Quantum Computing

Korben Rusek

6-1-2018

2 Linear Algebra

Lemma 2.1. Let A be a non-singular linear operator. If all the eigenvalues of A are ± 1 then $A^2 = I$

Proof. Since A is non-singular and normal with eigenvalues ± 1 then we can write $A = \sum \lambda_i |i\rangle \langle i|$ with $|i\rangle$ spanning the vector space. Then we have

$$A^{2} = \left(\sum_{i} \lambda_{i} |i\rangle \langle i|\right) \left(\sum_{j} \lambda_{j} |j\rangle \langle j|\right)$$

$$= \sum_{i} \sum_{j} \lambda_{i} |i\rangle \langle i| \lambda_{j} |j\rangle \langle j|$$

$$= \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} |i\rangle \langle i|j\rangle \langle j|$$

$$= \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} |i\rangle \delta_{i,j} \langle j|$$

$$= \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} \delta_{i,j} |i\rangle \langle j|$$

$$= \sum_{i} \lambda_{i}^{2} |i\rangle \langle i|$$

$$= \sum_{i} |i\rangle \langle i|$$

$$= I$$

Lemma 2.2. Let $A = \sum_{x} |x\rangle \langle x| - \sum_{y} |y\rangle \langle y|$, where $\{|x\rangle, |y\rangle\}_{x,y}$ form an orthonormal basis. Then

$$f(\theta A) = \frac{f(\theta) + f(-\theta)}{2}I + \frac{f(\theta) - f(-\theta)}{2}A.$$

Proof. We can write $A=\sum_{x}|x\rangle\,\langle x|-\sum_{y}|y\rangle\,\langle y|$. Let $X=\sum_{x}|x\rangle\,\langle x|$ and $Y=\sum_{y}|y\rangle\,\langle y|$. That means that I=X+Y and A=X-Y. Then we have

$$\begin{split} f(\theta)A &= \sum_{x} f(\theta) \left| x \right\rangle \left\langle x \right| + \sum_{y} f(-\theta) \left| y \right\rangle \left\langle y \right| \\ &= f(\theta) \sum_{x} \left| x \right\rangle \left\langle x \right| + f(-\theta) \sum_{y} \left| y \right\rangle \left\langle y \right| \\ &= f(\theta)X + f(-\theta)Y \\ &= \frac{f(\theta)}{2}X + \frac{f(\theta)}{2}Y + \frac{f(\theta)}{2}X - \frac{f(\theta)}{2}Y + \frac{f(-\theta)}{2}Y + \frac{f(-\theta)}{2}Y + \frac{f(-\theta)}{2}X - \frac{f(-\theta)}{2}X \\ &= \frac{f(\theta)}{2}(X + Y) + \frac{f(-\theta)}{2}(X + Y) + \frac{f(\theta)}{2}(X - Y) - \frac{f(-\theta)}{2}(X - Y) \\ &= \frac{f(\theta) + f(-\theta)}{2}I + \frac{f(\theta) - f(-\theta)}{2}A \end{split}$$

Exercise 2.44. Suppose that A is invertible and that $\{A, B\} = [A, B] = 0$. Show that B is 0.

Proof. [A, B] = 0 tells us that AB = BA and $\{A, B\} = 0$ tells us that AB = -BA. Therefore we know that BA = -BA. Now multiplying on the right side by A^{-1} , we get B = -B. Thus -2B = 0 which implies that B = 0.

Exercise 2.45. Show that $[A, B]^{\dagger} = [B^{\dagger}, A^{\dagger}].$

Proof.

$$[A, B]^{\dagger} = (AB - BA)^{\dagger}$$
$$= B^{\dagger}A^{\dagger} - A^{\dagger}B^{\dagger}$$
$$= [B^{\dagger}, A^{\dagger}].$$

Exercise 2.46. Show that [A, B] = -[B, A].

Proof.

$$[A, B] = AB - BA$$
$$= -(BA - AB)$$
$$= -[B, A]$$

Exercise 2.47. Suppose that A and B are Hermitian. Show that i[A, B] is Hermitian.

Proof. Suppose that $A = A^{\dagger}$ and $B = B^{\dagger}$. Then we have

$$\begin{aligned} (i[A,B])^{\dagger} &= -i[B^{\dagger},A^{\dagger}] \\ &= -i[B,A] = i[A,B]. \end{aligned}$$

Therefore i[A, B] is Hermitian.

Lemma 2.3. Let A be a diagonalizable matrix. Write $A = \sum_{i} \lambda_{i} |i\rangle$. Then $\sqrt{A^{\dagger}A} = \sum_{i} |\lambda_{i}| |i\rangle \langle i|$.

