Algorithmic Competition, with Humans

Matthew Leisten¹

SEA Meetings Nov 2021

¹Federal Trade Commission. This work represents my views alone and not those of the Commission, its Commissioners, or the United States Government.

Algorithmic (automated) pricing

For many (most?) firms, pricing partially automated

Does this increase markups above competitive levels?

► Yes, no, maybe, depending on model

Algorithmic (automated) pricing

For many (most?) firms, pricing partially automated

Does this increase markups above competitive levels?

► Yes, no, maybe, depending on model

Algorithms may:

- ▶ Provide *commitment* to irrational pricing off-path
- ▶ Improve *prediction* so pricing on-path is ex post rational

This paper

Study algorithmic competition with managerial override

- 1. Firms design algorithms, mapping rivals' price to own
- 2. (or 2+) Algorithms run or firms choose prices manually

Choosing manually is costly but useful if algorithms are "failing"

This paper

Study algorithmic competition with managerial override

- 1. Firms design algorithms, mapping rivals' price to own
- 2. (or 2+) Algorithms run *or* firms choose prices manually

Choosing manually is costly but useful if algorithms are "failing"

I show this is:

(Tractable): analytic solution exists

(Instructive): highlights roles of prediction and commitment

(Falsifiable): significantly refines equilibrium predictions

(Sufficient): explains patterns in real pricing data...

(Necessary*): ...in ways existing models cannot

The game, in general

Two-stages, symmetric differentiated duopoly, demand $q(p_i, p_{-i})$

Stage 1: Firms simultaneously set algorithms σ_i

Stage 2: Firms simultaneously defer to algorithm or choose price

The game, in general

Two-stages, symmetric differentiated duopoly, demand $q(p_i, p_{-i})$

Stage 1: Firms simultaneously set algorithms σ_i

▶ Linear function from rival's price p_{-i} to own price p_i :

$$p_i = \sigma_i(p_{-i}) = x_i + z_i p_{-i}$$

Stage 2: Firms simultaneously defer to algorithm or choose price

The game, in general

Two-stages, symmetric differentiated duopoly, demand $q(p_i, p_{-i})$

Stage 1: Firms simultaneously set algorithms σ_i

▶ Linear function from rival's price p_{-i} to own price p_i :

$$p_i = \sigma_i(p_{-i}) = x_i + z_i p_{-i}$$

Stage 2: Firms simultaneously defer to algorithm *or* choose price

- Action set is $\{\underbrace{\mathbb{R}^+}_{\text{Override, Defer to set a price algorithm}}, \underbrace{\sigma}_{\text{algorithm}}\}$
- One-shot pricing
- Overriding may come at cost c; no marginal costs

Pricing stage details

Algorithms in place, $\sigma=(\sigma_1,\sigma_2)$ define subgame.

If rival chooses a price p_{-i} :

$$a_i = \operatorname{arg\ max}_{a \in \{\mathbb{R}^+, \sigma\}} \ p_i q_i(p_i, p_{-i}) - c * 1[a_i \in \mathbb{R}^+]$$

Pricing stage details

Algorithms in place, $\sigma = (\sigma_1, \sigma_2)$ define subgame.

If rival chooses a price p_{-i} :

$$a_i = \operatorname{arg\ max}_{a \in \{\mathbb{R}^+, \sigma\}} p_i q_i(p_i, p_{-i}) - c * 1[a_i \in \mathbb{R}^+]$$

If rival chooses its algorithm σ_{-i} :

$$a_i = \operatorname{arg\ max}_{a \in \{\mathbb{R}^+, \sigma\}} p_i q_i(p_i, \mathbf{x}_{-i} + \mathbf{z}_{-i}p_i) - c * 1[a_i \in \mathbb{R}^+]$$

In Pictures Pricing Stage Lemma

Informal summary of theoretical results

If $c = \infty$, any price between Bertrand and collusive is possible.

Details

Informal summary of theoretical results

If $c = \infty$, any price between Bertrand and collusive is possible.

If c = 0, \exists equilibrium in which:

- ► Algorithms *match* changes in rival price but *undercut* levels
- ▶ Only one firm, chosen at random, overrides
- ► Undercutting designed so:

$$\sigma_i(p^{BR}(\sigma_i)) = p^{BR}(p^{BR}(\sigma_i))$$

Prices far from competitive in general

Informal summary of theoretical results

If $c = \infty$, any price between Bertrand and collusive is possible.

If c = 0, \exists equilibrium in which:

- ► Algorithms *match* changes in rival price but *undercut* levels
- ▶ Only one firm, chosen at random, overrides
- ► Undercutting designed so:

$$\sigma_i(p^{BR}(\sigma_i)) = p^{BR}(p^{BR}(\sigma_i))$$

Prices far from competitive in general

"Collusion by algorithm" sometimes also an equilibrium

Commitment vs. Prediction

Suppose state of nature θ drawn between algorithm-setting and pricing stages:

$$q_i = q(p_i, p_{-i}, \theta)$$

or

$$\pi_i = q(p_i, p_{-i})(p - \theta)$$

If c=0 and algorithms cannot condition on θ , then prices generically Bertrand.

Prediction vs. commitment, a synthesis

	Full Commitment No Commitm	
Full Prediction	"Anything goes"	One-sided override
	7 my thing goes	or collusion
No Prediction	"Anything goes"	Generically
		Bertrand

In sustaining supracompetitive prices, prediction and commitment are *substitutes*: one or the other is good enough

Most settings w/ algorithmic pricing involve repeated interaction

Most settings w/ algorithmic pricing involve repeated interaction

Adjusted version:

0: firms choose undercut x_i

Most settings w/ algorithmic pricing involve repeated interaction

Adjusted version:

0: firms choose undercut x_i

t: take draw of marginal cost θ_t . Then:

▶ If both play algorithm, $p_{it} = p_{-i,t-1} - x_i$

Most settings w/ algorithmic pricing involve repeated interaction

Adjusted version:

0: firms choose undercut x_i

t: take draw of marginal cost θ_t . Then:

- ▶ If both play algorithm, $p_{it} = p_{-i,t-1} x_i$
- ► If *i* overrides, choose best response to rival's algorithm:

$$p_{it} = \arg \max_{p} \pi(p, p - x_{-i}, \theta_t)$$

Most settings w/ algorithmic pricing involve repeated interaction

Adjusted version:

0: firms choose undercut x_i

t: take draw of marginal cost θ_t . Then:

- ▶ If both play algorithm, $p_{it} = p_{-i,t-1} x_i$
- ightharpoonup If *i* overrides, choose best response to rival's algorithm:

$$p_{it} = \arg \max_{p} \pi(p, p - x_{-i}, \theta_t)$$

Override if worth cost c in period t (myopic)

Most settings w/ algorithmic pricing involve repeated interaction

Adjusted version:

0: firms choose undercut x_i

t: take draw of marginal cost θ_t . Then:

- ▶ If both play algorithm, $p_{it} = p_{-i,t-1} x_i$
- ▶ If *i* overrides, choose best response to rival's algorithm:

$$p_{it} = arg \max_{p} \pi(p, p - x_{-i}, \theta_t)$$

- Override if worth cost c in period t (myopic)
- ► Also consider override decision if rival overrides

Most settings w/ algorithmic pricing involve repeated interaction

Adjusted version:

0: firms choose undercut x_i

t: take draw of marginal cost θ_t . Then:

- ▶ If both play algorithm, $p_{it} = p_{-i,t-1} x_i$
- ► If *i* overrides, choose best response to rival's algorithm:

$$p_{it} = \arg \max_{p} \pi(p, p - x_{-i}, \theta_t)$$

- Override if worth cost c in period t (myopic)
- ► Also consider override decision if rival overrides
- ► If both override, prices are Bertrand

Most settings w/ algorithmic pricing involve repeated interaction

Adjusted version:

0: firms choose undercut x_i

t: take draw of marginal cost θ_t . Then:

- ▶ If both play algorithm, $p_{it} = p_{-i,t-1} x_i$
- ▶ If *i* overrides, choose best response to rival's algorithm:

$$p_{it} = \arg \max_{p} \pi(p, p - x_{-i}, \theta_t)$$

- Override if worth cost c in period t (myopic)
- ► Also consider override decision if rival overrides
- ► If both override, prices are Bertrand

Simulation Details

Edgeworth Cycles

Bertrand Reversion

From theory to data

Key model predictions:

- ► Existence of Edgeworth cycles (Here
- Price decreases should seem automated
 - Decreases should be uniform in size
 - ► Price "matching" should happen quickly Here
- Price increases should resemble override
 - Prices should better reflect marginal costs after increases
 - ► Increases should be timed for when opportunity cost of undercutting low Here
- Cost volatility may lead to "freefall" pricing
 - Unusually large price decreases only when marginal costs volatile
 - ► Less so for increases (Here

Edgeworth cycles in real life

FuelWatch: timestamped price changes for every gas station in New South Wales, 2018-present

Speed of responses

Note: vertical lines at 1 hour and 1 day

Only resets are strategic

What predicts p_{it} ?

Define jump as

- 1. $p_{it} > p_{i,t-dt}$, i.e., i increases price
- 2. $p_{i,t-dt} \leq p_{i,t-2dt} \ \forall i$, i.e., not a match of a rival's increase

	Partial Corr	Partial Correlation		
Variable	Non-Jumps	Jumps		
Rival Price	0.73	0.41		
Wholesale Price	0.18	0.36		
Traffic Volume	0.02	0.04		

Back

Resets timed strategically

Probit regressions to predict 1[Jump occurs at t]:

	(1)	(2)	(3)
Variable	Coef	Coef	Coef
variable	(Std. Err)	(Std. Err)	(Std. Err)
Wholesale Cost	0.280***	0.281***	0.301***
	(0.017)	(0.017)	(0.016)
Rival Price	0.023**	0.023**	0.009
	(0.010)	(0.010)	(0.011)
Lagged Own Price	-0.235***	-0.236***	-0.238***
	(0.012)	(0.012)	(0.01)
Traffic Volume	-	_	-0.056***
	-	-	(0.005)
N	728,032	728,032	475,190
Pr[Y=1]	0.071	0.071	0.072

Freefall pricing

Construct volatility measures using (1) historical rack price volatility and (2) OVX index

Variable	(1) Coef (Std. Err)	(2) Coef (Std. Err)	(3) Coef (Std. Err)	(4) Coef (Std. Err)	(5) Coef (Std. Err)
ΔWholesale	-	-0.030*** (0.010)	-0.043*** (0.010)	-0.008 (0.010)	-0.016 (0.011)
Volatility	0.078*** (0.013)	0.071***	-	0.073***	- -
OVX	-	-	0.054*** (0.013)	-	0.069*** (0.022)
N Fixed Effects	412,622	412,538 -	412,538 -	412,538 Monthly	412,538 Monthly

Conclusions

Algorithmic competition with managerial override is:

(Tractable): analytic solution exists

(Instructive): highlights roles of prediction and commitment

(Falsifiable): significantly refines equilibrium predictions

(Sufficient): explains patterns in real pricing data...

(Necessary*): ...in ways existing models cannot

Implications:

- 1. Algorithms can do damage! But must consider (1) extent and ease of human involvement, (2) predictive abilities of algorithms
- 2. Instead of puzzling over Edgeworth cycles, back out an algorithm/human combo that generates it

Thank you!

Questions or comments? mattleisten@gmail.com https://mleisten.github.io

Related Literature

Algorithms as commitment: Brown and Mackay (2021), Salcedo (2015)

Algorithms as prediction: Miklos-Thal and Tucker (2019), O'Connor and Wilson (2019)

Algorithms as learning: Asker et al. (2021), Assad et al. (2020), Johnson et al. (2020), Calvano et al. (2020), Klein (2019)

Forebears in conduct: Klemperer and Meyer (1989), Rubinstein and Abreu (1988), Maskin and Tirole (1988), Salop (1986)

Gasoline: Assad et al. (2020), Byrne and DeRoos (2019), Clark and Houde (2013), Wang (2009), Hosken et al. (2008), Noel (2007)

Pricing, Illustrated

...but cannot sustain supracompetitive prices

Degenerate algorithms yield Bertrand prices

...but cannot sustain supracompetitive prices

Upward sloping algorithms soften competition, sustain supracompetitive prices

Degenerate algorithms yield Bertrand prices

...but cannot sustain supracompetitive prices

Upward sloping algorithms soften competition, sustain supracompetitive prices

Price matching algorithms yield collusive prices (as in Salop (1986))

Degenerate algorithms yield Bertrand prices

...but cannot sustain supracompetitive prices

Upward sloping algorithms soften competition, sustain supracompetitive prices

Price matching algorithms yield collusive prices (as in Salop (1986))

Really, "anything goes"

Pricing stage game

Proposition: One of these must be true:

- 1. Algorithms are sustained in an equilibrium. Prices are p^A .
- 2. One firm overrides its algorithm in an equilibrium. Prices are $(p^*(\sigma_{-i}), \sigma_{-i}(p_i^*(\sigma_{-i})))$.
- 3. The unique equilibrium is Bertrand pricing.

