Bitcoin Price Prediction, Historical Analysis and Future Trends

June 23, 2024

1 Introduction

This project aims to provide insights into Bitcoin price dynamics and equip investors and traders with tools to make informed decisions in the cryptocurrency market.

Key Objectives:

36863600

- Explore the historical data of Bitcoin prices spanning several years.
- Visualize trends and patterns in Bitcoin price movements.
- Identify potential bullish trends and their underlying reasons.
- Forecast future Bitcoin prices using time-series forecasting methods.
- Develop a machine learning model to generate buy/sell signals based on historical price data.

1.0.1 Importing necessary libraries and uploading the data

```
[1]: # Importing necessary libraries
     import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
[2]: # Loading the dataset
     file path = 'BTC-USD.csv'
     df = pd.read_csv(file_path)
[3]:
    df.head()
[3]:
              Date
                          Open
                                                    Low
                                                              Close
                                                                      Adj Close
                                      High
        2014-09-17
                    465.864014
                                468.174011
                                             452.421997
                                                         457.334015
                                                                     457.334015
     1 2014-09-18
                    456.859985
                                456.859985
                                             413.104004
                                                         424.440002
                                                                     424.440002
     2 2014-09-19
                    424.102997
                                427.834991
                                             384.532013
                                                         394.795990
                                                                     394.795990
     3 2014-09-20
                    394.673004
                                423.295990
                                             389.882996
                                                         408.903992
                                                                     408.903992
     4 2014-09-21
                    408.084991
                                412.425995
                                             393.181000
                                                         398.821014
                                                                     398.821014
          Volume
       21056800
     0
     1 34483200
     2 37919700
```

4 26580100

```
[4]: # Checking for missing values
     print(df.isnull().sum())
    Date
                  0
                  0
    Open
    High
                  0
    Low
                  0
                  0
    Close
    Adj Close
                  0
                  0
    Volume
    dtype: int64
[5]:
    df.describe()
[5]:
                                                                           Adj Close
                     Open
                                    High
                                                    Low
                                                                 Close
             2788.000000
                                                                         2788.000000
                            2788.000000
                                           2788.000000
                                                          2788.000000
     count
            12114.051628
                           12432.075536
                                          11764.920824
                                                         12126.416572
                                                                        12126.416572
     mean
            16612.538889
                           17044.777808
                                          16119.346993
                                                         16615.381435
                                                                        16615.381435
     std
     min
              176.897003
                             211.731003
                                            171.509995
                                                           178.102997
                                                                          178.102997
     25%
              612.573471
                             618.876495
                                            609.665756
                                                           613.742477
                                                                          613.742477
     50%
                                                          6466.239990
                                                                         6466.239990
             6457.810059
                            6549.650147
                                           6353.985107
     75%
            11024.040039
                           11388.611572
                                          10722.320557
                                                         11056.325195
                                                                        11056.325195
            67549.734375
                           68789.625000
                                          66382.062500
                                                         67566.828125
                                                                        67566.828125
     max
                   Volume
     count
            2.788000e+03
            1.504640e+10
     mean
            1.988339e+10
     std
            5.914570e+06
     min
     25%
            8.317548e+07
     50%
            5.401853e+09
     75%
            2.558002e+10
            3.509679e+11
     max
```

1.1 Calculating Percent Change

In this notebook I calculate the percent change in Bitcoin's closing price and prepare the data by dropping rows with NaN values resulting from this calculation.

```
[6]: df['Percent Change'] = df['Close'].pct_change() * 100

df.head()
```

[6]: Date Open High Low Close Adj Close \
0 2014-09-17 465.864014 468.174011 452.421997 457.334015 457.334015

```
1 2014-09-18
                   456.859985
                              456.859985
                                          413.104004 424.440002 424.440002
    2 2014-09-19
                   424.102997
                               427.834991
                                          384.532013 394.795990
                                                                  394.795990
    3 2014-09-20
                   394.673004
                               423.295990
                                          389.882996 408.903992 408.903992
    4 2014-09-21
                   408.084991 412.425995
                                          393.181000 398.821014
                                                                  398.821014
         Volume Percent Change
    0 21056800
                            NaN
    1 34483200
                      -7.192558
    2 37919700
                      -6.984264
    3 36863600
                       3.573492
    4 26580100
                      -2.465855
[7]: # Droping the first row as it will have NaN value for percent change
    df = df.dropna(subset=['Percent Change'])
    df.head()
[7]:
                         Open
                                                           Close
                                                                   Adj Close \
             Date
                                     High
                                                 Low
       2014-09-18
                   456.859985
                              456.859985
                                          413.104004 424.440002 424.440002
    2 2014-09-19
                   424.102997
                                                                  394.795990
                               427.834991
                                          384.532013 394.795990
    3 2014-09-20
                   394.673004
                              423.295990 389.882996 408.903992 408.903992
    4 2014-09-21
                   408.084991
                              412.425995 393.181000 398.821014 398.821014
    5 2014-09-22 399.100006 406.915985 397.130005 402.152008 402.152008
         Volume Percent Change
    1 34483200
                      -7.192558
    2 37919700
                      -6.984264
    3 36863600
                       3.573492
    4 26580100
                      -2.465855
    5 24127600
                       0.835210
[8]: # Ensuring the date column is in datetime format
    df['Date'] = pd.to_datetime(df['Date'])
[9]: # Setting the date column as the index
    df.set_index('Date', inplace=True)
```

1.1.1 Plotting High and Low Values Across Years

In this notebook I will visualize Bitcoin's high and low values across years to observe their trends.

```
[10]: plt.figure(figsize=(14, 7))
   plt.plot(df['High'], label='High', color='g')
   plt.plot(df['Low'], label='Low', color='r')
   plt.title('BTC High and Low Values Across Years')
   plt.xlabel('Year')
   plt.ylabel('Price (USD)')
```

```
plt.legend()
plt.grid(True)
plt.show()
```


1.2 Analyzing Trends Based on Days of the Week

In this notebook I analyze Bitcoin trends based on the days of the week to identify patterns and average percent changes.

```
[12]: # Calculating average percent change for each day of the week
avg_percent_change_by_day = df.groupby('Day of Week Name')['Percent Change'].

→ mean()

# Sorting the days of the week for better visualization
avg_percent_change_by_day = avg_percent_change_by_day.loc[['Monday', 'Tuesday',

→ 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']]
```

1.3 Visualizing Average Percent Change by Day of the Week

```
[13]: plt.figure(figsize=(10, 5))
    avg_percent_change_by_day.plot(kind='bar', color='skyblue')
    plt.title('Average Percent Change by Day of the Week')
    plt.xlabel('Day of the Week')
    plt.ylabel('Average Percent Change (%)')
    plt.grid(True)
    plt.show()
```


1.4 Analyzing Uptrends and Downtrends by Day of the Week

```
[15]: uptrend_frequency = uptrend_frequency.reindex(['Monday', 'Tuesday', \_ \to 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'])

downtrend_frequency = downtrend_frequency.reindex(['Monday', 'Tuesday', \_ \to 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'])
```

1.5 Visualizing Frequency of Uptrends and Downtrends by Day of the Week

1.6 Identifying Dramatic Bullish Trends

```
[17]: threshold = 10

[18]: bullish_days = df[df['Percent Change'] > threshold]
   bullish_days
```

[18]:	Open	High	Low	Close	\
Date	0.07 0.040.05	400 747007	0.07 00.4005	400 544005	
2014-11-12	367.984985	429.717987	367.984985	423.561005	
2015-01-15	176.897003	229.067001	176.897003	209.843994	
2015-11-02	325.941986	365.359985	323.209015	361.188995	
2015-11-03	361.872986	417.899994	357.647003	403.416992	
2016-01-20	379.739990	425.266998	376.598999	420.230011	
2016-05-28	473.028992	533.473022	472.699005	530.039978	
2016-06-12	609.684021	684.843994	607.039001	672.783997	
2016-06-16	696.523010	773.721985	696.523010	766.307983	
2017-01-04	1044.400024	1159.420044	1044.400024	1154.729980	
2017-07-17	1932.619995	2230.489990	1932.619995	2228.409912	
2017-07-20	2269.889893	2900.699951	2269.889893	2817.600098	
2017-08-05	2897.629883	3290.010010	2874.830078	3252.909912	
2017-09-15	3166.300049	3733.449951	2946.620117	3637.520020	
2017-09-18	3591.090088	4079.229980	3591.090088	4065.199951	
2017-10-12	4829.580078	5446.910156	4822.000000	5446.910156	
2017-11-13	5938.250000	6811.189941	5844.290039	6559.490234	
2017-11-15	6634.759766	7342.250000	6634.759766	7315.540039	
2017-12-06	11923.400391	14369.099609	11923.400391	14291.500000	
2017-12-07	14266.099609	17899.699219	14057.299805	17899.699219	
2017-12-16	17760.300781	19716.699219	17515.300781	19497.400391	
2017-12-26	14036.599609	16461.199219	14028.900391	16099.799805	
2018-01-05	15477.200195	17705.199219	15202.799805	17429.500000	
2018-01-20	11656.200195	13103.000000	11656.200195	12899.200195	
2018-02-06	7051.750000	7850.700195	6048.259766	7754.000000	
2018-02-14	8599.919922	9518.540039	8599.919922	9494.629883	
2018-04-12	6955.379883	7899.229980	6806.509766	7889.250000	
2018-11-28	3822.469971	4385.899902	3822.469971	4257.419922	
2018-12-20	3742.195068	4191.228516	3728.974609	4134.441406	
2019-04-02	4156.919434	4905.954590	4155.316895	4879.877930	
2019-05-11	6379.666992	7333.002930	6375.698730	7204.771484	
2019-05-13	6971.178223	8047.413086	6898.282227	7814.915039	
2019-05-19	7267.962891	8261.941406	7267.962891	8197.689453	
2019-06-26	11778.581055	13796.489258	11755.597656	13016.231445	
2019-06-28	11162.167969	12445.174805	10914.495117	12407.332031	
2019-07-03	10818.156250	11968.078125	10818.156250	11961.269531	
2019-07-18	9698.502930	10736.842773	9376.798828	10666.482422	
2019-10-25	7490.703125	8691.540039	7479.984375	8660.700195	
2020-03-13	5017.831055	5838.114746	4106.980957	5563.707031	
2020-03-19	5245.416504	6329.735840	5236.968750	6191.192871	
2020-03-23	5831.374512	6443.934570	5785.004395	6416.314941	
2020-04-29	7806.712402	8871.753906	7786.049316	8801.038086	
2020-07-27	9905.217773	11298.221680	9903.969727	10990.873047	
2020-11-05	14133.733398	15706.404297	14102.088867	15579.848633	
2021-01-13	33915.121094	37599.960938	32584.667969	37316.359375	
2021-02-08	38886.828125	46203.929688	38076.324219	46196.464844	

2021-04-26	49077.792969	54288.003906	48852.796875 54021	.753906
2021-05-20	36753.667969	42462.984375	35050.617188 40782	.738281
2021-05-24	34700.363281	39835.140625	34551.082031 38705	.980469
2021-06-09	33416.976563	37537.371094	32475.865234 37345	.121094
2022-02-04	37149.265625	41527.785156	37093.628906 41500	.875000
2022-02-28	37706.000000	43760.457031	37518.214844 43193	.234375
	Adj Close	Volume	Percent Change Day	of Week \
Date	· ·		Ç V	
2014-11-12	423.561005	45783200	15.193570	2
2015-01-15	209.843994	81773504	17.821709	3
2015-11-02	361.188995	101918000	10.987888	0
2015-11-03	403.416992	206162000	11.691385	1
2016-01-20	420.230011	121720000	10.543504	2
2016-05-28	530.039978	181199008	11.949375	5
2016-06-12	672.783997	277084992	10.887435	6
2016-06-16	766.307983	271633984	10.344449	3
2017-01-04	1154.729980	344945984	10.623277	2
2017-07-17	2228.409912	1201760000	15.472426	0
2017-07-20	2817.600098	2249260032	23.936087	3
2017-08-05	3252.909912	1945699968	12.328508	5
2017-09-15	3637.520020	4148069888	15.295649	4
2017-09-18	4065.199951	1943209984	13.461798	0
2017-10-12	5446.910156	2791610112	12.854714	3
2017-11-13	6559.490234	6263249920	10.242240	0
2017-11-15	7315.540039	4200880128	10.244359	2
2017-12-06	14291.500000	12656300032	19.928334	2
2017-12-07	17899.699219	17950699520	25.247169	3
2017-12-16	19497.400391	12740599808	10.111877	5
2017-12-26	16099.799805	13454300160	14.780490	1
2018-01-05	17429.500000	23840899072	11.733293	4
2018-01-20	12899.200195	11801700352	11.129105	5
2018-02-06	7754.000000	13999800320	11.483810	1
2018-02-14	9494.629883	7909819904	10.424378	2
2018-04-12	7889.250000	8906250240	13.215957	3
2018-11-28	4257.419922	7280280000	11.429782	2
2018-12-20	4134.441406	8927129279	10.370951	3
2019-04-02	4879.877930	21315047816	17.356014	1
2019-05-11	7204.771484	28867562329	12.947827	5
2019-05-13	7814.915039	28677672181	12.084030	0
2019-05-19	8197.689453	25902422040	12.741782	6
2019-06-26	13016.231445	45105733173	10.392020	2
2019-06-28	12407.332031	35087757766	10.950072	4
2019-07-03	11961.269531	30796494294	10.735293	2
2019-07-18	10666.482422	25187024648	10.034036	3
2019-10-25	8660.700195	28705065488	15.576342	4
2020-03-13	5563.707031	74156772075	11.928067	4

2020-03-19	6191.192871	51000731797	18.187756	3
2020-03-23	6416.314941	46491916000	10.052049	0
2020-04-29	8801.038086	60201052203	12.731805	2
2020-07-27	10990.873047	35359749590	10.961007	0
2020-11-05	15579.848633	40856321439	10.231863	3
2021-01-13	37316.359375	69364315979	10.003250	2
2021-02-08	46196.464844	101467222687	18.746474	0
2021-04-26	54021.753906	58284039825	10.238907	0
2021-05-20	40782.738281	88281943359	10.216344	3
2021-05-24	38705.980469	67359584098	11.318184	0
2021-06-09	37345.121094	53972919008	11.569118	2
2022-02-04	41500.875000	29412210792	11.697807	4
2022-02-28	43193.234375	35690014104	14.541184	0

Day of Week Name

Date	
2014-11-12	Wednesday
2015-01-15	Thursday
2015-11-02	Monday
2015-11-03	Tuesday
2016-01-20	Wednesday
2016-05-28	Saturday
2016-06-12	Sunday
2016-06-16	Thursday
2017-01-04	Wednesday
2017-07-17	Monday
2017-07-20	Thursday
2017-08-05	Saturday
2017-09-15	Friday
2017-09-18	Monday
2017-10-12	Thursday
2017-11-13	Monday
2017-11-15	Wednesday
2017-12-06	Wednesday
2017-12-07	Thursday
2017-12-16	Saturday
2017-12-26	Tuesday
2018-01-05	Friday
2018-01-20	Saturday
2018-02-06	Tuesday
2018-02-14	Wednesday
2018-04-12	Thursday
2018-11-28	Wednesday
2018-12-20	Thursday
2019-04-02	Tuesday
0040 05 44	C-+
2019-05-11	Saturday

2019-05-19	Sunday
2019-06-26	Wednesday
2019-06-28	Friday
2019-07-03	Wednesday
2019-07-18	Thursday
2019-10-25	Friday
2020-03-13	Friday
2020-03-19	Thursday
2020-03-23	Monday
2020-04-29	Wednesday
2020-07-27	Monday
2020-11-05	Thursday
2021-01-13	Wednesday
2021-02-08	Monday
2021-04-26	Monday
2021-05-20	Thursday
2021-05-24	Monday
2021-06-09	Wednesday
2022-02-04	Friday
2022-02-28	Monday

1.7 Examining Context for Dramatic Bullish Days

```
[19]: for index, row in bullish_days.head(5).iterrows():
    print(f"Date: {index}")
    print(f"Percent Change: {row['Percent Change']:.2f}%")
    print(f"Close Price: {row['Close']}")
    print(f"High: {row['High']}")
    print(f"Low: {row['Low']}")
    print()
```

Date: 2014-11-12 00:00:00 Percent Change: 15.19%

Close Price: 423.56100499999997

High: 429.717987 Low: 367.984985

Date: 2015-01-15 00:00:00 Percent Change: 17.82%

Close Price: 209.8439939999998

High: 229.0670009999998

Low: 176.897003

Date: 2015-11-02 00:00:00 Percent Change: 10.99%

Close Price: 361.18899500000003

High: 365.359985

Low: 323.20901499999997 Date: 2015-11-03 00:00:00 Percent Change: 11.69% Close Price: 403.416992 High: 417.899994 Low: 357.647003 Date: 2016-01-20 00:00:00 Percent Change: 10.54% Close Price: 420.23001100000005 High: 425.26699800000006 Low: 376.59899900000005 [20]: # Printing out the dates for cross-referencing with historical news articles print("Significant Bullish Days for Manual Research:") for date in bullish_days.index[:10]: print(date) Significant Bullish Days for Manual Research: 2014-11-12 00:00:00 2015-01-15 00:00:00 2015-11-02 00:00:00 2015-11-03 00:00:00 2016-01-20 00:00:00 2016-05-28 00:00:00 2016-06-12 00:00:00 2016-06-16 00:00:00 2017-01-04 00:00:00 2017-07-17 00:00:00 1.8 Time-Series Forecasting with ARIMA [21]: from statsmodels.tsa.arima_model import ARIMA [22]: df = df.sort_index() [23]: ts_data = df['Close'] 1.9 Spliting the data into training and test sets (80-20 split) [24]: train_size = int(len(ts_data) * 0.8) train, test = ts_data[:train_size], ts_data[train_size:] [25]: print(f"Training set length: {len(train)}") print(f"Test set length: {len(test)}")

Training set length: 2229 Test set length: 558

[26]: # Fiting the ARIMA model model = ARIMA(train, order=(5, 1, 0)) model_fit = model.fit(disp=0)

/opt/conda/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:524: ValueWarning: No frequency information was provided, so inferred frequency D will be used.

warnings.warn('No frequency information was'

/opt/conda/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:524: ValueWarning: No frequency information was provided, so inferred frequency D will be used.

warnings.warn('No frequency information was'

[27]: print(model_fit.summary())

ARIMA Model Results					
Dep. Variable: Model: Method: Date: Time: Sample:	Mon, 27 May 2024 22:02:04		S.D. of innovations AIC BIC HQIC		2228 -15742.403 283.373 31498.807 31538.769 31513.400
0.975]	coef	std err	z		[0.025
- const 18.239	5.7316	6.381	0.898	0.369	-6.776
ar.L1.D.Close 0.059 ar.L2.D.Close	0.0177	0.021	0.837	0.402	-0.024 -0.046
0.037 ar.L3.D.Close 0.031	-0.0108	0.021	-0.513	0.608	-0.052
ar.L4.D.Close	-0.0276	0.021	-1.304	0.192	-0.069
ar.L5.D.Close 0.126	0.0845	0.021 Roo	3.999 ots	0.000	0.043
==========	Real	Imagin:	======= ary	Modulus	Frequency

```
AR.1
                                   -0.9653j
                                                                           -0.3971
                -1.2783
                                                        1.6018
AR.2
                -1.2783
                                   +0.9653j
                                                        1.6018
                                                                            0.3971
AR.3
                 0.5802
                                   -1.5299j
                                                        1.6363
                                                                           -0.1923
                 0.5802
AR.4
                                   +1.5299j
                                                                            0.1923
                                                        1.6363
AR.5
                 1.7222
                                   -0.0000j
                                                        1.7222
                                                                           -0.0000
```

```
[28]: # Forecasting the next steps in the test set
forecast, stderr, conf_int = model_fit.forecast(steps=len(test))

[29]: forecast_series = pd.Series(forecast, index=test.index)
```

1.10 Ploting the actual vs forecast values


```
[31]: # Fitting the ARIMA model on the entire dataset to forecast future prices model_full = ARIMA(ts_data, order=(5, 1, 0)) model_full_fit = model_full.fit(disp=0)
```

/opt/conda/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:524: ValueWarning: No frequency information was provided, so inferred frequency D will be used.

