Fizika Veličine, konstante i formule Petar Katić

1 Brzina i kretanje - Uvod

Srednja brzina	$\overrightarrow{v_{sr}} = \frac{\Delta \overrightarrow{x}}{\Delta t}$
Trenutna brzina	$v = \frac{dx}{dt} = \dot{x}$
Razlaganje intenziteta brzine	$v = \sqrt{v_x^2 + v_y^2 + v_z^2}$
Srednje ubrzanje	$\vec{a_{sr}} = \frac{\Delta \vec{v}}{\Delta t}$
Trenutno ubrzanje	$\vec{a} = \frac{d\vec{v}}{dt} = \dot{\vec{v}}$
Razlaganje intenziteta ubrzanja	$a = \sqrt{a_x^2 + a_y^2 + a_z^2}$

2 Pravolinijsko kretanje

Pređeni put
$$x - x_0 = v(t - t_0)$$

2.1 Jednako-ubrzano kretnje

Brzina	$v - v_0 = a \left(t - t_0 \right)$
Pređeni put	$x - x_0 = \int_{t_0}^t (v_0 + at) dt$
Pređeni put $(x_0 = 0 \land t_0 = 0)$	$x = v_0 t + \frac{at^2}{2}$

3 Krivolinijsko kretanje

Ubrzanje	$a = \sqrt{a_n^2 + a_t^2}$
Normalno ubrzanje	$a_n = \frac{v^2}{R}$
Tangencijalno ubrzanje	$a_t = \frac{dv}{dt} = \dot{v}$

3.1 Kružno kretanje

Pređeni put	$\Delta x = R \Delta \Theta$
Period kretanja	$T=2\pi$
Frekvencija/Učestalost	$f = \frac{1}{T}$
Ugaona brzina	$\omega = \frac{d\Theta}{dt} \left[\frac{\text{rad}}{\text{s}} \right]$
Ugaono ubrzanje	$\alpha = \frac{d\omega}{dt} = \frac{d^2\Theta}{dt^2}$
Linearno ubrzanje	$a = \sqrt{a_n^2 + a_t^2}$
Veza između \vec{a} , $\vec{\omega}$ i \vec{v}	$\vec{a} = \vec{\omega} \times \vec{v}$
Normalno linearno ubrzanje	$a_n = \omega v = R\omega^2 = \frac{v^2}{R}$
Tangencijalno linearno ubrzanje	$a_t = \frac{dv}{dt} = R\frac{d\omega}{dt} = R\alpha$

3.2 Ravnomjerno kretanje

Linearna brzina	$v = \omega R$ $\vec{v} = \vec{\omega} \times \vec{r}$
Obiđeni ugao	$\theta - \theta_0 = \omega(t - t_0)$

3.3 Jednako-ubrzano kretanje

Ugaona brzina	$\omega - \omega_0 = \alpha(t - t_0)$
Obiđeni ugao	$\theta - \theta_0 = \int_{t_0}^t (\omega_0 + \alpha t) dt$

4 Kosi hitac

Kretanje po x-osi je ravnomjerno pravolinijsko, a po y-osi jednako-ubrzano.

Komponente početne brzine	$V_{0x} = V_0 \cos \alpha$ $V_{0y} = V_0 \sin \alpha$
Komponente brzine	$V_x = V_{0x}$ $V_y = V_{0y} - gt$
Koordinate	$x = V_{0x}t$ $y = V_{0y}t - \frac{gt^2}{2}$
Trajanje leta	$t_{\max} = \frac{2V_0 \sin \alpha}{g}$
Domen	$D = \frac{V_0^2 \sin(2\alpha)}{g}$
Maksimalna visina	$h_{\max} = \frac{V_0^2 \sin^2 \alpha}{2g}$
Jednačina putanje	$y = tg\alpha x - \frac{gx^2pt}{2V_0^2\cos^2\alpha}$

4.1 Ostali hici

	$\vec{a} = \vec{g}$		$\vec{a} = -\vec{g}$		$\vec{a} = \vec{g}$
Hitac naniže	$v = v_0 + gt$	Hitac naviše	$v = v_0 - gt$	Clohodon nod	v = gt
mitac manize	$h = v_0 t + \frac{gt^2}{2}$	mitac navise	$h = v_0 t - \frac{gt^2}{2}$	Slobodan pad	$h = \frac{gt^2}{2}$
	$v^2 = v_0^2 + 2gh$		$v^2 = v_0^2 - 2gh$		$v = \sqrt{2gh}$

5 Njutnovi zakoni

Bitna formula se nalazi u drugom Njutnovom zakonu: $\vec{F} = \frac{d\vec{p}}{dt} = \frac{d(m\vec{v})}{dt}$.

6 Sile trenja

 μ - Koeficijent trenja

Sila trenja	$F = \mu N$
Odnos koef. statičkog i dinamičkog trenja	$\mu_s > \mu_d$
Trenje kotranja	$F_{tr} = k \frac{N}{R}$

7 Elastične sile

 $E\left[\frac{N}{m^2} = Pa\right]$ - Jungov modul elastičnosti

Napon	$\sigma = \frac{F}{S}$
Relativna deformacija	$\delta = \frac{\Delta x}{L}$
Hukov zakon	$F = E \frac{S}{L} \Delta x$
Koeficijent elastičnosti	$k = E \frac{S}{L}$
Sila elastičnosti	$F = -k\Delta x$

8 Sile kod krivolinijskog kretanja

Sila	$\vec{F} = \vec{F_t} + \vec{F_n}$
Tangencijalna sila	$F_t = ma = m\dot{v}$
Normalna sila	$F_n = ma_n = m\frac{v^2}{R}$
Centripetalna sila	$F_{cp} = -m\frac{v^2}{R}$ $\vec{F_{cp}} = -m\omega^2 \vec{R}$
Centrifugalna sila	$\vec{F_{cf}} = -\vec{F_{cp}}$

9 Sistemi materijalnih tačaka

Radijus vektor centra mase	$r_{cm}^{\rightarrow} = \frac{\sum m_i \vec{r_i}}{\sum m_i} = \frac{\sum m_i \vec{r_i}}{m}$
Brzina centra mase	$v_{cm}^{\rightarrow} = \dot{r_{cm}}^{\rightarrow} = \frac{\sum m_i \dot{r_i}}{m}$
Odnos ubrzanja centra mase i sila koje djeluju na mat. tačke	$m\vec{a_{cm}} = \sum \vec{F_i}$

10 Mehanički rad. Snaga

Elem. rad na dijelu pomjeranja $d\vec{r}$	$dA = \vec{F} d\vec{r} \left[J = Nm \right]$
Elem. rad na dijelu puta ds	$dA = F_t ds$
Ukupan rad	$A = \int_{A}^{B} F_{t} ds = \int_{A}^{B} F \cos \alpha ds$
Srednja snaga	$P_{sr} = \frac{\Delta A}{\Delta t} \left[W = \frac{J}{S} \right]$
Trenutna snaga	$P = \frac{dA}{dt} = \dot{A}$
Trenutna snaga data preko sile i brzine	$P = rac{ec{F} dec{r}}{dt} = ec{F} ec{v}$

11 Kinetička i potencijalna energija

Kinetička energija	$E_K = \frac{mv^2}{2}$
Potencijalna energija	$E_P = mgh$
Karakteristika konzervativnih sila	$\oint F_K ds = 0$

12 Zakoni održanja

KTNKR - Klizanje tijela niz kosu ravan

Zakon održ. impulsa	$m_1\vec{v_1} + m_2\vec{v_2} = const.$
Zakon održ. energije (slobodan pad)	$E_{K1} + E_{P1} = const.$
Zakon održ. energije (KTNKR, $\mu = 0$)	$E_B = E_A$
Zakon održ. energije (KTNKR, $\mu \neq 0$)	$E_B = E_A - A_{tr} = E_A - sF_{tr}$

13 Sudar dva tijela

Brzina novog tijela (neelastični sudar)	$v = \frac{m_1 \vec{v_{10}} + m_2 \vec{v_{20}}}{m_1 + m_2}$
Izraz elastičnog sudara	$\vec{v_{10}} + \vec{v_1} = \vec{v_{20}} + \vec{v_2}$

