Find Right Interval

You are given an array of intervals, where intervals[i] = [start_i, end_i] and each start_i is **unique**.

The **right interval** for an interval i is an interval j such that $start_j >= end_i$ and $start_j$ is **minimized**. Note that i may equal j.

Return *an array of right interval* indices for each interval i. If no **right interval** exists for interval i, then put -1 at index i.

Example 1:

Input: intervals = [[1,2]]

Output: [-1]

Explanation: There is only one interval in the collection, so it outputs -1.

Example 2:

Input: intervals = [[3,4],[2,3],[1,2]]

Output: [-1,0,1]

Explanation: There is no right interval for [3,4].

The right interval for [2,3] is [3,4] since $start_0 = 3$ is the smallest start that is $>= end_1 = 3$.

The right interval for [1,2] is [2,3] since start₁ = 2 is the smallest start that is \geq end₂ = 2.

Example 3:

Input: intervals = [[1,4],[2,3],[3,4]]

Output: [-1,2,-1]

Explanation: There is no right interval for [1,4] and [3,4].

The right interval for [2,3] is [3,4] since $start_2 = 3$ is the smallest start that is $>= end_1 = 3$.

Constraints:

- 1 <= intervals.length <= 2 * 10⁴
- intervals[i].length == 2
- $-10^6 \le \text{start}_i \le \text{end}_i \le 10^6$
- The start point of each interval is **unique**.