0.1 正定型与正定阵

0.1.1 正定型与正定阵

命题 0.1 (正定阵的判定准则)

设A 是n 阶实对称矩阵,则A 是正定阵的充要条件是以下条件之一:

- (1) A 合同于单位矩阵 I_n ;
- (2) 存在非异实矩阵 C, 使得 A = C'C;
- (3) A的n个顺序主子式全大于零;
- (4) A的所有主子式全大于零;
- (5) A的所有特征值全大于零.

 $\frac{1}{12}$ (2) 实际上给出了一种利用非异实阵构造正定阵的方式, 即若 A 是非异实矩阵, 则 A'A 必是正定阵. 证明

- (1) 参考定理??.
- (2) 参考命题??.
- (3) 参考定理??.
- (4) 参考命题??和定理??.
- (5) 参考推论??.

命题 0.2

设A是n阶正定实对称矩阵,S是n阶实反对称矩阵,求证:

- (1) $|A + S| \ge |A| + |S|$, 且等号成立当且仅当 $n \le 2$ 或当 $n \ge 3$ 时, S = 0.
- (2) $|A+S| \ge |A|$, 且等号成立当且仅当 S=0.

证明 设 C 为非异实矩阵, 使得 $C'AC = I_n$. 注意到问题的条件和结论在同时合同变换 $A \mapsto C'AC$, $S \mapsto C'SC$ 下不改变 (不等式两边同乘 $|C|^2$), 故不妨从一开始就假设 $A = I_n$ 为合同标准型, 从而由命题??即得结论.

例题 0.1 设 $A, B \in \mathbb{R}^{n \times n}$ 都是反对称矩阵且 A 可逆. 证明:

$$|A^2 - B| \geqslant |A|^2.$$

证明 由 A 是实反称阵且 A 可逆知

$$A = -A^T \Longrightarrow |A| = (-1)^n |A| \Longrightarrow n$$
) 偶数.

由命题**??**知 A 的特征值都是纯虚数, 从而 A^2 的特征值都是负数, 故 A^2 负定. 因此存在可逆实阵 C, 使得 $A^2 = -C^TC$. 于是

$$|A^{2} - B| = |-C^{T}C - B| = (-1)^{n}|C^{T}C + B|$$
$$= |C|^{2}|I_{n} + (C^{-1})^{T}BC^{-1}|$$
$$= |A|^{2}|I_{n} + (C^{-1})^{T}BC^{-1}|.$$

因为 B 是实反称阵, 所以由命题??知 B 的特征值只能是 0 或纯虚数. 又共轭复特征值成对出现, 故可不妨设 B 的全体特征值为 $0, \dots, 0, \pm a_1 i, \dots, \pm a_k i (a_i \in \mathbb{R})$, 则

$$|I_n + (C^{-1})^T B C^{-1}| = \prod_{i=1}^k (1 + a_i^2) \ge 1.$$

1

故

$$|A^2 - B| = |A|^2 |I_n + (C^{-1})^T B C^{-1}| \ge |A|^2.$$

例题 0.2 设 A 为实方阵, $A + A^T$ 为正定矩阵, 但 $A \neq A^T$, 证明:

$$|A + A^T| < |2A|.$$

证明 记 $R = A + A^T$, $S = A - A^T$, 则 R 是正定阵, S 是实反称阵. 注意到

$$2A = A + A^T + A - A^T = R + S$$
,

故只需证

$$|R| < |R + S|$$
.

由命题??知, 存在可逆阵 C, 使得 $R = C^T C$. 从而

$$|R + S| = |C^T C + S| = |C^T C| |I + (C^{-1})^T S C^{-1}| = |R| |I + (C^{-1})^T S C^{-1}|.$$

因为S为实反称阵,所以 $(C^{-1})^TSC^{-1}$ 也为实反称阵.由实反称阵的特征值全为0或纯虚数,且共轭复特征值成对出现,故可设 $I+(C^{-1})^TSC^{-1}$ 的全体特征值为

$$1, \dots, 1, 1 \pm a_1 i, \dots, 1 \pm a_k i,$$

其中 $a_i \in \mathbb{R}$. 从而

$$|R + S| = |R||I + (C^{-1})^T S C^{-1}| = |R| \prod_{i=1}^k (1 + a_i^2) > |R|.$$

命题 0.3

设A, B都是n阶正定实对称矩阵,c是正实数,求证:

- (1) A^{-1} , A^* , A + B, cA 都是正定阵;
- (2) 若 D 是非异实矩阵,则 D'AD 是正定阵;
- (3) 若 A B 是正定阵,则 $B^{-1} A^{-1}$ 也是正定阵.

证明

- (1) 利用正定阵的判定准则 (2), 由已知存在非异实矩阵 C, 使得 A = C'C, 从而 $A^{-1} = (C'C)^{-1} = C^{-1}(C')^{-1} = C^{-1}(C^{-1})'$, 故 A^{-1} 是正定阵. 又 $A^* = (C'C)^* = C^*(C')^* = C^*(C^*)'$, 故 A^* 是正定阵. 对任一非零实列向量 α , $\alpha'(A+B)\alpha = \alpha'A\alpha + \alpha'B\alpha > 0$, 从而 A+B 是正定阵. 注意到, 若 A 是正定阵, 即使 B 只是半正定阵, 通过上述方法也能推出 A+B 是正定阵. 同理可证 CA 也是正定阵.
- (2) 由 (1) 相同的记号可得 D'AD = D'C'CD = (CD)'(CD), 因为 CD 是可逆矩阵, 故 D'AD 是正定阵.
- (3) 由命题??可知 $B^{-1} A^{-1} = (B + B(A B)^{-1}B)^{-1}$, 再由 (1) 和 (2) 即得 $B^{-1} A^{-1}$ 是正定阵.

命题 0.4

设 $A \neq m$ 阶正定实对称矩阵. $B \neq m \times n$ 实矩阵. 求证:B'AB 是正定阵的充要条件是 r(B) = n.

证明 由 A 的正定性可知, 存在可逆阵 C, 使得 A = C'C, 从而 B'AB = B'C'CB = (CB)'(CB) 且 CB 是实矩阵, 故 B'AB 至少是半正定的, 并且 x'(B'AB)x = (Bx)'A(Bx) = 0 当且仅当 Bx = 0. 因此, B'AB 是正定阵当且仅当 Bx = 0 只有零解, 再由线性方程组的求解理论可知, 这也当且仅当 r(B) = n.

命题 0.5

设 A 为 n 阶正定实对称矩阵, n 维实列向量 α , β 满足 $\alpha'\beta > 0$, 求证: $H = A - \frac{A\beta\beta'A}{\beta'A\beta} + \frac{\alpha\alpha'}{\alpha'\beta}$ 是正定阵.

证明 根据定义只要证明对任一实列向量 x,均有 $x'Hx \geqslant 0$,且等号成立当且仅当 x=0 即可. 一方面,由 $\alpha'\beta>0$ 可知, $\frac{x'(\alpha\alpha')x}{\alpha'\beta}=\frac{(\alpha'x)^2}{\alpha'\beta}\geqslant 0$,等号成立当且仅当 $\alpha'x=0$. 另一方面,由 A 正定可知,存在非异实矩阵 C,使得 A=C'C. 设 $C\beta=(b_1,b_2,\cdots,b_n)'$, $Cx=(x_1,x_2,\cdots,x_n)'$,则由 Cauchy - Schwarz 不等式可知

$$x'Ax - \frac{x'A\beta\beta'Ax}{\beta'A\beta} = (Cx)'(Cx) - \frac{(Cx)'(C\beta)(C\beta)'(Cx)}{(C\beta)'(C\beta)}$$
$$= \left(\sum_{i=1}^{n} b_i^2\right)^{-1} \left(\left(\sum_{i=1}^{n} b_i^2\right) \left(\sum_{i=1}^{n} x_i^2\right) - \left(\sum_{i=1}^{n} b_i x_i\right)^2\right) \geqslant 0$$

等号成立当且仅当 b_i 与 x_i 成比例,即存在实数 k,使得 $Cx = kC\beta$,即 $x = k\beta$.由上述计算可得 $x'Hx \ge 0$,且等号成立当且仅当 $\alpha'x = 0$ 且 $x = k\beta$,再由 $\alpha'\beta > 0$ 可得 k = 0,从而 x = 0,结论得证.

