

Classification

Prepared by Raymond Wong
The examples used in Decision Tree are borrowed from LW Chan's notes
Presented by Raymond Wong
raywong@cse

CSIT5210 1

Classification

Suppose there is a person.

Race	Income	Child	Insurance
white	high	no	?

Applications

- Insurance
 - According to the attributes of customers,
 - Determine which customers will buy an insurance policy
- Marketing
 - According to the attributes of customers,
 - Determine which customers will buy a product such as computers
- Bank Loan
 - According to the attributes of customers,
 - Determine which customers are "risky" customers or "safe" customers

Applications

Network

- According to the traffic patterns,
 - Determine whether the patterns are related to some "security attacks"

Software

- According to the experience of programmers,
 - Determine which programmers can fix some certain bugs

Same/Difference

- Classification
- Clustering

Classification Methods

- Decision Tree
- Bayesian Classifier
- Nearest Neighbor Classifier

Decision Trees

Iterative Dichotomiser

Classification

Classification And Regression Trees

Example 1

- Consider a random variable which has a uniform distribution over 32 outcomes
- To identify an outcome, we need a label that takes 32 different values.
- Thus, 5 bit strings suffice as labels

- Entropy is used to measure how informative is a node.
- If we are given a probability distribution P = (p₁, p₂, ..., p_n) then the **Information** conveyed by this distribution, also called the **Entropy** of P, is:

 $I(P) = -(p_1 \times log p_1 + p_2 \times log p_2 + ... + p_n \times log p_n)$

All logarithms here are in base 2.

- For example,
 - If P is (0.5, 0.5), then I(P) is 1.
 - If P is (0.67, 0.33), then I(P) is 0.92,
 - If P is (1, 0), then I(P) is 0.
- The entropy is a way to measure the amount of information.
- The smaller the entropy, the more informative we have.

Info(T) =
$$-\frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2}$$

= 1

For attribute Race,

Info
$$(T_{black}) = -\frac{3}{4} \log \frac{3}{4} - \frac{1}{4} \log \frac{1}{4} = 0.8113$$

Info
$$(T_{white}) = -\frac{3}{4} \log \frac{3}{4} - \frac{1}{4} \log \frac{1}{4} = 0.8113$$

Info(Race, T) =
$$\frac{1}{2}$$
 x Info(T_{black}) + $\frac{1}{2}$ x Info(T_{white}) = 0.8113

Gain(Race, T) = Info(T) – Info(Race, T) =
$$1 - 0.8113 = 0.1887$$

For attribute Race,

$$Gain(Race, T) = 0.1887$$

Income Child Insurance Race black high no yes white high yes yes white low yes yes white low yes yes black low no no black low no no black low no no white low no no

Info(T) =
$$-\frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2}$$

= 1

For attribute Income,

Info
$$(T_{high}) = -1 \log 1 - 0 \log 0 = 0$$

Info
$$(T_{low}) = -1/3 \log 1/3 - 2/3 \log 2/3 = 0.9183$$

Info(Income, T) =
$$\frac{1}{4}$$
 x Info(T_{high}) + $\frac{3}{4}$ x Info(T_{low}) = 0.6887

Gain(Income, T) = Info(T) – Info(Income, T) =
$$1 - 0.6887 = 0.3113$$

For attribute Race,

Gain(Race, T) = 0.1887

For attribute Income,

Gain(Income, T) = 0.3113

Income

high

high

low

low

low

low

low

low

Race

black

white

white

white

black

black

black

white

Child

no

yes

yes

yes

no

no

no

no

Insurance

yes

yes

yes

yes

no

no

no

no

For attribute Child,

Info $(T_{ves}) = -1 \log 1 - 0 \log 0 = 0$

Info
$$(T_{no}) = -1/5 \log 1/5 - 4/5 \log 4/5 = 0.7219$$

Info(Child, T) =
$$3/8 \times Info(T_{yes}) + 5/8 \times Info(T_{no}) = 0.4512$$

Gain(Child, T) = Info(T) – Info(Child, T) =
$$1 - 0.4512 = 0.5488$$

For attribute Race,

Gain(Race, T) = 0.1887

For attribute Income,

Gain(Income, T) = 0.3113

For attribute Child,

Gain(Child, T) = 0.5488

Child

no

yes

yes

yes

no

no

no

no

white

low

Insurance

yes

yes

yes

yes

no

no

no

no

Info
$$(T_{black}) = -\frac{1}{4} \log \frac{1}{4} - \frac{3}{4} \log \frac{3}{4} = 0.8113$$

$$Info(T_{white}) = -0 log 0 - 1 log 1 = 0$$

Info(Race, T) =
$$4/5 \times Info(T_{black}) + 1/5 \times Info(T_{white}) = 0.6490$$

