## Noisy PAQ responses → trace measurements

 Assume user responds with an item that is a noisy distance  $y + \eta$  away from the reference

Response: <u>noisy scaling</u> γ s.t.



Equivalent to <u>trace measurements</u>



## With sensing matrices $\mathbf{A} = \gamma^2 \mathbf{a} \mathbf{a}^{\mathsf{T}}$



 $\gamma^2 \mathbf{a}^{\mathsf{T}} \mathbf{M} \mathbf{a} = y + \eta$ 

 $\langle \gamma^2 \mathbf{a} \mathbf{a}^{\mathsf{T}}, \mathbf{M} \rangle = y + \eta$ 

## **Noisy PAQ responses** → trace measurements

- Assume user responds with an item that is a noisy distance  $y + \eta$  away from the reference
  - Response: <u>noisy scaling</u> γ s.t.

$$\gamma^2 \mathbf{a}^\mathsf{T} \mathbf{M} \mathbf{a} = y + \eta$$

Equivalent to <u>trace measurements</u>

$$\langle \gamma^2 \mathbf{a} \mathbf{a}^\mathsf{T}, \mathbf{M} \rangle = y + \eta$$

With sensing matrices  $\mathbf{A} = \gamma^2 \mathbf{a} \mathbf{a}^{\mathsf{T}}$ 



## Learning from PAQs: challenges

Choose  $\mathbf{a}_i \stackrel{iid}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_D)$ 

Sensing matrices take the form



Sensing matrix depends on noise! Results in biased estimators