例题 0.3 求证: 下列 n 阶实对称矩阵 $A = (a_{ij})$ 都是正定阵, 其中

(1)
$$a_{ij} = \frac{1}{i+i}$$
;

(2)
$$a_{ij} = \frac{1}{i+j-1};$$

(3)
$$a_{ij} = \frac{1}{i+j+1}$$

证明

(1) 注意到 A 的 n 个顺序主子式都是具有相同形状的 Cauchy 行列式, 故要证明它们全大于零, 只要证明 A 的行列式大于零即可. 对 A 的所有 m 阶顺序主子式, 在 Cauchy 行列式中, 令 $a_i = b_i = i(1 \le i \le m)$, 则由 Cauchy 行列式可得

$$|A| = \begin{vmatrix} (1+1)^{-1} & (1+2)^{-1} & \cdots & (1+m)^{-1} \\ (2+1)^{-1} & (2+2)^{-1} & \cdots & (2+m)^{-1} \\ \vdots & \vdots & & \vdots \\ (m+1)^{-1} & (m+2)^{-1} & \cdots & (m+m)^{-1} \end{vmatrix} = \frac{\prod\limits_{1 \le i < j \le m} (j-i)^2}{\prod\limits_{1 \le i < j \le m} (i+j)} > 0.$$

故 A 是正定矩阵.

(2) 考虑 A 的所有 m 阶顺序主子式, 在 Cauchy 行列式中, 令 $a_i = b_i = i - \frac{1}{2} (1 \leqslant i \leqslant m)$, 则由 Cauchy 行列式可得

$$|A| = \begin{vmatrix} (1 - \frac{1}{2} + 1 - \frac{1}{2})^{-1} & (1 - \frac{1}{2} + 2 - \frac{1}{2})^{-1} & \cdots & (1 - \frac{1}{2} + m - \frac{1}{2})^{-1} \\ (2 - \frac{1}{2} + 1 - \frac{1}{2})^{-1} & (2 - \frac{1}{2} + 2 - \frac{1}{2})^{-1} & \cdots & (2 - \frac{1}{2} + m - \frac{1}{2})^{-1} \\ \vdots & & \vdots & & \vdots \\ (m - \frac{1}{2} + 1 - \frac{1}{2})^{-1} & (m - \frac{1}{2} + 2 - \frac{1}{2})^{-1} & \cdots & (m - \frac{1}{2} + m - \frac{1}{2})^{-1} \end{vmatrix} = \frac{\prod\limits_{1 \le i < j \le m} (j - i)^2}{\prod\limits_{1 \le i < j \le m} (i + j - 1)} > 0.$$

故 A 为正定阵.

(3) 考虑 A 的所有 m 阶顺序主子式, 在 Cauchy 行列式中, 令 $a_i = b_i = i + \frac{1}{2} (1 \leqslant i \leqslant m)$, 则由 Cauchy 行列式可得

$$|A| = \begin{vmatrix} (1 + \frac{1}{2} + 1 + \frac{1}{2})^{-1} & (1 + \frac{1}{2} + 2 + \frac{1}{2})^{-1} & \cdots & (1 + \frac{1}{2} + m + \frac{1}{2})^{-1} \\ (2 + \frac{1}{2} + 1 + \frac{1}{2})^{-1} & (2 + \frac{1}{2} + 2 + \frac{1}{2})^{-1} & \cdots & (2 + \frac{1}{2} + m + \frac{1}{2})^{-1} \\ \vdots & \vdots & & \vdots \\ (m + \frac{1}{2} + 1 + \frac{1}{2})^{-1} & (m + \frac{1}{2} + 2 + \frac{1}{2})^{-1} & \cdots & (m + \frac{1}{2} + m + \frac{1}{2})^{-1} \end{vmatrix} = \frac{\prod\limits_{1 \le i < j \le m} (j - i)^2}{\prod\limits_{1 \le i < j \le m} (i + j + 1)} > 0.$$

故 A 为正定阵.

命题 0.6

设A是n阶实对称矩阵,求证:若A是主对角元全大于零的严格对角占优阵,则A是正定阵.

证明 注意到 A 的 n 个顺序主子阵仍然是主对角元全大于零的严格对角占优阵, 故要证明 A 的 n 个顺序主子式全大于零, 只要证明 A 的行列式大于零即可, 而这由命题??即得, 因此 A 是正定阵.

命题 0.7

设 $A \neq n$ 阶实对称矩阵, 求证: 必存在正实数k, 使得对任一n 维实列向量 α , 总有

$$-k\alpha'\alpha \leqslant \alpha'A\alpha \leqslant k\alpha'\alpha$$

证明 设 $A = (a_{ij})$, 我们总可以取到充分大的正实数 k, 使得

$$k\pm a_{ii} > \sum_{j=1,j\neq i}^n |a_{ij}|, \quad 1 \leqslant i \leqslant n$$

即 $kI_n \pm A$ 是主对角元全大于零的严格对角占优阵, 由命题 0.6可得 $kI_n \pm A$ 为正定阵, 从而对任一 n 维实列向量 α , 总有 $\alpha'(kI_n \pm A)\alpha \ge 0$, 从而结论得证.

命题 0.8

设 α, β 为 n 维非零实列向量, 求证: $\alpha'\beta > 0$ 成立的充要条件是存在 n 阶正定实对称矩阵 A, 使得 $\alpha = A\beta$.

证明 先证充分性. 若存在 n 阶正定实对称矩阵 A, 使得 $\alpha = A\beta$, 则 $\alpha'\beta = (A\beta)'\beta = \beta'A\beta > 0$. 下面用两种方法来证明必要性.

证法一:注意到问题的条件和结论在矩阵变换 $A \mapsto C'AC$, $\alpha \mapsto C'\alpha$, $\beta \mapsto C^{-1}\beta$ 下不改变, 故不妨从一开始就假设 $\beta = e_n = (0, \cdots, 0, 1)'$ (这等价于将原来的 β 放在非异阵 C 的最后一列), $\alpha = (a_1, \cdots, a_{n-1}, a_n)'$, 则 $\alpha'\beta > 0$ 等价于 $a_n > 0$. 设 $A = \begin{pmatrix} tI_{n-1} & \alpha_{n-1} \\ \alpha'_{n-1} & a_n \end{pmatrix}$, 其中 $\alpha_{n-1} = (a_1, \cdots, a_{n-1})'$ 且 $t \gg 0$, 则由行列式的降阶公式可得

$$|A| = |tI_{n-1}|(a_n - \alpha'_{n-1}(tI_{n-1})^{-1}\alpha_{n-1}) = t^{n-2}(a_nt - a_1^2 - \dots - a_{n-1}^2) > 0$$

又 A 的前 n-1 个顺序主子式都大于零, 故 A 为正定阵且满足 $\alpha = Ae_n = A\beta$.

证法二: 设 $A = I_n - \frac{\beta \beta'}{\beta' \beta} + \frac{\alpha \alpha'}{\alpha' \beta}$, 则由命题 0.5可知 A 为正定阵. 不难验证 $A\beta = \alpha$ 成立, 故结论得证.

命题 0.9

设A, B 是n 阶实矩阵, 使得A'B' + BA 是正定阵, 求证: A, B 都是非异阵.

证明 用反证法证明. 若 A 为奇异阵,则存在非零实列向量 α ,使得 $A\alpha=0$.将正定阵 A'B'+BA 左乘 α' ,右乘 α 可得

$$0 < \alpha'(A'B' + BA)\alpha = (A\alpha)'(B'\alpha) + (B'\alpha)'(A\alpha) = 0$$

这就导出了矛盾. 同理可证 B 也是非异阵.

例题 **0.4** 设 **A**, **B**, **C** 都是 n 阶正定实对称矩阵, $g(t) = |t^2 A + t B + C|$ 是关于 t 的多项式, 求证: g(t) 所有复根的实部都小于零.

 $\mathbf{\dot{L}}$ 若 A 是正定实对称矩阵, 则 A 合同于单位矩阵 I_n , 即存在非异实矩阵 C, 使得 $A = C'I_nC$. 因为 C 是实矩阵, 故 可把上式中的 C' 改写成 \overline{C}' , 从而 A 复相合于 I_n , 于是 A 也是正定 Hermite 矩阵. 因此在处理实矩阵问题的过程

中,如果遇到了复特征值和复特征向量,那么可以自然地把正定实对称矩阵看成是一种特殊的正定 Hermite 矩阵,从而其正定性可延拓到复数域上.

证明 任取 g(t) 的一个复根 t_0 , 则 $|t_0^2A + t_0B + C| = 0$, 故存在非零复列向量 α , 使得 $(t_0^2A + t_0B + C)\alpha = 0$. 将上述等式左乘 $\overline{\alpha}'$, 可得

$$(\overline{\alpha}' \mathbf{A} \alpha) t_0^2 + (\overline{\alpha}' \mathbf{B} \alpha) t_0 + (\overline{\alpha}' \mathbf{C} \alpha) = 0$$

注意到 A, B, C 也是正定 Hermite 矩阵, 故 $a = \overline{\alpha}' A \alpha > 0$, $b = \overline{\alpha}' B \alpha > 0$, $c = \overline{\alpha}' C \alpha > 0$, 并且 t_0 是二次方程 $at^2 + bt + c = 0$ 的根. 若 t_0 是实根,则 $t_0 < 0$, 否则将由 $t_0 \ge 0$ 得到 $at_0^2 + bt_0 + c \ge c > 0$, 这就推出了矛盾. 若 t_0 是虚根,则 t_0 的实部为 $-\frac{b}{2a} < 0$, 结论得证.

