Data Searching and Binary Search

Instructor: Meng-Fen Chiang

COMPCSI220: WEEK 9

OUTLINE

- Definition of Search
- Types of Data Input
 - Unsorted Lists / Sorted Lists
- Types of Search
 - Sequential Search
 - Binary Search
- Time Complexity Analysis

Data Search in a Large Database

- Searching in a database D of records, such that each record has a key to use in the search.
- Example search a student record by Album ID (as key).

Album ID	Album	Song Title	Singer Name	Release Year	
1	Courage	"Flying On My Own"	Celine Dion	2019	
2	Mind Games	"South Dakota"	Jordy	2019	
3	Clarity	"Broken"	Kim Petras	2020	
4	Nibiru	"Reggaeton en Paris"	Ozuna	2019	
5	Basking in the Glow	"Morning Song"	Oso Oso	2019	

Data Search in a Large Database

- Searching in a database D of records, such that each record has a key to use in the search.
- The search problem: Given a search key k, either
 - Return the record associated with k in D (a successful search: if k occurs several times, return any occurrence), or
 - Indicate that k is not found (an unsuccessful search).
- The purpose of the search
 - To access data in the record for processing, or
 - To update information in the record, or
 - To insert a new record or delete the record found.

Table ADT

- **Definition** (Table ADT): The table ADT is a set of ordered pairs, or table entries (k,v) where k is a unique key and v is a data value associated with the key k.
- Types of Operations
 - **RETRIEVE** the entry (k,v) based on the key v; if no entry exist, indicate the search is unsuccessful.
 - **REMOVE** the found entry from the table;
 - **UPDATE** its value *v*;
 - INSERT a new entry with key k if the table has no such entry.

Types of Search

- **Static search**: unalterable (fixed in advance) databases; no updates, deletions, or insertions.
- Dynamic search: alterable databases (allowable insertions, deletions, and updates).

Key		Associated value v				
Code	k	City Country State/		State/Place		
AKL	271	Auckland	New Zealand	North Island		
DCA	2080	Washington	USA	District of Columbia (D.C.)		
FRA	3822	Frankfurt	Germany	Hesse		
SDF	12251	Louisville	USA	Kentucky		

Implementation

- Basic implementations of the table ADT: lists and trees.
- An elementary operation
 - An update of a list element or tree node, or
 - Comparison of two of them.

Sequential Search in Unsorted Lists

- Starting at the head of a list and examining elements one by one until finding the desired key or reaching the end of the list.
- Complexity. Both successful and unsuccessful sequential search have worst-case and average-case time complexity $\Theta(n)$.
- Proof:
 - The unsuccessful search explores each of n keys, so the worst- and average-case time is $\Theta(n)$
 - The successful search examines n keys in the worst case and $\frac{n+1}{2}$ keys on the average, which is still $\Theta(n)$
- The sequential search is the **ONLY option** for unsorted lists of records.
- A sorted list implementation allows for much better search based on the divide-and-conquer paradigm.

Binary Search in a Sorted List of Records

Given a sorted list
$$L = \{(k_i, v_i) : i = 1, ..., n; k_1 < k_2 < \cdots < k_n\}$$

Recursive binary search for the key k:

- 1. If the list is empty, return "not found", otherwise
- 2. Choose the key k_m of the middle element of the list and
 - if $k_m = k$, return its record, otherwise
 - if $k_m > k$, make a recursive call on the head sublist, otherwise
 - if $k_m < k$, make a recursive call on the tail sublist.
- We can do this without recursion!

Non-recursive (Iterative) Binary Search in Array

• The performance of binary search on an array is much better than on a linked list because of the constant time access to a given element.

Algorithm 1 BinarySearch

- 1: **function** BinarySearch(a sorted integer $\mathbf{k} = (k_0, k_1, ..., k_{n-1})$ of keys associated with items, a search key k)
- 2: $l \leftarrow 0; r \leftarrow n-1$
- 3: **while** $l \le r \text{ do } m \leftarrow \left\lfloor \frac{l+r}{2} \right\rfloor$
- 4: if $k_m < k$ then $l \leftarrow m + 1$
- 5: else if $k_m > k$ then $r \leftarrow m 1$
- 6: else return m
- 7: **return** *ItemNotFound*

Faster Binary Search with Two-way Comparisons

Algorithm 2 BinarySearch

- 1: **function** BinarySearch2(a sorted integer $\mathbf{k} = (k_0, k_1, ..., k_{n-1})$ of keys associated with items, a search key k)
- 2: $l \leftarrow 0$; $r \leftarrow n-1$
- 3: **while** $l < r \operatorname{do} m \leftarrow \left\lfloor \frac{l+r}{2} \right\rfloor$
- 4: if $k_m < k$ then $l \leftarrow m + 1$
- 5: else $r \leftarrow m$
- 6: if $k_l = k$ then return l
- 7: **else return** *ItemNotFound*

Example: Binary Search in Array $\{k_0 = 7, ..., k_{15} = 99\}$ for Key k=42

Time Complexity Analysis: Worst Case

- The worst-case time complexity of unsuccessful and successful binary search is $\Theta(\log n)$.
- The full binary tree of height h-1 has $n=2^h-1$ keys (each internal node has 2 children)
 - The comparison tree height is h with only the last level not full.
 - l+1 comparisons to find a key at level l.
 - The worst case: $h + 1 = \lfloor \log_2 n \rfloor + 1$ comparisons.

Time Complexity Analysis: Average Case

- **Lemma**: The average-case time complexity of successful and unsuccessful binary search in a balanced tree is $\Theta(\log n)$.
- **Proof**: The height of the tree is $h = \lfloor \log_2 n \rfloor$
 - At least half of the tree nodes have a depth at least h-1.
 - The average depth over all nodes is at least $\frac{h-1}{2}$ and at most h, so that it is $\Theta(\log n)$
 - The average depth over all nodes of an arbitrary (not necessarily balanced) binary tree is $\Omega(\log n)$.
- The expected search time for an arbitrary balanced tree is equal to the average balanced tree depth $\Theta(\log n)$.

Interpolation Search

- Improvement of binary search if it is possible to guess where the desired key sits.
 - A simple practical example: the search for C or X in a phone directory.
 - Practical if the sorted keys are almost uniformly distributed over their range.

0	1	2	3	4	5	6
11	12	13	14	15	16	17

- Binary search: the middle position $m = \left\lfloor \frac{l+r}{2} \right\rfloor = l + \left\lfloor \frac{r-l}{2} \right\rfloor$.
- Interpolation search: the predicted position of key k if the keys are uniformly distributed between k_l and k_r :

$$m = l + \left[\frac{k - k_l}{k_r - k_l} (r - l) \right]$$

Tree Structure of Binary Search: Binary Search Tree

SUMMARY

- Definition of Search
- Sequential Search on Unsorted Lists
- Binary Search on Sorted Lists
 - Iterative Binary Search
 - Faster Binary Search
- Time Complexity Analysis

