

A20 2-Chloro-3-fluoro-7-methoxyquinoline (210mg, 1mmol), (prepared as described for the starting material in Example 157), in anhydrous THF (1ml) was added to a mixture of copper(I)bromide (570mg, 4.0mmol) and methylmagnesium bromide (3.0M solution in diethyl ether, 2.7ml, 8mmol) in anhydrous THF (20ml) at -78°C. The mixture was stirred for 1 hour at -78°C, allowed to warm to ambient temperature and then stirred for a further 18 hours. Saturated aqueous ammonium chloride solution and 5N aqueous sodium hydroxide solution (pH 12) were added and the product extracted with ethyl acetate (3x). The organic solution was washed with water, brine, dried (MgSO_4) and evaporated to dryness to yield 3-fluoro-7-methoxy-2-methylquinoline (0.17g, 91%).

* * * * *

Please replace the table in Example 192 at page 218, extending from line 1 to line 2, with the following new table:

A21

Elemental analysis:	Found	C 66.4	H 6.9	N 12.4
$\text{C}_{25}\text{H}_{30}\text{N}_4\text{O}_4$	Requires	C 66.7	H 6.7	N 12.4%

IN THE CLAIMS:

Please cancel original claims 1-30, without prejudice, and add the following new claims 31-60:

A22
31. (New) A method for producing an antiangiogenic and/or vascular permeability reducing effect in a warm-blooded animal in need thereof, said method comprising administering to said animal an effective amount of a compound of the formula I:

wherein:

ring C is an 8, 9, 10, 12 or 13-membered bicyclic or tricyclic moiety which moiety may be saturated or unsaturated, which may be aromatic or non-aromatic, and which optionally may contain 1-3 heteroatoms selected independently from O, N and S;

Z is -O-, -NH-, -S- or -CH₂-;

n is an integer from 0 to 5;

m is an integer from 0 to 3;

A22
R² represents hydrogen, hydroxy, halogeno, cyano, nitro, trifluoromethyl, C₁₋₃alkyl, C₁₋₃alkoxy, C₁₋₃alkylsulphonyl, -NR³R⁴ (wherein R³ and R⁴, which may be the same or different, each represents hydrogen or C₁₋₃alkyl),

or R² represents a group R⁵X¹-, wherein X¹ represents a direct bond, -O-, -CH₂-, -OC(O)-, -C(O)-, -S-, -SO-, -SO₂-, -NR⁶C(O)-, -C(O)NR⁷-, -SO₂NR⁸-, -NR⁹SO₂- or -NR¹⁰- (wherein R⁶, R⁷, R⁸, R⁹ and R¹⁰ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl), and R⁵ is selected from one of the following twenty-two groups:

- 1) hydrogen, oxiranylC₁₋₄alkyl or C₁₋₅alkyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, chloro, bromo and amino;
- 2) C₁₋₅alkylX²C(O)R¹¹ (wherein X² represents -O- or -NR¹²- (in which R¹² represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R¹¹ represents C₁₋₃alkyl, -NR¹³R¹⁴ or -OR¹⁵ (wherein R¹³, R¹⁴ and R¹⁵ which may be the same or different each represents hydrogen, C₁₋₅alkyl or C₁₋₃alkoxyC₂₋₃alkyl));

- 3) $C_{1-5}\text{alkyl}X^3R^{16}$ (wherein X^3 represents -O-, -S-, -SO-, -SO₂-, -OC(O)-, -NR¹⁷C(O)-, -C(O)NR¹⁸-, -SO₂NR¹⁹-, -NR²⁰SO₂- or -NR²¹- (wherein R¹⁷, R¹⁸, R¹⁹, R²⁰ and R²¹ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R¹⁶ represents hydrogen, C₁₋₃alkyl, cyclopentyl, cyclohexyl or a 4-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C₁₋₃alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C₁₋₄alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group $\text{-(}-\text{O}-\text{)}_f(\text{C}_{1-4}\text{alkyl})_g\text{ringD}$ (wherein f is 0 or 1, g is 0 or 1 and ring D is a 4-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C₁₋₄alkyl));
- 4) $C_{1-5}\text{alkyl}X^4C_{1-5}\text{alkyl}X^5R^{22}$ (wherein X⁴ and X⁵ which may be the same or different are each -O-, -S-, -SO-, -SO₂-, -NR²³C(O)-, -C(O)NR²⁴-, -SO₂NR²⁵-, -NR²⁶SO₂- or -NR²⁷- (wherein R²³, R²⁴, R²⁵, R²⁶ and R²⁷ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R²² represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl);
- 5) R²⁸ (wherein R²⁸ is a 4-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group $\text{-(}-\text{O}-\text{)}_f(\text{C}_{1-4}\text{alkyl})_g\text{ringD}$ (wherein f is 0 or 1, g is 0 or 1 and ring D is a 4-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C₁₋₄alkyl));
- 6) $C_{1-5}\text{alkyl}R^{28}$ (wherein R²⁸ is as defined herein);

- AZ2
- 7) $C_{2-5}\text{alkenyl}R^{28}$ (wherein R^{28} is as defined herein);
 - 8) $C_{2-5}\text{alkynyl}R^{28}$ (wherein R^{28} is as defined herein);
 - 9) R^{29} (wherein R^{29} represents a pyridone group, a phenyl group or a 5-6-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-3 heteroatoms selected from O, N and S, which pyridone, phenyl or aromatic heterocyclic group may carry up to 5 substituents selected from hydroxy, halogeno, amino, $C_{1-4}\text{alkyl}$, $C_{1-4}\text{alkoxy}$, $C_{1-4}\text{hydroxyalkyl}$, $C_{1-4}\text{aminoalkyl}$, $C_{1-4}\text{alkylamino}$, $C_{1-4}\text{hydroxyalkoxy}$, carboxy, trifluoromethyl, cyano, $-\text{C}(\text{O})\text{NR}^{30}R^{31}$, $-\text{NR}^{32}\text{C}(\text{O})R^{33}$ (wherein R^{30} , R^{31} , R^{32} and R^{33} , which may be the same or different, each represents hydrogen, $C_{1-4}\text{alkyl}$ or $C_{1-3}\text{alkoxy}C_{2-3}\text{alkyl}$) and a group $-(\text{O})_f(C_{1-4}\text{alkyl})_g\text{ringD}$ (wherein f is 0 or 1, g is 0 or 1 and ring D is a 4-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from $C_{1-4}\text{alkyl}$));
 - 10) $C_{1-5}\text{alkyl}R^{29}$ (wherein R^{29} is as defined herein);
 - 11) $C_{2-5}\text{alkenyl}R^{29}$ (wherein R^{29} is as defined herein);
 - 12) $C_{2-5}\text{alkynyl}R^{29}$ (wherein R^{29} is as defined herein);
 - 13) $C_{1-5}\text{alkyl}X^6R^{29}$ (wherein X^6 represents $-\text{O}-$, $-\text{S}-$, $-\text{SO}-$, $-\text{SO}_2-$, $-\text{NR}^{34}\text{C}(\text{O})-$, $-\text{C}(\text{O})\text{NR}^{35}-$, $-\text{SO}_2\text{NR}^{36}-$, $-\text{NR}^{37}\text{SO}_2-$ or $-\text{NR}^{38}-$ (wherein R^{34} , R^{35} , R^{36} , R^{37} and R^{38} each independently represents hydrogen, $C_{1-3}\text{alkyl}$ or $C_{1-3}\text{alkoxy}C_{2-3}\text{alkyl}$) and R^{29} is as defined herein);
 - 14) $C_{2-5}\text{alkenyl}X^7R^{29}$ (wherein X^7 represents $-\text{O}-$, $-\text{S}-$, $-\text{SO}-$, $-\text{SO}_2-$, $-\text{NR}^{39}\text{C}(\text{O})-$, $-\text{C}(\text{O})\text{NR}^{40}-$, $-\text{SO}_2\text{NR}^{41}-$, $-\text{NR}^{42}\text{SO}_2-$ or $-\text{NR}^{43}-$ (wherein R^{39} , R^{40} , R^{41} , R^{42} and R^{43} each independently represents hydrogen, $C_{1-3}\text{alkyl}$ or $C_{1-3}\text{alkoxy}C_{2-3}\text{alkyl}$) and R^{29} is as defined herein);
 - 15) $C_{2-5}\text{alkynyl}X^8R^{29}$ (wherein X^8 represents $-\text{O}-$, $-\text{S}-$, $-\text{SO}-$, $-\text{SO}_2-$, $-\text{NR}^{44}\text{C}(\text{O})-$, $-\text{C}(\text{O})\text{NR}^{45}-$, $-\text{SO}_2\text{NR}^{46}-$, $-\text{NR}^{47}\text{SO}_2-$ or $-\text{NR}^{48}-$ (wherein R^{44} , R^{45} , R^{46} , R^{47} and R^{48} each independently represents hydrogen, $C_{1-3}\text{alkyl}$ or $C_{1-3}\text{alkoxy}C_{2-3}\text{alkyl}$) and R^{29} is as defined herein);
 - 16) $C_{1-4}\text{alkyl}X^9C_{1-4}\text{alkyl}R^{29}$ (wherein X^9 represents $-\text{O}-$, $-\text{S}-$, $-\text{SO}-$, $-\text{SO}_2-$, $-\text{NR}^{49}\text{C}(\text{O})-$, $-\text{C}(\text{O})\text{NR}^{50}-$, $-\text{SO}_2\text{NR}^{51}-$, $-\text{NR}^{52}\text{SO}_2-$ or $-\text{NR}^{53}-$ (wherein R^{49} , R^{50} , R^{51} , R^{52} and R^{53} each

independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R²⁹ is as defined herein);

- 17) C₁₋₄alkylX⁹C₁₋₄alkylR²⁸ (wherein X⁹ and R²⁸ are as defined herein);
- 18) C₂₋₅alkenyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, amino, C₁₋₄alkylamino, N,N-di(C₁₋₄alkyl)amino, aminosulphonyl, N-C₁₋₄alkylaminosulphonyl and N,N-di(C₁₋₄alkyl)aminosulphonyl;
- 19) C₂₋₅alkynyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, amino, C₁₋₄alkylamino, N,N-di(C₁₋₄alkyl)amino, aminosulphonyl, N-C₁₋₄alkylaminosulphonyl and N,N-di(C₁₋₄alkyl)aminosulphonyl;
- 20) C₂₋₅alkenylX⁹C₁₋₄alkylR²⁸ (wherein X⁹ and R²⁸ are as defined herein);
- 21) C₂₋₅alkynylX⁹C₁₋₄alkylR²⁸ (wherein X⁹ and R²⁸ are as defined herein); and
- 22) C₁₋₄alkylR⁵⁴(C₁₋₄alkyl)_q(X⁹)_rR⁵⁵ (wherein X⁹ is as defined herein, q is 0 or 1, r is 0 or 1, and R⁵⁴ and R⁵⁵ are each independently selected from hydrogen, C₁₋₃alkyl, cyclopentyl, cyclohexyl and a 4-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C₁₋₃alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C₁₋₄alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₄cyanooalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 4-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C₁₋₄alkyl), with the proviso that R⁵⁴ cannot be hydrogen);

and additionally wherein any C₁₋₅alkyl, C₂₋₅alkenyl or C₂₋₅alkynyl group in R⁵X¹- may bear one or more substituents selected from hydroxy, halogeno and amino;

R¹ represents hydrogen, oxo, halogeno, hydroxy, C₁₋₄alkoxy, C₁₋₄alkyl, C₁₋₄alkoxymethyl, C₁₋₄alkanoyl, C₁₋₄haloalkyl, cyano, amino, C₂₋₅alkenyl, C₂₋₅alkynyl, C₁₋₃alkanoyloxy, nitro, C₁₋₄alkanoylamino, C₁₋₄alkoxycarbonyl, C₁₋₄alkylsulphonyl, C₁₋₄alkylsulphinyll,

C₁₋₄alkylsulphonyl, carbamoyl, N-C₁₋₄alkylcarbamoyl, N,N-di(C₁₋₄alkyl)carbamoyl, aminosulphonyl, N-C₁₋₄alkylaminosulphonyl, N,N-di(C₁₋₄alkyl)aminosulphonyl, N-(C₁₋₄alkylsulphonyl)amino, N-(C₁₋₄alkylsulphonyl)-N-(C₁₋₄alkyl)amino, N,N-di(C₁₋₄alkylsulphonyl)amino, a C₃₋₇alkylene chain joined to two ring C carbon atoms, C₁₋₄alkanoylaminoC₁₋₄alkyl, carboxy

or R¹ represents a group R⁵⁶X¹⁰, wherein X¹⁰ represents a direct bond, -O-, -CH₂-, -OC(O)-, -C(O)-, -S-, -SO-, -SO₂-, -NR⁵⁷C(O)-, -C(O)NR⁵⁸-, -SO₂NR⁵⁹-, -NR⁶⁰SO₂- or -NR⁶¹- (wherein R⁵⁷, R⁵⁸, R⁵⁹, R⁶⁰ and R⁶¹ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl), and R⁵⁶ is selected from one of the following twenty-two groups:

- 1) hydrogen, oxiranylc₁₋₄alkyl or C₁₋₅alkyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, chloro, bromo and amino;
- 2) C₁₋₅alkylX¹¹C(O)R⁶² (wherein X¹¹ represents -O- or -NR⁶³- (in which R⁶³ represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R⁶² represents C₁₋₃alkyl, -NR⁶⁴R⁶⁵ or -OR⁶⁶ (wherein R⁶⁴, R⁶⁵ and R⁶⁶ which may be the same or different each represents hydrogen, C₁₋₅alkyl or C₁₋₃alkoxyC₂₋₃alkyl));
- 3) C₁₋₅alkylX¹²R⁶⁷ (wherein X¹² represents -O-, -S-, -SO-, -SO₂-, -OC(O)-, -NR⁶⁸C(O)-, -C(O)NR⁶⁹-, -SO₂NR⁷⁰-, -NR⁷¹SO₂- or -NR⁷²- (wherein R⁶⁸, R⁶⁹, R⁷⁰, R⁷¹ and R⁷² each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R⁶⁷ represents hydrogen, C₁₋₃alkyl, cyclopentyl, cyclohexyl or a 4-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C₁₋₃alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C₁₋₄alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylc₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 4-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently

from O, S and N, which cyclic group may bear one or more substituents selected from C₁₋₄alkyl));

- 4) C₁₋₅alkylX¹³C₁₋₅alkylX¹⁴R⁷³ (wherein X¹³ and X¹⁴ which may be the same or different are each -O-, -S-, -SO-, -SO₂-, -NR⁷⁴C(O)-, -C(O)NR⁷⁵-, -SO₂NR⁷⁶-, -NR⁷⁷SO₂- or -NR⁷⁸- (wherein R⁷⁴, R⁷⁵, R⁷⁶, R⁷⁷ and R⁷⁸ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R⁷³ represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl);
- 5) R⁷⁹ (wherein R⁷⁹ is a 4-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 4-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C₁₋₄alkyl));
- 6) C₁₋₅alkylR⁷⁹ (wherein R⁷⁹ is as defined herein);
- 7) C₂₋₅alkenylR⁷⁹ (wherein R⁷⁹ is as defined herein);
- 8) C₂₋₅alkynylR⁷⁹ (wherein R⁷⁹ is as defined herein);
- 9) R⁸⁰ (wherein R⁸⁰ represents a pyridone group, a phenyl group or a 5-6-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-3 heteroatoms selected from O, N and S, which pyridone, phenyl or aromatic heterocyclic group may carry up to 5 substituents selected from hydroxy, halogeno, amino, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, C₁₋₄hydroxyalkoxy, carboxy, trifluoromethyl, cyano, -C(O)NR⁸¹R⁸², -NR⁸³C(O)R⁸⁴ (wherein R⁸¹, R⁸², R⁸³ and R⁸⁴, which may be the same or different, each represents hydrogen, C₁₋₄alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and a group -(O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 4-6-membered saturated heterocyclic group with 1-2 heteroatoms,

selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C₁₋₄alkyl);

- A22
- 10) C₁₋₅alkylR⁸⁰ (wherein R⁸⁰ is as defined herein);
 - 11) C₂₋₅alkenylR⁸⁰ (wherein R⁸⁰ is as defined herein);
 - 12) C₂₋₅alkynylR⁸⁰ (wherein R⁸⁰ is as defined herein);
 - 13) C₁₋₅alkylX¹⁵R⁸⁰ (wherein X¹⁵ represents -O-, -S-, -SO-, -SO₂-, -NR⁸⁵C(O)-, -C(O)NR⁸⁶-, -SO₂NR⁸⁷-, -NR⁸⁸SO₂- or -NR⁸⁹- (wherein R⁸⁵, R⁸⁶, R⁸⁷, R⁸⁸ and R⁸⁹ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R⁸⁰ is as defined herein);
 - 14) C₂₋₅alkenylX¹⁶R⁸⁰ (wherein X¹⁶ represents -O-, -S-, -SO-, -SO₂-, -NR⁹⁰C(O)-, -C(O)NR⁹¹-, -SO₂NR⁹²-, -NR⁹³SO₂- or -NR⁹⁴- (wherein R⁹⁰, R⁹¹, R⁹², R⁹³ and R⁹⁴ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R⁸⁰ is as defined herein);
 - 15) C₂₋₅alkynylX¹⁷R⁸⁰ (wherein X¹⁷ represents -O-, -S-, -SO-, -SO₂-, -NR⁹⁵C(O)-, -C(O)NR⁹⁶-, -SO₂NR⁹⁷-, -NR⁹⁸SO₂- or -NR⁹⁹- (wherein R⁹⁵, R⁹⁶, R⁹⁷, R⁹⁸ and R⁹⁹ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R⁸⁰ is as defined herein);
 - 16) C₁₋₄alkylX¹⁸C₁₋₄alkylR⁸⁰ (wherein X¹⁸ represents -O-, -S-, -SO-, -SO₂-, -NR¹⁰⁰C(O)-, -C(O)NR¹⁰¹-, -SO₂NR¹⁰²-, -NR¹⁰³SO₂- or -NR¹⁰⁴- (wherein R¹⁰⁰, R¹⁰¹, R¹⁰², R¹⁰³ and R¹⁰⁴ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R⁸⁰ is as defined herein);
 - 17) C₁₋₄alkylX¹⁸C₁₋₄alkylR⁷⁹ (wherein X¹⁸ and R⁷⁹ are as defined herein);
 - 18) C₂₋₅alkenyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, amino, C₁₋₄alkylamino, N,N-di(C₁₋₄alkyl)amino, aminosulphonyl, N-C₁₋₄alkylaminosulphonyl and N,N-di(C₁₋₄alkyl)aminosulphonyl;
 - 19) C₂₋₅alkynyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, amino, C₁₋₄alkylamino, N,N-di(C₁₋₄alkyl)amino, aminosulphonyl, N-C₁₋₄alkylaminosulphonyl and N,N-di(C₁₋₄alkyl)aminosulphonyl;
 - 20) C₂₋₅alkenylX¹⁸C₁₋₄alkylR⁷⁹ (wherein X¹⁸ and R⁷⁹ are as defined herein);
 - 21) C₂₋₅alkynylX¹⁸C₁₋₄alkylR⁷⁹ (wherein X¹⁸ and R⁷⁹ are as defined herein); and

22) $C_{1-4}\text{alkyl}R^{105}(C_{1-4}\text{alkyl})_x(X^{18})_yR^{106}$ (wherein X^{18} is as defined herein, x is 0 or 1, y is 0 or 1, and R^{105} and R^{106} are each independently selected from hydrogen, $C_{1-3}\text{alkyl}$, cyclopentyl, cyclohexyl and a 4-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which $C_{1-3}\text{alkyl}$ group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and $C_{1-4}\text{alkoxy}$ and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, $C_{1-4}\text{cyanoalkyl}$, $C_{1-4}\text{alkyl}$, $C_{1-4}\text{hydroxyalkyl}$, $C_{1-4}\text{alkoxy}$, $C_{1-4}\text{alkoxy}C_{1-4}\text{alkyl}$, $C_{1-4}\text{alkylsulphonyl}C_{1-4}\text{alkyl}$, $C_{1-4}\text{alkoxycarbonyl}$, $C_{1-4}\text{aminoalkyl}$, $C_{1-4}\text{alkylamino}$, $\text{di}(C_{1-4}\text{alkyl})\text{amino}$, $C_{1-4}\text{alkylamino}C_{1-4}\text{alkyl}$, $\text{di}(C_{1-4}\text{alkyl})\text{amino}C_{1-4}\text{alkyl}$, $C_{1-4}\text{alkylamino}C_{1-4}\text{alkoxy}$, $\text{di}(C_{1-4}\text{alkyl})\text{amino}C_{1-4}\text{alkoxy}$ and a group $\text{(-O-)}_f(C_{1-4}\text{alkyl})_g\text{ringD}$ (wherein f is 0 or 1, g is 0 or 1 and ring D is a 4-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from $C_{1-4}\text{alkyl}$) with the proviso that R^{105} cannot be hydrogen);
and additionally wherein any $C_{1-5}\text{alkyl}$, $C_{2-5}\text{alkenyl}$ or $C_{2-5}\text{salkynyl}$ group in $R^{56}X^{10}-$ may bear one or more substituents selected from hydroxy, halogeno and amino; or a salt or prodrug thereof.

