CTCTCTCTCA	CGCTCTGTCA	CTCTGTGAC		540
CAGCTGCC	ATTTCGGCT	GGGGCAGCAC	GTTCAGCCCC	CAGTTACGCC	TGCTCTCACAC		600
CTTGGCATG	GCCAACATC	CCATCATTGA	GCACCAAGAG	TGTGAGAACG	CCTACCCCGG		660
CAACATCACA	GACACCATGG	TGTGTCGCA	CGTGCAGGAA	GGGGCAAGG	ACTCTCTGCCA		720
GGGTGACTCC	GGGGGGCTC	TGGTCTGTAA	CCAGTCTCTT	CAAGGCATTA	TCTCTGGGG		780
CCAGGATCCG	TGTGGCATCA	CCCGAAAGGCC	TGGTGTCTAC	ACGAAAGTGT	GCAATATGTT		840
GGACTGGATC	CAGGAGACCA	TGAAGAACAA	TGAGACTGGA	CCCACCCACC	ACAGCCCATC		900
ACCTCTTATT	TCCACTTGGT	GTTCGTTCTC	TGTTACTCT	TTAATAAGA	AAACCTAAGC		960
CAAGACCCCTC	TACGAACATT	CTTCTGGCTC	CTCTGGACTAC	AGGAGATGCT	GTCACCTAAT		1020
AATCAACCTG	GGGTTGCAAAT	TCAGTGAAC	CTGGATTCAA	ATTCTGCCTT	GAAATATTGT		1080
GACTCTGGGA	ATGACAAACAC	CTGGTTTGTG	CTCTGTGTTA	TCCCCAGGCC	CAAAGACAGC		1140
TCCTGGCCAT	ATATCAAGGT	TTCAATAAT	ATTGCTAAA	TGAGTG			

SEQ ID NO:34 PBA6 PROTEIN SEQUENCE

Protein Accession #: NP_006844

1	11	21	31	41	51	
MRILQLILLAA	LATGLVGGET	RIIKGFECKP	HSQPWQAALF	EKTRLLCGAT	IIAPRWLLTA	60
AHCLKPRYIV	HLGOHNLQKE	EGCEQRTTAT	ESFPHPGFNN	SIPNKDHRRND	IMLVKMASPV	120
SITWAVRPLT	LSSRCVTAGT	SCLISGWGST	SSPQLRLPHT	LRCANITIE	HQKCENAYPG	180
NITDTCVCA	VQEKGKDSCQ	GDSGGPLVCN	QSLQGIISWG	QDPCAITRK	GVYTKVKYV	240
DWIQETMKNN						

10 SEQ ID NO:35 PBC1 DNA SEQUENCE

Nucleic Acid Accession #: NM_001775
Coding sequence: 70-972 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51	
CTAAAGCTCT	CTTGCTGCCT	AGCCTCTG	CGGCCCTCATC	TTCGCCCAGC	CAACCCGCC	60
TGGAGCCCTA	<u>TGGCCA</u> ACTG	CGAGTTCA	CCGGTGTCCG	GGGACAAAC	CTGCTGCCGG	120
CTCTCTAGGA	GAGGCCAACT	CTGTCTTGGC	GTCACTATCC	TGGTCTGTAT	CCTCGTCTG	180
GTGCTCCGG	TGGTGTCTCC	CAGGTGCGC	CAAGACCTGG	GGGGTCCGGG	CACCACCAAG	240
CGCTTCCCC	AGACCTCTC	GGCCGATG	GTCAAGTACA	CTGAAATTCA	TCTGTAGATG	300
AGACATGTA	ACTGCCAAAG	TGTATGGAT	GTCTTCAGG	GTGATTTAT	TTCAAAACAT	360
CCTTGAACA	TTACTGAAGA	AGACTATCAG	CCACTAATGA	AGTTGGGAAAC	TCAGACCGTA	420
CCTTGAACA	AGATCTCT	TGGAGCAGA	ATAAAAGATC	TGGCCCATCA	GTTCACACAG	480
GTCCAGGGG	ACATTTCA	CCTGGAGGAC	ACGGCTCTAG	GCTACCTTGC	TGATGACTC	540
ACATGGTGT	GTGAATTCAA	CACTTCAA	ATAAAACTATC	ATACCTTGCC	AGACTGGAGA	600
AAGGACTGCA	GCAACAAACC	TTCCTGAGT	TTCCTGAAA	CGGTITCCCG	CAGGTTTGCA	660
GAAGCTGCC	GTGATGTGGT	CCATGTGAT	CTCAATGGAT	CCCGCAGTAA	AATCTTGAC	720
AAAACAGCA	CTTTTGGGAG	TGTGGAAGTC	CATAATTG	AACCAGAGAA	GGTTCAAGACA	780
CTAGAGGCC	GGGTGATACA	TGTTGGAAAGA	CAAGAGTCCA	GAGACTTATG	CCAGGATCCC	840
ACCAAAAG	AGCTGGAATC	GATTAAAGC	AAAAGGAATA	TTCATTTTC	CTGCAAGAAT	900
ATCTACAGAC	CTGACAAGTT	TCTTCAGTGT	GTGAAAATC	CTGAGGATTC	ATCTTGACAA	960
TCTGAGATCT	GAGGAGTCG	CTGTGGTTGT	TTAGCTCT	TGACTCCCTG	TGTTTTATGT	1020
CATCATACAT	GACTCAGCAT	ACATGCTG	GCAGACCTGA	AGATTTTGG	GGGTCCCTCA	1080
CAATAAGGTC	AATGCCAGAG	ACCGAACG	TTTCCCCAA	AGTCTTAAA	TAACTTATAT	1140
CATCAGCAT	CCTTTATTGT	GATCTATCAA	TAGTCAAGAA	AAATTATTGT	ATAAGATTAG	1200
AATGAAAATT	GTATGTTAAG	TTACTCCCT	TAG			

SEQ ID NO:36 PBC1 Protein sequence
Protein Accession #: NP_001766

1	11	21	31	41	51	
MANCEFSV	GDKPCCRSLR	RAQLCLGVSI	LVLILVVVLA	VVVRPRWRQTV	SGPGTTKRFP	60
ETVLARCVKY	TEIHEPMERHV	DQCSVWDAFK	GAFISKHPCN	IIEEDYQPLM	KLGTQTVFCN	120
KILLWSRIKD	LAHQFTQVR	DMFTLEDTLL	GYLAADDLTWC	GEFNFTSKINY	QSCPDPWRKDC	180
SNNPVSFWK	TVSSRFEEAA	CDVHVHMLNG	SRSKIFDKNS	TFGSVEVHN	QPEKVQTL	240
WVIHGGREDS	RDLCDQPTIK	ELESIISKRN	IQFSCKN	IYR	PDKFLQCVKN	
					PEDSSCTSEI	

50 SEQ ID NO:37 PBH1 DNA SEQUENCE

Nucleic Acid Accession #: XM_017718
Coding sequence: 1-3315 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51	
ATGTCCTTTC	GGGCAGCCAG	GCTCAGCATG	AGGAACAGAA	GGAATGACAC	TCTGGACAGC	60
ACCGGACCC	TGTACTCCAG	CGCGTCTCGG	AGCACAGACT	TGTCTTACAG	TGAAAGCGAC	120
TTGGTGAATT	TTATTCAAGC	AAATTTAA	AAACGAGAAAT	GTGTCCTTCTT	TACCAAAGAT	180
TCCAAGGCC	CGGAGAATGT	GTGCAAGTGT	GGCTATGCCC	AGAGCCAGCA	CATGGAAGGC	240
ACCCAGATCA	ACCAAAAGTGA	GAATATGGAA	TACAAGAAC	ACACCAAGGA	ATTCCTTAC	300
GACGCCCTTG	GGGATATTCA	GTTCAGAGACA	CTGGGAAAGA	AGGGAAAGTA	TATACGTC	360
TCCCGCGA	CGGACGCGGA	AATCTCTTAC	GAGCTGCTGA	CCCAGCAGTC	GCACCTGAAA	420
ACACCCAA	TGGTCATTTC	TGTGACCGGG	GGGCCAAAGA	ACTTCGCCC	GAACCCGGC	480
ATGCGCAAGA	TCTTCAGCCG	GCTCATCTAC	ATCGCGCAGT	CCAAAGGTGC	TTGGATTCTC	540
ACGGGAGGCC	CCCATTTATGG	CTCTGATGAAG	TACATCGGGG	AGGTGGTGA	AGATAAACACC	600
ATCAGCAGGA	GTTCAAGAGGA	GAATATTGTC	GGCATTTGCA	TAGCAGCTTG	GGGCATGGTC	660
TCCAACCGGG	ACACCCCTCAT	CAGGAATTGC	GATGCTGAGG	GCTATTTTT	AGCCAGTAC	720
CTTATGGATG	ACTTCAACAG	AGATCCACTG	TATATCTCTG	ACAAACAACCA	CACACATTG	780
CTGCTCGTGG	ACAAATGGCT	TCATGGACAT	CCCACTGTCG	AAGCAAAGCT	CCGGAAATCAG	840
CTAGAGAAAGT	ATATCTCTGA	GGCCTACTATT	CAAGATTC	ACTATGGTG	CAAGATCCC	900
ATTGTGTGTT	TTGCCCAAGG	AGGTGGAAAAA	GAGACTTGTG	AAGCCATCAA	TACCTCCATC	960
AAAATAAAAA	TTCCTTGTG	GGTGTGGAA	GGCTCGGGCC	AGATCGCTGA	TGTGATCGCT	1020
AGCCTGGTG	AGGTGGAGGA	TGCCCTGACA	TCTTCCTGCC	TCAAGGAGAA	GCTGGTGGCC	1080
TTTTTACCCC	GCACGGTGT	CCGGCTGCC	GAGGAGGAGA	CTGAGAGTTG	GATCAAATG	1140
CTCAAAGAAA	TTCCTCGAATG	TTCTCACCTA	TAAACAGTTA	TAAAAATGGA	AGAACGCTGG	1200
GATGAAATTG	TGAGCAATGC	CATCTCTAC	GCTCTATACA	AAGCCTTCAG	CACAGCTGAG	1260
CAAGACAAGG	ATAACTGGAA	TGGCAGCTG	AAGCTTCTGC	TGGAGTGGAA	CCAGCTGGAC	1320
TTACCCAATG	ATGAGATT	CACCAATGAC	CGCCGATGGG	AGTCTGCTGA	CCTTCAAGAA	1380
GTCATGTTA	CGGCTCTCAT	AAAGGACAGA	CCAAGTTTG	TCCGCCCTT	TCTGGAGAA	1440
GGCTTGAAC	TACCGGAAGT	TCTCACCCAT	GATGTCCTCA	CTGAACTCTT	CTCCAACCAC	1500
TTCAGCACCG	TTGTTGACCG	GAATCTGCA	ATGCCAAGA	ATTCTATAA	TGATGCCCTC	1560

CTCACGTTTG TCTGGAAACT GGTTGCGAAC TTCCGAAGAG GCTTCCGGAA GGAAGACAGA 1620
 AATGGCCGGG ACGAGATGGA CATAAGACTC CACGACGTGT CTCTATTAC TCGGCACCCC 1680
 CTGCAAGCTC TCTTCATCTG GGCATTTCTT CAGAATAAGA AGGAACCTCTC CAAAGTCATT 1740
 5 TGGGAGCAGA CCAGGGCTG CACTCTGGCA GCCCTGGAG CCAGCAAGCT TCTGAAGACT 1800
 CTGGCCAAAG TGAGAACGA CATCAATGCT GCTGGGGAGT CCGAGGAGCT GGCTAATGAG 1860
 TACGAGACCC GGGCTGTTGA GCTGTTCACT GAGTGTACCA GCAGCGATGA AGACTTGGCA 1920
 GAACAGCTGC TGGCTTATTCT CTGTGAAGCT TGGGGTGGAA GCAACTGCTC GGAGCTGGCG 1980
 GTGGAGGCCA CAGACCAGCA TTTCATCGCC CAGCCATGGGG TCCAGAATT TCTTTCTAAG 2040
 CAATGTTATGAGAGATTC CCGAGACACC AGAACATGGA AGATTATCCT GTGCTGTGTT 2100
 10 ATTATACCTCTGGCTGGTGC TGGCTTGTGA TCATTTAGGA AGAACACCTGT CGACAAGCAC 2160
 AAGAACGCTGC TTTGGTACTA TGTGGCGTTC TTCACCTCCC CCTTCGTGGT CTTCTCTGG 2220
 AATGTGGTCT TCTACATCCC CTTCTCTCGT CTGTTTGCCT ACCTGCTGCT CATGGATTT 2280
 CATTGGTGCACACACCCCCG CGAGCTGGTC CTGTACTCGC TGGTCTTGT CTCCTCTGT 2340
 15 GATGAAGTGA GACAGTGGTA CCTAAATGGG GTGAATTATT TTACTGACCT GTGGAAATGTG 2400
 ATGGACACGC TGGGGCTTTT TTACTTCATA GCAGGAATTG TATTCGGCT CCACTCTTCT 2460
 AATAAAAGCT CTTTGATTC TGGACGAGTC ATTTCTGTC TGGACTACAT TATTTCACT 2520
 CTAAGATTGA TCCACATTCTT TACTGTAAAGC AGAAAACCTTAG GACCCAAGAT TATAATGCTG 2580
 CAGAGGATGC TGATCGATGT GTTCTTCTTC CTGTTCTCT TTGCGGTGTG ATGGTGGCC 2640
 20 TTGCGCTGG CCAGGCAAGG GATCCCTAGG CAGAATGAGC AGGCGCTGGAG GTGGATATTG 2700
 CGTGGCGTCA TCTACGAGCC CTACCTGGCC ATGTTGGCC AGGTGGCCAG TGACGTGGAT 2760
 GTTACACAGT ATGACTTTGC CCACTGCAAC TTCACTGGGA ATGAGTCAAAG GCCACTGTGT 2820
 GTGGAGCTGG ATGAGCACAA CCTGCCCGG TTCCCGGAGT GGATCACCAT CCCCCCTGGTG 2880
 TGCATCTACA TGTATTCAC CACATCCTCGT CTGGTCAACC TGCTGGTCGC CATGTTTGGC 2940
 25 TACACGGTGG GCACCGTCCA GGAGAACAAAT GACCAAGCTC GGAAGTCCA GAGGTACTTC 3000
 CTGGTGCAGG AGTACTGCAG CCCCTCAAT ATCCCTTCC CCTTCATCGT CTTCGTTAC 3060
 TTCTACATGG TGGTGAAGA GTCTTCAAG TTGTTCTGCA AGGAGAAAAA CATGGAGTCT 3120
 TCTGCTGCT GTTCAAAAAA TGAAAGACAAAT GAGACTCTGG CATGGGAGGG TGTCAAGAAG 3180
 GAAAATACC TTGTCAGAT CAACACAAAAA GCCAACGACA CCTCAGAGGA AATGAGGCAAT 3240
 30 CGATTAGAC AACTGGATAC AAAGCTTAAT GATCTCAAGG GTCTTCTGAA AGAGATTGCT 3300
 AATAAAATCA AATGA

SEQ ID NO:38 PBH1 Protein sequence

Protein Accession #: XP_017718

1	11	21	31	41	51	
MSFRAARLSM	RNRNRNDLDS	TRTLYSSASR	STDLSYSES	LDVNFIQANFK	KRECVFFTKD	60
SKATENVCKC	GYAQSQSHMEQ	TQINQSEKWN	YKKHTEKFPT	DAFGDIQFET	LGKKGKYIRL	120
SCDTDAEILY	ELLTQHWHLK	TPNVLVISVTG	GAKNFALKPR	MRKIFSRSLTY	IAQSKGAWIL	180
TGGTHYGLMK	YIGEVVRDNT	ISRSSEENIV	AIGIAAWGMV	SNRDTLIRNC	DAEGYFLAQY	240
LMDDFTRDPL	YILDNNNHTHL	LLVDNGCHGH	PTVEAKLRLNQ	LEKVISERTI	QDSNYGGKIP	300
IVCFQAQGGG	ETLKAINTSI	KNKIPCVVVE	GSGQIAADVIA	SLVEVEDALT	SSAVKEKLVR	360
FLPRTVSRPL	EETTESIWK	IKILECSSL	LTVIKMEEAG	DEIVSNAISY	ALYKAFSTSE	420
QDKDNWNLQLP	KLLEWNQLD	LANDEFITND	RRWESADLQE	VMFTALIKDR	PKFVRLELEN	480
GLNLRKFLTH	DVLTLEFSNH	FSTLVYRNHQ	IAKNSYNDAL	LTFVWKLVAN	FRRGFRKEDR	540
NGRDEMIDEL	HDVSPITRHP	LQALFIWAL	QNKKELSKVI	WEQTRGCTLA	ALGASKLLKT	600
LAKVKNDINA	AGESEELANE	YTTRAVELFT	ECYSSDEDLA	EQLVVSCEA	WGGSNCLELA	660
VEATDQHFIA	OPGVQNFLSK	QWYGEISRDT	KNWKIIICLF	IIPLVGCGFV	SFRKKPVDKH	720
KKLLWYYVAF	FTSPPFVFSW	NVVFYIAFL	LFAYVLLMDF	HSPVPHPELV	LYSLVFLVFC	780
DEVQRQWVNG	VNYFTDLWNV	MDTLGLFYFI	AGIVFRLHSS	NKSSLYSGRV	IPCLDYIIFT	840
LRLIHIFTVS	RNLGPKIIML	QRMLIDVFFF	LELFAWMVVA	FGVARQGILR	QNQRWRWIF	900
RSVIYEPPYL	MFGQVPSDWD	GTYYDFAHCT	FTGNESKPLC	VELDEHNLP	FPEWITIPLV	960
CTYMLSTNIL	LVNVLLVAMFG	YTGTVCQENN	DQWVKFQRYC	LVQEYCSRIN	IPIPPFIVFAY	1020
FYMVVKCFK	CCCKEKNMSES	SVCCPKNEEDN	ETLAWEGVMA	ENYLVKINTK	ANDTSEEMRH	1080
RFRQLDTKLN	DLKGGLKEIA	NKIK				

SEQ ID NO:39 PBH3 DNA SEQUENCE

Nucleic Acid Accession #: XM_0111804

Coding sequence: 1-558 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51	
ATGCCCTGCC	TGTTCTTGTG	CCACCTGCTA	GAATTCTGTT	TACTACTGAA	CCAATTTC	60
AGAGCAGTCG	CGGCCAAATG	GAAGGACGAT	GTTATTAAT	TATGCGGCCG	CGAATTAGTT	120
CGCGCGAGA	TTGCCATTG	CGGCATGAGC	ACCTGGAGCA	AAAGGTCTCT	GAGCCAGGA	180
GATGCTCTC	AGACACCTAG	ACCACTGGCA	GAATTGTAC	CATCTTCAT	CAACAAAGAT	240
ACAGAAACTA	TAATATTCA	TTGGGAATT	ATTCGTAATT	TGCCACCGGA	GCTGAAGGCA	300
GCCCTATCTG	AGAGGCAACC	ATCATTACCA	GAGCTACAGC	AGTATGTACC	TGCAATTAAAG	360
GATTCACATC	TTAGCTTGT	AGAATTAAAG	AAACTTATTG	GCAATAGGC	AAGTGAAGGC	420
GCAGACAGCA	ATCCCTCAGA	ATTTAAATAC	TTAGGCTTGG	ATACTCATTC	TCAAAAAAAAG	480
AGAGCACCT	ACGTGGCACT	GTTTGAGAAA	TGTTGCCTAA	TTGGTTGTAC	CAAAAGGTCT	540
CTTGCTAAAT	ATTGCTGA					

SEQ ID NO:40 PBH3 PROTEIN SEQUENCE

Protein Accession #: NP_008842

1	11	21	31	41	51	
MPRLFLFHLL	EPCLLNNQPS	RAVAAKWKDD	VIKLCGRELV	RAQIAICGMS	TWSKRSLSQE	60

DAPQTPRPVA EIVPSFINKD TETIIIIMLEF IANLPPPELKA ALSERQPSLP ELQQYVPALK 120
 DSNLSEEFK KLIRNRQSEA ADSNPSLK Y LGDLTHSQKK RRPYVALFEK CCLIGCTKRS 180
 LAKYC

SEQ ID NO:41 PBH5 DNA SEQUENCE						
	1	11	21	31	41	51
5	<u>ATGCTGCCG</u>	TGTACCCAGGA	GGTGAAGCCC	AACCCGCTGC	AGGACGCGAA	CCTCTGCTCA
10	<u>CGCGTGTCT</u>	TCTGGTGGCT	CATCCTTG	TTAAAATTG	GCCATAAACG	GAGATTAGAG
15	GAAGATGATA	TGTATTGAG	GACCGCCAGAA	GACCGCTCAC	AGCACCTTGG	AGAGGAGTTG
20	CAAGGTTCT	GGGATAAAGA	AGTTTAAGA	GCTGAGAATG	ACGCCACAGAA	GCCTTCTTTA
25	ACAAGAGCAA	TCATAAAAGT	TTACTGGAA	TCTTATTAG	TTTGGGAAT	TTTACGTTA
30	ATTGAGGAAA	GTGCCCCAAGT	AATCCAGCC	ATATTTTGG	GAAAAATTAT	TAATTATTIT
35	GAAAATTATG	ATCCCATGGA	TTCTGTGGCT	TTGAACACAG	CGTAGCCTA	TGCCACGGTG
40	CTGACTTTT	GCACCCCTAT	TTGGCTATA	CTGACACT	TATATTTTA	TCACGTTCA
45	TGTGCTGGGA	TGAGGTTACG	AGTAGCCATG	TGCCATPATGA	TTTATCGGAA	GGCACCTTCGT
50	CTTGTAAACA	TGGCCATGGG	GAAGACAAAC	ACAGGCCA	TAGTCATCT	GCTGCTCAAT
55	GATGTAAACA	AGTTTGATCA	GGTGACAGTC	TTCTTACACT	TCCCTGTGGG	AGGACCACTG
60	CAGGGATCG	CAGTGAATGC	CCTACTCTGG	ATGGAGATAG	GAATATCGT	CCTTGTCTGG
65	ATGGCAGTTC	TAATCATTCT	CTGCCCCCTG	CAAAGCTGTT	TTGGGAAGTT	GTTCCTCATCA
70	CTGACATCT	AAACTGCAAC	TTTCACGGAT	GCCAGGATCA	GGACCATGAA	TGAAGTTATA
75	ACTGGTATAA	GGATAAATAAA	AAATGACGCC	TGGGAAAAGT	CATTTCAAA	TCTTATTACC
	AATTGAGAA	AGAAGGAGAT	TTCCAAGATT	CTGAGAAAGTT	CCTGCTCAG	GGGGATGAAT
	TTGGCTTCGT	TTTTCAAGT	AAACCAAAATC	ATCGTGTCTT	TGACCTTCAC	CACCTACATG
	CTCTCGCGA	GTGTGATC	AGCCAGGCCG	GTGTTCTGG	CAGTGACGCT	GTATGGGCT
	GTGCGCTGA	CGGGTACCT	CTTCTTCCCC	TCAGGCTATTG	AGAGGGTGT	AGAGGAATC
	GTGACATCC	GAAGATCTCA	TTTCACTTGTG	CTACTTGATG	AGATATTCACA	GCGCAACCGT
	CAGCTGGCT	CAGATGTTA	AAAGATGTTG	CATGTCAGG	ATTTTACTGC	TTTTTGGGAT
	AAGGCATCG	AGACCCCAAC	TCTACAAGG	CTTCTCTTA	CTGTAGACCC	TGGCAATTG
	TTAGCTGTGG	TCGGCCCGT	GGAGCAGGG	AACTCATC	TGTTAAAGTGC	CGTGCTCGGG
	GAATGGCCC	CAAGTCACGG	GTGCTCAGG	GTGATGAA	GAATTGCTTA	TGTGCTCTAG
	CAGCCCTGGG	TGTTCTCGGG	AACTCTGAGG	AGTAATATT	TATTGGAA	GAATAACGAA
	AAGGAACGAT	ATGAAAAAGT	CATAAAGGCT	TGTGCTCTGA	AAAAGGATTT	ACAGCTGTTG
	GAGGATGTTG	ATCTGACTG	GTAGGAGAT	CGGGGAAACCA	CGCTGAGTGG	AGGGCAGAAA
	GCACGGGATA	ACCTTCAAG	AGAACGTGAT	CAAGATGCTG	ACATCTATCT	CTTGGACCAT
	CCTCTCATG	CAGTAGATG	GGAAAGTTAGC	AGACACTTGT	TGAACTGTG	TATTGTCAA
	ATTAGTGTGAT	AGAAAGATCAC	AAATTTAGTG	ACTCATCAGT	TGCACTACCT	CAAAGCTGCA
	AGTCAGATTC	TGATATTGAA	AGATGGTAA	ATGTCAGA	AGGGGACTTA	CACTGAGTTC
	CTAAAATCTG	GTATGATT	TGGCTCCCT	TTAAAGAAGG	ATAATGAGGA	AAGTGAACAA
	CCTCCAGTTC	CAGGAACATCC	CACACTAAGG	ATTCGACTCT	TCTCAGAGTC	TTCCGTTTGG
	TCTCAACAAAT	CTTCTAGAAC	CTCTTGAACT	GATGGTGTCT	TGGAGGCTCA	AGATACAGAG
	AATGTCGGAC	TTACACTATC	AGAGGAGAAC	CCTTCTGAAG	GGAAAGTTGG	TTTTCAGGCC
	TATAAGAATT	ACTTCAGAGC	TGGTGCTCAC	TGGATTGTCT	TCATTTCTCT	TATTCTCTTA
	AACACTGCG	CTCAGGTTG	CTATGTGCTT	CAAGATGGT	GGCTTTCATA	CTGGGCAAAC
	AAACAAAGTA	TGCTAAATGT	CACTGTAAT	GGAGGAGGAA	ATGTAACCGA	GAAGCTAGAT
	CTTAACCTGT	ACTTAGGAAT	TTATTCAAGG	TIAACTGTAG	CTACCGTTCT	TTTTGGCATA
	GCACGATCT	TATTGTTATT	CTACGTCCTT	GTIAACTCTT	CACAAACTTT	GCACAAACAAA
	ATGTTTGAGT	CAATTCTGAA	AGCTCCGGTA	TTATTCTTTG	ATAGAAATCC	AA TAGGAAGA
	ATTTTAAATC	GTTCCTCAA	AGACATTGGA	CACTTGGATG	ATTGCTGCC	GCTGACGTT
	TTAGATTCTA	TCCAGACATT	GCTACAAGTG	GTGTTGTGTT	TCTCTGTGGC	TGTGCCCCGT
	ATTCTCTTGA	TGCAATATT	CTTGGTGTCTT	CTTGGAAATC	TTTTGATTTT	TCTTCGGGCA
	TATTGTTGG	AAACGTCAG	AGATGTGAAG	CGGCGTGAAT	CTACAACTCC	GAGTCCTGTG
	TTTTCCCACT	TGTCTATCTC	TCTCCAGGGG	CTCTGGACCA	TCCGGGCATA	CAAAGCAGAA
	GAGGGTCTG	AGGAACGTTG	TGATGTCAC	CAGGATTATTC	ATTCAAGAGG	TTGGTTCTTG
	TTTTGACAA	CGTCCCCTG	GTGCGCTCG	CGTCTGGATG	CCATCTGTGC	CATTTTGTC
	ATCATCGTT	CCTTTGGTC	CTCTGATTC	GCAAAAACTC	TGGATGCCGG	GCAGGTTGGT
	TTGCAACTGT	CCTATGCCCT	CACGCTCATG	GGGGATGTTTC	ACTGTTGTG	TCGACAAAGT
	GCTGAAGTTG	AGAATATGAT	GATCTCAGT	GAAGGGTCA	TTGAATACAC	AGACCTTGAA
	AAAAGAACGAC	CTTGGGATAA	TCAGAACACG	CCACCCACAG	CCTGGCCCA	TGAAGGAGTG
	ATAATCTTGT	ACAATGTGAA	CTTCATGTAC	AGTCCAGGTG	GGCCCTCTGGT	ACTGAAGCAT
	CTGACAGCC	TCATTTAAAC	ACAAGAAAAG	GTGGCATTG	TGGGAAGAAC	CGGAGCTGGA
	AAAAGTTCCC	TCATCTCAGC	CCTTTTGTAGA	TTGTCAGAAC	CCGAAGGTTA	AATTGGATT
	GATAAGATCT	TGACAACCTG	AAATGGACTT	CACGATTTAA	GGAAAGAAAAT	GTCAATCATA
	CCTCAGGAAC	CTGTTTTGTT	CACTGGAAAC	ATGAGGAAAAA	ACCTGGATCC	CTTTAATGAG
	CACACGGATG	AGGAACGTTG	GAATGCTT	CAAGAGGTAC	AACTTAAAGA	AACCATGAA
	GATCTTCTG	GTAAAATGGA	TACTGAATT	GCAGAAATCG	GATCCAATT	TAGTGTGGA
	CAAAGACAC	TGGTGTGCT	TGCCAGGGCA	ATTCCTCAGG	AAAATCAGAT	ATTGATTATT
	GATGAAGGGA	CGGCAAAATGT	GGATCAGAAGA	ACTGATGAGT	TAATACAAAAA	AAAAATCCGG
	GAGAAATTTC	CCCCACTGCAC	CGTGTAAACC	ATTGTCACACA	GATTGAAACAC	CATTATTGAC
	AGCGACAAGA	TAATGGTTT	AGATTCAAGG	AGACTGAAAG	AATATGATGA	GCCGTATGTT
	TTGCTGCAA	ATAAAGAGAG	CCATTTTTAC	AGATGGTGC	AACAACCTGGG	CAAGGCAGAA
	GGCCCTGCC	TCACGAACAC	AGCAAAACAG	GTATACCTCA	AAAGAAATTA	TCCACATATT
	GGTCACACTG	ACCATGTTG	TACAAACACT	TCCAATGGC	AGCCCTCGAC	CTTAACTATT
	TTCGAGACAG	CACTGTCGA				

SEQ ID NO:42 PBH5 PROTEIN SEQUENCE

Protein Accession #: NP_005836

	1	11	21	31	41	51	
5							
	MLPVYQEVKP	NPLQDANLCS	RVFFWWLNPL	FKIGHKRRLE	EDDMYSVLPE	DRSQHLGEEL	60
	QGFWDKEVLR	AENDAQKESL	TRAIIKCYWK	SYLVLGIFTL	IEESAKVIQP	IIFLGKIIINYF	120
	ENYDPMDSA	LNTAYAYATV	LTFTCLLAI	LHHLFYHVQ	CAGMRLRVAM	CHMIYRKALR	180
10	LSNMAMGKTT	TQGIVNLLSN	DVNKPFDQTV	FLHFLWAGPL	QIAIVTALLW	MEIGISCLAG	240
	MAVL.LIPLL	QSCFGKLFSS	RSKSTATFTD	ARIRTMNEVI	TGIRIIKMYA	WEKSPSNLIT	300
	NLRKEISKI	LRSSCLRGM	LSAFFSASKI	IVFVTFTTYV	LLGSVITASR	VVFVAVTLYGA	360
	VRLTVTLFFF	SAIERSEBEAI	VSIRRIQTFL	LLDEISQRNR	QPLSDGKMMV	HVQDFTAFWD	420
	KASETPTLQG	LSFTVRPGEL	LAvgPGVAG	KSSLLSAVLG	ELAPSHGLVS	VHGRAYVSQ	480
	QPWFVSGTLR	SNILFGKYY	KERYEKKVKA	CAIKKDLQL	EDCDLTVIGH	RGTTLSGGQK	540
15	ARVNLIARAVY	QDADYLILDD	PLSVADEVS	RHLFELCICQ	ILHEKITILV	THQLQYKLAA	600
	SQILILKDGK	MVKQGTYTEF	LKSGIDFGSL	LKDNEESEQ	PPVPGPTPL	NRTFSESSVW	660
	SQQSSRPSLK	DGALESQDTE	NVPVILSEEN	RSEGKVGFQO	YKNYFRAGAH	WIVFIFLILL	720
	NTAAQVAYVL	QDWLWSYWN	KQSMINVTN	GGGNVTEKLD	LNWLGIYSG	LTVATVLFQI	780
20	ARSLIVFYVL	VNSSOTLHNLK	MFESILKAPV	LFDPRNPPIGR	ILNRFKSDIG	HLDDLPLTF	840
	LDFIQTLLQV	VGVVSVAVAV	IPWIAIPLPV	LGIIFIFLRR	YFLETSDRVK	RLESTRRSPV	900
	FSHLSSLQG	LWTFIRAYKE	ERCGQELFQAF	QDLHSEAWFL	FLITTSRWFAV	RLLDAICAMPV	960
	IIVAFGSLIL	AKTLDAGQVG	LALSYALTLM	GMFWQCVROS	AEEVNMMISV	ERVIBYTDLE	1020
	KEAPWEYQKR	PPPAWPHEGV	IIDFDNVNFMY	SPGPGPLVLKH	LATALKSQEK	VGIVGRTGAG	1080
25	KSSLSIALRF	QEVLQKETIE	DLPGKMDTEL	AEGSNFNSVC	QRQLVCLARA	ILRKNQILII	1140
	HTDEELWNAL	QEVLQKETIE	DLPGKMDTEL	AEGSNFNSVC	QRQLVCLARA	ILRKNQILII	1200
	DEATANVDR	TDELIQKKIR	EKFHAHCTVLT	IARHRLNTIID	SDKIMVLDSG	RLKEYDEPVV	1260
	LLQNKESELFY	KMVQLQGKAE	AAALTETAKQ	VYFKRNYPHI	GHTDHMVTNT	SNGQPSTLTI	1320
	FETAL						

SEQ ID NO:43 PBQ7 DNA SEQUENCE

Nucleic Acid Accession #: NM_021233

Coding sequence: 34-1119 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
30							
35	ATGGGAAAG	TGTCCTGCTG	TGGCATGAAA	TA <u>AA</u> ATGAAAC	AGAAAATGAT	GGCAAGACTG	60
	CTAACGACAT	CCTTGCTT	GCTCTTCCCT	GGCCTCTT	GGGTGCTGGG	GGCACACA	120
40	ATTTCATGCA	GAATGAGA	AGGAAAGCT	GTGGACTGTT	TTACTTTTA	TAAGTTACCT	180
	AAAAGACAAA	ACAAGGAAAG	TGGAGAGACT	GGGTTAGAGT	ACCTGTACCT	AGACTCTACA	240
	ACTAGAAGCT	GGAGGAAGAG	TGAGCAACTA	ATGAATGACA	CCAAGACTGT	TTTGGGAAGG	300
	ACATTACAC	AGCTATATGA	AGCATATGCC	TCTAAAGAGTA	ACAAACACAGC	CTATCTAATA	360
	TACATGATG	GACTCCCTAA	ACCTGTGAA	TACAGTAGAA	ATGATGAGACA	CACCAAAGGT	420
45	TTACTGCTGT	GGAAACAGAGT	TCAGGGTT	TGGCTGATTTC	ATTCCTATCCC	TCAGTTTCCCT	480
	CCAATTCCGG	AAAGAAGGCTA	TGATTATCCA	CCCACAGGG	GACGAAATGG	ACAAAGTGGC	540
	ATCTGCATAA	CTTCACTGAA	CAACAGTAT	GAGGCAATAG	ATCTCTAGCT	CTTGGTCTGCC	600
50	AACCCCCAACG	TCTATAGCTG	CTCCATCCCA	GGCACCTTTC	ACCAGGAGCT	CATTACATG	660
	CCCCAGCTGT	GCACCAGGGC	CAGCTCATCA	GAGATTCTG	GCAGGCTCT	CACCACACTT	720
	CAGTGGGCC	AGGGACAAAA	ATTCCCTCAT	TTGCAAAGT	CGGATTCTTT	TCTTGACGAC	780
	ATCTTGCAG	CCTGATGGC	TCAACGGCTG	AAACACACAT	TGTTAACAGA	AACTTGGCAG	840
55	CGAAAAGAC	AAAGGCTTCC	TTCACAACTGC	TCCCTTCCCT	ACCATGCTCA	CAATATAAAA	900
	GCAATTAAAT	TATCACGACA	CTCTTATTC	AGTTCTTATC	AGATCACGC	CAAGTGGTGT	960
	ATTTCACAA	AGGGCACCAA	AAATCCCTGG	ACATGTATTG	GACACCTAAA	TCGGAGTCCA	1020
	CACCAAGCCT	TCAAGACTGG	AGGATTCATT	TGTAACCCAGA	ATTGGCAAT	TTACCAAGCA	1080
	TTTCAAGGAT	TAGTATTATA	CTATGAAAGC	TGTAAGTAAA	CTTGGTAAA	GGACACAGGT	

SEQ ID NO:44 PBQ7 Protein sequence

Protein Accession #: NP_067056

	1	11	21	31	41	51	
60							
	MMARLLRTSF	ALLFLGLFGV	LGAATISCRN	EEGKAVDWFT	FYKLPKRQNQ	ESGETGLEYL	60
	YLDSTRSWR	KSEBLQMNDT	SVLGRTLQQL	YEAYASKSNN	TAYLIYNDGV	FKPVNYSRKY	120
	GHTKGLLLWN	RVQGFWLHS	IPQFPPIPEE	GYDYPPTGRR	NGQSGICITF	KYNQYEAIDS	180
65	QLLVCNPVY	SCSIPATFHQ	ELIHMPOLCT	RASSSEIPIGR	LUTTLQSAQG	QKFLHFAKSD	240
	SFLDDIFAAW	MAORLKTHLL	TETWQRKRQE	LPSNCNSLPYH	VNIKAIKLS	RHSYFSSYQD	300
	HAKWCISQKG	TKNRWTCIGD	LNRSPHQAFR	SGGFICTQNW	QIYQAFQGLV	LYYESCK	

SEQ ID NO:45 PCQ8 DNA SEQUENCE

Nucleic Acid Accession #: XM_030453

Coding sequence: 89-1273 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
70							
	CGGTGCCCTG	GGGTGGAATA	TCCCTTACGA	ATTAAACCA	GCGGACTTTA	ATGCCACTGT	60
	GCAGTCATC	AAAAACCACT	TGG <u>AT</u> GACAT	GGATGTCAA	AAGGGTGTCT	CCTGGACCAC	120
	CATCGCTAC	ATGATAGGG	AGATTCATAA	TGGAGGCAGA	GTCACTGACG	ACTATGATAA	180
	GAGATGTTG	AACACATTG	CTAAGTTTG	GTCAGTGA	AAATATGTTG	GACCAAGATT	240
75	CAGTTTTAC	CAAGGATACA	ATATTCCAAA	ATGCAGCACA	GTGGATAACT	ATCTTCAGTA	300
	TATCCAGAGT	TTGCTGCT	ATGACAGCCC	TGAGGTGTT	GGGCTGCACC	CCAATGCTGA	360

5 CATCACCTAC CAGAGCAAGC TGGCCAAGGA CGTGCTGGAC ACCATCCTAG GCATCCAACC 420
 CAAGGACACC TCTGGTGGAG GGATGAGAC CCGGGAGGC GGTGGGCC GGTGGCTGA 480
 TGATATGCTG GAGAACGCTGC CCCAGACTA TGTCCTCTT GAAGTAAAAG AGAGGCTGCA 540
 GAAGATGGGG CCATTCAGC CTATGAACAT TTTCCTCAGG CAGAAATAG ACAGAATGCA 600
 10 AAGGGTACTC AGCCCTGTC GCACCCACCT CACTGAGCTG AAACCTGCTA TTGATGGCAC 660
 CATCATCATG AGCGAAAATC TGCAAGATGC ATGGATTGATG ATGTTTGATG CTAGAATCCC 720
 TGCTGGTGG AAAAAGCTT CTGGGGTTT TAGTACACTG GTTCTCTGGT TTACTGAAC 780
 TATAGAAAGA AACAGCCAGT TTACCTCGTG GGTTTCAAT GGGCGACCTC ACTGCTTTG 840
 15 GATGAGGGT TTGTTAACCC CCAAGGGATT TTAACTGCA ATGGACAGG AAATAACTCG 900
 GCCAACAAA GGCTGGCTC TGGAACATG GTGCTTGG AATGAAGTC CCAATGGAT 960
 GAAGGACGAC ATTCTACCC CTCCACAGA GGTTGCTAT GCTCTGGCT TATATCTGTA 1020
 AGGTGCTGGC TGCGACAAGA GGACATGAA ACTCATTGAA TCAAAGCCAA AAGTGTCTT 1080
 TGACTTGATG CCTGTCATAA GGATTTATGAG AGAAAACAT ACTTTACGAG ATCTCGGTT 1140
 TTACTCCCTG CCTACATATA AGAAGCCAGT TCGAACGGAC TTGAACATCA TTGCCGCTGT 1200
 20 GGATCTCAGG ACAGGCCAGA CCCCTGAAC CTGGGCTC CCGGGTTG CCGCTCTGTG 1260
 TGATGTCAGA TAACATGTC GGAGTGTCCC CACCCAAATG TTTGGAAAAT GCAAGATCTA 1320
 AATTATTGTA ACCTTTTATTG CTGTTATGACT GCTGGACAGT GTATGTTAGG TCGTTTATGC 1380
 AATTAATGAG CTGCATAGGT TTCCCCACT CCTTAATTTGG ATGCTTATAT TTACTTGTT 1440
 25 TCACATTAGT TGACCAATG TGAGTTTGTG TGAAGATGTT ATTTAGTGTAT ATAAAAGTAA 1500
 ATTACAGCA CCTTAATGAA GTGTGGCCCT CAAATCCACA TGATGATATT TTCTCTTAC 1560
 TTCCCTCCGA AGACTGACTG TGATTATAAC AGCAAAATATA TTTGCATGTG GACAAGATT 1620
 AGATGCAAG ATAGAAAAT AAGAACAGAT GTGATAGCAA GAATTATAGT TGGCTTGAAA 1680
 AAATGTGATG ATCAGGAGAA AAAATAAAA AGGGTAGAA ATATTAGACG GTGCCGTAGGG 1740
 ACTTTCTATG GACTTTTATTG AATTAGGAAA CATTATCAA GGAACCTTTC ACGTATTTT 1800
 30 CTTAAATTG TGTTTATGTT TTATTAATAA TTCTCTCATC AAACCTACTGA CTAGAAAATA 1860
 TAGTCAGTA TAATTTGAA TGTTGTTTAA TAAACTTTTG GTAGCTCTG GATCTGTATA 1920
 ACTGGATTTT TTGGATAAA CAGTTTTTGG TAGTGGATA CCGGGAGACA AGTGTGGTC 1980
 CCTCTCACTG GGCTTCATTC TGTTGACCA GATCATTATT TCATGTCAT GATCATGAGA 2040
 GTTACGGCT AGTGGCTCCT GTGACTTCCC CAATCTTAAAGA TGATACTGTT TTCTTGTGAG 2100
 TTCTTCTTT TGTTGTGGAT TAGTATATCA GTTGTATTGTG GTGAATGTG GTGAAACAAAT 2160
 CATTTCATTT TGAAGAACAA GTATGAAAAA TGTCAAGCATC ATAGGAATTA ATAAAAGTAA 2220
 TTTACTAAAA AAAAAAAAAA AAA

SEQ ID NO:46 PCQ8 Protein sequence

Protein Accession #: BAB15543

1	11	21	31	41	51
MDVKKGVSWT	TIRYMIQEIQ	YGRVRTDDYD	KRLLNTFAKV	WFSENMPGP	FSFYQGYNIP
KCSTDNYLQ	YIQLSLPDT	PEVFLGHPPD	DITYQSKLAK	DVLDTILGIQ	PKDTSGGGDE
TREAVARVARL	DDMLEKLPPD	XVPFEVKERL	QKMGFPQPNN	IFLRQEIDRM	QRVLSLVRST
LTELKLAIDG	TIIMSENLDQD	ALDCMFDA	PAWWKKASWV	FSTLGFWFTE	LIERNLSQFTS
WVFNGRPHC	WMTGFFNPQG	FLTAMRQEIT	RANKGWALDN	MVLCNEVTKW	MKDDDISTPPT
EGVYVYGLY	EGAGWDKRNM	KLIESPKV	FELMPVIRIY	AENNRLRDPR	FYSCPIYKKP
VRIDLNYIAA	VDLRTAQTP	EHWVLRGVALL	CDV		

SEQ ID NO:47 PDG5 DNA SEQUENCE

Nucleic Acid Accession #: AB033036

Coding sequence: 68-3349 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51
GGAGCAGCCT	ACAACCTTCAC	AACCAAGAAC	CACTACCCCT	CAGGGGTTG	TTTCAGATAA
AGATGACATG	GGAAAGGAGAA	ATGCTGGCAT	AGATTTGGAA	TCCAGAAAAG	CATCACAGC
55 ACAGCCCATA	CCTGAAAACA	TGGACAAATTC	CATGGTTAGT	GATCCACAAAC	CATACCATGA
AGATCAGCT	TCTGGAGCTG	AGAAGACAGA	AGCCAGAGCT	TCTCTCTCAC	TGATGGTGG
AAGCCCTTCT	ACAACCCAAAG	AGGAGGCCAT	TCTCTCACTG	GCAGCAGAGG	CTCAGGTGTT
TATGAATCT	TCTCATATTC	AGTTAGAAGA	TCAAGAACGT	TTTCAGCTT	TTTACAAAAA
60 GGCCCAATCC	AAAATGGAGT	CAGCCCAGGA	TGTTCAAAC	ATCTGCAAG	AAAAGCTTC
TGGAATGTT	CACCAAGCCT	TTACAGCAAG	TGTTTTGGGT	ATGACAAGTA	CTACAGCCAA
AGGAGATGTT	TATGCCAAGA	CTCTGCCCTC	CAGAACGCTT	TTTCAGTCCT	CAAGGAAGCC
TGATGCTGAA	GAAGTCTCTT	CAGATTCTAGA	GAATATTCTT	GAGGAGGGGG	ATGGTTCTGA
65 AGAACTGGCT	CATGGTCACT	CTTCCCAGTC	CTTGGGGAAAG	TTTGAAAGATG	AACAAGAAAGT
CTTCTCAGAA	TCAAAAGGT	TTGTGAGGA	CTTGAGCAGC	TCTGAGGAGG	AGCTGGACCT
CAGATCCTC	TCCCCAGCTT	TAGAGGAGCC	TGAAGATGCA	GAAGTCTTC	CAGAACATCAAG
CAGTTATGTT	AAAAAGTACA	ACACTTCTGA	TGATTGAGC	AGCTCAGAGG	AAAGACCTGCC
70 TCTCAGACAC	CCTGCTCAGG	CCTTGGGGAA	GCCCCAAAAC	CAACAAAGAAG	TCTCCCTCTG
TTCAAATAAT	ACTCTCTGAAG	AGCAGAAATGA	TTTATGTCAG	CAGCTGCTT	CCAGATGCC
TTCTCAGCCC	ATTATGAATC	CTACTGTTCA	GCAACAAAGTC	CCCACCAAGT	CAGTGGGCAC
75 TCTCTATAAAA	CAGAGCGATT	CCGTGGAGCC	AAATCCCTCC	AGACACCCCT	TCCAGCCATG
GGTGAACCTC	AAAGTGGAGC	AAGAAGTTTC	CTCATCTCCA	AAAGACATGG	CTGTTGAAGA
GAGCATTCT	ATGAAGGCTC	TGCTCTCTAA	ATCTCTTGC	CAGCCCTTGA	GAATCTAA
AGTTCAACAA	AACATGTTCT	CAGGTTTCAGA	GGACATTGCT	TTTGAGAGAG	TCATTCTCTG
75 GGAGCCACTA	CTCCCCAGAT	ATTCCTCTCA	GTCCCTTGACA	GATCCTCAAA	TCCGGAAAT
CTCAGAAAGC	ACAGCTGTG	AGGAAGGCC	TTATGTTGAA	CCGCTGCC	CCAGATGCC
TTCCCAAGCCC	TGGAGAGGC	CTAAGTCTCT	GGACTCAATG	AGTACTTCTG	CAGAACATGGAG
CAGTCCTGTG	GCACCAACAC	CTTCCAAATA	CACTTCCCCG	CCATGGGTGA	CCCCTAAATT
TGAGGAACCTG	TATCAACTCT	CTGCACATCC	AGAAAGCACT	ACTGTTGAAG	AGGACATTTC
TAAGGAGCAG	CTGCTTCCCA	GACATCTTC	CCAGTTGACT	GTGGGAAATA	AAGTCCAGCA
80 ACTGCTCTCA	ATTTCGAGC	GGGCTGCTAT	TGAGGCAGAC	ATTCTGGGA	GTCCATTGCC

TCCCCAATAT GCTACCCAGT TCTTAAAGAG GTCTAAAGTT CAGGAAATGA CCTCACGACT 1740
 AGAGAAAATG GCTGTTGAAG GCACCTCTAA CAAATCACCG ATTCCCAGGC GTCCGACCCA 1800
 GTCATTCTGT AAATTTATGG CACAGCAAAT CTTTCAGAG AGCTCTGCTC TTAAGAGGG 1860
 5 CAGTGATGTG GCACCTCTGC CTCCCAATCT TCCTTCCAAA TCTTATCAA AGCCTGAAGT 1920
 CAAGCACCAA GTTTTCTCAG ATTCAGGGAG TGCTAATCCT AAGGGAGGCA TTTCTTCAA 1980
 GATGCTACCT ATGAAGCACC CTTTACAGTC CTTGGGGAGG CCTGAAGACC CACAGAAAGT 2040
 TTTCTCTTAT TCAGAGAGAG CTCCCTGGAA GTGAGCAGT TTTAAAGAGC AGCTGTCCTC 2100
 CAGGCAGCTT CCCCAGGCT TGAGGAAACCT TGACTATGAG CAAAAGTCT CCCCTGTTTC 2160
 10 TGCCAGTCT CTTAAAGAGT GGAGGAATTC TAAAAGAGC CTGCCCTCCA AACATCTTC 2220
 CCAAGCCTCA GATPAGGTCTA ATTCCAGCC ACAGATGTC TCAAAGGGC CAGTGAATGT 2280
 ACCTGTAAAG CAGAGCAGCG GTGAGAAGCA CCTGCCCTCA AGTAGTCCTT TCCAGCAACA 2340
 GTTCTCTTAT TGAGGAGAG ATGTCCTGTC TAGGGCATCT GTTTTGAGA GCAATTCTGA 2400
 CAAATTGGTC CTAGGAGAG ATGAAGCTT TGCAATCAA ACCAAGAAAT TCAGCCAAGG 2460
 15 TTCCAAAAC CCCATAAAGA GCATTCAGC CCCTGCTACC AACCTGGGA AGITCACCAT 2520
 TGCTCTGTG AGGCAAACAT CCACCTCTGG GGGCATTTAC TCTAAGAAAAG AAGATCTTGA 2580
 GAGTGGGTGAT GTAAATACTC AAACAGATGC AAACATTCAC AATCAGGATG ATGTTGAAA 2640
 GCTTTTGGG GTTCGACTGA AAAGAGCCCC TCCCTCGAG AAGTATAAGA GTGAGAAACCA 2700
 AGATAACTTC ACCCAGCTT CTTCACTGCC CTCGGGCCA ATTTCACTCT CTGTAAGGCAG 2760
 20 GGGACATAAA ATCAGAACGA CTTCCAGGG AGCTCTGGAT GCTGAGGAGA ACCTCACCAA 2820
 AATATCTTAC GTTGCAGATA AGCAACAGAG CAGGCCAAA TCTGAAAGCA TGGCCAAGGA 2880
 GCAACCTGCT TCCAAGACCC CAGGAAAGCC TGCTGGTCAA CAGTCAGATT ATGCTGTC 2940
 AGAGCCGGTT GTGATAACTA TGGCAAGAGA GAAGCAGAAG ACTTTCAAGG CCCACATTT 3000
 TGTAAGAGAG CTGAAACATG AGAGCAATGC TGGAGCCGAT GCTGAGACTA AGGAGCTAA 3060
 ATATGAGGGG GCTGGCTCTG CAAATGAAAAA CCAACCTAAA AAGATGTTCA CTTCCAGTGT 3120
 25 CCATAAACAG GAGAACAGAC CACAGATGAA GCCACCTAAG CCTACAAAAT CAGTGGATT 3180
 TGAAGCTAG AGATACTGC AAGTTCTGC CATGAAAAAA GAAACCAAAC GATCTTCAAC 3240
 TCTCCAGGCC AAGTTCCAGA ACCCAGTGA GCAATTGAG CCTGTCCTGGT TCTCACTGCC 3300
 CAGGAAGAAA GCCAAAGCAT GGAGCCACAT GGCAAGAACAT ACAGCAATAAA GAGCTCTTGT 3360
 GTGGAGCATC AGCATTATTATT TTATTTAGTT TTATTTTTTTT GAGACAGAGT 3420
 30 CTCGCTCTGT TACCCAGATG GGAGTGCAGT GGCGCGATCT CGCGTCACTG CAAGCTCCGC 3480
 CTCCGGGTT CAGGCCACTC TCCCGCTCA GTCTCCGAC TAGCTGGAC TACAGGCC 3540
 CGGCGATCAGC CCGGGCTAAT TTGTTTTCG TATTTTTAGT AGAGACGGGG TTTCAACCAG 3600
 TTGGCCAGGA TTGTCCTGAT CTCCCTGACCT CGTGAATCCGC CGGCCCTCAGC CTCCCAAAG 3660
 CTGGGATTCA AGGGCGTGGC ACCCGGCC GGCAAGCAT CAGCCTTTA AATGATAATT 3720
 GCTAATAGCT GTATTAATTC TATGTAGTGA TCTTTTTACT GTGACCACTT GTATTAAGCA 3780
 35 AAAATAAGTAT TAAGCAACT AAGAATTTTAT TAAGCAAAAT AAGAATTTTAT TAACCAAAT 3840
 AGCCTTAGAA ATGCAAAATTA AAGAATTATT ATTGAATGCA AATTAATGCC ATGAATGCTT 3900
 AACCTTCCAC GTAGTCAGT CCAGCACCCA GAAACCCAGC ATTTCTCTA TTAAACTAT 3960
 CGAAAACATT TGCACTGCTG TAAAATTGCA AAATCTTTAA CTTTGACAA TGTCCTTTAG 4020
 AAGGGAGAAA GCAAAACAT TTTGTTGGAG CAACTAGAAA ATTGTGATT CCCTCAACCA 4080
 AATAAAGTAA TTCTAATGCA AACATTCAGA TGATTGACCT TAAAGATTGG CTTTTAGGTT 4140
 TTATGAGCCT AGATAGATGC CGCAATTATT TGGTTGTTGC TCTAAGCTT GCAAGGGATC 4200
 40 CTAAGGAGG CGGTGGAAGT GAAAATTCTG GGTCATTCAGG AAAATTCTG CACAGCCACT 4260
 TCTCCAACTCA GCCTATCAC CTTTGTAAAC TCTTCCCTGT GTCCCTGGG GCCCCCTGATG 4320
 CTTCTCCCTT GGGTGTAGT AACATGCGA GCACCTACAC AAAGCTCCCT CTTTGGACAT 4380
 ACCCCACGTGAC GACCTGTAC AGGGCTGGCT GTAGCGACCA CCTCCCTATG ACAGCAGAAATG 4440
 CTCTTGGGA ATTATCTTC ACCTCTGGAG GTTGTAGTCA TCAATGTTT GCTTCTTGTG 4500
 45 CCAATACTAC TGTGACCCCTC TCTGATCGCA CAGAAATCAC TGCCATAC ATATATCTG 4560
 TTAAAGCACTG AGAACCCCTAT TGAAATTAGA GTTCTACAGA TGCCAAAGC TGTAACCTTCC 4620
 ATCAGGAGGA TGCGAACGCTT ACTGCTCTGA TGACCATCTG GAGCCACTGG AGCTCTTCC 4680
 TCTCTGGTTC CAGCATTAAAG GTGGAGAACT CCTAGTAGCT CTTTGTCTT TCCCCCTCAGC 4740
 TGCTTTGCT TCACAAGGTT TTAGCCAAA GCAAGAGTGC AATCCCAAAG CCACAGAGAA 4800
 ATGAACCTTIC CCTCTACCTGG AAGCTTTAAC TGAGTAAATC AGCTTTTCCC CTCTCATCTC 4860
 50 TAGAGGCACA CACCTCAAA TTACTAGGG TGAGAGACCT TGACCTTCCA GTGACCCACT 4920
 CATCCCCCAG CCACGGAGAA GAGGGAAAGAC CAAAAAGGG AAGTGGAGAA GAGGATGAGA 4980
 GGGATGGCTA GTGTTGAGGG GAGGGGGCA GTGGCCAGACG AAATGTTGAT GCTCTCCCTC 5040
 CCATCTTGC ACACGGTCTG CTTTCTTGTG AGCACAGCCT CCATTAATAAA CTCCCTGGCT 5100
 GAGGATGAGG ATGTAGGCAC CTTTCTACCC AGAGCCAGTT CCTTAATTGG CTGGCTTCT 5160
 55 GAGATGCAGA CCACCCCTAGA ATCTCATCTA GGTTCACTAG AAGTTAGTT AATCTTCCCT 5220
 TCTCTGCTT TCTCTCATT CCATCCCCCA AACACTAACAGG AGACCTCCCT 5280
 TTGGATGTCGTT GGGCAGTAAA CCTAGCTCAT TTTCTAGGA GACCCAGAAG TGACTCTGA 5340
 GTAGTTATCA CTGTGCTGTC CTCTGTATCA CTGTGCTGCT TTGCTTAAAC AGAAATGCAG 5400
 GCTCTGGACAT CTGACTGTC CTTTATATTG TGACTGGGGT GCTGCCCCCAT GCAAAAAAT 5460
 60 CCAGAGAGGT AGTGAGGTG CAGAGCTAAA CACTTGGTC TGGGTTTGT TGATGCTGGT 5520
 ATAATGTGAC ACAGTACAAT TACATGCTAA ATTTCGATT TTCTCTATAT AACATCTATT 5580
 TTCTCTGATA CTGTGCTTTC CCCCATTGTA TAATGCTATT TGATGAGT GAATTTTATT 5640
 TCTCTTGTAT TCCCCTAGTG AACAATATT TAAGGTAGAT GCCCCTTATC TGGGTACTCC 5700
 TGTTAGATTCA GTCTGTTACAC CCTCCCTTCCC TTGTTTACAG TGAACTCTGA TTCACTTATT 5760
 GTCACTCTGA GAACTCTCTCA ATAACAATTG CTTTCTACCA GTTAAACAACA CAGCTGTAC 5820
 65 ACCCTCCCTC CTTTTTTCTCA CAGTGAACCT GTATTCACTC ATTCTCACTC TGAGAACTCT 5880
 CCAATAACAA TTCTCTTCCC ACAGTAAACCA ACAAGGTCTT GTTTTAAAT GAAGAGATTA 5940
 AGTTCTTTT AAATGCCTAA AGGCATATTG TGACAACCTT TCTACTTCTT TAACCTTTT 6000
 GATTTAAGAT ATATGCAAG CAAATAAAAT CAATAAAGCC T

75 SEQ ID NO:48 PDG5 Protein sequence
 Protein Accession #: BAA86524

1	11	21	31	41	51
80	EQPTTSQPET	TPPQGLLSDK	DDMGRNAGI	DFGSRKASAA	QPIPENMDNS MVSDPQPYHE

DAASGAEKTE ARASLSLMVE SLSTTQEEAI LSVAAEAQVF MNPISHIQLED QEAFSFDLQK 120
 AQSKMESAQD VOTICKEKPS GVNHQFTTAS VLGMSTTTAK GDVYAKTLPP RSLFQSSRK 180
 DAEVEVSSDSE NIPEEGDGSE ELAHGHSSQS LGKFEDEQEV FSESKSFVED LSSSEEELDL 240
 5 RCLSQALEEP EDAEVFTESS SYVEKYNTSD DCSSSEEDLP LRHPAQLGE PKNQOEVSSA 300
 SNNTPPEEQNDFMQLPLPSRCPSQPIMNPTVQ QQVPTSSVGT SIKQSDSVEP IPPRHFPQWP 360
 VNPKVEQEVS SSPKSMAVEE SISMKPLPPK LLCQPLMNPK VQQNMFGSE DIAVERVISV 420
 EPLLPRYSPQ SLTDPQIRQI SESTAVEEGT YVEPLPPRCL SQPSERPKFL DSMSTSWEWS 480
 SPVAPTPSKY TSPPPWVTKF EELYQLSAHP ESTTVEEDIS KEQLLRHLS QLTVGNKVQQ 540
 10 LSSNFERAAI EADISGSPLP SYQATQFLKE SKVQEMTSRL EKMAVEGTSN KSPIPRRPTQ 600
 SFVKFMQAQI FSSESSALRGK SDVAPLPPNL PSKSLSKPKEV KHQVFSDSGS ANPKGGISSK 660
 MLPMKHPLQS LGRPEDPQKV FSYSERAPGK CSSFKEQLSP RQLSQALRK EYEQKVPVS 720
 ASSPKEWNRNS KKQKLPKHSQ QASDRSKFQP QMSSKGPMVN PVKQSSGEKH LPSSSPFQQQ 780
 VHSSVNAAA RRSFESNSD NWFLGRDEF AIKTKKFSQG SKNPIKSIPA PATKPGKFTI 840
 15 APVRQTSTSG GIYSKKEDLE SGDGNNNNQHA NLSNQDDVEK LFPGVRLKRAP FSQKYKSEKQ 900
 DNFTQLASVP SGPISSSSVGR GHKIRSTSQG LLLAAGNLTK ISYVADKQQS RPKSESMARK 960
 QPACCKTPKG AGQOSDYAVS EFPWITMAQK QKSFKAHS VKELKTKSNA GADAETKEPK 1020
 YEGAGSANEN QPKKMFTSSV HKQEKTAQMK PPKPTKSVGF EAQKILQVPA MEKETKRSST 1080
 LPAKFQNPVE PIEPVWFSLA RKKAKAWSHM AEITQ

20 SEQ ID NO:49 PAB7 DNA SEQUENCE

Nucleic Acid Accession #: D87742

Coding sequence: 208-3582 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
25							GCTTCCCTTT CTAAGTAGA AGAGGATGAT TATCCTCTG AAGAACACT ACT AGAGGATGAA 60
	AACGCTATAA ATGCAAAACG GTCTAAAGAA AAAAACCTG GGAATCAGGG CAGGCAGTTT 120						
	GATGTAAATC TGCAAGTCCTC TGACAGAGCA GTTTTAGGGA CCATTCTATCC AGATCAGGAA 180						
30	ATTGAAGAAA GCAAGCAAGA AACTACTATG ATTCTTGGATA GTGAAAAAAAC AAGTGAGACT 240						
	GCTGCCAAAG GGTCACAAC ACAGGGCAGG GAACCAAATA CAATGGTGGG AAAAGAACGC 300						
	CCTCTGGCAG ATAAGAACAG ACAGAACACCA TTGAACGAA GTGACTTTTC TGACAGCATA 360						
	AAAATTCTAGA CTCCAGAATT AGGTGAAGTG TTCAGAATA AAGATTCTGA TTATCTGAAG 420						
35	AACGACAACC CTGAGGAAACA TCAGGAAGACG TCAGGGCTTG CAGGGGAGCC TGAGGGAGAA 480						
	CTCTGAAAG AGGACCATGG GAACACAGAG AAGTACATGG GCACAGAAAG CCAGGGGTCT 540						
	GCTGCTGCAG AACCTGAAGA TGACTCGTTC CACTGGACTC ACATACAAG TGTAGAGCCA 600						
	GGGCATAGTG ACAAGAGGGG GGACTTACTT ATCATAAGCA GTTCTTTAA AGAACAAACAG 660						
40	TCTTGCAGC GTTCTCAGAA GTACTTAAAT GTCCATGAGC TTGAAGGCTT GCTACAAGAA 720						
	ATGTCATCAA AACTGAAGTC AGCGCAGCAG GAGAGCCTCG CCTATAATAT GGAAAAGTC 780						
	CTAGATAAGG TCTTCGTGC TTCTGAGTC CAAATTCTGA GCATAGCAGA AAAATGCTT 840						
	GATACTCGTG TGCTGAAAAA TAGAGATCTG GGAATGAAGC AAAATAACAT ATTTGAAGAG 900						
45	GCTGAGTGC TTGATGACAT TCAAGACCTC ATCTATTGTC TCAGGTACAA GCACTCCACA 960						
	GCAGAGGAGA CAGCCACACT GGTTGATGGCA CCACCTCTAG AGGAAGGCTT GGGTGGAGCA 1020						
	ATGGAAGAGA TGCAACCACT GCATGAAGAT AATTCTCAC GAGAGAACAG AGCAGAACCT 1080						
50	AATGTCAGG TTCTGAAGA ACCCACCCAC TTGGACCAAC TTGTGATTGG GGACACTCAT 1140						
	GCCTCAGAGA TGTCACAGAA GCCAAATACT GAGAAAGACCC TTGACCCAGG GCCAGTTACA 1200						
	ACAGAAAGACA CTCCCTATGG TCTTATTGAT GCAAACAAAGC AACCAGAGAC AGCCGCCGAA 1260						
	GAGCCGCAA GTGTCACACC TTGGGAAAC GCAATCCTTC TAATATATTG ATTCATGTTT 1320						
	TATTAACTA ATGTCGCTAGT TGCTTACATTG CTCGATGATG TTCAAGCTGG GCCTGATTTC 1380						
55	TATGGACTGC CATGGAAACC TGATTTATC ACTGCCTTCT TGGGAATTGC TTCGTTGCC 1440						
	ATTTCCTTAA GGAAAGCTGT CCTTGTGTTG AAGGATAGAG TATATCAAGT CACGGAAACAG 1500						
	CAAATTCTG AGAAAGTTGAA GACTATCATG AAAGAAAATA CAGAACTTGT ACAAAAATTG 1560						
	TCAAATTATG AACAGAAGAT CAAGGAATCA AAGAAACATG TTCAAGGAAAC CAGGAACAA 1620						
	AATATGATTG TCTCTGTGTA ACCAAATTAA TATAAGGATA AAATCAAGAC ACTTGAAAAA 1680						
60	AATCAGGAA AGTCAGGAA TCAAGCTTAAT AATCTTCGTG TTATGCTAGA ATCTGAGAGA 1740						
	GAACAGAAATG TCAAGAAATCA GGACTTGTATA TCAGAAAACA GAAATATCTAT AGAGAAAGTTA 1800						
	AAGGATGTTA TTCAATGAA TGCCCTAGAAA TTTTCAGAGG TTCAAGATTGC ACTTAATGAA 1860						
	GCTAACGCTG GTGAGGAGAG GAGTGAAGTCT GAATGCCATG GGGTTCAAGA AGAAAATGCT 1920						
65	AGGCTTAAAG AGAAAAAAAGA CGAGTGGCAG CAGGAATCG AAGACTGGAG TAAATTACAT 1980						
	GCTGAGCTCA GTGAGCAAAT CAAATCATTT GAGAAGTCTC AGAAAGATTG GGAAGTAGCT 2040						
	CTTACTCACA AGGATGATAA TTTAAATGCT TTGACTTAACT GCATTACACA GTTGAAATCTG 2100						
	TTAGAGTGTG AATCTGAAGA TGAGGGTCAA AATAAAAGTG GAAATGATTG AGATGAATTAA 2160						
	GCAAATGGAG AACTGGGAGG TGACCCGAAT GAGAAAGATG AAAATCAAT TAAGCAGATG 2220						
70	ATGGATGTCCT CTCGGACACA GACTGCAATA TCGGTAGTTG AAGGAGATCT AAAGCTTTTA 2280						
	CAGCTTAAGC TAAGAGCCTC CGTGTCAACT AAATGTAACC TTGAAGGACCA GTTAAAGAGAA 2340						
	TTGGAGAGAT ACCCGCAACTC ACTAACAGCT GCCAAAGCTG GACTGGAAAGA TGAATGCCAA 2400						
	ACCTTGAGGC AGAAAAGTGGG GATTCTGAAT GAGCTCTATC ACCAGAGGA GATGGCTTG 2460						
	CAAAAGAAA TGACTGAAGA AGAGATGAA CGGAAGGAAA GAGAGCACAG GCTGTCAGCT 2520						
75	GCAGATGAAA AGGCAGATTTC GCGTCAGAGG GAAGTAAAAA CTTACAACGC GAGAATTGAA 2580						
	GAAATGGAGG ATGAAATTACA GAAGACAGAG CGGTCAATTAA AAAACCAAGAT CGCTACCCAT 2640						
	GAGAAGAAGC CTGATGAAAAA CTGGCTCAAA GCTCTGTGCTG CAGAAAGAGC TATAGCTGAA 2700						
	GAGAAAAGGG AAGCTGCCAA TTGAGACAC AAATTATTAG AATTAACACA AAAGATGGCA 2760						
80	ATGCTGCAAG AAGAACCTGT GATTGAAAAA CCAATGCCAG GAAAACCAAA TACACAAAAC 2820						
	CCTCCACCGGA GAGGTCCCTCT GAGCCCAATG GGCTCTTTTG GCCCCATCCCC TGTGAGTGGT 2880						
	GGAGAATGCT CCCCTCCATT GACAGTGGAG CCACCCGTGA GACCTCTCTC TGCTACTCTC 2940						
	AATCCAGAGAG ATATGCCATG AAGTGAATTG GGATCAGTGG ACAGGGCTCT ACCTCATCT 3000						
	CGATGGTCAG CTGAGGCATC TGGGAAACCC TCTCTTCTG ATTCAGGATC TGGTACAGCT 3060						
	ACCATGATGA ACACGAGCTC AAGAGGCTCT TCCCTTACCA GGTTACTCGA TGAAGGCAAG 3120						
	CTTAATATGG CTCCAAAAGG GCCCCCTCTC TTCCCCAGAG TCCCTCTCAT GAGCACCCCC 3180						
	ATGGGAGGCC CTGTACCACCC ACCCATTGCA TATGGACAC CACCTCAGCT CTGCGGACCT 3240						
	TTGGGCTC GGCCACATTCC TCCACCCCTT GGCCTGGTA TGGGTCCACC ACTAGGCTTA 3300						

AGAGAATTTC	CACCAGCGT	TCCACCAGGA	AGACGGGAC	TGCCCTCTCCA	CCCTCGGGG	3360
TTTTTACCTG	GACACGCG	ATTAGACCT	TTAGGTTCAC	TTGGCCCAAG	AGAGACTTCT	3420
ATCCCTGGTA	CCCGATTAC	ACCCCAAC	CATGGTCCC	AGGAATACCC	ACCAACCACT	3480
GCTGTAAAGG	ACTTACTCC	GTCAGGCTC	AGAGATGAGC	CTCCACCTGC	CTCTCAGAGC	3540
ACTAGCCAGG	ACTGTTCAC	GGCTTTAAA	CAGAGCCAT	AAAACATATGA	CCTCTGAGGT	3600
TTCATGGAA	AGAAAGTGT	CTGTGTC	TCCATTACAG	TTAAGGGATT	CATTGGCTTC	3660
AAAATCCAA	AGTTTATT	AAAAGGTTG	TTGTTAGAAC	TAAGTCGCTC	TGGCAGTTG	3720
CATTTTGAG	CCAAACAATT	AAAAATGTC	ATTCTTCCC	TAATAAAAAA	TCACCTTTA	3780
AGCTAGAGGC	TCCCTTACAA	TITGAAATGT	GCAATAGAA	ATACCTTGTG	TTTAGCTTAAT	3840
GTAGCATATG	TAATTGCAA	ATGATTAGA	ATGTCTAGAA	AAATATGAGA	ATTCTCTGTG	3900
GAATGCTT	AAAAGACATGT	ATTTCCATT	TCCATTTTT	AGTGTACACC	AGCTGAATAC	3960
GGAGCAATGG	TGTTTATAAG	CGTTTTTTA	AACTATCTGG	TCACAAAGAC	TGTTACGCTA	4020
AAAATGTTTA	CTAAAGATC	ACTAAACTAT	CTCCCTCTT	GTCGAAGTTC	TTTGTAGTAA	4080
TAGCTCTAA	AAAATTGTTT	ATTAAATT	CTCCAACTGTC	TGTTGACTCA	TTGACTGTT	4140
ATGAGGCTTG	TGCCATTG	GGAACATGTA	AACTCAGCT	CCCAAAGACTG	AAGATGGTGG	4200
CTGGTGGCAAC	ACTTCGGCG	GTCCTCCCTG	CACCTGTAA	CTCTACAACTG	GATGTCCTTT	4260
TATTTCAAAG	AGTTTATT	CCCACCTGT	TAGCTTACAC	AGTCCTTCTC	TACGATCCCTC	4320
ATTGCTATT	TGAGAATGGT	TTTCTGAGAG	TGAGTTTACA	TTAGTAGCAA	GAGTTGTTG	4380
ACCTGTGTTT	CCATTGTTT	TACCATTCT	GTGAAAAG	GTCGCAACAC	AGAAAATGAA	4440
AAATGTGTC	TCATGGCC	AAAATGATAG	AAATCTTAA	AAATTTTAA	ATGTACAGTC	4500
CCTTATCTAT	CTTTCCATT	CTTCTGGCCT	GATTTTGAG	GAATAATAAA	AAAAGATTGG	4560
AAGAGTATAA	TGCCATGAGA	AGAATGATT	TAGGACTGTG	AGGGTTATAA	CATGCCCTAG	4620
GTCGACCAAA	AAGGGTTGAA	ATCAGTCTG	TTTGTAGGGG	AAATGGGGG	GGCGACAGAT	4680
ATTATTCACCA	AAATTAAATT	ATTAAATT	TAACAGTTG	TCTTTTTTGG	TTAAACATCG	4740
TAACTAACCA	TCTGGAATTG	CACCATACT	AAAGTCTTAT	CCATTACTAC	ACTGCTTTA	4800
AAACAACTGTT	TCTTTAAATA	CTCTACAA	TTTCTAAGAA	CGAACCTTCAG	ACATTTTAAAT	4860
TACAGTAATA	ATAGCACTCC	TTTAAAGGAG	TCTCAGATTC	ACACAAAAAC	TTAAACATATA	4920
AAAGGCTGAT	ACTTTGTTT	GTCGTAGGC	TATATTCTTC	CATTCTTGA	AGTCCTATGA	4980
TGTAATTATT	TTGAAACCTA	GTGTATGTC	TGTCACTGTT	GTGATATTAA	ATCGATTAA	5040
AATAACCTTG	AAAAGGAGC	AAAAGCTCA	ATGTGAACAA	ATTTTCTCTC	TTTATATAA	5100
CAACACTGAG	ATAGATACCT	TAGAAAGATA	AGGACCTTGG	AAAGAAAGCA	ACTGTCTCAA	5160
AGTTCATAA	GAATATAAAA	ATTCTTCAGG	AAAAGAGAA	TCAATCTATA	TGTCTCCCG	5220
TTTAATATCA	AGAATAGGAA	AAATTAGGAG	GGAAACTCTCA	CAGAGAGCA	TAGGCCACTT	5280
TTAGCCATGT	AAAAATAGA	TAAAGTCACA	AAATACAAC	TTGAAATTTC	CTGTCATATAT	5340
CTCTTATGGA	CACAAAACAA	TGCTGAAGTT	AAATATAATT	CTAATTAA	ATGTCTTTA	5400
AGTGTAGATT	ATGCCATCT	GGAAAGCTAG	TAGGAAAGCT	AAATTAATC	TATTTTTAAA	5460
ATCCAAATAA	TTAGAGTATT	TTTCCCCCT	AAAGCCTTT	TTGGTGTAA	TTCTGTATCT	5520
GACATATAATG	AGAAACTGTT	AGCTGTAAA	GATTCCTAGGT	TAGCTCTCT	GAGAAAGTTG	5580
GAGCCAGTCC	ATAACTGCTT	CCTCACATCC	ATCTGATTGC	ACCATTTCTG	CAGCAAAACCC	5640
CAAAAGCAGG	TGCGGAAATAT	CAGATGGCA	AGGGAGATAC	ATCCTCTCAGC	CAAACTACTT	5700
TTCCATCTCT	AAAGTTCTAT	CTATTGTTGA	AGTAGCTTC	AACTAATG	GTCTGGATT	5760
AGTTGCTAA	ATTGTCCTAT	TTATTATGTA	AGCAGCAATA	TTCAAGCTGA	AAGCATTCT	5820
GCCATAGTG	TTCTGAGTT	ATCGCCAA	GCTGATTTT	TTCAATTGAA	AGTAAATTAA	5880
AGTAATTCGT	GGGATGTGTT	ATATTCTGTG	TCAACTTCAA	GATAATCACT	CATTCTTCG	5940
TTATATTCTAG	GTCTGAATTA	AAGTTAAGGT	AATACAC			

SEQ ID NO:50 PAB7 Protein sequence

Protein Accession #: BAA13448

1	11	21	31	41	51	
AFLSKVKEEDD	YPSEELLEDE	NAINAKRSKE	KNPGNQGRQF	DVNLCVPDR	VLGTTIHPDPE	60
IEESKQETSM	ILDSEKTSET	AAKGVNTGGR	EPNTMVEKER	PLADKKAQRP	FERSDFSDSI	120
KIQTPELGEV	FQNQKDSYDLK	NDNPNEEHLKT	SLGAGEPEGE	LSKEDHGNT	KYMGTESQS	180
AAAEPEDDSF	HWTPTHTSVEP	GHSDKRDELL	IISSFFKIEQQ	SLQRFQKYFN	VHEEALLQE	240
MSSKLKSAQG	ESLFPYNMKEV	LDDKVKRQFAS	QILSIAEKM	DTRVAENRDL	GMNNENIIFEE	300
AAVLDDIQLD	IYFVYRKHST	AEBETATLVM	PPLEBGLGG	MEEMQPLHED	NFSREKTAEL	360
NVQVPEPHT	LDQRVIGDTH	ASEVSQKPNT	EKDLDGPVFT	TEDTPMDAID	ANKQPETAAE	420
EPASPTVPLEN	AIIYLISYMF	YLTKLSVATL	PDDVQPGPDF	YGLLPWKFVFI	TAFLGIASFA	480
IFLWRTVTV	KDRVYQVTE	QISEKLTITM	KENTELVQKL	SNEYQKIKES	KHHVQETRQK	540
NMILSDEAIK	YKDKEIKTLEK	NQEIILDDTAK	NLRVMLSES	EQNQVKNQDLI	SENKKSIEKL	600
KDVISMNASE	FSEVQIALNE	AKLSEEKKVKS	ECHRVQEENA	RLKKKKBCOLQ	QEIEDWSKLH	660
AELSEQIKI	EKSOKLALNE	LTHKDDNNIA	LTNCITQQLNL	LECESESEQG	NKGGNDSDEL	720
ANGVEGQDDRN	EKMKNQIKOM	MDVSRROTATI	SVNEEIDLKL	QLKLRAVSST	KCNLLEDQVKK	780
LEDDRNSLQA	AKAGLEDECK	TLRQKVIEIL	ELYQQKEMAL	QKQLSQEEYE	RQERERHRLSA	840
ADEKAVSAAE	EVKTYKRRKE	EMEDELQKTE	RSFKNQKTE	EKKAHENWLK	ARAEEARAEIA	900
EKREANALRH	KLLELTQTKMA	MLQEEPVIVK	PMGPKPNTQN	PRPGLPSLQNN	GSFGPSPVSG	960
GECSPPLTVE	PPVRPLSATL	NRDRMPRSEF	GSDVGDGPLPH	RWSAEASGKP	SPSPDPGSGTA	1020
TMMNNSSSRGS	SPTVRDLDECK	VNMAPKGPPP	FPGVPLMSTP	MCGPPVPPIR	YGPPPLQCLGF	1080
FGPGRPLPFF	PGPGRMLPLGG	REFAPGVPPG	RRDLPLHFRG	FLPGHAPFRP	LGSILGPREYF	1140
IFGTRPLPPPT	HGPQEVYPPP	AVRDLPLPSG	EDDPPASQS	TSDQCSQAL	QSP	

SEQ ID NO:51 PAB9 DNA SEQUENCE

Nucleic Acid Accession #: NM_006457
Coding sequence: 84-1874 (underlined sequences correspond to start and stop codons)

```

1           11          21          31          41          51
|           |           |           |           |
AGACTGAGGGC GGAGGCAGCC CCGCGCCGCG CCGGACCCGA GCATATTTCGA TTTTCTGTCA 60

```

TTGGACTTTG ACCCATTAGA ACCATGAGCA ACTACAGTGT GTCACTGGTT GGCCAGCTC 120
 CTGGGTTT CGCGCTGCAG GGCGTAAGG ATTTCAACAT GCCTCTGACA ATCTCTAGTC 180
 TAAAAGATGG CGGCAAGGCA GCCCAGGCAA ATGTAAGAAT AGGCATGTC GTTCTCAGCA 240
 5 TTGATGGAAT AAATGCAAA GGAATGACTC ATCTTGAAAG CCAGAATAAG ATTAAGGGTT 300
 GTACAGGCTC TTGAAATATG ACTCTGCAAA GAGCATCTGC TGCAACCCAAG CCTGAGCCGG 360
 TTCCCTGTTCA AAAGGGAGAA CCTAAAGAAG TAGTTAACCC TAGTCCCCATT ACATCTCCCTG 420
 CTGTGTCCAA AGTCACTTC ACAAAACAACA TGGCCTACAA TAAGGCACCA CGGCCTTTG 480
 GTTCTGTGTC TTCAACAAAAA CTACATCACA TCCCATACC ATCGTCTGCC TTCACTCCAG 540
 10 CCCATGCGAC CACCTCATCAGCTTC CTTCACCGCT GGCTGCCGTC ACTCTCCCC 600
 TGTTGCTGC ATCTGGACTG CATGCTAATG CCAATCTTAG TGCTGACAG TCTCCATCTG 660
 CACTGAGCGC TGGTAAACT GCAGTAAATG TCCCACGGCA GCCCACAGTC ACCACGCTGT 720
 GTTCCGAGAC TTCTCAGGAG CTAGCAGAGG GACAGAGAAG AGGATCCAG GGTGACAGTA 780
 AACAGAAAAA CACCTCACCA AGAAAACACA TTGTTGGAGGG CTATACAGAG TTTTATCATG 840
 15 TACCCACTCA CAGTGATGCC AGCAAGAAGA GACTGATTGA GGATACTGAA GACTGGCGTC 900
 CAAGAACTGG AACAACCTAG TCTCGCTCTT TCCGAATCCT TCCCCAGATC ACTGGGACTG 960
 AACATTGAA AAATCTGAA GCCGATAATA CAAAGAAGG AAATAACTCT CAGGAGCCTT 1020
 CTCCCGAGTT GGCTTCTCTG CTAGCTTCCA CACCGAGCAT GCCCAGAGG CTGGACAGCC 1080
 CAACCTCTGG CAGACCAGGG GTTACCAAGCC TCACAACCTGC AGCTGCCCTC AAGCTGTAG 1140
 20 GATCCACTGG CTCATCAAG TCACCAAGGT GGCAACAGGG AAACCAAGGA GTACCTTCCA 1200
 CTGGAAGAAT CTCAACAGC CTTACTACT CAGGATCAGT GGCAACAGGC AACTCAGCTT 1260
 TGGGACAAAC CCAGCCAAGT GACCAGGACA CTTTAGTGC AAGAGCTGAG CACATTCCAG 1320
 CAGGGAAACG AACTCCGATG TCGGCCATT GTAAACAGGT CATCAGAGGA CCATTCTTAG 1380
 TGGCACTGGG GAAATCTGG CACCCAGAAG AATTCAACTG CGCTCACTGC AAAAATACAA 1440
 25 TGCCCTACAT TTGATTGTGA GAGGAGAAAG GAGCCCTGTA TTGTGAGCTG TGCTATGAGA 1500
 AATTCTTGTG CCTGTAATGT GGTCGATGCC AAAGGAAGAT CCTTGAGGAA GTCATCAATG 1560
 CGTTGAAACA AACTTGGCAT TTTCCTGTT TTGTTGTGTT AGCCTGTGGA AAGCCCATTC 1620
 GGAACATGAA TTTCCTACTG GAGGATGGT GACCCCTACTG TGAGACTGAT TATTATGCC 1680
 30 TCTTGTGTAC TATATGCCAT GGATGTGAAT TTCCCATAGA AGCTGGTGC ATGTTCTGG 1740
 AAGCTCTGGG CTACACCTGG CATGACACTT GCTTGTGTTG CTCACTGTG TGTGAAAGTT 1800
 TGGAAGGTCAC GACCTTTTCG TTCAAGAAGG ACAAGCCCTC GTGTAAGAAA CATGCTATT 1860
 CTGTGAATT TTGAAAGTCAC ACAGTTCAAGG AAAGAGAAG GAATTGAGA AGAAAAAGGA 1920
 35 AAATTAAAAT TACTAATTAA TTTTAGATT CAATATTTAT ATGGAGTTTT GAAAAAATAAT 1980
 AGTGGCCCTG AAGGAATAAA TTCCACGTTT AAAAACCAAG TCTGAGGAAA TATTGGCTT 2040
 CATAAGTAA AGAGACGCTT TGCCATTAT TATTACTTTT TCTGTATT TATGCCATA 2100
 40 AAAAAGCTT TATAAAAACC AATTTCCTGA TGGACTATTA AATTCACTTT AGAATAAAATT 2160
 AGTGAAGAAT TTAAATTAG AATAAAATAT CCAATCTGAA ATAATTATAC CTTCTTTCTC 2220
 TGTAGGTAG TTATGACTA ATCTGCAAA GGCATGAAA ATGCCCTAAA TTTTATCAAT 2280
 AACAGAATTA TTGTATTAA AAAAAAACTA ATACTTATCT TAAAAATAGT AAATAGGATT 2340
 45 TAAACAGAG AATTTATCA GTAAATGGTG TCAGTTTTTA AAAAATTTGCT TGAGGCTGA 2400
 CGCGGGTGGC TCACGGCTGT AATCCCAGCA CTITGGGAGG CCAAGGGGG TGACCAT 2460
 GAGGTCTAGGA TTGTTGAGATC AGCCCTGGCA ACATGGTAA ACCCCATCTC TACTAAAAT 2520
 ACAAAAATTA CGCCGACGCA GTGGCACGCG CCTGTAATCC CAGCTACTCA AGAGGCTGAG 2580
 GCACAGAGAA CACTTGAACC CGGGAGGGAG AGGTTGCACT GAGCCAAGAT CGTACCACTG 2640
 CACTCAGGCC TGGGTGAGAC AGTGAGACTC CGTCCTCCAAA AAAAATTTT GCTTGTATAT 2700
 50 TATTGTTGCC TTACAGTGGA TCATTCTAGT AGGAAAGGAC AATAAGATT TTTATCAAA 2760
 TGTTGTATGC CAGTAAGAGA TTGTATATT TTTTCTTTATT TCTTCCCCAC CCAAAATATAA 2820
 GCTACCATAT AGCTTATAAG TCTCAAAATT TTGCTTTTA CTAATATGTG ATTGTTCTG 2880
 TTCATTGTGT ATGCTTCATC ACCTATATTA GGCAAAATTCC ATTNTTCTC TTGCCTAAG 2940
 55 GTAAAGATT AATTAAATAA TTTGGCTC TCATAGTTTT CTCTCTCTT AAAGAGAATA 3000
 AATAGGGGC CAGGTGTGGT GGCTCACGCC TGTGATCCCA GCACTTGGG AGGCCAAGAC 3060
 GGGCGGATCA TGAGGTCAAG AGATCAAGAT CATCTGGCC ACATGGTGA AACCTGTCT 3120
 CTACTAAAAA TACAAAAAATG AGCTGGGCAT GGTGGGGCGT GCCTGTAGTC CCATGTACTT 3180
 GGGAGGCTGA GGCAGGAAAA TTCTTGAAAC CAGGAGACGG AAAGTGCAGT GAGCTGAGAT 3240
 CACACCACTG CACTCCAGCC TGGTGACAGA GCAAGACTCC GGCTCTT

SEQ ID NO:52 PAB9 Protein sequence

Protein Accession #: NP_006448

60	1	11	21	31	41	51	
	MSNYSVSLVG	PAPWGFLRQG	KGDFNMLPTI	SSLKDGGKAA	QANVRIGDVV	LSIDGINAQG	60
	61 MTHLEAQNKI	KGCTGSLNMT	LQRASAAKP	EPVPVQKGEF	KEVVVKPVPI	SPAVSKVTST	120
	121 NNMAYNKAPR	PFGSVSSPKV	TISIPSPSSAF	TPAATTSSH	ASPSPVAAVT	PPLFAASGLH	180
	181 ANANLSDAQ	PSALSAKGTA	VNVPRQPTVT	SVCSETSQEL	AEGQRGRSQG	DSKQQNQPPR	240
	241 KHIERYTEV	YHVPTHSDS	KRKLIEDTED	WRPRIGTTQS	RSFRILQIT	GTEHLKESEA	300
	301 DNTKKANNQS	EPSPQLASLV	ASTRSMPESL	DSPTSGRPVG	TSLTAAAFK	PVGSTGVIKS	360
	361 PSWQRPNQVG	PSTFGNSNA	TYSGSVAPAN	SALGQTQPSD	QDTLVQRAEH	IPIAGKRTPMC	420
	421 AHCNQVIRGP	FLVALGKSWH	PEEFNCNAHCK	NTMAY1GFVE	EKGALYCELC	YEKKFFAPECG	480
	481 RCQRKILGEV	INALKQTWH	SCFVCVACGK	PIRNNUVFHLE	DGEPYCETDY	YALFGTICHG	540
	541 CEFPIEAGDM	FLEALGYTWH	DTCFVCVSCC	ESLEQQTFFF	KDKPLCKHH	AHSVNF	

SEQ ID NO:53 PBH7 DNA SEQUENCE

Nucleic Acid Accession #: AA431407

Coding sequence: 1-864 (underlined sequences correspond to start and stop codons)

75	1	11	21	31	41	51	
	ATGGCCAAC	GTAAAATGAC	CAAAAGCATC	AGGTTCCCTG	CCCTGGAGCA	CTGCTATACT	60
	GCGGGGGAGG	TCGTGTTGCC	CAAGGATCAG	GAGGAGTGG	AAAGACGGAC	GGGCCTCTG	120
	80 CTCTACGAGA	ACTATGGGCA	GTGGAAACG	GGACTAATT	GTGCCACCTA	CTGGGGAAATG	180

AGATCAAGC CGGGTTTCAT GGGGAAGGCC ACTCCACCC ATGACGTCCA GTTTCATATG 240
 GAGGCTCTAG TTGAAAAGTG CATTATTGTG AGCATGAACA CCGCTGACCC TGGCAGCCAG 300
 GGCATCACAC ACAGCCTCTT GCTACAGGTC ATTGATGACA AGGGCAGCAT CCTGCCACCT 360
 AACACAGAAG GAAACATTGG CATCAGAAC AAACCTGTCA GGCTGTGAG CCTCTTCATG 420
 TGCTATGAGG GTGACCCAGA GAAGACAGCT AAAGTGGAAAT GTGGGGACTT CTACAACACT 480
 GGGGACAGAG GAAAGATGGA TGAAGAGGGC TACATTGTT TCCTGGGGAG GAGTGATGAC 540
 ATCATTAAATG CCTCTGGGT TCGCATCGG CCTGCAGAGG TTGAAAGCGC TTGGTGGAG 600
 CACCCAGCGG TCGCAGGACT AGCCGTGGT GGCAAGCCAG ACCCGATTGAG AAGGGAGGTG 660
 GTGAGGCTT TTATTGTCCT AGGCCCCAGAG TTCTGTCCC ATGACRAGGA TCAGCTGACC 720
 AAGGAACCTC AGCAGCATGT CAAGTCAGTG ACAGCCCCAT AACAAGTACCC AAGGAAGGTG 780
 GAGTTTGTCT CAGAGCTGCC AAAAACATC ACTGGCAAGA TTGAACCGAA GGAACCTTCGG 840
 AAAAAGGAGA CTGGTCAAGAT GTGAACCTGGCA GTGAACACTGAC AACACTGAGG 900
 CAAATCCCTG GGCACATTAG TCTCCCACT ATGGTGAGGA CGAGGTGGG GCATTGAGAG 960
 TGTTGATTTG GGAAAGTATC AGGAGTGCCTA TGATTCCAAT GTTTTCTTC TTTTAAATTA 1020
 AATTCACTGTC CTCGCTTC TCCAAGTCCT CTGTATCTTT AGAATTCCC AGGTGAGCAC 1080
 TCATAACGCA AGTAATAAAA TACTGATATC AACAA

SEQ ID NO:54 PBH7 Protein sequence

Protein Accession #: FGENESH predicted

1	11	21	31	41	51
MANCKMTKSI	RFPALEHCYT	GGEVVLPKDQ	E EWKRRTGLL	LYENYQSET	GLICATYWGM
KIKPGFMGKA	T PFPYDVQFHM	EASVENCIIIV	SMNTADPGSQ	GITHSLLLQV	IDDKGSILPP
NTEGNIGIRI	KPVRPVSFLM	CYEVDPEKTA	KVECGDFYNT	GDRGKMDDEEG	YICFLGRSDD
IINASGYRIG	PAEVESALVE	H PAVAESAVV	GSPDPIRGEV	VKAFIGVLTPO	FLSHDKDQLT
KELQQHVKS	TAPYKYPRKV	EFVSELPKTI	TGKIERKELR	KKETGQM	

SEQ ID NO:55 PBJ5 DNA SEQUENCE

Nucleic Acid Accession #: AF388200

Coding sequence: 33-137 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51
GAGAGAGGGA	GGCAGAAAGAG	GAAGTCAGAG	CGATGTGCTG	TGAAATCTAC	TACCGTTTGC
TGGTTTTGAA	AATGGAAAAA	AAAGGTGAGG	AACTGAGAAA	CATGGATGGC	CTTGGGAACCG
TGGAAAGGTC	TCAGTGAAC	GGACGACAT	GAACCTCAAGG	AGCTTATTAA	TGACCATGTC
ATTTCACAA	TGAAAGAAAC	TTATCTGGAG	TGAAAGTAA	TGAGACCAAC	AGAGATAAGA
GACCCGGAGA	AATCCTGGTT	ACACTGCTTG	AATCCTGTCA	GTCTTATACT	GGAGTCCTGT
TAATACACAA	TAATAGTAA	ATACCCCTG	TTCTCTTGT	TTATGCCAAC	TTCAACAAAA
AGAAATTGTA	CTAAGAGACA	ATATAAGAAC	TTAATGTGTA	TTAAGAAAG	AACTCTCAC
CACGGGAAAT	GTGAAAGGTA	TATGAGTCCC	TTTCACGAT	GCGATGTCAT	GTCTTTAAA
TAAGCCATAC	TTTATGTTCA	ATAAAAAGAG	AATAAGCAGG	A	

SEQ ID NO:56 PBJ5 Protein sequence

Protein Accession #: AAK83352

1	11	21	31	41	51
MCCEIYYRLL	VLKMEKKSEE	LRNMDGLGNV	EKGH		

SEQ ID NO:57 PBJ7 DNA SEQUENCE

Nucleic Acid Accession #: AA876910

Coding sequence: 1-2064 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51
ATGGACAGTT	GCCTGCAACA	TATGAGAGAC	CTACTTTTAC	TCCCTCAGGA	GCTCAGGTGT
TTAAATCCAG	CTACACTACT	CCCTGATCCA	GACTCCACTA	CTCCTGTCA	TGACTGTCAG
GATCTCTGG	AAACTACCAA	AACTGGCCCA	CCTGATCTTC	AAAGATGTGCC	CCTAGAAAAG
GCAGATGCGA	CTGTGTTCA	AGATGGTAGC	AGCTTCCCTG	AGCAGGAGGA	ACGAAAAGCT
GTTTCTTTTC	CACAGCCAGA	TCTGCTTGAC	AATCCACACAT	ATCACAACAGA	AGAAGAAAAAA
CTGGCTTCAG	ATGTTGGAGC	AAATAAAAT	CAGGAGGAC	GTGTTATTGCG	AAACACTACT
TGGAGGGCCC	GTACCTTCAA	GGAGACTCTC	TTTGCAAGT	TTTATGTTGT	ACTGTTCCCA
GACCCAGCTC	GTACCCATGA	AGAGCAACAT	ATTTCACCGG	TCA TAGGAGC	AGGAAGTGTG
GACCTTGCAG	CAGGATTGG	ACACTCTGG	AGCCAAACTG	GATGTGGAAAG	CTCCAAAGGT
GCAGAAAAG	GGCTCCAAA	TGTTGACTTT	TACCTCTGTC	CTGGAATATCA	CCCTGACGCT
AGCTGTAGAG	ATCTTCTGAC	TTTTTCTCTG	CCTGATTGGA	CATGTGTAAC	TTTAGCCACC
TACTCTGGGG	GATCAACTAG	ATCTTCAACT	CTTTCCATAA	GTCTGTTCC	TCATCTAA
TTATGTACTA	AAAAAAATTG	TAATCCTCTT	ACTATAACTG	TCCATGACCC	TAATGCAGCT
CAATGTATT	ATGCCATGTC	ATGCGGATTA	AGACTTTATA	TCCCAGGATT	TGATGTGGG
ACTATGTTCA	CCATCCTAAA	AAAATCTTG	GTCTCATGGA	GCTCCCCCAA	GCAATCGGG
CCTTTAACG	ATCTAGGTGA	CCCTATATT	CAGAACACCC	CTGACAAAGT	TGATTTAACT
GTTCCCTCTGC	CATTCTTGT	TCTTAGACCC	CAGCTACAAAC	AACAAACATCT	TCAACCCAGC
CTAATGTCTA	TACTAGGTGG	AGTACACCAT	CTCCCTAAC	TCACCCAGCC	TAAACTAGCC
CAAGATGTT	GGCTATGTT	AAAAGCAAA	CCCCCTTATT	ATGTTAGGATT	AGGAGTAGAA
GCCACACTTA	AACGTGGCCC	TCTATCTTGT	CATACACGAC	CCCGTGCCTCT	CACAATAGGA
GATGTGTCG	GAATGCTTC	CTGTCTGATT	AGTACCGGGT	ATAACTTATC	TGCTTCTCCT
TTTCAGGCTA	CTTGTAAATCA	GTCTCTGCTT	ACTTCCATAA	GCACCTCAGT	CTCTTACCAA
GCACCCAAACA	ATACCTGGTT	GGCCTGACCC	TCAGGTCTCA	CTCGCTGCAT	TAATGGAACCT

5 GAACCAGGAC CTCTCCGTG CGTGTAGTT CATGTACTTC CCCAGGTATA TGTGTACAGT 1440
 GGACCAAG GACGACAATC CATCGCTCCC CCTGAGTTAC ATCCCAGGTT GCACCAAGGT 1500
 GTCCCACTTC TGTTCCCCCT ATTGGCTGGT CTTAGCATAG CTGGATCAGC AGCCATTGGT 1560
 ACGGCTGCCG TGGTCAAGG AGAAACTGGA CTAATATCCC TGTCTAACAA CGTGATGCT 1620
 GATTTAGTA ACCTCCAGTC TGCCATAGAT ATACTACATT CCCAGGTAGA GTCTCTGGCT 1680
 10 GAAGTAGTTTC TTCAAAACTG CGGATGCTTA GATCTGCTAT TCCTCTCTCA AGGAGGTTTA 1740
 TGTGAGCTC TAGGAGAAAG TTGTTGCTTC TATGCCAATC AATCTGGAGT CATAAAAGGT 1800
 ACAGTAAAAA AACTTCGAGA AAATCTAGAT AGGCACCAAAC AAGAACAGGA AAATAACATC 1860
 CCCTGGTATC AACGATGTT ACTTGGAAC CCATGGCTAA CTACTTTAAT CACTGGTTA 1920
 GCTGGACCTC TCCTCATCCT ACTATTAAGT TTAATTG GGCCTGTAT ATTAAATTG 1980
 15 TTTCTTAATT TTATAAAACA AGGCATAGCT TCTGTCAAAC TTACGTATCT TAAGACTCAA 2040
 TATGACACCC TTGTTAATAA CTGA

SEQ ID NO:58 PBJ7 Protein sequence

15 Protein Accession #: FGENESH predicted

1	11	21	31	41	51
MDSCLQHMRD	LLYLLQELRC	LNPAATLLPDP	DSTTPVHDQ	DLETTKTGQ	PDLQDVPLEK
20	ADATVPTDGS	SFLEQGERKA	VSPFPQPDLPD	NPTVSTEEEK	LASDVGANKN
WRAGTSKEVS	FADVLCVLFP	EPPARTHEEQH	NLPVIGAGSV	DIAAGFGHSG	SQTGCSSKG
AEKGLQNVDF	YLCPGNHPPDA	SCRDTYFFFC	PDWTCVTLS	YSGGSTRSST	LSISRVPHPK
LCTRKNCNPL	TIVTHDPNAA	QWYYGMWSGL	RLYIPGFDV	TMFTIQKKIL	VSWSSPKPIG
25	PLTDLGDPPIF	QKHPDKVDLT	VLPFLVPRP	QLQQQHLQPS	LMSILGGVHH
QDCWLCLKAK	PPYYVGLGVE	ATLKRGPLSC	HTRPRALTI	DVSGNASCLI	STGYNLSASP
FQATCNQSSL	TSISTSVSYQ	APNNTWLACT	SGLTRCINGT	EPGPLLCVLV	HVLPQVYVYS
30	GPEGRQLIAP	PELHPRLHQ	VPLVPLLAG	LSIAGSAAIG	TAALVQGETG
DFSNLQSAID	IHLHSQVESLA	EVVLQNCRCL	DLLFLSQGGL	CAALGESCCF	YANQSGVIKG
TVKVRENLD	RHQERENNI	FWYQSMFNWN	FWLTLITGL	AGPLLILL	LIFGFCILNS
FLNFIKQR	IAVSKLTYLXTO	YDTLVNN			

SEQ ID NO:59 PCQ1 DNA SEQUENCE

35 Nucleic Acid Accession #: NM_019005

Coding sequence: 182-1885 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51
TGATGGTGA	AATTCTTGA	AACCGCTCTC	GTAAATTGCC	ACGTGCTGTT	GCAAATATT
40	TGGTGAATGA	ACACAGAAC	ACCATGGCTT	TCCCTTGCTG	AGAAATCACT
GAGACTTGT	AAACTTGAAA	GTGAATGGAC	CTGACTGGAC	CCTTTGATCA	GATGGAAAGT
CATGAGCGGT	ACCAACAC	ATATTATATG	GGCACCAAC	CATTTGATA	180
GTGTGACTCA	GAACAAAGTC	TTTATCATGT	GGAAATCTACT	GATTTGTTGT	240
TGGATCTTAA	CGTTTATCTG	AAAGACTCTG	AGCTACATTA	GTGAAATTAG	420
ACCCATATG	AAATATGTTG	CCTGGTATCT	TAATTATGAT	CTGTCATAAA	480
45	TGGCAAGCA	AAATGTCGAG	TTGTAATTC	AGGCTTGGT	ATTCAGATAC
CAAAGATTTG	ATAGGAAAG	AGTTTGTCC	AAAACATGCA	ACTCAAAGTT	540
CTGGATCTCA	CTGGATAGTA	ACTGGTAGC	TGCTGGTTTA	GAGCTGACTT	600
TTCAGTGCTA	ATATGGATA	TCTGCAGCAA	ATATACCTT	TTAGATGTC	660
AGTGAACATT	TCAGCAGGTG	AAACTGAAAC	AACATTATTA	GTAACAAAAC	720
50	GTTAGGACAG	AATGATCTT	GTCGTGCTCT	TTGTTGGCTT	CAACGAGAC
CCTTGTGTT	ATGCGATCGTA	ACCTAGCTAT	ATTGATCTT	CCGAATACAA	780
GTTCGTAAT	ACAAAAGCTG	TTCAGGGTGT	GACGGTAGAC	CCATATTTC	840
TGCTTCCCTC	TATGAAGTC	AGTTGCAAT	ATGGGATCTT	ACGATCGTGT	900
55	TTTACATGCT	ACTGAGCAAC	AAAACCTTAA	ACAAAGATA	960
TGGTCTACTT	GCCACTTTAA	CAAGGGATAG	TAATATTATT	GCATGCTGTC	1020
TACACCCACT	CCCATTGGGG	ATGAAACTGA	ACCCAAATA	CCACTAGGAC	1080
60	TTGTGACCAT	TAATGCTT	CTTCTGGCT	GAATCTAAC	1140
TGTAACCTCCC	ACCCGAACAA	TGTCAAGACTT	CACTGTTTT	AGTCAAAATC	1200
GAGCCAATT	ACATCTTAA	TGTGGGCTTG	TGGTCGTAT	GAATGATAGT	1260
65	AGAAAATGAT	AATTCTTAA	AAAAGATAT	GTATATGAA	1320
AAGGTATGGA	CTTGATACAG	ACGAGGTGT	GAGGAACAC	GTACGAAAGA	1380
TCCACAGCTC	AAAGTCACTT	GGTACTATCT	CACTTCTATG	GGGCTTATAC	1440
GGATCAAGAA	TCTCCAGGCA	ACAAAGGATC	ATTGGTTAT	ATGATGATGT	1500
70	AAAGTCATCG	TTGGGAATGG	TGAAAGCAG	CAGACATAAT	1560
AGTGTATTAA	CAAACCTTAA	ATGAAAGCAG	ATGTTAGCT	TGGATAAGCA	1620
75	AAAGAAAGGA	ACGGATGTAG	ACGTGGGGCC	TTACAGCTTT	1680
AAGTGGATC	CGTCTCTG	TGTCCTGTT	AGTACGTGAC	AGAGTGGCAT	1740
GAGGCTGGAA	ATTGGAAGG	AAATTGCTT	ACAGGCCCTA	AAGAAGGGGA	1800
ATGGAGAGTT	ATGTTGATAG	AACTGGGAGAT	CTAAAGATGG	CAATCCAAAT	1860
75	GTTTCACCTT	TAGATGTTCT	TAAGATGAA	AGGGTTTCAGT	1920
AATTATTAG	ATGCCCTGGAG	TTTTGGCAT	AAACAGACTG	ACTGGATTGA	1980
AAGTTGGATC	CCAGTCCCAA	GCCTTTAGCA	ACAAAGTTGC	GAATTATAGA	2040
AAGTCATCT	CTTACAGCTG	TTCAGCTGTG	AGTGTGACCA	TCACAGGAGT	2100
80	GGTGTGAGTG	GCTCACCAAC	GAAATCTAA	TGAGTTGCAA	2160
CTTCCTCGAT	GTGCGCTTGTG	TCTCATTAAT	ATGGGAACAC	TGAGTGGACTT	2220
				AGTCACTT	2280
				GGTGTGAGTG	2340
				GCTCACCAAC	2400
				GAAATCTAA	2460
				GTCACAAAGT	2520
				GTGCTGGCTG	2580

5 GGAACCAAAT CAGATGAAAA AGTGGACTTG AGCAAGGACA AAAAATTAGC CCAATTAAAC 2640
 AACTGGTTA CATGTCAGA TAATTGCAGG CACGGTGGAC ATGCTGGACA TATGCTTAGT 2700
 TGGTTCAGGG ACCATGCAGA GTGCCCTGTG TCTGCATGCA CGTGTAAATG TATGCAGTTG 2760
 GATAAACCGG GGAATCTGGT ACCTGCAGAG ACTGTCCAGC CATAAAATGT TACCACCTTA 2820
 AGAGAAACCT TCAAGTGTGG ACCTTTCTAG TAGGTGTCCCT TCATAGCTCA GAAACATACC 2880
 TCAGAACAAAG CCATTCATGA CTTACCTGTA ATGGGAAAAT AAATCATTCT ATCAGAAAAA 2940
 AAAAAAAAAA AAAAAAAAAA

10 SEQ ID NO:60 PCQ1 Protein sequence
 Protein Accession #: NP_061878

	1	11	21	31	41	51	
15	MSGTKPDILW	APHHVDRFVV	CDSESLYHV	ESTVNSELKA	GSLRLSEDSA	ATLLSINSDT	60
	PYMKCAWYL	NYDPECLLA	GQANGRVLVT	SLQGDHNSKF	KDLIGKEFVP	KHARQCNLTA	120
	WNPLDSNWLA	AGLDKHRADF	SWLIDNCISI	YTPDIVPMEK	VKLSAGEETET	TLLVTKPLYE	180
	LGQNDACLSL	FDLRNDPKL	LAGMHRNLAI	FDLRNTSQKM	FVNFKAVGV	TVDPYFHDRV	240
20	ASFYEQVAL	WDLRKFEKPV	LTLTEQPKP	TKVAWCPTRT	GLLATLTDNS	NIIRLYDMQH	300
	TPTPIGDETE	PTI1ERSVOP	CNDYIASF	HPTSQRNMIV	HTPNRNTMSDF	TVFERISLAW	360
	SPITSLMWAC	HFMKQYTEDEE	ENDNSLEKDI	ATKMRRLRAS	RYGLDTEQWV	RNHILAGNED	420
	PQLKSLWYTL	HFMKQYTEDEE	DQKSPGNKGS	LVYAGIKSIV	KSSLGMVESS	RHNWGLDKQ	480
	SDIQNLNEER	I ALQLCGWI	KKGTDVDVGP	FLNSLVQEGE	WERAAAVALF	NLDIRRAIQI	540
	LNGEASSEKG	RRSESQCGSN	GFIGLYG				

25 SEQ ID NO:61 PDG3 DNA SEQUENCE
 Nucleic Acid Accession #: U42359
 Coding sequence: 563-775 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
30	TTGTACATCT	TAACAAACCTT	AAGCTGTACA	AATAGANCAA	TAATATCTAA	ATGGTGTGAT	60
	GATCAGCCCC	CACTACACAT	CATTGATGAG	AATTTCACTG	GTCCTCAACCT	TTCTCATGCT	120
	GAGTCCTGGC	TTTGTAAAT	GACTTATAAA	GGTCCAAGGA	TTTAGAGATG	ATTAAGAGAT	180
	AAGCTGCTAT	CTGTGAAAGG	CACCATCGTC	TATCCCCTGT	CTTGTCTAGA	AAAAGATGT	240
35	ATGCTTAAAT	CTTGTAAATAA	TATTGTCACAA	ATGAAATTC	AACTCTTAAAGG	ATTATTTTTT	300
	CCATATTGTT	GTATTTCA	GTGGTGTATT	GGAAAGTGT	CTGGACTTTG	AGTGAGAAAGA	360
	TGTGATTTGG	ACCATGGC	TTAAACAACT	TATAACCTCA	GCGAACGCTT	TAAATCTTCT	420
	CTGAGCCTCA	GTTCCTCTCA	TTTTCAAAAT	ATAGAGAGTA	TAACATTAT	CTCATAAGAC	480
40	AAGTTGTAGT	AAATTACTGT	TTTACAAATG	TAAGATAACT	TTTAACTGTG	AGATTCCATA	540
	TTCAGCTCTT	ACATTATTAT	TTTTATCTGC	CACAGGGAGA	AGTCCTCAGA	AAAAAATGTC	600
	TACCAAAAGA	CTGACACGTG	GAGTTAATCA	TTTGACAGAT	GCAATGCTT	CCACCCCCAA	660
	CAAATATACT	TTCTTTAACT	TCTGTGTGGG	TATCACTTAG	GGAAAAAAAG	GCAGGCAACA	720
45	AAATAATTTT	TAATTCTATC	TTAGGAAAAA	TTGTAGNCAA	ATCTTTTTNT	CCCATTAAACA	780
	AATAATGTAA	GCCCTTAATAT	TCAAGGGGT	ATAAAAATAC	AAAGTCTTC	AAACAGGTA	840
	CTTACTTGAA	AACATT					

50 SEQ ID NO:62 PDG3 Protein sequence
 Protein Accession #: AAB18375

	1	11	21	31	41	51	
50	MGARGAPSRR	ROAGRRLRLY	PTGSFPFL	LLLCLIQLGG	GQKKKENLLA	EKVEQLMEWS	60
	SRRSIFRMNG	DKFRKFIKAP	PRNYSMIVMF	TALQPQRQCS	VCRQANEEYQ	ILANSWRYS	120
55	APCNKLFMSM	VDYDDEGTDFV	QLNMMNSAPT	FXHXPXPKGRP	KRADTFDLOR	ICFAAEQLAK	180
	WIADRTDVHI	RVFRPPNYSG	TIALALLVSL	NLEFIYNKTG	WAMVSLCIVF	240	
	AMTSGQMNHN	IRGPPYAHKN	PHNGQVSYIH	GSSQAQFVAE	SHIILVLNAA	ITMGMVLLNE	300
	AATSKGDVGK	RRIICLVLGL	LVVFFFSFL	SIFRSKYHGY	PYSDLDFE		

60 SEQ ID NO:63 PDG8 DNA SEQUENCE
 Nucleic Acid Accession #: AL080235
 Coding sequence: 245-453 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
65	GGTCGCCCGA	CCGGCCGCC	CCGGCCGCC	GCCGCC	GCGCCGCC	CGCCACGCC	60
	GGGGCGCCA	CCGGCGCT	AGCCTACCC	GCGGCCGAGC	CGCCCGGCC	GCTGTGCGCTG	120
	CAGGGCGAGC	CGCTGCAT	CTGCTGCTA	GACTTCAGCC	TGGAGGAGCT	GCAGGGGGAG	180
	CCGGCGCTGC	GGCTGAACCG	TAAGGCCCC	GAGTCCACGC	TGGTGGCCCTG	CTTCATGACC	240
70	CTGGTCATCG	TGGTGTGGAG	CGTGGCCGCC	CTCATCTGGC	CGTGGCCCAT	CATCGCCGGC	300
	TTCTCTGCCA	ACGGCATGGA	ACAGGCCG	ACCACCGCA	GCACCAACCG	AGCCACCCCC	360
	GCCGCAGTGC	CCGCAGGGAC	CACCGCACCC	GCCGCCGCC	CCGCCGCC	CCGCCGCC	420
	GGGGCGCTCA	CTTCGGGGGT	GCGGACCAAG	TGACCCGCTC	CGCTCCTCCC	TGTGTCCGTC	480
75	CTGTGTCCG	GCGCCGGGT	GCCTTCTCCG	CGGGGACTC	GGCCGGTGTG	CTTCGTGCTG	540
	TAGTTATCGT	TAGTTCTCT	TCCCCGAGATG	GGGCCGCCGA	GAGACCCCG	CCCTTTGAA	600
	AAGCAAGGTT	TGTGCTGCGC	TTCCAGTCC	GAAAAGCAGA	TGTTTAAGCC	CTTGGACTGA	660
	GGGTGGGATC	GCAGCTCCG	AGACGGAGAG	GAGGGAAATG	GGGCCCTTC	CCCTCTATTG	720
80	CATCCCCCTG	CCCGACTCCT	TCCCCGACCC	CACGTGCCCT	AGATTCATGG	CAGAAAATGA	780
	CCAAATCTG	TGTATTTGTT	TTATATATT	AATAACTGTT	TTAATGAAA	GTTTTAGTAA	840
	AAAAAAATACA	AAACAAAAG	ATTAATATGC	TATTGCTGTA	GTAAGAGAAG	CTCTTTGTAT	900
	CTGAACATAG	TTGTATTGTT	ATTTTGTTGTT	TTTTTAATT	ATTTAAAATT	GGGGGGAGGG	960

CATGGGAAGG ATTTAACACC GATATATTGT TACCGCTGAA AATGAACCTT ATGAACCTTT 1020
 TCCAAGTGA TCTATCCAGT GACCTGGCCT GTGGGGCGTT TCTTCTTGTA CTTATGTGGT 1080
 TTTTGGCTT TTAAACAGA CATTTCCTC CAAAAAAA AAAAAGG

5 **SEQ ID NO:64 PDG8 Protein sequence**
 Protein Accession #: CAB45781

1	11	21	31	41	51	
GRRTGRLRPA	AAPSAAAATA	GAPALPAYP	AAEPPGPLWL	QGEPLHFCL	DFSLEELQGE	60
PGWRLNRKPI	ESTLVACFMT	LIVVUVSVA	LIWPVPIIAG	FLPNNGMEQRR	TTASTTAATP	120
AAVPAGTTAA AAAAAAAAAAA AVTSGVATK						

15 **SEQ ID NO:65 PDM1 DNA SEQUENCE**
 Nucleic Acid Accession #: NM_006765
 Coding sequence: 149-1195 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51	
CGGCCGCGGC	CCGGGTCCCT	CGCAAAGCCG	CTGGCATCCC	GGAGGGCCCA	GCCAGCGGGC	60
TCCCGGAGGC	TGGCGGGCA	GCGCTGGTGC	GCGGTAGGAG	CTGGCGCGC	ACGGCTACCG	120
CGCAGTGGAGG	AGACACTGCC	CTGCGCCGAT	GGGGGGCCCG	GCGGCTCCCT	CACGCCGTAG	180
GCAAGCAGGG	CGCGGGCTCC	GGTACCTGCC	CACCGGGAGC	TTTCCCCCTCC	TTCTCTGTGT	240
GCTGCTGCTC	TGCAATCCAGC	TCGGGGGAGG	ACAGAAAGAA	AAGGAGAAATC	TTTTAGCTGA	300
AAAAGTAGAG	CAGCTGATGG	AAATGGAGTT	CAGACGCTCA	ATCTTCCGAA	TGAATGGTGA	360
TAAATTCAGA	AAATTTATAA	TCCATGAGTAT	TGCAAACAT	TCTATGATTG	TTATGTTCAC	420
TGCTCTTCAG	CTCTCAGCGC	AGTGTCTGT	GTGCAGGCAA	GCTAATGAAG	AATATCAAAT	480
ACTGGCGAAC	TCCTGGCGCT	ATTCACTTCG	TTTTGTAAAC	AAGCTCTCT	TCAGTATGGT	540
GGGATATGAT	GAGGGGACAG	ACGTTTTCA	GCACCTCAAC	ATGAACACTG	CTCCCTACATT	600
CAYGATTTW	CTCTCAAAG	GCAGACCTAA	GAGAGCTGAT	ACATTTCGACC	TCCAAAAGAAT	660
TGGGATTGCA	GCTGAGAAC	TAGCAAATG	GATTGCTGAC	AGAACCGATG	TTCATATTG	720
GGTTTTCAGA	CCACCCAACT	ACTCTCTGAC	CATTGCTTTC	GCCTGTGTTAG	TGTCGCTTGT	780
TGGAGGTTTC	CTTTATTNGA	GAAGGAACAA	CTTGGAGTTTC	ATCTTAAACA	AGACTGGTTG	840
GGCATGGTG	TCTCTGTGTA	TAGTCTTGTG	TATGACTTCT	GGCCAGATGT	GGAAACCATAT	900
CCGTGGACCT	CCATATGCTC	ATAAGAACCC	ACACAATGGA	CAAGTGA	ACATTTCATGG	960
GAGGACCGAG	GCTCAGTTTG	TCAGCAGA	ACACATTAAIT	CTGGA	ATGCGCTAT	1020
CACCATGGGG	ATGCTTCTTC	TAATGAAGC	AGCAACTTCG	AAAGGCGATG	TTGGAAAAG	1080
ACGGATAATT	TGCTAGTGG	GATTGGGCT	GGTGGTCTTC	TTCTTCAGTT	TTCTACTTTC	1140
AATATTTCGT	TCCAAGTAC	ACGGCATTAC	TTATAGTGT	CTGGACTTTG	AGTGAAGAAGA	1200
TGTGATTGG	ACCATGGC	TTAAAAC	TATAACCTCA	GCTTTTTAAT	TAATGAAGC	1260
CAAGTGGGAT	TTGCTATAAG	TGATGTTA	CCATGAAGAT	AAACTGTTCC	TGACTTTATA	1320
CTATTTGAA	TTCAATTCA	TCATTGTGAT	CAGCTAGCTT	ATTCTTGTGT	ACTTTTTTA	1380
AACTGTGGGT	TTTCTCTAGT	AATTTAATT	ACAGAAATCA	ATGGTAGCAT	TTAGTAATCT	1440
ACAAAGGAAA	TATCAAAGTG	TTTTCAAGC	CTGTTATATY	CACTGTGTC	CACAGGATTG	1500
CAATAATGA	CAATGTAATT	A				

50 **SEQ ID NO:66 PDM1 Protein sequence**
 Protein Accession #: NP_006756

1	11	21	31	41	51	
MGARGAPSRA	RQAGRRLRYL	PTGSFPPLL	LLLLCIQLGG	GQKKKENLLA	EKVEQLMEWS	60
SRSIFRMNG	DKFRKFIAP	PRNYSMIVMF	TALQPORQCS	VCRQANEYQ	ILANSWRYSS	120
AFCNKLFMSM	VDYDEGTDFV	QQLNMNSAPT	FXHXPXPKGRP	KRADTFDLQR	IGFAAEQLAK	180
WIADRTDVH	RVFRPBNYSG	TIALALLVSL	VGGLLYXRRNN	NLEFIYNKNTG	WAMVSLCIVF	240
AMTSQMWNH	IRGPPYAHKN	PHNGQVSYIH	GSSQAQFVAE	SHIILVLNAA	ITMGMVLLNE	300
ATSKGDVGK	RRICLVLGLG	LVVFVFSFLL	SIFRSKYHGY	PYSDLDDE		

60 **SEQ ID NO:67 PDM2 DNA SEQUENCE**
 Nucleic Acid Accession #: NM_000947
 Coding sequence: 88-1617 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51	
GTTTCAATAT	GAACCTCTCCC	GCCACCCGGG	AACAGCTGGC	TGCCCCCGTT	TGTGTTTTC	60
GAGTTTGTAT	TCTTGCAGGT	GACCAAGATG	GAGTTTCTG	GAAGAAACGG	GAGGAAGCTG	120
AGGTTGGCAG	GTGACCCAGAG	GAATGCTTCC	TACCCCTCATT	GCCTTCAGTT	TTACTTGCAG	180
CCACCTCTG	AAAACATATC	TTTAACAGAA	TTTGAAACACT	TGGCTATTTGA	TAGAGTTAAA	240
TTGTTAAAT	CAGTTGAAAA	TCTTGGAGTG	AGCTATGTGA	AAGGAACGTGA	ACAATACCA	300
AGTAAGTTGG	AGAGTGAGCT	TCCGAAGCTC	AAGTTTCCCT	ACAGAGAGAA	GCTAGAAGAT	360
GAATATGAAC	CACGAAGAAG	AGATCATATT	TCTCATT	TTTTGCGGCT	TGCTTATTGC	420
CAGTCTGAAG	AACTTAGACCC	CTGGTTCA	CAACAAAGAA	TGGATCTCT	TCGATTTAGA	480
TTTAGTATT	TACCCAAAGGA	AAAATTCA	GATTCTTAA	AGGATAGGCC	ATTGCAGTTT	540
GAGGCTATAA	GTGATGAAGA	GAAGACTCTT	CGAGAACAGG	AGATTGTTGC	CTCATCACCA	600
AGTTAAAGTG	GACTTAAGTT	GGGGTTCCGAG	TCCATTAT	AGATCCCTT	TGCTGATGCT	660
CTGGATTGTT	TTCGAGGAAG	GAAAGTCTAT	TTGGAAGATG	GCTTTGCTTA	CGTACCACTT	720

AAGGACATTG TGGCAATCAT CCTGAATGAA TTTAGAGCCA AACTGTCCAA GGCTTGGCA 780
 TTACAGGCC GGTCTTGCC TGCTGTGCAG TCTGATGAAA GACTTCAGCC TCTGCTCAAT 840
 CACCTCAGTC ATTCCATCAC TGGCCAAGAT TACAGTACCC AGGGAAATGT TGGGAAGATT 900
 TCTTGTAGATC AGATTGATTT GCTTCTTACCC AAATCCTTCC CACCTTGAT GCGTCAGTTA 960
 5 CATAAAAGCCT TGCGGGAAAAA TCACCATCTT CGTCATGGAG GCGGAATGCA GTATGGCCCA 1020
 TTTCTGAAGG GCATTGGTTT AACTTGGAA CAGGCATTGC AGTTCTGGAA GCAAGAATT 1080
 ATCAAAGGAA AGATGGATTC AGACAAAGTTT GATAAAGGTT ACTCTTACAA CATCCGTAC 1140
 AGCTTGGAA AGGAAGGCAA GAGGACAGAC TATACACCTT TCAGTTGCCT GAAGATT 1200
 10 CTGCTTCAATC CACCAAGGCC AGGGATTAT CATGGGTGCC CATTCCGTCA CAGTGATCCA 1260
 GAGCTGTGA AGCAAAAGTT GCAGTCATAC AAGATCTCTC CTGGAGGGAT AAGCCAGATT 1320
 TTGGATTAG TAAAGGGAC ACATTACCAAG GTAGCCTGTC AAAAATACTT TGAGATGATA 1380
 CACAATGTGG ATGATTGGTGG CTTTTCTTTC AATCATCCTA ATCAGTTCTT TTGTGAGAGC 1440
 15 CAACGTATTAC TAATGGTGG TAAAGACATA AGAAAGAAC CTATCCAAAC AGAAACTCC 1500
 CAACCCAAAC CAAGTGTCCA GAAAACCAAG GATGATCAT CTGCTCTGC CTCTTTAAAT 1560
 TCCTCTCTGG AAATGGATAT GGAGGACTA AAAGATTACT TTAGTGAAGA TTCTTAGGCA 1620
 GTTCTTAAAC CCTTTTCTC CAATAGCTC TTCTCTGTTT TTAAAGATTT GCCTTTGTTG 1680
 TTGAAAAAGG GTTCTACTGT CACCAAGGCT TAGTCAGTC ACACAATTAC AGCTGATTGC 1740
 AGCCTTGACC TTCCCAGCTC AAGTGTACCT CCTACCTCAG CCTCCCAAGT AGTTAGGACA 1800
 20 CACAGGTGTG CACCTCATAT CCAGATAATT TTTTCAATT TTTTTTGTA GAGGTGGGG 1860
 GTCTCCCTAG GTGGCCAGG CAGATCTCAG ACTCTCTGGC TCAAGCAGTC CTCACACCTC 1920
 AGCGTCCCAG AGTCTGGGA TTACAGTGTG GAGGCACTGT GCCTGGCCTT TTTTTTTTTT 1980
 TAACCTTTTC GTTAACTTC TCTCTTCACT GCATCCCAAT CCATCTACAG GCATGCACAC 2040
 25 TTATAGGAA AGGAGGTTTG AGGTAAACAC AGAGACTTTT ACTATATTTT GCTTTGACAG 2100
 AAGGAAAGAG GAGGAGTTTC TATTTAAATC TGTCACTGAG GTGATGTCAT TAAAGTCCTA 2160
 TTTTAGGAGA TAAAAACAGC TTGGGGACT GTTAAAGTC CCCAGAAC TACAATAAAG 2220
 ACAACTTTT GTTTAAACTC TAAATCACTT TGTAATTTC ACTCAATCCT TTTCTGGACC 2280
 ATTTTGTGA ATAATATCA AAGTGT

SEQ ID NO:68 PDM2 Protein sequence:
Protein Accession #: NP_000938

	1	11	21	31	41	51	
35	MEFSGRKRRK	LRLAGDQRNA	SYPHCLQFYL	QPPESENISLT	EFPNLAIDRV	KLLKSVENLG	60
	VSVVKGEQY	QSKLESELRK	LKFYSYREKLE	DEYEPRRRDH	IISHFILRLAY	CSEELRWRF	120
	IQEEMDLRFL	RFSILPKDKI	QDFLKDSCLQ	FRAISDEEKI	LREQEIVASS	PSLSGLKLGF	180
40	ESIYKIPFAD	ALDLFRGRKV	YLEDGFAYVP	LKDIAVIILN	EFRAKLKSAL	ALTARSLPAV	240
	QSDERLQLPPLL	NHLHSYNTGQ	DYSTQGNVGK	ISLDQIDLLS	TKSFPPCMRQ	LHKALRENHH	300
	LRHGRGRMVG	LFLKGIGLTL	EQALQFWKQ	FIKGKMDPDK	FDKGYSYNIR	HSFGKEGKRT	360
	DYTPFSCLKI	ILSNPPSQGD	YHCPFHRSD	PBLLKQKLQS	YKISPGGSIQ	ILDLVKGTHY	420
	QVACQKYFEM	IHNVDCCGFS	LHNPQNFFCE	SQRILNGGKD	IKKEPIQPET	PQPKPSVQKT	480
	KDASSALASL	NSSLEMDMEG	LEDYFSEDS				

SEQ ID NO:69 PDM3 DNA SEQUENCE

Nucleic Acid Accession #: NM_024840
Coding sequence: 108-491 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
50	AATTCAACA	GGAGAGAACT	CATATATATG	CAGTGATTGT	GGAAAAGGCT	TCATCAAGAA	60
	GTCTCGGCTC	ATTAATCATC	AGAGAGTTCA	TACAGGAGAG	AAACCCACATG	GATGCGCCT	120
	GTGTGGGAAG	GCCTCTCTCA	AAAGGTCCAG	GCTCACTGAA	CACAGAGAA	CTCATACAGG	180
55	AGAGAAAGCC	TATGATGCA	CTGAATGTG	CAAAGCATTG	CGCTGGAAAT	CACAGCTCAA	240
	TGCAACATCAG	AAAGCTCACA	CAGGAGAGAA	GTCATATATA	TGCGGTGATT	GTGAAAAGG	300
	CTTCATTCTAG	AAAGGAATTC	TCATTGTACA	TCAGCGAATT	CATACTGGAG	AAAAACCTTA	360
	TATATGCAAT	GAATGTGGAA	AAGGCTCTAT	CCAAAAGGGC	AACCTCCCTTA	TTCATCTGACG	420
60	TACTCACACT	GGAGAGAAC	CCTATGAATG	CAATGAATG	GGGAAAGGCT	TCAGCCAGAA	480
	GACATGTTA	ATATCCCATC	AGAGATTTCA	CACAGGAAAG	ACACCCTTG	TATGTACTGA	540
	GTGTGGAAA	TCCTCTCTAC	ACAAGTCAGG	TCTCATTAAC	CACAGAGAA	TTCACACAGG	600
	AGAGAAACCC	TATACATGCA	GTGACTGTGG	GAAGACTTTC	AGAGATAAAT	CATGTCTCAA	660
65	CAGACATCGG	AGAACTCTATA	CAGGGAGAG	ACCGTATGGA	TGCTCTGATT	GTGAAAAGC	720
	TTTCTCCAC	TGTCATGCC	TTGTTTATCA	TAAGGGAATG	CTGCATGCCA	GAGAGAAATG	780
	TGTAGGTCA	GTCAAAATTG	AAAATCTTGA	CTCAGAGAGT	CATAGCTTAT	CACATACACG	840
70	TGATCTCATC	CAGGATAAAAC	ACTCTGTAA	CATGGTGACT	CTGCAGATCC	CTTCTGTGGC	900
	AGCTCAGACC	TCATTAACCA	ACAGTCGCTT	CCAAGCAGAG	AGCAAAGTAG	CCATTGTGAG	960
	CCAGCTCTGT	GGCAAGAGT	CAGTCTCAGC	AGATAGTAGA	ATTTCACAGC	AATAAAAAC	1020
	ATATGAATGC	AGTGAATGTG	GTAGTGTCTT	CAGTGTCAA	TTACATCATA	TGTCACAAA	1080
	AAACACAGGG	ACAAACACTGA	TATATTCAAG	GTGGAAGCC	CTTGAAATAAA	ACCTTATGGC	1140
75	TAATAAGCAT	ATACTCAGAG	AAAATATGTA	TGAAGTGGAG	ACTGGGAAAT	TCTTTTATGG	1200
	GAAGATAGAT	CTTCTCATCA	GTGACCATAG	ATCACATCTT	CAGTGAGCTT	ATAGTTGGTA	1260
	GAATATATAAT	GATCATGGAA	AAGTCCCTGT	TCAGAAACAG	TACGCCAGTA	GGTATCAGGG	1320
	GGTTTACACA	GGAGAGAAAC	TTTGGAAAGA	CCTTTGAAGG	CTATGAATGT	GGCAGGGTTG	1380
	CTAGTGGTAC	ATTCTGCCCT	ATCCTCAGAG	GGAAATCATAT	AGAAATAAAAA	CTATGAAAAT	1440
80	GTAACTAGAA	CATCTTCATC	AAAATGAA	AGAACACAGC	AAGCAAATAA	GCCTGTGAA	1500
	AAGGAGTATT	TTAGAGATT	CGATCAGAAA	TCTAACATCA	TTATATGGCA	GATAATATAC	1560
	AGGATGTGTA	TTTTAGGACA	ATATACCTTG	AATCACTAGT	TGATATGTCA	ATGACTAATT	1620
	AAAAGGGGTT	GTCAGTGTAA	CACATCATTTG	GTTAAATTAA	TAGCACAAATG	TACCTCTTCC	1680
	CCCTTTTTTG	ATAAGACTCT	TCTATTCCCCA	ACCAAGTCA	TTATATGATT	AGCTCTGTG	1740
	TTTCTTTGAT	TCCAAATTTC	TTCACTTGTG	ATTTCACTACT	ACTGAAGCTC	TTCAAAAGGA	1800

AAAAATGTATT TAATTTAATA ATGTAACACA ACAAGTTGG ATGTGTTAA CTTTATAAAT 1860
 AATCACCCCCA GAGGAATGAA GTTCAAAACT TGTGAATAAC C

5 **SEQ ID NO:70 PDM3 Protein sequence:**
 Protein Accession #: NP_079116

10	11	21	31	41	51	
	MDAACVGRPS	PKPGPSLNTR	ELIQERSPMN	ALNVTKHSAG	NHSSMHIRKL	TQERSHIYAV
	IVEKASFRRE ISLYISEFIL EKNPIYAMNV EKASSKRATS LFIDVLTLE					NPMNAMNVGK
						ASARRHV

15 **SEQ ID NO:71 PDM8 DNA SEQUENCE**

Nucleic Acid Accession #: NM_018455
 Coding sequence: 341-955 (underlined sequences correspond to start and stop codons)

20	1	11	21	31	41	51	
	AATTTCGGCA	CGGGGGGAG	GCACAGTGAG	TOCACTGGGG	CACGGCAGGG	TCTAAGGCCAC	60
	AAGCCGACTG	ACATAAGCAA	GCTCTTAACG	GAGCCTATGT	GTAAGTCCAC	TACTGGTGCA	120
	AGGTTGCACA	CTTCAAGAA	GAGGGGCTGG	GGGGGCTCGG	CGACCTTCGG	TTCAGTCGCT	180
	CCCCCGTGCA	GTCCCCCTGTG	CCCAAGACAC	AGCCTGATGC	TTGTGCTCCG	GTGGGCGGAC	240
	TGCGGAGCGG	CGGGAACCTG	AATGGGTGCG	TTTGAAGGGG	GGCGAGCGGG	AACAGCTCTT	300
	GAGGAGTGAG	ACTGAGGAG	ATGTCAGGAG	TGCCAAAGAG	ATGGATGAGA	CTGTTGCTGA	360
	GTTCATCAAG	AGGACCATCT	TGAAATTC	CATGAATGAA	CTGACAACAA	TCCCTGAAGGC	420
	CTGGGATTTT	TTGTCGAAA	ATCAACTGCA	GACTGTAAAT	TTCCGACAGA	GAAGGAATTC	480
	TGTAGTTCTAG	CACTTGTAC	ATCTGTGTGA	GGAAAAGCGT	GCAAGTATCA	GTGATGCTGC	540
	CCTGTTAGAC	ATCATTATA	TGCAATTTC	TCAGCACCAG	AAAGTTGGG	ATTTTTTC	600
	GATGAGTAAA	GGACCAAGTG	AAGATGTTGA	CCTTTTGAT	ATGAAACAA	TTAAAAAATTC	660
	GTTCAGAAAA	ATTCCTCAGA	GAGCATTAAA	AAATGTGACA	GTCACTTCA	GAGAAACTGA	720
	GGAGAATGCA	GTCTGGATT	GAATTGCGCT	GGGAACACAG	TACACAAAGC	CAAACCACTA	780
	CAAACCTTAC	TACCTGCTGT	ACTACTCCA	GACTCCGTAC	GCCTTCACGT	CCTCCTCCAT	840
	GCTGAGGCGC	AATACACCAC	TTCCTGGGTCA	GGAGTTAGAA	GCTACTGGG	AAATCTACCT	900
	CCGACAAGAG	GAGATCATTT	TAGATATTCA	CGAAATGAGA	AAAGTTGCA	ATTAGTGAAC	960
	ATGAAAGGAA	AATAAAAATT	CCTCACAGTC	AAAAAAAAAA	AAAAAA		

40 **SEQ ID NO:72 PDM8 Protein sequence:**
 Protein Accession #: NP_060925

45	1	11	21	31	41	51	
	MDETVAEFIG	RТИLКIPMNE	LTTILKAWDF	LSENQLQTVN	FRQRKESVVQ	HЛИHLCEEKР	60
	ASISDAALLD	IИYMQFHQHQ	KVWDVFQMSK	GPGEDVDLF	MKQFKNSFKK	ILQRALKNVT	120
	VSFRETEENA	WVIRIAWGTO	YTKPNQYKPT	YVVVYSQTPY	AFTSSSMLRR	NTPLLGQEL	180
	ATGKИYLRQE	EIILDITEMK	KACN				

50 **SEQ ID NO:73 PDM9 DNA SEQUENCE**
 Nucleic Acid Accession #: NM_016192
 Coding sequence: 1-1125 (underlined sequences correspond to start and stop codons)

55	1	11	21	31	41	51	
	ATGGTGCTGT	GGGAGTCCCC	CGGGCAGTGC	AGCAGCTGGA	CACTTTGCGA	GGGCTTTTG	60
	TGGCTGCTGC	TGCTGCGCGT	CATGCTACTC	ATCGTAGGCC	GGCCGGTGAA	GCTCGCTGCT	120
	TTCCCTACCT	CCTTAAGTGA	TCGCCAAACG	CCCACCGGT	GGAAATTGCTC	TGGTTATGAT	180
	GACAGAGAAA	ATGATCTCTT	CCTCTGTGAC	ACCAACACCT	GTAAATTGTA	TGGGGATATGT	240
	TTAAGAATTG	GAGACACTGT	GACTTGGTC	TGTCACTTCA	AGTGCAACAA	TGACTATGTG	300
	CCTGTGTGTC	GCTCCAAATGG	GGAGAGCTAC	CAGAATGAGT	GTTCACCTCG	ACAGGCTGCA	360
	TGCAAAACAGC	AGAGTGAGAT	ACTTGTGTC	TCAGAAAGGAT	CATGTGCCAC	AGATGAGGA	420
	TCAGGATCTG	GAGATGGAGT	CCATGAAGGC	TCTGGAGAAA	CTAGTCAAA	GGAGACATCC	480
	ACCTGTGATA	TTTGCCACTT	TGGTGCAGAA	TGTGACGAAG	ATGCCGAGGA	TGTCTGGTGT	540
	GTGTGTAATA	TTGACTGTTC	TCAACAAAC	TTCAATCCCC	TCTGCGCTTC	TGATGGAAA	600
	TCTTATGATA	ATTCATGCCA	AATCAAAGAA	GCATCGTGC	AGAAACAGGA	AAAAATTGAA	660
	GTCAATGTCCT	TGGGTCGATG	TCAAGATAAC	ACAACCTACAA	CTACTAACTC	TGAAGATGGG	720
	CATTATGCAA	GAACAGATTA	TGCAGAGAAAT	GCTAACAAAT	TAGAAGAAAG	TGCCAGAGAA	780
	ACCCACATAC	CTTGTCCGGG	ACATTACAAT	GGCTTCTGCA	TGCATGGGAA	GTGTGAGCAT	840
	TCTATCAATA	TGCAGGAGCC	ATCTTGCAAG	TGTGATGCTG	GTATACCTGG	ACAACACTGT	900
	GAAGAAAAGG	ACTACAGTGT	TCTATACGTT	GTTCGGGTC	CTGTACGATT	TCAGTATGTC	960
	TTAATGCGAG	CTGTGATTTG	AACAAATTCAG	ATTGCTGTC	TCTGTGTTG	GGTCCCTGTC	1020
	ATCACAAGGA	AATGCCAG	AAGCAACAGA	ATTCAACAGAC	AGAAGCAAAA	TACAGGGCAC	1080
	TACAGTTCAG	ACAAATACAAC	AAGAGCGTCC	ACGAGGTTAA	TCTGA		

SEQ ID NO:74 PDM9 Protein sequence:

Protein Accession #: NP_057276

	1	11	21	31	41	51	
5	MVLWESPRQC	SSWTLCEGFC	WLLLLPVMLL	I VARPVKLA A	FPTSLSDCOT	PTGWNCGYD	60
61	DRENDFLFLCD	TNTCKFDGEC	L RIGDTVTCV	CQFKCNNDYV	PVCGSNGESY	QN ECYLRQAA	120
121	CKQQSEILVV	SEGSCATDAG	S GSGDGVHEG	SGETSQKETS	TCDICQFGA E	CDEDAEDVWC	180
181	VCNIDCSQTN	FNPLCLASDGK	S YDNACQIKE	A SCQKQE KIE	VMSLGRQCDN	TTTTTKSEDG	240
241	HYARTDYAEN	ANKLEESARE	H H I P C P E H Y N	G F C M H G C E H	S I N M Q E P S C R	C D A G Y T G Q H C	300
301	EKKDYSVLYV	VPGPVRFQYV	LIAAVIGTIQ	I A V I C V V V L C	I TRKCPRS NR	I H R Q K Q N T G H	360
361	YSSDNTTRAS	TRLI					

SEQ ID NO:75 PDO1 DNA SEQUENCE

Nucleic Acid Accession #: NM_014324

Coding sequence: 89-1237 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
20	GGCGCCGGGA	TTGGGAGGGC	TTCTTGCA GG	CTGCTGGCT	GGGGCTAAGG	GCTGCTCA GT	60
	TTCCCTTCA CGC	GGGGCACTGG	GAAGGCGCCAT	GGCACTGCAG	GGCATCTCGG	TCGTGGAGCT	120
	GTCCCCGCTG	GGCCGGGGCC	GTNTCTGTGC	TATGTTCTG	GCTGACTTCG	GGGGCGGTG	180
	GGTAGCGCTG	GACCGGGCCG	GCTCCCGCTA	CGACGTGAGC	CGCTTGGCC	GGGGCAAGCG	240
	CTGCCCTAGTG	CTTGACCTGA	AGCAGCGCGG	GGGACCGCGT	GCTGCGCGGT	CTGTGCAAGC	300
	GGTGGATGTC	GGTGGATGAG	CCCTTCCGCC	CCGGTGT CAT	GGAGAACATC	CAGCTGGCC	360
	CAGAGATTTCT	GGAGCGGGAA	AATCCAAGGC	TTATTTATGC	CAGGCTGAGT	GGATTTGGCC	420
	AGTTCAAGGAA	AGCTTCTGC	GGTTAGCTGG	CCACGATATC	AACTATTG	TTTGTCTCAGG	480
	TGTTCTCTCA	AAAATGGCA	GAAGTGGTGA	GAATCCGTAT	GCCCCGCTGA	ATCTCGTGGC	540
	TGACTTTGCT	GTTGGTGCCC	TTATGTTGTC	ACTGGCATT	ATAATGGCTC	TTTTTGACCG	600
	CACACGCACT	GACAAGGGTC	AGGTATTGTA	TGCAAATATG	GTGGAAGGAA	CAGCATATT	660
	AAGTTCTTTT	CTGTGGAAAA	CTCAGAACAT	GAGCTGTG	GAAGCACCTG	GAGGACAGAA	720
	CATGTTGGAT	GGTGGAGCAC	CTTTCTATAC	GACTTACAGG	ACAGCAGATG	GGGAATTCTAT	780
	GGCTGTTGGA	GGCAATAGAAC	CCACAGTCTA	GGACGTGCTG	ATCAAAGGAC	TTGGACTAAA	840
	GTCTGATGAA	CTTCCCAATC	AGATGAGCAC	GGATGATTGG	CCAGAAATGA	AGAAGAAGTT	900
	TGCGAGATGTA	TTTGCAAGAG	AGACGAAGGC	AGAGTGGTGT	CAATCTTTG	ACGGCACAGA	960
	TGCCCTGTGTC	ACTCCGGTT	TAATTTGTA	GGAGGTTGTT	CATCATGATC	ACAACAAGGA	1020
	ACGGGGCTCG	TTTATCACCA	GTGAGGAGCA	GGACGTGAGC	CCCCGCCTTG	CACCTCTGCT	1080
	GTAAACACCC	CCACGATATC	CTTCTTCCAA	AGGGGATCTT	TTCATAGGAG	AAACACACTGA	1140
	GGAGATACCTT	AGAAGATTG	GATTCA CGC	AGAAGAGATT	TATCAGCTTA	ACTCAGATAA	1200
	AATCATTGAA	AGTAAATAAGG	TAAGAGCTAG	TCTCTAACTT	CCAGGCCAC	GGCTCAAGTG	1260
	AATTGAAATA	CTCCATTATC	ACTGTAGAGT	AAACACATAAC	ATTGTATGCA	TGGAAACATG	1320
	GAGGAACAGT	ATTACAGT	CTTACACATC	TAATCAAGAA	AAAGATTACA	GACTCTGATT	1380
	CTACAGTGT	GATTGAATTTC	TTAAAATGGT	TATCATTAGG	GCTTTTGATT	TATAAAACTT	1440
	TGGGTACTTA	TACTAAATT	TGGTAGTTAT	TCTGCCCTCC	AGTTTGCTTG	ATATATTGTT	1500
	TGATATTAAAG	ATCTCTGACT	TATATTGTA	ATGGGTTCTA	GTGAAAAGG	AATGATATAT	1560
	TCTTGAGGAC	ATCGATATAC	ATTATTTAC	ACTCTTGATT	CTACAAATGTA	AAAAATGAGG	1620
	AAATGCCACA	AAATTGTATGG	TGATAAAAGT	CACGTAAAC	AGAGTGAATTG	TTTGATCCTA	1680
	GGCCCTTTGT	CTTGCTGTT	ATGATCTCC	TCTAACACAT	TTTCAAACATT	TAGCAACAGT	1740
	TATCACACTT	TGTAATTGTC	AAATGAAAGT	TTCACCTGTA	TTGAATCAGA	ATGCCCTCAA	1800
	CTGAAAAAAA	CATATCCAAA	ATAATGAGGA	ATGTGTTGG	CTCACTACGT	AGAGTCCAGA	1860
	GGGACAGTC	GTMTT TAGGT	TGCGCTGATC	CAGTAACCTG	GGGCCTGTTTT	CCCCGTGGGT	1920
	CTCTGGGCTC	TCA GCTTTTCC	TTCTCTCATG	TGTTGATTT	CTCCCTCAGGC	TGGTAGCAAG	1980
	TCTCTGGATCT	TATACCCAAAC	ACACAGAAC	ATCCAGAAA	AAAGATCTCA	GGACCCCCCA	2040
	AAAAAAAAAA	AAAAAAAAAA	AAAAAAA				

SEQ ID NO:76 PDO1 Protein sequence:

Protein Accession #: NP_055139

	1	11	21	31	41	51	
60	MALQGISVVE	LSGLAPGRXC	AMVLADFGAR	VVRVDRPGSR	YDVSRLLGRK	RSLVLDDLKP	60
61	REPREAASVQ	AVVCAAGALP	PRCHGETPG	FRDSAAGKSK	AYLCQAEWI	FVQESFCRLA	120
121	GHDINYLAIS	GVL SKIGRSG	ENPVAPLNLV	ADFAGGGLM	ALGIIMLF	RTRTDKGQVI	180
181	DANMVGTAY	LSSFLWKTQK	SSLWEAPRGQ	NMLDGGAPFY	TTYRTADGEF	MAVGAIEPQF	240
241	YELLIKGLGL	KSDELPNQMS	TDDWPEMKKK	FADVFAKKTK	AECVQIFDGT	DACVTPVLTF	300
301	EEVVHHDHNK	ERGSFITSEE	QDVSPRLAPL	LLNTPAIPSS	KGDPPFIGEHT	EEILEEFGFS	360
361	REEIYQLNSD	KIIESNKVKA	SL				

SEQ ID NO:77 PDO3 DNA SEQUENCE

Nucleic Acid Accession #: AB028951

Coding sequence: 97-1128 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
75	GTTAAATCCT	TACTTTACCA	GATTCTTGAT	GGTATCATT	ACCTCCATGC	AAATGGGTG	60
	CTTCACAGAG	ACTTGAAACC	AGCAAAATAC	CTAGTAATGG	GAGAAGGTCC	TGAGAGGGGG	120
	AGAGTCAAAA	TAGCTGACAT	GGGTTTGC	AGATTATTC	ATTCTCTCT	AAAGCCACTA	180
	GCAGATTTGG	ATCCAGTAGT	TGTGACATT	TGGTATCGG	CTCCAGAACT	TTTGCTTGT	240
	GCAAGGCAATT	ATACAAAGGC	CATTGATATA	TGGGCAATAG	GTGTATATT	TGCTGAATTG	300
	TTGACTTCGG	AACTTATTTT	TCACTGTCGT	CAGGAAGATA	AAAAAACAAAG	CAATCCCTT	360

	CATCATGATC AACTGGATCG GATATTTAGT GTCATGGGGT TTCCCTGCAGA TAAAGACTGG 420
	GAAGATATTA GAAAAGATGCC AGAATATCCC ACACCTTCAAA AAGACTTTAG AAGAACAAACG 480
5	TATGCCAACA GTAGCCTCAT AAAGTACATG GAGAAACACA AGGTCAAGCC TGACACCAA 540
	GTGTTCTCT TGCTTCAGAA ACTCCTGCACC ATGGATCCAA CCAAGAGAAT TACCTCGGAG 600
	CAAGCTCTGC AGGATCCCTA TTTTCAGGAG GACCCCTTGC CAACATTAGA TGATTTGCG 660
	GGCTGCCAGA TTCCATACCC CAAACGAGAA TICCTTAATG AAGATGATCC TGAAGAAAAAA 720
	GGTGACAAGA ATCAGCAAC GAGCAGAAC CAGCATCAGC AGCCCACAGC CCCTCCACAG 780
10	CAGGCAGCAG CCCCTCCACA GGCGCCCCCA CCACACCGAGA ACAGCACCCA GACCAACGGG 840
	ACCGCAGGTG GGGCTGGGG CGGGGTCGGG GGCACCGGAG CAGGGTTGCA GCACAGCCAG 900
	GACTCCAGGC TGAACCCAGGT GGCCTCCAAAC AAGAACCCAC GGCTAGGGCC TTCAGGGCAG 960
	AACTCAGGTG GACCTGTGAT GGCCTCGGAT TATCAGCTGC CCAAGTCTCG CCTGAATTAC 1020
15	CAAAAGCAGG TTCAAGGATC CTCTCAGTCC CAGAGCACAC TTGGCTACTC TTCCCTGCT 1080
	CAGCAGAGCT CACAGTACCA CCCATCTCAC CAGGCCACCC GGTAAGTACCC AGCTCCCCGT 1140
	GGGCCAGCC AGCCAGGAA AGAGCACAGG CTCCAGCAAT ATGTCCTGAT TGAAAAGAAC 1200
	CAAAAGATG CAAACTATGA TGCCATTATCA AACTCATACAA CATGGGAGGA AAACCTTATA 1260
	TACTGAGCAT TGTCAGGAC TGATAGCTCT TCTTTATTGA CTTAAAGAAG ATTCTTGTA 1320
20	AGTTTCCCCA GCACCCCTTC CCTGCATGTG TTCCCATGTC ACCTCTCTGA TAAAGCGTCT 1380
	GATCTAATTC CAGCAGCTT GTAACCTTC GCAATTCTT GAAGGATTTC CTGGTCACC 1440
	TTTCTCATGC TGAGCAATC ACTATGGTTT ATCTTTCAA AGCTCTTTA ATAGGATTTT 1500
	AATGTTTAG AACACAGGATT CCAGTGGTGT ATAGTTTAT ACCTCATGAA CTGATTCTAGC 1560
	AAACACAGGA AAAATGCTTAACTTAAAGCA CTACGTTTTC ACAGACATA ACTGTTCTGC 1620
25	TCATGGAGT CTAAACAGA AACTGTTACT GTCCCAAAGT ATTTACTAT TACGTTCTGA 1680
	TTTATCTAGT TTCAAGGAAAG GTCTAATAAA AAGACAAGCG GTGGGACAGA GGGAACCTAC 1740
	AACCAAAAC AGCCCTAGATC TTTCAGGTTG TGTGCTTTAT GGCACGAAGA ACTGAAGTAT 1800
	GTGTAATT TTATAGAATT ATTCATATGG AACTGAGTT AACTGAGTC CCAAGCATCAT CTATTCTGAA 1860
	ATAGCATICA CTAAATTAAAGA ATACAAATT TAAACCTTCAT GTAGCTAAGT CTACCTTAA 1920
30	AAGGGTTTCAGA AGAGCTTTGTG ACAGTCTCGA TGCCCCACAC CAAAACGCTG AAGAGAGTAA 1980
	CAACTGACT AGGATTTCTG TAAGGAGTA TTTTGATCAA AAGACGTTG ACTTCCCTTT 2040
	GAAGGAAAG TTTTAAGTGT GTATTTGACA TAAAGTCGGC TTCTCTAAAG AACCAATTGGT 2100
	TTCTTCACAT CTGGGCTGCA GTGAGTAACCT TTCTTGATCA ATCAAGGTTA CTCAAGTAGA 2160
	AGGCTGAAAG TTAACTCTGCT TTAAAGATAA AGAGCAGTGT TCTCCATTCG TATTITGTT 2220
	AGATATAGAG TGACTATTTA TAAAGCATGT TAAATTTTTA CGTTTTATTG ATGTTAAAG 2280
35	TATGTATTAT GTATGCTAAATTTTTGTT GTTACTGAAA CTTAATTCTA TCAAGAATCT 2340
	TTTTCATTGC ACTGAGATGAT TTCTTTGTCG CCTAGGAGAA AACTTAAATAA TTGIGCCCAA 2400
	AAACATATGGG CGGATAGTACG AAGACTATAC TAGACAAAGT GAATATTGCA ATTTCCTTAA 2460
	TCTATGAATT AGTGGCTGAG TTCTTCTTA GCTCTTAAAGT GAGCTCTTAA GGAGCCCCCTC ACTCCCCAGA 2520
	GTCAAAAGGA ATGTAAAAA CTTAGAGCTC CCATTGTAAT GTAAGGGGCA AGAAATTGTT 2580
	GTCTTCTGCACT ATGCTACTAG CAGCAGCAGC CTGTTTTAAATGTTCTT GAGCTAGAAG 2640
40	AAATAGCTGA TTATGTTATA TGCAAAATTAC ATGCTTTTTT AAAATATTAT CTTTCTGAAC 2700
	TTATCTACCT GGTTATGATA CTGTGGGTCG ATACACAAGT AAAATAAGAT TAGACAGAAAG 2760
	CCAGTAPACAA TTGGCACTA TTGATGTGAT ACTGTAGGCCA GCCAGGACCT TACTGATCTC 2820
	ACGATAATAA TGCTCACTAA TATAGAAGT TGCTAGTGA CACTCATCAA GACTGAAGAT 2880
	GAAGCAGGTTT ACCTGCTCCA TTGGAAGGAG TTTCTGATAG TCTCTGCTG TTTTACCCCT 2940
	TCCATTTTT AAAATAAGAA ATTAGCAGCC CTCTGCATAA TGAGCTGCCC TATATGCACT 3000
45	TTTATCTGTG CGGCTAAAGC CTCACTGTC AGAGCTGTTG GTCATCAGAT GCTTATTGCA 3060
	CCCTCACCAT GTGCTCTGGT CCTCTGCTGG TAGAGAACAC AGAGGACAGG GCATACTCT 3120
	TGTCTTAAG GAGCTTGTGA TCTGTGACAG TAAGGCTCTC TGGGATGTCT GTGCCATGTG 3180
	ATTGACTTAC AACTGAAACT GTCTTAAAT ATGAAGGCT TTTTGTITAC TTCTAAACCC 3240
	ACTTGGGTAG TTACTATCCC CAAAATCTGTT CTGTAATTTA TATTATGGAA GGGTTCTAT 3300
50	CTCACTCTCA CTTAGAGAAA GCCAGTGATT CAATATCACA AAAGGCATTG ACGTATCTT 3360
	GAAAATGTTCA CAGCAGCCCTT AAACACAAAC CTGGCTGGTC CTGTTAGGCA GAACATACTC 3420
	TCTCAAGTGG TTGTAGGAAA ATAGAAGGTT TGTGCTCTGC TCTCAAGGAG 3480
	GTCTAACCTTA ATAAGGAAAG ACAACCCAG AGATATATGT AAACCAAAAT ACTATGCC 3540
55	TTAATACTTT ATAAGCAGCA TTGTTAAATA GTTCTTACGC TTATACATTC ACAGAACTAC 3600
	CCCTGTTTCC TTGTATTTAA TGACTTTTG TGCGAGAACT GAAATATAAA CTGTAAGGGG 3660
	ATTTCGTCAG TTGCTCTCCAT TTACATAAT CCTCCAGGAC ATACCCAGAA ATCTCCATTC 3720
	CACACATGAC TGAGTCTCTA TCCCTGCACT GGTACTGGCT CTTTCTCTCT CTTTCCCTGC 3780
	CTCAGGGTTC GTGCTACCA CTGATTCTCT TTACCCCTTAAG TAAATAATTGTT GGATCATT 3840
60	CTTTCTTTA AGGGGAACA AGACCTTTT TTGTTTTGAG ACGGAGTTG GCTCTGTCAC 3900
	CCAAAGCTGGA GTGAGTGGC ACAGATCTGG CTCACTCCAA CCTCCACCTT CCAGGTTCAA 3960
	GTGATTTCTCC TGCTCTCAGCC TCCCGAGTAG TGCGGACTAC GGGCACGCC CACCACGCT 4020
	GGCTAATTCTT GTGTTTTAAATGAGATGG GGGTTTACCC TATGGTCTAG GCTGGCTT 4080
65	AATTCTTCAC CTCAAGGTCAT CGGCCCTGCTC CGGCCCTCCCG AAGTGCTGGG ATTATAGGTG 4140
	TGAGCCACCG CACCCAGTGTG GGAACAAAGC CTTTTAAACCA CCGTAAGGG CCCTCAAAAC 4200
	GTGGGACCTT TAAGGAACTT TTGAGGAGCT AACTTTACCT TTGTTGCTCCC 4260
	CAAATGATGG CATTCTCTT TGAATTTTATGAGATCTG TATGTCCTT AAGGGTACAG 4320
	GAGGGGCATC CCTCAGGCTA TGGGAACACC CAAACTAGGA GGGGTTATG ACAGGAAGGA 4380
70	ATGAATCCAA GTGAAGGCTT TGTGCTCTTC GTGTTACAAAC CCAAGTTGAG ATGTTAGCTT 4440
	CTGGGGAGGT GTGTGTTCT GAAAGGAAT CAAAGTTGTC AGGACAGATG AGCTCAAGGT 4500
	AAGGTAGCTT TGGCAGCAGG GCTGATACTA TGAGGCTGAA ACAATCCTTG TGATGAAGTA 4560
	GATCATGCGAG TGACATACAA AGACCAAGGA TTATGTTAT TTTTATATCT CTGTTGTTT 4620
	GAAACTTTAG TACTTTAGAT TTGGGCTTTC TGCACTACTC TTGTTGCTCTT ACGAACATAA 4680
75	TGGACTCTTA AGAATGGAAA GGGATGACAT TTACCTATGT GTGCTGCTC ATTCCCTGGT 4740
	AAGCAACTGC TACTGTTCT CTATGCCCTC AAAATGATGC TTGTTGCTCT GTFAAGGTA 4800
	AAAGAAAAGA AAAAATAGT TGGAAAATAA GACATGCAAC TTGATGTC TTTGAGTAAA 4860
	TTTATCGAGC AGAAATATAA CAATGAAGGA AGAATCTAT GGAATTACA ATTCAAAAC 4920
	TCTATGATGA TGCTCTCCTA GGGAGTAGAG AAAGGAGTGT AAATGGCAGT TAGACCAACA 4980
	GAGGCTTGAA GGATCAAGT ACAAGTAATA TTGTTGATAA AACATAGCAG TTGAGGTCCC 5040
80	CATAATCCTC AAAAATAGTC ACAAAATATAA CAAAGTCTAT TGTTTGGG TTTTAAAAA 5100
	ACGTGTMGTA CCTAAGGCCA TACTTACTCT TCTATGCTAT CACTGCAAAG GGGTGTATG 5160

5 TATGTATTAT ATAAAAAAA AAACCCCTAA TGCACGTGTA TCTCCTAAAT ATTAGTAAA 5220
 TTAATACTAT TTAAATTTTT TAAAGATTTG TCTGTGAGA CACTAAAAGT ATTACACAAA 5280
 ATCTGGACTG AAGGTGTCTC TTTAACAC AATTTAAAGT ACTTTTATA TATGTTATGT 5340
 AGTATATCCTT TTCTAAACTG CCTAGTTTG ATATTCCTAT AATTCTTATA TGTAAGTGT 5400
 ACCTGTTCTT GTCTCTTTT TCAGTCATTT TCTGCACGCA TCCCCCTTAA TATGGTTATA 5460
 GAGATGACTG TAGCTTTTCG TGCTCCACTG CGAGGTTTGT GCTCAGAGCC GCTGCACCC 5520
 AGCGAGGCCG CTCCCATGGA CTGCAAGGACG AGCTACTGCT TTGGAGCGAG GGTTTCCGTC 5580
 TTTGAGTTG ACCTGACTTC CTICTIGAAA TGACTGTTAA AACTAAAATA AATTACATG 5640
 10 CATTATTTT ATATTCTGGA TTGAAATAAA ATTTAATTGA CTTTG

SEQ ID NO:78 PDO3 Protein sequence:
 Protein Accession #: BAA82980

15 1 11 21 31 41 51
 | | | | | |
 VKSLLYQILD GIHYLHANWV LHRDLKPNI LVMGEGLPERG RVKIADMGFA RLFNSPLKPL 60
 ADLDPVVVTW WYRAPELLLG ARHYTKAIDI WAIGCIAEL LTSEPIFHCR QEDIKTSNPF 120
 HHDQLDRIPS VMGCFMPEW EDIRKMPEW YQHSSRLNY EKHVKPDSK 180
 20 VFLLQKLUT MDPTKRITSE QALQDPYFQE DPLPLTDVFA GCQIYPYPRRE FLNEDDPEEK 240
 GDKNQQQQQN QHQOPTAPPQ QAAAPPQAPP PQONSTQNTG TAGGAGAGVG GTGAGLQHSQ 300
 DSSLNQVPPN KKPRLGPSGA NSGGPVMPSD YQHSSRLNY QSSVQGSSQS QSTLGYSSSS 360
 QSSQYHPSH QAHRY

SEQ ID NO:79 PD05 DNA SEQUENCE

Nucleic Acid Accession #: XM_002922

Coding sequence: 1-2190 (underlined sequences correspond to start and stop codons)

25 1 11 21 31 41 51
 | | | | | |
 30 ATGAATCTT TCCAGAAAAA TGAGTCCAAG GAAACTCTTT TTTCACCTGT CTCCATTGAA 60
 GAGGTACCCAC CTCGACCACCC TAGCCCTCCA AAGGAAGCCAT CTCCGACAAT CTGTCGGCTCC 120
 AACTATCCAC TGAGCATTCGCTT CTTCATTGTG GTGAATGAAT TCTCGGAGCG CTTTCCCTAT 180
 TATGGAATG AAGCTGTGCT GATCCCTGAT TTCTCTGATT TCTCTGACTG GAATGAAGAT 240
 ACCTCCACAT CTATATACCA TGCCTTCAGC AGCCCTGTT ATTCTACTCC CATCCTGGGA 300
 GCAGCCATTG TGAGCTCGTG TTCAAGACAA TCATCTATCT CTCCCTGGTG 360
 TATGTCCTTG GCCATGTGAT CAAGTCTTG GGTGCCCTAC CAATACTGGG AGGACAAGTG 420
 GTACACACAG TCCTATCATT GATCGGCCCTG AGTCTAAATAG CTTTGGGGAC AGGAGGCATC 480
 AAACCTGTG TGCGCATGTTT TGGTGGAGAC CAGTTTGAGA AAAAACATGC AGAGGAACGG 540
 ACTAGATAC TCTCAGTCCTT CTACCTGTC ATCAATGCG AGAGCTTGAT TTCTACATT 600
 ATCACACCCA TGCTGAGAGG AGATGTGCAA TGTTTGGAG AAGACTGCTA TGCAATTGGCT 660
 TTTGGAGTTG CAGGACTGCT CATGGTAATT GCACTCTGTT TGTTTGCAAT GGAAGCAAA 720
 ATATACATAA ACCACCCCCC TGAAAGAAC ATAGTGGCTC AAGTTTCAA ATGTTATCTGG 780
 TTTGCTATT TCAATCGTTT CAAAGAACGT TCTGGAGACA TTCCAAAGCC ACAGCACTGG 840
 CTAGACTGGG CAGCTGAGAA ATATCCAAAG CAGCTCATTA TGGAATGAAA GGCACTGACC 900
 AGGGTACTAT TCTCTTATAT CCCATGTCGCG ATGTTCTGGG CTCTTTGGGA TCAGCAGGGT 960
 TCACGATGGA CTTTGCAAGC CATCAGGATG AATAGGAATT TGGGGTTTT TGTCCTTCAG 1020
 CCGGACCAGA TGCAAGTTCTT AAATCCCTT CTGGTCTTA TCTTCATCCC GTGTTTGAC 1080
 TTTGCTATTT ATCGCTCTGGT CTCCAAAGT GGAATTAACT TCTCATCACT TAGGAAAATG 1140
 GCTGTTGGTA TGATCTCTAGC GTGCCCTGCCA TTGCAAGTGTG CGGCAGCTGT AGAGATAAAA 1200
 50 ATAAATGAAA TGGCCCCAGC CCAGTCAGGT CCCCAGGAGG TTTTCTTACA AGTCTTGAAT 1260
 CTGGCAGATG ATGAGGTGAA GTTGACAGTG GTGGGAAATG AAAAACATTG TCTGTTGATA 1320
 GAGTCCATCA AATCCCTTC GAAAACACCA CACTATTCCA AACTGCACCT GAAAACAAAAA 1380
 ACCCAGGATT TTCACCTTCA CCTGAAATAT CAAATTTGT CTCTCTACAC TGACCATCT 1440
 GTGCAGGAGA AGAAGCTGGTA CACTCTGTC ATTCTGTGAG ATGGGAACAG TATCTCCAGC 1500
 ATGATGGTA AGGATACAGA AAGCAAAACCA ACCAATGGGA TGACAACCGT GAGGTTTGT 1560
 AACACTTGTG ATAAAGATGT CAACATCTCC CTGAGTACAG ATACCTCTCT CAATGTTGGT 1620
 GAAGACTATG GTGTGTCCTGC TTATAGAACT GTGCAAGAG GAGAATACCC TGCACTGCAC 1680
 TGAGAACAG AGATAGAAGAA CTTTCTCTG AATTGGGTCT TTCTAGACTT TGTTGCAACCA 1740
 60 TATCTGTTG TTATTPACTAA TAACACCAAT CAGGGTCTTC AGGCCCTGAA GATTTGAAGAC 1800
 ATTCCAGCCA ACAAAATGTC CATTGCGTGG CAGCTACCC AATATGCCCT GGTTACAGCT 1860
 GGGGAGGTCA TGTTCTCTGT CACAGGTCTT GAGTTTCTT ATTCCTCAGGC TCCCTCTAGC 1920
 ATGAAATCTG TGCTTCAGGC ACCTTGCTTA TTGACAATIG CAGTTGGAA TATCATCTG 1980
 CTTGTTGTGG CACAGTTCAG TGGCCCTGGTA CAGTGGGGCG AATTCAATTG GTTTCTCTG 2040
 65 CTCTCTGTTG TGATCTGCTC ATCATGGGT ACTACTATGT TCCCTGTAAG 2100
 ACAGAGGATA TCGCGGGTCA AGCAGATAAG CACATTCCTC ACATCCAGGG GAACATGATC 2160
 AACTAGAGA CCAAGAACAC AAAACTCTGA

SEQ ID NO:80 PD05 Protein sequence:

Protein Accession #: XP_002922

70 1 11 21 31 41 51
 | | | | | |
 MNPFQKNESK ETLFSPVSIE EVPPRPPSPP KKPSPTICGS NYPLSIAFIV VNEFCERFSY 60
 YGMKAFLILY FLYFLHWNED TSTSIXHAFS SLCYFTPTILG AAIADSWLGK FKTTIYLSLV 120
 75 YVLGHVIKSL GALPILGGQV VHTVLSLIGL SLIALGTGGI KPCVAAFGGD QFEEKHAER 180
 TRYFSVFLYS INAGSLISTF ITFMLRGDVQ CGFEDCYALA FGVPGLLMVI ALVVFAMGSK 240
 IYNKPPPEGN IVAQVFKCIIW FAISNRFKNR SGDIPKRQHW LDWAAEKYPK QLIMDVKALT 300
 RVLFLYIPLP MFWALLDQOG SRWTLQAIM NRNLGFFVLUQ PDQMQLVNPFL VLVLIFIPLFD 360
 FVLYRLVSKC GINFSLSLRM AVGMILACLA FAVAFAVEIK INEMAPAQSG PQEVFLQVLN 420
 80 LADDEVKTVT VGNENNSLLI ESIKSFKTP HYSKHLKTK SQDFHFHLKY HNLSLYTEHS 480

VQEKNWYSLV IREDGNSISS MMVKDTESETK TNGMTTVRFV NTLHKDVNIS LSTDTSLNVG 540
 EDYGVSAVRT VORGEYPAVH CRTEDKNFSL NLGLLDFGAA YLEVITNNNT OGLQAWKIED 600
 IPANKMSIAW QLPQYALVTA GEVMFSVTGL EFSYSQAPSS MKSVLQAawl LTIAVGNIIIV 660
 LVVHQFSGLV QWAEFILFSC LLLVICLIFS IMGYYYVPVK TEDMRGPADK HIPHIQGNMI 720
 5 KLETKKTKL

SEQ ID NO:81 PD06 DNA SEQUENCE

Nucleic Acid Accession #: NM_020448

Coding sequence: 1-1221 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
	ATGGACGGAT	CCCACAGCGC	AGCCCTGAAG	CTGCAGCAGC	TGCCCTCCAC	AAGTAGCTCC	540
	AGCCCGTAA	CGCGGCCCTC	CTTCTCTTCA	AAGGAAAACC	TGATTGGCCG	CCTCTTGGCG	600
10	ATCTTCGGG	ACCTCGTGGT	CAGCATTCGA	CTTAACCTCC	AAAGACTACTG	CCACATCCGC	660
15	CTGGCAGGCT	CCAAGGATCC	CCGGGCTAT	TTCAGACCA	AGACATGGT	GCTGGGCTTG	720
	TTCTCTGATG	TCTCTGGCGA	GCTGGGTGTC	TTCGCTCTCT	ACGCCCTTCG	GCCGCTGTCA	300
	CTCATCGTC	CCCTCAGCGC	AGTTCTGTG	ATAGCTAGTG	CCATCATAGG	AATCATATTG	360
20	ATCAAGGAAA	AGTGGAAACC	GAAAGACTTT	CTGAGCGCTG	ACCTCTTGTG	CTTGTGTTGC	420
	TGCGGTTGG	CTGTCGTGGG	TACCTACCTG	CTGGTGACAT	TCGCACCCAA	CAGTCACGAG	480
	AAGATGACAG	CGGAGAAATG	CACCGAC	CTCGTGAGCT	GGCCTTTCCT	TTTGTACATG	540
25	CTGGTGGAGA	TCATTCCTGT	CTGCTTGTG	CTCTACTCT	AAAGGAGAA	GAACGCCAAC	600
	AAACATTGTC	TGATTCCTCT	CTTGGTGGCG	TTACTTGGCT	CCATGACAGT	GGTGACAGTC	660
	AAGGCCGTTG	CTGGGATGTG	TGTCCTTGCC	ATTCAGGGAA	ACCTGAGCT	TGACTTACCCC	720
30	ATCTTCTACG	TGATGTTGCT	GTGCGATGGT	GCAACCGCCG	TCTATCAGGC	TGGCTTTTG	780
	AGTCAAGCCT	CACAGATGTA	CGACTCTCT	TTGATGCCA	GTGTTGGCTA	CATTCCTGTC	840
	ACAACCATGG	CTATCACAGC	AGTGTCAATA	TTTTACCTGG	ACTTCATCGG	GGAGGACGTG	900
35	CTGCACATGC	GCATGTTGTC	ACTGGGGTGC	CTCATTGCA	TCTTGGCGT	CTTCTTAATC	960
	ACGGTAAACA	CGGAGAAGCC	CATCCCAATT	GAGCCCTATA	TTCCCATGGA	TGCCATGCCA	1020
	GGTATGCAGA	ACATGCACGA	TAAGGGATG	ACTGTCCAGC	CTGAACCTAA	AGCTTCTTTT	1080
	TCCTPATGGGG	CTCTGGAAA	CAATGACAAAC	ATTTCCTGAGA	TCTACGCTCC	TGCCACCCCTG	1140
	CCAGTCATGC	AGAAGAGCA	CGGCTCCAGA	AGTGCCTCTG	GGGTCCTCTA	CCGAGTCCTA	1200
	GAGCACACCA	AGAAGGAATG	A				

SEQ ID NO:82 PD06 Protein sequence

Protein Accession #: NP_065181

	1	11	21	31	41	51	
	MDGSHSAALK	LQQLPPTSSS	SAVSEASFSY	KENLIGALLA	IFGHLVVSIA	LNLQKYCHIR	60
	LAGSKDPRAY	FKTKTWWLGL	FLMLLGELGV	FASYAFAPLS	LIVPLSAVSV	IASAIIIGIIF	120
40	IKEWKPKDF	LRYVLSFVG	CGLAVVGTLY	LVTFAPNHS	KMTGENVTRH	LVSWPFLLYM	180
	LVEIILFCLL	LYFYKEKNN	NIVVILLVA	LLGSMVVTV	KAVAGMLVLS	IQGNQLQDLYP	240
45	IFVYMFVCMV	ATAVYQAAFL	SQASQMYDSS	LIASVGYIILS	TTIAITAGAI	FYLDFIGEDV	300
	LHICMFALGC	LIAFLGVFLI	TRNRKKPIPF	EPIYISMIDAMP	GMQNMHDKGM	TVQPELKASF	360
	SYGALENNND	ISETIYAPATL	PVMQEEHGSR	SASGVFYRVL	EHTKKE		

SEQ ID NO:83 PD08 DNA SEQUENCE

Nucleic Acid Accession #: NM_032712

Coding sequence: 555-908 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
	CACTCATTA	GAACAGAGGA	GGCTGCTGT	TACTCCCTGGT	GTGTCATCCC	TCCAGACACT	60
55	CTGCTGTTTC	CTGCCCTAGGC	GTGGCTGCAG	CCATGGCTG	GAAGCGCTG	CCACCCACCC	120
	ACCTGGGCCA	GAGCTGGTTC	TGCTCCCTGCT	GCAGGGACAC	TGAGCTGGCT	ATCTGGGCC	180
	TTCGGGCAAG	AACTCCAACA	GGCTCTCTG	GGTCTCTGGC	GTGTCAGGCC	GGGCCCTGCG	240
	CTTGTGCTC	ACGCTCTGAG	AGCTGCTGTC	GGCTGCTGAC	CTGATCCAAC	CTGATAAGGT	300
60	GCCCATCTTCA	CTTACCAACT	CAAGGCTCTG	AGGGCAACAG	CAGCACCGCA	CTGCCACCC	360
	GGCTGCTGAT	GGCCTGGTGC	CAGCTGGAG	TCCTCCCGC	ACTTCGAGGC	CACTGAGCCA	420
	CCCTTCCAGC	CCACCCAC	CACTGGGAGC	GGTATCCAGC	TTCCTCTCTCA	ACCTCGTCTT	480
	CTGCCCCCTGA	CCCACTGAGC	TGCCAGGACA	TGCCCTGTTAC	CCAGGTCTG	TACCAAGCCT	540
65	AGCTGGTCAA	GGGCATGACA	GTGCTGGAGG	CCGTCTTGG	GATCCAGGCC	ATCACTGGCA	600
	GCAGGGCTCT	CTCCCATGGTC	CCAGGGCCCG	CCAGGGCCAC	AGGCTCATG	TGGGACCCCA	660
	CCCACTGAC	AGGACTTGG	CTGCTGACCC	ACACACCCAG	GAGAACTCG	ATAACTGGC	720
	TACCAAGGGC	TTCTCTGAGG	CTAGGGAGG	AGCCACCCCC	GCTTCCCTAT	TGTGACAGG	780
70	CCTATGGGGA	GGAGCTGTCC	ATACGGCACC	GTGAGACCTG	GGCCTGGCTC	TCAAGGACAG	840
	ACACCCCTG	GCCTGGTCTG	CCAGGGGTGA	ACAGGGCCAG	AATCTGGGG	GAGCTGCTCC	900
	TGGTTTGAGC	TGCATCMAGG	AACTGGCGGA	CATGGTAGGG	GAGGCAAAA	GCCCTGGGCA	960
75	CTACCCCTCC	TGTGGAGCTG	TTCCGTGTC	GTGAGCTAG	CCACACCTG	ACACCATGTT	1020
	CAAGGGTACC	GGAGAGAGAAG	GGTGTCTGCC	CCCAACCTCC	CCTGTGGGTG	TCACTGGCCA	1080
	GATGTCATGA	GGGAAGCAGG	CCTTGTGAGT	GGACACTGAC	CATGAGTCCC	TGGGGGGAGT	1140
	GATCCCCCAG	CCATCGTGTG	CCATGTTGCA	CTTCTGCCCA	GGCAGCAGGG	TGGGTGGGTA	1200
	CCATGGGTGC	CCACCCCTCC	ACCACATGGG	GCCCCAAAGC	ACTGCAGGCC	AAGCAGGGCA	1260
	ACCCACACCA	CTTGACATAA	AAGCATCTTG	AAGCTTTAA	AAAAAA	AAAAAA	

SEQ ID NO:84 PD08 Protein sequence

Protein Accession #: NP_116101

	1	11	21	31	41	51	
--	---	----	----	----	----	----	--

MTVLEAVL EI QAITGSRLLS MVPGPARPPG SCWDPTQCTR TWLLSHTPRR RWISGLPRAS
CRLGEPPPL PYCDQAYGEE LSIRHRETWA WLSRTDTAWP GAPGVKQARI LGELLLV

5 SEQ ID NO:85 PDT1 DNA SEQUENCE

Nucleic Acid Accession #: NM_000693

Coding sequence: 53-1591 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
10	AGCCGGTGC	CCCGCAGACTA	GGGCGCTCG	GGCCAGGGAG	CGCGGAGGAG	CCATGCCAC	60
	CGCTAACGG	GCCGTGGAAA	ACGGGAGGCC	GGACGGGAAG	CGGCCGCC	TGCCGCC	
15	CATCCGCAAC	CTGGAGGTCA	AGTTCACCAA	GATATTATTC	AACAATGAAT	GGCACGAATC	120
	CAAGAGTGG	AAAAAGTGM	CTACATGTA	CCCTTCAACT	CGGGACCAA	TATGTGAAGT	
	GGAAAGAAGGA	GATAAGCCG	ACGTGGACAA	GGCTGTGGAG	GCTGCACAGG	TTGCCCTCCA	180
20	GAGGGGCTCG	CCATGGGCC	GGCTGGATGC	CCTGAGTCG	GGCGGCTGC	TGCACCAGCT	240
	GGCTGAGCTG	GTGGAGAGGG	ACCGGCCAAC	CTTGCCCCC	CTGGAGACGA	TGGATACAGG	300
	GAAGCCATT	CTTCATGCTT	TTTCATCGA	CTTGAGGGC	TGTATTAGAA	CCCTCAGATA	360
25	CTTTCAGGG	TGGCCAGACA	AAATCAGGG	CAACAGCATC	CCACAGATA	ACAAACGTGT	420
	ATGCTTCA	AGGCATGACC	CCATTGGTG	CTGTGGGNC	ATCACTCCAT	GGAACTTCCC	480
	CCTGCTGATG	CTGGTGTGGA	AGCTGGCACC	CCGCTCTGGA	TGTGGAAACA	CCATGGTCT	540
30	GAAGCCCTGC	GAGCAGACAC	CTCTCACCG	CCMTTATCTC	GGCTCTCTGA	TCAAAGAGGC	600
	CGGGTTCCCT	CCAGGAGTGG	TGAACATTGT	GCCAGGATTC	GGGCCACAG	TGGGAGCAGC	660
	AATTCTCTCT	CACCCATCGA	TCACCAAGAT	CGCCTCCACAG	AGCTTGGAAA		720
35	ACTGGTTAAA	GAAGCTGCT	CCCGGACAA	TCTGAAGCGG	GTGACGCTGG	AGCTGGGGGG	780
	GAAGAACCCC	TGCACTGTTG	GTGCGGACG	TGACTTGGAC	TTGGCAGTGG	AGTGTGCCA	840
	TCAGGAGTGT	TTCTMCAACC	AGGGCAGTG	TTGACCGGCC	GCCTCCAGGG	TGTCGTTGGA	900
40	GGAGCAGGTC	TACTCTGAGT	TTGTCAGGG	GAGCGTGGAG	TATGCCAAGA	AACGGCCCGT	1020
	GGGAGACCCC	TTTCATGTC	AAACAGAAC	GGGGCCTCAG	ATTGATCAA	AGCAGTTGGA	1080
	CAAATCTTA	GAGGTGATCG	AGAGTGGAA	GAAGGAAGGG	GCCAAGCTGG	AATGCGGGGG	1140
45	CTCAGCCATG	GAAGACAAAG	GGCTTCTCAT	CAAACCCACT	GTCTTCTCAG	AACTCACAGA	1200
	CAACATCGG	ATTGCGAAC	AGGAGATT	CGGGCGTAGG	CAACAAATAC	TGAAGTCAA	1260
	AAAGTATCGA	GAAGTGTATAA	AAAGAGCGAA	TAGCACCGAC	TATGGACTCA	CAGCAGCCGT	1320
50	GTTCAACAAA	AATCTCGCA	AGGGCTGAA	TTTGGCTTGT	GCCTTGTAGGT	CTGGAACCGT	1380
	CTGGATCAAC	TGCTACAAACG	CCCTCTATGC	ACAGGCTCCA	TTTGGTGGCT	TTAAAATGTC	1440
	AGGAAATGGC	AGAGAACTAG	GTGAATACG	TTTGGCGAA	TACACAGAAAG	TGAAAATGTT	1500
55	CACCATCAA	CTTGGCGACA	AGAACCCCTG	AGGGAAAGGC	GGGGCTCCCT	CCTCAAACAT	1560
	CGGACGGCGG	AATGTGGCAG	ATGAAATGTG	CTGGAGGAAA	AAAATGACAT	TTCTGACCTT	1620
	CCCGGGACAC	ATTCTCTCG	AGGCTTCTAC	TCTACTGGAG	TTGAATGAT	GCTGTTTCC	1680
60	TCTCACTCTC	CTGTTTATTC	ACCAAGACTGG	GGATGCCCTAT	AGGTGTCTG	TGAATTCGA	1740
	GTCTCGCTG	GGGAGGGAGC	GGGGGCCAT	TTCTGTGTT	CTTCTTAAAC	CAGATCTTGG	1800
	AGACAGTGTAG	ATACTCAGGG	CGTTGTAAAC	AGGGAGTGTG	ATTGTAAGTG	TCCAGCAGT	1860
65	GCTTGAAATG	CTTGGCGAA	TCTGACTCCA	GTAAGAATGT	GGGAAACCC	CCTGTGTGTT	1920
	CTGCAAGCAG	GGCTCTTCTG	CCAGGGCTTC	CCTCAGGGTG	GACCTGCTTA	CAGAGCAAGC	1980
	CACGCCCTCT	TCCGGAGGTG	AGGTGGGAC	ATTCCCTGGG	AAAGGATTC	CAGTAAGGTT	2040
	TTTGGTTTT	TGTTTTTGT	TTTCTGTGTT	TTAAAAAAAG	GATTCACAG	TGAAAAGTT	2100
	TTGGTTAGTG	CATACCGTCA	AGGGGCCAG	GGGTCTTGTG	GGATTCATG	TTGACATTTGA	2160
70	CCCTGAGATT	CGGGTTCAA	CAAATACTGC	CTTTSGAATA	TGACAGAAAT	AATAGCCCCAG	2220
	AGAGCTTAGT	CAAAGACGAT	ATCACGGCT	ACCTTAACCA	AGGCACCTTC	TTAAGCAGAA	2280
	AAATATTGTTG	AGGTTPACCTT	TCTGTGTPAA	GATCCAAATC	TCTAACGCCA	CAACAGCATA	2340
	GCAAAATCCTA	GGATAATTCA	CCTCCCTCAT	TGACRAATTC	GAGCTGTAAT	TCACTTTAAC	2400
	AAATTACGCA	TTTCTATCAC	GTCACACTAC	AGCTTATGAT	AGTCTGTG	AGCTTCTCTT	2460
75	TTCTCCAGTT	CTGTTACCCA	ATTAGATTA	GTAAGCGTA	CACAACCTGGA	AAAGACTGCTG	2520
	TAATAACACAA	GCCTTGTAT	TTTTAAGTC	TATTTGATA	TAAATTCCTC	ATTAGTTAGT	2580
	AAATAACACC	TGGATTCTAT	GGAGGACCTC	GGTCTTCATC	CAAGTGCCCT	GACTATTTC	2640
	CTGGCAGGTT	GTGAATTTTT	CTTTTCTCT	TTGGGAATC	AAATGATGAT	GTGCAATTTC	2700
	ATGTTTTAAC	TTGGGAAATC	GGAGGTGTA	CCATATAGCT	TCAAACAAACAA	AAACAAATGTT	2760
	GTTATCCGAC	GGATACCTT	ATGGTTACTA	ACTAGTACTT	TCTCAATTGG	GAAAGTAGTT	2820
	CTTAAGTTG	CAAATTAAGT	TGGGGAGGGC	AATAATAAA	TGAGGGCCCG	TAACAGAAC	2880
	AGTGTGTGTA	TAACGAAACAA	CATGTATAAA	ATGGGCCAT	CACCTTGTG	AGAGATATAA	2940
	ATTACCACTAT	TTGGCTTCCC	TTCATCAGCT	AAACACTTATC	ACTTATACTA	CCAATAACTT	3000
	GTTAAATCAG	GATTGGCTT	CATACACTGA	ATTTCAGTGA	TTTTATCTCA	AGTAGATA	3060
	GACACTAAC	TTGATAGTGA	TAAGTTAGAG	GGTTCTCTAT	CITCCATTGT	ACGATAATGTT	3120
	CTTTAATATG	AAATGCTACA	TTTATTTATA	TTGGTAGAGT	TATTGTATCT	TTTTATAGTT	3180
	GTAAGTACAC	AGAGCTGGTA	TATTAAACT	TCTGTAATAT	ACTGTATTA	GAAATGGAAA	3240
	TATATATAGT	TTAGGTTTC	ACTTCCTTTA	AGGTTTACCC	CTGTGGTGTG	TTTAAAT	3300
	CTATAGGCCT	GGGAATTCCG	ATCCTAGCTG	CAGATCGCAT	CCCACAAATGC	GAGAATGATA	3360
	AAATAAAATT	GGATATTGTA	GA				3420

70 SEQ ID NO:86 PDT1 PROTEIN SEQUENCE

Protein Accession #: NP_000684

	1	11	21	31	41	51	
75	MATANGAVEN	GQPDGKPPAL	PRPIRNLEV	FTKIFINNEW	HESKGKKFA	TNPSTREQI	60
	CEVEEGDKPD	VDKAVEAAQV	AFQRGSPWRR	LDALSRGRLL	HQLADLVERD	RATLAALETM	120
	DTGPKPLHAF	FIDLEBGIRT	LRYFAGWADK	IQGKTIPTDD	NVVCFTRHEP	IGVCAITPW	180
	NFPPLMLVWK	LAPALCCGNT	MVLKPAEOTP	LTALYLGSLI	KEAGFPFGVV	NIVPGFGPTV	240
	GAIASSHQPQI	NKIAFTGSTE	VGKLVKEAAS	RSNLKRVTLE	LGGKNPCIVC	ADADLDDAVE	300

CAHQGVFFNQ QCCCTAASRV FVEEQVYSEF VRRSVEYAKK RPVGDPFDVK TEQGPQIDQK 360
 QFDKILELIE SGKKEGAKLE CGGSAMEDKG LFIKPTVFSE VTDNMRIAKE EIFGPVQPL 420
 KFKSIEEVIK RANSTDYGLT AAVFTKNLDK ALKLASALES GTWVINCNA LYAQAPFGF 480
 KMSGNRELG EYALAEYTEV KTVTIKLGDK NP

5

SEQ ID NO:87 PDV3 DNA SEQUENCE

Nucleic Acid Accession #: NM_032642

Coding sequence: 184-1263 (underlined sequences correspond to start and stop codons)

10

	1	11	21	31	41	51		
	GACCATTAGC	AGGCACCCAG	GCCTGTCTTT	GGCTCGAAA	CGGTGGCCCC	CAATGTAGCC	60	
	TAGTTGAAC	CTAGGAACGT	CAGGACCAGA	GAGATTCAC	TGGAGCCTGA	TGGACGGGTG	120	
	ACAGAGGGAA	CCCTGCTGCT	GAAACTGTCA	GGCTCAGGGC	ACTGGGGAGG	GCTGAGGCCG	180	
	15	ACCATGCCCC	GCCTGCTGCT	GCTGTTACAG	GCTGCTCTGC	TGTCACGCTG	240	
	CTGACAGACG	CCAACCTCTG	GTGGTCATTA	GCTTGAACC	CGGTGAGAG	ACCCGAGATG	300	
	TTTATCATCG	GTGGCAGGC	CGTGTGCACT	CAGCTTCCC	GGCTCTCCC	TGGCCAGAGG	360	
	AAGCTGTGCC	AATTGTACCA	GGAGCACATG	GCCTACATAG	GGGAGGGAGC	CAAGACTGGC	420	
	ATCAAGGAAT	CCACGACCA	GTTCGGCAG	CGGGCGTGG	ATTGCAAC	AGCGCACAC	480	
	GCATCTGTCT	TTGGGAGAGT	CATGCAGATA	GGCACCCGAG	AGACCGCCTT	CACCCACCGG	540	
	GTGAGCGCC	CGGGCGTGGT	CAACGCCATC	AGCCGGCTC	GGCCGAGGG	CGAGCTCTCC	600	
	ACCTGCGGCC	CGACGGGAC	GGGGCGGCC	AAGGACCTGC	CGCCGGACTG	GCTGTTGGGC	660	
	GGCTGTGGG	ACAACGTGGA	GTACGGCTAC	CGCTTCGCCA	AGGAGTTGT	GGATGCCGG	720	
	GAGCGAGAGA	AGAACATTGC	CAAAAGATCA	GAGGAGCTGC	GGCGGGTGTCT	CATGAACCTG	780	
	25	CAAACACG	AGGCCGGTGC	CAGGGCTGTG	TATAAGATGG	CACAGTAGC	CTGCAAATGC	840
	CACGGCGCT	CGGGGTCTG	CAGCCTCAAG	ACCTGCTGGC	TGCACTGTC	CGAGTTCCG	900	
	AAGGTCGGG	ACCGGCTGAA	GGAGAAGTAC	GACACGGCGG	CGCCCATGCG	CGTCACCCCG	960	
	AAGGCGCCG	TGGAGCTGGT	CAACAGCGC	TTCACCCAGC	CAACCCCGGA	GGACCTGGTC	1020	
	30	TATGTGGACC	CCAGGCCCGA	CTACTGCTG	CGCAACGAGA	GCACGGGCTC	1080	
	CAGGGCCGCC	TCTGCAACAA	GACCTCGGAG	GGCATGGATC	GCTGTCAGCT	CATGTGCTCC	1140	
	GGGGCTGCT	ACAACAGGT	CAAGGGCTG	CAGGGGGAGC	GCTGCCACTG	CAAGTTCCAC	1200	
	TGGTGTGCT	TCTGTCAGGTG	TAAAGATGTC	ACGGAGATCG	TGCAAGCTGA	CATCTGTA	1260	
	TAGCCCGAG	GGCCTGCTCC	CGGCCCCCCC	TGCACTCTGC	CTCACAAAGG	TCTATATTAT	1320	
	ATAAATCTAT	ATAAAATCTAT	TTTATATTGT	TATAAGTAA	TGGGTGGGTG	CTATACAATG	1380	
	35	GAAGATGAA	AATGAAAGG	AAGAGCTTAT	TAAAGAGACG	CTGAGATCT	CTGAGGAGTG	1440
	GACTTGTCT	GTTCTCTCCT	CTTGGTGGGT	GGGAGACAGG	GCTTTTCTC	TCCCTCTGGC	1500	
	GAGGACTCTC	AGGATGTTAGG	GACTTGGAAA	TATTTACTGT	CTGTCACCCA	CGGCTTGGAG	1560	
	GAGGGAGGTT	STGGTTGGAT	GGAGGAGATG	ATCTGTCCTG	GAAGTCTAGA	GTCTTGTG	1620	
	40	GTGAGAGGAC	TGCCCTGTGAT	CCTGGCCACT	AGGCAAGAG	GGCCTATGAA	GGTGGCGGGA	1680
	ACTCAGCTTC	AACTCTGTATG	TCTTCAGGGT	CTTGTTCAGA	ATGAGATGG	GTTCGGTAAAG	1740	
	AGGCCTGTG	CTCTCTTACT	CTTTCATCCA	CGTGCACCTG	CGGGCATCT	GCAGTTTACA	1800	
	GGAACGGCTC	CTTCCCCAAA	ATGAGAACG	CAAGGCTCATC	TCTGGCCAG	TGACCCACAGA	1860	
	45	GAGATCTGCA	CCTCCGGAC	TTCAGGCCGTG	CCTTCCAGC	GAGAATTCTT	CATCCTCCAC	1920
	GGTTCAGCTAG	CTCCCTACCTG	AAAGGAAAG	GGGGCCATTG	GGCCTGACAT	GTCAAGGAAG	1980	
	CCCTAAACTG	AATGTTGTCG	CTTGGGGTGC	AGAACCGAGG	GTGCACTGACC	AGGCTGCGTG	2040	
	GACGTTTATAC	TGTCTTCCCC	CACCCCCGGG	GAGGGGAAGC	TTGAGCTGCT	GCTGTCACTC	2100	
	CTCCACCCGG	GGAGGCTCTCA	CAAAACACAG	GACGCTGCAA	CGGGCTAGGC	TGGCGGGCCC	2160	
	GGCTGCTCA	TCATCTCTC	CCCAAGGTGA	CGGTTTCTCT	CTGACATTAA	ATGCCCTICA	2220	
	50	TGGAAAAAAA	AAAAAGAAAA	AAAAAAGAAA	AA			

SEQ ID NO:88 PDV3 Protein sequence

Protein Accession #: NP_116031

55

	1	11	21	31	41	51	
	MPSLLLLFTA	ALLSSWAQL	TDANSWWSLA	LNPVQRPEMF	IIGAQPVCSQ	LPGLSPGQRK	60
	LCQLYQEIMA	YIGEAKTGI	KECOHQFRQR	RWNCSSTDADNA	SFVGRVMQIG	SRETAFTHAV	120
	SAAGVVAIS	RACREGELST	CGCSRTARPK	DLPDRDWLWG	CGDNVEYGYR	FAKEFVUDARE	180
	60	REKNFAKGSE	EQGRVLMNLQ	NNEAZGRRAVY	KMADVACKCH	VGSVSCSLKT	240
	VGDRLKEKYD	SAAAMRVTRK	GRLELVNSRF	TQPTPEDLVY	VDPSPDYCLR	NESTGSLGTQ	300
	GRLCNKTKSEG	MDGCELMCCG	RGYNQFKSVQ	VERCHCKFW	CCFVRCKKCT	EIVDQYICK	

SEQ ID NO:89 PDT9 DNA SEQUENCE

Nucleic Acid Accession #: NM_033280

Coding sequence: 58-636 (underlined sequences correspond to start and stop codons)

70

	1	11	21	31	41	51		
	GGCAGCCGTC	TGTGCCACCC	AGAGCCGGCG	GGCCGCTAGG	TCCCCGGAGA	CCCTGCTATG	60	
	GTGCGGTGGG	CGGCGGTGGG	GGCTCATCTC	CCCGCGTCCG	GCTTGGATAT	CTTCGGGGAC	120	
	CTGAAGAAAGA	TGAACAAAGCG	CCAGCTCTAT	TACCGAGTT	TAAACTCTGC	CATGATCGTG	180	
	TCTTCTGCAC	TCATGATATG	GAAAGGCTTG	ATCGTGCCTCA	CAGGCAGTGA	GAGCCCCATC	240	
	GTGGTGGTGC	TGAGTGGCAG	TATGGAGCCG	GCCTTTCACA	GAGGAGACCT	CCTGTTCCCTC	300	
	75	CGAGACATTC	CAATAGTCA	CAGAGTAATC	AAGTCACTG	TTGTTTTAA	AGTTGAAGGA	360
	ACAATATMCC	GGGAAGACCC	AATCAGACCT	GGTGAATAG	AAAAAGATAA	TGGAGACATC	420	
	AAATTCTGA	CTAAAGGAGA	TAATAATGAA	GTTGATGATA	GAGGCTTGTG	CAAAGAAGGC	480	
	CAGAACTGCG	TGGAAAAGAA	GGACGTGGTG	GGAAAGAGCA	GACGGTTTTT	ACCATATGTT	540	
	80	GGTATGGTCA	CCATAATAAT	GAATGACTAT	CCAAAATTCA	AGATATGCTCT	TTTGGCTGTA	600
	ATGGGTGCT	ATGTTGTAATC	AAAACGTGAA	TCCTAAAATG	AAAGACGAGT	CTTGGGACCA	660	
	GATTGAAATG	AATTCTGTTG	AAAAGAGAA	AAACTAATAT	ATTGAGATG	TTCCATTTC	720	

TGTATAAAAG GGAACAGTGT GGAGATGTTT TTGTCTTGTC CAAATAAAAG ATTCAACCAGT 780
 AAAAAAAA AAAA

5 **SEQ ID NO:90 PDT9 Protein sequence**
 Protein Accession #: NP_150596

1	11	21	31	41	51
10	MVRAGAVGAH LPASGLDIFG DLKKMNKRQL YYQVLNFAMI VSSALMIWKG LIVLTGSESP 60 IVVVLSGSME PAFHRGDLFF LTINFREDPIR AGEIVVFKE GRDIPIVHRV IKVHEKDNGD 120 IKFLTKGDNN EVDDRGGLYKE GQNWLKKDV VGRARGFLPY VGMVTIIMND YPKFKYALLA 180 VMGAYVLLKR ES				

15 **SEQ ID NO:91 PDV5 DNA SEQUENCE**
 Nucleic Acid Accession #: NM_016590
 Coding sequence: 691-975 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51
20	GATTACTCAC ACAGTCTTGA AGATGCAATG TCAGCTATTT AGGACAGAAA CATCCAAGGC 60 CGTGTCAAGA CTCAATTACG CATTAAAGGC GGAACACTGGCA GGGCTCAGGG 120 TACGCCAACT ATAGGACTCG TCTTCTCGT ACCTCTGGGT ATAATCTATG AAACCTGACT 180 CCAGAGCCAG CCAATCACTT AGCTCCCTCAT AACAAAGTCTA ACTGGCTCTG GAAAGCTGAA 240 AGGGCTGCGC TGGAAACAACA CAGATGAGAT ATTCTACACCA TTAATCTACT TATCTGGAAT 300 CACTTGCCT CTAAGGGCA GAGAAAAGCA ACAGCTTCTT GTCGGAGGG GAAAAGGACA 360 GTGTGATCTGG GGAAAACGCA GCTACACCTG GAGCAAGGTC TCTTCCGGG TTGCAATCT 420 CAGCTGTGCC GGGCCTACGG GACCCGAGCC GTCCCCAGAGA CCAAAGGGCA GGCACGGCAG 480 CAAACGCGCTG AGTGCCTGCTG CCTTCGGTGA CTATATGAGA ATGGAACATT CTAAGGAAGC 540 CAGGTTGTTA GAATGTTAC CCCCTTACT CAGAGATAAC ATAGATTATC CAGGCTGAGA 600 TGAAAACAA GCCCTTATTG GAATTTCAA CACAGACTCC CTGCTCTCA TCTCCTTAAT 660 AAAATTTCTAT TAAATCCCC TTGAACTCCC ATGTTCAATG CTCCATTGTT TGACAGACAA 720 AGAACCAACTT ACTCTAAACT GAGGCTCTGA AGTCATTCTA TTGTTATTT TGTCAGAAA 780 TTTCCTCATAG GAAGACTTCA CCTCTCTACAA CTCCGAAGAA AACCCTTACT GTCCAAGAC 840 GTCACCCAGCA ACCATCCGCA GTCTATTCAAG TGGAACTGTT CACAGCTTTT GTACATTCTC 900 TGTGTCATAA TACAACGTAG CTTACAGCTG TCCCCCTGGT CCTTGACCCCT TACAAACACT 960 AAAAGTTTG TTGACTCAA CTTCAGCTG CTCATCTGTT AGTAAGTGTG TTGCACTCCTA 1020 GAACACATTG ATGATGAGAA CTTTCTAAAA GACCAAGCACT GCTCTTCCCC TCCTATAATC 1080 ATAATAATCAT TGATAACCTG AAACATGTTA CTGGGACTCG ACATTTTCT GGGGATTGAA 1140 ATCTTTAGTC CTTGGAGCTG CTACATGAGA GGGGCAACCTT CACACTGAAA CAAAGGAAGT 1200 GATGTCCTCAT TATTATCCAC CCTGAGCCAC CATAATATGC TGTTCACATT TATTTCTTC 1260 AGCCTATGCA AAGACAGCA AGGAAAGG AAACATTTAAAT ATACATACATC TAGTACATT 1320 ATCTTCTTTT GCCTAAAATT ACTAATGCAAC CACGTCAGTC TGCTTCTTC AGGCATCAT 1380 CTCATTCTAT CAGGACTTGT ATTAGCAGGT TCTGGCTAGA GAGACTATCT CCTGTCATCA 1440 CGATCAATTG ATGTTTTCTG GTGATCACAT CAGGCCCTAT CTAAAGAAAGCT CATGTTATAC 1500 AAGGGTCAAC CAAATAGCTG AGTGCAGTCC TTGCTCTATAT TTAACCCCCGC 1560 AAACAAGAAT TAAGATGATC CCAATAAAAG AAAAATTGCT CAGGAAACTG AACCTTTTC 1620 TGAACCAAGC ACTGTCAGCA AAATCTCAGGT ATTAGAGCAA CTATGTTGA TTGAAAAGTG 1680 TCTCAAAATC TGGGCAAGA ATGATTGCTA GGTCCATAAG CTAAATTGTC TGCCCTTGCC 1740 ATTAACTCTAA GCCAAAGAAA GTCAACTCATG AGTAAACTATG AAAAACGTT CAGACCCATC 1800 CTGTTAGTAT GTCAAAATCAA CTAAGACTGG CAGGGTATTAA ACTCCATTCC AGGTGACATG 1860 GATAAAAGAGC CCCATTATTT TCACAGTGGC AGCCTCTACC TAAGGAACCC CTAGACCTTG 1920 GAACCAGTTT CCTGGTAGGG AACTGCTGAC AGTTTCAATG CTGACAGTTG GAGCCAATGCC 1980 CTCATAGTGT AAACTGAAAG AAAAATAGTT GCTTTTAAA ATGTCAGCAA GAAGGCCCTGC 2040 CTCATCTTAA CAAAGCAAA AAAAATGCTT TAATTCAAAT TAAAAATCAT GATACTAAAAA 2100 AAAAAAA				

55 **SEQ ID NO:92 PDV5 Protein sequence**
 Protein Accession #: NP_057674

1	11	21	31	41	51	
60	MQQLFRTE SKAVSELNYD YICIKAGTGR PQGTPТИGLV LLVRWAIYI TELQSQPIT					

65 **SEQ ID NO:93 PEE6 DNA SEQUENCE**
 Nucleic Acid Accession #: NM_002606
 Coding sequence: 61-1842 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51
70	CGCGGGCGGCT GGCCTCGGGG AAGTACAGTA AAAAGTCCGA GTGCAGCCGC CGGGCGCAGG 60 ATGGGATCCG GCTCTCTCCAG CTACCGGGCC AAGGCCATCT ACCTGGACAT CGATGGACGC 120 ATTCAGAAAGG TAATCTTCAG CAAGTACTGC AACTCCAGGG ACATCATGGG CCTGTTCTGC 180 ATCGCCACCG GCCTGCCTCG GAACACGACC ATCTCCCTGC TGACCACCGA CGACGCCATG 240 GTCTCCATCG ACCCCACCAT GCCCCGCAAT TCAGAACGCA CTCCGTCACAA AGTGAGACCT 300 GTGCCCCATCA AGCAACTCTC CGCTGGGTGTC GAGGACAAGA GAACCCACAAG CCGTGGCCAG 360 TCTGCTGAGA GACCACTGAG GGACAGACGG GTTGTGGGCC TGGAGCAGCC CGGGAGGGAA 420 GGAGCAATTG AAAGTGGACA GTTAGAGGCC AGGCCCCAGAG AGCCCCAGGG CTGCTACCAAG 480 GAAGGCCAGC GCATCCCTCC AGAGAGAGAA GAATTAATCC AGAGCGTGCT GGCCAGGTT 540 GCAGAGCAGT TCTCAAGAGC ATTCAAAATC AATGAACGTAA AGACTGAAGT TGCAATCAC 600 TTGGCTGTCC TAGAGAAACG CGTGAATTG GAAGGACTAA AAGTGGTGA GATTGAGAAA 660				

TGCAAGAGTG ACATTAAGAA GATGAGGGAG GAGCTGGCGG CCAGAACAG CAGGACCAAC 720
 TGCCCCGTGA AGTACAGTTT TTTGGATAAC CACAAGAAGT TGACTCCTCG ACGCGATGTT 780
 CCCACTTACCC CAAGTACCT GCTCTCTCCA GAGACCATCG AGGCCCTGCG GAAGCCGACC 840
 5 TTTGACGCT GCCTTMTGGGA GCCCAATGAG ATGCTGAGCT GCTTGGAGCA CATGTACAC 900
 GACCTCGGGC TGGTCAGGGG CTTCAGCATC AACCTCTGCA CCCCTCAGGAG GTGGCTGTC 960
 TGTGTCCACG ACAACTACAG AAACAACCCC TTCCACAACT TCCGGCACTG CTTCCTGCGTG 1020
 GCCCAGATGA TGACAGCAT TGCTGCGCTC TGAGCTCTCC AGGAGAAGTT CTCACAAACG 1080
 GATATCTGA TCCTAATGAC AGCCGCATC TGCCACGATC TGACCATCG CGGCTACAC 1140
 10 AACACGTTAC AGATCAATGC CGGCACAGAG CTGGCGGTCC GCTACATGA CATCTCACCG 1200
 CTGGAGAACCC ACCACTCGC CGTGGCGCTC CAGATCTCGC CGGAGCGCTGA GTGCAACATC 1260
 TTCTCAACA TCCCACTGAA TGGGGTCAAG CAGATCCGC AGGGAAATGAT CACATTAATC 1320
 TTGGCCACTG ACATGGCAAG ACATGCAGAA ATTATGGATT CTTCACAAAGA GAAAATGGAG 1380
 AATTTTGACT CAGACAAACGG GGAGCACATG ACCCTGCTGA AGATGATTTC GATAAAATGCC 1440
 15 TGTGATATCT CTAACAGGT CGTCCCGAG GAGCTGGCG AGCCTTGGGT GGACTGTTTA 1500
 TTAGAGGAAT ATTTTATGCA GAGCGACCGT GAGAAGTCAG AAGGCTTCC TGTGGCACCG 1560
 TTCATGGACC GAGACAAAGT GACCAAGGCC ACAGCCCAGA TTGGGTTCAT CAAGTTTGTG 1620
 CTGATCCCAA TGTGAAACAG AGTGCAGAA CTCTTCCCGA TGTTGGAGGA GATCATGCTG 1680
 CAGGCCACTT GGGAAATCCCC AGATCGCTAC GAGGAGCTGA AGCCGATAGA TGACCCCATG 1740
 20 AAAGAGTTAC AGAAGAAGAC TGACAGCTTG ACGTCGGGG CCACCGAGAA GTCCAGAGAG 1800
 AGAAGCAGAG ATGTGAAAAA CAGTGAGGA GACTGTGCCT GAGGAAAGCG GGGGGCGTGG 1860
 CTGAGTCTC GGACGGCGCTG GCCGAGCTGC CGGGGATCTT TGTGCAAGGA AGAGCTGCC 1920
 TGGGCACCTG GCACCAACAAG ACCATGTTT CTAAGAACCA TTTTGTTCAC TGATACAAAA 1980
 AAAAAAAAAA A

SEQ ID NO:94 PEE6 Protein sequence

Protein Accession #: NP_002597

1	11	21	31	41	51
MSGSSSYRP KAIYLDIDGR IOKVIFSKYC NSSDIMDLFC IATGLPRNTT ISLLTTDDAM 60					
VSIIDPTMPAN SERTPVKVRP VAIQLSAGV EDKRTTSRGQ SAERPLRDRR VVGLEQPREE 120					
GAFESGVQEP RPREFQGCVQ EGQRIPPERE ELIQSVLAQV AEQFSRAFKI NELKAEVANH 180					
LAVLEKRVEL EGLKVVEIEK CKSDIKKKRE ELAARSSRN CPCKYSFLDN HKKLTPRRDV 240					
PTYPKYLSP ETIEALRKPT FDVWLWEPNNE MLSCLEHHYH DLGLVRDFSI NPVTLRRWL 300					
CVHDNYRNPNP FHNFPRHFCV AQMMSMVWL CSLQEKFSQT DILILMTPAII CHDLDPGYN 360					
NTYQINARTE LAVRYNDISP LENIHCAVAF QILAEPECNI FSNIPPPDGFK QIROQMITLI 420					
LATDMARHAE IMDSFKEKME NFDYSNEEHM TLLKMILIKC CDISNEVRPM EVAEPFWIDCL 480					
LEEVYFMQSDR EKSEGLPVAP FMDRDKVTKA TAQIGFIKFV LIPMFETVTK LFPMVEEIML 540					
OPLWESRDRY EELKRIDDAM KELQKKTDSL TSGATEKSRE RSRDVKNSEG DCA					

SEQ ID NO:95 PEG4 DNA SEQUENCE

Nucleic Acid Accession #: none

Coding sequence: 41-559 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51
CAGTCACAGG CGAGAGCCYT GGGATGCACC GGCCAGAGC ATGCTGCTGC TGCTCACGCT 60					
TGCCCTCTG GGGGGCCCCA CCTGGCAGG GAAGATGTTA GGCCTCTGGAG GAGGCAAGTA 120					
TTTCAGCACC ACTGAGAAGT ACGACCATGA AATCACAGGG CTGGGGTGT CTGTAGGTCT 180					
TCTCTGGTGG AAAAGTGTCC AGGTTGAAACT TGGGACTCTC TGGGACGTGA AACTTGGGAGC 240					
CTTAGGTGGG AATACCCAGG AAGTCACCC GCAGCCAGGC GAATACATCA CAAAAGTCTT 300					
TGTCGCTTC CAAGCTTCC TCCGGGGTAT GGTATGTAC ACCAGCAAGG ACCGCTATT 360					
CTAATTTGGG AAGCTTGATG GCCAGATCTC CTCTGCTCTAC CCCAGCCAAG AGGGGCAAGT 420					
GCTGGTGGGC ATCTATGCC AGTATCAACT CCTTGCCATC AAAGGATATG CCTTGGATG 480					
GAATTATCCA CTAGAGGAGC CGACCACTGA GCCACAGAT AATCTCACAT ACTCAGCAAA 540					
CTCACCCCTG TGCTGCTTAGG GTGGGGTAGT GGGCCATCCG AGCTGAGGCC ATCTGTGTTG 600					
TGGTGGCTGA TTGTAATCTGGA GTAACTGAGT CGGGACGCTG AATCTGAATC CACCAATAAA 660					
TAAAGCTTCTC CGAGAACATCG TGAAAAAAAAA A					

SEQ ID NO:96 PEG4 Protein sequence

Protein Accession #: FGENESH predicted

1	11	21	31	41	51
MLLLLTLALL GGPTWAGKMY GPGGGKFST TEDYDHEITG LRVSVGLLLV KSVQVKLGDS 60					
WDVKLGLALGG NTQEVTLQPG EYITKVFVAF QAFLRGVMVY TSKDRYYFPG KLDGQISSAY 120					
PSQEGQVLVG IYQQYQLLG1 KSIGFEWNYP LEEPTEPPV NLTYSANSVP GR					

SEQ ID NO:97 PEL9 DNA SEQUENCE

Nucleic Acid Accession #: NM_006953

Coding sequence: 33-896 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51
CCGTTCCCGC CTCTGGCGGC TCCCTCCGGG CGATGCCCTCC GCTCTGGGCC CTGCTGGCCC 60					
TCGGCTGCTT CGGGTTCGGC TCGCTGTGA ACCTGCAGCC CCAACTGGCC AGTGTGACTT 120					
TCGCCACCAA CAACCCACAA CTTACCACTG TGGCTTGGG AAAGCTCTC TGATGTGTTG 180					
ACAGCAAAGA GGCCCTCACT GGCAACCAAG AGGTCTACCT GTATGTCTTG GTCGACTCA 240					
80 CCATTTCCAG GAATGCCTCA GTGCAAGACA GCACCAACAC CCCACTGGGC TCAACGTTCC					

TACAAACAGA GGGTGGGAGG ACAGGTCCCT ACAAGCTGT GGCTTTGAC CTGATCCCC 360
 GCAGTGACTT GCCCAGCCTG GATGCCATG GGGATGTGTC CAAGGCCTCA CAGATCTGA 420
 5 ATGCCTACCT GGTCAAGGTG GGTCCAACG GGACCTCCCT GTGGGATCCC AACTTCCAGG 480
 ATATGTCCAC GGGCTTGGTA GAGGACCCAGA CCCTGTGGTC GGACCCCATC CGCACCAACC 540
 AGCTCACCCC ATACTCGACG ATCGACACGT GGCCAGGGCC GCGGAGCGGA GGATGATCG 600
 TCATCACTTC ATCCCTGGGC TCCCTGGCT TCTTCTACT TGTTGGGTTTG GCTGGGCCA 660
 TTGCCCCCTAG CTCCTGGAC ATGGGGAGT CTGATGGGGAA AACGACTCAC GACTCCAAA 720
 10 TCACTCAGGA GGCTGTCCCC AAGTCGCTGG GGGCTCGGA GTCTTCTACT ACGTCGCTGA 780
 ACCGGGGGCC GCCACTGGAC AGGGCTGAGG TGATTCAGC CAAGCTCCAA GACTGAGGCC 840
 AGCACCACCC CTGGCAGCA GCATCTCCCT CTCTGGCTT GCCCCAGGCC CTGCAGCGGT 900
 GGTGTCACA CCTCTGACTTC AGGGAGGTG AAACAGGGCT TGTCCTCTCA ACTGCAGGAA 960
 AACCTTAAT AAAATCTCT GATGAGTTCT AAAAAAAA 1020

15 SEQ ID NO:98 PEL9 Protein sequence

Protein Accession #: NP_008884

1	11	21	31	41	51
MPPLWALLAL	GCLRFGSAVN	LQPQLASVTF	ATNNPILTIV	ALEKPLCMFD	SKEALTGTTHE
20	VYLYVLVDSA	ISRNASVQDS	TNTPLGSTFL	QTEGGRTPY	KAVAFDLIPC
DVSKASQILN	AYLVRVGANG	TCLWDPNFQG	LCNAPLSAAT	EYRFKVYLVN	MSTGLVEDQT
LWSDPIRTNQ	LTPYSTIDTW	PGRRSGGMIV	ITSILGSLPF	FLLVGFAGAI	ALSLVDMGSS
DGETMHDHSQI	TQEAVPKSLG	ASESSYTSVN	RGPPPLDRAEV	YSSKLQD	

25 Nucleic Acid Accession #: NM_012391

Coding sequence: 416-1423 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51
GTCTGACTTC	CTCCCAGCAC	ATTCTGAC	TCTGCCGTGT	CCACACTGCC	CCACAGACCC
30	AGTCCTCAA	GCCTGTCGCC	AGCTCCCTGC	AAGCCCTCA	GGTTGGGCC
CACAGCAGCA	GCCTCTGGGT	GGGGGGTAGG	GACTCCCTAC	AGGCACCCAG	CCCTGAGACCC
35	TCAGAGGGGC	ACCCCTTGAG	GGGGGGCAGG	CCCCCAGTGG	CCAACTCTAG
GGCACCAGCC	CTGCTGGCCC	CTGCTTCCCG	TGCCCCCCTA	GATGCCCTGG	TGAGACACCC
CAGTGGCCCTC	ACGCTCTCCC	ACCTCTCTCC	GGCCCCCTGAA	GTGGAACATG	CAGCAGACAG
40	CTCCTGGGC	ACAGGACAGC	TAACAGACAG	AGCCAGCACG	CCGGCATGGG
CAGGCCAACG	CGGGGCTCTG	GCACGGTATC	CCCCAGCCAC	CTCTCTGTC	CCCCGGACAC
GGTGTGCGCG	ACAGGCTTGG	AGAAGGCCGC	ACGGGGGGCA	GTGGGCTCTG	AGAGACGGGA
45	CTGGAGTCCC	AGTCAACCCCG	CCACGCCCGA	GCAGGGCCTG	TCCGCCCTCT
CTTGTGACATG	CTGTACCTCTG	AGGACAGCAG	CTGGGAGCAG	AAAGCCCCCTG	GGGGCAGCAG
TCGGGAGGAG	CCACCTGAGG	AGCCTGAGCA	GTGCCGGTC	ATTGACAGCC	AAGCCCCAGC
50	GGCAGCGCTG	GACTTGTGTC	CGACCCGGGC	GACCTTGGAG	GACCACTCGC
GCAGTCCATG	GTGGTGGCGC	AAAGTGCTAA	GGACATCGAG	ACGGCCCTGA	AGCTGCTCAA
CATCACCGCA	GATCCCATGG	ACTGGAGCCC	CAGCAATGTG	CAGAAGTGGC	TCCGTGGAC
AGAGCACCAC	TACCGCTGTC	CCCCCATGGG	CAAGGCTCTC	CAGGAGCTGG	CGGGCAAGGA
55	CCTGTCGAGC	ATCTGAGGAG	AGCAGCTTCC	CCAGGCCCTG	CCCCCTGGTG
GCACGCCAAC	CTTGGACATCT	GGAAAGTCAGC	GGCCCTGGATG	AAAGAGCGGA	CTTCACCTGG
GGCGATTCTAC	TACTGTGCC	CGACCACTGTA	GGAGAGCTGG	ACCGACAGCG	AGGTGGACTC
ATCATGCTCC	GGGCAGGCCA	TCCACCTGTG	GCAGTTCCTC	AAGGAGTTGC	TACTCAAGCC
60	CCACAGCTAT	GGCCGCTTCA	TTAGGTGGCT	CAACAGGAG	AAAGGGCATCT
GGACTCAGGC	CAGGTGGCCC	GGCTGTGGGG	CATCCCGAAG	ACCGGTCCCC	CCATGAACTA
CGACAAGCTG	AGCCGCTCCA	TCCGCCAGTA	TTACAAAGAAG	GGCATCATCC	GGAAAGCCAGA
CATCTCCCCAG	CGCCCTGCTC	ACCAAGTCTG	GCACCCCATC	TGAGTGGCTG	GGCCAGGGCC
70	TGAAACCCGC	CCTCAGGGGC	CTCTCTCTG	CCTGCCCTGC	CTCAGGCCAGG
GGGGAAACAGC	GGCAGCTGTC	TCTCTCTG	TCAGCTTCA	GGGCCCAGGG	TCAGGGAGGG
GCAACCAACT	GCCCCAGGGG	GATATGGTC	CTCTGGGGCC	TTGGGGACCA	TGGGGCAGGG
GTGTTCTCTC	CTCAGGCCCA	GCTGCTCCCC	TGGAGGACAG	AGGGAGACAG	GGCTGCTCCC
75	CAACACCTGC	CTCTGACCCC	AGCATTTCCA	GAGCAGAGCC	TACAGAAGGG
ACAAGGGCCA	CAGGCGTCC	AGGCCTCTCT	CTGCTCCATC	CCCTGCTTC	CCATTCTGCA
CCACACCTGG	CATGGTGCAG	GGAGACATCT	GCACCCCTGA	GTGGGGCAGC	CAGGAGTGCC
CCCGGAATG	GATAATAAAG	ATACTAGAGA	ACTG		

65 SEQ ID NO:100 PEN1 Protein sequence

Protein Accession #: NP_036523

1	11	21	31	41	51
1	MGSASPGLSS	VSPSHLLLPP	DTVSRTGLEK	AAAGAVGLER	RDWSPSPPAT
70	SYFDMLYPED	SSWAAKAPGA	SSREEPPEEP	EQCPVIDSQA	PEQQLSAFYI
NYDKLSRSR	QYKKGIIRK	QYKKGIIRK	QYKKGIIRK	QYKKGIIRK	QYKKGIIRK

80 Nucleic Acid Accession #: NM_000742

Coding sequence: 555-2144 (underlined sequences correspond to start and stop codons)

SEQ ID NO:101 PEN3 DNA SEQUENCE

	1	11	21	31	41	51	
5	GAGAGAACAG	CGTGAGCCTG	TGTGCTTGTG	TGCTGAGCCC	TCATCCCCTC	CTGGGGCCAG	60
	GCTTGGGTTT	CACCTGCAGA	ATGCTTGTG	CTGGGCTGCC	TGGGCTGTCC	TCAGTGGCAC	120
	CTGCATGAAG	CCGTTCTGGC	TGGCAAGAGCT	GGACAGCCCC	AGGAAAACCC	ACCTCTCTGC	180
	AGAGCTTGC	CAGCTGTCCC	CGGGAAGCCA	AATGCCCTCTC	ATGTAAGTCT	TCTGCTCGAC	240
	GGGTGTC	CTAAACCCCTC	ACTCTTCAGC	CTCTTGTG	CCATGAAATG	AAGTGAATGA	300
	GCTCTATTCT	GTACCTGCCA	CTCTTATTCT	GGGGTGACTT	TTCCTCAGCTG	CCCAGAACATC	360
10	CCAAGCCAGG	CTGGTTCTCT	GCATCCMTTC	AATGACCTGT	TTTCTCTGT	AACCACAGT	420
	TCGGTGGTGA	GAGGAAGCCT	CGCAGAAATCC	AGCAGAAATCC	TCACAGAAATC	CAGCAGCAGC	480
	TCTGCTGGGG	ACATGGTCCA	TGGTGCAACC	CACAGCAAAAG	CCCTGACCTG	ACCTCCTGTAT	540
	GCTCAGGAGA	AGCCATGGGC	CCCTCCCTGC	CTGTGTTCT	GTCTTCACA	AAGCTCAGCC	600
	TGTGTTGGCT	CTTCTGACCC	CCAGCAGGTG	GAGAGGAAGC	TAAGGCCCA	CCTCCCAGGG	660
15	CTCTGGAGA	CCCACTTC	TCTCCAGTC	GGGGCAGGG	GGCTCGCAT	GGCTCGCAT	720
	CCGAGACTGA	GGACGGCTC	TTCAAACACC	TCTTCGGGG	CTACAACCCG	TGGGGCGGCC	780
	CGGTGCCAA	CACTTCAGAC	GTGGTATTG	TGCGCTTGG	ACTGTCCATC	GTCAGCTCA	840
	TGGATGTTGA	TGAGAAAGAC	CAAAATGGA	CCACCAACCT	CTGGCTAAAG	CAGGAGTGG	900
	GCGACTACAA	ACTGCCCTGG	AACCCCGCTG	ATTTTGCGAA	CATCACATCT	CTCAGGGTCC	960
20	CTTCTGAGAT	GATCTGGATC	CCCGACATTG	TTCTCTACAA	CAATGCGAGAT	GGGGAGTTG	1020
	CAGTGACCCA	CATGACCAAA	GGCCACCTCT	TCTCCACGGG	CACTGTGAC	TGGGTGCCCC	1080
	CGGCCATCTA	CAAGAGCTCC	TGCAGCATCG	ACGTCACTCT	CTTCCCTTC	GACCAGCAGA	1140
	ACTGCAAGAT	GAAGTTTGGC	TCTGGACTT	ATGACAAGGC	CAAGATCAGC	TGGAGCAGA	1200
	TGGAGCAGAC	TGTGGACCTG	AAGGACTACT	GGGAGAGCGG	CGAGTGGGCC	ATCGTCAATG	1260
25	CCACGGGAC	CTACAAACAGC	AAGAAGTACG	ACTGACGTC	CGAGATCTAC	CCCGAGCTCA	1320
	CCTACGCTT	CGTCATCCG	CGGCTGGCG	TCTTCATAC	CATCAACCTC	ATCATCCCC	1380
	GCCTGCTCAT	CTCCGCTC	ACTGTGCTGG	TCTTCTACCT	GCCCTCCGAC	TGCGGCAGA	1440
	AGATCAGCCT	GTGCAATTTC	GTGCTGCTG	CACTCACCGT	CTTCCTGCTG	CTCATCAGTC	1500
	AGATCATCCC	GTGCCACCTCG	CTGGTCATCC	CGCTCATCGG	CGAGTACCTG	CTGTTCACCA	1560
30	TGATCTTGT	CACCCCTGTCC	ATCGTCATCA	CGGTCTTGT	GCTCAATGTG	CACCACCGCT	1620
	CCCCCAGCAC	CCACACCATG	CCCCACTGG	TGCGGGGGGC	CTTCTCTGGC	TGTGTTGCCCC	1680
	GCTGGCTT	GATGAACCGG	CCCCACACC	CGGTGAGCT	CTGCCACCCC	CTACGGCTGA	1740
	AGGTCAGCCC	CTCTTATCAC	TGGCTGGAGA	GCAACGTGGA	TGCGCAGGAG	AGGGAGGTTG	1800
	TGGTGGAGGA	GGAGGACAGA	TGGGCATGTG	CAGGTGATGT	GGCCCCCTCT	GTGGGCACCC	1860
35	TCTGCAGGCT	GGGCCACCTG	CACTCTGGG	CCTCAGGTG	CAAGGCTGAG	GCTCTGCTGC	1920
	AGGAGGGTGA	GCTGCTGCTA	TCACCCACAA	TGCAAGAGGC	ACTGGAAGGT	GTGCACTACA	1980
	TTGCCGACCA	CCTCGGGCT	GAGGATGCTG	ACTCTTCGGT	GAAGGAGGAC	TGGAAGTATG	2040
	TTGCGATGGT	ATCTGACAGG	ATCTCTCT	GGCTGTTTAT	CATCGCTG	TTCTCTGGGA	2100
40	CCATCGGCTT	CTTTCTGCTC	CCGTTCTTAG	CGTGGATGAT	CTGACTGCC	CTCCCTCGAG	2160
	CTGGCTCCCA	GGGCAAGGG	GAGGGTTCTT	GGATGTTGGA	GGCTTTGAA	CAATGTTAG	2220
	ATTMGGAGAT	GAGGCCAGAG	TGGCAGGGAG	AACAGCCAGG	TGAGGTGGGA	GGTTGGAGAG	2280
	CCAGGTGAGG	TCTCTCTAAG	TCAGGCTGGG	GTTGAAGTT	GGAGTCTGTC	CGAGTTTGCA	2340
45	GGGTGCTGAG	CTGTATGGTC	CACCAAGGGG	CTAATAAGGG	CTTCTCCGGA	AGGGGAGGAA	2400
	GCGGGAGGCC	GGCCCTGACCC	TGATGTTGGAG	GTACAGGCAG	ATCTTCCCTA	CCGGGGAGGG	2460
	ATGGATGGT	ATGATACAGGT	GGCTTGGCTA	TTCCATCCAT	CTGGAGACAC	ATTTGAGCCT	2520
	CCAGGCTCT	CCTTGACGTC	ATTCTCTTC	TTCCCTGCTG	CAAATGGCT	CTGCACCAAGC	2580
	CGGCCCCCAG	GAGGTCTGGC	AGAGCTGAGA	GCCATGGCT	GCAGGGCTC	CATATGTCCC	2640
	TACCGCTGCA	CGAGGCAAAC	AAGA				

SEQ ID NO:102 PEU3 Protein sequence

Protein Accession #: NP_000733

	1	11	21	31	41	51	
55	MGPSCPVFLS	FTKLSLWLL	LTPAGGEEAK	RPPPRAPGDP	LSSPSPITALP	QGGSHTETED	60
	RLFKHLFRGY	NRWARPVPN	SDVVIVRFGL	SIAQLIDVDE	KNOMMMTNWV	LKQEWSDYKL	120
	RWNPADFGNI	TSLRVPSEMI	WIPDIVLYNN	ADGEFAVTHM	TKAHLFSTGT	VHWVPPAIYK	180
	SSCSIDTVTF	FFDQQNCMKM	FGSWTYDKAK	IDLEQMEQTV	DLKJWESGE	WAIVMATGTY	240
	NSKKYDCAAE	IYPDVYAFV	IRRLPLFYTI	NLIIPCLLIS	CLTVLVFYL	SDCGEKITLC	300
60	ISVLLSLTVF	LLLITEIIPS	TSVLPILIGE	YLLFTMIFVT	LSIVITVFLV	NVHHRSRSTH	360
	TMFHWRVGL	LCGVPRWLLM	NRPPPVELC	HPLRLKLSPS	YHLESNVDA	EREVVVEEE	420
	DRWACAGHVA	PSVGTLCSHG	HLHSGASGPK	AEALLQEGEL	LLSPHMQKAL	EGVHYIADHL	480
	RSEDADSSVK	EDWKYVAMVI	DRIFLWLFI	VCFLGTIGLF	LPPFLAGMI		

SEQ ID NO:103 PEU4 DNA SEQUENCE

Nucleic Acid Accession #: NM_018670

Coding sequence: 87-893 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
70	CACGAGGCTG	GAAGGGGCCA	CTTCACACCT	CGGGCTCGGC	ATAAAAGCGGC	CGCCGGCCGC	60
	CGGGCCCCAG	ACGGCCCGCC	GCTGCTATGG	CCCAGCCCC	GTCCCCCG	CTCTCCGAGT	120
	CCTGGATGCT	CTCTGCGGCC	TGGGGCCCAA	CTCGCCGGCC	GCCGCCCTCC	GACAAGGACT	180
	GGCGCCGCTC	CCTCTCTCTCG	TCCCCAGACT	CATGGGGCAG	CACCCCAAGCC	GACAGCCCCG	240
	TGGCGAGGCC	CGCGCGGCCA	GGCACCCCTC	GGGACCCCCG	CGCCCCCTCC	GTAGGTAGGC	300
75	GGCGCGCGCG	CAGCAGCCGC	CTGGGCAGCG	GGCAGAGGCA	GAGCGCCAGT	GAGGGGGAGA	360
	AACTGCGCAT	GCGCACGCTG	GCCCCGCC	TGCACGGAGCT	GGCCCGCTT	CTACCGCCGT	420
	CCGTGGGCC	CCGGGGCCAG	AGCTGACCA	AGATCGAGAC	GCTGCGCTG	GCTATCCGCT	480
	ATATCGGCCA	CCTGTCGGCC	GTCTTAGGCC	TCAGCGAGGA	GAGTCTCCAG	CGCCGGTGGC	540
80	GGCAGCGGGG	TGACCGGGGG	TCCCTCTCGG	GCTGCCGCT	GTGCCCGAC	GACTGCCCG	600
	CGCAGATGCA	GACACGGACG	CAGGCTGAGG	GGCAGGGGCA	GGGGCGCGGG	CTGGGGCTGG	660

TATCCGCCGT CGCGCCGGG GCGTCCTGGG GATCCCCGCC TGCTGCCCC GGAGCCCGAG 720
 CTGCACCGA GCCGCGCAG CCGCTGCGC TGTTGCCGA GCGGCCGTCG CCGGAAGGC 780
 AGCCGATGGA GCCAAGCCA CCCCTCCCGC TCCCTCCGGG CGACGTCCTG GCTCTGTTG 840
 AGACCTGGAT GCCCCCTCGC CCTCTGGAGT GGCTGCCCTGA GGAGGCCAAG TGACAAGGGA 900
 5 CAACTGACGC CGTCTCTGTC AGCACCGAGG CTTTTGGCC TCAGCACCTT CGAACGTTG 960
 CCTTGGCAGA CTGCCCTTCC TGAAGAGGG CACGGCGAT CCCGACGGGG GCATTCCCTGC 1020
 GGGTGAGGAGG CGTCCCACCG CGCGCCGGC TTCTCAGGCC CTCCCTCCAT GGAGGGACCC 1080
 ATAGGGCTAG ACACATTGAG CAAAGCAGA GGCTCTGCT AATGTAATT TATTTATTG 1140
 TGAATAAACT GTACTGGTGT CAAAAAAA AAAAAAAA A

10 **SEQ ID NO:104 PEU4 Protein sequence**
Protein Accession #: NP_061140

15	1 11 21 31 41 51
	MAQPLCPPLS ESWMLSAAWG PTRRPPPSDK DCGRSLVSSP DSWGSPADPS PVASPARPGT 60
	LRDPRAPSVG RRGARSSRLSG SQRQSASER EKLRMRRTLAR ALHELRRFLP PSVAPAGQSL 120
	TKIETLRLAI RIYIGHLSAVL GLSEESLQRQ CRQRGDAGSP RGCGLPDPC PAQMQTRTQA 180
20	EGQCGQRGLG LVSAVRAGAS WGSPPACPGA RAAPEPRDPV RALFEEAACPE QQAMEPSPPS 240
	PLLPGDVLA LETWMLPLSPL EWLPEEPK

SEQ ID NO:105 PEU5 DNA SEQUENCE

Nucleic Acid Accession #: NM_017636
Coding sequence: 324-3374 (underlined sequences correspond to start and stop codons)

25	1 11 21 31 41 51
	CAACGGAGAA GCCCACCGAT GCCTACGGAG AGCTGGACTT CACGGGGGCC GGCCGCAAGC 60
	ACAGCAATT CCTCCGCTC TCTGACCGAA CGGATCCAGC TCCAGTTTAT AGTCGGTCA 120
	CACCCACATG GGGCTTCGGT GCCCGGAACC TGTTGCTGTC ASTGCTGGGG GGATCGGGG 180
	GCCCCGCTCT CCAGACCTGG CTGAGGAGC TGCTCGCTG TGCGCTGGTG CGGGCTGCC 240
30	AGAGCACACGG AGCCCTGGATT GTCACTGGGG GTCTCACACAC GGGCATCGGC CGGCATGTTG 300
	GTGTGGCTGT ACAGGGACCAT CAGATGGCA GCACTGGGGG CACCAAGGTT GTGGCCATGG 360
	GTGTGGCCCG CTGGCTGGTG GTCTGGGAATA GAGACACCCAT CATCAACCCC AAGGGCTCTG 420
35	TCCCTGGCAG GTACCGGTGG CGCGGTGACC CGGAGGACGG GGTTCAGTTT CCCCCGGACT 480
	ACAACATCTC GGCCTTCCTC CTGGTGGAGC AGGGCACACA CGCCTGCTG GGGGGCGAGA 540
	ACCGGCTTCGG CTTGCCCTCTG GAGTCCTACA TCTCACAGCA GAAGACGGGC GTGGGAGGGA 600
	CTGGAATTGCA CATCCCTGTC CTGCTCTCTC TGATTGATGG TGATGAGAAG ATGTTGACGC 660
40	GAATAGAGAA CGCCACCCAG GCTCAGCTTC CATGTCCTCT CGTGGCTGGC TCAGGGGGAG 720
	CTGGCGACTG CTGGGGGGAG ACCCTGGAAAG ACACCTGGC CCCAGGGAGT GGGGGAGCCA 780
	GGCAAGGCGA AGCCCGAGAT CGAACATGGC GTTTCTTCTC CAAAGGGGAC CTTGAGGTCC 840
	TGCAGGCCCA GGTGGAGAGG ATTATGACCC GGAAGGAGCT CTCGACAGTC TATTCTCTG 900
45	AGGATGGGTC TGAGGAATTG GAGACCATAG TTTTGAAGGC CCTTGTAAGG GCCTGTGGGA 960
	CTGGCGAGGC CTCAGCTCTAC CTGGATGAGC TGCGTTGGG TGTTGGCTGG AACCCGGTGG 1020
	ACATTGGCCA GAGTGAACCT TTTGGGGGGG ACATCAAATG CGGGTCTTC CATCTCGAAG 1080
	CTTCCCTCAT GGACGCCCTG CTGAATGACC GGCCCTGAGTT CGTGGCTTGG CTCAATTCCC 1140
	ACGGCTCTAG CTCGGGCCAC TTCTGACCC CGATGGCCCT GGCCCAACTC TACACCCGGG 1200
50	CGCCCCCTCAA CTGCTCATC CGAACCTTT TGACCGAGC STCCCAACAGC CGAGGCCACCA 1260
	AAGCCCCAGC CCTAAAGGG GGAGCTGGGG AGCTCGGGC CTCCTGACGTG GGGCATGTC 1320
	TGAGGATGCT GCTGGGGAGA ATGTCGCGGC CGAGGTACCC CTCCGGGGGC GCCTGGGACCC 1380
	CTCACCCAGG CGAGCTCTTC GGGGAGAGCA TGATCTGCTC CTGGACAAAG GCCACCTCGC 1440
	CGCTCTCGCT GGATGCTGGC CTGGGGCAGG CCCCCCTGGAG CGACCTGCTT CTTTGGCAC 1500
55	TGTTGCTGAA CAGGGCACAG ATGGCCATGT ACTTCTGGGA GATGGGTCC AATGCAATTG 1560
	CCTCAGCTCT TGGGGCTCTG TTGCTGCTC GGGTGTAGGC ACGCCCTGGAG CCTGACGCTG 1620
	AGGAGGCAGC CGGGAGGAAA GACCTGGCTG TCAAGTTGA GGGGATGGG GTTACCTCT 1680
	TTGGCGAGTG CTATCGCAGC AGTGGAGGTGA GGGCTGCCCG CCTCCTCTC CGTCGCTGCC 1740
	CGCTCTGGGG GGATGCAACT CTCAGCTGGCAG TGCCCATGCA AGCTGACGCC CGTGCCCTCT 1800
60	TTGCCCAGGA TGGGGTACAG TCTCTGCTGA CACAGAAGTG GTGGGGAGAT ATGCCAGCA 1860
	CTACACCCAT CTGGGCCCTG GTTCTGCTCT TCTTTGCCCT TCCACTCATC TACACCCGCC 1920
	TCATCACCTT CAGGGAAATC GAAGAGGAGC CCACACGGGA GGAGCTAGAG TTTGACATGG 1980
	ATAGTGTCTAT TAATGGGAA GGGCTCTGTC GGACGGCGGA CCCAGCCAG AAGACGCCGC 2040
	TGGGGTCTCC CGGCCAGTCG GGGCGCTCCG GTTGTGCGG GGGCGCTGCG GGGGGGGGCC 2100
	GGTGCTCTACG CGCGCTGGTC CACTTCTGGG CGCGGCCGGT GACCATCTTC ATGGCAACG 2160
65	TGGTCAGCTA CTCGCTGGTC TTGCTGCTT TCTCTGGGGT GCTGCTCGTG GATTTCCAGC 2220
	CGGGGGCCCG CGCGCTCCCTG GAGCTGCTG TCTATTCTC GGGTTTCACT CGTCGCTGCC 2280
	AGGAACCTGG CGAGGGCCTG AGCGGAGGG GGGGAGGCCT CGCCAGCGGG GGCCCCGGGC 2340
	CTGGCCATGTC CTCACTGAGC CAGCGCTGTC GCCTCTACCT CGTGAACCCAG TGGAACCAAGT 2400
	GCGACCTAGT GGCTCTCACCG TGCTCTCTC TGCGCTGGGG CGACACCCCTT CTCGCTCATCT 2460
70	TGTACCACTT GGGCCGACT GTCTCTGCA TCGACTTCAT GTGTTTCACT GTGCCGCTGC 2520
	TTCACATCTT CAGGGCAAC AAAACAGCTGG GCGCCAAGAT CGTCATCGTG AGCAAGATGA 2580
	TGAAGGACCT GTTCTCTTCC CTCTTCTCTC TCGCTGCTG GCTGCTGACCC TATGCCGCTG 2640
	CCACGGAGGG GCTCTGAGG CCACGGGACA GTGACTTCCC AAGTATCTG CGCCGCTCT 2700
	TCTACCGTCC TCACTGAGC ATCTTCGGGC AGATTCCTCA GGAGGACATG GACGTGGCC 2760
75	TCATGGAGCA CAGCAACTGC TCGCTGGAGC CGGGCTCTCG GGCACACCCCT CTCGCTCATCT 2820
	AGGGGGGCAC CTGGCTCTCC CAGTATGCCA ACTGGCTGGT GGTGCTGCTC CTGCTCATCT 2880
	TCCCTGCTCGT GGCCCAACATC CTGCTGGTCA ACTTGTCTCAT TGCCCATGTT AGTTACACAT 2940
	TCGGGAAAGT ACAGGGCAAC AGCGATCTC ACTGGAAGGC CGAGCGCTAAC CGCCTCATCC 3000
	GGGAATTCGA CTCTCGGCC CGCGCTGGCC CGCCCTTAT CGTCTCATCC CACTTGCGCC 3060
80	TCCCTGCTCG AGAATTTGTC AGGCAGCCCC GGAGCCCCCA GCCGCTCTCC CGGGCCCTCG 3120
	AGCATTTCCG GTTTTACCTT TCTAAGGAAG CGAGCGGAA GCTGCTAACG TGGGAATCGG 3180

5 TCCATAAGGA GAACTTTCTG CTGGCACCGC CTAGGGACAA GCGGGAGAGC GACTCCGAGC 3240
 GTCTGGAGCG CACGTCCCAG AAGTGGACT TGGCACTGAA ACAGCTGGGAA CACATCCGCG 3300
 ACTACGAACA CGGCCGTAAGA GTGCTGGAGC GGGAGGTCCA GCAGTGTAGC CGCGTCTGG 3360
 GGTGGGTGAC GTAGGCCGTT AGCAGCTCTG CCATGTTGCC CTCAGTGGG CGCCCAACCC 3420
 TTGACCTGCA TGGGTCAAA GAGTGAGCCA TGCTGGCGGA TTCTAAGGAG AAGCCCCAAC 3480
 AGGGGATTTC GCTCTTAGAG TAAGGCTCAT TGCTGGCTCG GCCCCCGCAC CTGGTGGCCT 3540
 TGTCCCTGAG GTGAGCCCCA TGTCATCTG GGCCACTGTC AGGACCACCT TTGGGAGTTG 3600
 CATCCCTTACA AACACAGCA TGCCCGGCTC CTCCAGAAC CAGTCCCAGC CTGGGAGGAT 3660
 10 CAAGGCTGG ATCCCGGCC GTTATCCATC TGAGGCTGC AGGGTCCCTG GGTAACAGG 3720
 GACCAACAGAC CCTCACCAAC TCACAGATMC CTCACACTGG GGAAATAAAG CCATTCAGA 3780
 GAAAAAAA AAAAAAAA AAAAAAAA

SEQ ID NO:106 PEU5 Protein sequence

Protein Accession #: NP_060106

15 1 11 21 31 41 51
 MASTGGTKV AMGVAPWGVV RNRDTLINPK GSFPARYRWR GDPEDGVQFP LDYNYSAFFL 60
 VDGDTHGLG GENRFLRLRE SYISQQKTGV GGTGIDIPVLL LLLIDGDEKM LTRIENATQA 120
 QLPCLLVAGS GGAADCLAET LEDTTLAPGSG GARQEADRL IRFFPKGDL EVLQAQVERI 180
 MTRELLTVY SSEDGSEEFE TIVLKALVKA CGSEASAYL DELRLAVAWN RVDTIAQSELF 240
 RGDIQWRSFH LEASLMDALL NDRPEFVRL IGHLSLGHF LTPMRLAQLY SAAPSNSLIR 300
 NLDDQASHSA GTKAPALKGG AEELRPDVH HVRMLLLGKMW CAPRYPSGGW WDPHPGQGRG 360
 25 ESMYLLSDKA TSPSLSDAGL QGAQWSDLLL WALLLNRAQM AMYFWEMGSN AVSSALGACL 420
 LLRVMARLEP DABEAAKKD LAFKFGGMV DLFGECCYRSS EVRAARLLLR RCPLWGDATA 480
 LQLAMQADAR AFFAQDGQVS LLTQKWWGDM ASTPTPIWALV LAFFCPPLIY TRLITFRKSE 540
 EEPITREEEL DMDSVINGEG FVGTADEPAEK TPLGVPRQSG RPFCGGRCC GRRCLRRWFH 600
 FWGAPVTIFM GNVVSYLLFL LLFSRVLLVD FQPAPPGSLE LLLYFWAFTL LCEELRQGLS 660
 30 GGGGLASCG PGECHASLSQ RLRLYLAWSQ NQCDLVALTC FLLGVGCRLLT PGLYHLGRTV 720
 LCIDFMVFTV RLHIFTVNQ QLGPKVIVS KMMKDVFVFL FFLGVWLVAY GVATEGLLRP 780
 RDSDFPSILR RYFYRPLYQI FGQIPQEDMD VALMEHSNCN SEPFCWHPGAQACTCVSQ 840
 YANLWVLL VIFLLVAMFS LVNLLIAMFS YTFGKVQGNNS DLWYKQYR LIREFHSRPA 900
 LAPPPIVLISH LRLLRQLCR RPRSPQFSSP ALEHFRVYLS KEAERKLTLW ESVHKENFLL 960
 35 ARARDKRESD SERLERTSQK VDLALKQLGH IREYEQRQLKV LEREVQQCSR VLGWWT

SEQ ID NO:107 PEW3 DNA SEQUENCE

Nucleic Acid Accession #: NM_005982

Coding sequence: 276-1130 (underlined sequences correspond to start and stop codons)

40 1 11 21 31 41 51
 GGTAGCAGCA TCCACCGGGC GGGAGGTGG AGGCAGCAAG GCCTTAAAGG CTACTGAGTG 60
 CGCCGGCCGT TCCCTGTCCA GAACCTCCCC TACTCTTCC CGCTTCTTC CTTGGCCGCC 120
 CACCGCCAAG TTCCGACTCC GTTTTTCGCG TTTGCAAAGG CTAAGGAGGA GTTTAGGAAC 180
 AGCCGGCTGC CGCCCTCCGCG GGGCCGGCGC CCCTGCCCTCT CGGCTCTGCT CCCTGCCGCC 240
 TCGCCTGGG CGCTGCGGCC CGGCAGGGCG CAGCCATGTC GATGCTGCCG TCGTTGGCT 300
 TTAGCAGGA GCAAGTGGCG TCGGTGTCG AGGTTCTGCA GCAAGGCGGA AACCTGGAGC 360
 GCGTGGGAG GTTCTGGCG TCACTGTC ACCGGCAGCA CCTGCAACAG AACGAGAGCG 420
 TACTCAAGGC CAAGCGGTG GTCGCTCTCC ACCACCCCCA ACTGCAGCAA CTGTGGCTGA 480
 45 TCTCTGGAGAG CCACCAAGTTC TCGCCTCACA ACCACCCCCA ACTGCAGCAA CTGTGGCTGA 540
 AGGGCATTG CCGTGGAGGC GAGAAGCTGC CGGGCCGACCC CCGGGCCGCC GTGGGCAAAT 600
 ATCGGGTGC CGGAAATATTG CCACACTGCG GCACCATCTG GGACGGCGAG GAGACCACT 660
 ACTGCTTCAA GGAGAAGTGC AGGGGTGTC TCGGGAGTG GTACCGGCAC AATCCCTACC 720
 50 CATGCCCGC TGAGAACCGG GAGCTGGCG AGGCCACCGG CCTCACCAACC ACCCAGGTC 780
 GCAACTGTTT TAAGAACCGG AGGCCAAGAG ACCGGCCCGC GGAGGCCAAG GAAAGGGAGA 840
 ACACCGAAAAA CAATAACTCC TCCCTCAACA ACCAGAACCA ACTCTCTCTT CTGGAAGGG 900
 GCAAGCCGCT CATGTCAGC TCAGAACAGG AATTCTCACCC TCCCCAAAGT CCAGACCAAGA 960
 ACTCGGTCTC TCTGCTGCG GCAAAATATGC GCGCACCCAG GAGCTCAACAT TATCTCTCC 1020
 CGGGCTTAAAC CGGCCCCCTC ACCCTCCAGTC TGGTGGACTT GGGGCTTAA GTGGGGAGGG 1080
 60 ACTCTCTGCT CGGCCCCCTC ACCCTCCAGTC TGGTGGACTT GGGGCTTAA GTGGGGAGGG 1140
 ACTGGGGCCT CGAAGGATT CCTGGAGCG CAACCACTGC AGCGACTAGG GACACTTGTAA 1200
 AATAGAAATC AGGAACATTG TTGCTGGAGT TTCTCTGGAGT TGTTCTGCGA TAAAGGAATG 1260
 GTGGACTTTT ACAAAATATCT TTCTCTGGAGT CAAACCAAC AGCGATCTCA AGCTTAATCT 1320
 65 CTCCTCTCT CCAACTCTT CCACCTTGC ATTTCTCTC CCAATGCGA GATCAGGG

SEQ ID NO:108 PEW3 Protein sequence

Protein Accession #: NP_005973

70 1 11 21 31 41 51
 MSMLPSFGFT QEQVACVCEV LQQGNLRLR GRFLWSLPAC DHLHKNESVL KAKAVVAFHR 60
 GNFRELYKIL ESHQFSPHNH PKLQLWLKA HYVEAEKLRG RPLGAVGKYR VRRKFPLPRT 120
 IWDEGETSYC FKEKSRSVLR EYWAHNPYPS PREKRELAEA TGLTTTQVSN WFKNRQRDR 180
 75 AAEAKERENT ENNNSSSNKQ NQLSPLEGKGK PLMSSEEEFP SPQQSPDQNS VLLLQGNMHH 240
 ARSSNNSLPG LTASQPSHGL QTHQHQLQDS LLGPLTSSLV DLGS

SEQ ID NO:109 PFJ8 DNA SEQUENCE

Nucleic Acid Accession #: NM_005069

Coding sequence: 57-2060 (underlined sequences correspond to start and stop codons)

1 11 21 31 41 51
 | | | | |
 GGGGCTCCGC GGGCCTGGAG CACGGCCGGG TCTAATATGC CCGGAGCCGA GGCAGCATGA 60
 AGGAGAACGT CAAGAACATGCG GCCAAGACCA GGAGGGAGAA GGAAAATGGC GAGTTTACG 120
 5 AGCTTGCAA GCTGCTCCG CTGCGCTGG CCATCACTC GCAGCTGGAC AAAGCGTCCA 180
 TCATCCGCCCT CACCAACGAGC TACCTGAAGA TGCGCGCCGT CTTCGGGAA GGTTTACGAG 240
 ACGCGTGGGG ACAGCGAGC CGCGCCGGG CCCTGGACGG CGTCGCCAAG GAGCTGGGAT 300
 CGCACTTGCT GCAGACTTGT GATGGATTG TTGTTGTTG AGCATCTGAT GGAAATCA 360
 10 TGATATATC CGAGACCCT TCTGTCATT TAGGTTATC CCAGGTGGAG CTCACGGGCA 420
 ACAGTATTTA TGAATACATC CATCCTCTG ACCACGATGA GATGACCGCT GTCCCTCACGG 480
 CCCACAGCC GCTGCAACAC CACCTGCTCC AAGAGTATGA GATAGAGAGG TCGTCTTC 540
 TTCGAATGAA ATGTGCTTG GCGAAAAGGA ACGCGGGCCT GACCTGCAGC GGATACAAGG 600
 15 TCATCCACTG CAGTGGCTAC TTGAAGATCA GGCAGTATAT GCTGGACATG TCCCCTGTACG 660
 ACTCTGCTA CCAGATGTG GGGCTGGTGG CGCTGGGCCA GTCGCTGCCA CCCAGTGCCA 720
 TCACCGAGAT CAAGCTGTAC AGTAACATG TCTGTTCTG GGCCAGCCTT GACCTGAAGC 780
 TGATATTCTT GGATTCAGG GTGACCGAGG TGACGGGTTA CGAGCCGAG GACCTGATCG 840
 AGAAGACCTT ATACATCATC GTGACCGCTT GCGACGTGTT CCACCTCCGC TACGCACACC 900
 20 ACCTCTGTT GTGTAAGGGC CAGGTACCA CCAAGTACTA CGGCTGCTG TCCAAGCGGG 960
 GCGGCTGGGT GTGGGTGCGAG AGCTACGCCA CGCTGGTGCAC AACAGCCGC TCGTCCCGGC 1020
 CCCACTGCTA CGTAGTGTG AATTATGTCAC TCAAGGGAGAT TGAATACAAG GAACCTTACG 1080
 TGTCTCTGGA GCAGGGTGTCTG ACTGCCAAGT CCCAGGACTC CTGGAGGACC GCCTTGTCTA 1140
 CCTCACAAGA AACTAGGAAA TTAGTGAAGAC CCAAAATAC CAAGATGAAG ACAAAAGCTGA 1200
 GAACAAACCC TTACCCCCCA CAGCAATACA GCTGTTCCA AATGGACAAA CTGAATGCG 1260
 25 GCGCAGCTGGG AAATGGAGA GCGAGTCCCC CTGCAAGCGG TGCTGCTCTT CCAGAAACTGC 1320
 AGCCCCACTC AGAAAGCAGT GACCTCTGAT ACACGCCATC TCAAGCTGTG CCCTTCTCT 1380
 ACCATTAACGG ACACTTCCCT CTGGACTCTC ACGTCTCTG CAGCAAAAG CCAATGTGTC 1440
 CGGCGAAGTT CGGGCAGCCC CAAGGATCCC CTGAGGAGGT GGCAAGCTTT TTCCCTGAGCA 1500
 CACTGCGAGC CAGCGGTGAA ATTATGCCAA CCCCTAGTG CCTAGCAGCT 1560
 CGTCTCCAGC TAAAAATCTT CCAGAGGCCA CGGGCAACAC TGCTAGGCAC AGCTGGTGC 1620
 30 CAAGCTACGA AGCGCCCGCC GCGCCGTGC CGAGGTTGG CGAGGACACC GCGCCCCCGA 1680
 GCTTCTCGAG CTGGCCGAC TACCGCGAGG TGGCCCGCGT GGGCCCGGCC AAAGCCGCC 1740
 GCGAGGCCG CGGGGAGCGG GCGCGCTGG CGCTGGCCG CGCGGCACCC GAGTGCTGCG 1800
 CGCCCCCGAC CCCCGAGGCC CGGGCGCGC CGCGCAGCT GCCTCTGCTG CTGCTCAACT 1860
 ACCACCGCGT GCTGGCCCGG CGCGGACCGC TGGGGGGCGC CGCACCCGCC GCCTCCGGCC 1920
 TGGCTGCGC CCCCGGGCGG CGACCGGGCG CCGACGGCGC GCTGGGGCTC CGGCACCCCGA 1980
 GCCCCCGCC CACCTCCCGG CGGGCGCGC CCCTGCCCA CTACCTGGGC GCCTCGGTCA 2040
 TCATCACCAA CGGGAGGTGA CGGCGTGCC GCGCCGCCA GGAGCTGGA CCCGGCTCC 2100
 CGGGGCTCGC CGGGGACCGG TGCGCACAGC CTACATTAAT TTATGCGAGAG 2160
 35 ACAGCTGTT GAATGGACCC CGGCGCCGA CTGCGGATT TCCACCCGGG AGGCCCCGG 2220
 CGCCGGTGC GAGGGCCGAG GAGGCCCGG GTCCGGGCAG GTGACCGCCC GCCTCTGTCC 2280
 TGCAGGGGGC GGTGCGACAGTGGCTGGG GGCTTGTTT CCTCACCTTG AAATCGGGCT 2340
 TCACCGCTCT TGCTCTGTC CCAACAGTCC ACAACAGTCC CGCTGGGGGA TTGAAGCGGT 2400
 TTCACTCCG AAATATCCTC CACTTCAAGG AGGGAAAACC CACCCCTACCA CAGTCCGCTC 2460
 TICCAAGTGG ACGGCAGACCC TGGGAGGGGA CGCTGTGTC ACGAACCCCTT TTAGATGCTT 2520
 AGGTGAAGGC AGAATGTAGT ATTGTAAAGC CCATGAATAC ACAATCCAC TGTCTTTAAA 2580
 AGTCATCAA GAGTCTCATT ATTTCAGTTT TTATTAACCC TTTCCTCAA TACAAAAGC 2640
 CAACAAACCA AGACTAAGGG GGTGACCATG CAATTCCATT TTGTTGCTGT GAACATAGGT 2700
 GTGCTTCCCA AATACATTAA CAAGCTCTA CCTTCCCCCTA ACCCTATGA ACTCTTGATA 2760
 40 ACACCAAGAG TAGCACCTTC AGAATATATT GAATAGGCAT TAAATGCAA AATATATATG 2820
 TAGCCAGACA GTTTATGAGA ATGACCCCTG CAAGCTCTAT TATTACCTGG CAAAATCCCT 2880
 CTGGCCACCA CAGATCTGTA ATTCACTAGG CTCTGTTTG CTACAAATAG TGCTAATAAA 2940
 GTAAATTGCAACGCTGTA ATTCAACTGGTACGAA CGGAACACTG TCAATGGACT GCACCTTGTA AAGGAAAAAC 3000
 ATGCTTAAGG GGGTGTAAATG AAAATGATGT AGACATTCTT AGCATTCTT ACACAGCGAG 3060
 45 AAAACTTCGT AAGAACATGT TACGTGTGCA ACAGGTAAC ACAGAACCTT TCATAAAGCA 3120
 CGAGCAGTGT TTAAAAATG AGCTTCCATT AATTTTACT TTATGTTGGT TTGCTTAAAG 3180
 GATCTCAACA TGAAAATTCGCTGCTGACTGC ACAATGCTT GAACCCCGT 3240
 CCTTCAATTCTTCTTCACACT ATCAACACTG CAGCATTTTG CTGCTTATC AAAATGGTT 3300
 ATTTAGGAA ACTTTCTGAA CCTTCTGAA TGAAAGAGG TTTCACACAA TGTTTAAAC 3360
 50 TCATCGTTT AAAATCAAGT GCACCTACAC CAACTCTGCT CAAATGTA ACTGACTTTT 3420
 TTTTTTTT TTGCTCAAC CCTGTGTAC TTAGTGGAGA CCTGACACAA TCCCTACAGG 3480
 GTGCTGTCA GTGGGCTCA TGGTAAGAGT CACAATTGCA AAATTAGGA CGTGGGTCA 3540
 TGCAAGCAAG GGGCTGGATG TGAGGAAGGG ATGTGCCGC CTCTCCACGG ACTCAGCTAT 3600
 ACCTCATICA CAGCTCTTG TGAGTGTGTC CACAGGAAT AAGCCGAGGG TATTATTTT 3660
 TTATGTTCAT GAGTCTTGTAA ATTAAACCGT GATCTGAA AGGTGTAGGT TTGATTACTA 3720
 55 GGAGATACCA CGGACATTT TCAATAAAAGT ACTGCAAAT GCTTTGTGT CTACCTGTT 3780
 ATTAACCTTT GGGGCTGTAT TTAGAAAAAA TAAATCAAGG CTATCGGAGC AGTTCAATAA 3840
 CAAAGGTTAC TGTGAGAAA AAAGACCCCTA TCATAGATT ACAAG
 60 SEQ ID NO:110 PFJ8 Protein sequence:
 Protein Accession #: NP_005060.1

1 11 21 31 41 51
 | | | | |
 MKEKSKNAAK TRREKENGEF YELAKLLPLP SAITSQLDKA SIIRLTTSYL KMRAVFPEGL 60
 GDAWGQPSRA GPLDGVAKEL GSHLQLTDG FVVFVSDGK IMYISETASV HLGLSQVELT 120
 GNSIYEIHP SDHDEMIAVL TAHQPLHHHL LQEYEIEERSF FLMKCVLAK RNAGLTCSGY 180
 KVIHCSGYLK IRQYMLDMSL YDSCYQIVGL VAVGQSLPPS AITEIKLYSN MFMFRASLDL 240

KLIFLDLSRVT EVTGYEPQDL IEKTLYHHHV GCDVFHLRYA HHLLLKGQV TTKYYRLLSK 300
 RGGWVVQSY ATVVBNSRSS RPHCIVSVNY VLTEIEYKEL QLSLEQVSTA KSQDSWRTAL 360
 STSQETRKLV KPKNTKMKTK LRTNPYPPQQ YSSFQMDKLE CGQLGNWRAS PPASAAAPPE 420
 5 LQPHSESSLN LYTPSYSLPF SYHYGHPLD SHVFSKKPM LPAKFGQPQG SPCEVARFFL 480
 STLPASGECQ WHYANPLVPS SSSPAKNPPE PPANTARHSL VPSYEAPAAA VRRFGEDTAP 540
 PSFPSCGHYR EEPALGPAKA ARQAARDGAR LALARAAPC CAPPTPEAPG APAQLPFL 600
 NYHRVLARRG PLGGAAPAAS GLACAPGGPE AATGALRLRH PSPAATSPPG APLPHYLGS 660
 VIITNGR

10

SEQ ID NO:111 PFJ7 DNA SEQUENCE

Nucleic Acid Accession #: NM_006549

Coding sequence: 1-1254 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51
ATGAAACGGAC	GCTGCATCTG	CCCGTCCCTG	CCCTACTCAC	CCGTCACTTC	CCCGCAGTCC
20	TCGCTCGGC	TGCCCGGGC	GCGACAGTG	GAGTCTCAC	ACGTCCTCAT
CAGGACTGTGAA	TCAGTATAACC	CTGAAGGATG	AAATTGGAAA	GGGCTCTTAT	120
GGTGTGTC	CAATTGGCTTA	CAATGAAA	GACAATACCT	ATATGCAAT	GAAGGGTGTG
TCCAAAAGA	AGCTGATCCG	GCAGGCCGC	TTTCCACGTC	GCCCTCCACC	300
CGGGCAGCTC	CTGGAGGCTG	CATCCAGCCC	AGGGGCCCCA	TTGAGCAGGT	360
25	ATGCCATCT	TCAAGAACGG	AATGTGGTA	AGCTGGTGA	GGTCTGGAT
GACCCAATG	AGGACCATCT	GTACATGGTG	TTGAACTGG	TCAACCAAGG	420
GAAGTGCCCA	CCCTCAAAC	ACTCTCTGAA	GACCAGGCC	TTTCTACTT	180
30	ATCAAAGGCA	TCGAGTACTT	ACATACCG	AAAGATCATCC	ACCGTGACAT
AACTCTTGG	TGGGAGAAGA	TGGGACATC	AAAGATGCTG	ACTTTGGTGT	600
35	TTCAAGGGCA	GTGACGCGCT	CCTCTAAC	ACCGTGGCA	CGCCGCCCTT
GAAGTCGCTCT	CTGAGACCCG	CAAGATCTTC	TCTGGAAAGG	CTTTGGATGT	720
40	GGTGTGACAC	TATACTGCTT	TGTCTTGGC	CAGTGGCCAT	TGATGGACGA
45	TGTTTACACA	GTAAGATCAA	GAGTCAGGCC	CTGGAATTTC	900
GAGGAAGTGA	AGGAAGCTGAT	CACCGTAGT	CTGGACAAAGA	ACCCCGAGTC	960
50	GTGCGGAAA	TCAAGCTGCA	GGGGAGGCTG	ACGAGGATG	GGGGAGGAGCC
AAAA	GTATGGATTT	GCCTATTCTG	GACGTTCTG	ATAAATGGCG	1020
55	GTAGGATGAGA	ACTGACGCTG	GGTCGAAGTG	ACTGAAGAGG	AGGTCGAGAA
CACATTCCA	GCTTGGCAAC	CGTGATCTG	GTGAAGACCA	TGATACGTA	1080
GGGAACCCAT	CTGAGGGCAG	CCGGCGGAG	GAACGCTCAC	TGTCAAGGCC	1140
60	CTCACAAAAA	AACCAACCG	GGAAATGTGAG	TCCCCTGTCG	AGCTCAAGAC
65	AGTCCCTTC	CTGCTGTG	CAAAGTAACG	TAAGAGTCC	CTCACCCAG
70	CGTTCTGTG	GTCAAGCCAC	TTCCCTTCATA	CACATAGCA	1200
75	CCCAGGACAG	ATGAGGCTT	TGTCCTTAT	GAGAGTGGGA	GAACCTGGTG
80	GTGCAGGTG	TGTGGTGGGT	GGGGACCCCA	CTGCTTTC	GGCACCCCTG
85	CTCTACTTG	TGGGAGTTTC	ATTCAGTCAC	TTCTGTTCT	1440
90	CTCTACTTG	TGGGAGTTTC	ATTCAGTCAC	TTCTGTTCT	1500
95	TACAATTCAC	ATACATCTGTA	ATTCACCCAC	GGGAAGTGT	TTACTGAGT
100	ESLSETRKIF	SGKALDWVAM	GVTLYCFVG	QCFFPMDERIM	GTTTCTATA
105	EDLKDLTRM	LDPNPESRIV	VEPIKLHPWV	TRHGAELPS	1620
110	HIPSLATVIL	VKTMIRKRSF	GNPFEGRRE	ERSLSAPGNL	EDENCTLVEV
115	75	75	75	75	75
120	LTKKPTRECE	SLSELKT	AAAA	CTCAGTCAAA	1680
125	GTATGGATTT	GCCTATTCTG	GACGTTCTG	ATAAATGGCG	1740
130	GTATGGATTT	GCCTATTCTG	GACGTTCTG	ATAAATGGCG	1800

SEQ ID NO:112 PFJ7 Protein sequence:

Protein Accession #: NP_006540.1

1	11	21	31	41	51
MNGRICIPSL	PYSPVSSPQS	SPLRPLRRPTV	EHHVSIJGM	QDCVQLNQYT	LKDEIGKGSY
60	GVVKLAYNEN	DNTYYAMKVL	SKKKLIRQAG	FPRRPPRPTG	RPAAGCICQPRGPIEQVYQE
65	IAILKKLDHP	NVVKLVEVLD	DPNEDHLYMV	FELVNQGPVM	EVPTLKPSE DQARFYFQDL
70	IKGIEYLHYQ	KIIHRDIKPS	NLLVGEDGHI	KIADFGVSNE	FKGSDALLSN TVGTPAFMAP
75	ESLSETRKIF	SGKALDWVAM	GVTLYCFVG	QCFFPMDERIM	CLHSKIKSQA LEFPDQPDIA
80	EDLKDLTRM	LDPNPESRIV	VEPIKLHPWV	TRHGAELPS	EDENCTLVEV
85	HIPSLATVIL	VKTMIRKRSF	GNPFEGRRE	ERSLSAPGNL	TEEEVENSVK
90	75	75	75	75	75
95	LTKKPTRECE	SLSELKT	AAAA	CTCAGTCAAA	1680
100	GTATGGATTT	GCCTATTCTG	GACGTTCTG	ATAAATGGCG	1740
105	GTATGGATTT	GCCTATTCTG	GACGTTCTG	ATAAATGGCG	1800

SEQ ID NO:113 PFJ6 DNA SEQUENCE

Nucleic Acid Accession #: NM_021810

Coding sequence: 1-429 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51
ATGAAACCTC	TGATATGGAC	ATGGTCAGAT	GTTGAAGGCC	AGAGGCCGGC	TCTGCTCATC
75	TGCACAGCTG	CAGCAGGGACC	CACCGAGGGA	GTTAAGGGTT	ATGGCAAGCC
80	AGAAAGTGTG	AAAACATACA	CTCTACTCCT	GCTTACCCAG	ATGCCACAA
85	CTCCGGCTC	CGGTGGAAGG	AAGGATGGCA	GAGACATGTA	GCACAGACAA
90	AATGTGCTG	AAGATGACCC	CGGCTACCTA	CCTCACGCT	240
95	GGAGGGGCC	CATCCCTCAG	CTCTCTGCC	AGCTTGAAC	300
100	GGAGGGGCC	AGGAGTTGCA	ACCTGATTGCA	ACCTGATTGCA	360

CTGGACTCTT TGGGTTCAAA AGCGACTCCG TTGAGGAAA TATATTAGA GTCAGGTGTT 420
CCTTCCCTAA

5 SEQ ID NO:114 PFJ6 Protein sequence:
Protein Accession #: NP_068582.1

1 11 21 31 41 51
10 MKPLIWTWS D VEGQR PALL I C TAAAGPTQG VKGYGKPFP RSVKNIHSTP AYPDATMHRQ 60
LLAPVEGRMA E TLNQKLHVA NVLEDDPGYL PHVYSEE GEC GGAPS LSSLA SLEQELQPD L 120
LDLSLGSKATP FEEIYSES GVG PS

SEQ ID NO:115 PE:15 DNA SEQUENCE

Nucleic Acid Accession #: NM_006361
Coding sequence: 131-985 (underlined sequences correspond to start and stop codons)

SEQ ID NO:116 PFJ5 Protein sequence:
Protein Accession #: NP_006352.1

50 1 11 21 31 41 51
 MEPGNYATLD GAKDIEGLLG AGGGRNLVAH SPLTSHPAAP TLMPA VNYAP LDLPGSAEPP 60
 KQCHPCGPVQ QTSPAPV PVY GFYGGGYYS C RVSRSLLKPC AQAATLAAYP AETPTAGEEY 120
 55 PSRTEFAFY PGYPGTYHAM ASYLDTSVSVQ TLGAPGEPR DSLLPVDSYQ SWALAGGWNS 180
 QMCCQEQNPQ CPFWKAFAA DSSGQHPDA CAFRRGRKKA IPYSKGQLRE LEREYAAKNF 240
 ITDKRKRRKIS AATLSERQI TIWFQNRVVE EKKVLAKVKN SATP

SEQ ID NO:117 PFJ4 DNA SEQUENCE
Nucleic Acid Accession #: NM_005628
Coding sequence: 591-2216 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
65	GTAACCGCTA	CTCCCCGGACA	CCAGACCACC	GCCTTCCGTA	CACAGGGGCC	CGCATCCAC	60
	CCTCCCGGAC	CTAACAGGCT	GGGTCCCTG	TTCGCGGAGG	TCCGCTTCCC	GGCCCCAGA	120
	TTCAGGCATC	CCAGCCCTCA	GTGTCGAAGA	CCCAGGCAGC	CCGGGTCCCC	GCCTCCCGGA	180
	TCCAGCGTC	CGGGATCTGC	GCCACCCAGAA	CCTAGCCCTC	TGCAGACCTC	CGCCATCTGG	240
70	GGGACTCAA	CCTCTGGGAC	CCAAGGGGCC	CACGTCCTAC	CCAGAACAAAC	TCTCGTATTIC	300
	CCAGCTCTCA	GGGCAAGGA	ACCCGGGCGC	TCCGAACTCTC	CAGCTTTGGC	ACATCTGGCA	360
	CACGGGGCAG	AGCAGAGAAAG	CTCAGCGCCC	AGCCTGGGAA	ATTTAACAC	TCCAGCTTCC	420
	AAGAGCCAAAG	GAACCTCACTG	GCTGTGAACAT	CACAACCTCA	AGGAGCCCTC	CAAAGTTCCA	480
	GTCCTCAGGT	GCTGTTACTC	AACCTAGTCC	TAGGAACGTC	GGGTCTTGGG	AAGGAGGCCA	540
75	AGCGCTCCCA	GGCAGCTTCC	AGGCGCTAACG	AAACCCCGGT	GTCCTCCAT	ATGGTGGCGG	600
	ATCCTCTCTG	AGACTCCAAG	GGGCTCGCAG	CGCGGGAGCC	CACCGCCAAC	GGGGGCTGG	660
	CGCTGGCCCTC	CATCGAGGAC	CAAGGCGCG	CAGCAGGGCG	CTACTGCGGT	TCCCGGGAC	720
	AGGTGGCCCG	CTGCTCTCGA	GCCAACTCTC	TTCGCTGCT	GACATGGTG	GCGCTGGTGG	780
	CCGGCGTGGC	GCTGGGACTG	GGGGTGTCCG	GGGGGGGGGG	TGCGCTTGGC	TTGGGCCCCG	840

AGCGCTTGAG CGCCTTCGTC TTCCCGGCCG AGCTGCTGCT GCGTCTGCTG CGGATGATCA 900
 TCTTGCGCT GGTGGTGTGC AGCTTGATCG GCGGCGCCG CAGCCTGGAC CCCGGCGCGC 960
 TCGGCGCTCT GGGCGCTCG CCGCTGCTCT TTTTCCCTGGT CACCAAGCTG CTGGCGCTGG 1020
 CGCTCGGAGT GGGCTTGGCG CTGGCTCTGC AGCGGGCGC CGCCTCCGCC GCCATCAACG 1080
 CCTCCGTTGG AGCGCGGGC AGTGGCGAAAT ATGCCCGAG CAAGGAGGTG CTGAGTCAGC 1140
 TCTTGGATCT TGCGAGAAAT ATCTTCCCTT CCAACCTGGT GTCAAGCAGCC TTTCGCTCAT 1200
 ACTCTACAC CTATGAAGAG AGGAATATCA CGGAAACCG AGGTGAAGGTG CCCGTGGGGC 1260
 AGGAGGTGGA GGGGATGAAC ATCCCTGGCT TGTTAGTGTG TGCCATCGTC TTGGTGTGG 1320
 CGCTCGGGAA GCTGGGGCCT GAAGGGGAGC TGCTTATCCG CTTCCTCAAC TCCTTCAATG 1380
 AGGGCCACATT GTTGTCTGGCT TCTGGTACCGC TTGTTGACCCG ATCATGTTCC 1440
 TGTTGGCTGG CAAGATCTG GAGATGGAGG ATGTGGGTT ACTCTTGC CGCCTTGGCA 1500
 AGTACATCT GTGCTGCTG CTGGGTACAG CCATCCATGG GCTCTGGTA CTGCCCTCA 1560
 TCTACTCTCCTT CTCACCCGGC AAAAACCCCT ACCGCTTCCT GTGGGGCAGTC GTGACGCCGC 1620
 TGGCCATCGC CTTGGGACCT TCTTCCAGGT CGGCCACGGCT GCGGCTGATG ATGAAGTGGC 1680
 TGAGGAGAAATAATGGCTG GCCAACACA TCAGCCGTT CATCTGCCCG ATCGCGCCA 1740
 CGCTCAACAT GGACGGTGGC CGCCTTCTC AGTGCCTGGC CGCAGTGTTC ATTGCACAGC 1800
 TCAGCGAGCA GTCTTGGAC TTGCTAAAGA TCATCACCAT CTCGGTCACG GCCACAGCGT 1860
 CCAGCGTGGG GGCAGCGGGC ATCCCTGCTG GAGGTGTCT CACTCTGGCC ATCATCCTCG 1920
 AACAGCTCAA CCTCCCGGTG GACCATACT CCTTGATCTC GGCTGTGGAC TGGCTAGTCG 1980
 ACCGGTCTCTG TACCGTCTC AATGTAGAAAG GTGACGCTCT GGGGGCAGGA CTCTTCAAA 2040
 ATTATGTGGA CGTACCGGG AGTACGGAGA CAGAGCTGA GTTGTACAA GTGAAGAGTG 2100
 AGCTGGCCCT GGATCCCGCTG CCAGCTCCCCA CTGAGGAAGG AAACCCCCTC CTAAACACT 2160
 ATCGGGGGCC CGCAGGGGAT GCCACGGTGC CCTCTGAGAA GGAATCAGTC ATGTAACCC 2220
 CGGGAGGGAC CTTCCTGGAC TTGCTGGGG TGCTCTTGG ACACTGGATT ATGAGGAATG 2280
 GATAAATGGA TGAGCTAGGG CTCTGGGGT CTGCTGTCAC ACTCTGGGGC CGCAGGGGCC 2340
 CCAGCACCCCT CGAGGACAGG AGATCTGGGA TGCTGGCTG CTGGAGTACA TGTGTTACA 2400
 AGGGTTACTCTCCTCCTCA CTACATGTCCTCA CTCATGTCCTG CCCACCCGTG ACCTGGCTGG CCTCCCTGT 2520
 CTCAGGGAGC AGGTACAGG TCACCATGGG GAATCTAGC CCCCACTGGG GGGATGTTAC 2580
 AACACCATCGC TGTTTATTTT GGCGGCTGTA GTTGTGGGGG GATGTGTGTG TGCACTGTG 2640
 TGTGTGTG TGTTGTG TGCTGTG TGCTGTGACC TCTGTCCCC ATGGTACGTC 2700
 CCACCCCTGTC CCCAGATCCC CTATCCCTCA CACAATAACA GAAACACTCC CAGGGACTCT 2760
 GGGGAGAGGC TGAGGACAAA TACCTGCTGT CACTCCAGAG GACATTTTTT TTAGCAATAA 2820
 AATTGAGTGT CAACTATTTA AAAAAAAA AAAAAAA

SEQ ID NO:118 PF4 Protein sequence:

Protein Accession #: NP_005619.1

40	1	11	21	31	41	51			
45									
50	MVADPPRDSK	GLAAEAEP	TAN	GGLALASIED	QGAAAGGYCG	SRDQVRRLCR	ANLLVLLTVV	60	
55	AVVAGVALGL	GVSGAGGALA	LGP	ERLSAFV	FPGELLRLL	RMI	PLVVC	SLIGGAASLD	120
60	PGALGRLGAW	ALLFLVITL	LASALGVLA	LALQPGAA	SAINASVGAAG	SAENAPSKEV	180		
65	LDSFLDLARN	IIPSNLVSAA	FRSYSTTYEE	RNITGTRVKV	PVGQEVEGMN	ILGLVVFAIV	240		
70	FGVALRKLPGE	EGELLIRFPN	SFNEATMLV	SWIMWYAPVG	IMFLVAGKIV	EMEDVGLLFA	300		
75	RLGKYILCCL	LGHAIHGLV	LPIYFLTR	KNPYRFLWGI	VTPLATAFGT	SSSSATLPLM	360		
80	MKCVEEENNNGV	AKHISRFILP	IGATVNMDGA	ALFQCVAAVF	IAQLSQQLSD	FVKIIILVT	420		
85	ATASSVGAAG	IPAGGVLTIA	IILEAVNLPV	DHISLILAVD	WLVDRSCTVL	NVEGDALGAG	480		
90	LLQNYVDRTE	SRSTEPELIQ	VKSELPLDPL	PVPTEEGNPL	LKHRYRGAGD	ATVASEKESV	540		
95	M								

SEQ ID NO:119 PFJ3 DNA SEQUENCE

Nucleic Acid Accession #: NM_006708

Coding sequence: 88-642

(underlined sequences correspond to start and stop codons)

55	1	11	21	31	41	51	
60	CTAGTTAAGG	CGGCACAGGG	CGGAGCGTGA	GTGTGGGTGA	CTCCTCCGTT	CTTGGGTCC	60
65	CGTCGTCGTG	GATACTGCG	TTCAGCCATG	GCAGAACCGC	AGCCCCCGTC	CGGGGGCCTC	120
70	ACGGACGAGG	CCGCCCTCAG	TTGCTGCTC	GACCCGGACC	CCAGTACCAA	GGATTTCTA	180
75	TTCAGCAGA	CCATGCTACG	AGTGAAGGAT	CCTAAGAAGT	CACTGGATT	TTTACTAGA	240
80	GTCTTGGCTA	TGACCGTAA	CCAAAAATGT	GATTTCCCA	TTATGAAGTT	TTCACTCTAC	300
85	TTCCTTGGCTT	ATGAGGATAA	AAATGACATC	CCTAAAGAAA	AAAGTAGAAAA	AAATAGCCTGG	360
90	GGGGCTCTCA	AAAAAGCTAC	ACTTGAGCTG	ACACACAAATT	GGGGACTGA	AGATGATGCG	420
95	ACCCAGAGTT	ACCACAAATGG	CAATTCAGAC	CCTCGAGGAT	TCGGTCATAT	TGGAATTGCT	480
100	GTTCCTGTATG	TATACAGTC	TTGTAAGAAGG	TTTGAAGAAG	TGGGAGTC	ATTGGTGAAG	540
105	AAACCTGATG	ATGGTAAAAT	GAAAGGCGTC	GCATTATTTC	AAGATCCTGA	TGGCTACTGG	600
110	ATTGAATTG	TGAATCTAA	CAAAATGGCA	ACCTTAATGT	AGTGCCTGTA	GAATTCTCCT	660
115	TTGAGATTTC	AGAAGAAAGG	AAACAAATGT	ATTCAAGATA	TITACATACC	AGAAGCATCT	720
120	AGGACTGATG	GATCACTGTC	CCGATTCAAA	TTATTCTTCA	GTCCATTCTC	CCTTCTCTATT	780
125	TCAGCTGTTC	CTTTTACACT	AACTGTTCA	TCATCTCTG	TTTCAAGCAG	TGCTTTATCT	840
130	CATGTCCTTG	AAATATAGTTG	TGTAACCTT	TTTTTAAAGT	ATAAATTAGA	ACAGTCCCT	900
135	TCAGAGGCTG	CATTGCTCTT	CTTCGCAAC	CTAAATATTA	CTTCCCTCA	AATCTGCTT	960
140	TGAATCATCA	TTTTAAAAAA	AAAATTAACA	TGTTTGTG	GTAGTTATCT	TCTGGGGTTT	1020
145	CAATCCCTCA	GAACAACTT	TTTCACAC	GGAAAGGAAA	GAACACTAGT	GTTCCTTCAG	1080
150	TAAGTACAA	AGTGTATT	TTACAAAAGA	GTAGGTACTC	TGAGAGC	TTCAATCAT	1140

GCTGACAAGG ATACTGATAG AAAAAGTGAT TCTCTTAT TATAAAGTAC ATTTAAAGTT 1200
 CAAGGACTAA CCTTATTAT TTGGGAAAGG GGAGGAGGAA GGAAATGATA TGTCACCCAG 1260
 5 ACACTGGGCT AGGCTGACAC TTATCTCAT TTAATACTCC CAGCTGTAT GTGAGAAGA 1320
 AAGCAGGCTA GGCATGTGAA ATCACTTCA TGATTATTA ATGGATTAA GAGGGCATCA 1380
 ATCACGCTAA CTCAGATT CATAATCATT TTAGTATT AGATTGTGCC TCAAATGTT 1440
 AGTACCTCAC AATAACCTCA CTGGTTCT GTTGTAAGGGG CTTCACTGA GTTGACCAT 1500
 TGTGCTTG GCTCTGGC TGAGTACCG TGTTGAGGGG GTAAACACTA GAAGTCTTTA 1560
 GTACAAAATC GCTCTAGGGCA CACCTGGTGA TTCCACACA AGTGTGTTT ATATTCTCA 1620
 10 TAAAGAGTCT TCCCTATCCC AAGGTCTCA TGATGCCAGT AGCCATATAT GATAAATTAT 1680
 GTTCAGTGTG AACTTAGTTA CGAAAGATCA GTCAGTGGT CTTCGCCCCGAT ATGATTCA 1740
 TTGATGAGT TTAAATTAAT CAAAGTGTGTTGAAATCT CTAATGGCTC AGAAAATAAA 1800
 AACATCCAGT TTGTTGATGA CTATATTAG ATTCTCTAG ACTCTAGTGG AAGACCTTG 1860
 GAAAGGCCAT GCCAACCGTG CTTGACTG TAGAAGCACT TTATGTTCC TTTTGGGTG 1920
 15 AAATGGATT ATGTGAGTGC TTAAACAAA TAGCAACTA TATAGACTGA AATAAAATGA 1980
 AACTTCAAT AAG

SEQ ID NO:120 PFJ3 Protein sequence:

Protein Accession #: NP_006699.1

1 11 21 31 41 51

MAEPQPPSGG LTDEAALSCC SDADPSTKDF LLQQTMLRVK DPKKSLSDFYT RVLGMTLIQK 60
 20 CDFPIMKFL YFLAYEDKND IPKEKDEKIA WALSRKATLE LTHNWGTEDD ATQSYHNGNS 120
 DPRGFHIGI AVPDVYSACK RFEELGVKFV KKPDDGKMKG LAFIQDPDGY WIEILNPNM 180
 ATLM

SEQ ID NO:121 PFJ2 DNA SEQUENCE
 Nucleic Acid Accession #: NM_002867
 Coding sequence: 70-729 (underlined sequences correspond to start and stop codons)

1 11 21 31 41 51

CCGACGCCAG GTCCCTGCCGT CCCGCCGACC GTCCGGGAGC GAACCCGTCG TCCCGCACTG 60
 30 GAGTCGGCGA TGGCTTCAGT GACAGATGGT AAACATGGAG TCAAAGATGC CTCTGACCAAG 120
 AATTTTACT ACATGTGTTATC ATTGGCAACA GCAGTGTGTTGG CAAGACCTCC 180
 TTCTCTTGC GCTATGCTGA TGACACGTTG ACCCCAGCTC TCGTTAGTCAC CGTGGGCATC 240
 40 GACTTCAAGG TGAAGACAGT CTACCGTCAC GAGAACGGGG TGAAACTGCA GATCTGGGAC 300
 ACAGCTGGG AGGAGGCGTA CCGGACCATC ACAACAGCCT ATTACCGTGG GGCCCATGGGC 360
 TTCACTCTGA TGTATGACAT CACCAATGAA GAGTCCTTCA ATGCTGTCCA AGACTGGCT 420
 ACTCAGATCA AGACCTACTC CTGGGACAAAT GCACAAAGTTA TTCTGGTGGG GAACAAGTGT 480
 GACATGGGAGG AAGAGAGGGT TTGTTCCCTGAGAAGGGGC AGCTCCTTGC AGAGCAGCTT 540
 45 GGGTTGATT TCTTGAAAG CAGTCAAAAG GAGAACATCA TGTAAGGCA GGCTTGTGAG 600
 CGCCTGGTGG ATGCCATTG TGACAAGATG TCTGATTCTGC TGACACAGA CCCCTCGATG 660
 CTGGGCTCTT CCAAGAACAC GCGTCCTCG GACACCCAC CGCTGCTGCA GCAGAACTGC 720
 TCATGCTAGC AAGGCCACC TTCCGTACCT CCCCTCATTT TGCCCCACAC CCAAGCTG 780
 50 CTCTCCCTG TTACACACTG TCCGCTCT

SEQ ID NO:122 PFJ2 Protein sequence:
 Protein Accession #: NP_002858.1

1 11 21 31 41 51

MASVTDGKHG VKDASDQNFD YMFKLIIIGN SSVGKTSFLRYADDFTPA FVSTVGIDFK 60
 VKTIVRHEKR VKLQIWDTAG QERYRTTAA YYRGAMGFIL MYDITNEESF NAVQDWATQI 120
 60 KTYSWDNAQV ILVGNKCDME EERVVPTKEQQLLAEQLGFD FFEASAKENI SVRQAFLRLV 180
 DAICDKMSDS LDTPSMLGS SKNTRLSDTP PLLQQNCSC

SEQ ID NO:123 PFJ1 DNA SEQUENCE
 Nucleic Acid Accession #: NM_001844
 Coding sequence: 158-4621 (underlined sequences correspond to start and stop codons)

1 11 21 31 41 51

ACGCAGAGCG CTGCTGGCTC CGCGGTCTC CTCTGCTCC AAGGGCCTCC 60
 70 TGCATGAGGG CGCGGTAGAG ACCCGGACCC GCGCGGTCTC CTCTGGCTT CGCTGCGCTC 120
 CGCCCGGGCC CGGCTCAGCC AGGCCCCGG TGAGGCCATG ATTGGCTCG GGGCTCCCA 180
 GTCGCTGGTG CTGCTGACCG TGCTCTGCG CGCTGTCCTT CGGTGTCAGG GCCAGGATGT 240
 CCAGGAGGCT GGCAGCTGTG TGCAAGGATGG GCAGAGGTAT AATGATAAGG ATGTGTGGAA 300
 GCCGGAGCCC TGCGGATGT GTGTCTGTA CACTGGACT GTCTCTGCG ACACATAAT 360
 CTGTGAAGAC GTGAAAGACT GCCTCAGCCC TGAGATCCCC TTGAGGAGAGT GCTGCCCCAT 420
 CTGCCCAACT GACCTCGCCA CTGCCAGTGG GCAACCAGGA CCAAAGGGAC AGAAAGGGAGA 480
 ACCTGGGAGAC ATCAAGGATA TTGAGGACCA AAAGGACCT CCTGGGCCTC AGGGACCTGC 540

AGGGGAACAA GGACCCAGAG GGGATCGTGG TGACAAAGGT GAAAAGGTG CCCCTGGACC 600
 TCGTGGCAGA GATGGAGAAC CTGGGACCCC TGAAATCCT GGCCCCCTG GTCTCCCGG 660
 CCCCCCTGGT CCCCCCTGGTC TTGGTGAAA CTTTGTGCC CAGATGGCTG GAGGATTGA 720
 5 TGAAAAGGCT GGTGGCGCCC AGTGGGAGT AATGCAAGGA CCAATGGGCC CCATGGGACC 780
 TCGAGGACCT CCAGGCCCTG CAGGTGCTCC TGGGGCTCAA GGATTCAAG GCAACTCTGG 840
 TGAACCTGGT GAACCTGGT TCTCTGGTCC CATGGGTCCC CGTGGTCTC CTGGTCCCC 900
 TGAAAGGCTT GGATGATGAGT GTGAAAGCTGG AAAACCTGGA AAAGCTGGTGA AAAGGGGTCC 960
 10 GCTTGTCCT CAGGGTGTCT GTGGTTCCC AGGAACCCA GGCCTCTG GTGTCAAAGG 1020
 TCACAGAGGT TATCCAGGCC TGAGCGGTG TAAGGGAGAG GCGGGTCTG CTGGTGTGAA 1080
 GGGTGAGAGT GTGTCCTGGG TGAGAGACGG ATCTCCGGC CCAATGGGTCTCCTGGCCT 1140
 15 GCTGGTGAAGAGGCTT GGCTGGTCTC TGCGGTGCTC TGCGGTGCTC TGCGGTGCTC 1200
 TCAGGCCAGGC CCCCAGGTG CTCCGGTCTC TGCGGTCTC TGCGGTGCTC TGCGGTCTC 1260
 TGTTGTCCT GGAGCCAAGG GTGAGCCGG CCCCACTGGT GCCCGTGGTC CTGAAGGTGC 1320
 TCAAGGTCTT CGGGTCTCGT CGGGTCTCGT GGCGCTCGT GTGCGCTCCGG 1380
 20 TAACCCCTGGA ACAGATGAAA TTCTGGAGC CAAAGATCTG GCTGGTCTG CTGGCATTG 1440
 TGGTGTCTCT GGCTTCCTGG GGCCACGGGG TCTCCTGGC CCTCAAGGTG CAACTGGTCC 1500
 TCTGGGCCGG AAAGGTGACA GGGTGAACCC TGTTATGGT GGCTTCAAGG TGAAACAAGG 1560
 25 AGGAAGAGA GGTGCGCGT GAGAGCTGG TGGCGTITGGG CCCATCGTC CCCCCTGGAGA 1620
 AAGAGGTGCTT CCGGAAACC CGCGTCTCC AGGTCAAGAT GGTCTGGCAG GTCCAAGGG 1740
 AGCCCTGGA GAGGAGGGC CCAGTGTCT TGCTGGCCCA AAGGGAGCCA ACGGTGACCC 1800
 TGGCCGCTCT GGAGAACCTG GCCTTCCTGG AGCCCGGGGT CTCACTGGCC GCCTGGTGA 1860
 TGCTGGTCTCT CAAGGCAAG TTGGCCCTTC TGAGGCCCT TGGAAGATG TGCTCTGG 1920
 ACCTCCAGGT CTCAGGGGG CGCTGGTGTG ATGGTTTCCC TGAGGCCCAA 1980
 30 AGGTGCAAC GGTGAGCTG GCAAAAGCTG TGAGAAGGGG TGCGCTGGT CTCTGGTCT 2040
 GAGGGTCTT CCTGGCAAAG ATGGTGAAGC AGGTGCTGCA GGACCCCTG GCCTGCTGG 2100
 ACCTGCTGTT GAACGAGGGC AGCAGGCTG TCCCTGGCCA TCTGGTTTCC AGGGACTTCC 2160
 TGGCCCTCTT GGTCAGGGGG TGAGAGGTGG AAAACCAAGGT GACCAGGGTG TTCCCGGTGA 2220
 AGCTGGAGCC CCTGGCTCTG TTGGTCCAGG GGGTGAACGA GGTTCCTCCAG GTGAACGTGG 2280
 CTCTCCGGT GCCCAGGGC TCCAGGGTCC CGTGGCCTC CCCGGCACTC CTGGCACTGA 2340
 TGTCCTGGAAAGG TGTCATG CGCCAGCAGG CCCCTGGC GCACAGGGCC CTCCAGGTCT 2400
 35 TCAAGGAAATG CCTGGCAGAGA GGGGAGCAGC TGTTATGCT GGGCCCAAAG GCGACAGGGG 2460
 TGACGTTGGT GAGAAAGGGCC CTGAGGGAGC CCCTGAAAG GATGGTGGAC GAGGCCTGAC 2520
 AGGTCCCATG GGCCCCCTCTG GCCCAGCTGG TGCTAACCGC GAGAAGGGAG AAGTTGGACCC 2580
 TCTGGTCTCT GCAGGAGAGT TGCGTGTCTG TGCGCTCCG GGTGAACCGT GAGAGACTGG 2640
 CCCCCCGGA CGACGGGAT TTGCTGGGCC TCTGGTGTCT GATGGCCAGC CTGGGGCCAA 2700
 GGGTGAGCAA GGAGAGGGCG GCCAGAAAGG CGATGCTGGT GCCCTGGTC CTCAGGGCCC 2760
 CTCTGGAGCA CCTGGCTCAC AGGGTGTAC TGAGGTGACT GGCTCTAAAG GAGCCCGAGG 2820
 TGCCCAAGGC CCCCCGGGAG CCACTGGATT CCCTGGAGCT GCTGGCCCG TGAGGACCCC 2880
 40 AGGCTCAAT GGCAACCCCTG GACCCCCCTGG TCCCCCTGGT CCTTCTGGAA AAGATGGTCC 2940
 CAAAGGTGCT CGAGGAGAGA GCGGGGGGGG TGCGGAGAGT GGTGAACCCG GCCTCCAAGG 3000
 TCTCTGGAA GCCCCCTGGG AGAAGGGAGA GCGCTGGAGAT GACGGTCCCT TGCGTGGCGA 3060
 AGGTCCACCA GGTCCCCAGG GTCTGGCTGG TCAGAGAGGC ATCTGCGTC TGCTGGGCA 3120
 ACCTGGTGAAG AGAGGATTCC CTGGCTTGCC TGGCCCATCG GGTGAGCCCG GCAAGCAGGG 3180
 TGCTCTGGAA GCATCTGGAG ACAGAGGCC TCTGGCCCC TGCGCTCTC TGCGCTGAC 3240
 GGGTCTCTGCA GTGAAACCCG GACGGAGAGG AAGCCCCGGT GCTGATGCC CCCCTGGCAG 3300
 AGATGGCGCT GCTGGAGTCA AGGGTGTAC TGTTGAGACT GGTGCTGTGG GAGCTCTGG 3360
 AGCCCTGGG CCCCCCTGGG CGCTGGTCA ACTGGCAAGC AAGGAGACAG 3420
 45 AGGAGAAGCT GGTGCAACAG GCCCCATGGG ACCCTCAGGA CCAGCTGGAG CCCCCGGGAAT 3480
 CCAGGGTCTT CAAGGCCCCA GAGGTGACAA AGGAGAGGCT GGAGAGGCTG GCGAGAGAGG 3540
 CCTGAGGGCA CACCTGGCTC TCACTGGTCT GCAGGGTCTG CCCCCCCCTC CTGGTCTCTC 3600
 TGGAGACCAA GGTGCTCTG TGCTCTGGC CCTAGGGCTC CTCCCTGGCCC 3660
 CGTGGTCTCTC TCTGGCAAAG ATGGTGTCAA TGGAATCCCT GCCCCCATTC GGCCTCTGG 3720
 TCCCCGTGGA CGATCAGGGC AAACGGTCTC TGCTGGTCTT CCTGGAAATC CTGGGGCCCC 3780
 55 TGGTCTCTCA GGTCCCCCTG GCCCTGGCTC CGACATGTCG GCCTAGGGCTG GCTTAGGGCC 3840
 GAGAGAGAAG GGGCCCCAGC CCCTGCACTA CATCGGGGCC GACCAGGAG CCGGTGGCCT 3900
 GAGACAGCAT GACGGCGAGG TGGATGCCAC ACTCAAGTCC CTACAACAAAC AGATTGAGAG 3960
 CATCCGAGC CCCGAGGGCT CCCGCAAGAA CCCCTGCTCGC ACCTGAGAG ACCTGAAACT 4020
 CTGCCACCTC GAGTGGAGA GTGAGAGCTA CTGGATTGAC CCCAACAAAG GCTGCACCTT 4080
 GGACGCCATG AAGGTTTCTC GCAACATGGA GACTGGCGAG ACTTCGGTCT ACCCAAATCC 4140
 60 AGCAAACGTT CCCAAGAAGA ACTGGTGGAG CAGCAAGAGC AAGGAGAAGA AACACATCTG 4200
 GTTGGAGAAA ACCATCAATG TGACCTCTCA TTTCAGCTAT GGAGATGACA ATCTGGCTCC 4260
 CAACACTGCC AACGTCAGA TGACCTCTC ACCGCTGTGCT TCCACGGAGA GCTCCAGAA 4320
 CATCACCTCA CACTGCAAGA ACAGCATTCG CTATCTGGAC GAAGCAGCTG GCAACCTCAA 4380
 65 GAAGGGCCCTG CTACATCCAGG GCTCCAATGA CGTGGAGAGC CGGGCAGAGG GCAATAGCAG 4440
 GTTCACGTAC ACTGGCTGAGA AGGATGGCTG CACGAAACAT ACCGTAAGG GGGGCAAGAC 4500
 TGTTATCGAG TACCGGTCA AGAAGACCTC ACGGCTCCCC ATCATGGACA TTGCAACCAT 4560
 GGACATAGGA GGGCCCCAGC AGGAATCTGG TGTTGACATA GGGCCGGTCT GCTTCTGTGA 4620
 70 AAAACCTGAA CCCAGAAACCA ACACATCTG TTGCAAACCC AAAGGACCCA AGTACTTIC 4680
 AATCTCAGTC ACTCTAGGAC TCTGCACTGA ATGGCTGAC TGACCTGATG TCCATTCATC 4740
 CCACCCCTCTC ACAGTTGGAGA CTTTCTCTCC CTCTCTTCT AAGAGAACCTG AACTGGGCAG 4800
 ACTGCAAAT AAAATCTGG TGTTCTATTT ATTATATGTC TTCTGTAAAG ACCTTCGGGT 4860
 CAAGGCAGAG GCAGGAAACT AACTGGTGTG AGTCAAATTC CCCCTGAGTG ACTGGCCCCA 4920
 GCCCAGGCCA GAAGACCTCC CTTCAGGTGC CGGGCGCAGG AACTGTGTGT GTCTTACACCA 4980
 75 ATGGTGTCTAT TCTGTGTCAA ACACCTCTGT ATTTTTAAA ACATCAATTG ATATTAAGAA 5040
 TGAAAAGATT ATGGAAAGT

Protein Accession #: NP_001835.2

1 11 21 31 41 51
 5 MIRLGAPQSL VLLTLLVAAV LRCQQQDVQE AGSCVQDGQR YNDKDVWKPE PCRICVCDTG 60
 TVLCDDIICE DVKDCLSPEI PFGECCPICP TDLATASGQP GPKGQKGEKG DIKDIVPKG 120
 PPGPQGPAGE QGPRGDRGKD GEKGAPGPRG RDGEPTPGN PGPPGPVGPP GPGLGGNFA 180
 AQMAGGFDEK AGGAQALGVQM GPMGPMGPRG PPGPAGAPGQ QGFQGNPGE GPVGSGPMG 240
 PRGPPGPPKG PGDDGEAGKP GKAGERGPPG PQGARGFPGT PGLPGVKHGR GYPGLDAGKG 300
 10 EAGAPGVKE SGSPGENGSP GPMGPRGLGP ERGRTGPAGA AGARGNDGQP GPAGPPGPVG 360
 PAGGPGPPGA PGAKGEAGPT GARGPEGAQG PRGEPTPGS PGAGASGNP GTDGIPGAKG 420
 SAGAPGIAAGA PGFPGPRGPP GPQQGATPLG PKGQTGEPGI AGFKGEQPK GEPGPAGPQG 480
 APGPAGEEGK RGARGEPPGV GPIGPPGERG APGNRGFPQG DLAGPKAP GERGPGLAG 540
 15 PKGANGDPGR PGEGLPGRPA GLTRGPGDAG PQGKVGPSGA PGEDGPGPP GPQGARGOPG 600
 VMGFPGPKA NGEPGKAGEK GLPGAPGLRG LPGKDGETGE AGPPGPAGPA GERGEQGAPG 660
 PSGFQGLGPB PGPPGEKGPK GDQGVPEAG APGLVGRGE RGFPGERGSP GAQGLQGPRG 720
 LPGTGTDGP KGASGPAGPQ GAQGPGLQG MPGERGAAGI AGPKGDRGDV GEKGPEGAPG 780
 KDGGRRGLTGP IPGGPAGAN GEKGEVGPQG PAGSAGARGA PGERGETGPP GPAGFAGPPG 840
 20 ADGQPGAKGE QGEAGQKGDGA GAPGQGPQSGA APGPQGPITV TGPKGARGAQ GPPGATGPPG 900
 AAGRVGPPGS NGNPQGPQGP GPGSKDGPKG ARGDSGPPGR AGEPLQLQPA GPPGEKGEPE 960
 DDGPGPQAEGP PGQGPQLAGPQ GIVLGPQGPQ ERGFPGLGP SGEPGKQGP GASGDRGPPG 1020
 PVGPGPLTGP AGEPGREGSP GADGPGPRDG AAVVKGDGRGE TGAVGAPGP GPPGSPGPAG 1080
 PTGKQGDRGE AGAQGPMGSP GPAGARGIQG PQGPRGDKG AGEPGERGLK GHRTGFLQG 1140
 LPGPPGPGSDQ QGASGPAGPS GPRGPPGPVG PSGKDGANI PGPIGPPGR GRSGETGPAG 1200
 25 PGPNPQGPQGP PGPPGPQDM SAFLAGLPRE KGPDPQLQYMR ADQAAGGLRQ HDAEVDTALK 1260
 SLNNQIESIR SPEGSRKNP A RTCRDLKLCH PEWKSQDWYI DPNQGCTLDA MKVFCNMETG 1320
 ETCVYPNPAN VPKKNNWSSK SKEKKH/WFG ETINGOFHFS YGDDNLAPNT ANVQMTFLRL 1380
 30 LSTEQSQNTI YHCKNSIAYL DEAAGNLKKA LLIQGSNDVE IAEAGNSRFT YTALKDGCTK 1440
 HTGKWGKTVI EYRSQKTSRL PIIDIAPMDI GGPEQEFGVD IGPVCFL

SEQ ID NO:125 PFH9 DNA SEQUENCE

Nucleic Acid Accession #: NM_005084

Coding sequence: 162-1487 (underlined sequences correspond to start and stop codons)

1 11 21 31 41 51
 35 GCTGGTCGGA GGCTCGCAGT GCTGTCGGCG AGAACGAGTC GGGTTTGGAG CGCTTGGGTC 60
 GCGTTGGTGC GCGGTGGAAC GCGCCCAAGGG ACCCCAGTT CCGCGAGCAG CTCCGCGCCG 120
 CGCCTGAGAG ACTAAAGCTGA ACTATGCTGT CAGCTCCCAA GATGGTGC CA CCAAATTGC 180
 ATGTGCTTT TGCCCATATG AAATCATAG CATGGTCAA CAAAATCAA GACTGTATGG 300
 40 CTGCTGAAG CTTTGGCCA ACTAAAAATCC CCCGGGAAA TGCCGCTTAT TCCGTTGGTT 360
 GTACGACTT AATGTTGAT CACACTATA AGGGCACCTT CTGCGTTTA TATTATCCAT 420
 CCCAAGATAAA TGATCGCTT GACACCTTT GGATCCAAA TAAAGAATAT TTTTGGGTC 480
 TTAGCAAATT TCTTGAACA CACTGGCTT TGGCAACAT TTGAGGTTA CTCTTGGTT 540
 CAATGACAACT CCTCTGCAAACT TGGAATTCCC CTCTGAGGCC TTGTGAAAAA TATCACTTG 600
 45 TTGTTTTTC TCATGGTCTT GGGGTTTATA GTTGTGCTG TAGAACACAG AGATAGATCT GCATCTGCAA 720
 CTAACTATT CAAGGACCAA TCTGCTGCAG AAATAGGGGA CAAGCTCTT AGTGAAGATC 780
 GAACCCCTGAA ACAAGAGGAG GAGACACATA TACGAAATGA GCAGGTACGG CAAAGAGCAA 840
 AAGAATGTT CCAAGCTCTC AGTCTGATTC TTGACATTTGA TCATGAAAG CCAGTGAAGA 900
 ATGCATTAGA TTAAAGTT GATATGGAAC AACTGAAGGA CTCTATTGAT AGGGAAAAAA 960
 TAGCAGTAA TGGACATTCT TTGGTGGAG CAACGGTTAT TCAGACTCTT AGTGAAGATC 1020
 50 AGAGATTCAG ATGTTGGTATT GCCCTGGATG CATGGATTT TCCACTGGT GATGAAGTAT 1080
 ATTCCAGAAAT TCCTCAGGCC CTCTTTTTA TCAACTCTGA ATATTCCAA TATCCTGCTA 1140
 ATATCATAAA AATGAAAAAA TGACTCTAC CTGATAAAGA AAGAAAGATG ATTACAATCA 1200
 55 GGGTTTCACT CCACCAAGAAT TTGCTGACT TCACCTTTGC AACTGGCAA ATAATGGAC 1260
 ACATGCTAA ATTAAGGGAA GACATAGATT CAAATGTAGC TATTGATCTT AGCAACAAAG 1320
 CTTCATTAGC ATTCTTACAA AAGCATTAG GACTTCATAA AGATTITGAT CAGTGGACT 1380
 GCTTGATGAA AGGAGATGAT GAGAACATTTA TTCCAGGGAC AACATTAAC ACAACCAATC 1440
 AACACATCAT GTTACAGAACAC TCTTCAGGAA TAGAGAAATA CAATTAGGAT TAAAATAGGT 1500
 TTTTT

SEQ ID NO:126 PFH9 Protein sequence:

Protein Accession #: NP_005075.1

1 11 21 31 41 51
 70 MVPPKLLHVLF CLCGCLAVVY PFDWQYINPV AHMKSSAWVN KIQVLMMAAS FGQTKIPRGN 60
 GPySVGCSDL MFDHTNKGTFL RLYYPSQDN DRDLTLWIPN KEYFWGLSKF LGTHWLMGNI 120
 75 LRLLFGSMTT PANWNSPLRP GEKYPLVVFS HGLGAFRTLY SAIGIDLASH GFIVAAVEHR 180
 DRSAATYYF KDQSAEEIGD KSWLYLRTLK QEEETHIRNE QVRQRKECS QALSILID 240
 HGKPVKNALD LKFDMEQQLKD SIDREKIAVI GHSGFGATVI QTLSEDQFR CGIALDAWMF 300
 PLGDEVYSRI PQPLFFINSE YFQYPAIIK MKKCYSYPDKE RKMITIRGSV HQNFADFTFA 360
 TGKIIGHMLK LKGDIIDSNAV IDLSNKASLA FLQKHLGLHK DFDQWDCLIE GDDENLIPGT 420
 NINTTNQHIM LQNSSGIEKY N

SEQ ID NO:127 PFH8 DNA SEQUENCE

5 Nucleic Acid Accession #: NM_015900
Coding sequence: 32-1402 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51
10	CACGAGCGGC ACGAGGATTT CCAGCTCAGC GAT <u>GCCCCCA</u> GGTCCCTGGG AGAGCTGCTT 60 <u>CTGGGTGGGG</u> GGCCTCATTT TGTCGCTCAG CGTGGAAAGT TCAGGGGATG CACCTCCTAC 120 CCCACGCCA AAGTGCCTG ACTTCCAGAG CGCCAACCTT TTGAAGGCA CCGATCTCAA 180 AGTCAGTTT CTCCCTTTCG TCCCTCGAA TCCTAGCTGT GGGCAGCTAG TAGAAGGAAG 240 CAGTGACCTC CAAAACTCTG GGTCAATGC CACTCTGGGA ACCAAACTAA TTATCCATGG 300 ATTCAAGGGTTT AGTAGGAACAA AGCCTTCCTG GATTGACACA TTATAGAA CCCTTCTCG 360 TGCAACGAAT GCTAAATGTGA TTGCGCTGGA CTGATTATAT GGCTCTACAG GAGTCTACTT 420 CTCAGCTGTG AAAAATGTGA TTAAGTTGAG CCTCGAGATC TCCCTTTC TCAATAAACT 480 CCTGGTGTGCG GTGTGTGCG AATCTCAAT CCACATCATT GTGTTAGCC TGGGGGCCA 540 CCTGGGGGGC ATGGTGGGAC AGCTCTTCG AGGCCAGCTG GGACAGATCA CAGGCCCTGGA 600 CCCCCGCTGGA CCTGAGTACA CCAGGGCCAG TGTGAAAGAG CGCTTGGATG CTGGAGATGC 660 CCTCTTCGTG GAAGCCATCC ACACAGACAC CGACAATTG GGTATTCGGA TTCCCTTGG 720 ACATGTGGAC TACTTCGTCA CGAGGGGCCA AGACCAACCT GGCTGCCCCA CCTCTTTTA 780 CGCAGGTTAT AGTTATCTGA TCTGTGATCA CATGAGGGCT GTGACCTCT ACATCAGCGC 840 CCTGGAGAAAT TCCGTCCAC TGATGGCCTT TCCCTGTGCC AGCTACAAGG CCTTCTTGC 900 TGGACGCTGT CTGGATTGCTT TCTGCTTTCG TGCCCAAGGA TAGGACTGGT 960 GGAAACAAGGT GGTGTCAGA TAGAGCCGCT CCCAACAGGA GTGAAAGTCT ACCTCCTGAC 1020 TACTTCCAGT GCTCCGTA CT GCATGCATCA CAGCCTCGT GAGTTCACT TGAAGGAAC 1080 GAGAACAAAG GACACCAACA TCGAGGTTAC CTTCCTTACG AGTAACATCA CCTCTTCATC 1140 TAAGATCAC C ATACCTAACG AGCACTCA TGGGAAAGGA ATCATAGCCC ATGCCACCCC 1200 AAATGCCAG ATAAACCAAG TGAAATCAA GTTTCACTCT TCCAACCGAG TTGGAAAAAA 1260 AGACCGGACT ACCATTATTG GGAAGTTCTG CACTGCCCTT TTGCTGTCA ATGACAGAGA 1320 AAAGATGGTC TGCTTACCTG AACCAGTGA CTTACAAGCA AGTGTGACTG TTTCCTGTGA 1380 CCTGAAGATA GCCTGTGTG <u>TGTTAAACCTT</u> GGGCAGGACA CATCTCCCTG CATTTTTTT 1440 TTTTTTTTT GAGAGAGAGG TGTGATGAGG GATGTGTG TGCACTTAT TGTAGACCAT 1500 TACTACTAAG GAGAAAAGCA AAGCTCTTC TTATTTCTT CATAATCAGC TACCCCTGG 1560 GGGAGGGAGA ACTCATTTG CAGAACTGG TTCTCTTGC CGATCTTATG TACATACCCA 1620 TTTTAGCTT CCCATGATCA CTTAACTGCA CTTGCTTAT CTCCCTGGG ATTGTAACCTT 1680 AGGATTCAAT AGAAACATGT ACAGGGTAA CAATTTTTA AAAATAAAAC TTCAATGGAGT 1740 AAAAAAAAA AAAAAAAA				

SEQ ID NO:128 PFH8 Protein sequence:

Protein Accession #: NP_056984.1

45	1	11	21	31	41	51
50	MPPGPWESCF WVGGLILWLS VGSSGDAPPT PQPKCADFQS ANLFEGTDLK VQFLLFVPSN 60 PSCGQLVEGS SLDLQNSGFNA TLGTLKIIHG FRVLGTPSW IDTFIRTLLR ATNANVIAD 120 WIYGSTGVYF SAVKNVNLK LEISLFLNKI LVLGVSESSI HIIGVSLGAH VGGMVGVQLFG 180 GQLQITGLD PAGPEYTRAS VEERLDAGDA LFVEAIHTTD DNLLGRIPVG HDYFVNGQ 240 DQPQCPFTFY AGYSYLICDH MRAVHLYISA LENSCPLMAF PCASYKAFLA GRCLDCNPF 300 LLSCPRLGLV EQGGVKIEPL PKEVKVYLLT TSSAPYCMHH SLVEFHKLRL RNKDTNIEVT 360 FLSSNITSSS KTIKPQQRY GKJIAAHATP QQQNQVFKF FQSSNRVWKK DRTTHIGKFC 420 TALLPVNDRE KMVCLPEPVN LQASVTVSVD LKIAVC					
55						

SEQ ID NO:129 PFH7 DNA SEQUENCE

60 Nucleic Acid Accession #: NM_014384
Coding sequence: 89-1336 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51
65	CGTTGCCGG TCGCAGGTCC CGCCAGTGCAG AGCGCAACGG AGGTGCAAGG CGTTCAAGCT 60 CTTAGCTGAA CGCGGAGCTA CGCCGGCTAT GCTGTGGAGC GGCTGCCGGC GTTTCGGGGC 120 GCCGCCCTCGGC TGCCCTGCCG CGGGCTCTCGG GGTCTCTCGT CAGACCGGCC ACCGGAGCTT 180 GACCTCTGC ATCGACCCCTT CCATGGGACT TAATGAAGAG CAGAAAGAAAT TTCAAAAGT 240 GGCCCTTGCAC TTTGCTGCCG GAGAGATGGC TCCAAATATG GCAGAGTGGG ACCAGAAGGA 300 GCTGTTCCA GTGGATGTGA TGCGGAAGGC AGCCCCAGCTA GGCTTCGGAG GGGCTACAT 360 ACAAACAGAT GTGGCGGGT CTGGCTGTC ACGTCTTGTACCTCTGCA TTTTGAAAGC 420 CTTGGCTACA GGCTGCAACCA GCACCCACAGC CTATATAAGC ATCCACAACA TGTGTGCCTG 480 GATGATTGAT AGCTTCGGAA ATGAGGAACA GAGGCACAAA TTTCCTCCAC CGCTCTGTAC 540 CATGGAGAAAG TTGCTTCTC ACTGCCCTCAC TGAACCAAGGA AGTGGGAGTG ATGCTGCCTC 600 TCTTCTGACC TCCGCTAAGA AACAGGGAGA TCATTACATC CTCAATGGCT CCAAGGCCTT 660 CATCACTGAGT GCTGGTGTAGT CAGACATCTA TGTGGTCATG TGCGGAACAG GAGGACCAAGG 720 CCCCAAGGGC ATCTCATGCA TAGTTGTTGA GAAGGGGACC CCTGGCCTCA GCTTGGCAA 780 GAAGGGAGAAA AAGGTGGGGT GGAACCTCCA GCCAACACGA GCTGTGATCT TCGAAGACTG 840 TGCTGTCCCT GTGGCCAACCA GAATTGGAG CGAGGGCAG GGCTTCTCA TTGCGCTGAG 900				

AGGACTGAAC GGAGGGAGGA TCAATATTGC TTCTCGTCC CTGGGGCTG CCCACGCC 960
 TGTCATCCTC ACCCGAGACC ACCTCAATGT CGGAAGCAG TTGGAGAGC CTCTGGCCAG 1020
 TAACCAGTAC TTGCAATTCA CACTGGCTGA TATGGAACA AGGCTGGTGG CCGCGCGCT 1080
 5 GATGGTCCGC AATGCAGCAG TGGCTCTGCA GGAGGGAGGG AAGGATGAG TGCCCTTG 1140
 CTCCATGGCC AAGCTTTG CTACAGATGA ATGCTTGCC ATCTGCAACC AGGCCTTGCA 1200
 GATGCACGGG GGCTACGGCT ACCTGAAGGA TTACGCTGTT CAGCAGTACCG TCGGGACTC 1260
 CAGGGTCCAC CAGATCTAG AAGGTAGCAA TGAAGTGTAG AGGATACTGA TCTCTAGAAG 1320
 CCTGCTTCA GAGTAGAAAC CACACTTGTG CTGGCTTGTT GTTCAGTGCG ACTGAGTCA 1380
 GTTGTGAGTG GTGCCATGTG GGCGCTCTA TTCCAAGAGA ATCATGGATT AGACCCAAGG 1440
 10 GCTGAGCTCC TCTAGGGCAG GACCTGCACC CTGTTGTTG GCACCAAGCAT CGGGCTTGG 1500
 ACTGGGGCAG AATCCCCAGT GGAAACGGAA GAGCTGGACT GATGAGAAC ATCAGAAGAA 1560
 CAACATACCTTCTTCC TAATGCCAGA AGGGTGCACCA GTGAAGATTCC ACCGTCAAAC 1620
 CATGAAAGTC CTTCTTGGAA TCCACTTAT CTGATTAGT CTGATTITA CTAGTCACT 1680
 GGAATCCCTCC TCTAGGGGCC TGCGGACTTT CACTGATGCT CTTCCTGATT CTAGAGCAAA 1740
 15 GGTGIGGGAA GGAAATGG AGGAATGCC TCCCTGCTGT GTCGTCTCT GTGCCACAGC 1800
 TACAGATGCA AAAGGTTCTC CTGGATAGCA CACCTCTGAA TGAAATCAT GATAAAATGG 1860
 ATATTTGGAA ACTTACTCTC AAGCTGTGAT GTAGGGTGTG TTCTACTTC TGACTGCCT 1920
 CAATATCAAG GGCTGAGACT TTGAATGTT GAATATCGT TGGGGTTCAT GTTAAGACGC 1980
 20 CTGTGGTCCA GGAGTGTCTAT TCAGTGTTC TGTTCTGTAA AACACTTGT AATATTTT 2040
 TGTTTTTG TTCTCTTC TGAGCTGTTCTCTTTA AATATTTTA ATCACATIGA 2100
 TAAATCTAT CCTICATCCA CCTCTGGTIC TACTATAAGT GATTTTATT TAAATGTT 2160
 AATTGTTATT GATTAACAC TTAACTGGAT TTGGAATAA TAAACTCTC GTCCAATTG 2220
 GCTTTAAAAA AAAAAAAA

SEQ ID NO:130 PFH7 Protein sequence:
Protein Accession #: NP_055199.1

1	11	21	31	41	51	

MLWSGCRRFQ ARLGLPGL RLVQQTGRHS LTSCIDPSMG LNEEQKEFQK VAFDFAAREM 60
 APNMAEWWDQK ELFPVDVMRK AAQLGFVVY IQTDVGSSGL SRLDTSVIFE ALATGCTSTT 120
 30 AYISIHNMCW WMIDSFGNEE QRHKFCPPLC TMEKFASYCL TEPGSGSDAA SLLTSAKKQG 180
 DHYLNLNSKA FISGAGESDI YVVMCRTGP GPKGISCIVV EKGTGPGSFG KKEKKVGVWNS 240
 QPTRAVIFED CAVPVANRIG SEGQGFLIAV RGLNGGRINASCSLGAHA SVILTRDHILN 300
 VRKQFGEPLA SNQYLOFTLA DMATRLVAAR LMVRNAVAL QEERKDAVAL CSMAKLFATD 360
 ECFAICNQAL QMHGGYGYLK DYAVQQYVRD SRVHQILEGS NEVMRILISR SLLQE

SEQ ID NO:131 PFH6 DNA SEQUENCE

Nucleic Acid Accession #: NM_013989
Coding sequence: 707-1105 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51	

GCCTGCAGAG AGAGGCACCTT TGCAACCACAG ACAGATAGCA AGAAGGGAAA GACAGAGAGT 60
 50 GAGAAAAAAAGGAGTCAGT CGCTCTGGG GAAGGGAGAG AGTGAGACTG GGAGAAAGAG 120
 AAGCACAGAA AGTGTGTGA AAACGGAGA AAGAAAAGAAA AAAAAAAAC TACCCCTAAA 180
 GCACATTTAA AAAAAAAAAC CTCTGGCAAT TCAAGAAAAGA AACAGGCTAC GTTAAAGAG 240
 CATAGAGACATGAGAAGGCTTAAAGAAAATCTC TGCCACAGTC TCATAGGTGC 300
 TTGAAATGA AAGTAGACT GCCTGTCTTAAACGGACTCTC GAGAGGAGTA ACTGGATTAG 360
 GGACGAGTAC CGGCAGCTTTT TTTTTTTTTTTTTAATCAT TAAATCTG 420
 55 AAAAAAAAACGGAGCAG AGCTCCGAAT TGAATGAATT GATGGGCACA 480
 CTCCAACCTGC TGGGCTGGAG AGACTGGACT TAGTCTGCC ATTCTGCTT CTITGAAAGA 540
 GGAGACAACCTGGGCTTCTT TTAATTAG TTTTTTTCCC CTTCTCCCC CAACCCCAA 600
 CCTTCCCCCTACCTCCCCC ACCCCCTTTA TCACCACCCC CCTTTAAAT AAGAGGGTGA 660
 AGGGAAACCA GAGGCACCAAGGGAACTGAC TCAGGGAGGA GAGAAGATGG GCATCTTCAG 720
 60 CGTAGACTTGC TGATCACAC TGCAATTCTT GCCAGTTTIT TTCTCCAACCT GCCTCTTCCT 780
 GGCTCTCTAT GACTCGGTCA TTCTGCTCAA GCACGTGGTGTG CTGCTGTTGA GCCGCTCCAA 840
 GTCCACTCGC GGAGAGTGGC GGCACGACTGT GACCTCAGAG GGACTGCGCT GCGCTCTGGAA 900
 GAGCTTCCCTCCTCGATGCCAT ACAACAGGAT GAAATTGGGT GAGGATGCC CCAATTCCAG 960
 TGTGGTGAT GTCTCCAGTA CAGAAGGAGG TGACAACTGAGTGGCAATGGTA CCCAGGAGAA 1020
 GATAGCTGAG GGAGCCACAT GCCACCTCTTGACTCTGCC AGCCCTGAGC GCCCACTAGT 1080
 GGTCAACTTTGGCTCAGGCCCTTGGCTCAACCTTCAACGGAGC CAGCTGCCAG CCTTCCGCAA 1140
 ACTGGTGGAA GAGTTCTCTCAGTGGCTCACTTCCCTGCTG TGTCATACATTG ATGAGGCTCA 1200
 TCCATCAGAT GGCTGGGCGA TACCGGGGGA CTCCCTTGTG TCTTGTGAGG TGAAGAAGCA 1260
 CCAGAACAGGAGAAGATGCCAT GTGACAGCAGC CCAGCAGCTT CTGGAGCGTT TCTCTTGCC 1320
 70 GCCCCAGTGC CGAGTTGGTGTGACCTGGCAT GGACAATAAC GCAACATAG CTIACGGGGT 1380
 AGCCTTGGAA CGTGTGTGCA TTGTGAGAG ACAGAAAATT GCTTATCTGG GAGGAAAGGG 1440
 CCCCTCTCC TACAACCTTC AAGAAGTCCG GCATTCGCTG GAGAAGAATT TCAGCAAGAG 1500
 ATGAAAGAAA ACTAGATTAG CTGGTTAAG GTATGATTAT AAGAGAGCTT ATTGTTAA 1560
 AAAGTTATAT AAAGGCAAGG AAATAAGAA CTGAATCCAT ATTCAACAG AGCCCTATTG 1620
 GCTTACTGAA AGACAGGAGT TTATCTATCG GAAGAACATG AATCTCTAAC AGCTCCATAC 1680
 TTCTTCACT ACTCAAATGG CATTGGGCTG AGTAAGTAAC CATATCACCT CTCTCTTAG 1740
 TAAAAAGGCC TATGTGAAAAGAATCCAGAAGAAGGGAA GAAACGCTAA TTCAGCATGT 1800
 GTTCATTCTG CATTGAGAAG GAACGTGATAC ATCTGATGCA TGCTTGAGA CCAGAAGAAA 1860
 AGACTTACCT GAATAATTAC TACATTAGGG AAGCTACTGT CTACGTTAAG ATAAGGGTA 1920

TTGCCTTGGC TCTATTTGGC ATGGATGGAG CCCAGTTGGA AAATCCCAA ATATTACAAAC 1980
 AAGTCCTTGA ACCCAGGCCA TGCGGTTAGA CGTGGGTGTT AAGGTTAGAC CTTATGTTAG 2040
 AGTCATTCT GATGTTCAG CTTCTAGCCA TGAGTGTCTC TCAGTCTICA TACCCAGAA 2100
 ATTATGGTA TATTITGAGA TACCGAGAAT GATCCCTAG TCTGAGAGGT TAGAATGATC 2160
 ATCTGTAATC TGAGGGTTAA TTCTAGGCA GGTGGAGAGA GTGGTAAAAAA AGAAATGAAA 2220
 TTGACAAGCT AGGAAAGAGG AGGCAGAAAG ATTGGAAAAA TTCACAGAGT TTCAACCCCTA 2280
 AGCTGTAGAG AGTGGGTACAC ATTGTTAGC CACGGAACAA TAGAACATA CACAAGGCCA 2340
 GAAAAAGAAG AAGGAGCTCA ACTAAAATG GCATAGAGAA TACACATATA AAAACAATAT 2400
 ATTGTCATA TGCTCTAGA GAGGAGAAAG GGTTGATTGA AAGAAAAAAA AATACTTAAA 2460
 5 TATTGTAAT TGAGGGGGT TTCTTTGGA AATAATTACT TTGACCATG ATATGTTGA 2520
 TGATATTT CAGTGGTTA ATTATACCCC ATGATACCA TAAAGGAAA ACCAGTGGGT 2580
 CTGGTGGTGC TGGTCTTC CTCCATTC TCACAAATTTC ATGTCGCC AAGTCATICC 2640
 TAATCTGGT CTCTATAGCA GTGTTCTC TGAAATGCTGA GCTGAAGAAA TTATACGTAC 2700
 10 ATACACACAT ACATACATAC ATACAAATAT ATGTATATAT ATTCTCAGCT GCTGGGGAG 2760
 GTAGGTACCA TGGCCATTC GCACAGCCTT GATTCCTCC CAAAGTAGGT GAGCTATAGT 2820
 GAAGAATAGG TGCAACACAA CAAGCTACT TCCATTGCAA ATAGAAGAAA GAGGAAGTTA 2880
 GAGATAATTG TGATCAATCA TTTGGAGGC TTGTTATAA GGCACACCCC GGTATATCAT 2940
 GGAATTTCGA TTGACATTG AATTGGACT TGGATCTTC CTGGTCCCA TTAGCTGAGG 3000
 15 TTAGTAATC TAAAGCTCCAT ATAGTATATG ATTATAATGC TATTTTAAA AATATATATA 3060
 TAAATATT TTTCTTTT AAAATAGACA CTATAGTTT ACCCATAAGT AATATTTAA 3120
 GATTATAGCT CCCAAAGAAA TGGAACCAACC ACTTCGTAT CATAATTCTT TTGTTGAAA 3180
 TATGAGACTTATGAACTTGATGTTA AAGGTACAAT CAAAGGATCT 3240
 TTTGTCATT CCATTAATAA CTGAAATAAA AATAAAATAA ATGGATAGAA AAAAACTAAA 3300
 20 CTTGAAATAA CATTCTAACTA CTAGTCTCT GAAATGAGAA AAGAGTGTGAG ACTAGGTGTG 3360
 CAAGAACCAA ACGTATTITA TTGTTATTAA TAAATGGGAG CAACATATCA GTCGTGTAC 3420
 CAGCTGGTAT ATTGTGTAAT TAAATGGGAC CTATGGGAC TGATTTCA TGGCAACATC 3480
 AGCTTCTAA TGTTCTAAAT CTCTAAAAAA CCACCCACAA AGAAACAAAG CAAATTTCAT 3540
 TATCTAATGA GTTGTGGAA AACATATG AGAATAATTA TTICAGATTCTCAGTTGTTI 3600
 AACTTCTACA TTCAAGGGCT TATCTCTGCC CCCATTGATT TTAAACCTCA AAATGGTGTG 3660
 25 AGATTTACTG TGGAAACCTA AAGCAGTAAA ATAAAACCGG TGTTGCAGC ACATTCACAC 3720
 TGTTGTCCTT AAAATCCCCC TTTTCTCT ATGACGATA AAGTAACAGT ATGTCAGATA 3780
 AGCCGGTGGG GGGATGAGAT TAGGCTGAGG CAGTGTAGT CAACTGGGG AAAAGGATGA 3840
 TGGAAACATC ACCAGCTGTT GCTATTTTAA TAAAGAAGGA GTGCTTTAT GTGTCAGAC 3900
 AATTCTCCCT GAGGTAGCC CAATGGAGAA ATGAGCAGA GAGGAACAC ATAGAAGAC 3960
 ATGGGCTATC AGGGAGGAAG ATGTCATAA GAACATGCAA GAATTCTGG AAGAAAGGCT 4020
 CTGGAAGGGCA CAATGGAGAA ATAATGGA CAAAGCTCAG GAATCCCTAC GCTATGTTGA 4080
 30 ATGTCCTGG TGTTATCAGG GTAAAGCCCT GTAAATTATG AACTTATTTA TCGCAACATG 4140
 AATTTTATG ATTCTCTGTC ATGTTATCTT TTATGAAATT ACAAGAACT CATTATTTG 4200
 AGGTAGAGGA AAATCAATGC TTATCTGAT ATGCTGAGAA ATTATAGAT TGCCAATACT 4260
 CATGTGCGTT CATGTTGTT TATAAGGTT GTTCTCTGAGA AGAATTGAG TCTTGTGCTC 4320
 CACAGGGAAA TGTTGATCTA TTATATATC ATAGTATAAA TCTATGATAT ATTATATCA 4380
 TATATAAAAG TCTGAGTTCT CTTCTTAGT CCCTAATCAT GTTCTCTCA TAGGCTGTG 4440
 TTACATGGGAGCTATGGCTTAA GCTTCATTAG CTGTCCTATT ATTGAATAG 4500
 35 TTTCAAGAA ATTTAGATA TTATCAATAC ATCTGGGTCT ACTCAAACAC TTATGTTG 4560
 AAAGACTTAT GTCTGGACCT TATCAAAAC TGACTTATT TATTGCTTAG TAAAATAACT 4620
 AGTGGGATCA ACAATGATT TCTGAAATGG GCATGAAATGG AGATGCCCGC ACAGTAATGT 4680
 AGAAATGTTT CATACTGTA ACTGACCTC TTAGGGAG ATTAGTAAC 4740
 GTTCTACTT TGTTAGCTA AGTGCAGTC ACTTAACTTA CATGACTTC TTTTCTACA 4800
 TIGGGCTCTT GGTCTGTGT CTTCACCTCA TTATGACAC GTCCTCTGAA TTTTGTG 4860
 40 TATCAACTC CCAGTGTATCT TTGTCAGTTAA GTTCTCTCC CGTTAACCCAG GAAGTGTCTA 4920
 TTCTCTCATC ACAGTGGGAA GAATGCTTA TTGCTCTTCA TTGCTCTGA GTGTTTTA 4980
 CTATGGGC TCTGAATAA AAATTATGAA ATATGGTAG GTCACATGTT GTGCTGCTC 5040
 TGCTGCATAA AATTCTAGGA GGGCAGGTTA GGAGACAGTT ATGTAATGGCC TTTCGGGAAA 5100
 45 ATTCAAAGGG TGGGATTACA AGGGGTCTCC TCAAGCATGC CCTATGGGC CCTATGTGGA 5160
 AGCAAGAAGA ATTGACTGAT TTACAGGACT TCTCTTATG TCAATCTAA GAGGATGGAT 5220
 GAATCTGGAC ATTGTTCTCA CCCGACCTCT GACTGTGTT TTGAAATAACTTAA 5280
 GGATCATATG ACCATTGAAA AAGGAAATAAT GTAGACTCTG ACTTCCTGCC CACTGAAGGA 5340
 TTAATGAAA CCTTTACTAG CATTAGAGC TTGTCAGAAC ATCCCCACTG TCATGTTCT 5400
 50 CAGCACTGGGA GACTGCAAGT AAGGCTTTA ATTCTAGGAG GTTTTTTTT TTGTTTTT 5460
 TICCCCTAAATGTTGATGGCC AAAAGTCAGA GTTAAATATG ATATAGTTAG ATTCAACCT 5520
 CCTCTCTCAC TCTAAATAAATAA GAATCCAAAC CCACTCTICA TATATGCTTC CAGAAATGGGG 5580
 CTTAAAGTACC AATCTCTGCT TTGCAATGGG CACAATCTG GTCATGCTCT GAGGCTCTCT 5640
 AAGAAAAGAG AGGACTTCTAGG ATGGGAGACG TAGAAAGTGT CTAACCTGGGA AGAACAAAGGC 5700
 55 CCTGAGGGT TGGTCTACCA ATCTGGGAA ATTGAAACAA ACTCTCTG CAACTGAAGG 5760
 AAGGCTGAAG GCTGCTGCAAGT GTCTGAGT GACTTTAGGA TGAGCAGAAC ATTGGGCCAC 5820
 TCTCTCATGCT CCTATGTTGTA TAGTACCGAA AGCAAGGCTC CAGACTTAAAC AGACCCAGCT 5880
 CTGTTCCAAG GTGAGTGTGA ACCAATAGAA AGCAAAACATG TGCAAGATATC CAAACAAGAC 5940
 TGCTCATGCA AGTGGGGCTG GGCTACCCCT TTGAGGGCAG AACAGCAGAG CTCCAGGGAG 6000
 CTTATCTAAT ATTACTGAG ACTTCGAAGA CCCAGCAGAT GTTAAATGAA GTCACTATIT 6060
 60 IGGCTCAAAC CCTCCACTTC TCCCAAAAGC CAACAGCTAA ACACATAAAT 6120
 GAAAGAAACCA CACAGAAGGG GATGGGAAAT AAGAAAATT CTCTCAAGAC TTCTCCAGGC 6180
 CCATGTCAGT GGTCACTGGT GTTTTTATGT GTATTAGGAT TGGGGGATGT GAAGAAATAA 6240
 GTATCCAGTA CTTTATAACC AAAGCAATTA AATGATATTG GGGTAGGGAA GTTGGGCCAC 6300
 65 TTGTTTTAG TTGCTCATC ACATTGTCAC CCAGACCTCA CCTAGCCCCA AGTAATCGGG 6360
 CGCCCCGAAG AGGGAGACAG AGATGTCGA GAGTGTGAGCC AGTGTGGGA TGATAACTAC 6420
 TGACGAAAGA GTCATCGACC TCAAGTTAGTG GTTGGATGTA GTCACTATTG TTGCTCTC 6480
 CCCATCTTG TCTCCCTGGC AAGGAGAATA TGCGGGACAT GATGCTAAGA GCCCTGGGTA 6540
 AATGTGGTGA GAATGCACCGC GTGCTCATGTC TACACATATG TGCTCTCTAG TTGCAAGAAA 6600
 TGAACGTCTT TGGGAGATTAA TCAAGTAAAGA GAGTGTATAC ATATGGTGC TGAGTGTAT 6660

GTGTGCTTAT ACAATTGTT CTTGTATTT AATAAAGT GAATAAAAGA ATAAAAAAA 6720
AAAAAAAAAA AAAAA

5 **SEQ ID NO:132 PFH6 Protein sequence:**
Protein Accession #: NP_054644.1

10	1 11 21 31 41 51
	MGILSVDLLI TLQILPVFFS NCLFLALYDS VILLKHHVLL LSRSKSTRGE WRRMLTSEGL 60 RCVWKSFLLD AYKQVKLGED APNNSVHVHS STEGGDNSGN GTQEKGIAEGA TCHLDFASP 120 ERPLVVNFGS ATXPPFTSQL PAFRKLVEEF SSVADFLVY IDEAPSDGW AIPGDSSLF 180 EVKKHHQNQED RCAAQQQLLE RFSLPPQCRV VADRMDDNN IAYGVAEPRV CIVQRQKIAY 240 LGGKGPFPSYN LQEVRHWLEK NFSKRXKKTR LAG
15	

20 **SEQ ID NO:133 PFH5 DNA SEQUENCE**
Nucleic Acid Accession #: NM_001141
Coding sequence: 72-2102 (underlined sequences correspond to start and stop codons)

25	1 11 21 31 41 51
	CAGGGCTGTC CCAGGGGGAG CCCGGCTCTG CAGCCCTGTC CGCCGTAGAG AGCTGGACTT 60 AGGCTGGCAG <u>CATGGCCGAG</u> TTCAGGGTCA GGGTGTCCAC CGGAGAAGCC TTGGGGCTG 120 GCACATGGGA CAAAGTGCT GTCACTCG TGGGGACCCG GGGAGAGAGC CCCCCACTGC 180 CCCTGGACAA TCTCGGCAAG GAGTTCACTG CGGGCGCTGA GGAGGACTTC CAGGTGACGC 240 CCCTGGAGGA CGTAGGGCGA TGCGCTGTC TGCGCGTGC CAAGGGGCC CCAGTGTCTGC 300 COCTGCTGGG GCCCCCTGGC CCGGATGCCG GTTCTGCCG CTGGTTCCAG CTGACACCAGC 360 CGCGGGCGG CCACCTCTC TTCCCTGCT ACCAGTGGCT GGAGGGGGCG GGGACCCCTGG 420 TGCTCGAGGA GGGTACAGG AAGGTGTCCT GGGCAGACCA CCACCTGTC TTCCAGCAAC 480 AGCGCCAGGA GGAGCTTCAGG AGATGTACCA GTGGAAGGCT TACAACCCAG 540 GTGGCCTCA CTGCTGGAT GAAAAGACAG TGGAAAGACTT GGAGCTCAAT ATCAAATACT 600 CCACAGCCAA GAATGCCAAC TTTTATCTAC AAGCTGGCTC TGCTTTGCA GAGATGAAAAA 660 TCAAGGGTT GCTGGACCGC AAGGGGCTT GGAGGAGTCT GAATGAGATG AAAAGGATCT 720 TCAACTCCG GAGGACCCCA CGACGCTGAGC ACGCATTTGA GCACTGGCAG GAGGATGCCT 780 TCTTCGCTC CCAGTTCCCTG AATGGTCTCA ACCTGTCTT GATCCGGCG TGTCACTACC 840 TCCCAAAGAA CTTCGGCGTC ACTGTGCAAA TGCTGGCCTC ATTTGTTGGT CCTGGGACCA 900 GCTTGAGGC TGAGCTAGAG AAGGGCTCCC TTGTTCTGGT GGATCACCGC ATCCCTCTG 960 GCATCCAGAC CAATGTCATT AATGGGAAGC CGCAGTTCTC TGCGGGCCA ATGACCCCTGC 1020 TATACCAAGG CCCAGGCTGC GGGCGCTGC CATCCAGCTC AGCCAGACCT AGCCAGACACC 1080 CCGGCCAAA CAGCCCCATC TTCTGCCCA CTGATGACAA GTGGGACTGG TTGCTGCCA 1140 AGACCTGGT GCGCAATGCC GAGTTCTCTC TCCATGAGGC CCTCACGCAC CTGCTGCACT 1200 CACATCTGCT GCCTGAGGCT TTCACCTCTG TCACCTGCG TAAGCTGCC CACTGCCACC 1260 CTCTCTCAA GCTGCTGATC CGGCACACCC GATACACCT GCACATCAAC ACACTGCCACC 1320 GGGAGCTGCT TATCGTCCA GGGCAGGTGG TGGACAGGTC CACAGGCATC GGCAATTGAAG 1380 GCTTCTCTGA GTTGATACAG AGGAACATGA AGCAGCTGAA CTATTCTC CTGTTCTGC 1440 CTGAGGATAT CCGGGACCCGA GGAGTTGAAG ACATCCACCG CTACTACTAC CTTGATGATG 1500 GGATCAGAT TTGGGGTGC A GTGGAACGCT TTGTCCTGAA AATCATCGGT ATCTACTACC 1560 CAAGTGATGA GTCTGTCCAA GATGACAGAG AGCTCCAGGC CTGGGTCAAGA GAGATCTCT 1620 CCAAGGGCTT CCTAAACCCAG GAGAGCTCAG GTATCCCTTC CTCACTGGG ACCCCGGGAAG 1680 CCCTGGTCA GTATGTCACC ATGGTATAT TCACCTGCTC AGCCAAGCAT GCGGCTGTCA 1740 GTGCAAGGCA GTTTGACTTC TGTGCTTGA TGCCCCACCT GCCACCCAGC ATGCACTGC 1800 CACCAACCCAC CTCCAAAGGC CTGGCAACAT GCGAGGGCTT CATAGGCCACC CTCCCACCTG 1860 TCAATGCCAC ATGTGATGTC ATCCTTGCTC TCTGGTTGCT GAGCAAGGGAG CCTGGGAGACC 1920 AAAGGGCCCTT GGGCACCTAT CCGGATGAGC ACTTCACAGA GGAGGGCCCT CGGGGGAGCA 1980 TCGCCCCCTT CCAGAGCCGC CTGGCCCCAGA TCTCGAGGGG CATCCAGGAG CGGAACCGGG 2040 GCCTGGTGTG CCCCCCTACAC TACCCAGTACCC CTCCCCCTCAT CGAGAACAGC GTCTCCATCT 2100 60 AAATCCCAGG GGAACACAGG CCCAGATGAC ATCCCTTGA CCACATCGCT CTAGGATAAC 2160 TGGCACCCAG AGAAAAGGAC TCCTCAGAAA AAACAGGCC CCATGTGCCCT CTCTGGGAC 2220 AACCAGACTC TGTAACCTAC CCCCCACCCAC ATACACACAC ACACAAACAG AACAAAATC 2280 AAAACAGAGA AAGCAGAGAA TCTACCAAGA ACAGAGCTC AGGACAGAAC CACTGAGTCT 2340 TTTGGAGGCTT CCAAGCTCTA AAGTGGCCCG AGAGCCACCT TTGAGGGTT TGCTAGTTGG 2400 TTTGTGTTG CGTTTACAGC CGTGGGGGGGA AGCACATAAT CCCGCCAG GGCCCACTAG 2460 CATCCACTGA TTGGACCTTA TGTCACCCA ACTCAAGGAC GAGCACCAAG AAGTGGCTGC 2520 CAAAGAGACT GGGCGCAGTG GCTCATGCC ATAATCCCG CACTTGGGA GATGGAGGCG 2580 GGAAAATCAT TTGAGGTCAAG AAGTTCAAGG CCAGCTTGA CGACATAGCG AGACTCCACC 2640 70 TCTACCAAAA AATAAAAATT AAAAAACAAA AAAAAAAA AAAAAA 2700

75 **SEQ ID NO:134 PFH5 Protein sequence:**
Protein Accession #: NP_001132.1

1	1 11 21 31 41 51
	MAEFRVRVST GEAFFGAGTW D KVSVSIVGTR GESPPLPLDN LGKEFTAGAE EDFQVTLPED 60 VGRVLLRVH KAPPVPLLG PLAPDAFWCR WFQLTPPRGG HLLFPCYQWL EGAGTQLVQE 120 GTAKVSWADH HPVLQQQRQE ELQARQEMYQ WKAYNPWPH CLDEKTVDL ELNIKYSTAK 180

NANFYLQAGS AFAEMKIKGL LDRKGWLWRL NEMKRIFNFR RTPAAEHAFE HWQEDAFFAS 240
 QFLNGLNPVL IRRCHYLPKN FPVT DAMVAS LLGPGTSLQA ELEKGSFLV DHGILSGIQT 300
 NVINGKPFS AAPMTLLYQS PGCGPLPLA IQLSQTPGPN SPIFLPTDDK WDWLAKTWV 360
 5 RNAEFSFHEA LTHLLLHSHLL PEVFTLATLR QLPHCHPLFK LLIPHTRYTL HINTLARELL 420
 IVPGQVVDRS TGIGIEGFSE LIQRNMKQLN YSSLCLPEDI RTRGVEDIPO YYYRDDGMQI 480
 WGAVERFVSE IIIGIYYPSE SVQDDRELQA WVREIFSKCF LNQESSGIPS SLETREALVQ 540
 YVTMVFITCS AKHAAVSAGQ FDSCAWMPNL PPSMQLPPP SKGLATCEGF IATLPPVNAT 600
 CDVILALWLL SKEPGDQRPL GTYPDEHFTE EAPRRSIATF QSRLAQISRG IQERNRGLVL 660
 PYTYLDPPLI ENSVSI

10

SEQ ID NO:135 PFH4 DNA SEQUENCE

Nucleic Acid Accession #: NM_002742

15

Coding sequence: 236-2974 (underlined sequences correspond to start and stop codons)

1 11 21 31 41 51
 GAATTCCCTTC TCTCCCTCCT CTCGCCCTTC TCCTCGCCCT CCTCCCTCCTC CTGCCCTCC 60
 20 CCTCCCGATC CTACATCCCT TGCCCTCCCC CAGCCCAGGG ACTTTCCGG AAATTTTTTA 120
 TTTTCCGTCT GGGCTCTCGG AGAAAAGAAC TCTCTGGCTCA GCGGGCTGCAA AACTTTCCGT 180
 CTGCCCGGCC GCCAGCCCCC GCCCCTCCCT GCGCCGGCC GAGCCGGCG 240
 CGCCCCCTCCG GTCTCGCCG CGCCCGACTC GCTGCTGCCG GTGGCCGGG CAGCTGCCG 300
 AGCGGCCGCC GCACTGGTCC CAGGGTCCGG GCGCCGGGCC GCGCCGTTCT TGGCTCCGT 360
 CGCGGCCGCCG GTCCTGGCTCA TCTGCTTCA TCTGCAGATC GGCGCTGAGCC GTGAGCCGGT 420
 CTGCTCTGCT CAGGACTCGT CGGGGGACTA CAGCCTGGCG CACGCTCCG AGATGGCTTG 480
 CTCCATGTC GACCAGAAAGT TCCCTGAATG TGGTTTCTAC GGAATGTATG ATAAGATCT 540
 GCTTTTCGCG CATGACCTCA CCTCTGAAAAT CATCTCTAG CTGGTGAAG CGGGCACTG 600
 TATCCAGGAA GGCAGATCTTA TTGAAGTGGT CTGGTCACGT TCCGCCACCT TTGAAGACTT 660
 25 TCAAGATCTG CCCCCACGCTC TCTTGTCTCA TCTACACAGA GCTCACGCTT TCTGTGATCA 720
 CTGTGGAGAA ATGCTGTGGG GGCTGGTAGC TCAAGGTCTT AAATGTGAAG GGTGTGGTCT 780
 GAATTACCAT AAGAGATGTG CATTAAAT ACCCAACAT TGCAGCGGTG TGAGGCGGAG 840
 AAGGCTCTCA AACGTTTCCC TCACTGGGGT CAGCACCATC CGCACATCAT CTGCTGAAC 900
 30 CTCTACAAGT GCCCCTGATG AGCCCTCTCT GCAAAATCA CCATCAGAGT CGTTTATIGG 960
 TCGAGAGAAG AGGTCAAATC TCAATCATCA CATGGACGA CCAATTCACC TTGACAAGAT 1020
 TTIGATGTCT AAAGTAAAG TCGCCACAC ATTGTCTCAT CACTCTACAC CCCGGCCAC 1080
 AGTGTGCCAC TACTGCAAGA AGCTCTGAA GGGGCTTTIC AGGCAGGGCT TGAGTGCAA 1140
 35 AGATTGCGAA TICAACGTGCC ATAACAGTTG TGCAACGGAA GTACCAAACA ACTGCCTTG 1200
 CGAAGGTGACC ATTAATGGAG ATTGCTTAG CCCTGGGGCA GAGTCGTGATG TGCTCATGGA 1260
 40 AGAAAGGAGT GATGACAATG ATAGTGAAGA GAACAGTGGG CTATGATGAT ATATGGAAGA 1320
 AGCAATGGTC CAAGATGCAG AGATGGCAAT GGCAAGACTGC CAGAACGACA GTGGCGAGAT 1380
 GCAAGATCCA GACCCAGACCC AGCAGGACGC CAAACAGAAC ATCAGTCCAT CAACAAGCAA 1440
 45 CAATATCCA CTCATGAGGG TAGTGCAGTC TGTCAACAC ACAGAAGAGGA AAAGCAGCAC 1500
 AGTCATGAAA GAAGGATGGA TGGTCCACTA CACCAAGCAAG GACACGTGC GGAAACGGCA 1560
 CTATTGGAGA TTGGATAGCA AATGTATAC CCTCTTCTAG AATGACACAG GAAGCAGGTA 1620
 CTACAAGGAA ATCCCTTAT CTGAAATTG TGCTCTGGAA CCAGTAAAAA CTTCAGCTTT 1680
 AATTCTCAAT GGGGCAACAT CTCATGTTT CGAAATCATC ACGGCAAAATG TAGTGTATTA 1740
 50 TGTTGGGAGAA AATGTGGTCA ATCCTTCAG CCCATCACC AATAACAGTG TTCTCACAG 1800
 TGGCGTGGT GCAGATGTG CGCAGATGTG GGAGATAGCC ATCCAGCATG CCCTTATGCC 1860
 CGTCATTCCC AAGGGCTCTT CCGTGGGTAC AGGAACCAAC TTGACAGAG ATATCTCTGT 1920
 GACTATTCTCA GTATCAAATT GCCAGATTCA AGAAAATGTG GACATCAGCA CACTATATCA 1980
 GATTTTCCTC GTAGAAGTC TGGGTCTGG ACAGTTGGA ATTTGTTATG GAGGAAAACAA 2040
 55 TCGTAAACAA GGAAGAGATG TAGCTTATTA AATCATGAC AAATTCAGAT TTCCAACAAA 2100
 ACAAGAAAGC CAGCTCTGTA ATGAGGTGCA AATTCATACAG AACCTTCATC ACCCTGGTGT 2160
 TGTAATTTG GAGTGTATGT TTGAGACGCC TGAAAGAGTG TTGTTGTTA TGGAAGAAACT 2220
 CCATGGAGAC ATGCTGGAAA TGATCTGTC AAGTGAAGAA GGCAAGGTGCA CAGAGCACAT 2280
 60 AACGAAGTTT TTAAATCTC AGATACTCGT GGCTTGGCG CACCTTCATT TTAAAATAT 2340
 CGTTCACTGT GACCTCAAC CAGAAAATGT GTTGCTAGCC TCACTGATC CTITCCTCA 2400
 GTGAAACTT GTGATTTG GTTGGCCCG GATCATGGA GAGAATGCTC TCCGGAGGTC 2460
 AGTGGTGGGT ACCCCCGCTT ACCTGGCTCC TGAGGTCCTA AGGAACAAAG GCTACAAATCG 2520
 CTCTCTAGAC ATGTTGGTCTG TTGGGGTCTAT CACTATGTA AGCCTAAGCG GCACATTCCC 2580
 ATTAAATGAA GATGAGAAC TACACGGCA AATTCAGAAT CGACGCTTCA TGATATCCACC 2640
 65 AAAATCCCTGG AAGGAATAT CTCATGAAGC CATGATCTT ATCAACAAATT TGCTGCAAGT 2700
 AAAATGAGA AAGCGCTACA GTGTTGATAA GACCTTGAGC CACCTTGGC TACAGGACTA 2760
 TCAGACCTGG TTAGATTG GAGAGCTGGA ATGCAAACAT GGGGAGCGCT ACATCACCCCA 2820
 TGAAAGTGTGAT GACCTGAGGT GGGAGAGTA TGCAAGCGAG CAGCGGCTGC AGTACCCCA 2880
 ACACCTGATC AATCCAAGTC CTAGCCACAG TGACACTCTT GAGACTGAAG AAACAGAAAT 2940
 GAAAGCCCTC GGTGAGCGTG TCAGCATCTT CTGAGTTCCA TCTCCATATAA TCTGTAAAAA 3000
 CACTGTGGAA CTAATAAAATA CATAACGGTCA GGTTAACAT TTGCTTGTCA GAACGTGCCAT 3060
 70 TATTTCCTGT CAGATGAGAA CAAAGCTGTAA ACTGTGTTAG CACTGTGAT GTATCTGAGT 3120
 TGCCAAGACA AATCAACAGA AGCATTGTA TTGTTGTGA CCAACTGTGT TGTTAAACA 3180
 AAAGTTCCCT GAAACACGAA ACTGTGTTAGT GTGAATGTGTT CATGTTATAT TTAATGCTT 3240
 AAACCTGTCT CCACTGTGCC TTGCAAAATC AGTGTGTTTC TTACTGGAGC TTCACTTGG 3300
 TAAGAGACAG AATGTATCTG TGAAGTAGTGT GTGTTGGTGTG TGTCCTCATG GTGTTGTCT 3360
 75 TGTAACACAA CTCCTGAAGA GTGCGATTATT TCCAGTGTTC TATGAAACAC TCCAAAACCC 3420
 ATGTGGGAAA AAAATGAAAGT AGGAGGGTAG GGAATAAAAT CTTAAGACAC AAATGCATGA 3480
 ACAAGTTTA ATGTATGTT TTGAACTCTT TGCTCTGCTG TGCTGCTCA GTATATTAA 3540
 ACTCAAGACA ATGCACCTAG CTGTCAGAAGA CCTAGTGTCTC TTAAGCCTAA ATGCCTTAGA 3600
 AATGTAAACT GCCATATATA ACAGATACAT TTCCCTCTT CTTATAATAC TCTGTGTC 3660

TATGGAAAAT CAGCTGCTCA GCAACCTTC ACCTTTGTGT ATTTTCAAT AATAAAAAAT 3720
ATTCTTGCTCA AAAAAAAA AA

5 **SEQ ID NO:136 PFH4 Protein sequence:**
Protein Accession #: **NP_002733.1**

10	1 11 21 31 41 51	
	MSAPPVLRRP SPPLPVAAAA AAAAALVPG SGPGPAPFLA PVAAPVGGIS FHLQIGLSRE 60	
	PVLLLQDSSG DYSLAHVREM ACSIVDQKFP ECGFYGMYDK ILLFRHDPTS ENILQLVKAA 120	
	SDIQEGLIE VVLSRSATFE DFQIRPHALF VHSYRAPAFC DHCGEMLWGL VRQGLKCEGC 180	
	GLNYHKRCAF KIPNNCSGVR RRRLSNVSILT GVSTIRTSSA ELSTSAPDEP LLQKSPSESF 240	
	IGREKRNSQ SYIGRPIHLD KILMSKVVKP HTFVIHSYTR PTVCQYCKKL LKGLFRQGLQ 300	
	CKDCRFNCHK RCAPKVPNNC LGEVTINGDL LSPGAESDVV MEEGSDDNDS ERNSGLMDDM 360	
	EEAMVQDAEM AMAECQNDSG EMQDPDDHE DANRTISPST SNNIPLMRVV QSVKHTKRKS 420	
	STVMKEGRLSKC HTSKDTRLK RHYWRLDSC ITLFQNDTGS RYVKEIPLSE ILSLEPVKTS 480	
	ALIPNGANPH CFEITTANVV YVGENVVNP SSPSPNNSVL TSGVGADVAR MWEIAIQHAL 540	
	MPVIPKGSSV GTGTNLHRDI SVSISVSNQ IQENVDISTV YQIFPDEVLG SGQGIVYGG 600	
	KHRKTGRDVA IKIIDKLRFP TKQESQLRNE VAILQNLHHP GVVNLECMFE TPERVFVUME 660	
	KLHGDMLEMI LSSEKGRRLPE HITKFLITQI LVALRHLHFK NIVHCDLKPE NVLLASADPF 720	
	PQVKLCDFGF ARIJGEKSFR RSVVGTAYL APEVLRNKGY NRSLDMWSVG VIYVSLSGT 780	
	PPFNEDEDIH DQIQNAAFMY PPNPWKEISH EAIDLINLL QVKMRKRYSV DKTLSHPWLQ 840	
	DYQTWLDLRE LECKIGERYI THESDDLWV KYAGEQRQLQY PTHLINSAS HSDTPETEET 900	
	EMKALGERVS IL	

30 **SEQ ID NO:137 PFH3 DNA SEQUENCE**
Nucleic Acid Accession #: X95425
Coding sequence: 712-3825 (underlined sequences correspond to start and stop codons)

35	1 11 21 31 41 51	
	AATGGTCAGT CAATACATTA TAACATAATA CACCAAATGC TAGAATAGAA GGGGAGGGGG 60	
	CCACACATAA TGACTCACTG CTGGAAGAAG GGTCATCATG TGAAATAAAAA AATGCTCCCTC 120	
	CCCTCTTCAG CACTCAGCGC GCAGCTATT CCTCTCTGCCA GTCTCTTIGA ACTCTGGATC 180	
	TTTGTCTTTCG CTGCTGCTC TCTCTGTTTT CATTCTCCAA TCCCTCTTCT 240	
	TTATCTCTAG CCACCCCTGCT TTTTCTCTCC TTTTTAAAAA AATCGGAGAT TTCTCTTAA 300	
	AATGATTITGT CTTCCTTACCC TTCTGTCATT TCAACACTGA AGGCTGCAA GAACCTCACC 360	
	TTTCCCCTAG TGGTATTTAA AAATCTCAA TCCGTAAGAA GCTCTTTIGA AAGGCAAAGG 420	
	AACAGGACCC ACAGCCCTCTC GACACCCCTTG ATCCGAGCTA GATCTGCACT AGCAACCCAGA 480	
	ACTAATATTT CATTAAACCC ACCAAAAGGG GGAGGGAGA GGAGCCAGAA GCAAACCTICA 540	
	TCTGCTCTAG ACGGGATCCG GTGGTCTACA TTGGGAGGAG CGCGCTGTCA GAAGGGCTAG 600	
	GACCCCCAAGG GGGGACAAGGG AGGACTCCCG AGTCTCCCTT CTCCGCTCTC CGAGACCGAA 660	
	GAGGGTGGACT GAGCCGCTCG GGACAGCCGC ACCGGAGGAG GCTGGAGAA GATGCGGGGC 720	
	TCGGGGCCCC GGGGTGCGGG ACACGGCGG CCCCCAAGCG GCGGGCGCGA CACCCCATC 780	
	ACCCAGCGT CCCTGGCCCG CTGCTACTCT GCACCTCGAC GGCGCTCCCT CTGGACGTGC 840	
	CTTCTCTCTG GCGCCGCACT CGGGCACCTC CTGGCCAGCC CGACCAACGA AGTGAATTTC 900	
	TTGGATTACAC GCACTGTCA GGGGGACCTG GGATGGATTG CTTTICCAA AAATGGGTGG 960	
	GAAGGAGATG GTGAAAGTGA TAAATATACCA ATTGATACCA TTGCTGCCGA TGAAAGCTTT 1020	
	GTGATGGAAC AAATCAGAAA TAATCTGGCTT TTGACCAAGTT GGATCTCAA TGAAAGGTGCT 1080	
	TCCAGAATCT TCATAGAACT CAAATTACCC CTGCGGAACT GCAACAGCCT TCCCTGGAGGA 1140	
	CTGGGGACCT GTAAAGGAAAC CTTTAATATG TATTATCTTG AGTCAGATGA TCAGAAATGGG 1200	
	AGAAAACATCA AGGAAAACCA ATACATCAA ATTGATACCA TTGCTGCCGA TGAAAGCTTT 1260	
	ACAGAACTTG ATCTTGTGA CGCTGTTATG AAATCTGAAGA CATAGGTGAG AGATGTAGGA 1320	
	CCTCACAGTT ATACCCATGA GGAAGCTICA ACCTCTTGTG TCTGTGAAAAA GGATTATTC 1380	
	AGGAGAGAGT CTGATCCACC CACAATGGCA TGACAAAGAC CCCCCCTCTGC TCTCTGGAAAT 1440	
	CTCTGACCA TCACTGGAGC TGATTCTTC CAATTCGTCG AAGTGTCTGG CTCTCTGTGTC 1500	
	AACCATTCTG TGACCGATGA ACCTCCAAA ATGCACTGCA GCGCCGAAGG GGAGTGGCTG 1560	
	GTGCCCCATCG GGGAAATCG GTGCAAGGCA GGATGATGAAG AGAAAATGG CACCTGTCAA 1620	
	GTGTGAGAC CTGGGGTCTT CAAAGCTCA CCTCACATC AGAGCTGCGG CAAATGTCAA 1680	
	CCTCACAGTT ATACCCATGA GGAAGCTICA ACCTCTTGTG TCTGTGAAAAA GGATTATTC 1740	
	AGGAGAGAGT CTGATCCACC CACAATGGCA TGACAAAGAC CCCCCCTCTGC TCTCTGGAAAT 1800	
	GCCATCTCAA ATGTTAATGA AACTAGTGTG TTTCTGGAAAT GGATTCGCCG TGCTGACACT 1860	
	GTTGGAAGGA AAGACGCTGTG ATATTATATG GCATGCAAGA AGTGCACACT CCATGCAAGGT 1920	
	GTGTGAGG AGTGTGGCGG TCTACTCGCTCACACAAACT ATACCTTIGA GATTGAGGCA 1980	
	ACCTCTGTCA TGATGGTGGAA TCTACTCGCTCACACAAACT ATACCTTIGA GATTGAGGCA 2040	
	GTGAATGGAG GAGCCGACTT GAGCCGAGGA GCGCCGCAGT ATGTGTCTGT AAATGTAACC 2100	
	ACAAATCAAG CAGCTCCATC TCCAGTCACC AATGTGAAAAA AAGGGAAAAT TGCAAAAAAC 2160	
	AGCATCTCTT TGCTTGGCA AGAACCCAGAT CGTCCCAATG GAATCATCTT AGAGTATGAA 2220	
	ATCAAGCATT TTGAAAAGGA CCAAGAGACC AGTACACCGA TTATCAAATC TAAAGAGACA 2280	
	ACTATTACTG CAGAGGGCTT GAAACCAGCT TCAGTTATG TCTTCAAAT TCGAGCACGT 2340	
	ACAGCAGCAG GCTATGGTGT CTICAGTGTGA AGATTGAGT TTGAAACCCAC CCCAGTGT 2400	
	CGACGATCCA CGCATCAAAG CCAGATTCTG TGAATTGCTG TGCTCTGTGAC AGTAGGAGTC 2460	
	ATTITGTTGG CAGTGTGTTAT CGGGCTCTC CTCACTGGAA GTTGTGCGA ATCTGGCTGT 2520	
	GGGAGGGCTT CTTCCTGTG CGCTGTGCC CATCAAATCC TAATATGGCG GTGTGGCTAC 2580	
	AGCAAAAGCAA AACAAAGATCC AGAAGAGGAA AAAGATGCATT TTICATAATGG GCACATTAAA 2640	

CTGCCAGGAG TAAGAACCTTA CATTGATCCA CATACTTATG AGGATCCCA TCAAGCTGTC 2700
 CACGAATTG CCAAGGAGAT AGAAGCATCA TGATCACCA TTGAGAGAGT TATTGGAGCA 2760
 CGTGAATTG GTGAAGTTG TAGTGGACCT TTGAAACTAC CAGGAAAAAG AGAATTACCT 2820
 5 GTGGCTATCA AAACCCTAA AGTAGGCAT ACTGAAAAGC AACCGAGAGA TTCTCTAGGT 2880
 GAAGCAAGTA TCATGGGACA GTTGATCAT CCTAACATCA TCCATTAGA AGGTGTGGTG 2940
 ACCAAAAGTA AACCAGTGT GATCGTGACA GAGTATATGG AGAATGGCTC TTAGATACA 3000
 TTTTGAGA AAAACGATGG GCAGTTCACT GTGATTGAGC TTGTTGGCAT GCTGAGAGGT 3060
 ATCTCTGAG CAATGAGAATCTTCTGAC ATGGGCTATG TGATAGAGA TCTTGTGTC 3120
 10 AGAACACATCT TAATCAACAG TAACCTTGTG TGCAAAGTGT CTGACTTTGG ACTTTCCGG 3180
 GTACTGAAAG ATGATCCCGA GGCAGCTAC ACCACAAGGG GAGGAAAAT TCCAATCAGA 3240
 TGGACTGCC CAGAAGCAAT AGCTTTCCGA AAGTTTACTT CTGCACTGTA TGTCTGGAGT 3300
 TATGGAATAG TAATGTGGGA AGTTGATGCT TATGGAGAGA GACCCTACTG GGAGATGACC 3360
 15 AATCAAGATG TGATTAACCG GGTAGAGGAA GGCTATCGTC TGCCAGGCC CATGGATTGT 3420
 CCTGCTGTC TCTATCAGTT AATGCTGGAT TGCTGGCAGA AAGAGCGAA TAGCAGGCC 3480
 AAGTTGATG AAATGCTCA CATGTTGAC AAGCTGATAC GTAAACCCAG TAGTCTGAAAG 3540
 20 ACGCTGGTTA ATGCATCTG CAGAGTACT AATTATTTGG CAGAACATAG CCCACTAGGA 3600
 TCTGGGGCT ACAGATCAGT AGGTGAATGG CTAGAGGCA TCAAGATGGG CCAGTATACA 3660
 GAGATTTCAGA TGGAAAATG ATACAGTCA ATGGACGCTG TGGCTCAGGT GACCTTGGAG 3720
 GATTGAGAC GGCTTGGAGT GACTCTGTC GGTACCCAGA AGAAGATCAT GAACAGCCTT 3780
 CAAGAAATGA AGGTGCAGCT GGTAACACCGA ATGGTCCAT TGTAACTTC TGAAATGTC 3840
 GCTTCTCAA GTGAATGATT CTGCACTTGT TAAACAGCAC TGAGATTAT TTAAACAAAAA 3900
 AAA

SEQ ID NO:138 PFH3 Protein sequence:

Protein Accession #: CAA64700.1

	1	11	21	31	41	51
30	MRGSGPREGAG HRRPPSGGGD TPITPASLAG CYSAPRRAPI WTCLLCAAL RTLLASPSNE 60					
35	VNLLDSRTVM FDLGWIAFPK NGWEEIGEVD ENYAPIHTYQ VCKVMEQNQN NWLLTSWISN 120					
40	EGASRIFIEL KFTLRLDCNSL PGGLGTCKET FNMYYFESDD QNGRNIKENQ YIKDITIAAD 180					
45	ESFTELDLDG RVMKLNTTEVR DVGPPLSKKGFL YLAQFDVGAC IALVSVRVYY KKCPSSVRHL 240					
50	AVFPDTITGA DSSQLLEEVSC SCVNHSVTDE PPKMHCASEG EWLPIGKCM CKAGYEKEKG 300					
	TCQVCRPGFF KASPHIQSCG KCPPHSYTHE EASTSCVCEK DYFRRESDPP TMACTRPPSA 360					
	PRNAISNVNE TSVFLEWIPP ADTGRKRKDV S YYIACKKCNS HAGVCCECGG HVRYLPRQSG 420					
	LKNTSVMMVD LLAHTNYTTE IEAVNGVSDL SPGARQYVS NVTINQAAPS PVTVNKKGKI 480					
	AKNSISLWSQ EPDRPNGIL EYEIKHFEKD QETSYTIIKS KETITTAEGL KPASVYVFQI 540					
	RARTAAGYGV FSRRFEBFETT PVFAASSDQS QIPVIAVSVT VGVILLAVVI GVLLSGSCCE 600					
	CGCGRASSLC AVAHPILWR CGYSKAKQDP EEEKMHFHING HIKLPGVRTVY IDPHTYEDPN 660					
	QAVHEFAKEI EASCITIEV IGAGEFGEVC SGRLKLPGKR ELPVAIKTLK VGYTEKQRD 720					
	FLGEASIMQ FDHPNIIHLE GVVTKSKPVM IVTEYMGNS LDTFLKKNDG QFTVQLVGM 780					
	LRGISAGMKY LSDMGYVHRD LAARNILINS NLVKVSDFG LSRVLEDDEP AAYTRGGKI 840					
	PIRWTAPEAI AFRKFTSASD WWSYGERPYW EMTNQDVKA VEEGYRLPSP 900					
	MDCPAALYQL MLDCWQKERN SRPKFDEVN MLDKLIRNPS SLKTLVNASC RVSNLAEHS 960					
	PLGSGAYRSV GEWLEAKMG RYTEIFMENG YSSMDAVAQV TLEDLRRLGV TLVGHQKKIM 1020					
	NSLQEMKVQL VNGMVP					

SEQ ID NO:139 PFH2 DNA SEQUENCE

Nucleic Acid Accession #: NM_016029

Coding sequence: 78-1097 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51
60	CTGCGATCCC GCAGGGCAGC GACGCGACTC TGGTGCAGGC CGTCTCTTC CCCCCGAGCT 60					
	GGCCGTGCGC GGCCCGAATG AACTGGAGC TGCTGCTGTG GCTGCTGGT CTGTCGCGC 120					
	TGCTCTCTGCT CTGGTGTGAG CTGCTGCGCT TCCCTGAGGC TGACGGGGC CTGACGCTAC 180					
	TATGGCCGA GTTGGCAGGG CAACGGCCAG AATGGGAGGT GACTGATATG GTGGTGTGGG 240					
	TGACTGGAGC CTCGAGTGGAA ATTGGTGTGAGG AGCTGCTTA CCAGTGTCTTAAACAGGG 300					
	TTTCTCTGT GCTGTAGGCC AGAAGAGTC ATGAGCTGGA AAGGGTGAAG AGAAGATGCC 360					
	TAGAGATGCA CAAATTTAAA GAAAAAGATA TACTTGTGTTT GCCCCCTGAC CTGACCGACA 420					
	CTGGTTCCCA TGAAGCGGGT ACCAACAGTC TTCTCCAGGA GTTGGTAGA ATCGACATTC 480					
	TGGTCAACAA TTGGTGAATG TCCCAGCGTT CTCTGTGCTAT GGATACCAGC TTGGATGCT 540					
	ACAGAAAAGCTT AATAGAGCTT AACTACTTAG GGACGGTGTC CTTGACAAAAA TTGTTCTGC 600					
	CTCACATGAT CGAGAGGAAG CAAGGAAAGA TTGTACTGT GAATAGCATC CTGGGTATCA 660					
	TATCTGTACCT TCTTICCAATT GGATAGCTGTG CTAGCAAGCA TGCTCTCCGG GGTTTTTTA 720					
	ATGGCCCTTCG AACAGAACTT GCCACATACC CAGGTATAAT AGTTCTAAC ATTTGCCAG 780					
	GACCTGTGCA ATCAAATATT GTGGAGAATT CCTCTAGCTGG AGAAGTCACA AAGACTATAG 840					
	GCAATAATGG AGACCAAGTCC CACAAGATGA CAACCACTGCG TTGTTGCGG CTGATGTTAA 900					
	TCAGCATGGC CAATGATTG AAAAGAAGTTT GGATCTAGA ACAACCTTC TTGTTAGTAA 960					
	CATTTTGCG CAAATACATG CCAACCTGGG CCTGGTGGAT AACCAACAAG ATGGGGAAAGA 1020					
	AAAGGATTGA GAACCTTAAG AGTGGTGTGG ATGCAGACTC TTCTTATTAA AAAATCTTAA 1080					
	AGACAAAACA TGACTGAAAGA GAGCACCTGT ACTTTCAAG CCACCTGGAGG GAGAAATGGA 1140					
	AAACATGAAA ACAGCAACTCT TCTTATGCTT CTGAAATAATC AAAGACTAAT TTGTTAGTTA 1200					

ACTTTTAAT AGATATGACT TTGCTTCAA CATGGAATGA AATAAAAAAT AAATAATAAA 1260
AGATTGCCAT GAATCTTGCA AA

5

SEQ ID NO:140 PFH2 Protein sequence:
Protein Accession #: NP_057113.1

10	1 11 21 31 41 51	
	MNWEILLWLVLICALLLILV QLLRFLRADG DLTLWAEWQ GRRPEWEI LTD MVVWVTGASS 60	
	GIGEELAYQL SKLGVLVLS ARRVEHELERV KRCLENGNL KEKDILVPLP DLTDTGSH 120	
	ATKAVLOEFG RIDILVNNGG MSQRSLCMDT SLDVYRKIE LNYLGTVS LT KCVLPHMIE 180	
	KQGKIVTVNS ILGHISVPLS IGYCASKHAL RGFFNGLRTE LATYPGIHS NICPGPVQSN 240	
15	IVENSLAGEV TKTIGNNGDQ SHKMTTSRCV RMLISMAND LKEVWSEQP FLLVTYLWQY 300	
	MPTAWWWITN KMGKKRIENF KSGVDADSSY FKIFKTKHD	

20

SEQ ID NO:141 PFH1 DNA SEQUENCE

Nucleic Acid Accession #: NM_021614

Coding sequence: 1-1740 (underlined sequences correspond to start and stop codons)

25	1 11 21 31 41 51	
	ATGAGCAGCT GCAGGTACAA CGGGGGCGTC ATGCAGCCGC TCAGAACCTT GAGCGCGTCC 60	
	CGCCCGAACCG TGACAGAGAT GGACTCAGAG GCGCACCCCC TGACGCCCG CGCGCTCTGTC 120	
	GGAGGAGGTG GCGGCCGCTC CTCCCCGTCT GCAGCCGCTG CGGCCGCCGC CGCTGTTCG 180	
	TCTCAGCCCG CCGAGATCGT GGTGCTAAG CCCGAGACAA ACAACTCCAA CAACCTGGCG 240	
	CCTCATGGAA CGGGCGCCGG AGGCAGCACT GGAGGAGCGC GCGGCCGTTG CGGGAGCGGG 300	
	CACGGCAGCA GCAGTGGCAC CAAGTCCAGC AAAAAGAAAA ACCAGAACAT CGGCTACAAG 360	
	CTGGGCCAAC CGGCCACCT GTTCAAGGGC TCAGCGACTA CGCCGCTCATC 420	
	TTCGGCATGT TCGGCATCGT GGTCAATGGTC ATCGAGACCG AGCTGTGTCG GGGCGCTAC 480	
	GACAAGGCGT CGCTGTATTC CTTAGCTCTG AAATGCCCTA TCAGTCTCTC CACGATCATC 540	
	CTGCTCGGTC TGATCATCGT GTAACACGCC AGGGAAATAC AGTTGTTCAT GGTGACAAT 600	
	GGAGCAGATG ACTGGAGAAAT AGCCATGACT TATGAGCGTA TTTCTTCAT CTGCTTGAA 660	
	ATACTGGTGT GTGCTATTCA TCCCACACTT GGGAAATTATA CATTACATG GACGCCCGG 720	
	CTTGCCTCT CCTATGCCCT ACCCACAAACC ACCGCTGATG TGGATATTAT TTTATCTATA 780	
	CCAATGTTCT TAAGACTCTA TCTGATTGCC AGAGTCATG TTTACATAG CAAACCTTTC 840	
	ACTGATGCTT CCTCTAGAAC CATTGGAGCA CTTAATAAGA TAAACTCAA TACACGTTT 900	
	GTATGAAGA CTTAATGAC TATATGCCA GGAACGTAC TCTTGGTTT TACTATCTCA 960	
	TTATGATAA TTGCGGCATG GACTGTCGA GCTTGTGAA GGTACCATGA TCAACAGGAT 1020	
	TTTACTAGCA ACTTCCTTG AGCGATGTTG TTGATATCAA TAATTTCT CTCCATTGGT 1080	
	TATGGTGACA TGGTACCTAA CACATCTGT GGAAAAGGG TCTGCTTACT TACTGGAAAT 1140	
	ATGGGTGCTG GTTGACAGC CCTGGTGTGA GCTGTAGTGG CAAGGAAGCT AGAAACTTAC 1200	
	AAAGCAGAAA AACACGTGCA CATTTCATG ATGGATACTC AGCTGACTAA AAGAGTAAAAA 1260	
	AATGCACTG CCAATGACT CAGGGAAACA TGCGTAATT ACAAAATAC AAACTAGTG 1320	
	AAAAAGATAG ATCATGCAA AGTAAGAAAA CATCAACGAA AATTCTGCA AGCTATTCA 1380	
	CAATTAAAGA GTGTAAGAAA AGGACGAGG AAACGTGAATG ACCAAGCAAAC CATTGGTG 1440	
	GACTTGGCAA AGACCCAGAA CATCTGTAT GATATGTTT CTGACTTTAA CGAAAGGAGT 1500	
	GAAGACTTCG AGAAGAGGAT TGTACCTCTG GAAACAAAAC TAGAGACTTT GATGGTAGC 1560	
	ATCCACGCCCT TCCCTGGGCT CATAAGCCAG ACCATCACGC AGCAGCAGAG AGATTCTATT 1620	
	GAGGCTCAGA TGGAGAGCTA CGACAAGCAC GTCACTTACA ATGCTGAGCG GTCCCGGTCC 1680	
55	TCGTCCAGGA GGCGCCGGTC CTCTTCCACA GCACCAACAA CTTCATCAGA GAGTAGCTAG	

SEQ ID NO:142 PFH1 Protein sequence:
Protein Accession #: NP_067627

60	1 11 21 31 41 51	
	MSSCRYNGGV MRPLSNL SAS RRNLHEMDSE AQPLOPPASV GGGGGASSPS AAAA AAVS 60	
	SSAPEIVVSK PEHNNSNL LA YGTGGG ST GGGGGGGSG HGSSGTKSS KKKQNIGYK 120	
	LGHRRALFEK RKRLSDYALI FGMPGIVVMV IETELSWGAY DKASLYSLAL KCLISLSTII 180	
	LLGLIIVYHA REIQLFMV DN GADDWRIAMT YERIFFCLE ILVCAIIPIP GNYTFWTAR 240	
	LAPFSYAPSTT TADVDIILS PMFLRLYLIA RVMLLHSKLF TDASSRSIGA LNKINFTRF 300	
	VMKTLTMICP GTVLLVFSIS LWIIAAWTVR ACERYHDQQD VTSNFLGAMW LISITFLSIG 360	
	YGDMVPNTYC GKGVCLLTG I MGAGCTALVV AVVARKLELT KAEKHVHNFM MDTQLTKRVK 420	
	NAAANVLR ET WLIYKNTKLV KKIDHAKVRK HQRKFLQAIH QLRSVKMEQKLNDQANTLV 480	
70	DLAKTNIMY DMISDLNERS EDFEKRVITL ETKLETLIGS IHALPGLISQ TIRQQQRDFI 540	
	EAQMESYDKH VTYNAERSRS SSRRRRSSST APPTSSESS	

75

SEQ ID NO:143 PFG9 DNA SEQUENCE

Nucleic Acid Accession #: AL110139, coding region is FGENESH predicted

Coding sequence: 1-1896 (underlined sequences correspond to start and stop codons)

80	1 11 21 31 41 51	
----	---------------------------------	--

1 | ATGCGCGCCG TGCCGCTGCC CGCCCCGCTC CTGCCGCTGC TGCTGCTCGC GCTCCTGGCC 60
 5 | GCTCCCGCG CCCGCGCCAG CAGAGCCGAG TCCGTCCTCG CGCCGTGGCC CGAACCCGAG 120
 CGCGAGTCGC GGCCACCGCC CGGCCCGGGG CCCGGGAACA CCACCCGGTT TGGGCTGGG 180
 10 | GCGGCGGGCG GCAGCGGCAG CTCCAGCTCC AACAGCAGTG GCGACGCCCTT GGTGACCCGC 240
 ATTTCCATCC TCCTCCCGA CCTACCCACC CTCAAGCGAG CGGTGATCGT GGCGTTCGCC 300
 TTACCAACCC TCCTCATCGC CTGCCCTGCTG CTGCCGTCT TAAGGTGGG AAAGAGGTTA 360
 15 | AAGAAGACAC GCAAGTATGA TATCATCAC ACTCCAGCAG AGCGAGTGGAA ATGGCGCCA 420
 CTAATGAAG AGGATGATGA AGATGAGGAG TCCACAGTAT TCGACATCAA ATACAGAGTG 480
 20 | TCTTGGCCGG CTGCACTGAG ACGTCAGTG CCAGGGTGCC AGACGCTACT GACAGTTCC 540
 GTGCCCCCCC CCTTCATCTCC CGACATTGAC CTCCACGAA GATGCACTGG AAGGCCTGAT 600
 GGTGGAATCA GACCTGGTAA AACCTTTGTC CCAGCCTGGT GGCACTCTGT GGAAAGTTGG 660
 TCAGCTGCAA CCTGGGGTGT GAAGGACTGG ACCTGAAAGC CCTCTTGCCTG CGGAGGTGTT 720
 25 | GAAACCAAAA CGAACGTAT GTATAAAACC CCAGCTCCAT CGTGGTGTGTC AGGCATCTGC 780
 TCAGACTGTC ACTGGCAAGC TCGTTTCCAC GTCACCAAA TGGAGTTGCT TCTGCCACCC 840
 TTGGGCACT CCTTTAAAGT GCGCCCTACT TCTACTCCCG ATGGTTTCTG ACAACTGCAG 900
 CTGAATCTCA TGGAAAAGCT GGATTCTCT GCCTTACGCA GAAACACCCG GGCTCCATCT 960
 30 | GCCAGGTGCT TGCCACTGT CCTGGCAGAA ATGGCCGCTG CTGAAAGTGA CCTTCCAAAT 1020
 CCTTGGTGGC ATTCAGCGC CACAGCTCT CCAATAAAA CCTTCTACAC ACAAAACCATG 1080
 35 | AGTACCTTGG GCTTGGATGT TTCTGTGGT GCCGGCCAGC GGGGCACCTT TTGTAAGAC 1140
 AGAGCAGTGA CTAAGGTTCT CCAGGGTAGC TCTTCTCCA AACAGCTGGG CTGGAAAGCCA 1200
 GCCCTAGAGA GTGGGTTTCA CCATCATCTC AGGCTTCTCA GAGAGTGTCC TCCGCTGAGC 1260
 ACCCATCTCTG TCAGGTTGGC TCCTCAAGTGG ACAGGGGAGC AAGCCAGCCT GACGGGGAGG 1320
 40 | AGGGTGTTC GGCGTCCCGC GCAGTCTCG CATGGCGGAG GGTCAAGCGGG TACCGCAACT 1380
 TGCCCTTTGG TTTGAGAT TCTGTGAGG CGCCATCTC ACCTGACCTT CTCTACAAA 1440
 ATCTGTCTCC CCTGCTGTG CGTGGAACAC CTACGGGAAG CCAAGAGAAG CTCACTGACT 1500
 45 | GTCTTGGCT CATTGAGCA GAGCCCAA AAGGCAGCTG CTGCCACCG GGAGCCTGTC 1560
 AAACGAGGGC CCAGTGGGC AATGAGCAGA CACACATGCC CTGGCTGGGG GATCACACAT 1620
 GCGAACCTGC AGACAATTCTC AGATACCCAA GGCCAGGAAG GCCCACGTGA GGATGTCACT 1680
 CACCCCTGGAG GAGACTTGG A TGGGGTGGCA AATTCTT TGAGGAAGA GGGTTTCCAG 1740
 50 | GATGGCAGAT GCCAGAAGAT GGTCTCTGATG TCTGAGGAAG GGCCACCTAG TTGACAGGA 1800
 TGTGAGAGGC TCACAGGTTCA CTACACTTC TCCAGGCACTT CCAAGTCTTG GTCTCCCTT 1860
 TCCCCCGAC AGCCCTGT TCTGTCCAGG CCCTGA

SEQ ID NO:144 PFG9 Protein sequence:
 Protein Accession #: none available, FGENESH predicted

1 11 21 31 41 51
 40 | MRAVPLPAPL LPLLLALLA APAARASRAE SVSAPWPEPE RESRPPPGP PGNTTRFGSG 60
 AAAGCGSSSS NSSGDALVTR ISILLRDLPT LKAAVIVAFKA FTTLIACLL LRVFRSGKRL 120
 KKRKYDIIIT PTAERVEMAP LNEEDEDDED STVFDIKYVR SLPAALRQL PGCQTLTVP 180
 VPPPFIILD LPARCSGRPD GGIRPGKTCF PAWHWPVIES WAATWGVKD TWKPCSCGGV 240
 ETKTINVMYKT PAPCSVSGIC SDCHWQARFH VTTMELLPP FGHPFKVPT STPHGFRLQ 300
 45 | LNLMEKLDSS ALRRNTRAPS ARCLPVLAE MAAAESDLPN PWWHFSATGS PIKLTLYTQTM 360
 STLGLDVFCG AGQRGIFTCED RAVTKVLQGS SFSKQLRWKALESGFPHIHL RLLRECPPLS 420
 THPVRLARSQD ARGQASLTGR RVFRPRQSL HGGGSAGTAT CLLVLKILLR RPHLDFLYK 480
 ICLPCCAVER LREAKRSSV VLASFQSPQ KAAAAGHEPV KRGPSQLTR HTPGWGITH 540
 50 | ANLQTIPDTQ QQEGPREDVT HPGGDLDGVA NFYLEEEGFQ DGRCQKMVLM SEEPPSLTG 600
 CERLTGSHHF SSHSKWSFL SPRQPLFLSR P

SEQ ID NO:145 PFG6 DNA SEQUENCE

55 Nucleic Acid Accession #: NM_013427
 Coding sequence: 875-3799 (underlined sequences correspond to start and stop codons)

1 11 21 31 41 51
 60 | GGCTGGGCTG CGAACATAGCGT GTTCTCTCCTC GGCGGAACAC ACACACCCGG CCTTGGGGCT 60
 GTCTCCTGAA GCTCCCTCTC CCACGGAGAG CGCTGAGCGC CGCCGGGAAT TCCATCCAC 120
 CGTGGGCCAG CAGTCTTGGC AGTCCCGGG CGCACACAGC TCGGTGTCCC CACACTGCAG 180
 CAAGACAGAG ACCCCGGGG AACCTTGAGC TTGGAACAAC CCTGAGCCT CTGAGTCGG 240
 65 | AAGAGTGGGC GCAGCAGCCC AGCGGAGGG AGGCCGCAC CCTCGGGCGC CGGGCAAGG 300
 AGAGAGTGA GGGAGGCCA GTCAGGGCC CGGGCTCAGG AGCGGGAGGA AGTTCTCGCG 360
 GCGCCGGAG CGCGCTGGAC CGGCCCTGGG CGCACGCCCA GGCAAGCCTTC TCCCTGGGCC 420
 TCGGGACTGT CCTCGGGCCG CAAGGAGGAG CCTGCTGGAG TCTTAGAGGC CATCCAGAGC 480
 CAGCGAGCAG GAGCCTGCG TCTCCGCCT CAGCTAGGAA GGGGGAGTGG CGCTGGCAGG 540
 70 | CTGGAGCTGG GAACCCAGCG AGCGCTGAC CTTCCTCCTC CTCTCTGAC CCCTCTTCG 600
 GTCTTGGCT CGGAGGAAG GTTCTAGCGG CTGAGGGAGG TCCCCAGACCATTTCTCA 660
 GAAGGCTGGT GATGGATCTG CTGCTCTGC CGCCGCCGGC GCACCTGGAG CGCACCGCG 720
 GCGCGTGAAGC TGGGCTTTGC TCTCCACCCG CCTGGGCAAAC CCCCGGGCCA GCCCCGGCTG 780
 75 | GCACCTTGC CTGAGTCCCT TTGGTCTCC GACCCAAAGC CACCAAGCTC CAGGGAGGGA 840
 GGAGGAGGTG GTCTCTAGGT GCAGCCCCGC CGAGATGTC GCGCAGAGC TGCTCCACAG 900
 CGTCTTCTCC TGTTCTCGC CCGCTTCAAG TAGCGCGGCC TCGGCCAAGG GTCTCTCAA 960
 GAGGAAGCTG CGCCAGACCC GCAGCCTGGA CCCGGCCCTG ATCGCCGGCT GCGGGAGGCA 1020
 CGAGGCGGGC CGGGAGGGCA GTGCGGGGG AGCCACGGCG GGGCGCCTCT ACTCCCCATC 1080
 ACTCCCAGCC GAGAGTCTCG GCCCTCGCTT GGCGTCTCT TCCCGGGGTC CGCCCCCAG 1140
 GGCACCCAGG CTACCGCCTC CTGGACCTCT TTGCTCGTC TTCTCACAC CCAGCACCC 1200

GCAGGAGAAAG TCACCATCCG GCAGCTTCA CTTGACTAT GAGGTCCCC TGGTCGCGG 1260
 CGGCCTCAAG AAGACCATGG CCTGGACCT GCCTCTGTC CTGGCCGGC CAGCCAGTAG 1320
 CCGAAGCGCT TCCAGCATTC TCTGTTCATC CGGGGGAGGC CCCAATGGCA TCTTCGCTC 1380
 5 TCCTAGGAGG TGGCTCCAGC AGAGGAAGTT CCAGTCCCCA CCCGACAGTC GCGGGCACCC 1440
 CTACGTCGTG TGGAAATCCG AGGGTGATT CACCTGGAAC AGCATGTCAG GCCGCAGTGT 1500
 GCGGCTGAGG TCAGTCCCCA TCCAGAGTC CTCAGAGCTG GAGAGGGCCC GGCTGCAGGA 1560
 AGTGCCTTT TATCAGTGC AACAGGACTG TGACCTGAGC TGTCAGATCA CCATTCCAA 1620
 AGATGGACAA AAGAGAAAGA AATCTTAAAG AAAGAAACTG GATTCACTAG GAAAGGGAGAA 1680
 10 AAACAAGAC AAAAGATTC TCCACAGGC ATTTGGAATG CCCTTATCCTC AAGTCATTGC 1740
 GAATGACAGG GCCTATAAAC TCAAGCAGGA CTTGAGGAG GACGAGCAGA AAGATGCATC 1800
 TGACTTGTG GCTTCCCTCC TCCCATTGG AAATAAAAAG CAAAACAAG AACTCTCAAG 1860
 CAGTAACTCA TCTCTCAGT CAACCTCAGA AACACCGAAT GAGTCACAGT CCCCAAACAC 1920
 15 CCCGGACCCG GCTCTCGGG CTAGGAGGAG GGGTGCCTAGT TCAGTGTGATT CTATCACCGA 1980
 TCTTGATGAC AATCAGTCTC GACTACTAGA AGCTTAAAC CTTTCTTGC CTGCTGAGGC 2040
 TCAAAAGTAA AAGGAAAAG CCAAGATAA GAAACTCAGT CTGAACTCTA TTACAGACA 2100
 GGTCCCTAGG CTGGTGAGCA GCTCTGTG GCACCTAGAA AAACATGCC TCCAGACAGT 2160
 GGGGATATTG CGAGTTGGAA GCTCAAAAAA GAGAGTGAGA CAATTACGTG AGGAATTGTA 2220
 CCGTGGGATT GATGTCCTC TGGAGGAGGA GCACAGTGT CATGATGTTG CAGCCTTGT 2280
 20 GAAAGAGTTC TGAGGAGCA TGCCAGACCG CTCCTCACC AGGGAGCTGT ACACAGTTT 2340
 CATCAACACT CTCTGTGAGG AGCCGGAGGA ACAGCTGGC ACCTTGAGC TCTCATATA 2400
 CCTTCTACTC CCCTGCAACT GCGCACCCCT CCACGGCTG CTACAGTTCC TCTCCATCGT 2460
 GGCAGGGCAT GCGATGACA ACATCAGCA AGATGGCAGA GAGGTCAGTG GGAATAAAAT 2520
 GACATCTCA AACTTAGCCA CCATATTGG ACCAACCTG CTGCACAAAGC AGAAGTCATC 2580
 AGACAAAGAA TTCTCAGTTC AGAGTCAGC CCGGGCTGAG GAGAGCACGG CCATCATCGC 2640
 25 TGTTGTGCAA AAGATGATGAA AAAATTGAGA AGCCCTGTTG ATGGTCCCC CAGATCTCCA 2700
 GAACAGATG CTGATCAGCC TGTTAGAGAC CGATCTGTGAT GTCTGGACT ATTACTCAG 2760
 AAGAAAGGCT TCCCAATCAT CAAGCCTGA CATGCTGAG TCGGAAGTTT CCTTTCCGT 2820
 GGGAGGGAGG CATTCTATCA CAGACTCCA CAAGGGCTCC AGCGAGAGACA TCTCCCTTA 2880
 TGACAACAAAC TCCCGAGTGC TGTCTGAGCG CTCCCTGCTG GCTATGCAAG AGGACGCGGC 2940
 30 CCCGGGGGGC TCGGAGAACG TTTCAGAGT GCCAGGGAG TTTATGCTGG TGGCCACTT 3000
 GTCTCGTCA AAGTCAGGG AAAGTCTCC TGGACCAAGG CTGGGAAAG ATCTGTAGA 3060
 GGAGCTTIC GATATCTGG GAACCTTGCA TTCAACATTA AAAAGCGGAT CCAAAGACCC 3120
 AGGAATGACA GGTTCTCTG GAGACATTG TTAAAGCAGC TCCCTAAGAG CGGGCCCTG 3180
 35 CTCCCTTCT CAAGGGAAACC TGTCCTTTA TTGGCCTCGG TGGCAGGGGA GCCCCGAGA 3240
 GCTGGACAGC GACACGGCAGG GGGCTCGAG GACTCAGGCC GCAGCCCCCG CGACGGAGGG 3300
 CAGGGGCCCC CTCGCGGTG CAGCACGCC CAGCTCAGG TGGCAGGGAA 3360
 AGCCGAGCGG CCCACGGCCA GGTGGAGCA GTACTTGACC CTGACGGCGG CCCACGACCT 3420
 CAGCGAGAGT GAGCTGGATG TGGCCGGCT GCAGAGCGG GCCACACCTC AGTGCAAAG 3480
 40 ACCCCATGGG AGTGGGGAGG AGTACAAGCG GCCCCCGCT CCATACCCGG GCCCAGGGAA 3540
 GCCCGCGGCA GCGGCGACT GGTACCGAGG GCCCCCGAA GGCGTGGAGA CACCCACCGA 3600
 CCAGGGAGGC CAAGCAGCCG AGCGAGAGCA GCAGGTCAAGC CAGAAAAAAC TGAGCAGCGC 3660
 CAACTCCCTG CCAGGGGGCG AGCAGGACAG CTCGGCCCTG GGGGACCGCTG GCTGGCTCGA 3720
 45 CTGGCAGAGA GAGGCGCTGG AGATCTGGGA GCTCTCTGCG ACCGACAACC CCGATGCCCT 3780
 GCGCGAGAGC CTGGCTGAG CCCGACCCA GCGGAGCCCC CCCTGCCCCG AGCCCCCGC 3840
 CCTCCAGGCC AGGGGGGACCT GGGGGGGCTG GCCACTGGCA CACTTAGTGT TCTCTTTCA 3900
 CACTTCTCA AAGTGACACA AGAAATCAGC AGTTCACCTA CAGAGGTAGA GCACTCACGC 3960
 CCCGCCATT GAGAATAAGG TTCCATTGGC TAGCCAGCTC TAGGAAAAAC AAACAGAAC 4020
 CAAACAGAT GGCAATGTC AATCTAAAAA CGTCCCTCTT GGCTCTATAA TATAAGATAC 4080
 50 AACTCTGCT TGGTATAGCA TAACCGTATT TATGTTGCTC CCGTTTGAC TATTGTTAT 4140
 TCTGTAACAG ATTATGATA ATCATATATG ATATTCACAA AAAGAGAAAA CAAAAGGAAC 4200
 TTTAAAAAA AAAATCACT CACTTATATT AAGCAATGAG ATATACTAAA CAATGAGATT 4260
 CTATAGAATG TTCTAGAATG TGACACAAGC GGTTCTGTG CTTTGCTCAT AGCTTATAA 4320
 CTGGGATAA CCCTCTCTC GATAACAAAC ACTAACAAAGA GGAAAGCAGAA TATGAGAAGC 4380
 55 CATATTITTA CATAGGAGTC AGATACAAAA AGAAAATCA CTGAATGCTT TTAGATATTG 4440
 AATACGTTT CAGGAAAATG CTAATCTGA TAGATTACGA AATATATTGTT TAGAACTTGT 4500
 TTAGAAAGGA TTCAAGTAA CAAACAGAA AAAGGAGCTG CCTCACAAAG AAATTAAGAA 4560
 GTTGTCCGTC CCACGTTACA TCAAAATCAG TTATATATAG GCCATATATA ATATATATT 4620
 ATAATGTATA ATTITATGT ATTITTCAAA ACTACAAACT GGAATCCAAC TATAAAGTGT 4680
 60 TIAAGAAATCT ACACAGAATA TICAACATTT AGAACATGTT TTTCCTCTT GCCCCATAAA 4740
 CAGATTGTC CAAATTACAT GCAATTCTT AAAAACTAAA TCACATGGT AAAAGGCTTA 4800
 CAGCTTGTGAA TTCAAGTAA CAAACAGAA AAAGGAGCTG CCTCACAAAG AAATTAAGAA 4860
 GTATTGTTAA ATGTTCTACG GCTACTTGT AGTTGAGT TTTCAGTGC ATAACATTAT 4920
 TTGACCGAGA GAAGGCGATA CGCTCTAGTA TTATATGCAA TTTCCTTCA CTTCGAAGGG 4980
 65 AAAGTGTATT ATAAAAAAAG ATTITTTTTT TTAAACACAT GCTACTCTTA ATTITCATGT 5040
 TGTTGATGAA ATTCCCACTG GTGTTCTTA AGGTTCTATC TTGTGCCATG ATGAATAAAA 5100
 AGTTAACAA AAAAAGAAAAA AAAAAGAAAAA AAAAAGAAAAA AAA

SEQ ID NO:146 PFG6 Protein sequence:
 Protein Accession #: NP_038286.1

1 11 21 31 41 51

70 MSAQSLHSV FSCSSPSSS AASAKGFSKR KLRQTRSLDP ALIGGGSDE AGAEWSARGA 60
 TAGRLYSPSL PAESLGPRLA SSSRGPPRRA TRLPPLGPLC SSFSTPSTPQ EKSPSGSFHF 120
 75 DYEVPLGRGG LKKSMAWDLP SVLAGPASSR SASSILCSSG GGPNGIFASP RRWLQQRKFQ 180
 SPDSRGRHPV VVKSEGDFT WNSMSGRSVR LRSVPIQSLS ELERARLQEY PFYQLQQDCD 240
 LSCQITPKD QKQRKKSLRK KLDLGKEKN KDKEFIPQAF GMPLSQQIAN DRAYKLKQDL 300
 QRDEQKDASD FVASLLPFGN KRQNKELESSS NSSLSSTSET PNESTSPNTP EPAPRARRG 360

5 AMSVDSITDL DDNQSRILLEA LQLSLPAEAQ SKKEKARDKK LSLNPYRQV PRLVDSCCQH 420
 LEKHGLQTVG IFRVGSSKKR VRQLREEFDR GIDVSLEEEH SVHDVAALLK EFLRDMPDPL 480
 LTRELYTAFI NTLLPEEQF LGTLQLLIYL LPPNCNDLH RLLQFLSIVA RHADDNISKD 540
 GQEVTGNKMT SLNLATIFGP NLLHKQKSDD KEFSVOSAR AEESTAIAV VQKMIENYEA 600
 LFMVPPDLQN EVLISLLETD PDVVYLLRR KASQSSPDM LQSEVFSVG GRHSSTDNSK 660
 ASSGDISPYD NSNPVLSERS LLAMQEDAAP GGSEKLYRVP QFMLVGHLS SSKSRESPG 720
 PRLGKDLSEE FFDIWGTWHS TLKSGSKDPG MTGSSGDIFE SSSLRAGPCS LSQGNLSPNW 780
 PRWQGSPAEI DSQTQGARRT QAAAATPTEGR AHPAVSRACS TPHVQVAGKA ERPTARSEQY 840
 10 LTLSGAHDLS ESELDVAGLQ SRATPOCQRP HGSGRDDKRP PPPYPGPGKP AAAAWIQGP 900
 PEGVETPTDQ GQQAAEREQQ VTQKKLSSAN SLPAGEQDSP RLGDAGWLDW QRERWQIWEL 960
 LSTDNPDALP ETLV

