

cov(X,	V) _	$\mathbb{E}[\mathbf{V}\mathbf{V}]$	יגוו	[v]	ו ישו	v]	
COV(A,	Y) =	$\mathbb{L} AY $	— IL	A	L.	I	

La covariance entre deux variables aléatoires X et Y est définie par $cov(X,Y) = \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y)))$

Faux en général, c'est-à-dire que ce n'est pas toujours vrai. Pour que cela soit vrai, il faut que la covariance soit nulle, ce qui est le cas en particulier quand X et Y sont indépendantes.

R

R

R

$$\mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(Y) + 2\mathrm{cov}(X,Y)$$

Vrai

Le coefficient de corrélation ρ est défini comme $\rho = \frac{\text{cov}(X,Y)}{\sqrt{\mathbb{V}(X)\mathbb{V}(Y)}}$

R

R

R

L'inégalité de Cauchy-Schwarz est une inégalité qui énonce que $cov(X,Y)^2 \leq \mathbb{V}(X)\mathbb{V}(Y)$.

Dans le cas continu, on peut retrouver $f_X(x)$ en intégrant la densité jointe sur l'ensemble des valeurs possibles pour Y $f_X(x) = \int_{-\infty}^{+\infty} f_{(X,Y)}(x,y) dy$

On peut retrouver $\mathbb{P}(X=x)$ en utilisant la formule $\mathbb{P}(X=x)=\sum_{y\in Y(\Omega)}\mathbb{P}(X=x\cap Y=y)$

Quelle est l'inégalité de Markov pour une variable aléatoire positive ou nulle ?

5

Quelle est l'inégalité de Bienaymé-Tchebychev ?

Q

Q

L'inégalité de Bienaymé-Tchebychev énonce que pour toute variable aléatoire X (dont la variance existe) et pour tout $\epsilon > 0$, on a

$$\mathbb{P}(|X - \mathbb{E}(X)| \geq \epsilon) \leq rac{\mathbb{V}(X)}{\epsilon^2}.$$

L'inégalité de Markov énonce que pour toute variable aléatoire positive ou nulle X et pour tout $\epsilon > 0$, on a

$$\mathbb{P}(X \geq \epsilon) \leq rac{\mathbb{E}(X)}{\epsilon}.$$

R