From Daniell spaces to the integration spaces of Bishop and Cheng

Josif Petrakis

University of Munich

CCC 2021 Birmingham (virtually), 24.09.2021

Overview

- The Daniell approach to classical integration and measure theory
- The integrable functions in the Daniell approach
- ▶ The integrable functions in the Daniell-Mikusiński approach
- The integration spaces of Bishop and Cheng
- Why partiality
- Why strong extensionality
- The integrable functions in the Bishop-Cheng approach
- The integration spaces yesterday, today and tomorrow

The Daniell approach to classical integration and measure theory

Two approaches to measure and integration theory

▶ The popular approach: a "from sets to functions"-approach

$$\mu \to \int$$

► The Daniell approach: a "from functions to sets"-approach

$$\int \to \mu$$

Daniell (1918), Weil (1940), Kolmogoroff (1948), Carathéodory (1956), Segal's algebraic integration theory (1954, 1965)

Two approaches to topology

▶ The popular approach: from open sets to continuous functions

$$(X, \mathcal{T}) \to C(X)$$

From continuous functions to open sets:

$$C(X) \to (X, \mathcal{T})$$

From open sets to continuous functions in classical and constructive topology

$$\mathcal{T} \to C(X)$$

- Topological spaces
- Formal spaces
- Apartness spaces
- Intuitionistic topological spaces
- Neighborhood spaces

From continuous functions to open sets in classical and constructive topology

$$C(X) \to \mathcal{T}$$

- limit spaces
- Spanier's quasi-topological spaces
- ▶ Bishop spaces: $F \subseteq \mathbb{F}(X)$ and for every $f \in F$:

$$U(f) := \{ x \in X \mid f(x) > 0 \}$$

Functions suit better to (classical and) constructive study rather than sets

- ▶ The theory of C(X) is used in the study of X.
- ▶ To define the characteristic function of a subset we need PEM:

$$\chi_A(x) := \left\{ \begin{array}{ll} 1 & \text{, } x \in A \\ 0 & \text{, } x \notin A \end{array} \right.$$

In constructive topology the function-theoretic approach of Bishop spaces is shown to be very fruitful.

From measure to integral in classical measure theory

$$\mu \to \int$$

- We start from a measure space (X, \mathcal{A}, μ)
- We define simple functions:

$$\phi = \sum_{i=1}^n c_i \chi_{A_i}, \quad \bigcup_{i=1}^n A_i = X, \quad A_i \cap A_j = \emptyset$$

- ▶ We define measurable functions $f: X \to \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ through the Borel sets in \mathbb{R}
- ▶ A simple function is measurable
- Fivery positive measurable function is the limit of an increasing sequence $(\phi_n)_{n\in\mathbb{N}}$ of positive, simple functions

From measure to integral in classical measure theory

• The integral of a simple function ϕ is well-defined:

$$\int \phi d\mu := \sum_{i=1}^n c_i \mu(A_i)$$

 \triangleright The integral of a positive measurable function f is well-defined:

$$\int f d\mu := \lim_{n} \int \phi_{n} d\mu$$

f is μ -integrable, if $\int f d\mu \in \mathbb{R}$.

• If f is measurable, then $f_+, f_- \geqslant 0$ are measurable and if f_+, f_- are μ -integrable, let

$$\int f d\mu := \int f_+ d\mu - \int f_- d\mu$$

$$L^1 := \left\{ f \colon X \to \overline{\mathbb{R}} \mid f \text{ measurable \& } \int |f| d\mu \in \mathbb{R} \right\}$$

The Daniell approach: from integral to measure

$$\int \to \mu$$

- ▶ We start from a Daniel space (X, L, \int) , where $L \ni f \mapsto \int f \in \mathbb{R}$
- We extend L to L^1 and \int to \int^1 , using the Bolzano-Weierstrass theorem and the completeness axiom for real numbers.
- Measurable functions are approximated by elements of L¹
- $A \subseteq X$ is measurable, if χ_A is measurable.
- A measure is defined on the measurable sets (Stone).
- ► The Daniell approach is followed by Bourbaki in [6] with a slight variation.

Daniell space

 $X \neq \emptyset$, L a Riesz space in $\mathbb{F}(X)$, and

$$\int\colon L\to\mathbb{R}$$

is a positive, linear functional, continuous under monotone limits:

(IntLin) $\int (af + bg) = a \int f + b \int g$, for every $a, b \in \mathbb{R}$ and $f, g \in L$.

(IntPos) $f \geqslant 0 \Rightarrow \int f \geqslant 0$, for every $f \in F$.

(IntCont) For every sequence $(f_n)_{n=1}^{\infty}$ in L with $f_n \geqslant f_{n+1}$,

$$\lim_n f_n = 0 \Rightarrow \lim_n \int f_n = 0.$$

 \int is called an integral on L and $\mathcal{X} := (X, L, \int)$ an Daniell space.

If $\mathcal{R}[0,1]$ is the set of Riemann-integrable functions on [0,1] and $\int_{\mathcal{R}}$ is the Riemann integral on \mathcal{R} , then $\left([0,1],\mathcal{R}[0,1],\int_{\mathcal{R}}\right)$ is a Daniell space, which is not complete;

If $(q_n)_{n=1}^\infty$ is a fixed enumeration of $\mathbb Q$, and

$$f_n(x) := \left\{ egin{array}{ll} 1 & , \ x \in \{q_1, \ldots, q_n\} \ 0 & , \ ext{otherwise,} \end{array}
ight.$$

then $\lim f_n$ is the Dirichlet function, which is not in $\mathcal{R}[0,1]$.

To get the completeness property for $\int_{\mathcal{R}}$ on [0,1] it suffices that $(f_n)_{n=1}^{\infty}$ converges uniformly to f.

▶ If C(M) is the set of all continuous functions from \mathbb{R} to \mathbb{R} which are 0 outside [-M,M], for some M>0, and

$$\int_{M} f := \int_{\mathcal{R}} f := \int_{-\infty}^{+\infty} f(x) dx,$$

then $(\mathbb{R}, C(M), \int_{\mathcal{R}})$ is a Daniell space.

▶ If $C^{\text{supp}}(\mathbb{R}^n)$ is the set of continuous real-valued functions with compact support i.e., the closure of

$$[f \neq 0] := \{x \in \mathbb{R}^n \mid f(x) \neq 0\}$$

is compact, and if K is compact with $[f \neq 0] \subseteq K$, let

$$\int f := \int_{\mathcal{K}} f(x) dx := \int_{\mathcal{R}} f \chi_{\mathcal{K}}.$$

Then $\mathcal{D} := (\mathbb{R}^n, C^{\text{supp}}(\mathbb{R}^n), \int)$ is a Daniell space and its completion \mathcal{D}^1 is the Lebesgue (Daniell) space.

If X is a locally compact Hausdorff space and $L = C^{\text{supp}}(X)$, then every positive, linear functional on L is an integral.

• If (X, \mathcal{A}, μ) is a σ -finite measure space, $L(\mu)$ is the set of μ -integrable functions from X to $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ and

$$\int_{\mu} f := \int f \! d\mu,$$

for every $f \in L(\mu)$, then $(X, L(\mu), \int_{\mu})$ is a Daniell space.

The integrable functions in the Daniell approach

• We extend L and \int as follows:

$$L^{+} := \left\{ f \in \mathbb{F}(X, \overline{\mathbb{R}}) \mid \exists_{(f_{n})_{n=1}^{\infty} \in \mathbb{F}^{+}(\mathbb{N}, L)} \left(f = \lim_{n} f_{n} \right) \right\}$$

$$a, b \geqslant 0 \& f, g \in L^{+} \Rightarrow af + bg \in L^{+}$$

$$\int_{-}^{+} : L^{+} \to \overline{\mathbb{R}}$$

$$\int_{-}^{+} f = \lim_{n} \int_{-}^{+} f_{n} \in \overline{\mathbb{R}}$$

• If $f: X \to \overline{\mathbb{R}}$, let

$$\overline{\int} f := \inf \left\{ \int_{-}^{+} g \in \mathbb{R} \mid g \in L^{+} \& g \geqslant f \right\}$$
$$\underline{\int} f := \sup \left\{ \int_{-}^{+} h \in \mathbb{R} \mid h \in L^{+} \& h \leqslant f \right\}$$

