1174

1177

1182

1185

1186 1187

1194

1195

C. RDI CONDITION IN THE ABSENCE OF ROTATION

$$k_z^2 = \frac{(V_A k_x \zeta_x)^2}{V_A^4 - (V_A k_x l_H \zeta_x)^2} + \frac{(V_A k_x^2 l_H \zeta_x)^2}{4 \left[V_A^4 - (V_A k_x l_H \zeta_x) \right]} + \frac{V_A k_x^3 l_H \zeta_x^2 \sqrt{4V_A^2 + (V_A k_x l_H)^2 + 4\zeta_x^2}}{2 \left[V_A^4 - (V_A k_x l_H \zeta_x) \right]}.$$
 (C36)

$$k_z^2 = \frac{(V_A k_x \zeta_x)^2}{V_A^4 - (V_A k_x l_H \zeta_x)^2} + \frac{(V_A k_x^2 l_H \zeta_x)^2}{2[V_A^4 - (V_A k_x l_H \zeta_x)]} - \frac{V_A k_x^3 l_H \zeta_x^2 \sqrt{4V_A^2 + (V_A k_x l_H)^2 + 4\zeta_x^2}}{2[V_A^4 - (V_A k_x l_H \zeta_x)]}, \quad (C37)$$

The "+" waves (eq. C36) are commonly referred to as whistler or electron-cyclotron modes, whereas those marked 1180 with "-" (eq. C37) are identified as ion-cyclotron modes.

D. TOY MODEL WITH DISSIPATION

For numerical stability, we add gas viscosity and ohmic resistivity terms to the momentum and induction equations 1183 1184 in the toy model (§5.2. We obtain:

$$\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} = 2v_y \Omega \hat{\boldsymbol{x}} - v_x \frac{\Omega}{2} \hat{\boldsymbol{y}} - \frac{f_g}{\rho_g} \nabla \Pi + \frac{f_g}{\mu_0 \rho_g} \boldsymbol{B} \cdot \nabla \boldsymbol{B} + \nu_1 \nabla^2 \boldsymbol{v}, \tag{D38}$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \nabla \times (\mathbf{v}_{\text{ext}} \times \Delta \mathbf{B}) - \frac{3}{2} \Omega B_x \hat{\mathbf{y}} - \left(\frac{\eta_H}{B_{z0}}\right) \nabla \times [(\nabla \times \mathbf{B}) \times \mathbf{B}] + \chi \nabla^2 \mathbf{B}. \tag{D39}$$

1188 In terms of the magnetic vector potential A, the induction equation (D39) becomes

$$\frac{\partial \mathbf{A}}{\partial t} = \mathbf{v} \times \mathbf{B} + \mathbf{v}_{\text{ext}} \times \Delta \mathbf{B} + \frac{3}{2} \Omega A_y \hat{\mathbf{x}} - \frac{\eta_H}{B_{z0}} (\nabla \times \mathbf{B}) \times \mathbf{B} + \chi \nabla^2 \mathbf{A} + \nabla \phi. \tag{D40}$$

₁₁₉₁ Recall $\Delta B = \nabla \times A$, $B = B_{z0}\hat{z} + \Delta B$, and ϕ is the scalar potential. In DEDALUS simulations, we solve Eq. D40 instead of Eq. D39 to ensure that $\nabla \cdot \mathbf{B} = 0$.

Linearizing Eqs. D38—D39 about $\mathbf{v} = 0$ and $\mathbf{B} = B_{z0}\hat{\mathbf{z}}$ yields: 1193

$$\sigma \delta \boldsymbol{v} = 2\Omega \delta v_y \hat{\boldsymbol{x}} - \frac{\Omega}{2} \delta v_x \hat{\boldsymbol{y}} - f_g \left(i \boldsymbol{k} \frac{\delta \Pi}{\rho_g} - \frac{i k_z B_{z0}}{\mu_0 \rho_g} \delta \boldsymbol{B} \right) - \nu_1 k^2 \delta \boldsymbol{v}, \tag{D41}$$

$$\sigma \delta \boldsymbol{B} = \mathrm{i} k_z B_{z0} \delta \boldsymbol{v} - \mathrm{i} k_x v_x \delta \boldsymbol{B} - \frac{3}{2} \Omega \delta B_x \hat{\boldsymbol{y}} - \eta_{\mathrm{H}} k_z^2 \delta B_y \hat{\boldsymbol{x}} + \eta_{\mathrm{H}} k^2 \delta B_x \hat{\boldsymbol{y}} + \eta_{\mathrm{H}} k_x k_z \delta B_y \hat{\boldsymbol{z}} - \chi k^2 \delta \boldsymbol{B}. \tag{D42}$$

1197 Note that Eq. D41 may also be obtained from Eq. B33 by setting $\delta \epsilon = \text{St} = 0$ where they appear explicitly.

REFERENCES

1219

Abod, C. P., Simon, J. B., Li, R., et al. 2019, ApJ, 883, 192, doi: 10.3847/1538-4357/ab40a3 1199 Armitage, P. J. 2011, ARA&A, 49, 195, 1200 doi: 10.1146/annurev-astro-081710-102521 1201 -. 2015, arXiv e-prints, arXiv:1509.06382. 1202 doi: 10.48550/arXiv.1509.06382 1204 Bai, X.-N. 2015, ApJ, 798, 84, doi: 10.1088/0004-637X/798/2/84 1205 -. 2017, ApJ, 845, 75, doi: 10.3847/1538-4357/aa7dda 1206 Bai, X.-N., & Stone, J. M. 2010a, ApJ, 722, 1437, doi: 10.1088/0004-637X/722/2/1437 1208

1209 —. 2010b, ApJL, 722, L220, doi: 10.1088/2041-8205/722/2/L220 1211 —. 2013, ApJ, 769, 76, doi: 10.1088/0004-637X/769/1/76 1212 —. 2017, ApJ, 836, 46, doi: 10.3847/1538-4357/836/1/46 1213 Balbus, S. A., & Hawley, J. F. 1991, ApJ, 376, 214, doi: 10.1086/170270 1215 Balbus, S. A., & Terquem, C. 2001, ApJ, 552, 235, doi: 10.1086/320452 1217 Balsara, D. S., Tilley, D. A., Rettig, T., & Brittain, S. D.

2009, MNRAS, 397, 24, doi: 10.1111/j.1365-2966.2009.14606.x