Homework 1

Quantum Mechanics

January 22, 2023

C Seitz

Problem 1. No-cloning theorem

Solution. Assume we have a unitary copying operator U and two quantum states $|\phi\rangle$ and $|\psi\rangle$. Suppose this unknown copying operator U could transform $|s\rangle$ to either $|\phi\rangle$ or $|\psi\rangle$.

$$|\psi\rangle \otimes |s\rangle \xrightarrow{U} |\psi\rangle \otimes |\psi\rangle$$
$$|\phi\rangle \otimes |s\rangle \xrightarrow{U} |\phi\rangle \otimes |\phi\rangle$$

If U is unitary, then it preserves inner products, so

$$(\langle \psi | \otimes \langle s |)(|\phi\rangle \otimes |s\rangle) = \langle \psi | \phi\rangle \otimes \langle s | s\rangle = \langle \psi | \phi\rangle$$

After the copying transformation, we have

$$(\langle \psi | \otimes \langle \psi |)(|\phi\rangle \otimes |\phi\rangle) = \langle \psi | \phi\rangle \otimes \langle \psi | \phi\rangle$$
$$= (\langle \psi | \phi\rangle)^{2}$$

We demanded that the inner product be preserved, so these two results must be equivalent. However, there is only a solution when $|\psi\rangle = |\phi\rangle$ or $\langle\psi|\phi\rangle = 0$. Therefore, the copying circuit only works for orthogonal states, and not a general ket.

Problem 2. Quantum Teleportation

Solution.

The objective is for Alice to teleport to Bob a qubit in a state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, which can be done by using an entangled EPR pair. There three qubits in total: $|\psi\rangle$ and an entangled EPR pair $|\beta_{00}\rangle$. The first qubit in the EPR pair is kept by alice and the second is given to Bob. Since the EPR pair is entangled, the three qubits are in a state

$$|\psi_0\rangle = \frac{1}{\sqrt{2}} \left(\alpha |000\rangle + \alpha |011\rangle + \beta |100\rangle + \beta |111\rangle\right)$$

Alice then sends this state through a CNOT gate, where the qubit $|\psi\rangle$ is the control bit and the first qubit of the EPR pair is the target bit. This of course flips the second bit for the second two terms:

$$|\psi_1\rangle = \frac{1}{\sqrt{2}} \left(\alpha |000\rangle + \alpha |011\rangle + \beta |110\rangle + \beta |101\rangle\right)$$

Then the first qubit is sent through a Hadamard gate. As a minor detour, the Hadamard gate, does

$$|0\rangle \rightarrow (|0\rangle + |1\rangle)/\sqrt{2} = |+\rangle$$

 $|1\rangle \rightarrow (|0\rangle - |1\rangle)/\sqrt{2} = |-\rangle$

Therefore, the effect on $|\psi_1\rangle$ is:

$$|\psi_{1}\rangle = \frac{1}{2}(\alpha |000\rangle + \alpha |100\rangle + \alpha |011\rangle + \alpha |111\rangle + \beta |010\rangle + \beta |001\rangle - \beta |110\rangle - \beta |101\rangle) = \frac{1}{2}(|00\rangle (\alpha |0\rangle + \beta |1\rangle) + |10\rangle (\alpha |0\rangle - \beta |1\rangle) + |01\rangle (\alpha |1\rangle + \beta |0\rangle) + |11\rangle (\alpha |1\rangle - \beta |0\rangle)$$

Therefore, if Alice measures her two qubits, say in state $|00\rangle$, she can communicate this to bob over a classical communication channel, and Bob then knows the superposition of his qubit. Bob can then apply the necessary quantum gate to transform his qubit to $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$.

Problem 3. Deutsch Algorithm, Deutch-Josza Algorithm

Solution.

Suppose we have some boolean function $f: \{0,1\} \to \{0,1\}$. Deutch's algorithm can determine whether the function f is constant or balanced exponentially faster than a classical computer. If f is constant then f(0) = f(1); however, if f is balanced then $f(0) \neq f(1)$.

We start with the two qubits prepared in state $|\psi_0\rangle = |0\rangle |1\rangle$. Each qubit is Hadamard transformed to give

$$|\psi_1\rangle = \frac{1}{2} (|0\rangle + |1\rangle) (|0\rangle - |1\rangle)$$
$$= \frac{1}{2} (|0\rangle |0\rangle - |0\rangle |1\rangle + |1\rangle |0\rangle - |1\rangle |1\rangle)$$

The state then goes through an oracle U_f , which implements the transformation $|\alpha\rangle |\beta\rangle \to |\alpha\rangle |\beta \oplus f(\alpha)\rangle$. Note that \oplus is addition modulo two, which is essentially an XOR operation. Thus, after transformation, the state is

$$|\psi_{2}\rangle = \frac{1}{2} (|0\rangle |0 \oplus f(0)\rangle - |0\rangle |1 \oplus f(0)\rangle + |1\rangle |0 \oplus f(1)\rangle - |1\rangle |1 \oplus f(1)\rangle)$$

$$= \frac{1}{2} (|0\rangle (|0 \oplus f(0)\rangle - |1 \oplus f(0)\rangle) + |1\rangle (|0 \oplus f(1)\rangle - |1 \oplus f(1)\rangle))$$

$$= \frac{1}{2} ((-1)^{f(0)} |0\rangle (|0\rangle - |1\rangle) + (-1)^{f(1)} |1\rangle (|0\rangle - |1\rangle))$$

Then we Hadamard transform the first qubit:

$$|\psi_3\rangle = \frac{1}{2} \left((-1)^{f(0)} (|0\rangle + |1\rangle) (|0\rangle - |1\rangle) + (-1)^{f(1)} (|0\rangle - |1\rangle) (|0\rangle - |1\rangle) \right)$$

$$= \frac{1}{2} ((-1)^{f(0)} + (-1)^{f(1)}) (|00\rangle - |01\rangle) + ((-1)^{f(0)} - (-1)^{f(1)}) (|10\rangle - |11\rangle)$$

Writing it in this way makes it clear how we determine if the function is constant or balanced. If it is constant (f(0) = f(1)) then the the second term vanishes. So, if we measure the first qubit, it will be in state $|0\rangle$. However, if it is balanced $(f(0) \neq f(1))$, then the first term vanishes and the first qubit will be measured in state $|1\rangle$.

This algorithm generalizes to the case where the function $f: \{0,1\}^n \to \{0,1\}$. This is where the power of quantum computing really shines. Clasically, (if f can be constant or balanced and nothing else), we would need

 $2^{n-1} + 1$ function calls. But a quantum computer can do this in a single function call. Similar to before, we have $|\psi_0\rangle = |0\rangle^{\otimes n} |1\rangle$. We Hadamard transform like before, but note that when we Hadamard transform a bit string of length n, we transform each bit individually. Our n-bit string is all zeros so we get

$$H^{\otimes n} |0, 0..., 0\rangle = |+\rangle^{\otimes n} = \frac{1}{\sqrt{2^n}} \sum_{\alpha \in 0.1^n} |\alpha\rangle$$

Thus

$$|\psi_1\rangle = \frac{1}{\sqrt{2^n}} \sum_{\alpha \in 0.1^n} |\alpha\rangle \otimes |-\rangle$$

Looking at the last line from $|\psi_2\rangle$ in Deutsch's algorithm above, we can see that the effect of the oracle U_f is efficiently summarized as:

$$U_f |\psi_1\rangle = \frac{1}{\sqrt{2^n}} \sum_{\alpha \in \{0,1\}} (-1)^{f(\alpha)} |\alpha\rangle \otimes |-\rangle$$

Therefore, for the n-bit case, we get

$$|\psi_2\rangle = \frac{1}{\sqrt{2^n}} \sum_{\alpha \in \{0,1\}^n} (-1)^{f(\alpha)} |\alpha\rangle \otimes |-\rangle$$

We Hadamard transform the first qubit again, but α can be mixtures of 0's and 1's so its a bit more complicated

$$|\psi_{3}\rangle = \frac{1}{\sqrt{2^{n}}} \sum_{\alpha \in \{0,1\}^{n}} (-1)^{f(\alpha)} H^{\otimes n} |\alpha\rangle \otimes |-\rangle$$

$$= \frac{1}{\sqrt{2^{n}}} \sum_{\alpha \in \{0,1\}^{n}} (-1)^{f(\alpha)} \left(\frac{1}{\sqrt{2^{n}}} \sum_{x \in \{0,1\}^{n}} (-1)^{\alpha \cdot x} |x\rangle \right) \otimes |-\rangle$$

$$= \frac{1}{2^{n}} \sum_{\alpha \in \{0,1\}^{n}} \sum_{x \in \{0,1\}^{n}} (-1)^{f(\alpha)} (-1)^{\alpha \cdot x} |x\rangle \otimes |-\rangle$$

where $\alpha \cdot x = \alpha_0 x_0 \oplus \alpha_1 x_1 \oplus \dots$ A bit of rearranging (and dropping the second qubit because it doesn't matter) gives

$$|\psi_3\rangle = \sum_{x \in \{0,1\}^n} \left(\frac{1}{2^n} \sum_{\alpha \in \{0,1\}^n} (-1)^{f(\alpha)} (-1)^{\alpha \cdot x} \right) |x\rangle$$

The term in parentheses is the expansion coefficient for state $|x\rangle$. It turns out that if f is constant, then this expansion coefficient is ± 1 for $x = |0\rangle^{\otimes n}$ and zero for all other x. However, if f is balanced, the sum over α is more complex (but presumably it is not zero). It's difficult to say exactly how it would look, but we can say that it depends on what $f(\alpha)$ actually is. Ultimately, we would measure some state other than $x = |0\rangle^{\otimes n}$ when f is balanced, because the sum over α would be zero for that state.