Multidimensional Random Subset Sum Problem

Francesco d'Amore COATI team

Based on joint work with L. Becchetti, A. Carvalho Walraven da Cunha, A. Clementi, H. Lesfari, E. Natale, and L. Trevisan

Aalto University 21 September 2022

- Sequence of n integers x_1, \ldots, x_n
- Target value z

Input:

- Sequence of n integers x_1, \ldots, x_n
- Target value z

Question:

• Is there a subset $S \subseteq [n]$ such that $\sum_{i \in S} x_i = z$?

Input:

- Sequence of n integers x_1, \ldots, x_n
- Target value z

Question:

• Is there a subset $S \subseteq [n]$ such that $\sum_{i \in S} x_i = z$?

Example:

- Sequence: -9, -7, -1, -1, 0, +3, +4, +5, +9, +11
- Target value: 2

Input:

- Sequence of n integers x_1, \ldots, x_n
- Target value z

Question:

• Is there a subset $S \subseteq [n]$ such that $\sum_{i \in S} x_i = z$?

Example:

- Sequence: -9, -7, -1, -1, 0, +3, +4, +5, +9, +11
- Target value: 2

•
$$-9 + 11 = 2$$

•
$$-7 + 9 = 2$$

•
$$-1 + 3 = 2$$

•
$$-1 - 1 + 4 = 2$$

$$\bullet$$
 $-7+4+5=2$

• etc.

• NP-complete: reduction from 3-SAT

- NP-complete: reduction from 3-SAT
- "Equivalent" to the Number Partition problem (NPP)
- Solving the SSP for x_1,\ldots,x_n and target $z=\frac{1}{2}\sum_{i\in[n]}x_i$ solves the NPP
- Solving the NPP for $x_1,\ldots,x_n,2z,\sum_{i\in[n]}x_i$ solves the SSP with tgt z

- NP-complete: reduction from 3-SAT
- "Equivalent" to the Number Partition problem (NPP)
- Solving the SSP for x_1,\ldots,x_n and target $z=rac{1}{2}\sum_{i\in[n]}x_i$ solves the NPP
- Solving the NPP for $x_1,\ldots,x_n,2z,\sum_{i\in[n]}x_i$ solves the SSP with tgt z
- Common base for NP-completeness proofs
- The NPP is among the six basic NP-complete problems in the Garey and Johnson's book

- NP-complete: reduction from 3-SAT
- "Equivalent" to the Number Partition problem (NPP)
- Solving the SSP for x_1,\ldots,x_n and target $z=\frac{1}{2}\sum_{i\in[n]}x_i$ solves the NPP
- Solving the NPP for $x_1,\ldots,x_n,2z,\sum_{i\in[n]}x_i$ solves the SSP with tgt z
- Common base for NP-completeness proofs
- The NPP is among the six basic NP-complete problems in the Garey and Johnson's book
- Applications:
- combinatorial number theory [Zhi-Wei, 2003]
- cryptography [Gemmel et Johnston, 2001; Kate et Goldberg, 2011]

- Interested in the average case, or in high probabilities (h. p.)
- The input values are random variables

- Interested in the average case, or in high probabilities (h. p.)
- The input values are random variables

- Sequence of n independent random variables X_1, \ldots, X_n
- Target value z

- Interested in the average case, or in high probabilities (h. p.)
- The input values are random variables

- Sequence of n independent random variables X_1, \ldots, X_n
- Target value z

- Interested in the average case, or in high probabilities (h. p.)
- The input values are random variables

- Sequence of n independent random variables X_1, \ldots, X_n
- Target value z

- Interested in the average case, or in high probabilities (h. p.)
- The input values are random variables

- Sequence of n independent random variables X_1, \ldots, X_n
- Target value z

- Interested in the average case, or in high probabilities (h. p.)
- The input values are random variables

- Sequence of n independent random variables X_1, \ldots, X_n
- Target value z

- Interested in the average case, or in high probabilities (h. p.)
- The input values are random variables

- Sequence of n independent random variables X_1, \ldots, X_n
- Target value z

- Interested in the average case, or in high probabilities (h. p.)
- The input values are random variables

- Sequence of n independent random variables X_1, \ldots, X_n
- Target value z

- Interested in the average case, or in high probabilities (h. p.)
- The input values are random variables

- Sequence of n independent random variables X_1, \ldots, X_n
- Target value z

- Interested in the average case, or in high probabilities (h. p.)
- The input values are random variables

- Sequence of n independent random variables X_1, \ldots, X_n
- Target value z

- Interested in the average case, or in high probabilities (h. p.)
- The input values are random variables

Input:

- Sequence of n independent random variables X_1, \ldots, X_n
- Target value z

Question:

• How large n for a subset $S \subseteq [n]$ to exist, with $z = \sum_{i \in S} X_i$, with h. p.?

- Interested in the average case, or in high probabilities (h. p.)
- The input values are random variables

Input:

- Sequence of n independent random variables X_1, \ldots, X_n
- Target value z

Question:

• How large n for a subset $S\subseteq [n]$ to exist, with $z=\sum_{i\in S}X_i$, with h. p.?

$$|z - \sum_{i \in S} X_i| \le 2\varepsilon$$

- Interested in the average case, or in high probabilities (h. p.)
- The input values are random variables

Input:

- Sequence of n independent random variables X_1, \ldots, X_n
- Target value z

Question:

• How large n for a subset $S \subseteq [n]$ to exist, with $z = \sum_{i \in S} X_i$, with h. p.?

$$|z - \sum_{i \in S} X_i| \le 2\varepsilon$$

We say that S 2ε -approximates z

- Mainly, results from Lueker [Lueker, 1982; Lueker, 1998]
- Proved in a simpler way in [Carvalho, d'Amore, Giroire, Lesfari, Natale, and Viennot, 2022]

- Mainly, results from Lueker [Lueker, 1982; Lueker, 1998]
- Proved in a simpler way in [Carvalho, d'Amore, Giroire, Lesfari, Natale, and Viennot, 2022]

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$

- Mainly, results from Lueker [Lueker, 1982; Lueker, 1998]
- Proved in a simpler way in [Carvalho, d'Amore, Giroire, Lesfari, Natale, and Viennot, 2022]

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$

- Mainly, results from Lueker [Lueker, 1982; Lueker, 1998]
- Proved in a simpler way in [Carvalho, d'Amore, Giroire, Lesfari, Natale, and Viennot, 2022]

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$

- Mainly, results from Lueker [Lueker, 1982; Lueker, 1998]
- Proved in a simpler way in [Carvalho, d'Amore, Giroire, Lesfari, Natale, and Viennot, 2022]

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$

- Mainly, results from Lueker [Lueker, 1982; Lueker, 1998]
- Proved in a simpler way in [Carvalho, d'Amore, Giroire, Lesfari, Natale, and Viennot, 2022]

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$

- Mainly, results from Lueker [Lueker, 1982; Lueker, 1998]
- Proved in a simpler way in [Carvalho, d'Amore, Giroire, Lesfari, Natale, and Viennot, 2022]

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$

- Mainly, results from Lueker [Lueker, 1982; Lueker, 1998]
- Proved in a simpler way in [Carvalho, d'Amore, Giroire, Lesfari, Natale, and Viennot, 2022]

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$

- Mainly, results from Lueker [Lueker, 1982; Lueker, 1998]
- Proved in a simpler way in [Carvalho, d'Amore, Giroire, Lesfari, Natale, and Viennot, 2022]

Specific instance of RSSP

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$

Stronger **question**:

- How large n such that, with h. p., for any $z\in [-1,1]$ a subset $S_z\subseteq [n]$ exists, with $|z-\sum_{i\in S_z}X_i|\leq 2\varepsilon$?
- all values in [-1,1] must be 2ε -approximated by some subset

- Mainly, results from Lueker [Lueker, 1982; Lueker, 1998]
- Proved in a simpler way in [Carvalho, d'Amore, Giroire, Lesfari, Natale, and Viennot, 2022]

Specific instance of RSSP

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$

Stronger **question**:

- How large n such that, with h. p., for any $z\in [-1,1]$ a subset $S_z\subseteq [n]$ exists, with $|z-\sum_{i\in S_z}X_i|\leq 2\varepsilon$?
- all values in [-1,1] must be 2ε -approximated by some subset

Result for the RSSP

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Small error parameter $\varepsilon>0$

Result for the RSSP

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Small error parameter $\varepsilon > 0$

Theorem: [Lueker, 1998]

• There exist two constant $\kappa, C>0$, such that, if $n\geq C\log\frac{1}{\varepsilon}$, the probability that, for any $z\in [-1,1]$, a subset $S_z\subseteq [n]$ exists, with $|z-\sum_{i\in S_z}X_i|\leq 2\varepsilon$, is

$$1 - 2\exp\left[\frac{1}{\kappa n}\left(n - C\log\frac{1}{\varepsilon}\right)^2\right]$$

Result for the RSSP

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Small error parameter $\varepsilon > 0$

Theorem: [Lueker, 1998]

• There exist two constant $\kappa, C>0$, such that, if $n\geq C\log\frac{1}{\varepsilon}$, the probability that, for any $z\in [-1,1]$, a subset $S_z\subseteq [n]$ exists, with $|z-\sum_{i\in S_z}X_i|\leq 2\varepsilon$, is $1-2\exp\left[\frac{1}{\kappa n}\left(n-C\log\frac{1}{\varepsilon}\right)^2\right]$

Corollaries:

- the result applies to a wider class of distributions: any density $f \geq b > 0$ for $x \in [-a,a]$
- upper bound on the expectation of
- the [a,b]-Subset Sum gap: minimum value of 2ε such that any real in [a,b] can be 2ε -approximated by some subset S of n variables
- the [a,b]-Number Partition gap: minimum value of 2ε such that any real in [a,b] can be 2ε -approximated by using coefficients $\{-1,+1\}$ with n variables

Applications of the RSSP

Machine learning:

- Proof of the Strong Lottery Ticket Hypothesis [Pensia et al., NeurIPS 2020]
- any target network of width d and depth ℓ can be approximated by pruning a random network that is a factor $\mathcal{O}(\log d\ell)$ wider and twice as deep
- feed-forward, fully connected, ReLU activation
- Related results [Carvalho et al., ICLR 2022; Burkoholz et al., ICLR 2022]
- Pruning in Federated Learning [Wang et al., EMNLP 2021]

- $z \in \mathbb{R}$, $0 < \varepsilon < 1/3$
- Imagine revealing the r.v.s one by one: at time t, we have revealed X_1,\ldots,X_t

- $z \in \mathbb{R}$, $0 < \varepsilon < 1/3$
- Imagine revealing the r.v.s one by one: at time t, we have revealed X_1,\ldots,X_t
- $f_t(z)=1$ if z is ε -apx with a subset of X_1,\ldots,X_t and $z\in[1,1]$, 0 otherwise

- $z \in \mathbb{R}$, $0 < \varepsilon < 1/3$
- Imagine revealing the r.v.s one by one: at time t, we have revealed X_1,\ldots,X_t
- $f_t(z)=1$ if z is ε -apx with a subset of X_1,\ldots,X_t and $z\in[1,1]$, 0 otherwise
- $v_t = \frac{1}{2} \int_{-1}^1 f_t(z) \; \mathrm{d}z$ ratio of [-1,1] that is approximated

- $z \in \mathbb{R}$, $0 < \varepsilon < 1/3$
- ullet Imagine revealing the r.v.s one by one: at time t, we have revealed X_1,\ldots,X_t
- $f_t(z)=1$ if z is ε -apx with a subset of X_1,\ldots,X_t and $z\in[1,1]$, 0 otherwise
- $v_t = \frac{1}{2} \int_{-1}^1 f_t(z) \; \mathrm{d}z$ ratio of [-1,1] that is approximated

• In expectation: v_t increases exponentially each round until 1/2; $w_t=1-v_t$ decreases exponentially each round until ε

- $z \in \mathbb{R}$, $0 < \varepsilon < 1/3$
- ullet Imagine revealing the r.v.s one by one: at time t, we have revealed X_1,\ldots,X_t
- $f_t(z)=1$ if z is ε -apx with a subset of X_1,\ldots,X_t and $z\in[1,1]$, 0 otherwise
- $v_t = \frac{1}{2} \int_{-1}^1 f_t(z) \; \mathrm{d}z$ ratio of [-1,1] that is approximated

- In expectation: v_t increases exponentially each round until 1/2; $w_t=1-v_t$ decreases exponentially each round until ε
- A lot of math: convert into probabilities and concentrate

• Natural generalization

Natural generalization

- Sequence of n independent random vectors $X_1, \ldots, X_n \in [-1, +1]^d$
- Target vector $\mathbf{z} \in [-1, +1]^d$
- Error parameter $\varepsilon > 0$

• Natural generalization

- Sequence of n independent random vectors $X_1, \ldots, X_n \in [-1, +1]^d$
- Target vector $\mathbf{z} \in [-1, +1]^d$
- Error parameter $\varepsilon > 0$

Natural generalization

- Sequence of n independent random vectors $X_1, \ldots, X_n \in [-1, +1]^d$
- Target vector $\mathbf{z} \in [-1, +1]^d$
- Error parameter $\varepsilon > 0$

• Natural generalization

- Sequence of n independent random vectors $X_1, \ldots, X_n \in [-1, +1]^d$
- Target vector $\mathbf{z} \in [-1, +1]^d$
- Error parameter $\varepsilon > 0$

• Natural generalization

- Sequence of n independent random vectors $X_1, \ldots, X_n \in [-1, +1]^d$
- Target vector $\mathbf{z} \in [-1, +1]^d$
- Error parameter $\varepsilon > 0$

• Natural generalization

- Sequence of n independent random vectors $X_1, \ldots, X_n \in [-1, +1]^d$
- Target vector $\mathbf{z} \in [-1, +1]^d$
- Error parameter $\varepsilon > 0$

• Natural generalization

- Sequence of n independent random vectors $X_1, \ldots, X_n \in [-1, +1]^d$
- Target vector $\mathbf{z} \in [-1, +1]^d$
- Error parameter $\varepsilon > 0$

• Natural generalization

- Sequence of n independent random vectors $X_1, \ldots, X_n \in [-1, +1]^d$
- Target vector $\mathbf{z} \in [-1, +1]^d$
- Error parameter $\varepsilon > 0$

Natural generalization

- Sequence of n independent random vectors $X_1, \ldots, X_n \in [-1, +1]^d$
- Target vector $\mathbf{z} \in [-1, +1]^d$
- Error parameter $\varepsilon > 0$

• Natural generalization

- Sequence of n independent random vectors $X_1, \ldots, X_n \in [-1, +1]^d$
- Target vector $\mathbf{z} \in [-1, +1]^d$
- Error parameter $\varepsilon > 0$

• Natural generalization

Input:

- Sequence of n independent random vectors $X_1, \ldots, X_n \in [-1, +1]^d$
- Target vector $\mathbf{z} \in [-1, +1]^d$
- Error parameter $\varepsilon > 0$

Question:

• How large n for a subset $S\subseteq [n]$ to exist, with $||\mathbf{z}-\sum_{i\in S}X_i||_\infty \leq 2\varepsilon$, with h. p.?

Natural generalization

Input:

- Sequence of n independent random vectors $X_1, \ldots, X_n \in [-1, +1]^d$
- Target vector $\mathbf{z} \in [-1, +1]^d$
- Error parameter $\varepsilon > 0$

Question:

• How large n for a subset $S\subseteq [n]$ to exist, with $||\mathbf{z}-\sum_{i\in S}X_i||_\infty \leq 2\varepsilon$, with h. p.?

Observations:

• If $X_i \sim Unif([-1,1]^d)$, same proof as before leads to $n \geq \exp(d^{\Omega(1)})\log \frac{1}{\varepsilon}$ variables

Natural generalization

Input:

- Sequence of n independent random vectors $X_1, \ldots, X_n \in [-1, +1]^d$
- Target vector $\mathbf{z} \in [-1, +1]^d$
- Error parameter $\varepsilon > 0$

Question:

• How large n for a subset $S\subseteq [n]$ to exist, with $||\mathbf{z}-\sum_{i\in S}X_i||_\infty \leq 2\varepsilon$, with h. p.?

Observations:

- If $X_i \sim Unif([-1,1]^d)$, same proof as before leads to $n \geq \exp(d^{\Omega(1)})\log \frac{1}{\varepsilon}$ variables
- No success with method of average bounded differences, or Janson's variant of Chernoff bound

- Sequence of n independent standard normal random vectors $X_1, \ldots, X_n \sim \mathcal{N}(\mathbf{0}, I_d)$
- to better deal with sums
- Error parameter $\varepsilon > 0$

Input:

- Sequence of n independent standard normal random vectors $X_1, \ldots, X_n \sim \mathcal{N}(\mathbf{0}, I_d)$
- to better deal with sums
- Error parameter $\varepsilon > 0$

Question:

• How large n such that, with h. p., for any $\mathbf{z} \in [-1,1]^d$, a subset $S_{\mathbf{z}} \subseteq [n]$ exists with $||\mathbf{z} - \sum_{i \in S_{\mathbf{z}}} X_i||_{\infty} \le 2\varepsilon$?

Input:

- Sequence of n independent standard normal random vectors $X_1, \ldots, X_n \sim \mathcal{N}(\mathbf{0}, I_d)$
- to better deal with sums
- Error parameter $\varepsilon > 0$

Question:

• How large n such that, with h. p., for any $\mathbf{z} \in [-1,1]^d$, a subset $S_{\mathbf{z}} \subseteq [n]$ exists with

 $||\mathbf{z} - \sum_{i \in S_{\mathbf{z}}} X_i||_{\infty} \le 2\varepsilon$?

Input:

- Sequence of n independent standard normal random vectors $X_1, \ldots, X_n \sim \mathcal{N}(\mathbf{0}, I_d)$
- to better deal with sums
- Error parameter $\varepsilon > 0$

Question:

• How large n such that, with h. p., for any $\mathbf{z} \in [-1,1]^d$, a subset $S_{\mathbf{z}} \subseteq [n]$ exists with $||\mathbf{z} - \sum_{i \in S_{\mathbf{z}}} X_i||_{\infty} \le 2\varepsilon$?

Observations:

- $\Theta\left(\frac{1}{\varepsilon^d}\right) = 2^{\Theta\left(d\log\frac{1}{\varepsilon}\right)}$ ∞ -norm balls of radius ε are necessary to cover the hypercube
- at least $\Omega\left(d\log\frac{1}{arepsilon}
 ight)$ vectors

Negletting constants

Negletting constants

• Fix $\mathbf{z} \in [-1,1]^d$ and a 2ε -side hypercube $B_{\varepsilon}(\mathbf{z})$ around \mathbf{z} — the ∞ -norm ball of

radius ε .

- reminder: $2^{\Theta\left(d\log\frac{1}{\varepsilon}\right)}$ such cubes

Negletting constants

- reminder: $2^{\Theta\left(d\log\frac{1}{\varepsilon}\right)}$ such cubes
- Consider subsets of size n/2: $\binom{n}{\frac{n}{2}} \approx 2^{n-o(n)}$ such subsets

Negletting constants

- reminder: $2^{\Theta\left(d\log\frac{1}{\varepsilon}\right)}$ such cubes
- Consider subsets of size n/2: $\binom{n}{\frac{n}{2}} \approx 2^{n-o(n)}$ such subsets
- sum distributed as $\mathcal{N}(\mathbf{0}, rac{n}{2}I_d)$

Negletting constants

- reminder: $2^{\Theta(d \log \frac{1}{\varepsilon})}$ such cubes
- Consider subsets of size n/2: $\binom{n}{\frac{n}{2}} \approx 2^{n-o(n)}$ such subsets
- sum distributed as $\mathcal{N}(\mathbf{0}, rac{n}{2}I_d)$
- each component has prob. $\frac{arepsilon}{\sqrt{\frac{n}{2}}}$ to be in $B_{arepsilon}(\mathbf{z})$

Negletting constants

- Fix $\mathbf{z} \in [-1,1]^d$ and a 2ε -side hypercube $B_{\varepsilon}(\mathbf{z})$ around \mathbf{z} the ∞ -norm ball of radius ε .
- reminder: $2^{\Theta\left(d\log\frac{1}{\varepsilon}\right)}$ such cubes
- Consider subsets of size n/2: $\binom{n}{\frac{n}{2}} \approx 2^{n-o(n)}$ such subsets
- sum distributed as $\mathcal{N}(\mathbf{0}, rac{n}{2}I_d)$
- each component has prob. $\frac{arepsilon}{\sqrt{\frac{n}{2}}}$ to be in $B_{arepsilon}(\mathbf{z})$
- joint probability $\varepsilon^d\left(\frac{n}{2}\right)^{-\frac{d}{2}}=2^{-d\left(\log\frac{1}{\varepsilon}+\frac{1}{2}\log\frac{n}{2}\right)}$ to be in $B_{\varepsilon}(\mathbf{z})$

Negletting constants

- Fix $\mathbf{z} \in [-1,1]^d$ and a 2ε -side hypercube $B_{\varepsilon}(\mathbf{z})$ around \mathbf{z} the ∞ -norm ball of radius ε .
- reminder: $2^{\Theta\left(d\log\frac{1}{\varepsilon}\right)}$ such cubes
- Consider subsets of size n/2: $\binom{n}{\frac{n}{2}} \approx 2^{n-o(n)}$ such subsets
- sum distributed as $\mathcal{N}(\mathbf{0}, rac{n}{2}I_d)$
- each component has prob. $\frac{arepsilon}{\sqrt{\frac{n}{2}}}$ to be in $B_{arepsilon}(\mathbf{z})$
- joint probability $\varepsilon^d\left(\frac{n}{2}\right)^{-\frac{d}{2}}=2^{-d\left(\log\frac{1}{\varepsilon}+\frac{1}{2}\log\frac{n}{2}\right)}$ to be in $B_{\varepsilon}(\mathbf{z})$
- Expected number of covering subsets: $2^{n-o(n)} \cdot 2^{-d\left(\log\frac{1}{\varepsilon} + \frac{1}{2}\log\frac{n}{2}\right)} > 1$ if $n \geq Cd\log\frac{1}{\varepsilon}$

Negletting constants

- Fix $\mathbf{z} \in [-1,1]^d$ and a 2ε -side hypercube $B_{\varepsilon}(\mathbf{z})$ around \mathbf{z} the ∞ -norm ball of radius ε .
- reminder: $2^{\Theta\left(d\log\frac{1}{\varepsilon}\right)}$ such cubes
- Consider subsets of size n/2: $\binom{n}{\frac{n}{2}} \approx 2^{n-o(n)}$ such subsets
- sum distributed as $\mathcal{N}(\mathbf{0}, rac{n}{2}I_d)$
- each component has prob. $\frac{arepsilon}{\sqrt{\frac{n}{2}}}$ to be in $B_{arepsilon}(\mathbf{z})$
- joint probability $arepsilon^d \left(rac{n}{2}
 ight)^{-\frac{d}{2}} = 2^{-d \left(\log rac{1}{arepsilon} + rac{1}{2} \log rac{n}{2}
 ight)}$ to be in $B_{arepsilon}(\mathbf{z})$
- Expected number of covering subsets: $2^{n-o(n)} \cdot 2^{-d\left(\log\frac{1}{\varepsilon} + \frac{1}{2}\log\frac{n}{2}\right)} > 1$ if $n \geq Cd\log\frac{1}{\varepsilon}$
- even using $2^{n-o(n)-\Theta\left(d\log\frac{1}{\varepsilon}\right)}$ subsets yields the same bound

- X_1, \ldots, X_n standard normal random vectors $\sim \mathcal{N}(\mathbf{0}, I_d)$
- Error parameter $0 < \varepsilon < 1$

- X_1, \ldots, X_n standard normal random vectors $\sim \mathcal{N}(\mathbf{0}, I_d)$
- Error parameter $0 < \varepsilon < 1$

Theorems:

• If $\mathbf{z} \in [-1,1]^d$ and $n \geq Cd^2(\log \frac{1}{\varepsilon} + \log d)$ a subset $S_{\mathbf{z}}$ exists such that $||\mathbf{z} - \sum_{i \in S_{\mathbf{z}}} X_i||_{\infty} \leq \varepsilon$ w.p. $\frac{1}{3}$

- X_1, \ldots, X_n standard normal random vectors $\sim \mathcal{N}(\mathbf{0}, I_d)$
- Error parameter $0 < \varepsilon < 1$

Theorems:

- If $\mathbf{z} \in [-1,1]^d$ and $n \geq Cd^2(\log \frac{1}{\varepsilon} + \log d)$ a subset $S_{\mathbf{z}}$ exists such that $||\mathbf{z} \sum_{i \in S_{\mathbf{z}}} X_i||_{\infty} \leq \varepsilon \text{ w.p. } \frac{1}{3}$
- If $n \ge Cd^3 \log \frac{1}{\varepsilon} \cdot (\log \frac{1}{\varepsilon} + \log d)$, with exponentially small prob. in n, for any $\mathbf{z} \in [-1,1]^d$, a subset $S_{\mathbf{z}}$ exists such that $||\mathbf{z} \sum_{i \in S_{\mathbf{z}}} X_i||_{\infty} \le 2\varepsilon$

- X_1, \ldots, X_n standard normal random vectors $\sim \mathcal{N}(\mathbf{0}, I_d)$
- Error parameter $0 < \varepsilon < 1$

Theorems:

- If $\mathbf{z} \in [-1,1]^d$ and $n \geq Cd^2(\log \frac{1}{\varepsilon} + \log d)$ a subset $S_{\mathbf{z}}$ exists such that $||\mathbf{z} \sum_{i \in S_{\mathbf{z}}} X_i||_{\infty} \leq \varepsilon$ w.p. $\frac{1}{3}$
- If $n \geq Cd^3 \log \frac{1}{\varepsilon} \cdot (\log \frac{1}{\varepsilon} + \log d)$, with exponentially small prob. in n, for any $\mathbf{z} \in [-1,1]^d$, a subset $S_{\mathbf{z}}$ exists such that $||\mathbf{z} \sum_{i \in S_{\mathbf{z}}} X_i||_{\infty} \leq 2\varepsilon$

Generalizations:

• The domain $[-1,1]^d$ can be widened to $[-\sqrt{\frac{n}{d\sqrt{d}}},\sqrt{\frac{n}{d\sqrt{d}}}]^d$

- X_1, \ldots, X_n standard normal random vectors $\sim \mathcal{N}(\mathbf{0}, I_d)$
- Error parameter $0 < \varepsilon < 1$

Theorems:

- If $\mathbf{z} \in [-1,1]^d$ and $n \geq Cd^2(\log \frac{1}{\varepsilon} + \log d)$ a subset $S_{\mathbf{z}}$ exists such that $||\mathbf{z} \sum_{i \in S_{\mathbf{z}}} X_i||_{\infty} \leq \varepsilon$ w.p. $\frac{1}{3}$
- If $n \geq Cd^3 \log \frac{1}{\varepsilon} \cdot (\log \frac{1}{\varepsilon} + \log d)$, with exponentially small prob. in n, for any $\mathbf{z} \in [-1,1]^d$, a subset $S_{\mathbf{z}}$ exists such that $||\mathbf{z} \sum_{i \in S_{\mathbf{z}}} X_i||_{\infty} \leq 2\varepsilon$

Generalizations:

- The domain $[-1,1]^d$ can be widened to $[-\sqrt{\frac{n}{d\sqrt{d}}},\sqrt{\frac{n}{d\sqrt{d}}}]^d$
- The distribution class is larger: every distribution that contains a gaussian

- X_1, \ldots, X_n standard normal random vectors $\sim \mathcal{N}(\mathbf{0}, I_d)$
- Error parameter $0 < \varepsilon < 1$

- X_1, \ldots, X_n standard normal random vectors $\sim \mathcal{N}(\mathbf{0}, I_d)$
- Error parameter $0 < \varepsilon < 1$
- Fix $\mathbf{z} \in [-1,1]^d$, and $B_{\varepsilon}(\mathbf{z})$

- X_1, \ldots, X_n standard normal random vectors $\sim \mathcal{N}(\mathbf{0}, I_d)$
- Error parameter $0 < \varepsilon < 1$
- Fix $\mathbf{z} \in [-1,1]^d$, and $B_{\varepsilon}(\mathbf{z})$

- X_1, \ldots, X_n standard normal random vectors $\sim \mathcal{N}(\mathbf{0}, I_d)$
- Error parameter $0 < \varepsilon < 1$
- Fix $\mathbf{z} \in [-1,1]^d$, and $B_{\varepsilon}(\mathbf{z})$
- Fix any subset $S \subseteq [n]$ of size αn
- $Y_S=1$ if $\sum_{i\in S} X_i \sim \mathcal{N}(\mathbf{0}, \alpha nI_d)$ lies in $B_{\varepsilon}(\mathbf{z})$
- probability $Y_S=1$ is roughly $\frac{(2arepsilon)^d}{(2\pi lpha n)^{rac{d}{2}}}$
- Gaussian density: $\frac{1}{\sqrt{(2\pi\sigma)^d}} \exp\left[-\frac{||x||_2^2}{2\sigma^d}\right]$

- X_1, \ldots, X_n standard normal random vectors $\sim \mathcal{N}(\mathbf{0}, I_d)$
- Error parameter $0 < \varepsilon < 1$
- Fix $\mathbf{z} \in [-1,1]^d$, and $B_{\varepsilon}(\mathbf{z})$
- Fix any subset $S \subseteq [n]$ of size αn
- $Y_S=1$ if $\sum_{i\in S} X_i \sim \mathcal{N}(\mathbf{0}, \alpha nI_d)$ lies in $B_{\varepsilon}(\mathbf{z})$
- probability $Y_S=1$ is roughly $\frac{(2arepsilon)^d}{(2\pi lpha n)^{rac{d}{2}}}$
- Gaussian density: $\frac{1}{\sqrt{(2\pi\sigma)^d}} \exp\left[-\frac{||x||_2^2}{2\sigma^d}\right]$
- $\mathcal C$ set of subset $S\subseteq [n]$ of some fixed size αn
- cardinality $\binom{n}{\alpha n} \in [\alpha^{\alpha n}, (\alpha e)^{\alpha n}]$

- X_1, \ldots, X_n standard normal random vectors $\sim \mathcal{N}(\mathbf{0}, I_d)$
- Error parameter $0 < \varepsilon < 1$
- Fix $\mathbf{z} \in [-1,1]^d$, and $B_{\varepsilon}(\mathbf{z})$

-
$$Y_S=1$$
 if $\sum_{i\in S} X_i \sim \mathcal{N}(\mathbf{0}, \alpha nI_d)$ lies in $B_{\varepsilon}(\mathbf{z})$

- probability
$$Y_S=1$$
 is roughly $\frac{(2arepsilon)^d}{(2\pi lpha n)^{rac{d}{2}}}$

- cardinality
$$\binom{n}{\alpha n} \in [\alpha^{\alpha n}, (\alpha e)^{\alpha n}]$$

-
$$\mathbb{E}\left[Y
ight] = \sum_{S \in \mathcal{C}} \mathbb{E}\left[Y_S
ight] = |\mathcal{C}| \cdot \mathbb{P}\left(Y_S = 1
ight)$$
 roughly $\frac{|\mathcal{C}|(2arepsilon)^d}{(2\pi lpha n)^{\frac{d}{2}}}$

- X_1, \ldots, X_n standard normal random vectors $\sim \mathcal{N}(\mathbf{0}, I_d)$
- Error parameter $0 < \varepsilon < 1$
- Fix $\mathbf{z} \in [-1,1]^d$, and $B_{\varepsilon}(\mathbf{z})$

-
$$Y_S=1$$
 if $\sum_{i\in S} X_i \sim \mathcal{N}(\mathbf{0}, \alpha nI_d)$ lies in $B_{\varepsilon}(\mathbf{z})$

- probability
$$Y_S=1$$
 is roughly $\frac{(2arepsilon)^d}{(2\pi lpha n)^{rac{d}{2}}}$

- \mathcal{C} set of subset $S \subseteq [n]$ of some fixed size αn
- cardinality $\binom{n}{\alpha n} \in [\alpha^{\alpha n}, (\alpha e)^{\alpha n}]$

13 - 7

•
$$Y = \sum_{S \in \mathcal{C}} Y_S$$
: number of subsets hitting $B_{\varepsilon}(\mathbf{z})$

-
$$\mathbb{E}\left[Y
ight] = \sum_{S \in \mathcal{C}} \mathbb{E}\left[Y_S
ight] = |\mathcal{C}| \cdot \mathbb{P}\left(Y_S = 1\right) \text{ roughly } \frac{|\mathcal{C}|(2\varepsilon)^d}{(2\pi\alpha n)^{\frac{d}{2}}}$$
- $n \sim \frac{d}{\alpha \log \alpha} \log \frac{1}{\varepsilon}$ in expectation

$$Y = \sum_{S \in \mathcal{C}} Y_S$$
: number of subsets hitting $B_{\varepsilon}(\mathbf{z})$

- Second moment method to convert in probabilities
- Chebyshev implies $\mathbb{P}\left(Y \geq \frac{\mathbb{E}[Y]}{2}\right) \geq 1 \frac{\mathsf{V}[Y]}{\left(\frac{\mathbb{E}[Y]}{2}\right)^2}$

$$Y = \sum_{S \in \mathcal{C}} Y_S$$
: number of subsets hitting $B_{\varepsilon}(\mathbf{z})$

Second moment method to convert in probabilities

- Chebyshev implies
$$\mathbb{P}\left(Y \geq \frac{\mathbb{E}[Y]}{2}\right) \geq 1 - \frac{\mathsf{V}[Y]}{\left(\frac{\mathbb{E}[Y]}{2}\right)^2}$$

•
$$V[Y] = V\left[\sum_{S \in \mathcal{C}} Y_S\right] = \sum_{S,T \in \mathcal{C}} \mathsf{Cov}\left[Y_S, Y_T\right]$$

$$Y = \sum_{S \in \mathcal{C}} Y_S$$
: number of subsets hitting $B_{\varepsilon}(\mathbf{z})$

- Second moment method to convert in probabilities
- Chebyshev implies $\mathbb{P}\left(Y \geq \frac{\mathbb{E}[Y]}{2}\right) \geq 1 \frac{\mathsf{V}[Y]}{\left(\frac{\mathbb{E}[Y]}{2}\right)^2}$

•
$$V[Y] = V\left[\sum_{S \in \mathcal{C}} Y_S\right] = \sum_{S,T \in \mathcal{C}} \mathsf{Cov}\left[Y_S, Y_T\right]$$

$$=\sum_{S,T\in\mathcal{C}}\mathbb{E}\left[Y_{S}Y_{T}\right]-\mathbb{E}\left[Y_{S}\right]\mathbb{E}\left[Y_{T}\right]$$

$$Y = \sum_{S \in \mathcal{C}} Y_S$$
: number of subsets hitting $B_{\varepsilon}(\mathbf{z})$

- Second moment method to convert in probabilities
- Chebyshev implies $\mathbb{P}\left(Y \geq \frac{\mathbb{E}[Y]}{2}\right) \geq 1 \frac{\mathsf{V}[Y]}{\left(\frac{\mathbb{E}[Y]}{2}\right)^2}$

•
$$V[Y] = V\left[\sum_{S \in \mathcal{C}} Y_S\right] = \sum_{S,T \in \mathcal{C}} \mathsf{Cov}\left[Y_S, Y_T\right]$$

$$=\sum_{S,T\in\mathcal{C}}\mathbb{E}\left[Y_SY_T\right]-\mathbb{E}\left[Y_S\right]\mathbb{E}\left[Y_T\right]$$

$$=\sum_{S,T\in\mathcal{C}}\mathbb{P}\left(Y_S=1,Y_T=1
ight)-\mathbb{P}\left(Y_S=1
ight)\mathbb{P}\left(Y_T=1
ight)$$

$$Y = \sum_{S \in \mathcal{C}} Y_S$$
: number of subsets hitting $B_{\varepsilon}(\mathbf{z})$

- Second moment method to convert in probabilities
- Chebyshev implies $\mathbb{P}\left(Y \geq \frac{\mathbb{E}[Y]}{2}\right) \geq 1 \frac{\mathsf{V}[Y]}{\left(\frac{\mathbb{E}[Y]}{2}\right)^2}$

•
$$V[Y] = V\left[\sum_{S \in \mathcal{C}} Y_S\right] = \sum_{S,T \in \mathcal{C}} \mathsf{Cov}\left[Y_S, Y_T\right]$$

$$=\sum_{S,T\in\mathcal{C}}\mathbb{E}\left[Y_{S}Y_{T}\right]-\mathbb{E}\left[Y_{S}\right]\mathbb{E}\left[Y_{T}\right]$$

$$=\sum_{S,T\in\mathcal{C}}\mathbb{P}\left(Y_S=1,Y_T=1
ight)-\mathbb{P}\left(Y_S=1
ight)\mathbb{P}\left(Y_T=1
ight)\ =\ \left(\mathbb{P}\left(Y_S=1
ight)\left[1-\mathbb{P}\left(Y_S=1
ight)
ight]
ight)$$

$$Y = \sum_{S \in \mathcal{C}} Y_S$$
: number of subsets hitting $B_{\varepsilon}(\mathbf{z})$

- Second moment method to convert in probabilities
- Chebyshev implies $\mathbb{P}\left(Y \geq \frac{\mathbb{E}[Y]}{2}\right) \geq 1 \frac{\mathsf{V}[Y]}{\left(\frac{\mathbb{E}[Y]}{2}\right)^2}$
- $V[Y] = V\left[\sum_{S \in \mathcal{C}} Y_S\right] = \sum_{S,T \in \mathcal{C}} \mathsf{Cov}\left[Y_S, Y_T\right]$

$$=\sum_{S,T\in\mathcal{C}}\mathbb{E}\left[Y_{S}Y_{T}\right]-\mathbb{E}\left[Y_{S}\right]\mathbb{E}\left[Y_{T}\right]$$

$$=\sum_{S,T\in\mathcal{C}}\mathbb{P}\left(Y_S=1,Y_T=1\right)-\mathbb{P}\left(Y_S=1\right)\mathbb{P}\left(Y_T=1\right)$$

Main difficulty: counting and dealing with dependecies among subsets

- joint probability of Y_S and Y_T

- \mathcal{C} set of subset $S \subseteq [n]$ of size αn
- pick two elements from $\mathcal C$ uniformly at random

- $\mathcal C$ set of subset $S\subseteq [n]$ of size αn
- pick two elements from $\mathcal C$ uniformly at random
- expected intersection $\alpha^2 n$

- $\mathcal C$ set of subset $S\subseteq [n]$ of size αn
- pick two elements from $\mathcal C$ uniformly at random
- expected intersection $\alpha^2 n$

- restrict ${\mathcal C}$ to sets whose pairwise intersection size at most $2\alpha^2 n$

- \mathcal{C} set of subset $S \subseteq [n]$ of size αn
- pick two elements from ${\mathcal C}$ uniformly at random
- expected intersection $\alpha^2 n$

- restrict ${\mathcal C}$ to sets whose pairwise intersection size at most $2\alpha^2 n$

