Basi di Dati

Federico Matteoni

A.A. 2019/20

Indice

T	Cos	truzione di un	base di dati	1
	1.1	Elementi		7
		1.1.1 Figure 6	oinvolte	7
		1.1.2 Sistemi	nformativi	7
		1.1.3 Sistemi	nformatici	8
		1.1.4 Classific	zione dei sistemi informatici	9
		1.1.5 Requisit	per l'Analisi dei Dati	10
		1.1.6 Big Dat		10
	1.2	DBMS		10
		1.2.1 Dati .		1
		1.2.2 DDL .		2
		1.2.3 DML.		12
		1.2.4 Schemi	Istanze	13
		1.2.5 Meccan	mi per il controllo dei dati	13
		1.2.6 Transaz	oni	13
	1.3	Progettazione		13
		1.3.1 Modella	ione	13
		1.3.2 Aspetti	lel problema	15
		1.3.3 Conosce	ıza concreta	15
		1.3.4 Modella	ione ad oggetti	16
		1.3.5 Sottocla	si	8
		1.3.6 Un esen	pio elaborato	8
		1.3.7 Conosce	ıza astratta	19
	1.4	Costruzione .		19
		1.4.1 Analisi	ei requisiti	19
	1.5	Modello Relazi	nale	20
		1.5.1 Relazion	e matematica	20
		1.5.2 Valori		21
		1.5.3 Meccan	mi	21
	1.6	Trasformazione	di schemi	22
		1.6.1 Progetts	zione logica relazionale	22
		1.6.2 Rappres	entazione delle associazioni	22
		1.6.3 Rappres	entazione delle gerarchie fra classi	23
2	Λlσ	ebra Relaziona	•	25
4	2.1			25
	2.1	0 00		25
	2.2	•		25
				25 25
				26
				26 26
				20 27
		2.2.0 naggful	pamento	_ (

3	Inte	errogazione di una base di dati	29
		3.0.1 SELECT	29
		3.0.2 FROM	29
		3.0.3 WHERE	29
	3.1	Ordinamento e aggregazione	30
	3.2	Semantica	30
	3.3	Subquery	31
	3.4	Quantificazione	32
	3.5	Unione, Intersezione, Differenza	32
4	Mod	difica di una base di dati	33
	4.1	Modifica dei dati	33
	4.2	Definizione degli oggetti	33
		4.2.1 Tipi	34

5 Viste

35

Introduzione

Obiettivi del corso Modelli dei dati, linguaggi e sistemi per lo sviluppo di applicazioni che prevedono l'uso di grandi quantità di dati permanenti organizzati in basi di dati.

Testo di Riferimento Fondamenti di Basi di Dati, A. Albano, G. Ghelli e R. Orsini, Zanichelli. Scaricabile liberamente da fondamentidibasididati.it

Terminologia

Base di dati: tecnologia di base, gestione delle attività quotidiane dell'organizzazione e tema di questo corso

Data Warehouse, Data Lake, Big Data, Data Science: termini che hanno a che vedere con l'analisi dei dati e che non rientrano nei temi trattati nel corso.

6 INDICE

Capitolo 1

Costruzione di una base di dati

Cos'è una base di dati? Una base di dati è un insieme organizzato di dati usati per il supporto allo svolgimento di un'attività (di un ente, azienda, ufficio, persona...)

Qualche esempio

Materie			
${f Titolo}$	Codice	Syllabus	
Basi di Dati	AA024	Progettazione e interrogazione	
Reti di Calcolatori	AA019	Realizzazione e uso di reti, protocollo TCP	

Corsi					
Materia	$\mathbf{A}\mathbf{A}$	Semestre	Titolare		
AA024	2007	1	Albano		
AA024	2007	1	Ghelli		
AA019	2007	1	Brogi		

1.1 Elementi

1.1.1 Figure Coinvolte

Committente

Dirigente

Operatore

Fornitore

Direttore del progetto

Analista

Progettista del DB

Programmatore di applicazioni che usano il DB

Manutenzione e messa a punto del DB – Gestione del DBMS

Amministratore del DBMS

1.1.2 Sistemi Informativi

Definizione Un sistema informativo di un'organizzazione è una combinazione di risorse, umane e materiali, e di procedure organizzate per raccolta, archiviazione, elaborazione e scambio delle informazioni necessarie alle attività:

Operative (informazioni di servizio)

Programmazione e controllo (informazioni di gestione)

Pianificazione strategica (informazioni di governo)

Esempi di sistemi informativi Un comune

Gestione servizi demografici (anagrafe, stato civile, servizio elettorale e vaccinale) e della rete viaria

Gestione attività finanziaria secondo la normativa vigente

Gestione del personale per il calcolo della retribuzione in base al tipo di normativa contrattuale

Gestione dei servizi amministrativi e sanitari delle USL

Gestione della cartografia generale e tematica del territorio

Sistema informativo nelle organizzazioni

1.1.3 Sistemi Informatici

Sistema Informativo Automatizzato Quella parte del sistema informativo in cui le informazioni sono raccolte, elaborate, archiviate e scambiate usando un sistema informatico.

Sistema Informatico Insieme delle tecnologie informatiche e della comunicazione (ICT, Information and Communication Technologies) a supporto delle attività di un'organizzazione.

Terminologia

Sistema informativo \longrightarrow Sistema informativo automatizzato Sistema informativo automatizzato \longrightarrow Sistema informatico

1.1. ELEMENTI 9

1.1.4 Classificazione dei sistemi informatici

Sistemi Informatici Operativi — Sistemi Informatici Direzionali

Sistemi Informatici Operativi I dati sono organizzati di DB. Le applicazioni si usano per svolgere le classiche attività strutturate e ripetitive dell'azione nelle aree amministrativa e finanziaria: vendite, risorse umane, produzione...

Alcune sigle:

DP Data Processing**EDP** Electronic Data Processing

TPS Transaction Processing Systems

Data Base Management System) che ha il controllo dei dati e li rende accessibili agli utenti autorizzati.

OLTP On-Line Transaction Processing, modo d'uso principale dei DBMS. Tradizionale elaborazione di

DBMS Le caratteristiche del DB sono garantite da un

sistema per la gestione della base di dati (DBMS,

Operazioni predefinite e relativamente semplici

Ogni operazione coinvolge pochi dati

Dati di dettaglio, aggiornati

Sistemi Informatici Direzionali I dati sono organizzati in data warehouse (DW) e gestiti ad un opportuno sistema. Le applicazioni, dette di business intelligence, sono strumenti di supporto ai processi di controllo delle prestazioni aziendali e di decisione manageriale. Terminologia:

 ${f MIS}$ Management Information Systems

DSS Decision Support Systems, data-based o model-based

EIS Executive Information System

OLAP On-Line Analytical Processing modo d'uso principale dei DW. Analisi dei dati di supporto alle decisioni:

Operazioni complesse e casuali

Ogni operazione può coinvolgere molti dati

Dati aggregati, storici, anche non attualissimi

Differenze tra OLTP e OLAP

	OLTP	OLAP
\mathbf{Scopi}	Supporto operatività	Supporto decisioni
Utenti	Molti, esecutivi	Pochi, dirigenti e analisti
Dati	Analitici, relazionali	Sintetici, multidimensionali
$\mathbf{U}\mathbf{si}$	Noti a priori	Poco prevedibili
Quantità di dati per attività	Bassa (decine)	Alta (milioni)
Orientamento	Applicazione	Soggetto
Aggiornamenti	Frequenti	Rari
Visione dei dati	Corrente	Storica
Ottimizzati per	Transazioni	Analisi

1.1.5 Requisiti per l'Analisi dei Dati

Aggregati Non interessa un dato, ma la somma, la media, il minimo/massimo di una misura...

Multidimensionale Interessa incrociare le informazioni, per analizzarle da punti di vista diversi e valutare i risultati del business per intervenire sui problemi critici o per cogliere nuove opportunità

Diversi livelli di dettaglio Per esempio, una volta scoperto un calo delle vendite in un determinato periodo in una specifica regione, si passa ad un'analisi dettagliata nell'area di interesse per cercare di scoprirne le cause (dimensioni con **gerarchie**)

1.1.6 Big Data

Ampio Big data è un termine ampio riferito a situazioni in cui l'approccio "schema-first" tipico di DB e DW risulta troppo restrittivo o troppo lento.

