Introduction to MATLAB Software (1)

FuSen Lin

Department of Computer Science and Engineering National Taiwan Ocean University

Scientific Computing, Fall 2011

§ 1.0 What is MATLAB? (1)

- Name came from: <u>Matrix lab</u>oratory
- Originally created by Prof. Cleve Moler, U. of New Mexico, and written in Fortran in 1978.
- In 1984, Jack (or John) Litttle rewrote it in C language and created MathWorks Inc. and published it commercially.
- A high-level programming language with interactive environment–responding the results immediately
- A set of tools and facilities: the MATLAB desktop and Command Window, a command history, an editor and debugger, a code analyzer and other reports, and browsers for viewing help, the workspace and so forth. These help you use MATLAB functions and files.
- A full-featured scientific calculator—numerical computation

What is MATLAB? (2)

- Having programming and graphing capabilities with visualization tool, especially, using the Handle Graphics (握把式作圖, from V.4) with GUI (Graphic User Interface)
- A matrix-vector-oriented system and special data structures(from V. 5): multidimentional arrays (n-D arrays), Cell Arrays (like many drawers in a cabinet), and structure arrays (struc(field1, value1, field1, value1,...))
- A mathematical function library: a vast collection of computational algorithms ranging from elementary functions (like sum, sine, cosine) to more sophisticated functions (like matrix eigenvalues, Bessel functions, and fast Fourier transforms).

What is MATLAB? (3)

- Built-in many intrinsic functions and lots of intelligent problem-solving tools for particular applications (called Toolboxes) (more than 70 toolboxes so far)
- Having symbolic solutions by using Symbolic Math Toolbox), like Maple software
- A computational engine with dynamic linking to C, Fortran, and Maple for calling routines.
- MathWorks develops new products: Simulink with Blocksets (a real-time dynamic simulation) and Stateflow (Finite State Machines or Event-driven Systems)

Basic Features

- Basic math working in command window (see next page)
- display answers without semicolon
- Nothing display with semicolon (;)
- Remember the variables in Workspace
- Variables are not declared by the user but are created on a need-to-use basis by a memory manager
- Save the results as *.mat (or *.tex) files using >>diary name.mat (or *.tex)

Basic arithmetic operations

addition	+	5+3
subtraction	-	23 – 12
multiplication	*	3.14 * 0.85
division	/ or \	56/8 = 8\56
power	\wedge	5∧2

About Number Display Formats

- MATLAB use double-precision floating-point arithmetic, which is accurate to approximately 15 digits; however, it displays only 5 digits by default. To display more digits, type format long.
- The new version of MATLAB (7.0 or upper version) has the variable precision arithmetic with vpa. You can specify the number of digits as what you desire. (see examples)

Number Display Formats

Command	average_cost	Comments
format long	35.8333333333334	16 digits format
format short e	3.5833e+01	5 digits plus exponent
format long e	3.58333333333334e+01	16 digits plus exponent
format hex	4041eaaaaaaaaaab	hexadecimal
format bank	35.83	2 decimal digits
format +	+	positive, negative, or zero
format rat	215/6	rational approximation
format short	35.8333	default display

Variable Naming Rules

Rule	Commonts
Variable names are case sensi-	fruit, Fruit, FrUiT, and FRUIT are
tive (large and small letters are	all different MATLAB variables.
different).	
Variable names can be of any	Characters beyond the 63th are
length.	ignored.
Variable names must start with a	Punctuation characters are not
letter, followed by any number of	allowed since many have spe-
letters, digits, or underscores.	cial meaning to MATLAB.

Several Special Variables

Variable	Value
ans	Default variable name used for results
pi	Ratio of the circumference of a circle to its diameter
eps	Smallest number such that when added to 1 cre-
	ates a floating-point number greater than 1 on the
	computer
inf	Infinity, e.g., 1/0
NaN	Not-a-Number, e.g., 0/0
i and j	$i = j = \sqrt{-1}$
realmin	The smallest usable positive real number
realmax	The largest usable positive real number

Exercise 1.0

- 1. Calculate the value of the following functions at x = 10 using three different ways and also plot their graphs with "easy way":
- $> f = ' \sin(2 * x + 5) * \cos(3 * x) * (2 * x^2 7)'$
- $\gg f = \text{inline}('\sin(2*x+5)*\cos(3*x)*(2*x^2-7)')$

Setting Up Vectors Regular Vectors Evaluating Functions Displaying Tables A Simple Plot

§1.1 Vectors and Plotting

- Row vectors: >> x=[10.1 20.2 30.3]
- Column vectors: \gg x=[10.1; 20.2; 30.3]
- To change the orientation of a vector from row to column or column to row, use an apostrophe ('):
 - \gg x=[10.1 20.2 30.3]'
- Equal spacing vectors:
- x=linspace(<Left Endpoint>, <Right Endpoint>, <Number of Points>)

Vectors

- Row vectors: Use colon notation: ⇒ x = 20:24
- Equivalent to \gg x=[20 21 22 23 24]
- Using the stride: \gg x = 20:2:29
- Equivalent to \gg x=[20 22 24 26 28]
- (<Starting index>:< Stride >:<Bounding index>)
- x=logspace(<Left Endpoint>, <Right Endpoint>, <Number of Points>)

Examples

- » x=linspace(a, b, n)
- The *k*-th point: $x_k = a + (k-1) * (b-a)/(n-1)$
- x=logspace(a ,b, n)
- The k-th point: $x_k = 10^{[a+(k-1)*(b-a)/(n-1)]}$

Elementary (built-in) functions

- \bullet \gg y=sin(x); y=cos(x); and so on.
- y=asin(x); y=acos(x); % the arcsine and arccosine
- y=log(x) % natural logarithmic function
- y=log10(x); y=log2(x); % the common logarithm and base 2 logarithm
- y=exp(x) % natural exponential function

Elementary functions

- y=min(x) % find the minimum number in vector x
- y=max(x); % find the maximum number in vector x
- y=mean(x); % find the average number in vector x
- y=sum(x) % find the sum of all numbers in vector x
- y=sort(x) % sorting the numbers in vector x

Building Exploratory Environments

```
n = 21;
h = 1/(n-1);
 for k=1:n
   x(k) = (k-1)*h;
 end
8888888888888888888888
n = 21;
h = 1/(n-1);
x = zeros(1, n);
 for k=1:n
   x(k) = (k-1)*h;
 end
```

```
%Compute sin(x) for 21 points on [0, 1]
n = 21;
x = linspace(0,1,n);
 y = zeros(1,n);
 for k=1:n
  y(k) = \sin(x(k));
 end
8888888888888888888888
 Compute sin(x) for 21 points on [0, 2pi]
n = 21i
x = linspace(0,1,n);
y = \sin(2*pi*x);
```

Advantages of Vectorization

- Speed: The build-in MATLAB functions provide results of several calls faster if called once with the corresponding vector argument(s).
- Clarity: Easier to read a vectorized MATLAB script than its scalar-level counterpart.
- Education: requiring to think at the vector level and fostering the style of algorithmic thinking.

Exploiting Symmetry

- Example of plotting $sin(2\pi x)$ for $x \in [0, 1]$
- Using the properties:

$$\sin\left(\frac{\pi}{2} + x\right) = \sin\left(\frac{\pi}{2} - x\right)$$

and

$$\sin(\pi+x)=-\sin(x)$$

```
function y = SinValue(n)
% Compute sin(x) for 21 points on [0, 2pi] with symmetry
% n must be a positive integer of multiple of 4
m = (n+1)/4; % m = 5; n = 4*m+1;
x = linspace(0,1,n);
a = x(1:m+1);
y = zeros(1, n);
y(1:m+1) = \sin(2*pi*a);
y(2*m+1:-1:m+2) = y(1:m);
y(2*m+2:n) = -y(2:2*m+1);
```

Displaying Tables

- Creating a script file
- Use '%' notation to give comments for the command codes.
- disp(' *** '): to display strings enclosed by single quotes.
- sprintf: to produce a string that includes the values of named variables.

```
sprintf(< String with Format Specification >, < List of Variables >)
```

disp(sprintf(' *** ', names of variables))

```
% Script File: SineTable
% Prints a short table of sine evaluations.
clc % clear the command window and home the cursor.
n = 21;
x = linspace(0,1,n);
y = \sin(2*pi*x);
disp('
disp('k  x(k)  sin(x(k))')
disp('----')
for k=1:21
  degrees = (k-1)*360/(n-1);
  disp(sprintf('%2.0f %3.0f %6.3f', k, degrees, y(k)));
end
disp('
                            ');
disp('x(k) is given in degrees.')
disp(sprintf ('One Degree = %5.3e Radians', pi/180))
```

