Optimization Models in Engineering—Homework 2

1. Consider the subspace $S = \text{span}(x^{(1)}, x^{(2)}, x^{(3)})$, where

$$x^{(1)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad x^{(2)} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \quad x^{(3)} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$
 (1)

- i) Find the dimension of S.
- ii) Calculate the projection of the point $\begin{bmatrix} 1\\2\\4 \end{bmatrix}$ on \mathcal{S} .

Solution:

i)

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 2 \end{bmatrix} \tag{2}$$

$$\sim \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{bmatrix} \quad (R2 \to R2 - R1, R3 \to R3 - R1) \tag{3}$$

$$\sim \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad (R3 \to R3 - 2R2) \tag{4}$$

(5)

We've now reached row echelon form. The rank of the matrix is equal to the number of non-zero rows in this form, which is 2. Therefore, dim(A) = 2.

ii)

1.1. Apply Gram-Schmidt process

1.2. Normalize the basis vectors

$$\vec{v}_1 = \frac{\vec{u}_1}{|\vec{u}_1|} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \ 1 \ 1 \end{bmatrix}$$

$$\vec{v}_2 = \frac{\vec{u}_2}{|\vec{u}_2|} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \ 0 \ 1 \end{bmatrix}$$

Note that $\vec{u}_3 = \vec{0}$, so we only have two orthonormal basis vectors.

Now we can compute the projection using the formula: $\mathrm{proj}_S(\vec{b}) = \langle \vec{b}, \vec{v}_1 \rangle \vec{v}_1 + \langle \vec{b}, \vec{v}_2 \rangle \vec{v}_2$

1.3. Calculate dot products
$$\langle \vec{b}, \vec{v}_1 \rangle = \begin{bmatrix} 1 \ 2 \ 4 \end{bmatrix} \cdot \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \ 1 \ 1 \end{bmatrix} = \frac{1}{\sqrt{3}} (1 + 2 + 4) = \frac{7}{\sqrt{3}}$$

$$\langle \vec{b}, \vec{v}_2 \rangle = \begin{bmatrix} 1 \ 2 \ 4 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \ 0 \ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} (-1 + 0 + 4) = \frac{3}{\sqrt{2}}$$

1.4. Calculate the projection $\operatorname{proj}_S(\vec{b}) = \frac{7}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}} \left[1 \ 1 \ 1 \right] + \frac{3}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} \left[-1 \ 0 \ 1 \right] = \frac{7}{3} \left[1 \ 1 \ 1 \right] + \frac{3}{2} \left[-1 \ 0 \ 1 \right] = \left[\frac{7}{3} \ \frac{7}{3} \ \frac{7}{3} \right] + \left[-\frac{3}{2} \ 0 \ \frac{3}{2} \right] = \left[\frac{7}{3} - \frac{3}{2} \ \frac{7}{3} \ \frac{7}{3} + \frac{3}{2} \right] = \left[\frac{29}{6} \ \frac{31}{6} \ \frac{34}{6} \right]$

2. Consider the box S_1 and ball S_2 defined as

$$S_1 = \{ x \in \mathbb{R}^2 \mid -2 \le x_1 \le 2, \ -0.5 \le x_2 \le 0.5 \}, \quad S_2 = \{ x \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \le 1 \}$$
 (6)

Given a point $z \in \mathbb{R}^2$, write an optimization problem in a standard form that finds the projection of z onto the set $S_1 \cap S_2$ (i.e., the solution of the optimization problem should correspond to the closest point in $S_1 \cap S_2$ to z; note that you do not need to solve the optimization problem).

Solution:

$$\begin{aligned} & \min & & \|z-z^*\|_2 \\ & \text{s.t.} & & z_1^{*2}+z_2^{*2} \leq 1 \\ & & z_1^* \leq 2 \\ & & -z_1^* \leq 2 \\ & & z_2^* \leq 0.5 \\ & & -z_2^* \leq 0.5 \end{aligned}$$

3. A company has n factories. Factory i (for i = 1, 2, ..., n) is located at point (a_i, b_i) in the two-dimensional plane \mathbb{R}^2 . The company wants to locate a warehouse at a point (x_1, x_2) that minimizes

$$\sum_{i=1}^{n} (\text{distance from factory } i \text{ to the warehouse})^2$$

Find all possible values of the point (x_1^*, x_2^*) that satisfy the necessary condition for local optimality.

Solution:

Let formulate the minimization above as follows:

$$\sum_{i=1}^{n} (\text{distance from factory } i \text{ to the warehouse})^2 = \sum_{i=1}^{n} [(a_i - x_1)^2 + (b_i - x_2)^2]$$
(8)

We need to solve for the necessary condition of local optimality where $\nabla f(\mathbf{x}) = \begin{bmatrix} 2nx_1 - 2\sum_{i=1}^n a_i \\ 2nx_2 - 2\sum_{i=1}^n b_i \end{bmatrix} = 0$

This means
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n a_i \\ \sum_{i=1}^{n^n} b_i \\ n \end{bmatrix}$$

4. Given a natural number $k \in \{1, 2, ...\}$, a symmetric matrix $P \in \mathbb{R}^{n \times n}$, a vector $q \in \mathbb{R}^n$ and a scalar $r \in \mathbb{R}$, consider the optimization problem

$$\min_{x \in \mathbb{R}^n} \ (x^\top P x)^k + q^\top x + r \tag{9}$$

Assume that q is a nonzero vector.

- i) Calculate the gradient of the function $q^{\top}x$.
- ii) Calculate the gradient of the function $x^{\top}Px$.
- iii) Calculate the gradient of the objective function of the optimization problem (9).
- iv) Given a point x^* , write the necessary optimality condition for x^* to be a local minimum of the optimization problem (9).
- v) Assume that q is not in the range of P. Prove that the optimization problem (9) cannot have any local minimum (hint: show that the necessary optimality condition has no solution).
- vi) Assume that P is invertible. Given a local minimum x^* of the optimization problem (9), show that there is a scalar α such that $x^* = \alpha P^{-1}q$.
- vii) Again assume that P is invertible. Solve for α in Part (vi) and calculate it in terms of only the known parameters P,q,r,k (hint: Substitute the formula $x^*=\alpha P^{-1}q$ into the optimality condition and write it in terms of α).

Solution:

i)
$$\nabla q^{\top} x = q$$

ii)
$$\nabla x^{\top} P x$$

Step 1: Expand the quadratic form

First, let's write out what $x^{\top}Px$ means: $\mathbf{x}^{\top}Px = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i p_{ij} x_j$ where p_{ij} is the element in the i-th row and j-th column of P.

Step 2: Calculate the partial derivatives

To find the gradient, we need to calculate the partial derivative with respect to each x_k : $\frac{\partial}{\partial x_k}(x^\top P x) = \frac{\partial}{\partial x_k} \sum_{i=1}^n \sum_{j=1}^n x_i p_{ij} x_j$

Using the product rule and noting that p_{ij} is constant: $\frac{\partial}{\partial x_k}(x^\top P x) = \sum_{i=1}^n p_{ik} x_i + \sum_{j=1}^n p_{kj} x_j$

Step 3: Simplify using matrix notation

We can write this more compactly as: $\frac{\partial}{\partial x_k}(x^\top P x) = (P x)_k + (P^\top x)_k$ where $(P x)_k$ denotes the k-th element of the vector Px.

Step 4: Combine results for all k

Combining the results for all k, we get the gradient vector: $\nabla x^{\top} P x = P x + P^{\top} x = 2P x$ as P is symmetric.

iii)
$$\nabla (x^\top P x)^k + q^\top x + r = 2k(x^\top P x)^{k-1} P x + q$$

iv)
$$2k(x^{*\top}Px^{*})^{k-1}Px^{*} + q = 0$$

v)

Let assume that (9) has a local minimum. This means (iv) has a solution.

This means there exist a x^* st. $2k(x^{*\top}Px^*)^{k-1}Px^* + q = 0 => -2k(x^{*\top}Px^*)^{k-1}Px^* = q$ This means that q is in the range of P which is a contradiction.

vi)
$$2k(x^{*\top}Px^*)^{k-1}Px^* + q = 0 => -2k(x^{*\top}Px^*)^{k-1}Px^* = q$$
 Since P is invertible, we have $x^* = \frac{1}{-2k(x^{*\top}Px^*)^{k-1}}P^{-1}q$
$$\alpha = \frac{1}{-2k(x^{*\top}Px^*)^{k-1}}$$