### Cross products and Translation

Xin Fu

Western University

xfu82@uwo.ca

# **Cross product**

$$\vec{u} \times \vec{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).$$

$$\vec{u} \times \vec{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).$$

**Theorem** The cross product  $\vec{u} \times \vec{v}$  is a vector in  $\mathbb{R}^3$  which is both orthogonal (or perpendicular) to  $\vec{u}$  and  $\vec{v}$ . Namely, we have  $\vec{u} \cdot (\vec{u} \times \vec{v}) = \vec{v} \cdot (\vec{u} \times \vec{v}) = 0$ .

$$\vec{u} \times \vec{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).$$

**Theorem** The cross product  $\vec{u} \times \vec{v}$  is a vector in  $\mathbb{R}^3$  which is both orthogonal (or perpendicular) to  $\vec{u}$  and  $\vec{v}$ . Namely, we have  $\vec{u} \cdot (\vec{u} \times \vec{v}) = \vec{v} \cdot (\vec{u} \times \vec{v}) = 0$ .

**Example** Find a nonzero vector that is both orthogonal to  $\vec{u} = (1, 2, 1)$  and  $\vec{v} = (2, 0, -3)$ .

$$\vec{u} \times \vec{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).$$

**Theorem** The cross product  $\vec{u} \times \vec{v}$  is a vector in  $\mathbb{R}^3$  which is both orthogonal (or perpendicular) to  $\vec{u}$  and  $\vec{v}$ . Namely, we have  $\vec{u} \cdot (\vec{u} \times \vec{v}) = \vec{v} \cdot (\vec{u} \times \vec{v}) = 0$ .

**Example** Find a nonzero vector that is both orthogonal to  $\vec{u} = (1, 2, 1)$  and  $\vec{v} = (2, 0, -3)$ .

$$\vec{u} \times \vec{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1)$$
  
=  $(2 \times (-3) - 1 \times 0, 1 \times 2 - 1 \times (-3), 1 \times 0 - 2 \times 2)$   
=  $(-6, 5, -4)$ .

#### For memorising

A  $(2 \times 2)$ -matrix is given by the following

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, where  $a, b, c, d$  are real numbers.

#### For memorising

A  $(2 \times 2)$ -matrix is given by the following

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, where  $a, b, c, d$  are real numbers.

The *determinant* of A is defined by letting

$$\det A = ad - bc.$$

#### For memorising

A  $(2 \times 2)$ -matrix is given by the following

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, where  $a, b, c, d$  are real numbers.

The *determinant* of A is defined by letting

$$\det A = ad - bc$$
.

By the notation of determinant, the cross product of  $\vec{u} \times \vec{v}$  is given by

$$\left(\det\begin{bmatrix} u_2 & u_3 \\ v_2 & v_3 \end{bmatrix}, \ -\det\begin{bmatrix} u_1 & u_3 \\ v_1 & v_3 \end{bmatrix}, \ \det\begin{bmatrix} u_1 & u_2 \\ v_1 & v_2 \end{bmatrix}\right)$$

where  $\begin{bmatrix} u_2 & u_3 \\ v_2 & v_3 \end{bmatrix}$ ,  $\begin{bmatrix} u_1 & u_3 \\ v_1 & v_3 \end{bmatrix}$  and  $\begin{bmatrix} u_1 & u_2 \\ v_1 & v_2 \end{bmatrix}$  are obtained by deleting the first, second and third columns of

$$\begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}.$$



**Theorem** Let  $\vec{u}, \vec{v}$  and  $\vec{w}$  be vectors in  $\mathbb{R}^3$ . Let c be a scalar. Then

$$\begin{split} \vec{u} \times \vec{v} &= -\vec{v} \times \vec{u} \\ \begin{cases} \vec{u} \times (\vec{v} + \vec{w}) &= \vec{u} \times \vec{v} + \vec{u} \times \vec{w} \\ (\vec{u} + \vec{v}) \times \vec{w} &= \vec{u} \times \vec{w} + \vec{u} \times \vec{w} \end{cases} \text{ (distributive law)} \\ c(\vec{u} \times \vec{v}) &= (c\vec{u}) \times \vec{v} = \vec{u} \times (c\vec{v}) \text{ (scalars factor out)} \\ \vec{u} \times \vec{0} &= \vec{0} \times \vec{u} = \vec{0} \\ \vec{u} \times \vec{v} &= \vec{0} \end{split}$$
$$\|\vec{u} \times \vec{v}\| = \|\vec{u}\| \, \|\vec{v}\| \, \sin\theta = \sqrt{\|\vec{u}\|^2 \, \|\vec{v}\|^2 - (\vec{u} \cdot \vec{v})^2} \end{split}$$

where  $\theta$  is the angle determined by  $\vec{u}$  and  $\vec{v}$ .

**Theorem** The area of the parallelogram determined by  $\vec{u}$  and  $\vec{v}$  is given by  $\|\vec{u} \times \vec{v}\|$ .



**Theorem** The area of the parallelogram determined by  $\vec{u}$  and  $\vec{v}$  is given by  $\|\vec{u} \times \vec{v}\|$ .



**Example** Consider the vectors  $\vec{u} = (1, 2, 3)$  and  $\vec{v} = (2, 1, 0)$ . Find the area of the parallelogram determined by these vectors.