plotting $y = \sin(x)$

- Use 'plot' command to create a figure.
- Use 'title', 'xlabel', and 'ylabel' to comment the plot.
- Use 'pause(1)' command permits a 1-second viewing of each plot.

```
%1.1.5 A simple plot of y = sin(x)

n = 21;
x = linspace(0, 1, n);
y = sin(2*pi*x);
plot(x, y)
title('The Function y = sin(2*pi*x)')
xlabel('x (in radians)')
ylabel('y')
```

```
n = 200;
x = linspace(0, 1, n);
y = sin(2*pi*x);
plot(x, y)
title('The function y = sin(2*pi*x)')
xlabel('x (in radians)')
ylabel('y')
```

```
% Script File: SinePlot
% Displays increasingly smooth plots of sin(2*pi*x).
 close all % Close all windows.
 for n = [4 \ 8 \ 12 \ 16 \ 20 \ 50 \ 100 \ 200 \ 400]
   x = linspace(0, 1, n);
   y = \sin(2*pi*x);
  plot(x,y)
   title(sprintf('Plot of sin(2*pi*x) based upon...
         n = \%3.0f points.', n)
  pause(1)
 end
```

Exercise 1.1

- 1. Calculate the length of the power cable in Lecture 1 by locating root function **fzero** and *arc length formula*.
- 2. plot $y = \cos(x)$ for $x \in [0, 2\pi]$ by applying vectorization and symmetry.
- 3. Display the results of problem 2 in a table.
- 4. Plot the function $y = \sin(x)$ for $x \in [-\pi, \pi]$ and their Taylor polynomials

$$S_1(x) = x$$
, $S_2(x) = x - \frac{x^3}{3!}$, $S_3(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$

1.2.1 Vectorizing Function Evaluations
1.2.2 Scaling and Superpositioning
1.2.3 Plotting Polygons

uilding Exploratory Environments 1.2.4 Some Matrix Computations

§ 1.2 More Vectors, More Plotting, and Matrices

- 1.2.1 Vectorizing Function Evaluations
- 1.2.2 Scaling and Superpositioning
- 1.2.3 Plotting Polygons
- 1.2.4 Some Matrix Computations

Plotting the Rational Function

Plotting the Rational Function

$$f(x) = \left(\frac{1 + \frac{x}{24}}{1 - \frac{x}{12} + \frac{x^2}{384}}\right)^8, \quad x \in [0, 1]$$

• An approximation to the function e^x .

1.2.1 Vectorizing Function Evaluations 1.2.2 Scaling and Superpositioning 1.2.3 Plotting Polygons

1.2.4 Some Matrix Computations

Matlab codes of ExpPlot

```
% Script File: ExpPlot1
% Approximate exp(x) by the function:
% f(x)=((1+x/24)/(1-x/12+(x^2/384))^8 across [0, 1].
% Scalar operations -- using for-loop.
close all % Close all windows.
n = 200;
x = linspace(0, 1, n);
y = zeros(1,n);
for k = 1:n
  y(k) = ((1+x(k)/24)/(1-x(k)/12+(x(k)/384*x(k))^8;
end
plot(x, y)
```

1.2.1 Vectorizing Function Evaluations

1.2.2 Scaling and Superpositioning

1.2.3 Plotting Polygons

1.2.4 Some Matrix Computations

1.2.1 Vector Operations

- Operations of vector scale, vector add, vector subtract
- Operation of pointwise vector multiply '.*'
- Operation of pointwise vector divide './'
- Operation of pointwise vector exponentiation '.^'
- Write your programs with MATLAB using vector or matrix operations

1.2.1 Vectorizing Function Evaluations

1.2.2 Scaling and Superpositioning 1.2.3 Plotting Polygons 1.2.4 Some Matrix Computations

Matlab codes of ExpPlot

```
% Script File: ExpPlot
% Approximate exp(x) by the function:
% f(x)=((1+x/24)/(1-x/12+(x^2/384))^8 across [0, 1].
% Vector operations -- Using pointwise vector operations.
close all % Close all windows.
x = linspace(0, 1, 200);
num = 1 + x/24;
denom = 1 - x/12 + (x/384).*x;
quot = num ./ denom;
y = (quot).^8;
plot(x, y, x, exp(x))
```

