1 Регулярные языки

Определение 1.1. Возъмем некоторое конечное множество символов A, назовем его алфавитом, а его элементы — буквами.

Определение 1.2. Словом в данном алфавите называется конечная цепочка букв этого алфавита.

Буквы будем обозначать $a, a_1, a_2, \ldots, b, b_1, \ldots$, а слова $-\alpha, \beta, \ldots$ Будем обозначать через $\alpha[i]$ – i-ю букву слова α . Таким образом, $\alpha = \alpha[1]\alpha[2]\ldots\alpha[n]$.

Определение 1.3. Длиной слова α называется число букв в данном слове $|\alpha| = n$.

Hапример, |abbbc| = 5.

Определение 1.4. Введем также пустое слово Λ как слово нулевой длини $|\Lambda| = 0$.

Определение 1.5. Слово β называется подсловом слова α , если найдутся слова α_1 и α_2 , необязательно непустые, что $\alpha = \alpha_1 \beta \alpha_2$.

Например, подсловами слова abc является само abc, а также a,b,c,ab и bc. Множество всех возможных слов в алфавите A обозначим A^* .

Определение 1.6. Языком в данном алфавите A называется любое подмножество L множества всех слов A^* , $L \subseteq A^*$.

Пример.

 $A = \{a, b, c\}.$

 $L = \{\Lambda, aa, abc, cb, bc\}.$

Множество A^* – все слова, которые можно составить из букв a,b,c: $\Lambda,a,b,c,aa,ab,ac,ba,\ldots$

2 Операции над языками

Рассмотрим произвольный алфавит A и всевозможные языки в нем.

Определим следующие операции.

Определение 2.1. Объединением языков L_1 и L_2 называется множество слов, входящих хотя бы в один из этих языков

$$L = L_1 \cup L_2 = \{\alpha | \alpha \in L_1 \lor \alpha \in L_2\}.$$

Определение 2.2. Конкатенацией языков L_1 и L_2 называется множество слов вида

$$L_1 \cdot L_2 = \{\alpha\beta | \alpha \in L_1, \beta \in L_2\}.$$

Таким образом, это слова, получающиеся приписыванием к каждому слову из L_1 слова из L_2 .

Конкатенация слов α и β есть слово $\alpha\beta$.

Например, пусть $L_1 = \{a, ab, b\}, L_2 = \{b, ca\}.$

Тогда

$$L_1 \cup L_2 = \{a, ab, b, ca\}$$

И

$$L_1 \cdot L_2 = \{ab, abb, bb, aca, abca, bca\}.$$

В частности, $\underbrace{L\dots L}_k$ – конкатенация языка k раз обозначается как L^k

и есть $\{\alpha_1 \dots \alpha_k | \alpha_i \in L, i = 1 \dots k\}.$

Hапример, $L = \{a, bb\}, L^2 = \{aa, abb, bba, bbb\}.$

Рассмотрим произвольный язык L и пустое слово $\Lambda.$

По определению $\Lambda \cdot L = L$ и $L \cdot \Lambda = L$.

В качестве языка можно рассматривать и пустое множество слов.

Выполнено:

 $L \cdot \varnothing = \varnothing \cdot L = \varnothing.$

 $L \vee \varnothing = L$.

Определение 2.3. Итерацией языка L называется язык вида

$$L^* = \Lambda \cup L \cup L^2 \cup \cdots \cup L^i \cup \ldots$$

Например, в алфавите $A = \{a, b\}$ итерация языка $L = a^2, ab$ будет

$$L^* = \{\Lambda, a^2, ab, a^4, abab, a^3b, ab^2a, a^6, a^5b, aba^4, \dots\}.$$

Для $L=\{a^2\}$ итерация такова

$$L^* = \{\Lambda, a^2, a^4, a^6, \dots\}.$$

Итерация пустого множества есть пустое слово $\varnothing^* = \Lambda$.

Множество всех слов в алфавите $A = \{a_1, \ldots, a_r\}$ получается итерацией объединения его букв $A^* = (a_1 \cup \cdots \cup a_r)^*$.

Определение 2.4. Языки $\{\Lambda\}$, $\{a|a\in A\}$, а также пустое множество слов \varnothing , называются простейшими языками.

Определение 2.5. Язык называется регулярным, если его можно получить из простейших языков с помощью этих трех операций за конечное число шагов.

Определение 2.6. Символьное выражение, задающее регулярный язык, называется регулярным выражением.

Примеры

Задача

Составить регулярное выражение для языка в алфавите $\{a,b,c\}$, состоящее из всех слов, начинающихся на ab, но не заканчивающихся на c.

Решение:

Как уже было сказано, множество всех слов в алфавите $A = \{a, b, c\}$ есть $A^* = (a \cup b \cup c)^*$.

Все слова, начинающиеся на ab – конкатенация ab с множеством всех слов.

Выражение для такого языка есть $ab(a \cup b \cup c)^*$.

Слово не заканчивается на букву c, значит, оно заканчивается на a или на b.

Поэтому регулярное выражение для данного языка имеет вид $ab(a \cup b \cup c)^*(a \cup b)$.

Задача

Составить регулярное выражение для языка в алфавите $\{a, b, c\}$ из всех слов, где буква b встречается только в виде массива b^n , где n – четное число.

Решение:

Сначала зададим массив b^n . Это $(bb)^*$.

Слова языка – всевозможные последовательности букв a,c и таких массивов.

Искомое регулярное выражение – $(a \cup (bb)^* \cup c)^*$.

3. Задача Дан язык L в алфавите $A = \{a, b, c\}$. Записать регулярное выражение для языка, у всех слов которого, на всех нечетных местах находится буква a.

Решение:

Рассмотрим слово α длины $|\alpha| = n$.

Возможны два варианта:

• n – чётное.

По условию на нечётных местах находится буква a, а на чётных местах может быть любая буква алфавита, в том числе и a.

1	2	3	4	5	6	
a	$a \cup b \cup c$	a	$a \cup b \cup c$	a	$a \cup b \cup c$	

Рассмотрим конструкцию из двух букв: первую букву запишем как a, вторая буква может быть любой: a, b или c, эту конструкцию можем записать с помощью операций объедиения и конкатенации

$$L_0 = a(a \cup b \cup c).$$

Все возможные слова чётной длины, удовлетворяющие условию получим с помощью итерации

$$L_1 = L_0^* = (a(a \cup b \cup c))^* = \Lambda \cup a(a \cup b \cup c) \cup (a(a \cup b \cup c))^2 \cup \dots$$

• n – нечётное.

Для того чтобы учесть вариант, когда длина слова нечётная, добавим ещё один символ a.

$$L_2 = L_1 \cdot a$$
.

Случай, когда формируется слово длины 1 получается при конкатенации пустого слова Λ и a.

Таким образом, интересующий нас язык образует объединение слов чётной и нечетной длины

$$L = L_1 \cup L_2 = (a(a \cup b \cup c))^* \cup (a(a \cup b \cup c))^* a = (a(a \cup b \cup c))^* (\Lambda \cup a)$$

3 Источники

Определение 3.1. Пусть зафиксирован некоторый алфавит А. Возьмем ориентированный псевдограф, некоторым ребрам которого приписаны буквы из алфавита А. Выделим некоторое множество вершин, называемых начальными и множество вершин, называемых заключительными. Такая конструкция называется источником.

Определение 3.2. Ребра без букв назовем пустыми.

Начальные вершины обозначаются *, а заключительные ●.

Рис. 1: Пример источника

Рассмотрим путь e_1, \ldots, e_k в источнике. Выпишем последовательно буквы, приписанные рёбрам e_1, \ldots, e_k : a_1, \ldots, a_k . Получившееся слово назовём словом, порожденным данным путем. Если все рёбра пути пустые, то такой путь порождает пустое слово.

Каждому источнику ставится в соответствие язык $L\subseteq A^*$ следующим образом. Для каждого пути из некоторой начальной вершины в некоторую заключительную выписывается порожденное им слово. Все такие слова, и только они составляют язык L. Говорят, что источник порождает язык L.

Чтобы проверить, что данный источник порождает именно этот язык, нужно рассмотреть все пути, ведущие из начальной вершины в заключительную.

Определение 3.3. Источники называются эквивалентными, если они порождают один и тот же язык.

Определение 3.4. Источник называется двухполюсником, если в нем ровно одна начальная вершина q_0 и ровно одна заключительная q_f такие, $q_0 \neq q_f$, $\deg^-(q_0) = 0$ и $\deg^+(q_f) = 0$.

Утверждение 3.5. Для любого источника существует эквивалентный ему двухполюсник.

Доказательство. В данном источнике все начальные и заключительные вершины сделаем обыкновенными и введем дополнительные вершины q_0 и q_f . Из q_0 проведем пустые ребра в бывшие начальные, а из бывших заключительных проведем пустые ребра в q_f . Получившийся источник — двухполюсник, эквивалентный данному.

Лемма 3.6. Пусть вершины источника пронумерованы, а R_{ij}^k – множество всех слов, порожденных путями в данном источнике из вершины с номером i в вершину с номером j, ранг которых не превосходит k.

Тогда справедливы следующие утверждения:

1.
$$R_{ij}^k = R_{ij}^{k-1} \cup R_{ik}^{k-1} (R_{kk}^{k-1})^* R_{kj}^{k-1}$$
.

2.
$$R_{ik}^k = R_{ik}^{k-1} (R_{kk}^{k-1})^*$$
.

3.
$$R_{kj}^k = (R_{kk}^{k-1})^* R_{kj}^{k-1}$$
.

4.
$$R_{kk}^k = (R_{kk}^{k-1})^*$$
.

Эта лемма позволяет от R_{ij}^k перейти к простейшим языкам R_{ij}^0 .

Теорема 3.7 (Теорема Клини для источников). *Каждый язык, порождаемый источником, является регулярным.*

Доказательство. Составим регулярное выражение для языка, порожденного произвольным источником.

Итак, рассмотрим источник **И** с n вершинами. Некоторым образом перенумеруем его вершины. Множество начальных вершин обозначим I, а множество заключительных – F. Очевидно, что вырабатываемое им множество слов есть

$$\bigcup_{l \in I, k \in F} R_{lk}^n.$$

Для каждого R_{lk}^n применяем лемму до тех пор, пока в ней не будут участвовать лишь R_{ij}^0 , то есть слова, соответствующие множествам путей из вершины i в вершину j, не заходящих ни в какую другую вершину.

Можно выписать конкретные выражения для каждого R_{ij}^0 следующим образом.

- $R_{ij}^0 = \varnothing$, если нет ребер, ведущих из вершины i в вершину j, причем $i \neq j$.
- $R_{ij}^0 = a_1 \cup \dots \cup a_k$, если из i в j ведут ребра с буквами a_1, \dots, a_k . Если от i к j ведет еще и пустое ребро, то в объединение добавляется пустое слово Λ .
- $R_{ij}^0 = \Lambda$, если есть только пустое ребро.
- Множество R_{ii}^0 также всегда содержит пустое слово Λ .

Ясно, что языки R^0_{ij} регулярны. Видно, что все языки R^k_{ij} получаются из них с помощью операций объединения, конкатенации и итерации. Следовательно, все языки R^k_{ij} регулярны, поэтому регулярен и язык $\bigcup_{l \in I, k \in F} R^n_{lk}$.

Пример

Пусть L означает язык, порождённый данным источником. Выразить L при помощи регулярного выражения.

Рис. 2: Источник

Решение

Основные формулы, позволяющие снижать ранг пути, имеют вид

$$R_{ij}^k = R_{ij}^{k-1} \cup R_{ik}^{k-1} (R_{kk}^{k-1})^* R_{kj}^{k-1}, \tag{1}$$

$$R_{kj}^k = (R_{kk}^{k-1})^* R_{kj}^{k-1}, (2)$$

$$R_{ik}^k = R_{ik}^{k-1} (R_{kk}^{k-1})^*, (3)$$

$$R_{kk}^k = (R_{kk}^{k-1})^*. (4)$$

Интересующий нас язык получается при прохождении из всех начальных вершин во все конечные

$$L = R_{12}^3 \cup R_{32}^3.$$

Применим формулу (1) к выражению R_{12}^3

$$R_{12}^3 \stackrel{(1)}{=} R_{12}^2 \cup R_{13}^2 (R_{33}^2)^* R_{32}^2.$$

Мы получили выражение через пути ранга 2, рассмотрим их по отдельности:

1. $R_{12}^2 \stackrel{(3)}{=} R_{12}^1 (R_{22}^1)^*$.

Распишем каждый элемент в этой формуле через простейшие языки:

- $R_{12}^1 \stackrel{(2)}{=} (R_{11}^0)^* R_{12}^0 = \Lambda^* (a \cup b \cup c) = a \cup b \cup c.$
- $R_{22}^1 \stackrel{(1)}{=} R_{22}^0 \cup R_{21}^0(R_{11}^0)^* R_{12}^0 = \Lambda \cup \emptyset = \Lambda$

Тогда получим $R_{12}^2 = a \cup b \cup c$.

2. $R_{13}^2 \stackrel{(1)}{=} R_{13}^1 \cup R_{12}^1 (R_{22}^1)^* R_{23}^1$

Выражения для R_{12}^1 и R_{22}^1 уже получены, распишем оставшиеся элементы через простейшие языки:

• $R_{13}^1 \stackrel{(2)}{=} (R_{11}^0)^* R_{13}^0 = \Lambda^* \emptyset = \emptyset.$

• $R_{23}^1 \stackrel{(1)}{=} R_{23}^0 \cup R_{21}^0 (R_{11}^0)^* R_{13}^0 = a \cup b \cup \emptyset = a \cup b.$

Тогда получим $R_{13}^2 = (a \cup b \cup c)(a \cup b)$.

3. $R_{33}^2 \stackrel{(1)}{=} R_{33}^1 \cup R_{32}^1 (R_{22}^1)^* R_{23}^1$.

Распишем R_{33}^1 и R_{32}^1 :

- $R_{33}^1 \stackrel{(1)}{=} R_{33}^0 \cup R_{31}^0 (R_{11}^0)^* R_{13}^0 = \Lambda \cup \emptyset = \Lambda.$
- $R_{32}^1 \stackrel{(1)}{=} R_{32}^0 \cup R_{31}^0 (R_{11}^0)^* R_{12}^0 = a \cup b \cup c.$

Тогда получим $R_{33}^2 = (a \cup b \cup c)(a \cup b)$.

4. $R_{32}^2 \stackrel{(3)}{=} R_{32}^1 (R_{22}^1)^*$.

Все необходимые выражения были получены ранее, поэтому $R_{32}^2 = a \cup b \cup c$.

Подставим найденные выражения в формулу для R_{12}^3 и упростим, после чего получим

$$R_{12}^3 = ((a \cup b \cup c)(a \cup b))^*(a \cup b \cup c).$$

Теперь применим формулу (2) к R_{32}^3 .

$$R_{32}^3 \stackrel{(2)}{=} (R_{33}^2)^* R_{32}^2$$

Все необходимые выражения были получены ранее, поэтому

$$R_{32}^3 = ((a \cup b \cup c)(a \cup b))^* (a \cup b \cup c).$$

Теперь можно записать выражение для L, после упрощения получим

$$L = ((a \cup b \cup c)(a \cup b))^*(a \cup b \cup c).$$

4 Порождающие грамматики

Определение 4.1. Порождающей грамматикой называется четвёрка

$$G = (T, N, I, P),$$

 $rde\ T$ — $mepминальный\ anfpaвит,$

N – нетерминальный алфавит, причём $T\cap N=\varnothing,$

I – выделенный символ нетерминального алфавита (аксиома),

P – конечное множество правил вывода (продукция), причём $P\subseteq (T\cup N)^+\times (T\cup N)^*$.

Пары $(\alpha, \beta) \in P$ называются правилами вывода, просто правилами или продукциями и записывают как $\alpha \to \beta$.

Для обозначения n правил с одинаковыми левыми частями $\alpha \to \beta_1, \ldots, \alpha \to \beta_n$ часто используют сокращённую запись $\alpha \to \beta_1 | \ldots | \beta_n$.

Пример.

Пусть даны множества $N = \{I\}, T = \{(,)\},$

$$P = \{I \to (I), I \to II, I \to \Lambda\}.$$

Тогда (T, N, I, P) является порождающей грамматикой, задающей правильную скобочную последовательность.

Вывод строки (()())»:

$$I \to (I) \xrightarrow{} (II) \xrightarrow{} ((I)I) \xrightarrow{} ((I)(I)) \xrightarrow{} (()(I)) \xrightarrow{} (()()).$$

Иерархия Хомского

1. Грамматики типа 0

К этому классу относятся все формальные грамматики

2. Грамматики типа 1 (контекстно-зависимые)

Правила вывода имеют вид:

$$\alpha A\beta \to \alpha \gamma \beta$$
,

где
$$\alpha, \beta \in (T \cup N)^*, A \in N, \gamma \in (T \cup N)^+.$$

3. Грамматики типа 2 (контекстно-свободные)

Правила вывода имеют вид:

$$A \to \beta$$
,

где
$$A \in N$$
, $\beta \in (T \cup N)^*$.

4. Грамматики типа 3 (регулярные)

Правила вывода имеют вид:

$$A \to \gamma B$$
 или $A \to \gamma$,

где $A, B \in N, \gamma \in T$.