3 V Volume, Varietà, Velocità

I Big Data sono in genere associati a sistemi NoSQL, machine learning e approcci Data Lake.

1.2 **DBMS**

Un **DBMS** è un sistema (**software**) in grado di **gestire collezioni di dati** che siano, tra le altre cose:

Grandi

Persistenti, con un periodo di vita indipendente dalle singole esecuzioni dei programmi che le utilizzano

Condivise, usate da applicazioni diverse

garantendo **affidabilità** (resistenza a malfunzionamenti hardware e software-recovery) e **privacy** (con una disciplina e un controllo degli accessi).

Come ogni altro software, un DBMS deve essere **efficiente** (usare al meglio le risorse di spazio e tempo del sistema) ed **efficace** (rendere produttive le attività degli utilizzatori). Un DBMS offre opportuni linguaggi per:

Definire lo schema di un DB, che va definito prima di creare dati

Scegliere le strutture dati per la memorizzazione

Memorizzare i dati **rispettando i vincoli** definiti nello schema

Recuperare e modificare i dati, interattivamente (query language, linguaggio di interrogazione) o da programmi

1.2. DBMS

1.2.1 Dati

I dati permanenti contenuti in un DB sono divisi in due categorie:

Metadati

Descrivono datti sullo schema dei dati, utenti autorizzati, applicazioni, parametri quantitativi...

I metadati sono descritti da uno schema usando il modello dei dati usato dal DBMS e sono interrogabili con le stesse modalità previste dai dati

Dati

Rappresentazioni di certi fatti conformi alle definizioni dello schema. Hanno le seguenti caratteristiche:

Organizzati in **insiemi strutturati e omogenei**, fra i quali sono definite delle **relazioni**. La struttura dei dati e le relazioni sono **descritte nello schema** usando i meccanismi di astrazione del modello dei dati del DBMS.

Sono molti, sia in assoluto che rispetto ai metadati, e non possono essere gestiti in memoria temporanea

Sono accessibili mediante transazioni, unità di lavoro atomiche che non possono avere effetti parziali

Sono protetti sia da accesso da parte di utenti non autorizzati, sia da corruzione dovuta a malfunzionamenti hardware o software

Sono utilizzabili contemporaneamente da utenti diversi

Il modello relazionale dei dati è il più diffuso fra i DBMS commerciali. Il meccanismo di astrazione fondamentale è la relazione (tabella), sostanzialmente un insieme di record dai campi elementari.

Lo schema di una relazione ne definisce il nome e ne descrive la struttura dei possibili elementi della relazione (insieme di attributi con il loro tipo)

Esempio

```
Definizione del DB
```

create database EsempioEsame

Definizione schema

Inserzione dati

```
insert into Esami values ('BDSI1', '080709', 30 'S', '070900')
```

Interrogazione

```
select Candidato from Esami where Materia = "BDSI1" and Voto = 30 > Candidato > 080709
```

1.2.2 DDL

Data Definition Language Linguaggio per la definizione della base di dati. Utile distinguere tre diversi livelli di descrizione dei dati (**schemi**):

Livello di **vista logica**

Livello logico

Livello fisico

Livello Logico Descrive la struttura degli insiemi di dati e delle relazioni fra loro, secondo un erto modello dei dati, senza nessun riferimento alla loro organizzazione fisica nella memoria permanente. Esempi:

```
\label{eq:char_state} \begin{array}{lll} \texttt{Studenti}(\texttt{Matricola} \ \mathbf{char}(8) \ , \ \texttt{Nome} \ \mathbf{char}(20) \ , \ \texttt{Login} \ \mathbf{char}(8) \ , \ \texttt{Anno} \ \mathbf{int} \ , \ \texttt{Reddito} \ \mathbf{float}) \\ \texttt{Corsi}(\texttt{IdeC} \ \mathbf{char}(8) \ , \ \texttt{Titolo} \ \mathbf{char}(20) \ , \ \texttt{Credito} \ \mathbf{int}) \\ \texttt{Esami}(\texttt{Matricola} \ \mathbf{char}(8) \ , \ \texttt{IdeC} \ \mathbf{char}(8) \ , \ \texttt{Voto} \ \mathbf{int}) \end{array}
```

Livello Fisico Descrive come vanno organizzati fisicamente i dati nelle memorie permanenti e quali strutture dati ausiliarie prevedere per facilitarne l'uso (schema fisico o interno).

Esempi: relazioni Studenti e Esami organizzate in modo seriale, Corsi organizzata sequenziale con indice, indice su Matricola.

Vista Logica Descrive come deve apparire la struttura del DB ad una certa applicazione (schema esterno o vista). Esempio:

```
InfCorsi (IdeC char(8), Titolo char(20), NumEsami int)
```

Nell'organizzazione di una banca, lo schema logico conterrà tutte le tabelle e i dati relativi ai conti correnti, ma anche al personale. Lo schema logico conserva tutte le informazioni della banca. Nello schema esterno ogni correntista potrà accedere solo ad alcune informazioni di suo interesse: quelle del proprio conto corrente.

Indipendenza L'approccio con tre livelli è stato proposto per garantire le proprietà di indipendenza logica e fisica dei dati, fra gli obiettivi più importanti dei DBMS.

Indipendenza fisica: i programmi applicativi non devono essere modificati in seguito a modifiche dell'organizzazione fisica dei dati

Indipendenza logica: i programmi applicativi non devono essere modificati in seguito a modifiche dello schema logico

1.2.3 DML

Data Manipulation Language Linguaggio per l'uso dei dati.

Un DBMS deve prevedere più modalità d'uso per soddisfare esigenze di diverse categorie d'utenti: GUI per accedere ai dati, linguaggio di interrogazione per i non programmatori, linguaggio di programmazione per chi sviluppa le applicazioni, linguaggio di sviluppo per le interfacce delle applicazioni.

Linguaggi vari e interfacce diverse:

Linguaggi testuali interattivi, SQL

Comandi (come quelli del linguaggi interattivo) immersi in un linguaggio ospite, come il C

1.3. PROGETTAZIONE

Comandi (come quelli del linguaggi interattivo) immersi in un linguaggio ad hoc (come PL/SQL) con anche altre funzionalità (come grafici e stampe strutturate)

Interfacce amichevoli

1.2.4 Schemi e Istanze

Schema Descrive la struttura dei dati, sostanzialmente invariante nel tempo: le "classi", intestazione delle tabelle

Istanza Valori attuali dei dati che possono cambiare anche molto rapidamente: gli "oggetti", il corpo di ciascuna tabella

1.2.5 Meccanismi per il controllo dei dati

Caratteristica molto importante dei DBMS è il tipo di meccanismi usati per garantire le seguenti proprietà

Integrità: mantenimento delle proprietà specificate nello schema

Sicurezza: protezione da usi non autorizzati

Affidabilità: protezione da malfunzionamenti e interferenze dovute all'accesso concorrente di più utenti

1.2.6 Transazioni

Definizione Una transazione è una sequenza di azioni di lettura/scrittura in memoria permanente e di elaborazione dati in memoria temporanea, con le seguenti proprietà:

Atomicità: le transazioni che terminano prematuramente (aborted transactions) sono trattate dal sistema come se non fossero mai iniziate. Eventuali effetti sul DB sono annullati.

Serializzabilità: esecuzioni concorrenti di più transazioni danno come effetto quello di una esecuzione seriale

Persistenza: le modifiche sul DB di una transazione terminata normalmente sono permanenti, cioè non alterabili da malfunzionamenti

1.3 Progettazione

Progettare un DB significa progettare la struttura dei dati e delle applicazioni. La progettazione dei dati è l'attività più importante e per progettare al meglio i dati è necessario che essi siano un modello fedele del dominio in esame. Per questo ora parleremo della modellazione.

1.3.1 Modellazione

Definizione $\mbox{ Un modello astratto } \mbox{\grave{e} la rappresentazione formale di idee e conoscenze relative ad un fenomeno.}$

Aspetti di un modello:

Il modello è la rappresentazione di certi fatti.

La rappresentazione è data con un linguaggio formale.

