Devoir surveillé n°04 : corrigé

SOLUTION 1.

1. Tout d'abord,

$$\tan(\arctan a - \arctan b) = \frac{\tan(\arctan a) - \tan(\arctan b)}{1 + \tan(\arctan a)\tan(\arctan b)} = \frac{a - b}{1 + ab}$$

De plus a et b sont positifs donc $\arctan a$ et $\arctan b$ appartiennent à $\left[0, \frac{\pi}{2}\right[$. Ainsi $\arctan a - \arctan b$ appartient à $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right[$. On en déduit que

$$\arctan(a) - \arctan(b) = \arctan\left(\frac{a-b}{1+ab}\right)$$

2. C'est une simple application de la question précédente. Soit $k \in \mathbb{N}^*$

$$\arctan(k+1) - \arctan(k-1) = \arctan\left(\frac{(k+1) - (k-1)}{1 + (k+1)(k-1)}\right) = \arctan\left(\frac{2}{k^2}\right)$$

3. La question précédente permet de faire apparaître un télescopage.

$$u_n = \sum_{k=1}^n \arctan(k+1) - \arctan(k-1) = \arctan(n+1) + \arctan(n) - \arctan(1) - \arctan(0) = \arctan(n+1) + \arctan(n) - \frac{\pi}{4}$$

Puisque $\lim_{+\infty} \arctan = \frac{\pi}{2}$,

$$\lim_{n \to +\infty} u_n = \frac{3\pi}{4}$$

SOLUTION 2.

1. Soit θ un argument de a+ib (il en existe puisque $a+ib\neq 0$). Alors $\cos\theta=\frac{a}{|a+ib|}$ et $\sin\theta=\frac{b}{|a+ib|}$. Ainsi

$$\tan \theta = \frac{b}{a} = \tan(\arctan \frac{b}{a})$$

puis

$$\theta \equiv \arctan \frac{b}{a} [\pi]$$

2. Il s'agit d'un simple calcul. En utilisant la formule du binôme de Newton

$$(5+i)^4 = {4 \choose 0} 5^4 i^0 + {4 \choose 1} 5^3 i + {4 \choose 2} 5^2 i^2 + {4 \choose 3} 5 i^3 + {4 \choose 4} 5^0 i^4$$

$$= 5^4 + 4 \cdot 5^3 i - 6 \cdot 5^2 - 4 \cdot 5 i + 1$$

$$= 625 + 500 i - 150 - 20 i + 1$$

$$= 476 + 480 i$$

$$= 2 \cdot (1+i) \cdot (239+i)$$

3. Puisque $(5+i)^4 = 2 \cdot (1+i) \cdot (239+i)$,

$$\arg((5+i)^4) \equiv \arg(2 \cdot (1+i) \cdot (239+i))[2\pi]$$

ou encore

$$4 \arg(5+i) \equiv \arg(1+i) + \arg(239+i)[2\pi]$$

A fortiori

$$4 \arg(5+i) \equiv \arg(1+i) + \arg(239+i)[\pi]$$

D'après la première question,

$$arg(5+i) \equiv \arctan \frac{1}{5}[\pi]$$

donc

$$4\arg(5+i) \equiv 4\arctan\frac{1}{5}[4\pi]$$

et a fortiori

$$4\arg(5+i) \equiv 4\arctan\frac{1}{5}[\pi]$$

Toujours d'après la première question,

$$\arg(239+i) \equiv \arctan\frac{1}{239}[\pi]$$

Enfin

$$\arg(1+i) \equiv \frac{\pi}{4}[2\pi]$$

donc a fortiori

$$\arg(1+i) \equiv \frac{\pi}{4}[\pi]$$

Finalement

$$4\arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right) \equiv \frac{\pi}{4}[\pi]$$

4. Puisque $0 < \frac{1}{5} < \frac{\sqrt{3}}{3}$, $0 < \arctan \frac{1}{5} < \frac{\pi}{6}$ par stricte croissance de arctan. De même, $0 < \arctan \frac{1}{239} < \frac{\pi}{2}$. Ainsi

$$-\frac{\pi}{2} < 4\arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right) < 4 \cdot \frac{\pi}{6}$$

A fortiori

$$\frac{\pi}{4} - \pi < 4 \arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right) < \frac{\pi}{4} + \pi$$

5. Posons $x=4\arctan\left(\frac{1}{5}\right)-\arctan\left(\frac{1}{239}\right)$. D'après la question 3, il existe $k\in\mathbb{Z}$ tel que $x=\frac{\pi}{4}+k\pi$. Mais d'après la question 4, $\frac{\pi}{4}-\pi< x<\frac{\pi}{4}+\pi$ i.e. -1< k<1. Or k est entier donc k=0 puis $x=\frac{\pi}{4}$.

