

TIME LIMIT: 2 hours; no books, no notes, no calculators, etc

Part I: $(2\frac{1}{2} \text{ points each})$ True or False (circle your answer):

1. True False: There are only three different primes that are divisors of 900.

2. True False: $\sum_{k=1}^{100} 2k = 2 \sum_{k=1}^{100} k$.

3. True False: If $a_0 = 2$, and for $n \ge 1$, $a_n = 1 - a_{n-1}$, then $a_{100} = -1$.

4. True False: The set described recursively by (a) $1 \in S$, and (b) if $k \in S$, then $k + 2 \in S$ is the set of all odd positive integers.

5 does not include the positive integers.

- 5. True False: For all integers r, s, t, if r < s, then rt < st.
- 6. True (False) If there are integers r, s, t, u such that rs + tu = 7, then $gcd(r, t) \le 7$.
- 7. (True) False: For integers r, s, if r divides s and s divides r, then r = s.
- 8. True False: The Diophantine equation 14x + 21y = 323 has at least one solution.

9. True False: $\forall n \in \mathbf{Z}, -n|n$.

- 10 True False: 1551 is a prime.
- 11. **True** (False) The smallest positive integer that can be written as a linear combination of 23 and 19 is 3.
- 12. True False: If a, b, c are positive integers, and a divides b, then gcd(a, c) = gcd(b, c).

Part II: (5 points each) Multiple Choice (circle your answer):

1) The <u>sum</u> of the first 100 terms of the arithmetic sequence with initial term 3 and common difference 2 is

(a) 10200

7+5+7+9

- (d) 20400

2) According to the laws of exponents, $(2a)^b$ equals

(a) $2(a^b)$ X

- (e) None of the above.
- 3) A geometric sequence begins $a_0 = 3$, $a_1 = 6$. The value of a_4 is
 - (a) 48
 - (b) 58
 - (c) 68
 - (d) 78
 - (e) There is not enough information to determine a_4 .
- 4) A set S of strings over the alphabet $\Sigma = \{a, b, c\}$ is described recursively by (1) $abc \in S$, and (2) if $x \in S$, then $bcx \in S$. Circle all the true statements in the list below.
 - (a) Every string in S has exactly one a.
 - (b) Every string in S has b and c next to each other.
 - (c) Every string in S has the same number of b's and c's.
 - (d) Every string in S has odd length.
 - (e) The largest number of consecutive b's in the strings in S is two.

5) The number of positive integers that divide 1000 is
(a) 2
(b) 4
(c) 8
(d) 16
(e) 32
6) The fact that for all integers a, b , it is true that $\underline{a+b} = \underline{b+a}$ is called the
(a) Distributive Law
(b) Associative Law
(c) Commutative Law
(d) Inductive Law
(e) Identity Law
Not relevant

7) Which of the following are true about the divides relation: (all letters represent integers)

- (a) 4|12 = 3
- (b) 0|0
- (c) For all integers a, $a|a^2$
- (e) For all integers a, a|-a.

8) If a, b, s, t are integers, and as + bt = 6, then (circle all that are true in the list below):

- (a) gcd(a,b) could be 1 (b) gcd(a,b) could be 2 (c) gcd(a,b) could be 3 (d) gcd(a,b) could be 4

- (e) gcd(a, b) could be 5

Part III. (10 points each) Problems

Do any three of the following four problems. If you do all four, I'll count your best three.

1) <u>Use induction</u> to prove that $1+3+5+\cdots+(2n-1)=n^2$ for every integer $n\geq 1$.

2) A sequence of integers is defined recursively by the rules $h_1=2,\,h_2=4,$ and for $n\geq 3,\,h_n=h_{n-1}+h_{n-2}.$ Compute $h_1,h_2,h_3,h_4,h_5.$

$$h_1 = 2$$
 $h_2 = 4$
 $h_3 = (4) + 2 = 6$
 $h_4 = 6 + 4 = 10$
 $N_5 = 10 + 6 = 16$

3) Compute gcd(1446, 531), and write the gcd as a linear combination of 1446 and 531.

4) Determine all solutions to the Diophantine equation 7x + 16y = 4.

$$9 - 4(16,7) = 2$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$

$$-32$$