МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №1

по дисциплине «ПРОГРАММИРОВАНИЕ»

Вариант № 1328

Выполнил: Студент группы Р3125 Шадрухин Александр Сергеевич Преподаватель: Максимов Андрей Николаевич

Текст задания:

Введите вариант: 1328

- 1. Создать одномерный массив а типа int. Заполнить его числами от 6 до 18 включительно в порядке убывания.
- 2. Создать одномерный массив x типа double. Заполнить его 13-ю случайными числами в диапазоне от -5.0 до 7.0.
- 3. Создать двумерный массив а размером 13x13. Вычислить его элементы по следующей формуле (где x = x[j]):

```
\circ если a[i] = 8, то a[i][j] = \arctan\left(e^{\sqrt[3]{-\cos^2(x)}}\right); \circ если a[i] \in \{6, 7, 11, 12, 17, 18\}, то a[i][j] = \frac{\left(e^x \cdot (\sin(x) + 0.25)\right)^3 - 1}{\left(\arcsin\left(\frac{x+1}{12}\right)\right)^{\frac{\left(\frac{x}{3}/4\right)^x}{0.5 - \arctan\left(\frac{x+1}{12}\right)}}}; \circ для остальных значений a[i]: a[i][j] = \ln\left(\left(2 \cdot \left(5 + \left(e^x \cdot (3 + |x|)\right)^{\cos(e^x)}\right)\right)^{(\arctan(\cos(x)))^{\sin((2 \cdot x)^x)}}\right).
```

4. Напечатать полученный в результате массив в формате с двумя знаками после запятой.

Код программы:

```
import static java.lang.Math.*;
public class Main {
  public static void main(String[] args) {
    int[] h = new int[13];
    int a = 18;
    for (int i = 0; i < h.length; i++) {
       h[i] = a;
       a--;
    }
    double[] x = new double[13];
    double x1 = -5.0, x2 = 7.0, m;
    for (int i = 0; i < h.length; i++) {
       m = x1 + (Math.random() * ((x2 - x1) + 1));
       x[i] = m;
    }
    calculatingTheElementsOfAnArray(x, h);
  }
  public static void calculatingTheElementsOfAnArray(double[] x, int[] h){
    double[][] k = new double[13][13];
    for (int i = 0; i < 13; i++) {
       for (int j = 0; j < 13; j++) {
```

```
double x3 = x[j];
                                                           if (h[i] == 8) {
                                                                          k[i][j] = atan(Math.pow(E, Math.cbrt(Math.pow(-cos(x3), 2))));
                                                           } else if (h[i] == 6 || h[i] == 7 || h[i] == 11 || h[i] == 12 || h[i] == 17 || h[i] == 18) {
                                                                          k[i][j] = Math.pow(Math.pow(E, (x3)) * (sin(x3) + 0.25), 3) - 1 / Math.pow(asin(((x3) + 1) / 12), 4) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (25) / (2
(Math.pow(((x3) / 3) / 4, (x3)) / (0.5 - atan(((x3) + 1) / 12))));
                                                           } else {
                                                                          k[i][j] = Math.log(Math.pow(2*(5+Math.pow(Math.pow(E, (x3))*(3+Math.abs(x3)), cos(Math.pow(E, (x3))*(3+Math.abs(x3)), cos(Math.pow(E, (x3))*(3+Math.abs(x3)), cos(Math.pow(E, (x3))*(3+Math.abs(x3)), cos(Math.abs(x3)), cos
(x3))))), Math.pow(atan(cos(x3)), sin(Math.pow(2 * (x3), (x3)))));
                                                           }
                                            }
                            }
                            result(k);
              }
              public static void result(double[][] k){
                            for(int i = 0; i < 13; i++) {
                                            for (int j = 0; j < 13; j++) {
                                                           System.out.printf("%14.2f", k[i][j]);
                                                           System.out.print(" ");
                                            }
                                            System.out.println();
                            }
             }
}
```

Результат работы:

Вариант 1.

-3046,84	NaN	508,46	846,07	1079982,72	NaN	NaN	NaN	852,86	NaN	-10744,48	-1554301,41	730,35
-3046,84	NaN	508,46	846,07	1079982,72	NaN	NaN	NaN	852,86	NaN	-10744,48	-1554301,41	730,35
3,33	NaN	NaN	NaN	4,97	NaN	NaN	NaN	NaN	NaN	2,09	8,97	NaN
3,33	NaN	NaN	NaN	4,97	NaN	NaN	NaN	NaN	NaN	2,09	8,97	NaN
3,33	NaN	NaN	NaN	4,97	NaN	NaN	NaN	NaN	NaN	2,09	8,97	NaN
3,33	NaN	NaN	NaN	4,97	NaN	NaN	NaN	NaN	NaN	2,09	8,97	NaN
-3046,84	NaN	508,46	846,07	1079982,72	NaN	NaN	NaN	852,86	NaN	-10744,48	-1554301,41	730,35
-3046,84	NaN	508,46	846,07	1079982,72	NaN	NaN	NaN	852,86	NaN	-10744,48	-1554301,41	730,35
3,33	NaN	NaN	NaN	4,97	NaN	NaN	NaN	NaN	NaN	2,09	8,97	NaN
3,33	NaN	NaN	NaN	4,97	NaN	NaN	NaN	NaN	NaN	2,09	8,97	NaN
1,21	1,00	1,01			0,97							1,08
-3046,84	NaN	508,46	846,07	1079982,72	NaN	NaN	NaN	852,86	NaN	-10744,48	-1554301,41	730,35
-3046,84	NaN	508,46	846,07	1079982,72	NaN	NaN	NaN	852,86	NaN	-10744,48	-1554301,41	730,35

Вариант 2.

-3046,84	NaN	508,46	846,07	1079982,72	NaN	NaN	NaN	852,86	NaN	-10744,48	-1554301,41	730,35
-3046,84	NaN	508,46	846,07	1079982,72	NaN	NaN	NaN	852,86	NaN	-10744,48	-1554301,41	730,35
3,33	NaN	NaN	NaN	4,97	NaN	NaN	NaN	NaN	NaN	2,09	8,97	NaN
3,33	NaN	NaN	NaN	4,97	NaN	NaN	NaN	NaN	NaN	2,09	8,97	NaN
3,33	NaN	NaN	NaN	4,97	NaN	NaN	NaN	NaN	NaN	2,09	8,97	NaN
3,33	NaN	NaN	NaN	4,97	NaN	NaN	NaN	NaN	NaN	2,09	8,97	NaN
-3046,84	NaN	508,46	846,07	1079982,72	NaN	NaN	NaN	852,86	NaN	-10744,48	-1554301,41	730,35
-3046,84	NaN	508,46	846,07	1079982,72	NaN	NaN	NaN	852,86	NaN	-10744,48	-1554301,41	730,35
3,33	NaN	NaN	NaN	4,97	NaN	NaN	NaN	NaN	NaN	2,09	8,97	NaN
3,33	NaN	NaN	NaN	4,97	NaN	NaN	NaN	NaN	NaN	2,09	8,97	NaN
	1,00	1,01			0,97							1,08
-3046,84	NaN	508,46	846,07	1079982,72	NaN	NaN	NaN	852,86	NaN	-10744,48	-1554301,41	730,35
-3046,84	NaN	508,46	846,07	1079982,72	NaN	NaN	NaN	852,86	NaN	-10744,48	-1554301,41	730,35

Вывод:

Во время выполнения лабораторной работы я научился создавать на языке Java одномерные и двумерные массивы, выводить форматированные данные в консоль, работать с классом Math (точнее с тригонометрическими и степенными функциями и константами), организовывать циклы со счётчиком. Эти базовые знания пригодятся мне для выполнения более сложных задач в будущем.

