

STUDENT:

Petri Diana, grupa 2131

PROFESOR INDRUMATOR: Prof. Vladu Gheorghe Eduard

Contents

1.	TEMA	TICA PROIECTULUI	3
	1.1	Sursa de semnal	3
	1.2	Etajul I: Amplificator de instrumentatie	4
	1.3	Etajul II: Filtru	4
	1.4	Etajul III: PGA	5
	1.5	Etajul IV	6
	1.6	Tip AO	6
2	DIM	IENSIONARE	7
	2.1	Dimensionarea etajului I	7
	2.2	Dimensionarea etajului II	9
	2.3	Dimensionarea etajului III	. 10
	2.4	Dimensionarea etajului IV	. 11
3	CAF	RACTERIZARE	. 13
	3.1	Caracterizarea etajului I	. 13
	3.1.1	l DCOP	. 13
	3.1.2	2 AC	. 15
	3.1.3	3 TRANSIENT	. 17
	3.2	Caracterizarea etajului II	. 19
	3.2.1	l DCOP	. 19
	3.2.2	2 AC	. 19
	3.2.3	3 Transient	. 20
	3.3	Caracterizarea etajului III	. 21
	3.3.1	l DCOP	. 21
	3.3.2	2 AC	. 23
	3.3.3	3 Transient	. 26
	3.4	Carcaterizarea etajului IV	. 27
	3.4.1	1 DCOP	. 27
	3.4.2	DC SWEEP	. 27
	3.4.3	3 Transient	. 29
4	CON	NCI LIZIE	30

1.TEMATICA PROIECTULUI

Proiectul consta in proiectarea unei interfete analogice formate din blocuri conectate in cascada, conform schemei bloc din Figura 1.

Figura 1: Schema bloc

1.1 Sursa de semnal

Sursa de semnal este o sursa diferentiala de tensiune.

Figura 2: Sursa diferentiala de tensiune

1.2 Etajul I: Amplificator de instrumentatie

Etajul I este reprezentat de un amplificator de instrumentatie cu 3 AO V-V, avand specificatiile din Tabelul 1.

Figura 3:Amplificator de instrumentatie, 3 AO V-V

Amplitudine minima(castig	Amplitudine	Castig liniar
maxim PGA)	maxima(castig minim	_
·	PGA)	
1.56E-02	3.11E-02	16

Tabelul 1: Specificatii Etaj I

1.3 Etajul II: Filtru

Etajul II contine un filtru trece banda de tip Rauch, cu datele din Tabelul 2.

Figura 4: Filtru trece banda Rauch

Castig liniar in banda de trecere	Rintrare minim	Banda	Q
2.00E+00	1.00E+03	5000	1

Tabelul 2: Specificatii Etajul II

1.4 Etajul III: PGA

La etajul III, se foloseste un PGA RG serie.

Figura 5: PGA RG serie

Specificatiile acestuia se regasesc in urmatorul tabel:

Castig minim[dB]	Castig maxim[dB]	Rezolutie(pas	Numar pasi
		minim)	
8	14	2	4

Tabelul 3: Specificatii Etajul III

1.5 Etajul IV

Pentru etajul IV, se utilizeaza un redresor bialternanta in configuratie inversoare, implementat cu doua AO si doua diode, avand castigul liniar egal cu 1.

Figura 6: Redresor bialternanta

1.6 Tip AO

In proiectarea etajelor, voi folosi un AO de tip LT6234. Am alimentat amplificatoarele cu doua tensiuni V+, V-, cu valori de +5, respectiv -5.

2 DIMENSIONARE

2.1 Dimensionarea etajului I

Figura 7: Etajul I

Pentru a obtine expresia castigului diferential al circuitului, dar si a tensiunii de iesire, am luat pe rand fiecare etaj al amplificatorului.

Etajul 1 reprezinta un amplificator cu intrare si iesire diferentiala,

$$Vo2 - Vo1 = (R1 + RG + R1) \cdot iRG = \frac{2R1 + RG}{RG}(VA - VB)$$

 $AdI = \frac{Vo2 - Vo1}{VA - VB} = (1 + \frac{2R1}{RG})$

Etajul 2 este un amplificator cu intrare diferentiala. Astfel, ecuatia caracteristica si amplificarea diferentiala au urmatoarele expresii:

$$Vout = (VA - VB)(1 + \frac{2R1}{RG})\frac{R3}{R2}$$
$$Ad = (1 + \frac{2R1}{RG})\frac{R3}{R2}$$

Se stie din specificatii ca valoarea liniara a castigului este 16:

$$16 = (1 + \frac{2R1}{RG})\frac{R3}{R2}$$

Am ales $\frac{R3}{R2}$ =10, de unde R3=10k Ω si R2=1k Ω . Astfel ajungem la urmatoarea

relatie: $\frac{2R1}{RG} = 0.6$, pentru care am ales RG=330 Ω si am obtinut R1=100 Ω .

