DIALOG(R) File 347: JAPIO (c) 2001 JPO & JAPIO. All rts. reserv.

04578378 **Image available**
CAMERA WITH DATE FUNCTION

PUB. NO.: 06-250278 [*JP 6250278* A]
PUBLISHED: September 09, 1994 (19940909)

INVENTOR(s): KITANI KAZUNARI OTSUKA MASANORI

APPLICANT(s): CANON INC [000100] (A Japanese Company or Corporation), JP

(Japan)

APPL. NO.: 05-054636 [JP 9354636] FILED: February 22, 1993 (19930222)

INTL CLASS: [5] G03B-017/24

JAPIO CLASS: 29.1 (PRECISION INSTRUMENTS -- Photography & Cinematography)

JOURNAL: Section: P, Section No. 1838, Vol. 18, No. 642, Pg. 90,

December 06, 1994 (19941206)

ABSTRACT

PURPOSE: To make the correcting work of data information after a new power supply battery is loaded easy by preventing the clocking of the data information extremely different from the present time.

CONSTITUTION: This camera with a date function is equipped with a nonvolatile memory 2, a battery pulling out detecting means 6 detecting the fact that the power supply battery 3 is pulled out of the camera, a power supply backup means 4 backing up power supply to a dating circuit 7 for a specified time at the same time when the power supply battery 3 is pulled out of the camera, a date information writing means 1 writing the date information clocked on the dating circuit 7 in the nonvolatile memory 2 while the power supply is backed up by the power supply backup means 4, and moreover, a clocking operation control means, by detecting the fact that the power supply battery 3 is loaded, to set the information written in the nonvolatile memory 2 as the initial value of the date information on the dating circuit 7 and then, to instruct the dating circuit 7 of a clocking operation from a time corresponding to the date information.

,				
	*			

DIALOG(R) File 345: Inpado Tam. & Legal Stat (c) 2001 EPO. All rts. reserv.

11997165

Basic Patent (No, Kind, Date): JP 6250278 A2 940909 <No. of Patents: 001>

Patent Family:

Patent No Kind Date Applic No Kind Date

JP 6250278 A2 940909 JP 9354636 A 930222 (BASIC)

Priority Data (No, Kind, Date): JP 9354636 A 930222

PATENT FAMILY:

JAPAN (JP)

Patent (No, Kind, Date): JP 6250278 A2 940909

CAMERA WITH DATE FUNCTION (English)

Patent Assignee: CANON KK

Author (Inventor): KITANI KAZUNARI; OTSUKA MASANORI

Priority (No, Kind, Date): JP 9354636 A 930222

Applic (No, Kind, Date): JP 9354636 A 930222

IPC: * G03B-017/24

JAPIO Reference No: ; 180642P000090 Language of Document: Japanese

,	**			٠.,	į.

*File 351: Price changes as of 1/1/01. Please see HELP RATES 351. 72 Updates in 2001. Please see HELP NEWS 351 for details.

	Set	Items	Descri	iption
?s	pn=jp 6	250278		
	s1	0	PN=JP	6250278

v			•

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平6-250278

(43)公開日 平成6年(1994)9月9日

(51) Int.Cl.5

識別記号

厅内整理番号

FΙ

技術表示箇所

G 0 3 B 17/24

7256-2K

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

審査請求 未請求 請求項の数7 FD (全 10 頁)

(72)発明者 木谷 一成

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72)発明者 大塚 正典

東京都大田区下丸子3丁目30番2号 キャ

ノン株式会社内

(74)代理人 弁理士 中村 稔

(21)出願番号 (22)出願日

平成5年(1993)2月22日

特顯平5-54636

(54) 【発明の名称】 デート機能付カメラ

(57)【要約】

【目的】 現在の時刻と極端に異なるデート情報の計時 を防止したり、新たな電源電池装填後のデート情報の格 正作業を容易にする。

【構成】 不揮発性メモリ2と、電源電池3がカメラ内 より抜き取られたことを検出する電池抜取検出手段6 と、電源電池がカメラ内より抜き取られると同時に、デ ート回路?へ所定時間電源をパックアップする電源パッ クアップ手段4と、該電源パックアップ手段にて電源が バックアップされている間に、デート回路にて計時され ているデート情報を、前記不揮発性メモリへ書き込むデ ート情報書込手段1とを設け、また、また、電源電池が 装填されたことを検出することにより、不揮発性メモリ に書き込まれている情報を、デート回路におけるデート 情報の初期値として設定し、以降このデート情報に対応 する時間からの計時動作を、該デート回路に指示する計 時動作制御手段を設けている。

【特許請求の範囲】

【請求項1】 電源電池がカメラ内より抜き取られるこ とにより、デート情報を消失してしまうデート回路を備 えたデート機能付カメラにおいて、不揮発性メモリと、 電源電池がカメラ内より抜き取られたことを検出する電 池抜取検出手段と、電源電池がカメラ内より抜き取られ ると同時に、前記デート回路へ所定時間電源をバックア ップする電源パックアップ手段と、該電源パックアップ 手段にて電源がパックアップされている間に、前記デー メモリへ書き込むデート情報書込手段とを設けたことを 特徴とするデート機能付カメラ。

【請求項2】 電源電池がカメラ内より抜き取られるこ とにより、デート情報を消失してしまうデート回路を備 えたデート機能付力メラにおいて、不揮発性メモリと、 電源電池のカメラ内よりの抜き取りを事前に検出する電 池抜取事前検出手段と、該電池抜取事前検出手段による 検出により、前記デート回路にて計時されているデート 情報を、前記不揮発性メモリへ書き込むデート情報書込 手段とを設けたことを特徴とするデート機能付力メラ。

【請求項3】 電源電池がカメラ内より抜き取られるこ とにより、デート情報を消失してしまうデート回路を備 えたデート機能付カメラにおいて、不揮発性メモリと、 前記デート回路の計時動作中の特定の桁の更新時毎に、 該デート回路にて計時されているデート情報を、前記不 揮発性メモリへ更新情報として書き込むデート情報書込 手段とを設けたことを特徴とするデート機能付カメラ。

【請求項4】 デート情報書込手段は、カメラの各種動 作を制御する制御手段内に具備されていることを特徴と する請求項1,2又は3記載のデート機能付力メラ。

【請求項5】 デート情報書込手段は、デート回路内に 具備されていることを特徴とする請求項1,2又は3記 載のデート機能付カメラ。

【請求項6】 電源電池が装填されたことを検出するこ とにより、不揮発性メモリに書き込まれている情報を、 デート回路におけるデート情報の初期値として設定し、 以降このデート情報に対応する時間からの計時動作を、 該デート回路に指示する計時動作制御手段を具備したこ とを特徴とする請求項1,2又は3記載のデート機能付 カメラ.

