Numerikus módszerek C

4. előadás: Az LU-felbontás, Vektornormák

Krebsz Anna

ELTE IK

Tartalomjegyzék

- 1 Az LU-felbontás "közvetlen" kiszámítása
- 2 Műveletigény
- 3 Megmaradási tételek
- 4 Rövidített GE (progonka módszer)
- **5** Vektornormák

Tartalomjegyzék

- 1 Az LU-felbontás "közvetlen" kiszámítása
- 2 Műveletigény
- 3 Megmaradási tételek
- 4 Rövidített GE (progonka módszer)
- 5 Vektornormák

LU-felbontás emlékeztető

Definíció: LU-felbontás

Az A mátrix LU-felbontásának nevezzük az $L \cdot U$ szorzatot, ha

$$A = LU$$
, $L \in \mathcal{L}_1$, $U \in \mathcal{U}$.

Miért jó az *LU*-felbontás?

Tegyük fel, hogy

- az Ax = b LER megoldható, és
- rendelkezésünkre áll az A = LU felbontás.

Ekkor
$$Ax = L \cdot \underbrace{U \cdot x}_{V} = b$$
 helyett

- $\mathbf{0}$ oldjuk meg az Ly = b alsó háromszögű,
- 2 majd az Ux = y felső háromszögű LER-t.

Miért jó az *LU*-felbontás?

Tegyük fel, hogy

- az Ax = b LER megoldható, és
- rendelkezésünkre áll az A = LU felbontás.

Ekkor
$$Ax = L \cdot \underbrace{U \cdot x}_{y} = b$$
 helyett $(\frac{2}{3}n^{3} + \mathcal{O}(n^{2}))$

- **1** oldjuk meg az Ly = b alsó háromszögű, $(n^2 + \mathcal{O}(n))$
- 2 majd az Ux = y felső háromszögű LER-t. $(n^2 + \mathcal{O}(n))$

Miért jó az *LU*-felbontás?

Tegyük fel, hogy

- az Ax = b LER megoldható, és
- rendelkezésünkre áll az A = LU felbontás.

Ekkor
$$Ax = L \cdot \underbrace{U \cdot x}_{y} = b$$
 helyett $(\frac{2}{3}n^{3} + \mathcal{O}(n^{2}))$

- lacktriangle oldjuk meg az Ly = b alsó háromszögű, $(n^2 + \mathcal{O}(n))$
- 2 majd az Ux = y felső háromszögű LER-t. $(n^2 + \mathcal{O}(n))$

Összehasonlításul: egy mátrix-vektor szorzás műveletigénye: $n \cdot (2n-1) = 2n^2 + \mathcal{O}(n)$.

Tegyük fel, hogy

- az Ax = b LER megoldható, és
- rendelkezésünkre áll az A = LU felbontás.

Ekkor
$$Ax = L \cdot \underbrace{U \cdot x}_{y} = b$$
 helyett $(\frac{2}{3}n^{3} + \mathcal{O}(n^{2}))$

- lacktriangledown oldjuk meg az Ly=b alsó háromszögű, $(n^2+\mathcal{O}(n))$
- **2** majd az Ux = y felső háromszögű LER-t. $(n^2 + \mathcal{O}(n))$

Összehasonlításul: egy mátrix-vektor szorzás műveletigénye:

$$n\cdot(2n-1)=2n^2+\mathcal{O}(n).$$

Persze valamikor elő kell állítani az LU-felbontást. $(\frac{2}{3}n^3 + \mathcal{O}(n^2))$ Előnyös, ha sokszor ugyanaz A.

- Nem ismerjük *L*-t és *U*-t: ismeretlenek a mátrixokban.
- Viszont szorzatukat ismerjük: LU = A.
- A egyes elemeit a mátrixszorzás alapján felírva egyenleteket kapunk L és U elemeire.
- Jó sorrendben felírva az egyenleteket, mindig megkapjuk egy-egy új ismeretlen értékét.
- A GE-nál láttuk, hogy U 1. sora azonos A 1. sorával (a GE az 1.sort nem változtatja).
- L 1. oszlopát úgy kapjuk, hogy A 1. oszlopát leosztjuk a₁₁-gyel.

Jó sorrendek

$$\begin{pmatrix}
1. & 1. & 1. & 1. \\
2. & 3. & 3. & 3. \\
4. & 4. & 5. & 5. \\
6. & 6. & 6. & 7.
\end{pmatrix}$$

sorfolytonosan

$$\begin{pmatrix} 1. & 1. & 1. & 1. \\ 2. & 3. & 3. & 3. \\ 4. & 4. & 5. & 5. \\ 6. & 6. & 6. & 7. \end{pmatrix} \qquad \begin{pmatrix} 1. & 3. & 5. & 7. \\ 2. & 3. & 5. & 7. \\ 2. & 4. & 5. & 7. \\ 2. & 4. & 6. & 7. \end{pmatrix} \qquad \begin{pmatrix} 1. & 1. & 1. & 1. \\ 2. & 3. & 3. & 3. \\ 2. & 4. & 5. & 5. \\ 2. & 4. & 6. & 7. \end{pmatrix}$$

oszlopfolytonosan

parkettaszerűen

Példa: LU-felbontás közvetlenül

- 6 Készítsük el a példamátrixunk LU-felbontását közvetlenül a mátrixszorzás alapján.
- **b** Nézzünk egy újabb példát is. (Vigyázat, $det(B_2) = 0$.)

$$A = \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$\textit{I}_{21} \cdot 2 = -4$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad l_{21} \cdot 2 = -4$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot 0 + 1 \cdot u_{22} &= 5 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot 0 + 1 \cdot u_{22} &= 5 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} \qquad \begin{aligned} l_{21} &= -2 \\ u_{22} &= 5 \\ u_{23} &= -2 - (-2) \cdot 3 = 4 \end{aligned}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot 0 + 1 \cdot u_{22} &= 5 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{aligned} l_{21} &= -2 \\ u_{22} &= 5 \\ u_{23} &= -2 - (-2) \cdot 3 = 4 \end{aligned}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot 0 + 1 \cdot u_{22} &= 5 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} \qquad \begin{aligned} l_{21} &= -2 \\ u_{22} &= 5 \\ u_{23} &= -2 - (-2) \cdot 3 = 4 \end{aligned}$$

$$I_{31} \cdot 2 = 6$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot 0 + 1 \cdot u_{22} &= 5 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{aligned} l_{21} &= -2 \\ u_{22} &= 5 \\ u_{23} &= -2 - (-2) \cdot 3 = 4 \end{aligned}$$

$$I_{31} \cdot 2 = 6$$

$$I_{31} \cdot 0 + I_{32} \cdot u_{22} = -5$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot 0 + 1 \cdot u_{22} &= 5 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} \qquad \begin{aligned} l_{21} &= -2 \\ u_{22} &= 5 \\ u_{23} &= -2 - (-2) \cdot 3 = 4 \end{aligned}$$

$$l_{31} \cdot 2 = 6$$

$$l_{31} \cdot 0 + l_{32} \cdot u_{22} = -5$$

$$l_{31} \cdot 3 + l_{32} \cdot u_{23} + 1 \cdot u_{33} = 4$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot 0 + 1 \cdot u_{22} &= 5 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{aligned} l_{21} &= -2 \\ u_{22} &= 5 \\ u_{23} &= -2 - (-2) \cdot 3 = 4 \end{aligned}$$

$$I_{31} \cdot 2 = 6 \qquad I_{31} = 3$$

$$I_{31} \cdot 0 + I_{32} \cdot u_{22} = -5 \qquad I_{32} = \frac{-5}{5} = -1$$

$$I_{31} \cdot 3 + I_{32} \cdot u_{23} + 1 \cdot u_{33} = 4 \qquad u_{33} = 4 - 3 \cdot 3 - (-1) \cdot 4 = -1$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$I_{21}\cdot 2=-4$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad l_{21} \cdot 2 = -4$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot (-2) + 1 \cdot u_{22} &= 4 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot (-2) + 1 \cdot u_{22} &= 4 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{matrix} l_{21} = -2 \\ u_{22} = 4 - (-2) \cdot (-2) = 0 \\ u_{23} = -2 - (-2) \cdot 3 = 4 \end{matrix}$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot (-2) + 1 \cdot u_{22} &= 4 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{matrix} l_{21} = -2 \\ u_{22} = 4 - (-2) \cdot (-2) = 0 \\ u_{23} = -2 - (-2) \cdot 3 = 4 \end{matrix}$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot (-2) + 1 \cdot u_{22} &= 4 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{matrix} l_{21} = -2 \\ u_{22} = 4 - (-2) \cdot (-2) = 0 \\ u_{23} = -2 - (-2) \cdot 3 = 4 \end{matrix}$$

$$I_{31}\cdot 2=6$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot (-2) + 1 \cdot u_{22} &= 4 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{matrix} l_{21} = -2 \\ u_{22} = 4 - (-2) \cdot (-2) = 0 \\ u_{23} = -2 - (-2) \cdot 3 = 4 \end{matrix}$$

$$l_{31} \cdot 2 = 6$$
$$l_{31} \cdot (-2) + l_{32} \cdot u_{22} = -5$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot (-2) + 1 \cdot u_{22} &= 4 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{matrix} l_{21} = -2 \\ u_{22} = 4 - (-2) \cdot (-2) = 0 \\ u_{23} = -2 - (-2) \cdot 3 = 4 \end{matrix}$$

$$l_{31}\cdot 2=6$$
 $l_{31}=3$ $l_{31}\cdot (-2)+l_{32}\cdot u_{22}=-5$ \leadsto ellentmondásos egyenlet

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot (-2) + 1 \cdot u_{22} &= 4 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{aligned} l_{21} &= -2 \\ u_{22} &= 4 - (-2) \cdot (-2) = 0 \\ u_{23} &= -2 - (-2) \cdot 3 = 4 \end{aligned}$$

A 3. sor számítása:

$$l_{31}\cdot 2=6 \qquad \qquad l_{31}=3$$

$$l_{31}\cdot (-2)+l_{32}\cdot u_{22}=-5 \qquad \leadsto \text{ellentmond\'asos egyenlet}$$

Mivel $D_2 = \det(B_2) = 0$, így $u_{22} = 0$ lesz. Az LU-felbontás nem készíthető el. GE-t alkalmazva $a_{22}^{(1)} = 0$ lenne, emiatt sort kéne cserélni.

