

Análise Exploratória de Dados Aimê @itsaime

# Conteúdo da aula

- Análise exploratória de dados
  - Análise intuitiva através da visualização de dados
  - Análise estatística
- Limpeza de dados
- Seleção de atributos

# Introdução

- É importante compreender a complexidade dos dados que estamos lidando
- Precisamos mensurar a:
  - propriedades dos dados;
  - qualidade dos dados;
  - e o poder preditivo dos dados.

```
"age"; "job"; "marital"; "education"; "default"; "balance"; "housing"; "loan'
58: "management": "married": "tertiary": "no": 2143: "yes": "no": "unknown": 5:
44; "technician"; "single"; "secondary"; "no"; 29; "yes"; "no"; "unknown"; 5; "r
33; "entrepreneur"; "married"; "secondary"; "no"; 2; "yes"; "yes"; "unknown"; 5
47; "blue-collar"; "married"; "unknown"; "no"; 1506; "yes"; "no"; "unknown"; 5;
33; "unknown"; "single"; "unknown"; "no"; "no"; "no"; "unknown"; 5; "may"; 198
35; "management"; "married"; "tertiary"; "no"; 231; "yes"; "no"; "unknown"; 5; "
28; "management"; "single"; "tertiary"; "no"; 447; "yes"; "yes"; "unknown"; 5; "
42; "entrepreneur"; "divorced"; "tertiary"; "yes"; 2; "yes"; "no"; "unknown"; 5
58; "retired"; "married"; "primary"; "no"; 121; "yes"; "no"; "unknown"; 5; "may"
43; "technician"; "single"; "secondary"; "no"; 593; "yes"; "no"; "unknown"; 5; "
41; "admin."; "divorced"; "secondary"; "no"; 270; "yes"; "no"; "unknown"; 5; "ma
29; "admin.": "single": "secondary": "no": 390; "ves": "no": "unknown": 5; "may"
53; "technician"; "married"; "secondary"; "no"; 6; "yes"; "no"; "unknown"; 5; "n
58; "technician"; "married"; "unknown"; "no"; 71; "yes"; "no"; "unknown"; 5; "ma
57; "services"; "married"; "secondary"; "no"; 162; "yes"; "no"; "unknown"; 5; "n
51. "notined": "mannied": "noimany": "no": 330. "yes": "no": "unknown": 5. "may!"
```

# Análise estatística de dados

Esse passo é usado para qualquer dataset, não só os usados para ML. Iremos avaliar a qualidade e o poder preditivo dos dados.

### Conteúdo:

- Análise univariada (descritiva)
- Análise bivariada (correlação)
  - Qualitativa
  - Quantitativa
- Análise contextual

# Análise univariada (descritiva)

### Atributo comum

- **Tipo do dado** (importante!!!)
- Valores faltantes (printar tabela com porcentagem de cada coluna)

### Atributo categórico

- cardinalidade (baixa == muitos elementos duplicados)
- quantidade de valores únicos

### Atributo numérico

- Quantis estatísticos (Q1, Q2, Q3, min, max, range)
- Estatística descritiva (mean, mode, sd, median, kurtosis, skewness)
- Histograma de distribuição

### Atributo textual

- tokens
- document frequency (DF)/ term frequency
   (TF) sem palavras vazias (stop words)

# Passo crucial.

Verificar atributos comuns: valores faltantes e tipo de dado das colunas.

| ı             | Missing Values | Percentage | Data Types |
|---------------|----------------|------------|------------|
| ld            | 0              | 0.000000   | int64      |
| MSSubClass    | 0              | 0.000000   | int64      |
| MSZoning      | 0              | 0.000000   | object     |
| LotFrontage   | 259            | 17.739726  | float64    |
| LotArea       | 0              | 0.000000   | int64      |
|               |                |            | ***        |
| MoSold        | 0              | 0.000000   | int64      |
| YrSold        | 0              | 0.000000   | int64      |
| SaleType      | 0              | 0.000000   | object     |
| SaleCondition | 0              | 0.000000   | object     |
| SalePrice     | 0              | 0.000000   | int64      |

# Limpeza dos dados

- Remover duplicados
- Remover dados irrelevantes
- Padronizar capitalização
- Converter tipos de dado
- Remover erros e inconsistências
- Todos dados na mesma linguagem
- Lidar com dados faltantes
- Lidar com outliers

