2014 级研究生《信号分析》试题

$$-\cdot \Leftrightarrow \tilde{\delta}_{T}(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT) , \qquad \tilde{\delta}_{\tau}(t) = \sum_{n=-\infty}^{\infty} \delta(t - n\tau) ,$$

$$\int_{-\infty}^{\infty} |f(t)| dt < \infty ,$$

 $T/\tau = N$, N 为大于 1 的整数,且 $\tilde{\delta}_T(t)$ 、 $\tilde{\delta}_\tau(t)$ 和 f(t) 的傅立叶变换,分别 用 $\tilde{\Delta}_T(\omega)$ 、 $\tilde{\Delta}_\tau(\omega)$ 和 $F(\omega)$ 表示, 试分析论证 $(f(t)\tilde{\delta}_\tau(t))*\tilde{\delta}_T(t)$ 和 $(F(\omega)\tilde{\Delta}_T(\omega))*\tilde{\Delta}_\tau(\omega)$ 的关系,这里*表示卷积。

二、 设 $\{\varphi_i(t), i=0,\pm1,\pm2,...\}$ 是 $L^2(R)$ 空间的完备正交规范化正交基集,对于 $f(t) \in L^2(R)$ 和 $g(t) \in L^2(R)$,证明

$$\langle f(t), g(t) \rangle = \sum_{i=-\infty}^{\infty} \langle f(t), \varphi_i(t) \rangle \langle \varphi_i(t), g(t) \rangle$$

式中 $\langle f(t), g(t) \rangle = \int_{\infty}^{\infty} f(t)g^{*}(t)dt$, 上注标*表示复共轭。

三、已知 $\mathbf{A} = \{a_{ij}\}_{m \times n}$ 是列线性无关的 $m \times n$ (m > n) 阶实矩阵, \mathbf{x} 和 \mathbf{b} 分别 n 维列向量和 m 维列向量,试用框架算子理论解释线性方程组的最小二乘解 $(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{b}$ 。提示可以将 $\mathbf{A}\mathbf{X}$ 的行 $\sum_{i=1}^n a_{ij}x_j$ 视为内积。

四、设 $\{\phi_i\}_{i\in\Gamma}$ 是内积信号空间S的线性子空间V的正交规范化基集,对S中的任意信号f,求其在V中的最佳估计 \hat{f} ,并证明 $\hat{f}\perp f-\hat{f}$ 五、设B是一个带限信号空间,其带宽为 2σ ,请给出该信号空间的正交规范基。