# **VBC**

# ZS 2021/22

Tomáš Benda, 200604 task #3

#### Zadání

Pro dané funkce vytvořit a otestovat metaheuristiky genetický algoritmus a HC12.

#### Rastriginova funkce



Rastriginova funkce je definovaná pro  $x_i \in [-5.12, 5.12]$  pro všechna  $i=1,2\dots$ , d. Globální minimum pro 2D je pak v bodě x=[0,0] a funkční hodnota je y=0.

#### Rosenbrockova funkce



Rosenbrockova funkce je definovaná pro  $x_i \in [-5,10]$  pro všechna  $i=1,2\dots$ , d. V tomto protokolu je omezena na  $x_i \in [-2.048,2.048]$  pro všechna  $i=1,2\dots$ , d Globální minimum pro 2D je pak v bodě x=[1,1] a funkční hodnota je y=0.

## Funkce Schwefel



Funkce Schwefel je definovaná pro  $x_i \in [-500,500]$  pro všechna  $i=1,2\dots$ , d. Globální minimum pro 2D je pak v bodě x=[420.9687,420.9687] a funkční hodnota je y=0.

# Postup řešení

#### Agoritmus HC12

V programu hc12.py byla vytvořena třída HC12 s implementací daného algoritmu. Pro testování funkčnosti algoritmu byly použity následující vstupní parametry.

- maxGener = 100
- nRuns = 50 (2D, 5D, 10D), = 5 (50D, 100D)
  - Malý počet u 50D a 100D je způsoben vysokou časovou náročností (maticové operace na velkých maticích)
- nBitParam = 15 (2D, 5D, 10D), = 8 (50D, 100D)

#### Genetický algoritmus

Vytvořený genetický algoritmus přijímá vstupní parametry dle zadání. Pro testování funkčnosti algoritmu a hledání minima zadaných funkcí byly použity tyto parametry.

- NP (velikost populace) = 100 (2D, 5D, 10D), = 100 (50D, 100D)
  - Velikost populace byla volena s ohledem na rychlost algoritmu a co nejlepší výsledky.
- pS (síla selekce) = 0.1
  - Síla selekce 10 % (turnaje se účastní 10 % jedinců)
- pC (pravděpodobnost křížení) = 0.9
  - o Potomek vznikne křížením rodičů s 90 % pravděpodobností
- pM (pravděpodobnost mutace) = 1/(nBitParam\*nParam)
- maxGener = 500 (2D, 5D, 10D), = 100 (50D, 100D)
  - Pro méněrozměrné 500 generací dostačující, pro více rozměrů voleno 100 s ohledem na časovou náročnost
- nRuns = 50, 10 pro 50D, 100D
- nBitParam = 15
  - o 15 bitů na parametr

# Výsledky testování algoritmů

#### HC12

V tabulkách níže jsou vyznačeny maximální, minimální, průměrné a nejlepší hodnoty pro parametry fval (funkční hodnota), #Gener (počet generací) a čas při testování implementace algoritmu HC12 pro zadané funkce.

