Protocol to clone amiRNAs or syn-tasiRNAs in *BsaI/ccdB*-based ('B/c') vectors

1. Oligonucleotide annealing

-Dilute sense oligonucleotide and antisense oligonucleotide in sterile H2O to a final concentration of $100~\mu M$.

-Prepare Oligo Annealing Buffer:

60 mM Tris-HCl (pH 7.5)

500 mM NaCl

60 mM MgCl₂

10 mM DTT

Note: Prepare 1 ml aliquots of Oligo Annealing Buffer and store at -20° C.

-Assemble the annealing reaction in a PCR tube as described below:

Forward oligonucleotide (100 μM) 2 μL

Reverse oligonucleotide (100 μM) 2 μL

Oligo Annealing Buffer 46 μL

Total volume 50 µL

The final concentration of each oligonucleotide is 4 µM.

- -Use a thermocycler to heat the annealing reaction 5 min at 94°C and then cool down $(0.05^{\circ}\text{C/sec})$ to 20°C .
- -Dilute the annealed oligonucleotides just prior to assembling the digestion-ligation reaction as described below:

Annealed oligonucleotides 3 µL

 dH_2O 37 μ L

Total volume $40 \mu L$

The final concentration of each oligonucleotide is 0.15 μM.

Note: Do not store the diluted oligonucleotides.

2. Digestion-ligation reaction

-Assemble the digestion-ligation reaction as described below:

B/c vector (x ug/uL)	Y μL (50 ng)
Diluted annealed oligonucleotides	s 1 μL
10x T4 DNA ligase buffer	1 μL
T4 DNA ligase (400 U/ μ L)	1 μL
BsaI (10U/ μ L, NEB)	1 μL
<u>dH</u> ₂ O	to 10 μL
Total volume	10 uL

Note: Prepare a negative control reaction lacking BsaI.

3. E.coli transformation and analysis of transformants

-Transform 1-5 ul of the digestion-ligation reaction into an $E.\ coli$ strain that doesn't have ccdB resistance (e.g. DH10B, TOP10, ...) to do counter-selection.

-Pick two colonies/construct, grow LB-Kan (100 mg/ml) cultures and purify plasmids.

-Sequence 2 clones per construct with appropriate primers: M13-F (CCCAGTCACGACGTTGTAAAACGACGG) and M13-R (CAGAGCTGCCAGGAAACAGCTATGACC) for *pENTR*-based vectors; attB1 (ACAAGTTTGTACAAAAAAGCAGGCT) and attB2 (ACCACTTTGTACAAGAAAGCTGGGT) primers for *pMDC32B*-, *pMDC123SB*-, *pFK210B*- or *pH7WG2B*-based vectors).

⁻Mix the reactions by pipetting. Incubate the reactions for 5 minutes at 37°C.

CaMV, Cauliflower mosaic virus; n	Bacterial	Plant antibiotic		Promoter	Terminator	Plant species	Addgene
	antibiotic	resistance	use			tested	number
	resistance						
pENTR-AtMIR390a-B/c	Kanamycin	-	Donor	-	-	-	51778
pFK210B-AtMIR390a-B/c	Spectinomycin	BASTA	-	CaMV 35S	rbcS	A.thaliana	51777
pMDC123SB-AtMIR390a-B/c	Kanamycin	BASTA	-	CaMV 2x35S	nos	A. thaliana	51775
	•					N. benthamiana	
pMDC32B-AtMIR390a-B/c	Kanamycin	Hygromycin	-	CaMV 2x35S	nos	A. thaliana	51776
	Hygromycin					N. benthamiana	

Monocot amiRNA vectors: Os. CaMV, Cauliflower mosaic virus; no			direct cloning	of amiRNAs to u	ise in monocot	species.	
Vector	Bacterial antibiotic resistance	Plant antibiotic resistance	GATEWAY use	Promoter	Terminator	Plant species tested	Addgene number*
pENTR-OsMIR390-B/c	Kanamycin	-	Donor	-	-	-	-
pMDC123SB-OsMIR390-B/c	Kanamycin	BASTA	-	CaMV 2x35S	nos	N. benthamiana	-
pMDC32B-OsMIR390-B/c	Kanamycin	Hygromycin	-	CaMV 2x35S	nos	N. benthamiana	-
	Hygromycin	· · · · · ·				B. distachyon	-
pH7WG2-OsMIR390-B/c	Spectinomycin	Hygromycin	-	Os Ubiquitin	CaMV	B. distachyon	-

^{*}These vectors are not yet available at Addgene. Please, contact us at administrator@carringtonlab.org to request any of them.

Carrington Lab Protocols Donald Danforth Plant Science Center St Louis, MO (USA) Updated 05/21/2014 Alberto Carbonell

syn-tasiRNA vectors: *BsaI/ccdB*-based ('B/c') vectors for direct cloning of syn-tasiRNAs to use in *Arabidopsis thaliana* and closely related species*.

CaMV, *Cauliflower mosaic virus*; nos, nopaline synthase.

Vector	Bacterial antibiotic resistance	Plant antibiotic resistance	GATEWAY use	Promoter	Terminator	Plant species tested	Addgene number
pENTR-AtTAS1c-B/c	Kanamycin	-	Donor	-	-	-	51774
pMDC123SB-AtTAS1c-B/c	Kanamycin	BASTA	-	CaMV 2x35S	nos	A. thaliana N. benthamiana*	51772
pMDC32B-AtTAS1c-B/c	Kanamycin Hygromycin	Hygromycin	-	CaMV 2x35S	nos	A. thaliana N. benthamiana*	51773

^{*}As miR173 is not conserved In *N. benthamiana* and other species not closely related to *Arabidopsis thaliana*, a construct expressing miR173 has to be co-expressed with the syn-tasiRNA construct to trigger syn-tasiRNA biogenesis.