Matemática Discreta

Relações Operações

Profa. Helena Caseli helenacaseli@ufscar.br

Objetivos desta aula

- Apresentar algumas relações importantes
 - Relação de igualdade
 - Relação inversa
- Apresentar as operações envolvendo relações
 - Operações de conjuntos
 - Composição de relações
- Capacitar o aluno a usar operações de Relações para modelar problemas computacionais

Problema #7

Dados os conjuntos

- A = { a, b, c, d }
- B = { 1, 2, 3 }

E as relações

- $R = \{ (a, 1), (a, 3), (b, 2), (d, 3) \}$
- $S = \{ (a, 1), (b, 3), (c, 2), (d, 1) \}$

Calcule

• S⁻¹ ○ R

Relação de igualdade

Fonte: https://pixabay.com/

- Também conhecida como identidade ou relação diagonal
- A relação igualdade I sobre A é a relação em A definida por

$$I = \{ (a, a) | a \in A \}$$

Relação de igualdade

- Exemplo
 - Dado o conjunto A = {1, 2, 3}
 - A relação de igualdade em A é I = {(1, 1), (2, 2), (3, 3)}

- Relação de igualdade Representação gráfica
 - Exemplo
 - Dado o conjunto A = {1, 2, 3}
 - A relação de igualdade em A é I = {(1, 1), (2, 2), (3, 3)}

	1	2	3
1	1	0	0
2	0	1	0
3	0	0	1

Relação inversa

Fonte: https://pixabay.com/

 A inversa de uma relação R de A para B é a relação formada de B para A invertendo-se a ordem de todos os pares ordenados em R

$$R^{-1} = \{ (x, y) \mid (y, x) \in R \}$$

 $Dom(R^{-1}) = Img(R) e$
 $Img(R^{-1}) = Dom(R)$

Relação inversa

- Exemplo
 - Sejam A = { 1, 2, 3 } e B = { x, y, z } conjuntos e R = { (1, y), (1, z), (3, y) }

Relação inversa – Representação gráfica

- Exemplo
 - Sejam A = { 1, 2, 3 } e B = { x, y, z } conjuntos e R = { (1, y), (1, z), (3, y) }

	X	У	Z
1	0	1	1
2	0	0	0
3	0	1	0

Relação inversa – Representação gráfica

- Exemplo
 - Sejam A = { 1, 2, 3 } e B = { x, y, z } conjuntos e R = { (1, y), (1, z), (3, y) }
 - $R^{-1} = \{ (y, 1), (z, 1), (y, 3) \}$

	1	2	3
X	0	0	0
У	1	0	1
Z	1	0	0

Matriz transposta da matriz original

Diagrama obtido invertendose o sentido de todas as setas

Relação de igualdade

- Dado o conjunto A = { a, b, x, z }
 - a) Liste os elementos presentes na relação de igualdade (I) em A
 - b) Represente graficamente a relação I

Relação inversa

- Sejam A = { a, b, c } e B = { x, a, z } conjuntos e R = { (a, x), (a, a), (c, z), (b, a) }
 - a) Liste os elementos presentes na relação inversa R⁻¹
 - b) Represente graficamente a relação R⁻¹

Relação de igualdade

- Dado o conjunto A = { a, b, x, z }
 - a) Liste os elementos presentes na relação de igualdade (I) em A
 - b) Represente graficamente a relação I

Relação inversa

- Sejam A = { a, b, c } e B = { x, a, z } conjuntos e R = { (a, x), (a, a), (c, z), (b, a) }
 - a) Liste os elementos presentes na relação inversa R-1
 - b) Represente graficamente a relação R-1

RESPOSTAS

a) $R^{-1} = \{ (x, a), (a, a), (z, c), (a, b) \}$

b)

	a	b	С
X	1	0	0
a	1	1	0
Z	0	0	1

Fonte: https://pixabay.com/

- Todas as operações sobre conjuntos se aplicam às relações
 - Já que uma relação nada mais é do que um conjunto de pares ordenados