【請求項7】 計時動作制御手段は、デート回路に計時 動作の開始を指示すると同時に、特定桁のデート情報の 修正の動作モードに入る手段であることを特徴とする請 求項6記載のデート機能付力メラ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、電源電池がカメラ内よ り抜き取られることにより、デート情報を消失してしま うデート回路を備えたデート機能付カメラの改良に関す るものである。

[0002]

【従来の技術】時刻データのパックアップ機能を持たな いデート機能付カメラにおいては、従来、カメラ本体の 電池交換が行われる場合に、古い電池を抜かれ、再度新 しい電池が装填されると、デート用ICもリセットされ てしまい、現在の日時、時刻と全く異なる初期設定デー タが時刻データとして設定されるようになっていた。 [0003]

2

【発明が解決しようとする課題】この場合、カメラの使 ト回路にて計時されているデート情報を、前記不揮発性 10 用者は、電池の交換を行う毎に時刻データの修正を行う 必要があった。この修正作業は、年、月、日、時間、分 と全ての桁を修正しなくてはならず、非常に煩わしいも のであった。また、もし電池の交換を行った際に、使用 者がその修正を行うことを忘れた場合においては、フィ ルム面上には全く異なる日付、時刻のデータが写し込ま れてしまい、現像後、写真の整理等が非常に煩わしいも のとなってしまう。

> 【0004】また、誤った日付、時刻のデータの写し込 みを防止するための方法が、特開平2-101445号 20 に記載されている。そこでは、電池の再装填を認識する ことにより、写し込みが行われないオフモードに自動的 に初期設定を行い、使用者が日付の修正を忘れた場合に も、誤ったデータの写し込みがなされないような工夫が 施されている。

【0005】しかしながら、全く日付、時刻のデータが 写し込まれていないということは、現像後の写真の整理 等を考えた場合、上記の修正をし忘れた場合と同様、そ の作業(写真の整理等)が煩わしいものとなってしま う、

【0006】 (発明の目的) 本発明の目的は、現在の時 30 刻と極端に異なるデート情報の計時を防止すると共に、 新たな電源電池装填後のデート情報の修正作業を容易に することのできるデート機能付カメラを提供することで ある。

[0007]

【課題を解決するための手段】本発明は、不揮発性メモ リと、電源電池がカメラ内より抜き取られたことを検出 する電池抜取検出手段と、電源電池がカメラ内より抜き 取られると同時に、デート回路へ所定時間電源をバック アップする電源パックアップ手段と、該電源パックアッ プ手段にて電源がパックアップされている間に、デート 回路にて計時されているデート情報を、前記不揮発性メ モリへ書き込むデート情報書込手段とを設け、また、不 揮発性メモリと、電源電池のカメラ内よりの抜き取りを 事前に検出する電池抜取事前検出手段と、該電池抜取事 前検出手段による検出により、デート回路にて計時され ているデート情報を、前記不揮発性メモリへ書き込むデ 一ト情報書込手段とを設け、また、不揮発性メモリと、 デート回路の計時動作中の特定の桁の更新時毎に、該デ

50 一ト回路にて計時されているデート情報を、不揮発性メ

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-250278

(43)公開日 平成6年(1994)9月9日

(51) Int.Cl.⁵

識別記号

庁内整理番号

FI

技術表示箇所

G03B 17/24

7256-2K

審査請求 未請求 請求項の数7 FD (全 10 頁)

(21)出願番号

特膜平5-54636

(22)出願日

平成5年(1993)2月22日

(71)出額人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 木谷 一成

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72)発明者 大塚 正典

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(74)代理人 弁理士 中村 稔

(54) 【発明の名称】 デート機能付カメラ

(57)【要約】

【目的】 現在の時刻と極端に異なるデート情報の計時を防止したり、新たな電源電池装填後のデート情報の修正作業を容易にする。

【構成】 不揮発性メモリ2と、電源電池3がカメラ内より抜き取られたことを検出する電池抜取検出手段6と、電源電池がカメラ内より抜き取られると同時に、デート回路7へ所定時間電源をバックアップする電源バックアップ手段4と、該電源バックアップ手段にて電源がバックアップされている間に、デート回路にて計時されているデート情報を、前配不揮発性メモリへ書き込むデート情報書込手段1とを設け、また、また、電源電池が装填されたことを検出することにより、不押発性メモリに書き込まれている情報を、デート回路におけるデート情報の初期値として設定し、以降このデート情報に対応する時間からの計時動作を、該デート回路に指示する計時動作制御手段を設けている。

【特許請求の範囲】

【請求項1】 電源電池がカメラ内より抜き取られるこ とにより、デート情報を消失してしまうデート回路を備 えたデート機能付力メラにおいて、不揮発性メモリと、 電源電池がカメラ内より抜き取られたことを検出する電 池抜取検出手段と、電源電池がカメラ内より抜き取られ ると同時に、前記デート回路へ所定時間電源をパックア ップする電源パックアップ手段と、該電源パックアップ 手段にて電源がパックアップされている間に、前記デー メモリへ書き込むデート情報書込手段とを設けたことを 特徴とするデート機能付カメラ。

【請求項2】 電源電池がカメラ内より抜き取られるこ とにより、デート情報を消失してしまうデート回路を備 えたデート機能付力メラにおいて、不揮発性メモリと、 電源電池のカメラ内よりの抜き取りを事前に検出する電 池抜取事前検出手段と、該電池抜取事前検出手段による 検出により、前記デート回路にて計時されているデート 情報を、前記不揮発性メモリへ書き込むデート情報書込 手段とを設けたことを特徴とするデート機能付力メラ。

【請求項3】 電源電池がカメラ内より抜き取られるこ とにより、デート情報を消失してしまうデート回路を備 えたデート機能付カメラにおいて、不揮発性メモリと、 前記デート回路の計時動作中の特定の桁の更新時毎に、 該デート回路にて計時されているデート情報を、前記不 揮発性メモリへ更新情報として書き込むデート情報書込 手段とを設けたことを特徴とするデート機能付力メラ。

【請求項4】 デート情報書込手段は、カメラの各種動 作を制御する制御手段内に具備されていることを特徴と する請求項1、2又は3記載のデート機能付力メラ。

【請求項5】 デート情報書込手段は、デート回路内に 具備されていることを特徴とする請求項1,2又は3記 載のデート機能付カメラ。

【請求項6】 電源電池が装填されたことを検出するこ とにより、不揮発性メモリに書き込まれている情報を、 デート回路におけるデート情報の初期値として設定し、 以降このデート情報に対応する時間からの計時動作を、 該デート回路に指示する計時動作制御手段を具備したこ とを特徴とする請求項1,2又は3記載のデート機能付 カメラ.

【請求項7】 計時動作制御手段は、デート回路に計時 動作の開始を指示すると同時に、特定桁のデート情報の 修正の動作モードに入る手段であることを特徴とする請 求項6記載のデート機能付力メラ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、電源電池がカメラ内よ り抜き取られることにより、デート情報を消失してしま うデート回路を備えたデート機能付カメラの改良に関す るものである。

[0002]

【従来の技術】時刻データのバックアップ機能を持たな いデート機能付カメラにおいては、従来、カメラ本体の 電池交換が行われる場合に、古い電池を抜かれ、再度新 しい電池が装填されると、デート用ICもリセットされ てしまい、現在の日時、時刻と全く異なる初期設定デー タが時刻データとして設定されるようになっていた。 [0 0 0 3]

【発明が解決しようとする課題】この場合、カメラの使 ト回路にて計時されているデート情報を、前記不揮発性 10 用者は、電池の交換を行う毎に時刻データの修正を行う 必要があった。この修正作業は、年、月、日、時間、分 と全ての桁を修正しなくてはならず、非常に煩わしいも のであった。また、もし電池の交換を行った際に、使用 者がその修正を行うことを忘れた場合においては、フィ ルム面上には全く異なる日付、時刻のデータが写し込ま れてしまい、現像後、写真の整理等が非常に煩わしいも のとなってしまう。