32. (New) The method according to claim 31 wherein:

ring C is a 9-10-membered bicyclic moiety which may be saturated or unsaturated, which may be aromatic or non-aromatic, and which optionally may contain 1-3 heteroatoms selected independently from O, N and S;

Z is -O-, -NH-, -S- or -CH₂-;

R^1 represents hydrogen, oxo, halogeno, hydroxy, $C_{1-4}\text{alkoxy}$, $C_{1-4}\text{alkyl}$, $C_{1-4}\text{alkoxymethyl}$, $C_{1-4}\text{alkanoyl}$, $C_{1-4}\text{haloalkyl}$, cyano, amino, $C_{2-5}\text{alkenyl}$, $C_{2-5}\text{salkynyl}$, $C_{1-3}\text{alkanoyloxy}$, nitro, $C_{1-4}\text{alkanoylamino}$, $C_{1-4}\text{alkoxycarbonyl}$, $C_{1-4}\text{alkylsulphonyl}$, $C_{1-4}\text{alkylsulphinyll}$, $C_{1-4}\text{alkylsulphonyl}$, carbamoyl, N- $C_{1-4}\text{alkylcarbamoyl}$, N,N-di($C_{1-4}\text{alkyl}$)carbamoyl, aminosulphonyl, N- $C_{1-4}\text{alkylaminosulphonyl}$, N,N-di($C_{1-4}\text{alkyl}$)aminosulphonyl, N-($C_{1-4}\text{alkylsulphonyl}$)amino, N-($C_{1-4}\text{alkylsulphonyl}$)-N-($C_{1-4}\text{alkyl}$)amino,

N,N-di(C₁₋₄alkylsulphonyl)amino or a C₃₋₇alkylene chain joined to two ring C carbon atoms;

n is an integer from 0 to 5;

m is an integer from 0 to 3;

R² represents hydrogen, hydroxy, halogeno, cyano, nitro, trifluoromethyl, C₁₋₃alkyl, C₁₋₃alkoxy, C₁₋₃alkylsulphanyl, -NR³R⁴ (wherein R³ and R⁴, which may be the same or different, each represents hydrogen or C₁₋₃alkyl),

or R² represents a group R⁵X¹-, wherein X¹ represents a direct bond, -O-, -CH₂-, -OC(O)-, -C(O)-, -S-, -SO-, -SO₂-, -NR⁶C(O)-, -C(O)NR⁷-, -SO₂NR⁸-, -NR⁹SO₂- or -NR¹⁰- (wherein R⁶, R⁷, R⁸, R⁹ and R¹⁰ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl), and R⁵ is selected from one of the following twenty-one groups:

1) hydrogen or C₁₋₅alkyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro and amino;

2) C₁₋₅alkylX²C(O)R¹¹ (wherein X² represents -O- or -NR¹²- (in which R¹² represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R¹¹ represents C₁₋₃alkyl, -NR¹³R¹⁴ or -OR¹⁵ (wherein R¹³, R¹⁴ and R¹⁵ which may be the same or different each represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl));

3) C₁₋₅alkylX³R¹⁶ (wherein X³ represents -O-, -S-, -SO-, -SO₂-, -OC(O)-, -NR¹⁷C(O)-, -C(O)NR¹⁸-, -SO₂NR¹⁹-, -NR²⁰SO₂- or -NR²¹- (wherein R¹⁷, R¹⁸, R¹⁹, R²⁰ and R²¹ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R¹⁶ represents hydrogen, C₁₋₃alkyl, cyclopentyl, cyclohexyl or a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C₁₋₃alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C₁₋₄alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, C₁₋₄alkyl, C₁₋₄hydroxyalkyl and C₁₋₄alkoxy);

4) C₁₋₅alkylX⁴C₁₋₅alkylX⁵R²² (wherein X⁴ and X⁵ which may be the same or different are each -O-, -S-, -SO-, -SO₂-, -NR²³C(O)-, -C(O)NR²⁴-, -SO₂NR²⁵-, -NR²⁶SO₂- or -NR²⁷- (wherein R²³, R²⁴, R²⁵, R²⁶ and R²⁷ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R²² represents hydrogen or C₁₋₃alkyl);

- A22
- 5) R^{28} (wherein R^{28} is a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C_{1-4} cyanooalkyl, C_{1-4} alkyl, C_{1-4} hydroxyalkyl, C_{1-4} alkoxy, C_{1-4} alkoxy C_{1-4} alkyl and C_{1-4} alkylsulphonyl C_{1-4} alkyl);
 - 6) C_{1-5} alkyl R^{28} (wherein R^{28} is as defined herein);
 - 7) C_{2-5} alkenyl R^{28} (wherein R^{28} is as defined herein);
 - 8) C_{2-5} alkynyl R^{28} (wherein R^{28} is as defined herein);
 - 9) R^{29} (wherein R^{29} represents a pyridone group, a phenyl group or a 5-6-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-3 heteroatoms selected from O, N and S, which pyridone, phenyl or aromatic heterocyclic group may carry up to 5 substituents on an available carbon atom selected from hydroxy, halogeno, amino, C_{1-4} alkyl, C_{1-4} alkoxy, C_{1-4} hydroxyalkyl, C_{1-4} aminoalkyl, C_{1-4} alkylamino, C_{1-4} hydroxyalkoxy, carboxy, trifluoromethyl, cyano, $-C(O)NR^{30}R^{31}$ and $-NR^{32}C(O)R^{33}$ (wherein R^{30} , R^{31} , R^{32} and R^{33} , which may be the same or different, each represents hydrogen, C_{1-4} alkyl or C_{1-3} alkoxy C_{2-3} alkyl));
 - 10) C_{1-5} alkyl R^{29} (wherein R^{29} is as defined herein);
 - 11) C_{2-5} alkenyl R^{29} (wherein R^{29} is as defined herein);
 - 12) C_{2-5} alkynyl R^{29} (wherein R^{29} is as defined herein);
 - 13) C_{1-5} alkyl X^6R^{29} (wherein X^6 represents $-O-$, $-S-$, $-SO-$, $-SO_2-$, $-NR^{34}C(O)-$, $-C(O)NR^{35}-$, $-SO_2NR^{36}-$, $-NR^{37}SO_2-$ or $-NR^{38}-$ (wherein R^{34} , R^{35} , R^{36} , R^{37} and R^{38} each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R^{29} is as defined herein);
 - 14) C_{2-5} alkenyl X^7R^{29} (wherein X^7 represents $-O-$, $-S-$, $-SO-$, $-SO_2-$, $-NR^{39}C(O)-$, $-C(O)NR^{40}-$, $-SO_2NR^{41}-$, $-NR^{42}SO_2-$ or $-NR^{43}-$ (wherein R^{39} , R^{40} , R^{41} , R^{42} and R^{43} each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R^{29} is as defined herein);
 - 15) C_{2-5} alkynyl X^8R^{29} (wherein X^8 represents $-O-$, $-S-$, $-SO-$, $-SO_2-$, $-NR^{44}C(O)-$, $-C(O)NR^{45}-$, $-SO_2NR^{46}-$, $-NR^{47}SO_2-$ or $-NR^{48}-$ (wherein R^{44} , R^{45} , R^{46} , R^{47} and R^{48} each

independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R²⁹ is as defined herein);

- 16) C₁₋₃alkylX⁹C₁₋₃alkylR²⁹ (wherein X⁹ represents -O-, -S-, -SO-, -SO₂-, -NR⁴⁹C(O)-, -C(O)NR⁵⁰-, -SO₂NR⁵¹-, -NR⁵²SO₂- or -NR⁵³- (wherein R⁴⁹, R⁵⁰, R⁵¹, R⁵² and R⁵³ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R²⁹ is as defined herein);
- 17) C₁₋₃alkylX⁹C₁₋₃alkylR²⁸ (wherein X⁹ and R²⁸ are as defined herein);
- 18) C₂₋₅alkenyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, amino, C₁₋₄alkylamino, N,N-di(C₁₋₄alkyl)amino, aminosulphonyl, N-C₁₋₄alkylaminosulphonyl and N,N-di(C₁₋₄alkyl)aminosulphonyl;
- 19) C₂₋₅alkynyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, amino, C₁₋₄alkylamino, N,N-di(C₁₋₄alkyl)amino, aminosulphonyl, N-C₁₋₄alkylaminosulphonyl and N,N-di(C₁₋₄alkyl)aminosulphonyl;
- 20) C₂₋₅alkenylX⁹C₁₋₄alkylR²⁸ (wherein X⁹ and R²⁸ are as defined herein); and
- 21) C₂₋₅alkynylX⁹C₁₋₄alkylR²⁸ (wherein X⁹ and R²⁸ are as defined herein);

or a salt or prodrug thereof.

33. (New) The method according to claim 31, wherein R² represents hydroxy, halogeno, cyano, nitro, trifluoromethyl, C₁₋₃alkyl, amino or R⁵X¹-, wherein X¹ is as defined in claim 31 and R⁵ is selected from one of the following twenty-two groups:

- 1) C₁₋₄alkyl which may be unsubstituted or which may be substituted with one or more groups selected from fluoro, chloro and bromo, or C₂₋₅alkyl which may be unsubstituted or substituted with one or more groups selected from hydroxy and amino;
- 2) C₂₋₃alkylX²C(O)R¹¹ (wherein X² is as defined in claim 31 and R¹¹ represents -NR¹³R¹⁴ or -OR¹⁵ (wherein R¹³, R¹⁴ and R¹⁵ which may be the same or different are each C₁₋₄alkyl or C₁₋₂alkoxyethyl));
- 3) C₂₋₄alkylX³R¹⁶ (wherein X³ is as defined in claim 31 and R¹⁶ is a group selected from C₁₋₃alkyl, cyclopentyl, cyclohexyl, pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl, azetidinyl and tetrahydropyranyl, which C₁₋₃alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C₁₋₂alkoxy and which

cyclopentyl, cyclohexyl, pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl, azetidinyl or tetrahydropyranyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₃cyanoalkyl, C₁₋₃alkyl, C₁₋₃hydroxyalkyl, C₁₋₃alkoxy, C₁₋₂alkoxyC₁₋₃alkyl, C₁₋₂alkylsulphonylC₁₋₃alkyl, C₁₋₃alkoxycarbonyl, C₁₋₃alkylamino, di(C₁₋₃alkyl)amino, C₁₋₃alkylaminoC₁₋₃alkyl, di(C₁₋₃alkyl)aminoC₁₋₃alkyl, C₁₋₃alkylaminoC₁₋₃alkoxy, di(C₁₋₃alkyl)aminoC₁₋₃alkoxy and a group -(O)_f(C₁₋₃alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a heterocyclic group selected from pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl, azetidinyl, morpholino and thiomorpholino, which cyclic group may bear one or more substituents selected from C₁₋₃alkyl));

- 4) C₂₋₃alkylX⁴C₂₋₃alkylX⁵R²² (wherein X⁴ and X⁵ are as defined in claim 31 and R²² represents hydrogen or C₁₋₃alkyl);
- 5) R²⁸ (wherein R²⁸ is as defined in claim 31);
- 6) C₁₋₄alkylR¹¹⁰ (wherein R¹¹⁰ is a group selected from pyrrolidinyl, piperazinyl, piperidinyl, imidazolidin-1-yl, azetidinyl, 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithiolan-2-yl and 1,3-dithian-2-yl, which group is linked to C₁₋₄alkyl through a carbon atom and which group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₃cyanoalkyl, C₁₋₃alkyl, C₁₋₃hydroxyalkyl, C₁₋₃alkoxy, C₁₋₂alkoxyC₁₋₃alkyl, C₁₋₂alkylsulphonylC₁₋₃alkyl, C₁₋₃alkoxycarbonyl, C₁₋₃alkylamino, di(C₁₋₃alkyl)amino, C₁₋₃alkylaminoC₁₋₃alkyl, di(C₁₋₃alkyl)aminoC₁₋₃alkyl, C₁₋₃alkylaminoC₁₋₃alkoxy, di(C₁₋₃alkyl)aminoC₁₋₃alkoxy and a group -(O)_f(C₁₋₃alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a heterocyclic group selected from pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl, azetidinyl, morpholino and thiomorpholino, which cyclic group may bear one or more substituents selected from C₁₋₃alkyl)) or C₂₋₄alkylR¹¹¹ (wherein R¹¹¹ is a group selected from morpholino, thiomorpholino, azetidin-1-yl, pyrrolidin-1-yl, piperazin-1-yl and piperidino which group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₃cyanoalkyl, C₁₋₃alkyl, C₁₋₃hydroxyalkyl, C₁₋₃alkoxy, C₁₋₂alkoxyC₁₋₃alkyl, C₁₋₂alkylsulphonylC₁₋₃alkyl, C₁₋₃alkoxycarbonyl, C₁₋₃alkylamino, di(C₁₋₃alkyl)amino, C₁₋₃alkylaminoC₁₋₃alkyl, di(C₁₋₃alkyl)aminoC₁₋₃alkyl,

~~C₁₋₃alkylaminoC₁₋₃alkoxy, di(C₁₋₃alkyl)aminoC₁₋₃alkoxy and a group
-(O-)(C₁₋₃alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a heterocyclic
group selected from pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl, azetidinyl,
morpholino and thiomorpholino, which cyclic group may bear one or more substituents
selected from C₁₋₃alkyl));~~

- A2
- 7) C₃₋₄alkenylR¹¹² (wherein R¹¹² represents R¹¹⁰ or R¹¹¹ as defined herein);
 - 8) C₃₋₄alkynylR¹¹² (wherein R¹¹² represents R¹¹⁰ or R¹¹¹ as defined herein);
 - 9) R²⁹ (wherein R²⁹ is as defined in claim 31);
 - 10) C₁₋₄alkylR²⁹ (wherein R²⁹ is as defined in claim 31);
 - 11) 1-R²⁹prop-1-en-3-yl or 1-R²⁹but-2-en-4-yl (wherein R²⁹ is as defined in claim 31 with
the proviso that when R⁵ is 1-R²⁹prop-1-en-3-yl, R²⁹ is linked to the alkenyl group via
a carbon atom);
 - 12) 1-R²⁹prop-1-yn-3-yl or 1-R²⁹but-2-yn-4-yl (wherein R²⁹ is as defined in claim 31 with
the proviso that when R⁵ is 1-R²⁹prop-1-yn-3-yl, R²⁹ is linked to the alkynyl group via
a carbon atom);
 - 13) C₁₋₅alkylX⁶R²⁹ (wherein X⁶ and R²⁹ are as defined in claim 31);
 - 14) 1-(R²⁹X⁷)but-2-en-4-yl (wherein X⁷ and R²⁹ are as defined in claim 31);
 - 15) 1-(R²⁹X⁸)but-2-yn-4-yl (wherein X⁸ and R²⁹ are as defined in claim 31);
 - 16) C₂₋₃alkylX⁹C₁₋₃alkylR²⁹ (wherein X⁹ and R²⁹ are as defined in claim 31);
 - 17) C₂₋₃alkylX⁹C₁₋₃alkylR²⁸ (wherein X⁹ and R²⁸ are as defined in claim 31);
 - 18) C₂₋₅alkenyl which may be unsubstituted or which may be substituted with one or more
fluorine atoms or with one or two groups selected from hydroxy, fluoro, amino,
C₁₋₄alkylamino, N,N-di(C₁₋₄alkyl)amino, aminosulphonyl, N-C₁₋₄alkylaminosulphonyl
and N,N-di(C₁₋₄alkyl)aminosulphonyl;
 - 19) C₂₋₅alkynyl which may be unsubstituted or which may be substituted with one or more
fluorine atoms or with one or two groups selected from hydroxy, fluoro, amino,
C₁₋₄alkylamino, N,N-di(C₁₋₄alkyl)amino, aminosulphonyl, N-C₁₋₄alkylaminosulphonyl
and N,N-di(C₁₋₄alkyl)aminosulphonyl;
 - 20) C₂₋₄alkenylX⁹C₁₋₃alkylR²⁸ (wherein X⁹ and R²⁸ are as defined in claim 31);
 - 21) C₂₋₄alkynylX⁹C₁₋₃alkylR²⁸ (wherein X⁹ and R²⁸ are as defined in claim 31); and

22) $C_{1-3}\text{alkyl}R^{54}(C_{1-3}\text{alkyl})_q(X^9)_rR^{55}$ (wherein X^9 , q , r , R^{54} and R^{55} are as defined in claim 31);

and additionally wherein any $C_{1-5}\text{alkyl}$, $C_{2-5}\text{alkenyl}$ or $C_{2-5}\text{alkynyl}$ group in R^5X^1- may bear one or more substituents selected from hydroxy, halogeno and amino.

A22
34. (New) The method according claim 31 wherein Z is -O-, -NH- or -S-.

35. (New) The method according to claim 31 wherein ring C is a 9-10-membered heteroaromatic bicyclic moiety which contains 1-3 heteroatoms selected independently from O, N and S.

36. (New) The method according to claim 31 wherein R^1 represents oxo, halogeno, hydroxy, $C_{1-2}\text{alkoxy}$, $C_{1-2}\text{alkyl}$, $C_{1-2}\text{alkoxymethyl}$, $C_{2-3}\text{alkanoyl}$, $C_{1-2}\text{haloalkyl}$, cyano, amino, $C_{2-4}\text{alkenyl}$, $C_{2-4}\text{alkynyl}$, $C_{2-3}\text{alkanoyloxy}$, nitro, $C_{2-3}\text{alkanoylamino}$, $C_{1-2}\text{alkoxycarbonyl}$, $C_{1-2}\text{alkylsulphonyl}$, $C_{1-2}\text{alkylsulphinyl}$, $C_{1-2}\text{alkylsulphonyl}$, carbamoyl, $N-C_{1-2}\text{alkylcarbamoyl}$, $N,N\text{-di}(C_{1-2}\text{alkyl})\text{carbamoyl}$, aminosulphonyl, $N-C_{1-2}\text{alkylaminosulphonyl}$, $N,N\text{-di}(C_{1-2}\text{alkyl})\text{aminosulphonyl}$, $N-(C_{1-2}\text{alkylsulphonyl})\text{amino}$, $N-(C_{1-2}\text{alkylsulphonyl})\text{-N-(C}_{1-2}\text{alkyl)}\text{amino}$ or a $C_{3-7}\text{alkylene}$ chain joined to two ring C carbon atoms.

37. (New) The method according to claim 31 wherein n is 0, 1 or 2.

38. (New) The method according to claim 31 wherein m is 1 or 2.

B2
Amen. 39. (New) A compound of the formula II:

contd.
B2

(II)

wherein:

ring C is an 8, 9, 10, 12 or 13-membered bicyclic or tricyclic moiety which moiety may be saturated or unsaturated, which may be aromatic or non-aromatic, and which optionally may contain 1-3 heteroatoms selected independently from O, N and S;

Zb is -O- or -S-;

n is an integer from 0 to 5;

R² represents hydrogen, hydroxy, halogeno, cyano, nitro, trifluoromethyl, C₁₋₃alkyl,

C₁₋₃alkoxy, C₁₋₃alkylsulphonyl, -NR³R⁴ (wherein R³ and R⁴, which may be the same or different, each represents hydrogen or C₁₋₃alkyl),

or R² represents a group R⁵X¹-, wherein X¹ represents a direct bond, -O-, -CH₂-, -OC(O)-, -C(O)-, -S-, -SO-, -SO₂-, -NR⁶C(O)-, -C(O)NR⁷-, -SO₂NR⁸-, -NR⁹SO₂- or -NR¹⁰-

(wherein R⁶, R⁷, R⁸, R⁹ and R¹⁰ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl), and R⁵ is selected from one of the following twenty-two groups:

1) hydrogen, oxiranylc₁₋₄alkyl or C₁₋₅alkyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, chloro, bromo and amino;

2) C₁₋₅alkylX²C(O)R¹¹ (wherein X² represents -O- or -NR¹²- (in which R¹² represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R¹¹ represents C₁₋₃alkyl, -NR¹³R¹⁴ or -OR¹⁵ (wherein R¹³, R¹⁴ and R¹⁵ which may be the same or different each represents hydrogen, C₁₋₅alkyl or C₁₋₃alkoxyC₂₋₃alkyl));

3) C₁₋₅alkylX³R¹⁶ (wherein X³ represents -O-, -S-, -SO-, -SO₂-, -OC(O)-, -NR¹⁷C(O)-, -C(O)NR¹⁸-, -SO₂NR¹⁹-, -NR²⁰SO₂- or -NR²¹- (wherein R¹⁷, R¹⁸, R¹⁹, R²⁰ and R²¹ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R¹⁶ represents hydrogen, C₁₋₃alkyl, cyclopentyl, cyclohexyl or a 4-6-membered saturated heterocyclic

cont'd.
B2

group with 1-2 heteroatoms, selected independently from O, S and N, which C₁₋₃alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C₁₋₄alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 4-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C₁₋₄alkyl));

- A22
- 4) C₁₋₅alkylX⁴C₁₋₅alkylX⁵R²² (wherein X⁴ and X⁵ which may be the same or different are each -O-, -S-, -SO-, -SO₂-, -NR²³C(O)-, -C(O)NR²⁴-, -SO₂NR²⁵-, -NR²⁶SO₂- or -NR²⁷- (wherein R²³, R²⁴, R²⁵, R²⁶ and R²⁷ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R²² represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl);
 - 5) R²⁸ (wherein R²⁸ is a 4-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 4-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C₁₋₄alkyl));
 - 6) C₁₋₅alkylR²⁸ (wherein R²⁸ is as defined herein);
 - 7) C₂₋₅alkenylR²⁸ (wherein R²⁸ is as defined herein);
 - 8) C₂₋₅alkynylR²⁸ (wherein R²⁸ is as defined herein);
 - 9) R²⁹ (wherein R²⁹ represents a pyridone group, a phenyl group or a 5-6-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-3 heteroatoms

contd.
B2

selected from O, N and S, which pyridone, phenyl or aromatic heterocyclic group may carry up to 5 substituents selected from hydroxy, halogeno, amino, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, C₁₋₄hydroxyalkoxy, carboxy, trifluoromethyl, cyano, -C(O)NR³⁰R³¹, -NR³²C(O)R³³ (wherein R³⁰, R³¹, R³² and R³³, which may be the same or different, each represents hydrogen, C₁₋₄alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and a group -(O)-(C₁₋₄alkyl)_fringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 4-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C₁₋₄alkyl));

- A22*
- 10) C₁₋₅alkylR²⁹ (wherein R²⁹ is as defined herein);
 - 11) C₂₋₅alkenylR²⁹ (wherein R²⁹ is as defined herein);
 - 12) C₂₋₅alkynylR²⁹ (wherein R²⁹ is as defined herein);
 - 13) C₁₋₅alkylX⁶R²⁹ (wherein X⁶ represents -O-, -S-, -SO-, -SO₂-, -NR³⁴C(O)-, -C(O)NR³⁵-, -SO₂NR³⁶-, -NR³⁷SO₂- or -NR³⁸- (wherein R³⁴, R³⁵, R³⁶, R³⁷ and R³⁸ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R²⁹ is as defined herein);
 - 14) C₂₋₅alkenylX⁷R²⁹ (wherein X⁷ represents -O-, -S-, -SO-, -SO₂-, -NR³⁹C(O)-, -C(O)NR⁴⁰-, -SO₂NR⁴¹-, -NR⁴²SO₂- or -NR⁴³- (wherein R³⁹, R⁴⁰, R⁴¹, R⁴² and R⁴³ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R²⁹ is as defined herein);
 - 15) C₂₋₅alkynylX⁸R²⁹ (wherein X⁸ represents -O-, -S-, -SO-, -SO₂-, -NR⁴⁴C(O)-, -C(O)NR⁴⁵-, -SO₂NR⁴⁶-, -NR⁴⁷SO₂- or -NR⁴⁸- (wherein R⁴⁴, R⁴⁵, R⁴⁶, R⁴⁷ and R⁴⁸ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R²⁹ is as defined herein);
 - 16) C₁₋₄alkylX⁹C₁₋₄alkylR²⁹ (wherein X⁹ represents -O-, -S-, -SO-, -SO₂-, -NR⁴⁹C(O)-, -C(O)NR⁵⁰-, -SO₂NR⁵¹-, -NR⁵²SO₂- or -NR⁵³- (wherein R⁴⁹, R⁵⁰, R⁵¹, R⁵² and R⁵³ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R²⁹ is as defined herein);
 - 17) C₁₋₄alkylX⁹C₁₋₄alkylR²⁸ (wherein X⁹ and R²⁸ are as defined herein);

contd.

B²

- 18) C₂-5alkenyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, amino, C₁₋₄alkylamino, N,N-di(C₁₋₄alkyl)amino, aminosulphonyl, N-C₁₋₄alkylaminosulphonyl and N,N-di(C₁₋₄alkyl)aminosulphonyl;
- 19) C₂-5alkynyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, amino, C₁₋₄alkylamino, N,N-di(C₁₋₄alkyl)amino, aminosulphonyl, N-C₁₋₄alkylaminosulphonyl and N,N-di(C₁₋₄alkyl)aminosulphonyl;
- 20) C₂-5alkenylX⁹C₁₋₄alkylR²⁸ (wherein X⁹ and R²⁸ are as defined herein);
- 21) C₂-5alkynylX⁹C₁₋₄alkylR²⁸ (wherein X⁹ and R²⁸ are as defined herein); and
- 22) C₁₋₄alkylR⁵⁴(C₁₋₄alkyl)_q(X⁹)_rR⁵⁵ (wherein X⁹ is as defined herein, q is 0 or 1, r is 0 or 1, and R⁵⁴ and R⁵⁵ are each independently selected from hydrogen, C₁₋₃alkyl, cyclopentyl, cyclohexyl and a 4-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C₁₋₃alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C₁₋₄alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(O)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 4-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C₁₋₄alkyl), with the proviso that R⁵⁴ cannot be hydrogen);
- and additionally wherein any C₁₋₅alkyl, C₂-5alkenyl or C₂-5alkynyl group in R⁵X¹- may bear one or more substituents selected from hydroxy, halogeno and amino;

R¹ represents hydrogen, oxo, halogeno, hydroxy, C₁₋₄alkoxy, C₁₋₄alkyl, C₁₋₄alkoxymethyl, C₁₋₄alkanoyl, C₁₋₄haloalkyl, cyano, amino, C₂-5alkenyl, C₂-5alkynyl, C₁₋₃alkanoyloxy, nitro, C₁₋₄alkanoylamino, C₁₋₄alkoxycarbonyl, C₁₋₄alkylsulphanyl, C₁₋₄alkylsulphiny, C₁₋₄alkylsulphonyl, carbamoyl, N-C₁₋₄alkylcarbamoyl, N,N-di(C₁₋₄alkyl)carbamoyl, aminosulphonyl, N-C₁₋₄alkylaminosulphonyl, N,N-di(C₁₋₄alkyl)aminosulphonyl, N-(C₁₋₄alkylsulphonyl)amino, N-(C₁₋₄alkylsulphonyl)-N-(C₁₋₄alkyl)amino

*contd.**B2*

N,N-di(C₁₋₄alkylsulphonyl)amino, a C₃₋₇alkylene chain joined to two ring C carbon atoms, C₁₋₄alkanoylaminoC₁₋₄alkyl, carboxy,

or R¹ represents a group R⁵⁶X¹⁰, wherein X¹⁰ represents a direct bond, -O-, -CH₂-, -OC(O)-, -C(O)-, -S-, -SO-, -SO₂-, -NR⁵⁷C(O)-, -C(O)NR⁵⁸-, -SO₂NR⁵⁹-, -NR⁶⁰SO₂- or -NR⁶¹- (wherein R⁵⁷, R⁵⁸, R⁵⁹, R⁶⁰ and R⁶¹ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl), and R⁵⁶ is selected from one of the following twenty-two groups:

1) hydrogen, oxiranylC₁₋₄alkyl or C₁₋₅alkyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, chloro, bromo and amino;

2) C₁₋₅alkylX¹¹C(O)R⁶² (wherein X¹¹ represents -O- or -NR⁶³- (in which R⁶³ represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R⁶² represents C₁₋₃alkyl, -NR⁶⁴R⁶⁵ or -OR⁶⁶ (wherein R⁶⁴, R⁶⁵ and R⁶⁶ which may be the same or different each represents hydrogen, C₁₋₅alkyl or C₁₋₃alkoxyC₂₋₃alkyl));

3) C₁₋₅alkylX¹²R⁶⁷ (wherein X¹² represents -O-, -S-, -SO-, -SO₂-, -OC(O)-, -NR⁶⁸C(O)-, -C(O)NR⁶⁹-, -SO₂NR⁷⁰-, -NR⁷¹SO₂- or -NR⁷²- (wherein R⁶⁸, R⁶⁹, R⁷⁰, R⁷¹ and R⁷² each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R⁶⁷ represents hydrogen, C₁₋₃alkyl, cyclopentyl, cyclohexyl or a 4-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C₁₋₃alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C₁₋₄alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 4-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C₁₋₄alkyl));

4) C₁₋₅alkylX¹³C₁₋₅alkylX¹⁴R⁷³ (wherein X¹³ and X¹⁴ which may be the same or different are each -O-, -S-, -SO-, -SO₂-, -NR⁷⁴C(O)-, -C(O)NR⁷⁵-, -SO₂NR⁷⁶-, -NR⁷⁷SO₂- or

*contd.**B2*

- NR⁷⁸- (wherein R⁷⁴, R⁷⁵, R⁷⁶, R⁷⁷ and R⁷⁸ each independently represents hydrogen, C₁₋₅alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R⁷³ represents hydrogen, C₁₋₅alkyl or C₁₋₃alkoxyC₂₋₃alkyl);
- 5) R⁷⁹ (wherein R⁷⁹ is a 4-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 4-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C₁₋₄alkyl));
- A22 6) C₁₋₅alkylR⁷⁹ (wherein R⁷⁹ is as defined herein);
- 7) C₂₋₅alkenylR⁷⁹ (wherein R⁷⁹ is as defined herein);
- 8) C₂₋₅alkynylR⁷⁹ (wherein R⁷⁹ is as defined herein);
- 9) R⁸⁰ (wherein R⁸⁰ represents a pyridone group, a phenyl group or a 5-6-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-3 heteroatoms selected from O, N and S, which pyridone, phenyl or aromatic heterocyclic group may carry up to 5 substituents selected from hydroxy, halogeno, amino, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, C₁₋₄hydroxyalkoxy, carboxy, trifluoromethyl, cyano, -C(O)NR⁸¹R⁸², -NR⁸³C(O)R⁸⁴ (wherein R⁸¹, R⁸², R⁸³ and R⁸⁴, which may be the same or different, each represents hydrogen, C₁₋₄alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and a group -(O-)(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 4-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C₁₋₄alkyl));
- 10) C₁₋₅alkylR⁸⁰ (wherein R⁸⁰ is as defined herein);
- 11) C₂₋₅alkenylR⁸⁰ (wherein R⁸⁰ is as defined herein);
- 12) C₂₋₅alkynylR⁸⁰ (wherein R⁸⁰ is as defined herein).

*contd.**B2*

- 13) $C_{1-5}\text{alkyl}X^{15}R^{80}$ (wherein X^{15} represents -O-, -S-, -SO-, -SO₂-, -NR⁸⁵C(O)-, -C(O)NR⁸⁶-, -SO₂NR⁸⁷-, -NR⁸⁸SO₂- or -NR⁸⁹- (wherein R⁸⁵, R⁸⁶, R⁸⁷, R⁸⁸ and R⁸⁹ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R⁸⁰ is as defined herein);
- 14) $C_{2-5}\text{alkenyl}X^{16}R^{80}$ (wherein X¹⁶ represents -O-, -S-, -SO-, -SO₂-, -NR⁹⁰C(O)-, -C(O)NR⁹¹-, -SO₂NR⁹²-, -NR⁹³SO₂- or -NR⁹⁴- (wherein R⁹⁰, R⁹¹, R⁹², R⁹³ and R⁹⁴ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R⁸⁰ is as defined herein);
- 15) $C_{2-5}\text{salkynyl}X^{17}R^{80}$ (wherein X¹⁷ represents -O-, -S-, -SO-, -SO₂-, -NR⁹⁵C(O)-, -C(O)NR⁹⁶-, -SO₂NR⁹⁷-, -NR⁹⁸SO₂- or -NR⁹⁹- (wherein R⁹⁵, R⁹⁶, R⁹⁷, R⁹⁸ and R⁹⁹ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R⁸⁰ is as defined herein);
- 16) $C_{1-4}\text{alkyl}X^{18}C_{1-4}\text{alkyl}R^{80}$ (wherein X¹⁸ represents -O-, -S-, -SO-, -SO₂-, -NR¹⁰⁰C(O)-, -C(O)NR¹⁰¹-, -SO₂NR¹⁰²-, -NR¹⁰³SO₂- or -NR¹⁰⁴- (wherein R¹⁰⁰, R¹⁰¹, R¹⁰², R¹⁰³ and R¹⁰⁴ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R⁸⁰ is as defined herein);
- A22*
- 17) $C_{1-4}\text{alkyl}X^{18}C_{1-4}\text{alkyl}R^{79}$ (wherein X¹⁸ and R⁷⁹ are as defined herein);
- 18) C₂₋₅alkenyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, amino, C₁₋₄alkylamino, N,N-di(C₁₋₄alkyl)amino, aminosulphonyl, N-C₁₋₄alkylaminosulphonyl and N,N-di(C₁₋₄alkyl)aminosulphonyl;
- 19) C₂₋₅salkynyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, amino, C₁₋₄alkylamino, N,N-di(C₁₋₄alkyl)amino, aminosulphonyl, N-C₁₋₄alkylaminosulphonyl and N,N-di(C₁₋₄alkyl)aminosulphonyl;
- 20) $C_{2-5}\text{alkenyl}X^{18}C_{1-4}\text{alkyl}R^{79}$ (wherein X¹⁸ and R⁷⁹ are as defined herein);
- 21) $C_{2-5}\text{salkynyl}X^{18}C_{1-4}\text{alkyl}R^{79}$ (wherein X¹⁸ and R⁷⁹ are as defined herein); and
- 22) $C_{1-4}\text{alkyl}R^{105}(C_{1-4}\text{alkyl})_x(X^{18})_yR^{106}$ (wherein X¹⁸ is as defined herein, x is 0 or 1, y is 0 or 1, and R¹⁰⁵ and R¹⁰⁶ are each independently selected from hydrogen, C₁₋₃alkyl, cyclopentyl, cyclohexyl and a 4-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C₁₋₃alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C₁₋₄alkoxy and which

cont'd.
B2

cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 4-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C₁₋₄alkyl) with the proviso that R¹⁰⁵ cannot be hydrogen);

and additionally wherein any C₁₋₅alkyl, C₂₋₅alkenyl or C₂₋₅alkynyl group in R⁵⁶X¹⁰- may bear one or more substituents selected from hydroxy, halogeno and amino;

