

Computer Fundamentals

Dr. Safdar Nawaz Khan Marwat DCSE, UET Peshawar

Lecture 11

> Types of storage devices

Storage Devices

- > Store data when computer is off
- > Two processes
 - Writing data
 - Reading data
- > Storage media
 - ☐ The material for storing data
 - □ Storage devices manage media
 - Magnetic devices use a magnet
 - Optical devices use lasers
 - Solid-state devices have physical switches

Magnetic Storage Devices

- > Most common form of storage
 - ☐ Hard drives, floppy drives, tape
- > All magnetic drives work the same

- Making a magnet
 - □ Polarity (N/S) determined by current direction

- > Electromagnetic induction
 - □ Placing electromagnet against magnetic surface induces magnetic field

- Data storage and retrieval
 - ☐ Media is covered with iron oxide
 - Read/write head is a magnet
 - Magnet writes charges on the media
 - Positive charge is a 1 (if N is used)
 - Negative charge is a 0 (if S is used)
 - Magnet reads charges
 - ☐ Drive converts charges into binary
 - Better than transistor for 0 and 1 as continuous power not required

Data retrieval

- > Data organization
 - ☐ Disks must be formatted before use
 - o Mapping disk before use
 - ☐ Format draws tracks on the disk
 - Concentric rings
 - ☐ Tracks are divided into sectors
 - Amount of data a drive can read
 - o Assume 80 tracks on each side, 18 sectors, totals 2880 sectors

- > Finding data on disk
 - Each track and sector is labeled (logical formatting)
 - ☐ File system
 - Logical method for storing data on disk surface
 - o Listing of where files are stored
 - ☐ File system examples
 - File Allocation Table (FAT)
 - o FAT32
 - o NTFS
 - Data is organized in clusters
 - A group of sectors, storage units
 - Size of data the OS can handle as a single unit

- > After FAT format, disk contains four areas
 - ☐ Boot sector
 - Program that run on computer startup (booting)
 - Control of computer handed over to boot sector after POST
 - □ FAT area
 - Records status of each sector
 - Keep track of allocation status of clusters
 - Possible FAT entries for clusters: allocated, unallocated, end of file, bad sector
 - □ Root folder
 - Folder required for organizing files on disk
 - Records location of each file and directory
 - Root folder is master folder
 - All other folders are subfolders in root folder
 - Data area
 - Kept free for data storage

Diskettes

- ☐ Also known as floppy disks
- ☐ Read with a disk drive
- □ Recording media of Mylar
 - o A strong polyester film
- ☐ Spin at 300 RPM
- ☐ Takes .2 second to find data with head
- \square 3 $\frac{1}{2}$ floppy disk holds 1.44 MB

> Hard disks

- ☐ Primary storage device in a computer
- 2 or more aluminium platters
- ☐ Each platter has 2 sides
- Spin between 5,400 to 15,000 RPM
- □ Data found in 9.5 ms or less
- ☐ Drive capacity up to 16 TB

> Hard disk illustrated

- > Removable high capacity disks (external hard disks)
 - □ Speed of hard disk
 - Portability of floppy disk
 - Several variants have emerged
 - ☐ High capacity floppy disk
 - o Stores up to 750 MB of data
 - ☐ Hot swappable hard disks
 - o Provide up to 8 TB of data space
 - Connect via USB

- > Tape drives
 - ☐ Best used for
 - Infrequently accessed data
 - Back-up solutions
 - □ Slow sequential access
 - ☐ Capacity exceeds 200 GB

Optical Storage Devices

- > CD-ROM
 - Most software ships on a CD
 - ☐ Read using a laser
 - o Lands, binary 1, reflect data
 - o Pits, binary 0, scatter data
 - Spiral sectors (all of same width)
 - ☐ Written from the inside out
 - CD speed is based on the original
 - o Original CD read 150 Kbps
 - o A 10 X will read 1,500 Kbps
 - Standard CD holds 650 MB
- > DVD-ROM
 - ☐ Digital Video Disk
 - Use both sides of the disk
 - ☐ Capacities can reach 18 GB
 - □ DVD players can read CDs

Optical Storage Devices (cont.)

- > CD Recordable (CD-R)
 - ☐ Create a data or audio CD
 - Data cannot be changed
 - Can continue adding until full
- > CD ReWriteable (CD-RW)
 - Create a reusable CD
 - Cannot be read in all CD players
 - ☐ Can reuse about 100 times
- Photo CD
 - Developed by Kodak
 - Provides for photo storage
 - ☐ Photos added to CD until full
 - Original pictures cannot be changed

Optical Storage Devices (cont.)

- DVD Recordable
 - Add files until full
 - ☐ Several different formats exist
 - None are standardized
 - ☐ Allows home users to create DVDs
 - ☐ Cannot be read in all players
- > DVD-RAM
 - Allow reusing of DVD media
 - ☐ Erasing possible
 - Not standardized
 - Cannot be read in all players

Solid State Devices

- Data is stored physically
 - ☐ Using physical switches
- No magnets or laser
- Very fast

Solid State Devices (cont.)

- > Flash memory
 - ☐ Found in cameras and USB drives
 - Combination of RAM and ROM
 - Long term updateable storage
- > Smart cards
 - Credit cards with a chip
 - Chip stores data
 - ☐ Eventually may be used for cash
 - ☐ Hotels use for electronic keys
- Solid-state disks (SSD)
 - Large amount of SDRAM
 - Not a disk actually, is volatile
 - ☐ For large organizations, for network storage or joint projects
 - o Availability of quickly changing data for large number of users at once
 - Extremely fast
 - Volatile storage
 - Require battery backups
 - Most have hard disks copying data for backup
 - Modern SSD are non-volatile

