# 随机信号处理笔记

# 宋佳欢

# 2019年10月11日

# 目录

| 1 | 随机  | 言号基础                | 2  |
|---|-----|---------------------|----|
|   | 1.1 | 随机变量与随机过程           | 2  |
|   |     | 1.1.1 随机过程的数学定义     | 2  |
|   |     | 1.1.2 随机过程的分类       | 2  |
|   | 1.2 | 随机信号的时域(统计)表示       | 3  |
|   |     | 1.2.1 随机信号的一维概率分布   | 4  |
|   |     | 1.2.2 随机信号的 N 维概率分布 | 4  |
|   |     | 1.2.3 离散时间随机过程的数字特征 | 4  |
| 2 | 维纳  | <b>悲波器</b>          | 6  |
|   | 2.1 | 正交性原理               | 6  |
|   | 2.2 | 最小均方误差              | 7  |
|   | 2.3 | 维纳-霍夫方程(求解)         | 8  |
| 3 | 最速  | 下降法                 | 10 |
|   | 3.1 | 最速下降法的基本思想          | 10 |
|   | 3.2 | 最速下降算法应用于维纳滤波器      | 10 |
|   | 3.3 | 最速下降法的稳定性           | 10 |
| 4 | 自适  | 应滤波器                | 12 |
|   | 4.1 | LMS 自适应滤波算法         | 13 |
|   | 4.2 | LMS 算法的收敛性证明        | 13 |

# 1 随机信号基础

## 1.1 随机变量与随机过程



#### 1.1.1 随机过程的数学定义

定义 1: 设 E 时随机试验,它的样本空间是  $S = \{\xi\}$ ,对于每一个  $\xi \subset \{S\}$ ,总有一个确定的时间函数  $u(t,\xi)$  与之对应。这样可得到一簇时间 t 的函数,该簇称为<u>随机过程</u>。簇中的每一个函数称为这个随机过程的<u>样本函数</u>。

定义 2: 设 E 有一个过程 u(t), 对于每一个时刻  $t_j(j=1,2,...)$ ,  $u(t_j)$  时一个随机变量,则称 u(t) 为随机过程。(默认采用该定义描述)

- A. 当t和ξ都是可变量时, u是一个时间函数族;
- B. 当t是可变量、ξ固定时, u是一个确定的时间 函数;
- C. 当t固定, ξ是可变量时, u是一个随机变量;
- D. 当t固定, ξ固定时, u是一个确定数。

#### 1.1.2 随机过程的分类

1. 连续型随机过程: 时间、状态都连续。



2. 离散时间型随机过程: 时间离散, 状态连续。



3. 离散幅度型随机过程: 时间连续, 状态离散。



4. 离散型随机过程:时间、状态都离散。



(数字信号处理,处理的是第2种信号)

# 1.2 随机信号的时域(统计)表示

考虑由时间序列  $u(n), u(n-1), \cdots, u(n-M+1)$  示的离散时间随机过程  $\{u(n)\}$ 。为了简化表示方式,从现在起,也使用 u(n) 表示该离散时间随机过程。(随机过程等价于 <u>多维随</u>机变量)

#### 1.2.1 随机信号的一维概率分布

对于一个随机过程 u(n), 在任意时刻 n 是一个随机变量, 它的一维概率分布函数为:

$$F_{u(n)}(u,n) = P\{u(n) \le u\}$$

若 F(u,n) 的一阶偏导数存在,则随机过程 u(n) 的一维概率密度函数为:

$$f_{u(n)}(u,n) = \frac{\partial F(u,n)}{\partial u}$$

## 1.2.2 随机信号的 N 维概率分布

对于一个随机过程 u,在任意 N 个时刻  $n_1, n_2, \dots, n_N$ ,可构成 N 维随机变量  $\{u(n_1), u(n_2), \dots, u(n_N)\}$ ,它的的 N 维联合概率分布函数为:

$$F_u(u_1, u_2, \dots, u_N; n_1, n_1, \dots, n_N) = P\{u(n_1) \le u_1, u(n_2) \le u_2, \dots, u(n_N) \le u_N\}$$

若  $F_u(u_1, u_2, \dots, u_N; n_1, n_1, \dots, n_N)$  对  $u_1, u_2, \dots, u_N$  的偏导数存在,则随机过程 u(n) 的 N 维概率密度函数为:

$$f_u(u_1, u_2, \cdots, u_N; n_1, n_1, \cdots, n_N) = \frac{\partial^2 F_u(u_1, u_2, \cdots, u_N; n_1, n_1, \cdots, n_N)}{\partial u_1 \partial u_2 \cdots \partial u_N}$$

