

Summary:

MOTIVATION. ABCA7 loss of function (LoF) variants are one of the strongest genetic risk factors for sporadic Alzheimer's disease (sAD). The mechanisms and affected brain cell types remain largely unknown.

METHOD. We profiled >100,000 brain cells from human post-mortem ABCA7 LoF variant carriers and matched controls by single-nuclear RNA-sequencing, performed biochemical experiments on post-mortem brain sampes and isogenic iPSC-derived neurospheroids.

RESULTS.

Neurons expressed highest levels of ABCA7 and showed evidence for elevated expression of oxidative stress, DNA damage, and NF KB-inflammatory genes signatures. Multiple (phospho)-lipid-related processes were perturbed. Assays on post-mortem tissues and iPSC-derived neurospheroids showed increased levels of DNA damage, NF KB activation, and lipid peroxidation in ABCA7 LoF neurons.

ABCA7 loss of function induces DNA damage in neurons

Djuna von Maydell^{1,2,*}, Julia Maeve Bonner^{1,2,*}, Jenny Pao^{1,2}, G. Suella Menchaca^{1,2}, Gwyneth Welch^{1,2}, Carles Boix^{3,4}, Shannon Wright^{1,2}, Agnese Graziosi^{1,2}, Chung Jong Yu^{1,2}, Noelle Leary^{1,2}, George Samaan^{1,2}, Hansruedi Mathys^{1,2,5}, Guillaume Leclerc³, Manolis Kellis^{3,4}, Li-Huei Tsai^{1,2,**}, *These authors contributed equally, Correspondence: Ihtsai@mit.edu

snRNAseq on Human Brain from ABCA7 LoF-Carriers and non-Carriers

Post-Mortem Human Brain

ABCA7 LoF Neurospheroids (100 Days)

Massachusetts Institute of Technology

Cohort Metadata:

Conclusion: This study provides a cell-type-specific atlas of ABCA7 LoF disruption in the human brain and suggests mechanisms, by which ABCA7 might increase sAD risk through DNA damage, inflammation, and lipid disruption in neurons.

- 1. Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,
- 2. Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, , Cambridge, MA 02139, USA,
- 3. MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA., 4. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA.,
- 5. Current address: Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261,

