МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. М.В. ЛОМОНОСОВА

Механико-математический факультет

ОТЧЕТ ПО ПРАКТИКУМУ НА ЭВМ Численное моделирование нестационарного одномерного течения газа: Схема для $\log(\rho)$ с центральными разностями

Студент 4 курса: Нагорных Я.В. Преподаватель: Попов А.В.

Содержание

1	Постановка задачи
2	Схема для $\log(\rho)$ с центральными разностями
3	Тестирование
	3.1 $\mu = 0.1 \dots \dots$
	3.2 $\mu = 0.01$
	3.3 $\mu = 0.001$

1 Постановка задачи

Приведем систему уравнений, описывающую нестационарное двумерное движение вязкого баротропного газа:

$$\begin{cases}
\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_1}{\partial x_1} + \frac{\partial \rho u_2}{\partial x_2} = 0, \\
\frac{\partial \rho u_1}{\partial t} + \frac{\partial \rho u_1^2}{\partial x_1} + \frac{\partial \rho u_1 u_2}{\partial x_2} + \frac{\partial p}{\partial x_1} = \mu \left(\frac{4\partial^2 u_1}{3\partial x_1^2} + \frac{\partial^2 u_1}{\partial x_2^2} + \frac{1}{3\partial x_1 \partial x_2} \right) + \rho f_1, \\
\frac{\partial \rho u_2}{\partial t} + \frac{\partial \rho u_1 u_2}{\partial x_1} + \frac{\partial \rho u_2^2}{\partial x_2} + \frac{\partial p}{\partial x_2} = \mu \left(\frac{1}{3\partial x_1 \partial x_2} + \frac{\partial^2 u_2}{\partial x_1^2} + \frac{4\partial^2 u_2}{3\partial^2 x_2} \right) + \rho f_2, \\
p = p(\rho).
\end{cases} (1.1)$$

Здесь μ – коэффициент вязкости газа (известная неотрицательная константа), p – давление газа (известная функция), f – вектор внешних сил (известная функция).

Неизвестные функции ρ и u, плотность и скорость соответственно, – функции от двух переменных t и x (переменные Эйлера), причем

$$(t,x) \in Q = [0,T] \times \Omega.$$

В качестве граничных условий берется следующее:

$$\rho|_{\Gamma^{-}} = \rho_{\gamma} = 1, \quad u_{1}|_{\Gamma^{-}} = \omega \in \{0, 1; 1\}, \quad \frac{\partial u_{1}}{\partial x_{1}}\Big|_{\Gamma^{+}} = 0.$$
(1.2)

На оставшейся границе компоненты скорости равны нулю, а функция плотности считается неизвестной.

Для решения задачи введем равномерную сетку ω_h с шагом h_x по оси x, с шагом h_y по оси y и с шагом τ по оси t. Введем константы M_x , M_y и N, такие что $X=Mh,\,Y=My$ и $T=N\tau$.

2 Схема для $\log(\rho)$ с центральными разностями

Для автоматического обеспечения условия положительности функции плотности систему дифференциальных уравнений можно преобразовать к виду

$$\begin{cases}
\frac{\partial g}{\partial t} + \frac{1}{2} \sum_{k=1}^{2} \left(u_{k} \frac{\partial g}{\partial x_{k}} + \frac{\partial u_{k}g}{\partial x_{k}} + (2 - g) \frac{\partial u_{k}}{\partial x_{k}} \right) = f_{0}, \\
\frac{\partial u_{k}}{\partial t} + \frac{1}{3} \left(u_{k} \frac{\partial u_{k}}{\partial x_{k}} + \frac{\partial u_{k}^{2}}{\partial x_{k}} \right) + \frac{1}{2} \sum_{m=1, m \neq k}^{2} \left(u_{m} \frac{\partial u_{k}}{\partial x_{m}} + \frac{\partial u_{m}u_{k}}{\partial x_{m}} - u_{k} \frac{\partial u_{m}}{\partial x_{m}} \right) + p'_{\rho} \frac{\partial g}{\partial x_{k}} = \\
= \frac{\mu}{\rho} \left(\frac{4}{3} \frac{\partial^{2} u_{k}}{\partial x_{k}^{2}} + \sum_{m=1, m \neq k}^{2} \left(\frac{\partial^{2} u_{k}}{\partial x_{m}^{2}} + \frac{1}{3} \frac{\partial^{2} u_{m}}{\partial x_{k} \partial x_{m}} \right) \right) + f_{k}, \qquad k = 1 \dots s, \\
p = p(\rho), \quad g = \ln \rho.
\end{cases} \tag{2.1}$$

