

SciPy.org (https://scipy.org/) Docs (https://docs.scipy.org/) SciPy v1.5.4 Reference Guide (index.html) index (genindex.html) modules (py-modindex.html) next (generated/scipy.linalg.inv.html) previous (generated/scipy.io.arff.ParseArffError.html)

Linear algebra (scipy.linalg)

Linear algebra functions.

See also:

numpy.linalg (https://www.numpy.org/devdocs/reference/routines.linalg.html) for more linear algebra functions. Note that although **scipy.linalg** imports most of them, identically named functions from scipy.linalg may offer more or slightly differing functionality.

Basics

inv (generated/scipy.linalg.inv.html#scipy.linalg.inv)(a[, overwrite_a, check_finite])

solve (generated/scipy.linalg.solve.html#scipy.linalg.solve)(a, b[, sym_pos, lower, overwrite_a, ..

solve_banded (generated/scipy.linalg.solve_banded.html#scipy.linalg.solve_banded) (l_and_u, ab, b[, overwrite_ab, ...])

solveh_banded (generated/scipy.linalg.solveh_banded.html#scipy.linalg.solveh_banded) (ab, b[, overwrite_ab, ...])

 $\textbf{solve_circulant} \ (\textbf{generated/scipy.linalg.solve_circulant.html\#scipy.linalg.solve_circulant}) \\ \textbf{generated/scipy.linalg.solve_circulant.html\#scipy.linalg.solve_circulant}) \\ \textbf{generated/scipy.linalg.solve_circulant.html\#scipy.linalg.solve_circulant}) \\ \textbf{generated/scipy.linalg.solve_circulant.html} \\ \textbf{generated/scipy.html} \\ \textbf{generated/scipy.ht$ (c, b[, singular, tol, ...])

solve triangular (generated/scipy.linalg.solve triangular.html#scipy.linalg.solve triangular) (a, b[, trans, lower, ...])

solve_toeplitz (generated/scipy.linalg.solve_toeplitz.html#scipy.linalg.solve_toeplitz) (c_or_cr, b[, check_finite])

det (generated/scipy.linalg.det.html#scipy.linalg.det)(a[, overwrite_a, check_finite])

norm (generated/scipy.linalg.norm.html#scipy.linalg.norm)(a[, ord, axis, keepdims, check_finite])

Istsq (generated/scipy.linalg.lstsq.html#scipy.linalg.lstsq)(a, b[, cond, overwrite_a, ...])

Table of Contents (index.html)

- Linear algebra (scipy.linalg)
 - Basics
 - Eigenvalue **Problems**
 - Decompositions
 - Matrix **Functions**
 - Matrix Equation

Special

- Solvers Compute the Sketches and inverse of a
- Random matrix. .Projections Solves the
- linear Matrices equation set Low-level
- a * x = broutines for the

unknown x for Previous topic

scipy.io.arff.ParseArffErr (generated/scipy.io.arff.F Solve the

Next topic equation a x = b for x, scipy.linalg.inv (generated/scipy.linalassuming a is

Quick search matrix.

Solve equation

banded

ax = b.

Solve Cx = bfor x, where C is a circulant

matrix. Solve the equation ax =

b for x. assuming a is a triangular matrix.

Solve a Toeplitz system using

Levinson Recursion Compute the determinant of

a matrix Matrix or

vector norm. Compute least-squares

solution to

equation Ax = b.

pinv (generated/scipy.linalg.pinv.html#scipy.linalg.pinv)(a[, cond, rcond, return_rank, check_finite]) Compute the (Moore-Penrose) pseudoinverse of a matrix. pinv2 (generated/scipy.linalg.pinv2.html#scipy.linalg.pinv2)(a[, cond, rcond, return_rank, ...]) Compute the (Moore-Penrose) pseudoinverse of a matrix. pinvh (generated/scipy.linalg.pinvh.html#scipy.linalg.pinvh)(a[, cond, rcond, lower, return_rank, ...]) Compute the (Moore-Penrose) pseudoinverse of a Hermitian matrix. **kron** (generated/scipy.linalg.kron.html#scipy.linalg.kron)(a, b) Kronecker product. **khatri_rao** (generated/scipy.linalg.khatri_rao.html#scipy.linalg.khatri_rao)(a, b) Khatri-rao product tril (generated/scipy.linalg.tril.html#scipy.linalg.tril)(m[, k]) Make a copy of a matrix with elements above the kth diagonal zeroed. triu (generated/scipy.linalg.triu.html#scipy.linalg.triu)(m[, k]) Make a copy of a matrix with elements below the kth diagonal zeroed. orthogonal_procrustes Compute the (generated/scipy.linalg.orthogonal_procrustes.html#scipy.linalg.orthogonal_procrustes)(A, B[, check_finite]) matrix solution of the orthogonal

