MA5810: Introduction to Data Mining

Week 3; Collaborate Session 1: Logistic Regression

Martha Cooper, PhD

JCU Masters of Data Science

2019-21-9 (updated: 2020-11-05)

Housekeeping

- Collaborate 1 = Wednesdays 6-7pm (Martha)
- Collaborate 2 = Thursdays 7-8pm (Hongbin)

For my Collaborate Sessions, you can get the **slides & R code** for each week here:

https://github.com/MarthaCooper/MA5810

Subject: MA5810 Intro to Data Mining

MA5810 Learning Outcomes

- 1. Overview of Data Mining and Examples
- 2. Unsupervised data mining methods e.g. clustering and outlier detection;
- 3. Unsupervised and supervised techniques for dimensionality reduction;
- 4. Supervised data mining methods for pattern classification (Today = Logistic Regression);
- 5. Apply these concepts to real data sets using R (Today).

Today's Goals

- Understand the background behind Logistic Regression
- Apply Logistic Regressions to real datasets using R
- Understand the pros and cons of Logistic Regression

Linear Regression Review

• The simple linear regression model is:

$$Y = \beta_0 + \beta_1 X + \epsilon$$

Where

- ullet Y is the dependent variable
- $beta_0$ is the intercept (Y when X=0)
- $beta_1$ is the slope of the regression line
- *epsilon* is the error term

Multiple Linear Regression Review

ullet Multiple regression with k independent variables

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k + \varepsilon$$

- When interpreting one of the slopes in multiple regression model, we should take into account the effect of the other variables
- ullet For instance, eta_1 represents the change in Y per 1 unit change in X_1 , holding other variables (X_2,\ldots,X_k) constant

Generalised Linear Models & Classification

- ullet GLM: Appropriate when Y isn't normally distributed but is in the exponential family of distributions
- In classification where Y is binomial (or multinomial)
- Given these features, does this sample belong to class A or B?

```
cancer \in \{yes, no\} credit\ card \in \{defalt, not\ default\} win\ \in \{yes, no\} drug\ \in \{survived, not\ survived\}
```

Logistic Regression

- Binomial family Generalised Linear Model
- ullet Models the probability that Y belongs to a particular category

Logistic Regression

- Binomial family Generalised Linear Model
- Models the probability that a subject belongs to a particular category

Problems with Linear Regression for Classification

- Some values are outside [0,1]
- For multinomial classification, the order and interval between classes would be considered important and meaningful

The Logistic Model

Probability

Logit or Log Odds

Estimating the coefficients

Maximum Likelihood

Logistic Regression Pros and Cons

Pros

- Identify which features are important for classification
- Interpret how important each feature is for classification

Cons

- Doesn't perform well if the decision boundary isn't linear
- Two groups (although extensions make more possible)

Logistic Regression in R

```
#load data
library(ISLR, warn.conflicts = F, quietly = T) #for data
library(caret, warn.conflicts = F, quietly = T) #for splitting the data
library(dplyr, warn.conflicts = F, quietly = T) #for piping
data("Default") #credit card default data from ISLR
str(Default)
#split into training (80%) and test
split <- createDataPartition(Default$default, p = 0.8, list = F)</pre>
train <- Default[split, ]</pre>
test <- Default[-split, ]
c(nrow(train), nrow(test)) # print number of observations in test vs. to
table(train$default) %>% prop.table() # Proportions of people that default)
#Train the model to predict the likelihood of default status based on ci
def logmod1 <- glm(default ~ balance, data = train, family = "binomial")</pre>
```

Interpretting the coefficients

summary(def_logmod1)\$coef #interpret the coefficients

```
## (Intercept) -10.667896998 0.4047941470 -26.35388 4.632708e-153
## balance 0.005524981 0.0002477719 22.29866 3.807597e-110
```

- β_0 : Log odds
- β_1 : Log odds ratio

Making predictions in R

• make predictions based on training data

```
lodds <- predict(def_logmod1, type = "link")#log odds
preds_lodds = ifelse(lodds > 0, "Yes", "No") #using log odds
confusionMatrix(as.factor(preds_lodds), train$default) #confusion matrix
```

Plot the model

• We are aiming for a plot like this:

Plot the model

• Coding the plot:

```
def logmod1$coef #look at coefs
#save coefficients
b0 <- def logmod1$coef[1] #beta0
b1 <- def logmod1$coef[2] #beta1
#calculate probabilities
x_range <- seq(from = min(train$balance), to = max(train$balance))#range</pre>
#calculate the logits
default logits <- b0 + b1*x range
#calculate probabilities to plot
default_probabilities <- exp(balance_logits)/(1 + exp(balance_logits))</pre>
probabilities to plot <- data.frame("balance" = x range,
                                     "probabilitiv of default" = default
ggplot(probabilities to plot, aes(x = balance, y = probabilitiy of defau
  geom_line()+ #plot model
  geom point(data = train, aes(x = balance,
                                v = ifelse(default == "Yes", 1, 0),
                                colour = default))+#add training data
  xlab("Balance")
                                                                         16/19
```

Making predictions in R

• make predictions based on test data

```
test_lodds <- predict(def_logmod1, newdata = test, type = "link") #logis
test_preds_lodds = ifelse(test_lodds > 0, "Yes", "No") #using logits
confusionMatrix(as.factor(test_preds_lodds), test$default) #confusion ma
```

Extra reading

- Chapter 4 of James et al., ISLR
- Chapter 10 of David Dalpiaz, R for Statistical Learning

References

- James et al., ISLR
- David Dalpiaz, R for Statistical Learning

Slides

• xaringhan, xaringanthemer, remark.js, knitr, R Markdown