

主席人工智能 2021技术创新大赛 GLOBAL AL INNOVATION CONTEST

赛道三:小布助手对话短文本语义匹配

愛AI小花

- 团队背景和成员简介
 - 整体方案设计
 - 组件及创新点
 - 算法落地
 - 方案总结

整体方案设计

其中, M=9 K=5

• 数据预处理-OOV(未登录词)问题优化

假设 plus8, plus9 是 oov 词:

句子1	句子2	标签	处理后, 句子1	处理后,句子2
plus8 好用吗	plus9好不好用	0	<unk> 好用吗</unk>	<unk>好不好用</unk>
plus8 好用吗	plus8好不好用	1	<unk> 好用吗</unk>	<unk>好不好用</unk>

· 数据预处理-OOV(未登录词)问题优化

句子1	句子2	标签	处理后, 句子1	处理后,句子2
plus8 好用吗	plus9好不好用	0	<unk-0> 好用吗</unk-0>	<unk-1> 好不好用</unk-1>
plus8 好用吗	plus8好不好用	1	<unk-0> 好用吗</unk-0>	<unk-0> 好不好用</unk-0>

区分的OOV词优化

OOV策略	Baseline	Baseline + OOV优化
AUC	0.8855	0.8891

其中, M=9 K=5

- · MLM预训练-mask策略
 - **dynamic mask** 每个epoch,随机动态mask;
 - **ngram mask** mask 连续的 ngram 片段;
 - similar ngram mask 训练word2vec模型,用词向量计算ngram的相似度。

Mask策略	dynamic mask	ngram mask	similar ngram mask
AUC	0.8981	0.9018	0.9028

- · MLM预训练-对抗训练
 - FGM
 - PGD

指标更好,但训练速度较慢,最终没有使用。

对抗训练	baseline	baseline + fgm	baseline + pgd
AUC	0.9102	0.9116	0.9121

・ MLM预训练

• 句子对最大长度: 32

• 数据对偶扩增

• 训练9个模型,线上训练总时长46h

初始化参数	batch size	epoch	lr	use_fgm	线上训练时间 (单GPU V100)
uer/bert-base	512	60	1.5e-4	false	10h
uer/bert-base	512	60	1.5e-4	true	20h
uer/bert-large	576	50	1.0e-4	false	23h
hfl/roberta-base	512	60	1.5e-4	false	10h
hfl/roberta-base	512	60	1.5e-4	true	20h
hfl/roberta-large	576	50	1.0e-4	false	23h
hfl/macbert-base	512	60	1.5e-4	false	10h
hfl/macbert-base	512	60	1.5e-4	true	20h
hfl/macbert-large	576	50	1.0e-4	false	23h

其中, M=9 K=5

· K-fold 分类模型finetune

- 对抗训练(FGM, PGD)
- SWA(Stochastic Weight Averaging)

模型	baseline	baseline + fgm	baseline + pgd	baseline + fgm + swa
AUC	0.9028	0.9074	0.9076	0.9102

其中, M=9 K=5

・构建soft-label

一共训练了M*K个分类模型,对于每条数据,有M*(K-1)个模型作为训练集,有 M个模型作为验证集;

记模型 i在该条数据上的预测分数为 $score_i$,则该条数据的soft-label计算公式如下:

$$label = (\alpha * \frac{1}{M*(K-1)} * \sum_{i \in \mathcal{W}} score_i) + ((1-\alpha) * \frac{1}{M} * \sum_{j \in 验证模型} score_j)$$

其中, α =0.55

模型	baseline	baseline + soft-label
AUC	0.9156	0.9188

其中, M=9 K=5

classifier ・构建大模型 concat GPU 0 GPU 2 GPU 3 GPU 1 bert-base-fgm bert-large roberta-large macbert-large roberta-basefgm macbert-basebert-base roberta-base macbert-base fgm input

・全量数据训练分类模型

模型	bert-base	bert-large	3 base + 3 large	6 base + 3 large
AUC	0.9504	0.9521	0.9553	0.9561

模型越大,模型的泛化性越好

其中, M=9 K=5

其中, M=9 K=5

・性能优化

Tensorrt重写ensemble模型,构建一个tensorrt 模型。 最终线上提交结果融合了6个base模型和 3个large模型,平均latency为14ms。

排名	参与者	组织	score	valid_predict_co	o avg_time
1	⊗ AI小花	艾耕科技	0.959319	50000.00	0.01
2	[none]	清华大学	0.958319	50000.00	0.02
3	⊗ ac milan	acmilan	0.957941	50000.00	0.02
4	∅ 白[MASK]	清博	0.957908	50000.00	0.02
5		科讯嘉联	0.957870	50000.00	0.02
6	LOL王者	电子科技大学	0.957833	50000.00	0.02

- 预训练耗时较长, 但是预训练过程并不需要经常更新
- 训练分类模型训练时间较短,可以做到每天更新

・鲁棒性

左图是我们线上提交的镜像,其中一个模型(macbert-large)的训练loss图,该模型已经发散

最终的模型是9个小模型ensemble的结果,如果单个模型训练异常, 也不会太大影响整个算法的效果

・算法性能

快速迭代性 落地 算法性能 鲁棒性

- ▶ 单GPU即可部署, 需要的计算资源较少
- ▶ 单GPU V100,模型latency 14ms,可以满足大部分任务速度要求
- ➤ 单GPU V100,单模型(bert-base)latency 1ms,可以满足大部分任务速度要求

方案总结

🛂 创新性

模块	创新点	价值
算法设计思路	性能优先,牺牲精度换取速度	优化训练和推理过程,使得在有限的时间中, 训练更多的模型,在推理阶段融合更多的模 型
数据处理	优化OOV问题	缓解oov问题,提升模型指标
₽ 41 ₽ 43 ₹ 211 <i>4±</i>	similar ngram mask	加快模型收敛速度,提高模型泛化性
MLM预训练	对抗训练(FGM)	提高模型泛化性
// * + 井 平川 ::	对抗训练(FGM)	提高模型泛化性
分类模型finetune	SWA	提高模型泛化性
构建soft-label	kfold soft-label计算	充分利用训练数据,提高模型泛化性
性能优化	tensorrt	提升模型性能,优化latency
算法pipeline	多模型ensemble	提高系统鲁棒性

方案总结

实用性

训练速度快	pipeline训练时间50h,单模型训练时间11h
推理速度快	latency 14ms
算法效果好	AUC: 0.9593
模型可快速迭代	分类模型训练时间短, 支持每日更新迭代
系统鲁棒性高	ensemble多个模型,即使部分模型训练失败,对系统结果 影响较小
硬件计算资源需求少	单个GPU即可部署

部署生产可能碰到的问题: 算法训练使用了混合精度,推理利用了tensorrt fp16, 需要GPU支持tensor core。

方案总结

√ 总结

◆牺牲单模型精度, 换取更快的速度

➤ 使用bert, 不用nezha (牺牲2k)

➤ 使用fgm,不用pgd (牺牲0.5k)

▶ 推理使用fp16, 不用fp32 (牺牲0.3k)

▶ 不用对称模型 (牺牲0.3k)

◆充分优化性能

- > 训练开启混合精度训练
- ➤ 优化数据处理和mask策略性能,使得CPU速度和GPU速度匹配
- ▶ 推理使用tensorrt,充分利用V100显卡计算单元,GPU占有率接近100%

◆多个"小"模型ensemble 优于 单个大模型

- ▶ 训练更容易
- ▶ 鲁棒性更高

科学研究

- 更加高效的模型结构
- 更加快速的训练方法
- 更高效的模型压缩算法

实际应用

• 该方案的部署需要较大的内存和较强的计算设备,目前只能部署到GPU服务器上。 如果能让模型在移动设备上运行,必然能进一步提高产品的用户体验。

