Функция распределения	
На этом уроке мы определим один из способов описания случайной величины— <i>функцию распределения</i> . В непрерывном случае невозможно просто приписать вероятность каждому элементарному исходу, поэтому нужна функция распределения. На этом уроке мы потренируемся работать с функциями распределения и узнаем их свойства.	

Непрерывные случайные величины

Нас интересуют городские голуби. Мы смотрим на случайных голубей и меряем у них размах крыльев, длину хвоста и среднюю скорость полёта в безветренную погоду. Тогда все эти величины будут непрерывными случайными величинами (заметьте, что строгого определения мы пока не дали).

На каком вероятностном пространстве они определены? На пространстве всех голубей. Это плохо определённое вероятностное пространство, но пока так – мы вернёмся к этому вопросу позже.

Обозначим за ξ случайную величину "размах крыльев голубя", выраженную в сантиметрах.

Комментарий. Здесь ξ — греческая буква, которая читается как "кси". Непрерывные случайные величины часто обозначают греческими строчными буквами.

Тем самым, например, утверждение $P(\xi \in [22,27]) = 0.25$ можно прочитать как "четверть всех голубей имеет размах крыльев от 22 до 27 сантиметров."

Описание случайной величины

Как описать случайную величину ξ ? Вероятностное пространство нам по сути не дали. Так что мы можем описать только распределение ξ . Ведь, как мы помним, в случае дискретных случайных величин, можно задать распределение, ни слова не сказав про вероятностное пространство. Задать распределение – то же самое, что определить вероятности событий вида $\xi=27$ или $\xi\in[20,30]$. Попробуем понять, как это лучше сделать.

Давайте считать, что мы проводим измерения с бесконечной точностью. То есть мы можем получать ответы вида "размах крыльев голубя оказался равен $29.6171717\ldots$ сантиметров". Ясно, что тогда вероятность того, что ξ равна какому-то конкретному числу, равна нулю. То есть, например, $P(\xi=26.3)=0$ (аналогично тому, как на прошлом уроке вероятность прихода Вити на вечеринку для любого конкретного момента времени была равна нулю). Значит, имеет смысл отвечать только на вопросы вида $P(\xi\in[a,b])=?$ (где $a\leq b$)

Ясно, что если мы ответим на такой вопрос для любых a и b, то это и будет распределением ξ (в смысле, это естественно называть распределением ξ). Другими словами, распределение ξ задаётся функцией, которая на вход получает a и b, а на выход выдаёт $P(\xi \in [a,b])$. На этом можно было бы и остановиться. Но можно оформить ту же самую информацию в более удобном виде.

Функция распределения

Нас интересуют такие вероятности: $P(\xi \in [a,b])$. По-другому эту вероятность можно записать так: $P(a \leq \xi \leq b)$.

Определение. Функцией распределения случайной величины ξ называется функция F_{ξ} , заданная так $F_{\xi}(c):=P(\xi\leq c)$.

Пример. Если $F_{\xi}(31)=0.7$, то это значит, что с вероятностью 0.7 случайный голубь будет иметь размах крыльев не больше 31 см. И, соответственно, с вероятностью 1-0.7=0.3 голубь будет иметь размах крыльев больше 31 сантиметров.

Пусть мы знаем функцию распределения. Покажем, что она позволяет отвечать на все вопросы вида $P(a \le \xi \le b) = ?$ (где $a \le b$).

- Во-первых, $P(a < \xi \le b) = P(\xi \le b) P(\xi \le a)$. Эта величина по определению функции распределения равна $F_{\xi}(b) F_{\xi}(a)$.
- ullet Во-вторых, мы считаем, что $P(\xi=a)=0$, поэтому $P(a\leq \xi\leq b)=P(\xi=a)+P(a<\ \xi\leq b)=P(a\leq\ \xi\leq b).$
- Тем самым, $P(a \le \xi \le b) = F_{\xi}(b) F_{\xi}(a)$.

Отлично, значит функция распределения действительно задаёт распределение:)

Чем функция распределения удобнее функции из конца предыдущего шага? Тем что функция с конца предыдущего шага должна была отвечать на вопросы про любую пару $a \leq b$. То есть принимала на вход два аргумента. А функция распределения принимает на вход только один аргумент. При этом обе эти функции несут одну и ту же информацию.

Пусть ξ это непрерывная случайная величина, такая что $F_{\xi}(0.6)=0.8$. Это значит, что

Выберите все подходящие ответы из списка

$$P(\xi \ge 0.6) = 0.8$$

$$P(\xi \le 0.6) = 0.8$$

$$P(\xi \ge 0.8) = 0.6$$

$$P(\xi \le 0.8) = 0.6$$

Пусть ξ это непрерывная случайная величина, такая что

1.
$$F_{\xi}(2) = 0$$
,

2.
$$F_{\xi}(3) = 0.21$$
,

3.
$$F_{\xi}(4) = 0.55$$
,

4.
$$F_{\xi}(5) = 0.86$$
,

5.
$$F_{\xi}(6) = 1$$
.

Пример 1. Найдём вероятность того, что $\xi \in [3,5]$.

Решение. Эта вероятность равна $F_{\xi}(5) - F_{\xi}(3) = 0.86 - 0.21 = 0.65$.

Пример 2. Найдём вероятность того, что $\xi \in [1,3].$

Решение. Заметим, что $F_{\xi}(2)=0$. То есть $P(\xi\leq 2)=0$. Отсюда следует, что $P(\xi\leq 1)=0$, то есть $F_{\xi}(1)=0$. То же самое было бы верно для любого числа меньше 2.

Вероятность того, что $\xi \in [1,3]$. равна $F_{\xi}(3) - F_{\xi}(1) = 0.21 - 0 = 0.21$.

Ответы округляйте до сотых.

Заполните пропуски

1. Вероятность того, что $\xi \in [2,5]$ равна

2. Вероятность того, что $\xi \in [4,5]$ равна

2. Вероятность того, что $\xi=2.7$ равна

4. Вероятность того, что $\xi \in [-4,4]$ равна

5. Вероятность того, что $\xi \in [5,8]$ равна

Примеры

Заметьте, что у нас пока ещё всё очень не строго. Мы не дали определение непрерывной случайной величины. Мы дали определение функции распределения, вот оно:

Определение. Функция распределения случайной величины ξ называется функция F_{ξ} , заданная так $F_{\xi}(c):=P(\xi\leq c)$.

Но в этом определении используется выражение $P(\xi \leq c)$, которое должно держаться на определении случайной величины. Поэтому на самом деле функция распределения у нас пока тоже определена не полностью. Мы ещё несколько шагов побудем в этом подвешенном состоянии. А пока давайте посмотрим на несколько примеров функций распределения.

Равномерное распределение на отрезке

Можно рассмотреть непрерывную случайную величину с такой функцией распределения:

В таком случае говорят, что случайная величина распределена равномерно на отрезке [0,3].

Давайте разберемся, почему нашему интуитивному представлению о равномерном распределении на отрезке [0,3] соответствует такая функция распределения. Условие равномерности можно сформулировать так. Случайная величина ξ распределена равномерно на отрезке [0,3], если для любого отрезка $[a,b]\subset [0,3]$ вероятность того, что случайная величина попадёт на этот отрезок зависит только от длины этого отрезка.

Убедимся в том, что для функции распределения на графике выше это будет так. Рассмотрим случайную величину ξ с функцией распределения как на графике, то есть:

$$F_{\xi}(x) = \left\{egin{array}{ll} 0, & ext{если } x < 0 \ rac{x}{3}, & ext{если } 0 \leqslant x \leqslant 3 \ 1, & ext{если } x > 3 \end{array}
ight.$$

Тогда, для любых $0 \leq a \leq b \ \leq 3$:

$$P(a \le \xi \le b) = P(a < \xi \le b) = F_{\xi}(b) - F_{\xi}(a) = \frac{b}{3} - \frac{a}{3} = \frac{1}{3}(b - a)$$

То есть действительно, вероятность зависит только от длины отрезка – только от (b-a). Если сдвинуть a и b на одну и ту же величину влево или вправо, то вероятность не изменится (при условии, что новый отрезок будет по-прежнему содержаться в [0,3]).

Комментарий. Возьмём вероятностное пространство из шага Витю и вечеринку, и в качестве случайной величины возьмём тождественную функцию. Тогда эта функция будет иметь равномерное распределение.

Пусть ξ равномерна распределена на отрезке [5,10].

Ответы округлите до десятых.