Tétel: az *LU*-felbontás "közvetlen" kiszámítása

Az L és U mátrixok elemei a következő képletekkel számolhatók:

$$i \leq j$$
 (felső) $u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} \cdot u_{kj},$ $i > j$ (alsó) $l_{ij} = \frac{1}{u_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} \cdot u_{kj} \right).$

Ha jó sorrendben számolunk, mindig ismert az egész jobb oldal.

Biz.: Írjuk fel az $A \in \mathbb{R}^{n \times n}$ mátrix, mint mátrixszorzat *i*-edik sorának *j*-edik elemét feltéve, hogy $A = L \cdot U$. Használjuk ki, hogy háromszögmátrixokról van szó, majd válasszunk le egy tagot.

Biz.: Írjuk fel az $A \in \mathbb{R}^{n \times n}$ mátrix, mint mátrixszorzat *i*-edik sorának *j*-edik elemét feltéve, hogy $A = L \cdot U$. Használjuk ki, hogy háromszögmátrixokról van szó, majd válasszunk le egy tagot.

Ha $i \leq j$, azaz egy főátló feletti (vagy főátlóbeli) elemről van szó, akkor $k>i \Rightarrow l_{ik}=0$, valamint $l_{ii}=1$, és így

$$a_{ij} = \sum_{k=1}^{n} l_{ik} \cdot u_{kj} = \sum_{k=1}^{i} l_{ik} \cdot u_{kj} = u_{ij} + \sum_{k=1}^{i-1} l_{ik} \cdot u_{kj}.$$

Biz.: Írjuk fel az $A \in \mathbb{R}^{n \times n}$ mátrix, mint mátrixszorzat *i*-edik sorának *j*-edik elemét feltéve, hogy $A = L \cdot U$. Használjuk ki, hogy háromszögmátrixokról van szó, majd válasszunk le egy tagot.

Ha $i \leq j$, azaz egy főátló feletti (vagy főátlóbeli) elemről van szó, akkor $k>i \Rightarrow l_{ik}=0$, valamint $l_{ii}=1$, és így

$$a_{ij} = \sum_{k=1}^{n} I_{ik} \cdot u_{kj} = \sum_{k=1}^{i} I_{ik} \cdot u_{kj} = u_{ij} + \sum_{k=1}^{i-1} I_{ik} \cdot u_{kj}.$$

Ebből uji kifejezhető

$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} I_{ik} \cdot u_{kj}.$$

Biz. folyt. Ha i>j, azaz egy főátló alatti elemről van szó, akkor $k>j\Rightarrow u_{kj}=0$, és így

$$a_{ij} = \sum_{k=1}^{n} I_{ik} \cdot u_{kj} = \sum_{k=1}^{j} I_{ik} \cdot u_{kj} = I_{ij} \cdot u_{jj} + \sum_{k=1}^{j-1} I_{ik} \cdot u_{kj}.$$

Az LU-felbontás "közvetlen" kiszámítása

Biz. folyt. Ha i>j, azaz egy főátló alatti elemről van szó, akkor $k>j\Rightarrow u_{kj}=0$, és így

$$a_{ij} = \sum_{k=1}^{n} I_{ik} \cdot u_{kj} = \sum_{k=1}^{j} I_{ik} \cdot u_{kj} = I_{ij} \cdot u_{jj} + \sum_{k=1}^{j-1} I_{ik} \cdot u_{kj}.$$

Ha $u_{jj} \neq 0$ (találkoztunk már ezzel a feltétellel), akkor l_{ij} kifejezhető

$$I_{ij} = \frac{1}{u_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} I_{ik} \cdot u_{kj} \right).$$

Az LU-felbontás "közvetlen" kiszámítása

Biz. folyt. Ha i>j, azaz egy főátló alatti elemről van szó, akkor $k>j\Rightarrow u_{kj}=0$, és így

$$a_{ij} = \sum_{k=1}^{n} I_{ik} \cdot u_{kj} = \sum_{k=1}^{j} I_{ik} \cdot u_{kj} = I_{ij} \cdot u_{jj} + \sum_{k=1}^{j-1} I_{ik} \cdot u_{kj}.$$

Ha $u_{jj} \neq 0$ (találkoztunk már ezzel a feltétellel), akkor l_{ij} kifejezhető

$$I_{ij} = \frac{1}{u_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} I_{ik} \cdot u_{kj} \right).$$

Figyeljük meg, hogy ha valamely "jó sorrendben" (lásd az előadás diasorát) megyünk végig az (i,j) indexekkel A elemein, akkor az l_{ij} illetve u_{ij} értékét megadó egyenlőségek jobb oldalán minden mennyiség ismert.

Tartalomjegyzék

- 1 Az *LU*-felbontás "közvetlen" kiszámítása
- 2 Műveletigény
- 3 Megmaradási tételek
- 4 Rövidített GE (progonka módszer)
- **5** Vektornormák

Tétel: Az *LU*-felbontás műveletigénye

$$\frac{2}{3}n^3 + \mathcal{O}(n^2)$$

Tétel: Az *LU*-felbontás műveletigénye

$$\frac{2}{3}n^3 + \mathcal{O}(n^2)$$

Biz.: A GE-ból trivi, mert vele az *LU*-felbontás is előállítható.

Tétel: Az *LU*-felbontás műveletigénye

$$\frac{2}{3}n^3 + \mathcal{O}(n^2)$$

Biz.: A GE-ból trivi, mert vele az LU-felbontás is előállítható.

A képletekből: Rögzített j-re:

$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} I_{ik} \cdot u_{kj},$$

 u_{ij} -hez (i-1) szorzás és (i-1) összeadás kell. Összesen 2(i-1) művelet.

Tétel: Az *LU*-felbontás műveletigénye

$$\frac{2}{3}n^3 + \mathcal{O}(n^2)$$

Biz.: A GE-ból trivi, mert vele az LU-felbontás is előállítható.

A képletekből: Rögzített j-re:

$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} I_{ik} \cdot u_{kj},$$

 u_{ij} -hez (i-1) szorzás és (i-1) összeadás kell. Összesen 2(i-1) művelet. Rögzített i-re:

$$I_{ij} = \frac{1}{u_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} I_{ik} \cdot u_{kj} \right),\,$$

 I_{ij} -hez 1 osztás, (j-1) szorzás és (j-1) összeadás kell. Összesen 2j-1 művelet.

$$\sum_{j=1}^{n} \sum_{i=1}^{j} 2(i-1) + \sum_{i=2}^{n} \sum_{j=1}^{i-1} (2j-1) =$$

$$\sum_{j=1}^{n} 2 \cdot \frac{(j-1)j}{2} + \sum_{i=2}^{n} \left(2 \cdot \frac{(i-1)i}{2} - (i-1) \right) =$$

$$\sum_{j=1}^{n} j^{2} - \sum_{j=1}^{n} j + \sum_{i=2}^{n} (i-1)^{2} = \sum_{j=1}^{n} j^{2} - \sum_{j=1}^{n} j + \sum_{i=1}^{n-1} s^{2}$$

$$= \frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2} + \frac{(n-1)n(2n-1)}{6} =$$

$$= \frac{2}{3}n^{3} + \mathcal{O}(n^{2}). \quad \Box$$

Tétel: Az Ux = y megoldásának műveletigénye

$$n^2 + \mathcal{O}(n)$$

Tétel: Az Ux = y megoldásának műveletigénye

$$n^2 + \mathcal{O}(n)$$

Biz.: lásd GE visszahelyettesítés.

Tétel: Az Ux = y megoldásának műveletigénye

$$n^2 + \mathcal{O}(n)$$

Biz.: lásd GE visszahelyettesítés.

Tétel: Az Ly = b megoldásának műveletigénye

$$n^2 + \mathcal{O}(n)$$

Tétel: Az Ux = y megoldásának műveletigénye

$$n^2 + \mathcal{O}(n)$$

Biz.: lásd GE visszahelyettesítés.

Tétel: Az Ly = b megoldásának műveletigénye

$$n^2 + \mathcal{O}(n)$$

Biz.: Rögzített i. sorra (i-1) szorzás és (i-1) összeadás. Összesen: 2(i-1) művelet.

$$\sum_{i=2}^{n} 2(i-1) = \sum_{s=1}^{n-1} 2s = 2 \cdot \frac{n(n-1)}{2} = n^2 + \mathcal{O}(n). \quad \Box$$

Tartalomjegyzék

- 1 Az *LU*-felbontás "közvetlen" kiszámítása
- 2 Műveletigény
- 3 Megmaradási tételek
- 4 Rövidített GE (progonka módszer)
- 5 Vektornormák

Definíció: szimmetrikus mátrixok

Az A mátrix szimmetrikus, ha $A = A^{\top}$.

Definíció: szimmetrikus mátrixok

Az A mátrix szimmetrikus, ha $A = A^{\top}$.

Definíció: pozitív definit mátrixok

Az $A \in \mathbb{R}^{n \times n}$ szimmetrikus mátrix *pozitív definit*, ha

- 2 minden főminorára $D_k = \det(A_k) > 0$; vagy
- 3 minden sajátértéke pozitív.

Definíció: szimmetrikus mátrixok

Az A mátrix szimmetrikus, ha $A = A^{\top}$.

Definíció: pozitív definit mátrixok

Az $A \in \mathbb{R}^{n \times n}$ szimmetrikus mátrix *pozitív definit*, ha

- 2 minden főminorára $D_k = \det(A_k) > 0$; vagy
- 3 minden sajátértéke pozitív.

Állítás: pozitív definit mátrixok ekvivalens jellemzése

Az előző 1. 2. 3. feltételek ekvivalensek.

Definíció: szimmetrikus mátrixok

Az A mátrix szimmetrikus, ha $A = A^{\top}$.

Definíció: pozitív definit mátrixok

Az $A \in \mathbb{R}^{n \times n}$ szimmetrikus mátrix *pozitív definit*, ha

- 2 minden főminorára $D_k = \det(A_k) > 0$; vagy
- 3 minden sajátértéke pozitív.

Állítás: pozitív definit mátrixok ekvivalens jellemzése

Az előző 1. 2. 3. feltételek ekvivalensek.

Biz.: nélkül. □

Definíció:

Az A mátrix szigorúan diagonálisan domináns a soraira, ha $|a_{ii}|>\sum_{j=1,j\neq i}|a_{ij}|\quad (i=1,\ldots,n).$

Definíció:

Az A mátrix szigorúan diagonálisan domináns a soraira, ha $|a_{ii}| > \sum_{j=1, j \neq i} |a_{ij}|$ (i = 1, ..., n).

Definíció:

Az A mátrix szigorúan diagonálisan domináns az oszlopaira, ha $|a_{ii}| > \sum_{j=1, j \neq i} |a_{ji}|$ (i = 1, ..., n).

Definíció:

Az A mátrix szigorúan diagonálisan domináns a soraira, ha $|a_{ii}| > \sum_{j=1, j \neq i} |a_{ij}|$ (i = 1, ..., n).

Definíció:

Az A mátrix szigorúan diagonálisan domináns az oszlopaira, ha $|a_{ii}| > \sum_{j=1, j \neq i} |a_{ji}|$ (i = 1, ..., n).

Példa:

A következő mátrix szigorúan diagonálisan domináns a soraira és oszlopaira is.

$$\begin{bmatrix}
 4 & 1 & -2 \\
 -2 & 5 & 1 \\
 0 & -3 & 4
 \end{bmatrix}$$

Definíció:

Az A mátrix **fél sávszélessége** $s \in \mathbb{N}$, ha

$$\forall i,j: |i-j| > s: a_{ij} = 0$$
 és

$$\exists k,l: |k-l|=s: a_{kl}\neq 0.$$

Definíció:

Az A mátrix **fél sávszélessége** $s \in \mathbb{N}$, ha

$$\forall i, j : |i - j| > s : a_{ij} = 0 \text{ és}$$

 $\exists k, l : |k - l| = s : a_{kl} \neq 0.$

Példa:

A következő mátrix szimmetrikus, pozitív definit és fél sávszélessége 1.

$$\begin{bmatrix} 4 & 1 & 0 & 0 \\ 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ 0 & 0 & 1 & 4 \end{bmatrix}$$

Definíció:

Az A mátrix **profilja** sorokra a (k_1, \ldots, k_n) , oszlopokra az (l_1, \ldots, l_n) szám n-sek, melyekre

$$\forall j = 1, ..., k_i : a_{ij} = 0 \text{ és } a_{i,k_i+1} \neq 0,$$

 $\forall i = 1, ..., l_j : a_{ij} = 0 \text{ és } a_{l_i+1,j} \neq 0.$

Soronként és oszloponként az első nem nulla elemig a nullák száma.

Definíció:

Az A mátrix **profilja** sorokra a (k_1, \ldots, k_n) , oszlopokra az (l_1, \ldots, l_n) szám n-sek, melyekre

$$\forall j = 1, ..., k_i : a_{ij} = 0 \text{ és } a_{i,k_i+1} \neq 0,$$

 $\forall i = 1, ..., l_i : a_{ii} = 0 \text{ és } a_{l_i+1,i} \neq 0.$

Soronként és oszloponként az első nem nulla elemig a nullák száma.

Példa:

A mátrix profilja sorokra (0,0,2,1), oszlopokra (0,1,1,2).

$$\begin{bmatrix} 4 & 0 & 0 & 0 \\ 2 & 4 & 1 & 0 \\ 0 & 0 & 4 & 3 \\ 0 & 1 & 2 & 4 \end{bmatrix}$$

Készítsük el az Ax = b LER k. sor utáni particionálását (k < n, $k \in \mathbb{N}$) és tegyük fel, hogy $A_{11} \in \mathbb{R}^{k \times k}$ invertálható.

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Készítsük el az Ax = b LER k. sor utáni particionálását (k < n, $k \in \mathbb{N}$) és tegyük fel, hogy $A_{11} \in \mathbb{R}^{k \times k}$ invertálható.

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Particionált alakban a LER:

$$A_{11}x_1 + A_{12}x_2 = b_1$$

$$A_{21}x_1 + A_{22}x_2 = b_2$$

Készítsük el az Ax = b LER k. sor utáni particionálását (k < n, $k \in \mathbb{N}$) és tegyük fel, hogy $A_{11} \in \mathbb{R}^{k \times k}$ invertálható.

Particionált alakban a LER:

$$A_{11}x_1 + A_{12}x_2 = b_1$$

$$A_{21}x_1 + A_{22}x_2 = b_2$$

Végezzünk el egy blokkos GE-s lépést:

2. egyenlet
$$-(A_{21} \cdot A_{11}^{-1})$$
 1. egyenlet

$$(A_{21} - A_{21}A_{11}^{-1}A_{11}) x_1 + (A_{22} - A_{21}A_{11}^{-1}A_{12}) x_2 = b_2 - A_{21}A_{11}^{-1}b_1$$

A GE blokkos lépése után a 2. sor alakja:

$$(A_{22} - A_{21}A_{11}^{-1}A_{12})x_2 = b_2 - A_{21}A_{11}^{-1}b_1.$$

Particionálva a LER:

A GE blokkos lépése után a 2. sor alakja:

$$(A_{22} - A_{21}A_{11}^{-1}A_{12})x_2 = b_2 - A_{21}A_{11}^{-1}b_1.$$

Particionálva a LER:

$$\left[\begin{array}{c|c} A_{11} & A_{12} \\ \hline
0 & A_{22} - A_{21}A_{11}^{-1}A_{12} \end{array} \right] \cdot \left[\begin{array}{c} x_1 \\ \hline
x_2 \end{array} \right] = \left[\begin{array}{c} b_1 \\ \hline
b_2 - A_{21}A_{11}^{-1}b_1 \end{array} \right]$$

A GE blokkos lépése után a 2. sor alakja:

$$(A_{22} - A_{21}A_{11}^{-1}A_{12})x_2 = b_2 - A_{21}A_{11}^{-1}b_1.$$

Particionálva a LER:

$$\left[\begin{array}{c|c} A_{11} & A_{12} \\ \hline
0 & A_{22} - A_{21}A_{11}^{-1}A_{12} \end{array} \right] \cdot \left[\begin{array}{c} x_1 \\ \hline
x_2 \end{array} \right] = \left[\begin{array}{c} b_1 \\ \hline
b_2 - A_{21}A_{11}^{-1}b_1 \end{array} \right]$$

• Most már csak az $(n-k) \times (n-k)$ -s jobb alsó mátrix részen kell folytatnunk a GE-t.

A GE blokkos lépése után a 2. sor alakja:

$$(A_{22} - A_{21}A_{11}^{-1}A_{12})x_2 = b_2 - A_{21}A_{11}^{-1}b_1.$$

Particionálva a LER:

$$\begin{bmatrix}
A_{11} & A_{12} \\
0 & A_{22} - A_{21}A_{11}^{-1}A_{12}
\end{bmatrix} \cdot \begin{bmatrix} x_1 \\
x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\
b_2 - A_{21}A_{11}^{-1}b_1 \end{bmatrix}$$

- Most már csak az $(n-k) \times (n-k)$ -s jobb alsó mátrix részen kell folytatnunk a GE-t.
- k=1 esetén $A_{11}=(a_{11})$. Feltéve, hogy $a_{11}\neq 0$, akkor a fenti lépés a (blokk nélküli) 1. GE-s lépést írja le.

Definíció: Schur-komplementer

Tegyük fel, hogy $A_{11} \in \mathbb{R}^{k \times k}$ invertálható mátrix. Az A mátrix A_{11} -re vonatkozó Schur-komplementere az

$$[A|A_{11}] := A_{22} - A_{21}A_{11}^{-1}A_{12}$$

$$(n-k) \times (n-k)$$
-s mátrix.

Definíció: Schur-komplementer

Tegyük fel, hogy $A_{11} \in \mathbb{R}^{k \times k}$ invertálható mátrix. Az A mátrix A_{11} -re vonatkozó Schur-komplementere az

$$[A|A_{11}] := A_{22} - A_{21}A_{11}^{-1}A_{12}$$

$$(n-k) \times (n-k)$$
-s mátrix.

A Schur komplementer azt mutatja, hogy az A_{11} -gyel végzett GE után mely mátrixon kell folytatni az eliminációt. Az új fogalom segítségével könnyebben fogalmazhatjuk meg, hogy a GE mely tulajdonságokat örökíti tovább.

Megmaradási tételek

Tétel: megmaradási tételek a GE-ra

A GE során a következő tulajdonságok öröklődnek A-ról a Schur-komplementerre:

Megmaradási tételek

Tétel: megmaradási tételek a GE-ra

A GE során a következő tulajdonságok öröklődnek A-ról a Schur-komplementerre:

- 2 A szimmetrikus \Rightarrow [A|A₁₁] szimmetrikus

Megmaradási tételek

Tétel: megmaradási tételek a GE-ra

A GE során a következő tulajdonságok öröklődnek A-ról a Schur-komplementerre:

- 2 A szimmetrikus $\Rightarrow [A|A_{11}]$ szimmetrikus
- **3** A pozitív definit \Rightarrow [A|A₁₁] pozitív definit

Megmaradási tételek

Tétel: megmaradási tételek a GE-ra

A GE során a következő tulajdonságok öröklődnek A-ról a Schur-komplementerre:

- 2 A szimmetrikus $\Rightarrow [A|A_{11}]$ szimmetrikus
- 3 A pozitív definit \Rightarrow [A|A₁₁] pozitív definit
- **4** A szig. diag. dom. \Rightarrow [A|A₁₁] szig. diag. dom.

Megmaradási tételek

Tétel: megmaradási tételek a GE-ra

A GE során a következő tulajdonságok öröklődnek *A*-ról a Schur-komplementerre:

- 2 A szimmetrikus $\Rightarrow [A|A_{11}]$ szimmetrikus
- **3** A pozitív definit \Rightarrow [A|A₁₁] pozitív definit
- **4** A szig. diag. dom. \Rightarrow [A|A₁₁] szig. diag. dom.
- **6** $[A|A_{11}]$ fél sávszélessége $\leq A$ fél sávszélessége

Tétel: megmaradási tételek a GE-ra

A GE során a következő tulajdonságok öröklődnek A-ról a Schur-komplementerre:

- 2 A szimmetrikus \Rightarrow [A|A₁₁] szimmetrikus
- **3** A pozitív definit \Rightarrow [A|A₁₁] pozitív definit
- **4** A szig. diag. dom. \Rightarrow [$A|A_{11}$] szig. diag. dom.
- **6** $[A|A_{11}]$ fél sávszélessége $\leq A$ fél sávszélessége
- 6 A GE során a profilnál a soronkénti és oszloponkénti nullák az első nem nulla elemig megmaradnak.

Tétel: megmaradási tételek a GE-ra

A GE során a következő tulajdonságok öröklődnek A-ról a Schur-komplementerre:

- 2 A szimmetrikus $\Rightarrow [A|A_{11}]$ szimmetrikus
- **3** A pozitív definit \Rightarrow [A|A₁₁] pozitív definit
- **4** A szig. diag. dom. \Rightarrow [A|A₁₁] szig. diag. dom.
- **6** $[A|A_{11}]$ fél sávszélessége $\leq A$ fél sávszélessége
- 6 A GE során a profilnál a soronkénti és oszloponkénti nullák az első nem nulla elemig megmaradnak.

Gondoljuk végig az LU-felbontás $L,\,U$ mátrixára a megfelelő tulajdonságokat.

Biz.: 1.) Determináns:

Mivel a GE determinans tarto, így $det(A) = det(A^{(1)}) \neq 0$.

$$A^{(1)} = \left[\begin{array}{c|c} A_{11} & A_{12} \\ \hline 0 & [A|A_{11}] \end{array} \right]$$

Biz.: 1.) Determináns:

Mivel a GE determináns tartó, így $det(A) = det(A^{(1)}) \neq 0$.

$$A^{(1)} = \left[\begin{array}{c|c} A_{11} & A_{12} \\ \hline 0 & [A|A_{11}] \end{array} \right]$$

$$0 \neq \det(A^{(1)}) = \underbrace{\det(A_{11})}_{\neq 0} \cdot \det([A|A_{11}]) \quad \Leftrightarrow \quad \det([A|A_{11}]) \neq 0$$

Biz.: 1.) Determináns:

Mivel a GE determináns tartó, így $det(A) = det(A^{(1)}) \neq 0$.

$$A^{(1)} = \left[\begin{array}{c|c} A_{11} & A_{12} \\ \hline 0 & [A|A_{11}] \end{array} \right]$$

$$0 \neq \det(A^{(1)}) = \underbrace{\det(A_{11})}_{\neq 0} \cdot \det([A|A_{11}]) \quad \Leftrightarrow \quad \det([A|A_{11}]) \neq 0$$

2.) Szimmetria:

Ha A szimmetrikus, akkor A_{11} és A_{22} is az, továbbá $A_{21}^{\top} = A_{12}$.

Biz.: 1.) Determináns:

Mivel a GE determinans tarto, így $det(A) = det(A^{(1)}) \neq 0$.

$$A^{(1)} = \left[\begin{array}{c|c} A_{11} & A_{12} \\ \hline 0 & [A|A_{11}] \end{array} \right]$$

$$0 \neq \det(A^{(1)}) = \underbrace{\det(A_{11})}_{\neq 0} \cdot \det([A|A_{11}]) \quad \Leftrightarrow \quad \det([A|A_{11}]) \neq 0$$

2.) Szimmetria:

Ha A szimmetrikus, akkor A_{11} és A_{22} is az, továbbá $A_{21}^{\top}=A_{12}$.

$$\begin{split} [A|A_{11}]^\top &= (A_{22} - A_{21}A_{11}^{-1}A_{12})^\top = A_{22}^\top - A_{12}^\top (A_{11}^{-1})^\top A_{21}^\top = \\ &= A_{22}^\top - A_{12}^\top (A_{11}^\top)^{-1} A_{21}^\top = A_{22} - A_{21}A_{11}^{-1}A_{12} = [A|A_{11}] \end{split}$$

Biz.: 3.) Pozitív definitség:

Tudjuk, hogy $\langle Ax, x \rangle > 0$ minden $x \neq 0$ vektorra.

Biz.: 3.) Pozitív definitség:

Tudjuk, hogy $\langle Ax, x \rangle > 0$ minden $x \neq 0$ vektorra.

Be kell látnunk, hogy $\langle [A|A_{11}]x_2, x_2 \rangle > 0$ minden $x_2 \neq 0$ vektorra.

Vegyük észre, hogy $x \in \mathbb{R}^n$ és $x_2 \in \mathbb{R}^{n-k}$.

Biz.: 3.) Pozitív definitség:

Tudjuk, hogy $\langle Ax, x \rangle > 0$ minden $x \neq 0$ vektorra.

Be kell látnunk, hogy $\langle [A|A_{11}]x_2, x_2 \rangle > 0$ minden $x_2 \neq 0$ vektorra.

Vegyük észre, hogy $x \in \mathbb{R}^n$ és $x_2 \in \mathbb{R}^{n-k}$.

$$Ax = \left[\begin{array}{c|c} A_{11} & A_{12} \\ \hline A_{21} & A_{22} \end{array}\right] \cdot \left[\begin{array}{c} x_1 \\ \hline x_2 \end{array}\right] = \left[\begin{array}{c|c} A_{11}x_1 + A_{12}x_2 \\ \hline A_{21}x_1 + A_{22}x_2 \end{array}\right]$$

Biz.: 3.) Pozitív definitség:

Tudjuk, hogy $\langle Ax, x \rangle > 0$ minden $x \neq 0$ vektorra. Be kell látnunk, hogy $\langle [A|A_{11}]x_2, x_2 \rangle > 0$ minden $x_2 \neq 0$ vektorra.

Vegyük észre, hogy $x \in \mathbb{R}^n$ és $x_2 \in \mathbb{R}^{n-k}$.

$$Ax = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} A_{11}x_1 + A_{12}x_2 \\ A_{21}x_1 + A_{22}x_2 \end{bmatrix}$$

Legyen $x_2 \in \mathbb{R}^{n-k}$ tetszőleges, válasszuk meg $x_1 \in \mathbb{R}^k$ vektort úgy, hogy Ax első k komponense 0 legyen:

$$A_{11}x_1 + A_{12}x_2 = 0 \quad \Rightarrow \quad x_1 := -A_{11}^{-1}A_{12}x_2.$$

$$x_1 := -A_{11}^{-1}A_{12}x_2$$

Helyettesítsük be a skaláris szorzatba:

$$x_1 := -A_{11}^{-1}A_{12}x_2$$

Helyettesítsük be a skaláris szorzatba:

$$0 < \langle Ax, x \rangle = \underbrace{\langle A_{11}x_1 + A_{12}x_2, x_1 \rangle}_{0} + \langle A_{21}x_1 + A_{22}x_2, x_2 \rangle =$$

$$= \langle A_{21}(-A_{11}^{-1}A_{12}x_2) + A_{22}x_2, x_2 \rangle =$$

$$= \langle (-A_{21}A_{11}^{-1}A_{12} + A_{22})x_2, x_2 \rangle =$$

$$= \langle (A_{22} - A_{21}A_{11}^{-1}A_{12})x_2, x_2 \rangle = \langle [A|A_{11}]x_2, x_2 \rangle$$

Biz.: 4.) Szigorúan diagonálisan domináns a soraira k=1 esetén:

A GE az első sort nem változtatja, ezen a szig. diag. dom. megmarad. Be kellene látnunk, hogy $i=2,\ldots,n$ -re

$$\left|a_{ii}^{(1)}\right| > \sum_{j=2, j\neq i}^{n} \left|a_{ij}^{(1)}\right|.$$

Biz.: 4.) Szigorúan diagonálisan domináns a soraira k=1 esetén:

A GE az első sort nem változtatja, ezen a szig. diag. dom. megmarad. Be kellene látnunk, hogy $i=2,\ldots,n$ -re

$$\left|a_{ii}^{(1)}\right| > \sum_{j=2, j\neq i}^{n} \left|a_{ij}^{(1)}\right|.$$

A GE képleteit behelyettesítve

$$\left|a_{ii} - \frac{a_{i1}}{a_{11}}a_{1i}\right| > \sum_{j=2, j\neq i}^{n} \left|a_{ij} - \frac{a_{i1}}{a_{11}}a_{1j}\right|.$$

Biz.: 4.) Szigorúan diagonálisan domináns a soraira k=1 esetén:

A GE az első sort nem változtatja, ezen a szig. diag. dom. megmarad. Be kellene látnunk, hogy $i=2,\ldots,n$ -re

$$\left|a_{ii}^{(1)}\right| > \sum_{j=2, j\neq i}^{n} \left|a_{ij}^{(1)}\right|.$$

A GE képleteit behelyettesítve

$$\left|a_{ii} - \frac{a_{i1}}{a_{11}}a_{1i}\right| > \sum_{i=2}^{n} \left|a_{ij} - \frac{a_{i1}}{a_{11}}a_{1j}\right|.$$

Szorozzuk be mindkét oldalt $|a_{11}| \neq 0$ -val

$$|a_{ii}a_{11}-a_{i1}a_{1i}|>\sum_{j=2,j\neq i}^{n}|a_{ij}a_{11}-a_{i1}a_{1j}| \ (i=2,\ldots,n).$$

A kapott egyenlőtlenség bal oldalát lefelé, jobb oldalát felfelé becsüljük

$$|a_{ii}a_{11}| - |a_{i1}a_{1i}| > \sum_{i=2,i\neq i}^{n} (|a_{ij}a_{11}| + |a_{i1}a_{1j}|) \quad (i=2,\ldots,n).$$

A továbbiakban ezt fogjuk belátni.

A kapott egyenlőtlenség bal oldalát lefelé, jobb oldalát felfelé becsüljük

$$|a_{ii}a_{11}| - |a_{i1}a_{1i}| > \sum_{i=2, i\neq i}^{n} (|a_{ij}a_{11}| + |a_{i1}a_{1j}|) \quad (i=2,\ldots,n).$$

A továbbiakban ezt fogjuk belátni. Az 1. sort a GE helyben hagyja, ezért itt továbbra is igaz, hogy $|a_{11}|>\sum_{j=2}^n|a_{1j}|$ Szorozzuk $|a_{i1}|\neq 0$ -val és vegyük külön az i. tagot:

$$|a_{11}a_{i1}| > |a_{1i}a_{i1}| + \sum_{j=2, j\neq i}^{n} |a_{1j}a_{i1}|.$$

A kapott egyenlőtlenség bal oldalát lefelé, jobb oldalát felfelé becsüljük

$$|a_{ii}a_{11}| - |a_{i1}a_{1i}| > \sum_{i=2, i\neq i}^{n} (|a_{ij}a_{11}| + |a_{i1}a_{1j}|) \quad (i=2,\ldots,n).$$

A továbbiakban ezt fogjuk belátni. Az 1. sort a GE helyben hagyja, ezért itt továbbra is igaz, hogy $|a_{11}|>\sum_{j=2}^n|a_{1j}|$ Szorozzuk $|a_{i1}|\neq 0$ -val és vegyük külön az i. tagot:

$$|a_{11}a_{i1}| > |a_{1i}a_{i1}| + \sum_{j=2, j\neq i}^{n} |a_{1j}a_{i1}|.$$

Írjuk fel a szigorúan diagonálisan dominanciát az $i=2,\ldots,n$ -re $|a_{ii}|>\sum_{j=1,j\neq i}^n|a_{ij}|=|a_{i1}|+\sum_{j=2,j\neq i}^n|a_{ij}|.$ Szorozzuk $|a_{11}|$ -gyel mindkét oldalt:

$$|a_{ii}a_{11}| > |a_{i1}a_{11}| + \sum_{i=2}^{n} |a_{ij}a_{11}|.$$

Becsüljük $|a_{ii}a_{11}|$ -t alulról

$$|a_{ii}a_{11}| > |a_{1i}a_{i1}| + \sum_{j=2, j\neq i}^{n} (|a_{1j}a_{i1}| + |a_{ij}a_{11}|).$$

Becsüljük |a_{ii} a₁₁|-t alulról

$$|a_{ii}a_{11}| > |a_{1i}a_{i1}| + \sum_{i=2, j\neq i}^{n} (|a_{1j}a_{i1}| + |a_{ij}a_{11}|).$$

Átrendezve a bizonyítandó állítást kapjuk

$$|a_{ii}a_{11}| - |a_{1i}a_{i1}| > \sum_{j=2, j\neq i}^{n} (|a_{1j}a_{i1}| + |a_{ij}a_{11}|).$$

Becsüljük |a_{ii} a₁₁|-t alulról

$$|a_{ii}a_{11}| > |a_{1i}a_{i1}| + \sum_{j=2,j\neq i}^{n} (|a_{1j}a_{i1}| + |a_{ij}a_{11}|).$$

Átrendezve a bizonyítandó állítást kapjuk

$$|a_{ii}a_{11}| - |a_{1i}a_{i1}| > \sum_{j=2, j\neq i}^{n} (|a_{1j}a_{i1}| + |a_{ij}a_{11}|).$$

Nézzük meg, hogy korábban mivel szoroztunk:

Becsüljük |a_{ii} a₁₁|-t alulról

$$|a_{ii}a_{11}| > |a_{1i}a_{i1}| + \sum_{j=2, j\neq i}^{n} (|a_{1j}a_{i1}| + |a_{ij}a_{11}|).$$

Átrendezve a bizonyítandó állítást kapjuk

$$|a_{ii}a_{11}| - |a_{1i}a_{i1}| > \sum_{j=2, j \neq i}^{n} (|a_{1j}a_{i1}| + |a_{ij}a_{11}|).$$

Nézzük meg, hogy korábban mivel szoroztunk:

• Ha $a_{i1} = 0$, akkor ezen a soron nem változtat a GE, tehát a diag. dominancia nem változik.

Becsüljük |a_{ii} a₁₁|-t alulról

$$|a_{ii}a_{11}| > |a_{1i}a_{i1}| + \sum_{j=2, j \neq i}^{n} (|a_{1j}a_{i1}| + |a_{ij}a_{11}|).$$

Átrendezve a bizonyítandó állítást kapjuk

$$|a_{ii}a_{11}| - |a_{1i}a_{i1}| > \sum_{j=2, j \neq i}^{n} (|a_{1j}a_{i1}| + |a_{ij}a_{11}|).$$

Nézzük meg, hogy korábban mivel szoroztunk:

- Ha $a_{i1} = 0$, akkor ezen a soron nem változtat a GE, tehát a diag. dominancia nem változik.
- $a_{11} \neq 0$, mivel ez feltétele a GE-nak.

Becsüljük $|a_{ii}a_{11}|$ -t alulról

$$|a_{ii}a_{11}| > |a_{1i}a_{i1}| + \sum_{j=2, j\neq i}^{n} (|a_{1j}a_{i1}| + |a_{ij}a_{11}|).$$

Átrendezve a bizonyítandó állítást kapjuk

$$|a_{ii}a_{11}| - |a_{1i}a_{i1}| > \sum_{j=2, j \neq i}^{n} (|a_{1j}a_{i1}| + |a_{ij}a_{11}|).$$

Nézzük meg, hogy korábban mivel szoroztunk:

- Ha $a_{i1} = 0$, akkor ezen a soron nem változtat a GE, tehát a diag. dominancia nem változik.
- $a_{11} \neq 0$, mivel ez feltétele a GE-nak.

Az oszlopokra vonatkozó bizonyítás analóg módon elvégezhető. 🛚

Tartalomjegyzék

- 1 Az *LU*-felbontás "közvetlen" kiszámítása
- 2 Műveletigény
- 3 Megmaradási tételek
- 4 Rövidített GE (progonka módszer)
- 5 Vektornormák

A gyakorlatban megszokott, hogy tridiagonális (háromátlós) LER-t kell megoldanunk. Az év eleji példában is láttuk. A speciális alakot felhasználva hatékonyabb alakot algoritmust készítünk.

A gyakorlatban megszokott, hogy tridiagonális (háromátlós) LER-t kell megoldanunk. Az év eleji példában is láttuk. A speciális alakot felhasználva hatékonyabb alakot algoritmust készítünk.

• Tárolás: n^2 helyett 3 átlóban 3n - 2 elem.

A gyakorlatban megszokott, hogy tridiagonális (háromátlós) LER-t kell megoldanunk. Az év eleji példában is láttuk. A speciális alakot felhasználva hatékonyabb alakot algoritmust készítünk.

- Tárolás: n^2 helyett 3 átlóban 3n 2 elem.
- Műveletigény: $\frac{2}{3}n^3 + \mathcal{O}(n^2)$ helyett $8n + \mathcal{O}(1)$.

A gyakorlatban megszokott, hogy tridiagonális (háromátlós) LER-t kell megoldanunk. Az év eleji példában is láttuk. A speciális alakot felhasználva hatékonyabb alakot algoritmust készítünk.

- Tárolás: n^2 helyett 3 átlóban 3n 2 elem.
- Műveletigény: $\frac{2}{3}n^3 + \mathcal{O}(n^2)$ helyett $8n + \mathcal{O}(1)$.

Mivel a GE a sávszélességet megtartja, tridiagonális esetben a három átlón kívül mindig nulla lesz. A GE végén kapott U mátrix is csak két átlót tartalmaz, ezért a visszahelyettesítés i. egyenlete

$$a_{ii}^{(i-1)}x_i + a_{ii+1}^{(i-1)}x_{i+1} = a_{in+1}^{(i-1)}.$$

Ebből x_i -t kifejezve, új jelölésrendszerrel $x_i = f_i x_{i+1} + g_i$ (i = 1, ..., n) alakú.

Jelölések: $A = \text{tridiag}(\beta_{i-1}, \alpha_i, \gamma_i),$

$$A = \begin{bmatrix} \alpha_{1} & \gamma_{1} & 0 & \cdots & 0 \\ \beta_{1} & \alpha_{2} & \gamma_{2} & & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \beta_{n-2} & \alpha_{n-1} & \gamma_{n-1} \\ 0 & & 0 & \beta_{n-1} & \alpha_{n} \end{bmatrix}, \quad x = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n-1} \\ x_{n} \end{bmatrix} \quad b = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n-1} \\ b_{n} \end{bmatrix}.$$

Jelölések: $A = \text{tridiag}(\beta_{i-1}, \alpha_i, \gamma_i),$

$$A = \begin{bmatrix} \alpha_1 & \gamma_1 & 0 & \cdots & 0 \\ \beta_1 & \alpha_2 & \gamma_2 & & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \beta_{n-2} & \alpha_{n-1} & \gamma_{n-1} \\ 0 & & 0 & \beta_{n-1} & \alpha_n \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix}.$$

A LER 1. egyenlete:

$$\alpha_1 x_1 + \gamma_1 x_2 = b_1 \rightarrow \alpha_1 x_1 = -\gamma_1 x_2 + b_1 \rightarrow x_1 = -\frac{\gamma_1}{\alpha_1} x_2 + \frac{b_1}{\alpha_1}$$

Jelölések: $A = \text{tridiag}(\beta_{i-1}, \alpha_i, \gamma_i),$

$$A = \begin{bmatrix} \alpha_1 & \gamma_1 & 0 & \cdots & 0 \\ \beta_1 & \alpha_2 & \gamma_2 & & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \beta_{n-2} & \alpha_{n-1} & \gamma_{n-1} \\ 0 & & 0 & \beta_{n-1} & \alpha_n \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix}.$$

A LER 1. egyenlete:

A LER 1. egyenlete:
$$\alpha_1 x_1 + \gamma_1 x_2 = b_1 \rightarrow \alpha_1 x_1 = -\gamma_1 x_2 + b_1 \rightarrow x_1 = -\frac{1}{\alpha_1} x_2 + \frac{b_1}{\alpha_1}$$

Az
$$x_1 = f_1 x_2 + g_1$$
 alakot keresve $f_1 = -\frac{\gamma_1}{\alpha_1}$ és $g_1 = \frac{b_1}{\alpha_1}$.

Tegyük fel, hogy f_1, \ldots, f_{i-1} és g_1, \ldots, g_{i-1} , továbbá az $x_k = f_k x_{k+1} + g_k$ $(k = 1, \ldots, i-1)$ rekurzió ismert. Az $x_i = f_i x_{i+1} + g_i$ rekurzió képleteit szeretnénk meghatározni.

Tegyük fel, hogy f_1,\ldots,f_{i-1} és g_1,\ldots,g_{i-1} , továbbá az $x_k=f_kx_{k+1}+g_k$ $(k=1,\ldots,i-1)$ rekurzió ismert. Az $x_i=f_ix_{i+1}+g_i$ rekurzió képleteit szeretnénk meghatározni. Írjuk fel az i. egyenletet és helyettesítsük be x_{i-1} helyére a rekurziót:

$$\beta_{i-1}x_{i-1} + \alpha_i x_i + \gamma_i x_{i+1} = b_i$$

$$\beta_{i-1}(f_{i-1}x_i + g_{i-1}) + \alpha_i x_i + \gamma_i x_{i+1} = b_i$$

$$(\beta_{i-1}f_{i-1} + \alpha_i)x_i + \gamma_i x_{i+1} = b_i - \beta_{i-1}g_{i-1}$$

Tegyük fel, hogy f_1,\ldots,f_{i-1} és g_1,\ldots,g_{i-1} , továbbá az $x_k=f_kx_{k+1}+g_k$ $(k=1,\ldots,i-1)$ rekurzió ismert. Az $x_i=f_ix_{i+1}+g_i$ rekurzió képleteit szeretnénk meghatározni. Írjuk fel az i. egyenletet és helyettesítsük be x_{i-1} helyére a rekurziót:

$$\beta_{i-1}x_{i-1} + \alpha_{i}x_{i} + \gamma_{i}x_{i+1} = b_{i}$$

$$\beta_{i-1}(f_{i-1}x_{i} + g_{i-1}) + \alpha_{i}x_{i} + \gamma_{i}x_{i+1} = b_{i}$$

$$(\beta_{i-1}f_{i-1} + \alpha_{i})x_{i} + \gamma_{i}x_{i+1} = b_{i} - \beta_{i-1}g_{i-1}$$

$$(\alpha_{i} + \beta_{i-1}f_{i-1})x_{i} = -\gamma_{i}x_{i+1} + (b_{i} - \beta_{i-1}g_{i-1})$$

$$x_{i} = -\frac{\gamma_{i}}{\alpha_{i} + \beta_{i-1}f_{i-1}}x_{i+1} + \frac{b_{i} - \beta_{i-1}g_{i-1}}{\alpha_{i} + \beta_{i-1}f_{i-1}}.$$

Tegyük fel, hogy f_1,\ldots,f_{i-1} és g_1,\ldots,g_{i-1} , továbbá az $x_k=f_kx_{k+1}+g_k$ $(k=1,\ldots,i-1)$ rekurzió ismert. Az $x_i=f_ix_{i+1}+g_i$ rekurzió képleteit szeretnénk meghatározni. Írjuk fel az i. egyenletet és helyettesítsük be x_{i-1} helyére a rekurziót:

$$\beta_{i-1}x_{i-1} + \alpha_{i}x_{i} + \gamma_{i}x_{i+1} = b_{i}$$

$$\beta_{i-1}(f_{i-1}x_{i} + g_{i-1}) + \alpha_{i}x_{i} + \gamma_{i}x_{i+1} = b_{i}$$

$$(\beta_{i-1}f_{i-1} + \alpha_{i})x_{i} + \gamma_{i}x_{i+1} = b_{i} - \beta_{i-1}g_{i-1}$$

$$(\alpha_{i} + \beta_{i-1}f_{i-1})x_{i} = -\gamma_{i}x_{i+1} + (b_{i} - \beta_{i-1}g_{i-1})$$

$$x_{i} = -\frac{\gamma_{i}}{\alpha_{i} + \beta_{i-1}f_{i-1}}x_{i+1} + \frac{b_{i} - \beta_{i-1}g_{i-1}}{\alpha_{i} + \beta_{i-1}f_{i-1}}.$$
Innen
$$f_{i} = -\frac{\gamma_{i}}{\alpha_{i} + \beta_{i-1}f_{i-1}} \text{ és } g_{i} = \frac{b_{i} - \beta_{i-1}g_{i-1}}{\alpha_{i} + \beta_{i-1}f_{i-1}}.$$

Írjuk fel az n. egyenletet és helyettesítsük be x_{n-1} helyére a rekurziót:

Írjuk fel az n. egyenletet és helyettesítsük be x_{n-1} helyére a rekurziót:

$$\beta_{n-1}x_{n-1} + \alpha_n x_n = b_n$$

$$\beta_{n-1}(f_{n-1}x_n + g_{n-1}) + \alpha_n x_n = b_n$$

$$(\beta_{n-1}f_{n-1} + \alpha_n)x_n = b_n - \beta_{n-1}g_{n-1}$$

Írjuk fel az n. egyenletet és helyettesítsük be x_{n-1} helyére a rekurziót:

$$\beta_{n-1}x_{n-1} + \alpha_n x_n = b_n$$

$$\beta_{n-1}(f_{n-1}x_n + g_{n-1}) + \alpha_n x_n = b_n$$

$$(\beta_{n-1}f_{n-1} + \alpha_n)x_n = b_n - \beta_{n-1}g_{n-1}$$

$$x_n = \frac{b_n - \beta_{n-1}g_{n-1}}{\alpha_n + \beta_{n-1}f_{n-1}} =: g_n$$

Algoritmus: progonka módszer

1. lépés:
$$f_1:=-\frac{\gamma_1}{\alpha_1}, \quad g_1:=\frac{b_1}{\alpha_1}$$

Algoritmus: progonka módszer

1. lépés:
$$f_1 := -\frac{\gamma_1}{\alpha_1}, \quad g_1 := \frac{b_1}{\alpha_1}$$

$$i = 2, \dots, n-1: \quad f_i := -\frac{\gamma_i}{\alpha_i + \beta_{i-1} f_{i-1}}$$

$$g_i := \frac{b_i - \beta_{i-1} g_{i-1}}{\alpha_i + \beta_{i-1} f_{i-1}}$$

$$g_n := \frac{b_i - \beta_{n-1} g_{n-1}}{\alpha_n + \beta_{n-1} f_{n-1}}$$

Algoritmus: progonka módszer

1. lépés:
$$f_1 := -\frac{\gamma_1}{\alpha_1}, \quad g_1 := \frac{b_1}{\alpha_1}$$

$$i = 2, \dots, n-1: \quad f_i := -\frac{\gamma_i}{\alpha_i + \beta_{i-1} f_{i-1}}$$

$$g_i := \frac{b_i - \beta_{n-1} g_{n-1}}{\alpha_i + \beta_{i-1} f_{i-1}}$$

$$g_n := \frac{b_i - \beta_{n-1} g_{n-1}}{\alpha_n + \beta_{n-1} f_{n-1}}$$

2. lépés:
$$x_n := g_n$$
 $i = n - 1, n - 2, ..., 1 : x_i = f_i x_{i+1} + g_i$

Algoritmus: progonka módszer

1. lépés:
$$f_1 := -\frac{\gamma_1}{\alpha_1}, \quad g_1 := \frac{b_1}{\alpha_1}$$

$$i = 2, \dots, n-1: \quad f_i := -\frac{\gamma_i}{\alpha_i + \beta_{i-1} f_{i-1}}$$

$$g_i := \frac{b_i - \beta_{i-1} g_{i-1}}{\alpha_i + \beta_{i-1} f_{i-1}}$$

$$g_n := \frac{b_i - \beta_{n-1} g_{n-1}}{\alpha_n + \beta_{n-1} f_{n-1}}$$

2. lépés:
$$x_n := g_n$$
 $i = n - 1, n - 2, ..., 1 : x_i = f_i x_{i+1} + g_i$

Megj.: 3 művelettel több, de könnyebben megjegyezhető az algoritmus, ha f_n értékét is meghatározzuk.

Ekkor $x_{n+1} := 0$ -val indítjuk a 2. lépést.

Műveletigény:

1. lépés (előre):

 $f_1, g_1: 2$ művelet.

Műveletigény:

1. lépés (előre):

 $f_1, g_1: 2$ művelet.

A ciklus i. lépésében: a közös nevezőben 2 db, f_i -ben 1 db, g_i -ben 3 db, tehát $i=2,\ldots,n-1$ -re összesen 6(n-2) db.

 g_n -ben 5 db művelet.

Műveletigény:

1. lépés (előre):

 $f_1, g_1: 2$ művelet.

A ciklus i. lépésében: a közös nevezőben 2 db, f_i -ben 1 db, g_i -ben 3 db, tehát $i=2,\ldots,n-1$ -re összesen 6(n-2) db.

 g_n -ben 5 db művelet.

2. lépés (vissza):

 $i=n-1,n-2,\ldots,1$ -re 2(n-1) db művelet.

Műveletigény:

1. lépés (előre):

 $f_1, g_1 : 2$ művelet.

A ciklus i. lépésében: a közös nevezőben 2 db, f_i -ben 1 db, g_i -ben 3 db, tehát $i=2,\ldots,n-1$ -re összesen 6(n-2) db.

 g_n -ben 5 db művelet.

2. lépés (vissza):

$$i = n - 1, n - 2, \dots, 1$$
-re $2(n - 1)$ db művelet.

Összesen:

$$2+6(n-2)+5+2(n-1)=8n-7=8n+\mathcal{O}(1)$$
 művelet.

Tartalomjegyzék

- 1 Az *LU*-felbontás "közvetlen" kiszámítása
- 2 Műveletigény
- 3 Megmaradási tételek
- 4 Rövidített GE (progonka módszer)
- **5** Vektornormák

Definíció: vektorok "hossza"

Az $x \in \mathbb{R}^n$ vektor hagyományos értelemben vett hosszát, avagy "kettes normáját" jelölje $\|.\|_2$.

A következőképpen számolható:

$$\|x\|_2 := \sqrt{\langle x, x \rangle} = \sqrt{x^\top x} = \left(\sum_{k=1}^n x_i^2\right)^{\frac{1}{2}}.$$

A (vektor)norma a "hossz", "nagyság" általánosítása.

Definíció: vektornorma

Legyen $n \in \mathbb{N}$ rögzített. Az $\|.\| : \mathbb{R}^n \to \mathbb{R}$ leképezést vektornormának nevezzük, ha:

- **2** $||x|| = 0 \iff x = 0$,
- **4** $||x + y|| \le ||x|| + ||y|| \quad (\forall x, y \in \mathbb{R}^n).$

Definíció: vektornorma

Legyen $n \in \mathbb{N}$ rögzített. Az $\|.\| : \mathbb{R}^n \to \mathbb{R}$ leképezést vektornormának nevezzük, ha:

- **2** $||x|| = 0 \iff x = 0$,
- **4** $||x + y|| \le ||x|| + ||y|| \quad (\forall x, y \in \mathbb{R}^n).$

Ezek a vektornormák axiómái.

Állítás: skaláris szorzat által generált vektornorma

Ha adott az $\langle .,. \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ skaláris szorzat, akkor az $f(x) := \sqrt{\langle x,x \rangle}$ függvény *norma*. Jele: $\|x\|_2$.

Állítás: skaláris szorzat által generált vektornorma

Ha adott az $\langle .,. \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ skaláris szorzat, akkor az $f(x) := \sqrt{\langle x,x \rangle}$ függvény *norma*. Jele: $\|x\|_2$.

Biz.: Nem kell.

Ez a "hagyományos hossz".

Állítás: Cauchy–Bunyakovszki–Schwarz-egyenlőtlenség (CBS)

$$|\langle x, y \rangle| \le ||x||_2 \cdot ||y||_2 \quad (x, y \in \mathbb{R}^n)$$

$$|\langle x, y \rangle| \le ||x||_2 \cdot ||y||_2 \quad (x, y \in \mathbb{R}^n)$$

Biz.: Bármely $\alpha \in \mathbb{R}$ esetén $||x - \alpha y||_2^2 \ge 0$.

$$|\langle x, y \rangle| \le ||x||_2 \cdot ||y||_2 \quad (x, y \in \mathbb{R}^n)$$

Biz.: Bármely $\alpha \in \mathbb{R}$ esetén $||x - \alpha y||_2^2 \ge 0$.

$$0 \le ||x - \alpha y||_2^2 = \langle x - \alpha y, x - \alpha y \rangle =$$

$$|\langle x, y \rangle| \le ||x||_2 \cdot ||y||_2 \quad (x, y \in \mathbb{R}^n)$$

Biz.: Bármely $\alpha \in \mathbb{R}$ esetén $||x - \alpha y||_2^2 \ge 0$.

$$0 \le \|x - \alpha y\|_{2}^{2} = \langle x - \alpha y, x - \alpha y \rangle =$$

$$= \underbrace{\langle x, x \rangle}_{\|x\|_{2}^{2}} -2\alpha \langle x, y \rangle + \alpha^{2} \underbrace{\langle y, y \rangle}_{\|y\|_{2}^{2}} \quad (\forall \alpha \in \mathbb{R}).$$

$$|\langle x, y \rangle| \le ||x||_2 \cdot ||y||_2 \quad (x, y \in \mathbb{R}^n)$$

Biz.: Bármely $\alpha \in \mathbb{R}$ esetén $\|x - \alpha y\|_2^2 \ge 0$.

$$0 \le \|x - \alpha y\|_{2}^{2} = \langle x - \alpha y, x - \alpha y \rangle =$$

$$= \underbrace{\langle x, x \rangle}_{\|x\|_{2}^{2}} -2\alpha \langle x, y \rangle + \alpha^{2} \underbrace{\langle y, y \rangle}_{\|y\|_{2}^{2}} \qquad (\forall \alpha \in \mathbb{R}).$$

Diszkrimináns nempozitív: $\langle x, y \rangle^2 - ||x||_2^2 \cdot ||y||_2^2 \le 0$,

$$|\langle x, y \rangle| \le ||x||_2 \cdot ||y||_2 \quad (x, y \in \mathbb{R}^n)$$

Biz.: Bármely $\alpha \in \mathbb{R}$ esetén $||x - \alpha y||_2^2 \ge 0$.

$$0 \le \|x - \alpha y\|_{2}^{2} = \langle x - \alpha y, x - \alpha y \rangle =$$

$$= \underbrace{\langle x, x \rangle}_{\|x\|_{2}^{2}} -2\alpha \langle x, y \rangle + \alpha^{2} \underbrace{\langle y, y \rangle}_{\|y\|_{2}^{2}} \qquad (\forall \alpha \in \mathbb{R}).$$

Diszkrimináns nempozitív: $\langle x, y \rangle^2 - \|x\|_2^2 \cdot \|y\|_2^2 \le 0$, így

$$\langle x, y \rangle^2 \le ||x||_2^2 \cdot ||y||_2^2$$
.

Állítás: Gyakori vektornormák $(1,2,\infty)$

A következő formulák vektornormákat **definiálnak** \mathbb{R}^n felett:

•
$$\|x\|_1 := \sum_{i=1}^n |x_i|$$
 (Manhattan-norma),

•
$$\|x\|_2 := \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$$
 (Euklideszi-norma),

•
$$\|x\|_{\infty} := \max_{i=1}^{n} |x_i|$$
 (Csebisev-norma).

Biz.: Hf.

Példa: vektornormák

Számítsuk ki a következő vektorok $1, 2, \infty$ normáját:

$$x = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \qquad y = \begin{bmatrix} 4 \\ -8 \\ 1 \end{bmatrix}.$$

Példa: vektornormák

Számítsuk ki a következő vektorok $1, 2, \infty$ normáját:

$$x = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \qquad y = \begin{bmatrix} 4 \\ -8 \\ 1 \end{bmatrix}.$$

$$\|x\|_1 = 3 + 4 = 7$$
, $\|x\|_2 = \sqrt{3^2 + 4^2} = 5$, $\|x\|_{\infty} = \max\{3, 4\} = 4$.

Példa: vektornormák

Számítsuk ki a következő vektorok $1, 2, \infty$ normáját:

$$x = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \qquad y = \begin{bmatrix} 4 \\ -8 \\ 1 \end{bmatrix}.$$

$$||x||_1 = 3 + 4 = 7$$
, $||x||_2 = \sqrt{3^2 + 4^2} = 5$, $||x||_\infty = \max\{3, 4\} = 4$.

$$||y||_1 = 4 + |-8| + 1 = 13$$
, $||y||_2 = \sqrt{4^2 + (-8)^2 + 1^2} = \sqrt{73}$, $||y||_{\infty} = \max\{4, |-8|, 1\} = 8$.

Állítás: p-normák

A következő $\mathbb{R}^n \to \mathbb{R}$ függvények is vektornormákat **definiálnak**:

$$||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$
 $(p \in \mathbb{R}, \ 1 \le p < \infty).$

Állítás: p-normák

A következő $\mathbb{R}^n \to \mathbb{R}$ függvények is vektornormákat **definiálnak**:

$$\|x\|_{p} := \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p} \qquad (p \in \mathbb{R}, \ 1 \le p < \infty).$$

Biz.: Nem kell. A háromszög-egyenlőtlenség a Minkovszki-egyenlőtlenség.

Állítás: p-normák

A következő $\mathbb{R}^n \to \mathbb{R}$ függvények is vektornormákat **definiálnak**:

$$\|x\|_{p} := \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p} \qquad (p \in \mathbb{R}, \ 1 \le p < \infty).$$

Biz.: Nem kell. A háromszög-egyenlőtlenség a Minkovszki-egyenlőtlenség.

Megjegyzések:

- $0 \le p < 1$ esetén nem norma,
- $p_1 \leq p_2 \Longrightarrow ||x||_{p_1} \geq ||x||_{p_2}$,
- Speciális esetek: $p = 1 \rightsquigarrow ||x||_1$, $p = 2 \rightsquigarrow ||x||_2$,
- Sőt: $\lim_{p\to\infty} \|x\|_p = \|x\|_{\infty}$.

Állítás: normák közötti egyenlőtlenségek

- $\bullet \|x\|_{\infty} \leq \|x\|_1 \leq n \cdot \|x\|_{\infty},$
- $||x||_{\infty} \le ||x||_2 \le \sqrt{n} \cdot ||x||_{\infty}$,
- $||x||_2 \le ||x||_1 \le \sqrt{n} \cdot ||x||_2$,
- sőt ezek alapján $||x||_{\infty} \le ||x||_2 \le ||x||_1$.

Állítás: normák közötti egyenlőtlenségek

•
$$||x||_{\infty} \le ||x||_{1} \le n \cdot ||x||_{\infty}$$
,

•
$$||x||_{\infty} \le ||x||_2 \le \sqrt{n} \cdot ||x||_{\infty}$$
,

•
$$||x||_2 \le ||x||_1 \le \sqrt{n} \cdot ||x||_2$$
,

• sőt ezek alapján
$$||x||_{\infty} \le ||x||_2 \le ||x||_1$$
.

Biz.: Nem kell.

(Az elsőbe könnyű belegondolni, a negyedikre láttunk példát.)

Definíció: ekvivalens normák

Az $\|.\|_a$ és $\|.\|_b$ vektornormák *ekvivalensek*, ha $\exists c_1, c_2 \in \mathbb{R}^+$, hogy

$$c_1 \cdot ||x||_b \le ||x||_a \le c_2 \cdot ||x||_b \qquad (\forall x \in \mathbb{R}^n).$$

Definíció: ekvivalens normák

Az $\left\|.\right\|_{a}$ és $\left\|.\right\|_{b}$ vektornormák *ekvivalensek*, ha $\exists c_{1},c_{2}\in\mathbb{R}^{+}$, hogy

$$c_1 \cdot ||x||_b \le ||x||_a \le c_2 \cdot ||x||_b \qquad (\forall x \in \mathbb{R}^n).$$

Állítás: végesdimenziós normák ekvivalenciája

Tetszőleges \mathbb{R}^n -en értelmezett vektornorma ekvivalens az Euklideszi-vektornormával. (Azaz adott végesdimenziós térben minden norma ekvivalens.)

Definíció: konvergencia vektornormában

Az $(x_k)\subset \mathbb{R}^n$ sorozat konvergens, ha létezik $x^*\in \mathbb{R}^n$ melyre

$$\lim_{k\to\infty}\|x_k-x^*\|=0.$$

x* a sorozat határértéke.

Definíció: konvergencia vektornormában

Az $(x_k)\subset \mathbb{R}^n$ sorozat konvergens, ha létezik $x^*\in \mathbb{R}^n$ melyre

$$\lim_{k\to\infty}\|x_k-x^*\|=0.$$

x* a sorozat határértéke.

Megj.: Mivel \mathbb{R}^n -en a vektornormák ekvivalensek, ezért ha egy sorozat konvergens az egyik vektornormában, akkor mindegyikben.

Ekvivalens átfogalmazások a konvergenciára:

• Az $(x_k) \subset \mathbb{R}^n$ sorozat konvergens, ha létezik $x^* \in \mathbb{R}^n$ melyre

$$\forall \varepsilon > 0 \ \exists N_0 \in \mathbb{N} \ \forall k \ge N_0 : \ \|x_k - x^*\| < \varepsilon.$$

Ekvivalens átfogalmazások a konvergenciára:

• Az $(x_k)\subset \mathbb{R}^n$ sorozat konvergens, ha létezik $x^*\in \mathbb{R}^n$ melyre

$$\forall \, \varepsilon > 0 \, \exists \, N_0 \in \mathbb{N} \, \forall \, k \geq N_0 : \, \|x_k - x^*\| < \varepsilon.$$

• Az $(x_k) \subset \mathbb{R}^n$ sorozat konvergens, ha létezik $x^* \in \mathbb{R}^n$ melyre

$$\forall \varepsilon > 0 \ \exists N_0 \in \mathbb{N} \ \forall k \geq N_0 : \ x_k \in K_{\varepsilon}(x^*).$$

Példák Matlab-ban

- **1** Példák p-normákra, egységgömbökre ($p = 1, 2, \infty, \ldots$).
- 2 Példák pozitív definit mátrixokra,