Applied Machine Learning Group Coursework: IoT Intrusion Detection Competition using Machine Learning

Student ID 13166549 Siddharth Sengupta Preprocessing
Student ID 13405463 Alex Bates Feature Selection
Student ID 12819393 Alex Gorton – Algorithm Comparison
Student ID 13157188 Konstantin Orlovskiy – Algorithm Tuning
Student ID 13159064 Scott Tasker – Model Evaluation
Applied Machine Learning:

Birkbeck University: Professor Paul Yoo

Planning

Project initiation

We formed a group and held our initial meeting on the 10th of November 2019. At this meeting we made a series of decisions for the project:

- 1. Assignment of sections to group members
- 2. Workflow methodology
- 3. Project principles
- 4. Agreed a work schedule
- 5. Established communication
- 6. Programming conventions
- 1. Collectively this was our first experience using machine learning, so rather than prioritizing experience, we discussed the aspects and requirements of each section. We then individually volunteered for sections based on personal preferences.
- 2. We identified that each of the data handling steps are sequential, requiring input from the preceding stage. For example, the input of the feature selection step is the pre-processed data. This constraint necessitates a waterfall-like workflow.
- Due to time constraints and our relative inexperience, we determined that our project should favor speed and simplicity over complexity, for example using available libraries like scikit-learn rather than attempting to build our own tools from scratch.
- 4. Factoring 10 weeks to complete the project, we agreed to attempt to complete 2 full iterations prior to the Christmas break. The planned schedule is depicted in figure 1.
- 5. To enable distributed development of the project, we set up a WhatsApp group for communication and created a Github repository to store project files.
- 6. Further to point 5, we agreed that all programming should be performed in the Python programming language, and each section implemented as a function with documented inputs and outputs to allow easy use by the other group members.

		Sun	Thu	Sun	Thu	Sun	Thu	Sun	Thu	Sun	Thu	Sun	Thu	Sun	Thu	Sun	Thu	Sun	Thu	Sun	Thu	Deadline
PLAN 14/11		10-Nov	14-Nov	17-Nov	21-Nov	24-Nov	28-Nov	1-Dec	5-Dec	8-Dec	12-Dec	15-Dec	19-Dec	22-Dec	26-Dec	29-Dec	2√an	5-Jan	9-Jan	12√an	16-Jan	19-Jan
Project Planning	(group)																					
Pre-processing	Sid																					
Selecting features	Alex B.																					
Exploring and selecting ML algorithms	Alex G.																					
Refining algorithms	Kostantin																					
Evaluating model and analysing the results	Scott																					
Future work / Discuss results	(group)																					
Report 4,000 words (±10%), ~700 words per section	(group)																		ready			

Figure 1. Planned work schedule.

Project review

We held two review sessions, the first on the 12/12/2019 and a final review session on the 09/01/2020.

In the first session, we reported the conclusions of the first two iterations, and identified critical areas for improvement:

- Trying different scaling methods such as MinMax, StandardScaler
- Exploring dimensionality reduction techniques for feature selection like PCA
- Reviewing the algorithm selection, adding in K-nearest neighbours and Naïve Bayes
 Classifier
- Expanding the tuning parameters search size.
- Exploring further evaluation parameters such as F1 score, False Alarm rate, Michaels
 Correlation Coefficient

In the final review session, we discussed the conclusions of the project and assigned responsibilities for the planning section and the future of the report and code clean up.

Summary

- We delivered the project closely to the planned schedule, with several high-performance models developed by the Christmas break, allowing further research than anticipated.
- The WhatsApp group and Github repository were highly effective tools for sharing knowledge.
- By undertaking this project, we have all gained an insight into the application of machine learning algorithms to a real-world application.

Preprocessing

Any real-world data, in principle, is generally unclean, incomplete, unscaled, and overall messy. The pre-processing stage is essential to the machine learning pipeline, in order to prepare the data before further analysis and model building.

A pre-processing generally involves some data transformation, filling missing observations with suitable values, scaling various features to a standard scale, among other things.

The following operations were performed on the raw data set during this phase –

- 1. Metadata transformation The raw data set provided to us has got column numbers instead of the actual column names. Given the number of features, at later stages, it would be next to impossible to identify the features. To overcome that, we have assigned the actual column names to the features instead of the numbers. The list of attributes is available Aegean data set web page. In the data set provided to us, the frame.time_epoch and frame.time_relative are excluded, so the feature names have been assigned accordingly.
- 2. Data cleaning Next we checked the data for missing values. For each feature, we checked if there are any missing observations, and filled them with the median of that feature. The

- reason for choosing the median, instead of mean is that, in case the overall mean of a feature is very large, it might introduce unnecessary bias in the data, while a median would just assign the most common observation, which should be fair enough.
- 3. Data transformation One of the crucial steps in this phase is to ensure that all features are numeric, since ML models generally work with numbers, and Python, unlike R, cannot implicitly handle the categorical features. To do that, first we identified the categorical features, and then used LabelEncoder to assign numbers to the observations. Then, using OneHotEncoder, we transformed those observations into dummy variables. This gives a binary variable for each of the categories.
- 4. Standardization The last step we performed on this phase is to standardize the data. The features in any data set are likely to have very different variance with respect to each other, and feeding them to an ML model without scaling them might unfairly tip it in favour of few specific features with greater variance.
 StandardScaler and MinMaxScaler are two of the most popular scalers available. However, both these scalers are sensitive to outliers. In this data set, we did not handle the outliers explicitly because we do not possess enough domain knowledge to determine whether a particular outlier is a human error, or a genuinely useful observation. Also, since these are all signal data, and we trying to detect unusual activities through this model, some of the outliers might contain the most useful observation. Therefore, we did not touch the outliers. However, while scaling, we need to keep the outliers in mind as well. For that purpose, we used a different scaler called the RobustScaler. Unlike StandardScaler, which removes the mean and scales to unit variance, RobustScaler removes the median and scales according to the quantile range. Therefore, it is more robust to outliers than any of the other scalers.

A couple of things to keep in mind here,

- The data set provided to us is quite clean, as we couldn't find any missing values in any of the features. However, in our code, we still handled the missing observation condition as a contingency.
- There were no categorical variables either. There were binary features, but those are most likely signal values. Again, we handled the conversion of categorical to dummy variables, just in case.

Feature Selection

There are various techniques used for selecting features for machine learning models. 'Filter' methods select features based on their intrinsic properties. 'Wrapper' methods measure the worth of a feature using a classifier performance. Embedded methods are like wrapper methods but where the feature selection is embedded with the learning algorithm. Sometimes, just domain knowledge can be used to pick relevant features [1].

The AWID dataset contains 152 features to consider. Initially, features with zero variance were removed, as they can have no predictive power on the target. This left 78 features for consideration.

Due to the way the pipeline was organised, with different individuals working remotely on different stages, embedded feature selection methods were deemed to be too difficult to implement. Instead, various wrapper methods were investigated to consolidate the features to a reasonable number for the algorithmic stage from the 78 candidates.

One common technique from the academic literature is the use of an auto-encoder to reduce dimensionality in the dataset and generate new features [1]. This technique was not considered initially due to its complexity and the time constraints on the project, but could be investigated in future. Simpler methods, with greater interpretability, were first considered instead.

