Question 1

Prove that the family of functions $H = h_a : X \to Y : a \in A$ is 2-universal if and only if it is universal and independent.

As we know that H is k-universal for every fixed sequence of k distinct keys and for any h chosen at random from H, the sequence is likely to be any of the $|Y|^k$ pairs. We can look at the definitions for universal and 2-universal:

$$\Pr_{a \leftarrow A}[h_a(x) = h_a(x')] = \frac{1}{|Y|}$$
 universal

$$\Pr\nolimits_{a \leftarrow A}[(h_a(x) = y) \land h_a(x') = y')] = \frac{1}{|Y|^2} \qquad \text{ 2-universal}$$

So, if H is 2-universal then our k = 2, and for every pair of keys x and x', where $x \neq x'$, their fixed sequence is as likely to be any of the $|Y|^2$ pairs, so for every $i \in |Y|$, we get that there $\frac{1}{|Y|}$ collisions as $\frac{|Y|}{|Y|^2}$ so by definition it is universal:

$$\Pr\nolimits_{a \leftarrow A}[h_a(x) = h_a(x')] = \sum\nolimits_{i=0}^{|Y|-1} (\Pr\nolimits_{a \leftarrow A}[< h_a(x), h_a(x') > = < i, i >]) = \tfrac{|Y|}{|Y|^2} = \tfrac{1}{|Y|}$$

Question 2

Suggest a family $H = \{h_a : X \to Y : a \in A\}$ that is universal but not 2-universal. Justify your answer and try to make |H|, |X|, and |Y| as small as possible.

A family that is universal but not 2- universal is when |H| = |X| = |Y| = 2. For some pair $\{x, x'\}$, in the family if we choose at random a hash function then the probability of a collision is the same as the probability of picking some $h \in |H|$ is the same as picking $\frac{1}{|Y|}$ so |H| is universal. But for a 2- universal family, when you pick at random a hash function, then all the pairs are equally likely but some pairs are not possible so H is not 2-universal.

Question 3

Let $H = \{h_a : X \to Y : a \in A\}$ be a universal family. A rival learns the value of $h_a(x)$ for $x \in X$ that he chooses and for an $a \in A$ that was selected at random but he is not aware of. Can the rival find a collision (that is to say a value $x \neq x'$ such that $h_a(x) = h_a(x')$) with a probability greater than $\frac{1}{|Y|}$?

We can add an extra key, so our rival can cause a collision. For example, for keys a, b, c we can force a collision with probability of $\frac{1}{2}$ for a and b, as well as

for a and c, and we can have b and c collide with a probability of less than $\frac{1}{2}$, for example 0. The rival can determine which hash function we have selected by picking for example a, if we return a 0 then he can pick b, if we return 1, then we picked a different hash function and he can select c.

Question 4

As in the question above, but suppose that $H=\{h_a:X\to Y:a\in A\}$ is 2-universal.

With an H that is 2-universal, the rival cannot cause a collision with probability better than $\frac{1}{|Y|}.$ Since knowing $h_a(x)$ does not give them any information about $h_a(x')$ for any x' where $x\neq x'.$ So if our rival learns that for $h_a(x)$ we have C, that is to say that for some $x,\ h_a(x)=C$ then by the definition of 2-universality we have:

$$\Pr_{a \leftarrow A}[h_a(x) = h_a(x') | h_a(x) = C] = \frac{\Pr_{a \leftarrow A}[h_a(x) = h_a(x') | h_a(x) = C]}{\Pr_{a \leftarrow A}[h_a(x) = C]} = \frac{\frac{1}{|Y|^2}}{\frac{1}{|Y|}} = \frac{1}{|Y|}$$