AI AND IOS

Aileen Nielsen aileen.a.nielsen@gmail.com

WHAT I WAS GOING TO TALK ABOUT

Pythonic aspects of Swift

Machine learning with Swift

Building neural networks for your apps

But then...WWDC 2017 & CoreML

OUTLINE

Core ML & related

Machine learning concepts

Final bits and bobs

Goal: empowerment

CORE ML & RELATED

BEFORE WWDC 2016

- Data scientists don't always know much about the implementation details of the techniques they use
 - Especially bad/poorly trained data scientists
 - They may know about 'neural networks' but don't know how to break their models up into component pieces for implementation
- But iOS engineers are iOS engineers, not data engineers or data scientists
- But many interesting new applications are going to use some form of intelligence...and this trend

will only accelerate

- Open source projects to
 - Translate existing ML models into code
 - Train models
 - Facilitate data-sciencey stuff

Swift Matrix and Machine Learning Library

Apple's Swift is a high level language that's asking for some numerical library to perform computation fast or at the very least easily. This is a bare-bones wrapper for that library.

A way to have iOS run high-level code similar to Python or Matlab is something I've been waiting for, and am incredibly excited to see the results. This will make porting complex signal processing algorithms to C much easier. Porting from Python/MATLAB to C was (and is) a pain in the butt, and this library aims to make the conversion between a Python/Matlab algorithm and a mobile app simple.

WWDC 2016

WWDC 2016

BNNS introduced a set of routines in the **Accelerate (CPU) framework** designed to implement neural networks, introduced in iOS 10

Supports only 3 types of layers: Convolution, Fully Connected, Pooling

MPSCNN introduced a set of routines with Metal (GPU) framework to implement neural networks, introduced in iOS 10

- Also build neural networks layer by layer
- More opportunities for customization than BNNS
- Similar but not identical API

WWDC Emphasis on AI: speech recognition, user intent, SiriKit, machine learning, and NNs

WWDC 2017

CoreML

- Close to a 'set it and forget it' style API
- Uses Metal & Accelerate under the hood

Neural-network-related enhancements to **Metal**

- More kinds of kernels
- API for building graphs makes this more Keras like
- Kernels are now serializable
- More datatypes, in particular the preferred 16-bit float is now supported

Seems BNNS did not get much updating


```
class FlowerClassifierInput {
   var flowerImage: CVPixelBuffer
}

class FlowerClassifierOutput {
   let flowerType: String
   let flowerTypeProbs: [String: Double]
}

class FlowerClassifier {
   convenience init()
   func prediction(flowerImage: CVPixelBuffer) throws -> FlowerClassifierOutput
}
```

```
let flowerModel = FlowerClassifier()
if let prediction = try? flowerModel.prediction(flowerImage: image) {
    return prediction.flowerType
}
```


COOL FEATURES

CoreML decides which parts of a model to run on CPU vs. GPU (so even the conscientious iOS engineer does not need to run CPU vs. GPU variants to see which is more performant)

- GPU is best for many parallel identical operations
- CPU is good for memory intensive or computationally serialized processes
- In general GPU tends to be better

Can run it from the **simulator**

(unlike Metal)

In subsequent beta versions, got possibility to download and compile **mlmodel** so you don't have to release a new app to update your model

This is amazing if your app basically is your model

CURRENTLY SUPPORTED MODELS

- support vector machines (SVM)
- tree ensembles such as random forests and boosted trees
- linear regression and logistic regression
- neural networks: feed-forward, convolutional, recurrent

More on these later...

DOWNSIDES TO COREML (OR OPPORTUNITIES TO LEARN)

- You probably need to learn some Python
 - But it's very Swifty
 - Or rather, Swift is very Pythonic
- You will be responsible for understanding what is going wrong in models on device
 - So you'll need to understand the basics of models
- Ultimately this will emerge as a specialization for iOS engineers
 - Model translation
 - Model implementation
 - Model performance enhancements and pitfalls
- Not (yet?) open source, so it will always be behind the data science tools

CORE ML GOTCHAS

Models can run fine on simulator but crash on device

• E.g. on **simulator model ran on the CPU** and **on device ran on GPU** and did something impermissible

Many early 'bugs' center around not giving the right kind of input

- There are many ways to describe an image, but only one that the model expects
- Unexpected model behavior is usually the result of not matching expected input

PREDICTIONS FOR CORE ML

- Fine tuning
- **R** support
 - Finance various packages but glmnet and elasticnet for starters
 - Sociology/politics various packages, but glmnet and survey are possibly most important
 - Biostats Bioconductor package
- Unsupervised learning
 - But this is computationally taxing so just as likely as on-device learning
 - Everything is a lot less demanding than training neural networks

ML CONCEPTS

REGULARIZATION

$$Obj(\Theta) = L(\Theta) + \Omega(\Theta)$$

Training Loss measures how well model fit on training data

Regularization, measures complexity of model

OVERFITTING (AND UNDERFITTING)

OVERFITTING DIAGNOSIS

Error

Cross-validation error

OTHER TERMS YOU'LL ENCOUNTER

Preprocessing

Wide data vs. long data

Cross-validation

Normalized data

Test & training sets

Model compression

CURRENTLY SUPPORTED MODELS

- linear regression and logistic regression
- support vector machines (SVM)
- tree ensembles such as random forests and boosted trees
- neural networks: feed-forward, convolutional, recurrent

REGRESSION MODELS

• Linear regression models try to **predict a dependent value via a linear relationship** with a set of predictors

