- 1. Welche Messniveaus gibt es? Was bedeuten sie? Nenne je ein Beispiel.
- 2. Anzahl Insekten Stiche auf Äpfeln:

X	hi
0	83
1	83 25 28 18
1 2 3	28
3	18
4	12
4 5 6	10
6	2
Summe	

Zeichne die Häufigkeiten und die empirische Summenhäufigkeiten.

3. Bei einer Firma werden in einem Monat 400 Lebensversicherungsverträge abgeschlossen. Nachstehend ist die klassifizierte Häufigkeitsverteilung für die Versicherungssummen angegeben.

Vers.summe (TFr)	Anzahl der Verträge		
vonbis unter			
4 - 10	20		
10 - 20	160		
20 - 30	80		
30 - 40	40		
40 - 80	88		
80 - 120	12		

Man zeichne ein Histogramm und die Summenkurve für die <u>relativen</u> Häufigkeiten

4. Zwei Weitspringer führen Statistik über die im Training erzielten Leistungen:

Weite	700-720	720-740	740-760	760-780	780-800	800-820
A	19	24	26	27	10	5
В	4	8	52	40	32	24

Bei einem Wettkampf springt A 7.3m und B 7.5m weit

Welcher Weitspringer ist bezogen auf seine Trainingsleistung am weitesten "unter Form' Überlege, welches Mass geeignet ist, für diesen Vergleich.

5. Kennzahlen

bei Aufg.2 bestimme den Mittelwert, den Modus und den Median

bei Aufg.3 bestimme durch Interpolation an der Summenkurve:

- a) Wie viel % der Versicherten sind mit höchstens 18'000.- versichert?
- b) Mit welchem Betrag mindestens sind die 20% Personen, die am höchsten versichert sind, versichert?
- c) Berechne den Median und den Mittelwert.

6. Bei der Ermittlung der landwirtschaftlichen Nutzfläche von Bauernhöfen in einem Bezirk ergaben sich folgende Werte (in ha):

- a) Bestimme den Median
- b) Berechne mit dem TR den Mittelwert und die Standardabweichung s.
- 7. Zeichne mit den Mietpreisen von Bsp3 im Skript einen Boxplot
- 8. Es seien U =tödliche Unfälle T =Todesfälle
- a) Stelle die Häufigkeitsverteilung von U graphisch dar
- b) Bestimme Mittelwert und Median, von U und T

Flugsicherheit im kommerziellen Linienflugverkehr in den USA, 1980–1995

	Abflüge (Millionen)	tödliche Unfälle	Todes- fälle	tödliche Unfälle pro 100 000 Abflüge		Abflüge (Millionen)	tödliche Unfälle	Todes- fälle	tödliche Unfälle pro ~00 000 Abflüge
	Γ.4	0	0	0,000	1988	6,7	3	285	0,045
1980	5,4	4	4	0,077	1989	6,6	11	278	0,167
1981	5,2	•	-	0,080	1990	6,9	6	39	0,087
1982	5,0	4	233	•			4	62	0,059
1983	5,0	4	5	0,080	1991	6,8	-	33	0,056
1984	5,4	1	4	0,018	1992	7,1	4	33	
		4	197	0.069	1993	7,2	1	1	0,014
1985	5,8	7	5	0,031	1994	7,5	4	239	0,053
1986	6,4	2	-	•	1995	8,1	2	166	0,025
1987	6,6	4	231	0,060	1990	٥,١			

Quelle: U.S.-Luftsicherheitsbehörde.

9.

Zu 36 zufällig ausgewählten Zeitpunkten wurde in einer petrochemischen Anlage die durchschnittliche Partikelkonzentration (in Mikrogramm pro Kubikmeter) der Luft gemessen. Dabei ergaben sich folgende Messwerte:

5, 18, 15, 7, 23, 220, 130, 85, 103, 25, 80, 7, 24, 6, 13, 65, 37, 25,

24, 65, 82, 95, 77, 15, 70, 110, 44, 28, 33, 81, 29, 14, 45, 92, 17, 53

Ges: Histogramm, Verteilungsfunktion, Boxplot, Kennwerte (mean, Q1, Q2, Q3, s).

Resultate

prctile(x,[25 50 75])

```
1) nominal, ordinal, metrisch
% Aufg 2
x = -1.7; h = [0 83 25 28 18 12 10 2 0]; % erste und letzte 0 extra einsetzen
subplot(1,2,1);
bar(x,h);
% Verteilungsfunktion;
s = cumsum(h) / sum(h);
subplot(1,2,2);
stairs(x,s);
%Aufq 3
% Histogramm
xedge = [4 10 20 30 40 80 120];
h = [ 20 160 80 40 88 12 0];
                                 % letzte 0 extra einsetzten
d = h./[diff(xedge) 1]/400;
                                 % Dichte, letzte 1 extra einsetzten
subplot(1,2,1);
bar(xedge,d,'histc')
                                 % siehe help histc
% Summenkurve
hneu = [ 0 20 160 80 40 88 12]; % erste 0 extra dazunehmen
s = cumsum(hneu);
F = s/400;
subplot(1,2,2);
plot(xedge,F,'k','LINEWIDTH',2)
4) Quantils-Vergleich A: 31/111 = 0.279 B: 19/80 = 0.238. B ist relativ schlechter als A.
5) zu Aufg.2
                 \bar{x} = 1.38 Modus = 0 Median = 1
                a) 0.37
                         b) 540/11 = 49.09
   zu Aufg.3
                                             c) Median = 22.5 \bar{x} = 31.05
6) a) 10.8 b) \bar{x} = 12.81
                           s = 10.68
7)
```