Сеточную функцию, разностное приближение для плотности ρ , обозначим H. Аналогично, разностные аналоги g и u обозначим через G и V. Для поиска численного решения задачи используется следующая разностная схема:

$$G_{t} + \frac{1}{2} \sum_{k=1}^{2} \left(V_{k} \hat{G}_{x_{k}^{\circ}} + (V_{k} \hat{G})_{x_{k}^{\circ}} + 2(\hat{V}_{k})_{x_{k}^{\circ}} - G(V_{k})_{x_{k}^{\circ}} \right) = f_{0}, \quad x \in \Omega_{\bar{h}}; \quad (2.2)$$

$$G_{t} + \frac{1}{2} \left((V_{k} \hat{G})_{x_{k}} + 2(\hat{V}_{k})_{x_{k}} - G(V_{k})_{x_{k}} \right) - \frac{1}{2} h_{k} \left((GV_{k})_{x_{k}\bar{x}_{k}^{\circ}}^{+1_{k}} - \frac{1}{2} (GV_{k})_{x_{k}\bar{x}_{k}^{\circ}}^{+2_{k}} + \right.$$

$$\left. + (2 - G) \left((V_{k})_{x_{k}\bar{x}_{k}^{\circ}}^{+1_{k}} - \frac{1}{2} (V_{k})_{x_{k}\bar{x}_{k}^{\circ}} \right) \right) = f_{0}, \quad x \in \gamma_{k}^{-}, \quad k = 1, 2; \quad (2.3)$$

$$G_{t} + \frac{1}{2} \left((V_{k} \hat{G})_{\bar{x}_{k}} + 2(\hat{V}_{k})_{\bar{x}_{k}} - G(V_{k})_{\bar{x}_{k}} \right) + \frac{1}{2} h_{k} \left((GV_{k})_{x_{k}\bar{x}_{k}^{\circ}}^{-1_{k}} - \frac{1}{2} (GV_{k})_{x_{k}\bar{x}_{k}^{\circ}}^{-2_{k}} + \right.$$

$$\left. + (2 - G) \left((V_{k})_{x_{k}\bar{x}_{k}}^{-1_{k}} - \frac{1}{2} (V_{k})_{x_{k}\bar{x}_{k}^{\circ}} \right) \right) = f_{0}, \quad x \in \gamma_{k}^{+}, \quad k = 1, 2; \quad (2.4)$$

$$\left. (V_{k})_{t} + \frac{1}{3} \left(V_{k} (\hat{V}_{k})_{x_{k}^{\circ}} + (V_{k} \hat{V}_{k})_{x_{k}^{\circ}} \right) + \right.$$

$$\left. + \frac{1}{2} \sum_{m=1, m \neq k}^{2} \left(V_{m} (\hat{V}_{k})_{x_{k}^{\circ}} + (V_{m} \hat{V}_{k})_{x_{k}^{\circ}} - V_{k} (\hat{V}_{m})_{x_{k}^{\circ}} \right) + p_{\rho}'(e^{G}) \hat{G}_{x_{m}^{\circ}} = \right.$$

