Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda

Let X be a random variable following a Normal distribution with mean = -5.01 and variance = 3.52, what is the probability that X > -3.44?

Scegli un'alternativa:

- a. pnorm(-3.44, -5.01, 1.88, lower.tail = FALSE); 0.20
 - ✓ True
- b. pnorm(-3.44, -5.01, 3.52, lower.tail = TRUE); 0.67
- c. pnorm(-3.44, -5.01, 3.52, lower.tail = FALSE); 0.33
- d. pnorm(-3.44, -5.01, 1.88, lower.tail = TRUE); 0.80
 - a. True
 - b. False
 - c. False
 - d. False

La risposta corretta è: pnorm(-3.44, -5.01, 1.88, lower tail = FALSE); 0.20

Domanda 2

Risposta errata

Punteggio ottenuto -0,33 su 1,00

Contrassegna domanda

The interval $(\hat{\theta}-z_{1-\alpha/2}\sqrt{V(\hat{\theta})};\hat{\theta}+z_{1-\alpha/2}\sqrt{V(\hat{\theta})})$ for the parameter θ of a statistical model is obtained, where $z_{1-\alpha/2}$ is the $1-\alpha/2$ quantile of a standard normal distribution. Which of the following sentences is true:

Scegli un'alternativa:

- a. The probability that such a random interval contains the value heta is 1-lpha.
- = b. The parameter heta is not contained in the interval with probability 1-lpha.
- θ c. The parameter θ is contained in the interval with probability $1-\alpha$.
 - * FALSE
- d. The interval obtained is larger if the value α is larger.
 - a. TRUE
 - b. FALSE
 - c. FALSE
 - d. FALSE

La risposta corretta è: The probability that such a random interval contains the value θ is 1- α .

Risposta corretta

Punteggio ottenuto 1.00 su 1.00

Contrassegna domanda

The asymptotic distribution for the MLE (maximum likelihood estimator) for a binomial distribution with parameter p is:

Scegli un'alternativa:

- \circ a. $\hat{p} \sim \mathcal{N}\left(0, rac{p(1-p)}{n}
 ight)$
- $\hat{p} \sim \mathcal{N}\left(p, rac{p(1-p)}{n}
 ight)$
 - ✓ TRUE
- $\hat{p} \sim \mathcal{N}(p, p(1-p))$
- θ d. $\hat{p} \sim \mathcal{N}(p, np(1-p))$
 - a FALSE
 - b. TRUE
 - c. FALSE
 - d. FALSE

La risposta corretta è: $\hat{p} \sim \mathcal{N}\left(p, \frac{p(1-p)}{n}\right)$

Domanda 6

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda

Given a sample $y=(y_1,y_2,\ldots,y_{10})$ from a $\mathcal{N}(\mu,\sigma^2)$, we want to test the null hypothesis $H_0:\mu=0$ against the alternative $H_1:\mu\neq 0$ at level $\alpha=0.05$. Suppose we find: $t_{obs}=\sqrt{10}\,\bar{y}/s=4.72$. Then, which is the right R code to compute the test's p-value?

Scegli un'alternativa:

- a. 1-pt(q=4.72, df = 9, lower.tail = FALSE)
- b. pt(q=4.72, df = 10, lower.tail = TRUE)
- c. 2*pt(q=4.72, df = 9, lower.tail = FALSE) TRUE
- d. dt(x=4.72, df = 9)
 - a FALSE
 - b. FALSE
 - c. TRUE
 - d. FALSE

La risposta corretta è: 2*pt(q=4.72, df = 9, lower.tail = FALSE)

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda

Consider the following random sample of 14 cats that collects their weight in kilograms

```
c(4.31, 5.19, 3.37, 4.42, 4.82, 4.02, 5.62, 5.47, 4.38, 6.38, 3.97, 5.85, 5.35, 5.81)
```

Assume that the random variable weight of cats follows a Normal distribution with mean μ , compute the observed significance level to verify the following hypotheses:

H0: $\mu \geq 5$

 $\mathrm{H1:}\mu<5$

- > n <- length(cat)
- > stat.test.H0 <- (mean(cat)-5)/sqrt(var(cat)/n)
- > stat.test.H0

[1] -0.3188786

Scegli un'alternativa:

- a. pt(stat.test.H0, df = n-1)

 ✓ TRUE
- b. pnorm(stat.test.H0)
- c. pt(stat.test.H0, df = n-1, lower.tail = FALSE)
- o d. pnorm(stat.test.H0, lower.tail = FALSE)
 - a. TRUE
 - b. FALSE
 - c. FALSE
 - d. FALSE

La risposta corretta è: pt(stat.test.H0, df = n-1)

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda

The following code computes:

Scegli un'alternativa:

- a. the nominal level of a confidence interval
- b. the empirical coverage of a confidence interval

 TRUE
- o c. an estimate of the parameter of interest p
- od. the margin of error of a confidence interval
 - a. FALSE
 - b. TRUE
 - c. FALSE
 - d. FALSE

La risposta corretta è: the empirical coverage of a confidence interval