Midterm Review

K.G. Field^{1,a},

^a kgfield@umich.edu

¹University of Michigan

Midterm Logistics

IN CLASS

- Written to take the full 80 minutes
- Use of "cheat sheet" permitted. One sheet of paper, any size, front and back is OK
 - To be stapled and provided with midterm
 - ...if you need to use the sheet to answer every question you will run out of time
- Likely:
 - 3-6 multiple choice/answer
 - 2-4 true/false
 - 2-3 multiple part (2-4 parts) questions w/ limited calculations (but, you can do the calculations if you find that helpful)

Midterm Hints and Tricks

Easy grading means happy grading

- That means to clearly write and box answers (this goes for homework as well, PLEASE!)
- Write out all steps, errors in one part will not be counted against future parts *IF* I can track down the error
- If you had to make an assumption, write what it was! I am looking for mastery in reasoning based on the fundamentals, sometimes you will assume something that I hadn't consider – listing it/describing it helps me determine your mastery of the topic
- Do the multi-part questions first, these take the most time

Flow chart for radiation damage

Summary of Topics Covered

Part I: The Radiation Damage Event

Objective: Develop a fundamental understanding of the physics of the radiation damage event

Day	Date	Lec.	Topic	Lecture Notes	Assignments	Other resources/details
Tuesday	Aug. 27	1	Introduction □	Notes / Recording □		
Thursday	Aug. 29	2	Basic particle interactions □	Notes / Recording □	Midterm preference due by Friday	Alt. basic particle derivation □
Tuesday	Sept. 3	3	Collision Kinematics	Notes / Recording □		Collision Derivation
Thursday	Sept. 5	4	Interatomic Potentials & Cross Sections	Notes / Recording □	PS#1	Flux/Fluence/Cross-sections/energy transfer quick review
Tuesday	Sept. 10	5	Simple Disp. Theory □	Notes / Recording □	Example □	<u>Displacement Integrals</u>
Thursday	Sept. 12	6	Energy loss & K-P modifications ⊕	Notes / Recording		
Tuesday	Sept. 17	7	Focus, Channel, Range → - Guest Lecture (M. Lynch)	Recording ⇒ / Field 2023 Recording ⇒	PS1 due	Field 2023 Notes
Thursday	Sept. 19	8	<u>Damage Cascades</u>	Lynch Recording		Arc-dpa Paper → / Field 2023 Notes

Part II: Point Defect Generation, Recombination, and Mobility

Objective: Apply knowledge from the radiation damage event to determine the point defect generation in material systems

Day	Date	Lec. #	Торіс	Lecture Notes	Assignments	Other resources/details
Tuesday	Sept. 24	9	Point Defects □	Notes / Recording	PS#2	
Thursday	Sept. 26	10	Defect Motion □	Notes / Recording ⊟	Evaluation Due Friday	PS2 was updated
Tuesday	Oct. 1	11	Point Defect Kinetics	Notes / Recording ⊟	PS#3	
Thursday	Oct. 3	12	Kinetics + RED □	Notes / Recording □	PS2 due	$\underline{Derivation\ for\ C_{\mathit{S}}} + i \underline{regime} \ \boxminus \textit{I}\ \underline{Example\ Problem}\ \boxminus$
Tuesday	Oct. 8	13	Defect Reactions			

Energy Transfer to the PKA (T)

The energy transfer due to a hard sphere collision can be calculated using:

$$T=rac{\gamma}{2}E_i\left(1-cos~ heta
ight)$$

The maximum energy transfer, \hat{T} is then:

- ullet E_i
- $egin{array}{ccc} oldsymbol{\cdot} & \gamma E_i \ oldsymbol{\cdot} & rac{\gamma E_i}{2} \end{array}$

Energy Transfer to the PKA (T)

The energy transfer due to a hard sphere collision can be calculated using:

$$T=rac{\gamma}{2}E_i\left(1-cos~ heta
ight)$$

The average energy transferred is then:

- E_i
- $\frac{\gamma E_i}{2}$

Units of Radiation Damage (T)

DPA stands for:

- Displacements per atom
- Damage per atom
- Displacement potential of an atom
- Down plane acceleration

Classic scattering intergral equation

The classic scattering angle equation enables the evaluation of the scattering angle based on the interaction between two particles and is given as:

$$\phi = \pi - 2 \int_{\infty}^{p} rac{b}{r^2} rac{dr}{\sqrt{1 - rac{V(r)}{\sum} - rac{b^2}{r^2}}}$$

What is p and V(r) in this equation? What is the importance of these parameters in determining the radiation damage event?

Interatomic Potentials

- 1. When p (or r in slide notes) is less than radius of a typical lattice atom (a_0) the electrons are in the internuclear space which screen the total nuclear charge. What is the appropriate interatomic potential to use in this case?
- 2. Coloumbic
- 3. Screened Coloumb
- 4. Hard sphere
- 5. Born-Mayer
- 6. The interatomic potential will change depending on the type of ion and the incident ion energy for an ion irradiation experiment.
 - -True
 - -False

Total Cross Section

The interatomic potential, scattering integral, energy transfer and relationships between differential cross sections are all used to determine the total cross section for a particle-particle interaction.

- -True
- -False

N for common crystal structures

N is the atomic volume of the cell and can be determined by:

$$N=rac{num.\,\,atoms\,in\,a\,unit\,cell}{{a_0}^3}$$

What then are the number atoms in the unit cell for:

- -BCC
- -FCC

Displacement Energy E_d

Based on the Kinchin-Pease model, if an energetic particle has an energy less than E_d , then what happens to the struck atom?

