Macroscopic Heat Transfer Model for Additive Manufacturing Testbed Problem

Yuanxun Bao and Yigong Qin

June 26, 2020

1 Macroscopic model

We model the macroscopic heat transfer in the rectangular domain Ω

$$\frac{\partial \rho c_p T}{\partial t} = \nabla \cdot (K \nabla T) - \frac{\partial \rho L f_l(T)}{\partial t} \quad \text{in } \Omega$$
 (1)

$$\frac{\partial T}{\partial t} = \alpha \Delta T - \frac{L}{c_p} \frac{\partial f_l(T)}{\partial t} \quad \text{in } \Omega$$
 (2)

with boundary conditions

$$(-K\nabla T) \cdot \hat{n} = -q_s + h(T - T_e) + \epsilon \sigma (T^4 - T_e^4) \quad \text{on } \Gamma_{top}$$
(3)

$$(-K\nabla T) \cdot \hat{n} = 0 \quad \text{on } \Gamma \backslash \Gamma_{top}$$
 (4)

where K is the heat conductivity, α is thermal diffusivity, h is the convective heat transfer coefficient, ϵ is the thermal radiation coefficient, σ is the Stefan-Boltzmann constant, and L is the latent heat. The fluid mass fraction f_l is modeled as

$$f_l(T) = \begin{cases} 1 & T > T_l \\ \frac{T - T_s}{T_l - T_s} & T_s \le T \le T_l \\ 0 & T < T_s \end{cases}$$
 (5)

where T_l and T_s are the liquidus and solidus temperature, respectively. The heat source q_S is modeled as a moving Gaussian

$$q_s(x,t) = \frac{2Q\eta}{\pi r_b^2} \exp\left(-\frac{2(x-V_s t)^2}{r_b^2}\right),\tag{6}$$

where Q is the source of heat power, η is the absorption coefficient, r_b is the radius of heat source and V_s is the scanning speed.

2 Macroscopic model 2

We consider the following macroscopic heat transfer model

$$\rho C_p(T) \frac{\partial T}{\partial t} = K \nabla^2 T, \tag{7}$$

where $C_p(T)$ is the heat capacity which can be modeled as

$$C_p(T) = C_{p,solid}(1 - \alpha(T)) + C_{p,liquid}\alpha(T) + L_{s \to l}\frac{d\alpha}{dT},$$
(8)

where $\alpha(T)$ is the phase transition function

$$\alpha(T) = \begin{cases} 0 & T < T_s, \\ \frac{1}{2}(1 - \cos(\pi(T - T_s)/(T_l - T_s))) & T_s \le T \le T_l, \\ 1 & T > T_l. \end{cases}$$
(9)

with boundary conditions

$$(-K\nabla T) \cdot \hat{n} = -q_s + h(T - T_e) + \epsilon \sigma (T^4 - T_e^4) \quad \text{on } \Gamma_{top}$$
 (10)

$$(-K\nabla T) \cdot \hat{n} = 0 \quad \text{on } \Gamma \backslash \Gamma_{top}$$
 (11)

where K is the heat conductivity, α is thermal diffusivity, h is the convective heat transfer coefficient, ϵ is the thermal radiation coefficient, σ is the Stefan-Boltzmann constant, and $L_{s\rightarrow l}$ is the latent heat.

The heat source q_S is modeled as a moving Gaussian

$$q_s(x,t) = \frac{2Q\eta}{\pi r_b^2} \exp\left(-\frac{2(x-V_s t)^2}{r_b^2}\right),$$
 (12)

where Q is the source of heat power, η is the absorption coefficient, r_b is the radius of heat source and V_s is the scanning speed.

The microscopic model is coupled to the macroscopic model through the temperature field, where:

$$G = ||\nabla T||_2 \tag{13}$$

$$R = \frac{1}{G} \frac{\partial T}{\partial t} \tag{14}$$

3 Macro model discretization

3.1 Forward Euler scheme

We discretize the domain Ω using $(N+1) \times (M+1)$ grid with meshwidth h. Lx = Nh, x = ih. Let $T_{ij}^n = T(ih, jh, t_n)$ for i = 0, ..., N and j = 0, ..., M.

$$\frac{T_{i,j}^{n} - T_{i,j}^{n-1}}{\Delta t} = \alpha \frac{T_{i,j+1}^{n} + T_{i,j-1}^{n} + T_{i-1,j}^{n} + T_{i+1,j}^{n} - 4T_{i,j}^{n}}{h^{2}} - L_{m} \frac{\partial f_{l}(T)}{\partial t} \bigg|_{t=t_{-}}$$
(15)

At the top boundary (j = 0), we treat the convection and radiation term explicitly,

$$-K\frac{T_{i,-1}^n - T_{i,1}^n}{2h} = -q_s(ih, t_{n-1}) + h(T_{i,0}^{n-1} - T_e) + \epsilon\sigma((T_{i,0}^{n-1})^4 - T_e^4), \ i = 0, \dots, N$$
 (16)

$$T_{i,-1}^{n} = T_{i,1}^{n} - \frac{2h}{K} \left(-q_s(ih, t_{n-1}) + h(T_{i,0}^{n-1} - T_e) + \epsilon \sigma((T_{i,0}^{n-1})^4 - T_e^4) \right) = T_{i,1}^{n} + U_i^{n-1}, \ i = 0, \dots, N$$

$$(17)$$

Other boundaries:

$$T_{iM+1}^n = T_{iM-1}^n, \ i = 0, \dots, N$$
 (18)

$$T_{-1,j}^n = T_{1,j}^n, \ j = 0, \dots, M$$
 (19)

$$T_{N-1,j}^n = T_{N+1,j}^n, \ j = 0, \dots, M$$
 (20)

Eventually, the linear system of equation should look like

$$(\mathbf{I} - C\mathbf{L})\mathbf{T}^n + \mathbf{N}(\mathbf{T}^n) = \mathbf{T}^{n-1} + \mathbf{N}(\mathbf{T}^{n-1}) + BC \text{ terms}$$
(21)

where C is CFL number, \mathbf{L} is the discrete 2D laplacian with Neumann BCs and \mathbf{N} is a nonlinear function due the implicit treatment of latent heat term. If we treat the latent heat term explicitly, we need two starting values initially.

3.2 Crank-Nicolson

First, we absorb the latent heat to the left hand side, rewrite the equation in Crank-Nicolson scheme:

$$\mathbf{La}(T_{i,j}^{n-1})\left(T_{i,j}^{n} - T_{i,j}^{n-1}\right) = \frac{C}{2}\left(T_{i,j+1}^{n} + T_{i,j-1}^{n} + T_{i-1,j}^{n} + T_{i+1,j}^{n} - 4T_{i,j}^{n}\right) + \frac{C}{2}\left(T_{i,j+1}^{n-1} + T_{i,j-1}^{n-1} + T_{i-1,j}^{n-1} + T_{i+1,j}^{n-1}\right)$$
(22)

$$\mathbf{La}(\mathbf{T}^{n-1})\left(\mathbf{T}^n - \mathbf{T}^{n-1}\right) = \frac{C}{2}\mathbf{L}(\mathbf{T}^n) + \frac{C}{2}\mathbf{L}(\mathbf{T}^{n-1})$$
(23)

Add boundary condition (check if the convergence is right)

$$(\mathbf{L}\mathbf{a}(\mathbf{T}^{n-1}) - \frac{C}{2}\mathbf{L})\mathbf{T}^{n} = (\mathbf{L}\mathbf{a}(\mathbf{T}^{n-1}) + \frac{C}{2}\mathbf{L})\mathbf{T}^{n-1} + BC \text{ terms}$$
(24)

If there is no latent heat, La = I

3.3 Symmetrization

 $\mathbf{La}(\mathbf{T}^{n-1})$ is diagonal, in order to make the system symmetric, pre-multiply a matrix Q.

