Выбранный датасет: BMW Pricing Challenge

Представленные данные состоят из почти 5000 реальных автомобилей BMW, которые были проданы на аукционе b2b в 2018 году. Цена, указанная в таблице, является самой высокой ставкой, которая была достигнута в ходе аукциона.

In [58]

import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline

import seaborn as sns

Загрузка датасета

In [59]:

df = pd.read_csv('bmw_pricing_challenge.csv')

In [60]:

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 4843 entries, 0 to 4842 Data columns (total 18 columns):

#	Column	Non-Null Count Dtype
0	maker key	4843 non-null object
1		4843 non-null object
2	mileage	
3	engine_pow	er 4843 non-null int64
4	registration_	date 4843 non-null object
5	fuel	4843 non-null object
6	paint_color	4843 non-null object
7	car_type	4843 non-null object
8	feature_1	4843 non-null bool
9	feature_2	4843 non-null bool
10	feature_3	4843 non-null bool
11	feature_4	4843 non-null bool
12	feature_5	4843 non-null bool
13	feature_6	4843 non-null bool
14	feature_7	
	feature_8	4843 non-null bool
16	price	4843 non-null int64
17	sold_at	4843 non-null object
dty	pes: bool(8),	int64(3), object(7)
me	mory usage:	416.3+ KB

In [61]:

df.describe()

Out[61]:

	mileage	engine_power	price
count	4.843000e+03	4843.00000	4843.000000
mean	1.409628e+05	128.98823	15828.081767
std	6.019674e+04	38.99336	9220.285684
min	-6.400000e+01	0.00000	100.000000
25%	1.029135e+05	100.00000	10800.000000
50%	1.410800e+05	120.00000	14200.000000
75%	1.751955e+05	135.00000	18600.000000
max	1.000376e+06	423.00000	178500.000000

In [62]:

df.head(5)

Out[62]:

	maker_key	model_key	mileage	engine_power	registration_date	fuel	paint_color	car_type	feature_1	feature_2	feature_3	feature_4	feature_
0	BMW	118	140411	100	2012-02-01	diesel	black	convertible	True	True	False	False	Tru
1	BMW	M4	13929	317	2016-04-01	petrol	grey	convertible	True	True	False	False	Fals
2	BMW	320	183297	120	2012-04-01	diesel	white	convertible	False	False	False	False	Tru
3	BMW	420	128035	135	2014-07-01	diesel	red	convertible	True	True	False	False	Tru
4	BMW	425	97097	160	2014-12-01	diesel	silver	convertible	True	True	False	False	Fals
4													Þ

Подготовка данных

In [63]:

df.isnull().head(10)

Out[63]:

	maker_key	model_key	mileage	engine_power	registration_date	fuel	paint_color	car_type	feature_1	feature_2	feature_3	feature_4	feature_5
0	False	False	False	False	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False	False	False	False
5	False	False	False	False	False	False	False	False	False	False	False	False	False
6	False	False	False	False	False	False	False	False	False	False	False	False	False
7	False	False	False	False	False	False	False	False	False	False	False	False	False
8	False	False	False	False	False	False	False	False	False	False	False	False	False
9	False	False	False	False	False	False	False	False	False	False	False	False	False
4										1			Þ

In [64]:

df.isnull().sum()

Out[64]:

0 maker_key model_key 0 0 mileage 0 engine_power registration_date 0 fuel 0 paint_color car_type 0 0 feature_1 0 0 feature_2 feature_3 feature_4 0 feature_5 0 feature_6 feature_7 0 feature_8 0 price sold_at 0 dtype: int64

Описательная статистика + гипотезы

Гипотеза №1

Логично предположить, что мощность автомобиля влияет на его стоимость, ведь за лошадиные силы надо платить.

