## Symbolic Computation via Program Transformation

Henrich Lauko, Petr Ročkai and Jiří Barnat



Masaryk University Brno, Czech Republic

## Symbolic Computation Motivation



- verify programs with inputs from the environment
- symbolic execution, concolic testing, test generation etc.









$$\begin{array}{l} 1 \text{ a} \leftarrow \text{input()} \\ 2 \text{ if (a > 0)} \\ 3 \text{ b} \leftarrow \text{a + 1} \\ 4 \text{ else} \\ 5 \text{ b} \leftarrow \text{a - 1} \end{array}$$





```
1 a \leftarrow input() [true]
2 if (a > 0)
3 b \leftarrow a + 1
4 else
5 b \leftarrow a - 1
```





```
1 a \leftarrow input() [true]

2 if (a > 0) [a > 0]

3 b \leftarrow a + 1

4 else

5 b \leftarrow a - 1
```





1 a 
$$\leftarrow$$
 input() [true]  
2 if (a > 0) [a > 0]  
3 b  $\leftarrow$  a + 1  
[a > 0  $\wedge$  b = a + 1]  
4 else  
5 b  $\leftarrow$  a - 1







1 a 
$$\leftarrow$$
 input() [true]  
2 if (a > 0) [a > 0]  
3 b  $\leftarrow$  a + 1  
[a > 0  $\wedge$  b = a + 1]  
4 else  
5 b  $\leftarrow$  a - 1  
[a  $\leq$  0  $\wedge$  b = a - 1]





```
1 a \leftarrow input() [true]

2 if (a > 0) [a > 0]

3 b \leftarrow a + 1

[a > 0 \wedge b = a + 1]

4 else

5 b \leftarrow a - 1

[a \leq 0 \wedge b = a - 1]
```

- multiple possible paths
- maintained in interpreter
- program does not know about symbolic values

## Proposed Symbolic Computation







## Proposed Symbolic Computation





Motivation: minimize complexity of the verification tool

## Proposed Symbolic Computation



```
1 \text{ a} \leftarrow \text{input}()
2 \text{ if } (a > 0)
3 b \leftarrow a + 1
4 else
5
   b \leftarrow a - 1
1 \text{ a} \leftarrow \text{sym input}()
2 if (sym gt(a, 0))
    b \leftarrow sym add(a, 1)
4 else
      b \leftarrow sym sub(a, 1)
```



Motivation: minimize complexity of the verification tool

### Goals



 $\blacksquare$  mixing of explicit and symbolic computation

### Goals



- mixing of explicit and symbolic computation
- 2 expose a small interface to the rest of the system

### Goals



- mixing of explicit and symbolic computation
- 2 expose a small interface to the rest of the system
- 3 impose minimal run-time overhead

## Transformation

### Transformation of Program



### **1** syntactically abstract the input program

### Transformation of Program



### **1** syntactically abstract the input program

- transform instructions, types, functions
- preserve concrete computation
- lift concrete values

## Transformation of Program



#### 1 syntactically abstract the input program

- transform instructions, types, functions
- preserve concrete computation
- lift concrete values

### concretely realize abstraction

```
x: sym_int \( \to \) lift(*)
y: int \( \to \) factorial(7)
z: sym_int \( \to \) sym_add(x, lift(y))
b: sym_bool \( \to \) sym_lt(z, lift(0))
```

replace abstract calls with provided implementation

### Control Flow of Symbolic Program



**Problem:** constrained values by control flow

```
x: int \leftarrow input()
cond: bool \leftarrow x < 0
if (cond)
    y: int \leftarrow x + 1
else
    ...
```

- both paths can happen
- x is not constrained

## Control Flow of Symbolic Program



#### **Problem:** constrained values by control flow

```
x: int \leftarrow input()
cond: bool \leftarrow x < 0
if (cond)
    y: int \leftarrow x + 1
else
    ...
both paths can happen
    x is not constrained
x is not constrained
```

### **Solution:** instrument constraint propagation

```
x: sym_int \leftarrow lift(*)
cond: sym_bool \leftarrow sym_lt(x, 0)
if (*) // nondeterministic
    x': sym_int \leftarrow assume(cond)
    y: sym_int \leftarrow sym_add(x', 1)
else
    x': sym_int \leftarrow assume(!cond)
    ...
```

assumes extend a path condition

## Types in the Symbolic Program



**Problem:** how to deal with aggregate types?

```
arr: int[] \leftarrow [1, 2, 3]
arr[1]: int \leftarrow input()
```

• we want to minimize the number of symbolic values

## Types in the Symbolic Program



**Problem:** how to deal with aggregate types?

```
arr: int[] \leftarrow [1, 2, 3]
arr[1]: int \leftarrow input()
```

we want to minimize the number of symbolic values

Solution: use discriminated union type

realize abstract value as union of concrete and symbolic value

```
arr: union[] \leftarrow [1, 2, 3] // either int or sym_int arr[1]: union \leftarrow lift(*)
```

similarly deal with recursive structures

### **Function Calls**



Problem: how to transform functions with symbolic arguments?
 int foo(a: int, b: int, c: int)

#### Function Calls



**Problem:** how to transform functions with symbolic arguments?

```
int foo(a: int, b: int, c: int)
```

may produce exponentially many duplicates:

```
int foo(a: sym_int, b: int, c: int)
int foo(a: int, b: sym_int, c: int)
int foo(a: int, b: int, c: sym_int)
int foo(a: sym_int, b: sym_int, c: int)
...
```

resolve return type

#### Function Calls



**Problem:** how to transform functions with symbolic arguments?

```
int foo(a: int, b: int, c: int)
```

may produce exponentially many duplicates:

```
int foo(a: sym_int, b: int, c: int)
int foo(a: int, b: sym_int, c: int)
int foo(a: int, b: int, c: sym_int)
int foo(a: sym_int, b: sym_int, c: int)
...
```

resolve return type

**Solution**: static analysis + use discriminated union

```
union foo(a: union, b: union, c: int)
```

# Symbolic Runtime

### Data Representation



#### Symbolic execution:

```
a: pointer 
  malloc()
w: sym_int 
  lift(*)
x: sym_int 
  lift(*)
y: sym_int 
  sym_add(w, x)
z: sym_int 
  sym_mul(y, 7)
store z 
  a
```



## Data Representation



#### Symbolic execution:

```
a: pointer ← malloc()
w: sym_int ← lift(*)
x: sym_int ← lift(*)
y: sym_int ← sym_add(w, x)
z: sym_int ← sym_mul(y, 7)
store z → a
```



#### **Branching example:**



### Data Representation II.



### Cycle example:

```
 \begin{array}{l} x \ : \ \text{sym\_int} \leftarrow \ \text{lift(*)} \\ \text{for i: int} \leftarrow \ 1 \ \dots \ 2 \\ x : \ \text{sym\_int} \leftarrow \ \text{sym\_add(x, 1)} \\ \end{array}
```



## Symbolic Verification Algorithm





### Required support in a tool:

- nondeterminism
- feasibility check
- equality check
- values metadata

Simpler domains do not even need *SMT* support (sign domain).

### Results



Integrated with DIVINE model checker:

- LLVM-to-LLVM transformation
- STP SMT solver

#### Results



Integrated with DIVINE model checker:

- LLVM-to-LLVM transformation
- STP SMT solver

Component sizes: (lines of code)

|                  | DIVINE* | KLEE | SymDIVINE | CBMC |
|------------------|---------|------|-----------|------|
| symbolic support | 5.4     | 24.2 | 7         | 39.8 |
| shared code      | 136.5   | 125  | 423       | 27.5 |

reduced complexity of verification tool



#### **SV-COMP** Benchmarks:

| tag           | total | DIVINE* | SymDIVINE | СВМС |
|---------------|-------|---------|-----------|------|
| array         | 190   | 96      | 68        | 93   |
| bitvector     | 32    | 17      | 9         | 2    |
| loops         | 178   | 72      | 67        | 9    |
| product-lines | 575   | 336     | 411       | 234  |
| pthread       | 45    | 9       | 0         | 1    |
| recursion     | 81    | 47      | 43        | 22   |
| systemc       | 59    | 14      | 27        | 0    |
| total         | 1160  | 591     | 625       | 361  |

#### Conclusion



#### Goals

- $lue{}$  mixing of explicit and symbolic computation  $\sqrt{}$
- f 2 expose a small interface to the rest of the system  $\ \sqrt{\ }$
- ${f 3}$  impose minimal run-time overhead  ${f \sqrt{}}$

#### Conclusion



#### Goals

- mixing of explicit and symbolic computation
- $lue{2}$  expose a small interface to the rest of the system  $\checkmark$
- impose minimal run-time overhead √

#### Summary

- introduced compilation-based symbolic verification
- generalized approach to the abstraction of programs