**Theorem** The area of the triangle determined by  $\vec{u}$  and  $\vec{v}$  is given by  $\frac{1}{2} \|\vec{u} \times \vec{v}\|$ .



**Theorem** The area of the triangle determined by  $\vec{u}$  and  $\vec{v}$  is given by  $\frac{1}{2} || \vec{u} \times \vec{v} ||$ .



**Example** Find the area of the triangle OAB, where O is the origin, A is the point (2, -3, 1) and B is the point (4, 6, 2).

**Theorem** The area of the triangle determined by  $\vec{u}$  and  $\vec{v}$  is given by  $\frac{1}{2} || \vec{u} \times \vec{v} ||$ .



**Example** Find the area of the triangle OAB, where O is the origin, A is the point (2, -3, 1) and B is the point (4, 6, 2).

How about the area of the triangle O'AB, where O' is the point (1, 4, -2) and A, B are the same as above?

### **Translation**

# Directed line segment $\overrightarrow{PQ}$

For points P and Q in  $\mathbb{R}^2$  or  $\mathbb{R}^3$ , we denote the directed line segment from P to Q by  $\overrightarrow{PQ}$ .



### Directed line segment $\overrightarrow{PQ}$

For points P and Q in  $\mathbb{R}^2$  or  $\mathbb{R}^3$ , we denote the directed line segment from P to Q by  $\overrightarrow{PQ}$ .



**Definition** Two directed line segments  $\overrightarrow{PQ}$  and  $\overrightarrow{ST}$  are *equivalent* if they have the same direction and length.



**Theorem** Let  $\overrightarrow{PQ}$  be a directed line segment from P to Q, where P and Q are two distinct points in  $\mathbb{R}^2$  or  $\mathbb{R}^3$ . Then  $\overrightarrow{PQ}$  is equivalent to the vector  $\overrightarrow{u} - \overrightarrow{v}$ , where  $\overrightarrow{u} = \overrightarrow{OQ}$  and  $\overrightarrow{v} = \overrightarrow{OP}$  and O denotes the origin.

**Theorem** Let  $\overrightarrow{PQ}$  be a directed line segment from P to Q, where P and Q are two distinct points in  $\mathbb{R}^2$  or  $\mathbb{R}^3$ . Then  $\overrightarrow{PQ}$  is equivalent to the vector  $\overrightarrow{u} - \overrightarrow{v}$ , where  $\overrightarrow{u} = \overrightarrow{OQ}$  and  $\overrightarrow{v} = \overrightarrow{OP}$  and O denotes the origin.



**Theorem** Let  $\overrightarrow{PQ}$  be a directed line segment from P to Q, where P and Q are two distinct points in  $\mathbb{R}^2$  or  $\mathbb{R}^3$ . Then  $\overrightarrow{PQ}$  is equivalent to the vector  $\overrightarrow{u} - \overrightarrow{v}$ , where  $\overrightarrow{u} = \overrightarrow{OQ}$  and  $\overrightarrow{v} = \overrightarrow{OP}$  and O denotes the origin.



**Remark** The process of replacing  $\overrightarrow{PQ}$  by the vector  $\overrightarrow{u} - \overrightarrow{v}$  is called *translating* P to *the origin*.

**Definition** The process of replacing a directed line segment  $\overrightarrow{PQ}$  with the equivalent vector is called *translating*  $\overrightarrow{PQ}$  to the origin. Similarly, the process of replacing the vector  $\overrightarrow{v}$  with an equivalent directed line segment which starts at some point P is called translating  $\overrightarrow{v}$  to P.

**Definition** The process of replacing a directed line segment  $\overrightarrow{PQ}$  with the equivalent vector is called *translating*  $\overrightarrow{PQ}$  to the origin. Similarly, the process of replacing the vector  $\overrightarrow{v}$  with an equivalent directed line segment which starts at some point P is called translating  $\overrightarrow{v}$  to P.



<sup>\*</sup>Pic is from the online note.

#### Example

Find the area of the triangle O'AB, where O' is the point (1,4,-2), A is the point (2,-3,1) and B is the point (4,6,2).

**Definition** The parallelepiped determined by vectors  $\vec{u}$ ,  $\vec{v}$  and  $\vec{w}$  is the 6-faced solid whose faces are the parallelograms determined by  $\vec{u}$  and  $\vec{v}$ , by  $\vec{u}$  and  $\vec{w}$ , and by  $\vec{v}$  and  $\vec{w}$ .



**Theorem** The volume of the parallelepiped determined by the vectors  $\vec{u}$ ,  $\vec{v}$  and  $\vec{w}$  is given by

 $\text{Volume} = |(\vec{u} \times \vec{v}) \cdot \vec{w}|.$ 

**Theorem** The volume of the parallelepiped determined by the vectors  $\vec{u}$ ,  $\vec{v}$  and  $\vec{w}$  is given by

$$Volume = |(\vec{u} \times \vec{v}) \cdot \vec{w}|.$$

**Example** Find the volume of the parallelepiped determined by the directed line segments  $\overrightarrow{AB}$ ,  $\overrightarrow{AC}$  and  $\overrightarrow{AD}$  for the points A(1,0,1), B(2,1,1), C(2,2,1) and D(1,1,2).