## Aho-corasick RNA Splicing Checker

자기주도연구 : RNA Splicing 현상 모델링 June 4, 2022

We first determine that whether  $\mathbb{S}(x) = \emptyset$  for a given string x.

Table 1: introns pattern cases

| ex1      | n = 8 | ex2      | n = 14 | i        | $n-(i\times 2)+1$ |
|----------|-------|----------|--------|----------|-------------------|
| elements | cases | elements | cases  | elements | cases             |
| 1        | 7     | 1        | 13     | 1        | n-1               |
| 2        | 5     | 2        | 11     | 2        | n-3               |
| 3        | 3     | 3        | 9      | 3        | n-5               |
| 4        | 1     | 4        | 7      | 4        | n-7               |
|          | •••   |          | •••    |          |                   |
| •••      | •••   | 7        | 1      | n/2      | 1                 |
| result   | 16    | result   | 39     | result   | $n^2/4$           |
|          |       |          |        |          |                   |

## **Procedure** IntronPatternMaker(X)

**Input**: A string X of length n;  $x = x_1x_2...x_n$ 

**Output:** pattern string subset and their end points in  $X = (M_I, P)$ , where  $M_I$  denotes a set of Patterns and P denotes a set of the corresponding pattern's start points

- /\* i indicates length of m pattern while j is number cases of pattern length i.
- /\* make patterns starting from the back of the strings \*,

for 
$$i \leftarrow 1$$
 to  $n/2$  do

return  $(M_I, P)$ 

Table 2: exons pattern cases

| 1 | 2 | 3 | <br>k-2 | k-1 | k |
|---|---|---|---------|-----|---|
|   |   |   |         | -   |   |
|   |   |   | <br>-   | -   |   |
|   |   |   | <br>-   | -   |   |
|   |   | - | <br>-   | -   |   |
|   | - | - | <br>-   | -   |   |
| - | - | - | <br>-   | -   |   |

## **Procedure** ExonPatternMaker(X,C)

**Input**: A string X of length n and subset C containing k cut points;  $X = x_1x_2...x_k...x_n$ **Output:** pattern string subset and their start points in  $X = (M_e, P)$ , where  $M_e$  denotes a set of Patterns and P denotes a set of the corresponding pattern's start points

/\* make patterns backwards from where the intron pattern match starts (cut
point C) to the first of the strings.

```
\begin{array}{l} \mathbf{for} \ i \leftarrow 1 \ to \ k \ \mathbf{do} \\ b = C_i - 1 \ \mathbf{for} \ j \leftarrow 1 \ to \ b \ \mathbf{do} \\ m = x_b ... x_{b-j} \\ (M_I, P) \leftarrow (m, b) \end{array}
\mathbf{return} \ (M_E, P)
```



Figure 1: PatternMatchFinder

```
Procedure PatternMatchFinder((M,P),X,start)
  Input: There are four inputs: (M, P), X, and start. M and P each denotes the subset
               for pattern and its corresponding index point where the pattern starts. X is a
               string of length n and start contains the index where X is first read;
               X = x_1 x_2 ... x_{start} ... x_n
  Output: There are three outputs: (M_R, P_R), Q_R. M_R denotes the succeed match string
               to guild M, P_R denotes the start point of corresponding M_R on X, and Q_R
               denotes matching M's start point on X
  /* m is a length k pattern in subset M and X is a length n text.
                                                                                                                      */
  Construct a DFA A = ((Q, Z), \Sigma, \delta, (0, 0), Q\{(0, 0)\}) for M, where Q = 0, 1, ..., k, denotes
   the length of pattern for 0 \le i \le k and Z = P denotes the index of pattern start points.
  /* construct the goto function \mathbb{G}
                                                                                                                      */
  \mathbb{G}(0,\theta(a)) \neq (M_1,Z_1) \in \Sigma) \leftarrow 0
  for i \leftarrow 1 \ to \ k \ do
  /* construct the failure function \mathbb F, the output function \mathbb O, and the
       pattern data function \mathbb D
                                                                                                                      */
  \mathbb{F} \leftarrow 0
  for i \leftarrow 1 to k do
      if \mathbb{G}(i, \theta(a)) = (i+1, Z_{i+1}) then
           (v,\emptyset) \leftarrow \mathbb{F}(\mathrm{i})
           while \mathbb{G}(v, \theta(a)) \neq \emptyset do
              (v,\emptyset) \leftarrow \mathbb{F}(v)

\mathbb{D}(v) \leftarrow null 

\mathbb{F}(i+1) \leftarrow \mathbb{G}(v,\theta(a)) 

\mathbb{O}(i+1) \leftarrow min(\mathbb{O}(i+1),\mathbb{O}(k))

           \mathbb{D}(i) \leftarrow \theta(a)
  /* read T using \mathbb{G}, \mathbb{F}, \mathbb{O}
                                                                                                                      */
  q \leftarrow 0 \ z \leftarrow 0 \ \mathbf{for} \ i \leftarrow start \ to \ n \ \mathbf{do}
       while G(q,T(i)) \neq \emptyset do
       (q,z) \leftarrow \mathbb{F}(q)
       (q, z) = \mathbb{G}(q, T(i))
      if \mathbb{O}(q) \neq \emptyset then
                                                                         // (Pattern node, Index of M)
           (L_R, Q_R) \leftarrow \mathbb{O}(q)
```

// Founded pattern subset  $\theta(M)$ 

// Index of  $\theta(M)$ 

 $M_R[q] \leftarrow \mathbb{D}(q)$ 

if q = 0 then  $P_R \leftarrow i$ 

return  $(M_R, P_R), Q_R$ 



Figure 2: Intron<br/>Pattern Maker & Pattern Match Finder for intron match



Figure 3: ExonPatternMaker & PatternMatchFinder for exon match



Figure 4: FullSplicingOperationChecker(X)