Gain(Race, T) = Info(T) – Info(Race, T) =
$$0.7219 - 0.6490 = 0.0729$$

For attribute Race,

$$Gain(Race, T) = 0.0729$$

	Race	Income	Child	Insurance
1	black	high	no	yes
2	white	high	yes	yes
3	white	low	yes	yes
4	white	low	yes	yes
5	black	low	no	no
6	black	low	no	no
7	black	low	no	no
8	white	low	no	no

For attribute Income,

Info
$$(T_{high}) = -1 \log 1 - 0 \log 0 = 0$$

Info
$$(T_{low}) = -0 \log 0 - 1 \log 1 = 0$$

Info(Income, T) =
$$1/5 \times Info(T_{high}) + 4/5 \times Info(T_{low}) = 0$$

$$Gain(Income, T) = Info(T) - Info(Income, T) = 0.7219 - 0 = 0.7219$$

For attribute Race,

Gain(Race, T) = 0.0729

For attribute Income,

Gain(Income, T) = (0.7219)

Info
$$(T_{high}) = -1 \log 1 - 0 \log 0 = 0$$

Info
$$(T_{low}) = -0 \log 0 - 1 \log 1 = 0$$

Info(Income, T) =
$$1/5 \times Info(T_{high}) + 4/5 \times Info(T_{low}) = 0$$

Gain(Income, T) = Info(T) – Info(Income, T) =
$$0.7219 - 0 = 0.7219$$

For attribute Race,

$$Gain(Race, T) = 0.0729$$

For attribute Income,

Gain(Income, T) =
$$(0.7219)$$

	Race Income		Child	Insurance	
1	black	high	no	yes	
2	white	high	yes	yes	
3	white	low	yes	yes	
4	white	low	yes	yes	
5	black	low	no	no	
6	black	low	no	no	
7	black	low	no	no	
8	white	low	no	no	

Suppose there is a new person.

Race	Income	Child	Insurance	
white	high	no	?	

CSIT5210 18

	Race Income		Child	Insurance
1	black	high	no	yes
2	white	high	yes	yes
3	white	low	yes	yes
4	white	low	yes	yes
5	black	low	no	no
6	black	low	no	no
7	black	low	no	no
8	white	low	no	no

CSIT5210 19

Decision Trees

- ID3
- (C4.5)
- CART

C4.5

- ID3
 - Impurity Measurement
 - Gain(A, T)Info(T) Info(A, T)
- C4.5
 - Impurity Measurement
 - Gain(A, T)= (Info(T) Info(A, T))/SplitInfo(A)
 - where SplitInfo(A) = $-\Sigma_{v \in A} p(v) \log p(v)$

Info(T) =
$$-\frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2}$$

= 1

For attribute Race,

Info
$$(T_{black}) = -\frac{3}{4} \log \frac{3}{4} - \frac{1}{4} \log \frac{1}{4} = 0.8113$$

Info
$$(T_{white}) = -\frac{3}{4} \log \frac{3}{4} - \frac{1}{4} \log \frac{1}{4} = 0.8113$$

Info(Race, T) =
$$\frac{1}{2}$$
 x Info(T_{black}) + $\frac{1}{2}$ x Info(T_{white}) = 0.8113

SplitInfo(Race) =
$$-\frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2} = 1$$

Gain(Race, T) =
$$(Info(T) - Info(Race, T))/SplitInfo(Race) = (1 - 0.8113)/1 = 0.1887$$

For attribute Race,

$$Gain(Race, T) = 0.1887$$

Income Child Race Insurance black high no yes white high yes yes white low yes yes white low yes yes black low no no black low no no black low no no white low no no

Info(T) =
$$-\frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2}$$

= 1

For attribute Income,

Info
$$(T_{high}) = -1 \log 1 - 0 \log 0 = 0$$

Info
$$(T_{low}) = -1/3 \log 1/3 - 2/3 \log 2/3 = 0.9183$$

Info(Income, T) =
$$\frac{1}{4}$$
 x Info(T_{high}) + $\frac{3}{4}$ x Info(T_{low}) = 0.6887

SplitInfo(Income) =
$$-2/8 \log 2/8 - 6/8 \log 6/8 = 0.8113$$

Gain(Income, T)= (Info(T)–Info(Income, T))/SplitInfo(Income) =
$$(1-0.6887)/0.8113$$

= 0.3837

For attribute Race,

$$Gain(Race, T) = 0.1887$$

For attribute Income,

$$Gain(Income, T) = 0.3837$$

For attribute Child,

$$Gain(Child, T) = ?$$

Race	Income	ncome Child Insurance	
black	high	no	yes
white	high	yes	yes
white	low	yes	yes
white	low	yes	yes
black	low	no	no
black	low	no	no
black	low	no	no
white	low	no	no

23

Decision Trees

- ID3
- **C4.5**
- CART

- Impurity Measurement
 - Gini $I(P) = 1 \sum_{j} p_{j}^{2}$

Info(T) =
$$1 - (\frac{1}{2})^2 - (\frac{1}{2})^2$$

= $\frac{1}{2}$

For attribute Race,

Info
$$(T_{black}) = 1 - (\frac{3}{4})^2 - (\frac{1}{4})^2 = 0.375$$

Info
$$(T_{white}) = 1 - (\frac{3}{4})^2 - (\frac{1}{4})^2 = 0.375$$

Info(Race, T) =
$$\frac{1}{2}$$
 x Info(T_{black}) + $\frac{1}{2}$ x Info(T_{white}) = 0.375

Gain(Race, T) = Info(T) – Info(Race, T) =
$$\frac{1}{2}$$
 – 0.375 = 0.125

For attribute Race,

$$Gain(Race, T) = 0.125$$

Race	Income	Child	Insurance
black	high	no	yes
white	high	yes	yes
white	low	yes	yes
white	low	yes	yes
black	low	no	no
black	low	no	no
black	low	no	no
white	low	no	no

Info(T) =
$$1 - (\frac{1}{2})^2 - (\frac{1}{2})^2$$

= $\frac{1}{2}$

For attribute Income,

Info
$$(T_{high}) = 1 - 1^2 - 0^2 = 0$$

Info
$$(T_{low}) = 1 - (1/3)^2 - (2/3)^2 = 0.444$$

Info(Income, T) =
$$1/4 \times Info(T_{high}) + 3/4 \times Info(T_{low}) = 0.333$$

Gain(Income, T) = Info(T) – Info(Race, T) =
$$\frac{1}{2}$$
 – 0.333 = 0.167

For attribute Race,

Gain(Race, T) = 0.125

For attribute Income,

Gain(Race, T) = 0.167

For attribute Child,

Gain(Child, T) = ?

Race	Income	Child	Insurance
black	high	no	yes
white	high	yes	yes
white	low	yes	yes
white	low	yes	yes
black	low	no	no
black	low	no	no
black	low	no	no
white	low	no	no

Classification Methods

- Decision Tree
- Bayesian Classifier
- Nearest Neighbor Classifier

CSIT5210 28

Bayesian Classifier

- Naïve Bayes Classifier >
- Bayesian Belief Networks

CSIT5210 29

Naïve Bayes Classifier

- Statistical Classifiers
- Probabilities
- Conditional probabilities

CSIT5210

30

Naïve Bayes Classifier

- Conditional Probability
 - A: a random variable
 - B: a random variable

$$P(A \mid B) = \frac{P(AB)}{P(B)}$$

Naïve Bayes Classifier

- Bayes Rule
 - A: a random variable
 - B: a random variable

$$P(A \mid B) = \frac{P(B|A) P(A)}{P(B)}$$

Naïve Bayes Class

Race	Income	Child	Insurance
black	high	no	yes
white	high	yes	yes
white	low	yes	yes
white	low	yes	yes
black	low	no	no
black	low	no	no
black	low	no	no
white	low	no	no

- Independent Assumption
 - Each attribute are independent
 - e.g.,P(X, Y, Z | A) = P(X | A) x P(Y | A) x P(Z | A)

Suppose	there	is a	new	person
---------	-------	------	-----	--------

Race	Income	Child	Insurance	
white	high	no	?	

