Vaccine Substances

Frank Switzer, PhD
US Food & Drug Administration
frank,switzer@fda.hhs.gov

The views expressed in this presentation are those of the author and do not reflect the official policy or position of the Department of Health & Human Services, US Food & Drug Administration or the US Government

What is a Vaccine?

- A biological preparation that provides active acquired immunity to a particular disease
- Presents itself to the immune system as a diseasecausing microorganism
- Often made from weakened or killed forms of the microorganism or a specific cellular component (usually on the organism's surface)

What is a Vaccine?

It stimulates the body's immune system to:

- Recognize the agent as a threat
- Destroy it
- Keep a record of it so that the immune system can more easily recognize and destroy any of these microorganisms that it later encounters

Vaccine Cell Components

- Lysates
- Envelope Glycoprotein Mixtures
- Pure Cellular Proteins (Protein)
- Capsule Polysaccharides (Polymer)

Polysaccharide Types B & C

 β -methylglycosides) and on supportive chemical evidence. The data indicate that the serogroup B polysaccharide is a $2\rightarrow 8$ - α -linked homopolymer of sialic acid, identical in structure with colominic acid from *Escherichia coli*, whereas the de-O-acetylated serogroup C polysaccharide is a $2\rightarrow 9$ - α -linked homopolymer. The native serogroup C polysaccharide is O-acetylated (1.16 mol of O-acetyl per sialic acid residue), all the O-acetyl substituents being located only at C-7 and C-8 of the sialic acid residues, and in addition contains unacetylated residues (24%). The polysaccharide contains di-O-acetylated residues (O-acetyl on C-7 and C-8), and at least one of the possible monoacetylated residues at C-7 or C-8.

Fig. 3. The four different N-acetylneuraminic acid residues possible in the serogroup C polysaccharide.

The Journal of Biological Chemistry Vol. 250, No. 5, Issue of March 10, pp. 1926–1932, 1975

Polysaccharide Types A and X

phorylated polysaccharides. The serogroup A polysaccharide has been shown to be essentially a $1\rightarrow 6$ -linked homopolymer of partially O-acetylated 2-acetamido-2-deoxymannosyl phosphate (8) and that of serogroup X to be a homopolymer of 2-acetamido-2-deoxyglucosyl phosphate linked either $1\rightarrow 3$ or $1\rightarrow 4$ (9). Due

THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 249, No. 7, Issue of April 10, pp. 2275-2281, 1974

Polysaccharide Type 11A

FIGURE 4. Revised structure of de-O-acetylated S. pneumoniae 11A PS.

THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 284, NO. 11, pp. 7318–7329, March 13, 2009 © 2009 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A.

Antigen Immunogenicity Modification

- Attenuated Strains
- Inactivation
- Conjugation

Live Attenuated Strains

- Produced by modifying a disease-producing ("wild") virus or bacterium
- Resulting vaccine organism retains the ability to replicate and produce immunity but usually does not cause illness

Vaccine Microorganism Taxonomy

- Bacteria
 - ITIS/NCBI
 - Antigens usually described at Serotype/group level
 - Attenuated strains
- Viruses
 - ICTV (In Catalogue of Life)/NCBI
 - Antigens described at Strain level

Inactivated Antigens

- Agent/Physical modifications of (protein or structurally-diverse protein mixtures) antigens
- Crosslinking agents
 - Formaldehyde
 - Glutaraldehyde
 - Propiolactone
 - Ultraviolet light
 - Heat

Conjugated Antigens

- Used if the cellular component is not sufficiently antigenic
- Conjugate is typically a toxoid protein
 - Inactivated toxin (inactivation agent)
 - Mutated toxin (CRM197)
- May or may not be able to describe the details of how the conjugating toxoid is bonded to the antigen

Subunits 2 Subunit 1 SLTDLGG

SLTDLGGEL <mark>©</mark>	IK IKNEDL TF	I A E K N S F S E E	PFQDEIVSYN	TKNKPLNFNY	
LQSKITLPND	RTTPVTKGIP	Y A P E Y K S N A A	STIEIHNIDD	N T I Y Q Y L Y A Q	KSPTTLQRIT
M T N S V D D A L I	NSTKIYSYFP	S V I S K V N Q G A	QGILFLQWVR	DIIDDFTNES	S Q K T T I D K I S
D V S T I V P Y I G	P A L N I V K Q G Y	E G N F I G A L E T	TGVVLLLEYI	PEITLPVIAA	240 LSIAESSTQK
250 EKIIKTIDNF		V Y K L V K A K W L	GTVNTQFQKR	S Y Q M Y R S L E Y	QVDAIKKIID
YEYKIYSGPD	KEQIADEIN N	L K N K L E E K A N	340 KAMININIFM	250 R E S S R S F L V N	QMINEAKKQL
LEFDTQSKNI	L M Q Y I K A N S K	FIGITELKKL	ESKINKVFST	P I P F S Y S K N L	D C W V D N E E D I
DVILKKSTIL	NLDINNDIIS	D I S G F N S S V I	T Y P D A Q L V P G	IN GKAIHL VN	
AMD IE YNDMF	NNFTVSFWLR	910 V P K V S A S H L E	Q Y G T N E Y S I I	SSMKKHSLSI	540 G S G W S V S L K G
950 NNLIWTLKDS	AGEVRQITFR	D L P D K F N A Y L	ANKWVFITIT	SSO NDRLSSANLY	INGVLMGSAE
e10 ITGLGAIRED	N N I T L K L D R C	N N N N Q Y V S I D	640 KFRIF C KALN	eso PKEIEKLYTS	YLSITFLRDF
ero W G N P L R Y D T E	YYLIPVASSS		YM YL TN AP S Y	TN GKLN IYYR	T20 RLYNGLKFII
KRYTPNNE ID	SFVKSGDFIK	L Y V S Y N N N E H	T V G Y P K D G N A	FNNLDRILRV	
KKMEAVKLRD	L K T Y S V Q L K L				
IL GCD W Y F V P	TDEGWTND 858				

Subunit 2					
10	20	20	40	50	80
PITINNFRYS	DPVNNDTIIM	MEPPYCKGLD	IYYKAFKITD	RIWIVPERYE	FGTKPEDFNP
70	80	90	100	110	120
PSSLIEGASE	YYDPNYLRTD	SDKDRFLQTM	VKLFNRIKNN	VAGEALLDKI	INAIPYLGNS
130	140	150	160	170	180
YSLLDKFDTN	SNSVSFNLLE	QDPSGATTKS	AMLTNLIIFG	PGPVLNKNEV	RGIVLRVDNK
190	200	210	220	230	240
VYFPCRDGFG	SIMQMAFCPE	YVPTFDNVIE	NITSLTIGKS	KYFQDPALLL	MHELIHVLHG
250	260	210	250	290	300
LYGMQVSSHE	IIPSKQEIYM	QHTYPISAEE	LFTFGGQDAN	LISIDIKNDL	YEKTLNDYKA
310	320	330	340	250	360
IANKLSQVTS	CNDPNIDIDS	YKQIYQQKYQ	FDKDSNGQYI	VNEDKFQILY	NSIMYGFTEI
370	380	390	400	410	420
ELGKKFNIKT	RLSYFSMNHD	PVKIPNLLDD	TIYNDTEGFN	IESKDLKSEY	KGQNMRVNTN
430	440	450	435		
AFRNVDGSGL	VSKLIGLCKK	IIPPTNIREN	LYNRTA		

Disulfide Links 2

Residue Index

1_636 1_620

2_438 1_10

```
<PROTEIN>
<SEQUENCE TYPE>COMPLETE</SEQUENCE TYPE>
<NUMBER OF SUBUNITS>2</NUMBER OF SUBUNITS>
<SUBUNIT GROUP>
<SUBUNIT>1</SUBUNIT>
<LENGTH>858</LENGTH>
<SEQUENCE>SLTDLGGELCIKIKNEDLTFIAEKNSFSEEPFQDEIVSYNTKNKPLNFNYSLDKIIVDYNLQSKITLPNDRTTPVTKGIPYAPEYKSNAA
STIEIHNIDDNTIYQYLYAQKSPTTLQRITMTNSVDDALINSTKIYSYFPSVISKVNQGAQGILFLQWVRDIIDDFTNESSQKTTIDKISDVSTIVPYIGP
ALNIVKQGYEGNFIGALETTGVVLLLEYIPEITLPVIAALSIAESSTQKEKIIKTIDNFLEKRYEKWIEVYKLVKAKWLGTVNTQFQKRSYQMYRSLEYQ
VDAIKKIIDYEYKIYSGPDKEQIADEINNLKNKLEEKANKAMININIFMRESSRSFLVNQMINEAKKQLLEFDTQSKNILMQYIKANSKFIGITELKKLE
SKINKVFSTPIPFSYSKNLDCWVDNEEDIDVILKKSTILNLDINNDIISDISGFNSSVITYPDAQLVPGINGKAIHLVNNESSEVIVHKAMDIEYNDMF
NNFTVSFWLRVPKVSASHLEQYGTNEYSIISSMKKHSLSIGSGWSVSLKGNNLIWTLKDSAGEVRQITFRDLPDKFNAYLANKWVFITITNDRLSSA
NLYINGVLMGSAEITGLGAIREDNNITLKLDRCNNNNOYVSIDKFRIFCKALNPKEIEKLYTSYLSITFLRDFWGNPLRYDTEYYLIPVASSSKDVOLK
NITDYMYLTNAPSYTNGKLNIYYRRLYNGLKFIIKRYTPNNEIDSFVKSGDFIKLYVSYNNNEHIVGYPKDGNAFNNLDRILRVGYNAPGIPLYKKME
AVKLRDLKTYSVQLKLYDDKNASLGLVGTHNGQIGNDPNRDILIASNWYFNHLKDKILGCDWYFVPTDEGWTND</SEQUENCE>
</SUBUNIT GROUP>
<SUBUNIT GROUP>
<SUBUNIT>2</SUBUNIT>
<LENGTH>456</LENGTH>
<SEQUENCE>PITINNFRYSDPVNNDTIIMMEPPYCKGLDIYYKAFKITDRIWIVPERYEFGTKPEDFNPPSSLIEGASEYYDPNYLRTDSDKDRFLQT
MVKLFNRIKNNVAGEALLDKIINAIPYLGNSYSLLDKFDTNSNSVSFNLLEQDPSGATTKSAMLTNLIIFGPGPVLNKNEVRGIVLRVDNKNYFPCR
DGFGSIMQMAFCPEYVPTFDNVIENITSLTIGKSKYFQDPALLLMHELIHVLHGLYGMQVSSHEIIPSKQEIYMQHTYPISAEELFTFGGQDANLISI
DIKNDLYEKTLNDYKAIANKLSQVTSCNDPNIDIDSYKQIYQQKYQFDKDSNGQYIVNEDKFQILYNSIMYGFTEIELGKKFNIKTRLSYFSMNHDPV
KIPNLLDDTIYNDTEGFNIESKDLKSEYKGQNMRVNTNAFRNVDGSGLVSKLIGLCKKIIPPTNIRENLYNRTA</SEQUENCE>
</SUBUNIT GROUP>
<DISULFIDE LINKAGE>1 10-2 438;1 620-1 636;/DISULFIDE LINKAGE>
<GLYCOSYLATION>
<GLYCOSYLATION TYPE/>
<N GLYCOSYLATION/>
<O GLYCOSYLATION/>
<C GLYCOSYLATION/>
```

