

Ontology-based Customization and Visualization of Information Flow control in an Industry 4.0 Scenario

Oliver König (1703779)

Betreut durch: Dipl.-Ing. Antonios 'Toni' Karatzoglou (TECO)

Einleitung

- Forschungsfrage
 - Modellierungsmöglichkeiten eines ontologie-basierten Datenmodells eines Industrie 4.0 Szenario?
 - Möglichkeiten der ontologie-basierten Anpassung des Datenmodells?
 - Konstrukte der ontologie-basierten Informationsflusskontrolle innerhalb des Datenmodells?
- Ansatz

Einleitung

- Forschungsfrage
- Ansatz
 - Untersuche ...
 - die Struktur produzierender Unternehmen
 - die Ansätze der Informationsflusskontrolle
 - die Möglichkeiten der Web Ontology Language
 - Entwickle ein ontologie-basiertes Datenmodell

Struktur

- Grundlagen
 - Vernetzung der Wertschöpfungskette
 - Begriff der Informationsflusskontrolle
 - Spezifikation des Semantic Webs
- Analyse
 - Web Ontology Language und relevante Vokabulare
 - Ontology Design Patterns
 - Informationsflusskontrolle
- Entwurf
 - Top-Level-Ontology
 - Base-Ontology
- Implementierung
 - Java-Kernkomponente
 - TripleStore
 - Client-App
- Evaluation
- Zusammenfassung und Ausblick

Vernetzung der Wertschöpfungskette

[Aach17]

Informationsflusskontrolle

Wer darf wann auf welche Informationen zugreifen und wie darf dieser Zugriff erfolgen?

vgl. [Lehm07]

Data Cube

[ScaleIT]

Linked Data in der Industrie 4.0

[KhHC09]

Struktur

- Grundlagen
 - Vernetzung der Wertschöpfungskette
 - Begriff der Informationsflusskontrolle
 - Spezifikation des Semantic Webs
- Analyse
 - Web Ontology Language und relevante Vokabulare
 - Ontology Design Patterns
 - Informationsflusskontrolle
- Entwurf
 - Top-Level-Ontology
 - Base-Ontology
- Implementierung
 - Java-Kernkomponente
 - TripleStore
 - Client-App
- Evaluation
- Zusammenfassung und Ausblick

Relevante Spezifikationen des Semantic Webs

- Web Ontology Language (OWL)
 - Formale Beschreibungssprache basierend auf RDF/ RDFS
 - Geeignet zum Entwurf von ontologischen Wissensmodellen
 - Gemeinsame Vokabulare ermöglichen Austausch über gemeinsame Konzepte
 - Features:
 - Konsistenzüberprüfung
 - Klassifizierung
 - Wissenserschließung (Inferenz)
- Semantic Web Rule Language (SWRL)
 - Erweiterung von OWL
 - Modellierung von konditionalem Verhalten (if-else-Struktur)
 - proposal, keine Spezifikation

Relevante Vokabulare

Ontology Design Patterns

n-ary Design Pattern:

[W3C06]

Informationsflusskontrolle

[MaJo10]

Struktur

- Grundlagen
 - Vernetzung der Wertschöpfungskette
 - Begriff der Informationsflusskontrolle
 - Spezifikation des Semantic Webs
- Analyse
 - Web Ontology Language und relevante Vokabulare
 - Ontology Design Patterns
 - Informationsflusskontrolle
- Entwurf
 - Top-Level-Ontology
 - Base-Ontology
- Implementierung
 - Java-Kernkomponente
 - TripleStore
 - Client-App
- Evaluation
- Zusammenfassung und Ausblick

Top-Level-Ontology - Prozessstruktur

Property

- org:hasMember
- hasSubclass
- org:reportsTo

- gn:ownsProcess
- gn:ownsProcessStep
- gn:ownsFunctionalTask

- gn:buildBy
- gn:hasProcessStep
- gn:hasNextStep_directly
- gn:hasFunctionalTask

Konstruktion eines Anwendungsfalles (1)

- Prozess zur Konstruktion von Surface-Mounted-Devices (SMD)
- Resultierte aus einem Datenset des ScaleIT-Projekts
- SMD-Prozess (im Rahmen dieser Arbeit):

T1	Wärmeleitpaste auf eine Leiterplatte auftragen
T2	Leiterplatte mit Komponenten bestücken
T3	Durchführung der ersten automatischen, optischen Inspektion (AOI)
T4	Härtung der Verbundmaterialien im Leiterplattenofen
T5	Durchführung der zweiten AOI

