ЛЕКЦИЯ № 14.

Самосопряженные и ортогональные операторы.

Сопряженные и самосопряженные операторы

Определение. Линейный оператор \hat{A}^* : $E \rightarrow E$, где E – евклидово пространство, называется **сопряженным** линейному оператору \hat{A} , если для любых $\overline{x}; \overline{y} \in E$, верно равенство $(\hat{A}\overline{x}, \overline{y}) = (\overline{x}, \hat{A}^*\overline{y})$

Теорема 1. Любому линейному оператору \hat{A} в евклидовом пространстве \hat{A}^* соответствует единственный сопряженный оператор \hat{A}^* , причем его матрицей в любом ортонормированном базисе является матрица A^T , транспонированная к матрице A линейного оператора \hat{A} в том же базисе.

 \blacktriangleleft Доказательство основано на том, что при фиксированном базисе существует взаимно однозначное соответствие между линейными операторами и матрицами M_{nxn} .

Докажем, что линейный оператор \hat{B} с матрицей $B=A^T$ в некотором ортонормированном базисе является сопряженным к линейному оператору \hat{A} с матрицей A в том же базисе. Для этого достаточно проверить выполнения равенства $(\widehat{A}\overline{x}, \overline{y}) = (\overline{x}, \widehat{B}\overline{y})$ (*) для любой пары векторов $\overline{x}, \overline{y} \in \mathbb{E}$.

Пусть X, Y — столбцы координат векторов $\overline{x}, \overline{y}$ в некотором ортонормированном базисе **e.** Тогда координаты вектора $\widehat{A}\overline{x}$ это вектор столбец AX, и тогда равенство (*) можно будет записать в матричном виде: $(AX)^TY = X^TBY$. Следовательно, $(X)^T(A)^TY = X^T(BY)$. Следовательно, $X^TA^TY = X^TBY => B=A^T$.

И линейный оператор В определен однозначно, так как однозначно определена его матрица. ►

<u>Пример 1</u>. Рассмотрим в V^3 линейный оператор $\hat{A}\overline{x} = [\overline{a}, \overline{x}]$ для некоторого вектора $\overline{a} \in V^3$, $\overline{a} \neq \overline{0}$. Оператор , сопряженный к \hat{A} , можно определить, опираясь на свойства скалярного, векторного и смешанного произведения.

$$(\widehat{A}\overline{x},\overline{y}) = ([\overline{a},\overline{x}],\overline{y}) = \overline{a} \cdot \overline{x} \cdot \overline{y} = \overline{y} \cdot \overline{a} \cdot \overline{x} = ([\overline{y},a],\overline{x}) = (\overline{x},[\overline{y},a]) = (\overline{x},-[\overline{a},y]) = (\overline{x},-\widehat{A}\overline{y})$$

Из приведенных соотношений видно, что $\hat{A}^* = - - \hat{A}$

Определение. Линейный оператор \hat{A} , действующий в евклидовом пространстве, называется самосопряженным, если $\hat{A}^* = \hat{A}$, т.е. $(\hat{A}\overline{x}, \overline{y}) = (\overline{x}, \hat{A}\overline{y})$

Самосопряженный линейный оператор является сопряженным оператором к самому себе.

Примеры самосопряженных операторов:

- 1. \hat{O} , $(\hat{O}\overline{x}, \overline{y}) = (\overline{x}, \hat{O}\overline{y}) = \overline{0}$
- 2. \hat{l} , $(\hat{l}\overline{x}, \overline{y}) = (\overline{x}, \overline{y}) = (\overline{x}, \hat{l}\overline{y})$
- 3. $\hat{A}\overline{x} = \alpha \overline{x}$; $(\hat{A}\overline{x}, \overline{y}) = (\alpha \overline{x}, \overline{y}) = \alpha(\overline{x}, \overline{y}) = (\overline{x}, \alpha \overline{y}) = (\overline{x}, \hat{A}\overline{y})$

Теорема 2. В ортонормированном базисе матрица линейного оператора симметричная тогда и только тогда, когда он самосопряженный.

 \blacktriangleleft \hat{A} —самосопряженный <=> тогда $\hat{A}^* = \hat{A}$. Это эквивалентно тому, что в ортонормированном базисе матрица линейного оператора совпадает со своей транспонированной матрицей. Такие матрицы и называются симметричными. ▶

Теорема 3. Все собственные числа самосопряженного оператора действительны.

 Докажем, что характеристическое уравнение симметричной матрицы имеет только действительные корни.

Рассмотрим характеристическое уравнение $\det(A-\lambda E)=0$ и предположим, что некоторое число λ является его вообще говоря комплексным корнем. Тогда система $(A-\lambda E)X=0$ имеет некоторое ненулевое решение $X=(x_1,x_2,\ldots,x_n)^T$, состоящее из комплексных чисел x_1,x_2,\ldots,x_n . Рассмотрим столбец, состоящий из чисел

комплексно-сопряженных к
$$x_{\rm K}$$
, $\overline{X} = \begin{pmatrix} \overline{x_1} \\ \dots \\ \overline{x_n} \end{pmatrix}$.

