اصول پردازش تصویر Principles of Image Processing

مصطفی کمالی تبریزی ۵ مهر ۱۳۹۹ جلسه سوم

Visual Perception

Perception of Intensity

Perception of Intensity

a b c

FIGURE 2.8 Examples of simultaneous contrast. All the inner squares have the same intensity, but they appear progressively darker as the background becomes lighter.

Aliasing in Video

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

FIGURE 2.9 Some well-known optical illusions.

FIGURE 2.10 The electromagnetic spectrum. The visible spectrum is shown zoomed to facilitate explanation, but note that the visible spectrum is a rather narrow portion of the EM spectrum.

References

Gonzalez, 4th Edition
 Chapter 1 and Chapter 2

SzeliskiChapter 1 and Chapter 2

Color Image

R

G

Color Image Red (R)

Green (G) Blue (B)

Color Images

عکس محمد عالم خان، امیر بخارا، سال ۱۲۸۱ شمسی

Images in Python

```
im = cv2.imread(filename)  # read image
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) # order channels as RGB
im = im / 255  # values range from 0 to 1
```

- RGB image im is a H x W x 3 matrix (numpy.ndarray)
- im[0,0,0] = top-left pixel value in R-channel
- im [x, y, c] = x+1 pixels down, y+1 pixels to right in the c^{th} channel
- im[H-1, W-1, 2] = bottom-right pixel in B-channel

	column ———										\rightarrow	_				
row	0.92	0.93	0.94	0.97	0.62	0.37	0.85	0.97	0.93	0.92	0.99	R				
	0.95	0.89	0.82	0.89	0.56	0.31	0.75	0.92	0.81	0.95	0.91	Î		_		
	0.89	0.72	0.51	0.55	0.51	0.42	0.57	0.41	0.49	0.91	0.92	0.92	0.99	G		
	0.96	0.95	0.88	0.94	0.56	0.46	0.91	0.87	0.90	0.97	0.95	0.95	0.99			_
	0.71	0.81	0.81	0.87	0.57	0.37	0.80	0.88	0.89	0.79	0.85		0.91			В
	0.49	0.62	0.60	0.58	0.50	0.60	0.58	0.50	0.61	0.45	0.33	0.91	0.95	0.92	0.99	
	0.86	0.84	0.74	0.58	0.51	0.39	0.73	0.92	0.91	0.49	0.74	0.79	0.85	0.95	0.91	
	0.96	0.67	0.54	0.85	0.48	0.37	0.88	0.90	0.94	0.82	0.93	0.45	0.33	0.91	0.92	
	0.69	0.49	0.56	0.66	0.43	0.42	0.77	0.73	0.71	0.90	0.99	0.49	0.74	0.97	0.95	
	0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.43	0.93	0.79	0.85	
	0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	0.90	0.99	0.45	0.33	
			0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.49	0.74	
			0.73	0.73	0.89	0.49	0.33	0.78	0.03	0.73	0.73	0.99	0.93	0.82	0.93	
			0.91	0.34	0.83	0.43	0.41	0.78	0.78	0.77	0.83	0.33	0.93	0.90	0.99	
					0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	
					0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	

Cameras with Three Sensors

[Edmund Optics; Adam Wilt]

Cheaper / More Compact Color Sensing: Bayer Filter

 Estimate RGB at 'G' cells from neighboring values

Slide: Steve Seitz

© 2000 How Stuff Works

Color Spaces: RGB

Default color space

- Easy for devices
- But not perceptual
- Where do the grays live?
- Where is hue and saturation?

G (R=0,B=0)

B (R=0,G=0)

The Psychophysical Correspondence

Photons

Wavelength

The Psychophysical Correspondence

Variance Saturation

Photons

Wavelength

The Psychophysical Correspondence

Area Brightness

Photons

Wavelength

Color spaces: HSV

Intuitive color space

S (H=1,V=1)

V (H=1,S=0)

Color spaces: L*a*b*

"Perceptually uniform"* color space

(a=0,b=0)

a (L=65,b=0)

b (L=65,a=0)

References

 Color Image Processing Gonzalez, chapter 7
 Szeliski, section 2.3.2 (and 2.2)