NUMERICAL INTEGRATIONS, MODELING CONSIDERATIONS

LECTURE 8

47 MINUTES

LECTURE 8 Evaluation of isoparametric element matrices

Numercial integrations, Gauss, Newton-Cotes formulas

Basic concepts used and actual numerical operations performed

Practical considerations

Required order of integration, simple examples

Calculation of stresses

Recommended elements and integration orders for one-, two-, three-dimensional analysis, and plate and shell structures

Modeling considerations using the elements

TEXTBOOK: Sections: 5.7.1, 5.7.2, 5.7.3, 5.7.4, 5.8.1, 5.8.2, 5.8.3

Examples: 5.28, 5.29, 5.30, 5.31, 5.32, 5.33, 5.34, 5.35, 5.36, 5.37, 5.38, 5.39

NUMERICAL INTEGRATION, SOME MODELING CONSIDERATIONS

- Newton-Cotes formulas
- Gauss integration
- Practical considerations
- Choice of elements

We had

$$\underline{K} = \int_{V} \underline{B}^{T} \underline{C} \underline{B} dV$$
 (4.29)

$$\underline{\mathbf{M}} = \mathbf{J} \rho \underline{\mathbf{H}}^{\mathsf{T}} \underline{\mathbf{H}} dV \qquad (4.30)$$

$$\underline{R}_{B} = \int_{V} \underline{H}^{T} \underline{f}^{B} dV \qquad (4.31)$$

$$\underline{R}_{S} = \int_{S} \underline{H}^{S^{T}} \underline{f}^{S} dS \qquad (4.32)$$

$$\underline{R}_{I} = \int_{V} \underline{B}^{T} \underline{\tau}^{I} dV \qquad (4.33)$$

In isoparametric finite element analysis we have:

- the displacement interpolation matrix <u>H</u> (r,s,t)
- •the strain-displacement interpolation matrix B (r,s,t)

Where r,s,t vary from -1 to +1.

Hence we need to use:

 $dV = det \underline{J} dr ds dt$

Hence, we now have, for example in two-dimensional analysis:

$$\underline{K} = \int_{-1}^{+1} \int_{-1}^{+1} \underline{B}^{T} \underline{C} \underline{B} \det \underline{J} dr ds$$

$$\underline{\mathbf{M}} = \int_{-1}^{+1} \int_{-1}^{+1} \rho \ \underline{\mathbf{H}}^{\mathsf{T}} \ \underline{\mathbf{H}} \ \det \underline{\mathbf{J}} \ \mathrm{dr} \ \mathrm{ds}$$

etc...

The evaluation of the integrals is carried out effectively using numerical integration, e.g.:

$$\underline{K} = \sum_{i} \sum_{j} \alpha_{ij} \underline{F}_{ij}$$

where

i, j denote the integration points

 α_{ij} = weight coefficients

$$\underline{F}_{ij} = \underline{B}_{ij}^{\mathsf{T}} \underline{C} \underline{B}_{ij} \det \underline{J}_{ij}$$

2x2 - point integration

Consider one-dimensional integration and the concept of an interpolating polynomial.

In <u>Newton - Cotes integration</u> we use sampling points at equal distances, and

$$\int_{a}^{b} F(r)dr = (b-a) \sum_{i=0}^{n} C_{i}^{n} F_{i} + R_{n}$$

(5.123)

n = number of intervals

C_iⁿ = Newton - Cotes constants

interpolating polynomial is of order **n** .

Number of Intervals n	C ₀	C ₁	C 7 2	C''3	C**	C ₃	C_6^n	Upper Bound on Error R_n as a Function of the Derivative of F
1	1/2	1/2		-				$10^{-1}(b-a)^3F^{11}(r)$
2	$\frac{1}{6}$		16					$10^{-3}(b-a)^{5}F^{\text{IV}}(r)$
3	1 8	4 6 3 8	1 6 3 8	1 8				$10^{-3}(b-a)^{5}F^{\text{IV}}(r)$
4	<u>7</u> 90	$\frac{32}{90}$	12 90	$\frac{32}{90}$	7 90			$10^{-6}(b-a)^{7}F^{VI}(r)$
5	19 288	$\frac{75}{288}$	50 288	50 288	$\frac{75}{288}$	$\frac{19}{288}$		$10^{-6}(b-a)^{7}F^{VI}(r)$
6	41 840	216 840	27 840	272 840	27 840	216 840	41 840	$10^{-9}(b-a)^9F^{\rm VIII}(r)$

Table 5.1. Newton-Cotes numbers and error estimates.

In Gauss numerical integration we

$$\int_{a}^{b} F(r)dr = \alpha_{1}F(r_{1}) + \alpha_{2}F(r_{2}) + \dots + \alpha_{n}F(r_{n}) + R_{n}$$
 (5.124)

where both the weights $\alpha_1, \ldots, \alpha_n$ and the sampling points r_1, \ldots, r_n are variables.

The interpolating polynomial is now of order 2n-1.

n		r_i	2. (15 zeros)			
1	0. (15 :	zeros)				
2	±0.57735	02691	89626	1.00000	00000	00000
3	±0.77459	66692	41483	0.55555	55555	55556
	0.00000	00000	00000	0.88888	88888	88889
4	±0.86113	63115	94053	0.34785	48451	37454
	±0.33998	10435	84856	0.65214	51548	62546
5	±0.90617	98459	38664	0.23692	68850	56189
	±0.53846	93101	05683	0.47862	86704	99366
	0.00000	00000	00000	0.56888	88888	88889
6	±0.93246	95142	03152	0.17132	44923	79170
	±0.66120	93864	66265	0.36076	15730	48139
	±0.23861	91860	83197	0.46791	39345	72691

Table 5.2. Sampling points and weights in Gauss-Legendre numerical integration.

Now let,

r_i be a sampling point and

 α_i be the corresponding weight

for the interval -1 to +1.

Then the actual sampling point and weight for the interval a to b are

$$\frac{a+b}{2} + \frac{b-a}{2} r_i$$
 and $\frac{b-a}{2} \alpha_i$

and the r_i and α_i can be tabulated as in Table 5.2.

In two- and three-dimensional analysis we use

$$\int_{-1}^{+1} \int_{-1}^{+1} F(r,s) dr ds = \sum_{i} \alpha_{i} \int_{-1}^{+1} F(r_{i},s) ds$$
or
$$(5.131)$$

$$\int_{-1}^{+1} \int_{-1}^{+1} F(r,s) dr ds = \sum_{i,j} \alpha_{i} \alpha_{j} F(r_{i},s_{j})$$
(5.132)

and corresponding to (5.113), $\alpha_{ij} = \alpha_i \alpha_j$, where α_i and α_j are the integration weights for one-dimensional integration. Similarly,

$$\int_{-1}^{+1} \int_{-1}^{+1} \int_{-1}^{+1} F(r,s,t) dr ds dt$$

$$= \sum_{i,j,k} \alpha_i \alpha_j \alpha_k F(r_i,s_j,t_k)$$
(5.133)

and
$$\alpha_{ijk} = \alpha_i \alpha_j \alpha_k$$
.

Practical use of numerical integration

- The integration order required to evaluate a specific element matrix exactly can be evaluated by studying the function F to be integrated.
- In practice, the integration is frequently not performed exactly, but the integration order must be high enough.

Considering the evaluation of the element matrices, we note the following requirements:

a) stiffness matrix evaluation:

- (1) the element matrix does not contain any spurious zero energy modes (i.e., the rank of the element stiffness matrix is not smaller than evaluated exactly); and
- (2) the element contains the required constant strain states.

b) mass matrix evaluation:

the total element mass must be included.

c) force vector evaluations:

the total loads must be included.

2x2 Gauss integration "absurd" results

3x3 Gauss integration correct results

Fig. 5.46. 8 - node plane stress element supported at B by a spring.

Stress calculations

$$\underline{\tau} = \underline{C} \underline{B} \underline{U} + \underline{\tau}^{\mathrm{I}}$$
 (5.136)

- stresses can be calculated at any point of the element.
- stresses are, in general, discontinuous across element boundaries.

(a) Cantilever subjected to bending moment and finite element solutions.

Fig. 5.47. Predicted longitudinal stress distributions in analysis of cantilever.

(b) Cantilever subjected to tip-shear force and finite element solutions

Fig. 5.47. Predicted longitudinal stress distributions in analysis of cantilever.

Some modeling considerations

We need

- a qualitative knowledge of the response to be predicted
- a thorough knowledge of the principles of mechanics and the finite element procedures available
- parabolic/undistorted elements usually most effective

Table 5.6 Elements usually effective in analysis.

TYPE OF PROBLEM	ELEMENT	
TRUSS OR CABLE	2-node	
TWO-DIMENSIONAL PLANE STRESS	8-node or 9-node	
PLANE STRAIN AXISYMMETRIC		
THREE-DIMENSIONAL	20-node	
3-D BEAM	3-node or 4-node	
PLATE	9-node	
SHELL	9-node or 16-node	

a) 4 – node to 8 – node element transition region

b) 4 - node to 4 - node element transition

c) 8 - node to finer 8 - node element layout transition region

Fig. 5.49. Some transitions with compatible element layouts

MIT OpenCourseWare http://ocw.mit.edu

Resource: Finite Element Procedures for Solids and Structures Klaus-Jürgen Bathe

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.