If $f \in L^+$, then clearly

$$\overline{\int} f = \underline{\int} f = \int^+ f.$$

• A function $f: X \to \overline{\mathbb{R}}$ is called integrable, if

$$\overline{\int} f = \int f \quad \& \quad \overline{\int} f \in \mathbb{R}.$$

• L^1 is the set of integrable functions and if $f \in L^1$,

$$\int^1 f := \overline{\int} f$$

The proof of the following theorem is classical, as it uses PEM:

$$\lim_{n} \int f_{n} = +\infty \vee \lim_{n} \int f_{n} \in \mathbb{R}.$$

Theorem (CLASS)

If $\mathcal{D}:=(X,L,\int)$ is a Daniell space, then $\mathcal{D}^1:=(X,L^1,\int^1)$ is a Daniell space that extends \mathcal{D} i.e., $L\subseteq L_1$ and

$$\int^1 f = \int f,$$

for every $f \in L$. Moreover, if $(f_n)_{n=1}^{\infty}$ is an increasing sequence in L^1 , and $f: X \to \overline{\mathbb{R}}$ such that $f = \lim_n f_n$, then

$$f \in L^1 \Leftrightarrow \lim_n \int_0^1 f_n \in \mathbb{R}.$$

$$\int_{0}^{1} f = \lim_{n} \int_{0}^{1} f_{n}.$$

Definition

Let $\mathcal{D}:=(X,L,\int)$ be a Daniell space. A function $f:X\to [0,+\infty]$ is called measurable,

$$\forall_{g\in L^1}(f \wedge g \in L^1).$$

 $A \subseteq X$ is measurable, if χ_A is measurable.

A is integrable, if $\chi_A \in L^1$.

Let A be the set of all measurable sets.

The formulation and the proof of the next theorem, which connects Daniell integration to standard measure integration, relies on PEM.

Theorem (Stone, CLASS)

Let a Daniel space $\mathcal{D}^1:=\left(X,L^1,\int^1\right)$. If $X\in\mathcal{A}$, then (X,\mathcal{A},μ) is a measure space, where for every $A\in\mathcal{A}$

$$\mu(A) := \left\{ \begin{array}{l} \int^1 \chi_A & \text{, A is integrable} \\ +\infty & \text{, otherwise.} \end{array} \right.$$

Moreover, $f \in L^1$ if and only if f is μ -integrable, and then

$$\int_{0}^{1} f = \int f d\mu.$$

The integrable functions in the Daniell-Mikusiński approach

Mikusiński's approach on the Daniell integral in [13], [5] is based on the observation, introduced by his father in [12], that a function $f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$ is Lebesgue-integrable, if there is a sequence of simple functions $(f_n)_{n=1}^{\infty}$ such that the following conditions hold:

$$\operatorname{Integr}_1(f)$$
 $\sum_{n=1}^{\infty} \int |f_n| \in \mathbb{R}$

$$\mathtt{Integr}_2(f) \qquad \forall_{x \in X} \bigg(\sum_{n=1}^{\infty} |f_n(x)| \in \mathbb{R} \Rightarrow f(x) = \sum_{n=1}^{\infty} f_n(x) \bigg).$$

Mikusiński defined L^1 as the set of all functions in $\mathbb{F}(X)$ such that there is a sequence $(f_n)_{n=1}^{\infty}$ in L such that $\mathtt{Integr}_1(f)$ and $\mathtt{Integr}_2(f)$ are satisfied. In this case we write

$$(f_n)_{n=1}^{\infty}$$
: Integr (f) .

