SOLUTIONS SHEET 1

YANNIS BÄHNI

Exercise 1.

(a) Clearly, this holds for the discrete topology, i.e. $\mathcal{T}_a = 2^X$. Let \mathcal{T}'_a be another topology on X satisfying the property. Consider the functions $f:(X,2^X)\to (X,\mathcal{T}'_a)$ and $g:(X,\mathcal{T}'_a)\to (X,2^X)$ defined by f(x):=x and g(x):=x, respectively. Since both topologies on X have the property, we get that f and g are continuous. Moreover

$$g \circ f = \mathrm{id}_{(X,2^X)}$$
 and $f \circ g = \mathrm{id}_{(X,\mathcal{T}_a')}$.

Thus $(X, 2^X) \approx (X, \mathcal{T}'_a)$.

Exercise 2.

Exercise 3.

Exercise 4. Let $g, \tilde{g}: Y \to X$ be inverses of f. Then we have

$$g = g \circ id_Y = g \circ (f \circ \widetilde{g}) = (g \circ f) \circ \widetilde{g} = id_X \circ \widetilde{g} = \widetilde{g}.$$

Thus we can unambiguously write $f^{-1} := g$.

Exercise 5. We have that

$$((g \circ f)^{-1} \circ g) \circ f = (g \circ f)^{-1} \circ (g \circ f) = \mathrm{id}_X$$
$$((h \circ g)^{-1} \circ h) \circ g = (h \circ g)^{-1} \circ (h \circ g) = \mathrm{id}_Y$$
$$h \circ (g \circ (h \circ g)^{-1}) = (h \circ g) \circ (h \circ g)^{-1} = \mathrm{id}_W$$

Exercise 6. Assume $f: X \to Y$ has the left cancellation property. Let $x, y \in X$ such that f(x) = f(y). Now let $Z := \{x, y\}$. Define two functions $c_x, c_y : Z \to X$ by $c_x(z) := x$ and $c_y(z) := y$, respectively. Now

$$f \circ c_x = f(x) = f(y) = f \circ c_y$$

holds by assumption. Thus the left cancellation property implies that $c_x = c_y$, hence x = y and f is injective. Conversly, assume that f is injective. Let $\alpha, \beta : Z \to X$ such that $f \circ \alpha = f \circ \beta$ and $z \in Z$. Then we have that $f(\alpha(z)) = f(\beta(z))$ and thus by injectivity, $\alpha(z) = \beta(z)$.

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.