$$\left. = \tilde{\mu} \left(\frac{4}{3} (\hat{V}_{k})_{x_{k}\bar{x}_{k}} + \sum_{m=1, m \neq k}^{2} (\hat{V}_{k})_{x_{m}\bar{x}_{m}} \right) - \left(\tilde{\mu} - \mu e^{-G} \right) \times \right.$$

$$\left. \times \left(\frac{4}{3} (V_{k})_{x_{k}\bar{x}_{k}} + \sum_{m=1, m \neq k}^{2} (V_{k})_{x_{m}\bar{x}_{m}} \right) + \frac{\mu e^{-G}}{3} \sum_{m=1, m \neq k}^{2} (V_{m})_{x_{k}^{\circ}x_{m}^{\circ}} + f_{k}, \right.$$

$$\left. \times \left(\frac{4}{3} (V_{k})_{x_{k}\bar{x}_{k}} + \sum_{m=1, m \neq k}^{2} (V_{k})_{x_{m}\bar{x}_{m}} \right) + \frac{\mu e^{-G}}{3} \sum_{m=1, m \neq k}^{2} (V_{m})_{x_{k}^{\circ}x_{m}^{\circ}} + f_{k}, \right.$$

$$\left. \times \left(\frac{4}{3} (V_{k})_{x_{k}\bar{x}_{k}} + \sum_{m=1, m \neq k}^{2} (V_{k})_{x_{m}\bar{x}_{m}} \right) + \frac{\mu e^{-G}}{3} \sum_{m=1, m \neq k}^{2} (V_{m})_{x_{k}^{\circ}x_{m}^{\circ}} + f_{k}, \right.$$

$$\left. \times \left(\frac{4}{3} (V_{k})_{x_{k}\bar{x}_{k}} + \sum_{m=1, m \neq k}^{2} (V_{k})_{x_{m}\bar{x}_{m}} \right) + \frac{\mu e^{-G}}{3} \sum_{m=1, m \neq k}^{2} (V_{m})_{x_{k}^{\circ}x_{m}^{\circ}} + f_{k}, \right.$$

$$\left. \times \left(\frac{4}{3} (V_{k})_{x_{k}\bar{x}_{k}} + V_{k} (V_{k})_{x_{k}\bar{x}_{k}} \right) + \left(\frac{4}{3} (V_{k})_{x_{k}\bar{x}_{k}} \right) \right\}$$

$$\left. \times$$

Распишем уравнения схемы в поточечном виде и преобразуем их, приведя подобные слагаемые при неизвестных значениях с верхнего слоя. Получим:

$$\begin{split} 4\cdot G_{m_1,m_2}^{n+1} - \frac{\tau}{h_x} G_{m_1-1,m_2}^{n+1} \left(V_{1m_1,m_2}^n + V_{1m_1-1,m_2}^n\right) + \frac{\tau}{h_x} G_{m_1+1,m_2}^{n+1} \left(V_{1m_1,m_2}^n + V_{1m_1+1,m_2}^n\right) - \\ - \frac{\tau}{h_y} G_{m_1,m_2-1}^{n+1} \left(V_{2m_1,m_2}^n + V_{2m_1,m_2-1}^n\right) + \frac{\tau}{h_y} G_{m_1,m_2+1}^{n+1} \left(V_{2m_1,m_2}^n + V_{2m_1,m_2+1}^n\right) - \\ - \frac{2\tau}{h_x} V_{1m_1-1,m_2}^{n+1} + \frac{2\tau}{h_x} V_{1m_1+1,m_2}^{n+1} - \frac{2\tau}{h_y} V_{2m_1,m_2-1}^{n+1} + \frac{2\tau}{h_y} V_{2m_1,m_2+1}^{n+1} = \\ = 4\cdot G_{m_1,m_2}^n + \tau G_{m_1,m_2}^n \left(\frac{V_{1m_1+1,m_2}^n - V_{1m_1-1,m_2}^n}{h_x} + \frac{V_{2m_1,m_2+1}^n - V_{2m_1,m_2-1}^n}{h_y}\right) + 4\tau f_0, \end{split}$$
 где $x \in \Omega_h$

