RAJALAKSHMI ENGINEERING COLLEGE

RAJALAKSHMI NAGAR, THANDALAM - 602 105

AI23521 BUILD AND DEPLOYMENT OF MACHINE LEARNING APPLICATIONS

LABORATORY NOTEBOOK

NAME: SSAKSHAYA NAIR

YEAR/ BRANCH / SECTION: 3rd Yr / AIML

REGISTER NO. :2116-231501011

SEMESTERS: 5TH SEMESTER ACADEMIC

YEAR: 2025-2026

RAJALAKSHMI ENGINEERING COLLEGE (AUTONOMOUS) RAJALAKSHMI NAGAR, THANDALAM- 602 105 BONAFIDE

CERTIFICATE

NAME	S S AKSHAYA NAIR	REGISTER NO.	2116-231501011
ACADEM	IC YEAR 2025-26 SEMESTE I		
This Certif	fication is the Bonafide record of	f work done by the ab	ove student
in the AI23	3521-Build and Deployment of	ML Applications L	aboratory
during the	year 2025 – 2026.		
		Signature of Faculty	y -in – Charge
Submitted	for the Practical Examination he	eld on	<u> </u>
Internal Ex	aminer	Exterr	nal Examiner

INDEX

EXP. NO	Date	Title	Page No	Signature
1	07-08-2025	Setting Up The Environment And Preprocessing The Data		
2	14-08- 2025	Support Vector Machine (Svm) And Random Forest For Binary & Multiclass Classification		
3	14-08- 2025	Classification with Decision Trees		
4A	21-08-2025	Support Vector Machines (SVM)		
4B	21-08-2025	Ensemble Methods: Random Forest		
5	28-08-2025	Clustering with K-Means and Dimensionality Reduction with PCA		
6	11-09-2025	Feedforward and Convolutional Neural Networks		
7	25-09-2025	Generative Models with GANs:Creating and Training a Generative Adversarial Network		
8	09-10-2025	Model Evaluation and Improvement: Hyperparameter Tuning with Grid Search and Cross-Validation		
9	16-10-2025	Model Deployment: REST API with Flask and Containerization with Docker		

EXP NO: 1

SETTING UP THE ENVIRONMENT AND PREPROCESSING THE DATA

AIM:

To set up a fully functional machine learning development environment and to perform data preprocessing operations like handling missing values, encoding categorical variables, feature scaling, and splitting datasets.

ALGORITHM:

- 1. Install Required Libraries:
 - Install numpy, pandas, matplotlib, seaborn, and scikit-learn using pip.
- 2. Import Libraries.
- 3. Load Dataset:
 - Load any dataset (e.g., Titanic or Iris) using pandas.
- 4. Data Exploration:
 - Use df.info(), df.describe(), df.isnull().sum() to understand the data.
- 5. Handle Missing Values:
 - Use .fillna() or .dropna() depending on the strategy.
- 6. Encode Categorical Data:
 - Use pd.get_dummies() or LabelEncoder.
- 7. Feature Scaling:
 - Normalize or standardize the numerical features using StandardScaler or MinMaxScaler.
- 8. Split Dataset:
 - Use train_test_split() from sklearn to create training and testing sets.
- 9. Display the Preprocessed Data

```
CODE:
```

StandardScaler()

```
# 1. Install necessary libraries (if not already installed
#!pip install numpy pandas matplotlib seaborn scikit-learn
# 2. Import libraries import pandas
as pd import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder import seaborn as sns
import matplotlib.pyplot as plt
#3. Load dataset
df = sns.load dataset('titanic') # Titanic dataset df.head()
# 4. Explore the dataset print(df.info())
print(df.describe()) print(df.isnull().sum())
# 5. Handle missing values
# Fill age with median, embark town with mode df['age'].fillna(df['age'].median(),
inplace=True) df['embark town'].fillna(df['embark town'].mode()[0], inplace=True)
df.drop(columns=['deck'], inplace=True) # too many missing values
# 6. Encode categorical variables
# Convert 'sex' and 'embark town' using LabelEncoder le =
LabelEncoder()
df['sex'] = le.fit transform(df['sex'])
df['embark town'] = le.fit transform(df['embark town'])
# Drop non-informative or redundant columns
df.drop(columns=['embarked', 'class', 'who', 'alive', 'adult male', 'alone'], inplace=True)
#7. Feature Scaling scaler =
```

```
numerical_cols = ['age', 'fare']
df[numerical_cols] = scaler.fit_transform(df[numerical_cols])
# 8. Split dataset
# Define features (X) and label (y) X =
df.drop('survived', axis=1)
y = df['survived']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 9. Show final preprocessed data print("Training Data Shape:",
X_train.shape) print("Test Data Shape:", X_test.shape)
X_train.head(
OUTPUT:
            <class 'pandas.core.frame.DataFrame'>
```

		re.frame.Data				
		ntries, 0 to				
		al 15 columns	5.00			
#	Column	Non-Null Cou	nt Dtype			
0	survived	891 non-null	int64			
	pclass	891 non-null				
	sex	891 non-null				
	age	714 non-null				
	sibsp	891 non-null				
	parch	891 non-null	int64			
6	fare	891 non-null	float64			
7	embarked	889 non-null	object			
8	class	891 non-null	category			
9	who	891 non-null	object			
10	adult_male	891 non-null	bool			
11	deck	203 non-null	category			
	embark_town		-			
	alive	891 non-null	Control of the second			
	alone	891 non-null				
		category(2),	float64(2),	int64(4), ob	ject(5)	
	y usage: 80.	7+ KB				
None						
	survived		age	sibsp	parch	fare
count			714.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	vived	00	14.526497	1.102743	0.806057	49.693429
			0.420000 20.125000	0.000000	0.000000	0.000000 7.910400
pcl	ass	00	28.000000	0.000000	0.000000	14.454200
sex		00	38.000000	1.000000	0.000000	31.000000
		1.00	80.000000	8.000000	6.000000	512.329200
age		177°	00.00000	0.000000	0.000000	312132323
sib	sp	0				
par		0				
far		0				
and Salar	arked	2				
cla	55	0				
who		0				
adu	lt male	0		3		
dec		688		5		
	ark town					
ali		0				
alo	ne	0				
1.1						

dtype: int64

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):
# Column
                Non-Null Count Dtype
                891 non-null
                               int64
    survived
                891 non-null
                               int64
1
    pclass
2
    sex
                891 non-null
                               object
                714 non-null
                               float64
    age
4
                891 non-null
                               int64
    sibsp
                891 non-null
5
    parch
                               int64
                891 non-null
                               float64
    embarked
                889 non-null
                               object
8
                891 non-null
    class
                               category
a
    who
                891 non-null
                               object
10 adult_male
                891 non-null
                               bool
                203 non-null
11 deck
                               category
12 embark_town 889 non-null
                               object
13 alive
                891 non-null
                               object
               891 non-null
14 alone
                               bool
dtypes: bool(2), category(2), float64(2), int64(4), object(5)
memory usage: 80.7+ KB
None
                     pclass
        survived
                                            sihsn
                                                        parch
                                                                    fare
                                   age
count 891.000000 891.000000 714.000000 891.000000 891.000000 891.000000
mean
        0.383838 2.308642 29.699118
                                        0.523008
                                                   0.381594 32.204208
std
        0.486592
                   0.836071
                             14.526497
                                          1.102743
                                                     0.806057
                                                               49.693429
                                                               0.000000
min
        9 999999
                   1.000000
                              0.420000
                                          9 999999
                                                     0.000000
25%
        0.000000
                   2.000000
                             20.125000
                                          0.000000
                                                     0.000000
                                                                7.910400
50%
        0.000000
                   3.000000
                              28.000000
                                          0.000000
                                                     0.000000
                                                               14.454200
75%
        1.000000
                   3.000000
                             38.000000
                                          1.000000
                                                     0.000000
                                                               31.000000
                  3.000000
        1.000000
                              80.000000
                                          8.000000
                                                     6.000000 512.329200
max
survived
                        0
pclass
                        0
sex
                        0
                     177
age
sibsp
                        0
parch
                        0
fare
                        0
embarked
                        2
class
                        0
who
                        0
adult male
                        0
deck
                     688
embark_town
                        2
alive
                        0
alone
                        0
dtype: int64
```

Training Data Shape: (712, 7)

Test Data Shape: (179, 7)
/tmp/ipython-input-4068659829.py:3: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method. The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df['age'].fillna(df['age'].median(), inplace=True)
/tmp/ipython-input-4068659829.py:4: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method. The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df['embark_town'].fillna(df['embark_town'].mode()[0], inplace=True)

	pclass	sex	age	sibsp	parch	fare	embark_town
331	1	1	1.240235	0	0	-0.074583	2
733	2	1	-0.488887	0	0	-0.386671	2
382	3	1	0.202762	0	0	-0.488854	2
704	3	1	-0.258337	1	0	-0.490280	2
813	3	0	-1.795334	4	2	-0.018709	2

RESULT:

The Python environment was successfully set up and the dataset was pre-processed by handling missing values, encoding categorical data, performing feature scaling, and splitting the data into training and testing sets. The dataset is now ready for model training and analy

EXP NO: 2

SUPPORT VECTOR MACHINE (SVM) AND RANDOM FOREST FOR BINARY & MULTICLASS CLASSIFICATION

AIM

To build classification models using **Support Vector Machines** (**SVM**) and **Random Forest**, apply them to a dataset, and evaluate the models using performance metrics like accuracy and confusion matrix.

ALGORITHM

Part A: SVM Model

- 1. Import necessary libraries
- 2. Load and explore the dataset
- 3. Handle missing values if any
- 4. Encode categorical variables
- 5. Split dataset into training and testing sets
- 6. Build SVM classifier using SVC()
- 7. Train and predict
- 8. Evaluate the model using accuracy and confusion matrix Part

B: Random Forest Model

- 1. Initialize Random Forest using RandomForestClassifier()
- 2. Train and predict
- 3. Evaluate and compare with SVM

CODE:

1. Import libraries import pandas as

pd

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split from

sklearn.preprocessing import StandardScaler from sklearn.svm import

SVC

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, confusion_matrix import seaborn as
sns
import matplotlib.pyplot as plt
# 2. Load dataset iris = load_iris()
X = iris.data y = iris.target
# 3. Feature scaling scaler =
StandardScaler()
X_scaled = scaler.fit_transform(X)
# 4. Train-test split
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=42)
#
# Part A: SUPPORT VECTOR MACHINE #
# 5. Initialize and train SVM
svm_model = SVC(kernel='linear') # You can also try 'rbf', 'poly' svm_model.fit(X_train,
y_train)
# 6. Predict and evaluate SVM y_pred_svm =
svm\_model.predict(X\_test)
print("SVM Accuracy:", accuracy_score(y_test, y_pred_svm)) print("SVM Confusion
Matrix:\n", confusion_matrix(y_test, y_pred_svm))
```

```
rf_model = RandomForestClassifier(n_estimators=100, random_state=42) rf_model.fit(X_train,
y_train)
# 8. Predict and evaluate Random Forest y_pred_rf =
rf_model.predict(X_test)
print("Random Forest Accuracy:", accuracy_score(y_test, y_pred_rf)) print("Random Forest
Confusion Matrix:\n", confusion_matrix(y_test, y_pred_rf))
#
#9. Visual comparison using seaborn heatmap #
plt.figure(figsize=(10, 4))
plt.subplot(1, 2, 1)
sns.heatmap(confusion_matrix(y_test, y_pred_svm), annot=True, cmap='Blues', fmt='d') plt.title("SVM Confusion
Matrix")
plt.subplot(1, 2, 2)
sns.heatmap(confusion_matrix(y_test, y_pred_rf), annot=True, cmap='Greens', fmt='d') plt.title("Random Forest
Confusion Matrix")
plt.tight_layout() plt.show()
```


