Threat Modelling

An objectives-based primer

Why this talk?

<rant>

Threat modelling isn't a religious ceremony or magical ritual.

Millions of threat modelling talks, few talk about:

- Not how to do threat modelling but why we do it
- Not what activities do we do, but what those activities do for us.

</rant>

This talk tries to address ^. To do this: get a basic understanding of:

- Key terms & concepts
- A general sense of Threat Modelling, Threat Assessments, Threat Assessments in Risk Management

Who am I?

In this capacity: Co-Lead of OWASP Toronto Chapter

Day Job: Director of Advisory at Security Compass

Both: Security brain for hire with speciality in appsec interpretive dance.

Find me at opheliar.chan@owasp.org or https://www.linkedin.com/in/opheliar-chan/

Disclaimer: I express my own views and don't represent anyone else in speaking.

My company is nice enough to let me speak without a gag order, and I'd like to keep it that way. Blame goes to me, Praise to people and companies who influence/allow me to interact with community members like you! Also: none of these attributions are necessarily recommendations.

Infosec is about evaluating and managing information system risk to a business or entity

The art of war teaches us to rely not on the likelihood of the enemy's not coming, but on our own readiness to receive him; not on the chance of his not attacking, but rather on the fact that we have made our position unassailable.

- Sun Tzu
The Art of War
http://classics.mit.edu/Tzu/artwar.html

If you know the enemy and know yourself, you need not fear the result of a hundred battles.

- Sun Tzu

The Art of War

http://classics.mit.edu/Tzu/artwar.html

Class ThreatModelling extends SystemModelling {}

Class SystemModelling extends ScientificModelling{}

```
/**create an abstraction of the world or system via
* conceptual models for understanding
* operational models to simulate and test operations
* graphical models to visualize the subject
* mathematical models to quantify
*/
```

Risk Aggregation

Aggregate related risk into a single/small superset of risk(s) meant to:

- Contextualize risk at higher level of scope to support decision making at that level
- Group tightly related risks for handling as a unit
- Allow for higher organizational tiers to effectively monitor groups of related risks relative to an objective/baseline

Risk aggregation examples

The Aggregation of Threat Modelling information is where we got:

- Baseline security controls and configurations
- Patch and vulnerability management practices
- Start of security frameworks (e.g. authentication/authorization -> SSO)
- Invention of perimeter defense (e.g. firewalls) and host-defense (e.g. anti-virus)
- "Best practices" and much more...

Early Computing

Today

YOU

Act 3: Trying to resolve the Big Problem...

Threat Modelling and You

Security Champions

SME's - not just infosec

Scale Threat Modelling?

Continuous Improvement

How to Reduce Risk in a System

Direct Means

 Implement the mitigations, fix the vulnerabilities

Indirect Means

- Have good security hygiene and baselines
- Change the design (threat landscape)
- Education
 - Learn from your mistakes
 - Challenge/Verify your assumptions
- Make recovery/continuity/response plans

Changing the Threat Landscape

Before

https://www.reviewjournal.com/local/local-las-vegas/wisconsin-man-wins-1-23m-jackpotat-downtown-las-vegas-casino/

After

The newest pedestrian bridge over the Las #Vegas Strip will open on Monday morning. Construction on the bridge between @parkmgm, @TMobileArena and Showcase Mall has taken 14 months. This is the 17th pedestrian bridge on #LasVegas Blvd.

5:17 PM · Dec 20, 2019

Copy link to Tweet

Outputs to Reduce Risk in a System (and keep it gone)

Outputs

- Improved Security Baselines
- Design and architecture changes
- Educational material
- Experimental models and plans
- Process changes/updates/creation
- Response plans
- New defenses & tests

Indirect Means

- Have good security hygiene and baselines
- Change the design (threat landscape)
- Education
 - Learn from your mistakes
 - Challenge/Verify your assumptions
- Make recovery/continuity/response plans

Where should your experts be spending their time?

The important things to focus experts on (in threat modelling & elsewhere):

- Design decisions
- Access control (trust zones)
- Data security (dfd's)
- Incident response
- Determining what '(ab)normal behaviour' looks like for behavioural analysis
- Control baseline adequacy & improvement

The rest, use vuln scanning tooling, other devsecops process, education, and procedure to get baseline security/ops controls handled, vulns managed as a separate issue. Focus on the stuff that NEEDS SMEs

Threat Modelling

Basic Concepts

Master-Class Style

Please Participate!

hit by a vehicle while crossing the

street."

"Risk of physical harm/injury if I get

Grammatical Analysis of Risk Statements

Subject(s)

The person, place, or thing that is performing the action

"Risk of physical harm/injury if I get hit by a vehicle while crossing the street."

Grammatical Analysis of Risk Statements

Subject(s)

The person, place, or thing that is performing the action

Predicate(s)

The action or being

"Risk of physical harm/injury if I get hit by a vehicle while crossing the street."

Grammatical Analysis of Risk Statements

Subject(s)

The person, place, or thing that is performing the action

Predicate(s)

The action or being

Direct/Indirect Object(s)

The recipient of the action or the being the action is being done for/to.

"Risk of physical harm/injury if I get hit by a vehicle while crossing the street."

Basics of a Threat

Subject(s)

The person, place, or thing that is performing the action

Predicate(s)

The action or being

Direct/Indirect Object(s)

The recipient of the action or the being the action is being done for/to.

Threat Actor

An individual, group, or phenomenon posing a threat, usually with some motivation to act.

Threat Event

Something happening at a point in time that has the potential to cause an unauthorized/unexpected result.

Asset(s)

Anything that contributes to a business function and therefore has value.

Threat Event Types

Accidents

Figure B-2: Sample Segment of the Asset Listing Hierarchical Structure

Privacy (asset) & the law of unintended consequences

LOCATIONS		
TIME	MEGAN	ROBER
11:00 AM	HOME	
12:30 PM	EASTVIEW ADULT TOY STORE	HOME
1:30 PM	HOME	
2:00 PM	LAKETOWN SEX TOY SHOP	SCHOO
2:30 PM	HOME	
3:00 PM	FRY'S ELECTRONICS	
3:30 PM	ED'S POWER TOOL EMPORIUM	SUBWA
4:00 PM	HOME	
4:10 PM	HOSPITAL BURN WARD	

Statement

"Risk of physical harm/injury if I get hit by a vehicle while crossing the street."

Threat

- Threat Actor: driver of car (implied)
- Threat Event: hit by car
- **Asset:** whoever "I" is.

part of an informal threat modelling process.

(Oh, and received informal training.)

You've just done the brainstorming/enumerating threats

What turns a Threat into a Risk?

"Risk of physical harm/injury if I get hit by a vehicle while crossing the street"

- Threat Actor: driver of car (implied)
- Threat Event: hit by car
- **Asset:** whoever "I" is. Your life, specifically.

What turns a Threat into a Risk?

"Risk of <u>death</u> if I get hit by a vehicle while crossing the street"

"Risk of <u>losing a leg</u> if I get hit by a vehicle while crossing the street"

Risk Characteristics

- Impact: Why do I care?
- **Likelihood**: How often, what recurrence, % chance of success

given a threat event, prevalence of weaknesses/opportunities, attacker motivation & skill, etc

Threat Modelling

The How

Can be

"Threat Modelling is a 7 step process that has these 6 diagrams and this mnemonic and this rating sheet"

OWASP Cornucopia

Microsoft Elevation of Privilege

Owasp Snakes & Ladders

Control+ALT Hack

training and tools you could start threat modelling with

Mnemonics

Possible impacts

- **STRIDE** <- Microsoft
- BIA results

Rating & Prioritization

- <u>CARVER + Shock</u> US Army Special Forces, FDA
- DREAD Microsoft
- CVSS FIRST

Lists of:

- **Vulnerabilities**
- Threats & threat actors
- Assets
- Tactics, Techniques, Procedures
- Defenses
- Common Controls

Ask not what activities do we do, but what do those activities do for us?

Threat Modelling

Ask four key questions:

- What are we working on?
- What can go wrong?
- What are we going to do about it?

Did we do a good (enough) job?

Key Activities:

- Describe System
- Enumerate Threats
- Decide if threats are relevant/important
- Find the best mitigation strategies/countermeasures for the important threats
- Define 'good (enough)'
- Compare job to 'good (enough)'

a common, unambiguous understanding

Describe System to communicate and come to

To who?

Describe System to communicate and come to a common, unambiguous understanding

Describe System to communicate and come to a common, unambiguous understanding

Of what? At what level of detail? For what reason?

By building models

Describe System to communicate and come to a common, unambiguous understanding

Class ThreatModelling extends SystemModelling {}

Class SystemModelling extends ScientificModelling{}

```
/**create an abstraction of the world or system via
* conceptual models for understanding
* operational models to simulate and test operations
* graphical models to visualize the subject
* mathematical models to quantify
*/
```

Typical Conceptual and Graphical Models

Diagrams & related docs, in practice

(Tech: architecture diagrams, design docs, activity/sequence diagrams, wireframes, db schemas, interface definition files, etc)

(Security: data flow, attack/threat/rule trees, abuse cases, etc)

Data flow diagram-Online Banking Application

18

Attack Nodes

Attack Trees

Possible Attacks

Attack Visualizations (Unified Cyber Kill Chain)

From Unified Cyber Kill Chain

From Unified Cyber Kill Chain

Figure 3. Abuse Case Diagram for an Internet-Based Information Security Laboratory

Browse Server Exercises With Warez

Harm: The users of the lab will be legally, ethically, and morally responsible for increasing the abilities of the Script Kiddie. The users may also be responsible for allowing information about previously unknown exploits to be released.

Privilege Range: The Script Kiddie might carry out this abuse using privileges in the following range:

- Installation of modified system utilities with root/administrator privileges on a source or target host
- One-time control of a root/administrator account on a source or target host
- One-time control of a root/administrator session on a source or target host
- Installation of modified utilities with user privileges on a source or target host
- One-time control of a single instructor session on a server host
- One-time control of a single student session on a server host

Abusive Interaction: Using the TCP/IP protocol suite and a hypothetical attack tool called Warez 1, the Script Kiddie requests or attempts to initiate a session on some lab host. The initial session could be on a...

https://www.andrew.cmu.edu/course/95-750/docs/CaseModels.pdf

Class ThreatModelling extends SystemModelling {}

Class SystemModelling extends ScientificModelling{}

```
/**create an abstraction of the world or system via

* conceptual models for understanding

* operational models to simulate and test operations

* graphical models to visualize the subject

* mathematical models to quantify

*/

Chaos engineering

Resiliency

Machine
```

Learning/Formal Systems

"Chaos Engineering is the discipline of experimenting on a distributed system in order to build confidence in the system's capability to withstand turbulent conditions in production."

Attacks? Accidents? => Threats?

"The system is resilient if it continues to carry out its mission in the face of adversity."

Attacks? Accidents? Abuse? => Threats?

https://insights.sei.cmu.edu/sei_blog/2019/11/system-resilience-what-exactly-is-it.html

https://insights.sei.cmu.edu/sei_blog/2019/11/system-resilience-what-exactly-is-it.html

NIST Risk Model

TRA-1 Harmonized Threat and Risk Assessment Methodology

Figure F-1: Active Security Strategy

Enumerating Threats

High Level Approaches (risk mgmt & threat mgmt)

- Threat Oriented identify threat sources & events. Develop threat scenarios.
 Evaluate vulnerabilities in context of threat events. Evaluate impact based on adversary intent
- Vulnerability Oriented starting with a set of predisposing conditions or vulnerabilities, weaknesses, or deficiencies, identify threat events that could exercise those vulnerabilities along with possible consequences
- **Asset/Impact Oriented** starting with a list of critical assets (possibly using the results of a mission or business impact analysis), identify impacts or consequences of concern that could affect the critical assets, and then the threat sources that could seek those impacts or consequences.

Threat Oriented

- **Description** identify threat sources & events. Develop threat scenarios. Evaluate vulnerabilities in context of threat events. Evaluate impact based on adversary intent and likelihood based on the adversary capabilities, etc.
- Examples PASTA, MITRE ATT&CK Framework, Attack Visualizations from Unified Cyber Kill Chain, etc

Vulnerability Oriented

 Vulnerability Oriented - starting with a set of predisposing conditions or vulnerabilities, weaknesses, or deficiencies, identify threat events that could exercise those vulnerabilities along with possible consequences

Examples

- reading a pentesting report and asking "is this relevant to me?"
- o anything involving CVSS or CWE listings (e.g most threat intel sources)

Asset/Impact Oriented

• **Asset/Impact Oriented** - starting with a list of critical assets (possibly using the results of a mission or business impact analysis), identify impacts or consequences of concern that could affect the critical assets, and then the threat sources that could seek those impacts or consequences.

• Examples:

- OCTAVE, STRIDE
- Anything using Data Flow Diagrams (DFD), most things using attack trees
- Anything where looking at Confidentiality, Availability, and Integrity is a key part of analysis framework

Enumerating Information Sources

Attackers & Objectives	Tool	Vulnerability	Action	Target	Unauthorized Result
FAIR Threat Agents	Kali Tools LIst	CWE	CAPEC Mechanisms	CAPEC Domains	CIA
Canadian Center for	ATT&CK Software	CVSS	ATT&CK Tactics	VERIS Asset	STRIDE
Cyber Security Threat Actors		CVE	ATT&CK T	echniques	ATT&CK Impacts
NIST SP 800-30					
MITRE Groups					

Decide if threats are relevant/important

Impact

The magnitude of harm expected to result from a successful threat event (a.k.a expected loss)

Figure 6: Cheapest Attack Requiring No Special Equipment

Likelihood

Often framed as: the expected rate of occurrence in a standard unit of time, usually a year

REMINDER: A 50% INCREASE IN A TINY RISK IS **STILL TINY**.

Prioritization

The action or process of deciding the relative importance or urgency of a thing or things.

- Oxford Languages Online

HOW IT ACTUALLY WORKS

Description of <u>Credential Stuffing</u> attack

XKCD - Randall Munroe https://xkcd.com/2176/

Sanity Check

Is this sane, realistic, rational?
See also: Reality Check

XKCD - Randall Munroe https://xkcd.com/538/

Doable? Cost effective? Easiest to implement? Handles your worse case scenario? Easiest to use? Can be purchased from someone?

Courses of Defensive Action

Phase	Detect	Deny	Disrupt	Degrade	Deceive	Destroy
Recon	Web Analytics	Firewalls ACLs				
Weaponization	NIDS	NIPS				
Delivery	Security Awareness	Proxy Filter	Antivirus	Queuing		
Exploitation	HIDS	Patching	Data execution prevention			
Installation	HIDS	Chroot/ Virtualization	Antivirus			
C2	NIDS	Firewall/ACL	network intrusion prevention system	Tarpit	DNS Redirect	
Actions on Objectives	Logging/ Monitoring			Quality of service	Honeypot	

Cyber Kill Chain from Lockheed Martin

Defensive Tooling

	-					
ON-PREMISES	AWS	AZURE	GOOGLE	ORACLE	IBM	ALIBABA
Firewall & ACLs	Security Groups AWS Network ACLs	Network Security Groups Azure Firewall	Cloud Armor VPC Firewall	VCN Security Lists	Cloud Security Groups	NAT Gateway
IPS/IDS	3™ Party Only	3™ Party Only	3rd Party Only	3rd Party Only	3rd Party Only	Anti-Bot Service Website Threat Inspector
Web Application Firewall (WAF)	AWS WAF AWS Firewall Manager	Application Gateway	Cloud Armor	Oracle Dyn WAF	Cloud Internet Services	Web Application Firewall
SIEM & Log Analytics	AWS Security Hub Amazon GuardDuty	Azure Sentinel Azure Monitor	Stackdriver Monitoring Stackdriver Logging	Oracle Security Monitoring and Analytics	IBM Log Analysis Cloud Activity Tracker	ActionTrail
Antimalware	3™ Party Only	Microsoft Antimalware / Azure Security Center	3rd Party Only	3™ Party Only	3rd Party Only	Server Guard
Data Loss Prevention (DLP)	Amazon Macie	Information Protection (AIP)	Cloud Data Loss Prevention API	3™ Party Only	3™ Party Only	Web Application Firewall
Key Management	Key Management Service (KMS)	Key Vault	Cloud Key Management Service	Cloud Infrastructure Key Management	Key Protect Cloud Security	Key Management Service
Encryption At Rest	EBS/EFS Volume Encryption, S3 SSE	Storage Encryption for Data at Rest	Part of Google Cloud Platform	Cloud Infrastructure Block Volume	Hyper Protect Crypto Services	Object Storage Service
DDoS Protection	AWS Shield	Built-in DDoS defense	Cloud Armor	Built-in DDoS defense	Cloud Internet Services	Anti-DDoS
Email Protection	3™ Party Only	Office Advanced Threat Protection	Various controls embedded in G-Suite	3rd Party Only	3™ Party Only	3™ Party Only

Marius Mocanu & Adrian Grigorof

MITIGATIONS

Overview

Account Use Policies

Active Directory Configuration

Antivirus/Antimalw are

Application Isolation and Sandboxing

Audit

Rehavior

Enterprise Mitigations

Mitigations: 40

ID	Name	Description
M1036	Account Use Policies	Configure features related to account use like login attempt lockouts, specific login times etc.
M1015	Active Directory Configuration	Configure Active Directory to prevent use of certain techniques; use SID Filtering, etc.
M1049	Antivirus/Antimalware	Use signatures or heuristics to detect malicious software.
M1048	Application Isolation and Sandboxing	Restrict execution of code to a virtual environment on or in transit to an endpoint system.

MITRE ATT&CK Framework

Define "Good enough"

Compare threat model to "good enough"

Characteristics of Threat Modelling/Assessments as a 'Practice'

- Improve or maintain security posture
 - Implied: Supports decision making about security posture
 - Implied: Supports reduction of risk by improving security posture
- Thorough(-ish), repeatable, communicable, defensible (in an audit)

Threat Modelling Outputs

Outputs

- SystemDescription/Models/Diagrams
- Prioritized/classified list of threats
- Prioritized List of potential mitigations for each threat
 - o Bugs
 - Technical requirements/decisions
 - Architectural requirements/decisions
 - o new/modified user stories
 - vulnerabilities
- Documentation of above

Key Activities

- Describe System
- Enumerate Threats
- Decide if threats are relevant/important and, if so, find the best mitigation strategies/countermeasures
- Define 'good enough' -> compare job to desired level of rigour

No process or diagrams or documentation

Process, diagrams & documentation that meet your objectives.

RECAP

(as a practice) (Ophe's Definition)

A set of modelling & analysis techniques for finding out what threats are relevant to a system, prioritizing them, and then seeing what we could do about them.

(hopefully, post threat model, you *actually* do something about them)

Ask four key questions:

- What are we working on?
- What can go wrong?
- What are we going to do about it?

Did we do a good (enough) job?

Key Activities:

- Describe System
- Enumerate Threats
- Decide if threats are relevant/important
- Find the best mitigation strategies/countermeasures for the important threats
- Define 'good (enough)'
- Compare job to 'good (enough)'

Thank you Wealthsimple Team

</rant> Questions?

There will be a video and slides available later at

OWASP Toronto Chapter web page: https://owasp.org/www-chapter-toronto/

OWASP Toronto Chapter Youtube: https://www.youtube.com/channel/UCqmBl-u_4cOEiH3OXWE3sPg

Bonus Material

DRIGIN STORY!

1969 unics/ unix started

Act 1: The seeds of conflict are sown...

1983 born

modern internet

1991 vl Linux released

- 1960's Authentication born (passwords and other knowledge-based mechanisms) at MIT
- 1971 birth of Phreaking John Draper (aka Cap'n Crunch) hacks phone systems using a toy whistle from a cereal box
 - and CREEPER (self replicating program) spreads on ARPANET.
- 1983 Kevin Poulsen (aka Dark Dante) is arrested for breaking into the Arpanet
- and 'Computer Virus' demoed by Fred Cohen at a security seminar at Lehigh University (incidentally, Rich Skrenta beat him to it by releasing Elk Cloner for Apple II gaming systems in 1982)
- 1984 Credit Reporting Agency TRW Information Systems (now Experian)'s database breached. Password posted to an electronic bulletin board.
- 1986 Hacker's Manifesto published by Loyd Blakenship (Legion of Doom member) after arrest
- 1988 Morris Worm released onto the Internet

Act 2: Trying to resolve the Big Problem...

- 1986 Computer Fraud and Abuse Act
- 1988 CERT/CC (later CERT SEI) created at DARPA's direction in response to Morris Worm
- 1993 Bugtraq created by Scott Chasin one of the first security mailing lists, dedicated to publicly disclosing security flaws.
- 1995 all 'limitations' on commercial use of Internet end when <u>National Science Foundation ends</u> sponsorship of Internet backbone (NSFNet) and all traffic relies on commercial networks.
- 2002 Microsoft starts Trustworthy Computing initiative
- 2003 DHS partners with CMU to create <u>US-CERT</u> & <u>CSIRT</u>

Act 2: Trying to resolve the Big Problem via Threat Modelling...

- 1977 architectural patterns threat modelling methodology published by Christopher Alexander
- 1988 'first' IT-system attacker profile developed by Robert Bernard
- 1994 Threat Trees (based on decision tree diagrams) mentioned in Edward Amoroso's "Fundamentals of Computer Security Technology" book
- 1998 Attack trees described by Bruce Schneier in his paper "<u>Towards a secure system engineering</u> <u>methodology</u>"
- 1999 Microsoft publishes STRIDE threat modelling methodology
 And CMU introduces Operationally Critical Threat, Asset, and Vulnerability Evaluation
 (OCTAVE) to manage organizational IT Risk
- 2004 Frank Swiderski and Window Snyder release <u>first book on Threat Modelling</u> published by Microsoft Press
 - And Threat Analysis & Modelling tool released by Microsoft uses DFDs and Attack Trees

TL;DR

Early Computing

A SOCK

Today

#403081330

Act 3: Trying to resolve the Big Problem...

Some more references:

- A Brief History of Hacking (Encyclopedia.kaspersky.com)
- <u>evolution of IT-based threat modelling</u> (wikipedia)
- Evolution of Threat Modelling (ThreatModeller.com)
- The World's First Computer Password? It Was Useless Too (Wired)
- <u>Android evolution image</u> used on these pages (Nettantra.com)
- European Union Agency for Cybersecurity (ENISA) <u>Threat Taxonomy</u> and <u>Threat Landscape materials</u>