A22
R^{2a} represents hydrogen, halogeno, C₁₋₃alkyl, trifluoromethyl, C₁₋₃alkoxy, C₁₋₃alkylsulphonyl, -NR^{3a}R^{4a} (wherein R^{3a} and R^{4a}, which may be the same or different, each represents hydrogen or C₁₋₃alkyl), or R^{5a}(CH₂)_{za}X^{1a} (wherein R^{5a} is a 4- or 6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 4-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C₁₋₄alkyl), za is an integer from 0 to 4 and X^{1a} represents a direct bond, -O-, -CH₂-, -S-, -SO-, -SO₂-, -NR^{6a}C(O)-, -C(O)NR^{7a}-, -SO₂NR^{8a}-, -NR^{9a}SO₂- or -NR^{10a}- (wherein R^{6a}, R^{7a}, R^{8a}, R^{9a} and R^{10a} each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl));

or a salt or prodrug thereof;

with the proviso that R² is not hydrogen, and excluding the compounds:

6,7-dimethoxy-4-(1-naphthylsulphonyl)quinazoline,

6,7-dimethoxy-4-(2-naphthylsulphonyl)quinazoline.

cont'd.
B2

~~6,7-dimethoxy-4-(1-naphthyoxy)quinazoline and
6,7-dimethoxy-4-(2-naphthyoxy)quinazoline~~

40. (New) A compound of the formula II according to claim 39 wherein R² represents hydroxy, halogeno, cyano, nitro, trifluoromethyl, C₁₋₃alkyl, amino or R⁵X¹-, wherein X¹ is as defined in claim 39 and R⁵ is selected from one of the following twenty-two groups:

- A2
Sub C1
- 1) C₁₋₄alkyl which may be unsubstituted or which may be substituted with one or more groups selected from fluoro, chloro and bromo, or C₂₋₅alkyl which may be unsubstituted or substituted with one or more groups selected from hydroxy and amino;
 - 2) C₂₋₃alkylX²C(O)R¹¹ (wherein X² is as defined in claim 39 and R¹¹ represents -NR¹³R¹⁴ or -OR¹⁵ (wherein R¹³, R¹⁴ and R¹⁵ which may be the same or different are each C₁₋₄alkyl or C₁₋₂alkoxyethyl));
 - 3) C₂₋₄alkylX³R¹⁶ (wherein X³ is as defined in claim 39 and R¹⁶ is a group selected from C₁₋₃alkyl, cyclopentyl, cyclohexyl, pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl, azetidinyl and tetrahydropyranyl, which C₁₋₃alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C₁₋₂alkoxy and which cyclopentyl, cyclohexyl, pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl, azetidinyl or tetrahydropyranyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₃cyanooalkyl, C₁₋₃alkyl, C₁₋₃hydroxyalkyl, C₁₋₃alkoxy, C₁₋₂alkoxyC₁₋₃alkyl, C₁₋₂alkylsulphonylC₁₋₃alkyl, C₁₋₃alkoxycarbonyl, C₁₋₃alkylamino, di(C₁₋₃alkyl)amino, C₁₋₃alkylaminoC₁₋₃alkyl, di(C₁₋₃alkyl)aminoC₁₋₃alkyl, C₁₋₃alkylaminoC₁₋₃alkoxy, di(C₁₋₃alkyl)aminoC₁₋₃alkoxy and a group -(O-)f(C₁₋₃alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a heterocyclic group selected from pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl, azetidinyl, morpholino and thiomorpholino, which cyclic group may bear one or more substituents selected from C₁₋₃alkyl));
 - 4) C₂₋₃alkylX⁴C₂₋₃alkylX⁵R²² (wherein X⁴ and X⁵ are as defined in claim 39 and R²² represents hydrogen or C₁₋₃alkyl);
 - 5) R²⁸ (wherein R²⁸ is as defined in claim 39);

- Sub C1
Ap2*
- 6) $C_{1-4}alkylR^{110}$ (wherein R^{110} is a group selected from pyrrolidinyl, piperazinyl, piperidinyl, imidazolidin-1-yl, azetidinyl, 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithiolan-2-yl and 1,3-dithian-2-yl, which group is linked to $C_{1-4}alkyl$ through a carbon atom and which group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, $C_{1-3}cyanoalkyl$, $C_{1-3}alkyl$, $C_{1-3}hydroxyalkyl$, $C_{1-3}alkoxy$, $C_{1-2}alkoxyC_{1-3}alkyl$, $C_{1-2}alkylsulphonylC_{1-3}alkyl$, $C_{1-3}alkoxycarbonyl$, $C_{1-3}alkylamino$, $di(C_{1-3}alkyl)amino$, $C_{1-3}alkylaminoC_{1-3}alkyl$, $di(C_{1-3}alkyl)aminoC_{1-3}alkyl$, $C_{1-3}alkylaminoC_{1-3}alkoxy$, $di(C_{1-3}alkyl)aminoC_{1-3}alkoxy$ and a group $-(-O-)_f(C_{1-3}alkyl)_g ringD$ (wherein f is 0 or 1, g is 0 or 1 and ring D is a heterocyclic group selected from pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl, azetidinyl, morpholino and thiomorpholino, which cyclic group may bear one or more substituents selected from $C_{1-3}alkyl$)) or $C_{2-4}alkylR^{111}$ (wherein R^{111} is a group selected from morpholino, thiomorpholino, azetidin-1-yl, pyrrolidin-1-yl, piperazin-1-yl and piperidino which group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, $C_{1-3}cyanoalkyl$, $C_{1-3}alkyl$, $C_{1-3}hydroxyalkyl$, $C_{1-3}alkoxy$, $C_{1-2}alkoxyC_{1-3}alkyl$, $C_{1-2}alkylsulphonylC_{1-3}alkyl$, $C_{1-3}alkoxycarbonyl$, $C_{1-3}alkylamino$, $di(C_{1-3}alkyl)amino$, $C_{1-3}alkylaminoC_{1-3}alkyl$, $di(C_{1-3}alkyl)aminoC_{1-3}alkyl$, $C_{1-3}alkylaminoC_{1-3}alkoxy$, $di(C_{1-3}alkyl)aminoC_{1-3}alkoxy$ and a group $-(-O-)_f(C_{1-3}alkyl)_g ringD$ (wherein f is 0 or 1, g is 0 or 1 and ring D is a heterocyclic group selected from pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl, azetidinyl, morpholino and thiomorpholino, which cyclic group may bear one or more substituents selected from $C_{1-3}alkyl$));
- 7) $C_{3-4}alkenylR^{112}$ (wherein R^{112} represents R^{110} or R^{111} as defined herein);
- 8) $C_{3-4}alkynylR^{112}$ (wherein R^{112} represents R^{110} or R^{111} as defined herein);
- 9) R^{29} (wherein R^{29} is as defined in claim 39);
- 10) $C_{1-4}alkylR^{29}$ (wherein R^{29} is as defined in claim 39);
- 11) 1- R^{29} prop-1-en-3-yl or 1- R^{29} but-2-en-4-yl (wherein R^{29} is as defined in claim 39 with the proviso that when R^5 is 1- R^{29} prop-1-en-3-yl, R^{29} is linked to the alkenyl group via a carbon atom);

- SCH*
C1
- AZ/2*
- 12) $1-R^{29}\text{prop-1-yn-3-yl}$ or $1-R^{29}\text{but-2-yn-4-yl}$ (wherein R^{29} is as defined in claim 39 with the proviso that when R^5 is $1-R^{29}\text{prop-1-yn-3-yl}$, R^{29} is linked to the alkynyl group via a carbon atom);
- 13) $C_{1-5}\text{alkyl}X^6R^{29}$ (wherein X^6 and R^{29} are as defined in claim 39);
- 14) $1-(R^{29}X^7)\text{but-2-en-4-yl}$ (wherein X^7 and R^{29} are as defined in claim 39);
- 15) $1-(R^{29}X^8)\text{but-2-yn-4-yl}$ (wherein X^8 and R^{29} are as defined in claim 39);
- 16) $C_{2-3}\text{alkyl}X^9C_{1-3}\text{alkyl}R^{29}$ (wherein X^9 and R^{29} are as defined in claim 39);
- 17) $C_{2-3}\text{alkyl}X^9C_{1-3}\text{alkyl}R^{28}$ (wherein X^9 and R^{28} are as defined in claim 39);
- 18) $C_{2-5}\text{alkenyl}$ which may be unsubstituted or which may be substituted with one or more fluorine atoms or with one or two groups selected from hydroxy, fluoro, amino, $C_{1-4}\text{alkylamino}$, N,N-di($C_{1-4}\text{alkyl}$)amino, aminosulphonyl, N- $C_{1-4}\text{alkylaminosulphonyl}$ and N,N-di($C_{1-4}\text{alkyl}$)aminosulphonyl;
- 19) $C_{2-5}\text{salkynyl}$ which may be unsubstituted or which may be substituted with one or more fluorine atoms or with one or two groups selected from hydroxy, fluoro, amino, $C_{1-4}\text{alkylamino}$, N,N-di($C_{1-4}\text{alkyl}$)amino, aminosulphonyl, N- $C_{1-4}\text{alkylaminosulphonyl}$ and N,N-di($C_{1-4}\text{alkyl}$)aminosulphonyl;
- 20) $C_{2-4}\text{alkenyl}X^9C_{1-3}\text{alkyl}R^{28}$ (wherein X^9 and R^{28} are as defined in claim 39);
- 21) $C_{2-4}\text{alkynyl}X^9C_{1-3}\text{alkyl}R^{28}$ (wherein X^9 and R^{28} are as defined in claim 39); and
- 22) $C_{1-3}\text{alkyl}R^{54}(C_{1-3}\text{alkyl})_q(X^9)_rR^{55}$ (wherein X^9 , q , r , R^{54} and R^{55} are as defined in claim 39);

and additionally wherein any $C_{1-5}\text{alkyl}$, $C_{2-5}\text{alkenyl}$ or $C_{2-5}\text{salkynyl}$ group in R^5X^1 - may bear one or more substituents selected from hydroxy, halogeno and amino.

41. (New) A compound according to claim 39 wherein Zb is -O-.

42. (New) A compound according to claim 39 wherein ring C is a 9-10-membered heteroaromatic bicyclic moiety which contains 1-3 heteroatoms selected independently from O, N and S.

