BMSN1601 - Anatomy - Part II - Part B (L16~L17)

Introduction to the Respiration Process

• Respiration involves 4 distinct processes

Pulmonary ventilation	External respiration	Transport	Internal respiration
			gas exchange between
movement of air	Gas exchange between	transport of O ₂ & CO ₂	systemic arterial blood &
into & out of lungs	lungs & blood	between lungs & tissues	body tissues across
			capillary membrane

- Recap: Basic Information About Different Pressure during the discussion
 - Atmospheric pressure: 760mmHg
 - Intrapulmonary Pressure [P_{alv}]: Pressure in the alveolar
 - - Intrapleural Pressure [P_{ip}] = Collapsing Pressure of Lung
 - → The Intrapleural Pressure is always smaller than Intrapulmonary Pressure
- Recap: Basic Information About Inspiration
 - Lungs are stretched & intrapulmonary volume increases
 - → Intrapulmonary pressure drops (-1 mmHg / Minimum Value)
 - → Air flows into lungs down pressure gradient
 - → Intrapulmonary Pressure gradually increase → Intrapulmonary Pressure = Atmospheric Pressure (760mmHg)

Lungs can slide but not separated from pleura

- Lungs adhere to thoracic wall
- Expand/recoil as thoracic cavity changes in volume during breathing
- Recap: Basic Information About Expiration
 - Quiet expiration depends on natural elasticity of lungs
 - → No Muscle Contraction

■ Inspiratory muscles relax & resume resting length

- → Rib cage descends due to gravity
- → Volume of thoracic cavity decreases
- → Lungs recoil
- Intrapulmonary volumes decreases
 - → Intrapulmonary pressure rises (to +1 mm Hg / Maximum Value)
- Pressure & Volume Changes during Pulmonary ventilation

	Intrapulmonary pressure	Intrapleural pressure
	(Relative)	(Relative)
Inspiration	-1mmHg	-6mmHg
Expiration	+1mmHg	-3mmHg
		Still (< intrapulmonary pressure) to keep alveoli inflated

Introduction to the Clinical Physiology Regarding the Pulmonary Ventilation

• Dead Space: Volume of inhaled air which does not take part in gas exchange

we speed to the state of the st		
Dead Space		
Anatomical Dead Space	Volume of conducting respiratory passageways (~150mL)	
	Volume occupied by alveoli that stop to act in gas exchange	
	(due to collapse, obstruction or lack of adjacent pulmonary capillaries)	
Alveolar dead spaces	Emphysema	
	Pneumonia	
	Chronic obstructive pulmonary disease	

- Non-respiratory Air Movements
 - Coughing, Sneezing, Crying, Laughing, Yawning

Introduction to the Lung Volume & Lung Capacities

Tidal volume (TV)	• volume of air that moves into or out of lungs with <u>each normal, quiet breath</u> $(\sim 500 \text{ mL})$	
Inspiratory reserve volume (IRV)	• extra volume of air that can be inspired forcibly <u>after a tidal inspiration</u> (2,100 – 3,200 mL)	
Expiratory reserve volume (ERV)	extra volume of air that can be evacuated from lungs <u>after a tidal expiration</u> $(1,000-1,200 \text{ mL})$	
Residual volume (RV)	• volume of air left in lungs <u>after strenuous expiration</u> (1,200 mL)	

Inspiratory capacity (IC)	Tidal volume (TV)
otal amount of air that can be inspired after a tidal expiration]	Inspiratory reserve volume (IRV)
Functional residual capacity (FRC)	Expiratory reserve volume (ERV)
total amount of air remaining in lungs after a tidal expiration	Residual volume (RV)
Will it (VO)	Tidal volume (TV)
Vital capacity (VC)	Inspiratory reserve volume (IRV)
[total amount of exchangeable air (TV + IRV + ERV)]	Expiratory reserve volume (ERV)
·	
	Tidal volume (TV)
Total lung conscitu (TLC)	Inspiratory reserve volume (IRV)
Total lung capacity (TLC)	Expiratory reserve volume (ERV)

Residual volume (RV)

 $Note-Anatomy\ Part\ II-Part\ B-By\ Wong\ Kwok\ Yin,\ Kenny$

External Respiration – Gas Exchange between Lungs & Blood

• The Characteristic of Alveoli:

Account for most of	Large Surface Area to	Surrounded by	Densely covered with of
Volume of Lung	facilitate the gas exchange	fine elastic fibers	pulmonary capillaries

• Structure of Alveoli:

Type I Alveoli Cells	Single Layer of Squamous epithelial cells that form Alveolar Wall
	→ For Gas Exchange
Type II Alveoli Cells	Secrete Surfactant
	→ Coat the outer, Alveolar surfaces
Marcophages:	Keep The Alveolar Surfaces <u>sterile</u>
Alveolar Pores:	Connect adjacent alveoli
	Equalize the air pressure throughout the lung

• Respiratory Membrane:

Barrier across which gases are exchanged between alveolar air & blood (~1µm-thick)		
Basement Membrane		
Alveolar Epithelium	Capillary Endothelium	between Alveolar Epithelium
		and Capillary Endothelium

• Pulmonary Gas Exchange:

At alveoli with maximal ventilation	pulmonary arterioles dilate → increasing blood flow into associated capillary
At alveoli with inadequate ventilation	 pulmonary arterioles constrict → redirecting blood to other respiratory areas

• Pressure Gradient @ External Respiration

	PO_2	PCO_2
Alveoli	100 mmHg	40 mmHg
Pulmonary Artery	40 mmHg	46 mmHg

Note – Anatomy Part II – Part B – By Wong Kwok Yin, Kenny

Transportation – Transport of O₂ & CO₂ between Lungs & Tissue

Transportation of O₂

Direct Dissolve in Plasma	By Direct Diffusion	
Bound to Hemoglobin with RBCs	Each hemoglobin molecule binds 4 oxygen molecules	
	o Oxyhemoglobin (HbO2)	
	 Deoxyhemoglobin (After Releasing O₂) 	

- Equilibrium of Oxyhemoglobin
 - The Factors: PO₂, PCO₂, [H⁺], [BPG]/[2,3-bisphosphoglycerate]

Note: Haemoglobin-Oxygen dissociation graph shift to the right, affinity is reduce;

Haemoglobin-Oxygen dissociation graph shift to the left, affinity is increase.

(RR: Right → Reduce Affinity).

The Chemical Equations:

 $Hb + 40_2 \rightleftharpoons Hb.40_2$

 $Hb.40_2 + H^+ \rightleftharpoons HHb^+ + 40_2$

Thus, we have:

$$Hb + 4O_2 + H^+ \rightleftharpoons HHb^+ + 4O_2 \quad (\Delta H > 0)$$

Increase $PCO_2 \rightarrow Acidity$ of Blood is Higher

→ Equilibrium Shift to the Right → Affinity Decrease

Increase PO₂

→ Equilibrium of Equation I shift to the Left → Affinity Increase

Increase in Temperature→ Forward Reaction is Endothermic

→ Equilibrium shift to the Right → Affinity Decrease

Increase [H⁺]

→ Equilibrium shift to Right → Affinity Decrease

Increase [BPG]→ BPG selectively binding to deoxyhemoglobin → [HHb⁺] Decrease

→ Equilibrium shift to the Right → Affinity Decrease

- Transportation of CO₂
 - Dissolved in plasma
 - o Bound to hemoglobin (carbaminohemoglobin)
 - Bicarbonate ions in plasma (70%)