Algoritmi e Strutture Dati (02/11/2021)

* Tabelle hash

Imsiemi dimamici di elementi a con chiave a key in U

* Chaiming: ogni entry comtieme la lista digli elementi
com lo stesso hashing della chiave

tempo medio

$$\alpha = \text{fattore di ario} = \frac{m}{m}$$
 $0 \le \alpha = \frac{1}{2}$
 $\alpha = \text{fattore di ario} = \frac{m}{m}$ $0 \le \alpha = \frac{1}{2}$
 $\alpha = \frac{1}{2}$
 α

* Open Addressing

idea: memorizzo ali elementi dill'insieme dinamico solo mello spazio della tobella

$$h(K,0)$$
 $h(K,1)$ $h(K,2)$ $-- h(K,m-1)$
Sequem 2a di Ispezione

permutazione di 0,1, -, m-1

* operazioni

Insert (T, x)

i = 0

repeat

$$J = h(x. key, i)$$

$$if(T[J] == mill) \text{ or } (T[J] == \text{ deleted})$$

$$T[J] = x$$

return J

i = i+1

until i == m

evror "tabella piema"

h(K3,4)

* Hoshing Uniforme

ogmi elemento determino con la stena probobilità una qualunque delle m?

* Come difinile funzioni di hosh?

1 Ispezione Pintare

fisso $h(\kappa)$ funcione di hash $h'(\kappa,i) = (h(\kappa)+i)$ mod m

vantagio: semplice

outcomisq otmamounslabo : cigatmove

di sequemze di espezione = m (dipendi solo de h(k) med m)

2) Ispezione quadratica

data h(n) funcione di hash

$$h'(k,i) = (h(k) + C_1i + C_2i^2) \mod m$$
 C_1, C_2 apportune

- o addensa amento secondario

-> # sequemze di ispezione: dipende solo do h(K) mad m => m possibilità

(3) Doppio hashing

Siamo h1(K), h2(K) funzoni di hosh di un solo orgamento $h(\kappa,i) = (h_1(\kappa) + i h_2(\kappa)) \mod m$

* come mi osi curo che vengomo ispersonate tette le celle?

hz (K) e m somo relativamente primi ! Smorsipma $MCD(h_2(K), m)$

doti
$$i, i' < m$$
 $i \neq i' \Rightarrow h(\kappa, i) \neq h(\kappa, i')$

$$(\Rightarrow \{h(\kappa_i \circ), -, h(\kappa_i \circ m_{-i})\} = \{o_{i,-1}, m_{-1}\}$$

dim

= siamo $i, i' \in \{0, 1, 7, m-1\}$ e sia $h(\kappa, i) = h(\kappa, i')$ i = i'

is is comuzzo

 $(h_1(k) + i h_2(k)) \mod m = (h_1(k) + i h_2(k)) \mod m$

 $(h_1(K) + i h_2(K)) \mod m - (h_1(K) + i | h_2(K)) \mod m = 0$ $(h_1/k) + i h_2(k) - h_1(k) - i h_2(k))$ and m = 0(i - i') hz(K) mod m = 0

Lo m divisore di i-i' (doto che MCD(hz/K),m)=1) ma $0 \le i - i' \le m - 1$

$$\Rightarrow \dot{\lambda} - \dot{\lambda}' = 0 \Rightarrow \dot{\lambda} = \dot{\lambda}'$$

Esempio

$$\begin{cases} m = 2^{p} \\ h_{2}(k) = 2 h'(k) + 1 & com h' funtione de hab qualunque \end{cases}$$

$$\begin{cases} m & \text{primo} \\ h_2(\kappa) < m & h_2(\kappa) = 1 + \kappa \text{ mod } m' \text{ con } m' < m \\ \text{ (es. } m' = m - 1) \end{cases}$$