#### 1.2.3 离散时间随机过程的数字特征

随机过程的数字特征有随机变量的数字特征推广而来,但一般不再是确定的数值,而是关于时间的函数。

1. 数学期望:表示随机过程所有样本函数的统计平均函数。

$$\mu(n) = E(u(n)) = \int_{-\infty}^{+\infty} u f_{u(n)}(u, n) du$$

#### 2. 自相关函数

复数域:  $r(n, n - k) = E[u(n)u^*(n - k)]$ 

实数域: r(n, n - k) = E[u(n)u(n - k)]

$$k=0,\pm 1,\pm 2,\dots$$

#### 3. 自协方差函数

复数域:

$$c(n,n-k) = E\{[u(n) - \mu(n)][u(n-k) - \mu(n-k)]^*\}$$

实数域:

$$c(n, n - k) = E\{[u(n) - \mu(n)][u(n - k) - \mu(n - k)]\}$$
  
$$k = 0, \pm 1, \pm 2, \dots$$

分别减去了均值。

#### 4. 自相关函数与自协方差函数的关系

复数域:

$$c(n, n - k) = r(n, n - k) - \mu(n)\mu^*(n - k)$$

实数域:

$$c(n, n - k) = r(n, n - k) - \mu(n)\mu(n - k)$$
  
 $k = 0, \pm 1, \pm 2, ...$ 

当期望为 0 时, 有 c(n, n-k) = r(n, n-k)

- **5.** 广**义平稳:** 均值与时间无关,即  $E(\mu(n)) = \mu$ , 其自相关函数、自协方差函数与时间无关,只与样值之间的时间差有关。即: r(n, n-k) = r(k), c(n, n-k) = c(k).
- **6. 平均各态历经(遍历性)**:对于广义平稳的随机过程,其均值和相关函数具有各态历经性,也称具有遍历性。具有具有<u>各态历经性</u>的随机序列,可以用时间平均来获得集平均(期望)。

随机过程的 N 个样本的时间平均为:

$$\hat{\mu_N} = \frac{1}{N} \sum_{n=0}^{N-1} u(n)$$

对于所有的 N 值,可得  $E[\hat{\mu}_N] = \mu$ ,当  $N \to \infty$  时,有  $\hat{\mu}_N = \mu$ ,则称随机过程在均值意义上是各态历经的,因为概率分布不随时间发生变化。

# 6. 相关矩阵:

定义随机向量  $\mathbf{u}(n)=[u(n),u(n-1),\cdots,u(n-M+1)]^T$ , 则该随机过程的 M 为相关矩阵的定义为:

复数域:  $\mathbf{R} = E[\mathbf{u}(n)\mathbf{u}^H(n)]$  (上标 H 表示转置及共轭操作)

实数域:  $\mathbf{R} = E[\mathbf{u}(n)\mathbf{u}^T(n)]$ 

$$\mathbf{R} = \begin{bmatrix} r(0) & r(1) & \dots & r(M-1) \\ r(-1) & r(0) & \dots & r(M-2) \\ \vdots & \vdots & \ddots & \vdots \\ r(-M+1) & r(-M+2) & \dots & r(0) \end{bmatrix}$$

复数域 
$$\mathbf{R}^H = \mathbf{R}, r(-k) = r^*(k)$$

实数域 
$$\mathbf{R}^T = \mathbf{R}, r(-k) = r(k)$$

# 2 维纳滤波器

$$\underbrace{u(n)}_{\mathbf{W}} \underbrace{y(n)}_{\mathbf{Y}} \underbrace{d(n)}_{\mathbf{Y}} \underbrace{e(n)}_{\mathbf{Y}}$$

维纳数字滤波框图

$$e(n) = d(n) - y(n)$$

# 已知输入信号 u(n) 和期望响应(参考信号) d(n)

,使误差信号e(n)在某种统计意义上最小。

#### 2.1 正交性原理

对于因果滤波器, 其 n 时刻的输出为卷积:

$$y(n) = \sum_{k=0}^{\infty} w_k^* u(n-k) = \mathbf{w}^H \mathbf{u}(n), \quad n = 0, 1, 2 \cdots$$

使用均方误差作为代价函数, 优点: 该代价函数具有唯一的最小值。

$$J(n) = E[|e(n)|^2] = E[e(n)e^*(n)]$$

如何求最小值:求函数对所有变量的偏导数,令所有偏导数为 0,其对应的变量为多元函数取得最小值的解。为了方便表示,常将所有的偏导数写成列向量,该列向量称为函数的梯度或共轭梯度。因此,令所有偏导数为 0,等价于令梯度或共轭梯度为 0。

第 k 个滤波器的系数可表示为:

$$w_k = a_k = jb_k, \quad k = 0, 1, 2, \cdots$$

整个滤波器系数向量可表示为:

$$\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_{M-1} \end{bmatrix} = \begin{bmatrix} a_0 + jb_0 \\ a_1 + jb_1 \\ \vdots \\ a_{M-1} + jb_{M-1} \\ \vdots \\ \vdots \end{bmatrix}$$

把代价函数 J(n) 对 w 中的每个  $w_k$  系数求偏导得到:

$$\nabla_k J = E \left[ \frac{\partial e(n)}{\partial a_k} e^*(n) + \frac{\partial e^*(n)}{\partial a_k} e(n) + \frac{\partial e(n)}{\partial b_k} j e^*(n) + \frac{\partial e^*(n)}{\partial b_k} j e(n) \right], \quad k = 0, 1, 2, \dots$$

计算四个偏导数分别为:

$$\frac{\partial e(n)}{\partial a_k} = -u(n-k), \quad \frac{\partial e^*(n)}{\partial a_k} = -u^*(n-k)$$

$$\frac{\partial e(n)}{\partial b_k} = ju(n-k), \quad \frac{\partial e^*(n)}{\partial b_k} = -ju^*(n-k)$$

将四个式子带入到  $\nabla_k J$ , 得到:

$$\nabla_k J = -2E[u(n-k)e^*(n)], \quad k = 0, 1, 2, \cdots$$

当梯度为零时,代价函数达到最小值,所以梯度向量  $\nabla J$  的所以元素都要等于 0:

$$\nabla_k J = -2E[u(n-k)e^*(n)] = 0, \quad k = 0, 1, 2, \dots$$

等效于 (下标 o 表示 optimal):

$$E[u(n-k)e_o^*(n)] = 0$$

**正交性原理**: 代价函数最小的充要条件是: 估计误差  $e_o(n)$  与 n 时刻进入期望响应估计的每个输入样值 u(n-k) 正交。

# 正交性原理推论

## 根据自适应滤波器的输出,可得

$$E[y(n)e^{*}(n)] = E[\sum_{k=0}^{\infty} w_{k}^{*}u(n-k)e^{*}(n)]$$
$$= \sum_{k=0}^{\infty} w_{k}^{*}E[u(n-k)e^{*}(n)]$$

# 根据正交性原理

$$E[u(n-k)e_o^*(n)] = 0, \quad k = 0,1,2,\cdots$$
可推得 
$$E\left[y_o(n)e_o^*(n)\right] = 0$$

#### 2.2 最小均方误差

达到最优时:

$$e_o(n) = d(n) - y_o(n) = d(n) - \hat{d}(n|\mathcal{U}_n)$$

 $U_n$  表示输入限号 u(n) 直到时刻 n 的输入样值张成的空间。根据卷积公式,计算得到的输出 实际上就是直到时刻 n 的输入样值的线性组合。

$$d(n) = \hat{d}(n|\mathcal{U}_n) + e_o(n)$$

$$d^*(n) = \hat{d}^*(n|\mathcal{U}_n) + e_o^*(n)$$

所以:

 $\sigma_d^2 = d(n)d^*(n) = \sigma_{\hat{d}(n|\mathcal{U}_n)}^2 + E[\hat{d}(n|\mathcal{U}_n)e_o^*(n)] + E[\hat{d}^*(n|\mathcal{U}_n)e_o(n)] + \sigma_{e_0}^2$ 由正交性原理的推论可得,式子中的两项期望为 0,所以有:

$$\sigma_d^2 = \sigma_{\hat{d}}^2 + J_{min}$$
$$J_{min} = \sigma_d^2 - \sigma_{\hat{d}}^2$$

归一化均方误差:

$$\sigma = \frac{J_{min}}{\sigma_d^2} = 1 - \frac{\sigma_d^2}{\sigma_d^2}, \quad 0 \le \sigma \le 1$$

#### 2.3 维纳-霍夫方程(求解)

# 一般情况下的维纳-霍夫方程

根据最优情况下误差信号的定义

$$e_o(n) = d(n) - y_o(n) = d(n) - \sum_{i=0}^{\infty} w_{o,i}^* u(n-i)$$

和正交性原理

$$E[u(n-k)e_o^*(n)] = 0, k = 0,1,2,\cdots$$

可得

$$\sum_{i=0}^{\infty} w_{o,i} E[u(n-k)u^*(n-i)] = E[u(n-k)d^*(n)]$$

$$k = 0,1,2...$$

第一个期望  $E[u(n-k)u^*(n-i)]$ : 等于相隔 i-k 个 延迟的输入信号自相关函数,即

$$r(i-k) = E[u(n-k)u^*(n-i)]$$

第二个期望  $E[u(n-k)d^*(n)]$ : 等于输入信号 u(n-k) 与期望响应 d(n) 相隔 -k 个延迟的互相关,即

$$p(-k)=E[u(n-k)d^*(n)]$$

将 r(i-k) 与 p(-k) 代入:

可得维纳霍-夫方程

$$\sum_{i=0}^{\infty} w_{o,i} r(i-k) = p(-k), \quad k = 0,1,2...$$

## 对于横向滤波器,第n时刻的输入向量可表示为

$$\mathbf{u}(n) = [u(n), u(n-1), ..., u(n-M+1)]^T$$

### 则其相关矩阵为

$$\mathbf{R} = E[\mathbf{u}(n)\mathbf{u}^{H}(n)]$$

$$= \begin{bmatrix} r(0) & r(1) & \dots & r(M-1) \\ r^{*}(1) & r(0) & \dots & r(M-2) \\ \dots & \dots & \dots & \dots \\ r^{*}(M-1) & r^{*}(M-2) & \dots & r(0) \end{bmatrix}$$

## 将滤波器的输入向量与期望响应的互相关向量记为

$$\mathbf{p} = E[\mathbf{u}(n)d*(n)]$$

#### 则维纳-霍夫方程可写成矩阵形式:

$$\mathbf{Rw}_o = \mathbf{p}$$

其中,
$$\mathbf{w}_o = \left[ w_{o,0}, w_{o,1}, ..., w_{o,M-1} \right]^T$$

如果相关矩阵是非奇异的,则可解出令代价函数最小 的最优权值向量,即

$$\mathbf{w}_o = \mathbf{R}^{-1}\mathbf{p}$$

换个角度: 利用向量求导来求解

误差:

$$e(n) = d(n) - \mathbf{w}^H \mathbf{u}(n)$$

误差的平方:

$$e(n)e^*(n) = \left(d(n) - \mathbf{w}^H \mathbf{u}(n)\right) \left(d^*(n) - \mathbf{u}^H(n)\mathbf{w}\right)$$
$$= |d(n)|^2 - d(n)\mathbf{u}^H(n)\mathbf{w} - \mathbf{w}^H \mathbf{u}(n)d^*(n) + \mathbf{w}^H \mathbf{u}(n)\mathbf{u}^H(n)\mathbf{w}$$

对误差的平方取期望:

$$E[|e(n)|^2] = E[|d(n)|^2] + E[d(n)\mathbf{u}^H(n)]\mathbf{w} + \mathbf{w}^H E[\mathbf{u}(n)d^*(n)] + \mathbf{w}^H E[\mathbf{u}(n)\mathbf{u}^H(n)]\mathbf{w}$$

其中  $E[\mathbf{u}(n)\mathbf{u}^H(n)] = \mathbf{R}$ ,并令  $E[\mathbf{u}(n)d^*(n)] = \mathbf{p}$ (与维纳-霍夫方程中的记法相同),带入上式得损失函数:

$$J(\mathbf{w}) = E[|e(n)|^2] = \sigma_d^2 - \mathbf{p}^H \mathbf{w} + \mathbf{w}^H \mathbf{p} + \mathbf{w}^H \mathbf{R} \mathbf{w}$$

对上式求 w 的共轭梯度, 并令其等于 0:

$$\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}^*} = -\mathbf{p} + \mathbf{R}\mathbf{w} = 0$$

同样可以求得参数 w。

# 3 最速下降法

### 3.1 最速下降法的基本思想

迭代下降法: 从某一初始值  $\mathbf{w}(0)$  开始, 按照固定的步骤, 产生一系列权重向量  $\mathbf{w}(1)$ ,  $\mathbf{w}(2)$ ,  $\mathbf{w}(3)$ ,  $\cdots$ , 使得代价函数的值在每一次迭代之后都下降:

$$J(\mathbf{w}(n+1)) < J(\mathbf{w}(n))$$

迭代下降法的一种简单形式——最速下降法,沿着负梯度方向连续调整权重向量 w,将梯度表示为:

$$\mathbf{g} = \nabla J(\mathbf{w})$$

从而最速下降法可表示为 (μ 为步长):

$$\mathbf{w}(n+1) = \mathbf{w}(n) - \frac{1}{2}\mu\mathbf{g}(n)$$

#### 3.2 最速下降算法应用于维纳滤波器

第2章中提到维纳滤波器的代价函数为:

$$J(\mathbf{w}) = E[|e(n)|^2] = \sigma_d^2 - \mathbf{p}^H \mathbf{w}(n) + \mathbf{w}^H(n)\mathbf{p} + \mathbf{w}^H(n)R\mathbf{w}(n)$$

其中:

$$\sigma_d^2 = E[d^2(n)]$$

$$\mathbf{p} = E[\mathbf{u}()d^*(n)]$$

$$\mathbf{R} = E[\mathbf{u}(n)\mathbf{u}^H(n)]$$

其梯度向量为:

$$\nabla J(n) = -2\mathbf{p} + 2\mathbf{R}\mathbf{w}(n)$$

代入最速下降法的公式中, 迭代解为:

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \mu(\mathbf{p} - \mathbf{R}\mathbf{w}(n))$$

- 【1】与维纳滤波器的闭合解  $\mathbf{w}_o = \mathbf{R}^{-1}\mathbf{p}$  相比,迭代解不需要求相关矩阵  $\mathbf{R}$  的逆。
- 【2】迭代解是经典的最小均方算法的基础。

#### 3.3 最速下降法的稳定性

问: 当  $n \to \infty$  时,是否有  $\mathbf{w}(n) \to \mathbf{w}_o$ ?若有,需要满足什么条件? 定义: n 时刻的权重误差向量:

$$\mathbf{c}(n) = \mathbf{w}_o - \mathbf{w}(n)$$

将迭代式:

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \mu(\mathbf{p} - \mathbf{R}\mathbf{w}(n))$$

两边同时减去 wo, 并消去负号, 可得:

$$\mathbf{c}(n+1) = \mathbf{c}(n) - \mu(\mathbf{p} - \mathbf{R}\mathbf{w}(n))$$

将维纳方程  $\mathbf{R}\mathbf{w}_o = \mathbf{p}$  代人上式,消去  $\mathbf{p}$ ,可得:

$$\mathbf{c}(n+1) = \mathbf{c}(n) - \mu \mathbf{R}(\mathbf{w}_o - \mathbf{w}(n))$$
$$\mathbf{c}(n+1) = (\mathbf{I} - \mu \mathbf{R})\mathbf{c}(n)$$

根据上式的误差向量的关系类推,得到:

$$\mathbf{c}(n+1) = (\mathbf{I} - \mu \mathbf{R})^2 \mathbf{c}(n-1)$$
$$\mathbf{c}(n+1) = (\mathbf{I} - \mu \mathbf{R})^{n+1} \mathbf{c}(0)$$

每一次迭代之后误差向量都乘上了  $(\mathbf{I} - \mu \mathbf{R})$ , 如果该项小于 0, 那么误差向量是在不断减小的。

使用特征值分解,将相关矩阵分解为:

$$\mathbf{R} = \mathbf{Q}\Lambda\mathbf{Q}^H$$

迭代式变为:

$$\mathbf{c}(n+1) = (\mathbf{I} - \mu \mathbf{Q} \Lambda \mathbf{Q}^H) \mathbf{c}(n)$$

两边同乘以  $\mathbf{Q}^H$ :

$$\mathbf{Q}^{H}\mathbf{c}(n+1) = (\mathbf{Q}^{H} - \mu\Lambda\mathbf{Q}^{H})\mathbf{c}(n)$$
$$= (\mathbf{I} - \mu\Lambda)\mathbf{Q}^{H}\mathbf{c}(n)$$

