Upute za laboratorijske vježbe iz kolegija Praktikum iz vođenja procesa

Viežba 4

Vježba se nastavlja na prethodnu vježbu 3 Fluidički sustavi. Izvršiti će se jednostavna analiza sustava, pri čemu će se napraviti **statička karakteristika** razine spremnika s obzirom na promjene ulaznog protoka. Na temelju dobivene statičke karakteristike (grafa) će se izvršiti jednostavni postupci sinteze, odnosno procjene potrebnog ulaznog protoka da se ostvari određena ustaljena razina tekućine u spremniku.

Statička karakteristika

Statička karakteristika se najčešće grafički prikazana ovisnost jedne izlazne veličine o drugoj ulaznoj veličini, pri čemu se **gledaju isključivo ustaljena stanja**. Najjednostavniji način da se napravi statička karakteristika ovisnosti razine u spremniku h_1 s obzorom na ulazni protok q_{ul} je da se izvrši simulacija (ili mjerenje na realnom sustavu) za različite vrijednosti ulaza, i zapiše vrijednosti ustaljenog stanja razina spremnika h_1 odnosno h_2 .

Primjerice za fluidički sustav gdje je nominalni ulazni protok $q_{ul} = 0.2 \text{ m}^3/\text{s}$, zapisuju se ustaljenja stanja h_1 i h_2 za vrijednosti q_{ul} u koracima od 10%. To se najlakše ostvari tako da se iza ulazne pobude (step) doda blok pojačanja (ulaz) koji se izmjenjuje u zadanim vrijednostima (od 0.6 do 1.5).

Naredbom

ulaz=0.6

... izvrši se simulacija simulink modela, nakon čega se u Matlab-u izvrše sljedeće naredbe

h1=simout.Data(end)
h2=simout1.Data(end)

U matrice h1 i h2 spremaju ustaljena stanja razina spremnika. Obavezno provjerite da je vrijeme simulacije dovoljno dugo, provjerom na prikaz osciloskopa.

Možete poslužiti sljedećom skriptom za izvršavanje simulacije za cijeli domet željenih vrijednosti q_{ul}, preko pojačanja ulaz, koji se kreće u dometu 0.6 do 1.5 sa korakom 0.1

```
clear h1 h2
index=0;
for ulaz=0.6:0.1:1.5
   index=index+1;
   %... izvrši se simulacija
   sim('vjezba4_primjer_staticke.slx',200);
   h1(index)=simout.Data(end)
   h2(index)=simout1.Data(end)
end
```

Naredba sim('vjezba4_primjer_staticke.slx',200); izvršava simulaciju modela 'vjezba4_primjer_staticke.slx sa trajanjem od 200 sekunda (odnosno modela koji ste prethodno pripremili u vježbi 3). Ne zaboravite prije pokrenut skriptu iz vježbe 3 koja definira parametre modela (A1, A2, A01, A02 ...)

U tablici su upisane vrijednosti q_{ul}, h₁ i h₂ za jedan primjer nelinearnog modela (nije primjer sa slike)

Tablica sa vrijednostima q_{ul}, h₁ i h₂

	0.6qul	0.7q _{ul}	0.8q _{ul}	0.9qul	Qui	1.1q _{ul}	1.2q _{ul}	1.3q _{ul}	1.4q _{ul}	1.5q _{ul}
q _{ul}	0.12	0.14	0.16	0.18	0.2	0.22	0.24	0.26	0.28	0.30
h ₁	0.31	0.37	0.42	0.47	0.53	0.58	0.63	0.68	0.74	0.79
h ₂	2.01	2.35	2.69	3.02	3.36	3.70	4.03	4.37	4.71	5.04

Statičke karakteristike se crtaju naredbama

```
%crtanje staticke ulaz=0.6:0.1:1.5 plot(ulaz,h1,'r') hold on plot(ulaz,h2,'b') legend('h1','h2') legend('h1','h2') grid on
```

Te se kao rezultat dobiva graf koji prikazuje ovisnost h₁ i h₂ o q_{ul}

Ukoliko želimo crtati statiču karakteristiku u dometu 10% do 150% referentnog protka, u skripti izmjenimo ulaz=0.1:0.1:1.5

Iz grafa se može procijeniti koji ulazni protok q_{ul} treba odabrati da se razina u spremniku ustali na neku željenu veličinu, primjerice na slici je označeno traženje q_{ul} kada razina h_2 bude na 75% početne vrijednosti h_2 . U zadatku 4 slično treba procjeniti za razinu h_1 .

Međusobna ovisnost

Može nacrtati i graf međusobne ovisnosti veličine h1 i h₂ gdje su razine izračunate za različite vrijednosti q_{ul} (podaci upisani u tablicu) koristeći se nizom naredbi

```
%međusobna ovisnost u inf
figure,plot(h1,h2)
xlabel('h1')
ylabel('h2')
grid on
```

te se kao rezultat dobiva graf koji opisuje odnos razina h₁ i h₂ u ustaljenom stanju.

I ovog grafa se može procijeniti kolika će biti razina jednog spremnika, ako se drugi spremnik stabilizira oko neke zadane razine. Graf statičke karakteristike, kao i graf međusobne ovisnosti stanja nam omogućava jednostavnu sintezu sustava, gdje se uvidom u ove karakteristike može utjecati na promjenu protoka (sinteza) tako da se razina spremnika ustali na neku željenu vrijednost. U ovom primjeru se može vidjeti da kada se h₁ stabilizira na oko 0.45, h₂ ima vrijednost oko 2.8 (ovo je sve procjena iz grafa).

Graf međusobne ovisnosti veličine h1 i h2 **gdje je uključen tranzitni** dio se može nacrtati u MATLAB-u nizom naredbi (ovo nije zadatak 4)

```
%međusobna ovisnost tranzient
h1_odziv=simout.Data()
h2_odziv=simout.Data()
plot(h1_odziv,h2_odziv)
xlabel('h1')
ylabel('h2')
title('graf ovisnosti, tranzinet')
```

Primijetite da ovaj graf u potpunosti gubi točna informaciju o vremenu, i opisuje samo odnos h_1 i h_2 za vrijeme trajanja jedne simulacije. Ovakav graf se zove fazna trajektorija (h_1 i h_2 su faze tj. stanja sustava)