- such a set has **cardinality** at least $2^{rac{lpha^2 n}{6}}$

- \mathcal{C} set of subset $S \subseteq [n]$ of size αn
- pick two elements from $\mathcal C$ uniformly at random
- expected intersection $\alpha^2 n$

- restrict ${\mathcal C}$ to sets whose pairwise intersection size at most $2\alpha^2 n$

- such a set has **cardinality** at least $2^{rac{lpha^2 n}{6}}$

• $Y = \sum_{S \in \mathcal{C}} Y_S$: number of subsets hitting $B_{\varepsilon}(\mathbf{z})$

- $\mathbb{E}\left[Y
ight]$ roughly greater than $rac{2^{rac{lpha^2n}{6}}(2arepsilon)^d}{(2\pilpha n)^{rac{d}{2}}}$

- \mathcal{C} set of subset $S \subseteq [n]$ of size αn
- pick two elements from $\mathcal C$ uniformly at random
- expected intersection $\alpha^2 n$

- restrict ${\mathcal C}$ to sets whose pairwise intersection size at most $2\alpha^2 n$

- such a set has **cardinality** at least $2^{rac{lpha^2 n}{6}}$

• $Y = \sum_{S \in \mathcal{C}} Y_S$: number of subsets hitting $B_{\varepsilon}(\mathbf{z})$

- $\mathbb{E}\left[Y
 ight]$ roughly greater than $rac{2^{rac{lpha^2n}{6}}(2arepsilon)^d}{(2\pilpha n)^{rac{d}{2}}}$
- already $n \geq C \frac{d}{\alpha^2} \log \frac{1}{\varepsilon}$ in expectation

small intersections

- \mathcal{C} set of subset $S \subseteq [n]$ of size αn
- pick two elements from $\mathcal C$ uniformly at random
- expected intersection $\alpha^2 n$

- restrict ${\mathcal C}$ to sets whose pairwise intersection size at most $2\alpha^2 n$

- such a set has cardinality at least $2^{rac{lpha^2 n}{6}}$

• $Y = \sum_{S \in \mathcal{C}} Y_S$: number of subsets hitting $B_{\varepsilon}(\mathbf{z})$

- $\mathbb{E}\left[Y
 ight]$ roughly greater than $rac{2^{rac{lpha^2n}{6}}(2arepsilon)^d}{(2\pilpha n)^{rac{d}{2}}}$
- already $n \geq C \frac{d}{\alpha^2} \log \frac{1}{\varepsilon}$ in expectation

- a lot of math to get tight bounds

 $Y = \sum_{S \in \mathcal{C}} Y_S$: number of subsets hitting $B_{\varepsilon}(\mathbf{z})$

- Chebyshev: $\mathbb{P}\left(Y \geq \frac{\mathbb{E}[Y]}{2}\right) \geq 1 \frac{\mathsf{V}[Y]}{\left(\frac{\mathbb{E}[Y]}{2}\right)^2}$
- $\mathbb{P}\left(Y\geq 1\right)\geq \frac{1}{3}$ if $\alpha\leq \frac{1}{6\sqrt{d}}$ and $n\geq C\frac{d}{\alpha^2}(\log \frac{1}{\varepsilon}+\log d)$

 $Y = \sum_{S \in \mathcal{C}} Y_S$: number of subsets hitting $B_{\varepsilon}(\mathbf{z})$

- Chebyshev: $\mathbb{P}\left(Y \geq \frac{\mathbb{E}[Y]}{2}\right) \geq 1 \frac{\mathsf{V}[Y]}{\left(\frac{\mathbb{E}[Y]}{2}\right)^2}$
- $\mathbb{P}\left(Y\geq 1\right)\geq \frac{1}{3}$ if $\alpha\leq \frac{1}{6\sqrt{d}}$ and $n\geq C\frac{d}{\alpha^2}(\log \frac{1}{\varepsilon}+\log d)$
- subset size $\alpha n = \Theta\left(\frac{n}{\sqrt{d}}\right)$

 $Y = \sum_{S \in \mathcal{C}} Y_S$: number of subsets hitting $B_{\varepsilon}(\mathbf{z})$

- Chebyshev: $\mathbb{P}\left(Y \geq \frac{\mathbb{E}[Y]}{2}\right) \geq 1 \frac{\mathsf{V}[Y]}{\left(\frac{\mathbb{E}[Y]}{2}\right)^2}$
- $\mathbb{P}\left(Y\geq 1\right)\geq \frac{1}{3}$ if $\alpha\leq \frac{1}{6\sqrt{d}}$ and $n\geq C\frac{d}{\alpha^2}(\log\frac{1}{\varepsilon}+\log d)$
- subset size $\alpha n = \Theta\left(\frac{n}{\sqrt{d}}\right)$
- intersection at most $2\alpha^2 n = \Theta\left(\frac{n}{d}\right)$
- bound on n given from estimation of $|\mathcal{C}| \geq 2^{\frac{\alpha^2 n}{6}}$

 $Y = \sum_{S \in \mathcal{C}} Y_S$: number of subsets hitting $B_{\varepsilon}(\mathbf{z})$

- Chebyshev: $\mathbb{P}\left(Y \geq \frac{\mathbb{E}[Y]}{2}\right) \geq 1 \frac{\mathsf{V}[Y]}{\left(\frac{\mathbb{E}[Y]}{2}\right)^2}$
- $\mathbb{P}(Y \ge 1) \ge \frac{1}{3}$ if $\alpha \le \frac{1}{6\sqrt{d}}$ and $n \ge C \frac{d}{\alpha^2} (\log \frac{1}{\varepsilon} + \log d)$
- subset size $\alpha n = \Theta\left(\frac{n}{\sqrt{d}}\right)$
- intersection at most $2\alpha^2 n = \Theta\left(\frac{n}{d}\right)$
- bound on n given from estimation of $|\mathcal{C}| \geq 2^{\frac{\alpha^2 n}{6}}$

for all hypercubes?

