Supplement: Data exploration, quality control and statistical analysis of ChIP-exo experiments

Rene Welch¹, Dongjun Chung⁶, Irene Ong³, Jeffrey Grass³,⁴, Robert Landick³,⁴,⁵, and Sündüz Keleş¹,²

¹Department of Statistics, University of Wisconsin Madison ²Department of Biostatistics and Medical Informatics, University of Wisconsin Madison

³Great Lakes Bioenergy Research Center, University of Wisconsin Madison

 $^4\mathrm{Department}$ of Biochemistry, University of Wisconsin Madison

Contents

1	Comparison of ChIP-exo with ChIP-Seq data.	2
2	SCC curves for ChIP-exo and ChIP-nexus data.	5
3	QC pipeline applied to ChIP-exo and ChIP-nexus data.	9
	3.1 FoxA1 peak overlaps with high quality regions	27

⁵Department of Bacteriology, University of Wisconsin Madison

⁶Department of Public Health Sciences, Medical University of South Carolina

1 Comparison of ChIP-exo with ChIP-Seq data.

Figure S1: Hexbin plots of PE ChIP-Seq bin counts vs. ChIP-exo bin counts for σ^{70} second biosample: A) E2-1, B) E2-2 C) E2-3 and D) E2-4 samples. E) Forward Strand Ratio densities for SE ChIP-Seq and ChIP-exo peaks for σ^{70} , S2 and E2 groups respectively.

Figure S2: Hexbin plot comparing A) Rep-1 and B) Rep-2 ENCODE SE ChIP-seq bin counts vs. Pugh ChIP-exo bin counts for CTCF in HeLa cell. C) Rep-1 and D) Rep-2 ChIP-seq compared against ChIP-exo Forward Strand Ratio densities.

Figure S3: Hexbin plots comparing SE ChIP-Seq bin counts vs. ChIP-exo bin counts for ER in human MCF-7 cell lines.

2 SCC curves for ChIP-exo and ChIP-nexus data.

Figure S4: Comparison of ChIP-exo vs. ChIP-Seq SCC curves for ER factor in human MCF-7 cell lines.

Figure S5: SCC curves for FoxA1 factor in mouse liver cell lines.

Figure S6: SCC curves for GR factor in IMR90, K562 and U2OS human cell lines.

Figure S7: Comparison of ChIP-exo vs. ChIP-nexus SCC curves for TBP factor in human K562 cell lines.

Figure S8: SCC curves for dorsal factor in embryo D. Melanogaster cell lines.

Figure S9: SCC curves for twist factor in embryo $D.\ Melanogaster$ cell lines.

Figure S10: SCC curves for Max factor in S2 D. Melanogaster cell lines.

Figure S11: SCC curves for MyC factor in S2 D. Melanogaster cell lines.

RW: need to generate this curves for sig70 samples, compared against PE and SE ChIP-seq

3 QC pipeline applied to ChIP-exo and ChIP-nexus data.

Figure S12: ChIP-exo QC pipeline diagnostics for σ^{70} E1 biosample in E. Coli.

Figure S13: ChIP-exo QC pipeline diagnostics for σ^{70} E2 biosample in E. Coli.

Figure S14: ChIP-exo QC pipeline diagnostics for CTCF factor in human HeLa cell lines.

Figure S15: ChIP-exo QC pipeline diagnostics for ER factor in human MCF-7 cell lines.

Figure S16: ChIP-exo QC pipeline diagnostics for TBP factor in human K562 cell lines.

Figure S17: ChIP-exo QC pipeline diagnostics for GR factor in human IMR90, K562 and U2OS cell lines respectively.

Figure S18: ChIP-exo QC pipeline diagnostics for ChIP-nexus experiment of dorsal factor in embryo D. Melanogaster cell lines.

Figure S19: ChIP-exo QC pipeline diagnostics for ChIP-nexus experiment of twist factor in embryo D. Melanogaster cell lines.

Figure S20: ChIP-exo QC pipeline diagnostics for ChIP-nexus experiment of Max factor in S2 D. Melanogaster cell lines.

Figure S21: ChIP-exo QC pipeline diagnostics for ChIP-nexus experiment of MyC factor in S2 D. Melanogaster cell lines.

Figure S22: ChIP-exo QC pipeline diagnostics for ChIP-nexus experiment of TBP factor in K562 human cell lines.

Comparison of QC pipeline for different sub-sampled sequencing depths.

Figure S23: ChIP-exo QC pipeline diagnostics for σ^{70} E1 biosample on *E. Coli* when sampling 10K to 100K reads from each experiment

Figure S24: ChIP-exo QC pipeline diagnostics for σ^{70} E2 biosample on E. Coli when sampling 10K to 100K reads from each experiment

Figure S25: ChIP-exo QC pipeline diagnostics applied to ChIP-nexus and ChIP-exo experiments of TBP factor in K562 human cell lines when sampling $20\mathrm{M}$ to $50\mathrm{M}$ reads from each experiment.

3.1 FoxA1 peak overlaps with high quality regions.

Figure S26: Venn diagrams of high quality regions that overlap peaks for FoxA1 factor in mouse liver cell lines. Top) Rep-1, Middle) Rep-2 and Bottom) Rep-3.