Splitting Techniques in the Face of Huge Problem Sizes: Block-Coordinate and Block-Iterative Approaches

Patrick L. Combettes (joint work with J.-C. Pesquet)

Laboratoire Jacques-Louis Lions Faculté de Mathématiques Université Pierre et Marie Curie – Paris 6 75005 Paris, France

Edinburgh, May 7, 2015

Framework

A wide range of problems in applied nonlinear analysis can be reduced to finding a point in a closed convex subset F of a Hilbert space H. The solution set F is often constructed from prior information and the observation of data.

Mathematical model:

find
$$x \in F \subset \bigcap_{n \in \mathbb{N}} FixT_n$$
, $T_n : H \to H$ quasi-nonexpansive

Algorithmic model:

$$x_{n+1} = T_n x_n$$

- Asymptotic analysis: under suitable assumptions, $(x_n)_{n\in\mathbb{N}}$ converges (weakly/strongly/linearly) to a point in F
- Application areas: variational inequalities, game theory, optimization, statistics, partial differential equations, inverse problems, mechanics, signal and image processing, machine learning, computer vision, transport theory, optics,...

Basic convergence principle

 \blacksquare T_n is quasi-nonexpansive, i.e.,

$$(\forall x \in H)(\forall y \in FixT_n) \quad ||T_nx - y|| \le ||x - y||,$$

with $F \subset Fix T_n$. Then:

Fejér monotonicity:

$$(\forall n \in \mathbb{N})(\forall y \in F) \quad ||x_{n+1} - y|| \leq ||x_n - y||$$

Suppose that the set $\mathfrak{W}(x_n)_{n\in\mathbb{N}}$ of weak cluster points of $(x_n)_{n\in\mathbb{N}}$ is in F. Then

$$x_n \rightarrow x \in F$$

Basic convergence principle

 \blacksquare T_n is quasi-nonexpansive, i.e.,

$$(\forall x \in H)(\forall y \in FixT_n) \quad ||T_nx - y|| \le ||x - y||,$$

with $F \subset Fix T_n$. Then:

Fejér monotonicity:

$$(\forall n \in \mathbb{N})(\forall y \in F) \quad ||x_{n+1} - y|| \leq ||x_n - y||$$

Suppose that the set $\mathfrak{W}(x_n)_{n\in\mathbb{N}}$ of weak cluster points of $(x_n)_{n\in\mathbb{N}}$ is in F. Then

$$x_n \rightarrow x \in F$$

■ Elementary example: alternating projection method for finding a point in the intersection of two closed convex sets C_1 and C_2 . Set $T_{2n} = P_2$ and $T_{2n+1} = P_1$.

Example: Special cases

- Fixed point methods: Krasnosel'skii-Mann, string averaging, extrapolated barycentric methods, Martinet's cyclic firmly nonexpansive iteration, etc.
- Projections methods for convex feasibility problems
- Projections methods for split feasibility problems
- Subgradient projections methods for systems of convex inequalities
- Splitting methods for monotone inclusions: forward-backward, Douglas-Rachford, forward-backward-forward, Spingarn, etc.
- Convex optimization methods: projected gradient method, augmented Lagrangian method, ADMM, various proximal splitting methods, etc.
- Iterative methods for variational inequalities in mechanics, traffic theory, and finance
- etc.

Very large scale problems I: Block-coordinate approach

- The basic iteration $\mathbf{x}_{n+1} = \mathbf{T}_n \mathbf{x}_n$ in the Hilbert space \mathbf{H} may be too involved (computations, memory) to be operational
- We assume that H can be decomposed in m factors

$$\mathbf{H} = H_1 \times \cdots \times H_m$$

in which each \mathbf{T}_n has an explicit decomposition

$$\mathbf{T}_n \colon \mathbf{x} \mapsto (\mathsf{T}_{1,n}\mathbf{x}, \dots, \mathsf{T}_{m,n}\mathbf{x})$$