RESULT:

The Support Vector Machine (SVM) and Random Forest algorithms were successfully implemented for both binary and multiclass classification tasks. The models were trained and tested on the given dataset, and both achieved good accuracy.

EXPNO:3

CLASSIFICATION WITH DECISION TREES

AIM

To implement a Decision Tree classifier and evaluate its performance using **accuracy score** and **confusion matrix** on a real-world dataset.

ALGORITHM

- 1. Import necessary libraries
- 2. Load a classification dataset (e.g., Iris or Titanic)
- 3. Split the dataset into training and test sets
- 4. Preprocess data if needed
- 5. Train a DecisionTreeClassifier from sklearn.tree
- 6. Predict on test data
- 7. Evaluate using:
 - Confusion Matrix
 - o Accuracy Score
- 8. Visualize the Decision Tree (optional)

CODE:

Step 1: Import Libraries

from sklearn.datasets import load_iris

from sklearn.tree import DecisionTreeClassifier, plot_tree from

sklearn.model_selection import train_test_split

from sklearn.metrics import confusion_matrix, accuracy_score import

matplotlib.pyplot as plt

import seaborn as sns # Step 2: Load

Dataset iris = load_iris(

```
X = iris.data y =
iris.target
# Step 3: Split the dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Step 4: Train the Decision Tree Classifier
dt_model = DecisionTreeClassifier(criterion='gini', random_state=0)
dt_model.fit(X_train, y_train)
# Step 5: Predict
y_pred = dt_model.predict(X_test)
# Step 6: Evaluate the Model
cm = confusion_matrix(y_test, y_pred) acc =
accuracy_score(y_test, y_pred)
print("Confusion Matrix:\n", cm)
print("Accuracy Score:", acc)
# Step 7: Visualize Confusion Matrix
                                                 cmap="Blues",
                                                                          xticklabels=iris.target_names,
sns.heatmap(cm,
                          annot=True,
yticklabels=iris.target_names)
plt.xlabel("Predicted")
plt.ylabel("Actual") plt.title("Confusion
Matrix") plt.show()
# Step 8: Visualize the Decision Tree
plt.figure(figsize=(12,8))
plot_tree(dt_model, filled=True, feature_names=iris.feature_names, class_names=iris.target_names)
plt.title("Decision Tree Visualization")
```

plt.show()

RESULT:

The Decision Tree classification model was successfully implemented and tested on the given dataset. The model accurately classified the data by learning simple decision rules from the features.

The decision tree visualized the decision-making process through a hierarchical structure of nodes and branches, making it easy to interpret. The classification achieved good accuracy, demonstrating that Decision Trees are effective for both categorical and numerical data, providing clear and interpretable results.

EXP NO: 4A

SUPPORT VECTOR MACHINES (SVM)

AIM:

To build an SVM model for a binary classification task, tune its hyperparameters, and evaluate it using accuracy, precision, recall, F1-score, confusion matrix, and ROC-AUC.

ALGORITHM:

- 1. Import libraries: numpy, pandas, matplotlib, sklearn.
- 2. Load data: Use a standard binary dataset (Breast Cancer Wisconsin) from sklearn.datasets.
- 3. Train/Test split: 80/20 split with a fixed random_state.
- 4. Preprocess: Standardize features (StandardScaler).
- 5. SVMs are sensitive to feature scale.
- 6. Model selection: Use SVC (RBF kernel).
- 7. Hyperparameter tuning: Grid search on C and gamma with cross-validation (GridSearchCV).
- 8. Train final model: Fit on training data using best parameters.
- 9. Evaluate: Predict on test set; compute metrics and plot ROC curve.
- 10. Report: Best params, metrics, and brief observations.

CODE:

#1) Imports

import numpy as np import pandas as pd import matplotlib.pyplot as plt

from sklearn.datasets import load_breast_cancer

```
from sklearn.model_selection import train_test_split, GridSearchCV from
sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC from
sklearn.metrics import (
  accuracy_score, precision_score, recall_score, f1_score,
  confusion_matrix, classification_report, roc_auc_score, roc_curve
)
#2) Load dataset (binary classification) data =
load_breast_cancer()
X = pd.DataFrame(data.data, columns=data.feature_names)
y = pd.Series(data.target, name="target") # 0 = malignant, 1 = benign
#3) Train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y,
  test_size=0.20, random_state=42, stratify=y
)
# 4) Standardize features (important for SVMs) scaler =
StandardScaler()
X_train_sc = scaler.fit_transform(X_train)
X_{test\_sc} = scaler.transform(X_{test})
#5) Define model
svm = SVC(kernel='rbf', probability=True, random_state=42)
#6) Hyperparameter grid & tuning
param_grid = {
  "C": [0.1, 1, 10, 100],
  "gamma": ["scale", 0.01, 0.001, 0.0001]
}
```

```
grid = GridSearchCV( estimator=svm,
  param_grid=param_grid,
  scoring='f1', # You can change to 'accuracy' or 'roc_auc'
  cv=5,
  n_jobs=-1,
  verbose=0
)
grid.fit(X_train_sc, y_train)
print("Best Parameters from Grid Search:", grid.best_params_) best_svm
= grid.best_estimator_
#7) Train final model & predict
best_svm.fit(X_train_sc, y_train) y_pred =
best_svm.predict(X_test_sc)
y_prob = best_svm.predict_proba(X_test_sc)[:, 1]
#8) Evaluation
acc = accuracy_score(y_test, y_pred)
prec = precision_score(y_test, y_pred, zero_division=0) rec =
recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
auc = roc_auc_score(y_test, y_prob) cm =
confusion_matrix(y_test, y_pred)
print("\n=== SVM (RBF) — Test Metrics ===")
print(f"Accuracy: {acc:.4f}")
print(f"Precision: {prec:.4f}")
```

```
print(f"Recall : {rec:.4f}")
print(f"F1-Score : {f1:.4f}")
print(f"ROC-AUC : {auc:.4f}")

print("\nConfusion Matrix:\n", cm)
print("\nClassification Report:\n", classification_report(y_test, y_pred, zero_division=0))

# 9) Plot ROC Curve
fpr, tpr, thresholds = roc_curve(y_test, y_prob) plt.figure()
plt.plot(fpr, tpr, label=f"SVM (AUC = {auc:.3f})") plt.plot([0, 1], [0, 1],
linestyle="--", color='gray') plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate") plt.title("ROC Curve —
SVM (RBF)") plt.legend()
plt.grid(True) plt.show()
```

```
Best Parameters from Grid Search: {'C': 10, 'gamma': 0.01}
=== SVM (RBF) - Test Metrics ===
Accuracy: 0.9825
Precision: 0.9861
Recall : 0.9861
F1-Score : 0.9861
ROC-AUC : 0.9977
Confusion Matrix:
 [[41 1]
[ 1 71]]
Classification Report:
                             recall f1-score
                                                support
               precision
                   0.98
                              0.98
                                        0.98
           1
                   0.99
                              0.99
                                        0.99
                                                     72
                                        0.98
                                                   114
    accuracy
                              0.98
                   0.98
                                                   114
   macro avg
                                        0.98
weighted avg
                              0.98
                                        0.98
                                                   114
                   0.98
```


RESULT:

The Support Vector Machine (SVM) model was successfully implemented and evaluated on the given dataset. The model effectively classified the data by finding the optimal hyperplane that maximized the margin between different classes.

The SVM achieved high accuracy and demonstrated strong performance, especially in handling linearly and non-linearly separable data using kernel functions. This confirms that SVM is a powerful and reliable algorithm for classification tasks.

EXP NO: 4B

ENSEMBLE METHODS: RANDOM FOREST

AIM:

To implement a **Random Forest classifier** for a classification task, tune key hyperparameters, evaluate performance, and interpret **feature importance**.

ALGORITHM:

- 1. Import libraries.
- 2. Load data (use same dataset to compare with SVM).
- 3. Train/Test split with stratification.
- 4. (Optional) Preprocess: Random Forests don't require scaling; we'll use raw features.
- 5. Model: RandomForestClassifier.
- 6. Hyperparameter tuning: Grid search over n_estimators, max_depth, min_samples_split, min_samples_leaf.
- 7. Train the best model on training data.
- 8. Evaluate with accuracy, precision, recall, F1, confusion matrix, ROC-AUC.
- 9. Interpretation: Plot top feature importances.

CODE:

#1) Imports

import numpy as np import pandas as pd

import matplotlib.pyplot as plt

from sklearn.datasets import load_breast_cancer

from sklearn.model_selection import train_test_split, GridSearchCV

```
from sklearn.ensemble import RandomForestClassifier from
sklearn.metrics import (
  accuracy_score, precision_score, recall_score, f1_score,
  confusion_matrix, classification_report, roc_auc_score, roc_curve
)
#2) Load dataset (same as 4A for comparison) data
= load_breast_cancer()
X = pd.DataFrame(data.data, columns=data.feature_names) y =
pd.Series(data.target, name="target")
#3) Train/test split (no scaling needed for RF) X_train,
X_test, y_train, y_test = train_test_split(
  X, y, test_size=0.20, random_state=42, stratify=y
)
#4) Define model
rf = RandomForestClassifier(random_state=42, n_jobs=-1)
# 5) Hyperparameter grid & tuning
param_grid = {
  "n_estimators": [100],
  "max_depth": [None, 10],
  "min_samples_split": [2],
  "min_samples_leaf": [1]
}
grid = GridSearchCV( estimator=rf,
  param_grid=param_grid,
  scoring="f1",
  cv=3, n_jobs=-
  1,
```

```
verbose=0) grid.fit(X_train,
y_train)
print("Best Parameters (CV):", grid.best_params_)
best_rf = grid.best_estimator_
#6) Train final model & predict
best_rf.fit(X_train, y_train) y_pred =
best_rf.predict(X_test)
y_prob = best_rf.predict_proba(X_test)[:, 1]
#7) Evaluate
acc = accuracy_score(y_test, y_pred)
prec = precision_score(y_test, y_pred, zero_division=0) rec =
recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
auc = roc_auc_score(y_test, y_prob) cm =
confusion_matrix(y_test, y_pred)
print("\n=== Random Forest — Test Metrics ===")
print(f"Accuracy: {acc:.4f}")
print(f"Precision: {prec:.4f}")
print(f"Recall : {rec:.4f}")
print(f"F1-Score : {f1:.4f}")
print(f"ROC-AUC : {auc:.4f}")
print("\nConfusion Matrix:\n", cm)
print("\nClassification Report:\n", classification_report(y_test, y_pred, zero_division=0))
#8) Feature Importance (Top 10)
importances = pd.Series(best_rf.feature_importances_, index=X.columns)
top10 = importances.sort_values(ascending=False).head(10)
```

```
plt.figure()

top10[::-1].plot(kind="barh") plt.xlabel("Importance")

plt.title("Top 10 Feature Importances — Random Forest") plt.grid(axis="x", alpha=0.3)

plt.show()

# 9) ROC Curve

fpr, tpr, thresholds = roc_curve(y_test, y_prob) plt.figure()

plt.plot(fpr, tpr, label=f"Random Forest (AUC = {auc:.3f})") plt.plot([0, 1], [0, 1], linestyle="--", color='gray') plt.xlabel("False Positive Rate")

plt.ylabel("True Positive Rate") plt.title("ROC Curve —

Random Forest")plt.legend()

plt.grid(True) plt.show()
```

```
=== Random Forest - Test Metrics ===
Accuracy: 0.9561
Precision: 0.9589
Recall : 0.9722
F1-Score : 0.9655
ROC-AUC : 0.9937
Confusion Matrix:
[[39 3]
[ 2 70]]
Classification Report:
               precision
                             recall f1-score support
                              0.93
                                         0.94
                                                    114
                                         0.96
   accuracy
                   0.96
                              0.95
   macro avg
                                         0.95
                                                    114
weighted avg
                              0.96
```


RESULT:

The Random Forest ensemble model was successfully implemented and evaluated on the given dataset. The model combined multiple decision trees to improve prediction accuracy and reduce overfitting.

It achieved high classification accuracy and demonstrated strong generalization capability. The results confirmed that Random Forest provides stable and reliable predictions by leveraging the power of multiple decision trees through bagging and feature randomness.

EXPNO: 5	CLUSTERING WITH K-MEANS AND DIMENSIONALITY REDUCTION WITH PCA
----------	---

AIM:

To demonstrate the application of Unsupervised Learning models, specifically K-Means clustering for grouping data points and Principal Component Analysis (PCA) for dimensionality reduction and visualization, using a suitable dataset.

ALGORITHM:

1. K-Means Clustering

K-Means is an iterative clustering algorithm that aims to partition \$n\$ observations into \$k\$ clusters, where each observation belongs to the cluster with the nearest mean (centroid).

Steps:

- 1. **Initialization:** Choose \$k\$ initial centroids randomly from the dataset.
- 2. **Assignment:** Assign each data point to the cluster whose centroid is closest (e.g., using Euclidean distance).
- 3. **Update:** Recalculate the centroids as the mean of all data points assigned to that cluster.
- 4. **Iteration:** Repeat steps 2 and 3 until the centroids no longer move significantly or a maximum number of iterations is reached.

2. Principal Component Analysis (PCA)

PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components.

Stens:

- 1. **Standardization:** Standardize the dataset (mean = 0, variance = 1).
- 2. Covariance Matrix Calculation: Compute the covariance matrix of the standardized data.
- 3. **Eigenvalue Decomposition:** Calculate the eigenvalues and eigenvectors of the covariance matrix.
- 4. **Feature Vector Creation:** Sort the eigenvectors by decreasing eigenvalues and select the top \$k\$ eigenvectors to form a feature vector (projection matrix).
- 5. **Projection:** Project the original data onto the new feature space using the feature vector.

CODE:

```
# Import necessary libraries import numpy
as np
import pandas as pd
import matplotlib.pyplot as plt import seaborn as
from sklearn.datasets import make blobs
from sklearn.preprocessing import StandardScaler from
sklearn.cluster import KMeans
from sklearn.decomposition import PCA from
sklearn.metrics import silhouette_score
# --- Part 1: K-Means Clustering --- print("--- Part 1: K-
Means Clustering ---") # 1. Generate dataset
X, y = make_blobs(n_samples=300, centers=3, cluster_std=0.60, random_state=42)
df_kmeans = pd.DataFrame(X, columns=['Feature_1', 'Feature_2'])
print("\nOriginal K-Means Dataset Head:") print(df kmeans.head())
# 2. Elbow Method wcss = []
for i in range(1, 11):
  kmeans
           =
                  KMeans(n_clusters=i,
                                           init='k-means++', max_iter=300,
                                                                                  n_{init}=10,
random state=42)
  kmeans.fit(X) wcss.append(kmeans.inertia)
plt.figure(figsize=(10, 6))
plt.plot(range(1, 11), wcss, marker='o', linestyle='--') plt.title('Elbow
Method for Optimal K (K-Means)') plt.xlabel('Number of Clusters
(K)') plt.ylabel('WCSS')
plt.grid(True) plt.show()
# 3. Apply K-Means with chosen K
```

```
optimal k = 3
kmeans = KMeans(n clusters=optimal k, init='k-means++', max iter=300, n init=10,
random state=42)
clusters = kmeans.fit predict(X)
df_kmeans['Cluster'] = clusters
# 4. Visualize K-Means clusters
plt.figure(figsize=(10, 8))
sns.scatterplot(x='Feature_1', y='Feature_2', hue='Cluster', data=df_kmeans, palette='viridis',
s=100, alpha=0.8)
plt.scatter(kmeans.cluster_centers_[:,
                                      0], kmeans.cluster_centers_[:, 1], s=300, c='red',
marker='X', label='Centroids')
plt.title(f'K-Means Clustering with K={optimal_k}') plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend() plt.grid(True)
plt.show()
#5. Silhouette Score
silhouette avg = silhouette score(X, clusters)
print(f"\nSilhouette Score for K-Means (K={optimal_k}): {silhouette_avg:.3f}") # ---
Part 2: Dimensionality Reduction with PCA ---
print("\n--- Part 2: Dimensionality Reduction with PCA ---")
# 1. Generate 4D dataset
X pca, y pca = make blobs(n samples=500, n features=4, centers=4, cluster std=1.0,
random state=25)
df_pca_original
                                                 columns=[f'Feature_{i+1}'
                   =
                        pd.DataFrame(X_pca,
                                                                                for
                                                                                      i
                                                                                          in
range(X_pca.shape[1])])
df pca original['True Cluster'] = y pca
print("\nOriginal PCA Dataset Head:")
print(df pca original.head())
print(f"Original PCA Dataset Shape: {df_pca_original.shape}")
#2. Standardize
scaler = StandardScaler()
X_pca_scaled = scaler.fit_transform(X_pca)
# 3. PCA (4D \rightarrow 2D)
pca = PCA(n components=2)
principal_components = pca.fit_transform(X_pca_scaled)
df principal components
                                                       pd.DataFrame(principal_components,
columns=['Principal_Component_1', 'Principal_Component_2'])
```

```
df_principal_components['True_Cluster'] = y_pca
explained variance = pca.explained variance ratio
print("\nPrincipal Components Head:")
print(df_principal_components.head())
print(f"\nExplained Variance Ratio: {explained variance}")
print(f"Total Explained Variance by 2 PCs: {explained_variance.sum():.3f}")
#4. Visualize PCA result
plt.figure(figsize=(10, 8))
sns.scatterplot(x='Principal_Component_1', y='Principal_Component_2', hue='True_Cluster',
          data=df_principal_components, palette='Paired', s=100, alpha=0.8)
plt.title('PCA - Dimensionality Reduction to 2 Components')
plt.xlabel(fPC1 ({explained_variance[0]*100:.2f}%)')
plt.ylabel(f'PC2 ({explained variance[1]*100:.2f}%)') plt.grid(True)
plt.show()
# 5. K-Means on PCA-reduced data
kmeans pca
              = KMeans(n clusters=4,
                                            init='k-means++',
                                                                max iter=300,
                                                                                  n init=10,
random state=42)
clusters_pca = kmeans_pca.fit_predict(principal_components)
df principal components ['KMeans Cluster on PCA'] = clusters pca
plt.figure(figsize=(10, 8))
sns.scatterplot(x='Principal_Component_1',
                                                                y='Principal_Component_2',
hue='KMeans_Cluster_on_PCA',
         data=df principal components, palette='viridis', s=100, alpha=0.8)
plt.scatter(kmeans pca.cluster centers [:, 0], kmeans pca.cluster centers [:, 1], s=300,
c='red', marker='X', label='Centroids')
plt.title('K-Means Clustering on PCA-Reduced Data') plt.xlabel('Principal
Component 1')
plt.ylabel('Principal Component 2')
plt.legend()
plt.grid(True) plt.show()
# 6. Silhouette Score for PCA-reduced KMeans
silhouette avg pca = silhouette score(principal components, clusters pca) print(f"\nSilhouette
                       Score
                                for
                                       K-Means
                                                           PCA-Reduced
                                                                             Data
                                                                                     (K=4):
                                                    on
{silhouette_avg_pca:.3f}")
```

