

Multi-Criteria Dimensionality Reduction with Applications to Fairness

Uthaipon (Tao) Tantipongpipat, Samira Samadi, Mohit Singh, Jamie Morgenstern, and Santosh Vempala

Georgia Institute of Technology

Motivation

- Principle Component Analysis (PCA) is used in machine learning, natural sciences, and social sciences
- But PCA can result in biased representation

More challenges:

- Reweighting samples from each group to be equal does not fix the bias
- Two PCAs for each group are not allowed for ethical and legal reasons

Problem Formulation

- $A_1, ... A_k$ are data of group 1, ..., k (rows as entries).
- *P* is the orthonormal matrix for PCA projection to find.

We eliminate unfair representation by taking the worst group's performance as an objective (Fair PCA):

MCDR (Multi-Criteria Dimensionality Reduction) allows more flexibility for each group to choose their own utility criterion f_i and the central analyst to choose the utility aggregation g.

Example:

Marginal Loss (Mar-Loss): $\min_{P} \max_{i \in \{1,...,k\}} \left(\max_{Q} \|A_i Q\|_F^2 - \|A_i P\|_F^2 \right)$ Nash Social Welfare (NSW): $\max_{P} \prod_{i=1}^k \|A_i P\|_F^2$

Algorithms

- One can solve standard PCA by Singular Value Decomposition (SVD)
- But SVD can't solve Fair PCA or MCDR.
- However, convex relaxation extends from standard PCA to Fair PCA and MCDR.

Convex Relaxation for Fair PCA data $A_1, ..., A_k$ in n dimensions; target dimension $d \leq n$ Output: projection matrix $X = PP^{T}$ Algorithm: solve semi-definite program (SDP) $\max_{X \in \mathbb{R}^{n \times n}, z \in \mathbb{R}} z$ subject to $z \leq \langle A_1^{\mathrm{T}} A_1, X \rangle$ Efficiently solvable $z \leq \langle A_k^{\mathrm{T}} A_k, X \rangle$ $Tr(X) \le d, 0 \le X \le I$ Output: $\hat{X} \in \mathbb{R}^{n \times n}$ **Problem**: \hat{X} has correct trace $0 \leqslant \hat{X} \leqslant I, \operatorname{tr}(\hat{X}) \leq d$ but higher rank than d Output: extreme $\hat{X} \in \mathbb{R}^{n \times n}$ Solution: solve SDP to an $0 \leq \hat{X} \leq I$, rank $(\hat{X}) \leq d + s$ extreme point (Rank violation $s = \sqrt{2k + 1/4} - \frac{3}{2}$)

Main Theoretical and Algorithmic Contributions

- Proof that any SDP extreme solution has low rank
- Algorithm to move to extreme point solutions
- Apply the result to Fair PCA and generalize to MCDR.

Our results apply to f_i 's linear in PP^{T} and concave g, which cover well-studied welfare objectives including Mar-Loss and NSW.

Existence of low-rank property of SDP extreme point is known in optimization community (Barvinok'95, Pataki'98). We connect the result to ML application by generalizing the result to $X \leq I$ constraint and developing the algorithms.

Other Theoretical Results

- Small rank violation leads to (multiplicative) approximation ratio performance guarantee
- Alternative iterative rounding for additive performance guarantee
- NP-hardness of Fair PCA (when k is general)

Experiments

We run our algorithm **SDPRound** specified two objectives Nash Social Welfare (NSW) and Marginal Loss (Mar-Loss) and compare with standard PCA on two metrics NSW and Mar-Loss. The rank violation in practice is much smaller than the guarantee and usually non-existent.

Default Credit data; 6 groups based on education and gender 30k datapoints, 21 dimensions

SDPRound performs better in both NSW and Mar-Loss objectives compared to standard PCA despite being optimized for only one objective.

Scalability

SDP solvers run in <1 minutes on data with original dimension $n \approx 50 - 70$. For big data and large n, we use multiplicative weight update (MW) for certain objectives of MCDR. In practice, MW runs on $n \approx 1000$ dimensions in <20 minutes.

Code: github.com/SDPforAll/multiCriteriaDimReduction sites.google.com/site/ssamadi/fair-pca-homepage