15 SEQ ID NO:147 PFG4 DNA SEQUENCE

Nucleic Acid Accession #: NM_002202
 Coding sequence: 240-1289 (underlined sequences correspond to start and stop codons)

20 1 11 21 31 41 51
 | | | | |
 CCCCCGAGCC GCGCCGAGTC TGCCGCCGCC GCAGCGCCTC CGCTCCGCCA ACTCCGCCGG 60
 CTTAAATTGG ACTCTTAGAT CGCGGAGGGC GCGGCCGAGC CGAGCAGCGG CTCTTCAGC 120
 ATTGGCAACC CCAGGGGCCA ATATTTCCA CTTAGCCACA GCTCCAGCAT CCTCTCTGTG 180
 GGCCTGTCAC CAACTGTACA ACCACCTT CACTGTGAC ATTACTCCCT CTTACAGATA 240
 TGGGAGACAT GGGAGATCCA CAAAAAAA AACGTCGAT TTCCCTATGT GTGGTTGCGG 300
 GCAATCAGAT TCACGATCAG TATATTCGA GGGTTTCTCC GGATTGGAA TGGCATGCGG 360
 CATGTTGAA ATGTGCGGAG TGTAACTAGT ATTGGACGA GAGCTGTACA TGCTTGTTA 420
 GGGATGGAA AACCTACTGT AAAAGAGATT ATATCAGGTT GTACGGGATC AAATGCGCCA 480
 AGTGCAAGCAT CGGCTTCAGC AAGAACGACT TCGTGATCG TGCCCGCTCC AAGGTGTATC 540
 ACATCGAGTG TTTCGCTGT GTGCGCTGCA GCCGCCAGCT CATCCCTGGG GACGAATTG 600
 CGCTTCGGGA GGACGGTCTC TTCTGCCGAG CAGACCCACGG TGTGGTGGAG AGGGCCAGTC 660
 TAGGCCCTGG CGACCCGCTC AGTCCCCTGC ATCCAGCGG GCCACTGCAA ATGGCAGCGG 720
 AGCCCCATCTC CGCCAGGAG CCAGCCCTGC GGCCCCACGT CCACAAGCAG CGGGAGAAGA 780
 CAACCCCGC GCGGACTGTG CTGAACGAGA AGCAGCTGCA CACCTTGCACG ACCCTGCTACG 840
 CCGCAAACCC CGGGCCAGAT GCGCTCATGA AGGAGCAACT GTTGTAGAGATC ACGGGCTCA 900
 GTCCCCGTGT GATCGGGGTC TGGTTCAAA ACAAGCGGTG CAAGGACAAG AAGCGAAGCA 960
 TCATGATGAA GCAACTCCAG CAGCAGCACG CCAATGACAA AACTAATATC CAGGGGATG 1020
 CAGGAACCTC CATGGTGGCT GCGACTCAG AGAGACACGA CGGTGGCTTA CAGGCTAAC 1080
 CAGTGGAACT CAAAGGTAC CAGGCCACCTT GGAAAGACTT GAGCAGACTTC GCCTTGAGA 1140
 GTGACATAGA TCAGCCCTGCT TTTCAGCAAC TGGTCAATT TTTCAGAAGGA GGACCGGGCT 1200
 CTAATCCAC TGGCAGTGAAG TTAGCATCAA TGTCTCTICA ACTTCCAGAT ACACCTAAC 1260
 GCATGGTAGC CAGTCTTATT GAGGCATGAG GAACATTCAT TCTGTATTIT TTTTCCCTGT 1320
 TGGAGAAAAGT GGGAAATTAT AATGTCGAAC TCTGAAACAA AAGTATTAA CGACCCAGTC 1380
 AATGAAAATC GAATCAAGAA ATGAATGCTC CATGAAATGC ACGAAGTCTG TTTAATGAC 1440
 AAGGTGATAT GGTAGCAACA CTGTGAAGAC AATCATGGGA TTCTACTAGA ATAAACAAAC 1500
 AAACAAAACG CAAACCCAG TATATGCTAT TCAATGATCT TAGAAGTACT GAAAAAAA 1560
 GACGTTTTTA AAACGTAGAG GATTATATT CAAGGATCTC AAAGAAAGCA TTTTCAATTTC 1620
 ACTGCAACAT TAGAGAAAAA CAAAATAGA AAATTTCATA GTCCATCTA ATCTGAATGG 1680
 TGCTGTTTCT ATATTGGCA TTGCTCTGCC AACACGGAGC TCCAGCAAAA GCGCAGGAAG 1740
 AGAGACTGGC CTCCCTGGCT GAAAGAGTCC TTTCAGGAAG GTGGAGCTGC ATTGGTTG 1800
 TATGTTAAAG TTGTCAGTAA ACAAGGGGTT AATIGAAATC CTGGGCTCT TGGCCTGTCC 1860
 TGTCAGCTGT TTATTTTA CTTTGCCCCC TCCCCACTT TTTTGAGATC CATCCTTAT 1920
 CAAGAAGTCT GAAGCGACTA TAAAGGTTT TGAATICAGA TTTAAAACC AACTTATAAA 1980
 GCATTCGAAC AAGGTACCT CTATTTGCC ACAAGCGCTC CGGGATGTG TTIGACTTGT 2040
 GTCTGTCTAA GAACCTTTCC CCCAAAGATG TGTATAGTT TTGGTTAAA TGACTGTITT 2100
 CTCTCTCTAT GGAAATAAA AGGAAAAAAA AAAGGAAACT TTTTTGTTT GCTCTTGCAT 2160
 TGCAAAATT ATAAGTAAT TTATTATTTA TTGTCGGAAAG ACTTGCCTACT TTTCATGTCA 2220
 TTGACATTT TTGTTGCT GAAGTAAAGATAA AGGTGTACG GTGGCTTTG 2280
 AATTATATGT CTAATCTAT TTGTTGCTC TTTTCTTAA ATATTATGT AAATCAAAGC 2340
 GCCATATGTA GAATTATATC TTCAGGACTA TTTCACTAAT AACATTGG CATAGAT

65 SEQ ID NO:148 PFG4 Protein sequence:

Protein Accession #: NP_002193.1

70 1 11 21 31 41 51
 | | | | |
 MGDPPKKRILSLCVGCGNQIHDOQYILRVS PDLEWHAACL KCAECNOYLD ESCTCFVRDG 60
 KTYCKRDYIR LYGIKCAKCS IFGSKNDFVM RARSKVYHIE CFRCVACSRQ LIIPGDEFALR 120
 EDGLFCRADH DVVERASLGA GDPLSPHLPA RPLQMAAEPI SARQPALRPH VHVKPEKTR 180
 VRTVLNEKQL HTLRTCYAN PRPDALMKEQ LVEMTGLSPR VIRVWFQNKR CKDKKRSIMM 240
 KQLQQQQPNKD TNQIOMGTG PMVAASPERH DGGLQANPVE VQSYPFWKVLSDFALQSDI 300
 DQPAFQQLVN FSEGGPGSNS TGSEVASMSS QLPDTPNSMV ASPIEA

SEQ ID NO:149 PFG2 DNA SEQUENCE

Nucleic Acid Accession #: NM_001172

Coding sequence: 39-1103 (underlined sequences correspond to start and stop codons)

5	1	11	21	31	41	51				
	GCGGAGCTCT	GCCTTGGAGA	TTC	TCA	GTG	TGCCGATCAT	GT	CCCTAAGG	GGCAGCCTCT	60
	CGCGTCTCT	CCAGACCGCA	GTG	CATTCCA	TCT	GAAGAA	ATCC	TCCAC	TCCGTGGCTG	120
10	TGATAGGAGC	CCCGTTCTCA	CAAGGGCAGA	AAAGAAAAGG	AGT	GGAGCAT	GGT	CCCGCTG	TG	180
	CCATAAGAGA	AGCTGGTTG	ATGAAAAGGC	TCTCAGTTT	GGG	CTGCCAC	CTAA	AAAGACT	240	
	TTGGAGATT	GAGTATGAT	CCAGTCCC	AAAGATGATCT	CTACAA	ACAC	CTG	ATGTGA	300	
15	ATCCACGCTC	ATGGGTCTT	GCCAACCAAGG	AAC	TGGCTGA	GGT	GGTAGC	AGAGCTGTG	360	
	CAGATGGCTA	CAGCTGTGTC	ACACTGGGAG	GAGACCACAG	CCT	GGCAATC	GGT	ACCATTA	420	
	GTGGCCATGC	CCGACACTGC	CCAGACCTTT	GTG	TTGCTG	GGT	GTATGCC	CATGCTGACA	480	
20	TCAACACACC	CCTTACCACT	TCATCAGGAA	ATCTCCATGG	ACAGC	CAGT	TCA	TTCTCTCC	540	
	TCAGAGAACT	ACAGGATAAG	GTACCAAC	TCCCAGGATT	TC	TCTGATC	AAAC	CTTGTA	600	
	TCTCTCTGC	AAGTATTGTC	TATATTGGTC	TGAGAGACGT	GGAC	CCCTCCT	GAAC	ATTITA	660	
25	TTTTAAAGAA	CTATGATATC	CACTATTGTC	CCATGAGAGA	TAT	TGATCGA	CTT	GTTATCC	720	
	AGAAGGTCTA	GGAA	CGAACAA	TTT	GATCTGC	TGAT	GGCAA	GAGACAAAGA	780	
	TGAGTTTGA	TATTGATGCA	TTTGACCTA	CACTGGCTC	AGCC	CACAGGA	ACT	CTGTTG	840	
	TCGGGGGACT	AACTCATCGA	GAAGGCATGT	ATATGCTGA	GGAA	AAACAC	AATAC	AGGGT	900	
30	TGCTATCAGC	ACTGGATCTT	GTGAGTCA	ATCCTCAGT	GGC	CACCTCA	GAGG	AAGAGG	960	
	CGAAGACTAC	AGCTAACCTG	GCAGTAGATG	TGAT	GGCTTC	AA	GCTTGGT	CAGACAAGAG	1020	
	AAGGAGGGCA	TATTGCTAT	GACCAACTTC	CTACTCCAG	TTC	ACCAGAT	GA	ATCAGAAA	1080	
35	ATCAAGCACC	IGT	GAGAAC	TAGGAGACAC	TG	TCAGT	TT	CAAC	1140	
	CCAGAATTAT	GAGGATTG	ATGAGTATG	AA	GA	ACTAAA	TG	TTGCTG	1200	
	GCCTTAATGA	GAAC	ATTTCAC	AC	AT	TGAA	TT	CCCT	1260	
40	CCAATACACT	TGTAATGTA	TTGGGTTT	TGCA	GT	CCAC	AGG	TACAG	1320	
	TACTATGTA	ATTTAAAGAA	GTCATAAAC	GA	CTT	TTATA	CTT	GGTATA	1380	
	CTTGTGCTG	TTG	TCTTC	AC	TTAAGT	GGT	TTT	CCAT	1440	
	GCCTGGCTAT	ACAGTGCATC	CTTGA	ACTGT	CAG	CCCACAG	CAG	CAATATG	1500	
45	CCACATCCCT	AA	CATCATGC	ATT	CAC	AAAG	TCT	GGT	1560	
	TAGAAGTCA	ATGGCTCGA	AAA	GAATT	TTG	TAAC	CC	CTCCT	1620	
	CCAGTAAGAT	GATAATG	GGAA	AGCAGCAGT	TG	TGTTGTTG	CA	TCTACAA	1680	
50	AGTGGGGACT	AGT	GGAGAAGT	TTG	GAT	AA	CC	TTCT	1740	
	GGAC	CACGGC	TG	TA	ACT	GAGG	GT	ACCT	1800	
	ACTCATAA	GG	TTT	ACCT	GT	CA	AC	GAGGAAGT	1860	
	AACTGAGACA	AT	AA	ACCA	AA	GCA	TT	GT		

SEQ ID NO:150 PFG2 Protein sequence:

Protein Accession #: NP_001163.1

45	1	11	21	31	41	51				
	MSLRGSLSR	LQTRVHSILK	KSVHSV	AVIG	APFSQQQKRK	GVEHGPAAIR	EAGLMKRLSS	60		
	LGCHLKD	FGD	LSFTPVPKDD	LYNNLIVNPR	SVGLANQELA	EVVSRAVSDG	YSCVTLLGDH	120		
50	S	LAIGTISGH	ARHCPDLCVV	WVDAHADINT	PLTTSSGNLH	GQPVSFLRE	LQDKVPLPG	180		
	F	SWIKPCISS	ASIVYIGL	RD	VDPPEH	FILK	NYDIQYFSMR	DIDRLGIQKV	MERTFDLLIG	240
	KRQRP	HLSF	DIDAFDPTLA	PATGTPVVG	LT	REGMYIA	EIIHNTGLS	ALDLVEVN	PQ	300
	LATSEEAKT	TANLAVD	VIA	SSFGQTREGG	HIVYDQL	PTP	SSPDESEN	QA	RVRI	

SEQ ID NO:151 PFG1 DNA SEQUENCE

Nucleic Acid Accession #: NM_017906

Coding sequence: 80-1255 (underlined sequences correspond to start and stop codons)

60	1	11	21	31	41	51												
	A	ATT	AT	AT	T	T	T	T	T	CTT	CCG	TT	G	CT	GG	CG	AA	60
	G	AG	GG	CA	CTG	TG	G	TG	AG	GG	TC	GG	CT	CT	CT	TT	GG	120
65	T	TG	TG	CTG	TG	CT	GG	CTG	TG	GG	CA	CC	AC	CT	GT	GT	AA	180
	TG	ACT	TT	CA	CT	AC	CT	GT	CA	GT	AG	CT	TT	GT	AA	TG	TG	240
70	TG	TG	GG	AG	CA	AA	AG	AA	AT	CA	TG	AA	AG	AT	GT	TT	GG	300
	GC	AT	GG	GG	CT	AC	GT	GT	AC	TA	TC	GA	AA	TC	TC	TC	GG	360
75	GC	AT	TA	TC	AC	AT	TC	GT	AC	TC	TC	TC	TC	TC	TC	TC	GG	420
	AT	G	TG	CT	GA	AG	GG	AA	AG	GT	CC	TT	CC	AC	CC	AC	TC	480
	TG	CA	AG	GT	TC	GG	TC	GG	TC	AC	GG	AC	CC	TC	TC	TC	GG	540
	AG	GA	AG	AT	CA	AA	AA	AA	AA	AT	GT	GG	AA	TC	TC	TC	GG	600
	A	AG	AG	AG	AG	CA	TA	TA	TA	TA	AC	AT	TC	TC	TC	TC	GG	660
	TG	CAT	CC	AT	GT	CA	CC	TC	AA	AA	AA	AA	AA	AA	AA	AA	AA	720
	AG	AT	CT	GT	TC	TC	GG	GT	GA	AA	GT	TT	TT	GT	GT	GT	GT	780
	AC	TA	GT	TC	TC	GT	GG	GT	AA	AG	GT	TT	TT	GT	GT	GT	GT	840
80	TG	AA	AT	CC	CA	AT	TC	TC	GT	TA	TC	AA	AT	GT	GT	GT	GT	900
	GA	AG	CT	TA	AG	AA	AG	AA	AA	AT	CA	AA	AT	TC	TC	TC	TC	960
	CAG	GT	AC	GG	GG	AG	GG	GG	GT	AA	AC	AA	AA	AC	TC	TC	TC	1020
	AG	CT	GC	AG	AG	CT	CT	CT	CT	TC	TC	TC	TC	TC	TC	TC	TC	1080
	TG	AC	AC	AG	TC	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	1140

AGGTGACAGT AAGAAAGCAA CAAAAGAAAG TGGCTGATA TCAACCAAGA AGAGGAAAAT 1200
 CGTAGAAATG TTGGAAAAGA AGAGGAAAAA GAAGAAAATA AAAACAATGC AGTGAATCAC 1260
 AGATGTCCTC TGAAAGAACT CTTTAGATG AAATCATTCT ACTCAAATGT ACCTTAATT 1320
 TTTTTTTCTC CTGAGTAAAAA GCAAGAAATT TCTTCCTTTC GAAAAAATAT ATATATAAA 1380
 5 AAACCACTTT TAGATGGTTT TTTTAAAAA AAAAAAAAAGG ACTGGTAAAAA TTACTTTGG 1440
 CAGACAGTGT TTTATGAATT ATGTATCATG TTGATATATA ATATGTTAAT GTGTCATGTA 1500
 ATTTTACTT TGTACAAAGC AAATAAAGAT CTTCTCAA AAAAAAAAAGG AAAA

10

SEQ ID NO:152 PFG1 Protein sequence:
Protein Accession #: NP_060376.1

15

1 11 21 31 41 51
 MELVAGCYEQ VLFGFAVHPE PKACGDHEQW TLVADFTHHA HTASLSAVAV NSRFVVTGSK 60
 DETIHYDMK KKEHGHALVH HSGTITCLKF YGNRHLISGA EDGLICIWDA KKWECLSIK 120
 AHKGQVTFLS IHPSGKLALS VGTDTKLRTW NLVEGRSAFI KNIKQNAHIV EWSPRGHQVY 180
 VIQNKIDYI QLDTASIGT ITNEKRISV KFLSESVLAV AGDDEEVIRFF DCDSLVCILC 240
 20 FKAHENRVKD MFSFEIPEHH VIVSASSDGF IWMWKLQDK KVPPSLCEI NTNARLTCLG 300
 VWLDKVADMK SLPPAAEPSP VSKEQSKIGK KEPGDTVHKE EKRSPKNTKK RGLTGDSKKA 360
 TKESGLISTK KRKMVEMLEK KRKKKKIKTM Q

25

SEQ ID NO:153 PFD6 DNA SEQUENCE

Nucleic Acid Accession #: NM_014668
Coding sequence: 110-2953 (underlined sequences correspond to start and stop codons)

30

1 11 21 31 41 51
 |
 GATGTCTGG ACATGCTCTG GCTGGCTAAT CTCCATGTT TAGCCGACTG AAAATACGGT 60
 GCCAAGTGG ATGGTGTGCT TATTGCACT CTAAGAAAT TTCTTTGA TGTGGCAGAA 120
 AATCGAGGAT GTGGAGTGTGA GACCCAGAC TTACTTGGAG CTGGAGGGTC TGCTTGCAT 180
 CCTGATCTC AGTGGGATGG ACCCGCATGG GGAGTCTTGC CCGAGGTCTT TGAGGTACTG 240
 TGACCTGCGA TTGATAAAC CCTCTGCTT GGTGAGAACA GCCTTGGAGC AGGAGCTGGG 300
 CCTGGCTGCC TACTTTGTGA GCAACGAGGT TCCCTGGAG AAGGGGGCTA GGAACGAGGC 360
 CTTGGAGAGT GATGCTGAGA AGCTGAGCAG CACAGACAAC GAGGATGAGG AGCTGGGGAC 420
 AGAAGGCTCT ACCTCGGAGA AGAAGACCC CATGAAAGG GAGAGGTCTCC GCTCCCACGA 480
 40 CTCAGCATCC TCATCCTCT CCTCAAGGC TTCCGGTTC GCGCTGGTG GCGAGTCTC 540
 GGCTCAGCCC ACAGCACTCC CCCAGGGAGA GCATGCCAGG TGCCCCAGC CCCGTGGCCC 600
 CGCGAGGAGG GGCAGAGCCC CTGGTAGAA ACAGAGGGCC CGGGCAAGTC AGGGGCCACC 660
 CTCGGGCATC AGCAGGCCA GTCCGGGCG GACGCCCGAG CCCGACTGTA GCCTCAGGAC 720
 CGGCCAGAGG AGCGTCCAGG TGTCGTCAC CTCGCTGTG TCCCAAGCTGT CCTCTCTC 780
 GGGCTCATCC TCCTCATCG TGGCGCCCG TGCCGGCAGC TGGGTCTTCG AGGCTCTCCA 840
 GTGCTCTTG ACCAAGGGCT GCGGCCAGCC ACCCATGTC TTCTTGCCCA AGCTCGTGT 900
 CGACATGGTT GTGTCCTCTG ACAGCAGTGG CCTGCCAAG GCGGCCCTCCC TCTGCTCTC 960
 CCCCTGGTC ATGTGGGCCA GCTCTTCCG CCCCCCTGTC AGCAAGACCA TGACATCCAC 1020
 CGAGCAGTTC CTCTACTAAC GGCAGTGGAC GGTGCCCCGG CCCACCCACA TGGACTACGG 1080
 50 CAACGGGGCC GAGGGCCCGG TGGACGGCTT CCACCCCCGC AGGCTGTG TCAGCGGCC 1140
 CCCTCAGATC GGGAAAGACAG GTGCCCTACCT GCAGTTCCTC AGTGTCTGT CCAGGATGCT 1200
 TGTTCGGCTC ACAGAAAGTGG ATGTCATGA CGAGGAGGAG ATCAATATCA ACCTCAGAGA 1260
 AGAATCTGAC TGGCATTATC CGACAGCTTG CGACCCCTGG CCAGACCTGG AGCTGTTCAA 1320
 GAAGTTGCCCTT TTGACTACCA TCATTCAAGA CCCGAAGTAG AAAGATGCCA GCTGTATTC 1380
 TTGCACTAT CAGGGTATAA AGAGTGAAGA CAGAGGGATG TCCCGGAAGC CGGAGGACCT 1440
 TTATGTGCCGG CGTCAGCCG CACCGATGAG ACTGTCCAAG TACGCACTG ACAACACTTA 1500
 CCACCACTGT GAGCACTGCC ACCAGTACAT GGGCTTCCAC CCCGCTTAC AGCTGTATGA 1560
 GTCCACCTGT CACGCCCTTG CCTTCTCTTA CTCCATGCTA GGAGAGGAGA TCCAGCTGCA 1620
 CTTCATCATC CCCAAGCTCA AGGAGCACCA CTTTGTCTC AGCCAACCTGG GAGGCCAGCT 1680
 60 GGAGGAGCATG CGACTACCCC TCGTGACAGA CAAGAGCCAT GAATATATAA AAAGTCCGAC 1740
 ATTCACTCCA ACCACGGCC GTCACGAACA TGGGCTCTT AAATCTGTAAC ACGCAATGGA 1800
 CGGTGCCAGC CATTGCACTG TGCTGGTTGT CAAGGAATAC GAGATGGCAA TTATAAGAA 1860
 ATATTGGCCCA AACCACATC TGCTGGTGTCT CCCAGTACAT TTCAACAGTG CTGGAGTTGG 1920
 TGCTGCTCAT TTCTCATCA AGGAGCTGTC CTACCATAAC CTGGAGCTGG AGCGGAACCG 1980
 65 GCAGGAGGAG CTGGGAATCA AGCCGCAGGA CATCTGGCT TTCATGTTGA TCTCTGATGA 2040
 CTCTCGCTG ATGTTGGAACCG TGCTGGATGT CAACCTGCTG TGGGAGAGGA GCAAGGGAGCT 2100
 CTCTGGTCG GAAAGGAAACG TGCTGGTGA GACACATCATG CAGCACATCG AGGGGCC 2160
 CGACATCATG CACTACGCC TGCTGGGCTC GCGGAAGTGG TCCACCAAGA CCCGGGCCAG 2220
 CGAGGTGCAA GAGCCCTCT CCCGCTGCCA CGTGCACAAAC TTCACTCATCC TGAACGTGGA 2280
 70 CCTGACCCAG AACTGCACTG ACAACCAAGAA CCGGTTCTCTG TGTGACGATG TAGACTCAA 2340
 CCTGCGGGTC CACAGGCCCG GCCTCTGCT CTGCGGGTTC AACCGCTCA GCGTGATGAA 2400
 GAAGCAGATC GTGGTGGCCG GCCACAGGTCTT CTTCCACATC ACATCCAAGG TGCTCTGATAA 2460
 CTCTGCGCCG GTCTGCGCCCG CCCAGTACAT CTGTGCCCCG GACAGCAAGC ACACGTCTC 2520
 CGCAGCGCCC GCCCAGCTCC TGCTGGAGAA GTTCTGCGAG CACCAAGCC ACCTCTCTT 2580
 75 CCCGCTGTCC CTGAAGAACCC ATGACCAAGGG AGTGCTGTCT GTGCACTGTT ACCTGAACCT 2640
 GGGATCTCAAG ATTTCTGTTT GCTATGAGG CTCCAGGCC CACTCTTAA ACATCAGTG 2700
 CTCGGACTTG CTGTTCACTG GGCTGCTGT CTACCTCTGT GACTCTTGTG TGGGAGCTAG 2760
 CTTTTGAAGAAGTTCACTT TTCTGAAGAGG TGCGACGTG TGTCATCT GTCAAGGACCG 2820
 GAGCTCACTG CGCCAGACGG TCGTCCGCTT GGAGCTGAG GACGAGTGGC AGTCCGGCT 2880

GCGCGATGAG TTCCAGACCG CCAATGCCAG GGAAGACCGG CGCCTCTTT TTCTGACGGG 2940
 ACGACACATC TGAGGAAGAC AGCGCGAGT TTTCTGAAGA GATGAGTGT CAGAGCCCTC 3000
 ATGCTGTTGA GGCTAAAGGG AGGCCTGAA CGGTGGGCG TTTGACTGGA ATGGACCCA 3060
 GGGACTGTCG AGGTGCAGCC CCTCTTAGTA CATATGGCC CCCGAGGCCG TGGTCTGGG 3120
 AGCCAGGAAG ACTCCGAGT GGGTGAGAAAT GAAAATCTGA GACTCCCAAG TTCTGGGCA 3180
 GCCCATGCT CTGGGCTGTT TTAAAGCCA TTTCACAGG AACAAAGATT TACTCTGT 3240
 CCTGCCCCATC GTGTGCTTC ATGGACAAC CTGATTTT TCTCTTAGTT CAAAGAACATC 3300
 TTGGGTTATT TTGTAACGGT GCCAGTATT CAGTAGATGG GATTTCAGCC AAGTAGGTT 3360
 CCCCTGAACC TCTTACAAAG CAATATTCA AAGGAACATT TAACTGAA AGGCTGGAGA 3420
 CAAGAAAAAA TAAGTAGATC GTTITAATAA CAATTATTA ATTGCTATA AGTTGCTGT 3480
 TTICAGAGGT AGCCAGGAAAG CATCAAATT AAATAAGTTA AACAATTIGA TTACTTCAG 3540
 AGCAAAATATG ATCTCTTAA ATAATATAG GGTAATACCC TCACTCTTA GAAGGGCAA 3600
 AAATGCAAAG AAGCTTCTT TAAACTAA AGGGTTTTT GGGGGGGGAG TTGGCGGGGA 3660
 GAAAATAAGG CTAAACAGGG TTGACCTAA ATTAGCCTTA CAAAGGAGAA AGGACCCAT 3720
 TGCTTACTTG AAACAGACAA TGAAAACAC CAAAGTGA TATAAAATAG TTGATGAGAA 3780
 CTAGACTTAA TGTGTTGGTT CTCAGGGAA AGATCTCACT GACTAGAGAG GAGGTGGGAA 3900
 CAGAAGAGG AAGGAGGGAGG GGAGATGTAT TTCTTAGGGC TCACCCCTTC ACAGACTGAC 3960
 AGAATGGTTT TTGTTTGTGTT TTGTTTGTGTT TTGAGATGGA CTCTAGCTCT 4020
 GTCAACCCAGG CTGGAGTGC A GTGGTGCAT CTGGCTCAC TGCAAGCTCC GCCTCCCGGG 4080
 TTCTCACCAT TCTCCCTGCCT CAGCCTCCCG AGTAGCTGGG ACTACAGCG CCCACCCACCA 4140
 CGGCCGCTA ATTTTTGTGTT TTGTTAGTA GAGACGGGGT TTCACCATGT TAGCCAGGAT 4200
 GGCTCTGATC TCTGACCTC GTGATCCGGC CGCCTCGGGC TCCCAAATG CTGGGATTAC 4260
 AGGGCTGAGC CACCTGCTC GCCCCAGAAT GGTTTTAAA GCCACAGTT AGAGGCCACC 4320
 CATTGCCCCG CGCCTGGAG GTGATCATCT IGTICATCCT GTICAGCTCT TCTCTGTG 4380
 ATTGGAATTA TICATCCCCCT TTGAAAGATG AGAAGGGTGA GATGCAAAGA GTCACCTTT 4440
 CCAAGTTCTC ACTGCTGAA AGAGCTAGAA GCACAGTICA AAGTCTGGC TTCTGGACTC 4500
 TGCACTGAGC GTCTCCCTC TCCACTTGC CTACCTCTAA TGCCACACTG TTGTTGAAGT 4560
 GGCCCATAAC TTGAAGGAAA AGTTAAAGA CAGTCAATT TAATCATCAG AATGCATTCT 4620
 TTTTTTTTC GGAGACGGG TTTCACCTCCT GTCTGCCAGG CTGGAGTGCA ATGGTCAAT 4680
 GATCTCGGGCT CACTGCAACC TCTGCCCTCTT GGGTTCAAGT GATTCTCCAG CCTCAGCTC 4740
 CCGGATAGCT GGGATTATGG CCATGCCACCA CTATGCCAG CTATTTTG TATTTTTTTT 4800
 TTGTTAGAGA GATGGGTTT CGCCAGGTG GCCAGGTCTGG TCTGTGAAC TCCTGGCTC 4860
 AGGTGATCTG CCCACCTCAT CCTCCAAAAG TGCTGGGATT ACAGGCATGA GCCACTGCGC 4920
 CTGCGCTCAAG ATGACATTCTACACATCTA TCCTAGACAT TTATAAGCAC TCTAATGGAT 4980
 AACAACTCAA GAATAATGA TTGAAAAGA TGATGCCAA GAGTTGATGT CAATCTTTT 5040
 TTCTCTAAGAA AAAAGTCGG CGAGTATTAAT ATATTTAGAT CAATGTTAT AAAATGATTA 5100
 CTITGTTATAT CTICATTATTCT CTATTTGGA ATAAAAACTG ACCCTCTTA ATCATATACT 5160
 TGCTCTTGT AAATAGCAGC TTGTTGTCA TTCTCCCCAC TTATTAGTT AATTTAAATT 5220
 GGGAAAAAAC CTCAAACCTAA TATTCTGTC TGTTCCAGTC TTATAAAATAA AACTTATAAT 5280
 GCATG

SEQ ID NO:154 PFD6 Protein sequence:
 Protein Accession #: NP_055483.1

1 11 21 31 41 51

MWQKIEDVW RPQTYLELEG LPCILIFSGM DPHGESLPRS LRYCDRLIN SSCLVRTALE 60
 QELGLAAYFV SNEVPLEKG A RNEALESDAE KLSSTDNEDE ELGTEGSTSE KRSPMKRERS 120
 RSHDSASSSL SSKASGSALG GESSAQPTAL PQGEHARSPO PRGPAEEGRA PGEKQPRAS 180
 QGPPSAISRH SPGPTOPDC SLRTGQRSVQ VSVTSSSQL SSSSGSSSS VAPAAGTVWL 240
 QASQCSLTKA CRQPIVFLP KLVDYDMVVST DSGLPKAAS LLSPSPVMWA SSFRPLSLKT 300
 MTSTEQSLLYY RQWTPVPRPSD MDYGNRAEGR VDGFHPRRLL LSGPPOIAGT GAYLQFLSVL 360
 SRMLVRLTEV DVYDEEEINI ERNQESDWHY LQLSDPWPD LFKKLPLFDY IIHPKYEDA 420
 SLICSHYQGI KSEDGRMSRK PEDLYEVRRQQT ARMRRLSKYAA YNTYHHCEQC HQYMGFHPRY 480
 QLYESTLHAF AFYSYMLGEE IQLHFUPLKS KEHHFVFSQP GGQLESMLRP LVTDKSHEYI 540
 KSPTFTPTG RHEHGLFNLY HAMDGASHLH VLVVKKEYEMA YNKKYWPNH1 MLVLPISNFS 600
 AGVGAHAHFLJ KELSYPNLER ERNRQEEELGI KPQDIWPFIV ISDDSCVMWN VVDVNSAGER 660
 SREFSWSERN VSLKHIMQH EAAPDIMHYA LLGLRKWSSK TRASEVQEPF SRCHVHNFI 720
 LNVDLTQNQVQ VNQNRFLVRHSA GLLLRCRFNRF SVMKKQIVVG GHRSFHTTSK 780
 VSDNSAAVVP AQYICAPDSK HTFLAAPAQL LLEKFLQHHS HLFPLSLKN HDHPVLSVDC 840
 YLNLSQISV CYVSSSRPHSL NISCSDLLFS GLLYLCDSF VGASFLKKFH FLKGATLCVI 900
 CQDRSSLRQT VVRLELEDEW QFRLRDEPQT ANAREDRPLF FLTGRHI

SEQ ID NO:155 PFC6 DNA SEQUENCE

Nucleic Acid Accession #: NM_000522

Coding sequence: 1-1167 (underlined sequences correspond to start and stop codons)

1 11 21 31 41 51

ATGACAGCCT CGGTGCTCTT CCACCCCCCG TGGATCGAGC CCACCGTCAT GTTCTCTAC 60
 GACAACGGCG GCGGCTGTT GGCGCAGAG CTCAACAAAGA ACATGGAAGG GGGCGCGCG 120
 GCTGCAGCAG CGGCTGCAGC GCGGGCGCGT GCGGGGGCGG GGGGGGGGGG CTTCCTCCAC 180
 CGCGCGCTG CGCGCGCAGG GGGCAACTTC TCGGTGGGG CGCGCGCGCG GGTCTGCGCG 240
 CGCCGCCGCG CCAACCAGTG CCGCAACCTG ATGGCCACC CGGCCGCCCTI GGCGCCAGGA 300
 CGCGCGTCCG CCTACAGCAG CGCCCCCGGG GAGGGCCCCC CGTGGCTGC CGCCGCTGCT 360

GCCGGCGGCTG CGCCTGCAGC CGCCGCCGCC GCGCCCGCGT CGTCCCTGGG AGGTCCCGGC 420
 CCGGCGGGCC CGCGCGCGC AGAGCGGCC AAGCAATGA GCCCTGCTC GGCAAGCGGC 480
 5 CAGAGCTGT CGGGGCCCCC GGCGCTGCC TATGGCTACT TCGGCAGGG CTACTACCG 540
 TGCGCCCGCA TGGGCCCCGC CCCCAACGCC ATCAAGTCGT GCCCCCAGCC CCCCTCGGCC 600
 CCGCCCGCGC CGCCCTCGC GGACAAGTAC ATGGATACCG CGGGCCAGC TGCCGAGGAG 660
 TTCAGCTCCC GCGCTAAGGA GTTCGCGTIC TACCAACCAAG GCTACCCAGC CGGGCCTAC 720
 CACCAACATC AGCCCAGTGC TGGCTACCTG GATATGCCAG TGTTGCCGGG CCTCGGGGC 780
 CCCGGCGAGT CGCGCCACCG ACCCTTGTT CTICCCATGG AAAGCTACCA GCCTGGGGC 840
 10 CTGCCCACG GCTGGAACGG CCAAATGTGC CGACGTGGTC TCCCATCCCT CGGATGCCAG CTCCTATAGG 960
 AGGGGGAGAGA AGAACGGGT GCCTTATACC AAGGTCAAT TAAAAGAACT TGAACGGAA 1020
 TACGCCAGA AAAAATTCA TACTAAGGAC AAACGGAGGC GGATATCAGC CACGACGAAT 1080
 CTCTCTGAGC GGCAAGGTAC AATCTGTT CAGAACAGGA GGGTAAAGA GAAAAAAGTC 1140
 15 ATCAACAAAC TGAAACAC TAGTTAA

SEQ ID NO:156 PFC6 Protein sequence:
Protein Accession #: NP_000513.1

20 1 11 21 31 41 51
 MTASVLLHPR WIEPTVMFLY DNGGLVADE LKNMMEAGAA AAAAAAAAAAA AGAGGGGFPH 60
 PAAAAAAGNF SVAAAAAAA AAAANCRNL MAHPAPLAPG AASAYSSAPG EAPPSAAAAA 120
 AAAAAAAAAAA AAASSGGPG PAGPAAAEEA KQCSPCSAAA QSSSGPAALP YGYFGSGYYP 180
 25 CARMGPPNA IKSCPQPPSA AAAAFADKY MDTAGPAAE FSSRAKEFAF YHQGYAAGPY 240
 HHHQPMPPGYL DMPVPGPLG PGESRHEPLG LPMESYQPWA LPNGWNGQMY CPKEQAQPPH 300
 LWKSTLPDVV SHPSDASSYR RGRKKRVPYT KVQLKELERE YATNKPIKTD KRRRISATTN 360
 LSERQVTIWF QNRVKEKKV INKLKTTS

SEQ ID NO:157 PFA3 DNA SEQUENCE
Nucleic Acid Accession #: AW102723
Coding sequence: 523-2676 (underlined sequences correspond to start and stop codons)

30 1 11 21 31 41 51
 CCCTTATGGC GATTGGCGG CTGCAGAGAC CAGGACTCAG TTCCCCCTGCC CTAGTCTGAG 60
 CCTAGTGGGT GGGACTCAG TCAGAGTCAG TTTTCAGAAG CAGGTTTCAG TTGCAAGAGTT 120
 35 TICCTACACT TTTCCTGCGC TAGAGCAGCG AGCAGCTGG AACAGACCCA GGCGGAGGAC 180
 ACCTGTGGGG GAGGGAGCGC CTGGAGGAGC TTAGAGACCC CAGCCGGCG TGATCTCACC 240
 ATGTGCGGAT TTGCGAGGG CGCCCTGAG CTGCTAGAGA TCGGGAAGGC CAGCCCGAG 300
 GTGTGCAAGG CCACCAAGAC TGCGCTCTT GGAGAAAGCG TGACGAGGGG GCCACCGCGG 360
 TCTCCGCCT GTCTGCACCC TGTCGCCTGA GCTGCTGAC AGTGACAAATG ACATCCCAGT 420
 TACCACTGTC CTTGAATTGA TAGTGGCTTC TGTTTGTAG CTCATATAA GAACATACAGC 480
 40 TCATCAGGAG GAGATCGCAG CAGGGTAAGA GACACAAACA CCATGTTCTG CACCAAGCTC 540
 AAGGATCTCA AGATCACAGG AGAGTGTCTT TTCTCTTAC TGGCACCAAGG TCAAGTTCT 600
 AACGAGTCTT CAGAGGAGGC AGCAGGAAGC TCAGAGAGCT GCAAAGAAC CCGTGCCTAC 660
 45 TGTCAAGACA TTCTCTGAGAA GAACATACAA GAAAGTCTTC CTCAAAAGAAA AACAGTCGG 720
 AGCCGAGTCT ATCTTCACAC TTTGCAGAG AGTATTGCA AACTGATTT CCCAGAGTTT 780
 50 GAACGGCTGA ATGTTGCACT TCAGAGAACAA TTGCAAAAGC ACAAAATAAA AGAAAGCAGG 840
 AAATCTTGG AAAGAGAACAA CTTTGAAGAA ACAATTGCGC AGCAAGCAGT GCAGCAGAGT 900
 CCAGTGGAGT TATCAAAAGA TCTCTGGT AGAGGTTT TAAATATGT TACGAGGAAG 960
 ATGAAAACAT CCTGGGGTGT GTGGAGGCA CCTTAAAGA TTCTAAACA GCTTCAGTAC 1020
 55 CCTCTGAAA CAGAGCAGCC ATTGCAAGA AGCAGGAAAAA AGGGGCACT TGAGGACGCC 1080
 TCCATTCTAT GCCTGGATAA GGAGGATGAT TTCTACATG TTACTACTT CTTCCTAAG 1140
 AGAACACCTT CCTGTATTCTT TCCCGGCATC ATAAGGCAG CTGCTCACGT ATTATATGAA 1200
 ACGGAAGTGG AAGTGTCTGTT AATGCCCTCC TGCTTCCATA ATGATTCAG CGAGTTGTG 1260
 60 ATCAGCCCT ACTTGTGTA CTCTGTTCAC ATGAAAGACA CCAAGCCATC CCTGCCCCC 1320
 AGCCTAACCCC AGTCCTCGT GGTGATTCGC ACATCGCTAT TCTGCAAGAC ATTTCCTATC 1380
 CATTTCATGT TTGACAAAGA TATGACAATT CTGCAATTG GCAATGGCAT CAGAAGGCTG 1440
 ATGAACAGGA GAGACTTCA AGGAAAGCCT AATTGTAAT ACCTTGAAAT TCTGACTCCA 1500
 65 AAAATCAACC AGACCTTACG CGGGATCATG ACTATGTTGA ATATGCACTT TGTGTTACGA 1560
 GTGAGGAGAT GGGACAACTC TGTGAAGAAA TCTTCAAGGG TTATGGACCT CAAAGGCCAA 1620
 ATGATCTACA TTGTTGAATC CAGTGAACATC TTGTTTGTG GTTGCACCCCTG TGTGGACAGA 1680
 TTAGAAGATT TTACAGGAG AGGGACTCTAC CTCTCAGACA TCCCAATTCA CAATGCACTG 1740
 70 AGGGATGTG CTTAAATAGC GGAACAAGGCC CGAGCTCAAG ATGGGCTGAA GAAGAGGCTG 1800
 GGGAAAGCTGA AGGGTACCT TGAGCAAGGCC CACCAAGGCC TTGAGGAGGA GAAGAAAAAG 1860
 ACAGTAGACC TCTCTGCTC CATATTCTC TTGAGGTTG CTCAGCAGCT GTGGCAAGGG 1920
 CAAGTTGTC AAGCCAAGAA GTTCAGTAAT GTCACCATGC TCTTCCTAGA CATCGTGGGG 1980
 75 TTCACTGCCA TCTGCTCCCA GTGCTCACCG CTGCAGGTCA TCACCATGCT CAATGCACTG 2040
 TACACTCGCT TCGACCGAGCA GTGTTGGAGAG CTGGATGTCT ACAAGGTGGA GACCATGGCC 2100
 ATGCTCTATTG TGTGGCTTG GGGATTACAC AAAGAGATG TGACTCATGC TGTTCAGATA 2160
 GCGCTGATGG CCCTGAAGAT GATGGAGCTC TCTGATGAAG TTATGTCCT CCATGGAGAA 2220
 CCTATCAAGA TGCAGAATGG ACTGCACTT GGATCAAGTT TTGCTGGCGT CGTIGGAGTT 2280
 AAAATGCCCC GTTACTGTCT TTGTTGAAAC AATGTCACTC TGCTAAACAA ATTGAGTCC 2340
 TGCAGTGTAC CACGAAAAAT CAATGTCAGC CCAACAACCT ACAGATTACT CAAAGACTGT 2400
 CCTGGTTTCG TGTGTTACCC TCGATCAAGG GAGGAACCTC CACCAAACCT CCCTAGTGAA 2460
 ATCCCCGGAA TCTGCCATT TCTGGATGCT TACCAACAAAG GAACAAACTC AAAACCATGC 2520

TTCCAAAAGA AAGATGTGGA AGATGCAAGC CAATTTITA GGCAAGCAT CAGGAATAGA 2580
 TTAGCAACCT ATATACTTAT TTATAAGTCT TTGGGGTTG ACTCATGAA GATGTGAGA 2640
 GCCTCTGAAA GCACTTTAGG GATTGTAGAT GGCTAACAG CAGTATTAAT ATTTCAGGAG 2700
 5 CCAAGTCACA ATCTTCTCC TGTTAACAT GACAAAATGT ACTCACTICA GTACTTCAGC 2760
 TCTTCAGAA AAAAAGAAAA ACCTTAAAAA GCTACTTTG TGGGAGTATT TCTTATATAT 2820
 AACCGCACT TACTACCTGT ACTCAAATT CAGCACCTTG TACATATATC AGATAATTGT 2880
 AGTCATTGT ACAAACTGAT GGAGTCACCT GCAATCTCAT ATCCGGTGG AATGCCATGG 2940
 TTATTAAGT GTGTTGTGTA TAGTTGTGTT CAAAAAAA AAAAAAAA AAAAAAAA 3000
 10 AAAAA

SEQ ID NO:158 PFA3 Protein sequence:
 Protein Accession #: NP_00847.1

15 1 11 21 31 41 51
 MFCTKLKDLK ITGECPFSLI APGVPNESS EEAAGSSESC KATVPCQDI PEKNIQESLP 60
 QRKTSRSRVY LHTLAESICK LIPPEFERLN VALQRTLAKH KIKESRKSLREDFEKIAE 120
 20 QAVQQSPVEL SKNLLVKRFL KYVTRKMKS LGWLEAPLKI FKQLQYPSET EQPLPRSRKK 180
 GOLEDASILC LDKEEDDFLHV YYFPFPKRRTS LILPGIIKAA AHVLYETEVE VSLMPPCFHN 240
 DCSEFVNQPY LLYSVHMKST KPSLSPSKPQ SSLVIPTSLF CKTFPFHFMF DKDMTILQFG 300
 NGIRRLMNRR DFQGKPNFEY FEILTPKINQ TFSGIMTMLN MQFVVRVRRW DNSVKKSSRV 360
 25 MDLKQOMIYI VESSAILFLG SPCVDRLDEF TGRLGLYLSDI PHNALRDVV LIGEQARAQD 420
 GLKKRLGKLK ATLEQAHQAL EEEKKKTVDL LCSIFPCEVA QQLWQGQVQV AKKFPSNVTML 480
 FSDIVGFTAI CSQCSPLVITI TMNLNAYTRF DQQCGEVDVY KVETAMIPV WLGGHLKESD 540
 THAVQIALMA LKMMELSDEV MSPHGEPIKM RIGLHSGSVF AGVVGVKMPR YCLFGNNVTL 600
 30 ANKFESCSVP RKINVSPTTY RLLKDCPGFV FIPRSREELP PNFPSEIPGI CHFLDAYQQG 660
 TNSKPCFQKK DVEDASQFQR QSIRNRLLATY IPIYKSLGF SLKMCRASES TLGIVDG

SEQ ID NO:159 PFA1 DNA SEQUENCE

Nucleic Acid Accession #: NM_004362
 Coding sequence: 102-1934 (underlined sequences correspond to start and stop codons)

35 1 11 21 31 41 51
 CGCCGGCGGG ACTGGTCTGA AGAGACCGGG GGACAAGTG GCAACGACTT GGACATCTGA 60
 GCTGTCAGC CGGAAAACAG GCCGAAGAG AGATAATCAA TATGCATTIC CAACCTTTT 120
 40 GGCATATGTT GGGTCTCTG TTCACTCAA TTAATCGAG ATTATAGGAT GATGATGTTG 180
 AGACGGAAGA CTTTGAGAA ATTCAAGAG AAATTGATGT TAATGAAAGT GAACTTCCCT 240
 CAGAGTAAATAAGACA CCTCAACCTA TAGGAGAAGT ATATTTGCA GAAACTTTG 300
 ATAGTGGAGG GTTGGCTGGA TGGGCTTCTT CAAAGACAA GAAAGATGAC ATGGATGAGG 360
 45 AAATTCAAT ATACGATGGA AGATGGAAA TTGAAGAGTT GAAAGAAAAC CAGGTACCTG 420
 GTGACAGAGG ACTGCTTATA AAATCTTAGAG CAAAGCATCA TGCAATATCT GCTGTATTAG 480
 CAAACACATT CATTTTGCT GATAACCTTG TGATAGTCA ATATGAAGTA AATTTCAAG 540
 ATGGTATGTA TTGTGGAGGT GCATACATTA AACTCTTAGC AGACACTGAT GATTGATTC 600
 TGAAAACATT TTATGATAAA ACATCCTATA TCATTATGTT TGGACCCAGAT AAATGTGGAG 660
 50 AAGATTATA ACTTCATTTT ATCTTCAGAC ATAAACATC CAAACACTGGA GTTITCGAAG 720
 AGAACACATGC CAAACCTCCA GATGTAGACC TTAAAAGTT CTTCACAGAC AGGAAGACTC 780
 ATCTTATAC CCTTGATGAT AATCCAGATG ACACATTGTA GGTTGTTAGTT GATCAAACAG 840
 TTGTAACAAAG AGGAAGCTC TGAGAGATG TGGTICCTCC TATCAAACCT CCCAAAGAAA 900
 TTGAGAGATCC CAATGATAAA AAACCTGAGG AATGGATGA AGAGCAAAA ATTCCCTGATC 960
 55 CTTCTCGGT CAAACCGAGAA GACTGGGATG AAAGTGAAAC TGCCAAATA GAAGATTCAA 1020
 GTGITGTTAA ACCTGCTGCG TGGCTTGTGAT ATGAACCCAA ATTATTCCT GATCTTAATG 1080
 CTGAAAACCC TGATGACTGG AATGAAGACA CGGATGGAGA ATGGGAGGCA CCTCAGATTG 1140
 TTAATCCAGC ATGTCGGATT GGGTGTGGT AGTGGAAACC TCCCATGATA GATAACCCAA 1200
 AAACAAAGG AGTATGGAGA CCTCCACTGG TCGATAATCC TAATATCAG GGAATCTGGA 1260
 60 GTCTCTGAA AATTCCTATA CCAGATTAT TCGAAGATGA TCATCCATT CTCTGACTT 1320
 CTTTCAGTGC TCTTGGTTA GAGCTTGGT CTATGACCTC TGATATCTAC TTGATATT 1380
 TTATATCTG TTCCGAAAAG GAAGTAGCAG ATCACTGGG TGCAAGATGGT TGGAGATGGA 1440
 65 AAATAATGAT AGCAACATGCT AATAAGCCTG GTGTATTTAA ACAGTTAATG GCAGCTGCTG 1500
 AAGGGCACCC ATGGCTTGG TTGATTTATC TTGTGACAGC AGGAGTGCA ATAGCATTAA 1560
 TTACTTCATT TTGTTGGCCA AGAAAAGTAA AGAAAAAAAC TAAAGATACA GAGTATAAAA 1620
 AAACCGACAT ATGTATACCA CAAACAAAGG GAGTACTAGA GCAAGAAGAA AAGGAAGAGA 1680
 70 AAGCAGCCCT GGAAAACCA ATGGACCTGG AAGAGGAAAA AAAGCAAAAT GATGGTGAAGA 1740
 TGCTTGGAAA AGAAGAGGAA AGTGAACCTG AGGAAAAGAG TGAGAAGAA ATTGAATATCA 1800
 TAGAAGGGCA AGAAGAAAGT AATCAATCAA ATAAGTCTGG GTCAAGAGGAT GAGATGAAAG 1860
 AAGCAGATGA GAGCACAGGA TCTGGAGATG GGCGATAAA GTCAAGTACGC AAAAGAAGAG 1920
 TACGAAAGGA CTAACATAGA TTGAAATATT TTAAATTCCC GAGAGGATGT TTGGCATTTG 1980
 AAAATCAGC ATGCCAGACC TGAACCTTAA TCAGTCGCA CATCTGTT CTAATATCTA 2040
 GCAACATTAT ATCTCTTCAG ACATTTATTT TAGTCCTCA TTTCGAGGA AAAAGAAGCA 2100
 ACTTTGAAGT TACCTCATCT TTGAATTAG AATAAAAGTG GCACATACAA TATCGGATCT 2160
 75 AAGAGATTAA TACCATTAGA AGTACACAG TTGATGTTG TTGGAGATAG TTGTTGGTTG 2220
 TACAGAAACAA AATAATATGT AGCAGCTICA TTGCTATTGG AAAAATCAGT TATTGGAATT 2280
 TCCACTTAAAGGCTATACCA ACAAATACAC TGGTAGTTG ATAATAAAAA TGAGCATATG 2340
 TCTCTGTTG AAGAGCTAAAG TGCAATAAAG TTCTCTGATG TTGTTGAT TCTATCAACA 2400
 ATTGAAAGTG TTGTTATGAG CCCACATTAA CCTAGTTGT GTCAAATTAT AGTACAGTG 2460
 AGTGTGTTGC TAAATTATA GATTCTTAA AGGACATGCC TTGTTICATAA AATCACTGG 2520

TTATATTGCA GCATATTTA CATTGAATA CAAGGATAAT GGGTTTATC AAAACAAAAT 2580
 GATGTACAGA TTTTTTCA AGTTTTATA GTTGCTTAT GCCAGAGTGG TTACCCAT 2640
 TCACAAAATT TCTTATGCAT ACATTGCTAT TGAAATAAA ATTTAAATAT TTTTCATCC 2700
 TGAAAAAAA

5

SEQ ID NO:160 PFA1 Protein sequence:
 Protein Accession #: NP_004353.1

10 1 11 21 31 41 51

MHFQAFWLCL GLLFISINAE FMDDDVETED FEENSEEIDV NEELSSEIK YKTPQPIGEV 60
 YFAETFDSGR LAGWVLSKAK KDDMDDEIISI YDGRWEIEEL KENQVPGDRG LVLKSRAKHH 120
 AISAVALAKP IFADKPLIVQ YEVNQFDGID CGGAYIKLLA DTDLILNF YDKTSYIIMF 180
 15 GPDKGEDYK LHFIFRHKHP KTGVFEEKHA KPPDVDLKKF FTDRKTHLYT LVMNPDDTFE 240
 VLVDQTVVNK GSLLLEDVVPK IKPPKEIEDP NDKKPEEWDE RAKIPDPSAV KPEDWDESEP 300
 AQIEDSSVK PAGWLDDPEPK FIPDPNAEKP DDWNEDDTGE WEAPQILNPA CRIGCGEWKP 360
 PMIDNPKYKG VWRPPLVDNP NYQGIWSPRK IPNPDYFEDD HPFLTSFSA LGLELWSMTS 420
 20 DIYFDNFIC SEKEVADHWA ADGWRWKMI ANANKPGVQL QLMAAAEGHP WLWLILYLVTA 480
 GVPIALITSF CWPRKVKKKH KDTEYKKTDI CIPQTKGVLE QEEKEEKAAL EKPMDEEKK 540
 KQNDGEMLEK EEESEPEEKS EEEIEIIEQQ EESNQSNKSG SEDEMKEADE STSGSGDPIK 600
 SVRKRRVRKD

25

SEQ ID NO:161 PEZ9 DNA SEQUENCE

Nucleic Acid Accession #: NM_005932

Coding sequence: 75-2216 (underlined sequences correspond to start and stop codons)

30 1 11 21 31 41 51

GCGGAGCCG CGCTCCCCAG GAAAGCAGCA GGGCAGGGAT CTGGCTTGGGA GGAAGGGACT 60
 GCTCTGGTC TAGAATGCTG TGCGTCGGAA GGCTGGCGG CTTGGGAGCC AGAGCAGCAG 120
 CTCTGCCGC CGCGGGGGAA GCCTCGAACG CGGGATCCGG GCGCGAAGGG 180
 35 TCAGCACCAAG CTGGTCTCCC GTGGGCGCG CTTCAATGT CAAGCCCCAG GGCAGCCGCT 240
 TGGACCTGTT CGGCAGCGG CGGCAGCTTT TTGAGCTTC TGAGCTGAGT GCGCCAGAAAG 300
 GATTICATAT TGACAAGAA AAAGCTTGA GAAAGACAGA ATTGCTTGAC GACCGTGAT 360
 GTTCCACCCC ACCTGGGCC CAGACCGTC TGATCTTCGA TGAGCTCTCG GATTCCTTAT 420
 GCAGAGTGGC CGACTTGTGA AAATCCCTCA CCCTGAGCCA GCATTCAGAG 480
 40 AAGCTCGGA AGAACGCTTG AGAAAGTATG GCACCATGGT AGAGAAGTTG AACACAAATG 540
 TGGATTATA TCAAAGTTG CAAAATTAC TAGCTGATAA AAAACTTGTG GATTCCTTGC 600
 ATCCAGAAAC AAGGCAGTG GCTGAACGTG TTATGTTGA TTGAAATT AGTGAATCC 660
 ATCTAGACAA ACAAAAGCGT AAAAGAGCAG TGGACCTCAA TGTTAAATC TTGGATTITGA 720
 GTAGTACATT TCTTATGGGA ACCAAATTTC CCAACAAAGAT TGAGAACAT CTCCTTACAG 780
 AACACATTG TCGTAACATT ACATCTGCTG GGGATCATAT CATAATTGAT GGTCTCCACG 840
 CAGAACATCC AGATGACTTG TGCGAGAG CTGCTTATAA AATTTCCTT TATCCAATG 900
 45 CTGGTCATT GAAATGTTA GAAGAA TTGC TCAGCAGCAG AGATCTCTG GCAAAGTTGG 960
 TGGGTATTAC CACGTTCTCACAGGGCT TCCAAGGAAC GATACTAAA ATTCAGAGA 1020
 CTGTCATCGA GTTCTCTTGA AAAACTCTG ACAAACTTTC TGAAAGAATCTGAAAGATT 1080
 TTGAGATGAT ACGAGGGATG AAAATGAAAC TGAATGCTA AAATCCGAA GTAATGCCCT 1140
 50 GGGACCCCCC TTACTACAGT GGTGTGATTC GTGCAGAAAG GTATAATATT GAGGCCAGCC 1200
 TATAATGCGG GTTTTCTCT CTTGGAGCAT GCATGGAAGG CCTGAATATT TTGCTTAACA 1260
 GACTGTGGG GATTCTCAT TATGCAGAGG AGCCTGCAAAG AGGAGAGGTG TGGAGCGAAG 1320
 ATGTCGAAA ACTGGCTGTT GTTCATGAAT CTGAAAGGATT GTTGGGTAC ATTACTGTG 1380
 ATTTTTTCA GCGAGCAGAC AAACCACATC AGGATTGCCA TTTCACATC CGTGGAGGCA 1440
 GACTAAAGGA AGATGGAGAC TATCAACCTC CACTTGTAGT TCTTATGCTG AATCTCCCC 1500
 55 GTTCTCAAG GAGTTCTCAA ACTTTGCTAA CTCTGGCAT GATGAAAAT CTTTCCATG 1560
 AAATGGGACA TGCCATGCAT TCAATGCTAG GACGTAACCG TTACCAACAC GTCACTGGGA 1620
 CCAGGTGCCC TACTGATTG TGTGAGGTT CTTCTATCT GATGGAGTAC TTGCAATG 1680
 ATTATCGAGT AGTAAACCAAC ATTACAGAC TGGACAGCCA CTGCCAAAAAA 1740
 60 ATATGCTGTC TCGTCTTGT GAATCTAAA AGGTTGTGC TGCAGCTGAT ATGCAACTTC 1800
 AGGTCTTTA TGCCACTCTG GATCAAATCT ACCATGGGAA GCATCCCCCTG AGGAATTCAA 1860
 CCACAGACAT TCTCAAGGAA ACACAAAGAGA AATTCTATGG CCTACCATAT GTTCCAATA 1920
 CTGCTGGCA GCTGGATTC AGGCCACTCG TGGGGTATGG TGCTAGATAT TACTCTTAC 1980
 65 TCATGTCAG AGCGGTGCC TCCATGGTTT GGAAGGAGTG TTTCAGACAG GATCTTCA 2040
 ACAGGGCTGC CGGGGAGGC TATCGAGGG AGATGCTGGC CCACCGTGGGA GGCAGGGAGC 2100
 CCATCTCAT GGTGAAAGGT ATGTCCTCA AGTGTCTTC TTGTGATGAC TTGCTAAGTG 2160
 CCCTCGTTT CGACTTGGAT CTGGACTTCG AAACCTTCT CATGGATCT GAATAAAAGA 2220
 AACACTCTAC ACCTCTAAC ACAGGTCATGT AGTAATGACT TTGTTATAAA TGCTACAGCT 2280
 GTGAGAGCTT GTTCTGATT GTTCTATTGT TCGCTTCTGT AATCTGAAA AACTTAAAC 2340
 70 TGGTAGAACT TGAATAAT AATTGTTT AATTTAAAAA AATTTAAAAA AA

75

SEQ ID NO:162 PEZ9 Protein sequence:
 Protein Accession #: NP_005932.1

1 11 21 31 41 51

MLCVGRLLGGI GARAAALPPR RAGRGSLEAG IRARRVSTSW SPVGAANVK PQGSRLDLFG 60
 ERARLFVGVE LSAPEGFHIA QEKLARKTEL LVDRACSTPP GPQTVLIFDE LSDSLCRVAD 120

LADFKIAHP EPAFREAAEE ACRSIGTMVE KLNTNVDLYQ SLQKLLADKK LVDSLDPETR 180
 RVAELFMDFD EISGIHLDKQ KRKRADVLDNV KILDLSSTFL MGTNFPNIE KHLLPEHIRR 240
 NFTSAGDHII IDGLHAESPD DLVREAAYKI FLYPNAGQLK CLEELLSSRD LLAKLGVYST 300
 5 FSRLRALQGTTI AKNPETVMQF LEKLSDKLSE RTLKDDEMIR GMKMKLNAQN SEVMPWDPPY 360
 YSGVIRAERY NIEPSLYCPF FSLGACMEGL NILLNRLLGI SLYAEQPAKG EVVSEDVRLKL 420
 AVVHESEGLL GYIYCDFFQR ADKPHQDCHF TIRGGRLKED GDYQLPLVVL MLNLPRSSRS 480
 SPTEFLPGMM ENLFHEMGIH MHMSMLCRTRY QHVITGRCPY DFAEVPSILM EYFANDYRVV 540
 NQFARHYQTG QPLPKNMVSR LCESKKVAAD MADMQLQVFYA TLQIYHGKH PLRNSTTDL 600
 10 KETOEKFYGL PYVPNTAWQL RFSHLVGYGA RYYSYLMRSA VASMVWKECF LQDPFNRAAG 660
 ERYRREMLAH GGGREPMILMV EGMLQKCPSV DDFVSLVSD LDLDFTFLM DSE

SEQ ID NO:163 PEZ8 DNA SEQUENCE

Nucleic Acid Accession #: AF103907

Coding sequence: none (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51
20	ACAGAAGAAA TAGCAAGTGC CGAGAACGCTG GCATCAGAAA AACAGAGGGG AGATTGTGT 60 GGCTGCAGCC GAGGGAGACC AGGAAGATCT GCATGGTGGG AAGACGCTG TGATACAGAG 120 GAATTACAC ACATACACTT AGTGTTCCTAA TGAACACCAA GATAATAAG TGAAGAGCTA 180 GTCCGCTGTC AGTCTCCCTCA GTGACACAGG GCTGGATCAC CATCGACGGC ACTTCTGAG 240 TACTCAGTG AGCAAGAAA GACTCACAGC ATCTCAATGG CAGGGGTGAG AAATAAGAAA 300 25 GGCTGCTGAC TTATCATCT GAGGCCACAC ATCTGCTGAA ATGGAGATAA TTAAACATCAC 360 TAGAACACAGC AAGATGACAA TATAATGCT AAGTAGTGAC ATGTTTTGC ACATTTCAG 420 CCCCTTTAAA TATCCACACA CACAGGAAGC ACAAAAGGAA GCACAGAGAT CCCTGGGAGA 480 AATGCCCGGC CGCCATCTG GGTCTGAT GAGCCTCGC CTGTGCTGG TCCCCTGTTG 540 30 GAGGGAAAGGA CATTAGAAA TGAATTGATG TGTTCTCTAA AGGATGGCA GGAAAACAGA 600 TCCCTGTTGTG GATATTTATT TGAACGGGAT TACAGATTG AAATGAAGTC ACAAAAGTGAG 660 CATTACCATGAGAGAGAGA CAGACGAGAA AATCTTGATG GCTTCACAAG ACATGCAACA 720 AACAAAATGG AATACTGTGA TGACATGAGG CAGCCAAGCT GGGGAGGAGA TAACCACGGG 780 35 GCAGAGGGTC AGGATCTGG CCCTGCTGCC TAAACTGTGC GTTCATAACCC AAAATCATTC 840 ATATTCCTAA CCCCCTAAAC AAGACTGTG TAAATCTGAA TCTCTACGGT TCCTCTGGG 900 CCCAACATTC CCTCATATCAG CATTITTAAT ATTTATTC CAGATCTGTA 960 CTGTGACCTT TCTACACTGT AGAATAACAT TACTCATTT GTTCAAAGAC CCTTCTGTT 1020 GCTGCTTAAT ATGTAGCTG CTGTTTCTC TAAGGAGTGT TCTGGCCAG GGGATCTGTG 1080 AACAGGCTG GAAGCATCTC AAGATCTTC CAGGGTATAA CTTACTAGCA CACAGCATGA 1140 40 TCATTACGGA GTGAATTATC TAATCAACAT CATCTCTAGT GTCTTGCCCC ATACTGAAAT 1200 TCATTCTCCA CTTTGTGCC CATTCTCAAG ACCCTAAAT GTCATTCAT TAATATCACA 1260 GGATTAACCTT TTTTTTTA CCTGAAAGAA TTCAATGTTA CATGCAAGCTA TGGGAATTAA 1320 ATTACATATT TTGTTTCTCA GTGCAAGAT GACTAAGTCC TTATCTCTC CCCTTTGTTT 1380 GATTTTTCTT CCAGTATAAA GTTAAATGCT TTAGCTTGTG ACTGAGGCTG TATAACAGCAC 1440 45 AGCCCTCTCCC CATCCCTCCA GCCTTATCTG TCATCACCAT CAACCCCTCC CATAACACCT 1500 AAACAAAATC TAACTGTGAA TTCTCTGAAC ATGTCAGGAGC ATACATTATT CCTTCTGCCT 1560 GAGAAGCTCT CCTTCTGCTC TTAAATCTG AATGATGTAAT AAGTTGAAAT AAGTGTACTA 1620 TCTTACTTCA TGCAAAGAAG GGACACATAT GAGATTCTAC ATCACATGAG ACAGCAAATA 1680 CTTAAAGTGT AATTGTTA TAAGAGTTA GATAAAATATA TGAATGCAA GAGCCACAGA 1740 50 TAGTATCTTA TATAATATAC TTCACTTCTC TATCTCTATC ACAATATACCA ACAAGCTTTT 1800 CACAGAATTCTC ATGCACTGCA AATCCCCAAA GGTAACCTT ATCCATTCTCA TGTTGAGTG 1920 GCTTTAGAAT TTGGAACAT CACTCTGTC ACTTATCTCA ACTTTGAGAT GTGTTTGTCC 1980 TTGTAGTAA TGGAAGAAA TAGGGCACTC TTGTGAGGCC CTTAGGGTT CACTCTGTC 2040 55 AATAAAGAAT TTACAAAGAG CTACTCAGGA CCAGTTGTTA AGAGCTCTG TGTTGTTGTT 2100 GTGTGTTGTT GACTGTACAT GCCAAAGTGT GCTCTCTCTT CTGACCCAT TATTTCAGAC 2160 TTAAAACAG CATTTCTCA AATGGCACTA TGAGCTGCCA ATGATGTATC ACCACCAT 2220 CTCATTATTC TCCAGTAAT GTGATAATAA TGTCTATCTG TAACATAAAA AAAGTTGAC 2280 TTACACAAAG CAGCTGGAAA TGGACAAACCA CAAATGCTC AAATCTAACT CCTACCATCA 2340 GCTACACACT GCTTGACATA TTTGTTAAGA AGCACCTCCG ATTGTGGGT TCTCTTAAAGC 2400 60 AAAATACTTG CTTAGGTCT CAGCTGGGGC TGTCATCATCG GCGCTTGTGAAATATTCAA 2460 TTCTCAGCAAG AAGCCAGAAT TTGAATCTCC TCATCTTTA GGAATCATT ACCAGGTTTG 2520 GAGAGGATTC AGACAGCTCA CGCTCTICA CTAACTGTC TGAAACTCTG TCCCTCTTG 2580 TGTTCATGGA TGTCTCCAATAAATGTTA CTTTTGATGATGCTCATA GGAGAGAATA 2640 TAAGAACTCT GAGTGTATC AACATTAGGG ATTCAAGAAT ATTTAGATT TAAGCTCACA 2700 CTGGTCAAAA GGAACCAAGA TACAAAGAAC TCTGAGCTGT CATCGCCCCC ATCTCTGCA 2760 65 GCCACACCA ACAGCAGGAC CCAACGCTG TCTGAGATCC TTAAATCAAG GAAACCGATG 2820 TCATGAGTTG AATTCCTCTTA TTATGGATCTC TAGCTCTGG CCATCTCTG CTCTCTCTT 2880 GACACATATT AGCTCTCTAGC CTTCTCTGCTC ACAGCTTTA TCTTTCTCC AACACATCGC 2940 70 TTACCAATCC TCTCTCTGCT CTGTTGCTT GGACTTCCCC ACAAGAATT CAACGACTCT 3000 CAAGTCTTT CTTCCATCCC CACCAACTAC CTGAATGCT AGACCCCTAT TTTTATTAAT 3060 TTCCCAATAGA TGCTGCCATGGG GGGCTATATT GCTTTAGATG AACATAGAT ATTTAAAGCT 3120 CAAGAGGTTCA AAAATCCAAC TCATTTATCTT CTCTCTCTT CACCTCCCTG TCCCTCTCCC 3180 TATATTACTG ATTCGACTGAA ACAGCATGTA CCCCAATGTA GCCATGCAA TGAGAAACCC 3240 75 AGTGGCTCT TGTGGTACAT GCATGCAAGA CTGCTGAAGC CAGAAGGATG ACTGATTACG 3300 CCTCTGGGT GGAGGGGACCTCTGGGC CTTCTGGTATT GTCAAGGAGCA AGACCTGAGA 3360 TGCTCCCTGC CTTCACTGTC CTCTGACATC CCCCCTCTCA ATGAAGATCC ATAGAATTG 3420 CTACATTGAA GAATCCAAAT TAGGAACCTCA CATGTTTAT CTGCCCTATC AATTTTTAA 3480 ACTTGCTGAA AATTAAGTTT TTGAAATCCTGTA AATTACCTTT TCTTACAGTG 3540 TCTTGGCATA CTATATCAAC TTGATCTCTT TGTACAACCT TTTTATCACC 3600				

AAAGTGGCTT TTATTCCTT TATTATTATT ATTTCTT ACTACTATAT TACGTGTTA 3660
 TTATTTGTT CTCTATAGTA TCAATTATT TGATTTAGTT TCAATTATT TTATTCGTC 3720
 ACTTTAAA TAAGTGATT GGGGGGTTGGG AGAACAGGGG AGGGAGAGCA TTAGGACAAA 3780
 5 TACCTAATGC ATGTGGACT TAAAACCTAG ATGATGGTT GATAGGTGCA GCAAACCACT 3840
 ATGGCACACG TATACTGTG TAACAAACCT ACACATCTG CACATGTATC CCAGAACGTA 3900
 AAGTAAAATT TAAAAAAAG TGA

10 PEZ8 Protein sequence:
 Protein Accession #: none

SEQ ID NO:164 PEZ6 DNA SEQUENCE

Nucleic Acid Accession #: AB028945

Coding sequence: 1-3765 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51
<u>ATGATGATGA ACGTCCCCGG CGGAGGAGCG GCGCGGTGA TGATGACGGG CTACAATAAT</u> 60					
GTCGCTGTC CCCGAATTCTCTCTACAGT GACTGCATTA TTGAGGAGAA GACGGTGGTC 120					
CTGCAGAAAA AAGACAATGA GGGCTTGTGA TTCTGCTTC GAGGGCCAA AGCTGACACA 180					
CCCATTGAA AATTACACCC AACACCGGAC TCCCAACGCC TACAGTACCT GGAGTCCGTC 240					
GATGAAGGTG GGGTGGCTGTG GCAAGCCCGA CTAAGGACGG GGGACTCTT GATTGAGGTT 300					
AACAAATGAGA ATGTTGTCAA AGTCGGCCAC AGGCAGGTGG TGAACATGAT CCGGCAGGG 360					
GGGAATCACC TGGTCTTAA GGTGGTCACG GTGACCCAGA ATCTGGACCC CGACGACACC 420					
GCCAGGAAGA AAGCTCCCCC GCCTTAAAG CCGGCACCGA CCACAGCCCT CACCCCTGGC 480					
TCCAAGTCCA TGACCTCGGA GCTGGAGAG CTCGTGGATA AAGATAAAC CGAGGAGATA 540					
GTCGGGCGCTT CCAAGCCCTC CCGCGCTGTG GAGAACATGG CTGTGGAACC GAGGGTGGCG 600					
ACCATCAAGC AGCAGGCCAG CAGGGCTGTG TCCCGGCGG GCTCAGACAT GAACCTGTG 660					
TAGAACGCC AAGGAATCGC CGTGTATGAGC CCGACTGTTC CTGGGAGGCC AAAAGCCCCG 720					
TTCTGGCA TCCCTCGAGG TACGATGCGA AGGCAGAAAT CAATAGACAG CAGAACATTT 780					
CTATCAGGAA TAACAGAGGA AGAGCGGCAG TTCTGCTC CTCCAATGCT GAAGTTTACCC 840					
AGAAAGCTGT CCATGCCGGA CACCTCTGAG GACATCCCCC CTCCACCGCA GCTCTGTGCC 900					
CCGGTCCCCAC CACCACCTTC CCGAACCTACT TACAATGCG CCAAGTCCCC AACTCCAAGA 960					
GTCACGGGA CGATTAAGCC TGCGTTCAAT CAGAATTCTG CCGCCAAGGT GTCCCCCGCC 1020					
ACCAGGTCGG ACACCGTGTG CACCATGATG AGGGAGAAGG GGATGTACTT CAGGAGAGAG 1080					
CTGGACCGT ACTCTTGGA CTCTGAAGAC CTCTACAGTC GGAATGCGG CCGGCAAGCC 1140					
AACTCCGCA ACAAGAGAGG CCGAGATGCCA GAAAACCCAT ACTCAGAGGT GGGGAAGATC 1200					
GCCAGCAAAAG CCGTCTACGT CCCCCGCAAG CCCGCCAGGC GGAAGGGGAT GCTGGTGAAG 1260					
CAGTCCAACG TGGAGGACAG CCCCCGAGAAG ACGTGCTCCA TCCCTATCCC GACCATCATC 1320					
CTGAAGGAGC CGTCCACCGAG CAGCAGCCGG AAGGACAGCC AGGGCAGCAG CATGGAGATC 1380					
GACCCCCCAGG CCCCCGGAGCC ACCGAGCCAG CTGGGGCCTG ACGAAAGCT GACCGTCAGC 1440					
AGCCCCCTTG CGCGGCCAT CGCCGGGACCC GTGAGAAGCC GCTCGAAGCC 1500					
AGGAGGAACCTT CCCCCGCTT CCTCTTCCACA GACCTGGGGG ATGAGGATGT GGGCTGGGG 1560					
CCACCCGCC CCAGGACCGC GCCCCTCATG TTCCCGGAGG AGGGGGATTT TGCTGACGAG 1620					
GACAGCGCTG AGCACTGTCT ATCCCCCATG CCGAGTGTCA CGCCCAAGGGA GCCGAAAAAC 1680					
CATTTCTGTTG GTGGCGCCGA GGCCAGTGTG CCGGGTGAGG CTGGGAGGCC GCTGAATTCC 1740					
ACGTCCAAGG CCCAGGGGCC CGAGAGCAGC CCAGCACTG CCGTCCGGAG CAGCGGCACA 1800					
GCCGGCCCGG GGAATTATGT CCACCCACTC ACAGGGCCG TGCTTGATCC CAGCTCCCCG 1860					
CTGGCCCTGG CACTCTCCCG AAGGGACCGA GGCATGAAGG AGTCTCAACA GGGACCCAAA 1920					
GGGGAGGCC CCAAGGGCGA CCTCAACAAA CCTCTTITACA TTGATACCAA AATCGGGCCC 1980					
AGCCTGGATG CCGGCTTCCC TACGGTCACC AGGCAGAAACA CCGGGGGACC CCTGAGGCGG 2040					
CAGGAGACGG AGAACAAAGTA CGAGACCGAC CTGGGGCAG ACCGGAAAGG CGATGACAAAG 2100					
AAGAACATGC TGATGCACAT CATGGACACG TCCCAGCAGA AGTCGGCTGG CCTGCTGATC 2160					
GTGCACACCG TGAGGCCAC AAAGCCCTGC AGGAAGAGGA CGAGAAGGCA 2220					
GAGGTGGAGA TGAAGCCAGA CAGCTCGCCG TCGAGGGTGC CAGAAGGTGT TTCCGAAACC 2280					
GAAGGTGCTT TACAGATCTC CGCTGCCCGG GAGCCACCA CGCTGCCCGG CAGAACCATC 2340					
GTCCGGTGG GCTCCATGGA AGAGCGGTG ATTTGCCAT TCCGCATCCC TCCTCCCCCT 2400					
CTGGCATCCG TGGACTTGGA TGAGGATTIT ATTTTACAG AGCCATGTC TCCTCCCCCT 2460					
GAATTGCAAA ATAGTTTGA TATCCCCAT GACCGGGCAG CTTCCTGCTCC GGCTCTCTCA 2520					
GACTTAGTGA AGCAGAAAGA AAGCGACACC CCTCAGTCCC CTTCAGTTGA CTCCAGCCAA 2580					
CCAACCAACT CTGCAGACAG CAAAGACCGA CCGACTCTT CAAACTGTCT GCTCGCTCA 2640					
TTCTCTGCCAC CCCCTGAAG CTTTGACGCC GTGCCGACT CTGGGATCGA GGAGGGTGGAC 2700					
AGCCGGAGTA CGACGCCAGA CCAACTCGAG ACGACCAAGCA CTATCTCCAC CGTGTCTAGC 2760					
ATCTCACCAC TGTCTTCCGA AGGTGGAGAG AATGTGGACA CCTGCACAGT CTATGCAGAT 2820					
GGGCAAGCAT TTATGGTGA CAAACCCCA GTACCTCTCA AGCCAAAAAT GAACCCCATC 2880					
ATTCAACAAA GCAATGCACT TTATCAAGAC GCGCTCGTG AAGAAAGATGT AGATAGCTT 2940					
GTTATCCCCC CGCCCGCTCC CCCGGCCCCCG CGGGCAGTG CCCAGCTGG GATGGCCAAG 3000					
GTTCTCAGC CAAGGACCTC CAAGTTGTGG GGCGACCTCA CAGAGATCAA AAGCCCCGATT 3060					
CTCTCAGGCC CAAAGGCAAA CGTTATTAGT GAATGAACT CTATCTACA GCAAATGAAC 3120					
CGAGAGAAAT TGCAAAAGCC GGGGGAGGA CTGGATTCAC CAATGGAGC CAAGTCCGCC 3180					
AGCCCTGCTC CAAGAAGCCC GGAGATCATG AGCACCATCT CAGGTACACG GAGCACGACG 3240					
GTCACCTTCA CTGTTGCCCG CGGCACCTCC CAGCCCATCA CCCTGCAGAG CGGGCCCCCCC 3300					
GACTATGAAA CGAGGACCTC AGGAACAAGA CGTGGCCCAA GCGCTGTGGT CTCCGCCAACAA 3360					
GAGATGAACA AAGAGACCC GCGCCGGCCCC CTGTCTGCTG CCACCGCCTC TCCTCTCCC 3420					
GCTCTCTAG ATGTCTTGTG CCTTCAAGC CAGCCCCCTT CTGGGGATCT ATTTGGCTTG 3480					
AACCACGGG GACCGAGTAG GTGCCCATCC CCCTCGATAC TGCAACAGCC AATCTCAAAT 3540					
AAGCCTTTA CAACTAAACC TGTCACCTG TGAGCTAAAC CAGATGTGGC CGATTGCTG 3600					
GAAAGTCTAA ACTTGGGTGA ACATAAAGAG GCCTTCATGG ACAATGAGAT CGATGGCAGT 3660					
CACTTACCAA ACCTGCAGAA GGAGGACCTC ATCGATCTG GGGTAACTCG AGTCGGGCAC 3720					

AGAATGAACA TAGAAAGGGC TTTGAAACAG CTGCTGGACA GATAAGGACG GCTGCTCTCC 3780
5 ACCTCGAGA CTGCTCTTGT TATAAGTGA GATGGGCTG TGCTGAAACA TCTGAATGCC 3840
AAGCGAAGTC TGTGAGCATE AACCCCACTC ATCGGGTTG TCTCTGGTA CCCAAAGAAA 3900
TACTGAGTGT TGICCACAC 10 ATGGCTGGT CTTCAGACCC CTGGCTCACC ATGTGGGTGT 3960
CTTGGGCACT TTCTATCACA CATGGGACAA GGGGAGGGAG TTTTCTAAC ATGAAAAAAAG 4020
ATTCGGCAGC TGCCTGGGACAT CGTCAGGTG GCTCTGTTT GCGGGCTCAG AGGGCTCCC 4080
CGTCAATTGTCACGGGATC CTAGCTCTTG TAGGCAGACCA CCACTGACT CTAGATACCT 4140
10 CCTGAGACCT CGCTCTCTG CTTTCCGGGC AGCTCTCACCC ACCCCAGGCC CGGCATGAG 4200
GCCTTCTCTG AGTCTCTGTG CCTCTCAGAG GACACCTGT GCTCACCTGC CCCTCTTCT 4260
CTTGCACTG CTTGCACTG AGATGCTCCC AGATGCAATT GTCCAGTGC CCATCATGGG 4320
CTTGAAAGGC AGAGAAACTT TTTCATCACAC ATGATCTTTT CCCCACATCC TCTGTGGTT 4380
15 TGCATCCATG GCTCTTGGC CATGAGGTTCTGGCAGTGC TGGGAGTTTG GATGGGATCG 4440
TGCCTCAGCTT TGCTTAGCTT TCTTATTTC TGCAAACTAT TCCAAGGGT 4500
CCAAGCGAGT GTCACTATGGA GTTAGTCAAA GCACAAAGTC AGCTTCCAC AATGGGGGG 4560
AGACCTGGCC AAGGGAGCCA GCCAGCGTC AACTGCCAA GCTCCAGGTC TCCAGGACAA 4620
GAGCAGTTGT CTGCCATGAG CACCCATCCA GGATGGAGAA TAAGGGCTTCTGCTCTC 4680
AGAATCTT TTAATGAGA ATGCTCTGAG CTCTGCAAG ATCAGAGACG GTGAGCATCC 4740
20 ACTTGTGAT CAAGGGACAG AAGACCGATC GCTCATGGC GGCACTATGCC GCTGCCAGTG 4800
AGACAGCGTC TCCCTCTGGGA GCTGGGGGGG CACAGCATCC TCAGTTCTGT GCCCAGCCAA 4860
GGGTGAGCAT CTCTGCTGAG ACAGTCTTT TGCTCTCGGA GGCCAGGGAA GATGGTACTT 4920
AGAGGCTTTT CCCCCTATCGC TCTGGGTGTC TAGGAATCCC ACCAGCTGTG CTTAACAGTA 4980
25 CAACAGCTTC TTGAGGACCCAGTTGGTGT GGAGTATAGA CAGAACCCAGG GTTGTGAGAAC 5040
AGAAGGTGGG CGGCAGGATC AGAGTAAAG CAGAGGCTG AGGAGAGGAA AGCAGGGAGG 5100
TCTCTCTGGG TGCCAGGTCA GCCTCTCTGG CAAGGCTTTC TIGAGGCCGG CCCCTCTT 5160
TCCCGGAGT CTCCTCCACCA CATAACATA CTCGAATT CTCAGGAGG TGACCATGATG 5220
CACATGGGCC GCAAAACACA CAGTCAGGCT TCCAGCACAT TCTCCCCAT TTGAGGATA 5280
CTCGAATGTC AGGTTTTTGTTT ATTTCAGAAC TAGCTCAGGC CATCTCTAAC 5340
TATAAAACAT GTTTTCTTCTTCTTCTTGTTGTTCTTGAGTGC TGGAACAGCT 5400
30 CTGAATGAA CACATAAAAT TTAGCAATT AAAATCTTCTTCTTACTGCCTA GTTTAAATAG 5460
TTGTACAGAT AGTTTATAAG CACAATATTT TAAGAAAAAA AAGTGGCTGG TCTACTAGGC 5520
ACGCCCTTGTG CCACTTCAGT GCTAGAAAAGT TAAAGAAAAAA AAAACTTTTG TGATTTAAT 5580
ATACTATTC TGTGAAATAA TTAAAAAAAGT AGACCTTTT TAAATCAACC TTATTTGGAT 5640
GCATCTGAAC CAGCAGGCT GTGTTATATTCTCTCTGT GCTAGAACCTT CGTCATTGAA 5700
GGACAATTTC TTCAAAGTGG TTACAATTCA TAATGCAAGCA GTTTCTCAA AAACAAAAAAAC 5760
35 AAAACACACCA CCACACACAG GCGCTTTC AGTCACACAC CCCTGTAGTT GGAACCAAGT 5820
TTTGGACCT TCTGTTCTAA AACCTTTGCA AGGTCAACTT TTGTTATTTGA ATGATCTCAA 5880
TCCAACITGA AGTCAATTGA ATATTAAGGC GCTTACTTC CGTGTGCTT CAGTTTTCC 5940
40 ATCATGAGAT GAATGAGCAT TACTCTAGAT AAATTCAAG ACAGGATAGT ACAGGTGGCC 6000
TGTGAGGCT GCCCCATATT TTAGAAAATG TAAAAAATGGT GTTGGGCCA TTATTTGTC 6060
TTCCATTGTA TGATACCGCA AAATTCGGT AGTCATCTCTTGGCATGG CACTTCTCC 6120
GGGCCTACAG TTGGTATTAC CTCTGTCAGC AGTGCAGGCA AAAACACTAG CTCAAAGGAG 6180
45 AGTCAGGAA ACCCTGGTCG GACGATAAC AGTCGAACAT CGTGTGCTTG TTGTTGTA 6240
CTTGGCAGC CAGTTGGTA GGCGCAGAT TTATTCCCTT CTTAAAGAT ACTCCAAAGC 6300
ACATGCCACT AACACAAAGC AGCTGGCT CAAGACTAAA GAGCTGATAA CATACTTAT 6360
TTTACACTG TCTTATTATA GAGAAGTAAT AGACCTATCA GAACTGCACT TGACCAACAA 6420
50 ATAAACACAT GTTGCAAGA TGAATCGTC TCTATCTCTA TCTGCTTATT TTGTTGACTGA 6480
AAGCAATAGT TTCTCATICA AATCACCCAC CACTGTTCTC CCCCTTGGG ACATTTAGG 6540
ACGAGGCCCT ATTCCATGCC CCTCTTTAAT GGTGGAACAA ATGTTAAACT GCTCATCTAA 6600
AGATCATGTT GATATTATTC CAGGTTTTAAT GATCACTT TGTTACATAC TGTAATTAA 6660
55 ATAACACTGCA TTACATGCC TAGTTCTGT AATATTTGT ATACAAAAC CAAATCTCTC 6720
AAATGTAAA TTATGATAC CTGCAAGAT ACCTTTCTCA GGGTGTCTGC GCACATTAA 6780
AGTTAATTCA CATAATATAA AAATTACTCA ATGTGACTGT TGTTGACTG AACTTTACAT 6840
ATCACAAAGT GAATTATTTG TGATACATTA GTTAATAAA TGTTAAATT TTCTCTCAGT 6900
TATTGAACAA CGAACGATTA TCCAGTTGAT CTGGCAATGA CTTTTGTTG TGGGGCCA 6960
60 ATATTGATIT TCCCTTAAAC AATTCTTCTTAA ATACTAATAT GTTTCACACT 7020
ATAGTTGTG TAACAACACG TGTTGCAATT ATCTATGTT CTGTTACTTT TGTTGCTTAA 7080
TCTTTTGTG ACTTTATAAA AAAAAGGGGG AGCTCTGTAA ATTTCGACTT TCTCTTCAACT 7140
CTTAAATCTC TTGTATGGCA ACCAAATTA CTTGAAAAAA AAAATATAC TATTTGCACTA 7200
AGTTGTGGT TCTGATTGCA AACAAACAGT GAACACTGTC TGAATTAAAC AAAAGCTGC 7260
65 CGCAGCTCA ATCTAATGTA GATTATCTCA GGCGATTGTT CGACGCTCTG CTCCTCTTAA 7320
CTGACCAGAA AAATCTCTCTCATCGAGTAA AGACGGCTCT GTCACGTGAC TAATCTGGCT 7380
TGGTCCATT TCTTATTCT CAATTATCA ATGGATACGT GCATGTATT TCAGAATTAT 7440
GCAAAACGTC AAAATCTGCT TCTGTGACCG CTGCTATAGG CGTGGAGCTG AGGCTGGCT 7500
TTCTCTTGTG TTCTGGGGTAA AAGCAGCGGT GCGCGGAGG GCGACGCCAGA TCCGGACCT 7560
70 TCCCTTGGTCTCAGCTCTCC CCAACCCCCA CGAGGGTGTCTCTAGCATTA AAGGCCAAGG 7620
GAGTGGCAGA ACTGGGCCGCT CTCCTGTGTT GACAAGAAA CCACATGCTA AGGCTTGGAG 7680
CAAGAGAGAAA TTGTTGCTA TTGGAAGAAGA ACTAACGCCG GAAGACATGG CGCATCTCTC 7740
CGCTTCTGGG AAGCATATT TAAACCTAAA CGTGTGACTT CTCTCTTGGC CTACCAAGTG 7800
75 AAAACTGTGTT GTCTTGTGTT CTTAAAGTTT CTCTACTTTT GGCACTTCC CCAGTTGAGC 7860
ACGAGCCCTCT ATGCTTCCAC GTTCAAGAAA AATTCAGCTC CTCACTATCT TTGTTGACTGA 7920
CCCTCAAGCT CTCCGGCTTC ACCATCCAAT AGTTCTCCC AAACCTTGGC ACCCCCCCTAG 7980
ACTTGTGCTC CAATGGTTCTCAGACCA CTTTCTCTAG ATGAATATAT TGTTTACCT 8040
TACTAGGAAA ATTATGGAA GATTTTCTT TTACTGAA ATTGGAGGCA TTTAATAAC 8100
75 CGCGACTG CTGATGTTGTT CTGTTGTTGAG ACAGACCAT GTACCCATGCA AAGTAGGTGA 8160
ACATTCACACAGCTGGGGTGGT GACCCAGACCA GCTGCGATGCA CAGACAGACTG CGCCGCTT 8220
GTGGGGAACTC AGAGAATTTC CAAACTGTGTT TCTCAGACTT CGCGAGATCT CATCACTTG 8280
ATTCTCAATC CTGCTGTTA TTGTTGATTGTT CTCTGAACTT GTTCTACCT 8340
CCACAGCTT TACGGTTA TTGTTCAAAAT TACAACATGCC CTGGTCACTT GATTCCACTC 8400
TGGCAACTCTI TTGTTGATGCC AATTGAGAA TTGTTAATAGC AGCCTCAAA TAAACACAGA 8460

AAAGAAAAAA AAAAAAAAAA AAAAAAAA

5 **SEQ ID NO:165 PEZ6 Protein sequence:**
 Protein Accession #: BAA82974.1

1	11	21	31	41	51	
---	----	----	----	----	----	--

```

10    MMMMNVGGGA AAVMMMTGYN GRCPRNSLYS DCIIEEKTIV LQKKDNEGFG FVLRGAKADT 60
PIEFTPTPA FPALQYLESV DEGGVAVWQAG LRTGDFLIEV NNEENVVKVGH RQVVNMIRQG 120
GNHLVLKVVT VTRNLDPDT ARKKAPPK RAPITALTLR SKSMTSELEE LVDKDKPEE 180
VPASKPSRAA ENMAVEPRVA TIKQRPSSRC FPAGSDMNSV YERQGIAVMT PTVPGSKAP 240
FLCAGPCTMR RQKSIDSRIF LSGLITEERQ FLAPPMLKF RSLSPMDTSE DIPPPPOSVP 300
15    PSPPPPSPTT YNCPKSPTPR VYGTIKPAFN QNSAAKVSPA TRSDTVATMM REKGMYFRRE 360
LDRYSLDSED LYSRNAGPQA NFRNKRQGMP ENPYSEVGKI ASKAVYVPAK PARRKGMLVK 420
QSNEVDPEK CTSIPIPT IIKEPSTSSSG KSSQGSSMEI DPQAAPEPPSQ LRPDESLTVS 480
SPFAAAIAGA VRDREKRLEA RRNSPAFLST DLGDEDVGLG PPAPRTRPSM FPEEGDFADE 540
20    DSAEOLSSPM PSATPREPEN HFVGGAEASA PGEAGRPLNS TSKAQGPRESS PAVPSASSGT 600
AGPGNYVHPL TGRLLDPSSP LALALSADR AMKESQQGPK GEAPKADLNK PLYIDTKMRP 660
SLDAGFPTV RQNTGRPLRR QETENKYEDT LGRDRKGDDK NMNLIDIMDT SQQKSAGLMM 720
VHTVDATKL DALQEEDKA EVEMLPDSSP SEVPEGVSET EGALQISAAEP EPTTVPGRTI 780
VAVGSMEEAV ILPFRIPPP LASVLDLDEFD IFTEPLPPPL EFANSFDIPD DRAASVPALS 840
DLVKQKKSDT PQSPSLSNQSS PTNSADSKKP ASLSNCLPAS FLPPPESFDA VADSGIEEV 900
SRSSSDHHLE TTSTISTVSS ISTLSECGE NVDTCTVYAD GQAFMVDKPP VPPKPKMKPI 960
IHKSNALYQD ALVVEEDVDSV VIPPAPPFF PGSAQPGMAK VLQPRTSKLW GDVTEIKSPI 1020
LSGPKANVIS ELNSILQQMNN REKLAKPGEG LDSPMGAKSA SLAPRSPEIM STISGTRSTT 1080
VTFTRVRPGTS QPITLQSRPPT DYESTSRGR RAPSPVVSPT EMNKETLPAP LSAATASPSP 1140
30    ALSLVSLPS QPPSGDLFGL NPAGRSRSPS PSILQQPISN KPFTTKPVHL WTKPDVADWL 1200
ESNLGEHKE AFMDNEIDGS HLPNLQKEDL IDLGVTRVGH RMNIERALKQ LLDR

```

SEQ ID NO:166 PEZ4 DNA SEQUENCE

35 Nucleic Acid Accession #: NM_000024
 Coding sequence: 220-1461 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51	
---	----	----	----	----	----	--

```

40    ACTGCGAAGC GGCTTCTTCAGAGCACGGGG TGGAACCTGGC AGGCACCCGGC AGCCCCTAGC 60
ACCCGACAAG CTGAGTGTGC AGGACGAGTC CCCACACAC CCACACCCACA GCGCTGAAT 120
GAGGCTTCCA GGCCTCCGCT CGCGGCCCGC AGAGCCCCGC CGTGGGTCGG CCCGCTGAGG 180
CGCCCCCAGC CAGTGCCTT ACCTGCCAGA CTGCCGCCCA TGGGCAACC CGGGAACGGC 240
AGCGCTCTT TGCTGGCACC CAATAGAAC CATGCCCGG ACCACGACGT CACCGAGCAA 300
AGGGACGAGG TGTGGGTTGGT GGGCATGGC ATCGTCATGT CTCTCATCGT CCTGGCCATC 360
GTGTTGGCA ATGTGCTGCT CATCACAGCC ATTGCCAAGT TCAGAGCTCT GCAGACGGTC 420
ACCAACTACT TCATCACTTC GCTGATCTGG TCATGGGCTT GGCACTGGTG 480
CCCTTGGGG CCGCCCCATAT TCTTATGAAA ATGTGGACTT TTGGCAACTT CTGGTGCAG 540
TTTGGACTT CCATTGATGT GCTGTGCTC ACGGCCAGCA TTGAGACCCCT GTGCGTGATC 600
GCAGTGGATC GCTACTTTGC CATTACTCA CCTTTCAAGT ACCAGAGCCT GCTGACCAAG 660
50    AATAAGGCC GGGTGATCATC TCTGATGGTG TGGATTTGT CAGGCCCTAC CTCTCTCTT 720
CCCATTCAAGA TGCACCTGGTA CCGGGCCACC CACCAAGGAAG CCATCAACTG CTATGCCAAT 780
GAGACCTGCT GTGACTTCTT CACGACCAAGA GCCTATGCCA TTGCTCTTC CATCTGTCC 840
TCTACGGTTC CCGCTGGTAT CATGGTCTTC GTCTACTCCA GGCTTCTCA GGAGGCCAAA 900
AGGCAGCTCC AGAACATTGA CAAATCTGAG GGCGCTTCC ATGTCAGAA CCTTAGCCAG 960
55    GTGGAGCAGG ATGGGCGGAC GGGGCATGGA CTCGGCAGAT CTTCAGTT CTGCTGAAG 1020
GAGCACAAAG CCCTCAAGAC TTGAGGCATC ATCATGGGC CTTTCAACCT CTGCTGGCTG 1080
CCCTCTTCA TCGTTAACAT TGTGCATGTG ATCCAGGATA ACCTCATCCG TAAGGAAGTT 1140
TACATCTCC TAAATTGGAT AGGCTATGTC AATTCTGGTT TCAATCCCCT TATCTACTGC 1200
CGGAGCCCGAT ATTTCAGGAT TGCCCTTCCAG GAGCTTCTGT GCCTGGCAG GTCTCTTIG 1260
60    AAGGCCTATG GGAATGGCTA CTCCAGCAAC GGCAACACAG GGGAGCAGAG TGATATCAC 1320
GTGGAACAGG AAAAGAGAGA AAACATTATTG GAGTGTATTG TGTGATTTG TACAGTTGAG TICCTCTTIG 1680
GTGGGCCATC AAGGTACTGT GCCTAGCGAT AACATTGATT CACAAGGGAG GAATTGTAGT 1440
ACAAATGACT CACTGCTGTA AAGCAGTTT TCTACTTTT AAGACCCCCC CCCCCCAAC 1500
AAACACTAA ACAGCATATT TAACCTGAG GTAATAACT TAGAATAAA TTGAAAAAT 1560
TGTATAGAGA TATGAGAAG GAAGGGCATC CTTCAGCTT TTTATTGTT TTAAGCTGTA 1620
65    AAAAGAGAGA AAACATTATTG GAGTGTATTG TGTGATTTG TACAGTTGAG TICCTCTTIG 1680
CATGGAAATT TGAAGTTTAT GTCTAAAGAG CTTTAGCTT AGAGGACCTG AGTCTGCTAT 1740
ATTTCATGA CTTTCTCATG TATCTACTTC ACTATICAAG TATTAGGGGT AATATATTGC 1800
70    TGCTGGTAAT TTGTTATCTGA AGGAGATTG CCTTCCTACAC CCCTTGACT TGAGGATTT 1860
GAGTATCTCG GACCTTCTCAG CTGTAACAT GGACTCTTCC CCCACTCCTC TTATTTGCTC 1920
ACACGGGTTA TTTAGGGAG GGATTGAGG AGCAGCTTC GATGTTTCC CGAGCAAAGG 1980
TCTAAAGTTT ACAGTAAATA AAATGTTGA CCATG

```

75 **SEQ ID NO:167 PEZ4 Protein sequence:**
 Protein Accession #: NP_000015.1

1	11	21	31	41	51	
---	----	----	----	----	----	--

5 | MGQPGNGSAF LLAPNRSHAP DHDVTQQRDE VVVGGMGIVM SLVLALIVFG NVLVITAIK 60
 FERLQTVTNY FITSLACADL VMGLAVVPFG AAHILMKMWT FGNFWCEFWT SIDVLCVTAS 120
 IETLCVIAVD RYFAITSFPI YQSLLTKNKA RVIIIMVWIV SGLTSFLPIQ MHWYRATHQE 180
 AINCYANETC CDFFTNQAYA IASSIVSFYV PLVIMVFVYS RVFOEAKRQL QKIDKSEGRF 240
 HVQNLSQVEQ DGRTGHGLRR SSKFCLKEHK ALKTLGIMG TFTLCWLPP IVNVHVQD 300
 NLIRKEVYIL LNWIYGVNSG FNPLIYCRSP DFRIAFQELL CLRRSSLKAY GNGYSSNGNT 360
 GEQSGYHVEQ EKENKLICED LPGTEDFVGH QGTVPNSDNIQ SQGRNCSTND SLL

10

SEQ ID NO:168 PEZ1 DNA SEQUENCE

15 Nucleic Acid Accession #: NM_004457
 Coding sequence: 143-2305 (underlined sequences correspond to start and stop codons)

20 | 1 11 21 31 41 51

25 GAATTCTGGT TTGGGAAGGA CTGGGGAAAC AGCTGTAACA TTTGCCACCC TCAGAACAGTG 60
 CTGGTCCTGT GTCACACCAC CCTAGCCTCT TGATCGAGGA AGATTCCTGC TGAAAGTCTGT 120
 TAATTCTACT TTGGAGTC TATGAATAA CCACGTGCT TCAAAACCAT CTACCATGAA 180
 GCTAAAACAT ACCATCAACC CTATTCCTT ATATTTATA CATTTCCTAA TATCACCTTA 240
 TACTATTTA ACATACATTC CGTTTATTT TTCTCCGAG TCAAGACAAAG AAAAATCAA 300
 CCGAATTAAA GCAAAGCCTG TAAATCAAA ACCTGATCT GCATACAGAT CTGTTAATAG 360
 TTGGATGGT TTGGCTTCAG TATTACCC CGGATGTGAT ACTTTAGATA AAGTTTTAC 420
 ATATGAAAAA AACAAATTAA AGAACAAAAG ACTCTGGGA ACACGTGAAG TTAAATGAA 480
 GGAAGATGAA GTACACCAA ATGGAAAAT TTAAAGGAG GTTATTCCTG GACAGTATAA 540
 TTGGCTTCAG TATGAAGATG TCTTGTCTG AGCCTTATAT TTGGAAATG GATTACAGAT 600
 GTTGGGTCAAG AAACAAAGA CCAACATCGC CATCTCTGT GAGACCAAGG CGGAGTGGAT 660
 GATAGCTGCA CAGGCGTGT TTATGTATAA TTTCAGCTT GTTACATTAT ATGCCACTCT 720
 AGGAGGTCGA GCCATTGTC ATGCATTAA TGAAACAGAG GTGACCAACA TCATTACTAG 780
 TAAAGAACTC TTACAAACAA ATGGTAAGGA TATAGTTCT TTGGTCCCAC GCCTGGGGCA 840
 CATCATCACT GTTGTGGAA AGCCACCGAC CTGGTCCGAC TTCCCCAAGG GCATCATTTGT 900
 GCATACCATG GTCGCACTGG AGGCCCTCTGG AGCCAAGGCC AGCATGGAAA ACCAACCTCA 960
 TAGAACACCA AAACCAAGA CCAACATCGC ATATCTGT GAGACCAAGG CGGAGTGGAT 1020
 TCCAAAGGGGA GTCATGATCT CACATAGTA CATTATTGCT GGTTAACTG GGATGGCAGA 1080
 AAGGATTCGA GAACTAGGGAG AGGAAGATGT CTACATGGT TATTGCTCTG TGGCCCATGT 1140
 TCTAGAATTA AGTGTGAGC TTGCTGTCTG TCTTCACCGA TGCCGCAATTG GTTACTCTTC 1200
 ACCACAGACT TTACAGATC AGTCTTCAA AATTAAAAA GGAAGCAAAG GGGATACATC 1260
 CATTTGAAA CCAACACTGA TGGCAGCACT TCCGGAAATC ATGGATCGGA TCTACAAAAA 1320
 TGICATGAAT AAAGTCAGTG AAATGAGTAG TTTCAGCTTAA AATCTGTTA TTCTGGCCTA 1380
 TAATTACAAA ATGGAACAGA TTCAAAAGG AGCTTAATCT CCACTGTGCG ACAGCTTGT 1440
 TTCCGGAAA GTTCAAGCT TGCTAGGGGG AAATATTCTG CTCTGTGTTG TTGGTGGCGC 1500
 TCCACTTCTC GCAACACCGC AGCGATTCTAT GAACATCTGT TTCTGCTGTC CTGTTGGTCA 1560
 GGGATACGGG CTCACTGAAT CTGCTGGGC TTGAACAAATT TCCGAAGTG GGGACTACAA 1620
 TACTGGCAGA TTGGGAGCAC CATTAGTTG CTGTGAATTA AATTAAAAA ACTGGGAGGA 1680
 AGGTGGATAC TTAACTACTG ATAAGGCCACA CCCCAGGGT GAAATCTTA TTGGGGGCCA 1740
 AAGTGTGACA ATGGGGTACT ACAAAAAAATGA AGCAAAACAA AAAGCTGATT TCTCTGAAAGA 1800
 TGAAATGGAA CAAAGGTGGC TCTGTACTGG GGATATTGG GAAGTTGAAAC CCGATGGATG 1860
 CTAAAGATT ATTGATCGTA AAAAGGACCT TGAAACTA CAGGCAGGGG AATATGTTTC 1920
 TCTTGGGAAA GTAGAGGGC CTTTCAACTA TGATGAAAC TTTGTGCTA 1980
 TGCAACAGT TATCATTCTT ATGTCATTGG ATTGTGTG CCAAAATCAA AGGAACAAAC 2040
 TGAACAGT CGAAAGAAAG GACTTAAAGG GACTTGGGAG GAGCTGTGTA ACAGTTGTGA 2100
 AATGGAAAAT GAGGTACTTA AAGTGTCTTC CGAAGCTGCT ATTTCAGCAA GTCTGGAAAAA 2160
 GTTGTGAAATT CCAGTAAAAA TTCTGTGAG TCTGTAAACCG TGCCGACCTG AAACCTGGTCT 2220
 GGTGACAGAT GCCTTCAAGC TGAAACCGCA AGAGCTTAA ACACATTACCG AGGGGGACAT 2280
 TGAGCGAATG TATGGAAAGAA AATATTATT CTCTTCTGGC ATCAGTTGC TACAGTGAGC 2340
 TCACATCAA TAGGAAATTA CTTGAATGTC ATGTCCTAACG CTGCAAGGCA AACTCCATT 2400
 CTCATATTAA ACTTAACTCTT CTATGACGCTT CACCATTTT AACTGACAGG ATTGTAAAAA 2460
 CATTAAGACA GCAAACCTGT GTCTGTCTCT TCTTCATTT TCCCCGCAC CAACTTACTT 2520
 TACCACTAT GACTGTACTT GTCACTGATGA GAATTCTCT GAATCTACATT GGGGAAGCAG 2580
 TGATTTTAA ACCTCAAGTT TTAAACATG ATTATATGTT TCTGTATAAT GTTCACTTGT 2640
 TAACTTTTA AAACCTTGGA TGATAGAGG GATAATAGG AAATATAAGA ATTGGTATT 2700
 TGGGGCTT TTACTTAAT GTATTAAAAA ATACAAGGGT ATTGATATGA AATTATGTAA 2760
 ATTICAAATG CTATGTAAC AAATCATTGT TGAAACAAAAG ATGTTGTCT GTGTAATTAT 2820
 TGCTTGTAT GCAATTGAGA GAAAATATAA TACCCATAT TGTTTAA GAAGTTGAGA 2880
 TCTTGTGAAT ATATGCTGT CAGTGTCTC TTATATATT TATTTTATAT TAGAAAAAAAT 2940
 70 GAAGTTGGT TTGGTGTGCA TGAAACAAAAG TAGCAAGAGA GGGTTATAGT TTAAATGAA 3000
 GGGAGATAAC ACAGCATGTG TAGCACCAGT TGATAATTGG TCTCTAGTAG CTTACTGTCA 3060
 AAATGTCAA TGAAGTCTTC TGTTCATCTG TTGAAACTAC GAAAATACCC AAACCTAAAT 3120
 GGAAGAACATC TGAAAGAGAG GATAGAATT AAAGAACAAAG AGTATATAAA GTTATTCCTT 3180
 GAATATTTCG TTGACTATAT GTACATTGG TGATCTATAT TTGTAAACAA ATTAGTCATG 3240
 GAAAATTATT CTATCCAAA GTCTCTTTT AGTCTAGATA ATCATTATT CATTAAAAA 3300
 TTAGTGTCTT TCATAGTTG CACTGATGCG TGTATGGATG TGTGTGAGTC AGTGGTAGCT 3360
 TATTTAAAAA GCACCTTCACTTCTTCAACCTTGT ACACAAAAA ATGAAAGAAAT 3420
 TTAGATGTA TTGATGATA GCATCTCAC TAAGACACAT GAGAATTAA CTTTATAACC 3480
 GCGTGGAGTTA AGATTTAATT CATAGTTT GATGTCTTG TTGAAAGTTAT TTGTAATTCA 3540
 GAAACCTTGC TTGTTGTATA CATAGTAAGT CTCTTCATT ATTACTGCTT GCCTGTTGTT 3600

ATATCTGGAT TATCAAAAGC AATAGTCAC CAATTAAGAT GTGCTCAAAT CAGGACTTAA 3660
 ATCATAGCCA CCACATTIT CATGTCAGAC TAGTTACTTT GTTGATTCTC AGTTACTGTA 3720
 GGCATCAAAA GGCAAAAATC A

5

SEQ ID NO:169 PEZ1 Protein sequence:

Protein Accession #: NP_004448.1

1 11 21 31 41 51

MNNHVSSKPS TMKLKHTINP ILLYFIHFLI SLYTILTYIP FYFFSESRQE KSNRIKAKPV 60
 NSKPDSAYRS VNSLDGLASV LYPGCDTLDK VFVYAKNFKF NKRLLGTRREV LNEEDEVQPN 120
 GKIFKKVILG QYNWLWSYEDV FVRAFNFGNG LQMLGQPKPT NIAIFCETRA EWMIAAQACF 180
 MYNQLVLTY ATLGGPAVIN ALNEATEVNI ITSKELLQTK LKDIVSLVPR LRHIIIVDQK 240
 PPTWSDFPKG IIIVHTMAAE ALGAKASMEN QPHSKPLPSD IAVIMYTSGS TGLPKGVMS 300
 HSIIAGITG MAERIPELGE EDVYIGYLPL AHVLELSAEL VLCNSHGRIG YSSPQTLDQ 360
 SSKKIKGSKG DTSMKLPKTM AAPEIMDRI YKNVMNKVS MSSFQRNLFI LAYNYKMEQI 420
 SKGRNTPLCD SFVFRKVRSLL LGGNCEILKLN WEEEGYFNTD KPHPRGEIJI GGOSVTMGYY 480
 AGATISIEVW DYNTGRVGAP LVCCIEILKLN WEEEGYFNTD KPHPRGEIJI GGOSVTMGYY 540
 KNEAKTKADF SEDENGQRWL CTGDIGEFEP DGCLKIIDRK KDLVQLQAGE YVSLGKVEAA 600
 LKNLPLVDNI CAYANSYHSY VIGFVVPNQK ELTELARKKG LKGTVHEELCN SCEMENEVLK 660
 VLSEAAIAS LEKFEIPVKI RLSPEPWTP E TLGLVTDFAKL KRKEKTHYQ ADIERMYGRK

25

SEQ ID NO:170 PCQ7 DNA SEQUENCE

Nucleic Acid Accession #: none found

Coding sequence: 38-1075(underlined sequence corresponds to start and stop codon)

1 11 21 31 41 51

AGCAACGACG CCGGGCAGCG GGAGCGCCGG CGCGGCCATG TGGCTGCTGG GGCGCCTGTG 60
 CCTGCTGTG AGCAGCGCCG CGGAGAGGCC GCTGCTCCCC GGGAAACAAC TCAACCAATGA 120
 GTGCAACATA CGAGGCAACT TCATGTCGAC CAATGGACGG TGCTATCCC GGCGCTGGCA 180
 GTGTGACGGG CTGGCTGACT GCTTCGACAA GAGTGTAGAC AAGGAGTGCC CCAAGGCTAA 240
 GTCGAAATGT GCGCCAAACTC TCTTCCTCTG TGCCACGGCG ATCCATGCA TCATGGGTG 300
 CTTGGGTGCG AGGACTTTCG AGGACTGTCG CGATGGCAGG GATGAAGAGA ACTGCACAGC 360
 AAACCCCTCG CTTTGTCTCA CGCGCCGCTA CCACTGCAAG AACGGCTCT GTATTTGACAA 420
 GAGCTTCATC TGCAGATGGAC AGAATAACTG TCAAGACAA AC GTGATGAGG AAAGCTGTGA 480
 AGAGTCTCAA GAACCCGGCA GTGGGGCAGG GTTTCTGACT TCAAGAACCC AACTTGTGTA 540
 TTACCCCGAC ATCACCTATG CCAATCATGG CAGCTCCGTC ATT TTGTGCG 600
 CCTGCTGGCA CTGGCTTGTG ACCACCAAGCG GAAGCGGAAC AACCTCATGA CGCTGCCGT 660
 GCACGGGTG CAGCAGGCTG TGTGCTGCTG CGCGCTGGTG GTCTGGACCC ACCCCCACCA 720
 CTGCAACGTC ACCTACAAACG CCAATTAATGG CATCCAGTAT GTGCGCAGCC AGGCGGAGCA 780
 GAATGCGTCG GAAGTAGGCT CCCACCCCTC CTAACTCCGAG GCCCTGCTGG ACCAGAGGCC 840
 TGCCTGGTAT GACCTCTCTC CACCGGCTCA CTCTTCTGAG ACCGAATCTC TGAACCCAAGC 900
 CGACCTGGCC CCTTACCGCT CCCGGTCCGG GAGTGGCAAC AGTGGCAGCT CCCAGGCAGC 960
 CAGCAGCTTC CTGAGGGTGG AAGACACCAAG CCAACAGCCCC GGGCAGCTG GCCCCCAGGA 1020
 GGGCACTGCT GAGCCCCAGGG ACTCTGAGCC CAGCCAGGGC ACTGAAGAAG TATAAGTCCC 1080
 AGTTATTCTCA AAGTCCATATGGGGTTAAGTCTGACTT GCTCTGACTT GTGTCATTC TAACAATTG 1140
 TGCTCATGGG AAGCTCTTAA AGCACCTGTA AGGATGTCCTC AAGTTACAGT TTGGGATATT 1200
 AACTATCTCT GCATTCCCCCT CCTCCCCCAG ACTTCAGAGA TGTGTTCTG GCGTCTCAGT 1260
 TGACATGATC TTGTTGCTGCT TTGTTCTGCT AGGTCACTCT TCCCTTGGGA CCCGAGATCA 1320
 CACCCCTATT TTTCACATTA TTGTTGAGAGA CAGCATATAA AACAGTATTG 1380
 AAATAGGCTG GGAGAGAGCA ATGTTTCTGT GCTATATTGG ATGCTCAGAA GTGCAGGAGA 1440
 CGCTGGACCC AATTCTCTCT GCTGTTGAGT TACCTTATAG CATTGGGGTA TTGTTGGTTAG 1500
 ATGATCTAAC CAGGGGCCA TCACCTGGAT GTCACCCCCC CAAAAAAATT CCATTGAGC 1560
 ATCAAAACCT GCTTGCACA ATCCTATTG ATGCCCTTCA TTCAGCAGAG TCAGTGGCCA 1620
 AAGAAAACCTT TGAGCTGTGAG TAACACCCCT CAGCACTCGC AACGTTATTG TGGTTTTG 1680
 AAGGACTCTA AAACCATCTA CCTCTGTATAA ATTCTGGCTT TAGAAATTG CCAAGAATG 1740
 CTCATTCTGA GAGCTTCTCT CAGCAGCTA TATCATCAGC CTCTACCTAA AATAGGAGG 1800
 GAGCCCCCTCC CAGTGGTCTC TCCAAGTTCT CAGCTCTAA AATGCAAGGCT GCCAAGACCC 1860
 TACACCTGTC CTTGGCTCTAC AGCCCTTAC TCTGGTTCTG GACTGTGACC CTCCCCAGCTG 1920
 ACCTGCCCGT AGCCAAGGAA TGAGGACCTA ACTTGAGTTT GCCCCAAAGTC TGACCTGGCT 1980
 GTATGTCCCT GTGGCCACA CCCAGCCTGT CTGCTCATT CATGCAGCCT CAACACTGGC 2040
 CTCCAAAGCT CCTCTAACAC TTGCAAGACT CTTTTTACCT GTGCATTGAG ACCTTGAGGAC 2100
 ACTGTTTCTC ATCACAGGTG AGGAGCATGT TCAATACCTC CAGCAAGCTC TCCCTGGCTCC 2160
 CTGCACTGTG CAGCGCTCTC TTCCCAAGGT CCAATACCA GCACCTCTAG TTAGAGTTAG 2220
 GGTCAAGGTG AGGCGCTCTCC CAACATCCCA GTAGTTCTC CTCTGAGACA CATGGGCAAG 2280
 AGACAATTTG GAGTCAGAT TTCCCTTCTA GATCTATTG AAATCTTTA GAAATGCAATT 2340
 TGAAACAGTG TGTGTTTTT TTCCCTTCTA GTTAAGGGAC TATTTATATG TGATAGGAA 2400
 AGCTGTCCTCT TTTTTGTTT TTCCCTTAAAC AAGGTCCAAAGAAGATGCA AAAGGAGATC 2460
 ACACCCCTTGC CCCGCTGAGC CCCGTGATAA CAAGTCACTC CAGACAAAC TGTGTGCCAG 2520
 ACATTTGTC ATGTTGTCAC TTGAGGTTA TTATTTATCA AGTCTTGTAA GGAAGCAGAA 2580
 AGAGGGACTC CTCTCTCCCT CGTGTATAG TCTCTATGTT TGTCAGTTGTT TTTCTTTTTT 2640
 TTCTCTGTGTC CCAGTCAGCC ACAGGGCCCG CCTCCCTGCA GGAATAAGGG GTAAAACGTT 2700
 AGGTGTTGTT TGCGCAAGAAA CCACACTGAC TGATGAGGGG TAAATGCAA CCAGGTAGAG 2760
 CCACTCCGGG CAGCTGTAC CCATTCAAGAA CTTCCTTCCG CAGCTGAAGA AATGTTCACT 2820
 AACCTGTTTG ACGCTAATTA AAACAGAGCC TGCAAGGAGT GGGCTAAAG TGGCATTCA 2880
 TGATCCTGTT CTGTAGACTT TTCTTTCTT TTTAACCA ATCCAAAGGA TGTTACAGAA 2940

AAGCTAGCCA CTGGTATTT GTTTGTGTTA AAAAAAAA GAAAGAAA AAGAAAGAA 3000
 AACGGAAAGG AACCTAGCTG CCTGTATCT TCATTGTTAA ATAGCACTT GAGTTATTT 3060
 CTGAGTAATC CAATAAGAA CTTTGATGA CACCCAGAAT GTGTTAGAAC TCTGGCTGAA 3120
 CATTICATCT CCTGTGAGTC AGAAAGGCTT TATTTCTCCC TTGATGGGG CCCCTCTTC 3180
 5 TTTCTGGTGC TCTGGAAGTT GTT TAGAGGA AAAGAATTCTA ATTTAATTA ATTGCGCAGT 3240
 GAGTTAATCT CACTCGCTT TCTGCTTCCA GGCATCTTAG GAAAACAAA TGGTTTAGT 3300
 AGATAAGGGA AGACAAACAC GGACATTTTT ATTATAGATT 3360
 TGATTTTTT ATGCAATCTT TTAAAAAATA TATAAAATAG ACACCAAACG GGCAGGGTT 3420
 TTTTGGGGG GAGGGGTTT GTT TCCAAC TCAAGATGG ACATTAGTGG CCAGCAATAT 3480
 10 TTTTAACTC ATTCACCAACG GGAAGCTTTT TTATACATTG CCTAAATCTA CGCCAACCG 3540
 AAAATAGTCT CATCTCTT TTTCTCAAT GAGATCCGTG TTTTATTTA SCATTAATT 3600
 AGTTACACTG TGATGACTGG CCTTAACTT GACTCACCTC CCTCTACCTT GAAATGACA 3660
 TTTTAAAAA ATGCAATCTA GTGGTATTA GTGTGTGACG CTCAAGTTA ATGTAACATG 3720
 15 TTATACTTC TAATAAATT GCAGTTTCA TCTTTCTGTT TGTGCAAANG GMCTAMARM 3840
 AAMMAAAAAC ANYWTTGGGG GGGCTTGGGC CTCGGAAAAA GTTTTAACA CCACTTCGGG 3900
 TGGGGCGGGG AGGTACGGGG AGGTACGGGG CCAAAACGGG ACCCCAGAAAG 3960
 GAAACCTGG CCAAGAAAAA GGTGCCAGA ATTCTCCACA CCAGAAAAAA ACGGCGCGGG 4020
 20 GGAAACCGCA GAGTGTGCG TAAACCACAC CCGAAGAGAG AACTCAGAAG CACACAAGCG 4080
 GGACTCAACC AGGAGGACCC AAGGGAAACCC GATAGAGTAC G

SEQ ID NO:171 PCQ7 Protein sequence:

Protein Accession #: none found

1	11	21	31	41	51
MWLLGPLCLL	LSSAAE SOLL	PGNNFTNECN	IPGNFMCNSN	RCIPGA WQCD	GLPDCFDKSD
EKECPKA SK	C GPTFFPCAS	GIHCIIGRFR	CNGFEIDCPDG	SDEENCTANP	LLCSTARYHC
KNGLCIDKS F	I CDGQNNCQD	NSDEESCESS	QEFGSQVVF	TSENQLVYPP	SITYAIIGSS
VIFVLVVALL	ALVLHHQRKR	NNLMLTPVHR	LQHPVLLSRL	VVLDPHHCN	VTYNVNNGIQ
YVASQAEQNA	SEVGSPPSYS	E ALLDQRP AW	YLDP PPPYSS	DTESLNQADL	F PYRSRSGSA
NSASSQAASS	LLS VEDTS HS	P GQGPQEGT	AEP RDSEPSQ	GTEEV	

SEQ ID NO:172 PEL3 DNA SEQUENCENucleic Acid Accession #: NM_005656.1
Coding sequence: 57-1535 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51
GTCA TAT TGA	ACAT TCC AGA	TAC CTAT CAT	TACT CGAT GC	TGTT GATA AAC	AGCA AGA TGG
CTT TGAA CT	CTT GAA CT	CCAG CTAT TG	GAC CT TACT A	TGAA AAC CCT AT	GGAT ACC AAAC
CGG AAA ACC	CTAT CCC GA	CAG CCC ACT G	TGG TCCC AC	TGTC TAC GAG	GTGC ATCC CG
CTCAG TACT A	CCC GT CCCC	GTG CCC CAGT	ACG CCC CAG	GGT CCT GAC G	CAG GCT TCCA
ACCC CGT CGT	CTG CAC CGC AG	CCCCA AT CCC	CAT CCG GAG	AGT GTG CACC	TCAA AGACT A
AGAA AGC ACT	GTG CAC TACC	TTG ACC CTT G	GGAC CCT TCC	C GTG GAG GCT	GCG CTG GCG
45 CTGG C CT ACT	CTT GGA AGT TC	ATGG CACCA	AGT GCT CCA	C TCT GGG ATA	GAG TCC GACT
CCT CAG G TAC	CTG CAC TAA C	CCCT CT A	G TG TGAT GG	C GTG TCA CAC	TGCC CCG GCG
GGG GAG GAC G	GAAT CGG TG	GTT CCG CT	ACGG ACC AAA	C TT C AT C CTT	CAG ATG TACT
CAT CT CAG AG	GAAG TCT CGG	CA CCT CT G	GCA CAG CAG	CTG GAAC CAG	AACT AC GGG C
GGG CGG C CT G	CAG GG ACAT G	GGC TATA A	ATA AT TTT A	CTC TAG CCA	GA AAT AGT GGG
ATG A CAG CGG	ATCC ACC ACG	TTT ATG A	TA GAC AC A	TG C GGG CAAT	GTC GAT ATCT
55 AT AAA AAA A	AT TCC ACAG T	GAT CCG TGT	C TT C CAA AG	AGT GTT MCT	TTAC GCT GTT
TAG C CT GCG G	GGT CA ACT TG	AACT CA AGC	GCC AGAG CAG	GAT CGT GGG C	GGT GAG AGCG
CGC T CCG GGG	GGC CT GCG CC	TGG CAG GT	GCT C GAC GT	CCAG AAC CGTC	CAC G TGT GCG
GAG GCT CCA T	CAT C ACC C	GAG TGT AT G	TGAC ACC CG	CCACT CGCT G	AAA AAC CTC
60 TTA ACA AT CC	AT TGG CATT GG	ACGG CATT G	CGGG GAT TTT	GAG ACAT CT	TTCA TGT CCT
ATGG AGC CCG	AT ACC AA G	CA AAA AGT GA	T TCT C AT CC	AA TTT ATG AC	TCCA AGACCA
AGA AC AA AT G	CATT CG CT G	ATG AAG CT G	AGA AGC CT CT	GACT TCA AC	GAC CT AGT GA
AAC CAG TGT G	TCT G CCA AC	CCAGG C AT G	TGCT G CAG CC	AGA ACAG CT C	TGCT G GATT
65 CCGGG TGG GG	GGCC ACC GAG	GAG AAG GGG	AGAC CTC AGA	AGT GCT GAC	GCT G CCA AGG
TGCT TCT C AT	TGAG AC A	AGAT GCA A	CGAG AT AT G	CT AT GAC A	CTG AT CAC
CAG CCA TGT	CTG T GCG	TC TCT C	GG AAC CT CG	TTCT TGC	CG GGT ACAG TG
GAG GCG C TGT	GTC ACT T C	AAC ACA A	TCT GGT G	GAT AGGG GAT	ACA AGCT GGG
70 GTT CT GGT CG	TGCC CAA AG	TAC AG ACC	GAG TGT AC	GAAT GTG ATG	GT ATT CAC CG
ACT GG AT TTA	TG CAC AA AT G	AAG GCA A	GCT AAT CC	AT GGT CT C	TCC T GAC CT
CGTT T TAC AA	AAA AAC AT G	GGG C GT G	TT GCT C	CG C	ACT C TT AG AG
ATG ATT CAG A	GTC ACT T C	TTTT TAT TAA	ACAG T GACT	TG TCT G	TGG CACT C
TG CCA TAT G	T GCA G	AGT GCT C	CTG C C	CC	1680
75 CCG C AAG GGG	TG AT G	GGC CAG C	TG C T C	CC CT	
GTT GG AGG CT	GGCC C CATT G	AG AT CTT C	GCT G A	TT C C	
TGAG C AT GGA	GCT GT C	CTC AG C	GG AT G	AG G	
GGAA AGG GAG	ACAG C	GGC AC	CT G	GG	
TCCC CAG C CT	ACT T C	CT C	TG	GG	
GAT GG T GGC	ACAA TAA A	GG C	GG	GG	
AAG GGG AACA	GA A	GG G	GG	GG	

5 GAGGGAAAGCA ATTGAAAAGG AACTTGCCT GAGCACTCCT GGTGCAGGTC TCCACCTGCA 2220
 CATTGGGTGG GGCTCCTGGG AGGGAGACTC AGCCTTCCTC CTCATCCTCC CTGACCTCGC 2280
 TOCTAGCACCT CGGGAGAGTG AATGCCCTT GGTCCCTGGC AGGGCGCCAA GTTTGGCACCC 2340
 ATGTCGGCCT CTTCAAGGCT GATACTCATT GGAAATTGAG GTCCATGGGG GAAATCAAGG 2400
 ATGCTCAGTT TAAGGTACAC TGTTTCCATG TTATGTTCT ACACATTGAT GGTGGTGAAC 2460
 CTGAGTTCAA AGCCATCTT

10 SEQ ID NO:173 PEL3 Protein sequence:
 Protein Accession #: NP_005647.1

15 1 11 21 31 41 51
 MALNSGSPPA IGPYYENHGY OPENPYPAQP TVVPTVYEVH PAQYYPSPVP QYAPRVLTOA 60
 SNPVVCTQPK SPSPGTUCTSK TTKKALCITLT LGTFLVGAAL AAQLLWPKFMG SKCSNSGIEC 120
 DSSGCTINPS NWCDGVSHCP GGEDENRVCR LYGPNPILQM YSSQORKSWHPL VCQDDWNENY 180
 GRAACRDMGY KNNFYSSQGI VDDSGTSFV KLNNTSAGNVD IYKKLYHSDA CSSKAVVSLR 240
 CLACGVNLNS SRQSRIVGGE SALEGAWPWQ VSLHVQNHNH CGGSIIPEW IVTAAHCKEV 300
 PLNNPWHWTA FAGILRQSFV FYGAGYQVQK VISHPNYDSK TKNNNDIALMK LQKPLTFNDL 360
 VKPVCLPNPG MMLQPEQLCW ISGWGATEEK GKTSEVLNAA KVLLIETQRC NSRYVYDNL 420
 TPAMICAGFL QGNVDSQCQGD SGGPLVTSNN NIWWLIGDTS WGSGCAKAYR PGVYGNVMVF 480
 TDWIYRQMKA NG

20 25 Nucleic Acid Accession #: AI694767
 Coding sequence: SEQ ID NO:174 PBJ4 DNA SEQUENCE
 30 35 40 45 50 55 60 65 70 75 80 130-1086 (underlined sequences correspond to start and stop codons)

1 11 21 31 41 51
 CAGAGAGGCT GTATTTCACT GCAGCCTGCC AGACCTCTTC TGGAGGAAGA CTGGACAAAG 60
 GGGGTACAC ATTCCCTCCA TACGGTTGAG CCTCTACCTG CCTGGTCTG GTCACAGTTTC 120
 AGCTTCTCTCA TCGTGTGAGA TCCCAATGCC AATGAATCCA GTCTCTACATA CTTCATCCTTA 180
 ATAGGCTCTCC CTGGTTAGA AGAGGCTCTAG TCTCTGGTGG CCTCTCCCAT GTGCTCCCTC 240
 TACCTTATTG CTGTGCTAGG TAACCTGACA ATCATCTACA TTGTGCGGAC TGAGCACAGC 300
 CTGGATGAGC CCATGTATAT ATTCTCTTCAG ATGCTTTCACT GCATTTGACAT CCTCATCTCC 360
 ACCTCATCCA TGCCCAAAAT GCTGGGATC TTCTGGTTCA ATTCCACTAC CATCCAGTTT 420
 GATGCTTGTG TCCTACAGAT GTTGGCCATC CACTCTTAT CTGGCATGGA ATCCACAGTG 480
 CTGCTGGCCA TGCCCTTTGA CGCGTATGTTG GCCATCTGTC ACCCAACTGCG CCATGCCACA 540
 GTACTTACGT TGCCCTCGT CACCAAAATTT GGTGGCTGCTG CTGTGGTGC GGGGGCTGCA 600
 CTGATGGCAC CCCCCCTCTG CTTCATCAAG CAGCTGCCCT TCTGGCCGTC CAATATCCTT 660
 TCCCATTCTC ACTGCCCTACA CCAAGATGTC ATGAAGCTGG CCTGTGATGAA TATCCGGGTC 720
 ATGTCGCTG ATGGCCATTAT CGTCATGCC TTCTGGGATC ACTCTCTCATC 780
 30 35 40 45 50 55 60 65 70 75 80 TCCCTCTCAT ATCTGCTTCA TCTTAAGACT GTGTTGGCT TGACACGTGA AGCCCAGGGC 840
 AAGGCATTTG GCACCTTGCCT CTCTCATGTC TGTGCTGTGT TCATATTCTA TGACCTTTTC 900
 ATTGGATTGTC CCATGTGCA CGCTTTTACG ACTCTCCACT GCCCCGTCATC 960
 TTGGGAAATA TCTATCTGCT GGTTCTCTCT GTGCTCAACC CAATTGCTA TGGAAGTGAAG 1020
 ACAAAGGAGA TTGACAGCG CATCTTCGA CTTTCTCATG TGCCACACCA CGCTTCAGAG 1080
 CCCTAGGTG CAGTGTCAA ACTCTCTTC CATTCAAGAGT CCTCTGATTC AGATTTAAAT 1140
 GTTAACATTT TGGAAGACAG TATTCAAGAAA AAAAATTTC TTAATAAAAAA TACAACCTCAG 1200
 ATCCCTCAAAT TATGAAACTG GTTGGGGAT CTCCATTTC TCAATATTTAT TTCTCTCTT 1260
 GTTTCTCTGC TACATATAATC CTGACTTAGGT TGTTGGTGGAA GGGTTTATTAC 1320
 TTTTCACTG ACCATCAGT CCAAAATCTAA ACTGCTTCTCA CTGATGGTTT ACAGCATTTCT 1380
 GAGATAAGAA TGTTACATCT AGAGAACATT TGCCAAAGGG CCTAAGCACAG CAAAGAAAAA 1440
 TAAACACAGA ATATAATAAA ATGAGATAAT CTAGCTTAA ACTATAACTT CCTCTTCAGA 1500
 ACTCCCAACC ACATTGGATC TCAGAAAAAT ACTGCTCTCA AAATGACTTC TACAGAGAAAG 1560
 AAATAATTTT TCCCTCTGGAC ACTAGCACTT AGGGGAAGA TTGGAAGTAA AGCCCTGAAA 1620
 AGAGTACATT TACCTACGTT AATGAAAGTT GACACACTGT TCTGAGAGTT TTCAAGCAT 1680
 ATGGACCTCTG TTTTTCTCAT TTAATTTCTT TATCAACCCCT TTAATTAGGC AAAGATATTTA 1740
 TTAGTACCTT CATTGATGCC ATGGGAAAT TGATGTCAG TGGGGATCAG TGAATTTAAAT 1800
 GGGGTACATAC AAGTATAAAA ATTAAAAAAA AAAGACTTC AAGGCTTCAATCT CATATGATGT 1860
 GGAAGAACCTG TAAAGAGACG CAACAGGGTA GTGGGGTAAAG GATTCTCAGA GTCCTACATT 1920
 TTCTARAGGA GGGTATTTAT TTCTCTCTAC TCACTCAGTG TTGTATTTAG GAATTTCTG 1980
 GCAACAGAAC TCATGGCTTT AATCCCACTA GCTATTGCTT ATTGCTCTGG TCCAATTGCC 2040
 ATTACCTCTG GTCTTGGAAAG AAGTGATTTG TAGGTTCACTC ATTATGGAAG ATTCTTATTC 2100
 AGAAAGCTG CATAGGGCTT ATAGCAAGTT ATTATTTTTT AAAAGTTCCA TAGGTGTTTC 2160
 TGATAGGGCG TGAGGTTAGG GAGCCACAGG TTAGTATGGG AAGTATGGAA TGCCAGGTT 2220
 TGAAGATAAC ATGGCCCTT TGAGTGTGAC TCGTACTGG AAAGTGAGGG AATCTTCAGG 2280
 ACCATGCTTT ATTGGGGCT TTAGTGCAGTA TGGAACAGGG ACTTTGAGAC CGGGAAAGCA 2340
 ATCTGACTTA GGCACTGGAA TCAGGCAATT TTGCTTCTGA GGGGCTATTAA CCAAGGTTA 2400
 ATAGTTTCA TCTTCAACAG GATATGACAA CAGCTTAAAC CAAGAAACTC AAATTACATA 2460
 TACTAAACAA TGTTGATCAA TATGTTGGTAA GTTTCATTTT CTMTTCAAT CCTCAGGTT 2520
 CCTGATATGG ATTCCCTATNA CATGCTTCA TCCCCCTTTG TAAATGGATAT CATATTGGA 2580
 ATGCTCTTATT TAATACTTGT ATTGCTGTCT GGACTGTAAAG CCCATGAGGG CACTGTTTAT 2640
 TATTGAATGT CATCTCTGTGTC CATCATTGAC TGCTCTTTG TCATCATGAA ATCCCCCAGC 2700
 AAAGTGCTTA GAACATAAA TGCTTATGC TTGACACGGG TTATTTTCA TCAAACCTGA 2760
 TTCCCTCTGT GCTGAACACA TAGCCAGGCA ATTTCAGGCA CTTCCTTGTAG TTGGGTATTA 2820
 TAAATTTTA GCCATTACTT CCAATGTGAG TGGAAGTGAAT ATGTCGAATT TTTATACCTG 2880
 GCTCATAAAA CCCTCCCATG TGCAAGCCTT CATGTTGACA TAAATGTGA CTGGGGAAAGC 2940