Заполните пропуски

1. Вероятность того, что $\xi \in [5,9] =$

2. Вероятность того, что $\xi \in [0,8] =$

 $3.\,F_{\xi}(3)=$

 $4. F_{\xi}(6) =$

 $5.\ F_{\xi}(14) =$

Экспоненциальное распределение

Рассмотрим случайную величину ξ с функцией распределения

$$F_{\xi}(x) = \left\{egin{array}{ll} 1-e^{-x}, & ext{ если } x>0 \ 0, & ext{ иначе} \end{array}
ight.$$

Такое распределение называют экспоненциальным распределением с показателем $\lambda=1$. Вот как выглядит график функции $F_{\mathcal{E}}$:

На следующем шаге мы найдём вероятности некоторых событий, связанных со случайной величиной ξ .

Связь с практикой

В общем случае экспоненциально распределение имеет такой вид:

$$F_{\xi}(x) = \left\{egin{array}{ll} 1 - e^{-\lambda x}, & ext{ если } x > 0 \ 0, & ext{ иначе} \end{array}
ight.,$$

где $\lambda \in \mathbb{R}$ это какая-то заранее выбранная константа.

Случайная величина с экспоненциальным распределением хорошо моделирует

- время до ближайшего письма в службу поддержки вашего приложения
- время до прихода следующего посетителя вашего сайта
- время до момента, когда конкретная радиоактивная частица распадётся

Примеры

Итак, случайная величина ξ имеет функцию распределения

$$F_{\xi}(x) = \left\{egin{array}{ll} 1-e^{-x}, & ext{ если } x>0 \ 0, & ext{ иначе} \end{array}
ight.$$

Пример 1

Найдём $P(1 < \xi \le 2)$.

$$P(1 < \xi \le 2) = P(\xi \le 2) - P(\xi \le 1) = F_{\xi}(2) - F_{\xi}(1) = (1 - e^{-2}) - (1 - e^{-1}) = 0.23254415793...$$

Поскольку $(-\infty,1] \cap (1,2] = \emptyset$, то события $(\xi\leqslant 1)$ и $(1<\xi\leqslant 2)$ несовместны. Следовательно, $P(\xi\leqslant 2)=P$ $(\xi\leqslant 1)$ или $1<\xi\leqslant 2)=P(\xi\leqslant 1)+P(1<\xi\leqslant 2)$. Таким образом, если вычесть $P(\xi\leqslant 1)$ из $P(\xi\leqslant 2)$, то получится как раз $P(1<\xi\leqslant 2)$.

Нестрого говоря, вероятность попасть на некоторый промежуток это разность значений функции распределения на концах этого промежутка. Эту вероятность можно увидеть на вертикальной оси: это в точности длина красного промежутка.

Пример 2

Найдём $P(\xi > 3)$.

 $P(\xi>3)=1-P(\xi\leqslant3)=1-F_{\xi}(3)=1-(1-e^{-3})=0.04978706836\ldots$ – тут мы пользуемся свойством вероятности дополнения.

Пример 3

$$\begin{array}{l} P(1<\xi\leqslant 2\,\,\mathrm{mm}\,\xi>3)=\,(P(\xi\leqslant 2)-P(\xi\leqslant 1))+(1-P(\xi\leqslant 3))\,=F_{\xi}(2)-F_{\xi}(1)+1-F_{\xi}(3)\,=(1-e^{-2})-(1-e^{-1})+1-(1-e^{-3})=0.2823312263\ldots. \end{array}$$

События $(1<\xi\leqslant 2)$ и $(\xi>3)$ несовместны, поэтому нужная нам вероятность — сумма вероятностей этих событий. То есть это суммарная длина двух красных промежутков на вертикальной оси.

Рассмотрим случайную величину ξ с экспоненциальным распределением, то есть

$$F_{\xi}(x) = \left\{egin{array}{ll} 1-e^{-x}, & ext{ если } x>0 \ 0, & ext{ иначе} \end{array}
ight.$$

Вот график функции F_{ξ} :

Ответы округлите с точностью до 3 знаков после запятой.

Заполните пропуски

$$1. P(2 < \xi < 3) =$$
 $2. P(4 < \xi) =$

$$3.\,P(\xi<0)=$$

$$4.\,P(0\leq\xi)=$$

$$5.\,P(\xi\leq 0)=$$