Sistemi Operativi 10 Dicembre 2003

1.	1. Scrivere lo pseudocodice di una soluzione basata su semafori ch	he realizzi	il seguente	meccanismo:	Tre	processi,
	P_1, P_2 and P_3 utilizzano due risorse R_1 and R_2 nel seguente mod	do:				

- P_1 : richiede prima R_1 e poi R_2 ;
- P_2 : richiede prima R_2 e poi R_1 ;
- P_3 : richiede R_2 ;

 R_1 esiste in un unico esemplare, mentre R_2 esiste in due esemplari.

Lo pseudocodice deve gestire opportunamente la sincronizzazione per l'accesso alle risorse.

[8 punti]

2. Si spieghi cosa si intende per prevenzione statica dei deadlock, e si indichino le possibili soluzioni.

[5 punti]

- 3. Si fornisca un esempio di situazione (sequenza di riferimenti a pagine di memoria) in cui gli algoritmi FIFO e quello ideale producono lo stesso numero di page fault. Si assuma che vengano associati 4 frame al processo in questione. Giustificare la scelta.

 [5 punti]
- 4. Descrivere la tecnica del buddy system per l'allocazione di memoria ai processi.

Come si colloca questa tecnica rispetto alla tecnica basata su partizioni fisse e su quella basata su partizioni variabili?

[6 punti]

5. Descrivere l'algoritmo di schedulazione della CPU utilizzato da UNIX, e si mostri un esempio di funzionamento. [6 punti]