Proof. The proof is pretty straight forward. We start with

$$A^{\dagger}A = \left(\sum_{i} \lambda_{i}^{*} |i\rangle \langle i|\right) \left(\sum_{i} \lambda_{i} |i\rangle \langle i|\right)$$
$$= \sum_{i} |\lambda_{i}|^{2} |i\rangle \langle i|.$$

Therefore $\sqrt{A^{\dagger}A} = \sum_{i} |\lambda_{i}| |i\rangle \langle i|$.

Exercise 2.48. What is the polar decomposition of a positive matrix, P? Of a unitary matrix, U? or a Hermitian matrix, H?

Positive matrix. By the above lemma, for a positive matrix, P, $\sqrt{P^{\dagger}P} = P$. Therefore we have IP or PI as the polar decompositions.

Unitary matrix. Suppose V is unitary. By the above lemma $\sqrt{V^{\dagger}V}=I$. Therefore V=VI=IV is the polar decomposition.

Hermitian matrix. Suppose that H is Hermitian. Write $H = \sum_i \lambda_i |i\rangle \langle i|$. Then $J = \sum_i |\lambda_i| |i\rangle \langle i|$. Let a_i be defined as $\lambda_i/|\lambda_i|$ when $\lambda_i \neq 0$ and 1 when $\lambda_i = 0$. Then $U = \sum_i v_i |i\rangle \langle i|$.

Exercise 2.49. Express the polar decomposition of a normal matrix in the outer product representation.

Proof. The solution is similar to what we see in the Hermitian version of the above exercise. J has eigenvalues that are the absolute value of the eigenvalues of H. U would have eigenvalues that are the unit vectors of the eigenvalues of H (or 1 when eigenvalues are 0).

Exercise 2.50. Find the left and right polar decompositions of the matrix

$$P = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

Proof. It is easy to see that the eigenvalues of P is 1 repeated. Therefore P is positive. Therefore U = I and J = K = P.

Definition 2.4. We define H to be the Hadamard matrix.

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.$$

Exercise 2.51. Verify that th Hadamard gate H is unitary.

Proof.

$$H^2 = \frac{1}{2} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = I.$$

It is clear that $H^{\dagger} = H$. Thus $H \dagger H = I$ and H is unitary.

Exercise 2.52. Verify that $H^2 = I$.

Proof. This was shown in the previous exercise.

Exercise 2.53. What are the eigenvalues and eigenvectors of H?

Proof. To find the eigenvalues of H we solve the polynomial equation

$$0 = (1 - \lambda)(-1 - \lambda) - 1$$

= $(\lambda - 1)(\lambda + 1) - 1$
= $\lambda^2 - 2$

Thus our eigenvalues are $\lambda = \pm \sqrt{2}$. To find the eigenvectors we solve the system:

$$x + y = \frac{\lambda}{\sqrt{2}}x$$
$$x - y = \frac{\lambda}{\sqrt{2}}y$$

Since (0,1) is clearly not an eigenvector we can assume that x=1. For $\lambda=1$ we have $y=\frac{1-\sqrt{2}}{\sqrt{2}}$. For $\lambda=-1$ we get $y=\frac{-1+\sqrt{2}}{\sqrt{2}}$. Therefore we have the eigenvectors $(\sqrt{2},1-\sqrt{2})$ and $(\sqrt{2},\sqrt{2}-1)$ with eigenvalues 1 and -1 respectively.

Exercise 2.54. Suppose A and B are commuting Hermitian operators. Prove that exp(A)exp(B) = exp(A+B).

Proof. We can write $A = \sum_i a_i |i\rangle \langle i|$ and $B = \sum_i b_i |i\rangle \langle i|$ for some orthonormal basis $|i\rangle$. Then we have

$$exp(A) = \sum_{i} e^{a_i} keti \langle i |,$$

$$exp(B) = \sum_{i} e^{b_i} keti \langle i |,$$

and so

$$\begin{split} \exp(A) \exp(B) &= \sum_i e^{a_i} e^{b_i} keti \, \langle i | \\ &= \sum_i e^{a_i + b_i} keti \, \langle i | \\ &= \exp(A + B). \end{split}$$

Definition 2.5.

$$U(t_1, t_2) = exp \left[\frac{-iH(t_2 - t_1)}{\hbar} \right].$$

Exercise 2.55. Prove that $U(t_1, t_2)$ is unitary.

Proof. This is simple as exp(x) is non-zero, so U is unitary.

