复几何

曲豆豆 码字 南七技校福利社 五道口分社 2019年6月1日 第02稿

图:中国科学技术大学西校区-也西湖雪景 拍摄于 2015.1.28 - 11:30

本课程参考以下教材:

- 1. Demailly: Complex analytic and differential geometry.
- 2. Huybrechts: Complex geometry: an introduction.
- 3. Morrow, Kodaira: Complex manifolds.
- 4. Grauert, Remmert: Coherent analytic sheaves.
- 5. Hormander: An introduction to complex analysis in several variables.
- 6. Griffiths, Harris: Principles of algebraic geometry.

在五道口也要红专并进、理实交融呀~

目录

1	多复	变函数			
	1.1	多元全纯函数			
	1.2	解析延拓与 Hartogs 现象			
	1.3	Weierstrass 预备定理与除法定理			
	1.4	解析函数芽环 $\mathcal{O}_{\mathbb{C}^n,z}$ 及其代数结构			
	1.5	解析集与局部解析零点定理			
	1.6	局部参数化 25			
	1.7	正则点、奇异点,全纯隐函数定理27			
2	复流形(待补) 28				
	2.1	复流形(暂定)			
	2.2	微分形式(暂定) 28			
	2.3	复向量丛与全纯向量丛(暂定)28			
	2.4	例子(暂定) 29			
3	层与层上同调 30				
	3.1	预层与层的概念			
	3.2	预层的层化			
	3.3	层的顺像与逆像			
	3.4	局部自由模层与向量丛			
	3.5	凝聚层及其基本性质 42			
	3.6	Oka 凝聚定理			
	3.7	层的上同调			
	3.8	Čech 上同调			
	Hermite 向量丛				
	4.1	向量丛的联络与曲率			
	4.2	陈省身示性类			
	4.9	Hermite 向量从			

5	L^2 F	Hodge 理论	7 5		
	5.1	向量丛上的微分算子	75		
	5.2	椭圆算子的基本性质	77		
	5.3	紧黎曼流形的 Hodge 理论	79		
	5.4	Kähler 流形	86		
	5.5	紧复流形上的 Hodge 理论	89		
6	Lefschitz 分解				
	6.1	线性代数版本的 Lefschitz 算子	93		
	6.2	紧 Kahler 流形的上同调群	99		
7	正性与消灭定理				
	7.1	Blow-up	126		
	7.2	Kodaira Embedding Theorem	129		

第1章 多复变函数

1.1 多元全纯函数

首先快速回顾单复变函数的知识。我们通常用 Ω 来表示 $\mathbb C$ 的开子集,z=x+iy 为 $\mathbb C$ 的坐标。对于 $z\in\mathbb C$ 以及实数 R>0,我们令

$$\mathbb{D}(z,R) := \{ w \in \mathbb{C} | |w - z| < R \}$$

为以 z 为圆心 R 为半径的开圆盘。

此外,我们有如下常用记号:

$$\begin{cases} dz := dx + idy \\ d\bar{z} := dx - idy \end{cases} \begin{cases} \frac{\partial}{\partial z} := \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \\ \frac{\partial}{\partial \bar{z}} := \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) \end{cases}$$

对于函数 $f:\Omega\to\mathbb{C}$, 称 f 是**全纯** (holomorphic) 的,若在 Ω 中成立

$$\bar{\partial}f := \frac{\partial f}{\partial \bar{z}} d\bar{z} = 0$$

我们知道,f 是全纯的当且仅当 f 在 Ω 处处能够局部地展开为收敛幂级数。

对于 $\mathbb C$ 中的紧致集 K,称函数 $f:K\to\mathbb C$ 是全纯的,如果存在 K 的开邻域 $\Omega\supseteq K$,使得 f 可延拓为 Ω 上的全纯函数。

单复变函数论中有如下重要结果:

定理 1.1.1. (柯西积分公式) 设 $\mathbb{D} \subseteq \mathbb{C}$ 为 \mathbb{C} 中的开圆盘, $f: \mathbb{D} \to \mathbb{C}$ 为 \mathbb{D} 上的全纯函数, 且 在 $\partial \mathbb{D}$ 连续, 则对于任意 $w \in \mathbb{D}$, 成立

$$f(w) = \frac{1}{2\pi i} \int_{\partial \mathbb{D}} \frac{f(z)}{z - w} dz$$

此定理能推导出单变量全纯函数理论的"almost everything". 这里不再赘述。 我们开始考虑多变量全纯函数。 定义 1.1.2. 设 $\Omega \subseteq \mathbb{C}^n$ 为 \mathbb{C}^n 的开子集,函数 $f:\Omega \to \mathbb{C}$ 称为(多变量)全纯函数,如果满足以下条件:

- (1) f 是连续函数;
- (2) 对任意 $1 \le j \le n$, 以及任意固定的 $z_1, ..., z_{i-1}, z_{i+1}, ..., z_n \in \mathbb{C}$, 关于 z_i 的单变量函数

$$z_i \mapsto f(z_1, ..., z_{i-1}; z_i; z_{i+1}, ..., z_n)$$

是(单变量)全纯函数。

事实上,如果该定义中的(2)成立,那么能推出(1)成立,也就是说此定义中的(1)可以去掉。其证明比较复杂,我们承认之。

记号 1.1.3. 对于 \mathbb{C}^n 的开子集 Ω , 我们记

容易知道 $\mathcal{O}(\Omega)$ 有显然的 \mathbb{C} -代数结构。

本节将说明,多变量全纯函数具有一些与单变量全纯函数类似的性质。

记号 1.1.4. 对于 $z=(z_1,z_2,...,z_n)\in\mathbb{C}^n$ 以及 $R=(R_1,R_2,...,R_n)\in\mathbb{R}^n$,并且 $R_j>0$ ($\forall 1\leq j\leq n$),则我们记

$$\mathbb{D}(z,R) := \mathbb{D}(z_1,R_1) \times \mathbb{D}(z_2,R_2) \times \cdots \times \mathbb{D}(z_n,R_n)$$

称为以z为中心,R为半径的多圆柱(polydisk)。

对于多圆柱 $\mathbb{D}(z,R)$, 我们记

$$\Gamma(z,R) := \partial \mathbb{D}(z_1,R_1) \times \partial \mathbb{D}(z_2,R_2) \times \cdots \times \partial \mathbb{D}(z_n,R_n)$$

称为 $\mathbb{D}(z,R)$ 的特征边界(distinguished boundary)。

特别注意特征边界 $\Gamma(z,R)$ 并不等于该多圆柱的边界 $\partial \mathbb{D}(z,R)$.

定理 1.1.5. (多变量全纯函数的柯西积分公式)

设 $f: \overline{\mathbb{D}(z,R)} \to \mathbb{C}$ 为全纯函数,则对任意的 $w \in \mathbb{D}(z,R)$,成立

$$f(w) = \frac{1}{(2\pi i)^n} \int_{\Gamma(z,R)} \frac{f(\xi) d\xi_1 d\xi_2 \cdots d\xi_n}{(\xi_1 - w_1)(\xi_2 - w_2) \cdots (\xi_n - w_n)}$$

证明. 由多变量全纯函数的定义, 反复使用单变量全纯函数的柯西积分公式即可。这是容易的。

与单复变函数完全类似,我们也有泰勒展开:

推论 1.1.6. (多元全纯函数的泰勒展开公式)

对于 $f \in \mathcal{O}(\Omega)$, 其中 $\Omega \subseteq \mathbb{C}^n$ 为开子集,则对于任何多圆柱 $\mathbb{D}(z_0,R)$, 如果 $\overline{\mathbb{D}(z_0,R)} \subseteq \Omega$, 则对于任意 $w \in \mathbb{D}(z_0,R)$,成立

$$f(w) = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha} (w - z_0)^{\alpha}$$

其中

$$a_{\alpha} = \frac{1}{(2\pi i)^n} \int_{\Gamma(z_0,R)} \frac{f(z)}{(z-z_0)^{\alpha+1}} dz_1 dz_2 \cdots dz_n = \frac{f^{(\alpha)}(z_0)}{\alpha!}$$

注意这里的 α 为多重指标, 即 $\alpha = (\alpha_1, ..., \alpha_n)$, 其中每个 α_i 都为非负整数。我们记

$$z^{\alpha} := z_1^{\alpha_1} z_2^{\alpha_2} \cdots z_n^{\alpha_n}$$

$$\alpha! := \alpha_1! \alpha_2! \cdots \alpha_n!$$

$$f^{(\alpha)} := (\partial_{z_1})^{\alpha_1} (\partial_{z_2})^{\alpha_2} \cdots (\partial_{z_n})^{\alpha_n} f$$

$$\alpha + 1 := (\alpha_1 + 1, \alpha_2 + 1, ..., \alpha_n + 1)$$

其中 $z = (z_1, ..., z_n) \in \mathbb{C}^n$, f 为 n 元全纯函数。

证明. 与单复变函数的情形完全类似,可由柯西积分公式得到。

定理 1.1.7. (柯西不等式)对于 \mathbb{C}^n 的开子集 Ω , 若 $f \in \mathcal{O}(\Omega)$, 多圆柱 $\overline{\mathbb{D}(z_0,R)} \subseteq \Omega$, 则对任意多重指标 $\alpha \in \mathbb{N}^n$, 成立

$$\left|f^{(\alpha)}(z_0)\right| \leq \frac{\alpha!}{R^{\alpha}} \sup_{z \in \Gamma(z_0,R)} |f(z)|$$

证明. 与单复变函数的情形完全类似。利用多元泰勒展开(推论1.1.6)即可。

推论 1.1.8. 设 $\Omega \subseteq \mathbb{C}^n$ 为连通开集, $f \in \mathcal{O}(\Omega)$ 满足 $\forall 1 \leq k \leq n$, $\frac{\partial f}{\partial z_k}$ 在 Ω 上恒为 0, 则 f 在 Ω 上为常值函数。

推论 1.1.9. (刘维尔定理) 设 $f \in \mathcal{O}(\mathbb{C}^n)$, 并且满足

$$|f(z)| \le A(1+|z|)^B$$

其中 A,B 为正实数,那么 f 必为次数不超过 B 的多项式函数。

这些性质于单变量全纯函数雷同,证明也是类似的。

推论 1.1.10. (Montel 定理)

设 Ω 为 \mathbb{C}^n 的开子集,则 $\mathcal{O}(\Omega)$ 中的任何局部一致有界的全纯函数列都存在一致收敛的子列。

证明. 仍类似于单复变全纯函数的情形。使用柯西积分公式,再配合 Arzela-Ascoli 定理即可。从略。

现在,简单介绍一些复的微分形式。对于 \mathbb{C}^n ,记其复坐标为 $(z_1, z_2, ..., z_n)$; 视 \mathbb{C}^n 为 2n 维实线性空间,

$$z_k = x_k + iy_k$$

从而引入

$$dz_k = dx_k + idy_k \qquad (1,0)$$
 形式

$$d\bar{z}_k = dx_k - idy_k \quad (0,1)$$
形式

定义 1.1.11. ((p,q)-形式)

设 Ω 为 \mathbb{C}^n 的非空开集,则形如

$$u(z) = \sum_{\substack{|I|=p\\|J|=q}} a_{IJ}(z) dz_I \wedge d\overline{z}_J$$

的光滑张量场称为 (p,q)-形式。记 Ω 上的 (p,q)-形式之全体为 $C_{p,q}^{\infty}(\Omega)$.

这里的 I,J 为多重指标。"光滑"指的是系数函数 a_{IJ} 为 Ω 上的光滑复值函数。另外,显然 (0,0)-形式即为光滑函数; $C^{\infty}_{p,q}(\Omega)$ 具有显然的复线性空间结构,事实上还是 $C^{\infty}(\Omega)$ -模。

记号 1.1.12. ($\bar{\partial}$ -算子) 定义算子

$$\overline{\partial}: C^{\infty}_{p,q}(\Omega) \to C^{\infty}_{p,q+1}(\Omega)$$

如下: 对于 (p,q)-形式

$$u:=\sum_{\stackrel{|I|=p}{|I|=q}}a_{IJ}\mathrm{d}z_I\wedge\mathrm{d}\overline{z}_J$$

则

$$\overline{\partial}u = \sum_{\substack{|I|=p\\|I|=q}} \sum_{k=1}^{n} \frac{\partial a_{IJ}}{\partial \overline{z}_{k}} d\overline{z}_{k} \wedge dz_{I} \wedge d\overline{z}_{J}$$

类似地,也有

$$\partial: C^{\infty}_{p,q}(\Omega) \to C^{\infty}_{p+1,q}(\Omega)$$

它们与外微分算子 d 满足关系

$$d = \partial + \overline{\partial}$$

由 $d^2 = 0$, 易知

$$\partial^2 = 0$$
, $\overline{\partial}^2 = 0$, $\partial \overline{\partial} + \overline{\partial} \partial = 0$

以下事实显然成立:

引理 1.1.13. 对于区域 Ω 上的光滑函数 $f \in C^{\infty}(\Omega)$, 则 f 全纯当且仅当 $\overline{\partial} f = 0$.

注记 1.1.14. (Dolbeault 上同调) 对于 $\Omega \subseteq \mathbb{C}^n$, 注意 $\overline{\partial}^2 = 0$, 从而对任意 $p \geq 0$, 有上链复形 $C_{p,\bullet}^{\infty}(\Omega)$:

$$\cdots \to C^{\infty}_{p,q-1}(\Omega) \xrightarrow{\bar{\partial}} C^{\infty}_{p,q}(\Omega) \xrightarrow{\bar{\partial}} C^{\infty}_{p,q+1}(\Omega) \to \cdots$$

称上同调群

$$H^{p,q}(\Omega) := H^q(C^{\infty}_{p,\bullet}(\Omega), \overline{\partial})$$

为区域 Ω 的 *Dolbeault* 上同调群。

类似于外微分 d 的 de-Rham 上同调群,Dolbeault 上同调群与 Ω 的拓扑联系密切。例如,以下定理十分重要,我们先陈述,以后再证明:

引理 1.1.15. (Dolbeault-Grothendieck 引理)

设 $\mathbb{D} \subseteq \mathbb{C}^n$ 为多圆柱,则对于任意 $p,q \ge 0$,

$$H^{p,q}(\mathbb{D})=0$$

不难发现它与 de Rham 上同调的 Poincare 引理有些类似。

1.2 解析延拓与 Hartogs 现象

上一节介绍了多复变函数的一些"普通的"(与单变量类似)性质,本节开始介绍多复变函数的一些独特性质。

引理 1.2.1. 设 $f \in C_c^\infty(\mathbb{C})$ 为复平面上的紧支光滑函数,则对任意 $z \in \mathbb{C}$,成立

$$\frac{1}{2\pi i} \iint_{C} \frac{\partial f/\partial \overline{\tau}}{\tau - z} d\tau \wedge d\overline{\tau} = f(z)$$

证明. 基本的微积分练习。考虑换元 $\tau = z + re^{i\theta}$,则易知

$$d\tau \wedge d\overline{\tau} = -2irdr \wedge d\theta$$

$$\frac{\partial r}{\partial \overline{\tau}} = \frac{1}{2}e^{i\theta}$$

$$\frac{\partial \theta}{\partial \overline{\tau}} = -\frac{1}{2ir}e^{i\theta}$$

因此有

$$\frac{1}{2\pi i} \iint_{\mathbb{C}} \frac{\partial f/\partial \overline{\tau}}{\tau - z} d\tau \wedge d\overline{\tau} = \frac{-1}{2\pi} \int_{0}^{\infty} dr \int_{0}^{2\pi} \left(-\frac{1}{ir} \frac{\partial f}{\partial \theta} (z + re^{i\theta}) \right) d\theta
+ \frac{-1}{2\pi} \int_{0}^{2\pi} d\theta \int_{0}^{\infty} \left(\frac{\partial f}{\partial r} (z + re^{i\theta}) \right) dr
= 0 + \frac{-1}{2\pi} \int_{0}^{2\pi} -f(z) d\theta
= f(z)$$

证毕。

引理 1.2.2. (简单版本的 $\bar{\partial}$ -引理)

设 $n \geq 2$, $\varphi \in C_{0,1}^{\infty}(\mathbb{C}^n)$ 为具有紧支集的光滑 (0,1)-形式,且 $\overline{\partial}\varphi = 0$,则存在 \mathbb{C}^n 上的紧支光滑函数 g,使得

$$\bar{\partial}g = \varphi$$

证明. 记光滑 (0,1)-形式 φ 为

$$\varphi = \sum_{k=1}^{n} \varphi_k(z_1, ..., z_n) d\overline{z}_k$$

则

$$\overline{\partial} \varphi = \sum_{k,l} rac{\partial \varphi_k}{\partial \overline{z}_l} d\overline{z}_l \wedge d\overline{z}_k = \sum_{1 \leq l \leq k \leq n} \left(rac{\partial \varphi_k}{\partial \overline{z}_l} - rac{\partial \varphi_l}{\partial \overline{z}_k}
ight) d\overline{z}_l \wedge d\overline{z}_k$$

从而由 $\bar{\partial}\varphi = 0$ 可得对任意 $k \neq l$,

$$\frac{\partial \varphi_k}{\partial \overline{z}_l} = \frac{\partial \varphi_l}{\partial \overline{z}_k}$$

考虑如下的 \mathbb{C}^n 上的函数 ψ : 对于 $z = (z_1, ..., z_n) \in \mathbb{C}^n$,

$$\psi(z) := \frac{1}{2\pi i} \iint_{\mathbb{C}} \frac{\varphi_1(\tau; z_2, ..., z_n)}{\tau - z_1} d\tau \wedge d\overline{\tau}$$

由 φ_1 的紧支性易知 ψ 为 \mathbb{C}^n 上的光滑函数。对于 $1 < k \le n$,有

$$\frac{\partial \psi(z)}{\partial \overline{z}_{k}} = \frac{1}{2\pi i} \iint_{\mathbb{C}} \frac{\frac{\partial \varphi_{1}}{\partial \overline{z}_{k}}(\tau; z_{2}, ..., z_{n})}{\tau - z_{1}} d\tau \wedge d\overline{\tau}$$

$$= \frac{1}{2\pi i} \iint_{\mathbb{C}} \frac{\frac{\partial \varphi_{k}}{\partial \overline{\tau}}(\tau; z_{2}, ..., z_{n})}{\tau - z_{1}} d\tau \wedge d\overline{\tau}$$

$$= \varphi_{k}(z)$$

上式对 k=1 显然也成立。因此 $\overline{\partial}\psi=\varphi$.

最后还需要证明 ψ 是紧支的。由于 φ 紧支,存在足够大的 R > 0,使得

$$\operatorname{supp} \varphi \subseteq \mathbb{D}(0,R)$$

因此任意取定 $z \in \mathbb{C}^n$,使得 z 的分量 $z_2, z_3, ..., z_n$ 之中至少有一个模长大于 R,则由 ψ 的定义式直接得到 $\psi(z) = 0$. (注意: 这一步严重依赖 $n \geq 2!$) 也就是说,存在 $z \notin \mathbb{D}(0,R)$ 使得 $\psi = 0$ 在 z 的某邻域内都成立。另一方面,由于 $\overline{\partial}\psi = \varphi$ 且 $\sup \varphi \subseteq \mathbb{D}(0,R)$,从而 ψ 在 $\mathbb{D}(0,\mathbb{R})$ 外部全 纯,因此由解析延拓唯一性, ψ 在 $\mathbb{D}(0,R)$ 外部恒为零,因此 ψ 紧支。

此引理在单复变 n=1 的情形**不成立**:

例子 1.2.3. 设 $\varphi_1 \in C_0^\infty(\mathbb{C})$ 为复平面上的紧支光滑函数,并且

$$\iint_{\mathbb{C}} \varphi_1(z) \neq 0$$

考虑 $\mathbb C$ 上的 (0,1)-形式 $\varphi=\varphi_1(z)d\overline{z}$,则 $\overline{\partial}\varphi=0$ 是平凡的,但不存在紧支光滑函数 ψ 使得 $\overline{\partial}\psi=\varphi$.

证明. 若存在紧支光滑函数 ψ 使得 $\overline{\partial}\psi=\varphi$,则 $\frac{\partial\psi}{\partial\overline{z}}=\varphi_1$. 于是

$$0 \neq \iint_{\mathbb{C}} \varphi_1(z) dz \wedge d\overline{z} = \iint_{\mathbb{C}} \frac{\partial \psi}{\partial \overline{z}} dz \wedge d\overline{z} = 0$$

产生矛盾。

以下是多复变函数解析延拓的令人惊讶的性质,它与单复变函数有本质不同:

定理 1.2.4. (Hartogs 现象)

设 $\Omega \subseteq \mathbb{C}^n$ 为开集 $(n \ge 2)$, $K \subset \Omega$ 且为 \mathbb{C}^n 的紧子集,则对任意的 $f \in \mathcal{O}(\Omega \setminus K)$,都存在解析延拓 $F \in \mathcal{O}(\Omega)$,使得

$$F|_{\Omega \setminus K} = f$$

证明. 取 $K 与 \Omega$ 直接的截断函数 $\psi \in C_0^{\infty}(\mathbb{C}^n)$, 使得 $0 \le \psi \le 1$,

$$K \subset\subset \operatorname{supp} \psi \subset\subset \Omega$$

并且 $\psi|_K \equiv 1$. 考虑

$$\widetilde{f} := (1 - \psi)f$$

则 \tilde{f} 在整个 Ω 上都有定义。注意

$$\overline{\partial}\widetilde{f} = -(\overline{\partial}\psi)f + (1-\psi)\overline{\partial}f$$

易知 $\operatorname{supp} \bar{\partial} \widetilde{f} \subseteq \operatorname{supp} \psi$. 于是由引理1.2.2,存在光滑函数 v,使得 $\operatorname{supp} v \subseteq \psi$,并且 $\bar{\partial} v = \bar{\partial} \widetilde{f}$,从 而考虑函数

$$F := (1 - \psi)f - v$$

则 $\bar{\partial}F = 0$,从而 $F \in \mathcal{O}(\Omega)$. 又因为易知

$$F = f \quad (\forall z \in \Omega \setminus \operatorname{supp} \psi)$$

从而由解析延拓唯一性,有 $F_{\Omega \setminus K} = f$.

关于解析延拓,再介绍如下结果:

引理 1.2.5. (Hartogs figure)

对于 n>1,正实数 $0 \le r < R$,以及 \mathbb{C}^{n-1} 的开子集 $\omega' \subseteq \omega$,其中 ω 是连通的。记 \mathbb{C}^n 的开子集

$$\Omega := ((\mathbb{D}(0,R) \setminus \mathbb{D}(0,r)) \times \omega) \cup (\mathbb{D}(0,R) \times \omega')$$

其中 $\mathbb{D}(0,r)$ 与 $\mathbb{D}(0,R)$ 分别为 \mathbb{C} 上的以原点为中心,r,R 为半径的开圆盘。则任意 $f\in\mathcal{O}(\Omega)$ 都可以(唯一地)解析延拓至

$$\widetilde{\Omega} := \mathbb{D}(0, R) \times \omega$$

如此的区域 Ω 称之为 "Hartogs figure"。 Ω 的几何图像大致如下:

图: Hartogs figure 示意

证明. 容易知道

$$\Omega = \left\{ (z_1, \widetilde{z}) \in \mathbb{C} \times \mathbb{C}^{n-1} \middle| r < |z_1| < R, \widetilde{z} \in \omega$$
或者 $|z_1| \le r, \widetilde{z} \in \omega' \right\}$

对于 $f \in \mathcal{O}(\Omega)$, 定义 $\widetilde{\Omega}$ 上的函数

$$\widetilde{f}(z_1,\widetilde{z}) := \frac{1}{2\pi i} \int_{|w|=a} \frac{f(w,\widetilde{z})}{z_1 - w} dw$$

其中 ρ 为满足 $\max\{r,|z_1|\}<\rho< R$ 的任意实数。则易知如此定义的 \widetilde{f} 为 f 在 $\widetilde{\Omega}$ 上的解析延拓。

定理 1.2.6. (Riemann 延拓定理)

考虑 \mathbb{C}^n 中的多圆柱 $\mathbb{D}(0,R)$, 其中 $n \geq 2$, $R \in \mathbb{R}^n_+$ 。对任意 $2 \leq p \leq n$, 令 \mathbb{C}^n 的子集

$$S := (z_1, ..., z_n) \in \mathbb{C}^n | z_1 = \cdots = z_n = 0$$

则对任意 $f \in \mathcal{O}(\mathbb{D}(0,R) \setminus S)$, f 都可(唯一地)解析延拓至 $\mathbb{D}(0,R)$.

证明. 这是 Hartogs figure 的显然推论。记 $R=(R_1,R_2,...,R_n)$,以及 $R':=(R_2,...,R_n)\in\mathbb{R}^{n-1}$. 考虑 \mathbb{C}^{n-1} 的开子集

$$\omega := \mathbb{D}(0, R')$$
 $\omega' := \omega \setminus \{z_2 = \dots = z_p = 0\}$

则易知

$$\mathbb{D}(0,R)\setminus S = \Big(\mathbb{D}(0,R_1)\setminus\{0\}\times\omega\Big)\cup\Big(\mathbb{D}(0,R_1)\times\omega'\Big)$$

为 Hartogs figure, 从而完。

1.3 Weierstrass 预备定理与除法定理

回顾单复变函数,若 f 在 $0 \in \mathbb{C}$ 附近全纯,且 f(0) = 0,则在 0 附近 f 可以唯一地分解为 $f = z^d g(z)$,其中 g 全纯且 $g(0) \neq 0$,d 为 f 在 0 处的零点阶数。

现在,设 f = f(z, w) 在 $0 \in \mathbb{C}^n (n \ge 2)$ 附近全纯,其中 $z \in \mathbb{C}$, $w \in \mathbb{C}^{n-1}$. 固定 w,记

$$f_w(z) := f(z, w)$$

为关于 z 的单复变函数。如果 $f_0(0) = 0$ 且 $f_0(z)$ 不恒为零,则 $f_0(z) = z^d g_0(z)$ 。我们的一个结果 是,若 " f_0 "的下标 "0"稍微 "扰动"一下,则相应的多项式 z^k 也 "随之扰动"。

记号 1.3.1. (Weierstrass 多项式)

对于 $(z_0, w_0) \in \mathbb{C} \times \mathbb{C}^{n-1}$,则 (z_0, w_0) 处的 **Weierstrass** 多项式 是指形如下述的定义于 (z_0, w_0) 附近的 n 元全纯函数:

$$P(z, w) = z^{k} + a_{1}(w)z^{k-1} + \cdots + a_{k}(w)$$

其中 $a_i(1 \le i \le k)$ 为定义在 $w_0 \in \mathbb{C}^{n-1}$ 附近的全纯函数,且 $a_i(w_0) = 0$.

关于多元全纯函数在其零点附近的行为,首先有如下:

定理 1.3.2. (Weierstrass 预备定理)

设 f(z,w) 为定义在 $(0,0) \in \mathbb{C} \times \mathbb{C}^{n-1}$ 附近的全纯函数,f(0,0) = 0,且 $f_w(z)$ 在 z = 0 附近不恒为零,则存在唯一的 (0,0) 处的 Weierstrass 多项式 P(z,w),使得

$$f(z,w) = P(z,w)h(z,w)$$

其中 h(z,w) 在 (0,0) 附近全纯, 且 $h(0,0) \neq 0$.

证明. 分若干步。

Step1 设 $f_0(z)$ 在 $z = 0 \in \mathbb{C}$ 处的零点阶数为 $d \ge 1$, 取足够小的 $\varepsilon > 0$ 使得 $f_0(z)$ 在 $|z| \le \varepsilon$ 之中不再有 z = 0 之外的零点。再由 f 的连续性以及 $\{|z| = \varepsilon\} \subseteq \mathbb{C}$ 的紧性,存在足够小的 $\varepsilon' > 0$,使得对任意 $|z| = \varepsilon$, $|w| < \varepsilon'$, $f_w(z) \ne 0$.

对于 $w \in \mathbb{C}^{n-1}$ 且 $|w| < \varepsilon'$, 由辐角原理, $f_w(z)$ 在 $|z| < \varepsilon$ 内的零点个数(记重数)为

$$d(w) = \frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{f'_w(\xi)}{f_w(\xi)} d\xi$$

这是关于 w 的连续函数,且 d(0) = d. 从而不妨缩小 ε' ,使得任意 $|w| < \varepsilon'$, $f_w(z)$ 在 $|z| < \varepsilon$ 内的零点个数(计重数)均为 d.

Step2 对于 $w \in \mathbb{C}^{n-1}$ 且 $|w| < \varepsilon'$,记 $f_w(z)$ 的 d 个零点为 $s_1(w), s_2(w), ..., s_d(w)$,它们允许相同,则 $|s_j(w)| < \varepsilon$ (注意 $s_j(w)$ 未必为关于 w 的全纯函数)。特别地 $s_1(0) = s_2(0) = \cdots = s_d(0) = 0$. 考虑多项式

$$P(z,w) := \prod_{j=1}^{d} (z - s_j(w))$$

= $z^d + \sum_{j=1}^{d} a_j(w) z^{d-j}$

显然系数 $a_j(w)$ 满足 $a_j(0)=0$. 断言 P(z,w) 为 Weierstrass 多项式。为此只需证明 $z_j(w)$ 关于 w 全纯。由代数学可知,系数 a_j 可以写为形如 $s_1^k(w)+s_2^k(w)+\cdots s_d^k(w)$ $(k\geq 0)$ 的 \mathbb{C} -线性组合;而由留数定理易知

$$\sum_{i=1}^{d} s_{j}^{k}(w) = \frac{1}{2\pi i} \int_{|\xi|=\varepsilon} \xi^{k} \frac{f'_{w}(\xi)}{f_{w}(\xi)} d\xi$$

从而关于 w 全纯。这就说明了 P(z,w) 的系数函数 $a_i(w)$ 关于 w 全纯。

Step3 令 $h(z,w) := \frac{f(z,w)}{P(z,w)}$,断言 h 在 (0,0) 附近全纯,又因为显然 $h(0,0) \neq 0$,从而 Weierstrass 预备定理的存在性得证。由单复变易知 h(z,w) 关于 z 全纯,于是只需证明 h 关于 w 全纯。

任取 $w \in \mathbb{C}^{n-1}$ 且 $|w| < \varepsilon'$,由于 $h_w(z) := h(z, w)$ 关于 z 全纯,从而

$$h(z,w) = \frac{1}{2\pi i} \int_{|\xi|=\varepsilon} \frac{h_w(\xi)}{\xi - z} d\xi$$

而被积函数 $(\xi, w) \mapsto \frac{h_w(\xi)}{\xi-z}$ 在 $\{(z, w)||z| = \varepsilon, |w| < \varepsilon'\}$ 的某个邻域全纯,从而 h(z, w) 关于 w 也全纯。存在性证毕。

Step4 唯一性几乎显然,因为 f (在 (0,0) 附近)的零点完全由 Weierstrass 多项式贡献:对于 w,以 $s_1(w)$,..., $s_d(w)$ 为零点的关于 z 的首一多项式只能是 P(z,w).

定理 1.3.3. (Weierstrass 除法定理)

设 f(z,w) 为定义在 $(0,0) \in \mathbb{C} \times \mathbb{C}^{n-1}$ 附近的全纯函数, $g(z,w) = z^d + \sum_{j=1}^d a_j(w)z^{d-j}$ 为次数为 d 的 Weierstrass 多项式。那么存在唯一的 h(z,w) 与 r(z,w),其中 h 为定义在 $(0,0) \in \mathbb{C} \times \mathbb{C}^{n-1}$ 附近的全纯函数,r 为关于 z 的在 (0,0) 处的次数 < d 的多项式,使得

$$f = gh + r$$

在 (0,0) 附近成立。

证明. 先看唯一性。

Step1 唯一性是容易的。如果 $f = gh_1 + r_1 = gh_2 + r_2$,则

$$r_1 - r_2 = g(h_2 - h_1)$$

注意 g,r_1,r_2 为 Weierstrass 多项式,从而由之前讨论,存在足够小的 $\varepsilon,\varepsilon'>0$ 使得对任意 $w\in\mathbb{C}^{n-1}$ 且 $|w|<\varepsilon'$, $g_w(z)$ 在 $\{|z|<\varepsilon\}$ 内的零点个数(计重数)恰为 g 的次数 d,并且 $(r_1-r_2)_w(z)$ 在此范围内的零点个数(计重数)恰为 (r_1-r_2) 的次数。注意 r_1,r_2 的次数均小于 d,从而若 $r_1\neq r_2$,则导致 $(r_1-r_2)_w(z)$ 的零点个数小于 $g_w(z)(h_2-h_1)_w(z)$,因此导致矛盾。这 迫使 $r_1=r_2$.

Step2 再看存在性。取 $\varepsilon, \varepsilon' > 0$ 使得对任意 $|z| = \varepsilon$, $|w| \le \varepsilon'$, $g_w(z) \ne 0$ 。对任意 $|z| < \varepsilon$, $|w| < \varepsilon'$, 定义

$$h(z,w) = \frac{1}{2\pi i} \int_{|\xi|=\varepsilon} \frac{f_w(\xi)}{g_w(\xi)(\xi-z)} d\xi$$

则易知 h(z,w) 在 (0,0) 附近全纯。再令 r:=f-gh,只需证明 r 为关于 z 的次数小于 d 的 Weierstrass 多项式即可。事实上,

$$\begin{split} r(z,w) &= f(z,w) - g(z,w)h(z,w) \\ &= \frac{1}{2\pi i} \int_{|\xi|=\varepsilon} \frac{f_w(\xi)}{\xi - z} \mathrm{d}\xi - \frac{g_w(z)}{2\pi i} \int_{|\xi|=\varepsilon} \frac{f_w(\xi)}{g_w(\xi)(\xi - z)} \mathrm{d}\xi \\ &= \frac{1}{2\pi i} \int_{|\xi|=\varepsilon} \frac{f_w(\xi)(g_w(\xi) - g_w(z))}{g_w(\xi)(\xi - z)} \mathrm{d}\xi \\ &= \frac{1}{2\pi i} \int_{|\xi|=\varepsilon} \frac{f_w(\xi)}{g_w(\xi)} \frac{(\xi^d - z^d) + a_1(w)(\xi^{d-1} - z^{d-1}) + \cdots}{\xi - z} \mathrm{d}\xi \\ &= \frac{1}{2\pi i} \int_{|\xi|=\varepsilon} \frac{f_w(\xi)}{g_w(\xi)} \left(z^{d-1} + \beta_1(\xi,w)z^{d-2} + \cdots\right) \mathrm{d}\xi \end{split}$$

其中函数 $\beta_j(\xi,w)$ 由 g 的系数函数 $a_k(w)$ 决定。容易看出 r(z,w) 的确为关于 z 的次数 $\leq d-1$ 的 多项式。存在性证毕。

注意 r 未必是 Weierstrass 多项式,因为 r(z,w) 的 z^{d-1} 的系数

$$\frac{1}{2\pi i} \int_{|\xi| = \varepsilon} \frac{f_w(\xi)}{g_w(\xi)} d\xi$$

不见得是 1 (若此积分为 0,则 r 的首项系数甚至可以是关于 w 的函数)。

注记 1.3.4. 事实上,Weierstrass 除法定理对单复变 n=1 的情形也成立。设 $f(z)=\sum\limits_{k=0}^{\infty}a_kz^k$ 在 $0\in\mathbb{C}$ 附近全纯, $g(z)=z^d$ 为次数为 d 的 Weierstrass 多项式。则令

$$h(z) = \sum_{k=d}^{\infty} a_k z^{k-d}$$
$$r(z) = \sum_{k=0}^{d-1} a_k z^k$$

则 f = gh + r 满足要求。

1.4 解析函数芽环 $\mathcal{O}_{\mathbb{C}^nz}$ 及其代数结构

本节继续研究多元解析函数的性质。首先回顾函数芽的概念。

定义 1.4.1. (解析函数芽环)

对于 $z \in \mathbb{C}^n$, 记

 $\mathcal{O}_{\mathbb{C}^n,z}:=\{(U,f)|U$ 是 z 在 \mathbb{C}^n 的一个开邻域, f 为定义在 U 上的全纯函数 $\}/\sim$

其中模掉的关系 ~ 为

粗俗地说, $\mathcal{O}_{\mathbb{C}^n,z}$ 就是"定义在 $z\in\mathbb{C}^n$ 附近的全纯函数之全体"。之前介绍的 Weierstrass 预备定理、Weierstrass 除法定理其实都是解析函数芽环的性质。容易验证, $\mathcal{O}_{\mathbb{C}^n,z}$ 在通常的函数加法、乘法下构成环。

我们记 $\mathcal{O}_n := \mathcal{O}_{\mathbb{C}^n,0}$. 本节介绍环 \mathcal{O}_n 的代数性质。假定读者熟悉基础的交换代数。本讲义中的"环"默认为含幺、交换的。

定理 1.4.2. \mathcal{O}_n 是局部诺特环 $(\forall n \geq 1)$ 。

回顾: 环 A 称为**局部环** (local ring),若 A 存在唯一极大理想 \mathfrak{m} (等价定义: A 的全体不可逆元构成 A 的理想);环 A 称为**诺特环** (Noetherian ring),若满足理想升链条件(等价定义: A 的每个理想都是有限生成的)。

证明. 显然 \mathcal{O}_n 为局部环,其极大理想 \mathfrak{m} 由定义在 0 附近、在 0 处取值为 0 的函数芽构成。我们 n 归纳证明 \mathcal{O}_n 为诺特环。

n=1 时,在单复变中我们早已熟知 $\mathcal{O}_1\cong\{$ 收敛半径 ≥ 0 的幂级数 $\}$ 为主理想整环(PID),其理想形如 $J_k=(z^k)$ 。特别地,为诺特环。

一般地,对于 $n \geq 2$,若 \mathcal{O}_{n-1} 为诺特环,则对 \mathcal{O}_n 的任意非零理想 J,断言 J 时有限生成的。任取 $0 \neq h \in J \subseteq \mathfrak{m}$,则 h(0) = 0,不妨 h(z,0) 不恒为零(其中 $z \in \mathbb{C}, 0 \in \mathbb{C}^{n-1}$),则由 Weierstrass 预备定理,存在 Weierstrass 多项式 $P(z,w) \in \mathcal{O}_{n-1}[z] \subseteq \mathcal{O}_n$ 以及函数芽 $h' \in \mathcal{O}_n \setminus \mathfrak{m}$,使得 h(z,w) = P(z,w)h'(z,w). 注意 h'(0,0) 为 \mathcal{O}_n 的可逆元,又 $h \in J$ 且 J 为 \mathcal{O}_n 的理想,从而 $P(z,w) \in J$.

这说明 / 当中必存在 Weierstrass 多项式。取定

$$P(z, w) = z^d + \sum_{j=1}^d a_j(w) z^{d-j} \in J$$

则对任意 $f \in I$,对 f,P 使用 Weierstrass 除法定理,存在 $g(z,w) \in \mathcal{O}_n$,以及

$$r(z,w)=\sum_{k=0}^{d-1}c_k(w)z^k\in\mathcal{O}_{\mathbb{C}^{n-1}}[z]$$

为次数至多为 (d-1) 的多项式, 使得

$$f = gP + r$$

则 $r(z,w) \in I$,并且容易验证,这诱导了 \mathcal{O}_{n-1} -模同态

$$\varphi: J \to \mathcal{O}_{n-1}^{\oplus d} \cong \{r \in \mathcal{O}_{n-1}[z] | \deg_z r < d\}$$
$$f \mapsto \sum_{k=0}^{d-1} c_k(w) z^k$$

由归纳假设, \mathcal{O}_{n-1} 为诺特环,从而 $\mathcal{O}_{n-1}^{\oplus d}$ 作为有限生成 \mathcal{O}_{n-1} -模为诺特模,从而其子模 $\operatorname{Im} \varphi$ 也为有限生成的。注意 $\operatorname{Im} \varphi \subseteq J$,记 $\{\beta_1, ..., \beta_N\} \subseteq \operatorname{Im} \varphi$ 为 $\operatorname{Im} \varphi$ 的一组 \mathcal{O}_{n-1} -生成元,其中

$$eta_j(w) = \sum_{l=0}^{d-1} eta_{j,l}(w) z^l \in \mathcal{O}_{n-1}^{\oplus d}$$

则易知

$$\{\beta_i\}_{1\leq j\leq N}\cup\{P(z,w)\}$$

为理想 I 的一组生成元,因此 I 是有限生成的。从而 \mathcal{O}_n 为诺特环。

引理 1.4.3. 设 $P,Q \in \mathcal{O}_{n-1}[z] \subseteq \mathcal{O}_n$, 其中 P 为 Weierstrass 多项式,则 P 整除 Q 在 \mathcal{O}_n 成立, 当且仅当 P 整除 Q 在 $\mathcal{O}_{n-1}[z]$ 中成立。

证明. "当"是显然的,只证"仅当"。若 P|Q 在 \mathcal{O}_n 中成立,则令

$$Q(z, w) = f(z, w)P(z, w)$$

其中 $f \in \mathcal{O}_n$. 另一方面,考虑 $\mathcal{O}_{n-1}[z]$ 中标准的欧几里得带余除法,

$$Q(z, w) = g(z, w)P(z, w) + r(z, w)$$

其中 $g,r \in \mathcal{O}_{n-1}[z]$. 则 Weierstrass 除法定理的唯一性迫使 f=g,r=0,从而得证。

引理 1.4.4. 设 $P(z,w) \in \mathcal{O}_{n-1}[z]$ 为 Weierstrass 多项式,则:

(1) 若在 $O_{n-1}[z]$ 中有分解

$$P = P_1 P_2 \cdots P_N$$

则在相差 \mathcal{O}_{n-1} 中的可逆元的意义下,每个 P_i 都为 Weierstrass 多项式;

(2) P 为 \mathcal{O}_n 中的不可约元当且仅当 P 为 $\mathcal{O}_{n-1}[z]$ 中的不可约元。

证明.

(1) 记 $\deg_z P = s$,以及 $\deg_z P_j = s_j$,则 $s = \sum\limits_{j=1}^N s_j$. 不妨每个 $s_j > 0$. 考虑 P 的最高次项,有

$$z^s = z^s \prod_{j=1}^N (P_j \text{ 的 } z^{s_j} \text{ 系数})$$

从而相差 \mathcal{O}_{n-1} 中某个可逆元倍,不妨每个 P_i 的 z^{s_i} 系数都为 1. 再注意

$$z^{s} = P(0,z) = \prod_{j=1}^{N} P_{j}(0,z) = \prod_{j=1}^{N} (z^{s_{j}} + \cdots)$$

从而迫使 $P_j(0,z) = z^{s_j}$,因此 P_j 为 Weierstrass 多项式。

(2) "仅当"是显然的,只证"当"。仍记 P(z,w) 关于 z 的次数为 s. 如果 P 在 \mathcal{O}_n 中可约,令 $P=g_1g_2$,其中 g_1,g_2 为 \mathcal{O}_n 中的不可逆元,从而关于 z 的函数 $g_1(z,0),g_2(z,0)$ 在 z=0 处的零点阶数大于 0,分别记为 s_1,s_2 . 由 Weierstrass 预备定理,存在分解

$$g_j(z, w) = P_j(z, w)u_j(z, w) \quad (j = 1, 2)$$

使得 $P_j \in \mathcal{O}_{n-1}[z]$ 为次数为 s_j 的 Weierstrass 多项式, u_j 为 \mathcal{O}_n 中的可逆元。所以在 \mathcal{O}_n 中成立 $(P_1P_2)|P$; 再根据引理1.4.3,可知 $(P_1P_2)|P$ 在 $\mathcal{O}_{n-1}[z]$ 中也成立。而 P,P_1,P_2 都为首一多项式,从而必有 $P = P_1P_2$,因此 P 在 \mathcal{O}_{n-1} 中可约。

定理 1.4.5. On 是唯一分解整环 (UFD).

证明. 对 n 归纳。n = 1 时, \mathcal{O}_1 为主理想整环,从而为唯一分解整环。对于 $n \geq 2$,如果 \mathcal{O}_{n-1} 为唯一分解整环,则由代数学中的高斯引理,多项式环 $\mathcal{O}_{n-1}[z]$ 也是唯一分解整环。

现在,对于 \mathcal{O}_n 中的不可逆元 f,不妨 $z \mapsto f(z,w)|_{w=0}$ 不恒为零($w \in \mathbb{C}^{n-1}$),从而由 Weierstrass 预备定理,存在分解 f(z,w) = u(z,w)P(z,w),其中 u 为 \mathcal{O}_n 中的可逆元, $P \in \mathcal{O}_{n-1}[z]$ 为 Weierstrass 多项式。由归纳假设, $\mathcal{O}_{n-1}[z]$ 为唯一分解整环,从而存在 P 在 $\mathcal{O}_{n-1}[z]$ 中的分解 $P = P_1 P_2 \cdots P_s$,使得每个 P_j 都为 $\mathcal{O}_{n-1}[z]$ 中的不可约元。从而由引理1.4.4的(1),不妨每个 P_j 都为 Weierstrass 多项式;再对每个 P_j 使用引理1.4.4的(2),知 P_j 为 \mathcal{O}_n 中的不可约元。从而 $f \in \mathcal{O}_n$ 的不可约分解的存在性证毕。

再看分解的唯一性。只需再证明 \mathcal{O}_n 的不可约元都是素元。若 f 为 \mathcal{O}_n 中的不可约元,以及 $g,h\in\mathcal{O}_n$ 使得 f|gh,断言 f|g 或者 f|h. 由 Weierstrass 预备定理,不妨假设 f=f(z,w) 为关于第一个分量 z 的 Weierstrass 多项式,从而由 f|gh 知 g(z,0),h(z,0) 也不恒为零,于是由 Weierstrass 预备定理也不妨 $g,h\in\mathcal{O}_{n-1}[z]$ 为 Weierstrass 多项式。因此 f|gh 在 $\mathcal{O}_{n-1}[z]$ 中成立,而由归纳假设 $\mathcal{O}_{n-1}[z]$ 是唯一分解整环,且 f 在 $\mathcal{O}_{n-1}[z]$ 不可约,所以 f|g 或者 f|h 在 $\mathcal{O}_{n-1}[z]$ 中成立,从而在 \mathcal{O}_n 中成立。证毕。

1.5 解析集与局部解析零点定理

多复变函数与单复变的一个显著区别是解析延拓的难易程度,Hartogs 现象表明多复变函数"更容易被解析延拓";而单复变与多复变函数令一个区别是零点集的形态:在单复变中我们熟知全纯函数零点离散(除非函数恒为零),这在多复变中显然不对,例如 \mathbb{C}^2 上的全纯函数 $f(z_1,z_2)=z_1$.

事实上,多元全纯函数的零点集十分重要,而且是代数几何学中的某些概念(代数簇)的源头。

定义 1.5.1. (解析集)

设 $n \geq 2$, \mathbb{C}^n 的子集 A 称为解析集 (analytic set), 若对任意 $z \in A$, 存在 z 在 \mathbb{C}^n 中的开 邻域 Ω , 以及 $f_1, f_2, ..., f_N \in \mathcal{O}(\Omega)$, 使得

$$A \cap \Omega = \{ w \in \Omega | f_1(w) = f_2(w) = \dots = f_N(w) \}$$

也就是说,"局部上看是若干全纯函数的公共零点集"。对于一个解析集,我们首先局部地研究之——类似于解析函数芽环,我们引入如下概念:

定义 1.5.2. (解析集芽) 对于 $x \in \mathbb{C}^n$, 定义

$$A_x := \{(A,x) | x \in A, A \not\in \mathbb{C}^n \text{ 中的解析集}\}/\sim$$

其中关系 \sim 为: $(A_1,x) \sim (A_2,x)$ \iff 存在 x 在 \mathbb{C}^n 中的开邻域 Ω , 使得 $A_1 \cap \Omega = A_2 \cap \Omega$. 称 A_x 中的元素为 x 处的解析集芽。

 A_x 中的元素可以认为是包含 x 的 "无穷小解析集"。容易知道它与解析函数芽的关系: 任意 $(A,x) \in A_x$,(A,x) 为 $\mathcal{O}_{\mathbb{C}^n,x}$ 中某些函数的公共零点集。

定义 1.5.3. 对于 $x \in \mathbb{C}^n$,

(1) 对与 x 处的解析集芽 $(A,x) \in A_x$, 定义 $\mathcal{O}_{\mathbb{C}^n,x}$ 的理想

$$J_{(A,x)} := \{ f \in \mathcal{O}_{\mathbb{C}^n,x} | f(z) = 0 \,\forall z \in A \}$$

(2) 对于 $\mathcal{O}_{\mathbb{C}^{n},x}$ 中的理想 I, 定义 x 处的解析集芽

$$(V(J),x) := \{z \in \mathbb{C}^n | g(z) \equiv 0, \forall g \in J\}$$
的等价类

这里并未仔细写清楚,需要验证良定性:注意解析集芽、函数芽实际上都为等价类,我们需要验证与代表元选取无关,留给读者。

注意 $\mathcal{O}_{\mathbb{C}^n,x}$ 为诺特环,从而任何理想 J 都是有限生成的,记 $\{g_1,g_2,...,g_N\}$ 为其一组生成元,则易知

$$V(J) = \{g_1(x) = g_2(x) = \dots = g_N(x) = 0\}$$

在x附近为有限个解析函数的公共零点集,从而的确为解析集(芽)。

引理 1.5.4. 设 $x \in \mathbb{C}^n$, $(A,x) \in A_x$ 为 x 处的解析集芽, $J \subseteq \mathcal{O}_{\mathbb{C}^n,x}$ 为理想, 则

$$J \subseteq J_{(V(J),x)}$$
$$(V(J_{(A,x)}),x) = (A,x)$$

证明. 直接按定义验证即可。第一式是容易的;至于第二式,由解析集的定义,(A,x)必形如

$$\{g_1(x) = g_2(x) = \cdots = g_N(x) = 0\}$$

其中 $g_j \in \mathcal{O}_{\mathbb{C}^n,x}$,从而 $J_{(A,x)} = (g_1,...,g_N)$,之后容易。

注记 1.5.5. 不过要注意,第一式的等号未必成立,例如对于 $0 \in \mathbb{C}^2$, $f(z_1, z_2) = z_1^2$,令 $J := (f) \subseteq \mathcal{O}_{\mathbb{C}^2,0}$ 为由 f 生成的理想,则 $V(J) = \{z_1^2 = 0\} = \{z_1 = 0\}$,于是 $J_{(V(J),0)} = (z_1)$,即为由 $\widetilde{f}(z_1, z_2) = z_1$ 生成的理想。很明显, $J \subsetneq J_{(V(J),0)}$.

对于 $x \in \mathbb{C}^n$,则 A_x 中的解析集芽可以进行交、并运算:

引理 1.5.6. 对于 $x \in \mathbb{C}^n$, $\{J_{\alpha} | \alpha \in \mathcal{I}\}$ 为 $\mathcal{O}_{\mathbb{C}^n,x}$ 的一族理想,则对任意 $\alpha,\beta \in \mathcal{I}$,

$$(V(J_{\alpha}) \cup V(J_{\beta}), x) = (V(J_{\alpha}J_{\beta}), x)$$

$$(\bigcap_{\alpha\in\mathcal{I}}V(J_{\alpha}),x)=(V(\sum_{\gamma\in\mathcal{I}}J_{\gamma}),x)$$

自行补全解析集芽交、并的定义(无非是取代表元作交、并)

证明. 直接定义验证。

此引理表明,一点处的解析集芽可以"有限并,任意交",与拓扑学中的"闭集"类似。接下来研究解析集芽的局部结构。

定义 1.5.7. (不可约解析集芽)

对于 $x \in \mathbb{C}^n$,以及 $(A,x) \in \mathcal{A}_x$,称解析集芽 (A,x) 是**不可约** (irreducible) 的,若不存在 $(A_1,x),(A_2,x) \in \mathcal{A}_x$,使得 $(A,x) = (A_1 \cup A_2,x)$,且 $(A_i,x) \subsetneq (A,x),i=1,2$.

由引理1.5.6,以及基本的交换代数,容易知道:解析集芽 (A,x) 不可约,当且仅当 $J_{(A,x)}$ 为 $\mathcal{O}_{\mathbb{C}^n,x}$ 的**素理想**。此外,解析函数芽环的诺特性等价于如下:

引理 1.5.8. 对于 $x \in \mathbb{C}^n$,以及 $(A_k, x) \in A_x, k \geq 1$,若 $(A_k, x) \supseteq (A_{k+1}, x)$ 对任意 $k \geq 1$ 都成立 (即 $\{A_k\}_{k=1}^{\infty}$ 为解析集芽降链),则存在 $k_0 \geq 1$,使得对任意 $l \geq k_0$,都有 $(A_k, x) = (A_l, x)$.

证明. 考察理想 $J_{(A_k,x)} \subseteq \mathcal{O}_{\mathbb{C}^n,x}$,则 $(A_k,x) \supseteq (A_{k+1},x)$ 表明

$$J_{(A_k,x)}\subseteq J_{(A_{k+1},x)}$$

即 $\{J_{(A_k,x)}\}_{k=1}^{\infty}$ 为理想升链,从而由 $\mathcal{O}_{\mathbb{C}^n,x}$ 的诺特性,以及引理1.5.4,得证。

定理 1.5.9. (解析集芽的不可约分解)

给定 $x \in \mathbb{C}^n$,则对任意 $(A,x) \in A_x$,存在 $N \ge 1$,以及对任意 $1 \le k \le N$ 存在 $(A_k,x) \in A_x$ 为不可约解析集芽,使得这些解析集芽**互不包含**,并满足

$$(A,x) = \bigcup_{k=1}^{N} (A_k, x)$$

并且上述分解是唯一的(不计次序)。

证明. **存在性:** 先断言,若 (A,x) 可约,则存在分解 $(A,x) = (A^{(1)},x) \cup (A^{(2)},x)$,其中 $(A^{(1)},x)$ 与 $(A^{(2)},x)$ 都为 (A,x) 的真子芽,并且 $(A^{(1)},x)$ 不可约。

这是因为,由 (A,x) 可约,取真子芽 (A_1,x) , (A'_1,x) 使得 $(A,x) = (A_1,x) \cup (A'_1,x)$ (但至此无法保证 A_1,A_2 至少有一个不可约)。如果 (A_1,x) 不可约,则继续对其分解: $(A_1,x) = (A_2,x) \cup (A'_2,x)$,然后再考察 (A_2,x) 的可约性,不断做下去,总会得到不可约的 (A_k,x) ;若不然就有解析集芽降链

$$(A_1, x) \supseteq (A_2, x) \supseteq (A_3, x) \supseteq \cdots$$

与引理1.5.8矛盾。因此必存在 k > 0,使得 (A_k, x) 不可约,此时

$$(A,x) = (A_k,x) \cup \left(\bigcup_{j=1}^k (A'_j,x)\right)$$

为所希望的分解, 断言证毕。

反复使用此断言: 令 $(A,x) = (A^{(1)},x) \cup (B_1,x)$,其中 $(A^{(1)},x)$ 不可约,若 (B_1,x) 可约,则 再对 (B_1,x) 使用此断言: $(B_1,x) = (A^{(2)},x) \cup (B_2,x)$,其中 $(A^{(2)},x)$ 不可约;若 (B_2,x) 可约,则 再继续对 (B_2,x) 使用断言……该操作必在有限步停止,停止于某个 $(B_{\tilde{N}},x)$ 不可约,否则就有解析集芽降链

$$(B_1,x) \supseteq (B_2,x) \supseteq (B_3,x) \cdots$$

与引理1.5.8矛盾。从而得到不可约分解

$$(A,x) = (B_{\widetilde{N}},x) \cup \left(\bigcup_{k=1}^{\widetilde{N}} (A_k,x)\right)$$

之后适当取 $\{A_1,A_2,...,A_{\widetilde{N}};B_{\widetilde{N}}\}$ 的子集使得其中元素之并仍是 (A,x) 并且其中元素互不包含。因此存在性证毕。

唯一性: 假设

$$(A,x) = \bigcup_{k=1}^{N} (A_k,x) = \bigcup_{k=1}^{N'} (A'_k,x)$$

都为 (A,x) 的满足题设的不可约分解,则需要证明 N=N',并且有集合相等

$${A_1, A_2, ..., A_N} = {A'_1, A'_2, ..., A'_{N'}}$$

对任意 A_i , 因为

$$(A_i, x) = \bigcup_{k=1}^{N'} (A_i \cap A'_k, x)$$

从而 (A_i,x) 的不可约性迫使存在某个 (A'_j,x) 使得 $(A_i,x) = (A_i \cap A'_j,x)$,即 $(A_i,x) \subseteq (A'_j,x)$. 同理,对于此 (A'_i,x) ,存在某个 $(A_{i'},x)$,使得 $(A'_i,x) \subseteq (A_{i'},x)$,因此

$$(A_i, x) \subseteq (A'_i, x) \subseteq (A_{i'}, x)$$

但由于 $\{(A_k,x)\}_{k=1}^N$ 中任何两元素互不包含,因此上式等号成立。也就是说对任意 $1 \le j \le N$,存在(唯一) $1 \le j' \le N'$,使得 $(A_j,x) = (A'_{j'},x)$;同理对任意 $1 \le j' \le N'$ 也有类似结果。这就给出了集合一一对应

$$\{A_1, A_2, ..., A_N\} \cong \{A'_1, A'_2, ..., A'_{N'}\}$$

从而证毕。

注记 1.5.10. 此定理表明, 欲研究解析集芽的局部性态, 只需要研究不可约解析集芽; 一般的解析集芽无非是不可约解析集芽的有限并。

现在,考虑 $\mathcal{O}_n := \mathcal{O}_{\mathbb{C}^n,0}$ 的素理想 \mathfrak{p} ,我们研究解析集芽 $(V(\mathfrak{p}),0)$ 的性质。

记号 1.5.11. 给定 \mathbb{C}^n 的一组基 $\{e_1,e_2,...,e_n\}$,关于此基的坐标函数记作 $z_1,z_2,...,z_n$,对 $1 \leq k \leq n$,记

$$\mathbb{C}\{z_1,...,z_k\} := \{f \in \mathcal{O}_n | \frac{\partial f}{\partial z_l} \equiv 0, \forall k+1 \le l \le n\}$$

为 O_n 中"只显含前 k 个变量的函数芽",则明显有

$$\mathcal{O}_k \cong \mathbb{C}\{z_1,...,z_k\} \hookrightarrow \mathcal{O}_n$$

于是对于 \mathcal{O}_n 的素理想 \mathfrak{p} ,

$$\mathfrak{p}_k := \mathfrak{p} \cap \mathbb{C}\{z_1,...,z_k\}$$

为子环 $\mathcal{O}_k \cong \mathbb{C}\{z_1,...,z_k\}$ 的素理想。

引理 1.5.12. 对于环 \mathcal{O}_n 的素理想 \mathfrak{p} ,则存在 \mathbb{C}_n 的一组基 $\{f_1, f_2, ..., f_n\}$,(记在该基下的坐标函数为 $w_1, w_2, ..., w_n$)以及存在 $0 \le d \le n$,使得

$$\mathfrak{p}_d := \mathfrak{p} \cap \mathbb{C}\{w_1, w_2, ..., w_d\} = 0$$

并且对任意 $d+1 \le k \le n$, p_k 当中存在 Weierestrass 多项式

$$P_k(\widetilde{w}_k, w_k) = w_k^{s_k} + \sum_{j=1}^{s_k} a_{jk}(\widetilde{w}_k) w_k^{s_k - j}$$

其中 $\widetilde{w}_k := (w_1, w_2, ..., w_{k-1}) \in \mathbb{C}^{k-1}$.

证明. 对 n 归纳, n=1 时平凡。

Step1对于 $n \ge 2$,先给定 \mathbb{C}^n 的一组基 $\{e_1,...,e_n\}$ 并记坐标函数为 $z_1,z_2,...,z_n$,如果 $\mathfrak{p} = \{0\}$,则仍取这组基,并取 d = n 即可。若 $\mathfrak{p} \ne 0$,则任取 $0 \ne g_n \in \mathfrak{p}$,注意 $g_n(0) = 0$;取 \mathbb{C}^n 中的非零向量 f_n ,使得定义在 $0 \in \mathbb{C}$ 附近的函数

$$t \mapsto g_n(tf_n)$$

在 t = 0 处的零点阶数最低,记为 s_n . 注意满足如此性质的向量 f_n 在 \mathbb{C}^n 中是稠密的(只需要使得 g_n 沿 f_n 方向的 s_n 阶方向导数非零),从而不妨取 f_n 充分接近基向量 e_n ,使得 $\{e_1, e_2, ..., e_{n-1}; f_n\}$ 仍是 \mathbb{C}^n 的一组基。

Step2现在考虑基 $\{e_1, e_2, ..., e_{n-1}; f_n\}$,该基下的坐标记为 $z'_1, z'_2, ..., z'_n$,则由 Weierstrass 预备定理,注意 $z'_n = 0$ 是函数 $z'_n \mapsto g_n(0, z'_n)$ 的 s_n 阶零点,则由 Weierstrass 预备定理,存在 Weierstrass 多项式

$$P_n(\widetilde{z}'_n, z'_n) = (z'_n)^{s_n} + \sum_{i=1}^{s_n} a_{jn}(\widetilde{z}'_n)(z'_n)^{s_k-j}$$

以及 $h \in \mathcal{O}_n$ 使得 $h(0) \neq 0$,以及 $g_n = P_n h$. (其中 $\widetilde{z}'_n = (z'_1, ..., z'_{n-1}) \in \mathbb{C}^{n-1}$) 由于 h 在 \mathcal{O}_n 中可逆,所以 Weierstrass 多项式 $P_n \in \mathfrak{p} = \mathfrak{p}_n$.

Step3如果 $\mathfrak{p}_{n-1} := \mathfrak{p} \cap \mathbb{C}\{z'_1, z'_2, ..., z'_{n-1}\} = 0$,则取 \mathbb{C}^n 的基 $\{e_1, ..., e_{n-1}; f_n\}$,以及 d = n-1 即可。如果 $\mathfrak{p}_{n-1} \neq 0$,则 \mathfrak{p}_{n-1} 为子环 $\mathcal{O}_{n-1} \cong \mathbb{C}\{z'_1, ..., z'_{n-1}\}$ 的素理想,之后对 $\mathbb{C}^{n-1} \cong \operatorname{span}_{\mathbb{C}}\{e_1, e_2, ..., e_{n-1}\}$ 以及 \mathfrak{p}_{n-1} 使用归纳假设即可。

注记 1.5.13. 容易知道,对事先任意给定的 \mathbb{C}^n 的基 $\{e_1, e_2, ..., e_n\}$,上述引理中的基 $\{f_1, f_2, ..., f_n\}$ 可以适当选取使得与 $\{e_1, e_2, ..., e_n\}$ 任意接近。

(这个引理证明过程中,哪里利用了"素理想"?) 本节有坑待填,尚未完成。笔者打算完整证明如下:

定理 1.5.14. (局部解析零点定理)

设I为 O_n 的理想,则

$$J_{(V(J),x)} = \sqrt{J}$$

回顾 $\sqrt{J} := \{f \in \mathcal{O}_n | \exists N \geq 0, f^n \in J\}$ 为 J 的**根式理想**。交换代数当中有以下基本结果:

$$\sqrt{J} = \bigcap_{\substack{\mathfrak{p} \supseteq J \\ \mathfrak{p} \in \operatorname{Spec}(\mathcal{O}_n)}} \mathfrak{p}$$

证明大意. $J_{(V(J),x)} \supseteq \sqrt{J}$ 是容易验证的,而另一边 " \subseteq ",由交换代数,只需对 $J=\mathfrak{p}$ 为素理想的情形证明。

这是非常不显然的结果,需要利用引理1.5.12 等多复变函数的结果,以及较多的交换代数。从略。 □

(这里待完善)

1.6 局部参数化

本节陈述关于不可约解析集芽的如下重要定理

定理 1.6.1. (不可约解析集芽的局部参数化定理)

设 \mathfrak{p} 为环 \mathcal{O}_n 的素理想,任取解析集 A 为解析集芽 $(V(\mathfrak{p}),0)$ 的代表元,则:存在 \mathbb{C}^n 的基 $\{e_1,e_2,...,e_n\}$ (该基下的坐标函数记为 $z_1,z_2,...,z_n$),存在 $1\leq d\leq n$,以及存在足够小的正实数 r',r''>0,以及常数 C>0,使得:

(1)
$$\mathfrak{p} \cap \mathbb{C}\{z_1,...,z_d\} = 0$$
, 并且环同态

$$\mathbb{C}\{z_1,...,z_d\}\hookrightarrow \mathcal{O}_n/\mathfrak{p}$$

为有限整扩张。

(2) 在坐标
$$z' = (z_1,...,z_d), z'' = (z_{d+1},...,z_n)$$
 下,

$$A \cap (\triangle' \times \triangle'') \subseteq \{(z', z'') \in \mathbb{C}^d \times \mathbb{C}^{n-d} | |z''| \le C|z'| \}$$

其中 \triangle' 为 \mathbb{C}^d 中以原点为中心,半径 r' 的多圆柱; \triangle'' 为 \mathbb{C}^{n-d} 中以原点为中心,半径 r'' 的多圆柱。

(3) 记 q 为 $\mathbb{C}\{z_1,...,z_d\} \hookrightarrow \mathcal{O}_n/\mathfrak{p}$ 的扩张次数,则投影映射

$$\pi: A \cap (\triangle' \times \triangle'') \rightarrow \triangle'$$
$$(z', z'') \mapsto z'$$

为次数为 q 的**分歧映射** ($ramified\ map$),并且存在某个 $\delta\in\mathcal{O}_d$,使得 π 的所有**分歧值**都位于集合

$$S := \left\{ z' \in \triangle' \middle| \delta(z') = 0 \right\}$$

之中, 并且 $\triangle' \setminus S$ 为 \triangle' 的连通、稠密子集。

第(3)条的"分歧映射"、"分歧值"具体指:投影

$$\pi': A \cap \left[(\triangle' \setminus S) \times \triangle'' \right] \rightarrow \triangle'$$
 $(z', z'') \mapsto z'$

为 q 叶覆盖映射,并且对任意 $z' \in S$,# $\pi^{-1}(z') \leq q$.

图: 性质1.6.1示意

证明. 异常复杂, 从略。承认之。

不过我们可以考虑一种简单的特殊情形—— 为主理想:

例子 1.6.2. (超曲面的参数化)

设 \mathcal{O}_n 的素理想 $\mathfrak{p}=(f)$ 为主理想,证明此种情形的局部参数化定理。

证明. 由 Weierstrass 预备定理,不妨取 \mathfrak{p} 的生成元 f 为 weierstrass 多项式

$$f(\widetilde{z}, z_n) = z_n^q + \sum_{j=1}^q a_j(\widetilde{z}) z_n^{s-j} = \prod_{j=1}^q (z_n - w_j(\widetilde{z}))$$

其中 $\tilde{z}=(z_1,z_2,...,z_{n-1})\in\mathbb{C}^{n-1}$, $w_i(\tilde{z})$ 为多项式 $z_n\mapsto f(\tilde{z},z_n)$ 的根。取 d=n-1,显然

$$\mathfrak{p}\cap\mathbb{C}\{z_1,z_2,...,z_d\}=0$$

现在对任意 $F \in \mathcal{O}_n$,对 F 以及 Weierstrass 多项式 f 使用 Weierstrass 除法定理,有 F = hf + R,其中 $R \in \mathcal{O}_{n-1}[z_n]$ 并且次数 < q. 这表明 $\widetilde{F} \in \mathcal{O}_n/\mathfrak{p}$ 为有限生成 $\mathcal{O}_d = \mathcal{O}_{n-1}$ 模,并且 $\{1, z_n, z_n^2, ..., z_n^{q-1}\}$ 为其一组 \mathcal{O}_d -模生成元。因此

$$\mathcal{O}_d \hookrightarrow \mathcal{O}_n/\mathfrak{p}$$

为有限整扩张。从而定理1.6.1的(1)证毕。

而(3)几乎显然,取

$$S := \left\{ \widetilde{z} \in \Delta' \middle|$$
多项式 $z_n \mapsto f(\widetilde{z}, z_n)$ 无重根 $\right\}$

即可。利用代数学中关于重根的判别式,容易知道 S 为某个 \mathcal{O}_d 中的函数(芽)的零点集。从而(3)易证。

至于(2),常数C的存在性显然吗?如果有对f的根的估计

$$w_j(\widetilde{z}) = O(|\widetilde{z}|)$$

那么就没问题。(待补)

1.7 正则点、奇异点,全纯隐函数定理

(待补)

第2章 复流形(待补)

计划详细介绍复流形、复微分形式, 以及复流形的例子。

- 2.1 复流形(暂定)
- 2.2 微分形式(暂定)
- 2.3 复向量丛与全纯向量丛(暂定)

Recall: X is a smooth manifold, E is a vector bundle of rank r, if

- $(1)\pi: E \to X$ is smooth map,
- (2) for any $x \in X$, $E_x := \pi^{-1}(x)$ is a vector space over \mathbb{K} ($\mathbb{K} = \mathbb{R}$ or \mathbb{C}) of dimension r.
- (3)there an open covering $\mathcal{U} = (\mathcal{U}_{\alpha})_{\alpha \in I}$ and trivializations

$$\theta_{\alpha}: E|_{U_{\alpha}} \cong U_{\alpha} \times \mathbb{K}^r$$

and for any intersection $U_{\alpha} \cap U_{\beta}$, we have

注记 2.3.1.

$$g_{\alpha\beta} = g_{\beta\alpha}^{-1}$$
 $g_{\alpha\beta}g_{\beta\gamma}g_{\gamma\alpha} = 1$

(cocycle condition)

例子 2.3.2. trivial vector bundle $X \times \mathbb{K}^r$

例子 2.3.3. Tangent bundle TX. (transition matrix $g_{\alpha\beta}$ are given by Jacobi matrix..)

定义 2.3.4. (Local frame of vector bundles)

$$\theta_{\alpha}: E|_{U_{\alpha}} \xrightarrow{\sim} U_{\alpha} \times \mathbb{K}^r$$

be a trivialization, we define

$$e_{\lambda}(x) := heta_{lpha}^{-1}(x, egin{pmatrix} 0 \\ \dots \\ 1(\leftarrow ith) \\ \dots \\ 0 \end{pmatrix})$$

then, $\{e_1,...,e_r\}$ be a local smooth section $s\in\Gamma(U_\alpha,E)$ can be written as

$$s(x) = \sum \sigma_{\lambda}(x)$$

where $\sigma_{\lambda} \in C^{\infty}(U_{\alpha}, \mathbb{K})$.

定义 2.3.5. (dual of vector bundles) $E \to X$, and $g_{\alpha\beta}$:transition matrix of E, the dual is given by $(g_{\alpha\beta})^{-1}$. (用转移函数来定义向量丛)

定义 2.3.6. *direct sum of two vector bundles* $(E,F) \rightarrow E \oplus F$. *locally*,

$$(g_{\alpha,\beta})\oplus(h_{\alpha\beta})$$

direct sum of transition matrices.

定义 2.3.7. tensor product of two vector bundles.

locally, tensor product of two transition matrices.

2.4 例子(暂定)

第3章 层与层上同调

本章介绍层论、层上同调的语言。这套理论是 J-Leray 于 1945-1946 年在监狱中创立的。在正式介绍这套抽象的理论之前,先通过一个例子来大致了解引入此理论的动机。

问题:设 S 为一个黎曼曲面, $\{p_n\} \subseteq S$ 为 S 的一个离散点集,我们希望找一个 S 上的亚纯函数 f,使得 f 在 $S \setminus \{p_n\}$ 全纯,并且在每个 p_i 处具有事先给定的主部。

这样的函数 f 在局部上的存在性是显然的;而在 S 上的整体存在性并不平凡。

思路 ($\check{C}ech$). 取 S 的一族开覆盖 $U:=\left\{U_{\alpha} \middle| \alpha \in \mathcal{I}\right\}$,使得每个 U_{α} 均为局部坐标卡,并且至多包含 $\{p_n\}$ 中的一个点,则局部地,可在每个 U_{α} 上找到满足要求的亚纯函数 f_{α} .

之后我们希望找到 $g_{\alpha} \in \mathcal{O}(U_{\alpha})$,使得对任意 $\alpha, \beta \in \mathcal{I}$,在 $U_{\alpha} \cap U_{\beta}$ 上成立 $f_{\alpha} - g_{\alpha} = f_{\beta} - g_{\beta}$. 于是我们可定义 S 上的亚纯函数 $f = f_{\alpha} - g_{\alpha}$. 易知 f 良定,且满足要求。

$$f_{\alpha\beta} \in \mathcal{O}(U_{\alpha} \cap U_{\beta})$$
 为

$$f_{\alpha\beta} := f_{\alpha} - f_{\beta}$$

则显然对于任意指标 α, β, γ , 在公共部分 $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$ 上成立

$$f_{\alpha\beta} + f_{\beta\gamma} + f_{\gamma\alpha} = 0 \tag{*}$$

而如果存在上述 $g_{\alpha} \in U_{\alpha}$, 则有 $f_{\alpha} = g_{\alpha} - g_{\beta}$. 现在,令

$$Z^1(\mathcal{U},\mathcal{O}) := \operatorname{span}\left\{f_{\alpha\beta} \in \mathcal{O}(U_{\alpha} \cap U_{\beta}) \middle| f_{\alpha\beta}$$
满足(*)
$$B^1(\mathcal{U},\mathcal{O}) := \operatorname{span}\left\{f_{\alpha\beta} \in \mathcal{O}(U_{\alpha} \cap U_{\beta}) \middle| \exists g_{\alpha} \in \mathcal{O}(U_{\alpha}), f_{\alpha\beta} = g_{\alpha} - g_{\beta}\right\}$$

显然 $B^1(\mathcal{U},\mathcal{O})$ 为 $Z^1(\mathcal{U},\mathcal{O})$ 的子空间。如果这两者相等,则满足题设的解存在。

我们记 $H^1(\mathcal{U},\mathcal{O}) := \frac{Z^1(\mathcal{U},\mathcal{O})}{B^1(\mathcal{U},\mathcal{O})}$ 为 X 上的全纯函数"层"(sheaf) 关于开覆盖 \mathcal{U} 的第 1 个 Čech 上同调. 我们将了解到,Čech 上同调与 S 的拓扑有密切关系。

本章需要一定的范畴论准备。由于这不是专门介绍层论的讲义,我们会省略很多论证细节,只介绍主要结果。

3.1 预层与层的概念

定义 3.1.1. (集值预层)

设 X 为拓扑空间, X 上的预层 (presheaf) F 是指以下资料:

- (1) 对任意 X 中的开集 U, 给定集合 F(U), 称 F(U) 为 F 在 U 上的**截面空间**, 其中的元素称为 F 在 U 上的一个**截面** (section).
 - (2) 对于 X 的任意开子集 U,V, 若 $U \subseteq V$, 则配以限制映射

$$\rho_{UV}: \mathcal{F}(V) \rightarrow \mathcal{F}(U)$$

$$s \mapsto s|_{U}$$

并且对 X 的任意开子集 $W \subset U \subset V$ 成立:

$$\rho_{UU} = \mathrm{id}_{\mathcal{F}(U)}$$

$$\rho_{WV} = \rho_{WU} \circ \rho_{UV}$$

最典型的例子是,拓扑空间 X 上的函数之全体函数构成预层 C. 具体地,对 X 的开子集 U, C(U) := C(U) 为定义在 U 上的连续函数之全体,对于 $V \subseteq U$,则限制映射 ρ_{UV} 为通常的函数定义域的限制。

注记 3.1.2. 通常来说,预层 F 被假定具有代数结构。具体地,对于 X 的开集 U, F(U) 被假定 具有 Abel 群结构、交换环结构或者 A-模结构等等,此时分别称作取值于 Abel 群范畴、交换环范畴、A-模范畴的预层。

当然,若 $\mathcal{F}(U)$ 具有上述代数结构,则我们也要求限制映射 ρ_{VU} 为相应范畴中的态射,并且规定 $\mathcal{F}(\varnothing)=\{0\}$ 为相应范畴中的零对象。

例子 3.1.3. (常值预层)

对于拓扑空间 X,定义 X 上的集值预层 \mathbb{C}_X 如下: 对于任意开子集 U, $\mathbb{C}_X(U) := \mathbb{C}$;对于 $U \subseteq V$,限制映射 $\rho_{UV} := \begin{cases} \mathrm{id}_{\mathbb{C}} & U \neq \varnothing \\ 0 & U = \varnothing \end{cases}$,则容易验证这是 X 上的预层,称为常值预层.

例子 3.1.4. (全纯函数预层)

设 X 为复流形,则 $\mathcal{O}_X: U \mapsto \mathcal{O}(U)$,配以通常的函数限制,构成 X 上的预层,称为**全**纯函数预层。

例子 3.1.5. (微分形式预层)

设 X 为光滑流形,对 X 的任意开子集 U,考虑 U 上的光滑 k 形式之全体 $\bigwedge^k(U)$,配以通常的限制映射,则 \bigwedge^k 构成预层,称为 光滑 k-形式预层。

定义 3.1.6. (层)

设 F 为拓扑空间 X 上的预层, 称 F 为层 (sheaf), 若以下成立:

- (1) (粘合公理) 若 U 与 $U_{\alpha}(\alpha \in \mathcal{I})$ 均为 X 的开子集,并且 $U = \bigcup_{\alpha \in \mathcal{I}} U_{\alpha}$,则对于任何 $s_{\alpha} \in \mathcal{F}(U_{\alpha})$,如果 $s_{\alpha}|_{U_{\alpha} \cap U_{\beta}} = s_{\beta}|_{U_{\alpha} \cap U_{\beta}}$ 对任意 $\alpha, \beta \in \mathcal{I}$ 成立,则存在 $s \in \mathcal{F}(U)$,使得 $s|_{U_{\alpha}} = s_{\alpha}$ 对任意 $\alpha \in \mathcal{I}$ 成立。
- (2) (唯一性公理) 条件同上,则对于任意 $s,t\in\mathcal{F}(U)$,若对任意 $\alpha\in\mathcal{I}$, $s|_{U_{\alpha}}=t|_{U_{\alpha}}$,则 s=t.

类似地也可以定义取值于 Abel 范畴上的层。此时,容易验证唯一性公理等价于: $(U = \bigcup_{\alpha \in \mathcal{I}} U_{\alpha})$ 对于 $s \in \mathcal{F}(U)$,若 $s|_{U_{\alpha}} = 0$ 对任意 $\alpha \in \mathcal{I}$ 成立,则 s = 0.

例子 3.1.7. 若拓扑空间 X 包含至少两个不交的开集,则常值预层(例子3.1.3) \mathbb{C}_X 不是层,因为不满足粘合公理。

具体地,若 U,V 为 X 的两个不交的开子集,考虑 $1 \in \mathbb{C}_X(U)$ 以及 $2 \in \mathbb{C}_X(V)$,则显然不存在 $z \in \mathbb{C}_X(U \cup V)$ 使得 $1 = z|_U$ 以及 $2 = z|_V$.

例子 3.1.8. (向量丛是层)设 $E \to X$ 为光滑流形 X 上的向量丛,则 E 自然视为 X 上的层 $\Gamma(-,E)$: 对任意 $U \subseteq X$,考虑丛 E 在 U 上的截面之全体 $\Gamma(U,E)$ 。易验证其满足层的公理。

类似地, 复流形上的全纯函数预层是层, 光滑 k-形式预层也是层。

定义 3.1.9. (预层的同态)

设 \mathcal{F} 与 \mathcal{G} 为拓扑空间 X 上的(取值于同一个 Abel 范畴的)预层,预层同态 $\varphi: \mathcal{F} \to \mathcal{G}$ 是 指以下资料:对任意开集 $U \subseteq X$,配以(相应 Abel 范畴中的)态射 $\varphi_U: \mathcal{F}(U) \to \mathcal{G}(U)$,并且对于 X 的任意开子集 $U \subset V$,以下图表交换:

设 $\varphi: \mathcal{F} \to \mathcal{G}$ 为 X 上的预层同态,则我们可以定义 $\ker^p \varphi, \operatorname{Im}^p \varphi, \operatorname{coker}^p \varphi$ 为: 对任意开集 $U \subset X$,

$$(\ker^p \varphi)(U) := \ker(\varphi_U)$$

 $\operatorname{Im}^p \varphi$ 与 $\operatorname{coker}^p \varphi$ 也完全类似。容易验证它们都是预层,分别称为预层同态 φ 的**核预层、像预层、 余核预层**。这里的上标 "p" 是指 "预层" (presheaf)。

性质 3.1.10. 设 F, G 为 X 上的层, $\varphi: F \to G$ 为预层同态, 则预层 $\ker^p \varphi$ 是层。

证明. 直接验证 $\ker^p \varphi$ 满足层的粘合公理和唯一性公理。设 $\left\{ U_\alpha \middle| \alpha \in \mathcal{I} \right\}$ 为 X 的开子集 U 的一族开覆盖,注意到 $(\ker^p \varphi)(U_\alpha) \subseteq \mathcal{F}(U_\alpha)$,以及 \mathcal{F} 为层(满足粘合公理),因此易知 $\ker^p \varphi$ 也满足粘合公理。 $\ker^p \varphi$ 的唯一性公理也是由 \mathcal{F} 的层性质直接得到的。

从此以后,若 \mathcal{F} 与 \mathcal{G} 都为层,则我们将核预层 $\ker^p \varphi$ 简记为 $\ker \varphi$.

注记 3.1.11. 好吧,刚才的命题几乎显然。但是要注意,即使 F 与 G 都是层, $\mathrm{Im}^p \varphi$ 与 $\mathrm{coker}^p \varphi$ 未必是层。它们并没有 $\mathrm{ker}^p \varphi$ 的良好性质。

例子 3.1.12. 考虑拓扑空间 $X = \mathbb{C} \setminus \{0\}$,令 $\mathcal{F} := \mathcal{O}_X$ 为 X 上的全纯函数层, $\mathcal{G} := \mathcal{O}_X^*$ 定义为:对于 X 的开集 U,

$$\mathcal{O}_{\mathrm{X}}^{*}(U) := \left\{ f \in \mathcal{O}_{\mathrm{X}}(U) \middle| f(z) \neq 0, \forall z \in U \right\}$$

容易验证 \mathcal{O}_X^* 为(取值于集合的)层。考虑层同态

$$\exp: \mathcal{F} \to \mathcal{G}$$

$$f \in \mathcal{F}(U) \mapsto e^f$$

则 Im^p exp 不是层。

证明. 只需要考虑函数 $z \in \mathcal{O}_X^*(X)$. 对任意单连通的开子集 $U \subseteq X$,易知 $z \in \mathcal{O}_X^*(U)$ 满足 $z \in (\operatorname{Im}^p \exp)(U)$,但是 $z \in \mathcal{O}_X^*(X)$ 并不位于 $(\operatorname{Im}^p \exp)(X)$ 当中,从而 $\operatorname{Im}^p \exp$ 不满足粘合公理。

记号 3.1.13. (层的限制)设 F 是拓扑空间 X 上的层, U 为 X 的开子集,则自然有拓扑空间 U 上的层 $F|_U$ 如下:对 U 中的开集 V (注意 V 也是 X 中的开集),定义

$$\mathcal{F}|_{\mathcal{U}}(V) := \mathcal{F}(V)$$

相应的限制映射也自然给出。容易验证 $\mathcal{F}|_{U}$ 是拓扑空间 U 上的层,称为 \mathcal{F} 在 U 上的限制。

关于层的构造,我们再介绍层的直和:

例子 3.1.14. (层的直和)

设 \mathcal{F} 与 \mathcal{G} 为拓扑空间 X 上的取值于(同一个)Abel 范畴的层,则定义 \mathcal{F} 与 \mathcal{G} 的直和层 $\mathcal{F}\oplus\mathcal{G}$ 如下:对 X 中的开集 U, $(\mathcal{F}\oplus\mathcal{G})(U):=\mathcal{F}(U)\oplus\mathcal{G}U$.

容易验证 $\mathcal{F} \oplus \mathcal{G}$ 也为 X 上的层。类似也可以定义多个层的直和。特别地,对于层 \mathcal{F} 以及正整数 n,记 $\mathcal{F}^{\oplus n} := \underbrace{\mathcal{F} \oplus \mathcal{F} \oplus \cdots \oplus \mathcal{F}}$

3.2 预层的层化

定义 3.2.1. (预层的芽)

设F为X上的预层, $x \in X$,则称

$$\mathcal{F}_x := \varinjlim_{x \in U} \mathcal{F}(U)$$

为 F 在 x 处的茎条 (stalk), 其中 U 取遍 x 的开邻域。 F_X 中的元素称为 x 处的芽 (germ)。

我们不再回顾范畴论中的余极限(or 归纳极限、正向极限)的概念。典型的例子是,若 \mathcal{O}_X 为复流形 X 上的解析函数环层,则对于 $x \in X$, $\mathcal{O}_{X,x}$ 即为通常的在 x 处的解析函数芽环。

回顾层的粘合公理、唯一性公理,用茎条、芽的语言可以给出上述公理的等价表述:

性质 3.2.2. 设 F 是拓扑空间 X 上的预层,则

(1) F 满足粘合公理 \iff 对任意开集 U,以及对任意 $s(x) \in F_x(\forall x \in U)$,如果对任意 $x \in U$,存在 x 的开邻域 $V \subseteq U$,以及 s(x) 的代表元 $t \in F(V)$,使得对任意 $y \in V$,成立 $s(y) = t_y$,那么存在 $S \in \mathcal{F}(U)$,使得对任意 $x \in U$ 成立 $S_x = s(x)$ 。

(2) F 满足唯一性公理 \iff 对任意开集 U,以及对任意 $s \in F(U)$,如果对任意 $x \in U$, $s_x = 0$,那么 s = 0.

