

In [30]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
data=pd.read_csv("customer .csv")
```

In [27]:

data.head()

Out[27]:

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines
0	7590- VHVEG	Female	NaN	Yes	No	NaN	No	No phone service
1	5575- GNVDE	Male	NaN	No	No	34.0	Yes	Nc
2	3668- QPYBK	Male	NaN	No	No	2.0	Yes	Nc
3	7795- CFOCW	Male	NaN	No	No	45.0	No	No phone service
4	9237- HQITU	Female	NaN	No	No	2.0	Yes	Nc

5 rows × 21 columns

→

what is the ratio between males and females in our company?

In [28]:

round(data['gender'].value_counts()/data.shape[0]*100,2).plot.pie(autopct='%1.1f%%')

Out[28]:

<AxesSubplot:ylabel='gender'>

what is the ratio between Senior Citizens and others in our company?

In [31]:

round(data['SeniorCitizen'].value_counts()/data.shape[0]*100,2).plot.bar()

Out[31]:

<AxesSubplot:>

In [25]:

sns.displot(data=data, x="SeniorCitizen", y="TotalCharges", hue="gender")

Out[25]:

<seaborn.axisgrid.FacetGrid at 0x1d019099910>

In [20]:

```
round(data['gender'].value_counts()/data.shape[0]*100,2).plot.bar()
```

Out[20]:

<AxesSubplot:>

In [8]:

```
plt.xlabel('MultipleLines')
plt.ylabel('PaperlessBilling')
plt.title('Histogram of IQ')
plt.text( 120,50, r'$\mu=100,\ \sigma=15$')

plt.axis([120, 160, 0, 50])
plt.grid(True)
plt.show()
```



```
In [18]:

data['Dependents'].value_counts()

Out[18]:

No     4933
Yes     2110
Name: Dependents, dtype: int64

Type Markdown and LaTeX: α²

In [32]:

def offer (row):
        if row['gender']=="Male"and row["SeniorCitizen"]==1:
            return "meale_Senior"
        elif row['gender']=="Male" and row["SeniorCitizen"]==0:
            return "meale_ion"
```

```
def offer (row):
    if row['gender']=="Male"and row["SeniorCitizen"]==1:
        return "meale_Senior"
    elif row['gender']=="Male" and row["SeniorCitizen"]==0:
        return "meale_jenior"
    elif row['gender']=="female" and row["SeniorCitizen"]==1:
        return "female_Senior"
    elif row['gender']=="female" and row["SeniorCitizen"]==0:
        return "female_jenior"
    else :
        return "other"
```

```
In [33]:
```

```
data['offer']=data.apply(offer,axis = 1)
data.tail(15)
```

Out[33]:

tService	OnlineSecurity	 TechSupport	StreamingTV	StreamingMovies	Contract	PaperlessBill
DSL	No	 Yes	Yes	No	Two year	
DSL	No	 No	Yes	Yes	Month- to-month	,
No	No internet service	 No internet service	No internet service	No internet service	Month- to-month	,
DSL	Yes	 No	No	No	One year	
iber optic	No	 No	No	No	Month- to-month	,
iber optic	No	 No	No	No	Month- to-month	•
iber optic	Yes	 No	Yes	No	Month- to-month	•
iber optic	No	 No	Yes	No	Month- to-month	1
DSL	No	 Yes	Yes	Yes	One year	
No	No internet service	 No internet service	No internet service	No internet service	Two year	•
DSL	Yes	 Yes	Yes	Yes	One year	•
iber optic	No	 No	Yes	Yes	One year	,
DSL	Yes	 No	No	No	Month- to-month	,
iber optic	No	 No	No	No	Month- to-month	1
iber optic	Yes	 Yes	Yes	Yes	Two year	,

```
←
```

```
In [35]:
```

```
data['TotalCharges'].idxmax()
```

Out[35]:

4610

In [37]:

data.iloc[4610]

Out[37]:

customerID	2889-FPWRM			
	Male			
gender				
SeniorCitizen	0.0			
Partner	Yes			
Dependents	No			
tenure	72.0			
PhoneService	Yes			
MultipleLines	Yes			
InternetService	Fiber optic			
OnlineSecurity	Yes			
OnlineBackup	Ye			
DeviceProtection	Ye			
TechSupport	Ye			
StreamingTV	Ye			
StreamingMovies	Yes			
Contract	One year			
PaperlessBilling	Yes			
PaymentMethod	Bank transfer (automatic)			
MonthlyCharges	117.8			
TotalCharges	8684.8			
Churn	Yes			
offer	meale_jenior			
Name: 4610, dtype:				
rame. Toro, acype.	00,000			

In [39]:

round(data['MultipleLines'].value_counts()/data.shape[0]*100,2).plot.

Out[39]:

<AxesSubplot:>

We want to give offers according to the monthly charge categories, can you explain that? Using Visulization

OAPIGIII GIGGE OONING TIOGIIEGGOI

```
In [1]:
```

```
def offerr (row):
    if row['MonthlyCharges']>=50 :
       return "MonthlyChargesoffer"
       return "other"
```

In [5]:

```
data['offerr']=data.apply(offer,axis = 1)
data.tail(15)
```

Out[5]:

reamingTV	StreamingMovies	Contract	PaperlessBilling	PaymentMethod	MonthlyCharges	TotalCl
Yes	No	Two year	No	Bank transfer (automatic)	64.10	4
Yes	Yes	Month- to-month	Yes	Electronic check	44.40	
No internet service	No internet service	Month- to-month	Yes	Mailed check	20.05	
No	No	One year	No	Credit card (automatic)	60.00	3
No	No	Month- to-month	Yes	Electronic check	75.75	
No	No	Month- to-month	Yes	Credit card (automatic)	69.50	2
Yes	No	Month- to-month	Yes	Credit card (automatic)	102.95	6
Yes	No	Month- to-month	Yes	Bank transfer (automatic)	78.70	1
Yes	Yes	One year	No	Electronic check	60.65	
No internet service	No internet service	Two year	Yes	Bank transfer (automatic)	21.15	1
Yes	Yes	One year	Yes	Mailed check	84.80	1
Yes	Yes	One year	Yes	Credit card (automatic)	103.20	7
No	No	Month- to-month	Yes	Electronic check	29.60	
No	No	Month- to-month	Yes	Mailed check	74.40	
Yes	Yes	Two year	Yes	Bank transfer (automatic)	105.65	6
•						>

From the correlation matrix ,What is the relationship between the Senior Citizens and the monthly charging rate?

In [3]:

data[['MonthlyCharges', 'SeniorCitizen']].plot.scatter(x ='MonthlyCharges', y='SeniorCitize

Out[3]:

<AxesSubplot:xlabel='MonthlyCharges', ylabel='SeniorCitizen'>

Is there a strong relationship between the monthly recharge rate and the dependents?

In [10]:

sns.relplot(data=data, x="MonthlyCharges", y="TotalCharges", hue="Dependents")

Out[10]:

<seaborn.axisgrid.FacetGrid at 0x1e4e37a82b0>

In [11]:

```
sns.displot(data, x="MonthlyCharges", bins=20,hue="Dependents", multiple="stack")
```

Out[11]:

<seaborn.axisgrid.FacetGrid at 0x1e4e3756160>

what is our Contract types we provide? - names and ratio please-

In [18]:

sns.displot(data, x="TotalCharges", bins=20, hue="Contract", multiple="stack")

Out[18]:

<seaborn.axisgrid.FacetGrid at 0x1e4e3f17460>

how many Internet Services we provide in our company? - list names and ratio please

In [21]:

round(data['InternetService'].value_counts()/data.shape[0]*100,2).plot.bar()

Out[21]:

<AxesSubplot:>

- what is our Contract types we provide? - names and ratio please

In [22]:

round(data['Contract'].value_counts()/data.shape[0]*100,2).plot.()

Out[22]:

<AxesSubplot:>

what is the ratio between users who streaming movies to StreamingTV subscribers?

In [23]:

```
plt.style.use('seaborn-darkgrid')
x1= ['Asif', 'Basit', 'Ravi', 'Minil']
y1= [17,18,29,40]
y2 = [20,21,22,23]
plt.figure(figsize=(8,5))
plt.barh(x1,y1,label = "StreamingMovies",color = '#FF6F00')
plt.barh(x1,y2,label = "StreamingTV", left = y1 , color = '#FFB300')
plt.xlabel('$X$')
plt.xlabel('$X$')
plt.ylabel('$Y$')
plt.title ('$Bar $ $ Chart$')
plt.legend()
plt.show()
```


Is there a strong relationship between the monthly recharge rate and the dependents?

In [28]:

```
plt.style.use('seaborn-darkgrid')
x1= ['Asif','Basit','Ravi','Minil']
y1= [17,18,29,40]
y2 = [20,21,22,23]
plt.figure(figsize=(8,5))
plt.barh(x1,y1,label = "MonthlyCharges",color = '#D4E157')
plt.barh(x1,y2,label = "Dependents", left = y1 , color = '#FF7043')
plt.xlabel('$X$')
plt.xlabel('$Y$')
plt.title ('$Bar $ $ Chart$')
plt.legend()
plt.show()
```


how many payment methods we provide? and what is the ratio between each others?

In [44]:

```
# Shading Regions with fill_between() function
x = np.linspace(0, 10, 2000)
plt.figure(figsize=(10,6))
plt.plot(x,np.sin(x) , label = '$Sin(X)$')
plt.plot(x,np.cos(x) , label = '$cos(X)$')
plt.fill_between(x,0,np.sin(x))
plt.fill_between(x,0,np.cos(x))
plt.xlabel(r'PaymentMethod' , fontsize = 18)
plt.ylabel(r'TotalCharges' , fontsize = 18)
plt.title("$Sin(x) $ $ & $ $ Cos(x)$" ,fontsize = 14)
plt.legend(loc = 'lower left') # Legend will be placed at lower left position
plt.show()
```


In [46]:

round(data['Churn'].value_counts()/data.shape[0]*100,2).plot.pie(autopct='%1.1f%%')

Out[46]:

<AxesSubplot:ylabel='Churn'>

what is the average monthly charge?

In [49]:

data['MonthlyCharges'].mean()

Out[49]:

64.76169246059922

In [54]:

data['MonthlyCharges'].median()

Out[54]:

70.35

From the correlation matrix ,What is the relationship between the Senior Citizens and theb monthly charging rate?

In [55]:

```
plt.figure(figsize=(10,5))
x = np.linspace(0, 10, 40)
y = np.sin(x) # Sine Graph
plt.plot(x,y,'rv')
plt.xlabel("MonthlyCharges")
plt.ylabel("SeniorCitizen")
plt.show()
```


what is the ratio between who has MultipleLines and not in our company?

In [56]:

round(data['MultipleLines'].value_counts()/data.shape[0]*100,2).plot.pie(autopct='%1.1f%%')

Out[56]:

<AxesSubplot:ylabel='MultipleLines'>

- From the previous question, What is the relationship between the Internet Services and the churn rate?

In [58]:

```
x1= [1,3,5,7]
x2=[2,4,6,8]
y1 = [7,7,7,7]
y2= [17,18,29,40]
plt.figure(figsize=(8,6))
ax = plt.axes()
ax.set_facecolor("white")
plt.bar(x1,y1,label = "nternet Services",color = '#42B300') # First set of data
plt.bar(x2,y2,label = "churn ",color = '#94E413') # Second set of data
plt.xlabel('$X$')
plt.ylabel('$Y$')
plt.title ('$Bar $ $ Chart$')
plt.legend()
plt.show()
```


what is the ratio between who has partners and not in our company?

In [65]:

round(data['Partner'].value_counts()/data.shape[0]*100,2).plot.pie(autopct='%1.1f%%')

Out[65]:

<AxesSubplot:ylabel='Partner'>

In []: