Calculus IB: Lecture 01

Luo Luo

Department of Mathematics, HKUST

http://luoluo.people.ust.hk/

Outline

- Course Overview
- Sets and Intervals
- Solving Inequalities
- 4 Absolute Value

Luo Luo (HKUST) MATH 1013 2/2

Outline

- Course Overview
- Sets and Intervals
- Solving Inequalities
- 4 Absolute Value

Luo Luo (HKUST) MATH 1013 3/2

Why Calculus is Important?

Calculus is used in everywhere

- mathematics,
- physical science,
- computer science,
- statistics,
- engineering,
- economics,
-

Engineering would be almost impossible without calculus today.

I believe an understanding of calculus is never wasted.

Course Overview

Topics in single variable calculus

- functions and graphs
- 2 limits of functions and continuity
- derivatives and their applications
- indefinite and definite integrals

Intended learning outcomes

- develop basic computational skills in calculus
- express quantitative relationships by the language of functions
- apply calculus in modeling and solving real-world problems

Luo Luo (HKUST) MATH 1013 4/24

Assessment Scheme and Resources

Percentage of coursework and examination

- 25% by online homework (https://www.classviva.org)
- 2 no midterm exam
- 3 75% by final exam

Recommended reading:

- Jishan Hu, Weiping Li and Yueping Wu. "Calculus for scientists and engineers with MATLAB".
- ② James Stewart. "Single variable calculus: Early transcendentals". Cengage Learning, 2015.

Outline

- Course Overview
- Sets and Intervals
- Solving Inequalities
- Absolute Value

Luo Luo (HKUST) MATH 1013 6/2

Notations of Sets

A set is a well-defined collection of distinct elements.

- We can list all elements: e.g., the expression $\{2,5,7\}$ means a set consisting of three numbers: 2, 5 and 7.
- ② Capital letters are often used to denote a set; e.g., $A = \{2, 5, 7\}$, where 2, 5, 7 are called the elements of the set A.
- lacktriangle The set of all real numbers is often denoted by the symbol \mathbb{R} .
- lacktriangledown The set of all integer is often denoted by the symbol \mathbb{Z} .
- We use $\{x : P(x)\}$ to denote the set which is consisted of all elements x satisfying the description P(x).

Examples of notation $\{x : P(x)\}$

- $\{x:(x-2)(x-3)=0\}$ is actually a set of two numbers: 2, 3
- $\{x: (x-2)(x-3) > 0\}$ is the solution set of the inequality: (x-2)(x-3) > 0
- $\{x: x \text{ is the square of an integer}\}\$ is the set of 0, 1, 4, 9, 16, 25...

Sets can be consisting of things other than numbers in general; e.g.,

 $\{x : x \text{ is a HKUST student}\}$

Notations of Intervals

Infinity, denoted by ∞ , represents something that is larger than any real number. Similarly, we use $-\infty$ to represent *negative infinity* that is smaller than any real number.

An *interval* is a set of real numbers that contains all real numbers lying <u>between</u> any two endpoints.

- An endpoint could be a real number, infinity or negative infinity.
- What is "between"?

Notations of Intervals

Let a and b be two real numbers. We define different classes of interval as follows.

Open Intervals	Closed Intervals	
$(a,b) = \{x : a < x < b\}$	$[a,b] = \{x : a \le x \le b\}$	
$(-\infty, a) = \{x : x < a\}$	$(-\infty,a]=\{x:x\leq a\}$	
$(a,\infty)=\{x:x>a\}$	$[a,\infty)=\{x:x\geq a\}$	

Half Open Half Closed Intervals
$$[a,b) = \{x : a \le x < b\}$$

$$(a,b] = \{x : a < x \le b\}$$

The interval $(-\infty, \infty)$ formed by all real numbers, that is $\mathbb{R} = (-\infty, \infty)$, which is considered as both open and closed.

The interval [a, b] = (a, b) = [a, b) = (a, b] = (a, a) = [a, a) = (a, a] contains nothing when a > b. We call it empty set, denoted by \emptyset or $\{\}$.

