

Hybrid models

Outline

- RANS vs. LES vs. DNS
- Hybrid models
 - Why and how to hybrid?
 - Type of hybrid models
 - » Pros /Cons
- Literature
 - 1. Fröhlich, J., von Terzi, D. Hybrid LES/RANS methods for the simulation of turbulent flows, Progr. in Aerosp. Sci., 44 (2008), 349-377
 - 2. Spalart, P.R. Detached-Eddy Simulation, Annu. Rev. Fluid Mech. 2009, 41:181-202

RANS vs. LES vs. DNS

(Averaged) vs. (filtered) vs. (raw) naiver stokes equations

RANS vs. LES vs. DNS

(Averaged) vs. (filtered) vs. (raw) naiver stokes equations

Possible issues

- Accuracy/fidelity ↑, Cost ↑
- Ease of implement/use ↑
- discretization schemes ↑
 - » DNS favor high order scheme
- Stability ↑↓
 - » RSM can be unstable due complicated eq.s.
 - » DNS is on a edge trying to minimize number of grid cells.
- Boundary conditions
 - » P.D.E.s ↓
 - » Inflow/outflow fluctuation ?
- Data Post-processing, analysis ↑

All models solve a similar form of 3 momentum +1 continuity equations. The unresolved Reynolds or residual stresses can all be modeled by eddy viscosity assumption as:

RANS

$$v_{eff} = v_{molec} + v_{RANS}$$

LES

$$v_{eff} = v_{molec} + v_{LES}$$

Why not combine modeling concepts?

$$v_{eff} = v_{molec} + v_{model}$$

Why NOT?

- Conceptual issues (Reynolds average vs. spatial filtering vs. raw)
- 2 models more difficult than 1 (e.g. different model assumptions and asymptotic behaviors)
- How to separate?
- How to connect?

[Frohlich2008]

Coupling strategies

•
$$\frac{\partial \overline{u_i}}{\partial t} + \frac{\partial \overline{u_i u_j}}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_i} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_j \partial x_j} + \frac{\partial}{\partial x_j} \tau_{ij}^{Model}$$

- Unified
 - blending

$$\tau_{ij}^{model} = f^{RANS} \tau_{ij}^{RANS} + f^{LES} \tau_{ij}^{LES}$$

RANS

- adjusting
- Segregated
 - Interfaced/ Embedded/Layered

» Soft

RANS

LUND

URANS

- RANS = steady flows
- URANS = Unsteady RANS $u = \bar{u} + \tilde{u} + u'$
- \tilde{u} = "phase average or the average conditioned on some slowly varying quantity"
- Source of unsteadiness
 - External / BC
 - Internal / flow instability
- Add time-dependent term
- No change in turb. model

 Conceptually OK only if resolved timescale is not within turbulent range

E.g. flow over a square cylinder

How? **VLES** LES, DNS Eddy-resolving methods for turbulent flows **URANS** unified LES/RANS segregated LES/RANS 2G-URANS PANS [117] [49], [113] hard interface soft interface blending [114], [115] SAS [128] layering layering wheighted RANS & LES RANS & LES averaging [91], [93], [94] [89], [90] [63], [66] [95], [129] RANS-limited layering damping RANS 2G-URANS & LES **LES** [126] [99], LNS [102] [55], FSM [51,53] switching length switching length switching length scale in model PDE scale in model PDE scale in model PDE DES [11] **DDES** [67] **DES-SST** [72]

Very Large Eddy Simulation (VLES)

LES

- Resolve at least 80% of kinetic energy
- Filter cutoff within inertial subrange

VLES

- Several methods are called VLES
- Too coarse LES
- No adjustment of the SGS model
- Problems obtaining physical results
- Used e.g. for inflow data generation

How?

