Joins \rightarrow Aggregates \rightarrow Optimization

https://fdbresearch.github.io

Dan Olteanu

PhD Open School University of Warsaw November 23, 2018

Acknowledgements

Some work reported in this course has been done in the context of the FDB project, LogicBlox, and RelationalAI by

- Zavodný, Schleich, Kara, Nikolic, Zhang, Ciucanu, and Olteanu (Oxford)
- Abo Khamis and Ngo (RelationalAI), Nguyen (U. Michigan)

Some of the following slides are derived from presentations by

- Abo Khamis (optimization diagrams)
- Kara (covers, IVM^e, and many graphics)
- Ngo (functional aggregate queries)
- Schleich (performance and quizzes)

Lastly, Kara and Schleich proofread the slides.

I would like to thank them for their support!

Goal of This Course

Introduction to a principled approach to in-database computation

This course starts where mainstream databases courses finish.

Part 1: Joins

Part 2: Aggregates

- ▶ Important functionality of DB query languages and essential for applications
- Natural generalization of aggregates over joins can express problems across Computer Science in, e.g., DB, logic, probabilistic graphical models [ANR16]
- ► Algorithm with lowest known computational complexity [BKOZ13,ANR16]
- Aggregates under data updates

[NO18,KNNOZ19]

■ Part 3: Optimization

Outline of Part 2: Aggregates

FAQs: Functional Aggregate Queries

FAQ Computation

Counting Triangles under Updates

References

Quiz

We use the following notation $(i \in [n] = \{1, ..., n\})$:

- \blacksquare X_i are variables,
- \blacksquare x_i are values in discrete domain $Dom(X_i)$
- $\mathbf{x} = (x_1, \dots, x_n) \in \mathsf{Dom}(X_1) \times \dots \times \mathsf{Dom}(X_n)$
- For any $S \subseteq [n]$,

$$\begin{array}{rcl} \mathbf{x}_{S} & = & (x_{i})_{i \in S} \in \prod_{i \in S} \mathsf{Dom}(X_{i}) \\ \\ \text{e.g. } \mathbf{x}_{\{2,5,8\}} & = & (x_{2},x_{5},x_{8}) \in \mathsf{Dom}(X_{2}) \times \mathsf{Dom}(X_{5}) \times \mathsf{Dom}(X_{8}) \end{array}$$

Functional Aggregate Query: The Problem

- \blacksquare n variables X_1, \ldots, X_n
- lacksquare a multi-hypergraph $\mathcal{H}=(\mathcal{V},\mathcal{E})$
 - **Each** vertex is a variable (notation overload: V = [n])
 - ▶ To each hyperedge $S \in \mathcal{E}$ there corresponds a factor ψ_S

$$\psi_S:\prod_{i\in S}\mathsf{Dom}(X_i)\to \ \mathbf{D}$$

- \blacksquare n variables X_1, \ldots, X_n
- lacksquare a multi-hypergraph $\mathcal{H}=(\mathcal{V},\mathcal{E})$
 - **Each** vertex is a variable (notation overload: V = [n])
 - ▶ To each hyperedge $S \in \mathcal{E}$ there corresponds a factor ψ_S

$$\psi_S:\prod_{i\in S}\mathsf{Dom}(X_i)\to \ \mathbf{D}$$

- \blacksquare n variables X_1, \ldots, X_n
- \blacksquare a multi-hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$
 - **Each** vertex is a variable (notation overload: V = [n])
 - ▶ To each hyperedge $S \in \mathcal{E}$ there corresponds a factor ψ_S

$$\psi_S:\prod_{i\in S}\mathsf{Dom}(X_i)\to \ \mathbf{D}$$

- \blacksquare n variables X_1, \ldots, X_n
- \blacksquare a multi-hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$
 - Each vertex is a variable (notation overload: V = [n])
 - ▶ To each hyperedge $S \in \mathcal{E}$ there corresponds a factor ψ_S

$$\psi_S:\prod_{i\in S}\mathsf{Dom}(X_i)\to \ \mathbf{D}$$

- \blacksquare n variables X_1, \ldots, X_n
- lacksquare a multi-hypergraph $\mathcal{H}=(\mathcal{V},\mathcal{E})$
 - **Each** vertex is a variable (notation overload: V = [n])
 - ▶ To each hyperedge $S \in \mathcal{E}$ there corresponds a factor ψ_S

$$\psi_{\mathcal{S}}:\prod_{i\in\mathcal{S}}\mathsf{Dom}(X_i) orac{\mathbf{D}}{\uparrow}$$
 $\mathbf{R}_+,\ \{\mathsf{true},\mathsf{false}\},\ \{0,1\},\ 2^{\mathcal{U}},\ \mathsf{etc.}$

- \blacksquare n variables X_1, \ldots, X_n
- \blacksquare a multi-hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$
 - **Each** vertex is a variable (notation overload: V = [n])
 - ▶ To each hyperedge $S \in \mathcal{E}$ there corresponds a factor ψ_S

$$\psi_{\mathcal{S}}:\prod_{i\in\mathcal{S}}\mathsf{Dom}(X_i) o egin{array}{c} \mathsf{D} \\ \mathsf{R}_+,\ \{\mathsf{true},\mathsf{false}\},\ \{0,1\},\ 2^{\mathcal{U}},\ \mathsf{etc.} \end{array}$$

■ a set $F \subseteq \mathcal{V}$ of free variables (wlog, $F = [f] = \{1, \dots, f\}$)

■ Compute the function $\varphi: \prod_{i \in F} \mathsf{Dom}(X_i) \to \mathbf{D}$.

- **■** Compute the function $\varphi : \prod_{i \in F} \mathsf{Dom}(X_i) \to \mathbf{D}$.
- $\blacksquare \varphi$ defined by the *FAQ-expression*

$$\varphi(\mathbf{x}_{[f]}) = \bigoplus_{x_{f+1} \in \mathsf{Dom}(X_{f+1})}^{(f+1)} \cdots \bigoplus_{x_{n-1} \in \mathsf{Dom}(X_{n-1})}^{(n-1)} \bigoplus_{x_n \in \mathsf{Dom}(X_n)}^{(n)} \bigotimes_{S \in \mathcal{E}} \psi_S(\mathbf{x}_S)$$

- **■** Compute the function $\varphi : \prod_{i \in F} \mathsf{Dom}(X_i) \to \mathbf{D}$.
- $\blacksquare \varphi$ defined by the *FAQ-expression*

$$\varphi(\mathbf{x}_{[f]}) = \bigoplus_{x_{f+1} \in \mathsf{Dom}(X_{f+1})}^{(f+1)} \cdots \bigoplus_{x_{n-1} \in \mathsf{Dom}(X_{n-1})}^{(n-1)} \bigoplus_{x_n \in \mathsf{Dom}(X_n)}^{(n)} \bigotimes_{S \in \mathcal{E}} \psi_S(\mathbf{x}_S)$$

■ For each $\bigoplus^{(i)}$

- Compute the function $\varphi: \prod_{i \in F} \mathsf{Dom}(X_i) \to \mathbf{D}$.
- ullet φ defined by the *FAQ-expression*

$$\varphi(\mathbf{x}_{[f]}) = \bigoplus_{x_{f+1} \in \mathsf{Dom}(X_{f+1})}^{(f+1)} \cdots \bigoplus_{x_{n-1} \in \mathsf{Dom}(X_{n-1})}^{(n-1)} \bigoplus_{x_0 \in \mathsf{Dom}(X_n)}^{(n)} \bigotimes_{S \in \mathcal{E}} \psi_S(\mathbf{x}_S)$$

- For each $\bigoplus^{(i)}$
 - ▶ Either $(D, \bigoplus^{(i)}, \bigotimes)$ is a commutative semiring

- **■** Compute the function $\varphi : \prod_{i \in F} \mathsf{Dom}(X_i) \to \mathbf{D}$.
- ullet φ defined by the *FAQ-expression*

$$\varphi(\mathbf{x}_{[f]}) = \bigoplus_{x_{f+1} \in \mathsf{Dom}(X_{f+1})}^{(f+1)} \cdots \bigoplus_{x_{n-1} \in \mathsf{Dom}(X_{n-1})}^{(n-1)} \bigoplus_{x_0 \in \mathsf{Dom}(X_n)}^{(n)} \bigotimes_{S \in \mathcal{E}} \psi_S(\mathbf{x}_S)$$

- For each $\bigoplus^{(i)}$
 - ightharpoonup Either $\left(\mathbf{D}, \bigoplus^{(i)}, \bigotimes\right)$ is a commutative semiring
 - ightharpoonup Or $\bigoplus^{(i)} = \bigotimes$

Commutative Semirings

- $(\mathbf{D},\oplus,\otimes)$ is a commutative semiring when
 - **■** (\mathbf{D}, \oplus) is a commutative monoid with identity element $\mathbf{0}$:
 - $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
 - $ightharpoonup 0 \oplus a = a \oplus 0 = a$
 - ightharpoonup $a \oplus b = b \oplus a$
 - **(D**, \otimes) is a commutative monoid with identity element 1:
 - $(a \otimes b) \otimes c = a \otimes (b \otimes c)$
 - $\blacktriangleright \ \mathbf{1} \otimes a = a \otimes \mathbf{1} = a$
 - ightharpoonup $a \oplus b = b \oplus a$
 - Multiplication distributes over addition:
 - Multiplication by **0** annihilates **D**:

Commutative Semirings

- $(\mathbf{D}, \oplus, \otimes)$ is a commutative semiring when
 - \blacksquare (D, \oplus) is a commutative monoid with identity element 0:
 - $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
 - $ightharpoonup 0 \oplus a = a \oplus 0 = a$
 - ightharpoonup $a \oplus b = b \oplus a$
 - \blacksquare (D, \otimes) is a commutative monoid with identity element 1:
 - $(a \otimes b) \otimes c = a \otimes (b \otimes c)$
 - $ightharpoonup 1 \otimes a = a \otimes 1 = a$
 - ightharpoonup $a \oplus b = b \oplus a$
 - Multiplication distributes over addition:
 - Multiplication by 0 annihilates D:
 - $ightharpoonup 0 \otimes a = a \otimes 0 = 0$

Common examples (there are many more!)

Boolean ({true, false},
$$\vee$$
, \wedge) sum-product (\mathbb{R} , $+$, \times) max-product (\mathbb{R}_+ , max, \times) set (2^U , \cup , \cap)

$SumProduct \subset FAQ$

Problem (SumProduct)

Given a commutative semiring $(\mathbf{D}, \oplus, \otimes)$, compute the function

$$\varphi(x_1,\ldots,x_f) = \bigoplus_{x_{f+1}} \bigoplus_{x_{f+2}} \cdots \bigoplus_{x_n} \bigotimes_{S \in \mathcal{E}} \psi_S(\mathbf{x}_S)$$

For $\oplus = +$ and $\otimes = *$, φ can be expressed in SQL as:

SELECT
$$x_1, ..., x_f$$
, SUM(R_1 .val * · · · * R_n .val)
FROM R_1 NATURAL JOIN ... R_n
GROUP BY $x_1, ..., x_f$;

where each function ψ_i over variables \mathbf{X}_S is encoded as a relation R_i over \mathbf{X}_S and an additional variable val to account for the values of ψ_i .

This formulation is equivalent to:

SumProduct

D99

Marginalize a Product Function

[AM00]

Many examples for SumProduct

- \blacksquare ({true, false}, \lor , \land)
 - Constraint satisfaction problems
 - Boolean conjunctive query evaluation
 - ► SAT
 - ▶ *k*-colorability
 - etc.
- \blacksquare (U, \cup, \cap)
 - Conjunctive query evaluation
- **■** (ℝ, +, ×)
 - Permanent
 - ► DFT
 - Inference in probabilistic graphical models
 - ► #CSP
 - ► Matrix chain multiplication
 - Aggregates in DB
- **■** (**R**₊, max, ×)
 - MAP queries in probabilistic graphical models

SumProduct Example 1: Boolean Query Evaluation

Boolean Conjunctive Queries:

- Boolean query Φ with set $rels(\Phi)$ of relation symbols
- Each relation symbol $R \in rels(\Phi)$ has variables vars(R)

$$\Phi = \exists X_1 \dots \exists X_n : \bigwedge_{R \in rels(\Phi)} R(vars(R))$$

FAQ encoding:

$$\phi = \bigvee_{\mathbf{x}} \bigwedge_{S \in \mathcal{E}} \psi_S(\mathbf{x}_S), \text{ where}$$

- ullet ϕ has the hypergraph $(\mathcal{V}, \mathcal{E})$ with
- $\mathbf{v} = \bigcup_{R \in rels(\Phi)} vars(R) \text{ and } \mathcal{E} = \{vars(R) \mid R \in rels(\Phi)\}$
- For each $S \in \mathcal{E}$, there is a factor ψ_S such that $\psi_S(\mathbf{x}_S) = (\mathbf{x}_S \in R)$

SumProduct Example 2: Matrix Chain Multiplication

Compute the product
$$\mathbf{A} = \mathbf{A}_1 \cdots \mathbf{A}_n$$
 of n matrices

■ Each matrix \mathbf{A}_i is over field \mathbb{F} and has dimensions $p_i \times p_{i+1}$

FAQ encoding:

- We use n+1 variables X_1, \ldots, X_{n+1} with domains $\mathsf{Dom}(X_i) = [p_i]$
- **Each** matrix \mathbf{A}_i can be viewed as a function of two variables:

$$\psi_{i,i+1}: \mathsf{Dom}(X_i) \times \mathsf{Dom}(X_{i+1}) \to \mathbb{F}, \text{ where } \psi_{i,i+1}(x_i,x_{i+1}) = (\mathbf{A}_i)_{x_i x_{i+1}}$$

The problem is now to compute the FAQ expression

$$\phi(x_1, x_{n+1}) = \sum_{x_2 \in Dom(X_2)} \cdots \sum_{x_n \in Dom(X_n)} \prod_{i \in [n]} \psi_{i, i+1}(x_i, x_{i+1}).$$

SumProduct Example 3: Queries in Graphical Models

- lacksquare Discrete undirected graphical model represented by a hypergraph $(\mathcal{V},\mathcal{E})$
- $\mathcal{V} = \{X_1, \dots, X_n\}$ consists of n discrete random variables
- lacksquare There is a factor $\psi_{\mathcal{S}}:\prod_{i\in\mathcal{S}}\mathsf{Dom}(X_i) o\mathbb{R}_+$ for each edge $\mathcal{S}\in\mathcal{E}$

FAQ expression to compute the marginal Maximum A Posteriori estimates:

$$\phi(x_1,\ldots,x_f) = \max_{x_{f+1} \in \mathsf{Dom}(X_{f+1})} \cdots \max_{x_n \in \mathsf{Dom}(X_n)} \prod_{S \in \mathcal{E}} \psi_S(\mathbf{x}_S)$$

FAQ expression to compute the marginal distribution of variables X_1, \ldots, X_f :

$$\phi(x_1,\ldots,x_f) = \sum_{x_{f+1} \in \mathsf{Dom}(X_{f+1})} \cdots \sum_{x_n \in \mathsf{Dom}(X_n)} \prod_{S \in \mathcal{E}} \psi_S(\mathbf{x}_S)$$

For conditional distributions $prob(\mathbf{X}_A \mid \mathbf{X}_B = \mathbf{x}_B)$, we set \mathbf{X}_B to \mathbf{x}_B .

Outline of Part 2: Aggregates

FAQs: Functional Aggregate Queries

FAQ Computation

Counting Triangles under Updates

References

Quiz

How to compute a SumProduct FAQ φ

- \blacksquare Find a variable order for φ
- \blacksquare Compute φ by eliminating variables in the given order

This is a dynamic programming algorithm. Two flavours:

► FDB: Top-down with memoization (caching)

[BKOZ13]

We exemplify two variants:

- 1. Compute the factorized join and the aggregates in one pass over the factorization
- 2. Translate the factorized computation into relational queries
- InsideOut: Bottom-up with indicator projections

[ANR16]

■ The complexity is given by the width of the variable order:

Given a database of size N, an FAQ φ , a variable order for φ with width w, φ can be computed in time $\mathcal{O}(N^w + |\mathsf{OUT}|)$, where $|\mathsf{OUT}|$ is the output size.

Finding a Variable Order for a SumProduct FAQ φ

First attempt: Same variable order Δ as for the join part of φ

One wrinkle: What if not all variables are free?

Finding a Variable Order for a SumProduct FAQ φ

First attempt: Same variable order Δ as for the join part of φ

One wrinkle: What if not all variables are free?

- The free variables sit above the bound variables in Δ . [BKOZ13,OZ15]
- Equivalent constraint for hypertree decompositions: [ANR16]

Take a hypertree decomposition for the join part of φ such that the bags with the free variables form a connected subtree.

Implication on complexity:

- The width for φ is at least the width for its join part $\Rightarrow \varphi$ may be more expensive than its join part if it has free variables
- This new width is called the *FAQ-width* in the literature [ANR16]

Computing COUNT over Factorized Join using FDB

- $\varphi = \sum_{m} O(customer, day, dish) \cdot D(dish, item) \cdot I(item, price)$
- In SQL: SELECT COUNT(*) FROM O NATURAL JOIN .. I;
- We change the semiring to $(\mathbb{N}, +, *)$:
 - ▶ values \mapsto 1 $\cup \mapsto +$ $\times \mapsto *$

Computing COUNT over Factorized Join using FDB

- $\varphi = \sum_{...} O(customer, day, dish) \cdot D(dish, item) \cdot I(item, price)$
- In SQL: SELECT COUNT(*) FROM O NATURAL JOIN .. I;
- We change the semiring to $(\mathbb{N}, +, *)$:
 - ▶ values \mapsto 1 $\cup \mapsto +$ $\times \mapsto *$

Computing SUM over Factorized Join using FDB

- $\varphi = \sum_{...} f(dish) \cdot price \cdot O(customer, day, dish) \cdot D(dish, item) \cdot I(item, price)$
- In SQL: SELECT SUM(f(dish) * price) FROM O NATURAL JOIN .. I;
 - Assume there is a function f that turns dish into reals or indicator vectors.
 - ▶ All values except for dish & price \mapsto 1, $\cup \mapsto +$, $\times \mapsto *$.

Computing SUM over Factorized Join using FDB

- $\varphi = \sum f(dish) \cdot price \cdot O(customer, day, dish) \cdot D(dish, item) \cdot I(item, price)$
- In SQL: SELECT SUM(f(dish) * price) FROM O NATURAL JOIN .. I;
 - Assume there is a function f that turns dish into reals or indicator vectors.
 - ▶ All values except for dish & price \mapsto 1, $\cup \mapsto +$, $\times \mapsto *$.

Computing SUM over Factorized Join using FDB

If f turns dish into indicator vectors:

- $\varphi(dish) = \sum_{...} price \cdot O(customer, day, dish) \cdot D(dish, item) \cdot I(item, price)$
- In SQL: SELECT dish, SUM(price) FROM O NATURAL JOIN..I GROUP BY dish;

To Compute or Not To Compute the Factorized Join

Aggregates can be computed without materializing the factorized join $[\hbox{OZ15,OS16,ANNOS18a+b}]$

- The factorized join becomes the *trace* of the aggregate computation
- This is called factorized aggregate computation

Example of Factorized Computation via Query Rewriting

The 4-path count query Q_4 on a graph with 4 copies of the edge relation E:

$$Q_4() = \sum_{a,b,c,d,e} \underbrace{V_1(a) \cdot E_1(a,b) \cdot E_2(b,c) \cdot E_3(c,d) \cdot E_4(d,e) \cdot V_2(e)}_{J(a,b,c,d,e)}$$

Example of Factorized Computation via Query Rewriting

The 4-path count query Q_4 on a graph with 4 copies of the edge relation E:

$$Q_4() = \sum_{a,b,c,d,e} \underbrace{V_1(a) \cdot E_1(a,b) \cdot E_2(b,c) \cdot E_3(c,d) \cdot E_4(d,e) \cdot V_2(e)}_{J(a,b,c,d,e)}$$

Sizes for listing/factorized representations of the result of the join J of Q_4

- $\rho^*(J) = 3 \Rightarrow$ listing representation has size $O(|E|^3)$.
- $fhtw(J) = 1 \Rightarrow$ factorization with caching has size O(|E|).

We would like to compute Q_4 :

- in O(|E|) time (no free variables, so use best variable order)
- \blacksquare using optimized queries that are derived from the variable order of Q_4
- without materializing the factorized join J

This computation strategy corresponds to the following query rewriting:

$$\begin{split} &\sum_{a,b,c,d,e} V_1(a) \cdot E_1(b,a) \cdot E_2(c,b) \cdot E_3(c,d) \cdot E_4(d,e) \cdot V_2(e) = \\ &\sum_{c} \Bigl(\sum_b E_2(c,b) \cdot \bigl(\sum_a V_1(a) \cdot E_1(b,a) \bigr) \Bigr) \cdot \Bigl(\sum_d E_3(c,d) \cdot \bigl(\sum_e E_4(d,e) \cdot V_2(e) \bigr) \Bigr) \end{split}$$

$$\varphi(x_1, x_2, x_4) = \sum_{x_3, x_5, x_6, x_7, x_8} \psi_1(x_1, x_2, x_3) \cdot \psi_2(x_2, x_4, x_5) \cdot \psi_3(x_4, x_5, x_6) \cdot \psi_4(x_6, x_8) \cdot \psi_5(x_5, x_7)$$

$$\varphi(x_1, x_2, x_4) = \sum_{x_3, x_5, x_6, x_7, x_8} \psi_1(x_1, x_2, x_3) \cdot \psi_2(x_2, x_4, x_5) \cdot \psi_3(x_4, x_5, x_6) \cdot \psi_4(x_6, x_8) \cdot \psi_5(x_5, x_7)$$