证明. 由有关定义出发,几乎显然。

性质 3.2.3. 设 F 与 G 为 X 上的预层, $\varphi: F \to G$ 为预层同态,则对任意 $x \in X$, φ 自然诱导茎 条同态

$$\varphi_{x}:\mathcal{F}_{x}\to\mathcal{G}_{x}$$

证明. 由余极限 lim 的函子性直接得到。

具体构造是,对任意 $F_x \in \mathcal{F}_x$,取 F_x 的代表元 $F \in \mathcal{F}(U)$,其中 U 为 x 的某个开邻域。之后, $\varphi_x(F_x) = (\varphi_U(F))_x$.

定义 3.2.4. (预层的层空间)

设 F 为拓扑空间 X 上的预层,则定义拓扑空间

$$\widetilde{\mathcal{F}} := \coprod_{x \in X} \mathcal{F}_x$$

其拓扑由拓扑基 $\left\{\Omega_{F,U}\middle|U\subseteq X$ 为开子集, $F\in\mathcal{F}(U)\right\}$ 生成,其中 $\Omega_{F,U}=\left\{F_x\in\mathcal{F}_x\middle|x\in U\right\}$. 称拓扑空间 $\widetilde{\mathcal{F}}$ 为预层 \mathcal{F} 的层空间(sheaf space)。

具体地,若芽 $F_x \in \widetilde{\mathcal{F}}$,取 F_x 的代表元 $F \in \mathcal{F}(U)$,其中 U 为 x 的一个(充分小的)开邻域,则 $\left\{F_y\middle|y\in U\right\}$ 为 F_X 在 $\widetilde{\mathcal{F}}$ 中的一个开邻域。我们由自然的映射

$$\Pi: \widetilde{\mathcal{F}} \to X$$

$$s \in \mathcal{F}_x \mapsto x$$

则容易验证 $\Pi: \widetilde{\mathcal{F}} \to X$ 为连续映射,且对于任意 $F \in \mathcal{F}(U)$, $\Pi: \Omega_{F,U} \to U$ 为拓扑同胚。

定义 3.2.5. (预层的层化)

设F是X上的预层,对X的开子集U,定义

$$\mathcal{F}^+(U) := \left\{ s : U \to \widetilde{\mathcal{F}} \middle| s$$
为连续映射,并且 $\Pi \circ s = \mathrm{id}_U \right\}$

称 \mathcal{F}^+ 为预层 \mathcal{F} 的层化(sheafification).

具体地,对于 $s: U \to \widetilde{\mathcal{F}}$, $s \in \mathcal{F}^+(U)$ 当且仅当对任意的 $x \in U$, $s(x) \in \mathcal{F}_x$,并且存在 x 的 开邻域 $V \subseteq U$,以及存在 $F \in \mathcal{F}(V)$,使得 $s(y) = F_y$ 对任意 $y \in V$ 成立。

性质 3.2.6. 设 F 为 X 上的预层,则 F^+ 为 X 上的层,并且有典范的预层同态 $\theta: F \to F^+$ 如下: 对任意开集 U,

$$\theta_U : \mathcal{F}(U) \to \mathcal{F}^+(U)$$

 $s \mapsto \widetilde{s} : U \to \widetilde{\mathcal{F}} \quad (x \mapsto s_x)$

证明. \mathcal{F}^+ 的粘合公理与唯一性公理几乎显然成立。

我们更习惯于把有预层同态 $\theta: \mathcal{F} \to \mathcal{F}^+$ 称为 \mathcal{F} 的层化。容易验证,对任意 $x \in X$,由茎条 同构 $\mathcal{F}_X \cong \mathcal{F}_x^+$;此外也容易验证,如果 \mathcal{F} 本身是层,那么 θ 为层同构,即"层的层化同构于其本身"。

性质 3.2.7. (层化的泛性质)

设 F 为拓扑空间 X 上的预层,则对于 X 上的任何层 G,以及预层同态 $\varphi: F \to G$,存在唯一的层同态 $\psi: \mathcal{F}^+ \to G$,使得以下图表交换:

证明. 对任意 $x \in X$, $\varphi : \mathcal{F} \to \mathcal{G}$ 诱导了 $\varphi_x : \mathcal{F}_x \to \mathcal{G}_x$, 再注意 $\mathcal{F}_X \cong \mathcal{F}_x^+$, 从而自然给出 $\psi_x : \mathcal{F}_x^+ \to \mathcal{G}_x$. 易验证 $\{\psi_x \big| x \in X\}$ 确定了层同态 $\psi : \mathcal{F}^+ \to \mathcal{G}$,且 $\psi \circ \theta = \varphi$.

例子 3.2.8. 回顾常值预层 \mathbb{C}_X (见例子3.1.3),则其层化 \mathbb{C}_X^+ 为,对任意开集 U,

$$\mathbb{C}_X^+(U) = \Big\{ f : U \to \mathbb{C} \Big| f$$
为局部常值函数 $\Big\}$

称之为 X 上的局部常值层。

例子 3.2.9. 回顾例子3.1.12中的预层同态

$$\exp: \mathcal{O}_{X} \to \mathcal{O}_{Y}^{*}$$

则像预层 $\operatorname{Im}^p(\exp)$ 的层化 $(\operatorname{Im}^p \exp)^+ \cong \mathcal{O}_X^*$.

定义 3.2.10. (像层、余核层与商层)

设 $F \to G$ 为拓扑空间 $X \perp$ 的层, $\sigma: F \to G$ 为层同态。

- (1) 定义 $\operatorname{Im} \varphi := (\operatorname{Im}^p \varphi)^+$, 称之为 φ 的像层;
- (2) 定义 $\operatorname{coker} \varphi := (\operatorname{coker}^p \varphi)^+$, 称之为 φ 的余核层;
- (3) 若对于任意开集 U, $\varphi_U: \mathcal{F}(U) \to \mathcal{G}(U)$ 为单同态,则称 φ 为层单同态,此时也称 \mathcal{F} 为 \mathcal{G} 的子层,并且定义商层 $\mathcal{F}/\mathcal{G}:=\operatorname{coker}\varphi$.

无非是将相应的预层加以层化。此外容易验证,层同态 $\varphi: \mathcal{F} \to \mathcal{G}$ 为单同态,当且仅当对任意 $x \in X$, $\varphi_x: \mathcal{F}_x \to \mathcal{G}_x$ 为单同态。

注记 3.2.11. 设 $\varphi: \mathcal{F} \to \mathcal{G}$ 为层同态,则像层 $\operatorname{Im} \varphi$ 自然地视为 \mathcal{G} 的子层:

$$\begin{array}{c|c}
\mathcal{F} & \xrightarrow{\varphi} & \mathcal{G} \\
\downarrow \widetilde{\varphi} & \downarrow i \\
\text{Im}^{p} & \varphi & \xrightarrow{\theta} & \text{Im} & \varphi
\end{array}$$

层同态 $i: \text{Im } \phi \to G$ 由层化的泛性质给出,并且逐茎条看,显然 i 为层单同态。

定义 3.2.12. (层满同态)

设 $\varphi: \mathcal{F} \to \mathcal{G}$ 为层同态, 称 φ 为层满同态, 若 Im $\varphi := (\text{Im}^p \varphi)^+ \cong \mathcal{G}$.

由有关定义可以验证,层同态 $\varphi: \mathcal{F} \to \mathcal{G}$ 为层满同态,当且仅当对任意 $x \in X$, $\varphi_x: \mathcal{F}_x \to \mathcal{G}_x$ 为满同态。由此可推出, φ 为层同构,当且仅当对任意 $x \in X$, φ_x 为茎条同构。

3.3 层的顺像与逆像

记号 3.3.1. 对于拓扑空间 X, 定义 X 上的 Abel 群层范畴 Ab_X 为:

- (1) Ab(X) 中的对象为 X 上的取值于 Abel 群的层;
- (2) 对象之间的态射为相应的层同态。

显然这是一个范畴。类似可定义"X 上的集值层范畴" Set_X ,"X 上的交换环层范畴" $Ring_X$,以及对于交换环 A,我们可定义 X 上的 A-模层范畴 A-Mod $_X$ 等等。

一般地,将 X 上(所有种类的)层之全体记作 Sh_X ,这自然也给出一个范畴,称为 X 上的**层范畴**。类似地,X 上的所有预层也构成范畴,记为 pSh_X .

注记 3.3.2. 对于拓扑空间 X, 以及 X 的开集 U, 则有"取截面"函子

$$\Gamma(U,-): \mathsf{Ab}_X \ o \ \mathsf{Ab}$$
 $\mathcal{F} \ \mapsto \ \mathcal{F}(U)$

其中 Ab 为 Abel 群范畴。容易验证函子 $\Gamma(U,-)$ 是左正合函子,即对于 Ab_X 中任意的左短正合列 $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H}$,该函子诱导的 Abel 群同态序列 $0 \to \mathcal{F}(U) \to \mathcal{G}(U) \to \mathcal{H}(U)$ 也是正合的。

函子 $\Gamma(U,-)$ 的左正合性是后文将要介绍的层上同调理论的基础。

定义 3.3.3. (层的顺像)

设 $f: X \to Y$ 为拓扑空间的连续映射, \mathcal{F} 是 X 上的层,则定义 \mathcal{F} 的推出 (push-forward), 也称为顺像 (direct image) $f_*\mathcal{F}$ 为: 对 Y 的开子集 U, $(f_*\mathcal{F})(U) := \mathcal{F}(f^{-1}(U))$.

显然 $f_*\mathcal{F}$ 为 Y 上的预层。容易验证,若 \mathcal{F} 是层,则预层 $f_*\mathcal{F}$ 也是层。事实上,顺像 f_* 具有函子性,具体地说,若 $\varphi: \mathcal{F} \to \mathcal{G}$ 为 X 上的层同态,则 f 诱导了 Y 上的层同态 $f_*\varphi: f_*\mathcal{F} \to f_*\mathcal{G}$,并且使得有关图表交换。换句话说,我们有函子 $f_*: \mathsf{Sh}_X \to \mathsf{Sh}_Y$.

容易验证, $f_*\mathcal{F}$ 在 $y \in Y$ 处的茎条为

$$(f_*\mathcal{F})_y \cong \varinjlim_{y \in V} \mathcal{F}(f^{-1}(V))$$

定义 3.3.4. (层的逆像)

设 $f: X \to Y$ 为拓扑空间之间的连续映射,G 为 Y 上的层,则定义 X 上的层 $f^{-1}G$ 为:对 X 的任意开集 U.

$$(f^{-1}\mathcal{G})(U) := \varinjlim_{V \in f(U)} \mathcal{G}(V)$$

其中 V 取遍 Y 中的包含 f(U) 的开子集。称 $f^{-1}G$ 为 G 关于 f 的逆像 (inverse image)

显然如此定义的 $f^{-1}G$ 为 X 上的预层。利用余极限的泛性质,也能验证当 G 为层时, $f^{-1}G$ 也为层。容易验证对 Y 中的开集 V,成立

$$(f^{-1}\mathcal{G})(f^{-1}(V)) \cong \mathcal{G}(V)$$

此外对任意 $x \in X$, 成立

$$(f^{-1}\mathcal{G})_x \cong \mathcal{G}_{f(x)} \tag{*}$$

容易验证 $f^{-1}: Sh_Y \to Sh_X$ 为层范畴之间的函子。

注记 3.3.5. (逆像的层空间)

设 $f: X \to Y$ 为拓扑空间之间的连续映射, G 为 Y 上的层, 则有层空间的拓扑同胚

$$\widetilde{f^{-1}\mathcal{G}} \cong X \times_Y \widetilde{\mathcal{G}}$$

也就是说,存在下述纤维积图表:

$$\overbrace{f^{-1}\mathcal{G}}^{\alpha} \xrightarrow{\alpha} \widetilde{\mathcal{G}}$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \xrightarrow{f} Y$$

其中映射 α 由 (*) 式诱导。由拓扑空间纤维积的具体构造,容易验证以上。

性质 3.3.6. (伴随对)

设 $f: X \to Y$ 为拓扑空间之间的连续映射,则 f^{-1} 为 f_* 的左伴随函子。也就是说对于任意 $\mathcal{F} \in \mathsf{Sh}_X$ 以及 $\mathcal{G} \in \mathsf{Sh}_Y$,存在(关于 X,Y)自然的一一对应

$$\operatorname{Hom}_{\operatorname{\mathsf{Sh}}_X}(f^{-1}\mathcal{G},\mathcal{F}) \stackrel{\text{1-1}}{=\!\!\!=\!\!\!=} \operatorname{Hom}_{\operatorname{\mathsf{Sh}}_Y}(\mathcal{G},f_*\mathcal{F})$$

证明大意. 我们只给出此一一对应的构造, 其余细节从略(反复使用各种泛性质)。对于任意的

$$\psi: \quad \mathcal{G} \to f_* \mathcal{F}$$

$$\varphi: \quad f^{-1} \mathcal{G} \to \mathcal{F}$$

首先我们定义 $\alpha: \operatorname{Hom}_{\operatorname{Sh}_{X}}(\mathcal{G}, f_{*}\mathcal{F}) \to \operatorname{Hom}_{\operatorname{Sh}_{X}}(f^{-1}\mathcal{G}, \mathcal{F})$ 如下: 对 X 中开集 U, $[\alpha(\psi)]_{U}$ 由以下交换图表给出:

$$\mathcal{G}(W) \xrightarrow{\psi_{W}} (f_{*}\mathcal{F})(W) = \mathcal{F}(f^{-1}(W))$$

$$\downarrow^{\rho} \qquad \qquad \downarrow^{\rho}$$

$$\mathcal{G}(V) \xrightarrow{\psi_{V}} (f_{*}\mathcal{F})(V) = \mathcal{F}(f^{-1}(V))$$

$$\downarrow^{\rho} \qquad \qquad \downarrow^{\rho}$$

$$\lim_{V \supseteq f(U)} \mathcal{G}(V) = (f^{-1}\mathcal{G})(U) - - - \frac{[\alpha(\psi)]_{U}}{I} - - - \gg \mathcal{F}(U)$$

其中 $W \supseteq V$ 为 Y 中的包含 f(U) 的开集。

再定义 β : $\operatorname{Hom}_{\mathsf{Sh}_X}(f^{-1}\mathcal{G},\mathcal{F}) \to \operatorname{Hom}_{\mathsf{Sh}_Y}(\mathcal{G},f_*\mathcal{F})$ 如下: 对 Y 中的开集 V, $[\beta(\varphi)]_V$ 由以下交换图表给出:

$$(f^{-1}\mathcal{G})(f^{-1}(V)) \xrightarrow{\varphi_{f^{-1}(V)}} \mathcal{F}(f^{-1}(V))$$

$$\parallel \qquad \qquad \parallel$$

$$\mathcal{G}(V) - - - \frac{[\beta(\varphi)]_V}{-} - - > (f_*\mathcal{F})(V)$$

其余细节从略。

3.4 局部自由模层与向量丛

定义 3.4.1. (A-模层)

设 A 为拓扑空间 X 上的(含幺交换)环层,M 为 X 上的 Abel 群层,称 M 为 A-模层,如果对 X 的任何开集 $V \supseteq U$,M(U) 具有 A(U)-模结构 $A(U) \times M(U) \to M(U)$,并且下述图表交换:

$$\begin{array}{ccc} \mathcal{A}(V) \times \mathcal{M}(V) \longrightarrow \mathcal{M}(V) \\ & \downarrow & \downarrow \\ \mathcal{A}(U) \times \mathcal{M}(U) \longrightarrow \mathcal{M}(U) \end{array}$$

例如,考虑复流形 X 上的解析函数环层 \mathcal{O}_X ,则全纯切向量场、全纯微分形式等等,都可视为 \mathcal{O}_X -模层。再比如,环层 A 也有自然的 A-模层结构。一般地,对于拓扑空间 X 上的环层 A,我们有 X 上的 A-模层范畴 A-Mod $_X$,自行定义此范畴中的态射 "A-模层同态"。能够验证,A-Mod $_X$ 为 Abel 范畴。

容易验证,对于 A-模层 M,则对任意 $x \in X$, 茎条 M_x 有自然的 A_x -模结构。

定义 3.4.2. (局部自由层)

设 S 为拓扑空间 X 上的 A-模层,称 S 为局部自由 A-模层,简称局部自由层(locally free sheaf),如果对任意 $x \in X$,存在 x 的开邻域 U,使得有层同构

$$\mathcal{S}|_{\mathcal{U}}\cong (\mathcal{A}|_{\mathcal{U}})^{\oplus r}$$

其中r为正整数, 称为局部自由层S的秩。

特别地,对任意 $x \in X$,存在 x 的开邻域 U,使得 $\mathcal{S}(U) \cong (\mathcal{A}(U))^{\oplus r}$ (但是定义中的"层限制"的语言更强)。事实上 \mathcal{S} 为局部自由层当且仅当对任意 $x \in X$,存在 x 的开邻域 U,以及截面 $F_{1,x},F_{2,x},...,F_{r,x} \in \mathcal{S}(U)$,使得对任意 $y \in U$,环同态

$$egin{array}{ccc} \mathcal{A}_y^{\oplus r} &
ightarrow & \mathcal{S}_y \ (w_1,w_2,...,w_r) & \mapsto & \sum\limits_{i=1}^r w_i F_{i,x} \end{array}$$

为同构。如此选取的 $\left\{F_{i,x} \in \mathcal{A}(U) \middle| 1 \leq i \leq r \right\}$ 称为 \mathcal{S} 的一个**局部标架**。

记号 3.4.3. (局部自由层局部标架的转移函数)

设 S 为拓扑空间 X 上的秩为 r 的局部自由 A-模层。取 X 的一族开覆盖 $X=\bigcup_{\alpha\in\mathcal{I}}U_{\alpha}$,以及 对于任意 $\alpha \in \mathcal{I}$, 取 S 在 U_{α} 上的局部标架

$$F_{\alpha} := \left\{ F_{\alpha}^{i} \in \mathcal{S}(U_{\alpha}) \middle| 1 \leq i \leq r \right\}$$

则 F_{α} 自然诱导了层同构(仍记作 F_{α})

$$F_{\alpha}: \mathcal{A}|_{U_{\alpha}}^{\oplus r} \xrightarrow{\sim} \mathcal{S}|_{U_{\alpha}}$$

对于 $\alpha, \beta \in \mathcal{I}$, 若 $U_{\alpha} \cap \mathcal{U}_{\beta} \neq \emptyset$, 则考虑如下图表:

称层自同构 $G_{\alpha\beta} := F_{\alpha}^{-1} \circ F_{\beta}$ 为局部标架 F_{α} 与 F_{β} 之间的转移函数。

对于 $x \in U_{\alpha} \cap U_{\beta}$,

$$(G_{\alpha\beta})_x:\mathcal{A}_x^{\oplus r}\to\mathcal{A}_x^{\oplus r}$$

可以表达为在基 $\left\{(F_{\beta}^{i})_{x} \middle| 1 \leq i \leq r\right\}$ 与 $\left\{(F_{\alpha}^{i})_{x} \middle| 1 \leq i \leq r\right\}$ 下的矩阵,称此矩阵为**转移矩阵**。

ス表达为仕基
$$\left\{(F_{\beta}^{\iota})_{x}\middle|1\leq\iota\leq r\right\}$$
与 $\left\{(F_{\alpha}^{\iota})_{x}\middle|1\leq\iota\leq r\right\}$ 下的矩阵,称此矩阵为**转移矩阵**。
$$对于 \alpha,\beta,\gamma\in\mathcal{I}, \text{ 如果 } U_{\alpha}\cap U_{\beta}\cap U_{\gamma}\neq\varnothing, \text{ 则显然有} \left\{ \begin{array}{l} G_{\alpha\alpha}=\mathrm{id}_{\mathcal{A}|_{U_{\alpha}}^{\oplus r}} \\ G_{\alpha\beta}=G_{\beta\alpha}^{-1} \\ G_{\alpha\beta}\circ G_{\beta\gamma}\circ G_{\gamma\alpha}=\mathrm{id}_{\mathcal{A}|_{U_{\alpha\beta\gamma}}^{\oplus r}} \end{array} \right., \text{ 其中}$$

 $U_{\alpha\beta\gamma}:=U_{\alpha}\cap U_{\beta}\cap U_{\gamma}.$

上述的语言与向量丛十分相似,事实上局部自由层是向量丛概念的推广。

重要例子 3.4.4. (拓扑向量丛)

设X为拓扑空间, C_X 为X上的连续函数环层,则有自然的一一对应

$$\left\{X \perp$$
的局部自由 \mathcal{C}_{X} -模层 $\right\} \stackrel{1-1}{\longleftarrow} \left\{X \perp$ 的(拓扑)向量丛 $\right\}$

证明. 若 $\mathcal E$ 为 X 上的局部自由 $\mathcal C_X$ -模层,取 X 的一组局部标架覆盖 $X=\bigcup_{\alpha\in\mathcal I}U_\alpha$,以及 U_α 上的局 部标架 $F_{\alpha} = \left\{ F_{\alpha}^{i} \middle| 1 \leq i \leq r \right\}$,则对于任意的 $\alpha, \beta \in \mathcal{I}$,若 $U_{\alpha} \cap U_{\beta} \neq \varnothing$,则对任意 $x \in U_{\alpha} \cap U_{\beta}$,

转移函数 $(G_{\alpha\beta})_x$ 在相应标架上的矩阵(仍记为 $(G_{\alpha\beta})_x$)给出了映射

$$U_{\alpha} \cap U_{\beta} \rightarrow \operatorname{GL}(r,\mathbb{C})$$
$$x \mapsto (G_{\alpha\beta})_{x}$$

易验证该映射连续,并且满足向量丛转移函数的相容条件,从而这些转移函数可以粘合成一个向量丛。反之,对于拓扑向量丛 $E \to X$,该向量丛的截面层显然为局部自由 \mathcal{C}_{X} -模层。容易验证上述给出的对应是互逆的,从而得到一一对应。

例子 3.4.5. (全纯向量丛)

设 X 为复流形, \mathcal{O}_X 为 X 上的全纯函数环层,则类似地有一一对应

$$\left\{X \ \bot$$
的局部自由 \mathcal{O}_X -模层 $\right\} \stackrel{\text{1-1}}{=\!=\!=\!=} \left\{X \ \bot$ 的全纯向量丛 $\right\}$

光滑流形上的光滑向量丛也完全类似。

最后,需要注意局部自由层范畴不是 Abel 范畴:

重要例子 3.4.6. (摩天大厦层)

考虑拓扑空间(复流形) $X=\mathbb{C}$,X 上的局部自由 \mathcal{O}_X -模层 $\mathcal{S}_1=\mathcal{S}_2:=\mathcal{O}_X$. 考虑 \mathcal{O}_X -模层 同态 $\varphi:\mathcal{S}_1\to\mathcal{S}_2$ 为: 对任意开集 $U\subseteq X$,

$$\varphi_U : \mathcal{S}_1(U) \to \mathcal{S}_2(U)$$

$$f(z) \mapsto zf(z)$$

则其余核层 $\operatorname{coker} \varphi$ 不是局部自由 \mathcal{O}_X -模层。

容易验证,对 X 中的开集 U,成立 $\operatorname{coker} \varphi(U) \cong \left\{ egin{array}{ll} \mathbb{C} & (0 \in U) \\ 0 & (0 \notin U) \end{array} \right.$,明显不是局部自由层。 此层称为**摩天大厦层**(skyscraper sheaf)。

3.5 凝聚层及其基本性质

定义 3.5.1. (局部有限生成 A-模层)

设 M 为拓扑空间 X 上的 A-模层,称 A 是 局部有限生成的,若对任意 $x \in X$,存在 x 的 邻域 U,以及正整数 r,使得有层同态短正合列

$$\mathcal{A}|_{U}^{\oplus r} \twoheadrightarrow \mathcal{M}|_{U} \to 0$$

或者等价地,存在 x 的开邻域 U,以及截面 $F_1, F_2, ..., F_r \in \mathcal{M}(U)$,使得对任意 $y \in U$, $\left\{ (F_i)_y \in \mathcal{M}_y \middle| 1 \leq i \leq r \right\}$ 是 \mathcal{M}_y 的一组 \mathcal{A}_x -模生成元。

显然,局部自由层一定是局部有限生成的。

定义 3.5.2. (关系层)

设 M 是拓扑空间 X 上的 A-模层,对于 X 的开集 U,以及 $F_1,F_2,...,F_r \in \mathcal{M}(U)$,称层同态

$$\varphi: \mathcal{A}|_{U}^{\oplus r} \rightarrow \mathcal{M}|_{U}$$

$$(g_{1}, g_{2}, ..., g_{r}) \mapsto \sum_{i=1}^{r} g_{i}F_{i}$$

的核层 $\mathcal{R}(F_1, F_2, ..., F_r) := \ker \varphi$ 为截面 $F_1, F_2, ..., F_r$ 的关系层。

这个定义当中并不要求 φ 为层满同态,也就是说 M 未必为局部有限生成的。只要给定若干局部截面,就可以定义它们的关系层。

定义 3.5.3. (凝聚层)

对于拓扑空间 X 上的 A-模层 M, 称 A 为 凝聚层 (coherent sheaf), 如果:

- (1) A 为局部有限生成的;
- (2) 对 X 的任意开集 U, 以及任意截面 $F_1, F_2, ..., F_r \in \mathcal{M}(U)$, 关系层 $\mathcal{R}(F_1, F_2, ..., F_r)$ 也是局部有限生成的。

通过适当缩小 $x \in X$ 的邻域 U,容易验证 M 是凝聚层一定是**局部有限呈示**的,即对任意 $x \in X$,存在 x 的开邻域 U,以及正整数 p,q,使得存在 U 上的 $\mathcal{A}|_{U}$ -模层正合列

$$\mathcal{A}|_{U}^{\oplus p} \to \mathcal{A}|_{U}^{\oplus q} \twoheadrightarrow \mathcal{M}|_{U} \to 0$$

由定义容易知道,凝聚层的局部有限生成子层也是凝聚的。

此外,对于 X 上的交换环层 A,称 A 为局部有限生成的(切转:凝聚的),如果 A 作为 A-模层是局部有限生成的(切转:凝聚的)。

凝聚层的下列基本性质是纯线性代数的:

性质 3.5.4. (凝聚层的基本性质)

设 A 为拓扑空间 X 上的交换环层,F, G 为凝聚 A-模层, $\varphi: F \to G$ 为 A-模层同态,则 $\ker \varphi$, $\operatorname{Im} \varphi$, $\operatorname{coker} \varphi$ 均为凝聚 A-模层。

证明. 显然 $\operatorname{Im} \varphi$ 是局部有限生成的,从而为凝聚层 $\mathcal G$ 的局部有限生成子层,故也为凝聚层。再看 $\ker \varphi$ 作为凝聚层 $\mathcal F$ 的子层,只需要说明 $\ker \varphi$ 是局部有限生成的。对任意 $x \in X$,由于 $\mathcal F$ 局部有限生成,取 x 的开邻域 U,以及截面 $F_1, F_2, ..., F_q \in \mathcal F(U)$ 为 $\mathcal F|_U$ 的生成元,于是有 $\varphi(F_1), \varphi(F_2), ..., \varphi(F_q) \in \mathcal G(U)$. 由 $\mathcal G$ 的凝聚性,取关系层 $\mathcal R(\varphi(F_1), \varphi(F_2), ..., \varphi(F_q))$ 的一组生成元 $G_1, G_2, ..., G_r \in \mathcal A(U)^{\oplus q}$,其中 $G_i = (G_i^1, G_i^2, ..., G_i^q)$,即有以 $\mathcal A(U)$ 为系数的矩阵 (G_i^j) ,其中 $1 \le i \le r, 1 \le j \le q$. 则容易验证 $\left\{ \sum_{j=1}^q G_i^j F_j \middle| 1 \le i \le r \right\}$ 是 $\ker \varphi|_U$ 的一组生成元,因此 $\ker \varphi$ 是局部有限生成的,进而由 $\mathcal F$ 的凝聚性知 $\ker \varphi$ 也是凝聚的。

再看 coker φ 的凝聚性。coker φ 作为局部有限生成层 \mathcal{G} 的商层,显然也是局部有限生成的。然后对 X 的任意开集 U,以及任意截面 $G_1,G_2,...,G_q \in \operatorname{coker} \varphi(U)$,断言关系层 $\mathcal{R}(G_1,G_2,...,G_q) \subseteq \mathcal{A}|_U^{\oplus q}$ 是局部有限生成的。对于任意 $x \in U$,取 x 在 U 中的(足够小)邻域 U', $G_i(1 \leq i \leq q)$ 在 U' 上的限制仍记为 G_i . 取截面 $G_i \in \operatorname{coker} \varphi(U')$ 在 \mathcal{G} 中的代表元 $\widetilde{G}_i \in \mathcal{G}(U')$,再取 $F_1,F_2,...,F_p \in \mathcal{F}(U')$ 为 $\mathcal{F}|_{U'}$ 的生成元,考虑关系层

$$\mathcal{R}(F_1,...,F_p;\widetilde{G}_1,...,\widetilde{G}_q)\subseteq \mathcal{A}|_{II'}^{\oplus (p+q)}$$

由 \mathcal{G} 的凝聚性 (不断缩小 U'),取其一组生成元

$$\left\{ H_i = (H_i^1, H_i^2, ..., H_i^{p+q}) \in \mathcal{A}(U')^{\oplus (p+q)} \middle| 1 \le i \le r \right\}$$

则容易验证 (纯线性代数,细节略)

$$\left\{\widetilde{H}_i = (\pi(H_i^{p+1}), ..., \pi(H_i^{p+q})) \in \mathcal{A}(U')^{\oplus q} \middle| 1 \le i \le r\right\}$$

是关系层 $\mathcal{R}(G_1, G_2, ..., G_q)|_{U'}$ 的生成元(其中 $\pi: \mathcal{G} \to \operatorname{coker} \varphi$ 为典范投影),从而关系层 $\mathcal{R}(G_1, G_2, ..., G_q)$ 是局部有限生成的,因此 $\operatorname{coker} \varphi$ 凝聚。

注记 3.5.5. 对于拓扑空间 X, A 为 X 上的交换环层, 记 A-Coh $_X$ 为 X 上的凝聚 A-模层范畴, 这是 A-Mod $_X$ 的子范畴。上述性质表明 A-Coh $_X$ 是 Abel 范畴。

性质 3.5.6. 设 A 为拓扑空间 X 上的交换环层,则对于 A-模层同态短正合列

$$0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$$

此正合列中任何两个为凝聚层均可推出第三个也为凝聚层。

证明. 只需再证明 F_1 , F_3 凝聚能推出 F_2 凝聚。先断言 F_2 是局部有限生成的。对任意 $x \in X$,取 x 的(足够小的)开邻域 U,并且取 F_1 , F_2 , ..., $F_p \in F_1(U)$ 为 $F_1|_U$ 的生成元,再取 G_1 , G_2 , ..., $G_q \in F_3(U)$ 为 $F_3|_U$ 的生成元。将 G_j 在 $F_2(U)$ 中的代表元记为 \widetilde{G}_j ($1 \le j \le q$),则容易验证 $\{F_1, F_2, ..., F_p; \widetilde{G}_1, \widetilde{G}_2, ..., \widetilde{G}_q\}$ 为 $F_2|_U$ 的一组生成元。从而 F_2 是局部有限生成的。

对 X 的任意开集 U,以及 $S_1,S_2,...,S_r \in \mathcal{F}_2(U)$,断言关系层 $\mathcal{R}(S_1,S_2,...,S_r)$ 是局部有限生成的。任取 $x \in U$,记截面 $S_1,...,S_r$ 在 $\mathcal{F}_3(U)$ 上的投影分别为 $\overline{S}_1,...,\overline{S}_r$. 由 \mathcal{F}_3 的凝聚性, $\mathcal{R}(\overline{S}_1,...,\overline{S}_r)$ 是局部有限生成的,从而取 x 在 U 中的(足够小且不妨不断缩小的)开邻域 U',以及 $\mathcal{R}(\overline{S}_1,...,\overline{S}_r)|_{U'}$ 的生成元矩阵

$$H := \begin{pmatrix} H_1^1 & \cdots & H_t^1 \\ \vdots & & \vdots \\ H_1^r & \cdots & H_t^r \end{pmatrix} \in \mathcal{A}(U')^{r \times t}$$

即每个 $H_j^i \in \mathcal{A}(U')$,H 中的列向量 $\in \mathcal{R}(\overline{S}_1,...,\overline{S}_r)(U')$,矩阵 H 的 r 个列向量构成 $\mathcal{R}(\overline{S}_1,...,\overline{S}_r)|_{U'}$ 的生成元。再令

$$(F_1, F_2, ..., F_t) := (S_1, S_2, ..., S_r)H$$

则易验证 $(F_1, F_2, ..., F_t) \in \mathcal{F}_1(U')^{\oplus t}$. 由 \mathcal{F}_1 的凝聚性,取 $\mathcal{R}(F_1, ..., F_t)|_{U'}$ 的生成元矩阵

$$K := egin{pmatrix} K_1^1 & \cdots & K_s^1 \ dots & & dots \ K_1^t & \cdots & K_s^t \end{pmatrix} \in \mathcal{A}(U')^{t imes s}$$

则容易验证 HK 为 $\mathcal{R}(S_1,...,S_r)|_{U'}$ 的生成元矩阵,从而 $\mathcal{R}(S_1,...,S_r)$ 是局部有限生成的。 综上所述,若 \mathcal{F}_1 与 \mathcal{F}_3 凝聚,则 \mathcal{F}_2 也凝聚。

推论 3.5.7. 设 F 是拓扑空间 X 上的凝聚 A-模层,则

- (1) 任意 n > 1, $\mathcal{F}^{\oplus n}$ 也是凝聚 \mathcal{A} -模层;
- (2) 对 X 的任意开集 U,以及任意 $F_1, F_2, ..., F_p \in \mathcal{F}(U)$,则关系层 $\mathcal{R}(F_1, F_2, ..., F_p)$ 也是凝聚的($\mathcal{A}|_{U}$ -模层)。
- 证明. (1)注意短正合列 $0 \to \mathcal{F} \to \mathcal{F} \oplus \mathcal{F}^{\oplus (n-1)} \to \mathcal{F}^{\oplus (n-1)} \to 0$,反复利用性质3.5.6作归纳即可。
- **(2)**由(1)知 $(\mathcal{F}|_{U})^{\oplus p}$ 是凝聚的,因此 $\mathcal{R}(F_{1},F_{2},...,F_{p})$ 作为 $(\mathcal{F}|_{U})^{\oplus p}$ 的局部有限生成子层,也是凝聚的。

推论 3.5.8. 若拓扑空间 X 上的 A-模层 M 是凝聚的,并且 M 的子层 F,G 也是凝聚的,那么 $F \cap G$ 也为凝聚 A-模层。

证明. 考虑层同态 $\varphi: \mathcal{F} \to \mathcal{M}/\mathcal{G}$ 为如下复合:

$$\mathcal{F}\hookrightarrow\mathcal{M}\twoheadrightarrow\mathcal{G}$$

注意 \mathcal{F} 与 \mathcal{M}/\mathcal{G} 都是凝聚的,再注意 $\mathcal{F} \cap \mathcal{G} \cong \ker \varphi$,因此 $\mathcal{F} \cap \mathcal{G}$ 也凝聚。

3.6 Oka 凝聚定理

本节介绍多复变函数论、复几何中的重要结果: 对于复流形 X,解析函数环层 \mathcal{O}_X 是凝聚层。这也是凝聚层的重要例子。注意凝聚性是局部性质,于是我们不妨 $X=\mathbb{C}^n$. 我们只需要证明,对 \mathbb{C}^n 的任意开子集 U,以及任意 $F_1, F_2, ..., F_q \in \mathcal{O}_X(U)$,关系层 $\mathcal{R}(F_1, F_2, ..., F_q)$ 是局部有限生成的。

现在,对任意 $x \in X$,由于 $\mathcal{O}_{X,x}$ 为诺特环,从而 $\mathcal{R}(F_1,...,F_q)_x \subseteq \mathcal{O}_{X,x}^{\oplus q}$ 为有限生成 $\mathcal{O}_{X,x}$ -模。但这与希望要证的 " $\mathcal{R}(F_1,...,F_q)$ 局部有限生成"还差些东西。我们暂时只能说明存在 x 的邻域 $U' \subseteq U$,以及有限多个 $\mathcal{O}_X^{\oplus q}$ 在 U' 的截面,使得它们在 x 的芽生成 $\mathcal{R}(F_1,...,F_q)_x$;但我们希望对 x 附近的任何点 y,这些截面在 y 处的芽也生成 $\mathcal{R}(F_1,...,F_q)_y$ ——这是不显然的。

引理 3.6.1. (重要引理)

对于 $n \geq 2$, 记 $\mathbb{C}^n = \left\{ (z', z_n) \middle| z' = (z_1, ..., z_{n-1}) \in \mathbb{C}^{n-1}, z_n \in \mathbb{C} \right\}$, 设 $F_1, F_2, ..., F_q$ 为定义在 $(0,0) \in \mathbb{C}^n$ 附近的解析函数,则存在 (0,0) 的邻域 $\triangle := \triangle' \times \triangle_n$,其中 \triangle' 与 \triangle_n 分别为 \mathbb{C}^{n-1} 与 \mathbb{C} 中的以原点为中心的多圆柱,使得对任意 $w = (w', w_n) \in \triangle$, $\left\{ (K^1, K^2, ..., K^q) \in \mathcal{O}_{\triangle, w}^{\oplus q} \middle| K^j \in \mathcal{K}, \forall 1 \leq j \leq q \right\}$ 是 $\mathcal{O}_{\triangle, w}$ -模 $\mathcal{R}(F_1, F_2, ..., F_q)_w$ 的一组生成元,其中

$$\mathcal{K} := \left\{ f(z', z) \in \mathcal{O}_{\triangle', w'}[z_n] \middle| \deg_{z_n} f \leq \mu \right\}$$
$$\mu := \max \left\{ \left. \operatorname{Ord}_{z_n}(F_k)_0 \middle| 1 \leq k \leq q \right. \right\}$$

证明. 对 $F_1, F_2, ..., F_q$ 在原点处使用 Weierstrass 预备定理,适当乘以原点附近的可逆解析函数(不会改变 $\mathcal{R}(F_1, ..., F_q)$ 在原点的足够小邻域的限制),不妨设 $F_1, ..., F_q \in \mathcal{O}_{\triangle',0}[z_n]$ 为定义在原点附近的关于 z_n 的 Weieretrass 多项式。此外,不妨

$$\deg_{z_n} F_q = \mu$$

Step 1 对于 $w = (w', w_n) \in \Delta$,关于 z_n 的 Weierstrass 多项式 F_q (通过平移)自然也视为关于 $(z_n - w_n)$ 的 Weierstrass 多项式(次数仍为 μ)。对 F_q 在 w 处使用 Weierstrass 预备定理,令 $F_q = f'f''$,其中 $f' \in \mathcal{O}_{\Delta',w'}[z_n]$ 为关于 $(z_n - w_n)$ 的 Weierstrass 多项式, $f'' \in \mathcal{O}_{\Delta,w}$ 在 w 附近可逆。注意 F_q 与 f' 都为 Weierstrass 多项式,从而由引理1.4.3可知 $f'' \in \mathcal{O}_{\Delta',w'}[z_n]$ 为关于 $(z_n - w_n)$ 的多项式。分别记 μ', μ'' 为多项式 f', f'' 关于 z_n 的次数,则 $\mu = \mu' + \mu''$.