命题 0.10

设 $A = (a_{ij})$ 是 n 阶正定实对称矩阵, P_{n-1} 是 A 的第 n-1 个顺序主子式, 求证: $|A| \leq a_{nn}P_{n-1}$.

证明 证法一: 设 $A = \begin{pmatrix} A_{n-1} & \alpha \\ \alpha' & a_{nn} \end{pmatrix}$, 用第三类分块初等变换求得

$$|A| = \begin{vmatrix} A_{n-1} & \alpha \\ \alpha' & a_{nn} \end{vmatrix} = \begin{vmatrix} A_{n-1} & \alpha \\ \mathbf{0} & a_{nn} - \alpha' A_{n-1}^{-1} \alpha \end{vmatrix} = (a_{nn} - \alpha' A_{n-1}^{-1} \alpha) |A_{n-1}|$$

因为 A 正定, 所以 A_{n-1} 也正定, 从而 A_{n-1}^{-1} 也正定, 于是 $\alpha' A_{n-1}^{-1} \alpha \geq 0$. 因此

$$|A| = (a_{nn} - \alpha' A_{n-1}^{-1} \alpha) |A_{n-1}| \le a_{nn} |A_{n-1}| = a_{nn} P_{n-1}$$

证法二:由行列式性质,有

$$|\mathbf{A}| = \begin{vmatrix} a_{11} & \cdots & a_{1,n-1} & a_{1n} \\ a_{21} & \cdots & a_{2,n-1} & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n-1,1} & \cdots & a_{n-1,n-1} & a_{n-1,n} \\ a_{n1} & \cdots & a_{n,n-1} & 0 \end{vmatrix} + \begin{vmatrix} a_{11} & \cdots & a_{1,n-1} & 0 \\ a_{21} & \cdots & a_{2,n-1} & 0 \\ \vdots & \vdots & \vdots & \vdots \\ a_{n-1,1} & \cdots & a_{n-1,n-1} & 0 \\ a_{n1} & \cdots & a_{n,n-1} & a_{nn} \end{vmatrix}$$

令

$$g(x_1, x_2, \dots, x_{n-1}) = \begin{vmatrix} a_{11} & \cdots & a_{1,n-1} & x_1 \\ a_{21} & \cdots & a_{2,n-1} & x_2 \\ \vdots & \vdots & \vdots & \vdots \\ a_{n-1,1} & \cdots & a_{n-1,n-1} & x_{n-1} \\ x_1 & \cdots & x_{n-1} & 0 \end{vmatrix}$$

则

$$|A| = g(a_{1n}, a_{2n}, \cdots, a_{n-1,n}) + a_{nn}P_{n-1}$$

因为 A 的第 n-1 个顺序主子阵是正定阵, 故由命题 0.18可知 $g(a_{1n},a_{2n},\cdots,a_{n-1,n})\leqslant 0$, 从而 $|A|\leqslant a_{nn}P_{n-1}$.

推论 0.1

设 $A = (a_{ii})$ 是 n 阶正定实对称矩阵, 求证: $|A| \leq a_{11}a_{22}\cdots a_{nn}$, 且等号成立当且仅当 A 是对角矩阵.

证明 设 $A = \begin{pmatrix} A_{n-1} & \alpha \\ \alpha' & a_{nn} \end{pmatrix}$,则由命题 0.10可得 $|A| \leqslant a_{nn}P_{n-1}$,且等号成立当且仅当 $\alpha = 0$. 不断迭代下去,可得 $|A| \leqslant a_{nn}P_{n-1} \leqslant a_{n-1,n-1}a_{nn}P_{n-2} \leqslant \cdots \leqslant a_{11}a_{22}\cdots a_{nn}$

且等号成立当且仅当 A 是对角矩阵.

命题 0.11

设 A,D 是方阵, $M=\begin{pmatrix}A&B\\B'&D\end{pmatrix}$ 是正定实对称矩阵, 求证: $|M|\leqslant |A||D|$, 且等号成立当且仅当 B=O.

证明 证法一: 由 M 是正定阵可知, A, D 都是正定阵, 从而存在非异实矩阵 C_1 , C_2 , 使得 $C_1'AC_1 = I_r$, $C_2'DC_2 = I_{n-r}$. 令 $C = \text{diag}\{C_1, C_2\}$, 则

$$C'MC = \begin{pmatrix} C'_1AC_1 & C'_1BC_2 \\ C'_2B'C_1 & C'_2DC_2 \end{pmatrix} = \begin{pmatrix} I_r & C'_1BC_2 \\ C'_2B'C_1 & I_{n-r} \end{pmatrix}$$

仍是正定阵. 由推论 0.1可得 $|C'MC| \le 1$,且等号成立当且仅当 $C'_1BC_2 = O$,即 $|M| \le |C|^{-2} = |C_1|^{-2}|C_2|^{-2} = |A||D|$,且等号成立当且仅当 B = O.

证法二:注意到 A 正定, 故可对题中矩阵进行下列对称分块初等变换:

$$\begin{pmatrix} A & B \\ B' & D \end{pmatrix} \rightarrow \begin{pmatrix} A & B \\ O & D - B'A^{-1}B \end{pmatrix} \rightarrow \begin{pmatrix} A & O \\ O & D - B'A^{-1}B \end{pmatrix},$$

得到的矩阵仍正定,从而 $D - B'A^{-1}B$ 是正定阵. 因为第三类分块初等变换不改变行列式的值,故

$$\begin{vmatrix} A & B \\ B' & D \end{vmatrix} = |A||D - B'A^{-1}B|.$$

注意到 $D = (D - B'A^{-1}B) + B'A^{-1}B$, 其中 $B'A^{-1}B$ 是半正定阵, 故由命题??可得

$$|D| \geqslant |D - B'A^{-1}B| + |B'A^{-1}B| \geqslant |D - B'A^{-1}B|,$$

上述不等式的两个等号都成立当且仅当 $B'A^{-1}B = O$. 由 $O = B'A^{-1}B = (A^{-\frac{1}{2}}B)'(A^{-\frac{1}{2}}B)$ 取迹后可得 $A^{-\frac{1}{2}}B = O$, 从而 B = O, 于是上述不等式的两个等号都成立当且仅当 B = O. 综上所述, 我们有

$$\begin{vmatrix} A & B \\ B' & D \end{vmatrix} = |A||D - B'A^{-1}B| \le |A||D|,$$

等号成立当且仅当 B = O.

注 在命题 0.11的证明中, 若考虑 M 的如下对称分块初等变换:

$$\begin{pmatrix} A & B \\ B' & D \end{pmatrix} \rightarrow \begin{pmatrix} A & B \\ O & D - B'A^{-1}B \end{pmatrix} \rightarrow \begin{pmatrix} A & O \\ O & D - B'A^{-1}B \end{pmatrix}$$

则可得 $D - B'A^{-1}B$ 是正定阵. 因为第三类分块初等变换不改变行列式的值, 故可得 $|M| = |A||D - B'A^{-1}B| \le |A||D|$, 即有 $|D - B'A^{-1}B| \le |D|$. 利用这一不等式不难证明: 若 A 是 n 阶正定实对称矩阵, B 是 n 阶半正定实对称矩阵, 则 $|A + B| \ge |A|$. 不过这并非是最佳的结果, 更精确的结论应该是 $|A + B| \ge |A| + |B|$, 等号成立当且仅当 n = 1 或当 $n \ge 2$ 时, B = O. 要证明这一结论, 我们需要实对称矩阵的正交相似标准型理论, 同时利用这一理论还能极大地改进和简化关于正定阵和半正定阵的许多结论及其证明. 我们将在第九章详细阐述这些.

命题 0.12 (Fischer 不等式)

设 $A \in \mathbb{R}^{p \times p}, C \in \mathbb{R}^{q \times q}$, 考虑半正定矩阵 $M = \begin{pmatrix} A & B \\ B^T & C \end{pmatrix}$, 则

 $\det M \leqslant \det A \cdot \det C$.

证明 因为 M 半正定, 所以所有主子式非负, 因此 A, C 半正定. 考虑 $M + tI_{p+q}, A + tI_p, B + tI_q, t > 0$ 并让 $t \to 0^+$ 可以不妨设 A, C 都是正定的.

利用正定矩阵存在正定平方根,注意到

$$W = \begin{pmatrix} A^{-1/2} & 0 \\ 0 & C^{-1/2} \end{pmatrix} \begin{pmatrix} A & B \\ B^T & C \end{pmatrix} \begin{pmatrix} A^{-1/2} & 0 \\ 0 & C^{-1/2} \end{pmatrix} = \begin{pmatrix} I_p & A^{-1/2}BC^{-1/2} \\ C^{-1/2}B^TA^{-1/2} & I_q \end{pmatrix},$$

我们有

$$\frac{\det M}{\det A \cdot \det C} = \det W \mathop \leqslant \limits_{\text{\ref}} \frac{\operatorname{tr}(W)}{p+q}^{p+q} = 1,$$

现在就有

 $\det M \leqslant \det A \cdot \det C$.

命题 0.13

设 $A \ge n$ 阶实矩阵, $A = (B, C) \ge A$ 的一个分块, 其中 $B \ge A$ 的前 k 列组成的矩阵, $C \ge A$ 的后 n - k 列组成的矩阵. 求证:

$$|A|^2 \leqslant |B'B||C'C|$$

证明 若 A 不是可逆矩阵,则 |A| = 0,从而由命题??(2) 可知 B'B,C'C 都是半正定阵,故由命题??(2) 可得 $|B'B| \ge 0$, $|C'C| \ge 0$,从而上式显然成立. 现设 A 是可逆矩阵,则由命题??(1) 可知, $A'A = \begin{pmatrix} B'B & B'C \\ C'B & C'C \end{pmatrix}$ 是正定阵,再由命题 0.11即得结论.

定义 0.1 (亚正定阵)

设 M 为 n 阶实矩阵, 若对任意的非零实列向量 α , 总有 $\alpha' M \alpha > 0$, 则称 M 是**亚正定阵**.

命题 0.14

亚正定矩阵 A 的所有特征值的实部都大于零.

证明 设 $\lambda_0 = a + bi$ 是 A 的特征值, η 是属于 λ_0 的特征向量. 将 η 的实部和虚部分开, 记为 $\eta = \alpha + i\beta$, 则 $A(\alpha + i\beta) = (a + bi)(\alpha + i\beta)$. 分开实部和虚部可得 $A\alpha = a\alpha - b\beta$, $A\beta = b\alpha + a\beta$, 于是 $\alpha'A\alpha = a\alpha'\alpha - b\alpha'\beta$, $\beta'A\beta = b\beta'\alpha + a\beta'\beta$. 因此

$$\alpha' A \alpha + \beta' A \beta = a(\alpha' \alpha + \beta' \beta) \tag{1}$$

定理 0.1

证明下列结论等价:

- (1) M 是亚正定阵;
- (2) M+M'是正定阵;
- (3) M = A + S, 其中 A 是正定实对称矩阵, S 是实反对称矩阵.

注 命题 0.14告诉我们: 亚正定阵 M 的特征值的实部都大于零, 由此可得 M 的行列式值大于零. 事实上, 这一结论还可以由命题 0.2得到, 即 $|M| = |A + S| \ge |A| > 0$. 另外, 这一结论还能给出命题 0.9的证法 2, 即由 BA + (BA)' 正定可知 BA 亚正定, 从而 |BA| > 0, 于是 A, B 都是非异阵.

证明

- 1. (1) \Rightarrow (2): 将 $\alpha' M \alpha > 0$ 转置后可得 $\alpha' M' \alpha > 0$, 再将两式相加后可得 $\alpha' (M + M') \alpha > 0$ 对任意的非零实列 向量 α 都成立, 因此 M + M' 是正定阵.

П

7

3. (3) \Rightarrow (1): 由命题**??**可知, 对任意的非零实列向量 α , 总有 $\alpha' M \alpha = \alpha' A \alpha + \alpha' S \alpha = \alpha' A \alpha > 0$, 即 M 为亚正定阵.

0.1.2 负定型与负定阵

定理 0.2

设 $f(x_1,x_2,\cdots,x_n)$ 是实二次型, A 是相伴的实对称矩阵, 则

- (1)f 是负定型或半负定型当且仅当 -f 是正定型或半正定型;
- (2)A 是负定阵或半负定阵当且仅当 -A 是正定阵或半正定阵.