Figura 8: Dimensionarea etajului I

Am alimentat circuitul cu o sursa diferentiala de tensiune, avand amplitudinea maxima 31.1 mV.

Figura 9: Alimentare etaj I

2.2 Dimensionarea etajului II

Pentru a dimensiona etajul II, filtrul Rauch trece banda, am folosit urmatoarele formule:

$$H0dB = \frac{\frac{-R2}{R1}}{1 + \frac{C1}{C2}} \qquad Q = \frac{\sqrt{R2/R1}}{\sqrt{\frac{C1}{C2}} + \sqrt{\frac{C2}{C1}}}$$

f0 [Hz]	w0 [rad/sec]	Q	H0 [V/V]	H0 [dB]
5.00E+03	3.14E+04	1.00E+00	2.00E+00	6.02E+00
	set C1=C2=C [F]	R1	R2	
	1.00E-09	1.59E+04	6.37E+04	

Am ales C1=C2=C si am folosit tabelul de dimensionare pentru a obtine urmatoarele valori:

Figura 10: Tabel de dimensionare pentru etajul II

Figura 11: Dimensionarea etajului II

2.3 Dimensionarea etajului III

La etajul II, avem un castig minim de Amin=8dB si un castig maxim de Amax=14dB, cu rezolutie minima 2 si numar de pasi egal cu 2. Astfel, domeniul de amplificare va fi Adb = [8dB, 10dB, 12 dB, 14 dB]. Fiind vorba de amplificare, pentru a transforma aceste valori in liniar, am folosit formula:

$$Aliniar = 10^{\frac{AdB}{20}}$$

In acest fel, a rezultat domeniul liniar al castigului:

Aliniar =
$$[2.5\frac{V}{V}, 3.16\frac{V}{V}, 4\frac{V}{V}, 5\frac{V}{V}]$$

Pentru a putea dimensiona rezistentele, am ales Av1=5, Av2=4, Av3=3.16 si Av4=2.5.

Din circuit am extras expresiile pentru fiecare amplificare:

$$Av1 = 1 + \frac{RF}{RG1} = 5 \Rightarrow RG1 = \frac{RF}{4}$$

$$Av2 = 1 + \frac{RF}{RG1 + RG2} = 4 \Rightarrow RG2 = \frac{RF}{3} - RG1$$

$$Av3 = 1 + \frac{RF}{RG1 + RG2 + RG3} = 3.16 \Rightarrow RG3 = \frac{RF}{2.16} - (RG2 + RG1)$$

$$Av4 = 1 + \frac{RF}{RG1 + RG2 + RG3 + RG4} = 2.5 \Rightarrow RG4 = \frac{RF}{1.5} - (RG1 + RG2 + RG3)$$

Am ales RG1=10k Ω , din care am obtinut: RF=40k Ω , RG2=3.33k Ω , RG3=5.18k Ω , RG4=8.15k Ω .

Figura 12: Dimensionarea etajului III

2.4 Dimensionarea etajului IV

Pentru o tensiune de intrare negativa, D1 este ON, astfel vom obtine $Vout1 = -\left(\frac{R5}{R4}\right) \cdot Vin$. Pentru o tensiune de intrare pozitiva, D2 va fi ON, astfel va rezulta expresia $Vout2 = \frac{R5}{R4} \cdot Vin$.

Avand in vedere ca tensiunea de intrare in cazul practic este pozitiva, iar castigul liniar este egal cu A=1, atunci $\frac{R5}{R4} = 1$.

Aleg R5=10kΩ. R1 va avea aceeasi valoare cu R2, R4 si R5, iar $R3 = \frac{R5}{2}$.

Atunci se obtine: R2=R4=R5= $10k\Omega$ si R3= $5k\Omega$.

Figura 13: Dimensionarea etajului IV

3 CARACTERIZARE

3.1 Caracterizarea etajului I

3.1.1 DCOP

3.1.1.1 Punct static de functionare

Pentru a vedea punctul static de functionare, se ruleaza o analiza de tip .op.

