Tarea 6

Rigoberto Canseco López

1. $\int \frac{1}{x^2+5x+6} \ dx$

Se puede completar la diferencia de cuadrados, $x^2+5x+6=(x+\frac{5}{2})^2-\frac{1}{4}$

$$\int \frac{1}{\left(x + \frac{5}{2}\right)^2 - \frac{1}{4}} \, dx$$

Para la integral $\frac{1}{\left(x+\frac{5}{2}\right)^2-\frac{1}{4}}$, sustituimos $u=x+\frac{5}{2}$ y du=dx

$$\int \frac{1}{u^2 - \frac{1}{4}} \, du$$

Multiplicamos por 4 el denominar y el nominador

$$\int \frac{4}{4u^2 - 1} du$$

$$= 4 \int \frac{1}{4u^2 - 1} du$$

$$= -4 \int \frac{1}{1 - 4u^2} du$$

Para la integral $rac{1}{1-4u^2}$, sustituimos $\, s=2 \, u \, {
m y} \, \, ds=2 \, du$

$$-2\int \frac{1}{1-s^2} \, ds$$

La integral de $\frac{1}{1-s^2}$ es $anh^{-1}(s)$

$$= -2\tanh^{-1}(s) + C$$

Sustituimos de regreso $s=2\;u$

$$= -2\tanh^{-1}(2u) + C$$

Sustituimos de regreso $u=x+\frac{5}{2}$

$$= -2 anh^{-1}(2x+5) + C$$

Por lo tanto la integral es igual a

$$-2 \tanh^{-1}(2x+5) + C$$

2.
$$\int x^2 \sqrt{5-x^2} \ dx$$

Para la integral $x^2\sqrt{5-x^2}$, sustituimos $x=\sqrt{5}(u\sin)$ y $dx=\sqrt{5}\cos u\ du$. Por lo tanto $\sqrt{5-x^2}=\sqrt{5-5\sin^2 u}=\sqrt{5}\cos u\ y\ u=\sin^{-1}(\frac{x}{\sqrt{5}})$

$$= \sqrt{5} \int 5\sqrt{5} \left(\sin^2 u\right) \left(\cos^2 u\right) du$$
$$= 25 \int \left(\sin^2 u\right) \left(\cos^2 u\right) du$$

Reescribimos $\cos^2 u$ como $1 - \sin^2 u$

$$= 25 \int (\sin^2 u) (1 - \sin^2 u) du$$

$$= 25 \int (\sin^2 u - \sin^4 u) du$$

$$= -25 \int \sin^2 u du - 25 \int \sin^4 u du$$

Usando la fórmula, $\int \sin^m u \, du = -\frac{(u\cos)(\sin^{m-1}u)}{m} + \frac{m-1}{m} \int \sin^{-2+m}u \, du$, donde m=4 $= \frac{25}{4} \left(\sin^3 u\right) (\cos u) + \frac{25}{4} \int \sin^2 u \, du$

Escribiendo $\sin^2 u$ como $\frac{1}{2} - \frac{1}{2}\cos(2u)$

$$=rac{25}{4}ig(\sin^3 uig)\,(\cos u)+rac{25}{4}\intigg(rac{1}{2}-rac{1}{2}{\cos(2u)}igg)\;du$$

Integrando la suma término por término y factorizando las constantes

$$= \frac{25}{4} (\sin^3 u) (\cos u) - \frac{25}{8} \int \cos(2u) \, du + \frac{25}{8} \int 1 \, du$$

Para el integrando $\cos 2u$, sustituimos s=2~u y ds=2~du

$$= \frac{25}{4} \left(\sin^3 u \right) \left(\cos u \right) - \frac{25}{16} \int \cos s \, ds + \frac{25}{8} \int 1 \, du$$

La integral de $\cos s$ es $\sin s$

$$-\frac{25(\sin s)}{16} + \frac{25}{4}(\sin^3 u)(\cos u) + \frac{25}{8}\int 1\,du$$

La integral de 1 es u

$$-rac{25(\sin s)}{16}+rac{25u}{8}+rac{25}{4}(\sin^3 u)(\cos u)+C$$

Sustituimos s=2 u

$$rac{25u}{8} + rac{25}{4} ig(\sin^3 u ig) \, (\cos u ig) - rac{25}{8} (\sin u) (\cos u) + C$$

Sustituimos $u = \sin^{-1}(x/\sqrt{5})$

$$=\frac{25}{8} \sin^{-1}\frac{x}{\sqrt{5}}+\frac{25}{4} \sin(\sin^{-1}(\frac{x}{\sqrt{5}}))^3 \cos(\sin^{-1}(\frac{x}{\sqrt{5}}))-\frac{25}{8} \sin(\sin^{-1}(\frac{x}{\sqrt{5}})) \cos(\sin^{-1}(\frac{x}{\sqrt{5}}))+C$$

Simplificando $\cos(\sin^{-1} z) = \sqrt{1 - z^2} \text{ y} \sin(\sin^{-1} z) = z$

$$= \frac{1}{4}\sqrt{5-x^2}x^3 - \frac{5}{8}\sqrt{5-x^2}x + \frac{25}{8}\sin^{-1}\left(\frac{x}{\sqrt{5}}\right) + C$$
$$= \frac{1}{8}\left(x\left(2x^2 - 5\right)\sqrt{5-x^2} + 25\sin^{-1}\left(\frac{x}{\sqrt{5}}\right)\right) + C$$

Por lo tanto la integral es

$$\frac{1}{8} \left(x \left(2x^2 - 5 \right) \sqrt{5 - x^2} + 25 \sin^{-1} \left(\frac{x}{\sqrt{5}} \right) \right) + C \quad \blacksquare$$

3.
$$\int \frac{1}{\sqrt{x^2+4}} dx$$

Para la integral de $\frac{1}{\sqrt{x^2+4}}$, sustituimos $x=2\tan u$ y $dx=2\sec^2 u$ du. Entonces $\sqrt{x^2+4}=\sqrt{4\tan^2 u+4}=2\sec u$ y $u=\tan^{-1}\frac{x}{2}$

$$= 2 \int \frac{\sec u}{2} \, du$$
$$= \int \sec u \, du$$

Multiplicando el numerador y denominador de $\sec u$ por $\tan u + \sec u$

$$= \int \frac{\sec^2 u + (\sec u)(\tan u)}{\sec u + \tan u} \ du$$

Para la integral de $\frac{\sec^2 u + (\sec u)(\tan u)}{\sec u + \tan u}$, sustituimos $s = \tan u + \sec u$ y $ds = \sec^2 u + (\tan u)(\sec u) du$

$$=\int \frac{1}{s} ds$$

La integral de $\frac{1}{s}$ es $\ln s$

$$= \ln s + C$$

Sustituyendo $s = \tan u + \sec u$

$$\ln(\tan u + \sec u) + C$$

Sustituyendo $u = \tan^{-1}\left(\frac{x}{2}\right)$

$$= \ln(\tan(\tan^{-1}\frac{x}{2}) + \sec(\tan^{-1}\frac{x}{2})) + C$$

Simplificando sec $\tan^{-1} z = \sqrt{z^2 + 1}$ y $\tan(\tan^{-1} z) = z$

$$=\ln(\frac{1}{2}(\sqrt{x^2+4}+x))+C$$

Por lo tanto la integral es

$$\ln(\frac{1}{2}(\sqrt{x^2+4}+x))+C$$

4. $\int \frac{1}{3x^2-x+1} \ dx$

Se completa el binomio cuadrado $3x^2 - x + 1$

$$= \int \frac{1}{\left(\sqrt{3}x - \frac{1}{2\sqrt{3}}\right)^2 + \frac{11}{12}} \, dx$$

Para la integral $\frac{1}{\left(\sqrt{3}x-\frac{1}{2\sqrt{3}}\right)^2+\frac{11}{12}}$, sustituimos $u=\sqrt{3}x-\frac{1}{2\sqrt{3}}$ y $du=\sqrt{3}~dx$

$$= \frac{1}{\sqrt{3}} \int \frac{1}{u^2 + \frac{11}{12}} du$$

$$= \frac{1}{\sqrt{3}} \int \frac{12}{11 \left(\frac{12u^2}{11} + 1\right)} du$$

$$= \frac{4\sqrt{3}}{11} \int \frac{1}{\frac{12u^2}{11} + 1} du$$

Para la integral $rac{1}{rac{12u^2}{11}+1}$, sustituimos $s=2\sqrt{rac{3}{11}}~u$ y $ds=2\sqrt{rac{3}{11}}~du$

$$=rac{2}{\sqrt{11}}\intrac{1}{s^2+1}ds$$

La integral de $\frac{1}{s^2+1}$ es $\tan^{-1} s$

$$\frac{2\tan^{-1}s}{\sqrt{11}} + C$$

Sustituimos $s=2\sqrt{\frac{3}{11}}u$

$$=\frac{2\tan^{-1}\!\left(2\sqrt{\frac{3}{11}}u\right)}{\sqrt{11}}+C$$

Sustituimos $u=\sqrt{3}x-rac{1}{2\sqrt{3}}$

$$= \frac{2 \tan^{-1} \frac{(6x-1)}{\sqrt{11}}}{\sqrt{11}} + C$$

Por lo tanto la integral es

$$\frac{2\tan^{-1}\frac{(6x-1)}{\sqrt{11}}}{\sqrt{11}} + C \quad \blacksquare$$

5.
$$\int \frac{\sqrt{1-x^2}}{x^2} dx$$

Sustituimos $x=\sin u$ y $dx=\cos u$ du. Entonces $\sqrt{1-x^2}=\sqrt{1-u\sin^2}=\cos u$ y $u=\sin^{-1}x$

$$=\int \cot^2 u\,du$$

Reescribimos $\cot^2 u$ como $\csc^2 u - 1$

$$= \int \csc^2 u - 1 \ du$$

Integramos la suma término por término

$$=\int\csc^2u\,du-\int 1\,du$$

La integral de $\csc^2 u$ es $-\cot u$

$$=-\cot u-\int 1\,du$$

La integral de 1 es u

$$= -u - \cot u + C$$

Sustituimos $u=\sin^{-1}x$

$$-\sin^{-1}x - \cot(\sin^{-1}x) + C$$

Simplificamos usando $\cot(\sin^{-1} z) = \frac{\sqrt{1-z^2}}{z}$

$$= -\frac{\sqrt{1 - x^2} + x\sin^{-1}x}{x} + C$$

Por lo tanto la integral buscada es

$$-\frac{\sqrt{1-x^2}+x\sin^{-1}x}{x}+C\quad\blacksquare$$

 $6. \int \frac{x^3-1}{4x^3-x} \ dx$

7.
$$\int \frac{e^x}{\sqrt{1+e^x+e^{2x}}} \ dx$$

Para la integral $\; rac{e^x}{\sqrt{1+e^x+e^{2x}}}$, sustituimos $u=e^x\; {
m y}\; du=e^x\; dx$

$$= \int \frac{1}{\sqrt{u^2 + u + 1}} \, du$$

Completamos el cuadrado

$$=\int\frac{1}{\sqrt{\left(u+\frac{1}{2}\right)^2+\frac{3}{4}}}\;du$$

Para la integral $\dfrac{1}{\sqrt{\left(u+\frac{1}{2}\right)^2+\frac{3}{4}}}$, substituimos $s=u+\frac{1}{2}$ y ds=du

$$=\intrac{1}{\sqrt{s^2+rac{3}{4}}}\,ds$$

Para la integral $\frac{1}{\sqrt{s^2 + \frac{3}{4}}}$, substituimos $s = \frac{1}{2}\sqrt{3} \tan r$ y $ds = \frac{1}{2}\sqrt{3} \sec^2 r \, dr$. Entonces $\sqrt{s^2 + \frac{3}{4}} = \sqrt{\frac{3}{4}(\tan^2 r) + \frac{3}{4}} = \frac{1}{2}\sqrt{3}(\sec r) \text{ y } r = \tan^{-1}\frac{2s}{\sqrt{3}}$

$$= \frac{\sqrt{3}}{2} \int \frac{2(\sec r)}{\sqrt{3}} dr$$
$$= \int \sec r \, dr$$

La integral de $\sec r \operatorname{es} \ln(\tan r + \sec r)$

$$= \ln(\tan r + \sec r) + C$$

Substituimos $p = \tan^{-1} \left(\frac{2s}{\sqrt{3}} \right)$

$$= \ln \left(\tan(\tan^{-1} \frac{2s}{\sqrt{3}}) + \sec(\tan^{-1} \frac{2s}{\sqrt{3}}) \right) + C$$

Simplificamos sec $\tan^{-1} z = \sqrt{z^2 + 1}$ y $\tan \tan^{-1} z = z$

$$=\lnrac{\left(\sqrt{4s^2+3}+2s
ight)}{\sqrt{3}}+C$$

Sustituimos s = u + 1/2

$$= \ln \frac{2\sqrt{u^2 + u + 1} + 2u + 1}{\sqrt{3}} + C$$

Se sustituye $u = e^x$

$$\ln \frac{2\sqrt{e^x + e^{2x} + 1} + 2e^x + 1}{\sqrt{3}} + C$$

Por lo tanto la integral buscada es

$$\ln \frac{2\sqrt{e^x + e^{2x} + 1} + 2e^x + 1}{\sqrt{3}} + C$$

8. $\int \frac{x^4 + 4x^3 - 5x^2 + 2x - 6}{x^2(x-1)^3}$