- $\rho^*(\varphi) = 4$, $s(\varphi) = 2$, $fhtw(\varphi) = 1$. The above variable order Δ has the free variables x_1, x_2, x_4 on top of the others and $fhtw(\Delta) = 1$.
- The query result has size: O(N) when factorized; $O(N^2)$ when listed

$$X_{1}$$
 X_{1}
 X_{4}
 X_{3}
 X_{5}
 X_{7}
 X_{6}
 X_{8}

$$\varphi(x_1, x_2, x_4) = \sum_{\substack{x_3, x_5, x_6, x_7, x_8}} \psi_1(x_1, x_2, x_3) \cdot \psi_2(x_2, x_4, x_5) \cdot \psi_3(x_4, x_5, x_6) \cdot \psi_4(x_6, x_8) \cdot \psi_5(x_5, x_7)$$

$$\begin{split} \varphi(x_1, x_2, x_4) &= \sum_{x_3, x_5, x_6, x_7, x_8} \psi_1(x_1, x_2, x_3) \cdot \psi_2(x_2, x_4, x_5) \cdot \psi_3(x_4, x_5, x_6) \cdot \psi_4(x_6, x_8) \cdot \psi_5(x_5, x_7) \\ \varphi(x_1, x_2, x_4) &= \sum_{x_5, x_6, x_7, x_8} \left(\sum_{\underline{x_3}} \psi_1(x_1, x_2, x_3) \right) \cdot \psi_2(x_2, x_4, x_5) \cdot \psi_3(x_4, x_5, x_6) \cdot \psi_4(x_6, x_8) \cdot \psi_5(x_5, x_7) \\ &\qquad \qquad \psi_6(x_1, x_2) \end{split}$$

$$\varphi(x_{1}, x_{2}, x_{4}) = \sum_{\substack{x_{3}, x_{5}, x_{6}, x_{7}, x_{8} \\ \psi_{1}(x_{1}, x_{2}, x_{3}) \cdot \psi_{2}(x_{2}, x_{4}, x_{5}) \cdot \psi_{3}(x_{4}, x_{5}, x_{6}) \cdot \psi_{4}(x_{6}, x_{8}) \cdot \psi_{5}(x_{5}, x_{7})}$$

$$\varphi(x_{1}, x_{2}, x_{4}) = \sum_{\substack{x_{6}, x_{7}, x_{8} \\ \psi_{6}(x_{1}, x_{2}) \cdot \psi_{2}(x_{2}, x_{4}, x_{5}) \cdot \psi_{3}(x_{4}, x_{5}, x_{6}) \cdot \psi_{4}(x_{6}, x_{8}) \cdot \psi_{5}(x_{5}, x_{7})}$$

$$\tilde{O}(N)$$

$$\varphi(x_{1}, x_{2}, x_{4}) = \sum_{\substack{x_{3}, x_{5}, x_{6}, x_{7}, x_{8} \\ x_{5}, x_{6}, x_{7}, x_{8}}} \psi_{1}(x_{1}, x_{2}, x_{3}) \cdot \psi_{2}(x_{2}, x_{4}, x_{5}) \cdot \psi_{3}(x_{4}, x_{5}, x_{6}) \cdot \psi_{4}(x_{6}, x_{8}) \cdot \psi_{5}(x_{5}, x_{7})$$

$$\varphi(x_{1}, x_{2}, x_{4}) = \sum_{\substack{x_{5}, x_{6}, x_{7}, x_{8} \\ x_{5}, x_{6}, x_{7}}} \psi_{6}(x_{1}, x_{2}) \cdot \psi_{2}(x_{2}, x_{4}, x_{5}) \cdot \psi_{3}(x_{4}, x_{5}, x_{6}) \cdot \psi_{4}(x_{6}, x_{8}) \cdot \psi_{5}(x_{5}, x_{7})$$

$$\widetilde{O}(N)$$

$$\varphi(x_{1}, x_{2}, x_{4}) = \sum_{\substack{x_{5}, x_{6}, x_{7} \\ x_{5}, x_{6}, x_{7}}} \psi_{6}(x_{1}, x_{2}) \cdot \psi_{2}(x_{2}, x_{4}, x_{5}) \cdot \psi_{3}(x_{4}, x_{5}, x_{6}) \cdot \left(\sum_{\substack{x_{8} \\ x_{8}, x_{6}, x_{7}}} \psi_{4}(x_{6}, x_{8})\right) \cdot \psi_{5}(x_{5}, x_{7})$$

$$\varphi(x_{1}, x_{2}, x_{4}) = \sum_{\substack{x_{3}, x_{5}, x_{6}, x_{7}, x_{8} \\ y_{6}(x_{1}, x_{2}, x_{3}) \cdot \psi_{2}(x_{2}, x_{4}, x_{5}) \cdot \psi_{3}(x_{4}, x_{5}, x_{6}) \cdot \psi_{4}(x_{6}, x_{8}) \cdot \psi_{5}(x_{5}, x_{7})}$$

$$\varphi(x_{1}, x_{2}, x_{4}) = \sum_{\substack{x_{5}, x_{7}, x_{7}, x_{8} \\ y_{6}(x_{1}, x_{2}) \cdot \psi_{2}(x_{2}, x_{4}, x_{5}) \cdot \psi_{3}(x_{4}, x_{5}, x_{6}) \cdot \psi_{4}(x_{6}, x_{8}) \cdot \psi_{5}(x_{5}, x_{7})}$$

$$\widetilde{O}(N)$$

$$\varphi(x_1, x_2, x_4) = \sum_{(x_1, x_2, x_4)} \psi_6(x_1, x_2) \cdot \psi_2(x_2, x_4, x_5) \cdot \psi_3(x_4, x_5, x_6) \cdot \psi_7(x_6) \cdot \psi_5(x_5, x_7)$$

$$\widetilde{O}(N)$$

$$\begin{split} \varphi(x_1, x_2, x_4) &= \sum_{x_3, x_5, x_6, x_7, x_8} \psi_1(x_1, x_2, x_3) \cdot \psi_2(x_2, x_4, x_5) \cdot \psi_3(x_4, x_5, x_6) \cdot \psi_4(x_6, x_8) \cdot \psi_5(x_5, x_7) \\ \varphi(x_1, x_2, x_4) &= \sum_{x_5, x_6, x_7, x_8} \psi_6(x_1, x_2) \cdot \psi_2(x_2, x_4, x_5) \cdot \psi_3(x_4, x_5, x_6) \cdot \psi_4(x_6, x_8) \cdot \psi_5(x_5, x_7) \\ \varphi(x_1, x_2, x_4) &= \sum_{x_5, x_6, x_7} \psi_6(x_1, x_2) \cdot \psi_2(x_2, x_4, x_5) \cdot \psi_3(x_4, x_5, x_6) \cdot \psi_7(x_6) \cdot \psi_5(x_5, x_7) \\ \varphi(x_1, x_2, x_4) &= \sum_{x_5, x_6} \psi_6(x_1, x_2) \cdot \psi_2(x_2, x_4, x_5) \cdot \psi_3(x_4, x_5, x_6) \cdot \psi_7(x_6) \cdot \left(\sum_{x_7} \psi_5(x_5, x_7)\right) \\ \varphi(x_1, x_2, x_4) &= \sum_{x_5, x_6} \psi_6(x_1, x_2) \cdot \psi_2(x_2, x_4, x_5) \cdot \psi_3(x_4, x_5, x_6) \cdot \psi_7(x_6) \cdot \left(\sum_{x_7} \psi_5(x_5, x_7)\right) \end{split}$$

 $\psi_8(x_5)$

$$\varphi(x_{1}, x_{2}, x_{4}) = \sum_{x_{3}, x_{5}, x_{6}, x_{7}, x_{8}} \psi_{1}(x_{1}, x_{2}, x_{3}) \cdot \psi_{2}(x_{2}, x_{4}, x_{5}) \cdot \psi_{3}(x_{4}, x_{5}, x_{6}) \cdot \psi_{4}(x_{6}, x_{8}) \cdot \psi_{5}(x_{5}, x_{7})$$

$$\varphi(x_{1}, x_{2}, x_{4}) = \sum_{x_{5}, x_{6}, x_{7}, x_{8}} \psi_{6}(x_{1}, x_{2}) \cdot \psi_{2}(x_{2}, x_{4}, x_{5}) \cdot \psi_{3}(x_{4}, x_{5}, x_{6}) \cdot \psi_{4}(x_{6}, x_{8}) \cdot \psi_{5}(x_{5}, x_{7})$$

$$\tilde{O}(N)$$

$$\varphi(x_1, x_2, x_4) = \sum_{x_6, x_7, y_7} \psi_6(x_1, x_2) \cdot \psi_2(x_2, x_4, x_5) \cdot \psi_3(x_4, x_5, x_6) \cdot \psi_7(x_6) \cdot \psi_5(x_5, x_7)$$

$$\widetilde{O}(N)$$

$$\varphi(x_1, x_2, x_4) = \sum_{x_1, x_2} \psi_6(x_1, x_2) \cdot \psi_2(x_2, x_4, x_5) \cdot \psi_3(x_4, x_5, x_6) \cdot \psi_7(x_6) \cdot \psi_8(x_5)$$

$$\widetilde{O}(N)$$

$$\varphi(x_{1}, x_{2}, x_{4}) = \sum_{\substack{x_{3}, x_{5}, x_{6}, x_{7}, x_{8} \\ x_{5}, x_{6}, x_{7}, x_{8} \\ x_{6}, x_{7}, x_{8} \\ x_{6}, x_{7}, x_{8} \\ x_{7}, x_{8}, x_{8}, x_{8}, x_{9}, x_{9}, x_{9} \\ \varphi(x_{1}, x_{2}, x_{4}) = \sum_{\substack{x_{5}, x_{6}, x_{7}, x_{8} \\ x_{5}, x_{6}, x_{7} \\ x_{7}, x_{8} \\ x_{9}, x_$$

 $\psi_{\mathbf{Q}}(x_{\mathbf{A}}, x_{\mathbf{5}})$

$$\varphi(x_1, x_2, x_4) = \sum_{x_3, x_5, x_6, x_7, x_8} \psi_1(x_1, x_2, x_3) \cdot \psi_2(x_2, x_4, x_5) \cdot \psi_3(x_4, x_5, x_6) \cdot \psi_4(x_6, x_8) \cdot \psi_5(x_5, x_7)$$

$$\varphi(x_1, x_2, x_4) = \sum_{x_3, x_4, x_5, x_6} \psi_6(x_1, x_2) \cdot \psi_2(x_2, x_4, x_5) \cdot \psi_3(x_4, x_5, x_6) \cdot \psi_4(x_6, x_8) \cdot \psi_5(x_5, x_7)$$

$$\widetilde{O}(N)$$

$$\varphi(x_1, x_2, x_4) = \sum_{x_6, x_6, x_7} \psi_6(x_1, x_2) \cdot \psi_2(x_2, x_4, x_5) \cdot \psi_3(x_4, x_5, x_6) \cdot \psi_7(x_6) \cdot \psi_5(x_5, x_7)$$

$$\widetilde{O}(N)$$

$$\varphi(x_1, x_2, x_4) = \sum_{x_6, x_6} \psi_6(x_1, x_2) \cdot \psi_2(x_2, x_4, x_5) \cdot \psi_3(x_4, x_5, x_6) \cdot \psi_7(x_6) \cdot \psi_8(x_5)$$

$$\widetilde{O}(N)$$

$$\varphi(x_1, x_2, x_4) = \sum_{x_1} \psi_6(x_1, x_2) \cdot \psi_2(x_2, x_4, x_5) \cdot \psi_9(x_4, x_5) \cdot \psi_8(x_5)$$

$$\widetilde{O}(N)$$

$$\varphi(x_{1}, x_{2}, x_{4}) = \sum_{x_{3}, x_{5}, x_{6}, x_{7}, x_{8}} \psi_{1}(x_{1}, x_{2}, x_{3}) \cdot \psi_{2}(x_{2}, x_{4}, x_{5}) \cdot \psi_{3}(x_{4}, x_{5}, x_{6}) \cdot \psi_{4}(x_{6}, x_{8}) \cdot \psi_{5}(x_{5}, x_{7})$$

$$\varphi(x_{1}, x_{2}, x_{4}) = \sum_{x_{3}, x_{5}, x_{6}, x_{7}, x_{8}} \psi_{6}(x_{1}, x_{2}) \cdot \psi_{2}(x_{2}, x_{4}, x_{5}) \cdot \psi_{3}(x_{4}, x_{5}, x_{6}) \cdot \psi_{4}(x_{6}, x_{8}) \cdot \psi_{5}(x_{5}, x_{7})$$

$$\tilde{O}(N)$$

$$\varphi(x_1, x_2, x_4) = \sum_{x_1, x_2, x_3} \psi_6(x_1, x_2) \cdot \psi_2(x_2, x_4, x_5) \cdot \psi_3(x_4, x_5, x_6) \cdot \psi_7(x_6) \cdot \psi_5(x_5, x_7)$$

$$\widetilde{O}(N)$$

$$\varphi(x_1, x_2, x_4) = \sum_{x_1, x_2} \psi_6(x_1, x_2) \cdot \psi_2(x_2, x_4, x_5) \cdot \psi_3(x_4, x_5, x_6) \cdot \psi_7(x_6) \cdot \psi_8(x_5)$$

$$\widetilde{O}(N)$$

$$\varphi(x_1, x_2, x_4) = \sum \psi_6(x_1, x_2) \cdot \psi_2(x_2, x_4, x_5) \cdot \psi_9(x_4, x_5) \cdot \psi_8(x_5)$$

$$\widetilde{O}(N)$$

$$\varphi(x_1, x_2, x_4) = \psi_6(x_1, x_2) \cdot \left(\sum_{x_5} \psi_2(x_2, x_4, x_5) \cdot \psi_9(x_4, x_5) \cdot \psi_8(x_5) \right)$$

 $\psi_{10}(x_2,x_4)$

$$\varphi(x_{1}, x_{2}, x_{4}) = \sum_{x_{3}, x_{5}, x_{6}, x_{7}, x_{8}} \psi_{1}(x_{1}, x_{2}, x_{3}) \cdot \psi_{2}(x_{2}, x_{4}, x_{5}) \cdot \psi_{3}(x_{4}, x_{5}, x_{6}) \cdot \psi_{4}(x_{6}, x_{8}) \cdot \psi_{5}(x_{5}, x_{7})$$

$$\varphi(x_{1}, x_{2}, x_{4}) = \sum_{x_{3}, x_{5}, x_{6}, x_{7}, x_{8}} \psi_{6}(x_{1}, x_{2}) \cdot \psi_{2}(x_{2}, x_{4}, x_{5}) \cdot \psi_{3}(x_{4}, x_{5}, x_{6}) \cdot \psi_{4}(x_{6}, x_{8}) \cdot \psi_{5}(x_{5}, x_{7})$$

$$\widetilde{O}(N)$$

$$\varphi(x_1, x_2, x_4) = \sum_{x_1, x_2, x_3} \psi_6(x_1, x_2) \cdot \psi_2(x_2, x_4, x_5) \cdot \psi_3(x_4, x_5, x_6) \cdot \psi_7(x_6) \cdot \psi_5(x_5, x_7)$$

$$\widetilde{O}(N)$$

$$\varphi(x_1, x_2, x_4) = \sum_{x_1, x_2} \psi_6(x_1, x_2) \cdot \psi_2(x_2, x_4, x_5) \cdot \psi_3(x_4, x_5, x_6) \cdot \psi_7(x_6) \cdot \psi_8(x_5)$$

$$\widetilde{O}(N)$$

$$\varphi(x_1, x_2, x_4) = \sum_{w} \psi_6(x_1, x_2) \cdot \psi_2(x_2, x_4, x_5) \cdot \psi_9(x_4, x_5) \cdot \psi_8(x_5)$$

$$\widetilde{O}(N)$$

$$\varphi(x_1, x_2, x_4) = \psi_6(x_1, x_2) \cdot \psi_{10}(x_2, x_4)$$
 $\tilde{O}(N)$

$$\varphi(x_1) = \sum_{x_2, x_3, x_4, x_5} \psi_1(x_1, x_2) \cdot \psi_2(x_2, x_3) \cdot \psi_3(x_3, x_1) \cdot \psi_4(x_1, x_4) \cdot \psi_5(x_4, x_5) \cdot \psi_6(x_5, x_1)$$

$$\varphi(x_1) = \sum_{x_2, x_3, x_4, x_5} \psi_1(x_1, x_2) \cdot \psi_2(x_2, x_3) \cdot \psi_3(x_3, x_1) \cdot \psi_4(x_1, x_4) \cdot \psi_5(x_4, x_5) \cdot \psi_6(x_5, x_1)$$

- $\rho^*(\varphi) = 2.5$, $s(\varphi) = 1.5$, $fhtw(\varphi) = 1.5$. The above variable order Δ has the free variable x_1 on top of the others and $fhtw(\Delta) = 1.5$.
- The (unary) query result has size O(N) when factorized or listed.

$$\varphi(x_1) = \sum_{x_2, x_3, x_4, x_5} \psi_1(x_1, x_2) \cdot \psi_2(x_2, x_3) \cdot \psi_3(x_3, x_1) \cdot \psi_4(x_1, x_4) \cdot \psi_5(x_4, x_5) \cdot \psi_6(x_5, x_1)$$

$$\begin{split} \varphi(x_1) &= \sum_{x_2, x_3, x_4, x_5} \psi_1(x_1, x_2) \cdot \psi_2(x_2, x_3) \cdot \psi_3(x_3, x_1) \cdot \psi_4(x_1, x_4) \cdot \psi_5(x_4, x_5) \cdot \psi_6(x_5, x_1) \\ \varphi(x_1) &= \sum_{x_2, x_3, x_4, x_5} \psi_1(x_1, x_2) \cdot \left(\sum_{x_3} \psi_1'(x_1, x_2) \cdot \psi_2(x_2, x_3) \cdot \psi_3(x_3, x_1) \cdot \psi_4'(x_1) \cdot \psi_6'(x_1) \right) \cdot \psi_7(x_1, x_2) \\ & \psi_4(x_1, x_4) \cdot \psi_5(x_4, x_5) \cdot \psi_6(x_5, x_1) \end{split}$$

 ψ_1' is an indicator projection of ψ_1 (similarly, ψ_4' and ψ_6'):

- It has the same support as ψ_1 , i.e., same tuples (x_1, x_2)
- $\psi_1'(x_1, x_2) = 1$ even in case $\psi_1(x_1, x_2) \neq 1$ and $\psi_1(x_1, x_2) \neq 0$

$$\begin{split} \varphi(x_1) &= \sum_{x_2, x_3, x_4, x_5} \psi_1(x_1, x_2) \cdot \psi_2(x_2, x_3) \cdot \psi_3(x_3, x_1) \cdot \psi_4(x_1, x_4) \cdot \psi_5(x_4, x_5) \cdot \psi_6(x_5, x_1) \\ \varphi(x_1) &= \sum_{x_2, x_4, x_5} \psi_1(x_1, x_2) \cdot \psi_7(x_1, x_2) \cdot \psi_4(x_1, x_4) \cdot \psi_5(x_4, x_5) \cdot \psi_6(x_5, x_1) \\ \widetilde{O}(N^{1.5}) &= 0 \end{split}$$

The indicator projections ψ_4' and ψ_6' are redundant here, as they were already used for computing ϕ_7 .

$$\begin{split} \varphi(x_1) &= \sum_{x_2, x_3, x_4, x_5} \psi_1(x_1, x_2) \cdot \psi_2(x_2, x_3) \cdot \psi_3(x_3, x_1) \cdot \psi_4(x_1, x_4) \cdot \psi_5(x_4, x_5) \cdot \psi_6(x_5, x_1) \\ \varphi(x_1) &= \sum_{x_2, x_4, x_5} \psi_1(x_1, x_2) \cdot \psi_7(x_1, x_2) \cdot \psi_4(x_1, x_4) \cdot \psi_5(x_4, x_5) \cdot \psi_6(x_5, x_1) \\ \varphi(x_1) &= \sum \psi_3(x_1) \cdot \psi_4(x_1, x_4) \cdot \psi_5(x_4, x_5) \cdot \psi_6(x_5, x_1) \\ &\tilde{O}(N) \end{split}$$

$$\varphi(x_{1}) = \sum_{x_{2}, x_{3}, x_{4}, x_{5}} \psi_{1}(x_{1}, x_{2}) \cdot \psi_{2}(x_{2}, x_{3}) \cdot \psi_{3}(x_{3}, x_{1}) \cdot \psi_{4}(x_{1}, x_{4}) \cdot \psi_{5}(x_{4}, x_{5}) \cdot \psi_{6}(x_{5}, x_{1})$$

$$\varphi(x_{1}) = \sum_{x_{2}, x_{4}, x_{5}} \psi_{1}(x_{1}, x_{2}) \cdot \psi_{7}(x_{1}, x_{2}) \cdot \psi_{4}(x_{1}, x_{4}) \cdot \psi_{5}(x_{4}, x_{5}) \cdot \psi_{6}(x_{5}, x_{1})$$

$$\tilde{O}(N^{1.5})$$

$$\varphi(x_{1}) = \sum_{x_{4}, x_{5}} \psi_{8}(x_{1}) \cdot \psi_{4}(x_{1}, x_{4}) \cdot \psi_{5}(x_{4}, x_{5}) \cdot \psi_{6}(x_{5}, x_{1})$$

$$\tilde{O}(N)$$

$$\varphi(x_{1}) = \sum_{x_{4}} \psi_{8}(x_{1}) \cdot \psi_{4}(x_{1}, x_{4}) \cdot \left(\sum_{x_{5}} \psi_{8}'(x_{1}) \cdot \psi_{4}'(x_{1}, x_{4}) \cdot \psi_{5}(x_{4}, x_{5}) \cdot \psi_{6}(x_{5}, x_{1})\right)$$

$$\psi_{9}(x_{1}, x_{4})$$

$$\begin{split} \varphi(x_1) &= \sum_{x_2, x_3, x_4, x_5} \psi_1(x_1, x_2) \cdot \psi_2(x_2, x_3) \cdot \psi_3(x_3, x_1) \cdot \psi_4(x_1, x_4) \cdot \psi_5(x_4, x_5) \cdot \psi_6(x_5, x_1) \\ \varphi(x_1) &= \sum_{x_2, x_4, x_5} \psi_1(x_1, x_2) \cdot \psi_7(x_1, x_2) \cdot \psi_4(x_1, x_4) \cdot \psi_5(x_4, x_5) \cdot \psi_6(x_5, x_1) \\ \varphi(x_1) &= \sum_{x_4, x_5} \psi_8(x_1) \cdot \psi_4(x_1, x_4) \cdot \psi_5(x_4, x_5) \cdot \psi_6(x_5, x_1) \\ \varphi(x_1) &= \sum_{x_4} \psi_8(x_1) \cdot \psi_4(x_1, x_4) \cdot \psi_9(x_1, x_4) \\ \varphi(x_1) &= \sum_{x_4} \psi_8(x_1) \cdot \psi_4(x_1, x_4) \cdot \psi_9(x_1, x_4) \\ \tilde{O}(N^{1.5}) \end{split}$$

 $\varphi(x_1) = \psi_8(x_1) \cdot \psi_{10}(x_1)$

 $\widetilde{O}(N)$

Is Factorized Aggregate Computation Practical?

A glimpse at performance experiments

[ANNOS18b]

Retailer dataset (records)	excerpt (17M)	full (86M)	
PostgreSQL computing the join	50.63 sec	216.56 sec	
Aggregates for a linear regression model			
FDB computing join+aggregates	25.51 sec	380.31 sec	
Number of aggregates (scalar+group-by)	595+2,418	595+145k	
Aggregates for a polynomial regression model			
FDB computing join+aggregates	132.43 sec	1,819.80 sec	
Number of aggregates (scalar+group-by)	158k+742k	158k+37M	

In this experiment:

- FDB only used one core of a commodity machine
- For both PostgreSQL and FDB, the dataset was entirely in memory
- The aggregates represent gradients (or parts thereof) used for learning degree 1 and 2 polynomial regression models

Outline of Part 2: Aggregates

FAQs: Functional Aggregate Queries

FAQ Computation

Counting Triangles under Updates

References

Quiz

Problem Setting

Maintain the triangle count Q under single-tuple updates to R, S, and T!

Q counts the number of tuples in the join of R, S, and T.

$$Q = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a)$$

Updates to the Triangle Count

R	<u> </u>	T
A B	ВС	C A
$\begin{vmatrix} a_1 & b_1 & 2 \\ a_2 & b_1 & 3 \end{vmatrix}$	$b_1 c_1 \mid 2$	$c_1 a_1 \mid 1$
$a_2 b_1 \mid 3$	$b_1 c_2 \mid 1$	$c_2 a_1 3$
		$c_2 a_2 3$

R	<i>S</i>	T
A B	ВС	C A
$\begin{vmatrix} a_1 & b_1 & 2 \\ a_2 & b_1 & 3 \end{vmatrix}$	$\begin{array}{c cccc} b_1 & c_1 & 2 \\ b_1 & c_2 & 1 \end{array}$	c ₁ a ₁ 1
$a_2 b_1 \mid 3$	$b_1 c_2 \mid 1$	$c_2 a_1 3$
		$c_2 a_2 3$

$R \cdot S \cdot T$				
ABC				
a_1 b_1 c_2	$2 \cdot 2 \cdot 1 = 4$			

R	S	<i>T</i>	$R \cdot S \cdot T$
A B	ВС	C A	A B C
$\begin{vmatrix} a_1 & b_1 & 2 \\ a_2 & b_1 & 3 \end{vmatrix}$	$\begin{array}{c cc} b_1 c_1 & 2 \\ b_1 c_2 & 1 \end{array}$	$ \begin{array}{c cccc} c_1 & a_1 & 1 \\ c_2 & a_1 & 3 \\ c_2 & a_2 & 3 \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

<i>S</i>	T
ВС	C A
$b_1 c_1 \mid 2$	$c_1 a_1 \begin{vmatrix} 1 \\ c_2 a_1 \end{vmatrix} 3$
$b_1 c_2 \mid 1$	$c_2 a_1 3$
	$c_2 a_2 3$

$R \cdot S \cdot T$		
A B C		
a_1 b_1 c_2	$\begin{vmatrix} 2 \cdot 2 \cdot 1 = 4 \\ 2 \cdot 1 \cdot 3 = 6 \\ 3 \cdot 1 \cdot 3 = 9 \end{vmatrix}$	
a_1 b_1 c_2	$2 \cdot 1 \cdot 3 = 6$	
a_2 b_1 c_3	$3 \cdot 1 \cdot 3 = 9$	

R		S		T	
A B		ВС		C A	
$a_1 b_1$ $a_2 b_1$	2	$b_1 c_1$ $b_1 c_2$	2	c ₁ a ₁ c ₂ a ₁	1
$a_2 b_1$	3	$b_1 c_2$	1	$c_2 a_1$	3
				<i>c</i> ₂ <i>a</i> ₂	3

$R \cdot S \cdot T$		
A B C		
a_1 b_1 c_2	$\begin{vmatrix} 2 \cdot 2 \cdot 1 = 4 \\ 2 \cdot 1 \cdot 3 = 6 \\ 3 \cdot 1 \cdot 3 = 9 \end{vmatrix}$	
a_1 b_1 c_2	$2 \cdot 1 \cdot 3 = 6$	
a_2 b_1 c_3	$3 \cdot 1 \cdot 3 = 9$	

R		S		T	
A B		ВС		C A	
a ₁ b ₁ a ₂ b ₁	2	$b_1 c_1$ $b_1 c_2$	2	c ₁ a ₁	1
$a_2 b_1$	3	$b_1 c_2$	1	$c_1 a_1$ $c_2 a_1$	3
				c ₂ a ₂	3

$R \cdot S \cdot T$		
A B C		
a_1 b_1 c_2	$\begin{vmatrix} 2 \cdot 2 \cdot 1 = 4 \\ 2 \cdot 1 \cdot 3 = 6 \\ 3 \cdot 1 \cdot 3 = 9 \end{vmatrix}$	
a_1 b_1 c_2	$2 \cdot 1 \cdot 3 = 6$	
a ₂ b ₁ c ₃	$3 \cdot 1 \cdot 3 = 9$	

R		S		T	
A B		ВС		C A	
$a_1 b_1$ $a_2 b_1$	2	$b_1 c_1$ $b_1 c_2$	2	c ₁ a ₁	1
a_2 b_1	1	$b_1 c_2$	1	$c_1 a_1$ $c_2 a_1$	3
				c ₂ a ₂	3

$R \cdot S \cdot T$		
A B C		
a_1 b_1 c_2	$\begin{vmatrix} 2 \cdot 2 \cdot 1 = 4 \\ 2 \cdot 1 \cdot 3 = 6 \\ 3 \cdot 1 \cdot 3 = 9 \end{vmatrix}$	
a_1 b_1 c_2	$2 \cdot 1 \cdot 3 = 6$	
a_2 b_1 c_3	$3 \cdot 1 \cdot 3 = 9$	

R	S	<i>T</i>
A B	ВС	C A
$\begin{vmatrix} a_1 & b_1 & 2 \\ a_2 & b_1 & 1 \end{vmatrix}$	$b_1 c_1 \mid 2$	$c_1 a_1 \begin{vmatrix} 1 \\ c_2 a_1 \end{vmatrix} 3$
$a_2 b_1 \mid 1$	$b_1 c_2 \mid 1$	$c_2 a_1 3$
		$c_2 a_2 3$

R		S		<i>T</i>	
A B		ВС		C A	
a ₁ b ₁ a ₂ b ₁	2	$b_1 c_1$ $b_1 c_2$	2	c ₁ a ₁	1
$a_2 b_1$	1	$b_1 c_2$	1	$c_1 a_1$ $c_2 a_1$	3
				$c_2 a_2$	3

$R \cdot S \cdot T$		
A B C		
a_1 b_1 c_2	$\begin{vmatrix} 2 \cdot 2 \cdot 1 = 4 \\ 2 \cdot 1 \cdot 3 = 6 \\ 1 \cdot 1 \cdot 3 = 3 \end{vmatrix}$	
a_1 b_1 c_2	$2 \cdot 1 \cdot 3 = 6$	
a_2 b_1 c_3	$1 \cdot 1 \cdot 3 = 3$	

R		T
A B	ВС	C A
$\begin{vmatrix} a_1 & b_1 & 2 \\ a_2 & b_1 & 1 \end{vmatrix}$	$b_1 c_1 \mid 2$	$c_1 a_1 \begin{vmatrix} 1 \\ c_2 a_1 \end{vmatrix} 3$
$a_2 b_1 \mid 1$	$b_1 c_2 1$	$c_2 a_1 3$
		$c_2 a_2 3$

Data Updates need the Additive Inverse

Data updates can be inserts (tuples with positive multiplicity) and deletes (tuples with negative multiplicity):

Semirings are enough if we only want inserts or no updates

Recall that FAQs use commutative semirings $(\mathbf{D}, \oplus, \otimes)$:

- **■** (\mathbf{D} , \oplus) is a commutative monoid with identity element $\mathbf{0}$:
 - $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
 - $ightharpoonup 0 \oplus a = a \oplus 0 = a$
 - ightharpoonup $a \oplus b = b \oplus a$
- $lackbox{(D,}\otimes)$ is a commutative monoid with identity element 1:
 - $(a \otimes b) \otimes c = a \otimes (b \otimes c)$
 - $\blacktriangleright \ \mathbf{1} \otimes \mathbf{a} = \mathbf{a} \otimes \mathbf{1} = \mathbf{a}$
 - \triangleright $a \oplus b = b \oplus a$
- Multiplication distributes over addition:
 - $ightharpoonup a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$
- Multiplication by **0** annihilates **D**:
 - $ightharpoonup 0 \otimes a = a \otimes 0 = 0$

From Semirings to Rings

We need a commutative ring $(\mathbf{D}, \oplus, \otimes)$ if we want to support deletes as well:

- **■** (\mathbf{D}, \oplus) is an abelian group with identity element $\mathbf{0}$:
 - $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
 - $ightharpoonup 0 \oplus a = a \oplus 0 = a$
 - \triangleright $a \oplus b = b \oplus a$
 - $ightharpoonup \exists -a \in D : a \oplus (-a) = (-a) \oplus a = 0$
- **■** (\mathbf{D}, \otimes) is a commutative monoid with identity element 1:
 - $(a \otimes b) \otimes c = a \otimes (b \otimes c)$
 - $ightharpoonup 1 \otimes a = a \otimes 1 = a$
 - ightharpoonup $a \oplus b = b \oplus a$
- Multiplication distributes over addition:
 - $ightharpoonup a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$
- Multiplication by **0** annihilates **D**:
 - $ightharpoonup 0 \otimes a = a \otimes 0 = 0$

Examples: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{R}^n$, polynomial ring.

We used the ring $(\mathbb{Z}, +, *)$ in our previous example.

The Maintenance Problem

Given a current database ${\bf D}$ and a single-tuple update, what are the time and space complexities for maintaining $Q({\bf D})$?

