Distribuciones Estadísticas

Mario Calvarro Marines

Índice general

1.	Dist	tribuciones Discretas	1
	1.1.	Degenerada	1
	1.2.	Bernoulli	3
	1.3.	Binomial	4
	1.4.	Geométrica	5
	1.5.	Poisson	6
2.	Dist	tribuciones Continuas	7
	2.1.	Uniforme	7
	2.2.	Cauchy	9
	2.3.	Gamma	10
	2.4.	Exponencial	12
	2.5.	Beta	13
	2.6.	Normal	14
3.	Dist	tribuciones Normales	17
	3.1.	Chi Cuadrado	17
	3.2.	T-Student	19
	3.3.	F-Snedecor	20

DISTRIBUCIONES DISCRETAS

DEGENERADA

Distribución que vale 1 en un solo punto h.

Deg(h)

Función de masa

La función de masa de la distribución es:

$$p_X(x) = \begin{cases} 1, & x = h \\ 0, & x \neq h \end{cases}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < h \\ 1, & x \ge h \end{cases}$$

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = h$$

y un momento genérico:

$$E\left[X^k\right] = h^k$$

Respecto del centro

La **varianza** es:

$$V[X] = 0$$

Función característica

$$\varphi\left(t\right) = \exp\left\{ith\right\}$$

BERNOULLI

Distribución que mide la probabilidad de que un experimento acabe en "éxito", con posibilidad p, o "fracaso".

Be(p)

Función de masa

La función de masa de la distribución es:

$$p_X(x) = p^x (1-p)^{1-x}, x \in \{0, 1\}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < 0 \\ 1 - p, & 0 \le x < 1 \\ 1, & x \le 1 \end{cases}$$

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = p$$

y un momento genérico:

$$E\left[X^k\right] = p$$

Respecto del centro

La **varianza** es:

$$V\left[X\right] = p\left(1 - p\right)$$

Función característica

$$\varphi\left(t\right) = (1 - p) + p \cdot \exp\left\{it\right\}$$

BINOMIAL

Distribución que mide la probabilidad de que x experimentos, con posibilidad p, en n intentos, sean "éxitos".

B(n,p)

Función de masa

La función de masa de la distribución es:

$$p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}, \ x \in \{0, \dots, n\}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \sum_{i=1}^{x} \binom{n}{i} p^i (1-p)^{n-i}$$

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = np$$

Respecto del centro

La **varianza** es:

$$V[X] = np(1-p)$$

Función característica

$$\varphi\left(t\right)=\left(\left(1-p\right)+p\exp\left\{it\right\}\right)^{n}$$

GEOMÉTRICA

Distribución que mide la probabilidad de que en x experimentos, con posibilidad p, haya algún "éxito".

G(p)

Función de masa

La función de masa de la distribución es:

$$p_X(x) = p(1-p)^{x-1}, x \in \mathbb{N}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < 1\\ 1 - (1 - p), & x \ge 1 \end{cases}$$

Momentos

Respecto del origen

La **esperanza** es:

$$E\left[X\right] = \frac{1}{p}$$

Respecto del centro

La **varianza** es:

$$V\left[X\right] = \frac{1-p}{p^2}$$

Función característica

$$\varphi\left(t\right) = \frac{pe^{it}}{1 - \left(1 - p\right)e^{it}}$$

POISSON

Distribución que mide la probabilidad de que ocurran x eventos, que tienen un "ratio" λ , en un determinado intervalo de tiempo.

 $P(\lambda)$

Función de masa

La función de masa de la distribución es:

$$p_X(x) = \frac{\lambda^x e^{-\lambda}}{x!}, \ x \in \mathbb{N}_0$$

Función de distribución

La función de distribución es:

$$F_X(x) = \exp\{-\lambda\} \sum_{j=0}^{\lfloor x \rfloor} \frac{\lambda^j}{j!}$$

Poco importante.

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = \lambda$$

Respecto del centro

La varianza es:

$$V[X] = \lambda$$

Función característica

La función característica de la distribución es:

$$\varphi(t) = \exp\left\{\lambda \left(e^{it} - 1\right)\right\}$$

Otras características de interés

■ Si tenemos $X_i \sim P(\lambda_i)$ para $i \in \{1, ..., n\}$. Entonces:

$$\sum_{i=1}^{n} X_i \sim P\left(\sum_{i=1}^{n} \lambda_i\right)$$

• Si tenemos una binomial, con un número de "éxitos" esperados que se mantiene más o menos constante, y hacemos tender n, número de casos, a infinito, tenemos como resultado una Poisson con $\lambda = np$.

DISTRIBUCIONES CONTINUAS

UNIFORME

Distribución que mide la probabilidad de un suceso que está en un punto de un intervalo de forma arbitraria con las mismas posibilidades.