Valve Baves Clas

For attribute Race,

$$P(Race = black (Yes) = \frac{1}{4})$$

$$P(Race = white | Yes) = \frac{3}{4}$$

$$P(Race = black | No) = \frac{3}{4}$$

$$P(Race = white | No) = \frac{1}{4}$$

For attribute Income,

$$P(Income = high | Yes) = \frac{1}{2}$$

$$P(Income = low | Yes) = \frac{1}{2}$$

$$P(Income = high | No) = 0$$

$$P(Income = low | No) = 1$$

For attribute Child,

$$P(Child = yes | Yes) = \frac{3}{4}$$

$$P(Child = no \mid Yes) = \frac{1}{4}$$

$$P(Child = yes | No) = 0$$

$$P(Child = no | No) = 1$$

CSIT5210

$$P(Yes) = \frac{1}{2}$$

$$P(No) = \frac{1}{2}$$

Naïve Bayes Classifier

$$= \frac{3}{4} \times \frac{1}{2} \times \frac{1}{4}$$

$$= 0.09375$$

$$x P(Child = no | No)$$

$$= \frac{1}{4} \times 0 \times 1$$

$$= 0$$

Suppos	se there is	a new pers	son.				L	
	Race	Income	Chi	ild	Insu	irance		
	white	high	n	0		?		
		aive	2	K	a _V	/PC		lass
For at	tribute F	Race.		Ins	uran	ce = Y	'es	
P(R	ace = b	olack (Ye				$P(Yes) = \frac{1}{2}$		
•		vhite Ye olack No	•		4	$P(No) = \frac{1}{2}$		
P(R	ace = v	vhite N	o) =	1/4				
For attribute Income,						Naïve	Bayes	Classifier
P(Income = high Yes) = $\frac{1}{2}$ P(Income = low Yes) = $\frac{1}{2}$ P(Income = high No) = 0				P(R	ace :	= white,		

Race	Income	Child	Insurance
black	high	no	yes
white	high	yes	yes
white	low	yes	yes
white	low	yes	yes
black	low	no	no
black	low	no	no
black	low	no	no
white	low	no	no

P(Race = white, Income = high, Child = no| Yes)

= 0.09375

For attribute Child,

P(Child = yes | Yes) =
$$\frac{3}{4}$$

P(Child = no | Yes) = $\frac{1}{4}$
P(Child = yes | No) = 0
P(Child = no | No) = 1

CSIT5210

P(Income = low | No) = 1

Suppose there is a new person.					
	Race	Income	Child	Insurance	
	white	high	no	?	
Naive Baves Clas					
For attribute Race, Insurance = Yes					
P(Race = black (Yes)					
P(Race = white Yes)		•	וט	$(No) = \frac{1}{2}$	

bl
wl
wl

Race	Income	Child	Insurance
black	high	no	yes
white	high	yes	yes
white	low	yes	yes
white	low	yes	yes
black	low	no	no
black	low	no	no
black	low	no	no
white	low	no	no
		•	

$$P(Race = white | Yes) = \frac{3}{4}$$

$$P(Race = black \mid No) = \frac{3}{4}$$

$$P(Race = white | No) = \frac{1}{4}$$

For attribute Income,

$$P(Income = high | Yes) = \frac{1}{2}$$

$$P(Income = low | Yes) = \frac{1}{2}$$

$$P(Income = high | No) = 0$$

$$P(Income = low | No) = 1$$

For attribute Child,

$$P(Child = yes | Yes) = \frac{3}{4}$$

$$P(Child = no \mid Yes) = \frac{1}{4}$$

$$P(Child = yes | No) = 0$$

$$P(Child = no | No) = 1$$

CSIT5210

$$= \frac{1}{4} \times 0 \times 1$$

= 0.09375

$$= 0$$

Suppos	e there is	a new pers	son.		
	Race	Income	Child	Insurance	
_	white	high	no	?	
Naive				urance = Y	
For att	tribute I	Race, =			
•		olack (Ye			$(Yes) = \frac{1}{2}$
•		vhite Ye olack No	•	Ý P($(No) = \frac{1}{2}$

Race	Income	Child	Insurance
black	high	no	yes
white	high	yes	yes
white	low	yes	yes
white	low	yes	yes
black	low	no	no
black	low	no	no
black	low	no	no
white	low	no	no

For attribute Income,

P(Income = high | Yes) =
$$\frac{1}{2}$$

P(Income = low | Yes) = $\frac{1}{2}$
P(Income = high | No) = 0

 $P(Race = white | No) = \frac{1}{4}$

$$P(Income = low | No) = 1$$

P(Race = white, Income = high, Child = no| Yes) = 0.09375

For attribute Child,

P(Child = yes | Yes) =
$$\frac{3}{4}$$

P(Child = no | Yes) = $\frac{1}{4}$

$$P(Child = yes | No) = 0$$

$$P(Child = no | No) = 1$$

$$= 0$$

Naïve Bayes Classifier

Suppose there is a new person.				
	Race	Income	Chi	ild

white high no ?