Рассмотрим систему: $\overline{X}^T (A-\lambda E)X=O$

или
$$\overline{X}^T A X = \lambda \overline{X}^T X$$
 (**)

Так как произведение комплексного числа на сопряженное к нему является действительным числом, равным квадрату модуля комплексного числа, а X -ненулевое решение, то

$$X^TX = x_1\overline{x_1} + \dots + x_n\overline{x_n} = |x_1|^2 + \dots + |x_n|^2 > 0$$
; T.e.

 $X^{T}X$ — действительное положительное число.

Из равенства (**) находим $\lambda = \frac{\overline{X}^T A X}{\overline{X}^T X}$, где знаменатель – действительное число.

Рассмотрим числитель $z=\overline{X}^TAX$

В силу симметричности матрицы А:

$$z=z^T=(\overline{X}^TAX)^T=X^TA^T\overline{X}=X^TA\overline{X};$$

Рассмотрим число , сопряженное числителю и используем свойство операции комплексного сопряжения матриц и то, что элементы А-действительные числа, получим:

$$\overline{(\overline{X}^T A X)} = \overline{\overline{X}}^T \overline{A} \overline{X} = X^T A \overline{X} = \overline{Z} = \overline{X}^T A X$$

Комплексное число, сопряженное самому себе, является действительным числом. Таким образом мы доказали, что и числитель является действительным числом, а следовательно все корни характеристического уравнения — действительные числа.

Следствие 1. Если матрица А является симметричной, то все корни ее характеристического уравнения – действительные.

Следствие 2. Самосопряженный оператор, действующий в n-мерном евклидовом пространстве, имеет n собственных значений, если каждое считать столько раз какова его кратность.

Следствие 3. Симметричная матрица порядка п имеет п собственных значений, если каждое считать столько раз какова его кратность

Теорема 4. Собственные векторы самосопряженного линейного оператора, отвечающие различным собственным значениям, ортогональны.

■ Рассмотрим самосопряженный линейный оператор и два его собственных вектора \overline{x} и \overline{y} , отвечающие различным собственным значениям λ_1 и λ_2 .

Тогда
$$\hat{A}\overline{x}=\lambda_1\overline{x};\,\hat{A}\overline{y}=\lambda_2\overline{y};\,$$
и $(\hat{A}\overline{x},\overline{y})=(\lambda_1\overline{x},\,\overline{y})=\lambda_1(\overline{x},\,\overline{y});$

Так как \hat{A} - самосопряженный оператор, то

$$(\widehat{A}\overline{x}, \overline{y}) = (\overline{x}, \widehat{A}\overline{y}) = (\overline{x}, \lambda_2 \overline{y}) = \lambda_2(\overline{x}, \overline{y});$$

Приравняем правые части получившихся соотношений:

$$\lambda_1(\overline{x}, \overline{y}) = \lambda_2(\overline{x}, \overline{y}); =>$$
 $(\lambda_1 - \lambda_2)(\overline{x}, \overline{y}) = 0.$

Так как $\lambda_1 \neq \lambda_2$, из последнего равенства следует ортогональность \overline{x} и \overline{y} .

Теорема 5. Если собственные значения самосопряженного оператора, действующего в п-мерном евклидовом пространстве Е попарно различны, то в Е существует ортонормированный базис, в котором матрица линейного оператора имеет диагональный вид, причем на главной диагонали стоят собственные значения.

■ Так как собственные значения линейного оператора различны, то согласно теореме 4 можно получить систему из п ненулевых ортогональных векторов, выбрав по одному собственному вектору для каждого собственного значения. Так как собственные вектора, отвечающие различным собственным значениям линейно-независимы, мы получим базис из п ортогональных векторов. Поделив каждый вектор на его длину, мы получим ортонормированный базис.

4

А если собственные значения самосопряженного линейного оператора действительные, но среди них есть кратные?

Теорема 6. Для любого самосопряженного оператора \hat{A} существует ортонормированный базис, состоящий из собственных векторов этого линейного оператора. Матрица А самосопряженного оператора в этом базисе имеет диагональный вид и на ее диагонали расположены собственные значения \hat{A} , повторяющиеся столько раз, какова его кратность.

(без доказательства)

Ортогональные матрицы

Определение. Квадратную матрицу Q называют ортогональной, если она удовлетворяет условию: $Q^TQ = E$, где E- единичная матрица.

Пример 3:

Матрица Е – ортогональная.