$$Q\left(\left(\mathbf{La}(\mathbf{T}^{n-1}) - \frac{C}{2}\mathbf{L}\right)\mathbf{T}^{n}\right) = Q\left(\left(\mathbf{La}(\mathbf{T}^{n-1}) + \frac{C}{2}\mathbf{L}\right)\mathbf{T}^{n-1} + BC \text{ terms}\right)$$
(25)

4 Macro model numerical tests

4.1 No latent heat term

$$\frac{T_{i,j}^n - T_{i,j}^{n-1}}{\Delta t} = \alpha \frac{T_{i,j+1}^n + T_{i,j-1}^n + T_{i-1,j}^n + T_{i+1,j}^n - 4T_{i,j}^n}{h^2}$$
(26)

for top boundary (j=0)

$$\frac{T_{i,0}^{n} - T_{i,0}^{n-1}}{\Delta t} = \alpha \frac{T_{i,1}^{n} + T_{i,-1}^{n} + T_{i-1,0}^{n} + T_{i+1,0}^{n} - 4T_{i,0}^{n}}{h^{2}} = \alpha \frac{2T_{i,1}^{n} + U_{i}^{n-1} + T_{i-1,0}^{n} + T_{i+1,0}^{n} - 4T_{i,0}^{n}}{h^{2}}$$
(27)

BC terms =
$$CU_i^{n-1}$$
, $j = 0, i = 0, ..., N$ (28)

$$U_i^{n-1} = -\frac{2h}{K} \left(-q_s(ih, t_{n-1}) + h_c(T_{i,0}^{n-1} - T_e) + \epsilon \sigma((T_{i,0}^{n-1})^4 - T_e^4) \right), \ i = 0, \dots, N \quad (29)$$

$$q_s(ih, t_n) = q_0 \exp\left(-\frac{2(ih - V_s t_n)^2}{r_b^2}\right) = q_0 \exp\left(-\frac{2(i - V_s' t_n)^2}{r_b'^2}\right), \ i = 0, \dots, N \quad (30)$$

4.1.1 Test 1

Parameters: K = 0.01, ρ = 1.0, C_p = 1.0, Q = 3, η = 1, r_b = 0.2, V_s = 0.075. Up boundary cooling parameters: h_c = 0.005, ϵ = 0.005, σ = 5.67E-8, T_e = 0. Computation domain: L_x = 8, L_y = 2.

Fig. 1: Temperature distribution without latent heat.

(a) no surface cooling $h_c = 0$, $\epsilon = 0$

(b) $h_c = 0.005$, $\epsilon = 0.005$

4.1.2 Self Convergence Study (with convection and radiation)

Ground truth: dt = 0.00625, $h = L_x/2048$

Trial: dt = 0.025, 0.1, 0.4, 1.6; h = $L_x/1024$, $L_x/512$, $L_x/256$, $L_x/128$

Fig. 2: Self convergence.

4.2 Latent heat term implicit-explicit

Implicit:

$$\frac{\partial f_l(T)}{\partial t} = \frac{f_l^n(T) - f_l^{n-1}(T)}{\Delta t} \tag{31}$$

Explicit:

$$f_l^n(T) = \begin{cases} 1 & T^{n-1} > T_l \\ \frac{T^n - T_s}{T_l - T_s} & T_s \le T^{n-1} \le T_l \\ 0 & T^{n-1} < T_s \end{cases}$$
(32)

$$f_l^{n-1}(T) = \begin{cases} 1 & T^{n-1} > T_l \\ \frac{T^{n-1} - T_s}{T_l - T_s} & T_s \le T^{n-1} \le T_l \\ 0 & T^{n-1} < T_s \end{cases}$$
(33)

Latent heat term =
$$\begin{cases} 0 & T^{n-1} > T_l \\ -\frac{L_m}{\Delta t} \frac{T^n - T^{n-1}}{T_l - T_s} & T_s \le T^{n-1} \le T_l \\ 0 & T^{n-1} < T_s \end{cases}$$
(34)

4.2.1 Test2

Parameters: $L=200, T_s=40, T_l=110$

Fig. 3: Temperature distribution with and without latent heat. Surface cooling is included.

Fig. 4: Self convergence.

GMRES solver (Tol = 1e-9):

For mesh width h = $L_x/1024, L_x/512, L_x/256, L_x/128$

Iterations per time step without precondtioner: 58, 54, 48, 49, 50

Iterations per time step with precondtioner: 20, 17, 16,... but took longer time to run

5 Microscopic model

This model also makes the frozen temperature approximation [?, ?, ?, ?]:

$$T(z,t) = T_0 + G(z - Rt),$$
 (35)

where $T_0 = T_m - |m|c_l^0$ and $c_l^0 = c_{\infty}/k$.

The compute set of phase-field equations are

$$\tau_{\phi}(\hat{n}, z) \frac{\partial \phi}{\partial t} = W_0^2 \left\{ \nabla \cdot \left[a_s(\hat{n})^2 \nabla \phi \right] + \partial_x \left(|\nabla \phi|^2 a_s(\hat{n}) \frac{\partial a_s(\hat{n})}{\partial (\partial_x \phi)} \right) + \partial_z \left(|\nabla \phi|^2 a_s(\hat{n}) \frac{\partial a_s(\hat{n})}{\partial (\partial_z \phi)} \right) \right\}$$

$$+ \phi - \phi^3 - \lambda (1 - \phi^2)^2 \left(U + \frac{z - Rt}{l_T} \right), \tag{36}$$

$$\tau_U \frac{\partial U}{\partial t} = \nabla \cdot [D_l d(\phi) \nabla U + \vec{j}_{at}] + [1 + (1 - k)U] \frac{1}{2} \frac{\partial \phi}{\partial t}, \tag{37}$$

where

$$U = \frac{1}{1-k} \left(\frac{c/c_l^0}{(1-\phi)/2 + k(1+\phi)/2} - 1 \right), \quad d(\phi) = (1-\phi)/2.$$
 (38)

Other parameters and terms are defined as

$$\tau_{\phi}(\hat{n}, z) = \tau_0(a_s(\hat{n}))^2 \left[1 - (1 - k) \frac{(z - Rt)}{l_T} \right]$$
(39)

$$\tau_U = \frac{1+k}{2} - \frac{1-k}{2}\phi \tag{40}$$

$$\vec{j}_{at} = \frac{1}{2\sqrt{2}}W_0[1 + (1-k)U]\frac{\nabla\phi}{|\nabla\phi|}\frac{\partial\phi}{\partial t}$$
(41)

$$a_s(\hat{n}) = (1 - 3\delta) \left\{ 1 + \frac{4\delta}{1 - 3\delta} (\hat{n}_x^4 + \hat{n}_z^4) \right\}$$
 (42)

$$\hat{n} = \frac{\nabla \phi}{|\nabla \phi|} \tag{43}$$

$$l_T = \frac{|m|c_{\infty}(1/k - 1)}{G} \tag{44}$$

$$\lambda = \frac{5\sqrt{2}}{8} \frac{W_0}{d_0} \tag{45}$$

$$d_0 = \frac{\Gamma}{|m|c_{\infty}(1/k - 1)} = \frac{\gamma T_m/L}{|m|c_{\infty}(1/k - 1)}$$
(46)

$$\tau_0 = \frac{0.6267\lambda W_0^2}{D_l} \tag{47}$$

The boundary conditions are periodic in the x-direction and no-flux in the z-direction.

symbol	meaning	values	units
c_{∞}	nominal solute concentration	0.4	wt.%
c_l^0	equilibrium concentration	c_{∞}/k	$\mathrm{wt.\%}$
m	liquidus slope	-3.02	K wt./ $\%$
k	interface solute partition coefficient	0.1-0.3	
T_0	reference solidus temperature		
T_m	melting temperature of pure material A		
l_T	thermal length		mm
γ	average surface tension		
δ	strength of the surface tension anisotropy	0.007 or 0.011	
Γ	Gibbs-Thompson coefficient	6.4×10^{-8}	Km
d_0	capillary length	$\approx 10^{-3}$	$\mu\mathrm{m}$
G	thermal gradient	10-300	K/cm
R	pulling speed	8-32	$\mu\mathrm{m/s}$
D_l	solute diffusion coefficient	10^{-9}	m^2/s
L	latent heat		
W_0	interface thickness	40-90	d_0
Δx	mesh size	0.4-0.8	W_0

5.1 Non-dimensionalized equations

We use the interfacial width W_0 as the length scale and τ_0 as the time scale to non-dimensionalize the equations:

$$\left[1 - (1 - k)\frac{(z - \tilde{R}t)}{\tilde{l}_{T}}\right] a_{s}(\hat{n}^{2})\frac{\partial\phi}{\partial t} = \nabla \cdot \left[a_{s}(\hat{n})^{2}\nabla\phi\right] + \\
\partial_{x}\left(|\nabla\phi|^{2}a_{s}(\hat{n})\frac{\partial a_{s}(\hat{n})}{\partial(\partial_{x}\phi)}\right) + \partial_{z}\left(|\nabla\phi|^{2}a_{s}(\hat{n})\frac{\partial a_{s}(\hat{n})}{\partial(\partial_{z}\phi)}\right) \\
+ \phi - \phi^{3} - \lambda(1 - \phi^{2})^{2}\left(U + \frac{z - \tilde{R}t}{\tilde{l}_{T}}\right) \qquad (48)$$

$$\left(\frac{1 + k}{2} - \frac{1 - k}{2}\phi\right)\frac{\partial U}{\partial t} = \nabla \cdot \left[\tilde{D}_{l}d(\phi)\nabla U + \vec{j}_{at}\right] + \left[1 + (1 - k)U\right]\frac{1}{2}\frac{\partial\phi}{\partial t}, \quad (49)$$

where the non-dimensional parameters are $\tilde{R} = R\tau_0/W$, $\tilde{D} = D\tau_0/W_0^2$ and $\tilde{l}_T = l_T/W_0$.

5.2 Micro model discretization

5.2.1 ϕ -equation

We first discretize the ϕ -equation in ??. The challenge is to discretize the anisotropic surface tension term. We will make a few simplications. First, note the anisotropic surface tension can be parametrized by $\theta \equiv \arctan(\phi_y/\phi_x)$, i.e.,

$$a_s(\theta) = 1 + \delta \cos(4\theta) \tag{50}$$

$$a_s'(\theta) = -4\delta \sin(4\theta) \tag{51}$$

By using some trigonometric identities (check), and $\cos(\theta) = \phi_x/|\nabla \phi|$ and $\sin(\theta) = \phi_y/|\nabla \phi|$, we have

$$\cos(4\theta) = 1 - 8\cos^2(\theta)\sin^2(\theta) = 1 - 8\frac{\phi_x^2\phi_z^2}{|\nabla\phi|^4}$$
 (52)

$$\sin(4\theta) = 4\sin(\theta)\cos(\theta)(\cos^2(\theta) - \sin^2(\theta)) = 4\frac{(\phi_x^3\phi_z - \phi_x\phi_z^3)}{|\nabla\phi|^4}.$$
 (53)

We can also write (see Appendix B of [?])

$$\partial_x \left(|\nabla \phi|^2 a_s(\hat{n}) \frac{\partial a_s(\hat{n})}{\partial (\partial_x \phi)} \right) = \partial_x (-a_s'(\theta) a_s(\theta) \partial_z \phi) \tag{54}$$

$$\partial_z \left(|\nabla \phi|^2 a_s(\hat{n}) \frac{\partial a_s(\hat{n})}{\partial (\partial_z \phi)} \right) = \partial_z (a_s'(\theta) a_s(\theta) \partial_x \phi). \tag{55}$$

Therefore,

$$\nabla \cdot \left[a_{s}(\hat{n})^{2} \nabla \phi \right] + \partial_{x} \left(|\nabla \phi|^{2} a_{s}(\hat{n}) \frac{\partial a_{s}(\hat{n})}{\partial (\partial_{x} \phi)} \right) + \partial_{z} \left(|\nabla \phi|^{2} a_{s}(\hat{n}) \frac{\partial a_{s}(\hat{n})}{\partial (\partial_{z} \phi)} \right)$$

$$= \partial_{x} \underbrace{\left[a_{s}^{2}(\theta) \partial_{x} \phi - a_{s}'(\theta) a_{s}(\theta) \partial_{z} \phi \right]}_{=:F} + \partial_{z} \underbrace{\left[a_{s}^{2}(\theta) \partial_{z} \phi + a_{s}'(\theta) a_{s}(\theta) \partial_{x} \phi \right]}_{=:J}$$

$$(56)$$

We define $\phi(i,j)$ on the cell nodes. Therefore, ?? is discretized as

$$\frac{F(i+1/2,j) - F(i-1/2,j)}{\Delta x} + \frac{J(i,j+1/2) - J(i,j-1/2)}{\Delta z}$$
 (57)

Note F, J are defined on cell edges. For example, to evaluate $F(i + \frac{1}{2}, j)$, we need to evaluate

$$a_s(\theta)\bigg|_{i+1/2,j} = \left(1 - 3\delta + 4\delta \frac{\phi_x^4 + \phi_z^4}{|\nabla \phi|^4}\right)\bigg|_{i+1/2,j}$$
(58)

$$a_s'(\theta)\bigg|_{i+1/2,j} = -16\delta \frac{(\phi_x^3 \phi_z - \phi_x \phi_z^3)}{|\nabla \phi|^4}\bigg|_{i+1/2,j}$$
(59)

$$\partial_x \phi \bigg|_{i+1/2,j} = \frac{\phi_{i+1,j} - \phi_{i,j}}{\Delta x} \tag{60}$$

$$\partial_z \phi \bigg|_{i+1/2, j} = \frac{\phi_{i,j+1} + \phi_{i+1,j+1} - \phi_{i,j-1} - \phi_{i+1,j-1}}{4\Delta z}$$
(61)

Note evaluating $\partial_z \phi|_{i+1/2,j}$ requires averaging nearby cells. Please work out the details for F(i-1/2,j), J(i,j+1/2) and J(i,j-1/2). Many of them are redundant. I think you only need $\partial_x \phi|_{i,j+1/2}$ and $\partial_z \phi|_{i,j+1/2}$.

Bao: Note that you need both $a_s(\nabla \phi_{i\pm 1/2,j\pm 1/2})$ for $a_s(\hat{n})$ on the right-hand-side and $a_s(\nabla \phi_{i,j})$ for $\tau_{\phi}(\hat{n},z)$ on the left-hand-side.

Once we discretize ??, the rest is straightforward. Please fill in the details.

5.2.2 Misorientation

$$\partial_{x'}\phi = \cos\alpha_0\partial_x\phi + \sin\alpha_0\partial_y\phi \tag{62}$$

$$\partial_{z'}\phi = -\sin\alpha_0\partial_x\phi + \cos\alpha_0\partial_z\phi \tag{63}$$

$$\cos(4(\theta - \alpha_0)) = 1 - 8\frac{\phi_{x'}^2 \phi_{z'}^2}{|\nabla \phi|^4}$$
(64)

$$\sin(4(\theta - \alpha_0)) = 4 \frac{(\phi_{x'}^3 \phi_{z'} - \phi_{x'} \phi_{z'}^3)}{|\nabla \phi|^4}.$$
 (65)

5.2.3 Divide-by-zero in anisotropy

On page 66 of [?], whenever $|\nabla \phi(i,j)|^2 \le \epsilon$, say $\epsilon = 10^{-8}$, we just set

$$a_s(\hat{n}) = 1 - 3\delta,$$

$$a'_s(\hat{n}) = 0.$$

In [?], Karma explained the need for $a_s(\hat{n})$ in the definition τ_{ϕ} on the LHS of ?? because it is related to the correct kinetics in the Stefan problem. Fortunately this term is never zero so it is safe to divide.

