

(20A05503) FORMAL LANGUAGES AND AUTOMATA THEORY

Course Objectives:

This course is designed to:

- Introduce languages, grammar, and computational models
- Explain the Context Free Grammars
- Enable the students to use Turing machines
- Demonstrate decidability and un-decidability for NP-Hard problems

Course Outcomes:

After completion of the course, students will be able to

- List types of Turing Machines
- Design Turing Machine
- Formulate decidability and undesirability problems

UNIT I Finite Automata

Why Study Automata Theory? The Central Concepts of Automata Theory, Automation, Finite Automation, Transition Systems, Acceptance of a String by a Finite Automaton, DFA, Design of DFAs, NFA, Design of NFA, Equivalence of DFA and NFA, Conversion of NFA into DFA, Finite Automata with E-Transition, Minimization of Finite Automata, Mealy and Moore Machines, Applications and Limitation of Finite Automata.

UNIT II Regular Expressions

Regular Expressions, Regular Sets, Identity Rules, Equivalence of two Regular Expressions, Manipulations of Regular Expressions, Finite Automata, and Regular Expressions, Inter Conversion, Equivalence between Finite Automata and Regular Expressions, Pumping Lemma, Closers Properties, Applications of Regular Expressions, Finite Automata and Regular Grammars, Regular Expressions and Regular Grammars.

UNIT III Context Free Grammars

Formal Languages, Grammars, Classification of Grammars, Chomsky Hierarchy Theorem, Context-Free Grammar, Leftmost and Rightmost Derivations, Parse Trees, Ambiguous Grammars, Simplification of Context Free Grammars-Elimination of Useless Symbols, E-Productions and Unit Productions, Normal Forms for Context Free Grammars-Chomsky Normal Form and Greibach Normal Form, Pumping Lemma, Closure Properties, Applications of Context Free Grammars.

UNIT IV Pushdown Automata

Pushdown Automata, Definition, Model, Graphical Notation, Instantaneous Description Language Acceptance of pushdown Automata, Design of Pushdown Automata, Deterministic and Non – Deterministic Pushdown Automata, Equivalenceof Pushdown Automata and Context Free Grammars Conversion, Two Stack Pushdown Automata, Application of Pushdown Automata.

UNIT V Turing Machine

Turing Machine, Definition, Model, Representation of Turing Machines-Instantaneous Descriptions, Transition Tables and Transition Diagrams, Language of a Turing Machine, Design of Turing Machines, Techniques for Turing Machine Construction, Types of Turing Machines, Church's Thesis, Universal Turing Machine, Restricted Turing Machine.

Decidable and Undecidable Problems: NP, NP-Hard and NP-Complete Problems.

JNTUA B.Tech. R20 Regulations

Textbooks:

- 1. Introduction to Automata Theory, Languages and Computation, J.E.Hopcroft, R.Motwani and J.D.Ullman, 3rd Edition, Pearson, 2008.
- 2. Theory of Computer Science-Automata, Languages and Computation, K.L.P.Mishra and N.Chandrasekaran, 3rd Edition, PHI, 2007.

Reference Books:

- 1. Formal Language and Automata Theory, K.V.N.Sunitha and N.Kalyani, Pearson, 2015.
- 2. Introduction to Automata Theory, Formal Languages and Computation, ShyamalenduKandar, Pearson, 2013.
- 3. Theory of Computation, V.Kulkarni, Oxford University Press, 2013.
- 4. Theory of Automata, Languages and Computation, Rajendra Kumar, McGraw Hill, 2014.

Online Learning Resources:

https://nptel.ac.in/courses/106106049/https://nptel.ac.in/courses/106104028