$$\begin{split} G_{0,m_2}^{n+1}\left(2-\frac{\tau}{h_x}V_{10,m_2}^n\right) + G_{1,m_2}^{n+1}\frac{\tau}{h_x}V_{11,m_2}^n + \frac{2\tau}{h_x}V_{11,m_2}^{n+1} - \frac{2\tau}{h_x}V_{10,m_2}^{n+1} = \\ &= 2\cdot G_{0,m_2}^n + \frac{\tau}{h_x}G_{0,m_2}^n\left(V_{11,m_2}^n - V_{10,m_2}^n\right) + 2\tau f_0 + \\ &\quad + \frac{\tau}{h_x}\left(G_{0,m_2}^nV_{10,m_2}^n - \frac{5}{2}\cdot G_{1,m_2}^nV_{11,m_2}^n + 2\cdot G_{2,m_2}^nV_{12,m_2}^n - \\ &\quad - \frac{1}{2}\cdot G_{3,m_2}^nV_{13,m_2}^n + \left(2-G_{0,m_2}^n\right)\cdot \left(V_{10,m_2}^n - 2.5\cdot V_{11,m_2}^n + 2V_{12,m_2}^n - 0.5V_{13,m_2}^n\right)\right), \end{split}$$

$$\text{ р.д. } \chi \in \gamma_k^n. \end{split}$$

$$\begin{split} G_{M,m_2}^{n+1}\left(2+\frac{\tau}{h_x}V_{1M,m_2}^n\right)-G_{M-1,m_2}^{n+1}\frac{\tau}{h_x}V_{1M-1,m_2}^n+\frac{2\tau}{h_x}V_{1M,m_2}^{n+1}-\frac{2\tau}{h_x}V_{1M-1,m_2}^{n+1}=\\ &=2\cdot G_{M,m_2}^n+\frac{\tau}{h_x}G_{M,m_2}^n\left(V_{1M,m_2}^n-V_{1M-1,m_2}^n\right)+2\tau f_0-\frac{\tau}{h_x}\times\left[G_{M,m_2}^nV_{1M,m_2}^n-\right.\\ &\left.-\frac{5}{2}\cdot G_{M-1,m_2}^nV_{1M-1,m_2}^n+2\cdot G_{M-2,m_2}^nV_{1M-2,m_2}^n-\frac{1}{2}\cdot G_{M-3,m_2}^nV_{1M-3,m_2}^n+\right.\\ &\left.+\left(2-G_{M,m_2}^n\right)\cdot\left(V_{1M,m_2}^n-\frac{5}{2}\cdot V_{1M-1,m_2}^n+2\cdot V_{1M-2,m_2}^n-\frac{1}{2}\cdot V_{1M-3,m_2}^n-\frac{1}{2}\cdot V_{1M-3,m_2}^n\right)\right], \end{split}$$
 где $x\in\gamma_k^+$

3 Тестирование

3.1 $\mu = 0.1$

	$ g-G _C$					
τh	1.00000	0.50000	0.25000			
0.500	3.191555e-01	2.247489e-01	2.243865e-01			
0.250	3.043471e-01	1.629398e-01	1.491416e-01			
0.125	2.876430e-01	1.187079e-01	9.785144e-02			

$ g - G _{L_2}$				
τh	1.00000	0.50000	0.25000	
0.500	9.512504e-01	8.355700e-01	8.204384e-01	
0.250	6.122799e-01	4.612271e-01	4.428729e-01	
0.125	4.495678e-01	2.581024e-01	2.352407e-01	

$ g - G _{v_2^1}$					
τh	1.00000	0.50000	0.25000		
0.500	$1.385544e{+00}$	1.114565e+00	9.792058e-01		
0.250	$1.210866\mathrm{e}{+00}$	8.926209e-01	7.084297e-01		
0.125	1.155027e+00	8.174585e-01	6.073713e-01		

