Trees. Binary trees

Mădălina Răschip, Cristian Gațu

Faculty of Computer Science "Alexandru Ioan Cuza" University of Iași, Romania

DS 2020/2021

Content

Trees

Binary tree (BinTree)

Application: integer expression representation as trees

FII, UAIC

2/37

Trees: recursive definition

$$A = \begin{cases} \Lambda - \text{empty tree,} \\ (r, \{A_1, \dots, A_k\}), \quad r \text{ an element and } A_1, \dots, A_k \text{ trees.} \end{cases}$$

3/37

FII, UAIC Lecture 5 DS 2020/2021

Trees: recursive definition

$$A = \begin{cases} \Lambda - \text{empty tree,} \\ (r, \{A_1, \cdots, A_k\}), \quad r \text{ an element and } A_1, \cdots, A_k \text{ trees.} \end{cases}$$

$$A = \Lambda$$
 or

FII, UAIC

3/37

Trees: recursive definition

$$A = \begin{cases} \Lambda - \text{empty tree,} \\ (r, \{A_1, \cdots, A_k\}), \quad r \text{ an element and } A_1, \cdots, A_k \text{ trees.} \end{cases}$$

$$A = \Lambda$$
 or

If A is ordered (planar), then

FII, UAIC

3/37

Trees: terminology

- root: node without parent.
- internal node: has at least one child.
- external node (leaf): node with no children.
- descendants of a node: children, grand children, etc.
- siblings: all other nodes having the same parent.
- subtree: some node and all its descendants.

Trees: terminology

Depth of some node x:

$$\operatorname{depth}(x) = \left\{ egin{array}{ll} 0, & x ext{ is the root}, \\ 1 + \operatorname{depth}(\operatorname{parent}(x)), & \operatorname{otherwise}. \end{array}
ight.$$

- tree height: maximum depth of tree nodes.
- height of node x: distance from x to its most far descendant.

4□ > 4□ > 4 = > 4 = > = 90

Content

Trees

Binary tree (BinTree)

Application: integer expression representation as trees

6/37

Abstract data type BinTree

OBJECTS: binary trees.

A binary tree is a node collection having the properties:

- ▶ any node has 0, 1 or 2 successors (children).
- ▶ any node except one the root has a single predecessor (parent).
- the root has no predecessors.
- the children are ordered: left child, right child (if a node has single child, it has to be specified which one);
- the nodes without children give the tree frontier.

FII, UAIC

Binary tree: example

Binary tree: example

Binary tree: example

8/37

Binary tree: recursive definition

- ▶ The empty tree is a binary tree.
- ▶ If v is a node and t_1 and t_2 are binary trees then the tree having v as root, t_1 the root left subtree and t_2 the root right subtree, is binary tree.

9 / 37

Binary trees: properties

Notation:

- \triangleright n number of nodes.
- $ightharpoonup n_e$ number of external nodes.
- $ightharpoonup n_i$ number of internal nodes.
- \blacktriangleright *h* tree height.

$$h+1 \le n \le 2^{h+1}-1; \qquad \log_2(n+1)-1 \le h \le n-1$$

$$1 \le n_e \le 2^h; \qquad \qquad h \le n_i \le 2^h - 1$$

FII, UAIC

Binary trees: properties

▶ Proper tree: each internal node has exactly two children.

$$\begin{aligned} 2h+1 &\leq n \leq 2^{h+1}-1; \\ \log_2(n+1)-1 &\leq h \leq (n-1)/2 \\ h+1 &\leq n_e \leq 2^h; \\ h &\leq n_i \leq 2^h-1 \\ n_e &= n_i+1 \end{aligned}$$

Complete tree: proper tree where the leaves have the same depth.

level *i* has
$$2^{i}$$
 nodes;
 $n = 2^{h+1} - 1 = 2n_e - 1$

FII, UAIC

BinTree - operations

insert()

- input:
 - a binary tree t;
 - [address of] a node having at most one child (parent on the new node);
 - type of inserted child (left, right);
 - new node information e.

- output:
 - tree t where a new node that stores e has been added;
 the new node has no children.

BinTree - operation

delete()

- ▶ input:
 - a binary tree t;
 - [address of] a leaf node and [address of] its parent.

- output:
 - tree t from which the given leaf node has been deleted (from the frontier).

BinTree: delete - example

BinTree: delete - example

BinTree: delete - example

BinTree - preorder traversal

preorder()

- ▶ input:
 - a binary tree t;
 - a procedure visit().

- output:
 - binary tree t, with the nodes processed by visit() in the following order
 - * (R) root
 - * (S) left subtree
 - * (D) right subtree

Preorder traversal - example

Preorder traversal - example

BinTree - inorder traversal

inorder()

- ▶ input:
 - a binary tree t;
 - a procedure visit().

- output:
 - binary tree t with nodes processed by viziteaza() in the following order
 - * (S) left subtree
 - * (R) root
 - * (D) right subtree

BinTree - postorder traversal

postorder()

- ▶ input:
 - a binary tree t;
 - a procedure visit().

- output:
 - ${\mathord{\hspace{1pt}\text{--}}}$ binary tree t with nodes processed by ${\tt visit()}$ in the following order
 - * (S) left subtree
 - * (D) right subtree
 - * (R) root

BinTree - BFS traversal

BFS() - Breadth-First Search

- ▶ input:
 - a binary tree t;
 - a procedure visit().

- output:
 - binary tree t with the nodes processed by visit() in BFS order (level by level).

BinTree: Linked structures implementation

BinTree: node structure

A node v (stored at memory address v) is a structure with three fields:

- v->inf information stored in the node;
- v->left left child address;
- v->right right child address.

FII, UAIC Lecture 5 DS 2020/2021 27 / 37

BinTree: preorder()

```
procedure preorder(v, visit)

begin

if (v == NULL) then

return

else

visit(v)

preorder(v- > left, visit)

peorder(v- > right, visit)

end
```



```
\mathsf{BFS} = \mathsf{Queue} = (
```


$$\mathsf{BFS} = \mathsf{Queue} = (\mathsf{C})$$

$$\mathsf{BFS} = \mathsf{C}$$

$$\mathsf{Queue} = (\; \mathsf{C} \; \; \mathsf{E} \; \; \mathsf{G} \; \;)$$

$$\label{eq:BFS} \begin{split} \mathsf{BFS} = & \mathsf{C} & \mathsf{E} \\ \mathsf{Queue} = & \big(\; \mathsf{G} & \mathsf{F} & \mathsf{G} & \mathsf{K} & \mathsf{A} \\ \end{matrix} \, \big) \end{split}$$

$$\label{eq:BFS} \begin{split} \mathsf{BFS} = & \mathsf{C} & \mathsf{E} & \mathsf{G} \\ \mathsf{Queue} = & \big(\begin{smallmatrix} \mathsf{C} & \mathsf{F} & \mathsf{G} & \mathsf{K} & \mathsf{A} & \mathsf{M} & \mathsf{D} \\ \end{smallmatrix} \big) \end{split}$$

$$\label{eq:BFS} \begin{split} \mathsf{BFS} = & \mathsf{C} & \mathsf{E} & \mathsf{G} & \mathsf{K} \\ \mathsf{Queue} = & \left(\begin{smallmatrix} \mathsf{C} & \mathsf{F} & \mathsf{G} & \mathsf{K} \end{smallmatrix} \right) & \mathsf{A} & \mathsf{M} & \mathsf{D} \end{array} \right) \end{split}$$

$$\label{eq:BFS} \begin{split} \mathsf{BFS} = & \mathsf{C} & \mathsf{E} & \mathsf{G} & \mathsf{K} & \mathsf{A} \\ \mathsf{Queue} = & \left(\begin{smallmatrix} \mathsf{C} & \mathsf{E} & \mathsf{G} & \mathsf{K} \end{smallmatrix} \right) & \mathsf{E} & \mathsf{M} & \mathsf{D} \end{array} \right) \end{split}$$

$$\label{eq:BFS} \begin{aligned} \mathsf{BFS} = & \mathsf{C} & \mathsf{E} & \mathsf{G} & \mathsf{K} & \mathsf{A} & \mathsf{M} \\ \mathsf{Queue} = & \left(\begin{smallmatrix} \mathsf{G} & \mathsf{E} & \mathsf{G} & \mathsf{K} & \mathsf{A} & \mathsf{M} \end{smallmatrix} \right) \end{aligned}$$

$$BFS = C E G K A M D$$

$$Queue = (\bigcirc P \bigcirc K A M D)$$

```
procedure BFS(t, visit)
begin
   if (t == NULL) then
      return
   else
       Queue \leftarrow emptyQueue()
       insert(Queue, t)
       while not isEmpty(Queue) do
          read(Queue, v)
          visit(v)
          if (v- > left != NULL) then
             insert(Queue, v- > left)
          if (v- > right != NULL) then
             insert(Queue, v- > right)
          delete(Queue)
```

end

BinTree: list implementation

parent array: "parent" relation representation.

Pro:

- simplicity;
- easy access from any node to the root;
- memory savings.

Cons:

 non-easy access from the root to other nodes.

BinTree: array implementation

- Nodes are stored in an array.
- Node index:
 - index(root) = 0
 - index(x) = 2*index(parent(x))+1,
 if x is left child
 - index(x) = 2*index(parent(x))+2,
 if x is right child

Content

Trees

Binary tree (BinTree)

Application: integer expression representation as trees

FII, UAIC

Application: integer expression

- ► Integer expressions
 - definition;
 - examples.

- ► Tree representation of integer expressions
 - definition similarities:
 - expression associated tree;
 - prefix, infix and postfix notation and tree traversal.

Integer expression definition

priorities

$$12-5*2$$
 is $(12-5)*2$ or $12-(5*2)$?

association rules

$$15/4/2$$
 is $(15/4)/2$ or $15/(4/2)$? $15/4 * 2$ is $(15/4) * 2$ or $15/(4 * 2)$?

Integer expressions as trees

$$-12 + 17 * 5 - (43 + 34/21 * 66)$$

FII, UAIC

Integer expressions as trees

$$-12 + 17 * 5 - (43 + 34/21 * 66)$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

FII, UAIC

Postfix and prefix notations

- postfix notation is given by the postorder traversal -12, 17, 5, *, +, 43, 34, 21, /, 66, *, +, -
- ▶ prefix notation is given by the preorder traversal -, +, -12, *, 17, 5, +, 43, *, /, 34, 21, 66

