Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (государственный университет)»

Физтех-школа прикладной математики и информатики Основная образовательная программа Прикладная математика и информатика

# ПРОЕКТ ПО КУРСУ МЕТОДЫ ОПТИМИЗАЦИИ

"Алгоритм Франко-Вульфа"

Выполнил студент группы M05-313a, 1 курса магистратуры, Печёнкин Александр Алексеевич

Консультант: Федор Стонякин

# Содержание

| 1 | Введение                                            |                                  |    |  |
|---|-----------------------------------------------------|----------------------------------|----|--|
| 2 | Основные определения, обозначения и вспомогательные |                                  |    |  |
|   | утв                                                 | ерждения                         | 4  |  |
| 3 | Описание схемы работы алгоритма                     |                                  |    |  |
|   | 3.1                                                 | Схема методов первого порядка    | 5  |  |
|   | 3.2                                                 | Описание метода Франка-Вульфа    | 6  |  |
| 4 | Выбор размера шага                                  |                                  |    |  |
|   | 4.1                                                 | Уменьшающийся шаг                | 7  |  |
|   | 4.2                                                 | Точный линейный поиск            | 7  |  |
|   | 4.3                                                 | Метод Армихо                     | 7  |  |
|   | 4.4                                                 | Шаг с константой Липшица         | 8  |  |
| 5 | Сходимость метода                                   |                                  |    |  |
| 6 | Примеры задач                                       |                                  |    |  |
|   | 6.1                                                 | LASSO Problem                    | 12 |  |
|   | 6.2                                                 | Поиск максимальной клики в графе | 13 |  |
| 7 | Практическая часть                                  |                                  |    |  |
| 8 | Сп                                                  | исок Литературы                  | 16 |  |

## 1 Введение

Метод Франка-Вульфа решения оптимизационных задач был разработан уже более 65 лет назад в статье [1] Американскими математиками Маргаритой Франк и Филипом Вульфом. Однако именно за последнее десятилетие к нему появился большой интерес в связи с появлением потребности в быстрых и надежных методах оптимизации первого порядка.

Основная идея метода достаточно проста: построить последовательность вычислительных итераций, двигаясь на каждом шаге в направлении минизации линеаризированной цели.

После появления данного метода вышла серия статей о приложениях данного метода в теории оптимального управления. Также, появилось обощение данного метода для сглаживания оптимизации надо замкнутыми подмножествами банаховых пространств, где линейный оракул минимизации допустим.

В дальнейшем было доказано, что асимптотика сходимости  $O(\frac{1}{k})$  является оптимальной, когда решение лежит на границе допустимого множества. В следствие этого, появились попытки улучшить показатели при более строгих условиях. В статьях [2] и [3] была доказана линейная скорость сходимости в случае сильно выпуклых областей, предполагающих нижнюю границу градиентной нормы. В дальнейшем, результат был расширен при более общих градиентых неравенствах, а в итоге результат получилось перенести для сильно выпуклых задач с минимумом, полученным во внутренней части допустимого множества.

В последние 5 лет метод Франка-Вульфа вновь обрел огромную популяронсть благодаря своей способности достаточно эффективно спрвляться с ограничениями, возникающими в приложениях машинного обучения и Data Science. Важной особенностью данного алгоритма является тот факт, что линейная минизация, требуемая в алгоритме, обходится дешевле, чем поиск проекций, требуемый во многих методах. В текущих реалиях важно заметить, что если даже две операции имеют одинаковую сложность, константы, определяющие соответствующие границы, могут существенно отличаться. Следовательно, при решении крупномасштабных задач метод Франка-Вульфа имеет гораздо меньшие затраты на итерацию по сравнению с методами прогнозируемого градиента. Это также верно и для затрат по памяти.

# 2 Основные определения, обозначения и вспомогательные утверждения

Определение 1. Пусть  $f,g:\mathbb{N}\to\mathbb{N}.$  f=O(g) если  $\exists\,C>0$  такая что  $\forall n\in\mathbb{N}$  выполняется неравество  $f(n)\leq C\cdot g(n).$ 

**Определение 2.** Градиентом дифференцируемой функции  $f: \mathbb{R}^n \to \mathbb{R}$  называется вектор частных производных функции f. Обозначение  $\nabla f$ .