# Atributos numéricos

|                   | max     | range   | IQR    | mode   | mad         | kurtosis   | skewness  |
|-------------------|---------|---------|--------|--------|-------------|------------|-----------|
| age               | 90      | 73      | 20     | 36     | 11.189182   | -0.166127  | 0.558743  |
| functional_weight | 1484705 | 1472420 | 119224 | 123011 | 77608.21854 | 6.218811   | 1.44698   |
| education_num     | 16      | 15      | 3      | 9      | 1.903048    | 0.623444   | -0.311676 |
| capital_gain      | 99999   | 99999   | 0      | 0      | 1977.373437 | 154.799438 | 11.953848 |
| capital_loss      | 4356    | 4356    | 0      | 0      | 166.462055  | 20.376802  | 4.594629  |
| hours_per_week    | 99      | 98      | 5      | 40     | 7.583228    | 2.916687   | 0.227643  |
|                   |         |         |        |        |             |            |           |

|                   | mean        | std         | min   | 25%    | 50%    | 75%    |
|-------------------|-------------|-------------|-------|--------|--------|--------|
| age               | 38.581647   | 13.640433   | 17    | 28     | 37     | 48     |
| functional_weight | 189778.3665 | 105549.9777 | 12285 | 117827 | 178356 | 237051 |
| education_num     | 10.080679   | 2.57272     | 1     | 9      | 10     | 12     |
| capital_gain      | 1077.648844 | 7385.292085 | 0     | 0      | 0      | 0      |
| capital_loss      | 87.30383    | 402.960219  | 0     | 0      | 0      | 0      |
| hours_per_week    | 40.437456   | 12.347429   | 1     | 40     | 40     | 45     |

### Mixture of Gaussians - bimodal



Podem ser representados por gráficos





Figure 1. Common Components of Box Plot and Violin Plot. Total compensation for all academic ranks.

Plot de histograma, densidade, boxplot e violino.

# Análise bivariada (de correlação)

Examina correlação entre variáveis, dois a dois. Determina variáveis redundantes e/ou que não são preditivas em relação ao valor alvo.

### Qualitativa:

- 2 categóricas: tabela de contingência
- categórica vs. numérica: estatística descritiva ou histograma

Problemas: enviesamento (verificado com métodos de amostragem e design de experimentos)

### Quantitativa:

Teste de Hipóteses, onde a hipótese nula é de que não há relação entre as duas variáveis. Usamos p-valor de 0.05.

# Tabela de contingência

| Item           | Extra        |                   |        |        |       |
|----------------|--------------|-------------------|--------|--------|-------|
| Pizza          | Cheese       |                   |        |        |       |
| Pizza          | Sauce        |                   |        | Cheese | Sauce |
| 101410000      |              | $\longrightarrow$ | Pizza  | 1      | 1     |
| Burger         | Cheese       |                   | Burger | 2      | 1     |
| Burger         | Cheese       |                   |        |        |       |
| GIACIE MACCONE | 7 /2000 10 1 |                   |        |        |       |

Sauce

| Handed-<br>ness<br>Sex | Right-handed | Left-handed | Total |
|------------------------|--------------|-------------|-------|
| Male                   | 43           | 9           | 52    |
| Female                 | 44           | 4           | 48    |
| Total                  | 87           | 13          | 100   |

# Teste de hipóteses

| v           |                                                                   | Y                                                                                 |
|-------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| X           | Categorical                                                       | Numerical                                                                         |
| Categorical | Chi-square test<br>Information gain                               | Student T-test  ANOVA  Logistic regression  Discretize Y (left column)            |
| Numerical   | Student T-test ANOVA Logistic regression Discretize X (row above) | Correlation Linear Regression Discretize Y (left column) Discretize X (row above) |

| Handedness | Diabet banded | Left-handed | Total |
|------------|---------------|-------------|-------|
| Sex        | Right-handed  | Lett-nanded | Total |
| Male       | 43            | 9           | 52    |
| Female     | 44            | 4           | 48    |
| Total      | 87            | 13          | 100   |

| Right-handed     | Left-handed      | Total                                                             |
|------------------|------------------|-------------------------------------------------------------------|
| 100*0.52*0.87=45 | 100*0.52*0.13=7  | 52                                                                |
| 100*0.48*0.87=42 | 100*0.48*0.13=6  | 48                                                                |
| 87               | 13               | 100                                                               |
|                  | 100*0.48*0.87=42 | 100*0.52*0.87=45 100*0.52*0.13=7 100*0.48*0.87=42 100*0.48*0.13=6 |

Test the statistics.