In [73]:

```
a_engine = np.average(df.engine_power)
df.plot.scatter(x='engine_power', y='price', c='blue', figsize = [10, 12], title='Зависимость цены от мощности автомобилей');
```


Данный график подтверждает гипотезу, по которой можно сделать такие выводы:

- Из концентрирования большей части значений прослеживается повышение цены автомобилей с повышением их мощности
- Единичные автомобили, проданные намного дороже средней цены на аукционе, имели мощность выше среднего

Гипотеза №2

Предположим, что с увеличением возраста автомобиля он теряет свою стоимость. Для этого для каждого автомобиля вычислим его количество дней службы и построим соответсвующие гистограммы, сгруппировав полученные данные.

In [66]:

```
df['dates'] = pd.to_datetime(df['sold_at']) - pd.to_datetime(df['registration_date'])
bins = [pd.to_timedelta('0 days'), pd.to_timedelta('1000 days'), pd.to_timedelta('1500 days'), pd.to_timedelta('2000 days'), pd.to_timedelta('3000 days'), pd.to_timedelta('4000 days'), pd.to_timedelta('11000 days')]
df['dates_groups']=pd.cut(df.dates, bins)
df.hist('price', by='dates_groups', layout=[3,2], figsize = [16, 18], xrot=0);
```


Вторая гипотеза также подтвердилась. Вот какие выводы можно сделать из полученных гистограмм:

- С увеличением возраста автомобиля он падает в цене
- Подавляющее большинство проданных на аукцион автомобилей были не старше 10 лет

Гипотеза №3

Предположим, что на аукционе больше всего было продано седанов и купе, так как это одни из самых распространенных типов автомобилей марки ВМW. Для этого построим круговую диаграмму.

In [67]:

```
plt.rcParams['figure.figsize'] = [12, 12]
labels = list(dif['car_type'].unique())
values = list(dict(df['car_type'].value_counts()).values())
total = sum(values)
labels = [f"{n} ({v/total:.1%})" for n, v in zip(labels, values)]

fig1, ax1 = plt.subplots()
ax1.pie(values, shadow=False, startangle=90, wedgeprops=dict(width=0.5))
ax1.axis('equal')
plt.legend(
bbox_to_anchor = (-0.25, 0.75, 0.25, 0.25),
loc = 'lower left', labels = labels)
plt.title('Распределение типов проданных автомобилей')
plt.show()
```


Из диаграммы видим, что гипотеза подтвердилась чатично:

- Почти четверть из всех проданных автомобилей относилась к купе, а седанов, напротив, продано чуть больше двух процентов.
- Самый распространенный тип автомобиля на данном аукционе кабриолет. Треть продаж из всех проданных автомобилей разных типов кузова.

Гипотеза №4

Разумно предположить, что автомобилей на электричестве и на гибридном топливе было продано меньше всего, так как это наименее распространенные автомобили. Проверим это с помощью столбчатых гистограмм.

In [68]:

df.hist('price', by='fuel', xrot=0, layout=[2,2], figsize = [15, 15]);

Гипотеза подтвердилась, на аукционе и правда были проданы единицы гибридных автомобилей и электрокаров. Кроме того, можем сделать такие выводы:

- У большей части проданных автомобилей были дизельные двигатели
- Автомобили с электрическим и гибридным типом топлива встречаются (и продаются) реже всего
- Нельзя проследить зависимость цены от типа топлива, так как дизельных автомобилей намного больше, чем машин с другими типами топлива

Гипотеза №5

Предположим, что наиболее дорогими автомобилями являются купе и кабриолеты. Построим график для проверки этой гипотезы.

In [69]:

Из графика видно лишь частичное подтверждение гипотезы:

• Наиболее дорогими типами автомобилей являются купе и внедорожники. Кабриолеты стоят немного дешевле, занимая третье место по цене.

Статистические данные

Узнаем, на каком топливе ездят автомобили, имеющие наибольшую мощность двигателя.

In [70]:

sns.lineplot(x=df.fuel, y=df.engine_power);

Из построенного графика можно увидеть, что наиболее мощными двигателями обладают автомобили с гибридными и бензиновыми типами топлива.

In []: