Tuning Hyperparameters Using Cross Validation Scores

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Hyperparameter tuning in model validation

Model parameters vs. model hyperparameters

Hyperparameter tuning using Azure ML Studio

Hyperparameters

Model configuration properties that define a model, and remain constant during the training of the model

Hyperparameters

Can be thought of as part of model design

Model Inputs

Model Parameters

Model Hyperparameters

Model Inputs

Input data points, training dataset

Model Parameters

Model Hyperparameters

Model Inputs

Input data points, training dataset

Model Parameters

Structure of decision tree

Model Hyperparameters

Model Inputs

Input data points, training dataset

Model Parameters

Structure of decision tree

Model Hyperparameters

Depth of tree, minimum number of samples per node

Hyperparameter Tuning

Hyperparameter tuning involves finding the best design for a model

Training involves getting the model to learn from data

Evaluating Model Performance

Hyperparameter Tuning to Find Best Model

Train Model with Best Design

Evaluate Model

Decision Trees

Jockey or Basketball Player?

Jockeys

Tend to be light to meet horse carrying limits

Basketball Players

Tend to be tall, strong and heavy

Jockey or Basketball Player?

Intuitively know

- jockeys tend to be light...
- ...and not very tall
- basketball players tend to be tall
- ...and also quite heavy

Fit knowledge into rules

Each rule involves a threshold

Decision Tree

Order of decision variables matters

Rules and order found using ML

Decision Tree

"CART"

<u>Classification And</u> <u>Regression Tree</u>

Decision Tree

Weight > 150 lbs Basketball Height <=6' Basketball Jockey

Decision Trees for Classification

To solve

- Traverse tree to find right node
- Return most frequent label of all training data points in that node

Weight > 150 lbs Basketball Height >6' =6' Basketball Jockey

Advantages of Decision Trees

"White Box" ML ~ leverage experts
Non-parametric

- Little hyperparameter tuning
- Little data prep

Weight > 150 lbs Basketball Basketball Basketball Jockey

Drawbacks of Decision Trees

Prone to overfitting

- Common risk with non-parametric

Unstable

- Small changes in data cause big changes in model

Weight > 150 lbs Basketball Height >6' =6' Basketball Jockey

Random Forests

Extremely powerful technique

Example of ensemble learning

Individual trees should be as different as possible

Hyperparameters in Decision Trees

Splitting strategy Max depth Min samples split Min samples leaf Min weight fraction Max features

splitter: string, optional (default="best")

The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split.

max_depth : int or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.

Titlecase

min_samples_split : int, float, optional (default=2)

The minimum number of samples required to split an internal node:

- If int, then consider min samples split as the minimum number.
- If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the minimum number of samples for each split.

Changed in version 0.18: Added float values for fractions.

min_samples_leaf : int, float, optional (default=1)

The minimum number of samples required to be at a leaf node. A split point at any depth will only be considered if it leaves at least min_samples_leaf training samples in each of the left and right branches. This may have the effect of smoothing the model, especially in regression.

- If int, then consider min_samples_leaf as the minimum number.
- If float, then min_samples_leaf is a fraction and ceil(min_samples_leaf * n_samples)
 are the minimum number of samples for each node.

Changed in version 0.18: Added float values for fractions.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided.

max_features : int, float, string or None, optional (default=None)

The number of features to consider when looking for the best split:

- If int, then consider max features features at each split.
- If float, then max_features is a fraction and int(max_features * n_features) features are considered at each split.
- If "auto", then max features=sqrt(n features).
- If "sqrt", then max features=sqrt(n features).
- If "log2", then max features=log2(n features).
- If None, then max features=n features.

Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than max_features features.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.

max_leaf_nodes : int or None, optional (default=None)

Grow a tree with <code>max_leaf_nodes</code> in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes.

min_impurity_decrease : float, optional (default=0.)

A node will be split if this split induces a decrease of the impurity greater than or equal to this value.

The weighted impurity decrease equation is the following:

```
N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)
```

where N is the total number of samples, N_t is the number of samples at the current node, N_t is the number of samples in the left child, and N_t is the number of samples in the right child.

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight is passed.

New in version 0.19.

min_impurity_split : float, (default=1e-7)

Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf.

Deprecated since version 0.19: min_impurity_split has been deprecated in favor of min_impurity_decrease in 0.19. The default value of min_impurity_split will change from 1e-7 to 0 in 0.23 and it will be removed in 0.25. Use min_impurity_decrease instead.

Demo

Hyperparameter tuning using Azure ML Studio

Summary

Hyperparameter tuning in model validation

Model parameters vs. model hyperparameters

Hyperparameter tuning using Azure ML Studio

Related Courses

Summarizing Data and Deducing Probabilities

Communicating Data Insights