Il **modello** è **il risultato di un processo di interpretazione**, guidato dalle idee e conoscenze possedute dal soggetto che interpreta.

La stessa realtà può utilmente essere modellata in modi diversi e a diversi livelli di astrazione.

Metodologia di progetto Per garantire prodotti di buona qualità è opportuno seguire una metodologia di progetto, con:

Articolazione delle attività in fasi (decomposizione)

Criteri di scelta (strategie)

Modelli da rappresentare

Generalità rispetto al problema in esame e agli strumenti a disposizione

Qualità del prodotto

Facilità d'uso

Progettazione della base di dati Suddivisa nelle seguenti fasi:

- 1. **Analisi** dei requisiti
- 2. Progettazione concettuale
- 3. Progettazione logica
- 4. Progettazione fisica

Ciascuna fase è incentrata sulla modellazione, che discuteremo quindi con riferimento alla problematica della progettazione del DB.

Modello dei dati Insieme di costrutti utilizzati per organizzare i dati di interesse e descriverne la dinamica. Il componente fondamentale è l'insieme dei meccanismi di strutturazione (o costruttori di tipo). Come nei linguaggi di programmazione, esistono meccanismi che permettono di definire nuovi tipi, così ogni modello dei dati prevede alcuni costruttori: per esempio, il modello relazionale prevede il costruttore relazione, che permette di definire insiemi di record omogenei.

1.3. PROGETTAZIONE

1.3.2 Aspetti del problema

Aspetto ontologico

Quale conoscenza del dominio del discorso si rappresenta? Ontologico cioè studio di ciò che si suppone esista nell'universo del discorso e che sia quindi necessario modellare. Cosa si modella:

Conoscenza concreta: i fatti

Conoscenza astratta: la struttura e i vincoli sulla conoscenza concreta

Conoscenza procedurale, comunicazioni: le operazioni base, le operazioni degli utenti, come si comunicherà con il sistema informatico

Ci concentreremo sulla conoscenza concreta e astratta.

Aspetto logico

Con quali meccanismi di astrazione si modella? Il modello dei dati a oggetti.

Modello dei dati Insieme dei meccanismi di astrazione per descrivere la struttura della conoscenza concreta. Schema: descrizione della struttura della conoscenza concreta e dei vincoli di integrità usando un particolare modello dei dati.

Useremo come notazione grafica una **variante** dei diagrammi a oggetti (o diagrammi Entità-Relazione, diagrammi ER). Nozioni fondamentali: oggetto, tipo di oggetto, classe, ereditarietà, gerarchia fra tipi e gerarchia fra classi.

Aspetto linguistico

Con quale linguaggio formale si definisce un modello?

Aspetto pragmatico

Come si procede per costruire un modello? Metodologia da seguire nel processo di modellazione, cioè l'insieme di regole finalizzate alla costruzione del modello informatico.

1.3.3 Conoscenza concreta

La conoscenza concreta riguarda i fatti specifici che si vogliono rappresentare:

Entità, sono ciò di cui interessa rappresentare alcuni fatti o proprietà. Ad esempio: una descrizione bibliografica di un libro, un libro, un documento, un prestito, un utente della biblioteca...

Le proprietà sono fatti che interessano solo in quanto descrivono caratteristiche di determinate entità. Ad esempio un indirizzo interessa perché è l'indirizzo di un utente. Hanno delle classificazioni:

Primitiva/strutturata

Obbligatoria/opzionale

Univoca/multivalore

Costante/variabile

Calcolata/non calcolata

Una proprietà è una coppia attributo-valore di un certo tipo. Ogni entità appartiene ad un **tipo** che ne specifica la natura. Ogni proprietà ha associato un **dominio**, l'insieme dei possibili valori.

Una proprietà è **atomica** se il suo valore non è scomponibile, altrimenti è **strutturata**. Inoltre è **univoca** se ha valore unico, altrimenti è **multivalore**, e **totale** (obbligatoria) se ogni entità dell'universo in esame ha per essa un valore specificato, altrimenti è detta **parziale** (opzionale)

Certi fatti possono essere interpretati come proprietà in certi contesti e come entità in altri. Ad esempio, una DescrizioniBibliografiche con attributi autori, titolo, editore..., oppure un Autori con attributi nome, nazionalità...e Editori con nome, indirizzo...

Collezioni variabili nel tempo di entità omogenee. Ad esempio, la collezione di tutti gli utenti della biblioteca.

Associazioni fra entità

1.3.4 Modellazione ad oggetti

Oggetti Ad ogni entità del dominio corrisponde un oggetto del modello. Un oggetto è un'entità software con stato, comportamento ed identità che modella un'entità dell'universo.

Stato modellato da un insieme di costanti o variabili con valori di qualsiasi complessità

Comportamento dato da un insieme di procedure locali chiamate metodi, che modellano le operazioni di base che riguardano l'oggetto e le proprietà derivabili da altre.

Un oggetto può rispondere a dai **messaggi**, restituendo valori memorizzati nello stato o calcolati con una procedura locale.

Classe Insieme di oggetti dello stesso tipo, modificabile con operatori per includere o estrarre elementi dall'insieme. Può essere specificata a diversi livelli.

Persone

Persone

Nome
Cognome
DataNascita
Sesso
Indirizzo
LingueParlate

Nome: string
Cognome: string
DataNascita: date
Sesso: (M; F)
Indirizzo: [Via: string; Citta: string]
LingueParlate: seq string

Tipo oggetto Il primo passo nella costruzione di un modello consiste nella classificazione delle entità del dominio con la definizione dei tipi degli oggetti che la rappresentano.

Un tipo oggetto definisce l'insieme dei messaggi (interfaccia) a cui può rispondere un insieme di possibili oggetti. I nomi dei messaggi sono detti anche attributi degli oggetti.

Nei diagrammi ER i tipi oggetti non si rappresentano, perché l'attenzione è sulle collezioni e sulle associazioni. Tuttavia, la rappresentazione grafica di una collezione indica anche gli attributi del tipo oggetto associato.

Associazioni Un'istanza di associazione è un fatto che correla due o più entità, stabilendo un legame logico fra loro. Ad esempio, l'utente Tizio ha in prestito una copia della Divina Commedia.

Un'associazione R(X, Y) fra due collezioni di entità X e Y è un insieme di istanze di associazione tra elementi di X e di Y che varia in generale nel tempo.

Il prodotto cartesiano $X \times Y$ è il dominio dell'associazione. Un esempio:

1.3. PROGETTAZIONE

Un associazione è caratterizzata da due proprietà strutturali: molteplicità e totalità.

Vincolo di univocità Un'associazione R(X, Y) è univoca rispetto a X se $\forall x \in X \exists$ al più un elemento di Y associato ad x.

Se non vale questo vincolo, l'associazione è multivalore rispetto ad X.

Cardinalità dell'associazione:

R(X, Y) è 1:N se è multivalore su X ed univoca su Y

R(X, Y) è N:1 se è univoca su X e multivalore su Y

R(X, Y) è N:M se è multivalore su X e multivalore su Y

R(X, Y) è 1:1 se è univoca su X ed univoca su Y

Qualche esempio:

Frequenta(Studenti, Corsi) ha cardinalità N:M

Insegna (Professori, Corsi) ha cardinalità 1:N

SuperatoDa(Esami, Studenti) ha cardinalità N:1

Dirige(Professori, Dipartimenti) ha cardinalità 1:1

Vincolo di totalità Un associazione R(X, Y) è totale (o surgettiva) su X se $\forall x \in X \exists$ almeno un elemento di Y associato ad x.

Se non vale questo vincolo, l'associazione è parziale rispetto a X.

Ad esempio, Insegna (Professori, Corsi) è totale su Corsi perché non può esistere un corso senza il corrispondente docente.

Rappresentazione Un'associazione si rappresenta con una linea che collega le classi che rappresentano le due collezioni. La linea è etichettata con il nome dell'associazione, di solito scelto utilizzando un predicato.

L'univocità dell'associazione rispetto ad una classe si rappresenta disegnando una freccia singola sulla linea che esce dalla classe ed entra nella destinazione. L'assenza di tale vincolo è indicata da una freccia doppia.

