

Overview

- Ordering
- Aliansing
- Aggregation
- Grouping
- Having
- Lab I Introduction

Example Database

Course(cid, Course_name, Course_code, Credit_hours)

cid	course_name	course_code	credits
1	Intro to Computer Science	CS1310	4
2	Data Structures	CS3320	4
3	Discrete Mathematics	MATH2410	3
4	Database	CS3380	3

Teacher(tid, full_name, age, nationality)

tid	full_name	age	nationality
11	John Smith	42	America
22	Jens Jonathon	31	Sweden
33	Stefan Miller	39	Sweden
44	Kayle Persson	33	UK

Teaches(tid, cid, hours)

tid	cid	hours
11	1	80
11	2	100
22	4	50
33	4	50
44	3	100

Ordering

- Output control
- Ordering the output tuples by the values in one for more columns
- Syntax
 - ORDER BY <column> [ASC/DESC]

tid	full_name	age	nationality
11	John Smith	42	America
22	Jens Jonathon	31	Sweden
33	Stefan Miller	39	Sweden
44	Kayle Persson	33	UK

```
SELECT tid, full_name, age
FROM Teacher
WHERE nationality='SWEDEN'
ORDER BY age;
```

Ordering

- Output control
- Ordering the output tuples by the values in one for more columns
- Syntax
 - ORDER BY <column> [ASC/DESC]

tid	full_name	age	nationality
11	John Smith	42	America
22	Jens Jonathon	31	Sweden
33	Stefan Miller	39	Sweden
44	Kayle Persson	33	UK

```
SELECT tid, full_name, age
FROM Teacher
WHERE nationality='SWEDEN'
ORDER BY age;
```

tid	full_name	age	
22	Jens Jonathon	31	
33	Stefan Miller	39	

Ordering

- Output control
- Ordering the output tuples by the values in one for more columns
- Syntax
 - ORDER BY <column> [ASC/DESC]

tid	full_name	age	nationality
11	John Smith	42	America
22	Jens Jonathon	31	Sweden
33	Stefan Miller	39	Sweden
44	Kayle Persson	33	UK

```
SELECT tid, full_name, age
FROM Teacher
WHERE nationality='SWEDEN'
ORDER BY age DESC;
```

tid	full_name	age
33	Stefan Miller	39
22	Jens Jonathon	31

What is the output with 'ORDER BY I DESC'?

Columns in SELECT and Tables in FROM can be renamed

Columns in SELECT and Tables in FROM can be renamed

cid	course_name	course_code	credits
1	Intro to Computer Science	CS1310	4
2	Data Structure	CS3320	4
3	Discrete Mathematics	MATH2410	3
4	Database	CS1310	3

FROM Course AS C

Columns in SELECT and Tables in FROM can be renamed

cid	course_name	course_code	credits
1	Intro to Computer Science	CS1310	4
2	Data Structure	CS3320	4
3	Discrete Mathematics	MATH2410	3
4	Database	CS1310	3

SELECT C.course_name AS alias_name FROM Course AS C

alias_name
Intro to Computer Science
Data Structure
Discrete Mathematics
Database

Columns in SELECT and Tables in FROM can be renamed

tid	full_name	age	nationality
11	John Smith	42	America
22	Jens Jonathon	31	Sweden
33	Stefan Miller	39	Sweden
44	Dona Kahill	33	UK

```
SELECT nationality AS COUNTRY
FROM Teacher
WHERE nationality='SWEDEN';
```

Columns in SELECT and Tables in FROM can be renamed

- Aggregate function are built-in and can be applied in the SELECT output list
- COUNT(<column>) nuber of values (or rows) from for column
- AVG(<column>) compute the mean of all values in the column
- SUM(<column>) acquire the sum of all values in the column
- MIN(<column>) acquire the mininum value from the column
- MAX(<column>) acquire the maximum value from the column

• Aggregate function are almost always used in the output from SELECT statement

• Acquire numbers of teachers from Sweden:

- Aggregate function are almost always used in the output from SELECT statement
- Acquire numbers of teachers from Sweden:

SELECT COUNT(nationality) AS cnt FROM Teacher WHERE nationality='SWEDEN';

tid	full_name	age	nationality
11	John Smith	42	America
22	Jens Jonathon	31	Sweden
33	Stefan Miller	39	Sweden
44	Dona Kahill	33	UK

```
SELECT COUNT(nationality) AS cnt
FROM Teacher
WHERE nationality='SWEDEN';
```


- Aggregate function are almost always used in the output from SELECT statement
- Acquire numbers of teachers from Sweden:

tid	full_name	age	nationality
11	John Smith	42	America
22	Jens Jonathon	31	Sweden
33	Stefan Miller	39	Sweden
44	Dona Kahill	33	UK

```
SELECT COUNT(nationality) AS cnt
FROM Teacher
WHERE nationality='SWEDEN';
```

cnt

- Aggregate function are almost always used in the output from SELECT statement
- Acquire numbers of teachers from Sweden:

• Aggregate function are almost always used in the output from SELECT statement

• Acquire the average age of teachers from Sweden:

SELECT AVG(age)
FROM Teacher
WHERE nationality='SWEDEN';

tid	full_name	age	nationality
11	John Smith	42	America
22	Jens Jonathon	31	Sweden
33	Stefan Miller	39	Sweden
44	Dona Kahill	33	UK

```
SELECT AVG(age)
FROM Teacher
WHERE nationality='SWEDEN';
```

AVG(age) 35.0000

Aggregation with multiple columns

• Acquire the number of teachers and their average age that come from Sweden

Aggregation with multiple columns

• Acquire the number of teachers and their average age that come from Sweden

SELECT COUNT(tid), VG(age)
FROM Teacher
WHERE nationality='SWEDEN';

tid	full_name	age	nationality
11	John Smith	42	America
22	Jens Jonathon	31	Sweden
33	Stefan Miller	39	Sweden
44	Dona Kahill	33	UK

```
SELECT COUNT(tid), AVG(age)
FROM Teacher
WHERE nationality='SWEDEN';
```

COUNT(tid)	AVG(age)
2	35.0000

- DISTINCT
 - Acquire distinctive values from column(s)
 - Operation set
- Acquire the nationalities of the teachers in the table (no repeat)

- DISTINCT
 - Acquire distinctive values from column(s)
 - Operation set
- Acquire the nationalities of the teachers in the table (no repeat)

SELECT DISTINCT(nationality)
FROM Teacher

- DISTINCT
 - Acquire distinctive values from column(s)
 - Operation set
- COUNT, SUM, AVG support DISTINCT
 - count numbers of the unique nationalities of all teachers in the table

- DISTINCT
 - Acquire distinctive values from column(s)
 - Operation set
- COUNT, SUM, AVG support DISTINCT
 - count numbers of the unique nationalities of all teachers in the table

SELECT COUNT(DISTINCT(nationality))
FROM Teacher

COUNT(DISTINCT(nationality))
3

- Note that output of other columns excluded from the aggregation is undefined
- Compute the average age of teachers in each course

- Note that output of other columns excluded from the aggregation is undefined
- Compute the average age of teachers in each course
- SELECT AVG(t.age), tt.cid
 FROM Teacher AS t, Teaches AS tt
 WHERE t.tid=tt.tid

- Note that output of other columns excluded from the aggregation is undefined
- Compute the average age of teachers in each course

SELECT AVG(t.age), tt.cid FROM Teacher AS t, Teaches AS tt WHERE t.tid=tt.tid

- Note that output of other columns excluded from the aggregation is undefined
- Compute the average age of teachers in each course
- Requires group by

SELECT AVG(t.age), tt.cid FROM Teacher AS t, Teaches AS tt WHERE t.tid=tt.tid

GROUP BY tt.cid

AVG(t.age)	cid	
42.0000	1	
42.0000	2	
32.0000	3	
39.0000	4	

Teacher

tid	full_name	age	nationality
11	John Smith	42	America
22	Jens Jonathon	31	Sweden
33	Stefan Miller	39	Sweden
44	Dona Kahill	33	UK

Teaches

tid	cid	hours
11	1	50
11	2	100
22	3	80
33	4	80
44	3	100

- Note that output of other columns excluded from the aggregation is undefined
- Compute the average age of teachers in each course
- Requires group by

SELECT AVG(t.age), tt.cid, cc.course_name
FROM Teacher AS t, Teaches AS tt, Course AS cc
WHERE t.tid=tt.tid AND tt.cid=cc.cid
GROUP BY tt.cid

AVG(t.age)	cid	course_name
42.0000	1	Intro to Computer Science
42.0000	2	Data Structure
32.0000	3	Discrete Mathematics
39.0000	4	Database

Course

cid	course_name	course_code	credits	
1	Intro to Computer Science	CS1310	4	
2	Data Structure	CS3320	4	
3	Discrete Mathematics	MATH2410	3	
4	Database	CS1310	3	
-			-	

Teacher

id	full_name	age	nationality
1	John Smith	42	America
22	Jens Jonathon	31	Sweden
33	Stefan Miller	39	Sweden
14	Dona Kahill	33	UK
	1 22 33	John Smith Jens Jonathon Stefan Miller	John Smith 42 Jens Jonathon 31 Stefan Miller 39

Teaches

tid	cid	hours
11	1	50
11	2	100
22	3	80
33	4	80
44	3	100

- Note that output of other columns excluded from the aggregation is undefined
- Compute the average age of teachers in each course
- Non-aggregated values in SELECT output clause must appear in GROUP BY clused

SELECT AVG(t.age), tt.cid, t.full_name FROM Teacher AS t, Teaches AS tt WHERE t.tid=tt.tid GROUP BY tt.cid

- Note that output of other columns excluded from the aggregation is undefined
- Compute the average age of teachers in each course
- Non-aggregated values in SELECT output clause must appear in GROUP BY clused

SELECT AVG(t.age), tt.cid, t.full_name FROM Teacher AS t, Teaches AS tt WHERE t.tid=tt.tid GROUP BY tt.cid, t.full_name;

AVG(t.age)	cid	full_name
42.0000	1	John Smith
42.0000	2	John Smith
31.0000	3	Jens Jonathon
39.0000	4	Stefan Miller
33.0000	3	Dona Kahill

- Note that output of other columns excluded from the aggregation is undefined
- Compute the average age of teachers in each course
- What if we would like to acquire courses taught by young teachers?

