Laboratório 01 - Simulação da Arquitetura 01

Nesta primeira atividade no Laboratório vamos simular a Arquitetura descrita no exemplo a seguir.

Simular 10 (dez) programas para a Arquitetura de uma CPU e duas Placas de Memórias.

Vamos utilizar um Modelo Estocástico e escrever as conclusões após a simulação dos 10 (dez) programas.

Obs: A simulação pode ser feita em Excel, C/C++, Java ou Python

#

A figura abaixo representa um sistema de computação, onde os valores de **M** e **T** de cada programa são gerados através de Distribuições de Probabilidades.

- M = Tamanho de um Programa
- T = Tempo de Processamento do programa

Dados da Arquitetura:

• CPM1 = Capacidade da placa de Memória 01: 128 KB

• CPM2 = Capacidade da placa de Memória 02: 64 KB

• M1 = Tamanho dos programas da memória 01: Média = 90 KB

Desvio Padrão = 40 KB

• M2 = Tamanho dos programas da memória 02: Média = 110 KB

Desvio Padrão = 20 KB

Calculo do Tamanho do Programa usando a Distribuição Normal

$$Z=(-2.\ln{(R1)})^{1/2}.\cos{(2.pi.R2)}$$

$$\mathbf{M} = \mathbf{Z} \cdot \mathbf{\sigma} + \mathbf{\mu}$$

Exemplo: para R1 = 0.46 e R2 = 0.96

temos:
$$Z = (-2 \ln (0.46))^{1/2} \cdot \cos (2. \text{ PI}() \cdot 0.96) = 1.2070$$

Para uma media e desvio padrão: $\mu = 90 \text{ KB}$ $\sigma = 40 \text{ KB}$

temos:
$$M = 1,2071.40 + 90 = 138,28 \text{ KB}$$

M = 138,28 KB ← Tamanho do programa 01

 Calculo do Tempo de Processamento do Programa usando a Distribuição Exponencial

$$T = -\theta$$
. ln (R3)

$$\theta = (0.5 * M) / K$$

Exemplo: para R3 = 0.32

$$\theta = (0.5 * 138,28 \text{ KB}) / \text{K} = 69,14$$

$$T = -69,14$$
. $ln(0,32) = 78,78$ s

11

IMULAÇÃO	01: 1 CPU e 2 PLACAS DE MEMORIA										
Programa	Tamanho1	Tamanho2	Tempo de processamento	Tempo Acumulado	Índice de ocupação1	Índice de ocupação2	R1	R2	R3	Z	Teta
1	108,61		73,15	73,15	84,85		0,45	0,81	0,26	0,47	54,3
2		84,95	23,88	97,03		132,73	0,36	0,42	0,57	-1,25	42,4
3	71,11		16,43	113,45	55,55		0,76	0,36	0,63	-0,47	35,5
4		110,00	18,84	132,29		171,88	0,17	0,25	0,71	0,00	55,0
5	85,13		5,44	137,73	66,51		0,81	0,72	0,88	-0,12	42,5
6		92,86	13,98	151,71		145,10	0,62	0,58	0,74	-0,86	46,4
7	96,25		30,55	182,27	75,19		0,46	0,77	0,53	0,16	48,1
8		87,20	5,08	187,35		136,25	0,25	0,37	0,89	-1,14	43,6
				7-44				-			
Média	90,28	93,75	23,42) <u>(1</u>	70,53	146,49	1220	. 440	-		
Desvio Padrão	15,97	11,33	21,85	0	12,48	17,71	757	S 755			
Variância	255,17	128,40	477,55		155,74	313,47			\		

Conclusões:

- 1. Analisar o comportamento do tamanho dos programas.
- 2. Analisar o comportamento do tempo de processamento dos programas.
- 3. Analisar o comportamento do índice de ocupação dos programas.

Índice de ocupação = loc %

Placa de memória

100%

Tamanho do programa \rightarrow loc % (?)

Recordando a Distribuição Normal

$$f(X) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(X-\mu)^2}{2\sigma^2}} \text{ para } -\infty < x < +\infty$$

Função densidade de probabilidade

Recordando a Distribuição Normal

 μ = média

 σ = desvio padrão

Função no Excel: desvio Padrão

DESVPAD.A(núm1;[núm2];...])

A sintaxe da função DESVPAD.A tem os seguintes argumentos:

- Núm1 Necessário. O primeiro argumento numérico correspondente a uma amostra de população. Você também pode usar uma única matriz ou uma referência a uma matriz em vez de argumentos separados por ponto-e-vírgula.
- Núm2, ... Opcional. Argumentos numéricos de 2 a 254 correspondentes a uma amostra de população. Você também pode usar uma única matriz ou uma referência a uma matriz em vez de argumentos separados por ponto-e-vírgula.

Função no Excel: desvio Padrão - cont...

- Se você deseja incluir valores lógicos e representações de texto dos números em uma referência como parte do cálculo, utilize a função DESVPADA.
- DESVPAD.A usa a seguinte fórmula:

$$\sqrt{\frac{\sum (x-\bar{x})^2}{(n-1)}}$$

onde x é média de amostra MÉDIA(núm1;núm2;...) e n é o tamanho da amostra.

Função no Excel: média

MÉDIA(núm1, [núm2], ...)

A sintaxe da função MÉDIA tem os seguintes argumentos:

- Núm1 Obrigatório. O primeiro número, referência de célula ou intervalo para o qual você deseja a média.
- Núm2, ... Opcionais. Números adicionais, referências de célula ou intervalos para os quais você deseja a média, até no máximo 255.

Função no Excel: aleatório ()

Descrição

ALEATÓRIO retorna um número aleatório real maior que ou igual a 0 e menor que 1 distribuído uniformemente. Um novo número aleatório real é retornado sempre que a planilha é calculada.

Observação: Desde a versão 2010, o Excel usa o algoritmo Mersenne Twister (MT19937) para gerar números aleatórios.

Função no Excel: aleatório () - cont...

ALEATÓRIO()

A sintaxe da função ALEATÓRIO não tem argumentos.

Comentários

Para gerar um número real aleatório entre a e b, use:

Função no Excel: variância - VAR.A()

VAR.A(número1,[número2],...)

A sintaxe da função VAR.A tem os seguintes argumentos:

- Núm1 Necessário. O primeiro argumento numérico correspondente a uma amostra de população.
- Núm2, ... Opcional. Argumentos numéricos de 2 a 254 correspondentes a uma amostra de população.

Função no Excel: variância - VAR.A() - cont...

- Para incluir valores lógicos e representações de números por extenso em uma referência como parte do cálculo, use a função VARA.
- VAR.S usa a seguinte fórmula:

$$\frac{\sum (x-\bar{x})^2}{(n-1)}$$

onde x é média de amostra MÉDIA(núm1,núm2,...) e n é o tamanho da amostra.