定义变换向量  $\mathbf{v}(n) = \mathbf{Q}^H \mathbf{c}(n)$ , 代换后有:

$$\mathbf{v}(n+1) = (\mathbf{I} - \mu \Lambda)\mathbf{v}(n)$$

初始权重常取  $\mathbf{w}(0) = \mathbf{0}$ , 所以:

$$\mathbf{v}(0) = \mathbf{Q}^H \mathbf{c}(0) = \mathbf{Q}^H [\mathbf{w}_o - \mathbf{0}] = \mathbf{Q}^H \mathbf{w}_o$$

$$\Rightarrow$$
 若证明  $n \to \infty$ 时, $\mathbf{w}(n) \to \mathbf{w}_o$  可证明  $n \to \infty$ 时, $\mathbf{c}(n) = \mathbf{w}_o - \mathbf{w}(n) \to \mathbf{0}$  或证明  $n \to \infty$ 时, $\mathbf{v}(n) = \mathbf{Q}^{\mathrm{H}} \mathbf{c}(n) \to \mathbf{0}$ 

即要求证明:  $n \to \infty$ 时,  $v_k(n+1) \to 0$ 

$$\rightarrow$$
式  $\mathbf{v}(n+1) = (\mathbf{I} - \mu \mathbf{\Lambda})\mathbf{v}(n)$ 的展开式为

$$\begin{bmatrix} v_1(n+1) \\ v_2(n+1) \\ \vdots \\ v_M(n+1) \end{bmatrix} = \begin{bmatrix} 1 - \mu \lambda_1 \\ & 1 - \mu \lambda_2 \\ & & \ddots \\ & & 1 - \mu \lambda_M \end{bmatrix} \begin{bmatrix} v_1(n) \\ v_2(n) \\ \vdots \\ v_M(n) \end{bmatrix}$$

$$v_{1}(n+1) = (1-\mu\lambda_{1})v_{1}(n)$$
$$v_{2}(n+1) = (1-\mu\lambda_{2})v_{2}(n)$$
$$\vdots$$
$$v_{M}(n+1) = (1-\mu\lambda_{M})v_{M}(n)$$

▶ 由第k个方程

$$v_k(n+1) = (1 - \mu \lambda_k) v_k(n), k = 1, 2, \dots, M$$
  
递推可得

$$v_k(n+1) = (1 - \mu \lambda_k)^{n+1} v_k(0)$$

▶要使得 
$$v_k(\infty) \rightarrow 0$$
,上式中必须满足   
-1<(1-  $\mu\lambda_k$ )<1,  $k = 1, 2, \dots, M$ 

> 因此,最速下降法的**稳定性条件**为 
$$0 < \mu < \frac{2}{\lambda_{\max}}$$
  
其中 
$$\lambda_{\max} = \max\{\lambda_1, \lambda_1, \cdots, \lambda_M\}$$

# 4 自适应滤波器

上两章中求解维纳滤波器的封闭解和数值解时,需要的已知条件为:相关矩阵  $\mathbf{R}$ ,输入信号与期望响应的互相关向量  $\mathbf{p}$ 。

然而,在实际应用中, $\mathbf{R}$ 和 $\mathbf{p}$ 大部分情况下是未知的;如果信号是时变的,则 $\mathbf{R}$ 和 $\mathbf{p}$ 都是时变的。所以需要一种能够实时估计或者跟踪信号的的统计特性方法,即自适应滤波方法。

## 4.1 LMS 自适应滤波算法

- > 前面推导的最速下降算法迭代式为  $\mathbf{w}(n+1) = \mathbf{w}(n) + \mu[\mathbf{p} \mathbf{R}\mathbf{w}(n)]$  其中, $\mathbf{R} = E[\mathbf{u}(n)\mathbf{u}^H(n)], \mathbf{p} = E[\mathbf{u}(n)d(n)]$
- ▶ 为了能够实时处理,可以采用信号的瞬时值 来近似估计,即

$$\hat{\mathbf{R}}(n) = \mathbf{u}(n)\mathbf{u}^{H}(n), \ \hat{\mathbf{p}}(n) = \mathbf{u}(n)d(n)$$

> 将上式代入最速下降算法迭代式,可得

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \mu \left[ \mathbf{u}(n)d^{*}(n) - \mathbf{u}(n)\mathbf{u}^{H}(n)\mathbf{w}(n) \right]$$

$$= \mathbf{w}(n) + \mu \mathbf{u}(n) \left[ d^{*}(n) - \mathbf{u}^{H}(n)\mathbf{w}(n) \right]$$

$$= \mathbf{w}(n) + \mu \mathbf{u}(n) \left[ d(n) - \mathbf{w}^{H}(n)\mathbf{u}(n) \right]^{*}$$

$$= \mathbf{w}(n) + \mu \mathbf{u}(n)e^{*}(n)$$

上式即为最小均方(LMS)算法的迭代公式。

# 最小均方(LMS)算法的迭代公式,包含三个过程:

- 1) 滤波输出:  $y(n) = \mathbf{w}^H(n)\mathbf{u}(n)$
- 2) 计算估计误差: e(n)=d(n)-y(n)
- 3) 权值向量自适应:  $\mathbf{w}(n+1) = \mathbf{w}(n) + \mu \mathbf{u}(n)e^*(n)$