Similmente, la parzialità è rappresentata da un taglio vicino alla freccia, mentre la totalità è rappresentata dall'assenza del taglio.

Ogni esame riguarda uno ed un solo studente Parzialità e assenza di univocità sugli esami superati da uno studente.

Possono avere proprietà ed essere ricorsive.

1.3.5 Sottoclassi

Vincoli

Vincolo intensionale: C sottoclasse di C' ⇒ tipo degli elementi di C è sottotipo del tipo degli elementi di C'

Vincolo estensionale: C sottoclasse di C' ⇒ gli elementi di C sono un sottoinsieme degli elementi di C'

Disgiunzione: ogni coppia di sottoclassi è disgiunta, priva di elementi comuni (pallino nero) sottoclassi disgiunte)

Copertura: l'unione degli elementi delle sottoclassi coincide con l'insieme degli elementi della superclasse (freccia con doppia asta) (sottoclassi copertura)

1.3.6 Un esempio elaborato

1.4. COSTRUZIONE

1.3.7 Conoscenza astratta

La conoscenza astratta riguarda i fatti generali che descrivono

la struttura della conoscenza concreta, come collezioni, tipi entità, associazioni...

le **restrizioni sui valori** possibili della conoscenza concreta e sui modi in cui essi possono evolvere nel tempo (**vincoli d'integrità**, statici e dinamici)

le regole per derivare fatti nuovi da altri noti

Vincoli Possono essere descritti in modo dichiarativo (da preferire), con formule di calcolo dei predicati, oppure mediante controlli da eseguire nelle operazioni.

1.4 Costruzione

- 1. Analisi dei requisiti \rightarrow specifica dei requisiti, schemi di settore
- 2. Progettazione
 - Progettazione **concettuale** (\rightarrow schema concettuale), **logica** (\rightarrow schema logico), **fisica** (\rightarrow schema fisico) dei dati
 - Progettazione delle applicazioni
- 3. Realizzazione

Spesso consideriamo l'analisi dei requisiti come parte della progettazione.

1.4.1 Analisi dei requisiti

Analizza il sistema esistente e raccoglie requisiti informali. Dopodiché elimina le ambiguità e la disuniformità, raggruppando frasi relative a diverse categorie di dati, vincoli e operazioni.

Costruisce un glossario, disegna lo schema di settore, specifica le operazioni e verifica la coerenza tra operazioni e dati.

Documentazione descrittiva In generale, il linguaggio naturale è pieno di ambiguità e fraintendimenti, che bisogna evitare per quanto possibile. Come prima approssimazione si può seguire queste regole:

Studiare e comprendere il sistema informativo ed i bisogni informativi di tutti i settori dell'organizzazione

Scegliere il corretto livello di astrazione

Standardizzare la scrittura delle frasi

Suddividere le frasi articolate

Separare le frasi sui dati da quelle sulle funzioni

Organizzare i concetti e i termini Regole generali

Eliminare le ambiguità, le imprecisioni e la disuniformità: individuare omonimi e sinonimi e unificare i termini

Riorganizzare le frasi per concetti, ovvero ottenendo diverse categorie di dati, vincoli e operazioni

Costruire un glossario dei termini

Disegnare lo schema

Specificare le operazioni

Verificare la coerenza fra le operazioni e i dati

1.5 Modello Relazionale

Origini Proposto da E. F. Codd nel 1970 per favorire l'indipendenza dei dati, disponibile in DBMS reali dal 1981 (non è facile implementare l'indipendenza con efficienza e affidabilità). Si basa sul concetto matematico di relazione con una variante, naturalmente rappresentata come tabella.

1.5.1 Relazione matematica

```
Dalla teoria degli insiemi Dati n insiemi anche non distinti D_1, \ldots, D_n.
Il prodotto cartesiano D_1 \times \ldots \times D_n è l'insieme di tutte le n-uple (d_1, \ldots, d_n) tali che d_1 \in D_1, \ldots, d_n \in D_n
```

Una relazione matematica su D_1, \ldots, D_n è un sottoinsieme di $D_1 \times \ldots \times D_n$, con D_1, \ldots, D_n detti domini della relazione.

```
Un esempio Dati D_1 = \{a, b\} e D_2 = \{x, y, z\}.
Il prodotto cartesiano è l'insieme D_1 \times D_2 = \{(a, x), (a, y), (a, z), (b, x), (b, y), (b, z)\}
Una relazione r potrebbe essere r \subset D_1 \times D_2 = \{(a, x), (a, z), (b, y)\}
```

Proprietà Una relazione matematica è un insieme di *n*-uple ordinate (d_1, \ldots, d_n) tali che $d_1 \in D_1, \ldots, d_n \in D_n$. Osservazioni: una relazione è un insieme, quindi

non c'è ordinamento fra le n-uple

le n-uple sono distinte

ciascuna n-upla è ordinata, cioè l'i-esimo valore proviene dall'i-esimo dominio

Tabelle Una tabella rappresenta una relazione se:

I valori di ogni colonna sono fra loro omogenei

Le righe sono diverse fra loro

Le intestazioni delle colonne sono diverse fra loro

In una tabella che rappresenta una relazione l'ordinamento tra le righe e l'ordinamento tra le colonne è irrilevante

1.5.2 Valori

Il modello relazionale è basato sui valori Ciò significa che i riferimenti fra dati in relazioni diverse sono rappresentati per mezzo di valori dei domini che compaiono nelle n-uple.

Studenti

Nome	<u>Matricola</u>	Provincia	AnnoNascita
Isaia	071523	PI	1982
Rossi	067459	LU	1984
Bianchi	079856	LI	1983
Bonini	075649	PI	1984

Vincolo di integrità refernziale

Esami

<u>Materia</u>	Candidato*	Data	Voto
BD	071523	12/01/06	28
BD	067459	15/09/06	30
FP	079856	25/10/06	30
BD	075649	27/06/06	25
LMM	071523	10/10/06	18

Vantaggi

Indipendenza delle strutture fisiche che possono cambiare dinamicamente, che potremmo avere anche con puntatori di alto livello. La rappresentazione logica dei dati (che è costituita dai soli valori) non fa riferimento a quella fisica.

Si rappresenta solo ciò che è rilevante dal punto di vista dell'applicazione

I dati sono portabili più facilmente da un sistema all'altro

I puntatori sono direzionali

1.5.3 Meccanismi

Definizione I meccanismi per definire una base di dati con il modello relazionale sono l'ennupla e la relazione.

Tipo ennupla Un tipo ennupla T è un insieme finito di coppie \langle attributo, tipo elementare \rangle Se T è un tipo ennupla, R(T) è lo schema della relazione R, quindi **lo schema di un DB è l'insieme di schemi di relazione** $\mathbf{R}_i(\mathbf{T}_i)$. Un'istanza di uno schema R(T) è un insieme finito di ennuple di tipo T.

Informazione incompleta Per rappresentare un'informazione incompleta (es.: l'assenza del secondo nome) non bisogna usare elementi del dominio come lo 0, stringa vuota, "99"....

Questo perché potrebbero non esistere valori "non utilizzati", e se esistono potrebbero diventare significativi. Inoltre, in fase di utilizzo (nei programmi) bisognerebbe tenere conto ogni volta del "significato" di questi valori.

Il valore nullo denota l'assenza di un valore del dominio e non è un valore del dominio.

Quindi t[A] per ogni attributo A è un valore del dominio dom(A) oppure è il valore nullo NULL.

Si possono (e devono) imporre restrizioni sulla presenza di valori sulli.

Vincoli d'Integrità Esistono istanze di DB che, nonostante siano sintatticamente corrette, non rappresentano informazioni possibili per l'applicazione e che quindi generano informazioni prive di significato. Ad esempio un voto di 32, o due studenti con la stessa matricola.

Uno schema relazionale è costituito da un insieme di schemi di relazione e un insieme di vincoli d'integrità sui possibili valori delle estensioni delle relazioni.

Un vincolo d'integrità è una proprietà che deve essere soddisfatta dalle istanze che rappresentano informazioni corrette per l'applicazione.

Vincoli Intrarelazionali: sono vincoli che devono essere rispettati dai valori contenuti nella relazione considerata. Vincoli sui valori (o di dominio), vincoli di ennupla.