AVG(t.age)	cid	course_name
42.0000	1	Intro to Computer Science
42.0000	2	Data Structure
32.0000	3	Discrete Mathematics
39.0000	4	Database

- Note that output of other columns excluded from the aggregation is undefined
- Compute the average age of teachers in each course
- What if we would like to acquire courses taught by young teachers?

SELECT AVG(t.age) AS avg_age, tt.cid, cc.course_name FROM Teacher AS t, Teaches AS tt, Course AS cc WHERE t.tid=tt.tid AND tt.cid=cc.cid AND avg_age < 35 GROUP BY tt.cid;

			-
avg_age	cid	course_name	
42.0000	1	Intro to Computer Science	
42.0000	2	Data Structure	
32.0000	3	Discrete Mathematics	
39.0000	4	Database	

HAVING

- Filter based on aggregated results
- Consider it a WHERE clause for GROUP BY

SELECT AVG(t.age) AS avg_age, tt.cid, cc.course_name FROM Teacher AS t, Teaches AS tt, Course AS cc WHERE t.tid=tt.tid AND tt.cid=cc.cid GROUP BY tt.cid HAVING avg_age < 35;

avg_age	cid	course_name
32.0000	3	Discrete Mathematics

42.0000 1 Intro to Computer Science 42.0000 2 Data Structure	
42.0000 2 Data Structure	е
32.0000 3 Discrete Mathematics	
39.0000 4 Database	

Lab I Introduction

- Objective & learning outcome
 - Learn how to use DDL and DML to create tables, manipulate the content in the table and writting queries
 - Get familiar with basic SQL statement

Content

- Create a relational database with multiple tables
- writting queries given a question/description
 - Practising basic SQL statement
- Propose queries
- Get familiar with a real world database imdb

Lab I Introduction

- Part I create and work with a database example
 - Create a database
 - Practise SQL statements
- Part 2 working with an existing database
 - Create databases with the given script
 - Practise SQL statements
- Part 3 exploring a real-world dataset
 - Exploring a dataset with queries

Lab 1.1 Create and working with a database example

Student

<u>sid</u>	full_name	major	age	GPA
cl	Alice	CS	21	4.0
p2	Albert	PHY	22	3.9
e3	Tim	EE	20	3.9
m4	Kayle	MATH	19	3.8
р5	Yasuo	PHY	19	3.7

Course

<u>cid</u>	course_name	course_code	credits
11	Linear algebra	MATH105	5
22	Algorithms	CS101	5
33	Databases	DS001	4.5
44	Physics I	PHY001	6

Enrolled

<u>sid</u>	<u>cid</u>	grade
cl	П	Α
cl	33	A
p2	44	Α
p5	44	В
m4	11	Α
p2	11	В
m4	22	В
p5	33	С
cl	22	Α

Note that sid and cid in Encolled are forign keys Referring to Student(sid) and Course(cid)

Lab I.I Tasks

- Using DDL and DML to create a database
 - Write SQL code
 - Test your script and verify the output databse
 - Save and name your script as "create_db_sqg.sql"
- Queries
 - Select all students above the age of 20
 - Who is the oldest student?
 - Count the number of students with age below 20
 - How many types of majors were these students admitted to?
 - What is the average GPA of students with age above 20?
 - What is the average GPA of students studying the Physics major?
 - What is the average age of students who took Linear algebra courses?
 - How many courses has Alice registered for?
 - How many credits has Alice registered?
 - How many credits have students with age below 20 registered to?
- Propose 2 or more queries of practical usage

Lab 1.2 Tasks

- Download "example-create-databases.sql" from blackboard
 - Execute the script and take a look at the created databases
- Queries (see next slide)
 - sql_Inventory
 - Products
 - sql_HR
 - Employees and offices
 - sql_Invoicing
 - Clients, invoices, payment_methods, and payments
 - sql_store
 - Customers, products, orders, ...
- For each database
 - propose 2 or more queries of practical usage

Lab 1.2 Queries

- sql_inventory
 - What is the most valuable asset in the inventory?
 - How much does the entire inventory worth?
- sql_hr
 - Where is the largest office (in terms of numbers of employees) located?
 - Who sits alone?
- sql_invoicing
 - What is the most common payment method?
 - Which client seems to be the most important one? Motivate your approach and answer.
- sql_store
 - How much do order 2 worth?
 - Which customer has their order delivered?

Lab I.3 Tasks

- Tool
 - SQLite3 make sure you have access to it
 - https://www.sqlite.org/download.html
- Movie database
 - Download the zip file of the database from the blackboard
- Queries
 - How many movies have the highest rating?
 - What are the most common genres in this database?
 - Which movie is the longest?
- Propose 2 or more queries of your interest