29 Закон Архимеда

Некоторые тела, помещенные в жидкость¹, не тонут. В таких случаях сила тяжести уравновешивается какой-то другой силой, действующей на тело со стороны жидкости. Эта сила называется выталкивающей или архимедовой силой и действует на любое тело, погруженное в жидкость или газ целиком или частично.

На рис. 1 изображен деревянный куб, покоящийся на поверхности воды; сила тяжести равна так называемой силе Архимеда: $F_{\rm T} = F_{\rm A}$.

Рис. 1. Куб на плаву

Закон Архимеда. На погружённое (возможно, частично) в жидкость или газ тело действует выталкивающая сила, равная весу среды, объём которой вытеснило тело:

$$F_{\rm A} = P_{\rm \tiny BMT.C},\tag{1}$$

где $P_{\text{выт. c}}$ — вес вытесненной среды. (Силы связаны третьим законом Ньютона.)

Можно заметить, что вес вытесненной среды в рассматриваемых условиях есть $P_{\text{выт. c}} = \rho_{\text{c}} g V_{\text{выт}}$; где ρ_{c} — плотность среды, $V_{\text{выт}}$ — вытесненный объем. Тогда сила Архимеда равна:

$$F_{\rm A} = \rho_{\rm c} g V_{\rm BMT}. \tag{2}$$

Плавание — это состояние тела, при котором оно не тонет в жидкости (или газе), будучи погруженным в нее. На рис. 2 показаны три погруженных в воду шара одинакового размера, сделанных из разных материалов.

Рис. 2. Шары в воде

На примере с шарами Ш_1 , Ш_2 и Ш_3 плотностей ρ_1 , ρ_2 и ρ_3 соответственно, которые вначале покоятся в жидкости плотности ρ_c , можно проиллюстрировать три возможных движения тела после погружения в некоторую среду.

- 1. Шар Ш $_1$ сделан из бетона: $F_{\rm r1} > F_{\rm A}$ или $\rho_1 > \rho_{\rm c}$. Этот шар тонет.
- 2. В шаре \coprod_2 вода, обурнутая легкой тонкой пленкой: $F_{\rm r2} = F_{\rm A}$ или $\rho_2 = \rho_{\rm c}$. Этот шар остается в покое.
- 3. Шар Ш $_3$ деревянный: $F_{\rm T3} < F_{\rm A}$ или $\rho_3 < \rho_{\rm c}$. Этот шар всплывает. Он придет в равновесие у поверхности жидкости, частично погрузившись в нее.

Условие плавания тела можно записать в виде неравенства: $\rho \leqslant \rho_{\rm c}$, где ρ — плотность тела.

 $^{^{1}}$ Далее считается, что среда (жидкость или газ) покоится у поверхности планеты.