Vincoli Interrelazionali: sono vincoli che devono essere rispettati da valori contenuti in relazioni diverse.

Chiave Informalmente, una chiave è un insieme di attributi che identificano le ennuple di una relazione. Formalmente, un insieme K di attributi è superchiave per r se r non contiene due ennuple distinte t_1 e t_2 con $t_1[K] = t_2[K]$.

K è chiave per r se è superchiave minimale per r, cioè se non contiene altre superchiavi.

Un esempio classe è la matricola: è superchiave ed è un solo attributo, quindi è minimale.

Una relazione non può contenere ennuple distinte ma con valori uguali. Ogni relazione ha **sicuramente** come superchiave l'insieme di tutti gli attributi su cui è definita, quindi ogni relazione ha (almeno) una chiave.

L'esistenza delle chiavi garantisce l'accesso di ciascun dato della base di dati e permettono di correlare i dati in relazioni diverse.

Un valore nullo in una chiave non permette di identificare le ennuple o realizzare i riferimenti con altre relazioni. Una **chiave primaria** è una chiave su cui non sono ammessi valori nulli: si denota sottolineando il nome dell'attributo es. matricola.

Integrità referenziale Le informazioni in relazioni diverse sono correlate attraverso valori comuni. In particolare, vengono prese in considerazione i valori delle chiavi primarie, quindi le correlazioni devono essere coerenti.

Un vincolo di integrità referenziale (foreign key) fra gli attributi X di una relazione R_1 e un'altra relazione R_2 impone ai valori su X in R_1 di comparire come valori della chiave primaria di R_2 .

1.6 Trasformazione di schemi

Progettazione logica L'obiettivo della progettazione logica è tradurre lo schema concettuale in uno schema logico relazionale, che rappresenti gli stessi dati, in maniera corretta ed efficiente. Questo richiede una ristrutturazione del modello concettuale.

1.6.1 Progettazione logica relazionale

Passaggi La progettazione di uno schema ad oggetti in uno schema relazionale avviene seguendo questi passaggi:

- 1. rappresentazione delle associazioni 1:1 e 1:N
- 2. rappresentazione delle associazioni N:M o non binarie
- 3. rappresentazione delle gerarchie d'inclusione
- 4. identificazione delle chiavi primarie
- 5. rappresentazione degli attributi multivalore

Obiettivo Rappresentare le stesse informazioni, minimizzando la ridondanza e producendo uno schema comprensibile che faciliti la scrittura e la manutenzione delle applicazioni.

1.6.2 Rappresentazione delle associazioni

Uno a molti Si rappresentano aggiungendo agli attributi della relazione rispetto a cui l'associazione è univoca la chiave esterna che riferisce l'altra relazione.

Uno a uno Si rappresentano aggiungendo la chiave esterna ad una qualunque delle due relazioni che riferisce l'altra relazione. Nel caso di un vincolo di totalità, la chiave esterna viene aggiunta alla relazione rispetto cui l'associazione è totale.

Molti a molti Si rappresenta aggiungendo allo schema una nuova relazione contenente due chiavi esterne che riferiscono le due relazioni coinvolte. La chiave primaria di questa relazione è costituita dall'insieme di tutti i suoi attributi.

1.6.3 Rappresentazione delle gerarchie fra classi

Il modello relazionale non può rappresentare direttamente le generalizzazioni. Bisogna eliminare le gerarchie, sostituendole con classi e relazioni:

Relazione unica: accorpamento delle figlie della generalizzazione nel genitore

Se A_0 è la classe genitore di A_1 e A_2 , allora A_1 e A_2 vengono eliminate e accorpate ad A_0 . Ad A_0 viene aggiunto un attributo (discriminatore) che indica da quale delle classi figlie deriva una certa istanza, e gli attributi di A_1 e A_2 vengono assorbiti da A_0 , assumendo valore nullo sulle istanze provenienti dall'altra classe.

Partizionamento orizzontale: accorpamento del genitore della generalizzazione nelle figlie

La classe genitore A_0 viene eliminata e le classi figlie A_1 e A_2 ereditano le proprietà (attributi, identificatore e relazioni) della classe genitore. Le relazioni della classe genitore vengono sdoppiate, coinvolgendo ciascuna delle figlie.

Divide gli elementi della superclasse in più relazioni diverse, per cui non è possibile mantenere un vincolo referenziale verso la superclasse stessa. Quindi, non si usa se nello schema relazionale grafico c'è una freccia che entra nella superclasse (come la \leftarrow^S nell'esempio sopra, che entra nella superclasse A).

Partizionamento verticale: sostituzione della generalizzazione con relazioni.

La generalizzazione si trasforma in due associazioni uno ad uno che legano rispettivamente la classe progenitore con le classi figlie. In questo caso, non c'è un trasferimento di attributi o di associazioni e le classi figlie A_1 e A_2 sono identificate esternamente dalla classe genitore A_0 .

Nello schema ottenuto si aggiungono dei vincoli: ogni occorrenza di A_0 non può partecipare contemporaneamente alle due associazioni e se la generalizzazione è totale, deve partecipare almeno una delle due.

Capitolo 2

Algebra Relazionale

2.1 Linguaggi

Linguaggi per i DB

DDL Data Definition Language, per le operazioni sullo schema.

Operazioni di creazione, cancellazione e modifica di schemi di tabelle, creazione viste, creazione indici...

DML Data Manipulation Language, per le operazioni sui dati.

Data Query Language, per le query, cioè l'interrogazione del DB

Aggiornamento dati, per inserimento, cancellazione e modifica dei dati.

Linguaggi relazionali

Algebra relazionale: insieme di operatori su relazioni che danno come risultato altre relazioni.

Non si usa come linguaggio di interrogazione dei DBMS ma come rappresentazione interna delle interrogazioni.

Calcolo relazionale: linguaggio dichiarativo di tipo logico da cui è stato derivato l'SQL.

2.2 Operatori

Unione, intersezione e differenza

Ridenominazione

Selezione

Proiezione

Join (naturale, prodotto cartesiano, theta-join)

Sono **operatori insiemistici**: **le relazioni sono insiemi** e i risultati devono essere relazioni a loro volta. L'unione, intersezione e differenza sono applicabili solamente a relazioni definite sugli stessi attributi, cioè **possono operare solo su tuple uniformi**.

2.2.1 Ridenominazione

Operatore monadico Un solo argomento, modifica lo schema lasciando inalterata l'istanza dell'operando. Si indica con la lettera ρ , esempio: ρ nomecolonna \leftarrow nuovonome

2.2.2 Proiezione

Operatore monadico Produce un risultato che ha parte degli attributi dell'operando e contiene ennuple cui contribuiscono tutte le ennuple dell'operando ristrette agli attributi nella lista. Esempio $\pi_{lista\ attributi}(operando)$ $\pi_{A_1...A_n}(R)$

Contiene al più tante ennuple quante l'operando, ma può contenerne meno. Se X è superchiave di R, allora $\pi_X(R)$ contiene esattamente tante ennuple quante R. Se X non è superchiave, **potrebbero esistere valori ripetuti su quegli attributi**, che quindi **vengono rappresentati una sola volta**.

2.2.3 Selezione

Operatore monadico Produce un risultato con lo stesso schema dell'operando, contiene un sottoinsieme delle ennuple dell'operando cioè quelle che soddisfano una condizione espressa combinando con i connettivi logici \land , \lor , \neg , condizioni atomiche del tipo $A\Theta B$ o $A\Theta c$ dove Θ è un operatore di confronto, A e B sono attributi su cui l'operatore Θ abbia senso e c sia una costate compatibile col dominio di A.

Viene denotata con $\sigma_{condizione}(operando)$, ad esempio $\sigma_{Stipendio>50 \land Filiale='Milano'}(Impiegati)$ Per riferirsi ai valori nulli si usano apposite condizioni IS NULL e IS NOT NULL.

$$\sigma_{eta>30}(\text{Persone}) \cup \sigma_{eta\leq30}(\text{Persone}) \cup \sigma_{eta\ IS\ NULL}(\text{Persone})$$

$$= \sigma_{eta>30\ \lor\ eta\leq30\ \lor\ eta\ ISNULL}(\text{Persone})$$

$$= Persone$$

2.2.4 Join

Giunzione Combinando selezione e proiezione possiamo estrarre informazioni da una relazione, ma non possiamo correlare informazioni presenti in relazioni diverse.

Il join è l'operatore più interessante dell'algebra relazionale perché consente di correlare i dati in relazioni diverse.

Join naturale Operatore binario (generalizzabile) che correla dati in relazioni diverse sulla base di valori uguali in attributi con lo stesso nome.

Produce un risultato sull'unione degli attributi degli operandi con **ennuple ottenute combinando le ennuple degli** operandi con valori uguali sugli attributi in comune.

Dati
$$R_1(X_1)$$
, $R_2(X_2)$, allora $R_1 \bowtie R_2$ è una relazione su $X_1 \cup X_2$ $R_1 \bowtie R_2 = \{t \text{ su } X_1 \cup X_2 \mid \exists t_1 \in R_1 \land t_2 \in R_2 \text{ con } t[X_1] = t_1 \text{ e } t[X_2] = t_2\}$

Cardinalità Dati $R_1(A, B)$ e $R_2(B, C)$, il join contiene un numero di ennuple compreso fra 0 e $|R_1| \cdot |R_2|$

$$0 \le |R_1 \bowtie R_2| \le |R_1| \cdot |R_2|$$

Se il join è completo, allora contiene un numero di ennuple almeno uguale al massimo tra $|R_1|$ e $|R_2|$. Se il join coinvolge una chiave B di R_2 , allora $0 \le |R_1 \bowtie R_2| \le |R_1|$.

Se coinvolge una chiave B di R_2 e un vincolo di integrità referenziale tra attributi di R_1 e la chiave di R_2 , allora $|R_1 \bowtie R_2| = |R_1|$

2.2. OPERATORI 27

Join esterno Estende con valori nulli le ennuple che verrebbero tagliate fuori da un join interno. Esiste in tre versioni:

Sinistro $R \bowtie S$, mantiene tutte le ennuple del primo operando estendendole con valori nulli se necessario.

Destro $R \bowtie S$, idem ma del secondo operando.

Completo, idem ma di entrambi gli operandi.

Prodotto cartesiano Un join naturale senza attributi in comune: contiene sempre un numero di ennuple pari al prodotto delle cardinalità degli operandi.

Theta-join Il prodotto cartesiano ha senso solo se seguito da una selezione $\sigma_{condizione}(R_1 \bowtie R_2)$, che viene abbreviato con $R_1 \bowtie_{condizione} R_2$

Self-join Non si potrebbe fare una join del tipo Genitore \bowtie Genitore, perché ritornerebbe la stessa tabella Genitore poiché tutti gli attributi coincidono. Torna utile effettuare una ridenominazione del tipo $\rho_{Nonno,Genitore\leftarrow Genitore,Figlio}$ (Genitore) per poi effettuare una natural join del risultato con Genitore.

2.2.5 Raggruppamento

Con l'operatore ${}_{\{A_i\}}\gamma_{\{f_i\}}(\mathbf{R})$ si effettura il raggruppamento.

 A_i sono gli **attributi** di R

 f_i sono le **espressioni** che usano **funzioni di aggregazione** (min, max, count, sum...)

Il valore del raggruppamento è calcolato come segue:

si partizionano le ennuple di R mettendo nello stesso gruppo tutte le ennuple con valori uguali degli A_i (si raggruppa per A_i)

si calcolano le espressioni f_i per ogni gruppo

per ogni gruppo, si restituisce una sola ennupla con attributi i valori degli A_i e delle espressioni f_i

Capitolo 3

Interrogazione di una base di dati

SQL L'interrogazione di una base di dati è uno degli aspetti più importanti del linguaggio SQL. I comandi di interrogazione, o **query**, permettono di effettuare una ricerca dei dati presenti nel database che soddisfano particolari condizioni richieste dall'utente.

```
SELECT s.Nome, e.Data
FROM Studenti s, Esami e
WHERE e.Materia = 'BD' AND e.Voto = 30 AND e.Matricola = s.Matricola

SELECT s.Nome AS Nome, 2020 - s.AnnoNascita AS Eta, 0 AS NumeroEsami
FROM Studenti s
WHERE NOT EXISTS(SELECT * FROM Esami e WHERE e.Matricola = s.Matricola)
```

Storia Definito nel 1973, SQL è oggi il linguaggio universale dei sistemi relazionali. Ci sono vari standard (SQL-84, SQL-89... fino a SQL-1999 ANSI/ISO ad oggetti) ed è composto da DDL, DML e query language.

Select From Where SQL è un calcolo su multinsiemi. Il comando base dell'SQL è:

```
SELECT [DISTINCT] Attributo{, Attributo}
FROM Tabella [Ide]{, Tabella [Ide]}
[WHERE Condizione]
```

La semantica è **prodotto**, **restrizione**, **proiezione**. Un attributo A di una tabella "R x" si denota come A, R.A oppure x.A

```
SELECT ListaAttributi
FROM ListaTabelle
[WHERE Condizione]
```

La query considera il prodotto cartesiano tra le tabelle in ListaTabelle (join).

Fra queste, seleziona solo le righe che soddisfano la Condizione (selezione).

Infine, valuta le espressioni specificate nella target list ListaAttributi (proiezione).

La SELECT quindi implementa gli operatori di proiezione, selezione e join dell'algebra relazionale.

3.0.1 **SELECT**

Proiezione Specifica la target list, cioè corrisponde a scegliere gli attributi della/e tabella/e interessate. Implementa quindi l'operazione di **proiezione** dell'algebra relazionale.

3.0.2 FROM

Tabelle Ha lo scopo di scegliere quali sono le tabelle del database da cui vogliamo estrarre le nostre informazioni. Nel caso in cui le tabelle elencate siano due, la FROM insieme alla WHERE implementa il theta-join.

3.0.3 WHERE

Selezione Serve a scegliere le righe della tabella che soddisfano una certa condizione. In questo modo la clausola WHERE implementa la **selezione** dell'algebra relazionale.

Condizioni In SQL sono disponibili una serie di condizioni a seconda del tipo di dato da confrontare, oltre ai IS NULL e IS NOT NULL per i dati mancanti.

In particolare, con l'operatore LIKE si possono effettuare ricerche con wildcard: % per zero o più caratteri, _ per un carattere. Per esempio, WHERE Nome LIKE %a ricercherà tutti i valori del campo Nome che finiscono per a, oppure WHERE Sequenza LIKE %G___G% seleziona i valori dove compaiono due G separate da 3 caratteri.

Si possono inserire anche dei simboli escape, ad esempio se vogliamo cercare valori in cui compare % si può scrivere WHERE Sconto LIKE _5#% ESCAPE #, così da trovare tutti i valori sconto con 5 nelle unità.

3.1 Ordinamento e aggregazione

Ordinamento Il risultato di una SELECT si può ordinare in base ad un attributo e in maniera crescente o decrescente

SELECT ListaAttributi
FROM ListaTabelle
WHERE Condizione

 $\mathbf{ORDER}\;\mathbf{BY}\;\mathsf{Attributo}\;\;[\mathbf{ASC/DESC}]$

Le righe verranno ordinate in base al campo Attributo in maniera crescente (ASC) o descrescente (DESC). L'ordinamento è quello più naturale sul dominio dell'attributo (numerico, alfabetico...).

Si possono anche fare ordinamenti multipli, ad esempio se si vuole ordinare i dati in base ad una certa chiave (attributo) e poi ordinare i dati che coincidono su quella chiave in base ad un'altra chiave (altro attributo).

. .

ORDER BY Attributo1 [ASC/DESC] { , Attributon [ASC/DESC] }

Verranno ordinati prima per Attributo1, le righe coincidenti su Attributo1 verranno ordinate per Attributo2....

Aggregazione Nella target list possiamo avere anche espressioni che calcolano valori a partire da insiemi di ennuple e che restituiscono una tabella molto particolare, costituita da un singolo valore scalare. Sono 5 gli operatori aggregati previsti da SQL2:

COUNT(), conteggio: restituisce il numero di righe della tabella o il numero di valori di un particolare attributo. Con (*) conta tutte le righe selezionate, con ALL conta tutti i valori non nulli delle righe selezionate, DISTINCT conta tutti i valori non nulli distinti delle righe selezionate. Di default è ALL.

MIN(), minimo. L'argomento può essere una funziona aritmetica.

MAX(), massimo. L'argomento può essere una funziona aritmetica.

SUM(), somma. Le specifiche ALL e DISTINCT permettono di sommare tutti i valori non nulli o tutti i valori distinti. Anche qua di default è ALL.

AVG(), media (dei valori non nulli). ALL e DISTINCT per calcolare la media fra tutti i valori o fra quelli distinti, default ALL.

Non è possibile utilizzare, in una stessa SELECT, una proiezione su alcuni attributi della tabella e operatori aggregati sulla stessa tabella. Si possono, invece, fare operazioni aggregate su colonne diverse della stessa tabella.

Raggruppamento A volta può essere richiesto di calcolare operatori aggregati non per l'intera tabella ma raggruppamdo le righe i cui valori coincidono su un certo attributo: possiamo scrivere GROUP BY Attributo.

Con HAVING si possono applicare condizioni sul valore aggregato per ogni gruppo.

 $Attributo \rightarrow WHERE$

Operatore aggregato \rightarrow HAVING

3.2 Semantica

La query è innanzitutto eseguita senza operatori aggregati e senza GROUP BY.

Quindi il risultato è diviso in sottoinsiemi aventi gli stessi valori per gli attributi elencati in GROUP BY.

Quindi l'operatore aggregato è calcolato su ogni sottoinsieme.

3.3. SUBQUERY 31

Osservazione Quando si effettua un raggruppamento, questo deve essere effettuato su tutti gli elementi della target list che non sono operatori aggregati (ossia sull'insieme degli attributi puri). Questo perché nel risultato deve apparire una riga per ogni gruppo.

Esempio di query HAVING può essere usato solo in presenza di un GROUP BY e dopo di esso.

SELECT Citta, Avg(Voto)

 $\begin{array}{lll} \textbf{FROM} & & \textbf{EsamiBD} \\ \textbf{WHERE} & & \textbf{Eta} < 21 \\ \textbf{GROUP BY} & & \textbf{Citta} \\ \end{array}$

HAVING AVG(Voto) > 26

3.3 Subquery

Una **subquery** un comando SELECT racchiuso tra parantesi tonde ed inserito all'interno di un altro comando SQL (ad esempio un'altra query).

Possono essere usate nei seguenti casi:

in espressioni di confronto

in espressioni di confronto quantificato

in espressioni IN

in espressioni EXISTS

nel calcolo di espressioni

Tipologie Ci sono tre tipologie di subquery:

Subquery Scalare: comando SELECT che restituisce un solo valore

Es: SELECT MAX(Cilindrata) FROM Veicoli

Subquery di Colonna: comando SELECT che restituisce una colonna

Es: SELECT CodCateogira FROM Veicoli

Subquery di Tabella: comando SELECT che restituisce una tabella

 Es : SELECT Targa, CodMod, Posti FROM Veicoli

3.4 Quantificazione

Tutte le interrogazioni su di un'associazione multivalore vanno quantificate.

La query "gli studenti che hanno preso 30" è ambigua.

Gli studenti che hanno preso sempre 30: universale

Gli studenti che hanno preso almeno un 30: esistenziale

Gli studenti che non hanno preso qualche 30: universale

Gli studenti che **non** hanno preso **sempre** 30: **esistenziale**

Universale negata = esistenziale Esistenziale negata = universale

ANY, ALL, EXISTS Le condizioni in SQL permettono il confronto fra un attributo ed il risultato di una subquery che restituisce una colonna od una tabella.

Operatore scalare (ANY | ALL) SELECT...

ANY: il predicato è vero se almeno uno dei valori restituiti dalla subquery soddisfano la condizione ALL: il predicato è vero se tutti i valori restituiti dalla subquery soddisfano la condizione

Quantificatore esistenziale EXISTS SELECT...

Il predicato è vero se la subquery restituisce almeno una tupla.

3.5 Unione, Intersezione, Differenza

A volte può essere utile poter ottenere un'unica tabella contenente alcuni dei dati contenuti in due tabelle omogenee, ossia con attributi definiti sullo stesso dominio.

La SELECT da sola non permette di fare questo tipo di operazioni su tabelle. Esistono per questo dei costrutti espliciti che utilizzano le parole chiave UNION, INTERSECT, EXCEPT (o MINUS).

Tali operatori lavorano sulle tabelle come se fossero insiemi di righe, dunque i duplicati vengono eliminati anche dalle proiezioni (a meno di non specificare ALL).

Questi operatori vanno in mezzo a due SELECT:

```
SELECT...
```

(UNION | INTERSECT | EXCEPT) [ALL] SELECT...

UNION Realizza l'operazione di unione definita nell'algebra relazionale. Utilizza come operandi le due tabelle risultanti da comandi SELECT e restituisce una terza tabella che contiene tutte le righe della prima e della seconda tabella.

Nel caso in cui dall'unione e dalla proiezione risultassero delle righe duplicate, UNION ne mantiene una sola copia (a meno di aver specificato ALL dopo UNION).

Mantiene i nomi delle colonne del primo operando. Quindi, se si vuole ridenominare, è bene ridenominare tutte le colonne che vogliamo.

INTERSECT Utilizza come operandi due tabelle risultati dai comandi SELECT e restituisce una tabella che contiene le righe comuni alle due tabelle iniziali. Anche qua con ALL mantiene i duplicati, e realizza l'interrsezione dell'algebra relazionale.

EXCEPT Utilizza come operandi due tabelle ottenute mediante due SELECT, ed ha come risultato una nuova tabella che contiene **tutte le righe della prima che non si trovano nella seconda**. Realizza la differenza dell'algebra relazionale, ed anche qua si possono mantenere i duplicati utilizzando ALL.

Capitolo 4

Modifica di una base di dati

4.1 Modifica dei dati

Data Manipulation Language Introduciamo ora il DML, ossia il linguaggio SQL che serve per inserire, modificare e cancellare i dati del database ma anche per interrogare il database per estrarne i dati. Inizieremo descrivendo le istruzioni che servono a inserire, cancellare e modificare i dati, per poi introdurre le istruzioni per estrarre dal database le informazioni che ci interessano.

```
INSERT Per inserire un nuovo dato in una tabella si usa INSERT INTO...VALUES
INSERT INTO Tabella [(ListaAttributi)] (VALUES (ListaValori) | Subquery)

Update Si possono aggiornare alcuni dati con UPDATE
UPDATE Tabella SET Attributo = Expr{, Attributo = Expr} WHERE Condizione
```

DELETE Per cancellare righe dalle tabelle si usa la DELETE

```
DELETE FROM Tabella [WHERE Condizione]
```

Per eliminare un elemento bisogna individuare quale, stabilito con la clausola WHERE con la condizione che individua l'elemento (o gli elementi) da eliminare.

Un particolare elemento può essere individuato dal suo valore nella chiave primaria.

4.2 Definizione degli oggetti

Data Definition Language Introduciamo il DDL, cioè il linguaggio SQL che consiste nell'insieme delle istruzioni che permettono la creazione, modifica e cancellazione delle tabelle, dei domini e degli altri oggetti del database al fine di definire il suo schema logico.

Definizione delle tabelle Le tabelle vengono definite in SQL con l'istruzione CREATE TABLE. Questa istruzione definisce uno schema di relazione, ne specifica attributi, domini e vincoli e ne crea un'istanza vuota.

```
CREATE TABLE NomeTabella

(NomeColonna1 TipoColonna1 ClausolaDefault1 VincoloColonna1,
NomeColonna2 TipoColonna2 ClausolaDefault2 VincoloColonna2,
...

NomeColonnak TipoColonnak ClausolaDefaultk VincoloColonnak,
VincoliDiTabella
)
```

CREATE TABLE è seguito dal nome della tabella e dalla **lista delle colonne** (attributi), di cui vengono specificate le caratteristiche. Alla fine si possono anche specificare eventuali vincoli di tabella, di cui parleremo. La CREATE TABLE definisce uno schema di relazione e ne crea un'istanza vuota specificando attributi, domini e

vincoli. Una volta create, la tabella è **pronta** per l'inserimento dei dati (che dovranno soddisfare i vincoli imposti). Lo schema di una tabella, dopo che è stata creata, può essere visualizzato con **DESCRIBE NomeTabella**.