> 【0004】また、誤った日付、時刻のデータの写し込 みを防止するための方法が、特開平2-101445号 20 に記載されている。そこでは、電池の再装填を認識する ことにより、写し込みが行われないオフモードに自動的 に初期設定を行い、使用者が日付の修正を忘れた場合に も、誤ったデータの写し込みがなされないような工夫が 施されている。

【0005】しかしながら、全く日付、時刻のデータが 写し込まれていないということは、現像後の写真の整理 等を考えた場合、上記の修正をし忘れた場合と同様、そ の作業(写真の整理等)が煩わしいものとなってしま う、

【0006】(発明の目的)本発明の目的は、現在の時 刻と極端に異なるデート情報の計時を防止すると共に、 新たな電源電池装填後のデート情報の修正作業を容易に することのできるデート機能付力メラを提供することで ある。

[0007]

【課題を解決するための手段】本発明は、不揮発性メモ リと、電源電池がカメラ内より抜き取られたことを検出 する電池抜取検出手段と、電源電池がカメラ内より抜き 取られると同時に、デート回路へ所定時間電源をパック アップする電源パックアップ手段と、該電源パックアッ ブ手段にて電源がパックアップされている間に、デート 回路にて計時されているデート情報を、前記不揮発性メ モリへ書き込むデート情報書込手段とを設け、また、不 揮発性メモリと、電源電池のカメラ内よりの抜き取りを 事前に検出する電池抜取事前検出手段と、該電池抜取事 前検出手段による検出により、デート回路にて計時され ているデート情報を、前記不揮発性メモリへ書き込むデ 一ト情報書込手段とを設け、また、不揮発性メモリと、 デート回路の計時動作中の特定の桁の更新時毎に、該デ 50 一ト回路にて計時されているデート情報を、不揮発性メ

モリへ更新情報として書き込むデート情報 込手段とを 設け、電源電池がカメラ内より抜き取られた際の、ある いは、その直前のデート情報を不揮発性メモリに記録し ておくようにしている.

【0008】また、本発明は、電源電池が装填されたこ とを検出することにより、不揮発性メモリに書き込まれ ている情報を、デート回路におけるデート情報の初期値 として設定し、以降このデート情報に対応する時間から の計時動作を、該デート回路に指示する計時動作制御手 がなされない場合、電源電池がカメラ内より抜き取られ た際の、あるいは、その直前に不揮発性メモリに書き込 まれたデート情報を初期値として、計時動作を再開させ るようにしている。

[6000]

【実施例】以下、本発明を図示の実施例に基づいて詳細 に説明する.

【0010】図1は本発明の第1の実施例におけるカメ ラの要部構成を示すプロック図である。

【0011】図1において、1はカメラ制御用CPU、 2は不揮発性メモリであるところのEEPROM、3は 電源電池、4はパックアップ用キャバシタ、5は逆流防 止用のダイオード、6は電源電池3がカメラの電池ボッ・ クス内にあるときにON状態にある電池検出スイッチ、 7はデートIC、8は表示用液晶板、9はフィルム上へ データの写し込みを行う写し込み回路プロック、10は 日時等のデータを修正する為の修正スイッチ、11は写 し込みデータのモードを「年月日」、「日時分」等に切 り換えるモード変更スイッチである。

【0012】カメラ制御用CPU1は、不図示の測距 30 部、測光部、シャッタ駆動部、レンズ駆動部、フィルム 給送部、ストロボ制御部をコントロールする。また、制 御に必要なデータをEEPROM2に書き込み、保存 し、必要に応じて読み出すことで適切な制御を行う。

【0013】デート1C7は、計時プログラムを内蔵 し、これにより計時した結果を表示用液晶板8に出力し て表示させるものであり、核デートIC7での現在の 年、月、日、時間等は、データ修正スイッチ10によっ て修正可能であり、又、フィルム上に写し込むデータ、 すなわち「年月日」、「日時分」等のモードも、モード 40 変更スイッチ11により変更可能である。また、このデ ート107は、単独の電源電池は持たず、カメラの電源 電池3を抜かれると、それまで保持していたデータを失 う。また、該デートIC7は、カメラ制御用CPU1か らの信号に基づき写し込み回路プロック9を駆動し、フ ィルム上にデータの写し込み行う。

【0014】図2は、カメラの電池ボックスから電源電 池3を抜かれた際の、カメラ制御用CPU1の動作を示 すフローチャートである.

[ステップ101] 電源電池3がカメラの電池ボック 50 ボタン10の操作がなされ、正確な時刻データへの修正

ス内から抜き取られたか否かを電池検出スイッチ6の状 態より検知し、OFFしたことを判別すると、電源電池 3がカメラの電池ボックス内から抜き取られたとしてス テップ102へ進む。

【0015】この状態時においては、パックアップ用キ ャパシタ4により、制御回路全体の為の動作電圧が保持 されている。この際の、動作保証電圧を保持し続ける為 の時間は、該キャパシタ4の容量と制御回路全体の消費 電力によって定まる。実際には電源電池3を抜き去った 段を設け、電源電池が装填された際にデート情報の修正 10 後の誤動作を避けるため、また、キャパシタ4の小型化 のため、電圧保持可能な時間は短い。

> [ステップ102] 電源電池3が抜かれた為、ここで はカメラ制御用CPU1は直ちにデートIC7との通信 を行い、現在の年、月、日、時間等の時刻データを読み 込み、ステップ103へ進む。

> [ステップ103] デートIC7より読み取った、現 在の現在の年、月、日、時間等の時刻データをEEPR OM2へ書き込む。

【0016】この後、パックアップ用キャパシタ4が保 20 持している電圧も低下し、完全に放電してしまうが、上 記EEPROM2に書き込まれたデータはそのまま残る ことになる。

【0017】図3は、カメラの電池ポックスへ新しい電 源電池が装填された際の、カメラ制御用CPU1の動作 を示すフローチャートである。

[ステップ111] 新たな電源電池3が装填される と、カメラ制御用CPU1, デートIC7へ電源が供給 される為、これらはともに初期設定動作(パワーオンリ セット)を行う。

[ステップ112] カメラ制御用CPU1はカメラの 撮影系回路群の初期設定動作を行い、この動作を終える と、写し込み系の初期設定動作に入るべくステップ11 3へ進む。

[ステップ113] ここではEEPROM2に記憶さ れている年、月、日、時間等の時刻データを読み込む。

[ステップ114] EEPROM2より読み込んだ時 刻データをデート I C 7 に転送し、これを書き込む。

[ステップ115] 使用者のスイッチ動作を待ち受け る通常動作に入る。

【0018】この第1の実施例では、電源電池3が抜か れた際には、直ちに現在の年、月、日、時間等の時刻デ ータ(デート情報)をEEPROM2へ書き込み、新た な電源電池3が装填された際には、EEPROM2に書 き込まれている時刻データを初期値として計時勁作を再 開させるようにしている為、仮に時刻データの修正作業 が全くなされない状態で撮影が行われたとしても、誤禁 の少ないデート情報の写し込みを可能とすることができ る。また、表示用液晶板8を見て、時刻データの誤差が 撮影に影響すると思われる場合には、使用者により修正

