6.3. Выделение контурных линий

Основным принципом большинства методов выделения контура

является вычисление частных производных от функции яркости по координатам. На рис. 6.5, а приведена модель сечения функции яркости по линии, проходящей через область изображения с объектом. Предполагается, что яркости объекта и фона постоянны и существенно отличаются друг от друга. Знак производной функции яркости зависит от направления перехода яркости. Производные на участках повышения яркости положительны, а на участках понижения - отрицательны. Первую производную функции яркости (рис. 6.5, δ) можно использовать для обнаружения наличия контура, а вторую производную (рис. 6.5, e) — для определения ширины контурной линии.

Рис. 6.5. Производные функции яркости: а — разрез функции яркости; б — первая производная функции яркости; в — вторая производная функции яркости

Яркость изображения является функцией двух переменных. Градиент функции яркости в каждой точке определяется как двумерный вектор

$$\mathbf{G}[f''(x, y)] = \begin{bmatrix} G_x \\ G_y \end{bmatrix},$$

где
$$G_x=rac{\partial f'(x,y)}{\partial x},~G_y=rac{\partial f'(x,y)}{\partial y}$$
 — частные производные.

Известно, что вектор G указывает направление максимального изменения функции f'(x,y) в точке (x,y). При выделении контура используется модуль этого вектора $|G| = \sqrt{G_x^2 + G_y^2}$ или для упрощения вычислений $-|G| = |G_x| + |G_y|$, где |I| -взятие абсолютного значения, так как яркость результирующего изображения в любой точке не может иметь отрицательных значений.

Для дискретных изображений вычисление частных производных сводится к вычислению перепада яркости соседних пикселей различными способами, т. е. фактически к пространственной фильтрации.

Например, фильтр Робертса, использующий для определения градиента яркости минимальное число пикселей, можно представить как

$$f''(x, y) = |f'(x, y) - f'(x+1, y+1)| + |f'(x, y+1) - f'(x+1, y)|.$$

Близкие по качеству результаты дает фильтр Собела для окрестности 3×3 пикселя:

$$f''(x, y) = |G_x| + |G_y|,$$

где G_x , G_y определяются согласно (4.8). Соответствующие маски имеют вид

$$H_x = egin{pmatrix} -1 & -2 & -1 \ 0 & 0 & 0 \ 1 & 2 & 1 \end{pmatrix}, \ \ H_y = egin{pmatrix} -1 & 0 & 1 \ -2 & 0 & 2 \ -1 & 0 & 1 \end{pmatrix}.$$

В некоторых вариантах масок Собела коэффициенты 2 заменены 1, что позволяет несколько упростить алгоритм обработки, но не дает возможности учесть более сильную крестообразную связь пикселей.

Для вычисления второй производной функции яркости применяется оператор Лапласа

$$L[f''(x,y)] = \frac{\partial^2 f'(x,y)}{\partial x^2} + \frac{\partial^2 f'(x,y)}{\partial y^2},$$

маска которого для дискретного изображения имеет вид

$$H_L = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

или

$$\begin{pmatrix} -1 & 2 & -1 \\ 2 & -4 & 2 \\ -1 & 2 & -1 \end{pmatrix}. \tag{6.3}$$

Необходимо отметить, что фильтр, реализующий оператор Лапласа, крайне чувствителен к малым перепадам яркости. Его целесо-

образно применять к изображениям со значительно размытым контуром и с максимально подавленными помехами.

На рис. 6.6 показаны результаты применения фильтров Робертса и Лапласа к типовым фрагментам изображения, аналогичным тем, что приведены на рис. 6.3. Как видно, импульсная помеха этими фильтрами размывается. Область перепада яркости выделяется фильтром Робертса как широкая линия, а фильтром Лапласа — как две параллельные линии, что и следовало ожидать.

