The Runge-Kutta Method and Its Applications

Olga Golovatskaia

Mount Holyoke College

November 25, 2024

- Euler's and Improved Euler's Methods
- 2 Runge-Kutta Method Overview
- 3 Examples
- Order for Numerical Methods

- Euler's and Improved Euler's Methods
- 2 Runge-Kutta Method Overview
- 3 Examples
- 4 Order for Numerical Methods

Euler's Method

- Simple first-order approximation: $y_{n+1} = y_n + hf(t_n, y_n)$
 - y function
 - *n* number of steps
 - h step size
- Gets more accurate with smaller step sizes and/or more steps
- Works on first-order equations
- Easy to extend to multiple dimensions
- Limited accuracy numerical error directly proportional to step size

Improved Euler's Method

- Uses the average of two slopes to compute each new value
- More accurate than basic Euler's method
- Steps:
 - **1** Calculate $k_1 = f(t_n, y_n)$
 - 2 Calculate $k_2 = f(t_n + h, y_n + hk_1)$
 - **3** Update using $y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2)$
- Still has limitations but offers improved accuracy while remaining relatively simple

Why We Need Better Methods

- Both methods have issues crossing equilibrium solutions
- Can blow up at points where the solution should be stable
- Smaller step sizes needed for accuracy = more computation
- Many practical applications require higher precision
- Need methods that provide better accuracy without excessive computational cost

- Euler's and Improved Euler's Methods
- 2 Runge-Kutta Method Overview
- 3 Examples
- 4 Order for Numerical Methods

Runge-Kutta Method - Overview

- Uses four slopes to compute each step
- Takes a weighted average of these slopes
- The solution to the differential equation $\frac{dy}{dt} = f(t, y)$ is approximated by:
 - First slope m_k : Computed at the beginning of the interval $m_k = f(t_k, y_k)$
 - Second slope n_k : Calculated halfway through the interval $n_k = f(\tilde{t}, \tilde{y}_k)$ where $\tilde{y}_k = y_k + m_k \frac{\Delta t}{2}$
 - Third slope q_k : Also calculated halfway through the interval $q_k = f(\tilde{t}, \hat{y}_k)$ where $\hat{y}_k = y_k + n_k \frac{\Delta t}{2}$
 - Fourth slope p_k : Calculated at the endpoint of the interval $p_k = f(t_{k+1}, \bar{y}_k)$ where $\bar{y}_k = y_k + q_k \Delta t$
- The weighted average gives us:

$$y_{k+1} = y_k + \left(\frac{m_k + 2n_k + 2q_k + p_k}{6}\right) \Delta t$$

◆ロト ◆部ト ◆恵ト ◆恵ト 連1章 夕久(*)

Runge-Kutta Method - Advantages

- More accurate fourth-order method
- Not much harder to compute than simpler methods
- Can be applied to higher-order DEs convert to system of first-order equations
- Only practical method for studying second and higher-order DEs numerically
- Well-suited for implementations in scientific computing software

- Euler's and Improved Euler's Methods
- 2 Runge-Kutta Method Overview
- 3 Examples
- 4 Order for Numerical Methods

Example Problem

- Differential equation: $\frac{dy}{dt} = (3 y)(y + 1)$
- Initial condition: y(0) = 0
- Time interval: $0 \le t \le 5$
- Using n = 10 steps (step size $\Delta t = 0.5$)

First Slope Calculation

• First slope m_k at the beginning of the interval:

$$m_k = f(t_k, y_k)$$

= $f(0, 0)$
= $(3 - 0)(0 + 1)$
= 3

Second Slope Calculation

• Second slope n_k , halfway through the interval:

$$\tilde{t} = 0 + \frac{\Delta t}{2} = 0 + \frac{0.5}{2} = 0.25$$

$$\tilde{y}_k = y_k + m_k \cdot \frac{\Delta t}{2} = 0 + 3 \cdot \frac{0.5}{2} = 0.75$$

$$n_k = f(\tilde{t}, \tilde{y}_k)$$

$$= (3 - 0.75)(0.75 + 1)$$

$$= 2.25 \cdot 1.75$$

$$= 3.9375$$

Third Slope Calculation

• Third slope q_k , also at the midpoint but using the second slope:

$$\hat{y}_k = y_k + n_k \cdot \frac{\Delta t}{2} = 0 + 3.9375 \cdot \frac{0.5}{2} = 0.984375$$

$$q_k = f(\tilde{t}, \hat{y}_k)$$

$$= (3 - 0.984375)(0.984375 + 1)$$

$$= 2.015625 \cdot 1.984375$$

$$= 4.00098$$

Fourth Slope Calculation

• Fourth slope p_k at the end of the interval:

$$t_{k+1} = 0 + \Delta t = 0 + 0.5 = 0.5$$

$$\bar{y}_k = y_k + q_k \cdot \Delta t = 0 + 4.00098 \cdot 0.5 = 2.00049$$

$$p_k = f(t_{k+1}, \bar{y}_k)$$

$$= (3 - 2.00049)(2.00049 + 1)$$

$$= 0.99951 \cdot 3.00049$$

$$= 2.99854$$

Computing the Next Step

• Weighted average of all four slopes:

$$y_{k+1} = y_k + \frac{m_k + 2n_k + 2q_k + p_k}{6} \cdot \Delta t$$

$$= 0 + \frac{3 + 2 \cdot 3.9375 + 2 \cdot 4.00098 + 2.99854}{6} \cdot 0.5$$

$$= 0 + \frac{3 + 7.875 + 8.00196 + 2.99854}{6} \cdot 0.5$$

$$= 0 + \frac{21.8755}{6} \cdot 0.5$$

$$= 0 + 3.64592 \cdot 0.5$$

$$= 1.823$$

• So $y_1 = 1.823$ is our next approximation

Comparison of Methods

- Euler's and Improved Euler's Methods
- 2 Runge-Kutta Method Overview
- 3 Examples
- Order for Numerical Methods

What is Order?

- Order measures accuracy of a numerical approximation
- Formal definition:
 - Let u be the exact solution
 - Let u_h be the approximation depending on parameter h (step size)
 - Let C be a constant
- A numerical approximation has order of accuracy *p* when:

$$|u_h - u| \leq Ch^p$$

- Error is roughly proportional to step size to the power of order
- For higher order, making step size smaller makes approximation significantly more accurate

Order Analysis Example

• Example problem:

$$\frac{dx}{dt} = 1 + \frac{x}{t}, \quad 1 \le t \le 6$$

$$x(1) = 1$$

- Actual solution: $x(t) = t(1 + \ln(t))$
- At t = 6, actual solution $x(6) \approx 16.75055682$
- We'll compare approximations using different methods and step sizes

Euler's Method Error Analysis

Step size h	Euler approx.	Error	Error ratio
1	14.7	2.05055682	-
1/2	15.61926407	1.13129275	1.81257841
1/4	16.15574907	0.59480775	1.90194688
1/8	16.44564019	0.30491663	1.95072260
1/16	16.59620493	0.15435189	1.97546411
1/32	16.67290649	0.07765033	1.98778145

- **Key takeaway:** When step size changes by a factor of 2, the error also changes by about a factor of 2 (especially for small h)
- This confirms Euler's is a first-order method (p = 1)
- Error relationship is approximately linear: $|u_h u| \approx 2h$

Comparison of Errors for Different Methods

Improved Euler's Method

h	Approx.	Error	Ratio
1	16.17417	0.57639	-
1/2	16.56419	0.18636	3.09284
1/4	16.69729	0.05327	3.49840
1/8	16.73632	0.01423	3.74249
1/16	16.74688	0.00368	3.87100
1/32	16.74962	0.00093	3.93566

Runge-Kutta Method

	h	Approx.	Error	Ratio
ĺ	1	16.72842	0.02213	-
	1/2	16.74839	0.00217	10.19443
	1/4	16.75039	0.00017	13.03626
	1/8	16.75055	0.00001	14.65958
	1/16	16.75056	7.4e-7	15.31442
	1/32	16.75056	5.2e-8	14.40075

Visualization of Order and Error

Euler's Method

- 1st order (p = 1)
- Error $\approx 2h$
- Linear relationship

Improved Euler's

- 2nd order (p=2)
- Error $\approx 0.65 h^2$
- Quadratic relationship

Runge-Kutta

- 4th order (p = 4)
- Error $\approx \frac{1}{45}h^4$
- Quartic relationship

Specialized Runge-Kutta Methods

Based on Van der Houwen & Sommeijer (1987):

Special Runge-Kutta methods for systems of ODEs:

$$\frac{d^k y}{dt^k} = f(x, y), \quad k = 1, 2$$

For oscillatory ODEs:

$$\frac{d^k y}{dt^k} = (i\omega)^k y, \quad \omega \text{ is real}$$

• *m*-stage Runge-Kutta method in the form:

$$y_n^{(0)} = y_{n-1}$$

 $y_n^{(j)} = y_{n-1} + h \sum_{l=0}^{j-1} \lambda_{j,l} f(t_{n-1} + \mu_l h, y_n^{(l)}), \quad j = 1, ..., m$