	$ u_1 - V_1 _C$					
τh	1.00000	0.50000	0.25000			
0.500	3.979879e-01	3.622549e-01	3.583263e-01			
0.250	2.643974e-01	2.274248e-01	2.187875e-01			
0.125	2.065245e-01	1.377734e-01	1.260013e-01			

	$ u_1 - V_1 _{L_2}$				
τh	1.00000	0.50000	0.25000		
0.500	1.149149e+00	$1.132800\mathrm{e}{+00}$	1.131374e+00		
0.250	6.822144e-01	6.370385e-01	6.334057e-01		
0.125	4.361231e-01	3.451439e-01	3.385633e-01		

$ u_1 - V_1 _{v_2^1}$					
τh	1.00000	0.50000	0.25000		
0.500	$4.621676\mathrm{e}{+00}$	3.323153e+00	2.462723e+00		
0.250	4.690418e+00	$3.298016\mathrm{e}{+00}$	2.352245e+00		
0.125	4.759038e+00	3.321124e+00	2.336537e+00		

	$ u_2 - V_2 _C$					
τh	1.00000	0.50000	0.25000			
0.500	1.544142e-01	1.391937e-01	1.379958e-01			
0.250	1.151507e-01	8.370939e-02	8.120909e-02			
0.125	9.038622e-02	4.830719e-02	4.470352e-02			

	$ u_2 - V_2 _{L_2}$					
τh	1.00000	0.50000	0.25000			
0.500	5.098528e-01	4.514006e-01	4.401044e-01			
0.250	3.377369e-01	2.619125e-01	2.484032e-01			
0.125	2.432280e-01	1.504754e-01	1.349097e-01			

$\ u_2 - V_2\ _{v_2^1}$					
τh	1.00000	0.50000	0.25000		
0.500	9.951011e-01	7.361388e-01	5.979325e-01		
0.250	8.503144e-01	5.894178e-01	4.431625e-01		
0.125	7.775693e-01	5.189529e-01	3.699671e-01		

3.2	$\mu = 0.0$	1			
				$g-G _C$	
		τh	1.00000	0.50000	0.25000
		0.500	3.332275e-01	2.317920e-01	2.308903e-01
		0.250	3.227055e-01	1.738487e-01	1.583301e-01
		0.125	3.101889e-01	1.297109e-01	1.059268e-01

$ g - G _{L_2}$					
τh	1.00000	0.50000	0.25000		
0.500	9.769827e-01	8.604924e-01	8.452480e-01		
0.250	6.319185e-01	4.775693e-01	4.588406e-01		
0.125	4.690277e-01	2.688623e-01	2.448913e-01		

	$ g - G _{v_2^1}$					
τh	1.00000	0.50000	0.25000			
0.500	1.404438e+00	1.133190e+00	9.999392e-01			
0.250	1.224002e+00	9.019652e-01	7.190158e-01			
0.125	1.168566e+00	8.230314e-01	6.124281e-01			

	$ u_1 - V_1 _C$				
τh	1.00000	0.50000	0.25000		
0.500	4.081024e-01	3.697396e-01	3.661379e-01		
0.250	2.740035e-01	2.351150e-01	2.260646e-01		
0.125	2.252334e-01	1.456298e-01	1.317880e-01		

	$ u_1 - V_1 _{L_2}$				
τh	1.00000	0.50000	0.25000		
0.500	$1.200346\mathrm{e}{+00}$	1.181441e+00	1.179247e+00		
0.250	7.210320e-01	6.706195e-01	6.656928e-01		
0.125	4.662389e-01	3.667748e-01	3.583753e-01		

	$\ u_1 - V_1\ _{v_2^1}$					
τh	1.00000	0.50000	0.25000			
0.500	4.620662e+00	3.331493e+00	2.479650e+00			
0.250	4.682651e+00	3.296842e+00	2.356233e+00			
0.125	$4.750031\mathrm{e}{+00}$	3.317148e+00	2.335832e+00			