Herstellungsaufgabe

Qualitätssicherung

Ontologie-basierte Fehlerauflösung

Base Ontology - Implementierung des Anwendungsfalles 1

Property	Property
hasProcessStart	hasFunctionalTaskInput
hasProcessStep	
hasProcessEnd	hasFunctionalTaskOutput
haaNaytOtan	
hasNextStep	

hasFunctionalTask

Regelbasierte Annotation mittels SWRL Regel R1

Property	Property
hasProcessStarthasProcessStep	hasFunctionalTaskInput
 hasProcessEnd 	hasFunctionalTaskOutput
hasNextStephasFunctionalTask	→ part:hasPart

Base Ontology - Implementierung des Anwendungsfalles 2

Property

- hasFunctionalTask
- hasFunctionalTaskInput
- hasFunctionalTaskOutput

Property

- hasFeatureOfInterest
- observedProperty
- madeBySensor
- implementedBy

Regelbasierte Annotation mittels SWRL Regel R2

Property

- hasFunctionalTask
- hasFunctionalTaskInput
- hasFunctionalTaskOutput

Property

- hasFeatureOfInterest
- observedProperty
- madeBySensor
- implementedBy

Konstruktion eines Anwendungsfalles (2)

- Prozess zur Konstruktion von Surface-Mounted-Devices (SMD)
- Resultierte aus einem Datenset des ScaleIT-Projekts
- SMD-Prozess (im Rahmen dieser Arbeit):
- Ontologie-basierte Fehlerauflösung
 - (1) Rohmaterialien nicht verfügbar
 - (2) Arbeiter nicht verfügbar
 - (3) Zeit für Prozessneustart nicht verfügbar

Struktur

- Grundlagen
 - Vernetzung der Wertschöpfungskette
 - Begriff der Informationsflusskontrolle
 - Spezifikation des Semantic Webs
- Analyse
 - Web Ontology Language und relevante Vokabulare
 - Ontology Design Patterns
 - Informationsflusskontrolle
- Entwurf
 - Top-Level-Ontology
 - Base-Ontology
- Implementierung
 - Java-Kernkomponente
 - TripleStore
 - Client-App
- Evaluation
- Zusammenfassung und Ausblick

Implementierung

Ausschnitt der Client-App

:oncept/internar/purchasewanager		
oncept/material/board#3827581	materialProperty http://localhost/concept/task/smd_aoiInspection_01	materialProperty http://localhost/concept/task/smd_componentApplication
concept/material/component#c1-1	materialProperty http://localhost/concept/task/smd_boardSetting	hasPart_directly http://localhost/concept/material/board#3827581
	hasPart_directly http://localhost/concept/material/component#c1-1	hasPart_directly http://localhost/concept/material/solderpaste#1
concept/material/component#c2-1	hasPart_directly http://localhost/concept/material/component#c2-1	isMaterialOf http://localhost/concept/task/smd_componentApplication
:oncept/material/component#c3-1	hasPart_directly http://localhost/concept/material/component#c3-1	partOf_directly http://localhost/concept/material/stickedBoard#1
oncept/material/component#c4-1	hasPart_directly http://localhost/concept/material/preparedBoard#1	hasPart http://localhost/concept/material/board#3827581
oncept/material/preparedBoard#1	IsMaterialOf http://localhost/concept/task/smd aoiInspection 01	hasPart http://localhost/concept/material/solderpaste#1
concept/material/settedBoard#1	IsMaterialOf http://localhost/concept/task/smd_boardSetting	type http://www.w3.org/2002/07/owl#Thing
:oncept/material/solderpaste#1	hasPart http://localhost/concept/material/component#c1-1	type http://localhost/concept/oml/gn#Resource
oncept/material/stickedBoard#1	hasPart http://localhost/concept/material/component#c2-1	type http://localhost/concept/oml/gn#Material
oncept/materialdisposition		
oncept/materialdisposition/stock	hasPart http://localhost/concept/material/component#c3-1	type http://localhost/concept/oml/gn#RawMaterial
:oncept/observations/1	hasPart http://localhost/concept/material/preparedBoard#1	http://localhost/concept/oml/gn#IntermediateMaterial
:oncept/observations/2	hasPart http://localhost/concept/material/board#3827581	type http://localhost/concept/oml/sick#Board
concept/observations/3	hasPart http://localhost/concept/material/solderpaste#1	type http://localhost/concept/oml/sick#PreparedBoard
oncept/observations/4	type http://www.w3.org/2002/07/owl#Thing	partOf http://localhost/concept/material/stickedBoard#1
	type http://localhost/concept/oml/gn#Resource	
concept/observations/5	type http://localhost/concept/oml/gn#Material	
concept/observations/6	type http://localhost/concept/oml/gn#RawMaterial	
:oncept/oml/gn#	type http://localhost/concept/oml/gn#IntermediateMaterial	
oncept/oml/gn#ACTIVE	type http://localhost/concept/oml/sick#Board	
:oncept/oml/gn#FINISHED	type http://localhost/concept/oml/sick#StickedBoard	
concept/oml/gn#PENDING		
:oncept/oml/sick#		
oncept/oml/sick#stardog-rule-1		

