Finitely branching subtrees of Aronszajn trees

Pedro Marun

Carnegie Mellon University

Preliminaries on trees

A tree is a pair $(T, <_T)$ such that $<_T$ is a strict partial order on T and $\{y \in T : y <_T x\}$ is well-ordered for every $x \in T$. The height of $x \in T$, is the order-type of $\{y \in T : y <_T x\}$, and is denoted $\operatorname{ht}_T(x)$. The set $T_\alpha = \{x \in T : \operatorname{ht}_T(x) = \alpha\}$ is the $\alpha \operatorname{th-level}$ of T.

Given $x \in T$, I(x) is the set of immediate successors of x. A tree T is finitely branching if $|I(x)| < \aleph_0$ for every $x \in T$, and infinitely branching if $|I(x)| \ge \aleph_0$ for every $x \in T$.

A chain in a tree T is a subset of T which is linearly ordered by $<_T$. A branch is a maximal chain. A cofinal branch is a branch which meets every level of T.

A tree is said to be an \aleph_1 -tree if every level is countable and its height is \aleph_1 .

An tree is Aronszajn if it is an \aleph_1 tree with no cofinal branches.

An antichain in a tree is a set of pairwise incomparable elements of T. A tree is Suslin if it is an Aronszajn tree with no uncountable antichains.

A *subtree* of a tree is a downards closed subset. An infinitely branching tree is $Lindel\ddot{o}f$ if it is an \aleph_1 -tree with no uncountable finitely branching subtrees.

A topology on trees

Given a tree T, Nyikos defines the *fine-wedge topology* on T to be generated by all sets of the form $\uparrow x$ and their complements, where $x \in T$ and $\uparrow x = \{y \in T : x \leq y\}$.

A local base at x is given by all sets of the form $\uparrow x \setminus \uparrow F$, where $F \subseteq I(x)$ is finite.

The topology is Hausdorff (and more).

If we regard points on a tree as being "trivial" whenever $|I(x)| < \aleph_0$, then being trivial in the tree sense is the same as being trivial topologically (i.e. isolated).

Trees as Lindelöf spaces

Basic open covers of a tree T can be coded by functions f with domain T and $f(x) \in [I(x)]^{<\omega}$, namely

$$\mathcal{U}_f = \{\uparrow x \setminus \uparrow f(x) : x \in T\}.$$

The cover \mathcal{U}_f has a countable subcover if and only if $\mathcal{U}_{f \upharpoonright (T \upharpoonright \alpha)}$ covers T for some $\alpha < \omega_1$.

A point $x \in T$ is safe if for all y < x, $x \in \uparrow f(y)$. A safe point at level α is a witness to $\mathcal{U}_{f \uparrow (T \uparrow \alpha)}$ not covering T.

The set of safe points is a finitely branching subtree of T.

Theorem

An infinitely branching \aleph_1 -tree is Lindelöf if and only if it has the Lindelöf property with respect to the fine wedge topology.

(\diamondsuit) Special Lindelöf trees

An \aleph_1 -tree is *special* if it can be written as a countable union of antichains. Clearly, no Suslin tree is special. On the other hand, it is consistent to have a special Lindelöf tree.

Assume \diamondsuit holds. Use the \diamondsuit -sequence $\langle S_{\alpha} : \alpha < \omega_1 \rangle$ to construct an infinitely branching normal tree T by recursion on levels, ensuring that S_{α} never grows to be an uncountable finitely branching subtree of T. In parallel, construct an order preserving function $T \to \mathbb{Q}$. The resulting tree is special and non-Lindelöf.

At successor stages $\alpha = \beta + 1$, put \aleph_0 new nodes immediately above every node on level β .

At limit stages α , for each $x \in T \upharpoonright \alpha$ build a cofinal branch b_x through $T \upharpoonright \alpha$ such that $x \in b_x$ and, if $x \in S_\alpha$ and S_α is finitely branching, then $b_x \not\subseteq S_\alpha$. This is possible by the construction at successor stages. Put a new node above b_x on level α . This seals-off S_α .

Locating the class of Lindelöf trees

Branches can be regarded as 1-branching subtrees of a tree, so Lindelöf trees are Aronszajn.

Suppose T is an infinitely branching Suslin tree. Let S be an uncountable, finitely branching subtree of T. Then S is also Suslin, and forcing with S adds a cofinal branch through T, say b.

By general facts, b is generic for T over V.

Since T is infinitely branching and S is finitely branching, $T \setminus S$ is dense in T. So $b \cap T \setminus S \neq \emptyset$. But $b \subseteq S$, contradiction.

Theorem

Suslin ⊆ Lindelöf ⊊ Aronszajn,

A non-Lindelöf Aronszajn tree

Fix a coherent sequence of injections $e_{\alpha}: \alpha \to \omega$. Use a bijection $\omega_1 \times \omega \to \omega$ to obtain a coherent sequence $\langle f[e_{\alpha}]: \alpha < \omega_1 \rangle$. Use this sequence to build an Aronszajn subtree of $^{<\omega_1}2$, call it T.

Recursively grow new nodes at every point of T. The outer tree remains Aronszajn but it not Lindelöf.

Forcing tall subtrees

Let T be an infinitely branching \aleph_1 -tree. Let \mathbb{P}_T be the poset of finite partial functions with $\operatorname{dom}(p) \subseteq T$, $p(x) \in [I(x)]^{<\omega} \setminus \{\emptyset\}$ for every $x \in \operatorname{dom}(p)$ and, if $x, y \in \operatorname{dom}(p)$ and x < y, then $y \upharpoonright (\operatorname{ht}(x) + 1) \in p(x)$.

Intuitively, p is a promise that, for each $x \in \text{dom}(p)$, the set of immediate successors of x in the generic subtree is p(x).

Let $\dot{S} = \{ \text{dom}(p) : \exists p \in \dot{G}(x \in \text{dom}(p)) \}$, where \dot{G} is a \mathbb{P}_T -name for the generic filter.

Theorem

Let T be an infinitely branching normal Aronszajn tree. Then \mathbb{P}_T is ccc and $\Vdash_{\mathbb{P}_T}$ " \dot{S} is a finitely branching normal subtree of T". Also, T remains Aronszajn in the \mathbb{P}_T -extension.

The poset \mathbb{P}_T is merely ccc, (consistently) not Knaster, so why doesn't it add branches?

Let \mathbb{S}_T be Baumgartner's poset for specializing T with finite conditions.. Both \mathbb{P}_T and \mathbb{S}_T are absolute. Suppose G is \mathbb{P} -generic over V and T has a cofinal branch in V[G]. Then the same is true in V[G][H], where H is \mathbb{S}_T -generic over V[G]. But V[G][H] = V[H][G] and, in V[H], T is special, hence remains special in V[G][H], contradiction.

Theorem

If MA_{\aleph_1} -holds, then there are no Lindelöf trees.

Other ways of adding subtrees?

One can show that if a poset is either countably closed or strongly proper, then it cannot add a new uncountable finitely branching subtree. Both of these proofs use the topological characterization of Lindelöfness.