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} = \frac{(43 - 45)^{2}}{45} + \frac{(44 - 42)^{2}}{42} + \frac{(9 - 7)^{2}}{7} + \frac{(4 - 6)^{2}}{6} = 1.42$$

$$p_{value} = P r_{DF=1} (\chi^{2} > 1.42) = 0.233$$

# Exemplo de Teste Chi-Quadrado

# Análise Contextual

Entender o contexto no qual o dataset está inserido pode nos dar insights em relação aos dados.

### Baseada em tempo:

- horas de rush
- quebra da bolsa de 2008
- datas de eleição
- black friday

### Baseado em usuários.

- verificar comportamento de cada usuário ou em conjunto
- achar anomalias

# Seleção de atributos

### Baseado em:

- Análise descritiva
- Análise de correlação
- Análise contextual



# Seleção de atributos

### Baseado em análise descritiva

- Alta porcentagem de números faltantes não constituindo informação
- Pouca variância. Remover esses dados pode diminuir complexidade da ML
- Pouca entropia de categorias pode enviesar
   ML
  - Desbalanço de classe pode ser resolvida com amostragem
- Distribuição distorcida com calda longa.
   Pode ser resultado de erros que geram outliers.
- Alta cardinalidade, ou seja, muitos valores únicos

### Baseado em análise de correlação

- Correlação muito baixa pode significar que atributo não será útil para previsão desejada
- Alta correlação. Não acrescenta informação ao modelo e não é recomendada para modelos lineares.

### Baseado em análise contextual

Leva em conta conhecimento do contexto em que os dados estão inseridos.

Visualização de dados

# **Tabelas**

Guiar o leitor para a informação que queremos passar. Procurar não usar bordas, pois poluem a visão.

| Table      |     |     |     | Heatmap    |     |     |     |
|------------|-----|-----|-----|------------|-----|-----|-----|
|            | Α   | В   | C   |            | Α   | В   | C   |
| Category 1 | 15% | 22% | 42% | Category 1 | 15% | 22% | 42% |
| Category 2 | 40% | 36% | 20% | Category 2 | 40% | 36% | 20% |
| Category 3 | 35% | 17% | 34% | Category 3 |     | 17% | 34% |
| Category 4 | 30% | 29% | 26% | Category 4 |     |     |     |
| Category 5 | 55% | 30% | 58% | Category 5 | 55% |     | 58% |
| Category 6 | 11% | 25% | 49% | Category 6 | 11% | 25% | 49% |

FIGURE 2.5 Two views of the same data

| Heavy borders |          |          | Light borders |         |          |          | Minimal borders |         |          |          |          |
|---------------|----------|----------|---------------|---------|----------|----------|-----------------|---------|----------|----------|----------|
| Group         | Metric A | Metric B | Metric C      | Group   | Metric A | Metric B | Metric C        | Group   | Metric A | Metric B | Metric ( |
| Group 1       | \$X.X    | Y%       | Z,ZZZ         | Group 1 | \$X.X    | Y%       | Z,ZZZ           | Group 1 | \$X.X    | Y%       | Z,ZZZ    |
| Group 2       | SX.X     | Y%       | Z,ZZZ         | Group 2 | \$X.X    | Y%       | Z,ZZZ           | Group 2 | \$X.X    | Y%       | Z,ZZZ    |
| Group 3       | SX.X     | Y%       | Z,ZZZ         | Group 3 | \$X.X    | Y%       | Z,ZZZ           | Group 3 | \$X.X    | Y%       | Z,ZZZ    |
| Group 4       | \$X.X    | Y%       | Z,ZZZ         | Group 4 | \$X.X    | Y%       | Z,ZZZ           | Group 4 | \$X.X    | Y%       | Z,ZZZ    |
| Group 5       | \$X.X    | Y%       | Z,ZZZ         | Group 5 | \$X.X    | Y%       | Z,ZZZ           | Group 5 | \$X.X    | Y%       | Z,ZZZ    |

FIGURE 2.4 Table borders

# Escolhas sobre o design dos gráficos





FIGURE 4.4 Preattentive attributes

Source: Adapted from Stephen Few's Show Me the Numbers, 2004.

