Sampling Based Inference

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

Weekly Objectives

- Learn basic sampling methods
 - Understand the concept of Markov chain Monte Carlo
 - Able to apply MCMC to the parameter inference of Bayesian networks
 - Know the mechanism of rejection sampling
 - Know the mechanism of importance sampling
- Learn sampling based inference
 - Understand the concept of Metropolis-Hastings Algorithm
 - Know the mechanism of Gibbs sampling
- Know a case study of sampling based inference
 - Understand the latent Dirichlet allocation model
 - Know the collapsed Gibbs sampling
 - Know how to derive Gibbs sampling formula for LDA

Metropolis-Hastings Algorithm

- General algorithm of MCMC
 - Current value: z^t

We want the stationary distribution, $\pi(z)$, of our MCMC sampling to be P(z)

- Propose a candidate $z^* \sim q(z^*|z^t)$ where q_t is a proposal distribution
 - Same as importance and rejection samplings, yet the difference is the Markov property idea in the proposal distribution
- With an acceptance probability, α
 - Accept $\rightarrow z^{t+1} = z^*$
 - Reject $\rightarrow z^{t+1} = z^t$
- Metropolis-Hastings algorithm
 - Given the general algorithm of MCMC
 - Consider a ratio, $r(z^*|z^t) = \frac{q(z^t|z^*)P(z^*)}{q(z^*|z^t)P(z^t)}$, we want this to be 1
 - $q(z^t|z^*)P(z^*)r_{z^*\to z^t} = q(z^*|z^t)P(z^t)r_{z^t\to z^*}$
 - $r(z^*|z^t) < 1 \rightarrow q(z^t|z^*)P(z^*) < q(z^*|z^t)P(z^t)$
 - Increase $r_{z^* \to z^t} = 1$, degrease $r_{z^t \to z^*} = r(z^* | z^t)$
 - $r(z^*|z^t) > 1 \rightarrow q(z^t|z^*)P(z^*) > q(z^*|z^t)P(z^t)$
 - Decrease $r_{z^* \to z^t} = r(z^t | z^*)$, increase $r_{z^t \to z^*} = 1$
 - Acceptance probability $\alpha(z^*|z^t) = \min\{1, r(z^*|z^t)\}$

Reversible Markov chain $\pi_i T_{i,j} = \pi_j T_{j,i}$

 $m{q}$ is not well-designed to be the reversible MC, so we adjust by $m{r}$

Random Walk M-H Algorithm

- $T_{t,*}^{MH} = q(z^*|z^t)\alpha(z^*|z^t)$
 - Transition probability to satisfy the balance equation with P(z) as the stationary distribution

•
$$\alpha(z^*|z^t) = \min\{1, \frac{q(z^t|z^*)P(z^*)}{q(z^*|z^t)P(z^t)}\}$$

- Here, we already assumed, so far, the easy calculation of P(z)
- What we miss is the definition of $q(z^*|z^t)$, but this is a proposal that any probability distribution can be
 - Surely, there are better and worse proposal probability distributions.
 - Choosing $q(z^*|z^t)$ determines the type of M-H algorithm
- Random walk M-H algorithm

$$T_{t,*}^{MH} = q(z^*|z^t)\alpha(z^*|z^t)$$

•
$$z^* \sim N(z^t, \sigma^2)$$

•
$$q(z^*|z^t) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{(z^*-z^t)^2}{2\sigma^2})$$

Sample t

Random Walk Process

Overall Sampling

Sampling Result of Random Walk M-H Latent Mode **Selection Sampling**

Observed Variable **Sampling**

Target Mixture $T_{t,*}^{MH} = q(z^*|z^t)\alpha(z^*|z^t)$ Distribution $z^* \sim N(z^t, \sigma^2)$