The strategy is to update only arbitrarily chosen coordinates of $\mathbf{x}_{n+1} = (x_{1,n+1}, \dots, x_{m,n+1})$ up to some tolerance:

$$X_{i,n+1} = X_{i,n} + \varepsilon_{i,n} (T_{i,n} \mathbf{x}_n + \mathbf{c}_{i,n} - X_{i,n}),$$

where $\varepsilon_{i,n} \in \{0,1\}$ (activation variable)

Very large scale problems I: Block-coordinate approach

- The basic iteration $\mathbf{x}_{n+1} = \mathbf{T}_n \mathbf{x}_n$ in the Hilbert space \mathbf{H} may be too involved (computations, memory) to be operational
- We assume that H can be decomposed in m factors

$$\mathbf{H} = H_1 \times \cdots \times H_m$$

in which each \mathbf{T}_n has an explicit decomposition

$$\mathbf{T}_n \colon \mathbf{x} \mapsto (\mathsf{T}_{1,n}\mathbf{x}, \dots, \mathsf{T}_{m,n}\mathbf{x})$$

The strategy is to update only arbitrarily chosen coordinates of $\mathbf{x}_{n+1} = (x_{1,n+1}, \dots, x_{m,n+1})$ up to some tolerance:

$$X_{i,n+1} = X_{i,n} + \varepsilon_{i,n} (T_{i,n} \mathbf{X}_n + O_{i,n} - X_{i,n}),$$

where $\varepsilon_{i,n} \in \{0,1\}$ (activation variable)

Our goal is to extend available fixed points methods to this block-coordinate setting while preserving their convergence properties

A roadblock

- The nice properties of an operator $\mathbf{T} \colon \mathbf{H} \to \mathbf{H}$ are destroyed by coordinate sampling
- For instance, consider the nonexpansive (1-Lipschitz) operator

T:
$$(x_1, x_2) \mapsto (-x_2, x_1)$$

Then

$$\begin{cases} Q_1 \colon (x_1, x_2) \mapsto (x_1, x_1) \\ Q_2 \colon (x_1, x_2) \mapsto (-x_2, x_2) \\ Q_1 \circ Q_2 \\ Q_2 \circ Q_1 \end{cases}$$

are no longer nonexpansive

Fejér monotonicity is destroyed

A roadblock

- The nice properties of an operator $\mathbf{T} \colon \mathbf{H} \to \mathbf{H}$ are destroyed by coordinate sampling
- For instance, consider the nonexpansive (1-Lipschitz) operator

$$\mathbf{T}\colon (\mathsf{X}_1,\mathsf{X}_2)\mapsto (-\mathsf{X}_2,\mathsf{X}_1)$$

Then

$$\begin{cases} Q_1 \colon (x_1, x_2) \mapsto (x_1, x_1) \\ Q_2 \colon (x_1, x_2) \mapsto (-x_2, x_2) \\ Q_1 \circ Q_2 \\ Q_2 \circ Q_1 \end{cases}$$

are no longer nonexpansive

- Fejér monotonicity is destroyed
- and even for jointly convex functions with a unique minimizer, alternating minimizations fail, etc.

A roadblock

- The nice properties of an operator $\mathbf{T} \colon \mathbf{H} \to \mathbf{H}$ are destroyed by coordinate sampling
- For instance, consider the nonexpansive (1-Lipschitz) operator

T:
$$(x_1, x_2) \mapsto (-x_2, x_1)$$

Then

$$\begin{cases} Q_1 \colon (x_1, x_2) \mapsto (x_1, x_1) \\ Q_2 \colon (x_1, x_2) \mapsto (-x_2, x_2) \\ Q_1 \circ Q_2 \\ Q_2 \circ Q_1 \end{cases}$$

are no longer nonexpansive

- Fejér monotonicity is destroyed
- and even for jointly convex functions with a unique minimizer, alternating minimizations fail, etc.
- \(\sim \) introduce stochasticity and renorming