Step 2 我们习惯将
$$\mathcal{R}(F_1, F_2, ..., F_q)_w$$
 中的元素记成列向量。对于任意的 $\begin{pmatrix} g^1 \\ g^2 \\ \vdots \\ g^q \end{pmatrix}$ $\in \mathcal{R}(F_1, F_2, ..., F_q)_w$,

对于 $1 \le j \le q-1$, 将 g^j 除以 Weierstrass 多项式 $F_{q,w}$, 由 Weierstrass 除法定理,得

$$g^{j} = F_{q,w}T^{j} + R^{j} \qquad (1 \le j \le q - 1)$$

其中 $T^j \in \mathcal{O}_{\triangle,w}$ 以及 $R^j \in \mathcal{O}_{\triangle',w'}[z_n]$,且 $\deg_{z_n} R^j < \mu'$. 而对于 j = q,令

$$R^q := g^q + \sum_{j=1}^{q-1} F_{j,w} T^j$$

则容易验证

$$\begin{pmatrix} g^{1} \\ g^{2} \\ \vdots \\ g^{q} \end{pmatrix} = \begin{pmatrix} F_{q,w} & & & & \\ & F_{q,w} & & & \\ & & \ddots & & \\ & & & F_{q,w} & & \\ & & & & F_{q,w} & & \\ & & & & & F_{q,w} & & \\ & & & & & & F_{q,w} & & \\ & & & & & & \\ & & & & & & & \\$$

Step 3 我们得到了
$$q$$
 阶方阵 $G := \begin{pmatrix} F_{q,w} & R^1 \\ & \ddots & & \vdots \\ & & F_{q,w} & R^{q-1} \\ -F_{1,w} & \cdots & -F_{q-1,w} & R^q \end{pmatrix}$. 容易验证 G 的每一列都 $F(F_1,F_2,...,F_q)_w$ 之中,并且除了第 (q,q) -分量 $G_q^q = R_q$, G 的其余矩阵元都位于 \mathcal{K} 中,即

位于 $\mathcal{R}(F_1,F_2,...,F_q)_w$ 之中; 并且除了第 (q,q)-分量 $G_q^q=R_q$,G 的其余矩阵元都位于 \mathcal{K} 中,即 为次数不超过 u 的关于 z 。 v \mathcal{L} 为次数不超过 μ 的关于 z_n 的 $\mathcal{O}_{\triangle',w'}$ -系数的多项式。最后,我们适当调整矩阵 G 的最后一列。

注意到 G 的第 q 列位于 $\mathcal{R}(F_1,F_2,...,F_q)_w$ 之中,以及 $F_q=f'f''$,从而

$$\sum_{j=1}^{q-1} F_{j,w} R^j + f' f'' R^q = 0$$

注意 $\deg_{z_n}\left(\sum\limits_{j=1}^{q-1}F_{j,w}R^j\right)<\mu+\mu'$,因此 $f'f''R^q\in\mathcal{O}_{\triangle',w'}[z_n]$ 并且 $\deg_{z,n}(f'f''R^q)<\mu+\mu'$. 又因 为 f' 是关于 z_n 的次数为 μ' 的 Weierstrass 多项式,从而由引理1.4.3可知, $f''R^q \in \mathcal{O}_{\triangle',w'}[z_n]$,并 且 $\deg_{z_n}(f''R^q) < \mu$. 从而考虑

$$\begin{pmatrix} g^{1} \\ g^{2} \\ \vdots \\ g^{q} \end{pmatrix} = \begin{pmatrix} F_{q,w} & f''R^{1} \\ & \ddots & \vdots \\ & & F_{q,w} & f''R^{q-1} \\ -F_{1,w} & \cdots & -F_{q-1,w} & f''R^{q} \end{pmatrix} \begin{pmatrix} T^{1} \\ \vdots \\ T^{q-1} \\ 1/f'' \end{pmatrix}$$

易知上式中的矩阵的每个矩阵元都位于 \mathcal{K} ,并且每一列都位于 $\mathcal{R}(F_1,F_2,...,F_q)_w$,因此 $\begin{pmatrix} 8 \\ \vdots \\ o^n \end{pmatrix}$ 由 上述矩阵 $(q \land \overline{q}) \mathcal{O}_{\triangle,w}$ -生成。从而证毕。

定理 3.6.2. (Oka 凝聚定理)

对于复流形 X, X 上的解析函数环层 \mathcal{O}_X 是凝聚的。

证明. 如之前所述,不妨 $X = \mathbb{C}^n$,以及对于任意开集 $U \subseteq \mathbb{C}^n$ 以及任意 $F_1, ..., F_q \in \mathcal{O}_{\mathbb{C}^n}(U)$,我们不妨 U 是以原点为中心的多圆柱区域,不妨 $F_1, ..., F_q$ 为关于 Z_n 的 Weierstrass 多项式。

对 $X = \mathbb{C}^n$ 的维数 n 归纳。n = 0 时平凡。对于 $n \geq 1$,如果 $\mathcal{O}_{\mathbb{C}^{n-1}}$ 是凝聚的,则对于 $(0,0) \in \mathbb{C}^{n-1} \times \mathbb{C}$ 的多圆柱邻域 $\Delta = \Delta' \times \Delta_n$,以及 $F_1, F_2, ..., F_q \in \mathcal{O}_{\Delta'}[z_n]$ 为 Weierstrass 多项式,它们关于 z_n 的最高次数记为 μ . 只需证 $\mathcal{F}(F_1, F_2, ..., F_q)$ 局部有限生成。对于任意的 $w \in \Delta$,

以及 $\begin{pmatrix} g^1 \\ \vdots \\ g^q \end{pmatrix} \in \mathcal{R}(F_1, F_2, ..., F_q)_w$,由重要引理3.6.1 可知,存在 $q \times (\mu + 1)$ 矩阵 $U = (U^j_{\alpha})_{\substack{1 \le j \le q \\ 0 \le \alpha \le \mu}}$,使

$$\begin{pmatrix} g^1 \\ \vdots \\ g^q \end{pmatrix} = \begin{pmatrix} U_0^1 & \cdots & U_\mu^1 \\ \vdots & & \vdots \\ U_0^q & \cdots & U_\mu^q \end{pmatrix} \begin{pmatrix} z_n^0 \\ \vdots \\ z_n^\mu \end{pmatrix}$$

其中 $U_{\alpha}^{j} \in \mathcal{O}_{\triangle',w'}$,视为定义在 $w' \in \triangle'$ 附近的解析函数,自然也视为定义在 $w \in \triangle$ 附近的(不显含 z_n 的)解析函数。注意 $F_k \in \mathcal{O}_{\triangle'}[z_n]$ 也为关于 z_n 的(次数不超过 μ 的)(Weierstrass)多项式,从而

$$(F_1, \cdots F_q) = (z_n^0, \cdots z_n^\mu) \begin{pmatrix} H_1^0 & \cdots & H_q^0 \\ \vdots & & \vdots \\ H_1^\mu & \cdots & H_q^\mu \end{pmatrix}$$

即得 $(\mu+1)\times q$ 的矩阵 H,H 的每个矩阵元都位于 $\mathcal{O}_{\triangle'}$ 之中,当然也是定义在 $w\in \triangle$ 附近的 (不显含 z_n 的) 解析函数。注意到

$$0 = (F_1, \cdots, F_q) \begin{pmatrix} g^1 \\ \vdots \\ g^q \end{pmatrix} = (z_n^0, \cdots z_n^\mu) HU \begin{pmatrix} z_n^0 \\ \vdots \\ z_n^\mu \end{pmatrix} =: \sum_{k=0}^{2\mu} L_k(U) z_n^k$$

因此比较 z_n 各次幂的系数,知 $L_k(U) = 0$, $\forall 0 \le k \le 2\mu$.

我们将矩阵 U 视为层 $\mathcal{O}_{\wedge'}^{\oplus q(\mu+1)}$ 在 w' 附近的截面,对于 $0 \le k \le 2\mu$, L_k 为层同态

$$L_k: \mathcal{O}_{\triangle'}^{\oplus q(\mu+1)}|_{\Omega'} \to \mathcal{O}_{\triangle'}|_{\Omega'}$$

并且 L_k 只与 $F_1, F_2, ..., F_q$ 有关。其中 Ω' 为 w' 在 Δ' 中的(足够小、不断缩小的)邻域。

由归纳假设, $\mathcal{O}_{\triangle'}$ 是凝聚的,因此 $\mathcal{O}_{\triangle'}^{\oplus q(\mu+1)}$ 也凝聚,因此对任意 $0 \leq k \leq 2\mu$,核层 $\ker L_k$ 也凝聚,从而 $\bigcap_{k=0}^{2\mu} \ker L_k$ 凝聚,故局部有限生成。因此存在截面 $U_1, U_2, ..., U_N \in \mathcal{O}_{\triangle'}^{\oplus q(\mu+1)}(\Omega')$,

使得 $\{U_1, U_2, ..., U_N\}$ 为 $\mathcal{O}_{\triangle'}^{\oplus q(\mu+1)}|_{\Omega'}$ 的子层 $\bigcap_{k=0}^{2\mu} \ker L_k$ 的生成元。其中对于 $1 \leq l \leq N$, U_l 为 $q \times (\mu+1)$ 矩阵,其矩阵元取值于 $\mathcal{O}_{\triangle'}(\Omega')$.

容易验证,以下N个q维列向量

$$\left\{ U_l \begin{pmatrix} z_n^0 \\ \vdots \\ z_n^{\mu} \end{pmatrix} \middle| 1 \le l \le N \right\}$$

构成关系层 $\mathcal{R}(F_1,...,F_q)|_{\Omega'}$ 的一组生成元。这就证明了 \mathcal{O}_{\triangle} 的凝聚性,证毕。

3.7 层的上同调

本节开始,我们讨论拓扑空间 X 上的 A-模层,即考虑范畴 A-Mod $_X$. 先简单回顾一些同调代数的记号、结论。对于 X 上的 A-模层 \mathcal{F} , \mathcal{F} 的**消解** (resolution) 是指形如下述的 A-Mod $_X$ 中的正合序列:

$$0 \to \mathcal{F} \xrightarrow{j} \mathcal{G}_0 \xrightarrow{d^0} \mathcal{G}_1 \xrightarrow{d^1} \cdots$$

注意范畴 Ab 是 Abel 范畴,因此我们可以考虑该范畴中的**内射对象**(injective object),即 "**内射层**"(injective sheaf)。具体地,Abel 群层 \mathcal{F} 是内射的,若对任意的层单同态 $i: \mathcal{F} \hookrightarrow \mathcal{G}$,以及任意的层同态 $\varphi: \mathcal{F} \to \mathcal{H}$,都存在层同态 $\psi: \mathcal{G} \to \mathcal{H}$,使得 $\varphi = \psi \circ i$,如下图:

我们承认以下事实:

定理 3.7.1. 对于拓扑空间 X,以及 X 上的交换环层 A,范畴 A-Mod $_X$ 是足够内射的,即对于 X 上任意的 A-模层 F,都存在内射层 I,以及层单同态 $F \hookrightarrow I$.

由同调代数,容易知道 A-Mod $_X$ 足够内射,当且仅当对任何 A-模层 \mathcal{F} ,都存在 \mathcal{F} 的内射消解(injective resolution)

$$0 \to \mathcal{F} \hookrightarrow \mathcal{I}^0 \to \mathcal{I}^1 \to \mathcal{I}^2 \to \cdots$$

即上述序列正合,并且 \mathcal{I}_k 为内射层 $(\forall k \geq 0)$ 。

定义 3.7.2. (层的上同调)

对于拓扑空间 X 上的 A-模层 F. 任取 F 的一个内射消解 $0 \to F \hookrightarrow I^{\bullet}$:

$$0 \to \mathcal{F} \to \mathcal{I}^0 \xrightarrow{d} \mathcal{I}^1 \xrightarrow{d} \mathcal{I}^2 \to \cdots$$

将函子 $\Gamma(X,-)$ (见注记3.3.2) 作用于其上,诱导了如下的 A(X)-模上链复形

$$0 \to \Gamma(X,\mathcal{F}) \hookrightarrow \Gamma(X,\mathcal{I}^0) \xrightarrow{d} \Gamma(X,\mathcal{I}^1) \xrightarrow{d} \Gamma(X,\mathcal{I}^2) \to \cdots$$

定义F的第q阶上同调群

$$H^q(X,\mathcal{F}) := H^q(\Gamma(X,\mathcal{I}^{\bullet}))$$

由函子 $\Gamma(X,-)$ 的左正合性可知,

$$H^{0}(X,\mathcal{F}) = \frac{\ker(\mathsf{d}:\Gamma(X,\mathcal{I}^{0}) \to \Gamma(X,\mathcal{I}^{1}))}{\operatorname{Im}(0 \to \Gamma(X,\mathcal{I}^{0}))} \cong \operatorname{Im}(\Gamma(X,\mathcal{F}) \hookrightarrow \Gamma(X,\mathcal{I}^{0})) \cong \Gamma(X,\mathcal{F}) = \mathcal{F}(X)$$

即为 F 的整体截面。

注记 3.7.3. 由同调代数的有关知识,上述 $H^q(X,\mathcal{F})$ 是良定的,与 \mathcal{F} 的内射消解无关。

此外,若 X 上有 \mathcal{A} -模层短正合列 $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$,则由同调代数的有关结果,可分别取 $\mathcal{F},\mathcal{G},\mathcal{H}$ 的适当的内射消解 $0 \to \mathcal{X} \hookrightarrow \mathcal{I}_{\mathcal{X}}^{\bullet}$ ($\mathcal{X} = \mathcal{F},\mathcal{G},\mathcal{H}$),使得存在链复形正合列

$$0 \to \mathcal{I}_{\mathcal{F}}^{\bullet}(X) \to \mathcal{I}_{\mathcal{G}}^{\bullet}(X) \to \mathcal{I}_{\mathcal{H}}^{\bullet}(X) \to 0$$

该链复形短正合列诱导相应同调的长正合列,即有:

定理 3.7.4. 设 X 为拓扑空间,则 X 上的 A-模层短正合列 $0 \to F \to G \to \mathcal{H} \to 0$ 诱导了层上同调的长正合列:

$$0 \to H^0(X, \mathcal{F}) \to H^0(X, \mathcal{G}) \to H^0(X, \mathcal{H}) \to H^1(X, \mathcal{F}) \to \cdots$$

层上同调的定义简单,但是难以具体计算。我们希望有更加方便的计算层上同调的方法。

定义 3.7.5. (松弛层)

称拓扑空间 X 上的 A-模层 S 是松弛的(flabby 或 flasque),如果对 X 的任意开集 U,限制同态 $S(X) \rightarrow S(U)$ 是满射。

对于 A-模层 F, 望文生义, F 的**松弛消解** (flabby resolution) 是指层正合列

$$0 \to \mathcal{F} \hookrightarrow \mathcal{S}^0 \to \mathcal{S}^1 \to \mathcal{S}^2 \to \cdots$$

其中每个 $S^k(k \ge 0)$ 都是松弛层。

我们承认如下事实:

定理 3.7.6. 对于 X 上的 A-模层 F, 若 $0 \to F \hookrightarrow S^{\bullet}$ 为 F 的一个松弛消解,则成立

$$H^{\bullet}(X,\mathcal{F}) \cong H^{q}(\Gamma(X,\mathcal{S}^{\bullet}))$$

特别地, 若 F 为松弛层, 则 $H^q(X, \mathcal{F}) = 0$ 对任意 $q \ge 1$ 成立。

也就是说,我们可以利用松弛消解来计算层上同调。然而,松弛消解一定存在吗?答案是肯定的。

记号 3.7.7. (典范松弛层)

设F为X上的A-模层,对于X的开集U,记

$$God(\mathcal{F})(U) := \left\{ f : U \to \coprod_{x \in U} \mathcal{F}_x \middle| f(x) \in \mathcal{F}_x, \, \forall x \in U \right\}$$

则 God(F) 为 X 上的松弛层,并且有典范的层单同态

$$j: \mathcal{F} \hookrightarrow God(\mathcal{F})$$

称 $God(\mathcal{F})$ 为关于 \mathcal{F} 的典范松弛层, 也称为 Godement 构造。

证明. $God(\mathcal{F})$ 的松弛性几乎显然。典范同态 $j: \mathcal{F} \hookrightarrow God(\mathcal{F})$ 如下给出: 对 X 的任意开子集 U,

$$j(U): \mathcal{F}(U) \rightarrow \operatorname{God}(\mathcal{F})(U)$$

 $s \mapsto (x \mapsto s_x)$

易知如此定义的 *j* 是层单同态。

也就是说 A-Mod $_X$ 中的任何对象都是某个松弛层的子层,即"足够松弛"。从而由同调代数的标准技术(与"足够内射 \iff 存在内射消解"完全一样)可知,X 上的任何 A-模层都存在松弛消解。

在一些更特殊的情形下,我们可以去计算某些层的上同调。回顾:设 $\mathcal{U} = \left\{ U_{\alpha} \middle| \alpha \in \mathcal{I} \right\}$ 为拓扑空间X的一族开覆盖,称X的另一族开覆盖 $\mathcal{V} = \left\{ V_{\beta} \middle| \beta \in \mathcal{J} \right\}$ 为 \mathcal{U} 的开加细(refinement),

若存在指标集之间的映射 $\rho: \mathcal{J} \to \mathcal{I}$,使得对任意 $\beta \in \mathcal{J}$,都有 $V_{\beta} \subseteq U_{\rho(\beta)}$;称 \mathcal{U} 是**局部有限**的,若任意 $x \in X$,存在 x 的开邻域 \mathcal{U} ,使得 $\left\{\alpha \in \mathcal{I} \middle| U_{\alpha} \cap \mathcal{U} \neq \varnothing\right\}$ 为有限集。

拓扑空间 X 称为**仿紧**(paracompact)的 ,如果 X 是 Hausdorff 的,并且 X 的任何开覆盖都存在局部有限开加细。众所周知,度量空间都是仿紧的,紧空间都是仿紧的,仿紧空间都是正规的。

定义 3.7.8. (单位分解环层)

设 X 为仿紧空间,A 为 X 上的交换环层,称 A 为 fine sheaf,若对 X 的任何开覆盖 $\mathcal{U} = \left\{ \alpha \middle| \alpha \in \mathcal{I} \right\}$,存在一族截面 $f_{\alpha} \in \mathcal{A}(X)$,使得

$$\operatorname{supp}(f_{\alpha}) := \overline{\left\{x \in X \middle| (f_{\alpha})_{x} \neq 0\right\}} \subseteq U_{\alpha}$$

$$\sum_{\alpha \in \mathcal{I}} f_{\alpha} \equiv 1 \in \mathcal{A}(X)$$

其中上述求和是局部有限的。

Fine sheaf 的典型例子是光滑流形上众所周知的单位分解定理:

例子 3.7.9. (单位分解定理)

设 X 为光滑流形, C^{∞} 为 X 上的光滑函数环层,则 C^{∞} 是 fine sheaf。

事实上,若仿紧空间 X 上的环层 A 是 fine sheaf,则任何 A-模层都是上同调平凡的:

定理 3.7.10. 设仿紧空间 X 上的环层 A 为 fine sheaf, 则对于任意 A-模层 F,

$$H^q(X, \mathcal{F}) = 0 \qquad (\forall q \ge 1)$$

证明. 任取 \mathcal{F} 的内射消解 $0 \to \mathcal{F} \hookrightarrow \mathcal{I}^{\bullet}$, 其中 $\mathbf{d}^k : \mathcal{I}^k \to \mathcal{I}^{k+1} \ (\forall k \geq 0)$, 则对任意 $q \geq 1$, 有

$$H^q(X,\mathcal{F})\cong rac{\ker(\operatorname{d}_X^q:\mathcal{I}^q(X) o\mathcal{I}^{q+1}(X))}{\operatorname{Im}(\operatorname{d}_X^{q-1}:\mathcal{I}^{q-1}(X) o\mathcal{I}^q(X))}$$

而对于任意截面 $s \in \ker d_X^q \subseteq \mathcal{I}^q(X)$,由 $\cdots \to \mathcal{I}^{q-1} \to \mathcal{I}^q \to \mathcal{I}^{q+1} \to \cdots$ 在 \mathcal{I}^q 处的正合性可知,存在 X 的开覆盖 $\mathcal{U} = \left\{ U_\alpha \middle| \alpha \in \mathcal{J} \right\}$,以及 $s_\alpha' \in \mathcal{I}^{q-1}(U_\alpha)$,使得 $d_{U_\alpha}^{q-1}(s_\alpha') = s|_{U_\alpha}$.

由于 \mathcal{A} 为 fine sheaf,从而取 $f_{\alpha} \in \mathcal{A}(X)$,使得 $\operatorname{supp}(f_{\alpha}) \subseteq U_{\alpha}$,并且 $\sum_{\alpha \in \mathcal{J}} f_{\alpha} = 1$ 为局部有限 和。从而有

$$s' := \sum_{\alpha \in \mathcal{I}} f_{\alpha} s'_{\alpha} \in \mathcal{I}^{q-1}(X)$$

并且 $d_X^{q-1}s'=s$. 这表明 $H^q(X,\mathcal{F})=0$.

推论 3.7.11. 设 X 为光滑流形, $E \to X$ 为 X 上的光滑向量丛, 自然也视为 X 上的 \mathcal{C}^{∞} -模层。则对任意 $q \ge 1$,

$$H^{q}(X, E) = 0$$

看来光滑流形上"常见的"层的上同调都是平凡的。 关于层上同调,以下是同调代数的基本结果:

定理 3.7.12. (de Rham-Weil 定理)

设F为拓扑空间X上的A-模层、若有A-模层正合列

$$0 \to \mathcal{F} \hookrightarrow \mathcal{L}^0 \to \mathcal{L}^1 \to \mathcal{L}^2 \to \mathcal{L}^3 \to \cdots$$

其中对任意 $n \ge 0$ 以及任意 $q \ge 1$,都成立 $H^q(X, \mathcal{L}^n) = 0$,那么有同构

$$H^{\bullet}(X,\mathcal{F}) \cong H^{\bullet}(\mathcal{L}^{\bullet}(X))$$

证明. 注意利用定理3.7.4, 之后是同调代数的标准技术。从略。

此定理中的 $\mathcal{L}^n(n \geq 0)$ 的任何 ≥ 1 阶上同调都平凡,这样的层称为**零调的** (acyclic). 类似地, \mathcal{F} 的消解 $0 \to \mathcal{F} \hookrightarrow \mathcal{L}^{\bullet}$ 称为**零调消解**。此定理表明,我们可以用零调消解来计算层上同调。

重要例子 3.7.13. (de Rham 上同调)

设 X 为光滑流形, \mathbb{R}_X 为 X 上的局部常值层, \mathcal{E}_X^p 为 X 上的微分 p-形式层(视为 \mathbb{R}_X -模层),则外微分 $d:\mathcal{E}_X^p\to\mathcal{E}_X^{p+1}$ 为 \mathcal{R} -模层同态。注意到对任意 $q\geq 0$, \mathcal{E}_X^q 是零调的,并且有层正合列

$$0 \to \mathbb{R}_X \hookrightarrow \mathcal{E}_X^0 \xrightarrow{d} \mathcal{E}_X^1 \xrightarrow{d} \mathcal{E}_X^2 \to \cdots \tag{*}$$

因此由 $de\ Rham$ -Weil 定理可知, $H^{\bullet}(X,\mathbb{R}_X) \cong H^{\bullet}_{DR}(X;\mathbb{R})$. 即 X 的 $de\ Rham$ 上同调同构于局部常值层 \mathbb{R}_X 的上同调。

证明. 注意到 \mathcal{E}_X^q 有自然的 $\mathcal{E}_X^0 = \mathcal{C}^\infty$ -模层结构,从而由定理3.7.10可知其零调。上链复形 (*) 的正合性是因为微分几何中的局部 Poincaré 引理。

重要例子 3.7.14. (Dolbeault 上同调)

设 X 为复流形, Ω_X^p 为 X 上的全纯 p-形式层(即 $\overline{\partial}$ -闭的 (p,0)-形式), $\mathcal{E}_X^{p,q}$ 为 X 上的光滑 (p,q) 形式层,则 $\mathcal{E}_X^{p,q}$ 是零调的。再注意对任意 $p\geq 0$,有层正合列

$$0 \to \Omega_X^p \hookrightarrow \mathcal{E}_X^{p,0} \xrightarrow{\overline{\partial}} \mathcal{E}_X^{p,1} \xrightarrow{\overline{\partial}} \mathcal{E}_X^{p,2} \xrightarrow{\overline{\partial}} \mathcal{E}_X^{p,3} \to \cdots$$
 (**)

从而由 de Rham-Weil 定理可知,对任意 $p,q \ge 0$,有同构

$$H^q(X, \Omega_X^p) \cong H^{p,q}_{\overline{\partial}}(X, \mathbb{C})$$

即第 (p,q) 阶 Dolbeaut 上同调同构于全纯 p-形式层的第 q 阶上同调。

证明. 注意到上链复形 (**) 的正合性是由 Dolbeault 引理保证的。

注记 3.7.15. (奇异上同调)

回顾代数拓扑当中"奇异上同调"的概念。对于光滑流形 X 的任意开集 U,考虑 U 上的奇异 q-上链之全体 $C^q_{\text{sing}}(U)$,这给出了 X 上的奇异 q-上链层 C^q_{sing} . 显然 C^q_{sing} 是松弛层。事实上我们有松弛消解

$$0 \to \mathbb{Z}_X \hookrightarrow \mathcal{C}^0_{sing} \xrightarrow{d} \mathcal{C}^1_{sing} \xrightarrow{d} \mathcal{C}^2_{sing} \to \cdots$$

从而得 $H^q_{\mathrm{sing}}(X,\mathbb{Z})\cong H^q(X,\mathbb{Z}_X)$, 即整系数奇异上同调同构于局部常值层 \mathbb{Z}_X 的上同调。

类似地, \mathbb{R} -系数奇异上同调同构于局部常值层 \mathbb{R}_X 的上同调。特别地,我们有 de Rham 定理: 对于光滑流形 X,则对任意 $q \geq 0$,有

$$H^q_{\mathrm{DR}}(X,\mathbb{R}) \cong H^q(X,\mathbb{R}_X) \cong H^q_{\mathrm{sing}}(X,\mathbb{R})$$

奇异上同调、de Rham 上同调都同构于局部常值层 \mathbb{R}_X 的上同调。

3.8 Čech 上同调

设 X 为拓扑空间,A 为 X 上的交换环层, \mathcal{F} 为 A-模层。对于 X 的开覆盖 $\mathcal{U} = \left\{ U_{\alpha} \middle| \alpha \in \mathcal{I} \right\}$,我们记

$$U_{\alpha_0\alpha_1\cdots\alpha_k}:=\bigcap_{j=0}^k U_{\alpha_j} \qquad (orall lpha_0,...,lpha_k\in\mathcal{I})$$

定义 3.8.1. (Čech 上同调)

记号同上,并且给定开覆盖 U 的指标集 I 上的一个良序 \leq ,则对任意 $q \geq 0$,记

$$C^q(\mathcal{U},\mathcal{F}) := \prod_{\substack{(\alpha_0,...,\alpha_q) \in \mathcal{I}^{q+1} \\ \alpha_0 \prec \alpha_1 \prec \cdots \prec \alpha_q}} \mathcal{F}(U_{\alpha_0 \cdots \alpha_q})$$

对于 $c \in C^q(\mathcal{U}, \mathcal{F})$, 记 c 的 $\mathcal{F}(\mathcal{U}_{\alpha_0 \cdots \alpha_q})$ -分量为 $c_{\alpha_0 \cdots \alpha_q}$. 再定义 $\delta^q : C^q(\mathcal{U}, \mathcal{F}) \to C^{q+1}(\mathcal{U}, \mathcal{F})$ 为: 对任意 $c \in C^q(\mathcal{U}, \mathcal{F})$,

$$(\delta^q(c))_{\alpha_0\alpha_1\cdots\alpha_{q+1}} := \sum_{k=0}^{q+1} (-1)^k c_{\alpha_0\cdots\widehat{\alpha_k}\cdots\alpha_{q+1}} |_{U_{\alpha_0\cdots\alpha_{q+1}}}$$

则容易验证 $\left\{\delta^q:C^q(\mathcal{U},\mathcal{F})\to C^{q+1}(\mathcal{U},\mathcal{F})\Big|q\ge 0\right\}$ 为上链复形,称之为 $\check{C}ech$ 上链复形,相应的上同调

$$\check{H}^{\bullet}(\mathcal{U},\mathcal{F}) := H^{\bullet}(C^{\bullet}(\mathcal{U},\mathcal{F}))$$

称为 F 关于开覆盖 U 的 $\check{C}ech$ 上同调.

容易验证上述定义的 δ^{\bullet} 满足 $\delta^{2}=0$,从而 $(C^{\bullet}(\mathcal{U},\mathcal{F}),\delta^{\bullet})$ 的确为上链复形。

此外由定义容易看出,若 $\mathcal U$ 为有限覆盖, $|\mathcal I|=n<+\infty$,那么 $C^n(\mathcal U,\mathcal F)=0$,并且对任意 $q\geq n$ 有 $\check{H}^q(\mathcal U,\mathcal F)=0$.

例子 3.8.2. (第零阶 Čech 上同调)

记号同之前,则有 $\check{H}^0(\mathcal{U},\mathcal{F})=\ker\delta^0$. 而对于 $c\in C^0(\mathcal{U},\mathcal{F})=\prod_{\alpha\in\mathcal{I}}\mathcal{F}(U_\alpha)$,有 $(\delta^0c)_{\alpha\beta}=(c_\beta-c_\alpha)|_{U_{\alpha\beta}}$,因此有

$$\ker \delta^0 = \left\{ c = (c_\alpha)_{\alpha \in \mathcal{I}} \in \prod_{\alpha \in \mathcal{I}} \mathcal{F}(U_\alpha) \middle| c_\alpha \middle|_{U_{\alpha\beta}} = c_\beta \middle|_{U_{\alpha\beta}}, \, \forall \alpha, \beta \in \mathcal{I} \right\} \stackrel{\underline{\textit{A}} \, \text{的粘合公理}}{=\!=\!=\!=\!=} \mathcal{F}(X)$$

即 $\check{H}^0(\mathcal{U},\mathcal{F})\cong\mathcal{F}(X)$ 为 \mathcal{F} 的整体截面之全体。

例子 3.8.3. (去心多圆柱)

考虑 \mathbb{C}^2 的开子集 $X:=\triangle\setminus\{0\}$, 其中 \triangle 为多圆柱 $\Big\{(z_1,z_2)\big||z_1|<1,z_2<1\Big\}$. 设 $\mathcal{U}=\{U_1,U_2\}$ 为 X 的开覆盖,其中 $\Big\{\begin{array}{l} U_1:=\{z_1\neq 0\}\cap\triangle=\mathbb{D}^*\times\mathbb{D}\\ U_2:=\{z_2\neq 0\}\cap\triangle=\mathbb{D}\times\mathbb{D}^* \end{array}$,试计算 $\check{H}^{\bullet}(\mathcal{U},\mathcal{O})$. 其中 \mathcal{O} 为 X 上的解析函数层。

解. 首先能够直接写出, $\check{H}^0(\mathcal{U},\mathcal{O})\cong\mathcal{O}(X)$,以及对任意 q>2, $\check{H}^q(\mathcal{U},\mathcal{O})=0$ (因为只有两片覆

盖)。只需计算 $\check{H}^1(U,\mathcal{O})$. 注意到

$$\mathcal{O}(U_1) = \left\{ c(z_1, z_2) = \sum_{\substack{m \in \mathbb{Z} \\ n \ge 0}} a_{mn} z_1^m z_2^n \middle|$$
该级数在 U_1 收敛 $\right\}$

$$\mathcal{O}(U_2) = \left\{ c(z_1, z_2) = \sum_{\substack{m \ge 0 \\ n \in \mathbb{Z}}} a_{mn} z_1^m z_2^n \middle|$$
该级数在 U_2 收敛 $\right\}$

$$\mathcal{O}(U_{12}) = \left\{ c(z_1, z_2) = \sum_{m,n \in \mathbb{Z}} a_{mn} z_1^m z_2^n \middle|$$
该级数在 U_{12} 收敛 $\right\}$

其中
$$U_{12} := U_1 \cap U_2 = \mathbb{D}^* \times \mathbb{D}^*$$
. 注意
$$\left\{ \begin{array}{l} C^0(\mathcal{U}, \mathcal{O}) = \mathcal{O}(U_1) \oplus \mathcal{O}(U_2) \\ C^1(\mathcal{U}, \mathcal{O}) = \mathcal{O}(U_{12}) \end{array} \right.$$
, 以及

$$\check{H}^{1}(\mathcal{U},\mathcal{O}) = \frac{C^{1}(\mathcal{U},\mathcal{O})}{\operatorname{Im}(\delta^{0}: C^{0}(\mathcal{U},\mathcal{O}) \to C^{1}(\mathcal{U},\mathcal{O}))}$$

直接用 δ^0 的定义容易验证

$$\operatorname{Im} \delta^{0} = \left\{ c_{2} - c_{1} \middle| c_{2} \in \mathcal{O}(U_{2}), c_{1} \in \mathcal{O}(U_{1}) \right\} = \left\{ c(z_{1}, z_{2}) = \sum_{m, n \in \mathbb{Z} \atop m \geq 0 \text{ is } n \geq 0} a_{mn} z_{1}^{m} z_{2}^{n} \middle| \text{该级数在 } U_{12} \text{ 收敛} \right\}$$

因此立刻得到

$$\check{H}^1(\mathcal{U},\mathcal{O}) = \left\{ c(z_1, z_2) = \sum_{\substack{m,n \in \mathbb{Z} \\ m < 0 \text{ } \exists \text{ } n < 0}} a_{mn} z_1^m z_2^n \middle|$$
该级数在 U_{12} 收敛 $\right\}$

例子 3.8.4. (复射影空间)

考虑复射影空间 \mathbb{CP}^1 的坐标覆盖 $\mathcal{U}=\left\{U_0,U_1\right\}$,其中 $U_i=\left\{[z_0,z_1]\Big|z_i\neq 0\right\}$,i=0,1. 记 \mathcal{O} 为 \mathbb{CP}^1 上的全纯函数层,则有 $\check{H}^q(\mathcal{U},\mathcal{O})\cong\left\{egin{array}{c}\mathbb{C}&q=0\\0&q>0\end{array}\right.$

解. 只需注意到 $U_1 \cong (\mathbb{C} \setminus \{0\}) \cup \{\infty\}$, 于是有

$$\mathcal{O}(U_0) = \left\{ \sum_{n\geq 0} a_n z^n \middle|$$
该级数在 U_0 收敛 $\right\}$
 $\mathcal{O}(U_1) = \left\{ \sum_{n\leq 0} a_n z^n \middle|$ 该级数在 U_1 收敛 $\right\}$
 $\mathcal{O}(U_{01}) = \left\{ \sum_{n\in \mathbb{Z}} a_n z^n \middle|$ 该级数在 U_{01} 收敛 $\right\}$

仿照上例的做法,容易计算出来(而且比上例容易)。

性质 3.8.5. (Čech 上链复形的加细)

设 F 为拓扑空间 X 上的 A-模层, $\mathcal{U}:=\left\{U_{\alpha}\middle|\alpha\in\mathcal{I}\right\}$ 为 X 的一族开覆盖, $\mathcal{V}:=\left\{V_{\beta}\middle|\beta\in\mathcal{J}\right\}$ 为 X 的另一族开覆盖。如果存在 $\rho:\mathcal{J}\to\mathcal{I}$ 使得 \mathcal{V} 为 \mathcal{U} 的加细,则存在自然的同态

$$\rho^{q}: C^{q}(\mathcal{U}, \mathcal{F}) \to C^{q}(\mathcal{V}, \mathcal{F})
c \mapsto (\rho^{q}c)_{\beta_{0} \cdots \beta_{q}} := c_{\rho(\beta_{0}) \cdots \rho(\beta_{q})}|_{V_{\beta_{0} \cdots \beta_{q}}}$$

则上述 ρ9 诱导了链映射

$$\rho^{\bullet}: C^{\bullet}(\mathcal{U}, \mathcal{F}) \to C^{\bullet}(\mathcal{V}, \mathcal{F})$$

进而诱导了 $\check{C}ech$ 上同调之间的同态 $H^{\bullet}(\rho): \check{H}^{\bullet}(\mathcal{U},\mathcal{F}) \to \check{H}^{\bullet}(\mathcal{V},\mathcal{F})$.

证明. 显然成立。

但是要注意一点,对于如此的 U,V,使得 V 是 U 的加细的 $\rho: \mathcal{J} \to \mathcal{I}$ 未必唯一。事实上若 $\rho_1,\rho_2: \mathcal{J} \to \mathcal{I}$ 都使得 V 为 U 的加细,则链映射

$$\rho_1^{\bullet}, \rho_2^{\bullet}: C^{\bullet}(\mathcal{U}, \mathcal{F}) \to C^{\bullet}(\mathcal{V}, \mathcal{F})$$

是**链同伦**的(我们承认这一点),因此它们诱导的 Čech 上同调之间的同态相同: $H^{\bullet}(\rho_1) = H^{\bullet}(\rho_2)$. 从而我的可以定义如下:

定义 3.8.6. (层关于拓扑空间的 Čech 上同调)

对于拓扑空间 X 上的 A-模层 F, 定义 F 关于拓扑空间 X 的 $\check{C}ech$ 上同调

$$\check{H}^q(X,\mathcal{F}) := \varinjlim_{\mathcal{U}} H^q(\mathcal{U},\mathcal{F})$$

其中 U 取遍 X 的开覆盖, 并且若 V 为 U 的加细, 则 $\check{H}^{q}(U,F) \to \check{H}^{q}(V,F)$.

由此定义容易看出, $\check{H}^0(X,\mathcal{F}) = \mathcal{F}(X)$ 为整体截面。

据说容易验证,对于开覆盖 U 的加细 V,则 $\check{H}^1(U,\mathcal{F})\to\check{H}^1(V,\mathcal{F})$ 是单同态。从而对任何 开覆盖 U,有嵌入 $\check{H}^1(U,\mathcal{F})\hookrightarrow\check{H}^1(X,\mathcal{F})$.

我们已经初步探讨不同开覆盖的 Čech 上同调之间的关系;现在考虑不同的层的 Čech 上同调。

性质 3.8.7. 设 X 为拓扑空间,F,G 为 X 上的 A-模层,U 为 X 的一个开覆盖, $\varphi: F \to G$ 为 A-模层同态。则 φ 自然诱导链映射

$$\varphi^{\bullet}: C^{\bullet}(\mathcal{U}, \mathcal{F}) \to C^{\bullet}(\mathcal{U}, \mathcal{G})$$

证明. 这是显然的。

如果再有 \mathcal{U} 的加细 (\mathcal{V},ρ) ,则有如下交换图:

$$C^{\bullet}(\mathcal{U}, \mathcal{F}) \xrightarrow{\varphi^{\bullet}} C^{\bullet}(\mathcal{U}, \mathcal{G})$$

$$\downarrow^{\rho^{\bullet}} \qquad \qquad \downarrow^{\rho^{\bullet}}$$

$$C^{\bullet}(\mathcal{V}, \mathcal{F}) \xrightarrow{\varphi^{\bullet}} C^{\bullet}(\mathcal{V}, \mathcal{G})$$

从而由余极限的泛性质可知,层同态 φ 诱导了 Čech 上同调的同态 $\check{H}^{\bullet}(\varphi): \check{H}^{\bullet}(X,\mathcal{F}) \to \check{H}^{\bullet}(X,\mathcal{G}).$ 现在,对于拓扑空间 X 的开覆盖 \mathcal{U} ,以及 \mathcal{A} -模层短正合列

$$0 \to \mathcal{F} \xrightarrow{\varphi} \mathcal{G} \xrightarrow{\psi} \mathcal{H} \to 0$$

注意对 X 的任意开集 U,"取截面"函子 $\Gamma(U,-)$ 是左正合的,即有左短正合列

$$0 \to \mathcal{F}(U) \xrightarrow{\varphi_U} \mathcal{G}(U) \xrightarrow{\psi_U} \mathcal{H}(U)$$

但一般来说 $\Gamma(U,-)$ 不是右正合的,即不保持满同态。但退而求其次,我们有如下的短正合列:

$$0 o \mathcal{F}(U) \xrightarrow{arphi_U} \mathcal{G}(U) \xrightarrow{\psi_U} \operatorname{Im} \psi_U o 0$$

记号 3.8.8. 设 $\psi: \mathcal{G} \to \mathcal{H}$ 为拓扑空间 X 上的 \mathcal{A} -模层同态, $\mathcal{U} = \left\{ U_{\alpha} \middle| \alpha \in \mathcal{I} \right\}$ 为 X 上的一族开 覆盖,则对任意 $q \geq 0$,记

$$C^q_{\psi}(\mathcal{U},\mathcal{H}) := \prod_{\substack{lpha_0,...lpha_q \in \mathcal{I} \ lpha_0 < lpha_1 \prec ... \prec lpha_q}} \operatorname{Im}(\psi_{U_{lpha_0 \cdots lpha_k}}) \subseteq C^q(\mathcal{U},\mathcal{H})$$

其中 ≺ 为开覆盖指标集 I 上的一个良序。

容易验证,Čech 微分 $\delta^q: C^q(\mathcal{U},\mathcal{F}) \to C^{q+1}(\mathcal{U},\mathcal{F})$ 在 $C^q_{\psi}(\mathcal{U},\mathcal{F})$ 上的限制给出了

$$\delta_{\psi}^{q}: C_{\psi}^{q}(\mathcal{U}, \mathcal{F}) \to C_{\psi}^{q+1}(\mathcal{U}, \mathcal{F})$$

并且有上链复形 $(C^{\bullet}_{\psi}(\mathcal{U},\mathcal{F}),\delta^{\bullet}_{\psi})$. 因此有同调代数的标准工具,得到以下:

性质 3.8.9. 设 U 为拓扑空间 X 的一族开覆盖,则 A-模层短正合列

$$0 \to \mathcal{F} \xrightarrow{\varphi} \mathcal{G} \xrightarrow{\psi} \mathcal{H} \to 0$$

诱导了如下的上链复形短正合列:

$$0 \to C^{\bullet}(\mathcal{U}, \mathcal{F}) \xrightarrow{\varphi^{\bullet}} C^{\bullet}(\mathcal{U}, \mathcal{G}) \xrightarrow{\psi^{\bullet}} C^{\bullet}_{\psi}(\mathcal{U}, \mathcal{H}) \to 0$$

进而诱导相应的同调对象的长正合列

$$0 \to \check{H}^0(\mathcal{U},\mathcal{F}) \to \check{H}^0(\mathcal{U},\mathcal{G}) \to \check{H}^0_{\text{tb}}(\mathcal{U},\mathcal{H}) \to \check{H}^1(\mathcal{U},\mathcal{F}) \to \cdots$$

如果拓扑空间 X 是仿紧的,我们会有更好的结果。以下定理述而不证:

定理 3.8.10. 设 X 为仿紧拓扑空间, $0 \to \mathcal{F} \xrightarrow{\varphi} \mathcal{G} \xrightarrow{\psi} \mathcal{H} \to 0$ 为 X 上的 A-模层正合列,则成立:

$$\underset{\mathcal{U}}{\underline{\lim}} \check{H}^{\bullet}(\mathcal{U}, \mathcal{H}) = \underset{\mathcal{U}}{\underline{\lim}} \check{H}^{\bullet} \psi(\mathcal{U}, \mathcal{H})$$

其中U取遍X的开覆盖。并且由此可以得出,该层短正合列诱导 $\check{C}ech$ 上同调的长正合列:

$$0 \to \check{H}^0(\mathcal{U},\mathcal{F}) \to \check{H}^0(\mathcal{U},\mathcal{G}) \to \check{H}^0(\mathcal{U},\mathcal{H}) \to \check{H}^1(\mathcal{U},\mathcal{F}) \to \cdots$$

证明. 从略。

目前我们介绍了层的 Čech 上同调,在回顾之前所介绍的"通常的"层上同调——事实上这两者之间有如下联系:

定理 3.8.11. (Leray 零调定理)

设 $U := \{U_{\alpha} \mid \alpha \in \mathcal{I}\}$ 为拓扑空间 X 的一族开覆盖, \mathcal{F} 为 X 上的 A-模层。如果对 \mathcal{I} 中的任意有限个指标 $\alpha_0,\alpha_1,...,\alpha_N$,都有

$$H^q(U_{\alpha_0\alpha_1\cdots\alpha_q},\mathcal{F}|_{U_{\alpha_0\alpha_1\cdots\alpha_q}})=0 \qquad (\forall q\geq 1)$$

那么对任意 $q \ge 1$, 有同构 $H^q(X, \mathcal{F}) \cong \check{H}^q(\mathcal{U}, \mathcal{F})$.

更进一步, 若 X 是仿紧的, 我们还有

$$H^q(X,\mathcal{F}) \cong \check{H}^q(\mathcal{U},\mathcal{F}) \cong \check{H}^q(X,\mathcal{F})$$

证明. 从略。

满足此定理条件的开覆盖 U 也被称为"零调覆盖" (acyclic covering)。

重要例子 3.8.12. (光滑线丛)

设 X 为光滑流形, $E \to X$ 为 X 上的光滑线丛(即 $\mathrm{rank}\, E = 1$)。取 E 的一族局部平凡化开 覆盖 $U = \left\{ U_{\alpha} \middle| \alpha \in \mathcal{I} \right\}$,并记相应的转移矩阵(在这里是转移函数)为 $g_{\alpha\beta}$. 考虑 \mathcal{E}_X^* 为 X 上的可逆光滑函数层,即对任意开集 U, $\mathcal{E}_X^*(U) = \left\{ f \in C^\infty(U) \middle| f$ 在 U 上恒不为零 $\right\}$. 注意 \mathcal{E}_X^* 为在通常的函数乘法下构成 Abel 群层。

容易验证 $(g_{\alpha\beta})_{\alpha,\beta\in\mathcal{I}}\in C^1(\mathcal{U},\mathcal{E}_X^*)$,并且在 Čech 微分 δ 作用下是闭的,从而线丛 E 的转移函数 $(g_{\alpha\beta})$ 给出了 $\check{H}^1(\mathcal{U},\mathcal{E}_X^*)$ 中的元素。又因为

$$\check{H}^1(\mathcal{U},\mathcal{E}_X^*) \hookrightarrow \check{H}^1(X,\mathcal{E}_X^*)$$

(这个我们承认),从而线丛 E 的转移函数 $(g_{\alpha\beta})$ 诱导了 $\check{H}^1(X,\mathcal{E}_X^*)$ 中的一个元素。

证明. 对于 $g=(g_{\alpha\beta})\in C^1(\mathcal{U},\mathcal{E}_X^*)$,注意向量丛转移函数的 cocycle 性质,直接计算其 Čech 微分得

$$(\delta g)_{\alpha\beta\gamma} = g_{\beta\gamma}g_{\alpha\gamma}^{-1}g_{\alpha\beta} = 1$$

从而 $g=(g_{\alpha\beta})$ 是 δ -闭的, $[g]\in \check{H}^1(\mathcal{U},\mathcal{E}_X^*)$.