One key question is to decide how many features to select to train the model. Aminanto et. al [2] found, when training an artificial neural network on the AWID dataset, that there was little improvement in the F1 score from increasing the number of features beyond 10. In light of this, 10 features were selected in the first iteration.

On this first iteration, recursive feature elimination ('RFE') with a logistic regression classifier was used as the primary feature selection method. This gave a satisfactory result on several algorithms. The same method with just 5 features gave worse performance, suggesting that the model is not over-fitting due to the number of features. Using a different classifier with RFE resulted in broadly similar features being selected.

The first alternative to RFE considered was to use a randomised decision tree classifier and pick the top 10 features by feature importance. This approach yielded a very different set of features to RFE with only two common features between the approaches. Furthermore, the top two features by feature importance in the decision tree approach were not selected by any of the RFE algorithms tested. The decision tree approach yielded good results when used with a KNN algorithm in the learning phase. However, this set of features did not generally do as well in the learning phase as the features selected through RFE.

The final method considered was Principal Component Analysis. This method has the advantage of specifically capturing the variance in the *entire* dataset. However, by reducing dimensionality and combining features, some interpretability is lost. In our initial analysis (on the dataset using the Robust Scaler approach) the first 5 principal components explained over 98% of the variance in the dataset. On this basis, the top 5 components were selected for the learning phase but the results were not very encouraging and the method was discarded.

The best model evaluated in the project used RFE with 10 features. The final feature selection process can be summarised in the following flow chart:

The 10 features selected in this method were:

- radiotap.datarate
- wlan.fc.retry
- wlan.fc.pwrmgt
- wlan.fc.protected
- wlan_mgt.fixed.capabilities.preamble
- wlan_mgt.fixed.capabilities.short_slot_time
- wlan mgt.fixed.timestamp
- wlan mgt.fixed.auth seq
- wlan mgt.rsn.akms.type
- wlan.wep.key

The feature selection methods adopted have the advantage of simplicity and speed of computation (in both the feature selection and learning phase). A possible next step would be to increase the number of features and complexity of method and assess the impact this has during learning.

Please see the relevant appendix for relevant snippets of python code and a brief explanation of the different feature selection algorithms discussed above.

Algorithm Comparison

After selecting features, we moved into testing which algorithms might work better.

We reviewed a couple pieces of previous literature. In Kolias, they used the Weka framework to run a series of supervised classifiers over the dataset, J48 was top performer, but had a lot longer build time compared to Random Forest and OneR. In Aminatou, they use an ANN, C4.5, and an SVM, the SVM was the best performer, but takes alot longer to build. In Parker they chose a Radial Basis Function Classifier (RBFC) for the DEMISe Model and C4.5 for feature extraction/Logistic Regression for classification for DETEReD.

We decided to narrow it down to Supervised Learning as since the AWID dataset is all labelled and balanced, it seemed to be a better use case for supervised learning algorithms. We further narrowed it down to classification algorithms as we wanted the accuracy of it predicting a certain class.

I read through SciKit-Learn's documentation and used their stratified dummy classifier to create a baseline to test the classifiers against. The stratified dummy classifier works by creating a random

prediction by respecting the class distribution [1]. This allows us to see how much better the model is against just a random guess.

At first, we started with Logistic Regression, Decision Tree, Naïve Bayes, and SVM. these were the ones that had been tried in the earlier papers, so they sounded like a good base. Logistic Regression is actually a linear model for classification, instead of regression as it sounds. Decision Tree's create predictive models by breaking down a dataset and using the data features as nodes to build the resulting tree with, this makes them good for categorisation tasks like the AWID data set. Naïve Bayes is a supervised classifier that works by applying Bayes theorem while assuming conditional independence among the predictors. Support vector Machines are supervised learning algorithm that can be used for classification. They work by "If n is the number of input features, the SVM plots each feature value as a coordinate point in n-dimensional space. Subsequently, a classification process is executed by finding the hyperplane that distinguishes two classes."[2]

As we iterated, we added others to see how they would do and if there was an improvement with different feature sets/ pre-processing. Random forest we added as it is an ensemble classifier that improves on a basic Decision Tree, they work by running several decision trees at the same time during training and the output the average of the prediction, this also allows them to correct some of the error of overfitting present in regular Decision Tree's. K Nearest Neighbour we added as they have a good reputation for classification issues, and it seemed worth it to test it out initially in SciKit-Learn.

Given the problem was classifying impersonation attacks in a balanced dataset we decided to go with these six algorithms and choose the best ones from among them. As we only had less than two months part-time, a deep learning model was considered to probably enough time that we would neglect the other models, so it was left for future improvements if possible.

We ran through the following algorithms with Kfold cross-validation to see which would have the best accuracy above the SciKit-Learn's dummy classifier. We chose normal K-fold as the dataset was already balanced so stratified was not needed. As you can see from the below table, Decision Tree, Random Forest, and KNN had the highest accuracy above the baseline. I was expecting Random forest to be better rather than the same, but that will come out with tuning of hyperparameters and model evaluation.

.

Classifier	K-fold Accuracy	Percentage above Baseline
Dummy Classifier	0.9582149933672758	n/a
Logistic Regression	0.9887371837807203	%3.086987210972905

K Nearest neighbour	0.9998660415271265	%4.1656628418178725
Decision Tree	0.9998969550208667	%4.168625721309562
Naive Bayesian	0.9744757586686589	%1.6686680152617404
Support Vector Machine_ classification	0.9921170590962956	%3.4171437148657287
Random Forest	0.9998969550208667	%4.168625721309562

Model Tuning

Deliverables from previous stages of the project.

Preprocessing stage delivered two output datasets:

- 1. Robust Scaler preprocessed
- 2. Standard Scaler preprocessed

Algorithmic feature selection stage output:

- 1. Decision Tree (10 features)
- 2. Principal Component Analysis (5 features)
- 3. Recursive Feature Elimination Logistic Classifier (5 features)
- 4. Recursive Feature Elimination Logistic Classifier (10 features)

The algorithms selected for refining are:

- 1. Logistic Regression Classifier (LR)
- 2. Decision Tree Classifier (DT)
- 3. Random Forest Classifier (RF)
- 4. Support Vector Classifier (SVC)
- 5. K-Nearest Neighbour (KNN)
- 6. Naive Bayes Classifier (NBC)

Refining algorithms

Considering the number of possible combinations of outputs from preprocessing, feature and algorithm selection stages the following approach was chosen for refining the algorithms:

• Build a skeleton for tuning all algorithms on one combination of preprocessed data and selected features.

• Use the skeleton to refine algorithms for all other combinations.

The intrusion detection is the classification problem therefore the classificatory models are used for predictions. For each algorithm the approach was the following:

- Default model: test model with default hyperparameters. The result accuracy and confusion matrix is used as a benchmark to evaluate the improvement after refining hyperparameters.
- Hyperparameter selection depending on the type of the algorythm based on the documentation [1], [2], [3], [4], [5], [6].
- Search for best estimator (a combination of hyperparameters) using randomized search cross-validation (RandimizedSearchCV) from sklearn library on the train set. The cross-validation approach leads to detecting the generalized model hyperparameters. RandimizedSearchCV was chosen instead of GridSearchCV because it is less computationally extensive and proved to provide relatively the same result [7]. Bayesian optimisation was not used due to the lack of time and resource considering the range of models to be tuned. For reproducibility of results set random_state = 2019.
 - · Test refined model on the test set.
- Iteratively analyze the selected set of the hyperparameters and refine the arrays with the nearest values for each selected hyperparameter to achieve better accuracy with the next iteration. For models that are not improving run more extensive search of hyperparameters to achieve even slight improvement in accuracy.

Since different algorithms have different computational cost, initially LR/DT/RF have been run with default n_iter=10 which means the RandimizedSearchCV is trying 10 combinations of hyperparameters randomly, while for KNN/NBC/SVC are computationally expensive and n_iter=3 was chosen but when there was significant improvement from default model, the value of n_iter was increased. In some cases n_iter value was chosen to try all possible combinations which is technically grid search. This approach was used for only those models where there was a potential for improvement.

Results of refining each model were added to summary table which contains model accuracy, confusion matrix as well as calculated based on the confusion matrix attributes like specificity, sensitivity, precision, etc. which are required to evaluate the model performance and compare to others and choose the best model at next stage.

The best performing algorithm appeared to be Random Forest with RFE log 10 feature selection from Robust Scaler preprocessed dataset. Hyperparameters tuned are below. The tradeoff of improvement of accuracy is the computational cost/speed of the algorithm.

• 'n_estimators' determines the number of trees in the forest, the higher it is the better the data is learnt:

- 'max_depth': shows the depth of each tree, the higher it is the more information is considered;
- 'min_samples_leaf': limits the minimum number of samples needed to be in the leaf node, the higher the parameter is, the more under fitted is the model;
- 'max_features': determines the number of features to consider when splitting the node which improves the model accuracy.

The refined best model specifications and performance:

• accuracy: 0.9761442302903531

• parameters: {'bootstrap': True, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'log2', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_impurity_split': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 10, 'n_jobs': None, 'oob_score': False, 'random_state': None, 'verbose': 0, 'warm_start': False}

Confusion matrix: [[19124 955]
 [3 20076]]

Model tuning report:

	precision	recall	f1-score	support
0.0	1.00	0.95	0.98	20079
1.0	0.95	1.00	0.98	20079
accuracy			0.98	40158
macro avg	0.98	0.98	0.98	40158
weighted avg	0.98	0.98	0.98	40158

Scott Tasker

Aim: To evaluate the performance of the proposed intrusion classifiers.

Background / Intro

802.11 wireless networks, commonly known as Wi-Fi, have become the default for wireless local area networks. Securing these networks is critical to protect the networks users from malicious acts. Binary classification of incoming data packets (deciding if each data packet is 'safe' or 'malicious') is a challenging task, as each data packet received by the router has multiple parameters (157 fields), and a malicious signature may consist of only small differences across multiple fields. Machine learning

algorithms are an ideal candidate for this application. This is because these algorithms can determine the probability that an unlabeled observation fits into a negative or positive set, based on labelled observations they have previously seen (training data). Labels are assigned based on these probabilities using a threshold for classification (default = 0.5).

To assess the performance of our intrusion detection model, we have utilised the reduced CLS portion of the Aegean Wifi Intrusion Dataset [1]. As this dataset is labelled, we can assess the models predicted classifications against the actual classifications for each observation in the test data. The lower the number of incorrectly classified observations, the higher the classifiers accuracy. For this application, the sensitivity of the classifier (e.g. the ability to correctly identify positive observations) will be given more weight when ranking algorithms than the overall accuracy, as the network must be protected, even at the expense that some 'safe' traffic will be labelled false positive and blocked. Another key metric for intrusion detection is the time required to make predictions. As to work in a real network, the algorithm would need to make predictions as traffic is received. A delay would not be a workable solution.

Methods

The performance of each model was assessed using the equations in figure 1, and receiver operator characteristic curves.

```
Accuracy = \frac{(True \, Positive + True \, Negative)}{(True \, Positive + False \, Positive + False \, Negative)}
Sensitivity = \frac{True \, Positive}{(True \, Positive + False \, Negative)}
Specificity = \frac{True \, Negative}{(True \, Negative + False \, Positive)}
Precision = \frac{True \, Positive}{(True \, Positive + False \, Positive)}
F1 \, Score = \frac{2 \, x \, True \, Positive}{(2 \, x \, True \, Positive + False \, Positive + False \, Negative}
Michaels \, Correlation \, Coefficient = \frac{(True \, Positive \, x \, True \, Negative) - (False \, Positive \, x \, False \, Negative)}{\sqrt{(True \, Positive \, + \, False \, Positive)} \, x \, (True \, Positive \, x \, True \, Negative) \, x \, (True \, Negative \, + \, False \, Negative)}
False \, Alarm \, Rate = \frac{False \, Positive}{(True \, Negative + False \, Positive)}
```

Figure 1. Calculation of binary classifier performance from confusion matrix. [2]

To enable high-throughput testing, a function (model_evaluator.py) was built using the Python programming language, and the open source libraries: Numpy, Pandas, SciKit Learn and MatPlotLib. The function outputs a report for each binary classification model, and the results were compiled in an excel workbook.

Computation time was assessed using a short Python script to record the time required to train the model, and the time required to make predictions when run on an Apple MacBook Pro, 2.7GHz i5, 8GB DDR3 RAM. Results were recorded in an excel workbook.

Results

We evaluated 96 permutations of the intrusion detection classifier using the model_evaulator function. Figure 2 is an example of the evaluation report returned by this function. The 10 best performing models are shown in Table 1. The full database is included in the appendix.

The 5 models with the highest sensitivity scores were taken forward for further analysis. Table 2 shows the computation time required to train each of these models, and the time required to predict unlabeled data. Table 3 compares these models, with the published benchmarks.

Figure 2. Output from model_evaluator function.

Rank	Preprocessing	Feature Selection	Algorithms	Tuning	True Positive	True Negative	False Positive	False Negative	Accuracy	Sensitivity	Specificity	Precision	F1score	False Alarm Rate	Michaels Correlation Coefficient
1	т тори с с с с с с с с с с с с с с с с с с с	DEE 1 : 1: 1 : 10 : 10 : 10						- regulare	, , , , , , , , , , , , , , , , , , , ,		- cp commonly		1 = 00010	110.00	
_	5 1 16 1	RFE, logistic classifier, 10 most		default	20076	40404	055	_	0.0764	0.0000	0.0000	0.0546	0.0767	0.0476	0.0770
	RobustScaler	important features	DT	parameters	20076	19124	955	3	0.9761	0.9999	0.9998	0.9546	0.9767	0.0476	0.9770
2		RFE, logistic classifier, 10 most		tuned											
	RobustScaler	important features	DT	parameters	20076	19124	955	3	0.9761	0.9999	0.9998	0.9546	0.9767	0.0476	0.9770
3		RFE, logistic classifier, 10 most		default											
	RobustScaler	important features	RF	parameters	20076	19124	955	3	0.9761	0.9999	0.9998	0.9546	0.9767	0.0476	0.9770
4		RFE, logistic classifier, 10 most		tuned											
	RobustScaler	important features	RF	parameters	20076	19124	955	3	0.9761	0.9999	0.9998	0.9546	0.9767	0.0476	0.9770
5		RFE, logistic classifier, 10 most		tuned											
	RobustScaler	important features	KNN	parameters	20076	19099	980	3	0.9755	0.9999	0.9998	0.9535	0.9761	0.0488	0.9764
6		RFE, logistic classifier, 10 most		tuned											
	RobustScaler	important features	LR	parameters	20076	19082	997	3	0.9751	0.9999	0.9998	0.9527	0.9757	0.0497	0.9760
7		RFE, logistic classifier, 10 most		default											
	RobustScaler	important features	LR	parameters	20076	18584	1495	3	0.9627	0.9999	0.9998	0.9307	0.9640	0.0745	0.9646
8		RFE, logistic classifier, 10 most		default											
	RobustScaler	important features	SVC	parameters	20073	18582	1497	6	0.9626	0.9997	0.9997	0.9306	0.9639	0.0746	0.9645
9		RFE, logistic classifier, 5 most		tuned											
	StandardScaler	important features	SVC	parameters	20067	19431	648	12	0.9836	0.9994	0.9994	0.9687	0.9838	0.0323	0.9839
10		RFE, logistic classifier, 5 most		default											
-	StandardScaler	important features	SVC	parameters	20067	19228	851	12	0.9785	0.9994	0.9994	0.9593	0.9789	0.0424	0.9791

Table 1. Top performing algorithms (10/96). Algorithms ranked according by number of false negatives observed.

Rank	Model	Time taken to build model (s)	Time taken to test model (s)
1	Robust Scaler, RFE logistic classifier 10 features, DT default	0.0407	0.0049
2	Robust Scaler, RFE logistic classifier 10 features, DT tuned	0.0402	0.0059
3	Robust Scaler, RFE logistic classifier 10 features, RF default	0.2026	0.0336
4	Robust Scaler, RFE logistic classifier 10 features, RF tuned	0.2680	0.0389
5	Robust Scaler, RFE logistic classifier 10 features, KNN tuned	0.0109	95.8483

Table 2. Analysis of time required to build model, and time required to test model,

Model	Sensitivity	False Alarm Rate
Robust Scaler, RFE, logistic classifier, 10 features, DT, default	99.985	0.048
Robust Scaler, RFE, logistic classifier, 10 features, DT, tuned	99.985	0.048
Robust Scaler, RFE, logistic classifier, 10 features RF default	99.985	0.048
Robust Scaler, RFE, logistic classifier, 10 features RF tuned	99.985	0.048
Robust Scaler, RFE, logistic classifier, 10 features KNN tuned	99.985	0.049
D-FES-SVM	99.918	0.012
D-FES-ANN	99.877	0.024
D-FES-C4.5	99.549	0.381
ANN+SAE	84.829	2.364
Kolias	22.008	0.021

Table 3. Comparison of the top 5 performing algorithms from our project to published models [1][2][3]

Conclusion

- We identified 2 models, Robust Scaler-RFElog10-Decision Tree, and Robust Scaler FS-RFElog10-Random Forest giving the highest sensitivity (only 3 false negatives of 20079 positive observations).
- Tuning of the Robust Scaler-RFElog10 Decision Tree and Robust Scaler-RFElog10 Random Forest algorithms did not increase the sensitivity or the specificity of the algorithm.
- The Robust Scaler-RFElog10-Decision Tree required the lowest computation to use, as demonstrated in table 2.
- The top performing models had comparable performance to state-of-the-art models [2],[3].
- Future analysis would identify the 3 false-negative observations in the database, to see if the
 pre-processing, or feature selection could be adjusted to allow correct classification of these
 samples.

Future work

As discussed in the previous sections of this report, our approach focused on simplicity and speed of computation. The chosen model was also the one that minimized the number of false negatives and therefore minimized the risks of an IoT system being infected.

There are several possible avenues for future development of this work.

Expand number of features / try different feature selection methods

Other methods in the literature on this subject built models using more features than in our best model (which used 10 features). Rezvy et. al built a highly accurate model for a similar purpose using 36 features derived from the same dataset [1]. In light of this, a future development may be to gradually increase the number of features used to train the model and evaluate the performance iteratively to find the optimum number of features. For this project, there was not enough time to carry out the necessary iterations to achieve this. Increasing the number of features may improve the accuracy of the model but at the cost of model speed and simplicity.

Another feature selection method worth exploring would be the use of an auto-encoder (a neural network that compresses a dataset) as this is also very popular in the literature [2]. The trade-off here would be the loss of interpretability from combining / compressing features.

More complex learning algorithms

One potential future development would be to use more complex learning algorithms. The project mostly focused on simpler algorithms such as random forests and KNN. It would be interesting to explore artificial neural networks as a learning approach using this dataset and evaluate the results to compare against the current model. This approach is popular in the literature.

In general, most avenues for future development would be to increase the complexity and assess the impact this has on model accuracy versus speed.

Input from domain experts

The view taken in this project was that it is desirable to look to minimise the number of false negatives and therefore the risk of the system being infected. A next step would be to look for input from domain experts on the trade-off between sensitivity and specificity in the context of this issue. This could allow us to refine our choice of algorithm and give us direction for which avenues to explore further. Further work and deeper reading of the literature could also be informative on this subject.

Bibliography:

References- Feature Selection

- [1] Kolias et. al, "Intrusion Detection in 802.11 Networks: Empirical Evaluation of Threats and a Public Dataset", IEEE Communication Surveys & Tutorials, Vol. 18, No. 1, First Quarter 2016
- [2] Parker et. al, "DEMISe: Interpretable Deep Extraction and Mutual Information Selection Techniques for IoT Intrusion Detection" in ACM International Conference on Availability, Reliability and Security (ARES), 26-29 Aug. 2019, U.K
- [3] Aminanto et. al, "Wi-Fi Intrusion Detection Using Weighted-Feature Selection for Neural Networks Classifier" in 2017 International Workshop on Big Data and Information Security (IWBIS)

References-Algorithm Comparison

- [1]"3.3. Metrics and scoring: quantifying the quality of predictions scikit-learn 0.22.1 documentation," *Scikit-learn.org*, 2013. [Online]. Available: https://scikit-learn.org/stable/modules/model_evaluation.html#dummy-estimators. [Accessed: 17-Jan-2020]. [2] Aminanto et. al, "Wi-Fi Intrusion Detection Using Weighted-Feature Selection for Neural Networks Classifier" in 2017 International Workshop on Big Data and Information Security (IWBIS) [3] Parker et. al, "DEMISe: Interpretable Deep Extraction and Mutual Information Selection Techniques for IoT Intrusion Detection" in ACM International Conference on Availability, Reliability and Security (ARES), 26-29 Aug. 2019, U.K
- [4] Kolias et. al, "Intrusion Detection in 802.11 Networks: Empirical Evaluation of Threats and a Public Dataset", IEEE Communication Surveys & Tutorials, Vol. 18, No. 1, First Quarter 2016
- [5] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.
- [6]M. Sidana, "Types of classification algorithms in Machine Learning," *Medium*, 28-Feb-2017. [Online]. Available: https://medium.com/@Mandysidana/machine-learning-types-of-classification-9497bd4f2e14. [Accessed: 18-Jan-2020].

References- Model Tuning

Literature:

- [1] Python Scikit Learn documentation. "LogisticRegression". Available: https://scikit-learn.org/stable/modules/generated/sklearn.linear model.LogisticRegression.html
- [2] Python Scikit Learn documentation. "DecisionTreeClassifier". Available: https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
- [3] Python Scikit Learn documentation. "RandomForestClassifier". Available: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
- [4] Python Scikit Learn documentation. "SVC". Available: https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
- [5] Python Scikit Learn documentation. "KNeighborsClassifier". Available: https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
- [6] Python Scikit Learn documentation. "GaussianNB". Available: https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
- [7] Python Scikit Learn documentation. "Comparing randomized search and grid search for hyperparameter estimation". Available: https://scikit-

<u>learn.org/stable/auto_examples/model_selection/plot_randomized_search.html</u>

References-Model Evaluation

- [1] C. Kolias, G. Kambourakis, A. Stavrou and S. Gritzalis, "Intrusion Detection in 802.11 Networks: Empirical Evaluation of Threats and a Public Dataset", *IEEE Communications Surveys & Tutorials*, vol. 18, no. 1, pp. 184-208, 2016. Available: 10.1109/comst.2015.2402161 [Accessed 13 January 2020].
- [2] M. Aminanto, R. Choi, H. Tanuwidjaja, P. Yoo and K. Kim, "Deep Abstraction and Weighted Feature Selection for Wi-Fi Impersonation Detection", *IEEE Transactions on Information Forensics and Security*, vol. 13, no. 3, pp. 621-636, 2018. Available: 10.1109/tifs.2017.2762828 [Accessed 13 January 2020].
- [3] M. Aminanto and K. Kim, "Detecting Impersonation Attack in WiFi Networks Using Deep Learning Approach", *Information Security Applications*, pp. 136-147, 2017. Available: 10.1007/978-3-319-56549-1_12 [Accessed 13 January 2020].

Future Work Section

References

- [1] Rezvy et. al, "An efficient deep learning model for intrusion classification and prediction in 5G and IoT networks" in 53rd Annual Conference on Information Sciences and Systems (CISS), 2019.
- [2] Kolias et. al, "Intrusion Detection in 802.11 Networks: Empirical Evaluation of Threats and a Public Dataset", IEEE Communication Surveys & Tutorials, Vol. 18, No. 1, First Quarter 2016

Appendixes

Appendix - Feature Selection - Alex Bates

1) Recursive feature elimination

Recursive feature elimination is an algorithm that starts by building a model using all attributes to predict the target. It then removes features (removing the least useful features first) and re-builds a model on the remaining attributes. This is repeated until the specified number of attributes is reached.

Python code – recursive feature elimination using a logistic regression classifier with 10 features

```
# Initiate model
model = LogisticRegression()
# Try 10 features
rfe_log = RFE(model, 10)
fit rfe log = rfe log.fit(X, Y)
# Create list with names of features
rfe_log_features = X.columns[fit_rfe_log.get_support()]
for feature in rfe_log_features:
   print(feature)
radiotap.datarate
wlan.fc.retry
wlan.fc.pwrmgt
wlan.fc.protected
wlan mgt.fixed.capabilities.preamble
wlan mgt.fixed.capabilities.short_slot_time
wlan_mgt.fixed.timestamp
wlan_mgt.fixed.auth_seq
wlan_mgt.rsn.akms.type
wlan.wep.key
```

2) Feature importance and decision trees

In this method, a random set of decision trees are fitted to subsets of the data with the results averaged across the trees. The top 10 features by feature importance are selected for the learning phase. Feature importance is calculated as the decrease in "node-impurity" weighted by the probability of reaching that node. Node impurity is a measure of the homogeneity of labels at a node. Nodes of a decision tree that greatly increase the homogeneity of labels imply that that feature has strong predictive power on the target – it is therefore a more important feature.

Python code – extra trees classifier with top 10 most important feature selected

```
# Initiate model and fit to data
model tree = ExtraTreesClassifier()
fit tree = model tree.fit(X,Y)
# Ensure reproducibility
np.random.seed(999)
# Get feature importances
feature importance = fit tree.feature importances
# Join feature importances to feature names and rank by importance
feature ranking data = {'Feature': X.columns.values, 'Importance': feature importance}
tree_features_imp = pd.DataFrame(data=feature_ranking_data).nlargest(10,'Importance')
# Get list object of the top 10 features
tree features = list(tree features imp['Feature'])
print(tree features imp)
22
       wlan.fc.subtype 0.181461
23
       wlan.fc.ds
                       0.120586
13
       radiotap.datarate
                               0.113596
15
       radiotap.channel.type.cck
                                       0.070449
27
       wlan.fc.protected
                               0.064409
28
       wlan.duration 0.058927
16
       radiotap.channel.type.ofdm
                                       0.056004
2
       frame.len
                       0.047525
11
       radiotap.mactime
                               0.040032
3
       frame.cap len 0.025655
```

3) Principal Component Analysis

Principal Component Analysis compresses a dataset statistically into its principal components. It captures as much of the variance in the dataset as possible at each principal component. These principal components can be used as features in the learning phase.

Python code – PCA with top 5 principal components selected

```
pca = PCA(n_components=5)
fit_pca = pca.fit(X)
```

summarize components

print("Explained Variance: %s" % fit_pca.explained_variance_ratio_)

print("Total variance explained by first 5 components: %s" % sum(fit pca.explained variance ratio))

Explained Variance: [0.80629725 0.12093112 0.02414355 0.0183569 0.01252285]

Total variance explained by first 5 components: 0.9822516621351488

Appendix: Model Evaluation (next page)

Preprocessing	FeatureS election	Algori thms	Tunin g	Accura cy	Tru e Posi tive	True Neg ative	Fals e Posi tive	False Neg ative	specifici ty = TN/(TN+ FP)	recall (or sensitivi ty) = TP / (TP + FN)	precisio n = TP / (TP + FP)	F1score = (2* True Positive) /((2*Tru e Positive) +False Positive+ False Negative	False Positives Rate = FP/(FP+TN)	MCC
RobustScaler	RFE, logistic classifier, 10 features	DT	defaul t para meter s	0.9761 4423	200 76	1912 4	955	3	0.99984 3154	0.99985 059	0.95459 0842	0.97669 6667	0.04756213	0.976951366
RobustScaler	RFE, logistic classifier, 10 features	DT	tuned para meter s	0.9761 4423	200 76	1912 4	955	3	0.99984 3154	0.99985 059	0.95459 0842	0.97669 6667	0.04756213	0.976951366
RobustScaler	RFE, logistic classifier, 10 features	RF	defaul t para meter s	0.9761 4423	200 76	1912 4	955	3	0.99984 3154	0.99985 059	0.95459 0842	0.97669 6667	0.04756213	0.976951366
RobustScaler	RFE, logistic classifier, 10 features	RF	tuned para meter s	0.9761 4423	200 76	1912 4	955	3	0.99984 3154	0.99985 059	0.95459 0842	0.97669 6667	0.04756213	0.976951366
RobustScaler	RFE, logistic classifier,	KNN	tuned para meter s	0.9755 2169	200 76	1909 9	980	3	0.99984 2948	0.99985 059	0.95345 7447	0.97610 3075	0.048807212	0.976371021

