

SRM Institute of Science and Technology Ramapuram Campus

Department of Mathematics

Year / Sem: I / II

Branch: Common to ALL Branches of B.Tech. except B.Tech. (Business Systems)

UNIT II - VECTOR CALCULUS

Part - A

1.	If $\varphi(x, y, z) = xyz$, then $\nabla \varphi =$ (A) $yz \vec{i} + zx \vec{j} + xy \vec{k}$ (B) $xy \vec{i} + yz$ (C) $xz \vec{i} + zy \vec{j} + xy \vec{k}$ (D) $x \vec{i} + y \vec{j}$	=	ANS A	(CLO-2, Apply)
2.	Curl $(grad \varphi) =$ (A) $\overrightarrow{0}$ (C) 2	(B) 1 (D) – 1	ANS A	(CLO-2, Remember)
3.	The maximum directional derivative of $\varphi(x, y, z) = x^2 + y^2 + z^2$ at $(1, 1, 1)$ is (A) 0 (C) 2	(B) 3 (D) 2√3	ANS D	(CLO-2, Apply)
4.	If \vec{r} is the position vector of the point (x, y) origin, then $\nabla \cdot \vec{r} =$ (A) 0 (C) 2	(B) 1 (D) 3	ANS D	(CLO-2, Apply)
5.	If \vec{u} and \vec{v} are irrotational, then $\vec{u} \times \vec{v}$ is (A) irrotational (C) zero vector	(B) solenoidal (D) constant	ANS B	(CLO-2, Remember)
6.	The condition for \overrightarrow{F} to be conservative is (A) $\nabla \bullet \overrightarrow{F} = 0$ (C) $\nabla \times \overrightarrow{F} = \overrightarrow{0}$	(B) 0 (D) 1	ANS C	(CLO-2, Remember)

7.	The relation between the surface integral and the volume integral is given by		ANS	(CLO-2,
,,	(A) Green's theorem (C) Gauss Divergence theorem	(B) Stoke's theorem(D) Cauchy's theorem	C	Remember)
	By Stoke's theorem, $\int_C \vec{F} \cdot d\vec{r} =$			
8.	(A) $\iint_{S} \nabla \times \vec{F} dS$	(B) $\iint_{S} \nabla \cdot \vec{F} dS$	ANS D	(CLO-2,
	(C) $\iint_{S} (\nabla \cdot \vec{F}) \hat{n} dS$	(D) $\iint_{S} (\nabla \times \vec{F}) \cdot \hat{n} dS$		
	The maximum value of the directional derivative is			
9.	(A) $ \nabla \varphi $ (C) grad φ	(B) curl φ (D) $ \nabla \times \varphi $	ANS A	(CLO-2, Remember
	If \vec{F} is irrotational, then $Curl \vec{F} =$			
10.	(A) 1	(B) 2	ANS D	(CLO-2, Apply)
	(C) 3	(D) $\vec{0}$		
	If the divergence of the vector is zero, then the vector is said to be			
11.	(A) irrotational vector (C) zero vector	(B) constant vector(D) solenoidal vector	ANS D	(CLO-2, Remember
	The unit normal vector to the surface $x^2 y + 2 x z = 4$ at the			
10	point $(2, -2, 3)$ is		ANS	(CLO-2,
12.	(A) $-\frac{1}{3}\vec{i} + \frac{2}{3}\vec{j} + \frac{2}{3}\vec{k}$ (C) $-\frac{1}{3}\vec{i} - \frac{2}{3}\vec{j} + \frac{2}{3}\vec{k}$	(B) $\frac{1}{3}\vec{i} + \frac{2}{3}\vec{j} + \frac{2}{3}\vec{k}$	A	Apply)
	(C) $-\frac{1}{3}\vec{i} - \frac{2}{3}\vec{j} + \frac{2}{3}\vec{k}$	(D) $\frac{1}{3}\vec{i} - \frac{2}{3}\vec{j} - \frac{2}{3}\vec{k}$		
	If the vector $\vec{F} = (x + 3y) \vec{i} + (y - 2z) \vec{j} + (x + az) \vec{k}$ is			
13.	solenoidal, then $a =$		ANS	(CLO-2,
	(A) 2	(B) 0	C	Apply)
	(C) -2 The work done by the concernative	(D) -1		
	The work done by the conservative force when it moves a particle around a closed curve is			(CLO 2
14.	$(A) \nabla \bullet \vec{F} = 0$	(D) 0	ANS	(CLO-2,
	$(A) \lor \bullet \varGamma = 0$	(B) 0	\mathbf{C}	

