Predicting Term Deposit Subscription Using Bank Marketing Data

ITEC-600 Group 3

Shu-Wen Teng, Soyoung Yoon

Yen-Jo Lee, Yen-Chun Lin

December 10, 2024

Project Objective and Business Context

Objective:

Predict customer likelihood of subscribing to term deposits and provide actionable marketing insights

Key Questions:

- Business Question: How can the bank optimize direct marketing strategies to increase subscriptions?
- Analytics Question: What factors drive a customer's likelihood to subscribe following a campaign?

Dataset Overview

The dataset is related with direct marketing campaigns (phone calls) of a Portuguese banking institution.

• Source: UC Irvine Machine Learning Repository

• Size: 45,211 observations and 17 variables

Group	Variables
Demographic	age, job, marital, education
Financial	default, balance, housing, loan
Campaign- Related	contact, day, month, duration, campaign, pdays, previous, poutcome
Target	y: Has the client subscribed to a term deposit? (yes/no)

Hypotheses and Analytical Approach

Key Hypotheses

- Financial stability (e.g., balance) increases subscription likelihood
- Campaign effectiveness (e.g., duration, poutcome) drives success

Analytical Approach

- Balance dataset using undersampling
- Explore various machine learning models, including Logistic Regression, Decision Trees, Random Forest, and SVM, to evaluate predictive performance

Methods and Preprocessing

Data preprocessing

- One-hot encoding for categorical variables like job, marital
- Scaled numerical variables

Resampling technique: Undersampling to balance y

Model train-test split: 80:20

age	e job	marital	education	default	balance housing	loan	contact day	month	duration campa	aign pdays	previ	ous poutcome y
0	39 management	divorced	tertiary	no	517 yes	yes	unknown	14 may	1328	1	-1	0 unknown yes
1	30 services	married	secondary	no	3929 yes	no	cellular	20 nov	593	1	-1	0 unknown yes
2	46 management	divorced	tertiary	no	624 no	no	cellular	18 mar	420	1	276	1 other yes
3	32 admin.	married	tertiary	no	653 no	no	cellular	2 jun	84	1	-1	0 unknown yes
4	36 blue-collar	married	primary	no	319 yes	no	cellular	13 may	774	2	301	1 failure yes

Key Data Challenges

- Imbalanced target variable (y)
- Majority class (No), Minority class (yes) (39922:5289)
- Overfitting
- Undersampling (5289:5289)

Exploratory Data Analysis

- The strongest correlation: duration
- The length of the communication may be the most predictive numerical feature.
- The overall pattern of weak correlations
- Suggests that other factors, potentially categorical variables, might be more impactful.

Exploratory Data Analysis

Variables related to subscription

• **Duration** and **pdays**

Variable less important in distinguish subscription

• Age, balance, day, campaign, pervious

Outliers could indicate special cases or customer segments that may warrant further analysis.

Exploratory Data Analysis

Higher count of successful subscriptions (y=1)

• Job: management, admin, technician

• Marital: married

• Education: secondary, tertiary

• Default: no

Housing: no

• Loan: no

• Contact: cellular

Logistic Regression Model

Demographic features: (age, job, marital, education)

- The p-value is 0.797 indicating that **clients' age** does not have a meaningful impact on the likelihood of subscribing to a term deposit.
- Individuals with **tertiary education** are significantly more inclined to subscribe to a term deposit.
- Students have a positive slope and with p-value of 0.002, indicating a significant and strong likelihood of subscription.
- Clients who are **single** have a slightly higher likelihood of subscribing to a term deposit, though this variable is **not statistically significant**.

Logit	Regression	Results	
-------	------------	---------	--

Dep. Variable:		y No	. Observations:		8462	
Model:		Logit Df	Residuals:		8419	
Method:		MLE Df	Model:		42	
Date:	Mon, 09 Dec	2024 Ps	eudo R-squ.:		0.4147	
Time:	04:	55:02 Lo	g-Likelihood:		-3433.1	
converged:		True LL	-Null:		-5865.4	
Covariance Type:	nonr	obust LL	R p-value:		0.000	
	coef	std err	Z	P> z	[0.025	0.975]
const	1.2892	0.225	5.733	0.000		1.730
age	0.0113	0.044	0.258	0.797	-0.075	0.098
job_blue-collar	-0.3240	0.120	-2.693	0.007	-0.560	-0.088
job_entrepreneur	-0.1607	0.205	-0.785	0.432	-0.562	0.240
job_housemaid	-0.6481	0.217	-2.993	0.003	-1.072	-0.224
job_management	-0.1593	0.123	-1.297	0.195	-0.400	0.081
job_retired	0.2542	0.170	1.499	0.134	-0.078	0.587
job_self-employed	-0.3111	0.194	-1.601	0.109	-0.692	0.070
job_services	-0.2711	0.140	-1.943	0.052	-0.545	0.002
job_student	0.6527	0.206	3.163	0.002	0.248	1.057
job_technician	-0.1596	0.114	-1.395	0.163	-0.384	0.065
job_unemployed	-0.3135	0.188	-1.667	0.095	-0.682	0.055
job_unknown	-0.3316	0.378	-0.878	0.380	-1.072	0.409
marital_married	-0.2156	0.099	-2.175	0.030	-0.410	-0.021
marital_single	0.1618	0.113	1.429	0.153	-0.060	0.384
education_secondary	0.2258	0.105	2.155	0.031	0.020	0.431
education_tertiary	0.4399	0.123	3.569	0.000	0.198	0.682
education_unknown	0.5341	0.173	3.089	0.002	0.195	0.873

Logistic Regression Model

Financial features: (default, balance, housing, loan)

- Clients without a housing loan are significantly more likely to subscribe to a term deposit.
- Clients without personal loans are more likely to subscribe to a term deposit.
- Clients with higher account balances are more likely to subscribe to a term deposit due to small p-value and positive slope.

