Process flow title:	Minimal MOS Capacitor Process	Revision:	Rev 0.3
Contact email:	jephin@dtu.dk	Contact name:	Jeppe Hinrichs
Contact phone:	Not applicable		
LabMan-ager group:	Not applicable	Batch name:	TBD
Date of creation:	2025-08-15	Date of revision:	2025-08-19

Process Overview

Minimal MOS capacitor fabrication flow.

Key Specifications

• Gate oxide: $35 \,\mathrm{nm}$ thermal SiO_2

- Gate electrode: $400\,\mathrm{nm}$ n
+ polysilicon

• Backside contact: 400 nm aluminum

Critical Safety

• HF handling: Apron+gloves, face shield, no lone working, no glass beakers!

• Furnace: Thermal gloves for $>800\,^{\circ}\mathrm{C}$ operations

• Metal anneal: confirm Al spiking risk mitigated by Ti barrier, avoid ≥ 450 °C for Al

1 Starting Material

Substrate	Substrate Specification	
Silicon	p-type <100>, 6", 1-10 Ω ·cm	5

2 Critical Layers

Layer	Material	Thickness
Gate oxide	Thermal SiO_2	$35\mathrm{nm}$
Gate electrode	n+ Poly-Si	$400\mathrm{nm}$
Back barrier/adhesion	Ti	$100\mathrm{nm}$
Back contact	Al	$400\mathrm{nm}$

Not confidential File name: Minimal MOS Capacitor Process Page 1 of 5

3 Core Process Flow

Step	Process	Equipment	Key Parameters
0.1	(Optional) LOCOS isolation	See locos_v1.DOCX	Use if isolation is required
1.1	Pre-oxidation clean (HF-last)	Wet bench	SC1, SC2, HF (12%), immediate furnace load
2.1	Gate SiO_2 growth	Furnace	$1000^{\circ}\mathrm{C},\mathrm{dry/wet\text{-}dry}$ recipe to $35\mathrm{nm}$
3.1	Poly-Si deposition (n+ preferred)	LPCVD	620°C , 2h ; specify in-situ PH_3 or undoped
3.2	(If undoped) Poly doping + anneal	Diffusion/RTA	POCl ₃ or P implant; anneal per spec
4.1	Gate patterning	Aligner + Etch	Mask: capacitor; poly etch (e.g. HBr/Cl ₂ ICP or TMAH)
4.2	(Recommended) Top pad metallization	Sputter/E-beam	Short HF dip on poly; Al or Ti/Al pads; pattern lift-off or etch
5.0	Backside oxide strip	Wet bench	Protect frontside; remove backside oxide with BOE/HF until bare Si exposed; leave edge exclusion
5.1	Backside Ti deposition	Sputter	$100\mathrm{nm}$
5.2	Backside Al deposition	E-beam/Sputter	400 nm
5.3	Contact/forming-gas anneal	RTP/Furnace	$400^{\circ}\mathrm{C}$ to $450^{\circ}\mathrm{C},\ 20\mathrm{min}$ to $30\mathrm{min},\ N_2$ or 5% H_2 in N_2

4 Critical Checks

Step	QC Verification
2.1	Oxide thickness: $35 \mathrm{nm} \pm 1 \mathrm{nm}$
3.1/3.2	Poly n+ sheet resistance: $\leq 30 \ \Omega/\Box$
4.1	Gate CD: $\pm 0.5 \mu m$
4.2	Metal pad continuity and adhesion (tape test); contact to poly $< 10\Omega$ for pad geometries
5.0	Backside oxide fully removed (contact-angle change, test drop, or monitor wafer)
5.1	Backside Ti sheet resistance $\approx 0.3~\Omega/\Box(100\mathrm{nm}~\mathrm{Ti})$
5.2	Backside Al sheet resistance $\approx 0.07~\Omega/\Box(400\mathrm{nm}~\mathrm{Al})$
5.3	Contact anneal; contact resistance to Si governed by Ti/Si interface quality (target $< 1~\Omega \cdot \text{contact}$)

5 Process Flow Diagram

6 Required Figures

Figure 1: Process flow diagram for MOS capacitor fabrication.

Table 1:

Continued on next page

Table 1: (Continued)

		Tubio I. (Commuca)
		1.1 — Pre-oxidation clean (HF-last)
1	1.1	p-type Si substrate
1	1.1	prype a dusance
		Pre-oxidation clean (HF-last)
		2.1 — Gate oxide growth
		Gate oxide (35 nm SiO ₂)
	0.1	
2	2.1	p-type Si substrate
		Gate oxide growth
		3.1 — Poly-Si deposition (blanket)
		Polysilicon (blanket)
9		Gate oxide (35 nm SiO ₂)
3	3.1	p-type Si substrate
		Poly-Si deposition (blanket)
		3.2 — Poly doping + anneal
	3.2	n° polysilicon (blanket)
4		Gate oxide (35 nm SiO ₂)
$\mid 4 \mid$		p-type Si substrate
		Poly doping + anneal
		4.1 — Gate patterning
5		
	4.1	n* polysilicon gate Gate oxide (35 nm SiO ₂)
		Gate unite (35 IIIII SIUX)
0	4.1	p-type Si substrate
		Gate patterning + top pad

Continued on next page

Table 1: (Continued)

	1	
		4.2 — Top pad metallization (optional)
6		Top metal pad n* polysilicon gate
	4.2	Gate oxide (35 nm SiO ₂)
	4.2	p-type Si substrate
		Top pad metallization (optional)
		5.0 — Backside oxide strip
		Top metal pad
		n* polysilicon gate Gate oxide (35 nm SiO ₂)
7	5.0	p-type Si substrate
		Backside oxide (thin)
		Backside oxide strip
		5.1 — Backside Ti deposition
		Top metal pad
		n° polysilicon gate Gate oxide (35 nm SiO ₂)
8	5.1	p-type Si substrate
		Backside TI (100 nm)
		Backside Ti deposition
		5.2 — Backside Al deposition
	5.2	Top metal pad
		n° polysilicon gate Gate oxide (35 nm SiO ₂)
9		p-type Si substrate
		Backside I1 (100 nm) Backside AI (400 nm)
		Backside Al deposition
		5.3 — Contact anneal
10		Top metal pad
	5.3	n° polysilicon gate Gate oxide (35 nm SiO ₂)
		p-type Si substrate
		Alloyed contact formed
		Contact anneal