	T	T	T
15.	The value of $\int_C x dy - y dx$ around the circle $x^2 + (A) \pi$ (B) 2π (C) 3π (D) 0	ANS	(CLO-2, Apply)
16.	By Green's theorem, the area bounded by a simple C (A) $\int_C x dy - y dx$ (B) $\int_C x dy + y dx$ (C) $\int_C y dx - x dy$ (D) $\frac{1}{2} \left(\int_C x dy \right)$	y dx ANS	(CLO-2, Apply)
17.		otational ANS B	(CLO-2, Remember)
18.	The unit normal vector to the surface $x^2 + y^2 - z^2$ point $(1, 1, 1)$ is $(A) \frac{\vec{t} + \vec{j} + \vec{k}}{\sqrt{3}} \qquad (B) \frac{\vec{t} + \vec{k}}{\sqrt{3}}$ $(C) \frac{\vec{t} - \vec{j} - \vec{k}}{\sqrt{3}} \qquad (D) \frac{\vec{t} + \vec{k}}{\sqrt{3}}$	$\frac{\vec{j} - \vec{k}}{\sqrt{3}}$ ANS	(CLO-2, Apply)
19.	If \vec{r} is the position vector of the point (x, y, z) with origin, then $div \vec{r} =$ (A) 0 (B) 1 (C) 2 (D) 3	respect to the ANS D	(CLO-2, Remember)
20.	If φ is a scalar function, then $\nabla \times \nabla \varphi =$ (A) $\overrightarrow{0}$ (B) sole (C) irrotational (D) con	Γ	(CLO-2, Remember)
21.	The value of line integral $\int_C \vec{F} \cdot d\vec{r}$ where C is the laxy plane from $(1, 1)$ to $(2, 2)$ is (A) 0 (B) 1 (C) 2 (D) 3	Sine $y = x$ in ANS \mathbf{D}	(CLO-2, Apply)
22.	Angle between two level surfaces $\varphi_1 = C$ and $\varphi_2 = C$ (A) $\sin \theta = \frac{\nabla \varphi_1 \bullet \nabla \varphi_2}{ \nabla \varphi_1 \nabla \varphi_2 }$ (B) $\cos \theta = \frac{\nabla}{ \nabla \varphi_1 }$ (C) $\tan \theta = \frac{\nabla \varphi_1 \bullet \nabla \varphi_2}{ \nabla \varphi_1 \nabla \varphi_2 }$ (D) $\tan \theta = \frac{\nabla}{ \nabla \varphi_1 }$	$\begin{array}{c} (\varphi_1 \bullet \nabla \varphi_2) \\ (\varphi_1 \nabla \varphi_2) \end{array} \qquad \text{ANS}$	(CLO-2, Apply)

