SVM SUPPORT VECTOR MACHINE

Prof. André Backes | @progdescomplicada

- Máquinas de Vetores Suporte (Support Vector Machines SVMs)
 - Proposto em 79 por Vladimir Vapnik
 - Um dos mais importantes acontecimentos na área de reconhecimento de padrões nos últimos 15 anos.
 - Tem sido largamente utilizado com sucesso para resolver diferentes problemas.

- Máquinas de Vetores Suporte (Support Vector Machines SVMs)
 - É uma técnica de classificação supervisionada
 - Trata-se de um classificador linear binário não-probabilístico
 - Classifica os dados sempre em apenas 2 classes
 - Resultados comparáveis aos obtidos por outros algoritmos de aprendizado
 - Redes Neurais Artificiais (RNAs)

- Ideia geral
 - Perceptron é capaz de construir uma fronteira se os dados forem linearmente separáveis
 - Mas qual fronteira é a melhor?

- Ideia geral
 - SVM trabalha com a maximização da margem
 - A fronteira mais distante dos dados de treinamento é a melhor

- SVM linear com margens rígidas
 - Define uma fronteira linear a partir de dados linearmente separáveis
 - Separam os dados por meio de um hiperplano
 - Conjunto de dados contendo somente duas classes
 - -1 e +1

- Um dado é visto como um ponto num espaço de p dimensões
 - Queremos saber se podemos separar esses pontos com um hiperplano de (p - 1) dimensões
 - Problema Linearmente Separável

- Existem muitos hiperplanos possíveis
 - Duas possíveis soluções (mas existem outras...)
 - Qual é o melhor hiperplano?

- Existem muitos hiperplanos possíveis
 - SVM busca o hiperplano máximo
 - Maior separação, ou margem, entre as duas classes

- Solução
 - Encontrar o hiperplano que maximiza a margem do limiar de decisão

 O hiperplano de separação é dado pela equação

$$f(x) = wx + b = 0$$

 Onde w é o vetor de pesos (mesma dimensão das amostras) perpendicular ao hiperplano de separação e b é um escalar.

 A equação divide o espaço duas regiões

•
$$wx + b > 0$$

•
$$wx + b < 0$$

 Apenas o sinal é necessário para fazer a classificação

•
$$y(x) = \begin{cases} +1, se \ wx + b > 0 \\ -1, se \ wx + b < 0 \end{cases}$$

- Essa equação permite obter um número infinito de hiperplanos equivalentes. Qual escolher?
 - Selecionar w e b de forma que os exemplos mais próximos ao hiperplano satisfaçam
 - |wx + b| = 1
 - Assim temos que

$$\begin{cases} wx + b \ge +1 \text{ se } y = +1 \\ wx + b \le -1 \text{ se } y = -1 \end{cases}$$

- Como escolher w e b?
- Seja dois pontos x_a e x_b
 - $wx_a + b = +1$
 - $wx_b + b = -1$

- A diferença entre as equações
 - $wx_a + b = +1$
 - $wx_b + b = -1$
- Fazendo a diferença entre os hiperplanos de x_a e x_b
 - $w(x_a x_b) = 2$

- Calculando a margem
 - É a distância entre os hiperplanos x_a e x_b
 - Diferença entre hiperplanos
 - $w(x_a x_b) = 2$
 - Margem é o comprimento do vetor diferença projetado na direção de w
 - $||x_a x_b|| = \frac{2}{||w||}$
 - $margem = \frac{2}{\|w\|}$

- Temos então que
 - $margem = \frac{2}{\|w\|}$
- □ A distância mínima entre o hiperplano separador e os dados é dada por $w(x_a x_b) = 2$
 - $\frac{1}{\|w\|}$
- Logo, maximizar a margem envolve minimizar
 - ||w||

- Minimizar ||w|| é um problema difícil de resolver
 - Depende da norma de w, a qual envolve uma raíz
- Solução
 - Substituir o termo ||w|| por $\frac{1}{2}||w||^2$
 - Removemos o cálculo da raiz e acrescentamos uma constante por conveniência matemática

