Week 6 Video 1

Visualization

Learning Curves

Visualization

Displaying information in a meaningful fashion

Visualization Should... (Tufte, 1983)

- Show the data
- Induce the viewer to think about the substance
- Avoid distorting what the data have to say
- Make large data sets coherent
- Encourage the eye to compare different pieces of data
- Reveal the data at several levels
- (And other stuff too)

Visualization

- A big area
- Worthy of a course in its own right

Rather than discussing standard visualizations

 I'll discuss a few visualizations that are particularly important with educational data

Learning Curves

One of the most important visualizations in education

□ Briefly discussed in Week 4

I'll go into more depth today

The Classic Learning Curve

Assumptions

 The student is practicing the same skill several times in (approximately) the same fashion

- Completing a physics problem set
- □ Reading the same word in several stories
- Learning to complete an assembly line procedure
 - Early application! (Crossman, 1959)

Assumptions

 Similar methods and considerations apply to situations where the student is recalling the same knowledge several times

Assumptions

- We have some way to measure student performance over time
 - Speed or accuracy

Learning LISP programming in the LISP Tutor (Corbett & Anderson, 1995)

Learning in Cognitive Tutor Geometry (Ritter et al., 2007)

A certain characteristic pattern

Power Law of Learning*

Performance (both speed and accuracy) improves
with a power function

* -- May actually be an exponential function rather than a power function (Heathcote, Brown, & Mewhort, 2000)

Called Power Law

Because speed and accuracy both follow a power curve

 Radical improvement at first which slows over time towards an asymptote

 Passing the asymptote usually involves developing entirely new strategy

Passing the Asymptote

□ Famous example: Fosbury Flop

http://www.youtube.com/watch?v=Id4W6VA0uLc

Power Law of Learning proven to apply across many domains

- Simple domains
 - Pressing correct button on stimulus
- Complex problem-solving domains
 - Math
 - Programming
- Real-world domains
 - □ Cigar-making in factories (Crossman, 1959)

Real-world data

□ Are rarely perfectly smooth...

(At least not without hundreds of students or more)

Example from a minute ago

Making inference from learning curves

Making inference from learning curves

Via visual inspection of the curve form

"Normal learning"

No learning going on

What might this graph mean?

Insert Pause-Continue Quiz Here

Student has already learned skill for the most part

What might this graph mean?

Insert Pause-Continue Quiz Here

Student learned a new strategy and "broke through" the asymptote

What might this graph mean?

Insert Pause-Continue Quiz Here4

Two skills treated as the same skill (Corbett & Anderson, 1995)

Uses

 To understand how (and whether) a skill is being learned across students

Uses

 To study and refine item-skill mappings in educational software

 As discussed in week 4, Pittsburgh Science of Learning Center DataShop (Koedinger et al., 2010) is a common tool for doing this

Next lecture

Moment-by-Moment Learning Graphs