南京大学 电子科学与工程学院 全日制统招本科生 《数字信号处理》期末考试试卷 闭卷

任课教师姓名: 李晨, 庄建军____

考试日期	期: <u>2013</u>	-6-27		考记	(时间:_	2_小时_0_分钟				
考生年级	Ħ	6生专业	5	考生学号		考生姓名				
<u> </u>				· · · · · · · · · · · · · · · · · · ·		- • — · — · · · <u>—</u>				
题号		=	三	四	五	六	总分			
得分										
						本题得分				
一. 单项边	先择题(2 0)分,每题	2 分)			7677				
				样值不失	直恢复原信	言号,则采	样角频率			
Ως与信号					, () () C // () ()	- - 7 7 7 4 7 1 4	117192211			
				$\Omega \Omega_{\rm s} < \Omega_{\rm c}$		D. Ω s<2	Ω_{c}			
				俞入序列)。						
				C.y(n)=x(n)						
3.己知某序	序列 Z 变换	的收敛域	内 5> z >3	,则该序列	1为()				
A.有限长序	序列	B.右边户	序列 C	.左边序列	D.X	双边序列				
4.实偶序列	可傅里叶变	换是()							
A.实偶序列	î]	B.实奇	序列	C.虚	偶序列	D.	虚奇序列			
5.已知 x(n))= δ (n), ၨ	ξN点的 D	FT [x(n)]	=X(k),则	X(N-1)= ()				
A.N-1		B.1		C.0	DN+1					
			-	欲通过计算		圆周卷积来	得到两者			
的线性卷稿	识,则圆周	卷积的点	数至少应耳	X ()						
				C.M+	-N+1	D.2	2(M+N)			
7.下面说法	长中正确的	是()							
A.连续非周				Ź						
B.连续周期	• • • • • • • • • • • • • • • • • • • •		_ , , , , , , ,							
C.离散非周				Į.						
D.离散周期										
	中滤波器的			滤波器的基						
A.直接型			联型		こ.频率抽样	型 D.并	·联型			
9.下列关于				()						
A.FIR 滤波										
B.FIR 滤波:		.,, ., -								
C.FIR 滤波器的脉冲响应长度是确定的										

D.对于相同的幅频特性要求,用 FIR 滤波器实现要比用 IIR 滤波器实现阶数低

)

10.下列关于冲激响应不变法的说法中错误的是(

A.数字频率与模拟频率之间呈线性关系 B.能将线性相位的模拟滤波器映射为一个线性相位的数字滤》 C.具有频率混叠效应 D.可以用于设计低通、高通和带阻滤波器	皮器	
	本题得分	
二. 填空题(20分,每空1分)	7-121177	
1.序列 $x(n) = e^{j(3\pi n/7 - \pi/8)}$ 的周期为		
2.用频率 $f_s = 80H_Z$ 对 $\cos(100\pi t)$ 理想采样,得到序列 $x(n) = $,若	音将 $x(n)$
通过截止频率 $f_c = 40Hz$ 的理想低通滤波器,恢复出的模拟信	$\exists y(t) = \underline{\hspace{1cm}}$	
3. $x(n) = n-2 u(n+1)$ 的 Z 变换为	收敛域为	·
4. 对序列 $x(n) = \delta(n - n_0)$, $0 < n_0 < N$, 其 N 点的 DFT 为	·	
5. 用 DFT 近似分析连续信号频谱时,	「只能计算-	一些离散 _, X (k)
与 $X(e^{jw})$ 的关系	<u>.</u>	
7.IIR 滤波器的有限字长效应与它的结构有关,结 结构的输出误差最大	构的输出误	差最小,
8.已知 FIR 滤波器 $H(z) = 1 + 2z^{-1} + 5z^{-2} + az^{-3} + z^{-4}$ 具有线性相	目位,则 a=	=,
冲激响应 h(2)=,相位 $ heta(\omega)$ =		
9.在利用窗函数法设计 FIR 滤波器时,一般希望窗函数; ①;②		
10. 当线性相位 FIR 数字数字滤波器的系统函数 $H(z) = \frac{1-z^{-1}}{2}$,试判断》	虑波器的
类型(低通,高通,带通,带阻)为		
11.当 FIR 滤波器满足偶对称条件时, 其单位冲激响应,	h(n) 满足的	的条件为
	^(ω) ,则其为	付应的相
位函数为		

三. 简单计算(26分)

1. (6 分) 序列 $x(n) = \cos\left(\frac{\pi n}{2}\right), 0 \le n \le 3; h(n) = 2^n, 0 \le n \le 3$

(1)求x(n),h(n) 的 4 点 DFT X(k),H(k) ; (2)求x(n),h(n)的 4 点循环卷积y(n)

(3)利用x(n),h(n)的 DFTX(k),H(k)相乘,再求 IDFT 的方法计算(2)中的y(n)

- 2. (6分) 若x(n)=u(n)-u(n-5)
- (1) 求此序列的 Z 变换,标出收敛区,画出极零点图;
- (2) 求此序列的傅里叶变换 $X\left(e^{j\omega}\right)$,并画出至少一个周期内的幅度谱;
- (3) 求X(k) = DFT[x(n)],并在 $X(e^{j\omega})$ 的幅度谱上标出[X(k)]所在的点

3. (6分)设因果的离散 LTI 系统的单位阶跃响应为g(n),已知当输入为因果序列

$$x(n)$$
,其零状态响应为 $y_{zs}(n) = \sum_{i=0}^{n} g(i)$, 求输入 $x(n)$

- 4. (8分) 已知 FIR 滤波器: $H(z)=1+16\frac{1}{16}z^{-4}+z^{-8}$
 - (1) 画出直接型,线性相位和级联形式结构
 - (2) 若要得到包含实系数线性相位分量的级联形式, 画出其实现结构

四. (12 分) 已知 8 点有限长实序列:

本题得分

x(n), (x)=n 0 (< n 0 &> n, 其 8 点 DFT 记为 X(k)

(1)利用
$$x(n)$$
计算 $(\frac{1}{8}\sum_{k=0}^{7}X(k)e^{j(2\pi/8)kn})|_{n=9}$;

(2)设一个 8 点有限长实序列: v(n), v(n) = 0 (n < 0 & n > 7),其 8 点 DFT 设为V(k).

若 k=0,1,...,7 时,在
$$z=2e^{j(2\pi k+\pi)/8}$$
 处 $V(k)=X(z)$,用 $x(n)$ 来表示 $v(n)$;

(3)设 4 点序列 w(n), w(n) = 0 (n < 0 & n > 3),其 4 点 DFT 为W(k)

若
$$W(k) = X(k) + X(k+4)$$
,用 $x(n)$ 来表示出 $w(n)$;

(4) 设 8 点序列 y(n), y(n) = 0 (n < 0 & n > 7),其 8 点 DFT 为Y(k)

若
$$Y(k) =$$
 $\begin{cases} 2X(k), k = 0, 2, 4, 6 \\ 0, k = 1, 3, 5, 7 \end{cases}$,用 $x(n)$ 来表示出 $y(n)$

本题得分

五. (10 分) 已知x(n)为实序列,并且已知其 8 点 DFT 的前 5 个值为:

 $\{0.25, 0.125\text{-j}0.3, 0, 0.125\text{-j}0.06, 0.5\}$

- (1) 求此序列 8点 DFT 的后三点的值;
- (2) 若 $x_1(n) = x((n+2))_8$, 求 $x_1(n)$ 的 8点*DFT*
- (3) 若已知X(k), 试写出利用 FFT 计算 IFFT 的步骤;
- (4) 按照(3)的方法,计算出 8 点序列 x(n),要求画出基-2FFT 的蝶形运算流图来完成具体计算过程

本题得分

(1) 用冲激响应不变法设计 Butterworth 数字低通滤波器

$$|H_a(j\Omega)|^2 = \frac{1}{1 + (\frac{\Omega}{\Omega_c})^{2N}} N \ge \frac{\lg(\frac{10^{0.1\delta_1} - 1}{10^{0.1\delta_2} - 1})}{2\lg(\frac{\Omega_p}{\Omega_{st}})} = \frac{\lg(\frac{10^{0.1\delta_1} - 1}{10^{0.1\delta_1} - 1})}{2\lg(\frac{\Omega_{st}}{\Omega_p})} \quad \Omega_c = \frac{\Omega_{st}}{2\sqrt[N]{(10^{0.1\delta_2} - 1)}}$$

表 6-4 巴特沃思滤波器分母多项式 $s^N + a_{N-1} s^{N-1} + \dots + a_2 s^2 + a_1 s + 1$ $(a_0 = a_N = 1)$ 的系数

N	a_1	a_2	<i>a</i> ₃	a4 .	a ₅	<i>a</i> ₆	a7	a ₈	<i>a</i> ₉
1	1								
2	1.4142136							,	
3	2.0000000	2,0000000							
4	2.6131259	3. 4142136	2.6131259						
5	3. 2360680	5. 2360680	5. 2360680	3. 2360680					
6	3.8637033	7.4641016	9.1416202	7.4641016	3.8637033				
7	4. 4939592	10.0978347	14.5917939	14.5917939	10.0978347	4. 4939592			
8	5. 1258309	13. 1370712	21.8461510	25. 6883559	21.8467510	13. 1370712	5.1258309		
9	5.7587705	16.5817187	31.1634375	41.9863857	41.9863857	31, 1634375	16. 5817187	5.7587705	
10	6.3924532	20. 4317291	42,8020611	64.8823963	74. 2334292	64.8823963	42, 8020611	20. 4317291	6.3924532

(2) 用双线性变换法设计 Chebyshev 数字低通滤波器

$$|H(j\Omega)|^{2} = \frac{1}{1 + \varepsilon^{2} C_{N}^{2}(\frac{\Omega}{\Omega_{c}})} N \geq \frac{ch^{-1}[\frac{1}{\varepsilon}\sqrt{10^{0.1\delta_{2}} - 1}]}{ch^{-1}(\frac{\Omega_{st}}{\Omega_{c}})} = \frac{ch^{-1}\left[\sqrt{\frac{10^{0.1\delta_{2}} - 1}{10^{0.1\delta_{1}} - 1}}\right]}{ch^{-1}(\frac{\Omega_{st}}{\Omega_{c}})}$$

	b. 1-dB波纹(ε=0.5088471,ε²=0.2589254)										
1	1.9652267										
2	1.1025103	1.0977343									
3	0.4913067	1.2384092	0.9883412								
4	0.2756276	0.7426194	1.4539248	0.9528114							
5	0.1228267	0.5805342	0.9743961	1.6888160	0.9368201						
6	0.0689069	0.3070808	0.9393461	1.2021409	1,9308256	0.9282510					
7	0.0307066	0.2136712	0.5486192	1.3575440	1.4287930	2,1760778	0.9231228				
8	0.0172267	0.1073447	0.4478257	0.8468243	1,8369024	1,6551557	2,4230264	0.9198113			
9	0.0076767	0.0706048	0.2441864	0.7863109	1,2016071	2.3781188	1.8814798	2.6709468	0.9175476		
10	0.0043067	0.0344971	0.1824512	0.4553892	1.2444914	1.6129856	2.9815094	2.1078524	2.9194657	0.9159320	