

STRUCTURAL METALLIC MATERIALS BY INFILTRATION

Jean-François Despois, Randoald Müller, Ali Miserez, Ludger Weber, Andreas Rossoll, <u>Andreas Mortensen</u>

> Swiss Federal Institute of Technology in Lausanne Institute of Materials Laboratory for Mechanical Metallurgy

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate rmation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 18 MAR 2004		2. REPORT TYPE N/A		3. DATES COVE	ERED		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER			
Structural Metallic	Materials By Infilt		5b. GRANT NUMBER				
					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER			
					5e. TASK NUMBER		
					5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Swiss Federal Institute of Technology in Lausanne Institute of Materials Laboratory for Mechanical Metallurgy					8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)			
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited					
13. SUPPLEMENTARY NO See also ADM0016	otes 72., The original do	cument contains col	lor images.				
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFICATION OF: 17. LIMITATIO				18. NUMBER	19a. NAME OF		
a. REPORT NATO/unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	OF PAGES 102	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Infiltration

The Infiltration Process

The Infiltration Process

General
Characteristics
for metals:
- high capillary
forces

Material	Temperature (°C)	Surface Tension (N/m)
Polypropylene (PP)	180	0.0208
Polyethylene (PE)	180	0.0265
Polyethylene oxide (PEO)	180	0.0307
Nylon 6.6	270	0.0303
PE I	220	0.0357
PA 12	-	0.039
Epoxy, unreacted	-	0.03 to 0.04
Ethanol	20	0.022
Water	20	0.073
SiO_2	1800	0.31
Na_2SiO_3	1088	0.30
Al_2O_3	2050	0.63
CaSiO ₃	1540	0.35
Al	700	0.87
Cu	1120	1.2
Ti	1670	1.53
Ag	970	0.92
Au	1070	1.13

The Infiltration Process

General
Characteristics
for metals:
- high capillary

- low viscosity

forces

The Infiltration Process: Spontaneous Infiltration

Place preform and metal in a furnace

Infiltration proceeds

Composite is solidified

The infiltrated composite

The Infiltration Process: Squeeze Casting

preheating and placement

Metal pouring

Ram movement initiation

Infiltration

Solidification

The infiltrated selectively reinforced cast composite component

The Infiltration Process: Pressure Infiltration

The infiltration Process

IN GENERAL

- Net-shape, rapid.
- · Produces defect-free material if well engineered...
- ...with considerable flexibility in the material choice if pressure is used to drive the metal.
- Hence, well suited for the production of model multiphase materials.

50% ceramic in 50% metal

A few good reasons to add ceramic to a metal or an alloy

A few good reasons to add ceramic to a metal or an alloy

- Increase wear and abrasion resistance;
- Increase the specific elastic modulus (E/ ρ) above 26 MJ·kg⁻¹;
- · Tailor certain physical properties: thermal conductivity, coefficient of thermal expansion, ...
- Increase the tensile strength (with ceramic fibers)

A few good reasons NOT to add ceramic to a metal or an alloy

- Lower ductility;
- · Lower toughness;

(...frequently with consequences on strength.)

The volume fraction ceramic V_f is therefore generally kept below 25-30% in structural particle reinforced metals.

Why a high volume fraction ceramic might be desirable

Why a high volume fraction ceramic might be desirable

 The incremental benefit increases with the fraction ceramic;

Young's modulus of Al/Al₂O_{3p}

According to Christensen's 3-phase self-consistent model (E = 70 GPa and v = 0.345 for Al, and E = 390 GPa and v = 0.22 for Al₂O₃)

Why a high volume fraction ceramic might be desirable

- The incremental benefit increases with the fraction ceramic;
- Particle clustering.

Influence of Particle Clustering:

...a somewhat extreme example, but a real one.