- The struck atom is displaced from the lattice site and is presumed to come to rest at a location in the lattice different from it's previous position
- The struck atom is assumed to resume to it's lattice site after interaction

Displacement energy, E_d , is crystal directionally dependent.

- -True
- -False

Kinchin Pease Approach I

You are asked to calculate the dpa/s based on a monoenergetic flux of neutrons into BCC iron. You determine you need to calculate the damage cross section, σ_D (E_i), using your notes you determine the equation to do this calculation is:

$$\sigma_D(E_i) = \int_{\check{T}}^{\hat{T}} \sigma_s(E_i,T) \upsilon(T) dT = rac{\sigma_s(E_i)}{\gamma E_i} \int_{\check{T}}^{\hat{T}} \upsilon(T) dT$$

What equations should you use for \check{T} and \hat{T} ?

Kinchin Pease Approach II

You have correctly identified in the previous slide that \hat{T} is the maximum energy transfer. You calculate this using $T_{max} = \hat{T} = \gamma E_i$ and get a value of 0.025 MeV. Based on this value is using the following equation the correct approach?

$$\sigma_D(E_i) = rac{\sigma_s(E_i)}{\gamma E_i} igg(\int_0^{E_d} 0 dT + \int_{E_d}^{2E_d} 1 dT + \int_{2E_d}^{E_c} rac{T}{2E_d} dT + \int_{E_c}^{\gamma E_i} rac{E_c}{2E_d} dT igg)$$

Hint: The atomic weight of Fe is 55.85.

Stopping Powers

A high energy (>1 MeV) heavy ion is injected into a bulk material. The ions will undergo energy loss as it passes through the material and come to rest at some position away from the implantation surface. The primary energy loss at high energy (e.g. early in range) is _____ and at low energy is _____.

- Nuclear, electronic
- Electronic, nuclear

Focusing and channelling

Most crystalline materials will experience focusing and/or channeling events when irradiated with energetic particles. This is due to preferential directions and planes in the atomic structure. Focusing and channeling act then to increase the number of displacements under irradiation.

- True
- False

Range

At high energy, ions	will typically undergo	that lead to	
At the	e energy is decreased of the ions	s they will undergo	
that leads to	Once the the energy re	aches below	the
ions no longer cause	e displacements and come to r	rest a short distance	further into
the material.			

- High angle collisions; high energy loss; low angle collisions; low energy loss; E_d
- Low angle collisions; high energy loss; high angle collisions; low energy loss; E_d
- ullet Low angle collisions; low energy loss; high angle collisions; high energy loss; E_c
- ullet Low angle collisions; low energy loss; high angle collisions; high energy loss; E_d

Cascades and Damage

The cascade morphology is strongly dependent on the mass of the incident ion and it's energy.

- -True
- -False

Heavy ions will commonly cause small scale cascades with vacancy rich cores.

- -True
- -False

The Kinchin Pease and NRT approach don't account for enhanced recombination in metals in a cascade

- -True
- -False

Point Defects

You are asked to calculate the concentration of vacancies and interstitials at $\frac{1}{3}$ the melting point of a metal. You find that $C_i^{eq} > C_v^{eq}$, should you check your work?

- -Yes
- -No

The primary point defect diffusion mechanisms are (select all that apply):

- Exchange
- Ring
- Vacancy
- Interstitial
- Interstitialcy
- Dumbell
- Crowdion

Defect Reactions I

For a low temperature, low sink density regime the order of different regimes for C_v and C_i as a function of irradiation time are:

- Mutual recombination; build up without reaction; sinks contribute to interstitial annihilation; sinks annihilate both vacancies and interstitials
- Build up without reaction; mutual recombination; sinks contribute to interstitial annihilation; sinks annihilate both vacancies and interstitials
- Build up without reaction; sinks contribute to interstitial annihilation; sinks annihilate both vacancies and interstitials; mutual recombination

The effect of increasing the sink strength in the system would be to move t_3 closer to t_2 .

- -True
- -False

Defect Reactions II

You are asked to calculate the time when vacancies arrive at sinks to determine the time to reach steady state conditions in a material using the point defect rate theory equations. Your answer comes out to be only a few seconds and a fractional dose. Should you go back and check your work?

- -Yes
- -No
- -There is no time to check my work either way because I didn't study for the exam. I am just happy to have numbers on the page.

Diffusion during irradiation

Irradiation in metals under irradiation will tend to accelerate diffusion at intermediate temperatures due to increases in the point defect concentrations due to displacements.

- True
- False

Diffusion-based processes tend to be controlled by vacancy-based diffusion.

- -True
- -False

At low irradiation temperatures radiation effects tend to be ______ because of _____ diffusion and at high temperatures radiations effects tend to be ______ because of _____ resulting in bell-curve shaped graphs of radiation effect magnitude as a function of irradiation temperature.

- -Recombination dominated; sluggish; thermal diffusion limited; high concentration of vacancies
- -Thermal diffusion limited; sluggish; recombination dominated; high defect sink concentration
- -Damage limited; high; moderate; high concentration of interstitials

Sinks and defect reactions

Grain boundaries and voids act as ______.

- -Neutral sinks
- -Biased sinks
- -Variable sinks

You are asked to derive the reaction rate for a platelet precipitate and get a pre-factor of 4π to account for the geometry. How much confidence to you have in your answer?

- -Low
- -Moderate
- -HIgh