2. Übungsblatt 27.04.2015

- $-A \in \mathsf{TIME}(t) \ (\in \mathsf{SPACE}(s)) \ \mathrm{gdw}. \ \mathrm{TM} \ \mathrm{akzeptiert} \ A \ \mathrm{in} \ \mathrm{Zeit} \ O(t) \ (\mathrm{Platz} \ O(s))$
- Funktion $f: \mathbb{N} \to \mathbb{N}$ heißt raumkonstruierbar, falls es eine DTM gibt, die bei Eingabe eines Wortes x einen Platzbedarf von genau f(|x|) hat.

Aufgabe 1: Es sei $f: \mathbb{N} \to \mathbb{N}$.

- a) Zeigen Sie: Gilt $A \in \mathsf{TIME}(f(n))$, so gilt auch $\overline{A} \in \mathsf{TIME}(f(n))$
- b) Zeigen Sie: Gilt $A \in \mathsf{SPACE}(f(n))$, so gilt auch $\overline{A} \in \mathsf{SPACE}(f(n))$
- c) Sind die Erkenntnisse übertragbar auf die Komplexitätsklassen NTIME bzw. NSPACE? Begründen Sie ihre Antwort.

Aufgabe 2: Es seien f, g raumkonstruierbare Funktionen und $k \in \mathbb{N}$. Zeigen Sie:

- a) f + g
- b) $f \cdot g$
- c) f^g
- d) $h(n) = n^k$

sind raumkonstruierbar.

Aufgabe 3: Geben Sie je eine Sprache aus der Klasse TIME(1) und SPACE(1) an.

Aufgabe 4: Im folgenden betrachten wir die aus der Vorlesung bekannte kontextfreie Sprache

$$A := \{0^i 1^i \mid i \ge 0\}.$$

Zeigen Sie, dass $A \in \mathsf{SPACE}(\log(n))$ gilt. Beschreiben Sie hierzu die Funktionsweise der Turingmaschine vollständig und begründen Sie den Platzbedarf der Maschine.

Aufgaben zum selber Lösen

Aufgabe 5: Es sei

$$B := \{ bin(0) \diamond bin(1) \diamond \cdots \diamond bin(m) \mid m \in \mathbb{N} \},\$$

wobei $\operatorname{bin}(k)$ für $k \in \mathbb{N}$ die Binärdarstellung von k ohne führende Nullen ist. Zeigen Sie, dass $B \in \mathsf{SPACE}(\log(\log(m)))$ gilt. Beschreiben Sie hierzu die Funktionsweise Ihrer Turingmaschine vollständig und zeigen Sie, dass der Platzbedarf der Maschine $O(\log(\log(m)))$ ist.

Hinweis: Vergleichen Sie benachbarte Binärzahlen miteinander.