

Appendix for the Report Dosimetric Assessment of the Portable Device

Integrated Service Information Display (Simatic Mobile Panel) from Siemens (FCC ID: nonexistent)

According to the FCC Requirements Calibration Data

November 06, 2007

IMST GmbH

Carl-Friedrich-Gauß-Str. 2

D-47475 Kamp-Lintfort

Customer ETS Product Service AG Storkower Strasse 38c 15526 Reichenwalde

This report shall not be reproduced except in full without the written approval of the testing laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

IMST

Certificate No: EX3-3536_Sep07

Object	EX3DV4 - SN:3	536	
Calibration procedure(s)	OA CAL-01 v6 a	and QA CAL-14.v3	
Jailoration procedure(s)		edure for dosimetric E-field probes	
Calibration date:	September 18, 2	2007	
Condition of the calibrated item	In Tolerance		
This calibration certificate docum The measurements and the unce	ents the traceability to na ertainties with confidence	tional standards, which realize the physical units of probability are given on the following pages and are	part of the certificate.
This calibration certificate docum	ents the traceability to na	tional standards, which realize the physical units of	measurements (SI).
dl calibrations have been condu	cted in the closed laborate	ory facility: environment temperature (22 ± 3)°C and	f humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)		
	TE critical for calibration)	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Calibration Equipment used (M& Primary Standards Power meter E4419B	0.4000000		
Primary Standards Power meter E4419B	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Primary Standards Power meter E4419B Power sensor E4412A	ID# GB41293874	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670)	Scheduled Calibration Mar-08
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	ID # GB41293874 MY41495277	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670)	Scheduled Calibration Mar-08 Mar-08
Primary Standards	ID # GB41293874 MY41495277 MY41498087	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719)	Scheduled Calibration Mar-08 Mar-08 Mar-08
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670)	Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-08
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720)	Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-08 Mar-08
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671)	Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07)	Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07)	Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Apr-08
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house)	Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Apr-08
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Apr-08 Scheduled Check In house check: Nov-0
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Apr-08 Scheduled Check In house check: Nov-0 In house check: Oct-07
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585 Name	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Apr-08 Scheduled Check In house check: Nov-0 In house check: Oct-0

Issued: September 19, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory,

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL NORMx.v.z tissue simulating liquid sensitivity in free space

ConF

sensitivity in TSL / NORMx,y,z

DCP

diode compression point

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 iEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe EX3DV4

SN:3536

Manufactured:

April 30, 2004

Last calibrated:

September 27, 2006

Recalibrated:

September 18, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: EX3DV4 SN:3536

Sensitivity	in	Free	SpaceA
Sensitivity	11.1	1100	Opacc

Diode Compression^B

NormX	0.440 ± 10.1%	$\mu V/(V/m)^2$	DCP X	90 mV
NormY	0.410 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	91 mV
NormZ	0.360 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	90 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

1950 MHz

Typical SAR gradient: 10 % per mm

Sensor Cente	r to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	3.0	1.0
SAR _{be} [%]	With Correction Algorithm	0.1	0.1

TSL

5200 MHz

Typical SAR gradient: 25 % per mm

Sensor Center to Phantom Surface Distance		2.0 mm	3.0 mm	
SAR _{be} [%]	Without Correction Algorithm	6.0	3.0	
SAR _{be} [%]	With Correction Algorithm	0.1	0.0	

Sensor Offset

Probe Tip to Sensor Center

1.0 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 8).

⁸ Numerical linearization parameter: uncertainty not required.

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), θ = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.29	0.86	7.85	± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.87	0.57	7.57	± 11.8% (k=2)
2600	± 50 / ± 100	Head	39.0 ± 5%	1.96 ± 5%	0.92	0.55	7.32	± 11.8% (k=2)
3500	± 50 / ± 100	Head	$37.9 \pm 5\%$	2.91 ± 5%	0.30	1.15	7.25	± 13.1% (k=2)
5200	± 50 / ± 100	Head	$36.0 \pm 5\%$	$4.66 \pm 5\%$	0.43	1.60	5.28	± 13.1% (k=2)
5300	± 50 / ± 101	Head	$35.9 \pm 5\%$	$4.76 \pm 5\%$	0.42	1.60	5.18	± 13.1% (k=2)
5600	± 50 / ± 101	Head	$35.5 \pm 5\%$	5.07 ± 5%	0.42	1.60	5.01	± 13.1% (k=2)
5800	± 50 / ± 100	Head	35.3 ± 5%	5.27 ± 5%	0.44	1.60	4.83	± 13.1% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.21	1.11	7.67	± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.90	0.58	7.46	± 11.8% (k=2)
2600	± 50 / ± 100	Body	52.5 ± 5%	$2.16 \pm 5\%$	0.98	0.55	7.12	± 11.8% (k=2)
3500	± 50 / ± 100	Body	51.3 ± 5%	$3.31 \pm 5\%$	0.36	1.08	6.72	± 13.1% (k=2)
5200	± 50 / ± 100	Body	49.0 ± 5%	$5.30 \pm 5\%$	0.36	1.65	4.89	± 13.1% (k=2)
5300	± 50 / ± 101	Body	48.5 ± 5%	$5.42 \pm 5\%$	0.38	1.65	4.79	± 13.1% (k=2)
5600	± 50 / ± 101	Body	$48.5 \pm 5\%$	5.77 ± 5%	0.28	1.65	4.71	± 13.1% (k=2)
5800	\pm 50 / \pm 100	Body	48.2 ± 5%	$6.00 \pm 5\%$	0.28	1.65	4.76	± 13.1% (k=2)