REGRESSION MODELS

- Linear regression models try to **predict a dependent value via a linear relationship** with a set of predictors
 - Normal methodology makes vanilla assumptions about input data
 - However assumptions aren't always true in the real world but there is usually a workaround
 - Computationally cheap relative to many other methods
 - Remains workhorse of prediction
- Logistic regression uses linear methods but seeks to model a probability, which is bounded, and hence requires a linear separation
- Most real-world models will use some form of regularization
 - 'wide' datasts

PROS AND CONS OF REGRESSION MODELS

Pros

- Straightforward statistical models for generating confidence intervals Logistic regression provides probabilities, so we get classification + probability instead of just classification
- Some closed form solutions
- Well developed refinements for tricky data problems

Cons

- We don't always have a good reason to think linear relationships are linear
- Input data is not always independent even though it is assumed to be so
- Sensitive to outliers
- Only looks at the mean of a dependent variable without looking at the distribution

SUPPORT VECTOR MACHINES

SUPPORT VECTOR MACHINES

- The support vector machine is a **separating plane** which best separates groups
- SVM selects a hyper plane which
 - First maximizes classification accuracy
 - Second maximizes minimum distance from hyperplane to members of each group (maximizing the margin)
- Possible to have a non-linear hyperplane
 - But usually want to justify decision to have a non-linear hyperplane
 - You can fit any set of points with enough parameters, that's a danger called overfitting

PROS AND CONS OF SVM

Pros

- Relatively memory efficient so can be used in high dimensional spaces
- Works when number of dimensions is greater than number of samples
- Works really well with strong signal (large margin)
- More robust to outliers than regression

Cons

- Does not work so well with noisy sampling (small margin)
- With larger data set, very long training times
- Does not provide probability estimates

TREE ENSEMBLES

- Trees are a fairly intuitive way of making both categorical and numerical predictions
- Random forests: It turns out that a bunch of 'dumb' trees together can do a lot better than a single tree

PROS AND CONS OF TREE ENSEMBLES

Pros

- Random ensemble methods are robust to highly correlated input variables
- High accuracy with uncomplicated methodology

Cons

Ensembles are not easy to visually interpret

NEURAL NETWORKS

CONVOLUTIONAL NEURAL NETWORKS

Center of Circle Blur on the right side of crab

Original image

CONVOLUTIONAL NEURAL NETWORKS

RECURRENT NEURAL NETWORK

RECURRENT NEURAL NETWORK

http://machinelearning mastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/http://deeplearning.net/tutorial/lstm.html

STATE OF THE ART ... ISH INCEPTION V. 3

FINAL BITS AND BOBS

UPSIDES OF CORE ML ACCORDING TO APPLE

Apple listed the benefits of running on device as

- User privacy
- Data cost
- Server cost

But...

- Larger footprint on the device
- Can correct models on the server-side
- Server-side can keep the model builders closer to the production version of the model
- Apart from image-related applications, many models run on small input data

AND SOME DOWNSIDES

- For some organizations, the model is the **core IP** and **core worth** of the enterprise...so organizations may not want to include more engineers on the list of people familiar with the model
- Model performance/correctness checking may get forgotten

ETHICS

- Ethics in Al and machine learning is an increasingly fraught area
- Possibility that there is unintentional racial/gender discrimination
 - usually done by proxy such as using zip codes which can be a strong proxy for race
- This may become an increasingly regulated area
- You have the obligation to make sure you are putting out correct models, even if you didn't build them
- Some tension between privacy and fairness because how can you check downstream effects?

PRIVACY

- Apple is emphasizing privacy in all its Al implementations
- But at some point **bug reporting** is going to clash with privacy
- The initial (and corrective) data has to come from somewhere

WHAT DOES THIS MEAN FOR YOUR CAREER?

- You should get to talk to more kinds of people at your organizations
- As always, the value play is what can you add to the APIs Apple is providing?
- New demands on QA & bug searches
- New frontiers

THERE ARE STILL INTERESTING THINGS GOING ON BEYOND APPLE API

DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks

Andrey Ignatov, Nikolay Kobyshev, Kenneth Vanhoey, Radu Timofte, Luc Van Gool

ETH Zurich

andrey.iqnatoff@qmail.com, {nk, vanhoey, timofter, vanqool}@vision.ee.ethz.ch

Abstract

Despite a rapid rise in the quality of built-in smartphone cameras, their physical limitations — small sensor size, compact lenses and the lack of specific hardware, — impede them to achieve the quality results of DSLR cameras. In this work we present an end-to-end deep learning approach that bridges this gap by translating ordinary photos into DSLR-produced images. We propose learning the translation function using a residual convolutional neural

Figure 1: Sony smartphone image enhanced to DSLR-quality by our method. Best zoomed on screen.

THERE ARE STILL INTERESTING THINGS GOING ON BEYOND APPLE API

Real-Time Visual Place Recognition for Personal Localization on a Mobile Device

Michał Nowicki · Jan Wietrzykowski · Piotr Skrzypczyński

Fig. 4 The trajectories of two PUT MC test sequences: PUT MC short, marked by orange dots, and PUT MC long, marked by blue dashes

Fig. 5 OpenFABMAP incorrectly recognized locations: A) due to many features placed on windows, B) due to people occluding the view

THERE ARE STILL INTERESTING THINGS GOING ON BEYOND APPLE API

Two-view 3D Reconstruction for Food Volume Estimation

Joachim Dehais, Student Member, IEEE, Marios Anthimopoulos, Member, IEEE, Sergey Shevchik, Stavroula Mougiakakou, Member, IEEE

Fig. 6. Volume estimation: food surface (separated using the segmentation map), plate surface and vertical projection on the dish plane.

THE HARD THINGS ARE EASY, AND THE EASY THINGS ARE HARD