が行われることになるが、この際の修正作業としては、 一般に電池の交換に有する時間は長くても数分程度であ るので、その修正すべき箇所もごく一部のみであるた め、簡単(短時間)に行うことが可能となる。

【0019】 (第2の実施例) 図4は本発明の第2の実 施例におけるカメラの要部構成を示すプロック図であ

【0020】図4において、21はカメラ制御用CP U、22は不揮発性メモリであるところのEEPRO M、23は電源電池、24は平滑用キャパシタ、25は 10 逆流防止用のダイオード、26はカメラの電池ボックス の蓋(電池蓋)が開けられたか否かを検出する電池蓋検 出スイッチ、27はデート1C、28は表示用液晶板、 29はフィルム上へデータの写し込みを行う写し込み回 路プロック、30は日時等のデータを修正する為の修正 スイッチ、31は写し込みデータのモードを「年月 日」、「日時分」等に切り換えるモード変更スイッチ、 32は電源電池23がカメラの電池接片から外れるとO Nするリセットスイッチ、33は電流制限用抵抗であ

【0021】カメラ制御用CPU21は、不図示の測距 部、測光部、シャッタ駆動部、レンズ駆動部、フィルム 給送部、ストロボ制御部をコントロールする。また、制 御に必要なデータをEEPROM22に書き込み、保存 し、必要に応じて読み出すことで適切な制御を行う。

【0022】デートIC27は、計時プログラムを内蔵 し、これにより計時した結果を表示用液晶板28に出力 して表示させるものであり、該デートIC27での現在 の年、月、日、時間等は、データ修正スイッチ30によ って修正可能であり、又、フィルム上に写し込むデー 30 を、「日時分」の表示モードに変更する。 タ、すなわち「年月日」、「日時分」等のモードも、モ ード変更スイッチ31により変更可能である。また、こ のデートIC27は、単独の電源電池は持たず、カメラ の電源電池23を抜かれると、それまで保持していたデ ータを失う。また、該デートIC27は、カメラ制御用 CPU21からの信号に基づき写し込み回路プロック2 9を駆動し、フィルム上にデータの写し込み行う。

【0023】図5は、カメラの電池ポックスから電源電 池23を抜かれる際の、カメラ制御用CPじ21の動作 を示すフローチャートである。

[ステップ201] 電源電池23をカメラの電池ボッ クス内から抜き取る際、先ず電池蓋が開かれるが、この 電池蓋が開かれた時点で電池蓋検出スイッチ26ONす ることから、カメラ制御用CPU21は電源電池23を カメラの電池ボックス内から抜き取るべく電池蓋が開け られたとしてステップ202へ進む。

[ステップ202] 電源電池23が抜かれようとして いるので、ここではカメラ制御用CPU21は直ちにデ ートIC27との通信を行い、現在の現在の年,月,

[ステップ203] デートIC27より読み取った、 現在の年、月、日、時間等の時刻データをEEPROM 22へ書き込む。

6

【0024】この後、実際に電源電池23が抜かれる と、リセットスイッチ32が機械的にONし、平滑用キ ャパシタ24の電荷が制限用抵抗33を通して放電され る。これは、電源電池23が抜かれた後のカメラ制御用 CPU21等の誤動作を防止するためである。なお、こ の事によりEEPROM22に書き込まれたデータが変 化しないのは言うまでもない。

【0025】図6は、カメラの電池ポックスへ新しい電 源電池が装填された際の、カメラ制御用CPU21の動 作を示すフローチャートである。

[ステップ211] 新たな電源電池23が装填される と、カメラ制御用CPU21、デートIC27へ電源が 供給される為、これらはともに初期設定動作(パワーオ ンリセット)を行う。

[ステップ212] カメラ制御用CPU21はカメラ 20 の撮影系回路群の初期設定動作を行い、この動作を終え ると、写し込み系の初期設定動作に入るべくステップ2 13へ進む。

[ステップ213] ここではEEPROM22に記憶 されている年,月,日,時間等の時刻データを読み込

[ステップ214] EEPROM22より読み込んだ 時刻データをデート1C27に転送し、これを書き込

[ステップ215] 表示用液晶板28のデート表示

[ステップ216] データ修正ポタン30が一度押さ れた状態、すなわち修正を待つ桁の表示、例えば「日」 のデータが点滅している状態に設定する。

「ステップ217】 使用者のスイッチ動作を待ち受け る通常動作に入る。

【0026】この第2の実施例では、電源電池23を抜 きとるべく電池套が開かれたことを検知することによ り、直ちに現在の年、月、日、時間等の時刻データをE EPROM22へ書き込み、新たな電源電池23が装填 40 された際には、EEPROM22に書き込まれている時 刻データを初期値として計時動作を再開させるようにし ている為、仮に時刻データの修正作業が全くなされない 状態で撮影が行われたとしても、誤差の少ないデート情 報の写し込みを可能とすることができる。また、表示用 液晶板28を見て、時刻データの誤差が撮影に影響する と思われる場合には、使用者により修正ポタン30の操 作がなされ、正確な時刻データへの修正が行われること になるが、この際の修正作業としては、第1の実施例と 同様、その修正すべき箇所もごく一部のみであるため、 日、時間等の時刻データを読み込み、ステップ203へ 50 簡単に行うことが可能となる。

【0027】なお、上記ステップ215において表示モードを「日時分」にしたのは、一般に電池の交換に有する時間は長くても数分程度であるので、この表示モードにおいて修正することのみで足りる為であり、これにより、表示モードの変更の操作をする必要がなくなる。

【0028】また、この時、既に修正モードに入って、 表示の特定部分を点滅させながら使用者の修正スイッチ 30の操作を特つようにしているため、使用者の注意を 引くとともに、時刻データが変わってしまったことを認 識させることができる効果がある。

【0029】一方、カメラの電池蓋の蓋が開けられた時 点からデータの記録動作を行うことで、電源電圧のパッ クアップ機能を最小にするとともに、その動作の安定性 を増すことが可能になる。

【0030】(第3の実施例)図7は本発明の第3の実施例におけるカメラの要部構成を示すプロック図である。

【0031】図7において、41はカメラ制御用CPU、42は不揮発性メモリであるところのEEPROM、43は電源電池、44は平滑用キャパシタ、45は20逆流防止用のダイオード、46はカメラの電池ボックスの蓋(電池蓋)が開けられたか否かを検出する電池蓋検出スイッチ、47はデートIC、48は表示用液晶板、49はフィルムトペデータの写し込みを行う写し込み回路ブロック、50は日時等のデータを修正する為の修正スイッチ、51は写し込みデータのモードを「年月日」、「日時分」等に切り換えるモード変更スイッチ、52は電源電池43がカメラの電池接片から外れるとONするリセットスイッチ、53は電流制限用抵抗である。30

【0032】カメラ制御用CPU41は、不図示の測距部、測光部、シャッタ駆動部、レンズ駆動部、フィルム 給送部、ストロポ制御部をコントロールする。また、制御に必要なデータをBEPROM42に書き込み、保存し、必要に応じて読み出すことで適切な制御を行う。

【0033】デートIC47は、計時プログラムを内蔵し、これにより計時した結果を表示用液晶板48に出力して表示させるものであり、該デートIC47での現在の年、月、日、時間等は、データ修正スイッチ50によって修正可能であり、又、フィルム上に写し込むデータ、すなわち「年月日」、「日時分」等のモードも、モード変更スイッチ51により変更可能である。また、このデートIC47は、単独の電源電池は持たず、カメラの電源電池43を抜かれると、それまで保持していたデータを失う。また、該デートIC47は、カメラ制御用CPU41からの信号に基づき写し込み回路プロック49を駆動し、フィルム上にデータの写し込み行う。

【0034】図8は、デートIC47がEEPROM4 2に対し、データを書き込む際の動作を示すフローチャ ートである。 [ステップ301] デートIC47は内部に持つ計時プログラムの実行中において、所定時間が経過、例えば「日」の位がカウントアップすると、ステップ302へ 進む。

[ステップ302] ここではカメラ制御用CPU41 が動作中であるか否かを判別し、動作中であれば、後述する理由により、このステップにおいて待機し、動作停止状態であることを判別するとステップ303へ進む。

[ステップ303] 現在の年、月、日のデータをEE 10 PROM22へ出力してこれを書き込む。

【0035】ここで、EEPROM42との通信のやり取りを行う場合、カメラ制御用CPU41が動作停止状態であっても、該CPU41の動作の支障を来すことのないよう、また、該CPU41が動作中に、EEPROM42においてこのカメラ制御用CPU41からとデートIC47からの信号がぶつかる事がないような構成を取ることが必要である。例えば、カメラ制御用CPU41が動作中には、動作中であることを示す信号をデータIC47に入力する。デートIC47においてカウントアップが発生した時点で、この信号が動作中を示している場合には、上記ステップ302の様にデートIC47はEEPROM42への通信を行わず、この信号が動作終了を示した時点でEEPROM42への通信を行い、「年月日」のデータを書き込むようにする。

【0036】EEPROM42に書き込まれたデータは、いつ電源電池43を抜かれた場合にも、それ以前に最も最近変更された「年月日」のデータが配憶されていることになる。

【0037】図9は、カメラの電池ボックスへ新しい電 切 源電池が装填された際の、カメラ制御用CPU41の動 作を示すフローチャートである。

[ステップ311] 新たな電源電池43が装填される と、カメラ制御用CPU41, デートIC47へ電源が 供給される為、これらはともに初期設定動作(パワーオ ンリセット)を行う。

[ステップ312] カメラ制御用CPU41はカメラの撮影系回路群の初期設定動作を行い、この動作を終えると、写し込み系の初期設定動作に入るべくステップ313へ進む。

70 [ステップ313] ここではEEPROM42に記憶 されている年、月、日のデータを読み込む。

[ステップ314] EEPROM12より読み込んだ年、月、日のデータをデートIC47に転送し、これを 書き込む。

[ステップ315] 「時間」,「分」のデータはEE PROM42に記憶されていないため、ある所定値をデ ートJC47に転送し、これを書き込む。

[ステップ316] 表示用液晶板48のデート表示を、「日時分」の表示モードに変更する。

50 【ステップ317】 データ修正ポタン30が一度押さ

れた状態、すなわち修正を待つ桁の表示、例えば「日」のデータが点滅している状態に設定する。

[ステップ318] 使用者のスイッチ動作を待ち受ける通常動作に入る。

【0038】この第3の実施例では、所定の時間経過毎にEEPROM42上の時刻データを更新するようにし、新たな電源電池43が装填された際には、EEPROM42に構き込まれている時刻データを初期値として計時動作を再開させるようにしている為、仮に時刻データの修正作業が全くなされない状態で撮影が行われたと 10しても、誤差の少ないデート情報の写し込みを可能とすることができる。

【0039】また、このようにしてデート情報のリフレッシュ動作を行っている為、電源電圧のパックアップ機能を不要にすることが可能となる。

【0040】また、上記ステップ316において表示モードを「月時分」にしたのは、上記第2の実施例と同様の理由からであり、これに伴う効果、その他の効果については第2の実施例と同様であるため、ここでは省略する。

【0041】(変形例)上記の第1及び第2の実施例において、EEPROMへのデート情報の書き込みはカメラ制御用CPUが行うようにしていたが、第3の実施例の様に、デートICが直接EEPROMへデート情報の書き込を行うようにしてもよい。

[0042]

【発明の効果】以上説明したように、本発明によれば、 不揮発性メモリと、電源電池がカメラ内より抜き取られ たことを検出する電池抜取検出手段と、電源電池がカメ ラ内より抜き取られると同時に、デート回路へ所定時間 30 電源をバックアップする電源バックアップ手段と、該電 源パックアップ手段にて電源がパックアップされている 間に、デート回路にて計時されているデート情報を、前 記不揮発性メモリへ書き込むデート情報書込手段とを設 け、また、不揮発性メモリと、電源電池のカメラ内より の抜き取りを事前に検出する電池抜取事前検出手段と、 該電池抜取事前検出手段による検出により、デート回路 にて計時されているデート情報を、前配不揮発性メモリ へ書き込むデート情報書込手段とを設け、また、不揮発 性メモリと、デート回路の計時動作中の特定の桁の更新 40 時毎に、鼓デート回路にて計時されているデート情報 を、不揮発性メモリへ更新情報として書き込むデート情

報書込手段とを設け、また、電源電池が装填されたことを検出することにより、不揮発性メモリに書き込まれている情報を、デート回路におけるデート情報の初期値として設定し、以降このデート情報に対応する時間からの計時動作を、該デート回路に指示する計時動作制御手段を設け、電源電池がカメラ内より抜き取られた際の、あるいは、その直前のデート情報を不揮発性メモリに記録しておくようにし、電源電池が装填された際には、前記不揮発性メモリに書き込まれたデート情報を初期値として、計時動作を再開させるようにしている。

10

【0043】よって、現在の時刻と極端に異なるデート 情報の計時を防止したり、新たな電源電池装填後のデー ト情報の修正作業を容易にすることが可能となる。

【図面の簡単な説明】

【図1】本発明の第1の実施例におけるカメラの要部構成を示すプロック図である。

【図2】図1のカメラ制御用CPUのEEPROMへの デート情報書き込み時の動作を示すフローチャートであ る。

20 【図3】図1のカメラ制御用CPUの新たな電源電池が 装填された際の動作を示すフローチャートである。

【図4】本発明の第2の実施例におけるカメラの要部構成を示すプロック図である。

【図5】図4のカメラ制御用CPUのEEPROMへのデート情報書き込み時の動作を示すフローチャートである。

【図 6】図4のカメラ制御用CPUの新たな電源電池が 装填された際の動作を示すフローチャートである。

【図7】本発明の第3の実施例におけるカメラの要部構 の 成を示すプロック図である。

【図8】図7のデート1CのEEPROMへのデート情報書き込み時の動作を示すフローチャートである。

【図9】図7のカメラ制御用CPUの新たな電源電池が 装填された際の動作を示すフローチャートである。

カイラ製御田へDII

【符号の説明】

1, 21, 41	N N N N N N N N N N N N N N N N N N N
2, 22, 42	EEPROM
3, 23, 43	電源電池
6	電池検出スイッチ
7, 27, 47	デートIC
9, 29, 49	写し込み回路プロック
26, 46	電池蓋検出スイッチ

【図7】

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

10

5

[0001] Field of the Invention

This invention relates to enhancement of the camera with a date function equipped with the date circuit which disappears a date information by sampling a power cell from the inside of a camera.