* C:\Users\diana\OneDrive\Desktop\SCIA_proiect\Proiect.asc					
Operating Point					
V(out_et1):	0.497849	voltage			
V(n004):	0.0214003	voltage			
V(n007):	0.0214012	voltage			
V(n002):	-0.0247435	voltage			
V(n009):	0.0250424	voltage			
V(n001):	-0.0154999	voltage			
V(n008):	0.0154988	voltage			
V(v-):	-5	voltage			
V(v+):	5	voltage			
V(vb_dc):	-0.0155	voltage			
V(va_dc):	0.0155	voltage			
V(vb):	0	voltage			
V(va):	0	voltage			
V(outcm):	-7.56099e-06	voltage			
V(n012):	-0.00122854	voltage			
V(n015):	-0.0012279	voltage			
V(n011):	0.00014935	voltage			
V(n018):	0.00014935	voltage			
V(n010):	-6.54683e-07	voltage			
V(n017):	-6.54679e-07	voltage			
V(n014):	0	voltage			
V(n013):	0	voltage			
V(n016):	0	voltage			
V(n019):	0	voltage			
V(outps):	-6.71214e-06	voltage			
V(n020):	-0.00102386	voltage			
V(n025):	-0.00102329	voltage			
**/ ^^^\ .	0.000104405	1 4			

Figura 14: Punct static de functionare etaj I

Calculand Vout pentru etajul I, dupa formula $Vout = (VA - VB)(1 + \frac{2R1}{RG})\frac{R3}{R2}$, se obtine Vout=0.497, ceea ce se regaseste si in simularea de mai sus.

3.1.1.2 Compensarea nivelului DC la iesire

Am inceput prin a pasiviza ambele surse de tensiune si in acest fel am obtinut in simularea OP rezultatele din Figura 15.

~					
* C:\Users\diana\OneDrive\Desktop\SCIA_proiect\Proiect.asc					
Operating Point					
V(out_et1):	-7.56099e-06	voltage			
V(n004):	-0.00122854	voltage			
V(n007):	-0.0012279	voltage			
V(n002):	0.00014935	voltage			
V(n009):	0.00014935	voltage			
V(n001):	-6.54683e-07	voltage			
V(n008):	-6.5468e-07	voltage			
V(v-):	-5	voltage			
V (v+):	5	voltage			
V (vb):	0	voltage			
V (vb_dc):	-0.0155	voltage			
V (va):	0	voltage			
V(va_dc):	0.0155	voltage			
V(outcm):	-7.56099e-06	voltage			
V(n012):	-0.00122854	voltage			
V(n015):	-0.0012279	voltage			
V(n011):	0.00014935	voltage			
V(n018):	0.00014935	voltage			
V(n010):	-6.54683e-07	voltage			
V(n017):	-6.54679e-07	voltage			
V(n014):	0	voltage			
V(n013):	0	voltage			
V(n016):	0	voltage			
V(n019):	0	voltage			
V(outps):	-6.71214e-06	voltage			
V(n020):	-0.00102386	voltage			
V(n025):	-0.00102329	voltage			
TT/=0001 .	0 000104405	1+			

Figura 15: Analiza dupa pasivizarea surselor

Pentru a compensa nivelul DC la iesire, am adaugat o sursa Vref, egala cu complementul tensiunii de iesire.

Figura 16: Compensarea nivelului DC la iesire

3.1.2 AC

3.1.2.1 Castig la joasa frecventa

Pentru a vedea castigul la joasa frecventa am utilizat o analiza .ac ca in Figura 17. Se pozitioneaza un cursor in partea stanga, la 1Hz, si se observa castigul care este aproximativ 16, conform specificatiilor.

.ac dec 100 1 10Meg

Figura 17: Analiza AC

Figura 18: Castigul la joasa frecventa etaj I

3.1.2.2 Banda

Am pozitionat cursoarele astfel incat diferenta dintre ele sa fie de -3dB, masurand banda care este mult mai mare decat cea a a filtrului, 5kHz.

Figura 19: Banda etaj I>banda filtru

3.1.2.3 CMRR si PSRR

Am folosit circuitele proiectate in laborator pentru a vedea CMRR si PSRR, impreuna cu formulele din Figura 21.