注记 3.8.13. 事实上, 有一一对应

$$\left\{X \perp$$
的光滑线丛同构类 $\right\}\cong \check{H}^1(X,\mathcal{E}_X^*)$

重要例子 3.8.14. (全纯线丛)

考虑复流形 X, \mathcal{O}_X^* 为 X 上的可逆全纯函数层,在通常的函数乘法下构成 Abel 群层。与上例类似,对于全纯线丛 $E \to X$,E 的一族局部平凡化覆盖的转移函数诱导了 $\check{H}^1(X,\mathcal{O}_X^*)$ 中的一个元素。

事实上,也有一一对应

$$\left\{X \perp$$
的全纯线丛同构类 $\right\} \cong \check{H}^1(X, \mathcal{O}_X^*)$

此结论我们也述而不证。

第4章 Hermite 向量丛

4.1 向量丛的联络与曲率

先回顾一下光滑向量丛的联络(活动标架版本),这是黎曼几何的标准内容。我们考察光滑的实向量丛或者复向量丛。为表述方便,令 $\mathbb{K} := \mathbb{R}$ 或 \mathbb{C} .

记号 4.1.1. (向量值微分形式)

设 X 为光滑流形, $E \rightarrow X$ 为 X 上的光滑 \mathbb{K} -向量丛, 记

$$\Omega^p(X,E) := \Gamma(X,(\bigwedge^p T^*M) \otimes E)$$

为 X 上的取值于 E 的光滑 p-形式空间。

我们将 $\Omega^{\bullet}(X,E):=\bigoplus_{p\geq 0}\Omega^p(X,E)$ 自然视为分次线性空间,使得该空间的 p 次齐次子空间为 $\Omega^p(X,E)$. 注意到 X 上的微分 p-形式空间 $\Omega^p(X)\cong\Omega^p(X,\mathbb{K})$,此处的 \mathbb{K} 为 X 上的平凡线丛。注意 $\Omega^{\bullet}(X)$ 上的外积结构 \wedge ,它自然诱导了

$$\wedge: \Omega^p(X) \times \Omega^q(X, E) \to \Omega^{p+q}(X, E)$$

事实上这给出了 $\Omega^{\bullet}(X,E)$ 的一个分次 $\Omega^{\bullet}(X)$ -模结构。

局部地,取向量丛 E 的一个局部平凡化

$$\theta_{\alpha}: E|_{U_{\alpha}} \cong U_{\alpha} \times \mathbb{K}^r$$

记 $\{e_1,...,e_r\}$ 为 U_{α} 上的一组局部标架,则 $\Omega^p(X,E)$ 中的元素 s 在此局部标架下形如

$$s = \sum_{\lambda=1}^{r} \varphi^{\lambda} \otimes e_{\lambda} =: \varphi^{\lambda} \otimes e_{\lambda}$$

其中每个 φ_{λ} 均为光滑 p-形式,并采用 Einstein 求和约定。

定义 4.1.2. (向量丛上的联络)

设 $E \to X$ 为光滑流形 X 上的光滑向量丛,丛 E 上的**联络** (connection) 是指作用在分次向量空间 $\Omega^{\bullet}(X,E)$ 上的次数为 1 的齐次线性映射 $D:\Omega^{\bullet}(X,E)\to\Omega^{\bullet+1}(X,E)$,并且满足:

$$D(\varphi \wedge s) = d\varphi \wedge s + (-1)^p \varphi \wedge Ds$$

对任意 $\varphi \in \Omega^p(X)$ 以及 $s \in \Omega^q(X, E)$ 成立。

注意定义中并没要求 $D^2=0$,一般地 $(\Omega^{\bullet}(X,E),D)$ 并不是上链复形。易知向量丛 $E\to X$, E 上的联络之全体,构成 \mathbb{K} -线性空间. 联络的典型例子是,考虑 X 上的平凡线丛 \mathbb{K} ,则 $\Omega^{\bullet}(X,\mathbb{K})\cong\Omega^{\bullet}(X)$ 上的外微分 d 即为丛 \mathbb{K} 上的联络。

取 $E \to X$ 的局部平凡化坐标卡 U 及其局部标架 $\{e_1, e_2, ..., e_r\}$,则对任意 $t \in \Omega^p(X, E)$,其中 $r := \operatorname{rank} E$. 若在该局部标架下 $t = \varphi^{\lambda} \otimes e_{\lambda}$,则有

$$\mathrm{D}t = \mathrm{d}\varphi^{\lambda} \otimes e_{\lambda} + (-1)^{p} \varphi^{\lambda} \wedge \mathrm{D}e_{\lambda}$$

其中 $De_{\lambda} \in \Omega^{1}(U, E)$. 可见只要确定了 D 在 $e_{\lambda} \in \Omega^{0}(X, E)$ 上的作用,则联络 D 被唯一确定。我们令 $De_{\lambda} = a_{\lambda}^{\mu} \otimes e_{\mu}$,其中 $a_{\lambda}^{\mu} \in \Omega^{1}(U)$,称为 D 关于局部标架 $\{e_{1}, e_{2}, ..., e_{r}\}$ 的**联络** 1-形式,称 $r \times r$ 矩阵 $A := (a_{\lambda}^{\mu})$ 为 D 关于局部标架 $\{e_{1}, e_{2}, ..., e_{r}\}$ 的**系数矩阵**。若记 $e := (e_{1}, e_{2}, ..., e_{r})$ 为标架 排成的行向量,则有紧凑的表达式 De = eA.

在局部标架 $\{e_1,e_2,...,e_r\}$ 下, $\Omega^p(X,E)$ 中的元素 t 可以用以 p-形式为分量的列向量 $\varphi:=(\varphi^{\lambda})_{1<\lambda< r}$ 来表示,即 $t=\varphi^{\lambda}\otimes e_{\lambda}$. 在此意义下,有

$$Dt = d\varphi^{\lambda} \otimes e_{\lambda} + (-1)^{p} \varphi^{\lambda} \wedge De_{\lambda} = d\varphi^{\lambda} \otimes e_{\lambda} + (-1)^{p} \varphi^{\lambda} \wedge a_{\lambda}^{\mu} \otimes e_{\mu}$$
$$= (d\varphi^{\mu} + a_{\lambda}^{\mu} \wedge \varphi^{\lambda}) \otimes e_{\mu} = (d\varphi + A \wedge \varphi)^{\mu} \otimes e_{\mu}$$

或者简记为

$$D\varphi = d\varphi + A \wedge \varphi$$

性质 4.1.3. (联络矩阵的变换)

设 $E \to X$ 为光滑向量丛,D 为 E 上的一个联络。设 (U,e) 与 $(\widetilde{U},\widetilde{e})$ 为丛 E 的两个局部平凡化,其中 $e=(e_1,e_2...,e_r)$, $\widetilde{e}=(\widetilde{e_1},\widetilde{e_2},...,\widetilde{e_r})$ 为相应的局部标架。记它们之间的转移函数为 $\widetilde{e}_{\lambda}=g^{\mu}_{\lambda}e_{\mu}$, $G:=(g^{\mu}_{\lambda})$. 若 A,\widetilde{A} 分别为联络 D 关于标架 e,\widetilde{e} 的系数矩阵,则有变换关系

$$\widetilde{A} = G^{-1}AG + G^{-1}dG$$

证明. 将 $\tilde{e}_{\lambda} = g_{\lambda}^{\mu} e_{\mu}$ 写为紧凑的矩阵形式,有 $\tilde{e} = eG$. 从而我们有

$$D\widetilde{e} = D(eG) = (De)G + edG = eAG + edG$$

 $D\widetilde{e} = \widetilde{e}\widetilde{A} = eG\widetilde{A}$

因此整理得 $\widetilde{A} = G^{-1}AG + D^{-1}dG$.

定义 4.1.4. (曲率)

设 $E \to X$ 为光滑流形 X 上的光滑 \mathbb{K} -向量丛, D 为 E 上的一个联络, 则记

$$\Theta := D \circ D$$

为联络 D 的曲率 (curvature).

在局部标架 $e=(e_1,e_2,...,e_k)$ 下,对于 $t\in\Omega^p(X,E)$,若 $t=e\varphi$,其中 φ 为分量为 p-形式的列向量,利用局部标架下的联络公式 $D\varphi=d\varphi+A\wedge\varphi$,其中 A 为联络 D 在关于此标架的系数矩阵,可得

$$\Theta \varphi = D(d\varphi + A \wedge \varphi)
= d(d\varphi + A \wedge \varphi) + A \wedge (d\varphi + A \wedge \varphi)
= d^2\varphi + dA \wedge \varphi - A \wedge d\varphi + A \wedge d\varphi + A \wedge A \wedge \varphi
= (dA + A \wedge A) \wedge \varphi$$

即在局部标架 e 下,曲率算子 Θ 的矩阵 $\Omega = dA + A \wedge A$,此矩阵的矩阵元为光滑 2-形式,称为 **曲率形式**。

性质 4.1.5. (曲率形式在不同局部平凡化下的变化)

设 $E \to X$ 为光滑向量丛,D 为 E 上的联络, Θ 为联络 D 的曲率。设 $e = (e_1, e_2, ..., e_r)$ 与 $\widetilde{e} = (\widetilde{e_1}, \widetilde{e_2}, ..., \widetilde{e_r})$ 为 E 的两组局部标架,转移矩阵 G 满足 $\widetilde{e} = eG$. 则曲率 Θ 在标架 e, \widetilde{e} 下的矩阵 $\Omega, \widetilde{\Omega}$ 满足

$$\widetilde{\Omega} = G^{-1}\Omega G$$

证明. 我们已有 $\widetilde{A} = G^{-1}AG + G^{-1}dG$,从而 $G\widetilde{A} = AG + dG$,两边外微分得到

$$dG \wedge \widetilde{A} + Gd\widetilde{A} = dA \cdot G - A \wedge dG$$

因此有

$$\begin{split} \mathrm{d}\widetilde{A} &= G^{-1}\mathrm{d}A\cdot G - G^{-1}\mathrm{d}G\wedge \widetilde{A} - G^{-1}A\wedge \mathrm{d}G \\ &= G^{-1}\mathrm{d}A\cdot G - G^{-1}\mathrm{d}G\wedge (G^{-1}AG + G^{-1}\mathrm{d}G) - G^{-1}A\wedge \mathrm{d}G \\ &= G^{-1}\mathrm{d}A\cdot G - G^{-1}\mathrm{d}G\cdot G^{-1}AG - G^{-1}\mathrm{d}G\cdot G^{-1}\mathrm{d}G - G^{-1}A\wedge \mathrm{d}G \end{split}$$

$$\widetilde{A} \wedge \widetilde{A} = (G^{-1}AG + G^{-1}dG) \wedge (G^{-1}AG + G^{-1}dG)$$

= $G^{-1}A \wedge AG + G^{-1}A \wedge dG + G^{-1}dG \cdot G^{-1}AG + G^{-1}dG \cdot G^{-1}dG$

从而得到

$$\widetilde{\Omega} = d\widetilde{A} + \widetilde{A} \wedge \widetilde{A} = G^{-1}(dA + A \wedge A)G = G^{-1}\Omega G$$

注记 4.1.6. 此定理表明, 曲率 Θ 是丛 E 上的 2-形式值 (1,1) 型张量, 故称为曲率张量。具体地,

$$\Theta \in \Omega^2(X, \operatorname{Hom}(E, E))$$

重要例子 4.1.7. (对偶丛的联络与曲率)

设 $E \to X$ 为光滑向量丛, E^* 为 E 的对偶丛。注意到有如下自然的配对:

$$\langle , \rangle : \Omega^{p}(X, E^{*}) \times \Omega^{q}(X, E) \quad \to \quad \Omega^{p+q}(X)$$
$$\langle \varphi_{\lambda} \otimes e^{\lambda}, \psi^{\mu} \otimes e_{\mu} \rangle \quad := \quad \langle e^{\lambda}, e_{\mu} \rangle \varphi_{\lambda} \wedge \psi^{\mu}$$

若 D_E 为 E 上的联络,则 D_E 诱导了对偶丛 E^* 上的联络 D_{E^*} ,使得对任意 $s\in\Omega^p(X,E^*)$ 以及 $t\in\Omega^q(X,E)$ 都成立

$$d\langle s,t\rangle = \langle D_{E^*}s,t\rangle + (-1)^p \langle s,D_Et\rangle$$

取 E 的局部标架 $e=(e_1,e_2,...,e_r)$,记 $e^*:=(e_1^*,e_2^*,...,e_r^*)$ 为其对偶标架(也排成行向量),记对偶丛联络 $D^*:=D_{E^*}$ 的曲率为 Θ^* ,它们在对偶标架 e^* 上的矩阵记作 A^*,Ω^* ,则成立: $\begin{cases} A^*=-A^T \\ \Omega^*=-\Omega^T \end{cases}$ 这是因为,由于 $\langle e^{*T},e\rangle=I$,从而

$$0 = d\langle e^{*T}, e \rangle = \langle D^*e^{*T}, e \rangle + \langle e^{*T}, De \rangle = \langle (e^*A^*)^T, e \rangle + \langle e^{*T}, eA \rangle = A^{*T} + A$$

因此对偶联络的系数矩阵 $A^* = -A^T$. 从而对偶联络的曲率矩阵

$$\Omega^* = dA^* + A^* \wedge A^* = -dA^T + A^T \wedge A^T = -(dA + A \wedge A)^T = -\Omega^T$$

这里要特别注意微分形式矩阵的运算,注意 A 的矩阵元为微分 1-形式,从而易验证有 $(A \wedge A)^T = -A^T \wedge A^T$.

重要例子 4.1.8. (直和丛的联络与曲率)

设 $E,F \to X$ 均为 X 上的光滑向量丛, D_E,D_F 分别为 E,F 上的联络,则直和丛 $E \oplus F$ 上自 然有联络 $D_{E \oplus F}$,使得对任意 $u \in \Omega^p(X,E)$ 以及 $v \in \Omega^p(X,F)$,成立

$$D_{E \oplus F}(u \oplus v) = D_E u \oplus D_F v$$

取定 E 的局部标架 $e = (e_1, e_2, ..., e_r)$ 以及 F 的局部标架 $f = (f_1, f_2, ..., f_s)$,则 $E \oplus F$ 有局部标架 $e \oplus f = (e_1, ..., e_r; f_1, ..., f_s)$. 容易验证相应的联络、曲率矩阵满足

重要例子 4.1.9. (张量丛的联络与曲率)

设 $E,F \to X$ 均为 X 上的光滑向量丛, D_E,D_F 分别为 E,F 上的联络,则张量丛 $E \otimes F$ 上自然有联络 $D_{E\otimes F}$,使得对任意 E 的截面 u 以及 F 的截面 v,成立

$$D_{E\otimes F}(u\otimes v)=D_Eu\otimes v+u\otimes D_Fv$$

取定 E 的局部标架 $e = (e_1, e_2, ..., e_r)$ 以及 F 的局部标架 $f = (f_1, f_2, ..., f_s)$,则 $E \otimes F$ 有局部标架 $e \otimes f = \{e_\alpha \otimes f_\beta | 1 \le \alpha \le r, 1 \le \beta \le s\}$. 同意验证有关的联络、曲率矩阵满足

$$A_{E\otimes F} = A_E \otimes I_F + I_E \otimes A_F$$

$$\Omega_{F\otimes F} = \Omega_F \otimes I_F + I_F \otimes \Omega_F$$

在计算曲率时要当心微分 1-形式系数的矩阵的外积运算结果的符号。

重要例子 4.1.10. (行列式丛的联络与曲率)

设 $E \to X$ 为 X 上的秩为 r 的光滑向量丛, D_E 为 E 上的联络,则 D_E 自然诱导了**行列式从** det $E := \bigwedge^r E$ 上的联络 $D_{\text{det }E}$,使得对任意局部标架 $e = (e_1, e_2, ..., e_r)$,

$$D_{\det E}e_1 \wedge e_2 \wedge \cdots \wedge e_r = \sum_{k=1}^r e_1 \wedge \cdots \wedge D_E e_k \wedge \cdots \wedge e_r$$

E 的局部标架 $e=(e_1,e_2,...,e_r)$ 诱导了线丛 $\det E$ 的局部标架 $e_1 \wedge e_2 \wedge \cdots \wedge e_r$,容易验证相应的联络、曲率矩阵满足 $\begin{cases} A_{\det E} = \operatorname{tr} A_E \\ \Omega_{\det E} = \operatorname{tr} \Omega_E \end{cases}$ 只需注意到 $A_{\det E}$ 与 $\Omega_{\det E}$ 都是一阶矩阵,无非是普通的微分形式;验证曲率时注意 $\operatorname{tr}(A_E \wedge A_E) = 0$.

4.2 陈省身示性类

chern classes (defined by curvature).

Let $E \to X$ be a smooth complex vector bundle of rank r, where X be a complex manifold. (Chern-Weil theory)

V be a complex vector space, $f: \underbrace{V \times \cdots \times V}_{k} \to \mathbb{C}$ be a symmetric multi-linear form of degree

k.

 $\rightarrow f(v) := f(v, v, ..., v)$ is a homogeneous polynomial of degree k.

定义 4.2.1. assume G is a group (left) acting on V, s.t.

$$f(g(v_1),...,g(v_k)) = f(v_1,...,v_k)$$

for any $g \in G$, $v_i \in V$, then we say f is G-invariant.

Special case: $G = GL(r, \mathbb{C})$ and $V = LieG = \mathfrak{gl}r, \mathbb{C}$ be the Lie algebra of G, the action is

$$(g, M) \mapsto gMg^{-1}$$

Consider

$$\det(I + \frac{i}{2\pi}tm) = I + tf_1(M) + t^2f_2(M) + \cdots + t^rf_r(M)$$

 $\rightsquigarrow \forall 1 \leq k \leq r, f_k \text{ is } G\text{-invariant.}$

Let $E \to X$ complex vector bundle on a complex manifold, let D_E be a connection, curvature $H_E \in C_2^{\infty}(X, \text{Hom}(E, E))$. Let $f \in GL(r, \mathbb{C})$ - invariant "k-form", then

(1)Let H_{α} , H_{β} be the curvature forms of E in different trivialization, then $f(H_{\alpha}) = f(H_{\beta})$, so we get a globally defined 2k-form.

assume $H_{\alpha} = gH_{\beta}g^{-1}$, then

$$f(H_{\alpha}) = f(gH_{\beta}g^{-1}) = f(H_{\beta})$$

(2) we also have

$$\mathrm{d}f(H) = 0$$

locally , $H=H_{\alpha}=\mathrm{d}a_{\alpha}+A_{\alpha}\wedge A_{\alpha}$, then

$$df(H) = df(H_{\alpha}, H_{\alpha}, ..., H_{\alpha}) = \sum_{i=1}^{k} f(H_{\alpha}, ..., \underbrace{dH_{\alpha}, ..., \alpha}_{i})$$

$$=\sum_{i=1}^k f(H_{\alpha},...,dA_{\alpha}\wedge A_{\alpha}-A_{\alpha}\wedge dA_{\alpha},...,H_{\alpha})$$

Fact:(in Riemannian geometry) For any $x \in X$, we always can find a local frame s.t. $A_{\alpha}(x) = 0$. so, choose this frame,

$$\mathrm{d}f(H)=0$$

So, $[f(H)] \in H^{2k}(X, \mathbb{C})$

(3) Claim: the class [f(H)] is independent of the choice of the connections D_E .

Let D_0, D_1 be two connections, consider

$$D_t = (1-t)D_0 + tD_1$$

 $t \in [0,1]$, curvature H_t

Fact: $\alpha := A_1 - A_0$ is globally defined, and in $C_1^{\infty}(X, \text{Hom}(E, E))$.

Fact:

$$\frac{\mathrm{d}}{\mathrm{d}t}f(H_t) = k\mathrm{d}f(\alpha, H_t, H_t, ..., H_t)$$

So,

$$f(H_1) - f(H_0) = \int_0^1 \frac{\mathrm{d}}{\mathrm{d}t} f(H_t) \mathrm{d}t = \mathrm{d} \int_0^1 f(\alpha, H_t, H_t, ..., H_t) \mathrm{d}t$$

So,

$$[f(H_1)] - [f(H_0)]$$

定义 4.2.2. the k-th Chern class of E

$$c_k(E) := [f_k(\Theta_E)] \in H^{2k}(X, \mathbb{C})$$

Recall: Chern Class

X complex manifold, $E \to X$ is a smooth complex vector bundle of rank r. D is a connection, curvature $\Theta(D) \in C_2^{\infty}(X, \text{Hom}(E, E))$.

linear algebra:

$$\det(I + \frac{i}{2\pi}tM) = I + tf_1(M) + t^2f_2(M) + \dots + t^rf_r(M)$$

Chern class $\{f_k(\Theta)\}\in H^{2k}_{DR}(X,\mathbb{C})$ is independent of choice of connection.

Today:

Special case: E is a complex line bundle. Let D_0 be a connection on E, locally $D_0e = A_0e$, A_0 is 1-form. curvature

$$\Theta(D_0) = D_0^2 = dA_0 + A_0 \wedge A_0 = dA_0$$

so, curvature is d-exact, so $d\Theta(D_0) = 0$.

$$\det(I + \frac{i}{2\pi}tM) = I + \frac{i}{2\pi}tM$$

so, the first Chern class of line bundle is

$$c_1(E) = \{ \frac{i}{2\pi} \Theta(D_0) \}$$

Let D_1 be another connection, locally $D_1e = A_1e$, so $\Theta(D_1) = dA_1$.so,

$$\Theta(D_1) - \Theta(D_0) = d(A_1 - A_0)$$

where

$$A_1 - A_0 \in C_1^{\infty}(X, \operatorname{Hom}(E, E))$$

(when E is line bundle , $\operatorname{Hom}(E,E)\cong E^*\otimes E$ is trivial bundle) so, A_1-A_0 is a globally defined smooth function on X. So,

$$\{\Theta(D_1)\} = \{\Theta(D_0)\} \in H^2(X, \mathbb{C})$$

independent of the choice of connection.

4.3 Hermite 向量丛

定义 4.3.1. a complex vector bundle $E \to X$ of rank r is called a Hermitian vector bundle, if we have an inner product on E, i.e. locally, consider a local frame $\{e_1,...,e_r\}$, we have

$$\{e_i(x), e_i(x)\} = h_{ii}(x)$$

s.t. $(h_{ij}(x))$ is a positive definite Hermitian matrix depending smoothly on x.

注记 4.3.2. For any complex vector bundle, Hermitian structure always exists.

证明与黎曼几何类似。(黎曼度量的存在性)

定义 4.3.3. (Hermitian connection)

A connection D on E is called Hermitian, if

$$d\{e_i, e_j\} = \{De_i, e_j\} + \{e_i, De_j\}$$

More generally, let $t \in C_p^{\infty}(X, E), s \in C_q^{\infty}(X, Y),$

$$d\{s,t\} = \{dt,s\} + (-1)^p\{t,Ds\}$$

性质 4.3.4. D is a Hermitian connection, then the curvature

$$\Theta(D)^* = -\Theta(D)$$

 $(where (-)^* is conjugate transpose of matrix)$

it means that, $i\Theta(D) \in C_2^{\infty}(X, \text{Herm}(E, E))$

证明.

$$0 = d^{2}\{e_{i}, e_{j}\} = d\{De_{i}, e_{j}\} + d\{e_{i}, De_{j}\}$$
$$= \{D^{2}e_{i}, e_{j}\} - \{De_{i}, De_{j}\} + \{De_{i}, De_{j}\} + \{e_{i}, D^{2}e_{j}\} = \{(\Theta + \Theta^{*})e_{i}, e_{j}\}$$

注记 **4.3.5.** E is a Hermitian line bundle, D is a Hermitian connection, then $i\Theta(D)$ is a real 2-form , $c_1(E) \in H^2(X,\mathbb{R})$.

(Chern connection)

定义 4.3.6. Let X be a complex manifold. D' is called a connection of type (1,0) on E, if for any section $s \in C^{\infty}_{p,q}(X,E)$, we have $D's \in C^{\infty}_{p+1,q}(X,E)$.

A connection D'' is called a connection of type (0,1), if ... $D''s \in C_{p,q+1}^{\infty}(X,E)$.

注记 4.3.7. Let $E \to X$ be a vector bundle. Let D be a connection on E, locally

$$Ds \xrightarrow{\sim} d\sigma + A \wedge \sigma$$

$$d\sigma = \partial \sigma + \overline{\partial} \sigma$$

so, let A' be the (1,0)-part of A,...,

$$Ds = \partial \sigma + A' \wedge \sigma + (\overline{\partial} \sigma + A'' \wedge \sigma) =: D's + D''s$$

性质 **4.3.8.** E:Hermitian vector bundle, D is a Hermitian connection, locally, take a C^{∞} -frame $e_1,...,e_r$ which is orthonomal (i.e. $\{e_i(x),e_j(x)\}=\delta_{ij}$), then the connection coefficient A=A'+A'' satisfies

$$(A')^* = -A''$$

$$(\iff \bar{(iA)} = iA)$$

证明. because

$$0 = de_i, e_j = \{De_i, e_j\} + \{e_i, De_j\} = \{a_i^k e_k, e_j\} + \{e_i, a_j^l e_l\} = a_i^j + \overline{a_j^i}$$
 so, $A^* = -A$.

推论 4.3.9. $E \to X$ is a Hermitian vector bundle, D_0'' is a connection of type (0,1) on E. Then exists a unique Hermitian connection D such that $D'' = D_0''$.

证明. Let
$$A'' = A_0''$$
 and $A' = -(A_0'')^* \rightsquigarrow A = A' + A''$, and D is given by A .

Let $E \to X$ is a holomorphic Hermitian vector bundle, observe that $\overline{\partial}$ defines a connection of type (0,1) on E(check!)

assume E is a holomorphic line bundle, take a section $s \in C_p^{\infty}(X, E)$, i.e. we have a family of p-forms (s_{α}) such that $s_{\alpha} = g_{\alpha\beta}s_{\beta}$ where $g_{\alpha,\beta}$ is the holomorphic transition matrix.

$$\overline{\partial}s \xrightarrow{\sim} \overline{\partial}s_{\beta}$$

then

$$\overline{\partial}s_{\alpha} = g_{\alpha,\beta}\overline{\partial}s_{\beta}$$

(so, $\bar{\partial}$ is a connection of (0,1))

this connection is called the canonical connection of type (0,1).

定义 4.3.10. Let $E \to X$ holomorphic Hermitian vector bundle, the connection D on E is called Chern connection if

$$D'' = \overline{\partial}$$

Curvature of Chern connection

 $E \to X$ is holomorphic Hermite vector bundle , D is the Chern connection, Locally let $\{e_1, ..., e_r\}$ be a holomorphic frame, and two local sections

$$s, t \in C^{\infty}(\Omega, E)$$

where

$$s = \sum_{i=1}^{r} \sigma_i e_i$$

$$t = \sum_{i=1}^{r} t_i e_i$$

Since D is Hermitian,

$$d\{s,t\} = d((\sigma_1,...,\sigma_r)H\begin{pmatrix} t_1 \\ \vdots \\ t_r \end{pmatrix}) = (d\sigma)^T H t + \sigma^T (dH)t + \sigma^T H d(t)$$

so, we have

$$\{Ds,t\} + \{s,Dt\} = (d\sigma + \overline{H}^{-1}\partial \overline{H} \wedge \sigma)^T \wedge H\overline{t} + \sigma^T \wedge H\overline{(dt + \overline{H}^{-1}\partial \overline{H} \wedge t)}$$

so,

$$Ds = d\sigma + \overline{H}^{-1} \partial \overline{H} \wedge \sigma$$
$$D's = \partial \sigma + \overline{H}^{-1} \partial \overline{H} \wedge \sigma = \overline{H}^{-1} \partial (\overline{H}\sigma)$$
$$D''s = \overline{\partial} \sigma$$

so,

$$(D')^2 s = \overline{H}^{-1} \partial (\overline{H}(\overline{H}^{-1} \partial (\overline{H}\sigma))) = \dots = 0$$

$$(D'')^2s = \dots = 0$$

So we have

$$\Theta(D) = (D' + D'')^2 = D'D'' + D''D'$$

Locally,

$$\Theta s = D'D''s + D''D's = \overline{H}^{-1}\partial(\overline{H}\partial\sigma) + \overline{\partial}(\overline{H}^{-1}\overline{\partial}(\overline{H}\sigma)) = \dots = \overline{H}^{-1}\partial\overline{H}\wedge\overline{\partial}\sigma + \overline{\partial}(\overline{H}^{-1})\sigma$$
$$= \overline{\partial}(\overline{H}^{-1}\partial\overline{H})\sigma$$

So, Chern curvature

$$\Theta_D = \overline{\partial}(\overline{H}^{-1}\partial\overline{H})$$

Last time: $E \to X$ is a holomorphic vector bundle with a Hermitian metric H. Then there is a unique connection D_E s.t. ... called Chern connection.

Curvature of Chern Connection:

$$\Theta(D_E) = \overline{\partial}(\overline{H}^{-1}\partial\overline{H})$$

so,

$$i\Theta(D_E) \in C_{1,1}^{\infty}(X, \operatorname{Hom}(E, E))$$

例子 4.3.11. (Special case: E is a holomorphic line bundle)

locally, let e be ha holomorphic frame, $\langle e, e \rangle = h$ is the metric. then,

$$\Theta = \overline{\partial}(h^{-1}\partial h) = \overline{\partial}\partial \log h$$

so,

$$i\Theta(E) = -i\partial \overline{\partial} \log h$$

if $h = e^{-2\varphi}$ where φ is a smooth function, then

$$i\Theta(E) = 2i\partial\overline{\partial}\varphi = 2\sqrt{-1}\sum_{k,l}\frac{\partial^2\varphi}{\partial z_k\partial\overline{z_l}}\mathrm{d}z_k\wedge\mathrm{d}\overline{z_l}$$

Question: let s be a local holomorphic section of E,

$$-i\partial \overline{\partial} \log |s|_h^2 = ?$$

 $(\text{Hint:} \frac{i}{\pi} \partial \overline{\partial} \log z = ?$ 单复变,按分布意义下求导. 等于狄拉克测度 2333333) 可能是期末题目?

例子 4.3.12. $\mathcal{O}(-1)$ on $\mathbb{C}P^n$, tautological line bundle. (Recall: $\mathbb{C}P^n$ is a compact complex manifold with holomorphic charts

$$\Omega_j := \{ [z_0; z_1; ...; z_n] | z_j \neq 0 \} \rightarrow \left(\frac{z_0}{z_j}, \cdots, \hat{1}, \cdots, \frac{z_n}{z_j} \right) \in \mathbb{C}^n$$

)

Let V be a complex vector space, $\dim_{\mathbb{C}} V = n + 1$. Denote the projective space by

$$\mathbb{P}(V) = (V \setminus \{0\}) / \mathbb{C}^*$$

Let $\underline{V} := \mathbb{P}(V) \times V$ be the trivial vector bundle, define

$$\mathcal{O}(-1) := \{([x], \xi) | \xi \in \mathbb{C} \cdot x\}$$

性质 **4.3.13.** $\mathcal{O}(-1)$ is a holomorphic line bundle on $\mathbb{P}(V)$.

证明. $\mathcal{O}(-1)|_{\Omega_i}$ has a non-vanishing holomorphic section \mathcal{E}_j defined by

$$\mathcal{E}_j([x]) = \frac{x}{x_j}$$

for
$$0 \le j \le n$$
.

Assume V has a Hermitian inner product, then $\mathcal{O}(-1)$ has an Hermitian structure induced from V.

Let $e_0,...,e_n$ be an orthonormal basis of V, then $\mathcal{O}(-1)|_{\Omega_0}$ has a non-vanishing holomorphic section:

$$\mathcal{E}_0(z_1,...,z_n) = e_0 + z_1e_1 + ... + z_ne_n$$

where

$$\Omega_0 = \{[1; z_1; ...; z_n] | z_j \in \mathbb{C}\} \cong \mathbb{C}^n$$

then,

$$|\mathcal{E}_0|_h^2 = 1 + |z_1|^2 + \dots + |z_n|^2$$

so the Chern curvature of $\mathcal{O}(-1)$ on Ω_0 is given by

$$\Theta = \overline{\partial}\partial \log(1+|z_1|^2+\cdots+|z_n|^2)$$

Denote $\mathcal{O}(1) := \mathcal{O}(-1)^*$, then

$$\Theta(\mathcal{O}(1)) = -\overline{\partial}\partial \log(1+|z_1|^2 + \dots + |z_n|^2)$$

on Ω_0 .

$$i\Theta(\mathcal{O}(1)) = i\partial\overline{\partial}\log(1+|z_0|^2 + ... + |z_n|^2) = \sqrt{-1}\sum_{1 \le k,l \le n} c_{k,l} dz_k \wedge d\overline{z_l}$$

Exercise: (c_{kl}) is a positive definite Hermitian matrix.

"Fubini-Study metric" on $\mathbb{P}(V).\mathcal{O}(1)$ is "hyperplane line bundle of $\mathbb{P}(V)$ ".

Exercise: calculate

$$\int_{\mathbb{P}(V)} \left(\frac{i}{2\pi} \Theta(\mathcal{O}(1)) \right)^{\wedge n} = ?$$

(Hint: $\mathbb{P}(V) \setminus \Omega_0$ is a zero-measure set)

 $E \to X$: holomorphic line bundle, D_E is a Chern connection.

$$c_1(E) = \{\frac{i}{2\pi}\Theta(D_E)\} \in H^2_{DR}(X, \mathbb{R})$$

Exercise: 60% 的概率出现于期末试题

Consider the sequence

$$0 \to \mathbb{Z} \to \mathcal{O} \xrightarrow{e^{2\pi i *}} \mathcal{O}^* \to 0$$

it induces a long exact sequence

$$\cdots \to H^1(X,\mathcal{O}) \to H^1(X,\mathcal{O}^*) \xrightarrow{\delta} H^2(X,\mathbb{Z}) \to H^2(X,\mathcal{O}) \to \cdots$$

prove: Consider E as an element of $H^1(X, \mathcal{O}^*)$, then the image of $\delta(E)$ in $H^2(X, \mathbb{R}) \cong H^2_{DR}(X, \mathbb{R})$ is $c_1(E)$.

Exercise: E is a holomorphic line bundle, denote $\theta := \frac{i}{2\pi}\Theta(D_E)$ real (1,1)-form, where D_E is Chern connection with a metric h. Prove: for any smooth function $f \in C^{\infty}(X,\mathbb{R})$, there exists a Hermitian metric h_f s.t.

$$\frac{i}{2\pi}\Theta_{E,h_f} = \theta + i\partial\overline{\partial}f$$

第5章 L² Hodge 理论

5.1 向量丛上的微分算子

Differential operators on vector bundles.

Let X is a (connected) smooth manifold of (\mathbb{R} -)dimension n. $E,F:\mathbb{K}$ -vector bundle of rank r,r' respectively.

定义 5.1.1. a linear differential operator of degree k from E to F is a K-linear map

$$P: C^{\infty}(M, E) \to C^{\infty}(M, F)$$

$$u \mapsto Pu$$

locally given by

$$Pu(x) = \sum_{|\alpha| \le k} a_{\alpha}(x) D^{\alpha} u(x)$$

where $a_{\alpha}(x) = (a_{afa,\lambda\mu}(x))$ be a $r' \times r$ matrix.

$$u(x) = (u_1(x), ..., u_r(x))^T$$

Let $t \in \mathbb{K}, f \in C^{\infty}(M, \mathbb{K}), u \in C^{\infty}(M, E)$, then

$$e^{-tf(x)}P(e^{tf(x)}u(x)) = t^k\sigma_P(x,\mathrm{d}f(x))u(x) + \mathrm{terms}\ c_j(x)^{t_j} \quad (j < k)$$

定义 5.1.2.

$$\sigma_P: T^*M \to \operatorname{Hom}(E, F)$$

is called the principal symbol of P, which is a polynomial on T^*M .

locally,

$$\sigma_P(x,\xi) = \sum_{|\alpha|=k} a_{\alpha}(x) \xi^{\alpha}$$

$$(\xi^{\alpha}:=\xi_1^{\alpha_1}...\xi_n^{\alpha_n})$$

例子 5.1.3. Consider $d: C^{\infty}(M, \mathbb{K}) \to C^{\infty}(M, T^*M)$. then

$$du = \sum_{j=1}^{n} \begin{pmatrix} 0 \\ \vdots \\ 1(j^{th}) \\ \vdots \\ 0 \end{pmatrix} \frac{\partial u}{\partial x^{i}}$$

i.e.

$$\sigma_d(x,\xi) = \sum_{j=1}^n \begin{pmatrix} 0 \\ \vdots \\ 1(j^{th}) \\ \vdots \\ 0 \end{pmatrix} \xi_j$$

定义 **5.1.4.** *P* is called elliptic, if $\forall x \in M, \xi \in T_x^*M \setminus \{0\}$,

$$\sigma_P(x,\xi) \in \operatorname{Hom}(E_x,E_x)$$

is injective.

For example, d is elliptic.

L^2 -inner product

Let M be an oriented C^{∞} -manifold with a smooth volume form, locally

$$dV(x) = \gamma(x)dx_1 \wedge \cdots \wedge dx_n$$

 $\gamma(x) > 0$. Assume E has a Euclidean (or Hermitian) structure... Let $u, v \in C^{\infty}(M, E)$, define

$$\langle\langle u,v\rangle\rangle := \int_{M} \langle u,v\rangle dV(x)$$

define $L^2(M, E) :=$ space of sections with measurable coefficients with are L^2 w.r.t $\langle \langle , \rangle \rangle$.

定义 5.1.5. Let $P: C^{\infty}(M,E) \to C^{\infty}(M,F)$ be a differential operator, E,F have Euclidean (or Hermitian) structure, then there exists unique differential operator

$$P^*: C^{\infty}(M,F) \to C^{\infty}(M,E)$$

s.t.

$$\langle\langle Pu, v\rangle\rangle = \langle\langle u, P^*v\rangle\rangle$$

for all u, v s.t. $Suppu \cap Suppv \subset\subset M(relative\ compact...)$ P^* is called the formal adjoint of P.

证明. Existence: Assume that $SuppU, Suppv \subset \subset$ some coordinate chart Ω with coordinates $(x_1, ..., x_n)$, then

$$\ll Pv, u \gg = \int_{\Omega} \sum_{\alpha,\lambda,\mu} a_{\alpha,\lambda\mu}(x) D^{\alpha} u_{\mu}(x) \overline{v_{\lambda}(x)} \gamma(x) dx_1 \cdots dx_n$$

integration by parts, it

$$= \int_{\Omega} \sum_{\alpha,\lambda,\mu} (-1)^{|\alpha|} u_{\mu}(x) \overline{D^{\alpha}(\gamma(x) \overline{a_{\alpha,\lambda\mu}} v_{\lambda}(x))} dx_{1}..dx_{n}$$

Locally,

$$P^*v = \sum_{|\alpha| < k} (-1)^{|\alpha|} \gamma(x)^{-1} D^{\alpha} (\gamma(x) \overline{a_{\alpha}(x)}^T v(x))$$

Uniqueness: use the density of C^{∞} -section with compact support in $L^2(M, -)$.

推论 5.1.6. If $\sigma_P(x,\xi) = \sum_{|\alpha|=k} a_{\alpha}(x)\xi^{\alpha}$, then

$$\sigma_{P^*} = (-1)^k \overline{\sigma_P(x,\xi)}^T$$

推论 5.1.7. If rank E = rankF, P is differential operator, then P^* is elliptic $\iff P^*$ is elliptic.

5.2 椭圆算子的基本性质

Fundamental results of elliptic operators

M is a compact (oriented) C^{∞} -manifold, $\dim_{\mathbb{R}} M = n$, with a smooth volume form dV.

E is an Hermite vector bundle, $rank_C E = r$.

Sobolev space: $W^k(M, E)$:= the space of section $s: M \to E$ whose derivations up to order = k, := the completion of space of smooth sections w.r.t W^k -norm.

 $(\Omega_j)_{j\in I}$: a finite open covering of M, $E|_{\Omega_j}$ trivial, Let $(\rho_j)_{j\in I}$ be a partition of unity w.r.t. $(\Omega_j)_{j\in I}$, s.t. $\sum_j \rho_j^2 = 1$. locally, choose an orthonormal frame $(e_{j,\lambda})_{1\leq \lambda\leq r}$ on Ω_j , then $u = \sum_{\lambda=1}^r u_{j,\lambda} e_{j,\lambda}$ on Ω_j . Define

$$||u||_k^2 := \sum_{j,\lambda} ||e_j u_{j,\lambda}||_k^2$$

where

$$||e_j u_{j,\lambda}||_k^2 := \int_{\Omega_j} \sum_{|\alpha| < k} |D^{\alpha}(e_j u_{j,\lambda})|^2 dV(x)$$

注记 5.2.1. On a compact manifold, the equivalence of class of $||\cdot||_k$ is independent of the choice of: partition of unity, local trivialization, holomorphic covering...

引理 5.2.2. (Sobolev lemma)

For $k > l + \frac{n}{2}$, then we have

$$W^k(M, E) \subseteq C^l(M, E)$$

引理 5.2.3. (Rellich lemma)

For any $k \in \mathbb{Z}_{\geq 0}$, the inclusion

$$W^{k+1}(M,E) \hookrightarrow W^k(M,E)$$

is a compact operator.

引理 **5.2.4.** (Garding inequality)

If

$$P: C^{\infty}(M, E) \to C^{\infty}(M, F)$$

$$||u||_{k+d} \le C_k (||\tilde{P}u||_k + ||u||_0)$$

where C_k depending on k, M.

证明. Reference: Kodaira: deformation of complex structures (Appendix)

推论 **5.2.5.** If $u \in \ker \tilde{P} \cap W^0(M, E)$, then $u \in C^{\infty}(M, E)$.

引理 **5.2.6.** (Finiteness theorem)

Setting M be a compact manifold, rankE = rankF,

$$P: C^{\infty}(M, E) \to C^{\infty}(M, F)$$

elliptic, then:

- (1) ker P is of finite dimension
- (2) $P(C^{\infty}(M, E))$ is closed and of finite codimension in $C^{\infty}(M, F)$. If P^* is the formal adjoint of P, then \exists decomposition

$$C^{\infty}(M,F) = P(C^{\infty}(M,E)) \oplus \ker P^*$$

which is orthogonal in $W^0(M,F) = L^2(M,F)$

证明. 椭圆算子的一般结果,分析的东西 233333333. 可以参考小平邦彦复流形与复结构形变的附录。

5.3 紧黎曼流形的 Hodge 理论

Hodge theory in compact Riemannian manifold

Hodge star operator.