RobustScaler	10 features RFE, LR logistic classifier,	tuned 0.97 para 98 meter	1908 2	997	3	0.99984 2808	0.99985 059	0.95268 8274	0.97569 9844	0.049653867	0.975976977
RobustScaler	10 features RFE, LR logistic classifier, 10	s defaul 0.96 t 97 para meter	1858 4	149 5	3	0.99983 8597	0.99985 059	0.93069 3987	0.96403 3613	0.074455899	0.964641156
RobustScaler	features RFE, SVC logistic classifier, 10	s defaul 0.96 t 72 para meter	1858 2	149 7	6	0.99967 7211	0.99970 118	0.93059 8053	0.96391 2699	0.074555506	0.964507733
StandardScaler	features RFE, SVC logistic classifier, 5	s tuned 0.98 para 649 meter	1943 1	648	12	0.99938 2811	0.99940 2361	0.96871 832	0.98382 115	0.032272524	0.983921116
StandardScaler	features RFE, SVC logistic classifier,	defaul 0.97 t 098 para	1922 8	851	12	0.99937 6299	0.99940 2361	0.95931 7334	0.97894 9679	0.042382589	0.979128827
StandardScaler	features Decision LR tree classifier, 10 most	meter s defaul 0.92 t 117 para meter	171 79	290 0	15	0.99912 7603	0.99925 2951	0.87371 5381	0.93227 7025	0.144429503	0.934260305
RobustScaler	importan t features Decision KNN tree	s defaul 0.98 t 96	1963 1	448	26	0.99867 7316	0.99870 5115	0.97814 7407	0.98831 9369	0.022311868	0.988343569

	classifier, 10 most importan t features		para meter s											
StandardScaler	RFE, logistic classifier, 5 features	LR	tuned para meter s	0.9651 87509	200 52	1870 8	137 1	27	0.99855 8847	0.99865 5312	0.93600 3361	0.96631 4876	0.068280293	0.96672657
StandardScaler	Decision tree classifier, 10 most importan t features	LR	tuned para meter s	0.9293 54051	200 47	1727 4	280 5	32	0.99815 093	0.9984 06295	0.8772 53632	0.93391 7216	0.139698192	0.935628964
StandardScaler	RFE, logistic classifier, 10 features	LR	tuned para meter s	0.9805 5182	200 32	1934 5	734	47	0.99757 632	0.99765 9246	0.96465 3761	0.98087 8933	0.036555605	0.980930375
StandardScaler	RFE, logistic classifier, 10 features	LR	defaul t para meter s	0.9800 03984	200 32	1932	756	47	0.99757 3567	0.99765 9246	0.96363 2865	0.98035 0894	0.037651277	0.980408459
StandardScaler	RFE, logistic classifier, 5 features	LR	defaul t para meter s	0.9607 79919	200 24	1855 9	152 0	55	0.99704 5235	0.99726 082	0.92944 6714	0.96216 0344	0.075700981	0.962540291
RobustScaler	Decision tree classifier, 10 most	KNN	tuned para meter s	0.9814 2338	199 11	1950 1	578	168	0.99145 8641	0.99163 3049	0.97178 9741	0.98161 1122	0.028786294	0.981415759

	importan t features													
StandardScaler	RFE, logistic classifier, 5 features	NBC	tuned para meter s	0.9406 59395	196 98	1807 7	200	381	0.97935 8544	0.98102 4951	0.90774 1935	0.94296 1775	0.099706161	0.941650897
RobustScaler	Decision tree classifier, 10 most importan t features	NB	defaul t para meter s	0.9558 992	186 13	1977 4	305	1466	0.93097 9284	0.92698 8396	0.98387 7788	0.95458 625	0.01519	0.953849383
RobustScaler	Decision tree classifier, 10 most importan t features	NB	tuned para meter s	0.9558 992	186 13	1977 4	305	1466	0.93097 9284	0.92698 8396	0.98387 7788	0.95458 625	0.01519	0.953849383
StandardScaler	Decision tree classifier, 10 most importan t features	NBC	tuned para meter s	0.9448 42871	186 13	1933 0	749	1466	0.92950 5674	0.9269 88396	0.9613 1598	0.94384 0166	0.037302655	0.9411152
RobustScaler	RFE, logistic classifier, 10 features	NB	tuned para meter s	0.9171 5225	186 13	1821 8	186 1	1466	0.92552 3268	0.92698 8396	0.90910 423	0.91795 9214	0.092683899	0.910616797
RobustScaler	RFE, logistic	RF	defaul t	0.9382 1903	186 09	1906 8	101 1	1470	0.92842 5358	0.92678 9183	0.94847 0948	0.93750 4723	0.050351113	0.933640556

RobustScaler	classifier, 5 features RFE, logistic classifier, 5 features	KNN	para meter s tuned para meter s	0.9382 1903	186 09	1906 8	101	1470	0.92842 5358	0.92678 9183	0.94847 0948	0.93750 4723	0.050351113	0.933640556
RobustScaler	RFE, logistic classifier, 5 features	DT	defaul t para meter s	0.9382 1903	186 09	1906 8	101 1	1470	0.92842 5358	0.92678 9183	0.94847 0948	0.93750 4723	0.050351113	0.933640556
RobustScaler	RFE, logistic classifier, 5 features	DT	tuned para meter s	0.9382 1903	186 09	1906 8	101	1470	0.92842 5358	0.92678 9183	0.94847 0948	0.93750 4723	0.050351113	0.933640556
RobustScaler	Decision tree classifier, 10 most importan t features	SVM	tuned para meter s	0.9633 1989	186 06	2007	0	1473	0.93165 3675	0.92663 9773	1	0.96192 3226	0	0.962621303
RobustScaler	Decision tree classifier, 10 most importan t features	RF	tuned para meter s	0.9633 1989	186 06	2007	0	1473	0.93165 3675	0.92663 9773	1	0.96192 3226	0	0.962621303
RobustScaler	Decision tree classifier, 10 most	LR	defaul t para	0.9563 4743	186 06	1979 9	280	1473	0.93075 4043	0.92663 9773	0.98517 4203	0.95501 0907	0.013944918	0.954389107

	importan t features		meter s											
RobustScaler		SVM	defaul t para meter s	0.9523 1336	186 06	1963 7	442	1473	0.93022 2643	0.92663 9773	0.97679 5464	0.95105 6815	0.022013048	0.94969183
RobustScaler	Decision tree classifier, 10 most importan t features	LR	tuned para meter s	0.9509 9358	186 06	1958 4	495	1473	0.93004 7015	0.92663 9773	0.97408 5126	0.94977 0291	0.024652622	0.948165213
StandardScaler		NBC	tuned para meter s	0.9407 59002	186 06	1917 3	906	1473	0.92865 4461	0.92663 9773	0.95356 7036	0.93991 0586	0.045121769	0.936490423
RobustScaler		SVC	defaul t para meter s	0.9376 961	186 06	1905 0	102 9	1473	0.92822 6867	0.92663 9773	0.94759 3583	0.93699 9547	0.051247572	0.933050951
RobustScaler		LR	defaul t para meter s	0.9376 214	186 06	1904 7	103	1473	0.92821 6374	0.92663 9773	0.94744 8824	0.93692 8771	0.051396982	0.932967365
RobustScaler		LR	tuned para meter s	0.9376 214	186 06	1904 7	103	1473	0.92821 6374	0.92663 9773	0.94744 8824	0.93692 8771	0.051396982	0.932967365

	5 features													
RobustScaler	RFE,	SVC	tuned	0.8575	153	1909	980	4740	0.80116	0.76393	0.93994	0.84284	0.048807212	0.833945818
	logistic		para	6263	39	9			6156	2467	7301	8508		
	classifier,		meter											
	10		S											
- 1 1	features													
RobustScaler	RFE,	NB	defaul	0.8055	153	1701	306	4742	0.78200	0.76383	0.83330	0.79705	0.152796454	0.753325122
	logistic		t	182	37	1	8		7079	286	6167	8518		
	classifier, 5		para meter											
	features		S											
RobustScaler	RFE,	NB	tuned	0.7971	153	1667	340	4742	0.77856	0.76383	0.81827	0.79011	0.169629962	0.740652653
nobustocare.	logistic	115	para	0145	37	3	6	.,	6425	286	8824	9005	0.103013301	0.7 10032033
	classifier,		meter		-	_								
	5		S											
	features													
RobustScaler	RFE,	NB	defaul	0.8186	153	1754	253	4743	0.78714	0.76378	0.85795	0.80813	0.12645052	0.77326187
	logistic		t	6627	36	0	9		7153	3057	8042	6165		
	classifier,		para											
	10		meter											
	features		S											
RobustScaler	RFE,	SVC	tuned	0.8202	138	1906	101	6207	0.75442	0.69087	0.93207	0.79354	0.050351113	0.783421334
	logistic		para	5997	72	8	1		1365	1059	0147	728		
	classifier,		meter											
	5 features		S											
RobustScaler	RFE,	RF	tuned	0.8202	138	1906	101	6207	0.75442	0.69087	0.93207	0.79354	0.050351113	0.783421334
NobustScale	logistic	IXI	para	5997	72	8	101	0207	1365	1059	0.33207	728	0.050551115	0.705421554
	classifier,		meter	3337	, _	Ü	_		1303	1033	0147	720		
	5		S											
	features		-											
StandardScaler	PCA, top	KNN	tuned	0.3359	147	1202	805	1860	0.39247	0.07336	0.15453	0.09949	0.40136461	-0.795236456
	5		para	97809	3	0	9	6	698	0227	2102	0054		
	features		meter											
			S											

StandardScaler	PCA, top 5 features	KNN	defaul t para meter s	0.3355 24678	147 2	1200	807 7	1860 7	0.39210 6897	0.07331 0424	0.15415 2267	0.09936 5465	0.402261069	-0.798015436
StandardScaler	PCA, top 5 features	RF	defaul t para meter s	0.2627 37188	147 0	9081	109 98	1860 9	0.32795 2329	0.07321 0817	0.11790 1829	0.09033 0906	0.547736441	-1.331498602
StandardScaler	PCA, top 5 features	LR	tuned para meter s	0.1125 80308	146 9	3052	170 27	1861	0.14089 1884	0.07316 1014	0.07942 2578	0.07616 3318	0.848000398	-5.311306526
StandardScaler	PCA, top 5 features	LR	defaul t para meter s	0.1124 80701	146 9	3048	170 31	1861 0	0.14073 3216	0.07316 1014	0.07940 5405	0.07615 5421	0.848199612	-5.319068958
StandardScaler	RFE, logistic classifier, 5 features	DT	tuned para meter s	0.5330 19573	146 8	1993 7	142	1861 1	0.51719 9336	0.07311 1211	0.91180 1242	0.13536 8159	0.007072065	0.234877717
StandardScaler	RFE, logistic classifier, 5 features	DT	defaul t para meter s	0.5327 45655	146 8	1992 6	153	1861 1	0.51706 1525	0.07311 1211	0.90561 3819	0.13529 9539	0.007619901	0.232265742
RobustScaler	RFE, logistic classifier, 10 features	KNN	defaul t para meter s	0.5364 062	146 7	2007	5	1861	0.51889 5725	0.07306 1407	0.99660 3261	0.13614 2174	0.000249016	0.268986564
StandardScaler	RFE, logistic	DT	tuned para	0.5332 93491	146 7	1994 9	130	1861 2	0.51733 6169	0.07306 1407	0.91859 737	0.13535 7077	0.006474426	0.237645097

	classifier, 10 features	meter s										
StandardScaler	RFE, RF logistic classifier, 10 features).5330 146 94278 7	1994 1	138	1861	0.51723 6013	0.07306 1407	0.91401 8692	0.13530 7139	0.006872852	0.235728216
StandardScaler	RFE, DT logistic classifier, 10 features	defaul 0.).5330 146 44474 7	1993 9	140	1861	0.51721 0967	0.07306 1407	0.91288 1145	0.13529 466	0.006972459	0.235250552
StandardScaler	RFE, RF logistic classifier, 5 features).5329 146 94671 7	1993 7	142	1861	0.51718 5919	0.07306 1407	0.91174 6426	0.13528 2184	0.007072065	0.234773507
StandardScaler	RFE, RF logistic classifier, 10 features).5316 146 00179 7	1988 1	198	1861	0.51648 3516	0.07306 1407	0.88108 1081	0.13493 3775	0.009861049	0.221659994
StandardScaler	PCA, top DT 5 features		0.5105 146 08491 7	1903 4	104 5	1861	0.50560 4845	0.07306 1407	0.58399 6815	0.12987 4729	0.052044425	0.06268211
StandardScaler	RFE, RF logistic classifier, 5 features	defaul 0. t 9 para meter).5328 146 95064 4	1993 6	143	1861 5	0.51713 3148	0.07291 1998	0.91101 4312	0.13501 7984	0.007121869	0.234222113
StandardScaler	RFE, KNN logistic classifier,).5249 146 2654 3	1961 7	462	1861 6	0.51309 0785	0.07286 2194	0.76	0.13297 5823	0.023009114	0.164799981