15

20

25

[0002] *Prior art*

In the camera with a date function without the backup function of time data, if an old cell is extracted and it is loaded with an again new cell when the changing battery of the mainframe of a camera is performed conventionally, IC for a date will also be reset and initial cofiguration data completely different from the present time and time will set up as time data.

[0003] Object of the Invention

In this case, whenever the user of a camera exchanged cells, he needed to correct time data. This correction work had to correct a year, the moon, a day, time, a part, and all digits, and was very troublesome. Moreover, when exchanging cells and it has been forgotten for a user to perform the correction, the data of a date completely different on a film side and time will be copied, and arrangement of a photograph etc. will become very troublesome after development.

30

35

40

45

[0004] Moreover, the technique for preventing a copy lump of the mistaken data of a date and time is indicated by the publication number 101445 [two to]. There, when an initial cofiguration is automatically performed in the off mode in which a copy lump is not performed by recognizing re-charge of a cell and the user has forgotten correction of a date, a device by which a copy lump of mistaken data is not made is given.

[0005] However, it will become troublesome [the work (arrangement of a photograph etc.)] that the data of a date and time are completely copied like the case where the above-mentioned correction has forgotten to be carried out, when arrangement of the photograph after development etc. is considered.

[0006] The Purpose of Invention

The purpose of this invention is offering the camera with a date function which can make easy correction work of the date information after new power cell charge while it prevents a time check of a date information extremely different from the present time.

		·
	4	

5

10

15

[0007] The Means for Solving a Technical Problem

A cell sampling detection means by which, as for this invention, non-volatile memory and a power cell detect having been sampled from the inside of a camera, A power backup means to back up predetermined time power to a date circuit at the same time a power cell is sampled from the inside of a camera, While power is backed up with this power backup means, the date information write-in means which writes the date information clocked in the date circuit in the aforementioned non-volatile memory is established. Moreover, non-volatile memory, By the detection by cell sampling prior detection means to detect the sampling of the inside of the camera of a power cell in advance, and this cell sampling prior detection means The date information write-in means which writes the date information clocked in the date circuit in the aforementioned non-volatile memory is established. Moreover, non-volatile memory, a time check of a date circuit -- the date information clocked in this date circuit for every time of the update of a working specific digit The date information write-in means written in non-volatile memory as update information is established, and it is made to record the date information in front of it at the time of a power cell being sampled from the inside of a camera to non-volatile memory.

 \checkmark

[0008] This invention moreover, by detecting having been loaded with the power cell.

The information currently written in non-volatile memory is set up as initial value of the date information in a date circuit. A motion-control means is established. The time check from the time corresponding to [henceforth] this date information -- the time check which directs an operation in this date circuit -- when loaded with a power cell, correction of a date information should do -- the date information by which it was written in non-volatile memory just before it when a power cell was sampled from the inside of a camera when there was nothing -- initial value -- carrying out -- a time check -- it is made to resume an operation

[0009] *Example*

Hereafter, this invention is explained in detail based on the example of illustration.

[0010] <u>Drawing 1</u> is the block diagram showing the important section configuration of the camera in the 1st example of this invention.

35 [0011] EEPROM whose 2 1 is CPU for camera control and is non-volatile memory in drawing 1, 3 A power cell, the diode for [4] antisuckbacks in the capacitor for a backup, and 5, The cell pilot switch which is in ON status when 6 has the power cell 3 in the cell box of a camera, The correction switch for copying and a lump circuit block and 10 correcting data, such as time, with which date IC and 8 perform the liquid crystal plate for a display, and, as for 9, 7 performs a copy lump of data to up to a film, and 11 are mode alteration switches which copy and switch the mode of lump data to "a part for a "date" and time" etc.

[0012] CPU for camera control 1 controls non-illustrated *****, the photometry section, a shutter mechanical component, a lens mechanical component, film *****, and a stroboscope control section. Moreover, data required for a control are written in and

	,	

35

40

saved at EEPROM2, and a suitable control is performed by reading if needed.

[0013] date IC7 -- a time check -- the modes "for time, such as the data which can contain a program, can be made to be able to output and display the result which this clocked on the liquid-crystal plate for a display 8, and can correct the year of the present in this date IC7, the moon, a day, time, etc. with the data correction switch 10, and are copied on a film (i.e., a "date")," etc. can also change by the mode alteration switch Moreover, if it does not have a power cell with this independent date IC7 but the power cell 3 of a camera is extracted, the data currently held till then will be lost. Moreover, this date IC7 is copied based on the signal from CPU for camera control1, drives the lump circuit block 9, and on a film, data copy it and it performs it.

[0014] <u>Drawing 2</u> is a flow chart which shows the operation of CPU for camera control1 at the time of the power cell 3 being extracted from the cell box of a camera.

- 15 [Step 101] It progresses to step 102 noting that the power cell 3 will be sampled out of the cell box of a camera, if it distinguishes having detected whether the power cell 3 was sampled out of the cell box of a camera from the status of the cell pilot switch 6, and having turned it off.
- 20 [0015] The operating voltage for the whole control circuit is held by the capacitor for a backup 4 in this status. The time for continuing holding the assurance voltage of operation in this case becomes settled by the power consumption of the capacity of this capacitor 4, and the whole control circuit. In order to avoid a malfunctioning after extracting the power cell 3 in fact, the time in which a voltage hold is possible is short because of a miniaturization of a capacitor 4.
 - [Step 102] Since the power cell 3 was extracted, CPU for camera control1 performs the communication with date IC7 immediately, reads time data, such as the present year, the moon, a day, and time, and progresses to step 103 here.
- [Step 103] Time data, such as a year of the present present read from date IC7, the moon, a day, and time, are written in EEPROM2.
 - [0016] Then, although the voltage which the capacitor for a backup 4 holds will also fall and it will discharge completely, the data written in above-mentioned EEPROM2 will remain as it is.
 - [0017] <u>Drawing 3</u> is a flow chart which shows the operation of CPU for camera control1 at the time of the cell box of a camera being loaded with a new power cell. [Step 111] If loaded with the new power cell 3, since power will be supplied to CPU for camera control1, and date IC7, these [both] perform an initial cofiguration operation
 - (power on reset).

 [Step 112] After CPU for camera control1 performs an initial cofiguration operation of the photography system circuit group of a camera and finishing this operation, it is copied and progresses to step 113 that it should go into an initial cofiguration operation of a lump system.
- 45 [Step 113] Time data, such as a year memorized by EEPROM2 here, the moon, a day, and time, are read.

[Step 114] The time data read from EEPROM2 are transmitted to date IC7, and this is written in.

[Step 115] It goes into the normal operation which awaits a switch operation of a user.