Using this notion of integrable function "a very fast and natural way of developing the theory of the Lebesgue integral as well as the Bochner integral" is developed.

The function $\int^1 : L^1 \to \mathbb{R}$, defined by

$$\int_{-\infty}^{1} f = \sum_{n=1}^{\infty} \int f_n,$$

where $(f_n)_{n=1}^{\infty}$: Integr(f), is well-defined and $\mathcal{X}^1 := (X, L^1, \int^1)$ is a complete Daniell space i.e., if $(f_n^1)_{n=1}^{\infty} \subseteq L^1$ and $f: X \to \mathbb{R}$, then

$$(f_n^1)_{n=1}^{\infty}$$
: Integr $(f) \Rightarrow f \in L^1$.

If $\mathcal{X}:=\left(X,L,\int\right)$ and $\mathcal{Y}:=\left(Y,M,\S\right)$ are Daniell spaces, we call a function $h:X\to Y$ a Daniell morphism, if $\forall_{g\in M}(g\circ h\in L)$

$$\begin{array}{c}
X \xrightarrow{h} Y \\
L \ni g \circ h & \downarrow g \in M \\
\mathbb{R},
\end{array}$$

and for every $g \in M$ we have that

$$\int g\circ h=\oint g.$$

If $h \in \operatorname{Mor}(\mathcal{X}, \mathcal{Y})$, the induced mapping $h^* : M \to L$ from h

$$h^*(g) := g \circ h; \quad g \in M,$$

is a morphism of Riesz spaces. Let **Dan** be the category of Daniell spaces with Daniell morphisms.

If $h \in \operatorname{Mor}(\mathcal{X}, \mathcal{Y})$, then $h \in \operatorname{Mor}(\mathcal{X}^1, \mathcal{Y}^1)$

$$(g_n)_{n=1}^{\infty}$$
: Integr $(g) \Rightarrow (g_n \circ h)_{n=1}^{\infty}$: Integr $(g \circ h)$
$$\int_{0}^{1} g \circ h = \sum_{n=1}^{\infty} \int_{0}^{\infty} (g_n \circ h) = \sum_{n=1}^{\infty} \int_{0}^{\infty} g_n = \int_{0}^{1} g$$

Compl: $Dan \rightarrow Dan$

$$\operatorname{Compl}_0(\mathcal{X}) := \mathcal{X}^1$$

 $\operatorname{Compl}_1(h\colon \mathcal{X} \to \mathcal{Y}) := h\colon \mathcal{X}^1 \to \mathcal{Y}^1$

The integration spaces of Bishop and Cheng

A Bishop-Cheng integration space:

$$(X, L, \int)$$
, where $(X, =_X, \neq_X)$ is inhabited,

L is a subset of the set $\mathfrak{F}^{se}(X)$ of strongly extensional, real-valued partial functions

$$\int : L \to \mathbb{R}$$
, s.t.

- ▶ If $f, g \in L$ and $\alpha, \beta \in \mathbb{R}$, then $\alpha f + \beta g$, |f|, and $f \wedge 1$ are in L
- ∫ is linear
- ▶ There is $u \in L$ s.t. $\int u = 1$
- $\qquad \qquad \textbf{(IntBishCheng) and (IntInfinity) and (IntZero)} \\$

Arrows between integration spaces can be defined as between Daniell spaces (composition of partial functions with a total one).

In a Daniell space:

A subset A of X is null, if there is $(f_n)_{n=1}^{\infty} \subseteq L$:

 $(\mathtt{Null}_1) \ f_n \leqslant f_{n+1}, \ \text{for every} \ n \in \mathbb{N}^+.$

(Null₂) There is M > 0 such that $\int f_n \leqslant M$, for every $n \in \mathbb{N}^+$.

(Null₃) The sequence $(f_n(x))_{n=1}^{\infty}$ is divergent, for every $x \in A$.

A property P(x) on X holds almost everywhere (a.e.) in X, if there is a null $A \subseteq X$ such that P(x) holds, for every $x \in A^c$.

Basic lemma for Daniell spaces in CLASS

Let $(f_n)_{n=1}^{\infty}, (g_n)_{n=1}^{\infty} \subseteq L$ and $f, g: X \to \mathbb{R}$.

(i) If $(f_n)_{n=1}^{\infty}$ satisfies (Null₁) and (Null₂), and if

$$A = \{x \in A \mid (f_n(x))_{n=1}^{\infty} \text{ is divergent}\},$$

and $g: X \to \mathbb{R}$ is defined by

$$h(x) = \begin{cases} \lim_{n} f_n(x) & , x \in A^c \\ 0 & , x \in A, \end{cases}$$

then A is null and $f_n \xrightarrow{\text{a.e.}} h$.

(ii) If $f_n \geqslant f_{n+1}$ and $f_n \geqslant 0$, for every $n \in \mathbb{N}^+$, then

$$f_n \xrightarrow{\text{a.e.}} 0 \Rightarrow \lim_n \int f_n = 0.$$

(iii) If $(f_n)_{n=1}^{\infty}$, $(g_n)_{n=1}^{\infty}$ satisfy (Null₁) and (Null₂), if $f_n \xrightarrow{\text{a.e.}} f$ and $g_n \xrightarrow{\text{a.e.}} g$, and if $f \geqslant g$ a.e., then

$$\lim_{n} \int f_{n} \geqslant \lim_{n} \int g_{n}.$$

Continuity properties of \int on L:

(IntCont') For every monotone sequence $(f_n)_{n=1}^{\infty}$ in L such that $f(x) = \lim_n f_n(x) \in \mathbb{R}$, for every $x \in X$, and $f \in L$,

$$\int f = \int \lim_n f_n = \lim_n \int f_n.$$

(IntDan) For every sequence $(f_n)_{n=1}^{\infty}$ in L with $f_n \leqslant f_{n+1}$, for every $n \in \mathbb{N}^+$, and for every $f \in L$,

$$f \leqslant \lim_{n} f_{n} \Rightarrow \int f \leqslant \lim_{n} \int f_{n}.$$

(IntDan') For every sequence $(f_n)_{n=1}^{\infty}$ in L with $f_n \ge 0$, for every $n \in \mathbb{N}^+$, and for every $f \in L$,

$$f \leq \sum_{n=1}^{\infty} f_n \Rightarrow \int f \leq \sum_{n=1}^{\infty} \int f_n.$$

Let \int be a positive, linear functional on a Riesz space L in $\mathbb{F}(X)$.

- (i) (BISH) (IntCont) \Leftrightarrow (IntCont').
- (ii) (CLASS) $(IntDan) \Leftrightarrow (IntCont)$.
- (iii) (BISH) (IntDan) \Leftrightarrow (IntDan').

 $(IntCont) \Rightarrow (IntDan)$ is non-trivial and requires the previous lemma.

(IntDan') for every sequence $(f_n)_{n=1}^{\infty}$ in L with $f_n \ge 0$, for every $n \in \mathbb{N}^+$, and for every $f \in L$,

$$f \leqslant \sum_{n=1}^{\infty} f_n \Rightarrow \int f \leqslant \sum_{n=1}^{\infty} \int f_n.$$

Classically this implication is equivalent to

$$\neg \left(\int f \leqslant \sum_{n=1}^{\infty} \int f_n \right) \Rightarrow \neg \left(f \leqslant \sum_{n=1}^{\infty} f_n \right),$$

$$\left[\sum_{n=1}^{\infty} \int f_n \in \mathbb{R} \& \int f > \sum_{n=1}^{\infty} \int f_n \right] \Rightarrow$$

$$\exists_{x \in X} \left(\sum_{n=1}^{\infty} f_n(x) \in \mathbb{R} \& f(x) > \sum_{n=1}^{\infty} f_n(x) \right)$$

A Riesz space L in $\mathbb{F}(X)$ satisfies the Stone condition, Stone(L), if

$$(\mathtt{Stone}) \qquad \qquad \forall_{f \in L} \big(f \wedge 1 \in L \big).$$

Used by Stone [24] to prove the integrability of [f > a], $f \in L$ If $1 \in L$, then Stone(L)

Stone
$$(C^{\mathrm{supp}}(\mathbb{R}^n))$$
, as $[f \neq 0] = [(f \land 1) \neq 0]$, and $1 \notin C^{\mathrm{supp}}(\mathbb{R}^n)$.

$$f \vee (-1) = -[(-f) \wedge 1] \in L$$

If $a \neq 0$, then

$$f \wedge a = a \left[\left(\frac{1}{a} f \right) \wedge 1 \right] \in L,$$

(IntInfinity)
$$\lim_{n} \int (f \wedge n) = \int f,$$
(IntZero)
$$\lim_{n} \int \left(|f| \wedge \frac{1}{n}\right) = 0.$$

$$(CLASS): (IntDan) \Rightarrow (IntInfinity)$$

(BISH):
$$(IntCont) \Rightarrow (IntZero)$$

Why partiality

A key feature of the Daniell approach is that the transition form functions to sets requires the use of characteristic functions:

 $A \subseteq X$ is measurable, if χ_A is measurable.

A is integrable, if $\chi_A \in L^1$

To curry out this constructively one has to use partial functions

$$X \rightarrow 2$$

A is not a subset of X, but a complemented subset of X w.r.t. a given inequality \neq on X.

If partial functions $X \rightarrow 2$ are in L^1 , then L has to be a set of real-valued, partial functions on X.

Let X be a set. An inequality on X, or an apartness relation on X, is a relation $x \neq_X y$ s.t. the following conditions are satisfied:

$$(\mathrm{Ap}_1) \ \forall_{x,y \in X} \big(x =_X y \ \& \ x \neq_X y \Rightarrow \bot \big).$$

$$(\mathrm{Ap}_2) \ \forall_{x,y \in X} \big(x \neq_X y \Rightarrow y \neq_X x \big).$$

$$(\mathrm{Ap_3}) \ \forall_{x,y \in X} (x \neq_X y \Rightarrow \forall_{z \in X} (z \neq_X x \lor z \neq_X y)).$$

If $(X, =_X, \neq_X)$ and $(Y, =_Y, \neq_Y)$ a function $f: X \to Y$ is strongly extensional, if for every $x, x' \in X$

$$f(x) \neq_Y f(x') \Rightarrow x \neq_X x'$$
.

A complemented subset of a set $(X, =_X, \neq_X)$ is a quadruple

$$\mathbf{A} := (A^1, i_{A^1}^X, A^0, i_{A^0}^X),$$

or simply $\mathbf{A}:=(A^1,A^0)$, where $(A^1,i_{A^1}^X)$ and $(A^0,i_{A^0}^X)\subseteq X$ s.t.

$$A^1]\!]\![\![A^0:\Leftrightarrow \forall_{a^1\in A^1}\forall_{a^0\in A^0}\big(i^X_{A^1}(a^1)\neq_Xi^X_{A^0}(a^0)\big).$$

$$\mathbf{A} \subseteq \mathbf{B} :\Leftrightarrow A^1 \subseteq B^1 \& B^0 \subseteq A^0,$$

Let $\mathcal{P}^{\mathbb{II}}(X)$ be their totality, equipped with the equality

$$A =_{\mathcal{P}II(X)} B :\Leftrightarrow A \subseteq B \& B \subseteq A.$$

 $\mathcal{P}^{\mathbb{II}}(X)$ is a proper class.

$$x \in \mathbf{A} :\Leftrightarrow x \in A^1$$
 & $x \notin \mathbf{A} :\Leftrightarrow x \in A^0$

If $\mathrm{dom}(\mathbf{A}):=A^1\cup A^0$ is the domain of \mathbf{A} , the indicator function of a \mathbf{A} , or its characteristic function, is the assignment routine

$$\chi_{\mathbf{A}}: \operatorname{dom}(\mathbf{A}) \leadsto 2$$

$$\chi_{A}(x) := \left\{ \begin{array}{ll} 1 & \text{, } x \in A^{1} \\ 0 & \text{, } x \in A^{0} \end{array} \right.$$

 $\chi_{\mathbf{A}}$ is a strongly extensional partial function

- Shulman [22]: Bishop's complemented subsets correspond roughly to the Chu construction
- P. [16]: there is a full embedding of $\mathcal{P}^{\mathbb{II}}(X)$ into **Chu**(**Set**, $X \times X$)
- The Chu construction is a method of generating a *-autonomous category from a closed symmetric monoidal category $\mathcal C$ and some $\gamma \in \mathcal C_0$
- *-autonomous categories provide models for classical (multiplicative) linear logic
- The abstract lattice version of $\mathcal{P}^{\mathbb{II}}(X)$ is not a Heyting algebra, it is what can be called a Bishop algebra.

Why strong extensionality

If $(X, =_X, \neq_X)$, let the proper class-assignment routines

$$\chi^{X} \colon \mathcal{P}^{\mathbb{II}}(X) \leadsto \mathfrak{F}^{\text{se}}(X,2), \quad \mathbf{A} \mapsto \chi^{X}(\mathbf{A}) =: \chi_{\mathbf{A}}$$

$$\chi_{\mathbf{A}} := \left(A^{1} \cup A^{0}, i_{A^{1} \cup A^{0}}^{X}, \chi_{A^{1} \cup A^{0}}^{2} \right),$$

$$\delta^{X} \colon \mathfrak{F}^{\text{se}}(X,2) \leadsto \mathcal{P}^{\mathbb{II}}(X), \quad f_{A} := \left(A, i_{A}^{X}, f_{A}^{2} \right) \mapsto \delta^{X}(f_{A})$$

$$\delta^{X}(f_{A}) := \left(\delta_{0}^{1}(f_{A}^{2}), \ (i_{A}^{X})_{|\delta_{0}^{1}(f_{A}^{2})}, \ \delta_{0}^{0}(f_{A}^{2}), \ (i_{A}^{X})_{|\delta_{0}^{0}(f_{A}^{2})} \right),$$

where

$$\delta_0^1(f_A^2) := \left\{ a \in A \mid f_A^2(a) =_2 1 \right\} =: \left[f_A^2 =_2 1 \right],$$

$$\delta_0^0(f_A^2) := \left\{ a \in A \mid f_A^2(a) =_2 0 \right\} =: \left[f_A^2 =_2 0 \right],$$

- (i) χ^X is a well-defined, proper class-function.
- (ii) δ^X is a well-defined, proper class-function.
- (iii) χ^X and δ^X are inverse to each other.

The integrable functions in the Bishop-Cheng approach

Exactly the Mikusiński-definition

 $f \in \mathfrak{F}^{se}(X)$ is integrable, if there is $(f_n)_{n=1}^{\infty} \subseteq L$ s.t.

$$\sum_{n=1}^{\infty} \int |f_n| \in \mathbb{R}$$

and for every $x \in X$

$$\sum_{n=1}^{\infty} |f_n(x)| \in \mathbb{R} \Rightarrow f(x) = \sum_{n=1}^{\infty} f_n(x).$$

$$L^1 := \left\{ f \in \mathfrak{F}^{se}(X) \mid f \text{ integrable} \right\}$$

As far as we know, this fact is not known in the history of the Daniell approach, and it is a rare example of a theory developed first constructively and, independently, classically afterwards.

The separation scheme on a proper class does not define, in general, a set. L^1 is a set, only if $\mathfrak{F}^{se}(X)$ is considered to be a set. This is not predicatively correct, as the membership condition of $\mathfrak{F}^{se}(X)$, or of $\mathfrak{F}(X)$, requires quantification over the universe of sets \mathbb{V}_0 .

Integration spaces yesterday, today and tomorrow

- Algebraic approach to integration theory (Spitters, Coquand, Palmgren)
- Semeria implemented the basic theory in Coq
- Chan 2021: constructive probability theory and constructive theory of stochastic processes
- Ishihara/Schwichtenberg
- Integration spaces within BST, a predicative approach, avoiding countable choice (Zeuner, Miyamoto, Wessel; work in progress).

- E. Bishop: Foundations of Constructive Analysis, McGraw-Hill, 1967.
- S. Bhat, A. Agarwal, R. Vuduc: A type theory for probability density functions, POPL'12, ACM, 2012, 545–556.
- E. Bishop, H. Cheng: *Constructive Measure Theory*, Mem. Amer. Math. Soc. 116, 1972.
- E. Bishop, D. S. Bridges: *Constructive Analysis*, Grundlehren der math. Wissenschaften 279, Springer-Verlag, Heidelberg-Berlin-New York, 1985.
- E. Blackstone, P. Mikusiński: The Daniell Integral, arXiv:1401.0310v2, 2014.
- N. Bourbaki: *Elements of Mathematics Integration I*, Chapters 1-6, Springer, 2004.
- C. Carathéodory: *Mass und Integral und ihre algebraisierung*, Springer Basel AG, 1956.

- T. Coquand, E. Palmgren: Metric Boolean algebras and constructive measure theory, Arch. Math. Logic 41, 2002, 687–704.
- P. J. Daniell: A general form of integral, Annals of mathematics, Second Series, 19 (4), 1918, 279–294.
- H. Ishihara: A constructive integration theory: a topological approach, preprint, 2020.
- A. N. Kolmogoroff: Algèbres de Boole métrique complètes, VI Zjazd Mathematyków Polskich, Warwaw, 1948, 21–30.
- J. Mikusiński: The Bochner integral, Birkhäuser, 1978.
- P. Mikusiński: On the Daniell Integral, Real Analysis Exchange, Vol. 15, Issue 1, 1989, 307–312.
- I. Petrakis: Dependent Sums and Dependent Products in Bishop's Set Theory, in P. Dybjer et. al. (Eds) TYPES 2018, LIPIcs, Vol. 130, Article No. 3, 2019.

- I. Petrakis: Families of Sets in Bishop Set Theory, Habilitationsschrift, LMU, Munich, 2020.
- I. Petrakis: Chu representations of categories related to constructive mathematics, arXiv:2106.01878v1, 2021.
- I. Petrakis: Integration theory of Bishop spaces, in preparation, 2021.
- I. Petrakis: Constructive and predicative integration theory of locally compact metric spaces, in preparation, 2021.
- I. Petrakis, M. Zeuner: Pre-measure spaces and pre-integration spaces in predicative Bishop-Cheng measure theory, in preparation, 2021.
- I. Segal: Abstract probability spaces and a theorem of Kolmogoroff, Amer. J. Math. 76, 1954, 721–732.
- I. Segal: Algebraic integration theory, Bull. Amer. Math. Soc. 71, 1965, 419–489.

- M. Shulman: Linear Logic for Constructive Mathematics, arXiv:1805.07518v1, 2018.
- B. Spitters: Constructive algebraic integration theory. Ann. Pure Appl. Logic 137(1-3), 2006, 380–390.
- M. H. Stone: Notes on integration: II, Proc. Nat. Acad. Sci. U.S.A. 34, 1948, 447-455.
- S. J. Taylor: *Introduction to Measure and Integration*, Cambridge University Press, 1973.
- A. Weil: Calcul des probabilités, méthode axiomatique, intégration, Revue Sci. (Rev. Rose Illus.) 78, 1940, 201–208.
- A. J. Weir: *General Integration and Measure*, Cambridge University Press, 1974.
- M. Zeuner: Families of Sets in Constructive Measure Theory, Master's Thesis, LMU, 2019.