Chapter 01: Introduction

Lesson 01
Evolution Computers Part 1: Mechanical
Systems, Babbage method of Finite Difference
Engine
and Turing Hypothesis

Objective

- Understand how mechanical computation systems evolved
- Babbage Difference Engine
- Turing Hypothesis

Mechanical Systems

- 16th Century
- Gears, Handles and levers based systems
- Based on Concept pioneered by Pascal
- Addition of decimal numbers
- Subtraction of decimal numbers
- Carry to Left Concept

Mechanical Systems

 Based on concept pioneered by Leibniz— Added, subtracted, multiplied, and divided decimal numbers

Gear Box and Carry left concept

- 100 teeth/360° with a decimal number mark (0, 1, ...9) at each 3.6° at each tooth
- 10 teeth/360° with a decimal number mark (0, 1, ...9) at each 36° at each tooth
- When first rotates by 10 teeth (3.6° each) the second rotates by 1 tooth (36°)
- Each tooth has a decimal number mark number at 36°

Mechanical system based on Gear Box

- The rotation either clockwise or anticlockwise and a gear ratio of 10
- Allows the mechanical system to either carry to left during a decimal addition
- Borrow from left during subtraction

Babbage's Multi-step Programmable Computer

- Concept pioneered by Babbage
- 19th Century (Difference Engine)
- Multiple steps of adding to arrive at a result
- Application— A machine generated and printed tables of equally spaced numbers by a method of finite differences
- Easy to implement with mechanical gears and levers

- Finding table in which each number $x = i \times x_0$; i = 1, 2, ...
- Difference between each number is finite and difference $\Delta = i$. $x_0 (i 1)$. $x_0 = x_0$ when i = 1, 2, 3, ...
- Store initial value x_0 in first register
- Store difference x_0 in second register

- Step 1: Add first with second. Answer in first register = $x + \Delta$
- Repeat Step 1: Add first with second Answer = $x + 2 \Delta$
- Repeat Step 1: Answer = $x + 3 \Delta$
- Repeat Step 1: Answer = $x + 4 \Delta$
- Repeat Step 1: Answer = $x + 5 \Delta$

- Finding table in which each number = $n_0 + i \times n$; i = 1, 2, ...
- Difference between each number is finite and difference $\Delta = i$. n (i 1). n = n when i = 1, 2, 3, ...
- Store initial value n₀ in first register
- Store difference n in second register

- Step 1: Add first with second. Answer in first register = $n_0 + n$
- Repeat Step 1: Add first with second Answer = $n_0 + 2 n$
- Repeat Step 1: Answer = $n_0 + 3$ n
- Repeat Step 1: Answer = $n_0 + 4$ n
- Repeat Step 1: Answer = $n_0 + 5$ n

Cycles with one step	1 st Initial Value	2 nd Initial Value	1 st Initial Value	2 nd Initial Value	X
R1	2000	2200	2400	2600	= n0
R2	200	200	200	200	+ i
	Finite Differences ———				
R3	0	0	0	0	n
	Finite Differences ———				
R3	0	0	0	0	
	Finite Differences ———				

- Finding table in which each number = i²; i = 1, 2, ...
- Differentiate i^2 with respect to i. $\partial(i^2)/\partial i$ Answer is 2. i
- Differentiate 2i with respect to i. ∂(2i)/∂i Answer is 2
- Difference between third and second registers is finite and difference $\Delta_{23} = 2$. i– 2. (i 1) = 2 in each successive step when i= 1, 2, 3, ...

- Hence Store finite difference $\Delta_{23} = 2$ in third register
- Difference between first and second registers is finite and difference $\Delta_{12} = i^2 (i-1)^2 = i^2 (i^2 2i + 1) = 2i 1$ in each successive step when i = 1, 2, 3, ...
- Store initial value R1 = 0 in first register
- Store initial difference value $\Delta_{12} = 2 \times 1 1 = 1$ in second register for i = 1

- Step 1: Add third with second. Answer in second register = $\Delta_{23} + \Delta_{12} = 2 + 1 = 3$
- Step 2: Add second with first Answer in first register = $0 + \Delta_{12} = 0 + 1 = 1 = 1^2$
- Repeat Steps 1 and 2 : Add second with first Answer in first register = $\Delta_{23} + \Delta_{12} + 1^2 = 2 + 1 + 1 = 4 = 2^2$
- Repeat Steps 1 and 2: Answer in first register = $2 + 3 + 4 = 9 = 3^2$

- Repeat Steps 1 and 2: Answer in first register = $2 + 5 + 9 = 4^2$
- Repeat Steps 1 and 2: Answer in first register = $2 + 7 + 16 = 5^2$
- Repeat Steps 1 and 2: Answer in first register = $2 + 9 + 25 = 6^2$

- Finding table in which each number = i³; i = 1, 2,
- Differentiate i^3 with respect to i. $\partial(i^3)/\partial i$ Answer is 3. i^2
- Differentiate 3. i^2 with respect to i. $\partial(3. i^2)/\partial i$ Answer is 6 i
- Differentiate 6 i with respect to i. $\partial(6 \text{ i})/\partial i$ Answer = 6

- Difference between fourth and third registers is finite and difference $\Delta_{34} = 6$. i– 6. (i 1) = 6 in each successive step when i= 1, 2, 3, ...
- Difference between third and second registers is finite and difference $\Delta_{12} = 6$. (i) $^2 6$.(i $^2 6$.(i $^2 6$.(i $^2 2$ i $^2 + 1$) = 6 i $^2 6$ in each successive step when i= 1, 2, 3, ...

Cycles with three steps	1 st Initial Value	2 nd Initial Value	1st Initial Value	2 nd Initial Value	
R1	1	8	27	64	
R2	1 I	inite Diff	19 ferences	37	X =
R3	0 F	6 inite Diff	12 erences -	18	i^3
R3	6 / F	Finite Diff	6 ferences	6	21

Turing's Hypothesis

- Alan Turing (1937)
- Every computation can be performed by some Turing machine
- Turing Machine that adds
- $\bullet \quad T_{add}(a,b) = a + b$
- Turing Machine that multiplies
- $T_{mul}(a, b) = a \times b$

What is a Turing Machine?

- A mathematical model of a device that can perform any computation
- Which Writes/Reads symbols on an infinite "tape"
- Performs state transitions, based on current state and symbol

What is universal Turing machine?

- A Turing machine that could implement all other Turing machines
- Which takes in inputs the data, plus a description of computation

Universal Turing Machine

- Programmable Instructions are part of the input data
- A Universal Turing Machine can emulate a computer
- A computer can emulate a Universal Turing Machine

Universal Turing Machine

- Do any computations
- Therefore, a computer is also a universal computing device

A Universal Computing Device

• All computers, given enough memory and time are capable of computing exactly the same things

Summary

We learnt

- <u>Mechanical Systems 16th Century</u> Gears, Handles, and lever based systems
- Concept pioneered by Babbage —
- Multiple steps of Addition to arrive at the result
- Every computation can be performed by some Turing machine.
- A universal Turing machine can perform any computation provided given enough memory and time

End of Lesson 01 Evolution Computers Part 1: Mechanical Systems, Babbage method of Finite Difference Engine and Turing Hypothesis