Beginning Activities for Section 3.4

Mathematical Reasoning: Writing and Proof, Version 3

Beginning Activity 1 (A Logical Equivalency)

1.

P	Q	R	$P \vee Q$	$(P \lor Q) \to R$	$P \rightarrow R$	$Q \rightarrow R$	$(P \to R) \land (Q \to R)$
T	T	T	T	T	T	T	T
T	T	F	T	F	F	F	F
T	F	T	T	T	T	T	T
T	F	F	T	F	F	T	F
F	T	T	T	T	T	T	T
F	T	F	T	F	T	F	F
F	F	T	F	T	T	T	Т
F	F	F	F	T	T	T	Т

- **2.** If we prove both $P \to R$ and $Q \to R$, then we have proven $(P \to R) \land (Q \to R)$. Since the statements $(P \lor Q) \to R$ and $(P \to R) \land (Q \to R)$ are logically equivalent, this means we have also proven $(P \lor Q) \to R$.
- 3. The contrapositive is: For all integers x and y, if x is even or y is even, then xy is even.
- **4.** If x is an even integer, then there exists an integer k such that x = 2k. So if y is an integer, then

$$xy = (2k)y = 2(ky).$$

Since ky is an integer, this proves that if x is even, then xy is even.

If y is an even integer, then there exists an integer m such that y = 2m. So if x is an integer, then

$$xy = x(2m) = 2(xm).$$

Since xm is an integer, this proves that if y is even, then xy is even.

5. The proposition in part (3) is of the form $(P \vee Q) \to R$, which is logically equivalent to $(P \to R) \land (Q \to R)$. In part (4), we proved $P \to R$ and $Q \to R$ and so we proved $(P \to R) \land (Q \to R)$. Because of the logical equivalency, we have proved the proposition in part (3).

Beginning Activities for Section 3.4

Mathematical Reasoning: Writing and Proof, Version 3

Beginning Activity 2 (Using Cases in a Proof)

1. Let n be an even integer. We will show that $n^2 + n$ is an even integer. By the definition of an even integer, there exists an integer m such that

$$n=2m$$
.

Substituting this into the expression $n^2 + n$ yields

$$n^{2} + n = (2m)^{2} + 2m$$
$$= 4m^{2} + 2m$$
$$= 2(2m^{2} + m).$$

By the closure properties of the integers, $2m^2 + m$ is an integer, and hence $n^2 + n$ is even. So this proves that when n is an even integer, $n^2 + n$ is an even integer.

2. Let n be an odd integer. We will show that $n^2 + n$ is an even integer. By the definition of an odd integer, there exists an integer m such that

$$n = 2m + 1$$
.

Substituting this into the expression $n^2 + n$ yields

$$n^{2} + n = (2m + 1)^{2} + (2m + 1)$$
$$= 4m^{2} + 6m + 2$$
$$= 2(2m^{2} + 3m + 1).$$

By the closure properties of the integers, $2m^2 + 3m + 1$ is an integer, and hence $n^2 + n$ is even. So this proves that when n is an odd integer, $n^2 + n$ is an even integer.

3. The proofs of Propositions 2 and 3 constitute a proof of Proposition 1 since the integer *n* must be even or must be odd.