Gravity cast Al-356 / SiCp

Particle Reinforced Aluminium by Infiltration

Ceramic particles and a cast metal ingot are packed, in that order, into an alumina crucible

Three Matrices

- •99.99% pure Al
- · Al-2wt.% Cu (as-cast, T4 and T6)
- Al-4.5wt.% Cu (as-cast, T4 and T6)

Three Reinforcement Types

Angular Al_2O_3 Polygonal Al_2O_3 Angular B₄C

Infiltrated Particle Reinforced Aluminium

The Size Effect

Comparing Al_2O_3 with B_4C :
- $\triangle CTE$ is 1.3
times higher for B_4C ;
- the experimental slope is 1.25
times higher.

Illustrating the influence of particle type

1 - Particle fracture followed by void nucleation in the matrix at particle cracks

 Al_2O_3 (angular) - Al

2 - Matrix voiding at sites of high stress triaxiality

Measurement:

- · Young 's modulus evolution with strain
- Derived damage parameter: $D_E = 1 E/E_0$

Measuring the rate of damage accumulation

Link between Damage and Tensile Ductility

Fracture Toughness

- $\cdot J_R$ method for pure Al composites using precracked CT specimens (ASTM E-1737);
- Unloading compliance method used to monitor crack growth

 \mathcal{J}_{GT} corresponds to the onset of marked crack advance

(pure Al/25 μ m Al₂O₃ polyg. composites)

post-test fatigue crack advance

pre-crack

2 mm

Crack front marked by fatigue, specimen #2

Crack front marked by fatigue, specimen #3

Polygonal Al₂O₃ particles/pure Al: influence of particle size

B₄C particles/pure Al: influence of particle size

Equal size: influence of reinforcement nature and quality

Alloyed matrix composites were characterized in small-scale yielding using chevron-notched specimens (ASTM E-1304)

Consistency: *J*-integral test data for Al-Cu matrix composites are between 2 and 27% lower than chevron-notched test data.

Strength/Toughness Combination

Strength/Toughness Combination

Overall summary of data:

Strength/Toughness Combination

What makes these composites tough?

- A first very simple mechanism: $K \propto \mathcal{J}(G.E)$ and E is 2.5 times higher than for Al alloys.
- Still, corresponding G/(J) values near 10 kJ/m² are high.
- There is significant R-curve behaviour: these K values are for near-steady crack advance.

Particle fracture

Pure Al/ 30 µm angular Al₂O₃

Particle fracture

Pure Al/ 30 µm angular Al₂O₃

Matrix void growth

Pure Al/10 µm polygonal Al₂O₃

A 5

·Voids nucleate between particles

·Final void size scales with average particle size

Local fracture energy estimation

Local fracture energy estimation

Pure Al composites: 3-D fracture surface topography measurement

Local vs. total fracture energy

Pure Al matrix composites

Observation of crack tip plasticity using a photoelastic coating:

 $\epsilon_1 - \epsilon_2 \approx 0.2\%$:
pale yellow - orange fringes

Local vs. total fracture energy

In other words, the total fracture energy:

$$\mathcal{J} = 2\gamma_{pz} + W_{p} > 2\gamma_{pz}$$

- 2 γ_{pz} is the *local* « process zone » or « cohesive law » fracture energy;
- W_p is the energy dissipated in the surrounding macroscopic plastic zone

Tvergaard and Hutchinson (*JMPS* vol. 40 (1992) 1377) Cohesive Zone Model:

V. Tvergaard and J. W. Hutchinson

Fig. 1. Traction-separation relation for fracture process.

Tvergaard and Hutchinson (*JMPS* vol. 40 (1992) 1377):

 $\Gamma_{\rm ss}$: steady-state toughness

 Γ_0 : local fracture energy (2 γ_{pz})

 σ_{v} : composite yield strength

3: peak-stress of the cohesive law

N: strain-hardening coefficient

V. Tvergaard, Comput. Mechan. 20 (1997) 186

Fig. 7a,b. Meshes at two stages of deformation for $\sigma_y/E = 0.003$, n = 10, $H_0/B_0 = 0.25$ and $R_0/B_0 = 0.01$. a Initial mesh; b $\epsilon_1 = 0.522$ and $V/V_0 = 2.50 \cdot 10^5$

Fig. 8. Average true stress and void volume growth vs. average logarithmic strain, for $H_0/B_0 = 1$ and $R_0/B_0 = 0.01$. With remeshing

Metal sponge

Cold Isostatic Pressing (CIP) + sintering for $40 \mu m$ (32-45 μm) powder: 45 min. at $750^{\circ}C$.