**Определение 3.** Дифференцируемая функция f удовлетворяет условию Липшица c константой L>0 на множестве  $S\subset \mathbb{R}^n$  если  $\forall \mathbf{x},\mathbf{y}\in S$  выполняется неравенство:

$$||\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})|| \le L||\mathbf{x} - \mathbf{y}||$$

**Утверждение 1.** (Лемма о спуске). Пусть f – дифференцируемая функция, удовлетворяющая условию Липшица с константой L > 0 на множестве S. Тогда  $\forall x, y \in S$  выполняется следующее неравенство:

$$f(\mathbf{x}) \le f(\mathbf{y}) + \langle \mathbf{x} - \mathbf{y}, \nabla f(\mathbf{y}) \rangle + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||_2^2$$

## 3 Описание схемы работы алгоритма

На протяжении всей работы рассматривается следующая задача:

**Задача.** Пусть  $S \subset \mathbb{R}^n$  – компакт и выпуклое подмножество, f – дифференцируемая функция, удовлетворяющая условию Липшица c некоторой константой L. Необходимо вычислить следующую величину:

$$\min_{\mathbf{x} \in S} f(\mathbf{x})$$

Решение этой задачи будем обозначать через  $\mathbf{x}^*$ , а также через  $f^*$  будем обозначать  $f(\mathbf{x}^*)$ .

#### 3.1 Схема методов первого порядка

Общая схема методов первого порядка, которые мы рассматриваем для решения sadaчu 1, основана на наборе  $F(\mathbf{x}, g)$ . Он вычисляется как некоторый набор направлений из точки  $\mathbf{x}$  по локальной информации первого порядка g вокруг  $\mathbf{x}$ . В случае когда f является дифференцируемой,  $g = \nabla f$ . Из данного набора мы выбираем некоторый  $\mathbf{d}$  с некоторым коэффициентом не больше  $a_{max}$ . При этом, этот  $a_{max}$  может зависеть от информации, которая является доступной для этого метода. В каждом методе есть информации о номере итерации, поэтому можно писать  $a_{max}^k$ .

Общая схема по итогу выглядит следующим образом:

#### Algorithm 1 Общая схема методов первого порядка

- 1: Initialization Выбираем  $\mathbf{x}_0 \in S$
- 2: **for** k = 0, ... **do**
- $\mathbf{x}_k$  удовлетворяет некоторому условию, остановить цикл.
- 4: Выбрать  $\mathbf{d}_k \in F(\mathbf{x}_k, \nabla f(\mathbf{x}_k))$
- 5:  $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$ , где  $\alpha_k \in (0, \alpha_{max}^k)$
- 6: end for

#### 3.2 Описание метода Франка-Вульфа

Теперь перейдем непосредственно к методу Франка-Вульфа. Напишем общую схему алгоритма, идею которой опишем после:

#### Algorithm 2 Метод Франка-Вульфа

- 1: **Initialization** Выбираем  $\mathbf{x}_0 \in S$
- 2: **for** k = 0, ...**do**
- $\mathbf{x}_k$  удовлетворяет некоторому условию, остановить цикл.
- 4: Посчитать  $\mathbf{s}_k \in LMO_S(\nabla f(\mathbf{x}_k))$
- 5:  $\mathbf{d}_k := \mathbf{s}_k \mathbf{x}_k$
- 6:  $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \cdot \mathbf{d}_k, \ \alpha_k \in (0,1].$
- 7: end for

Как видим, алгоритм генерирует последовательность точек  $\mathbf{x}_k$  на предположении о том, что f является дифференцируемой. На k-ой итерации мы двигаемся в направление, минимизирующее скалярное произведение с текущим градиентом  $\nabla f(\mathbf{x}_k)$ . Следовательно, возникает необходимость в использовании оракула  $LMO_S(\nabla f(\mathbf{x}_k))$ , минимизирующего линейную функцию для множества S в следующем виде:

$$LMO_S(\nabla f(\mathbf{x}_k)) \in \underset{\mathbf{y} \in S}{\operatorname{arg \, min}} \langle \nabla f(\mathbf{x}_k), y \rangle$$

Далее, определяем направление спуска как

$$\mathbf{d}_k := \mathbf{s}_k - \mathbf{x}_k, \ \mathbf{s}_k \in LMO_S(\nabla f(\mathbf{x}_k)) \tag{1}$$

Затем идет вычисление новой точки последовательности стандартным образом (строка 6). Заметим, что данный шаг согласно (1)можно переписать как

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k(\mathbf{s}_k - \mathbf{x}_k) = (1 - \alpha_k)\mathbf{x}_k + \alpha_k\mathbf{s}_k$$

## 4 Выбор размера шага

В данной секции приведем алгоритмы для определения размера шага на k-ой итерации.

#### 4.1 Уменьшающийся шаг

Задается следующим образом:

$$\alpha_k = \frac{2}{k+2}$$

Данный шаг используется в классической реализации алгоритма Франка-Вульфа.

#### 4.2 Точный линейный поиск

Задается следующим образом:

$$\alpha_k = \min_{\alpha \in (0, \alpha_{max}^k)} \varphi(\alpha), \quad \varphi(\alpha) := f(\mathbf{x}_k + \alpha \mathbf{d}_k)$$

Отметим, что мы выбираем наименьшую точку минимума для функции  $\varphi(\alpha)$  для того, чтобы алгоритм остался детерминированным даже в случае нескольких минимумов.

#### 4.3 Метод Армихо

Данный метод итеративно уменьшает размер шага, чтобы гарантировать достаточное уменьшение целевой функции. Это хороший способ заменить точный поиск по строке в случаях, когда он становится слишком дорогостоящим.

На практике мы фиксируем параметры  $\delta \in (0,1)$  и  $\gamma \in (0,1)$  и

пробуем шаги  $\alpha := \delta^m \alpha_{max}^k$ , где m пробегает множество натуральных чисел по возрастанию, пока выполняется неравенство

$$f(\mathbf{x}_k + \alpha \mathbf{d}_k) \le f(\mathbf{x}_k) + \gamma \alpha \nabla f(\mathbf{x}_k)^T \mathbf{d}_k$$

#### 4.4 Шаг с константой Липшица

Задается следующим образом:

$$\alpha_k = \alpha_k(L) := \min \left\{ -\frac{\nabla f(\mathbf{x}_k)^T \mathbf{d}_k}{L \cdot ||\mathbf{d}_k||^2}, \alpha_{max}^k \right\}$$

Отметим, что размер шага с Липшицевой константой может рассматриваться как минимум для квадратичной модели следующего вида:

$$m_k(\alpha, L) = f(x_k) + \alpha \nabla f(\mathbf{x}_k)^T \mathbf{d}_k + \frac{L\alpha^2}{2} ||\mathbf{d}_k||^2$$

## 5 Сходимость метода

В данной секции мы посмотрим на скорость сходимости метода Франка-Вульфа при различных свойствах функции f и различных подходах выбора шага.

Основным параметром, который используется при измерении сходимости метода Франка-Вульфа является

$$G(\mathbf{x}) = \max_{s \in S} -\nabla f(\mathbf{x})^{T} (\mathbf{s} - \mathbf{x})$$

Данная величина всегда является положительной и равна нулю тогда и только тогда, когда  $\mathbf{x}$  является cmauuonaphoù точкой. Заметим, что данная величина уже по определению доступна в алгоритме.

Также отметим, что если f является дифференцируемой функцией,

TO

$$G(\mathbf{x}) \ge -\nabla f(\mathbf{x})(\mathbf{x}^* - \mathbf{x}) \ge f(\mathbf{x}) - f^*$$

Таким образом, получается что  $G(\mathbf{x})$  является оценкой сверху на зазор между искомым минимумом функции и значением в точке  $\mathbf{x}$ .

**Теорема 1.** Если f является невыпуклой, то асимптотика сходимости  $G(\mathbf{x})$  составляет  $O\left(\frac{1}{\sqrt{k}}\right)$ .

Доказательство можно посмотреть в [4].

В случае когда f является выпуклой функцией, то достигается скорость сходимости  $O\left(\frac{1}{k}\right)$  при всех вышеописанных размерах шага. Мы же рассмотрим доказательство для случая, когда шаг зависит от константы Липшица.

