Another attack

The initiator's identity is not included within the nested encryption of message 3. This allows the following attack:

Msg $\alpha.1.$ $A \rightarrow S: A, B, N_1$

Msg $\alpha.2$. $S \rightarrow A: \{S, A, B, N_1, PK(B)\}$ ssk(s)

Msg $\alpha.3$. $A \rightarrow I_B : A, \{A, Ts, \{N_2\}_{PK(B)}\}_{SK(A)}$

Msg $\beta.3$. $I \to B : \{I, Ts, \{N_2\}_{PK(B)}\}_{SK(I)}$

Msg $\beta.4$. $B \rightarrow S: I, N_3$

Msg $\beta.5$. $S \to B : \{S, B, I, N_3, PK(I)\}_{SSK(S)}$

Msg $\beta.6$. $B \to I : \{B, N_2\}_{PK(I)}$

Msg $\alpha.6. I_B \to A: \{B, N_2\}_{PK(A)}$.

Fixing the protocol, again

The flaw that allows this can be seen as a violation of both Principle 3 and Principle 5.

It is best fixed by including a's identity inside the nested encryption:

Msg 1. $a \rightarrow s : a, b, n_1$

Msg 2. $s \to a : \{s, a, b, n_1, PK(b)\}_{SSK(s)}$

Msg 3. $a \rightarrow b$: a, $\{ts, \{a, n_2\}p_{K(b)}\}s_{K(a)}$

Msg 4. $b \rightarrow s$: a, n_3

Msg 5. $s \to b : \{s, b, a, n_3, PK(a)\}_{SSK(s)}$

Msg 6. $b \rightarrow a : \{b, n_2\}_{PK(a)}$.

A multiplicity attack

The intruder can replay message 3 (within the lifetime of the timestamp) so as to achieve a repeat authentication:

Msg $\alpha.1$. $A - S: A, B, N_1$

Msg $\alpha.2$. $S \rightarrow A: \{S, A, B, N_1, PK(B)\}$ ssx(s)

Msg $\alpha.3$. $A \to B: A, \{Ts, \{A, N_2\}_{PK(B)}\}_{SK(A)}$

Msg $\alpha.4$. $B \rightarrow S: A, N$

Msg $\alpha.5$. $S \rightarrow B : \{S, B, A, N_3, PK(A)\}_{SSK(S)}$

Msg $\alpha.6$. $B \rightarrow A: \{B, N_2\}_{PK(A)}$

Msg $\beta.3$. $I_A \to B: A, \{Ts, \{A, N_2\}_{PK(B)}\}_{SK(A)}$

Msg $\beta.4$. $B \rightarrow S: A, N$

Msg $\beta.5$. $S \rightarrow B : \{S, B, A, N'_3, PK(A)\}_{SSK(S)}$

Msg $\beta.6$. $B \to I_A : \{B, N_2\}_{PK(A)}$.

About multiplicity attacks

B thinks he has completed two runs of the protocol, but A was only willing to run the protocol once.

Does this matter?

It might do, for example if the protocol is used for a financial transaction.

Multiplicity attacks can be prevented by comparing each message received with previous ones (expensive) or via a nonce challenge.