Vaccine Products

- Most are polyvalent multiple antigens
 - Antigens focused on different serotypes of the same organism
 - Antigens to vaccinate against different diseases
 - All are distinct active ingredients
- Many contain also adjuvating agents that increase antigen immunigenicity

ACTIVE INGREDIENT/ACTIVE MOIETY							
Ingredient Name	Basis of Strength	Strength					
INFLUENZA A VIRUS A/CHRISTCHURCH /16/2010 NIB-74XP (H1N1) ANTIGEN (FORMALDEHYDE INACTIVATED) (UNII: F6VKT8IL26) (INFLUENZA A VIRUS A/CHRISTCHURCH/16/2010 NIB-74XP (H1N1) HEMAGGLUTININ ANTIGEN (FORMALDEHYDE INACTIVATED) - UNII:9PM6202D07)	INFLUENZA A VIRUS A/CHRISTCHURCH/16/2010 NIB-74XP (H1N1) ANTIGEN (FORMALDEHYDE INACTIVATED)	15 ug in 0.5 mL					
INFLUENZA A VIRUS A/TEXAS/50/2012 X-223A (H3N2) ANTIGEN (FORMALDEHYDE INACTIVATED) (UNII: 4127F11825) (INFLUENZA A VIRUS A/TEXAS/50/2012 X-223A (H3N2) HEMAGGLUTININ ANTIGEN (FORMALDEHYDE INACTIVATED) - UNII:S477VIE5TZ)	INFLUENZA A VIRUS A/TEXAS/50/2012 X-223A (H3N2) ANTIGEN (FORMALDEHYDE INACTIVATED)	15 ug in 0.5 mL					
INFLUENZA B VIRUS B/MASSACHUSETTS /2/2012 BX-51B ANTIGEN (FORMALDEHYDE INACTIVATED) (UNII: 3W4UKF8P6Z) (INFLUENZA B VIRUS B/MASSACHUSETTS /2/2012 BX-51B HEMAGGLUTININ ANTIGEN (FORMALDEHYDE INACTIVATED) - UNII:N784VJP7ZF)	INFLUENZA B VIRUS B/MASSACHUSETTS/2/2012 BX-51B ANTIGEN (FORMALDEHYDE INACTIVATED)	15 ug in 0.5 mL					
INFLUENZA B VIRUS B/BRISBANE/60/2008 ANTIGEN (FORMALDEHYDE INACTIVATED) (UNII: W45Z4CJE2J) (INFLUENZA B VIRUS B/BRISBANE/60/2008 HEMAGGLUTININ ANTIGEN (FORMALDEHYDE INACTIVATED) - UNII:166D8OWM7B)	INFLUENZA B VIRUS B/BRISBANE/60/2008 ANTIGEN (FORMALDEHYDE INACTIVATED)	15 ug in 0.5 mL					

CHEMICAL INACTIVATION 1HG84L3525 FORMALDEHYDE

Species details: Influenzavirus a: Influenza A virus ICTV

ICTV_MSL

LSID ▶

Accepted scientific name: Influenzavirus a: Influenza A virus ICTV (accepted name)

Synonyms:

Common names:

Classification: Kingdom Viruses ICTV_MSL LSID ▶

Phylum Not assigned ICTV_MSL LSID > Class Not assigned ICTV_MSL LSID ▶ Order Not assigned LSID ▶ ICTV MSL

Orthomyxoviridae LSID ▶ Family ICTV_MSL Influenzavirus a:

Distribution:

Lifezones:

Additional data:

 □ 100% ★ ★ ★ ★ ★ Source database: ICTV_MSL, 1, Mar 2014

Genus

Latest taxonomic scrutiny: A.M.Q.King, M.J.Adams, E.B. Carstens & E.J. Lefkowitz (Eds), Mar-2014

http://ictvonline.org/virusTaxonomy.asp?version=2013 Online resource: