

Professur für Industrielles Management Prof. Dr. Udo Buscher

Kickoff IM Challenge 2024 Inspektionsplanung Fernwärme bei SachsenEnergie

Dresden, 25.04.2024

Das Passwort für die Unterlagen lautet: IM!SS24_ijn

Ansprechpartner

Benedikt Zipfel

benedikt.zipfel@tu-dresden.de

Aron Lange

aron.lange@tu-dresden.de

Florian Linß

florian.linss@tu-dresden.de

IM-Challenge 2024:

Inspektionsplanung Fernwärme bei SachsenEnergie

Problembeschreibung

- Wie setze ich Prüfmonteure ein um möglichst viel im Fernwärmenetz zu prüfen?
- Berücksichtigung von vorgegebenen Hauptaufgaben
- Optimierung der Prüfquote bei gegebenem Personal durch intelligente Tourenplanung
- Angepasste Daten des Fernwärmenetzes Dresden

Warum sollte ich mitmachen

- Selbstständige Bearbeitung einer praktischen Fragestellung
- Entwicklung der eigenen Programmier- und Modellierungsfähigkeiten
- Spannender Wettbewerb mit Preisen
- 10 Leistungspunkte
 bei erfolgreichem Abschluss
- Verknüpfung von Theorie und Praxis

Organisatorisches

- Kick-off: 25. April 2024, 15:00 Uhr
- Konsultationen während des Semesters
- Bearbeitung bis 30.09.2024 möglich
- Prüfungsleistung: Programmcode,
 Protokoll und Präsentation
- Arbeiten allein oder in Zweiergruppen möglich
- Bei Fragen wenden Sie sich an: florian.linss@tu-dresden.de
 benedikt.zipfel@tu-dresden.de

© https://www.sachsenenergie.de/

Kickoff: Agenda

- 1. Inspektionsplanung Fernwärme bei SachsenEnergie
- 2. Problembeschreibung IM Challenge 2024
- 3. Organisation & Tipps

1. Inspektionsplanung Fernwärme bei SachsenEnergie

Fernwärmenetz Dresden

Netzdimension

- 660km Trassenkilometer
- ~8000 bauliche Anlagen verschiedener Kategorien

Inspektionsplanung

Netzkontrolle

Bauliche Anlagen müssen turnusmäßig geprüft werden. Mögliche bauliche Schäden: Betonrisse, Rost an Stahlstützen

- Sichtprüfung erfolgt durch Netzmonteure
- Hauptaufgaben

Zusätzlich müssen Netzmonteure das Tagesgeschäft durchführen (z.B. Unterstützung externer Firmen bei Baumaßnahmen)

Netz-Monteure arbeiten in Kolonnen à 2
 Personen

2. Aufgabenstellung IM Challenge 2024

Problembeschreibung

INDUSTRIELLES MANAGEMENT

Szenario Flexi: Team orienteering problem

- *I* ist die Menge an Prüfelementen aus denen ausgewählt werden kann
- Jedes Prüfelement besitzt:
 - Einen Standort (Längen- λ_i , Breitengrad γ_i)
 - Eine Prüfdauer σ_i
 - Eine Kategorie ρ_i (Gewichtung als Profit)
- Planungshorizont beträgt T Tage
- Prüfabteilung besteht aus K Kolonnen
- Jede Tour beginnt und endet am zentralen Depot i = 0
- Die Länge einer Tour beträgt maximal L_{max}
- Die Fahrzeit τ_{ij} zwischen zwei Orten wird mit der euklidischen Distanz approximiert (Luftlinie)

$$\tau_{ij} = f \cdot \sqrt{(\lambda_i - \lambda_j)^2 + (\gamma_i - \gamma_j)^2}$$

Problembeschreibung

Szenario *Flexi*: Team orienteering problem

- I ist die Menge an Prüfelementen aus denen ausgewählt werden kann
- Jedes Prüfelement besitzt:
 - Einen Standort (Längen- λ_i , Breitengrad γ_i)
 - Eine Prüfdauer σ_i
 - Eine Kategorie ρ_i (Gewichtung als Profit)
- Planungshorizont beträgt T Tage
- Prüfabteilung besteht aus K Kolonnen
- Jede Tour beginnt und endet am zentralen Depot
 i = 0
- Die Länge einer Tour beträgt maximal L_{max}
- Die Fahrzeit τ_{ij} zwischen zwei Orten wird mit der euklidischen Distanz approximiert (Luftlinie)

Zielstellung: Maximierung des gesamten Profits aller zugewiesenen Prüfungen

Problembeschreibung

Szenario Operative: Multi-period team orienteering problem with mandatory visits

- Es gelten alle Anforderungen wie im Szenario Flexi
- Zusätzlich müssen verpflichtende Hauptaufgaben eingeplant werden
- Jede Hauptaufgabe muss von einer Kolonne bearbeitet werden
- Jeder Hauptaufgabe ist ein konkreter Tag μ_i und eine konkrete Zeit zugewiesen
 - α_i frühstmöglicher Beginn
 - β_i spätestmögliches Ende

Zielstellung: Maximierung des gesamten Profits aller zugewiesenen Prüfungen

Inputdaten

- Randomisierte reale Daten für das Netz Dresden (*.json Datei)
- Erstes Element ist das Depot
- "ID": "PE-FWI-3-5292"
 - Vorletzte Ziffer gibt die Kategorie an
 - Letzte Ziffern sind eineindeutig

Instanzdaten

- Szenario Flexi: 4 Instanzen
 - Je eine Instanz für 2, 5, 8, und 10 Tage
 - Hauptaufgaben werden ignoriert
- Szenario *Operative: 8* Instanzen
 - Je zwei Instanzen für 2, 5, 8 und 10 Tage Planungshorizont
- Instanz Name: "K_T_Id"
 z.B.: "7_2_1.json"
- Jede Tour beginnt bei t=0 und muss bei
 t = 21.600 Sekunden (6h) enden
 →Maximale Routenlänge: 6h
- Umrechnungsfaktor euklidische Distanz zu Fahrzeit in Sekunden:

```
f = 17.100
```

```
"ID": "7 2 1",
       "Cohorts": 7.
       "Days": 2,
       "MaxRouteDuration": 21600,
       "MainTasks": [
 6
           "ID": "MT-FWI-1",
8
9
           "Day": 2,
           "ServiceTime": 6300,
10
11
           "StartTime": 9000,
12
           "EndTime": 15300,
13
           "LocationID": 747,
           "Latitude": 51.0675509,
14
           "Longitude": 13.7764159
15
```


Lösungsdaten

- Objective, NumberOfAllTasks, Profit dienen als Selbstüberprüfung
 - Objective: Summe aller Profite über den gesamten Zeitraum
 - NumberOfAllTasks: Wie viele Aufgaben wurden insgesamt erfüllt
 - Profit (in Cohort): Summe der Profite von dieser Kolonne an diesem Tag (alle Aufgaben in "Route")
- Fahrzeiten zwischen Aufgaben werden nicht angegeben
 - Ergeben sich implizit aus Startzeit und AufgabenID

Zugang

- Zugangslink: http://141.76.39.93:8501/
- Nur im Uni-Netzwerk möglich
 - Eduroam-WLAN
 - VPN-Tunnel Einrichtung: https://tu-dresden.de/zih/dienste/service-katalog/arbeitsumgebung/zugang_datennetz/vpn

Visualisierung Lösungsauswahl

Auswahl der zu betrachtenden Instanz (wird nach Hochladen einer Lösung automatisch richtig ausgewählt)

Downloadmöglichkeit für einer Bespiellösung (JSON) zum Überprüfen der Funktionen und zum Nachvollziehen des Dateiformates

Visualisierung Lösungsauswahl

Zielfunktionswert (Summe aller Profite)

Unzulässige Lösung

Zulässige Lösung

Zulässige Lösung

Lösungsauswertung

Zeitstrahl der Schichten

Lösungsauswertung

Visualisierung Lösungsauswertung

Zeitliches Verhältnis, wie lange die Kolonnen mit welcher Aktivität beschäftigt sind

Tooltip mit der gesamten benötigten Zeit in Sekunden

3. Organisation & Tipps

Organisation

Prüfungsleistung (10 LP)

- Abgabe eines lauffähigen Programms (Quellcode kommentieren)
- Protokoll (15 20 Seiten)
 - Verwendete Literatur
 - Formale Beschreibung des Modells und/oder des Algorithmus
 - Auswertung Ergebnisse (Wichtig: anschauliche Lösungsdarstellung)
- Schichtplan als .json Datei (siehe Beispiel / Visualisierungstool)
- Präsentation der Ergebnisse (15 Min. Vortrag + Diskussion)

Abgabe: Bis spätestens 30.09.2024

Oktober 2024

HISQIS Prüfungsanmeldung und -abmeldung im gesamten Semester möglich!

Organisation

Gruppengröße

- Bearbeitung kann einzeln oder in Zweiergruppen erfolgen
- Stimmen Sie sich untereinander ab
 - → Einschreibung in entsprechende Gruppe im OPAL!

Gewinne die IM Challenge 2024!

- Die Gruppe mit der besten Lösung gewinnt…
 - die IM Challenge 2024,
 - den Ehrentitel "IM Challenge Champion 2024" und den dazugehörigen Ruhm sowie
 - einen Preis!
- Für Benotung vor allem die Vorgehensweise und Darstellung im Protokoll maßgeblich

Organisation

Nächste Schritte

- Erste Konsultation 15.05.2024, 15:00 Uhr (HÜL N509)
 - Klärung von Fragen zur Problemstellung
 - Infos zur Nutzung des Berechnungsservers
 - Allgemeine Diskussion möglicher Lösungsansätze
 - **Aufgabe bis dahin**: Planungsproblem und Daten analysiert und verstanden, relevante Literatur gesichtet
- Weitere Termine: Bekanntgabe über OPAL
- Zusätzliche Hinweise und Absprachen werden im FAQ im OPAL zusammengetragen
- Bitte nutzen Sie zur Diskussion das Forum in OPAL (abonnieren!)

Tipps

Potenzielle Herangehensweisen

- Möglicher Startpunkt ist die Umsetzung und Lösung der einfachen Problemstellung (ohne Hauptaufgaben) als mathematisches Modell
- Andere Strategien:
 - Konstruktion erster Lösungen mit einfachen Eröffnungsverfahren
 - Clusterung der Ausgangsdaten und Zerlegung des Problems in kleinere, einfache Teilprobleme
- Nutzen Sie das bereitgestellte Visualisierungstool, um Ihre Lösungen zu analysieren
- Entscheidung:
 - → (Meta-)Heuristik oder MIP-basierter (exakter) Ansatz (z.B. mit Hilfe von Gurobi)
- Quellen, die Ihnen den Einstieg erleichtern können:

Tricoire, F., Romauch, M., Doerner, K. F., & Hartl, R. F. (2010). Heuristics for the multiperiod orienteering problem with multiple time windows. Computers & Operations Research, 37(2), 351-367.

Lin, S. W., & Vincent, F. Y. (2017). Solving the team orienteering problem with time windows and mandatory visits by multi-start simulated annealing. Computers & Industrial Engineering, 114, 195-205.

Vansteenwegen, P., & Gunawan, A. (2019). Orienteering problems. EURO Advanced Tutorials on Operational Research.

Wer wird die IM Challenge 2024 gewinnen?!?

Viel Erfolg!

