Chapitre 2 : Cinématique du point

I Espace, temps

A) Espace

1) Référentiel d'espace R.

- C'est un solide de référence, par rapport auquel on étudie le mouvement.
- Repère d'espace : c'est la donnée d'une origine *O* et de trois axes *Ox*, *Oy*, *Oz* fixes dans le référentiel de référence.

2) Base de projection

Ce sont trois vecteurs linéairement indépendants sur lesquels on projette les vecteurs.

Ces vecteurs ne sont pas forcément fixes par rapport au solide de référence.

B) Temps

1) Référentiel de temps

On prend une horloge

2) Repère de temps

C'est la donnée d'une origine du temps et d'une base de temps.

3) Postulat de la mécanique classique

Le référentiel de temps est indépendant du référentiel d'espace.

C) Dérivation d'un vecteur par rapport au temps

La dérivation vectorielle n'a de sens qu'en précisant le référentiel.

En général,
$$\left(\frac{d\vec{A}}{dt}\right)_{R} \neq \left(\frac{d\vec{A}}{dt}\right)_{R'}$$

II Vitesse et accélération

A) Définition

On considère un référentiel R, un point O fixe dans R et M un mobile.

On pose alors
$$\vec{v} = \left(\frac{d\vec{OM}}{dt}\right)_R$$
, $\vec{a} = \left(\frac{d^2\vec{OM}}{dt^2}\right)_R$.

B) Composantes sur une base cartésienne fixe

$$\begin{split} \overrightarrow{OM} &= x.\vec{u}_x + y.\vec{u}_y + z.\vec{u}_z \\ \vec{v} &= \dot{x}.\vec{u}_x + \dot{y}.\vec{u}_y + \dot{z}.\vec{u}_z \\ \vec{a} &= \ddot{x}.\vec{u}_x + \ddot{y}.\vec{u}_y + \ddot{z}.\vec{u}_z \end{split}$$

C) Composantes sur la base cylindrique

$$\begin{split} OM &= r.\vec{u}_r + z.\vec{u}_z \\ \vec{v} &= \dot{r}.\vec{u}_r + r\dot{\theta}.\vec{u}_\theta + \dot{z}.\vec{u}_z \\ \vec{a} &= (\ddot{r} - r\theta^2).\vec{u}_r + (2\dot{r}\dot{\theta} + r\ddot{\theta}).\vec{u}_\theta + \ddot{z}.\vec{u}_z \end{split}$$

D) Composantes sur la base de Frenet

1) Base de Frenet

Elle est utile lorsque le point se déplace sur une courbe γ d'équation connue.

• Plan osculateur

 π : plan passant par les trois points M, M', M''.

Lorsque $M', M'' \rightarrow M$, π tend vers un plan, appelé plan osculateur à la courbe en M; c'est le plan « le mieux » tangent à la courbe.

Cercle osculateur : c'est le cercle exinscrit au triangle MM'M'' lorsque $M', M'' \rightarrow M$.

Le rayon de ce cercle s'appelle le rayon de courbure.

• Vecteur unitaire tangent \vec{T} :

$$\vec{T} = \frac{d\overrightarrow{OM}}{ds}$$
: sens positif, unitaire (s: abscisse curviligne)

• Vecteur unitaire normal \vec{N} :

$$\vec{N} = R \frac{d\vec{T}}{ds}$$
, où R est un scalaire tel que $\|\vec{N}\| = 1$.

 \vec{N} est normal à \vec{T} : $\vec{T}^2 = 1$, donc $2\vec{T} \cdot d\vec{T} = 0$.

 \vec{N} appartient au plan osculateur, |R| est le rayon de courbure.

On peut prendre deux conventions pour le sens de \vec{N} :

- Soit R > 0: (dans la concavité de la courbe)

- Soit $R \ge 0$, et \vec{N} reste toujours « du même côté de la courbe ».
- Vecteur unitaire binormal : $\vec{B} = \vec{T} \wedge \vec{N}$

2) Vitesse

$$\vec{v} = \frac{d\overrightarrow{OM}}{dt} = \frac{d\overrightarrow{OM}}{ds} \frac{ds}{dt}$$
, soit $\vec{v} = v\vec{T}$; v: vitesse curviligne (algébrique)

3) Accélération

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d(v\vec{T})}{dt} = \frac{dv}{dt}\vec{T} + v\frac{d\vec{T}}{ds}\frac{ds}{dt} = \frac{dv}{dt}\vec{T} + \frac{v^2}{R}\vec{N}$$

L'accélération tangentielle peut être soit dans le sens positif soit négatif, mais l'accélération normale est toujours dirigée dans la concavité de la courbe.

III Mouvements à accélération centrale

A) Définition

On considère un point O fixe dans R.

Un mouvement à accélération centrale est un mouvement pour lequel \vec{a} est colinéaire à \overrightarrow{OM} , c'est-à-dire pour lequel $\overrightarrow{OM} \wedge \vec{a} = \vec{0}$.

B) Nature du mouvement

1) Moment cinétique constant

Moment cinétique: $\vec{\sigma}(O) = \overrightarrow{OM} \wedge m\vec{v}$ (c'est le moment du pointeur $(M, m\vec{v})$ en O)

$$\frac{d\vec{\sigma}}{dt} = \underbrace{\frac{d\overrightarrow{OM}}{dt} \wedge m\vec{v}}_{=\vec{0}} + \underbrace{\overrightarrow{OM}}_{=\vec{0}} \wedge m\underbrace{\frac{d\vec{v}}{dt}}_{=\vec{0}}$$
Donc $\vec{\sigma} = \overrightarrow{\text{cte}} (= \vec{\sigma}_0)$

2) Mouvement plan

On a $\overrightarrow{OM} \wedge m\vec{v} = \vec{\sigma}_0$. Donc \overrightarrow{OM} et $\vec{\sigma}_0$ sont orthogonaux

3) Loi des aires

$$\vec{a} \underbrace{\vec{\Delta}\theta}_{\vec{b}} \xrightarrow{\vec{c}} \underbrace{\vec{\beta}}_{\vec{b}}$$

On a $\|\vec{a} \wedge \vec{b}\| = ab|\sin\theta|$ = aire du parallélogramme

Et $\left| (\vec{a} \wedge \vec{b}) \cdot \vec{c} \right|$: volume du parallélépipède.

Ici ·

$$\vec{r} + d\vec{r}$$
 \vec{r}
 \vec{r}
 \vec{r}
 \vec{r}
 \vec{r}

On a ainsi $d\vec{S} = \frac{1}{2}\vec{r} \wedge d\vec{r}$

- On définit la vitesse aréolaire : $\frac{d\vec{S}}{dt} = \frac{1}{2}\vec{r} \wedge \frac{d\vec{r}}{dt}$
- Ainsi, $\frac{d\vec{S}}{dt} = \frac{1}{2} \frac{\vec{\sigma}}{m} = \overrightarrow{\text{cte}}$
- En coordonnées cylindriques :

On a
$$\vec{\sigma} = \overrightarrow{OM} \wedge m\vec{v} = mr^2 \dot{\theta} \cdot \vec{u}_z$$
, soit $r^2 \dot{\theta} = \text{cte}$

C) Mouvements sinusoïdaux composés

$$M: \begin{cases} x = A_x \cos(\omega t + \varphi_x) \\ y = A_y \cos(\omega t + \varphi_y) \\ z = 0 \end{cases}$$

$$\vec{a}(M) = -\omega^2 \overrightarrow{OM}$$

On a donc une accélération centrale

1) Changement d'origine des temps

On pose
$$\omega . t' = \omega . t + \varphi_x$$

Ainsi,
$$\omega . t + \varphi_y = \omega . t' + (\varphi_y - \varphi_x) = \omega . t' + \varphi$$
.

On a alors
$$M: \begin{cases} x = A_x \cos(\omega t) \\ y = A_y \cos(\omega t + \varphi) \end{cases}$$

2) Trajectoire

On a $y = A_v \cos \omega t \times \cos \varphi - A_v \sin \omega t \times \sin \varphi$

Donc
$$\frac{x^2}{A_x^2} + \frac{y^2}{A_y^2} - \frac{2xy}{A_x A_y} \cos \varphi = \sin^2 \varphi$$
, qui est l'équation d'une ellipse

Si
$$\varphi = 0$$
, l'équation devient $\frac{x}{A_x} = \frac{y}{A_y}$

Pour
$$\varphi = \pi$$
, $\frac{x}{A_x} = \frac{-y}{A_y}$. Pour $\varphi = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{x^2}{A_x^2} + \frac{y^2}{A_y^2} = 1$.

3) Mouvement

- Il se fait selon la loi des aires
- Sens de parcours :

$$-\vec{\sigma} = \overrightarrow{OM} \wedge m\vec{v} = -m\omega A_x A_y \sin \varphi . \vec{u}_z$$

Si
$$\sin \varphi > 0$$
, \Im ; si $\sin \varphi < 0$, \Im

- x est maximal quand
$$\omega t = 0 [2\pi]$$

Alors $\dot{y} = -\omega A_y \sin \varphi$, donc \dot{y} a le signe de $-\sin \varphi$.