Иногда полезны фильтры, выделяющие линии контура в заданном направлении. Например, маска фильтра, выделяющего контуры под углом в 45° , имеет вид

$$H_{45} = egin{pmatrix} 0 & -1 & -1 \ 1 & 0 & -1 \ 1 & 1 & 0 \end{pmatrix}$$
 или $egin{pmatrix} 1 & -1 & -1 \ 1 & -2 & -1 \ 1 & 1 & 1 \end{pmatrix}$.

Существуют и другие фильтры подобного типа [11]. Отметим, что сумма коэффициентов в маске линейного фильтра для выделения контура всегда должна быть равна нулю, в отличие от линейных фильтров для подавления помех, в которых сумма коэффициентов должна быть равна единице.

Фильтры, выделяющие контурные линии, можно отнести к высокочастотным фильтрам, т. е. подавляющим низкочастотную составляющую изображения. Яркость пикселя результирующего изображения равна абсолютной величине градиента яркости в соответствующем пикселе исходного изображения. Теоретически на результирующем изображении яркость должна быть отлична от нуля только у пикселей, входящих в контурную линию. На практике из-за наличия на исходном изображении шумовых помех подавляющее большинство пикселей результирующего изображения после обработки фильтром, выделяющим перепады яркости, имеют отличную от нуля яркость, что хорошо видно на рис. 6.6. В какой-то степени, отделить пиксели контурных линий от случайных помех можно последующей бинаризацией с выбором соответствующего порога.

Интересным вариантом нелинейного пространственного фильтра для выделения контура является фильтр Кирша [12]

$$f''(x, y) = \max(r_1, ..., r_8),$$

где r_n — абсолютные значения перепадов яркости по восьми направлениям в окрестности 3×3 пикселя. Соответственно, значения r_i оп-

Фильтр Лапласа Фильтр Робертса Исходный фрагмент

Рис. 6.6. Обработка высокочастотными фильтрами

Исходное изображение

Подчеркивание контура

Усредняющий фильтр

Подчеркивание контура после усреднения

Рис. 6.7. Улучшение качества изображения

ределяются путем линейной пространственной фильтрации. Матрица для направления «с севера на юг» (NS) имеет вид

$$H_{
m NS} = egin{pmatrix} 5 & 5 & 5 \ -3 & 0 & -3 \ -3 & -3 & -3 \end{pmatrix} .$$

Для остальных семи направлений матрицы получаются вращением данной вокруг центра. Фильтр Кирша позволяет выделять контуры со слабым перепадом яркости, выравнивая уровень яркости пикселей, относящихся к контурным линиям.

Восстановить резкость изображения после обработки пространственными низкочастотными фильтрами можно путем подчеркивания контуров. Существуют два основных подхода [2] к решению этой задачи.

Первый подход можно представить как

$$f''(x, y) = f'(x, y) - bL[f'(x, y)],$$

где b — весовой коэффициент; L — преобразование оператором Лапласа, причем в данном случае необходимо учитывать знак яркости пикселя после преобразования. В результате яркость пикселей, лежащих в начале перехода от менее яркой области к более яркой, уменьшится, так как результат преобразования Лапласа для этих пикселей будет больше нуля. Яркость пикселей, лежащих в конце этого перехода, соответственно, увеличится, так как для них результат преобразования Лапласа будет меньше нуля. В итоге резкость данного перехода возрастет, что и продемонстрировано на рис. 6.7 для b=1. Изменяя значение b и выбирая разные маски для оператора Лапласа из (6.3), можно регулировать степень подчеркивания контура.

Второй подход можно представить как

$$f''(x, y) = cf'(x, y) - (c-1)G[f'(x, y)],$$
(6.4)

где c — весовой коэффициент; G — результат воздействия размывающего линейного пространственного фильтра, например гауссиана (6.2). Напомним, что в результате применения размывающих фильтров области с постоянной яркостью остаются без изменений, а яркость пикселей остальных областей на результирующем изображении всегда меньше яркости соответствующих пикселей на исходном изображении. Тогда в результате обработки изображения по (6.4) области постоянной яркости сохраняют значения исходного изображения, а яркость остальных пикселей увеличится на величину размывания с учетом весового коэффициента.