1)
$$U = \begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix} - \text{ ортогональная.}$$

$$U^T U = \begin{pmatrix} \cos\varphi & \sin\varphi \\ -\sin\varphi & \cos\varphi \end{pmatrix} \begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E$$

Свойства ортогональных матриц:

1. Определитель ортогональных матриц может иметь одно из двух значений 1 или -1.

Доказательство:
$$\det(Q^TQ) = \det E = 1;$$
 $\det(Q^TQ) = \det Q^T \det Q = \det Q^T \det Q = \det Q = \pm 1.$

2. Матрица, обратная к ортогональной, совпадает с ее транспонированной матрицей, т.е. $Q^{-1} = Q^T$

Доказательство: Согласно свойству 1, ортогональная матрица неврожденная и поэтому имеет обратную.

Умножим $Q^T Q = E$ справа на Q^{-1} , получим: $(Q^T Q)Q^{-1} = EQ^{-1}$; С другой стороны:

$$Q^{T}(QQ^{-1})=Q^{T}=>Q^{T}=Q^{-1}$$
.

3. $QQ^{T} = E$ (следует из определения обратной матрицы)

4. Матрица, транспонированная к ортогональной, тоже ортогональная. Доказательство:

Найдем
$$(Q^T)^T Q^T = QQ^T = E$$

5. Произведение двух ортогональных матриц одного порядка является ортогональной матрицей.

Доказательство:

$$(\mathbf{U}\mathbf{Q})^T\mathbf{U}\mathbf{Q} = (\mathbf{Q})^T(\mathbf{U})^T\mathbf{U}\mathbf{Q} = (\mathbf{Q})^TE\mathbf{Q} = \mathbf{Q}^T\mathbf{Q} = \mathbf{E}$$

6. Матрица, обратная к ортогональной, является ортогональной. <u>Доказательство:</u> По свойству 1 ортогональная матрица является невырожденной и поэтому имеет обратную. Согласно свойству 2 матрица, обратная к ортогональной, совпадает с транспонированной. Согласно свойству 4 матрица, транспонированная к ортогональной является ортогональной.

Пример 4: Найти матрицу, обратную к матрице $U = \begin{pmatrix} cos\varphi & -sin\varphi \\ sin\varphi & cos\varphi \end{pmatrix}$;

$$U^{-1} = U^{T} = \begin{pmatrix} \cos\varphi & \sin\varphi \\ -\sin\varphi & \cos\varphi \end{pmatrix}$$

Ортогональные операторы

Определение. Линейный оператор \hat{A} , действующий в евклидовом пространстве называется ортогональным, если он сохраняет скалярное произведение, т.е. $(\hat{A}\overline{x}, \hat{A}\overline{y}) = (\overline{x}, \overline{y}), \forall \overline{x}, \overline{y} \in \mathbb{E}$.

Очевидно, что он сохраняет и норму (длину) вектора.

Действительно,
$$\|\hat{A}\overline{x}\|^2 = (\hat{A}\overline{x}, \hat{A}\overline{x}) = (\overline{x}, \overline{x}) = \|\overline{x}\|^2 = >$$

 $\|\widehat{A}\overline{x}\| = \|\overline{x}\|.$

Отсюда следует, что если векторы ненулевые \overline{x} и \overline{y} ненулевые, то и $\hat{A}\overline{x}$ и $\hat{A}\overline{y}$ ненулевые. При этом

$$\cos(\widehat{A}\overline{x},\widehat{A}\overline{y}) = \frac{(\widehat{A}\overline{x},\widehat{A}\overline{y})}{\|\widehat{A}\overline{x}\|\|\widehat{A}\overline{y}\|} = \frac{(\overline{x},\overline{y})}{\|\overline{x}\|\|\overline{y}\|} = \cos(\overline{x},\overline{y}),$$

Теорема 7. Если линейный оператор \hat{A} , действующий в евклидовом пространстве, сохраняет евклидову норму: $\|\hat{A}\overline{x}\| = \|\overline{x}\|$, $\forall \overline{x} \in \mathbb{E}$, то этот оператор ортогональный.

Примеры ортогональных операторов:

В пространствах геометрических векторов V_2 и V_3 ортогональными являются линейные операторы, сохраняющие расстояние. Например, линейный оператор поворота на фиксированный угол или линейный оператор отражения относительно прямой или плоскости.

Теорема 8. Ортогональный оператор в Евклидовом пространстве переводит ортонормированный базис в ортонормированный.

 \blacktriangleleft Пусть в п-мерном евклидовом пространстве существует ортонормированный базис $\{\overline{e}_1, \ \overline{e}_n\}$. В силу ортогональности \hat{A}

$$(\hat{A}\overline{e_i},\hat{A}\overline{e_j})=(\overline{e_i},\overline{e_j})=\delta_{ij}=\begin{cases} 0, i\neq j\\ 1, i=j. \end{cases}$$

Мы видим, что система векторов $\{\hat{A}\overline{e}_1,...\,\hat{A}\overline{e}_n\}$ состоит из n ненулевых ортогональных векторов, следовательно она линейно независима. Кроме того все векторы имеют единичную длину, следовательно данная система образует ортонормированный базис.

Теорема 9.

Если линейный оператор , действующий в n-мерном евклидовом пространстве переводит какой-то ортонормированный базис в ортонормированный, то этот оператор ортогональный.

◄Пусть $\{\overline{e}_1, \overline{e}_n\}$ и $\{\hat{A}\overline{e}_1, ... \hat{A}\overline{e}_n\}$ - ортонормированный базисы.

Пусть \overline{x} =(x_1 , ... x_n) – координаты вектора в базисе { \overline{e}_1 , \overline{e}_n }.

 $\hat{A}\overline{x} = \hat{A}(x_1\overline{e}_1 + \cdots + x_n\overline{e}_n) = x_1\hat{A}\overline{e}_1 + \cdots x_n\hat{A}\overline{e}_n = >$ вектор \overline{x} имеет те же координаты в базисе $\{\hat{A}\overline{e}_1, \dots \ \hat{A}\overline{e}_n\}$.

Возьмем два произвольных вектора $\overline{x} = x_1 \overline{e}_1 + \cdots + x_n \overline{e}_n$ и $\overline{y} = y_1 \overline{e}_1 \dots y_n \overline{e}_n$. Их скалярное произведение в базисе $\{\overline{e}_1, \overline{e}_n\}$

 $(\overline{x},\overline{y})=x_1y_1+\cdots+x_ny_n$. И такой же формулой оно выражается в ортонормированном базисе $\{\hat{A}\overline{e}_1,\dots\ \hat{A}\overline{e}_n\}$, поэтому, соотношение .

 $(\hat{A}\overline{x},\hat{A}\overline{y})=(\overline{x},\overline{y})$ выполняется для любых векторов $\overline{x},\overline{y}. => \hat{A}-$ ортогональный оператор. \blacktriangleright

Теорема 10. Линейный оператор \hat{A} является ортогональным тогда и только тогда, когда \hat{A} переводит ортонормированный базис в ортонормированный.

Теорема 11. Если матрица линейного оператора в некотором ортонормированном базисе ортогональна, то этот оператор является ортогональным. И наоборот, матрица ортогонального оператора в любом ортонормированном базисе является ортогональной.

■ Выберем в евклидовом пространстве любой ортонормированный базис. Тогда для любых векторов \overline{x} и \overline{y} , скалярное произведение $(\overline{x}, \overline{y}) = x_1 y_1 + \dots + x_n y_n = X^T Y$, где X и Y -столбцы координат. Пусть A матрица линейного оператора в ортонормированном базисе является ортогональной. Тогда $A^T A = E$ и, следовательно, равенство $X^T (A^T A)Y = X^T E Y$ выполняется для любых \overline{x} , \overline{y} . Но $X^T (A^T A)Y = (AX)^T (AY) = (A\overline{x}, A\overline{y})$.

Таким образом мы доказали, что $(\hat{A}\overline{x}, \hat{A}\overline{y}) = (\overline{x}, \overline{y})$. А это означает, что оператор ортогональный.

Докажем обратное утверждение. В любом ортонормированном базисе для ортогонального оператора соотношение $(\hat{A}\overline{x}, \hat{A}\overline{y}) = (\overline{x}, \overline{y})$, можно записать в координатном виде:

 $(AX)^T(AY) = X^TY$ или $X^T(A^TA)Y = X^TEY$, отсюда следует, что $A^TA = E$, То есть A- ортогональная матрица.

>

Теорема 12. В евклидовом пространстве матрица перехода от одного ортонормированного базиса к другому является ортогональной.

$$P=P_{S_1 o S_2}$$
 — матрица перехода от S_1 к S_2 : $P=egin{pmatrix} a_{11} & \cdots & a_{n1} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{nn} \end{pmatrix}$, где $\begin{cases} \vec{f}_1=a_{11}\vec{e}_1+\cdots+a_{1n}\vec{e}_n \\ & \cdots & \ddots \\ \vec{f}_n=a_{n1}\vec{e}_1+\cdots+a_{nn}\vec{e}_n \end{cases}$

Тогда

$$P^TP = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} a_{11} & \cdots & a_{n1} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} (\vec{f}_1, \vec{f}_1) & \cdots & (\vec{f}_1, \vec{f}_n) \\ \vdots & \ddots & \vdots \\ (\vec{f}_n, \vec{f}_1) & \cdots & (\vec{f}_n, \vec{f}_n) \end{pmatrix} = E,$$

так как базис S_2 ортонормированный.

Итак, $P^T = P^{-1}$, значит P — ортогональная матрица.

>