|            |     | fval       |            |            |            |  |  |  |
|------------|-----|------------|------------|------------|------------|--|--|--|
|            | D   | max.       | min.       | průměr     | best       |  |  |  |
| Rastrigin  | 2   | 9.6877e-06 | 9.6877e-06 | 9.6877e-06 | 9.6877e-06 |  |  |  |
|            | 5   | 2.4219e-05 | 2.4219e-05 | 2.4219e-05 | 2.4219e-05 |  |  |  |
|            | 10  | 4.8438e-05 | 4.8438e-05 | 4.8438e-05 | 4.8438e-05 |  |  |  |
|            | 50  | 20.5955    | 8.9539     | 13.7532    | 8.9539     |  |  |  |
|            | 100 | 254.3431   | 167.3283   | 202.6213   | 167.3283   |  |  |  |
| Rosenbrock | 2   | 0.0038     | 2.6688e-07 | 0.0023     | 2.6688e-07 |  |  |  |
|            | 5   | 0.9433     | 2.0964e-05 | 0.5364     | 2.0964e-05 |  |  |  |
|            | 10  | 5.8629     | 0.0003     | 3.5007     | 0.0003     |  |  |  |
|            | 50  | 1153.6113  | 393.4587   | 878.5247   | 393.4587   |  |  |  |
|            | 100 | 1635.2850  | 1153.6114  | 1272.7746  | 1153.6114  |  |  |  |
| Schwefel   | 2   | 5.9918e-05 | 5.9918e-05 | 5.9918e-05 | 5.9918e-05 |  |  |  |
|            | 5   | 0.0001     | 0.0001     | 0.0001     | 0.0001     |  |  |  |
|            | 10  | 0.0003     | 0.0003     | 0.0003     | 0.0003     |  |  |  |
|            | 50  | 1153.6113  | 393.4587   | 878.5248   | 393.4587   |  |  |  |
|            | 100 | 4715.5351  | 3925.8046  | 4300.6729  | 3925.8046  |  |  |  |

Tabulka 1: Statistika pro fval (funkční hodnota) - HC12

|            |     | #Generace |       |        |       |  |  |
|------------|-----|-----------|-------|--------|-------|--|--|
|            | D   | max.      | min.  | průměr | best  |  |  |
| Rastrigin  | 2   | 12.0      | 4.0   | 8.0600 | 4.0   |  |  |
|            | 5   | 27.0      | 13.0  | 20.18  | 13.0  |  |  |
|            | 10  | 48.0      | 33.0  | 39.94  | 33.0  |  |  |
|            | 50  | 100.0     | 100.0 | 100.0  | 100.0 |  |  |
|            | 100 | 100.0     | 100.0 | 100.0  | 100.0 |  |  |
| Rosenbrock | 2   | 66.0      | 5.0   | 33.42  | 5.0   |  |  |
|            | 5   | 100.0     | 15.0  | 89.3   | 20.0  |  |  |
|            | 10  | 100.0     | 33.0  | 92.62  | 36.0  |  |  |
|            | 50  | 100.0     | 100.0 | 100.0  | 100.0 |  |  |
|            | 100 | 100.0     | 100.0 | 100.0  | 100.0 |  |  |
| Schwefel   | 2   | 12.0      | 4.0   | 8.7800 | 4.0   |  |  |
|            | 5   | 30.0      | 14.0  | 21.36  | 14.0  |  |  |
|            | 10  | 54.0      | 33.0  | 42.16  | 33.0  |  |  |
|            | 50  | 100.0     | 100.0 | 100.0  | 100.0 |  |  |
|            | 100 | 100.0     | 100.0 | 100.0  | 100.0 |  |  |

Tabulka 2: Statistika pro #Generací (počet generací na restart alg.) - HC12

|            |     | Čas výpočtu |            |             |            |  |
|------------|-----|-------------|------------|-------------|------------|--|
|            | D   | max.        | min.       | průměr      | best       |  |
| Rastrigin  | 2   | 9.3824      | 2.6316     | 6.023       | 2.6316     |  |
|            | 5   | 63.0601     | 2.621      | 33.0796     | 2.6212     |  |
|            | 10  | 394.7978    | 2.7900     | 200.5312    | 2.7900     |  |
|            | 50  | 808.5057    | 2.8758     | 403.9535    | 2.8758     |  |
|            | 100 | 6892.9091   | 1032.6594  | 3975.9925   | 5439.7745  |  |
| Rosenbrock | 2   | 11.2017     | 2.6344     | 6.9405      | 7.0467     |  |
|            | 5   | 352.8637    | 2.5760     | 179.8644    | 200.6140   |  |
|            | 10  | 3126.7400   | 2.8896     | 1557.5940   | 3126.7400  |  |
|            | 50  | 8673.0472   | 8345.1269  | 8509.2920   | 8673.0472  |  |
|            | 100 | 13796.3776  | 11394.7978 | 12713.8399  | 13796.3776 |  |
| Schwefel   | 2   | 8.5618      | 2.6901     | 5.5918      | 2.6901     |  |
|            | 5   | 53.7147     | 2.6586     | 28.8267     | 2.6586     |  |
|            | 10  | 351.1449    | 3.2064     | 177.3442    | 3.2064     |  |
|            | 50  | 8673.0472   | 8345.1269  | 8509.2920   | 8673.0472  |  |
|            | 100 | 14271.8147  | 8843.6757  | 11557.99578 | 12914.8400 |  |