LUND

Unified turbulence models

- Blending: $\tau_{ij}^{model} = f^{RANS} \tau_{ij}^{RANS} + f^{LES,DNS} \tau_{ij}^{LES,DNS}$
- Requirements [Speziale]
 - 1. For coarse grids -> RANS
 - 2. For fine grids -> DNS (possibility to turn off)
 - 3. No explicit filtering (make it easy in complex situations)
- Examples
 - Damping of a RANS model
 - Weighted sum of RANS and LES

Damping of a RANS model (FSM)

- FSM = Flow Simulation Methodology
- $\tau_{ij}^{model} = f_{\Delta} \left(\frac{\Delta}{l_K} \right) \tau_{ij}^{RANS} \quad 0 \le f_{\Delta} \le 1$
- contribution function
- Damp model when part of the turbulence is resolved
- Issues of consistency

 Δ – grid size

$$l_K = \frac{v^{3/4}}{\epsilon^{1/4}}$$
 (Kolmogorov scale)

$$f_{\Delta}\left(\frac{\Delta}{l_K}\right) = \left(1 - e^{-\beta \frac{\Delta}{l_K}}\right)^n$$

 $\mathbf{u}_{\mathsf{FSM} \; \mathsf{model}} \neq \langle u_i \rangle_{Reynold \; average}$

– How to compute τ_{ij}^{RANS} ?

Flow Simulation Methodology(FSM)

Flow Simulation Methodology(FSM)

[Frohlich2008]

Supersonic flow computed with FSM

Comparisons of governing equations solved in RANS and in LES

(bearing in mind the difference in spatial filtering and Reynolds average)

Mass: $\frac{\partial u_i}{\partial x_i} = 0$

 $\tau_{ij}^{model} = f^{RANS}\tau_{ij}^{RANS} + f^{LES,DNS}\tau_{ij}^{LES,DNS}$

Momentum:

$$\frac{\partial \overline{u_i}}{\partial t} + \frac{\partial \overline{u_i} \overline{u_j}}{\partial x_i} = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_i} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_j \partial x_j} + \frac{\partial \tau_{ij}^{LES,RANS}}{\partial x_j}$$

RANS: solve additional transport equations

$$\frac{\partial \phi}{\partial t} + \frac{\partial \overline{u_j} \phi}{\partial x_j} = \frac{v_T}{C_{\phi}} \frac{\partial^2 \phi}{\partial x_j \partial x_j} + P_{\phi} - \epsilon_{\phi} + R_{\phi}$$

$$\phi \in \begin{bmatrix} 0 \\ v_T, l_S, k \\ \varepsilon, \omega, \dots \\ k_l, \theta, \gamma, \dots \\ \tau_{ij}^{RANS} \end{bmatrix} \begin{bmatrix} 0 - \text{eq} \\ 1 - \text{eq}. \\ 2 - \text{eq}. \\ 3, 4 - \text{eq}. \\ 17 - \text{eqs.RSM} \end{bmatrix} \begin{bmatrix} \text{Boussinesq eddy viscosity assumptions (Algebric)} \\ \tau_{ij}^{RANS} \end{pmatrix} \frac{2}{3} k \delta_{ij} = 2 v_T \overline{S}_{ij} \\ 3, 4 - \text{eq}. \\ 17 - \text{eqs.RSM} \end{bmatrix}$$

Near wall boundary treatment:

Using a blending function f(d): **d** is the distance to wall $F(\phi) = f \cdot F^{Interior}(\phi) + (1-f)F^{NearWall}(\phi)$

LES: no need for new transport eq.s.

Note: Some LES SGS models do involve new transport equations, but the transporting effects are of minor importance than their role in RANS modelling)

Smagrinsky eddy viscosity model (Algebric)

$$(\tau_{ij}^{LES}) - \frac{2}{3}k\delta_{ij} = 2\nu_r \overline{S}_{ij} = 2C_S^2 \Delta^2 \overline{S} \, \overline{S}_{ij}$$

Comparisons of governing equations solved in RANS and in LES (bearing in mind the difference in spatial filtering and Reynolds average)

