Déc - Séance du 11.12. - Statistiques à deux variables

EXERCICES

1 Cadre

Dans tous les exercices, les calculs de fréquences seront arrondis à 3 décimales (1 seule si elles sont en %.)

Exercice 1

Dans une entreprise, on a relevé le nombre quotidien de bons de commande durant une période de 15 jours et on a obtenu la série suivante : 8 / 10 / 12 / 10 / 10 / 12 / 9 / 11 / 10 / 9 / 12 / 11 / 12 / 6 / 9

- 1. Dépouiller ces données et faire le tableau valeur / effectif / fréquence / fréquence cumulée.
- 2. Faire la représentation en diagramme bâton.
- 3. Déterminer la moyenne et l'écart-type de cette série (résultats arrondis à 1 décimale).
- 4. Déterminer la médiane, les quartiles et l'inter-quartile de cette série statistique.

		V1/N1	Royrel: Variance = 02
Effectif total	n	15	YI VI
Minimum I	Min	6	East interquartile: Q3-Q1
Maximum	Vax	12	Cart interpresent. Q3 Q1
Etendue	Е	6	
Moyenne	X	10.06667	
Ecart type	σ	1.651935	
Variance		2.728889	
Troisième quartile		12	
Médiane		10	
Ecart interquartile	FI	3	

Exercice 2

Pour son bilan de fin d'année, un directeur des ventes a relevé sur l'année le nombre unités vendues pour chaque article de son magasin et a regroupé ces données par classes suivant le prix de l'article (par exemple, concernant les articles dont les prix sont compris entre 250 et 350 euros, on en a vendu 720) :

Classe de prix en euros	Nombre d'articles (de cette classe de prix) vendus
[50; 150[80
[150; 250[160
[250; 350[720
[350; 450[1 680
[450; 550[2 720
[550; 650[1760
[650; 750[640
[750; 850[160
[850; 950]	80

- 1. Faire le tableau classes / centres / effectifs / fréquence / bornes supérieures / fréquences cumulées.
- Faire l'histogramme (les classes ont la même amplitude) de cette statistique (abscisse : 1cm/100).
- 3. En considérant l'effectif de chaque classe regroupé au centre de la classe, déterminer la moyenne et l'écarttype de cette série statistique (arrondis à l'entier).
- 4. Construire la courbe des fréquences cumulées croissantes (abscisse : 1cm/100 et ordonnée : 10 cm d'unité).
- $\textbf{5.} \ \ D\'{e}terminer, par interpolation, la m\'{e}diane, les quartiles et l'inter-quartile de cette s\'{e}rie (arrondis à l'entier).$

±•						
Classes €	Bornes supérieures	Centres	Effectifs	Fréquences	Fréquences cumulées croissantes	Fréquences cumulées décroissantes
[50 ; 150[150	100	80	0,01	0,01	1
[150 ; 250[250	200	160	0,02	0,03	0,99
[250; 350[350	300	720	0,09	0,12	0,97
[350 ; 450[450	400	1680	0,21	0,33	0,88
[450 ; 550[550	500	2720	0,34	0,67	0,67
[550 ; 650[650	600	1760	0,22	0,89	0,33
[650 ; 750[750	700	640	0,08	0,97	0,11
[750 ; 850[850	800	160	0,02	0,99	0,03
[850 ; 950[950	900	80	0,01	1	0,01
		-	8000	1		

Interprétation des fréquences cumulées :

• 33 % des valeurs sont inférieures ou égales à 450 €.

• 67 % des valeurs sont supérieures ou égales à 450 €.

133.7871

3.						
			V.	L/N1		
	Effectif total	n			800	10
	Minimum	Min			10	10
	Maximum	Max			90	10
	Etendue	Е			80	10
	Moyenne	$\overline{\times}$			49	9

Ecart type

Pour tracer le diagramme ci-contre, on utilise les points donnés par les colonnes surlignées en jaune ci-dessus.

$$Q_1 \approx 411$$

$$Med = 500$$

$$Q_3 \approx 586$$

Intervalle interquartile : [411;586]Ecart interquartile : 586 - 411 = 175

Exercice 3

Dans une classe, les notes obtenues à un devoir sont les suivantes : 8/6/9/18/9/11/9/13/7/13/14/7/10/10/10/7/13/14/10/13/15/5/16/13/9/10/7/12/5/12/2/9/9/8/8.

- 1. Dépouiller ces données et faire le tableau valeur / effectif.
- 2. Faire la représentation en diagramme bâton (abscisse : 1cm/1 point et ordonnée : 1 cm/1 copie).
- 3. Déterminer la moyenne \overline{x} et l'écart-type σ de cette série (résultats arrondis à 1 décimale).
- **4.** Déterminer le pourcentage de notes compris dans l'intervalle $[\overline{x} \sigma; \overline{x} + \sigma]$.

Exercice 4

Une maison d'édition confie la frappe de ses manuscrits à une entreprise spécialisée dans la saisie informatique. Les documents sont découpés en parties possédant chacune le même nombre de caractères qui sont ensuite retournées à l'auteur pour correction. Sur chacune des parties de documents ainsi vérifiées, on a relevé le nombre de fautes de frappe et on regroupé les relevés par classes pour obtenir le tableau suivant :

Nombre de fautes de frappe	Classe	Fréquence de parties corrigées en $\%$
de 75 à 79	[75; 80[5
de 80 à 84	[80; 85[10
de 85 à 89	[85; 90[20
de 90 à 94	[90; 95[36
de 95 à 99	[95; 100[15
de 100 à 104	[100; 105[8
de 105 à 109	[105; 110[6

Par exemple, 36 % des parties corrigées comportaient de 90 à 94 fautes (classe notée [90; 95]).

- 1. Faire le tableau classes / centres / fréquence / bornes supérieures / fréquences cumulées.
- En considérant l'effectif de chaque classe regroupé au centre de la classe, déterminer la moyenne et l'écarttype de cette série statistique (arrondis à 1 décimale).
- 3. Construire la ligne brisée des fréquences cumulées (abscisse : 1cm/5 fautes et ordonnée : 10 cm/100 %).
- 4. Déterminer, par interpolation, la médiane (arrondie à 1 décimale).

Exercice 5

Dans une entreprise, on a sélectionné 1000 employés à qui on a fait passer un test de 10 questions concernant les consignes de sécurité à connaître. L'analyse des résultats a donné le dépouillement suivant :

Nb de réponses exactes	4	5	6	7	8	9	10
Nb d'employés ayant obtenu cette note	48	71	262	381	167	48	23

- 1. Faire le tableau valeur / effectif / fréquence / fréquence cumulée.
- 2. Faire la représentation en diagramme bâton (abscisse : 1cm/1 point et ordonnée : 1cm/50 employés).
- 3. Déterminer la moyenne et l'écart-type de cette série (résultats arrondis à 2 décimales).
- 4. Déterminer la médiane, les quartiles et l'inter-quartile de cette série statistique.
- 5. On estime que la formation à la sécurité a été faite correctement si au moins 95 % des employés a obtenu la moyenne (5 sur 10) ET qu'u moins un quart d'entre eux a obtenu au moins 8 au test.

Que pouvez-vous conclure du résultat de ce test?

UF2/DOC 03

Statistiques à deux variables

I. Intro

i Idée

Existe-t-il un **lien** (statistique, c'est-à-dire *mathématique*, et non de cause à effet) entre deux caractères d'une population? Pour cela, on étudie *simultanément* les deux caractères et on présente les résultats sous forme de tableaux ou de graphiques.

II. Tableaux de données, nuages de points

II.1. Exemples

> Exemple 1

Une société a mis au point un nouveau matériel destiné aux PME de logistique et mène un enquête dans la région de Provence-Alpes-Côte d'Azur auprès de 500 entreprises aptes à recevoir ce matériel, pour déterminer à quel prix chacune de ces entreprises accepterait d'acquérir ce nouveau matériel :

Prix proposé en milliers d'euros x_i	40	36	32	28	24	20	16	12	10	8
Nb d'entreprises disposées à acheter à ce prix y_i	60	70	130	210	240	340	390	420	440	500

On place dans un repère les points $M_i(x_i;y_i)$; le graphique obtenu est appelé nuage de points de la série statistique (on ne doit pas relier ces points!).

> Exemple 2

Pour des véhicules légers de la gamme 9 à 11 chevaux de puissance fiscale, roulant en palier (ou en descente), on a relevé les consommations moyenne et les vitesses correspondantes :

Vitesse en km/h xi	10	20	30	40	50	60	70	80	90
Consommation en L/100km yi	16,5	11,5	9	7,5	6,8	6,6	7	7,5	9