warnings.warn('No frequency information was'
/opt/conda/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:524:
ValueWarning: No frequency information was provided, so inferred frequency D

warnings.warn('No frequency information was'

will be used.

```
[32]: # Forecast for the next year (365 days)
forecast_full, stderr_full, conf_int_full = model_full_fit.forecast(steps=365)
```

```
[33]: forecast_full_series = pd.Series(forecast_full, index=pd.

date_range(start=ts_data.index[-1] + pd.Timedelta(days=1), periods=365))
```

1.11 Plotting the actual data and forecast


```
[35]: forecast_full_series
[35]: 2022-05-06
                    39572.237308
      2022-05-07
                    39590.888764
                    39658.320649
      2022-05-08
      2022-05-09
                    39692.798270
      2022-05-10
                    39703.585634
      2023-05-01
                    44710.212686
      2023-05-02
                    44724.263072
      2023-05-03
                    44738.313458
      2023-05-04
                    44752.363845
      2023-05-05
                    44766.414231
     Freq: D, Length: 365, dtype: float64
```

2 Training a Random Forest Classifier

```
[36]: # Import necessary libraries
    from sklearn.model_selection import train_test_split
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import classification_report, accuracy_score

[47]: # features and target
    df['Target'] = (df['Percent Change'] > 0).astype(int)
    features = ['Open', 'High', 'Low', 'Close', 'Volume']
    X = df[features]
    y = df['Target']
```

```
[54]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_u
       →shuffle=False)
[48]: #training and test sets
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_u
      →random state=42)
[55]: # shapes of the datasets
      print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
     (2229, 5) (558, 5) (2229,) (558,)
[56]: # Initializing the Random Forest Classifier
      rf = RandomForestClassifier(n estimators=100, random state=42)
[57]: # Training the model
      rf.fit(X_train, y_train)
[57]: RandomForestClassifier(random_state=42)
[58]: # Predicting on the test set
      y_pred = rf.predict(X_test)
[59]: # classification report and accuracy score
      print("Classification Report:\n", classification_report(y_test, y_pred))
      print("Accuracy Score:", accuracy_score(y_test, y_pred))
     Classification Report:
                    precision
                                 recall f1-score
                                                    support
                0
                        0.48
                                  0.97
                                            0.64
                                                       266
                1
                        0.59
                                  0.04
                                            0.08
                                                       292
                                            0.48
                                                       558
         accuracy
                                            0.36
        macro avg
                        0.54
                                  0.51
                                                       558
     weighted avg
                        0.54
                                  0.48
                                            0.35
                                                       558
     Accuracy Score: 0.4838709677419355
[44]: #predictions for the entire dataset
      df['Signal'] = rf.predict(X)
[45]: # the first few rows for verifying
      df[['Open', 'High', 'Low', 'Close', 'Volume', 'Percent Change', 'Target', |
```

```
[45]:
                       Open
                                   High
                                               Low
                                                         Close
                                                                  Volume \
     Date
     2014-09-18 456.859985
                            456.859985 413.104004 424.440002 34483200
     2014-09-19 424.102997
                             427.834991
                                        384.532013 394.795990 37919700
     2014-09-20 394.673004 423.295990 389.882996 408.903992 36863600
     2014-09-21 408.084991 412.425995
                                        393.181000 398.821014
                                                                26580100
     2014-09-22 399.100006 406.915985 397.130005 402.152008 24127600
                 Percent Change Target
                                       Signal
     Date
     2014-09-18
                      -7.192558
                                     0
                                             0
     2014-09-19
                      -6.984264
                                     0
                                             0
                       3.573492
                                      1
                                             1
     2014-09-20
     2014-09-21
                      -2.465855
                                     0
                                             0
     2014-09-22
                       0.835210
                                     1
                                             1
```

2.1 Plotting the closing price with buy/sell signals

2.1.1 Summary:

This project conducts a comprehensive analysis of historical Bitcoin price data to uncover trends, identify potential bullish movements, and predict future price changes. Through data visualization, trend analysis, and machine learning techniques, the project provides insights into Bitcoin price dynamics and generates actionable buy/sell signals. The key outputs include visualizations of Bitcoin price trends, identification of significant bullish trends, forecasted Bitcoin prices for 2022, and generation of buy/sell signals based on historical data.

Author: Bahraleloom Abdalrahem Email: bahraleloom@gmail.com GitHub: https://github.com/Bahraleloom Kaggle: https://www.kaggle.com/bahraleloom Date: 26/05/2024