Combinational logic

- Basic logic
 - Boolean algebra, proofs by re-writing, proofs by perfect induction
 - logic functions, truth tables, and switches
 - NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set
- Logic realization
 - two-level logic and canonical forms
 - incompletely specified functions
- Simplification
 - uniting theorem
 - grouping of terms in Boolean functions
- Alternate representations of Boolean functions
 - cubes
 - Karnaugh maps

Possible logic functions of two variables

- There are 16 possible functions of 2 input variables:
 - □ in general, there are 2**(2**n) functions of n inputs

Cost of different logic functions

- Different functions are easier or harder to implement
 - each has a cost associated with the number of switches needed
 - 0 (F0) and 1 (F15): require 0 switches, directly connect output to low/high
 - X (F3) and Y (F5): require 0 switches, output is one of inputs
 - X' (F12) and Y' (F10): require 2 switches for "inverter" or NOT-gate
 - X nor Y (F4) and X nand Y (F14): require 4 switches
 - X or Y (F7) and X and Y (F1): require 6 switches
 - \square X = Y (F9) and X \oplus Y (F6): require 16 switches
 - thus, because NOT, NOR, and NAND are the cheapest they are the functions we implement the most in practice

Minimal set of functions

- Can we implement all logic functions from NOT, NOR, and NAND?
 - For example, implementing X and Y is the same as implementing not (X nand Y)
- In fact, we can do it with only NOR or only NAND
 - NOT is just a NAND or a NOR with both inputs tied together

and NAND and NOR are "duals",
 that is, its easy to implement one using the other

$$X \underline{nand} Y \equiv \underline{not} ((\underline{not} X) \underline{nor} (\underline{not} Y))$$

 $X \underline{nor} Y \equiv \underline{not} ((\underline{not} X) \underline{nand} (\underline{not} Y))$

- But lets not move too fast . . .
 - lets look at the mathematical foundation of logic

An algebraic structure

- An algebraic structure consists of
 - a set of elements B
 - binary operations { + , }
 - and a unary operation { ' }
 - such that the following axioms hold:
 - 1. the set B contains at least two elements: a, b
 - 2. closure: a + b is in B a b is in B
 - 3. commutativity: a + b = b + a $a \cdot b = b \cdot a$
 - 4. associativity: a + (b + c) = (a + b) + c $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
 - 5. identity: a + 0 = a $a \cdot 1 = a$
 - 6. distributivity: $a + (b \cdot c) = (a + b) \cdot (a + c)$ $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$
 - 7. complementarity: a + a' = 1 $a \cdot a' = 0$

Boolean algebra

- Boolean algebra
 - \Box B = {0, 1}
 - variables
 - □ + is logical OR, is logical AND
 - ' is logical NOT
- All algebraic axioms hold

Logic functions and Boolean algebra

 Any logic function that can be expressed as a truth table can be written as an expression in Boolean algebra using the operators: ', +, and •

X	Υ	X • Y
0	0	0
0	1	0
1	0	0
1	1	1

X	Υ	X ′	X' • Y
0	0	1	0
0	1	1	1
1	0	0	0
1	1	0	0

X	Υ	X ′	Y'	X • Y	X' • Y'	(X • Y	$() + (X' \cdot Y')$	
0	0	1	1	0	1	1		
0	1	1	0	0	0	0	(V.V). (V.V)	.,
1	0	0	1	0	0	0	$(X \bullet Y) + (X' \bullet Y') \equiv X = Y$	Y
1	1	0	0	0 0 0 1	0	1		

Boolean expression that is true when the variables X and Y have the same value and false, otherwise

X, Y are Boolean algebra variables

Axioms and theorems of Boolean algebra

identity

1.
$$X + 0 = X$$

null

2.
$$X + 1 = 1$$

idempotency:

3.
$$X + X = X$$

involution:

4.
$$(X')' = X$$

complementarity:

5.
$$X + X' = 1$$

commutativity:

6.
$$X + Y = Y + X$$

associativity:

7.
$$(X + Y) + Z = X + (Y + Z)$$

1D.
$$X \cdot 1 = X$$

2D.
$$X \cdot 0 = 0$$

3D.
$$X \cdot X = X$$

5D.
$$X \cdot X' = 0$$

6D.
$$X \cdot Y = Y \cdot X$$

7D.
$$(X \bullet Y) \bullet Z = X \bullet (Y \bullet Z)$$

Axioms and theorems of Boolean algebra (cont'd)

distributivity:

8.
$$X \bullet (Y + Z) = (X \bullet Y) + (X \bullet Z)$$
 8D. $X + (Y \bullet Z) = (X + Y) \bullet (X + Z)$

uniting:

9.
$$X \cdot Y + X \cdot Y' = X$$

9D.
$$(X + Y) \cdot (X + Y') = X$$

absorption:

10.
$$X + X \cdot Y = X$$

11. $(X + Y') \cdot Y = X \cdot Y$

10D.
$$X \bullet (X + Y) = X$$

11D. $(X \bullet Y') + Y = X + Y$

factoring:

12.
$$(X + Y) \cdot (X' + Z) = X \cdot Z + X' \cdot Y$$

12D.
$$X \bullet Y + X' \bullet Z =$$

$$(X + Z) \bullet (X' + Y)$$

concensus:

13.
$$(X \bullet Y) + (Y \bullet Z) + (X' \bullet Z) = X \bullet Y + X' \bullet Z$$

13D.
$$(X + Y) \cdot (Y + Z) \cdot (X' + Z) = (X + Y) \cdot (X' + Z)$$

Axioms and theorems of Boolean algebra (cont'd)

de Morgan's:

14.
$$(X + Y + ...)' = X' \cdot Y' \cdot ...$$
 14D. $(X \cdot Y \cdot ...)' = X' + Y' + ...$

generalized de Morgan's:

15.
$$f'(X_1, X_2, ..., X_n, 0, 1, +, \bullet) = f(X_1', X_2', ..., X_n', 1, 0, \bullet, +)$$

establishes relationship between • and +

Axioms and theorems of Boolean algebra (cont'd)

Duality

- a dual of a Boolean expression is derived by replacing
 - by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged
- any theorem that can be proven is thus also proven for its dual!
- a meta-theorem (a theorem about theorems)
- duality:

16.
$$X + Y + ... \Leftrightarrow X \bullet Y \bullet ...$$

generalized duality:

17. f
$$(X_1, X_2, ..., X_n, 0, 1, +, \bullet) \Leftrightarrow f(X_1, X_2, ..., X_n, 1, 0, \bullet, +)$$

- Different than deMorgan's Law
 - this is a statement about theorems
 - this is not a way to manipulate (re-write) expressions

Proving theorems (rewriting)

Using the axioms of Boolean algebra:

e.g., prove the theorem:
$$X \cdot Y + X \cdot Y' = X$$

distributivity (8) $X \cdot Y + X \cdot Y' = X \cdot (Y + Y')$
complementarity (5) $X \cdot (Y + Y') = X \cdot (1)$
identity (1D) $X \cdot (1) = X \cdot (1)$

e.g., prove the theorem:
$$X + X \cdot Y = X$$

identity (1D) $X + X \cdot Y = X \cdot 1 + X \cdot Y$
distributivity (8) $X \cdot 1 + X \cdot Y = X \cdot (1 + Y)$
identity (2) $X \cdot (1 + Y) = X \cdot (1)$
identity (1D) $X \cdot (1) = X \cdot (1)$

Activity

Prove the following using the laws of Boolean algebra:

Proving theorems (perfect induction)

- Using perfect induction (complete truth table):
 - e.g., de Morgan's:

$$(X + Y)' = X' \cdot Y'$$

NOR is equivalent to AND
with inputs complemented

$$(X \cdot Y)' = X' + Y'$$

NAND is equivalent to OR
with inputs complemented

Χ	Υ	Χ'	Y'	(X + Y)'	X' • Y'
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	0	0	0	0

Χ	Υ	Χ'	Y'	(X • Y)'	X' + Y'
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

A simple example: 1-bit binary adder

Inputs: A, B, Carry-in

Outputs: Sum, Carry-out

Cout Cin							
	Α	A	Α	Α	Α		
	В	В	В	В	В		
	S	S	S	S	S		

Α	В	Cin	Cout	S	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

$$S = A' B' Cin + A' B Cin' + A B' Cin' + A B Cin$$

$$Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin$$

Apply the theorems to simplify expressions

- The theorems of Boolean algebra can simplify Boolean expressions
 - e.g., full adder's carry-out function (same rules apply to any function)

```
= A' B Cin + A B' Cin + A B Cin' + A B Cin
Cout
        = A' B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin
        = A' B Cin + A B Cin + A B' Cin + A B Cin' + A B Cin
        = (A' + A) B Cin + A B' Cin + A B Cin' + A B Cin
        = (1) B Cin + A B' Cin + A B Cin' + A B Cin
        = B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin
        = B Cin + A B' Cin + A B Cin + A B Cin' + A B Cin
        = B Cin + A (B' + B) Cin + A B Cin' + A B Cin
        = B Cin + A (1) Cin + A B Cin' + A B Cin
        = B Cin + A Cin + A B (Cin' + Cin)
        = B Cin + A Cin + A B (1)
                                                adding extra terms
        = B Cin + A Cin + A B
                                               creates new factoring
                                                   opportunities
```

Activity

 Fill in the truth-table for a circuit that checks that a 4-bit number is divisible by 2, 3, or 5

X8	X4	X2	X1	By2	ВуЗ	Ву5
0	0	0	0	1	1	1
0	0	0	1	0	0	0
0	0	1	0	1	0	0
0	0	1	1	0	1	0

Write down Boolean expressions for By2, By3, and By5

Activity

From Boolean expressions to logic gates

NOT X'
$$\overline{X}$$
 ~X $\times - \longrightarrow - Y$ $\frac{X \mid Y}{0 \mid 1}$

AND X • Y XY X A Y

$$\frac{X}{Y} - \frac{1}{Z}$$

$$X + Y$$

$$X \vee Y$$

$$\begin{array}{ccc} X & \stackrel{}{\longrightarrow} \\ Y & \stackrel{}{\longrightarrow} \end{array}$$

From Boolean expressions to logic gates (cont'd)

$$XOR$$
 $X \oplus Y$
 $Y \xrightarrow{Z}$
 $-Z$
 $X \oplus Y \otimes Z$
 $0 \otimes 0 \otimes 0$
 $0 \otimes 1 \otimes 1$
 $1 \otimes 0 \otimes 1$
 $1 \otimes 1 \otimes 0$

XNOR

$$X = Y$$
 $Y = Y$
 $Y = Y$

From Boolean expressions to logic gates (cont'd)

More than one way to map expressions to gates

e.g.,
$$Z = A' \cdot B' \cdot (C + D) = (A' \cdot (B' \cdot (C + D)))$$

$$\frac{T2}{T1}$$

use of 3-input gate

Waveform view of logic functions

- Just a sideways truth table
 - but note how edges don't line up exactly
 - it takes time for a gate to switch its output!