SOLUTION 3.

1. a.

$$2 \operatorname{sh} x + 1 = 0$$

$$\iff \frac{e^{x} - e^{-x}}{2} + 1 = 0$$

$$\iff e^{x} - e^{-x} + 1 = 0$$

$$\iff e^{2x} + e^{x} - 1 = 0$$

$$\iff (e^{x})^{2} + e^{x} - 1 = 0$$

Les solutions de l'équation $X^2 + X - 1 = 0$ sont $\frac{-1 - \sqrt{5}}{2}$ et $\frac{-1 + \sqrt{5}}{2}$. Puisque $\frac{-1 - \sqrt{5}}{2} \le 0$ et que l'exponentielle est strictement positive, l'unique solution de l'équation initiale est $\alpha = \ln(\sqrt{5} - 1)$.

b. En remarquant que sh $\alpha = -\frac{1}{2}$

$$f(\alpha) = \cosh^2 \alpha + \sinh \alpha = 1 + \sinh^2 \alpha + \sinh \alpha = 1 + \frac{1}{4} - \frac{1}{2} = \frac{3}{4}$$

c. Comme ch
 est dérivable sur \mathbb{R} , ch² l'est aussi. De plus, sh
 est dérivable sur \mathbb{R} donc $f = \text{ch}^2 + \text{sh}$ est dérivable sur \mathbb{R} .

Pour tout $x \in \mathbb{R}$,

$$f'(x) = 2 \operatorname{ch} x \operatorname{sh} x + \operatorname{ch} x = \operatorname{ch} x (2 \operatorname{sh} x + 1)$$

La fonction sh étant strictement croissante sur \mathbb{R} , on en déduit que

 $\blacktriangleright \forall x < \alpha, 2 \operatorname{sh} x + 1 < 0,$

 $\blacktriangleright \forall x > \alpha, 2 \operatorname{sh} x + 1 > 0.$

Bien évidemment che st strictement positive sur \mathbb{R} . D'où le tableau de variations de f:

Remarque. On obtient facilement la limite de f en $+\infty$ puisque $\lim_{+\infty} ch = \lim_{+\infty} sh = +\infty$. Pour déterminer la limite en $-\infty$, on peut remarquer que pour tout $x \in \mathbb{R}$

$$f(x) = \operatorname{ch}^2 x \left(1 + \frac{\operatorname{th} x}{\operatorname{ch} x} \right)$$

Puisque $\lim_{-\infty}$ th = 1 et $\lim_{-\infty}$ ch = $+\infty$, $\lim_{+\infty}$ 1 + $\frac{\text{th}}{\text{ch}}$ = 1 puis $\lim_{+\infty}$ f = $+\infty$.

d. Puisque f est décroissante sur $]-\infty,\alpha]$ et croissante sur $[\alpha+\infty[,f(x)\geqslant f(\alpha)]$ pour tout $x\in\mathbb{R}$.

Remarque. On n'utilise en aucun cas la continuité de f ni un quelconque théorème des valeurs intermédiaires. \blacksquare

Puisque $f(\alpha) = \frac{3}{4} > 0$, on a a fortiori f > 0 sur \mathbb{R} .

2. **a.** sh est dérivable sur $\mathbb R$ à valeurs dans $\mathbb R$ et exp est dérivable sur $\mathbb R$. Par conséquent $x\mapsto e^{\operatorname{sh} x}$ est dérivable sur $\mathbb R$. Puisque $x\mapsto x+1$ est évidemment dérivable sur $\mathbb R$, g l'est également. De plus, pour tout $x\in\mathbb R$,

$$g'(x) = e^{\sinh x} \cosh x - 1$$

b. Comme dans la question **2.a**, $x \mapsto e^{\sin x}$ est dérivable sur \mathbb{R} . ch est également dérivable sur \mathbb{R} donc g' l'est également.

De plus, pour tout $x \in \mathbb{R}$,

$$g''(x) = e^{\sinh x} \cosh^2 x + e^{\sinh x} \sinh x = e^{\sinh x} f(x)$$

- **c.** Puisque f > 0 sur \mathbb{R} , g'' > 0 sur \mathbb{R} . g' est donc strictement croissante sur \mathbb{R} . De plus, g'(0) = 0 donc g'(x) < 0 pour x < 0 et g'(x) > 0 pour x > 0. On en déduit que g est strictement décroissante sur \mathbb{R}_{-} et strictement croissante sur \mathbb{R}_{+} . Comme g(0) = 0, $g \ge 0$ sur \mathbb{R} .
- **d.** Soit $x \in [0,1[$. D'après la question **2.c**, $g(x) \ge 0$ et donc $e^{\sinh x} \ge 1 + x$. Mais on a également $g(-x) \ge 0$ i.e. $e^{-\sinh x} \ge 1 x$ puisque sh est impaire. Or 1 x > 0, donc on obtient en passant à l'inverse

$$\frac{1}{1-x} \geqslant \frac{1}{e^{-\operatorname{sh} x}} = e^{\operatorname{sh} x}$$

Les deux inégalités obtenues nous donnent l'encadrement

$$1 + x \le e^{\sinh x} \le \frac{1}{1 - x}$$

a. Pour tout $k \in [n, np]$,

$$0 \leqslant \frac{1}{k} \leqslant \frac{1}{n} \leqslant \frac{1}{2}$$

et a fortiori $\frac{1}{k} \in [0, 1[$. On peut donc utiliser la question **2.d** pour affirmer que pour tout $k \in [n, np]$

$$1 + \frac{1}{k} \le \exp\left(\operatorname{sh}\frac{1}{k}\right) \le \frac{1}{1 - \frac{1}{k}}$$

ou encore

$$\frac{k+1}{k} \le \exp\left(\sinh\frac{1}{k}\right) \le \frac{k}{k-1}$$

b. Puisque l'exponentielle d'une somme est le produit des exponentielles, pour tout $n \in \mathbb{N}^*$:

$$e^{S_n} = \prod_{k=n}^{np} \exp\left(\sinh\frac{1}{k}\right)$$

Soit $n \in \mathbb{N} \setminus \{0, 1\}$. D'après la question **2.b**, pour tout $k \in [n, np]$,

$$\frac{k+1}{k} \le e^{\operatorname{sh} \frac{1}{k}} \le \frac{k}{k-1}$$

On peut multiplier membre à membre ces inégalités puisque tous les membres sont positifs de sorte que

$$\prod_{k=n}^{np} \frac{k+1}{k} \le \prod_{k=n}^{np} \exp\left(\operatorname{sh} \frac{1}{k}\right) \le \prod_{k=n}^{np} \frac{k}{k-1}$$

Le membre central n'est autre que e^{S_n} et par télescopage, le membre de gauche est $\frac{np+1}{n}$ tandis que celui de droite est $\frac{np}{n-1}$. On en déduit bien que

$$\frac{np+1}{n} \le e^{S_n} \le \frac{np}{n-1}$$

c. Or $\lim_{n \to +\infty} \frac{np+1}{n} = \lim_{n \to +\infty} \frac{np}{n-1} = p$ donc, d'après le théorème des gendarmes, $\lim_{n \to +\infty} e^{S_n} = p$. Par continuité de ln, (S_n) converge vers $\ln(p)$.

SOLUTION 4.

- **1.** Puisque ch est paire, f est impaire.
- 2. L'application φ: x → th(x)-1/x est continue et strictement croissante sur R*, (différence d'une fonction strictement croissante et d'une fonction strictement décroissante). De plus, lim₀₊ φ = -∞ et lim_{+∞} φ = 1. D'après le corollaire du théorème des valeurs intermédiaires pour les fonctions strictement monotones, φ s'annule une unique fois sur R*, L'équation th x = 1/x admet donc une unique solution sur R*.
- **3.** Par définition, th $\alpha=1/\alpha$. Par ailleurs, $f(1/\alpha)=\frac{\operatorname{ch}\alpha}{\alpha}$. Mais

$$\frac{1}{\cosh^2 \alpha} = 1 - \tanh^2 \alpha = \frac{\alpha^2 - 1}{\alpha^2}$$

Comme ch α et α sont positifs,

$$ch \alpha = \frac{\alpha}{\sqrt{\alpha^2 - 1}}$$

Enfin

$$f\left(\frac{1}{\alpha}\right) = \frac{1}{\sqrt{\alpha^2 - 1}}$$

4. Tout d'abord, $\lim_{x\to+\infty} \cosh(1/x) = \cosh(0) = 1$ donc

$$\lim_{+\infty} f = +\infty$$

Ensuite, en posant $u = \frac{1}{x}$, $u \xrightarrow[x \to 0^+]{} + \infty$ et

$$f(x) = \frac{\operatorname{ch} u}{u} = \frac{1}{2} \left(\frac{e^{u}}{u} + \frac{e^{-u}}{u} \right)$$

Par croissances comparées, $\lim_{u\to+\infty}\frac{e^u}{u}=+\infty$ et par opérations, $\lim_{u\to+\infty}\frac{e^{-u}}{u}=0$. Finalement, $\lim_{u\to+\infty}\frac{\operatorname{ch} u}{u}=+\infty$ et donc

$$\lim_{\Omega \to 0} f = +\infty$$

5. f est clairement dérivable sur \mathbb{R}_{+}^{*} (essentiellement car ch l'est sur \mathbb{R}) et

$$\forall x \in \mathbb{R}_+^*, f'(x) = \operatorname{ch}\left(\frac{1}{x}\right) - \frac{1}{x}\operatorname{sh}\left(\frac{1}{x}\right) = -\frac{1}{x}\operatorname{ch}\left(\frac{1}{x}\right)\varphi\left(\frac{1}{x}\right)$$

Or on a vu que φ était strictement croissante sur \mathbb{R}_+^* et que $\varphi(\alpha) = 0$ donc $\varphi(1/x) > 0$ pour $x < 1/\alpha$ et $\varphi(1/x) < 0$ pour $x > 1/\alpha$. Comme ch est strictement positive sur \mathbb{R} , on en déduit le signe de f' sur \mathbb{R}_+^* et donc le tableau de variations suivant.

x	0	$1/\alpha$	+∞
Signe de f'		- 0 +	
Variations de f	+∞	$\frac{1}{\sqrt{\alpha^2-1}}$	+∞

6. Tout d'abord, pour tout $x \in \mathbb{R}^*$, $\frac{f(x)}{x} = \text{ch}(1/x)$ donc $\lim_{x \to +\infty} \frac{f(x)}{x} = 1$. Par ailleurs,

$$f(x) - x = x \left(\operatorname{ch} \left(\frac{1}{x} \right) - 1 \right)$$

Or, comme ch est dérivable en 0,

$$\lim_{u \to 0} \frac{\operatorname{ch} u - 1}{u} = \operatorname{ch}'(0) = \operatorname{sh}(0) = 0$$

puis, en posant u = 1/x,

$$\lim_{x \to +\infty} x \left(\operatorname{ch}\left(\frac{1}{x}\right) - 1 \right) = 0$$

Ainsi $\lim_{x\to+\infty} f(x) - x = 0$ de sorte que la courbe de f admet une asymptote oblique d'équation y = x.

7. On rappelle que pour tout $x \in \mathbb{R}^*$,

$$f(x) - x = x \left(\operatorname{ch}\left(\frac{1}{x}\right) - 1 \right)$$

Or chu > 1 pour tout $u \in \mathbb{R}_+^*$ donc f(x) - x > 0 pour tout $x \in \mathbb{R}_+^*$. La courbe de f est donc au-dessus de la droite d'équation y = x sur \mathbb{R}_+^* .

8. On utilise le fait que f est impaire : sa courbe est donc symétrique par rapport à l'origine.

