

Task History

Initiating Search

February 21, 2025, 10:42 AM

Substances:

Filtered By:

Structure Match: As Drawn

Search Tasks

Task	Search Type	View
Returned Substance Results + Filters (2,301)	Substances	View Results
Exported: Retrieved Related Reaction Results + Filters (47)	■ Reactions	View Results
Filtered By:		
Structure Match: As Drawn		
Kept Selected Results		

Copyright © 2025 American Chemical Society (ACS). All Rights Reserved.

Internal use only. Redistribution is subject to the terms of your CAS SciFinder License Agreement and CAS information Use Policies.

Reactions (44)

View in CAS SciFinder

Steps: 1 Yield: 99%

Steps: 1 Yield: 96%

Absolute stereochemistry shown

Suppliers (22)

Steps: 1 Yield: 99%

Reagents: Deuterium Catalysts: Palladium

Solvents: Dimethylacetamide; -196 °C → rt; 20 h, rt

Experimental Protocols

31-614-CAS-39216789

Palladium Nanoparticles for the Deuteration and Tritiation of **Benzylic Positions on Complex Molecules**

By: Pfeifer, Viktor; et al

Angewandte Chemie, International Edition (2021), 60(51), 26671-26676.

Scheme 2 (1 Reaction)

31-116-CAS-4988718

1.1 Reagents: Deuterium, Sodium hydroxide- d

Catalysts: Calcium carbonate, Palladium Solvents: Water-d₂

Steps: 1 Yield: 96%

Supplier (1)

Syntheses of [5-2H]-uracil, [5-2H]-cytosine, [6-2H]-uracil and [6-2H]-cytosine

By: Kiritani, Reiko; et al

Journal of Labelled Compounds and Radiopharmaceuticals (1986), 23(2), 207-14.

Scheme 3 (1 Reaction)

> Suppliers (68)

Steps: 1 Yield: 95%

Steps: 1 Yield: 93%

Steps: 1 Yield: 90-92%

Steps: 1 Yield: 92%

31-116-CAS-5203181

I.1 Reagents: Deuterium
Catalysts: Palladium

Catalysts: Palladium Solvents: Acetic acid-d

Steps: 1 Yield: 95%

A selective method for deuterium exchange in hydroar omatic compounds

By: Ofosu-Asante, K.; et al

Journal of Organic Chemistry (1986), 51(26), 5452-4.

Scheme 4 (1 Reaction)

☐ Suppliers (40)

D D D

31-116-CAS-11664295

1.1 Reagents: Deuterium Catalysts: Palladium Solvents: Acetic acid-d Steps: 1 Yield: 93%

High-resolution EPR spectroscopic investigations of a homologous set of d 9 -cobalt(0), d 9 -rhodium(0), and d 9 -iridium (0) complexes

By: Deblon, Stephan; et al

Chemistry - A European Journal (2002), 8(3), 601-611.

Scheme 5 (2 Reactions)

Suppliers (104)

31-116-CAS-11267807

1.1 Reagents: Deuterium Catalysts: Palladium Solvents: Acetic acid-d Steps: 1 Yield: 92%

Hydrogen transfer reactions. 15. The transition state in the dehydrogenation of dihydroarenes by quinones

By: Radtke, Rainer; et al

Chemische Berichte (1990), 123(3), 627-33.

31-116-CAS-3074194

1.1 Reagents: Deuterium Catalysts: Palladium Solvents: Acetic acid-d Steps: 1 Yield: 90%

A selective method for deuterium exchange in hydroar omatic compounds

By: Ofosu-Asante, K.; et al

Journal of Organic Chemistry (1986), 51(26), 5452-4.

Scheme 6 (1 Reaction)

Steps: 1 Yield: 90%

Steps: 1 Yield: 90%

31-116-CAS-9297566

1.1 **Reagents:** Deuterium, Water- d_2

Catalysts: Palladium

Solvents: Water-*d*₂; 16 h, 145 °C

Steps: 1 Yield: 92%

Steps: 1 Yield: 90%

Steps: 1 Yield: 90%

Synthesis of a delta opioid agonist in [${}^{2}H_{6}$], [${}^{2}H_{4}$], [${}^{11}C$], and [${}^{14}C$] labeled forms

By: Elmore, Charles S.; et al

Journal of Labelled Compounds and Radiopharmaceuticals (2011), 54(14), 847-854.