Note: Bertrand may still exist if (1) or (2) is true.

Pricing stage: example

Linear demand: $q_i = 1 - p_i + bp_{-i}$

Algorithmic, One-sided override, Bertrand

Pricing stage: example

Linear demand: $q_i = 1 - p_i + bp_{-i}$

Algorithmic, One-sided override, Bertrand

Public randomization

Four types of equilibrium: "Algorithmic", "Only Firm 1 Overrides", "Only Firm 2 Overrides", "Bertrand"

Existence profile $r(\sigma) \in \{0,1\}^4$, with entry $r_j = 1$ if equilibrium of type j exists when algorithms are σ

Assumptions:

- ▶ Probability of equilibrium type j is measurable w.r.t. $r(\sigma)$.
- ▶ If \exists a non-Bertrand equilibrium, Bertrand is never played.
- ► All non-Bertrand equilibria are played with positive probability.

What if c > 0?

Generally difficult to characterize. Less ambitious question: is collusion by algorithm possible?

Equivalent to: Can firm i do better than collusion by inducing rival to override their algorithm, as in the c = 0 case?

What if c > 0?

Generally difficult to characterize. Less ambitious question: is collusion by algorithm possible?

Equivalent to: Can firm i do better than collusion by inducing rival to override their algorithm, as in the c = 0 case?

- 1. One-sided override equilibrium must be **rational**: firm *i* must prefer it to collusion
- 2. One-sided override equilibria must be **feasible**:
 - ightharpoonup c must be sufficiently small so -i overrides...
 - ightharpoonup and sufficiently large so i does not override if -i overrides

What if c > 0?

Generally difficult to characterize. Less ambitious question: is collusion by algorithm possible?

Equivalent to: Can firm i do better than collusion by inducing rival to override their algorithm, as in the c = 0 case?

- 1. One-sided override equilibrium must be **rational**: firm *i* must prefer it to collusion
- 2. One-sided override equilibria must be **feasible**:
 - ightharpoonup c must be sufficiently small so -i overrides...
 - ightharpoonup and sufficiently large so i does not override if -i overrides

Rule of thumb / conjecture: Scope for collusion by algorithm decreasing, then increasing, in *c*.

Example:
$$q_i = 1 - p_i + .5p_{-i}$$

Feasibility

c sufficiently small so -i overrides c sufficiently large so i does not override

Example: $q_i = 1 - p_i + .5p_{-i}$

Searching for "equilibrium"

Simulate to find equilibrium in algorithms $\{x_i\}$:

- 1. Start with $x_{-i} = 0$, set grid X
- 2. For each gridpoint $x \in X$:
 - ▶ Simulate *i* average payoffs over time, setting $x_i = x$.
 - ightharpoonup Set x_{-i} equal to i's best gridpoint
 - ► Iterate to convergence

Speed of responses

i changes price at t, previous rival price change at t - dt.

Compute distance between *i*'s latest price change and last rival's price change:

$$M_{it} = |(p_{it} - p_{i,t-dt}) - (p_{-i,t-dt} - p_{-i,t-2dt})|$$

Plot distribution of dt when $M_{it} = 0$ versus not

Placebo test: "freerise"

Variable	(1) Coef (Std. Err)	(2) Coef (Std. Err)	(3) Coef (Std. Err)	(4) Coef (Std. Err)	(5) Coef (Std. Err)
	(310. E11)	, ,	,		, ,
Δ Wholesale	-	0.049** (0.024)	0.046* (0.025)	0.045** (0.021)	0.045** (0.022)
Volatility	-0.022	-0.013	-	0.032	-
OVX	(0.021)	(0.021)	-0.046**	(0.025) -	0.049
	-	-	(0.022)	-	(0.040)
N	412,622	412,538	412,538	412,538	412,538
Fixed Effects	-	-	-	Monthly	Monthly