--- Part 1: K-Means Clustering ---

Original K-Means Dataset Head:

Feature_1 Feature_2

0 -7.155244 -7.390016

1 -7.395875 -7.110843

2 -2.015671 8.281780

3 4.509270 2.632436

4 -8.102502 -7.484961

Silhouette Score for K-Means (K=3): 0.908

--- Part 2: Dimensionality Reduction with PCA ---

Original PCA Dataset Head: riginal PCA Dataset Head: Feature_1 Feature_2 Feature_3 Feature_4 True_Cluster -0.638667 1.110057 -6.400722 -0.204990 3 -2.951556 -7.657445 3.844794 0.903589 1 -0.253177 2.125103 -7.869801 0.5559678 3 -2.151209 3.401400 -5.734930 0.965230 3 -2.347519 -7.230467 3.478891 -0.443440 1 Original PCA Dataset Shape: (500, 5)

Principal Components Head:

	Principal_Component_1	Principal_Component_2	True_Cluster
0	0.455305	1.623917	3
1	-2.705622	0.375012	1
2	0.810234	1.966926	3
3	0.427139	2.149626	3
4	-2.407508	0.099250	1

Explained Variance Ratio: [0.57208431 0.33622342]

Total Explained Variance by 2 PCs: 0.908

Silhouette Score for K-Means on PCA-Reduced Data (K=4): 0.776

RESULT:

The K-Means clustering and Principal Component Analysis (PCA) techniques were successfully implemented on the given dataset.

- **K-Means Clustering** effectively grouped the data into distinct clusters based on feature similarity, minimizing intra-cluster distance and maximizing inter-cluster separation.
- PCA (Principal Component Analysis) successfully reduced the dimensionality of the dataset while retaining most of the variance, improving visualization and computational efficiency.

The combined results showed that PCA enhances clustering performance by simplifying high-dimensional data, and K-Means efficiently identifies underlying patterns and group structures.

EXP NO: 6	FEEDFORWARD AND CONVOLUTIONAL NEURAL NETWORKS
-----------	---

AIM:

To demonstrate the construction and application of a simple Feedforward Neural Network (FNN) for classification and a Convolutional Neural Network (CNN) for image classification, utilizing the Keras API with TensorFlow backend.

ALGORITHM:

1. Feedforward Neural Network (FNN)

A Feedforward Neural Network is the simplest type of artificial neural network where connections between the nodes do not form a cycle. It consists of an input layer, one or more hidden layers, and an output layer. Information flows only in one direction—forward—from the input nodes, through the hidden nodes (if any), and to the output nodes.

Steps:

- 1. Define Network Architecture: Specify the number of layers (input, hidden, output) and the number of neurons in each layer.
- 2. Choose Activation Functions: Select activation functions for hidden layers (e.g., ReLU) and the output layer (e.g., Sigmoid for binary classification, Softmax for multi-class classification).
- 3. Define Loss Function: Choose a loss function appropriate for the task (e.g., Binary Crossentropy for binary classification, Categorical Cross-entropy for multi-class classification).
- 4. Choose Optimizer: Select an optimization algorithm (e.g., Adam, SGD) to update network weights during training.
- 5. Training: Feed forward data through the network to get predictions, calculate the loss, and then backpropagate the error to update weights.
- 6. Evaluation: Assess the model's performance on unseen data using metrics like accuracy.

2. Convolutional Neural Network (CNN)

A Convolutional Neural Network is a specialized type of neural network primarily designed for processing data with a grid-like topology, such as images. Key components include convolutional layers, pooling layers, and fully connected layers.

Steps:

- 1. Convolutional Layers: Apply filters (kernels) to input data to extract features. Each filter detects a specific pattern (e.g., edges, textures).
- 2. Activation Function (ReLU): Apply a non-linear activation function after convolution to introduce non-linearity.
- 3. Pooling Layers: Downsample feature maps to reduce dimensionality, computational cost, and prevent overfitting (e.g., Max Pooling).
- 4. Flattening: Convert the 2D pooled feature maps into a 1D vector to be fed into a fully connected layer.
- 5. Fully Connected Layers: Standard neural network layers for classification based on the extracted features.
- 6. Output Layer: Final layer with an activation function (e.g., Softmax) to output class probabilities.
- 7. Training and Evaluation: Similar to FNNs, train the CNN using backpropagation and evaluate its performance.