Struktur

- Grundlagen
 - Vernetzung der Wertschöpfungskette
 - Begriff der Informationsflusskontrolle
 - Spezifikation des Semantic Webs
- Analyse
 - Web Ontology Language und relevante Vokabulare
 - Ontology Design Patterns
 - Informationsflusskontrolle
- Entwurf
 - Top-Level-Ontology
 - Base-Ontology
- Implementierung
 - Java-Kernkomponente
 - TripleStore
 - Client-App
- Evaluation
- Zusammenfassung und Ausblick

Evaluation 1: Performance

Evaluation 2: Ontologie-basierte Fehlerauflösung

	Bedingung	Umsetzbar	Beschreibung
(1) Rohmaterialien nicht verfügbar	 Quantifizierbarkeit der Rohmaterialien Erkennung defekter Materialien 	 Nicht mittels des vorgeschlagenen Entwurfs Ja 	 Unique Name Assumption und Open World Assumption verhindern Aufzählbarkeit einzelner Materialien Mittels Observation und der implementierten SWRL Regel R2
(2) Arbeiter nicht verfügbar	Modellierung der Anwesenheitszeiten	1. Ja	Mittels einer Klasse Availability
(3) Zeit für Prozessneustart nicht verfügbar	 Modellierung einzelner Prozessdauern Modellierung der gegebenen Zeit 	1. Ja 2. Ja	 Mittels einer SWRL-basierten Regel Mittels order_delivery_date

Zusammenfassung & Ausblick

Literaturverzeichnis

[Aach17]	R. Aachen. Überbetrieblicher Material- und Informationsfluss / Logistikdemonstrator. http://	
----------	--	--

www.produktionstechnik.rwth-aachen. de/cms/Produktionstechnik/Forschung/Demonstratoren/~hhkc/

Logistikdemonstrator/, 2017. Accessed: 2017-09-17.

[Lehm07] K. Lehmann. Modelle und Techniken für eine effiziente und lückenlose Zugriffskontrolle in Java-basierten

betrieblichen Anwendungen. Dissertation, Technical University Munich, Germany, 2007.

[KhHC09] N. Khilwani, J. A. Harding und A. K. Choudhary. Semantic web in manufacturing. Proceedings of the

Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 223(7), 2009, S. 905–

924.

[W3C06] W3C. Defining N-ary Relations on the Semantic Web. https://www. w3.org/TR/swbp-n-aryRelations/,

2006. Accessed: 2017-10-29.

[MaJo10] A. Masoumzadeh und J. Joshi. Osnac: An ontology-based access con- trol model for social networking

systems. In Social Computing (Social-Com), 2010 IEEE Second International Conference on. IEEE,

2010, S. 751-759.

[Fram13] O. S. Framework. Description of W3C Technology Stack II- lustration. http://

wiki.opensemanticframework.org/index.php/File: OWL1vOWL2.png, 2013. Accessed: 2017-10-29.

[KDDK+15] J. Kletti, R. Deisenroth, M. Diesner, W. Kletti, J.-P. Lu"bbert, J. Schu- macher und T. Strebel. Die

Anforderungen an die moderne Produkti- on. In MES-Manufacturing Execution System, S. 1–18. Springer,

2015.

[HypeCycle] Wikipedia. Hype cycle. https://en.wikipedia.org/wiki/Hype_cycle. Accessed: 2017-11-05

Backup: Analyse

Ergänzung zu Web Ontology Lan	nguage
-------------------------------	--------

32 Vokabular 1:

Sensor, Observation, Sample and Actuator Vocabulary (SOSA) &

Semantic Sensor Network Ontology (SSN)

33 Vokabular 2:

Organizational Vocabulary (ORG)

Vokabular 3: 34

Simple part-whole Relations (part)

35 Abgrenzung der OWL Profile

Ergänzung zu Web Ontology Language

- Modellierung von Aussagen mittels Tripels über Ressourcen
- Ressourcen sind mittels URIs eindeutig definiert
- Eindeutige Identifizierung ermöglicht:
 - 1. Maschinelle Verarbeitung von autonomen Akteueren
 - 2. Austausch von definierten Konzepten über gemeinsame Vokabulare

Vokabular 1: Sensor, Observation, Sample and Actuator Vocabulary (SOSA) & Semantic Sensor Network Ontology (SSN)

Property

sosa:observes

- sosa:madeBySensor
- sosa:observedProperty

sosa:hasFeatureOfInterest

Vokabular 2: Organizational Vocabulary (ORG)

Property

org:organization

- org:headOf
- org:postIn

- hasSubclass
- org:hasUnit
- org:unitOf

Vokabular 3: Simple part-whole Relations (part)

Property

part:hasPart_directly

• part:hasPart (inferiert)

Abgrenzung der OWL Profile

[Fram13]

Backup: Entwurf

37	Integration eines Unternehmens in das Organizational Vocabulary
38	Integration der materiellen Sicht
39	Anwendung von SWRL Regeln zur automatisierten Prozessannotation
40	Materialdefinition
41	Top-Level-Ontology - Personalstruktur
42	Top-Level-Ontology - Prozessstruktur

Top-Level-Ontology - Informationsflusskontrolle

43

Integration eines Unternehmens in das Organizational Vocabulary

Integration der materiellen Sicht

Anwendung von SWRL Regeln zur automatisierten Prozessannotation

	Ziel			
SWRL R1	Annotiere das hergestellte Produkt entlang des Produktionsprozesses, indem die Materialeingaben einer Herstellungsaufgabe mit der Materialausgabe verbunden werden. Dabei soll die part:hasPart Eigenschaft verwendet werden.			
SWRL R2	Annotiere die Aufgaben der AOI-Kontrolle, indem die korrespondierenden Beobachtungen, die zu den Bauteilen der Eingabe der Aufgabe der AOI-Kontrolle passen, als <i>Ausgabe</i> der Aufgabe ergänzt werden.			

Materialdefinition

Top-Level-Ontology - Personalstruktur

Top-Level-Ontology - Prozessstruktur

Top-Level-Ontology - Informationsfluss*kontrolle*

Property

- gn:ownsDataCollection
- gn:canRead

Backup: Implementierung

⁴⁵ Übersicht

46 Ausführung der Komponenten

Implementierung

Implementierung

Java-Kernkomponente

- Funktionalität
 - (1) Einlesen von OWL-Dokumenten
 - (2) Schnittstelle zu den Datenbanken Apache Jena Fuseki und Stardog
 - (3) Wahlweises Ausführen von Reasoning mittels Openllet-Reasoner
- Openllet
 - Opensource Weiterführung des OWL 2 DL Reasoner Pellet
 - Integration mittels Java-Bibliothek OWL API
 - Unterstützung von SWRL
- Apache Jena Generic Rule Reasoner
 - RDF(S)-Reasoner mit OWL 1 Unterstützung
 - Integration mittels Java-Bibliothek des Apache Jena Frameworks
 - Regelbasiertes Reasoning mittels eigenem Syntax
- Datenbank
 - Apache Jena Fuseki
 - Stardog
 - Reasoning über OWL 2 DL Profil ohne regelbasiertes Reasoning
 - Reasoning über OWL 2 SL Profil mit SWRL-basiertem Reasoning
- Client-App
 - NodeJs-basierte Webapp
 - Visualisierung der Anwendungsdaten

Backup: Evaluation

48

Evaluation 1: Implementierung

Evaluation 1: Implementierung

	OWL Unterstützung	Reasoning über OWL Profil	Regelbasiertes Reasoning
Java-Kernkomponente	OWL 2	OWL DL	SWRL
TripleStore 1: Stardog	OWL 2	OWL SL *	SPARQL-Rules; SWRL
TripleStore 2: Apache Jena Fuseki	Fokus RDF/RDFS; auch OWL 1	-	Generic Rule Reasoner

^{*} entspricht Funktionalität von OWL RL, EL und QL

Backup: Ausblick

50

ISA 88/95

Ausblick: ISA 88/95

- Designphilosophe für Software, Ausrüstung und Verfahrensablauf
- Modularisierung der Konzepte
 - (1) Modelle und Terminologie
 - (2) Datenstrukturen und Leitfaden für Sprachen
 - (3) Modelle und Darstellungen von Verfahrens- und Werksrezepten
 - (4) Batch Production Records
- bietet konsistente Standards und Terminologien für chargenorientierte Fahrweise und definiert das physische Modell, Prozedure und Rezepte