02457 Signal Processing in Non-linear Systems: Lecture 5

Perceptrons and backpropagation

Ole Winther

Technical University of Denmark (DTU)

September 22, 2016

Ole Winther

The deep learning revolution – 2012-present

ImageNet Classification with Deep Convolutional Neural Networks

Deep learning

AlexNet

Ole Winther

Introduction

000000

Understanding AlexNet

Yosinski et. al., ICML, https://youtu.be/AgkfIQ4IGaM

Recurrent neural networks - DeepSpeech

DeepSpeech: Scaling up end-to-end speech recognition

Awni Hannun; Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, Andrew Y. Ng

Baidu Research - Silicon Valley AI Lab

Encoder-decoder - machine translation

Sequence to Sequence Learning with Neural Networks

Ilya Sutskever Google ilyasu@google.com Oriol Vinyals
Google
vinyals@google.com

Quoc V.Le Google qvl@google.com

Machine translation - visualising latent space

• Hour 1

Overview

Ole Winther

- Summary learning and generalization
- Exercise 4 walk through
- Hour 2
 - Your turn! Getting some intuition about neural network
 - Multi-layer perceptrons aka feed-forward neural networks
 - Your turn! Universal approximator
- Hour 3
 - Neural network training
 - Summary and reading material
 - Your turn! Error backpropagation
- Next time:
 - Advanced non-linear optimization (use already this week)
 - · Tricks of the trade
 - Neural networks for classification (signal detection)

DTU

Unsupervised learning

•oo Foundations

- Learning the distribution of a set of variables p(input).
- Or perhaps just some important characteristics of the distribution

Foundations

Supervised learning

- Learning the conditional distribution p(output|input).
- Regression output continuous
- Classification output discrete (e.g. positive diagnosis)

oo∙ Foundations

Neural networks aka multi-layer perceptrons today's topic, but first summary!

Foundations

Summary previous lecture

- Generalization the agenda of machine learning
 - Controlling model complexity
 - Bias-variance trade-off
 - · Test set and cross-validation
- Training sets and models
- Likelihood function
- Linear regression as running example
- Bayesian approach
- Maximum likelihood

Performance versus model complexity

Turn to page 8 in Bishop: Explain Table 1.1.

Weight decay regularization for M = 9

Weight decay regularization for M = 9

Performance versus model complexity

Turn to page 11 in Bishop: Explain Table 1.2.

Bias variance trade-off

Gen $Err = Noise + Bias^2 + Variance$

Cross-validation

K-fold split (here 4): train K times on K-1 parts and test on 1.

Ole Winther

Training set and model

Likelihood function

Ole Winther

Likelihood function regression

Regression

troduction Learning from data Neural networks Neural network training Summary and reading Your turn! Backpro

Bias variance and generalization assessment

Ole Winther

TensorFlow playground

- Your turn!
- Go to http://playground.tensorflow.org
- Questions:
 - 1 Change model so that it implements a linear decision boundary.
 - 2 Change model so that it overfits.
 - 3 Change model so that it underfits.
 - 4 Can you make training find local minima?
 - 5 What are the squares at each hidden and
 - 6 the arrows between units?
 - Change to ReLU activation. Explain polyhedral like shape of decision boundary.
 - 8 Change to spiral dataset is this a harder problem? Why?
 - 9 Can we say something about generalisation performance?

[Thanks to Anders Krogh for neural network slide material.]

Biological CPU (neuron)

DTU

Ole Winther

Brain: massively parallel computer

Approx. 10¹¹ neurons and 10¹⁴ synapses in a human brain

- Neuron receives input through the synapses and dendrites
- Synapses are inhibitatory or exitatory
- If electric potential exceeds a threshold, the neuron "fires"
- Sends electric pulses to other neurons through the axon

 Early models of the brain is based on the McCulloch-Pitts model (1943)

$$y(\mathbf{x},\mathbf{w}) = \sigma(\sum_{i=1}^{M} w_i x_i + w_0)$$

- σ is a threshold function
- $-w_0$ is the threshold.

Brief history of artificial neural networks and machine learning

- Rosenblatt (1950s) showed that perceptrons could "learn" from examples
- This research became unpopular it didn't work for XOR
- In the 1980s:
 - backpropagation learning is discovered for multi-layer perceptrons
 - learning in Boltmann Machines (recurrent networks) is formulated
 - The Hopfield model of associative memory

• ..

DTU

Ole Winther

Brief history of artificial neural networks and machine learning

- ...
- This resulted in an explosion of research and lots of hype about clever thinking machines with intuition
- Currently:
 - NN research continues in the modeling of REAL neural networks
 - Absorbed as a method in pattern recognition and machine learning
 - NNs are disliked by some. This is a bit like disliking linear regression.
 - A huge revival rebranded as deep learning!

