Linear classification methods Lecture 2a

Overview

- Discriminant Analysis models
- Logistic regression
- Generalized Linear Model

Classification

- Given data $D = ((X_i, Y_i), i = 1 ... N)$
 - $Y_i = Y(X_i) = C_j \in \mathbf{C}$
 - Class set $\boldsymbol{C} = (C_1, \dots, C_K)$

Classification problem:

- Decide $\hat{Y}(x)$ that maps **any** x into some class C_K
 - Decision boundary

Classifiers

- **Deterministic**: decide a rule that directly maps X into \widehat{Y}
- Probabilistic: define a model for $P(Y = C_i | X)$, i = 1 ... K

Disanvantages of deterministic classifiers:

- Sometimes simple mapping is not enough (risk of cancer)
- Difficult to embed loss-> rerun of optimizer is often needed
- Combining several classifiers into one is more problematic
 - Algorithm A classifies as spam, Algorithm B classifies as not spam → ???
 - P(Spam|A)=0.99, $P(Spam|B)=0.45 \rightarrow better decision can be made$

Probabilities into decision

Loss minimization

$$\min_{\hat{f}} EL(y, \hat{f}) = \min_{\hat{f}} \int L(y, \hat{f}) p(y, x|w) dx dy$$

When loss is $\begin{cases} 1, wrongly \ classified \\ 0, correctly \ classified \end{cases}$

Classify
$$Y$$
 as $\hat{Y} = \arg \max_{c} p(Y = c|X)$

- Discriminative model
- Model for binary output

-
$$C = \{C_1 = 1, C_2 = 0\}$$

 $p(Y = C_1|X) = sigm(\mathbf{w}^T \mathbf{x})$

$$sigm(a) = \frac{1}{1 + e^{-a}}$$

Alternatively

$$Y \sim Bernoulli(sigm(a)), a = \mathbf{w}^T \mathbf{x}$$

 $sigm(a) = \frac{1}{1 + e^{-a}}$

What is $P(Y = C_2|X)$?

Logistic model- yet another form

$$ln\frac{p(Y=1|X=x)}{P(Y=0|X=x)} = ln\frac{p(Y=1|X=x)}{1 - P(Y=1|X=x)} = logit(p(Y=1|X=x)) = \mathbf{w}^T \mathbf{x}$$

The log of the odds is linear in x

- Here $logit(t) = ln\left(\frac{t}{1-t}\right)$
- Note p(Y|X) is connected to w^Tx via logit link

Example: Probability to buy more than once as function of First Amount Spend

When Y is categorical,

$$p(Y = C_i | x) = \frac{e^{\mathbf{w}_i^T x}}{\sum_{j=1}^K e^{\mathbf{w}_j^T x}} = softmax(\mathbf{w}_i^T x)$$

Alternatively

$$Y \sim Multinoulli\left(softmax(\mathbf{w}_1^T \mathbf{x}), ... softmax(\mathbf{w}_K^T \mathbf{x})\right)$$

Fitting logistic regression

In binary case,

$$\log P(D|w) = \sum_{i=1}^{N} y_i \log(sigm(w^T x_i)) + (1 - y_i) \log(1 - sigm(w^T x_i))$$

- Can not be maximized analytically, but unique maximizer exists
- To maximize loglikelihood, optimization used
 - Newton's method traditionally used (Iterative Reweighted Least Squares)
 - Steepest descent, Quasi-newton methods...

Estimation:

For new x , estimate $p(y) = [p_1, \dots p_C]$ and classify as $\max_i p_i$

Decision boundaries of logistic regression are linear

- In R, use glm() with family="binomial"
 - Predicted probabilities: predict(fit,newdata, type="response")

Example Equipment=f(Year, mileage)

Original data

Classified data

Moving beyond typical distributions

- We know how to model
 - Normally distributed targets -> linear regression
 - Bernoulli and Multinomial targets → logistic regression
 - What if target distribution is more complex?

Example 1: Daily Stock prices NASDAQ

- Open
- High (within day)

Does it seem that the error is normal here?

Example 2: Number of calls to bank

- Y=Number of calls
- X= time

Endless amount of classes → multinomial does not work... (Poisson)

732A95/TDDE01

Exponential family

- More advanced error distributions are sometimes needed!
- Many distributions belong to exponential family:
 - Normal, Exponential, Gamma, Beta, Chi-squared...
 - Bernoulli, Multinoulli, Poisson...

$$p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta})e^{(\boldsymbol{\eta}^T u(\mathbf{x}))}$$

- Easy to find MLE and MAP
- Non-exponential family distributions: uniform, Student t

