Anubhab Ray Total MLAssist - Personalised DPP

Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Atomic Structure:

52.		locity of 90 ms. If the uncertainty in its velocity is × 10m. (Rounded off to the nearest integer) [Given: h = 6.63 × 10Js] [JEE Main (April) 2021]				
Ans.	1					
58.	If wavelength of the first line of the Paschen series of hydrogen atom is 720 nm, then the wavelength of the second line of this series is nm. (Nearest integer)					
Ans.	[JEE Main (April) 2023]					
46.	The ratio of the shortest wavelength of two special series of hydrogen spectrum is found to be					
40.	about 9. The spectral series are :	[JEE Main (April) 2019]				
	(1) Paschen and Pfund	(2) Balmer and Brackett				
	(3) Lyman and Paschen	(4) Brackett and Pfund				
36.		10 Å are subjected to a metal sheet having work velocity of photoelectrons with maximum Kinetic				
	(A) 0, no emission will occur	(B) 2.18×10^6 m/s				
	(C) $2.18\sqrt{2} \times 10^6 \text{ m/s}$	(D) 8.72 × 10 ⁶ m/s				

- 6. 1st excitation potential for the H-like (hypothetical) sample is 24 V. Then:
 - (A) Ionisation energy of the sample is 36 eV
 - (B) Ionisation energy of the sample is 32 eV
 - (C) Binding energy of 3rd excited state is 2 eV
 - (D) 2^{nd} excitation potential of the sample is $\frac{32 \times 8}{9}$ V

Coordination Chemistry:

- EDTA⁴⁻ is ethylenediaminetetraacetate ion. The total number of N-Co-O bond angles in [Co(EDTA)]⁻¹ complex ion is
 [JEE 2013]
- 26. Consider the following statements:

According the Werner's theory.

- (a) Ligands are connected to the metal ions by covalent bonds.
- (b) Secondary valencies have directional properties
- (c) Secondary valencies are non-ionisable

Of these statements:

(A) a, b and c are correct

(B) b and c are correct

(C) a and c are correct

- (D) a and b are correct
- 13. Which of the following is correct about?

Tetraamminedithiocyanato-Scobalt(III) tris(oxalato)cobaltate(III)

- (A) formula of the complex is [Co(SCN)₂(NH₃)₄][Co(ox)₃]
- (B) It is a chelating complex and show linkage isomerism.
- (C) It shows optical isomerism.
- (D) It shows geometrical isomerism.
- Among TiF₆²⁻, CoF₆³⁻, Cu₂Cl₂ and NiCl₄²⁻ the coloureless species are:
 - (A) CoF63- and NiCl42-

(B) TiF62- and CoF63-

(C) NiCl₄²⁻ and Cu₂Cl₂

(D) TiF62- and Cu2Cl2

28.	Solid State: The coordination number of a metal crystallising in a hcp structure is [JEE-2000]							
	(A) 60 m	(B) 30 m	(C) 40	m (D)) 20 m			
2.	A person standing on the bank of a river observes that the angle of elevation of the top a tree on the opposite bank of the river is 60° and when he retires 40 meters away from the tree the angle of elevation becomes 30°. The breadth of the river is [AIEEE 2004]							
	$\tan A + \tan B + \tan^2 A + \tan^2 B + \tan^3 A + \tan^3 B = 70$ find the angle A and B in radians.							
3.	In a right angled triangle, acute angles A and B satisfy							
5.	If $0 < x < \pi$ and (A) $\frac{(1-\sqrt{7})}{4}$	$d\cos x + \sin x = 1/2,$ $(B) \frac{(4-\sqrt{7})}{3}$	then tan x is $(C) - \frac{C}{2}$	$\frac{4+\sqrt{7})}{3}$ (D)	[AIEEE 2006] $\frac{(1+\sqrt{7})}{4}$			
	(C) $\tan\left(\frac{\alpha}{2}\right) + \sqrt{2}$	$\overline{3}\tan\left(\frac{\beta}{2}\right) = 0$	(D) √3	$\tan\left(\frac{\alpha}{2}\right) + \tan\left(\frac{\beta}{2}\right)$	= 0			
	the following is $(A) \tan \left(\frac{\alpha}{2}\right) - \sqrt{2}$		(B) √3	$\tan\left(\frac{\alpha}{2}\right) - \tan\left(\frac{\beta}{2}\right)$	EE Advanced 2017] = 0			
13.	Let α and β be nonzero real numbers such that $2(\cos\beta-\cos\alpha)+\cos\alpha\cos\beta=1$. Then which of							
4.	If the product (sin1°)(sin3°)(sin5°)(s	in7°)(sin8	$(39^\circ) = \frac{1}{2^{n'}}$ then fire	nd the value of n			
			Compound Angle	e:				
	(A) sp ³ , sp ³	(B) sp ³ , dsp ²	(C) dsp ² , sp ³	(D) dsp ² ,	dsp ²			
16.	 Both [Ni(CO)₄] and [Ni(CN)₄]²⁻ are diamagnetic. The hybridisations of nickel complexes, respectively, are 							

31.	If the anions (A) form hexagonal closest packing and cations (C) occupy only 2/3 octahedral							
	voids in it, then the general formula of the compound is							
	(A) CA	(B) CA ₂	(C) C ₂ A ₃	(D) C ₃ A ₂				
PROBLEMS BASED ON IONIC CRYSTAL								
28.	The size of an octahedral void formed in a closest packed lattice as compared to tetrahedral vois							
	(A) Equal	(B) Smaller	(C) Larger	(D) Not definite				
22.	KF crystallizes in	the NaCl type str	ucture. If the radi	us of K* ions 132 pm and that	of			
	F- ion is 135 pm, what is the shortest K-F distance? What is the edge length of the unit cell? What							

- 43. Strongly heated ZnO crystal can conduct electricity. This is due to
 - (A) Movement of extra Zn2+ ions present in the interstitial sites
 - (B) Movement of electrons present in the interstitial sites
 - (C) Movement of oxide ions

is the closet K–K distance?

(D) None of these

Functions:

1. If the equation $(p^2 - 4)(p^2 - 9)x^3 + \left\lfloor \frac{p-2}{2} \right\rfloor x^2 + (p-4)(p^2 - 5p + 6)x + \{2p-1\} = 0$ is satisfied by all values of x in (0,3] then sum of all possible integral values of 'p' is (A) 0 (B) 5 (C) 9 (D) 10

23. Let $f: (1, 3) \to R$ be a function defined by $f(x) = \frac{x[x]}{1+x^2}$ where [x] denotes the greatest integer $\le x$.

Then the range of f is: [JEE - Main 2020] $(2, 1) \quad (3, 4) \quad (2, 3) \quad (3, 4)$

(A) $\left(\frac{2}{5}, \frac{1}{2}\right) \cup \left(\frac{3}{5}, \frac{4}{5}\right]$ (B) $\left(\frac{2}{5}, \frac{4}{5}\right]$ (C) $\left(\frac{3}{5}, \frac{4}{5}\right)$ (D) $\left(\frac{2}{5}, \frac{3}{5}\right] \cup \left(\frac{3}{4}, \frac{4}{5}\right)$

Let $f(x)x^2, x \in R$. For any $A \subseteq R$, define $g(A) = \{x \in R : f(x) \in A\}$. If S = [0,4], then which one of 12. the following statemetns is not true? [JEE - Main 2019]

(A) f(g(S)) = S (B) $g(f(f)) \neq S$ (C) g(f(S)) = g(S) (D) f(g(S)) = f(S)

Consider, $f(x) = \{x + [\log_2 (2 + x)]\} +$ 10.

$$\{x + [\log_2 (2 + x^2)]\} + \cdots + \{x + [\log_2 (2 + x^{10})]\}$$

Identify the correct statement(s)

(A) [f(e)] = 7.

(B) $f(\pi) = 20\pi - 60$.

(C) the number of solutions of the equation f(x) = x is 9.

(D) the number of solutions of the equation f(x) = x is 10.

[Note : {y} and [y] denotes the fractional part function and greatest integer function respectively.]

INTEGERTYPE

The domain of the function $f(x) = \frac{1}{\sqrt{|x|-x}}$ is :-1.

[AIEEE 2011]

(A) (−∞, 0)

(B) $(-\infty, \infty)$ - $\{0\}$ (C) $(-\infty, \infty)$ (D) $(0, \infty)$