BF4.81

March 25, 2020

1 Mekanik II, problem 4.81

A person exerts a force $\mathbf{F} = 2\hat{x} - 4\hat{y} + 12\hat{z}$ on the gate at point C. Point C lies in the x-y plane and $b = 0.6 \ m$ and $h = 1.0 \ m$. What moment does the person exert about the gate's hinge axis, which

is coincindent with the y-axis? and b = 0.6 m and h = 1.0 m

2 Lösning:

2.1 Friläggning

Börja med att frilägga grinden.

På grinden verkar visserligen tyngdkraft (masscentrum) och kontaktkrafter (vid gångjärnen) men det som söks är bara kraftmomentet från kraften **F**

$$\mathbf{F} = 2\hat{x} - 4\hat{y} + 12\hat{z}$$

så vi kan här bortse från övriga krafter.

Här är det kraftmomentet kring \hat{y} -axeln som söks.

2.2 Fysikaliska samband

Generellt gäller att kraftmomentet \mathbf{M}_v kring en axel $\mathbf{v} = v\hat{v}$ kan beräknas genom att först beräkna kraftmomentet \mathbf{M}_P för en punkt \mathbf{P} som ligger någonstans på axeln \mathbf{v} och sedan använda sambandet

$$\mathbf{M}_v = (\mathbf{M}_P \cdot \hat{v})\hat{v}$$

Momentekvationen ger att

$$\mathbf{M}_P = \sum_i \mathbf{r_i} \times \mathbf{F_i}$$

där \mathbf{r}_i är vektorn från momentpunkten \mathbf{P} till där respektive kraft \mathbf{F}_i verkar. Ekvationen stämmer för vilken val av \mathbf{P} som helst.

2.3 Beräkning

I det här fallet kan vi välja vilken punkt som helst P längs \hat{y} -axeln som momentpunkt. Ett bra val kan vara punkten A eftersom vektorn \mathbf{r}_{AC} endast har en komponent i x-led, vilket kan underlätta

beräkningarna. Den enda kraft som bidrar till det sökta momentet är enligt uppgiften F.

För det aktuella systemet har vi

$$\mathbf{r}_{AC} = b\hat{x}$$

$$\mathbf{F} = 2\hat{x} - 4\hat{y} + 12\hat{z}$$

$$\mathbf{M}_A = \mathbf{r}_{AC} \times \mathbf{F}$$

$$\mathbf{r}_{AC} imes \mathbf{F} = \left| egin{array}{cccc} \hat{x} & \hat{y} & \hat{z} \\ b & 0 & 0 \\ 2 & -4 & 12 \end{array}
ight| = -12b\hat{y} - 4b\hat{z}$$

Med kraftmomentet \mathbf{M}_A uträknat kan vi nu räkna momentet \mathbf{M}_V längs \hat{y} -axeln som:

$$\mathbf{M}_{y} = (\mathbf{M}_{A} \cdot \hat{y})\hat{y} = ((-12b\hat{y} - 4b\hat{z}) \cdot \hat{y})\hat{y} = (-12b(\hat{y} \cdot \hat{y}) - 4b(\hat{z} \cdot \hat{y}))\hat{y} = (-12b * 1 - 4b * 0)\hat{y} = -12b\hat{y}$$

Med instatt värde b = 0.6m blir $\mathbf{M}_y = -12b\hat{y} = -7.2\hat{y}$ (Nm)

2.4 Svar

Kraftmomentet kring y-axeln är $\mathbf{M}_{v} = -12b\hat{y} = 7.2\hat{y}$ (Nm)

2.5 Analys

Att x- och y-komponenterna av kraften F inte ger ett bidrag till kraftmomentet M_y kan intuitivt förstås av att dessa komponenter skulle vilja rotera grinden i xz-planet i det givna koordinatsystemet. Z-komponenten av F pekar ut ur planet vilket ockå gör att det är rimligt att det resulterande momentet är negativt givet uppgiftens geometri.