Перед тем, как доказывать теорему, докажем вспомогательную лемму:

**Лемма 1.** Пусть  $f: \mathbb{R}^n \to \mathbb{R}$  является выпуклой. Последовательности  $\mathbf{d}_k$  и  $\mathbf{x}_k$  генерируется по алгоритму Франка-Вульфа с шагом, описанным в методе 4. Также,  $\alpha_k = 1 \ \forall k$ . Тогда, верно следующее неравенство:

$$f(\mathbf{x}_{k+1}) - f^* \le \frac{1}{2} \min \{ f(\mathbf{x}_k) - f^*, L||\mathbf{d}_k||^2 \}$$

Доказательство. Заметим, что

$$G(\mathbf{x}_k) = -\nabla f(\mathbf{x}_k)^T \mathbf{d}_k \ge L||\mathbf{d}_k||^2$$
(2)

Последнее неравенство в строке выше следует из того, что  $\alpha_k=1$  и определения липшицевого шага. Далее, используя *лемму о спуске*,

имеем

$$f(\mathbf{x}_{k+1}) - f^* = f(\mathbf{x}_k + \mathbf{d}_k) - f^* \le f(\mathbf{x}_k) - f^* + \nabla f(\mathbf{x}_k)^T \mathbf{d}_k + \frac{L}{2} ||\mathbf{d}_k||^2$$
 (3)

Теперь, используя определение  $\mathbf{d}_k$  и выпуклость f, получаем

$$f(\mathbf{x}_k) - f^* + \nabla f(\mathbf{x}_k)^T \mathbf{d}_k \le f(\mathbf{x}_k) - f^* + \nabla f(\mathbf{x}_k)^T (\mathbf{x}^* - \mathbf{x}_k) \le 0$$
 (4)

Из (3)и (4)следует, что  $f(\mathbf{x}_{k+1}) - f^* \leq \frac{L}{2} ||\mathbf{d}_k||^2$  и для левой части минимума доказательство завершено.

Для правой части минимума заметим, что

$$f(\mathbf{x}_k) - f^* + \nabla f(\mathbf{x}_k)^T \mathbf{d}_k + \frac{L}{2} ||\mathbf{d}_k||^2 \le f(\mathbf{x}_k) - f^* - \frac{1}{2} G(\mathbf{x}_k) \le \frac{f(\mathbf{x}_k) - f^*}{2}$$

В первом переходе было использовано неравенство (2), во втором – неравенство  $G(\mathbf{x}_k) \geq f(\mathbf{x}_k) - f^*$ .

**Лемма 2.** Пусть  $f: \mathbb{R}^n \to \mathbb{R}$  является выпуклой. Последовательности  $\mathbf{d}_k$  и  $\mathbf{x}_k$  генерируется по алгоритму Франка-Вульфа с шагом, описанным в методе 4. Также,  $\alpha_k < 1 := a_{max}^k \ \forall k$ . Тогда, для любого  $k \in \mathbb{N}$  верно следующее неравенство:

$$f(\mathbf{x}_{k+1}) \le f(\mathbf{x}_k) - \frac{1}{2L} (\nabla f(\mathbf{x}_k)^T \hat{\mathbf{d}}_k)^2$$

Доказательство. Согласно лемме о спуске, имеем

$$f(\mathbf{x}_k + \alpha_k \mathbf{d}_k) \le f(\mathbf{x}_k) + \alpha_k \nabla f(\mathbf{x}_k)^T \mathbf{d}_k + \frac{L\alpha_k^2}{2} ||\mathbf{d}_k||^2$$

Так как  $\alpha_k < 1 = \alpha_{max}^k$ , то  $\alpha_k = -\frac{\nabla f(\mathbf{x}_k)^T \mathbf{d}_k}{L||\mathbf{d}_k||^2}$ . Подставляя данное значе-

ние, получаем

$$f(\mathbf{x}_k + \alpha_k \mathbf{d}_k) \le f(\mathbf{x}_k) - \frac{(\nabla f(\mathbf{x}_k)^T \mathbf{d}_k)^2}{2L||\mathbf{d}_k||^2} = f(\mathbf{x}_k) - \frac{1}{2L}(\nabla f(\mathbf{x}_k)^T \hat{\mathbf{d}}_k)^2$$

