Combined Object Categorization and Segmentation with an Implicit Shape Model

Bastian Leibe
Ales Leonardis
Bernt Schiele

Slides/images sourced off:

http://crcv.ucf.edu/courses/CAP5415/Fall2012/Lecture-4-Harris.pdf
Leibe et al. Combined Object Categorization and Segmentation with an Implicit Shape Model
Leibe et al. Interleaved Object Categorization and Segmentation
http://www.cse.psu.edu/~rtc12/CSE598G/introMeanShift 6pp.pdf

Combined Object Categorization and Segmentation with an Implicit Shape Model

- Traditionally (back then), no object information used in segmentation.
- Segmentation done primarily on low level features in an unsupervised setting.
- Human vision object recognition is intertwined with segmentation.

Overview

• Goal – object categorization and segmentation in the wild.

• Steps:

- Training:
 - Learn a code-book of local appearance for each object class.
 - Learn implicit shape model for the object classes using the local code-books.
- Object Detection:
 - Extract test image patches and match them to code-book entries for each object.
 - Each "activated" code-book entry votes for the object and the object's center.
- Segmentation:
 - Per object segmentation masks + per-pixel confidence estimate for segmentation.

Overview

Input

Training

Training images

Segmentations

+ Perhaps

+ Pernaps object centers

Object Labels

Car

Testing

Novel Image (ignore bounding boxes)

Output

Object Hypotheses +
Per pixel
background /
foreground estimate

Local code-book creation — Interest Point Detection

- First, detect interest points using Harris detectors
 - Compute sample covariance matrix M for (2D) intensity gradient at each pixel.
 - Compute corner response (C = f(EigenVals(M))).
 - Interest points maxima of thresholded C.
 - Take 25X25 pixel patches.

Local code-book creation – Agglomerative Clustering

For a pair of patches (p,q): Normalized Grayscale correlation = $NGC(p,q) = \frac{\sum_i (p_i - \overline{p_i})(q_i - \overline{q_i})}{\sqrt{\sum_i (p_i - \overline{p_i})^2 \sum_i (q_i - \overline{q_i})^2}}$

NGC = 0.9

NGC = 0.4

Start with each patch as a separate cluster. Merge two clusters if they are similar. $\frac{similarity(C_1,C_2)}{|C_1| \times |C_2|} > t$ (Average of pair-wise NGCs of each pair in C1 X C2. t = 0.7 for their experiments)

Similarity(C1, C2) = 0.85 (C1 and C2 will be merged)

Similarity = 0.4

When no more clustering possible, average patches in each cluster to obtain representative patch for each cluster.

Local code-book creation: Input => Output

interest Point Patches

Per object class code-book

Implicit Shape Model creation from local code-book

- For all training images, match codebook entries to interest point image patches using the similarity measure.
- Activate all entries whose similarity is above threshold 't'.
- For each activated entry, store positions it was activated in wrt. object center.

={<x1, y1>, <x2, y2>, <x3, y3>, <x4, y4>}

Output: one Implicit model per object class (encoding spatial locations of code-book entries)

 $=\{< x1, y1>, < x7, y7>, ...\}$

Image Recognition at a glance

For a given image, find interest points and match against all code-book entries for all classes to find activated code-book entries. Note – each image patch can match multiple code-book entries, even across object code-books.

Generalized Hough Transform / patch voting

• Implicit Shape Model: = {<Object, x1, y1>,...}. This is the same info as:

Each matched code-book entry for each Harris detected image-patch makes votes for objects & their centers

Mean-shift Mode estimation for maxima in continuous voting space

- The object centers would concentrate at valid hypothesized object centers.
- Mean-shift mode estimation non-parametric way of finding mode(s) of the probability density function from discrete samples.

Probabilistic Interpretation of the voting scheme

- Given an image patch e, at location ℓ , it activates a set $\{I_i\}$ of code-book entries. The contribution of each entry will be weighted by $p(I_i \mid e, \ell)$.
- An activated entry casts its vote for its object o_n at multiple positions x.

$$p(o_n,x|\mathbf{e},\ell) = \sum_i p(o_n,x|\mathbf{e},I_i,\ell)p(I_i|\mathbf{e},\ell).$$
 Matching is location agnostic
$$p(o_n,x|\mathbf{e},\ell) = \sum_i p(o_n,x|I_i,\ell)p(I_i|\mathbf{e}).$$
 Matching is location agnostic
$$= \sum_i p(x|o_n,I_i,\ell)p(o_n|I_i,\ell)p(I_i|\mathbf{e}).$$
 Quality of patch match with code-book entry
$$score(o_n,x) = \sum_k \sum_{x_i \in W(x)} p(o_n,x_i|\mathbf{e}_k,\ell_k).$$
 Confidence code-book entry is a foreground patch

• Mean-shift search corresponds to a Parzen window density estimate of the object center.

Category Specific object Segmentation – per pixel foreground / background estimates

- From the voting Hypothesis $p(o_n, x)$.
- Want $p(p = figure | o_n, x)$ for each pixel p, given a hypothesis category specific.
- Each patch detected in training images has a p(figure) segmentation mask. Each code-book entry stores mask of matched patch as well along with its location in the object. Gives $p(p = figure | o_n, x, l, \ell)$

Category Specific object Segmentation – per pixel foreground / background estimates

Each pixel belongs to interest patches that are matched to multiple code-book entries that each have the segmentation mask assigned to them.

Probabilistic formulation

$$p(\mathbf{e}, \ell | o_n, x) = \frac{p(o_n, x | \mathbf{e}, \ell) p(\mathbf{e}, \ell)}{p(o_n, x)} = \underbrace{\sum_{I} p(o_n, x | I, \ell) p(I | \mathbf{e}) p(\mathbf{e}, \ell)}_{p(o_n, x)}$$

Influence of patch 'e' on a particular hypothesis

Bayes

Accumulate over constituent code-book entries

$$p(\mathbf{p} = \textit{figure}|o_n, x) = \sum_{\mathbf{p} \in (\mathbf{e}, \ell)} p(\mathbf{p} = \textit{figure}|o_n, x, \mathbf{e}, \ell) p(\mathbf{e}, \ell|o_n, x)$$
 Consider each image interest patch overlapping pixel 'p'

patch overlapping pixel 'p'

$$p(\mathbf{p} = \mathit{figure}|o_n, x) = \sum_{\mathbf{p} \in (\mathbf{e}, \ell)} \sum_{I} p(\mathbf{p} = \mathit{fig}.|o_n, x, \mathbf{e}, I, \ell) p(\mathbf{e}, I, \ell|o_n, x)$$

Split each patch into contributions of code-book entries

$$= \sum_{\mathbf{p} \in (\mathbf{e}, \ell)} \sum_{I} p(\mathbf{p} = \mathit{fig}. | o_n, x, I, \ell) \frac{p(o_n, x | I, \ell) p(I | \mathbf{e}) p(\mathbf{e}, \ell)}{p(o_n, x)}$$

Resolve into codebook entries (like last time)

$$L = \frac{p(\mathbf{p} = \mathit{figure}|o_n, x)}{p(\mathbf{p} = \mathit{ground}|o_n, x)}.$$

Reducing false positives / Handling multiple objects

- Matching is done via local patches, with global structure enforced through voting.
- Large number of false positives due to secondary hypothesis

- Bounding boxes based rejection (if two hypothesis bounding boxes intersect, keep the one which is stronger)
- solves above case. Bounding boxes may actually intersect due to occlusion.

So, when do we combine report the weaker hypothesis as well, and when not?

Hypothesis set selection based on Min Descriptor Length

• Describe image: We can explain away a pixel as belonging to an object or we have to encode its grayscale value. We "save" on description length if we explain away S_{area} pixels due to an object. However, we subtract model complexity — prefer low number of objects, and penalize explaining away a pixel as object when segmentation says it is background. $S_h = K_0 S_{area} - K_1 S_{model} - K_2 S_{error}$ $\sum_{(1-p)(\mathbf{p} = figure|h))} (1-p)(\mathbf{p} = figure|h)$

• For overlapping hypotheses h_1 and h_2 consider the "savings" made by combined hypotheses. Select overlapping hypothesis if +ve.

$$S_{h_1 \cup h_2} = S_{h_1} + S_{h_2} - S_{area}(h_1 \cap h_2) + S_{error}(h_1 \cap h_2)$$

 $\mathbf{p} \in Seg(h)$

Potential discussion topics

Articulated objects – interpolation across different types of objects

Votes made by patches from different training images and continuous voting space.

Disadvantages?

Training

Testing

- Invariances in the matching?
- Non-rigid articulations / soft body deformations.
- Statistical issues in the use of per frame snapshots of videos for analysis.
- Category independent code-books bag of visual words type?