MACHINE LEARNING IN PRACTICE WITH SPARK MLlib: AN INTELLIGENT DATA ANALYZER.

STRATA+HADOOP WORLD

Eiti Kimura / Flávio Clésio @Movile Brazil - Dec 2016

ABOUT US

Flávio Clésio

- Core Machine Learning at Movile
- MSc. in Production Engineering (Machine Learning in Credit Derivatives CDO/CDS)
- Specialist in Database Engineering and Business Intelligence
- Blogger at *Mineração de Dados* (Data Mining) http://mineracaodedados.wordpress.com

ABOUT US

Eiti Kimura

- Software Architect and TI Coordinator at Movile
- Msc. in Electrical Engineering
- Apache Cassandra MVP (2014/2015 e 2015/2016)
- Apache Cassandra Contributor (2015)
- Cassandra Summit Speaker (2014 e 2015)
- Cassandra Summit Reviewer (2016)

WE MAKE LIFE BETTER THROUGH OUR APPS

movile

Movile is the company behind of several apps that makes the life easier

THE BEST CONTENT FOR KIDS

PlayKids is the #3 Top Grossing worldwide App for Children's. Kid Safe Toddler App.

MESSAGING AND BILLING SERVICES FOR MOBILE CARRIERS

Huge case of SMS services for corporative and mobile content distribution.

AGENDA

- The Movile's Platform Case
- Linear Regression: a bit of theory
- Practical Machine Learning Model Training
- Presenting Watcher-ai
- Results and Conclusions

MOVILE'S SUBSCRIPTION AND BILLING PLATFORM IN ITS SIMPLEST FORM

- A distributed platform
- User's subscription management
- MISSION CRITICAL platform: can not stop under any circumstance

MAIN PROBLEM: MONITORING

How can we check if platform is fully functional based on data analysis only?

Tip: what if we ask help to an intelligent system?

HOW DATA LOOKS LIKE?

- 120 Millions + of billing requests attempt a day
- 4 main mobile carriers drive the operational work

carrier weight	date time	avg resp. time	succ. charges	no credit	general errors	total attempts
1	2016-10-31 0-8 pm	1014 ms	99.107	24.232.849	3.239.499	27.571.455
1	2016-11-01 0-8 pm	1204 ms	106.232	23.989.076	4.024.136	28.119.444
1	2016-11-02 0-8 pm	1186 ms	114.013	24.513.752	3.217.619	27.845.384
1	2016-11-03 0-8 pm	1117 ms	118.110	23.714.608	3.205.513	27.038.231
1	2016-11-04 0-8 pm	1138 ms	124.246	22.553.776	5.135.307	27.813.329
1	2016-11-05 0-8 pm	942 ms	102.674	23.556.432	4.072.168	27.731.274

DATA AND ALGORITHM MODELING

Sample of data (predicting the number of success)

SUPERVISED LEARNING

Linear Regression

SPARK MLLIB

- MLlib is Apache Spark's scalable machine learning library.
- MLlib contains many algorithms and utilities, including Classification, Regression, Clustering, Recommendation, Pipelines and so on...

TESTED ALGORITHMS USING SPARK MLLIB

- Linear Model with Stochastic Gradient (SDG)
- Lasso with SGD Model (L1 Regularization)
- Ridge Regression with SGD Model (L2 Regularization)

REGRESSION THEORY: A BIT OF THEORY

 Linear regression it's a statistical method that investigates the relationship and interdependency between variables to get a numerical result.

Regression Algorithms

A LITTLE BIT OF MATH

$$y = \alpha + (\beta 1 * x1) + (\beta 2 * x2) + (\beta n * xn) + \epsilon$$

as:

y = Value to be predicted (dependent variable)

 α = Intercept (Where the slope gets the Y axis and the value of X is 0) - Endogenous Factors

 β = Regression Coeficients

x1...xn = Values of independent variables (e.g. columns of a database)

 ε = Random noise, non explicit errors - Exogenous Factors

LET'S TALK ABOUT REGULARIZATION

- To avoid the overfitting problem Spark MLlib embed some regularization methods like LASSO (L1) and Ridge (L2).
- LASSO (L1) regularization have as feature a penalty adds the penalty equivalent to the absolute value of the magnitude of the coefficients.
- Ridge(L2) regularization method the penalty is equivalent to the magnitude of the coefficients raised to the square.

GRADIENT DESCENT

Schematic of gradient descent.

STOCHASTIC GRADIENT DESCENT

- Example: Stochastic Gradient Descent (<u>Tailoring a Suit, from Quora</u>)
- 1) Tailor makes initial estimate. (See the parameters of the model)
- 2) A random guy (or a subset of the full group) tries the **suit** and gives feedback.

(take a sample of dataset)

- 3) Make a small adjustment according to feedback. (change to reduce the error of the model)
- 4) While you still have time for this, go to 2. (iterate and repeat the process)

TESTED ALGORITHMS

Decision Tree with Regression Properties (Not CART)

REGRESSION TREE

MODELING LIFECYCLE STEP-BY-STEP

Dataset

SPARK NOTEBOOK

http://spark-notebook.io/

LOADING DATA

scala code snippet

```
// reading dataset
val rdd = sc.objectFile[List[Double]](ROOT_DIR + "/rdd-processed")
```

carrier_weight	hour	week	resp_time	# success	no_credit	# errors	# attempts
List(4.0,	17.0,	3.0,	1709.4,	39511.8,	2386316.3,	291279.6,	2717107.8)
List(2.0,	8.0,	5.0,	749.9,	51910.5,	1.27E7,	1951005.1,	1.47E7)
List(4.0,	11.0,	5.0,	1690.0,	18519.0,	562289.5,	173717.3,	754525.9)
List(2.0,	22.0,	1.0,	911.4,	257598.2,	4.05E7,	1.3E7,	5.4E7)
List(4.0,	7.0,	5.0,	1386.3,	1775.3,	391668.5,	75062.6,	468506.5)
List(1.0,	23.0,	4.0,	561.8,	195032.6,	2.8E7,	5279717.1,	3.41E7)

MODELING LIFECYCLE

FEATURE EXTRACTION

scala code snippet

```
def buildLabelValue(list: List[Double]) : Double = {
 // index = 4 is the number of success, that is what we want to predict
 return if (list(4) != 0.0) Math.log(list(4))else 0.0
def buildFeatures(list: List[Double]) : List[Double] = {
  // remove the index 4, which means the number of success
   return list.patch(4, Nil, 1)
// building the LabelPoint, using success as Label
val labelSet = rdd.map{1 => val label = buildLabelValue(1)
                            val features = buildFeatures(1)
                            LabeledPoint(label, Vectors.dense(features.toArray))}
```

labelSet: RDD[org.apache.spark.mllib.regression.LabeledPoint]

STRATA+HADOOP WORLD

MODELING LIFECYCLE

SPLITTING DATASET

scala code snippet

```
//Split data into training and test
val splits = labelSet.randomSplit(Array(0.70, 0.30), seed = 13L)
val training = splits(0)
val test = splits(1)
```

The main idea is to use 70% of data to train the model and 30% to evaluate the model performance

MODELING LIFECYCLE

standardizes

filtering

AUXILIARY FUNCTIONS

scala code snippet

Linear Regression SGD

Ridge Regression SGD

Lasso Regression SGD

Decision Tree w/ Regression

TRAINING: LINEAR REGRESSION WITH SGD

scala code snippe

```
def buildSGDModelMap(rdd:Map[Double, RDD[LabeledPoint]]) : Map[Double,
LinearRegressionModel] = {
 val carrierWeight = List(1.0, 2.0, 4.0, 5.0)
 return carrierWeight.map{idx =>
              // Building the model
              val numIterations = 100
              var regression = new LinearRegressionWithSGD().setIntercept(true)
              regression.optimizer.setStepSize(0.1)
              regression.optimizer.setNumIterations(numIterations)
              // get dataset for a specific carrier weight
              val dataset = rdd.get(idx).orNull;
              (idx, regression.run(dataset)) //<< training starts here
         }.toMap
val mapTraining = standardizeTrainingSet(training)
val mapSGDModel = buildSGDModelMap(mapTraining) //map with a model for each carrier
```

TRAINING: LASSO/RIDGE REGRESSION

scala code snippet

```
// instantiating the algorithm and setting the params
val regression = new LassoWithSGD()
regression.optimizer.setStepSize(0.1)
regression.optimizer.setNumIterations(100)
// training model
val model:LassoModel = regression.run(dataset)
// instantiating the algorithm and setting the params
val regression = new RidgeRegressionWithSGD()
regression.optimizer.setStepSize(0.1)
regression.optimizer.setNumIterations(100)
val model:RidgeModel = regression.run(dataset)
```

STRATA+HADOOP WORLD

TRAINING: DECISION TREE WITH REGRESSION

scala code snippe

MODELING LIFECYCLE

SCORE: AUXILIARY FUNCTIONS

scala code snippet

```
// predict values using the trained model
val labelsAndPredictions = test.map { point =>
  val carrier = point.features.apply(0) // 1st param is the carrier weight
  val model = getModelForCarrier(carrier)
  val prediction = model.predict(point.features) //<< prediction happens here
  (point.label, prediction)
}</pre>
```

```
Expected Value Predicted Value (12.196509845132933, 9.97275651498185), (11.956245114516188, 11.632408901614912), (11.840353189256883, 10.02762098460309), (12.130296102598983, 9.320716165463033), (11.682180075417563, 11.503286266374285), (12.094170705574166, 13.010471821918166), (11.832490497556401, 6.910122430921404) ...
```

MODELING LIFECYCLE

MODEL EVALUATION CRITERIA

- OMTM (One Metric That Matters)
- Root Mean Squared Error (RMSE)

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

TIME TO EVALUATE THE RESULTS

Machine Learning Tested Model	Accuracy	RMSE
Linear Model With SGD	44%	1.64
Lasso with SGD Model	43%	1.65
Ridge Regression with SGD Model	43%	1.66
Decision Tree Model	98%	0.20

WATCHER-AI INTRODUCTION

[watcher-ai] [warn] abnormal number ... ×

of errors abnormal for carrier: 4 , current value: 24448.000000000015, predicted value: 12005.9999999999995, prediction error: 103.63151757454628% , features: [4.0, 9.0, 4.0]. The number of errors are higher than

× Dispensar

models

MOVING TO results

PRELIMINARY RESULTS

- Was designed to be Last barrier of defense system
- Helped to catch troubles in the last 9 months
- Brought light in several problems of monitoring at Movile
- Catch any discrepancy in hourly fashion

IT'S JUST THE beginning

It isn't the end.

IT IS JUST A WARM UP

- Automatic refeed and training using collected data. Analyse more data to predict possible errors with carrier
- Notify more people and specific teams (more complex problems)
- Refactory to be more generic, so other teams can add their own algorithm
- Why not interact with Watcher to guide the analysis?
- Don't limit your mind, there is a lot to keep improving...

CODE REPOSITORY

github.com/fclesio/watcher-ai-samples

THANKS FOR WATCHING

STRATA+HADOOP WORLD

@eitikimura

@flavioclesio

eiti-kimura-movile

fclesio

eiti.kimura@movile.com

flavio.clesio@movile.com