Individual-based modelling of COVID-19 on the Acadia University campus with a realistic contact structure

Acadia Covid-19 Modelling Group: D. Currie, C. Hooper, M. Hopkins,

R. Karsten, Y. Li, F. Mendivil, H. Teismann

August 12, 2020

AARMS COVID-19 Seminar

Introduction

• Cap on in-person classes

- Cap on in-person classes
- Instruction partially online

- Cap on in-person classes
- Instruction partially online
- Risk-reducing behaviour enforced

- Cap on in-person classes
- Instruction partially online
- Risk-reducing behaviour enforced
- Ready to "pivot"

- Cap on in-person classes
- Instruction partially online
- Risk-reducing behaviour enforced
- Ready to "pivot"
- etc. pp.

Introduction: Similar work

• Gressman & Peck [5]

Introduction: Similar work

- Gressman & Peck [5]
- Pennsylvania schools

https://ies.ed.gov/ncee/edlabs/regions/midatlantic/pdf/ReopeningPASchools.pdf

Introduction: Similar work

- Gressman & Peck [5]
- Pennsylvania schools

https://ies.ed.gov/ncee/edlabs/regions/midatlantic/pdf/ReopeningPASchools.pdf

• etc. pp

Model description

discrete time (denoted by the letter t below; we used "day" as the time increment)

discrete time (denoted by the letter t below; we used "day" as the time increment) individual-based. state vector $y(t) \in \{0,\ldots,8\}^{N_{pop}}$, where $N_{pop} = \text{size}$ of population and $0,1,\ldots,8 = \text{stages}$ of disease.

discrete time (denoted by the letter t below; we used "day" as the time increment)

individual-based. state vector $y(t) \in \{0, \dots, 8\}^{N_{pop}}$, where $N_{pop} = \text{size}$ of population and $0, 1, \dots, 8 = \text{stages}$ of disease.

stochastic. in each time step $t \to t+1$ the state vector transitions stochastically between states according to the transition matrix

	S	$E + I_1$	I_2	Α	J	Н	R	F	В
S	1 - b	Ь	0	0	0	0	0	0	0
$E + I_1$	0	$1 - \mu_1$	$\phi \mu_1$	$(1 - \phi)\mu_1$	0	0	0	0	0
<i>I</i> ₂	0	0	$1 - \mu_2$	0	$\theta \mu_2$	$(1 - \theta)\mu_2$	0	0	0
Α	0	0	0	$1 - \mu_A$	0	0	0	0	μ_A
J	0	0	0	0	$1 - \mu_J$	0	μ_J	0	0
Н	0	0	0	0	0	$1 - \mu_H$	$\rho\mu_H$	$(1 - \rho)\mu_H$	0
R	0	0	0	0	0	0	1	0	0
F	0	0	0	0	0	0	0	1	0
В	0	0	0	0	0	0	0	0	1

stochastic. in each time step $t \to t+1$ the state vector transitions stochastically between states according to the transition matrix

	5	$E + I_1$	I_2	Α	J	Н	R	F	В
S	1 - b	Ь	0	0	0	0	0	0	0
$E + I_1$	0	$1 - \mu_1$	$\phi \mu_1$	$(1 - \phi)\mu_1$	0	0	0	0	0
I_2	0	0	$1 - \mu_2$	0	$\theta\mu_2$	$(1-\theta)\mu_2$	0	0	0
Α	0	0	0	$1 - \mu_A$	0	0	0	0	μ_A
J	0	0	0	0	$1 - \mu_J$	0	μ_J	0	0
Н	0	0	0	0	0	$1 - \mu_H$	$\rho\mu_H$	$(1 - \rho)\mu_H$	0
R	0	0	0	0	0	0	1	0	0
F	0	0	0	0	0	0	0	1	0
В	0	0	0	0	0	0	0	0	1

where

$$b = 1 - \prod_{j'=1}^{N_{pop}} \left(1 - \beta(x_{j'}(t), y_{j'}(t))\right)^{C_{j,j'}} \qquad \text{(probability that individual j gets infected)}$$

 $C_{j,j'}={\sf contact}\ {\sf matrix}\ ({\sf average}\ {\sf number}\ {\sf of}\ {\sf infectious}\ {\sf contacts}\ {\sf between}\ {\sf individuals}\ j\ {\sf and}\ j'\ {\sf per}\ {\sf day})$

$$\beta(x,y) = \begin{cases} \beta_1(x), & \text{if } y = 1\\ \beta_2(x), & \text{if } y = 2\\ \beta_A(x), & \text{if } y = 3\\ 0, & \text{otherwise} \end{cases}$$
 (probability of infection per contact)

 $x_j(t) = \text{infection age (time since individual } j \text{ got infected)}$

 $\mu_* = \mu_*(x_j(t))$ (probability of advancing to next stage of disease)

 $\phi, \theta, \rho =$ probabilities of branching.

Model description: Parameters

• We choose $\beta_1(x) \equiv \beta_2(x) \equiv \beta_A(x) \equiv \beta b(x)$, where the function b(x) is expected to follow the temporal shape of "viral shedding" [6, 1, 9]:

Model description: Parameters

• Similarly, the functions $\mu_{\nu}(x)$ have a general shape like this:

- The probability of infection per contact β is chosen such that $\mathcal{R}_0 \approx 3.8$ (value chosen in [5]). Here "contact" is interpreted as "being in the same room for 15 mins."
- The (median) times $\frac{1}{\mu\nu}$ in the various stages are typical values found in the literature; see e.g. [3, 4, 2, 8, 7], https://gabgoh.github.io/COVID/index.html

Model description: Parameters

• Summary (ignoring hospitalizations and deaths for now):

Model description: reproduction number and serial interval

• [6] has this pedagogical diagram:

Contact structure

Contact structure: Classes

Contact structure: Residences

Contact structure: Off-campus living

Contact structure: Social life

Simulation results

Results: baseline (regular semester, no intervention)

Results: quarantining index cases and contacts

Results: add campus lockdown ...

Results: testing protocol 1

Results: testing protocol 2

Results: "onboarding"

 Study different "onboarding" protocols (number and timing of tests etc)

- Study different "onboarding" protocols (number and timing of tests etc)
- Estimate risk of case importation during semester

- Study different "onboarding" protocols (number and timing of tests etc)
- Estimate risk of case importation during semester
- Study effects of time delays

- Study different "onboarding" protocols (number and timing of tests etc)
- Estimate risk of case importation during semester
- Study effects of time delays
- Study effects of compliance

- Study different "onboarding" protocols (number and timing of tests etc)
- Estimate risk of case importation during semester
- Study effects of time delays
- Study effects of compliance
- Estimate risk of need to "pivot"

- Study different "onboarding" protocols (number and timing of tests etc)
- Estimate risk of case importation during semester
- Study effects of time delays
- Study effects of compliance
- Estimate risk of need to "pivot"
- etc. pp

References I

Neil Ferguson, Daniel Laydon, Gemma Nedjati Gilani, Natsuko Imai, Kylie Ainslie, Marc Baguelin, Sangeeta Bhatia, Adhiratha Boonyasiri, ZULMA Cucunuba Perez, Gina Cuomo-Dannenburg, et al., Report 9: Impact of non-pharmaceutical interventions (npis) to reduce covid19 mortality and healthcare demand, Imperial College (2020).

References II

Luca Ferretti, Chris Wymant, Michelle Kendall, Lele Zhao, Anel Nurtay, Lucie Abeler-Dorner, Michael Parker, David G Bonsall, and Christophe Fraser, Quantifying sars-cov-2 transmission suggests epidemic control with digital contact tracing, medRxiv (2020).

References III

- Philip T Gressman and Jennifer R Peck, *Simulating covid-19* in a university environment, arXiv preprint arXiv:2006.03175 (2020).
- Xi He, Eric HY Lau, Peng Wu, Xilong Deng, Jian Wang, Xinxin Hao, Yiu Chung Lau, Jessica Y Wong, Yujuan Guan, Xinghua Tan, et al., *Temporal dynamics in viral shedding and transmissibility of covid-19*, Nature medicine (2020), 1–4.
- Kiesha Prem, Yang Liu, Timothy W Russell, Adam J Kucharski, Rosalind M Eggo, Nicholas Davies, Stefan Flasche, Samuel Clifford, Carl AB Pearson, James D Munday, et al., The effect of control strategies to reduce social mixing on

References IV

outcomes of the covid-19 epidemic in wuhan, china: a modelling study, The Lancet Public Health (2020).

Timothy W Russell, Joel Hellewell, Sam Abbott, CI Jarvis, K van Zandvoort, et al., *Using a delay-adjusted case fatality ratio to estimate under-reporting*, Centre for Mathematical Modeling of Infectious Diseases Repository (2020).

Jeroen JA van Kampen, David AMC van de Vijver, Pieter LA Fraaij, Bart L Haagmans, Mart M Lamers, Nisreen Okba, Johannes PC van den Akker, Henrik Endeman, Diederik AMPJ Gommers, Jan J Cornelissen, et al., Shedding of infectious virus in hospitalized patients with coronavirus disease-2019 (covid-19): duration and key determinants, medRxiv (2020).