TRAIN

DEV

TEST

Devitest multiple algorithms on it, select best.

Test: check for that chosen algorithm.

In big data: 99% - 0'5% - 0'5%

AVOID mismatched data samples!

BIAS/VARIANCE

Train Set error	1 %	15%	15%	0'5 %
Dev set error	11 %	16 %	30 X	1 %

High bias and high variance

high variance high bias high variance low variance

- Do I have high bias? Check for training data performance.

 Bigger network Train larger
- · Do I have high variance? Check for dev set performance.
 - hore data Regularization

Observations:

• The model with He initialization separates the blue and the red dots very well in a small number of iterations.

7 - Conclusions

You've tried three different types of initializations. For the same number of iterations and same hyperparameters, the comparison is:

Problem/Comment	Train accuracy	Model
fails to break symmetry	50%	3-layer NN with zeros initialization
too large weights	83%	3-layer NN with large random initialization
recommended method	99%	3-layer NN with He initialization

Congratulations! You've completed this notebook on Initialization.

Here's a quick recap of the main takeaways:

- Different initializations lead to very different results
- · Random initialization is used to break symmetry and make sure different hidden units can learn different things
- Resist initializing to values that are too large!
- · He initialization works well for networks with ReLU activations