M compact Riemannian manifold, $\dim_{\mathbb{R}} = n$, E is a Hermitian vector bundle. Assume $(\xi_1,...,\xi_n), (e_1,...,e_n)$ be orthonormal frame of TM, E on some local chart Ω , denote $(\xi_1^*,...,\xi_n^*), (e_1^*,...,e_n^*)$ be the co-frame of T^*M , T^*E .

 $\wedge^{\bullet}T^{*}M$ is endowed with an inner product frame from TM. locally,

$$\langle u_1 \wedge \cdots \wedge u_p, u_1 \wedge \cdots \wedge u_p \rangle := \det(\langle u_i, v_j \rangle)$$

for $u_i, v_i \in T^*M$. Then, get an inner product on $\wedge^p T^*M$.

Assume

$$U = \sum_{\substack{|I| = p \\ i_1 \le \dots \le i_p}} u_I \xi_I^*$$

$$V = \sum_{\stackrel{|I|=p}{i_1 \leq ... \leq i_p}} v_I \xi_I^*$$

be p-forms, then

$$\langle u, v \rangle = \sum_{|I|=p} u_I v_I$$

i.e. $\left\{ \xi_{T}^{\ast}\right\}$ is an orthonormal basis of $\wedge^{p}T^{\ast}M.$

 $\wedge^* T^* M \otimes E$ has an inner product induced from $\wedge^* T^* M, E$,

定义 5.3.1. the Hodge star operator

$$*: \wedge^p T^*M \to \wedge^{n-p} T^*M$$

is defined by

$$u \wedge *v = \langle u, v \rangle dV$$

Locally, let

$$U=\sum_{|I|=p}u_I\xi_I^*,\,V=\sum_{|I|=p}v_I\xi_I^*$$

assume

$$*V = \sum_{|J|=n-p} a_J \xi_J^*$$

then

$$U \wedge * \sum u_I a_{I^c} \xi_I^* \wedge \xi_{I^c}^* = \sum u_I a_{I^c} \varepsilon(I, I^c) \xi_1^* \wedge \dots \wedge \xi_n^*$$
$$\langle u, v \rangle dV = \sum_{|I|=p} u_I v_I \xi_1^* \wedge \dots \wedge \xi_n^*$$

so, we have

$$*V = \sum_{|I|=p} \varepsilon(I, I^c) V_I \xi_{I^c}^* \in \bigwedge^{n-p} T^* M$$

定义 5.3.2.

$$*: \bigwedge^p T^*M \otimes E \to \bigwedge^{n-p} T^*M \otimes E$$

is defined by

$$\{s, *t\} := \langle s, t \rangle dV$$

Locally, assume

$$t = \sum_{\stackrel{|I|=p}{1 \leq \lambda \leq r}} t_{I,\lambda} \xi_I^* \otimes e_{\lambda}$$

then

$$*t = \sum_{\stackrel{|I|=p}{1 < \lambda < r}} \varepsilon(I, I^c) t_{I,\lambda} \xi_{I^c}^* \otimes e_{\lambda}$$

定义 5.3.3.

$$\#: \bigwedge^p T^*M \otimes E \to \bigwedge^{n-p} T^*M \otimes E^*$$

is defined by: for any $s, t \in \bigwedge^p T^*M \otimes E$, such that

$$s \wedge \#t := \langle s, t \rangle dV$$

wedge product+ pairing of $E^* \times E \to \mathbb{C}$.

Locally: assume

$$t = \sum_{\stackrel{|I|=p}{1 \le \lambda_r}} t_{I,\lambda} \xi_T^* \otimes e_{\lambda}$$

then,

$$\#t = \sum_{|I|=p,\lambda} arepsilon(I,I^c) t_{I,\lambda} \xi_c^* I \otimes e_\lambda^*$$

性质 5.3.4.

$$*^2 = (-1)^{p(n-1)}$$
 on $\bigwedge^p T^*M \otimes E$
 $\#^2 = (-1)^{p(n-1)}$ on $\bigwedge^p T^*M \otimes E$

(正负号对吗?)

Recall: For all $s, t \in C^{\infty}(M, \bigwedge^p T^*M \otimes E)$, we have an inner product

$$\langle \langle s, t \rangle \rangle := \int_{M} \langle s, t \rangle dV$$

定理 5.3.5. Let D_E be an Hermite connection on E, acting on $\bigwedge^p T^*M \otimes E$, then

$$D_E^* := (-1)^{np+1} * D_E *$$

where D_E^* is the formal adjoint of D_E .

证明. Let $s \in C^{\infty}(M, \bigwedge^p T^*M \otimes E)$ and $t \in C^{\infty}(M, \bigwedge^{p+1} T^*M \otimes E)$. then

$$\langle\langle D_E s, t \rangle\rangle = \int_M \langle D_E s, t \rangle dV = \int_M \{D_E s, *t\}$$

Since D_E is Hermitian , by definetion ,

$$d\{s, *t\} = \{D_E s, t\} + (-1)^p \{s, D_E(*t)\}$$

so,

$$\langle \langle D_E s, t \rangle \rangle = \int_M d\{s, *t\} + (-1)^{p+1} \{s, D_E * t\} = (-1)^{p+1} (-1)^{p(n_1)} \int_M \{s, *(*D_E * t)\} = \langle \langle s, D_E^* t \rangle \rangle$$
so,

$$D_E^*t = (-1)^{np+1} * D_E *$$

定义 5.3.6.

$$\triangle_E = D_E D_E^* + D_E^* D_E : C^{\infty}(M, \bigwedge^p T^*M \otimes E) \to C^{\infty}(M, \bigwedge^p T^*M \otimes E)$$

例子 5.3.7. Let $M = \mathbb{R}^n$, $g = \sum_{i=1}^n dx_i^2$, $E = M \times \mathbb{C}$ trivial line bundle with $D_E = d$. then

$$\triangle_E u = (\mathrm{d}\mathrm{d}^* + \mathrm{d}^*\mathrm{d})u = -\sum_{i=1}^n \left(\sum_{|I|=p} \frac{\partial^2 u_I}{\partial x_I^2} \mathrm{d}x_I\right)$$

where

$$u = \sum_{|I|=p} u_I \mathrm{d} x_I$$

性质 5.3.8. \triangle_E is a self-adjoint elliptic operator. (i.e. $\triangle_E^* = \triangle_E$)

证明. $\triangle_E^* = \triangle_E$ be definition. note that

$$e^{-tf}D_E(e^{tf}s) = tdf \wedge s + D_E s$$

so,

$$\sigma_{D_E}(x,\xi)s=\xi\wedge s$$

$$\sum_{D_{E}^{*}} = -\overline{\sigma_{D_{E}}}^{T}$$

$$\sigma_{D_{E}^{*}}(x,\xi)s = -\tilde{\xi} \lrcorner s$$

where $\tilde{\xi}$ be the vector field dual to ξ .

定义 5.3.9.

$$\triangle_E = D_E D_E^* + D_E D_E^* : C^{\infty}(M, \bigwedge^p T^*M \otimes E) \to C^{\infty}(M, \bigwedge^p T^*M \otimes E)$$

so,

$$\sigma_{\triangle_E}(x,\xi)s = \left(\sigma_{D_E}\sigma_{D_E^*}(x,\xi) + \sigma_{D_E^*}\sigma_{D_E}(x,\xi)\right)s$$

so, σ_{\triangle_E} is injective if $\xi \neq 0$, so \triangle_E is elliptic.

Harmonic forms and Hodge isomorphism.

定义 **5.3.10.** u is called harmonic if $\triangle_d u = 0$.

定理 5.3.11. M is a compact Riemannian manifold, then de Rham cohomology

$$H_{DR}^p(M,\mathbb{R}) \cong \ker(\triangle_d : C^{\infty}(M,\bigwedge^p T^*M))$$

证明. \triangle_d self-adjoint elliptic, so by general result for elliptic operator,

$$C^{\infty}(M, \bigwedge^{p} T^{*}M) = \operatorname{Im} \triangle_{d} \oplus \ker \triangle_{d}^{*} = \operatorname{Im} \triangle_{d} \oplus \ker \triangle_{d}$$

Claim:

$$\text{Im}\,\triangle_d = \in d \oplus \text{Im}\,d^*$$

 $\mathrm{Recall}\ \triangle_d = dd^* + d^*d,\,\mathrm{so}$

$$\text{Im}\,\triangle_d\subseteq \text{Im}\,d\oplus\in d^*$$

on the other hand,

$$\operatorname{Im} d \oplus \operatorname{Im} d^* \subseteq (\ker \triangle_d)^{\perp} = \operatorname{Im} \triangle_d$$

so,

$$\text{Im}\,\triangle_d=\text{Im}\,d\oplus\text{Im}\,d^*$$

so,

$$C^{\infty}(M, \bigwedge^{p} T^{*}M) = \operatorname{Im} d \oplus \operatorname{Im} d^{*} \oplus \ker \triangle_{d}$$

so,

$$H_{DR}^{p}(M,\mathbb{R}) = \frac{\operatorname{Im} d \oplus \ker \triangle_{d}}{\operatorname{Im} d} = \ker \triangle_{d}$$

推论 5.3.12.

$$\dim H^p_{DR}(M,\mathbb{R}) = \dim \ker \triangle_{\mathsf{d}} < +\infty$$

注记 5.3.13. Consider

$$u \mapsto \int_{M} (\langle u, u \rangle + \langle du, du \rangle + \langle d^{*}u, d^{*}u \rangle) dV$$

这个泛函的变分是什么鬼?

Harmonic forms and Hodge isomorphism

Recall: M is a compact Riemann manifold,

$$d: C^{\infty}(M, \bigwedge^* T^*M) \to C^{\infty}(M, \bigwedge^{*+1} T^*M)$$

 ${\rm adjoint}\ d^*,$

$$\triangle_d = dd^* + d^*d$$

is a self-adjoint elliptic operator.

Hodge decomposition:

$$C^{\infty}(M, \bigwedge^p T^*M) = \ker \triangle_d \oplus \operatorname{Im} d \oplus \operatorname{Im} d^*$$

$$\mathcal{H}^p(M, \mathbb{R}) := \ker \triangle_d \quad \text{finite dimension}$$

$$\mathcal{H}^p(M, \mathbb{R}) \cong H^p_{DR} \cong H^p(M, \mathbb{R})$$

(Hodge isomorphism, and, de Rham-Weil)

Poincare duality

定理 **5.3.14.** The pairing

$$H_{DR}^{p}(M,\mathbb{R}) \times H_{DR}^{n-p}(M,\mathbb{R}) \to \mathbb{R}$$

 $(s,t) \mapsto \int_{M} s \wedge t$

(is well defined) is non-degenerated. In particular, $H^p_{DR}(M,\mathbb{R})^* \cong H^{n-p}_{DR}(M,\mathbb{R})$

证明. the pairing factors through the pairing on

$$\mathcal{H}^{p}(M,\mathbb{R}) \times \mathcal{H}^{n-p}(M,\mathbb{R}) \to \mathbb{R}$$

$$(s,t) \mapsto \int_{M} s \wedge t$$

need to verify:(1) it is independent of the choice of representations.(Easy, check) (2) Pairing $\mathcal{H}...\times\mathcal{H}...$ is non-degenerated..

 $\operatorname{claim}(\operatorname{Exercise}) \colon \operatorname{Hodge} \ \operatorname{star} \ast \operatorname{s.t.} \ \ast \triangle_d = \triangle_d \ast.$

so, s is a harmonic p-form \iff *s is a harmonic (n-p)-form.

note that

$$s \wedge *s = \langle s, s \rangle dV = \int_M s \wedge *s = \int_M \langle s, s \rangle dV = ||s||^2$$

推论 5.3.15.

$$\dim \mathcal{H}^p(M,\mathbb{R}) = \dim \mathcal{H}^{n-p}(M,\mathbb{R})$$

Generalization to flat bundle. M is a compact Riemannian manifold, $\dim_{\mathbb{R}} M = n$, $E \to M$ is a complex Hermitian vector bundle.

定义 5.3.16. $E \to X$ is called flat, if it admit a connection D_E s.t.

$$D_E^2=0$$

注记 5.3.17. E is flat \iff E is given by a representation

$$\pi_1(M) \to GL(r,\mathbb{C})$$

(我们不证)

Consider the complex:

$$(C^{\infty}(M, \bigwedge^* T^*M \otimes E), D_E)$$

$$\rightsquigarrow H_{DR}^p(M, E) := \frac{\ker D_E}{\operatorname{Im} D_E}$$

Exercise: we have decomposition

$$C^{\infty}(M, \bigwedge^{p} T^{*}M \otimes E) = \ker \triangle_{D_{E}} \oplus \operatorname{Im} D_{E} \oplus \operatorname{Im} D_{E}^{*}$$
$$H_{DR}^{p}(M, E) \cong \ker \triangle_{D_{E}}$$

and the pairing

$$H_{DR}^{p}(M,E) \times H_{DR}^{n-p}(M,E^{*}) \to \mathbb{C}$$

 $(s,t) \mapsto \int_{M} s \wedge t$

is non-degenerate..

以上是实的 Hodge 理论。

5.4 Kähler 流形

定义 5.4.1. Let X be a complex manifold, $\dim_{\mathbb{C}} X = n$, X is called a Hermitian manifold, if X has a Hermitian metric, i.e. locally $h(z) := \sum_{1 \leq j,k \leq n} h_{jk}(z) dz_j \otimes d\overline{z}_k$, where (h_{jk}) is positive definition Hermitian matrix.

Check: the positivity of h is independent of the choice of holomorphic local coordinate

Rmk: Any complex manifold has a Hermitian metric...(Exercise)

Fundamental (1,1)-form associated to h(z) is defined by

$$\omega := -\operatorname{Im} h = \frac{\sqrt{-1}}{2} \sum_{j,k} h_{jk} \mathrm{d} z_j \mathrm{d} \overline{z}_k$$

we also call ω is the Hermitian metric on X

Fact: ω is real (i.e. $\overline{\omega} = \omega$).

注记 5.4.2. h is a Hermite structure on TX(holomorphic tangent bundle of X). locally,

$$\langle \frac{\partial}{\partial z_i}, \frac{\partial}{\partial z_i} \rangle(z) = h_{ij}(z)$$

定义 5.4.3. (X, ω) is an Hermitian manifold, X is Kähler if $d\omega = 0$.

性质 **5.4.4.** Locally, $\omega = \frac{\sqrt{-1}}{2} \sum_{jk} h_{jk} dz_j \wedge d\overline{z}_k$ is Kaehler, $\iff \partial \omega = 0$ and $\overline{\partial} \omega = 0$, i.e.

$$\frac{\partial h_{jk}}{\partial z_l} = \frac{\partial h_{lk}}{\partial z_j}$$

If (X, ω) is a compact Kaehler manifold, then

$$H^{2k}(X,\mathbb{R})\neq 0$$

证明. $d\omega = 0$, so $\omega \in H^2(M, \mathbb{R})$. Claim:

$$0 \neq \omega^k \in H^{2k}(M, \mathbb{R})$$

proof of the claim:

$$[\omega^k][\omega^{n-k}] = \int_X \omega^k \wedge \omega^{n-k} = \int_X \omega^n$$

Since ω is positive, locally

$$\omega^n = n! \det(h_{jk}) \bigwedge_{l=1}^n \left(\frac{\sqrt{-1}}{2} dz l \wedge d\overline{z}_l \right) > 0$$

is a volume form. So,

$$[\omega^k][\omega^{n-k}] = \int_X \omega^n > 0$$

(Using Poincare dual)

例子 5.4.5. (Exists a complex manifold NOT Kaehler) (Hopf Surface)

$$X = (\mathbb{C}^2 \setminus \{0\})/\Gamma$$

where discrete group $\Gamma := \{\lambda^n | n \in \mathbb{Z}\}, 0 < \lambda < 1$ fixed.

Exercise: $X \cong S^1 \times S^3$ C^{∞} homeomorphism.. and X is compact complex manifold. and $H^2(X,\mathbb{R}) = H^2(S^1 \times S^3,\mathbb{R}) = 0$ by Künneth Formula... So, X is non-Kahler...

例子 5.4.6. Examples of Kaehler manifold)

- (1)Riemann surface must be Kaehler...(trivial)
- (2)(complex torus) $X = C^n/\Gamma$, Γ is a lattice. (this manifold may not compact...)

$$\omega = \sqrt{-1} \sum_{j,k} h_{jk} \mathrm{d}z_j \wedge \mathrm{d}\overline{z}_k$$

is a Kahler metric on X if $(H_{jk}) > 0$, h_{jk} are constant.

(3) Projective space $\mathbb{C}P^n$.

$$\omega := \sqrt{-1}\Theta_h(\mathcal{O}(1))$$

locally,

$$\omega = \sqrt{-1}\partial \overline{\partial} \log(1 + |z_1|^2 + \dots + |z_n|^2)$$

on Ω . This ω is a Kahler metric,

例子 5.4.7. Let (X,ω) is a Kahler manifold, then any complex submanifold $Y\subseteq X$ is also Kahler.

$$i: Y \hookrightarrow X$$

with the Kahler metric $i^*\omega$.

Exercise: Let $f: Y \to X$ be a holomorphic immersion, and assume X is Kahler, then Y is Kahler.

推论 **5.4.8.** Any projective manifold (i.e. $X \hookrightarrow \mathbb{C}P^N$) is Kähler.

(Algebraic Geometry.....)

性质 **5.4.9.** (Equivalent definition of Kaehler metrics) a Hermitian metric ω is Kahler, if f for all $x_0 \in X$, there exists a holomorphic chart $(z_1,...,z_n)$ centered at x_0 , s.t.

$$\omega(z) = \sqrt{-1}\sigma_{jk}\delta_{jk}dz_j \wedge d\overline{z}_k + O(|z|^2)$$

 $(\Leftarrow is trivial...)$ (left to HW)

定理 **5.4.10.** (Exercise)

If (X,ω) is Kahler, then for all $x_0 \in X$, \exists holomorphic chart $z_1,...,z_n$ centered at x_0 , s.t. assume

$$\omega = \sqrt{-1}h_{jk}\mathrm{d}z_j \wedge \mathrm{d}\bar{z}_k$$

then

$$h_{lm}(z) = \delta_{lm} - \sum_{j,k} c_{jk,lm} z_j \overline{z}_k + O(|z|^3)$$

where $c_{jk,lm}$ is the coefficients of the Chern curvature tensor,

$$\Theta(TX)_x := \sum c_{jk,lm} \mathrm{d}z_j \wedge \mathrm{d}\overline{z}_k \otimes (\frac{\partial}{\partial z_l})^* \otimes \frac{\partial}{\partial z_m}$$

(查书)

5.5 紧复流形上的 Hodge 理论

 (X,ω) is a compact Hermitian manifold, $E\to X$ is a homomorphic Hermitian vector bundle.

$$D_E := D_E' + D_E''$$

Chern connection, $D_E'' = \overline{\partial}$.

定义 5.5.1.

$$\triangle_E := D_E D_E^* + D_E^* D_E$$

$$(D'_E)^* = -*D''_E *$$

 $(D''_E)^* = -*D'_E *$
 $\triangle'_E = D'_E (D'_E)^* + ...$
 $\triangle''_E = ...$

Note that $(D_E'')^2 = 0$, consider the complex

$$C^{\infty}(X, \bigwedge^{p,q} \otimes E) \xrightarrow{D_{E}^{"}} C^{\infty}(X, \bigwedge^{p,q+1} \otimes E)$$

$$\leadsto H_{D_{E}^{"}}^{p,q}(X, E)$$

Dolbeaut cohomology... it isom to $\ker \triangle_F''$

Hodge theory in compact complex manifold.

Let (X, ω) be a compact complex manifold of dimension n. $E \to X$ holomorphic Hermitian vector bundle, with Chern connection D_E , $D_E = D_E' + D_E''$ where $D_E'' = \overline{\partial}$.

Recall: L^2 inner product: $u \in C^{\infty}(X \wedge^{p,q} \otimes E)$,

$$\langle\langle u,v\rangle\rangle := \int_X \langle u,v\rangle d\mathrm{vol}$$

Hodge star operator $*: u, v \in C^{\infty}(X, \bigwedge^{p,q} \otimes E),$

定义 5.5.2.

$$*: \bigwedge^{p,q} \otimes E \to \bigwedge^{n-q,n-p} \otimes E$$

s.t.

$$u \wedge *v = \langle u, v \rangle dvol$$

(wedge product from $\bigwedge^{p,q}$, with inner product from E)

Exercise: Take a holomorphic chart $(z_1,...,z_n)$ s.t.

$$\omega = \sqrt{-1} \sum_{j} \mathrm{d}z_{j} \wedge \mathrm{d}\overline{z}_{j}$$

at some point p. An orthonormal frame $\{e_1,...,e_r\}$, Let

$$u = \sum_{\substack{|I|=p\\|J|=q}} \sum_{\lambda=1}^r u_{IJ} dz_I \wedge d\overline{z}_j \otimes e_\lambda \in \bigwedge^{p,q} \otimes E$$

WHAT IS *u?

Formal adjoint of D_E, D'_E, D''_E ?

性质 5.5.3.

$$D_E^* = -*D_E*$$

$$(D_E')^* = -*D_E''*$$

$$(D_E'')^* = -*D_E'*$$

定义 5.5.4.

$$\triangle_E := D_E D_E^* + D_E^* D_E$$
$$\triangle_E' := D_E' D_E'^* + D_E'^* D_E'$$
$$\triangle_F'' := \cdots$$

Check: $\triangle_E, \triangle_E', \triangle_E''$ are self adjoint, elliptic operators.

Hodge theory w.r.t. \triangle_E'' .

定理 5.5.5. We have a decomposition

$$C^{\infty}(X, \bigwedge^{p,q} \otimes E) = \ker \triangle_E'' \oplus \operatorname{Im} D_E'' \oplus \operatorname{Im} D_E'''^*$$

As a consequence, Dolbeault cohomology

$$H_{D_E''}^{p,q}(X,\mathbb{C}) \cong \ker \triangle_E''$$

推论 5.5.6.

$$\dim_{\mathbb{C}} H^{p,q}_{D''_E}(X,\mathbb{C}) < +\infty$$

Cohomology group

$$H^{p,q}_{D''_{E}}(X,\mathbb{C})$$

 Ω^p : sheaf of holomorphic p-forms on X (i.e. a (p,0)-form φ is holomorphic if $\overline{\partial}\varphi=0$).

 $\mathcal{E}^{p,q}$:Sheaf of smooth (p,q)-forms on X.

Similarly, we have $\Omega^p(E)$ the sheaf of holomorphic p-forms with values in E,and $\mathcal{E}^{p,q}(E)$ the sheaf...smooth (p,q)-forms ...

we have an acyclic resolutions

$$0 \to \Omega^p(E) \xrightarrow{D_E''} \mathcal{E}^{p,1}(E) \xrightarrow{D_E''} \mathcal{E}^{p,2}(E) \xrightarrow{D_E''} \cdots$$

(check, it is a resolution)

By de Rham-Weil theorem,

$$H^q(X,\Omega^p(E)) \cong D^{p,q}_{D''_F}(X,\mathbb{C}) \cong \mathcal{H}^{p,q}_{D''_F}(X,\mathbb{C}) := \ker \triangle''_E$$

定理 **5.5.7.** (Serre duality)

The pairing

$$H^{p,q}_{D_E''}(X,E) \times H^{n-p,n-q}_{D_E''}(X,E^*) \to \mathbb{C}$$

 $(s,t) \mapsto \int_X s \wedge t$

is non-degenerate

证明. Define

$$\#: \bigwedge^{p,q} \otimes E \to \bigwedge^{n-p,n-q} \otimes E^*$$

by: for $u, v \in \bigwedge^{p,q} \otimes E$,

$$u \wedge \#v := \langle u, v \rangle dvol$$

Fact:

$$\triangle_{E^*}^{\prime\prime}\#=\#\triangle_E^{\prime\prime}$$

Remark: take $E=X\times\mathbb{C}, D_E=\mathbf{d}=\mathbf{d}'+\mathbf{d}'', (\mathbf{d}'=\partial,\mathbf{d}''=\overline{\partial})$ then we have

$$\triangle' = d'd'^* + d'^*d'$$

$$\triangle'' = \cdots$$

then

$$H^{p,q}_{\mathbf{d}''}(X,\mathbb{C}) \cong \ker \triangle'' \curvearrowright C^{\infty}(X,\bigwedge^{p,q})$$

the pairing

$$H^{p,q}(X,\mathbb{C}) \times H^{n-p,n-q}(X,\mathbb{C}) \to \mathbb{C}$$

is non-degenerate.

第6章 Lefschitz 分解

6.1 线性代数版本的 Lefschitz 算子

Three goals:

Kahler package

Lefschetz decomposition

Hodge-Riemann bilinear relations

Linear algebra (baby representation theory)(local case) \mathbb{C}^n ,

$$\omega = \sqrt{-1} \sum_{i,j} h_{ij} \mathrm{d}z_i \wedge \mathrm{d}\overline{z}_j$$

Kahler metric with constant coefficients.(i.e. h_{ij} is constant, (h_{ij}) is positive Hermite matrix) W.L.O.G, by taking a linear transformation, we can assume

$$\omega = \sqrt{-1} \sum_{j=1}^{n} \mathrm{d}z_j \wedge \mathrm{d}\bar{z}_j$$

记号 **6.1.1.** An operator is of pure degree r if it transform a form of deg = k to as form of degree k + r.

An operator ..of bi-degree (p,q) if ... $(s,t) \rightarrow (s+p,t+q)$ (in this case, degree = p+q) if A,B with degree $\deg A, \deg B, define$

$$[A,B] := AB - (-1)^{\deg A \deg B} BA$$

定义 6.1.2.

$$L: \bigwedge^{p,q} \to \bigwedge^{p+1,q+1}$$
$$u \mapsto \omega \wedge u$$

is called Lefschetz operator.

Denote Λ to be the adjoint of L, adjointed by : Let $v \in \Lambda^{p-1,q-1}$ and $u \in \Lambda^{p,q}$

$$\langle Lv, u \rangle := \langle u, \Lambda u \rangle$$

The operator Λ is of bi-degree (-1, -1).

性质 6.1.3. If

$$u = \sum_{\substack{|I| = p \\ |J| = q}} u_{IJ} \mathrm{d}z_I \wedge \mathrm{d}\overline{z}_j$$

then

$$Lu = \sqrt{-1} \sum_{\substack{|I|=p\\|I|=q}} \sum_{m=1}^{n} u_{IJ} dz_m \wedge d\overline{z}_m \wedge dz_I \wedge d\overline{z}_J$$

$$\Lambda u = \sqrt{-1}(-1)^p \sum_{|I|=p \atop |I|=a} \sum_{m=1}^n u_{IJ} \left(\frac{\partial}{\partial z_m} \, \lrcorner \, \mathrm{d}z_I \right) \wedge \left(\frac{\partial}{\partial \overline{z}_m} \, \lrcorner \, \mathrm{d}\overline{z}_J \right)$$

where " \lrcorner " is contraction.

推论 6.1.4. (Exercise) Let

$$\alpha = \sqrt{-1} \sum_{j=1}^{n} \alpha_j \mathrm{d}z_j \wedge \bar{z}_j$$

then, $(\alpha \text{ is a operator of bi-degree } (1,1))$

$$[\alpha, \Lambda] u = \sum_{\substack{|I| = p \\ |I| = a}} \left(\sum_{i \in I} \alpha_i + \sum_{j \in J} \alpha_j - \sum_{k=1}^n \alpha_k \right) u_{IJ} dz_I \wedge d\overline{z}_J$$

where

$$u = \sum_{\substack{|I| = p \\ |J| = q}} u_{IJ} dz_I \wedge d\overline{z}_J$$

推论 **6.1.5.** if $u \in \bigwedge^{p,q}$, then

$$[L, \Lambda]u = (p + q - n)u$$

推论 6.1.6. Denote $B := [L, \lambda]$, then

$$[B,L]=2L$$

$$[B,\Lambda]=-2\Lambda$$

证明. Take $u \in \bigwedge^{p,q}$, then

$$[B, L] = BLu - LBu = (p + q - n + 2)Lu - (p + q - n)Lu = 2Lu$$

the second is similar..

 $\mathfrak{sl}(2,\mathbb{C})$ -representation

$$\mathfrak{sl}(2,\mathbb{C}) = \operatorname{span}_{\mathbb{C}} l, \lambda, b$$

where

$$l = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \qquad \lambda = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad b = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

we have

$$[l, \lambda] = b$$
 $[b, l] = 2l$ $[b, \lambda] = -2\lambda$

性质 6.1.7. There exists a natural action

$$\rho: \mathfrak{sl}(2,\mathbb{C}) \to \operatorname{End}(\bigoplus_{p,q} \bigwedge^{p,q})$$

with

$$\rho(l) = L$$

$$\rho(\lambda) = \Lambda$$

$$\rho(b) = B$$

定理 6.1.8. (HL)

$$L^{n-k}: \bigwedge^{k} \to \bigwedge^{2n-k}$$
$$u \to \omega^{n-k} \wedge u$$

is an isomorphism.

$$L^{n-k}: \bigwedge^{p,q} \to \bigwedge^{n-k+p,n-k+q}$$

is also an isomorphism.

证明. Lemma:

$$[L^r, \Lambda]u = r(k - n + r - 1)L^{r-1}u$$

(induction, omit)

Assume $\alpha \in \bigwedge_{\mathbb{C}}^k$, $L^{n-k}\alpha = 0$, need to verify $\alpha = 0$.

Claim:

$$L^r: \bigwedge^k \to \bigwedge^{k+2r}$$

is injective whenever $r \leq n - k$.

proof of the claim:

claim is true when k = 0 or k = 1.(check)

Let $\alpha \in \bigwedge^k$ s.t. $L^r \alpha = 0 (r \le n - k)$. By the lemma,

$$L^{r}\Lambda\alpha - \lambda L^{r}\alpha = r(k - n + r - 1)L^{r-1}\alpha$$

so,

$$L^{r-1}(L\Lambda\alpha - r(k-n+r-1)\alpha) = 0$$

by the induction on r,

$$L\Lambda\alpha = r(k - n + r - 1)\alpha$$

since $r(k-n+r-1) \neq 0$, $\alpha = L\beta$ for some $\beta \in \bigwedge^{k-2}$. so, $L^r\alpha = L^{r+1}\beta = 0$, by induction on k, we have $\beta = 0$, so $\alpha = 0$.

The claim is proved.

定义 6.1.9. (Primitive form)

 $\alpha \in \bigwedge^k (k \leq n)$ is called primitive form, if

$$L^{n-k+1}\alpha = 0$$

推论 6.1.10. (Lefischtz Decomposition)(LD)

For any $\alpha \in \bigwedge^k$, $(1 \le k \le 2n)$, we have a unique decomposition:

$$\alpha = \sum_{\gamma \ge (k-n)_+} L^{\gamma} \alpha_r$$

 $((k-n)_+ := \max\{k-n,0\})$ with $\alpha_r \in \bigwedge^{k-2r}$ is primitive

证明. Existence: assume $k \leq n$, consider

$$L^{n-k+1}\alpha \in \bigwedge^{2n-k+2}$$

by HL, $\exists ! \beta \in \bigwedge^{k-2}$ s.t. $L^{n-k+2}\beta = L^{n-k+1}\alpha$, so $L^{n-k+1}(\alpha - L\beta) = 0$, i.e. $\alpha_0 = \alpha - L\beta$ is primitive. $\alpha = \alpha_0 + L\beta$, then induction on degrees, we get the decomposition for α .

If k > n, we apply HL to reduce it to case 1.

Uniqueness: Next time..

Today: Continuous to Hard Lef decomposition, Hodge-Riemann bilinear relations.

Hard-Lefschitz: HL

Lefschitz decomposition:LD

Hodge-Riemann bilinear relations :HRR

Recall: \mathbb{C}^n , $\bigwedge^k = \bigoplus_{p+q=k} \bigwedge^{p,q}$, ω : a Kahler metric on \mathbb{C}^n with constant coefficient $\in \bigwedge_{\mathbb{R}}^{1,1}$.

Lefschitz operator : $Lu = \omega \wedge u$.

定理 6.1.11. (HL)

Assume $k \le n, p + q \le n$, then

$$L^{n-k}: \bigwedge^k \to \bigwedge^{2n-k}$$

is a linear isomorphism.

$$L^{n-k}: \bigwedge^{p,q} \to \bigwedge^{p+n-k,q+n-k}$$

is also a linear isomorphism.

Linear algebra..

定理 6.1.12. (LD) for any $u \in \bigwedge^k$, we have a unique decomposition

$$u = \sum_{r \ge (k-n)_+} L^r u_r$$

where $u_r \in \bigwedge_{prim}^{k-2r}$ is a primitive form.

Recall: a k-form $u \in \bigwedge^k (k \le n)$ is called primitive, if $L^{n-k+1}(u) = 0$. When k > n, u is called primitive, $\Lambda(u) = 0$, where Λ is the adjoint of L.

证明. Existence: application of HL.

Uniqueness: Omit. \Box

性质 **6.1.13.** Assume $\alpha \in \bigwedge_{prim}^{p,q}$, and $p+q \leq n$. (i.e. $L^{n-p-q+1}\alpha = 0$), then

$$*\alpha = (-1)^{\frac{(p+q)(p+q-1)}{2}} (\sqrt{-1})^{p-q} \frac{1}{(n-p-q)!} L^{n-p-q} \alpha$$

证明. See [Humphreys, Prop 1.2.31]

定理 **6.1.14.** (HRR) Define the bilinear form Q on $\bigwedge^k (k \le n)$ as follows:

$$Q(\alpha,\beta):=L^{n-k}\wedge\alpha\wedge\overline{\beta}$$

Then

$$(\sqrt{-1})^{p-q}(-1)^{\frac{(p+q)(p+q-1)}{2}}Q(u,u)\geq 0$$

for any $u \in \bigwedge_{prim}^{p,q}, p+q=k \leq n$, and equal holds

$$\iff u = 0$$

(i.e. $Q|_{\bigwedge_{prim}^{p,q}}$ is positive definite up to a factor)

证明. Take $u \in \bigwedge_{prim}^{p,q}$,

$$Q(u,u) = L^{n-k} \wedge u \wedge \overline{u} = *u \wedge \overline{u} = \langle \overline{u}, \overline{u} \rangle dVol = |u|^2 dVol \ge 0$$

(up to a factor!)

(We apply the following result: $\overline{*\varphi} = *\overline{\varphi}$, i.e. * is a real operator)

Summary: $\bigwedge^{\bullet} = \bigoplus_{1 \leq k \leq n} \bigwedge_{\mathbb{C}}^{k}$, where $\bigwedge_{\mathbb{C}}^{k} = \bigoplus_{p+q=k} \bigwedge_{\mathbb{C}}^{p,q}$.

Lefschitz operator $L \rightsquigarrow \text{HL,LD,HRR}$.

6.2 紧 Kahler 流形的上同调群

The analogue of compact Kahler manifolds,

$$H^k_{DR}(X,\mathbb{C})\cong\bigoplus_{p+q=k}H^{p,q}_{Dol}(X,\mathbb{C})$$

 ω : A Kahler metric $\in H^{1,1}_{Dol}(X,\mathbb{R})$.

Denote $L \curvearrowright H^k_{DR}(X, \mathbb{C})$,

$$L(u) = [\omega, u] = [\omega] \wedge u$$

Commutative relations on Kahler manifolds

$$(\mathbb{C}^n, \omega = \sqrt{-1} \sum_{j=1}^n \mathrm{d} z_j \wedge \mathrm{d} \overline{z}_j)$$

 $u \in C^{\infty}(\mathbb{C}^n, \bigwedge^{p,q})$, locally

$$u = \sum_{|I|=p,|J|=q} u_{I,J} \mathrm{d}z_I \wedge \mathrm{d}z_j, \quad v = \sum_{|I|=p,|J|=q} v_{I,J} \mathrm{d}z_I \wedge \mathrm{d}z_j$$

$$\langle\langle u,v\rangle\rangle = \int_{\mathbb{C}^n} \sum_{|I|=p,|J|=q} u_{I,J} \overline{V_{I,J}} \mathrm{d}Vol$$

$$d = d' + d'', d' = \partial, d'' = \overline{\partial}.$$

$$d'u = \sum_{I,J} \sum_{k} \frac{\partial u_{I,J}}{\partial z_{k}} dz_{k} \wedge dz_{I} \wedge dz_{J}$$
$$d''u = \cdots$$

定理 6.2.1.

$$(\mathbf{d}'')^* u = -\sum_{I,J} \sum_k \frac{\partial u_{I,J}}{\partial \overline{z}_k} \frac{\partial}{\partial \overline{z}_k} \rfloor (\mathbf{d}z_I \wedge \mathbf{d}\overline{z}_J)$$

$$(\mathrm{d}')^* u = -\sum_{I,I} \sum_k \frac{\partial u_{I,J}}{\partial \overline{z}_k} \frac{\partial}{\partial z_k} \lrcorner \left(\mathrm{d} z_I \wedge \mathrm{d} \overline{z}_J \right)$$

性质 6.2.2.

$$[(d'')^*, L] = \sqrt{-1}d'$$

证明. Exercise.

定理 6.2.3. Let X be a Kahler manifold (may not compact), with Kahler metric ω , then we have

$$[(\mathbf{d}'')^*, L] = \sqrt{-1}\mathbf{d}'$$

证明. Only need to verify $u \in C_c^{\infty}(X, \bigwedge^{p,q})$ with compact support in a holomorphic chart at x. Assume the holomorphic chart near x is choosen s.t.

$$\omega(z) = \sqrt{-1} \sum_{1 \le j \le n} dz_j \wedge d\overline{z}_j + O(|z|^2)$$

$$u \in \sum_{I,J} u_{I,J} dz_I \wedge \overline{z}_J$$

is a (p,q)-form, v is also...

$$\langle u, q \rangle = u_{IJ} \overline{v_{M,N}} \langle dz_I, dz_M \rangle \langle d\overline{z}_I, d\overline{z}_N \rangle = u_{II} \overline{V_{ij}} + a_{IIMN}(z) u_{II} \overline{V_{MN}}$$

where $a_{IJMN} = O(|z|^2)$.

So,

where $b_{IJMN}(z) = O(|z|)$. So,

$$[(d'')^*, L]u(x) = \sqrt{-1}d'u(x)$$

$$\Longrightarrow [(\mathbf{d''})^*, L] = \sqrt{-1}\mathbf{d'}$$

性质 **6.2.4.** In Kahler manifold,

$$[(d')^*, L] = -\sqrt{-1}d''$$

$$[\Lambda, \mathbf{d}''] = -\sqrt{-1}(\mathbf{d}')^*$$

$$[\Lambda, \mathbf{d}'] = \sqrt{-1}(\mathbf{d}'')^*$$

推论 **6.2.5.** (X,ω) is a Kahler manifold, then

$$\triangle_d = 2\triangle_{d'} = 2\triangle_{d''}$$

证明. For example, $\triangle_d = 2\triangle_{d''}$,

$$\triangle_d = (d'+d'')(d'+d'')^* + (d'+d'')^*(d'+d'') = (d'+d'')(d'^*-\sqrt{-1}[\Lambda,d']) + (d'^*-\sqrt{-1}[\Lambda,d'])(d'+d'')$$
 然后暴力展开,12 项??? · · · · 从略。

推论 6.2.6. If (X, ω) is a Kahler manifold, then

$$\triangle_{\mathrm{d}}: C^{\infty}(C, \bigwedge^{p,q}) \to C^{\infty}(C, \bigwedge^{p,q})$$

证明. Since $\triangle_d = 2\triangle_{d'}$, $\triangle_{td'}$ preserves the bi-degree.

推论 6.2.7. If (X,ω) is a compact Kahler manifold, u is a \triangle_d -harmonic k-form. Assume

$$u = \sum_{p+q=k} u^{p,q}$$

$$u^{p,q} \in C^{\infty}(X, \bigwedge^{p,q})$$

then each $u^{p,q}$ is also harmonic.

定理 6.2.8. (Hodge decomposition)

X is a compact Kahler manifold, then we have a decomposition

$$H^k_{\rm d}(X,\mathbb{C})=\bigoplus_{p+q=k}H^{p,q}_{\rm d''}(X,\mathbb{C})$$

Equivalently, (sheaf cohomology)

$$H^k(X,\mathbb{C})\cong\bigoplus_{p+q=k}H^q(X,\Omega^p)$$

证明. take a Kahler metric ω , we can define \triangle_d , $\triangle_{td'}$, $\triangle_{d''}$, then

$$\ker \triangle_{\mathrm{d}} := \mathcal{H}^k(X,\mathbb{C}) \cong \bigoplus_{p+q=k} \mathcal{H}^{p,q}_{\mathrm{d''}}(X,\mathbb{C})$$

then \Longrightarrow the decomposition for $H^k_d(X,\mathbb{C})$

the decomposition for $H^k_d(X,\mathbb{C})$ is independent of the choice of ω (Next time)

Recall: Hodge decomposition,

X compact Kahler manifold, $\dim_{\mathbb{C}} X = n$,

Thm:(Hodge decomposition)

$$H^k_{DR}(X,\mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(X,\mathbb{C}) \cong \bigoplus_{p+q=n} H^{p,q}_{\mathbf{d}''}(X,\mathbb{C})$$

where

$$H^{p,q}(X,\mathbb{C}) = \{ [\alpha] \in H^k_{DR}(X,\mathbb{C}) | \text{ais a d-closed s.m. } (p,q) \text{-form} \}$$

Proof: take a Kahler metric ω ,

$$H^k_{DR}(X,\mathbb{C}) \cong \mathcal{H}^k_{d}(X,\mathbb{C}) = \bigoplus \mathcal{H}^{p,q}_{d}(X,\mathbb{C}) = \bigoplus \mathcal{H}^{p,q}_{d''}(X,\mathbb{C})$$

性质 6.2.9. There is a canonical isomorphism

$$H^{p,q}_{\mathrm{d}}(X,\mathbb{C}) \xrightarrow{\sim} H^{p,q}_{\mathrm{d}''}(X,\mathbb{C})$$

$$[\alpha]_d \mapsto [\alpha]_{d''}$$

where $d\alpha = 0$, α is a (p,q)-form. $\Rightarrow d''\alpha = 0$

证明. Check: this map is well defined. Need to verify: if $\alpha = d\beta$ is a (p,q)-form, then $[\alpha]_{\mathbf{d}''} = 0$, i.e. α is also \mathbf{d}'' -exact.

 α is a (p,q)-form,

$$\Rightarrow \alpha = d'\beta^{p-1,q} + d''\beta^{p,q-1}$$

we have $d''d'\beta^{p-1,q} = 0$, $d'd''\beta^{p,q-1} = 0$

We need a very important lemma:

引理 **6.2.10.** $(\partial \overline{\partial} - lemma)$

Let X is a Kahler manifold, α is a smooth form which is d' and d'' closed. Then, if α is d or d''-exact, then $\alpha = d'd''\gamma$ for some γ .

Using $\partial \overline{\partial}$ -lemma, this map is well-defined.