StandardScaler	5 features RFE, I logistic classifier, 5 features	mete s KNN tuned para mete s	0.5256 73589	146 1	1964 9	430	1861 8	0.51347 1137	0.07276 2588	0.77260 7086	0.13299 9545	0.021415409	0.170979282
StandardScaler		KNN defau t para mete s	11704	144 4	2004	38	1863 5	0.51817 6647	0.07191 5932	0.97435 8974	0.13394 555	0.001892525	0.258233672
StandardScaler		KNN tuned para mete s	62687	144 4	2003	48	1863 5	0.51805 2035	0.07191 5932	0.96782 8418	0.13388 3455	0.002390557	0.255663904
StandardScaler	RFE, Solution of the state of t	SVC defau t para mete s	88934	144 4	1951 0	569	1863 5	0.51146 9393	0.07191 5932	0.71733 7308	0.13072 6055	0.028338065	0.141644572
StandardScaler		DT defau t para mete s	3282	143 8	1779 9	228 0	1864 1	0.48844 6762	0.07161 7112	0.38676 7079	0.12085 557	0.113551472	-0.109934204
StandardScaler	Decision I tree classifier, 10 most importan t features	RF tuned para mete S	8218	139 5	1861	146 8	1868	0.49902 1317	0.0694 75571	0.4872 51135	0.12161 1019	0.073111211	-0.010387559
StandardScaler		DT tuned para	0.5120 0259	139 4	1916 7	912	1868 5	0.50636 6903	0.0694 25768	0.6045 09974	0.12454 7688	0.045420589	0.07420519

	classifier, 10 most importan t features	meter S											
StandardScaler	Decision KN tree classifier, 10 most importan t features	NN defaul t para meter s	0.5113 80049	135	1918 5	894	1872 8	0.50602 6956	0.0672 84227	0.6017 81737	0.12103 5657	0.04452413	0.07123891
StandardScaler	Decision KN tree classifier, 10 most importan t features	NN tuned para meter s	0.5115 29459	134 6	1919 6	883	1873	0.50610 3509	0.0670 35211	0.6038 58232	0.12067 4198	0.043976294	0.07239128
StandardScaler	Decision SV tree classifier, 10 most importan t features	/C defaul t para meter s	0.5030 13098	133 2	1886 8	121	1874 7	0.50160 8401	0.0663 37965	0.5237 90798	0.11776 1471	0.060311769	0.018020107
StandardScaler	Decision SV tree classifier, 10 most importan t features	/C tuned para meter s	0.5043 82688	132	1893 4	114 5	1875 8	0.50233 4713	0.0657 90129	0.5356 8532	0.11718 7847	0.057024752	0.026524353
RobustScaler	PCA, top LR 5 features	tuned para	0.2878 3804	666	1089 3	918 6	1941 3	0.35943 3775	0.03316 8983	0.06760 0487	0.04450 2355	0.457492903	-1.116608497

		meter s											
RobustScaler	PCA, top LR 5 features	defaul t para meter s	0.2878 87843	662	1089 9	918 0	1941 7	0.35951 3128	0.03296 9769	0.06726 2751	0.04424 9858	0.457194083	-1.116298501
RobustScaler	Decision DT tree classifier, 10 most importan t features	defaul t para meter s	0.4858 5587	459	1905 2	102 7	1962 0	0.49265 6185	0.02285 9704	0.30888 2907	0.04256 8978	0.051147966	-0.109589614
RobustScaler	Decision DT tree classifier, 10 most importan t features	tuned para meter s	0.4858 5587	459	1905	102 7	1962 0	0.49265 6185	0.02285 9704	0.30888 2907	0.04256 8978	0.051147966	-0.109589614
StandardScaler	Decision DT tree classifier, 10 most importan t features	defaul t para meter s	0.4904 12869	148	1954 6	533	1993 1	0.49512 3743	0.0073 70885	0.2173 2746	0.01425 8189	0.026545147	-0.10695481
RobustScaler	PCA, top DT 5 features	defaul t para meter s	0.3506 3997	140	1394 1	613 8	1993 9	0.41148 17	0.00697 2459	0.02230 0096	0.01062 3364	0.305692515	-0.769436736
RobustScaler	PCA, top DT 5 features		0.3736 7399	127	1487 9	520 0	1995 2	0.42717 694	0.00632 5016	0.02384 0811	0.00999 7638	0.258977041	-0.661943328

		meter s											
StandardScaler	Decision RF tree classifier, 10 most importan t features	defaul t para meter s	0.4954 43	89	1980 7	272	1999	0.49770 0832	0.0044 32492	0.2465 37396	0.00870 8415	0.013546491	-0.068904856
StandardScaler	PCA, top RF 5 features	tuned para meter s	0.4565 46641	78	1825 6	182 3	2000	0.47719 3716	0.00388 4656	0.04103 1036	0.00709 7361	0.090791374	-0.310648875
RobustScaler	PCA, top RF 5 features	defaul t para meter s	0.4968 1259	12	1993 9	140	2006 7	0.49840 024	0.00059 7639	0.07894 7368	0.00118 6298	0.006972459	-0.073782921
StandardScaler	Decision NBO tree classifier, 10 most importan t features	C defaul t para meter s	0.4995 51771	7	2005	25	2007	0.49977 5707	0.0003 48623	0.2187 5	0.00069 6136	0.001245082	-0.022483688
RobustScaler	Decision RF tree classifier, 10 most importan t features	defaul t para meter s	0.5000 249	1	2007 9	0	2007	0.50001 2451	4.98033 E-05	1	9.96016 E-05	0	0.007057144
RobustScaler	PCA, top RF 5 features	tuned para meter s	0.4792 0713	1	1924 3	836	2007 8	0.48938 2264	4.98033 E-05	0.00119 4743	9.56206 E-05	0.04163554	-0.212530863

RobustScaler	PCA, top 5 features	SVM	defaul t para meter s	0.5	0	2007 9	0	2007 9	0.5	0	#DIV/0!	0	0	0
RobustScaler	PCA, top 5 features	SVM	tuned para meter s	0.5	0	2007 9	0	2007 9	0.5	0	#DIV/0!	0	0	0
RobustScaler	PCA, top 5 features	NB	defaul t para meter s	0.5	0	2007 9	0	2007 9	0.5	0	#DIV/0!	0	0	0
RobustScaler	PCA, top 5 features	NB	tuned para meter s	0.5	0	2007 9	0	2007 9	0.5	0	#DIV/0!	0	0	0
RobustScaler	PCA, top 5 features	KNN	defaul t para meter s	0.5	0	2007 9	0	2007 9	0.5	0	#DIV/0!	0	0	0
RobustScaler	PCA, top 5 features	KNN	tuned para meter s	0.5	0	2007 9	0	2007 9	0.5	0	#DIV/0!	0	0	0
StandardScaler	RFE, logistic classifier, 10 features	NBC	defaul t para meter s	0.5	0	2007 9	0	2007 9	0.5	0	#DIV/0!	0	0	0
StandardScaler	RFE, logistic classifier,	NBC	defaul t para	0.5	0	2007 9	0	2007 9	0.5	0	#DIV/0!	0	0	0

RobustScaler	5 features RFE, logistic classifier, 5 features	KNN (meter s defaul t para meter s	0.5	0	2007	0	2007	0.5	0	#DIV/0!	0	0	0
StandardScaler			tuned para meter s	0.4965 63574	0	1994 1	138	2007 9	0.49827 5862	0	0	0	0.006872852	-0.083476388
StandardScaler			defaul t para meter s	0.4876 73689	0	1958 4	495	2007 9	0.49375 9927	0	0	0	0.024652622	-0.160980117
StandardScaler	PCA, top 5 features		tuned para meter s	0.4876 73689	0	1958 4	495	2007 9	0.49375 9927	0	0	0	0.024652622	-0.160980117
StandardScaler	PCA, top 5 features		defaul t para meter s	0.4807 0123	0	1930 4	775	2007 9	0.49016 0729	0	0	0	0.03859754	-0.204349972
StandardScaler	PCA, top 5 features		tuned para meter s	0.4461 37756	0	1791 6	216 3	2007 9	0.47153 5728	0	0	0	0.107724488	-0.3678394