Теперь перейдем к доказательству теоремы:

**Теорема 2.** Пусть  $f: \mathbb{R}^n \to R$  является выпуклой. Последовательность  $x_k$  генерируется по алгоритму Франка-Вульфа с шагом, описанным в методе 4. Также, пусть D – диаметр множества S. Тогда, для любого  $k \in \mathbb{N}$   $\{0\}$  выполняется следующее неравенство:

$$f(\mathbf{x}_k) - f^* \le \frac{2LD^2}{k+2}$$

Доказательство. Если  $\alpha_0 = 1$ , то по лемме 1 имеем

$$f(x_1) - f^* \le \frac{L||\mathbf{d}_0||^2}{2} \le \frac{LD^2}{2}$$

Если же  $\alpha_0 < 1$ , то

$$f(\mathbf{x}_0) - f^* \le G(\mathbf{x}_0) < L||\mathbf{d}_0||^2 \le LD^2$$

Как видим, неравенство из условия теоремы в обоих случаях выполняется, это и можно считать за базу индукции.

Перейдем к шагу индукции. Если  $\alpha_k = 1$ , то из неравенства  $f(\mathbf{x}_{k+1}) - f^* \leq \frac{1}{2}(f(\mathbf{x}_k) - f^*)$  очевидно, что условие теоремы будет выполняться.

Если же  $\alpha_k < 1$ , то согласно лемме 2 имеем

$$f(\mathbf{x}_{k+1}) - f^* \le f(\mathbf{x}_k) - f^* - \frac{1}{2L} (\nabla f(\mathbf{x}_k)^T \hat{\mathbf{d}}_k)^2 \le$$

$$\le f(\mathbf{x}_k) - f^* - \frac{(\nabla f(\mathbf{x}_k)^T \mathbf{d}_k)^2}{2LD^2} \le f(\mathbf{x}_k) - f^* - \frac{(f(\mathbf{x}_k) - f^*)^2}{2LD^2} =$$

$$= (f(\mathbf{x}_k) - f^*) \left(1 - \frac{f(\mathbf{x}_k) - f^*}{2LD^2}\right) \le \frac{2LD^2}{k+3} \quad (1)$$

Во третьем неравенстве был использован факт, что  $\nabla f(\mathbf{x}_k)^T \mathbf{d}_k = G(\mathbf{x}_k) \leq f(\mathbf{x}_k) - f^*$ . В последнем – предположение индукции.

Далее можно рассмотреть скорость сходимости метода и в более строгих ограничениях, однако это сделать уже заметно труднее. Поэтому, в завершение просто предоставим таблицу с известными результатами:

| Класс Функций   | Mножество $S$   | Доп. Предположения                  | Сходимость                         |
|-----------------|-----------------|-------------------------------------|------------------------------------|
| невыпуклые      | произвольное    | -                                   | $O\left(\frac{1}{\sqrt{k}}\right)$ |
| выпуклые        | произвольное    | -                                   | $O\left(\frac{1}{k}\right)$        |
| сильно выпуклые | строго выпуклое | -                                   | $O\left(\frac{1}{k^2}\right)$      |
| сильно выпуклые | произвольное    | $\mathbf{x}^* \in int(S)$           | линейная                           |
| сильно выпуклые | строго выпуклое | $\min   \nabla f(\mathbf{x})   > 0$ | линейная                           |

## 6 Примеры задач

Приведем два примера задач, в которых использование метода Франка-Вульфа достаточно эффективно.

#### 6.1 LASSO Problem

Изначальная постановка задачи выглядит так: нужно было построить хороший инструмент для разреженной линейной регрессии. То есть, дан тестовый набор

$$T = \{(a_i, b_i) \in \mathbb{R}^n \times \mathbb{R}\}\$$

Основная цель – построить разреженную линейную модель, которая будет хорошо описывать данные. Под разреженной моделью понимается модель с небольшим количеством ненулевых параметров.

