Uppgifter till Lektion 1.

1. (a) Finn alla skärningspunkter i \mathbb{C}^2 mellan de två komplexa kurvorna

$$x^2 + y^2 = 1$$

och

$$(x-a)^2 + y^2 = 1,$$

där $a \in \mathbb{R}$. Hur många finns det för olika värden på a? Hur många är reella?

(b) Bilda sammansättningen $F \circ G$ av de två affina transformationerna

$$F(x,y) = (x - iy, x + 3iy + 1)$$

och

$$G(x,y) = (x + 2i, ix + y + 3i).$$

(c) Finn inversen till den linjära avbildningen $F:\mathbb{C}^2\to\mathbb{C}^2$, given av

$$F(x,y) = (2ix + 3y, 3x + (1+2i)y).$$

- **2.** Vilken ekvivalensklass av komplexa andragradspolynom tillhör följande polynom? Ange en explicit affin transformation $T: \mathbb{C}^2 \to \mathbb{C}^2$ och ett tal $\lambda \in \mathbb{C}$ sådan att $\lambda T^*(f)$ är motsvarande standardform, listad i klassificeringssatsen.
 - (a) $f(x,y) = 2xy y^2$
 - (b) $g(x,y) = x^2 + 2xy + 3y^2 + 2x + 2y 2$
- 3. Finn eventuella singulära punkter på kurvan $(x^4 + y^4)^2 = x^2 y^2$.
- 4. (Bix) Bestäm skärningstalet i origo av följande polynom.
 - (a) $y x^3$ och $y^4 + 6x^3y + x^8$.
 - (b) $y x^2 + 2x$ och $y^2 + 5y 4x^3$.
 - (c) $y x^2 x$ och $y^2 3x^2y x^2$.
 - (d) $y^2 + x^2y x^3$ och $y^3 3x^2y x^2$.

Följduppgifter

- A. (Om komplexa kurvor.)
 - (a) En reell affin kurva kan vara kompakt. Vilka av de reella kurvorna i 2. är kompakta.
 - (b) Visa att en *komplex* affin kurva aldrig är kompakt. (*Ledtråd*: Begrunda beviset för att en sådan kurva har oändligt många punkter.)
 - (c) Ge exempel på en följd av punkter (x_n, y_n) , $n \in \mathbb{N}$, på $x^2 + y^2 = 1$ så att, för varje $n \ge 1$, avståndet från (x_n, y_n) till (0, 0) är $\ge n$.
- **B.** Läs avsnittet om *generaliserade tangentlinjer* i 8.2. Red tillsammans ut beviset i satsen där och se till att alla i gruppen förstår vad definitionen säger och förstår exemplet. Vilka är de generaliserade tangentlinjerna i uppgift **3**?
- C. (a) Om ni tillämpar en sats vid uträkningarna i 4., förklara noggrant för varandra varför satsen fungerar. Om ni bara har räknat med 'brute force', hade en användning av en lämplig sats kunnat underlätta era räkningar?
 - (b) Visa direkt (med flervariabelmetoder) att (de reella) kurvorna i (b) är glatta och skär varandra transversellt i origo.
 - (c) Skissa kurvorna i (c) i närheten av origo (med flervariabelmetoder) och förklara var skärningarna kommer ifrån "geometriskt".