1.2.1 Vectorizing Function Evaluations
1.2.2 Scaling and Superpositioning
1.2.3 Plotting Polygons
1.2.4 Some Matrix Computations

Plotting the tan(x) Function

- Plot the graph of a function using plot with autoscaling feature.
- Example: Plot the tan(x) function

$$\tan(x) = \frac{\sin(x)}{\cos(x)}, \quad x \in [-\pi/2, 11\pi/2]$$

- Using the axis function to scale the axes manually.
- Syntax: >> axis([xmin xmax ymin ymax])

1.2.1 Vectorizing Function Evaluations
1.2.2 Scaling and Superpositioning
1.2.3 Plotting Polygons
1.2.4 Some Matrix Computations

Matlab codes for TangentPlot

```
% Script File: TangentPlot1
% Plots the function tan(x), -pi/2 <= x <= 11pi/2
close all
x = linspace(-pi/2, 11*pi/2, 200);
y = tan(x);
plot(x, y)
x = linspace(-pi/2, 11*pi/2, 200);
v = tan(x);
plot(x, y)
axis([-pi/2 9*pi/2 -10 10])
```

1.2.1 Vectorizing Function Evaluations
1.2.2 Scaling and Superpositioning
1.2.3 Plotting Polygons
1.2.4 Some Matrix Computations

Matlab codes for TagentPlot

```
% Script File: TangentPlot1
% Plots the function tan(x), -pi/2 <= x <= 11pi/2
 close all
x = linspace(-pi/2, pi/2, 40);
 y = tan(x); plot(x, y)
ymax = 10;
 axis([-pi/2 9*pi/2 -ymax ymax])
 title ('The Tangent Function'),
 xlabel('x'), ylabel('tan(x)')
hold on
 for k=1:4
   xnew = x + k*pi;
  plot(xnew, y);
 end
hold off
```

1.2.1 Superpositioning (Multi-Graph)

- hold on: to superimpose (疊置在上面 (使重疊); 加上去 = superpose) all subsequent plots on the current figure window.
- hold off: to shut down the superpositioning feature and set the stage for normal plotting thereafter.
- Another way to superimpose in the same plot is by calling plot with an extended parameter list.
- The syntax of multi-graph's plot: plot(<First graph specification>, ...,<Last graph specification>)
- The form of each graph specification:
 <Vector, Vector, String (optional)>

Matlab codes for Plotting with superposition

```
% Script File: SinAndCosPlot
% Plots the functions sin(2*pi*x) and cos(2*pi*x)
% across [0,1] and marks their intersection.

close all
x = linspace(0,1,200);
y1 = sin(2*pi*x);
y2 = cos(2*pi*x);
plot(x,y1,x,y2,'--',[1/8,5/8],[1/sqrt(2),-1/sqrt(2)],'*')
```

Polygons with *n* Vertices

- If x and y are column vectors that contain the *coordinate* values, then **plot(**x, y) does not display the polygon because (x_n , y_n) is not connected to (x_1 , y_1). Need to make a **concatenation** (連接; 連鎖) of vectors.
- If r1, r2, ..., rm are row vectors, then

$$v = [r1r2 \cdots rm]$$

is also a row vector.

• If c1, c2, ..., cm are column vectors, then

$$v = [c1; c2; \cdots; cm]$$

is also a column vector.

Some Commands for Plotting

- The command axis equal ensures that the x-distance per pixel is the same as the y-distance per pixel.
- The command axis off does not display the coordinate axes.
- The command subplot(m, n, k) breaks up the current figure into a m-by-n array of sub-windows, and place the next plot in the kth one of these. They are indexed left to right and top to bottom.

Some 2D-Plotting

- The command axis ensures that the x-distance per pixel is the same as the y-distance per pixel.
- The command axis does not display the coordinate axes.
- The command subplot(m, n, k) breaks up the current figure into a m-by-n array of sub-windows, and place the next plot in the kth one of these. They are indexed left to right and top to bottom.

- 1.2.1 Vectorizing Function Evaluations
 1.2.2 Scaling and Superpositioning
- 1.2.3 Plotting Polygons
- 1.2.4 Some Matrix Computations

1.2.4 Some Matrix Computations

Consider the problem of plotting the function

$$f(x) = 2\sin(x) + 3\sin(2x) + 7\sin(3x) + 5\sin(4x)$$

across the interval [-10, 10].

- 1. Scalar-level script (see p.23)
- 2. Vector-level script
- 3. Matrix-level script
- Ideas: A linear combination of vectors is equivalent to matrix-vector multiplication.

- 1.2.1 Vectorizing Function Evaluations
- 1.2.2 Scaling and Superpositioning
- 1.2.3 Plotting Polygons
- 1.2.4 Some Matrix Computations

Matrix-Vector Product

$$2\begin{bmatrix} 3\\1\\4\\7\\2\\8 \end{bmatrix} + 3\begin{bmatrix} 5\\0\\3\\8\\4\\2 \end{bmatrix} + 7\begin{bmatrix} 8\\3\\3\\1\\1\\1 \end{bmatrix} + 5\begin{bmatrix} 1\\6\\8\\7\\0\\9 \end{bmatrix} = \begin{bmatrix} 3 & 5 & 8 & 1\\1 & 0 & 3 & 6\\4 & 3 & 3 & 8\\7 & 8 & 1 & 7\\2 & 4 & 1 & 0\\8 & 2 & 1 & 9 \end{bmatrix} \begin{bmatrix} 2\\3\\7\\5 \end{bmatrix}$$

Creating A Matrix

- 1. Typing all entries row by row.
- 2. Using two for-loops to initialize a matrix by creating a zero matrix first.
- 3. Aggregating its columns to form a matrix:

Note: all column vectors must have the same length.

- 4. Using a single loop whereby each pass sets up a single column (test sumOfSines).
- Note: Creating a $m \times n$ zero matrix: $\gg A = zeros(m, n)$.

1.2.1 Vectorizing Function Evaluations
1.2.2 Scaling and Superpositioning

1.2.3 Plotting Polygons

1.2.4 Some Matrix Computations

Another Example of Matrix Computations

Consider the problem of plotting the two functions

$$f(x) = 2\sin(x) + 3\sin(2x) + 7\sin(3x) + 5\sin(4x)$$

$$g(x) = 8\sin(x) + 2\sin(2x) + 6\sin(3x) + 9\sin(4x)$$

over the interval [-10, 10]. (See SumOfSines2)

In general, if the function

$$f(x) = \alpha_1 \sin(x) + \alpha_2 \sin(2x) + \alpha_3 \sin(3x) + \alpha_4 \sin(4x)$$

We want to find
$$\alpha_1$$
, α_2 , α_3 , α_4 so that $f(1) = -2$, $f(2) = 0$, $f(3) = 1$, and $f(4) = 5$.

 This arises the problem of solving a linear system (see p.27).

1.2.1 Vectorizing Function Evaluations
1.2.2 Scaling and Superpositioning

1.2.3 Plotting Polygons

1.2.4 Some Matrix Computations

Exercise 1.2

- 1. Calculate the approximations of e^{1/2} and e⁸ by its Taylor polynomial with 8 terms and compare their absolute errors.
- 2. Calculate the approximations of ln 2 by the two Taylor polynomials (shown in the Lecture Notes of Chapter 1) with 10 terms and compare their absolute errors.

- 1.3.1 The Up/Down Sequence 1.3.2 Random Processes
- 1.3.3 Polygon Smoothing

§ 1.3 Building Exploratory Environments

- 1.3.1 The Up/Down Sequence
- 1.3.2 Random Processes
- 1.3.3 Polygon Smoothing

An Example of Up/Down Sequence

 Suppose x₁ is given positive integer and that we define the sequence as

$$x_k = \begin{cases} x_k/2, & \text{if } x_k \text{ is even,} \\ 3x_k + 1, & \text{if } x_k \text{ is odd.} \end{cases}$$

- The sequence is: 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, ..., which is called *up/down* sequence.
- The input command
- The while-loop form
- The if-then-else structures
- The **switch-case** structures (see p.30)

while loops and if-then-else controls

```
k = 0;
 while k \le 100
 {command statements}
k = k + 1;
 end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if A > B,
   'greater'
 elseif A < B,
  'less'
 elseif A == B,
   'equal'
 else
   error('A and B are different data')
 end
```

switch control

```
switch sign(A-B)
  case 0
    'A = B'
  case 1
    'A > B'
  case -1
    'A < B'
  otherwise
  error('A and B are different data type')
end</pre>
```

Relation Operators in MATLAB

- ' < ' less than and ' > ' greater than
- ' <= ' less than or equal, ' >= ' greater than or equal
- \bullet ' == ' equal, ' = ' not equal
- '& 'and, '| 'or, not

Some Build-in Functions

- The rem function: rem(a, b) returns the remainder when b is divided into a.
- In the command disp(sprintf('%-5.0f', x)), the minus sign left justifies the display of the value.
- The max function: max(v) returns the maximum value and the index where it occurs.
- The comparison $x \le x(1)$: returns a vector of **0**'s (false) and **1**'s (true).

Some Build-in Functions

- The sort function: sort(v) returns an ordered sequence which values are listed from small to large.
- The find function: find(v) returns a vector of subscripts that designate which entries are nonzero.
- The diary filename function: creates a file and starts to store everything that is now written in the command window.
- The diary off function: stops to store anything written in the command window.

1.3.3 Polygon Smoothing

The Build-in Random Functions

- Many simulations performed by computational scientists involve random processes.
- In MATLAB the build-in functions rand and randn work for random processes.
- The function rand(n, 1): creates a length-n column vector of real numbers chosen randomly from the interval (0, 1).
- The function randn(n, 1): creates a length-n column vector of real numbers chosen randomly and distributed normally.

The hist Function

- The histogram function: hist can be used in several ways and the script shows two possibilities:
- hist(x, n): reports the distribution of the x-values according to where the "belong" with respect to n equally spaced bins spread across the interval [min(x), max(x)].
- hist(x, linspace(-a, a, m)): The bins locations can be specified by passing a m-vector for the histogram of normally distributed data on the interval [-a, a].

Generating Random Integers

- Using rand or randn functions plus the floor or ceil functions to generate random integers.
- An example—the dice problem: simulating 1000 rolls of a pair dice and displaying the outcome in histogram form.
- The command z = floor(6*rand(n, 1) + 1) computes a random vector of integers selected from {1, 2, 3, 4, 5, 6} and assigns them to z.
- Note:

$$floor(x) + 1 = ceil(x) \quad \forall x \in (-\infty, \infty)$$

- 1.3.1 The Up/Down Sequence
 1.3.2 Random Processes
- 1.3.3 Polygon Smoothing

Solving Non-random Problems

- Random simulations can be used to answer non-random questions.
- The throwing dart problem: suppose we throw n darts at the circle-in-square target.

The Dart Problem

- Assume that the darts land anywhere on the square with equal probability.
- After a large number of throws, the fraction (probability) of the darts that land *inside the circle* should be approximately equal to $\pi/4$, the ratio of the circle area to the the square's area.
- By simulating the throwing of a large number of darts, we can produce an estimate of π :

$$\pi pprox 4 \cdot \frac{ ext{Number of Throws Inside the Circle}}{ ext{Total Number of Throws}}$$

Simulation of Monte Carlo

- Simulation in this spirit is called *Monte Carlo* method.
- The command rand('seed', .123456): starts the random number sequence with a prescribed seed, which enables to repeated the random simulation with exactly the same sequence of underling random numbers.
- The any and all functions: indicates whether any or all the components of a vector are nonzero.

- 1.3.1 The Up/Down Sequence 1.3.2 Random Processes
- 1.3.3 Polygon Smoothing

Polygon Smoothing

• Let x and y are (n+1)-vectors and $x_1 = x_{n+1}$ and $y_1 = y_{n+1}$ then

$$plot(x, y, x, y, '*')$$

display a polygon.

If we compute

$$xnew = [(x(1:n) + x(2:n+1))/2; (x(1) + x(2))/2];$$

 $ynew = [(y(1:n) + y(2:n+1))/2; (y(1) + y(2))/2];$
 $plot(xnew, ynew)$

then a new polygon is displayed that is obtained by connecting the side midpoints of the original polygon.

 We wish to explore what happens when this process is repeated.

Polygon Smoothing

- How to specify the starting polygon?
- The ginput command supports mouse-click input.