14 Moment sile. Moment inercije

Moment sile (skalar)	$M = Fl = Fr \sin \Theta$
Moment size (vektor)	$\vec{M} = \vec{r} \times \vec{F}$
Moment sile (preko ugaonog ubrzanja)	$\vec{M} = \vec{\alpha}I$
Moment inercije	$I = mr^2$
Štajnerova teorema	$I = I_c + md^2$

15 Moment impulsa. Zakon održanja

Moment impulsa	$\vec{L} = \vec{r} \times m\vec{v} = I\vec{\omega}$
Zakon održanja momenta impulsa	$\vec{M} = \frac{d\vec{L}}{dt} = 0 \implies \vec{L} = const.$

16 Karakteristične pojave rotacionog kretanja

Elementarni rad	$dA = M d\Theta$
Snaga	$P = \vec{M}\vec{\omega}$
Kinetička energija (bez translacije)	$E_K = \frac{I\omega^2}{2}$
Kinetička energija (opšti slučaj, translacija i rotacija)	$E_K = \frac{mv^2}{2} + \frac{I\omega^2}{2}$

17 Harmonijske oscilacije

Dif. jed. kretanja	$ma = -kx \implies \frac{d^2x}{dt^2} + \frac{k}{m}x = 0$
Elongacija	$x = A\sin(\omega_0 t + \Phi)$
Brzina	$v = A\omega_0 \cos(\omega_0 t + \Phi) = A\omega_0 \sin(\omega_0 t + \Phi + \frac{\pi}{2})$
Ubrzanje	$a = -A\omega_0^2 \sin(\omega_0 t + \Phi) = A\omega_0^2 \sin(\omega_0 t + \Phi + \pi)$
Kružna frekvencija	$\omega_0 = \sqrt{\frac{k}{m}}$
Period	$T = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{m}{k}}$
Energija harm. osc.	$E = E_P + E_K = \frac{kA^2}{2}$

18 Matematičko klatno

 Φ - ugao između trenutnog i srednjeg položaja niti

Moment sile klatna	$M = -mgl\sin\Phi$
Moment inercije	$I = ml^2$
Dif. jed. harm. osc.	$\frac{d^2\Phi}{dt^2} + \omega_0^2 \Phi = 0$
Kružna frekvencija klatna	$\omega_0 = \sqrt{\frac{g}{l}}$
Period oscilovanja klatna	$T = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{l}{g}}$

19 Fizičko klatno

Kružna frekvencija	$\omega_0 = \sqrt{\frac{mgs}{I}}$
Period	$T = 2\pi \sqrt{\frac{I}{mgs}}$

20 Prigušene oscilacije

 $e^{\gamma t}$ - Stepen prigušenja

Faktor prigušenja	$\gamma = \frac{\lambda}{2m}$
Vlastita (prirodna) frekvencija	$\omega_0 = \sqrt{\frac{k}{m}}$
Dif. jed. kretanja	$\frac{d^2x}{dt^2} + \frac{\lambda}{m}\frac{dx}{dt} + \frac{k}{m}x = 0$ $\frac{d^2x}{dt^2} + 2\gamma\frac{dx}{dt} + \omega_0^2x = 0$
Amplituda, po vremenu	$x = A_0 e^{-\gamma t} \cos(\omega t + \Phi)$
Logaritamski dekrement	$\delta = \ln(\frac{x_1}{x_2}) = \gamma t$
Faktor dobrote	$Q = \frac{E_1}{E_1 - E - 2} \approx \frac{1}{2\gamma}$

21 Prinudne oscilacije

Dif. jed. kretanja	$\frac{d^2x}{dt^2} + 2\gamma \frac{dx}{dt} + \omega^2 x = f_0 \cos(\omega t)$
Sila po jedinici mase	$f_0 = \frac{F_0}{m}$
Faktor prigušenja	$\gamma = \frac{\lambda}{2m}$
Vlastita (prirodna) frekvencija	$\omega_0 = \sqrt{\frac{k}{m}}$

