MA2201: Analysis II

Integration

Spring 2021

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

Definition 3.1 (Partition). A partition Q of an interval [a.b] is a finite sequence of numbers

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b.$$

The norm of a partition is defined as

$$||Q|| = \max |x_{j+1} - x_j|.$$

A tagged partition \dot{Q} is a partition Q together with a set of numbers t_j such that $t_j \in [x_j, x_{j+1}]$.

Definition 3.2 (Riemann sum). The Riemann sum of a function f on an interval [a, b] with respect to a tagged partition \dot{Q} is defined as

$$S(f, \dot{Q}) = \sum_{j=0}^{n-1} f(t_j)(x_{j+1} - x_j).$$

Definition 3.3 (Riemann integral). A function f is called Riemann integrable on an interval [a,b] if there is some $\ell \in \mathbb{R}$ where for every $\epsilon > 0$, there exists $\delta > 0$ such that all tagged partitions \dot{Q} of [a,b] with $||\dot{Q}|| < \delta$ satisfy

$$|S(f, \dot{Q}) - \ell| < \epsilon.$$

The number ℓ is the value of the Riemann integral,

$$\int_{a}^{b} f = \ell.$$

1

Theorem 3.1. If a function is Riemann integrable on an interval, then the value of the integral is unique.

Proof. Let f be Riemann integrable on [a, b], with integral values ℓ and ℓ' . Then, for every $\epsilon > 0$, we find $\delta > 0$ such that for all tagged partitions \dot{Q} with $||\dot{Q}|| < \delta$,

$$|S(f,\dot{Q}) - \ell| < \epsilon, \qquad |S(f,\dot{Q}) - \ell'| < \epsilon.$$

Note that such a partition \dot{Q} always exists. Thus,

$$|\ell - \ell'| \le |S(f, \dot{Q}) - \ell| + |S(f, \dot{Q}) - \ell'| < 2\epsilon$$

for all $\epsilon > 0$, which forces $\ell = \ell'$.

Definition 3.4 (Darboux sums). Given a partition Q of [a, b] and a function f, define

$$m_j = \inf_{t \in [x_j, x_{j+1}]} f(t), \qquad M_j = \sup_{t \in [x_j, x_{j+1}]} f(t).$$

The lower and upper Darboux sums are defined as

$$L(f,Q) = \sum_{j=0}^{n-1} m_j(x_{j+1} - x_j), \qquad U(f,Q) = \sum_{j=0}^{n-1} M_j(x_{j+1} - x_j).$$

Definition 3.5 (Darboux integrals). The lower and upper Darboux integrals of a function f are defined as

$$L_f = \inf_Q L(f, Q), \qquad U_f = \sup_Q U(f, Q).$$

Here, the infimum and supremum is taken over all possible partitions Q of [a, b]. If $L_f = U_f$, then the common integral is simply called the Darboux integral,

$$\int_{a}^{b} f = L_f = U_f.$$

Such a function f is called Darboux integrable.

Theorem 3.2. Riemann and Darboux integrability are equivalent and assign the same value to the integrals.