Scheme 7 (1 Reaction)

31-116-CAS-4563156

1.1 Reagents: Deuterium chloride, Deuterium

Catalysts: Palladium

Solvents: Methanol-d, Water-d₂; 6 h, 3 bar, 60 °C

1.2 Reagents: Sodium hydroxide

Solvents: Water

Convenient methods for the synthesis of d_4 , d_2 and d_6 isotop omers of 4-(4-fluorobenzyl)piperidine

By: Proszenyak, Agnes; et al

Journal of Labelled Compounds & Radiopharmaceuticals

(2005), 48(6), 421-427.

Scheme 8 (1 Reaction)

31-116-CAS-11564808

1.1 Reagents: Deuterium chloride, Deuterium

Catalysts: Palladium

Solvents: Methanol-d, Water-d₂; 6 h, 3 bar, 60 °C

1.2 Reagents: Sodium hydroxide

Solvents: Water

Convenient methods for the synthesis of d_4 , d_2 and d_6 isotop omers of 4-(4-fluorobenzyl)piperidine

By: Proszenyak, Agnes; et al

Journal of Labelled Compounds & Radiopharmaceuticals (2005), 48(6), 421-427.

Steps: 1 Yield: 88%

Steps: 1 Yield: 87%

Steps: 1 Yield: 85%

Scheme 9 (1 Reaction)

D OH

➤ Suppliers (87)

📜 Supplier (1)

31-116-CAS-7646392

1.1 Reagents: Deuterium Catalysts: Palladium Solvents: Acetic acid-d

Steps: 1 Yield: 88%

A selective method for deuterium exchange in hydroar omatic compounds

By: Ofosu-Asante, K.; et al

Journal of Organic Chemistry (1986), 51(26), 5452-4.

Scheme 10 (1 Reaction)

Suppliers (85)

₩ Suppliers (2)

31-116-CAS-5486131

1.1 Reagents: Deuterium Catalysts: Palladium Solvents: Acetic acid-d

Steps: 1 Yield: 87%

A selective method for deuterium exchange in hydroar omatic compounds

By: Ofosu-Asante, K.; et al

Journal of Organic Chemistry (1986), 51(26), 5452-4.

Scheme 11 (1 Reaction)

Suppliers (87)

➤ Suppliers (4)

31-116-CAS-9493526

1.1 **Reagents:** Deuterium **Catalysts:** Palladium **Solvents:** Acetic acid-*d*

Steps: 1 Yield: 85%

A selective method for deuterium exchange in hydroar omatic compounds

By: Ofosu-Asante, K.; et al

Journal of Organic Chemistry (1986), 51(26), 5452-4.

Steps: 1 Yield: 81%

Steps: 1 Yield: 79%

Page 6

> Suppliers (33)

31-116-CAS-13699197

1.1 Reagents: Calcium carbonate, Deuterium

Catalysts: Palladium Solvents: 1,4-Dioxane 1.2 Reagents: Oxygen Solvents: Acetic acid

Steps: 1 Yield: 83% The preparation of regiospecific tritiated and deuterated dibenzacridines by catalytic exchange and [14-14C]dibenz[a,j] acridine

By: Rosario, Christopher A.; et al

Journal of Labelled Compounds and Radiopharmaceuticals (1987), 24(1), 23-8.

Scheme 13 (1 Reaction)

Suppliers (6)

31-116-CAS-3679279

Reagents: Deuterium Catalysts: Palladium

Solvents: Diethyl ether; 1.5 h, 1 bar, rt

Steps: 1 Yield: 81%

Reactivity of y-chloro-gem-trichloro alkanes with chromous chloride

By: Tisserand, Steve; et al

Tetrahedron Letters (2006), 47(29), 5177-5180.

Scheme 14 (1 Reaction)

Suppliers (129)

31-116-CAS-7264406

Steps: 1 Yield: 79%

Syntheses of [5-2H]-uracil, [5-2H]-cytosine, [6-2H]-uracil and [6-2H]-cytosine

By: Kiritani, Reiko; et al

Journal of Labelled Compounds and Radiopharmaceuticals (1986), 23(2), 207-14.

Reagents: Deuterium, Sodium hydroxide- d Catalysts: Calcium carbonate, Palladium

Solvents: Water-d2

Steps: 1 Yield: 74%

Steps: 1 Yield: 74%

Steps: 1 Yield: 70%

Scheme 15 (1 Reaction)

≒ Suppliers (70)

📜 Supplier (1)

31-116-CAS-975958

1.1 Reagents: Deuterium Catalysts: Palladium Solvents: Acetic acid-d

Steps: 1 Yield: 74%

A selective method for deuterium exchange in hydroar omatic compounds

By: Ofosu-Asante, K.; et al

Journal of Organic Chemistry (1986), 51(26), 5452-4.

Scheme 16 (1 Reaction)

Br → D D D

Br

Suppliers (88)

Supplier (1)

31-116-CAS-17238853

1.1 Reagents: Deuterium Catalysts: Palladium

Solvents: Methanol-d₄; 20 h, rt

Steps: 1 Yield: 74%

Cobalt-Porphyrin-Catalysed Intramolecular Ring-Closing C-H Amination of Aliphatic Azides: A Nitrene-Radical Approach to Saturated Heterocycles

By: Kuijpers, Petrus F.; et al

Chemistry - A European Journal (2017), 23(33), 7945-7952.

Scheme 17 (1 Reaction)

➤ Suppliers (93)

Supplier (1)

31-116-CAS-3363492

1.1 Reagents: Deuterium Catalysts: Palladium Solvents: Acetic acid-d

Steps: 1 Yield: 70%

A selective method for deuterium exchange in hydroar omatic compounds

By: Ofosu-Asante, K.; et al

Journal of Organic Chemistry (1986), 51(26), 5452-4.

Steps: 1 Yield: 54%

Steps: 1 Yield: 34%

Steps: 1 Yield: 17%

Scheme 18 (1 Reaction)

31-116-CAS-20244030

1.1 **Reagents:** Deuterium **Catalysts:** Palladium

➤ Suppliers (56)

Solvents: Water-*d*₂; 18 h, 2 bar, 150 °C

Steps: 1 Yield: 54%

Fine-tuning the efficiency of para-hydrogen-induced hyperpolarization by rational N-heterocyclic carbene design

By: Rayner, Peter J.; et al

Nature Communications (2018), 9(1), 1-11.

Scheme 19 (1 Reaction)

31-116-CAS-2451998

1.1 Reagents: Calcium carbonate, Deuterium

Catalysts: Palladium Solvents: 1,4-Dioxane

Steps: 1 Yield: 34%

The preparation of regiospecific tritiated and deuterated dibenzacridines by catalytic exchange and [14-¹⁴C]dibenz[a,j] acridine

By: Rosario, Christopher A.; et al

Journal of Labelled Compounds and Radiopharmaceuticals (1987), 24(1), 23-8.

Scheme 20 (1 Reaction)

31-116-CAS-6709832

1.1 **Reagents:** Calcium carbonate, Deuterium

Catalysts: Palladium Solvents: 1,4-Dioxane Reagents: Oxygen Solvents: Acetic acid

Steps: 1 Yield: 17%

The preparation of regiospecific tritiated and deuterated dibenzacridines by catalytic exchange and [14-14C]dibenz[a,j] acridine

By: Rosario, Christopher A.; et al

Journal of Labelled Compounds and Radiopharmaceuticals (1987), 24(1), 23-8.

Scheme 21 (1 Reaction)

Steps: 1

31-614-CAS-36265911

Steps: 1

Supplier (1)

Atomically dispersed palladium catalyzes H/D exchange and isomerization of alkenes via reversible insertion and elimin ation

1.1 Reagents: Deuterium

Suppliers (122)

 $\textbf{Catalysts:} \ \, \textbf{Copper oxide (Cu}_2\textbf{O), Palladium; 450 min, 0.1 M\,Pa,}$

30 °C

By: Liu, Kunlong; et al

Chem Catalysis (2021), 1(7), 1480-1492.

Scheme 22 (1 Reaction)

Steps: 1

31-116-CAS-21488071

Steps: 1

1.1 Reagents: Deuterium

Catalysts: 4-Methylbenzylamine (complexes with palladium),

Palladium (complexes with aryl amines) **Solvents:** Water; 1 h, p H 2, 1 atm, rt

Experimental Protocols

Efficient and Mild Reductive Amination of Carbonyl Compounds Catalyzed by Dual-Function Palladium Nanopar ticles

By: Jv, Xinchun; et al

ACS Sustainable Chemistry & Engineering (2020), 8(3), 1618-1626.

Scheme 23 (1 Reaction)

Steps: 1

31-614-CAS-28234664

Steps: 1

Tritium nuclear magnetic resonance spectroscopy of bepridilpyrrolidine-t

Catalysts: Palladium

Reagents: Deuterium Catalysts: Palladium Solvents: Benzene

By: Kaspersen, Frans M.; et al

Journal of the Chemical Society, Perkin Transactions 2: Physical Organic Chemistry (1972-1999) (1986), (4), 585-91.

Scheme 24 (1 Reaction)

Steps: 1

Double bond geometry shown

> Suppliers (58)

Double bond geometry shown

31-614-CAS-36265915

Steps: 1

1.1 Reagents: Deuterium

Catalysts: Copper oxide (Cu₂O), Palladium; 450 min, 0.1 MPa,

Atomically dispersed palladium catalyzes H/D exchange and isomerization of alkenes via reversible insertion and elimin ation

By: Liu, Kunlong; et al

Chem Catalysis (2021), 1(7), 1480-1492.

Scheme 25 (1 Reaction)

Steps: 1

Double bond geometry shown

Double bond geometry shown

Suppliers (4)

31-614-CAS-36265917

Steps: 1

Reagents: Deuterium

Catalysts: Copper oxide (Cu₂O), Palladium; 450 min, 0.1 MPa,

30 °C

Atomically dispersed palladium catalyzes H/D exchange and isomerization of alkenes via reversible insertion and elimin ation

By: Liu, Kunlong; et al

Chem Catalysis (2021), 1(7), 1480-1492.

Scheme 26 (1 Reaction)

Steps: 1

31-614-CAS-29070914

Steps: 1

Synthesis of tritium-labeled PAM-43

Reagents: Deuterium Catalysts: Palladium

By: Nagaev, Igor Yu.; et al

Mendeleev Communications (2018), 28(1), 64-65.

Scheme 27 (1 Reaction)

Steps: 1

31-614-CAS-26649657

Steps: 1

Catalysts: Trifluoroacetic acid, Palladium diacetate Solvents: 1,1,1,3,3,3-Hexafluoro-2-propanol; 2 h, 40 °C; 40 °C → 23 °C

1.2 Reagents: Cesium carbonate

Catalysts: 2-(Di-tert-butylphosphino)biphenyl

Solvents: 1,1,1,3,3,3-Hexafluoro-2-propanol; 10 min, 23 °C

1.3 Reagents: Deuterium; 18 h, 23 °C

Experimental Protocols

Palladium(II)-Mediated C-H Tritiation of Complex Pharmace uticals

By: Yang, Haifeng; et al

Angewandte Chemie, International Edition (2018), 57(7), 1883-1887.

Scheme 28 (1 Reaction)

Steps: 1

Double bond geometry shown

Double bond geometry shown

□ Suppliers (40)

📜 Supplier (1)

31-614-CAS-36265920

Steps: 1

1.1 Reagents: Deuterium

Catalysts: Copper oxide (Cu₂O), Palladium; 450 min, 0.1 MPa,

30 °C

Atomically dispersed palladium catalyzes H/D exchange and isomerization of alkenes via reversible insertion and elimin ation

By: Liu, Kunlong; et al

Chem Catalysis (2021), 1(7), 1480-1492.

Scheme 29 (1 Reaction)

Steps: 1

Double bond geometry shown

Double bond geometry shown

■ Suppliers (68)

31-614-CAS-36265916

Steps: 1

Reagents: Deuterium

Catalysts: Copper oxide (Cu₂O), Palladium; 450 min, 0.1 MPa,

30 °C

Atomically dispersed palladium catalyzes H/D exchange and isomerization of alkenes via reversible insertion and elimin ation

By: Liu, Kunlong; et al

Chem Catalysis (2021), 1(7), 1480-1492.

Scheme 30 (1 Reaction)

Steps: 1

□ Suppliers (73)

📜 Suppliers (11)

31-614-CAS-36089369

Steps: 1

Tripodal Pd metallenes mediated by Nb₂C MXenes for boosting alkynes semihydrogenation

Reagents: Deuterium

Catalysts: Palladium, Niobium carbide (Nb₂C) Solvents: Isopropanol; 0.1 MPa, rt → 298 K

Experimental Protocols

By: Wei, Zhongzhe; et al

Nature Communications (2023), 14(1), 661.

Scheme 31 (1 Reaction)

Steps: 1

📜 Suppliers (2)

31-614-CAS-39390206

Steps: 1

Regioselective Partial Hydrogenation and Deuteration of Tetracyclic (Hetero)aromatic Systems Using a Simple Heterog eneous Catalyst

Reagents: Acetic acid, Deuterium Catalysts: Palladium; 24 h, 80 °C

Reagents: Sodium bicarbonate 1.2

By: Kehoe, Roberta A.; et al

Chemistry - A European Journal (2024), 30(17), e202400102.

Scheme 32 (1 Reaction)

Double bond geometry shown

Double bond geometry shown

Suppliers (3)

31-614-CAS-36265914

Steps: 1

Reagents: Deuterium

Catalysts: Copper oxide (Cu₂O), Palladium; 450 min, 0.1 MPa,

30 °C

Atomically dispersed palladium catalyzes H/D exchange and isomerization of alkenes via reversible insertion and elimin

By: Liu, Kunlong; et al

Chem Catalysis (2021), 1(7), 1480-1492.

Scheme 33 (1 Reaction)

Double bond geometry shown

■ Suppliers (69)

Double bond geometry shown

> Supplier (1)

Steps: 1

31-614-CAS-36265910

1.1 Reagents: Deuterium

Catalysts: Copper oxide (Cu₂O), Palladium; 450 min, 0.1 MPa,

Atomically dispersed palladium catalyzes H/D exchange and isomerization of alkenes via reversible insertion and elimin ation

By: Liu, Kunlong; et al

Chem Catalysis (2021), 1(7), 1480-1492.

Scheme 34 (1 Reaction)

Suppliers (52)

Steps: 1

31-116-CAS-7399973

Reagents: Deuterium Catalysts: Palladium Solvents: Acetic acid-d Steps: 1

A selective method for deuterium exchange in hydroar omatic compounds

By: Ofosu-Asante, K.; et al

Journal of Organic Chemistry (1986), 51(26), 5452-4.

Scheme 35 (1 Reaction)

Steps: 1

📜 Suppliers (157)

31-614-CAS-39216784

Reagents: Deuterium Catalysts: Palladium

Solvents: Dimethylacetamide; 20 h, 1.1 bar, 50 °C

Experimental Protocols

Palladium Nanoparticles for the Deuteration and Tritiation of **Benzylic Positions on Complex Molecules**

By: Pfeifer, Viktor; et al

Angewandte Chemie, International Edition (2021), 60(51), 26671-26676.

Steps: 1

Steps: 1

Scheme 36 (1 Reaction)

Steps: 1

Suppliers (101)

31-614-CAS-39216785

Reagents: Deuterium Catalysts: Palladium

Solvents: Dimethylacetamide; 20 h, 1.1 bar, 50 °C

Experimental Protocols

Palladium Nanoparticles for the Deuteration and Tritiation of **Benzylic Positions on Complex Molecules**

By: Pfeifer, Viktor; et al

Angewandte Chemie, International Edition (2021), 60(51), 26671-26676.

Scheme 37 (1 Reaction)

Suppliers (78)

Steps: 1

Palladium Nanoparticles for the Deuteration and Tritiation of Benzylic Positions on Complex Molecules

By: Pfeifer, Viktor; et al

Angewandte Chemie, International Edition (2021), 60(51), 26671-26676.

31-614-CAS-39216773

Reagents: Deuterium 1.1 Catalysts: Palladium

Solvents: Dimethylacetamide; 20 h, 1.1 bar, 50 °C

Experimental Protocols

Scheme 38 (1 Reaction)

> Suppliers (94)

Steps: 1

> Supplier (1)

31-614-CAS-38893217

Reagents: Deuterium Catalysts: Palladium

Solvents: Dimethylacetamide; 20 h, 1.1 bar, 50 °C

Experimental Protocols

Palladium Nanoparticles for the Deuteration and Tritiation of Benzylic Positions on Complex Molecules

By: Pfeifer, Viktor; et al

Angewandte Chemie, International Edition (2021), 60(51), 26671-26676.

Steps: 1

Steps: 1

Scheme 39 (1 Reaction)

HO -

Steps: 1

➤ Suppliers (101)

31-614-CAS-39216778

1.1 Reagents: Deuterium Catalysts: Palladium

Solvents: Dimethylacetamide; 20 h, 1.1 bar, 50 °C

Experimental Protocols

Palladium Nanoparticles for the Deuteration and Tritiation of Benzylic Positions on Complex Molecules

By: Pfeifer, Viktor; et al

Angewandte Chemie, International Edition (2021), 60(51), 26671-26676.

Scheme 40 (1 Reaction)

Suppliers (98)

+

➤ Supplier (1)

31-614-CAS-39216772

1.1 Reagents: Deuterium Catalysts: Palladium

Solvents: Tetrahydrofuran; 20 h, 1.1 bar, 50 °C

Experimental Protocols

Steps: 1

Palladium Nanoparticles for the Deuteration and Tritiation of Benzylic Positions on Complex Molecules

By: Pfeifer, Viktor; et al

Angewandte Chemie, International Edition (2021), 60(51), 26671-26676.

Scheme 41 (1 Reaction)

Absolute stereochemistry shown

Absolute stereochemistry shown

Steps: 1

Absolute stereochemistry shown

Suppliers (102)

31-614-CAS-39216783

1.1 **Reagents:** Deuterium **Catalysts:** Palladium

Solvents: Dimethylacetamide; 20 h, 1.1 bar, 50 °C

Experimental Protocols

Palladium Nanoparticles for the Deuteration and Tritiation of Benzylic Positions on Complex Molecules

By: Pfeifer, Viktor; et al

Angewandte Chemie, International Edition (2021), 60(51), 26671-26676.

Steps: 1

Scheme 42 (1 Reaction)

N →

➤ Suppliers (80)

31-614-CAS-39216779

1.1 **Reagents:** Deuterium **Catalysts:** Palladium

Solvents: Dimethylacetamide; 20 h, 1.1 bar, 50 °C

Experimental Protocols

Steps: 1 Palladium Nanoparticles for the Deuteration and Tritiation of Benzylic Positions on Complex Molecules

By: Pfeifer, Viktor; et al

Angewandte Chemie, International Edition (2021), 60(51), 26671-26676.

Scheme 43 (1 Reaction)

Suppliers (104)

31-614-CAS-39216768

1.1 Reagents: Deuterium Catalysts: Palladium

Solvents: Dimethylacetamide; 20 h, 1.1 bar, 50 °C

Experimental Protocols

Palladium Nanoparticles for the Deuteration and Tritiation of Benzylic Positions on Complex Molecules

By: Pfeifer, Viktor; et al

Angewandte Chemie, International Edition (2021), 60(51), 26671-26676.

Copyright © 2025 American Chemical Society (ACS). All Rights Reserved.

Steps: 1

Internal use only. Redistribution is subject to the terms of your CAS SciFinder License Agreement and CAS information Use Policies.