Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию $N_{0}6$

«Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов.»

Вариант $3 \ / \ 4 \ / \ 1$

Выполнил: студент 101 группы Черепанова Н. В.

Преподаватель: Кузьменкова Е. А.

Содержание

Постановка задачи	
Математическое обоснование	3
Результаты экспериментов	5
Структура программы и спецификация функций	6
Сборка программы (Маке-файл)	8
Отладка программы, тестирование функций	10
Программа на Си и на Ассемблере	12
Анализ допущенных ошибок	13
Список цитируемой литературы	14

Постановка задачи

Требуется реализовать численный метод, позволяющий с заданной точностью ε вычислять площадь плоской фигуры, ограниченной тремя кривыми:

1.
$$f_1(x) = e^{-x} + 3$$

2.
$$f_2(x) = 2x - 2$$

3.
$$f_3(x) = \frac{1}{x}$$

Площадь нужно выразить алгебраической суммой определенных интегралов и вычислить ее с точностью ε_2 методом прямоугольников. Вершины фигуры ищутся с точностью ε_1 комбинированным методом (хорд и касательных), как попарные пересечения прямых, путем поиска корня уравнения F(x,y)=0. Отрезки для применения метода необходимо найти аналитически. ε_1 и ε_2 необходимо подобрать так, чтобы суммарная погрешность ε не превосходила 0.001.

Математическое обоснование

Рассмотрим графики кривых (рис. 1) и обоснуем выбор отрезков для поиска корней. Так требуется реализовать комбинорованных метод, то функция должна иметь на заданном отрезке монотонную и непрерывную производную, сохраняющую определенный знак [1].

Рис. 1: Плоская фигура, ограниченная графиками заданных уравнений

Докажем это для каждой из функций на выбранном отрезке:

- $f(x) = f_2(x) f_1(x) = -e^{-x} + 2x 5$, отрезок [0.0, 5.0]
 - 1. Функции f_1 и f_2 имеют единственную точку пересечения на этом отрезке; слева от точки пересечения $f_1(x) > f_2(x)$, а справа от точки пересечения $f_2(x) > f_1(x)$.
 - 2. $f'(x) = e^{-x} + 2$ монотонна, так как e^{-x} убывает, непрерывна, как композиция непрерывных функций, и положительна на выбранном участке.
- $f(x) = f_3(x) f_2(x) = \frac{1}{x} 2x + 5$, отрезок [1.0, 2.0]
 - 1. Функции f_2 и f_3 имеют единственную точку пересечения на этом отрезке; слева от точки пересечения $f_3(x) > f_2(x)$, а справа от точки пересечения $f_2(x) > f_3(x)$.

- 2. $f'(x) = -\frac{1}{x^2} 2$ монотонна, так как $-\frac{1}{x^2}$ возрастает, непрерывна, как композиция непрерывных функций, и отрицательна на выбранном участке.
- $f(x) = f_1(x) f_3(x) = e^{-x} \frac{1}{x} + 3$, отрезок [0.25, 0.28]
 - 1. Функции f_1 и f_3 имеют единственную точку пересечения на этом отрезке; слева от точки пересечения $f_3(x) > f_1(x)$, а справа от точки пересечения $f_1(x) > f_3(x)$.
 - 2. $f'(x) = -e^{-x} + \frac{1}{x^2}$ монотонна, так как $-e^{-x} + \frac{1}{x^2}$ убывает, непрерывна, как композиция непрерывных функций, и положительна на выбранном участке.

Обоснуем выбор значений ε_1 и ε_2 . Возьмем $\varepsilon_1=10^{-5}$ и $\varepsilon_2=10^{-4}$. Докажем, что тогда суммарная погрешность не превосходит 0.001. Пусть мы вычислили корень с точностью ε_1 . Тогда из-за неточных границ мы могли ошибиться в значении определенного интеграла не более чем на $2*max(f_i)*\varepsilon_1$, так как площадь непосчитанной области (или наоборот, посчитанной дважды) не превосходит $\varepsilon_1*max(f_i)$, где $max(f_i)=max(sup(f_1),sup(f_2),sup(f_3))$, (sup берется на объединении заданных отрезков для нахождения корня, в нашем случае на отрезке [0.25, 5.0]) и таких областей 2 (у каждой из границ). $max(f_i)<5$, что можно видеть из графика (рис. 1). Значит, ошибка, возникающая из-за неточно вычисленных границ, не превосходит $2*5*\varepsilon_1=10*\varepsilon_1$. Каждый интеграл посчитан с точностью ε_2 . Значит, суммарно ошибка в подсчете интеграла равна $10\varepsilon_1+\varepsilon_2$. Так как необходимо вычислить три интеграла, то суммарная погрешность равна $3*(10*\varepsilon_1+\varepsilon_2)=3*2*10^{-4}<0.001$

Результаты экспериментов

Кривые	x	y
1 и 2	2.5394	3.0789
2 и 3	1.3660	0.7320
1 и 3	0.2654	3.7668

Таблица 1: Координаты точек пересечения

Рис. 2: Плоская фигура, ограниченная графиками заданных уравнений

Структура программы и спецификация функций

Функции, между которыми ограничена искомая область, а также их производные, описаны в файле ff.asm.

```
double f1(double x);
double f2(double x);
double f3(double x);
double derf1(double x);
double derf2(double x);
double derf3(double x);
```

Остальные функции описаны в файле main.c

Функция, возвращающая абсциссу точки пересечения кривых f_1 и f_2 . Принимает как аргументы указатели на функции, описывающие кривые; указатели на производные данных функций; границы сегмента, на котором сходится численный метод; точность вычислений.

```
double root(double(*f1)(double), double(*f2)(double),
double (*derf1)(double), double(*derf2)(double), double a, double b,
double eps)
```

Функция, возвращающая значение определенного интеграла принимает указатель на подинтегральную функцию, границы интегрирования, точность вычислений.

```
double integral(double (*f)(double), double a, double b, double eps)
```

Маіп-функция программы, предполагает вызов исполнительного файла с ключами. Для вывода возможных опций запуска принимается ключ -help (или -h). Для тестирования функции гоот принимается ключ -tr, для тестирования функции integral ключ -ti. Для вывода ответа на поставленную задачу необходимо воспользоваться ключом -r, который опционально добавляет к ответу точки пересечения кривых и количество итераций, потребовавшихся для поиска точек пересечения, и подсчета интегралов.

```
int main(int argc, char *argv[])
```

При вызове исполнительного файла с ключем -tr, запускается функция void testroot()

Которая принимает затем номер функции, корень которой нужно найти (вторая функция является тождественным нулем) и номер корня. Затем выводит результат.

Функции, участвующие в работе программы, запущенной с ключом -tr:

```
double root1(double x)
double root2(double x)
double f0(double x)
double derroot1(double x)
double derroot2(double x)
double derf0(double x)
```

При вызове исполнительного файла с ключем -ti, запускается функция void tesintegral()

Которая принимает затем номер функции, определенный интеграл которой нужно найти и границы. Затем выводит результат.

Функции, участвующие в работе программы, запущенной с ключом -ti:

double int1(double x)
double int2(double x)

Сборка программы (Маке-файл)

Рис. 3: Диаграмма сборки файла main.exe

Ниже приводится текст Make-файла, написанного для сборки исполняемого файла main.exe, путем, указанным на диаграмме.

```
all: main
main.o: main.c
    gcc -o main.o -c main.c -m32
ff.o: ff.asm
    nasm -o ff.o ff.asm -f elf32
main: main.o ff.o
    gcc -o main main.o ff.o -m32
clean:
    rm -rf *.o main
```


Рис. 4: Зависимость между модулями программы

В файле main.c описаны функции root и integral, которые для вычислений используют три заданные в условии функции и их производные, описанные в файле ff.asm. Во время компоновки они собираются в один файл main.exe, который затем исполняется. Работа собранной программы начинается с вызова функции main модуля main.

Отладка программы, тестирование функций

Тестирование функции root происходит после запуска исполнительного файла с ключом -tr. Далее необходимо выбрать функцию, корень которой будет находиться:

```
1. f_1(x) = -x^2 - x + 6
```

2.
$$f_2(x) = x^2 - 4$$

-2.999996

И номер корня 1 или 2. (диапазоны поиска корней заданы заранее) Пример работы программы с ключом -tr:

```
$ ./main -tr
    enter number of function:
1) -x^2 -x +6
2) x^2 - 4
1
    enter number of root:
1
```

Проверим вычисления аналитически. На промежутке [-4.0, -1.0] функция $f_1(x) = -x^2 - x + 6$ имеет только один корень x = -3.0. Так же производная данной функции f'(x) = -2x - 1 на выбранном промежутке всегда положительна, то есть можно использовать комбинированный метод поиска корня. Точность найденного ответа соответствует точности вычисления корня $\varepsilon_1 = 0.00001$

Аналогично поиск второго корня $f_1(x) = -x^2 - x + 6$ на промежутке [1.0, 3.0] возможен комбинированным методом, так как функция принимает значения разного знака на концах отрезка и производная $f'_1(x) = -2x - 1$ знакопостоянна.

Для функции $f_2(x) = x^2 - 4$, поиск корней ведется на промежутках [-4.0, -1.0] и [1.0, 10.0], на концах которых функция принимает значения разного знака, а производная $f'_2(x) = 2x$ знакопостоянна.

Тестирование функции integral происходит после запуска исполнительного файла с ключом -ti. Далее необходимо выбрать функцию, интеграл которой нужно найти:

1.
$$f_1(x) = -2x + 2$$

2.
$$f_2(x) = 3x^2 - 12$$

И задать пределы интегрирования. Пример работы программы с ключом -ti:

```
$ ./main -ti
    enter number of function:
1) -2x + 2
2) 3x^2 - 12
1
enter first point:
```

-4
enter second point:
3

20.999957

Проверим вычисления аналитически:

$$\int_{-4.0}^{3.0} (-2x+2)dx = x^2 + 2x \Big|_{-4.0}^{3.0} = 21$$

Вычисления программы совпали с аналитическими рассчетами с точносью, указанной в программе $\varepsilon_2=0.0001.$

Программа на Си и на Ассемблере

Исходные тексты программы имеются в архиве, который приложен к этому отчету.

Анализ допущенных ошибок

Была допущена ошибка в функции integral, в результате которой не изменялась мелкость разбиения.

Список литературы

[1] Ильин В. А., Садовничий В. А., Сендов Бл. X. Математический анализ. Т. 1 — Москва: Наука, 1985.