- Exemplo
 - Sejam R e S duas relações em \mathbb{N} definidas por x R y \leftrightarrow x = y e x S y \leftrightarrow x < y. Então
 - a) a relação R \cup S é descrita como: x (R \cup S) y \leftrightarrow x \leq y
 - b) a relação R' é descrita como: $x R' y \leftrightarrow x \neq y$
 - c) a relação S' é descrita como: $x S' y \leftrightarrow x \ge y$
 - d) o conjunto que representa a relação $R \cap S$ é \emptyset

- União
 - Sejam R e S duas relações de A para B representadas por matrizes booleanas M e N
 - A união R ∪ S é represenada pela matriz booleana
 P onde
 - P_{i,j} = 1 sse M_{i,j} = 1 <u>ou</u> N_{i,j} = 1
 - → Denotada por M ∨ N

- Intersecção
 - Sejam R e S duas relações de A para B representadas por matrizes booleanas M e N
 - A intersecção R ∩ S é represenada pela matriz booleana Q onde
 - Q_{i,j} = 1 sse M_{i,j} = 1 <u>e</u> N_{i,j} = 1
 - → Denotada por M ∧ N

Composição de relações

Fonte: https://pixabay.com/

Composição de relações

- Sejam R e S duas relações
- A composição de R com S é a relação denotada por S o R definida como

$$S \circ R = \{ (a, c) \mid \exists b (a, b) \in R \land (b, c) \in S \}$$

- Exemplo
 - Sejam R e S duas relações

 - $S = \{ (1, 0), (2, 0), (3, 1), (3, 2), (4, 1) \}$
 - $S \circ R = \{ (1, 0), (1, 1), (2, 1), (2, 2), (3, 0), (3, 1) \}$

Fonte: (GOMIDE; STOLFI, 2011, Fig. 6.2)

Composição de relações

- Algumas propriedades
 - Para quaisquer relações R e S
 - Dom(S \circ R) \subseteq Dom(R)
 - $Img(S \circ R) \subseteq Img(S)$
 - A composição de relações não é comutativa, ou seja,
 - S R ≠ R S em alguns casos
 - A inversa da composição das relações é a composição das inversas, na ordem inversa

•
$$(S \circ R)^{-1} = R^{-1} \circ S^{-1}$$

Composição de relações

- Sejam as relações
 - \blacksquare R = { (1, 20), (1, 30), (2, 40), (3, 20) }
 - S = { (20, 200), (20, 300), (40, 200) }
- Calcule:
 - a) S o R =
 - b) R ∘ S =
 - c) $R^{-1} =$
 - d) $S^{-1} =$
 - e) (S o R)⁻¹ =
 - f) $R^{-1} \circ S^{-1} =$

Composição de relações

- Sejam as relações
 - \blacksquare R = { (1, 20), (1, 30), (2, 40), (3, 20) }
 - S = { (20, 200), (20, 300), (40, 200) }

Calcule:

- a) $S \circ R = \{ (1, 200), (1, 300), (2, 200), (3, 200), (3, 300) \}$
- b) $R \circ S = \emptyset$
- c) $R^{-1} = \{ (20, 1), (30, 1), (40, 2), (20, 3) \}$
- d) $S^{-1} = \{ (200, 20), (300, 20), (200, 40) \}$
- e) $(S \circ R)^{-1} = \{ (200, 1), (300, 1), (200, 2), (200, 3), (300, 3) \}$
- f) $R^{-1} \circ S^{-1} = \{ (200, 1), (300, 1), (200, 2), (200, 3), (300, 3) \}$

Problema #7

Dados os conjuntos

- A = { a, b, c, d }
- B = { 1, 2, 3 }

E as relações

- $R = \{ (a, 1), (a, 3), (b, 2), (d, 3) \}$
- $S = \{ (a, 1), (b, 3), (c, 2), (d, 1) \}$

Calcule

• S⁻¹ ○ R

Problema #7

Dados os conjuntos

- A = { a, b, c, d }
- B = { 1, 2, 3 }

E as relações

- \blacksquare R = { (a, 1), (a, 3), (b, 2), (d, 3) }
- $S = \{ (a, 1), (b, 3), (c, 2), (d, 1) \}$

Calcule

$$^{\bullet}$$
 S⁻¹ \circ R = { (a, a), (a, b), (a, d), (b, c), (d, b) }