Interpreting logistic models

Frank Edwards

2/27/2023

- Remember that logistic regression is a GLM with a logit link function

- $\boldsymbol{\cdot}$ Remember that logistic regression is a GLM with a logit link function
- · A GLM takes the form: $g(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}$

- · Remember that logistic regression is a GLM with a logit link function
- · A GLM takes the form: $g(y) = X\beta$
- Logistic regression is the special case where g is the logit function: $\mathrm{logit}(y) = \mathrm{X}\beta$

- · Remember that logistic regression is a GLM with a logit link function
- · A GLM takes the form: $g(y) = \mathrm{X}\beta$
- Logistic regression is the special case where g is the logit function: $\mathrm{logit}(y) = \mathrm{X}\beta$
- \cdot A logistic regression model returns ${
 m X}eta$ on the logit scale

- · Remember that logistic regression is a GLM with a logit link function
- \cdot A GLM takes the form: $g(y) = \mathrm{X} eta$
- Logistic regression is the special case where g is the logit function: $\mathrm{logit}(y) = \mathrm{X}\beta$
- \cdot A logistic regression model returns ${
 m X}eta$ on the logit scale
- · How can we convert xeta to something useful?

Let's return to the grad school admission example

```
admits <- read_csv("./data/binary.csv")
summary(admits)</pre>
```

##	admit		gre		gpa		rank	
##	Min.	:0.0000	Min.	:220.0	Min.	:2.260	Min.	:1.000
##	1st Qu	.:0.0000	1st Qu	.:520.0	1st Qu	.:3.130	1st Qu.	:2.000
##	Median	:0.0000	Median	:580.0	Median	:3.395	Median	:2.000
##	Mean	:0.3175	Mean	:587.7	Mean	:3.390	Mean	:2.485
##	3rd Qu	.:1.0000	3rd Qu	.:660.0	3rd Qu	.:3.670	3rd Qu	:3.000
##	Max.	:1.0000	Max.	:800.0	Max.	:4.000	Max.	:4.000

Let's look at this as the distribution of the probability of admissions across the data

· First, fit an intercept-only logistic regression model

```
m0 <- glm(admit ~ 1, data = admits, family = "binomial")
m0_est <- tidy(m0)</pre>
```

· What does this model tell us?

What does this model tell us?

```
m0_est$estimate ## log odds
## [1] -0.7652847
exp(m0_est$estimate) ## odds
## [1] 0.4652015
exp(m0_est$estimate)/(1 + exp(m0_est$estimate)) ## probability
## [1] 0.3175
mean(admits$admit) ## mean admission probability
## [1] 0.3175
```

Let's add a predictor

Predictions for all data points in M0 and M1 - what's going on?

Two linear predictors

Why do these generate such different predictions?

Intercept only model (m0): $p(admit) = \beta_0$

With GRE predictor (m1): $p(admit) = \beta_0 + \beta_1 GRE_i$

To ease interpretation, let's scale GRE

Scale mean-centers and SD scales variables: $\operatorname{scale}(x_i) = \frac{x_i - \bar{x}}{\operatorname{sd}(x)}$

Linear transformations of variables: mean-center and SD scale

Re-estimate the model: much nicer to look at

1 (Intercept) -0.796 0.111 -7.20 6.01e-13 ## 2 gre_s 0.414 0.114 3.63 2.80e- 4

Interpret the model

m1_est

So: $y = \operatorname{logit}^{-1}(X\beta) = \frac{\exp(X\beta)}{\exp(X\beta) + 1}$

Interpret the model

${\tt m1_est}$

Remember:
$$\operatorname{logit}(y) = X\beta = \log\left(\frac{y}{1-y}\right)$$

So: $y = \operatorname{logit}^{-1}(X\beta) = \frac{\exp(X\beta)}{\exp(X\beta) + 1}$

• What is β_0 ?

Interpret the model

m1_est

Remember:
$$\operatorname{logit}(y) = X\beta = \log\left(\frac{y}{1-y}\right)$$

So: $y = \operatorname{logit}^{-1}(X\beta) = \frac{\exp(X\beta)}{\exp(X\beta) + 1}$

- What is β_0 ?
- What is β_1 ?

Refresher on exponentials

$$e^{y_1+y_2}=e^{y_1}e^{y_2}$$

Refresher on exponentials

$$e^{y_1+y_2}=e^{y_1}e^{y_2}$$

and

$$e^{y_1-y_2} = \frac{e^{y_1}}{e_2^y}$$

Refresher on exponentials

$$e^{y_1+y_2}=e^{y_1}e^{y_2}$$

and

$$e^{y_1-y_2} = \frac{e^{y_1}}{e_2^y}$$

so how can we rewrite:

$$\exp(\operatorname{logit}(y)) = \frac{y}{1 - y} = e^{\beta_0 + \beta_1 x_1}$$

Non-linear relationships

On the log scale, β_0 and β_1 are related to y multiplicatively because

$$e^{\beta_0+\beta_1x_1}=e^{\beta_0}e^{\beta_1x_1}$$

Odds are defined as the probability of the event occurring divided by the probability of probability of the event not occurring. To obtain odds in a logistic regression, we exponentiate both sides:

$$\frac{y}{1-y}=e^{\beta_0+\beta_1x_1}$$

Odds are defined as the probability of the event occurring divided by the probability of probability of the event not occurring. To obtain odds in a logistic regression, we exponentiate both sides:

$$\frac{y}{1-y}=e^{\beta_0+\beta_1x_1}$$

The odds of y == 1 are simply $e^{X\beta}$

Odds ratios

The odds ratio is the ratio of two odds - or the proportional change in odds. We can obtain an isolated estimate for the relationship between $\beta_1 x_{1i}$ and y this way:

$$\frac{Odds(y|x_1=1)}{Odds(y|x_1=0)} = \frac{e^{X\beta+\beta_1}}{e^{X\beta}} = \frac{e^{X\beta}\times e^{\beta_1}}{e^{X\beta}} = e^{\beta_1}$$

