Optimization Technique LAB

ASSIGNMENT 4(Computation of initial simplex table)

Consider the following linear programming, which can be solved by SIMPLEX method:

Conditions are: All the constraints should be \leq type. All $b_i \geq 0, i = 1, 2, ..., m$. All $x_i \geq 0, j = 1, 2, ..., n$. The objective function should be maximization type.

The standard form is:

Notation:

- $X_j=(p_{1j},p_{2j},...,p_{mj})^T$ is the j^{th} column of this system. For all $i=1,2,...,m,\ p_{ij}=a_{ij}$ if $j\leq n,\ p_{ij}=1$ if j>n,j=n+i and $p_{ij}=0$ if $j>n,j\neq n+i$
- $b = (b_1, b_2, ..., b_m)^T$ column vector.
- Basis B. This is a row vector of basic variables. In this standard form it is $(x_{n+1}, x_{n+2}, ..., x_{n+m})$. The basis will change in every iteration of the simplex table, which will be used later.

- $X_B = (....)^T$ is a column vector, whose components are the value of basic variables, which you will get after substituting nonbasic variables as zero in every iteration. In the standard form, $X_B = (b_1, b_2, ..., b_m)$. This will change in other iterations later.
- NB is the vector of nonbasic variables. This will change in other iterations. In the standard form $NB = (x_1, x_2, ..., x_n)$. The value of every nonbasic variable is zero.
- $C = (C_1, C_2, ..., C_n, C_{n+1}, C_{n+2}, ..., C_{n+m})$, is a row for coefficients of basic and non-basic variables in the objective function.
- C_B is the column vector, whose components are the value of c_j corresponding to basic variable x_j , i.e, $x_j \in B$ and C_{NB} is the vector of the value of c_j corresponding to non-basic variable x_j i.e $x_j \in NB$.

• $\Delta_i = z_i - c_i = C_B^T X_i - c_i, j = 1, 2,, n + n$	•	$\Delta_i =$	$z_i - c_i =$	$C_{P}^{T}X_{i}$ -	$c_i, j =$	1, 2,	n+r
--	---	--------------	---------------	--------------------	------------	-------	-----

		C_1	C_2		C_n	C_{n+1}	C_{n+2}		C_{n+m}	
X_B	C_B	X_1	X_2		X_n	X_{n+1}	X_{n+2}		X_{n+m}	b
x_{n+1}	c_{n+1}	a_{11}	a_{12}		a_{1n}	1	0		0	b_1
x_{n+2}	c_{n+2}	a_{21}	a_{22}		a_{2n}	0	1		0	b_2
:	•	•	:	:	:	:	:	:	•	:
x_{n+m}	c_{n+m}	a_{m1}	a_{m2}		a_{mn}	0	0		1	b_n
$X_B^T C_B$		Δ_1	Δ_2		Δ_n	Δ_{n+1}	Δ_{n+2}		Δ_{n+m}	

Table 1: Simplex Table

$$\Delta_i = C_B^T X_i - C_i$$

Initial SIMPLEX table: ASSIGNMENT:

- Q 1. Develop code in C/C++ to write the given LPP, which is suitable for the simplex method, to standard form and print the initial table, b, B, C_B , X_B , Δ_i for every j = 1, 2, ..., n + m.
- Q2. Consider the following LPP and verify your code for the following output: (a)b, B, C_B , X_B , Δ_i for every j
- (b)Initial Table

Minimize
$$3x_1 + 2x_2 - 4x_3 - x_4$$

subject to $3x_1 - x_2 + 2x_3 - 5x_4 \le 10$
 $3x_1 + 2x_2 - x_3 + x_4 \le 4$
 $3x_1 + 2x_2 - 3x_3 + 5x_4 \le 5$
 $x_1, x_2, x_3, x_4 \ge 0$

Standard form;

$$\begin{array}{ll} Maximize & -3x_1-2x_2--4x_3+x_4\\ \text{subject to} \\ 3x_1-x_2+2x_3-5x_4+x_5 & = 10\\ 3x_1+2x_2-x_3+x_4+x_6=4\\ 3x_1+2x_2-3x_3+5x_4 & x_7\leq 5\\ x_1,x_2,x_3,x_4,x_5,x_6,x_7\geq 0 \end{array}$$

$$b = (10, 4, 5)^T$$

$$B = (x_5, x_6, x_7)^T$$

$$X_B = (10, 4, 5)^T$$

$$C_B = (0, 0, 0)^T$$

$$\Delta_1 = 3, \Delta_2 = 2, \Delta_3 = -4, \Delta_4 = -1, \Delta_5 = 0, \Delta_6 = 0, \Delta_7 = 0$$

		-3	-2	4	1	0	0	0	
X_B	C_B	X_1	X_2	X_3	X_4	X_5	X_6	X_7	b
x_5	0	3	-1	_		1	0	0	10
x_6	0	3	2	-1	-		1	0	4
x_7	0	3	2	-3	5	0	0	1	5
$X_B^T C_B = 0$		3	2	-4	-1	0	0	0	

Table 2: Simplex Table