CNN Prediction Based Reversible Data Hiding

Tables

▶ 1. INTRODUCTION

2. PROPOSED METHOD

- ▶ a. Pre-Processing Images
- ▶ b. Architecture Overview
- ► C. Training
- d. CNNP Based RDH Method

▶ 3. EXPERIMENTAL RESULTS

- a. Prediction Accuracy
- b. Embedding Performance

▶ 4. CONCLUSION

1. Introduction

- ▶ How to predict images is an important issue in the reversible data hiding (RDH) community
- There still exists room for RDH by making full use of more neighboring pixels as the context of a to-be-predicted pixel
- Experimental results show that the CNNP can promote prediction performance due to the use of more surrounding pixels as the context

embed one bit b = 1

$$l = \left\lfloor \frac{206 + 201}{2} \right\rfloor = \left\lfloor \frac{407}{2} \right\rfloor = 203, \ h = 206 - 201 = 5$$

$$h' = \underbrace{2 \times h}_{\text{shifting}} + b = 2 \times 5 + 1 = 11.$$
 embedding

$$x' = 203 + \left\lfloor \frac{11+1}{2} \right\rfloor = 209, \ y' = 203 - \left\lfloor \frac{11}{2} \right\rfloor = 198.$$

■ neighboring pixels.
 □ gradient-adjusted prediction I

1. Introduction

- ▶ How to predict images is an important issue in the reversible data hiding (RDH) community
- There still exists room for RDH by making full use of more neighboring pixels as the context of a to-be-predicted pixel
- Experimental results show that the CNNP can promote prediction performance due to the use of more surrounding pixels as the context

A. Pre-Processing Images

- For the "Cross" set image, the pixel values of the positions belong to the "Dot" set are assigned to 0,
- and so does the "Dot" set image

Fig. 1. Illustration to divide an image to "Dot" and "Cross" set images.

B. Architecture Overview

- two main steps:
- the feature extraction step (for the use of the multi receptive fields)
- ▶ the image prediction step (for the use of global optimization)

$$\tilde{I}_D(x,y) = \sum_{i,j=1}^K I_C(x+i,y+j) \cdot w(i,j) + b,$$

input is the "Cross" set image I_C the target is the "Dot" set image I_D output of the proposed CNNP is the predicted "Dot" set image \tilde{I}_D

(a) Architecture of the proposed CNNP

(b) Structure of the convolution block in (a)

Fig. 2. Overview of the proposed CNNP.

C. Training

 $\lfloor K^2/2 \rfloor$ cross set pixels to predict the central dot set pixel

(a) When K=3 and K=5 in the feature extraction step

loss =
$$\frac{1}{P} \sum_{i=1}^{P} (\tilde{I}_D - I_D)^2 + \lambda \|\omega\|_2^2$$
,

(b) When K = 3 in the image prediction step

Fig. 3. Illustration on the use of convolution layers in Fig. 2(a).

D. CNNP Based RDH Method

Fig. 7. Framework of the double encoding and decoding scheme.

D. CNNP Based RDH Method

Fig. 4. The proposed reversible data embedding scheme.

Fig. 5. The proposed reversible data extracting scheme.

A. Prediction Accuracy

Fig. 2. (a) Histogram of differences between neighboring pixels. (b) Histogram of high-frequency wavelet coefficients. (c) Histogram of JPEG-LS prediction errors. (d) Histogram of prediction errors for Double embedding scheme and (e) for Lena image.

TABLE I
AVERAGE MSE, ABSOLUTE MEAN AND VARIANCE OF THE PREDICTION
ERRORS IN 100 IMAGES FOR FIVE DIFFERENT PREDICTORS

Predictor	CNNP	BIP	MEDP	GAP	DP
MSE	99.4	154.8	234.2	231.9	230.8
Mean	4.77	6.25	7.37	9.86	5.13
Variance	66.9	100.5	161.3	167.6	196.6

Fig. 6. Histograms of the image *Lena* under five different predictors.

B. Embedding Performance

Fig. 7. Comparison of five RDH methods by using four benchmark images.

B. Embedding Performance

prediction error $d_{i,j}$ (2)

difference expansion (3)

After data hiding (4)

$$D_{i,j} = \begin{cases} 2d_{i,j} + b, & \text{if } d_{i,j} \in [T_n; T_p] \\ d_{i,j} + T_p + 1, & \text{if } d_{i,j} > T_p \text{ and } T_p \ge 0 \\ d_{i,j} + T_n, & \text{if } d_{i,j} < T_n \text{ and } T_n < 0. \end{cases}$$
(9)

B. Embedding Performance

TABLE II
AVERAGE PSNR (IN dB) OF 100 IMAGES FOR FIVE DIFFERENT PREDICTORS BY
USING EXPANSION EMBEDDING TECHNIQUE IN [8]

bits	CNNP	BIP	MEDP	GAP	DP
10,000	47.9	46.4	44.2	41.7	41.3
20,000	44.7	43.2	40.3	38.2	37.8
30,000	42.4	41.1	37.9	36.0	35.7
40,000	40.9	39.4	36.0	34.1	33.7
50,000	39.9	38.3	35.4	33.5	32.5
60,000	38.7	37.3	34.7	32.6	31.4
70,000	38.0	36.6	33.5	31.7	30.9
80,000	37.3	35.6	32.7	31.2	30.3
90,000	36.5	35.2	32.1	30.7	29.9
100,000	35.9	34.8	31.6	30.2	29.3
110,000	35.3	34.3	31.0	29.5	28.7
120,000	34.7	33.7	29.5	28.7	28.2

TABLE III
AVERAGE PSNR (IN dB) OF 100 IMAGES OF THE PROPOSED CNNP-BASED
METHOD AND THE METHOD [11]

bits	CNNP	BIP
10,000	58.4	56.8
20,000	55.1	53.8
30,000	52.9	51.6
40,000	51.2	50.1
50,000	49.8	48.8
60,000	48.5	47.5
70,000	47.3	46.4
80,000	46.3	45.4
90,000	45.5	44.7
100,000	44.8	44.0
110,000	43.9	43.2
120,000	43.0	42.3

4. Conclusion