The odds ratio can be interpreted as the change in odds of y == 1 for a one-unit change in x_1 .

Interpreting odds ratios

• Odds ratios appear convenient - e^{β_1} is a percent change in y for a one-unit change in x_1

Interpreting odds ratios

• Odds ratios appear convenient - e^{β_1} is a percent change in y for a one-unit change in x_1

How do they work?

In our example: what do these figures mean?

[1] 1.512562

```
new_dat <- c(1, 0) # for scale(gre) == 0, mean score</pre>
odds 0 <- exp(new dat %*% m1 est$estimate)
odds 0
## [.1]
## [1,] 0.4510945
new_dat1 < -c(1, 1)
odds 1 <- exp(new dat1 %*% m1 est$estimate)</pre>
odds 1
## [,1]
## [1,] 0.6823082
odds 1/odds 0 # odds ratio
## [.1]
## [1,] 1.512562
exp(m1_est$estimate[2]) # exp(beta_1)
```

Interpreting the odds ratio

The odds of admission are 1.5125617 times higher for a student with a GRE score one standard deviation above the mean than they are for a student with a mean GRE score.

Interpreting the odds ratio

The odds of admission are 1.5125617 times higher for a student with a GRE score one standard deviation above the mean than they are for a student with a mean GRE score.

Any trouble you can anticipate here?

Interpreting the odds ratio

The odds of admission are 1.5125617 times higher for a student with a GRE score one standard deviation above the mean than they are for a student with a mean GRE score.

Any trouble you can anticipate here?

A visual example: the "effect" of 1 SD increase in GRE scores on Pr(admit==1)

It is easy enough to work on the probability scale

To obtain predicted probabilities of the observed:

• p_hat<-predict(m1, type = "response")</pre>

On the probability scale

```
preds <- predict(m1, type = "response")
p_hat <- data.frame(gre = admits$gre, p = preds)

ggplot(p_hat, aes(x = gre, y = p)) + geom_line()</pre>
```


The basic logic of prediction

- 1. Choose scenarios of theoretical interest
- 2. Define these in terms of "counterfactual" (fake) data
- 3. Plug these fake data into the linear predictor (regression equation)
- 4. Visualize!

The basic logic of prediction

Reminder: our model is

$$logit(p(admit_i)) = \beta_0 + \beta_1 GRE_i$$

$$admit_i \sim Binomial(1, p)$$

1. Choose scenarios of theoretical interest

Low GRE, average GRE, high GRE

Define these scenarios in R

2. Define these in terms of "counterfactual" (fake) data

```
## Look at the distribution of the data to think about scenarios
mean(admits$gre)

## [1] 587.7

sd(admits$gre)

## [1] 115.5165
```

Define these scenarios in R

2. Define these in terms of "counterfactual" (fake) data

```
## Look at the distribution of the data to think about scenarios
mean(admits$gre)

## [1] 587.7

sd(admits$gre)

## [1] 115.5165
```

Let's define scenarios at the mean, 1 SD below the mean, and 1 SD above the mean

```
fake_data <- data.frame(gre = c(mean(admits$gre), mean(admits$gre) - sd(admits$gre),
    mean(admits$gre) + sd(admits$gre)))
fake_data</pre>
```

```
## gre
## 1 587.7000
## 2 472.1835
## 3 703.2165
```

Generating expected probabilities

coef(m1)

3. Plug these fake data into the linear predictor (regression equation)

Because $logit(p(admit_i)) = \beta_0 + \beta_1 x_i$, we can compute the expected probability of admission for a student with mean GRE scores as

```
## (Intercept) gre
## -2.901344270 0.003582212

### mean GRE scenario: linear predictor
exp(-2.9 + 0.0036 * 587.7)/(1 + exp(-2.9 + 0.0036 * 587.7))

## [1] 0.3133982
```

Generating expected probabilities

3. Plug these fake data into the linear predictor (regression equation)

The predict() function makes life very easy here

```
## linear predictor
predict(m1, newdata = fake data)
##
## -0.7960785 -1.2098832 -0.3822738
## probability scale (inverse logit)
predict(m1, newdata = fake_data, type = "response")
##
## 0.3108650 0.2297217 0.4055786
```

Intrepretation through visuals

4. Visualize!

```
### set up our data frame with predictions for plotting
fake_data <- fake_data %>%
    mutate(p_hat = predict(m1, newdata = fake_data, type = "response"))

ggplot(fake_data, aes(x = gre, y = p_hat)) + geom_point()
```