Recursos para destacar atributos.

Caminho do foco do leitor

# Escolhas sobre o design dos gráficos





Barras do gráfico

Escala do gráfico



# ColorBrewer Blues Heat Viridis

### Categórico



### Quantitativo



Destaque

Amigável a daltônicos





Círculo cromático

# Que informação devemos apresentar?

Quem: a quem iremos

falar

O que: ideia que queremos passar

Como: escolha da

informação apresentada



# Visualizando quantidades



# Visualizando distribuições



# Visualizando proporções



# Visualizando proporções







# Relações entre duas variáveis



# Dado geoespacial









# Visualizando incerteza



# Séries temporais



Figure 14.1: Daily closing values of the Dow Jones Industrial Average for the year 2009. Data source: Yahoo! Finance



# Faces de Chernoff







# Diagrama de Sankey



Gráfico de Florence Nightingale (Coxcomb Plot)

# Atenção às legendas







## Importância da escolha do gráfico



FIGURE 0.2 Example 1 (before): showing data

#### Ticket volume over time



Data source: XYZ Dashboard, as of 12/31/2014 | A detailed analysis on tickets processed per person and time to resolve issues was undertaken to inform this request and can be provided if needed.

## Importância da escolha do gráfico



FIGURE 0.6 Example 3 (before): showing data

To be competitive, we recommend introducing our product below the \$223 average price point in the \$150-\$200 range



FIGURE 0.7 Example 3 (after): storytelling with data

## Importância da escolha do gráfico

#### Survey Results



FIGURE 0.4 Example 2 (before): showing data

# Pilot program was a success How do you feel about science? BEFORE program, the majority of children felt just OK about science. 40% AFTER program, more children were Kind of

interested

Based on survey of 100 students conducted before and after pilot program (100% response rate on both surveys).

Kind of

Excited

FIGURE 0.5 Example 2 (after): storytelling with data

OK

Bored

Not great

interested & Excited about

science:

## Gráfico de pizza

Evite o gráfico de pizza. Se fizer questão, saiba que não passa muita informação. Use então a regra do Pacman.



## 75%

Muito mais impactante que um gráfico de pizza.

### Scatterplot

#### Cost per mile by miles driven



FIGURE 2.6 Scatterplot

#### Cost per mile by miles driven



FIGURE 2.7 Modified scatterplot

### Slopegraph

#### Employee feedback over time



#### Employee feedback over time



FIGURE 2.11 Modified slopegraph

## Elimine a poluição visual



FIGURE 3.24 Before-and-after

#### Foco direcionado



FIGURE 4.11 First, push everything to the background



FIGURE 4.14 Data labels used sparingly help draw attention

## Acréscimo de informações no gráfico



FIGURE 4.14 Data labels used sparingly help draw attention

#### Please approve the hire of 2 FTEs

to backfill those who quit in the past year

#### Ticket volume over time



Data source: XYZ Dashboard, as of 12/31/2014 | A detailed analysis on tickets processed per person and time to resolve issues was undertaken to inform this request and can be provided if needed.

FIGURE 5.10 Add action title and annotation

## Exemplo



Product C

**2011** 

Product D

Product E

2014

To be competitive, we recommend introducing our product below the \$223 average price point in the \$150-\$200 range





FIGURE 8.20 Before-and-after

Product B

Product A

## Extra: Visualização informação através de grafos



Grafo do aplicativo Obsidian



Grafo de Conhecimento

### Extra: Análise de sobrevivência



#### **Ferramentas**

- Python
  - Seaborn
  - Matplotlib
  - Plotly
  - geoplotlib
  - o Folium
- R
  - Gráficos mais específicos de estatística, como QQ plot
  - Gráficos interativos

Obs: olhar sempre a documentação.

#### Ferramentas de DashBoard

- Python
- Data Studio (Google)
- PowerBI
- Tableau
- InDesign
- Slides (Google)

#### Inspiração

- Pinterest
- Behance (Adobe)
- Data Studio Report Gallery

## Bibliografia

Fundamentals of Data Visualization - Claus O. Wilke

Exploratory Data Analysis for Feature Selection in Machine Learning - Google Cloud

https://datavizcatalogue.com/

Storytelling with data - Cole Nussbaumer Knaflic

dúvidas?