Figura 20: Circuite pentru CMRR si PSRR

.meas AC CMRR FIND (V(Out_et1)/V(outCM)) AT 1 .meas AC PSRR FIND (V(Out_et1)/V(outPS)) AT 1

Figura 21: Formule CMRR si PSRR

S-au obtinut urmatoarele simulari:

Figura 22: Plotare CMRR, PSRR

cmrr: (v(out_et1)/v(outcm))=(128.758dB,-0.00350268°) at 1
psrr: (v(out_et1)/v(outps))=(161.633dB,-50.3681°) at 1
aps: v(outps)=(-137.518dB,50.368°) at 1

Figura 23: CMRR si PSRR

3.1.3 TRANSIENT

3.1.3.1 Slew Rate

Pentru Slew Rate am utilizat circuitul din laborator, la care a adaugat o sursa tip PULSE.

Figura 24: Circuitul pentru Slew-Rate

Figura 25: Plot Slew-Rate

3.1.3.2 Liniaritate

Pentru a vedea liniaritatea circuitului, am realizat o analiza Fourier de tipul:

Figura 26: Analiza Fourier etaj I

Se pot observa in Spice Error Log rezultatele pentru THD<1%.

Iarmonic	Frequency	Fourier	Normalized	Phase	Normalized
Number	[Hz]	Component	Component	[degree]	Phase [deg]
1	5.000e+3	4.977e-1	1.000e+0	90.07°	0.00°
2	1.000e+4	2.972e-5	5.970e-5	-46.61°	-136.68°
3	1.500e+4	2.161e-5	4.342e-5	-48.10°	-138.17°
4	2.000e+4	2.892e-5	5.809e-5	-19.65°	-109.71°
5	2.500e+4	4.314e-5	8.666e-5	61.21°	-28.86°
6	3.000e+4	4.254e-5	8.547e-5	150.38°	60.31°
7	3.500e+4	3.385e-5	6.801e-5	-121.44°	-211.51°
8	4.000e+4	2.368e-5	4.757e-5	22.74°	-67.32°
9	4.500e+4	1.186e-5	2.383e-5	115.73°	25.66°
10	5.000e+4	3.057e-5	6.143e-5	-111.18°	-201.25°

Partial Harmonic Distortion: 0.018674%
Potal Harmonic Distortion: 0.038025%

Figura 27: Liniaritate etaj I

3.2 Caracterizarea etajului II

3.2.1 DCOP

3.2.1.1 Punct static de functionare

La intrarea etajului II am adaugat o sursa de tensiune egala cu tensiunea te iesire a primului etaj. Pentru a vedea punctul static de functionare am rulat o analiza .op.

Figura 28: Punct static de functionare etaj II

3.2.2 AC

3.2.2.1 Castig in banda de trecere

In specificatii, castigul liniar al filtrului este egal cu 2, ceea ce se poate vedea si in analiza de tip AC.

Figura 29: Castigul in banda de trecere etaj II

3.2.2.2 Banda

Avand o frecventa f0=5kHz si un factor de calitate Q=1, banda este egala, din calcule cu BW=5kHz.

$$f0 = BW \cdot Q \Rightarrow BW = \frac{f0}{Q} = \frac{5kHz}{1} = 5kHz$$

Pentru a o masura, am pozitionat cursoarele la o diferenta de -3dB fata de castig pe ambele parti.

Banda este aproximativ egala cu 5kHz:

Figura 30: Banda etajului II

3.2.3 Transient

3.2.3.1 Liniaritate

OC component:(0.095609		
Harmonic	Frequency	Fourier	Normalized
Number	[Hz]	Component	Component
1	5.000e+3	9.810e-1	1.000e+0
2	1.000e+4	9.560e-5	9.746e-5
3	1.500e+4	5.972e-5	6.087e-5
4	2.000e+4	6.232e-5	6.353e-5
5	2.500e+4	2.396e-5	2.442e-5
6	3.000e+4	2.588e-5	2.638e-5
7	3.500e+4	2.572e-5	2.621e-5
8	4.000e+4	4.085e-5	4.164e-5
9	4.500e+4	4.241e-5	4.323e-5
10	5.000e+4	1.474e-5	1.502e-5
Partial Harmon	nic Distortion: 0.01	5181%	
otal Harmonio	Distortion: 0.03	6907%	