TATGTGTTAC ACAGAGTTAA TTAACCNGAA AGGCCTGGNA ATTTTTGNN AANNAAACTG 3000
 TGGCCNNGAG GCCCNCAACC CTTTTNNNA ATTTGCAAN NTCCCACCTT GTANTTTGGT 3060
 AAGGAGGCCA GTTGGATAAG TGAAAAATAA AGTACTATTG TGTC

5

SEQ ID NO:175 PBJ4 PROTEIN SEQUENCE
Protein Accession #: not available, cloned at Eos

1	11	21	31	41	51	
MVDPNGNESS	ATYFILIGLP	GLEEAQFWLA	FPLCSLYLIA	VGNLTIYI	VRTEHSLHEP	60
YIIFLCLMLSG	IDILISTSSM	PKMLAIFWFN	STTIQFDACL	LQMFIAHSLS	GMESTVLLAM	120
AFDRYVAICH	PLRHATVLTL	PRVTKIGVAA	VRGAALMAP	LPVFIFKOLPF	CRSNILSHSY	180
CLHQDVMKLA	CDDIRVNVVY	GLIVIISAIG	LDSLLISFSY	LLILKTVLGL	TREAQAKAFG	240
TCVSHVCASF	IFYVPPIGLS	MVHRFSKRRD	SPLPVILANI	YLLVPPVILNP	IVYGVKTKEI	300
RQRILRLFHV	ATHASEP					

10

SEQ ID NO:176 PM72 DNA SEQUENCE

Nucleic Acid Accession #: NM_004624.1
 Coding sequence: 57-1544 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51	
TCGGAGCCTG	CGGAGGGTGG	TGGTGGTGGT	GGTGGTGGCC	CTCGCCGCC	TCACCATGTC	60
CTCCTCCTCC	TCTGCTCTCG	CTCAGGCGC	TCGGTGGCGG	TTGGTCCGG	GTTACGCC	120
TGGTGGTGGC	GTCGCTCTC	GGGAGGGCCG	GGGGAGGGATC	CGGGGCCAG	CGGGGCCAG	180
GCGCCGGGG	CCGAGGTGGG	GTGGCGCCG	GGAGGGCGGT	CGAGCTTCGT	GCTGCGCC	240
CGCTCTTGGG	CTCCTCGCTG	CAGGAGGAG	GTGACTATGT	GCAGATGATC	GAGGTGAGC	300
ACAAGCACTG	CCTGGAGGAG	GCCGAGCTGG	AGAATGAGAC	AATAGCTGTC	AGCAAGATGT	360
GGGACAACCT	CACCTCTGG	CTCAGGCCA	GTTAGTTGTC	TTGGCTGTG		420
CCCTCATCTT	CAAGCTCTTC	TCTCCATTTC	AAGGCCGCAA	TGTAACCCG	AGCTGACCG	480
ACGAAGGCTG	GACGACCTG	GAGCTGGCC	CGTACCCCAT	TGCTGTGTT	TTGGATGACA	540
AGGCAGCGAG	TTTGATGAG	CGACGAGCA	TGTTCTACGG	TTCTGTGAAG	ACCGGCTACA	600
CCATGGCTA	CGGCCCTGTCC	CTGGCACCC	TTCTGTGTC	CAAGCTATC	CTGAGCGTGT	660
TCAGGAAGCT	CCACTGCACG	CGGAACATACA	TCCACATGCA	CCTCTTCATA	TCCCTCATCC	720
TGAGGGCTGC	CGCTGCTCTC	ATCAAAGACT	TGGCCCTCTT	CGACACCGG	GATCGGAC	780
AGTCTCTCGA	GGGCTGGTGC	GGCTGTAAGG	CAGGCTATGG	CTTTTCCAA	TATGTC	840
TGGCTAACTT	CTTCTGGCTG	CTGGTGGAGG	GCCTCTACCT	GTACACCCG	CTTGCCGCT	900
CCTCTCTCTC	TGAGGGGAAG	TACTCTGGG	GGTACATAC	CATCGCTGG	GGGGTACCCA	960
GCACATTACAC	CATGGTGTGG	ACCATGCCCA	GGATCCATT	TGAGGATTAT	GGCTGTC	1020
GGTGTGGGA	CACCATCAAC	TCCCTACTGT	GGTGTGATC	AAAGGGCCCC	ATCTTCACCT	1080
CCATCTTGCT	AAACTCTCATC	CTGTTTATTTC	GCATCATCTCG	AATCCCTGCTT	CAGAAAATGTC	1140
GGGCCAGAGA	TATCAGAACG	AGTGACAGCA	GTCCACTACTC	AAGGCTAGCC	AGGTCCACAC	1200
TCTCTGCTAT	CCCCCTGTGTT	GGAGTCAACT	ACATCATGTT	CGCTCTCTT	CGGACAAATT	1260
TTAACGCTGA	AGTGAAGATG	GTCTTTGAGC	TCGTCGTGGG	GTCTTTCCAG	GGTTTTGTGG	1320
TGAGCTATCT	CTACTGCTCT	CTCAATGGTG	AGGTGCAGGG	GGAGCTGAGG	CGGAAGTGGC	1380
GGGCCCTGCCA	CCTGCAGGGC	GTCTCTGGCT	GGAAACCCCAA	ATACCGCAC	CCGTGGGAG	1440
GCAGCAACGG	CGCCACGTC	AGCACGCA	TTTCCATGCT	GACCCCGTC	AGCCCAGGTG	1500
CCCCCGCGTC	CAAGCAGTC	CAAGCGGAAG	TCTCCCTGTC	CTGACCCACA	GGATCCCGAC	1560
CCAAGCGGCC	CCTCCCGCC	CTTCCCACTC	GCACAGACAG	CGGGGACAG	AGGCGCTGCC	1620
GGGCGCGCCA	CCCCCGGCC	TGGCTCGGA	GGCTGCC	GGCCCCCTGG	TCTCTGGTCC	1680
GGACACTCTC	AGAGAACGCA	GGCCTAGAGC	CTGCTGGAGG	CTGCTCTAGC	AACTGAGAGA	1740
GATGGAGCT	CCTCTCTGG	AGGATGAGG	TGGAACATCAG	TCATTAGACT	CCTCTCCAA	1800
AGGCCCTCTA	CGCCAACTAA	GGGCAAAAG	TCTACATACT	TTCATCTG	CTCTGCC	1860
TGCTGGCTCT	TCTGCTTCA	TGGAGGAAAT	CAACCGGTGG	ATCTCTAAAC	AAACTCTGGT	1920
TGACCTGAGG	GCAGAAAGAT	GAAGGCAAG	ACCACGGAT	GCTAGGTC	GGACTAAAGC	1980
CCTGAAATT	CACCATGCT	GTCAGTTC	TTTGGTTAA	GCATTACAC	TCAGGATT	2040
GACTGAAGAT	GCAGCTCACT	ACCCCTATCT	CTCTTTACCC	TTAGTTATCA	GCTTTTTAA	2100
GTGGAGCTT	CTGGAGCTT	GGTGGAGA	GCACACCTG	CTTAGTGTT	CCCCACCGAA	2160
GTGGACTGTC	CCCTGGGTC	GTCGGTGGG	AGGAGGTC	AACCAAGG	CTGAGGAG	2220
CTGAAGCTCT	TGGGAAATGA	GAAGGCA	ACCACGGAT	GCTAGGTC	GGACTAAAGC	2280
TACCTGCTCAT	CCAAGCTCAT	GTGTCAGTGC	GGACTCTGTC	ACACCAGCCA	2340	
TTCTTATCTC	TCTGTGCTGT	GGAGGAACAA	GGAAATCAAGA	GACTGCC	CTTGTGCC	2400
CACCTATGTG	CCAACATGTTG	TAACTAGGC	CAGAGATGTG	CACCCATGGG	CTCTGACAGA	2460
AAGCAGATCC	TCACACCTG	GATTGAAACT	CAGATCTG	TGATAGGA		2520
GTAAAGAGCAC	GGACTCTTAC	TGCTAACTT	TGTGTATCCT	AACCAAGG	ATCTCTGGG	2580
TTATTTGTTT	ACCACTTGTA	TTATAATGC	CATTATCCCT	GAATTCCCT	TGCCCC	2640
CCCTCTCTGG	AGTGTGCTGG	AGGAGGCTC	CATCTCATG	ATCATCTGGA	TAGGAGCTG	2700
CTGGTCACAG	CCTCCCTCTGT	SRGGRRGSRG	AGGGGRGGVA	RRRRLELRAA		2760
CCTCTGCCAG	AAGATCCCT	CCCCAGTGGC	CACTCAGCTT	CCTACCCACA		
	GGAGACTGCA	ACAGGCTTGT	GCAACAATAA	ATGTGCTT		
	GGAAAAAAA	AAAAA				

SEQ ID NO:177 PM72 Protein sequence:

Protein Accession #: JC2195

1	11	21	31	41	51	
MPPPPPLLSR	RLGGGWSAVT	RLVVAAGAR	SRGGRRGSRG	AGGGGRGGVA	RRRRLELRAA	60
RSLLGSSLQE	ECDYVQMIEV	QHKQCLEEAQ	LENETIGCSK	MWDNLTCWPA	TPRGQVVVLA	120

5 CPLIFKLFSS IQGRNVSRSC TDEGWTHLEP GPYPIACGLD DKAASLDEQQ TMFYGSVKTG 180
YTIGYGLSLA TLLVATAILS LFRKLHCTR N YIHMHLFISF ILRAAAVFIK DLALFDSGES 240
DQCSSEGVSVC KAAMFFFQYC VMANFFWLLV EGLYLYTLLA VSFFSERKYF WGYLIGWGV 300
PSTFTMVWTI ARIHFEDYGL LRCWDTINSS LWIIIKGPIL TSILVNFLF ICIIRILLQK 360
LRPPDIRKSD SSPYSRLARS TLLIPLFGV HYIMFAFFPD NFKPEVKMVF ELVVGSFQGF 420
VVAILYCFLN GEVQABLERRK WRRWHLQGVL GWNPKYRHPS GGSNGATCST QVSMLTRVSP 480
GARRSSSFQA EVSLV

10 SEQ ID NO:178 BFF8 DNA SEQUENCE
Nucleic Acid Accession #: AL133619
Coding sequence: 1-2070 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
15	ATGAGCGGTG	CGGGGGTGGC	GGCTGGGACG	CGGCCCCCCC	GCTCGCCGAC	CCCGGGCTCT	60
	CGGGCCCGGC	GGCAAGCGCC	CTCTGTGGGC	GTCCAGTCCT	TGAGGCCGCA	GAGCCCGCAG	120
	CTCAGGAGA	GCGACCCGCA	GAAACGGAAC	CTGGACCTGG	AGAAAAGCCT	GCAGTTCTTG	180
20	CAGCAGCAGC	ACTCGGAGAT	CTGCGGCAAG	CTCCCATGAGG	AGATCGAGCA	TCTGAAGCGG	240
	GAAAACAAG	GTGAGCGGCC	CGGGGGCCC	AGGGCGGCC	TGCCCTCCCA	GGCACACTCA	300
25	ACACTGGCCC	TCCCGCAGCA	CAGAAACACA	GCCATCACT	CCAGCACACG	CCTGGGCTCA	360
	GGGGAAACAG	AGGACGGGGA	GCCCCCTCCAG	ACTGTCCCTG	CCCCACCTGGC	TGCACATGGCC	420
	CCTGTATGCG	AACCCAGTGG	GTACAGGTTG	TGGGGACCT	GGACAGATGC	CGCTTACCTCT	480
30	AGCCCTGGGT	GGACGATGTT	ATGCAGCCCA	GCACAGCAGC	TGCTGCTCTC	GGGAAGCCCA	540
	GGGCGTGAGG	TCATTGCGAGG	GGCGCAGGTG	GCCACAGGGT	GCTCCCCAGA	CCTCCCTCTT	600
35	CCAATGAGG	CTGAAATGGG	AGGAACACCC	TGGGACAGCC	CTTGGCTTGC	TAGATCTTTG	660
	CCTCAGATTC	CTGCTGTGCC	CAAGGCCAGG	ATTTCCAGCC	CTATGGCTCT	GAGTCCTCAC	720
40	ATGCTGGGGG	CCCCGGGGAT	ATGGACACAC	TCCATCCAGG	GATCCCTTC	TGCCATCTGG	780
	GCAGCAACCA	TGGGGAAAAA	GGGAGGAAGC	AGAGTCCCTGT	TTCCTTGCCA	CTTGTCCAAG	840
45	GCATTCCTCC	ATCCTGACAG	GGGGCCCCAC	CGACCCCGAG	ATCTGGGCT	GTGGTCTCAA	900
	GCTCATCTTC	CATTATCTT	GGGGCTGGG	CTGACATCAG	GAGGACATCT	GACTGGTGGA	960
50	TGGAGCCAGC	CTGGGAACAT	CCAGCTGGG	GCAGTGCCTA	GGGCTCTCCC	TTCCCAGGGA	1020
	GACATGGAGA	AGGGGGTGA	GGGAGGGCCC	TTCCTTAGCC	GCTGTGGCAA	CTCCAGTGAG	1080
	CTGTTCTGGG	CAAAGTGTGG	CCCAAGTGG	CAGCCCCAGC	CTTGCAGTGC	TGGGACGCT	1140
55	GACAGGACAC	GGGAAGAGGC	CATGCTTCC	CTCGGGACCT	GCTGTTCCAT	GTGTCCCAAG	1200
	CCCTCTGTCT	TTCCAGATGG	CCCCCTCAGG	AACCACCTTT	CCAGGGGCTC	TGCTCCCTTG	1260
	GGCGCTCGCT	GGGTCTGCAT	CAACGGAGT	TGGGTAGAGC	CGGGAGGACC	CAGCCCTGCC	1320
	AGGCTGAAGG	AGGGCTCCCT	ACGGACACAC	AGGGCAGGAG	GCAAGCGTGG	CGCTTCTGCC	1380
60	GGCGGTAGCG	CCGACACTGT	GGCCTCTCTC	GCAGACAGCC	TCTCCATGTC	AAGCTTCCAG	1440
	TCTGTCAAGT	CCATCTCTAA	TTCAGCCAAC	TCTCAAGGCC	AGGCAGGCC	CCAGCCGGC	1500
	TCTCTCAACAA	AGCAAGATTC	AAAAGCTGAC	GTCTCCAGA	AGGGGGACCT	GGAAGAGGAG	1560
65	CCCCTACTTC	ACAAACAGCAA	GCTGGACAAA	TTTCTGGG	TACAAGGGCA	GGCCAGAAAAG	1620
	GAGAAAGCAC	AGGCTCTAA	TCCAGGACTG	GGCTGTATGC	GGAAACAGCCA	GCACCAAGGGC	1680
	AGGCAGATGG	GGGGGGGGGC	ACACCCCCCA	ATGATCTGC	CCCTCTCCCT	CGCAAAGCCC	1740
70	ACCAACTTA	GGCAGTGCAG	AGTGCTCATC	CGCGAGCTGT	GGAATACCAA	CCTCCCTGCCAG	1800
	ACCCAAGAGC	TGGCGCACCT	CAAGTCCCTC	CTGGAAGGGG	GGCAGAGGCC	CCAGGCAGCC	1860
	CCGGAGGAAG	TCAGCTTCC	CAGGGACCAA	GAAGCCACGC	ATTTCCTCAA	GSTCTCCACC	1920
	AAGAGCTCT	CCAAAGAAATG	CCTGAGCCCA	CTGTGGCG	AGCGTGCCT	CCTGCCCCGA	1980
	CTGAAGCAGA	CCCCGAGAA	CAACTTTGCC	GAGAGGCAGA	AGAGGCTGCA	GGCAATGCGAG	2040
	AAACCGGCC	TGCATCGCTC	AGTGCTTGA				

SEQ ID NO:179 BFF8 Protein sequence:

Protein Accession #: T43457

	1	11	21	31	41	51	
55	MSGAGVAAGT	RPPSSPTPGS	RRRQRPSVG	VOSLRPQSPQ	LRQSDPQKRN	LDLEKSLQFL	60
	QQQHSEMLAK	LHEEIEHLKR	ENKGEPARPG	RPALEPPQAH	TLPLPQHNRNT	AINSSTRLGS	120
	GGTQDGELPQ	TVALHLALA	PFVCPGSGYRF	WGTWTDAATS	SRGWMLCSQ	AQHVLLSGSP	180
60	GPEVIAGRQV	ATGCSPDLPP	PSRAEMGRNP	WDSPCPARSL	PQIAAVARPR	ISSLPMALSPH	240
	MLGAQGIWTH	SIQGSLPAIV	AATMGTKGGS	RVLFPCHLSK	ALPHPDGSPH	PAQDPGLWSQ	300
	AHPPLSLGLG	LTSGGHLTGDG	WSQPGNIAAG	AVPRALPSQG	DMEKGVEGGF	FPSRCGNNSE	360
65	LFWAKCPSL	QPQPCSAQGD	DTREEAMLS	LGRVCCSMCPK	PSCFPDGPSSG	NHLSRASAPL	420
	GAWRVCINGV	WVEPGGGPSA	RLKEGSSRTH	RPGKGRRLA	GGSADTVRSP	ADSLSMSSFQ	480
	SVKSISNSAN	SQGKARPQPG	SFNKDQSKAD	VSQKADLEEE	PLLHNSKLDK	VPGVQGQARK	540
70	EKAESNAGA	ACMGNSHQHG	RQMGAGAHPP	MILPLPLRKP	TTLRQCEVLI	RELWNTNLLQ	600
	TQELRHLKSL	LEGSQRPQAA	PEEAASFPRDQ	EATHFPKVST	KSLSKKCLSP	PVAERAILPA	660
	LKQTPKNNFA	ERQKRLQAMQ	KRRLHRSVL				

SEQ ID NO:180 BCR4 DNA SEQUENCE

Nucleic Acid Accession #:

NM_012319.2

Coding sequence:

138-2405 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
75	CTCGTGCAGA	ATTGGCAGC	AGACCGCGTG	TTCGCGCTG	GTAGAGATT	CTCGAAGACA	60
	CCAGTGGGCC	CGTGTGGAAC	CAAACCTGCG	CGCGTGGCG	GGCGTGGGA	CAACGAGGCC	120

	GCGGAGACGA	AGCGCAATG	GCGAGGAAGT	TATCTGTAAT	CTTGATCCTG	ACCTTGCCC	180
	TCTCTGTAC	AAATCCCCTT	CATGAACTAA	AAGCAGCTGC	TTTCCCCCAG	ACCACTGAGA	240
	AAATTAGTCC	GAATTGGAA	TCGGCATTA	ATGTTGACTT	GGCAATTTC	ACACGGCAAT	300
5	ATCATCTACA	ACAGCTTTTC	TACCGCTPATG	GAGAAAATAA	TTCTTGTC	GTTGAAGGGT	360
	TCAGAAAAAT	ACTTCAAAAT	ATAGGCATAG	ATAAGATTAA	AAGAATCCAT	ATACACCATG	420
	ACCAAGGACCA	TCACTCAGAC	CACGAGCCTC	ACTCAGACCA	TGAGCGTCAC	TCAGACCAGT	480
	AGCATCACTC	AGACCACCG	CATCACTCTG	ACCATGATCA	TCACTCTCAC	CATAATCATG	540
	CTGCTTCTG	TAAAAATAAG	CGAAAAGCTC	TTTGGCCAGA	CCATGACTCA	GATAGTTCA	600
10	GTAAAGATCC	TAGAACACG	CAGGGGAAAG	GAGCTCACCC	ACCGAACAT	GCCAGTGGTA	660
	GAAGGAATG	CAAGGACAGT	TTTGTGCTA	GTGAAGTGAC	CTCAACTGTG	TACAACACTG	720
	TCTCTGAAGG	AACTCACTTT	CTAGAGACAA	TAGAGACTCC	AAGACCTGGA	AAACTCTCC	780
	CCAAAGATGT	AAGCAGCTCC	ACTCCACCA	GTGTCACATC	AAAGAGCCGG	GTGAGGCCGC	840
	TGGCTGTTAG	AAAACAAAT	GAATCTGTA	GTGAGCCCCG	AAAAGGCTT	ATGTATTCCA	900
15	GAAACACAAA	TGAAAATCTT	CAGGAGTCTT	TCAATGCTAC	AAAGCTACTG	ACATCTCATG	960
	GCATGGGCAT	CCAGGTTCCG	CTGAATGCAA	CAGAGTTCAA	CTATCTCTGT	CCAGCCATCA	1020
	TCAACCAAAT	TGATGCTAGA	TCTTGTCTGA	TTCATACAA	TGAAAAGAAG	GCTGAATTC	1080
	CTCCAAAGAC	CTATTCACAT	CAAAATGCTC	GGGTTGGTGG	TTTTATAGCC	ATTTCCATCA	1140
	TCAGTTTCCCT	GTCTCTGCTG	GGGGTTATCT	TAGTGCCTCT	CATGAATCGG	GTGTTTTCA	1200
20	AATTCTCCT	GAGTTCCCTT	GTGGCACTGG	CGGTTGGAC	TTTGAGTGT	GATGCTTTT	1260
	TACACCTCTC	TCCACATCT	CATGCAACG	ACCCACATAG	TCATAGGCC	GAAGAACCCAG	1320
	CAATGGGAAAT	GAAAAGAGGA	CCACTTTTCA	GTCATCTGTC	TTCTCAAAAC	ATAGAAGAAA	1380
	GTGCGCTATT	TGATTCACG	TGGAAGGGTC	TAACAGCTCT	AGGAGGCCCTG	TATTTCATGT	1440
	TTCTTGTGA	ACATGCTCC	ACATTGATCA	AAACAATTAA	AGATAAGAAG	AAAAAGAACATC	1500
	AGAAGAACCC	TGAAAATGAT	GATGATGTTGG	AGATTAAGAA	GCAGTTGTC	AACTATGAAT	1560
25	CTCACACTTC	AACAAATGAG	GAGAAAGTAG	ATACAGATGA	TCGAACTGAA	GGCTATTTC	1620
	GAGCAGACTC	ACAAGAGCCC	TCCCACTTG	ATTCTCAGCA	GCCTCGAGTC	TTGGAAGAAG	1680
	AAGAGGTCTAT	GATGCTCAT	GTCATCCAC	AGGAAGCTCA	CAATGAATAT	GTACCCAGAG	1740
	GGTCAAGAA	TAATATGCCAT	TCATCTTTC	ACGATACACT	CGGCCAGTC	GACGATCTCA	1800
	TTCACCAACCA	TCATGACTAC	CATCATATT	TCCATCATCA	CCACACCAA	AACCCACATC	1860
	CTCACAGCTA	CAGCCAGCGC	TACTCTGGG	AGGAGCTGAA	AGATGCCGGC	GTGCCCCACT	1920
	TGGCTTGATG	GGTGTATAATG	GTGATGTTGGC	TGCAACATT	CAGCGATGGC	CTAGCAATTG	1980
	GTGCGCTGTT	TACTGAAGGG	TTATCAAGTG	GTMTAAGTAC	TTCTGTTGCT	GTGTTCTGTC	2040
	ATGAGTTGCC	TCATGATTA	GGTACTTTG	CTGTTCTACT	AAAGGCTGGC	ATGACCCGTTA	2100
	ACGAGGTGT	CTCTTATAAT	GCATTGTCAG	CCATGCTGGC	GTATCTGG	ATGCAACAG	2160
30	GAATTTCAT	TGGTCATTAT	GCTGAAATAG	TTTCTATGTC	GATATTGCA	CTTACTGCTG	2220
	GCTTATTTCAT	GTATGTTGCT	CTGGTTGATA	TGGTACCTGA	AATGTCGAC	AATGATGCTA	2280
	GTGACCATGG	ATGTAACCGC	TGGGGTATT	TCTTTTACA	GAATGCTGGG	ATGCTTTTG	2340
	GTGTTGGAAT	TATGTTACTT	ATTTCATATA	TTGAACATAA	ATATCGTTT	CGTATAAAAT	2400
	TCTAGTTAAG	CTTAAATGTC	TAGAGTAGCT	TAAAAAGTTG	TCATAGTTTC	AGTAGGTCT	2460
	AGGGAGATGA	GTGTTGATGC	TGTTACTATGC	AGGGTTTTAA	GTGAGTGGG	TTTGTGATT	2520
	TTGTTATTGAA	TATTGCTGT	TGTTACAAAG	TCAGTTAAAG	TCAGCTTTA	ATATTTCAGT	2580
	TATTCATCT	TGGAGATAAA	ATCTGTATGT	GCAATTACCC	GGTATTACCA	GTATTATTATG	2640
35	TAAACAAGAG	ATTGGCATG	ACATGTTCTG	TATGTTTCAG	GGAAAAATGT	CTTTAATGCT	2700
	TTTCAAGAA	CTAACACAGT	TATTCCTATA	CTGGATTTA	GGTCTCTGAA	GAACTGCTGG	2760
	TGTTAGGAA	TAAGAATGTC	CATGAAGCCT	AAAATACCAA	GAAGACCTTAT	ACTGAATTAA	2820
	AGCAAAGAAA	TAAGGGAGAA	AAGAGAAGAA	TCTGAGAAT	GGGGAGGCAT	AGATTCCTTAT	2880
	AAAATACCA	AAATTCTGTTG	TAATTTAGAG	GGGGAAATT	TAGAATTAAAG	TATAAAAAGG	2940
	CAGAATTACT	ATAGAGTACA	TCATTAAC	ATTTTGCA	GGATTATTTC	CCGAAACAC	3000
	GTAGTGAGCA	CTCTCATATA	CTAATTTAGTG	TACATTTAAC	TTTGTATAAT	ACAGAAATCT	3060
40	AAATATATTT	ATGAAATTCA	ACCAATATAC	ACTTGACCAA	GAATATTGAA	TTTCAAAATG	3120
	TTCCGTGCGGG	TTATATACCA	GATGAGTACA	GTGAGTAGTT	TATGTTATCAC	CAGACTGGGT	3180
	TATTGCCAAG	TTATATATCA	CCAAAAGCTG	TATGACTGGA	TGTCTGGTT	ACCTGGTTA	3240
	CAAAATTATC	AGAGTAGTAA	AACTTTGATA	TATATGAGGA	TATTAAAAC	ACACTAAGTA	3300
	TCATTTGATT	CGATTCAAGA	AGTACTTTGA	TATCTCTCAG	TGCTTCAGTG	CTATCATTGT	3360
45	GAGCAATTGT	CTTATATACAC	GGTACTGTAG	CCATACAGG	CTTGTCTGTG	GCATTCTCTA	3420
	GATGTTTCTT	TTTACACAA	TAATTCCTT	ATATCAGCTT	G		

SEQ ID NO:181 BCR4 PROTEIN SEQUENCE

60 Protein Accession #: NP_036451

1	11	21	31	41	51		
65	MARKLSVILI	LTFALSVTNP	LHELKAAFP	OTTEKISPNW	ESGINVDLAI	STRQYHLQL	60
	FYRYGEENSL	SVEGFRKLQ	NIGIDKIKRI	HHHHDDHHS	DHEHHSDHER	HSDHEHHSDH	120
	EHHSDHDHHS	HHHNAASGKN	KRKALCPHD	DSSSGKDPRN	SQKGKAHRPE	HASGRRNVKD	180
	SVSASEVTST	VYNTVSEGTH	FLETIETPRP	GKLFPKDVS	STPPSVTSKS	RVSRLAGRKT	240
	NESVSEPRK	FMYSRNTNE	PQEFCFNASKL	LTSHGGMGIQV	PLNATEFNYL	CPAIINQIDA	300
70	RSCLIHTSEK	KAEIIPPKTYS	LOIAWVGFFI	AISIIISFLSL	LGVILVPLMN	RVFFKFLLSF	360
	LVALAVGTL	GDAFLHLLPH	SHASHHHSHS	HEEPAMEMKR	GPLFSHLSSQ	NIEESAYFDS	420
	TWKGLTALGG	LYFMPFLVEHV	LTLIKQFKDK	KKKNQKPKPEN	DDDEVIKKQL	SKYESQIYSTN	480
	EEKVDTDDRT	EGYLRADSQE	PSHFDSQQPA	VLEEEEVMIA	HAHPQEVYNE	YVPRGCKNKC	540
	HSHFHDTLGQ	SDDLHHHHH	YHHI1HHHHHH	QNHHPHSHSQ	RYSREELKDA	GVATLAWMVI	600
75	MGDGLHNFS	GLAIGAAFT	GLSSGLSTSV	AVFCHELPH	LGFDFAVLLKA	GMTVKQAVLY	660
	NALSAMLAYL	GMATGIFIGH	YAENVSMWIF	ALTAGLFMVY	ALVDMVPEML	HNDASDHGCS	720
	RGWYFFLQNA	GMLLGFQIML	LISIFEHKIV	FRINF			

SEQ ID NO:182 BCY2 DNA sequence

Nucleic Acid Accession #: NM_001203

Coding sequence: 274-1782 (underlined sequences correspond to start and stop codons)

5 1 11 21 31 41 51
| | | | |
CGCGGGGCGC GGAGTCGGCG GGGCCTCGCG GGACGCGGGC AGTGCAGGAGA CCGCGGCCGT 60
GAGGACGGCG GAGCCGGGAG CGCACGCGC GGGTGGAGTT CAGCCTACTC TITCTTAGAT 120
GTGAAAGGA AGGAAGATA TTCATGCCT TGTTGATAAA GGTCAGACT TCTGCTGATT 180
10 CATAACCATT TGGCTCTGAG CTATGACAAG AGAGAAAACA AAAAGTTAAA CTTACAAGCC 240
TGCCATAAGT GAGAAGCAA CTTCTTGTAC AACATGCTT TGCGAAGTGC AGGAAAATTA 300
AAATGTGGCA CCAAGAAAAGA GGATGGTGTAG AGTACAGCCC CCACCCCCCG TCCAAAGGTC 360
TTGCCTGTGA AATGCCACCA CCTATGTCA GAAGACTCG TCAACAAATAT TTGCAGCACA 420
GACGGATATT GTTTCACGAT GATAGAACAG GATGACTCTG GGTGCGCTGT GGTCACTTCT 480
GGTTGCCTAG GACTAGAACAG CTCAGATTCT CAGTGTGGG ACACTCCCAT TCCTCATCAA 540
AGAAGATCAA TTGAATGCTG CACAGAACAG AACGAATGTA ATAAGACCT ACACCCTACA 600
CTGCCTCCAT TGAAAACAG AGATTTGTG GATGGACCTA TACACACAG GGCTTACTT 660
ATATCTGTGA CTGCTGTAG TTGCTCTGTG TCCTTATCA TATTATTTG TTACTCCGG 720
TATAAAAAGAC AAGAAACCCAC ACCTCGATAC AGCATTGGGT TAGAACAGGA TGAACATTAC 780
ATTCCTCTG GAGAAGACTT GAGAGACTTA ATTGAGCAGT CTCAGAGCTC AGGAAGTGGGA 840
TCAGGCCTCC CTCTGCTGGT CCAAAGGACT ATAGCTAAGC AGATTCAAGT GGTGAAACAG 900
ATGGAAAAG GTCGCTATGG GGAAGTTGG ATGGAAAGT GGCCTGGCGA AAAGGTAGCT 960
GTGAAAGTGT TCTTCACCC AGAGGAAGCC AGCTGGTCA GAGAGACAGA AATATATCAG 1020
ACAGTGTGA TGAGGCATGA AAACATTITGG ATGGTACCTG CTGAGATAT CAAAGGGACA 1080
GGTCTCTGGA CCCAGTTGTA CCTAATCACA GACTATCATG AAAATGGTC CCTTTATGAT 1140
TATCTGAAGT CCACCAACCC AGACGCTAAA TCAATGCTGA AGTTAGCCTA CTCTCTGTC 1200
AGTGGCTTAT GTCATTTACA CACAGCTAC TTTACTAC AAGGCAAAAC AGCAATTGCCC 1260
CATCGAGATC TGAAAAGTAA AAACATTCTG GTGAGAAAAA ATGGAACCTG CTGTATTGCT 1320
GACCTGGGCC TGGCTGTAA ATTATTTAGT GATACAAATG AAGTTGACAT ACCACCTAAC 1380
ACTCGAGTGTG GCACCAAACG CTATATGCT CCAGAAGTGT TGGACGAGAG CTGAAACAGA 1440
AATACACTTCC AGTCTTACAT CATGGCTGAC ATGTTAGTT TTGGCCTCAT CCTTTGGGAG 1500
GTGCTAGGA GATGTGATC AGGAGGTATA GTGGAAGAAT ACCAGCTTCC TTATCATGAC 1560
CTAGTGGCCA GTGACCCCTC TTATGAGGAC ATGAGGGAGA TTGTGTGCT CAAGAAGTTA 1620
CGCCCTCAT TCCCAAACCC GTGGAGCAGT GATGAGTGTCA TAAGGCGATG GGGAAAACCTC 1680
ATGACAGAAAT GCTGGGCTCA CAATCTGCA TCAAGGCTGA CAGCCCTGCG GGTAAAGAAA 1740
ACACTTGCCA AAATGTCAAGA GTCCCAGGAC ATAAACTCT GATAGGAGAG GAAAAGTAAG 1800
CATCTCTGCA GAAAGCCAAC AGGTACTCTT CTGTTTGTGG GCAGAGCAAA AGACATCAA 1860
TAAGCATCCA CAGTACAAGC CTTGACATC GTCTGCTTC CCAGTGGGT CAGACCTCAC 1920
CTTCAGGGA GCGACCTGGG CAAAGACAGA GAAGCTCCA GAAGGAGAGA TTGATCCGTG 1980
TCTGTTGTGA GGCGGAGAAA CGTGTGGTA ACTTGTCAA GATATGATGC AT

SEQ ID NO:183 BCY2 Protein sequence

Protein Accession #: NP_001194

45 1 11 21 31 41 51
| | | | |
MLLRSAGKLN VGTKKEDGES TAPTPRPKVL RCKCHHHICPE DSVNNICSTD GYCFTMIEED 60
DSGLPVTSG CLGLLEGSDFQ CRDTPIPHQR RSIECCTERN ECNKDLHPTL PPLKNRDFVD 120
50 GPIIHRALLI SVTVCSSLV LIIIFCYFRY KRQEPRYRS IGLEQDETYI PPGESELRLDI 180
EQSQSSGSGLPLLVQRTI AKQIQMVQKQI GKGRYGEVWM GKWRGEKVAV KVFFITEEAS 240
WFRTEIYQT VLMRHENILG FIAADIKGTG SWTQLYLTD YHNGSLYDY LKSTTLDAKS 300
MLKLYSSVS GLCHLHTEIF STQGKPAIAH RDLKSKNILV KKNGTCCIAD LGIAVKEFSD 360
55 TNEDVDPNT RVGTKRYMPPE EVLDESLNRN HFQSYIMADM YSFGLILWEV ARRCVSGGIV 420
EYQLPYHDL VPSDPSYEDM REIVCIKKLR PSFPNRWSSD ECLRQMGLM TECWAHNTPAS 480
RLTALRVKKT LAKMSESEQDI KL

SEQ ID NO:184 CBF9 DNA sequence

Nucleic Acid Accession #: AC005383

Coding Sequence: 328-2751 (underlined sequences correspond to start and stop codons)

65 1 11 21 31 41 51
| | | | |
GACAGTGTTC GCGGGCTGCAC CGCTCGGAGG CTGGGTGACC CGCGTAGAACAG TGAAGTACTT 60
TTTATTTGTC AGACCTGGGC CGATGCCGT TAAAAAAACG CGAGGGCTC TATGCCACCTC 120
CCTGCGGTA GTTCCCTCGA CCTCAGCCGG GTCCGGTGTG CGCCGCCCCCTC CCCAGGAGAG 180
ACAAACAGGT GTCCCCACGTG GCAGCCGGCG CCGGGGCC CCGCCCTGTGA TCCCGTAGCC 240
CCCCCTGGCC CGAGCCGGCG CGGGTCTGT GACTAGAGCC GCCCCGGGCAC CGAGCGCTGG 300
TCGCGCGCTCT CCTTCCCGTTA TATCAACATG CCCCCCTTCC TTGCTGAGA GGCCTGTGT 360
GTTTTCCGTG TTTCAGAGT GCGCCCATCT CTCCTCTCC AGGAAGTCCA TGTAAAGCAA 420
GAAACCATCG GGAAGATTTG AGCTGCCAGC AAAATGATGT GGTGCTCGGC TGCAAGTGGAC 480
70 ATCATGTTTC TGTTAGATGG GTCTAACAGC GTGGGGAAAG GGAGCTTGTGA AAGGTCCAA 540
CACTTTGCCA TCACAGTCTG TGACGGCTCG GACATCAGCC CCGAGAGGGT CAGAGTGGGA 600
GCATTCCAGT TCAGTTCAC TCCTCATCTG GAATTCCCT TGGATTCACTT TTCAACCCAA 660

5 CAGGAAGTGA AGGCAAGAAT CAAGAGGATG GTTTCAAAG GAGGGCGCAC GGAGACGGAA 720
 CTTGCTCTGA AATACCTTCT GCACAGAGG TTGCCTGGAG GCAGAAAATGC TTCTGTGCC 780
 CAGATCCTCA TCATCGTCAC TGATGGGAAG TCCCAAGGGGG ATGTGGCACT GCCATCCAAG 840
 CAGCTGAAGG AAAGGGGTGT CACTGTGTTT CCTGTGGGG TCAGGTTTC CAGGTGGAG 900
 10 GAGCTGCATG CACTGGCCAG CGAGCCTAGA GGGCAGCACG TGCTGTTGC TGAGCAAGTG 960
 GAGGATGCCA CCAACGGCCT CTTCAGCACCC TGTCAGCAGCT CGGCCCATCTG CTCCAGCGCC 1020
 ACGGCAGACT GCAGGGTCGA GGCTCACCCC TGTGACACA GGACGCTGGA GATGGTCCG 1080
 GAGTTGCTG GCAATGCCCA ATGCTGGAGA GGATCGCGC GGACCCCTG GGTGCTGGCT 1140
 15 GCACACTGTC CCTCTTACAG CTGGAAGAGA GTGTTCTAA CCCACCCCTGC CACCTGCTAC 1200
 AGGACCAACCT CCCACGGGCC TGTCAGCTCG CAGGCCCTGCC AAATGGAGG CACATGTGTT 1260
 CCAGAAGGAC TGAGCAGGCTA CCAGTGCCTC TGCCCGCTGG CCTTTGGAGG GGAGGCTAAC 1320
 TGTGCCCTGA AGCTGAGCCT GGAATGCAGG GTGACCTCC TCTTCCTGCT GGACAGCTCT 1380
 GCGGGCACCA CTCTGGACGG CTTCTGGGG GCAAAGACTC TCGTGAAGCG GTTGTGCGG 1440
 20 GCCCTGCTGA CGCAGGACTC TCGGGCCCGA GTGGGTGTTG CCACATACAG CAGGGAGCTG 1500
 CTGGTGGCGG TGCCCTGTGGG GGAGTACCAAG GATGTGCTG ACCTGGTCTG GAGCCTCGAT 1560
 GGCATTCCCT TCCGTGGTGG CCCCACCTG ACAGGGCAGTG CCTTCGGCGA GGCGGCAGAG 1620
 CTTGGCTCG GAGACGCCAC CAGGACAGGC CAGGACCGGC CACGTAGACT GGTTGGTTTG 1680
 25 CTCAGTGAAGT CACACTCCGA GGATGAGGTT GCGGGCCAG CGCGTCACGC AAGGGCGCGA 1740
 GAGCTGCTCC TGCTGGGTG AGGCAGTGAG GCGTGGGGG CAGACGCTGGA GGAGATCACCA 1800
 GCGAGCCCCA AGCATGTGAT GTGTTACTCG GATCCTCAGG ATCTGTTCAA CCAAATCCCT 1860
 GAGCTGCAGG GGAAGCTGAG CAGCCGGCAG CGGGCAGGGT CGGGGACACA AGCCCTGGAC 1920
 30 CTCGCTCTCA TTGTTGGACAC CTCTGCCTCA GTAGGGCCCG AGAATTTCG TCAGATGCAG 1980
 AGCTTTGTGA GAAGCTGTG TGCTCAGGTTT GAGGTGAGACT CTGACCTGAC ACAGGTGCGC 2040
 CTGGTGGTGT ATGGCAGGCA GTGTCAGACT GCCTTCGGGC TGGACACCAA ACCCACCGG 2100
 GTGCGATGTC TGCGGGCCAT TAGGCCAGGGC CCTTACCTAG GTGGGGTGGG CTCAGCCGGC 2160
 35 ACCGCCCTGC TGACACATCTA TGACAAAGTG ATGACCGTCC AGAGGGGTGC CGGGCCTGGT 2220
 GTCCCCAAGG GCTGTGGTGT GCTCACAGGC GGGAGAGGC CAGAGGATG AGCCGTTCT 2280
 GCGGAGAACAA TGAGAACCAA TGGCATCTCT GTCTTGGTGC TGGGGCTGGG GCTGTCTTA 2340
 AGTGAGGTC TGCGGAGGCT TGCAAGGTC CCGGATTCCC TGATCACGT GGAGCCTTAC 2400
 GCGCACCTGC GTTACCAACCA GGACAGGTGCTC ATTGAGTGC TGTTGGAGA AGCCAAGCAG 2460
 CCAGTCACCACT TGTCACAAACCA CAGCCCGTGC ATAATGAGG CGAGCTGCGT CCTCAGAAC 2520
 GGGAGCTACC GTGCAAGTGC TCGGGATGGC TGGGGAGGGC CCCACTGCGA GAACCGTGAG 2580
 TGGAGCTTT GCTCTGTATG TGTGAGGCCAG GGATGGATTG TTGAGACGCC CCGTGGAC 2640
 ATGGCTTCCG TGCAAGGAGG CAGCAGCGCT ACCCCTCCCA GCAACTACAG AGAAGGCCCG 2700
 40 GGCACTGAAA TGGTGCCTAC CTTCTGGAAAT GTCTGTGCCC CAGGTCTTA GAATGTCTGC 2760
 TTICCGCCGT GGCCAGGACC ACTATTCTCA CTGAGGGAGG AGGATGTCCC AACTGCAGCC 2820
 ATGCTGCTTA AGACAAAGAA AGCACCTGAT GTCACCCACA AACGATGTIG TTGAAAAGTT 2880
 TTGATGTGTA AGTAAATACC CACTTCTGTG ACCTGCTG TGCTGTGAG GCTATGTCT 2940
 CTGGCACCTT TCCCTTGAGG ATAAAACAGG GGTCTGAAAG ACTTAAATTG AGCGGCCCTGA 3000
 CGTTCTTTCG CACACAACTCA ATGCTGCCA GAATGTTGTT GACACAGTAA TGCCCAAGCAG 3060
 AGGCTTTAC TAGAGCATGCC TTTGGACGGC GAAGGCCAGC GCTTCTCAAG ATGAAAGGCA 3120
 GCAAGCTTTC CACTCCCCCA GAGACATTCT GGATGCAATT GCATTGAGTC TGAAAGGGGG 3180
 CTTGAGGGAC GTTTGTACT TCTTGGCGAC TGCTTTTGT GTGTGAAAGA GACTTGGAAA 3240
 GGTCTCAGAC TGAATGTGAC CAATTAACCA GCTTGGTTGA TGATGGGGG GGGCTGAGT 3300
 45 TGTCATGGG CCCAGGTCTG GAGGCCACG TAAATCGTT CTGAGTCGT AGCACTGTC 3360
 ACCTGAAAGG TCTTC

SEQ ID NO:185 CBF9 Protein sequence

Protein Accession #: none found

50 1 11 21 31 41 51
 | | | | | |
 MPFLLEAVL CVLFPSRVDP SLPLQEVHVS KETIKKISA SKMMWCSAAV DIMFLLDGSN 60
 55 SVGKGSFERS KHFATVCDG LDISPERVRV GAFQFSSTPH LEPLDLSFST QOEVKARIKR 120
 MVFKGRTET ELALKYLLHR GLPFGGRNASV PQIILIVTDG KSQGDVALPS KQLKERVITV 180
 FAVGVRFPRW EELHALASEP RGQHVLLAEQ VEDATNGLFS TLSSSAICSS ATPDCRVEAH 240
 PCEHRTLEMV REFLAGNAPCW RGSRRRTLAVL AAHCPFYSWK RVFLTHPATC YRTTCGPPCD 300
 SOPCQNNGTC VPEGLDGYOC LCLPLAFGEA NCALKSLEC RVDLFLLDS SAGTTLDGFL 360
 RAKVFVKRFV RAVLSEDSRA RVGVATYSRE LLVAVPVGEY QDVFDLVWSL DGIPFRGPGT 420
 LTGSALRQAER ERGFGSATRT QDQDRPQRVVV LLTESHSDE VAGPARHARA RELLLLGVGS 480
 EAVERALEEI TGSPLKHMVY SDPQDLFNQI PELQGKLCSR QRPGCRTQAL DLVFMLDTS 540
 SVGPFENFAQM QSFRVSCALQ FEVNPDTQV GLVVYGSQVQ TAFGLDTKPT RAAMLRRAISQ 600
 APYLGVGSA GTALLHIYDK VMTVQRGARP GPVKAVVVLT GGRGAEDAAV PAQKLRNNGI 660
 65 SVLUVGVGPV LSEGRLRLAG PRDSLHVAAYADLRYHQDV LIEWLCGEAK QPVNLCKPSP 720
 CMNEGSCVLO NGSYRKCRD GWEGPHCENR EWSSCSVCS QGWILETPLR HMAPVQEGR 780
 RTPPSNYREG LGTEMVPTFW NVCAPGP

70 SEQ ID NO:186 PAV1 DNA sequence
 Nucleic Acid Accession #: AF272890
 Coding Sequence: 87-1520 (underlined sequences correspond to start and stop codons)

75 1 11 21 31 41 51
 | | | | | |
 TGCTACCCGC GCGCGGGCTT CTGGGGTGT CCCAACAC GGGCCAGCCC TGCCACACCC 60
 CCGGCCCCCG CGCTCCGCAG CTGGCATGG GCGCGGGGGT GCTCGTCTG GGCGCTCCG 120
 AGCCCGTAA CCTGTCGTG GCGCACCGC TCGGGACGG CGCGCCACCG CGGGCGCCGC 180

TGGTGGTGC CGCGTCGCCG CCCGCCTCG TGCTGCCCTCC CGCCAGCGAA AGCCCCGAGC 240
 CGCTGTCTCA GCAGTGGACA CGGGCATGG GTCTGCTGAT GGCGCTCATC GTCTGCTCA 300
 TCGTGGCGGG CAATGTGCTG GTGATGCTGG CCATCGCCAA GACGCCGCG CTGCAGACGC 360
 5 TCAACCAACCT CTTCATCATG TCCCTGGCCA CGGCCGACCT GTCTGCTGGG CTGCTGTTGG 420
 TGGCGPTCGG GCCCACCATC GTGGTGTGGG GCGCTGGGA GTACGGCTCC TTCTCTGCG 480
 AGCTGTGGAC CTCACTGGAC GTGCTGTGCG TGACGGCCAG CATCGAGACC CTGCTGTC 540
 TTGCCCCCTGGG CGCCACTTC CCACTCACCT CGGCCCTTCGG CTACAGAGCC CTGCTGACGC 600
 10 GCGCCGGCGG CGGGGGCGTC STGTGACCC TGTTGGCAT CTGCCCCCTG GTCTCTTCC 660
 TGCCCATCTT CATGCACTGG TGGCGGGCGG AGAGCGACGA GGCGGCCGC TCTTACAACG 720
 ACCCCCAGTG CTGCGACTTC GTCACCAACC GGGCCTACGC CATGCCCTCG TCCGTAAGTCT 780
 15 CCTTCTACGT GCCCCCTGTG ATCATGGCT TCGTGTACCT GCGGGTGTTC CGCGAGGCC 840
 AGAACAGGAT GAAGAACATG GACAGCTGGC AGCGCCCTT CCTCGCGGC CCAGCGGGC 900
 CGCCCTCTGCC CTCGCCCCCG CCCGTCCCCG CGGCCCGCGCC GCGGCCCGGA CCCCGGGCC 960
 CGGCCGGCGG CGGCCGACCC GCGCCGGCTGG CCAACGGGCC TGCGGGTAAG CGCGGCCCT 1020
 CGCCCTCTCG GGGCCCTCGC GAGCAGAAGG CGCTCAAGAC GCTGGGCATC ATCATGGCG 1080
 TCTTCACGCT CTGCTGGCTG CCCTCTTCC TGGCAACAGT GGTGAAGGCC TTCCACCGCG 1140
 AGCTGTGGC CGACCGCTTC TTCAACTGGCT GGGCTACGCC AACTCGGCCCT 1200
 20 TCAACCCCAT CATCTACTGC CGCAGCCCGG ACTCCCGCAA GCGCCCTTCAG GGACTGCTCT 1260
 GCTGCGCGGC CAGGGCTGCC CGGGCGCGCC AGCGACCCA CGGAGACCG CGCGGCCCT 1320
 CGGGCTGTCT GGGCCGGGCC GGACCCCGC CATCGCCCGG GGCGCCCTCG GACGACGACG 1380
 AGACGATGTCG CTGCGCTGG CGGGCGCGC CGGGCTGTG GGAGGCGCTGG GCGGGCTGCA 1440
 ACGGCGGGC GGGGGCGGAC AGCGACTCGA GCGTGGACGA CGCTGGCGGC CCCGGCTTCG 1500
 CCTCGGAATC CAAGGTG~~TAG~~ GGGCCGGCGC GGGGCGCGA CTCCGGCAC GGCTTCCCAG 1560
 25 GGGAACCGAGG AGATCTGTGT TTACTTAAGA CGGATAGCAG GTGAACCTGA AGCCCACAAT 1620
 CCTCGTCTGA ATCATCCGAG GAAAAGAAA AAGCCACCGA CGTGTGCACA AAAAGGAAAG 1680
 TTGGGAAGG GATGGGAGAG TGGCTGCTG ATGTTCTTG TTG

SEQ ID NO:187 PAV1 Protein sequence

Protein Accession #: AA011176

1	11	21	31	41	51		
35	MGAGVLVLGA	SEPNLSSAA	PLPDGAATAA	RLLVPASPPA	SLLPPASESP	EPLSQQWTAG	60
	MGLLMALIVL	LIVAGNVLVI	VAIAKTPRLQ	TLTNLFIMSL	ASADLVMGLL	VVPFGATIVV	120
	WGRWEYGSFF	CELWTSVDVL	CVTASIETLC	VIALDRYLAI	TSPPFYQSSL	TRARARGLVLC	180
	TVWAISALVS	FPLIPLMHWWR	AESDEEARCY	NDPKCCDFVT	NRAYAIASSV	VSFYVPLCIM	240
40	AFVYLRVFRE	AQKQVKKIDS	CERRFLGGPA	RPEPSPSPV	PAPAPPPGP	RPAAAATAP	300
	LANGRAGKRR	PSRLVALREQ	KALKTLGIIM	GVFTLCWLFP	FLANVVKAPH	RELVPDRLFV	360
	FFNWLGYANS	APNPIIQRCS	PDFRKAFQGL	LCCARRAARR	RHATHGDRPR	ASGCLARPGP	420
	PFSPGAASDD	DDDDVVGATP	PARLEPWAG	CNGGAAADSD	SSLDEPCRPG	FASESKV	

SEQ ID NO:188 BC02 DNA sequence

Nucleic Acid Accession #: AJ400877

Coding sequence:

81-3080 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51		
50	GGCGTCCCGC	CACACCTCCC	CGGGCGGCCG	CCGCCACCGC	CCGCACTCCG	CCGCCCTCTGC	60
	CGCGAACCGC	TGAGCCATCC	ATGGGGTCG	CGGGCCCAA	CCGTCCCCGG	GCGGCCCTGGG	120
	CGGTGCTGCT	GCTGCTGCTG	CTGCTGCCG	CACTGCTGCT	GCTGGCGGGG	GCGCTCCCGC	180
55	CGGGCTGGGG	CCGTGGGG	CGGGCCAGG	AGGATGTAGA	TGAGTGTGCC	CAAGGGCTAG	240
	ATGACTGCGA	TGCCGACGCC	CTGTGTCA	ACACACCC	CTCTACAAAG	TGCTCTTGCA	300
	AGCCTGGCTA	CCAAGGGGAA	GGCAGGCACT	GTGAGGACAT	CGATGAATGT	GGAAATGAGC	360
	TCATGGAGG	CTGTGTCCAT	GACTGTTGA	ATATTCCAGG	CAATTATCGT	TGCACTTGT	420
60	TTGATGTTT	CATGAGGCT	ATAGCGGTG	ATAATTGCT	TGATGTGGAC	GAGTGGCTGG	480
	AGAACAAATGG	CGGCTGCCAG	CATACTGTG	TCAACCTCAT	GGGGAGCTAT	GAGTGTCTGC	540
	GCAAGGAGGG	TTTTTCTCTG	AGTGACAATC	AGCACACCTG	CATTACCGC	TCGGAAGAGG	600
65	GCTGAGCTG	CTGAATGAG	GATCACGGCT	GTAGTGTGAT	CTGCAAGGAG	GCCCCAAGGG	660
	GCAGCGTGC	CTGTGAGTC	AGGCTGGTT	TTGAGCTGGC	CAAGAACCG	AGAGACTGCA	720
	TCTTGACCTG	TAACCATGGG	AACGGTGGGT	GCCAGCACT	CTGTGACGAT	ACAGCCGATG	780
70	GCCCCAGAGT	CGCTGCCAT	CCACAGTACA	AGATGCACAC	AGATGGGAGG	AGCTGCCCTG	840
	AGCGAGAGGA	CACTGTCTG	GAGGTGACAG	AGAGCAACAC	CACATCAGT	GTGAGTGGGG	900
75	ATAAACGGGT	GAAACGGCG	CTGCTCATGG	AAACGTGTC	TGTCAACAAAT	GGAGGCTGTG	960
	ACCGCACCTG	TAAGGATAC	TCGACAGGTG	TCCACTGCG	TTGTCCTGTT	GGATTCACTC	1020
	TCCAGTTGGA	TGGGAAGACA	TGTAAGATA	TTGATGAGTG	CCAGACCCCG	AATGGAGGTT	1080
80	GTGATCATT	CTGCAAAAC	ATCGTGGCA	TTTTGACTG	CGGCTGCAAG	AAAGGATTA	1140
	AATTATTAAC	AGATGAGAAG	TCTTGCCAAAG	ATGTTGATGA	GTGCTTTG	GATAGGACCT	1200
	GTGACCACTG	CTGCATCAAC	CACCTGGCA	CAATTGCTTG	TGCTTGCAC	CGAGGGTACA	1260
	CCTGTATGG	CTTCACCCAC	TGTTGGAGACA	CCAATGAGTG	CAGCATCAC	AAACGGAGGCT	1320
	GTCAGCAGGT	CTGTGTGAAC	ACAGTGGGCA	GCTATGAATG	CCAGTGCAC	CCTGGGTACA	1380
	AGCTCCACTG	GAATAAAAAAA	GACTGTGGG	AACTGAAGGG	GCTCTGCCC	ACAAGTGTG	1440
	CACCCCGTGT	GTCCCTGAC	TGCGGTAAGA	GTGTTGGAGG	AGACGGGTGC	TTCCCTCAGAT	1500
	GTCACTCTGG	CATTACCCCT	TCTTCAGATG	TCACCACTAT	CAGGACAAGT	GTAACTTTA	1560
	AGCTAAATGA	AGGCAAGTGT	AGTTGAAAAA	ATGCTGAGCT	TTTCCCCAG	GGTCTGCGAC	1620
	CAGCACTACC	AGAGAACAC	AGCTCAGTAA	AAAGAGAGCTT	CCGCTACGTA	AACCTTACAT	1680
	GCAGCTCTGG	CAAGCAAGTC	CCAGGAGCC	CTGGCCGAC	AAGCACCCCT	AAGGAAATGT	1740
	TTATCACTGT	TGAGTTGAG	CTTGAACACTA	ACCAAAAGGA	GGTGACAGCT	TCTTGTGACC	1800

5 TGAGCTGCAT CGTAAAGCGA ACCGAGAACG GGCTCCGTA AGCCATCCGC ACGCTCAGAA 1860
 AGGCCGTCCA CAGGGAGCAC TTTCACCTCC AGCTCTCAGG CATGAACCTC GACGTGGCTA 1920
 AAAAGCCCTCC CAGAACATCT GAACGCCAGG CAGAGTCCCTG TGGAGTGGGC CAGGGTCATG 1980
 CAGAAAACCA ATGTGTCAGT TGCAGGGCTG GGACCTATA TGATGGAGCA CGAGAACGCT 2040
 GCATTTATG TCCAAATGGA ACCTTCCAAA ATGAGGAAGG ACAAAATGACT TGTGAACCAT 2100
 GCCCAAGACC AGGAAATTCT GGGGCCCTGA AGACCCAGA AGCTTGAAT ATGCTGAAAT 2160
 GTGGAGGTCT GTGTCAACCT GTGTAAATTT CTGCAGATGG CCTTGACACT TGCCAGCTCT 2220
 GTGCCCTGGG CACGTTCAGG CCTGAAAGCTG GTGCAACCT CTGCTCCCC TGTTGAGGAG 2280
 GCCTGCCAC CAAACATCAAG GGAGCTACTT CCTTCAGGA CTGTAAACC AGAGTTCAAT 2340
 GTICACCTGG ACATTTCTAC AACACCCACA CTACCCATGAT TATTCGTTGC CCAGTGGGAA 2400
 CATACCGCC TGAATTTGGA AAAAATAAT GTGTTCTTG CCCAGGAAT ACTACGACTG 2460
 ACTTTGATGG CCTCCACAAAC ATAACCCAGT GTAAAAACAG AAGATGTGGA GGGGAGCTGG 2520
 GAGATTTCAC TGGGTACATT GAATCCCCAA ACTACCCAGG CAATTACCCA GCCAACACCC 2580
 AGTGTACCTG GACCACAAAC CCACCCCCCA AGGCCGCCAT CCTGATCGT GTCCCTGAGA 2640
 10 TCTTCTGCC CATAGAGGAC GACTGTGGG ACTATCTGGT GATCGGGAAA ACCTCTTCAT 2700
 CCAATTCTGT GACAACATAT GAAACCTGCC AGACCTACGA AGCCCCCATC GCCTTCACCT 2760
 CCAGGTCAAA GAAGCTGTGG ATTCACTCA AGTCCAATGA AGGGAAACAGC GCTAGAGGGT 2820
 15 TCCAGGTCCC ATACGTGACA TATGATGAGG ACTACCCAGGA ACTCATGAA GACATAGTTG 2880
 GAGATGGCAG GCTCTATGCA TCTGAGAAC ATCAGGAATT ACTTAAGGAT AAGAAACTTA 2940
 20 TCAAGGCTCT GTTGTATGTC CTGGCCCCATC CCCAGAACTA TTCAAGTAC ACAGCCCCAGG 3000
 AGTCCCGAGA GATGTTTCCA AGATCGTCA TCCGATTGCT ACGTTCAAA GTGTCCAGGT 3060
 25 TTTGAGACC TTACAAATGA CTGCCCCAC GTGCCACTA ATACAAATGT TCTGCTATAG 3120
 GTTGGTGGG ACAGAGCTGT CTTCTCTG CATGTAGCA CAGTCGGGTA TTGCTGCCTC 3180
 CCGTATCACT GACTCATTAG AGTCAATT TTATAGATAA TACAGATATT TTGTTAAATT 3240
 30 GAACTTGGTT TTCTCTTCCC AGCATGTGG ATGTAGACTG AGAATGGCTT TGAGTGGCAT 3300
 CAGCTTCTCA CTGCTGTGGG CGGATGCTT GGATAGATCA CGGGCTGGCT GAGCTGGACT 3360
 TTGTCAGCC TAGGTGAGAC TCACCTGTC TTCTGGGGTC TTACTCTCC TCAAGGAGTC 3420
 35 TGAGTGGAA AGGAGGCCAAC AGAATAAGT GCTTATTCTG AAACCTCAGC TTCCCTCTAGC 3480
 CCGGCCCTCT CTAAGGGAGC CCTCTGACT CGTGTGCAAGG CTCTGACCCAG GCAGAACAGG 3540
 CAAAGAGGGGA GGGAGGAGA CCCCTGCAAGG CTCCCTCCAC CCACCTTIGAG ACCTGGGAGG 3600
 ACTCAGTTTC TCCACAGCCT TCTCCAGCCT GTGTGATACA AGTTTGATCC CAGGAACITG 3660
 AGTTCTAAGC AGTGTCTGTTG AAAAAGAAA GCAGAAAGAA TTAGAAATAA ATAAAAACTA 3720
 AGCACTTCTG GAGACAT

SEQ ID NO:189 BCO2 Protein sequence

Protein Accession #: CAB92285

40 1 11 21 31 41 51
 MGVAGRNRPG AAIAVLLLLL LLLPPLLLLAG AVPPGRGRAA GPQEDVDECA QGLDDCHADA 60
 LCQNTPTSYK CSCKPGYQE GRQCEDEIDEC GNELNNGCVH DCLNIPGNYR CTCFDGFMLA 120
 HDGHNCLDVE ECLENNNGGC HVTCVNVMGSY ECCCCKEGFFL SDNQHTCIHR SEEGLSCMNK 180
 DHGSHICKE APRGSVACEEC RGPFLELAKNQ RDCILTCNHG NGGCQHSCDD TADGPECSCH 240
 PQYKMHTDGR SCLEREDTVL EVTESNTTSV VDGDKRVKRR LLMETCAVNN GGCDRRTCKDT 300
 STGVHCPV GFTLQLDGK CKDIDECQTR NGGCDHFCKN IVGSFDCGCK KGFKLLTDEK 360
 SCQDVDECSL DRTECDHSCIN HPGTFACACN RGYTLYGFTH CGDTNECSIN NGGCQQVCVN 420
 TVGSYECQCH PGYKLHWNKK DCVEVKGLLP TSVSPRVSLH CGKSGGGDGC FLRCHSGIHL 480
 SSDVTITRTS VTFLKNEGKC SLKNAELPFE GLRPALPEKH SSVKESFRYY NLTCSSSGKQV 540
 45 PGAPGRPSTP KEMFITYVEF LETNQKEVTA SCDLSCIVKR TEKRLRAIR TLRKA VHREQ 600
 FHLLQLSGMNL DVAKKPPRTS ERQAESCGVG QGHAENQCVS CRAGTYYDGA RERCILCPNG 660
 TFQNEEGQMT CEPCPRPGNS GALKTPEAWN MSECGGLQP GEYSADGFAP CQLCALGTFQ 720
 PEAGRTRGTP CCGGLATKHQ NTTSFQDCEI RVQCSPGHFY NTTHRCIRC PVGTYQPEFG 780
 KNNCVSCPGN TTDFDGSTN ITQCKNRRCG GELGDFTYGI ESPNYPGNYP ANTECTWTIN 840
 50 PPPKRRILIV VPEIFLPIED DCGDYLVMRK TSSNSNVTTY ETCQTYERPI AFTSRSKKLW 900
 IQFKSNEGNS ARGFQVYPVT YDEDYQELIE DIVRDGRLYA SENHQEILKD KKLKALFDV 960
 LAHPQNYFKY TAQESREMFP RSFIRLLRSK VSRLRPyK

SEQ ID NO:190 BFG1 DNA sequence

Nucleic Acid Accession #: AF007170

Coding sequence: 1-1725 (underlined sequences correspond to stop codon)

60 1 11 21 31 41 51
 AAGGAGGGCG CCTCCGGGAA AAGCGACCGC AGGACTCCCTG AGAGCAGCCT CCATGAGGCC 60
 CTGGACCACT GTCATGACCC CCTGGACCTC TTCTCTACCA ACCAGTTCTC AGAACCACTC 120
 AGCTACCTCA AGCCAGAAC CAAGGAAGC ATGTACCACT CACTGACATA TGCCACCATC 180
 CTGGAGATGC AGGCCATGAT GACCTTGCAC CCTCAGGACA TTCTCTTGC CGGCAACATG 240
 ATGAAGGAGG CACAGATGCT GTGTCAGAGG CACCGGAGGA AGTCTTCTGT AACAGATTCC 300
 TTCAAGCAGCC TGGTGAACCG CCCACGCTC GGCCAATTCA CTGAAGAAGA AATCCACGCT 360
 GAGGTCTGCT ATGCAGAGTG CCTGCTGCAG CGAGCACCC TGACCTTCTC GCAGGACGAG 420
 AACATGTTGA CCTTCATCAA AGGGGGCATC AAAGTTCGAA ACAGCTACCA GACCTACAAG 480
 GAGCTGGACCA GCCTTGTCA GTCTCTACAA TACTGCAAGG GTGAGAACCC CCGCACTTT 540
 GAAGGGAGGAG TGAAGCTTGG TTGAGGGCC TTCAACCTGA CACTGTCCAT GCTTCTACT 600
 65 AGGATCTGA GGCTGTTGGA GTTGTGGGG TTTCAGGAA ACAAGGACTA TGGGCTGCTG 660
 CAGCTGGAGG AGGGAGCGTC AGGGCACAGC TTCCGCTCTG TGCTCTGTGT CATGCTCTG 720
 CTGTGCTACC ACACCTTCCT CACCTTCGTCG CTCGGTACTG GGAACGTCAA CATCGAGGAG 780
 GCGCAGAACG TCTTGAAGCC CTACCTGAAC CGGTACCTA AGGGTGCCT CTTCTGTTC 840
 TTTGCAGGGGA GGATTGAAGT CATTAAAGGC AACATTGATG CAGCCATCCG GCGTTCGAG 900

GAGTGCTGTG AGGCCAGCA GCACTGGAAG CAGTTTACCA ACATGTGCTA CTGGGAGCTG 960
 ATGTGGTGC TCACCTACAA GGCCAGTGG AAGATGTCCT ACTCTACGC CGACCTGCTC 1020
 AGCAAGGAGA ACTGCTGGTC CAAGGCCACC TACATTACA TGAAGGCCG CTACCTCAGC 1080
 5 ATGTTGGGA AGGAGGACCA CAAGCCGTTG GGGGACGACG AAGTGGAAATT ATTCGAGCT 1140
 GTGCCAGGCC TGAAGGCTCAA GATTGCTGGG AAATCTCTAC CCACAGAGAA GTTGGCCATC 1200
 CGGAAGTCCC GGCGCTACTT CTCTCTAAC CCTATCTCG TGCCAGTGCC TGCTCTGGAA 1260
 ATGATGTACA TCTGGAACCG CTACGGCGTG ATTTGGGAAAGC AGCCGAAACT CACGGATGGG 1320
 ATACTTGAGA TTATCACTAA GGCTGAAGAG ATGCTGGAGA AAGGCCAGA GAACGAGTAC 1380
 10 TCACTGGATG AGCAGTCTT GGTGAAATTG TTGAAAGGCC TTGCTCTGAA ATACCTGGGC 1440
 CGTGTCCAGG AGGCCGAGGA GAATTTAGG AGCATCTCG CCAATGAAA GAAGATTAAA 1500
 TATGACCACT ACTTGTATCCC AAACGCCCTG CTGGAGCTGG CCCTGCTGCT TATGGAGCA 1560
 GACAGAAACG AAGAGGCCAT CAAACTTTG GAATCTGCCA AGCAAAACCA CAAGAATTAC 1620
 TCCATGGAGT CAAGGACACA CTTCTGAAT CAGGAGCCA CACTCCAAGC CAAGTCTTCC 1680
 15 CTAGAGAACAA GCAGCAGATC CATGGTCTCA TCAGTGTCTC TTGAGCTTTC TGCAAGCAGT 1740
 CCCGGCTGGA AGACAGAGAC AGCTGGACAG AGCTCTGAA AACATTCAA AAATACCCCT 1800
 CCCCTGCCCTGCCCCCTTGGGGTCCA CCGGCACCTC AGTTGGATGG CACAAACATAG 1860
 TGTATCCGTG CAGAAGCCGA GCTGGCATTT TCACCAAGTGT AGCCAAGGGC CTTGCCAAG 1920
 GGCAGAGCAG GTGGAGCCCT GTGCCCTGCC TATCACACAT ACGGGTACTT GTTTTCACT 1980
 20 GTGATGTTA AGAGAATGTA TGAGCAGTTT ACATTTCT TAGAAATACA TTGATGGAT 2040
 CACAGTTGGC TTAAAAAACCA ACAACAAATC AACCACCTGT AAGTCTTGT CTCACCTAT 2100
 TATCATCTGG AGGTAATCT CTTTATATGA TGATGCCAAA GGCAAAATTG CTTTCAAT 2160
 TCAAGCAAGT CTCACTGGCTT GTGACGGAAG GTCCCTCAGA GGACCTGAGG AATGCTGGG 2220
 AGAGGCTAAG CCTCAGGCTT CAATGCTTCTT GGGGTTGGGC ATGAGGATGT ACACAGACAC 2280
 25 CCACTACCTT ACTACTCACA CTTCATTTCA CTCCCTTGT AAATTCCAA TTAAAAAAC 2340
 AAGCACGCTT TTGAGTGAG ATAAAATCTG AGCTCTCTG TAGAAAATC AATCTCTACC 2400
 AAGTAGAAAAT GCCAGGCCCT GATGGAGAG CTGTGTAGCC CTTCTATGC CAAAGCCAGG 2460
 AAATTGGGG GGCAGGAGGA GGTCTCAGA ATCCAGCTG TATCTTGCT GTATGCCAAA 2520
 CTGAAACAC TGGAAATAAT TTGAAACA TAAAATCTT CTGACTTCA CTCCAAGGTA 2580
 30 CATTGCTTA CTGACAGCAT TTTGTTAAA ACTGTTATTC TTGAAAAAAA AAAA 2640
 AA

SEQ ID NO:191 BFG1 Protein sequence
 Protein Accession #: AAC39582

	1	11	21	31	41	51
35						
40	MTALDLFLTN QFSEALSYLK PRTKESMYHS LTYATILEMQ AMMTFDPDQDI LLAGNMMEKA 60					
45	FIKKGIKVRN SYQTKELDLS LVQSSQYCKG ENHPHFEQGV KLVGVAFNLT LSMLPTRLR 180					
	LLEFVGFSGN KDYGLLQLEE GASGHFRSRV LCVMLLCYH TFLTFVLGTG NVNIEEAELK 240					
	LKPYLNRYPK GAIFFLAGR IEVKGNDIA AIRRFEECCCE AQQHWKQFH MCYWELMWCF 300					
	TYKGQWKMSY FYADILSKEN CWSKATYIYM KAAYLSMFGK EDHKPFGDDE VELFRAVPGL 360					
	KLKIAGKSLP TEKFAIRKSR RYFSSNPISL PVPALEMYYI WNGYAVIGKQ PKLTDGILEI 420					
	ITKAEEMLEK GPNEEVSDD ECLVKLLKGL CLKYLGRVQE AEEFRSISA NEKKIKYDHY 480					
	LIPNALLELA LLLMEQDRNE EAIKLESAK QNYKNYSMES RTHFRIQAAT LQAKSSLENS 540					
	SRSVMSSVSL					

SEQ ID NO:192 BF06 DNA sequence
 Nucleic Acid Accession #: NM_032583
 Coding sequence:
 1-4044 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51
55						
60	ATGACTAGGA AGAGGACATA CTGGGTGCCCTGGAGA CTTATTATA AAACTTACATCTCAAGAT 120					
65	GGCCCTGGA GTCAAGCAAGA GAGAAATCTT GAGGCTCCAG GGAGGGCAGC TGCCCCACCG 180					
70	TGGGGAGAT ATGATGTCG CTTGAGAACCC ATGATCTCTC TCCGCTCCAA GCGCAGGTTT 240					
75	CCTGGCCCCC AGCCCTGGT CAATGCTGGC CTGTTCTCT ACCTCACCGT GTCATGGCTC 300					
	ACCCCGCTCA TGATCCAAGA CTTACGGAGT CGCTTAGATG AGAACACCAT CCCTCCACTG 360					
	TCAGTCCATG ATGCTCTGAA CAAAATGTC CAAAGCTTC ACCGGCTTGG GGAAAGAAGAA 420					
	GTCTCAAGGC GAGGGATTGA TGTAAACTCTG TGCTCTGG TGATGCTGAG GTTCCAGAGA 480					
	ACAAGGTTGA TTTTCGATGC ACTCTCTGGC ATCTGCTCTC GCATTCGGCAG TGTACTCGGG 540					
	CCAATATGAA TTATACCAAA GATCTGGAA TATTCAGAAG AGCAGTTGGG GAATGTTGTC 600					
	CATGGAGTGG GACTCTGCTT CTGCTCTTTT CTCTCCGAAT GTGTAAGAGC TCTGAGTTTC 660					
	TCTCTCCAGTT GGATCTCAAA CCAAGCACA GCCATCAGGT TCCGAGCAGC TGTCTCC 720					
	TTTGCCTTGT AGAAGCTCAT CCAATTTAG TCTGTAATAC ACATCACCTC AGGAGAGGCC 780					
	ATCAGCTCTC TACCCGGTGA TGTAAACTCTG TGTTTGAGG GGGTGTGCTA TGGACCCCTA 840					
	GTACTGATCA CCTGCGCATC GCTGGTCATC TGCAAGCATTT CTCTCTACTT CATTATIGGA 900					
	TACACTGCAT TTATGCTAT CTCTGGTTT TCCCACCTGGC GGTATTCTATG 960					
	ACAAGAATGG CTGTAAGGC TCAGCATCAC ACATCTGAGG TCAGCGACCA GCGCATCCGT 1020					
	GTGACCGATG AAGTTCTCAC TTGCATTAAG CTGATTAAGA TTGACACATG GGAGAAACCA 1080					
	TTTGCAAAAAA TCACTGAAAGG TATGAAAGT CTGACTTTCT GCTCAAACCC TGTGATGGC 1140					
	ATGGCCTTCA GCATGCTGGC CTCTCTGAAT CTCTCTGGC TGTCAGTGT TTTGTGCCT 1200					
	ATGCAAGTCA AAGGCTCAG GAATTCAGAAG TCTGCAAGTGAGGTTCAA GAAGTTTTTC 1260					
	CTCCAGGAGA GCGCTGTTT CTATGTCAG ACATTACAG ACCCCAGCAA AGCTCTGGTC 1320					
	TTTGAGGAGG CCACCTGTGTC ATGGCAACAG ACCTGTCGGG GGATGTCAA TGGGGCACTG 1380					
	GAGCTGGAGA GGAACGGCA TGCTCTGAG GGGATGACCA GGCCTAGAGA TGCCCTCGGG 1440					

CCAGAGGAAG AAGGGAACAG CCTGGGCCA GAGTTGCACA AGATCAACCT GGTGGTGTCC 1500
 AAGGGATGA TGTAGGGG CTGCGCAAC ACGGGAGTG GTAAGAGCAG CCTTTGTCA 1560
 GCCATCCTGG AGGAGATGCA CTIGCTCGAG GGCTCGGTGG GGGTCAGGG AAGCCTGGCC 1620
 5 TATGTCCCCC AGCAGGCCCTG GATCGTCAGC GGGAACATCA GGGAGAACAT CCTCATGGGA 1680
 GGGCATATG ACAAGGCCCG ATACCTCAA GTGCTCACT GCTGCTCCCT GAATCGGGAC 1740
 CTGGAACTTC TGCCCTTGAG AGACATGACA GAGATTGGAG AGCGGGGCT CAACCTCTCT 1800
 GGGGGCAGA AACAGAGGAT CAGCCTGGCC CGCGCCGT ATTCCGACCG TCAGATCTAC 1860
 CTGCTGGACG ACCCCCTGTC TGCTGGAC GCCCACCTGG GGAAGCACAT TTGAGGAG 1920
 10 TGCATTAAGA AGACACTCGA GGGGAAGACG GTCGCTCTGG TGACCCACCA GTCAGTAC 1980
 TTAGAATTGTTGAGGAT CATTGTCAGG GAAAATGGGA AAATCTGTA AAATGGAAC 2040
 CACAGTGAAT TAATCGAGAA AAAGGGGAAA TATGCCAAC TTATCGAGAA GATGCCAAC 2100
 GAAGCCACCT CGGACATGTT GCAGGACACA GCAAAGATAG CAGAGAAGCC AAAGGTAGAA 2160
 15 AGTCAGGCTC TGCCACCTC CCTGGAAGAG TCTCTCAACG GAATGCTGT GCCGGAGCAT 2220
 CAGCTCACAC AGGAGGAGA GATGGAAGAA GGCTCCTGAG GTTGGAGGGT CTACACCAC 2280
 TACATCCAGG CAGCTGGAGG TTACATGGTC TCTTGATCAA TTTCTCTT CGTGTGCTG 2340
 ATCGTCTCT TAACGATCTT CAGCTCTGG TGCTGAGCT ACTGGTTGGA GCAGGGCTG 2400
 20 GGGACATAA GCACCGCAG GAGAATGGA ACCATGGCAG ACCTGGGCAA CATTGACAGC 2460
 AATCTCAAC TGTCTCTA CCAGCTGGTAC CGGGCTCA ACAGCCCTGCT CCTCATCTG 2520
 GTGGGGTCT GCTCTCAGG GATTTCACCA AAAGTCACGA GGAAGGCATC CACGGCTG 2580
 CACAACAAGC TCTTCACAA GGTTTTCGGC TGCCCATGA GTTCTTGA CACCATCCCA 2640
 ATAGGCCGGC TTTGAACTG CTTCGGCAGG GACTTGGAC GACTGACCA GCTTGTGCC 2700
 25 ATCTTTCAG CAGAGTCTCTT GGTCTGTCTT TAATGGTGA TGCGCTCTT GTGATTGTC 2760
 AGTGTGCTGT CTCCATATAT CCTGTTAATG GGAGCCATAA TCATGGTTAT TTGCTTCATT 2820
 TATTATATG TGTTCAGAAGA GGCCATCGGT GTGTTCAAGA GACTGGAGAA CTATAGCCGG 2880
 TCTCTTAT TCTCCACAT CCTCAACCT CTGCAAGGCC TGAGCTCAT CCATGTCTAT 2940
 30 GAAAAAACTG AAGACTCTCAT CAGCCAGTT AAGAGGCTGA CTGATGCCA GAATAACTAC 3000
 CTGCTGTGT TCTCTATCTC CACACGATGG ATGGCATTGA GGCTGAGAT CATGACCAAC 3060
 CTGACCT GTCGCTGTG CTCGCTGCA TTTCCTGGCA TTTCCTCCAC CCCCTACTCC 3120
 TTAAAGCTA TGGCTGTCAA CATCGCTG CAGCTGGCT CGAGCTTCCA GGCCACTGCC 3180
 CGGATGGCT TGGAGACAGA GGCACAGTT ACGGCTGTAG AGAGGAACT GCAGTACATG 3240
 AAGATGTGTG TCTCGGAAGC TCCTTACAC ATGGAAGGC CAAGTGTCC CCAAGGGGTGG 3300
 CCACAGCATG GGGAAATCAT ATTTCAGGAT TATCACATGA AATACAGAGA CAACACACCC 3360
 ACCCTGCTTC ACGGCATCAA CCTGACCATC CGCGGCCACCG AAGTGGTGGG CATGTGGGA 3420
 35 AGGACGGGCT CTGGGAAGTC CTCTTGGGC ATGGCTCTCT TCCGCTGTGGT GGAGCCCATG 3480
 GCAGGGCGGA TCTCTCATGAG CGGCGTGGAC ATTGAGCAGA TCGGCTGTGGA GGACTTGGGG 3540
 TCCAAGCTCT CAGTGATCCC TCAAGATCAGA TGCTGTCT CAGGAACAT CAGATTCAAC 3600
 CTAGATCCCTT TGTACCGTC CACTGACCAAG CAGATCTGG ATGCCTTGA GAGGACATTC 3660
 CTGACCAAGG CCATCTCAAAGA GTTCCCCAAA AGACTGCTGA CAGATGTGGT GGAAACACGGT 3720
 40 GGAAACTCTCT CTGTTGGGGGA GAGGCAGCTG CTCTGCATTG CCAGGGCTGT GCTTCGCAAC 3780
 TCCAAGATCA TCCCTATCGA TGAAGCCACA GCCTCCATTG ACATGGAGAC AGACACCTG 3840
 ATCCAGCGCA CAATCCGTGA AGCCTTCAG GGCTGCACCG TGCTCGTCA TGGCCACCGT 3900
 GTCACCACTG TGCTGAACTG TGACACATCT CGGGTATGG GCAATGGGAA GGTTGGTAGAA 3960
 TTGATCGGC CGGAGGACT TCGGGGATCAT TGTCGCAAGC CCTCATGGCC 4020
 45 ACAGCCACTT CTTCACTGAG ATAAGGAGAT GTGGAGACTT CATGGAGGCT GGCACTGAG 4080
 CTAGAGGGT CACACAGGTCAG CAGCTTCAGG GCCCACAGTC TGCGACCTTC TGTGTTGGGAG 4140
 ATGAGAACTT CTCTGGAAAG CAGGGGTTAA TGAGGGGGG GTGGGATTTG CTGGATGGAA 4200
 ACCCTGGAAAT AGGCTACTTG ATGGCTCTA AGACCTTACA ACCCCAGAAC CATCAAGAC 4260
 ATGGGATTCA GTGATCATGT GGTTCTCTT TTAACCTACA TGCTGAATAA TTTATAATA 4320
 AGTAAAAGC TTATAGTTT CTGATCTGTG TTAGAAGTGY TGCAAATGCT GACTGACTT 4380
 50 TGAAAATAT AAAACTAAGG AAAACTCAA AAAAAAAAAA AAAAAAAA

SEQ ID NO:193 BF06 Protein sequence

Protein Accession #: NP_115972.1

55	1	11	21	31	41	51
	MTRKTYWVP NSSGLVNRG IDIGDDMVSG LIYKTYTLQD GPWSQERNP EAPGRAAVPP	60				
	WGKYDAALRT MIPFRPKPRF PAPQPLDNAG LFSYLTWSL TPLMIQSLRS RLDENTIPPL	120				
	SVIDASDKNV QRLHRLWEVEE VSRRGIEKAS VLLVMRLFQR TRIIFDALLG ICFCIASVLG	180				
	PILIPIKYLE YSEEQILGNVV HGVGCLFAL SECVKLSLFS SSSWIINQRT AIRFRAAVVSS	240				
	FAFEKLIQFK SVIHTSCEA ISFFFTGDNVY LFEGVCYGPL VLITCASLVI CSISSYFIIG	300				
	YTAFIAILCY LLVFPLAVFM TRMAVKQHHH TSEVSDQRIR VTSEVLTCKIK LIKMYTWEKP	360				
	FAKIIEGMES LTFCPSKPGD MAFSMLASLN LLRLSVFFFV IAVKGLTNSK SAVMRFKKFF	420				
	LQESPVFVYV TLQDPKSALV FEATLWSQW TCPGIVNGAL ELERNGHASE GMTRPRDALG	480				
	PEEEGNSLGP ELHKINLVVS KGMMGLVCGN TGSGKSSLLS AILEEMHILLE GSIVGVQGSLA	540				
	YVPCQAWIVS GNIRENILMG GAYDKARYLQ VLHCCSLNRD LEELPFGDMT EIGERGLNLS	600				
	GGQKQRISLA RAVYSDRQY LDDPLSAVD AHVGKHIFEE CIKKTLRGKT VVLTQHQY	660				
	LEFCGQIILLL ENGKICENGTH SELMQKGKA YAQLIQKMHK EATSDMLQDT AKIAEKPKVE	720				
	SQALATSLEE SLNGNAVPEH QLTQEEMEE GSLSWRVYHH YQAAGGYMV SCHIFFVV	780				
	IVFLTIFSWW WLSYWLEQGS GTNSSRESNG TMADLGNIAD NPQLSFYQLV YGLNALLIC	840				
	VGVCSSGIFT KVTRKASTAL HNKLFNKVFR CPMSFFDTIP IGRLLNCFAG DLEQLDQLLP	900				
	IFSEQFLVLS LMVIAVLLIV SVLSPYILLM GAIIMVICFI YYMMFKKAIG VFKRLENYSR	960				
	SPLFSHLNLS LOGLSSIHVY GKTEDFISQF KRLTDAQNYY LLFLSSTRW MALRLEIMTN	1020				
	LVTLAVALFV AFGISSTPYF FKVMNAVNLV QLASSFQATA RIGLETEAQF TAVERILQYM	1080				
	KMCVSEAPLH MEGTSCPQGW PQHGEIIQFD YHMKYRDNTV TLHGNIINTI RGHEVVGIVG	1140				
	RTGSGKSSLG MALFRLVEPM AGRILIDGVDFCSIGLEDLR SKLSVIPQDP VLLSGTIRFN	1200				
	LDPFDRHTDQ QIWDAERTF LTKAISKFPK KLHTDVVENG GNFSVGERQL LCIARAVLRN	1260				
	SKILIDEAT ASIDMETDTL IQRTIREAFQ GCTVLVIAHR VTTVLNCDHII LVMGNGKVVE	1320				
	FDRPEVLRKK PGSFALMA TATSSLR					

SEQ ID NO:194 BH88 DNA sequence

Nucleic Acid Accession #: AA983251

Coding sequence: 1-1749 (underlined sequences correspond to start and stop codons)

5	11	21	31	41	51	
10	ATGCTGTCTG	GCTTCTTGAT	GAGTCCCAGT	ACCCAGCACA	GAGCACAGTA	CACTCCCCGA
	<u>GGAAAGAAC</u>	<u>TTCCTGGGA</u>	<u>GGCTTCCCATC</u>	<u>GGTGCACACA</u>	<u>CCTCCCGAGG</u>	<u>GCGAGGCAGC</u>
	<u>GACGGGAGA</u>	<u>GGGAGACCGC</u>	<u>GCCGGAGGCT</u>	<u>GCCGGGCTCC</u>	<u>TGTGGGACCG</u>	<u>CGCTGCAGCC</u>
	<u>GGGGAGGCGG</u>	<u>AGAAGGGAA</u>	<u>CCGGGGCGAG</u>	<u>CCGGCCGCCT</u>	<u>GGATCCGCGC</u>	<u>CCAGCAGCAG</u>
15	<u>CCGGGGCGCG</u>	<u>CCGGACTCTGG</u>	<u>GCAGACTCCC</u>	<u>GGGACTCGGG</u>	<u>CTGGGGCGC</u>	<u>GCAGGACCTT</u>
	<u>CGCGCTCG</u>	<u>CTGGACGTC</u>	<u>CCGGGGAGG</u>	<u>GTCCGGTTGC</u>	<u>CAGTGAACCC</u>	<u>TCCAGAGGCT</u>
	<u>TCCGGACGAC</u>	<u>AGCCCCGGGG</u>	<u>GCCCTCTGAC</u>	<u>TGCATCCCGA</u>	<u>GATTTCATC</u>	<u>AGCGAGTGC</u>
	<u>ACTCTATAAGG</u>	<u>CACTCCCTAA</u>	<u>GGGGACCGGG</u>	<u>CCACCGGCTG</u>	<u>AGGACGGGA</u>	<u>TGGCTTAGGA</u>
20	<u>GCTCTCTGGAC</u>	<u>CTAGGGCTGG</u>	<u>GGCTCTGGCC</u>	<u>CTCCTGGGCG</u>	<u>TGCGGCAGA</u>	<u>GGGGAGTGGC</u>
	<u>CCGGCGCGAA</u>	<u>AGCCGCCGCG</u>	<u>GACAGTCACT</u>	<u>GACGAGGCC</u>	<u>GGGGGTCGCC</u>	<u>GGGGCCACGA</u>
	<u>CTTCTCGGAG</u>	<u>ACCGTCTGC</u>	<u>GCTCTCTGGA</u>	<u>GACGCGCTGT</u>	<u>CCGCGCCAC</u>	<u>GGTGGTGCCA</u>
	<u>TGTTGGGGCG</u>	<u>TCGCGCTCG</u>	<u>TCCGCTCTCT</u>	<u>CATCCCTGAA</u>	<u>CGCCGCTTCG</u>	<u>CTCCCTGCAGC</u>
25	<u>TGCTGCTGGC</u>	<u>TGCGCTGCTG</u>	<u>GGGGCGGGGG</u>	<u>CGAGGGGCCA</u>	<u>GGGGGAGGTA</u>	<u>CTGCCACGGC</u>
	<u>TGCGCTGGACG</u>	<u>CCGAGGGCGT</u>	<u>CTGGCGCATC</u>	<u>GCCCTTCAGG</u>	<u>GTCCCGAGGG</u>	<u>CTTCGACCGC</u>
	<u>GGCGACGC</u>	<u>CCATCTGCTG</u>	<u>CGGAGCTGC</u>	<u>CGCTTGCGCT</u>	<u>ACTGCTGCTC</u>	<u>CAGCGCCAG</u>
	<u>GCGCGACCTGG</u>	<u>ACCGGGCGG</u>	<u>CTGCGACAA</u>	<u>GACGCCAGAC</u>	<u>AGGGGCTGG</u>	<u>CGAGCCCTGG</u>
30	<u>CGGGCGGAGA</u>	<u>AAGACGGGC</u>	<u>CCGACGGCTC</u>	<u>GGCAGGGCTT</u>	<u>CATGCTTTAG</u>	<u>GGGTACCAA</u>
	<u>GGAGACGGC</u>	<u>AGGGTGC</u>	<u>CCCACCGTG</u>	<u>AGGGCCTGG</u>	<u>AGCGGTGCTC</u>	<u>CCCTGAAGGC</u>
	<u>TCCCCGAAAG</u>	<u>GAAGGGAGT</u>	<u>CCTCAGGGGT</u>	<u>TTCCCGGGGG</u>	<u>TGCTGCCCCG</u>	<u>TGCCAGAGGC</u>
	<u>CGGGGATTC</u>	<u>CATCTCTCC</u>	<u>ACGCGCCGCG</u>	<u>CCCTCTCCC</u>	<u>TGCAAGGGCC</u>	<u>CGCCTTGCCC</u>
35	<u>ATCTACGTG</u>	<u>CGTCTCTCAT</u>	<u>TGTTGGCTC</u>	<u>GTGTTTGCTG</u>	<u>CCCTTATCAT</u>	<u>CTTGGGGTCC</u>
	<u>CTGGTGGCG</u>	<u>CTGTGTTGCTG</u>	<u>CAGATGCTC</u>	<u>CGGCCCTAAC</u>	<u>AGGATCCCCA</u>	<u>GCAGAGCCGA</u>
	<u>CCCCCAGGGG</u>	<u>GTAGGAGGCT</u>	<u>GTAGGAGAC</u>	<u>ATCCCCATGA</u>	<u>TCCCCAGTGC</u>	<u>CAGCACCTCC</u>
	<u>CGGGGGTCGT</u>	<u>CCTCACGCCA</u>	<u>GTTCAGCAC</u>	<u>GTCAGCAAGT</u>	<u>CCAGCTCCAG</u>	<u>CGCCAACCTC</u>
40	<u>GGGGGCCGGG</u>	<u>CGCCCCCAAC</u>	<u>AAAGTCACAG</u>	<u>ACCAACTGTT</u>	<u>GCTTGGCGGA</u>	<u>AGGGACCATG</u>
	<u>AACAACAGTGT</u>	<u>ATGTCACAT</u>	<u>GCCCCACGAT</u>	<u>TTCTCTGTG</u>	<u>TGAAGTGTCA</u>	<u>GCAGGGCCACC</u>
	<u>CAGATTGTC</u>	<u>CACATCAAGG</u>	<u>GCAGTATCTG</u>	<u>CATCCCCCAT</u>	<u>ACGTTGGGTA</u>	<u>CACGGTGCAG</u>
	<u>CACGACTCTG</u>	<u>TGCCCCATGAC</u>	<u>AGCTGTGCCA</u>	<u>CTTTTCATGG</u>	<u>ACGGCCTGCC</u>	<u>GCCTGGCTAC</u>
45	<u>AGGCAGATTG</u>	<u>AGTCCCCCTC</u>	<u>CCCTCACACC</u>	<u>AAAGTGAAAC</u>	<u>AGAAGATGTA</u>	<u>CCCAGCGGTG</u>
	<u>ACTGTATAAC</u>	<u>CGAGAGTCAC</u>	<u>TGGTGGGTT</u>	<u>CTTTACTGAA</u>	<u>GGGAGACGAA</u>	<u>GGCAGGGGTG</u>
	<u>GATTCTCGAG</u>	<u>GTGGAAGTCC</u>	<u>GCACATGTG</u>	<u>GTGGTATTAA</u>	<u>TGGCACGATT</u>	<u>CTTTTGATG</u>
	<u>GCTTCATTG</u>	<u>CCCCCAGACT</u>	<u>GTATGAAAC</u>	<u>ATCTCCGAAT</u>	<u>TAGCATTCT</u>	<u>GGATATGTT</u>
50	<u>CATCCAGGTG</u>	<u>ATCATTTGATT</u>	<u>TATGATGAA</u>	<u>AACCGGCTC</u>	<u>AGCTGGAGAT</u>	<u>GACTGTGATG</u>
	<u>TTGCTGATGG</u>	<u>GTGTATAACAA</u>	<u>AATGCTTGG</u>	<u>TCCGAAGTGC</u>	<u>CTCTGGAGATA</u>	<u>TGTTGACGA</u>
	<u>AAGAATTTTA</u>	<u>TAAGACTGATA</u>	<u>AAITTAAGGAT</u>	<u>TTTTATTATG</u>	<u>TTGTTATTAT</u>	<u>TATTTCTTT</u>
	<u>TGTTGTTGTA</u>	<u>CTGCAAGGAG</u>	<u>TCAAAATTCG</u>	<u>TGTTATCTCC</u>	<u>CTTTACTCTG</u>	<u>GACTTTTTTT</u>
55	<u>TTTTTTTTT</u>	<u>TTTTTTTTAA</u>	<u>TGACATCCAA</u>	<u>GGTTAAGGGG</u>	<u>AAGACGAA</u>	<u>AAACAGGACT</u>
	<u>ATTCTAAAG</u>	<u>AAAACCTGT</u>	<u>TGAACCTGT</u>	<u>GAGATCAGTO</u>	<u>ATCAACTCTCA</u>	<u>GTATTCCACA</u>
	<u>GCCACACCTT</u>	<u>ATTTCATG</u>	<u>TAAAAGATA</u>	<u>TATATATT</u>	<u>GTCTATT</u>	<u>GTGCTTTGG</u>
	<u>GGGCCTATT</u>	<u>TGTCTTTT</u>	<u>TACCTTATGT</u>	<u>AGAGATCTTA</u>	<u>TTACAAAGTG</u>	<u>ATTTCTACAA</u>
60	<u>TTAAAAAGAG</u>	<u>ACTGAAATAA</u>	<u>ATTGTATAGT</u>	<u>TACTTAACTA</u>	<u>ATGAAGACAT</u>	<u>TTCAAGACTC</u>
	<u>TGGGATGATT</u>	<u>TTAATCTTGA</u>	<u>AGTAGTAGGT</u>	<u>GGTATAGTC</u>	<u>TAACCCATT</u>	<u>CATCCCCCTC</u>
	<u>TTGATTGAT</u>	<u>CTTAATTTC</u>	<u>TGCTTTAAAG</u>	<u>GTGACATCTG</u>	<u>AGAGGTAATG</u>	<u>CATTCTTTT</u>
	<u>TATATGAAA</u>	<u>TCATAAAACTA</u>	<u>TCACCCGCTG</u>	<u>CTTCTCTGAG</u>	<u>TTACTTTTAA</u>	<u>TTTGCCCTTG</u>
65	<u>TGGTTATGGT</u>	<u>TTGGCGTTTC</u>	<u>CTTCTGTGTT</u>	<u>GTTTTTCAGAG</u>	<u>CCCCATGTCT</u>	<u>ATATAGTCT</u>
	<u>GAGTGAAGT</u>	<u>ATTACTATA</u>	<u>CTTGTAAATG</u>	<u>AAGATCAGTA</u>	<u>TTCTTGCTTA</u>	<u>GATCTGATAA</u>
	<u>AAAAAATTTC</u>	<u>TTGTCTTAGT</u>	<u>TATAAAATT</u>	<u>CAAAGAAATG</u>	<u>TGTTACAAAG</u>	<u>ATACTTGTAG</u>
	<u>TAGCTCTCA</u>	<u>GCCATAACCT</u>	<u>GAGACTTGGG</u>	<u>ATGAAATTAA</u>	<u>AACCAAGATAC</u>	<u>GATTAACTT</u>
	<u>GCAGATCATA</u>	<u>AGGTTTTTA</u>	<u>TACTCTGTG</u>	<u>ATCAAATGG</u>	<u>CTTATTCTTC</u>	<u>AGGCACTAAG</u>
	<u>GATTGTTAAG</u>	<u>AGAAAAGCTT</u>	<u>TTCAACGAAG</u>	<u>GATTGCTTT</u>	<u>CTTCTCCAC</u>	<u>ACTGTTCTG</u>
70	<u>ATTTCTCTC</u>	<u>TCTTCAGGC</u>	<u>CTCAACAGGC</u>	<u>ACTGTATTCA</u>	<u>TTGCCAATGT</u>	<u>TCCAAATTAT</u>
	<u>CAAATTCAAG</u>	<u>TGAATTATT</u>	<u>TGTTGTTCT</u>	<u>TTACTTATAT</u>	<u>AAAAAAAGAT</u>	<u>AACTTTAAGG</u>
	<u>ATGTGCAAGT</u>	<u>ACATTTC</u>	<u>CTGCTAGCAC</u>	<u>AAACAGTATT</u>	<u>TTGTAATTAA</u>	<u>ACAAATCGCT</u>
	<u>GTATGGTATG</u>	<u>GTCTTCTACA</u>	<u>CATTATGTC</u>	<u>TATAGATATC</u>	<u>TATCGATCAT</u>	<u>CTTTCTATTC</u>
	<u>TGTTTCATGA</u>	<u>CTGAATAATG</u>	<u>TAAAACCAGT</u>	<u>GTTGGAATT</u>	<u>GGTATCATCA</u>	<u>ATGATACTCA</u>
	<u>TTTTTTAATA</u>	<u>ACCAAAAGCA</u>	<u>GGGGAAAATC</u>	<u>TTTTACTTA</u>	<u>TTAATAAATA</u>	<u>TTTTATGATG</u>

SEQ ID NO:195 BH8 Protein sequence

Protein Accession #: none found

5	1	11	21	31	41	51	
	MLSGFLMSPS	TQHRAQYTPG	GKKLPWEASI	GAHTSRGRGS	DRERESRPEA	AGLLWDRAAA	60
10	GEAEAKGNRGE	PPAWIRAAQQQ	PRPPPAGQAP	GTAAGGAQDP	RRLPGRSRGR	VRLPVKPFPA	120
	SGRQPRGPDS	C1PRFPSASA	THKAVPKGTG	PPAEDGDGLG	APCPRARRRR	LLGVAAECSG	180
	PRGKRRGTVS	DEARGPSVTS	LLGDRPALS	DALSPRVVE	CGALAARPSP	HPGTPLRSCS	240
	CCWLRCWRGG	RGPSEYCHG	WLDQAGVWRI	GFQCPERFDG	GDATICCGSC	ALRYWCSSAE	300
	ARLDQGGCDN	DRQQGAGEPG	RADKDGPRL	GRASCLRGTQ	GDGECAFPV	RAWQRCSPEG	360
15	SPKGRRQLRA	FPGLLPRARR	RGFSSPRGG	PSPLORPAPL	IYPFELIVGS	VVFVAFIILGS	420
	LVAACCCRLC	RPKQDPQCSR	APGGNRILMET	IPMIPSASTS	RGSSSRQSST	AASSSSSANS	480
	GARAPPTRSQ	TNCCLPEGTM	NNVYVNMPIN	FSVLNCQQT	QIVPHQGQYL	HPPYVGTVQ	540
	HDSPVMTAVP	PFMDGLQPGY	RQIQSPFPHT	NSEQRKMPAV	TV		

SEQ ID NO:196 CQAS DNA SEQUENCENucleic Acid Accession #: AA088458
Coding sequence: 862-1995 (underlined sequences correspond to start and stop codons)

25	1	11	21	31	41	51	
	GCCCTTGGAC	ACTGACATGG	ACTGAAGGAG	TAGAATGGAG	CACGAGGACA	CTGACATGGA	60
30	CTGAAGAAAA	AGGAGCTGGA	GCAGGAGAAC	GAGGTGCTGC	TCCAGGGTTT	GGAGATGATG	120
	GCAGGGGGCC	CGCAGCTGGA	CCAGCACGAC	CTGCAACAG	TGCAGGAGCG	CCAGCGCCGC	180
	CTGGGCCAGA	CGAGAGCCAG	CGCCGACTTT	GGGGCTGCAAG	GGAGCCCCCG	CCACACTGGGG	240
35	CGGTACTGTC	CCAAGGTACA	AGAGGTGGCC	CGGTGCTCTG	GGGAGCTGCT	GGCTGCAGCC	300
	TGTGCGAGCC	GGGGCTCTGG	CCCGCTCTCC	TCCGCCCCCCC	CTCTGACGTC	360	
	ACCTCTACCC	CGGCTCTGGCA	CGACGAGAAC	ATCCCTCATGC	TGAAGGGAGCA	GAACCGACTC	420
40	CTCACCCAGG	AGGTGACCGA	GAAGAGTGAG	CGCATCACGC	AGCTGGAGCA	GGAGAACTCG	480
	GCGCTCATTA	ACCGAGCTGTT	TGAGGCGCCG	GGCCCTGAGCC	ACGAGGACGG	GGGACCTCTG	540
	GATTCCACCT	TCATCTAGTC	CTTGTTGGCC	GGCTGGCCAG	CCTGGCACTC	600	
	AGCCCTTCTGA	GGGTGGGGCG	CCCATCGCAC	CCACCTCTC	TGGCTGGAGA	CCCCGGGAG	660
	GCCCAAGGCA	AGTCCCGGAG	TGGGCGCCTT	CCTGCGGCC	TTGCCAGATG	GGCTCCCCAG	720
	GCCTGCCCCC	GGCTGGCTCC	CGCAGCAGAC	ATGTTGACTCC	GCTTGACTCC	CTGGTTGYTG	780
45	ACATGGGTG	GGGGCTCTCT	TGAGTCCCGA	TAGTCCCGAG	CTACTACTG	CCGCTGTCA	840
	TGGGACAGTGG	GTACCCCTCT	CATGAGTTAG	CGTCCCCCCC	TTTCCACGG	TGCCCCCTG	900
	GGTCCCCATCT	TCAGGAAAG	GCACATGCCA	CGCCAGGCTG	CACTTCAAAC	AACGGGCGAC	960
	AGAGGGCGCG	GGGCGCTCC	GACCGCAGTC	CAAGGGCAGC	TTCCCGCTCA	ACAGGGCAC	1020
50	CAGGACGAGG	TGGCTGTAGC	TCGGACGGAC	GGAAAGTAGAT	GGAGGGGGTG	GGGACGGCCT	1080
	CTAAGCGGAG	GGTCTGGTCC	TGGCTGGGGA	GCCCCAGGGA	TAGCGGTCGG	ACTTCAGGTT	1140
	CTGGCCAAGG	CTGAGGGACC	CTGGCTGAG	CGGATCGCA	CCCGGGGTGG	GGAGAGCTT	1200
	GGCCCTGATG	TGCCCTCCAC	AGACCTCTGG	GTGATGGCT	TCCCCCTCTT	GGCCGGGACG	1260
55	TTGGCCACAG	TGAGTGTCCA	CAACACATCT	TGTGAGCTCTG	GCTCCCCAGG	AGGGCCCCCA	1320
	GACACGCTCC	AGGCACGCTCA	TAGGCAAAGC	CTGTTTCCCC	CGACTCAGGA	TTTCCAAGGC	1380
	CTGGGGTCTT	GTCACCCCC	CTTGTGCTC	ACGCCAGCC	TGCCCCCAGG	TTTCAGCTGG	1440
60	GAGAGGCCAC	CTTCCCTCAGC	CAAGGAAAAC	GAGAACCCCC	AGGGTACAGG	AGGAGGTCTG	1500
	GGCAGGTCTC	ACTGGGTGTC	ACTCTCTCAG	CCCCCTGCCA	GGCCCACTCC	CGCTGGTGCT	1560
	GGAGTACCGA	CTGGTGGGGG	GGGCTCTGTC	AGCCCCACCT	GGAGGGTCCC	AGTGTCA	1620
	GAACCCAGGGG	CACGGCAACA	GCATCGATGG	GTTCCTGCAGC	CCAGGGCCCC	CGATGCGGGG	1680
65	TCACTGTGTC	TGGGGCGAC	GGGCTCTGG	GGGGGTCTAG	TGCGTGGGGG	GGCCAGGGGCC	1740
	CCCGATGCGG	GTCAGTGGC	TGGGGGGGCG	AGGGCCCCCT	CGTGTCCAGG	GCACTTGGT	1800
	ACACTGTCCC	ACAAGGCACC	TGTCTCAGAG	GAGGGCCCT	GGCAGGCCAG	GTGGCAACTC	1860
	CCTTCGGAGA	GGTCTGGCTCA	TGCTTAACCTG	CCCACAGCA	CCCCACAGAG	CCACATTCCC	1920
70	TGCTGCACTT	GTCAGTGGCAGG	GGTGTGCTTCT	AGCAGGAGCA	CCACATGCTT	GCATGCACTG	1980
	GCCCTCCCTAC	CCTGAAGATG	GGAGTGGGCT	TTCCAGGGGA	CATAAGGATG	TCAGGCCTGG	2040
	ACCTCTCTGG	CAGGAAAGGG	TGCAAGGCTT	GAGGGCCTGT	GGCCACAGG	CCCAAGCACCC	2100
	AGGTGGACTG	CAGCGACTG	GGTGGCTCC	TGGCAGGCC	GGAGAAAGCC	CCCCTCAGCA	2160
	GGCTGGGGTC	TGCCCTCCAG	GGGCTCTCCA	CGTCTGCCCT	TGAGGGTGGC	TGCCATGCC	2220
	TGGGGGATCC	TGGCATCTT	ACTTGACTGG	AAGCAGGAGA	CAGAACAGTG	TCTGTCCCCG	2280
75	GGTGACTTCA	TACGGAGACC	GCCCCACATAG	AGCTGGACCC	CGCAGCTGAA	CGGAAATGTT	2340
	GAGACAGGCT	GGCACCTCCC	AAAAAACTGC	CTTCACGCTT	TGGTGTCTGG	TGCAAGGIFTA	2400
	AAAGAAAATAG	TGTCCTCCCAG	TTTACAGCTT	GAAATCAGGC	TAGTGAATG	CCCTGGAGAC	2460
	CACGAGGGGA	GAATTTAAAG	GCCCCGGCTG	GCAGGGCTCA	GCTGGCTGGC	AGAGGCACAT	2520
	GCAGACCCCTG	CTTGGAGCTT	GCCCTTAGGAC	GCTGGGGGGG	CGTCTCTCCG	TGCAAGGATGT	2580
	GAGCAGCGTC	CTGGGGCTCT	ATCCGGAGG	TGCCAGTACG	GTCTGAGGTT	ACATACACCT	2640
	GGCTGCAACAC	TGTGATGACA	CCCCGAAATG	TCTCAGGATG	TIGAAATGTT	TCTTGGGGG	2700
	TAGACCCAGA	TACTAGAATT	AATCTGCC	AGAGGAACAC	ACCCACACCA	GGCTCTCAGGA	2760
	AGAAATAAAA	GAGATTCTG	CCCCAGTTGAG	TTTGTGCTT	TGCAAGGATG	AGATGACTC	2820
	CTGGAATCTCC	AGCAGCTTGAG	GCCAGGACTT	CCAGAGCAGC	CTGGGCAACG	CAGTGAGAGA	2880
	CCCCATCTCT	ACAARAAAAA	AAAAGAAAG	AAAGAAAATG	AGAGATCCAG	GTTTAAAT	2940
	TCATAAAACAC	CACAAGAAA	CAATACACTA	TGAGACCCAG	CAGAAGAAC	AGATTGACTC	3000
	AGAACATCTA	AGAACATCTA	AGAACATCTA	ACAGTGTGTT	ATATATCTAA		3060

SEQ ID NO:197 LBG2 DNA SEQUENCE

Nucleic Acid Accession #:

X63629

Coding sequence:

54-2543 (start and stop codons are underlined)

5 1 11 21 31 41 51

GCGGAACACC GGCCCCGGCT CGCGGCAGCT GCTTCACCCC TCTCTCTGCA GCCATGGGGC 60
 TCCCTCGTGG ACCCTCTCGG TCTCTCTCC TTCTCCAGGT TTGCTGCGT CAGTGGCGG 120
 CCTCCGAGCC GTGCCGGGGC GTCTTCAGGG AGGCTGAAGT GACCTGGAG GCGGGAGGCG 180
 CGGAGCAGGA GCCCCGGGAG GCGCTGGGGAA AAGTATTCTAT GGGCTGCCCT GGGCAAGAGC 240
 CAGCTCTGTT TAGCACTGAT AATGATGACT TCACTGTGCG GAATGGCGAG ACAGTCCAGG 300
 AAAGAAGGTC ACTGAAGGAA AGGAATCCAT TGAAGATCTT CCCATCCAAA CGTATCTTAC 360
 GAAGACACAA GAGAGATTGG GTGGTTGCTC CAATATCTGT CCTCTGAAAAT GGCAAGGGTC 420
 CCTTCCCCCA GAGAGCTGAAGT CAGCTTAAGT CTAATAAAGA TAGAGACACC AAGATTTCT 480
 ACAGCATCAC GGGGGCGGGG CGACAGACCC CCCCTGAGGG TGCTCTGCT GTAGAGAAGG 540
 AGACAGGCTG GTTGTGTTG AATAAGGCCAC TGGACCCGGGA GGAGATTGCC AAGTATGAGC 600
 TCTTTGGCCA CGCTGTGTC GAGAATGGTG CCTCAGTGGA GGACCCCATG AACATCTCCA 660
 TCATCGTGAC CGACAGAACAT GACCAACAGC CCAAGTTAC CCAGGACACC TTCCGAGGGG 720
 GTGICCTAGA GGGAGTCTCA CCAGGACTCTT CTGTGATGCA GGTGACAGCC ACAGATGAGG 780
 ATGATGCCAT CTACACCTAAC AATGGGGTGG TTGCTTACTC CATCCATAGC CAAGAACCAA 840
 AGGACCCACA CGACATCTTC ACCGGAGCAG AGGCACCATC AGGCTCATCT 900
 CCAGTGGCCT GGACCGGGAA AAAGTCCCTG AGTACACACT GACCATCCAG GCCACAGACA 960
 TGGATGGGGAA CGGCTCCACC ACCACGGCAG TGGCAGTAGT GGAGATCCTT GATGCCATG 1020
 ACAATGCTCC CATGTTGAC CCCCAGAAGT ACCGAGGCCA TGTCCTGAG AATGCACTGG 1080
 GCCATGAGGT GCAGAGGCTG ATCTGGACGG CCCAACCTCA CCAGGGTGGC 1140
 GTGCCACTTA CTTTATCATG GGCGGTGACG ACCGGGGACCA TTTTACCATC ACCACCCACC 1200
 CTGAGAGCAA CCAGGGCATC CTGACAACCA GGAAGGGTTT GGATTITGAG GCCAAAAAAC 1260
 AGCACACCCCT GTACGTTGAA GTGACCAAGG AGGGCCCTTT TGTCGTAAGC CTCCCAACCT 1320
 CCACAGCCAC CATACTGGTC CACCTGGAGG ATGTAATGAA GGACCTGTG TTGTCCTTAC 1380
 CCTCCAAAGT CGTTGAGGT CAGGAGGGCA TCCCCACTGG GGAGCTGTG TGTCCTAC 1440
 CTGAGAAGA CCCCAGACAAG GAGAATCAAAG AGATCAGCTA CCGCATCTG AGAGACCCAG 1500
 CAGGGTGGCT AGCCATGGAC CGACAGCTG GGCAGGTCAC AGCTGTGGGC ACCCTCGACC 1560
 GTGAGGATGA GCAGTTGTTG AGGAACACA TCTATGAAGT CATGTCCTG GCCATGGACA 1620
 ATGGAAGGCC TCCCACCACT GGCACGGGAA CCCCTCTGCA AACTCTGATT GATGTCACCG 1680
 ACCATGGCCC AGTCCCTGAG CCGCTGAGA TCACCATCTG CAACCCAAAGC CCTGTGCGCC 1740
 ACCTGCTGAA CATACGGAC AAGGACTCTT CTCCCCACAC CTCCCCCTTC CAGGCCAGC 1800
 TCACAGATGA CTACAGACATC TACTGGACGG CAGAGGTCAA CGAGGAAGGT GACACAGTGG 1860
 TCTTGTCCCT GAAGAAGTTC CTGAAAGCAG ATACATATGA CGTGCACCTT TCTCTGCTG 1920
 ACCATGGCAA CAAAGAGCAG CTGACGGTGA TCAGGGCCAC TGTGTGCGAC TGCCATGGCC 1980
 ATGTCGAAAC CTGCCCCGTA CCGTGGAAAG GAGGTTTCTAT CCTCCCTGTG CTGGGGGCTG 2040
 TCTTGGCTCT GCTGTCTCTC CTGCTGGTGC TGCTTTGTT GGTGAGAAAAG AAGCGGAAGA 2100
 TCAAGGAGCC CCTCTCTACTC CCAGAGTGGG GCAGCCGCTT CAAGAAGCTG GCAGACATGT 2160
 AAAGAGGGGGG TGGCGAACAG GACCAGGACT ATGACATCAC CCAGCTCCAC CGAGGTCTGG 2220
 AGGCCAGGCC GGAGGTGGTT CTCCGCAATG ACCTGGCACC AACCATCATC CCAGCACCCCA 2280
 TGACCGTCTT TAGGCCAGG AACCCAGATG AAATCGGCAAA CCTTATAATT GAGAACCTGA 2340
 AGGGGGCTAA CACAGACCCAC ACAGCCCCGC CCTACACAC CCTCTGGTG TTGACTATG 2400
 AGGGCAGCGG CTCCGACGCC GCGTCCCTGA GCTCCCTCAC CTCCCTGCC TCCGACCAAG 2460
 ACCAAGATTAA CGATTATCTG AACAGTGGG GCAGCCGCTT CAAGAAGCTG GCAGACATGT 2520
 ACGGTGGCGG GGAGGACGAC TGGCGCCT GCCTGAGGG CTGGGGACCA AACGTCAAGGC 2580
 CACAGAGCAT CTCCAAGGGGG TCTCAGTTCC CCCCCTCAGGT GAGGACTTCG GAGCTTGCA 2640
 GGAAGTGGCC GTAGCAACTT GGCAGGACACA GGCTATGAGT CTGACGTTAG AGTGGTTGCT 2700
 TCTCTGGCTT TTCAAGGATG AGGAATGTGG GCAGTTTCTG TICACGACTG AAAACCTCTC 2760
 CACCTGGGCC AGGGTTGCTC CAGAGGCCAA GTTTCAGAA GCTCTTACCC TGCGTAAAAA 2820
 TGCTCAACCC TGTGTCTGG GCCTGGGCT GCTGTGACTG ACCTACAGTG GACTTTCTC 2880
 CTGGAATGGA ACCTTCTTAG CTGCCCTGGT GCAACTTAAAT TTTTTTTTAAATGCTATCT 2940
 TCAAACAGTT AGAGAAAGT CTCAAACAGT GCAGCCAGA GCTGCTGGGC CCACCTGGCG 3000
 TCTGCACTT CTGGTTCCA GACCCCAATG CCTCCCATTC GGATGGATCT CTGCTTTTT 3060
 ATACTGAGTG TGCCCTAGTTT GCCCCCTATT TTTTATTTTC CCTGTGCGT TGCTATAGAT 3120
 GAAGGGTGAAG GACAATCGTG TATATGACT AGAACCTTTT TATTAAGAA A

SEQ ID NO:198 LBG2 Protein sequence:

Protein Accession #:

CAA45177

65 1 11 21 31 41 51

MGLPRGPLAS LLLLQVCWILQ CAASEPCKRAV FREAEVTLA GGAEQEPGQA LGKVFMDPG 60
 QEPALFSTDN DDFTVRNGET VQERRSLKER NPLKIPPSKR ILRRHKRDWV VAPISVPENG 120
 70 KGPFPQRNLQ LKSNKDRDTK IFYSITCPGA DSPPEGVFAV EKETGWLLLN KPLDREIAK 180
 YELFGHVAE NGASVEDPMN ISIIVTDQND HKPKFTQDFT RGSVLEGVLP GT SVMQVTAT 240
 DEDDAIYTYN GVVAISIHSQ EPKDPHDLIMF TTHRSTGTIS VISSGLDREK VPEYLTIQA 300
 TDMDGDGSTT TAAVAVELLD ANDNAPMFDP QKYEAHVPEV AVGHEVQRLL VTLDLAPNSP 360
 75 AWRATYLMIG GDDGDHFTIT THPESNQGIL TTRKGDFEA KNQHTLYVEV TNEAPFVLKL 420
 PTSTATIVVH VEDVNEAPVVI VPSPSKVVEVO EGIPTGEPVVC VYTAEDPDKE NQKISYRLR 480
 DPAGWLAMDP DSGQVTA VGT LDREEQFVR NNIYEVMVLA MDNGSPPTG TGTLTTLID 540
 VNDHGPVPEP RQITICNQSP VRHVLNITDK DLSPTHSPFQ AQLTDSDIV WTAEVNEEGD 600
 TVVLSLKFL KQDTYDVHLS LSDHGKNEQL TVIRATVCDC HGHVETCPGP WKGGFLPVL 660
 GAVALLFL LVLLLLVRKK RKIKEPLLLP EDDTRDNVFY YGEEGGGEED QDYDITQLHR 720

GLEARPEVVL RNDVAPTIIP TPMYRPRPAN PDEIGNFIIIE NLKAANTDPT APPYDTLLVF 780
DYEGSGSDAA SLSLTSSAS DQDQDYDYLN EWGSRFKLA DMYGGGEDD

SEQ ID NO:199 OB15 DNA SEQUENCE
5 Nucleic Acid Accession #: NM_012152
Coding sequence: 43-1104 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
10	CTTCTTTAAA	TTTCTTCTA	GGATGTTCAC	TTCTTCTCCA	CAATGAATGA	GTGTCACTAT	60
	GACAAGCACA	TGGACTTTT	TTATAATAGG	AGCAACACTG	ATACTGTCGA	TGACTGGACA	120
	GGAAACAAAGC	TTGTGATTGT	TTTGTGTGTT	GGGACGTTT	TCTGCCTGTT	TATTTTTTTT	180
15	TCTAATTCTC	TTGTGATTGC	GGCACTGATC	AAAAACAGAA	AATTTCATT	CCCCCTTCAC	240
	TACCTGTTG	CTAATTAGC	TGCTGCCGAT	TCTTCGCTG	GAATTGCCA	TGTATTCCCG	300
	ATGTTAACCA	CAGGCCAGT	TTCAAAACT	TTGACTGTC	ACCGCTGGT	TCTCCTGTCAG	360
	GGGCTTCCTG	ACAGTAGCTT	GACTGCTTCC	CTCACCAACT	TGCTGGTTAT	CGCCGTGGAG	420
	AGGCACATG	CAATCATGAG	GATGGGGT	CATAGCAACC	TGACCAAAA	GAGGGTGACA	480
20	CTGCTCAT	TGCTTCTG	GGCCATGCC	ATTTTATGG	GGCCGGTCCC	CACACTGGGC	540
	TGGAATTGCC	TCTGCAACAT	CTCTGCTGC	TCTTCCCTGG	CCCCCATTIA	CAGCAGGAGT	600
	TACCTGTTT	TCTGGACAGT	GTCCCAACCTC	ATGGCCCTTC	TCATCATGGT	TGTGGTGTAC	660
	CTGGGGATC	ACGTGTACGT	CAAGAGAAA	ACCAACGCT	TGTCCTCCGA	TACAAGTGGG	720
	TCCATCAGCC	GCCGGAGGAC	ACCCATGAAG	CTAATGAAGA	CGGTGATGAC	TGTCTTAGGG	780
25	GGGTTTGTCG	TATGCTGGC	GGGGGGCTG	TGTTCTG	TGTCGACGG	CCTGAACCTC	840
	AGGCAGTGTG	GGGTGAGCA	TGTTAAAGG	TGTTCTG	TGTCGGGCT	GCTCAACTCC	900
	GTCTGTAACC	CCATCATCTA	CTCTTACAAAG	GACGAGGACA	TGTATGCCAC	CATGAAGAAG	960
	ATGATCTGCT	CTTCTCTCA	GGAGAACCC	GAGAGGCCGTC	CTCTCCGCAT	CCCCCTCCACCA	1020
	GTCCCTCAGCA	GGAGTGACAC	AGGCAGCCAG	TACATAGAGG	ATAGTATTAG	CCAAGGTGCA	1080
30	GTCTGCAATA	AAAGCACTTC	<u>CTAAACTCTG</u>	GATGCTCTC	GGCCCAACCA	GGTGATGACT	1140
	GTCTTAGG						

SEQ ID NO:200 OB15 Protein sequence:
Protein Accession #: NP_036284

	1	11	21	31	41	51	
35	MNEHYDKHM	DFFYNRSNTD	TVDDWTGTLK	VIVLCVGTF	CLIFIFFSNSL	VIAAVIKNRK	60
	FHFFPYYLIA	NLAAADDFAG	IAYVFLMFT	GPVSKTLTVN	RWFRLRQQLLD	SSLTASLTLN	120
	LVIAPERHMS	IMMRVRVHSN	TKKRVTLLIL	LVWAIAFMG	AVPTLGWNCL	CNISACSSLIA	180
	PIYTSYLVF	WTVSNLMAFL	IMVVVYLRIV	SPIHTSGSISR	RRTPMKLMKT		240
	VMTVLGAFVV	CWTPGLVLLV	LDGLNCROCG	VOHVKRWFLL	LALLNSVNP	IIYSYKDEM	300
	YGMKMKMICC	FSQENPERRP	SRIPSTVLSR	SDTGSQYIED	SISQGAVCNK	STS	

SEQ ID NO:201 PAA6 DNA SEQUENCE
5 Nucleic Acid Accession #: AA569531
Coding sequence: 1-504 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
50	ATGACCTACA	<u>GTTACTCAT</u>	TTTCAGGCT	GAGTTGATCG	TTAATCATCT	TAATTTATGTT	60
	CATTCTGAAG	CCAACAGGAG	AACCAAGACC	AAAATTTAT	TGTCCTGCT	TTCATTTCTT	120
	GATGAAACCT	CTGGACTAAG	CACACATTT	CCTTGTGTT	CTCTCTCAA	GGAGTGTGGA	180
	GTGCTTCATC	TTGGACATCCA	CGGGAGAAG	GAAGACATGA	GAATCACCCA	ACAGTCCTTC	240
55	CAGCTTATACC	TGTGGGACAT	GGGTGGTTT	ACAAATTTTA	AGAACCTGTG	GATGAGCCTC	300
	ATACCCAGAG	GGAAACAAACG	CTCCCCAAA	AGAGTTACAG	AAACCATCT	GAGAGATTT	360
	AAGCAGAACG	AAAGTTCAAAG	GATCCAAAGG	GAGAGACGAA	GAGAGTCTGC	AGGACCAAAC	420
	CTCTCTTCAT	TCTGGTTG	GGGGAAATGCT	GGAAGAGGG	ACAGGCCCA	GATTTGGCA	480
60	GGAAGTAAAC	AGTTTTCAGG	CTGAGGCCA	TCTGAGCAGG	AAACATCCAA	TATTTCTICA	540
	GCTACGTTGT	CCACAGCTTCA	CACTGGTTAA	CTTPTTATG	CCACCATTTG	TGGATTTCAC	600
	AGCTACTTAC	CAATGGTGA	TATTGATCAT	CATCATTATC	TACTGAGCTG	CTACCATATC	660
	CCACGTTACTC	CTTGTATGTT	GTTCATATT	TTCTCAACAC	TCAGCATATT	TGCAATATGT	720
	TATGTAATAT	CACAGACAA	GAAACTGAAC	GCAGAAATGT	TTTATTCTT	GCCAACACATC	780
65	ACATGAGGAT	GAACAATGAA	ACCGATTGTA	AACCAGGATT	GTCTGATTCC	AACATCTCTG	840
	GGTCCTTTT	CACTCTGATA	TGCTGCAATT	AAAAAGCCAT	TTCTAAAGACT	GT	

SEQ ID NO:202 PAA6 Protein sequence:
Protein Accession #: none found

	1	11	21	31	41	51	
70	MTYSYSFFRP	ELIVNHLNYV	HSEANRRTKT	KTLLSLLSFL	DETSGLSTHL	PCLSLSKECG	60
	VLHLDDINGKK	EDMRITQQSS	QLYLWDMGGF	TIFKNLWMSL	IPRGNKRSPK	RVTETILRDF	120
	KQKQSSKIQE	ERRRESAGPN	LSSFWFVGNA	GRGDRPQIWA	GSKQFSG		

SEQ ID NO:203 PAB2 DNA SEQUENCE

Nucleic Acid Accession #: XM_050197
Coding sequence: 310-1971 (underlined sequences correspond to start and stop codons)

	5	11	21	31	41	51	
	TCACACGTGC	CAAGGGCTG	GCTCAGCGGA	ACCAGCCTGC	ACCGCGCTGGC	TCCGGGTGAC	60
	AGCCGGCCG	CTCGGCCAGG	ATCTGACTGA	TGAGACGTTG	CCCCACTGAG	GTGCCCAACAA	120
	GCAGCAGGTG	TTGAGCATGG	GCTGAGAACG	TGGACCGGCA	CCAAAGGGCT	GGCAGAAATG	180
	GGGGCCCTGGC	TGATTCCTAG	GCAGATTGGCG	GCAGCAAGGA	GGAGAGGCCC	CAGCTTCTGG	240
	AGCAGAGCCG	AGACGAAGCA	GTTCTGGAGT	GCCTCTGAGC	CCCCCTGAGC	CCTACCCGCC	300
	TGGCCCACTA	TGGTCCAGAG	GCTGTGGTGT	AGCCGCCCTGC	TGCGGCACCC	GAAAGCCCG	360
	CTCTTGCTGG	TCACCTGTG	AACCTTGGC	CTGGAGGTGT	GTGTTGGCCG	AGGCATCACCC	420
	TATGTGCCGC	CTCTGCTGT	GGAAAGTGGGG	GTAGAGGAGA	AGTTCATGAC	CATGTCGTC	480
	GGGATTGGTC	CAGTGCTGGG	CTCTGGCTGT	GTCCCGCTCC	TAGGCTCAGC	CAGTGACACC	540
	TGGCGTGGAC	GCTATGGCCG	CCGCCGGGCC	TTCATCTGGG	CACTGTCCTT	GGGCATCCTG	600
	CTGAGCTCTT	TTCTCATCCC	AAAGGGCGGC	TGGCTAGCAG	GGCTGCTGTC	CCCCGATCCC	660
	AGGCCCCCTGG	AGCTGGCACT	GCTCATCTG	GGCGTGGGGC	TGCTGACTT	CTGTCGCCAG	720
	GTCGTCTTC	CTTCACTGGA	GGCCCTGCTC	TCTGACCTCT	TCCGGGACCC	GGACCACTGT	780
	CGCCAGGCT	ACTCTGTCTA	TGCCCTCATG	ATCAGTCCTG	GGGGCTGCCCT	GGGCTACCTC	840
	CTGCCCTGCA	TGCACTGGGA	CACCACTGCC	CTGGGCCCCCT	ACCTGGGCAC	CCAGGAGGAG	900
	TGGCTCTTTG	GCTGCTCTAC	CTTCATCTTC	CTCACCTGGG	TAGCAGCCAC	ACTGCTGTTG	960
	GCTGAGGAGG	CAGCGCTGGG	CCCCACCGAG	CCAGCAGAAG	GGCTGTCGGC	CCCCCTCCTTG	1020
	TGCCCTTCACT	GCTGTCATAG	GGGGCCCGG	TTGGCTTTCC	GGAAACCTGGG	CGGCCCTGCTT	1080
	CCCCGGTGC	ACCACTGTG	CTGCCCGATG	CCCCCGACCC	TGCGCCGGCT	CTTCGTGCT	1140
	GAGCTGTGCA	GCTGGATGGC	ACTCATGACC	TTACAGCTGT	TTTACACGGA	TTTCGTGGG	1200
	GAGGGCTGCTG	ACCAAGGGCT	GCCCCAGAGCT	GAGCCGGGGCA	CCGAGGCCCC	GAGACACTAT	1260
	GATGAAGGGC	TTCGGATGGG	CACGCTGGGG	CTGTTCTCTG	AGTGGCCCAT	CTCCCTGGTC	1320
	TTCCTCTGG	TCATGACCGG	GCTGGTGCAG	CGATTCGGCA	CTCGACCACT	CTATTGCCC	1380
	AGTGTGGCAG	CTTTCCTCTG	GCTGCGGGT	GCCACATGCC	TGTCACACAG	TGTGGCCCTG	1440
	GTGACAGCTT	CAACGGCTTC	ACCTTCCTAC	ACCTTCCTAC	CCCTGCAGAT	CTTCCTCTAC	1500
	ACACTGCGCT	CCCTCTTACCA	CGGGGAGAAG	CAGGTGTTG	GTCCCAAATA	CCGAGGGGAC	1560
	ACTGGAGGTG	CTAGCAGTGA	GGACAGCCTG	ATGACCAAGCT	TCTGCCAGG	CCCTAAAGCCT	1620
	GGAGGCTCCCT	TCCCTTAATGG	ACACGTGGGT	GCTGGAGGCA	GTGGCCCTGCT	CCCAACCTCCA	1680
	CCCGCGCTCT	GGGGGGCCCT	TGCCCTGTAT	GTCTCCGTAC	GTGTGGTGGT	GGGTGAGCCC	1740
	ACCGAGGCCA	GGGTGGTTCC	GGGCCGGGGC	ATCTGCCCTG	ACCTCGCCAT	CCTGGATAGT	1800
	GCCTTCTCTG	TGTCTCAGGT	GGCCCCATCC	CTGTTTATGG	GCTCCATTG	CCAGCTCACG	1860
	CAGTCTGTCA	CTGCTCTATAT	GGTGTCTGCC	GCAGGCCCTGG	GTCTGGTCG	CATTAACTTT	1920
	GCTTACACGG	TAGTATTGTA	CAAGAGGAC	TTGGCCAAT	ACTCACCGT	AAAAACTTCC	1980
	AGCACATGG	GGTGGAGGGC	CTGCTCTACT	GGGCTCCACG	TCCCCCTCTCC	TGTAGGCC	2040
	ATGGCTCTTCT	CGGGGCTGCC	GGCGATCTCT	GTTGCTGCCA	AGATAATGTC	GCTCTCTGCT	2100
	GGCACCTCTG	GCTGCTGTAGG	TGCGTAGCTG	CACAGCTGGG	GGCTGGGGCG	TCCCCCTCTCC	2160
	CTCTCCCCAG	TCTCTAGGGC	TGCCCTGACTG	GAGGCCCTCC	AAGGGGGTTT	CAGTCTGGAC	2220
	TATATACAGGG	GGGCCCCAGAAG	GCTCTCATGC	ACTGGAAATGC	GGGGACTCTG	CAGGTGGATT	2280
	ACCCAGGCTC	AGGGTTAACAA	GCTAGCTCC	TAGTGTGAGAC	ACACCTAGAG	AAGGGTTTTT	2340
	GGGAGCTGA	TAACACTCAGT	CACCTGGTTT	CCCATCTCTA	AGCCCCCTTA	CCTGCAGCTT	2400
	CGTTTAATGTT	AGCTCTTGTCA	TGGGAGTTTC	TAGGATGAAA	CACTCTCCCA	TGGGATTGCA	2460
	ACATATGAAA	GTATTTGTG	GGGGAAGAGT	CCTGAGGGGC	AACACACAAG	AACCAGGTCC	2520
	CCTCAGCCCC	ACAGGCACGT	GTCTTTTTG	CTNGANTCCA	CCCCCCCCCT	CTTACCCCT	2580
	TT						

