Implementation of 1-D Vascular Model using Structured Tree Outflow Conditions

Alex Baelde, Adam Updegrove, Debanjan Mukherjee

May 16, 2014

Overview

- 1 Introduction
 - Project Goals
- 2 Implementation
 - Discretization
 - Inflow
 - Outflow
- Results
 - Our Implementation
 - Olufsen Implementation
- Discussion and Conclusion

Project Goals

One-dimensional flow of blood - governing equations

Continuity

$$\frac{\partial A}{\partial t} + \frac{\partial q}{\partial x} = 0 \tag{1}$$

Conservation of X Momentum

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \left(\frac{q^2}{A} \right) + \frac{A}{p} \frac{\partial p}{\partial x} = -\frac{2R\pi\nu q}{\delta A} \tag{2}$$

Alex Baelde, Adam Updegrove, Debanjan Mu

Numerical Solution & Development of a Code

A

Two-Step Lax-Wendroff (Richtmyer) scheme is used. Equations 1 and 2 can be written in the following form:

$$\frac{\partial}{\partial t}\bar{U} + \frac{\partial}{\partial x}\bar{R}(\bar{U}) = \bar{S}$$
 (3)

Hyperbolic system and finite difference discretization

$$\bar{U}_{j}^{T+1} = \bar{U}_{j}^{T} - \frac{k}{h} \left(\bar{R}_{j+1/2}^{T+1/2} - \bar{R}_{j-1/2}^{T+1/2} \right) + \frac{k}{2} \left(\bar{S}_{j+1/2}^{T+1/2} + \bar{S}_{j-1/2}^{T+1/2} \right)$$
(4)

$$ar{U}_{j}^{T+1/2} = rac{ar{U}_{j+1/2}^{T} + ar{U}_{j-1/2}^{T}}{2} + rac{k}{2h} \Bigg(-ar{R}_{j+1/2}^{T} - ar{R}_{j-1/2}^{T} \Bigg) + rac{k}{4} \Bigg(ar{S}_{j+1/2}^{T} + ar{S}_{j-1/2}^{T} \Bigg)$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めるの

1

Inflow profile and inlet boundary condition

The structured tree

Olufsen's

She retains no structure of the vessels within the tree and recalculates all this information for each structured tree.

$$(r_0)(n,k) = R_{root}\alpha^k \beta^{n-k}$$
 (5)

Our's

We retain a structure of the tree by a vector of nodes containing certain information about the tree.

Outflow boundary condition using structured tree

Method of Characteristics

$$\Gamma_{+/-}: A_Q - A_{R/S} + \frac{Q_Q - Q_{R/S}}{-(Q_{R/S}/A_{R/S}) + C_R} = H_{R/S}^{+/-} \Delta t$$
 (7)

Toy problem for comparison

Single Tube with Resistance Boundary Condition

The pressure profile follows the same curve. The dicrotic notch is less visible in our implementation, and the magnitude is slightly higher.

Flow analysis: What information can we get from such 1-dimensional, reduced order models?

Wave reflection phenomena - comparison with Windkessel models

Varying terminal resistance of tree for flow regulation

Radius of large vessels - insights on stenosis/anuerysms?

Concluding remarks