Ocean Floor Contour Prediction

Mike, Max, Merve

Background and Motivation

- Mapping the ocean floor is crucial
 - Navigation, marine resources management, predicting natural hazards
- Migh detail mapping (LiDAR or Acoustics)
 - Ships and AUVs
 - Expensive and Time consuming

Related Work

- GEBCO Seabed 2030 Project (UN)
- Satellite Geoid Estimation (US Navy)
- BathyNet (Developing deep net 2021)
- Mostly Unpublished

Dataset

- Data from NOAA
 Seafloor Mapping
 - Mostly well mapped areas
- Depth as Values
- 🐠 Done Manually
- 32k Images

Predicting Contours

- Setup
 - Reassigned NaNs (unmapped areas) to image's average depth
 - Train on center and predict expansion
 - \Rightarrow Input output 80x80 \Rightarrow 100x100

- Baseline models
 - Stine Linear Regression
 - Vanilla CNN
- Specialized models
 - U-Net (try to leverage identity relation)
 - 😚 🛮 Conditional GAN

Experiments: Linear Regression

Performance

3 MSE: 5.8 x 10^3

3 SSIM: 0.84

Experiments: CNN

% MSE: 1.1×10^4

SSIM: 0.70

Experiments: U-Net

Pretrained with VGG

Performance

% MSE: 6.0 x 10⁶

3 SSIM: 0.85

Experiments: Comparison

MSE: 5.8 x 10³ SSIM: 0.84

MSE: 1.1 x 10⁴ SSIM: 0.70

MSE: 6.0 x 10⁶ SSIM: 0.85

Conclusion

- Limitations
 - Tifficult data collection
 - Training power
- Future work
 - Frame Prediction
 - 3 cGan

