3SAT is NP complete. we have seen ISD =p VCD Also re have seen VCD is in NP. we know that ISD is MP-camplete (somehow we The we conclude VCD is also MP-complete. An alternative post of VG is Mp-complete. by giving a reduction from 3-SAT postblem. boly-time.

We show that p is satisfiable iff top has a vertex enver of size < K. Gradget reduction The graph Gep contains gadgets that mimics

the variables and clauses of P.

Variable gadjet

For each variable x_i , we take a graph as,

Per each variable x_i , we take a graph as,

There are two possibilities of minimum vertex cover.

We pick in the vertex cover $v_i \rightarrow corresponding$ to literal v_i . $v_i = v_i = v_i$ $v_i =$

clause gadget $E_{t} = (x_{i} \vee x_{j} \vee x_{k})_{i} \vee x_{k}$ For a clame take 3 vertices, and 3 edges that makes a triangle.

Assume ρ is satisfiable

It has a satisfying assignment that evaluates ρ to be 1.

That evaluates ρ to be 1.

The property $\{x_1, \dots, x_n\} \rightarrow \{0, 1\}$ $\{x_1, \dots, x_n\} \rightarrow \{0, 1\}$

So we select a total of n vertices.

So we can pick at most 2m restices come sing

the remaining edges.

for each danse $G=(X_1, X_2, X_3)$ we consider a true Gresal and then select the other two vertices from clare galget bester cover.

Total we select n + 2 m otherside suppose there is a vertex cover of size at most n+2m.

For each variable, at least one vertex 1s required to cover the edge For each clause godget at least 2 vorties are required. => at least n+2m vorstences are required. of we read enafly n+2m vertices.

=> exactly n vertices from variable godget?

each variable and clause godgets are independent
=> Each variable gadget exactly 1 vertex is required 1, clause 1 / 2 vertices are ,
We now consider the assignment on follows. We take xi to be I if Vi is picked
Now we prome that each clause is satisfiable.
Ct = (xi v xy. v xx) since exactly 2 vertices are picked. one of the three cross = dges must be covered by variable verten.

That vertex is corresponding to a true literal. makes the clause satisfiable. Edges vertices 3m clarse 3 m 3m+n3m+2n