Mass:
$$\frac{\partial u_i}{\partial x_i} = 0$$

Momentum:
$$\frac{\partial \overline{u_i}}{\partial t} + \frac{\partial \overline{u_i} \overline{u_j}}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_i} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_j \partial x_j} + \frac{\partial \tau_{ij}^{LES,RANS}}{\partial x_j}$$

RANS: solve additional transport equations

$$\frac{\partial \phi}{\partial t} + \frac{\partial \overline{u_j} \phi}{\partial x_j} = \frac{v_T}{C_{\phi}} \frac{\partial^2 \phi}{\partial x_j \partial x_j} + P_{\phi} - \epsilon_{\phi} + R_{\phi}$$

$$\phi \in \begin{bmatrix} 0 \\ v_T, l_S, k \\ \varepsilon, \omega, \dots \\ k_l, \theta, \gamma, \dots \\ \tau_{ij}^{RANS} \end{bmatrix} \begin{bmatrix} 0 - \text{eq} \\ 1 - \text{eq}. \\ 2 - \text{eq}. \\ 3, 4 - \text{eq}. \\ 7 - \text{eqs.RSM} \end{bmatrix}$$
Boussinesq eddy viscosity assumptions (Algebric)
$$\tau_{ij}^{RANS} - \frac{2}{3}k\delta_{ij} = 2v_T\overline{S}_{ij}$$

Near wall boundary treatment:

Using a plending function f(d): **d** is the distance to wall $F(\phi) = f \cdot F^{Interior}(\phi) + (1-f)F^{NearWall}(\phi)$

LES: no need for new transport eq.s.

Note: Some LES SGS models do involve new transport equations, but the transporting effects are of minor importance than their role in RANS modelling)

Smagrinsky eddy viscosity model (Algebric)

$$\tau_{ij}^{LES} - \frac{2}{3}k\delta_{ij} = 2\nu_r \overline{S}_{ij} = 2C_s^2 \Delta^2 \overline{S} \, \overline{S}_{ij}$$

Filter or grid cell size

Weighted sum of LES and RANS

• E.g. using the Shear-Stress Transport (SST) model (solve K, ω)

•
$$v_t = f v_t^{RANS} + (1 - f) v_t^{LES} = f \frac{K}{\omega} + (1 - f) C_S \sqrt{K} \Delta$$

•
$$\epsilon = f \epsilon^{RANS} + (1 - f) \epsilon^{LES} = f \beta^* K \omega + (1 - f) C_S \frac{K^{3/2}}{\Delta}$$
• $\epsilon = f \epsilon^{RANS} + (1 - f) \epsilon^{LES} = f \beta^* K \omega + (1 - f) C_S \frac{K^{3/2}}{\Delta}$
• $\epsilon = f \epsilon^{RANS} + (1 - f) \epsilon^{LES} = f \beta^* K \omega + (1 - f) C_S \frac{K^{3/2}}{\Delta}$

• *f* – modification of the SST blending function

•
$$f = \tanh(\eta^4)$$
 ; $\eta = \frac{1}{\omega} max \left\{ \frac{500\nu}{d^2}; \frac{\sqrt{K}}{C_{\mu}d} \right\}$

- Close to wall d→0: RANS; far away d→∞: LES
- Issues
 - Can generate unphysical flow structures
 - URANS issues
 - Narrow blending region -> reverts to interfacing

Interfacing RANS and LES

- Detached Eddy Simulation (DES)
- Layering RANS and LES
- RANS limited LES
- Limited numerical scales

Comparisons of governing equations solved in RANS and in LES (bearing in mind the difference in spatial filtering and Reynolds average)

Mass: $\frac{\partial u_i}{\partial x_i} = 0$

Momentum: $\frac{\partial \overline{u_i}}{\partial t} + \frac{\partial \overline{u_i} \overline{u_j}}{\partial x_i} = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_i} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_i \partial x_j} + \frac{\partial \tau_{ij}^{LES,RANS}}{\partial x_i}$

RANS: solve additional transport equations

$$\frac{\partial \phi}{\partial t} + \frac{\partial \overline{u_j} \phi}{\partial x_j} = \frac{v_T}{C_{\phi}} \frac{\partial^2 \phi}{\partial x_j \partial x_j} + P_{\phi} \left(-\epsilon_{\phi} \right) + R_{\phi}$$

 $\phi \in \begin{bmatrix} 0 \\ v_T, l_s, k \\ \varepsilon, \omega, \dots \\ k_l, \theta, \gamma, \dots \\ \tau_{ij}^{RANS} \end{bmatrix} \begin{bmatrix} 0 - \text{eq} \\ 1 - \text{eq}. \\ 2 - \text{eq}. \\ 3, 4 - \text{eq}. \\ 17 - \text{eqs.RSM} \end{bmatrix}$ Boussinesq eddy viscosity assumptions (Algebric) $\tau_{ij}^{RANS} - \frac{1}{3}k\delta_{ij} = 2v_T \bar{b}_{ij}$

LES: no need for new transport eq.s.

Note: Some LES SGS models do involve new transport equations, but the transporting effects are of minor importance than their role in RANS modelling)

Smagrinsky eddy viscosity model (Algebric)

$$(\tau_{ij}^{LES}) - \frac{2}{3}k\delta_{ij} = 2\nu_r \overline{S}_{ij} = 2C_s^2 \Delta^2 \overline{S} \, \overline{S}_{ij}$$

Near wall boundary treatment;

Using a blending function f(d): **d is the distance to wall** $F(\phi) = f \cdot F^{Interior}(\phi) + (1 - f)F^{NearWall}(\phi)$

Detached Eddy Simulation (DES)

- For details see [Spalart 2008]
- Started from the 1-eq. Spalart-Allmaras RANS model

$$\partial_{t}\tilde{v} + \langle u_{j}\rangle \partial_{x_{j}}\tilde{v} = c_{b1}\tilde{S}\tilde{v} + \frac{1}{\sigma_{\tilde{v}}} \left[\partial_{x_{j}} \left((v + \tilde{v})\partial_{x_{j}}\tilde{v} \right) \right.$$

$$+ c_{b2}(\partial_{x_{j}}\tilde{v})^{2} \right] - \left(c_{w1}f_{w} \left(\frac{\tilde{v}}{d} \right)^{2} \right)$$

$$Distruction term, depends on the wall distance$$

- · Idea: make it depend on the grid size, replace d with
- $\tilde{d} = \min\{d; C_{DES}\Delta\}$; $\Delta = \max\{\Delta_x; \Delta_y; \Delta_z\}$
- The basic idea can be combined with other RANS models as well

 LUND

DES

- Smooth changes (only source term is changed in different regions)
- Even RANS part will fluctuate due to outer region fluctuations
- Can be used as a wall model
- Issues (see [Spalart 2008])
 - Modeled-Stress Depletion
 - Grid Induced Separation
 - Log-layer mismatch
 - Slow LES development in mixing layers
- There are improved versions

Sample DES results

Layering RANS and LES

- Typically near walls
- Can be hard or soft interface
- Matching models or quantities at the interface (not a term in a transport eq. like in DES)
- Interface position
 - Grid line
 - Wall distance y or y+
 - » Problem @ separation/reattachment
- Usually discontinuities appear

Layering RANS and LES

Segregated modeling

- Geometry divided before the computations are started
- Flow variables (u, p) matched at the interface
 - $-\langle u\rangle|_{interface}\approx\langle\overline{u}\rangle|_{interface}$, ...
- Should be two-way coupling
 - Governing eq.s are P.D.Es
- Typical interface scenarios
 - Inflow coupling
 - Outflow coupling
 - Tangential coupling

Inflow coupling

- RANS provides no fluctuations
 - $-\langle u \rangle$, $\langle u'_i u'_j \rangle$ are just statistics
- Generate in the LES domain
 - $\overline{u}(t,x)$ should fluctuate in space and time
- Impose at coupling
 - Real fluctuations
 - » Precomputed, database
 - » Synthetic

