WiSe 2015/2016

Funktionale Programmierung

13. Übungsblatt (Abgabe: Mi., den 3. Februar, um 10:10 Uhr)

Prof. Dr. Margarita Esponda

Ziel: Auseinandersetzung mit Primitiv rekursiven Funktionen.

1. Aufgabe (5 Punkte)

Zeigen Sie, dass folgende Funktionen primitiv-rekursiv sind, indem Sie diese nur unter Verwendung vordefinierter primitiv rekursiver Funktionen definieren.

a)
$$pow : \mathbb{N}^2 \to \mathbb{N}$$
 mit $pow(x,y) = x^y$

b)
$$\max : \mathbb{N}^2 \to \mathbb{N}$$
 mit $\max(x,y) = y$ falls $x \le y$ und $\max(x,y) = x$, falls nicht.

2. Aufgabe (2 Punkte)

Zeigen Sie, dass die folgende Funktion \boldsymbol{f} primitiv-rekursiv ist, wenn \boldsymbol{h} , \boldsymbol{k} , und \boldsymbol{p} primitiv-rekursive Funktionen sind.

$$f: \mathbb{N}^3 \to \mathbb{N}$$
 mit $f(x,y,z) = p(x) \cdot h(z,x,y) + k(z)$

3. Aufgabe (4 Punkte)

Zeigen Sie, dass folgende logische Funktionen primitiv-rekursiv sind.

a)
$$and: \mathbb{N}^2 \to \mathbb{N}$$
 logisches Und-Verknüpfung

b)
$$equal: \mathbb{N}^2 \to \mathbb{N}$$
 Test auf Gleichheit

Die Wahrheitswerte werden mit 0 (False) und 1 (True) dargestellt.

4. Aufgabe (10 Punkte)

Zeigen Sie, dass folgende Funktionen primitiv-rekursiv sind.

a)
$$f: \mathbb{N}^2 \to \mathbb{N}$$
 mit $f(x, y, z) = x + \frac{(x+z) \cdot (z+y+2)}{2}$

b)
$$p: \mathbb{N} \to \mathbb{N}$$
 mit $p(n) = 2^n - 1$

c) Abstand zwischen zwei natürlichen Zahlen
$$|n-m|$$
 , $abst: \mathbb{N}^2 o \mathbb{N}$

$$mit \quad abst(n,m) = \begin{cases} (n-m) & \text{,wenn} & n > m \\ (m-n) & \text{,wenn} & n \le m \end{cases}$$

d)
$$f: \mathbb{N} \to \mathbb{N}$$
 mit $f(n) = \begin{cases} 1, & \text{wenn} \\ f(n-1) + n, & \text{sonnst} \end{cases}$

5. Aufgabe (9 Punkte)

Testen Sie Ihre Definitionen mit den in Haskell zur Verfügung gestellten Grundfunktionen sowie mit der Funktionen für die Kompositions- und Rekursionsschema.