Naive Baves Class

Insurance

Insurance = Yes

For attribute Race,

$$P(Race = black (Yes) = \frac{1}{4})$$

$$P(Race = white | Yes) = \frac{3}{4}$$

$$P(Race = black | No) = \frac{3}{4}$$

$$P(Race = white | No) = \frac{1}{4}$$

For attribute Income,

$$P(Income = high | Yes) = \frac{1}{2}$$

$$P(Income = low | Yes) = \frac{1}{2}$$

$$P(Income = high | No) = 0$$

$$P(Income = low | No) = 1$$

For attribute Child,

$$P(Child = yes | Yes) = \frac{3}{4}$$

$$P(Child = no | Yes) = \frac{1}{4}$$

$$P(Child = yes | No) = 0$$

$$P(Child = no | No) = 1$$

Child Race Income Insurance black high no yes white high yes yes white low yes yes white low yes yes black low no no black low no no black low no no white low no no

Naïve Bayes Classifier

 $P(Yes) = \frac{1}{2}$

 $P(No) = \frac{1}{2}$

P(Race = white, Income = high, Child = no| Yes) = 0.09375

P(Race = white, Income = high, Child = no| No) = 0

For attribute Race,

 $P(Race = black (Yes) = \frac{1}{4})$

 $P(Race = white | Yes) = \frac{3}{4}$

 $P(Race = black \mid No) = \frac{3}{4}$

 $P(Race = white | No) = \frac{1}{4}$

For attribute Income,

P(Income = high |

P(Income = low | Y)

P(Income = high |

P(Income = low | N

For attribute Child,

P(Child = yes | Yes)

P(Child = no | Yes)

P(Child = yes | No)

P(Child = no | No) = 1

P(Yes | Race = white, Income = high, Child = no) 0.046875

P(Race = white, Income = high, Child = no)

P(No | Race = white, Income = high, Child = no)

P(Race = white, Income = high, Child = no)

 $P(Yes) = \frac{1}{2}$

 $P(No) = \frac{1}{2}$

black	low	no	no
black	low	no	no
black	low	no	no
white	low	no	no

Naïve Bayes Classifier

Since P(Yes | Race = white, Income = high, Child = no) > P(No | Race = white, Income = high, Child = no).

we predict the following new person will buy an insurance.

Race	Income	Child	Insurance
white	high	no	?

Bayesian Classifier

- Naïve Bayes Classifier
- Bayesian Belief Networks

CSIT5210

42

Bayesian Belief Network

- Naïve Bayes Classifier
 - Independent Assumption
- Bayesian Belief Network
 - Do not have independent assumption

Some attributes are dependent on other attributes.

e.g., doing exercises may reduce the probability of suffering from Heart Disease

Let X, Y, Z be three random variables.

X is said to be **conditionally independent** of Y given Z if the following holds.

$$P(X \mid Y, Z) = P(X \mid Z)$$

Lemma:

If X is conditionally independent of Y given Z, $P(X, Y \mid Z) = P(X \mid Z) \times P(Y \mid Z) ?$

Let X, Y, Z be three random variables. X is said to be **conditionally independent** of Y given Z if the following holds. $P(X \mid Y, Z) = P(X \mid Z)$ Exercise (E) Diet (D)

Property: A node is **conditionally independent** of its non-descendants if its parents are known.

Heart Disease (HD)

Heartburn (Hb)

Blood Pressure (BP)

Chest Pain (CP)

e.g., $P(BP = High \mid HD = Yes, D = Healthy) = P(BP = High \mid HD = Yes)$

"BP = High" is **conditionally independent** of "D = Healthy" given "HD = Yes"

e.g., $P(BP = High \mid HD = Yes, CP=Yes) = P(BP = High \mid HD = Yes)$

"BP = High" is **conditionally independent** of "CP = Yes" given "HD = Yes"

Exercise	Diet	Heartburn	Blood Pressure	Chest Pain	Heart Disease
?	?	?	?	?	?
Exercise	Diet	Heartburn	Blood Pressure	Chest Pain	Heart Disease
?	?	?	High	?	?
Exercise	Diet	Heartburn	Blood Pressure	Chest Pain	Heart Disease
Yes	Healthy	?	High	?	?