Figura 31: Liniaritatea etajului II

3.3 Caracterizarea etajului III

3.3.1 DCOP

3.3.1.1 Punct static de functionare

Am aplicat la intrarea PGA-ului tensiunea de iesire de la al doilea etaj, 95mV,

$$A = \frac{Vout}{Vin} \Rightarrow Vout = A \cdot Vin$$

Pentru primul switch activ, tensiunea de iesire ar trebui sa fie egala cu $Vout1 = A1 \cdot 95m = 5 \cdot 95m = 0.475 V$.

v (n029) :	na\OneDrive\Desktop\S		×
V(n029): V(n032):	1.64548	voltage	
	-4.01482	voltage	
V(n028):		voltage	
V(n037):	4.01512	voltage	
V(n027):	-2.49988 2.49988	voltage	
V(n036):	-2.5	voltage	
V(n030):		voltage	
V(vicm):	0 5	voltage	
V(vid):		voltage	
V(n038):	2.5	voltage	
V(n012):	0.0949919	voltage	
V(n003):	0.0949993	voltage	
V(sw1):	5	voltage	
V(out_et3):	0.53522	voltage	
V(n016):	0.095	voltage	
V(n004):	0.09499	voltage	
V (sw2):	0	voltage	
V(n001):	0.094988	voltage	
V(sw3):	0	voltage	
V(n002):	0.0949865	voltage	
V(sw4):	0	voltage	
I(C1):	9.55524e-23	device_current	
I(C2):	6.47174e-28	device_current	
I(R3_1):	1.2278e-07	device_current	
I(R3_2):	1.23472e-07	device_current	
I(R2_1):	-1.37721e-06	device_current	
I(R2_2):	-1.37657e-06	device_current	
I (Rg) :	-1.06978e-14	device_current	
I(R1_1):	1.50005e-06	device_current	
I(R1_2):	1.50005e-06	device_current	
I(R7):	1.22098e-07	device_current	
I(R8):	1.2279e-07	device_current	
I(R9):	-1.37789e-06	device_current	
I(R10):	-1.37725e-06	device_current	
I(Rg_cm):	-1.05236e-14	device_current	
T (R11) ·	1 50005e-06	device current	

Figura 32: Primul sw activ-dcop

Pentru al doilea switch, $Vout2 = A2 \cdot 95m = 4 \cdot 95m = 0.380 V$.

* C:\Users\dian	a\OneDrive\Desktop\S	CIA_proiect\Proiect.asc	×
V(n037):	4.01512	voltage	
√(n027):	-2.49988	voltage	
V(n036):	2.49988	voltage	
√(n030):	-2.5	voltage	
V(vicm):	0	voltage	
<pre>V(vid):</pre>	5	voltage	
V(n038):	2.5	voltage	
√(n012):	0.0712628	voltage	
√(n003):	0.0949993	voltage	- 1
V(sw1):	0	voltage	- 1
7(out_et3):	0.440301	voltage	- 1
V(n016):	0.095	voltage	- 1
V(n004):	0.0949938	voltage	- 1
V(sw2):	5	voltage	
√(n001):	0.0949918	voltage	
√(sw3):	0	voltage	
√(n002):	0.0949902	voltage	
V(sw4):	0	voltage	
I(C1):	9.55524e-23	device current	
I(C2):	6.47174e-28	device current	
I (R3_1):	1.2278e-07	device_current	
I (R3_2):	1.23472e-07	device_current	
I (R2_1):	-1.37721e-06	device_current	
I (R2_2):	-1.37657e-06	device_current	
I (Rg) :	-1.01362e-14	device_current	
I(R1_1):	1.50005e-06	device current	
r /p1 3) .	1 50005- 06	4	

Figura 33: Al doilea sw activ-dcop

Activez switch-ul al treilea: $Vout3 = A3 \cdot 95m = 3.16 \cdot 95m = 0.3002 V$.

V(n030):	-2.5	voltage	
V(vicm):	0	voltage	
V(vid):	5	voltage	
V(n038):	2.5	voltage	
V(n012):	0.0513202	voltage	
V(n003):	0.0949993	voltage	
V(sw1):	0	voltage	
<pre>V(out_et3):</pre>	0.360527	voltage	
V(n016):	0.095	voltage	
V(n004):	0.0684102	voltage	- 1
V(sw2):	0	voltage	- 1
V(n001):	0.0949953	voltage	- 1
V(sw3):	5	voltage	- 1
V(n002):	0.0949938	voltage	- 1
V(sw4):	0	voltage	
I(C1):	9.55524e-23	device_current	
I(C2):	6.47174e-28	device_current	
I(R3_1):	1.2278e-07	device_current	
I(R3_2):	1.23472e-07	device_current	
I(R2_1):	-1.37721e-06	device_current	
I(R2_2):	-1.37657e-06	device_current	
I (Rg) :	-9.68154e-15	device_current	
I(R1_1):	1.50005e-06	device_current	
I(R1_2):	1.50005e-06	device_current	
I(R7):	1.22098e-07	device_current	
- •			

