Itérés d'un endomorphisme

Dans ce problème E désigne un \mathbb{R} - espace vectoriel de dimension finie $n \in \mathbb{N}^*$.

On note $\mathcal{L}(E)$ l'ensemble des endomorphismes de E et I l'endomorphisme identité de E .

On considère f un endomorphisme de E vérifiant la relation $f^2 = \frac{1}{2}(f+I)$.

- 1. Pour quels $\alpha \in \mathbb{R}$, peut-on avoir $f = \alpha I$?
- 2. On revient au cas général.
- 2.a Prouver que l'endomorphisme f est inversible et exprimer son inverse f^{-1} en fonction de I et de f.
- 2.b Justifier que $\ker(f-I)$ et $\ker(f+\frac{1}{2}I)$ sont des sous-espaces vectoriels de E.
- 2.c Montrer que $E = \ker(f I) \oplus \ker(f + \frac{1}{2}J)$.
- 2.d Calculer $(f+\frac{1}{2}I)\circ (f-I)$. En déduire que $\ker(f+\frac{1}{2}J)=\mathrm{Im}(f-I)$.
- 2.e De même, justifier que $ker(f-I) = Im(f + \frac{1}{2}I)$.
- 3. On suppose <u>désormais</u> que les endomorphismes f et I sont linéairement indépendants.
- 3.a Exprimer f^3 et f^4 comme combinaison linéaire de f et I.
- 3.b Etablir que, pour tout entier naturel n, il existe un couple (a_n,b_n) de réels et un seul tel que $f^n=a_n.f+b_n.I\ .$ Déterminer a_0,b_0,a_1,b_1 et exprimer a_{n+1} et b_{n+1} en fonction de a_n et b_n pour $n\in\mathbb{N}$.
- 3.c Former une relation entre a_{n+2}, a_{n+1} et a_n . En déduire les expressions de a_n et b_n en fonction de n pour $n \in \mathbb{N}$. Vérifier que $\lim_{n \to +\infty} a_n = \frac{2}{3}$ et $\lim_{n \to +\infty} b_n = \frac{1}{3}$.
- 3.d On convient d'appeler limite de $f^n=a_n.f+b_n.I$ l'endomorphisme $p=\frac{2}{3}.f+\frac{1}{3}.I$.

 Justifier que p est la projection vectorielle sur $\ker(f-I)$ et parallèlement à $\operatorname{Im}(f-I)$.
- 4. On forme $\mathcal{M} = \{\lambda . f + \mu . I \mid (\lambda, \mu) \in \mathbb{R}^2 \}$.
- 4.a Montrer que \mathcal{M} est une sous-algèbre commutative de $\mathcal{L}(E)$.
- 4.b En déterminer une base et la dimension.