esempio

$$m = 7$$
 $h_1(K) = K \mod 7$
 $m' = 6$ $h_2(K) = 1 + K \mod 6$

$$h_2(K) = 2$$

$$h_1(K) = 2$$

 $h_2(K) = 1 + 16 \text{ mad } 6 = 1 + 4 = 5$

$$h_1(30) = 2$$

 $h_2(30) = 1 + 0 = 1$

* ANALISI

Trispetto
$$a = \frac{m}{m}$$
 $0 \le d \le 1$

(a) Ricerca di chiave assemte

medio di alle ispezionnate

(a)
$$\frac{1}{1-\alpha}$$
 se $d<1$

(b)
$$m = d = 1$$

segue la requienza di espersione fino od una cella viota

$$prob$$
 $i=0$ 1

$$prob$$
 $i = 1 = prob$ $i = 0$ m $except to $m$$

prob
$$i = 2 = prob(i = 1) \cdot \frac{m}{m} \cdot \frac{m-1}{m-1}$$
prob cello occupato

$$\frac{m}{m} \frac{m-1}{m-1} - \frac{m-i+1}{m-i+1} \leq \alpha^{i}$$

$$\alpha \quad \alpha \quad \alpha$$

alteso di alle da espeziomate

$$1 + \alpha + \alpha^{2} + - - + \alpha^{m-1}$$
 (*)

2 cosi

$$(\alpha < 1)$$
 $(*) \leq \sum_{i=0}^{\infty} \alpha^{i} = \frac{1}{1-\alpha}$

$$(d=1)$$
 $(*) = \underbrace{1+\cdots+1}_{\text{in volte}} = m$

(b) riarco di un elemento pasente

(a)
$$\frac{1}{\alpha}$$
 $\log \left(\frac{1}{1-\alpha}\right)$ $\alpha < 1$

(b)
$$1 + \log m$$
 $d = 1$

ho imsert $x_0 x_1 - x_{m-1}$

costo ricur ca oci

= costo ricura di xi assemte dopo che ho imsurto 20,201, xi-1

$$= \frac{1}{1-\alpha_{i}} = \frac{1}{1-\frac{i}{m}} = \frac{m}{m-i}$$
Valore de de dopo Plems. di $x_{0}, x_{1}, -\infty$

asto medio per riarca di un qualumque elemento

$$\frac{1}{m}\sum_{i=0}^{m-1}$$
 (costo medio por xi)

$$= \frac{1}{m} \sum_{i=0}^{m-i} \frac{m}{m-i} = (\frac{m}{m}) \sum_{i=0}^{m-i} \frac{1}{m-i}$$

$$= \frac{1}{m} \sum_{i=0}^{m-i} \frac{m}{m-i}$$

$$= \frac{1}{m} \sum_{i=0}^{m-i} \frac{1}{m-i}$$

$$=\frac{1}{d}\sum_{\kappa=m-m+1}^{m}\frac{1}{\kappa}$$

$$(\alpha < 1) = \frac{1}{\alpha} \sum_{K=m-m+1}^{m} \frac{1}{K}$$

$$\leq \frac{1}{d} \int_{m-m}^{m} \frac{1}{2} dz$$

$$= \frac{1}{d} \left(\log m - \log (m - m) \right)$$

$$= \frac{1}{d} \log \left(\frac{m}{m-m} \right) = \frac{1}{d} \log \left(\frac{1}{1-d} \right)$$

$$\frac{1}{1-m} = \frac{1}{1-d}$$

$$\frac{1}{1-m} = 1-d$$

$$(\alpha = 1) \qquad \frac{1}{\alpha} \sum_{\kappa = \frac{m - m + 1}{0}}^{m}$$

$$\frac{1}{d}$$
 by $\left(\frac{1}{1-a}\right)$

$$(\alpha = 1) \frac{1}{\alpha} \sum_{k=m-m+1}^{m} \frac{1}{k} = 1 + \sum_{k=2}^{m} \frac{1}{k} \leq 1 + \int_{\alpha} \frac{1}{\alpha} d\alpha$$

$$= 1 + \log m - \log 1 = 1 + \log m$$

d	ricera chiove ossemte 1-2	ricurco chove presente $\frac{1}{d} \log \left(\frac{1}{1-d}\right)$
0,3	1,43	4,19
0,7	3,33	1,72
0,9	10	2,56
0,99	100	4,65