CODE:

```
# Import necessary libraries import numpy
as np
import matplotlib.pyplot as plt import tensorflow as
tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.datasets import mnist, fashion_mnist
from sklearn.metrics import classification_report, confusion_matrix import seaborn as
sns
# Suppress TensorFlow warnings for cleaner output
tf.keras.utils.disable_interactive_logging()
# --- Part 1: Building a Simple Feedforward Neural Network --- print("--- Part 1:
Building a Simple Feedforward Neural Network ---")
# 1. Load and Preprocess Dataset (Using Fashion MNIST for FNN) (x_train_fnn, y_train_fnn),
(x_test_fnn, y_test_fnn) = fashion_mnist.load_data()
print(f"\nOriginal FNN training data shape: {x_train_fnn.shape}") print(f"Original
FNN test data shape: {x_test_fnn.shape}")
# Flatten images to 1D array
```

```
x_train_fnn_flat = x_train_fnn.reshape(-1, 28 * 28)
x_{test_fnn_flat} = x_{test_fnn.reshape}(-1, 28 * 28)
# Normalize pixel values
x_train_fnn_norm = x_train_fnn_flat / 255.0
x_{test_fnn_norm} = x_{test_fnn_flat} / 255.0
print(f"Flattened & Normalized FNN training data shape: {x_train_fnn_norm.shape}") print(f"Flattened
& Normalized FNN test data shape: {x_test_fnn_norm.shape}")
# 2. Build FNN Model model_fnn =
keras.Sequential([
  layers.Dense(128, activation='relu', input shape=(784,)),
  layers.Dropout(0.2),
  layers.Dense(64, activation='relu'),
  layers.Dense(10, activation='softmax')
1)
#3. Compile Model
model_fnn.compile(optimizer='adam',
           loss='sparse_categorical_crossentropy', metrics=['accuracy'])
print("\n--- FNN Model Summary ---")
model_fnn.summary()
#4. Train Model
print("\n--- Training FNN Model ---")
history_fnn = model_fnn.fit(x_train_fnn_norm, y_train_fnn, epochs=10,
                 validation_split=0.1, verbose=1)
# 5. Evaluate Model
print("\n--- Evaluating FNN Model ---")
loss_fnn, accuracy_fnn = model_fnn.evaluate(x_test_fnn_norm, y_test_fnn, verbose=0)
print(f"FNN Test Loss: {loss fnn:.4f}")
print(f"FNN Test Accuracy: {accuracy_fnn:.4f}")
# Classification report & confusion matrix
y_pred_fnn = np.argmax(model_fnn.predict(x_test_fnn_norm), axis=-1)
print("\n--- FNN Classification Report ---")
```

```
print(classification_report(y_test_fnn, y_pred_fnn))
print("\n--- FNN Confusion Matrix ---")
cm_fnn = confusion_matrix(y_test_fnn, y_pred_fnn)
plt.figure(figsize=(10, 8))
sns.heatmap(cm_fnn, annot=True, fmt="d", cmap="Blues", cbar=False)
plt.title("FNN Confusion Matrix")
plt.xlabel("Predicted Label")
plt.ylabel("True Label") plt.show()
# Plot Accuracy & Loss
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(history_fnn.history['accuracy'], label='Training Accuracy')
plt.plot(history_fnn.history['val_accuracy'], label='Validation Accuracy')
plt.title('FNN Model Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend() plt.grid(True)
plt.subplot(1, 2, 2)
plt.plot(history fnn.history['loss'], label='Training Loss')
plt.plot(history_fnn.history['val_loss'], label='Validation Loss')
plt.title('FNN Model Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend() plt.grid(True)
plt.tight_layout() plt.show()
# --- Part 2: Convolutional Neural Network (CNN) ---
print("\n--- Part 2: Implementing a CNN ---")
# 1. Load MNIST for CNN
(x_train_cnn, y_train_cnn), (x_test_cnn, y_test_cnn) = mnist.load_data()
print(f"\nOriginal CNN training data shape: {x_train_cnn.shape}")
print(f"Original CNN test data shape: {x_test_cnn.shape}")
```

```
# Reshape for channel dimension
x_train_cnn = x_train_cnn.reshape(x_train_cnn.shape[0], 28, 28, 1)
x_{test\_cnn} = x_{test\_cnn.reshape}(x_{test\_cnn.shape}[0], 28, 28, 1)
# Normalize
x_train_cnn = x_train_cnn.astype('float32') / 255.0
x_test_cnn = x_test_cnn.astype('float32') / 255.0
print(f"Reshaped & Normalized CNN training data shape: {x_train_cnn.shape}")
print(f"Reshaped & Normalized CNN test data shape: {x_test_cnn.shape}")
num_classes_cnn = 10 # 2.
Build CNN Model
model_cnn = keras.Sequential([
  layers.Conv2D(32, (3, 3), activation='relu', input shape=(28, 28, 1)),
  layers.MaxPooling2D((2, 2)),
  layers.Conv2D(64, (3, 3), activation='relu'),
  layers.MaxPooling2D((2, 2)),
  layers.Flatten(),
  layers.Dense(128, activation='relu'),
  layers.Dropout(0.5),
  layers.Dense(num_classes_cnn, activation='softmax')
1)
#3. Compile Model
model_cnn.compile(optimizer='adam',
           loss='sparse_categorical_crossentropy', metrics=['accuracy'])
print("\n--- CNN Model Summary ---")
model_cnn.summary()
#4. Train Model
print("\n--- Training CNN Model ---")
history_cnn = model_cnn.fit(x_train_cnn, y_train_cnn, epochs=10,
                 validation_split=0.1, verbose=1)
# 5. Evaluate Model
```

```
print("\n--- Evaluating CNN Model ---")
loss_cnn, accuracy_cnn = model_cnn.evaluate(x_test_cnn, y_test_cnn, verbose=0)
print(f"CNN Test Loss: {loss cnn:.4f}")
print(f"CNN Test Accuracy: {accuracy_cnn:.4f}")
# Classification report & confusion matrix
y pred cnn = np.argmax(model cnn.predict(x test cnn), axis=-1)
print("\n--- CNN Classification Report ---")
print(classification_report(y_test_cnn, y_pred_cnn))
print("\n--- CNN Confusion Matrix ---")
cm_cnn = confusion_matrix(y_test_cnn, y_pred_cnn)
plt.figure(figsize=(10, 8))
sns.heatmap(cm_cnn, annot=True, fmt="d", cmap="Blues", cbar=False)
plt.title("CNN Confusion Matrix")
plt.xlabel("Predicted Label")
plt.ylabel("True Label") plt.show()
# Plot Accuracy & Loss
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(history_cnn.history['accuracy'], label='Training Accuracy')
plt.plot(history_cnn.history['val_accuracy'], label='Validation Accuracy')
plt.title('CNN Model Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend() plt.grid(True)
plt.subplot(1, 2, 2)
plt.plot(history_cnn.history['loss'], label='Training Loss')
plt.plot(history_cnn.history['val_loss'], label='Validation Loss')
plt.title('CNN Model Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend() plt.grid(True)
plt.tight_layout() plt.show()
```

```
# Optional: Visualize predictions print("\n--- Sample
CNN Predictions ---")
class_names_mnist = [str(i) \text{ for } i \text{ in range}(10)]
plt.figure(figsize=(10, 10))
for i in range(25): plt.subplot(5, 5, i + 1)
  plt.xticks([])
  plt.yticks([]) plt.grid(False)
  plt.imshow(x_test_cnn[i].reshape(28, 28), cmap=plt.cm.binary) true_label =
  y_test_cnn[i]
  predicted_label = y_pred_cnn[i]
  color = 'green' if true_label == predicted_label else 'red'
  plt.xlabel(f"True:
                                                         {class_names_mnist[true_label]}\nPred:
{class_names_mnist[predicted_label]}", color=color)
plt.suptitle("Sample CNN Predictions (Green: Correct, Red: Incorrect)", y=1.02, fontsize=16)
plt.tight_layout(rect=[0, 0, 1, 0.98])
plt.show()
```

OUTPUT:

FNN Test Loss: 0.3404 FNN Test Accuracy: 0.8824

--- FNN Classification Report ---

	precision	recall	f1-score	support
0	0.85	0.81	0.83	1000
1	1.00	0.96	0.98	1000
2	0.81	0.79	0.80	1000
3	0.85	0.92	0.88	1000
4	0.83	0.77	0.80	1000
5	0.97	0.97	0.97	1000
6	0.67	0.72	0.69	1000
7	0.95	0.94	0.95	1000
8	0.97	0.98	0.97	1000
9	0.95	0.97	0.96	1000
accuracy			0.88	10000
macro avg	0.88	0.88	0.88	10000
weighted avg	0.88	0.88	0.88	10000

CNN Test Loss: 0.0285 CNN Test Accuracy: 0.9913

support	f1-score	recall	precision	
	11 30016	recarr	or ecision	
980	1.00	1.00	1.00	0
1135	0.99	1.00	0.99	1
1032	0.99	0.99	0.99	2
1010	0.99	0.99	1.00	3
982	0.99	0.99	0.99	4
892	0.99	0.99	0.98	5
958	0.99	0.99	0.99	6
1028	0.99	0.99	0.98	7
974	0.99	0.99	0.99	8
1009	0.99	0.98	0.99	9
10000	0.99			accuracy
10000	0.99	0.99	0.99	macro avg
10000	0.99	0.99	0.99	weighted avg

CNN Predictions (Green = Correct, Red = Incorrect)

RESULT:

The Feedforward Neural Network (FNN) and Convolutional Neural Network (CNN) models were successfully implemented and evaluated on the given dataset.

- Feedforward Neural Network (FNN): The model accurately learned input—output mappings through multiple fully connected layers, achieving good performance on structured data.
- Convolutional Neural Network (CNN): The model effectively extracted spatial features from image data using convolution and pooling layers, leading to higher accuracy and better generalization for image classification tasks.

The results demonstrated that both FNN and CNN are powerful deep learning models, with CNN performing exceptionally well for image-based datasets due to its ability to capture spatial patterns.

EXP NO: 7

GENERATIVE MODELS WITH GANS: CREATING AND TRAINING A GENERATIVE ADVERSARIAL NETWORK

AIM:

To construct and train a Generative Adversarial Network (GAN) using the TensorFlow/Keras framework. The objective is to train the GAN on the MNIST dataset to generate new, synthetic images of handwritten digits that are indistinguishable from the original training data.

ALGORITHM:

Generative Adversarial Networks (GANs)

GANs are a class of generative models that learn a training distribution by pitting two neural networks against each other in a zero-sum game: a Generator and a Discriminator.

- **1.** The Generator (\$G\$): This network takes a random noise vector as input (often called a "latent vector") and transforms it into a synthetic data sample, in this case, an image. The Generator's goal is to learn to produce increasingly realistic images to fool the discriminator.
- **2. The Discriminator (\$D\$):** This is a binary classifier network. It is trained to distinguish between real data (from the training dataset) and fake data (generated by the generator). Its goal is

to get better at identifying which images are real and which are fake.

3. The Adversarial Process:

Step A (Training the Discriminator): The discriminator is trained on a batch of both real images (labeled as "real" or 1) and fake images from the generator (labeled as "fake" or 0). The discriminator's weights are updated to minimize the classification error.

Step B (Training the Generator): The generator is trained while the discriminator's weights are frozen. The generator creates fake images and feeds them to the discriminator. The generator's weights are updated to maximize the discriminator's error, essentially tricking the discriminator into classifying its fake images as "real" (or 1).

This iterative process continues, with both networks improving, until the generator can produce

images so realistic that the discriminator can no longer reliably tell the difference between real and

fake.

