Equivalence Relations

- Reminders: Exam 2 on Wed 4/7 (review materials on ilearn by tomorrow)
 - · No class/OH Wednesday
 - · This week's HW due Friday
- <u>Video</u>: An <u>equivalence relation</u> on a set S is a "notion of equivalence", denoted a~b.

(Prototypical example: S= Z and a~b means a = b mod 3)

(-3) (-2) (-1) (5) (1) (2) (3) (4) (5) (7)

= things ~0 = things ~1 = things ~2

Worksheet 25: Equivalence Relations

Math 335

Reporter:

Recorder:

Equity Manager:

1. Let $G = \mathbb{Z}_{12}$ (which is a group under addition modulo 12), and let

$$H = \{0, 3, 6, 9\}.$$

Define an equivalence relation \sim on G by

$$a \sim b \iff b - a \in H.$$

For example, $1 \sim 7$ because $7 - 1 = 6 \in H$, and $11 \sim 2$ because $2 - 11 = 3 \in H$. (The fact that 2-11=3 is because we're in \mathbb{Z}_{12} .)

(a) Find all the elements of [1].

$$\begin{bmatrix} 1 \end{bmatrix} = \begin{cases} b \in \mathbb{Z}_{12} & b \sim 1 \end{cases}$$

$$= \begin{cases} 1, 4, 7, 10 \end{cases}$$

$$4 \sim 1 \text{ because}$$

$$4 - 1 = 3 \in H$$

$$1 - 4 = 9 \in H$$

(b) Find all the elements of [2].

$$[3] = \{b \in \mathbb{Z}_{12} \mid b \sim 2\}$$

$$= \{a, 5, 8, 11\}, 5 \sim 2, b \in \mathbb{Z}_{2} \in \mathbb{Z}_{2}$$

$$= \{a, 5, 8, 11\}, 5 \sim 2, b \in \mathbb{Z}_{2} \in \mathbb{Z}_{2}$$

(c) Do you recognize the sets showing up in parts (a) and (b)?

$$[1] = 1 + H$$

 $[a] = a + H$

2. Generalizing Problem 1, let G be any group and let $H \subseteq G$ be a subgroup. Define a relation on G by

$$a \sim b \quad \Leftrightarrow \quad a^{-1}b \in H.$$

Let's try to prove that \sim really is an equivalence relation. That is, for any $a, b, c \in G$, prove:

Reflexive (a) $a \sim a$

This means a a a $\in H$, which is true because H is a subgroup so $e \in H$.

Symmetric (b) $a \sim b \Rightarrow b \sim a$

Suppose and

$$= > 0^{-1} b \in H \qquad because H is a$$

$$= > (a^{-1}b)^{-1} \in H \qquad subgroup so it$$

$$= > b^{-1}a \in H, i.e., bwa.$$

Transitive (c) $(a \sim b \text{ and } b \sim c) \Rightarrow a \sim c.$

Suppose
$$a \sim b$$
 and $b \sim c$
 $\Rightarrow a^{-1}b \in H$ and $b^{-1}c \in H$
 $\Rightarrow a^{-1}b b \sim c \in H \leftarrow (because H is a)$
 $\Rightarrow a^{-1}c \in H$, i.e., $a \sim c$.

3. Challenge: Let \sim be the equivalence relation from Problem 2, and let $a \in G$. I claim that [a] is something we've met before...what is it? Can you prove your answer?