CSC 2421H: Graphs, Matrices, and Optimization

Concentration Bounds

Lecture 7: 29 Oct 2018

Lecturer: Sushant Sachdeva Scribe: Fengwei Sun

1 Scalar Chernoff Bound

Definition 1.1. Let X_1, \ldots, X_t be independent random variables such that

$$0 \le X_i \le R, \mathbb{E} \sum_i X_i = \sum_i \mathbb{E} X_i = \mu$$

Then for all $0 < \epsilon < 1$, we have

$$P[\sum_{i} X_i \ge (1+\epsilon)\mu] \le e^{-\frac{\epsilon^2 \mu}{3R}}, P[\sum_{i} X_i \le (1-\epsilon)\mu] \le e^{-\frac{\epsilon^2 \mu}{2R}}$$

Example: Suppose we conduct t independent tosses of a fair coin. Let $X_i = \begin{cases} 1 & \text{if heads} \\ 0 & \text{o/w} \end{cases}$. Then the number of heads in this trial is $\sum_{i=1}^t X_i$, and $\mathbb{E}(\# \text{ of heads}) = \mathbb{E} \sum_{i=1}^t X_i = \frac{t}{2}$.

To obtain a good estimate of the probability that we see at least 600 heads out of 1000 tosses, we can apply the Chernoff bound with the parameters $\epsilon = 0.2, R = 1, \mu = 500$, and get

$$P(at \ least \ 600 \ heads \ out \ of \ 1000 \ tosses) = P(\sum_{i=1}^{1000} X_i \ge (1+\epsilon)500) \le e^{-\frac{0.2^2*500}{3}} = e^{-\frac{20}{3}} \approx e^{-7}$$

Question: You can a coin with a bias in $\{\frac{1}{2} + \alpha, \frac{1}{2} - \alpha\}$. How many tosses do you need to decide which bias with probability of at least $1 - \delta$?

Algorithm:

- 1. Toss the coin t times independently;
- 2. If there are at least $\frac{t}{2}$ heads, output $\frac{1}{2} + \alpha$; otherwise output $\frac{1}{2} \alpha$.

We would like to bound $P(failure) \leq \delta$.

Case 1: The coin has a bias $\frac{1}{2} + \alpha$. Then $P(failure) = P(\sum X_i \leq \frac{t}{2})$.

To apply Chernoff, we find that $R=1, \mu=t(\frac{1}{2}+\alpha)$. Since we want $(1-\epsilon)\mu=\frac{t}{2}$, we have $\epsilon=1-\frac{t}{2\mu}=1-\frac{1}{2\alpha}$. Therefore,

$$P(\sum X_i \le \frac{t}{2}) = P(\sum X_i \le (1 - \epsilon)\mu) \le e^{-\frac{\epsilon^2 \mu}{2}} \le \delta$$

Since $\epsilon^2 \mu \approx \Theta(t\alpha^2)$, we have

$$t \ge \frac{\Theta(1)}{\alpha^2} \log \frac{1}{\delta}$$

Case 2: The coin has a bias $\frac{1}{2} - \alpha$. Then $P(failure) = P(\sum X_i \ge \frac{t}{2})$.

To apply Chernoff, we find that $R=1, \mu=t(\frac{1}{2}-\alpha)$. Since we want $(1+\epsilon)\mu=\frac{t}{2}$, we have $\epsilon=\frac{t}{2\mu}-1=\frac{1}{2\alpha}-1$. Therefore,

$$P(\sum X_i \ge \frac{t}{2}) = P(\sum X_i \ge (1+\epsilon)\mu) \le e^{-\frac{\epsilon^2 \mu}{3}} \le \delta$$

Since $\epsilon^2 \mu \approx \Theta(t\alpha^2)$, we have

$$t \ge \frac{\Theta(1)}{\alpha^2} \log \frac{1}{\delta}$$

Both cases indicate that the t is bounded by the logarithm of $\frac{1}{\delta}$, which means that t would be relatively small even for very small δ .

2 Matrix Chernoff Bound

Definition 2.1. Let $X_1, \ldots, X_t \in \mathbb{R}^{d \times d}$ be symmetric independent random variables such that

$$0 \leq X_i \leq RI, \ \mu_{min}I \leq \mathbb{E} \sum X_i \leq \mu_{max}I$$

Then we have

$$P[\lambda_{max}(\sum X_i) \ge (1+\epsilon)\mu_{max}] \le de^{-\frac{\epsilon^2\mu_{max}}{3R}}$$

$$P[\lambda_{min}(\sum X_i) \le (1 - \epsilon)\mu_{min}] \le de^{-\frac{\epsilon^2\mu_{min}}{2R}}$$

Note:

- 1. The condition that $0 \leq X_i \leq RI$ is equivalent to $||X_i|| \leq R$, or $\lambda_{max}(X_i) \leq R$, where $||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$, and when A is symmetric, $||A|| = \max\{\lambda_{max}, -\lambda_{min}\}$.
- 2. $\mu_{min} = \lambda_{min}(\mathbb{E} \sum X_i), \mu_{max} = \lambda_{max}(\mathbb{E} \sum X_i)$

Example: (Construction of random expander graphs) Suppose we would like to generate an expander graph with n vertices (assuming n is even).

Define a matching as a graph where $d_v = 1$ for all vertices v. Let $H = \frac{1}{t}$ (union of t independent perfect matching). Notice that for all vertices u in the graph H, $d_u = 1$.

Using the matrix Chernoff bound, we can show that H is an expander.

The Laplacian of H is $L_H = \sum_i \frac{1}{t} L_i$, where L_i is the Laplacian of the i^{th} matching. Let $X_i = \frac{1}{t} L_i$. We know that $X_i \succeq 0$ and $\lambda_{max}(X_i) = \frac{1}{t} \lambda_{max}(L_i) = \frac{2}{t}$.

Also, if we look at a specific vertex u in each matching, it is connected to all other vertices with equal probability $\frac{1}{n-1}$. This indicates that $\mathbb{E}L_H = \mathbb{E}L_1 = \frac{1}{n-1}L_{K_n}$.

Before we apply Chernoff bound on $X_i's$, one issue we notice is that $\lambda_{min}(X_i) = 0$. To fix that, we let $X_i = \frac{1}{t}L_i + \frac{1}{t(n-1)}\mathbb{1}\mathbb{1}^\top$. Now we have $\mathbb{E}\sum X_i = \frac{1}{n-1}L_{K_n} + \frac{1}{n-1}\mathbb{1}\mathbb{1}^\top = \frac{n}{n-1}I_n$, and thus $\mu_{max} = \mu_{min} = \frac{n}{n-1}$.

We can also show that, $\lambda_{max}(X_i) \leq \frac{2}{t}$ after the change of variable. Let $y = \hat{y} + c\frac{1}{\sqrt{n}}$ where $\hat{y}^{\top} \mathbb{1} = 0$. Then

$$y^{\top} X_i y = \hat{y}^{\top} (\frac{1}{t} L_i) \hat{y} + \frac{c^2 n}{t(n-1)} \le (\frac{2}{t}) \hat{y}^{\top} \hat{y} + \frac{n}{(n-1)t} c^2 \le \frac{2}{t} (\hat{y}^{\top} \hat{y} + c^2) \le \frac{2}{t} ||y||^2 = \frac{2}{t}$$

Now we apply the Chernoff bound, and get the following:

$$P[\lambda_{max}(\sum X_i) \ge (1+\epsilon)\frac{n}{n-1}] \le ne^{\frac{-\epsilon^2 \frac{n}{n-1}}{3 \cdot \frac{2}{t}}} = ne^{-\frac{\epsilon^2 t}{6}(\frac{n}{n-1})}$$

If we pick $t \geq \frac{12}{\epsilon^2} \log n$, we have $P[\lambda_{max}(\sum X_i) \geq (1+\epsilon)\frac{n}{n-1}] \leq n \cdot \frac{1}{n^2} = \frac{1}{n}$.

Similarly, we have $P[\lambda_{min}(\sum X_i) \le (1 - \epsilon) \frac{n}{n-1}] \le \frac{1}{n}$.

Therefore, we can conclude that, with probability of at least $1 - \frac{2}{n}$,

$$\lambda_{max}(\sum X_i) \le (1+\epsilon)\frac{n}{n-1}, \lambda_{min}(\sum X_i) \ge (1-\epsilon)\frac{n}{n-1}$$

or

$$(1-\epsilon)\frac{n}{n-1}I \le \sum X_i \le (1+\epsilon)\frac{n}{n-1}$$

To see that H is a good approximation of a complete graph, let $\Pi = I - \frac{1}{n} \mathbb{1} \mathbb{1}^{\top} = \frac{1}{n} L_{K_n}$. Notice that $\Pi^2 = \Pi$.

Consider $\Pi^{\top}(\sum X_i)\Pi$. We have

$$(1 - \epsilon) \frac{n}{n - 1} \frac{1}{n} L_{K_n} \preceq \Pi^{\top} (\sum X_i) \Pi \preceq (1 + \epsilon) \frac{n}{n - 1} \frac{1}{n} L_{K_n}$$

Since

$$\Pi^{\top}(\sum X_{i})\Pi = \Pi^{\top}(L_{H} + \frac{1}{n-1}\mathbb{1}\mathbb{1}^{\top})(I - \frac{1}{n}\mathbb{1}\mathbb{1}^{\top})$$

$$= \Pi^{\top}(L_{H} + \frac{1}{n-1}\mathbb{1}\mathbb{1}^{\top} - \frac{n}{n(n-1)}\mathbb{1}\mathbb{1}^{\top}) = \Pi^{\top}L_{H} = L_{H}$$

Therefore,

$$(1 - \epsilon) \frac{1}{n - 1} L_{K_n} \preceq L_H \preceq (1 + \epsilon) \frac{1}{n - 1} L_{K_n}$$

Now we get an ϵ -expander H with $t \cdot \frac{n}{2} = \Theta(\frac{n \log n}{\epsilon^2})$ edges, and $L_H \approx_{\epsilon} L_{K_n}$.

In general, we would like to write the Chernoff bound as the following:

With probability of at least $1 - 2de^{-\frac{\epsilon^2 \mu_{min}}{2R}}$, $(1 - \epsilon)\mu_{min}I \leq \sum X_i \leq (1 + \epsilon)\mu_{max}I$.

Definition 2.2. H = (V, E') is an ϵ -spectral sparsifier of G = (V, E) if $\frac{1}{1+\epsilon}L_G \leq L_H \leq (1+\epsilon)L_G$, denoted as $L_H \approx_{\epsilon} L_G$.

Equivalently, $\forall x \in \mathbb{R}^V$, $\frac{1}{1+\epsilon}x^{\top}L_Gx \leq x^{\top}L_Hx \leq (1+\epsilon)x^{\top}L_Gx$.

Note: Let $x = \mathbb{1}_S$ where $S \subset V$. Then $x^{\top}L_H x = \sum_{(u,v) \in E} w(u,v)(x(u)-x(v))^2 = |E(S,\bar{S})|$.

Theorem: For all G = (V, E), there exists H = (V, E') such that $L_H \approx_{\epsilon} L_G$ and $|E'| \leq \Theta(\frac{n \log n}{\epsilon^2})$