Данная задача напрямую связана с задачей BPD в анализе сигналов. Постановка задачи в BPD немного другая, однако обе они сводятся к следующей оптимизационной задаче:

$$\min_{\mathbf{x} \in \mathbb{R}^n} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2 \quad s.t. \ ||\mathbf{x}||_1 \le \tau$$

Заметим, что область определения в данном случае можно описать как

$$C = \{ \mathbf{x} \in \mathbb{R}^n : ||\mathbf{x}||_1 \le \tau \} = conv\{ \pm \tau \mathbf{e}_i, i \in \{1, ..., n\} \}$$

Также отметим, что для данной задачи оракул  $LMO_S(\nabla f(\mathbf{x_k}))$  выглядит как  $sign(-\nabla_{i_k}f(\mathbf{x}_k))\cdot \tau \mathbf{e}_i$ , где  $i_k=\arg\max_i |\nabla_i f(\mathbf{x}_k)|$ . Таким образом, получается время работы одной итерации составляет O(n).

Остается заметить, что функция f в данном случае является сильно выпуклой, а также S является сильно выпуклым. Это наводит нас на тот факт, что скорость сходимости может быть линейной. И действительно, согласно, например, [5], метод Франка-Вульфа для данной задачи имеет линейную скорость сходимости при некоторых видах шага.

### 6.2 Поиск максимальной клики в графе

Пусть G=(V,E) – неориентированный граф, V – множество вершин,  $E\subset V\times V$  – набор ребер. Кликой в графе G называется  $C\subset V$ , такое что  $\forall\,i,j\in C,\,i\neq j$  верно что  $(i,j)\in E.$ 

Основная задача — найти такую клику C для заданного G, чтобы |C| было максимальным. Данная задача имеет широкое применение в различных отраслях, таких как телекоммуникационные связи, биоинформатика и другие.

Поставленная задача может быть сведена к оптимизационной задаче следующего вида:

$$\max \left\{ \mathbf{x}^T A_G \mathbf{x} + \frac{1}{2} |\mathbf{x}|_2^2, \, \mathbf{x} \in \delta_{n-1} \right\}$$

Здесь  $A_G$  — это матрица смежности графа G. Данная постановка задачи позволяет эффективно использовать алгоритм Франка-Вульфа, см. [6].

## 7 Практическая часть

В данном разделе мы реализуем метод Франка-Вульфа для задачи LASSO. Рассмотрим два метода выбора шага — стандартный и липшицевый. Эксперимент проводить будем следующим образом:

Из библиотеки sklearn мы берем пакет datasets и генерируем синтетическую матрицу  $\bf A$  размером  $10^4 \times 10^4$ , а также вектор  $\bf b$ .

Далее мы производим расчеты по методу Франка-Вульфа с заданным шагом, параллельно записывая промежуточные значения величины  $G(x) = -\nabla f(\mathbf{x_k})(\mathbf{s} - \mathbf{x_k})$ , чтобы оценивать скорость сходимости метода. Затем мы все выведем на график с помощью библиотеки matplotlib. График показывает отношение количества пройденных итераций к зазору G(x) в логарифмической шкале.

Весь код можно посмотреть по ссылке https://github.com/Piachonkin-Alex/Stats-ML/tree/main/opts-masters. По итогу, у нас получается такой график:



Как можно заметить, сходимость при липшицевом шаге — линейная, а при стандартном шаге — сублинейная. Следовательно, в данной задаче липшицевый шаг значительно лучше.

## 7 Источники

- 1. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Research Logistics Quarterly 3(1-2), 95–110 (1956)
- 2. Levitin, E.S., Polyak, B.T.: Constrained minimization methods. USSR Computational Mathematics and Mathematical Physics 6(5), 1–50 (1966)
- 3. Demyanov, V.F., Rubinov, A.M.: Approximate methods in optimization problems. American Elsevier (1970)
- 4. Lacoste-Julien, S.: Convergence rate of Frank-Wolfe for non-convex objectives. arXiv preprint arXiv:1607.00345 (2016)
- 5. Jaggi, M.: Sparse convex optimization methods for machine learning. Ph.D. thesis, ETH Zurich (2011)
- 6. Hungerford, J.T., Rinaldi, F.: A general regularized continuous formulation for the maximum clique problem. Mathematics of Operations Research 44(4), 1161–1173 (2019)
- 7. https://github.com/paulmelki/Frank-Wolfe-Algorithm-Python