Función de densidad

La función de densidad de la distribución es:

$$f_X\left(x\right) = \frac{1}{b-a} I_{(a,b)}\left(x\right)$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & b < x \end{cases}$$

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = \frac{1}{2} (b+a)$$

Respecto del centro

La **varianza** es:

$$V\left[X\right] = \frac{1}{12} \left(b - a\right)^2$$

Función característica

$$\varphi\left(t\right) = \begin{cases} \frac{e^{tb} - e^{ta}}{t(b-a)} & t \neq 0\\ 1 & t = 0 \end{cases}$$

CAUCHY

Parámetros: θ localización y σ escala

$$C(\theta, \sigma)$$

Función de densidad

La función de densidad de la distribución es:

$$f_X(x) = \frac{1}{\pi\sigma\left[1 + \left(\frac{x-\theta}{\sigma}\right)^2\right]}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \frac{1}{\pi} \arctan\left(\frac{x-\theta}{\sigma}\right) + \frac{1}{2}$$

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = Indefinido.$$

Respecto del centro

La **varianza** es:

$$V[X] = Indefinido.$$

Función característica

$$\varphi(t) = \exp\{\theta it - \sigma|t|\}$$

GAMMA

Distribución que mide la probabilidad de que en un tiempo a ocurran p eventos. (Puede que el tiempo sea $\frac{1}{a}$)

$$\gamma(p,a)$$

Función de densidad

La función de densidad de la distribución es:

$$f_X(x) = \frac{a^p}{\Gamma(p)} x^{p-1} e^{-ax} \cdot I_{(0,+\infty)}(x)$$

Función de distribución

La función de distribución es:

$$F_X(x) = \frac{1}{\Gamma(p)} \gamma(p, ax)$$

(Poco importante)

Momentos

Respecto del origen

La **esperanza** es:

$$E\left[X\right] = \frac{p}{a}$$

Respecto del centro

La varianza es:

$$V[X] = \frac{p}{a^2}$$

Función característica

La función característica de la distribución es:

$$\varphi\left(t\right) = \left(1 - \frac{it}{a}\right)^{-p}$$

Otras características de interés

■ Si tenemos $X_i \sim \gamma(p_i, a)$ para $i \in \{1, ..., n\}$. Entonces:

$$\sum_{i=1}^{n} X_i \sim \gamma \left(\sum_{i=1}^{n} p_i, a \right)$$

$$\blacksquare$$
 Si $X\sim\gamma\left(p,a\right)\Rightarrow$

$$cX \sim \gamma\left(p, \frac{a}{c}\right), \ c \in \mathbb{R}$$

$$\quad \quad \gamma \left(1,a\right) \equiv \exp \left(a\right)$$

■ Tenemos que si
$$a > 0$$
:

$$\int_{\mathbb{R}^+} t^{p-1} e^{-at} dt = \frac{\Gamma(p)}{a^p}$$

EXPONENCIAL

Distribución que mide la probabilidad que una cantidad x de tiempo haya pasado entre dos eventos de una distribución Poisson λ .

 $\exp(\lambda)$

Función de densidad

La función de densidad de la distribución es:

$$f_X(x) = \lambda e^{-\lambda x} \cdot I_{(0,+\infty)}(x)$$

Función de distribución

La función de distribución es:

$$F_X(x) = 1 - e^{-\lambda x} \cdot I_{(0,+\infty)}(x)$$

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = \lambda^{-1}$$

y un momento genérico:

$$E\left[X^k\right] = \frac{k!}{\lambda^k}$$

Respecto del centro

La **varianza** es:

$$V\left[X\right] = \lambda^{-2}$$

Función característica

La función característica de la distribución es:

$$\varphi\left(t\right) = \frac{\lambda}{\lambda - it}$$

Otras características de interés

- Si tenemos $X_i \sim \exp(\lambda)$ para $i \in \{1, ..., n\}$. Entonces:

$$\sum_{i=1}^{n} X_i \sim \gamma\left(n, \lambda\right)$$

BETA

Distribución que abreviamos como:

$$\beta(\alpha,\beta)$$

Función de densidad

La función de densidad de la distribución es:

$$f_X(x) = \frac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{B(\alpha, \beta)} \cdot I_{(0,1)}(x)$$

donde $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$.

Función de distribución

La función de distribución es:

$$F_X(x) = I_x(\alpha, \beta)$$

que es la regularización incompleta de la función beta.

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = \frac{\alpha}{\alpha + \beta}$$

Respecto del centro

La **varianza** es:

$$V[X] = \frac{\alpha\beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$$

Otras características de interés

■ La definición de la función beta es:

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$

NORMAL

Distribución de media μ y desviación típica σ :

$$N(\mu, \sigma)$$

Función de densidad

La función de densidad de la distribución es:

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x - \mu}{\sigma\sqrt{2}}\right) \right]$$

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = \mu$$

Respecto del centro

La **varianza** es:

$$V\left[X\right] =\sigma^{2}$$

Función característica

La función característica de la distribución es:

$$\varphi\left(t\right) = \exp\left\{it\mu - \frac{\sigma^{2}t^{2}}{2}\right\}$$

Otras características de interés

- lacktriangle Es simétrica respecto de $x=\mu.$
- Si tenemos $X \sim N(\mu, \sigma)$ e $Y = aX + b \Rightarrow$

$$Y \sim N\left(a\mu + b, |a|\sigma\right)$$

■ Si tenemos $X_i \sim N(\mu_i, \sigma_i)$ para $i \in \{1, \dots, n\}$. Entonces:

$$\sum_{i=1}^{n} X_i \sim N\left(\sum_{i=1}^{n} \mu_i, \sqrt{\sum_{i=1}^{n} \sigma_i^2}\right)$$

■ Tenemos que:

$$\int_{-\infty}^{\infty} \exp\left\{-\frac{1}{2V}\theta^2 + \frac{E}{V}\theta\right\} = \sqrt{2\pi}\sqrt{V}\exp\left\{\frac{1}{2}\cdot\frac{E^2}{V}\right\}$$

DISTRIBUCIONES NORMALES

CHI CUADRADO

Sean $X_i \sim N(0,1)$ con $i \in \{1,\ldots,n\}$ definimos entonces:

$$\chi_n^2 \sim \sum_{i=1}^n X_i$$

como distribución chi cuadrado de Pearson con n grados de libertad.

Función de masa

La función de densidad de la distribución es:

$$f_X(x) = \frac{1}{2^{n/2}\Gamma(\frac{n}{2})} \exp\left\{-\frac{x}{2}\right\} x^{\frac{n}{2}-1}, \ x > 0$$

Función de distribución

La función de distribución es:

$$F_X(x) = \frac{1}{\Gamma(n/2)} \gamma\left(\frac{n}{2}, \frac{x}{2}\right)$$

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = n$$

Respecto del centro

La **varianza** es:

$$V[X] = 2n$$

Función característica

La función característica de la distribución es:

$$\varphi\left(t\right) = \left(1 - 2it\right)^{-n/2}$$

Teorema de Fisher-Cochran

Sea $X \sim N\left(\mu,\sigma\right)$ y tomemos una m. a. s. (n) de esta variable. Entonces:

- 1. b_2 y \overline{X} son independientes.
- 2. Sabemos que:

$$\overline{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

3. Tenemos que: $\frac{nb_2}{\sigma^2} \sim \chi_{n-1}^2$ ó,

$$\boxed{\frac{(n-1)\,S^2}{\sigma^2} \sim \chi_{n-1}^2}$$

Otras características de interés

 \blacksquare Si tenemos $Y_1 \sim \chi^2_{n_1}$ y $Y_2 \sim \chi^2_{n_2}.$ Entonces:

$$Y_1 + Y_2 \sim \chi^2_{n_1 + n_2}$$

■ Si tenemos $X \sim \chi_n^2$. Entonces:

$$X \sim \gamma\left(\frac{n}{2},\frac{1}{2}\right)$$

 \blacksquare Si tenemos $X \sim \chi^2_n$ y tomamos una m. a. s. (k). Entonces:

$$\overline{X} \sim \gamma \left(nk, \frac{k}{2}\right)$$

T-STUDENT

Sean $Z \sim N\left(0,1\right)$ e $Y \sim \chi_{n}^{2}$ definimos entonces:

$$t_{n-1} \sim \frac{Z}{\sqrt{Y_{n}}}$$

como distribución \mathbf{t} -Student con n grados de libertad.

Función de densidad

La función de densidad de la distribución es:

$$f_T(x) = \frac{1}{\sqrt{n\pi}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}$$

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = 0$$

Respecto del centro

La $\mathbf{varianza}$ es:

$$V\left[X\right] = \frac{n}{n-2}$$

Teorema de Student

Sea $X \sim N\left(\mu,\sigma\right)$ y tomamos una m. a. s. (n) de la variable aleatoria. Entonces:

$$\sqrt{n} \frac{\overline{X} - \mu}{S} \sim t_{n-1}$$

o lo que es lo mismo: $\sqrt{n-1} \frac{\overline{X}-\mu}{\sqrt{b_2}} \sim t_{n-1}$.

F-SNEDECOR

Sean $Y_n \sim \chi_n^2$ y $Y_m \sim \chi_m^2$ definimos entonces:

$$F_{n,m} \sim \frac{Y_{n/n}}{Y_{m/m}}$$

Momentos

Respecto del origen

La **esperanza** es:

$$E\left[F\right] = \frac{m}{m-2}$$

Respecto del centro

La **varianza** es:

$$V\left[X\right] = \frac{2m\left(n+m-2\right)}{n\left(m-2\right)^2\left(m-4\right)}$$

Teorema de Snedecor

Sean $X \sim N(\mu_1, \sigma_1)$ y $Y \sim N(\mu_2, \sigma_2)$ y tomamos m. a. s. (n) y m. a. s. (m) de cada una, respectivamente. Entonces:

$$\boxed{\frac{S_1^2}{\sigma_1^2} \cdot \frac{\sigma_2^2}{S_2^2} \sim F_{n-1,m-1}}$$

Otras características de interés

■ Sea $F \sim F_{n,m}$, entonces:

$$1/F \sim F_{m,n}$$

■ Tenemos que: $t_n \equiv F_{1,n}$.