

课程 □ Unit 4 Hypothesis testing □ Homework 7 □ 4. One-sided Test vs Wald's Test

4. One-sided Test vs Wald's Test

In the problems on this page, $X_1, \ldots, X_n \overset{iid}{\sim} \operatorname{Exp}(\lambda)$, where $\lambda > 0$ is an unknown parameter. In this series of problems, we will compare two tests for the following null and alternative hypotheses:

$$H_0$$
 : $\lambda \leq 1$

$$H_1$$
 : $\lambda > 1$.

MLE and Fisher Information for an Exponential Statistical Model

2/2得分(计入成绩)

What is the MLE $\hat{\lambda}$ for an exponential statistical model?

(Enter barX_n for \overline{X}_n .)

$$\hat{\lambda} = \begin{bmatrix} 1/\text{barX}_n \end{bmatrix}$$
 \Box Answer: 1/barX_n

What is the Fisher information $I\left(\lambda\right)$ for an exponential statistical model?

STANDARD NOTATION

Solution:

We computed the MLE in this homework for an exponential statistical model in the problem "Likelihood Ratio Test" on the page "MLE for a Shifted Exponential". This is precisely

$$\hat{\lambda}_{n}^{MLE}=rac{1}{\overline{X}_{n}}.$$

To compute the Fisher information, the log-likelihood for a single observation is

$$\ell\left(\lambda
ight)=\ln\left(\lambda e^{-x\lambda}
ight)=\ln\left(\lambda
ight)-\lambda x.$$

Therefore

$$\ell''\left(\lambda
ight)=-rac{1}{\lambda^2},$$

and the Fisher information is given by

$$\mathcal{I}\left(\lambda
ight) = -\mathbb{E}_{\lambda}\left[\ell''\left(\lambda
ight)
ight] = rac{1}{\lambda^2}.$$

☐ Answers are displayed within the problem

Test Statistic Based on the MLE for an Exponential Statistical Model

1/1得分 (计入成绩)

Assume that the technical conditions hold so that the MLE $\hat{\lambda}_n^{MLE}$ of an exponential statistical model is asymptotically normal. Then it follows that

$$rac{\sqrt{n}\,(\hat{\lambda}_{n}^{MLE}-\lambda)}{g\,(\hat{\lambda}_{n}^{MLE})}\stackrel{(d)}{\longrightarrow}N\left(0,1
ight)$$

where $g\left(\hat{\lambda}_{n}^{MLE}\right)$ is an expression that depends on $\hat{\lambda}_{n}^{MLE}$.

What is $g(\hat{\lambda}_n^{MLE})$?

(Enter **hatlambda** for $\hat{\lambda}_n^{MLE}$.)

$$g(\hat{\lambda}_n^{MLE}) = egin{bmatrix} ext{hatlambda} \ & \Box ext{ Answer: hatlambda} \ & \Box ext{$$

STANDARD NOTATION

Solution:

The asymptotic variance of the statistic

$$\sqrt{n}\,(\hat{\lambda}_n^{MLE}-\lambda)$$

is given by $\mathcal{I}(\lambda)^{-1}=\lambda^2$. Therefore,

$$rac{\sqrt{n}\,(\hat{\lambda}_{n}^{MLE}-\lambda)}{\lambda}\stackrel{(d)}{\longrightarrow}N\left(0,1
ight)$$

Moreover, by Slutsky's theorem

$$rac{\sqrt{n}\,(\hat{\lambda}_{n}^{MLE}-\lambda)}{\hat{\lambda}_{n}^{MLE}} \stackrel{(d)}{\longrightarrow} N\left(0,1
ight).$$

Therefore $\mathbf{g}\left(\hat{\lambda}_{\mathbf{n}}^{\mathbf{MLE}}\right) = \hat{\lambda}_{\mathbf{n}}^{\mathbf{MLE}}$.

提交

你已经尝试了3次(总共可以尝试4次)

□ Answers are displayed within the problem

Evaluating the Test Based on the MLE

0/1得分(计入成绩)

Let us define the test statistic

$$T_{n}=rac{\sqrt{n}\,(\hat{\lambda}_{n}^{MLE}-1)}{g\,(\hat{\lambda}_{n}^{MLE})}$$

where $g(\hat{\lambda}_n^{MLE})$ is the expression from the previous problem. We define the test $\psi=\mathbf{1}\,(T_n> au)$, where au is a chosen so that ψ is a test at asymptotic level lpha=0.05. Suppose we observe $\overline{X}_n = 0.83$. Does the test ψ reject or fail to reject H_0 on this data set? Use n=100. Fail to reject Reject 🗌 **Solution:** Recall that the 5% quantile of $N\left(0,1\right)$ is approximately 1.65. If $\overline{X}_{n}=0.83$, then $T_n = rac{\sqrt{n} \, (rac{1}{0.83} - 1)}{1/0.83} pprox 1.7.$ Therefore, the test as designed above will $\mathbf{reject}\ H_0.$ 你已经尝试了1次(总共可以尝试1次) 提交 ☐ Answers are displayed within the problem Wald's Test 2/2得分 (计入成绩) Recall the test-statistic T_n from the previous problem, and let T_n^{Wald} denote the test-statistic associated to Wald's test for the hypotheses H_0 and H_1 . Express T_n^{Wald} in terms of T_n . (Enter **T**_**n** for T_n .) ☐ **Answer:** T_n^2 Which of the following is true about T_n^{Wald} if we assume that $\lambda=1$? $igcup T_n^{Wald}$ is distributed as $\mathcal{N}\left(0,1
ight)$. $igcup T_n^{Wald}$ is asymptotically distributed as χ_2^2 . extstyle extullet T_n^{Wald} is asymptotically distributed as χ_1^2 . \Box **STANDARD NOTATION**

Solution:

By definition, we have that

$$T_{n}^{Wald} = n (\hat{\lambda}_{n}^{MLE} - 1)^{T} I \left(\hat{\lambda}_{n}^{MLE}
ight) (\hat{\lambda}_{n}^{MLE} - 1) \,.$$

Since the MLE is 1-dimensional,

$$T_n^{Wald} = n(\hat{\lambda}_n^{MLE} - 1)^2 \cdot rac{1}{{(\hat{\lambda}_n^{MLE})}^2}.$$

Now, for the first question, observe that $T_n^{Wald}=T_n^2$.

For the second question, since

$$T_{n} \stackrel{(d)}{\longrightarrow} N\left(0,1
ight),$$

we have that

$$T_n^{Wald} = T_n^2 \xrightarrow[n o \infty]{(d)} \chi_1^2.$$

提交

你已经尝试了1次(总共可以尝试4次)

□ Answers are displayed within the problem

Evaluating Wald's Test on a Sample Data Set

1/1得分 (计入成绩)

Consider the test $\psi^{Wald}=\mathbf{1}\left(T_n^{Wald}> au
ight)$ where au is set so that the test ψ^{Wald} has asymptotic level 0.05. Suppose you observe $\overline{X}_n=0.83$.

Does the test ψ^{Wald} reject or fail to reject on the given data set? Use n=100.

● Fail to reject □

Reject

Solution:

Consulting a table of values, we see that the 0.05-quantile of χ^2_1 is 3.84. Now observe that

$$T_n^{Wald}=(T_n^2)pprox (1.7)^2pprox 2.89$$

as was computed in a previous problem. Therefore, using Wald's test, we would **fail to reject** H_0 on observing $\overline{X}_n=0.83$.

提交

你已经尝试了1次(总共可以尝试1次)

☐ Answers are displayed within the problem