

Universidad Carlos III de Madrid Computers Technology. 1st midterm exam. March, 2016 Groups 88-89. MODEL B

Nombre:	Grupo:

Cuestión 1 (5 pts)

Dada la siguiente función:

$$f(a,b,c,d) = \sum_{4} (0,2,6,8,10,14,15) + \bigwedge (4,5,7,9)$$

- a) Obtenga la expresión más simplificada de la función f como producto de sumas.
- b) Obtenga la expresión más simplificada de la función f como suma de productos.
- c) Seleccione entre A y B la expresión más conveniente e implemente solo con puertas NOR.
- d) Implemente f utilizando un decodificador 4:16 con salidas activas a nivel alto y una sola puerta lógica adicional.
- e) Implemente f utilizando solamente MUX4 (4 entradas de datos), sin ninguna puerta lógica adicional.

SOLUCIONES:

A)	f =
B)	f =
C)	f =
D)	
E)	

Universidad Carlos III de Madrid Computers Technology. 1st midterm exam. March, 2016 Groups 88-89. MODEL B

Cuestión 2 (3 pts)

- A) Obtenga la representación del número +135.875 según el estándar IEEE-754 de 32 bits. Pista: la siguiente composición: (-1)^s 1.M 2^{E-127}
- B) Obtenga la representación del número +135.875 usando la representación de punto fijo Q10.5
- C) Obtenga la representación del número +135.875 usando la representación de punto fijo Q10.5

Pista: Usar CA2

SOLUCION:

A)	
B)	
C)	

Cuestión 3 (2 pts)

Rellene la tabla de verdad para el circuito de entradas a, b, c, d y salidas s0, s1, s2 y s3:

a	b	с	d	s3	s2	s1	s0
0	0	0	0				
0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1	1				
1	1	0	0				
1	1	0	1				
1	1	1	0				
1	1	1	1				