SEQ ID NO:204 PAB2 Protein sequence:

Protein Accession #: XP_050197

	55	11	21	31	41	51	
	1	11	21	31	41	51	
	MVQLWWSRL	LRHRKAQLLL	VNLLTFGLLEV	CLAAGITYVP	PLLLEVGVEE	KFMTMVLGIG	60
	PVLGLVCVPL	LGSASDHWRG	RYGRRRPFI	ALSLGILLSL	FLIPFRAGWLA	GLLCPDPRL	120
	ELALLILGVG	LLDFCQVLCF	TPLEALLSDI	FRDPDHCRQA	YSVYAFAMISL	GGCLGYLPLPA	180
	IDWDTSALAP	YLGTOEECLF	GLLTFLFLTC	VAATLLVAEE	AALGPTEPAB	GLSAPSLSLP	240
	CCPCRARLAF	RNLGALLPRL	HQLCCRMPRT	LRRLFVAAEICL	SWMALMTFTL	FYTDFVGEGL	300
	YQGVPRRAPE	TEARRHYDEG	VRMGVPRFLC	QCAISLVPFL	VMDRLLVQRFG	TRAVYLASVA	360
	AFPVAAAGTC	LSHSAVAVTA	SAALTGFTFS	ALQILPYTLA	SLYHREKQVF	LPKYRGDTGG	420
	ASSEDSLMTS	FLPGPKPGAP	FPNGHVAGG	SGLLPPPPAL	CGASACDVSV	RVVVGEPTEA	480
	RVVPGRGICL	DLAILDSDL	LSQVAPSLFM	GSIVQLSQSV	TAYMVSAA	GLVAIYPATQ	540
	VVFDKSDLAK	YSA					

SEQ ID NO:205 PAJ3 DNA SEQUENCE

Nucleic Acid Accession #: AK002126
Coding sequence: 1-1593 (underlined sequences correspond to start and stop codons)

	75	11	21	31	41	51		
	1	11	21	31	41	51		
	ATGGTTCGCC	GGGGGCTGCT	TGCGTGATT	TCCCGGGTGC	TGGTTTTGCT	GGTGTCTCTC	60	
	TCTCTGCTA	TCTCTGCTCT	GTACATGTTG	GCCCTGCACCC	CAAAAGGTGA	CGAGGAGCAG	120	
	CTGGCACTGC	CCAGGGCCAA	CAGCCCCACG	GGGAGGGAGG	GGTACCAAGGC	CGTCCTTCAG	180	
	80	GAGTGGGAGG	AGCAGCACCG	CAACTACGTG	AGCAGCCCTGA	ACGGCAGAT	CGCACAGCTC	240

5 AAGGAGGAGC TGCAAGGAGAG GAGTGAGCAG CTCAGGAATG GGCAGTACCA AGCCAGCGAT 300
 GCTGCTGGCC TGGGTCTGGA CAGGAGCCCC CCAGAGAAAA CCCAGGCCA CCTCCTGGCC 360
 TTCCCTGACT CGCAGCTGGA CAAGGCAGAG GTGAATGCTG CGCTCAAGCT GGCCACAGAG 420
 TATGCAAGCAG TAGCTTTACT CTACAGAAAGG TGTAACCAAGCT GGAGACTTGGC 480
 10 CTTACCCGCC ACCCCCAGGA GAAGCTGTG AGGAAGGACA AGCAGGATGA GTTGGTGGAA 540
 GCCATTGAAT CAGCCTTGGA GACCCTGAAC AATCTGCGAG AGAACAGCCC CAATCACCGT 600
 CCTTACACGG CCTCTGATTG CATAGAAAGG ATCTACCGAA CAGAAAGGGCA CAAAGGGACA 660
 TTGTATGAGC TCACCTTCAA AGGGGACAC AAACACGAAT TCAAACGGCT CATCTTATT 720
 CGACCATTCG GCCCCATCAT GAAAGTGAAGA AATGAAAAGC TCAACATGGC CAACACGCTT 780
 15 ATCAATGTTA TCGTGCCTCT AGCAGAAAGG GTGACAAAGT TCCGGCAGTT CATGCAGAAT 840
 TTCAGGGAGA TGTGCAATTGAGA CGACAGGATGG AGAGTCCATC TCACTGTTGT TTACTTTGGG 900
 AAAAGAAGAAA TAAATGAAGT CAAAGGAATA CTTGAAACAA CTTCCAAGC TGCCAACCTC 960
 AGGAACCTTA CCTMCATCCA GCTGAATGGA GAATTTCTC GGGGAAGGG ACTTGATGTT 1020
 GGAGCCCGCT TCTGGAAGGG AAGACAGCTC CTTCCTCTTCTC TCTGATGATG GGACATCTAC 1080
 20 TTACATCTG AATTCCTCAA TAGCTGTAGG CTGAATACAC AGCCAGGGAA GAAGGTATT 1140
 TATCCAGTTT TTTTCAGTCA GTACAATCTC GGCAATAATAT ACGGCCACCA TGATGCAGTC 1200
 CCTCCCTTGT AACAGCAGCT GGTCAATAAG AAGGAAACTG GATTTGGAG AGACTTGGG 1260
 TTTGGGATGA CGTGTCACTA CGTGTCACTA TTCACTAATA TAGGTGGTT TGATCTGGAC 1320
 ATCAAAGGT GGGGGAGA CGATGTGAC CTTTATCCCA AGTATCTCCA CAGCAACCTC 1380
 ATAGTGGTAC GGACGCCCTGT CGGAGGACTC TTCCACCTCT CGCATGAGAA GGCCTGCATG 1440
 GACGAGCTGA CCCCGAGCA TGACAGATG TGATGCAGT CCAAGGCAT GAACGAGGCA 1500
 TCCACCGGCC AGCTGGCAT GCTGGTGTTC AGGCACAGGA TAGAGGCTCA CCTTCGAAA 1560
 CAGAAACAGA AGACAAGTAG CAAAAAAACA TGA

SEQ ID NO:206 PAJ3 Protein sequence:

Protein Accession #: NP_060841

	1	11	21	31	41	51	
30	MVRGLLLAWI	SRVVVLLVLL	CCAISVLYML	ACTPKGDEEQ	LALPRANSPT	GKEGYQAVLQ	60
	EWEEQHRRNYV	SSLKRQIAQL	KEELQERSEQ	LRNGQYQASD	AAGLGLDRSP	PEKTQADLLA	120
35	FLHSQVDKAE	VNAGVKLATE	YAAVPFDSFT	LQKVYQLETG	LTRHPEEKPV	RKDKRDELVE	180
	AIESALETLN	NPAENSPNHR	PYTASPDIEG	IYRTERDKGT	LYELTFKGDH	KHEFKRLILF	240
40	RPFGPIMVK	NEKLNMANTL	INVIVPLAKR	VDKFRQFMQN	FREMCEBQDG	RVHLTVVYFG	300
	KEEINEVKGI	LENTSKAANF	RNFNTFIQLNG	EFSRGKGLDV	GARFWKGNSV	LLFFCDVDIY	360
	FTSEFLNITCR	LNTQPGKKVF	YFVLFSQYNP	GIYVGHHDV	PPLEQQLVIK	KETGFWRDFG	420
	FGMTCQYRSD	FINIGGFLDL	IKGWGGEDVL	LYRKYLHSNL	IVVRTPVRL	FHLWHEKRCM	480
	DELTPEQYKM	CMQSKAMNEA	SHGQLGMLVF	RHEIEAHLRK	QKQKTSKKT		

SEQ ID NO:207 PAJ5 DNA sequence

Nucleic Acid Accession #: AF189723

Coding sequence: 1-2712 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
50	ATGATTCCTG	TATTGACATC	AAAAAAAGCA	AGTGAAATTAC	CAGTCAGTGA	AGTTGCAAGC	60
	ATTCTCCAAG	CTGATCTTCA	GAATGGTCTA	AAACAAATGTC	AGTTAGTC	TAGGCGAGCC	120
55	TTTCATGGCT	GGAATGACTT	TGATATTAGT	GAAGATGAGC	CACTGTGGAA	GAAGTATATT	180
	TCTCAGTTA	AAAAATCCCC	TATTATGCTG	CTTCTGGCTT	CTGCACTCAT	CACTGTTTAA	240
60	ATGCATCAGT	TTGATGATGC	CGTCAGTATC	ACTGTGGCAA	TACTTATCGT	TGTTACAGTT	300
	GCCTTGTGTC	AGGAATATCG	TTCAGAAAAA	TCTCTTGAAG	AATTGAGTAA	ACTTGTGCCA	360
65	CCAGAATGCC	ATTGTTGTCG	TGAAGGAAAA	TTGGAGCATA	CACTTGCCTC	AGACTTGGTT	420
	CCAGGTGATA	CAGTTTGCT	TTCCTGTTGG	GATAGAGTTC	CTGCTGACTT	ACGCTTGT	480
70	GAGGCTGTGAG	ATCTTTCCAT	TGATGAGTCC	AGCTTGACAG	GTGAGACAAAC	GCCTTGTCT	540
	AAGGTGACAG	CTCCTCAGCG	AGCTGCAACT	AATGGAGATC	TTGCACTCGAG	AAGTAACATT	600
75	GCCTTGTATGC	GAACACTGGT	CGAGATGTGG	AAAGCAAAGG	GTGTTGTCAT	TGGAACAGGA	660
	AAAAATTCTG	AATTGGGGAA	GGTTTTAAA	ATGATGCAAG	CAGAAGAGGC	ACCCAAAACC	720
80	CCTCTGCAAG	AGACCATGGA	CCTCTTGTAGGA	AAACAACCTT	CCTTTTACTC	CTTGGGTATA	780
	ATAGGAATCA	TCTATGTTGGT	TGGCTGGTTA	CTGGGAAAGG	ATATCTGGA	AATGTTTACT	840
	ATTAGTGAA	GTTGGGTGT	AGCAGCAATT	CCTGAAGGTC	TCCCCATTGT	GTCACAGTG	900
	ACGCTAGCTC	TTGGTGTAT	GAGAATGGTC	AAAGAAAAGGG	CCATTGTGAA	AAAGCTCCCT	960
	ATTGTTGAAA	CTCTGGCTG	CTGTAATGTC	ATTGTTGTCAG	ATAAAACCTG	AAACATGACG	1020
	AAGAAATGAAA	TGACTGTAC	TCACATATTTC	ACTTCAGATG	GTCTGCATC	TGAGGTACT	1080
	GGAGATGGCT	ATATAATGAT	TGGGGAAAGT	ATTGTTGATG	GTGATGTTGT	TCATGGATTC	1140
	TATAACCCAG	CTGTTAGCAG	AATTGTTGAG	GGGGGCTCTG	TGTGCAATGA	TGCTGTAA	1200
	AGAAAACAATA	CTCTAATGGG	GAAGCCAACA	GAAGGGCC	TAATGCTCT	TGCAATGAAG	1260
	ATGGGTCTTG	ATGGACTTCA	ACAAGACTAC	ATCAGAAAG	CTGAATPACC	TTTTAGCTCT	1320
	GAGCAAAGT	GGATGGCTGT	TAAGTGTGTA	CACCGAACAC	AGCAGGACAG	ACCAAGAGAT	1380
	TGTTTGTATGA	AAGGTGCTTA	CGAACAAAGT	ATTAAGTACT	CTACTACATA	CCAGAGCAA	1440
	GGGCAGACCT	TGACACTTAC	TCAGCAGCAG	AGAGATGTGT	ACCAACAAGA	GAAGGCAGCC	1500
	ATGGGCTCAG	CGGGACTCAG	AGTTCTTGCT	TTGGCTTCTG	GTCCCTGAACT	GGGACAGCTG	1560
	ACATTCTTG	GCTGGGTGG	ATTCATGAT	CCACCTAGAA	CTGGTGTGAA	AGAAGCTGTT	1620
	ACAACACTCA	TTGCCCTCAGG	AGTATCAATA	AAAATGATTA	CTGGAGATTC	ACAGGAGACT	1680
	GCAGTGTCAA	TGCGCAGTCG	TCTGGGATTG	TATMCCAAA	CTTCCCAGTC	AGTCTCAGGA	1740
	GAAGAAATAG	ATGCAATGGA	TGTCAGCAG	CTTTCACAAA	TAGTACCAA	GGTGGCAGTA	1800
	TTTACAGAG	CTAGCCAAG	GCACAAGATG	AAAATTATTA	AGTCGCTACA	GAAGAACGGT	1860
	TCAGTGTAG	CCATGACAGG	AGATGGAGTA	AATGATGCG	TTGCTCTGAA	GGCTGCAGAC	1920

ATTGGAGTTG CGATGGGCCA GACTGGTACA GATGTTTGCA AAGAGGCAGC AGACATGATC 1980
 CTAGTGGATG ATGATTTCA ACCATAATG TCTGCAATCG AAGAGGTAA AGGGATTTAT 2040
 AAAAACATTA AAAATTTCGT TAGATTCCAG CTGAGCAGGA GTATAGCAGC ATTAACCTTA 2100
 ATCTCATTTGG CTACATTAAT GAACCTTCCT AATCCTCTCA ATGCCATGCA GATTTTGTGG 2160
 ATCAATATTA TTATGGATGG ACCCCCAGCT CAGAGCCTTG GAGTAGAACC AGTGGATAAA 2220
 GATGTCATTC GTAAACCTCC TCGCAACTGG AAAGACAGCA TTTTGACTAA AACATTGATA 2280
 CTTAAATACCTT GGACTCTGAA ATAAATCATT GTTTGTGGAA CTTTGTGGT CTCTGTGGT 2340
 GAGCTTACGAG ACAATGTGAT TACACCTCGA GACACAACAA TGACCTTCAC ATGCTTGTG 2400
 TTTTTTGACA TGTMCAATGC ACTAAGTTC AGATCCAGA CCAAGTCTGT GTTGTGAGATT 2460
 GGACTCTGCA GTAATGAAT GTTTGCTAT GCAGTTCTTG GATCCATCAT GGGACAATTA 2520
 CTAGTATTTT ACCTTCTCC GCTTCAGAG GTTTTCTCAGA CTGAGAGCCT AAGCATACTG 2580
 GATCTGTGT TTCTTTGGG TCTCACCTCA TCAGTGTGCA TAGTGGCAGA AATTATAAAG 2640
 AAGGTTGAAA GGAGCAGGGAA AAAGATCCAG AAGCATGTTA GTTCGACATC ATCATCTTT 2700
 CTTGAACATAT GA

SEQ ID NO:208 PA5 Protein sequence:

Protein Accession #: AAF27813

1	11	21	31	41	51	
MIPVLTTSKKA	SELPVSEVAS	ILQADLQNL	NKCEVSHRRA	FHWGNFEDIS	EDEPLWKYI	60
SQFKNPILML	LLASAVISVL	MHQFDAAVSI	TVAILIVVTV	AFVQEYRSEK	SLEELSKLVP	120
PECHCVREGK	LEHTLARDLV	PGDTVCLSVG	DRVPAIDLRLF	EAVDLSIDES	SLTGETTPCS	180
KVTAPQPAAT	NGDLASRSNI	AFMGLTVRRCG	KAKGVVIGTG	ENSEFGEVFK	MMQAEEAPKT	240
PLQKSMDDLG	KOLSFYSGI	IGIIMLWGL	LGDKIDLEMT	ISVSLAVAAI	PEGLPIVVTIV	300
TIALGVMRMV	KKRAIVVKLF	IETVLCNNV	ICSDKTGTLT	KNEMTVTHIF	TSDGLHAEVT	360
GVGYNQFGEV	IVDGDVWHGF	YNPAVSRIVE	AGCVCNDAVI	RNNTLGMKPT	EGALIALAMK	420
MGLDGLQQDY	IRKAEYPFSS	EQKWMARVKC	HRTQQRPEI	CFMKGAYEIQV	IKYCTTYQSX	480
GQTLLTLDQQQ	RDVYQOEKAR	MGSAGLRLVA	LASGPELQL	TFFLGLVGIID	PPRTGVKEAV	540
TTLIASGVSII	KMITGDSQET	AVAIASRLGL	YSKTSQSVSQ	EEIDAMDVQQ	LSQIVPKVAV	600
FYRASPRHKM	KIIKSLQKNG	SVVAMTGDGV	NDAVALKAAD	IGVAMGQTGT	DVCKEAADM	660
LVDDDFQTIM	SAIEBGKGYI	NNIKNFVRFO	LSTSTAALTL	ISLATLNMFP	NPLNAMQILW	720
INIIMDGPPA	QSLGVEPVDK	DVIRKPPRNW	KDSILTKNLI	LKILVSSIII	VCGTLFVFWR	780
ELRDNVITPR	DITTMFTCFV	FFDMFNAISSL	RSQTKSVFBI	GLCSNRMFY	AVLGSIMGOL	840
LVIYFPPPLQK	VFQTESLSIL	DLLFLLGTS	SVCIVAEIJK	KVERSREKIQ	KHVSSTSSSF	900
LEV						

SEQ ID NO:209 PAV4 VARIANT 1 DNA SEQUENCENucleic Acid Accession #: N62096
Coding sequence:

1-1284 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51	
ATGGGCTACC	AGAGGCAGGA	GCCTGTCA	CCGCCGAGA	GAGGATGCC	TTATTCAATG	60
AAGCAAGCTG	GGTTTCCCTT	GGAAATATTG	CTTTTATTCT	GGGTTTCATA	TGTTACAGAC	120
TTTTCCCCCTG	TTTTATTGAT	AAAAGGAGGG	GCCCTCTCTG	GAACAGATAC	CTACCACTCT	180
TTGGTCAATA	AAACTTCGG	CTTCCCAGG	TATCTCCTCC	TCTCTGTTC	TCAGTTTTG	240
TATCTCTTAA	TAGCAATGAT	AACTTCAAT	ATAATAGCTG	GAGATACTTT	GACAAAGTT	300
TTTCAAAGAA	TCCCAGGAGT	TGATCCCTGAA	AACGTGTTTA	TTGGTCGCCA	CTTCATTATT	360
GGACTTCTCA	CAGTTACCTTG	TACTCTGCCT	TTATCCTTG	ACCAAAATAT	AGCAAAGCTT	420
GGAAGGCT	CCCTCATCTC	TACAGGTTTA	ACAACTCTGA	TTCCTGGAT	TGTAATGCCA	480
AGGGCAATT	CACTGGTCC	ACACATACCA	AAAACAGAA	ACGCTTGGGT	ATTTGCAAAG	540
CCCAATGCCA	TCTCAAGCGT	CGGGGTATG	TCTTTGCTA	TTATTGCCA	CCATAACTCC	600
TTCTTACTTT	ACAGTTCTCT	AGAAGAACCC	ACACTAGCTA	AGTGGTCCCG	CCCTTATCCAT	660
ATGTCATCG	TGATTTCTGT	ATTTATCTGT	ATATTCTTG	CTACATGTGG	ATACCTGACA	720
TTTACTCTGGCT	TTCTAGCAAG	GGACAAATTT	GAAAAATTACT	GCAGAAATGA	TGACCTGGTA	780
ACATTGGA	GATTTGTGA	TGGTGTCACT	GTCATTGTA	CATAACCTAT	GGAATGCTTT	840
GTGACAAAGAG	AGGTAAATGTC	CAATGTGTT	TTTGGTGGGA	ATCTTCATC	GGTTTCCAC	900
ATTTGTGTA	CAGTGTATGT	CATCACTGTA	GCCACGCTTG	TGTCATTGCT	GATTGATTGTC	960
CTCGGGATAG	TTCTAGAATC	CAATGGTGTG	CTCTGTGCA	CTTCCCCTCAT	TTTTATCAT	1020
CCATCACCC	GTTATCTGA	ACTGTCTGA	GAACACAGGA	CACACTCCGA	TAAGATTATG	1080
TCTTGTGTCA	TGCTTCTCCAT	TGGTGTGTG	GTGATGGTT	TIGGATTCTG	CATGGCTATT	1140
ACAAATACACT	AAGACTGCAC	CCATGGGAG	GAAATGTCTT	ACTGCTTCCC	TGACAAATTC	1200
TCTCTCACAA	ATACCTCAGA	GTCTCATGT	CAGCAGACAA	CACAACTTC	TACTTTAAT	1260
ATTAGTATCT	TTCAACTCGA	<u>GTAA</u>				

SEQ ID NO:210 PAV4 Variant 1 Protein sequence:

Protein Accession #: none found

1	11	21	31	41	51	
MGYQRQEPCI	PPQRGLPYSM	KQAGFPLGIL	LLFWVSYVTD	FSLVLLIKGG	ALSGTDTYQS	60
LNVKTFGFP	YLLLSVLQFL	YFPIAMISYN	IIAGDTLSKV	FQRIQGPVDPE	NVFIGRFHII	120
GLSTVTFITLP	LSLYRNIAKL	GVKSLISTGL	TTLILGIVMA	RAISLGPHIP	KTEDAWVFAK	180
PNAIQAVGVM	SFAFICHHN	FLVYSSLEEP	TVAKWSRLIH	MSIVISVFIC	IFFATCGYL	240
FTGFTQGDLF	ENYCRNDDLV	TGFRFCYGV	VILTYFMECF	VTRREVIANVF	FGGNLSSVPH	300
IVVTVMVITV	ATLVSLLIDC	LGIVLELNGV	LCATPLIFII	PSACYLKLSE	EPRTHSDKIM	360
SCVMLPPIAV	VMVGFVMAI	TNTQDCTHGQ	EMFYCFPDNF	SLNTNTSESHV	QQTQLSTLN	420

ISIFQLE

5 Nucleic Acid Accession #: N62096
 Coding sequence: 1-1203 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
10	ATGGGCTACC	AGAGGCAGGA	GCCTGTCA <u>T</u> C	CCGCCGCA <u>G</u> T	TTTCCC <u>T</u> TG <u>T</u>	TTTATTGATA	60
	AAAGGAGGG	CCCTCTCTGG	AACAGATACC	TACCA <u>G</u> TCTT	TGGTC <u>A</u> ATAA	AACTTC <u>G</u> GC	120
	TTTCCAGGGT	ATCTGCTCCT	CTCTGTCTT	CAGTTT <u>T</u> TG <u>T</u>	ATCCTT <u>T</u> TAT	AGCAATGATA	180
15	AGTTAACATA	TAATAGCTGG	AGATA <u>T</u> TTG	AGCAA <u>A</u> AGTT	TTCAAA <u>G</u> AAAT	CCCAGGA <u>G</u> TT	240
	GATCTCTAAA	ACGTGTTTAT	TGGTGC <u>C</u> AC	TTCA <u>T</u> TT <u>G</u> AT	GACTT <u>C</u> CCAC	AGTTAC <u>T</u> TTT	300
	ACTCTGCCTT	TATCCTTGTA	CGCAA <u>A</u> TATA	GCAAA <u>G</u> CTTG	GAAGG <u>T</u> CTC	CCTCAT <u>T</u> CTC	360
	ACAGGTTAAT	CAACTCTGTAT	TCTTGGAA <u>T</u>	GTA <u>A</u> TGGCAA	GGGCA <u>A</u> TTTC	ACTGGG <u>T</u> CCA	420
20	CACATACCAA	AAACAGAAGA	CGCTTGGGT <u>A</u>	TTGCAA <u>A</u> AGC	CCAATGCC <u>C</u>	TCAAGCGG <u>T</u> C	480
	GGGGTTATG	CTTTGCA <u>T</u> T	TATT <u>T</u> CCAC	CATA <u>A</u> CTCCT	TCTT <u>A</u> GTTTA	CAGTT <u>C</u> TCTA	540
	GAAGAACCA	CAGTAGCTAA	GTGGTCC <u>C</u> GC	CTTATCC <u>A</u> TA	TGTCC <u>A</u> T <u>C</u> GT	GATT <u>T</u> CTGTA	600
	TTTATCTGTA	TATCCTT <u>T</u> CA	TACAT <u>T</u> GGA	TACTT <u>G</u> ACAT	TTACT <u>G</u> GCTT	CACCC <u>A</u> AGGG	660
	GACTTATTG	AAA <u>T</u> ACTTG	CGAA <u>A</u> TGAT	GACCTGG <u>A</u> A	CATT <u>T</u> GGAA <u>G</u>	ATT <u>T</u> TGTTAT	720
25	GGTGTCACTG	TCATTT <u>G</u> AC	ATACCC <u>T</u> ATG	GAAT <u>T</u> GTTT <u>G</u>	TGACAAGAGA	GGTAATTG <u>C</u> C	780
	AATGTTT <u>T</u> T	TGTTGGGAA	TCTTTC <u>C</u> ATCG	GT <u>T</u> T <u>C</u> CA <u>A</u> CA	TTGTT <u>T</u> GA <u>A</u> AC	AG <u>T</u> GAT <u>G</u> TC	840
	ATCA <u>T</u> G <u>T</u> AG	CCAC <u>C</u> G <u>T</u> T	GT <u>C</u> AT <u>T</u> G <u>C</u> T	ATT <u>G</u> ATT <u>G</u> CC	TCGG <u>G</u> AT <u>A</u> GT	TCT <u>A</u> GA <u>A</u> CTC	900
	ATAGG <u>T</u> G <u>T</u> G	TCT <u>T</u> G <u>C</u> AC	T <u>C</u> CC <u>C</u> T <u>A</u> T	TTT <u>A</u> T <u>C</u> AT <u>C</u>	CAT <u>C</u> AC <u>C</u> T <u>G</u>	TT <u>A</u> T <u>C</u> T <u>G</u> AAA	960
	CTG <u>T</u> C <u>T</u> GA <u>G</u>	A <u>C</u> CA <u>A</u> GG <u>AC</u>	AC <u>A</u> CT <u>C</u> CG <u>AT</u>	AAG <u>A</u> TT <u>A</u> GT	CTT <u>G</u> T <u>G</u> TC <u>AT</u>	GT <u>T</u> T <u>C</u> CC <u>A</u> TT	1020
	GGT <u>G</u> CT <u>T</u> G <u>G</u>	T <u>G</u> AT <u>G</u> TTT <u>T</u>	T <u>G</u> G <u>T</u> T <u>G</u> TC <u>G</u> C	AT <u>G</u> G <u>T</u> AT <u>A</u> TA	CAA <u>A</u> ACT <u>T</u> CA	AG <u>A</u> CT <u>G</u> C <u>A</u> C	1080
30	CAT <u>G</u> GG <u>C</u> AG <u>G</u>	AA <u>A</u> T <u>G</u> T <u>T</u> CA	CT <u>G</u> T <u>T</u> T <u>C</u> CT	G <u>A</u> CA <u>A</u> T <u>T</u> CT	CT <u>T</u> C <u>T</u> CA <u>A</u> AA	T <u>A</u> CC <u>T</u> CA <u>G</u> AG	1140
	TCT <u>C</u> AT <u>G</u> T <u>T</u> C	AG <u>C</u> AG <u>A</u> CA <u>AC</u>	AC <u>A</u> CA <u>T</u> T <u>T</u> CT	ACT <u>T</u> TA <u>A</u> ATA	TT <u>A</u> GT <u>T</u> AT <u>C</u> TT	T <u>C</u> AA <u>A</u> CT <u>G</u> G <u>A</u> G	1200

35 SEQ ID NO:212 PAV4 Variant 2 Protein sequence:
 Protein Accession #: none found

	1	11	21	31	41	51	
40	MGYQRQEPVI	PPQFSLVLLI	KGGALSG <u>T</u> D <u>T</u>	Y <u>Q</u> SLVN <u>K</u> T <u>F</u> G	FPGY <u>L</u> LL <u>S</u> VL	QFLYP <u>P</u> FIAMI	60
	SYNIIAGDTL	SKVFQRI <u>P</u> GV	DPE <u>N</u> V <u>I</u> GRH	FIIGLST <u>V</u> TF	TLPLS <u>L</u> YRN <u>I</u>	A <u>K</u> LGKV <u>S</u> LIS	120
	TGLTTL <u>L</u> LGI	VMA <u>R</u> AI <u>S</u> LCP	H <u>I</u> PKTEDAW <u>V</u>	FAKPN <u>A</u> IQ <u>A</u> V	GVMS <u>F</u> AFICH	HNS <u>F</u> LV <u>Y</u> SSL	180
	EEPTVAKWSR	LIHMSIVISV	FICIFF <u>F</u> AT <u>C</u> G	YL <u>I</u> FT <u>G</u> F <u>Q</u> G	DL <u>F</u> ENYCRND	DL <u>V</u> TFGR <u>F</u> CY	240
	GGT <u>V</u> ILTY <u>P</u> M	EC <u>V</u> TR <u>E</u> VIA	NVFFGGNLSS	V <u>F</u> H <u>V</u> V <u>T</u> VM <u>V</u>	IT <u>V</u> AT <u>L</u> V <u>S</u> LL	ID <u>C</u> LGIV <u>L</u> EL	300
45	NGVL <u>C</u> AT <u>P</u> LI	FIIPSAC <u>Y</u> LK	LSE <u>E</u> PR <u>H</u> SD	KIMSC <u>V</u> MLPI	GAVMV <u>F</u> GF <u>V</u>	MAITNT <u>Q</u> D <u>C</u> T	360
	H <u>G</u> QEM <u>F</u> YCF <u>P</u>	DNF <u>S</u> LT <u>N</u> T <u>S</u> E	SHV <u>Q</u> QT <u>Q</u> LS	T <u>L</u> NISIF <u>Q</u> LE			

50 SEQ ID NO:213 PAV4 VARIANT 3 DNA SEQUENCE
 Nucleic Acid Accession #: N62096
 Coding sequence: 1-1140 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
55	AT <u>G</u> GG <u>C</u> T <u>A</u> CC	AGAGGCAGGA	GCCTGTCA <u>T</u> C	CCGCCGCA <u>G</u> T	TCA <u>A</u> AT <u>AA</u> AC	TT <u>T</u> CG <u>G</u> CT <u>T</u> T	60
	CC <u>A</u> GG <u>T</u> T <u>A</u> C	T <u>G</u> C <u>T</u> C <u>T</u> CT <u>C</u> T	T <u>G</u> T <u>T</u> CT <u>T</u> CA <u>G</u>	TT <u>T</u> TT <u>T</u> GT <u>A</u> T <u>C</u>	AA <u>T</u> G <u>A</u> TA <u>G</u> GT	120	
	T <u>A</u> CA <u>A</u> AT <u>A</u> TA <u>A</u>	TA <u>G</u> CT <u>G</u> G <u>A</u> GA	U <u>T</u> CT <u>T</u> GT <u>G</u> AC <u>G</u>	AA <u>A</u> GG <u>T</u> TT <u>T</u> TC	AA <u>A</u> GA <u>A</u> TC <u>CC</u> C	AG <u>G</u> AG <u>T</u> GT <u>G</u> AT	180
60	C <u>C</u> TT <u>A</u> AA <u>A</u> AC <u>G</u>	T <u>G</u> T <u>T</u> T <u>A</u> TT <u>G</u> G	T <u>G</u> C <u>C</u> CA <u>C</u> CT <u>C</u> T	AT <u>T</u> ATT <u>T</u> GG <u>A</u> C	TT <u>T</u> CC <u>C</u> AC <u>AG</u> T	TAC <u>C</u> TT <u>T</u> T <u>A</u> CT	240
	CT <u>G</u> CC <u>T</u> TT <u>T</u> AT <u>T</u>	CT <u>T</u> CT <u>G</u> T <u>A</u> CC	U <u>A</u> AA <u>T</u> AT <u>A</u> GA <u>C</u> A	AA <u>G</u> GT <u>T</u> GG <u>A</u> A	AG <u>G</u> T <u>C</u> T <u>CC</u> CT	C <u>A</u> T <u>C</u> T <u>C</u> T <u>A</u> CA	300
	GG <u>T</u> TT <u>A</u> AA <u>C</u> AA	CT <u>C</u> T <u>G</u> T <u>A</u> TT <u>T</u> C	T <u>G</u> GA <u>A</u> AT <u>G</u> TA	AT <u>G</u> GC <u>A</u> AG <u>GG</u> GA	CA <u>A</u> TT <u>T</u> CC <u>AC</u> T	GG <u>G</u> CC <u>C</u> AC <u>AC</u> C	360
	AT <u>A</u> CA <u>C</u> AA <u>A</u> AA <u>C</u> CC	U <u>T</u> G <u>A</u> GG <u>A</u> CC <u>C</u>	U <u>T</u> GG <u>G</u> T <u>T</u> T <u>T</u> TT	U <u>T</u> CA <u>A</u> GG <u>CC</u> CA	AT <u>G</u> G <u>C</u> ATT <u>C</u> A	AG <u>G</u> GG <u>T</u> CG <u>G</u> GG	420
	GT <u>T</u> T <u>A</u> T <u>G</u> T <u>T</u> T	TT <u>G</u> C <u>T</u> TT <u>T</u> AT <u>T</u>	U <u>T</u> G <u>C</u> CC <u>A</u> CC <u>T</u>	AA <u>T</u> C <u>C</u> T <u>T</u> CT	TA <u>T</u> TT <u>T</u> AC <u>AG</u> C	TT <u>T</u> C <u>T</u> CT <u>A</u> GA <u>A</u>	480
65	GA <u>A</u> CC <u>C</u> CA <u>G</u> AG	TA <u>G</u> C <u>T</u> AA <u>G</u> T <u>G</u>	GT <u>T</u> CC <u>C</u> CC <u>C</u> TT	AT <u>T</u> CC <u>A</u> TA <u>T</u> AT <u>G</u> T	CC <u>A</u> T <u>C</u> GT <u>G</u> T	TT <u>T</u> CT <u>G</u> T <u>T</u> ATT <u>T</u>	540
	AT <u>T</u> CT <u>G</u> T <u>A</u> TA <u>T</u>	TC <u>T</u> TT <u>G</u> GT <u>A</u> TC	U <u>T</u> G <u>T</u> GG <u>A</u> T <u>A</u> TC	TT <u>G</u> AC <u>A</u> TT <u>A</u> TA	CT <u>G</u> G <u>T</u> TT <u>C</u> AC	CC <u>A</u> AG <u>GG</u> GA <u>C</u>	600
	TT <u>A</u> TT <u>T</u> GA <u>A</u> AA <u>A</u>	AT <u>T</u> TA <u>T</u> CT <u>G</u> CA <u>A</u>	U <u>T</u> G <u>T</u> GA <u>A</u> AT <u>G</u> AC	CT <u>G</u> T <u>G</u> TA <u>A</u> AC	TT <u>G</u> GA <u>A</u> GT <u>T</u> TT	TT <u>T</u> TT <u>T</u> AT <u>G</u> GT	660
	GT <u>T</u> AC <u>T</u> GT <u>C</u> A <u>T</u>	TT <u>T</u> T <u>G</u> AC <u>A</u> CA <u>T</u>	U <u>T</u> G <u>T</u> GT <u>T</u> GT <u>G</u> AA	TC <u>G</u> T <u>T</u> GT <u>G</u> TA <u>G</u>	AA <u>A</u> GG <u>A</u> GG <u>T</u> GT <u>G</u> AT	AA <u>A</u> T <u>G</u> CC <u>AA</u> T	720
	GT <u>T</u> TT <u>T</u> TT <u>T</u> GT <u>G</u>	GT <u>T</u> GG <u>GA</u> AT <u>T</u> C	U <u>T</u> G <u>T</u> CA <u>T</u> GG <u>T</u>	TT <u>G</u> CC <u>A</u> CT <u>T</u> GT <u>G</u>	TT <u>G</u> T <u>A</u> AC <u>A</u> GT	GA <u>T</u> GG <u>T</u> CA <u>T</u> C	780
70	ACT <u>G</u> T <u>A</u> GG <u>C</u> CA <u>G</u>	GG <u>T</u> GG <u>C</u> CT <u>G</u> T <u>C</u>	U <u>T</u> G <u>T</u> GT <u>G</u> T <u>G</u> AT	U <u>T</u> G <u>T</u> GT <u>G</u> AT <u>T</u> C	GG <u>A</u> AT <u>G</u> GT <u>T</u> CT	AG <u>A</u> ACT <u>C</u> AA <u>T</u>	840
	GT <u>T</u> GT <u>G</u> T <u>C</u> T <u>C</u>	GT <u>T</u> GA <u>C</u> AC <u>T</u> CC	U <u>T</u> G <u>T</u> GT <u>G</u> T <u>G</u> AT	U <u>T</u> G <u>T</u> GT <u>G</u> AT <u>T</u> C	GG <u>A</u> CT <u>G</u> T <u>T</u> TT	T <u>C</u> T <u>G</u> AA <u>A</u> CT <u>G</u>	900
	T <u>C</u> T <u>G</u> AA <u>A</u> AC <u>A</u> AC <u>A</u>	CA <u>A</u> GG <u>A</u> AC <u>A</u> CA <u>A</u>	U <u>T</u> G <u>T</u> GT <u>G</u> T <u>G</u> AT	U <u>T</u> G <u>T</u> GT <u>G</u> AT <u>T</u> C	GG <u>A</u> CT <u>G</u> T <u>T</u> TT	T <u>C</u> C <u>CC</u> AT <u>U</u> GG <u>A</u> GT <u>T</u> CT	960
	GT <u>T</u> GT <u>G</u> T <u>C</u> A <u>C</u> G	AG <u>A</u> CA <u>A</u> AC <u>A</u> CA <u>A</u>	U <u>T</u> G <u>T</u> GT <u>G</u> T <u>G</u> AT	U <u>T</u> G <u>T</u> GT <u>G</u> AT <u>T</u> C	GG <u>A</u> CT <u>G</u> T <u>T</u> TT	GT <u>T</u> AT <u>T</u> TC <u>A</u> ACT <u>G</u>	1020
75	CAT <u>G</u> T <u>C</u> A <u>C</u> G	AG <u>A</u> CA <u>A</u> AC <u>A</u> CA <u>A</u>	U <u>T</u> G <u>T</u> GT <u>G</u> T <u>G</u> AT	U <u>T</u> G <u>T</u> GT <u>G</u> AT <u>T</u> C	GG <u>A</u> CT <u>G</u> T <u>T</u> TT	GT <u>T</u> AT <u>T</u> TC <u>A</u> ACT <u>G</u>	1080

80 SEQ ID NO:214 PAV4 Variant 3 Protein sequence:
 Protein Accession #: none found

	1	11	21	31	41	51	
--	---	----	----	----	----	----	--

5 MGYQRQEPVI PPQVNKTFGF PGYLLLSVLQ FLYPFIAMIS YNIIAGDTLS KVFQRIPGVD 60
 PENVFIGRHF IIGLSTVTFT LPLSLYRNIA KLGKVS LIST GLTTLILGIV MARAISLGPH 120
 IPKTEDAWVF AKPNAIQAVG VMSFAFICHH NSFLVYSSLE EPTVAKWSRL IHMSIVISVF 180
 IC1FFPATCGY LTFTGFTQGD LFENYCRNDD LVTFRFCYVG TVVILTYPMF CFVITREVIAN 240
 VFVGGNLSSV FHIVVTVMVI TVATLVSLLI DCLGIVLELN GVLCATPLIF IIPSACYLKL 300
 SEEPRTHSDK IMSCVMLPIG AVVMVFGFM AITNTQDCTH GQEMFYCFPD NFSLNTNTSES 360
 HVQQTQLST LNISIFQLE

10 SEQ ID NO:215 PAV4 VARIANT 4 DNA SEQUENCE:
 Nucleic Acid Accession #: N62096
 Coding sequence: 1-1389 (underlined sequences correspond to start and stop codons)

15 1 11 21 31 41 51
 | | | | | |
 ATGGGCTACC AGAGGCAGGA GCCTGTCA CCGCCGAGA GAGATTAGA TGACAGAGAA 60
 ACCCTTGTCTT CTGAACATGA GTATAAACAGAG AAAACCTGTC AGTCTGCTGC TCTTTTTAAT 120
 GTTGTCAACT CGATTATAGG ATCTGGTATA ATAGGATGTC CTTATTCAAT GAAGCAAGCT 180
 GGGTTTCTT TGGGAATATT GCTTTTATTG TGTTTTTCAT ATGTTACAGA CTTTTCCCTT 240
 GTTTTATTG TAAAGGAGG TGAAACAGATA CCTACCAAGTC TTGGTCAAT 300
 AAAACTTCG GCTTTCAGG GTATCTGCTC CTCTCTGTC TTCAGTTTT GTATCCCTTT 360
 ATAGCAATGA TAAGTTACAA TATAATAGCT GGAGATACTTG AGAGAAAGT TTTTCAAGA 420
 ATCCCAGGAG TTGATCTGAA AAACGTGTTT ATTGGTCGCC ACTTCATTAT TGAGACTTTCC 480
 ACAGTTACCT TTACTCTGC TTATATCTTG TACCGAATA TAGCAAAGCT TGAAASGTC 540
 TCCCTCATCT CTACAGGTTT ACAACATCTG ATTCTTGAA TTGTAATGCC AAGGCAATT 600
 TCACTGGGTC CACACATACC AAAAACAGAA GACCCCTGGG TATTGCAAA GCCCAATGCC 660
 ATTCAAGCGC TCGGGGTAT GCCTTGTCA TTATATTGCA ACCATAACTC CTTCCTTAGTT 720
 TACAGTTCTC TAGAAGAACAG CACAGTAGCTT AAGTGGTCGC CCCTTATCCA TATGTCATC 780
 GTGATTCTG TATTTATCTG TATATTCTTT GCTACATGTG GATAATTGAC ATTACTGGC 840
 TTCAACCCAGG GGGAAATTAC TGCAAGAAATG ATGACCTGTT AACATTTGGA 900
 AGATTTGTT ATGTTGTAC TGTCATTTC ACATACCCCA TGGAATGCTT TGTTGACAAGA 960
 GAGGTAATTG CCAATGTGTT TTTTGGTGGG AATCTTTCAT CGGTTTCCCA CATTGTTGTA 1020
 ACAGTGTCTG TCATCACTGTG ACAGCAAGCT GTGTCATGTC TGATTTGATTC CCTCGGGATA 1080
 GTTCTAGAAC TCAATGTGAT GCTCTGTCA ACTCCCCCTA TTTTTATCAT TCCATCAGCC 1140
 TGTATCTGA AACTGTCTGA AGAACCAAGG ACACACTCCG ATAAGATTAT GTCTTGTC 1200
 ATGCTTCCCA TTGGTGTCTGT GTGTGATGGTT TTGGATTCG TCATGGCTAT TACAAATACT 1260
 CAAGACTGCA CCCATGGCA GGAAATGTTT TACTGCTTC CTGACAATT CTCTCTCACCA 1320
 AAATACCTCG AGTCTCATGT TCAGCAGACA ACACAACTTT CTACTTTAAA TATTAGTATC 1380
TTTCAATGA

45 SEQ ID NO:216 PAV4 Variant 4 Protein sequence:
 Protein Accession #: none found

50 1 11 21 31 41 51
 | | | | | |
 MGYQRQEPVI PPQRDLDDRE TLVSEHEYKE KTCQSAALFN VVNSIIGSGI IGLPYSMQKA 60
 GFPLGLLILF WVSYVTDFSL VLLIKGGALS GTDTYQSLVN KTFGFPCYLL LSVLQFLYPP 120
 IAMISYIIIA DGTLSKVFQR IPGVDPENFV IGRHFIIGLS TVFTFLPLSL YRNIAKLGKV 180
 SLISTGLTLL ILGIVMARAI SLGPCHIPKTE DAWVFAKPNIA IQAVGVMSFA FICHHNSFLV 240
 YSSLEEPVTVA KWSRLIHMSI VISVFICIFF ATCGYLTFTG FTQGDLFENY CRNDDLVTFG 300
 RFYCYVTIVL TYPMBCFVTR EVIANVFEGG NLSSVFHVIV TVMVITVATL VSLLIIDCLGI 360
 55 VLELNGVLCA TPLIFIIPSA CYKLSEEPRT HSBDKIMSCV MLPGAVVMV FGIVMAITNT 420
 QDCTHQEMF YCFPDNFSLT NTSESHVQQT TQLSTLNISI FQ

60 SEQ ID NO:217 PAV9 DNA SEQUENCE:
 Nucleic Acid Accession #: NM_017636
 Coding sequence: 1-3501 (underlined sequences correspond to start and stop codons)

65 1 11 21 31 41 51
 | | | | | |
 ATGGAGGATG CCTTCGGGGC AGCCGTGGT ACCGTGTTGG ACAGCGATGC ACACACCACG 60
 GAGAACGCCA CCGATGCCCA CGGAGACGTG GACTTCACCG GGGCCGGCCG CAAGCACACG 120
 AATTTCCTCC CGCTCTCTGA CGGAACCGAT CCACGCTGAG TTTATAGTCG GGTACACACCG 180
 ACATGGGGCT TCCGTGCCCC GAAACCTGCTG GTGTCAGTGC TGGGGGATC GGGGGGCCCC 240
 GTCTCTCAGA CCTGCTCTGA GGACCTGCTG CGTCTGGCC CGTCTGGCCG TGCCCAAGAC 300
 ACAGGAGCCT GGATTTGTCAAC TGGGGGTCTG CACACGGGCA TCGGCCGGCA TGTGGTGTG 360
 GCTGTACGGG ACCATCAGAT GGCCAGCACT GGGGGCACCA AGGTGGTGGG CATGGGTGTG 420
 GCGCCCTTGGG GTGTGGTCCG GAATAGAGAC ACCCTCATCA ACCCAAGGG CTCCCTCCCT 480
 GCGAGGGTACG GGTGGCCGGG TGACCCCGAG GACGGGGTCG AGTTTCCCCCT GGACTACAC 540
 TACTCGGCCT TCTCTCTGTT GGACGACGGC ACACACGGCT GCCTGGGGGG CGAGAACCGC 600
 70 TTCCGCTTGC GCCTGGAGTC CTACATCTCA CAGCAGAAGA CGGGCGTGGG AGGGACTGGA 660
 ATTGACATCC CTGTCTCTGCT CCTCTCTGATT GATGGTGTAT AGAAGATGTT GACGCGAATA 720
 GAGAACGCCA CCCAGGCTCA GCTCCCATGTC CTCTCTGTTGG CTGGCTCAGG GGGAGCTGCG 780
 GACTGCTTGG CGGAGACACT CTGGCCCGAG GGAGTGGGG AGCCAGGCAA 840
 GCGCAAGGCC GAGATCGAAT CAGGGCTTTC TTTCCTAAAG GGGACCTTGA GGTCTGCG 900
 75 GCGCAGTGG AGAGGATTAT GACCCGGAAG GAGCTCTGA CAGTCTATTTC TTCTGAGGAT 960

5 GGGTCTGAGG AATTGAGAC CATA GTTTG AAGGCCCTG TGAAGGCCCG TGGGAGCTCG 1020
 GAGGCCTAG CCTACCTGGA TGAGCTCGT TTGGCTGTGG CTGGAAACCG CGTGACATC 1080
 GCCCAGAGTG AACTCTTCG GGGGGACATC CAATGGCGGT CCTTCCATCT CGAACGCTTC 1140
 CTCATGGACG CCTCTGCTGAA TGACCGGCCT GAGTTCGTCG GCTTGCCTCAT TTCCCACGGC 1200
 CTCAGCTGG GCCACTTCTT GACCCCGATG CGGCTGGCCCC AACTCTACAG CGCGGCCGCC 1260
 TCCAACCTGC TCATCCGCAA CCTTTTGAC CAGGGCTCCC ACAGGCCAGG CACCAAAGCC 1320
 CCAGGCTTAA AAGGGGGACG CGGGAGCTC CGGGCCCTG AGCTGGGGCA TGTGCTGAGG 1380
 ATGCTGCTGG GGAAGATGTG CGGGCCGAGG TACCCCTCGG GGGGCCCTG GGACCCCTCAC 1440
 CCAGGCCAGG CCTTCGGGA GAGCATGTAT CTGCTCTCGG ACAAGGCCAC CTCGCCGCTC 1500
 TCCCTGGATG CTGGCTCGG CGCAGGCCCG TGGAGCCGACC TCTCTCTTGG GGCACCTGTMG 1560
 CTGAACAGGG CACAGATGGC CATGTA CTTGAGATGG GTTCCAAATGC AGTTCCCTCA 1620
 GCTCTGGGG CCTGTTGCT GCTCCGGGTG ATGGCACGCC TGGAGCCTGA CGCTGAGGAG 1680
 GCAGCAGGGA GGAAAGACCT GGAGTTCAAG TTTGAGGGGA TGGCGCTTGA CCTCTTTGGC 1740
 GAGTGTCTAGA CGAGCAGTGA GTGAGGGCT GCGGCCCTCG TCTCTCCGTC CTGCCGCCCTC 1800
 TGGGGGATG CCACCTGCTT CCAGCTGGCC ATGCAAGCTG AGCCCGCTGC CTCTCTTGC 1860
 CAGGATGGGG TACAGTCTCT GCTGACACAG AAGTGGTGGG GAGATATGGC CAGCACTACA 1920
 CCCATCTGCTT CCCTGCTT GCGCTTCCAC TCATCTACAC CCGCCCTCATC 1980
 ACCTTCAGGA ATACAGAAGA GGAGGCCACA CGGGAGGAGC TAGAGTTTGA CATGGATAGT 2040
 20 GTCAATTATG GGGAAAGGCC TGTCCGGACG CGGCCACAG CGAGAAGAC GCGCTGGGG 2100
 GTCCCGCCAGG AGTCGGGCG CGCCGGGTG TGCGGGGGCC GCTGCCGGGCG 2160
 CTACGCCGTG GGTCTTCACT CTGGCTCGG CGGTGACCA TCTTCATGGG CAACGTTGTC 2220
 AGCTACCTGC TGTCTCTGCT GCTTTCTCG CGGGTCTCG TCGTGGATT CCAGCGGCCG 2280
 CGGCCGCGCT CCCTGGAGCT GCTGCTCTAT TTCTGGCTT TCACTGCTGCT GTGGGAGGAA 2340
 CTGCGCCAGG CGCTGAGGG AGGCCAGGCA AGCCTCGGCA CGGGGCCCTGC 2400
 CATGCCCTCAC TGAGCCAGGG CCTGCGCTC TACCTCGCC AGACGCTGGA CCAGCTGCC 2460
 CTAGTGGCTC TCACCTGCTT CCTCCCTGGGC GTGGGCTGCC GGCTGACCCC GGGTTTGTAC 2520
 CACCTGGCGC GCACTGCTC CTGCACTGAC TTCACTGGTT TCACGGTGGCG GCTCTCTCAC 2580
 ATCTTCACGG TCAACAAAACA GTGGGGGCC AAGATGCTCA TCGTGA CAA GATGATGAAG 2640
 GACGTGTTCT TCTTCTCTT CTTCCTCGG GTGTTGGCTGG TAGCCTATGG CGTGGCCACG 2700
 GAGGGGCTTC TGAGGCCAGG GGACAGTGA TTCTTCAAGTA TCTCTGGCCCG CGTCTCTCAC 2760
 CGTCCCTTAC CGTCACTGTT CGGGCAGAT CCCAGGAGG AGATGGACCT GGGCCCTCATC 2820
 GAGCACAGCA ACTCTCTGC CGGAGGCCCG TTCTGGCAC ACCCTCTGG GGCCCGAGCC 2880
 GGCACCTGCG TCTCCAGTA TGCCA ACTGG CGTGGTGTGC TGCTCTCTCG CATCTCTCG 2940
 CTCTGGCCCA ACATCTGCT GGTCAACTTG CTCACTGCA TGTGAGCTTA CACATTGGC 3000
 AAAGTACAGG GCAACAGCGA CTCTCTACTGG AAGGGCAGC GTTACCCGCT CATCGGGAA 3060
 TTCCACTCTC GGCCCGCGCT GGCCCCGCCCT TTATGCTCA TCTCCCACTT GCGCTCTCG 3120
 CTCAAGGCAAT GTGCTGGGG CGCCAGGCG CCCAGGCGT CCTCCCGGCG CCGAGGCGAT 3180
 TTCCGGGTTT ACCTTCTCAA GGAGCGAGG CGGAAGCTGC TAACGTGGGA ATCGGTGCAT 3240
 AAGGAGAACT TTCTGCTGGC ACGGCGTAGG GACAAGCGGG AGAGCGACTC CGAGCGCTIG 3300
 AAAGCGCACGT CCCAGAAGGT GGACTTGGCA CTGAAACACAT CGGGAGTAC 3360
 GAACAGGCC TGAAAGTGTG GGAGGCCAG GTCCAGCACT GTAGCCCGT CTCGGGTRGG 3420
 GTGGCCGAGG CCTTGAGCCG CTCTGCTT CTGCCCCAG GTGGCCGCC ACCCCCTGAC 3480
 CTGCCCTGGGT CCAAAGACTG A

SEQ ID NO:218 PAV9 Protein sequence:

Protein Accession #: none found

50 1 11 21 31 41 51 |
 MEDAFGAAVV TVWDSDAHTT EKPTDAYGEL DPTGAGRKH NFLRLSDRTD PAAVYSLVTR 60
 TWGFRAPNLV VSVLCGSGGP VLQTLWQLDLL RRGLVRAOQS TGAWIVTGGI HTGIGRHGV 120
 AVRDHQMAST GGTKVVAMGV AFWGVVVRNRD TLINPKGSFP ARYRWRGDPE DGVFFPLDYN 180
 YSAFFLWDDG THGCLGGENR FRLRLESYI QQKTGVGTTG IDIFVLLLLI DGDEKMLTRI 240
 ENATQAOLPC LLVAGSGAA DLAETLEDT LAPGSQQARQ GEARDRIRF FPKGDLEVLQ 300
 AQVERIMTRK ELLTVYSSED GSEEFETIVL KALVKACGSS EASAYLDELR LAVA WNRVDI 360
 AQSEFLRGDI LWTLSLHES LMDALLNDRP EFVRLLISHG LSLGHFLTPM RLAQLYSAA 420
 SNSLIRNLQD QASHSAGTKA PALKGAAEL RPPDVGHVLR MLGKMCAPR YPSGGAWDPH 480
 PGQGFGEESMY LLSDKATSPL SLDA GLQQP WSDL LLLWALL LNRAQMAMYF WEMGSNAVSS 540
 ALGACALLLRV MARLEPDAAE AARRKDAFLF FEGMGVDFLG ECYRSSEVRA ARLLLRRCEL 600
 WGDATCLQLA MQADARAFFA QDGVQSLLTQ KWWGDMASTT PIWALVLAFF CPPLIYTRLI 660
 TFRKSEEPEET REELEFTMDMS VINGEGFVGT ADPAEKTLPG VRQSGRPCC CGGRGCGGRC 720
 LRRWFHFHFGA FVTIFPMGNVV SYLFLFLLF SVLWVDFQPA PPGSLELLLY FWAPTLCEE 780
 LRQGLSAGGG SLASGGCPGP HASLSQRQLR YLADSWNQCD LVALTCFLLG VGCR LTPGLY 840
 HLRTRVLCID FMVFTVRLHH IFTVNLQQLGP KIVIVSKMMK DFFFPLFLG VWLVAYGVAT 900
 EGLRPRDSD FPSILRRLRVF RPVLQIFGQI PQEDMDVALM EHNSCSSEPG FWAHPPGAQA 960
 GTCVSQYANW LVLLVNLVLI LIAMFSYTFG KVQGNSDLYW KAQRYRLIRE 1020
 FHSPRPALEAPP FIVISHLRL LRLQLCRPRPS PQPSSPALEH FRVYLSKEAE RKLLTWESVH 1080
 70 KENFLRAR DKRESDSERL KRTSQKVDLA LKQLGHIREY EQRLKVLERE VQQCSRVLGW 1140
 VAEALSRSL LPPGGPPPPD LPGSKD

SEQ ID NO:219 PBF1 DNA SEQUENCE

Nucleic Acid Accession #: AA054237

Coding sequence: 1-894 (underlined sequences correspond to start and stop codons)

75 1 11 21 31 41 51 |
 ATGGAGGCCG GGGCGCTCGT CACGGCGCTC AGCCTGGCC TCAGCCTGTG CTCCCTGGGG 60
 CTGCTCGTCA CGGCGCATCTT CACCGACAC TGGTACGAGA CCGACCCCG GCGCCACAA 120
 80 GAGAGCTGCG AGCGCAGGCC CGCGGGCGCC GACCCCCCG ACCAGAAGAA CGCGCTGATG 180

5 CCGCTGTCGC ACCTGCCGCT GCGGGACTCG CCCCCGCTGG GCGCCGGGCT GCTCCC GG
 GCCCGGGG GCGCCGACCC CGAGTCTGG CGCTCGCTCC TGGGGCTCGG CGGGCTGGAC 240
 GCGGAGTGGCG GCGGGCCCTT CTTCGCCCCC TACTCGGGCC TCTGGAGGAAG GTGCTACTTC 300
 CTGGGCATCG ACCGGGACAT CGACACCCCTC ATCCCTGAAG AGTATTGCGCA GCGATGCACG 360
 10 GCGCATCAAGT ACCACTTTTC TCAGCCCCATC CGCTTGCAGA ACATTCCTTT TAATTTAAC 420
 AAGACCATAC AGCAAGATGA GTGGCACCTG CTTCATTTAA GAAGAATCAC TGCTGGCTTC 480
 CTCGGCATGG CGGTGAGGAGA CCTTGACCCA GCACGTGGCT GGACTCTCTG TCCTCATGAC AGGGATATT 540
 TGCGAGGAGA CCTTGACCCA GCACGTGGCT GGACTCTCTG TCCTCATGAC AGGGATATT 600
 15 TGCCACATT CCCTCTGTAC TTATGCCGC AGTATCTCGT ATGATTTGAA CGCGCTCCCA 660
 AGCTTAATT ATAGCCTGCC TGCTGATGTG GAACATGGTT ACAGCTGGTC CATCTTTGCG 720
 GCCTGGTGCAGA GTTAGGCTT TATTGTCGG CTCGGAGGTC TCTGCATCGC TTATCCGGTTT 780
 ATTAGCCGGA CCAAGATTCC ACAGCTAAAG TCTGGCAGAG ACTCCACGGT ATGA 840

15 SEQ ID NO:220 PBF1 Protein sequence:

Protein Accession #: none found

20 1 11 21 31 41 51
 MEPRALVTAL SLGLSLCSLG LLVTAIFTDH WYETDPRRHK ESCERSRAGA DPPDQKNRLM 60
 PILSHLPLRDS PPLGRRLLPG GPGRDPESW RSLLGLGGLD AECGRPLFAT YSGLWRKCYF 120
 LGIDRDLDTL ILKGIAQRCT AIKYHFSQPI RLRLNIPFNLT TIQQDEWHL LHLLRITAGF 180
 LGMAVAVLLC GCIVATVSFF WEESLTQHVA GLLFLMTGIF CTISLCTYAA SISYDLNRLP 240
 KLIYSLPADV EHGYWSWISFC AWCSLGFIVA AGGLCIAYPF ISRTKIAQLK SGRDSTV

25 SEQ ID NO:221 PC14 DNA SEQUENCE
 Nucleic Acid Accession #: NM_016570
 Coding sequence: 1-1134 (underlined sequences correspond to start and stop codons)

30 1 11 21 31 41 51
 ATGAGGGCAG TGAATCGGAA AAAAACTTA AGTTGGTAA AAGAGTTGGA TGCCCTTCCG 60
 35 AAGGTTCTG AGAGCTATG CAAGACTTC AACCATAATG GAATTCCTAG TATATCAAGA TACATGGATG 120
 TTTACAACTA TGGCTTATT AAACATAATG GAATTCCTAG TATATCAAGA TACATGGATG 180
 AAGTATGAAT ACGAAAGTACA CAAGGATTTC TCTAGCAAAT TAAGAATTAA TATAGATATT 240
 ACTGTTGCAAGA TGAAGTGTCA ATATGTTGGA CGGGATGTAT TGGATTAGC AGAAACAAATG 300
 GTTGCATCTG CAGATGTTT AGTTTATGAA CCAACAGTGT TTGATCTTC ACCACACAG 360
 40 AAAGAGTGGC AGAGGATGCT CGACGCTGATT CAGAGTAGGC TACAAGAAGA GCATTCACTT 420
 CAAGAGTGTG TATTTAAAG TCTCTTAAAG AGTACATCAA CAGCTCTTCC ACCAAGAGAA 480
 GATGATMCAT CACAGCTCTC AAATGCATGC AGAAATTCATG GCCATCTATA TGTCATAAAA 540
 GTAGCAGGGAA ATTTCACAT AACAGTGGGC AAGGCAATTG CACATCTCG TGGTCATGCA 600
 CATTTCGCAG CACTGTGCAAA CCATGAATCT TCAAAATTTC CTCATAGAAAT AGATCATTG 660
 45 TCTTTGGAG AGCTTGTCTT ACAGAATTATT AATCCTTTAG ATGGAAGTGA AAAAATTGCT 720
 ATAGATCACA ACCAGATGTT CCAAAATTTC ATTACAGTTG TCCCAACAAA ACTACATACA 780
 TATAAAATAT CAGCAGAACAC CCATCACTTT TCTGTGACAG AAAGGGAAACG TATCATTAAAC 840
 CATGCTGAG CGACGCATGG AGTCTCTGG ATATTTATGA ATATATGATCT CAGTCTCTT 900
 ATGGTACAG TTACTGAGGA GCACATGCCA TTCTGGCAGT TTTTGTAAAG ACTCTGTGTT 960
 50 ATTGTTGGAG GAATCTTTT ACAACACAGGC ATGTTACATG GAATTGGAAA ATTATAGTT 1020
 GAAATAATTG GCTGTCGTTT CAGACTTGGC TCCCTATAAC CTGTCATTC TGTTCCCTTT 1080
 GAGGATGGCC ACACAGACAA CCACATTACCT CTTTTAGAAA ATAATACACA TTGA

55 SEQ ID NO:222 PC14 Protein sequence:
 Protein Accession #: NP_057654

60 1 11 21 31 41 51
 MRRLNRKKTL SLVKELDAFP KVPESYVETS ASGGTVSLIA FTMALLTIM EFSVYQDTWM 60
 KEYEYEVKDF VTAALKRINIDI QDVADLAEVM WASADGLVYE PTVDLSPQQ 120
 KEWQRLMLQI QSRLQEEHSL QDVIKFSAFK STSTALPPRE DDSQSFPNAC RIHGHLYVNK 180
 VAGNFHITVG KAIPHPRGHA HLAALVNHES YNFSHRIDHL SFGEILVPAII NPLDGTEKIA 240
 IDHNQMFQYI ITVVPTKLHT YKISADTHQ SVTERERIN HAAGSHGVSC IFMKYDLSL 300
 MVTVTEEHMP FWQFVVRICG IVGGIFSTTG MLHGIGKFI EIICCRPRLG SYKPVNSVFP 360
 EDGHTDNHLP LLENNTH

70 SEQ ID NO:223 PEZ3 DNA SEQUENCE
 Nucleic Acid Accession #: NM_001935.1
 Coding sequence: 76-2301 (underlined sequences correspond to start and stop codons)

75 1 11 21 31 41 51
 CGCGCGTCTC CGCCGCCCGC GTGACTTCTG CCTGGCCTCC TTCTCTGAAC GCTCACTTC 60
 GAGGAGACGC CGACGATGAA GACACCGTGG AAGATTCCTC TGGGACTGCT GGGTGCTGCT 120
 GCGCTTGTCAC CCATCATCAC CGTGGCCCTG GTTCTGCTGA ACAAAAGGCAC AGATGATGCT 180
 80 ACAGCTGACA GTCCCAAAAC TTACACTCTA ACTGATTACT TAAAAAAATAC TTATAGACTG 240
 AAGTTATACT CCTTAAGATG GATTTCAAGAT CATGAATATC TCTACAAACA AGAAAATAAT 300

5 ATCTTGGTAT TCAATGCTGA ATATGGAAAC AGCTCAGTTT TCTTGGAGAA CAGTACATT 360
 GATGAGTTG GACATTCTAT CAATGATTAT TCAATATCTC CTGATGGCA GTTTATTCTC 420
 TTAGAATACA ACTACGTGAA GCAATGGGG CATTCCATA CAGCTTCATA TGACATTAT 480
 GATTAAATA AAAGGCAGCT GATTACAGAA GAGAGGATTC CAAACACAC ACAGTGGTC 540
 10 ACATGGTCAC CAGTGGGCA TAAATTGGCA TATGTTTGGA ACAATGACAT TTATGTTAAA 600
 ATTGAACCA ATTACCAAG TTACAGAAC ACATGGACGG GGAAAGAAGA TATAATAT 660
 AATGGAATAA CTGACTGGGT TTATGAAAGAG GAAGTCTTCA GTGCCACTTC TGCTCTG 720
 TGGTCTCCAA CGGGCAGCTT TTAGCATAT GCCAATTTA ACAGACACAGA AGTCCCAC 780
 ATTGAATACT CCTTCTACTC TGATGACTCA CTGCAGTAC CAAAGACTGT ACGGTTCCA 840
 15 TATCCAAGG CAGGAGCTGT GAATCCAAC TAAAGGTTCT GTAAAGTTCT TIGTTGTTAAA TACAGACTCT 900
 CTCAGCTCAG TCACCAATGC AACTTCCATA CAAATCACTG CTCCCTGCTTC TATGTTGATA 960
 GGGGATCACT ACTTGTGTA TTGTCAGTGG GCAACACAGA AAAGAATTTC TTGTCAGTGG 1020
 CTCAGGAGGA TTCAAGACTA TTGGTCATG GATATTGTTG ACTATGATGA ATCCAGTGG 1080
 AGATGGAAC GCTTAGTGGC CGGGCAGCTT ATTGAATGAA CTACTACTG CTGGGTGGA 1140
 AGATTTAGGC CTCAGAACCT CATTTTACCT CTTGATGTTA ATAGCTTCTA CAAAGATCATC 1200
 ACCAATGAAG AAGGTTACAG ACACATTTCG TATTTCAAA TAGATAAAAA AGACTGCACA 1260
 TTTATTACAA AAGGCCCCATG GGAAGTCATC GGGATAGAAG CTCTAACAG TGATTTATCTA 1320
 TACTACATAA TGAATGAATA TAAAGGATGAA CCAGGAGGA GGAATCTTTA TAAATCCAA 1380
 20 CTTATTGACT ATACAAAAGT GACATGCCCT AGMTGTCAG TGAAATCCGA AACGGTGTAG 1440
 TACTATTCTG TGTCATTTCAG TAAAGAGGGC AAGTATTATC AGCTGAGATG TTCCGGTCCT 1500
 GTGCTGCCGC TCTTACTACTC ACACAGCAGC GTGAATGATA AAGGGCTGAG AGTCTGGAA 1560
 GACAATTTCAG CTTTGGATAAA ATGTCGTCAG AATGTCAGA TGCCCTCCAA AAAACTGGAC 1620
 TTCATTATTT TGAATGAAAC AAAATTGGG TATCAGATGA TCTTGCCCTC TCATTTGAT 1680
 25 AAATCCAAGA AATATCCCTCT ACTATGATAG GTGATGTCAG GCCCATGTA TGCAAAAGCA 1740
 GACACTGTC TGACAGTCAA CTGGGCCACT TACCTTGCAGA GCACAGAAAA CATTATAGA 1800
 GCTAGCTTTG ATGGCAGAGG AAGTGGTTAC CAAGGAGATA AGATCATGCA TGCAATCAC 1860
 AGAAGACTGG GAACATTGAA AGTTGAAGAT CAAATTGAGA CAGCCAGACA ATTTCACAAA 1920
 ATGGGATTTG TGGACAACAA ACGAATTGCA ATTGGGGCT GTGTCATATGG AGGGTACGTA 1980
 ACCTCATGG CCTCTGGATC GGGAGTGGC GTGTCAGT TGGAATAGC CGTGGCCCT 2040
 GTATCCGGT GGGAGTACTA TGACTCAGTG TACACAGAAC TTACACATGGG TCTCCCAACT 2100
 CCAGAGACAA ACCTTGACCA TTAACAAATG TCAACAGTCA TGAGCAGAGC TGAAAATTIT 2160
 AAAACAGTT AGTACCTCTC TATTCTATGGA ACACAGATG PAACACCTTC CTTTCAGCAG 2220
 TCAGCTCAGA TCTCCAAAGC CCTGGTCGAT GTGGAGTGG ATTTCAGGC AATGTTGTTAT 2280
 ACTGATGAGG ACCATGGAAAT AGCTTAGCAGC ACACACACCC AACATATATA TACCCACATG 2340
 AGCAGCTTC TAAACAAATG TTCTCTTTA CCTTAGCACC TCAAAATACC ATGCCATTIA 2400
 AGCTTATTA AAACCTATT TTGTTTTCAT TATCTCAAA CTGCACTGTC AAGATGATGA 2460
 TGATCTTTAA AATACACACT CAAATCAAGA AACCTTAAAGT TACCTTTGTT CCCAAATTTC 2520
 ATACCTATT CTTTAAGTAG GGACTTCTGT CTTCACAAACA GATTATTACC TTACAGAAAGT 2580
 TTTGAAATTG CCGTCGGGGTT TTTATTGTTA AAATCATTC TCATCAGCT GCTGAAACAA 2640
 CAAATAGGAA TTGTTTTTAT GGAGGCTTTG CATAGATTTC CTGAGCAGGA TTTPAATCTT 2700
 TTTCTAATCTG GACTGGTTC AATGTTGTTC TCTTCTTTAA AGGGATGGCA AGATGTGGC 2760
 ACTGATGTCG CTAGGGCAGG GAGGAGATAA GAGGGATTAG GGAGAGAAGA TAGCAGGCCA 2820
 TGGCTGGGAA CCCAAGTCCA AGCATACCAA CACGAGCAGG CTACTGTCAG CTCCCTCGG 2880
 AGAAGAGCTC TTCACACCA GACTGGCACA GTTTCTGAG AAAGACTATT CAAACAGTCT 2940
 CAGGAAATCA AATATCGAAA GCACTGACTT CTAAGTAAC CACAGCAGT GAAAAGACTCC 3000
 AAAGAAATGT AAGGGAAACT GCCAGCAACG CAGCCCCCAG GTGCCAGTTA TGCTATAGG 3060
 TCTCTAAAAA ACACAGCAAG GGTGATGGGA AAGCATTGTA ATGTCCTTT TAAAAAA 3120
 TACTGATGTT CCTACTGAA GAAACTGAGA TTGACACACA TCACCTTGCC 3180
 CTGTTAAAG ATGAAAATAT TTGTTACACA AATCTTAAC TAAGGGAGTC CTGTCATCAA 3240
 TTTTTCTTAT TCATTTCTT TTGAGTGTCTT AATTTAAAAGA ATATTITAAC TTCCCTGGAC 3300
 30 TCATTTTAA AAATGGAACA TAAATACAA TGTTATGTT TATTATCCC ATTCTACATA 3360
 CTATGGAATT TCTCCCTAGTC ATTTAATAAA TGTCCTTCA TTTTTTC

55 SEQ ID NO:224 PEZ3 Protein sequence:
 Protein Accession #: NP_001926.1

1	11	21	31	41	51	
-						
MKTPWKILLG	LLGAALVTI	ITVPVULLNN	GTDDDATADSR	KTYTLTDYLN	NTYRLKLYSL	60
RWISDHEYLY	KQENNILVFN	AEYGNSSVFL	ENSTFDEFGH	SINDYSISPD	GQFILLEYNY	120
VHQWRHSYTA	SYDYLIDLNR	QLITEERIPN	NTQWTTWSVF	GHKLAXVWNNA	DIVXKIEPNL	180
PSYRITWTGK	EDIIYNGITD	WYEEEVFS	YSALWWSPNG	TFLAYAQFND	TEVPLIEYSF	240
YSDESLQYPK	TVRVPYPKAG	AVNPVTKFFV	VNTDSLSSVT	NATSQITAP	ASMLIGDHYL	300
CDVTWATQER	ISLQWLRRIO	NYSVMDICDV	DESSGRWNCL	VARQHIEMST	TGWVGRFRPS	360
EPHFITLDGNS	FYKIISNEEG	YRHICYFQID	KKDCDFITKG	TWEVIGIEAL	TSDYLYYYISN	420
EYKGMPGGRN	LYKIQILIDY	KVTCILSCELN	PERCQYYSVS	FSKEAKYYQI	RCSPGPGLPLY	480
TLHSSVNDKG	LRVLEDNSA	DKMLQNQVMP	SKKLDFIILN	ETKFWYQML	PPHDPKSKYY	540
PLLLDVYAGR	CSQKADTVFR	LNWATYLAST	ENIIVASFDG	RGSYQGDKI	MHAINRRLGT	600
FEVEDQIEAA	RQFSKMGFVD	NKRIAIWGWS	YGGVVTSMV	GSGSGVFKCG	IAVAPVSRWE	660
YYDSVYTERY	MGLPTPEDNL	DHYRNSTVMS	RAENPKQVEY	LLIHGTADDN	VHFQOSAQIS	720
KALVDVGVD	QAMWYTDEHD	GIASSTAHQH	IYTHMSHFIK	QCFSLP		

SEQ ID NO:225 PBJ2 DNA SEQUENCE

75 Nucleic Acid Accession #: none found
 Coding sequence: 1-261 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51	
-						

5 ATGGCTCTGG CGAAGGTGAG GGAGCCAAAC GCAAATGACA ATGCCATCAG AGTTGACAAAC 60
AGAAGTGTGA TTAAAGTGC G TGCTAACCG AG TGTCCCTGC ATGAGGCAGA AAGTGAATCC 120
AGAAACCCCTC AGGAGCTCTG GATGGGCCTG CTCCTCTTG A TGGGGTCCT AGAAGCATGT 180
GTGGAATGA GGCCTCTGTC AGTCTGGTCC CTGAGAGATG ACAAGGAGCA GAGCCCCCAC 240
CAGCCCCACAC TGGATGTCTA A

SEQ ID NO:226 PBJ2 Protein sequence:

Protein Accession #: none found

10 1 11 21 31 41 51
MALAKVREPN ANDNAIRVDN RSVIKVRANQ CSLHEAESES RNPQELWMGL LLLMGVLEAC 60
VEMRPLSVWS LRDDKEQSPH QPTLDV

15 Nucleic Acid Accession #: none found
Coding sequence: 1-462 (underlined sequences correspond to start and stop codons)

20 1 11 21 31 41 51
ATGCCAAATG CTGAGTTAGA AGCAAAGAGC CTTGGAAGCA GTAAATGTTT AAAAAGTGTCT 60
CTCATACTTG CTGTATGTTG TGGATCAGCA AATATAGTC GCCCCTACT TGAGCAAAT 120
ATTGATGTAT CTTCCTCAAGA TCTGGACAGA CGGGCAGAGA GTATGCTGTT TCTAGTCATC 180
ATCATGTGG CCAGTTTGTG GGAGACAAAT CTTTCCATGG CTTGGGGAA GCTAGAAAGAT 240
TTTATGGCTA TTGAGAAGA AATGAAGAAG CACGGAAGTA CTCATGTGGG ATTCCCAGAA 300
AACCTGACTA ATGGTGGCCG TCCTGGCAAT GTGTATGATG GATTAATTCC TCCAAGGAAG 360
AGCAGAACAC CTGAAGGCCA GCAATTCTCT GACACTGAGA ATGAGAGATA TCACAGGTTT 420
GTCAAAGATC AGATAGTTGT AGATATGCGG CGTTATTCTC GA

SEQ ID NO:228 PBM2 Protein sequence:

Protein Accession #: none found

35 1 11 21 31 41 51
MPNAELEAKS LGSSKCLKTA LILAVCCGSA NIVSPLLLEQN IDVSSQDLDR RPESMLFLVI 60
IMWTSFVEDN LSMGWGKLED FMAIEEMKK HGSTHVGFPE NLNTNGAAAGN GDDGLIPPRK 120
SRTPESQQFP DTENEYHRF VKDQIVVDMR RYF

40 Nucleic Acid Accession #: NM_014253
Coding sequence: 65-8242 (underlined sequences correspond to start and stop codons)

45 1 11 21 31 41 51
GACTGCTTGC ATTAAAGGAC TTCCCTCATCC TTTTTTTCAT GAAAATGAGC TTGCTTAATC 60
AGAGATGGAG CAAACTGACT GCAAAACCTTA CCAGCCTCTA CCAAAAGTC AGCATGAAT 120
GGATCTAGCT TACACCAAGTT CTTCCTGATGA GAGTGAAAGT GGAAGGAAAC CAAGACAGTC 180
ATACAACCTC AGGGAGACCC TGCAAGAGTA TAACCAGGAG CTGAGGATGA ATTACAATAG 240
CCAGAGTAGA AAAGAGGAAAG AACTAGAAAAA ATCTACTCAA GAGATGGAAT TCTCTGAAAC 300
CTCTCACACT CTGTGCTCTG GCTACCAAAAC AGACATGCAC AGCGTTTCTC GGCATGGCTA 360
CCAGCTAGAG ATGGGATCTG ATGTGGACAG AGAGACAGAA GGTGCTGCCT CACCTGACCA 420
TGCACTAAGA ATGTGGATAA GGGGAATGAA ATCAGGAT AGTTCTCTGT TGTCCAGCCG 480
GGCCAACCTCT GCATTATCCT TGACTGACAC TGACCATGAA AGGAAGTCTG ATGGGAAAAA 540
TGTTTTCAA TTCTCTCTG TTGTTGTTGA CATGGAGGCT CAAGCTGGGT CTACTCAAGA 600
TGTGCAAGAGC ACCCCCCACACA ACCAGTCAAC CTTCAAGACCC CTCCCACCGC CACCTCCGCC 660
TCCCTCATGCC TGCACCTGTG CCAGGAAGCC ACCCCCTGCA GCGGACTCTC TTCAGAGGAG 720
ATCAATGACT ACCCCGAGCC AGCCCCAGCC AGCTGCTCTCA GCTCCCCCAA CCAGCACGCC 780
GGATTTCAGTC CATCTGCATA ACAGCTGGGT CCTGAACAGC AACATACCAT TGGAGACCAAG 840
GCATTCCCTG TTCAACATG GATCTGGTT CTCTCGGATC TTCAGTGCAG CCAGTCAGAA 900
CTACCCCTCTG ACATCCAATA CCGTGTACTC GCCCCCTCCC AGGCCCTCTTC CTCGAAGCAC 960
CTTTTCCCTGA CTCGCTTITA CTTTAAACATC ACCTTACAGG TGCCTGAACT GGAAGTGCAC 1020
AGCATTGAGC GCCACTGCAA TCACAGTGAC TTTGGCTCTG TTACTACCTC ATGTGATTC 1080
AGTGCAATTG TTCCGGCTGA CTTGGCAGTT GCAACCAAGTT GAAGGAGAGC TGTATGCAA 1140
TGGAGATTAGC AAAGGGACCA GGGGGAGCCA GTCCCATGGAC ACTACTTACT CTCCAATTCTG 1200
AGGAAAAGIT TCTGTATAAT CAGAGAAAAA AGTGTTCAG AAGGGACGGG CGATAGACAC 1260
TGGAGAAGTT GACATTGGTG CACAGGTCA CAGACCAATT CCACCTGGTT TATTCTGGCG 1320
TTTCCAGATT ACTATCCACC ATCCAATATA TCTGAAGTTC AATATTCTT TAGCCAAGGA 1380
CTCTCTGCTG GGAATTATG GCAGAAGAAA CATTCCACCT ACACATACTC AGTTTGATT 1440
TGTAAAACCA ATGGATGGCA AACAGCTGGT CAAGCAGGAC TCCAAGGGCT CTGATGATAC 1500
ACAGCACTCC CCTCGGAACC TGATCTTAAC TTGCTTCAAG GAGACAGGT TCATAGAGTA 1560
TATGGATCAA GGACCTTGTT ATCTGGCTT TTACAATGAT GGGAAAAAGA TGGAGCAAGT 1620
ATTCTGTGTTA ACTACAGCAA TTGAAATAAT GGATGACTGT TCAACCAATT GCAATGGAAA 1680
TGGAGACTGT ATCTCTGGCC ATGTGATG TTTCCCAGGA TTCTCTGAC CTGACTGTC 1740
TAGAGATTC TGCCCTGTGC TGTGTGGTGG GAATGGAGAA TACGAGAAAAG GACACTGTGT 1800
CTGCCGGCAT GGCTGGAAGG GGCCAGAGTG TGACCTTCGG GAAAGAACAT GCATGATCC 1860
AACATGTTT GGCCACGGCA CCTGCATCAT GGGAGTCTGC ATCTGTGTGC CAGGATACAA 1920

	AGGAGAAAATA	TGGCAGGAAG	AGGACTGCCT	AGACCCAATG	TGTTCCAACC	ATGGCATCTG	1980
	TGTAAAAGGA	GAATGTCACT	GTTCTACTGG	CTGGGGAGGA	GTTAACTGTG	AAACACCACT	2040
5	TCCTGTATGT	CAAGAGCAGT	GTCAGGACA	CGGAACCTTT	CTTCTGGACG	CTGGAGTATG	2100
	CAGCTGTGAT	CCCAAGTGGA	CAGGATCTGA	CTGCTCAACA	GAGCTGTGTA	CCATGGAGTG	2160
	TGGTAGCCAT	GGAGTCTGCT	CAAGAGGAAT	TTGCCACTGT	GAAGAAGGCT	GGTAGGACC	2220
	AACATGTGAG	GAACGCTCT	GTCATTCTCA	TTGTAECTGAG	CATGCCAAT	GCAAAGATGG	2280
	AAAATGTGAG	TGTAGGCCCTG	GATGGGAGGG	CGACCACTGCG	ACAATTGCTC	ACTACTTGA	2340
	TGCTGTCCGA	GATGGCTGCC	CAGGGCTCTG	CTTGGAAAT	GGACGATGTA	CCCTGGATCA	2400
10	AAATGTTGG	CACTGTGTTG	GTCAGGGGG	TTGGAGTGGG	ACAGGCTGCA	ATGTTGTCAT	2460
	CGAAATGCTT	TGTGGAGATA	ACTTGGACAA	TGATGGAGAT	GGTTAAACCG	ACTGTTGGA	2520
	TCCCTGACTGT	TGTCAACAAA	GCAACTGTGTA	TATAAGTCT	CTCTGCCAGG	GCTCACCAAGA	2580
	TCCCTTGTAC	CTCATCGAC	AAAGGAAAC	TCTCTCTCT	CAGCACACTT	CAAGACTTT	2640
	TTATGATCGA	ATCAAATTCC	TCATTGGCAA	GGACAGTACT	CATGTCATT	CTCCTGAGGT	2700
15	GTCAATTGAC	AGCAGCGGT	CCTGTGTTG	TCGAGGCCCCA	GTGAGGCCCCA	TAGATGGAAC	2760
	TCCCTTAGTG	GGAGTGAATG	TCACTTTCT	GCACCAAGT	GATTTATGGT	TTACCATCAG	2820
	CCGGCAAGAT	GGAAAGCTTTG	ACCTCGTGGC	CATCGGTGGC	ATCTCTGTCA	TCTTAATCTT	2880
	CGACCGATCC	CTTTCTTCTG	CTGAGAAGAG	AACACTCTGG	TTGCTTGGGA	ATCAGTTTAT	2940
	TGTGGTAGAG	AAAGTCACCA	TGCAAGAGT	TGTATCAGAC	CCGGCATTCTC	GCGATATCTC	3000
20	CAACATTATC	AGGCCAAC	CTATTTGCT	TCCCTCACCG	CTCACATCAT	TTGGAGGTC	3060
	CTGTCCAGAG	AGGGGAACTA	TTGTTCTGA	GCTGCAGGT	GTACAGGAGG	AAATTCCCAT	3120
	TCCCCTTCAGC	TTTGTGAGGC	TGAGTACCT	GAGCAGGCCG	ACCCCTGGGT	ATAAAACCT	3180
	GCTACCGATC	CTTCTGACAC	ATTCAACAT	TCCCCTAGGC	ATGATAAAAG	TACACCTCAC	3240
	AGTAGCTGTG	GAAGGGCAGC	TCACACAGAA	GTGGTTTCCC	GCGCATTAA	ATCTGTCTA	3300
25	CACATTGCT	TGGAACAAAGA	CCGATATCTG	TGGACAGAAC	GTGGGGGGC	TGGCAGAGGC	3360
	TTTGTATCT	GTGGGATATG	ATAATGAAAC	GTGCCCCGAC	TTTATCTCT	GGGAGCAAAG	3420
	GACAGTCGT	TTACAAGGTT	TTGAGATGGA	TGCTTCTAAC	CTAGGAGACT	GGCTTTGAA	3480
	TAAGCATCAC	ATTTTGAACT	CTCAAAAGTG	AATCATAACAT	AAAGGGAATG	GAGAAAATAT	3540
	GTCATTTCTC	CAGCAGCCCC	CAGTCATATC	AACCATATA	GGTAAATGGAC	ACCAAAGGAG	3600
30	TGTAGCCTGC	ACCAACTGCA	ATGGCCCAGC	CCACAAAC	AAACTCTTG	CTCTGTGCG	3660
	CTTAGCTTCT	GGCCCTGTATG	GCAGTGTGTA	TGTGGCCGAC	TTCAATTGTTG	TAAGGAGAAT	3720
	ATTICCTCG	GGAAACATC	TTAGTATTT	GGAACTTAAAGC	ACAAGTCTG	CTCACAAATA	3780
	CTATCTGGCT	ATGACCTCTG	TGCTGAAATC	ACTCTATCTA	TCAGACACCA	ATACTCGCAA	3840
	AGTCTACAAG	TTGAAATCTC	TTGTTGGAGAC	GAAAGATCTG	TCCAAGAATT	TTGAAGTGGT	3900
35	GGCAGGAACT	GGTGTAGCTG	GGCTTCCCTT	TGACAGAGT	CATTGTTGGAG	ATGGTGGGAG	3960
	AGCAGCGGAA	GCTTCATGTA	ATAGCCCTCG	AGGCATACCA	TTGATAGGGC	ATGGATTAT	4020
	TTACATTGTC	GATGGGACTA	TGATTCGAA	AATTGATGAG	ATGCTGTGA	TCACAACGT	4080
	AATCGGCTCA	ATAGGTCTGA	CTTCCACACA	ACCACTGAGC	TGTACTCA	GAATGGACAT	4140
	CACTCAGGTG	CGATTAGAGT	GGCAGAACAGA	CCTTGAGTA	AATCTATGG	ACAATTCA	4200
40	GTATGCTCTG	GATAAACAA	TTGTGCTGCA	AATTTCGAG	AAACGGCTG	TTGGATCAT	4260
	GGCAGGACGC	CCCATTCACT	GCCAGGTGCC	AGGCATCGAT	CATTCTCTGG	TCAGCAAGGT	4320
	AGCAATTCAC	TCCACTCTAG	AGTCAGCGC	GCCCATCGAT	GTCTCCCA	GCGGGCTGCT	4380
	CTTCATAGCT	GAACACAGAC	AGAGGAAACT	AAACCGCAT	CAGCAAGTAA	CCACCAATGG	4440
45	GGAGATCTAC	ATCATCGTG	GTGCCCCCAC	TGACTGTGAC	TGCAAATTG	ATCCAAACTG	4500
	TGACTGTTT	TCAGGTGATG	GTGTTGATCC	CAAAGATGCA	AAAGTGAAG	CCCCTCTCTC	4560
	CTTAGCAGTG	TCGCCCTGATG	GAACCCCTTA	TGTTGGAGAC	CTCGGAAATG	TTCGAATTG	4620
	TACCATCAGC	AGGAACCAAG	CCCACCTGA	TGACATGAC	ATTATGAGA	TTGCTTCA	4680
	CGCTGTAGC	GAACGTGATT	AGTTCACTGT	AAATGGAACT	CACCTACACA	CCCTGAACCT	4740
	GATAACAAAG	GACTATTTT	ATAACTTCAC	CTACAAATTCT	GAAGGTGACT	TGGGGCCGAT	4800
50	TACCAAGCAGC	ATAGGCAATT	CAGTCACAT	TGCGCGTGT	GCAGGGGAA	TCGGCTATG	4860
	GCTTGTGGTG	CTTGGCGGAC	AAAGTACTTG	GCTGACTATA	AGCAGCAATG	GAGTCTGAA	4920
	AAGAGTGTCA	GCCCAAGGCT	ATAATCCGC	CTTAATGAC	TATCCAGGAA	ACACAGGGCT	4980
	TCTGGCTTAC	AAAGATCAAG	AAATGGATG	GACAACCGT	TATGAGTTG	ACCCCGAGGG	5040
	ACACCTGACC	AATGCAACGT	TTCCCACCTG	AGAGGTCA	AGCTTCCACA	GTGACCTGGA	5100
55	GAAGCTGACA	AAAGTGGAGG	TAGATACTTC	CAACCGTGA	AAATGCTCTCA	TGTCACCCAA	5160
	CTTGACGGCA	ACTAGTACCA	TATATATT	AAAACAAGAA	AATACTCAA	GTACCTATCG	5220
	GGTGAATCCA	GATGGTCTCC	TGCGTGTAC	TTTGCAGC	GGGATGGAGA	TCGGCTCAG	5280
	CTCAGGACCC	CACATCTGG	CAGGGCAGT	CAACCTTAC	CTGGGCAAAAT	GCAACATCTC	5340
	ATTGCCCGGA	GAGCACAATG	CAAACCTTA	CGAGTGGCG	CAGAGGAAGG	AGCAAAACAA	5400
60	AGGAATATGTT	TCGGCTTTTG	AAAGGAGGT	GAGGGCCAC	AAACGAAAC	TACTCTCAT	5460
	AGATTTTGTAT	CATATAACCC	GCACAGGAA	GATCTATGAT	GACCATCGAA	AATTCAACCT	5520
	TGAACTCTT	TATGACGAGA	CTGGGACCC	CATTCTGTG	TCAGATATAA	5580	
	TGAAGTGAAC	ATCACATATT	CACCTTCGGG	ATMGGTGACG	TTTATTCAA	GAGGAACGTG	5640
	GAATGAAAAAA	ATGGAATATG	ACCAGAGTGG	GAAAATTAT	TCAAGAACTT	GGGCTGTATG	5700
65	GAAGATTTGG	AGCTATACCT	ACTTGGAAA	ATCTGTGATG	CTTCTCTAC	ACAGGCCAGG	5760
	GGCTTACATC	TTTGAGTTG	ACCACTCAGA	TTGCCCTGCTG	TCAGTTACCA	TCGCTTACAT	5820
	GGTGCAGGCC	AGCTTACAAA	CCATGTTTC	AGTGGGTAC	TACCGTAATA	TCTACACCC	5880
	ACCGGACAGT	ACGACTCTT	TTATAGTCGA	CTATAGTCGA	GATGCGGCGAT	TCTTACAGAC	5940
70	CCTGCATCTG	GGGACAGGGC	GCAGAGTCTT	ATACAACTAC	ACCAAGCAAG	CAAGGCTTTC	6000
	TGAGGTTCTC	TATGATACCA	CTCAGGTAC	ATTAACATAT	GAAGAGTCTT	CTGGAGTGT	6060
	TAAGACAAATA	CACCTGTATG	ATGACGGATT	CATCTGCACA	ATCAGATACA	GGCAAACAGG	6120
	ACCTCTTATT	GGACGCGAGA	TTTCAGATT	CAGTGAAGAA	GGCCTTGTGA	ATGCACCGTT	6180
	CGACTACAGC	TACAACAAATT	TCCGAGTCAC	AACCATGCAA	GCTGTAATA	ATGAAACCCC	6240
	TTTGCCTATA	GATCTTCTAC	GATATGTTGA	TGCTCTGCG	AGAACAGAGC	AGTTTGAA	6300
75	ATTCAGTGT	ATTAATTATG	ATTTAAATCA	GTCATCAAAC	ACTACAGTGA	TGAAACACAC	6360
	CAAATCTTC	AGTGCACATG	GACAAGTCAT	TGAAGTCATA	TATGAAATCC	TAAGGCAAT	6420
	TGCCCTACTGG	ATGACCAATT	AAATGATAA	TGTTGGCCGA	CATGTTAATA	TGTGCTATAAG	6480
	GGTAGGAGTA	GATGCCATA	TAACAAGGTA	CTTCTATGAA	TACGATGCTG	ATGGGCAACT	6540
	TCAGACTGTT	TCTGTAATG	ACAAACCCA	GTGGCGTTAT	AGTTACAGTC	TGAATGGAGA	6600
80	CATCACACCTC	TTAAGCCATG	GGAAAGAGTGC	TCGTCTTACT	CCTCTCCGAT	ATGACCTCCG	6660
	AGACCGCAGC	ACCAAGATTAG	GAGAAATTCA	GTATAAAATG	GATGAAGATG	GCTTCTGAG	6720

5	GCAGAGGGGA AATGATATT TTGAATATAA TTCTAATGGC CTGCTGCAGA AAGCCTACAA 6780 TAAGGCTCT GGCTGGACTG TGCACTTATTA CTATGATGGG CTTGGGCAGC GTGTGCGAG 6840 TAAGTCACAGC CTAGGGCAGC ACCTTCAGTT CTTTGTCAGC GCGACCCGGA ACCCCATAAG 6900 AGTTACTCAT TTGTAACAACC ACACAAGCTC GGAGATTACA TCTCTGTATT ATGATCTCCA 6960 AGGTCACTT ATTGCCATGG AGTTAACGAG TGGTCAAGAA TATTATGTAG CCTGTGATAA 7020 TACAGCTTAC CCACCTAGCTG TGTTCAAGCAG CCGAGGTCAG GTCTATAAGG AGATACTATA 7080 CACACCTTAT ATCGATACAC TTACCCCTGAC TTTCAGGTCA TAATGGMTT 7140 TCATGGAGGA CTCTATGATT TCCTTACTAA ATTACTGCAC CTGGGCAAAGGGATATGA 7200 TGTGTTGCT GGCAGATGGA CAACGGCTA TCATCACATA TGAAACAGT TGAACCTCCT 7260 TCCCTAACCA TTCAACCTCT ACTCTTGTGA AAATAACATC CCAAGTGGCA AAATTCACAGA 7320 TGTGCAAG TATACCAACAG ACATCAGAA TGTTGAGGAG CTATTTGTTT TCCAATTACA 7380 CAATGACTA CCTGGATTTC CCAAAACCTGA ATTAGAAAAT TTAGAATTAA CTTACGAGCT 7440 TCTACGGCTT CAGACAAAAAA CTCAAGAGTG GGATCCTGGA AAGACTATCC TGGGCATTCA 7500 GTGTGAAAGCAG CAGAACACAGC TCAGGAAATT CATTTCTTGC GACCAACTAC CTATGACTCC 7560 CCGATACAT GATGGACGGT GCCTTGAGG AAGGAAGCAA CCAAGGTTTG CTGCTGTCCC 7620 TCTGTTTTT GGGAAAGGTA TAAATTTGC CATCAAGGAT GGCATAGTAA CAGCTGATAT 7680 TATAGGAGTA ATAGCATGAG ATAGCAGGG GCTTCTGCGC ATTCCTAAATA ATGCCCATTA 7740 CCTGAAACAC CTACATTITA CCATAGAGGG GAGGGACACT CACTACTTCA TTAAGCTTGG 7800 GTCTCTGGAG GAAGACCTGG TGCTCATCGG TAACACTGGG GGGAGGGCGA TTCTGGAGAA 7860 TGTGTTGCTAAT GTCACTGTG CCCAGATGAC TTCTCTGTG AATGGAGGGA CTAGACGGTT 7920 TGCAGATATT CAGCTCCAGC ATGGAGCCCT GTGCTTCAC ATCCGGTATG GGACAACCTGT 7980 CGAAAGGCAA AAAATCAGC TTGTTGGAGT TGCCAGACAG CGGGCACTGG CCCAGGCTG 8040 GACTAAGGAA CAAAGAAGGG TGCAAGAGGG GGAAGAGGGG ATTAGGGCAT GGACAGAAGG 8100 GGAAAAGCAG CAGCTTTGCA GCACTGGG GGTACAAGGT TACGATGGGT ATTITGTTTT 8160 GTCTGTTGAG CAGTATTAG AACTTCTGA CAGTCCAAAT AATATTCACT TTATGAGACA 8220 GAGCAGGAAATA GGCAGGAGGT AACAAAAATA TCTCTGCCTT TGCGTCACCA AAGACTGCCT 8280 GTTTTAAAGG CATAAAATGG TTATGTTGAT TGTTTCTTCA TGCAGAAACT CTGTTATATGT 8340 AAATATGGAG GAAAACATAA TCCAACCTGC TTTCAATGTG ACGGAAGATG GTATTTAAAT 8400 ATTGTTGTT TAAACTCTT AAGAAATGAC AGAGATTTT AGTTCTTGTG TGGCAGTATT 8460 CAAATAAACAA CAAGTAGAAC TCAAAACAGT AAAAACAGTT TTCAAGAACG ACCACTTCA 8520 ATTGCCCCAG CCAATGCAAT TGTCCAAATAT CCAGAAAGAA CCCAAAGTTTC TCTATCTCA 8580 TCTGTGAAAG CAGTTTCATC CTAACTGTGTT GGCAAACTT ACCGGCTATT TGAATAGGTG 8640 GTCCAATAGT ATCTGAAACT TGCCCTTGTGA AAGACTGCA GGCCTTGTAC GTTTTCCAGA 8700 TCTGTTATAG AACAGCTTAAACACAGTGTA AAATGCTCTC AGCCACCATC TCCTAGAGTG 8760 AGGACCAAAAT TGCCCCCTCCT TCTTGTATTAT TCCCTCTTGC TTGTTAAAGT AAATGCCATA 8820 TGTGTTGCTG TGTTTGTGGC TGTTGGTGGC TGGGTTCTGT CTACCATGCT TCCCCTGTGGG 8880 TGTTGTAACCC AGACTGTATA GCGCCATTGTT GCTCTGTGT ACATGATACC AAAGCAGCTG 8940 GCCAGCGTGA CCTCTCTCAC ACAGACCTGTT TGACTCAAT TTGTTTACTAA AAGTGTGTC 9000 GCTGTATTGG TATCATGTAA ACATAGCTT TATTAACCTG GTAGGAATT TCTCATTTAT 9060 ATATAGGATG TGTTTTGGTC ATAGTTCTAC ATTACTGATT CAGTATCTTAC ACATGACCC 9120 AATGGTTATG TGACATGAA CGGTAAATTAA CTAAAAGTA TGATTCTGTG ACAAAAACAA 9180 ACAAGGCTT TAGCAGGCAAT ACCTGTCTGG GATGCCGATA CATACTTAA CTACTACTGC 9240 AGAAATTCTAT AAGAGCCAAAC ACCTTAAAAA AATAGACCTG GTACTTAAGT GAAAGTACTA 9300 AAGGGAGACG CAGACCAAAAC ATCACAGCG TTGCTGCCAC ATTGTGTTCA CGCCACTTGA 9360 TTTATCTCTT AAATGTACAA TTCTGTATTG AAACATCTCCC AGCCCATCTC AGGAATCTGA 9420 ATCAAGTAAA TCCCTTCCAA CCGAAAACAT TTCAACTAAC TATAGAGAGG CAGACTCATT 9480 TTTACTTAAAT AAATTTATAC AGTTGATTAT TTTCGTTCTC CGTACTTACCC CATTATCTT 9540 TATTAAATCG TCTCTACTGC CTAGGAAATAT AACTTCTTC CAGGACGGGT TATTGTTCT 9600 GGCATCATTT AAAATTGGA GAAAGTCAG GATTAGTGT TATATCAGCT GCAGTTCTC 9660 AATCTCTAGG ATCTGTCAG TAAAACAAAC CCCTTGGTGA GTCTGGAAAGAT TTGTCGCCAG 9720 TGACAAAGAG ATAGTTGTG TAATGTAA TGACCAAAA TGAAAATACA 9780 TGACAGCACA ATGTGGCCCG TAGAAAATTC CCCTGAGCCA GCTTCTGCACT TTTCATCACC 9840 GAATCTGAAC ATTGCTCTATG TGCTGAAGGC AATTTATGAT GGAATGTGTTAG TTGGAATTCT 9900 TTCCAGATGC TACCTTAAATG CAGTGTGGG TCATTTGCTT GCTTTCGGAT GACAGTTCT 9960 TGTAAAATAT GCAAAAGTCAT AAACCTCATGT TAAGGTTTTT CAAGAGTCTG CCTCTCTACTA 10020 CAACAAAGGAA AGCAAGGGAA AGGAAATGAC CCTGGCAACAC AGTAGGGAAAG GGTGTATTCA 10080 AACATTCTCAT TTCAAAACAC TTGCGGTATG AATACCAACTT ACACATGTAT TCTGAGAGAC 10140 AGAAATTCTATG AGGAACCTCAT CTCTCTTATTA AACTGGAAAC ACACCCACTT GATATATTG 10200 TAATCCATAC TAAAATCATA TTATTGGTT TTCTCTGAAAT CAGGCCGTGA TTAATGGTAC 10260 AGTATTATTTT CAGAATGGAA TTCTTAAATG ACTAACAAAC TTGTTGAAAAA TTGAAATAC 10320 TCCACACCAA CCTTAAATG GACCTTAAATG TCCCTAGAAC TCTGATGTT TTTAAATTA 10380 ATGGAAAAAT AATTGTTGAA CTGTTATATAG AGAGTGCATT CATAAATGTG ATTATGTATT 10440 TTATCACAAA TCCAAATGTA CAATTTAGTA TGCTTATTG CTTTATTTT AAGCAATTAT 10500 ACGTTTTGCA ATTCAATGTA TGATGTATCA TTCTCAAACT GCTTTAAATA TCCATTAGAA 10560 ACAATATTG AAGCTTTTA CTAAATAGT ATTACCTTG ACTGTGCACT TCTAGTTCT 10620 AATACGATTG TGGTGGTTG TGCTCTTATG TTGTTTAAAG TTACATTGTT ATTATATTCA 10680 GGAAATGCACT TTCTTATAC TTACAGCTG GTTTTTAATA CTGCTCTGAA CTATTATTT 10740 TCTTTTCTAC ACTCTTAAAG CTTGAGGGAG GAAAGAAAAA AAAACAAAAA CTACTAATCA 10800 GTAGTAAATC GAAGAGAAAC ATTTGGCAT TTCTTAAAGA GAAGATGGAG ATATTGAGTA 10860 TATCACTTAC TATTCACTG ATAGAGAAAG ATGCCCTTCAT TGACTTGCAG TTCTGCACTT 10920 TAAATATTG AAAGAACAAAT TCGTTTGTAT TTCTCTGATGA AACTAAAGC ATTTTCA 10980 GAAACATATG AATTCTCAT ACCCAGCAGA CAGATGGCTG ACACCTGCACA GCCACACACC 11040 ATTGAGTAACT GTTAAAGTG GACCATGTA GTGGGACTCTT CCTATGAAAGA ACATTTCTGG 11100 CTGGAGGAG CCAAAACTCC ATGTTGTTT CTTTCTCTA CTAAAGGCCA TTTTGTCTT 11160 GCTTTCTGTG TTGTTTGTG TTCTACTCTT GCACTACAGT CTAGAGATCC AAATGAACTG 11220 AAAAGTTCAA AGTTAAACAC ATTTAAATAT GTTTACTTTT AGTTGTCATT CTAATCGTTA 11280 TTGATTGAA SCATGACTCC TGAGGAAAG GGAATAAAAT CTCAATTCA ACTAACTTGC 11340 ACAAAACAC TTTTACCATC TAAATAAGTA TATGATTAT TTTTACCA AAAATGTAT 11400 AAAATAATG TGCTCTTAC TGTCATTTA TCGAGAAGAT CTATAATATA TAGACTACAT 11460 ATATATAATA TATACAAACAT AGCCAAATGT ATGAAACTT GACAATGTAT AATTTGGAA 11520
---	---

TCACATGCTA CCTATGTAGA CAGGTATGAA ATTAAGTTAT AATTTTCATG AGACATTTTC 11580
 ATCACTGTTG ACACAGTTTC AAGGCATTCC ATCATGTTAT TTGACTCTT TTTCTTTTTT 11640
 TTTCTTTAA AAATATATT TTAACTAGAC CAGGCCAC TATAATATCA CTTAAGAGAG 11700
 5 TCAGGGCAA GTTTTGAT TTATGAAGAT GTGTTCATGT AAGGGTATT GTAATGGAGT 11760
 TCATTGCTAA TAGAAGCAA AGTACAGTAA CGAAGTATTG AAAAGAAAAT TTTGGAGACA 11820
 TTGGACCATA TTATATATAG CTTGTGAAA GACATAAGGC TACAGATGGA ATGGAACATT 11880
 CCTGTTTCT TGAAAGAATT CACATACACA TAGCTGACCT GACTAGTACT TCAGCTCTTC 11940
 CACAGCCCTC TATAAAGGTT CTTTCTCTG CAAAGAAAAC AAAACAAAAC AAAACAAAAC 12000
 10 AAAAAAAAC AAAAAAGCG CAAAAAACAA AAAACAAA AAAAGCAAAG TAAAATTTAA 12060
 AAATACAGAC AACAAACAAAC AAAAGAAAT TCAACATAAAT ATAGTGACTA TTATTTTCAG 12120
 TGTGCTTC ATGTGAAAGC TATTAAGGAC CAAATATACT ACTGTTCATCA AGAAGAAATT 12180
 ACTTCTAA CAGTAACGTAA AAATACTTAG AGTTAAACTT GCTGTGGATT TTGTCTTGGC 12240
 ACTGTGCTC TTACATTATT TGTCAGGAA ATATGTTTG GCAGTTAAAAT ATCTTCTT 12300
 15 AGATTTAGTG GTGACTGAC ACCCTTTAA TAATGTTAG TATATCAGAT TGTTGCTTG 12360
 AAAAATATT TACTTGTATG AATCATGACA ACCTCTAAAT CTTACTATTT CTTCGCA 12420
 AAGCATCAGT AAGAAAGAAG GCGAAAAGA GAAGTATAGC CTTATGTCA GAAAACATT 12480
 CTTTTACGCT GTCTTACCTTC TATTAAGGAC CAAATATACT ACTGTTCATCA AGAAGAAATT 12540
 CAGTTCTGT ATAACAAACAG GTAGAGGTT CAATCATATT GAAAATTGTT TTATAATGTT 12600
 20 CTGAGCCATG TTGCTAGGAA ACAATAGGTT CCAATTGTT ATTCTGCTC TCCGTGCTG 12660
 AAAAGTACT GGATACTGTA CAGGTTCATG TTCTCTGCT GCAGTTAAAAT GTCTTGTG 12720
 ATTTGCTCT GCATTTCAGG CCAAGAGCAT CACAACAAAC 12780
 TGCTGTAAT ATTAAAGGT AAACATTATG TGTGATATT TGAAAGAAAA GTACTTTGAA 12840
 TATTCATTT TTAAGGAAATAAATGCAA TGAAAAAAA

SEQ ID NO:230 PEZ2 Protein sequence:
 Protein Accession #: NP_055068

	1	11	21	31	41	51	
30	MEQTDCPKPYQ	PLPKVKHEMD	LAYTSSSDES	EDGRKPRQSY	NSRETTLHEYN	QELRMNYNSQ	60
35	SRKKKEVEKS	TQEMEFCETS	HTLCGKYQTD	MHSVSRHGYQ	LEMGSVDVT	TEGAASPDHA	120
40	LRMIRGKMS	EHSCLPSSRA	NSALSLTDTD	HERKSDGENG	FKFSPVCCDM	EAQAGSTQDV	180
45	QSPHNFQFTF	RPLPPPFFFF	HACTCARKPP	PAADSLQRSS	MTTRSQSPSA	APAPPSTQD	240
50	SVILHNSWVL	NSNLIPERTR	SLFKHSGSS	AIFSAASQNY	PLTSNTVYSP	PPRPLPRSTF	300
55	SRPAFTFNKP	YRCCNWKCTA	LSATAITVTL	ALLLAYVIAV	HLFGLTWQLQ	PVEGELYANG	360
60	VSKGNRGTES	KVSDKSEKKV	FQKGRAIDTG	EVDIGAQVMQ	TIPPGLFWRF	420	
65	QITTHHPPIYL	KPNISLAKDS	LLGIYGRRN	PPTHIQDFDV	KLMDGKQLV	QDSKGSDDTQ	480
70	HSPRNLLITS	LQETGFIEYM	DQGPWYLAFY	NDGKKMEQVF	VLTTAIEIMD	DCSTNCNGNG	540
75	ECISGHCHCF	PGFLGPDCAR	GEYEKGHCV	RHGWKGPPEC	VPEEQCIDPT	600	
80	CFGHGTICMG	VCICVPYKG	EICEEEEDCLD	PMCSNHGIC	GKECHCSTGW	GGVNCTEPLP	660
	VCQEQCSCGHG	TFFLDDAGVCS	CDPKWVGSDC	STELCTMCG	SHGVCSCRGIC	QCEEGWVGPT	720
	CEERSCHSHC	TERGQCKDGK	CCECSPGWEGD	HCTTIAHYLDA	VRDGCPGLCF	GNGRCTLDQN	780
	GWHCVCQVGW	SGTGCNVVM	MLCGDNLDND	GDGLTDCVDP	DCCQQSNCYI	SPLCQGSPDP	840
	LDLIQQSQTL	FSQHTSRLFY	DRIKFLIGKD	STHVIPPEVS	FDSSRACVIR	QGVVAIDGTP	900
	LVGVNVSFLH	HSDYGFTR	QDGFSFDLVAI	GGISVILIPD	RSPFLPEKRT	LWLPWNQFIV	960
	VEKVTMQRVV	SDPFSCDIS	FISPFPIVL	SPLTSFGGSC	PERGTIVPEL	QVQEEIPIP	1020
	SSFVRLSYLS	SRTPGYKTL	RILLTHSTIP	VGMVKVHLTV	AVERGRLOKWM	FPAAINLVYT	1080
	FAWNKTDIYG	QKVWGLAEL	VSVGYEYETC	PDFILWEQRT	VULQGFEMDA	SNLGDWLSNK	1140
	HHILNPQSGI	IHKGNNGENMF	ISQQPFPVIST	IMGNGHQRSV	ACTNCNGPAH	NNKLKFAPVAL	1200
	ASGPDGSVYV	GDFNFRVRF	PSQNSVSI	LSTSPAHKYY	LAMDPPVSESL	YLSDINTRKV	1260
	YKLKSLVETK	DLSKNFEVVA	GTGDQCLPFD	QSHCGDGGRA	SEASLNSPRG	ITVDRHGFY	1320
	FVDGTMIRKI	DENAVITMVI	GSNGLTSTQP	LSCDSGMDIT	QVRLEWPDTL	AVNPMDNSLY	1380
	VLDNNNVLQI	SENRRVRIIA	GRPIHQCVPG	IDHFLVSKVA	IHOSTLESARA	ISVSHSGLLF	1440
	IATEDERKVN	R1QQVTTNGE	IYIIAGAPT	CDCCIDPNCID	CFSGDGGYAK	DAKMKAPSSL	1500
	AVSPDGTLYV	ADLGNVRIRT	ISRNQAHLDN	MNIYEIASPA	DQELEYQFTVN	GTHLHTLNLI	1560
	TRDYVNVFTY	NSEGDLGAI	PSQNSVHSVIR	RDAGGMPPLW	VPPVGGQVWV	TISSNGVLKR	1620
	VSAQGYNPAL	MTYPGNTLL	ATKSNEENGWT	TVYEVDPEGH	LTNATFPTEGE	VSSFHSDLEK	1680
	LTKVELDTSN	RENVLMSTNL	TATSTIYILK	QENTQSTYRV	NPDGSLRVTF	ASGMIEIGLSS	1740
	EPHILAGAVN	PTLKGKCNISL	PGEHNANLIE	WRQRKBONKG	NVSAFERRLAR	AHNRNLLSID	1800
	FDHITRTGKI	YDDHRKFTLR	IILYDQTRPI	LWSPVSRYNE	VNITYSPSGL	VTFIQRGTWN	1860
	EKMEYDOSGE	IISRTWADKG	IWSYTLYEKS	VMLLILHSQR	YIFEYDQSDC	LLSVTMAPSMV	1920
	RHSLQTMLSV	GYYRNIYTPP	DSSTSFSIODY	SRDGRLQTL	HLTGTRRVLY	KYTKQARLSE	1980
	VLYDTTQVTL	TYEESSGVIK	TIHLMHDGFI	CTIRYRQTPG	LIGRQIFRFS	EEGLVNARFD	2040
	YSYNNFRVTS	MQAVINETPL	PIDLRYVWDV	SGRTEOFGK	SVINYDNLNV	ITTTVMKHTK	2100
	IFSANGQVIE	VQYEILKAIA	YWMTIQYDNU	GRHGNMCIRV	GVDANITRYF	YEDDADGQLQ	2160
	TVSVNDKTQW	RYSYDLNGDI	NLLSHGKSAR	LTPLRYDLRD	RITRLGEIQY	KMDEDGFLRQ	2220
	RGNDIFEYNS	NGLLQKAYNK	ASGWTVQYYY	DGLGRVRAVK	SSLGQHLOFF	VDATANFIRV	2280
	THLYNHTSSE	ITSLYYDLQG	HLIAMELSSG	EEYYVACDNT	GTPLAVFSSR	GQVIKEILY	2340
	PYGDIXYHTY	PDFQVIIGFH	GGLYDFLTKL	VHLGQRDYDV	VAGRWTAXH	H1WKQLNL	2400
	KPFNLYSFEN	NYPVGKIQDV	AKYTTDIRSW	LELFGFQLHN	VLPGPFPKPEL	ENLEBLTVELL	2460
	RJLQTKTOEW	PGKTLIGIQC	ELQQLRNF	SLDQLPMTPT	YNDGRCLEG	KQPRFAAVPS	2520
	VFGKGKFAI	KDGIVTADII	GVAEDSRL	AA1LNNAHYL	ENLHFTIEGR	DTHYFIKLG	2580
	LEEBDLVLLIGN	TGGRRLILENG	VNVTVSQMTS	LLNGRTRRFA	DIQLQHGALC	FNIRYGTV	2640
	EKKNHVLEIA	RORAVQAQWT	KEQRRLQEGE	EGIRAWTEGE	KQQLLSTGRV	QGYDGYFVLS	2700
	VEQYLELSDS	ANNIHFMRQS	EIGRR				

SEQ ID NO:231 PFD4 DNA SEQUENCE:

80 Nucleic Acid Accession #: NM_000441

Coding sequence: 225-2567 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
5	CTCAGCCTTC	CCGGTTCGGG	AAAGGGGAAG	AATGCAGGAG	GGGTAGGATT	TCTTTCCTGAA	60
	TAGGATCGGT	TGGAAAAGAC	CCGAGCCCTGT	GTGTGTCCTT	CCCTTCGACC	AAGGTGTCTG	120
	TTGCTCGGTA	AATAAAACGT	CCCACTGCT	TCTGAGAGCG	CTATAAAGGC	AGCGGAAGGG	180
	TAGTCCGGG	GGCATTCGG	GCGGGCGCG	AGCAGAGACA	GGTCAT <u>GGCA</u>	GCGCCAGCG	240
10	GCAGGTGGG	GCCGCCGAG	CTCCCGAGT	ACAGCTGCAG	CTACATGGTG	TCGGGGCCGG	300
	TCTACAGCGA	GCTCGCTTTC	CCAAACAGC	ACGAGGGCG	CCTGCAGGAG	CGCAAGACGC	360
	TGCGGAGAG	CCTGCCAAC	TGCTGCAATT	TTCAAGAAA	GAGAGCCTT	GGTGTGCTAA	420
	AGACTCTTGT	GCCCATCTTG	GACTGGCTCC	CCAAATACCG	AGTCAAAGGA	TGGCTGCTTA	480
	GTGACACTCAT	TGGAGGAGTT	AATGACTGGC	TAGTGGCCAC	GCTGCAAGGG	ATGGCATATG	540
15	CCCTACTAGC	TGCACTTCCT	GTCTGGATATG	GTCTCTACTC	TGCTTTTTTC	CCTATCCTGAA	600
	CATACTTTAT	CTTGGAAACA	TCAAGACATA	TCTCAGTGG	ACCTTTTCCA	GTGTTGAGTT	660
	TAATGGTGGG	ATCTGTTGT	CTGAGCATGG	CCCCGACGAA	ACACTTTCTC	GTATCCAGCA	720
	GCAATGGAAC	TGTATAAAT	ACTACTATGA	TAGACACTGC	AGCTAGAGAT	ACAGCTAGAG	780
20	TCTGATTTG	CAGTGGCCCTG	ACTCTGCTGG	TTGGAATTAT	ACAGTTGATA	TTTGGTGGCT	840
	TGCAAGATGG	ATTCAATAGTG	AGGTACTMGG	CAGATCCTTT	GGTTGGTGCC	TTCACAAACAG	900
	CTGCTGCTT	CCAAAGCTC	GTGTCACAGC	TAAAGATTGT	CCTCAATGTT	TCAACCAAAA	960
	ACTACAATGG	AGTTCTCTCT	ATTATCTATA	CCCTGGTTGA	GATTTTCAA	AAATTGGTG	1020
	ATACCAATCT	TGCTGATTTC	ACTGCTGGAT	TGTCACCAT	TGTCCTCTGT	ATGGCAGTTA	1080
	AGGAATTTAA	TGATCGGTG	AGACACAAA	TCCCAGTCCC	TATTCCCTATA	GAAGTAATTG	1140
25	TGACGATAAT	TGCTACTGCG	ATTCTCATATG	GAGCCAACT	GGAAAAAAAT	TACAATCTG	1200
	GCATTGTTAA	ATCCATCCCA	AGGGGGTTT	TGCTCTCTGAA	ACTTCCACCT	GTGAGCTTGT	1260
	TCTCGGAGAT	GCTGGCTGCA	TCATTTTCCA	TCGCTGTTG	GGCTTATGCT	ATTGCACTGT	1320
	CACTAGGAAA	ATTATATGAG	ACCAAGATAG	ATTACACAT	CGATGGAAAC	CAGGAATTCA	1380
	TTGCTTTTGG	GATCAGAAC	ATCTCTCTAG	GATTCTCTC	TTGTTTGTG	GCCACCACTG	1440
30	CTCTTCCCG	CACGGCCGTC	CAGGAGAGCA	CTGAGGAAA	GACACAGGTT	GCTGGCATCA	1500
	TCTCTGCTGC	GATTGATGATG	ATGTCACATTC	TTGCCCCGG	GAAGCTCTG	GAACCCCTTGC	1560
	AGAAGTCGGT	CTTGGCAGCT	GTGTAATTG	CCAAACCTGAA	GGAGGTGTT	ATGCAGCTGT	1620
	GTGACATTC	TGCTGTGTTG	AGACAGAAATA	AGATTGATGC	TGTTATCTGG	GTGTTTACGT	1680
	GTATAGTGTG	CATCATTCTG	GGGGTGGATC	GCTGGTTACT	AGCTGGCCCTT	ATATTTGGAC	1740
	TGTTGACTGT	GGCTCTGAGA	GTCAGTTTC	CTTCTTGGA	GGCCCTTGGAA	AGCATCCCTA	1800
35	GCACAGATAT	CTACAAAGT	ACCAAGAATT	ACAAAAACAT	TGAAGAACCT	CAAGGAGTGA	1860
	AGATTCTTAG	ATTTCCTTGT	CTTATTTCT	ATGCGAATGT	CGATGTTTT	AAAAAATGT	1920
	TCAAGTCCAC	AGTTGGATTG	GATGCAATT	GAGTATATAA	TAAGAGGCTG	AAAGCCTGTA	1980
	GAAAATACA	GAAGAAATAA	AAAAGTGGAC	AATTAAGAGC	AACAAAGAAT	GGCATCATAA	2040
	GTGATGCTGT	TTCAACAAAT	ATGCTTTG	AGCCTGATGA	GGATATTGAA	GATCTGGAGG	2100
	AACCTGATAT	CCCAACAAAG	GAAGATAGAGA	TTCAGTGGAA	TTGGAACCT	GAGCTCCAG	2160
40	TCAAACTGAA	CGTTCCAAA	GTGCAATT	ATAGCTCTGT	GCTTGA	GGAGCTTATAT	2220
	CTTCTCTGGA	CCTTGTGGA	GTGAGATCAC	TGCGGGTGT	TGTC	AAAGAAAGAA	2280
	TTGATGTTAA	TGTGTTTTT	GCATCACTTC	AAGATTATG	GATAGAAAAG	CTGGAGCAAT	2340
	GGGGGTCTT	TGACGACAA	ATTAGAAAAG	ACACATTCTT	TTTGACGTC	CATGATGCTA	2400
	TACTCTATCT	ACAGAACCAA	CTGAAATCTC	AAGAGGTCA	AGGTTCCATT	TTAGAAACGA	2460
	TCACTCTCAT	TCAGGATTGT	AAAGATAACCC	TTGAATTAT	AGAAAACAGAG	CTGACGGAAG	2520
	AAGAATCTGA	TGTCGAGGAT	GAGGTATGAT	GTACACTTGC	ATCCTGAAAG	TGGGTTCCGG	2580
45	AGGCTCTAT	GAGCAAGGAA	TACAAGACAA	AACTCCCTCA	ATGCAATGAC	TATTCTCTCA	2640
	GACTAAACAC	ACTCAATCTT	TTTCTATTA	AGCCATTGAA	AGAGAACAC	TAAGACTGCT	2700
	TCTAGGCTTT	ATTTTATTA	AAACACCTT	ATCCCCTAAC	TGGCAAAAT	GGCTGAAATT	2760
	ATTCAAGACGA	TTGGCAGCG	TCCAGGTTAA	GCTGGTGT	TAATACCTG	CTGATCTACA	2820
	TCACAGATTT	GCTAATAATG	TTCACCTGGG	CCCTGGCATA	TCTCTGTTCA	TTAGAGTGA	2880
50	GTGCTGACCC	AAACGCCCT	GTGGTCAAGC	GAGTCACGAA	TGATTATC	AAAGAAAAAA	2940
	TCAGTTTTTG	ACTGACCTGG	ATATCCATGA	GTCGACTGA	TCACTATGTA	AGGTCACTATT	3000
	TAGTAATATG	TGAATATAAA	TGATTAATG	ATTATTAAT	AAAAGCCTT	AAAAATACTT	3060
	TGGATAATAA	ATTGGAGTTT	TAAAATGCA	AATTGCTTA	GTATCTAATA	ATGAAGTGT	3120
	ATTACATATA	GGCCGAATMG	AGGATCTCTT	TGATCTGTTGAA	AATGGTTTAC	CTAAAAGCTA	3180
	CAGAACCCAG	CCAAATATG	TTGAAATATT	GATGCAAGACA	AAAGAAATTA	AAAGAGATT	3240
55	TTTGTGTTT	TTTCTCTTAA	TTTTGATAT	GATAATAATC	ATGATCACA	CTGAGATCAA	3300
	AAAAATATAT	GACAGATTAT	TTTGTGTTAA	AAATGAGTTT	TAATTATCTT	AGTCTATAGA	3360
	AATGATCATT	GCATGGAGGC	ATGATAGATG	ATGATCTG	AAAATCTGA	CATAAAACAA	3420
	GTGCTATTCT	GAGTGA	TTTTTTGATG	TGCTTACATA	ACCATGGTGA	TTAAAATGAG	3480
	TTTATATTCTT	TTCTCTAAAAA	TTTTAGCAGT	GTGTAAGAGTA	AGTAATCTTT	AACTGAACCTC	3540
60	TGACCAACTA	AAAAAAATTC	TAAAATGTA	ACTACCTATA	GTAGTCTGTC	TTTAAAGTGA	3600
	ATTTTTAAAG	ACAAAGCATT	CTAAATGAAC	TCAATATAAA	AAACATTCTATT	TGGAATGTCAC	3660
	ATACTGAAA	ATACAGGTTT	TTTGACCAA	AAGTTTTAT	ATCTTTCTT	TTTATTTATT	3720
	TTTTTCTTAA	GTGCAACAA	TTTTCTAGAT	ATTATATACA	ACACAGGCT	GTATCTTGGG	3780
	GACTTTTCCC	ATATATTCTA	CACTGGATG	AATGAAGTTG	TACTCTATT	CTAGAGAAAA	3840
65	GTATACCCA	GGTCCCCAAT	TGAGAATGTC	TTGCTTGT	GAAAACGACA	TCATCCCTG	3900
	GTATACCTCA	GGGATTGGTT	TCAGGACCCC	TGCAATTCTAC	AAAATTCTG	CAACACTCAAG	3960
	TCCTGAGTC	ACCCCTGCCT	AAAGATAGAA	TGGCTTCTCT	TTTTCTCTC	TGAAATACAA	4020
	CCAGAAACAA	TGTGCTTATT	TCTGAAAGAA	TAGGATTAAT	GATCATACAA	ATGGGTTAAT	4080
	CTCTGAATTCT	GGTTCTAAAT	CTGTTTACAG	CATAACTAGG	ATTATATAC	TGCTCTATT	4140
70	TCACAGCACT	ACTTGCTTAT	ATTGACAAACA	AATCATCTCG	CTAAAGAGTG	AATGTAGGCC	4200
	AGCTTTTCCC	ATATATTCTA	CACTGGATG	AATGAAGTTG	TACTCTATT	CTAGAGAAAA	4260
	GTGCTTCTCA	GGGATTGGTT	TCAGGACCCC	CACTTGGGA	GGCCGAGGGG	GGTGGATCAC	4320
	GAGGTCAAGA	ATCCTGGCTA	ACATGGTAAA	ACCCCGTCTC	TACTAAAAT	4380	
	AGAAAAAAAG	AAATTAGCCT	AGCGTGGTGG	CTGGCGGGCG	CCTGTAGTCC	CAGCTATTG	4440
75	GGAGGCTAAG	GCAGGAGAA	GGCGTGAACC	CGGGAGGGCG	AGCTTGCAGT	GAGCCGAGGT	4500
80	CGTGCCACTG	CACTCCAGCC	TGGGCGACAG	AGCAAGACTC	CGTCTCAAAA	AAAAAAAAAA	

AAAAAAAAAA	AGAGTGAATG	TAATAGTCCT	GCAGAAAAATG	AATGAATACC	TTTGTGTCAAAT	4560
AAAGGAAATA	TGCACTGCTC	ACTTTTTTGA	AGGAATAGCC	AAAAGTACGT	TTTACAACAA	4620
GGCTTAGAGT	TGTAAATTCT	GGGTTCATTT	GTGATGACAT	AACTGCAGCA	ACTGGCGGGAA	4680
TACTGTCTCT	TCTATGTTAAT	TGTGTGAATAG	TAAGCATAAT	TTTGTGTTTG	TATTATCAAT	4740
GAAAATTCTA	CTTGAAATTA	AACTGCCCC	TTGTGTATATT	TTAAACCTAT	AGGATAAGAT	4800
TCCAGTATTG	TATATGAGTT	TTAACCAAAT	AAAAAAATCAA	ATCATGTACA	TTTGAAGAAATA	4860
TTTGACACAA	TTTAAAAAAATA	AATGTAAAGT	TGTCTTTAA	ACTACTCCGA	TGTGTCCTTT	4920
CTGAACAAA						

SEQ ID NO:232 PFD4 Protein sequence:
Protein Accession #: 043511

Protein Accession #: Q46811

	11	21	31	41	51	
MAAPGGRSEP	PQLPEYSCSY	MVSRPVYSEL	AFQQQHERRL	QERKTLEDSL	AKCCCSRKR	60
AFGFLKTLVPL	ILEWLPKYRV	KEWLSDVIS	GVTGGLVATL	QGMAYALLAA	VPVGYGLYSA	120
FFPILTYFIF	GTSRHISVGP	FPPVSLMVGs	VULSMADPER	FLVSSNGTIV	LNTTMIDTAA	180
RDTARVLIIAS	ALTLVVGIIQ	LIPGGLQIHF	IVRYLADPLV	GGFTAAFAQV	VLVSQLKIVL	240
NVSTKNYNGV	LSIIYTBLV	FQNIGDNTLA	DFTAGLLTIV	VCMAVKELND	RFRHKIPVPI	300
PIEVITVIIA	TAISYGANLE	KNYNAGIVKS	IPRGLLPPE	PPVSLFSEML	AASFSTIAVVA	360
YAIAVSGVKV	YATKDYTDIT	GNQFEIAGI	SNIIFSGFFSC	FVATTALSRT	AVQESTGGKT	420
QVAGIISAAI	VMIAILALGK	LLEPLQKSVL	AAVVIANLKG	MFMOCLCDIPR	LWRQNQKIDAV	480
IWFTCTIVSI	ILGLDGLGLA	GLIFGLLTIV	LRLQFWPSWNG	LGSIPSTDLY	KSTKKNYKNE	540
EPQGVKILRF	SPPIFYGVND	GFKKCIKSTW	GFDFAIRVYNN	TLALKR1QKQ	LIKSGQLRAT	600
KNQIISDVA	TNNAFEPDED	IEDLEELDIP	TKEIEIQVDW	NSELPVKVN	PKVPIHSLVL	660
DCGAISFLDV	VGVRSLRVIV	KEFQRIDVNV	YFASLODQYVI	EKLQECGGFD	DNIRKDFFL	720
TVHIDLQY	NQVKSQEGQG	SILETITLIQ	DCKDTLLELIE	TELTEEEELDV	QDEAMRTLAS	780
ODEAMRTLAS						

SEQ ID NO:233 PFH2 DNA SEQUENCE:

Nucleic Acid Accession #: NM_016029
Coding sequence: 228-1097 (underlined sequences correspond to start and stop codons)

1	11	21	31	41	51	
CTGCGATCCC	GCAGGGCAGC	GACGCCACTC	TGGTGGGGC	CGTCTTCCTTC	CCCCGGAGCT	60
GGGCGTCGCG	GGCGCAATG	AACCTGGAGC	TGCTGCTGTG	GCTGCTGGTG	CTGTCGCGC	120
TGCTCCTGCT	CTTGGTGAG	CTGCTGCCT	TCTGTAGGGC	TGACCCGAC	CTGACGCTAC	180
TATGGGGCGA	GTGGCAGGGA	CGACGCCAG	ATAGGGAGCT	GACTGATATG	GTGTCGTGGG	240
TGACTGGAGC	CTACAGTGG	ATTGGTGGAG	ACCTGGCTTA	CCAGTGTCT	AAACATAGGAG	300
TTTCCTTGT	GCTGTCAGCC	AGAAGAGTGC	ATGAGCTGG	AAGGGTGA	AGAAGATGCC	360
TAGAGAATGG	CAATTTAAAA	GAAAAGATA	TACTTGT	GGCCCTTGAG	CTGACGCCAGA	420
CTGGTTCCC	TAAGCGGCT	ACCAAAGCTG	TCTTCAGGA	TTTGTAGAGA	ATTCGACATTTC	480
TGGTCAACAA	TGGTGGAT	TCCCCAGCGT	CTCTGTGCA	GGATACCAGC	TTGGATGCT	540
ACAGAAAGCT	AATAGAGCTT	AACTACTTGT	GGACGGTGTG	CTTGACAA	TGTGTTCTGC	600
CTCAGATCG	CGAGAGGAAAG	CAAGGAAAAGA	TTGTTACTGT	GAATAGCATC	CTGGGATCAT	660
TATCTGTAC	TCTTCTTCACT	GGTAACTCTG	CTAGCAAGCA	TGCTCTCCGG	GGTTTTTTTA	720
ATGGCCCTTC	AACAGAACCTT	GCCACATACC	CAGGTATAAT	AGTTTCTAAG	ATTGTCCTAAC	780
GACCTCTGCA	ATCAAAATATT	GTGGGAGATT	CCCTAGCTGG	AGAAGTCACA	AAAGCTATAG	840
GCAATTAATGG	AGACCGATGC	CAACAGATGA	CAACACCTCG	TTGTTGCGG	CTGATGTTAA	900
TCAGCATGGC	CAATGATTTG	AAAGAAGTTT	GGATCTCAGA	ACAACTTCIT	TTGTTAGTAA	960
CATATTGTTG	GCAATCATCG	CCAACTGGG	CTTGTGGGT	AACCAACAAAG	ATGGGAGAAG	1020
AAAGGATTTGA	GAACCTTAAAG	AGTGGTGTGG	ATCGCACACTC	TCTTATT	AAAATCTTTA	1080
AGACAAACAA	TGACTGAAAA	GAGCACCTGT	ACTTTCAAG	CCACTGAGG	GAGAAATGGAA	1140
AAACATGAAA	ACAGCAATCT	TCTTATGCTT	CTGAATATCA	AAAGACTAAT	TTGTGATT	1200
ACTTTTTAAT	AGATATGATC	TTGCTTCCAA	CATGGAATGA	AATAAAAAAAT	AAATAAAT	1260
AGATGGCCAT	GAATCTTGCA	AA				