Notation

- H: separable real Hilbert space; — : weak convergence
- $\mathfrak{W}(x_n)_{n\in\mathbb{N}}$: set of weak cluster points of $(x_n)_{n\in\mathbb{N}}\in\mathsf{H}^\mathbb{N}$
- $\Gamma_0(H)$: proper lower semicontinuous convex functions from H to $]-\infty, +\infty]$
- \blacksquare (Ω, \mathcal{F}, P): underlying probability space
- Given a sequence $(x_n)_{n\in\mathbb{N}}$ of H-valued random variables,

$$\mathscr{X} = (\mathfrak{X}_n)_{n \in \mathbb{N}}, \text{ where } (\forall n \in \mathbb{N}) \ \mathfrak{X}_n = \sigma(x_0, \dots, x_n)$$

- $\ell_+(\mathscr{X})$: set of sequences of $[0, +\infty[$ -valued random variables $(\xi_n)_{n\in\mathbb{N}}$ such that, for every $n\in\mathbb{N}$, ξ_n is \mathcal{X}_n -measurable

- **Deterministic definition**: A sequence $(x_n)_{n \in \mathbb{N}}$ in H is Fejér monotone with respect to F if for every $z \in F$,

$$(\forall n \in \mathbb{N}) \quad \phi(\|\mathbf{x}_{n+1} - \mathbf{z}\|) \leqslant \phi(\|\mathbf{x}_n - \mathbf{z}\|)$$

- Stochastic definition 1: A sequence $(x_n)_{n\in\mathbb{N}}$ of H-valued random variables is *stochastically Fejér monotone* with respect to F if, for every $z \in F$,

$$(\forall n \in \mathbb{N}) \ \mathsf{E}(\phi(\|x_{n+1} - \mathsf{z}\| | \ \mathfrak{X}_n) \leqslant \phi(\|x_n - \mathsf{z}\|)$$

- Stochastic definition 2: A sequence $(x_n)_{n\in\mathbb{N}}$ of H-valued random variables is *stochastically quasi-Fejér monotone* with respect to F if, for every $z \in F$, there exist $(\chi_n(z))_{n\in\mathbb{N}} \in \ell^1_+(\mathscr{X})$, $(\vartheta_n(z))_{n\in\mathbb{N}} \in \ell_+(\mathscr{X})$, and $(\eta_n(z))_{n\in\mathbb{N}} \in \ell^1_+(\mathscr{X})$ such that

$$(\forall n \in \mathbb{N}) \ \mathsf{E}(\phi(\|\mathsf{X}_{n+1} - \mathsf{z}\|) \,|\, \mathcal{X}_n) + \vartheta_n(\mathsf{z}) \leqslant (1 + \chi_n(\mathsf{z}))\phi(\|\mathsf{X}_n - \mathsf{z}\|) + \eta_n(\mathsf{z})$$

- Stochastic definition 2: A sequence $(x_n)_{n\in\mathbb{N}}$ of H-valued random variables is *stochastically quasi-Fejér monotone* with respect to F if, for every $z \in F$, there exist $(\chi_n(z))_{n\in\mathbb{N}} \in \ell^1_+(\mathscr{X})$, $(\vartheta_n(z))_{n\in\mathbb{N}} \in \ell_+(\mathscr{X})$, and $(\eta_n(z))_{n\in\mathbb{N}} \in \ell^1_+(\mathscr{X})$ such that

$$(\forall n \in \mathbb{N}) \ \mathsf{E}(\phi(\|x_{n+1} - \mathsf{z}\|) \,|\, \mathcal{X}_n) + \vartheta_n(\mathsf{z}) \leqslant (1 + \chi_n(\mathsf{z}))\phi(\|x_n - \mathsf{z}\|) + \eta_n(\mathsf{z})$$

Theorem

Suppose $(x_n)_{n\in\mathbb{N}}$ is stochastically quasi-Fejér monotone. Then

- \blacksquare $(\forall z \in F) \left[\sum_{n \in \mathbb{N}} \vartheta_n(z) < +\infty \text{ P-a.s.} \right]$
- $[\mathfrak{W}(x_n)_{n\in\mathbb{N}}\subset\mathsf{F}\ \mathsf{P}\text{-}a.s.]\Leftrightarrow [(x_n)_{n\in\mathbb{N}}\ converges\ weakly\ \mathsf{P}\text{-}a.s.\ to$ an $\mathsf{F}\text{-}valued\ random\ variable}]$

An abstract stochastic iterative scheme

Theorem

Let $\emptyset \neq F \subset H$. Suppose that $(x_n)_{n \in \mathbb{N}}$, $(t_n)_{n \in \mathbb{N}}$, and $(e_n)_{n \in \mathbb{N}}$ are sequences of H-valued random variables such that:

- $(\forall n \in \mathbb{N}) \ x_{n+1} = x_n + \lambda_n (t_n + e_n x_n), \quad \lambda_n \in]0, 1]$
- For every $z \in F$, there exist $(\theta_n(z))_{n \in \mathbb{N}} \in \ell_+(\mathcal{X})$, $(\mu_n(z))_{n \in \mathbb{N}} \in \ell_+^{\infty}(\mathcal{X})$, and $(\nu_n(z))_{n \in \mathbb{N}} \in \ell_+^{\infty}(\mathcal{X})$ such that $(\lambda_n \mu_n(z))_{n \in \mathbb{N}} \in \ell_+^{1}(\mathcal{X})$, $(\lambda_n \nu_n(z))_{n \in \mathbb{N}} \in \ell_+^{1/2}(\mathcal{X})$, and

$$(\forall n \in \mathbb{N}) \quad \mathsf{E}(\|t_n - \mathsf{z}\|^2 \,|\, \mathfrak{X}_n) + \theta_n(\mathsf{z}) \leqslant (1 + \mu_n(\mathsf{z})) \|x_n - \mathsf{z}\|^2 + \nu_n(\mathsf{z})$$

Then $(\forall z \in F)$ [$\sum_{n \in \mathbb{N}} \lambda_n \theta_n(z) < +\infty$ P-a.s.] and [$\mathfrak{W}(x_n)_{n \in \mathbb{N}} \subset F$ P-a.s.] $\Rightarrow (x_n)_{n \in \mathbb{N}}$ converges weakly P-a.s. to an F-valued random variable.

Single-layer algorithm

- $\mathbf{H} = H_1 \times \cdots \times H_m$, $(H_i)_{1 \leq i \leq m}$ separable real Hilbert spaces
- \mathbf{T}_n : $\mathbf{H} \to \mathbf{H}$: $\mathbf{x} \mapsto (\mathbf{T}_{i,n} \mathbf{x})_{1 \leq i \leq m}$ quasinonexpansive
- $\mathbf{F} = \bigcap_{n \in \mathbb{N}} \operatorname{Fix} \mathbf{T}_n \neq \emptyset$
- **x**₀ and the errors $(\boldsymbol{a}_n)_{n\in\mathbb{N}}$ are **H**-valued random variables
- $(\varepsilon_n)_{n\in\mathbb{N}}$ identically distributed D-valued random variables with D = $\{0,1\}^m \setminus \{\mathbf{0}\}$
- Algorithm:

Single-layer algorithm

Theorem

Set $(\forall n \in \mathbb{N}) \ \mathfrak{X}_n = \sigma(\boldsymbol{x}_0, \dots, \boldsymbol{x}_n)$ and $\mathcal{E}_n = \sigma(\boldsymbol{\varepsilon}_n)$. Assume that

- $\inf_{n\in\mathbb{N}} \lambda_n > 0$ and $\sup_{n\in\mathbb{N}} \lambda_n < 1$.
- $\blacksquare \mathfrak{W}(x_n)_{n\in\mathbb{N}}\subset \mathbf{F} \text{ P-}a.s.$
- For every $n \in \mathbb{N}$, \mathcal{E}_n and \mathfrak{X}_n are independent.
- For every $i \in \{1, ..., m\}$, $p_i = P[\varepsilon_{i,0} = 1] > 0$.

Then $(\mathbf{x}_n)_{n\in\mathbb{N}}$ converges weakly P-a.s. to an **F**-valued r.v.

Proof.

We achieve stochastic quasi-Fejér monotonicity w.r.t. the norm $|||\mathbf{x}|||^2 = \sum_{i=1}^{m} ||\mathbf{x}_i||^2/p_i$

Example: Krasnosel'skii-Mann iteration

- **T**: $\mathbf{H} \to \mathbf{H}$: $\mathbf{x} \mapsto (\mathsf{T}_i \mathbf{x})_{1 \leqslant i \leqslant m}$ nonexpansive operator
- \blacksquare **F** = Fix **T** \neq Ø
- **x**₀ and the errors $(\boldsymbol{a}_n)_{n\in\mathbb{N}}$ are **H**-valued random variables
- $(\varepsilon_n)_{n\in\mathbb{N}}$ identically distributed D-valued random variables with D = $\{0,1\}^m \setminus \{\mathbf{0}\}$
- Algorithm:

for
$$n = 0, 1, ...$$

for $i = 1, ..., m$

$$\begin{bmatrix} X_{i,n+1} = X_{i,n} + \varepsilon_{i,n} \lambda_n (T_i(X_{1,n}, ..., X_{m,n}) + C_{i,n} - X_{i,n}) \end{bmatrix}$$

Example: Krasnosel'skiĭ-Mann iteration

Theorem

Set $(\forall n \in \mathbb{N}) \ \mathfrak{X}_n = \sigma(\boldsymbol{x}_0, \dots, \boldsymbol{x}_n)$ and $\mathcal{E}_n = \sigma(\boldsymbol{\varepsilon}_n)$. Assume that

- $\inf_{n\in\mathbb{N}} \lambda_n > 0$ and $\sup_{n\in\mathbb{N}} \lambda_n < 1$
- lacksquare $\sum_{n\in\mathbb{N}}\sqrt{\mathsf{E}(\|oldsymbol{a}_n\|^2\,|\,oldsymbol{\mathfrak{X}}_n)}<+\infty$
- For every $n \in \mathbb{N}$, \mathcal{E}_n and \mathfrak{X}_n are independent
- For every $i \in \{1, ..., m\}$, $P[\varepsilon_{i,0} = 1] > 0$

Then $(\mathbf{x}_n)_{n\in\mathbb{N}}$ converges weakly P-a.s. to an **F**-valued r.v.

Proof.

Apply the single-layer theorem with $\mathbf{I}_n = \mathbf{I}$.

Example: Block-coordinate, primal-dual splitting of coupled composite monotone inclusions

Let F be the set of solutions to the problem

find $x_1 \in H_1, \dots, x_m \in H_m$ such that

$$(\forall i \in \{1,\ldots,m\}) \quad 0 \in A_i X_i + \sum_{k=1}^{\rho} L_{ki}^* B_k \left(\sum_{j=1}^m L_{kj} X_j\right),$$

where each $A_i: H_i \to 2^{H_i}$, $B_k: G_k \to 2^{G_k}$ are maximally monotone, $L_{ki}: H_i \to G_k$ linear&bounded

■ Let **F*** be the set of solutions to the dual problem

find
$$v_1 \in G_1, \dots, v_p \in G_p$$
 such that

$$(\forall k \in \{1, ..., p\}) \quad 0 \in -\sum_{i=1}^{m} L_{ki} A_{i}^{-1} \left(-\sum_{l=1}^{p} L_{li}^{*} v_{l}\right) + B_{k}^{-1} v_{k}$$

◆□▶◆@▶◆≧▶◆≧▶ ● 釣९♡

Example: Block-coordinate, primal-dual splitting of coupled composite monotone inclusions

Let Q_j (1 \leq $j \leq$ m+p) be the jth component of the projector P_V onto the subspace

$$\mathbf{V} = \left\{ (\mathbf{x}, \mathbf{y}) \in \mathbf{H} \times \mathbf{G} \,\middle|\, (\forall k \in \{1, \dots, p\}) \, \mathbf{y}_k = \sum_{i=1}^m \mathsf{L}_{ki} \mathsf{x}_i \right\}$$

Algorithm: $\gamma \in]0, +\infty[$ and for n = 0, 1, ...

$$\mu_{n} \in]0, 2[$$
for $i = 1, ..., m$

$$z_{i,n+1} = z_{i,n} + \varepsilon_{i,n} (Q_{i}(x_{1,n}, ..., x_{m,n}, y_{1,n}, ..., y_{p,n}) + C_{i,n} - z_{i,n})$$

$$x_{i,n+1} = x_{i,n} + \varepsilon_{i,n} \mu_{n} (J_{\gamma A_{i}}(2z_{i,n+1} - x_{i,n}) + C_{i,n} - z_{i,n+1})$$

ロト (部) (注) (注) 注 りく()

Example: Block-coordinate, primal-dual splitting of coupled composite monotone inclusions

- Under the same conditions as before:
 - $(\mathbf{z}_n)_{n\in\mathbb{N}}$ converges weakly P-a.s. to an **F**-valued random variable
 - $(\gamma^{-1}(\mathbf{w}_n \mathbf{y}_n))_{n \in \mathbb{N}}$ converges weakly P-a.s. to an \mathbf{F}^* -valued random variable
- Proof: This relies on the single-layer theorem and a nonstandard implementation of the Douglas-Rachford algorithm in the product space $\mathbf{H} \times \mathbf{G} = H_1 \times \cdots \times H_m \times G_1 \times \cdots \times G_p$:

solve
$$(0,0) \in \mathbf{A}\mathbf{x} \times \mathbf{B}\mathbf{y} + \mathcal{N}_{\mathbf{V}}(\mathbf{x},\mathbf{y})$$
, where

$$\begin{cases} \mathbf{A} \colon \mathbf{H} \to 2^{\mathbf{H}} \colon \mathbf{x} \mapsto X_{i=1}^{m} A_{i} X_{i} \\ \mathbf{B} \colon \mathbf{G} \to 2^{\mathbf{G}} \colon \mathbf{x} \mapsto X_{k=1}^{p} B_{k} y_{k} \\ \mathbf{V} = \left\{ (\mathbf{x}, \mathbf{y}) \in \mathbf{H} \times \mathbf{G} \middle| (\forall k \in \{1, \dots, p\}) \ y_{k} = \sum_{i=1}^{m} L_{ki} X_{i} \right\} \end{cases}$$

Example: Nonsmooth, block-coordinate, primal-dual multivariate minimization

Let F be the set of solutions to the problem

$$\underset{x_1 \in H_1, \dots, x_m \in H_m}{\text{minimize}} \quad \sum_{i=1}^m f_i(x_i) + \sum_{k=1}^p g_k \left(\sum_{i=1}^m L_{ki} x_i \right)$$

where $f_i \in \Gamma_0(H_i)$, $g_k \in \Gamma_0(G_k)$, $L_{ki}: H_i \to G_k$ linear&bounded

Let F* be the set of solutions to the dual problem

$$\underset{\mathsf{V}_1 \in \mathsf{G}_1, \dots, \mathsf{V}_p \in \mathsf{G}_p}{\mathsf{minimize}} \ \sum_{i=1}^m \mathsf{f}_i^* \bigg(- \sum_{k=1}^p \mathsf{L}_{ki}^* \mathsf{V}_k \bigg) + \sum_{k=1}^p \mathsf{g}_k^* (\mathsf{V}_k)$$

Example: Nonsmooth, block-coordinate, primal-dual multivariate minimization

Algorithm: $\gamma \in [0, +\infty[$ and for n = 0, 1, ...

 $\mu_{n} \in]0,2[$ for i = 1,...,m $z_{i,n+1} = z_{i,n} + \varepsilon_{i,n} (Q_{i}(x_{1,n},...,x_{m,n},y_{1,n},...,y_{p,n}) + C_{i,n} - z_{i,n})$ $x_{i,n+1} = x_{i,n} + \varepsilon_{i,n} \mu_{n} (\text{prox}_{\gamma f_{i}}(2z_{i,n+1} - x_{i,n}) + \alpha_{i,n} - z_{i,n+1})$

Under the same conditions as before:

- $(z_n)_{n\in\mathbb{N}}$ converges weakly P-a.s. to an **F**-valued random variable
- $(\gamma^{-1}(\mathbf{w}_n \mathbf{y}_n))_{n \in \mathbb{N}}$ converges weakly P-a.s. to an \mathbf{F}^* -valued random variable

Double-layer random block-coordinate algorithms

- \mathbf{T}_n : $\mathbf{H} \to \mathbf{H}$: $\mathbf{x} \mapsto (\mathbf{T}_{i,n} \mathbf{x})_{1 \leqslant i \leqslant m}$ is α_n -averaged ($\mathrm{Id} + \alpha_n^{-1} (\mathbf{T}_n \mathrm{Id})$ is nonexpansive)
- **R**_n: $\mathbf{H} \to \mathbf{H}$ is β_n -averaged
- $\mathbf{F} = \bigcap_{n \in \mathbb{N}} \operatorname{Fix} \mathbf{T}_n \circ \mathbf{R}_n \neq \emptyset$
- **x**₀, $(\boldsymbol{a}_n)_{n\in\mathbb{N}}$, and $(\boldsymbol{b}_n)_{n\in\mathbb{N}}$ are **H**-valued random variables
- $(\varepsilon_n)_{n\in\mathbb{N}}$ identically distributed D-valued random variables with D = $\{0,1\}^m \setminus \{\mathbf{0}\}$
- Algorithm:

Double-layer random block-coordinate algorithms

Theorem

Set $(\forall n \in \mathbb{N}) \ \mathfrak{X}_n = \sigma(\mathbf{x}_0, \dots, \mathbf{x}_n)$ and $\mathcal{E}_n = \sigma(\boldsymbol{\varepsilon}_n)$. Assume that

- $\mathbf{w}(x_n)_{n\in\mathbb{N}}\subset\mathbf{F}$ P-a.s.
- For every $n \in \mathbb{N}$, \mathcal{E}_n and \mathfrak{X}_n are independent
- For every $i \in \{1, ..., m\}$, $p_i = P[\varepsilon_{i,0} = 1] > 0$

Then $(\mathbf{x}_n)_{n\in\mathbb{N}}$ converges weakly P-a.s. to an **F**-valued r.v.

Proof.

We achieve stochastic quasi-Fejér monotonicity w.r.t. the norm $|||\mathbf{x}|||^2 = \sum_{i=1}^m ||\mathbf{x}_i||^2/p_i$

Block-coordinate forward-backward splitting

The forward-backward splitting algorithm is important because:

- It models many problems of interest and tolerates errors:
 - PLC and Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., vol. 4, 2005.
- Applied to the dual problem of a strongly monotone/convex composite problem, it provides a primal-dual algorithm:
 - PLC, Dung, and Vū, Dualization of signal recovery problems, Set-Valued Var. Anal., vol. 18, 2010.
- Applied in a renormed product space, it covers/extends various methods (e.g., Chambolle-Pock):
 - Vũ, A splitting algorithm for dual monotone inclusions involving cocoercive operators, Adv. Comput. Math., vol. 38, 2013.
- It can be implemented with variable metrics:
 - PLC and Vū, Variable metric forward-backward splitting with applications to monotone inclusions in duality, Optimization, vol. 63, 2014.
- In minimization problems it provides Fejér-monotonicity, convergent sequences, and monotone minimizing sequences.

Block-coordinate forward-backward splitting

Let F be the set of solutions to the problem

find
$$x_1 \in H_1, \dots, x_m \in H_m$$
 such that
$$(\forall i \in \{1, \dots, m\}) \quad 0 \in A_i x_i + B_i(x_1, \dots, x_m)$$

where $A_i \colon H_i \to 2^{H_i}$ is maximally monotone and, for some $\vartheta > 0$,

$$(\forall \mathbf{x} \in \mathbf{H})(\forall \mathbf{y} \in \mathbf{H}) \quad \sum_{i=1}^{m} \langle \mathbf{x}_i - \mathbf{y}_i \mid \mathbf{B}_i \mathbf{x} - \mathbf{B}_i \mathbf{y} \rangle \geqslant \vartheta \sum_{i=1}^{m} \|\mathbf{B}_i \mathbf{x} - \mathbf{B}_i \mathbf{y}\|^2$$

Algorithm:

$$\begin{split} &\text{for } n = 0, 1, \dots \\ & \quad \varepsilon \leqslant \gamma_n \leqslant (2 - \varepsilon) \vartheta \\ & \text{for } i = 1, \dots, m \\ & \quad \left\lfloor \begin{array}{l} x_{i,n+1} = x_{i,n} + \varepsilon_{i,n} \big(J_{\gamma_n A_i} \big(x_{i,n} - \gamma_n \big(B_i(x_{1,n}, \dots, x_{m,n} \big) + C_{i,n} \big) \big) \\ & \quad + C_{i,n} - x_{i,n} \big) \\ \end{split}$$

Block-coordinate forward-backward splitting

- Under the same conditions as before almost sure weak convergence of $(\mathbf{x}_n)_{n \in \mathbb{N}}$ to a point in **F** is achieved.
- Proof: In double-layer theorem, set

A:
$$\mathbf{H} \to 2^{\mathbf{H}}$$
: $\mathbf{x} \mapsto X_{i=1}^m A_i X_i$

$$\blacksquare \mathbf{B} \colon \mathbf{H} \to \mathbf{H} \colon \mathbf{x} \mapsto (\mathsf{B}_i \mathbf{x})_{1 \leqslant i \leqslant m}$$

$$\blacksquare$$
 $\mathbf{I}_n = \mathbf{J}_{\gamma_n \mathbf{A}}$

$$\blacksquare$$
 $\mathbf{R}_n = \mathrm{Id} - \gamma_n \mathbf{B}$,

$$\blacksquare$$
 $\mathbf{F} = \operatorname{zer}(\mathbf{A} + \mathbf{B})$

$$lacksquare$$
 $oldsymbol{b}_n = -\gamma_n oldsymbol{c}_n$

$$\alpha_n = 1/2$$

$$\beta_n = \gamma_n/(2\vartheta)$$

Block-coordinate forward-backward splitting: convex minimization

Let F be the set of solutions to the problem

$$\underset{x_1 \in H_1, \dots, x_m \in H_m}{\text{minimize}} \ \sum_{i=1}^m f_i(x_i) + \sum_{k=1}^p g_k\bigg(\sum_{i=1}^m L_{ki}x_i\bigg)$$

where $f_i \in \Gamma_0(H_i)$, $g_k : G_k \to \mathbb{R}$ differentiable, convex, $\nabla g_k \to \mathbb{R}$

Let

$$\vartheta = \left(\sum_{k=1}^{p} \tau_{k} \left\| \sum_{i=1}^{m} \mathsf{L}_{ki} \mathsf{L}_{ki}^{*} \right\| \right)^{-1}$$

Algorithm:

for
$$n = 0, 1, ...$$

for $i = 1, ..., m$

$$\begin{bmatrix} r_{i,n} = \varepsilon_{i,n}(X_{i,n} - \gamma_n(\sum_{k=1}^{p} L_{kl}^* \nabla g_k(\sum_{j=1}^{m} L_{kl} X_{j,n}) + c_{i,n})) \\ X_{i,n+1} = X_{i,n} + \varepsilon_{i,n} \lambda_n(\operatorname{prox}_{\gamma_n f_i} r_{i,n} + \alpha_{i,n} - X_{i,n}). \end{bmatrix}$$

References

- PLC and J.-C. Pesquet, Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping, SIAM J. Optim., 2015 (arxiv, April 2014)
- H. H. Bauschke and PLC, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York, 2011. (2nd ed., Fall 2015)