

JUNE 2002

GCE Advanced Level GCE Advanced Subsidiary Level

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709 /7, 8719 /7

MATHEMATICS (Probability and Statistics 2)

Page 1	Mark Scheme	Syllabus	Paper
•	A & AS Level Examinations – June 2002	9709, 8719	7

1 $\bar{x} \pm 2.326 \times \frac{2.4}{\sqrt{90}}$	Bl		For z value of 2.33
•••	Ml		For expression of correct form involving $\sqrt{90}$ in denom
$2.326 \times \frac{2.4}{\sqrt{90}} \times 2$ Width	Ml		For subtracting lower from upper, or multiplying
= 1.18	Ai	4	half-width by 2 For correct answer
2 EITHER	 		
	M2		$p \pm z \sqrt{\frac{pq}{r}}$
$0.275 \pm 1.96 \times \sqrt{\frac{0.275 \times 0.725}{120}}$ 0.195			Calculation of correct form $p \pm z \sqrt{\frac{pq}{n}}$ (SR M1 if only one side of interval seen)
		4	Use of $p = 0.275$ For correct answer
OR 33± 1.96√ 120x0.275x0.725 23.413 < p < 42.586	Mi		Calculation of correct form np±z√npq (accept just one side of interval)
120 120	MI		Division by 120 (BOTH sides)
$0.195 \le p \le 0.355$	Bl		Use of 0.275
	A1	4	Correct answer
3 3 sugar ~ N(1500, 1200)	Bi		For (named dist with) assess means for both
3 sugar ~ N(1500, 1200) 5 coffee ~ N(1000,720)	Bi		For (normal dist with) correct means for both For (normal dist with) correct variance for both
Total weight ~ N(2850, 1920)	MI		For adding their variances and means(+ purse)for
or ~ N(2500, 1920)	1		coffee and sugar
	Al		For correct mean and variance for their total weigh
$P(W < 2900) = \Phi\left(\frac{2900 - 2850}{\sqrt{1920}}\right)$	Mì		ie with or without the purse For standardising and use of tables (consistent
OrP(W<2550) = $\Phi\left(\frac{2550 - 2500}{\sqrt{1920}}\right) = 0.873$	Al	6	inclusion/exclusion of purse) For correct answer
	81		For correct mean
4 (i) $\pi = 14.2$, $s^2 = \frac{1}{149} \left(37746 - \frac{2130^2}{150} \right) = 50.3(4)$	B1	2	For correct variance
(ii) $H_0: \mu = 12$ and $H_1: \mu \neq 12$	B1		Both hypotheses correct
Test statistic $z = 14.2 - 12 = 3.798$	MI		\$
(50.34	Al		For standardising attempt with se of form \sqrt{n}
√ 150	Ml		For 3.80 Or comparing $\Phi(3.798)$ with 0.95 (or equiv. for on
Compare with 1.645 or 1.282 for one-tail t Reject exam boards claim	ΑI	5	tail test) Signs consistent. Correct conclusion ft on their z and H ₁
5 (i) P(9 or 10H) = $(0.5)^9 \times (0.5) \times {}_{10}C_9 + (0.5)^{10}$	MI		For P(9 or 10H)
(= 0.01074)	MI		For P(9 or 10T)
P(9T or 10T) = 0.01074	MI		For identifying outcome for Type I error
P(type 1 error) = 0.0215 AG	Al	4	For obtaining given answer legitimately
(ii)P(9 or 10H)= $(0.7)^9 \times (0.3) \times {}_{10}C_9 + (0.7)^{10}$	MI		For evaluating P(9 or 10H) with $P(H) = 0.7$
(=0.1493)	Ml		For evaluating $P(9 \text{ or } 10T) \text{ with } P(T) = 0.3$
P(9 or 10T) = $(0.3)^9 \times (0.7) \times_{10} C_9 + (0.3)^{10}$	1		
= 0.000143	MI		For identifying outcome for Type II error
P(type II error) = 1 - 0.1493 - 0.000143 = 0.851	AI	4	For correct answer (SR 0.851 no working B2)
-0.831	<u> </u>		

Page 2	Mark Scheme	Syllabus	Paper
	A & AS Level Examinations – June 2002	9709, 8719	7

			
6 (i) mean = 6	Ml		For mean 6 and evaluating a Poisson prob
P(X=5)=0.161	A1	2	For correct answer
(ii) μ=2	Bl		For μ =2 used in a Poisson prob.
$P(0) = e^{-2} (= 0.135)$	Ml		For 1 - P(0), any mean
1 - P(0) = 0.865	Al	3	For correct answer
		_	
	BI		For μ=24
(iii) $\mu = 24$, $\sigma^2 = 24$	Bl		For their var=their mean
$z = \frac{19.5 - 24}{\sqrt{24}} = -0.9186$	M1		For standardising with or without cc
$z = \frac{1}{\sqrt{24}}$ 0.0186	Al		For correct continuity correction
ł.	Al	5	For correct answer
$1 - \Phi(0.9186) = 0.179$			(SR Using Poisson with no approximation
			(0.180(26)) scores M1 A1 only)
$ \begin{array}{ccc} 1 & & \\ 7 & & \\ \end{array} $ $ \begin{array}{cccc} f(x) = f(x) - f(x) & dx \end{array} $	141		F
1 222	Mi		For sensible attempt to integrate xf(x)
$\int_{0}^{1} 2x - 2x^2 dx$	Al		For correct integrand (any form)
= 0			
$\begin{bmatrix} 1 & 2x^3 \end{bmatrix}$			_
$= \left[x^2 - \frac{2x^3}{3}\right]_{0.333}$	Al	3	For correct answer
	M1*		For sensible attempt to integrate $x^2 f(x)$
$\int_{0}^{1} 2x^{2} - 2x^{3} dx$ (ii) $Var(X) = \int_{0}^{1} 2x^{2} - 2x^{3} dx$ - $(0.333)^{2}$	IVII		For solsion attempt to integrate x 1(x)
$\lceil 2r^3 \mid 2r^4 \rceil$			
$= \left[\frac{2x^3}{3} - \frac{2x^4}{4}\right]_{-(0.333)^2}$ M1*dep		ер	For their integral— (their mean) ²
· · · · · · · · · · · · · · · · · · ·			
= 0.0556	A1	3	For correct answer
$\hat{\int} 2(1-x) dx$	MI		For identifying both sides of equation
(iii) ° = 0.98	1771		1 or monary mg voin states of equation
$ \left[2x-x^2\right] = 0.98 $	Al		For correct equation in any form
			For solving for x (must be sensible attempt)
$x^2 - 2x + 0.98 = 0$			For correct answer
x = 0.859			For applying concept of continuous rv.
859 tonnes			
OR 🔏	M1		For identifying x from a relevant diagram
X			For correct equation
$0.98 \frac{(1-x)}{2} \times 2(1-x) = 0.02$			For solving for x
$\frac{1.98}{2}$ $\frac{-2(1-x)-0.02}{2}$			For correct answer
		5	For applying concept of continuous rv.
x 1			