MS/MS VIEWER

Helen Ashdown

Objective: Display peptide fragmentation spectra from an mzXMLfile

■ Input:

- mzXML file: 17mix_test2.mzxml.gz
- Scan number: 1298
- Peptide sequence: TYDSYLGDDYVR

■ Requirements:

- Extract given spectra from file using scan number
- Peptide's b-ion and y-ion m/z values computed (Theoretical)
- Annotate spectra peaks which match the theoretical values
- Use output figure to determine whether peptide is a good match to spectrum

Peptide fragmentation spectra of Scan No. with matches in Sequence

Trade-offs

- I should have used a better data structure for my matches to eventually pull out the relevant information needed to plot them on my spectra graph.
- Keeping track of the matches data set to plot could be more concise.
- Possible other routes for data structure would be an overall encompassing function for matches that include all

How I tested calculated theoretical B and Y ion values:

(Less accurate) Found spectra of same peptide online

a+	b+	#	Seq	#	y+
74.0600	102.0550	1	Т	12	
237.1234	265.1183	2	Υ	11	1365.5957
352.1503	380.1452	3	D	10	1202.5324
439.1823	467.1773	4	S	9	1087.5055
602.2457	630.2406	5	Υ	8	1000.4734
715.3297	743.3246	6	L	7	837.4101
772.3512	800.3461	7	G	6	724.3260
887.3781	915.3731	8	D	5	667.3046
1002.4051	1030.4000	9	D	4	552.2776
1165.4684	1193.4633	10	Υ	3	437.2507
1264.5368	1292.5317	11	٧	2	274.1874
		12	R	1	175.1190
1264.5368					

[Click] to move table

Tricks I learned:

- Simple math for the bion and yion m/z values
- Using matplotlib to create scatter plot for spectra was relatively user friendly and easy to manipulate
- Once both the sequence values and scan values were created and stored, executing the match criteria was relatively straight forward
- Checking my own calculations from internet sources was quite helpful

■ Bugs I (also) learned:

- It took me quite awhile to even get to a point where I could even extract anything from xml file (used a lot of nested loops)
- When I did get something, it was pure gibberish
- Luckily Dr. Edwards provided me with magical code to extract my peaks element
- Annotating matplotlib was not user friendly and I would not recommend using it if you want to write a program for say, wedding seat assignments (using text and figures was a drag)

Modules and packages

- The most important package was the xml.etree.ElementTree as ET to parse through my xml file.
- Using the iterparse function was easily the most important component to get my project off the ground.
- Relatively user friendly and easily applicable to a lot of files and data we used this semester
- I have my own thoughts about the application of matplot lib to annotate my spectra, but overall using that package (along with pyplot and numpy) was very effective and I did like learning so much using matplotlib

- Aspects that were straight forward
 - Assigning my x and y values for my spectra plot!
 - The fundamental conceptual goal of the project I found very easy to understand
 - Because of that, when I reached the point of having all of my data it was easier to plan my next steps
 - The workflow of this project was very straightforward too.
 - I used simple data structures because I knew they worked and accomplished the task I needed them too

- Aspects that were straight backwards
 - I began this project the week of Thanksgiving, and I am very glad that I did. Over the weeks, I would slowly add the next component of my workflow
 - Like Dr. Edwards had mentioned when he introduced this project, the longest and most arduous task was parsing the mzXMLfile.
 - Even after I was able to access its contents, it took me just as long to decipher what was going on (picking the correct element)
 - It took me an hour to add a label to my matplotlib spectra, also they have a few versions which was confusing too

My big take aways

- During this project the B key fell off of my keyboard.
- What I learned about bioinformatics was how to analyze data in different forms and altering it to become comparable against data with the same 'components'.
- i.e. taking the xml file and the peptide sequence and extracting the relevant data, then formatting that data in a way which made it be able to compare and contrast, thereby allowing us to draw conclusions about the information.
- Having no prior coding experience, I learned that programming is a lot like being a pianist like I am. It takes a lot of problem-solving and creativity, but I find myself cursing more at Beethoven than Dr. Edwards.
- All in all, I have come away from this semester with a set of skills applicable to many scientific and computational fields.
- And shoutout to Dr. Fauci.