 Temos agora um problema de otimização de uma função quadrática

 Vamos maximizar a margem do limiar de decisão em função do vetor de pesos w (forma primal)

$$\bullet \min_{w,b} \frac{1}{2} ||w||^2$$

- Problema de otimização sujeito a seguinte restrição
 - $y_i(w.x_i + b) \ge 1, i = 1, ... n$
- Devemos lembrar que
 - x_i , i = 1, ... n, conjunto de padrões
 - $y_i = \{-1, +1\}, i = 1, ... n$, respectivas classes

- Problema de otimização
 - Trata-se de um problema quadrático com restrições lineares
 - Função objetivo é convexa, logo há somente um mínimo, que é o global
 - Solução global ótima é encontrada usando métodos numéricos

- Solução com função de Lagrange
 - Problemas desse tipo podem ser solucionados com a introdução de uma função de Lagrange, que engloba as restrições à função objetivo, associadas a parâmetros denominados multiplicadores de Lagrange $\alpha_i \geq 0$

$$L(w,b,\alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{n} \alpha_i (y_i(wx_i + b) - 1)$$

• A função de Lagrange deve ser minimizada, o que implica em maximizar as variáveis α_i e minimizar \mathbf{w} e \mathbf{b}

- Podemos aplicar os mesmos princípios de resolução encontrando o gradiente para a função de Lagrange
 - Essa abordagem também permite chegar à forma dual do problema. Isso envolve encontrar

$$\cdot \frac{\partial L}{\partial b} = 0$$

$$\cdot \frac{\partial L}{\partial w} = 0$$

Resolvendo

$$\cdot \frac{\partial L}{\partial b} = 0$$

$$\cdot \frac{\partial L}{\partial w} = 0$$

- Chegamos, respectivamente, a
 - $\bullet \sum_{i=1}^{n} \alpha_i y_i = 0$
 - $w = \sum_{i=1}^{n} \alpha_i y_i x_i$

 Substituindo os termos anteriores a forma primal, o problema passa a ser otimizar

•
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i x_j$$

Sujeito a

$$\begin{cases} \alpha_i \ge 0, i = 1, \dots, n \\ \sum_{i=1}^n \alpha_i y_i = 0 \end{cases}$$

- E se o problema for não linearmente separável ?
 - Em situações reais, é difícil encontrar aplicações cujos dados sejam linearmente separáveis.
 - Presença de ruído e exemplos inconsistentes (outliers)

- Necessidade de uma nova abordagem
 - É empregada quando não há um hiperplano que divida os exemplos em +1 e 1
 - Permite-se que alguns dados possam violar a restrição

- Nova abordagem
 - Flexibilizar as restrições de otimização utilizando variáveis de relaxamento do problema
 - Essas variáveis são conhecidas como "variáveis de folga"
 - São utilizadas para medir o grau de classificação errônea no conjunto de treinamento

- Nova abordagem
 - Essas variáveis relaxam as restrições impostas ao problema de otimização na forma primal
- SVM Linear com Margens Rígidas
 - $y_i(wx_i + b) \ge 1$
- SVM Linear com Margens Suaves
 - $y_i(wx_i + b) \ge 1 + \xi_i$

- Interpretação geométrica
 - As variáveis de folga, ξ_i , medem onde se encontram as amostras em relação as margens de separação
 - Se seu valor for 0, a amostra está fora da região entre estes hiperplanos e é classificada corretamente
 - Se for positivo, mede a distância da amostra em relação aos mesmos
 - Quando o dado é classificado erroneamente, a variável de folga, ξ_i , assume valor maior do que 1

- Problema desta abordagem
 - Não há restrições sobre o número de classificações incorretas
 - O algoritmo tentará a maximizar a margem do limiar de decisão indefinidamente relaxando as restrições o quanto for necessário

- Solução
 - Inserir uma penalidade C sobre os relaxamentos
 - C é uma constante que impõe um peso diferente para o treinamento em relação à generalização e deve ser determinada empiricamente

- Temos agora um novo problema de otimização
 - Queremos obter o menor número possível de erros no treinamento e maximizar a margem de separação entre as classes

•
$$\min_{w,b} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$

- Sujeito a seguinte restrição
 - $y_i(w.x_i + b) \ge 1, i = 1, ... n$

- Problema de otimização
 - Como na SVM linear
 - É um problema quadrático com restrições lineares
 - É um problema convexo
 - Solução global ótima é encontrada usando métodos numéricos
 - Parâmetro C pode ser escolhido experimentalmente
 - Com base no desempenho do classificador em dados de validação

- Problema convexo
 - Implica na otimização de uma função quadrática, que possui apenas um mínimo global
 - Trata-se de um vantagem sobre, por exemplo, as Redes Neurais Artificiais
 - Presença de mínimos locais na função objetivo a ser minimizada

- E se o problema de classificação não for linear?
 - Há muitos casos em que não é possível dividir satisfatoriamente os dados de treinamento por um hiperplano

Solução

 Mapear o conjunto de treinamento de seu espaço original (não linear) para um novo espaço de maior dimensão, denominado espaço de características (feature space), que é linear

- Para isso, precisamos
 - Encontrar uma transformação não linear
 - $\varphi(x) = [\phi_1(x), ..., \phi_m(x)]$
 - Essa transformação mapeia o espaço original dos padrões para um novo espaço de atributos m-dimensional
 - Nesse novo espaço, os padrões x passam a ser linearmente separáveis
 - m pode ser muito maior que a dimensão do espaço original

- Exemplo de transformação
 - Dado de entrada (amostra)
 - $x = [x_1, x_2]$
 - Função de transformação
 - m = 2 (número de dimensões é igual neste caso)

 - $\phi_2(x) = (x_1 + x_2)^4$

Exemplo de transformação

- Com a função de transformação, nosso problema de otimização recai pra uma SVM linear
 - $\bullet \min_{w,b} \frac{1}{2} ||w||^2$
- SVM Linear é sujeita a seguinte restrição
 - $y_i(w, x_i + b) \ge 1, i = 1, ... n$
- SVM Não Linear é sujeita a seguinte restrição
 - $y_i(w,\varphi(x_i) + b) \ge 1, i = 1, ... n$

- Ou seja, apenas substitui-se x_i por $\varphi(x_i)$
 - Mas isso se a transformação for conhecida
- Problema
 - Qual a transformação $\phi(x)$ que torna linearmente separável um determinado conjunto de N padrões $x_1, ..., x_n$?
 - Podemos contornar esse problema utilizando uma formulação equivalente do problema de otimização
 - Formulação via multiplicadores de Lagrange

- Formulação via multiplicadores de Lagrange
 - Multiplicadores de Lagrange são muito utilizados em problemas de otimização
 - Permitem encontrar extremos (máximos e mínimos) de uma função de uma ou mais variáveis suscetíveis a uma ou mais restrições
 - É uma ferramenta importante em restrições de igualdade

- Formulação via multiplicadores de Lagrange
 - Solução depende apenas do produto $\varphi(x_i)$. $\varphi(x_j)$ para cada par de padrões \mathbf{x}_i e \mathbf{x}_i , e não dos termos individuais
- Isso é obtido com o uso de funções denominadas Kernels
 - $K(x_i, x_i) = \varphi(x_i). \varphi(x_i)$

- O Kernel realiza a transformações de espaço
 - É comum empregar a função Kernel sem conhecer o mapeamento φ , que é gerado implicitamente: matriz Kernel
 - Nosso objetivo é determinar essa matriz de produtos sem precisar conhecer a transformação φ
 - A utilidade dos Kernels está, portanto, na simplicidade de seu cálculo e em sua capacidade de representar espaços abstratos

- Teorema de Mercer
 - Garante que, para algumas classes de Kernels $K(x_i, x_j)$, sempre existe uma transformação φ
 - O teorema não garante nada sobre a dimensão \emph{m} do espaço transformado φ (pode até ser infinita!)
 - Depende da classe de Kernels e dos N padrões
 - Utilizar Kernels pode evitar trabalhar diretamente nesse espaço

- Em termos de Lagrange, a forma Dual da SVM é dada por
 - Minimizar $\sum_{i=1}^{n} \alpha_i \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i x_j$
 - Sujeito a $\begin{cases} \alpha_i \geq 0, i = 1, \dots, n \\ \sum_{i=1}^n \alpha_i y_i = 0 \end{cases}$
- E usando um *Kernel*, temos
 - Minimizar $\sum_{i=1}^{n} \alpha_i \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j K(x_i, x_j)$
 - Sujeito a $\begin{cases} \alpha_i \geq 0, i = 1, \dots, n \\ \sum_{i=1}^n \alpha_i y_i = 0 \end{cases}$

- Alguns Kernels muito utilizados
 - Polinomial

•
$$K(x_i, x_j) = (\delta(x_i, x_j) + k)^d$$

- Gaussianos ou RBF (Radial-Basis Function)
 - $K(x_i, x_j) = \exp(-\sigma \cdot ||x_i x_j||^2)$
- Sigmoidal
 - $K(x_i, x_j) = \tanh(\delta(x_i, x_j) + k)$

- Kernel RBF e SVM
 - Quando usamos um kernel RBF em uma SVM, temos que o problema recai exatamente em uma rede neural do tipo RBF
 - Nesse caso, os centros e o número de neurônios da rede são dados automaticamente pelos vetores suporte

- Overfitting
 - Maximizar a margem no espaço transformado pelo SVM não-linear não garante a inexistência de overfitting no classificador
 - Sempre existe um número de dimensões suficientemente grande que separa s dados de treinamento
 - Exemplo: 1 Kernel RBF para cada padrão
 - N padrões = N vetores suporte
 - Como controlar o overfitting?
 - Técnica de relaxamento já descrita para SVMs lineares

Vantagens e desvantagens

- Vantagens
 - Sempre encontram a melhor solução possível para o problema de otimização em questão
 - Um dos mais eficientes classificadores para problemas de elevada dimensionalidade (muitos atributos)
 - Sua técnica de relaxamento minimiza o risco de overfitting
 - Problema crítico em dados com grande dimensionalidade (dados esparsos), e presença de ruído
 - Podem ser adaptados e/ou estendidos para problemas de regressão

Vantagens e desvantagens

- Desvantagens
 - São classificadores do tipo "caixa-preta", ou seja, não permitem interpretação da estratégia de decisão como as árvores
 - Voltados apenas para atributos numéricos
 - Necessidade de conversão para trabalhar com atributos discretos
 - Possuem complexidade mínima O(N²), usualmente O(N³), onde N é o número de padrões de treinamento
 - Se torna crítico a partir de uma certa quantidade de dados de treinamento

- SVMs são classificadores binários
 - Discriminar entre 2 classes possíveis
- O que fazer quando se tem mais de 2 classes de dados?
 - Problema multi-classes
 - padrões de várias classes {1, 2, ..., n}
 - Classes mutuamente excludentes

- Nesse caso, precisamos de múltiplos SVMs binários para construir um classificador multi-classes
- Duas alternativas possíveis
 - Decomposição 1-de-n
 - Decomposição 1-1

- Decomposição 1-de-n
 - n classificadores binários
 - Cada classificador identifica uma classe das demais (n-1) classes restantes
 - Essa decomposição simplifica o problema
 - É mais simples distinguir entre 2 classes
 - Empates podem ser resolvidos utilizando alguma medida de confiabilidade das classificações

Decomposição 1-de-n

- Decomposição 1-1
 - n*(n 1)/2 classificadores binários
 - Cada classificador classifica uma amostra dentre um par de classes possíveis
 - No treinamento, padrões que não pertençam as 2 classes envolvidas são ignorados
 - Utiliza mais classificadores que abordagem 1-de-n
 - Classificação
 - Amostra passa por todos os classificadores
 - Classe com maior número de votos é escolhida
 - Menor susceptibilidade a erros

- Decomposição 1-1
 - Grafo direcionado acíclico: o problema é decomposto em diversas classificações binárias em cada nó do grafo

Agradecimentos

- Agradeço ao professor
 - Prof. Ricardo J. G. B. Campello ICMC/USP
 - Prof. Rodrigo Fernandes de Mello ICMC/USP
- pelo material disponibilizado