City Construction

The country of Hackerland has n cities connected by m uni-directional roads. The cities are numbered from 1 to n. Recently the government decided to build new cities in Hackerland.

Your task is to simulate q events. An event can have two types as described below:

- $1 \times d$: A new city n+1 is constructed in the Hackerland and it is connected to city x.
 - If d=0 the direction of the new road is from x to n+1
 - ullet If d=1 the direction of the new road is from n+1 to x

The value of n has to be incremented by 1 after this event as now there are n+1 cities.

• $2 \times y$: Print Yes if it's possible to move from city x to city y, print No otherwise.

The diagrams shows some example of how an event of type ${\bf 1}$ works:

Given the map of the city and the description of the event, can you simulate them?

Input Format

The first line of input contains two space-separated integers n (the number of cities) and m (the number of roads).

Next, m lines of input contain two space separated integers u and v denoting that there is a unidirectional road from city u to city v.

Next line contains an integer q denoting the number of events.

Next q lines of input contain q events one per line where each event is one of the possible two types.

Constraints

- $1 \le n, m \le 5 \times 10^4$
- $1 \le q \le 10^5$
- $1 \le u, v \le n$
- $d \in 0, 1$
- ullet The value of $oldsymbol{x}$, $oldsymbol{y}$ always correspond to an existing city in the Hackerland.
- \bullet Total number of cities in the Hackerland wont exceed $5\times10^4.$

Subtasks:

For 40% of the maximum score, the total number of cities does not exceed 5000.

Output Format

For each event of type ${f 2}$, print ${f Yes}$ if it possible to reach from city ${m x}$ to city ${m y}$, print ${f No}$ otherwise.

Sample Input 0

Sample Output 0

```
No
Yes
Yes
```

Explanation 0

The original graph:

The second event is $\frac{2}{3}$ $\frac{3}{5}$. That means we want to know if anyone can go from the city $\frac{3}{5}$ to city $\frac{5}{5}$. The answer is $\frac{8}{5}$.

The third event is $2\ 1\ 5$. That means we want to know if anyone can go from the city $1\$ to city $5\$. The answer is $1\$ to city $1\$ to city

The fourth event is 111. That means a new road is constructed from the city 6 to city 1.

The fifth event is $\frac{264}{6}$. That means we want to know if anyone can go from the city $\frac{6}{6}$ to city $\frac{4}{6}$. The answer is $\frac{4}{6}$.