Neural networks - the model

Neural networks - the model

- Soft threshold units
- In each layer add an additional activation (x₀ or z₀) clamped to 1

$$\sum_{i=1}^{D} w_{ji}^{(1)} x_i + w_{j0}^{(1)} = \sum_{i=0}^{D} w_{ji}^{(1)} x_i$$

Output k two-layer network:

$$y_k(\mathbf{x}, \mathbf{w}) = \sigma \left(\sum_{j=0}^{M} w_{kj}^{(2)} h \left(\sum_{i=0}^{D} w_{ji}^{(1)} x_i \right) \right)$$

 h activation function of the hidden units

《미》《曆》《夏》《夏》 夏 · 외인(

Ole Winther

Neural networks - the model

- Activation function
- Logistic function

$$\sigma(a) = \frac{1}{1 + e^{-a}}$$

Hyperbolic tangent

$$\tanh(a) = \frac{e^a - e^{-a}}{e^a + e^{-a}}$$

 Can be mixed, e.g. linear for output units and tanh for hidden units.

4 D L 4 D L 4 E L 4 E L 50 O

Neural networks - the model

Your turn!

 Consider one input, one hidden layer and one linear output unit:

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=1}^{M} w_j^{(2)} \tanh \left(w_{j1}^{(1)} x_1 + w_{j0}^{(1)} \right) + w_0^{(2)}$$

- What weight values and how many hidden units should be used to learn the functions sketched on the black board and next slide?
- How will the function look for $\mathbf{x} \to \pm \infty$?
- This neural network is a universal approximator = can learn any function given enough hidden units.

troduction Learning from data Neural networks Neural network training Summary and reading Your turn! Backprop

Neural networks - the model

Introduction

- Let a training set be given by $\mathcal{D} = \{(t_n, \mathbf{x}_n) | n = 1, \dots, N\}.$
- Regression $t_n \in \mathcal{R}$.
- The mean square error of the model $y(\mathbf{x}, \mathbf{w})$ is given by

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(\mathbf{x}_n, \mathbf{w}) - t_n)^2$$

Remember relation to maximum likelihood

$$-\log p(\mathbf{t}|\mathbf{X},\mathbf{w},\sigma^2) = \frac{1}{\sigma^2}E(\mathbf{w}) + \frac{N}{2}\log(2\pi\sigma^2)$$

Finding the minimum by gradient descent

Iterate:

$$\mathbf{w}^{\tau+1} = \mathbf{w}^{\tau} + \Delta \mathbf{w}^{\tau}$$

with

$$\Delta w_{ji}^{\tau} = -\eta \frac{dE(\mathbf{w})}{dw_{ii}}$$

- leads to error back-propagation learning
- which is nothing but clever book-keeping and chain rule of derivatives

40.40.40.40.40.00

DTU

Ole Winther

Objective: to solve the equation

$$\nabla E = 0$$

Gradient descent:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \Delta \mathbf{w}^{(\tau)}$$
$$\Delta \mathbf{w}^{(\tau)} = -\eta \nabla E|_{\mathbf{w} = \mathbf{w}^{(\tau)}}$$

- η is the learning parameter (rate)
- η can be too small: convergence very slow
- η can be too large: oscillatory behavior

· Summary of course so far:

Summary

- Learning from data
- Likelihood function, Bayesian and maximum likelihood learning
- Feed-forward neural networks aka multi-layer perceptrons
- Regression today (and classification next week)
- Iterative parameter optimization error backpropagation

Your turn! Backprop

Ole Winther DTU

Reading

- Neural networks Bishop 5.1-5.4. (most focus on 5-5.2.1)
- Alternative free pdf books:
- Hastie, Tibshirani and Friedman, The Elements of Statistical Learning, Springer and
- MacKay, Information Theory, Inference, and Learning Algorithms, Cambridge

Your turn! Error backpropagation

 Consider one input, one hidden layer and one linear output unit and cost function

$$y(x, \mathbf{w}) = \sum_{j=1}^{M} w_j^{(2)} \tanh \left(w_{j1}^{(1)} x_1 + w_{j0}^{(1)} \right) + w_0^{(2)}$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(\mathbf{x}_n, \mathbf{w}) - t_n)^2$$

- Calculate $\frac{\partial E}{\partial w_i^{(2)}}$ and $\frac{\partial E}{\partial w_{ii}^{(1)}}$.
- Explain how these derivatives are used in the error backpropagation rule? (Hint: See Bishop)
- · Advanced question: Write down the general backprop rule.

Ole Winther DTU

- The multi-layer perceptron (MLP)
- Linear output and one hidden layer

$$y_{l}(\mathbf{x}) = \sum_{j=0}^{M} w_{lj}^{(2)} z_{j}$$

$$z_{j} = \tanh\left(\mathbf{w}_{j}^{(1)^{T}}\mathbf{x}\right)$$

$$z_{0} = 1$$

 We compute the gradient w.r.t. any weight in first or second layer u

$$E = \sum_{n=1}^{N} (y(\mathbf{x}_{n}, \mathbf{w}) - t_{n})^{2}$$

$$\frac{\partial E}{\partial u} = \sum_{n=1}^{N} \frac{\partial}{\partial u} (y(\mathbf{x}_{n}, \mathbf{w}) - t_{n})^{2}$$

$$= 2 \sum_{n=1}^{N} (y(\mathbf{x}_{n}, \mathbf{w}) - t_{n}) \frac{\partial y(\mathbf{x}_{n}, \mathbf{w})}{\partial u}$$

- The network derivative for an output unit weight $w_{i'}^{(2)}$:

$$\frac{\partial y(\mathbf{x}_n, \mathbf{w})}{\partial w_{j'}^{(2)}} = \frac{\partial}{\partial w_{j'}^{(2)}} \sum_{j=0}^{M} \mathbf{w}_j^{(2)} z_j$$
$$= \sum_{j=0}^{M} \frac{\partial}{\partial w_{j'}^{(2)}} w_j^{(2)} z_j$$
$$= z_{j'}$$

The network derivative for a hidden unit weight $w_{i'k'}^{(1)}$ is given by

$$\frac{\partial y(\mathbf{x}_{n}, \mathbf{w})}{\partial w_{j'k'}^{(1)}} = \frac{\partial}{\partial w_{j'k'}^{(1)}} \sum_{j=0}^{M} w_{j}^{(2)} z_{j} = \sum_{j=0}^{M} w_{j}^{(2)} \frac{\partial}{\partial w_{j'k'}^{(1)}} z_{j}$$

$$= w_{j'}^{(2)} \frac{\partial}{\partial w_{j'k'}^{(1)}} \tanh \left(\sum_{k=0}^{d} w_{jk}^{(1)} x_{nk} \right)$$

$$= w_{j'}^{(2)} \left(1 - z_{j'}^{2} \right) \frac{\partial}{\partial w_{j'k'}^{(1)}} \sum_{k=0}^{d} w_{jk}^{(1)} x_{k}^{n}$$

$$= w_{j'}^{(2)} \left(1 - z_{j'}^{2} \right) x_{nk'}$$

• Used $\frac{\partial \tanh(a)}{\partial a} = 1 - \tanh^2(a)$

· Combining we get for the output weight

$$\frac{\partial E}{\partial w_j} = 2\sum_{n=1}^{N} (y(\mathbf{x}_n) - t_n) z_{nj} \equiv 2\sum_{n=1}^{N} \delta_n z_{nj}$$
$$\delta_n = y(\mathbf{x}_n) - t_n$$

and for the hidden weight

$$\frac{\partial E}{\partial w_{jk}} = 2\sum_{n=1}^{N} (y(\mathbf{x}_n) - t_n) w_j^{(2)} \left(1 - z_{nj}^2\right) x_{nk} \equiv 2\sum_{n=1}^{N} \delta_{nj} x_{nk}$$

The delta-rule:

$$\delta_{nj} \equiv (y(\mathbf{x}_n) - t_n) w_j^{(2)} (1 - z_{nj}^2) = \delta_n w_j^{(2)} (1 - z_{nj}^2)$$

The general Backprop rule

- Consider a hidden unit $z_i = g(a_i)$, where $a_{ni} = \sum_i w_{ii} z_{ni}$
- ... then the derivative can be expressed

$$\frac{\partial E}{\partial w_{ji}} = \sum_{i',n} \frac{\partial E_n}{\partial a_{nj'}} \frac{\partial a_{nj'}}{\partial w_{ji}} = \sum_{n} \frac{\partial E_n}{\partial a_{nj}} \frac{\partial a_{nj}}{\partial w_{ji}}$$

Ole Winther DTU

Introduction

• . . .

• Let $\delta_{nj} = \frac{\partial E_n}{\partial a_{ni}}$, note also $\frac{\partial a_{nj}}{\partial w_{ii}} = z_{ni}$, this leads to

$$\frac{\partial E}{\partial w_{ji}} = \sum_{n} \delta_{nj} z_{ni}$$

• Computing the $\delta's$

$$\delta_{nj} \equiv \frac{\partial E_n}{\partial a_{nj}} = \sum_k \frac{\partial E_n}{\partial a_{nk}} \frac{\partial a_{nk}}{\partial a_{nj}}$$
$$= g'(a_{nj}) \sum_k w_{kj} \delta_{nk}$$