matrix_balance (generated/scipy.linalg.matrix_balance.html#scipy.linalg.matrix_balance)

problem. Compute a (A[, permute, scale, ...]) diagonal similarity transformation

subspace_angles (generated/scipy.linalg.subspace_angles.html#scipy.linalg.subspace_angles)(A, B)

LinAlgError (generated/scipy.linalg.LinAlgError.html#scipy.linalg.LinAlgError)

Compute the subspace angles between two matrices. Generic Pythonexceptionderived object

raised by linalg functions.

row/column balancing.

Procrustes

for

LinAlgWarning (generated/scipy.linalg.LinAlgWarning.html#scipy.linalg.LinAlgWarning)

The warning emitted when a linear algebra related operation is close to fail conditions of the algorithm or loss of accuracy is expected.

Eigenvalue Problems

eig (generated/scipy.linalg.eig.html#scipy.linalg.eig)(a[, b, left, right, overwrite_a, ...]) Solve an ordinary or generalized eigenvalue problem of a square matrix. eigvals (generated/scipy.linalg.eigvals.html#scipy.linalg.eigvals) Compute (a[, b, overwrite_a, check_finite, ...]) eigenvalues from an ordinary or generalized eigenvalue problem. eigh (generated/scipy.linalg.eigh.html#scipy.linalg.eigh)(a[, b, lower, eigvals_only, ...]) Solve a standard or generalized eigenvalue problem for a complex Hermitian or real symmetric matrix. eigvalsh (generated/scipy.linalg.eigvalsh.html#scipy.linalg.eigvalsh)(a[, b, lower, overwrite_a, ...]) Solves a standard or generalized eigenvalue problem for a complex Hermitian or real symmetric matrix. eig_banded (generated/scipy.linalg.eig_banded.html#scipy.linalg.eig_banded) Solve real (a_band[, lower, eigvals_only, ...]) symmetric or complex Hermitian band matrix eigenvalue problem. eigvals_banded (generated/scipy.linalg.eigvals_banded.html#scipy.linalg.eigvals_banded) Solve real (a_band[, lower, ...]) symmetric or complex Hermitian band

eigh tridiagonal (generated/scipy.linalg.eigh tridiagonal.html#scipy.linalg.eigh tridiagonal) (d, e[, eigvals_only, ...])

problem. Solve eigenvalue problem for a real symmetric tridiagonal matrix. Solve eigenvalue problem for a real

matrix eigenvalue

eigvalsh_tridiagonal

(generated/scipy.linalg.eigvalsh_tridiagonal.html#scipy.linalg.eigvalsh_tridiagonal)(d, e[, select, ...])

symmetric tridiagonal matrix.

Decompositions

lu (generated/scipy.linalg.lu.html#scipy.linalg.lu)(a[, permute_l, overwrite_a, check_finite])

Compute pivoted LU decomposition of a matrix.

lu_factor (generated/scipy.linalg.lu_factor.html#scipy.linalg.lu_factor)(a[, overwrite_a, check_finite])

Compute pivoted LU decomposition

lu_solve (generated/scipy.linalg.lu_solve.html#scipy.linalg.lu_solve)(lu_and_piv, b[, trans, ...])

of a matrix. Solve an equation system, a x = b,

svd (generated/scipy.linalg.svd.html#scipy.linalg.svd)(a[, full_matrices, compute_uv, ...])

factorization of a Singular Value Decomposition.

given the LU

svdvals (generated/scipy.linalg.svdvals.html#scipy.linalg.svdvals)(a[, overwrite_a, check_finite])

Compute singular values of a matrix. Construct the

diagsvd (generated/scipy.linalg.diagsvd.html#scipy.linalg.diagsvd)(s, M, N)

sigma matrix in SVD from singular values and size M,

orth (generated/scipy.linalg.orth.html#scipy.linalg.orth)(A[, rcond])

Construct an

using SVD

symmetric/

a matrix.

null_space (generated/scipy.linalg.null_space.html#scipy.linalg.null_space)(A[, rcond])

orthonormal basis for the range of A

Idl (generated/scipy.linalg.ldl.html#scipy.linalg.ldl)(A[, lower, hermitian, overwrite_a, ...])

Construct an orthonormal basis for the null space of A using SVD Computes the LDLt or Bunch-Kaufman factorization of a

hermitian matrix. cholesky (generated/scipy.linalg.cholesky.html#scipy.linalg.cholesky) Compute the (a[, lower, overwrite_a, check_finite]) Cholesky

decomposition of

cholesky_banded (generated/scipy.linalg.cholesky_banded.html#scipy.linalg.cholesky_banded) (ab[, overwrite_ab, lower, ...])

Cholesky decompose a banded Hermitian positive-definite matrix

cho_factor (generated/scipy.linalg.cho_factor.html#scipy.linalg.cho_factor) (a[, lower, overwrite_a, check_finite])

	Compute the Cholesky decomposition of a matrix, to use in cho_solve
<pre>cho_solve (generated/scipy.linalg.cho_solve.html#scipy.linalg.cho_solve) (c_and_lower, b[, overwrite_b,])</pre>	Solve the linear equations A x = b, given the Cholesky factorization of A.
<pre>cho_solve_banded (generated/scipy.linalg.cho_solve_banded.html#scipy.linalg.cho_solve_banded) (cb_and_lower, b[,])</pre>	Solve the linear equations A x = b, given the Cholesky factorization of the banded hermitian A.
<pre>polar (generated/scipy.linalg.polar.html#scipy.linalg.polar)(a[, side])</pre>	Compute the polar decomposition.
qr (generated/scipy.linalg.qr.html#scipy.linalg.qr)(a[, overwrite_a, lwork, mode, pivoting,])	Compute QR decomposition of a matrix.
qr_multiply (generated/scipy.linalg.qr_multiply.html#scipy.linalg.qr_multiply)(a, c[, mode, pivoting,])	Calculate the QR decomposition and multiply Q with a matrix.
<pre>qr_update (generated/scipy.linalg.qr_update.html#scipy.linalg.qr_update)(Q, R, u, v[, overwrite_qruv,]) qr_delete (generated/scipy.linalg.qr_delete.html#scipy.linalg.qr_delete)(Q, R, k, int p=1[, which,])</pre>	Rank-k QR update QR downdate on row or column deletions
qr_insert (generated/scipy.linalg.qr_insert.html#scipy.linalg.qr_insert)(Q, R, u, k[, which, rcond,])	QR update on row or column insertions
rq (generated/scipy.linalg.rq.html#scipy.linalg.rq)(a[, overwrite_a, lwork, mode, check_finite])	Compute RQ decomposition of a matrix.
qz (generated/scipy.linalg.qz.html#scipy.linalg.qz)(A, B[, output, lwork, sort, overwrite_a,])	QZ decomposition for generalized eigenvalues of a pair of matrices.
ordqz (generated/scipy.linalg.ordqz.html#scipy.linalg.ordqz)(A, B[, sort, output, overwrite_a,])	QZ decomposition for a pair of matrices with reordering.
schur (generated/scipy.linalg.schur.html#scipy.linalg.schur)(a[, output, lwork, overwrite_a, sort,])	Compute Schur decomposition of a matrix.
rsf2csf (generated/scipy.linalg.rsf2csf.html#scipy.linalg.rsf2csf)(T, Z[, check_finite])	Convert real Schur form to complex Schur form.
hessenberg (generated/scipy.linalg.hessenberg.html#scipy.linalg.hessenberg) (a[, calc_q, overwrite_a,])	Compute Hessenberg form of a matrix.
cdf2rdf (generated/scipy.linalg.cdf2rdf.html#scipy.linalg.cdf2rdf)(w, v)	Converts complex eigenvalues w and eigenvectors v to real eigenvalues in a block diagonal form wr and the associated real eigenvectors vr, such that.
cossin (generated/scipy.linalg.cossin.html#scipy.linalg.cossin)(X[, p, q, separate, swap_sign,])	Compute the cosine-sine (CS) decomposition of

See also:

scipy.linalg.interpolative (linalg.interpolative.html#modulescipy.linalg.interpolative) – Interpolative matrix decompositions

Matrix Functions

expm (generated/scipy.linalg.expm.html#scipy.linalg.expm)(A)

matrix exponential using Pade approximation.

Compute the

logm (generated/scipy.linalg.logm.html#scipy.linalg.logm)(A[, disp])

approximation.
Compute
matrix

cosm (generated/scipy.linalg.cosm.html#scipy.linalg.cosm)(A)

logarithm.
Compute the

sinm (generated/scipy.linalg.sinm.html#scipy.linalg.sinm)(A)

matrix cosine.
Compute the

tanm (generated/scipy.linalg.tanm.html#scipy.linalg.tanm)(A)

matrix sine.
Compute the matrix

coshm (generated/scipy.linalg.coshm.html#scipy.linalg.coshm)(A)

tangent. Compute the hyperbolic

matrix cosine. Compute the

sinhm (generated/scipy.linalg.sinhm.html#scipy.linalg.sinhm)(A)

hyperbolic matrix sine. Compute the hyperbolic

 $\textbf{tanhm} \ (\text{generated/scipy.linalg.tanhm.html\#scipy.linalg.tanhm}) (A)$

matrix tangent. Matrix sign

 $\textbf{signm} \ (\texttt{generated/scipy.linalg.signm.html\#scipy.linalg.signm}) (\texttt{A[, disp]})$

function. Matrix square

sqrtm (generated/scipy.linalg.sqrtm.html#scipy.linalg.sqrtm)(A[, disp, blocksize])

root. Evaluate a

funm (generated/scipy.linalg.funm.html#scipy.linalg.funm)(A, func[, disp])

matrix function specified by a callable.

expm_frechet (generated/scipy.linalg.expm_frechet.html#scipy.linalg.expm_frechet) (A, E[, method, compute_expm, ...])

Frechet derivative of the matrix exponential of

expm_cond (generated/scipy.linalg.expm_cond.html#scipy.linalg.expm_cond)(A[, check_finite])

direction E. Relative condition number of the

matrix

A in the

exponential in the Frobenius

norm.

matrix.

Compute the fractional power of a

$fractional_matrix_power$

 $(generated/scipy.linalg.fractional_matrix_power.html \#scipy.linalg.fractional_matrix_power) (A, t)$

Matrix Equation Solvers

solve_sylvester (generated/scipy.linalg.solve_sylvester.html#scipy.linalg.solve_sylvester)(a, b, q) Computes a solution (to the Sylvester equation AX + XB = Q.solve_continuous_are Solves the continuous (generated/scipy.linalg.solve_continuous_are.html#scipy.linalg.solve_continuous_are)(a, b, q, r[, e, s, ...]) time algebraic Riccati equation (CARE). Solves the discrete-tin solve_discrete_are (generated/scipy.linalg.solve_discrete_are.html#scipy.linalg.solve_discrete_are) (a, b, q, r[, e, s, balanced]) algebraic Riccati equation (DARE). Solves the continuous solve_continuous_lyapunov Lyapunov equation (generated/scipy.linalg.solve_continuous_lyapunov.html#scipy.linalg.solve_continuous_lyapunov)(a, q) $AX + XA^H = Q.$ Solves the discrete solve_discrete_lyapunov (generated/scipy.linalg.solve_discrete_lyapunov.html#scipy.linalg.solve_discrete_lyapunov)(a, q[, method]) Lyapunov equation

 $AXA^H - X + Q =$

Sketches and Random Projections

clarkson_woodruff_transform

 $(generated/scipy.linalg.clarkson_woodruff_transform.html \#scipy.linalg.clarkson_woodruff_transform) (input_matrix, ...)$

lock_diag (generated/scipy.linalg.block_diag.html#scipy.linalg.block_diag)(*arrs)	Create a
	block
	diagonal
	matrix
	from
	provided
	arrays.
rculant (generated/scipy.linalg.circulant.html#scipy.linalg.circulant)(c)	Construct a
	circulant
	matrix.
ompanion (generated/scipy.linalg.companion.html#scipy.linalg.companion)(a)	Create a
Simpation (generated) supplimiting teamparison (generated)	companion
	matrix.
onvolution_matrix	Construct a
generated/scipy.linalg.convolution_matrix.html#scipy.linalg.convolution_matrix)(a, n[, mode])	convolution
cheratearscipy.iinaig.comvoiation_matrix.iiem#scipy.iinaig.comvoiation_matrix(a, nj. modej)	matrix.
ft (gangrated/sciny line) a dft html#sciny line) a dft)(n[csale])	
ft (generated/scipy.linalg.dft.html#scipy.linalg.dft)(n[, scale])	Discrete
	Fourier
	transform
	matrix.
edler (generated/scipy.linalg.fiedler.html#scipy.linalg.fiedler)(a)	Returns a
	symmetric
	Fiedler
	matrix
edler_companion	Returns a
enerated/scipy.linalg.fiedler_companion.html#scipy.linalg.fiedler_companion)(a)	Fiedler
	companion
	matrix
adamard (generated/scipy.linalg.hadamard.html#scipy.linalg.hadamard)(n[, dtype])	Construct
	an
	Hadamard
	matrix.
ankel (generated/scipy.linalg.hankel.html#scipy.linalg.hankel)(c[, r])	Construct a
	Hankel
	matrix.
elmert (generated/scipy.linalg.helmert.html#scipy.linalg.helmert)(n[, full])	Create an
	Helmert
	matrix of
	order <i>n</i> .

hilbert (generated/scipy.linalg.hilbert.html#scipy.linalg.hilbert)(n)

Create a
Hilbert
matrix of
order *n*.

invhilbert (generated/scipy.linalg.invhilbert.html#scipy.linalg.invhilbert)(n[, exact])

Compute the inverse of the Hilbert matrix of order *n*.

leslie (generated/scipy.linalg.leslie.html#scipy.linalg.leslie)(f, s)

Create a Leslie matrix.

pascal (generated/scipy.linalg.pascal.html#scipy.linalg.pascal)(n[, kind, exact])

Returns the n x n Pascal matrix.

invpascal (generated/scipy.linalg.invpascal.html#scipy.linalg.invpascal)(n[, kind, exact])

Returns the inverse of the n x n Pascal matrix.
Construct a Toeplitz

toeplitz (generated/scipy.linalg.toeplitz.html#scipy.linalg.toeplitz)(c[, r])

tri (generated/scipy.linalg.tri.html#scipy.linalg.tri)(N[, M, k, dtype])

matrix.
Construct
(N, M)
matrix
filled with

matrix filled with ones at and below the kth diagonal.

Low-level routines

get_blas_funcs (generated/scipy.linalg.get_blas_funcs.html#scipy.linalg.get_blas_funcs) (names[, arrays, dtype])

Return available BLAS function objects from names.

get_lapack_funcs (generated/scipy.linalg.get_lapack_funcs.html#scipy.linalg.get_lapack_funcs)
(names[, arrays, dtype])

Return available LAPACK function objects from names. Find bestmatching

find_best_blas_type

(generated/scipy.linalg.find_best_blas_type.html#scipy.linalg.find_best_blas_type)([arrays, dtype])

BLAS/LAPACK

type.

See also:

 ${\bf scipy.linalg.blas} \ ({\bf linalg.blas.html\#module\text{-}scipy.linalg.blas}) - {\bf Low\text{-}level \ BLAS} \ functions$

scipy.linalg.lapack (linalg.lapack.html#module-scipy.linalg.lapack) – Low-level LAPACK functions

scipy.linalg.cython_blas (linalg.cython_blas.html#module-scipy.linalg.cython_blas) – Low-level BLAS functions for Cython

scipy.linalg.cython_lapack (linalg.cython_lapack.html#module-scipy.linalg.cython_lapack) – Low-level LAPACK functions for Cython