Tabulka 3: Statistika pro čas výpočtu

Následující tabulka zobrazuje, kolikrát byly jednotlivé restarty ukončeny pomocí kritéria Max Generation a Running mean. Kritérium Best-Worst nebylo použito oproti genetickému algoritmu, jelikož se u genetického algoritmu nikdy nevyužilo. Z tabulky je vidět, že pro 50D a 100D je jedinou ukončovací podmínkou maximální počet generací. Pro 2D, 5D a 10D je pak naopak dominantní úplně nebo z více než 80 % ukončovací kritérium Running mean.

|        | Počet kritéria ukončení     |                               |      |  |  |  |  |
|--------|-----------------------------|-------------------------------|------|--|--|--|--|
|        | Max Generation/Running mean |                               |      |  |  |  |  |
| Params | Rastrigin                   | Rastrigin Rosenbrock Schwefel |      |  |  |  |  |
| 2      | 0/50                        | 0/50                          | 0/50 |  |  |  |  |
| 5      | 0/50                        | 43/7                          | 0/50 |  |  |  |  |
| 10     | 0/50                        | 42/8                          | 0/50 |  |  |  |  |
| 50     | 5/0                         | 5/0                           | 5/0  |  |  |  |  |
| 100    | 5/0                         | 5/0                           | 5/0  |  |  |  |  |

Tabulka 4: Statistika pro Počet kritéria ukončení

Pro 2D funkce bylo za pomoci HC12 nalezeny při testování globální minima pro 2D funkce zakreslené v následujících grafech.

#### Rastrigin

x1 = 0.00015625; x2 = -0.00015625; fval = 9.6877e-06

Rastrigin2D - Optimal value



#### Rosenbrock

x1 = 0.999593; x2 = 0.999218; fval = 2.668817e-07

Rosenbrock2D - Optimal value



#### Schwefel

x1 = 420.9571; x2 = 420.9571; fval = 5.9918e-05;



Průběh chodu algoritmu během jednoho restartu zobrazují následující grafy. Z grafů je patrné, že, podobně jako u genetického algoritmu dále v tomto protokolu, bylo u funkcí Schwefel a Rastrigin pro 2 parametry dosaženo optima téměř ihned. U funkce Rosenbrock bylo globální minimum nalezeno až po několika generacích.







Pro 2 a 10 parametrů byly dále vytvořeny grafy, na kterých lze vidět vývoj funkční hodnoty během restartů algoritmu a dále počtu generací, které byly potřeba pro úspěšné nalezení optima.

#### Rastrigin









#### Rosenbrock





## Schwefel









# Genetický algoritmus

U genetického algoritmu byly vyhodnoceny maximální, minimální, průměrné hodnoty u funkční hodnoty fval, času a počtu generací. V posledním sloupci (best) se nachází hodnota nejlepšího běhu pro dané parametry.

|           |     | fval       |          |            |          |  |
|-----------|-----|------------|----------|------------|----------|--|
|           | D   | max.       | min.     | průměr     | best     |  |
| Rastrigin | 2   | 1.2358     | 0.0      | 0.09407    | 0.0      |  |
|           | 5   | 7.7497e-05 | 0.0      | 4.1848e-05 | 0.0      |  |
|           | 10  | 3.7568     | 0.0083   | 0.4132     | 0.0083   |  |
|           | 50  | 145.0303   | 79.6556  | 111.0703   | 79.6556  |  |
|           | 100 | 434.3652   | 305.9340 | 369.3361   | 305.9339 |  |

