МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ) ФИЗТЕХ-ШКОЛА ЭЛЕКТРОНИКИ, ФОТОНИКИ И МОЛЕКУЛЯРНОЙ ФИЗИКИ

Лабораторная работа № 4.7.3

Изучение поляризованного света

выполнил студент 2 курса группы Б04-006 **Белостоцкий Артемий**

Цель работы

Ознакомление с методами получения и анализа поляризованного света

В работе используются

- оптическая скамья с осветителем
- зеленый светофильтр
- два поляроида
- черное зеркало
- полированная эбонитовая пластинка
- стопа стеклянных пластинок
- слюдявые пластинки разной толщины
- пластинки в 1/4 и 1/2 длины волн
- пластинка чувствительного оттенка

Теоретические сведения

Естественный и поляризованный свет

Как известно, световые волны поперечны: электрический вектор ${\bf E}$ и магнитный вектор ${\bf H}$ (или ${\bf B}$) взаимно перпендикулярны и располагаются в плоскости, перпендикулярной направлению распространения волны (лучу ${\bf S}$). Во всякой данной точке пространства ориентация пары векторов ${\bf E}$ и ${\bf H}$ в плоскости, перпендикулярной лучу ${\bf S}$, может, вообще говоря, изменяться со временем.В зависимости от характера такого изменения различают естественный и поляризованный свет.

При помощи специальных приспособлений (поляризаторов), о которых речь будет идти дальше, естественный свет может быть превращен в линейно поляризованный. В линейно поляризованной световой волне пара векторов **E** и **H** не изменяет с течением времени своей ориентации.

Наиболее общим типом поляризации является эллиптическая поляризация. В эллиптически поляризованной световой волне конец вектора **E** (в данной точке пространства) описывает некоторый эллипс.

При теоретическом рассмотрении различных типов поляризации часто бывает удобно проектировать вектор ${\bf E}$ в некоторой точке пространства на два взаимно перпендикулярных направления (рис. 1). В том случае, когда исходная волна была поляризованной, E_x и E_y когерентны между собой и могут быть записаны в виде

Рис. 1: Представление световой волны в виде двух линейно поляризованных волн

$$E_x = E_{x0}\cos(kz - \omega t),$$

$$E_y = E_{y0}\cos(kz - \omega t - \varphi),$$
(1)

где амплитуды E_{x0} , E_{y0} , волновой вектор k, частота ω и сдвиг фаз φ не зависят от времени. Формулы (1) описывают монохроматический свет. Немонохроматический свет может быть представлен суммой выражений типа (1) с различными значениями частоты ω .

В плоскости $z=z_0$ вектор ${\bf E}$ волны (1) вращается против часовой стрелки (при наблюдении навстречу волне), если $0<\varphi<\pi$. В этом случае говорят о левой эллиптической поляризации волны. Если же $\pi<\varphi<2\pi$, вращение вектора ${\bf E}$ происходит по часовой стрелке, и волна имеет правую эллиптическую поляризацию