Exercise 2.56. Use spectral decomposition to show that $K = -i \log(U)$ is Hermitian for any unitary U, and thus $U = \exp(iK)$ for some Hermitian K.

Proof. Let U be unitary. Then we can write $U = \sum \alpha_{\phi} |\phi\rangle \langle \phi|$ for some orthonormal basis $\langle \phi|$ and $\alpha_{\phi} \neq 0$. That means that $K = \sum -i \log(\alpha_{\phi}) |\phi\rangle \langle \phi|$. Since U is unitary then $\alpha_{\phi} = e^{i\theta_{\phi}}$ for some real θ_{ϕ} . Therefore we can simplify K to

$$K = \sum -i(i\theta_p hi) |\phi\rangle \langle \phi| = \sum \theta_\phi |\phi\rangle \langle \phi|.$$

Now sime θ_{ϕ} is real then K is Hermitian. Therefore any unitary operator is $\exp(iK)$ for some Hermitian K.

Exercise 2.58. Suppose we prepare a quantum system in an eigenstate $|\psi\rangle$ of some observable M, with corresponding eigenvalue m. What is the average observed value of M, and the standard deviation?

Proof. The average observed value of M is given by $E(M) = \langle \psi | M | \psi \rangle$. Then we have

$$\begin{split} E(M) &= \langle \psi | \, M \, | \psi \rangle \\ &= m \, \langle \psi | \rangle \, \psi \\ &= m. \end{split}$$

The standard deviation squared is given by

$$[\Delta(M)]^2 = \langle M^2 \rangle - \langle M \rangle^2.$$

We already saw that $\langle M \rangle = m$. And so we have

$$\langle M^2 \rangle = \langle \psi | M^2 | \psi \rangle$$
$$= \langle \psi | mM | \psi \rangle$$
$$= m^2 \langle \psi | \psi \rangle$$
$$= m^2.$$

Therefore the standard deviation is 0.

Exercise 2.59. Suppose we have a qubit in the state $|0\rangle$, and we measure the observable X. What is the average value of X? What is the standard deviation of X?

Proof. The average value is given by $\langle 0|X|0\rangle = \langle 0|1\rangle = 0$. The standard deviation squared is

$$\langle 0|X^2|0\rangle = \langle 0|0\rangle = 1.$$

Exercise 2.60. Show that $v \cdot \sigma$ has eigenvalues ± 1 and that the projectors onto the corresponding eigenspaces are given by $P_{\pm} = (I \pm v \cdot \sigma)/2$.

Proof. We have already seen that $v \cdot \sigma$ has eigenvalues ± 1 . It is easy to verify that the eigenvectors of $v \cdot \sigma$ are

$$e_{\pm} = \begin{bmatrix} 1 \pm c \\ a \pm bi \end{bmatrix}.$$

Furthermore $P \pm e_{\pm} = e_{\pm}$. Therefore P_{\pm} are the projectors.

Exercise 2.61. Calculate the probability of obtaining +1 for a measurement of $v \cdot \sigma$, given that the state prior to measurement is $|0\rangle$. What is the state of the system after the measurement?

Proof. The value p(+1) is given by $\langle 0|P_+|0\rangle$. This gives $\frac{1}{2}\left\langle 0\left|\begin{bmatrix}1+c\\a+bi\end{bmatrix}\right\rangle = \frac{1+c}{2}$.

After measurement the state of the system is

$$\frac{P_{+}\left|0\right\rangle}{\sqrt{p(+1)}}=\begin{bmatrix}1+c\\a+bi\end{bmatrix}\sqrt{\frac{2}{1+c}}$$

Exercise 2.62. Show that any measurement where the measurement operators and the POVM elements coincide is a projective measurement.

Proof. Let M_m be the collection of measurement operators. We will show that $M_m = M_m^{\dagger} M_m$. Since $M_m = E_n$ for some n, then $M_m^{\dagger} M_m = E_n^{\dagger} E_n = E_n = M_m$. This means that M_m is positive. In that case $M_m^{\dagger} = M_m$ and we have M_m is projective as $M_m^2 = M_m$.

Exercise 2.63. Suppose a measurement is described by measurement operators, M_m . Show that there exist unitary operators U_m such that $M_m = U_m \sqrt{E_m}$, where E_m is the POVM associated to the measurement.

Proof. Write
$$M_m = \sum \lambda_i |i\rangle \langle i|$$
. Then $E_m = M_m^{\dagger} M_m = \sum |\lambda_i|^2 |i\rangle \langle i|$. Therefore $U_m = \sum_i \frac{\lambda_i}{|\lambda_i|} |i\rangle \langle i|$.