| Rosenbrock | 2   | 0.24185    | 1.5625e-08 | 0.0418     | 1.5625e-08 |
|------------|-----|------------|------------|------------|------------|
|            | 5   | 2.6391     | 0.0086     | 0.9124     | 0.0086     |
|            | 10  | 9.1154     | 0.7354     | 6.1951     | 0.7354     |
|            | 50  | 379.10371  | 78.0719    | 240.6229   | 78.0719    |
|            | 100 | 1871.0534  | 1224.1907  | 1525.8822  | 1224.1907  |
| Schwefel   | 2   | 0.2073     | 4.7159e-05 | 0.0442     | 4.7159e-05 |
|            | 5   | 0.31363    | 0.0001     | 0.0819     | 0.0001     |
|            | 10  | 0.8263     | 0.0504     | 0.3784     | 0.0504     |
|            | 50  | 4775.78783 | 3527.3343  | 4253.1841  | 3527.3343  |
|            | 100 | 16168.5693 | 12923.6964 | 14260.0229 | 12923.6964 |

Tabulka 5: Statistika pro fval (funkční hodnota) – genetický algoritmus

|            |     | #Generace |       |        |       |
|------------|-----|-----------|-------|--------|-------|
|            | D   | max.      | min.  | průměr | best  |
| Rastrigin  | 2   | 112.0     | 58.0  | 69.6   | 58.0  |
|            | 5   | 68.0      | 59.0  | 62.16  | 59.0  |
|            | 10  | 162.0     | 81.0  | 110.38 | 81.0  |
|            | 50  | 100.0     | 100.0 | 100.0  | 100.0 |
|            | 100 | 100.0     | 100.0 | 100.0  | 100.0 |
| Rosenbrock | 2   | 130.0     | 55.0  | 77.02  | 55.0  |
|            | 5   | 175.0     | 62.0  | 79.12  | 62.0  |
|            | 10  | 343.0     | 72.0  | 116.22 | 72.0  |
|            | 50  | 100.0     | 100.0 | 100.0  | 100.0 |
|            | 100 | 100.0     | 100.0 | 100.0  | 100.0 |
| Schwefel   | 2   | 77.0      | 59.0  | 64.06  | 59.0  |
|            | 5   | 87.0      | 66.0  | 72.18  | 66.0  |
|            | 10  | 317.0     | 84.0  | 129.88 | 84.0  |
|            | 50  | 100.0     | 100.0 | 100.0  | 100.0 |
|            | 100 | 100.0     | 100.0 | 100.0  | 100.0 |

Tabulka 6: Statistika pro **#Generace** – genetický algoritmus

|            |     | Čas výpočtu |         |          |         |
|------------|-----|-------------|---------|----------|---------|
|            | D   | max.        | min.    | průměr   | best    |
| Rastrigin  | 2   | 2.2316      | 0.9493  | 1.2231   | 0.9886  |
|            | 5   | 6.1638      | 5.2036  | 5.4776   | 5.5975  |
|            | 10  | 22.5860     | 11.3670 | 15.4770  | 17.5471 |
|            | 50  | 10.7891     | 10.5140 | 10.5957  | 10.6470 |
|            | 100 | 20.3071     | 20.0851 | 20.1655  | 20.3071 |
| Rosenbrock | 2   | 2.2925      | 0.9293  | 1.3419   | 0.9293  |
|            | 5   | 54.3366     | 19.9697 | 24.7249  | 22.4579 |
|            | 10  | 198.2791    | 43.9861 | 68.1908  | 85.5762 |
|            | 50  | 19.8414     | 19.7279 | 19.7739  | 19.7424 |
|            | 100 | 39.2691     | 39.0757 | 39.1336  | 39.0868 |
| Schwefel   | 2   | 1.4046      | 0.9641  | 1.1124   | 1.2934  |
|            | 5   | 26.1441     | 19.3497 | 21.804   | 21.6311 |
|            | 10  | 168.3296    | 45.7675 | 70.1627  | 59.1635 |
|            | 50  | 14.7308     | 10.7021 | 12.4915  | 12.8201 |
|            | 100 | 20.7240     | 19.9857 | 20.17568 | 20.7240 |

Tabulka 7: Statistika pro čas – genetický algoritmus

Násleující tabulka zobrazuje počet kriterií ukončení. Z tabulky je patrné, že pro 2D, 5D a 10D bylo jediné kritérium ukončení Running mean. Pro 50D a 100D pak jediným ukončovacím kritériem byl maximální počet generací. Kritérium Best-Worst nebylo nikdy aplikováno.

|        | Počet kritéria ukončení                |                               |        |  |  |  |  |
|--------|----------------------------------------|-------------------------------|--------|--|--|--|--|
|        | Max Generation/Running mean/Best-Worst |                               |        |  |  |  |  |
| Params | Rastrigin                              | Rastrigin Rosenbrock Schwefel |        |  |  |  |  |
| 2      | 0/50/0                                 | 0/50/0                        | 0/50/0 |  |  |  |  |
| 5      | 0/50/0                                 | 0/50/0                        | 0/50/0 |  |  |  |  |
| 10     | 0/50/0                                 | 0/50/0                        | 0/50/0 |  |  |  |  |
| 50     | 10/0/0                                 | 10/0/0                        | 10/0/0 |  |  |  |  |
| 100    | 10/0/0                                 | 10/0/0                        | 10/0/0 |  |  |  |  |

Tabulka 8: Statistika pro počty kritéria ukončení

Optimální řešení pro 2D jsou znázorněna v následujících grafech.

#### Rastrigin

x1 = 0.0000; x2 = 0.0000; fval = 0.0000;

# Optimal value Optimal value 80 60 40 fval 20 0

#### Rosenbrock

x1 = 1.0000; x2 = 1.0000; fval = 0.0000;

Rosenbrock2D - Optimal value



#### Schwefel

x1, x2 = [420.95947266 420.95947266]; fval = 4.7159e-05



V následujících grafech je zobrazen průběh vždy jednoho chodu algoritmu, kdy byla nalezena optimální hodnota. Z grafů je patrné, že pro 2D problém bylo optimum nalezeno téměř okamžitě (Schwefel), popřípadě po přechodu z lokálních minim (Rastrigin, Rosenbrock). Záleží vždy na počáteční populaci a nastavení algoritmu.







Následující grafy zobrazují funkční hodnotu pro jednotlivé generace běhu algoritmu, při kterém bylo nalezeno optimum. Další graf pak znázorňuje počet generací pro jednotlivé restarty algoritmu. Grafy byly vytvořeny pro všechny dimenze, v protokolu jsou uvedeny pouze pro 2D a 10D. Červenou přímkou je znázorněna průměrná hodnota.

#### Rastrigin









#### Rosenbrock









## Schwefel









# Zhodnocení výsledků

#### HC12

Algoritmus HC12 dává lepší výsledky než vytvořená implementace genetického algoritmu. Čas výpočtu je ovšem pro vyšší počty parametrů větší.

Nevýhodou implementace algoritmu je ovšem práce s velkými maticemi pro mnoho rozměrů. Čas pro 50D a 100D je i v řádech hodin, přestože byla snížen počet bitů na parametr. Kvůli tomu byl v testování snížen i počet restartů algoritmu. I přes to ovšem hodnoty pro vyšší dimenze jsou lepší než u implementace genetického algoritmu.

#### Genetický algoritmus

Vytvořená implementace genetického algoritmu je schopná nalézt kvalitní řešení optimalizačních problému testovaných na funkcích Rastrigin, Rosenbrock a Schwefel.

Pro vyšší dimenze byl ovšem problém nalézt globální minimum. Z tabulek je to více než patrné (zejména funkce Schwefel). Zvětšením populace by šlo jistě výsledky zlepšit, zvětšil by se ovšem čas výpočtu.

Další práce by určitě směřovala na optimalizaci kódu a snížení času výpočtu genetického algoritmu i implementace HC12.