Obliczanie całek złożoną kwadraturą trapezów

Projekt nr 1

1 Opis metody

Złożona kwadratura trapezów polega na dokonaniu podziału przedziału całkowania [a,b] na m podprzedziałów dłogości $H=\frac{b-a}{m}$, a następnie wykonaniu na każdym z nich kwadratury prostej.

$$\frac{x_k - x_{k-1}}{2} (f(x_k) + f(x_{k-1})) \tag{1}$$

gdzie $x_k = a + kH$ to koniec k-tego podprzedziału. Wykonanie takiej operacji na m podprzedziałach daje wzór na przybliżenie całki.

$$S(f) = \sum_{i=1}^{m} \frac{x_k - x_{k-1}}{2} (f(x_k) + f(x_{k-1}))$$

2 Opis programu obliczeniowego

Metoda zaimplementowana została przy użyciu przekształconego wzoru aby uniknąc obliczania wartości funkcji dla jednego punktu dwa razy.

$$S(f) = \frac{H}{2}(f(a) + f(b) + 2\sum_{i=1}^{m} f(a + kH))$$

W celu implementacji i przetestowania metody przygotowane zostało 5 funkcji:

dwie pomocnicze: pojedynczePrzyblizenie, kwadraturaTrapezow

dwie napisane na potrzeby testów: KTtest, KTWtest

zaś funkcja przeznaczona do użytku jest funkcja kwadraturaTrapezowWektorowo.

Na wejściu przyjmuje ona komórkę, gdzie każdy wiersz to pojedyńczy zestaw argumentów, kolejno: funkcja do całkowania, początek przedziału całkowania, koniec przedziału całkowania, początkowa liczba podziałów, dokładność obliczeń. Zwraca natomiast pionowy wektro wyników.

3 Przykłady obliczeniowe

Funkcja została sprawdzona pod następującymi względami:

- 1. popawności obliczeń,
- 2. tempo wzrostu liczby podziałów przy żądaniu coraz lepszej dokładności,
- 3. podatności na błędy przy zaburzeniach wzoru funkcji,
- 4. podatności na błędy przy zaburzeniach przedziału,
- 5. podatność na nadużycia warunku stopu,
- 6. zabezpieczenie przed nadużyciom warunku stopu

Ad.1 Wybrane zostało kilka przykładowych całek oznaczonych i porównano ich wartości wyznaczone analitycznie z wynikami napisanej funkcji. Początkowa liczba podziałów wynosiła 5, a żądana dokładność 0,001.

f(x)	przedział	rozwiązanie	rozwiązanie
	całkowania	przybliżone	dokładne
xsin(x)	$[0, \pi/2]$	1.001	1
arctan(x)	[4, 6]	2.7417	2.7417
$e^{\sqrt{x}}$	[1, 2]	3.4076	3.4075
$x^3 - 4x + 1/x$	[2, 4]	36.6933	36.6931

Ad.2 Całkę oznaczoną z funkcji f(x) = xsin(x) na przedziale [1,5] obliczano z rosnącą każdorazowo o rząd wielkości dokładnością. Początkowa liczba podziałów wynosiła 5.

rządana	rozwiązanie	rozwiązanie	liczba
dokładność	przybliżone	dokładne	podziałów
0.1	-2.69086	2.67840	10
0.01	-2.68148	2.67840	20
0.001	-2.67859	2.67840	80
0.0001	-2.67841	2.67840	320
0.00001	-2.67840	2.67840	640

Ad.3 Funkcję $f(x) = x \sin(x)$ przybliżono wielomianem interpolacyjnym z różną dokładnością i porównano wartość całki na przedziale [2,6] z dokładną wartością.

liczba	względny błąd
węzłów	wyniku
3	5.67
4	6.14
5	6.06
6	4.11

Ad.4 Całkę oznaczoną z funkcji f(x) = xsin(x) obliczano na przedziałe [2,6] z rosnącym odchyleniem od tego przedziału. Początkowa liczba podziałów wynosiła 5, a żądana dokładność 0,001.

względny błąd	względny błąd	
przedziału	wyniku	
0.01	0.0162	
0.05	0.0544	
0.10	0.0361	
0.15	0.0583	

Ad.5 Wykonano próbę obliczenia całki z funkcji $f(x) = x\sin(x)$ na przedziale $[-\pi, 3\pi]$ z początkową liczbą podziałów m = 2.

Otrzymano wynik 2.4173e-15, czyli 0, podczas gdy poprawna odpowiedź wynosi 12.5663.

Ad.6 Błąd wychwycony w poprzednim teście wynika ze zbyt niskiej, w stosunku do długości przedziału, początkowej liczby podziałów przedziału całkowania. W sytuacji gdy długość pojedyńczego podprzedziału będzie większa od obszaru w którym zachodzi znaczna zmiana wartości funkcji może dojść do spełnienia warunku stopu i zwrócenia błędnego wyniku.

W teście 5 doszło najpierw do pokrycia się tej długości z odstępami między miejscami zerowymi. Stąd wynik. Zwiększenie początkowej liczby podziałów już do 4 uzyskuje wynik 12.5662, a zatem poprawny.

4 Podsumowanie

Przy zachowaniu ostrożnośći w doborze liczby początkowych podziałów przedziału całkowania funkcja poprawnie wyznacza wartości właściwych całek oznaczonych. Metoda zwraca bardzo niepoprawne wyniki przy przybliżaniu funkcji wielomianem interpolacyjnym opartym na do 6 węzłach.