Logit	Regression	Results
	110910001011	110000

Dep. Variable:		y No	o. Observation	ns:	8462	
Model:	Log	it D:	f Residuals:		8419	
Method:	M	LE D:	f Model:		42	
Date:	Mon, 09 Dec 20	24 P:	seudo R-squ.:		0.4147	
Time:	04:55:	02 Lo	og-Likelihood:	:	-3433.1	
converged:	Tr	ue L	L-Null:		-5865.4	
Covariance Type:	nonrobu	st L	LR p-value:		0.000	
=======================================						
	coef s	td err	Z	P> z	[0.025	0.975]
const	1.2892	0.225	5.733	0.000	0.848	1.730
balance	0.1264	0.034	3.689	0.000	0.059	0.194
default_yes	0.1080	0.252	0.429	0.668	-0.385	0.602
housing_yes	-0.6708	0.071	-9.460	0.000	-0.810	-0.532
loan_yes	-0.5239	0.095	-5.490	0.000	-0.711	-0.337

Logistic Regression Model

Campaign-Related features: (contact, day, month, duration, campaign, pdays, previous, poutcome)

- Longer call durations significantly increase the likelihood of clients subscribing to a term deposit.
- A higher number of contact attempts during the campaign reduces the likelihood of clients subscribing to a term deposit.

						=
Dep. Variable:		У	No. Observat	cions:	846	2
Model:		Logit	Df Residuals	s:	841	9
Method:		MLE	Df Model:		4	2
Date:	Mon, 09 Dec	2024	Pseudo R-squ	1.:	0.414	7
Time:	04:	55:02	Log-Likeliho	ood:	-3433.	1
converged:		True	LL-Null:		-5865.	4
Covariance Type:	nonr	obust	LLR p-value:		0.00	0
	coef	std e	err z	P> z	[0.025	0.975]
const	1.2892	0.2	225 5.733	0.000	0.848	1.730
day	0.0532	0.0	1.550	0.121	-0.014	0.120
duration	1.9316	0.0	38.260	0.000	1.833	2.031
campaign	-0.2502	0.0	-6.134	0.000	-0.330	-0.170
pdays	-0.0366	0.0	0.656	0.512	-0.146	0.073
previous	-0.0020	0.0	0.086	0.932	-0.049	0.045
education_unknown	0.5341	0.1	.73 3.089	0.002	0.195	0.873
contact_telephone	-0.1882	0.1	.24 -1.522	0.128	-0.431	0.054
contact_unknown	-1.6488	0.1	.10 -14.937	0.000	-1.865	-1.432
month_aug	-0.8391	0.1	.29 -6.523	0.000	-1.091	-0.587
month_dec	0.8328	0.3	352 2.364	0.018	0.142	1.523
month_feb	-0.0663	0.1	.47 -0.452	0.651	-0.354	0.221
month_jan	-1.3559	0.1	.90 -7.128	0.000	-1.729	-0.983
month_jul	-1.0428	0.1	.29 -8.066	0.000	-1.296	-0.789
month_jun	0.3507	0.1	.52 2.306	0.021	0.053	0.649
month_mar	1.9291	0.2	259 7.440	0.000	1.421	2.437
month_may	-0.5931	0.1	.23 -4.823	0.000	-0.834	-0.352
month_nov	-0.8674	0.1	.40 -6.182	0.000	-1.142	-0.592
month_oct	1.2796	0.2	6.188	0.000	0.874	1.685
month_sep	0.8111	0.2	225 3.601	0.000	0.370	1.253
poutcome_other	0.0479	0.1	.52 0.314	0.753	-0.251	0.346
poutcome_success	2.3392	0.1	.73 13.535	0.000	2.000	2.678
poutcome_unknown	-0.3930	0.1	.54 -2.548	0.011	-0.695	-0.091

Random Forest Model

- Demographic features
 - o (+): job_retired, job_student, marital_single
- Financial features
 - (+): balance, default_yes
- Campaign-related features
 - o (+): duration, poutcome_success
 - o (-): campaign, pdays, previous

Model Performance Summary

Results

Model	Precision(1)	Recall (1)	F1-Score	Accuracy
Logistic Regression	0.84	0.82	0.83	0.83
Decision Tree	0.74	0.88	0.81	0.78
Random Forest	0.84	0.89	0.86	0.86
SVM	0.82	0.89	0.85	0.85

- Random Forest and SVM demonstrate superior performance, showing the best balance between precision and recall, effectively identifying clients likely to subscribe.
- Logistic Regression and Random Forest maintain the highest precision, accurately predicting positive instances of clients subscribing.

Conclusion and Recommendations

Reduce the frequency of contacts.(campaign (-))

Train agents to increase call duration with meaningful customer interactions (duration (+))

Focus on customers with higher account balances and successful prior engagement.(balance(+))

Leverage Seasonal Trends