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

C

S

Client

IMST Certificate No: D5GHzV2-1028_Dec06 **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN: 1028 Calibration procedure(s) QA CAL-22.v1 Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: December 08, 2006 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 5-Apr-06 (METAS, No. 251-00557) Apr-07 Power sensor E4412A MY41495277 5-Apr-06 (METAS, No. 251-00557) Apr-07 Power sensor E4412A MY41498087 5-Apr-06 (METAS, No. 251-00557) Apr-07 Reference 20 dB Attenuator SN: S5086 (20b) 4-Apr-06 (METAS, No. 251-00558) Apr-07 Reference 10 dB Attenuator SN: 5047.2 (10r) 10-Aug-06 (METAS, No 217-00591) Aug-07 Reference Probe EX3DV4 SN: 3503 19-Mar-05 (SPEAG, No. EX3-3503_Mar06) Mar-07 DAE4 SN: 601 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Dec-06 Secondary Standards ID# Check Date (in house) Scheduled Check RF generator R&S SMT-06 100005 4-Aug-99 (SPEAG, in house check Nov-05) In house check: Nov-07 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (SPEAG, in house check Oct-06) In house check: Nov-07 Name Function Signature Calibrated by: Marcel Fehr Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: December 14, 2006

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: D5GHzV2-1028 Dec06

Page 1 of 11

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC Std 62209 Part 2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", Draft Version 0.9, December 2004
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No
 uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Area Scan resolution	dx, dy = 10 mm	WW-11-10-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2
Zoom Scan Resolution	dx, dy = 4.3 mm, dz = 3 mm	
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	4.49 mho/m ± 6 %
Head TSL temperature during test	(22.4 ± 0.2) °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	20.3 mW / g
SAR normalized	normalized to 1W	81.2 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	80.8 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.76 mW / g
SAR normalized	normalized to 1W	23.0 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	22.8 mW / g ± 19.5 % (k=2)

¹ Correction to nominal TSL parameters according to c), chapter "SAR Sensitivities"

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8 ± 6 %	4.77 mho/m ± 6 %
Head TSL temperature during test	(22.2 ± 0.2) °C	****	

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	20.5 mW / g
SAR normalized	normalized to 1W	82.0 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	81.3 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.79 mW / g
SAR normalized	normalized to 1W	23.2 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	22.9 mW / g ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	5.05 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	19.3 mW / g
SAR normalized	normalized to 1W	77.2 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	76.3 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.46 mW / g
SAR normalized	normalized to 1W	21.8 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	21.6 mW / g ± 19.5 % (k=2)

¹ Correction to nominal TSL parameters according to c), chapter "SAR Sensitivities"

Body TSL parameters at 5200 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.4 ± 6 %	5.27 mho/m ± 6 %
Body TSL temperature during test	(21.9 ± 0.2) °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	250 mW input power	19.4 mW / g
SAR normalized	normalized to 1W	77.6 mW / g
SAR for nominal Body TSL parameters ¹	normalized to 1W	76.8 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.46 mW / g
SAR normalized	normalized to 1W	21.8 mW / g
SAR for nominal Body TSL parameters ¹	normalized to 1W	21.6 mW / g ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.56 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	5.66 mho/m ± 6 %
Body TSL temperature during test	(21.8 ± 0.2) °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	250 mW input power	19.7 mW / g
SAR normalized	normalized to 1W	78.8 mW / g
SAR for nominal Body TSL parameters ¹	normalized to 1W	77.8 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.51 mW / g
SAR normalized	normalized to 1W	22.0 mW / g
SAR for nominal Body TSL parameters ¹	normalized to 1W	21.8 mW / g ± 19.5 % (k=2)

¹ Correction to nominal TSL parameters according to c), chapter "SAR Sensitivities"

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.1 ± 6 %	6.04 mho/m ± 6 %
Body TSL temperature during test	(21.7± 0.2) °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	250 mW input power	17.9 mW / g
SAR normalized	normalized to 1W	71.6 mW / g
SAR for nominal Body TSL parameters ¹	normalized to 1W	70.6 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.03 mW / g
SAR normalized	normalized to 1W	20.1 mW / g
SAR for nominal Body TSL parameters ¹	normalized to 1W	19.9 mW / g ± 19.5 % (k=2)

¹ Correction to nominal TSL parameters according to c), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	50.8 Ω - 10.4 jΩ	
Return Loss	-19.7 dB	

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	54.5 Ω - 4.6 jΩ	
Return Loss	-24.3 dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	58.7 Ω - 6.3 jΩ	
Return Loss	-20.1 dB	

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	50.2 Ω - 8.7 jΩ	
Return Loss	-21.2 dB	

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	55.1 Ω - 3.2 jΩ	
Return Loss	-24.9 dB	

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	60.3 Ω - 4.5 jΩ	
Return Loss	-19.9 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.197 ns	
----------------------------------	----------	--

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	July 09, 2004	

DASY4 Validation Report for Head TSL

Date/Time: 08.12.2006 12:41:46

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHz; Serial: D5GHzV2 - SN:1028

Communication System: CW-5GHz; Frequency: 5200 MHzFrequency: 5500 MHzFrequency: 5800 MHz;Duty Cycle: 1:1

Medium: HSL 5800 MHz;

Medium parameters used:f = 5200 MHz; σ = 4.49 mho/m; ϵ_r = 35.4; ρ = 1000 kg/m³

Medium parameters used: f = 5500 MHz; σ = 4.77 mho/m; ε_r = 34.8; ρ = 1000 kg/m³

Medium parameters used: f = 5800 MHz; σ = 5.05 mho/m; ϵ_r = 34.2; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.52, 5.52, 5.52)ConvF(5.18, 5.18, 5.18)ConvF(5.02, 5.02, 5.02); Calibrated: 18.03.2006
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 15.12.2005
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;;
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

d=10mm, Pin=250mW, f=5200 MHz/Area Scan (61x61x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 46.1 mW/g

d=10mm, Pin=250mW, f=5200 MHz/Zoom Scan (8x8x8), dist=2mm (8x8x8)/Cube 0:

Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 76.5 V/m; Power Drift = 0.240 dB

Peak SAR (extrapolated) = 73.2 W/kg

SAR(1 g) = 20.3 mW/g; SAR(10 g) = 5.76 mW/g

Maximum value of SAR (measured) = 38.7 mW/g

d=10mm, Pin=250mW, f=5500 MHz/Zoom Scan (8x8x8), dist=2mm 2 (8x8x8)/Cube 0:

Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 74.8 V/m; Power Drift = 0.106 dB

Peak SAR (extrapolated) = 79.1 W/kg

SAR(1 g) = 20.5 mW/g; SAR(10 g) = 5.79 mW/g

Maximum value of SAR (measured) = 39.8 mW/g

d=10mm, Pin=250mW, f=5800 MHz/Zoom Scan (8x8x8), dist=2mm (8x8x8)/Cube 0:

Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm Reference Value = 70.9 V/m; Power Drift = 0.041 dB

Peak SAR (extrapolated) = 77.8 W/kg

SAR(1 g) = 19.3 mW/g; SAR(10 g) = 5.46 mW/g

Maximum value of SAR (measured) = 38.3 mW/g

Impedance Measurement Plot for Head TSL

DASY4 Validation Report for Body TSL

Date/Time: 08.12.2006 13:55:00

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHz; Serial: D5GHzV2 - SN:1028

Communication System: CW-5GHz; Frequency: 5200 MHzFrequency: 5500 MHzFrequency: 5800 MHz; Duty Cycle: 1:1 Medium: MSL 5800 MHz;

Medium parameters used: f = 5200 MHz; σ = 5.28 mho/m; ϵ_r = 47.4; ρ = 1000 kg/m³

Medium parameters used: f = 5500 MHz; σ = 5.68 mho/m; ϵ_r = 46.8; ρ = 1000 kg/m³

Medium parameters used: f = 5800 MHz; σ = 6.07 mho/m; ϵ_r = 46.2; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.98, 4.98, 4.98)ConvF(4.67, 4.67, 4.67)ConvF(4.72, 4.72, 4.72); Calibrated: 18.03.2006
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 15.12.2005
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; ;
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

d=10mm, Pin=250mW, f=5200 MHz/Area Scan 2 (91x91x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 42.0 mW/g

d=10mm, Pin=250mW, f=5200 MHz/Zoom Scan (8x8x8), dist=2mm (8x8x8)/Cube 0:

Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm Reference Value = 77.9 V/m; Power Drift = 0.175 dB

Peak SAR (extrapolated) = 70.3 W/kg

SAR(1 g) = 19.4 mW/g; SAR(10 g) = 5.46 mW/g

Maximum value of SAR (measured) = 39.3 mW/g

d=10mm, Pin=250mW, f=5500 MHz/Zoom Scan (8x8x8), dist=2mm (8x8x8)/Cube 0:

Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm Reference Value = 76.1 V/m; Power Drift = 0.027 dB

Peak SAR (extrapolated) = 77.7 W/kg

SAR(1 g) = 19.7 mW/g; SAR(10 g) = 5.51 mW/g

Maximum value of SAR (measured) = 40.3 mW/g

d=10mm, Pin=250mW, f=5800 MHz/Zoom Scan (8x8x8), dist=2mm (8x8x8)/Cube 0:

Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 70.9 V/m; Power Drift = 0.029 dB

Peak SAR (extrapolated) = 72.9 W/kg

SAR(1 g) = 17.9 mW/g; SAR(10 g) = 5.03 mW/g

Maximum value of SAR (measured) = 36.4 mW/g

Impedance Measurement Plot for Body TSL