Inflow coupling

Outflow and tangential coupling

- RANS should propagate mean flow information upstream
 - Incompressible N-S is elliptical
 - An expensive full LES will waste many cells to do this job.
- LES should deliver average flow data
- Fluctuations should leave the LES domain without reflections
 - Unless you had wrong implementation

2nd generation URANS models

- Aim to solve a substantial part of the energy spectrum
- 2G-URANS vs LES: No dependence on grid size
- 2G-URANS vs URANS: contain a term sensing the amount of resolved fluctuations
- Examples
 - Partially Averaged Navier Stokes (PANS)
 - Scale Adaptive Simulation (SAS)

PANS

- Solve a standard RANS equations
 - Define two ratios:

$$f_K = \frac{K_\tau}{K} \quad f_\epsilon = \frac{\epsilon_\tau}{\epsilon} \quad 0 \le f_K \le f_\epsilon \le 1$$

- K, ε , starndard turbulent kinetic energy and dissipation rate
- K_{τ} , ϵ_{τ} unresolved part
- » User decides ratio a priori, will be applied everywhere
 - Say, you to resolve 60%, $f_K = f_{\epsilon} = 0.4$

$$v_t = C_{\mu\tau} \frac{K_\tau^2}{\epsilon_\tau} = C_\mu \frac{f_K^2}{f_\epsilon} \frac{K^2}{\epsilon}$$

- Easy to implement into existing 2-equation model
- The user needs to specify appropriate grid resolution

Scale Adaptive Simulation (SAS)

- Definition of SAS
 - Contains two lengthscales
 - » First derivative of the velocity
 - » Higher order derivative of the velocity
 - Reverts to RANS in stable flow regions
 - Allows the breakup of large unsteady structures (no explicit grid or timestep dependency)
 - » Proper damping of resolved turbulence at the resolution limit of the grid.

Scale Adaptive Simulation (SAS)

Idea started from the K-KL model

•
$$v_{t} = \frac{\mu_{t}}{\rho} = c_{\mu}^{1/4} \Phi$$
.
$$\frac{\partial(\rho K)}{\partial t} + \frac{\partial(\rho U_{j} K)}{\partial x_{j}} = P_{K} - c_{\mu}^{3/4} \rho \frac{K^{3/2}}{L} + \frac{\partial}{\partial x_{j}} \left(\frac{\mu_{t}}{\sigma_{K}} \frac{\partial K}{\partial x_{j}}\right),$$
(52)
$$\frac{\partial(\rho \Phi)}{\partial t} + \frac{\partial(\rho U_{j} \Phi)}{\partial x_{j}} = \frac{\Phi}{K} P_{K} \left(\zeta_{1} - \zeta_{2} \left(\frac{L}{L_{vK}}\right)^{2}\right) - \zeta_{3} \rho K + \frac{\partial}{\partial x_{j}} \left(\frac{\mu_{t}}{\sigma_{\Phi}} \frac{\partial \Phi}{\partial x_{j}}\right),$$

$$L_{vK} = \kappa \frac{|U'|}{|U''|}, \quad |U'| = \sqrt{\frac{\partial U_i}{\partial x_j} \frac{\partial U_i}{\partial x_j}}, \quad |U''| = \sqrt{\frac{\partial^2 U_i}{\partial x_j \partial x_j} \frac{\partial^2 U_i}{\partial x_k \partial x_k}}, \quad \text{The larger of } L_{vK}, \quad \text{less production of } L_{vK}, \quad L_{vK} = \frac{1}{2} L_{vK}$$

$$P_K = \mu_t S^2$$
, $S = \sqrt{2S_{ij}S_{ij}}$, $S_{ij} = \frac{1}{2} \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right)$.

The larger of $L_{\nu K_{,}}$ the less production of viscosity ϕ , allowing the flow more susceptible to flow instability and break up.

(53)

Sample SAS results

• Different timesteps

