Package 'scccna'

February 11, 2024

Type Package							
Title Sufficient Condition Conjunction Algorithm Based on CNA							
Version 1.0							
Date 2024-02-11							
Author Wei Xu							
Maintainer Wei Xu <eric.wxu@hotmail.com></eric.wxu@hotmail.com>							
Description Pkg{scccna} is a package to perform the Sufficient Condition Conjunction Algorithm Based on CNA.							
License GPL (>= 2)							
Imports plyr,purrr,stringr,cna,admisc,dplyr							
NeedsCompilation no							
R topics documented: scccna-package							
chi2test 3 samplescount 4 scccna 5							
Index 6							
scccna-package Sufficient Condition Conjunction Algorithm Based on CNA							
Description							
Pkgscccna is a package to perform the Sufficient Condition Conjunction Algorithm Based on CNA.							
Author(s)							
Author: Wei Xu							
Maintainer: Wei Xu <eric.wxu@hotmail.com< td=""></eric.wxu@hotmail.com<>							

2 bocorrection

References

Baumgartner, Michael.(2009). Inferring Causal Complexity. Sociological Methods & Research. 38. 10.1177/0049124109339369.

bocorrection

Bonferroni correction for the Chi-squared test.

Description

This function corrects Pearson's Chi-squared test by bonferroni correction.

Usage

bocorrection(screencom, pvaluevec, numofsnps)

Arguments

screencom the snp combination.

pvaluevec the p-value of Pearson's Chi-squared test.

numofsnps the number of SNPs.

Value

A numeric value of pvalue in the pearsons chisquared by bonferroni correction..

References

Benjamini, Y. and D. Yekutieli (2001). The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics. 29: 1165-1188.

chi2test 3

chi2test	Chisquaretest for the Pattern in the Source Data	

Description

This function tests whether the pattern is related to the depend variable in the source dataset by Pearson's Chi-squared test.

Usage

```
chi2test(factor,snps,class)
```

Arguments

factor the snp combination.

snps the snps matrix,0 denotes the missing data,1 denotes homozygous wild-type al-

leles, 2 denotes homozygous wild-type alleles,3 denotes homozygous mutant

alleles.

class the disease vector, 1 denotes case and 2 denotes control.

Value

A numeric value of pvalue in the Pearsons Chi-squared test.

References

Haviland MG. Yates's correction for continuity and the analysis of 2 x 2 contingency tables. Stat Med. 1990 Apr;9(4):363-7; discussion 369-83. doi: 10.1002/sim.4780090403. PMID: 2362976.

4 samplescount

samplescoun	t General	ate a contingency table for the Source	e Data

Description

This function generate a contingency table for the source data.

Usage

```
samplescount(snps,factor,class)
```

Arguments

snps	the snps matrix.0 denotes the	e missing data 1 denote	es homozygous wild-type al-
SHPS	the ships matrix,0 denotes the	c missing data, i denon	is nomezygous whatty be ai-

leles, 2 denotes homozygous wild-type alleles,3 denotes homozygous mutant

alleles.

factor the snp combination.

class the disease vector, 1 denotes case and 2 denotes control.

Value

A contingency table for the source data as matrix.

References

Gravetter, F. J., & Wallnau, L. B. (2010). Essentials of Statistics for the Behavioral Sciences (PSY 200 (300) Quantitative Methods in Psychology). Boston: Cengage Learning.

scccna 5

scccna

Sufficient Condition Conjunction Algorithm Based on CNA

Description

This function completes the calculation of scccna analysis.

Usage

scccna(sccsamples, mvsccsamples, consistencythreshold, maxinumofconditions)

Arguments

Value

The scccna solution.

References

Baumgartner, Michael.(2009). Inferring Causal Complexity. Sociological Methods & Research. 38. 10.1177/0049124109339369.

```
#library(cna)
library(purrr)
library(plyr)
library(stringr)
consistencythreshold=0;
maxnumofconditions=2;
sccsamples<-data.frame(</pre>
mvsccsamples<-data.frame(</pre>
#sccsamples<-read.csv(sccsamples1,header=F,skip=1)</pre>
scccnasolution<-scccna(sccsamples, mvsccsamples, consistencythreshold, maxnumofconditions)
```

Index

```
bocorrection, 2
chi2test, 3
samplescount, 4
scccna, 5
scccna-package, 1
```