Amplification

- $\frac{1}{\varepsilon^d}$ smaller hypercubes

Amplification

- $\frac{1}{\varepsilon^d}$ smaller hypercubes
- each has prob. $\frac{1}{3}$ of being $\varepsilon\text{-apx}$ by $n \sim C d^2 (\log \tfrac{1}{\varepsilon} + \log d) \text{ random vectors}$

Amplification

- $\frac{1}{\varepsilon^d}$ smaller hypercubes
- each has prob. $\frac{1}{3}$ of being $\varepsilon\text{-apx}$ by $n \sim C d^2 (\log \tfrac{1}{\varepsilon} + \log d) \text{ random vectors}$
- repeat k times with independent samples

Amplification

- $\frac{1}{\varepsilon^d}$ smaller hypercubes
- each has prob. $\frac{1}{3}$ of being ε -apx by $n \sim Cd^2(\log \frac{1}{\varepsilon} + \log d)$ random vectors
- repeat k times with independent samples

Amplification

 $n_1 \sim n$

- $\frac{1}{\varepsilon^d}$ smaller hypercubes
- each has prob. $\frac{1}{3}$ of being ε -apx by $n \sim C d^2 (\log \frac{1}{\varepsilon} + \log d)$ random vectors
- repeat k times with independent samples

- Prob. to fail $\leq \frac{1}{\varepsilon^d} \cdot (\frac{2}{3})^k$
- $k \sim d\log \frac{1}{arepsilon}$ to have exponentially small prob. to fail

 $n_2 \sim n$

Recap of results

Theorems:

- If $\mathbf{z} \in [-1,1]^d$ and $n \geq Cd^2(\log \frac{1}{\varepsilon} + \log d)$ a subset $S_{\mathbf{z}}$ exists such that $||\mathbf{z} \sum_{i \in S_{\mathbf{z}}} X_i||_{\infty} \leq \varepsilon \text{ w.p. } \frac{1}{3}$
- If $n \geq Cd^3 \log \frac{1}{\varepsilon} \cdot (\log \frac{1}{\varepsilon} + \log d)$, with exponentially small prob. in n, for any $\mathbf{z} \in [-1,1]^d$, a subset $S_{\mathbf{z}}$ exists such that $||\mathbf{z} \sum_{i \in S_{\mathbf{z}}} X_i||_{\infty} \leq 2\varepsilon$

Recap of results

Theorems:

- If $\mathbf{z} \in [-1,1]^d$ and $n \geq Cd^2(\log \frac{1}{\varepsilon} + \log d)$ a subset $S_{\mathbf{z}}$ exists such that $||\mathbf{z} \sum_{i \in S_{\mathbf{z}}} X_i||_{\infty} \leq \varepsilon \text{ w.p. } \frac{1}{3}$
- If $n \geq Cd^3 \log \frac{1}{\varepsilon} \cdot (\log \frac{1}{\varepsilon} + \log d)$, with exponentially small prob. in n, for any $\mathbf{z} \in [-1,1]^d$, a subset $S_{\mathbf{z}}$ exists such that $||\mathbf{z} \sum_{i \in S_{\mathbf{z}}} X_i||_{\infty} \leq 2\varepsilon$

Generalizations:

• The domain $[-1,1]^d$ can be widened to $[-\sqrt{\frac{n}{d\sqrt{d}}},\sqrt{\frac{n}{d\sqrt{d}}}]^d$

Recap of results

Theorems:

- If $\mathbf{z} \in [-1,1]^d$ and $n \geq Cd^2(\log \frac{1}{\varepsilon} + \log d)$ a subset $S_{\mathbf{z}}$ exists such that $||\mathbf{z} \sum_{i \in S_{\mathbf{z}}} X_i||_{\infty} \leq \varepsilon$ w.p. $\frac{1}{3}$
- If $n \geq Cd^3 \log \frac{1}{\varepsilon} \cdot (\log \frac{1}{\varepsilon} + \log d)$, with exponentially small prob. in n, for any $\mathbf{z} \in [-1,1]^d$, a subset $S_{\mathbf{z}}$ exists such that $||\mathbf{z} \sum_{i \in S_{\mathbf{z}}} X_i||_{\infty} \leq 2\varepsilon$

Generalizations:

- The domain $[-1,1]^d$ can be widened to $[-\sqrt{\frac{n}{d\sqrt{d}}},\sqrt{\frac{n}{d\sqrt{d}}}]^d$
- The distribution class is larger: every distribution that contains a gaussian

 $\phi(x)$ pdf of a standard Gaussian, $p \in (0,1]$

 $\phi(x)$ pdf of a standard Gaussian, $p \in (0,1]$

- Every pdf $f: \mathbb{R} \to [0, +\infty)$
- $f(x) = p\phi(x) + (1-p)g(x)$

 $\phi(x)$ pdf of a standard Gaussian, $p \in (0,1]$

- Every pdf $f: \mathbb{R} \to [0, +\infty)$
- $f(x) = p\phi(x) + (1-p)g(x)$

• Green: standard Gaussian

• Red: resized standard Gaussian

• Black: example of f(x)

 $\phi(x)$ pdf of a standard Gaussian, $p \in (0,1]$

- Every pdf $f: \mathbb{R} \to [0, +\infty)$
- $f(x) = p\phi(x) + (1-p)g(x)$

• Green: standard Gaussian

• Red: resized standard Gaussian

• Black: example of f(x)

- Equivalently: with prob. p it's a standard Gaussian
- just amplify more the number of variables
- only a constant worse

 $\phi(x)$ pdf of a standard Gaussian, $p \in (0,1]$

- Every pdf $f: \mathbb{R} \to [0, +\infty)$
- $f(x) = p\phi(x) + (1-p)g(x)$

- Green: standard Gaussian
- Red: resized standard Gaussian
- Black: example of f(x)

- Equivalently: with prob. p it's a standard Gaussian
- just amplify more the number of variables
- only a constant worse
- Idea from [Lueker, 1998]

- Improve the bound
- lower bound $n \sim d\log \frac{1}{arepsilon}$
- make use of more subsets

- Improve the bound
- lower bound $n \sim d\log \frac{1}{arepsilon}$
- make use of more subsets
- Bad news: [Borst et al., 2022] has a huge overlap
- application to the integrality gap of the binary integer problem

- Improve the bound
- lower bound $n \sim d\log \frac{1}{arepsilon}$
- make use of more subsets
- Bad news: [Borst et al., 2022] has a huge overlap
- application to the integrality gap of the binary integer problem
- similar subset sum result
- error must be exponentially small in the dimension
- n always asymptotically greater than $d^{2.25}$

- Improve the bound
- lower bound $n \sim d\log \frac{1}{arepsilon}$
- make use of more subsets
- Bad news: [Borst et al., 2022] has a huge overlap
- application to the integrality gap of the binary integer problem
- similar subset sum result
- error must be exponentially small in the dimension
- n always asymptotically greater than $d^{2.25}$
- Even wider class of distributions
- if convergence to Gaussian is fast enough

- Improve the bound
- lower bound $n \sim d\log \frac{1}{arepsilon}$
- make use of more subsets
- Bad news: [Borst et al., 2022] has a huge overlap
- application to the integrality gap of the binary integer problem
- similar subset sum result
- error must be exponentially small in the dimension
- n always asymptotically greater than $d^{2.25}$
- Even wider class of distributions
- if convergence to Gaussian is fast enough
- Neural network applications: investigate further structured pruning

The end