## 4.2 LMS 算法的收敛性证明

证明参数是否收敛到某一个值:

> 将LMS算法的迭代公式展开,可得

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \mu[\mathbf{u}(n)e^*(n)]$$
$$= \mathbf{w}(n) + \mu\{\mathbf{u}(n)[d^*(n) - \mathbf{u}^H(n)\mathbf{w}(n)]\}$$

>上式两边取期望,可得

$$E[\mathbf{w}(n+1)] = E[\mathbf{w}(n)] + \mu E[\mathbf{u}(n)d^*(n)]$$
$$-\mu E[\mathbf{u}(n)\mathbf{u}^H(n)\mathbf{w}(n)]$$

近似处理:  $\mathbf{w}(n)$  与  $\mathbf{u}(n)$  不相关:

▶ 在步长取值很小的情况下, w(n) 变化很慢, 可 以近似为与输入向量 u(n)不相关, 则近似有

$$E[\mathbf{u}(n)\mathbf{u}^{H}(n)\mathbf{w}(n)] = E[\mathbf{u}(n)\mathbf{u}^{H}(n)]E[\mathbf{w}(n)]$$

>于是, 迭代式

$$E[\mathbf{w}(n+1)] = E[\mathbf{w}(n)] + \mu E[\mathbf{u}(n)d^*(n)]$$
$$-\mu E[\mathbf{u}(n)\mathbf{u}^H(n)\mathbf{w}(n)]$$

可简化成

$$E[\mathbf{w}(n+1)] = (\mathbf{I} - \mu \mathbf{R})E[\mathbf{w}(n)] + \mu \mathbf{p}$$

▶ 设初始权值为 w(0) , 则有上式递推可得

$$E[\mathbf{w}(1)] = (\mathbf{I} - \mu \mathbf{R}) E[\mathbf{w}(0)] + \mu \mathbf{p}$$

$$E[\mathbf{w}(2)] = (\mathbf{I} - \mu \mathbf{R}) E[\mathbf{w}(1)] + \mu \mathbf{p}$$

$$= (\mathbf{I} - \mu \mathbf{R})^2 E[\mathbf{w}(0)] + \mu (\mathbf{I} - \mu \mathbf{R}) \mathbf{p} + \mu \mathbf{p}$$

$$\vdots$$

$$E[\mathbf{w}(n+1)] = (\mathbf{I} - \mu \mathbf{R})^{n+1} E[\mathbf{w}(0)] + \mu \sum_{i=0}^{n} (\mathbf{I} - \mu \mathbf{R})^{i} \mathbf{p}$$

将 R 对角化:

▶ 根据特征值分解,可令 R = QΛQ<sup>H</sup>
 其中,Q 为酉矩阵,满足 QQ<sup>H</sup> = I, Q<sup>H</sup> = Q<sup>-1</sup>

# > 则递推式

$$E[\mathbf{w}(n+1)] = (\mathbf{I} - \mu \mathbf{R})^{n+1} E[\mathbf{w}(0)] + \mu \sum_{i=0}^{n} (\mathbf{I} - \mu \mathbf{R})^{i} \mathbf{p}$$

可转化为

$$E[\mathbf{w}(n+1)] = (\mathbf{I} - \mu \mathbf{Q} \Lambda \mathbf{Q}^{-1})^{n+1} E[\mathbf{w}(0)]$$
$$+ \mu \sum_{i=0}^{n} (\mathbf{I} - \mu \mathbf{Q} \Lambda \mathbf{Q}^{-1})^{i} \mathbf{p}$$

单位矩阵拆分, $Q,Q^{-1}$  左右抵消:

 $\rightarrow$  根据酉矩阵的性质  $\mathbf{QQ}^H = \mathbf{I}, \mathbf{Q}^H = \mathbf{Q}^{-1},$  递推式

$$E[\mathbf{w}(n+1)] = (\mathbf{I} - \mu \mathbf{Q} \Lambda \mathbf{Q}^{-1})^{n+1} E[\mathbf{w}(0)]$$
$$+ \mu \sum_{i=0}^{n} (\mathbf{I} - \mu \mathbf{Q} \Lambda \mathbf{Q}^{-1})^{i} \mathbf{p}$$