CODE:

```
# Import necessary libraries import numpy as np
import matplotlib.pyplot as plt import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.datasets import mnist import os
# Suppress TensorFlow warnings for cleaner output tf.keras.utils.disable_interactive_logging()
# --- Part 1: Dataset Loading and Preprocessing ---
print("--- Part 1: Loading and Preprocessing the MNIST Dataset ---") (x_train, _), (_, _) =
mnist.load_data()
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1).astype('float32')
x_{train} = (x_{train} - 127.5) / 127.5 # Normalize to [-1, 1]
print(f"Normalized training data shape: {x_train.shape}") print("Example of a normalized pixel
value:", x_train[0, 0, 0, 0])
# --- Part 2: Building the Generator and Discriminator Models --- print("\n--- Part 2: Building
the GAN Components ---")
latent_dim = 100 # Generator
def build_generator():
  model = keras.Sequential(name="generator")
  model.add(layers.Dense(7 * 7 * 256, use_bias=False, input_shape=(latent_dim,)))
  model.add(layers.BatchNormalization())
  model.add(layers.LeakyReLU())
  model.add(layers.Reshape((7, 7, 256)))
  model.add(layers.Conv2DTranspose(128, use_bias=False))
  model.add(layers.BatchNormalization())
  model.add(layers.LeakyReLU())
```

```
model.add(layers.Conv2DTranspose(64,
                                              (5,
                                                    5),
                                                          strides=(2,
                                                                       2),
                                                                             padding='same',
use bias=False))
  model.add(layers.BatchNormalization())
  model.add(layers.LeakyReLU())
  model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same',
                       use_bias=False, activation='tanh'))
  return model
generator = build_generator()
print("\n--- Generator Model Summary ---")
generator.summary()
# Discriminator
def build_discriminator():
  model = keras.Sequential(name="discriminator")
  model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28,
1]))
  model.add(layers.LeakyReLU())
  model.add(layers.Dropout(0.3))
  model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
  model.add(layers.LeakyReLU())
  model.add(layers.Dropout(0.3))
  model.add(layers.Flatten()) model.add(layers.Dense(1,
  activation='sigmoid')) return model
discriminator = build_discriminator()
print("\n--- Discriminator Model Summary ---") discriminator.summary()
# --- Part 3: Training Setup ---
cross_entropy = keras.losses.BinaryCrossentropy(from_logits=False)
def discriminator_loss(real_output, fake_output):
  real_loss = cross_entropy(tf.ones_like(real_output), real_output)
  fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
  return real_loss + fake_loss
def generator_loss(fake_output):
  return cross_entropy(tf.ones_like(fake_output), fake_output)
```

```
generator_optimizer = tf.keras.optimizers.Adam(learning_rate=1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(learning_rate=1e-4)
@tf.function
def train_step(images, latent_dim=latent_dim):
  noise = tf.random.normal([batch size, latent dim])
  with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
     generated_images = generator(noise, training=True)
     real output = discriminator(images, training=True) fake output =
     discriminator(generated_images, training=True) gen_loss =
     generator loss(fake output)
     disc_loss = discriminator_loss(real_output, fake_output)
  gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
  gradients_of_discriminator
                                                                  disc_tape.gradient(disc_loss,
discriminator.trainable_variables) generator_optimizer.apply_gradients(zip(gradients_of_generator,
generator.trainable_variables)) discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator,
discriminator.trainable_variables)) return
  gen_loss, disc_loss
def generate_and_save_images(model, epoch, test_input):
  predictions = model(test_input, training=False)
  predictions_rescaled = (predictions *0.5) + 0.5 # Scale back to [0, 1] fig =
  plt.figure(figsize=(4, 4))
  for i in range(predictions.shape[0]):
     plt.subplot(4, 4, i + 1)
     plt.imshow(predictions_rescaled[i, :, :, 0], cmap='gray') plt.axis('off')
  plt.suptitle(f"Epoch {epoch}", fontsize=16) if
  not os.path.exists('images'):
     os.makedirs('images')
  plt.savefig(f'images/image_at_epoch_{epoch:04d}.png')
  plt.show()
# Training parameters EPOCHS
= 200
batch size = 256
num_examples_to_generate = 16
```

```
seed = tf.random.normal([num_examples_to_generate, latent_dim])
train_dataset
tf.data.Dataset.from_tensor_slices(x_train).shuffle(x_train.shape[0]).batch(batch_size)
# Training loop
def train(dataset, epochs):
  print("\n--- Beginning GAN Training ---")
  for epoch in range(epochs):
     gen_loss_list = []
    disc_loss_list = []
     for image batch in dataset:
       gen_loss, disc_loss = train_step(image_batch)
       gen_loss_list.append(gen_loss.numpy())
       disc_loss_list.append(disc_loss.numpy())
     avg_gen_loss = np.mean(gen_loss_list)
     avg_disc_loss = np.mean(disc_loss_list)
     print(f"Epoch
                   \{epoch + 1\}/\{epochs\}
                                                 - Generator Loss:
                                                                        {avg_gen_loss:.4f},
Discriminator Loss: {avg_disc_loss:.4f}")
    if (epoch + 1) \% 20 == 0:
       generate_and_save_images(generator, epoch + 1, seed)
  print("\n--- Training complete. Generating final images. ---")
  generate_and_save_images(generator, epochs, seed)
# Run training
train(train_dataset, EPOCHS)
```

OUTPUT:

--- Part 1: Loading and Preprocessing the MNIST Dataset --- Normalized training data shape: (60000, 28, 28, 1) Example normalized pixel value: -1.0

```
--- Beginning GAN Training ---
Epoch 1/20 - Generator Loss: 0.7877, Discriminator Loss: 1.0228
Epoch 2/20 - Generator Loss: 0.8148, Discriminator Loss: 1.2225
Epoch 3/20 - Generator Loss: 0.8448, Discriminator Loss: 1.3034
Epoch 4/20 - Generator Loss: 0.8534, Discriminator Loss: 1.2366
Epoch 5/20 - Generator Loss: 0.8372, Discriminator Loss: 1.2497
```

Epoch 5


```
Epoch 6/20 - Generator Loss: 0.8516, Discriminator Loss: 1.2705
Epoch 7/20 - Generator Loss: 0.8888, Discriminator Loss: 1.3028
Epoch 8/20 - Generator Loss: 0.8739, Discriminator Loss: 1.2512
Epoch 9/20 - Generator Loss: 0.8691, Discriminator Loss: 1.3130
Epoch 10/20 - Generator Loss: 0.8862, Discriminator Loss: 1.2320
```

Epoch 10


```
Epoch 11/20 - Generator Loss: 0.9361, Discriminator Loss: 1.2244
Epoch 12/20 - Generator Loss: 0.9946, Discriminator Loss: 1.1719
Epoch 13/20 - Generator Loss: 0.9948, Discriminator Loss: 1.1944
Epoch 14/20 - Generator Loss: 0.9786, Discriminator Loss: 1.1809
Epoch 15/20 - Generator Loss: 1.0420, Discriminator Loss: 1.1079
```

Epoch 15


```
Epoch 16/20 - Generator Loss: 1.2020, Discriminator Loss: 1.0483

Epoch 17/20 - Generator Loss: 1.2648, Discriminator Loss: 1.0605

Epoch 18/20 - Generator Loss: 1.1657, Discriminator Loss: 1.0404

Epoch 19/20 - Generator Loss: 1.1644, Discriminator Loss: 1.0897

Epoch 20/20 - Generator Loss: 1.1770, Discriminator Loss: 1.0938
```

Epoch 20

--- Training complete. Generating final images. ---

Epoch 20

RESULT:

The Generative Adversarial Network (GAN) was successfully implemented and trained on the dataset. The Generator created synthetic data, while the Discriminator learned to differentiate real and fake samples.

After training, the GAN produced realistic synthetic outputs, showing that it effectively learned the underlying data patterns

Exp No: 8

MODEL EVALUATION AND IMPROVEMENT: HYPERPARAMETER TUNING WITH GRID SEARCH AND CROSS-VALIDATION

AIM:

To demonstrate key techniques for model evaluation and improvement:

- **1. Hyperparameter Tuning with Grid Search :** Systematically searching for the optimal combination of hyperparameters for a machine learning model.
- **2.** Cross-Validation Techniques: Implementing k-fold cross-validation to get a more robust estimate of model performance and to prevent overfitting to a specific train-test split.

ALGORITHM:

1. Hyperparameter Tuning with Grid Search

Hyperparameters are external configuration properties of a model whose values cannot be estimated from data. Examples include the learning rate for a neural network, the number of trees in a Random Forest, or the `C` and `gamma` parameters in an SVM. Tuning these parameters is crucial for optimal model performance.

Grid Search is an exhaustive search method for hyperparameter optimization.

Steps:

- 1. Define Parameter Grid: Specify a dictionary where keys are hyperparameter names and values are lists of discrete values to be tested for each hyperparameter.
- 2. Instantiate Model: Choose a machine learning model.
- 3. Perform Search: Train the model for every possible combination of hyperparameters defined in the grid.
- 4. Evaluate: For each combination, evaluate the model's performance using a specified scoring

metric (e.g., accuracy, F1-score) and often in conjunction with cross-validation.

5. Select Best Model: Identify the hyperparameter combination that yields the best performance.

2. Cross-Validation Techniques

Cross-validation is a resampling procedure used to evaluate machine learning models on a limited data sample. The goal is to estimate how accurately a predictive model will perform in practice. It's especially useful for reducing overfitting and providing a more reliable estimate of generalization performance compared to a single train-test split.

k-Fold Cross-Validation:

Steps:

- 1. Divide Data: The entire dataset is randomly partitioned into \$k\$ equally sized subsamples (or "folds").
- 2. Iterate \$k\$ Times:

In each iteration, one fold is used as the validation (or test) set, and the remaining \$k-1\$ folds are used as the training set. The model is trained on the training set and evaluated on the validation set.

- 3. Aggregate Results: The performance metric (e.g., accuracy) from each of the \$k\$ iterations is collected.
- 4. Compute Mean and Standard Deviation: The mean and standard deviation of these \$k\$ performance scores are calculated to provide a more robust estimate of the model's performance and its variability.

CODE:

Import necessary libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

from sklearn.datasets import load_iris # A classic dataset for classification from sklearn.model_selection import train_test_split, KFold, cross_val_score, GridSearchCV from sklearn.svm import SVC # Support Vector Classifier, a common model for tuning from sklearn.metrics import accuracy_score, classification_report, confusion_matrix from sklearn.preprocessing import StandardScaler

```
# --- Part 1: Hyperparameter Tuning with Grid Search ---
print("--- Part 1: Hyperparameter Tuning with Grid Search ---") # 1.
```

Load a Dataset (Iris Dataset for classification)

The Iris dataset is a classic and simple dataset for classification tasks.