Example: Bernoulli

Generalized linear models

- Assume Y from the exponential family
- Model is $Y \sim EF(\mu, ...)$, $f(\mu) = \mathbf{w}^T \mathbf{x}$
 - $\operatorname{Alt} \mu = f^{-1}(\mathbf{w}^T \mathbf{x})$
 - $-f^{-1}$ is activation function
 - -f is link function (in principle, arbitrary)
- Arbitrary f will lead to (s dispersion parameter)

$$p(y|w,s) = h(y,s)g(w,x)e^{\frac{b(w,x)y}{s}}$$

If f is a canonical link, then

$$p(y|w,s) = h(y,s)g(w,x)e^{\frac{(w^Tx)y}{s}}$$

Generalized linear models

- Canonical links are normally used
 - MLE computations simplify
 - MLE $\widehat{w} = F(X^TY)$ → computations do not depend on all data but rather a summary (sufficient statistics) → computations speed up

Example: Poisson regression

$$f^{-1}(\mu) = e^{\mu}$$
, $Y \sim Poisson(e^{w^T x})$

Generalized linear model: software

• Use glm(formula, family, data) in R

Example: Daily Stock prices NASDAQ

- Open
- High (within day)
- Try to fit usual linear regression, study histogram of residuals

Gamma distribution: Wikipedia

732A95/TDDE01

Generalized linear model

Assume

$$High \sim Gamma(1, \frac{1}{w_0 + w_1 Open})$$

What is link function here?

New generated data

 Has similar pattern as original data!

Quadratic discriminant analysis

- Generative classifier
- Main assumptions:
 - -x is now **random** as well as y

$$p(\mathbf{x}|\mathbf{y} = C_i, \theta) = N(\mathbf{x}|\boldsymbol{\mu_i}, \boldsymbol{\Sigma_i})$$

Unknown parameters $\theta = \{\mu_i, \Sigma_i\}$

Quadratic discriminant analysis

• If parameters are estimated, classify:

$$\hat{y}(\mathbf{x}) = \arg \max_{c} p(y = c | \mathbf{x}, \theta)$$

Source: Probabilistic Machine Learning by Murphy

Linear discriminant analysis (LDA)

- Assumtion $\Sigma_i = \Sigma$, i = 1, ... K
- Then $p(y = c_i | x) = softmax(w_i^T x + w_{0i}) \rightarrow exactly the same form as the logistic regression$

$$-w_{0i} = -\frac{1}{2}\boldsymbol{\mu}_i^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_i + \log \pi_i$$

$$\boldsymbol{\mu}_i - \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_i$$

$$-w_i = \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_i$$

- Decision boundaries are linear
 - Discriminant function:

$$\delta_k(x) = x^T \mathbf{\Sigma}^{-1} \mu_k - \frac{1}{2} \mu_k^T \mathbf{\Sigma}^{-1} \mu_k + \log \pi_k$$

Linear discriminant analysis (LDA)

- Difference LDA vs logistic regression??
 - Coefficients will be estimated differently! (models are different)
- How to estimate coefficients
 - find MLE.

$$\hat{\boldsymbol{\mu}}_c = \frac{1}{N_c} \sum_{i:y_i = c} \mathbf{x}_i, \quad \hat{\boldsymbol{\Sigma}}_c = \frac{1}{N_c} \sum_{i:y_i = c} (\mathbf{x}_i - \hat{\boldsymbol{\mu}}_c) (\mathbf{x}_i - \hat{\boldsymbol{\mu}}_c)^T$$

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{c=1}^k N_c \, \hat{\boldsymbol{\Sigma}}_c$$

- Sample mean and sample covariance are MLE!
- If class priors are parameters (proportional priors),

$$\hat{\pi}_c = \frac{N_c}{N}$$

LDA and QDA: code

Syntax in R, library MASS

Ida(formula, data, ..., subset, na.action)

- Prior class probabiliies
- Subset indices, if training data should be used

```
qda(formula, data, ..., subset, na.action)
predict(..)
```

LDA: output

```
resLDA=lda(Equipment~Mileage+Year, data=mydata)
print(resLDA)
```

LDA: output

Misclassified items

plot(mydata\$Year, mydata\$Mileage,
col=as.double(Pred\$class)+1, pch=21,
bg=as.double(Pred\$class)+1,
main="Prediction")

> table(Pred\$class, mydata\$Equipment)

```
0 1
0 31 6
1 7 15
```


LDA versus Logistic regression

- Generative classifiers are easier to fit, discriminative involve numeric optimization
- LDA and Logistic have same model form but are fit differently
- LDA has stronger assumptions than Logistic, some other generative classifiers lead also to logistic expression
- New class in the data?
 - Logistic: fit model again
 - LDA: estimate new parameters from the new data
- Logistic and LDA: complex data fits badly unless interactions are included

LDA versus Logistic regression

- LDA (and other generative classifiers) handle missing data easier
- Standardization and generated inputs:
 - Not a problem for Logistic
 - May affect the performance of the LDA in a complex way
- Outliers affect $\Sigma \rightarrow LDA$ is not robust to gross outliers
- LDA is often a good classification method even if the assumption of normality and common covariance matrix are not satisfied.