Figura 34: Al treilea sw acitv-dcop

Pentru switch-ul 4, $Vout4 = A4 \cdot 95m = 2.5 \cdot 95m = 0.2375 V$.

		proiect\Proiect.asc	
V(n029):	-1.19372	voltage	
V(n032):	1.64548	voltage	
V(n028):	-4.01482	voltage	
V(n037):	4.01512	voltage	
V(n027):	-2.49988	voltage	
V(n036):	2.49988	voltage	
V(n030):	-2.5	voltage	
V(vicm):	0	voltage	
<pre>V(vid):</pre>	5	voltage	
V(n038):	2.5	voltage	
V(n012):	0.0356313	voltage	
V(n003):	0.0949993	voltage	
V(sw1):	0	voltage	
V(out_et3):	0.297766	voltage	
V(n016):	0.095	voltage	
V(n004):	0.0474968	voltage	
V(sw2):	0	voltage	
V(n001):	0.0659546	voltage	
V(sw3):	0	voltage	
V(n002):	0.0949966	voltage	
V(sw4):	5	voltage	
I(C1):	9.55524e-23	device_current	
I(C2):	6.47174e-28	device_current	
I(R3_1):	1.2278e-07	device_current	
I(R3_2):	1.23472e-07	device_current	
I(R2_1):	-1.37721e-06	device_current	
I(R2_2):	-1.37657e-06	device_current	
I (Rg):	-1.06176e-14	device current	
I(R1_1):	1.50005e-06	device_current	

Figura 35: Al patrulea sw acitv-dcop

3.3.2 AC

3.3.2.1 Castigul

A1=14dB:

Figura 36: Castig etaj III-sw1 activ

A2=12dB:

Figura 37: Castig etaj III-sw2 activ

A3=10dB:

Figura 38: Castig etaj III-sw3 activ

A4=8dB

Figura 39: Castig etaj III-sw4 activ

3.3.2.2 Banda

Am masurat banda la diferenta dintre cursoare de -90°.

Figura 40: Banda PGA>banda filtru sw1 activ

Al doilea switch activ:

Figura 41:Banda PGA>Banda filtru sw2 activ

Al treilea switch activ:

Figura 42:Banda PGA>Banda filtru sw3 activ

Pentru switch-ul 4 activ:

Figura 43: Banda PGA>Banda filtru sw4 activ

3.3.3 Transient

3.3.3.1 Liniaritate

Pentru a vedea liniaritatea, am folosit PGA-ul proiectat cu switch uri ideale:

Figura 44: PGA cu switch uri ideale

Pentru castigul maxim:

Marmonic	Frequency	Fourier	Normalized	Phase	Normalized
Number	[Hz]	Component	Component	[degree]	Phase [deg]
1	5.000e+3	3.575e-3	1.000e+0	89.91°	0.00°
2	1.000e+4	1.731e-6	4.842e-4	145.84°	55.93°
3	1.500e+4	3.406e-6	9.526e-4	-165.88°	-255.78°
4	2.000e+4	2.616e-6	7.318e-4	85.79°	-4.11°
5	2.500e+4	2.869e-6	8.024e-4	-122.37°	-212.28°
6	3.000e+4	1.747e-6	4.886e-4	75.11°	-14.80°
7	3.500e+4	2.205e-6	6.166e-4	-109.89°	-199.80°
8	4.000e+4	1.640e-6	4.586e-4	-3.53°	-93.44°
9	4.500e+4	2.812e-6	7.865e-4	-125.95°	-215.85°
10	5.000e+4	1.741e-6	4.871e-4	9.18°	-80.73°

