# MILS Assignment I Report

### Ian Ku

### **Dataset**

The mini-ImageNet dataset was used for all experiments. It consists of 50 classes with training, validation, and test sets defined in train.txt, val.txt, and test.txt. All images were resized to 32x32 or 224x224 as appropriate for the network architecture.

## Problem A: Dynamic Convolution Module

## Design Objective

We designed a convolutional module that:

- Handles arbitrary input channels (e.g., RGB, RG, R)
- Is spatial size invariant
- Dynamically generates convolution kernels

# **Training Configuration**

All models were trained using the same training protocol to ensure fair comparison. The key hyperparameters and strategies are summarized below:

- Optimizer: Adam optimizer with an initial learning rate of  $1 \times 10^{-3}$
- Loss Function: Cross-Entropy Loss for multi-class classification
- Batch Size: 10
- Max Epochs: 40 epochs
- Early Stopping: Enabled, with a patience of 5 epochs based on validation loss in Section A and 10 in Section B
- Learning Rate Scheduler: Not used
- Input Size:
  - $-32 \times 32$  for DynamicCNN and BaselineCNN (Problem A)

- $-224 \times 224$  for ResNet34 and custom 2/4-layer CNNs (Problem B)
- Channel Robustness: For Problem A, optional RandomChannelDrop was used with probability 0.3 to simulate partial channel inputs (e.g., RG, R)
- Weight Initialization: PyTorch default initialization

### Architectures

### DynamicCNN v1

Input Channels: 1{3

- → MLP (input channel as condition) → Dynamic Kernel
- $\rightarrow$  Conv2D  $\rightarrow$  BN  $\rightarrow$  ReLU  $\rightarrow$  GAP  $\rightarrow$  FC(32 $\rightarrow$ 50)

### DynamicCNN v2

Input Channels: 1{3

- $\rightarrow$  CNN-based kernel generator  $\rightarrow$  Dynamic Kernel
- → Conv2D → BN → ReLU
- $\rightarrow$  Conv(32 $\rightarrow$ 64)  $\rightarrow$  BN  $\rightarrow$  ReLU  $\rightarrow$  GAP
- $\rightarrow$  FC(64 $\rightarrow$ 128)  $\rightarrow$  ReLU  $\rightarrow$  FC(128 $\rightarrow$ 50)

#### Baseline CNN

Conv(3 $\rightarrow$ 32, 3x3)  $\rightarrow$  ReLU  $\rightarrow$  BN  $\rightarrow$  MaxPool Conv(32 $\rightarrow$ 64, 3x3)  $\rightarrow$  ReLU  $\rightarrow$  BN  $\rightarrow$  GAP FC(64 $\rightarrow$ 50)

## Results on Test Set (32x32)

### Without Channel Dropout:

| Model         | Accuracy | FLOPs       | Params  |
|---------------|----------|-------------|---------|
| DynamicCNN v1 | 0.2422   | 180.39 KMac | 31.57 K |
| DynamicCNN v2 | 0.1422   | 19.49 MMac  | 63.31 K |
| Baseline CNN  | 0.2844   | 5.95 MMac   | 22.83 K |



Figure 1: Training plot for Baseline CNN without random channel drop



Figure 2: Training plot for DynamicCNN v1 without random channel drop



Figure 3: Training plot for DynamicCNN v without random channel drop

### With RandomChannelDrop:

| Model         | Accuracy | FLOPs       | Params |
|---------------|----------|-------------|--------|
| DynamicCNN v1 | 0.1244   | 180.39 KMac |        |
| DynamicCNN v2 | 0.2244   | 19.49 MMac  |        |
| Baseline CNN  | 0.2422   | 5.95 MMac   |        |



Figure 4: Training plot for Baseline CNN with random channel drop



Figure 5: Training plot for DynamicCNN v1 with random channel drop



Figure 6: Training plot for DynamicCNN v2 with random channel drop

## Problem B: Two-Layer Network

## Design Goal

Design a 2-4 effective layer network achieving at least 90% of ResNet34's performance on mini-ImageNet (resized to  $224 \times 224$ ).

### Architectures

### ResNet34 (baseline)

```
Input → Conv(7x7, 64) → MaxPool
[3x BasicBlock(64)]
[4x BasicBlock(128)]
[6x BasicBlock(256)]
[3x BasicBlock(512)]
→ GAP → FC(50)
```

### Simple2LayerCNN

```
Conv(3\rightarrow32, 7x7) \rightarrow BN \rightarrow ReLU
Conv(32\rightarrow64, 5x5) \rightarrow BN \rightarrow ReLU \rightarrow SEBlock(64) \rightarrow MaxPool
Conv(64\rightarrow128, 5x5) \rightarrow BN \rightarrow ReLU \rightarrow SEBlock(128) \rightarrow GAP
FC(128\rightarrow128) \rightarrow ReLU \rightarrow FC(128\rightarrow50)
```

### Simple4LayerCNN

```
Conv(3\rightarrow32, 3x3) \rightarrow BN \rightarrow ReLU
Conv(32\rightarrow64, 3x3) \rightarrow BN \rightarrow ReLU
Conv(64\rightarrow128, 3x3) \rightarrow BN \rightarrow ReLU
Conv(128\rightarrow128, 3x3) \rightarrow BN \rightarrow ReLU
GAP \rightarrow FC(128\rightarrow128) \rightarrow ReLU \rightarrow FC(128\rightarrow50)
```

# Results (224x224)

| Model           | Accuracy | FLOPs                  | Params                 | Train Time     |
|-----------------|----------|------------------------|------------------------|----------------|
| ResNet34        | 0.5667   | $3.68~\mathrm{GMac}$   | 21.31 M                | 234.85 min     |
| Simple2LayerCNN | 0.4400   | 43.66  MMac            | 237.75  K              | $451.15 \min$  |
| Simple4LayerCNN | 0.4000   | $285.83~\mathrm{MMac}$ | $301.11 \; \mathrm{K}$ | $470.57 \min$  |
| SE2LayerCNN     | 0.4533   | $43.82~\mathrm{MMac}$  | $240.51~\mathrm{K}$    | $\xi 449 \min$ |



Figure 7: ResNet34



Figure 8: Attention1



Figure 9: Attention2



Figure 10: S2CNN 1



Figure 11: S2CNN 2



Figure 12: S4CNN

# Summary and Insights

### Problem A

- DynamicCNN v1 achieves best result without channel dropout.
- DynamicCNN v2 is more robust under channel variation.
- BaselineCNN provides stable performance overall.

### Problem B

- Simple2LayerCNN achieves 77.6% of ResNet34.
- SE2LayerCNN boosts accuracy with minor cost.
- Simple4LayerCNN deeper model did not improve performance.

# Appendix