Much Ado about Triangles

The Triangle Query Served as Milestone in Many Fields

- Worst-case optimal join algorithms [Algorithmica 1997, SIGMOD R. 2013]
- Parallel query evaluation [Found. & Trends DB 2018]
- Randomized approximation in static settings [FOCS 2015]
- Randomized approximation in data streams
 [SODA 2002, COCOON 2005, PODS 2006, PODS 2016, Theor. Comput. Sci. 2017]

Investigation of Answering Queries under Updates

- Theoretical developments [PODS 2017, ICDT 2018]
- Systems developments [F. & T. DB 2012, VLDB J. 2014, SIGMOD 2017, 2018]
- Lower bounds [STOC 2015, ICM 2018]

Naïve Maintenance

"Compute from scratch!"

$$\sum_{a,b,c} \left[\underbrace{R(a,b) + \delta R(a',b')}_{newR} \right] \cdot S(b,c) \cdot T(c,a)$$

$$= \sum_{a,b,c} \underbrace{newR(a,b) \cdot S(b,c) \cdot T(c,a)}$$

Maintenance Complexity

- lacktriangle Time: $\mathcal{O}(|\mathbf{D}|^{1.5})$ using worst-case optimal join algorithms
- Space: $\mathcal{O}(|\mathbf{D}|)$ to store input relations

"Compute the difference!"

$$\sum_{a,b,c} \left[R(a,b) + \delta R(a',b') \right] \cdot S(b,c) \cdot T(c,a)$$

$$=$$

$$\sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a)$$

$$+$$

$$\delta R(a',b') \cdot \sum_{c} S(b',c) \cdot T(c,a')$$

Maintenance Complexity

- Time: $\mathcal{O}(|\mathbf{D}|)$ to intersect *C*-values from *S* and *T*
- Space: $\mathcal{O}(|\mathbf{D}|)$ to store input relations

"Compute the difference by using pre-materialized views!"

Pre-materialize
$$V_{ST}(b,a) = \sum_{c} S(b,c) \cdot T(c,a)!$$

$$\sum_{a,b,c} \left[R(a,b) + \frac{\delta R(a',b')}{\delta} \right] \cdot S(b,c) \cdot T(c,a)$$

$$= \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a)$$

$$+ \frac{\delta R(a',b') \cdot V_{ST}(b',a')}{\delta}$$

Maintenance Complexity

- Time for updates to R: $\mathcal{O}(1)$ to look up in V_{ST}
- Time for updates to S and T: $\mathcal{O}(|\mathbf{D}|)$ to maintain V_{ST}
- Space: $\mathcal{O}(|\mathbf{D}|^2)$ to store input relations and V_{ST}

Closing the Complexity Gap

Complexity bounds for the maintenance of the triangle count

Known Upper Bound

Maintenance Time: $\mathcal{O}(|\mathbf{D}|)$

Space: $\mathcal{O}(|\mathbf{D}|)$

Lower Bound

Amortized maintenance time: not $\mathcal{O}(|\mathbf{D}|^{0.5-\gamma})$ for any $\gamma > 0$ (under reasonable complexity theoretic assumptions)

Closing the Complexity Gap

Complexity bounds for the maintenance of the triangle count

Known Upper Bound

Maintenance Time: $\mathcal{O}(|\mathbf{D}|)$

Space: $\mathcal{O}(|\mathbf{D}|)$

Can the triangle count be maintained in sublinear time?

Lower Bound

Amortized maintenance time: not $\mathcal{O}(|\mathbf{D}|^{0.5-\gamma})$ for any $\gamma > 0$ (under reasonable complexity theoretic assumptions)

Closing the Complexity Gap

Complexity bounds for the maintenance of the triangle count

Known Upper Bound

Maintenance Time: $\mathcal{O}(|\mathbf{D}|)$

Space: $\mathcal{O}(|\mathbf{D}|)$

Yes!

Can the triangle count be maintained in sublinear time?

 IVM^{ε} [KNNOZ19]

Amortized maintenance time:

 $\mathcal{O}(|\mathbf{D}|^{0.5})$

This is worst-case optimal!

Lower Bound

Amortized maintenance time: not $\mathcal{O}(|\mathbf{D}|^{0.5-\gamma})$ for any $\gamma > 0$ (under reasonable complexity theoretic assumptions)

Given $\varepsilon \in [0,1]$ and a database **D**, IVM^{ε} maintains the triangle count with

- $\mathcal{O}(|\mathbf{D}|^{\max\{\varepsilon,1-\varepsilon\}})$ amortized update time
- $\mathbb{D}(|\mathbf{D}|^{1+\min\{\varepsilon,1-\varepsilon\}})$ space
- $\mathcal{O}(|\mathbf{D}|^{3/2})$ preprocessing time
- $\mathcal{O}(1)$ answer time.

Known maintenance approaches are recovered by IVM $^{\varepsilon}$.

Main Ideas in IVM $^{\varepsilon}$

- Compute the difference like in classical IVM!
- Materialize views like in Factorized IVM!
- New ingredient: Use adaptive processing based on data skew!
 - \implies Treat *heavy* values differently from *light* values!

Partition R into

- a light part
 - $R_L = \{t \in R \mid |\sigma_{A=t.A}| < |\mathbf{D}|^{\varepsilon}\},$
- \blacksquare a heavy part $R_H = R \backslash R_L!$

Partition R into

a light part

$$R_L = \{t \in R \mid |\sigma_{A=t.A}| < |\mathbf{D}|^{\varepsilon}\},$$

 \blacksquare a heavy part $R_H = R \backslash R_L!$

Derived Bounds

■ for all *A*-values *a*:

$$|\sigma_{A=a}R_L|<|\mathbf{D}|^{arepsilon}$$

 $|\pi_A R_H| \le |\mathbf{D}|^{1-\varepsilon}$

Partition R into

a light part

$$R_L = \{t \in R \mid |\sigma_{A=t.A}| < |\mathbf{D}|^{\varepsilon}\},$$

 \blacksquare a heavy part $R_H = R \backslash R_L!$

Derived Bounds

for all A-values a:

$$|\sigma_{A=a}R_L|<|\mathbf{D}|^{arepsilon}$$

 $|\pi_A R_H| \leq |\mathbf{D}|^{1-\varepsilon}$

Likewise, partition

- $S = S_L \cup S_H$ based on B, and
- $T = T_L \cup T_H$ based on C!

Partition R into

a light part

$$R_L = \{t \in R \mid |\sigma_{A=t.A}| < |\mathbf{D}|^{\varepsilon}\},$$

 \blacksquare a heavy part $R_H = R \backslash R_L!$

Derived Bounds

- for all *A*-values *a*: $|\sigma_{A=a}R_L| < |\mathbf{D}|^{\varepsilon}$
- $|\pi_A R_H| \leq |\mathbf{D}|^{1-\varepsilon}$

Likewise, partition

- $S = S_L \cup S_H$ based on B, and
- $T = T_L \cup T_H$ based on C!

Q is the sum of skew-aware views $R_U(a,b)\cdot S_V(b,c)\cdot T_W(c,a)$ with $U,V,W\in\{L,H\}.$

Skew-aware View	Evaluation from left to right	Time
$\frac{\sum_{a,b,c} R_*(a,b) \cdot S_L(b,c) \cdot T_L(c,a)}{\sum_{a,b,c} R_*(a,b) \cdot S_L(b,c) \cdot T_L(c,a)}$	$\delta R_*(a',b') \cdot \sum_c S_L(b',c) \cdot T_L(c,a')$	$\mathcal{O}(D ^{arepsilon})$

Skew-aware View	Evaluation from left to right	Time
$\sum_{a,b,c} R_*(a,b) \cdot S_L(b,c) \cdot T_L(c,a)$	$\delta R_*(a',b') \cdot \sum_c S_L(b',c) \cdot T_L(c,a')$	$\mathcal{O}(D ^{arepsilon})$
$\sum_{a,b,c} R_*(a,b) \cdot S_H(b,c) \cdot T_H(c,a)$	$\delta R_*(a',b') \cdot \sum_c T_H(c,a') \cdot S_H(b',c)$	$\mathcal{O}(\mathbf{D} ^{1-arepsilon})$

Skew-aware View	Evaluation from left to right	Time
$\sum_{a,b,c} R_*(a,b) \cdot S_L(b,c) \cdot T_L(c,a)$	$\delta R_*(a',b') \cdot \sum_c S_L(b',c) \cdot T_L(c,a')$	$\mathcal{O}(\mathbf{D} ^{arepsilon})$
$\sum_{a,b,c} R_*(a,b) \cdot S_H(b,c) \cdot T_H(c,a)$	$\delta R_*(a',b') \cdot \sum_c T_H(c,a') \cdot S_H(b',c)$	$\mathcal{O}(\mathbf{D} ^{1-arepsilon})$
	$\delta R_*(a',b') \cdot \sum_{c} S_L(b',c) \cdot T_H(c,a')$	$\mathcal{O}(D ^{arepsilon})$
$\sum_{a,b,c} R_*(a,b) \cdot S_L(b,c) \cdot T_H(c,a)$	or	
2,2,2	$\delta R_*(a',b') \cdot \sum_c T_H(c,a') \cdot S_L(b',c)$	$\mathcal{O}(D ^{1-arepsilon})$

Skew-aware View	Evaluation from left to right	Time
$\sum_{a,b,c} R_*(a,b) \cdot S_L(b,c) \cdot T_L(c,a)$	$\delta R_*(a',b') \cdot \sum_c S_L(b',c) \cdot T_L(c,a')$	$\mathcal{O}(\mathbf{D} ^{arepsilon})$
$\sum_{a,b,c} R_*(a,b) \cdot S_H(b,c) \cdot T_H(c,a)$	$\delta R_*(a',b') \cdot \sum_c T_H(c,a') \cdot S_H(b',c)$	$\mathcal{O}(\mathbf{D} ^{1-arepsilon})$
	$\delta R_*(a',b') \cdot \sum_{c} S_L(b',c) \cdot T_H(c,a')$	$\mathcal{O}(\mathbf{D} ^{\varepsilon})$
$\sum_{a,b,c} R_*(a,b) \cdot S_L(b,c) \cdot T_H(c,a)$	or	
<i>a,u,</i> c	$\delta R_*(a',b') \cdot \sum_c T_H(c,a') \cdot S_L(b',c)$	$\mathcal{O}(\mathbf{D} ^{1-arepsilon})$
$\sum_{a,b,c} R_*(a,b) \cdot S_H(b,c) \cdot T_L(c,a)$	$\delta R_*(a',b') \cdot V_{ST}(b',a')$	$\mathcal{O}(1)$

Given an update $\delta R_*(a',b')$, compute the difference for each skew-aware view using different strategies:

Skew-aware View	Evaluation from left to right	Time
$\sum_{a,b,c} R_*(a,b) \cdot S_L(b,c) \cdot T_L(c,a)$	$\delta R_*(a',b') \cdot \sum_c S_L(b',c) \cdot T_L(c,a')$	$\mathcal{O}(\mathbf{D} ^{arepsilon})$
$\sum_{a,b,c} R_*(a,b) \cdot S_H(b,c) \cdot T_H(c,a)$	$\delta R_*(a',b') \cdot \sum_c T_H(c,a') \cdot S_H(b',c)$	$\mathcal{O}(\mathbf{D} ^{1-arepsilon})$
	$\delta R_*(a',b') \cdot \sum_{c} S_L(b',c) \cdot T_H(c,a')$	$\mathcal{O}(\mathbf{D} ^{arepsilon})$
$\sum_{a,b,c} R_*(a,b) \cdot S_L(b,c) \cdot T_H(c,a)$	or	
<i>a, u,</i> t	$\delta R_*(a',b') \cdot \sum_c T_H(c,a') \cdot S_L(b',c)$	$\mathcal{O}(\mathbf{D} ^{1-arepsilon})$
$\sum_{a,b,c} R_*(a,b) \cdot S_H(b,c) \cdot T_L(c,a)$	$\delta R_*(a',b') \cdot V_{ST}(b',a')$	$\mathcal{O}(1)$

Overall update time: $\mathcal{O}(|\mathbf{D}|^{\max\{\varepsilon,1-\varepsilon\}})$

Materialized Auxiliary Views

$$V_{RS}(a,c) = \sum_{b} R_{H}(a,b) \cdot S_{L}(b,c)$$
$$V_{ST}(b,a) = \sum_{c} S_{H}(b,c) \cdot T_{L}(c,a)$$
$$V_{TR}(c,b) = \sum_{a} T_{H}(c,a) \cdot R_{L}(a,b)$$

lacksquare Maintenance of $V_{RS}(a,c) = \sum\limits_b R_H(a,b) \cdot S_L(b,c)$

Update	Evaluation from left to right	Time
$\delta R_H(a',b')$	$\delta R_H(a',b') \cdot S_L(b',c)$	$\mathcal{O}(D ^{arepsilon})$
$\delta \mathcal{S}_L(b',c')$	$\delta S_L(b',c') \cdot R_H(a,b')$	$\mathcal{O}(D ^{1-arepsilon})$

Materialized Auxiliary Views

$$V_{RS}(a,c) = \sum_{b} R_{H}(a,b) \cdot S_{L}(b,c)$$
$$V_{ST}(b,a) = \sum_{c} S_{H}(b,c) \cdot T_{L}(c,a)$$
$$V_{TR}(c,b) = \sum_{a} T_{H}(c,a) \cdot R_{L}(a,b)$$

lacksquare Maintenance of $V_{RS}(a,c) = \sum\limits_b R_H(a,b) \cdot S_L(b,c)$

Update	Evaluation from left to right	Time
$\delta R_H(a',b')$	$\delta R_H(a',b') \cdot S_L(b',c)$	$\mathcal{O}(\mathbf{D} ^{arepsilon})$
$\delta S_L(b',c')$	$\delta S_L(b',c') \cdot R_H(a,b')$	$\mathcal{O}(\mathbf{D} ^{1-arepsilon})$

■ Size of $V_{RS}(a,c) = \sum_{c} R_{H}(a,b) \cdot S_{L}(b,c)$

$$\begin{array}{lcl} |V_{RS}(a,c)| & \leq & |R_H| \cdot \max_b \{|S_L(b,c)|\} & = & \mathcal{O}(|\mathbf{D}|^{1+\varepsilon}) \\ |V_{RS}(a,c)| & \leq & |S_L| \cdot \max_b \{|R_H(a,b)|\} & = & \mathcal{O}(|\mathbf{D}|^{1+(1-\varepsilon)}) \end{array}$$

Materialized Auxiliary Views

$$V_{RS}(a,c) = \sum_{b} R_{H}(a,b) \cdot S_{L}(b,c)$$
$$V_{ST}(b,a) = \sum_{c} S_{H}(b,c) \cdot T_{L}(c,a)$$
$$V_{TR}(c,b) = \sum_{c} T_{H}(c,a) \cdot R_{L}(a,b)$$

■ Maintenance of $V_{RS}(a,c) = \sum_b R_H(a,b) \cdot S_L(b,c)$

Update	Evaluation from left to right	Time
$\delta R_H(a',b')$	$\delta R_H(a',b') \cdot S_L(b',c)$	$\mathcal{O}(D ^{arepsilon})$
$\delta S_L(b',c')$	$\delta S_L(b',c') \cdot R_H(a,b')$	$\mathcal{O}(D ^{1-arepsilon})$

■ Size of $V_{RS}(a,c) = \sum_{c} R_{H}(a,b) \cdot S_{L}(b,c)$

$$\begin{array}{lcl} |V_{RS}(a,c)| & \leq & |R_H| \cdot \max_b \{|S_L(b,c)|\} & = & \mathcal{O}(|\mathbf{D}|^{1+\varepsilon}) \\ |V_{RS}(a,c)| & \leq & |S_L| \cdot \max_b \{|R_H(a,b)|\} & = & \mathcal{O}(|\mathbf{D}|^{1+(1-\varepsilon)}) \end{array}$$

lacksquare Overall: Update Time $\mathcal{O}(|\mathbf{D}|^{\max\{\varepsilon,1-\varepsilon\}})$ and Space $\mathcal{O}(|\mathbf{D}|^{1+\min\{\varepsilon,1-\varepsilon\}})$

Rebalancing Partitions

Full details available in the paper

[KNNOZ19]

- Updates can change the frequencies of values and the heavy/light threshold!
- This may require rebalancing of partitions:
 - ⇒ Minor rebalancing: Transfer tuples from one to the other part of the same relation!
 - ⇒ Major rebalancing: Recompute partitions and views from scratch!
- Both forms of rebalancing require superlinear time.
- The rebalancing times amortize over sequences of updates.

Lower Bound for Maintaining the Triangle Count

■ The lower bound already holds for the Boolean Triangle Detection Problem, which is a special case of the Triangle Count.

For any $\gamma>$ 0, there is no algorithm that incrementally maintains the Triangle Detection Problem with

amortized update time answer time
$$\mathcal{O}(|\mathbf{D}|^{\frac{1}{2}-\gamma}) \qquad \qquad \mathcal{O}(|\mathbf{D}|^{1-\gamma})$$

unless the Online Vector-Matrix-Vector Multiplication (OuMv) Conjecture fails.

Lower Bound for Maintaining the Triangle Count

■ The lower bound already holds for the Boolean Triangle Detection Problem, which is a special case of the Triangle Count.

For any $\gamma>0$, there is no algorithm that incrementally maintains the Triangle Detection Problem with

amortized update time answer time
$$\mathcal{O}(|\mathbf{D}|^{\frac{1}{2}-\gamma})$$
 $\mathcal{O}(|\mathbf{D}|^{1-\gamma})$

unless the Online Vector-Matrix-Vector Multiplication (OuMv) Conjecture fails.

The OuMy Problem

Input: An $n \times n$ Boolean matrix **M** and n pairs $(\mathbf{u}_1, \mathbf{v}_1), \dots, (\mathbf{u}_n, \mathbf{v}_n)$ of Boolean column-vectors of size n arriving one after the other.

Goal: After seeing each pair $(\mathbf{u}_r, \mathbf{v}_r)$, output $\mathbf{u}_r^T \mathbf{M} \mathbf{v}_r$

The OuMv Conjecture

HKNS15

For any $\gamma>0$, there is no algorithm that solves the OuMv Problem in time $\mathcal{O}(n^{3-\gamma})$.

 \blacksquare Assume there is an algorithm ${\mathcal A}$ maintaining Triangle Detection with

amortized update time answer time
$$\mathcal{O}(|\mathbf{D}|^{\frac{1}{2}-\gamma}) \qquad \qquad \mathcal{O}(|\mathbf{D}|^{1-\gamma})$$

for some $\gamma > 0$.

■ Goal: Design an algorithm \mathcal{B} using algorithm \mathcal{A} as oracle that solves OuMv in subcubic time. \Longrightarrow Contradicts the OuMv Conjecture!

lacksquare Assume there is an algorithm ${\mathcal A}$ maintaining Triangle Detection with

amortized update time answer time
$$\mathcal{O}(|\mathbf{D}|^{\frac{1}{2}-\gamma}) \qquad \qquad \mathcal{O}(|\mathbf{D}|^{1-\gamma})$$

for some $\gamma > 0$.

■ Goal: Design an algorithm $\mathcal B$ using algorithm $\mathcal A$ as oracle that solves OuMv in subcubic time. \Longrightarrow Contradicts the OuMv Conjecture!

Algorithm \mathcal{B}

- Use relation S to encode the matrix M.
- In each round $r \in [n]$:
 - ▶ Use relations R and T to encode \mathbf{u}_r and \mathbf{v}_r , respectively, such that

$$\mathbf{u}_r^T \mathbf{M} \mathbf{v}_r = 1$$
 if and only if $R \bowtie S \bowtie T \neq \emptyset$

▶ Check whether $R \bowtie S \bowtie T$ contains a triangle.

Algorithm ${\cal B}$ in more detail:

(1) Insert at most n^2 tuples into S such that $S(B,C)=\{(i,j)\mid \mathbf{M}(i,j)=1\}$

Algorithm \mathcal{B} in more detail:

- (1) Insert at most n^2 tuples into S such that $S(B,C)=\{(i,j)\mid \mathbf{M}(i,j)=1\}$
- (2) In each round $r \in [n]$:
 - ▶ Delete all tuples in R(A, B) and T(C, A)

Algorithm \mathcal{B} in more detail:

- (1) Insert at most n^2 tuples into S such that $S(B,C)=\{(i,j)\mid \mathbf{M}(i,j)=1\}$
- (2) In each round $r \in [n]$:
 - ▶ Delete all tuples in R(A, B) and T(C, A)
 - Insert at most n tuples into R(A,B) and T(C,A) such that $R = \{(a,i) \mid \mathbf{u}_r(i) = 1\}$ and $T = \{(i,a) \mid \mathbf{v}_r(i) = 1\}$ for a constant a

Algorithm \mathcal{B} in more detail:

- (1) Insert at most n^2 tuples into S such that $S(B,C)=\{(i,j)\mid \mathbf{M}(i,j)=1\}$
- (2) In each round $r \in [n]$:
 - ▶ Delete all tuples in R(A, B) and T(C, A)
 - Insert at most n tuples into R(A,B) and T(C,A) such that $R = \{(a,i) \mid \mathbf{u}_r(i) = 1\}$ and $T = \{(i,a) \mid \mathbf{v}_r(i) = 1\}$ for a constant a
 - ► Check $R \bowtie S \bowtie T \neq \emptyset$: This holds iff $\mathbf{u}_r^T \mathbf{M} \mathbf{v}_r = 1$ iff $\exists i, j \in [n]$ with $\mathbf{u}_r(i) = 1$, $\mathbf{M}(i, j) = 1$, and $\mathbf{v}_r(j) = 1$

Algorithm \mathcal{B} in more detail:

- (1) Insert at most n^2 tuples into S such that $S(B,C)=\{(i,j)\mid \mathbf{M}(i,j)=1\}$
- (2) In each round $r \in [n]$:
 - ▶ Delete all tuples in R(A, B) and T(C, A)
 - Insert at most n tuples into R(A,B) and T(C,A) such that $R = \{(a,i) \mid \mathbf{u}_r(i) = 1\}$ and $T = \{(i,a) \mid \mathbf{v}_r(i) = 1\}$ for a constant a
 - ► Check $R \bowtie S \bowtie T \neq \emptyset$: This holds iff $\mathbf{u}_r^T \mathbf{M} \mathbf{v}_r = 1$ iff $\exists i, j \in [n]$ with $\mathbf{u}_r(i) = 1$, $\mathbf{M}(i, j) = 1$, and $\mathbf{v}_r(j) = 1$

Time analysis:

■ The database size is $\mathcal{O}(n^2)$.

