Comparison Theorems for Practical Slice Sampling

University of Bristol, Statistics Seminar, 8 March 2024

joint work with: A.Q. Wang (Warwick), D. Rudolf (Passau), B. Sprungk (Freiberg)

Markov chain Monte Carlo

- "target" distribution π on \mathbf{R}^d
- want samples from π to answer questions
- MCMC: use iterative strategy to obtain approximate samples

$$X_0 \to X_1 \to X_2 \to \cdots \to X_T \stackrel{d}{pprox} \pi$$

$$\frac{1}{T} \sum_{0 < t \leqslant T} f(X_t) \approx \int \pi(\mathrm{d}x) f(x) =: \pi(f)$$

Some challenges in MCMC

- designing effective Markov kernels
- obtaining and using useful information about π
- tuning of algorithm hyperparameters (step-size, etc.)

Slice Sampling for MCMC

- assume that we can only compute density of π (up to a constant)
- trick: sampling from π is equivalent to sampling *uniformly* under its graph
- mathematically: $\Pi(dx, dt) = \mathbf{1} \left[0 \le t \le \pi(x)\right] dx dt$

Slice Sampling

Define a Markov chain that samples uniformly from the area beneath the curve. This means that we need to introduce a "height" into the MCMC sampler.

(from slides of Ryan Adams)

Slice Sampling: Algorithm

- want to generate sequence $\{(X_n, T_n) : n \geqslant 1\}$
- so,
 - given $X_{n-1} = x$, sample $T_n \sim \text{Unif}\left(\left[0, \pi(x)\right]\right)$
 - (sample a height)
 - given $T_n = t$, sample $X_n \sim \text{Unif}\left(\{x : \pi(x) \ge t\}\right)$
 - (sample uniformly 'across' this height)

Slice Sampling: Properties 1

- under mild conditions, gives an ergodic, π -invariant Markov chain
 - fit for purpose in MCMC
- under still mild conditions, is even exponentially convergent
 - bonus results, e.g. Markov chain CLT
 - surprisingly hard to break

Slice Sampling: Properties 2

- for specific π , strong quantitative theory available
 - π spherically-symmetric, log-concave \rightsquigarrow 'decorrelation time' \sim dim
 - π multivariate Student-t \leadsto 'decorrelation time' \sim dim²
 - (other explicit examples can be studied)
- noteworthy: barely slowed down by heavy tails; rare property

Implementing Slice Sampling

"given $T_n = t$, sample $X_n \sim \text{Unif}\left(\{x: \pi(x) \geqslant t\}\right)$ "

- Sam Power, Slide 7

Life on the Slice

- write $G(t) = \{x : \pi(x) \ge t\}$ for the super-level set ('slice')
- write $\nu_t = \text{Unif}\left(\mathbf{G}(t)\right)$
- if G(t) is a { ball, box, simplex, ... }, then sampling from ν_t is fine
- if not, then we have a new problem

Hybrid Slice Sampling

- instead of
 - "given $T_n = t$, sample $X_n \sim \text{Unif}\left(\{x : \pi(x) \ge t\}\right)$ "
- do
 - given $X_{n-1} = x$, $T_n = t$,
 - sample $X_n \sim \text{MCMC}\left(x \to x'; \text{target} = \nu_t\right)$
 - (call this Markov kernel H_t)

Properties of HSS

- this new algorithm ...
 - is still implementable
 - still has the right long-time behaviour
 - is not as (statistically) efficient as the 'ideal' Slice Sampler
- how do we quantify the cost of approximation?
 - Markov chain comparison theory

Convergence of Markov Chains

- many possible approaches
- one approach:
 - let P denote the Markov kernel of interest
 - define $P^n f(x) = \mathbf{E} \left[f(X_n) \mid X_0 = x \right]$
 - by ergodicity, expect that $P^n f(x) \to \pi(f)$ as $n \to \infty$, for all x
 - \leadsto study how $\operatorname{var}_{\pi}\left(P^{n}f\right)$ tends to 0 as $n\to\infty$,

Variance and Energy

• define 'energy' of f as

$$\mathscr{E}_{P}(f) = \int \pi (dx) P(x, dy) \cdot \frac{\left[f(x) - f(y)\right]^{2}}{2}$$

- fact: for (reversible, positive) P,
 - if $\mathscr{E}_P(f) \geqslant \gamma \cdot \mathrm{var}_{\pi}(f)$ for all f,
 - then $\operatorname{var}_{\pi}\left(P^{n}f\right) \leqslant \left(1-\gamma\right)^{2\cdot n} \cdot \operatorname{var}_{\pi}\left(f\right)$ for all n, f

Energy and Comparisons

- (rough) interpretation:
 - if $\mathscr{E}_P(f) \geqslant \gamma \cdot \operatorname{var}_{\pi}(f)$,
 - then it takes γ^{-1} steps of P to get an independent (\approx) sample
- extension: let P,Q be two positive, π -reversible kernels
 - if $\mathscr{E}_P(f) \geqslant \delta \cdot \mathscr{E}_Q(f)$,
 - then taking δ^{-1} steps of P is as useful as taking one step of Q

Back to Hybrid Slice Sampling

- let U = Ideal Slice Sampling, H = Hybrid Slice Sampling
- to quantify how $var_{\pi}(H^n f)$ tends to 0, we will study
 - how $var_{\pi}\left(U^{n}f\right)$ tends to 0, and
 - ullet how well H approximates U
 - (rather, how well H_t approximates ν_t)

Realities of Comparison Theory

- ullet to say that H gives a good Markov chain, we are arguing that
 - ullet U gives a good Markov chain, and
 - ullet H is a good approximation of U
- ullet in principle, H could fail to approximate U well, but still work well
 - our analysis would fail to capture this

Some Warm-Up Results

- in complete generality, $\mathscr{E}_U(f) \geqslant \mathscr{E}_H(f)$
 - wall else being equal, always prefer ideal chain
- for experts: any Metropolis(-Hastings) kernel can be written as such an ${\cal H}$
 - A all such chains are automatically dominated by (ideal) SS
- ullet we are interested in when H is almost as good as U

A Generic Result

• suppose that for all heights t, there is $\gamma_t > 0$ such that

$$\mathscr{E}_{H_t}(f) \geqslant \gamma_t \cdot \operatorname{var}_{\nu_t}(f),$$

and that
$$\gamma_H := \inf_{t \in T} \gamma_t > 0$$

it then holds that

$$\mathscr{E}_H(f) \geqslant \gamma_H \cdot \mathscr{E}_U(f),$$

i.e. HSS is only a factor γ_H worse than ideal SS

• if U converges exponentially, then so does H; rate only degrades by factor γ_H

On the Slower-than-Exponential Case

- for simplicity, in today's talk, I focus on the setting in which all chains under consideration converge to equilibrium at an <u>exponential</u> rate
- in fact, our theoretical framework also handles very naturally the case of slower-than-exponential convergence
- e.g. if $\gamma_H=0$, we can still obtain quite explicit convergence rate estimates for H, depending on how badly $\gamma_t \to 0$ in suitable limits

Case Study: Hit-and-Run on the Slice

- simple method for sampling uniform distributions on convex body G
- at $X_{n-1} = x$,
 - sample $U_n \sim \text{Unif}\left(\mathbb{S}^{d-1}\right)$
 - look at $(x + U_n \mathbf{R}) \cap \mathbf{G}$
 - move uniformly along this line segment
 - call new location X_n

(diagram from "optGpSampler" paper)

Convergence of Hit-and-Run

- the following is a theorem of Lovász-Vempala from 2004
- let $G \subset \mathbf{R}^d$ be convex, containing a ball of radius r_G , and contained in a ball of radius R_G ; write $\kappa_G := R_G/r_G \geqslant 1$.
- Then, for some universal c > 0, it holds that

$$\mathscr{E}_{H\&R}(f) \ge c \cdot d^{-2} \cdot \kappa_{G}^{-2} \cdot \text{var}_{\pi}(f).$$

• high dimension is hard, inhomogeneity of scales is hard

Hit-and-Run Hybrid Slice Sampling

• if π has convex super-level sets, then results of LV give us a bound

$$\mathscr{E}_{H_t}(f) \geqslant \gamma_t \cdot \text{var}_{\nu_t}(f)$$

where
$$\gamma_t = c \cdot d^{-2} \cdot \kappa_{G(t)}^{-2}$$

• so, convergence will be good if super-level sets $\mathbf{G}(t)$ are well-conditioned

Well-Conditioned Level Sets

- let $V: \mathbf{R}^d o \mathbf{R}$ be m-strongly convex and L-smooth
 - i.e. eigs $(\operatorname{Hess} V(x)) \in [m, L]$
 - write $\kappa_V = L/m \geqslant 1$
- let density π have the form $\pi(x) = \operatorname{decreasing} (V(x))$
- then for all t, it holds that $\kappa_{\mathrm{G}(t)} \leqslant \sqrt{\kappa_{V}}$.

Some Applications

- if π has this form, then $\mathcal{E}_H(f) \gtrsim d^{-2} \cdot \kappa_V^{-1} \cdot \mathcal{E}_U(f)$
 - only worse than ideal SS by factor $d^2 \cdot \kappa_V$
- if e.g. $\pi \propto \exp(-V)$,
 - combine with works on ideal SS, \leadsto decorrelation time of $\lesssim d^3 \cdot \kappa_V$
- if e.g. π is multivariate Student-t, then $\kappa_V=1$, $\gamma_H\lesssim d^2$
 - combine with earlier work, \rightsquigarrow decorrelation time of $\lesssim d^4$

Some Recap

- slice sampling performs well in theory, and in practice (when possible)
- hybrid slice sampling performs well in practice,
 - and we provide here some theory to support this
- ullet comparison principles: i) is U good?, ii) is H similar enough to U?
- generally, $H \leq U$,
 - ... but if $H_t \geq \gamma_H \cdot \nu_t$, then $H \geq \gamma_H \cdot U$.

Some Closing Remarks

- today: exponential rates, Hit-and-Run on the slice
- in the paper: slower-than-exponential rates, other examples of on-slice kernels, 'generalised' slice sampling with different reference measures,
- theoretical framework is very robust to which on-slice kernels are used
- actually, theoretical framework is much more general than slice sampling

Advanced Applications

• let $1 \le p_2 \le p_1$, $1 \le q_1 \le q_2$, and suppose that

$$||x|| \sim 0^+ \implies ||x||^{p_1} \lesssim V(x) \lesssim ||x||^{p_2}$$

$$\|x\| \sim \infty \implies \|x\|^{q_1} \lesssim V(x) \lesssim \|x\|^{q_2}$$

- if $p_1=p_2$, $q_1\neq q_2$, then convergence rate decays quasi-exponentially
- if $p_1 \neq p_2$, then convergence rate decays only polynomially
- message: in this case, bulk behaviour matters more than tail behaviour

$$\kappa_{\mathsf{G}}(t) \leq \begin{cases} c_{\kappa}^{-} \cdot \left(\log\left(\frac{1}{t}\right)\right)^{\theta} & 0 < t \leq \exp\left(-1\right); \\ c_{\kappa}^{+} \cdot \left(\log\left(\frac{1}{t}\right)\right)^{-\vartheta} & \exp\left(-1\right) \leq t < 1; \end{cases}$$

with $\theta = \frac{1}{q_1} - \frac{1}{q_2}$, $\vartheta = \frac{1}{p_2} - \frac{1}{p_1}$, and such that the mass function satisfies

$$m(t) \le c_m \cdot \left(\log\left(\frac{1}{t}\right)\right)^{d/r}$$

with $r = q_1$. By application of Proposition 40, we see that for $p_1 = p_2$, there holds a WPI with

$$\beta(s) \le c^{(1)} \cdot \exp\left(-c^{(2)} \cdot s^{\frac{q_1 \cdot q_1}{q_2 - q_1}}\right),$$

whereas for $p_1 > p_2$, one instead obtains a WPI with

$$\beta(s) \le c^{(3)} \cdot s^{-\left(1 + \frac{d}{q_1}\right) \cdot \frac{p_1 \cdot p_2}{p_1 - p_2}}.$$

Weak Poincaré Inequalities

Definition 1. We say that a μ -reversible, positive transition kernel P satisfies a weak Poincaré inequality (WPI) if for all $f \in L_0^2(\mu)$ we have

$$||f||_{\mu}^{2} \le s \cdot \mathcal{E}_{\mu}(P, f) + \beta(s) \cdot ||f||_{\text{osc}}^{2},$$
 (3)

where $\beta \colon (0, \infty) \to [0, \infty)$ is a decreasing function with $\lim_{s \to \infty} \beta(s) = 0$.

Assumption 1. We assume that for Lebesgue-almost every $t \in T$, the kernel H_t is ν_t -reversible, positive and satisfies a WPI, i.e. there is a measurable function $\beta: (0,\infty) \times T \to [0,\infty)$ with $\beta(\cdot,t)$ satisfying the conditions in Definition 1 for each $t \in T$, such that for each s > 0, $f \in L^2(\nu_t)$,

$$\operatorname{Var}_{\nu_t}(f) \le s \cdot \mathcal{E}_{\nu_t} (H_t, f) + \beta (s, t) \cdot ||f||_{\operatorname{osc}}^2.$$
 (8)

Theorem 11. Under Assumption 1, we have the following comparisons for U and H given in (6) and (7):

For all $f \in L^2(\pi)$,

$$\mathcal{E}(H,f) \le \mathcal{E}(U,f),$$
 (9)

and conversely, for all s > 0, $f \in L^2(\pi)$,

$$\mathcal{E}(U, f) \le s \cdot \mathcal{E}(H, f) + \beta(s) \cdot ||f||_{\text{osc}}^{2}, \tag{10}$$

where $\beta:(0,\infty)\to[0,\infty)$ is given by

$$\beta(s) := c^{-1} \cdot \int_{\mathsf{T}} \beta(s, t) \cdot m(t) dt.$$

Furthermore, β satisfies the conditions for a WPI in Definition 1.

Metropolis Chains as HSS

Example 23. When $\nu = \text{Leb}$ and Q is a symmetric, ν -reversible kernel, then we can define the Random Walk Metropolis (RWM) kernel,

$$\mathsf{RWM}(\pi, Q) := \mathsf{Metropolis}(\pi, \mathsf{Leb}, Q)$$
.

It is conventional to work with $Q_{\sigma}(x, dy) = \mathcal{N}(dy \mid x, \sigma^2 \cdot I_d)$ for some stepsize $\sigma > 0$; we will work under this assumption going forward. See also Section 6.3.2 of [29].

Example 24. When ν is a sufficiently-tractable probability measure, we may take $Q(x,\cdot) = \nu$ directly, independently of x. We can thus define the Independent Metropolis-Hastings (IMH) kernel with 'proposal' ν ; see [29, Section 6.3.1]:

$$\mathsf{IMH}(\pi,\nu) := \mathsf{Metropolis}\left(\pi,\nu,\nu\right).$$

Example 25. When $\nu = \gamma_{\mathsf{m},\mathsf{C}}$ is a Gaussian measure with mean m and covariance operator C , then one may take $\rho, \eta \in (0,1)$ such that $\rho^2 + \eta^2 = 1$ and define the autoregressive proposal $Q_{\eta}(x,\mathrm{d}y) = \mathcal{N}\left(\mathrm{d}y \mid \mathsf{m} + \rho \cdot (x - \mathsf{m}), \eta \cdot \mathsf{C}\right)$. The resulting Metropolis chain is known as the Preconditioned Crank-Nicolson (pCN) kernel with Gaussian reference $\gamma_{\mathsf{m},\mathsf{C}}$ and step-size η ; see e.g. [9]:

$$\mathsf{pCN}(\pi,\mathsf{m},\mathsf{C},\eta) := \mathsf{Metropolis}\left(\pi,\gamma_{\mathsf{m},\mathsf{C}},Q_{\eta}\right).$$