It contains measurements of iris flowers (sepal length, sepal width, petal length, petal width)

and their corresponding species (Setosa, Versicolor, Virginica). iris = load_iris()

X = iris.data y =

iris.target

 $feature_names = iris.feature_names$

target_names = iris.target_names

```
print(f"\nDataset Features (X) shape: {X.shape}")
print(f"Dataset Labels (y) shape: {y.shape}")
print(f"Feature Names: {feature_names}")
print(f"Target Names: {target_names}")
# 2. Split Data into Training and Testing Sets
# It's crucial to split the data before scaling to prevent data leakage. #
The test set will be used for final model evaluation, after tuning.
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42, stratify=y)
print(f"\nTraining set size: {X_train.shape[0]} samples")
print(f"Test set size: {X_test.shape[0]} samples")
# 3. Standardize Features
# Scaling features is important for SVMs as they are sensitive to feature scales. # Fit
scaler only on training data to prevent data leakage.
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
print("\nFeatures standardized.")
# 4. Define the Model and Hyperparameter Grid
# We'll use a Support Vector Classifier (SVC) as our model.
# Common hyperparameters for SVC are 'C' (regularization parameter) and 'gamma' (kernel coefficient).
# 'kernel' also can be tuned (e.g., 'linear', 'rbf').
# Define the parameter grid for Grid Search param_grid
= {
  'C': [0.1, 1, 10, 100],
                               # Regularization parameter
  'gamma': [1, 0.1, 0.01, 0.001], #Kernel coefficient for 'rbf', 'poly' and 'sigmoid'
  'kernel': ['rbf', 'linear']
                             # Type of kernel function
}
print("\nHyperparameter grid defined:") for
param, values in param_grid.items():
  print(f" {param}: {values}")
```

```
# 5. Perform Grid Search with Cross-Validation
# GridSearchCV automatically performs k-fold cross-validation for each combination. #
cv=5 means 5-fold cross-validation.
# scoring='accuracy' means we want to optimize for accuracy.
grid_search = GridSearchCV(SVC(), param_grid, cv=5, scoring='accuracy', verbose=1,
n \text{ jobs}=-1
print("\nStarting Grid Search with 5-fold Cross-Validation...") # Fit
GridSearchCV on the scaled training data
grid_search.fit(X_train_scaled, y_train)
print("\nGrid Search completed.")
# 6. Get the Best Parameters and Best Score
print(f"\nBest hyperparameters found: {grid_search.best_params_}")
print(f"Best cross-validation accuracy: {grid_search.best_score_:.4f}")
#7. Evaluate the Best Model on the Test Set
# The best_estimator_ attribute provides the model trained with the best parameters.
best_model = grid_search.best_estimator_
y_pred_tuned = best_model.predict(X_test_scaled)
test_accuracy_tuned = accuracy_score(y_test, y_pred_tuned) print(f"\nTest
set accuracy with tuned model: {test_accuracy_tuned:.4f}")
print("\n--- Classification Report for Tuned Model ---") print(classification_report(y_test,
y_pred_tuned, target_names=target_names))
print("\n--- Confusion Matrix for Tuned Model ---")
cm_tuned = confusion_matrix(y_test, y_pred_tuned)
plt.figure(figsize=(8, 6))
sns.heatmap(cm_tuned,
                          annot=True, fmt='d',
                                                  cmap='Blues',
                                                                  xticklabels=target_names,
yticklabels=target_names)
plt.title('Confusion Matrix (Tuned SVM)')
plt.xlabel('Predicted Label') plt.ylabel('True
Label')
plt.show()
# Visualize Grid Search results (optional, but good for understanding)
```

```
# Convert results to a DataFrame for easier analysis
            = pd.DataFrame(grid_search.cv_results_)
results df
print("\n--- Top 5 Grid Search Results ---")
print(results_df[['param_C',
                                   'param_gamma',
                                                           'param_kernel',
                                                                                  'mean_test_score',
'rank test score']].sort values(by='rank test score').head())
# --- Part 2: Cross-Validation Techniques (k-fold) --- print("\n---
Part 2: Cross-Validation Techniques (k-fold) ---")
# We will demonstrate k-fold cross-validation on a simple SVM without explicit tuning for
clarity,
# to focus solely on the CV process.
# 1. Instantiate a Model (using default or chosen parameters)
model_cv = SVC(random_state=42) # Using default parameters for simplicity
# 2. Define k-fold Cross-Validation Strategy #
We'll use 5-fold cross-validation.
# KFold ensures that each fold is distinct.
# shuffle=True means the data will be randomly shuffled before splitting into folds. #
random_state for reproducibility.
k \text{ folds} = 5
kf = KFold(n_splits=k_folds, shuffle=True, random_state=42)
print(f"\nPerforming {k_folds}-fold cross-validation...")
# 3. Perform Cross-Validation and Get Scores
# cross_val_score performs the KFold splitting, training, and evaluation automatically. # It
returns an array of scores, one for each fold.
cv_scores = cross_val_score(model_cv, X_train_scaled, y_train, cv=kf, scoring='accuracy')
print(f"\nCross-validation scores for each fold: {cv_scores}")
print(f"Mean cross-validation accuracy: {np.mean(cv_scores):.4f}")
print(f"Standard deviation of cross-validation accuracy: {np.std(cv scores):.4f}")
#4. Visualize Cross-Validation Scores
plt.figure(figsize=(8, 5))
plt.bar(range(1, k_folds + 1), cv_scores, color='skyblue')
plt.axhline(y=np.mean(cv_scores),
                                       color='r',
                                                    linestyle='--',
                                                                    label=f'Mean
                                                                                      Accuracy
```

```
({np.mean(cv_scores):.4f})')
plt.title(f'{k_folds}-Fold Cross-Validation Accuracy Scores')
plt.xlabel('Fold Number')
plt.ylabel('Accuracy')
plt.ylim(0.8, 1.0) # Set y-axis limits for better visualization
plt.legend()
plt.grid(axis='y', linestyle='--')
plt.show()

# 5. Discuss why CV is useful
print("\n--- Why is Cross-Validation Important? ---")
print("1. More Reliable Performance Estimate: Reduces bias from a single train-test split.")
print("2. Better Generalization: Helps ensure the model performs well on unseen data.")
print("3. Efficient Data Usage: All data points are used for both training and validation across different folds.")
print("4. Detects Overfitting/Underfitting: Variability in scores can indicate instability.")
```

OUTPUT:

```
--- Part 1: Hyperparameter Tuning with Grid Search ---
Dataset Features (X) shape: (150, 4)
Dataset Labels (y) shape: (150,)
Feature Names: ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
Target Names: ['setosa' 'versicolor' 'virginica']
Training set size: 105 samples
Test set size: 45 samples
Features standardized.
Hyperparameter grid defined:
  C: [0.1, 1, 10, 100]
gamma: [1, 0.1, 0.01, 0.001]
kernel: ['rbf', 'linear']
Starting Grid Search with 5-fold Cross-Validation...
Fitting 5 folds for each of 32 candidates, totalling 160 fits
Grid Search completed.
Best hyperparameters found: {'C': 1, 'gamma': 0.1, 'kernel': 'rbf'}
Best cross-validation accuracy: 0.9810
Test set accuracy with tuned model: 0.9111
--- Classification Report for Tuned Model ---
               precision recall f1-score support
       setosa
                    0.82
  versicolor
   virginica
                                0.80
                                            0.86
                                                         15
                                            0.91
                                                         45
    accuracy
                0.92 0.91
0.92 0.91
   macro avg
                                            0.91
                                                          45
weighted avg
```


RESULT:

The model was successfully evaluated and improved using **Grid Search** and **Cross-Validation** techniques. Grid Search identified the best combination of hyperparameters, while Cross-Validation ensured reliable performance estimation.

The optimized model achieved higher accuracy and better generalization, confirming that systematic tuning and validation significantly enhance model performance.

EXP NO: 9

MINI PROJECT//VisionOps – Image Enhancement and Filtering Using Point and Neighborhood Operations

AIM:

To design and implement a web-based application that performs various point and neighborhood operations on images to enhance their visual quality and extract useful features using Python (Flask) and OpenCV.

ALGORITHM:

1. Negative Transformation

Algorithm:

- 1. Read the input image.
- 2. For every pixel in the image, subtract its intensity value from 255.

$$s=255-rs = 255 - rs = 255-r$$

where r = original pixel intensity, s = new intensity.

- 3. Store the result in the output image.
- 4. Display or save the negative image.

2. Log Transformation

Algorithm:

- 1. Read the input image.
- 2. Find the maximum pixel value in the image.
- 3. Apply the transformation:

$$s=c \times \log \frac{f_0}{f_0}(1+r)s = c \times \log(1+r)s = c \times \log(1+r)$$

where

- o r = input pixel intensity
- o $c = 255 / \log(1 + \max(r))$
- 4. Normalize and convert the output to 8-bit.
- 5. Display or save the log-transformed image.

3. Gamma Correction (Power-Law Transformation)

Algorithm:

- 1. Read the input image.
- 2. Normalize pixel values to the range [0,1].
- 3. Apply transformation:

$$s{=}c{\times}r\gamma s = c \ \text{$times$ $r^{\ }(\gamma s)$ } s{=}c{\times}r\gamma$$

where

$$\circ$$
 $\gamma = gamma value (user input)$

$$\circ$$
 $c=1$

- 4. Multiply output by 255 and convert to 8-bit integer.
- 5. Display the gamma-corrected image.

4. Thresholding

Algorithm:

- 1. Read the grayscale version of the image.
- 2. Choose a threshold value *T* (user input or default 128).
- 3. For each pixel:
 - o If pixel value \ge T → set to 255
 - \circ Else \rightarrow set to 0
- 4. Merge the result to RGB if needed.
- 5. Display the binary thresholded image.

Neighborhood Operations

5. Mean Filter

Algorithm:

- 1. Read the input image.
- 2. Choose kernel size $k \times k$.
- 3. For each pixel, replace its value with the average of its neighboring pixels.
- 4. Return the smoothed (blurred) image.

6. Median Filter

Algorithm:

- 1. Read the input image.
- 2. Choose kernel size $k \times k$.
- 3. For each pixel, take the **median value** of its neighborhood pixels.
- 4. Replace the pixel with this median.
- 5. Display the denoised image.

7. Gaussian Filter

Algorithm:

- 1. Read the input image.
- 2. Choose kernel size $k \times k$.
- 3. Apply a Gaussian weighted average over neighboring pixels.
- 4. Replace each pixel with the weighted sum.
- 5. Display the smooth, noise-reduced image.

8. Sobel Filter (Edge Detection)

Algorithm:

- 1. Convert the image to grayscale.
- 2. Apply the Sobel operator in **X** and **Y** directions:

```
Gx = \partial I \partial x, Gy = \partial I \partial y Gx = \frac{\pi G}{\operatorname{Sy}}  Gx = \frac{\pi G}{\operatorname{Sy}}
```

3. Compute the gradient magnitude:

```
G=Gx2+Gy2G = \sqrt{G_x^2 + G_y^2}G=Gx2+Gy2
```

- 4. Normalize to 8-bit and convert to RGB.
- 5. Display the edge-detected image.

CODE:

```
Index.html
```

```
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <title>VisionOps - Interactive Image Processing</title>
  <style>
    body { font-family: Arial, sans-serif; background-color: #f2f2f2; text-align: center; padding: 20px; }
    h1 { color: #333; }
    .container { display: flex; justify-content: center; gap: 40px; margin-top: 20px; }
    .image-box { border: 1px solid #ccc; padding: 10px; background: #fff; }
    img { max-width: 300px; max-height: 300px; }
    .controls { margin-top: 20px; }
    .slider-container { margin: 10px 0; }
    input[type=range] { width: 200px; }
    label { margin-right: 10px; font-weight: bold; }
    select, input[type=submit] { padding: 5px 10px; margin-top: 10px; }
  </style>
</head>
<body>
  <h1>VisionOps - Interactive Image Processing</h1>
  <form method="POST" enctype="multipart/form-data">
    <input type="file" name="image" required><br><br>
    <label for="operation">Select Operation:</label>
    <select name="operation" id="operation" onchange="updateControls()">
       <option value="Negative">Negative
       <option value="Gamma">Gamma Correction</option>
       <option value="Log">Log Transformation</option>
       <option value="Threshold">Threshold</option>
       <option value="Mean">Mean Filter</option>
       <option value="Median">Median Filter
       <option value="Gaussian">Gaussian Filter
       <option value="Sobel">Sobel Filter</option>
    </select>
    <div class="controls">
       <div class="slider-container" id="gamma-container" style="display:none;">
```

```
<label for="param">Gamma:</label>
         <input type="range" name="param" id="gamma" min="0.1" max="5" step="0.1" value="1.0">
         <span id="gamma-val">1.0</span>
       </div>
       <div class="slider-container" id="threshold-container" style="display:none;">
         <label for="param">Threshold:</label>
         <input type="range" name="param" id="threshold" min="0" max="255" step="1"</pre>
value="128">
         <span id="threshold-val">128</span>
       </div>
       <div class="slider-container" id="kernel-container" style="display:none;">
         <label for="param">Kernel Size:</label>
         <input type="range" name="param" id="kernel" min="3" max="9" step="2" value="3">
         <span id="kernel-val">3</span>
       </div>
    </div>
    <input type="submit" value="Process Image">
  </form>
   <div class="container">
     {% if original file %}
    <div class="image-box">
       <h3>Original Image</h3>
       <img src="{{ original_file }}" alt="Original Image">
    </div>
    { % end if % }
    {% if processed_file %}
    <div class="image-box"
<h3>Processed Image</h3>
       <img src="{{ processed_file }}" alt="Processed Image">
    </div>
    { % endif % }
  </div>
  <script>
    const operationSelect = document.getElementById("operation");
    const gammaContainer = document.getElementById("gamma-container");
    const thresholdContainer = document.getElementById("threshold-container");
    const kernelContainer = document.getElementById("kernel-container");
    const gammaSlider = document.getElementById("gamma");
    const gammaVal = document.getElementById("gamma-val");
    gammaSlider.oninput = () => gammaVal.innerText = gammaSlider.value;
    const thresholdSlider = document.getElementById("threshold");
    const thresholdVal = document.getElementById("threshold-val");
    thresholdSlider.oninput = () => thresholdVal.innerText = thresholdSlider.value;
    const kernelSlider = document.getElementById("kernel");
```

```
const kernelVal = document.getElementById("kernel-val");
   kernelSlider.oninput = () => kernelVal.innerText = kernelSlider.value;

function updateControls() {
   const op = operationSelect.value;
   gammaContainer.style.display = (op === "Gamma") ? "block" : "none";
   thresholdContainer.style.display = (op === "Threshold") ? "block" : "none";
   kernelContainer.style.display = (op === "Mean" || op === "Median" || op === "Gaussian") ?
"block" : "none";
  }

// Initialize controls
  updateControls();
  </script>
  </body>
  </html>
```

```
App.py
import of
```

```
import os
import cv2
import numpy as np
from flask import Flask, render_template, request, redirect, url_for
app = Flask(__name__)
UPLOAD FOLDER = 'static/uploads/'
PROCESSED FOLDER = 'static/processed/'
#-----Safe folder creation -----
if not os.path.isdir(UPLOAD_FOLDER):
  os.makedirs(UPLOAD FOLDER)
if not os.path.isdir(PROCESSED FOLDER):
  os.makedirs(PROCESSED_FOLDER)
# ----- Point Operations -----
def negative image(img):
  return 255 - img
def gamma_correction(img, gamma=1.0):
  invGamma = 1.0 / gamma
  table = np.array([((i / 255.0) ** invGamma) * 255
            for i in np.arange(256)]).astype("uint8")
  return cv2.LUT(img, table)
def log_transform(img):
  c = 255 / np.log(1 + np.max(img))
  log image = c * (np.log(img + 1))
  return np.array(log_image, dtype=np.uint8)
def threshold_image(img, thresh=128):
  gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
  _, threshed = cv2.threshold(gray, thresh, 255, cv2.THRESH_BINARY)
  return cv2.cvtColor(threshed, cv2.COLOR GRAY2BGR)
# ------ Neighborhood Operations -----
def mean_filter(img, k=3):
  return cv2.blur(img, (k, k))
def median_filter(img, k=3):
  return cv2.medianBlur(img, k)
def gaussian_filter(img, k=3):
  return cv2.GaussianBlur(img, (k, k), 0)
def sobel_filter(img):
  gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
  sobelx = cv2.Sobel(gray, cv2.CV 64F, 1, 0, ksize=3)
  sobely = cv2.Sobel(gray, cv2.CV 64F, 0, 1, ksize=3)
                                                    62
```

```
sobel = cv2.magnitude(sobelx, sobely)
  sobel = np.uint8(np.clip(sobel, 0, 255))
  return cv2.cvtColor(sobel, cv2.COLOR GRAY2BGR)
# ----- Flask Routes -----
@app.route("/", methods=["GET", "POST"])
def home():
  processed_file = None
  original_file = None
  if request.method == "POST":
    if "image" not in request.files:
       return redirect(request.url)
    file = request.files["image"]
    if file.filename == "":
       return redirect(request.url)
    if file:
       filepath = os.path.join(UPLOAD_FOLDER, file.filename)
       file.save(filepath)
       original_file = filepath
       img = cv2.imread(filepath)
       # Get operation and parameter
       operation = request.form.get("operation")
       param = request.form.get("param", type=float)
       if operation == "Negative":
         processed = negative image(img)
       elif operation == "Gamma":
         gamma_val = param if param else 1.0
         processed = gamma_correction(img, gamma=gamma_val)
       elif operation == "Log":
         processed = log_transform(img)
       elif operation == "Threshold":
         thresh val = int(param) if param else 128
         processed = threshold image(img, thresh=thresh val)
       elif operation == "Mean":
         k = int(param) if param else 3
         processed = mean filter(img, k)
       elif operation == "Median":
         k = int(param) if param else 3
         processed = median_filter(img, k)
       elif operation == "Gaussian":
         k = int(param) if param else 3
         processed = gaussian filter(img, k)
       elif operation == "Sobel":
         processed = sobel filter(img)
       else:
         processed = img
       processed_filename = f"{operation}_{file.filename}"
       processed_path = os.path.join(PROCESSED_FOLDER, processed_filename)
       cv2.imwrite(processed path, processed)
```

```
processed_file = processed_path

return render_template("index.html", processed_file=processed_file, original_file=original_file)

if __name___ == "__main__":
    app.run(debug=True)
```

Reqiurement.TXT

opency-python Flask numpy

Output

VisionOps - Interactive Image Processing

Choose File PAY-Stunnin...ondon.webp

Select Operation: Sobel Filter

Process Image

VisionOps - Interactive Image Processing

Choose File No file chosen

Select Operation: Negative

VisionOps - Interactive Image Processing Choose File PAY-Stunnin... ondon.webp Select Operation: Gaussian Filter Kernel Size: 5

Result:

The implemented Active Contour Segmentation algorithm efficiently detected object boundaries in images by minimizing energy functions based on image gradients and contour smoothnes