

Technology

Structure Discovery in Nonparametric Regression through Compositional Kernel Search

David Duvenaud, James Robert Lloyd, Roger Grosse, Joshua B. Tenenbaum, Zoubin Ghahramani

Identifying structure is crucial for extrapolation

- Traditionally, a statistician proposes an appropriate model for the type of structures present
- Automatic model selection techniques already exist, typically choosing between a finite or restricted set of models
- Instead, we automate statistical model construction

Gaussian processes model structure through kernels

- The kernel specifies which structures are likely under the GP prior, which in turn determines the generalization properties of the model.
- Below we list standard base kernels, and draws from the corresponding GP priors:

Kernels can be composed...

• Constructing appropriate composite kernels has previously been done by experts

... defining a rich, open-ended set of models...

ullet We consider all algebraic expressions composed a small number of base kernels and the operations '+' and '×'

Special cases of our model

. . . which we search greedily

- We try all base kernels, selecting the one with the highest (approximate) marginal likelihood which balances data fit and model complexity
- The search continues by adding an extra term to the current best kernel, stopping when marginal likelihood no longer improves

Compound kernels are interpretable

2010

2000

2005

2010

2000

2005

2010

2005

• Compound kernels decompose functions into additive components

2000

2005

2000

2010