With application to oscillation equations, leads to:

$$y_n = a^n y_0$$
, $a^n := A_m(v^2) + ivB_m(v^2)$, $v := \omega h$

where A_m and B_m are polynomials in v^2

5 Appendix: MATLAB Code

```
v_0 = 0; \% v_0 = 0
3 t0 = 0; \% start time
4 tfinal = 5; % stop time
h = 0.5; % stepsize
7 t = t0:h:tfinal;
8 ystar = zeros(size(t));
9 \text{ ystar}(1) = y0;
for i = 2:numel(t) % replace 2nd entry and on with y-
     nalues
ystar(i) = ystar(i-1)+h*f(t(i-1),ystar(i-1)); %
    euler's method step
13 end
plot(t',ystar','go-','LineWidth',2)
title('Euler'', Method')
variable_names = {'t','y'};
18 xlim([0 5])
19 ylim([0 4])
Olga Golovatskaia (Mount Holyoke College) The Runge-Kutta Method and Its Application
                                                 November 25, 2024
                                                              25 / 26
```

 $_{1} f = Q(t,y) (3-y)*(y+1); % DE$

```
varnames = {'t','y'};
table(t',ystar', 'VariableNames', varnames)
23
24 hold on
              Listing 1: Euler's Method Implementation
f = Q(t,y) (3-y)*(y+1); % DE
_{2} y0 = 0; % y IC
3 t0 = 0; \% start time
4 tfinal = 5; % stop time
h = 0.5; % stepsize
7 t = t0:h:tfinal;
8 ystar = zeros(size(t));
ystar(1) = y0;
```

20

values

nslope = f(t(i-1), ystar(i-1)); % slope at left Olga Golovatskaia (Mount Holyoke College) The Runge-Kutta Method and Its Application

for i = 2:numel(t) % replace 2nd entry and on with y-

25 / 26

```
side of step
     ytilde = ystar(i-1)+h*nslope; % euler's method
14
     step
15
     mslope = f(t(i), ytilde); % slope at end of euler's
     method step
     ystar(i) = ystar(i-1) + ((nslope+mslope)/2)*h; %
16
     improved euler's method
17 end
18 plot(t,ystar,'mo-','LineWidth',2)
title('Improved Euler''s Method')
varnames = {'t','y'};
table(t',ystar','VariableNames',varnames)%plot points
24 xlim([0 5])
25 ylim([0 4])
26
28 hold on
```

Listing 2: Improved Euler's Method Implementation

```
3 h=0.5;
4 x = 0:h:5;
y = zeros(1, length(x));
6 y(1) = 0;
    initial condition
F_{xy} = Q(t,r) (3-r)*(r+1);
8 \text{ for } i=1:(length(x)-1)
     calculation loop
k_1 = F_xy(x(i),y(i));
  k_2 = F_{xy}(x(i)+0.5*h,y(i)+0.5*h*k_1);
10
  k_3 = F_xy((x(i)+0.5*h),(y(i)+0.5*h*k_2));
11
  k_4 = F_xy((x(i)+h),(y(i)+k_3*h));
12
   y(i+1) = y(i) + (1/6)*(k_1+2*k_2+2*k_3+k_4)*h;
13
     main equation
14 end
tspan = [0,100]; y0 = y(1);
[tx, yx] = ode45(F_xy, tspan, y0);
plot(x,y,'bo-', 'LineWidth',1.5, 'MarkerSize',8)  %
Olga Golovatskaia (Mount Holyoke College) The Runge-Kutta Method and Its Application
                                                November 25, 2024
                                                             25 / 26
```

1 clc;

clear all;

Listing 3: Runge-Kutta 4th Order Method Implementation

References

- Blanchard, P., Devaney, R. L., & Hall, G. R. (2012). Differential Equations. Cengage Learning.
- Bradie, S. I. (2006). A friendly introduction to numerical analysis (2nd ed.). Pearson.
- Lebl, J. (2024). Introduction to Differential Equations. https://www.jirka.org/diffyqs/html/diffyqs.html
- LeVeque, R. J. (2007). Finite Difference Methods for Ordinary and Partial Differential Equations. SIAM.
- Kumar, A., & Unny, T. E. (1977). Application of Runge-Kutta method for the solution of nonlinear partial differential equations. Applied Mathematical Modelling, *1.* 199-204.
- Graney, L., & Richardson, A. A. (1981). The numerical solution of non-linear partial differential equations by the method of lines. Journal of Computational and Applied Mathematics, 7(4), 229–236.
- Van der Houwen, P. J., & Sommeijer, B. P. (1987). Explicit Runge-Kutta (-Nyström) Methods with Reduced Phase Errors for Computing Oscillating Solutions. SIAM Journal on Numerical Analysis, 24(3), 595-617.