Оглавление

1	Код	цирование	2
	1.1	Код Хэмминга	2
	1.2	Криптография	2
		1.2.1 RSA	2

Глава 1

Кодирование

1.1 Код Хэмминга

Алгоритм. Есть сообщение

$$y = (0, 1, 0, 1, 0, 1, 1)$$

Заводим шаблон

$$\overline{y} = (x_1, x_2, _, x_3, _, _, _, x_4, ...)$$

Записываем сообщение на свободные места

$$\overline{y} = (x_1, x_2, 0, x_3, 1, 0, 1, x_4, 0, 1, 1)$$

$$A\overline{y} = b$$

Назначаем такие значения x-am, чтобы $b \equiv 0$

Чтобы везде были чётные числа, определим

$$x_1 = 1$$
 $x_2 = 1$ $x_3 = 0$ $x_4 = 0$

Получаем

$$\overline{y} = (1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1)$$

Отправляем его

1.2 Криптография

Терминология:

Ключ, Алгоритм, Сообщение, Зашифрованное сообщение

1.2.1 RSA

Лемма 1. a взаимно просто с n

$$\implies a^{\varphi} \equiv 1$$

Лемма 2. e взаимно просто с φ

$$\implies \exists! d \in 1 : \varphi : e \cdot d \underset{\varphi}{\equiv} 1$$

Алгоритм. Выбираем два простых числа p и q

$$n = pq$$

p,q – закрытые, n – открытый. При достаточно большом n найти p и q практически невозможно

$$\varphi = (p-1)(q-1)$$

e – секретный ключ, d – публичный ключ, $d, e \in 1: (n-1)$

$$y_i = x_i^d \mod(n)$$

$$x_i = y_i^e \mod(n)$$

Пример.

$$n = 33$$

$$p = 3$$
 $q = 11$

$$\varphi = 20$$

$$e = 7 \implies d = 3$$

Сообщение: 312

$$y_1 = 3^7 \mod 33$$

$$y_2 = 1$$

$$y_3 = 2^7 \mod 33$$

Можно скомбинировать с предыдущим шифрованием:

Алгоритм. 1. Генерируем ключ сессии:

$$c = (0, 1, 0, 1) \xrightarrow{RSA} f$$

$$a \xrightarrow{c} b$$

$$f \to c$$

$$b \xrightarrow{c} a$$