Exercise	Diet	Heartburn	Blood Pressure	Chest Pain	Heart Disease
?	?	?	?	?	?

$$\begin{split} P(\text{HD = Yes}) &= \sum_{x \in \{\text{Yes, No}\}} \sum_{y \in \{\text{Healthy, Unhealthy}\}} P(\text{HD=Yes}|\text{E=x, D=y}) \text{ x P(E=x, D=y)} \\ &= \sum_{x \in \{\text{Yes, No}\}} \sum_{y \in \{\text{Healthy, Unhealthy}\}} P(\text{HD=Yes}|\text{E=x, D=y}) \text{ x P(E=x) x P(D=y)} \\ &= 0.25 \text{ x } 0.7 \text{ x } 0.25 + 0.45 \text{ x } 0.7 \text{ x } 0.75 + 0.55 \text{ x } 0.3 \text{ x } 0.25 \\ &\quad + 0.75 \text{ x } 0.3 \text{ x } 0.75 \\ &= 0.49 \\ P(\text{HD = No}) = 1 - P(\text{HD = Yes}) \\ &= 1 - 0.49 \\ &= 0.51 \end{split}$$

Exercise	Diet	Heartburn	Blood Pressure	Chest Pain	Heart Disease
?	?	?	High	?	?

$$P(BP = High) = \sum_{x \in \{Yes, No\}} P(BP = High|HD=x) \times P(HD = x)$$
$$= 0.85x0.49 + 0.2x0.51$$
$$= 0.5185$$

$$P(HD = Yes|BP = High) = \frac{P(BP = High|HD=Yes) \times P(HD = Yes)}{P(BP = High)}$$
$$= \frac{0.85 \times 0.49}{0.5185}$$
$$= 0.8033$$

$$P(HD = No|BP = High) = 1 - P(HD = Yes|BP = High)$$

= 1 - 0.8033
= 0.1967

Exercise	Diet	Heartburn	Blood Pressure	Chest Pain	Heart Disease
Yes	Healthy	?	High	?	?

$$P(HD = Yes \mid BP = High, D = Healthy, E = Yes)$$

$$= \frac{P(BP = High \mid HD = Yes, D = Healthy, E = Yes)}{P(BP = High \mid D = Healthy, E = Yes)} x P(HD = Yes \mid D = Healthy, E = Yes)$$

$$= \frac{P(BP = High|HD = Yes) P(HD = Yes|D = Healthy, E = Yes)}{P(BP = High|HD = Yes) P(HD = Yes|D = Healthy, E = Yes)}$$

$$\sum_{x \in \{Yes, No\}} P(BP=High|HD=x) P(HD=x|D=Healthy, E=Yes)$$

$$0.85 \times 0.25 + 0.2 \times 0.75$$

= 0.5862

$$P(HD = No \mid BP = High, D = Healthy, E = Yes)$$

$$= 1- P(HD = Yes \mid BP = High, D = Healthy, E = Yes)$$

= 1-0.5862

= 0.4138

Classification Methods

- Decision Tree
- Bayesian Classifier
- Nearest Neighbor Classifier

CSIT5210

52

Nearest Neighbor Classifier

Computer	History
100	40
90	45
20	95

Nearest Neighbor Classifier

Computer	History	Buy Book?
100	40	No (-)
90	45	Yes (+)
20	95	Yes (+)

Nearest Neighbor Classifier:

Step 1: Find the nearest neighbor

Nearest Neighbor

Computer	History	Buy Book?
100	40	No (-)
90	45	Yes (+)
20	95	Yes (+)

Computer

Suppose there is a new person

Computer	History	Buy Book?
95	35	?

Step 1: Find k nearest neighbors

Nearest Neighbors

Step 2: Use the majority of the labels of the neighbors

Computer	History	Buy Book?
100	40	No (-)
90	45	Yes (+)
20	95	Yes (+)
	•••	•••

Computer

Suppose there is a new person

Computer	History	Buy Book?
95	35	?