	$ u_2 - V_2 _C$				
	$\tau \backslash h$	1.00000	0.50000	0.25000	
(0.500	1.651374e-01	1.502980e-01	1.491544e-01	
	0.250	1.226988e-01	9.135306e-02	8.934564e-02	
(0.125	9.669605e-02	5.290997e-02	4.973908e-02	

	$ u_2 - V_2 _{L_2}$				
	$\tau \backslash h$	1.00000	0.50000	0.25000	
Ī	0.500	5.296704e-01	4.727790e-01	4.619251e-01	
Ī	0.250	3.525451e-01	2.763621e-01	2.631604e-01	
Ī	0.125	2.552148e-01	1.592887e-01	1.438254e-01	

	$ u_2 - V_2 _{v_2^1}$				
τh	1.00000	0.50000	0.25000		
0.500	1.007894e+00	7.515347e-01	6.155485e-01		
0.250	8.573573e-01	5.973214e-01	4.526872e-01		
0.125	7.812806e-01	5.219918e-01	3.738559e-01		

3.3 $\mu = 0.001$

	$ g-G _C$				
τh	1.00000	0.50000	0.25000		
0.500	3.346899e-01	2.325533e-01	2.315276e-01		
0.250	3.246620e-01	1.750017e-01	1.592995e-01		
0.125	3.126662e-01	1.309073e-01	1.068023e-01		

	$\ g-G\ _{L_2}$				
τh	1.00000	0.50000	0.25000		
0.500	9.796632e-01	8.630954e-01	8.478420e-01		
0.250	6.340402e-01	4.792887e-01	4.605218e-01		
0.125	4.714032e-01	2.700253e-01	2.459161e-01		

$\ g-G\ _{v_2^1}$					
τh	1.00000	0.50000	0.25000		
0.500	1.406413e+00	1.135145e+00	1.002115e+00		
0.250	1.225423e+00	9.029572e-01	7.201406e-01		
0.125	1.170173e+00	8.236647e-01	6.129941e-01		

	$ u_1 - V_1 _C$				
τh	1.00000	0.50000	0.25000		
0.500	4.091439e-01	3.705469e-01	3.669681e-01		
0.250	2.750049e-01	2.359130e-01	2.268182e-01		
0.125	2.273044e-01	1.464708e-01	1.323957e-01		

	$ u_1 - V_1 _{L_2}$				
τh	1.00000	0.50000	0.25000		
0.500	1.205739e+00	$1.186552e{+00}$	1.184275e+00		
0.250	7.252048e-01	6.741907e-01	6.691166e-01		
0.125	4.695859e-01	3.691123e-01	3.604995e-01		

$\ u_1 - V_1\ _{v_2^1}$					
τh	1.00000	0.50000	0.25000		
0.500	4.620623e+00	3.332436e+00	2.481492e+00		
0.250	$4.681850e{+00}$	3.296748e+00	2.356691e+00		
0.125	4.749051e+00	3.316714e+00	2.335765e+00		

$ u_2 - V_2 _C$					
τh	1.00000	0.50000	0.25000		
1.662841e-01	1.514788e-01	1.503662e-01			
1.234986e-01	9.217657e-02	9.022623e-02			
9.738230e-02	5.341048e-02	5.029295e-02			

$ u_2 - V_2 _{L_2}$					
τh	1.00000	0.50000	0.25000		
0.500	5.318001e-01	4.750835e-01	4.642791e-01		
0.250	3.541905e-01	2.779583e-01	2.647925e-01		
0.125	2.566181e-01	1.602784e-01	1.448298e-01		

$ u_2 - V_2 _{v_2^1}$					
τh	1.00000	0.50000	0.25000		
0.500	1.009266e+00	7.531993e-01	6.174574e-01		
0.250	8.581391e-01	5.981973e-01	4.537501e-01		
0.125	7.817225e-01	5.223316e-01	3.742988e-01		