SEQ ID NO:234 PFH2 Protein sequence: NP_057113

MNWELLLLWL	VLCALLLVL	QLRFLRARDG	DLTLLWAWEQ	GRRPEWELTD	MVWVTGASS	60
GIGEELAYQL	SKLGVSLVLS	ARRVHELERV	KRRCLENGNL	KEKDILVPLP	DLTDTGSHEA	120
ATKAVLQEFG	RIDILVNNGG	MSQRSLCLMDT	SLDVYRKLI	LNYLGTVSLT	KCVLPHMIER	180
KQKGIVTVNS	ILGIISPLWS	IGYCAKSHAL	RGFFGNLRTE	LATYPGIIVS	NICCPGVQSN	240
IVENSLAGEV	TKTIGNQDQ	SHKMTTSRCV	RLMLISMAND	LKEWWISEQP	FLLVTYLWQY	300
MPTWAWITIN	KGKGGKRIENF	KSGVDADSSY	FKIFKTKHDX			

SEQ ID NO:235 ACC5 DNA SEQUENCE

Coding sequence: 1-1833 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
5	ATGATTGCTT	CACAGTTTCT	CTCAGCTCT	ACTTTGGTGC	TTCTCATTA	AGAGAGTGG	60
	GCCTGGTCTT	ACAACACCTC	CACGGAAGCT	ATGACTTATG	ATGAGGCGAG	TGCTTATTGT	120
	CAGCAAAGGT	ACACACACCT	GGTGGCAATT	CAAACAAAG	AAGAGATG	GTACCTAAAC	180
10	TCCATATTGA	GCTATTCA	AAGTTATTAC	TGAGATTGGAA	TCAGAAAAGT	CAACATGTG	240
	TGGGTCTGGG	TAGGAACCA	GAAACCTCTG	ACAGAAGAAG	CCAAGAAC	GGCTCCAGGT	300
	GAACCCAACA	ATAGGCAAA	AGATGAGGAC	TGCGTGAGAGA	TCTACATCAA	GAGAGAAAAAA	360
	GATGTGGCA	TGTGGAAATG	TGAGAGGTG	AGCAAGAAG	AGCTTGCCCT	ATGCTACACA	420
15	GCTGCCCTGTA	CCAAATCAC	CTGCAGTGGC	CACGGTGAAT	GTGAGAGAC	CATCAATAAT	480
	TACACTTGCA	AGTGTGACCC	TGGCTTCAGT	GGACTCAAGT	GTGAGCAAT	TGTGAACGT	540
	ACAGCCCCTGG	AAATCCCCTG	GCATGGAGC	CTGGMTGCA	GTCAACCCACT	GGGAAACTTC	600
	AGCTACATT	CTTCTCTGTC	TATCAGCTGT	GATAGGGGTT	ACCTGCCAAG	CAGCATGGAG	660
	ACCATGCAGT	GTATGTCTC	TGGAGAAATG	AGTGCTCCTA	TTCCAGCCTG	CAATGTGGTT	720
	GAGTGTGATG	CTGTGACAA	TCCAGCAAT	GGGTTGCTGTG	AAATGTTTCCA	AAACCTTGG	780
	AGCTTCCCCAT	GGAAACAAAC	CTGTACATT	GACTGTGAAG	AAGGATTG	ACTAATGGGA	840
20	GCCCCAGAGCC	TTCAGTGTAC	CTCATCTGGG	AATTGGGACA	ACGAGAAC	ACAGTGTAAA	900
	GCTGTGACAT	CGAGGGCCGT	CCGCCAGCCT	CAGAAATGGCT	CTGTTGAGGTG	CAGCCATTCC	960
	CCTGCTGGAG	AGTTCACCTT	CAAATCATC	TGCAACTTCA	CCTGTGAGGA	AGGCTTCATG	1020
	TTGCAAGGAC	CAGGCCAGGT	TGAATGACCC	ACTCAAGGGC	ATGAGACACA	GCACAAATCCA	1080
	GTGTTGTGAAG	CTTTCAGTG	CACAGCCTTG	TCCAACCCCG	AGCGAGGCTA	CATGAATTG	1140
25	CTTCTCTAGT	CTTCTGGCAG	TTTCGTTAT	GGGTCCAGCT	GTGAGTTCCTC	CTGTGAGCAG	1200
	GGTTTTGTGT	TGAAGGATC	CAAAAGGCT	CAATGTGGCC	CCACAGGGGA	GTGGGACAAC	1260
	GAGAAAGCCA	CATGTGAGC	TGTGAGATGC	GATGCTGTCC	ACCAGCCCC	GAAGGGTTG	1320
	GTGAGGTG	CTCATCCCC	TATGGAGAA	TTCACCTACA	AGTCTCTT	TGCCCTTCAGC	1380
	TGTGAGGAGG	GATTGAAATT	ATATGGATCA	ACTCAACTTG	AGTGCACATC	TCAGGGACAA	1440
30	TGGACAGAAC	AGGTTCTTC	CTGCCAAC	GTAAAATGTT	CAACGCTG	AGTTCGGG	1500
	AAGATCAACA	TAAGGTCAG	TGGGGAGCCC	GTGTTMGGCA	CTGTTGTC	CTTCGCTGT	1560
	CCTGAAGGAT	GGACGCTCAT	TGGCTCTGCA	GCTCGGACAT	GTGGAGCCAC	AGGACACTGG	1620
	TCTGCCCCTC	TACCTACCTG	TGAAGCTCC	ACTGACTTCA	ACATTCCTT	GGTACTGGA	1680
	CTTCTCTGCTG	CTGGACTCTC	CCTCTGACA	TTAGCACC	TTCTCTCTG	GCTTCGGAAA	1740
35	TGCTTACCGA	AAGCAAAGAA	ATTTGTTCT	CCCAGCAGCT	GCACAAAGCT	TGAATCAGAC	1800
	GSYQKPSYIL	AAAAGCCTTC	TTACATCTT	<u>TAA</u>			

SEQ ID NO:236 ACC5 Protein sequence:

Protein Accession #: NP_000441

	1	11	21	31	41	51	
40	MIASQFLSAL	TLVLLIKESG	AWSYNTSTE	MTYDEASAYC	QQRYTHLVAI	QNKEEIEYLN	60
	SILSYSPSY	WIGIRKVNNV	WWVWGTQKPL	TEEAKNWAPG	EPNNRQRKDED	CVEIYIKREK	120
	DVGWMNDERC	SKKKLALCYT	AACTNTSCSG	HGECEVETIN	YTCKCDPGFS	GLKCEQIVNC	180
45	TALESPEHNS	LVCSSHPLGNF	SYNSSCSISC	DRGYLPSSME	TMQCMSSGEW	SAPIPACNVV	240
	ECDAVTNPAN	GFVECFQNP	SFPWNTTCTF	DCEEGFELMC	AQSLQCTTS	NWDNEKPTCK	300
	AVTCRAVRQP	QNGSVRCSHS	PAGEFTFKSS	CNFTCEEGFM	LQGPQAQVECT	TQGQWTQQIP	360
	VCEAFQCTAL	SNPERGYMNC	LPSASGSFRY	GSSCFEFSCBQ	GFVLKGSKRL	QCGPTGEWDN	420
50	EKPITCEAVR	DAHVQPFKGL	VRCAHSPIGE	FTYKSSCAF	CEEFGELYSG	TQLECTSQGQ	480
	WTEEVPSQV	VKCSSLAvg	KINNSCSGEP	VFGTVCKFAC	PEGWTLNSA	ARTCGATGHW	540
	SGLLPTCEAP	TESNIPLVAG	LSAAGLSSLT	LAPFLLWRK	CLRKAKKFVP	ASSCQSLES	600
55	GSYQKPSYIL						

SEQ ID NO:237 PM28 DNA SEQUENCE

Nucleic Acid Accession #: N51002
Coding sequence: 1-3793 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
60	ATGATGTGTG	AAGTGTGATGCC	CACGATTAT	GAGGACACCC	CAATGAGCCA	AAGGGGGTCC	60
	CAAAGCAGT	GCTCGGACTC	AGACTCCC	TTTGAGCAGC	TGATGGTGA	TATGCTAGAT	120
	GAAAGGATC	GTCCTCTAGA	CACCCCTCGG	GAGACCCAGG	AAAGCCTCTC	ACTTGCCAG	180
65	CAAAGACTTC	AGGATGTCAT	CTATGACCG	GACTCACTCC	AGAGACAGCT	CAATTCA	240
	CTGCCAACAGG	ATATGCAATC	CCTAACAGG	GGGCTGGCT	GTCTCTAACGG	GGCTGATC	300
	CCGGAAATTG	CTGCCTGAC	AAAAGATT	AATGCTGCA	GGAAACAACT	TCTAGAAAAG	360
	GAAGAAGAAA	TCTCTGACT	TAAAGCTGA	AGAAACAACA	CAAGACTATT	ACTGGAGCAT	420
70	TTGGAGTGC	TTGTGTCACG	ACATGAAAGA	TCACTAAAGA	TGACGGTGGT	AAAACGGCAA	480
	GCCCAAGTC	CCTCAGGAGT	ATCCAGTGA	TTGAGTGA	TCAAGGCACT	GAATCTT	540
	TTTGAAGCACC	ACAAGGCTT	GGATGAAAGA	GTAAAGGAGC	GACTGAGGGT	TTCCTT	600
	AGAGTCTCTG	CACTGGAAGA	AGAACTAGCT	GCTGCTAATC	AGGAGATG	TGCCCTGCGT	660
75	GAACAAAATG	TTCATATACA	AAGAAAAATG	GCATCAAGCG	AGGGATCCAC	AGAGTCAGAA	720
	CATCTTGAAG	GGATGAAACC	TGGACAGAAA	GTCCATGAGA	AGCGTTTGT	CAATGTTCT	780
	ATAGACTCAA	CCGATGAAAC	TAGTCAAATA	TTGAGTAC	AAGAATTGCT	TGAAAAGCAA	840
	AACTATGAA	TGGCCAGAT	GAAAGAACGT	TTAGCAGCCC	TTCTTCTCCG	AGTGGGAGAG	900
	GTGGAACAGG	AAGCAGAGAC	AGCAAGAAG	GATCTCATTA	AAACAGAAGA	ATGAAACACC	960
80	AAAGTATCAA	GGGACATTAG	GGAGGCCATG	GCACAAAAGG	AAGATATGGA	AGAAAGAATT	1020
	ACAACCCCTG	AAAAGCCTT	CCTCAGTGT	CAGAGAGAA	CTACCTCAT	ACATGACATG	1080

5 AATGATAAAC TAGAAAATGA GTTAGCAAAT AAAGAAGCTA TCCTACGGCA GATGGAAGAG 1140
 AAAAACAGAC AGTTACAAGA ACGTCTTGAG CTAGCTGAAC AAAAGTTGCA GCAGACCAG 1200
 AGAAAGGCTG AACCTTGCCTG TGAAAGTAGAG GCTGAACACTGG CTCAGAGAAT TGCAGCCCTA 1260
 ACCAAGGCTG AAGAGAGACA TGAAATATT GAAGAACGTA TGAGACATT AGAGGGTCAA 1320
 10 CTTGAAGAGA AGAATCAAGA ACITCAAGA GCTAGGCCAA GAGAGAAAAT GAATGAGGAG 1380
 CATAACAAGA GATTATCGGA TACGGTTGAT AGACTTCTGA CTGAATCCAA TGAACCCCTA 1440
 CAACTACACT TAAGGAAAG AGATGCTGCT CTAGAAGAAA AGAATGTTT ATTCAAGAAA 1500
 TCAGAAACTT TCAGAAAGAA TCTTGAAGAA TCTTACATG ATAAGGAAAG ATTACGAGAA 1560
 GAAATTGAAA AGCTGAGATC TGAACTTGAC CAATTGAAAA TGAGAACTGG CTCTTAAATT 1620
 15 GAACCCACAA TACCAAGAAC TCATCTAGAC ACCTCAGCTG AGTTGCGGTA CTCAGTGGGA 1680
 TCCCTAGTGG ACAGCCAGTC TGATTACAGA ACAACTAAAG TAATAAGAAG ACCAAGGAGA 1740
 GGCCCATGG GTGTCGCAAG AGATGAGCCA AAGGTGAAAT CTCTTGGGA TCACGAGTGG 1800
 AATAGAACTC AACAGATTGG AGTACTAACG AGCCACCCCT TTGAAAGTGA CACTGAATAG 1860
 TCTGATATT AGATGATGAGA CAGAGAACAA ATTITTAGCT CAATGGATCT TCTCTCTCCA 1920
 20 AGTGGTCATT CGCATGCCA GAGCCTAGCC ATGATGCTTC AGAACAAATT GGATGCCATC 1980
 AACAAAGAAA TCAGGCTAAT TCAGGAAGAA AAAGAATCTA CAGAGTTGG TGCTGAAGAA 2040
 ATTGAAATAA GAGTGGCTG TGTCGAGGAGA AAAGGCTGTA ATTGGCAAG GGTCCACCCA 2100
 GGTACCTCCA TTACTGCCCT TGTTACAGCT TCATGCCCTG CGACTTCATC TCCCCCCAGT 2160
 25 GGACACTCAA CTCCAAAGCT CACCCCTCGA AGCCCTGCCA GGGAAATGGA TCGGATGGGA 2220
 GTCATGACAC TGCCAAGTGA TCTGAGGAAA CATCGAGAA AGATTCGAGT TGTTGGAAAGA 2280
 GATGGCTGAG AGGACAAAGC AACAAATTAA TGTGAAACTT CTCCCTCTC TACCCCTAGA 2340
 GCCCTCAGAA TGACTCACCT TCTCCCTCTC TCTTACCCACA ATGATGCTCG AAGTAGTTA 2400
 TCTGTCCTC TTGAGCCAGA AAGCCTCGGG CTTGGTAGTG CCAACAGCAG CCAAGACTCT 2460
 CTCACCAAG CCCCAAGAGA GAAAGGAATC AGACTCTTCAA TAGGACGTTT GTTGGTAAA 2520
 30 AAAGAAAAG CTCGACTTGG CACACTCGGA GCTTGTATGG AGACTGAAGC TGCGACTCAG 2580
 GAGTCCCTGG GTTGTAGGAA ACTCGGAAC TCAAGCTGAGA AGGATCGAG ACTAAAGAAA 2640
 AAGCATGAAC TTCTTGAAGA AGCTCGGAGA AAGGGATTAC CTTTTGCCTCA GTGGGATGG 2700
 CCAACTCTGG TCGCATGGT AGAGCTTTGG TTGGGAATGTC CTGCGTGGTA CGTGGCAGCC 2760
 TGCCGACCCA ACGTGAAGAG TGGTGCCTAC TATCTCTCCT TGAGATCCAG 2820
 35 AGAGAAATTG GAATCAGCAA TCCACTGCA CGCTTAAAC TTCGATTAGC AATCCAGGG 2880
 ATGGTTCTCC TACAACTGCTC CCAACATCTC GAACCTCTC AGGCAACGTT 2940
 TGGGTGACTC ATGAAGAAAT GGAAAATCTT GCAGCTCCAG CAAAACGAA AGAATCTGAG 3000
 GAAGGAAGCT GGGCCCTAGT TCCGGTTTTT CTACAGACCC TGCTTATGG AGATATGAAT 3060
 CATGAGTGGA TTGGAATGAA ATGGCTTCCC AGCTTGGGGT PACCTCAGTA CAGAAGTTAC 3120
 TTATGGAAT GCTTGTAGA TGCAAGAATG TTAGATCACC TAAACAAAAA AGATCTCCGT 3180
 40 GTCCATTAAAGA AAATGTGGA TAGTTTCCAT CGAACAAAGTT TACAATATGG AATTATGTGC 3240
 TAAAGAGGT TGAATTATGA CAGAAAAGAA CTAGAAAAGAA GACGGGAAGG AAGCCAACAT 3300
 GAATAAAAGG AGCTGTGGT TGAGGACATT GACCGAATTA TTGCGTGGAT ACAAGCAATT 3360
 GGACTTCGAG AATATGAAA TAATACTCTT GAGAGCGGTG TGCGATGGCTC ACTPATAGCC 3420
 CTGGATGAAA ACTTTGACTA CAGCAGCTTA ACTTTATTAT TACAGATTCC AACACAGAAC 3480
 ACCCAGGCAA GCGAGTCTC TGAAAGGAGA TACAATAACC TCTTGGCCCT GGGAACTGAA 3540
 AGGGACTGG ATGAAAGTGA TGACAAAGAC TTCAAGCTG GATCAACCTG GAGAAGGAG 3600
 45 TTCTCTCTC TGAAAGTACA TGGAACTAGC ATGATGCTG GGTCTCAGA AACATTACCA 3660
 GCTGGATTTA GTGTAACCC ACCCTCTGGG CAATCAAGAA AAATGACAAC AGATGTTGCT 3720
 TCATCAAGAC TGCAGAGGTT AGACAACATCC ACTGTTCGCA CATACTCATG TCTCGAGTAA 3780
 GCGGCCGCTT TAA

SEQ ID NO:238 PM28 Protein sequence:

Protein Accession #: none found

	1	11	21	31	41	51	
55	MMCEVMPPTN	EDTPMSQRGS	QSSGSDSDSH	FEQLMVNMLD	ERDRLLDTLR	ETQESLSLAQ	60
	ORLQDVYIDR	DSLQRQLNSA	LHQDIESLTG	GLAGSKGADP	PEFAALTKEI	NACREQLLEK	120
	EEEISELKAЕ	RNNTRLLLEH	LECLVSRHER	SLRMTVVKRQ	AQSPSGVSSE	VEVLKALKSL	180
	FEHHKALDEK	VRELRVSL	RVSALEELA	AANQBIVALR	EQNVIHQIRKM	ASSEGSTESE	240
	HLEGMEPGQK	VHEKRLNSG	IDSTDTSQI	VELQELLEKQ	NYEMEAQMKER	LAALSSRVE	300
	VEQEAEATARK	DLLKTEEMNT	KYQRDIREAM	AQKEDMEERI	TTLEKRYLSA	QRESTSIHD	360
	NDKLENELAN	KEA1LRQMEE	KNRQLQERLE	LAEOKLQQTM	RKAETLPEVE	AELAQRIAA	420
	TKAAERHGNI	EEMMRHLLEGQ	LEEKNQELQR	ARQREKMNNE	HNKRLSDPTVD	RLLTESNERL	480
	OLHLKERMAA	LEEKKNVLIQE	SETFRKNLEE	SLHDKERLAB	EIEKLRLSELD	QLKMRGTLI	540
	EPTIPRTHLD	TSaelrysvg	SLVDSQSDFYR	TTKVIRPRPR	GRMGVRDREP	KVKSILGDHEW	600
	NRTQQIGVLS	SHPFESDEM	SDIDDDDRRET	IFSSMDLLSP	SGHSDAQTLA	MMLQEQLDAI	660
	NKEIRLQEE	KESTELRAE	IENRVAWSVL	EGLNLARVHP	GTSITASVTA	SSLASSPPS	720
	GHSTPKLTPR	SPAREMDRMG	VMTLPSDLRK	HRRKIAVVEE	DGREDKATIK	CETSPPPPTPR	780
	ALRMTHTLPS	SYHNDARSSL	SVSLPEPESLG	LGSAANSSQDS	LHKAPKKKG	KSSIGRLFGK	840
	KEKARLGQLR	GFMETEAAAO	ESLGLGKLG	QAEKDRRLKK	KHELLEEAR	KGLPFAQWDG	900
	PTIVVALEWL	LGMPAWYVAA	CRANVKGAI	MSALSDETEIQ	REIGISNPPLH	RLKLRLAIQE	960
	MVSLTSPSAP	PTSRTPSGNV	WTTHEEMENL	AAAPAKTKESE	EGSWAQCPVF	LQTLAYGDMN	1020
	HEWIGNEWLP	SLGLPQYRSY	FMECLVDARM	LDHLTKKDLR	VHLKMVDSPH	RTSLQVGIMC	1080
	LKRLNYDRKE	LERRREASQH	EIKDVLVWSN	DRIIRWIQAI	GLREYANNIL	ESGVHGSLIA	1140
	LDENFDYSSL	TLLLQIPTQN	TQARQILERE	YNNLLALGT	RRLDDESDDKN	FRRGSTWRRQ	1200
75	FPREVHGIS	MMPGSSETLP	AGFRLTTSG	QSRKMTTDVA	SSRLQRLDNS	TVRTYSCLE	

SEQ ID NO:239 PC14 DNA SEQUENCE

Nucleic Acid Accession #:

NM_016570

Coding sequence:

1- 1134 (underlined sequences correspond to start and stop codons)

1 11 21 31 41 51
 |
 5 ATGAGGCAGC TGAATCGGAA AAAAACTTTA AGTTTGGTAA AAGAGTTGGA TGCCCTTCG 60
 AAGGTTCTG AGAGCTATGT AGAGACTTCA GCCAGTGGAG GTACAGTTTC TCTAATAGCA 120
 TTTACAACTA TGGCTTTATT AACCATATAG GAATTCTCAG TATATCAAGA TACATGGATG 180
 AAGTATGAAT CGAACACTAGA CAAGGATTT TCTAGCAAAT TAAGAATTAA TATAGATATT 240
 ACTGTTGCCA TGAAGTGTCA ATATGTTGGA CGGGATGTAT TGGAATTAGC AGAAAACAATG 300
 GTTGCACTCG CAGATGGTT AGTTTATGAA CCAACAGTAT TTGATCTTC ACCACAGCAG 360
 10 AAAGAGTGGC AGAGGATGCT GCAGCTGATT CAGAGTAGGC TACAAGAAGA GCATTCACCT 420
 CAAGATGTA TATTAAAAG TGCTTTAAAAG ATGACATCAA CAGCTCTMC ACCAAGAGAA 480
 GATGATTCTC CACAGTCTCC AAATGCAATC AGAATTCATG GCCATCTATA TGTCAATAAA 540
 GTAGCAGGGG ATTTCACAT AACAGTGGGC AAGGAATTCT CACATCTCG TGGTCATGCA 600
 15 CATTGGCAG CACTGTCAA CCATGAACTC TACAATTTTG CTCATAGAAT AGATCATTG 660
 TCTTTGGAG AGCTTCTTC AGCAATTTATT AATCCCTTAG ATGGAACATG AAAAATTGCT 720
 ATAGATCACA ACCAGATGTT CCAATATTTT ATTACAGTT TGCCAACAAA ACTACATACA 780
 TATAAAATAT CAGCAGACAG CCATCAGTT TCTGTGACAC AAAGGAAACG TATCATTAAAC 840
 CATGCTGCAG CGAGCCATGC AGTCTCTGG ATATTATGAA AATATGATCT CAGTTCTCTT 900
 20 ATGGTGACAG TTACTGAGGA GCACATGCCA TTCTGGCAGT TTTTGTAAAG ACTCTGTGGT 960
 ATTGTTGGAG GAATCTTTTC AACAAACAGGC ATGTTACATG GAATTGGAAA ATTATAGTT 1020
 GAAAATAATT GCTGTCGTTT CAGACTTGGA TCCTATAAACT CGTCAATTIC TGTTCCCTTT 1080
 GAGGATGGCC ACACAGACAA CCACCTTACCT CTTTGTAGAAA ATAATACACAA TTGA

25 SEQ ID NO:240 PCI4 Protein sequence:
 Protein Accession #: NP_057654

1 11 21 31 41 51
 |
 30 MRRLLNRKKTL SLVKELDAFF KVPESYVETS ASGGTVSLIA FTTMALLTIM EFSVYQDTWM 60
 KYEYEVDKDF SSKLRLNIDI TVAMKQCIVVG ADVLDDAETM VASADGLVYE PTVFDLSPQQ 120
 KEWQRMLQLI QSRLQEEHSL QDVIFKSAFK STSTALPPRE DDSSQSPNAC RIHGHLYVNK 180
 VAGNFHITVG KAIPHPRGHA HLAALVNHES YNFSHRIDHL SFGEILVPAII NPLDGTEKIA 240
 IDHNQMFQYF ITVVPFLKLHY YKISADTHQF SVTERERIIN HAAGSHGVSG IFMKYDLSL 300
 35 MVTVPEEEHMP FWQFFVRLRCG IVGGIFSTTG MLHGIGKFI EIICCRFRLLG SYKPVNSVPP 360
 EDGHTDNHLP LLNNTH

SEQ ID NO:241 PBA7 DNA SEQUENCE

40 Nucleic Acid Accession#: AA219134

Coding sequence: 24-1815 (underlined sequences correspond to start and stop codons)

AATTGCCCC TTGCTTAATTA AGCAATGTTA CCTTCCCTGTC ATCTGTCACT GCTGCTGTCA 60
 GTGGCCCTT GGTGGTTAT GAACTGGGA TCATCTCTGG GGCTCTTCTT CAGATCAAAA 120
 CCTTATTAGC CCTGAGCTGC CATGAGCAGG AAATGGTTGT GAGCTCCCTC GTCATGGAG 180
 CCCTCCCTGC CTCACTCACC GGAGGGTCC TGATAGACAG ATATGGAAGA AGGACAGCAA 240
 TCATCTGTG ATCTGCTCC CTGGACTCG GAAGCTTAGT CTTGATCCTC AGTTTATCCT 300
 ACACGGTTCT TATAGTGGGA CGCATGGCA TAGGGGTTTC CATCTCCCTC TCTTCCATTG 360
 CCACTTGTGT TTACATCGCA GAGATTCGTC CTCAACACAG AAGAGGCCCTT CTGTGTAC 420
 45 TGAATGAGCT GATGATTGTC ATCGGCATTC TTTCCTGCTA TATTCAAAAT TACGCATTG 480
 CCAATGTTT CCATGGCTGG AAGTACATGT TTGGTCTTGT GATTCCTTG GGAGTTTGC 540
 AAGCAATGCA ATATGATTTTT CTTCTCCCAA GCCCCTGGTT CTGGTGTATG AAAGGACAAG 600
 AGGGAGCTGC TAGCAAGGTT CTGGAAAGGT TAAGAGGACT CTCAGATACA ACTGAGGAAC 660
 50 TCACTGTGAT CAAATCCTCC CTGAAAGATG AAATATCA CAGTTTTGG GATCTTTG 720
 GTTCAAAAGA CAAACATCGGG ACCCGAAATAA TGATAGGAACT AACACTAGTA TTTTTGTAC 780
 AAATCACTGG CCAACCAAAC ATATGTTCT ATGCATCAAC TGTTTGAAAG TCAGTTGGAT 840
 TTCAAAGCAA TGAGGCAGCT AGCTCTGCCT CCACTGGGGT TGAGTCGTC AAGGTCATTA 900
 GCACCATCCC TGCCACTCTT CTGAGGACAG ATGTCGGAG CAAACATTC CTCTGCATTG 960
 55 GCTCTCTGT GATGGCAGCT CGTGTGGTGA CCATGGCAT CGTAAATCTC AACATCACAC 1020
 TGAACCTCAC CCATATCTGC AGAAGGCCAA ATTCATCAA CCAGTCCTTG GATGAGTCG 1080
 TGATTTATGG ACCAGGAATC CTGTCACCA ACAACAAATC TCTCAGAGAC CACTTCAAAG 1140
 GGATTCTTC CCATAGCAGA AGCTCACTA TGCCCCCTGAG AAATGATGTG GATAAGAGAG 1200
 GGGAGACGAC CTCAGCATCC TTGCTAAATG CTGGATAAG CCACACTGAA TACAGATAG 1260
 60 TCACAGACCCC TGGGGACGCTT CGACCTTTTG TGAAATGGCT GTCCTAGCC AGCTTCTG 1320
 TTATGTTGC TGCTTCTCA ATTGGTCTAG GACCAATGC CTGGCTGGTG CTCAAGGAGA 1380
 TCTTCCCTGG TGGGATCAGA GGACGAGCCA TGGCTTAAAC TTCTAGCATG AACTGGGCA 1440
 TCAATCTCTT CATCTCGCTG ACATTTTGA CTGTAACCTGA TCTTATGCG CTGCCATGG 1500
 TGTGCTTAT ATACATACATGAGCTGATG ATCTTATGG CCTGGCATGG GTGTGCTTAA 1560
 65 TATATACAAT CATGAGCTCA GCATCCCTG TTTTGTGTATGTTTATA CTCAGGACAA 1620
 AGGGATGCTC TTGGAAACAA ATCAATGG AGCTGACAAA AGTGAACATAT GTGAAAAAACAA 1680
 ACATTTGTTT TAIGAGTCAT CACCAAGAAAG AATTAGTGC CAAACAGCCT CAAAAAAAGAA 1740
 AACCCCGAGGA GCAGCTCTT GAGTGTAAACA AGCTGTGG TAGGGGCAA TCCAGGAGCAG 1800
 70 TTCTCCAGA GACCTAATGG CCTCAACACC TTCTGAACGT GGATAGTGC AGAACACTTA 1860
 GGAGGGGTGTC TTGGACCAA TGCACTAGTGG CGACTCTCTG GCTCTCTTTT CAGTGTCTG 1920
 75 GAACTGGTTT TGAAGACACA CTCGAATAGT ATAAAGACAG CCTTAAATCC CCCCTCTCMC 1980
 CAGAAGGAAAC CTCAAAAGGT AGATGACCTA CAAGGTCTTA AGTGAATCTT TTTCTGAGC 2040
 AGGATATCAG GTTAAAAAAA AAAAGTACT GGCTGGTTA ATACTTCTCA CCTCTTCAC 2100
 AGAGCAGCCT TTGAATAGAC TATGTCCTAG TGAAGACATC AACCTCCGCC TTAAGCTATG 2160
 TATGTATGGA GGCCAGTCGC AGCTTTATA TGCAAGACACA CAAGTGGTCT GGACATGAGG 2220
 80 GTACAGTTTC TGCCCTACCAA GACACTACTT GCACTGGATC TTACGAAAAA AGAACACAGA 2280

ACACACAGTG TGGACAACGT CCCATATATT CTATCTAGAT TAGGAGAGGG TCCTGGCTAG 2340
 GATTTAGTG GTAATCCTA GTTACATICA ACAAGTATAA AGATTATAGA GCTTATTITA 2400
 5 TGAACATAAA ACTATAATT AATGCAAAT ATCCTTTAT GAATTCTATG TTAATATTGT 2460
 GAAATATTA AATAATTCCR CAATAGTGA GAAAATGAG CATTTC CATTTTAAA 2520
 AAATGCATAG AAAAGACAAT TTAAAATCC TGGGACCCATA TTATTTAGA AGTAGCTGTT 2580
 AGTAAAACAT TAGAAAAGGA GTCAGGCCAT TAGGTTATT ATCCAATCT CTAAGCAATT 2640
 AGGTGAAGT TATTAAGTCA AGCTTAGAAA AGCTGCCTC TTGTAAGGCT TICATGACAA 2700
 TGATAGTAA TCCACAGT CCAATTCTC ACACTCTCA GGAATATCAC TACCTCAGGT 2760
 10 TACGGTACAC AGGCTATAAT TGATGATGAT GTTCAGATAA CTGAAGACAC AATAATGAC 2820
 ATTACAGACAT CAGGAMAAWW CCCTCATGTT CTTTCTATG ATGGCCACT GTACCAGCAA 2880
 CGTGGGTTIC ACCCACACAA CGATGAATG TCTCCAGTT TCTCCAGTT ATTTAAAGA 2940
 CTTGTTAAGA GGTCTACTA ATAAAATTG GGTTGATAG AAAWCACCA ATCAAACWCTT 3000
 15 GAACCAAATA ACATATTAAA TTACTAATAT TTAAAGTGTG GAAGACACAC AAAAAGCTTA 3060
 AAAGCACGAA CAACCTAACT TGAAAAGAA TTTTAAAATA TGATTAACCT GAAGAAAAGA 3120
 GAATCCTAAG AGCCAAAGCT CCTTTTATT TAGCTTGAA TTTCCTATT GGTCCTAAC 3180
 20 AAACGTCCC AATGTCATAT AAGGAACAT GATCTTATAC ATTCCTTAT AACATGTTG 3240
 AGAGACTATA AACCTATGT AAGTAGTAAA CTATATYAGA GACTCAGGAG ACTGACTAAA 3300
 AGGCCTGGAT CTGAGTGTG TTATCTGTAT AAAAATTGGC AGGGGGAAGC TAAAAGGAAA 3360
 GGAGATTGGA GATCTCAATT CTATCATGTT GTATTCTCA CGCAAATCAG AGCATGCATT 3420
 GTTTTTGTT TTGAAAGA GAAGGGAAAGT GTGTTCTGCC CCATGTITCC TTCCGTGTT 3480
 25 ATAGTTCAAACCTCTATAT ACTTCAGTAA TTGTTGTTT AGCCCTTAT TATAAATGGG 3540
 CAGGAAATTG TTATCAACC TAGCCAGTTT ATTACTAGT ACCTTGACTT CAGTATCTG 3600
 AGCATTCTT TATTTTTCTT CTGAGTGTG AACTAAACAA TTGTTCTTC 3660
 AAATTTTAT CCAATATCCA TTGACCCACA CCAAATCAAG CTCTTGATT TTCAAAAATA 3720
 30 AAAAGGGGAA AATACCTAA ACTTGTACAT ATATATTCAC AGTTTTATT TATAAAAAAAA 3780
 ATTACAGTA CTTATGGAGA GCGAGCAGAA GACATCAGAG CACTCACTTC TTCCCATCTT 3840
 TGTTAAGGTT AGCGAATTAC CCATGGACAC TGTTAGGTGA GGTCATTCG GCAGCCCTGA 3900
 AAACAAACCTT GGTACACTG TCTTACCCCT CTCCCTTCAG ATAAAGCACT TCGATTATCT 3960
 35 ATGATCTGC CCAGTTCTCA AGTCATGGAA ATACTAAAAA GTTACATCA TCTGGATCTG 4020
 TACCTTGCT ATATAAGCAT GTTTCCCCC TATTCATGT TTCTTTTTT GGTGAACATT 4080
 GAAAACAGG AGGTACTIA TTACTGTIAA TTAAAACCTAA ATGAAAATG TCAAGTCTT 4140
 AAAACAGTGA GCTTGTAACT CTTCATGTA TTATTTCTCT CTATGAATTG GGCTATCCTA 4200
 CTGAATCTTA AAATAAAGGA AATAAACACT TTGTTTWA AAAAAGGAA AAATAMAARW 4260
 MWAAAATCT CAATGAAATA TTICACAAAGA AGGAAAAA

SEQ ID NO:242 PBA7 Protein sequence:

Protein Accession #: AAF91431

40 MFTPLSSVTA AVSGLLVGYE LGIISGALLQ IKTLALSLCH EQEMVVSSLV IGALLASLTG 60
 GVLIDRYGRR TAIILSSCLL GL GSLVLILS LS YTVLIVGR IAI GVSISLS SIATCVYIAE 120
 IAPQHRRGLL VS LNELMIVI GILSAYISNY AFANVFHGWL YMFGLVPIPL VLQAIAMYFL 180
 PPSRFLVMK QGEQAAKS VKL RGLRALS DTT EELTVIKSSL KDEQYQSFWD LF RSKDNMRT 240
 45 RIMIGLTLF VF QITGQPNI LFYASTVLKS VGFQSNEAAS LASTGVGVVK VISTIPATL 300
 VDHVGSKTFL CIGSSVMAAS LVTMGIVNLN IHMNFTHICR SHNSINQLSD ESVIYGPGLN 360
 STNNNTLRDH FKGISSHRS SLMLPLRNDV KRGETTSASL LNAGLSHTEY QIVTDPGDVP 420
 AFLKWLSSLAS LLVYVAAFSI GLGPMWPV LSEIFPCGIRG RAMALTSSMN WGINLLSLT 480
 FLVTDLIGL PWVCFIYTIM SLDLIGLPWV CFIYTIMSLA SLLFVVMFIP ETKGCSLEQI 540
 SMELAKVNYY KNNICFM SHH QEELVPKQPQ KRKPQEQLLE CNKLCCRGSQ RQLSPET

50

SEQ ID NO:243 PAB4 DNA sequence:
Nucleic Acid Accession#: AA172056

Coding sequence: 121-339 (underlined sequences correspond to start and stop codons)

55

TTTAGCCACC AGAGGANTTC TCTTGAAATA CCCAAATCC ATCAGTATCT TGAATCATG 60
 TGGATTTGA AGAATCTTA AGAAGCCATG TAAAGGGGGC TCTCTGGCCT TGAATAGTG 120
 ATGTTTGAATCAGGA AAAGTCTTCA AGTTCACATC TCACAGAANN TTATTTINCC 180
 60 GATTCAAGA AATTACAGGA AAACCTTCA AGTTCACATC TCACAGAANN TTATTTINCC 240
 AAGAATTCCA AGATAAGTT AGTTTATGG AAGACTTTA TGTGGTTTT ACTCACTCTT 300
 CATCTCAGAC ATCGACAGAT GATTACATCA CTTATAGTTC TAGTAAATT ATTAAATATAA 360
 AACTCAGAGA CATTCCAATA TTACACATTC TTACACATT AGGCATAGAT TCAGTGTCA 420
 CTATGACAAT TGAATATGAG CTGTTTGTG ATTTAAAGGT TTAAATTCT CTAACCAAC 480
 TGCTTGATCC AGATCGAGGA CTGCAAATGT TAATTTGT TCTGGAAGAA CAATCAAATA 540
 AGACTTAAGA GGGAAAGGAA TGCCCAAT CCACCTGAAA TTGTTCTTA AAAAGTGTGC 600
 65 AGCCTACTAA ATCAGAATGA AAATAGAAGT ACAAGGATT AAACAAATG CAATCAAAC 660
 TTCTTAAGC TTACCTAAAG TTATTCATC TGAAATTC AAGCAACTT GTICAACATT 720
 AAATTGACAA TCTAAACCTAA CAAGTCTTGA ATGTTATGCA ACATCTCTC 780
 70 TATTAACCTT ATTACCTAAG GCTAAACCTA AAATTTAA GCAAATTAAG AAAAATAGTC 840
 TTCACTCATC AAAAATAAA GTTGTACA TTAGTATT CCCAATAAA ATTGGTCGTT 900
 CTGGTTTT TATTTGGAGA GTCTGTCAA AATGTCACTA AAAATAAATT AGCACTAGAA 960
 ATTATTCTA AATACCAA

75

SEQ ID NO:244 PBQ8 DNA SEQUENCE

Nucleic Acid Accession#: X51405

Coding sequence: 3-1721 (underlined sequence corresponds to start and stop codon)

	AAATGGCGTG	CCCGCTCTC	CGCCGGCCCC	CTGCCTCGCA	GTGGTTTC	CTGCAGCTCC	60
5	CCTGGGTCC	GCGGCCAGTA	GTGCAGCCG	TGGAGCCGG	GCTTGC	TCTCCTCTCG	120
	GTGGCCCCAG	TGCGCGGGCT	GACACTATT	CAGCGGGGA	AGGTGAGGGC	AGTAGAGGCT	180
	GGTGCAGAC	TTGCCGCCCC	CAGCAGGCC	GGCGGGCTAA	GCCCAGGGCC	GGGCAGACAA	240
	AAGAGGCCG	CCCGTAGGA	AGGCACGGCC	GGCGGGCGG	GAGCGCAGCG	ATGCCCGGGC	300
	GAGGGCCAG	CGCCCTGCTG	GCTCTGTGCG	GGGACTGCG	TGCCCTCCGG	TGGCTCCCTGG	360
	GCSCCGAAGC	CCAGGAGCCC	GGGGCGCCC	CGCGGGCAT	GAGGCAGCGC	CGGGGGCTGC	420
10	ACAAAGAGGA	CGGCATCTC	TTCGAGTACC	ACCGCTACCC	CGAGCTCGC	GAGGCAGCTCG	480
	TGTCCTGTC	GTCAGCTGC	ACCGCATCA	GCAGGATTATA	CACGGTGGGG	CGCAGCTTCG	540
	AGGGCGGGA	GCTCTGGT	ATCGAGCTGT	CCGACAACCC	TGGCGTCCAT	GAGCCTGGTG	600
	AGCCTGAATT	TAAATACATT	GGGAATATGC	ATGGGAATGA	GGCTGTGGA	CGAGAACCTGC	660
	TCATTTCTT	GGCCAGTAC	CTATGCAACG	AATACCAGAA	GGGAACGAG	ACAATTGTCA	720
15	ACCTGATCCA	CACTGATCCC	ATTCACATCA	TGCCCTCCCG	GAACCCAGAT	GCCCTTGAGA	780
	AGGCAGGTC	TCAGCGTGT	GAACTAAGG	ACTGTTTGT	GGGTCGAAGC	AATGCCAGG	840
	GAATAGATCT	GAACCGGAAC	TTTCCAGACC	TGGTAGGAT	AGTGTACGTG	AATGAGAAAG	900
	AAGGTGTC	AAATAATCT	CTGTTGAAAA	ATATGAAGAA	ATTGTGGAT	CAAACACCAA	960
	AGCTTGTC	TGAGCAAG	GCTGTCATT	ATTGGATTAT	GGATATTCCT	TTGTGCTTT	1020
20	CTGCCAATCT	CCATGGAGGA	GACCTGTTG	CCAAATTATCC	ATATGATGAG	ACCGGGAGTG	1080
	GTAGTGTCA	CGAAATACACC	TCTCTCCCG	ATGACGCCAT	TTTCCAAAGC	TTGGCCCCGG	1140
	CATACTTC	TTTCAGTGC	ACCCATGTC	GCCACATGT	TGCTTGTAC	CGCAAGAATG	1200
	ATGATGACAG	CAGCTTGTG	GATGGACCA	CCAAACGGTG	AGCCTACCTG	1260	
	GAGGGATGCA	AGACTTCAT	TACCTTAGCA	GCAACTGTTT	TGAGATCAC	GTGGAGCTTA	1320
	GCTGTGAGAA	GTTTCCACCT	GAAGAGACTC	TGAAGACCTA	CTGGGAGGAT	AAACAAAAC	1380
25	CCCTCATTAG	CTACCTTGAG	CAGATCACCC	GAGGAGTTAA	AGGATTGTC	CGGACATTC	1440
	AAGGTAAACC	AATTGCGAAT	GCCACCATCT	CCGTGGAAGG	AATAGACCA	GATGTTACAT	1500
	CCCGAAAGA	TGGTGATTGC	TGGAGATTGC	TTATACCTGC	AAACTATAAC	CTTACAGCCT	1560
	CAGCTCAGG	CTATCTGGCA	TAACACAAA	AAGTGGACT	TCTTACAGC	CCTGCTGTC	1620
	GGGTTGATT	TGAACTGGG	TCATTGTC	AAAGGAAAGA	AGAGGAGAAG	GAAGAATG	1680
30	TGAAATGGTG	GAAAATGATG	TCAGAAACTT	TAAATTTTAA	AAAAGGCTTC	TAGTTAGCTG	1740
	CTTTAAATCT	ATCTATATA	TCTAGTGTAA	TGTAATGTC	TCTTTTTTAA	AGATTTGTC	1800
	CACTTAATAC	TTAACATTGA	TTTATTTTT	AATCTTTAA	ATATTAATCA	ACTTTCTTA	1860
	AAATAAATAG	CCTCTTAGGT	AAAAATATAA	GAACCTGATA	TATTTCATTC	TCTTATATAG	1920
	TATTCATTT	CCTCTTAGGT	TTACACAAA	AAGTATAGAA	AAGTATAGAA	TAATTTG	1980
35	ATCTTAGGCT	TTAAATGCAAT	ATTCCTGGTA	TTATTTACAA	TGCAAAATT	TTTGAGTAAT	2040
	TCTAGCTTC	AAAAATTAGT	GAAGTCTTT	TACTGTAATT	GGTGACAATG	TCACATAATG	2100
	AAATGCTATTG	AAAAGGTTAA	CAGATCACCC	TCGGAGTTG	GAGCACTCTA	CTGCAAGACT	2160
	AAATAGTTC	AGTATAAATT	GTCTTTTTT	TCTTGCTG	ACTAACTATA	AGCATGATCT	2220
	TGTTAATGCA	TTTTTGATGG	GAAGAAAAGG	TACATGTTA	CAAAGGAGTT	TTATGAAAAG	2280
40	AAATAAAATT	GACTCTTGC	TTGTACATAT	AGGACCAATA	CTTATATTAT	ATGTAGTCG	2340
	TTAACACTAC	TTAACAGTTCT	CTTGGTTGTA	GAGTGGCCCA	GAATTGCAATT	2400	
	CTGAATGAAT	AAAAGGTTAA	AAAAAAATCCC	CAGTGAAAAA	AAA		

SEQ ID NO:245 PBQ8 Protein sequence

Protein Accession#: P16870

MAGRGSALL ALCGALAAACG WLLGAEAQEP GAPAAGMRRR RRLQEQEDGIS FEYHRYPELR 60
 EALVSVWLQC TAIISRIYTVG RSFEGRELLV IELSDNPVGIV EPGEPEFKYI GNMHGNEAVG 120
 RELLIFLAQY LCNEYQKGNIE TIVNLIHSTR IHMPSLNPDI GFEKAASQPG ELKDWFVGRS 180
 NAQGIDLNRRN FPDLDRIVVV NEKEGGPNHH LLKNMVKIVD QNTKLAPETK AVIHWIMDIP 240
 FVLSANLHGG DLVANYPYDE TRSGSAHEYS SSPDDAIFQNS LARAYSSFPN AMSDPNRPPC 300
 RKNDDDSSFV DGTTNGGAWY SVPGGMQDFN YLSSNCFETI VELSCEKFP EETLKYTWED 360
 NKNSLISYLE QIHRGVKGTV RDLQGNPIAN-ATISVEGIDH DVTSAKDGDY WRLLIPGNYK 420
 LTASAPGYLA ITKKVAVPYS PAAGVDFELE SFSERKEEEK EELMEWWKMM SETLNF

55	SEQ ID NO:246 PBY4 DNA sequence						
	Nucleic Acid Accession#: AF038966						
60	Coding sequence:	91-1107	(underlined sequence corresponds to start and stop codon)				
	1	11	21	31	41	51	
	GGGGCGACGT	GAGCGCGCAG	GGGGCGGGCG	GCCTCGCC	GTCTCTCTC	CTGCAGCTGG	60
65	GTCGGGTGGG	TGACCGCGAG	AGCCAGAGAG	ATGTCGGATT	TGCGACAGTAA	CCCGTTGCG	120
	GACCCGATC	CTAACAAATCC	CTTCAGGAT	CCATCAGTTA	CACAAAGTAC	AAGAAATGTT	180
	CCACCAAGAC	TTGATGATAA	TAATCCATTC	TCGGATTCTA	GAACACCTTC	ACCAAGGGGT	240
	GTGAAGATGC	CTAATGTC	CAATACACAA	CCAGCAATAA	TGAAACCAAC	AGAGGAACAT	300
	CCAGCTTATA	CACAGATGTC	AAAGGAACAT	GCATTTGGCC	AAAGCTGAACT	TCTTAAGCGC	360
70	CAAGAAGAC	TGAAAGAAA	AGCGGAGAA	TTAGATGTC	GGGAACGAGA	AATGAAACAA	420
	CTCAGTCAC	ATGGTAGAAA	AAATATTG	CCACCTCTTC	CTAGCAATT	TCTGTGCGA	480
	CTTGTGTTCT	ATCAGGAATT	TTCGTGAGAC	ATTCCTGTA	AATTCACAAA	GACAGTAAAG	540
	CTTATGTA	ACTTGTTGAT	GTTCCTGCA	GTAAACATGT	TTCTAAATAT	CTTCGGATGC	600
	TGGCTTGGT	TTTGTGTTGA	TTCTGCAAGA	GCGGTTGATT	TTGGATTGAG	TATCCTGTGG	660
75	TTCTGCTT	TTACTCTTGT	TTCTATTTGTC	TGTTGGTAC	GACCACTTTA	TGGAGCTTTC	720
	AGGAGTGA	TTTCATTTAG	ATTCTTTGTA	TTCTTCTTCG	TCTATATTTG	TCAGTTGCT	780
	GTACATGTAC	TCCAAGCTGC	AGGATTTCAT	AACGGGGCA	ATTGTGGTTG	GATTTCATCC	840
	CTTACTGTC	TCAACCAAAA	TATTCCTGTT	GGAAATCATGA	TGATAATCAT	AGCAGCACTT	900
	TTTCAGCAT	CAGCAGTCAT	CTCAGTGT	ATGTCAAA	AAGTACATGG	ACTATATCGC	960
80	ACAAACAGGTG	CTAGTTTGA	GAAGGCCAA	CAGGTTTG	CAACAGGTGT	GATGTCAAC	1020
	AAAAGTGTCC	AGACCGCAGC	TGCAAATGA	GCTTCAACTG	CAGCATCTAG	TGCACTG	1080

5 AATGCTTCA AGGGTAACCA GATTTAAGAA TCTTCAAACA ATACACTGTT ACCTTTGAC 1140
 TGTAACCTTT TCTCCAGTTA CTGTATTCTA CAAATATTT TATGTTCAA ACACACAGTA 1200
 CAGACAGCAT GGATATTTCG TGTTCACTTG TGATGGGCT AAAACCGGA AAACACAGTA 1260
 GTCTTATTAC TTACCTTAAT AGTTTCTTAA TATTTCAGTG CCCCTTGCGAG AAAAATATT 1320
 10 ACATGCTAA TAAATATTCT CCATATTTT GGGGGATGAC ATTCACTGAA TTATTTCACTG 1380
 GGTGACCCAC TGAAAATTAAT TAATGGTACT TATGTTAA AACGATTTA ATACTAATG 1440
 CACTAGTCTC TTCAAGAAC TTTAGAGATA AGGATTGAC ATTGGAAAAG TAAACCATGT 1500
 TTGATTTCTT TATATGAA GAAATAGGC AGCAGAGACT TAGGGATTIT 1560
 15 AAATTGGCTT GCTTTTAGC TGTTTCAGTC ACCACTGAAG ACCCTATGTC CATTTCAG 1620
 TAGATAATGTA AAAATTGTC ATCTTTTCT TTTCTTTTT TTAGAATAGC TGATATTTG 1680
 20 ATAACACAATCT CTAATTGCA TGGGCACCC ATTCTTATAA TTAAAAGAAT TAGTGTGTTG 1740
 GCTTCTGTCAC TGCTTATGGT TGAGGATTG AGGGGTTAAT GGAAATCACAG AAATGATAAT 1800
 CTGCAAGAAT TTCTTTAAA TAAAAAGTTT GGGGGTGCAA TATAAGAAGT TTATATAATA 1860
 TGAGTACAT TATCCAAAAG AGAAGGTAGT TAATGCAGTA GAAAGTAGTG GTAATAATTC 1920
 CTTTTT

SEQ ID NO: 247 PBY4 Protein sequence:

20 Protein Accession #: MSDFDNSPFA DPDLNNPKD PSVTQVTRNV PPGLEYNPF SDSRTPPPG VPKMPNVPNTQ 60
 PAIMKPTEEH PAYTQIAKEH ALAQAEELLKR QEELERKAAE LDRREREMQN LSOHGRKNJW 120
 PLPLSNFPVG PCFYQEFSVD IPVEFKTVK LMYYLWLMFHIA VTLFLNIPGC LAWPCVDSAR 180
 AVDFGLSILW FLLFTPCSFV CWYRPLYGAF RSDSSFRFFV FFFFVYICQFA VHVLQAAGFH 240
 NWGNCGWISS LTGLNQNPV GIMMIIAAL FTASAVISLV MFKKVHGLYR TTGASFEKAQ 300
 QEFATGVMSN KTVQTAANAA ASTAASSAAQ NAFKGNQI

SEQ ID NO:248 PBH2 DNA sequence

30 Nucleic Acid Accession#: none found
 Coding sequence: 1-613 (underlined sequence corresponds to start and stop codon)

35 ATGAGAGACA ATAAATCGTG TGCTTTTTC ATGGAAAGT TAAATGTTG TTTGAAGGC 60
 ACAGTAATAG CAGGCTATTG AGTGTGTTGCC ACTACCTGCA TCATTCACTC GGCTGTAGCT 120
 AGTGAACATAC AATTTCCTAA AAAGTCTTCT CACCCCTACA GGACTGCTCT ACATCTGGCC 180
 TCTGCCAATG GAAATTCAGA AGTAGTAAA CCTCTGCTGG ACAGACGATG TCAACTTAAT 240
 ATCCCTGACA ACAAAAGAG GACAGCTCTG ACAAAGGCCG TACAATGCCA GGAAGATGAA 300
 TGTGCGTTAA TGTTGCTGGA ACATGGCACT GATCCGAATA TTCCAGATGA GTATGGAAT 360
 40 ACCGGCTCAC ACTATGCTAT CTAAATGAA GATAAATTA TGCCAAAGC ACTGCTCTTA 420
 TACGGTCTG ATATGCAATC AAAAAACAAAG CATGGCTCA CACCACTGTT ACTGGGTGTA 480
 CATGAGCAAA AACAGCAAGT GGTGAATTIT TTAATCAAGA AAAAGCAAA TTAAATGCA 540
 CTGGATAGAT ATGGAAGGTG TGTGACCTG GGAACGTTAT TTACACCACAA ATATGTTGTC 600
 ATATATGAAA AGTAGAT

SEQ ID NO:249 PBH2 Protein sequence:

45 Protein Accession #: none found
 50 MRDNKSCAFF MGKLNVCFEG TVIAGYSVFA TTCIHLAVA SALQFPKKSS HPHRTALHLA 60
 SANGNSEVVK LLLDRRCQLN ILDNKKRTAL TKAVQCQDE CALMLLEHGT DPNIPEYGN 120
 TALHYAIYNE DKLMKALLL YGADIESKNK HGLTPLLLGV HEQKQQVVKF LIKKKANLNA 180
 LDRYGRCVTL GTLFITKYVV IYEK

SEQ ID NO:250 PBJ1 DNA sequence

55 Nucleic Acid Accession#: XM_005829
 Coding sequence: 1-3043 (underdefined sequence corresponds to start and stop codon)

60 ATGGTGTATCA TCTATCTTTC TTCTGCAAT TATTACATGG AGTTCTACAG AGAAGAGCTT 60
 CCCCACATTG ACTATTGAT TGACATTCAAG TTGCAACAG GAAAGGTTAC TCAGCGGGGA 120
 GAGGACACTT CCTACCCTCA ATGCGCTAG CTTGAAGCCA GAGAGCAAGG CACCGACAGT 180
 TTATTATTAAC ACATGGCAAG CAGCGCCACG CTGAAGACAC GAACCGCGCTG TTATGGAACC 240
 65 CCCAGAGCTC TCCCCCATCG TAGCCTGCTC CAGCCGACTC CGCCACATG TAAAACGAAG 300
 ATCAGGAGCA GATTGAAAGA ATTACAAGT GAATGTTGTC CAGTCAGCAT GTCAAGAGACA 360
 GACCACATAG CCTCTACTTC CTCTGATAAA AATGTTGGGA AAACACCTGA ATTAAAGGAA 420
 GACTCATGCA ACTTGTTC TGGCAATGAA AGCAGCAAT TAGAAAATGA GTCCAAACTA 480
 TTGTCATTAAC ACTGATAAA AACTTGTATG CAACCTAATG AGCATAATAA TCGAATTGAA 540
 GCCCAGGAAA ATTATATTCC AGATCATGGT GGAGGTGAGG ATTCCTGTGCA CAAAACAGAC 600
 ACAGGGCTCAG AAAATTCCTGA ACAAAATAGCT AATTTCCTTA GTGGAATTT TGCTAAACAT 660
 ATTTCAAAAA CAAATGAAC AGAACAGAAA GTAACACAAA TATTGGTGA ATTAAAGGTCA 720
 TCTACATTTCA GAGATCAGC TAATGAAAAG ACTTATTCAAG AAAGCCCTTA TGATACAGAC 780
 TGCAACAGA AATTTCATTTC AAAAATAAAG AGCGTTTCAG CATCAAGAGGA TTGTTGGAA 840
 GAAATAGAAT CTGAGCTCTT ATCTACGGAG TTGCAAGAAC ATCGAGTACCA AAATGGAATG 900
 70 ATAAGGGAG AACATGCATT AGTCTCTTGT GAAAAGTGTG TCAAGATAA ATATTGCAAG 960
 CAGGAACATA TCATAAAAAA GTTAATTAAA GAAAATAGA AGCATCAGGA GCTCTTCGTA 1020
 GACATTGTT CAGAAAAAGA CAATTTAAGA GAAGAACTAA AGAAAAGAAC AGAAAAGTGAG 1080
 AAGCAGCATTA GAAACACAAAT TAAACAGTTA GAATCAAGAA TAGAAGAATCTAATAAAAGAA 1140
 GTTAAAGCTT CCAGAGATCA ACTAATAGCT CAAGACGTTA CAGCTAAAAA TGCGAGTTCA 1200

CAGTTACACA AAGAGATGGC CCAACGGATG GAACAGGCCA ACAAGAAATG TGAAGAGGC 1260
 CGCCAAGAAA AAGAACAT GGTAATGAAA TATGTAAGAG GTGAGAAGGA ATCTTAGAT 1320
 CTTCGAAAGG AAAAGAGAC ACTTGAGAAA AAACCTAGAG ATGCAAATAA GGAACCTTGAG 1380
 AAAAACACTA ACAAAATTAA GCAGCTTCT CAGGAGAAAG GACGGTTGCA CCAGCTGTAT 1440
 5 GAAACTAAGG AAGCGAAC GACTAGACTC ATCAGAGAAA TAGACAAATT AAAGGAAGAC 1500
 ATTAACTCTC ACGTCATCAA AGTAAAGTG GCACAAAACA AATTAAAAGC TGAAATGGAT 1560
 TCACACAAAGG AAACCAAAGA TAAACTCAA GAAACAAACA CAAAATTAAC ACAAGCAAAG 1620
 GAAGAAGCAG ATCAGATCA AAAAATCTG CAGGATAGA TAAAAACATA TCAGGAGTCA 1680
 10 GAAGAAATTAA ATCACAATG GCTTGATGCA AACGCTTAGAG TCACAAAAGG AGAACCTGAA 1740
 AAACAAATGC AAGAAAAATC TGACCAGCTA GAGATGCATC ATGCCAAAT AAAGGAACATA 1800
 GAAGATCTGA AGAGAACATT TAAGGAGGGT ATGGATGAGT TAAGAACACT GAGAACAAAG 1860
 GTGAAATGTC TAGAAGATGA ACGATTAAGA ACAGAAGATG AATTATCAA ATATAAGGAA 1920
 ATTATTAATC GCCAAAAAC TGAAATTACG AATTATGG ACAAGGTGA AACTGCAGAT 1980
 15 CAGCTACAGG AGCAGCTTC AAGAGGTAAAG CAAGAAATIG AAAATTGAA AGAAGAAGTG 2040
 GAAAGTCITA ATTCTTGTAT TAATGACCTA CAAAAGACAGA TCGAAGGCAG TAGGAAAAGA 2100
 GAATCTGAGC TGCTGCTGTT TACAGAAAGG CTCACTAGTA AGAATGCACA GCTTCAGTCT 2160
 GAATCCAATT CTTGCGAGTC ACAATTGTAT AAAGTTCT GTAGTGAAGG TCAGTTACAA 2220
 AGCCAGTGTG AAACAAATGAA ACAGACAAAT ATTAAATTGG AAAGTAGGTT TTGAAAGAGG 2280
 20 GAAGAACTGC GAAAAGAGGA AGTCAAACCT CTGCAAGCTG AACTCGCTG TAGACAAACA 2340
 GAAGTTAAAG CATTGAGTAC CCAGGTAGAA GAATTTAAAG ATGAGTTAGT AACTCAGAGA 2400
 CGTAAACATG CCTCTAGTAT CAAGGATCTC ACCAAACAAAC TTICAGCAAGC ACAGAAGAAAA 2460
 TTAGATCAGG TTGAGAGTTG AAGCTATGAC AAAGAACATC GCAGCATGGG AAAGTCGTCT 2520
 AGTTCATCAG GGTCCCTGAA TGCTCGAACG AGTGCAGAAAG ATCAGATCTC AGAAAATACT 2580
 GGGTCCTCG TAGCTGTGGA TAACCTTCA CAAGTAGATA AGGCCATGTT GATTGAGAGA 2640
 25 ATAGTTCAGG TGCAAAAGC ACATGCCCGG AAAAATGAAA AGATAGAATT TATGGAGGAC 2700
 CACATCAAC AACTGGTGA AGAAATTAGG AAAAACAACAA AAATAATTCA AAGTTATATT 2760
 TTACGAGAAG AATCAGGCAC ACTTCTTC AAGGCATCTG ATTTAAACAA AGTTCATTTA 2820
 AGTAGACGGG GTGGCATCAT GGCATCTTA TATACATCCC ATCCAGCTGA CAATGGATTA 2880
 ACATTGGAGC TCTCTTGGAA AATCACCGA AAATTACAGG CTGTTTGGG GGATACGTTA 2940
 30 CTAAAAAAATA TACTTTGAA GGAAAATCTCA AAACACTTG GAACAGAAAT AGAACGTCTT 3000
 ATAAACACC AGCATGAAC AGAACAGAGG ACAAAAGAAAA CCTAAACAA GCCTCTTGCT 3060
 CAGTAAAGAGC ACAAAGACCA CACAGGAGA GTGCCACTG ACCTCTATTG TTGGAGACTT 3120
 TGTTCCACTT TTGTTTTCAG CCAGTAAAAAA TATTTGTTTG CTTCATCTGT ACACAAAAAA 3180
 ATACCTTTT ACAATATGAA TGCAATTGCTG TATATACTGT AAGACTGAAA GCTTGTGTA 3240
 AATTGTTT TGATGGTGC AATATGACAG CCTGTCATTG AATCTAAACA ACTTAATTG 3300
 35 CTTGTATTCA TAAGAAGTGT TGAACATTAC AAGGGCTTT AT

SEQ ID NO:251 PBj1 Protein sequence:

40 Protein Accession #: NP_060487
 MVIIYLSFCN YMFYREEL PHIDYLIDIQ FATGKVTPQG EDTSYHQCAQ LEARDEGTDS 60
 LLLNNSSAT LKTRTRCYGT PRGLPHRSLL QPTPTCKTK IRSRFEELQS ELVPVMSSET 120
 DHIASTSSDK NVGKTPELKE DSCNLFLSGNE SSKLENESKL LSNTNDKTLQ QPNEHINRRIE 180
 AQENYIPDHG GGEDSEAKTD TGSENSEQIA NFPSGNFAHK ISKTNTETEQK VTQILVELRS 240
 STFPESANEK TYSESPYDTD CTKKFISIK SVSASEDLLE EIESELLSTE FAEHRVPNMG 300
 NKGEHALVLF EKCVQDKYLO QEHIKKLIK ENKKHOELFV DICSEKDNL R EELKKRTETE 360
 KQHMNTIKQL ESRIEELNKE VKASRDQLIA QDVTAKNAVQ QLHKEMAQRN EQANKKCEEA 420
 RQEKEAMVMK YVRGEKESLD LRKEKETITLE KLRDANKELE KNTNKIKQLS QEKGRLHQLY 480
 45 ETKEGETTRL IREIDLKLKE INSHVIVKVKW AQNLKLAEMD SHKETDKDLK ETTTKLTQAK 540
 EEADQIRKNC QDMIKTYQES EEEIKSNELDA KLRVTKGELA KQMQEKSSDL EMHHAKIKEL 600
 EDLKRTFTKEG MDELRTLRLTE KVKCLDERL TDEDLSKYKE IINRQKAEIQ NLLDKVKTAD 660
 OLQEQLQRKG QEIENLKEEV ESLNSLNDL QKDIEGSRKR ESELLLFTER LTSKNAQLQS 720
 50 ESNSLQSQFD KVCSSESQQLQ SQCEQMKQTIN ILESRLLKE EELRKEEVQI LQAEALCRQT 780
 EVKALSTQVE ELKDELVTQR RKHASSIKDL TKQLQQARRK LDQVESGSYD KEVSSMGSRS 840
 55 SSSGSLNARS SAEDRSPENT GSSVAVDNFP QVDKAMLIER IVRLQKAHAR KNEKIEFMED 900
 HIKQLVEEIR KKTIIQSYI LREESTLSS EASDFNKHLSL SRRGGIMASL YTSHPADNGL 960
 TLELSLEINR KLQAVLEDTL LKNITLKENL QTLGTEIERL IKHQHELEQR TKKT

60 **SEQ ID NO:252 PBj6 DNA sequence**
 Nucleic Acid Accession#: D83760
 Coding sequence: 56-1459 (underlined sequence corresponds to start and stop codon)

65	1	11	21	31	41	51	
70	TGCGCTGAA	GGGCTGTGCG	GTTCCCGTGC	GGCCCGGAGC	CTGCTGTGCG	CTCTTATGCA	60
	CTCCACCA	CCCACATCAGCT	CCCTCTTCTC	CTTCACCAGC	CCCGCAGTGA	AGAGACTGCT	120
75	AGGCTGGAAG	CAAGGAGATG	AAGAGGAAA	GTGGGAGAG	AAGCCAGTGG	ACTCTCTAGT	180
	GGGGCAGCCC	ACCAAATGCG	TCACGATTCC	CCGCTCCCTG	GACGGGGCGC	TGCAGGTGTC	240
	CCACCGCAAG	GGCCTGCCCC	ATGTGATTTA	CTGTCGGGTG	TGGCGCTGCG	CGGATCTGCA	300
	GTCCCCACAC	GAGCTGAAGC	CGCTGGAGTG	CTGTGAGTTG	CCATTTGGCT	CCAAGCAGAA	360
	AGAACTGTGC	ATTAACCCCT	ACCACTACCG	CCGGGTGAGG	ACTCCAGTAC	TGCTCTCTGT	420
	GCTCTGTCCA	AGACACAGTG	AATATAACCC	CCAGCTCAGC	CTCCCTGGCCA	AGTTCCGGCAG	480
	CGCCCTCCCTG	CACAGTGAGC	CACTCATGCC	ACACAACGCC	ACCTATCCTG	ACTCTTTCA	540
	CGAGCCTCCG	TGCTCTGCAC	TCCCTCCCTC	ACCCAGGCC	CGCTTCTCCC	AGTCCCCGTG	600
	CACGGCCAGC	TACCCCTCACT	CCCCAGGAAG	TCCTTCTGAG	CCAGAGAGTC	CCTATCAACA	660
	CTCAGTTGAC	ACACCAACCC	TGCCCTTATCA	TGCCACAGAA	GCCTCTGAGA	CCCAAGAGTGG	720
							780

5 CCAACCTGTA GATGCCACAG CTGATAGACA TGTAGTGCTA TCGATACAA ATGGAGACTT 840
 TCGACCAGTT TGTTACGAGG AGCCCCAGCA CTGGTGCCTG GTCGCCTACT ATGAACCTGAA 900
 CAACCGAGTT GGGGAGACAT TCCAGGCTTC CTCCCGAAGT GTGCTCATAG ATGGGTTCACT 960
 CGACCCCTMCA AATAACAGGA ACAGATTCTG TCTTGGACTT CTTTCTAATG TAAACAGAAA 1020
 10 CTCAACGATA GAAAATACCA GGAGACATAT AGGAAAGGGT GTGCACTTGT ACTACGTCGG 1080
 GGGAGAGGTG TATGCGAGT GCGTAGTGA CAGCAGCATC TTTGTCAGA GCCGGAACCTG 1140
 CAACTATCAA CACGGCTTC ACCCAGCTAC TCTTCGCTCA GCTCCTGCCC CAGTCAGTTC ACCACGGCTT 1200
 CAAGGCTCTIC AACAAACAGC TCTTCGCTCA GCTCCTGCCC CAGTCAGTTC ACCACGGCTT 1260
 TGAAGTCTGTG TATGACTGAA CCAAGATGTG TACTATCCGG ATGAGTTTG TTAAGGGTTG 1320
 15 GGGTGCTGAG TATCATGCGC AGGATGTAC CAGCACCCCC TGCTGATTG AGATTCATCT 1380
 TCATGGGCCA CTGCACTGGC TGGACAAAGT TCTGACTCAG ATGGGCTCTC CACATAACCC 1440
 CATTCTTCA GTGCTTAAAC AGTCATGCTC TAAGACTCAT TTCCATAGGA T

SEQ ID NO:253 PBj6 Protein sequence:

Protein Accession #: NP_005896

MHSTTPISL FSFTSPAVKR LLGWKQGDEE EKWAEKAVDS LVKKLKKKG AMDELERALS 60
 20 CPQQPSKCVT IPRSLDGRQL VSHRKGLPH IYCRVWRWPD LQSHHELPPL ECCEFPFGSK 120
 QKEVCINPYH YRRVETPVLV PVLVPRHSEY NPQLSLLAKF RSASLHSEPL MPHNTAYPPDS 180
 FQQPPCSALP PSPSHAFSQS PCTASYPHSP GSPSPESPY QHSVDTPLP YHATEASETQ 240
 SGQPVDATAD RHVVLSPNG DFRPVCEYEP QHWCSVAYYE LNNRVEGETQ ASSRSVLIIDG 300
 FTDPNSNRRN RCLGLLSNVN RNSTIENTRR HIGKGVHLYY VGGEVYAEV SDSSIFVQSR 360
 NCNYQHGFHP ATVKIPSGC SLKVFNQLF AQLLAQSVHH GFEVVYELTK MCTIRMSFVK 420
 25 GWGAEYHRQD VTSTPCWIEI HLHGPLQWL KVLTQMGSPI NPISSVS

SEQ ID NO:254 PBj8 DNA sequence:

Nucleic Acid Accession#: AB04684

Coding sequence: 472-4377 (underlined sequence corresponds to start and stop codon)

	1	11	21	31	41	51	
35	TGCAAGTTTG	CAGGGTCTGA	GATTACTTGG	GCTTTTCCCTG	CCTTTTCTT	TTGCTTAAGG	60
	GATGGACAAG	GAGCTGAGAT	TATAGACCTT	TATTAGAGAA	AAAAATGTGC	CTTGCTAGGG	120
	TGGGGACACT	TGGTTGATGC	AGTCTCTTC	TCTCTTCTC	GGTGTTATA	ACAAAACAAA	180
	ACCAAAATGA	ACTGAGGGGT	TCTGAATGGT	AGTTTGTGTT	TTCGCTGGAGA	ATGCTACTTT	240
40	GCATGCTTT	TTCTCTTGC	AGGGTATGTT	CTGTCCTGTT	CCTTTTCTTT	TAGAACCTAC	300
	TAAGGGTGTG	TGGGGATGCT	TCTGACTAT	ATGAAGGCCA	AAAGGCCCTGT	TGACTGGGGC	360
	TGCTTTAAC	CCTTCTTCTAT	TTGCTGAGAA	TGCACTGGT	TGACAGTAC	TGAACATTTG	420
	TCTAAAGTCT	TCACAAAAGG	TCAAGGTTCA	CAAGAACATC	TGCTCAAATT	AATGACCATG	480
	GGGGATATGA	AGACCCAGA	CTTTGACAT	CATTGACAT	CCCGAGATATG		540
	GTGAGTCTTA	AAGCAGCTAT	TGAGTCTGGA	CACGATGACC	ATAAGGCCA	CATGAACGAG	600
45	ATAGCTCACG	GAGAGGATGA	CTCCCACGCA	CCATCATCTT	CTGATGTGGG	TGTCAGCGTT	660
	ATCGTCAAGA	ATGTTCTGGAA	CATTGACTCT	TCCGAGGGCG	GGGAGAAAAGA	CGGCCACAAAC	720
	CCCACTGGCA	ATGGCTTACA	TAATGGGTTT	CTCACAGCAT	CCTCCCTTGA	CAGTTACAGT	780
	AAAAGATGGG	CAAAGTCCCT	GAAAGGAGAT	GTGCCCTGCCT	CTGAGGTGAC	ACTGAAAGAC	840
	TCGACATTCA	GCCAGTTAG	CCCGATCTCC	AGTGTGAAAG	AGTTTGTATGA	CGACGAGAAG	900
50	ATTGAGGTGG	ATGACCCCGC	TGACAAGGAG	GACATGCGAT	CAAGCTTCAG	GTCGAATGTG	960
	TTGACGGGGT	CGGCTCCCCA	GCAGGACTAC	GATAAGCTGA	AGGCACTCGG	AGGGAAAC	1020
	TCCAGCAAAA	CTGGACTCTC	TACGTCAAGC	AATGTGGAGA	AAAACAAAGC	TGTTAAGAGA	1080
	GAACACAGAAG	CCAGTCTCAT	AAACACTGACT	GTTTATGAAC	CCTTAAAAGT	CAGAAAAGCA	1140
	GAGGATAAAT	TGAAGGAAAG	CTCTGACAAAT	GTGCTGGAAA	ACAGAGTCTC	AGTGGGAAG	1200
55	CTGAGCTCCG	AGAAAGATGA	CACAGCCCTC	CCCAGCGTTG	CGCCATCAAA	GACAAAGTCG	1260
	TCCTCCAAGC	TCTCGTCTG	CATCGCTGCG	ATCGCGGCTC	TCAGGGCTAA	AAAGCGGCT	1320
	TCAGACTCCG	GCAGGAAACCC	AGTGGCAAT	TCGAGGGAAAT	CCTCCCGTT	ACCAAAAGAA	1380
	GTAATGACA	GTCCGAGAGC	CGCTGACAAAG	TCTCTCTGAAT	CCCAGAATCT	CATCGACGGG	1440
60	ACCAAAACAC	CATCCCCTGA	GCAACCGGT	AGTCCCAGAA	GCATCTCAAG	TGAGAACAGC	1500
	AGCAAAGGAT	TCCCGTCTC	TCCACACCCG	CAATCCCCAA	AGTCCCGATA		1560
	AAAACCATTA	AGACATCTTC	TGGGGAAATC	AAGAGAACAG	TCAGCAGGGT	ATTGCCAGAA	1620
	GTGGATCTTG	ACTCTGGAAC	GAAACCTTCC	GAGCAGACAG	CGTCCCTGTAT	GGCTCTGTG	1680
	ACATCCCTTC	TGTCGTCTCC	AGCATCAGGG	GCCGTCCTTT	CCTCTCCCCC	CAGGGCGCCT	1740
	CTTCAGTCGTG	CTTCAGTCGTGAC	CAATCAGTT	TCCCCCTCGAG	AGCTCACCCC	CAAACAGGTC	1800
65	ACAATCAACG	CTGTGGCTAC	TGCTTCTCTC	CCAGTGTCTG	CTGTGAAGAC	GGCAGGATCC	1860
	CAACTCATTA	ATTGGAAGCT	CGCTAACAC	ACCAAGGTGAA	AAGCCACGGT	CATATCTGCT	1920
	GCCCTCTGTC	AGAGTCGGAC	CAGCGCATC	ATTAAAGCTG	CCAACGCAT	CCAGCAGCAA	1980
	ACTGTCGTG	TGCCGGCATC	CGACCTGGCC	AATGCCAAC	TCGTGCAAA	GACTGTGAC	2040
	CTTGCCAACT	TTAACCTTTT	GCCTCAGGGT	GCCCAGGCCA	CCTCTCAACT	CCGCCAAGTG	2100
70	CCAAAAAAAGG	TGTCAGTCAGT	CCAGGTGGTG	TCGTCCTTGC	AGAGTTCTGT	GGTGGAAAGCT	2220
	TTCAACAAGG	TGCTGAGCG	TGTCATCCA	GTCCTGTTT	ACATCCCAA	CCTCACTCCT	2280
	CCCAGCCAATG	CAGGGATCAC	GTTACCGGACG	CGTGGGTACA	AGTGCTTGA	GTGTTGGGAC	2340
	TCCCTTGAC	TTGAAAAAGAG	TCTGACCCAG	CAACTACGACA	GACGGAGCGT	GGCGCATCGAA	2400
	GTAACGTGCA	ACCATTGTAC	AAAGAACCTC	GTTTTTACA	ACAAATGCAG	CCTCCCTTCC	2460
75	CATGCCCGTG	GGCATAAAGGA	GAAGGGGTG	GTAATGCAAT	GCTCCCACTT	AATTTMAAAG	2520
	CCAGTCCCAG	CAGATCAAT	GATAGTTCTC	CCGTCAGGA	ATACTCCAC	TTCACACTTCC	2580
	ACTCTMCAGA	GCCTCTGTCGG	AGCTGGCACA	CACACTGTC	CAAAATTC	GTCTGGCATA	2640
	ACTGGGACAG	TCATATCGGC	TCCCTCAAGC	ACTCCCCATCA	CCCCAGCCAT	GCCCCCTAGAT	2700
	GAAGACCCCT	CCAAACTGTG	TAGACATAGT	CTAAATGTT	TGGAGTGTAA	TGAAGTCTTC	2760
80	CAGGAGCAGA	CATCACTGGC	TACACATTTC	CAGCAGGCTG	CAGATACAGG	TGGACAAAG	2820

ACTTGCACTA TCTGCCAGAT GCTGCTTCCT AACCAGTGC A GTTATGCATC ACACCA GAGA 2880
 ATCCATCAGC ACAAACTCCTC CTACACCTGC CCTGAGTGTG GGGCCATCTG CAGGTCGGTG 2940
 CACTTCCAGA CCCACGTAC CAAGAACGTG CTGCACTACA CGAGGAGAGT TGGTTTCCGA 3000
 5 TGTTGTGCTT GCAATGTTGT GTACTCTGTAT GTGGCGTCTC TGAAAGTCTCA CATTCAAGGT 3060
 TCTCACTGTG AAGTCTTCTA CAAGTGTCTT ATTGTCTCAA TGCCGTTTAA GTCTGCCCCA 3120
 AGCACACATT CCCACGCCA CACACAGCAT CCTGGCATCA AGATAGGAGA ACCAAAATA 3180
 ATATATAAAGT CTTCCATGTG CGACACTGTG TTCACCCCTGC AAACCTTGTCT GTATGCCAC 3240
 TTTGACCAAC ACATTGAAAAA CCAGAAGGTG TCTGTTTCA AGTGTCCAGA CTGTTCTCTT 3300
 TTATATGCCA AGAAGCAACT TATGATGGAC CATATCAAGT CTATGATGG AACATTGAAA 3360
 10 AGTATTGAAAG GGGCTCCAAA CTGGGTATA AACTTGCCTT TGAGCATTAA GCCCTGCAACT 3420
 CAAAATTCAG CAAATCAGAA CAAAGAGGC ACCAAATCCA TGAATGGGAA AGAGAAAATTG 3480
 GAAAAGAAAT CTCCATCTCC TGTTGAAAAA TCAATGGAAA CCAAGAAAGT GGCCAGTCTT 3540
 GGGTGGAGCT GTGGGAGTG TGACTGCCTG TTCATGCAGA GAGATGTGTAA CATATCCAC 3600
 GTGAGGAAGG AGCAATGAGA AAACACCCC GCGCCAGTG TGACAAGTCT 3660
 15 TTCACTGCTG CCCACAGCCT GTGCCGCGAC AACCGGATCA AGCACAAAGG CATCAGGAAA 3720
 GTGTACGCCG GTCGCACTG CCCAGACTCC AGACGTACCT TTACCAAACG TTTGATGCTG 3780
 GAGAAGGACG TCCAGCTGAT GCATGGCATC AAGGACCTTG ACCTGAAAGA AATGACAGAT 3840
 GCCACCAATG AGGAGGAAAC AGAATAAAAA GAAGACACTA AGGTCCCCAG TCCCAAGCGG 3900
 20 AAGTTGAAAG AACCAAGTCTT GGAGTTGAGG CCTCCCGAG GAGCAATCAC TCAACCAC 3960
 AAAAGCTGTA AAATCAATGT TTTTAAGGTT CACAAGTGTG CGCTGTGTGG CTTCACCAACC 4020
 GAAAACCTG TGCAATTCGA CGAACACATC CCTCAGCACA AATCAGGATGG TTCTCCATC 4080
 CAGTGGCGG AGTGTGCGCT CTGCTCACAG TCTCACGTC TCTGTCTTCCG GCACCTCTC 4140
 ATCGTACACA AGTTAAAGGA ACCTCAGCCA GTGTCGAAGC AAAATGGGC TGGGGAAAGAT 4200
 ACCAACACAGG AGAACAAACCC CAGCGACAGG GATGAAATCCC CTGATGCCGC CGTGTCAAGC 4260
 25 AGAAAGTCCA AGATGTGCGC AAAAACATTG GAAACTGAAG TGCCCTTAA TACTCACATG 4320
 CGGACACACG GCATGGCCTT CATCAAATCC AAAAGGATGA GCTCAGCGGA GAAATAGCCA 4380
 CAGATGTCG ATGAGAAAAA TCCCTGTCGA CATTGGAATA AAAAGACAT TTTTGTTCACA 4440
 AAGTTTGCG TATAATAGAG TTAAAGCTAC TGTCTAGGT GTGCAATAT ATTCTCTTTC 4500
 30 ATATGACCTT CCTCACCTC GTGCTATATA TCCCTGATAA GTATTAACAC AGTATTTGAG 4560
 TTTAAAGAG TTGTTATATA TTAAATGAA TAACCTTTA TACTCTTTGT TACATGTTTG 4620
 TATCAGTATT TAGTGGAAAAC CCATTTGAGT GTGTTTGGGT TAGAATTTTT CTTTTGTAC 4680
 TGTTTCCTTA AAACAGAGTT CTTAGTAACA GGGGCAGTTC TGAATTCAA ATAAACCAT 4740
 35 TTGTATGTTT GGATTTGAA TGGGTTAATC AATTACAGGC TAAAATAATG CTTTTTTAG 4800
 TGTGTTTAAAT TTTTGAATT CACTACATAA ATTGTAAGTA ATGTTGGGTC TCAAAAACAC 4860
 TAGGAACTTT TAAGTGTCTT AGCCTCTCT CGATGTGCCG GCCCTGAGGG AGTGAATTCA 4920
 CATTGAGAC AACCTGACTC CAGTGTGGAC GTGCCCTTGT CTTCAGGCCA TGCCGAAGGG 4980
 TGTTTAAAGC AGTCTTGCCT GTGCCCTCCT TCCAGCCGT GGATAAAAAC TGAAGCTAGG 5040
 40 ATATCTAATAA GGAATGCTGA TTCTCTCTAGT TCCATTGTA GGATGGGGA AGGCTATTCT 5100
 AAAGAAAAAA ATGGGATTG TGTTCTCGGC AGATCTGCA AGCTGGCTT AAAGACACAA 5160
 GGAGGGAAAG TAAAGAAAGG GCTGGAATAC TATAAAAGTT ACAAAATACGT AGTTAGACCA 5220
 ATAGATTTAT ATAGTCAGGT TTGTTGTCATG TAATTTTATA ACTAAACTATT ACAGAAAACAC 5280
 AGCTAAGAAT ATCAAGTATT TCTCTGGTC TTGACAGAAA AAAATCAAGT GACTTAACCC 5340
 TTTGCTGTCA AAAGAGTTGG CGTMTCTGT TCTGGGTGT ACTGCCAAC GTTATGGTAC 5400
 TTAGAGTCGG GATGCAACAC TTCAACACC GACTTATCAA TGCAAGCGGCC TGTGTATTGC 5460
 45 AATGGCCGT TACCTTAAGC ACTGAGGCC CCGGGTTTAG TTCAGCATT TCAAGAAGTC 5520
 TATTTAACGT CGGTAGTTCT GCTTTATTAA AATGCAGCAG AGGTACTCTT CTGTCCTTC 5580
 CGTTTATAGT TCTCTGAGAG AGTTCTATT TTGTTGTTTG TTGTTGTTGT TCTTTGTCAT 5640
 TTGTTATCTT GTATTATTC CTGAAACATGT TTGTTACCTT TTGTTTTTTT TTGTTTTAA 5700
 GAAAAGGAAT TCTTTGTTGT ATATATAGAT ACTTGATGA TAACTGTAG TCAATGTTG 5760
 50 GTTCTCTAAAG AGGTCTTGCT GCTGTCAGGT GTTATGCACT CCATCCATCA TAACTGTATG 5820
 AACACACATT CATATGTAAA TAAACGTGGG ACATTTG

SEQ ID NO:255 PB1B Protein sequence:

Protein Accession #: BAB13455

MKTPDFDDLL AAFDIPDMV DKPKAIESGHD DHESHMKQNA HGEEDDSHAPS SSDVGVSIV 60
 KVNRNIDSSE GGEKDGHNPNT GNGLHLNGFLT ASSLDSYSKD GAKSLKGDPV ASEVTLKDST 120
 60 FSQFSPISSA EEFDDDEKIE VDDPPDKEDM RSSFRSNVLT GSAPQQDYDK LKALGGENSS 180
 KTGLSTSGNV EKNAKAVKRET EASSINLSSVY EPFKVRKAED KLKESSDKVL ENRVLGDKLS 240
 SEKNDTSLPS VAPSKTKSSE KLSSCIAAIA ALSAKKAASD SCKEPVANSR ESSPLPKEVN 300
 DSPPRAADKSP ESQNLIDGKT KPSLKPDSR RSISSENSSK GSPSPSAGST PAIPKVRIKT 360
 IKTSSGEIKR TVTRLPEVD LDSGKKPSEQ TASVMASVTS LLSSPASAAV LSSPPRPLQ 420
 SAVVTVNAVSP AEITPKQVTI KPVATAFLPV SAVKTAGSQV INLKLANNNTT VKATVISAAAS 480
 65 VQSASSAIK AANAIQOQTV VVPASSLANA KLVPKTVHLA NLNLLPQGAQ ATSELRQLT 540
 KPQQQIKQAI INAAASQPK KVSRSVQVSS LQSSVVEAFN KVLSVNPVP YYIPNLSPPA 600
 NAGITLPTRG YKCLECGDSF ALEKSLTQHY DRRSVRIEVT CNHCTKVLVF YNKCSLLSHA 660
 RGHKEGVVM QCSHLILKPV PADQMIVSPS SNTSTSTSTL QSPVGAGHTT VTKIQSGITG 720
 70 TVISAPSTS ITPAMPLDED PSKLCRHSLL CLECNEVFOQ ETSLATHFQQ AADTSGQKTC 780
 TICQMLLPNQ CSYASHQRIH QHKSPYTCPE CGAICRSVHF QTHVTKNCLH YTRRRVGFRVC 840
 HCNVVYSDVA ALKSHIQGSII CEVFYKCPIC PMAFKSAPST HSHAYTQHPC IKIGEPKIIY 900
 KCSMCDTVFT LQTLLYRHFD QHIENQKVSF FKCPDCSLLY AQKQLMDH KSMHGTLKSI 960
 EGPPNLGINL PLSIKPATQN SANQNKEDETK SMNGKEKLEK KSPSPVKKSM ETKKVASPGW 1020
 TCWECDCLFM QRDVYISHVR KEHGKQMKHH PCRQCDKSFSS SHSLSLRHNII IKHKGIRKVVY 1080
 75 ACSHCPDSRR TFTKRLMLEK HVQLMHGIKD PDLKEMTDAT NEEETEKED TKVPSKRKL 1140
 EEPVLEFRPP RGAITQPLKK LKINVFKVHK CAVCGFTTEN LLQFHHEIPQ HKSDGSSYQC 1200
 RECGLCYTSH VSLSRHLFIV HKLKEPQPVS KQNGAGEDDNQ QENKPSHEDE SPDGA VSDRK 1260
 CKVCAKTFET EAALNTHMRT HGMAFIKSKR MSSAEK

SEQ ID NO:256 PBM1 DNA sequence

Nucleic Acid Accession#: AF111847

Coding sequence: 58-1608 (underlined sequence corresponds to start and stop codon)

	5	11	21	31	41	51	
	TTTTCGTCGA	CTCTTACCGG	TTGGCTGGGC	CAGCTGCGCC	GCGGCTCACAA	GCTGACGATG	60
	GGGGACCCCA	GCAAGCAGGA	CATCTTGACC	ATCTTCAAGC	GCCTCCGCTC	GGTGCCCACT	120
10	AACAAGGTGT	GTTTTGTATTG	TGGTGCACAA	AATCCCAGCT	GGGCAAGCAT	AACCTATGGA	180
	GTGTTCTTCTT	GCATTTGATTC	CTCAGGGTCA	CACCGGTCA	TTCAGGTTTC	CTTGAGTTTT	240
	ATTCGATCTA	CAGAGTTGGA	TTCCAACATGG	TCATGGTTTC	AGTTGGCATG	CATGCAAGTC	300
	GGAGGAAACG	CTAGTGCATC	TTCCCTTTTT	CATCAACATG	GGTGTTCAC	CAATGACACC	360
15	AATGCCAAGT	ACAAACAGTCG	TGCTGCTCAG	CTCTATAGG	AGAAAATCAA	ATCGCTCGCC	420
	TTCAGAACAA	CACCGAACG	TGGCACTGAT	CTGTTGCTTG	ATAGTTGTTG	GGTTCCACCT	480
	TTGTCCTCTC	CCCCAAAGGA	GGAAAGTTTT	TTTGCCCTTC	ACGTTTCTCC	TGAGGTGAGT	540
	GACACAGCGT	GGGCATCAGC	AATAGCAGAA	CCATCTTCTT	TAACATCAAG	GCCTGTGGAA	600
	ACCAACTTGG	AAAATAATGAA	AGCTGGACAA	GAGCAAGGAC	CAAGTGTGGA	AGGTCTTAAAT	660
	GTACCAACAA	AGGCTACTTT	AGAGGTATCC	TCTATCATAA	AAAAAGAAC	AAATCAACGT	720
20	AAAAAAAGCC	TTGGGGCCAA	AAAAGGAAGT	TTGGGAGCTC	AGAAAATGGC	AAACACATGC	780
	TTTAATGAAA	TTGAAAAAA	ACCTCAAGCT	GCGGATAAAA	TGAAGGAGCA	GGAAAGACCTG	840
	GCCAAGGTGG	TATCTTAAAGA	AGAATCAATT	GTTCATCAT	TACGATTAGC	CTATAAGGAT	900
	CTTGAATATTC	AAATGAAGAA	AGACAAAGAA	ATGAAACATTA	GTGGCAAAAA	AAATGTTGAC	960
	TCAGACAGAC	TCGGCATGGG	ATTGAAAT	TGCAAGAAGT	TTATTTCACA	TTCAAGTGA	1020
	TCAGATATGC	AGACCATAGA	GCAGGAAATC	CCCCATATGG	AAAAACCAAG	AAAAAAAGTAT	1080
25	AATGATGACA	GTGACGATTC	ATATTCTTACT	TCCAGCTCAA	GTTCATTGGA	CGAGCCAGT	1140
	GAGTTAAGGA	GCAGTTCTTT	CTCTAGCTGG	GATGACAGTT	CAGATTCTTA	TTGGAAAAAA	1200
	GAGACAGCAG	AAAGATACTGA	ACAGTTCTG	AAAACACAC	GCTATMCAGA	CAGACCTACT	1260
	GCTCGCCGCA	AGCCAGATTA	TGAGCGAGTT	AAAAATACAG	ATGAGGCCCA	GAAGAAGTTT	1320
30	GGCAATGTCA	AGGCCATITC	ATCAGATATG	TATTTTGGAA	GACAATCCCA	GGCTGATTAT	1380
	GAGACAGGGG	CCCGCTCTAGA	GAGGCTGTCG	GCAAGTTCTC	CCATAAGCTC	GGCTGATCTG	1440
	TTCGAGGAGC	CGAGGAACCA	GGCAGGAGG	AACTACASCC	TGTCAGTGT	GCTGCCAAC	1500
	GCCCCCGACA	TGGGGCAGTT	CAAGCAGGG	GTGAGATCGG	TTGCTGAAA	ACTCTCCCTC	1560
	TTTGCTAATG	GAGTGCTGAC	TTCAATTICAG	GATCGCTAGG	TTCTCTTAAATA	CTGAAGTCTAT	1620
	GATGTGTATT	TCTCTGGAGAA	ATTCATCTT	AAATGAACAA	GTAAACCACAT	CTCAGGGCGG	1680
35	AGTGAAGTCC	AGATAGTTTT	GCAGATTGTT	TTGCTACTTT	TTCATATGGT	ATATGTTCT	1740
	GATTTTTAAT	ATTCTTTTG	AGAAATTCG	AGTTCTGATG	TAGGAGCTT	CCTGTGATT	1800
	CTGTTTCACG	TTCCACCCCTG	CTTGTGCTC	TCTGTGTTATA	TCCTTGCTT	1860	
	ATTTTCTTGG	AACCTTGTAT	TTCAACACTG	AGGGCCTGGAA	GACCTCGGCT	CCTCTGCTC	1920
	CTGAACCAAG	AGGCTTCATG	TGGGGGAGGA	GGAGAGGCT	CCATGTGACA	CATGGGCTCA	1980
40	GGGCTGCCAG	AATCAGCAGG	TGCTGATGG	GCTCTGCAGAA	ACAACACTCA	CCACACACAC	2040
	TTCTCTCAAA	AGACCAAAAG	TGACTGGTG	CTCGTGTGAC	AGATTGCTC	ATTATGTTT	2100
	CTACATAGTA	AGGTGACTTC	CAAATAATAT	TTGAAGTCAT	CTGTCTCTT	GTAAATTATT	2160
	TTATATGACC	TATAAATTAA	AAAATGTTT	TCAGTGAGTG	CTTTAACAA	ACTTAAGCTT	2220
	CTGCTCTGCC	AAGGGAAGAA	ATGTTCTT	GTGAAAGGTG	TTGCTGTTG	AATTGATGAG	2280
45	AAATGGAAAGA	TGAAACTCC	CTAAAGACTTC	TCATAAATAAA	TCATCTCATC	ACAATCAAT	2340
	ACCGTATACA	GAGTTAAACT	GGAAATGAGGT	AAGAAGATAC	AGCTCAGAA	AATAGTTGCG	2400
	TGTATGGGAG	AACAGTCATT	GTAAATGTTG	AGTTTTGTTA	ATAAATATT	TTAAATCTTG	2460
	CTTTTCAGAA	ATTACCGAAT	GTGTATAAAC	AAATAAAGAA	AAATAATTAA	GCTGTGTTT	2520
50	AGACAGCATT	AGAAATATATT	TTTCAGCACA	GTAAAATATA	TTTGAATTT	GATAAGCCAA	2580
	AAATGTTGTT	TTGAATGAA	ATTTCTGAA	TCTTCTTAA	AACTCAAT	TTCTAGACTT	2640
	CTAAATAGAA	TAAACACTTC	CAGCAGAAA	AAAAAAA	AAAAAAA	AAAAAAA	2700
	AAAAAAAAAA	AAAAAAA	AAAAAAA	AAAAAAA	AAAAAAA	AAAAAAA	2760
55	AAAAAAAAAA	AAAAAAA	AAAAAAA	AAAAAAA	AAAAAAA	AAAAAAA	

SEQ ID NO:257 PBM1 Protein sequence:

PBM1 Protein sequence: CAB76901

MGDPSKQDIL TIFKRLRSVP TNKVCFDCGA KNPSWASITY GVFLCIDCSG SHRSLGVHLS 60
 FIRSTELDSN WSWFQLRCMP VGGNNASSEFF FHQHGCTND TNAKYNSRAA QLYREKIKSL 120
 ASQATRKHGT DLWLDSVCPVPLSPPPKEED FFASHVSPEV SDTAWASAIA EPSSLTSRPV 180
 ETTLLENNEGG QEQQPSVEGL NVPTKATLEV SIIKKKPNQ AKKGLGAKKG SLGAQKLANT 240
 CFNEIEKQQA AADKMKEQFD LAKVVSKEEIVSSLRLAYK DLEIQMKKDE KMNISGKKNV 300
 DSDRLLGMFG NCRSVISHSV TSDMQLTIEQE SPIMAKPRKK YNDDSDSYF TSSSSYFDEP 360
 VELRSSMFSS WDDSSDSYWK KETSKDTEV LKTTGYSDRP TARRKPDYEP VENTDEAQKK 420
 FGNVKAISSD MYFGRQSQAD YETRARLERL SASSSISSAD LFEEPRKQPA GNYSLSSVLP 480
 NAPDMAQFKQ GVRSVAGKLS VFANGVVTI QDRYGS

SEQ ID NO:258 PBM4 DNA sequence

Nucleic Acid Accession#: D30891

Coding sequence: 1-4032 (underlined sequence corresponds to start and stop codon)

70	ATGGATACTG	TCATGAAGCA	GACACATGCT	GACACACCTG	TIGATCATIG	TCTATCTGGC	60
	ATAAGAAAGT	GTAGCAGCAC	CTTAAAGCTT	AAAAGTGAAG	TCAACAGCA	TGAACAGCC	120
	CTTGAATGCA	AGAATCAAA	TTTGAACAT	AAAAGAATGTT	TTTTCACCTT	TACGTGAAAT	180
	GGAAACTCTCA	AAAATAGA	CCGTAGTGT	TTTACAGCAT	ATGGTAAACCC	CAGCGAGAGT	240
75	ATCTACTCAG	CCCTGAGTGC	TAATGACTAT	TTCACTGAAA	GGATAAAAGAA	TCAGTTAAT	300
	AAGAACATTA	TTGTTATGA	AGAAAAGACA	ATAGATGGAC	ATATAAATT	AGGAATGCCT	360
80	CTCAAGTGCC	TGCTTAGTGA	TTCTCATTTT	AAAATTACAT	TTGGTCAAAG	AAAGACTAGC	420

AAAGAAGATG GACACATATT ACGCCAATGT GAAAATCCAA ACATGGAATG CATTCTTTT 480
 CATTTGTTG CTATAGGAAG GACAAGAAG AAGATTGTTA AGATCACGA ACTTCATGAA 540
 AAAGGAAGTA AACTTTGTAT TTATGCCCTG AAGGGTGAGA CTATTGAAGG AGCCTTATGC 600
 AAGGATGCC GTTTCGGTC TGACATAGGT GAATTGAAAT GGAAACTAAA GGAAGGTCA 660
 5 AAGAAAATTT ATGGAAAAACA GTCCATGGTG GATGAAGTAT CTGGAAAAGT CTTAGAAAATG 720
 GACATTCAA AAAAAGAAC ATTACACAG AAAGATATCC ATAAGGAAAT TAAACAGAAT 780
 GAAAGTCCA CTGATGAAAT TAATCACCAAG AGTCTGATAC AGTCTAAGAA AAAAGTCCAC 840
 AAACCAAAGA AAGATGGAGA GACCAAAGAT GTAGAACACA GCAGAGAGCA AATTCCTCC 900
 10 CCTCAGGATC TAAGCCATTA TATTAAGAT AAAACTGCC AGAACATTC CAGGATTAGA 960
 AATTATTACT TTGTTAGTTT GCCCCGAAAA TATAGGCAAA TAAACTCACA AGTTAGACGG 1020
 AGGCGCATC TGGGTAGGG TGATGCTATT AATCTGATG TCCAAAGGA GGCAATTAAAT 1080
 CTCTTAAAGA ATTATCAAC GTTGAATGAA GCCATAATGC ATCAGTATCC GAATTITAAAT 1140
 GAGGAGGACAGTGGTAAG AAAATATTCTT CGGGAAAGAAC AAAAGAGAAAT GAATCTTICA 1200
 15 CCAGCTAACG AATTCAACAT ATATAAAAG GACTTCGAA AATGACTGC AAATTCTGTT 1260
 TCAGTGCCTA CTCGGCAAGA GCTTACATAT TATAGCAAGT CAGTGGGTT CATGCAATGG 1320
 GACAATAATG GAAACACAGG TAATGCTACT TGCTTGTCT TCAATGGGG TTATTTTC 1380
 ACCTGTCAC ATGTTGTACA TCTTATGGTG GGTAAAACA CACATCCAAG TTTGGGCCA 1440
 GATAATTAA GCAAAATGTG GAAGGTAACC TICACTTATA CAGAGTCTG CCCTACTCCT 1500
 GACAATGGT TTTCATTGA GCCATGCCCTT AAAGTGTCCA ATGAAAATCT AGATATGCC 1560
 20 ATTTAAAAC TAAAAGAAA TGGAATGCCG TTTCCTCCAG GACTATGGGG ACAGATTCT 1620
 CCTCAACCAT CTACTGGTTT GATTATTATTA ATTGGTCATC CTGGAAGGCC GATCAAGAAA 1680
 ATAGATGGTT GTACTGTGAT TCCCTAAAC GAACGATGAA AAAAATATCC AAACGATTGT 1740
 CAAGATGGGT TGGTAGATCT CTATGATACC ACCAGTAATG TATACTGTAT GTTACCCAA 1800
 AGAAGTTCC TATCAGAGGT TTGGAACACA CACACGCTTA GTTATGATAC TTGTTCTCT 1860
 25 GATGGGTCTC CAGGCTCCCC AGTGTAAAT GCATCTGCCA AATIGGTTGC TTGCTACACC 1920
 TTGGGCTT ITTATCAACG AGGATTTAAT GTGCATGCCCTT ITATGAATT TGGTIAATTCT 1980
 ATGGATCTA TTCTTTGTGA TATTTAAAG ACAATGAGA GCTTGTATAA ATCATTAAAT 2040
 GATGAGAAC TTGAGACCTA CGATGAAGAG AAAGCCGGC CCAGGCCAGC CTACCGGGGA 2100
 30 CTAGGATGCT TTGCGCTTCG CTCTCGTCTT CCAATACTCG GGACTGGGA AACCGGGGAGA 2160
 ATAGAACAG CCAAGGACCG CCGTGGCAC GGGGTCACTG AGACAGGGTC CTGCTCGGG 2220
 CGTCAAGGAG GAGCGCTGTG GGTGTCCCCA GCGCAGCCAA TCGGCTTCCG AAGTAGCTGG 2280
 AGCTCTGGAG CTTCTGCTC CTCAAAATACG AGCAGGGAACT GCGTIGAGCG CTGGATTC 2340
 GGGCGAGTGC TGGCGAGGGC CGCAGTCTC AAAGAGAAC AGATAATIG CAGTACTTCT 2400
 CTAATGAGGA TGGAGTCTAG AGGAGACCCA AGAGCCACAA CTAATACCA GGCTCAAAGA 2460
 35 TTCCATTCACT CTAAGAAAATC CTCAGAACAG CAGACCATG CCCCCAAATAG GACAATATAT 2520
 GTTACCTTGAG AGGCTGTAG AAAAGAGATGAA GAAACTCACC AAGGCCAAGA AATGTTGTG 2580
 CGTGCAGACAG AAGGAATCAAG AGAGTACATA AACCTGGAA TGCCCCCTAG TTGTTTCCC 2640
 GAAGGTGGCC AGGTGGTCAT TACATTTCC CAAAGTAAA GTAAGCAGAA GGAAGATAAC 2700
 CACATATTG GCAGGAGGAG CAAAGGAGCTG ACTGAATGTG TCAAATTITA CATTATGCA 2760
 40 ATTGGAATIG GGAAGTGTAA AAGAAGGATT GTTAAATGTG GGAAGCTTCA CAAAAGGGGG 2820
 CGCAAACCTCT GTGTTATGC TTCAAAAGGA GAAACCATCA AGGATGCACT GTGCAAGGAT 2880
 GGCAGATTTC TTTCCTTTCTG GGAGAATGAT GATIGGAAAC TCATTGAAAAA CAATGACACC 2940
 ATTTGAGAA GCACCCAGGC AGTTGATGAA TTAGAAGGCA GATACCTICA GTTIGAGGTT 3000
 GAGAAAAGAA TGTCCTCCAG TGCAAGCAGCT TCTCAGAATC CTGAGTCAGA GAAAAGAAAC 3060
 45 ACCTGTCGTG TGAGAGAACA AATCGTGGCT CAGTACCCCA GTTGAAAAG AGAAAGTGAA 3120
 AAAATCATTG AAAAATCTTCA GAAAATTTAAATGAGGAAAC ATTATTTGAA 3180
 TTGCTAGAA CAACGTTGG GAAAGTAACA AAAAATCTT CTGCAATTAA AGTAGTGA 3240
 CTTCTTGAC GTCCTAGTA CTCAGTTGG TACTTATCTT GGGACAGTGC AACTACGGGT 3300
 TACGCCACCT GTCTTGTGTT TAAAGGATTG TTCAATTCTT CTGTCGGCA TGTAATAGAT 3360
 50 AGCATGTGG GAGACGGAAAT AGAGCCAAGT AAGTGGGCAA CCATAATTGG TCAATGTGTA 3420
 AGGGTGACAT TTGGTTATGA AGAGCTAAA GACAAGGAAA CAAACTACTT TTGTTGAA 3480
 CCTCTGGTTG AGATACATATA TGAAGGCTT GACTATGCTG TCCCTGAAACT GAAGGAAAAT 3540
 GGACAACAAG TACCTATGGA ACTATATAA GGAATTACTC CTGTCGCACT TAGTGGGTG 3600
 ATACATATA TTGGCCATTC ATATGGAGAA AAAAAGCAGA TTGATGCTTG TGCTGTGATC 3660
 55 CCTCAGGGTC AGCGAGCAAA GAAATGTCAG GAACGTGTTG AGTCTAAAAA AGCAGAAAGT 3720
 CCAGAGTATG TCCATATGTA TACTCAAAGA AGTTCCAGA AAATAGTICA CAACCCCTGAT 3780
 GTGATTACCT ATGACACTGA ATTTCCTTTT GGGGCTTCCG GCTCCCTGTG GTTGATICA 3840
 AAAGGTCAT TGGTGGCAT GCATGTCCT GGCTTGCTT ATACTTACCA AAATGAGACT 3900
 CGTAGTATCA TTGAGTTGG CTCTACCATG GAATCCATCC TCCCTGATAT TAAGCAAAGA 3960
 60 CATAAAACAT GGTATGAGA AGTATTTGTA AATCAGCAGG AGTGAATGAAAT GATGAGTGT 4020
 GAGGACTTGT GAGAATTCAG TCTACTGGAT TTAAGGGAA GGCTTATGGA GTTGTATT 4080
 CGTAGGCATT GAAAATGGTT TTCTAAACTC CAAATGGTC ATCTTATCAA TAATAATAAT 4140
 ATTGACCTT CTCTATCTGC CAGGATTCTT TCTAAGCACA TCAAGAAATT AGTCTAACCA 4200
 ACACATGAG ATGGACTATA ACTTGGCCAA ATTTCCTTTT TTTTGTAGAC TGAGTCTCAC 4260
 TCTGTCGCTT GGGCTGGAGT ACAGTGGTGC GATCTCAGCT CACTGCAACT TCCACCTCCC 4320
 AGGTTCACG GATTCTTCTG CTCAGCTCTG CTGAGCAGCT GGGGATTACAG GCAAACGCCA 4380
 CCACACCCAG CTAATTTTTT TTGTTTTTG TGATTTTTA GTAGAGACAG GGTTTCACCA 4440
 TGTTGGTCAG GCGGGTCTCG AACTCTGAC CTCTGTGATCC ACCTGCTCG GCCTTCCAAA 4500
 65 GTGCTGGGAT TACAAGTTG AGCCACTGCA CCTGGCTAAC TTGCTTCAATT TAAAGTCAA 4560
 GCAATGGAA GAATAACAAG ATTATATAGT AATCAGTTTC ATGACACTAA AAGTCATATA 4620
 GTCATAGGGT TTTTCATCT TTCAATCTT TGCTTAATT CATTGCTAC AGTGCAAGGAA 4680
 CAAAACCTG TTICATCTCAT GATTCCTAC ATCTGACATA AGGAAGTAA GTGCTCAGAA 4740
 AAATGTGCAAG GTCAATAAGT TGCAAAAAGTT GGGGCTGCAA TTATGCTAA CATAAGAGCT 4800
 70 AAATGCTGA TTAGAAATGA TCTCAAAACCTT TTGTTAGAATT TCCAAAATCT TCATATTACT 4860
 GAAACTCTCG GAATATATGG TCTCTGAAAT TCAGAAGATG ATAGTCACCTC TTCCCATATT 4920
 TATAGGCTAT TAAGGCAAGG GATATCTAA ACATCATATT ACTTATTTA GATTTCTACT 4980
 ACTCCAATTA TTATGTTAT GTTATGTTACT TCTCTATGGT ATTATGAAGA 5040
 CTATATAGAT GATTCACCA AGCCTGCAGA TCTCCCTT GTGGAAATTCC ACTGACCCAA 5100
 ATCTGTTTC CATTCCATT GCAATACTAC TAAAGCCATA CAATATCAAG CACCCCTCCCT 5160

CTAGGTCCAG GGACTATCAC AGAAGAACCA GGCATGTAAG ATTTAAGGA CTGGTTCGA 5220
 GGGGTCGAGT GTAGGAAAAC AGCCTGTTGC ATTGTAAGAG TGATGTCACC TTGAAGAGCA 5280
 5 GCTGGCATGA TGACTGCTGT TTGACTCTG CATACCAAGA TATTCTGCAG CAATGTCCTT 5340
 AAACAGTGCC GGTAGTACAG ATAACCCCTC ATAAGATGC TTATCTAACC TCCCCAGTGT 5400
 TCAGGTGTTT CACAAGAACAG TCTGAGATAT GACTAGCTAC ACGTTTGCC AAAAATGCTT 5460
 GTTATATAAA GGGTACTTTT GGGAGGGTA GTGCCGCAT TTAGTGGCTG CTAGAAACAT 5520
 TGCTTCTGTT TGTAAAGTCC TATTAATGT TCTTCTGAG AAAAAAAA A

10 **SEQ ID NO:259 PBM4 Protein sequence:**
 PBM4 Protein sequence: BAB67788

MDTVMQTHA DTPVDHCLSG IRKCSSTFKL KSEVNKHETA LEMQNPNLNN KECCFTFLN 60
 GNSRKLDRSV FTAYGKPSIES YSALSANDY FSERIKNQFN KNIIVYEKKT IDGHINLMP 120
 15 LKCLPDSHF KITFGQRKSS KEDGHILRQC ENPNMECILF VVIAIGRTRK KIVKINELHE 180
 KGSKLCIYAL KGETIEGALC KDGRFRSDIG EFEWKLKEGH KKIYGKQSMV DEVSGKVLEM 240
 DISKKKALQQ KDIHKKKIKQN ESATDEINHQ SLIQSKKKVH KPKKDGETKD VEHSREQQLP 300
 PQDLSHYIKD KTRQTIPR NYYPSLPRK YRQINSQVRP RPHLGRRYAI NLDVQKEAIN 360
 20 LLKNYQTLNE AIMHQYPNFEE QAQKVRKYF REEQKRMLNN PAKQFNLYKK DFGKMTANSV 420
 SVATCEQLTY YSKSVGFQMWN DNNNGNTGNAT CFVFNGGYIF TCRHVHVLMV GKNTHPSLWP 480
 DIISKAKVT FTYTECPPTW DLNFSIEPWL KVSNENLDYA ILKLUKGNGNA FPPLGLWRQIS 540
 PQPSTGLIYL IGHPEGQIKK IDGCTVPLN ERLKKYPNDC QDGLVLDYDT TSNVYCMFTQ 600
 RSFLSEVWNT HTLSYDTCFS DGSSGPVN ASGKLVALHT FGLFYQRGPN VHIALIEFGYS 660
 25 MDSILCDIKK TNESLYKSLN DEKLEYDEE KARPRPAYRR LGCFRFRSRF PILGTGETGR 720
 IEAGKDRRGH GVSETGCSR RQGGALWVSP AQPIGFRSSW SSGAFASSNT SGNCVERWIP 780
 GRVLARRAVS KEQQNNCSTS LMRMRSRDP RATNTTQAQR FHSPKKNPED QTMPQNRTTY 840
 VTLKAVRKEI ETHQGQEMLV RGTEGIKEYI NLGMPMLSCFP EGGQVVITFS QSKSKQKEDN 900
 HIFGRQDKAS TECVKFYIHA IIGIKCKRRI VKCGKLHKKG RKLCVYAFKG ETIKDALCKD 960
 30 GRFLSFLEND DWKLIENNNT ILESTQPVDE LEGRYFQVEV EKRMVPSAAA SQNPESEKRN 1020
 TCVLREQIVA QYPSLKRESE KIIENFKKMM KVKNGETLPE LHRTTFGKVT KNSSSIKVVK 1080
 LLVRLSDSVG YLFWDSATTG YATCFVKGL FILTCRHVID STVGDGIEPS KWATIIGQCV 1140
 RVTFQYEEALK DKEETNYFFVE PWFEIHNEEL DYAVKLKLKEN GQQVPMELYN GITPVPLSGL 1200
 IHIGHPYGE KKQIDACAVI PQGQRAKKCQ ERVOSKKAES PEYVHMYTQR SFQKIVHNPD 1260
 35 VITYDTEFFF GASGSPVFDs KGSLVAMHAA GFAYTYQNET RSIIEFGSTM ESILLDIKQR 1320
 HKPWYEEVFV NQQDVEEMMSD EDL

40 **SEQ ID NO:260 PBQ1 DNA sequence**
 Nucleic Acid Accession#: NM_015642
 Coding sequence: 489-2489 (underlined sequence corresponds to start and stop codon)

	1	11	21	31	41	51	
45	ACATTTCAAA	AAAATACAT	AGACTGATGT	TTCAGACTGT	TGCAGCATAA	GCCTACAGGG	60
	TACGAAGAT	GAACCTGAG	AAATGTTGGA	GAATGTTTCA	TCATTACTAA	CAGGATATTIC	120
	CTCATGACAT	TGCTGTCGTG	TCTTGACCA	TCAGTCTGTG	ACCTGCCCC	TCTCTTTACA	180
	TGCA	GCGCT	TGCCCCAATG	AACATCTGCA	CTAGGCCCCAA	GCCTTGGAGT	240
50	AATT	TACCTG	AAGAGTACA	CCATTGATTG	TGAAACTACT	GAAGAACCCC	300
	AAAACAGAA	GGCAGCTGAG	GAGAATGAGA	TTACTTCAGCC	GGGTGGATCC	AGGCCCAAGC	360
	CGGGCCCTTCC	CTGCTGAAAC	TTTGAAGCTG	TTTTGCTCTCC	AGACCCAGCC	CTCATCCACT	420
	CAACACAT	ACTGACAAAC	TCTCACGCTC	ACACGGGTG	CTTGTGATTG	GACATCAGTT	480
	GCAAGGGGAT	GACCGAGCGC	ATTCAACAGCA	TCACCACTTC	CAACTTCAGC	AATTCCGTGC	540
55	TCGAGACCC	CAACGAGCG	CGCAACCCTG	GCCACTTCTG	TGACGTAACG	GTGCGCATCC	600
	ACCGGACCAT	GCTCGCCG	CACCGCTCG	TGCTGGCCG	CGGCAGCCCC	TTCTTCCAGG	660
	ACAAACTGCT	GCTTGCTAC	AGCCACATCG	AGATCCCGTC	GGTGGTCTCA	GTGCACTG	720
	TGCAAAAGCT	CATTGACTTC	ATGTACAGCG	GCGTGTACG	GGTCTCGCAG	TCGGAAGCTC	780
60	TGCA	GAGC	AGGACATCTCG	AGATCAAAC	AGTCATCGAC	QAGTGCACCC	840
	GCATCGTGT	ACAGAACGTC	GGCGATGTG	TCCCCGGGAT	CCAGGACTCG	GGCCAGGACA	900
	CGCGCGGGG	CACTCCCAG	TCAGGCAGT	CAGGCCAGAG	CACCGCACCG	GAGTCGGGCT	960
	ACCTGCGAG	CCACCCACAC	CACAGCTGG	ACAGGATCTA	CTGGCACCTC	TACGGGTGCT	1020
	CCATGCGAGA	TGGCAGCGGC	GAGGCCTCTT	TTTACAGCGG	CGCAGTGGTC	AGCCACCAAG	1080
	AGACTCCGCT	CGGGCTGCC	CGCCGACACC	ACATGGAAGA	CCCCAGCTGG	ATCACCGCA	1140
65	TCCATGACCG	CTCGCAGCG	ATGGAGCCCT	ACCTGTCAC	CACCCCGAG	ACCAAGCACT	1200
	GCGCGAACG	GCCCCGGCT	GTGCGACATC	AGACCCCTAGT	GGGCAACATC	CACATCAAGC	1260
	AGGAGATCGA	GGACGATTAC	GACTACTACG	GGCAGCAAAG	GGTGCAGATC	CTGGAACGC	1320
	ACGAATCCGA	GGAGTCAGC	GAAGACACAG	ACCAGGCCG	GGGCACCGAG	AGTGAGCCCA	1380
	AAAGGTAAAG	CTTCGACTCC	GGCGTCAGCT	CCTCCATAGG	CACCGAGCTT	GACTGGGTG	1440
70	AGCAGCACTT	TGGGCTTGGG	GGCGCGGGG	ACAGCCAGG	TGAACCCACC	CAACCCGAGC	1500
	AGGCTGCAGA	AGCCCCCGCT	GAGGGTGGTC	CGCAGACAAA	CCAGCTAGAA	ACAGGTGCTT	1560
	CCTCTCCGGA	GAGAAGCCAAT	GAAGTGGAGA	TGGACAGCAC	TGTTATCACT	GTCAACAAAC	1620
	GCTCCGACAA	GAGCGCTCTA	CAACAGCCTT	CGGTCAACAC	GTCCCATCGG	CAGGCAATTGC	1680
	CAAGTACCCA	GCTCTACTTA	CGCCAGACAG	AAACCCCTAC	CAGCAACCTG	AGGATGCCCTC	1740
75	TGACCTTGAC	CAGCAACACG	CAGGTCATTG	GCACAGCTGG	CAACACCTAC	CTGCCAGCCCC	1800
	TCTTCACTAC	CCAGCGCGCG	GGCAGTGGCC	CCAAGCCTTT	CCTCTTCAGC	CTGCCACAGC	1860
	CCCTGGCAGG	CCAGCAGACC	CAGTTTGTGA	CAGTGTCCCA	GCCCCGCTGT	TCGACCTTTC	1920
	CTGACACAGCT	GCCAGGGCCA	CAGCCCCCTGG	CCTCATCCGC	AGGCCACAGC	ACAGCCAGTG	1980
	GGCAAGGCGA	AAAAAGCCT	TATGAGTGC	CTCTCTGCAA	CAAGACTTTC	ACCGCAAAAC	2040
80	AGAACTACGT	CAAGCACATG	TTCGTACACAA	CAGGTGAGAA	GGCCACCAA	TGCAGCATCT	2100
	GTTGGCGCTC	CTTCTCCTTA	AAGGATTACC	TTATCAAGCA	CATGGTGCAC	CACACAGGAG	2160

TGAGGGCATA CCAGTGTAGT ATCTGCAACA AGCGCTTCAC CCAGAAGAGC TCCCTCAACG 2220
 TGCACATGCG CCTCCACCAGG GGAGAGAAAGT CCTACGAGTG CTACATCTGC AAAAGAAAGT 2280
 TCTCTCACAA GACCCCTCTG GAGCAGACAGC TGAGCCCTGCA CAGTGCCAGC AAATGGGACCC 2340
 CCCCTGCAGG CACACCCCCA GGTTGCCCCGCG CTGGCCCCCCC AGGCGTGGTG GCCTGCACGG 2400
 5 AGGGGACACAT TTACGTCCTGC TCCGTCGACG CACCAAAGT TGACCAAATC GAGCAGTICA 2460
 ACGGACACAT GAGGATGCGAT GTGTCGACG GATAAGTAGT ATCTTCTCTC TTTCCTATG 2520
 AACAAAACAA AACAAACAAAC AAAACAAAAAA GCTATGGCAC TAGAATTAA 2580
 GAAATTTTT GGTTTCATT TTAACCTCTG TTTTTGTTT TGTTTCGTTT CATTTCGAC 2640
 10 TACATGAAGA ACTGTTTTT GCCTGCTGGT ACATTACATT TCCGGAGGCT TGGGTGAATA 2700
 ATAGTTTCC CAGTCTCCCT CGGATGCGTGG CCTTAAGGCC TGGTAGTGT TCAAGAGGTC 2760
 CACTGGTGG ATCTCTAGCT ACTGGCCTCT AAATAACAACC CTTCCTTACA AAAAAAAAAAA 2820
 AAAAAAAAAA

SEQ ID NO:261 PBQ1 Protein sequence:
PBQ1 Protein sequence: NP_056457

MTERHSINL HNFSNSVLET LNEQRNRGHF CDVTVRJHGHS MLRAHRCVLA AGSPFFQDKL 60
 LLGYSDIEIP SVSVQSQVK LIDFMYSQVL RVSQSEALQI LTAASILQIK TVIDECTRIV 120
 20 SQNVGDFVPG IQDSDGQDTGP RTPESTGTSQQ SSDTESGQLQ SHPQHSVDRY YSALYACSMQ 180
 NGSGERSFYS GAVVSHHETA LGLPRDHME DPSWTRIHE QRSQMERYLS TTPETTHCRK 240
 QPRPVRIOTL VGNIIHKQEM EDDYDYYGQQ RVQILERNES EECTEDTDQA EGTESEPCKGE 300
 SFDSGVSSI GTEPDSVEQQ FGPGAAARDSQ AEPTQPEQAA EAPAEAGGPQT NQLETGASSP 360
 ERSNEVEMDS TVITVSNSSD KSVLRQPSVNS TSIGQPLPST QLYLRQTEIL TSNLRMPLTL 420
 25 TSNTQVIGTA GNTYLPALFT TQAGSGPKP FLFSLPQPLA GQQTQFVTVS QPGLSTFTAQ 480
 LPAPQPLASS AGHSTASGQG EKKPYECTLC NKTFIAKQNY VKHMVFHTGE KPHQCSICWR 540
 SFSLKDYLK HMVTHGTGVA YOCSICNKRF TQKSSLNVHM RLHRGEKSYE CYICKKKFSH 600
 KTLLERHVAL HSASNGTPPA GTPPGARAGP PGVVACTEGT TYVCSVCPAK FDQIEQFNHD 660
 MRMHVSDG

SEQ ID NO: 262 PBQ6 DNA sequence

Nucleic Acid Accession#: AI654187

Coding sequence: 1-912 (underlined sequence corresponds to start and stop codon)

1	11	21	31	41	51	
ATGGTGGAAAG	AGGAAACAGG	CATATCTTAC	ATGGTGGCAG	ACAAGGGACA	CCCTTCTACA	60
AACTCTACCA	CTTCTCGCCC	CTCGTTTCGA	CCATATAAAA	ACGACCTATG	CGAACCTGGT	120
CGGAAACACTC	CCTCACGATG	TAAAACGAG	ATCAGGAGCA	GATTGAGAAG	ATTACAAAGT	180
GAATTGGTGC	CACTGAGCAT	GTCAGAGACA	GACCACATAG	CCTCTACTTC	CTCTGATAAA	240
AATGTTGGGA	AAACACCTGA	ATTAACAGGA	GACTCTATCA	ACTTGTTC	TGCCAATGAA	300
AGCAGCAAAT	TAGAAAATGA	GTCCAACACTA	TTGTCTTAA	ACACTGATAA	AACTTTATGT	360
CAACCTTAATG	AGCTTAAATTA	TGCAATTGAA	GCCCCAGGAA	ATTATATTCC	AGATCATGGT	420
GGAGGTGAGG	ATTCTTGTC	CAAAACAGAC	ACAGGCTAG	AAAATCTGA	ACAAATAGCT	480
AATTTCCTTA	GTGAAATTT	TGCTAACAT	ATTTCAAAAA	CAAATGAAAC	AGAACAGAAA	540
GTAACACAAA	TATTGGTGA	ATTAAGGTCA	TCTCATTTCT	CAGAACATAGC	TAATGAAAAG	600
ACTTATTACAG	AAAGCCCCCTA	TGATACAGAC	TGCCACCAAGA	AATTATTC	AAAATAAAG	660
AGCGTTTCAG	CATCAGAGGA	TTTGTGGA	AAAATAGAAT	CTGACCTTT	ATCTACCGAG	720
TTTGAGAAC	ATCGAGTAC	AAATGGAATG	AAAAGGGAG	AAACATGCATT	AGTCTCTGTT	780
GAAAAGTGTG	TGCAAGATAA	ATATTGCA	CAGGAACATA	TCATAAAAAAA	GGCCAGACTT	840
GCTCTCTGTT	ATTTGCCATC	AAGAACCTCA	ATTGACACGT	TAATTCGTT	TATCCCAAAT	900
TTATATAGAT	<u>AA</u>					

SEQ ID NO:263 PBQ6 Protein sequence:

Protein Accession #: NP_060170

MEPKEATGKE NMVTKKKNLFLRSRLYMLE RRKTDVVES SVSGDHSGTL RRSQSDRTEY 60
 60 NQKLQEKMTP QGECSVAETL TPEEEHHMKR MMAKREKIK ELIQTKEKDYL NDLELCVREV 120
 VQPLRNKKTD RLDVDSLFSN IESVHQISAK LLSLLEEATT DVEPAMQVIG EVFLQIKGPL 180
 EDIYKIYCYH HDEAHSILES YEKEEELKEH LSHCIQSLK

SEQ ID NO:264 PBY7 DNA sequence

Nucleic Acid Accession#: NM_014323

Coding sequence: 662-2725 (underlined sequence corresponds to start and stop codon)

1	11	21	31	41	51	
GGCCCTACTC	TGCGCCCGCC	GGCGCCCGCC	CGCTCCAGCC	GGCGCCGCC	CCGCCACCCG	60
CCTCCAGCT	CGGGGACCCG	GGCCGCCCA	CGGCCCGCG	GGCGCCGCC	CCGCCGCC	120
CTTCGCTTC	GGCTTTGTT	TCTCCCGTC	GGCGCCGCC	GGCCCGGCTC	GGCGCTTGCA	180
GGGGACCCAG	CGCGCCGCC	CAAGCGGGCC	GGGAAAAGGCC	GGGGCGCCGCG	GGCGCCGCC	240
CGCGCGGAC	CCCTCTCTC	CTCTCCCGCG	TGCGCGTGC	CTTCCTTGCT	GGCGCCGCC	300
GGCGCTTGGC	GGGGGGGAGG	GGAGGTGGCA	GGCGCGTTTG	CAGGAGGGGC	GCACCTCTC	360
GCTCGCCAC	CCCCCGGAA	GGTAGACCGG	GAAGGGGAGG	CGGGCGGGCG	GAGAGGAGAG	420
AGTGGCGGC	AGTCCAGCGA	GGGGGGGGGT	TGGCTATGTG	GGGGGTGGTG	CACCCCGCAG	480
TCTAGACAGT	CTGATCCGGG	CTGGGGGGGT	GTACACTCGG	CGCACCTCGG	AGACTACAGA	540
GCCTCGGGCC	GGCACGCTGTG	GGGAGTGTGG	ACACGCTCTG	TGCGCCCCGC	TTCTCGCTGC	600

TGAGGGGAAG GGAGGGGCG GGCAGGTCA GCGGCCGGC TAGTGGGAGG GGGCGCGGC 660
 CATGGAGCGG GTGAACGACG CTTCTGCGG CCCGTCGGC TGCTACACAT ACCAGGTGAG 720
 CAGACACACG CACGGAGATGC TGACACAACCT GAACCAAGCAG CGCAAAAACG CGGGCGCGCTT 780
 CTGCGACGTG CTCTTGCGG TAGGGCAGCA GAGCTTCCCA CGCCACCCGCG CCCTGCTGGC 840
 CGCTCTGAGC GAGTACTTTG AGTCGGTGTG CAGCAGCCAG TTGGGCAGCG CGGGAGCTGC 900
 GGACGGGGGT CCGGCTGATG TAGGGGGCG GACGGCAGCA CCAGGGCGCG GGGCGGGGG 960
 CAGGGGGAG CGGGAGATGC ACACATCAG CTCCAAGGTA TTCTGGACATA TTCTGGACTT 1020
 CGCTTACACT CGCTCGCATCG TGGTGCCTT GGAGAGCTTT CCCGAACCTCA TGACGGCCGC 1080
 CAAGTTCCTG CTGATGAGGT CGGTTATCGA GATCTGCCAG GAAGTCATCA AACAGTCAA 1140
 CGTACAGATC CTGGTACCCC CTGCTTCCCT CGATATAATCG ATCTTTGCCCG CCCCCTGGAC 1200
 CTCGGACTTG GGCTTCCCT TGACATGAC CAACGGGGCA GCCTTGGAG CCAACAGCAA 1260
 TGGCATCGCC GGCAGCATGC AGGAGGAGGA GGAGGCAGCT CGGGCGGCTG GTGCAGCCAT 1320
 TGCAAGGCAA GGCTCTTGC CTGTTGTTAAC TGCGGGTGGAC CGCTTGGCCA TGGTGGCTGG 1380
 ACCCTTATCC CCCCACTTACG ATCTTCCCC TGACTCATCAG TGCCCCCTCC 1440
 CCTGACTGGC AAGCAGGGCC GGGGGCGCC AAGGAAGGCC AACCTGCTGG ACTCAATGTT 1500
 TGGGTCCTCA GGGGGCCTGA GGGAGGCAGG CATCCTTCCA TGCGGTCTAT GTGGTAAGGT 1560
 GTTCACTACG GCCAACCCGGC CGCAACGGCA CGAGGCCCCAG CACGGCTTCCA 1620
 GCTGGGCTAC ATGCACCTTC CTCTCTGGAG GCTGGGTGAG AATGGGTAC CCATCTCTGA 1680
 AGACCCCGAC GGGCCCCGAA AGAGGAGCGG GACCAGGAAG CAGGTGGCTT GTGAGATCTG 1740
 CGGAAGATC TTCCGTGATG TGTTATCATCG TAACCCGACAG AAGCTGTCCTC ACTCTGGGGA 1800
 GAAGCCCTAC TCTCTGCGG TGTTGGGGT GCGGTTCAAG AGAAAAGACC GCATGTCCTA 1860
 CCATGTGCGG TCCCATGATG GGTCCGTGGG CAAGCCTTAG ATCTGCCAGA GCTGTGGGA 1920
 AGGCTTCTCC AGGCTCTGATC ACTTGAACCG ACATATCAAG CAGGTGCAACA CTTCCTGAGCG 1980
 GCCTCACAAAG TGTCAAGACCT GCAACGGTCA TTTTGCACCC CGAGACCGTC TGCGCTTCCA 2040
 CCTGGCTCTG CATGAAGACA AGGTGGCCCTG CCAGGTGTG GGGAAAGTACT TGCGGGCAGC 2100
 ATACATGGCA GACCACCTGA AGAAGCACAG CGAGGGGCC AGCAACTCTC GCAGTATCTG 2160
 TAACCCGAGGTT TCTCTCTCTG CCTCTTACTT AAAGGTCCAT GTTAAAACCC ACCACGGTGT 2220
 TCCCCCTTCCC CAGGCTCTCA GGCAACGGGA GCCCACCTCG AATGGGGAG CAGCCTTCCA 2280
 CTGCGCCAGG ACCTATGGCA ACAAAAGAAGG CCAGAAATGC TCACATCAGG ATCCGATTGA 2340
 GAGCTCTGAC TCTCTATGGT ACCTCTCAGA TGCCACCGAC CTGAAGACCC CAGAGAAGCA 2400
 GAGTGCCTAATG GGCCTCTCTG CCTGGACATG GGCAGTCCCC AAAAACAAGA TGGASTCTGA 2460
 TGGGGAGGAAG AAGTACCCAT GCCCTGAATG TGGAACCTTC TTCCGCTCTA AGTCTTACTT 2520
 GAACAAACAC ATCCAGAAGG TGCATGTCGG GGCATCTCGG GGCCCCCTGG GGGACCTGGG 2580
 CCCTGCCCCCTT GGCTCACCTT TCTCTCCTCA CGAGAACATG TCTCTCCTCG AGTCCCTTGG 2640
 GTTTTCAAGATT GTTCAGTCGG CATTTCGCTC ATCTTTAGTA GATCTCTGAGG TTGACCAGCA 2700
 GCCCATGGGG CCTGAAGGGA AATGAGGAG CTGCTGTGTC CCCACGGAAA AAACCATCTG 2760
 GGGAGTGTG GGAAGATGCTG TGAATGCGGA GGGAAAGTGTAT GTTGGGGTTC TGAGCTGTAG 2820
 AGATTTTTAT TCTATTTAA TCTCCCTTCAAC ACCCCACTCC AACTCCCTCTC CCACCAACCA 2880
 TCTCTCCAAAT GGTCTTATAGA AATAGATTT CATCTGATAT TCTGCAGAAA TATCAATGAG 2940
 ACTTCTGATG GGCACAGGGG AGAAAACACT ACATACGCTT CCAAGGCAAA ACCAGTCCCA 3000
 GTTTCTTTAA TGGGAAGAAG TGGAATTCAA TTGTTGCTCAA TTCTTAGTGA CCCCCATCTC 3060
 ATACCCAAAT CTATGATATT CTGGGACCTC ACTGATTTG GTCTCTCTCC ACTCTCTAG 3120
 TTGTCATCC TCCCTTCTCA TATCTTCAA AAGAACCCAA CTAGGGTCTC CACCTACTTA 3180
 TACAATGCGG ATGCGGAAACT GTTTTTAAGG AAGCCAGAAAG CATCCCATGG ACCATGGGGT 3240
 GAGTGTCTC CAAGACGGCC CTGAGCTCAG CCCCCTCGCT GGAGGGCTCC AGACCTTCT 3300
 GAGCCTCTGT TGGAGGCAG CATTTCIACT GCTAGGACAA GCTCAGCTGT TGAGGACACC 3360
 CCCACCCCAA ATTCACTTGT TTACAGTGTATT TTAACCCATT AACATGCTGT TGGGTTTAA 3420
 TTCTCTTAATT ATTATTATTAA TTGTTTATTAA TTGTTAGGAC CAGTTGTAGT GAATTGCTAC 3480
 TGAAAGCTAT CCCAGGTGAT ACAGAGCTCT TTGTAACCG CAGTCACACA TTAGGGTTAG 3540
 TATTAAACTT GTTTTATAGT TACCTATAA AACTTGCTA GTTGTATTGTT TGAAGTCTAT 3600
 GGAAGAAATA GTTTTATGCA AAATTTAAAA AAATGCCAGT CTGCTCAGGG AAGTAGGGGG 3660
 TTTCATGCT GTGGGAACC AGGAAGGTGG GACAGCCGGC AGGTAGGGAC ATTGTGTACC 3720
 TCAGTTGTGT CACATGTGAG CAAGGCCAGG TTGACCTTGT GATGTGAATT GATCTGATCA 3780
 GACTGTATTA AAAATGTTAG TACATTACT TA

SEQ ID NO:265 PBY7 Protein sequence:

Protein Accession #: NP_114439

MERVNDAASCG PSGCYTYQVS RHSTEMLHNL NQQRKNNGRFL CDVLLRVGDE SFPARIARVLA 60
 ACSEYFESVF SAQLGDGGAA DGGPADVGA TAAPGGGAGG SRELEMHTIS SKVFGDILDF 120
 AYTTSRIVVRL ESFPELMATA KFLLMRSVIE ICQEVIKQSN VQILVPPARA DIMLFRPPGT 180
 SDLGFLDMT NNGALAANSN GIAGSMOPEE EAARAAGAAI AGQASLPVLP GVDRLLPMVAG 240
 PLSPQQLTSP FPSVASSAPP LTGKRGRGP RKANLLDSMF GSPGLLREAG ILPCGLCGKV 300
 FTIDANRLRHQH EAQHGVTLSQ LGYIDLPLPPR LGENGLPISE DPDGPRKRSR TRKQVACEIC 360
 GKIFRDVYHL NRHKLHSGE KPYSVPVCL RFKRKDRMSY HVRSHDGSVG KPYICQSCGK 420
 GFSRDPDHNG HIKQVHTSER PHKQCTCNAS FATRDRRLRSH LACHEDKVPC QVCQKYLRAA 480
 YMADHLKKHS EGPSNFCSIC NREGOKCSHQ DPIESSSDSYG DLSDASDLKT PEKQSANGSF 540
 SCDMAVPKNK MESDGEKKYP CPECGSFFRS KSYLNKHIQK VHVRALGGPL GDLGPALGSP 600
 FSPQQNMSLL ESFGPQIVQS AFASSLVDPE VDQQPMGPEG K

SEQ ID NO:266 PBY9 DNA sequence

Nucleic Acid Accession#: NM_012429

Coding sequence: 174-1385 (underlined sequence corresponds to start and stop codon)

1	11	21	31	41	51	
CCCTACTCCG	CCTCTCGGGA	TCCCTTAAGA	GGCGGGGCTT	GGCTGCCAGC	TCCGCGGCC	60
GGGCAAAAGG	CTGGGACTTT	ACTCCGGGTG	GGGGCGAGGA	CGAGTCTGTG	CTCCATCAGC	120

5 TGCCGCACCC GCGCCCTCCC GCCCCAAAC CCCATCCCCG CGGTTGAGCC ACGATGAGCG 180
 GCAGAGTCGG CGATCTGAGC CCCAGGCAGA AGGAGGATT GGCCAAGTTT CGGGAGAATG 240
 TCCAGGATGT GCTGCCGGCC CTGCCGAATC CAGATGACTA TTTCCTCTG CGTTGGCTCC 300
 GAGCCAGAAG CTTCGACCTG CAGAAGTCGG AGGCCATGCT CCAGAACCAT GTGGAGTTCC 360
 10 GAAAGAAAAA GGACATTGAC AACATCATTA GCTGGCAGCC TCCAGAGGT ATCCAACAGT 420
 ATCTGTCAGG GGGTATGTGT GGCTATGACC TGGATGGCTG CCCAGTCTGG TAGCACATAA 480
 TTGACCTCT GGATGCCAG GGTCTGCTGT TCTCAGCCTC CAAACAGGAC CTGCTGAGGA 540
 CCAAGATGCG GGAGTGTGAG CTGCTCTGAA AGAGTGTGC CCACCAGACC ACAAAAGTTG 600
 GGAGGAAGGT GGAGACCATC ACCATAATTG ATGACTGCGA GGGGCTTGCC CTCAAGCATC 660
 TCTGGAAGCC TTGTGTTGGAG AGTTTCTCTG CATGTTTGAG GAAAATTATC 720
 15 CGAACACACT GAAGCCTCTT TTGTTGTTA AAGCCCCCAA ACTCTTCTCT GTGGCTTATA 780
 ACCTCATCA ACCCTTCCTG AGTGAGGACA CTCGTAAGAA GATCATGGTC CTGGGACCAA 840
 ATTGGAAGGA GTTGTACTG AACACATCTCA CCCCCGACCA GGTGCTGTG GAGTATGGGG 900
 GCACCATGAC TGGACCTGTG AAAGACCCCA ACTGCAAAATC CAAGATCAAC TACGGGGGTG 960
 ACATCCCCAG GAAGTATTAT GTGGAGACC AGGTGAAACA GCAGTATGAA CACAGCGTGC 1020
 AGATTTCCTG TGCCCTCTCC CACCAAGTGG AGTATGAGAT CCTCTTCCCT GGCTGTTCTCC 1080
 TCAGGTGGCA TTGTATGTCG ATGGGGGGG ATGTTGGTTT TGGGATTTC CTGAAGACCA 1140
 AGATGGGAGA GAGGCAGCGG CAGGGAGAGA GTCAGAGGT GTCGCCAAC CAGAGGTACA 1200
 20 ACTCCACCT GTTCCCTGAA GATGGGACCC TCACCTGCG TGATCTGTC ATCTATGTCC 1260
 TGGGTTTGA CAAACACCTAC AGCTTCTTC ATGCGAAAGA GGTCAATITC ACTGTGGAGG 1320
 TCTCTCTCC AGACAAAGCC TGAAAGAGA AGTGAACACA GCTGGGGCA GGCAACCCGA 1380
 AATAAACACCT TCTCTTATAG CAGGCTCTGC CCCCTCAGTG TCTCCCTGTC AATTCTTAC 1440
 CCTTGTAGCA GTCATTTCTG CACAAACCTG AAGCCCAAAG AAACATGGGT GGAGGAGACGA 1500
 CCTCAGGAGC GAGTACCTGG GTAGCTGGTT GCTAGAGTTA CGGTGGGGAT CAGAAACTCT 1560
 25 TATCAAATPAC CTAAAGGAGTC CACAGGAGCT GGTGGCCAT CGTGTAGGAA TCTGTCGTC 1620
 CTGTAACACTG TGCCAACTTC ACCTGTCCAG GGACAGCGAA GCTGGGGGTG GCGGGGGGCA 1680
 TGTAACACAG GGTGGCAGCA GGGAAAAAAA TTAGAAAAGG GTGAAAGATT GGGACTTAAAC 1740
 ACTTCAGGAGC AGTCAGCTGC CGGGGAGAAA CTGCTCTTA ATAGAACACA TAAGTTAGA 1800
 TCCCAATGAG GAGTACCTGG GTAGCTGGTT GCTAGAGTTA CGGTGGGGAT CAGAAACTCT 1860
 TCCAAACATT TTAGCACTGA GGCTGGGGTA GTCTTGGGTT TTTCCCAGGT CTCAGGAGGT 1920
 30 GGCCTGACTC ACACACATC TICCCACTCG GTAGACAGG TGCCCTCTCC CTCACTTTGA 1980
 GACTTTGCCA ACTCTCTGGC CACACGGCCGC GCTCTTGTGA TTACTAATGA TTGTCACTG 2040
 CTCAGAGCTT CCTGGGACTT CGGGTACCCA CCCGCTGTTC TCCATCAAA CAAAGCGCCA 2100
 GGGAAATGAC CACACGGGAT CCGACCTGCA GGGAGGGCCA GGGAGGTTGG GGGTGGGGAGT 2160
 GAATGCTAAA ASCAGATCGT CCAGTGGCCCT TTTCACTGCT ACCGGCCTCT CACCAAGCAG 2220
 TCTCCATGT GAGCAACCCCA GAGACAAAAA TGCTAAGTGG GATCAAGAGA GCAGCACTCG 2280
 GAGAGGGTGT TTGCACTGCT GAGTGTCCCG CGGTGCCCCG CAACCCGCTT CCTGACTGAC 2340
 CTGAGCAAGG TCTTACTAAG CAGTCCCATC TCTGTGGGG AGTCAACCG CCGTCAGGGGA 2400
 35 GTCACTGGC CGGTGGCGCT AGGACGGCT CAGGAGCCCC CAGGCAGGAG GCGGCCAAA 2460
 GCGGGGGCCG CGCTCTCGCA GACTAGGGGC TGGGGGCGGC CACAGACGGC CTCGAACCCA 2520
 CAGCCCTAC CCAATCCCA CGAGGCCCCC CAACCGAACCA CAGGTGCTGG GCTTTAGAGA 2580
 ACATGGGAG CGGCCCCCG ACCTGGGGG AACCCCTTC CTCAGAGGCC AGGCCCCGGC 2640
 CCCGCTCTGGG AAAGCTCATCT TGCGAAGCTG AGGGAGCTCA GGGCAAAGGC CAGGCTAGCG 2700
 CGGACGGAA GGGGGCGAGG CTGCACGGC CTCTGCCAGA ACGCTCAGGA CATCCCGGCC 2760
 TGGTTTACA ACGCTGTAG AAAAATTAAC CAATGAATAA AGCAACCTTC AGTGCAGCA

SEQ ID NO:257 PBY9 Protein sequence:

Protein Accession #: NP_036561

50 MSGRVGIDLSP RQEALAKFR ENVQDVLPAL PNPDDYFLR WLRARSFDLQ KSEAMLRKHV 60
 EFRKQKDIDN IISWQPPEVI QQYLSGGMCY YDLDCPVPWY DIIGPLDAKG LLFSASKQL 120
 LRTKMRCECL LLQECAHQT KLGRKVETIT IIYDCEGLGL KHLWKPAVEA YGEFLCMFEE 180
 55 NYPETLKRFL VVKAPKLPV AYNLIKPKFLS EDTRKKIMVL GANKEVLLK HISPDQVPVE 240
 YGGTMTPDPG NPKCKSKINY GGDTPRKYVV RDQVKQQYEH SVQISRGSSH QVEYEILFPG 300
 CVLRWQFMSD GADVGFGIFL KTKMGERQRA GEMTEVLPNQ RYNSHLVPED GLTCSDPGI 360
 YVLRFDNTYS FIHAKKVNFTEVLLPDKAS EEKMKQLGAG TPK

SEQ ID NO:268 PBH8 DNA sequence

Nucleic Acid Accession#: XM_009756

Coding sequence: 301-1440 (underlined sequence corresponds to start and stop codon)

1	11	21	31	41	51	
GTGGGGACAG	CCGAGCGCG	CCGGGCCCT	GGACGGCGT	GCCAAGGAGC	TGGGATCGCA	60
CTTGCTCGAG	ACTTGGATG	GATTGTTTT	TGTGGTAGCA	TCTGATGGCA	AAATCATGTA	120
TATATCCAG	ACCGCTTCTG	TCCATTAGG	CTTATCCAG	GTGGAGCTCA	CGGGCAACAG	180
TATTATGAA	TACATCCATC	CTTCTGACCA	CGATGAGATG	ACCGCTGTC	TCACGGCCCA	240
CCAGCCCTG	CACCAACCAC	TGCTCCAAG	TATGAGATG	AGAGGTCGTT	CTTCTTCGA	300
<u>ATGAAATGT</u>	<u>TCTTGGCGAA</u>	<u>AAGGAACCGG</u>	<u>GGCCTGACCT</u>	<u>GCAGCGGATA</u>	<u>CAAGGTCTAC</u>	360
CACTGCACTG	GCTACTTGA	GATCAGGCG	TATATGCTGG	ACATGCTCC	GTACGACTCC	420
TGCTTACAGA	TTGTGGGGCT	GGTGGCCGTG	GGCCAGTCG	TGCCACCCAG	TGCCATCACC	480
GAGATCAAGC	TGTACAGTAA	CATGTTCATG	TTCAGGGCCA	GCCCTTGACCT	GAAGCTGATA	540
TTCTCTGGATT	CCAGGGTGAC	CGAGGGTACGG	GGGTACGAGC	CGCAGGACCT	GATCGAGAAG	600
ACCCATATACC	ATCACCTGCA	CGGCTGCGAC	GTGTTCCAC	TCCGCTACCG	ACACCACTTC	660
CTGTTGGTGA	AGGGCCAGGT	CACCAACAG	TACTACCGGC	TGCTGTCAA	CGGGGGCGGC	720
TGGGTGTGGG	TGCAAGCTA	CGCCACCGTG	GTGCAACACCA	CCGCTCTGTC	CGGGCCCCAC	780
TGCACTCGTA	TGTCATGAA	GAGATTGAAT	ACAAGGAAC	TCAGCTGTCC		840
CTGGAGCAGG	TGTCCACTGC	CAAGTCCCAG	GACTCTGGA	GGACCGCCCT	GTCTACCTCA	900

5 CAAGAAACTA GAAAATTAGT GAAACCCAAA AATACCAAGA TGAAGACAAA GCTGAGAAC 960
 AACCCCTTACC CCCCACAGCA ATACAGCTCG TTCCAATGG ACAAACTGG ATGCGGCCAG 1020
 CTCGAAACT GGAGAGCCAG TCCCTCTGCA AGCGCTGCTC CTCCCTCAGA ACTGCAGCCC 1080
 CACTCAGAAA GCAGTGACCT TCTGTACACG CCATCCTACA GCCCTGCCCT CTCCTACCAT 1140
 TACGGACACT TCCCTCTGGA CTCTCACGTC TTCAGCAGCA AAAAGCCAAT GTTGCCGGCC 1200
 10 AAGTTGGGC AGCCCCAAGG ATCCCCCTGT GAGGTGGCAG GCTTTTTCTT GAGCACACTG 1260
 CCAGCAGCG GTGAAATGCCA GTGGCATTAT GCCAACCCCC TAGTGCCCTAG CAGCTCTCT 1320
 CCAGCTAAAAA ATCCCTCCAGA GCCACCCGGG AACACTGCTA GGACAGCCT GGTGCCAAGC 1380
 TAGAAGGCA AGCAGATGTC CTCTGCGGAG ATACCGCCAG CTCCCCAGGA CGCAGACTTGA 1440
 CTCTGTTTGTCTCGCTGGAC CAAC

SEQ ID NO:269 PBH8 Protein sequence:

Protein Accession #: NP_005060

15 MKEKS KNAAK TRREKENGEF YELAKLLPLP SAITSQLDKA SIIRLTTSYL KMRAVFP EGL 60
 GDAWGQPSRA GPLDGVAKEL GHSHQTLDG FVFVVASDGK IMYISETASV HLGLSQVELT 120
 GNSIYEYIHP SDHDEMTAVL TAHQPLHHHL LQEYEIERSF FLRMKCVLAK RNAGLTCSGY 180
 KVHICSGYLYK IRYQYMLDMSL YDSCYQIVGL VAVGSQLPPS AITEIKLYSN MFMFRASLDL 240
 20 KLIFLDSRTV EVTGYEPQDL IEKTYLHHVH GCDVFLRLRYA HHLLLVKQGV TKYYRLLSK 300
 RGWVWVQSY ATVVHNSRSS RPHCIVSVN VLTEIEYKEL QLSLEQVSTA KSQDSWRATAL 360
 STSQETRKLV KPKNTKMKT LRTNPYPPQQ YSSFQMDKLE CGQLGNWRAS PPASAAAPPE 420
 LQPHESSSDL LYTPSYSLPF SYHYGHFPLD SHVFSSKKPM LPAKFGQPG SPCEVARFFL 480
 25 STLPASGEQO WHYANLPVS SSSPAKNPPE PPANTARHSL VPSYEAPAAA VRRFGEDTAP 540
 PSFPSCGHYR EEPALGPKA ARQAARDGAR LALARAPC CAPPTPEA PG APAQLPVLL 600
 NYHRVLARRG PLGGAAPAAS GLACAPGGPE AATGALRLRH PSPAATSPPG APLPHYL GAS 660
 VIITNGR

SEQ ID NO:270 PBJ9 DNA sequence:

Nucleic Acid Accession#: AA760894

30 GGCACGAGGA GAAGATGTGG CTIGCTCATG CTIGACTTCT GCCATGGTT TGAGGCCCTCC 60
 CCAGCCATGT GGAACGTGTT TCAGGTGCTG GTTCCATGGC TCTTCCTGAG CCGAAAATAA 120
 35 GGAACACTCCA TAGACCTTGT CCATGGAAAC TCCTTCCAT CTACCCCTCA CTCTATCCAG 180
 GTGTATGGAT CTCTGAGTA AGTGAAGAG TTCTCATGG CCCCAAGGT TATATCCATC 240
 TAGAACTICA GCACGTAATT TCATCTGGAA ATAGTGCCTT TGTTGGATATA AGTTAGGTA 300
 AACTGAAGAT GAGAGCATAC TGGATTAGGA TGGGATCTAA ATCCAATGAA AATGCTTCA 360
 TAAAAAACAG GAAAGAACCC ATAGAACAC AAGGAAGAAG GTCTATGAA GATGGAGGCA 420
 40 GAGATTGGAG GGATGCAGCC ACCGGCCAG GAATGCCAGC AGCCACCCAG AAGCTGGAAG 480
 GAAATGAGGG ATTCTCTCTT AGAACCTTA GAGAGRACAT GTTCTGTGA ACACCTTGAT 540
 TTGGACTCTG CCCATAGCTT GTACTCTT ACCTTGATAA CAATTCTTC CAAACTTGGC 600
 TAAACAGTTT CTACGCTTAT GGGAAATTAA AAATGGGAAA GATTCAACTC GATTCCTTACA 660
 45 GATTCAAAGC AAGAAAATGA TGGGAACATA GGAGGAGACC AAGAAAGCCT ATAAAAAAGCA 720
 AAAATATGAA GTGAAACATTG TTGGTAGCTTT AAGATGTCTT GTGTAGCTGC AGGCACCCCTA 780
 TACACATGAA AACCCCCAAG GGGATCCTCC ATATCACAGT GTAGTGTGAT ATTGACATT 840
 YTGTATCATY TAGAGATGTA CAGAAAAGGT GAATCTGTGT TCTGTATATT CTGCTAAGG 900
 CAAAGAAATG TTAGCTYTC TTAAATAG TTCCATAATT TTITYTAAAG AGCTTIGCTT 960
 GAAAATGTA AGCTTCCCAT ATCTGGACCA TTTCACTTTA AAATTTGGA TAAATATGTT 1020
 50 ATCTTCTTAC TTGGACATTG CATGTGTTA GGGATTGTYV TYAAATATCT TCCTAATICA 1080
 TATAGCTGCT AACACTTCCC GCAGAGCTAA ACCATTACAG ANTATGAAAT AAAGACCTA 1140
 TTGATTGAA CTAAAAAAA AAAAMAMAAA AAAAAMAAA AAAAAMAAA AAAAAMAAAAT GA

SEQ ID NO:271 PBQ4 DNA sequence

Nucleic Acid Accession#: AA149579

Coding sequence: 1-1363 (underlined sequence corresponds to start and stop codon)

	1	11	21	31	41	51	
60	<u>ATG</u> GAATCAA	TCTCTATGAT	GGGAAGCCCTA	AAGAGCCTTA	GTGAAACTTG	TTTACCTAAT	60
	GGCATAATG	GTATCAAAGA	TGCAAGGAAG	GTCACTGTAG	GTGTGATTGG	AAAGGGAGAT	120
	TTTGCCAAAT	CCTTGACCAT	TGCACTTATT	AGATGCGGT	ATCATGTGGT	CATAGGAAGT	180
	AGAAATCCTA	AGTTTGCTTC	TGAATTTTTT	CCTCATGTGG	TAGATGTCAAC	TCATCATGAA	240
	GATGCTCTCA	CAAAACAAATA	TATAATTTT	GTGCTATAC	ACAGAACACA	TTATACCTCC	300
65	CTGTGGGAC	TGAGACATCT	GCTTGTGGGT	AAAATCTGA	TTGTGTGAG	CAATAACATG	360
	AGGATAAAC	AGTACCCAGA	ATCCAATGCT	GAATATTTGG	CTTCATTATT	CCCATGATCT	420
	TTGATTGTCA	AAGGATTTAA	TTGTTGCTCA	GCTTGGGCAC	CTCAGTTAGG	ACCTAAAGGAT	480
	GCCAGCCGC	AGGTTTATAT	ATGCAGCACAC	AATATTCAAG	CGCAGACAA	GGTTATTGAA	540
70	CTGGCCGCC	AGTTGAATT	CATTCCCATT	GACTTGGGAT	CCTTATCATC	AGCCAGAGAG	600
	ATTGAAAATT	TACCCCTTACG	ACTCTTAACT	CTCTGGAGAG	GGCCAGTGGT	GGTAGCTATA	660
	AGCTTGGCCA	CATTTTTTT	CTTCTTATTCC	TTTGTCAAGAG	ATGTGATTCA	TCCATATGCT	720
	AGAACAAAC	AGAGTGACTT	TTACAAATAT	CCTATAGAGA	TTGTGAATAA	AACTCTAACCT	780
	ATAGTTGCCA	TTACTTTGCT	CTCCCTAGTA	TACCTCCAG	GTCTTCTGGC	AGCTGCTTAT	840
75	CAACTTTATT	ACGGCACCAA	GTATAGGAGA	TTTCCACCTT	GGTTGAAAC	CTGTTACAG	900
	TGTAGAAAAC	AGCTTGGATT	ACTAAGTTT	TTCTTCGCTA	TGGTCCATGT	TGCTTACAGC	960
	CTCTGCTTAC	CGATGAGAAG	GTCAGAGAGA	TATTGTTTC	TCAACATGGC	TTATCAGCAG	1020
	GTTCATGCAA	ATATTGAAA	CTCTTGGAA	GAGGAAGAAG	TTTGGAGAAT	TGAAATGTAT	1080
	ATCTCTTGTG	GCATAATGAG	CCTTGCTTA	CTTCCCCCTC	TGGCACTAC	TTCTATCCCT	1140
	TCAGTGGACA	ATGCTTTAAA	CTGGAGAGAA	TTCAAGTTTA	TTCAGTCTAC	ACTTGGATAT	1200

GT CGCTCTGC TCATAAGTAC TPTCCATGTT TTAATTATG GATGGAAACG AGCTTTGAG 1260
 GAAGAGTACT ACAGATTTA TACACCACCA AACTTGTTC TTGCTCTGT TTTGCCCTCA 1320
 ATTGTAAATTC TGGATCTTT GCAGCTTGC AGATAACCCAG ACTGA

5 **SEQ ID NO:272 PBQ4 Protein sequence:**
 Protein Accession #: none

10	11	21	31	41	51	
MESISMGGSP	KSLSETCLPN	GINGIKDARK	VITVGIVIGSGD	FAKSLTIRLI	RCGYHVVIGS	60
RNPKFSEFF	PVVVDVTTHHE	DALTKTNIIF	VAIHREHYTS	LWDLRHLVVG	KILIDVSNNM	120
RINQYPPESNA	EYLASLFPDS	LIVKGFBVNVS	AWALQLGPKD	ASROVYICSN	NIQARQQVIE	180
LARQLNFIPI	DLGSLSSARE	ENLPLRLFT	WRGPVUVVVAI	SLATTPFLYS	FVRDVHRYA	240
RNQSDFYKPI	PIEIVNKTLT	IAVITLLSLV	YLAGLLAAAY	QLYYGKTYR	FPFWLETWLQ	300
CRKQLGLLSF	FFAMVHVAYS	LCLPMMRRSER	YLFLNMAYQQ	VHANIENSWN	EEEWVRIEMY	360
ISPGIMSLGL	LSSLVAVTSIP	SVSNALNWR	FSFIQSTLGY	VALLISTFHV	LIYGWKRAFE	420
EEYYRFYTPP	NFVLALVLPS	IVILDLLQLC	RYPD			

20 **SEQ ID NO:273 PBQ5 DNA SEQUENCE**
 Nucleic Acid Accession#: NM_001973
 Coding sequence: 150-1445 (underlined sequence corresponds to start and stop codon)

25	11	21	31	41	51	
CGCCGCCCTT	CTACTCCGCC	GGGGGGTCG	CAGCGGCTGC	CGCGCGTCC	TCGAGTTTCC	60
AGCGTGAGGA	GGAGGCTGAG	GGCGGAGAGG	CGCATCGTGT	TCGAGGCGGA	GACCGAGGGG	120
GAGCCCCGCG	CGCGGCGTCG	CTCATTCGCTA	TGGACAGTGC	TATCACCCCTG	TGGCAGTTCC	180
TTCTTCAGCT	CTCTGAGAAG	CCTCAGAACAA	AGCACATGAT	CTGTTGGACC	TCTAATGATG	240
GGCAGTTAA	GCTTTTGCG	GCAGAAAGAGG	TGGCTCGTCT	CTGGGGGATT	CGCAAGAACAA	300
AGCCAAACAT	GAATTATGAC	AAACTCAGCC	GAGCCCTAG	ATACTATTAT	GTAAAGAATA	360
TCATCAAAAGA	AGTGAATGGT	CAGAAAGTTG	TGTACAAGTT	TGTCTCTTAT	CCAGAGATTT	420
TGAACATGGA	TCCAATGACA	TGAGGCGAGGA	TTGAGGGTGA	CTGTGAAAGT	TTAAACTTC	480
GTGAAGTCAG	CAGCAGTTCC	AAAGATGTGG	AGAATGGAGG	GAAAGATAAA	CCACCTCAGC	540
CTGGTGCCAA	GACCTCTAGC	CGCAATGACT	ACATACACTC	TGGCTTATAT	TCTTCATTAA	600
CTCTCAACTC	TTTGAACCTC	TCCAATGTA	AGCTTTTCAA	ATTGATAAAG	ACTGAGAAC	660
CAGCCGAGAAA	ACTGGCAGAG	AAAAAAATCTC	CTCAGGAGCC	CACACCATCT	GTCTCAAAAT	720
TTGTCACGAC	ACCTTCCAAA	AAGCCACCAG	TTGACCTGT	TGCTGCCACC	ATTTCAATTG	780
GCCAAGTAT	TTCTCCATTC	TCAGAAGAAA	CTATCCAAGC	TTGGAGACA	TTGGTTTCCC	840
CAAACATGCC	TTCCCTGGAA	CCCCAACCT	CTGCCCTCAA	CCTAATGACT	GCTTTGCCA	900
CCACACCACC	CATTTCGTC	ATACCCCTT	TGCAAGAAC	TCCCAGAAC	CCTTCACCAAC	960
CACTGAGTT	TCACCCAGAC	ATCGCACACAG	ACATTGATTTC	AGTGGCTTC	CAGCCAATGG	1020
AACTTTCCAGA	GAATTGTCT	TGGGACCTCA	AAGACCAGGA	TCAGCTTTC	CTAGAAAAGG	1080
ACAAAGTAAA	TAATTATC	AGATCCAAGA	AACCCAAAGG	TTAGGACTG	GCACCCACCC	1140
TTGTGATCAC	GAGCAGTGT	CCAAGCCCAC	TGGAATACT	GACCCCATCT	CTCCCTACAG	1200
CTTCTCTTAC	ACAGAGCAT	TTTCAGACAG	CACCCATCAT	ACTGACTCCA	AGCCCCCTGC	1260
TCTCCAGTAT	CCACTTCG	AGTACTCTCA	GTCTCTTGC	TCCCCCTAAGT	CCAGCCAGAC	1320
TGCAAGGTG	AAACACACTT	TTCCAGTTTC	CTTCTGTACT	GAACAGTCAT	GGGCCATTCA	1380
CTCTGTCTGG	GCTGGATGGA	CTTCCCAACCC	CTGGCCCAT	TTCCCCAGAC	CTACAGAAGA	1440
CATAAACATAT	GCACCTGTGG	AATGAGGAA	CCGAGGAACG	AAGAAACAGA	CATTCAACAT	1500
GATTGCTATT	GAAGTGACCA	ATTGATAGTT	CTACAATGCT	GATAATAGAC	TATTGTGATT	1560
TTTGCCATTCT	CCCATTGAAA	ACATCTTTT	AGGATTCTCT	TTGAATAGGA	CTCAAGTTGG	1620
ACTATATGTA	AAAAAAATGCC	TTAATTGGAG	TCTAAACTCC	ACCTCCCTCT	GTCTTTCT	1680
TTTCTTTTTC	TTTCTCTTCT	TTCTCTTTA	AAAAATTTT	GAGCTTGTG	1740	
CTGAAGAAGT	TTTGGTGGG	CTTAGTGC	TGTGCTTGC	AAAAGCAATT	AAGAACAAAG	1800
TTACTCTTC	TTGGCTATTGG	GACCCCTTGG	CCAGGAAAAA	TTATGCTTAG	AATCTTATTAT	1860
TTAAAGAAGT	ATTGTGAAA	TGAAAAAAA	AAAAAA	AAAAAA	AAAAAA	1920
AAAAAA	AAA					

60 **SEQ ID NO:274 PBQ5 Protein sequence:**
 Protein Accession #: NP_001964

65 MDSAITLWQF LLQLLQKPO N KHMICWTSND GQFKLLOQAE VARLGIRKN KPNMNYDKLS 60
 RALRYYYVKN IIKKVNGQKF VYKFVSYPEI LNMDPMTVGR IEGDCESLN FSEVSSSSKDV 120
 ENGGKDKPPQ PGAKTSSRN YIHSGLYSS TLNSLNSNV KLFKLKTN PAEKLAEEKS 180
 PQEPTPSVK FVTPPSKPP VEPVATISI GPSIPSSE TIQALETLV PKLPSLEAPT 240
 SASNVMTAFA TTPPISSIPP LQEPPRTPSL PLSSHPDIDT DIDSVASQPM ELPENLSLEP 300
 KDJQDSVLEK DKVNNSSRSK KPKGLGLAPL LVITSSDPSP LGILSPSLPT ASLTPAFFSQ 360
 TPIILTPSPL LSSIHFWSTL SPVAPLSPAR LQGANLTFQF PSVVLNSHGPF TLSGLDPST 420
 PGPFSPDLQK T

75 **SEQ ID NO:275 PBY3 DNA SEQUENCE**
 Nucleic Acid Accession#: AB040921
 Coding sequence: 131-2560 (underlined sequence corresponds to start and stop codon)

1	11	21	31	41	51	
---	----	----	----	----	----	--

	AATCAGGAAC	AGATCATATA	TTGACCGAGA	TTCTGAGTAT	CTCTTGCAAG	AAAATGAACC	60
	AGATGGAAC	TTAGACCAA	AATTATTGGA	AGATTTACAA	AAGAAAAAAA	ATGACCTTCG	120
5	GTATATTGAA	ATGCAGCATT	TCAGAGAAAA	GCTGCCCTCG	TATGGAATGC	AAAAGGAATT	180
	GGTAAATTAA	ATTGATAACC	ATCAGGTAAC	AGTAATAAGT	GGTGAACACTG	TTTGTGGCAA	240
	AACCACTCAA	GTACTCACT	TCATTGGA	TAACTACATT	AAAAGAGGAA	AAGGATCTGC	300
	TTGCAGAATA	GTTMGTACTC	ACCCAAGAAG	AATTAGTGCC	ATTTCACTG	CGGAAAGAGT	360
	AGCTGCAGAA	AGGGCAGAAT	CTTGTGGCAG	TGGTAATAGT	ACTGGATATC	AAATTCTGCT	420
	CCAGAGTCGG	TTGCCAAGGA	AACAGGTTC	TATCTTATAC	TGTACACAG	GAATCATCTT	480
10	TCAGTGGCTC	CAGTCAGACC	CGTATTGTC	CAGTGTAGT	CATATCGTAC	TTGATGAAAT	540
	CCATGAAAGA	AATGCACT	CAGATGTTT	AATGACTGT	TTTAAAGACC	TTCTCAATT	600
	TCGATCTGAC	TTGAAAGTAA	TATTGATGAG	TCGAACATCG	ATGAGCAGAA	AGTTTCAGA	660
	ATATTGTTGGT	AACTGTCCAA	TGATACATAT	ACCTGGTTT	ACCTTCCCG	TTGTTGAAATA	720
	TCTTTTGAGA	GATGTAATTG	AAAAATAAG	GTATGTTCCA	GAACAAAAAG	AACACAGATC	780
15	CCAGTTAAC	AGGGGTTCA	TGCAAGGCA	TGTAATAGA	CAAGAAAAG	AAGAAAAAGA	840
	ACCAATATAT	AAAGAACGTT	GGCCAGATTA	TGTAAGGAA	CTGCGAAGAA	GGTATTCTGC	900
	AACTACTGTA	GATGTTATAG	AAATGATGGA	GGATGATAAA	TTTGTATGTA	ATTGATTTGT	960
	TGCCCTCATC	CGATACATCG	TTTGGAAAGA	AGAGGATGTT	GCAGTACTGG	TCTTCTGCCT	1020
	AGGCTGGAC	AAATACGCA	CTTACATGAT	TCTCTTGATG	TCACAGTAA	TGTTAAATC	1080
20	AGATAAATT	TTAATTATAC	CTTACATTC	ACTGATGCC	ACAGTTAAC	AGACACAGGT	1140
	GTTTTAAAGA	ACCCCTCTTC	GTGTTCCG	AATAGTAAT	GCTACCAACA	TTGGGGAGAC	1200
	TACCATFACC	ATAGATGATG	TGTTTATGAT	GATAGATGGA	GGAAAAATAA	AAAGAGACCA	1260
	TTTTGATACT	CAGAACAAATA	TCAGTACAA	GTCCGCTGAG	TGGGTTAGTA	AAAGCTAATGC	1320
	CAAACAGAGA	AAAGGTCGAG	CTTGAAGAGT	TCAACCTGTC	CATTGCTATC	ATCTGTATAA	1380
	TGGTCTTAGA	GCAAGTCTTC	TAGATGACTA	TCAACTGCCA	GAATAATTG	GAACTCCTT	1440
25	GGAAAAGACTT	TGTTTACAAA	AAAGAGTTT	AAGCTTGTAG	GGAAATTGCTT	ATTTTCTGAG	1500
	TAGATTAATG	GACCCACCAT	AAATGAGGC	AGTGTAACTC	TCCATAAGAC	ACCTGATGGA	1560
	GCTGAACGCT	TTGGATAAAC	AAGAAGATT	GACACCTCTT	GGAGTCCACT	TGGCACGATT	1620
	ACCCGCTGAG	CCACATATTTG	AAAAAAATGAT	TCTTTTGGA	GCACGTCTCT	GCTGCTTAGA	1680
	CCCAGTACTC	ACTATTGCTG	CTAGTCTCG	TTTCAAAGAT	CCATTGTCA	TTTCACTGGG	1740
30	AAAAGAAAAG	ATTGCAAGATC	CAAGAAGAAA	GGATTGCGA	AAGGATACTA	GAAGTGTACA	1800
	CTTAAACAGTT	GTGATGCGT	TTGAGGCTG	GGAAAGGCT	AGGCCAGCTG	TTTTCAAGATA	1860
	CGAAAAGGAC	TATTGCTGGG	AAATTTTCT	GTCTTCACAA	ACACTGCAGA	TGCTGCATAA	1920
	CATGAAAGGA	CAGTTGCTG	AGCATCTCT	TGGAGCTGGA	TTTGTAAAGCA	GTAGAAAATCC	1980
	TAAGAGATCCA	GAATCTAATA	AAATTCTGCA	TAATGAGAAG	AAATTAAGAAG	CTGTCATCTG	2040
35	TGCTGGTTA	TATCCCCAAAG	TGCTCAAAAT	TGCGACTAAAT	TGGGTTAAAG	AAAGAAAAAT	2100
	GGTAAAAGTT	TACACAAAAA	CCGATGCCCT	GGTTGCTGT	CATCTCTAAAT	CTGTTAAATG	2160
	GGAGCAACAA	GACTTTCACT	ACAACTGGCT	TATCTATCAC	CTAAAGATGA	GAACAAGCAG	2220
	TATATATTG	TATGACTGCA	CAGAGTTTC	CCCATCTGT	CTCTTGT	TTGGAGGTGA	2280
	CATTCCATC	CAGAAGGATA	ACGATCAGGA	AACTATTGCT	GTAGATGAGT	GGATTGTATT	2340
	TCAGTCATC	GCAAGAATTG	CCCCATCTGT	TAAGGAAATT	AGAAAGGAAAC	TAGATATTCT	2400
	TCTGCAAGAG	AAAGATTGAAA	GTCTCTATCC	TGTGACTGG	ATGACACATA	AATCCAGAGA	2460
40	CTGTGAGTA	CTGTCAGCTA	TTATAGACTT	GATCAAACAA	CAGGAAAGAG	CAACTCCCAG	2520
	GAACATTCCG	CCACGATTC	AGGATGTTA	TTACAGCTGA	CAGCTTTCA	GGGGTGGCTT	2580
	GGAAAAGCCG	TTTGACAGCC	ATTCTCTATC	ATTGTTTAA	TTTGGCTGG	ATGCCAAACC	2640
	CTGGGACATG	AAACATTTC	ATGTGTAAGG	TAGAAGCCTT	CAGTAGGTAG	TAAAGACTTA	2700
	ATGTGATGTA	CTTGTGTTA	TATGTAGAGA	TATATATATA	TATATATATA	CCATAAAAGC	2760
	AAATATGTTCT	CTGATCATAT	ACTCTGCTGT	GGTCATGCC	ACTCTTGGG	AGTATATTC	2820
45	CTTTATATAT	ATTGAGTATT	GTACCACTTG	AGAAATTCCT	TGTTTCTGTT	ATACAAAATT	2880
	AATCTTCTG	CTCATAATGA	TTGATGATAC	CACCAAGTAA	AATAGGATGT	TTACCCCCAA	2940
50	ACAAGTGTCA	ATTAAGAATT	TGAAACACAAAC	CACATTTTT	AAAATGAAAC	TTCTATCGGA	3000
	AGTAATTTAA	TTTGTGTTAA	AAAGTCCAG	TATTTAATAA	AAATGTAACAT	GTAAATCTC	

SEQ ID NO:276 PBY3 Protein sequence:
Protein Accession #: BAA96012

55	IRNRSYIDRD	SEYLLQENEPE	DGTLDQKLLE	DLQKKKNDLR	YIEMQHFREK	LPSYGMQKEL	60
	VNLIDNHQVT	VISGETGCGK	TTQVTFQIL	NYIERKGKSA	CRIVCTQPRR	ISAISVAEVR	120
	AAERAESCGS	GNSTGYQIRL	QSRLPRKQGS	ILYCTTGIIL	QWLOSDPYLS	SVSHIVLDEI	180
60	HERNLQSDVL	MTVVKDILNNF	RSDLKVILMS	ATLNAEKFSE	YFGNCPMIHI	PGFTFPVVEY	240
	LLEDVIKIR	YVPEQEKEHRS	QFKRQFMQGH	VNRQEKEEKE	AIYKERWPDY	VRELKRRYSA	300
	STVDVIMEEM	DDKVDLNLIV	ALIRLYVILE	EDGAILVFLP	GWWDNSTLHD	LLMSQVMFKS	360
	DKFLIPLHS	LMPTVNQTQV	FKRTPPGVRK	IYIAITNIAET	SITIDDVVYV	IDGGKIKETH	420
	FDTQNNISTM	SAEWVSKANA	KQRKGRAGR	QPGHCYHLYN	GLRASILDDY	QLPEILRRTL	480
65	EELCLQIKIL	RLLGIAYFLS	MDLPDPSNEA	VLLSIRHLME	LNALDKQEEI	TPLGVHLARL	540
	PVEPHIGKMI	LFGALFCCLD	PVLTIAASLS	FKDPFVILP	KEKIAADARRK	ELAKDTRSDH	600
	LTVVNAFEGW	EEARRRGFRY	EKDYCWEYFL	SSNTLQMLHN	MKGQFAEHLL	GAGFVSSRNP	660
	KDPESINSD	NEKIIKAVIC	AGLYPKVAKI	RINLGKRRKM	VKVYTKTDGL	VAVHPKSVNV	720
	EQTDFHYNWL	IYHLKMRSTS	IYLYDCTEV	PYCILFFGGD	ISIQKDNDQE	TIADWEWIVF	780
70	QSPARIAHLV	KELRKELDIL	LQEKIESPHP	VDWNNTKS	CAVLSAIIDL	IKTQEKA	840
	NFPPRFQDGYS						

SEQ ID NO:277 PBY6 DNA SEQUENCE

Nucleic Acid Accession#: AA464018
Coding sequence: 64-1669(underlined sequence corresponds to start and stop codon)

GATTITATCC TGGAACATTA CAGTGAAGAT GGCTATTAT ATGAAGATGA AATTGCAGAT 60
CTTATGGATC TGAGACAAGC TTGTCGGACG CCTAGCCGG ATGAGGCCGG GGTGGAAC

CTGATGACAT ACTTCATCCA GCTGGGCTT GTCGAGAGTC GATTCTCCC GCCCACACGG 180
 CAGATGGAC TCCGTTCAC CTGGTATGAC TCTCTCACCG GGGTCCGGT CAGCCAGCAG 240
 AACCTGCTGC TGGAGAAGGC CAGTGTCTG TTCAACACTG GGGCCCTCTA CACCCAGATT 300
 5 GGGACCCGGT GTGATCGGCA GACGCAGGCT GGGCTGGAGA GTGCCATAGA TGCTTTCAG 360
 AGAGCCGAG GGGTTTAAA TTACCTGAAA GACACATTAA CCCATACTCC AAGTACGAC 420
 ATGAGCCCTG CCATGCTCAG CGTGCTCGTC AAAATGATGC TTGCACAAGC CCAAGAAAGC 480
 GTGTTGAGA AAATCAGCCT TCTGGGATC CGGAATGTAAT TCTTCATGCT GGTGAAGGTG 540
 10 GCTCAGGAGG CTGCTAAGGTG GGGAGAGGTC TACCAACAGC TACAGCAGC CATGAGCCAG 600
 GCGCCGGTGA AAGAGAACAT CCCCTACTCC TGGGCCAGCT TAGCTGCGT GAAGGCCAC 660
 CACTACGCCG CCCTGGGCA CTACTTCG GCCATCTCC TCATCGACCA CCAGGTTGAAG 720
 15 CCAGGCACGG ATCTGGACCA CCAAGGAGAAG TGCCCTGCCC AGCTCTACGA CCACATGCCA 780
 GAGGGGCTGA CACCTTGCG CAACTGAAG AATGATCAGC AGCAGGACAGA GCTGGGAAAG 840
 TCCCCTGCG GCAGAGCCAT GGTCATCAC GAGGAGTCGG TGCGGGAGGC CAGCCCTGCG 900
 20 AAGAAGCTGC GGAGCATTGA GGTCTACAG AAGGTCGTGT GTGCCGACAA GGAAAGCTCC 960
 CGGCTCACGT AGCAGGAGCA CCAAGGAGGAG GATGACCTGC TGAACTGTAT CGACGCC 1020
 AGTGTGTTG CTAAAATGAGA GCAAGAGGTT GACATTATAT TGCCCCAGTT CTCCAAGCTG 1080
 ACAGTCACCG ACCTCTTCAAGA GAGCTGGC CCCTTATCTG TGTTTICGGC TAACAAGCGG 1140
 25 TGGACGGCTC CTGCAAGCAT CGCTTCACT GCAGAGAAG GGGACTTGGG TTACACCTTG 1200
 AGAGGGAAACG CCCCCGTTCA GGTCACTTC CTGGATCTT ACTGCTCTGC CTGGTGGCA 1260
 GGAGCCCGGG AAGGAGGATTA TATGTCCTCC ATTCACTGTT TGGATTGAA GTGGCTGACC 1320
 CTGAGTGGG TTATGAAGCT GCTGAAGAGC TTGGCAGGG AGCAGATCGA GATGAAAGTC 1380
 GTGAGCCCTC TGGAACCTCAC ATCATTCACTG CATAATAAAGA TGCCACATA CTCCGTGGG 1440
 ATGCAGAAAA CGTACTCCAT GATCTGCTTA GCCATTGATG ATGACGACAA AACTGATAAA 1500
 ACCAAGAAAA CCTCCAAGAA GCTTCCCTTC CTGAGTTGGG GCACCAACAA GAACAGACAG 1560
 AAGTCAGCCA GCACCTTG CTCATCG GTCGGGGCTG CACGGCTCA GGTCAGAACAG 1620
 30 AAGCTGCCCT CCCCTTCAG CTTCTCAAC TCAGACAGTT CTTGGTACTAA
 AAGCTGCCCT CCCCTTCAG CTTCTCAAC TCAGACAGTT CTTGGTACTAA

SEQ ID NO:278 PBY6 Protein sequence:
Protein Accession #: NP_149094

DFILEHYESD GYLYEDEIAD LMDLRQACRT PSRDEAGVEL LM TYFIQLGF VESRFFPPTR 60
 QMGLLFTWYD SLTGVPVSQQ NLLLEKASVL FNTGALYTQI GTRCDRQTQA GLESAIDAFQ 120
 35 RAAGVLVNYLK DTFTHTPSYD MSPAMLSV L KMMLAQAQES VFEKISLPGI RNEFFMLVKV 180
 AQEAAKVGEV YQQLHAMSQ AVPKENIPYS WASLACVKAH HYAALAHYFT AILLDHQVK 240
 PGTDLDHQEK CLSOLYDHMP EGLTPLATLK NDQQRRLQKG SHLRRAMAHH EESVREASLC 300
 KKLRSIEVLQ KVLCAAQERS RLTYAQHQEE DDLLNLIDAP SVVAKTEQEV DIIIPFSKL 360
 TVTDFFQKLPLS VFSANKR WTTPRSIRFT AEEGDLGFTL RGNAPVQVHF LDPPYCASVA 420
 40 GAREGDIIVS IQLVDCKWL TSEVMKLLKS FGDEIEMKV VSLLDSTSSM HNKSATYSVG 480
 MQKTYSMICL AIDDDDKTDK TKISKKLSF LSWGTNKNRQ KSASTLCLPS VGAARPQVKK 540
 KLPSPFSLNN SDSSWY

SEQ ID NO:279 PBY8 DNA SEQUENCE

Nucleic Acid Accession#: AF107493
Coding sequence: 125-556 (underlined sequence corresponds to start and stop codon)

	1	11	21	31	41	51	
50	GAATTCCGGCA	CGAGCCTTGT	TGGAGGTTCT	GGGGCGCAGA	ACCGCTACTG	CTGCTTCGGT	60
	CTCTCCTTGG	GAAAAATAA	AATTGAAACC	TTTTGGAGCT	GTGTGCTAA	TCTTCAGTGG	120
	GACA <u>ATG</u> GGT	TCAGACAGA	GAGTGAGTAG	AAACAGAGCGT	AGTGGAAAGAT	ACGGTTCCAT	180
	CATAGACAGG	GATGACCGTG	ATGACCGTA	ATCCGAAGC	AGGGGGAGGG	ACTCAGATT	240
	CAAAAGATCT	AGTGATGATC	GGAGGGGTGA	TAGATATGAT	GACTACCCAG	ACTATGACAG	300
	TCCAGAGAGA	GAGCAGTGAAG	GAAGAACAG	TGACCGATCG	GAAGATGGCT	ACCATTCAAGA	360
	TGGTGACTAT	GGTGAGCACG	ATATAGGCA	TGACATCAGT	GACGGAGGG	AGAGCAAGAC	420
	CATCATGCTG	CGCGGCCCTTC	CCATCACCAT	CAACAGAGAC	GATATTGAG	AAATGATGGA	480
	GTCCCTCGAA	CTGCGCTCAGC	CTGCGGATGT	GAGGCTGAGT	AAGGGAAGAA	CAGGTGAGAG	540
	CTTGTTTGTAGT	TCTGTATATT	ATTGTCCT	CTCCCCATCC	CACCTCAGTC	CCTAAAGAAC	600
	ATCCGTATTC	CCCCAGCTT	CAAGCACATG	AATTCAAGAT	GAAGGTTTG	CCATGGCTAA	660
	GGATATGTGAC	TCTTTGAAAGA	CCATGTTAGC	ATCTGAGGA	CTTTTTAA	CTTTGTTTA	720
	GGGACTTTT	TTTCTCTTGG	TAAGTAATGA	TTTATAAACT	CTTTTTTT	TTTGACTATA	780
	GTCTGGTTGCA	TGGTTACTTT	AAGCGTGGAA	TCAAATGGAG	TGGCATTTAG	TTCAGCGGG	840
	TTGTMCCCTG	CCATGGCAAA	GTATCAAGAA	GATCCCCAAC	TCAAGTCACA	TTTGTAAGAC	900
	TGCTTCCCAA	TTGGCTTGT	CACCGACTGT	TGAAGCAGTG	GGAGAGAGAT	TCACCTGTAA	960
	TAAAGGAACT	GACTAACACA	AGTATCCCGT	CTATATCTGA	ATGCTGTC	TAGGTGTAAG	1020
	CCGTGGTTTC	GCCTTCCTGG	AGTTTATCA	CTTGCAGAT	GCTACCAAGCT	GGATGGAAGC	1080
	CAATCAGGTT	GCTTCACTCA	CCAAGTCTAG	ATATTCA	AAATGGAACA	AGTCTGTACA	1140
	ATTTTAAAAA	AAGGTGAAAG	GAGTGGTTTG	TTCCAAAGGA	GTGACTTTT	TTTTAAAAAA	1200
	AAGCTTTGTA	TATATTTAAA	TTGATGTTAC	TAGAATAAGT	ACAGTACCAA	GGACTTCATT	1260
	ATAGAATTG	TCTGCTT	AAACATGGCT	ACCTACCTGG	CAGGGCTT	TGAACACTTG	1320
	AATACCTGTC	TGCTAATCAC	TTAACATCT	TTATGTTCC	CTTTTTCTA	TTTTGTTATA	1380
	TCCTTATTAT	GTCCATTGAG	AGTAAGCTTA	GTATATCAA	CTCTCCATT	GACAGTGAAG	1440
	AGAACATAGT	GAAAGTCTGT	GGCGCCATT	TTATAAGTA	TTCTTTATT	CTGCCCTGAAG	1500
	ACCACAAAGC	CTCTGGAGG	CGTAACTGCT	CAACGGCGTC	TTCAAGGAA	ATTTAAGGAC	1560
	TTAGTGGAAAT	TTATGAACAA	TAAGTCTGAT	GAGATTAGCC	TGGGAGTGGT	GTCCCTGCAGC	1620
	TGTCTAATCT	AGAGTGGCAT	TAACATTCTA	ATCTCCTTGA	GAATGCC	TATAGTCTGT	1680
	TCAAAGCAAG	TCATTGATGG	TTCTCGAGG	TAGTGTAAAC	TGAAGTGTTC	TTCAGTTGT	1740
	CAAGATAATG	TTCAGTGCCTT	GGCACTTAA	TAACATT	TGCAAGAAC	CCAAGGCACA	1800

TTATTGAATG CCTTTAACCA AGTCGATTCT GGGAGTTT GTTGACTCAT TATCTTGCTT 1860
 TTCTGCAGCA TTCTGTGATT TGAGTCATCC ATGAATCCAT GAATAAAAGT TACATTCTT 1920
 GATTGGTAAT ATTGCCATT ATAACAAGAC TCACTAATGA GGGTATCACT TTGACTGACT 1980
 5 GATTGGTAA AGTTTTTAAG CCTCTCATTT TCCTAACCCCA GAATACACAG CCTGATTTA 2040
 TTAAAAGTAG AGCTTCATTC ATTTCATACC ATAGATACCA TCCTAGTAA TCCAGAACAT 2100
 ATACAAGGTT CATGTGAGTC TGCTTCTTG ACATGATAGC ATTGTTGAT GCAGTGGATA 2160
 TGTAGAATG ACTAACCTAG GAGTTGAAA CTCCCTAACAG ACTAAAAACCT GTAAAGACATT 2220
 TAAAAGTCTC CACAATTTA ATGTATACAA AGCTATGTTA CTGTTAACAA CATTACAGTT 2280
 10 CAAATTCACT CCAGAAATAA AAGGCCAGTA GGATTAGGG CTCACTGGTA GTTGGAGTC 2340
 TCCCAGCACA CATCCCTCCCT AGTGGGATGA TCTATTCAAC TATCTCCAG CTTTTTTAAIT 2400
 TTGCTTCTG TATATCACAG GCGCTTCAAGC GCGCTTCTC CTGGCCAGAC 2460
 ATGCAGTCTT GCCTTTAGAT ATCCAGAGA CAAAATTCAC AGCATGTCCT AAATCTCCA 2520
 GGATTTGCAA GAACCAAATT GCTCAACAGT ATGTATGTT AGAGGGTTA GACTCTTTT 2580
 15 TAAAATCTGG ATATCTAACC ACCTACTTAA ATCTGTTGA TAGTGTCAA CCACCCCCAC 2640
 CCTTGATCCT CCCACCCCCA AAAAAAAA AAAA

SEQ ID NO:280 PBY8 Protein sequence:

Protein Accession #: XP_003261

MGSDKRVSRT ERSGRYGSII DRDRDRERES RSRRRDSDYK RSSDDRRGDR YDDYRDYDSP 60
 ERERERRNSD RSEEDGYHSDG DYGEHDYRHD ISDERESKTI MLRGLPITI ESDIREMMES 120
 FEGPQPADVR LMKRKTGESL LSS

SEQ ID NO:281 PCI2 DNA SEQUENCE
 Nucleic Acid Accession#: AF208291
 Coding sequence: 109-3705 (underlined sequence corresponds to start and stop codon)

1	11	21	31	41	51	
CGGCGCGTTT	TTTCTCAAGA	TGGCAGATTC	CCACTGAGGC	TGAGGGGGC	GAGCTCGCGC	60
GGCGCGTTCC	CTTCTCCGTT	GCCATGAACC	GGGGACACCC	CGGGCCCCGAT	GGCCCCCGTG	120
TACGAAGGTA	TGGCCCTACA	TGTGCAAGTT	TTCTCCCCCTCA	ACACCCCTTCAC	ATCAAGTGC	180
30 TTCTGTAGTG	TGAAGAAACT	AAAAGTAGAG	CCAAGTTCCA	ACTGGGACAT	GACTGGGTAC	240
GGCTCCACA	CACAAAGTGA	CAGCCAGAGC	AAGAACATAC	CACCTTCCTCA	GCCAGCCTCC	300
ACAAACCGTCA	GCACCCCTCTT	GCCGGTCCCA	AACCCAAAGCC	TACCTTACGA	GCAGACCATC	360
GTCTTCCCGAG	GAAGGACCGG	GCACATCTG	GTCACCTCA	CAAGCAGCAC	TTCTGTCAACC	420
GGGAAGTTC	TCCGGGACCC	ACACAACTTA	ATCGCTGGA	GCACGTGAG	CCTCCCTTGAT	480
40 ACCTACCAA	AATGTGACT	CAAGCGTAAG	AGCGAGGAGA	TGAGGAACAC	AAGCAGCGTG	540
CAGATCATCG	AGGACGATCC	ACCCATGATT	CAGAATAATG	CAAGCAGGGC	CACTGTGCCCC	600
ACTGCCACCA	CCTCTACTGC	CACCTCCAAA	ACACGGCGT	CCAAACAGGGA	GGGGCACTAT	660
CAGCTGGTGC	AGCATGAGGT	GCTGTGCTCC	ATGACCAACA	CCTACGAGGT	TTAGAGTTTC	720
TTGGCCCGAG	GGACGTTGG	ACAATGGTC	AAGTGTGGA	AACCGGGCAC	CAATGAGATC	780
45 GTAGCCATCA	AGATCTGAA	GAACCCGCCA	TCTTATGCC	GACAAGGTC	GATTGAAGTG	840
AGCATCCCTGG	CCGGGTTGAG	CACGGAGGT	GCCGATGACT	ATAACTTCGT	CCGGGCCTAC	900
GAATGCTTCC	ACCCAAAGAA	CCACACGTGC	TTGGCTTTCG	AGATGTTGGA	GCAGAACCTC	960
TATGACTTTTC	TAAAGAAAAA	CAAGTTAAC	CCCTTGCCCC	TCAAAATACAT	TGCCCGAGTT	1020
CTCCAGCAGG	TAGCCACAGC	CCTGATGAAA	CTCAAAAGCC	TAGGTCTTAT	CCACCGCTGAC	1080
50 CTCAAAACAG	AAAACATCAT	GCTGGTGGAT	CCATCTAGAC	AACCATAAC	AGTCAAAGGTC	1140
ATCGACTTTG	GTTCAACCG	CCACGTCCTC	AAGGCTGTG	GCTCCACCTA	CTTGAGTCC	1200
AGATAATTACA	GGGGCCCTGA	GATCATCCCT	GTTTACCAT	TTTGTGAGCC	AATTGACATG	1260
TGGTCCCTGG	GCTGTGTTAT	TGCAAGATTG	TTCTGGGTT	GGCCGTTATA	TCCAGGAGCT	1320
TCGGAGATG	ATCAGATTG	GTATATTTC	CAACACAGG	TTTGGCTTGC	TGAATATTTC	1380
55 TTAAGCGCCG	GGACAAAGAC	AACACTGGTT	TTCACCGTGC	ACACGGACTC	ACCATATCCT	1440
TTGTGGAGAC	TGAAGACACC	AGATGACCAT	GAAGCAGAGA	CAGGGATTAA	GTCAAAAGAA	1500
GCAAGGAAAGT	ACATTTCAA	CTGTGTTAGAT	GATATGCCCC	AGGTGAACAT	GACGACAGAT	1560
TTGGAGGGG	GGCAGCATGT	GGTAGAAAG	GCTGACGGC	GGGGAGTTCAT	TGACCTGTTG	1620
60 AAGAGAGATC	TGACCATTTG	TGCTGACAG	AGAACATCTC	CAATCGAAC	CCTGAACCAT	1680
CCCCTTGTC	CCATGACACA	CTTAACTCGAT	TTTCCCCACA	GCACACACGT	CAAATCATGT	1740
TTCCAGAACAA	TGGAGATCTG	CAAGCGTCGG	GTGAATATGT	ATGACACGGT	GAACCGAGAC	1800
AAAACCCCTT	TCATCACGCA	CGTGGGCCCC	AGCACCTCCA	CCAACTCTGAC	CATGACCTTT	1860
AACAAACCGC	TGACCAACTGT	CCACAAACCC	GCTCCCTCTC	CTACCACTGTC	CACTATTTC	1920
65 TTAGCCAATC	CCGAAGTCTC	CATACTAAC	TACCCATCTA	CACTCTACCA	GCCCTCAGCG	1980
GCATCCATGG	CTGCGTGGC	CCACGGGAC	ATGCCCCCTG	AGACAGGAAAC	AGCCCGAGATT	2040
TGTGCCCGGC	CTGACCCGTT	CCAGCAAGCT	CTCATCGTG	GTCCCCCGG	TTTCCAAGGC	2100
TTGCGAGGCT	CTCCCTCTAA	GCACGCTG	TACTCGGTG	GAATGGAAAAA	TGCAAGTTC	2160
70 ATCGTCACTC	AAGCCCCAGC	AGCTCAGCT	CTTCAGATCC	AACCAAGGTC	GCTTGGCCAG	2220
CAGGCTTGGC	CAAGTGGGAC	CCAGCAGATC	CTGCTTCCC	CAGCATGGCA	GCAACTGACT	2280
GGAGTGGGCCA	CCCCACACATC	AGTCGAGCAT	GCCACCCGTGA	TTCCCGAGAC	CATGGCAGGC	2340
ACCCAGCAGC	TGCGGAGTC	GAGAAATAGC	CATGCTCAGC	GAAGCCATTA	TAATCCCATC	2400
ATGAGCAGC	CTGCACTATT	GACCGGTAT	GTGACCCCTTC	CAGCAGCAC	GCCTTAAAT	2460
GTGGGTGTCG	CCCCACGTGAT	GGGGCAGCAG	CCAACCCAGCA	CCACCTCTTC	CCGGAAAGAGT	2520
75 AAGCAGCACC	AGTCATCTGT	GAGAAATGTC	TCCACCTGTG	AGGTGTCTC	CTCTCAGGGC	2580
ATCAGCTCCC	CAACGGCATC	CAACCGTTC	AAGGAGAAC	CACCTCCCCG	CTGTGCCATG	2640
GTGACAGTGA	GGCCGGCTG	CAGCACCTCG	GTACCTGTG	GGTGGGGCGA	CCTGGCCTCC	2700
AGCACCAACCC	GGGAACGGCA	GGCGCAGACAA	ATITGTCATTC	CCGACACCTCC	CAGCCCCACG	2760
GTCACCGTCA	TCCACATCAG	CAGTGACACG	GACGAGGAGG	AGGAACAGAA	ACACCCCCAC	2820
ACCAGCACTG	TCTCCAAGCA	AAGAAAAAAAC	GTCATCAGCT	GTGTACAGT	CCACGACTCC	2880
80 CCCTACTCCG	ACTCCTCCAG	CAACACCACG	CCCTACTCCG	TGCGACGAGG	TGCTGGGCAC	2940

5 ACAATGCCA ATGCCTTGA CACCAAGGG AGCCTGGAGA ATCACTGCAC GGGGAACCCC 3000
CGAACCATCA TCGTGCCACC CCTGAAAACC CAGGCCAGCG AAGTATTGGT GGAGTGTGAT 3060
AGCCTGGTC CAGTCAACAC CAGTCACCAC TCGTCCTCCT ACAAGTCCAA GTCCCTCCAGC 3120
AACCTGACCT CCACCAAGCGG TCAACTCTCA CGGAGCTCAT CTGGAGCCAT CACCTACCCG 3180
CAGCAGCGGC CGGGCCCCCA CTTCAGCAG CAGCAGCCAC TCAATCTCA CGAGGCTCAG 3240
CAGCACATCA CAACGGACCG CACTGGGAGC CACCGAAGGC AGCAGGCTCA CATCACTCCC 3300
ACCATGGCCC AGGCTCGTA CTCCCTCCCG CACAACAGCC CGAGGACAGG CACTGTGCAAC 3360
CCGCATCTGG CTGCAGCCGC TGCCCGTCCC CACCTCCCCA CCCAGCCCCA CCTCTACACC 3420
TACACTGGC CGCGGGCCCT GGCGCTCCACC GGACCCGTGG CCCACCTGGT GGCTCTGCCA 3480
GGCCTCTGGC CCCACACCGT GCAGCACACT GCCTACCCAG CGAGCATCGT CCACCAAGGTC 3540
CCCGTGAGCA TGGGGCCCGG GGTCCTGCCC TCAGGCCACCA TCCACCCGAG TCAGTATCCA 3600
GCCCAATTG CCAACAGAC CTACATCAGC GCCTCGGCC CGCTCCACCGT CTACACTGGA 3660
TACCCACTGA GCCCCGCCAA GGTCAACCAAG TACCCCTACA TATAAACACT GGAGGGGAGG 3720
GAGGGAGGGG CGGAGGAGGA GAATGGGGAGG AGGGAGGGAGG GAGAGAAAGGA GGGAGGGCGT 3780
10 CCTGGGACCGG TTGGCCCTGG CCTTTTATAC TGAAGATGCC GCACACAAAC AATGCAAACG 3840
GGCAGGGGGC GGGGGGGGGG GGGGCAGAGG GCAGGGGGAC GGTCGGGAC ACCAGTGAAC 3900
CTTGAAACGGG GAAGTGGGAG GACGTAGAGC AGAGAAAGAGA ACATTTTAA AGGAAGGGG 3960
TTAAGAGGGG TGGGAATCT ATGGTTTTA TTTTAAAAAA

20 SEQ ID NO:282 PC12 Protein sequence:
Protein Accession #: NP_073577

25 MAPVYEGMAS HVQVFSPHTL QSSAFCSVKK LKVEPSSNW MTGYGSHSKV YSQSKNIPPS 60
QPASTTVSTS LPVPNPLPY EQTIVPGST GHIVVTSASS TSVTGQVLGG PHNLMRRSTV 120
SLLDTYQKCG LKRKSEEIEN TSSVQIEEPPMIQNNSASC ATVATATTST ATSKNSGSNS 180
EGDYQLVQHE VLCSMINTYE VLEFLGRGTF GQVVKCWKRQ TNEIVAIKIL KNRPSYARQG 240
QIEVSILARL STESADDYNF VRAYECFQHK NHCLVFEML EQLNLYDFLKQ NKFSPLPLKY 300
IRPVLLQQVAT ALMLKLSQLGL IHAIDLKPENI MLVDPSPRQPV RVKVIDFGSA SHVSKAVCST 360
YLQSRYYRAP EIIILGLPFCE AIDMWSLGCV IAELFLGWPL YPGASEYDQI RYISQTQGLP 420
AEYLLSAGTE TTRFFNRDITD SPYPLWRLKT PDDHEAETGI KSKEARKYIF NCLDDMAQVN 480
MTTDLEGSDM LVEKARRDEF IDLLKKMLTI DADKRITPIE TLNHPFTVMT HLLDFPHSTH 540
VKSCFQNMIEI CKRVRNVMYDT VNQSKTPFIT HVAPSTSTNL TMTFNQNLT VHQNQAPSSTS 600
30 ATISLANPEV SILNYPSTLY QPSAASMAAV AQRSMPLQTG TAQICARPDP FQQUALIVCPP 660
GFQGLQASPS KHAGYSVRMNA NAVPVTQAP GAQLQIOPQ LLAQQAWPSG TQILLPPAW 720
QQLTGVAHT SVQHATVPIE TMAQTQQLAD WRNTHAHSN YNPIMQOPAL LTGHVTLPA 780
QLNVGVAHV MRQQPTSTS SRKSQHQSS VRNVSTCEVS SSQAISPPQR SKRVKENTPP 840
RCAMVHSSPA CSTSVTCGWG DVASSTRTEP QRQTVIPDPSPTVSVITI SSDTDEEEEQ 900
KHAPTSVSK QRKNVISCVT VHDSPYSDSS SNTSPYSVQQ RAGHNANANAF DTKGSLENHC 960
40 TGNPTIIP PLKTQASEVL VECDSLVPVN TSHHSSSYKS KSSSNVTSTS GHSGSSSGA 1020
ITYRQRQRPGP HFQQQQQPLNL SQAQQHITTD RTGSHRRQQA YITPTMAQAP YSFPHNSPSH 1080
GTVPHLAAA AAAAHLPQTQ HLYTYTAPAA LGSTGTVAHL VASQGSARHT VQHTAYPASI 1140
VHQVPSMGP RVLPSPTIHP SQYPAQFAHQ TYISASPAT VYTGYPLSPA KVNZQPYI

45 SEQ ID NO:283 PBY1 DNA SEQUENCE
Nucleic Acid Accession#: NM_017700
Coding sequence: 147-806 (underlined sequence corresponds to start and stop codon)

50 1 11 21 31 41 51
AGTCACAGCC AGGTAACCTT GGAGTGAAGC GTTTTAGTTA GAAGGGAGCA GATAAACTCG 60
TCACTCTAGT AGCTTTAACCT CTCACCCCTG GGCACCTTAG CAATCAGCCA TTGCTTGCAA 120
GCCCTCAAGG CTTGCTTTTG CCTAAATATGG AGCCCAAAGA AGCCACTGGG AAAGAAAAACA 180
55 TGGTACCAAA GAAAAAGAAT CTGGCTTCT TGAGGCTCTAG ACTCTATATG CTGGAGAGAA 240
GGAAGACTGA CACTGTGGTT GAGAGCAGTG TTCTCTGGGA CCACTCTGGC ACCTTGAGGA 300
GGAGCCAATC TGACAGGACC GAATACAAAC CAAAAATTACA AGAAAAGATG ACTCCACAGG 360
GTGAGTGTTC TGTAGCTGAG ACCTTAACCC CAGAGGAAGA GCATCATATG AAGAGGATGA 420
TGGCAAAGCG GCAAAGATC ATTAAAGGAGC TGATACAGAC AGAAAAGGAT TATCTCAATG 480
ATCTAGAGCT GTCTGTAGG GAACCTGGTC AGCCCTCTAG AAATAAAAAG ACTGATAGGC 540
TGGATGTGGA TAGCTTGTCTT AGAACACATG AGTCCCTGCA TCAGATATCA GCCAAGCTGC 600
TGTCTATTGTT GGAAGAGGCC ACAACAGAC TGGAACCCGGC CATGCAAGTA ATTGGAGAAG 660
TATTCTTGCA GATTAAGGGG CCACTGGAG ATATTTATAA ATATCTACTGC TATCACCATG 720
ATGAAGCACA TAGTATCTG GAGTCTCTAG AAGAGGAAGA AGAGCTGAAG GACACATTGA 780
60 GCCACTGTAT CCTAGTCTTA AAGTAAGGCC TTTTCAAATG ATGATTCCCCA TCTCTCTCA 840
GTTGCTCTAGC AGGGAAACATT TTAAATGGAT GTAGATGAAA GGTCCTCACAT AAATCTATG 900
TTTATGAGA CTTGCTGGGA GCTCTGCTTT GCATTCCTT TATAAAAACG TGACATGCCA 960
GAAGCCCTGA TTGACTTTTT TTCCCCCTGC GAGAATGACT AAAAATAACA TGGAAGAAGA 1020
70 TTAGAGGTC TGCAAGGCTG GAAAATACTCA ATATCAAAAATGAAATATG TGAGAAAAGC 1080
CTCTCTTAAAG AGCTTATGTA ACTTGGCTCGG CCCCACCTAG TTCAAGGATT ATGTGAGATA 1140
ACACGTGGCC CCATGACCAC TGGAGCACAT GGGTTAATGG AGTTAGGGGA ATGGCCTACA 1200
ACTCTGCTAG GCGCTCTTCT TTCCCCAACAC TCACTGTGGG GAGATGGGTG AAGACAAGTC 1260
AGGCCCTGTT AAAGTTAGTT TCAGAACAT TACTCATGCC TTCCCTTCTC ATCCCTAAAAA 1320
CATTTGGTGGG GGAGCTACAC AATGTACTTT TTCTTTCTA GAGGAAGTAT CTATTCACTG 1380
75 TGAAAATCTG AAAAATATAA CAAAGTATGT GTAAGATAAA AACCCCTTGC TATTTCAAA 1440
AAAAAAAAAA AAAAAAAA AAAA

80 SEQ ID NO:284 PBY1 Protein sequence:
Protein Accession #: NP_060170

80 1 11 21 31 41 51
420

MEPKREATGKE NMVTKKKNLA FLRSRLYMLE RKRTDTVVES SVSGDHSGTL RRSOSDRTEY 60
 NQKLQEKMTP QGECSVAETL TPREEEEHHMKR MMAKREKIIK ELIQTEKDYL NDLELCVREV 120
 VQPLRNKKTD RLDVDSLFSN IESVHQISAK LLSLLEEATT DVEPAMQVIG EVFLQIKGPL 180
 5 EDIYKIYCYH HDEAHSILES YEKEEELKEH LSHCIQSLSK

SEQ ID NO:285 PBQ9 DNA SEQUENCE

10 Nucleic Acid Accession#: X66534
 Coding sequence: 523-2676 (underlined sequence corresponds to start and stop codon)

	1	11	21	31	41	51	
15	CCCTTATGGC	GATTGGGGG	CTGCAGAGAC	CAGGACTCG	TTCCCCCTGCC	CTAGTCTGAG	60
	CCTAGTGGGT	<u>GGGACTCAGC</u>	TCAGAGTCAG	TTTCAGAAG	CAGGTTTCAG	TTGCAGAGTT	120
	TTCCTACACT	TTTCTCTGGC	TAAGAGCAGCG	AGCACCCCTGG	AACAGACCCA	GGCGGAGGAC	180
20	ACCTGTGGG	GAGGGAGCG	CTGGAGGAGC	TTAGAGACCC	CAGCCGGCG	TGATCTCAC	240
	ATGTGGGAT	TTGGAGGGC	CGCCCTGGAG	CTGCTAGAGA	TCCGGAAAGCA	CAGCCCCGAG	300
25	GTGTGCGAAG	CCACCAAGAC	TGCGGCTCTT	GGAGAAAGCG	TGAGCAGGGG	GCCACCCGCG	360
	TCTCCGGCTT	<u>GTCGACGAC</u>	GTCGCTTGAC	AGTGACAATG	ACATCCCAGT	420	
	TACCACTGTC	CTTGAATTTGA	TAAGTGGCTTC	TGTTTGTCTAG	TCTCATATAA	GAACATACAGC	480
30	TCATCAGGAG	GAGATCGCAG	CAGGGTAAGA	GACACCAAAC	<u>CCATGTTCTG</u>	CACGAAGCTC	540
	AAGAGATCTA	AGATCAGCAG	AGAGTGTCTC	TTCTCTTCTAC	TGGCACCAAGG	TCAAAGTTCT	600
35	AACAGACTCT	CAAGGGAGG	ACACAGAACG	TCAGAGAGCT	GCAAGAAC	CGTCCCCATC	660
	TGTCAGAAC	TTCTTGAGAA	GAACATACAA	GAAAGTCCTTC	CTCAAAGAAA	AACCAGTCGG	720
	AGCCGAGTCT	ATCTTCACAC	TTTGGCAGAG	AGTATTTGCA	AACTGATTTC	CCCAAGAGTTT	780
40	GAACCGCTGA	ATGTTGCA	TCAGAGAACG	TTGGCAAAGC	ACAAAATAAA	AGAAACCCAGG	840
	AAATCTTGG	AAAGAGAAGA	CTTTGAAAAA	ACAATTTGCG	AAAGCAGAGT	CGAGCAGAGT	900
45	CCAGTGGAGT	TATCAAAGAA	TCTCTTGGT	AAGAGGTTTT	TAAAATATGT	TACGAGGAAG	960
	ATGAAAACAT	CCCTGGGGTG	GTGAGGAGCA	CCCTTAAAGA	TTTTTAAACA	GCTTCAGTAC	1020
50	CCTCTGAAA	CAAGCAGAAC	TTGACAAAGA	AGCAGGAAAA	AGGGGCAGCT	TGAGGACGCC	1080
	TCCATCTCAT	GCCTGGATAA	GGAGGATGAT	TTTCTACATG	TTTACTACTT	CTTCCCTAA	1140
55	AGAACCCACT	CCCTGATTCT	TCCCGGCATC	ATAAAGGCAG	CTGCTCAGCT	ATTATATGAA	1200
	ACGGAAGTGG	ATGTTGCGT	ATGCGCTTCA	TCGTTTCCATA	ATGATTGCG	CGAGTTGTG	1260
60	AATCAGCCCT	ACTTGTGTA	CTCCGTTTAC	ATGAAAAGCA	CCAAAGCCATC	CTGTCCCCC	1320
	AGCAAACCCC	AGTCCTCGCT	GGTGAATCCC	ACATCGCTAT	TCTGCAAGAC	ATTTCATTTC	1380
	CATTCTCATG	TTGACAAAGA	TATGACAAATT	CTTGCATTTC	GCAATGGCAT	CAGAAGGCTG	1440
65	ATGAACAGCA	GAGACTTCGA	ACGAAAGCCT	AATTTCGAAT	ACTTTGAAT	TCTGACTCCA	1500
	AAAATCAACC	AGACCTTTAG	CGGGATCATG	ACTATGTTGA	ATATGCGATT	TGTGTACGA	1560
	GTGAGGAGAT	GGGAAACACTC	TGTTGAAAGA	TCTTCAGGG	TTATGGAACCT	CAAAGGCCAA	1620
	ATGATCTACA	TTGTTGAAATC	CACTGCAATC	CTGTTTTTGG	GGTCACCCCTG	TGTTGACAGA	1680
	TTAGAAGATT	TTACAGGACG	AGGGCTCTAC	CTCTCAGACA	TCCCAATTCA	CAATGCACTG	1740
	AGGGATGTGG	TCTTAATAGG	GGAAACAAGC	CGAGGCTCAAG	ATGGGCTGAA	GAAGAGGCTG	1800
	GGGAAGCTGA	AGGCTACCC	GGAGCAACCC	CACCAAGCCC	TGGAGGAGGA	GAAGAAAAG	1860
	ACAGTACACC	TTCTGTGCTC	CATATTTCCC	TGTGAGGTTG	CTCAGCAGCT	GTGGCAAGGG	1920
	CAAGTTGTG	AAAGCCAAGAA	GTTCACTAAT	GTCACCATGC	TCTTCTCAGA	CATGTTGGG	1980
	TTCACTGCCA	TCGCTCTCCCA	GTGCAACCG	CTGCAGGTCA	TCACCATGCT	CAATGCACTG	2040
	TACACTCGT	TCGACCCAGCA	GTGTTGAGAG	CTGGATGTC	CAACAGTGG	GACCATTCGG	2100
70	ATGCCCTATTG	TGTTTACCCC	TCGATCAAGG	AAAGAGAGTG	ATACTCATGC	TGTTCAGATA	2160
	GGCGCTGATGG	CCCTGCAAGAT	GATGGAGCTC	TCTGATGAA	TTATGTCCTCC	CCATGGAGAA	2220
75	CCATATCAAGA	AGGCTATGG	ATGTCACCT	GGATCAGTTT	TTGCTGCGCT	CGTGGAGTT	2280
	AAAATGCCCC	GTAACTGTCT	TTTATGAAAC	AAATGTCACTC	TGGCTAACAA	ATTGAGTCC	2340
	TGCACTGTAC	CAAGAAAAAT	CAATGTCAGC	CCAAACAACCT	ACAGATTACT	CAAAGACTGT	2400
	CTCTGTTTCG	TGTTTACCCC	TCGATCAAGG	GAGGAACCTTC	CACCAAACCTT	CCCTAGTGAA	2460
	ATCCCCGGAA	TCTGCCATTTC	TCCTGGATGCT	TACCAACAA	GAACAAACCTC	AAAACATGC	2520
80	TTCCAAAAGA	AAAGATGTGA	AGATGCAAGC	CAATTTTTTA	GCCAAAGCAT	CAGGAATAGA	2580
	TTGCAACCTT	ATATACCTAT	TTATAAGTCT	TTGGGGTTG	ACTCATTGAA	GATGTGTAGA	2640
	GCCTCTGAAA	GGACTTCTAGG	GGCTAACAAAG	CAGTATTAAA	ATTTCAGGAG	2700	
	CCAAGTCACA	ATCTTCTTC	TGTTTAAACAT	GACAAAATGT	ACTCACTTC	GTACTTCAGC	2760
	TCTTCAGAAA	AAAAAAAGAAA	ACCTTTAAAAA	GCTACTTTTG	TGGGAGTTT	TCTATTATAT	2820
	AACCAAGCACT	TACTACCTGT	ACTCAAATT	CAGCACCTTG	TACATATATC	AGATAATTGT	2880
	AGTCATTGAT	ACAAACTGT	GGAGTCACCC	GCAATCTCAT	ATCCTGGTG	AATGCCATGG	2940
	TTATTAAGT	GTGTTTGTGA	TAGTTGTCGT	CAAAAAAAA	AAAAAA	AAAAAA	3000
	AAAA						

SEQ ID NO:286 PBQ9 Protein sequence:

Protein Accession #: Q02108

	1	11	21	31	41	51	
70	MFCTKLKDLK	ITGECPFSSL	APGQVPNESS	EEAAGSSESC	KATVPICQDI	PEKNIQESLP	60
	QRKTTSRSRVY	LHTLAEISICK	LIFPEFERLN	VALQRTLAKH	KIKESRKSL	REDFEKTIAE	120
	QAVAAGPVVE	VIKESLGEEV	FKICYEEDEN	ILGVVVGTLK	DFLNSFSTLL	KQSSHCOEAG	180
75	KRGRLEDASI	LCLDKEDDFL	HVVYFFFKRT	TSLILPPIIK	AAAHVLYETE	VEVSLMPPCF	240
	HNDCEFVNQ	PYLLYSVHMK	STKPSLSPSK	POSSLVIPTS	LFCKTFFPFHF	MFDKDMTILQ	300
	FNGNGIRLMN	RDRFGKPNF	EYFYFEILTPK	INQTFSGIMT	MLNMQFVVVR	RRWDNSVJKS	360
	SRVMDLKGQM	IYIVESSAII	FLGSPCVDR	EDFTGRGLYI	SDPIHNALR	DVVLIGEQAR	420
80	AQDGLKKRLG	KLKATLEQAH	QALEEEEKKK	VDLLCSIFPC	EVAQQLWQGQ	VVOAKFSNV	480
	TMLFSDIVGF	TAICSQCSPL	QVITMLNALY	TRFDQQCAGEL	DYVKVETIGD	AYCVAGGLHK	540

ESDTHAVQIA LMALKMMELS DEVMSPHGEP IKMRIGLHSG SVFAGVVGVK MPRYCLFGNN 600
 VTLANKFESC SVPRKINVSP TTYRLLKDCP GFVFTPRSRE ELPPNFPSEI PGICKFLDAY 660
 QQGTNSKPCF QKDKVEDGNA NFLKASGID

5

SEQ ID NO:287 PFD2 DNA SEQUENCE

Nucleic Acid Accession#: NM_000720
 Coding sequence: 119-6664 (underlined sequence corresponds to start and stop codon)

10

	1	11	21	31	41	51	
	AGAATAAGGG	CAGGGACCGC	GGCTCCTATC	TCTTGGTGTATC	CCCCCTCCCC	ATTCCGCC	60
15	CGCCCTCAACG	CCCAGCACAG	TGCCCTGCAC	ACAGTAGTCG	CTCAATTAAT	<u>CTTCGTGGAT</u>	120
GATGATGATG	ATGATGATGA	AAAAAAATGCA	GCATCACCGG	CAGCAGCAAG	CGGACCACCG	180	
GAACGAGGCA	AACACTATGCAA	GAGGCCACAG	ACTTCCCTCTT	TCTGTTGAAG	GACCAACTTC	240	
TCAGCCGAAT	AGCTCCAAGC	AAACTCTCTT	GTCTTGGCAA	GCTGCAATCG	ATGCTGCTAG	300	
ACAGGGCAAG	GCTGCCAAC	CTATGAGCAC	CTCTGACCC	CCACCTGTAG	GATCTCTCTC	360	
CCAAAGAAA	CCTCAGCAAT	ACGCCAAGAG	CAAAACACAG	GGTAACACTGT	CCAACAGCCG	420	
20	ACCTGCCCCG	GCCTCTTCT	GTITGATCACT	CAATAACCCC	ATCCGAAGAG	CCTGCATTAG	480
TATAGTGGAA	TGGAAACCAT	TTGACATATT	TATATTATTG	GCTATTTTTG	CCAATTTGT	540	
GGCCTTAGCT	ATTTACATCC	CATTCCCTGA	AGATGATTCT	AATTCAACAA	ATCATAACTT	600	
GGAAAAAGTA	GAATATGCTT	TCTCTGATTAT	TTTCTGACTG	GAGACATTTT	TGAAGATTAT	660	
AGCGTATGGA	TTATTGCTAC	ATCTTAATTC	TTATGTTAGG	AATGGATGGA	ATTACTGGA	720	
25	TTTTGTTATA	GTAAATAGTAG	GATTGTTTAG	TGTAATTTTG	GAACAATTAA	CCAAAGAAC	780
AGAAGGCGGG	AACCACTCAA	GCGGCAAATC	TGGAGGCTTT	GATGTCAAAG	CCCTCCGTGC	840	
CTTTCGAGTG	TTGCGACCC	TTGCGACCTG	GTCAGGTTAC	CCCAGTTTAC	AAGTTGTCCT	900	
GAACCTCATT	ATAAAAGCCA	TGGTCTCCCT	CTTCACATCA	GGCCCTTTGG	TATTATTGTT	960	
30	AATCATAATC	TATGCTATTA	TAGGATTGGA	ACTTTTTATT	GGAAAATATG	ACAAAACATG	1020
TTTTTGTG	GACTCAGATA	TCGCTGCTGA	AGAGGACCCA	GCTCCATGTG	CGTTCTCAGG	1080	
GAATGGACCC	CACTGTACTG	CCAAATGGAC	GGAAATGTAGG	AGTGGCTGGG	TTGGCCGAA	1140	
CGGAGGCATC	ACCAACTTTG	ATAACTTTG	CTTTCGCATG	CTTACTGTGT	TTCACTGCA	1200	
CACCATGGAG	GCGCTGGACAG	ACGCTGCTTA	CTGGGTAATAT	GATCCGATAG	GATGGGAATG	1260	
35	GCCATGGTG	TATTTGTTA	GTCTGATCAT	CTTGGCTCA	TTTTCTGTC	TTAACCTGGT	1320
TCTTGGTGT	CTTACTGGAG	AATTCTCAA	GGAAAGAGAG	AAGGCAAAG	CACGGGGAGA	1380	
TTTCCAGAAG	CTTCCGGAGA	AGCAGCAGGT	GGAGGGAGGT	CTAACGGGCT	ACTTGGATTTG	1440	
GATCACCAC	CGTGAGGACA	TCGATCGGA	GAATGAGGAA	GAAGGAGGAG	AGGAAGGCAA	1500	
40	ACGAAATACT	ACGATGCCA	CCAGCGAGAC	TGAGTCGTG	AAACAGAGA	ACGTCAACGG	1560
TGAAGGCGAG	AACCGAGGCT	GCTGTGGAAG	TCTCTGTTG	TGGTGGAGAC	GGAGAGGCGC	1620	
GGCCAAGGCG	GGGCCCTCTG	GGTCTGGG	GTGGGTCAAA	GCCATCTCAA	AATCCAAACT	1680	
CAGCCGACGC	TGGCGTCGCG	GGAAACGATT	CAATCCAGA	AGATGTAGGG	CGCCCGTGA	1740	
GTCTGTCACG	TTTTACTGGC	TGGTTATCGT	CTTGGTTGTTT	CTGAACACCT	TAACCATTT	1800	
CTCTGAGGAC	TAACTACAGC	CAGATGGTT	GACACAGATT	CAAGATATTG	CCAACCAAAGT	1860	
45	CCTCTTGGCT	CTGTTACCT	CGCGATGCTG	GTTAAAAATG	TACAGCTTGG	CCCTCCAAGC	1920
ATATTTGTC	TCTCTTCTCA	ACCGGTTGTA	TTGCTTCG	GTGTGTTGTT	GAATCACTGA	1980	
GACGATCTCG	GTGGAACCTGG	AAATCATCTT	TCCCCCTGGG	ATCTCTGTTG	TTCGGTGTGTT	2040	
GCGCTCTTA	AAAGTACCTCA	AGGTGACCG	GCACTGGACT	CCCCCTGAGCA	ACTTGTGGC	2100	
50	ATCCATTATA	AACTCCATG	ATGTCATCCG	TTCGCTGTTG	CTTCTGCTTT	TTCTCTTCAT	2160
TATCATCTTT	TCTTGCCTTG	GGATGACGCT	GTTTGGGGC	AAGTTTAATT	TTGATGAAAC	2220	
GCAAAACCAAG	CGGAGCACCT	TTGACAAATT	CCCTCAAGCA	CTTCTCACAG	TGTTCCAGAT	2280	
CCTGACAGGC	GAAGACTGGA	ATGCTGTTGAT	GTACGATGGC	ATCATGGCTT	ACGGGGGCC	2340	
55	ATCCCTCTCA	GGAAATGATCG	TCTGCATCTA	CTTCATCATC	CTCTTCATT	GTGGTAACCTA	2400
TATCTCTACTG	AAATGCTCTT	TGGGATCTCG	TGTGACATA	TTGGCTGATG	CTGAAAGCT	2460	
GAACACTGCT	CGAAAGAAC	AAGCGGAAGA	AAAGGAGAGG	AAAAAGATTG	CCAGAAAAAGA	2520	
60	GAGCCTAGAA	AATAAAAAGA	ACAACAAACC	AGAAGTCAC	CAGATAGCCA	ACAGTGACAA	2580
CAAGGCTTACA	ATMTGATGACT	ATAGAGAAGA	GGATGAGAAC	AAGGACCCCT	ATCCGCTTGT	2640	
CGATCTGCGA	GTAGGGGAAG	AGGAAGAGGA	AGAGGAGGAG	GATGAACTTG	AGGTTCTGCG	2700	
CGGACCCCGT	CCTCGAAGGA	TCTCGGAGTT	GAACATGAAG	AAAAAAATTG	CCCCCATCCC	2760	
65	TGAAGGGAGC	GTTTCTCTTA	TTCTCTAGAA	GACCAACCCG	ATCCCGCTAG	GCTGCCACAA	2820
GCTCATCAC	CACCAACATC	TCAACCACT	CATCCCTGTC	TTCATCATGC	TGAGCAGCC	2880	
TGCCCCTGGCC	CGAGAGGACC	CCATCCCGAC	CCACTCTTC	CGGACACCGA	TACTGGTTA	2940	
70	CTTTGACTAT	GCCTTCACAG	CCATCTTTAC	TGTTGAGATC	CTGTTGAAAGA	TGACAACATT	3000
TGGAGCTTTC	CTTCACAAAG	GGCCCTCTG	CAGGAACCTAC	TTCAATTGTC	TGGATATGCT	3060	
GGTGGTTGG	GTGCTCTG	TGTCTATTGG	GATTCAATCC	AGTCCCATTT	CGGTTGAA	3120	
GATTCTGAGG	GTCTTAAAGG	TCTCTGGTCC	CTTCAGGGCC	ATCAACACAG	AAAAGGACT	3180	
TAAGGCTACG	GTCTCTGTC	TCTCCATCTT	CTCCGGAAC	ATCGGCAACA	TCATGATCTT	3240	
75	CACTACCTC	CTCGAGTTC	TGTTTGGCTG	CACTGGCTTC	AGTTGTTCA	AGGGGAAGTT	3300
CTATCGCTGT	ACGGATGAAG	CCAAAGATAA	CCCTGAAGAA	TGCAGGGGAC	TTTCATCCT	3360	
75	CTACAAAGAT	AGATGTTGTT	GGTCCCTCTG	GGGATCTGAG	CGGATCTGCG	AAAACAGTGA	3420
80	TTCACACTTC	GACAACGTC	TCTCTGCTAT	GATGGGCTC	TTACAGCTT	CCACGTTGA	3480
GGGCTGGCCT	CGCTTGTGT	ATAAAGCCAT	CGACTCGAAT	GGAGAGAAC	TCGGCCAAAT	3540	
CTACACCCAC	CGGGTGGAGA	TCTCCATCTT	CTTCATCATC	TACATCATCA	TGTTGACTTT	3600	
CTTCATGATG	AAACATCTTT	TGGGCTTGTG	CATCGTTACA	TTTCAGGAAC	AAGGAGAAA	3660	
AGAGTATAAG	AACTGTGAGC	TGGACAAAAA	TCAGCGTCAG	TGTGTTGAAT	ACGGCTGAA	3720	
AGCACGCTCCC	TTGGGGAGAT	ACATCCCCAA	AAACCCCTAC	CAGTACAAT	TCTGGTACGT	3780	
GGTGAACCTCT	TGCCCCTTTC	AATACATGAT	GTTTGTCTTC	ATCATGCTCA	ACACACTCTG	3840	
CTTGGCCATC	CAGCAACTACG	AGCAGTCCAA	GATGTTCAAT	GATGCCATGG	ACATTCTGAA	3900	
CATGGTCTTC	ACCGGGGTGT	TCACCGTCGA	GATGGTTTTG	AAAGTCATCG	CATTAAAGCC	3960	
TAAGGGGTAT	TTTGTGACG	CCTGGAACAC	GTTTGACTCC	CTCATCGTA	TCGGCAGCAT	4020	
80	TATAGACGTG	GGCCCTCAGCG	AAGCGGACCC	AACTGAAAGT	GAAAATGTCC	CTGTCCCCAAC	4080

TGCTACACCT GGGAACTCTG AAGAGAGCAA TAGAATCTCC ATCACCTTT TCCGTCTTT 4140
 CCGAGTGATC CGATTGGTGA AGCTTCTCA GAGGGGGAA GGCATCCGGA CATTGCTGTG 4200
 5 GACTTTATT AACTCCCTTC AGGCCTCCC GTATGTCGCC CTCCCTCATAG CCATGCTGT 4260
 CTTCATCTAT GCGGTATTG GCATCCAGAT GTTGGAAA GTTGCCTAGA GAGATAACAA 4320
 CCAGATCAAT AGGAACAATA ACTTCCAGAC GTTCCCCAG GCGGTGCTG TGCTCTTCAG 4380
 GTGTGCAACA GGTTGAGGCT GGCAGGAGAT CATGCTGCC TGTCCTCCAG GGAAGCTCTG 4440
 TGACCTGAG TCAGATTACA ACCCCGGGA GGAGTATACA TGTGGAGCA ACTTTCCAT 4500
 TGTCTATTTC ATCAGTTTC ATCAGTCTG TGCTATTCTG ATCATCAATC TGTGTTGTC 4560
 10 TGTCATCATG GATAATTTCG ACTATCTGAC CCGGGACTGG TCTATTTGG GCCCTCACCA 4620
 TTAGATGAA TTCAAAAGAA TATGTCAGA ATATGACCCCT GAGGCAAAGG GAAGGATAAA 4680
 ACACCTTGAT GTGCTCACTC TGCTTCAGCC CATCCAGCT CCCCTGGGT TTGGGAAGT 4740
 ATGTCCACAC AGGGTAGGT GCAAGAGAT AGTTGCCAT AACATGCCCT TCAACAGTGA 4800
 CGGGAGCTG ATCTTAAATG CAACCTGGT TGCTTTGGT CGAACGGCTC TTAAGATCAA 4860
 15 GACCAAGGG AACCTGGAGC AAGCTATGA AAACACTTGG CGTGTTGATAA AGAAAATTG 4920
 GAAGAAAACC AGCATGAAAT TACTTGACCA AGTTGCTCCCT CCAGCTGGT ATGATGAGGT 4980
 AACCTGGGG AAGCTTCTATG CCACCTGGT GATACAGGGAC TACTTTAGGA AATTCAGAA 5040
 ACGGAAAGAA CAAGGACTGG TGGGAAAGTA CCGTGGGAAG AACACCACAA TTGCCCCACA 5100
 GCGGGGATTA AGGACACTGC ATGACATTGG GCCAGAAATC CGGGTGTCTA TATCGTGTGA 5160
 20 TTTGAAAGAT GACGAGGCTG AGGAACACAA ACAGAGAAGAA GAAGATGATG TGTTAAAAG 5220
 AAATGGTGGC CTGCTGGAA ACCATGTCAC TGATGTTAAT AGTGTAGGA GAGATTCCT 5280
 TCAGCAGACC AATACCAACC ACCGCTCCCT GCATGTCAA AGGCTTCAA TTCCACCTGC 5340
 AAGTGTAACT GAGAAACCGC TGTGTTCTCC AGCAGGAAT AGTGTGTGTC ATAACCATCA 5400
 TAACCATAAT TCCATAGGA AGCAAGTTC CACCTCAACA AATGCAAAATC TCAATAATG 5460
 CAATATGTCC AAAGCTGCC ATGAAAGGG GCCCCAGATT GGGAACCTTG AGCATGTC 5520
 25 TGAAAATGGG CATCATTCTT CCCACAGCA TGACCGGGAG CCTCAGAGAA GGTCCAGTGT 5580
 GAAAAGAACCG CGCTTATTAG AAACCTTACAT TAGTGTGGAC TCAGGAGATG AACAGCTCC 5640
 AACTATTGTC CGGGAAGACC CAGAGATACA TGCTCTATTIC AGGGACCCCCC ACTGCTGGG 5700
 GGAGCAGGAG TATTCAGTA GTGAGGAATG CTACGAGGAT GACAGCTGC CCACCTGGAG 5760
 CAGGAAAACAC TATGGTACT ACAGCAGATA CCCAGGAGAA AACATCGACT CTGAGAGGGC 5820
 30 CCGAGGCTAC CATCATCCCC AAGGATTCTT GGAGGACGAT GACTGCCCG TTTGCTATGA 5880
 TTCACCGAGA TCTCCAAGGA GACGCTCTAC ACCTCCCAAC CCACATCCC ACCGGAGATC 5940
 CTCCCTCAAC TTGAGTGC TGCGCGGCA GACCGAGGAC GAAGAGGFTCC CGTCGTCTCC 6000
 CATCTMCCCCC CATCGACGG CCCTGCTCTI GCATCTAATG CAGCAACAGA TCATGGCAGT 6060
 TGCCGGCTTA GATTCAAGTA AAGCCCGAAAGA GTACTCACCG AGTCACTCGA CCCGGTGTG 6120
 35 GGCCACCCCT CCAGCAACCC CTCCCTACCG GGACTGGACA CCGTGTACA CCCCCCTGAT 6180
 CCAAGTGGAG CAGCTCAGGG CCCTGGACCA GTGGAACGGC AGGCTGCCGT CCCTGCACCG 6240
 CAGCTCTGG TACACAGACG AGCCCGACAT CTCTTACCGG ACTTTCACAC CAGCCAGCCT 6300
 GACTGTCCCC AGCAGCTTC GGAACAAAAA CACGCGACAG CAGAGGAGTG CGGACAGCTT 6360
 GTGAGGAGGAG GTCTCTGATAT CCGAAGGCTT GGGAGCCTAT GCAAGGGACCAA AAAAATTG 6420
 40 GTCAGCAACA AACACGAAAA TCAGTGTATC CTGTGACCTC ACCATCGACG AGATGGAGAG 6480
 TGCACTCAGG ACCCTGCTTA ATGGAAAGCTT GCGTGGCCGA GCAACGGGG ATGTGGCC 6540
 CCTCTCACAC CGGGACTGACT ATGACCTACA GGACTTTGGT CCTGCTTACA GCGACGAAGA 6600
 SCCAGACACCT GGGAGGATG AGGAGGACCT GCGGAGTGAATGATPATGCA TCACCCACCTT 6660
 45 GTAGCCCCCA CGCAGGGCCA GACTGCTCT GGCGCTCAGG GGGGGCAGG AGAGCCAGGG 6720
 GAAAAGTGCX TCATAGTTAG GAAAGTTAG GCAACTACTTG GGAGTAATAT TCAATTAAATT 6780
 AGACTTTGT ATAAGAGAT TCAGTGTCTA AGAAAGCCAT AACACTGGTA GGAACAGGTC 6840
 CCAAGGGTT GAGCTTGCA GAGTACCATG CGCTCGGCC CAGCTGCAGG AACACAGGG 6900
 CCCCCCCTC TCACAGAGGA TGGGTGAGGA GGCCAGACCT GCCCTGCCCT ATTGTCCAGA 6960
 TGGCACTGC TGTTGACTCT CTTCTCCCA TGTCAGGAGG CACCAAGGCC ACCCAACTGA 7020
 50 AGGCATGGCG GCGGGGTGCA GGGGAAAGT AAGGTGATG ACGATCATCA CACCTCGTGT 7080
 CGTTACCTCA GCCATCGTC TAGCATATCA GTCACTGGG CCAACATATC CATTTTAAA 7140
 CCCTTCCCCC CAAATACACT CGCTCTGGT TCCCTGTTAG CTGTTCTGAA ATA

SEQ ID NO:288 PFD2 Protein sequence:

Protein Accession #: A38198

	1	11	21	31	41	51	
60	MMMMMMKKM	QHQRQQQADH	ANEANYARGT	RLPLSGEGPT	SQPNSSKQTV	LSWQAAIDAA	60
	RQAKAAQTMIS	TSAPPVDSL	SQRKQQYAK	SKKQGNSSNS	RPARALFCLS	LNNPIRRAICI	120
	SIVEWKPFDI	FILLAIIFANC	VALAYIIPPE	EDDSNSTHNH	LEKVEYAFLI	IIFTVETFLKI	180
	IAYGLLLHPN	AYVRNGWNLL	DFVIVIVGLF	SVILEQLTKE	TEGGNHSSKG	SGGFDVKALR	240
	AFRVLRLPLR	VSGVPSLOV	LNSIIKAMPV	LLHIALLVLF	VIIIYIAIIGL	ELFIGKMHKT	300
65	CFFADSDIVA	EEDPAPCAFS	GNGRQCTANG	TECRSGWVGP	NGGITNFDMF	AFAMILTVFQC	360
	ITMEGTDV	YWMDNAIGWE	WPWVYFVSLI	ILCSFFVLNL	VLGVLSEGEFS	KEREKAKARG	420
	DFQKLREKQQ	LEEDLKGYLD	WITQAEDIDE	ENEEEGEIEG	KRNTSMPTSE	TESVNTEVNS	480
	GEGENRGCCG	SLWCWRRRG	AAKAGPGSGCR	RWGQAISKNS	LSRWRWRWNR	FNRRRCRAAV	540
	KSVTFYWLV	VLVFLNLT	I SSEHYNQPDW	LTIQ1QDIAKSN	VLLALFTCEM	LVKMYSLGLQ	600
70	AYFVSLFNR	DCFVVCGGIT	ETILVELEIM	SPLGJISVFCR	VRLLRIFKV	RHWTSLSNLV	660
	ASLINSMSKSI	ASLLLLLFLF	IIIFSLLGMQ	LFGGKFNFDE	TQTKRSTFDN	FPQALLTVFQ	720
	LNTAQKEEAE	MYDGIMAYGG	PSSSGMIVCI	YFIILFIGCN	YILLNVFLAI	AVDNLADES	780
	EKERKKIARK	ESLENKNNK	PEVNQIANSD	NKVTTIDDYRE	EDEDKDYP	PP	840
	CDPVGEEEEE	EEEDEDEPEVP	AGPRPRRISSE	LNMKEKIAPI	PEGSAFFILS	KTNPIRVGCH	900
75	KLINHHIIFTN	LILVFIMLSS	AALAAEDPIR	SHSFRNTILG	YFDYAFTAIF	TVEILLKMTT	960
	FGAFLHKGAF	CRNYFNLLDM	LVGVGSLSVF	GIQSSAISV	KILRVLRLVR	PLRAINRAKG	1020
	LKHVVQCVFV	AIRTIGNIMI	VTTLQFMPFA	CIGVQLPKGK	FYRCTDEAKS	NPEECRGLFI	1080
	LVKDGDVDS	VVERIWIQS	DFNFDVLSA	MMALETFVSTF	EGWPALLYKA	IDSNGENIGP	1140
	IYNHRWEISI	FFIIYIIIV	FFMMNIFVGF	VIVTFQECE	KEYNCELDK	NQRQCVEYAL	1200
80	KARPLRYIP	KNPYQYKFWY	VVNSSPFEYM	MFVLIMLNTL	CLAMQHYEQS	KMFNDAMDIL	1260
	NMVFTGVFTV	EMVLKVI	PKGYFSDAWN	TFDSLIVIGS	IIDVALSEAD	PTESENVPV	1320

TATPGNSEES NRISITFFRL FRVMRLVKLL SRGEHIRTLW WTFIKSFQAL PYVALLIAML 1380
 FFIYAVIGMQ MFGKVAMRDN NQINRNNNFQ TFPQAVLLLRCATGEAWQE IMLACLPGL 1440
 CDPESDYNPG EYVTGGSNPA IVVFISFYML CAFLIINLFV AVIMDNFDYL TRDWSILGPH 1500
 HLDEFKRIWS EYDPEAKGRI KHLVVTLRL RIQPPLGFHK LCPHRVACKR LVAMNMPLNS 1560
 DGTVMFNATL FALVRTALKI KTENLQCAN EELRAVIKKI WKTKTSMLLDI QVVPFAGDDE 1620
 VTVGKFYATF LIQDYFRKFK KRKEQGLVKG YPAKNTTIAL QAGLRTLHDII GPEIRRAISC 1680
 DLQDDEPEET RNEEDDVFK RNGALLGNHV NHVNSDRRDS LQQTNTHRP LHVQRPSIPP 1740
 ASDTEKPLFP PAGNSVCHNH HNNHSICKQV PTSTNANLNN ANMSKAHKG RPSIGNLEHV 1800
 SENGHHSSHK HDREPQRSS VKRTRYETY IRSDSGDEQL PTICREDPEI HGYFRDPHCL 1860
 GEQEYFSSEE CYEDDSPTW SRQNYGYSR YPGRNIDSER PRGYHHPQGE LEDDDSPVCY 1920
 DSRRSPRRL LPPTFASHRR SSFNFECLRR QSSQEEVPSS PIFPHRTALP LHLMQQQIMA 1980
 VAGLDSSKAQ KYSPSHSTRS WATPPATPPY RDWTPCYTPL IQVEQSEALD QVNGLSLPLH 2040
 RSSWYTDEPD ISYRTFTPAS LTVESSFRNK NSDKQRSADS LVEAULISEG LGRYARDPKF 2100
 15 VSATKHEIAAD ACDLTIDEME SAASTLLNGN VRPRANGDVG PLSHRQDYEL QDFGPGYSD 2160
 EPDPGRDEED LADEMICKLT L

SEQ ID NO:289 OB16 DNA SEQUENCE

Nucleic Acid Accession#: NM_002812

Coding sequence: 150-3362 (underlined sequence corresponds to start and stop codon)

20

	1	11	21	31	41	51	
25	AACTCCCGCC	TCGGGACGCC	TCGGGGTCGG	GCTCCGGCTG	CGGCTGCTGC	TGCGGCCGCC	60
	CGCCTCCGGT	CGGTCCGCCG	CTCTGGCCCG	CCGGGAGAGCA	GTCCTGCCGC	CGCCGTGCCG	120
	CCTCAGCTCC	TTTCTCTGAG	CCCCCGCGGA	TGGGACTGTC	CGCGGGATCC	CGGGCCAGAC	180
30	CCCGCCGGTT	GCCTCTGCTC	AGCGTCTGC	TGCTGCCGT	GCTGGGGCGT	ACCCAGACAG	240
	CCATTGCTTT	CATCAAGCAG	CCGTCCTCC	AGGATGCACT	GCAGGGCCGC	CGGGGGCTCC	300
	TTCGCTGTGA	GGTTGAGGCT	CGGGGCCCG	TACATGTGA	CTGCTGCTC	GATGGGGCCC	360
	CTGTCGAGGA	CACGGAGCGG	CGGTTGCC	AGGGCAGCAG	CCTGAGCTT	GCAGCTGTG	420
35	ACCGGCTGCA	GGACTCTGGC	ACCTTCAGT	GTGTTGCTCG	GGATGATGTC	ACTGGAGAAAG	480
	AAGCCCGTCAG	TGCCAACAGCC	TCTTCAACAA	TCAAATGGAT	TGAGGCAGGT	CTCTGTTGCC	540
	TGAAGCATCAG	AGCCCTGGAA	GCTGAGATCC	AGCCACAGAC	CCAGGTACA	CTTCGTTGCC	600
40	ACATTGATGG	SCACCCCTCGG	CCCACCTACC	AATGGTTCCG	AGATGGGACC	CCCCCTTCTG	660
	ATGGTGTACAGA	AGGACGACAGA	GGGAGCGGAA	CCTGACGCTC	CGGCCAGCTG	720	
	GTCTTGAGCA	TAGTGGGCTG	TATTCCTCT	GCGCCAACAG	TGCTTTGTC	CAGGCTTGCA	780
	GCAGCCAGAA	CTTCACCTTG	AGCATTGCTG	ATGAAAGCTT	TGCCAGGGT	GTGCTGGCAC	840
45	CCCAAGGAGCT	GGTAGTAGGAG	AGGTATGAGG	AGGCGATGAT	CCATTGCCCAG	TTCTCAGGCC	900
	AGCCACCCCC	GAGCCTGCAG	TGGCTCTTG	AGGATGAGAC	TCCCACATCA	AACCGCAGTC	960
	GCCCCCCCCA	CCTCCGAGA	GCCACAGTGT	TTGCAACAGG	GTCCTGCTG	CTGACCCAGG	1020
50	TCCGGCCACG	CAATCCAGGG	ATCTACCGCT	GCATTGGCCA	GGGGCAGAGG	GGCCCAACCA	1080
	TCATCCTTGA	AGCCACAGCA	CACCTTGAG	AGATTAAGA	CATGCGCTA	TTTGAGCCAC	1140
	GGGGTGTTCAC	AGCTGGCAGC	GAGGAGCTG	TGACCTGCCT	TCCCCCAAG	GGTCCTGCCAG	1200
55	AGCCCAGCGT	GTGGTGGGAG	CACGCGGGAG	TCCGGCTGCC	CACCCATGGC	AGGGTCTACC	1260
	AGAAAGGGCCA	CGAGCTGGTC	TTGGCTAAAT	TTGCTGAAAG	TGATGCTGGT	GTCTACACCT	1320
	GCCACCGCCG	CAACCTGGCT	GGTCAGCGGA	GACAGGATGT	CAACATCACT	GTGGCCACTG	1380
60	TGCCCTCTG	GCTGAGAAG	CCCCAAGACA	GCCAGCTGGA	GGAGGGCAA	CCCGCTACT	1440
	TGGATTGCTC	GACCCAGGCC	ACACCAACCT	CTACAGCTG	CTGAGCTACAGA	AACAGAGATCC	1500
	TCATCTCAGA	GGACTCACGG	TTCGAGGTCT	TCAAGAATGG	GACCTTGGCC	ATCAACAGCG	1560
65	TGGAGGTGTA	TGATGGGACA	TGGTACCGT	GTATGAGCAG	CACCCCGAGC	GGCAGCATCG	1620
	AGGGCGAACG	CGGTGTCCAG	GTGCTGGAA	AGCTCAAGT	CACACCAACCA	CCCCAGCCAC	1680
	AGCAGTGCAT	GGAGTTGTCAC	AAGGAGGCTA	CGGTGCCCC	TTCAGGCCA	GGCGAGAGA	1740
70	AGGCCACTAT	TAAGTGGAA	CGGGCAGATG	GCTACAGCC	CCTCAGCTG	GTGACAGACA	1800
	ACCGCTGGAC	CTTGCATTTT	GCCGGGGTGA	CTCGAGATG	CGCTGGCAC	TACACTTGCA	1860
	TTGCGCTTCAA	CGGGGCTTCC	CGGCGAGATTC	GTGCGCATGT	CCAGCTCACT	GTGGCAGTTT	1920
75	TTATCACCTT	CAAAGTGGAA	CGCAGCGTCA	CGACTGTGTA	CCAGGGCCAC	ACAGCCCTAC	1980
	TGCACTGCGA	GGCCCCAGGG	GACCCCAAGC	CGCTGATTCA	GTGAAAGGCC	AAGGACCGCA	2040
	TCTTGGACCC	CACCAAGCTG	GGGGCAGGCA	CGGTGCCCC	TTCAGCATCTT	CCAGGATGTC	2100
80	TCCATGAGCT	GGCCCCCTGAG	GACTCGAGC	GCTACACCTG	CATTGCGAGC	AAACGCTGCA	2160
	ACATCAAGCA	CACGGAGGCC	CCCCCTCTAG	TCGTGGACAA	GCTGTGCC	GAGGAGTCGG	2220
	AGGGCGCTTGG	CAGCCCTCCC	CCCTACAAAGA	TGATCCAGAC	CATTGGGTTG	TCGGTGGGTTG	2280
	CCGCTGTGGC	CTACATCATT	GGCGTGTGG	GCCTCATGTT	CTACTGCAAG	AAGCGCTGCA	2340
	AAGCCAAGCG	CCTCGAGAAG	CAGCCCGAGG	CGCAGGAGGC	AGAGATGCAA	TGCCCTCAACG	2400
	GAGGGCCCTT	CGAGAACGGG	CAGGCCCTCG	CGAGAGATCC	AAGAAGAAGTG	GCCTTGTACCA	2460
	GCTTGGCTC	CGGGGCGGCC	GCCCAACAA	AACGCCACAG	CACAAGTGT	AAGATGCACT	2520
	TCCCACGGTC	TAGCTGTGAG	CCCCATACCA	CGCTGGGAA	GAGTGAGTTT	GGGGAGGTGT	2580
70	TCCCTGGCAA	GCCTCAGGGC	TTGGAGGAGG	GAGTGGCAGA	GACCTGTTGA	CTTGTGAAAGA	2640
	GCCTGAGAC	GAAGGATGAG	CACGCGAGC	TGGACTTCC	GAGGGAGTTG	GAGATGTTTG	2700
	GGAAGCTGAA	CGACGCCAAC	GTGGTGGCGC	TCTCTGGGCT	GTGCGGGAGG	GCTGAGCCCC	2760
75	ACTACATGGT	GCTGGAATAT	GTGGATCTGG	GAGACCTCAA	GCAGTTCTG	AGGATTTCCA	2820
	AGAGCAAGGA	TGAAAATTC	AACTCACAGC	CCCTCAGCAC	CAAGCAGAAC	GTGGCCCTAT	2880
	GCACCCAGGT	AGCCCTGGGC	ATGGAGCAC	TGTCCAACAA	CCGCTTGTG	CATAAGGACT	2940
80	TGGCTGCGC	TAACTGCTG	GTCACTGCCC	AGAGACAAGT	GAAGGTGTC	GCCTCTGGG	3000
	TCACCAAGGA	TGTGTACAAC	AGTGAGTACT	ACCAACTTCCG	CCAGGGCTG	GTGCGGCTG	3060
	GCTGGATGTC	CCCCGAGGCC	ATCCCTGGAG	GTGACTTCTC	TACCAAGTCT	GATGTCTGGG	3120
	CCTTCGGTGT	GCTGATGTGG	GAAGTGTGTA	CACATGGAGA	GATGCCCCAT	GGTGGGAGG	3180
	CAGATGATGA	AGTACTGGCA	GATTGTCAGG	CTGGGAAGGC	TAGACTTCT	CAGCCCCAGG	3240
	GCTGGCCCTTC	CAAACCTCAT	CGGCTGATGC	AGCGCTGCTG	GGCCCTCAGC	CCCAAGGACC	3300
	GGCCCTCTT	CAGTGAAGATT	GCCAGCGCCC	TGGGAGACAG	CACCGTGGAC	AGCAAGCCGT	3360
	<u>GAGGAGGGAG</u>	<u>CCCGCTCAGG</u>	<u>ATGGCCTGGG</u>	<u>CAGGGGAGGA</u>	<u>CATCTCTAGA</u>	<u>GGGAAGCTCA</u>	<u>3420</u>

CAGCATGATG GGCAAGATCC CTGTCCTCCT GGGCCCTGAG GTGCCCTAGT GCAACAGGCA 3480
 TTGCTGAGGT CTGAGCAGGG CCTGGCCTT CCTCCTCTC CTCACCCCTCA TCCCTTGGGA 3540
 GGCCTGACTTG GACCCAAACT GGGCGACTAG GCCTMTGACC TGCGCAGTTT CCCCTGCCAC 3600
 CTCTTCCCTCT ATCAGGGACA GTGTGGGTGC CACAGTAAC CCCAATTCTC GGCCCTTCAAC 3660
 TTCTCCCCCTT GACCGGGTCC AACTCTGCCA CTCACTGCC AACTTTCGCT GGGGAGGCT 3720
 AGGCTTGGGA TGAGCTGGGT TTGTGGGAG TTCTTAATA TTCTCAAGTT CTGGGCACAC 3780
 AGGGTTAATG AGTCTCTTGC CCACTGCTCC ACCTGCGGT ACTTGGGGT CTAGACAGG ATTATAGAGG 3840
 ACACAGCAAG TGAGTCTCC CAACCTCGG CTGTGCACTA GTGCTGGCA GATGAAGGAG TTTTCAAGGAG 3900
 CCCCACCCCTT CTCTCTTTC CTCATCTAA GTGCTGGCA AGTGGGAGGT AGGGGAGGGT 3960
 CTTTTGACAC TATAAACCTT GCCCTTTTG TATGACACCA GGGCGGCTTT TATATGTAAT 4020
 TGAGCGTGG AGGGGGTGG CATGGAGGT AGGGGAGGGT CTTGGAGATG AGGAGGGTGG 4080
 GCCATCCCTT CCCACACTT TTATTTGTT CGTTTTGTT TTGTTTGTGTTTTGTTT 4140
 TGTGTTTGTG TTTACACTCG CTGCTCTCAA TAAATAAGCC TTTTTTA

15

SEQ ID NO:290 QBI6 Protein sequence:

Protein Accession #: NP_002812

	1	11	21	31	41	51	
20	MGAARGSPAR	PRLPLLSV	LLPLLGGTQ	AIVFIKQPSS	QDALQGRRAI	LRCEVEAPGP	60
	VHVWLLDGA	FVQDTERRFA	QGSLSLFAAV	DRLQDSGTQ	CVARDVTG	EARSANASFN	120
25	IKWIEAGPVV	LKHPSAEAEI	QPQTQVTLRC	HIDGHPRPTY	QWFRDGTPLS	DGQSNHTVSS	180
	KERNLTLRPA	GPEHSGLYSC	CAHSAFQAC	SSQNFTLSIA	DESFARVULA	PQDVVVARYE	240
30	EAAMPHCQFSA	QPPPSLQWLF	EDETPTINRS	RPPHLRRATV	FANGSLLLHQ	VRPRNAGIYR	300
	CIGQQQRGPP	IILEATLHLA	EIEDMLPFE	RVFTAGSEER	VIICLPPKG	EPSVWWEHAG	360
35	VRLFTHGRVY	QKGHEVLVAN	IAESDAGVYT	CHAAMLAGOR	RQDNVNITVAT	VPSWLKKPQD	420
	SQLEEGKPGY	LDCLTQATPK	PTVVWYRNQM	LISEDSRFEV	FKNGTLRINS	VEVYDGTWYR	480
40	CMSSTPAGSI	EAQARVQVLE	KLKFTPFPQP	QCQMEFDKEA	TVPKSATGRE	KPTIKWERAD	540
	GSSLPEWVTD	NAGTLHFARV	TRDDAGNYTC	IASNPGQOJ	RAHVQLTVAV	FITFKVPER	600
45	TTVYQGHTAL	QCEAQGDPK	PLIQUWKDR	ILDPTKLGPR	MHIFQNGSLV	IHDVAPEDSSG	660
	RYTCIAGNSC	NIKHTEAPLY	VVDKPVPEES	EGPGSPPPYK	MIQTIGLSVG	AAAVYIIAVL	720
50	GLMFYCKKRC	KAKRQLKQPE	GEEPEMECLN	GGPLQNGQPS	AEIQEEVALT	SLGSGPAATN	780
	KRISTSDKMH	PRSSSLQSPIT	TLGKSEFGEV	FLAKAQGLEE	GVATELVLV	SLQTKEDEQQQ	840
55	LDFRELEMF	GKLNHANVVR	LLGLCREAEP	HYMVELYVDL	GDLKQFLRIS	KSKDEKLLSQ	900
	PLSTKQKVAL	CTQVALGMEH	LSNNRNFVHKD	LAARNCLVSA	QRQVKVSALG	LSKDGVNSEY	960
60	YHFRQANVPL	RWMSPEAILE	GDFSTKSDVW	AFGVLMWEF	THGEMPHGGQ	ADDEVLAQ	1020
	AGKARLPQPE	CCPSKLYRLM	QRCWALSPKD	RPSFSEIASA	LGDSTVDSKP		

40

SEQ ID NO:291 AAB1 DNA SEQUENCE

Nucleic Acid Accession #: NM_002205

Coding sequence: 1-3150 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
45	ATGGGGAGCC	GGACCCAGA	GTCCCCCTC	CACGCCGTG	AGCTGCCCTG	GGGCCCCCGG	60
50	CGCCGACCCC	CGCTSSGTCC	GCTGCTGTG	CTGCTTSSGC	CGCCGCCACC	CAGGGTCGGG	120
	GGCTTCAACT	TAGAGCGGA	GGCCCCAGCA	GTACTCTCGG	GCCCCCGGG	CTCCTTCTTC	180
55	GGATTCTCA	TGGACTTGTG	CCGGCTTCA	ACAGACGGGG	TCAGTGTGCT	GGTGGGAGCA	240
	CCCAAGCTCA	ATACACGCCA	GCCAGGAGTC	CTGAGGGTG	GTGCTGTCTA	CCTCTGTCTC	300
60	TGGGGTGCCA	CCCCCACACA	GTGACACCCC	ATTGAATTTC	ACAGCAAAGG	CTCTCGGCTC	360
	CTGGAGTCCT	CACTCGGAG	CTGAGGGGA	GAGGAGCTG	TGGAGTACAA	GTCTTGTGAG	420
65	TGGGTCGGGG	CAACAGTTCG	AGGCCCATGG	TCCCTCATCT	TGCCATGCGC	TCAACTGTAC	480
	AGCTGGCGA	CAGAGAAGGA	GCCACTGAGC	GACCCCGTGG	GCACCTGCTA	CCTCTCCACA	540
70	GATAACTTCA	CCGAGTATGCA	GGAGTATGCA	CCCTGCGCGT	CAGATTTTCAG	CTGGGCAGCA	600
	GGACAGGGTT	ACTGCCAAGG	AGGCTTCAGT	GCCGAGTTCA	CCAAAGACTGG	CCGTGTGTT	660
75	TTAGGTGGAC	CAGGAAGCTA	TTTCTGGAA	GGCCAGATCC	TGTCTGCCAC	TCAGGAGCAC	720
	ATTGCAAGAT	CTTATTAACCC	CGAGTACCTG	ATCAACCTGG	TTCAGGGGCA	GCTCCAGACT	780
80	CGCCAGGCCA	CTGCCATCTA	TGATGACAGC	TACCTAGGAT	ACTCTGTGCG	TGTTGGTGA	840
	TTCAGTGGTG	ATGACACAGA	AGACTTTGTT	GCTGGTGTG	CCAAAGGGAA	CCTCACTTAC	900
	GGCTTATGTC	CCATCTCTAA	TGGCTCAGAC	ATTCGATCCC	TCTACAACTT	CTCAGGGGAA	960
	CAGATGGCT	CCTACTTTG	CTATGAGTC	GCCGCCACAG	ACGTCAATGG	GGACGGGCTG	1020
	GATGACTTGC	TGGTGGGGC	ACCCCTGTC	ATGGATCGGA	CCCTCTACGG	GGGGCCTCAG	1080
	GAGGTGGGCA	GGGTCTACGT	CTAACCTGAG	CACCCAGCGG	GCATAGAGCC	CACCCCCAC	1140
	CTTACCCCTA	CTGGCTATGA	TGAGTTGGC	CGATTTGGCA	GCTCTTGTGAC	CCCCCTGGGG	1200
	GACCTGGACC	AGGATGGCTA	CAATGATGTG	GCCATCGGGG	CTCCCTTGG	TGGGGAGAC	1260
	CAGCAGGGAG	TAGTGTGTTG	ATTCCTCTGG	GGCCCAAGGAG	GCTGGGCTC	TAAGCCTTCC	1320
	CAGGTTCTGC	AGCCCCCTGTG	GGCAGGCCAGC	CACACCCCG	ACTTCCTTG	CTCTGCCCTT	1380
	CGAGGAGGCC	GAGACCTGGA	TGCCAATGGA	TATCTGTATC	TGATTGTG	GTCTTGTGTT	1440
	GTGGACAAGG	CTGTGGTATA	CAGGGGCCG	CCCACGTGT	CCGCTAGTGC	CTCCCTCAC	1500
	ATCTTCCCCG	CCATTTCA	CCCAGAGGAG	GGGAGCTGCA	GCTTAGAGGG	GAACCCCTGTG	1560
	GCCCTGCATCA	ACCTTACGCTT	CTGCTCTAT	GCTTCTGGAA	AACACGTTGC	TGACTCCATT	1620
	GGTTTCACAG	TGGAACCTCA	GCTGGACTGG	CAGAAGCAGA	AGGGAGGGGT	ACGGCGGGCA	1680
	CTGTTCTCTGG	CCTCCAGGCA	GGCAACCCCTG	ACCCAGACCC	TGCTCATCCA	GAATGGGGCT	1740
	CGAGGAGATT	CCAGAGAGAT	GAAGATCTAC	CTCAGGAACG	AGTCAGAATT	TCGAGACAAA	1800
	CCTCTCGCGA	TTCACATCGC	TCTCAACTTC	TCCCTGGACC	CCCAAGCCCC	AGTGAGACAGC	1860
	CACGGCCCTCA	GGCCAGCCCT	ACATTATCAG	AGCAAGAGCC	GGATAGAGGA	CAAGGCTCAG	1920
	ATCTTGTG	ACTGTGGAGA	AGACAACATC	TGTGTGCC	ACCTGAGC	GGAAAGTGT	1980

GGGGAGCAGA ACCATGTGTA CCTGGGTGAC AAGAATGCC TGAACCTCAC TTTCCATGCC 2040
 CAGAATGTGG GTGAGGGTGG CGCCTATGAG GCTGAGCTTC CGGTACCGC CCCCTCAGAG 2100
 GCTGAGTACT CAGGACTCGT CAGACACCCA GGGAACTTCT CCAGCCTGAG CTGTGACTAC 2160
 5 TTGCGCGTGA ACCAGAGCCG CCTGCTGGTG TGAGACCTGG GCAACCCCAT GAAGGCAGGA 2220
 GCCAGCTGTG GGGGTGGCTT TCGGTTTACA GTCCCCCATC TCCGGGACAC TAAGAAAACC 2280
 ATCCAGTTG ACTTCCAGAT CCTCAGCAAG AATCTCAACA ACTCGCAAAG CGACGTGTTT 2340
 TCCCTTGGC TGAGCTGGG CAGGTCAAGG CAGGTCACCC TGAAACGGTGT CTCCAAGGCT 2400
 10 GAGGGAGTGC TATTCCCCAGT AACCGAATGG CATCCCCAGG ACCAGCTCA GAAGGAGGAG 2460
 GACCTGGGAC CTGCTGTCCA CCATGTCTAT GAGCTCATCA ACCAAGGCC CAGCTCCATT 2520
 AGCCAGGGT TGCTGGAACT CAGCTGTCCC CAGGCTCTGG AAGGTCAAGCA GCTCTTATAT 2580
 GTGACCCAGAG TTACGGGACT CAACTGCACC ACCAATCACC CCATTAACCC AAAGGGCCTG 2640
 GAGTTGATC CCGAGGGTMC CCTGCACCAC CAGCAAAAC GGGAACTCC AAGCCGAGC 2700
 15 TCTGCTTCTCG CGGGGACCTCA GATCCGTGAAA TGCCCCGAGG CTGAGTGTMT CAGGCTGGC 2760
 TGTGAGCTCG GGGCCCTGCA CCAACAAAGAG AGCCAAAGTC TGCACTTGCA TTTCGAGTC 2820
 TGGGCAAGA CTTTCTTGCA GCGGGAGCAC CAGCCATTAA GCCTGCAGTG TGAGGCTGTG 2880
 TACAAAGCCC TGAAGATGCC CTACCGAATC CTGCTCGGC AGCTGCCCA AAAAGAGCGT 2940
 CAGGTGGCCA CAGCTGTGC AATGGCAAG CAGAAAGGCC GCTATGGCGT CCCACTGTGG 3000
 20 ATCATCATCC TAGGCGATCTT CTGCTCTTAG CTCTACTCAT CTACATCCTC 3060
 TACAAGCTTG GATTCTTCAA ACGCTCCCTC CCATATGGCA CCGCCATGGA AAAAGCTCA 3120
 CTCAAGCCTC CAGCACCTC TGATGCCTGA

SEQ ID NO:292 AAB1 Protein sequence:
Protein Accession #: NP_002196

25 1 11 21 31 41 51
 MGSRTPESPL HAVQLRWGPR RRPPLPLL LLLPPPPRVRGFNLDAEAPA VLSGPPGSFF 60
 GFSVEFYRPG TDGVSLVGA PKANTSQPGV LQGGAVYLCP WGASPTQCTP IEFDSKGSRRL 120
 LESSLSSSEG EEPVEYKSLQ WFGATVRAHG SSILACAPLY SWRTEKEPLS DPVGTCLYST 180
 DNTRILEYA PCRSDFSWA QGYCQGGPS AEFKTKTGRVW LGGPGSYFWQ QJILSATQEQQ 240
 IAESYYFEYL INLVQGQLQT RQASSIYDDY YLGYSVAVGE FSGDDETDVF AGVPKGNLTY 300
 GYVTILNGSD IRSLYNFSGE QMASYFYGAV AATDVNGDL DDLLVGAPLL MDRTPDGRPQ 360
 EVGRVYVYLQ HPAGIEPTPT LTLTGHDEPG RFGSSLTPLG DLDDQDGYNDV AIGAPFGGET 420
 QQGVVFVFPG GPGLGSKPS QVLQPLWAAS RTPDFFGSAL RGGRDLDNGV YPDLIVGSGF 480
 VDKAVVYRGR PIVSASASLT IFPPAMFNPEE RSCSLEGNPV ACINLSFCLN ASGKHVADSI 540
 GFTVVELQDW QKQKGVNR A LFLASRQATL TQFLLIQNGA REDCREMXIY LRNESEFRDK 600
 30 LSPHITALNF SLDQAPVDS HGLRPLAHQY SKSRIEDKAQ ILLDCGEDNI CVPDFLQLEVF 660
 GEQNHHVYLDG KNALNLTFHQ QNVGEGGAYE AELRVTAFFP AEYSGLVRHP GFNSSLSCDY 720
 FAVNQSRLLV CDLGNPMKAG ASLWGGLRFV VPFLRDTKKT IQFDQILSK NLLNNSQSDVV 780
 SFRLSVEAQO QVTLNGVSXP EAFLVFVSDW HPRDQPQKEE DLGPAVHHVY ELINQGPSSI 840
 SQGVLELSCP QALEQQQLLY VTRVTLNCT TNHPINPKGL ELDPEGSLRH QQKREAPSRS 900
 SASSGPQILK CPEAECPFLR CELGPLHQQE SQSLQLHRFV WAKTFLQREH QPFSLQCEAV 960
 YKALKMPYRI LPRQLPKER QVATAVQWTK AEGSYGVPLW IIIAILFLGL LLLGLLIYIL 1020
 35 YKLGFFKRSL PYGTAMEKAQ LKPPATSDA

SEQ ID NO:293 LBH4 DNA SEQUENCE

Nucleic Acid Accession #: BC001291
Coding sequence: 44-541 (start and stop codons are underlined)

40 1 11 21 31 41 51
 55 GGGGGCGCC CGCGCTGACCTCCCTGGGC ACCGCTGGGC ACGATGGCGC TGCTCGCCTT 60
 GCTGCTGGTC GTGGCCTAC CGCGGGTGTG GACAGACGCC AACCTGACTG CGAGACAAACG 120
 AGATCCAGAG GACTCCCAGC GAACGGACGA GGGTGACAAAT AGAGTGTGGT GTCATGTITG 180
 TGAGAGGAA AACACTTTCG AGTGGCAGAA CCAAGGAGG TGCAATGGA CAGAGCCATA 240
 CTGCGTTATA GCGGGCGTGA AAATATTTCC ACGTTTTTC ATGGTTCGA AGCAGTGCTC 300
 CGCTGCTGTG GCAGGGATGG AGAGACCCAA CGCAGAGGGG AAGCCGTTTC TCTTGGAAAGA 360
 60 GCCCCATGCCCTTCTTAC TCAAGTGTG TAAATTCGG TACTGCAATT TAGAGGGGCC 420
 ACCTATCAAC TCATCAGTGT TCAAAGAATA TGCTGGGAGC ATGGGTGAGA GCTGTGGTGG 480
 GCTGCTGGTC GCCCATCTCC TGCTGCTGGC CTCCATTGCA GCGGGCCTCA GCCTGTCTG 540
 AGCCACGGGA CTGCCACAGA CTGAGCCTTC CGGAGCATGG ACTCGCTCCA GACCGTTGTC 600
 ACCTGTTGCA TAAACATTGT TTCTGTGA TIAACCTCTG GTTGTACTCCAGGGCTT 660
 GGGATGGAG AGTGGGGATC AGGTGCAAGT GGCTCTAAC CCTCAAGGGT TCTTTAACTC 720
 ACATTCAGAG GAAGTCCAGA TCTCTTGAGT AGTGTATTG GTGACAAGTT TTCTCTTGT 780
 65 AAATCAAACC TTGTAACCTCA TTATTGCTG ATGCCACTCCTTCTTGA CTCCCCCTCTG 840
 CCTCTGAGGG CTTCACTTGT GATGGGGAGG GAGGCCCTAAG TACCACTCAT GGAGAGTATG 900
 TGCTGAGATG CTCCCGACCT TCAAGGTGAC GCAGGAACAC TGGGGGAGTC TGAATGATIG 960
 70 GGGGTGAAGAC ATCCCTGGAG TGAAGGACTC CTAGCATGG GGGGCAGTGG GGCACACGTT 1020
 AGGGCTGCC CCATTCAGT GGTGGAGCG CTGTGGATGG CTGCTTTCC TCAACCTTC 1080
 CTACCAAGAT CCAGGAGGCA GAAGATAACT AATGTGTG AAGAAACTTA GACTTCACCC 1140
 ACCAGCTGGC ACAGGTGCAC AGATTCTAA ATTCCCCAC TGTTGTCAC AACATCTGAA 1200
 ACTTAGGCCA AGTAGAGACCTCAGGGTAA ATGCCGTCA TTCTCTGT AAGATGAGC 1260
 CATCCATGGG GAGCTGAGAAATCAGACTCA AAGTTCCACCAAAACAAAT ACAAGGGAC 1320
 75 TCAAAAGTT CACGAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAA

SEQ ID NO:294 LBH4 Protein sequence:
Protein Accession #: AAH01291

5 1 11 21 31 41 51
MALLALLLVV ALPRVVWT DAN LTARQRDFED SQR TDEGDNR VWCHVCEREN TFECQNP RRC 60
KWTEPYCVIA AVKIFPRFFM VAKQCSAGCA AMERPKPEEK RFLLEPMMPF FYLKCC KIRY 120
CNLEGPPINS SVFKEYAGSM GESCGLWLA ILLLASIAA GLSLS

10

15

It is understood that the examples described above in no way serve to limit the true scope of this invention, but rather are presented for illustrative purposes. All publications, sequences of accession numbers, and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100