Deep Learning

Programming Assignment 2

April 7, 2019

Group Members		
Name	Roll No.	
Akul Gupta	B16006	
Arpit Batra	B16047	
Ayush Meghwani	B16127	

Faculty Mentor - Prof. Aditya Nigam.

Contents

1	Vis	ualizing Intermediate Layer Activations	3
	1.1	Section-1	3
		1.1.1 Line	3
		1.1.2 MNIST	6
	1.2	Section-2	9
	1.3	Inferences	12
2	Vis	ualizing Convnet Filters	13
	2.1	Section-1	13
		2.1.1 Line	13
			13
	2.2		13
	2.3		13
3	Vis	ualizing Heatmaps of class activations	14
	3.1	Section-1	14
		3.1.1 Line	14
		3.1.2 MNIST	17
	3.2	Section-2	
	3.3	Inferences	23

1 Visualizing Intermediate Layer Activations

1.1 Section-1

1.1.1 Line

1. Image-01

• Layer-1: Convolution 2D

• Layer-2: ReLu

• Layer-3: Batch Normalization

• Layer-4: Max Pooling 2D

2. Image-02

• Layer-1: Convolution 2D

• Layer-2: ReLu

• Layer-3: Batch Normalization

• Layer-4: Max Pooling 2D

3. Image-03

• Layer-1: Convolution 2D

• Layer-2: ReLu

• Layer-3: Batch Normalization

• Layer-4: Max Pooling 2D

4. Image-04

• Layer-1: Convolution 2D

• Layer-2: ReLu

• Layer-3: Batch Normalization

• Layer-4: Max Pooling 2D

5. Image-05

 \bullet Layer-1: Convolution 2D

• Layer-2: ReLu

• Layer-3: Batch Normalization

• Layer-4: Max Pooling 2D

6. Image-06

• Layer-1: Convolution 2D

• Layer-2: ReLu

• Layer-3: Batch Normalization

• Layer-4: Max Pooling 2D

1.1.2 MNIST

1. Image-01

• Layer-1: Convolution 2D

• Layer-2: ReLu

• Layer-3: Batch Normalization

• Layer-4: Max Pooling 2D

2. Image-02

• Layer-1: Convolution 2D

• Layer-2: ReLu

 \bullet Layer-3: Batch Normalization

• Layer-4: Max Pooling 2D

$3. \ \mathrm{Image-}03$

• Layer-1: Convolution 2D

• Layer-2: ReLu

• Layer-3: Batch Normalization

• Layer-4: Max Pooling 2D

4. Image-04

• Layer-1: Convolution 2D

• Layer-2: ReLu

• Layer-3: Batch Normalization

• Layer-4: Max Pooling 2D

5. Image-05

• Layer-1: Convolution 2D

• Layer-2: ReLu

• Layer-3: Batch Normalization

• Layer-4: Max Pooling 2D

6. Image-06

• Layer-1: Convolution 2D

• Layer-2: ReLu

• Layer-3: Batch Normalization

• Layer-4: Max Pooling 2D

1.2 Section-2

1. Image-01

• Layer-1: Convolution 2D

• Layer-2: ReLu

• Layer-3: Batch Normalization

2. Image-02

 \bullet Layer-1: Convolution 2D

• Layer-2: ReLu

• Layer-3: Batch Normalization

3. Image-03

• Layer-1: Convolution 2D

• Layer-2: ReLu

• Layer-3: Batch Normalization

4. Image-04

• Layer-1: Convolution 2D

• Layer-2: ReLu

• Layer-3: Batch Normalization

5. Image-05

• Layer-1: Convolution 2D

• Layer-2: ReLu

• Layer-3: Batch Normalization

6. Image-06

• Layer-1: Convolution 2D

• Layer-2: ReLu

• Layer-3: Batch Normalization

1.3 Inferences

- Every filter results in different output from the first Convolutional layer.
- After ReLu is applied green color is completly lost because all negative numbers are taken 0 which is most probably represented by blue color.
- This is because after ReLu most of the green area becomes blue
- After ReLu we loss some details.
- Batch Normalization has no observable change.
- Max Pooling makes the image more blurry as the size is decreased.
- Output of Convolutional layers in Section 1 and Section 2 for line data is different because the model ahead of Convolutional layers is different which makes filters different during training.

2 Visualizing Convnet Filters

2.1 Section-1

2.1.1 Line

2.1.2 MNIST

2.2 Section-2

2.3 Inferences

- These are 25 of the 32 filters of the first convLayer
- Filters for Section2 for Lines has more details compared to that for first.
- In filters for MNIST data, all have same color, while this is not the case with Lines.

3 Visualizing Heatmaps of class activations

3.1 Section-1

3.1.1 Line

- 1. Image-01
 - Image

• Heatmap

- 2. Image-02
 - Image

 \bullet Heatmap

3. Image-03

• Image

• Heatmap

4. Image-04

• Image

5. Image-05

• Image

• Heatmap

6. Image-06

• Image

3.1.2 MNIST

1. Image-01

• Image

• Heatmap

2. Image-02

• Image

• Heatmap

$3. \ \mathrm{Image-}03$

• Image

• Heatmap

4. Image-04

• Image

5. Image-05

• Image

• Heatmap

6. Image-06

• Image

3.2 Section-2

1. Image-01

• Image

• Heatmap

2. Image-02

• Image

• Heatmap

$3. \ \mathrm{Image-03}$

• Image

• Heatmap

4. Image-04

• Image

5. Image-05

• Image

• Heatmap

6. Image-06

• Image

3.3 Inferences

- All the line heatmaps are corresponding to the first class which is horizontal red line with less thickness.
- All the MNIST heatmaps are with respect to digit 1.
- Images where there is more resemblance with the respective class, whose heatmap is drawn shows yellow region.
- Empty regions are generally unaffected.
- Not only the object but its boundaries also see to have a countribution.