Duración: 2 horas. Respuestas únicas Respuesta Bien=1, Mal=-0.5 Sin contestar=0. Sin material permitido. Atención: Si el número de respuesta Mal es mayor que 4, se resta 1 por cada una en lugar de 0.5.

Pregunta 1

Sea el número $s = \sum_{i=1}^{n-1} i(n-i)$ para cualquier $n \in \mathbb{N}, n > 1$. Se presume que es de la

forma $x(n^3 - n)$. Se consideran las opciones: a = 1, $b = \frac{1}{3}$, $c = \frac{1}{6}$. Entonces:

- A) x no puede ser ni a, ni b, ni c, para todo n.
- **B)** x puede ser b para n > 100
- C) Ninguna de las otras respuestas.

Pregunta 2

Sea el número $s = \sum_{i=1}^{n-1} i(n-i)$ para cualquier $n \in \mathbb{N}, n > 1$. Se presume que es de la

forma $x(n^3 - n)$. Se consideran las opciones: a = 1, $b = \frac{1}{3}$, $c = \frac{1}{6}$. Entonces:

- A) x puede ser a para n > 500.
- **B)** x puede ser c para todo n > 1
- C) Ninguna de las otras respuestas.

Pregunta 3

En \mathbb{R}^2 se consideran el orden lexicográfico \leqslant_L y el orden producto \leqslant_P y los conjuntos $A = \{(x, y) \in \mathbb{R}^2 \mid x^4 - y^4 = 0\} \text{ y } B = \{(x, y) \in \mathbb{R}^2 \mid |x| - |y| \le 1\}.$ Entonces:

- **A)** $\inf_{\leq_{\mathcal{D}}}(A \cap B) < \inf_{\leq_L}(A \cap B).$
- **B)** $\sup_{\leq_I} (A \cap B) < \sup_{\leq_P} (A \cap B).$
- C) Ninguna de las otras respuestas.

Pregunta 4

En \mathbb{R}^2 se consideran el orden lexicográfico \leq_L y el orden producto \leq_P y los conjuntos $A = \{(x, y) \in \mathbb{R}^2 \mid x^4 - y^4 = 0\} \text{ y } B = \{(x, y) \in \mathbb{R}^2 \mid |x| - |y| \le 1\}.$ Entonces:

- **A)** $\min_{\leq_{P}}(A \cap B) > \inf_{\leq_{L}}(A \cap B).$
- **B)** $\sup_{\leq_I} (A \cap B) = \max_{\leq_P} (A \cap B).$
- C) Ninguna de las otras respuestas.

Pregunta 5

Sea $(\mathbb{Z}^2 + .)$ donde (a,b) + (c,d) = (a+c,b+c) y $(a,c) \cdot (c,b) = (ac,ad+bc+bd)$. Entonces:

- **A)** $((a,b)+(c,d))^2 \neq (a,b)^2+(c,d)^2+2(a,b)(c,d).$
- **B)** $((a,b)-(c,d))((a,b)+(c,d))=(a,b)^2-(c,d)^2.$
- C) Ninguna de las otras respuestas.

Pregunta 6

Sea $(\mathbb{Z}^2 + .)$ donde (a, b) + (c, d) = (a + c, b + c) y $(a, c) \cdot (c, b) = (ac, ad + bc + bd)$. Entonces:

- **A)** $(\mathbb{Z}^2 + .)$ no es cuerpo pero es un anillo unitario.
- **B)** $(\mathbb{Z}^2 + .)$ un anillo no conmutativo.
- C) Ninguna de las otras respuestas.

Pregunta 7

Se considera aquellos puntos afijos de los números complejos z tales que $\arg \frac{z-2}{z+2} = \frac{\pi}{6}$. Estos puntos cumplen que:

- A) Forman una circunferencia de radio menor que 2.
- B) Forman una circunferencia cuyo centro es un punto del eje OY.
- C) Ninguna de las otras respuestas.

Pregunta 8

Se considera aquellos puntos afijos de los números complejos z tales que $\arg \frac{z-2}{z+2} = \frac{\pi}{6}$. Estos puntos cumplen que:

- A) Forman una elipse de semiejes distintos.
- B) Forman una hipérbola cuyo centro es un punto del eje OY.
- C) Ninguna de las otras respuestas.

Pregunta 9

Se consideran las siguientes afirmaciones:

- 1. $(\mathbb{C}, +, .)$ con el orden análogo al orden producto de \mathbb{R}^2 es un cuerpo ordenado.
- 2. Sea $\mathbb{P} \subset \mathbb{Z}$ el conjunto de los números enteros positivos. Existe una biyeción del conjunto de las partes de \mathbb{Z} al conjunto de las partes de \mathbb{P}
- 3. Un conjunto $A \subset \mathbb{R}^2$ puede tener muchos puntos minimales respecto al orden lexicográfico de \mathbb{R}^2 .
- 4. Los ideales de un anillo son subanillos.
- 5. La fórmula del binomio de Newton no es válida en un anillo.

Entonces:

- A) Hay menos de tres afirmaciones ciertas.
- B) Hay más de tres afirmaciones falsas.
- C) Ninguna de las otras respuestas.

Pregunta 10

Se consideran las siguientes afirmaciones:

- 1. (\mathbb{C} , +, .) con el orden análogo al orden producto de \mathbb{R}^2 es un cuerpo ordenado.
- 2. Sea $\mathbb{P} \subset \mathbb{Z}$ el conjunto de los números enteros positivos. Existe una biyeción del conjunto de las partes de \mathbb{Z} al conjunto de las partes de \mathbb{P}
- 3. Un conjunto $A \subset \mathbb{R}^2$ puede tener muchos puntos minimales respecto al orden lexicográfico de \mathbb{R}^2 .
- 4. Los ideales de un anillo son subanillos.
- 5. La fórmula del binomio de Newton no es válida en un anillo.

Entonces:

- A) Sólo hay dos afirmaciones ciertas.
- B) Sólo hay dos afirmaciones falsas.
- C) Ninguna de las otras respuestas.