5 [0018] In this 1st example, when the power cell 3 is extracted When time data (date information), such as the present year, the moon, a day, and time, are immediately written in EEPROM2 and it is loaded with the new power cell 3 the time data currently written in EEPROM2 -- initial value -- carrying out -- a time check -- in order to resume an operation, correction work of time data should completely make it temporary -- though 10 photography is performed in the status that there is nothing, a copy lump of the few date information on with error can be made possible Moreover, although the liquid crystal plate for a display 8 is seen, operation of the correction button 10 is made by the user when it is thought that the error of time data influences photography, and correction to exact time data will be performed since it is several about minutes even if time to have in 15 exchange of a cell generally is long and the part which should be corrected is also only a part very much as correction work in this case -- being easy (short time) -- it is enabled to carry out

[**0019**] *The 2nd example*

25

30

35

40

45

20 <u>Drawing 4</u> is the block diagram showing the important section configuration of the camera in the 2nd example of this invention.

[0020] EEPROM whose 22 21 is CPU for camera control and is non-volatile memory in drawing 4, 23 A power cell, the diode for [24] antisuckbacks in the capacitor for smooth, and 25, The cell lid pilot switch which detects whether the lid (cell lid) of the cell box of a camera was able to open 26, Date IC and 28 perform the liquid crystal plate for a display, 27 performs a copy lump of data to up to a film, and 29 copies. A lump circuit block, The reset switch turned on if the power cell 23 separates from the correction switch for 30 correcting data, such as time, the mode alteration switch which 31 copies and switches the mode of lump data to "a part for a "date" and time" etc., and 32 from the cell armature of a camera, and 33 are the resistance for current limiting.

[0021] CPU for camera control 21 controls non-illustrated *****, the photometry section, a shutter mechanical component, a lens mechanical component, film *****, and a stroboscope control section. Moreover, data required for a control are written in and saved at EEPROM22, and a suitable control is performed by reading if needed.

[0022] date IC27 -- a time check -- the modes "for time, such as the data which can contain a program, can be made to be able to output and display the result which this clocked on the liquid-crystal plate for a display 28, and can correct the year of the present in this date IC27, the moon, a day, time, etc. with the data correction switch 30, and are copied on a film (i.e., a "date")," etc. can also change by the mode alteration switch Moreover, if it does not have a power cell with this independent date IC27 but the power cell 23 of a camera is extracted, the data currently held till then will be lost. Moreover, this date IC27 is copied based on the signal from CPU for camera control21, drives the

40

lump circuit block 29, and on a film, data copy it and it performs it.

[0023] <u>Drawing 5</u> is a flow chart which shows the operation of CPU for camera control21 at the time of the power cell 23 being extracted from the cell box of a camera.

- [Step 201] Although a cell lid is first opened in case the power cell 23 is sampled out of the cell box of a camera, since it turns on cell lid pilot-switch 26 when this cell lid is opened, CPU for camera control21 progresses to step 202 noting that a cell lid can open the power cell 23 that it should sample out of the cell box of a camera.
- [Step 202] Since the power cell 23 is going to be extracted, CPU for camera control21 performs the communication with date IC27 immediately, reads time data, such as a year of the present present, the moon, a day, and time, and progresses to step 203 here. [Step 203] Time data, such as the present year read from date IC27, the moon, a day, and time, are written in EEPROM22.
- 15 [0024] Then, if the power cell 23 is actually extracted, a reset switch 32 will turn on mechanically and the charge of the capacitor for smooth 24 will discharge through the resistance for a limit 33. This is for preventing malfunctionings, such as CPU for camera control21 after extracting the power cell 23. In addition, it cannot be overemphasized that the data written in EEPROM22 by this thing do not change.
- [0025] Drawing 6 is a flow chart which shows the operation of CPU for camera control21 at the time of the cell box of a camera being loaded with a new power cell.

 [Step 211] If loaded with the new power cell 23, since power will be supplied to CPU for camera control21, and date IC27, these [both] perform an initial cofiguration operation (power on reset).
 - [Step 212] After CPU for camera control21 performs an initial cofiguration operation of the photography system circuit group of a camera and finishing this operation, it is copied and progresses to step 213 that it should go into an initial cofiguration operation of a lump system.
- 30 [Step 213] Time data, such as a year memorized by EEPROM22 here, the moon, a day, and time, are read.
 - [Step 214] The time data read from EEPROM22 are transmitted to date IC27, and this is written in.
- [Step 215] A date display of the liquid crystal plate for a display 28 is changed into the display mode "for time."
 - [Step 216] It is set as the status that a display of the status, i.e., the digit which waits for correction, that the data correction button 30 was pushed at once, for example, the data of a "day", is blinking.
 - [Step 217] It goes into the normal operation which awaits a switch operation of a user.
 - [0026] By detecting that the cell lid was opened in this 2nd example that the power cell 23 should be extracted When time data, such as the present year, the moon, a day, and time, are immediately written in EEPROM22 and it is loaded with the new power cell 23 the time data currently written in EEPROM22 -- initial value -- carrying out -- a time
- check -- in order to resume an operation, correction work of time data should completely make it temporary -- though photography is performed in the status that there is nothing,

5

10

15

20

a copy lump of the few date information on with error can be made possible Moreover, when it is thought that the liquid crystal plate for a display 28 is seen, and the error of time data influences photography, although operation of the correction button 30 is made by the user and correction to exact time data will be performed, since the part which should be corrected as well as [as correction work in this case] the 1st example is only a part very much, it is enabled to carry out simply.

[0027] In addition, since time to have having made the display mode "a part for time" in the above-mentioned step 215 in exchange of a cell generally is several about minutes even if it is long, it is because correcting in this display mode is only sufficient, and, thereby, becomes unnecessary to operate change of a display mode.

[0028] Moreover, it is effective in the ability to make it recognize that time data have changed, while cautions of a user are attracted, in order to wait for operation of a user's correction switch 30 at this time, already going into the correction mode and blinking the specific fraction of a display.

[0029] By on the other hand performing a record operation of data from the time of the ability of the lid of the cell lid of a camera opening, while the backup function of supply voltage is made into the minimum, it is enabled to increase the stability of the operation.

[0030] (The 3rd example) <u>Drawing 7</u> is the block diagram showing the important section configuration of the camera in the 3rd example of this invention.

- [0031] EEPROM whose 42 41 is CPU for camera control and is non-volatile memory in drawing 7, 43 A power cell, the diode for [44] antisuckbacks in the capacitor for smooth, and 45, The cell lid pilot switch which detects whether the lid (cell lid) of the cell box of a camera was able to open 46, Date IC and 48 perform the liquid crystal plate for a display, 47 performs a copy lump of data to up to a film, and 49 copies. A lump circuit block, The reset switch turned on if the power cell 43 separates from the correction switch for 50 correcting data, such as time, the mode alteration switch which 51 copies and switches the mode of lump data to "a part for a "date" and time" etc., and 52 from the cell armature of a camera, and 53 are the resistance for current limiting.
- 35 [0032] CPU for camera control41 controls non-illustrated ******, the photometry section, a shutter mechanical component, a lens mechanical component, film ******, and a stroboscope control section. Moreover, data required for a control are written in and saved at EEPROM42, and a suitable control is performed by reading if needed.
- [0033] date IC47 -- a time check -- the modes "for time, such as the data which can contain a program, can be made to be able to output and display the result which this clocked on the liquid-crystal plate for a display 48, and can correct the year of the present in this date IC47, the moon, a day, time, etc. with the data correction switch 50, and are copied on a film (i.e., a "date")," etc. can also change by the mode alteration switch
- Moreover, if it does not have a power cell with this independent date IC47 but the power cell 43 of a camera is extracted, the data currently held till then will be lost. Moreover,

5

this date IC47 is copied based on the signal from CPU for camera control41, drives the lump circuit block 49, and on a film, data copy it and it performs it.

[0034] <u>Drawing 8</u> is a flow chart which shows the operation at the time of date IC47 writing in data to EEPROM42.

[step 301] the time check which has date IC47 in the interior -- into a program execution, the grade of progress, for example, a "day", will progress to step 302, if predetermined time carries out a count rise

[Step 302] According to the ground for distinguishing, and mentioning later whether CPU for camera control41 is working here, if working, it stands by in this step, and if it distinguishes that it is a idle state of operation, it will progress to step 303. [Step 303] The data of the present year, the moon, and a day are outputted to EEPROM22, and this is written in.

[0035] Here, even if CPU for camera control41 is a idle state of operation, it is required, when [with EEPROM42] exchanging a communication for this CPU41 to take a configuration which the signal from date IC47 from CPU for camera control41 of EEPROM42 smell lever does not collide with working so that trouble of an operation of this CPU41 may not be caused. For example, the signal which shows that CPU for camera control41 is working working is inputted into data IC47. When a count rise

occurs in date IC47 and this signal shows under the operation, like the above-mentioned step 302, date IC47 performs the communication to EEPROM42, when the communication to EEPROM42 is not performed but this signal shows an end of operation, and writes in the data of a "date."

25 [0036] When the data written in EEPROM42 have the power cell 43 extracted when, the data of a "date" most changed recently before it will be memorized.

[0037] <u>Drawing 9</u> is a flow chart which shows the operation of CPU for camera control41 at the time of the cell box of a camera being loaded with a new power cell.

30 [Step 311] If loaded with the new power cell 43, since power will be supplied to CPU for camera control41, and date IC47, these [both] perform an initial cofiguration operation (power on reset).

[Step 312] After CPU for camera control41 performs an initial cofiguration operation of the photography system circuit group of a camera and finishing this operation, it is copied and progresses to step 313 that it should go into an initial cofiguration operation of a

lump system.

35

40

[Step 313] The data of the year memorized by EEPROM42 here, the moon, and a day are read.

[Step 314] The data of the year and the moon which were read from EEPROM42, and a day are transmitted to date IC47, and this is written in.

[Step 315] Since the data of "time" and a "part" are not memorized by EEPROM42, they transmit a certain predetermined value to date IC47, and write in this.

[Step 316] A date display of the liquid crystal plate for a display 48 is changed into the display mode "for time."

[Step 317] It is set as the status that a display of the status, i.e., the digit which waits for correction, that the data correction button 30 was pushed at once, for example, the data of

a "day", is blinking.

5

10

30

35

40

45

[Step 318] It goes into the normal operation which awaits a switch operation of a user.

[0038] When the time data on EEPROM42 are updated for every predetermined time progress and it is loaded with the new power cell 43 in this 3rd example the time data currently written in EEPROM42 -- initial value -- carrying out -- a time check -- in order to resume an operation, correction work of time data should completely make it temporary -- though photography is performed in the status that there is nothing, a copy lump of the few date information on with error can be made possible

[0039] Moreover, since it does in this way and the refreshment operation of a date information is performed, it is enabled to make the backup function of supply voltage unnecessary.

- 15 [0040] Moreover, it is to have made the display mode "a part for time" in the abovementioned step 316 from the same ground as the 2nd above-mentioned example, and since it is the same as that of the 2nd example about the effect accompanied by this, and other effects, it is omitted here.
- [0041] (Modification) In the 1st of the above, and the 2nd example, although CPU for camera control is made to perform the writing of the date information on EEPROM, like the 3rd example, a date information writes to direct EEPROM and date IC may be made to perform **.

25 [0042] Effect of the invention

A cell sampling detection means to detect that the power cell was sampled from the inside of a camera with non-volatile memory according to [as explained above] this invention, A power backup means to back up predetermined time power to a date circuit at the same time a power cell is sampled from the inside of a camera, While power is backed up with this power backup means, the date information write-in means which writes the date information clocked in the date circuit in the aforementioned non-volatile memory is established. Moreover, non-volatile memory, By the detection by cell sampling prior detection means to detect the sampling of the inside of the camera of a power cell in advance, and this cell sampling prior detection means The date information write-in means which writes the date information clocked in the date circuit in the aforementioned non-volatile memory is established. Moreover, non-volatile memory, a time check of a date circuit -- the date information clocked in this date circuit for every time of the update of a working specific digit By detecting establishing the date information write-in means written in non-volatile memory as update information, and having been loaded with the power cell The information currently written in non-volatile memory is set up as initial value of the date information in a date circuit, the time check from the time corresponding to [henceforth] this date information -- the time check which directs an operation in this date circuit -- a motion-control means being established and at the time of a power cell being sampled from the inside of a camera or the date information written in the aforementioned non-volatile memory when the date

information in front of it was recorded to non-volatile memory and it was loaded with a

power cell -- initial value -- carrying out -- a time check -- it is made to resume an operation

[0043] Therefore, a time check of a date information extremely different from the present time is prevented, or it is enabled to make easy correction work of the date information after new power cell charge.

CLAIMS

30

35

40

[Claim 1] In the camera with a date function equipped with the date circuit which disappears a date information by sampling a power cell from the inside of a camera Non-volatile memory and a cell sampling detection means to detect that the power cell was sampled from the inside of a camera, A power backup means to back up predetermined time power to the aforementioned date circuit at the same time a power cell is sampled from the inside of a camera, The camera with a date function characterized by establishing the date information write-in means which writes the date information clocked in the aforementioned date circuit in the aforementioned non-volatile memory while power was backed up with this power backup means.

[Claim 2] In the camera with a date function equipped with the date circuit which disappears a date information by sampling a power cell from the inside of a camera By the detection by non-volatile memory, cell sampling prior detection means to detect the sampling of the inside of the camera of a power cell in advance, and this cell sampling prior detection means The camera with a date function characterized by establishing the date information write-in means which writes the date information clocked in the aforementioned date circuit in the aforementioned non-volatile memory.

[Claim 3] the camera equipped with the date circuit which disappears a date information by sampling a power cell from the inside of a camera with a date function -- setting -- non-volatile memory and the time check of the aforementioned date circuit -- the camera with a date function characterized by to establish the date information write-in means which writes the date information clocked in this date circuit as update information in the aforementioned non-volatile memory for every time of the update of a working specific digit

[Claim 4] A date information write-in means is the claims 1 and 2 characterized by providing in a control means to control various operations of a camera, or a camera with a date function given in three.

[Claim 5] A date information write-in means is the claims 1 and 2 characterized by providing in a date circuit, or a camera with a date function given in three.

[Claim 6] the time check from the time corresponding to [set up the information currently written in non-volatile memory by detecting having been loaded with the power cell as initial value of the date information in a date circuit, and / henceforth] this date information -- the time check which directs an operation in this date circuit -- the claims 1

and 2 characterized by providing a motion-control means, or the camera with a date function given in three

[Claim 7] a time check -- a motion-control means -- a date circuit -- a time check -- the camera with a date function of the claim 6 publication characterized by being a means to go into the mode of operation of correction of the date information on a specific digit at the same time it directs start of operation

[Translation done.]

5

