ECS 171: Machine Learning

Summer 2023
Edwin Solares
easolares@ucdavis.edu
SVM Kernels

We want to maximize our margin

Types:

- Hard Margins
- Soft Margins

Classification Boundary:

• $r(x) = wx^T + b$

Support Vectors

- Points on the Margin
- r(x) > +1 for the +1 Region
- r(x) < -1 for the -1 Region

Example of a Hard Margin

No points within the margin

Dr. Ihler

Classification Boundary:

• $r(x) = wx^T + b$

Support Vectors

- Points on the Margin
- r(x) > +1 for the +1 Region
- r(x) < -1 for the -1 Region

Example of a Hard Margin

No points within the margin

Dr. Ihler

 We want to choose x+ and x- st. they are the closest to the margin

$$w \cdot (x^- + rw) + b = +1$$

$$\Rightarrow r||w||^2 + w \cdot x^- + b = +1$$

$$\Rightarrow r||w||^2 - 1 = +1$$

$$\Rightarrow r = \frac{2}{\|w\|^2}$$

$$w \cdot x^- + b = -1$$

Dr. Ihler

We want to choose x+ and x- st. they are the closest to the margin

$$w \cdot (x^- + rw) + b = +1$$

$$\Rightarrow r||w||^2 + w \cdot x^- + b = +1$$

$$\Rightarrow r||w||^2 - 1 = +1$$

$$\Rightarrow r = \frac{2}{\|w\|^2}$$

 $w \cdot x^{-} + b = -1$

Constraints:

$$y_i = +1 \rightarrow wx_i + b >= +1$$

$$y_i = -1 \rightarrow wx_i + b \le -1$$

$$w^* = \arg\max_{w} \frac{2}{\sqrt{w^T w}}$$

$$w^* = \arg\min_{w} \sum_{j} w_j^2$$

Constraints:

$$y_i = +1 \rightarrow wx_i + b >= +1$$

$$y_i = -1 \rightarrow wx_i + b <= -1$$

$$w^* = \arg\max_{w} \frac{2}{\sqrt{w^T w}}$$

$$w^* = \arg\min_w \sum_j w_j^2$$

Last week's discussion:

Lagrangian optimization

Soft Margin

- Set +1 ϵ_i
- st. ε >= 0 & R ∞ distance from M

$$w^* = \arg\min_{w,\epsilon} \sum_{j} w_j^2 + R \sum_{i} \epsilon^{(i)}$$

Slack Variables and Margins with Error

Hard Margin

Soft Margin

Dr. Ihler

Slack Variables and Margins with Error

Kernels: Adding features for better classification

Dr. Ihler

Kernels: Transforming X

$$\hat{y}(x) = \operatorname{sign} \left[w \cdot \Phi(x) + b \right]$$

Where $\Phi(x)$ allows us to transform x For example we can make $\Phi(x) = ?$

- $\Phi(x) = \operatorname{sqroot}(x)$

Generalized we can define our transform as:

$$K(a,b) = (1 + \sum_{j} a_j b_j)^d$$

Dr. Ihler

Kernels: Transforming X

$$K(a,b) = (1 + \sum_{j} a_j b_j)^d$$

d is our degree and a is our x and b is our x' and j the number of expanded features. Where r = 1 and represents our x'' and our coefficient

Simply $(a, a^2, \frac{1}{2}) \cdot (b, b^2, \frac{1}{2})$ for x and x' and x'' (we have x-axis, y-axis an z-axis coordinates) Note: when z-axis coordinates are equal we can ignore

Kernels: Transforming X

$$K(a,b) = (r + \sum_{j} a_j b_j)^d$$

For
$$d = 2$$
 and $r = \frac{1}{2}$ on $K(x, x')$ we get:
For $d = 2$ and $r = \frac{1}{2}$ we get: $ab + a^2b^2 + 1$
 $(a, a^2, \frac{1}{2}) \cdot (b, b^2, \frac{1}{2})$

For d = 2 and r = 2 on K(x, x') we get: For d = 2 and r = 2 we get: $4ab + a^2b^2 + 4$ (2a, a^2 , 2) · (2b, b^2 , 2) Here the 2 in 2a moves our points on the x-axis

Kernels Trick

$$K(a,b) = (r + \sum_{j} a_j b_j)^d$$

Perform comparative analysis between different points to evaluate higher dimensional relationship. I.e. For feature vector \mathbf{x}_1 observations $\mathbf{x}_{1,1}$ and $\mathbf{x}_{2,1}$, set $\mathbf{x}_{1,1}$ to a and $\mathbf{x}_{2,1}$ to b

Kernels Trick

The Iris Dataset

f(x) = y

Model type: Classification, Regression, Clustering

Complex Data

Using an SVM on Complex Data

Use a kernel to increase dimensionality

Here we square our values

What is an Ensemble?

A mishmash of multiple instruments?

https://theclassicalnovice.com/glossary/ensembles/

What is a Machine Learning Ensemble?

A mishmash of multiple learners

Classifier 2 Classifier 3 Classifier 4

Mean of yhat

Final Classifier

We will Cover Ensembles Next Week!

Jupyter Notebooks Time!

Machine Learning Evaluation Metrics (wiki)

How many retrieved items are relevant?

How many relevant items are retrieved?

$$\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

Machine Learning Evaluation Metrics

TP,TN, FP, FN (True +, True -, False +, False -)

Precision and Recall

Receiver operating characteristic (ROC) curve and Area under curve (AUC)

Accuracy

F1 Score

- https://developers.google.com/machine-learning/crash-course/classification/true-false-positive
- https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall
- https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
- https://developers.google.com/machine-learning/crash-course/classification/accuracy
- https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9

Brushing up on Covariance

Covariance...

...Clearly Explained!!!