1

Proyecto integrador DSP Filtrado de ruido con transformada de wavelet

Gatica, Isaias Martin, Santiago Saez, Lautaro Ándres Vidman, Xavier Harry

I. Introducción

En el siguiente informe estudiaremos los conceptos de las señales wavelets, transformada de wavelet, y como utilizarlos para filtrar ruido de señales unidimensionales y bidimensionales.

II. Marco teórico

Una Wavelet es una "pequeña onda" que tiene su energía concentrada en un período de tiempo determinado, son de duración definida, irregulares, lo que les permite adaptarse y converger de mejor manera a la señal que se quiere analizar. Las familias de estas wavelet se definen como:

$$\psi_{a,b}(t) = \frac{1}{\sqrt{a}} \psi(\frac{t-b}{a}) \quad a, b \in \mathbb{R} \quad ; a \neq 0.$$
 (1)

Donde a y b son los parámetros de escala y traslación respectivamente, se puede ver en la figura ?? como trabajan los parámetros a y b. El parámetro b, asociado a la traslación, hace que la wavelet recorra a la señal x(t) a través del tiempo. Mientras que el parámetro a, permite controlar el ancho de la wavelet.

Por otro lado, la transformada de wavelet queda definida como:

$$C_f(a,b) = \int_{-\infty}^{+\infty} x(t) \overline{\psi_{a,b}(t)} dt$$
 (2)

Donde $\psi_{a,b}(t)$ es la función que se utiliza para analizar a la señal x(t) que se quiera estudiar. Realizando una analogía con Fourier, el trabajo que realiza $\psi_{a,b}(t)$, es análogo al de las exponenciales complejas $e^{-j\omega t}$. El resultado de esta transformada es una familia de coeficientes $C_f(a,b)$ que representan de mejor manera la señal teniendo en cuenta la wavelet utilizada. Es notorio que el resultado es bidimensional ya que a y b son parámetros independientes. Donde a esta relacionado con la frecuencia que posee la señal y b nos brinda información del momento temporal que se analiza. Esto no permite realizar un analisis en tiempo-frecuencia como se mencionó anteriormente. Cabe recalcar que existen diferentes tipos de wavelets madres, en la figura ?? se pueden ver las más utilizadas:

Figura 1: Bases ortonormales de wavelets madres más utilizadas

Figura 2: Traslación y escalamiento de una wavelet

Debido a que los parámetros a y b pueden tomar infinitos valores se los limita utilizando el teorema de sampleo de Shanon para el cual:

$$a = 2$$
$$b = 1$$

Obteniendo la siguiente expresión para la familia de wavelet:

$$\psi_{ik}(t) = 2^{-j/2}\psi(2^{-j}t - k) \tag{3}$$

Para que esta función ψ sea una wavelet, las funciones $\{\psi_{j,k}\}_{\{j,k\}\in\mathbb{Z}}$ deben formar una base ortonormal de $L^2(\mathbb{R})$.

Con el fin de explicar este requerimiento es necesario explicar un concepto llamado Analisis Multi-Resolucíon.

Análisis Multi-Resolución

Un análisis multiresolución para $L^2(\mathbb{R})$ consiste en una secuencia de subespacios cerrados de $L^2(\mathbb{R})$, $\{V_j\}_{j\in\mathbb{Z}}$, y una función $\phi \in V_0$ tal que se cumplan las siguientes condiciones:

i Los espacios V_j están anidados, es decir:

$$\dots \subset V_{-1} \subset V_0 \subset V_1 \dots$$

ii
$$\overline{\cup_{j\in\mathbb{Z}}V_j}=L^2(\mathbb{R})$$
y $\cap j\in\mathbb{Z}V_j=0$

Definimos a los espacios Vj como los espacios de aproximación. Por otro lado, definimos a W_j como el complemento ortogonal de V_j en V_{j-1} esto nos permite plantear la siguiente relación:

$$V_{j-1} = V_j \oplus W_j \tag{4}$$

 W_j es llamado conjunto de detalle debido a que la proyección ortogonal de la señal en este espacio son los detalles y V_j espacio de aproximación ya que la proyección ortogonal de la señal sobre este espacio son las aproximaciones. Esto nos permite reescribir la ecuación ?? como:

$$A_{j-1}(t) = A_j(t) + D_j(t)$$
 (5)

Donde $A_j(t)$ se define como:

$$A_j(t) = \sum_{k \in \mathbb{Z}} \beta_{j,k} \phi_{j,k}(t) \tag{6}$$

Donde:

$$\beta_{j,k} = \langle x(t), \phi_{j,k}(t) \rangle = \int_{\mathbb{R}} x(t)\phi_{j,k}(t)dt$$
 (7)