COL 351: Analysis and Design of Algorithms

Lecture 20

Set Membership

Given: A universe U = [1, 2, ..., M], and a set $S \subseteq [1, M]$ of size n.

Goal: Find a data-structure of O(n = |S|) size that answers for any $x \in [1,M]$ query of form:

"Does
$$x \in S$$
?"

Hash Function

$$H(z) = z \mod n$$

- Works well for a random S
- What if *S* is <u>not</u> random?

Claim: No single hash function can work for all possible sets S

Table T

Modular Arithmetic

$$F(z) = (r \cdot z) \mod p$$
 (Here, p is a prime).

Claim: If $r \in [1, p-1]$ was random, then for any $z, i \in [1, p-1]$, we have

$$\operatorname{Prob}(F(z) = i) = \frac{1}{p-1}.$$

New Hash Function

- Universe U = [1, M].
- $p = \text{prime in range } [M + 1, 2M], \quad r = \text{integer range } [1, p 1]$

Hash Function:

$$H_r(z) = ((r \cdot z) \mod p) \mod n$$

New Hash Function

Hash Function:

$$H_r(z) = ((r \cdot z) \mod p) \mod n$$

What is collision probability?

Table T

$$H_r(z) = ((r \cdot z) \mod p) \mod n$$

Question: For any $x, y \in U$, what is **collision probability** if 'r' is randomly chosen?

Solution:

$$H_{\nu}(x) = H_{\nu}(y)$$

$$\Rightarrow$$
 $(rx \mod p) - (ry \mod p)$ is multiple of n

$$\Rightarrow$$
 $(rx - ry \mod p)$ is multiple of n or $(rx - ry \mod p) - p$ is multiple of n

$$\Rightarrow$$
 $(rx - ry \mod p)$ lies in $\{n, 2n, 3n, \dots\}$ or $\{p - n, p - 2n, p - 3n, \dots\}$

$$\Rightarrow (r (x-y) \mod p) \text{ lies in } \{n, 2n, 3n, \dots, p-3n, p-2n, p-n\}$$

$$\operatorname{Prob}\Big(H_r(x) = H_r(y)\Big) \leq \frac{1}{p-1} \cdot |\{n, 2n, 3n, \dots, p-3n, p-2n, p-n\}| \approx \frac{2}{n}$$

Expected Time to search an element

Question: For any $x \in U$, what is expected time to verify membership of x in set S?

Solution:

The time to search x is sum of

- (i) Time to compute $H_r(x)$, and
- (ii) Number of elements in S mapped to $H_r(x)$.

Expected Time:

$$= 1 + \sum_{y \in S \setminus \{x\}} \text{Prob}(H_r(y) = H_r(x)) \le 1 + (n-1) \cdot \frac{2}{n} = O(1)$$

Total number of Collisions

Question: What is expected number of total collisions?

Solution:

Expected total number of collisions are

$$= \sum_{\substack{x,y \in S \\ x \neq y}} \text{Prob}\left(H_r(y) = H_r(x)\right) \leq \frac{n(n-1)}{2} \cdot \frac{2}{n} \leq n$$

Balls - Bins Exercise

• each ball goes into one of the randomly selves
$$Expected$$
 no of balls in Bin $i = 1 \cdot n = 1$

$$E \times p \left(\begin{array}{c} n \\ \text{man} \end{array} \right) = 9 \left(\begin{array}{c} log n \\ log log n \end{array} \right)$$

$$Sol^{n} \text{ to } R^{R} = n$$

Maximum Time to search an element

Worst - Case time

Question: What is expected value of $\max_{i \in [0, n-1]} |T[i]|$

Answer:

It will be
$$\Theta\left(\frac{\log n}{\log\log n}\right)$$
.

Is hashing any better than AVL trees?

Two-Level Hash Table

Old Table

New Table

Two-Level Hash Table

Outer Hash Function:

$$H_r(z) = ((r \cdot z) \mod p) \mod n$$

Inner Hash Function:

$$z \mapsto ((r_0 \cdot z) \mod p) \mod n_i^2$$

where, $n_i = \text{size of } T[i]$

New Table

Two-Level Hash Table

Outer Hash Function:

$$H_r(z) = ((r \cdot z) \mod p) \mod n$$

Inner Hash Function:

$$z \mapsto ((r_0 \cdot z) \mod p) \mod n_i^2$$

where, $n_i = \text{size of } T[i]$

- What is expected total size?
- What is expected number of total collisions?

New Table