Université Kasdi Merbah Ouargla Faculté des Sciences Appliquées Département de génie électrique

3^{eme} LMD : Electrotechnique Matière : Conception des systèmes électriques

EMD

1. Questions: (07 pts)

- Q1)-Pourquoi le circuit magnétique du moteur électrique doit-il être constitué en tôles de fer isolées ?
- Q2)- Donner les trois critères pour effectuer le choix d'un transformateur ?
- Q3)- Recopier le tableau ci-dessous et préciser le type de couplage des enroulements statorique du MAS:

Moteur asynchrone Réseau Electrique	380/660 V	220/380 V	127/220 V
127/220 V			
220/380 V			
380/660 V			

Q4)- Dans les deux cas de la figure 1 :

- 1) Exprimer la résistance équivalente entre deux bornes ${\bf R}$ en fonction de ${\bf r}$
- 2) En déduire, dans les deux cas, qu'en régime triphasé sinusoïdal et équilibré, la puissance totale dissipée par effet Joule \mathbf{pj} est égale à : $\mathbf{pj} = (3/2) * \mathbf{R} * \mathbf{I}^2$

figure 1

Durée : 1h et 30 min

Exercice 1: (06 pts)

Une armoire de commande de machine outil comporte :

- 10 contacteurs pour moteur 4 Kw, puissance de maintien 8 VA.
- 02 contacteurs pour moteur 18.5 Kw, puissance de maintien 20VA.
- 1 contacteur pour moteur 45 Kw, puissance de maintien 20 VA, puissance d'appel 250 VA (cosΨ =0.5).
- 20 relais de puissance de maintien 4 VA .
- 30 Voyants de signalisation de consommation unitaire 1 VA
- 1- Calculer la puissance d'appel de l'installation
- 2- A partir de la documentation technique (Tableau 1), déterminez la puissance apparente minimale du transformateur.

2. Exercice: (07 pts)

Un moteur asynchrone triphasé **tétrapolaire** qui porte sur sa plaque signalétique l'indication 230/400 V est alimenté par un réseau 230 V entre phases, 50 Hz. La résistance d'un enroulement du stator est R_s =0.2 Ω .

- I-1 Quel doit être le couplage des enroulements statorique du moteur pour qu'il fonctionne normalement ?
- I-2 Quelle est la vitesse de rotation au synchronisme?

II- Lors du fonctionnement à vide :

On a mesuré la puissance active P_{a0}=0.9 Kw et la puissance réactive Q_{a0}=6.4 Kvar. Calculer :

- 1- Le facteur de puissance.
- 2- L'intensité du courant en ligne.
- 3- Les pertes dites constantes (pertes fer statoriques = pertes mécaniques).

III- Lors d'un essai en charge, on a mesuré :

I=51 A, glissement : 4 %, puissance absorbée : Pab=15 Kw.

- 1- Déterminer la vitesse de rotation du rotor.
- 2- Compléter le bilan de puissance en indiquant la valeur numérique de chacune des puissances manquantes sur la figure ci-dessous.

3- Calculer le rendement, le moment du couple utile et le facteur de puissance.

Tableau 1

Puissance nominale en VA	Puissance instantanée admissible en VA IEC/EN 61558-2-2 avec cos φ de:									
IEC et CSA	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1	
40	90	80	72	66	61	57	53	51	53	
63	160	140	130	120	110	100	95	91	130	
100	240	210	190	170	160	150	140	140	140	
160	460	390	330	290	260	230	210	190	180	
250	830	690	590	510	450	400	360	330	310	
400	1600	1300	1 100	1000	890	800	730	680	650	
630	2100	1800	1600	1400	1300	1200	1 100	1000	1100	
1000	5 400	4600	4000	3600	3300	3000	2700	2600	2600	
1600	9100	8 100	7300	6700	6200	5800	5 500	5300	5700	
2500	8100	7300	6600	6 100	5700	5400	5 200	5 100	5600	
4000	16000	14000	12000	10 000	9000	8 200	7500	6900	6700	

questions *pour réduire les pertes par effet convant de Fan coult * Deux appels ne penvent & produire em même temps 0,5 * 30%, des appareils forctionne en même temps 9,25 d'un facteur de puissonce cosée de 0,5 à l'enclanchain 220/300 127/220 380/660 D triangle Sans complage 127/220 à étoile A triangle oper sous complage 300/660 1 étaile

R= 2r => r= R

1 = 3 v J = J = I

Mis=3VI = 3RI

R=(21)11 V

 $R = \frac{2v \times r}{2v + v} = \frac{2v^2}{3v} = \frac{2}{3}r$

L'étoile

I our couplage

Sam complange

R-2 V =) V=3 R

165=3 × IZ = V IZ

1 = 3 R I

9)50 = 0,2x(16,2) = 52,48 watt 05 Pc = 900 - 52,48 = 847,52 with III. l'essai en charge: le glissement g= 25-22 => g 25=25-2= 2 = (1-9) 25 => g= 1500(1-0,04)=1440, ty /mi Puissance Pab Per= 14,1km Pin= 13,5 Km Pu= 13,7 Km Pertes Joy45
Pertes par effet

Joules rotorique

1 = 02 × 512 = 52000 1 Protes par effet

Msv= g Ptv = 560 w

Tis= 423, 76 w

2 3 En utilisant la définition du rendement, on délermine $\frac{1}{2} = \frac{1}{12} = \frac{13.1}{15} = 87\% \quad (0, 5)$ - le couple citile $C_u = \frac{P_u}{\Lambda} = \frac{13.1 \times 1000}{1440 \times 2\pi} = 88.7 \text{ Nm 6.5}$ En régime nominol, on a $\cos \varphi = \frac{P_a}{S} = \frac{P_a}{\sqrt{3}} = \frac{15 \times 10^3}{\sqrt{3} \times 230 \times 51} = 0,74$