Differential Fault Analysis on Minalpher

Avik Chakraborti, Mridul Nandi

September 28, 2015

Outline of the talk

- Introduction.
- ② Differential Fault Analysis on Minalpher with a Single Random Fault
- Differential Fault Analysis on Minalpher with Two Random Faults
- 4 Attack Complexities
- Conclusions and Future Works

- Introduction
- 2 DFA with a Single Random Fault
- OFA with Two Random Faults
- 4 Attack Complexities
- 5 Conclusions and Future Works

Minalpher AE Scheme

- AEAD Enc : $(M, K, N, A) \mapsto (C, T)$
 - AEAD CGen : $(M, K, N, A) \mapsto C$
 - AEAD TGen : $(C, K, N, A) \mapsto T$
- P SPN structure.
- $MK \rightarrow L \rightarrow \varphi_i, \psi_i, \psi'_m$

P Permutation

- 256-bit input and 256-bit output (Two 128-bit state A and B)
- 17.5 round functions
- Each Round $SN(S) \rightarrow SR(T) \rightarrow MC(M)$
- Last Round $SN(S) \rightarrow SR(T)$

S Function

- $(A_{in}||B_{in}) \mapsto (A_{out}||B_{out})$
- Replaces x by s(x), \forall 4-bit nibbles x in $(A_{in}||B_{in})$

Table : s Function

×	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
s(x)	В	3	4	1	2	8	С	F	5	D	Е	0	6	9	Α	7

T Function

- \bullet $(A_{in}||B_{in}) \mapsto (A_{out}||B_{out})$
- $A_{out} = SR^2(B^{in}), B^{out} = SR^1(A^{in}) \oplus SR^2(B^{in})$

0,0	0, 1	0,2	0,3	0,4	0,5	0,6	0,7
1,0	1, 1	1,2	1,3	1,4	1,5	1,6	1,7
2,0	2, 1	2,2	2,3	2,4	2,5	2,6	2,7
3,0	3, 1	3,2	3,3	3,4	3,5	3,6	3,7
			SR1				
0,6	0,7	0,1	0,0	0,2	0,3	0,4	0,5
1,4	1,5	1,0	1,1	1,7	1,6	1,2	1,3
2,3	2,2	2,4	2,5	2,6	2,7	2,0	2,1
3,2	3,3	3,6	3,7	3,0	3,1	3,5	3,4

Figure : SR¹ AND SR²

M Function

- $(A_{in}||B_{in}) \mapsto (A_{out}||B_{out})$
- Multiplies each columns of $(A_{in}||B_{in})$ by M

$$\mathbf{M} = \left[\begin{array}{cccc} 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{array} \right]$$

- Introduction
- DFA with a Single Random Fault
- OFA with Two Random Faults
- 4 Attack Complexities
- 5 Conclusions and Future Works

Single Fault Injection Position

Figure : Fault Positions

- $A^{i,op}$, $B^{i,op}$: A and B after op operation at the i^{th} round.
- Optimized Random fault (gray nibbles) after S (16th round)
- 1 enc query + 1 faulty enc query

Fault Propagation

Figure: Fault Propagation

Figure : Backward Key Propagation

$$\bullet \ A \oplus B \to AB, \ I \oplus K \to IK$$

Form First Set of 30 Eqns

 $B^{17,M}$

	G_6	H_3^2	H_1	D_2^3	D_9^7	D_1^6	F_4
G_8		H_2	E_5^1	D_2^8	F_7	G_1	D_5^4
G_8	G_6	H_3^2	F_5	$L_2^{3,8}$	D_9^7	F_6	G_5
G_8	G_6	H_3	E_5^1	F_3^8	G_9	D_1^6	D_5^4

- Each equation corresponds to an active nibble in B^{17,M}
- Filter out invalid / values
- Time comp : 2^{12} , Reduced key space for I : $2^{128} \rightarrow 2^{68}$

Form Second Set of 25 Eqns

 $A^{17,M}$

	G_6	G_3^7	G_4	G_2	G_9	G_1	
G_8		G_7	G_4	G_2		G_1	G_5
G_8	G_6	G_3^7		G_2	G_9		G_5
G_8	G_6	G_3	G_4		G_9	G_1	G_5

- Each equation corresponds to an active nibble in A^{17,M}
- Filter out invalid $IK = I \oplus K$ values
- Time comp : 2^8 , Reduced key space for IK : $2^{128} \rightarrow 2^{64}$

Form Third Set of 9 Eqns

$B^{16,M}$

f_1			f_3		
f_1				f_2	
			f_3	f_2	
f_1			f_3	f_2	

- Each equation corresponds to an active nibble in B^{16,M}
- Further filter out invalid IK values
- Time comp : 2^8 , Reduced key space for IK : $2^{64} \rightarrow 2^{40}$

Form Fourth Set of 10 Eqns (By Equalities)

- Compares between $A^{17,M}$ and $B^{17,M}$
- Filter out joint keyspace for invalid I, IK values
- Time comp : 2^{108} , Reduced key space for (I, IK) : $2^{108} \rightarrow 2^{68}$

Form Fifth Set of 9 Eqns

 $A^{16,M}$

f_1			f_3		
f_1				f_2	
			f_3	f_2	
f_1			f_3	f_2	

- Corresponds to A^{16,M}
- Further filter out joint keyspace for invalid I, IK values
- Time comp : 2^{68} , Reduced key space for (I, IK) : $2^{68} \rightarrow 2^{44}$

Form Sixth Set of Eqns (By Equalities)

- Compares between $A^{16,M}$ and $B^{16,M}$
- Further filter out joint keyspace for invalid I, IK values
- Time comp : 2^{44} , Reduced key space for (I, IK) : $2^{44} \rightarrow 2^{8}$

Finally...

- Compute 2^8 , I and K values
- Compute L for each of the 2^8 , φ_1 values
- Total Time Complexity: 2¹⁰⁸
- Can forge (C, T) for any M and AD but with same N

- Introduction
- DFA with a Single Random Fault
- 3 DFA with Two Random Faults
- 4 Attack Complexities
- 5 Conclusions and Future Works

Two Random Fault Injection

- Injects another fault in the same position
- Form two 6 sets of equations parallely
- Filter out more invalid φ_1 values (find unique φ_1)
- compute unique $L = \alpha^{-1}.L$ from φ_1
- Reduces time complexity significantly (From the fourth equation set possible (I, IK) values will be only 2^{16} but not 2^{108})

- Introduction
- 2 DFA with a Single Random Fault
- OFA with Two Random Faults
- 4 Attack Complexities
- 5 Conclusions and Future Works

Attack Complexities

# Faults	Reduced Key Space Size	Time Complexity	# Forging Attempts
1	2 ⁸	2 ¹⁰⁸	2 ⁸
2	1	2^{16}	1

- Introduction
- DFA with a Single Random Fault
- OFA with Two Random Faults
- 4 Attack Complexities
- Conclusions and Future Works

Conclusions and Future Works

- Retrieve Intermediate Key (More easily with 2 faults)
- Forge (C, T) pair for any M with any AD but with same N
- Future Work
 - Retrieve master key MK from L (W / W.O extra fault) .

Thank you