Geometry in CV

Robust Geometry
Estimation
(RANSAC)

Line Fitting Example

Exact solution to ax + by + c = 0

- Line has 2 degrees of freedom (DoF)
- 1 point introduces 1 independent constraint equation
- Thus we need at least **2** points
- 2 is a **minimal** number of observations
- The solution to the system of equations is minimal
- Also called a minimal solver

Lots of Noisy Points -> MLE -> Least Squares

Orthogonal distances

Total Least Squares (TLS)

Both x- and y- coordinates are observed subject to error. Solution — eigenvector corresponding to the smallest eigenvalue of A^TA , where A is Kx2 data matrix.

Outliers?

Multiple Models (e.g. Lines)?

RANSAC: Robust to Outliers

[1] M. A. Fischler and R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography (1981)

Randomly pick the minimal number of observations — the *minimal sample*

Fit the model exactly

Hypothesize

Calculate the residuals

Verify

Classify the data points:

- inlier if the residual is less than threshold
- **outlier** otherwise.

Compute the number of inliers — the

consensus set

Verify

Repeat

Repeat

Number of Iterations (Samples)

Sample all models? That's a lot..

$$k = {K \choose 2} = \frac{K!}{2(K-2)!} = \frac{K(K-1)}{2} = \Theta(K^2)$$

K — number of all data points

k — number of samples

Number of Iterations

$$1 - p = (1 - w^n)^k \longrightarrow k = \frac{\log(1 - p)}{\log(1 - w^n)}$$

p — desired probability of success

w — inlier ratio — number of inliers in data / number of points in data

n — minimal sample size

k — number of samples

Number of Iterations

Percentage of outliers		Number of samples						
	S	5%	10%	20%	25%	30%	40%	50%
Minimal	₁ 2	2	3	5	6	7	11	17
sample	3	3	4	7	9	11	19	35
size	4	3	5	9	13	17	34	72
	5	4	6	12	17	26	57	146
	6	4	7	16	24	37	97	293
	7	4	8	20	33	54	163	588
	8	5	9	26	44	78	272	1177