Machining:

conducted prior to salt removal by dissolution on the (brittle) NaCl-Al composite;

Dissolution:

- in distilled water.
- below 50 μ m, degassed water with forminggas (H₂
- + N2) bubbling(to minimize corrosion problems)

Commercial NaCl powder, sieved to:

- $32-45 \mu m (40 \mu m)$;
- 63-90 μm (75 μm);
- >250 μ m (ave. 400 μ m).

Sieving $> 250 \mu m$

Sieving 32-45 µm

Replicated Foams

NaCl 400 μ m , V_f Al = 16 %

Replicated Foams

75 μ m, Vf Al = 16 % (fracture surface)

Replicated Foams

Mechanical Properties

Mechanical Properties

Compression; microcellular AA1199, 400 µm NaCl

Tension; microcellular AA1199, 400 µm NaCl

Evolution of E₀ with Vf_{AI}, 400 µm NaCl

[Acta Materialia, 49 (19) 3959-3969 (2001); Proc. MetFoam 2003]

Evolution of $\sigma_{2\%}$ with Vf_{AI}, 400 μ m NaCl

[Acta Materialia, 49 (19) 3959-3969 (2001); Proc. MetFoam 2003]

Size Effect

Size Effect

Sources of hardening at small cell sizes:

· Geometrically necessary dislocations when cooling after infiltration

$$CTE_{AI} = 23.6 \cdot 10^{-6} [K^{-1}]$$

 $CTE_{NaCI} = 44 \cdot 10^{-6} [K^{-1}]$

Oxidation during salt dissolution (hydroxide formation)

Damage

Al foam 16 % , made with NaCl 63-90 μm

Damage

Before necking, E decreases with e while R increases linearly with e.

This implies damage build-up during foam tensile deformation: (the modulus would otherwise increase),

taking the form of foam strut tensile deformation and failure

(since the resistance increases linearly with strain before the peak).

Damage

Visualisation by X-Ray Microtomography:

At ESRF, in collaboration with:

- · Ariane Marmottant, Luc Salvo, Rémy Dendiével (INPG Grenoble, France)
- Eric Maire (INSA Lyon, France)

Tensile test coupled with X-ray Microtomography

Salt: $400 \mu m$ Vf preform = 75 % Pinfiltration = 155 bars

Tensile test coupled with X-ray Microtomography

Salt: 400 μm

Vf preform = 75 %

Pinfiltration = 155 bars

Tensile test Stress axis 467 3

Tensile test 467_2

Tensile test 467 3

Damage as seen in the SEM

Influence of NaCl Sintering:

T sintering = 755 °C; V_f = 66%; particle size: 63-90 μ m

Influence of NaCl sintering

NaCl 63-90 μ m, no sintering Vf Al = 18 %

NaCl 63-90 μ m, sintered 24h@750°C \square \square Vf Al = 18 %

Precipitated powders

Commercial powders

Sieving 63 - 90 µm

Sieving > 250 µm

(a few μ m in diameter)

Influence of Infiltration Pressure (preform 75% dense)

Conclusion

Infiltration: definition, engineering advantages, usefulness in research;

High V_f ceramic particle reinforced metal: can be made relatively tough, strong and ductile.

Open-cell aluminium foams (sponges): exploration of processing/microstructure/property relations for this class of materials.

Acknowledgement

This research program is supported by the Swiss National Science Foundation, Projects No. 200020-100287 and 200020-100179