	The condition for a vector \vec{r} to be solenoidal is		
23.	(A) $div \ \vec{r} = 0$ (B) $curl \ \vec{r} = 0$ (C) $div \ \vec{r} \neq 0$ (D) $curl \ \vec{r} \neq 0$	ANS A	(CLO-2, Remember)
24.	The unit normal vector to the surface $x^2 + 2y^2 + z^2 = 7$ at the point $(1, -1, 2)$ is $(A) \frac{\vec{t} - 2\vec{j} - 2\vec{k}}{3}$ $(B) \frac{\vec{t} - 2\vec{j} + 2\vec{k}}{3}$ $(C) \frac{\vec{t} + 2\vec{j} + 2\vec{k}}{3}$ $(D) \frac{\vec{t} - 2\vec{j} + 2\vec{k}}{3}$	ANS D	(CLO-2, Apply)
25.	If the integral $\int_A^B \vec{F} \cdot d\vec{r}$ depends only on the end points but not on the path C , then \vec{F} is (A) neither solenoidal nor irrotational (B) solenoidal (C) irrotational (D) conservative	ANS D	(CLO-2, Remember)
26.	According to Gauss divergence theorem, $\int_{C} (P dx + Q dy) =$ (A) $\iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$ (B) $\iint_{R} \left(\frac{\partial Q}{\partial y} - \frac{\partial P}{\partial x} \right) dx dy$ (C) $\iint_{R} \left(\frac{\partial P}{\partial x} - \frac{\partial Q}{\partial y} \right) dx dy$ (D) $\iint_{R} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) dx dy$	ANS A	(CLO-2, Apply)
27.	By Green's theorem, $\frac{1}{2} \left(\int_C x dy - y dx \right) =$ (A) Area of a closed curve (B) $2 \times$ Area of a closed curve (C) Volume of a closed curve (D) $3 \times$ Volume of a closed curve	ANS A	(CLO-2, Apply)
28.	The value of $\iint_S \vec{r} \cdot \vec{n} dS$ where S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ is (A) $2 \pi a^3$ (B) $3 \pi a^3$ (C) $4 \pi a^3$ (D) $5 \pi a^3$	ANS C	(CLO-2, Apply)
29.	The maximum directional derivative of $\varphi(x, y, z) = xyz^2$ at $(1, 0, 3)$ is (A) 9 (B) 1 (C) -9 (D) 0	ANS A	(CLO-2, Apply)
30.	The relation between line integral and double integral is given by (A) Gauss divergence theorem (C) Green's theorem (D) Convolution theorem	ANS C	(CLO-2, Remember)

	If $\varphi(x, y, z) = x^2 + y^2 + z^2$, then $\nabla \varphi$ at $(1, 1, 1) =$			
31.		(B) $2\vec{i} - 2\vec{j} + \vec{k}$ (D) $2\vec{i} - 2\vec{j} - 2\vec{k}$	ANS A	(CLO-2, Apply)
32.	If $\varphi(x, y, z) = xyz$, then $\nabla \varphi$ at (1, 1) (A) $\vec{i} + \vec{j} + \vec{k}$ (C) $2\vec{i} - 2\vec{j} + \vec{k}$	(B) $2\vec{i} + 2\vec{j} + 2\vec{k}$ (D) $2\vec{i} - 2\vec{j} - 2\vec{k}$	ANS A	(CLO-2, Apply)
33.	The unit normal vector to the surface point $(-1, 1, 1)$ is (A) $-2\vec{j}$ (C) $3\vec{i}$	$\varphi = xy - yz - zx$ at the (B) $-\vec{j}$ (D) $4\vec{i}$	ANS B	(CLO-2, Apply)
34.	$. \nabla r^n =$ $(A) n \vec{r}$ $(C) n r^{n-2} \vec{r}$	(B) $n (n-1) \vec{r}$ (D) $n r^{n+2} \vec{r}$	ANS C	(CLO-2, Apply)
35.	The directional derivative of $\varphi = 2x_1$ direction of $\vec{i} + 2\vec{j} + 2\vec{k}$ is $(A) \frac{14}{3}$ $(C) \frac{4}{3}$	$y + z^2$ at $(1, -1, 3)$ in the $(B) - \frac{14}{3}$ $(D) \frac{3}{14}$	ANS A	(CLO-2, Apply)
36.	If $\vec{F} = (3x - 2y + z)\vec{i} + (4x + ay)$ solenoidal, then $a =$ (A) 3 (C) -3	(B) 0 $(D) -1$	ANS C	(CLO-2, Apply)

* * * * *