Now, notice that the two space has the same dimension. So, we need to show the map is injective(or, surjective). Claim: this map is injective. If α is a d-closed with $[\alpha]_{d''} = 0$, i.e. $\alpha = d'' \beta^{p,q-1}$. α is d-closed $\Rightarrow d' d'' \beta^{p,q-1} = 0$, $\partial \bar{\partial}$ -lemma applying to $d'' \beta^{p,q-1}$, we have

$$d''\beta^{p,q-1} = d'd''\gamma = d(d''\gamma)$$

for some γ .

Proof of $\partial \overline{\partial}$ -lemma:

证明. Assume α is d'' exact, 1.e. $\alpha = d''\beta$, write

$$\beta = H(\beta) + \triangle_{\rm d} \gamma$$

where $H(\beta)$ is $\triangle_{\mathbf{d}}$ -harmonic, so

$$\alpha = d''H(\beta) + d''\triangle_d\gamma - 2d''\triangle_{d'}\gamma$$

 $(\mathrm{Since}\ \triangle_d = 2\triangle_{d''})$

$$\Rightarrow \alpha = 2d''(d'd'^* + d'^*d') = 2d''d; d'^*\gamma - 2d'^*d''d'\gamma$$

By the assumption, $d'\alpha = 0$, so $d'^*d''d'\gamma = 0$

$$\alpha = -2d'd''d'^*\gamma$$

注记 6.2.11. (Deligne-Griffiths-Morrora)

If \hat{X} is bimeromapic to X, where X is a compact Kahler, then \hat{X} is also satisfys the $\partial \bar{\partial}$ -lemma. X is a kahler manifold, then

$$H^{p,q}_{\mathrm{d}}(X,\mathbb{C}) \cong H^{p,q}_{\mathrm{d}''}(C,\mathbb{C}) \cong H^{p,q}X,\mathbb{C}$$

X us a compact complex manifold, define

$$H_{BC}^{p,q} := \frac{\text{d-closed } (p,q))}{\text{d'd}; \text{ exact}}$$

Bott-Chern cohomology

Exercise" If X is Kahler , then $H^{p,q}_{BC}=H^{p,q}_{\mathsf{d}}$

$$H^{p,q}_A(X,\mathbb{C}) := rac{\mathrm{d}'\mathrm{d}''\mathrm{closed}}{(\mathrm{d}') ext{-}\mathrm{exact} + \{\mathrm{d}''\mathrm{exact}\}}$$

(Appeli cohomology)

denote

$$h_{BC}^{k} := \sum_{p+q=k} \dim_{\mathbb{C}} H_{BC}^{p,q}$$

$$h_A^k := \sum_{p+q=k} \dim_{\mathbb{C}} H_A^{p,q}$$

定理 6.2.12. X satisfies $\partial \bar{\partial}$ -lemma \iff

$$h_B^k + h_A^k = 2b_k$$

where

$$b_k = \dim_{\mathbb{C}} H^k_{DR}(X, \mathbb{C})$$

定理 **6.2.13.** (Hard Lef)

X is a compact Kahler, $\dim_{\mathbb{C}} X = n$, denote $L = \{\omega\} \curvearrowright H^k_{DR}(X,\mathbb{C})$, ω is a Kahler metric, Then we have:

$$L^{n-k}: H^k_{DR}(X,\mathbb{C}) \cong H^{2n-k}_{DR}(X,\mathbb{C})$$

$$H^{p,q}(X,\mathbb{C}) \cong H^{p+n-k,q+n-k}(X,\mathbb{C})$$

where $k \le n$, $p + q \le n$.

证明. Fox a Kahler metric ω ,

$$L^{n-k}: H^k_{DR} \to H^{2n-k}_{DR}$$

 $(\cong \mathcal{H}_d^k, \cong \mathcal{H}_d^{2n-k}$ respectively) (there is a commutative diagram...) need to proof: For any $\varphi \in \mathcal{H}_d^k$, then

$$L^{n-k}(\varphi) = \omega^{n-k} \wedge \varphi$$

is also harmonic.

引理 6.2.14.

$$[\triangle_{\mathsf{d}}, L] = 0$$

证明.

$$[\triangle_{d}, L] = 2[\triangle_{d'}, L] = 2\left([d'd'^*, L] + [d'^*d', L]\right) = 2\left(d'[d'^*, L] + [d'^*, L]d'\right)$$

(check: [L, d'] = 0) So,

$$= -2\sqrt{-1}(d'd'' + d''d') = 0$$

Exercise: Complex tori

$$\mathbb{T}^n := \mathbb{C}^n / \Gamma$$

where $\Gamma = \mathbb{Z}^n$. \mathbb{T}^n is a compact Kahler manifold. Then

$$H^{1,1}(\mathbb{T}^n,\mathbb{C})\cong\bigwedge_{\mathbb{C}}^{1,1}$$

the space of (1,1)-forms on \mathbb{C}^n with constant coefficient, in particular,

$$\dim_{\mathbb{C}} H^{1,1}(\mathbb{T}^n,\mathbb{C}) = n^2$$

Exercise: the set of all the Kahler class on $\mathbb{T}^n \subseteq H^{1,1}(X,\mathbb{C}) \cap H^2(X,\mathbb{R})$ is equal to the set of $n \times n$ positive definite Hermitian metrics.

(Hint: using Hodge theory)

定理 6.2.15. (Lefschitz decomposition)

Define a class $\alpha \in H^k_{DR}(X,\mathbb{C})$ to be positive if

$$L^{n-k+1}(\alpha) = 0$$

if $k \leq n$.

(When $\alpha \in H^k_{DR}(X,\mathbb{C})$, k > n, we call α positive)

Then $\forall \varphi \in H^k_{DR}(X,\mathbb{C})$, exist unique decomposition

$$\varphi = \sum_{\gamma \ge (k-n)_+} L^{\gamma} \varphi_{\gamma}$$

where $\varphi_{\gamma} \in H^{k-2\gamma}_{prim}(X,\mathbb{C})$.

Similarly,

$$H^{p,q}(X,\mathbb{C}) = \bigoplus_{r \geq (p+q-n)_+} H^{p-r,q-r}_{prim}(X,\mathbb{C})$$

证明. Exercise.

定理 6.2.16. (HRR)

X compact Kahler, $\dim_{\mathbb{C}} X = n$, ω is Kahler metric, define

$$Q(\alpha,\beta)=L^{n-k}\alpha\wedge\overline{\beta}$$

where $\alpha, \beta \in H^{p,q}(X, \mathbb{C})$, and p + q = k.

Then $Q|_{H^{p,q}_{prim}}$ is positive defined (up to a factor).

证明. Exercise.

Exercise: Consider X-compact Kahler, $\dim_{\mathbb{C}} X = n$, ω -Kahler metric, Then $\forall \alpha, \beta \in H^{1,1}(X,\mathbb{R}) = H^{1,1}(X,\mathbb{C}) \cap H^2(X,\mathbb{R})$, Then

$$\left(\left\{\omega^{n-2}\right\}\cdot\alpha\cdot\beta\right)^{2}\geq\left(\left\{\omega^{n-2}\right\}\cdot\alpha^{2}\right)\left(\left\{\omega^{n-2}\right\}\cdot\beta^{2}\right)$$

with equality if and only if $\alpha = \lambda \beta$ for some $\lambda \in \mathbb{R}$

Eg: \mathbb{C}^2 , α, β real (1,1)-forms,

$$(\alpha, \beta)^2 \ge \alpha^2 \beta^2$$

Hint: Using HRR, and Lefschitz decomposition... "Alg-Geom-inequality over Kahler manifold".

性质 6.2.17. X is a compact Kahler, then

$$\overline{H^{p,q}(X,\mathbb{C})}=H^{q,p}(X,\mathbb{C})$$

证明. Use harmonic form.. and \triangle_d is a real operator...

Summary X-compact Kahler with a Kahler metric ω , then define Lefschitz operator $L = [\omega] \wedge$, then:

Hodge decomposition:

$$H^{k} = \bigoplus_{p+q=k} H^{p,q}$$

$$\overline{H^{p,q}} = H^{q,p}$$

Hard Lefschitz:

$$L^{n-k}: H^{p,q} \cong H^{p+n-k,q+n-k}$$

where p + q = k

Lefschitz decomposition:

$$H^{p,q} = \bigoplus_{r \ge (p+q-1)_+} L^r H^{p-r,q-r}_{prim}$$

HRR:...

References Kahler pairing in other settings..

Adiprusito-Huh-Katz: Hodge theory in combinatorial geometries

McMullen: On simple polytopes

Deligne: Weil II

Beillinson-Bernstein-Deligne-Gabber: Faisceaux Pervers

Adiprasito: Combinatorial Lefschetz theorem beyond positivity, 2018

Recall: Kahler pairing: X-compact Kahler manifold of complex dimension n, ω -Kahler metric. Lefischitz operator

$$L = \{\omega\} \curvearrowright H^{\bullet}$$

Hodge decomposition

$$H^k = \bigoplus_{p+q=k} H^{p,q}, \qquad \overline{H^{p,q}} = H^{q,p}$$

(Corollary: if k is odd, then $b_k:=\dim_{\mathbb{C}}H^k(X,\mathbb{C})$ is even.)

Rmk: if X is compact complex surface($\dim_{\mathbb{C}} = 2$),X is Kahler $\iff b_1$ is even. (The proof of " \Leftarrow " we not given...Ref: Kodaira&Siu,Lamari 1999)

Hard Lef. (p+q=k)

$$L^{n-k}: H^{p,q} \xrightarrow{\sim} H^{p+n-k,q+n-k}$$

Lef. decomposition:

$$H^{p,q} = \bigoplus_{r \ge (k-n)_+} L^r H^{p-r,q-r}_{prim}$$

Denote $h^{p,q} := \dim_{\mathbb{C}} H^{p,q}$, "Hodge number". Cor:

$$h^{p,q} = \begin{cases} h_{prim}^{p,q} + h_{prim}^{p-1,q-1} + \cdots & p+q \le n \\ h_{prim}^{n-q,n-p} + h_{prim}^{n-q-1,n-p-1} + \cdots & p+q \ge n \end{cases}$$

(Using the property of L^r)

If
$$p + q \le n$$
, $h^{p,q} \ge h^{p-1,q-1} \Rightarrow b_k \ge b_{k-2}$ if $k \le n$.

If
$$p + q \ge n$$
, $h^{p,q} \le h^{p-1,q-1} \Rightarrow b_k \le b_{k-2}$ if $k \ge n$.

(Hodge-Frolicher spectral sequence)

X-compact Kahler, then Hodge decomposition

$$\Rightarrow b_k = \sum_{p+q=k} h^{p,q}$$

Question: X compact complex manifold, relation between b_k and $\sum_{p+q=k} h^{p,q}$?

定理 6.2.18. (Hodge-Frolicher inequality) X compact complex manifold, then

$$b_k \le \sum_{p+q=k} h^{p,q}$$

Spectral sequence: $(K^{p,q}, \mathbf{d} = \mathbf{d}' + \mathbf{d}'')$ a double complex of modules.

$$K^{p,q} \xrightarrow{d'} K^{p+1,q} \quad K^{p,q} \xrightarrow{d''} K^{p,q+1}$$

with $d'^2 = 0$, $d''^2 = 0$, $d^2 = 0$.

Assume $K^{p,q} = 0$ if $p \le 0$ or $q \le 0$.

 \rightsquigarrow total complex (K^{\bullet}, d) where

$$K^l := \bigoplus_{p+q=l} K^{p,q}$$

 \exists a natural filtration

$$F_pK^l:=\bigoplus_{l\geq i\geq p}K^{i,l-i}$$

F induces a filtration on $H^{\bullet}(K^{\bullet})$.

$$F_pH^l(K^{\bullet}) = \operatorname{Im}(H^l(F_pK^{\bullet}) \to H^l(K^{\bullet})) = \frac{F_pZ^l}{F_pB^l}$$

where $Z^l = \ker d \curvearrowright K^l$ and $B^l = \operatorname{Im} d \curvearrowright K^{l-1}$ Denote $G_pH^l(K^{\bullet}) = F_pH^l/F_{p+1}H^l$.

定理 6.2.19. There exists a sequence

$${E_r, d_r}_{r\geq 0}$$

satisfying:

$$(1) E_r = \bigoplus_{p,q>0} E_r^{p,q}$$

(1)
$$E_r = \bigoplus_{p,q \ge 0} E_r^{p,q}$$

(2) $d_r : E_r^{p,q} \to E_r^{p+r,q+r-1}, d_r^2 = 0.$

(3)
$$E_{r+1} = H^{\bullet}((E_r, \mathbf{d}_r)).$$

$$E_0^{p,q} = \frac{F_p K^{p+q}}{F_{p+1} K^{p+q}} = K^{p,q}$$

 d_0 induced by d.

$$E_1^{p,q} = H^q((K^{p,\bullet}, \mathbf{d}''))$$

 d_1 induced by d.

查任何一本同调代数的书。

定义 6.2.20. We call the sequence E_r converges at E_{r_0} , if $E_{r+1} = E_r$ for any $r \ge r_0$, (\iff $d_r = 0$ for any $r \ge r_0$) then we denote $E_{\infty} = E_{r_0}$

In our setting, $E_{\infty}^{p,q} = G_p H^{p+q}(K^{\bullet})$

Application: X compact complex manifold,

$$K^{p,q} = C^{\infty}(X, \bigwedge^{p,q})$$
 $d = d' + d''$

$$\rightsquigarrow E_0^{p,q}=K^{p,q},\, E_1^{p,q}=H^{p,q}(X,\mathbb{C}).$$

推论 6.2.21.

$$E_{\infty}^{p,q} = G_p H^{p+q}(X,\mathbb{C})$$

定理 6.2.22. X is a compact complex manifold of complex dimension n, then

$$b_l = \dim_{\mathbb{C}} H^l(X,\mathbb{C}) = \sum_{p+q=l} \dim_{\mathbb{C}} E^{p,q}_{\infty} \leq \sum_{p+q=l} \dim_{\mathbb{C}} E^{p,q}_1 = \sum_{p+q=l} h^{p,q}$$

with equality holds if and only if $d_1 = 0$ (i.e $\{E_r\}$ converges at E_1 .)

定理 **6.2.23.** X compact Kahler
$$\Rightarrow \{E_r\}$$
 converges at E_1 ($\iff b_l = \sum_{v+q=l} h^{p,q}$)

Remark: algebraic proof by Deligne-Illusive 1987.

Relèvement module p^2 et décomposition du complexe de de Rham

remark: Assume X is bimeromorphic to a compact Kahler manifold, then we still have the convergence of $\{E_r\}$ (\iff Hodge decomposition)

(Deligne-Griffiths-Morgan)

Picard group $H^1(X, \mathcal{O}^*)$.

Recall:

{isomorphic class of holomorphic line bundle} $\xrightarrow{1-1} H^1(X, \mathcal{O}^*)$

Consider the sequence

$$0 \to \mathbb{Z} \to \mathcal{O} \xrightarrow{e^{2\pi\sqrt{-1}}} \mathcal{O}^* \to 0$$

$$\leadsto 0 \to H^0(X,\mathbb{Z}) \to H^0(X,\mathcal{O}) \to H^0(X,\mathcal{O}^*) \to H^1(X,\mathbb{Z}) \to H^1(X,\mathcal{O}) \to H^1(X,\mathcal{O}^*) \to \cdots$$

Assume X is a compact complex manifold, then

$$H^0(X,\mathcal{O}) = \mathbb{C}$$

$$H^0(X, \mathcal{O}^*) = \mathbb{C}^*$$

$$\begin{split} \Rightarrow H^0(X,\mathcal{O}) &\to H^0(X,\mathcal{O}^*) \text{ is surjective,} \\ \Rightarrow H^1(X,\mathbb{Z}) &\to H^1(X,\mathcal{O}) \text{ is injective.} \end{split}$$

So we have an exact sequence

$$0 \to H^1(X, \mathbb{Z}) \to H^1(X, \mathcal{O}) \to H^1(X, \mathcal{O}^*) \xrightarrow{c_1} H^2(X, \mathbb{Z})$$

so we have an isomorphism

$$\ker\{c_1: H^1(X, \mathcal{O}^*) \to H^2(X, \mathbb{Z})\} \cong H^1(X, \mathcal{O})/H^1(X, \mathbb{Z})$$

定义 6.2.24. (Irregularity of X)

$$q(X) = \dim_{\mathbb{C}} H^1(X, \mathcal{O}) = h^{0,1}$$

if X is also complex Kahler, then $h^{0,1} = h^{1,0}$.

Assume *X* is compact Kahler:

引理 **6.2.25.** $H^1(X,\mathbb{Z})$ is also a lattice in $H^1(X,\mathcal{O})$ of

$$rank_{\mathbb{Z}}H^{1}(X,\mathbb{Z})=2q$$

 $\Rightarrow H^1(X,\mathcal{O})/H^1(X,\mathbb{Z})$ is a compact torus of $\dim_{\mathbb{C}} = q$.

$$H^1(C,\mathcal{O})/H^1(X,\mathbb{Z}) := \ker\{c_1 : H^1(X,\mathcal{O}^*)toH^2(X,\mathbb{Z})\}$$

is called **Jacobian variety** (Jac(X)) or **Picard variety** ($Pic^{\circ}(X)$)

Denote $NS(X)_{\mathbb{Z}} = \text{Im}(c_1 : H^1(X, \mathcal{O}^*)toH^2(X, \mathbb{Z}))$ the Neron-Severi group of X,

$$\rightsquigarrow \quad 0 \to \mathit{Pic}^{\circ}(X) \to H^{1}(X,\mathcal{O}^{*}) \xrightarrow{c_{1}} \mathit{NS}(X,\mathbb{Z}) \to 0$$

proof of the lemma. $\mathbb{Z} \to \mathcal{O}$ can be decomposed : $\mathbb{Z} \to \mathbb{R} \to \mathbb{C} \to \mathcal{O}$. It induces a sequence

$$H^1(X,\mathbb{Z}) \to H^1(X,\mathbb{R}) \to H^1(X,\mathbb{C}) \to H^1(X,\mathcal{O})$$

 $H^1(X,\mathbb{R}) \to H^1(X,\mathcal{O})$ is an isomorphism.

Consider the diagram

then $H^1(X,\mathbb{R}) \to H^1(X,\mathcal{O})$ corresponds to

$$H^1_{DR}(X,\mathbb{R}) \hookrightarrow H^1_{DR}(X,\mathbb{C}) \twoheadrightarrow H^{0,1}(X,\mathbb{C})$$

 $H^1(X,\mathbb{Z})$ is a lattice in $H^1(X,\mathbb{R})$ of $rank_{\mathbb{Z}}=2q$

Albanese map, Albanese torus

X-compact Kahler \Rightarrow any holomorphic p-forms are d-closed.

(Exercise!!)

Special case: holo 1-forms is d-closed.

$$Alb(X) := H^0(X, \Omega^1)^* / \operatorname{Im}(H_1(X, \mathbb{Z}))$$

where $H^1(X,\mathbb{Z})$ is mapped to $H^0(X,\Omega^1)^*$ in the following way:

$$[\gamma] \mapsto (\alpha \in H^0(X, \Omega^1) \mapsto \int_{\gamma} \alpha)$$

(Fact: $\int_{\gamma} \alpha$ depends only on the class on $[\gamma]$)

Then Alb(X) is compact complex of $\dim_{\mathbb{C}} = q(X)$. More precisely, we have a map:

$$alb: X \rightarrow Alb(X)$$

Fix a base point $x_0 \in X$, then

$$alb(x) = \left(u \mapsto \int_{x_0}^x u\right) \mod \Lambda$$

where

$$\Lambda := \left\{ \left(\int_{\gamma} u_1, ..., \int_{\gamma} u_q \right) \middle| [\gamma] \in H_1(X, \mathbb{Z}) \right\}$$

 $\{u_1,...,u_q\}$ is a basis of $H^0(X,\Omega^1)$. Then Λ is a lattice of $rank_{\mathbb{Z}}=2q$.

The map

$$alb: X \rightarrow Alb(X)$$

is holomorphic.

第7章 正性与消灭定理

positivity and vanishing theorem

X-Kahler manifold, i.e. \exists Hermitian metric ω s.t. $d\omega=0,\,d=d'+d'',\,d'=\partial,d''=\overline{\partial}.$

$$\triangle_d = [d, d^*] = dd^* + d^*d$$

$$\triangle_{d'} = [d', d'^*]$$

$$\triangle_{d''} = [d'', d''^*]$$

 $d \curvearrowright C^{\infty}(X, \bigwedge^{p,q}).$

Fact: ω is Kahler $\iff \triangle_{\mathbf{d}'} = \triangle_{\mathbf{d}''} = \frac{1}{2} \triangle_{\mathbf{d}}$.

Let $\underline{\mathbb{C}} := X \times \mathbb{C}$ be the trivial line bundle, d can be regraded as the Chern connection on $\underline{\mathbb{C}}$. (E,h)-Hermitian holomorphic vector bundle over (X,ω) , with Chern connection $D_E = D'_E + D''_E$. $(D''_E = \overline{\partial})$.

$$C^{\infty}(X, \bigwedge^{p,q} \otimes E)$$

has an inner product induced by $\omega, h. \rightsquigarrow$ adjoint operators $D_E^* = D_E'^* + D_E''^*$.

 $\rightsquigarrow \triangle_E = [D_E, D_E^*] = D_E D_E^* + D_E^* D_E$, and \triangle_E' , \triangle_E'' . (self adjoint, elliptic operators)

Question: relation between \triangle'_E and \triangle''_E ?

定理 7.0.26. (Bochner-Kodaira-Nakaino identity)

$$\triangle_E'' - \triangle_E' = \left[\sqrt{-1}\Theta_E, \Lambda\right]$$

where Θ_E is the Chern curvature of D_E .

Recall: $\Theta_E = D_E^2$, when D_E is Chern connectoin, we have

$$D_E^{\prime 2} = 0$$
 $D_E^{\prime \prime 2} = 0$

i.e. $\Theta_E = [D'_E, D''_E]$.

Remark: E is flat(i.e. $D_E^2 = 0$) $\iff \triangle_E' = \triangle_E''$.

证明. based on following identities:

$$[D_E''^*, L] = \sqrt{-1}D_E'$$

$$[D_E'^*, L] = -\sqrt{-1}D_E''$$

$$[\Lambda, D_E'] = -\sqrt{-1}D_E'^*$$

$$[\Lambda, D_E''] = \sqrt{-1}D_E''^*$$

then (by super Jacobi identity):

$$\Delta_E'' = [D_E'', D_E''^*] = -\sqrt{-1} \left[D_E'', [\Lambda, D_E'] \right] = -\sqrt{-1} \left([\Lambda, [D_E', D_E'']] + [D_E', [D_E'', \Lambda]] \right)$$

$$= -\sqrt{-1} \left([\Lambda, \Theta_E] + [D_E', \sqrt{-1}D_E'^*] \right)$$

so,

$$\triangle_E'' - \triangle_E' = [\sqrt{-1}\Theta_E, \Lambda]$$

引理 7.0.27. (normal frame)

Let X be a complex manifold, then for any $x_0 \in X$, and any holomorphic chart $(z_1,...,z_n)$ centered at x_0 , there exists a holomorphic frame $\{e_{\lambda}\}_{\lambda=1}^{r:=rankE}$ of E near x_0 such that

$$\langle e_{\lambda}(z), e_{\mu}(z) \rangle = \delta_{\lambda,\mu} - \sum_{1 \leq j,k \leq n} C_{jk\lambda\mu} z_j \overline{z}_k + O(|z|^3)$$

where $(C_{jk\lambda\mu})$ are the coefficients of the Chern curvature

$$\Theta_E(x_0) = \sum_{\substack{1 \leq j,k \leq n \\ 1 \leq \lambda, \mu \leq r}} C_{jk\lambda\mu} dz_j \wedge d\overline{z}_k \otimes e_{\lambda}^* \otimes e_{\mu}$$

need to verify: $\forall s \in C^{\infty}(X, \bigwedge^{p,q} \otimes E), x_0 \in X$,

$$[D_E''^*, L]s(x_0) = \sqrt{-1}D_E's(x_0)$$

w.r.t the normal frame $(e_{\lambda})_{\lambda=1}^{r}$ near x_{0} , assume

$$s = \sum_{\lambda=1}^{n} \sigma_{\lambda} \otimes e_{\lambda}$$

then

$$D_E s(z) = \sum_{\lambda=1}^n \mathrm{d}\sigma_\lambda \otimes e_\lambda + O(|z|)$$

$$D_E^*s(z) = \sum_{\lambda=1}^n \mathrm{d}^*\sigma_\lambda \otimes e_\lambda + O(|z|)$$

$$D_E^{\prime\prime\ast} = \sum_{\lambda=1}^r \mathrm{d}^{\prime\prime\ast} \sigma_\lambda \otimes e_\lambda + O(|z|)$$

$$\Rightarrow [D_E''^*, L]s = D_E''^* (\sum \omega \wedge \sigma_\lambda \otimes e_\lambda) - \omega \wedge \left(\sum_{\lambda=1}^r d''^* \sigma_\lambda \otimes e_\lambda + O(|z|)\right) = \sum_{\lambda=1}^r [d''^*, L] \sigma_\lambda \otimes e_\lambda + O(|z|)$$

Similarly,

$$D_E's = \sum_{\lambda=1}^r \mathrm{d}'\sigma_\lambda \otimes e_\lambda + O(|z|)$$

we have:

$$[d''^*, L] = \sqrt{-1}d'$$

(because ω is Kahler)

...

(E,h) hermitian holomorphic vector bundle over Kahler manifold (X,ω) , we have BKN identity

$$\triangle_E'' - \triangle_E' = [\sqrt{-1}\Theta_E, \Lambda]$$

Recall: L^2 -Hodge theory. X compact manifold, then

$$H^{p,q}(X,E) := \frac{\ker D_E''}{\operatorname{Im} D_F''} \cong \ker \triangle_E''$$

(harmonic form)

Take $u \in C^{\infty}(X, \bigwedge^{(p,q)} \otimes E)$, applying BKN identity to u,

$$\triangle_E'' u - \triangle_E' u = [\sqrt{-1}\Theta_E, \Lambda] u$$

note that

$$\langle\!\langle \triangle_E' u, u \rangle\!\rangle = |\!| D_E' u |\!|^2 + |\!| D_E'' u |\!|^2 \ge 0$$

 $\Rightarrow |\!| D_E'' u |\!|^2 + |\!| D_E'''^* u |\!|^2 \ge \langle\!\langle [\sqrt{-1}\Theta_E, \Lambda], u \rangle\!\rangle$

i.e.

$$\|D_E''u\|^2 + \|D_E''^*u\|^2 \ge \int_X \langle [\sqrt{-1}\Theta_E, \Lambda], u \rangle dVol$$

Observation: if $u \in \ker \triangle_E''$, and $[\sqrt{-1}\Theta_E, \Lambda]$ has "positivity", then LHS = 0. So, $H^{p,q}(X, E) = 0$.

定义 7.0.28. (Positivity)

We call $[\sqrt{-1}\Theta_E, \Lambda]$ is positive at $x_0 \in X$, if for any $0 \neq v \in (\bigwedge^{p,q} \otimes E)_{x_0}$, we have

$$\langle [\sqrt{-1}\Theta_E, \Lambda]v, v \rangle > 0$$

....positive on X, if ... at each point

定理 7.0.29. If $[\sqrt{-1}\Theta_E, \Lambda]$ is positive on X, then

$$H^{p,q}(X,E)=0$$

Special case: E is a holomorphic line bundle, with Hermitian metric h,

$$\Theta_E = -d'd'' \log h$$

 $\Rightarrow \sqrt{-1}\Theta_E$ is a real d-closed (1,1)-form on X. locally,

$$\alpha = \sqrt{-1} \sum_{1 \le i, j \le n} a_{ij} dz_i \wedge d\overline{z}_j$$

 α is real $\iff \alpha = \overline{\alpha}$, (i.e. locally (a_{ij}) is an hermitian matrix)

定义 7.0.30. a real (1,1)-form α is called positive, if $(a_{ij})_{ij}$ is positive definite.

引理 7.0.31. If $\sqrt{-1}\Theta_E$ is positive, then $\omega := \sqrt{-1}\Theta_E$ gives a Kahler metric on X.

引理 7.0.32. If $\omega = \sqrt{-1}\Theta_E > 0$, and Λ is the adjoint of $L = \omega \wedge$, then

$$[\sqrt{-1}\Theta_E,\Lambda]$$

is positive on $\bigwedge^{p,q} \otimes E$ whenever $p + q \ge n + 1$.

引理 7.0.33. Let α be a real (1,1)-form, ω a Kahler metric, assume the eigenvalue of α at x_0 is $\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_n$, then (in the coordinate chart $(z_1, z_2, ..., z_n)$, and $u = \sum_{\substack{|I|=p\\|I|=q}} u_{IJ} dz_I \wedge d\bar{z}_J$)

$$[\alpha, L] = \sum_{I,J} \left(\sum_{i \in I} \alpha_i + \sum_{j \in J} \alpha_j - \sum_{k=1}^n \alpha_k \right) u_{IJ} dz_I \wedge d\overline{z}_J$$

推论 7.0.34. $\alpha = \omega$, then

$$[\omega, \Lambda]u = (p + q - n)u$$

推论 7.0.35. Take an orthonormal frame e of E, then for any $u = \sum_{\substack{|I|=p\\|I|=q}} u_{IJ} dz_I \wedge d\overline{z}_J \otimes e$, we have

$$\langle [\sqrt{-1}\Theta_E, \Lambda]u, u \rangle = (p+q-n)|u|^2$$

定理 7.0.36. If $[\sqrt{-1}\Theta_E, \Lambda]$ is positive on X, then

$$H^{p,q}(X,E)=0$$

定理 7.0.37. If E is a holomorphic line bundle with a smooth hermitian metric h s.t. $\sqrt{-1}\Theta_{(E,h)} \ge 0$, then $H^{p,q}(X,E) = 0$ whenever $p+q \ge n+1$.

de Rham-Weil... $\cong H^q(X, \Omega^p \otimes E)$.

定义 7.0.38. (canonical bundle)

$$K_X = \det T^*X$$

determinate bundle of cotangent bundle, is called canonical bundle. $(\mathcal{O}(K_X) = \Omega_X^n)$

定义 7.0.39. X is called Fano, if $K_X^* = det(TX)$ has a matric with positive curvature.

X is called Calabi-Yau, if K_X has a metric with vanishing curvature.

X is of general type, if K_X has a metric with positive curvature.

推论 7.0.40. (Kodaira vanishing theorem) E is a positive line bundle, then

$$H^q(X, K_X \otimes E) = 0$$

for any $q \geq 1$.

So, if X is Fano, ($\iff K_X^*$) positive, $K_X \otimes K_X^* = \underline{\mathbb{C}}, \Rightarrow H^1(X, \mathcal{O}) = 0, \Rightarrow H^1(X, \mathbb{R}) = 0,$

Recall: BKN-inequality.

holomorphic Hermitian vector bundle $(E,h) \to (X,\omega)$, ω is Kahler. For any $u \in C^{\infty}(X, \bigwedge^{p,q} \otimes E)$, we have

$$||D''u||^2 + ||D''^*u||^2 \ge \int_X \langle [\sqrt{-1}\Theta_E, \Lambda_\omega]u, u \rangle dVol$$

Recall: If $[\sqrt{-1}\Theta_E, \Lambda_\omega]$ is positive on $C^\infty(X, \bigwedge^{p,q} \otimes E)$, then $H^{p,q}(X, E) = 0$.

定理 7.0.41. (Kodaira-Nakano vanishing theorem)

If E is a holomorphic line bundle with a smooth metric h s.t. $\sqrt{-1}\Theta_{(E,h)} > 0$, then $[\sqrt{-1}\Theta_E, \Lambda_{\omega}]$ is positive on $C^{\infty}(X, \bigwedge^{p,q} \otimes E)$ whenever $p + q \ge n + 1$.

$$\Rightarrow H^{p,q}(X,E) = 0 \text{ when } p+q \ge n+1.$$

(Last time)

Today:

定理 7.0.42. (Girbau vanishing theorem, 1976)

E is a holomorphic line bundle over compact Kahler manifold, with smooth metric h s.t. $\sqrt{-1}\Theta_{(E,h)} \geq 0$, and has at least n-s+1 positive eigenvalues at every points of X, then

$$H^{p,q}(X,E)=0$$

if $p + q \ge n + s$.

 α : a **real** (1,1)-form on X, locally $\alpha = \sqrt{-1} \sum \alpha_{ij} dz_i \wedge d\overline{z}_j$. then we have a matrix $M(\alpha) = (\alpha_{ij})_{n \times n}$, (α is real \Rightarrow)a hermite matrix.

we call α has at least k positive eigenvalues at x, if $M(\alpha)(x)$ has k positive eigenvalues. (Remark: It is well defined)

证明. Claim: there exists some Kahler metric ω s.t. $[\sqrt{-1}\Theta,\Lambda]$ is positive.

Fix a Kahler metric ω , for $p \in X$, choose a holomorphic chart $(z_1,...,z_n)$, s.t. $\omega(p) = \sqrt{-1} \sum dz_j \wedge d\overline{z}_j$ and $\sqrt{-1}\Theta_E(p) = \sqrt{-1} \sum_{j=1}^n \gamma_j dz_j \wedge d\overline{z}_j$. WLOG, $0 \le \gamma_1 \le \gamma_2 \le \cdots \le \gamma_n$, and for any $j \ge s$, $\gamma_j > 0$.

Consider

$$\omega_{\varepsilon} := \varepsilon \omega + \sqrt{-1}\Theta_{E}$$

for $\varepsilon > 0$, then ω_{ε} is a Kahler metric. $\omega_{\varepsilon}(p) = \sqrt{-1} \sum_{i} (\varepsilon + \gamma_{i}) dz_{i} \wedge d\overline{z}_{i}$.

 \Rightarrow the eigenvalue of $\sqrt{-1}\Theta$ with respective to $\omega_{\varepsilon}(p)$ is given by

$$\gamma_{j,\varepsilon} = \frac{\gamma_j}{\varepsilon + \gamma_j} = \frac{1}{1 + \frac{\varepsilon}{\gamma_i}}$$

Claim: $[\sqrt{-1}\Theta, \Lambda_{\omega_{\varepsilon}}]$ is positive on $\bigwedge^{p,q} \otimes E$ when $p+q \geq n+s$, $0 < \varepsilon << 1$. Take $u = \sum u_{II} dw_{I} \wedge d\overline{w}_{I} \otimes e$, then

$$\langle [\sqrt{-1}\Theta_E, \Lambda_{\omega_{\varepsilon}}], u \rangle = \sum_{\substack{|I| = p \\ |J| = q}} \left(\sum_{i \in I} \gamma_{i,\varepsilon} + \sum_{j \in J} \gamma_{j,\varepsilon} + \sum_{k=1}^n \gamma_{k,\varepsilon} \right) |u_{IJ}|^2 \geq (\gamma_{1,\varepsilon} + ... + \gamma_{p,\varepsilon} - \gamma_{q+1,\varepsilon} - ... - \gamma_{n,\varepsilon}) |u|^2$$

note that $\gamma_{j,\varepsilon} \geq 1 - \frac{\varepsilon}{\gamma_s}$ if $j \geq s, \ \gamma_{j,\varepsilon} \in [0,1)$ for all j. it

$$\geq \left((q+s-1)(1-\frac{\varepsilon}{\gamma_s}) - (n-p) \right) |u|^2 > 0$$

if $p + q \ge n + s$ and $0 < \varepsilon << 1$.

注记 7.0.43. (Kawamata-Viewheg vanishing theorem)

 $E \to (X, \omega)$ is a holomorphic line bundle over a compact Kahler manifold.

Definition: E is called positive, ...(positive="ample" in AG). numerically effective(nef) if for any $\varepsilon > 0$, there is a smooth metric h_{ε} s.t. $\sqrt{-1}\Theta_{h_{\varepsilon}} \geq -\varepsilon\omega$.

Theorem: If E is nef, and $\int_X c_1(E)^n > 0$, then $H^q(X, K_X \otimes E) = 0$ for $q \ge 1$.

Positivity concept of vector bundles (rank > 1)

 $(E,h) \to (X,\omega)$ Hermitian vector bundle of rank r, over a complex manifold(may not Kahler).

Denote $(e_1,...,e_r)$ a local orthonormal frame of E, $(z_1,...,z_n)$ local holomorphic chart, Chern curvature of (E,h):

$$\Theta_{(E,h)} = \sum_{\substack{1 \leq j,k \leq n \ 1\lambda, \mu \leq r}} c_{ik\lambda\mu} \mathrm{d}z_j \wedge \mathrm{d}\overline{z}_k \otimes e_\lambda^* \otimes e_\mu$$

Fact: $\sqrt{-1}\Theta_E$ induces a Hermitian operator θ_E on $TX \otimes E$. Let u, v be local sections of $TX \otimes E$,

$$u = \sum_{\substack{1 \le j \le n \\ 1 \le \lambda \le r}} u_{k\mu} \frac{\partial}{\partial z_k} \otimes e_{\mu}$$

$$\theta_E(u,v) := \sum_{\substack{1 \le j,k \le n \\ 1 \le \lambda,\mu \le r}} c_{jk\lambda\mu} u_{j\lambda} \overline{v_{k\mu}}$$

定义 7.0.44. We call E Nakano positive, if θ_E is positive. (i.e for any non-zero local section $u \in TX \otimes E$, $\theta_E(u,u) > 0$)

We call E Griffith positive, if for any $0 \neq \xi \in T_x X$, $s \in E_x$, $s \neq 0$,

$$\theta_E(\xi \otimes s, \xi \otimes s) > 0$$

注记 7.0.45. By definition, Nakano positivity ⇒ Griffith positivity.

If E is line bundle, Nakano positivity \iff Griffith positivity. (and \iff positivity of lines bundles)

定理 7.0.46. (Demailly-Skota, 1979)

E is Griffith positive $\Rightarrow E \otimes \det E$ is Nakano positive.

证明. Omit. Non-trivial.

Notation: $E>_{Nak} 0$ (E is Nakano positive). Similarly, $E>_{Giff} 0...$

性质 7.0.47. (1)E is Griffith positive if and only if E* is Griffith negative.

(2) Consider an exact sequence of holomorphic vector bundles:

$$0 \rightarrow S \rightarrow E \rightarrow O \rightarrow 0$$

then if E is Griffith positive, then Q is Griffith positive. If E is Griffith negative, then S is Griffith negative. If E is Nakano negative, then S is Nakano negative.

证明. Omit. Compute curvature...

Remark: In general, E is Nakano positive, $\not\Rightarrow Q$ is Nakano positive.

定理 7.0.48. (Nakano vanishing theorem)

 (X,ω) is compact Kahler of dimension n, (E,h) is a Nakano positive holomorphic Hermitian vector bundle, then

$$H^{n,q}(X,E) = 0 \quad \forall q \ge 1$$

证明. E is Nakano positive, check:

$$[\sqrt{-1}\Theta_E,\Lambda_\omega]$$

is positive on $\bigwedge^{n,q} \otimes E$ for $(q \ge 1)$

Ampleness

 $E \to X$, E: holomorphic line bundle of rank r, X:complex manifold.

定义 7.0.49. (Jet vector bundle)

$$J^k E = \bigcup_{x \in X} (J^k E)_x$$

where

$$(J^k E)_x = \mathcal{O}_x(E) / \mathfrak{m}_x^{k+1} \mathcal{O}_x(E)$$

 $\mathfrak{m}_x \subseteq \mathcal{O}_x$ be the maximal ideal of \mathcal{O}_x .

In local coordinate,

$$(J^k E)_x = \left\{ \sum_{\substack{1 \le \lambda \le r \\ |\alpha| < k}} C_{\lambda\alpha} (z - x)^{\alpha} e_{\lambda}(z) \right\}$$

性质 7.0.50. J^kE is a holomorphic vector bundle of rank = $r\binom{n+k}{n}$.

证明. Exercise.

定义 7.0.51. E is called very ample, if the following maps:

$$H^0(X,E) \to (J^1E)_x$$

$$H^0(X,E) \to E_x \oplus E_y$$

are surjective, for all $x, y \in X$, $x \neq y$.

E is called ample, if $S^mE := \operatorname{Sym}^m E$ is very ample for some $m \in \mathbb{N}$.

(ample: "足够多的全纯截面")

定理 7.0.52. (Kodaira)

L-holomorphic line bundle, X is a compact complex manifold. Then L is positive if and only if L is ample.

We will prove:

定理 7.0.53. $L \to X$ holomorphic line bundle over a compact complex manifold, then L is positive $\iff L$ is ample.

We need:

- (1)Kodiara vanishing theorem.
- (2)Blow-up of complex manifold
- (3) Relation between divisor and line bundles.

analytic cycles, divisors and meromorphic functions

定义 7.0.54. X be a analytic set in some complex manifold, then the set X_{reg} is a dense subset of X. Denote the connected component of X_{reg} by X_{α} , $\overline{X_{\alpha}}$ is the closure of X_{α} in X, then $\overline{X_{\alpha}}$ is called a global irreducible component of X.

In particular, X is the union of global irreducible components.

例子 7.0.55. (Global irreducibility is different from local irreducibility)

 $V = \{(x,y) \in \mathbb{C}^2 | y^2 = x^2(1+x) \}$ is an analytic set in \mathbb{C}^2 , $V_{reg} = V \setminus \{0\}$ is connected. So, $V = \overline{V_{reg}}$ is globally irreducible.

On the other hand, (V,0) is a reducible as an analytic germ.

定义 7.0.56. (analytic cycles)

X is a complex manifold, a q-cycle (with integer coefficient) is a formal linear combination $\sum \lambda_i V_i$, $\lambda_i \in \mathbb{Z}$, and V_i is a global analytic sets of X of dimension q.

So, we get a group $C^q_{cyl}(X)$. an element of $Cycl^{n-1}(X)$ is called a divisor. (Weil divisor) (Div(X))

If D is an irreducible analytic set of dimension n-1 then the divisor given by D is called a prime divisor.

注记 7.0.57. For any open set $U \subseteq X$, $U \to Cycl^q(U)$ induces a sheaf $Cycl^q$ of X with the germ $Cycl^q_x$ given by q-dimension analytic germs at X.

定理 7.0.58. X is a connected complex manifold, $f \in \mathcal{O}(X)$, then we have $f^{-1}(0)$ is emply of $\dim_{\mathbb{C}}$ isempty of n-1.

定义 7.0.59. (Cartier-dividiot)

A divisor $D = \sum \lambda_j D_j$ locally giveb by a \mathbb{X} linear combination of div(f). f is locally holomorphic functions.

定义 7.0.60. X is a compact, $\beta \in \mathcal{O}(X)$, D_i is a global irreponent of $f^{(-1)0}$,

$$m_i := Ord_z(f)$$

for all $z \in D_j reg \setminus \bigcup_{k \neq j} D_k m_j$ be the vanishing order along D_j .

定理 7.0.61. (A,x) an analytic germ of $\dim_{\mathbb{C}} = n-1$. (A,x) = (g) for sone $g \in \mathcal{O}X$, and g is a product of $(J_{A_i,x}) = (g_i)$.

(2) Let $f \in \theta_x$ with $(f^{-1}(0), x) \subseteq (A, x)$, then $f = u \coprod_j g_j m^{m_j}$, where $m_j = ord_z(f)$

性质 7.0.62. If X is a complex manifold, then any Weil divisor is also a Cantier divisor.

Remark: NOT true for singular points.

Meromorphic function: X complex manifold, \mathcal{O}_X sheaf of functions on X.

$$\mathfrak{m}_x := \left\{ \frac{g_x}{h_x} \middle| g_x, h_x \in \mathcal{O}_x \text{ and } h_x \text{ is not zeor in } \mathcal{O}_x \right\}$$

$$\mathcal{M}:=\bigcup_{x\in X}\mathfrak{m}_x$$

with the topology given by the basis

$$\left\{ \frac{G_x}{H_x} \middle| x \in V, G, H \in \mathcal{O}(V) \right\}$$

例子 7.0.63. $f(z_1, z_2) = \frac{z_1}{z_2}$

定义 7.0.64. Let $F \in \mathfrak{m}(X)$, denote $P(X) := \notin \{x \in X | f_x \notin \mathcal{O}_x\}$. Pole set pf f, and $Z(f) := P(\frac{1}{z})$ zero set of f.

定理 7.0.65. $f \in \mathfrak{m}(X)$, if P(d) (orZ(f)) is not empty, then P(f) is analytic set of dim = \mathbb{H} .

定义 7.0.66. $P(f) \cup Z(f)$ is called the indeterminiary of set of f, (in particular, codimension $P(M) \cap Z(f) \geq 2$)

性质 7.0.67. Given $f \in \mathcal{M}(X)$, we get a divisor:

$$div(f) = \sum a_j A_j - \sum b_j B_j$$

where $a_j =$ the vanishing order of f along A_j , A_j a globally irreducible component of Z(f), $b_j = ...$ along of $\frac{1}{f}$ along B_j , B_j :... component of P(f).

例子 7.0.68.
$$f = \frac{z_1}{z_2} \in \mathcal{M}(\mathbb{C}^2)$$
, then $P(f) = \{z_2 = 0\}$ and $Z(f) = \{z_1 = 0\}$, and $div(f) = [z_1 = 0] - [z_2 = 0]$

Consider: X - complex manifold, \mathcal{O}^* : sheaf of invertible holomorphic functions,

 \mathcal{M}^* : Sheaf of non-zero meromorphic functions

 $\mathcal{D}iv$: Sheaf of (n-1)-cycles.

性质 7.0.69. We have an exact sequences:

$$0 \to \mathcal{O}^* \to \mathcal{M}^* \to \mathcal{D}iv \to 0$$

In particular, $Div = \mathcal{M}^*/\mathcal{O}^*$.

long exact sequence:

$$0 \to H^0(X, \mathcal{O}^*) \to H^0(X, \mathcal{M}^*) \to H^0(X, \mathcal{D}iv) \to H^1(X, \mathcal{O}^*) \to H^1(X, \mathcal{M}^*) \to \cdots$$

where, note that:

$$H^0(X, \mathcal{D}iv) = Div(X)$$
 $H^1(X, \mathcal{O}^*) = Pic(X)$

Consider $Div(X) = H^0(X, \mathcal{M}^*/\mathcal{O}^*) \to Pic(X), f \in H^0(X, \mathcal{M}^*/\mathcal{O}^*) \iff$ we have an open covering $X = \bigcup_i U_i$ and $f_i \in \mathcal{M}^*(U_i)$ with $\frac{f_i}{f_i} \in \mathcal{O}^*(U_i \cap U_j)$.

$$f \in H^0(X, \mathcal{M}^*/\mathcal{O}^*) \xrightarrow{\varphi} (U_i \cap U_j, g_{ij} \in \mathcal{O}^*(U_i \cap U_j)) \in \check{H}^1(\mathcal{U}, \mathcal{O}^*) \hookrightarrow H^1(X, \mathcal{O}^*).$$

定义 7.0.70. A divisor D is called principal divisor, if D = div(h) for some $h \in \mathcal{M}^*(X)$.

性质 7.0.71. $\ker \varphi = \{principal \ divisors\}, \ i.e. \ \mathcal{O}(D) \ is \ trivial \iff D = div(f) \ for \ some \ global \ meromorphic functions.$

性质 7.0.72.

$$\mathcal{O}(D_1 + D_2) = \mathcal{O}(D_1) \otimes \mathcal{O}(D_2)$$
$$\mathcal{O}(-D) = \mathcal{O}(D)^*$$

定义 7.0.73. $D_1, D_2 \in Div(X)$ is called linear equivalent, if $D_1 - D_2$ is principal, denoted by $D_1 \sim D_2$. We have an injection:

$$Div(X)/\sim \hookrightarrow Pic(X)$$

Remark: in general, $D \to \mathcal{O}(D)$ is not surjective.

If $X \hookrightarrow \mathbb{P}^n$, then $Div(X) / \sim \cong Pic(X)$.

性质 7.0.74. $L \to X$ holomorphic line bundle over a complex manifold, we have a canonical map:

$$H^0(X,L)\setminus\{0\}\to Div(X)$$

$$s \to Z(s)$$

证明. $s \in H^0(X, L) \iff$ the data $(U_i, f_i \in \mathcal{O}(U_i))$, L is determined by $g_{ij} \in \mathcal{O}^*(\mathcal{U}_i \cap \mathcal{U}_j)$. $Z(s) \text{ locally given by } div(f_i). \ (div(f_i) = div(f_j) \text{ on } U_i \cap U_j)$

性质 7.0.75. $s_i \in H^0(X, L_i) \setminus \{0\}, i = 1, 2$, we have $Z(s_1 \otimes s_2) = Z(s_1) + Z(s_2)$.

性质 7.0.76. Let $s \in H^0(X, L) \setminus \{0\}$, then $\mathcal{O}(Z(s)) \cong L$.

证明. Assume $X = \bigcup U_i$ with L determined by $g_{ij} \in \mathcal{O}^*(U_i \cap U_j)$, $s \in H^0(X, L)$ determined by $(U_i, f_i \in \mathcal{O}(U_i))$.

so,
$$\mathcal{O}(Z(s))$$
 is the line bundle given by $\frac{f_i}{f_j} \in \mathcal{O}^*(U_i \cap U_j)$.
note that $f_i = g_{ij}f_j$.

推论 7.0.77. Let $s_i \in H^0(X, L_i) \setminus \{0\}, i = 1, 2$, then

$$Z(s_1) \sim Z(s_2) \iff L_1 \cong L_2$$

use the fact: $\mathcal{O}(Z(s_i)) = L_i$ and $\mathcal{O}(\text{principal divisor}) \cong \mathcal{O}_X$ trivial line bundle.

性质 7.0.78. Consider the map

$$Div(X) \to Pic(X)$$

$$D \to \mathcal{O}(D)$$

then the image is generated by line bundles with non-zero holomorphic sections.

7.1 Blow-up

Local picture: $U \subseteq \mathbb{C}^n$ open subset, $Y \subseteq U$ linear subspace, $codim_U Y = k$, e.g. assume $Y = \{z \in U | z_1 = ... = z_k = 0\}$.

Consider the space

$$U_Y:=\left\{([w],z)\in \mathbb{P}^{k-1} imes U\Big|w_iz_j=w_jz_i,\,1\leq i,j\leq k
ight\}\subseteq \mathbb{P}^{k-1} imes U\stackrel{\pi_2}{\longrightarrow} U$$

定义 7.1.1. U_Y is called the blow-up of U along Y.

性质 **7.1.2.** U_Y is a smooth complex submanifold of $\mathbb{P}^{k-1} \times U$, and $\dim_{\mathbb{C}} U_Y = \dim_{\mathbb{C}} U = n$. And $\tau: U_Y \to U$ is a holomorphic map with

$$\tau|_{U_Y\setminus \tau^{-1}(Y)}:U_Y\setminus \tau^{-1}(Y)\cong U\setminus Y$$

And for any $y \in Y$, $\tau^{-1}(y) = \mathbb{P}^{k-1} \times \{y\}$ is complex projective space.

Locally, on then chart $w_1 \neq 0$, denote $\hat{w}_i = \frac{w_i}{w_1}$ for all $2 \leq i \leq k$. Then $z_i = \hat{w}_i z_1$. Then $(z_1, \hat{w}_2, ..., \hat{w}_k, z_{k+1}, ..., z_n)$ gives a holomorphic chart of U_Y .

Denote $(z_1,...,z_n) = (z_1,\widehat{w}_2,...,\widehat{w}_k,z_{k+1},...,z_n)$, then $z_1 = \xi_1, z_2 = \xi_1\xi_2,...,z_k = \xi_1\xi_k$, and $z_{k+l} = \xi_{k+l}$ for $k \geq l$.

In this coordinate system, $\tau^{-1}(Y) = \{ \xi \in U_Y | \xi_1 = 0 \}.$

 $\Rightarrow \tau^{-1}(Y)$ is a (smooth) hypersurface in U_Y . And, $\tau^{-1}(Y) \cong \mathbb{P}(N_{Y/U})$, where $N_{Y/U}$ is the normal bundle of Y in U.

$$(0 \rightarrow T_Y \rightarrow T_U|_Y \rightarrow N_{Y/U} \rightarrow 0)$$

If $codim_U Y = 1$ hypersurface, then $U_Y \cong U$.

Global construction

Y is a complex submanifold of *X*, $\dim_{\mathbb{C}} = n, \dim_{\mathbb{C}} Y = k \leq n$.

引理 7.1.3. If $f_1, ..., f_k$ and $g_1, ..., g_k$ are two (local) definition of Y, defining equations of Y, Y = $\{f_z(z) = ... = f_k(z) = 0 | , \}$, then $df_1, ..., df_k$ are linely independent along Y. And \exists a matrix (m_{ij}) of holomorphic functions, s.t. $g_i = \sum_{j=1}^k M_{n,j} f_j$ for any $1 \le i \le k$.

The matrix (M_i^j) is invertible along Y, and determined uniquely by $(f_1,...,f_k)$ and $g_1,...,g_k$.

证明. Assume $f_i = z_i$ for $1 \le i \le k$ is a local coordinate system $\equiv 0$. For ever g_i , $g_i|_{z_1,\dots,z_k=0}$ Consider the Taylor expansion of g_i , we set

$$g_i = \sum_{i=1}^k M_i^j(z) z_j$$

 $dg_i = \sum_{j=1}^k dM_i^j z_j + \sum_{j=1}^k M_i^j dz_j.$

 $(dg_1,...,dg_k)|_Y$ and $(dz_1,...,dz_k)|_Y$ are L.I, so $M_i^j|_Y$ is invertible.

Assume $Y \cap U = \{f_1^U = \dots = f_k^U = 0\}, \ Y \cap V = \{f_1^V = f_2^V = \dots = f_k^V = 0\} \text{ and } (M_{i,UV}^j)_{1 \leq i,j \leq k}$ is the

 $0 \to T_Y \to T_X|_Y \to N_{Y/D}$, the dual

$$N_{Y/X}^* \to T_X^*|_Y \to T_Y^*$$

 (M_i^j, UV) gives the translation matrix middle of $N_{Y/X}^*$

引理 7.1.4. \exists isomorphism $\phi_{UV}: \tau_U^{-1}(U \cap V) \cong \tau_V^{-1}(U \cap V)$.

证明. Assume $f_i^U = \sum_{j=1}^k \sum_{j=1}^k M_{i,UV}^j f_j^V$. Define $\phi_{UV}([w],z) = ([M^{-t}w],z)$, then ϕ_{UV} satisfies the two properties.

定义 7.1.5. (The blow-up of X along Y)(Global blow up)

 $Bl_Y X$:the blow-up of X along Y is defined as the complex manifold by gluing the U_Y and $\Omega := X \setminus S_Y$, where S_Y is some neighborhood of Y.

we have a holomorphic map: $\tau : Bl_Y X \to X$.

性质 7.1.6. τ : Bl_Y $X \to X$ satisfies:

- $(1)\tau^{-1}(Y)$ is a smooth complex submanifold of Bl_YX , with $dim_C = n-1$, (It is called the excepted divisor of τ)
 - $(2)\tau: \operatorname{Bl}_Y X \setminus \tau^{-1}(Y) \to X \setminus Y \text{ is an isomorphism.}$
 - $(2)\tau$ is a proper map(any pre-image of compact set is compact).

证明. Check.

projective bundle $E \to X$ is a holomorphic vector bundle(of rank r) over a complex manifold(of complex dimension n), then we can define projective bundle $\mathbb{P}(E)$,

$$\mathbb{P}(E) := \left\{ (x, [\xi]) \middle| x \in X, \, \xi \in E_x \setminus \{0\} \right\}$$

 $\mathbb{P}(E)$ is a complex manifold of dimension n+r-1 (if $X=\{pt\}$, then $\mathbb{P}(E)$ is just the projective space)

We have a tautological line bundle on $\mathbb{P}(E)$:

$$\mathcal{O}_E(-1)_{(x,[\xi])} = \mathbb{C}\xi$$

 $\mathcal{O}_E(-1)$ is a holomorphic line bundle on $\mathbb{P}(E)$.

Exercise: Assume (E, h) is an hermitian vector bundle with metric h, then h induces a metric on \widetilde{h} on $\mathcal{O}_E(-1)$, then the Chern curvature Θ of \widetilde{h} satisfies: for any $x \in X$, $\sqrt{-1}\Theta|_{\mathbb{P}(E_x)} < 0$.

定理 7.1.7. τ : Bl_Y $X \to X$ blow-up along Y, $E := \tau^{-1}(Y)$ exceptional divisor, $\mathcal{O}(E)$: the holomorphic line bundle associated to E, then

- (1) $\tau: E \to Y$ is just the map $\mathbb{P}(N_{Y/X}) \to Y$
- (2) $\mathcal{O}(E)|_E \cong \mathcal{O}_{P(N_{Y/Y})}(-1) \cong N_{E/\operatorname{Bl}_Y X}$ the normal bundle of E in Bl_Y X.

证明. Exercise.

推论 7.1.8. If X is a (compact) Kahler manifold, Y is a compact submnifold of X, then the blow-up $Bl_Y X$ is also a (compact) Kahler manifold.

证明. $\tau: Bl_Y X \to X$, let ω be a Kahler matric on X, then $\tau^*\omega$ is a semi-positive (1,1)-form on $Bl_Y X$, positive on $Bl_Y X \setminus E$, and the kernel of $\tau^{-1}\omega$ along E is given by the tangent space of the fiber $E \to Y$.

Define the metric h on $\mathcal{O}(E)$ as follows: on E,h is induced by the metric on $N_{Y/X}$ induced by the metric on $N_{Y/X}$, and we extend h to a neighborhood of E; outside a neighborhood of $E,(\mathcal{O}(E)|_{Bl_YX\setminus E}$ is trivial), h is given by the trivial metric.

Then ,we glue these two metrics to get a matric on $\mathcal{O}(E)$. Denote the curvature $\theta := \sqrt{-1}\Theta(\mathcal{O}(-E),h)/$

Claim:
$$C\tau^*\omega + \theta > 0$$
 for $C \gg 1$

7.2 Kodaira Embedding Theorem

Recall: $L \to X$ holomorphic line bundle with a smooth metric h over compact complex manifold.

L is called positive if the curvature $\sqrt{-1}\Theta_{(L,h)}$ is a positive (1,1)-form.

L is called ample, if $L^{\otimes m} := mL$ is very ample for $m \gg 1$.

Recall: a holomorphic vector bundle E is called very ample, if the following maps

$$H^0(X, E) \to E_x \oplus E_y \qquad \forall x \neq y \in X$$
 $H^0(X, E) \to (I^1 E)_x \qquad \forall x \in X$

are surjective.

性质 7.2.1. X is a complex manifold of dimension $n, Y \subseteq X$ is a complex submanifold of codimension k. $\tau : \widehat{X} \to X$ blow-up along Y. $E := \tau^{-1}(Y)$ exceptional divisor. Then

$$K_{\widehat{X}} = \tau^* K_X \otimes \mathcal{O}((k-1)E)$$

(Recall: $K_X = \det T^*X = \bigwedge^n T^*X$, locally free sheaf of holomorphic n-terms Ω_X^n).

证明. locally, τ can be written as

$$\tau:(w_1,...,w_n)\to(z_1,...,z_n)$$

$$z_1=w_1,\,z_2=w_2,...,z_k=w_kw_1,...,z_{k+l}=w_{k+l}$$

$$\Rightarrow \tau^*(\mathrm{d} z_1 \wedge \mathrm{d} z_2 \wedge \cdots \wedge \mathrm{d} z_n) = w_1^{k-1} \mathrm{d} w_1 \wedge \mathrm{d} w_2 \wedge \cdots \wedge \mathrm{d} w_n$$

(local holomorphic frame of K_X and $K_{\widehat{X}}$... w_1^{k-1} -local section of $\mathcal{O}(E)$)

Recall: L-line bundle, $\{g_{ij}\}$ transition function, a local section is the following data $f_i = g_{ij}f_j$. If e_i the local frame on U_i , then $f_ie_i = f_je_j$ on $U_i \cap U_j$.

引理 7.2.2. Let \widehat{X} be the blow up of X along $\{x_1,...,x_N\}\subseteq X$, (N distinct points), denote E the exceptional divisor, then

$$H^1(\widehat{X}, \mathcal{O}(-mE) \otimes \tau^*(kL)) = 0$$

for $m \ge 1$, $k \ge Cm$ for $C \gg 1$

证明.

$$H^1(\widehat{X}, \mathcal{O}(-mE) \otimes \tau^*(kL)) = H^1(\widehat{X}, K_{\widehat{X}} \otimes K_{\widehat{Y}}^{-1} \otimes \mathcal{O}(-mE) \otimes \tau^*(kL)) = H^{n,1}(\widehat{X}, F)$$

where $F := K_{\widehat{X}}^{-1} \otimes \mathcal{O}(-mE) \otimes \tau^*(kL)$.

By Kodaira-Nakano vanishing, if F is positive, then $H^{n,1}(\widehat{X},F)=0$.

Note that

$$F = \mathcal{O}(-mE) \otimes \tau^* K_X^{-1} \otimes \mathcal{O}((1-n)E) \otimes \tau^* (kL)$$
$$= \tau^* K_X^{-1} \otimes \mathcal{O}(-(m+n-1)E) \otimes \tau^* (kL)$$

We know, $\exists C_0 \gg 1$ s.t. $C_0L \otimes K_X^{-1}$ is positive, and $\exists C \gg 1$,s.t. $C\tau^*L \otimes \mathcal{O}(-E)$ is positive. So, For $k \geq Cm$ $(C \gg 1)$, F is positive.

Let $v_j \in H^0(\Omega_j, kL)$ be a local section of kL, s.t. v_j generates the m-jet at x_j . Let $\psi_j \in C^{\infty}(X, \mathbb{R})$ s.t. $supp\psi_j \subset\subset \Omega_j, \ 0 \leq \psi_j \leq 1, \ \psi_j \equiv 1 \text{ around } x_j$. Denote

$$v := \sum_{j=1}^n \psi_j v_j$$

a smooth section of kL.

$$\mathbf{d}''v = \sum_{j} \mathbf{d}''\psi_{j}v_{j} \in C_{(0,1)}^{\infty}(X, kL)$$

satisfies $\mathbf{d}''v = 0$ near x_j for $1 \le j \le N$.

Lemma:(Exercise)

$$H^0(X, M) \to H^0(\widehat{X}, \tau^* M)$$

 $s \mapsto \tau^* s$

is an isomorphism for any line bundle M.

Lemma:(Exercise) a section of τ^*M with vanishing order= k along E is the pull-back of a section of M with vanishing order = k at x_j .

Denote $S_E \in H^0(\widehat{X}, \mathcal{O}(E))$ the canonical section of E,

$$w = S_E^{-(m+1)} \otimes \tau^*(\mathsf{d}''v) \in C_{(0,1)}^{\infty}(\widehat{X}, \mathcal{O}(-(m+1)E) \otimes \tau^*(kL))$$

and $\mathbf{d}''w = 0$. Vanishing of $H^0(\widehat{X}, \mathcal{O}(-(m+1)) \otimes \tau^*(kL))$ implies $w = \mathbf{d}''u$ for some $u \in C^{\infty}(\widehat{X}, \mathcal{O}(-(m+1)E) \otimes \tau^{-1}kL)$.

$$S_E^{-(m+1)} \tau^* (d''v) = d''u$$

 $\Rightarrow d'' (\tau^* v - S_E^{(m+1)} u) = 0$

so, $\tau^*v - s_E^{(m+1)}u$ is a holomorphic section of $\tau^*(kL)$. Using $s_E^{(m+1)}u = \tau^*f$ for some $f \in H^0(X, kL)$ with vanishing order = m+1 along x_i .

Claim: denote g := v - f is the holomorphic sections generating the m-jets at x_j . $\mathbf{d}''(\tau^*g) = 0 \Rightarrow \tau^*g$ is holomorphic, $\operatorname{Ord}_{x_j}(f) = m + 1$. So, $J^m(g)_{x_j} = J^m(v)_{x_j}$.

定理 7.2.3. $L \to X$ positive line bundle, $x_1,...,x_N \in X$ are N distinct points on X, then there exists C > 0, s.t.

$$H^0(X, kL) woheadrightarrow igoplus_{j=1}^N (J^m(kL))_{x_j}$$

is surjective for all $m \ge 0$ and $k \ge Cm$

证明.

定理 7.2.4. (Kodaira)

Line bundle L is positive \iff it is ample.

(微分几何的正性与代数几何的正性是等价的)

证明. (有一边是显然的,留作习题)

proof of "L ample \Rightarrow L positive".

Exercise: If A is a very ample line bundle on X, $H^0(X, A)$ has a basis $\{s_0, ..., s_N\}$, then the map

$$\Phi: X \to \mathbb{P}(H^0(X, A))$$

$$s\mapsto [s_0(x);s_1(x);...;s_N()]$$

(Kodaira map) is a holomorphic embedding.

(Hint: $H^0(X,A) \twoheadrightarrow A_x \oplus A_y$ means that Φ is injective; $H^0(X,A) \twoheadrightarrow (J^1(A))_x$ means that Φ_* is injective.)

Exercise: denote the tautological line bundle on $\mathbb{P}(H^0(X,A))$ by $\mathcal{O}(1)$, then $A = \Phi^*\mathcal{O}(1)$. Cor: A is very ample $\Rightarrow A$ is positive. Given any inner product on $H^0(X, A)$, we get a metric h on $\mathcal{O}(1)$, the curvature $\Theta(\mathcal{O}(n))$ of h is positive.

$$\Rightarrow \Theta(A) = \Phi^*\Theta(\mathcal{O}(1))$$

 Φ is embedding $\Rightarrow \Theta(A)$ is positive.

L positive \Rightarrow L ample, i.e. mL is very ample,

$$\Rightarrow \Phi_{H^0(X,mL)}: X \hookrightarrow \mathbb{P}(H^0(X,mL))$$

holomorphic embedding($\Rightarrow X$ is an analytic submanifold of $\mathbb{P}(H^0(X, mL))$)

 $\xrightarrow{\text{Chow theorem}} X$ is an algebraic set of $\mathbb{P}(H^0(X, mL))$ (i.e. $X = \bigcup_{j=1}^t \{P_j = 0\}, P_j$ -homogenous polynomial)

a compact complex manifold X admitting a positive line bundle L if and only if X is an algebraic manifold.

$$0 \to \mathbb{Z} \to \mathcal{O} \xrightarrow{e^{2\pi\sqrt{-1}}} \mathcal{O}^* \to 0$$

$$\leadsto H^1(X, \mathcal{O}^*) \xrightarrow{C_1} H^2(X, \mathbb{Z}) \to H^2(X, \mathcal{O}) \to \dots$$

and $H^2(X,\mathbb{Z}) \to H^2(X,\mathbb{C}) \cong H^{2,0} \oplus H^{1,1} \oplus H^{0,2}$, and $H^2(X,\mathcal{O}) \cong H^{0,2}(X,\mathbb{C})$.

 $\Rightarrow \forall \alpha \in H^2(X,\mathbb{Z}) \cup H^{1,1}(X,\mathbb{C})$, we have a holomorphic line bundle L s.t. $\alpha = c_1(L)$.

L admitting a positive line bundle \iff X admitting a class $\alpha \in H^2(X,\mathbb{Z}) \cup H^{1,1}$ with a positive representative.

Recall:

定理 7.2.5. $L \to X$ positive line bundle over compact complex manifold, then $\forall x_1, ..., x_N \in X, \exists C > 0$ (depends on X), s.t.

$$H^0(X, L^k) \to \bigoplus_{i=1}^N (J^m L^k)_{x_i}$$
 (*)

whenever $m \ge 0$ and $k \ge C(m+1)$

For fixed $(x_1,...,x_N)$, we proved $\exists C(x_1,...,x_N) > 0$, s.t. (*) holds.

Observation:(*) is an open condition with respect to $(x_1, ..., x_N)$.

$$\Rightarrow \exists$$
 open set $U(x_i)$ s.t. $\forall (y_1,...,y_N) \in \prod_{i=1}^N U(x_i),$ (*) holds for $C = C(x_1,...,x_N)$.

$$m=0, N=1, H^0(X, L^k) \twoheadrightarrow (L^k)_x \iff \exists \text{ section } s \text{ s.t. } s(x) \neq 0 \text{ (for } y \text{ near } x, s(y) \neq 0)$$

 $\pi: Y \to X$ blow-up along $x_1, ..., x_N$, with exception divisor E,

FACT: $\exists C \gg 1$, s.t. $C\pi^*L + \mathcal{O}(-E)$ is positive.

(这些已证明)

(more generally, if ω is a Kahler metric on X,denote $\{\omega\} \in H^{1,1}(X,\mathbb{R})$ the Kahler associated to ω , then $\exists C \gg 1$ s.t. $C\pi^*\omega + c_1(-E)$ is a Kahler class)

性质 7.2.6. Define the Seshadri constant

$$\mathcal{E}(x_1,...,x_N;\omega) := \sup \{ t \ge 0 | \pi^*\omega + t \cdot c_1(-E) \text{ is a Kahler class} \}$$

Then $\mathcal{E}(x_1,...,x_N;\omega)$ is a lower-semi-continuous function w.r.t $x_1,...,x_N$. So,

$$\inf \left\{ \mathcal{E}(x_1,...,x_N;\omega) \middle| (x_1,...,x_N) \in \underbrace{X \times \cdots \times X}_{N} \right\} > 0$$

证明. Too difficult. omit.

注记 7.2.7. (如果感兴趣)

Nagata conjecture

Biran-Nagata conjecture

Symplectic packing/embedding of bundles

定理 7.2.8. L is a positive line bundle, for $k \gg 1$,

$$\Phi_{H^0(X,L^k)}:X\hookrightarrow \mathbb{P}(H^0(X,L^k))$$

$$x \mapsto [s_0(x) : \dots : s_N(x)]$$

is a holomorphic embedding. (Where $\{s_j\}_{j=0}^N$ is a basis of $H^0(X, L^k)$)

So, (Chow theorem), X is an algebraic manifold.

Chow theorem 1949:

定理 7.2.9. (Chow theorem ,1949)

Let A be an analytic set of \mathbb{P}^n , then A is an algebraic set, i.e.

$$A = \bigcap_{i=1}^{N} \{ P_j(z_0, ..., z_n) = 0 \}$$

where P_i is a homogeneous polynomial.

Using the Remmert-Stein theorem:

X- a complex manifold, $A \subseteq X$ an analytic set, $Z \subseteq X \setminus A$ is an analytic subset (of $X \setminus A$). If $\dim(Z,x) > \dim A$ for all $x \in Z$, then the closure \overline{Z} in X is also an analytic set of X.

Consider the natural map $\pi: \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{P}^n$, then $Z := \pi^{-1}(A)$ is an analytic set of $\mathbb{C}^{n+1} \setminus \{0\}$. we have $\dim Z \ge 1 > \dim\{0\}$, Using Remmart-Stein, \overline{Z} is an analytic set of \mathbb{C}^{n+1} . So, for a small disk \triangle around $0 \in \mathbb{C}^{n+1}$,

$$\overline{Z} \cap \triangle = \bigcap_{j=1}^{N} \{ f_j(z_1, ..., z_n) = 0 \}$$

where $f_i \in \mathcal{O}(\triangle)$.

Let $f_j = \sum_{k=0}^{\infty} P_{j,k}$ be the Taylor expansion of f_j , where $P_{j,k}$ is a homogenous polynomials of degree k.

Claim: $\overline{Z} \cap \triangle = \left(\bigcap_{j,k} \{P_{j,k} = 0\}\right) \cap \triangle$. Denote $W := \bigcap_{j,k} \{P_{j,k} = 0\}$,

 $W \cap \triangle \subseteq \overline{Z} \cap \text{ is obvious.}$

By the definition of π , Z is invariant by homotheties, so, for any $z \in \overline{Z} \cap \triangle$, $|t| \ll 1$, we have $f_i(t,z) = 0$. Write

$$f_j(tz) = \sum_{k=0}^{\infty} P_{j,k}(z)t^k = 0 \quad \Rightarrow \quad P_{j,k}(z) = 0$$

so, $\overline{Z} \cap \triangle \subseteq W \cap \triangle$.

 $\Rightarrow \overline{Z} = W$ by the \mathbb{C}^* -invariance of \overline{Z} and W. By the noetherian property of $\mathbb{C}[z_0,...,z_n]$, \exists finite polynomials P_j , $1 \leq j \leq k$, s.t.

$$W = \bigcap_{j=1}^{k} \{P_j = 0\}$$

推论 7.2.10. Any analytic subset of an algebraic variety is also algebraic.

Lefschetz's (1-1)-theorem

Exercise: X is a compact complex manifold, L,A be two holomorphic line bundles over X, A is positive \iff ample). Then for $k\gg 1$, $H^0(X,L\otimes A^k)\neq \{0\}$. (与之前证明几乎完全一样)

Recall:0 $\rightarrow \mathcal{O} \rightarrow \mathcal{M}^* \rightarrow Div \rightarrow 0$ induces

$$Div(X) := H^0(X, Div) \rightarrow H^1(X, \mathcal{O}^*) =: Pic(X)$$

定理 7.2.11. If X is an algebraic manifold, then for all $L \in Pic(X)$, \exists divisor D s.t. $L = \mathcal{O}(D)$.

证明. Take non-zero sections $S \in H^0(X, L \otimes A^k)$, $t \in H^0(X, A^k)$, then $\frac{s}{t}$ is a meromorphic section of L. Let D be the divisor associated to $\frac{s}{t}$, then

$$L \cong \mathcal{O}(D)$$

定理 7.2.12. (Lelong-Poincare equation)

Let $s \in H^0(X, L) \setminus \{0\}$, then

$$\frac{\sqrt{-1}}{\pi} \partial \overline{\partial} \log |s|_h = [s^{-1}(0)] - \frac{\sqrt{-1}}{2\pi} \Theta_{(L,h)}$$
 (*)

where $[s^{-1}(0)]$ is defined as follows:

$$\langle [s^{-1}(0)], \psi \rangle = \int_{s^{-1}(0)} \psi$$

where ψ is an (n-1,n-1)-form on X. (假设.. 有度量;在分布意义下求导)

(Current of integration)

证明. (以后再证)

 $(*) \Rightarrow$

$$c_1(L) = \{\frac{\sqrt{-1}}{2\pi}\Theta_{(L,h)}\} = \{[s^{-1}(0)]\}$$

注记 7.2.13. (*) also holds for moromorphic sections.

推论 7.2.14. X be an algebraic manifold, then $\forall \alpha \in H^{1,1}(X,\mathbb{Q})$, we have a divisor D with \mathbb{Q} -coefficients s.t.

$$[\alpha] = \{[D]\}$$

(Hodge conjecture for (1,1)-classes)

Fact: X is a compact complex manifold, $V \subseteq X$ is an analytic set of pure $\dim_{\mathbb{C}} V = p$. Then the current [V] associated to V_{reg} :

$$\langle [V], \psi
angle := \int_{V_{ ext{reg}}} \psi |_{V_{ ext{reg}}}$$

where $\psi \in C^{\infty}(X, \bigwedge^{p,p})$, defines a class $\{[V]\} \in H^{n-p,n-p}(X, \mathbb{Z})$.

Hodge conjecture: X is a complex algebraic manifold, then for all $\alpha \in H^{n-p,n-p}(X,\mathbb{Q})$, \exists analytic sets V_k of pure dimension p and rational numbers r_k , s.t.

$$\alpha \in \{\sum_{k=1}^{N} r_k[V_k]\}$$

(这个猜想作为练习,说不定就做出来了………)

Known case: p = n - 1, it is Lef. (1, 1)-theorem.

Exercise: also true for p = 1 (Using Hard Lef) And, p = 0, p = n...

下学期课程:《Analytic methods in algebraic geometry》敬请期待 2333333333333

Pluripotential theroy/Positive currents

Positive currents and Lelong numbers

Currents on C^{∞} manifolds. Let X is a C^{∞} , oriented manifold, with $\dim_{\mathbb{R}} X = n$. Denote $C^{s}(X, \bigwedge^{p} T^{*}X)$ the space of s-differentiable p-forms on X.

Let $\Omega \subseteq X$ be a coordinate open set, $u \in C^s(X, \bigwedge^p T^*X)$, write

$$u = \sum_{|I|=p} u_I \mathrm{d} x_I$$

where u_I are s-differentiable functions.

Assume $K \subset\subset \Omega$, define

$$P_K^s(u) := \sup_{x \in K} \max_{\substack{|I| = p \\ |a| < s}} |D^{\alpha} u_I(x)|$$

, where $D^{\alpha} = \frac{\partial^{\alpha}}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}.$

 $\mathcal{E}^p(X)$ - the space $C^{\infty}(X, \bigwedge^p T^*X)$ equipped with the topology defined by all the $P_k^s(\cdot)$, when $s, K \subset\subset \Omega$ vary/

 ${}^s\mathcal{E}^p(X)$ - the space $C^s(X, \bigwedge^p T^*X)$ equipped with the topology defined by all the $P_K^s(\cdot)$, when $K \subset\subset \Omega$ vary.

Let $K \subseteq X$ be a compact subset, $\mathcal{D}^p(K)$ - the space of $u \in \mathcal{E}^p(X)$ with induced topology and $\text{supp}(u) \subseteq K$.

$$\mathcal{D}^p(X) := \bigcup_{\text{K is compact subset of X}} \mathcal{D}^p(K)$$

similarly we can define ${}^s\mathcal{D}^p(K)$ and ${}^s\mathcal{D}^p(K)$.

注记 7.2.15. (1) $\mathcal{E}^p(X)$ (resp. ${}^s\mathcal{E}^p(X)$) can be defined by countably many P_k^s . In particular, \mathcal{E}^p , ${}^s\mathcal{E}^p$ are Fréchet spaces.

(2) $\mathcal{D}^p(X)$ is dense in $\mathcal{E}^p(X)$.

定义 7.2.16. (Current, 流, [de Rham 1955])

The spaces of currents of dim = p (or deg = n - p) denoted by $\mathcal{D}'_p(X)$:= the topological dual of $\mathcal{D}^p(X)$. i.e. $\mathcal{D}'_p(X)$ is the set of linear forms T on $\mathcal{D}^p(X)$ s.t. $T|_{\mathcal{D}^p(K)}$ is continuous.

注记 7.2.17. A current can be considered as a form with distribution coefficients. More precisely,

$$T = \sum_{|I|=n-p} T_I \mathrm{d}x_I$$

is a current on Ω , if and only if T_I is a distribution on Ω .

Let $u = f dx_{I^c} \in \mathcal{D}^p(\Omega)$, we have

$$\langle T, f dx_I \rangle := T_I(f)$$

On the other hand, if T is a current of dimension p, then we define

$$T_I(f) := \langle T, f dx_{I^c} \rangle$$

we can verify $T = \sum_{|I|=p} T_I dx_I$.

记号 7.2.18.

$$\langle T, U \rangle := \int_X T \wedge U$$

例子 7.2.19. (Current of integration)

 $Z \subseteq X$ is an oriented closed submanifold with dimension p, with boundary ∂Z . We can define the current [Z] as follows:

$$\langle [Z], u \rangle := \int_Z u$$

for all $u \in \mathcal{D}^p(X)$.

例子 7.2.20. Let f be a form of degree n-p, with coefficients in $L^1_{loc}(X)$. We define the following current T_f :

$$\langle T_f, u \rangle := \int_X f \wedge u$$

(一般地, current 与 current 无法作外积,好比测度与测度无法相乘)

Exterior derivative on Currents:

定义 7.2.21. Let T be a current of dimension $p(or \ degree \ n-p)$, $u \in \mathcal{D}^{p-1}(X)$. We define dT is the current is defined as follows:

$$\langle dT, u \rangle := (-1)^{n-p+1} \langle T, dU \rangle$$

(why
$$(-1)^{n-p+1}$$
?)

注记 7.2.22. if X has no boundary, $T \in T_f$, $f \in \mathcal{E}^{n-p}(X) \cap L^1_{loc}(X)$, then

$$0 = \int_X d(f \wedge u) = \int_X df \wedge u + (-1)^{n-p} f \wedge du$$
$$\langle T_{df}, u \rangle = (-1)^{n-p+1} \langle T_f, du \rangle$$

例子 7.2.23. $Z \subseteq X$ is a p-dimensional submanifold with boundary ∂Z , then by the stokes formula: for $u \in \mathcal{D}^{p-1}(X)$,

$$\langle d[Z], u \rangle = (-1)^{n-p+1} \langle [Z], du \rangle = (-1)^{n-p+1} \int_{Z} du = (-1)^{n-p+1} \int_{\partial Z} u = (-1)^{n-p+1} \langle [\partial Z], u \rangle$$

so we have

$$d[Z] = (-1)^{n-p+1} [\partial Z]$$

定义 7.2.24. A current $T \in \mathcal{D}'_p(X)$ is called closed if dT = 0.

Example: if $T = T_f$ for some $f \in \mathcal{E}^p(X) \cap L^1_{loc}(X)$, then T_f is closed if and only if f is closed (differential form).

Example: $Z \subseteq X$ a submanifold of X, then $\operatorname{d}[Z] = 0 \iff Z$ has no boundary.

Now, Let X be a complex manifold... of $\dim_{\mathbb{C}} = n$, similar to the smooth case, we can define:

$$\mathcal{E}^{p,q}(X)$$
 ${}^s\mathcal{E}^{p,q}(X)$ $\mathcal{D}^{p,q}(X)$ ${}^s\mathcal{D}^{p,q}(X)$

定义 7.2.25. the space of currents of bidimenison (p,q) (or bidegree (n-p,n-q)) denoted by

$$\mathcal{D}'_{p,q}(X)$$

is the topological dual of $\mathcal{D}^{p,q}(X)$

Sinilar to the operator d, we can define $d' = \partial$ and $d'' = \overline{\partial}$ on $\mathcal{D}'_{p,q}(X)$ by duality.

例子 7.2.26. $V \subseteq X$ complex submanifold of $\dim_{\mathbb{C}} = p$, then the current of integration [V] defined by

$$\langle [V], u \rangle = \int_V u|_V$$

we have $[v] \in \mathcal{D}'_{p,p}(X).(Why?!)$

例子 7.2.27. (Non-trivial example)

Let $V \subset X$ is an irreducible analytic set of pure dimension $\dim_{\mathbb{C}} = p$. define the current [V] as follows:

$$\langle [V], u \rangle := \int_{V_{\text{res}}} u$$

(in general, V_{reg} is an open submanifold of $dim_C = p$.)

FACT: [V] also defines a closed currents.

例子 7.2.28. (trivial example)

$$\mathcal{E}^{p,q}(X) \cap L^1_{\mathrm{Loc}}(X) \subseteq (\mathcal{D}')^{p,q}(X)$$

positivity of forms

定义 7.2.29. A(p,p)-form $\varphi \in \bigwedge^{p,p}(\mathbb{C}^n)$ is called strongly positive if φ is a convex combination as follows:

$$\varphi = \sum_{s=1}^k c_s \sqrt{-1} \alpha_{s,1} \wedge \overline{\alpha_{s,1}} \wedge \cdots \wedge \sqrt{-1} \alpha_{s,p} \wedge \overline{\alpha_{s,p}}$$

where $c_s \geq 0$, $\alpha_{s,j} \in \bigwedge^{1,0}(\mathbb{C}^n)$

(in particular, $\varphi \equiv 0$ is strongly positive)

定义 7.2.30. A(p,p)-form $\psi \in \bigwedge^{p,p}(\mathbb{C}^n)$ is called positive, if $\forall \varphi \in \bigwedge^{n-p,n-p}(\mathbb{C}^n)$ strongly positive, we have $\psi \land \varphi \geq 0$.

注记 7.2.31. (1) Let $\varphi = \sqrt{-1} \sum_{i,j} \varphi_{ij} dz_i \wedge d\overline{z}_j$ be a real (1,1)-form, then φ is positive /strongly positive $\iff [\varphi_{ij}]_{i,j} \geq 0$.

(2) denote $C_{sp}^k := \text{the strongly positive } (k,k)\text{-forms}, (C_{sp}^k \text{ is a convex cone in } \bigwedge^{k,k}) C_p^k := \text{the set of positive } (k,k)\text{-forms}. (also a convex cone)$

Check: $C_{sp}^k \subseteq C_p^k$.

Consider a (p,p)-form as a linear function on $\bigwedge^{n-p,n-p}$, then $C_p^k=(C_{sp}^{n-k})^*$

(General setting: $\mathcal{C} \subseteq V$, V is a real vector space of finite dimension, \mathcal{C} is a convex cone, V^* is the dual of V, then we can define $\mathcal{C}^* := \left\{l \in V^* \middle| l|_{\mathcal{C}} \geq 0\right\}$)

Take double dual:

$$\overline{\mathcal{C}_{sp}^{n-k}} = (\mathcal{C}_p^k)^*$$

(general fact: $(\mathcal{C}^*)^* = \overline{\mathcal{C}}$)

推论 7.2.32. A (p,p)-form φ is strongly positive if and only if for all $\psi \in \bigwedge^{n-p,n-p}$ positive, $\varphi \wedge \psi \geq 0$. In particular, "strongly positivity" is dual to "positivity".

术语索引

Čech 上同调, 55, 57

acyclic 零调的, 53 analytic set 解析集, 19

coherent sheaf 凝聚层, 43

distinguished boundary 特征边界, 5 Dolbeault cohomology, 8

fine sheaf, 52 flabby 松弛(层), 50

germ 芽, 34

Hartogs figure, 12 holomorphic function 全纯函数, 4

injective resolution 内射消解, 49 injective sheaf 内射层, 49 inverse image 逆像, 38

local ring 局部环, 17 locally free sheaf 局部自由层, 40

Noetherian ring 诺特环, 17

paracompact 仿紧, 52 polydisk 多圆柱, 5 presheaf 预层, 31

refinement (开)加细,52 resolution 消解,49

section 截面, 31 sheaf space 层空间, 35 sheaf 层, 32 sheafification 层化, 35 skyscrapter sheaf 摩天大厦层, 42 stalk 茎条, 34

Weierstrass 多项式, 13