集中不等式总结

邓文平

2025年2月22日

1 基础不等式

定理 1 (马尔可夫不等式). 设 X 为非负随机变量,则对任意 t > 0:

$$\mathbb{P}(X \ge t) \le \frac{\mathbb{E}[X]}{t}.$$

证明. 通过期望的定义:

$$\mathbb{E}[X] = \int_0^\infty x d\mathbb{P}_X(x) \ge \int_t^\infty x d\mathbb{P}_X(x) \ge t \int_t^\infty d\mathbb{P}_X(x) = t \mathbb{P}(X \ge t).$$

两边除以 t 即得结论。

定理 2 (切比雪夫不等式). 设 X 为随机变量,均值为 μ ,方差为 σ^2 ,则:

$$\mathbb{P}(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2}.$$

证明. 对随机变量 $Y = (X - \mu)^2$ 应用马尔可夫不等式:

$$\mathbb{P}(|X - \mu| \ge t) = \mathbb{P}(Y \ge t^2) \le \frac{\mathbb{E}[Y]}{t^2} = \frac{\operatorname{Var}(X)}{t^2}.$$

定理 3 (切尔诺夫界). 设 $X = \sum_{i=1}^{n} X_i$, 其中 X_i 独立。对任意 t > 0:

$$\mathbb{P}(X \ge t) \le \inf_{\lambda > 0} e^{-\lambda t} \mathbb{E}\left[e^{\lambda X}\right].$$

证明. 对任意 $\lambda > 0$,应用马尔可夫不等式于 $e^{\lambda X}$:

$$\mathbb{P}(X \ge t) = \mathbb{P}(e^{\lambda X} \ge e^{\lambda t}) \le e^{-\lambda t} \mathbb{E}[e^{\lambda X}].$$

取右端关于 λ 的下确界即得结果。

2 高斯分布的尾部概率估计

定理 4 (高斯尾部概率估计). 设 $X \sim \mathcal{N}(0, \sigma^2)$ 为标准高斯随机变量,则对任意 t > 0,其尾部概率满足:

$$\mathbb{P}(X \ge t) \le \frac{1}{2}e^{-t^2/(2\sigma^2)}.$$

更精确的双侧估计为:

$$\mathbb{P}(|X| \ge t) \le \sqrt{\frac{2}{\pi}} \frac{\sigma}{t} e^{-t^2/(2\sigma^2)} \quad (t > \sigma).$$

证明. (单侧估计) 对 $X \sim \mathcal{N}(0, \sigma^2)$, 计算尾部概率:

$$\mathbb{P}(X \ge t) = \int_{t}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-x^2/(2\sigma^2)} dx.$$

作变量替换 $y = x/\sigma$, 得:

$$= \int_{t/\sigma}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy.$$

利用不等式 $\int_{u}^{\infty} e^{-y^{2}/2} dy \leq \frac{1}{u} e^{-u^{2}/2}$ (当 u > 0),取 $u = t/\sigma$ 即得:

$$\mathbb{P}(X \ge t) \le \frac{\sigma}{t\sqrt{2\pi}} e^{-t^2/(2\sigma^2)} \le \frac{1}{2} e^{-t^2/(2\sigma^2)}.$$

(精确双侧估计) 通过分部积分可得递推式:

$$\int_{t}^{\infty} e^{-y^{2}/2} dy = \frac{e^{-t^{2}/2}}{t} - \int_{t}^{\infty} \frac{e^{-y^{2}/2}}{y^{2}} dy \le \frac{e^{-t^{2}/2}}{t}.$$

结合对称性 $\mathbb{P}(|X| \ge t) = 2\mathbb{P}(X \ge t)$ 即得结果。

3 次高斯分布与次指数分布

定义 5 (次高斯分布). 随机变量 X 称为参数为 σ 的次高斯分布 (记作 $X \sim \text{Subg}(\sigma^2)$), 如果满足:

$$\mathbb{E}\left[e^{\lambda(X-\mathbb{E}X)}\right] \le e^{\frac{\lambda^2\sigma^2}{2}}, \quad \forall \lambda \in \mathbb{R}.$$

尾概率证明. 对任意 t > 0, 取 $\lambda = t/\sigma^2$, 应用切尔诺夫界:

$$\mathbb{P}(X - \mathbb{E}X \ge t) \le e^{-\lambda t} e^{\lambda^2 \sigma^2/2} = e^{-t^2/(2\sigma^2)}.$$

结合 -X 的情况即得双侧界。

4 霍夫丁不等式

定理 6 (霍夫丁不等式). 设 X_1, \ldots, X_n 为独立随机变量,满足 $X_i \in [a_i, b_i]$ 几乎必然成立。令 $S_n = \sum_{i=1}^n (X_i - \mathbb{E}X_i)$,则对任意 t > 0:

$$\mathbb{P}(S_n \ge t) \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right).$$

证明. 关键步骤: 1. 对每个 $X_i - \mathbb{E}X_i$ 建立次高斯性, 其参数 $\sigma_i = (b_i - a_i)/2$ 2. 利用独立性得 S_n 的矩生成函数:

$$\mathbb{E}[e^{\lambda S_n}] = \prod_{i=1}^n \mathbb{E}[e^{\lambda (X_i - \mathbb{E}X_i)}] \le \prod_{i=1}^n e^{\lambda^2 (b_i - a_i)^2/8}$$

3. 应用切尔诺夫界并优化 λ

5 基于鞅的不等式

定理 7 (Azuma-Hoeffding不等式). 设 $\{X_i\}_{i=0}^n$ 为鞅序列,满足 $|X_i-X_{i-1}| \le c_i$ 几乎必然成立。则对任意 t>0:

$$\mathbb{P}(|X_n - X_0| \ge t) \le 2 \exp\left(-\frac{t^2}{2\sum_{i=1}^n c_i^2}\right).$$

证明. 构造鞅差序列 $D_i = X_i - X_{i-1}$,利用霍夫丁引理证明每个 D_i 的次高斯性,再通过矩生成函数的乘积性质完成证明。

6 应用说明

- 次高斯性是推导高斯向量Lipschitz函数尖锐界限的关键
- McDiarmid不等式在机器学习中广泛用于算法稳定性分析
- Azuma不等式适用于依赖过程 (例如具有依赖性的随机游走)