CS-UY 2413: Design & Analysis of Algorithms

Prof. Lisa Hellerstein

Fall 2024 New York University

Homework 2

Due 11:59pm Monday, Sep 30, New York time.

By handing in the homework you are agreeing to the Homework Rules; see EdStem.

Our Master Theorem: The version of the Master Theorem that we covered in class is on the last page of this homework. We won't be covering the version of the Master Theorem in the textbook and you're not responsible for knowing it. (But you may find it interesting!)

Reminder: For $r \neq 1$, $r^0 + r^1 + \dots + r^k = \frac{r^{k+1} - 1}{r-1}$.

- 1. For each example, indicate whether f=o(g) (little-oh), $f=\omega(g)$ (little-omega), or $f=\Theta(g)$ (big-Theta). No justification is necessary.
 - (a) $f(n) = n^2 \log n, g(n) = n^3$
 - (b) $f(n) = 2^n$, $g(n) = n^2$
 - (c) $f(n) = n \log n$, $g(n) = n \log(n^2)$
 - (d) f(n) = 7n + 10, g(n) = n
 - (e) $f(n) = \sum_{i=1}^{n} i^2$, $g(n) = n^3$
- 2. Give a formal proof of the following statement: If $f(n) \geq 1$ for all $n \in N$, $g(n) \geq 1$ for all $n \in N$, $f(n) = \Omega(g(n))$, and g(n) is unbounded (meaning $\lim_{n \to \infty} g(n) = \infty$) then $\log_2 f(n) = \Omega(\log g(n))$. Use the formal definition of big-Omega in your answer. In your proof, you can use the fact that the value of $\log_2 n$ increases as n increases.
- 3. For each of the following recurrences, determine whether Our Master Theorem (on the last page of this HW) can be applied to the recurrence. If it can, use it to give the solution to the recurrence in Θ notation; no need to give any details. If not, write "Our Master Theorem does not apply."
 - (a) $T(n) = 2T(n/2) + n \log n$
 - (b) $T(n) = 9T(n/3) + n^2$

- (c) T(n) = T(n-1) + 1
- 4. Our Master Theorem can be applied to a recurrence of the form $T(n) = aT(n/b) + n^d$, where a, b, d are constants with a > 0, b > 1, d > 0. Consider instead a recurrence of the form $T_{new}(n) = aT_{new}(n/b) + n\log n$ where a > 0, b > 1. For each of the following, state whether the given property of T_{new} is true. If so, explain why it is true. If not, explain why it is not true. (Even if you know the version of the Master Theorem in the textbook, don't use it in your explanation.)
 - (a) $T_{new}(n) = O(n^2)$ if $\log_b a < 1$
 - (b) $T_{new}(n) = \Omega(n \log^2 n)$ if $\log_b a = 1$
- 5. Consider the recurrence T(n) = 2T(n/2) + n for n > 1, and T(1) = 1.
 - (a) Compute the value of T(4), using the recurrence. Show your work.
 - (b) Use a recursion tree to solve the recurrence and get a closed-form expression for T(n), when n is a power of 2. (Check that your expression is correct by plugging in n=4 and comparing with your answer to (a).)
 - (c) Suppose that the base case is T(2) = 3, instead of T(1) = 1. What is the solution to the recurrence in this case, for $n \ge 2$?
- 6. Consider a variation of mergesort that works as follows: If the array has size 1, return. Otherwise, divide the array into fourths, rather than in half. Recursively sort each fourth using this variation of mergesort. Then merge the first two fourths. Then merge the last two fourths. Finally, merge the two merged pairs.
 - (a) Write a recurrence for the running time of this variation of mergesort. It should be similar to the recurrence for ordinary mergesort. Assume n is a power of 4.
 - (b) Apply Our Master Theorem to the recurrence to get the running time of the algorithm, in theta notation. Show your work.
- 7. Consider a recursive algorithm that operates as follows:
 - If the input size is less than or equal to 1, return 1.
 - Recursively call itself on two subproblems, each of size n/2.
 - Perform some operation that takes O(n log n) time.
 - Combine the results of the recursive calls in O(1) time.
 - (a) Write a recurrence relation for the running time T(n) of this algorithm.
 - (b) Solve the recurrence relation using the Master Theorem, or explain why the Master Theorem is inapplicable.

- 8. Let $f(n) = n^2$ and $g(n) = n \log n$. Determine whether f(n) = O(g(n)), $f(n) = \Omega(g(n))$, or $f(n) = \Theta(g(n))$. Justify your answer using the formal definitions.
- 9. Consider the recurrence T(n) = 3T(n/3) + n.
 - (a) Solve the recurrence using the Master Theorem.
 - (b) Draw a recursion tree for T(9) and verify your solution from (a).
- 10. Describe a divide-and-conquer algorithm to find the maximum and minimum elements in an unsorted array of size n. Write a recurrence relation for its running time and solve the recurrence using the Master Theorem or an appropriate method. State the time complexity in Big-Theta notation.

Theorem 0.1 (Our Master Theorem)

Let a, b, d, n_0 be constants such that a > 0, b > 1, $d \ge 0$ and $n_0 > 0$. Let $T(n) = aT(n/b) + \Theta(n^d)$ for when $n \ge n_0$, and $T(n) = \Theta(1)$ when $0 \le n < n_0$. Then,

$$T(n) = \begin{cases} \Theta(n^d \log n) & \text{if } d = \log_b a \\ \Theta(n^{\log_b a}) & \text{if } d < \log_b a \\ \Theta(n^d) & \text{if } d > \log_b a \end{cases}$$

We assume here that T(n) is a function defined on the natural numbers. We use aT(n/b) to mean $a'T(\lfloor n/b \rfloor) + a''T(\lceil n/b \rceil)$ where a', a'' > 0 such that a' + a'' = a.