5.2.4 U-equation

• A routine that takes in edge-centered vector data and outputs the divergence at cell nodes, i.e.,

$$\nabla \cdot \mathbf{u} = \frac{u_{i+1/2,j} - u_{i-1/2,j}}{\Delta x} + \frac{v_{i,j+1/2} - v_{i,j-1/2}}{\Delta z}$$
 (66)

• we need the following terms at (i + 1/2, j) and (i, j + 1/2)

$$[(1-\phi)U_x]_{i+1/2,j} = \left(1 - \frac{\phi_{i+1,j} + \phi_{i,j}}{2}\right) \frac{U_{i+1,j} - U_{i,j}}{\Delta x}$$
(67)

$$[(1-\phi)U_z]_{i,j+1/2} = \left(1 - \frac{\phi_{i,j+1} + \phi_{i,j}}{2}\right) \frac{U_{i,j+1} - U_{i,j}}{\Delta z}$$
(68)

(69)

• Similarly, for the anti-trapping flux \vec{j}_{at} , we need

$$\left[[1 + (1 - k)U] \frac{\phi_{x}}{|\nabla \phi|} \frac{\partial \phi}{\partial t} \right]_{i+1/2,j} =$$

$$\frac{1}{2} \left[[1 + (1 - k)U_{i+1,j}] \partial_{t} \phi_{i+1,j} + [1 + (1 - k)U_{i,j}] \partial_{t} \phi_{i,j} \right] \frac{\phi_{x}}{|\nabla \phi|} \Big|_{i+1/2,j}$$

$$\left[[1 + (1 - k)U] \frac{\phi_{y}}{|\nabla \phi|} \frac{\partial \phi}{\partial t} \right]_{i,j+1/2} =$$

$$\frac{1}{2} \left[[1 + (1 - k)U_{i,j+1}] \partial_{t} \phi_{i,j+1} + [1 + (1 - k)U_{i,j}] \partial_{t} \phi_{i,j} \right] \frac{\phi_{x}}{|\nabla \phi|} \Big|_{i+1/2,j}$$
(71)

Bao: The bottom line with finite difference is that: whenever the quantity is not defined on the target grid points, you just average nearby cell data.

Bao: I strongly recommend you read the appendices of [?], and page 65, page 101-102 of [?].

5.2.5 Initial condition

The initial condition is a planar interface perturbed with sinusoidal bumps:

$$\phi(x, z, t = 0) = 1 - \tanh\left(\frac{z - z_0 - A_0 \sin(2n\pi x/L_x)}{W_0}\right),\tag{72}$$

where z_0 is the initial height, A_0 is the amplitude to initial perturbation, and n is the number of sinusoidal bumps.

For the initial condition of U, we set $c_l = c_{\infty}, c_s = kc_l$ [?], which with the definition of $c_l^0 = c_{\infty}/k$, corresponds to $U \equiv -1$ in the whole system!

5.2.6 Noise

5.3 Simulation results

Fig. 5: sample initial condition for ϕ and U

Table 1: Parameters for SCN.

symbol	meaning	values	units
$c_{\infty}m$	nominal solute concentration	2	K
c_l^0	equilibrium concentration	c_{∞}/k	$\mathrm{wt.}\%$
k	interface solute partition coefficient	0.3	
δ	strength of the surface tension anisotropy	0.007	
Γ	Gibbs-Thompson coefficient	6.48×10^{-8}	Km
d_0	capillary length	1.3×10^{-2}	$\mu\mathrm{m}$
G	thermal gradient	140	K/cm
R	pulling speed	32	$\mu \mathrm{m/s}$
D_l	solute diffusion coefficient	10^{3}	$\mu\mathrm{m}^2/\mathrm{s}$
W_0	interface thickness	40-90	d_0
Δx	mesh size	0.4-0.8	W_0

Table 2: Simulation parameters

symbol	meaning	values	units
ϵ	divide-by-zero	1e-4	
Δx	mesh size	0.8	W_0
Δt	time step size	0.0005	$ au_0$
Λ	primary spacing	22.5	μm
A_p	amplitude of initial perturbation	0.2	W_0
L_x	length of computation domain	1	Λ
M_t	time steps	120000	

Fig. 6: phase field and concentration for SCN.

Fig. 7: phase field shape