Detail-Preserving Pooling in Deep Networks

Zenglin Shi

Dec. 10, 2018

Pooling Mechanism

- Dimention Reduction
- Information Compression
- RF Enlarging
- Linear Transformation
- Translation Invariance

Max & AVG. Pooling

(b) Illustration of average pooling drawback

Weighted AVG. Pooling

Detail-Preserving Pooling-Motivation

Figure 2. Diagram of detail-preserving downscaling (DPID) [31] and our detail-preserving pooling (DPP). DPP omits the Gaussian filter; Full-DPP replaces the box filter with a learned 2D filter.

 Given an input image I[·], detail-preserving image downscaling (DPID) calculates the downscaled output at pixel p as

$$O[p] = \frac{1}{k_p} \sum_{q \in \Omega_p} I[q] \cdot \left\| I[q] - \tilde{I}[p] \right\|^{\lambda}, \tag{1}$$

in which the linearly downscaled image I[~] is given by

$$\tilde{I} = I_D * \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}.$$
 (2)

• The weights are normalized with kp

$$k_p = \sum_{q \in \Omega_p} \|I[q] - \tilde{I}[p]\|^{\lambda}$$
 (3)

(a) Original Image

(c) Box filter (average pooling)

(b) DPID ($\lambda = 1$)

(d) Spatial maximum \ extremum

 Detail-preserving pooling of an input activation map I at spatial output position p as

$$\mathcal{D}_{\alpha,\lambda}(I)[p] = \frac{1}{\sum_{q' \in \Omega_p} w_{\alpha,\lambda}[p,q']} \sum_{q \in \Omega_p} w_{\alpha,\lambda}[p,q]I[q]. \quad (4)$$

• Equation (4) computes a spatially weighted average of the input nodes in a neighborhood I[q] $_{q\in\Omega p}$ for which we define weights $w_{\alpha,\lambda}[p,q]$ as

$$w_{\alpha,\lambda}[p,q] = \alpha + \rho_{\lambda} \left(I[q] - \tilde{I}[p] \right).$$
 (5)

• For the symmetric variant of the reward function $\rho\lambda(\cdot)$, employ the differentiable (generalized) Charbonnier penalty,

$$\rho_{\text{Sym}}(x) = \left(\sqrt{x^2 + \epsilon^2}\right)^{\lambda} \quad (6)$$

• The asymmetric variant of $\rho_{\lambda}(\cdot)$ only rewards positive arguments and is formulated as,

$$\rho_{\text{Asym}}(x) = \left(\sqrt{\max(0, x)^2 + \epsilon^2}\right)^{\lambda}, (7)$$

 For the sake of simplicity in notation, we reformulate this such that the weights are normalized as

$$\tilde{w}_{\alpha,\lambda}[p,q] = \frac{w_{\alpha,\lambda}[p,q]}{\sum_{q' \in \Omega_p} w_{\alpha,\lambda}[p,q']} \tag{8}$$

which allows us to write DPP as

$$\mathcal{D}_{\alpha,\lambda}(I)[p] = \sum_{q \in \Omega_p} \tilde{w}_{\alpha,\lambda}[p,q]I[q] \quad (9)$$

 In Eq. (4), I^{*} is the result of a linear downscaling, achieving full flexibility with

$$\tilde{I}_F[p] = \sum_{q \in \tilde{\Omega}_p} F[q]I[q] \tag{10}$$

Figure 4. Visualization of different pooling methods on an example feature map taken from the second layer of VGG-16. For both reward variants, the bias α is set to 0 to visually magnify the effect of the inverse bilateral weights. *Best viewed on screen*.

	Method	VGG	NIN	ResNet
Deterministic methods	Strided conv.	8.43±0.20	10.97±0.10	6.23(*)
	Max	$7.43\pm0.20^{(*)}$	9.42 ± 0.07	6.52
	Average	7.12 ± 0.18	8.75 ± 0.15	6.33
	NIN	-	$9.01\pm0.11^{(*)}$	
	Mixed (50/50)	7.27 ± 0.20	8.68±0.23	6.05
	Gated	7.25 ± 0.14	8.67 ± 0.22	7.12
	L_2	7.15 ± 0.18	8.65 ± 0.12	7.29
	Lite-DPP _{Asym}	7.10±0.15	8.62±0.10	6.17
	Full-DPP _{Asym}	$\overline{7.17} \pm 0.18$	8.73 ± 0.05	6.23
	Lite-DPP _{Sym}	7.19 ± 0.10	8.58 ± 0.11	6.05
	Full-DPP _{Sym}	7.02 ± 0.18	$8.70{\pm0.14}$	5.97
Stoch.	Stochastic	7.67±0.10	8.92±0.09	5.83
	S3pool	7.21 ± 0.14	7.23 ± 0.08	5.55
	Lite-S3DPP _{Sym}		7.13±0.09	5.42

