- 33. The solid is the full cylinder of radius 1 with a height of 4 units
- 35. The solid is a cone opening down with spherical end, part of the solid unit sphere
- 37. —3
- 39. The limit does not exist.

Chapter 14

Section 14.1

- 1. When C is a curve in the plane and f is a surface defined over C, then $\int_C f(s) \, ds$ describes the area under the spatial curve that lies on f, over C.
- 3. The variable *s* denotes the arc-length parameter, which is generally difficult to use. The Key Idea allows one to parameterize a curve using another, ideally easier-to-use, parameter.
- 5. $12\sqrt{2}$
- 7. 1
- 9. $\frac{\sqrt{2}}{3} + \frac{1}{2}$
- 11. $10\pi^2$
- 13. Over the first subcurve of C, the line integral has a value of $2\sqrt{2}/3$; over the second subcurve, the line integral has a value of $\pi-2$. The total value of the line integral is thus $\pi+2\sqrt{2}/3-2$.
- 15. $\int_0^{\pi} t\sqrt{1+\cos^2 t} \, dt \approx 6.001$
- 17. $\int_{-1}^{1} (3t^3 + 2t + 5)\sqrt{9t^4 + 1} dt \approx 15.479$
- 19. 27
- 21. 5/2
- 23. $M \approx 0.237$; center of mass is approximately (0.173, 0.099, 0.065).

Section 14.2

- Answers will vary. Appropriate answers include velocities of moving particles (air, water, etc.); gravitational or electromagnetic forces.
- 3. Specific answers will vary, though should relate to the idea that the vector field is spinning clockwise at that point.
- 5. Correct answers should look similar to

7. Correct answers should look similar to

9.
$$\operatorname{div} \vec{F} = 1 + 2y$$

 $\operatorname{curl} \vec{F} = 0$

11.
$$\operatorname{div} \vec{F} = x \cos(xy) - y \sin(xy)$$

 $\operatorname{curl} \vec{F} = y \cos(xy) + x \sin(xy)$

13.
$$\operatorname{div} \vec{F} = 3$$

 $\operatorname{curl} \vec{F} = \langle -1, -1, -1 \rangle$

15.
$$\operatorname{div} \vec{F} = 1 + 2y$$

 $\operatorname{curl} \vec{F} = 0$

17.
$$\operatorname{div} \vec{F} = 2y - \sin z$$

 $\operatorname{curl} \vec{F} = \vec{0}$

Section 14.3

- 1. False. It is true for line integrals over scalar fields, though.
- 3 True
- 5. We can conclude that \vec{F} is conservative.
- 7. $\nabla f = \langle 3, 1 \rangle$
- 9. $\nabla f = \langle 1, 2y \rangle$
- 11. $\nabla f = \langle 2x, -2y \rangle$
- 13. $\nabla f = \langle e^{x-y} e^{x-y} \rangle$
- 15. $\nabla f = \langle y^x \ln y, xy^{x-1} \rangle$
- 17. Not conservative.
- 19. Not conservative.
- 21. Conservative. $f(x, y) = -4x^2 + 3xy + \frac{5y^2}{2} + C$
- 23. 5/3. (One parameterization for *C* is $\vec{r}(t) = \langle t, t^2 \rangle$ on $0 \le t \le 1$.)
- 25. 2/5. (One parameterization for *C* is $\vec{r}(t) = \langle t, t^3 \rangle$ on $-1 \le t \le 1$.)
- 27. 1.
- 29. 13/15 joules. (One parameterization for *C* is $\vec{r}(t) = \langle t, \sqrt{t} \rangle$ on $0 \le t \le 1$.)
- 31. 24 ft-lbs.
- 33. (a) $f(x, y) = x^2 + xy + y^2$
 - (b) curl $\vec{F} = 0$.
 - (c) 0.
 - (d) 0 (with A = (0,0) and B = (0,0), f(B) f(A) = 0.)
- 35. (a) $f(x,y) = x^2 + y^2 + z^2$
 - (b) $\operatorname{curl} \vec{F} = \vec{0}$.
 - (c) 0.
 - (d) 0 (with A = (1,0,0) and B = (1,0,0), f(B) f(A) = 250.)

Section 14.4

- 1. along, across
- 3. the curl of \vec{F} , or curl \vec{F}
- 5. $\operatorname{curl} \vec{F}$
- 7. 12
- 9. -2/3
- 11. 1/2
- 13. 4π
- 15. 0
- 17. -4π

- 19. The line integral $\oint_C \vec{F} \cdot d\vec{r}$, over the parabola, is 38/3; over the line, it is -10. The total line integral is thus 38/3 10 = 8/3. The double integral of curl $\vec{F} = 2$ over R also has value 8/3.
- 21. Three line integrals need to be computed to compute $\oint_{\mathcal{C}} \vec{F} \cdot d\vec{r}$. It does not matter which corner one starts from first, but be sure to proceed around the triangle in a counterclockwise fashion. From (0,0) to (2,0), the line integral has a value of 0. From (2,0) to (1,1) the integral has a value of 7/3. From (1,1) to (0,0) the line integral has a value of -1/3. Total value is 2. The double integral of curl \vec{F} over R also has value 2.
- 23. 3π
- 25. 256/15
- 27. 410π
- 29. Any choice of \vec{F} is appropriate as long as $\operatorname{curl} \vec{F} = 1$. The choices of $\vec{F} = \langle -y, 0 \rangle$ and $\langle 0, x \rangle$ each lead to reasonable integrands. The area of R is 4/3.
- 31. Any choice of \vec{F} is appropriate as long as $\operatorname{curl} \vec{F} = 1$. The choice of $\vec{F} = \langle -y/2, x/2 \rangle$ leads to a reasonable integrand after simplification. The area of R is $41\pi/10$.
- 33. Both the line integral and double integral have value of 0.
- 35. Two line integrals need to be computed to compute $\oint_C \vec{F} \cdot \vec{n} \, ds$. Along the parabola, the line integral has value 159/20. Along the line, the line integral has value 6. Together, the total value is 279/20.

The double integral of div \vec{F} over R also has value 279/20.

Section 14.5

- Answers will vary, though generally should meaningfully include terms like "two sided".
- 3. (a) $\vec{r}(u, v) = \langle u, v, 3u^2v \rangle$ on $-1 \le u \le 1, 0 \le v \le 2$.
 - (b) $\vec{r}(u,v) = \langle 3v\cos u + 1, 3v\sin u + 2, 3(3v\cos u + 1)^2(3v\sin u + 2)\rangle$, on $0 \le u \le 2\pi$, $0 \le v \le 1$.
 - (c) $\vec{r}(u, v) = \langle u, v(2 2u), 3u^2v(2 2u) \rangle$ on $0 \le u, v \le 1$.
 - (d) $\vec{r}(u,v)=\langle u,v(1-u^2),3u^2v(1-u^2)\rangle$ on $-1\leq u\leq 1$, $0\leq v\leq 1$.
- 5. $\vec{r}(u, v) = \langle 0, u, v \rangle$ with $0 \le u \le 2$, $0 \le v \le 1$.
- 7. $\vec{r}(u,v)=\langle 3\sin u\cos v, 2\sin u\sin v, 4\cos u\rangle$ with $0\leq u\leq \pi$, $0\leq v\leq 2\pi$.
- 9. Answers may vary.

For
$$z=\frac{1}{2}(3-x)$$
: $\vec{r}(u,v)=\langle u,v,\frac{1}{2}(3-u)\rangle$, with $1\leq u\leq 3$ and $0\leq v\leq 2$.

For x=1: $\vec{r}(u,v)=\langle 0,u,v\rangle$, with $0\leq u\leq 2$, $0\leq v\leq 1$ For y=0: $\vec{r}(u,v)=\langle u,0,v/2(3-u)\rangle$, with $1\leq u\leq 3$, $0\leq v\leq 1$

For y = 2: $\vec{r}(u,v) = \langle u,2,v/2(3-u) \rangle$, with 1 $\leq u \leq$ 3, 0 < v < 1

For z = 0: $\vec{r}(u, v) = \langle u, v, 0 \rangle$, with $1 \le u \le 3$, $0 \le v \le 2$

11. Answers may vary.

For $z=2y: \vec{r}(u,v)=\langle u,v(4-u^2),2v(4-u^2)\rangle$ with $-2\leq u\leq 2$ and $0\leq v\leq 1$. For $y=4-x^2:\vec{r}(u,v)=\langle u,4-u^2,2v(4-u^2)\rangle$ with $-2\leq u\leq 2$ and $0\leq v\leq 1$. For $z=0:\vec{r}(u,v)=\langle u,v(4-u^2),0\rangle$ with $-2\leq u\leq 2$ and $0\leq v\leq 1$.

13. Answers may vary.

For $x+y^2/9=1$: $\vec{r}(u,v)=\langle\cos u,3\sin u,v\rangle$ with $0\leq u\leq 2\pi$ and $1\leq v\leq 3$.

For z=1: $\vec{r}(u,v)=\langle v\cos u, 3v\sin u, 1\rangle$ with $0\leq u\leq 2\pi$ and $0\leq v\leq 1$.

For z=3: $\vec{r}(u,v)=\langle v\cos u, 3v\sin u, 3\rangle$ with $0\leq u\leq 2\pi$ and $0\leq v\leq 1$.

15. Answers may vary.

For z = 1 - x²: $\vec{r}(u,v)=\langle u,v,1-u^2\rangle$ with $-1\leq u\leq$ 1 and $-1\leq v\leq$ 2.

For y = -1: $\vec{r}(u,v) = \langle u, -1, v(1-u^2) \rangle$ with $-1 \le u \le 1$ and 0 < v < 1.

For y=2: $\vec{r}(u,v)=\langle u,2,v(1-u^2)\rangle$ with $-1\leq u\leq 1$ and $0\leq v\leq 1$.

For z = 0: $\vec{r}(u, v) = \langle u, v, 0 \rangle$ with $-1 \le u \le 1$ and $-1 \le v \le 2$.

- 17. $S = 2\sqrt{14}$.
- 19. $S = 4\sqrt{3}\pi$.
- 21. $\frac{\pi}{6} \left(17\sqrt{17} 1 \right)$
- 23. $\pi\sqrt{3}$
- 25. $\pi (2 \sqrt{2})$
- 27. $40\pi\sqrt{2}$
- 29. $\frac{3}{6}$
- 31. $S = \int_0^3 \int_0^{2\pi} \sqrt{v^2 + 4v^4} \, du \, dv = (37\sqrt{37} 1)\pi/6 \approx 117.319.$
- 33. $S = \int_0^1 \int_{-1}^1 \sqrt{(5u^2 2uv 5)^2 + u^4 + (1 u^2)^2} \, du \, dv \approx$

Section 14.6

- 1. curve; surface
- 3. outside
- 5. $\frac{\sqrt{3}}{24}$
- 7. 0
- 9. $240\sqrt{3}$

Section 14.7

- Answers will vary; in Section 14.4, the Divergence Theorem
 connects outward flux over a closed curve in the plane to the
 divergence of the vector field, whereas in this section the
 Divergence Theorem connects outward flux over a closed surface
 in space to the divergence of the vector field.
- 3. Answers will vary. Often the closed surface S is composed of several smooth surfaces. To measure total outward flux, this may require evaluating multiple double integrals. Each double integral requires the parameterization of a surface and the computation of the cross product of partial derivatives. One triple integral may require less work, especially as the divergence of a vector field is generally easy to compute.
- 5. Outward flux across the cylinder $x^2+y^2=1$ is 0; across the plane z=3 the outward flux is 3π ; across the plane z=-3 the outward flux is 3π .

Total outward flux: 6π .

 $\iint_{D} \operatorname{div} \vec{F} \, dV = \int_{0}^{2\pi} \int_{0}^{1} \int_{-3}^{3} r \, dz \, dr \, d\theta = 6\pi.$

7. Outward flux across the paraboloid is $112\pi/3$; across the disk the outward flux is 0.

Total outward flux: $112\pi/3$.

$$\iint_{D} \operatorname{div} \vec{F} \, dV = \int_{0}^{2\pi} \int_{0}^{2} \int_{0}^{4-r^{2}} (2z+2) r \, dz \, dr \, d\theta = 112\pi/3.$$

- 9 8
- 11. 64/3

Section 14.8

1. Curl.

- 3. Circulation on C: $\oint_C \vec{F} \cdot d\vec{r} = \pi$ $\iint_S \left(\operatorname{curl} \vec{F} \right) \cdot \vec{n} \, dS = \pi.$
- 5. Circulation on *C*: The flow along the line from (0,0,2) to (4,0,0) is 0; from (4,0,0) to (0,3,0) it is -6, and from (0,3,0) to (0,0,2) it is 6. The total circulation is 0 + (-6) + 6 = 0. $\iint_{\mathcal{S}} \left(\text{curl } \vec{F} \right) \cdot \vec{n} \, dS = \iint_{\mathcal{S}} 0 \, dS = 0.$
- 7. 5/3
- 9. 23π
- 11. (a) curl $\vec{F} = 1$.
 - (b) $\operatorname{curl} \vec{F} \cdot \vec{n} = 1$, where \vec{n} is a unit vector normal to \mathcal{S} .