等号右边第一项的矩阵可写为

$$(\mathbf{I} - \mu \mathbf{Q} \Lambda \mathbf{Q}^{-1})^n = (\mathbf{Q} \mathbf{Q}^{-1} - \mu \mathbf{Q} \Lambda \mathbf{Q}^{-1})^n$$
$$= [\mathbf{Q} (\mathbf{I} - \mu \Lambda) \mathbf{Q}^{-1}]^n$$
$$= \mathbf{Q} (\mathbf{I} - \mu \Lambda)^n \mathbf{Q}^{-1}$$

参数收敛,对步长的限制与最速下降法相同:

# > 则递推式可转化为

$$E[\mathbf{w}(n+1)] = \mathbf{Q}(\mathbf{I} - \mu \mathbf{\Lambda})^{n+1} \mathbf{Q}^{-1} E[\mathbf{w}(0)]$$
$$+ \mu \mathbf{Q} \sum_{i=0}^{n} (\mathbf{I} - \mu \mathbf{\Lambda})^{i} \mathbf{Q}^{-1} \mathbf{p}$$

要使上式收敛,必须满足如下条件:

$$\left|1 - \mu \lambda_{\text{max}}\right| < 1 \quad \Rightarrow \quad 0 < \mu < \frac{2}{\lambda_{\text{max}}}$$

然而特征值未知,近似处理:

- 》条件  $0 < \mu < 2 / \lambda_{max}$  需要知道相关矩阵的特征值, 而实际应用中可能是未知的。
- 》由于  $\lambda_{\max} < \sum_{i=1}^{M-1} \lambda_{i+1} = tr[\mathbf{R}] = \sum_{i=0}^{M-1} E[u^2(i)]$ ,则步长的范围可缩小为

$$0 < \mu < \frac{2}{\sum_{i=1}^{N} E[u_i^2]}$$

其中, $\sum_{i=0}^{M-1} E[u_i^2]$ 为输入信号的功率,通常可以估计。

参数收敛了,是否收敛到  $\mathbf{w}_o$ :

- ◆下面证明, 当  $n \to \infty$  时, w(n) 收敛于何处。
- > 当 n → ∞ 时,递推式

$$E[\mathbf{w}(n+1)] = \mathbf{Q}(\mathbf{I} - \mu \mathbf{\Lambda})^{n+1} \mathbf{Q}^{-1} E[\mathbf{w}(0)]$$
$$+ \mu \mathbf{Q} \sum_{i=0}^{n} (\mathbf{I} - \mu \mathbf{\Lambda})^{i} \mathbf{Q}^{-1} \mathbf{p}$$

转化为

$$\lim_{n\to\infty} E[\mathbf{w}(n+1)] = \mu \mathbf{Q} \lim_{n\to\infty} \sum_{i=0}^{n} (\mathbf{I} - \mu \mathbf{\Lambda})^{i} \mathbf{Q}^{-1} \mathbf{p}$$

矩阵的等比数列求和 (除法变为求逆):

ight
angle 递推式中的矩阵  $\lim_{n\to\infty}\sum_{i=0}^n(\mathbf{I}-\mu\mathbf{\Lambda})^i$  可转化为

$$\lim_{n\to\infty}\sum_{i=0}^{n}(\mathbf{I}-\mu\mathbf{\Lambda})^{i}=\left[\mathbf{I}-(\mathbf{I}-\mu\mathbf{\Lambda})\right]^{-1}=\frac{1}{\mu}\mathbf{\Lambda}^{-1}$$

将上式代入递推式

$$\lim_{n\to\infty} E[\mathbf{w}(n+1)] = \mu \mathbf{Q} \lim_{n\to\infty} \sum_{i=0}^{n} (\mathbf{I} - \mu \mathbf{\Lambda})^{i} \mathbf{Q}^{-1} \mathbf{p}$$
可得 
$$\lim_{n\to\infty} E[\mathbf{w}(n+1)] = \mu \mathbf{Q} \frac{1}{\mu} \mathbf{\Lambda}^{-1} \mathbf{Q}^{-1} \mathbf{p} = \mathbf{Q} \mathbf{\Lambda}^{-1} \mathbf{Q}^{-1} \mathbf{p}$$

$$= \mathbf{Q} \mathbf{\Lambda}^{-1} \mathbf{Q}^{H} \mathbf{p} = \mathbf{R}^{-1} \mathbf{p} = \mathbf{w}_{o}$$