Algorithm \mathcal{B} in more detail:

- (1) Insert at most n^2 tuples into S such that $S(B,C)=\{(i,j)\mid \mathbf{M}(i,j)=1\}$
- (2) In each round $r \in [n]$:
 - ▶ Delete all tuples in R(A, B) and T(C, A)
 - Insert at most n tuples into R(A,B) and T(C,A) such that $R = \{(a,i) \mid \mathbf{u}_r(i) = 1\}$ and $T = \{(i,a) \mid \mathbf{v}_r(i) = 1\}$ for a constant a
 - ► Check $R \bowtie S \bowtie T \neq \emptyset$: This holds iff $\mathbf{u}_r^T \mathbf{M} \mathbf{v}_r = 1$ iff $\exists i, j \in [n]$ with $\mathbf{u}_r(i) = 1$, $\mathbf{M}(i, j) = 1$, and $\mathbf{v}_r(j) = 1$

Time analysis:

■ The database size is $\mathcal{O}(n^2)$.

Time in (1):
$$\mathcal{O}(\underbrace{n^2}_{\text{\#updates}} \cdot \underbrace{(n^2)^{\frac{1}{2} - \gamma}}_{\text{update time}}) = \mathcal{O}(n^2 \cdot n^{1 - 2\gamma}) = \mathcal{O}(n^{3 - 2\gamma})$$

Algorithm \mathcal{B} in more detail:

- (1) Insert at most n^2 tuples into S such that $S(B,C)=\{(i,j)\mid \mathbf{M}(i,j)=1\}$
- (2) In each round $r \in [n]$:
 - ▶ Delete all tuples in R(A, B) and T(C, A)
 - Insert at most n tuples into R(A,B) and T(C,A) such that $R = \{(a,i) \mid \mathbf{u}_r(i) = 1\}$ and $T = \{(i,a) \mid \mathbf{v}_r(i) = 1\}$ for a constant a
 - ► Check $R \bowtie S \bowtie T \neq \emptyset$: This holds iff $\mathbf{u}_r^T \mathbf{M} \mathbf{v}_r = 1$ iff $\exists i, j \in [n]$ with $\mathbf{u}_r(i) = 1$, $\mathbf{M}(i, j) = 1$, and $\mathbf{v}_r(j) = 1$

Time analysis:

- The database size is $\mathcal{O}(n^2)$.
- Time in (1): $\mathcal{O}(\underbrace{n^2}_{\text{\#updates}} \cdot \underbrace{(n^2)^{\frac{1}{2} \gamma}}_{\text{update time}}) = \mathcal{O}(n^2 \cdot n^{1 2\gamma}) = \mathcal{O}(n^{3 2\gamma})$
- Time for each round in (2): $\mathcal{O}(\underbrace{4n}_{\text{\#updates}} \cdot \underbrace{(n^2)^{\frac{1}{2}-\gamma}}_{\text{update time}} + \underbrace{(n^2)^{1-\gamma}}_{\text{answer time}}) = \mathcal{O}(n^{2-2\gamma})$

Algorithm \mathcal{B} in more detail:

- (1) Insert at most n^2 tuples into S such that $S(B,C)=\{(i,j)\mid \mathbf{M}(i,j)=1\}$
- (2) In each round $r \in [n]$:
 - ▶ Delete all tuples in R(A, B) and T(C, A)
 - Insert at most n tuples into R(A,B) and T(C,A) such that $R = \{(a,i) \mid \mathbf{u}_r(i) = 1\}$ and $T = \{(i,a) \mid \mathbf{v}_r(i) = 1\}$ for a constant a
 - ► Check $R \bowtie S \bowtie T \neq \emptyset$: This holds iff $\mathbf{u}_r^T \mathbf{M} \mathbf{v}_r = 1$ iff $\exists i, j \in [n]$ with $\mathbf{u}_r(i) = 1$, $\mathbf{M}(i, j) = 1$, and $\mathbf{v}_r(j) = 1$

Time analysis:

- The database size is $\mathcal{O}(n^2)$.
- Time in (1): $\mathcal{O}(\underbrace{n^2}_{\text{\#updates}} \cdot \underbrace{(n^2)^{\frac{1}{2} \gamma}}_{\text{update time}}) = \mathcal{O}(n^2 \cdot n^{1 2\gamma}) = \mathcal{O}(n^{3 2\gamma})$
- Time for each round in (2): $\mathcal{O}(\underbrace{4n}_{\text{\#updates}} \cdot \underbrace{(n^2)^{\frac{1}{2}-\gamma}}_{\text{update time}} + \underbrace{(n^2)^{1-\gamma}}_{\text{answer time}}) = \mathcal{O}(n^{2-2\gamma})$
- Time for *n* rounds in (2): $\mathcal{O}(n \cdot n^{2-2\gamma}) = \mathcal{O}(n^{3-2\gamma})$

Algorithm \mathcal{B} in more detail:

- (1) Insert at most n^2 tuples into S such that $S(B,C)=\{(i,j)\mid \mathbf{M}(i,j)=1\}$
- (2) In each round $r \in [n]$:
 - ▶ Delete all tuples in R(A, B) and T(C, A)
 - Insert at most n tuples into R(A,B) and T(C,A) such that $R = \{(a,i) \mid \mathbf{u}_r(i) = 1\}$ and $T = \{(i,a) \mid \mathbf{v}_r(i) = 1\}$ for a constant a
 - ► Check $R \bowtie S \bowtie T \neq \emptyset$: This holds iff $\mathbf{u}_r^T \mathbf{M} \mathbf{v}_r = 1$ iff $\exists i, j \in [n]$ with $\mathbf{u}_r(i) = 1$, $\mathbf{M}(i, j) = 1$, and $\mathbf{v}_r(j) = 1$

Time analysis:

■ The database size is $\mathcal{O}(n^2)$.

Time in (1):
$$\mathcal{O}(\underbrace{n^2}_{\text{\#updates}} \cdot \underbrace{(n^2)^{\frac{1}{2} - \gamma}}_{\text{update time}}) = \mathcal{O}(n^2 \cdot n^{1 - 2\gamma}) = \mathcal{O}(n^{3 - 2\gamma})$$

- Time for each round in (2): $\mathcal{O}(\underbrace{4n}_{\text{\#updates}} \cdot \underbrace{(n^2)^{\frac{1}{2}-\gamma}}_{\text{update time}} + \underbrace{(n^2)^{1-\gamma}}_{\text{answer time}}) = \mathcal{O}(n^{2-2\gamma})$
- Time for *n* rounds in (2): $\mathcal{O}(n \cdot n^{2-2\gamma}) = \mathcal{O}(n^{3-2\gamma})$
- Overall time: subcubic! $\mathcal{O}(n^{3-2\gamma})$

Notes on the OuMv Conjecture

The hardness of many dynamic problems is based on Online Matrix-vector multiplication problem (OMv)

OuMv is at least as hard as OMv

Examples: [HKNS15]

- source-target reachability
- source-target shortest path (in unweighted graphs)
- transitive closure

Outline of Part 2: Aggregates

FAQs: Functional Aggregate Queries

FAQ Computation

Counting Triangles under Updates

References

Quiz

References

D99 Bucket Elimination: A Unifying Framework for Reasoning. Dechter. In Artif. Intell. 113(1-2): 41-85 (1999) https://www.ics.uci.edu/~dechter/publications/r48b.pdf AM00 The generalized distributive law.

Aji, McEliece. In IEEE Trans. Information Theory 46(2): 325-343 (2000) https://ieeexplore.ieee.org/document/825794/

CY12 Materialized Views

Chirkova, Yang. In Foundations & Trends DB, 4(4):295–405, 2012. https://ieeexplore.ieee.org/document/8187272?arnumber=8187272

BKOZ13 Aggregation and Ordering in Factorised Databases.

Bakibayev, Kocisky, Olteanu, Zavodny. In PVLDB 2013. https://arxiv.org/abs/1307.0441

HKNS15 Unifying and Strengthening Hardness for Dynamic Problems via the Online Matrix-Vector Multiplication Conjecture.

> Henzinger, Krinninger, Nanongkai, Saranurak. In STOC 2015. https://arxiv.org/abs/1511.06773

ANR16 FAQ: Questions Asked Frequently.

Abo Khamis, Ngo, Rudra. In PODS 2016. https://arxiv.org/abs/1504.04044

References

OS16 Factorized Databases.

Olteanu, Schleich. In SIGMOD Record 45(2): 5-16 (2016).

https://dl.acm.org/citation.cfm?doid=3003665.3003667

NO18 Incremental View Maintenance with Triple Lock Factorization Benefits.
Nikolic, Olteanu. In SIGMOD 2018.
https://arxiv.org/abs/1703.07484

ANNOS18b AC/DC: In-Database Learning Thunderstruck.

Abo Khamis, Ngo, Nguyen, Olteanu, Schleich. In DEEM@SIGMOD 2018.

https://arxiv.org/abs/1803.07480

KNNOZ19 Counting triangles under updates in worst-case optimal time.

Kara, Ngo, Nikolic, Olteanu, Zhang. In ICDT 2019.

http://arxiv.org/abs/1804.02780

Outline of Part 2: Aggregates

FAQs: Functional Aggregate Queries

FAQ Computation

Counting Triangles under Updates

References

Quiz

QUIZ on Aggregates (1/3)

For each of of the following functional aggregate queries:

- 1. Give a hypertree decomposition and variable order.
- If you were to compute it as stated below (with all sums done after the products), what would be its time complexity? (Assume all functions have the same size.)
- 3. Is there an equivalent rewriting of φ that would allow for quadratic or even linear time complexity?

The *n*-hop query:

$$\varphi(x_1, x_{n+1}) = \sum_{x_2, \dots, x_n} \psi_1(X_1, X_2) \cdot \psi_2(X_2, X_3) \cdot \psi_3(X_3, X_4) \cdot \dots \cdot \psi_n(X_n, X_{n+1}).$$

QUIZ on Aggregates (2/3)

For each of of the following functional aggregate queries:

- 1. Give a hypertree decomposition and variable order.
- If you were to compute it as stated below (with all sums done after the products), what would be its time complexity? Assume all functions have the same size.
- 3. Is there an equivalent rewriting of φ that would allow for quadratic or even linear time complexity?

Query:

$$\varphi = \sum_{a} \sum_{b} \sum_{c} \sum_{f} \sum_{d} \sum_{e} \psi_1(a,b) \cdot \psi_2(a,c) \cdot \psi_3(c,d) \cdot \psi_4(b,c,e) \cdot \psi_5(e,f).$$

QUIZ on Aggregates (3/3)

Give the update time and necessary space for the maintenance of the following FAQs as a function of the database size and the heavy/light threshold parameter $\epsilon \in [0,1]$:

$$\varphi_1 = \sum_{a,b,c,d} R(a,b) \cdot S(b,c) \cdot T(c,d)$$

$$\varphi_2 = \sum_{a,b,c,d} R(a,b) \cdot S(b,c) \cdot T(b,d)$$

$$\varphi_3 = \sum_{a,b,c,d} R(a,b) \cdot S(b,c) \cdot T(c,d) \cdot W(d,a)$$