注 由这个定理 0.2可知, 负定型或半负定型 (负定阵或半负定阵) 的问题通常都可以转化成正定型或半正定型 (正定阵或半正定阵) 的问题来研究.

证明 由(半)正定、负定型(阵)的定义易得.

引理 0.1

设 $f(x_1, x_2, \dots, x_n)$ 是实二次型, A 是相伴的实对称矩阵, $x = (x_1, x_2, \dots, x_n)'$, 则

- (1) f 是正定型的充要条件是若 $f(x) \leq 0$, 则 x = 0.
- (2) f 是半正定型的充要条件是若 f(x) < 0,则 x = 0.
- (3) f 是负定型的充要条件是若 $f(x) \ge 0$,则 x = 0.
- (4) f 是半负定型的充要条件是若 f(x) > 0,则 x = 0.

证明 证明是显然的.

命题 0.15

设 $A \in \mathbb{R}$ 所实对称矩阵, $P_1, P_2, \dots, P_n \in A$ 的 n 个顺序主子式, 求证 A 负定的充要条件是:

$$P_1 < 0, P_2 > 0, \cdots, (-1)^n P_n > 0$$

证明 A 负定当且仅当 -A 正定,由正定阵的顺序主子式判定法即得结论.

命题 0.16

设 A 为 n 阶实对称矩阵, 求证:

- (1) A 是负定阵的充要条件是存在 n 阶非异实矩阵 C, 使得 A = -C'C.
- (2) A 是半负定阵的充要条件是存在 n 阶实矩阵 C, 使得 A = -C'C. 特别地, $|A| = (-1)^n |C|^2$.

证明 由命题??和定理 0.2立得.

命题 0.17

设 A 是 n 阶负定实对称矩阵, 求证: A^{-1} 也是负定阵; 当 n 为偶数时, A^* 是负定阵, 当 n 为奇数时, A^* 是正定阵.

证明 因为 A 负定, 故存在非异实矩阵 C, 使得 A = -C'C. 于是 $A^{-1} = -C^{-1}(C')^{-1} = -C^{-1}(C^{-1})'$ 也是负定阵; 由伴随矩阵的性质 2 可得 $A^* = (-1)^{n-1}C^*(C')^* = (-1)^{n-1}C^*(C^*)'$, 故当 n 为偶数时, $A^* = -C^*(C^*)'$ 是负定阵; 当 n 为奇数时, $A^* = C^*(C^*)'$ 是正定阵.

命题 0.18

设有实二次型 $f(x_1,x_2,\cdots,x_n)=x'Ax$, 其中 $A=(a_{ij})$ 是 n 阶正定实对称矩阵, 求证下列实二次型是负定型:

$$g(x_1, x_2, \dots, x_n) = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} & x_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & x_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & x_n \\ x_1 & x_2 & \cdots & x_n & 0 \end{vmatrix} = \begin{vmatrix} A & \mathbf{x} \\ \mathbf{x}' & 0 \end{vmatrix}.$$

证明 证法一:由命题??可得

$$g(x_1, x_2, \dots, x_n) = -\sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j = -x' A^* x$$

其中 A_{ij} 是元素 a_{ij} 的代数余子式, A^* 是 A 的伴随矩阵. 因为 A 正定, 故由命题 0.3可知 A^* 也正定, 从而 g 为负定型.

证法二: 因为 A 正定, 所以 |A| > 0, 故由降阶公式可得

$$g(x_1, x_2, \dots, x_n) = |A|(0 - x'A^{-1}x) = -|A|(x'A^{-1}x)$$

再由命题 0.3可知 A^{-1} 也正定, 即 $x'A^{-1}x$ 是正定型, 从而 g 为负定型.

证法三:设 $\alpha = (a_1, a_2, \cdots, a_n)'$ 为实列向量, 要证 g 是负定型, 等价地只要证明: 若 $g(\alpha) \ge 0$, 则 $\alpha = 0$ 即可. 作 n+1 变元二次型 h(y) = y'By, 其中 $B = \begin{pmatrix} A & \alpha \\ \alpha' & 0 \end{pmatrix}$, 则 $|B| = g(\alpha) \ge 0$. 又已知 A 正定, 因此 B 的前 n 个顺序主子式 为正数. 由命题??可知,h 是半正定型, 从而 B 是半正定阵. 注意到 B 的第 (n+1,n+1) 元素为零, 故由命题??可知 $\alpha = 0$.

9