22 Talasi

 \vec{k} - Talasni vektor

E - Jungov modul elastičnosti

Fazna brzina talasa	$v = \frac{\lambda}{T}$
Talasni broj	$k = \frac{2\pi}{\lambda}$
Jendačina kretanja	$\varepsilon(x,t) = A\sin(\omega t + kx)$
Talasna jednačina	$\frac{\partial^2 \varepsilon(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \varepsilon(x,t)}{\partial t^2}$
Jed. ravn. tal. koji sa osama $x/y/z$ zaklapa uglove $\alpha/\beta/\gamma$	$\frac{\partial^2 \varepsilon}{\partial x^2} + \frac{\partial^2 \varepsilon}{\partial y^2} + \frac{\partial^2 \varepsilon}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 \varepsilon}{\partial t^2}$
Prethodna jednačina, Laplasovim operatorom	$\Delta \varepsilon = \frac{1}{v^2} \frac{\partial^2 \varepsilon}{\partial t^2}$
Funkcija ravnog talasa	$\varepsilon(\vec{r},t) = Ae^{i(\omega t - \vec{k}\vec{r})}$
Brzina prositranja talasa	$v = \sqrt{\frac{E}{\rho}}$
Energija jedne čestice talasa	$E_1 = \frac{1}{2}kA^2 = \frac{1}{2}m\omega^2 A^2$
Ukupna energija čestica u zapremini ΔV	$\Delta E = \frac{1}{2}\omega^2 A^2 \rho \Delta V$
Gustina energije (En. po jedinici zapremine)	$\epsilon = \frac{\Delta E}{\Delta V} = \frac{1}{2}\omega^2 A^2 \rho = \frac{1}{2}A^2 \rho (2\pi \nu)^2$
Snaga talasa	$P = \frac{\Delta E}{\Delta t} = S v \epsilon$
Intenzitet talasa	$I = \frac{\Delta E}{S\Delta t} = v\epsilon$
Fazna razlika talasa (interferencija, maks. pojačanje)	$\Delta r = n\lambda$
Fazna razlika talasa (interferencija, min. pojačanje)	$\Delta r = (2n+1)\lambda$
Mjesto gdje se nalaze čvorovi stojećih talasa	$x_n = (2n+1) \tfrac{\lambda}{4}$

23 Zvuk

Zvuk je mehanički longitudijalni talas.

 κ ("kapa") - Adijabatska konstanta $I\left[\frac{W}{m^2}\right]$ - Objektivna jačina zvuka $L\left[db\right]$ - Subjektivna jačina zvuka

Brzina zvuka kroz čvrsto tijelo	$v_z = \sqrt{\frac{E}{\rho}}$
Brzina zvuka kroz gas	$v_z = \sqrt{\frac{p\kappa}{\rho}}$
Subjektivna jačina zvuka	$L = 10 \log \frac{I}{I_0}$

23.1 Doplerov efekat

Izvor se kreće ($u_p = 0$)	$f = \frac{u}{u - u_i} f_0$
Prijemnik se kreće ($u_i = 0$)	$f = \frac{u + u_p}{u} f_0$
Oba se kreću	$f = \frac{u + u_p}{u - u_i} f_0$

24 Hidrostatika

 η ("eta") - Koeficijent viskoznosti

Srednji pritisak	$p_{sr} = \frac{\Delta F}{\Delta S} \left[Pa \right]$
Pritisak u tački	$p = \frac{dF}{dS}$
Pritisak u horizontalnoj cijevi	$p_1 = p_2 = const.$
Pritisak u vertikalnoj cijevi	$p_1 = p_2 + \rho g h$
Arhmedov zakon	$dF_p = \rho g dV$ $F_p = \rho g V$
Odnos G i F_p (Arhimedov zakon)	$G > F_p$ - tijelo tone $G < F_p$ - tijelo pluta $G = F_p$ - tijelo lebdi
Jednačina kontinuiteta	Sv = const.
Bernulijeva jednačina	$p + \rho g h + \frac{1}{2} \rho v^2 = const.$
Ventruvijeva cijev	$p + \frac{1}{2}\rho v^2 = const.$
Sila trenja	$F_{tr} = \eta S \frac{dv}{dx}$
Rejnoldsov broj	$R_e = \frac{\rho v l}{\eta}$
Opis kretanja fluida preko R_e	$R_e > 3000$ - turbulentno $R_e < 2000$ - laminarno $2000 < R_e < 3000$ - prelazno
Stoksov zakon	$F = 6\pi \eta r v$

25 Širenje čvrstih tijela pri zagrijavanju

 $L_0/S_0/V_0$ - Dužina/površina/zapremina na 0° $\alpha/\beta/\gamma$ - Termički koeficijent linearnog/površinskog/zapreminskog širenja

Linearno širenje	$L = L_0(1 + \alpha t)$
Površinsko širenje	$S = S_0(1 + 2\alpha t) = S_0(1 + \beta t)$
Zapreminsko širenje	$V = V_0(1 + 3\alpha t) = V_0(1 + \gamma t)$
Promjena gustine tijela	$\rho = \frac{\rho_0}{1 + \gamma t}$

26 Gasovi. Kinetička teorija gasova

Gej-Lisakov zakon	$p = const. \Leftrightarrow \frac{V}{T} = const.$
Šarlov zakon	$V = const. \Leftrightarrow \frac{p}{T} = const.$
Bojl-Mariotov zakon	$T = const. \Leftrightarrow pV = const.$
Univerzalna gasna konstanta	$R = 8.314 \frac{J}{Kmol}$
Jednačina stanja idealnog gasa	pV = nRT
Klapejronova jednačina	$\frac{pV}{T} = const.$
Bolcmanova konstanta	$k = 1.38 \cdot 10^{-23} \frac{J}{K}$
Broj molekula po jedinici zapremine	$n_0 = \frac{n}{V}$
Pritisak molekula gasa	$p = \frac{2}{3}n_0 E_k$
Kinetička energija molekula gasa	$E_k = \frac{3}{2}kT$
Najvjerovatnija brzina molekule gasa	$v_{vr} = \sqrt{\frac{2RT}{M}}$

27 Širenje gasova pri zagrijavanju

Zapreminsko širenje	$V = V_0(1 + \gamma t)$
Koeficijent zapreminskog širenja	$\gamma = \frac{1}{273.15^{\circ}C}$

28 Rad pri širenju gasova

Rad pri širenju gasova	$A = nRT \ln \frac{V_2}{V_1}$ $A = nRT \ln \frac{p_1}{p_2}$

29 Količina toplote. Speifična toplota

 $c~[\frac{J}{g^{\circ}C}{\rm ili}\frac{J}{kg^{\circ}C}]$ - Specifična toplotna konstanta, specifična toplota

Specifična toplota vode	$c = 4.186 \frac{J}{g^{\circ}C}$
Količina toplote, grijanje sa t_1 na t_2	$Q = mc(t_2 - t_1)$

30 Principi termodinamike

Prvi princip (zakon) termodinamike	dQ = dU + dA = dU + p dV
Stepen korisnog dejstva	$\eta = rac{Q-Q_0}{Q} = rac{Q_k}{Q} \ \eta = rac{T_1-T_2}{T_1}$

31 Optika

 $n_{2,1}[\varnothing]$ - Relativni indeks prelamanja druge sredine u odnosu na prvu za dati monohromatski zrak

arepsilon - Dielektrična propustljivost neke prozračne sredine

 μ - Magnetna propustljivost neke prozračne sredine

 δ_D ("delta de") - Skretanje monohromatske komponente u srednjem dijelu spektra, žute D-linije

Relativni indeks prelamanja	$n_{2,1} = \frac{\sin\alpha}{\sin\beta} = \frac{v_1}{v_2}$
Apsolutni indeks prelamanja	$n_1 = \frac{c}{v_1}$ $n_2 = \frac{c}{v_2}$
Ondos relativnih i apsolutnog indeksa prelamanja	$n_{2,1} = \frac{n_2}{n_1}$
Snelijus-Dekartov zakon	$n_1 \sin \alpha = n_2 \sin \beta$
Odnos relativnih indeksa prelamanja	$n_{2,1} = \frac{1}{n_{1,2}}$
Brzina elektromag. hromatskih talasa u nekoj sredini	$v = \frac{c}{\sqrt{\varepsilon \mu}} \implies n = \sqrt{\varepsilon \mu}$
Optička dužina puta	$l = l_0 n$
Paralelno pomjeranje upadnog zraka kroz planparalelnu ploču	$a = d \sin \alpha \left(1 - \frac{\cos \alpha}{\sqrt{(n^2 - \sin^2 \alpha)}}\right)$
Granični ugao totalne refleksije	$\sin\varphi = \frac{1}{n}$
Granični ugao totalne refleksije	$\sin \varphi = \frac{n_1}{n_2}$
(iz optički rjeđe u optički gušću sredinu, $n_2 > n_1$)	n_2
Disperzija prizme	$\delta_2 - \delta_2 = \gamma (n_2 - n_1)$
Disperziona moć (relativna disperzija) neke supstance	$\omega = \frac{\delta_2 - \delta_1}{\delta_D}$

Fotometrija **32**

dW - Elektromagnetna energija

 $d\Omega$ - Prostorni ugao

 $E[lx = \frac{lm}{m^2}]$ - Osjetljivost ["luks"] $L[nt = \frac{cd}{m^2}]$ - Luminacija ["nit"]

Objektivna jedinica svjetlosnog fluksa je vat $(W = \frac{J}{S})$, a subjektivna je lumen (lm). Osjetljivost opisuje stepen osjetljivosti neke površine dS na koju pada svjetlosti fluks $d\Phi_{pad}$. Emitacija je emisiona sposobnost površine dS koja emituje svjetlosni fluks $d\Phi_{em}$. Luminacija je karakteristika površine dS koja emituje svjetlost jačine I.

Svjetlosni fluks	$\Phi = \frac{dW}{dt}$
Jačina svjetlosti	$I = \frac{d\Phi}{d\Omega} \left[cd \right]$
Osjetljivost	$E = \frac{d\Phi_{pad}}{dS}$
Emitacija	$R = \frac{dPhi_{em}}{dS}$
Luminacija	$L = \frac{I}{\Delta S_n} = \frac{I}{\Delta S \cos \alpha}$

33 **Ogledala**

Žižna daljina sfernog ogledala	$f = \frac{R}{2}$
Jednačina ogledala	$\frac{1}{f} = \frac{1}{p} + \frac{1}{l}$

Sočiva **34**

P/L - Visina predmeta i lika

p/l - Udaljenost predmeta i lika od središnje linije sočiva

Jednačina sočiva	$\frac{1}{f} = \frac{1}{p} + \frac{1}{l}$
Linearno uvećanje sočiva	$v = \frac{l}{p} = \frac{L}{P}$
f^{-1} , ako je n_1 ind. prel. sredine u kojoj je sočivo, a n_2 ind. prel. sočiva ("+" je za konkavna, a "-" za konveksna sočiva)	$\frac{1}{f} = (\frac{n_2}{n_1} - 1)(\frac{1}{r_1} \pm \frac{1}{r_2})$

Interferencija svjetlosti **35**

Rastojanja tamnih linija ($k = 0, 1, 2$)	$x = (2k+1)\frac{\lambda}{2}\frac{d}{a}$
Rastojanja svijetlih linija ($k = 0, 1, 2$)	$x = k \frac{d}{a} \lambda$
Rastojanje između dve susjedne linije (tamne ili svijetle)	$\Delta x = \frac{\lambda}{2} \frac{d}{a}$

Difrakcija svjetlosti. Polarizacija svjetlosti. Optička aktivnost **36**

Za optičku aktivnost supstance:

 $[\alpha]$ - Specijalna moć rotacije, $\alpha \sim \frac{1}{\lambda^2}$

c - Koncentracija rastvora

d - Dužina kivete

Bregov zakon	$\sin \varphi = k \frac{\lambda}{2d}$
Indeks prelamanja, dat preko polarizacionog ugla	$n_{2,1} = \operatorname{tg}\alpha$ $\alpha = \operatorname{arctg}(n_{2,1})$
Malusov zakon	$I = I_0 \cos^2 \Theta$
Optička aktivnost supstance	$\varphi = [\alpha]cd$