# Report page ExoTIC-ISM

## W17\_G141\_lc\_14693.txt - 14693

#### **Input parameters:**

Number of systematic models: 50 Wavelength mid point = 14694.570541735511 Wavelength half width = 90.80626964749172

#### Planet parameters:

Rp/R\* = 0.1255 Epoch (MJD) = 57957.97108811848 Inclination (deg) = 86.93051272857655 Eccentricity = 0.0 Omega (deg) = 0.0 Period (days) = 3.7354850226 a/R\* = 7.025

#### **Stellar parameters:**

FeH (dex) = -0.25Teff (K) = 6550.0 $\log(g) (cgs) = 4.2$ 

#### **Output parameters:**

#### **Limb-darkening coefficients:**

C1 = 1.0477024157737937 C2 = -1.2644423046667457 C3 = 1.0916163033229385 C4 = -0.3742654739356913

#### Top five systematic models by their weight

Check the chi-squared values and the AIC evidence for reasonable fits.

If the chi-squared values far exceed the DOF then it is likely that the input data contains additional noise, double check the spectral extraction.

Model numbers =  $[49\ 37\ 39\ 38\ 42]$ 

DOF = [42. 46. 44. 45. 45.]

Chi-squared = [61.04350268 65.45155038 63.77963175 65.18438162 65.4494162 ]

AIC evidence = [334.02763677 333.82361292 333.65957223 333.4571973 333.32468001]

Weights = [0.17951727635817447 0.14638609297612792 0.12423897333494306

0.1014769807982039 0.0888824484329238]

SDNR = [316.34704784 327.59026079 323.36084256 326.87770224 327.61989724]

#### **Top model Noise Statistics:**

White noise = 0.0Red noise = 0.0

Beta = 1.0

If the red-noise is significant it means the data is poorly fit by any of the systematic models. It is recommended that the input lightcurves are checked for additional noise sources.

## Marginalised parameters:

If None, parameter was not fit for.

 $Rp/R* = 0.1239464860540479 +/- 0.0005197771558524829 \\ Epoch (MJD) = 57957.96966376164 +/- 0.0005673426589686503 \\ Inclination (rad) = None +/- None \\ Inclination (deg) = None +/- None \\ System density (Ms+Mp/R^3) = None +/- None \\ a/R* = None +/- None$ 

## **Systematics**

#### Marginalisation results



*Top:* Evidence-based weight associated with each systematic model when fit with the data. *Middle:* Standard deviation of the residuals after correcting for each systematic model. *Bottom:* Radius ratio

measured from the transit depth when the light curve has been corrected using each systematic model. *If present, grey crosses mark discarded systematic models (poor AIC evidence)*.

### Lightcurves

First vs. best model



*Top:* Input lightcurve with no systematic model correction applied. *Middle:* Lightcurve corrected by highest weight systematic model plotted with the smooth planetary transit model centred on the mid-transit time. *Bottom:* Residuals and uncertainties associated with the middle panel lightcurve. The upper and lower standard deviation bounds are shown in dotted lines relative to zero.