

NFA with Epsilon Transitions

Shashank Gupta
Assistant Professor
Department of Computer Science and Information Systems

More NFA Designing Examples

• Construct NFA for $\{wxw^R \mid x \in (a,b)^*, w \in (a,b)^+ \& w^R \text{ is the reverse of the string } w\}$

Equivalence of NFA and DFA

For every NFA, there is an equivalent DFA.

Theorem: Let $N = (Q, \Sigma, \delta, q_0, F)$ be a NFA.

• There exists a DFA D = (Q`, Σ , δ `, q_0 `, F`) s.t. L(N) = L(D)

Construction of DFA from NFA

$$Q^{=}2^{Q}$$

Let
$$A \subseteq Q$$
 then $\delta^{\hat{}}(A, a) = \bigcup_{r \in A} \delta(r, a)$

$$q_0 = \{q_0\}$$

•
$$F = \{A \subseteq Q \mid A \cap F \neq \emptyset\}$$

CS F351 Theory of Computation

innovate achieve lead

More Examples

Convert the following NFA to DFA over the given input alphabet $\Sigma = \{0,1\}$

I/P Symbol State Symbol	0	1
→ P	{P,Q}	{P}
Q	{R,S}	{T}
R	{P,R}	{T}
S	Ф	Ф
t	Ф	Ф

I/P Symbol STATE	0	1
→P	PQ	Р
PQ	PQRS	PT
PQRS	PQRS	PT
PT	PQ	Р

Few Key Points

While converting from NFA to DFA, the number of states may increases or decreases.

• You may also come across some new states which are not reachable from start state.

Special Category of NFA

NFA with ∈ Transitions

We extend the class of NFAs by allowing \in transitions:

• The automaton may be allowed to change its state without reading the input symbol.

In diagrams, such transitions are depicted by labeling the appropriate arcs with \in .

- Note that this does not mean that ∈ has become an input symbol.
- On the contrary, we assume that the symbol ϵ does not belong to any input alphabet.

∈-NFAs add a convenient feature but (in a sense) they bring us nothing new: they do not extend the class of languages that can be represented.

Both NFAs and ∈-NFAs recognize exactly the same languages.

A special case of NFA in which transitions are also defined over Epsilon(\in) moves. It is also a collection of 5 tuples (Q, Σ , δ , q_0 , F) where

- $\delta: Q \times \Sigma \cup \{\in\} \rightarrow 2^Q$
- OR
- $\delta: Q \times \Sigma_{\epsilon} \to 2^Q$

- If there is $a \in transition$, then the automaton moves to state A and B without reading the next input bit.
- An input is accepted if there is some computation path that leads to an accept state.

Acceptance Mechanism

```
\in-NFA accepts w = a_1 a_2 \dots a_n if we can write w as w = b_1 b_2 \dots b_m, where each b_i \in \Sigma_{\in} and there exists a sequence of states r_0, r_1, . . , r_m \in Q (not necessarily distinct), such that
```

- $r_0 = q_0$, (Initial State Condition)
- $r_i \in \delta(r_{i-1}, b_i)$ for i = 1, 2, ... m (Transition Function Condition)
- $r_m \in F$. (Acceptance Condition)

Then,
$$L(N) = \{ w \in \Sigma^* \mid N \text{ accepts } w \}.$$

Example

• Construct a \in -NFA for the following language $L = \{w \in \{0\}^* \mid |w| \text{ is divisible by 2 or 3}\}$

Computation of ∈-Closure

Let $R \subseteq Q$. \in -closure of R is defined as

 $E(R) = \bigcup_{r \in R} \{q | q \text{ can be reached from } r \text{ by } u \sin g \text{ } 0 \text{ or more } \in -transitions}\}$

The \in -closure (q) is the set that contains q, together with all states that can be reached starting at q by following only ε -transitions.

- \in -closure $(q_0) = \{q_0, q_1, q_f\}$
- \in -closure $(q_1) = \{q_1, q_f\}$
- \in -closure $(q_f) = \{q_f\}$

Transitions are defined based on the following formulae:

• δ `(q, a) = \in -closure(δ (\in -closure(q),a))

 \in -NFA

∈ -Closure

Q	ε-closure
q_0	$\{q_0,q_1,q_f\}$
q_1	$\{q_1, q_f\}$
$q_{\rm f}$	$\{q_f\}$

Equivalence between ∈-NFA and NFA (Continued....)

	0	1
→ q 0	$\{q_0,q_1,q_f\}$	
q ₁		
qf		

Initially we calculate for $\delta(q_0,0)$

$$\begin{split} \mathcal{S}(q_0,0) = & \in -closure \left(\mathcal{S}(\in -closure \left(q_0 \right), 0 \right) \right) \\ \mathcal{S}(q_0,0) = & \in -closure \left(\mathcal{S}((q_0,q_1,q_f),0) \right) \text{ [Since } \in -closure \left(q_0 \right) = q_0,q_1,q_f \right)] \\ \mathcal{S}(q_0,0) = & \in -closure \left(\mathcal{S}(q_0,0) \bigcup \mathcal{S}(q_1,0) \bigcup \mathcal{S}(q_f,0) \right) \\ \mathcal{S}(q_0,0) = & \in -closure \left(q_0 \bigcup \phi \bigcup q_f \right) \\ \mathcal{S}(q_0,0) = & \in -closure \left(q_0,q_f \right) \end{split}$$

 $\delta(q_0,0) = \{q_0, q_1, q_t\}$

innovate achieve lead

NFA (Continued....)

Similarly, we calculate for $\delta(q_0, 1)$

	0	1
> q₀	$\{\mathbf{q_0,q_1,q_f}\}$	{q ₁ ,q _f }
q 1		
q f		

$$\delta(q_0, 1) = \in -closure(\delta(\in -closure(q_0), 1))$$

$$\delta(q_0, 1) = \in -closure(\delta((q_0, q_1, q_f), 1)) [Since \in -closure(q_0) = q_0, q_1, q_f)]$$

$$\delta(q_0, 1) = \in -closure(\delta(q_0, 1) \bigcup \delta(q_1, 1) \bigcup \delta(q_f, 1))$$

$$\delta(q_0, 1) = \in -closure(\phi \cup q_1 \cup \phi)$$

$$\delta(q_0,1) = \in -closure(q_1)$$

$$\delta(q_0,1) = q_1, q_f$$

innovate achieve lead

1

14171 (Continued)		U .	1
\bigcap^o \bigcap^1	-•q 0	{q0,q1,qf}	{q1,qf}
$q_0 \xrightarrow{\epsilon} q_1 \xrightarrow{\epsilon} q_f$	q ₁	$\{ q_f \}$	
Likewise, we calculate for $\delta(q_1, 0)$	q f		

$$\delta(q_1,0) = \in -closure(\delta(\in -closure(q_1),0))$$

$$\delta(q_1,0) = \in -closure(\delta(q_1,q_f),0)$$
 [Since $\in -closure(q_1) = q_1,q_f$)]

$$\delta(q_1, 0) = \in -closure(\delta(q_1, 0) \bigcup \delta(q_f, 0))$$

$$\delta(q_1,0) = \in -closure(\phi \bigcup q_f)$$

$$\delta(q_1, 0) = \in -closure(q_f)$$

$$\delta(q_1,0) = q_f$$

achi

lead

NFA (Continued....)

	U	1
q ₀	{q ₀ ,q ₁ ,q _f }	$\{q_1,q_f\}$
q 1	$\{ \mathbf{q_f} \}$	{q ₁ ,q _f }
q f		

innovate

$$\delta(q_1, 1) = \in -closure(\delta(\in -closure(q_1), 1))$$

$$\delta(q_1, 1) = \in -closure(\delta(q_1, q_f), 1) [Since \in -closure(q_1) = q_1, q_f)]$$

$$\delta(q_1, 1) = \in -closure(\delta(q_1, 1) \bigcup \delta(q_f, 1))$$

$$\delta(q_1, 1) = \in -closure(q_1 \cup \phi)$$

$$\delta(q_1, 1) = \in -closure(q_1)$$

$$\delta(q_1,1)=q_1,q_f$$

innovate achieve lead

	0	1
q 0	$\{q_0,q_1,q_f\}$	$\{q_1,q_f\}$
q 1	$\{ \mathbf{q_f} \}$	$\{q_1,q_f\}$
q f	$\{ \mathbf{q_f} \}$	

$$\delta(q_f, 0) = \in -closure(\delta(\in -closure(q_f), 0))$$

$$\delta(q_f, 0) = \in -closure(\delta(q_f), 0) \text{ [Since } \in -closure(q_f) = q_f) \text{]}$$

$$\delta(q_f, 0) = \in -closure(\delta(q_f, 0))$$

$$\delta(q_f, 0) = \in -closure(q_f)$$

$$\delta(q_f,0)=q_f$$

innovate achieve lead

$\bigcap o$	\bigcap_{1}	$\bigcap o$
q_0	\rightarrow q_1	ϵ q_f

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline \bullet q_0 & \{q_0,q_1,q_f\} & \{q_1,q_f\} \\ \hline q_1 & \{q_f\} & \{q_1,q_f\} \\ \hline q_f & \{q_f\} & \phi \\ \end{array}$$

$$\delta(q_f, 1) = \in -closure(\delta(\in -closure(q_f), 1))$$

$$\delta(q_f, 1) = \in -closure(\delta(q_f), 1) [Since \in -closure(q_f) = q_f)]$$

$$\delta(q_f, 1) = \in -closure(\delta(q_f, 1))$$

$$\delta(q_f, 1) = \in -closure(\phi)$$

$$\delta(q_f, 1) = \phi$$

innovate achieve lead

	0	1
q 0	$\{\mathbf{q_0,q_1,q_f}\}$	$\{q_1,q_f\}$
q ₁	$\{ \mathbf{q_f} \}$	$\{q_1,q_f\}$
q f	$\{ \mathbf{q_f} \}$	ф

Number of states of NFA will remain same as of \in -NFA.

Number of final states may increases

• i.e. which includes all final states of \in - NFA and from any state by reading \in if it reaches to final state make that state as final too.

Equivalence between ∈-NFA and NFA (Continued....)

