```
In [1]: #import files
          from sklearn.cluster import KMeans
          import pandas as pd
          from sklearn.preprocessing import MinMaxScaler
          from matplotlib import pyplot as plt
          get ipython().run line magic('matplotlib', 'inline')
In [12]: #read file
          df1=pd.read_csv("excleofDataSet.csv")
          df1.head()
Out[12]:
              Unnamed:
                        sl_no University_iD gender ssc_p
                                                          ssc_b hsc_p
                                                                        hsc_b
                                                                                   hsc_s degree_p
           0
                     0
                                                          Others
                          1.0
                                         0
                                                Μ
                                                    67.00
                                                                  67.00
                                                                         Others
                                                                               Commerce
                                                                                             58.00
           1
                     1
                          2.0
                                     12346
                                                    79.33
                                                          Central
                                                                  79.33
                                                                        Others
                                                                                             77.48
                                                M
                                                                                  Science
           2
                     2
                                                    65.00
                                                                  65.00
                                                                                              0.00 (
                          3.0
                                         0
                                             Other
                                                            NaN
                                                                        Central
                                                                                     NaN
           3
                     3
                          4.0
                                     12348
                                                    56.00
                                                          Central
                                                                  56.00
                                                                                  Science
                                                                                             52.00
                                                М
                                                                        Central
                                                                                             73.30 (
                          5.0
                                     12349
                                                    85.80 Central
                                                                  85.80 Central Commerce
                                                Μ
In [14]: | df = df1[['mba_p', 'salary']]
          print(df)
                mba_p
                       salary
                58.80
                66.28
                       200000
          1
          2
                 0.00
                             0
          3
                59.43
                             0
                       425000
          4
                55.50
                  . . .
          213
                74.49
                       400000
          214
                53.62
                       275000
                69.72
          215
                       295000
          216
                60.23
                       204000
          217
                60.22
          [218 rows x 2 columns]
```

```
In [37]: # Min-Max Normalization
    df_norm = (df-df.min())/(df.max()-df.min())
    print("Scaled Dataset Using Pandas")
    df_norm.head()
```

Scaled Dataset Using Pandas

Out[37]:

	mba_p	salary	
0	0.754911	0.000000	
1	0.850944	0.212766	
2	0.000000	0.000000	
3	0.762999	0.000000	
4	0.712543	0.452128	

```
In [39]: #Scatter Plot
plt.scatter(df_norm['salary'],df_norm['mba_p'])
```

Out[39]: <matplotlib.collections.PathCollection at 0x20d74727070>


```
In [42]: # Choose K
         km=KMeans(n clusters=2)
         km
         #convert all in array /group
         y predicted = km.fit predict(df norm[['salary','mba p']])
         y_predicted
Out[42]: array([0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1,
                1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0,
                1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0,
                1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
                1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0,
                1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,
                                                    1, 1, 1, 1, 1, 1, 1,
                1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1,
                                                    0, 1, 1, 1, 1, 0, 1,
                1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1,
                0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0,
                1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0])
In [43]: #Centroids
         km.cluster_centers_
Out[43]: array([[5.55111512e-17, 7.67677060e-01],
                [3.10681719e-01, 8.03857350e-01]])
In [30]:
         #datafram to three group and ploat Scatter plot
         df1 = df norm[df norm.cluster==0]
         df2 = df_norm[df_norm.cluster==1]
         plt.scatter(df1.salary ,df1['mba p'],color='green')
         plt.scatter(df2.salary ,df2['mba_p'],color='red')
         #ploatling centroids
         plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color='purple',mark
         plt.xlabel('salary')
         plt.ylabel('mba p')
         plt.legend()
```

Out[30]: <matplotlib.legend.Legend at 0x20d74041f70>

In [32]: df1

Out[32]:

	mba_p	salary	cluster
1	0.850944	0.212766	0
4	0.712543	0.452128	0
7	0.797792	0.268085	0
10	0.781230	0.276596	0
11	0.817820	0.265957	0
212	0.725254	0.229787	0
213	0.956349	0.425532	0
214	0.688407	0.292553	0
215	0.895108	0.313830	0
216	0.773270	0.217021	0

147 rows × 3 columns

In [33]: df2

Out[33]:

	mba_p	salary	cluster
0	0.754911	0.0	1
2	0.000000	0.0	1
3	0.762999	0.0	1
5	0.662216	0.0	1
6	0.684170	0.0	1
201	0.923867	0.0	1
204	0.750289	0.0	1
209	0.685454	0.0	1
211	0.807806	0.0	1
217	0.773142	0.0	1

71 rows × 3 columns

In []: