Changelog - July 5th, 2023

Dane:

- Visualization
 - **Eraot**
 - Station distribution
 - Station data (hly / dly)
 - Soil moisture
 - Soil
- Updated importErgot script (rejects if incomplete) Merged districts 4840 and 4841/persisted changes
- Soil data (condensed and added to readme)
- Aggregated soil, ergot and weather data
- Feature engineering
- Started research/modeling

Daniel:

- Peer review
- **Ergot visualization**
- **Ergot** statistics
- Research on models
- Continue implementing autoencoder and ML models
- Cross validation techniques

Dharmit:

- **Ergot Visualisation**
- Soil Data Aggregation Satellite Soil Moisture Data
- Started research on models

Jay:

- Process soil moisture data
- Aggregate soil moisture data
- Soil moisture Visualization
- Soil moisture statistics
- Did some research and build a basic MLP model
- Tried different variation to merge different datasets

- Copernicus satellite data retrieval / aggregation
- Copernicus skip existing data
- Data Synchronization between databases
- Peer review
- Git/Python mentoring
- Data aggregation strategy
- Repo Linter Actions
 - Code format consistency Black
 - Code type consistency Mypy
 - Code PEP8 conformance PyLint

Aggregation strategy

Primary aggregation attributes

- Year
- District

- Future predictors
- Districts:
 - $MB = crop_district + 4600$
 - $SK = crop_district + 4700 1$
 - $AB = (crop_district)(10) + 4800$

- Very granular and many different soils per polygon
- Using weighted averages based on the percentage they occupy within their polygon Districts have multiple polygons
- Non numerical values become booleans, currently ignoring them

Weather: 365 days x features

Soil Moisture:

- Replaced null values
- Using year and district to aggregate and generated separate column for min, max and mean

Removed:

Water table (groundwater) Root restriction types Drainage Parent material textures Parent material chemicals Mode of depositions Sand texture

Visualization - Ergot

- 1. What kind of statistics we have done?
 - a. Correlation
 - b. Incidence ratio
- 2. What visualization we have created?
 - a. Correlation plots
 - b. Pair plots
 - c. Region plot (show the incidence level)
 - d. Line plot (to show the number of ergot over the year)
- 3. From the visualization, what we have learned about the dataset?
 - 2009 was when ergot happened significantly.
 - We have 139 outliers out of 1092 data points with q1, q2 (median), q3 are 0.02, 0.13, 0.55, respectively
 - Percent of having ergot when prev year had ergot: 0.6813186813186813
 - Percent of having ergot when prev 2 year had ergot: 0.673992673992674
 - Percent of having ergot when prev 3 year had ergot: 0.6446886446886447
 - Percent of having ergot when neighbor is having ergot: 0.7976190476190477

Visualization - Soil Data

- 1. What kind of statistics we have done?
 - a. Correlation to ergot
- 2. What visualization we have created?
 - a. Correlation plot
 - b. Pair plots
 - c. Region plot of soils across Canada (as many as 23 different soil types represented by a color in some cases)
- 3. From the visualization, what we have learned about the dataset?
 - a. Complex relationships and complex data
 - i. Exploring data (processing/features) and more complicated models will be important
 - ii. Important to consider alternative aggregation strategies (possibly through combining factors together and feature engineering)

Visualization - Soil Moisture

- 1. What kind of statistics we have done?
 - a. Correlation to ergot
 - b. Data distributions min, mean, max
- 2. What visualization we have created?
 - a. Correlation plot
 - b. Distribution plot (histogram + kde)
 - c. Scatter plot
- 3. From the visualization, what we have learned about the dataset?
 - a. The values of soil moisture is skewed
 - b. Complex relationships
 - i. Exploring data (processing/features) and more complicated models will be important
 - ii. There is some kind of reaction between soil moisture and ergot

Visualization - Weather Station

- 1. What kind of statistics we have done?
 - a. Station elevation
 - b. Which stations are still active?
 - c. Which stations are hourly and which are daily?
 - d. Amount of data collected
- 2. What visualization we have created?
 - a. Station summaries for each district
 - b. Region plots for stations
- 3. From the visualization, what we have learned about the dataset?
 - a. Usually multiple stations located at the same coordinates
 - b. All locations collect both hourly and daily data

Visualization - Weather Station Data

- 1. What kind of statistics we have done?
 - a. Correlation to ergot
 - b. Data distributions min, mean, max
- 2. What visualization we have created?
 - a. Correlation plot
 - b. Histograms
 - c. Pair plots
 - d. Box plots (subsetting caused issues)
- 3. From the visualization, what we have learned about the dataset?
 - a. Most exciting correlation was between max_temperature and ergot
 - b. Outliers
 - c. Complex relationships
 - i. Exploring data (processing/features) and more complicated models will be important

Engineered Features

percnt_true	FLOAT
has_ergot	BOOL
median_severity	FLOAT
sum_severity	FLOAT

Note that checks for previous years are not accumulative

sum_seventy	FLOAT
present_in_neighbor sum_severity_in_neighbor	BOOL FLOAT
present_prev1 present_prev2 present_prev3	BOOL BOOL
percnt_true_prev1 percnt_true_prev2 percnt_true_prev3	FLOAT FLOAT FLOAT
sum_severity_prev1 sum_severity_prev2 sum_severity_prev3	FLOAT FLOAT FLOAT

median_prev1	FLOAT
median_prev2	FLOAT
median_prev3	FLOAT
percnt_true_in_q1	BOOL
percnt_true_in_q2	BOOL
percnt_true_in_q3	BOOL
percnt_true_in_q4	BOOL
sum_severity_in_q1	BOOL
sum_severity_in_q2	BOOL
sum_severity_in_q3	BOOL
sum severity in a4	BOOL

Regression models - ML

- Types of models used:
 - Logistic Regression
 - Random Forest
 - Decision Tree
 - Gradient Boosting
 - Support Vector Classifier (took long)
 - Linear Support Vector Classifier (took long)
- How it performed so far:
 - Current features used are from the soil moisture table (including min, max, mean of the moisture)
 - Most of them has good r-square score (>80%) and f1 score (>90%) using different cross validation techniques (kfold and kfold stratified)
 - Outperform so far: Random Forest

Models - MLP

- Preparing data for the model means converting categorical columns into numeric column with one-hot encoding like approach. And dealing with missing data and merging different data set.
- We are building Multi-layer perceptron with 1 hidden layer using sigmoid function for the output layer and relu function for the hidden layer.
- As this a binary classification problem we are using binary cross entropy as a loss function and Adam as a optimizer
- Precision and accuracy are too good to be true, which is likely >95% of the time. The suspect is that the number of true samples dominate the number of false samples.
- Metrics are used to measure the models: accuracy, precision, f1 score

Cross-validation techniques

- Normal train test split
- KFold
- KFold Stratified
- Leave one out

Regularization strategy

Normal distribution parameters

- Normalization scaling

Skewed distribution parameters

- Log scaling
- Then normalization

Biased data

- Random sampling with
 - Over sampling (of less dominant attribute)
 - Under sampling (of more dominant attribute)

Other options?

Goals for next 2 weeks

Dane:

- Models
- Dimensionality Reduction
- Update documentation i.e missing tables
- Interacting with the system?
 - Front-end?
 - Improved pipeline?

Daniel:

- Merge dataset looking into what kind of datasets we should experiment on
- Continue modelling
- Write script to run all the models and comparing model on different of kind metrics (worth looking the custom metric?)

Dharmit:

- Research into data and models
- Data Visualisation on correlated data
- Look into aggregation methods
- Models

Jay:

- Figure out the best way to merge dataset with leaking information to model
- Understand data to decide which attribute to keep
- Create/improve more model (complex) if MLP starts giving promising results
- More research on data and models

Joseff:

- Data visualization not already done (e.g. yearly corr plots)
- Validate aggregation methods
- Models