Un linguaggio per tanti usi SQL non è solo un query language, ma anche un linguaggio

per la definizione di DB (DDL)

CREATE SCHEMA Nome AUTHORIZATION Utente

CREATE TABLE

CREATE INDEX

CREATE PROCEDURE

CREATE TRIGGER

per stabilire controlli sull'uso dei dati

GRANT

per la modifica dei dati

4.2.1 Tipi

Tipi I tipi più comuni per i valori sono:

CHAR(n) per stringhe di caratteri di lunghezza fissa n

VARCHAR(n) per stringhe di caratteri di lunghezza variabile fino ad un massimo di n

INTEGER per interi con la dimensione uguale alla parola di memoria standard dell'elaboratore

REAL per numeri reali con dimensione uguale alla parola di memoria standard dell'elaboratore

 $\mathbf{NUMBER}(\mathbf{p,s})$ per numeri con p cifre di cui s decimali

FLOAT(p) per numeri binari in virgola mobile con almeno p cifre significative

DATE per valori che rappresentano istanti nel tempo (in alcuni sistemi come Oracle) oppure solo date (con un altro tipo **TIME** per indicare l'orario)

```
CREATE TABLE Impiegati
   (Codice CHAR(8) NOT NULL,
   Nome CHAR(20),
   AnnoNascita INTEGER CHECK (AnnoNascita < 2000),
   Qualifica CHAR(20) DEFAULT 'Impiegato',
   Supervisore CHAR(8),
   PRIMARY KEY pk_impiegato (Codice),
   FOREIGN KEY fk_Impiegati (Supervisore) REFERENCES Impiegati)

CREATE TABLE FamiliariACarico
   (Nome CHAR(20),
   AnnoNascita INTEGER,
   GradoParentela CHAR(10),
   CapoFamiglia CHAR(8)
   FOREIGN KEY fk_FamiliariACarico (CapoFamiglia) REFERENCES Impiegati)
```

Eliminare e modificare Ciò che viene creato con ALTER TABLE può essere eliminato con **DROP** o modificato con **ALTER**. Con **ALTER** TABLE nello standard SQL è possibile

Aggiungere una colonna ADD COLUMN

Rimuovere una colonna DROP COLUMN

Modificare una colonna MODIFY

Aggiungere l'assegnazione di valori di default SET DEFAULT o eliminarli DROP DEFAULT

Aggiungere vincoli di tabella ADD CONSTRAINT o eliminarli DROP CONSTRAINT

Altre opzioni specifica dei linguaggi.

Capitolo 5

Viste

Viste logiche Le view possono essere definite come delle tabelle virtuali: i dati sono riaggregazioni dei dati contenuti nelle tabelle "fisiche" (unici veri contenitori dei dati). Le viste non contengono fisicamente i dati ma forniscono una visione diversa, dinamicamente aggiornata, degli stessi dati delle tabelle fisiche.

Appare all'utente come una normale tabella, in cui può effettuare interrogazioni e modifiche all'interno dei suoi privilegi.

Vantaggi

Semplificano la rappresentazione dei dati.

Oltre ad assegnare un nome ad una vista, la sintassi dell'istruzione **CREATE VIEW** consente di cambiare i nomi delle colonne.

In generale, uno dei requisiti per la progettazione di un DB è la normalizzazione dei dati. La forma normalizzata di un DB, sebbene permetta una corretta modellazione della realtà, a volte porta ad una maggiore difficoltà di comprensione dei dati da parte dell'utente. Le viste consentono quindi di fornire i dati all'utente in una forma più intuitiva. Consentono anche di convertire le unità di misura e creare nuovi formati.

Possono essere convenienti per eseguire query molto complesse.

Consentono di **proteggere il database**: le viste ad accesso limitato possono essere usate per **controllare le informazioni a cui accede un determinato utente** del database.

Indipendenza logica

Consentono di operare modifiche allo schema del database senza modificare le applicazioni che lo utilizzano se passano attraverso le viste. Un po' come le interfacce nell'OOP.

Limitazioni

Non consentono l'utilizzo degli operatori booleani UNION, INTERSECT ed EXCEPT.

Gli ultimi due possono essere realizzati mediante una semplice SELECT, ma lo stesso non si può dire di UNION.

Non è possibile usare ORDER BY.

Sintassi Il comando DDL che consente di definire una vista è

```
CREATE VIEW NomeVista [(ListaAttributi)] AS Subquery [WITH [LOCAL | CASCADED] CHECK OPTION]
```

I nomi delle colonne nella ListaAttributi sono assegnati alle colonne della vista, che corrispondono **ordinatamente** alle colonne elencate nella SELECT della subquery.

Se questi non sono specificati, le colonne della vista assumono gli stessi nomi di quelli della/e tabella/e a cui si riferisce. Di seguito un esempio

```
CREATE VIEW ImpiegatiAmmin (Matricola, Nome, Cognome, Stipendio)

AS (SELECT Matri, Nome, Cognome, Stip
FROM Impiegato
WHERE Dipart = 'Amministrazione' AND Stipendio > 1000
)
```

36 CAPITOLO 5. VISTE

Nonostante il **contenuto** sia **dinamico**, la **struttura non lo è**. Se una vista è definita su una subquery che riferisce una tabella T a cui viene aggiunta una colonna, la definizione *non* viene estesa alla vista. Ossia la vista conterrà sempre le stesse colonne che aveva prima dell'inserimento della nuova colonna in T.

Vista di gruppo Una vista di gruppo è una vista in cui una delle colonne è una funzione di gruppo. Diventa obbligatorio assegnare un nome alla colonna della vista corrispondente alla funzione di gruppo. Un esempio:

```
CREATE VIEW A3 (CodFabbrica, NumVersioni)
AS (SELECT CodFabbrica, SUM(NumVersioni)
FROM Modelli
GROUP BY CodBFabbrica
)
```

È una vista di gruppo anche una vista definita in base ad una vista di gruppo

```
CREATE VIEW A4
AS (SELECT NumVersioni
FROM A3
)
```

Eliminare le viste Le viste si eliminano con il comando

```
DROP NomeViste [RESTRICT | CASCADE]
```

RESTRICT: la vista viene eliminata solo se non è riferita nella definizione di altri oggetti.

CASCADE: la vista viene eliminata e vengono eliminate tutte le dipendenze da tale vista nelle altre definizioni dello schema.

Nell'esempio, **DROP VIEW A3 CASCADE** elimina anche A4 oltre ad A3, mentre **DROP VIEW A3 RESTRICT** impedisce la cancellazione di A3 finché A4 è presente nello schema.

Viste modificabili Le viste si interrogano come le tabelle, ma in generale non sono modificabili. Per poterlo fare, deve esistere una corrispondenza biunivoca fra le righe della vista e le righe di una tabella di base ovvero:

SELECT senza DISTINCT e solo di sttributi

FROM una sola tabella modificabile

WHERE senza sottoquery

GROUP BY e HAVING non presenti nella definizione

Si potrebbe aggiornare direttamente le tabelle collegate, ma ha senso aggiornare le view nel case di accesso dati controllato.

CHECK OPTION L'opzione WITH CHECK OPTION messa alla fine della definizione della vista assicura che le operazioni di inserimento e modifica effettuate tramite la vista soddisfino la clausola WHERE della subquery.

Supponiamo che una vista V1 sia definita in termini di un'altra vista V2. Se V1 è creata con WITH CHECK OPTION, il **DBMS verifica che la nuova tupla t inserita soddisfi sia la definizione di V1 che quella di V2** (e di tutte le altre eventuali viste da cui V1 dipende), **indipendentemente dal fatto che V2 sia definita con** WITH CHECK OPTION.

Questo comportamento di default è equivalente a WITH **CASCADED** CHECK OPTION. Lo si può alterare definendo V1 WITH **LOCAL** CHECK OPTION, così facendo il DBMS verifica solo che t soddisfi la specifica di V1 e di tutte e sole le viste da cui V1 dipende per cui è stata specificata WITH CHECK OPTION.

Capitolo 6

Vincoli