Basic Operations on Sets

Given two sets of real numbers A and B, the *intersection* $A \cap B$ and the *union* $A \cup B$ mean respectively the following:

$$A \cap B = \{x : x \text{ is a number in both } A \text{ and } B\}$$

 $A \cup B = \{x : x \text{ is a number either in } A \text{ or in } B\}$

For examples,

$$\{1,2,3,4\} \cap \{3,4,9\} = \{3,4\}$$

$$\{1,2,3,4\} \cup \{3,4,9\} = \{1,2,3,4,9\}$$

$$(2,7) \cap [3,10) = \{x:2 < x < 7 \text{ and } 3 \le x < 10\} = [3,7)$$

$$(2,7) \cup (3,10) = \{x:2 < x < 7 \text{ or } 3 < x < 10\} = (2,10)$$

The union of two intervals is not always an interval:

$$(-2,0) \cup [3,8) = \{x : -2 < x < 0 \text{ or } 3 \le x < 8\}$$

Luo Luo (HKUST) MATH 1013 10 / 24

Outline

- Course Overview
- Sets and Intervals
- Solving Inequalities
- 4 Absolute Value

Luo Luo (HKUST) MATH 1013 11/2

Basic operations on inequalities: for any real numbers a, b, and c,

- **1** if a < b, then a + c < b + c;
- 2 if a < b, then a c < b c;
- 3 if a < b and c > 0, then ac < bc;
- if a < b and c < 0, then ac > bc;

Watch out when multiplying a negative number c on a < b, the result is ac > bc, rather than ac < bc!

For example: 2 < 3 leads to $2 \cdot (-4) > 3 \cdot (-4)$

Example

Solve the following inequalities: 4x - 3 < 2x + 5

Solution

We apply basic operations on inequalities:

$$4x - 3 < 2x + 5$$

$$4x - 3 + (3 - 2x) < 2x + 5 + (3 - 2x)$$

$$2x < 8$$

$$x < 4$$

Using interval notation, the solution of the inequality is $(-\infty, 4)$.

Example

Solve the following inequalities $-\frac{2x}{3} < x + 4$.

Solution

We can solve it as follow:

$$-\frac{2x}{3} - x < 4$$

$$\frac{-5x}{3} < 4$$

$$\left(-\frac{3}{5}\right)\left(-\frac{5x}{3}\right) > \left(-\frac{3}{5}\right) \cdot 4$$

$$x > -\frac{12}{5}$$

Using interval notation, the solution of the inequality is: $\left(-\frac{12}{5},\infty\right)$.

Example

Solve the inequality $\frac{4}{2x-3} \le 2$.

If you multiply 2x - 3 to both sides of the inequality, it is not clear how the inequality is changed since 2x - 3 may or may not be positive.

Solution

We have

$$\frac{4}{2x-3} - 2 \le 0 \Longleftrightarrow \frac{4}{2x-3} - \frac{2(2x-3)}{2x-3} \le 0$$
$$\Longleftrightarrow \frac{-4x+10}{2x-3} \le 0.$$

The solution of the inequality is $x < \frac{3}{2}$ or $x \ge \frac{5}{2}$. Using interval notation, the solution is: $(-\infty, \frac{3}{2}) \cup [\frac{5}{2}, \infty)$.

Example

Solve the inequality $\frac{4}{2x-3} \le 2$.

Solution

Why
$$\frac{-4x+10}{2x-3} \leq 0$$
 leads to $(-\infty, \frac{3}{2}) \cup [\frac{5}{2}, \infty)$?

x	$x < \frac{5}{2}$	$x = \frac{5}{2}$	$x > \frac{5}{2}$
-4x + 10	+ve	0	-ve

x	$x < \frac{3}{2}$	$x = \frac{3}{2}$	$\frac{3}{2} < x < \frac{5}{2}$	$x = \frac{5}{2}$	$x > \frac{5}{2}$
$\frac{-4x+10}{2x-3}$	-ve	undefined	+ve	0	-ve

Exercise

Solve the inequality $\frac{(x-2)(x-5)}{(x+2)(x-8)} \ge 0$.

Hint: There are four numbers 2, 5, -2 and 8 divide the real line into five disjoint open intervals. We can do the sign checking for each of these intervals.

Luo Luo (HKUST) MATH 1013 16 / 24

Outline

- Solving Inequalities
- Absolute Value

Luo Luo (HKUST) MATH 1013

Absolute Value

The absolute value of a real number x, denoted by |x|, is defined by

$$|x| = \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x < 0. \end{cases}$$

For example, |5| = 5, and |-5| = -(-5) = 5. Similarly,

$$|x - y| = \begin{cases} x - y & \text{if } x \ge y, \\ y - x & \text{if } x < y. \end{cases}$$

The value of |x - y| can also be seen as the distance between the numbers x and y on the real line.

Luo Luo (HKUST) MATH 1013 17 / 24

Absolute Value

No matter what a mathematical expression \blacksquare , we have

$$|\blacksquare| = \begin{cases} \blacksquare & \text{if } \blacksquare \ge 0, \\ -\blacksquare & \text{if } \blacksquare < 0. \end{cases}$$

Note also that for any positive real number k, we have

$$|\blacksquare| > k \iff \blacksquare < -k \text{ or } \blacksquare > k$$

Example

The equation |2x - 5| = 3 simply means 2x - 5 = 3 or 2x - 5 = -3, that is x = 4 or x = 1.

Luo Luo (HKUST) MATH 1013 18 / 24

Example

The inequality |2x - 5| < 3 means

$$|2x - 5| < 3 \iff -3 < 2x - 5 < 3$$

$$\iff 2 < 2x < 8$$

$$\iff 1 < x < 4$$

Remark

The solution of |2x - 5| = 3 is x = 1 or x = 4 lead to we can solve |2x - 5| < 3 by sign checking for |2x - 5| - 3 along the real line, which is divided by 1 and 4 into three intervals x < 1, 1 < x < 4, and x > 4:

Sign of |2x - 5| - 3 along the real line

Example

Solving the inequality $\left|3-\frac{5}{x}\right|<1$ (Recall that $\left|\star\right|<1\Leftrightarrow -1<\star<1$)

Solution (inequality approach)

$$-1 < 3 - \frac{5}{x} < 1 \Longleftrightarrow -1 < \frac{3x - 5}{x} < 1$$

$$0 < 1 + \frac{3x - 5}{x} \quad and \quad \frac{3x - 5}{x} - 1 < 0$$

$$0 < \frac{4x - 5}{x} \quad and \quad \frac{2x - 5}{x} < 0$$

$$\left(x < 0 \text{ or } x > \frac{5}{4}\right) \quad and \quad 0 < x < \frac{5}{2}$$

$$i.e., \quad \frac{5}{4} < x < \frac{5}{2}$$

Example

Solving the inequality
$$\left|3-\frac{5}{x}\right|<1$$
 (Recall that $\left|\star\right|<1\Leftrightarrow -1<\star<1$)

Solution (equation approach)

The solution of
$$\left|3 - \frac{5}{x}\right| = 1$$
 is either $3 - \frac{5}{x} = -1$ or $3 - \frac{5}{x} = 1$, that is $x = \frac{5}{4}$ or $x = \frac{5}{2}$. Check the sign of $\left|3 - \frac{5}{x}\right| - 1$:

Sign of $\frac{\text{undefined}}{0}$ $\frac{\text{undefined}}{5/4}$ $\frac{\text{undefined}}{5/4}$ $\frac{\text{undefined}}{5/4}$

$$\left(e.g., \ check \ \left| 3 - \frac{5}{x} \right| \ at \ x = -1, 1, 2, 3. \right)$$

 Luo Luo (HKUST)
 MATH 1013
 21 / 24

Some Exercises

Find the solution of the inequality

- **1** |2x 5| ≥ 3
- $\left| 3 \frac{5}{x} \right| \ge 1$
- |x-1|+|x-3|<4 (a harder one!)

Some Basic Properties of Absolute Values

Some Properties of Absolute Values:

- | -x| = |x|
- 2 |xy| = |x||y|
- $|\frac{x}{v}| = \frac{|x|}{|v|}, \text{ where } y \neq 0$
- $|x+y| \le |x| + |y|$ (triangle inequality)

where equality holds if and only if x, y are of the same sign (equivalently ab > 0), or one of them is 0.

MATH 1013 23 / 24

The Proof of Triangle Inequality

Why
$$|x + y| \le |x| + |y|$$
 holds?

Proof.

It follows easily from

$$|x + y|^{2} = (x + y)^{2} = x^{2} + 2xy + y^{2}$$

$$= |x|^{2} + 2xy + |y|^{2}$$

$$\leq |x|^{2} + 2|x||y| + |x|^{2} = (|x| + |y|)^{2}$$

$$|x + y| \leq |x| + |y|$$

where equality holds if and only if xy = |xy|, equivalently, $xy \ge 0$.

Luo Luo (HKUST) MATH 1013 24 / 24