Figura 45: THD<1% castig maxim

Pentru castig minim:

larmonic .	Frequency	Fourier	Normalized	Phase	Normalized
Number	[Hz]	Component	Component	[degree]	Phase [deg]
1	5.000e+3	3.585e-3	1.000e+0	90.14°	0.00°
2	1.000e+4	1.050e-5	2.930e-3	-130.25°	-220.39°
3	1.500e+4	8.116e-6	2.264e-3	19.80°	-70.33°
4	2.000e+4	1.549e-5	4.321e-3	136.59°	46.45°
5	2.500e+4	2.112e-5	5.892e-3	-41.11°	-131.24°
6	3.000e+4	9.360e-6	2.611e-3	75.81°	-14.33°
7	3.500e+4	1.191e-5	3.322e-3	-7.03°	-97.17°
8	4.000e+4	5.238e-6	1.461e-3	29.11°	-61.03°
9	4.500e+4	1.393e-6	3.885e-4	46.81°	-43.33°
10	5.000e+4	1.261e-6	3.517e-4	60.22°	-29.92°

Figura 46: THD<1% castig minim

3.4 Carcaterizarea etajului IV

3.4.1 DCOP

3.4.1.1 Punct static de functionare

Am realizat o analiza de tip .op:

V(sw3):	0	voltage
V(n002):	-6.47085e-07	voltage
V (sw4):	0	voltage
V(vin):	0	voltage
V(out_et4):	0.0149822	voltage
V(n017):	-6.47194e-07	voltage
V(n013):	-7.28856e-07	voltage
V(n018):	7.68523e-06	voltage
۷ (vo) :	0.289569	voltage
I(C1):	9.55524e-23	device_current
I(C2):	6.47174e-28	device_current
I(D1):	-2.51606e-09	device current
I(D2):	1.49915e-06	device current
I(R3_1):	1.2278e-07	device current
I(R3_2):	1.23472e-07	device_current
I (R2_1):	-1.37721e-06	device_current
I (R2_2):	-1.37657e-06	device_current
I (Rg) :	-1.09488e-14	device_current
I(R1 1):	1.50005e-06	device current
I (R1_2):	1.50005e-06	device_current
I(R7):	1.22098e-07	device current
I(R8):	1.2279e-07	device_current
I(R9):	-1.37789e-06	device_current
I(R10):	-1.37725e-06	device_current
I(Rg cm):	-1.0885e-14	device current
I(R11):	1.50005e-06	device current
I(R12):	1.50005e-06	device current
I (R13):	1.22098e-07	device current
I (R14):	1.2279e-07	device current
T /D1 E \ .	1 27700- 06	

Figura 47: analiza OP etajul 4

3.4.2 DC SWEEP

3.4.2.1 Castig

Pentru a vedea castigul liniar al etajului 4, am folosit o analiza de tip DC SWEEP cu urmatorii parametri:

.dc V3 -5 5 0.1

Figura 48: Parametrii DC SWEEP

Figura 49: DC SWEEP etajul 4

Caracteristica din simulare respecta expresia tensiunii de iesire: $Vout = \begin{cases} -A \cdot Vin, Vin < 0 \\ A \cdot Vin, Vin > 0 \end{cases}$

$$Vout = \begin{cases} -A \cdot Vin, Vin < 0 \\ A \cdot Vin, Vin > 0 \end{cases}$$

Castigul, pe ambele parti, este aproximativ egal cu 1, precum in specificatii:

Figura 50: Castig=1

Figura 51: Castig=1

3.4.3 Transient

3.4.3.1 Implementare functie de circuit

Graficul din poza respecta, de asemenea, expresia tensiunii de iesire. Pentru o intrare pozitiva, tensiunea de iesire este egala cu tensiunea de intrare, castigul fiind 1, iar pentru o tensiune de intrare negative, iesirea este egala cu -Vin.

Figura 52:Implementare functie de circuit etajul 4

3.4.4 Domeniu de liniaritate

Pentru alternanta pozitiva, Vin maxim:

Figura 53: Alternanta pozitiva, vin maxim

Pentru alternanta negativa:

Figura 54: Alternanta negativa

4 CONCLUZIE

	SPECI	FICATII	SIMULARI		
ETAJ 1	Castig liniar		Castig liniar		
		16		059	
ETAJ 2	Castig liniar	Banda	Castig liniar	Banda	
	2	5k	2.00086	5.1520k	
ETAJ 3	Castig minim(dB)	Castig maxim(dB)	Castig minim(dB)	Castig maxim(dB)	
	8 dB	14 dB	7.96 dB	13.98 dB	
ETAJ 4	Castig liniar		Castig liniar		
	1		0.99		

Tabelul 4: Concluzie