Suh C1

Afz

43. (New) A compound according to claim 39 wherein R¹ represents oxo, halogeno, hydroxy, C₁₋₂alkoxy, C₁₋₂alkyl, C₁₋₂alkoxymethyl, C₂₋₃alkanoyl, C₁₋₂haloalkyl, cyano, amino, C₂₋₄alkenyl, C₂₋₄alkynyl, C₂₋₃alkanoyloxy, nitro, C₂₋₃alkanoylamino, C₁₋₂alkoxycarbonyl, C₁₋₂alkylsulphanyl, C₁₋₂alkylsulphinyl, C₁₋₂alkylsulphonyl, carbamoyl, N-C₁₋₂alkylcarbamoyl, N,N-di(C₁₋₂alkyl)carbamoyl, aminosulphonyl, N-C₁₋₂alkylaminosulphonyl, N,N-di(C₁₋₂alkyl)aminosulphonyl, N-(C₁₋₂alkylsulphonyl)amino, N-(C₁₋₂alkylsulphonyl)-N-(C₁₋₂alkyl)amino or a C₃₋₇alkylene chain joined to two ring C carbon atoms.

44. (New) A compound according to claim 39 wherein n is 0, 1 or 2.

45. (New) A compound according to claim 39 wherein Zb is -O-, with the proviso that R² is not hydrogen, substituted or unsubstituted C₁₋₅alkyl, halogeno, C₁₋₅alkoxy, C₂₋₅alkenyl, phenoxy or phenylC₁₋₅alkoxy.

46. (New) A compound according to claim 39 selected from
6-methoxy-7-((1-methylpiperidin-4-yl)methoxy)-4-(2-naphthyloxy)quinazoline,
6-methoxy-7-((1-methylpiperidin-4-yl)methoxy)-4-(quinolin-7-yloxy)quinazoline,
7-(3-(1,1-dioxothiomorpholino)propoxy)-6-methoxy-4-(quinolin-7-yloxy)quinazoline,
6-methoxy-7-(3-(4-methylpiperazin-1-yl)propoxy)-4-(quinolin-7-yloxy)quinazoline,
6-methoxy-7-((1-methylpiperidin-3-yl)methoxy)-4-(quinolin-7-yloxy)quinazoline,
4-(4-chloroquinolin-7-yloxy)-6-methoxy-7-(3-morpholinopropoxy)quinazoline,
6-methoxy-7-((1-methylpiperidin-4-yl)methoxy)-4-(4-methylquinolin-7-yloxy) quinazoline,
6-methoxy-4-(4-methylquinolin-7-yloxy)-7-(3-(pyrrolidin-1-yl)propoxy)quinazoline,
6-methoxy-7-(2-(2-methoxyethoxy)ethoxy)-4-(quinolin-7-yloxy)quinazoline,
6-methoxy-7-((1-(2-methylsulphonylethyl)piperidin-4-yl)methoxy)-4-(quinolin-7-yloxy)quinazoline,
4-(2,3-dimethylindol-5-yloxy)-6-methoxy-7-(1-methylpiperidin-4-ylmethoxy) quinazoline,
4-(2,3-dimethylindol-5-yloxy)-6-methoxy-7-(3-pyrrolidin-1-ylpropoxy)quinazoline,

SUB C

A/2

6-methoxy-7-(1-methylpiperidin-4-ylmethoxy)-4-(2-trifluoromethylindol-5-yloxy)quinazoline,

6-methoxy-7-(3-pyrrolidin-1-ylpropoxy)-4-(2-trifluoromethylindol-5-yloxy)quinazoline,

(*R,S*)-4-(3-fluoroquinolin-7-yloxy)-6-methoxy-7-((1-methylpiperidin-3-yl)methoxy)quinazoline,

4-(indol-5-yloxy)-6-methoxy-7-(3-methylsulphonylpropoxy)quinazoline,

7-(3-N,N-dimethylaminopropoxy)-6-methoxy-4-(2-methylindol-5-yloxy)quinazoline,

6-methoxy-4-(2-methylindol-5-yloxy)-7-(2-(2-morpholinoethoxy)ethoxy)quinazoline,

7-(2-(N,N-diethylamino)ethoxy)-6-methoxy-4-(2-methylindol-5-yloxy)quinazoline,

6-methoxy-7-(3-piperidinopropoxy)-4-(quinolin-7-yloxy)quinazoline,

4-(2-methylindol-5-yloxy)-7-(3-morpholinopropoxy)quinazoline,

4-(2-methylindol-5-yloxy)-7-(2-(piperidin-1-yl)ethoxy)quinazoline,

4-(2-methylindol-5-yloxy)-7-(2-(1*H*-1,2,4-triazol-1-yl)ethoxy)quinazoline,

6-methoxy-7-(3-piperidinopropoxy)-4-(6-trifluoromethylindol-5-yloxy)quinazoline,

7-(3-(methylsulphonyl)propoxy)-4-(2-methylindol-5-yloxy)quinazoline,

7-(3-(N,N-dimethylamino)propoxy)-4-(2,3-dimethylindol-5-yloxy)-6-methoxy-quinazoline,

4-(2,3-dimethylindol-5-yloxy)-6-methoxy-7-(1-methylpiperidin-3-ylmethoxy) quinazoline,

7-(2-(N,N-diethylamino)ethoxy)-4-(indol-5-yloxy)-6-methoxyquinazoline,

4-(indol-5-yloxy)-6-methoxy-7-(2-(piperidin-2-yl)ethoxy)quinazoline,

4-(indol-5-yloxy)-6-methoxy-7-(2-(piperidin-1-yl)ethoxy)quinazoline,

4-(indol-6-yloxy)-6-methoxy-7-(3-morpholinopropoxy)quinazoline,

7-(3-(ethylsulphonyl)propoxy)-6-methoxy-4-(2-methylindol-5-yloxy)quinazoline,

6-methoxy-4-(3-methylindol-5-yloxy)-7-(3-piperidinopropoxy)quinazoline,

7-(2-hydroxy-3-piperidinopropoxy)-6-methoxy-4-(2-methylindol-5-yloxy)quinazoline,

7-(2-hydroxy-3-(4-methylpiperazin-1-yl)propoxy)-6-methoxy-4-(2-methylindol-5-yloxy)quinazoline,

6-methoxy-4-(2-methylindol-5-yloxy)-7-(2-(N-methylamino)ethoxy)quinazoline, and

7-(2-hydroxy-3-(isopropylamino)propoxy)-6-methoxy-4-(2-methylindol-5-yloxy)quinazoline,

or a salt thereof.

47. (New) A compound according to claim 39 selected from

6-methoxy-7-(3-morpholinopropoxy)-4-(quinolin-7-yloxy)quinazoline,
6-methoxy-4-(2-methylindol-5-yloxy)-7-((1-methylpiperidin-4-yl)methoxy)quinazoline,
4-(indol-5-yloxy)-6-methoxy-7-(1-methylpiperidin-4-ylmethoxy)quinazoline,
4-(indol-5-yloxy)-6-methoxy-7-(3-pyrrolidin-1-ylpropoxy)quinazoline,
6-methoxy-4-(2-methylindol-5-yloxy)-7-(3-methylsulphonylpropoxy)quinazoline,
7-((1-cyanomethyl)piperidin-4-ylmethoxy)-6-methoxy-4-(2-methylindol-5-yloxy)
quinazoline,
6-methoxy-4-(2-methylindol-5-yloxy)-7-(2-morpholinoethoxy)quinazoline,
6-methoxy-4-(2-methylindol-5-yloxy)-7-(2-pyrrolidin-1-yethoxy)quinazoline,
6-methoxy-4-(2-methylindol-5-yloxy)-7-(1-methylpiperidin-3-ylmethoxy)quinazoline,
6-methoxy-4-(2-methylindol-5-yloxy)-7-(2-piperidinoethoxy)quinazoline,
6-methoxy-4-(2-methylindol-5-yloxy)-7-(2-(N-methyl-N-(4-pyridyl)amino)ethoxy)
quinazoline,
6-methoxy-4-(2-methylindol-5-yloxy)-7-(3-morpholinopropoxy)quinazoline,
6-methoxy-7-(2-(2-methoxyethoxy)ethoxy)-4-(2-methylindol-5-yloxy)quinazoline,
6-methoxy-4-(2-methylindol-5-yloxy)-7-(2-(1H-1,2,4-triazol-1-yl)ethoxy)quinazoline,
6-methoxy-4-(2-methylindol-5-yloxy)-7-(2-(2-(4-methylpiperazin-1-yl)ethoxy)ethoxy)
quinazoline,
6-methoxy-4-(2-methylindol-5-yloxy)-7-(3-piperidinopropoxy)quinazoline,
4-(indol-5-yloxy)-6-methoxy-7-(3-piperidinopropoxy)quinazoline,
6-methoxy-7-(1-(2-methoxyethyl)piperidin-4-ylmethoxy)-4-(2-methylindol-5-yloxy)
quinazoline,
6-methoxy-4-(2-methylindol-5-yloxy)-7-((2-(2-pyrrolidin-1-ylethyl)carbamoyl)vinyl)
quinazoline,
6-methoxy-4-(2-methylindol-5-yloxy)-7-(3-(4-methylpiperazin-1-yl)propoxy)quinazoline,
6-methoxy-4-(2-methylindol-5-yloxy)-7-(piperidin-4-ylmethoxy)quinazoline,
6-methoxy-4-(2-methylindol-5-yloxy)-7-(2-(piperidin-4-yloxy)ethoxy)quinazoline,

Sub C1
A/2

6-methoxy-4-(2-methylindol-5-yloxy)-7-(2-(N-methyl-N-methylsulphonylamino)ethoxy)quinazoline,

7-(2-(1-(2-cyanoethyl)piperidin-4-yloxy)ethoxy)-6-methoxy-4-(2-methylindol-5-yloxy)quinazoline,

4-(2-methylindol-5-yloxy)-7-(3-(pyrrolidin-yl)propoxy)quinazoline,

4-(2-methylindol-5-yloxy)-7-(3-(1,1-dioxothiomorpholino)propoxy)quinazoline,

4-(2-methylindol-5-yloxy)-7-(piperidin-4-ylmethoxy)quinazoline,

4-(indol-5-yloxy)-6-methoxy-7-(2-(2-methoxyethoxy)ethoxy)quinazoline,

7-(3-(N,N-dimethylamino)propoxy)-4-(indol-5-yloxy)-6-methoxyquinazoline,

7-(3-(N,N-diethylamino)propoxy)-4-(indol-5-yloxy)-6-methoxyquinazoline,

7-(3-(1,1-dioxothiomorpholino)propoxy)-4-(indol-5-yloxy)-6-methoxyquinazoline,

4-(indol-5-yloxy)-6-methoxy-7-(2-(4-pyridyloxy)ethoxy)quinazoline,

4-(indol-6-yloxy)-6-methoxy-7-(3-piperidinopropoxy)quinazoline,

7-(1-(2-methoxyethyl)piperidin-4-ylmethoxy)-4-(2-methylindol-5-yloxy)quinazoline,

7-(2-hydroxy-3-morpholinopropoxy)-6-methoxy-4-(2-methylindol-5-yloxy)quinazoline,

7-(2-(1-(2-methoxyethyl)piperidin-4-yl)ethoxy)-6-methoxy-4-(2-methylindol-5-yloxy)quinazoline,

7-(2-hydroxy-3-pyrrolidin-1-ylpropoxy)-6-methoxy-4-(2-methylindol-5-yloxy)quinazoline,

7-(3-(N,N-diethylamino)-2-hydroxypropoxy)-6-methoxy-4-(2-methylindol-5-yloxy)quinazoline,

7-(3-(1,1-dioxothiomorpholino)propoxy)-6-methoxy-4-(2-methylindol-5-yloxy)quinazoline,

6-methoxy-4-(2-methylindol-5-yloxy)-7-(2-(4-pyridyloxy)ethoxy)quinazoline,

4-(indol-5-yloxy)-6-methoxy-7-(3-morpholinopropoxy)quinazoline,

(2*R*)-6-methoxy-(2-methyl-1*H*-indol-5-yloxy)-7-(2-hydroxy-3-piperidinopropoxy)quinazoline,

(5*R*)-6-methoxy-4-(2-methyl-1*H*-indol-5-yloxy)-7-(2-oxopyrrolidin-5-ylmethoxy)quinazoline,

4-(4-bromoindol-5-yloxy)-6-methoxy-7-(3-piperidinopropoxy)quinazoline,

6-methoxy-4-(2-methylindol-5-yloxy)-7-(1-(2-(pyrrolidin-1-yl)ethyl)-piperidin-4-ylmethoxy)quinazoline,

(2R)-7-(2-hydroxy-3-(pyrrolidin-1-yl)propoxy)-4-(indol-5-yloxy)-6-methoxyquinazoline,
(2R)-7-(2-hydroxy-3-morpholinopropoxy)-4-(indol-5-yloxy)-6-methoxyquinazoline,
(2R)-7-(2-hydroxy-3-piperidinopropoxy)-4-(indol-5-yloxy)-6-methoxyquinazoline,
(2S)-7-(2-hydroxy-3-((N,N-diisopropyl)amino)propoxy)-4-(indol-5-yloxy)-6-
methoxyquinazoline,
Sub C1
(2S)-7-(2-hydroxy-3-piperidinopropoxy)-4-(indol-5-yloxy)-6-methoxyquinazoline,
(2R)-7-(2-hydroxy-3-piperidinopropoxy)-6-methoxy-4-(3-methylindol-5-yloxy) quinazoline,
(2R)-7-(2-hydroxy-3-(pyrrolidin-1-yl)propoxy)-6-methoxy-4-(3-methylindol-5-yloxy)
quinazoline,
(2R)-7-(2-hydroxy-3-(pyrrolidin-1-yl)propoxy)-6-methoxy-4-(2-methylindol-5-yloxy)quinazoline,
AZ2
(2R)-7-(2-hydroxy-3-(4-methylpiperazin-1-yl)propoxy)-6-methoxy-4-(2-methylindol-5-
yloxy)quinazoline,
6-methoxy-4-(2-methylindol-5-yloxy)-7-(1-(2-morpholinoethyl)piperidin-4-ylmethoxy)
quinazoline,
4-(3-fluoro-quinolin-7-yloxy)-6-methoxy-7-(3-piperidinopropoxy)quinazoline,
4-(3-fluoro-quinolin-7-yloxy)-6-methoxy-7-(3-(pyrrolidin-1-yl)propoxy)quinazoline,
6-methoxy-7-(3-(pyrrolidin-1-yl)propoxy)-4-(1*H*-pyrrolo[2,3-*b*]pyridin-5-yloxy)
quinazoline,
(2S)-6-methoxy-(2-methyl-1*H*-indol-5-yloxy)-7-(2-hydroxy-3-piperidinopropoxy)
quinazoline, and
4-(6-fluoro-2-methylindol-5-yloxy)-6-methoxy-7-(3-(pyrrolidin-1-yl)propoxy) quinazoline,
or a salt thereof.

48. (New) A compound according to claim 39 selected from

6-methoxy-4-(2-methylindol-5-yloxy)-7-(3-(pyrrolidin-1-yl)propoxy)quinazoline,
4-(4-fluoroindol-5-yloxy)-6-methoxy-7-(1-methylpiperidin-4-ylmethoxy)quinazoline,
4-(4-fluoroindol-5-yloxy)-6-methoxy-7-(3-(4-methylpiperazin-1-yl)propoxy)quinazoline,
4-(6-fluoroindol-5-yloxy)-6-methoxy-7-(3-(pyrrolidin-1-yl)propoxy)quinazoline,
4-(4-fluoroindol-5-yloxy)-6-methoxy-7-(3-(pyrrolidin-1-yl)propoxy)quinazoline,

4-(4-fluoroindol-5-yloxy)-6-methoxy-7-(3-piperidinopropoxy)quinazoline,
 4-(4-fluoro-2-methylindol-5-yloxy)-6-methoxy-7-(3-(pyrrolidin-1-yl)propoxy) quinazoline,
 4-(4-fluoro-2-methylindol-5-yloxy)-6-methoxy-7-(3-piperidinopropoxy)quinazoline,
 4-(4-fluoro-2-methylindol-5-yloxy)-6-methoxy-7-((1-methylpiperidin-4-yl)methoxy)
 quinazoline,
~~Suj~~
~~C1~~
~~AZ2~~
 4-(4-fluoro-2-methylindol-5-yloxy)-6-methoxy-7-(3-(4-methylpiperazin-1-yl)propoxy)
 quinazoline,
 4-(4-fluoroindol-5-yloxy)-6-methoxy-7-(2-(1-methylpiperidin-4-yl)ethoxy)quinazoline,
 (2R)-7-(2-hydroxy-3-(pyrrolidin-1-yl)propoxy)-4-(4-fluoro-2-methylindol-5-yloxy)-6-
 methoxyquinazoline, and
 4-(4-fluoro-2-methylindol-5-yloxy)-6-methoxy-7-(2-(1-methylpiperidin-4-yl)ethoxy)
 quinazoline,
 or a salt thereof.

49. (New) A compound according to claim 39 in the form of a pharmaceutically acceptable salt.

50. (New) A process for the preparation of a compound according to claim 39 of formula II or salt thereof which comprises:

(a) the reaction of a compound of the formula III:

(wherein R^2 and m are as defined in claim 31 and L^1 is a displaceable moiety), with a compound of the formula IV:

(IV)

(wherein ring C, R^1 , Z and n are as defined in claim 31);

- (b) a compound of formula I or a salt thereof wherein at least one R^2 is R^5X^1 wherein R^5 is as defined in claim 31 and X^1 is -O-, -S-, -OC(O)- or -NR¹⁰- (wherein R¹⁰ independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) may be prepared by the reaction of a compound of the formula V:

(V)

(wherein ring C, Z, R^1 , R^2 and n are as defined in claim 31 and X^1 is as herein defined in this section and s is an integer from 0 to 2) with a compound of formula VI:

(VI)

(wherein R^5 is as defined in claim 31 and L^1 is as herein defined);

- (c) a compound of the formula I or a salt thereof wherein at least one R^2 is R^5X^1 wherein R^5 is as defined in claim 31 and X^1 is -O-, -S-, -OC(O)- or -NR¹⁰- (wherein R¹⁰ represents

hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) may be prepared by the reaction of a compound of the formula VII:

(VII)

with a compound of the formula VIII:

(VIII)

(wherein R¹, R², R⁵, ring C, Z and n are as defined in claim 31 and L¹, s and X¹ are as herein defined);

- (d) a compound of the formula I or a salt thereof wherein at least one R² is R⁵X¹ wherein X¹ is as defined in claim 31 and R⁵ is C₁₋₃alkylR¹¹³, wherein R¹¹³ is selected from one of the following nine groups:
- 1) X¹⁹C₁₋₃alkyl (wherein X¹⁹ represents -O-, -S-, -SO₂-, -NR¹¹⁴C(O)- or -NR¹¹⁵SO₂- (wherein R¹¹⁴ and R¹¹⁵ which may be the same or different are each hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl);
 - 2) NR¹¹⁶R¹¹⁷ (wherein R¹¹⁶ and R¹¹⁷ which may be the same or different are each hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl);
 - 3) X²⁰C₁₋₅alkylX⁵R²² (wherein X²⁰ represents -O-, -S-, -SO₂-, -NR¹¹⁸C(O)-, -NR¹¹⁹SO₂- or -NR¹²⁰- (wherein R¹¹⁸, R¹¹⁹, and R¹²⁰ which may be the same or different are each hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and X⁵ and R²² are as defined in claim 31);
 - 4) R²⁸ (wherein R²⁸ is as defined in claim 31);

- 5) $X^{21}R^{29}$ (wherein X^{21} represents -O-, -S-, -SO₂-, -NR¹²¹C(O)-, -NR¹²²SO₂-, or -NR¹²³- (wherein R¹²¹, R¹²², and R¹²³ which may be the same or different are each hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R²⁹ is as defined in claim 31); and
- 6) $X^{22}C_{1-3}\text{alkyl}R^{29}$ (wherein X²² represents -O-, -S-, -SO₂-, -NR¹²⁴C(O)-, -NR¹²⁵SO₂- or -NR¹²⁶- (wherein R¹²⁴, R¹²⁵ and R¹²⁶ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R²⁹ is as defined in claim 31);
- 7) R²⁹ (wherein R²⁹ is as defined in claim 31);
- 8) $X^{22}C_{1-4}\text{alkyl}R^{28}$ (wherein X²² and R²⁸ are as defined in claim 31); and
- 9) $R^{54}(C_{1-4}\text{alkyl})_q(X^9)R^{55}$ (wherein q, r, X⁹, R⁵⁴ and R⁵⁵ are as defined in claim 31);

may be prepared by reacting a compound of the formula IX:

(wherein X¹, R¹, R², ring C, Z and n are as defined in claim 31 and L¹ and s are as herein defined) with a compound of the formula X:

(wherein R¹¹³ is as defined herein);

- (e) a compound of the formula I or a salt thereof wherein one or more of the substituents (R²)_m is represented by -NR¹²⁷R¹²⁸, where one (and the other is hydrogen) or both of R¹²⁷ and R¹²⁸ are C₁₋₃alkyl, may be effected by the reaction of compounds of formula I wherein the substituent (R²)_m is an amino group and an alkylating agent; or

(f) a compound of the formula I or a salt thereof wherein X^1 is $-SO-$ or $-SO_2-$ may be prepared by oxidation from the corresponding compound in which X^1 is $-S-$ or $-SO-$; and when a salt of a compound of formula I is required, reaction of the compound obtained with an acid or base whereby to obtain the desired salt.

Sub C1
51. A pharmaceutical composition which comprises as active ingredient a compound of formula I or a pharmaceutically acceptable salt thereof according to claim 39 in association with a pharmaceutically acceptable excipient or carrier.

AZ2
52. The compound 4-fluoro-5-hydroxy-2-methylindole or a salt thereof.

53. The compound 4-fluoro-5-hydroxyindole or a salt thereof.

54. The compound 6-fluoro-5-hydroxy-2-methylindole or a salt thereof.

55. The compound 6-fluoro-5-hydroxyindole or a salt thereof.

56. A process for the preparation of 4-fluoro-5-hydroxy-2-methylindole comprising the steps of:

- (i) reacting 2-fluoro-4-nitroanisole with 4-chlorophenoxyacetonitrile to give a mixture of 4-fluoro-5-methoxyindole and 6-fluoro-5-methoxyindole;
- (ii) reacting 4-fluoro-5-methoxyindole and 6-fluoro-5-methoxyindole with di-*tert*-butyl dicarbonate to give a mixture of 4-fluoro-5-methoxy-1-*tert*-butoxycarbonylindole and 6-fluoro-5-methoxy-1-*tert*-butoxycarbonylindole;
- (iii) reacting 4-fluoro-5-methoxy-1-*tert*-butoxycarbonylindole and 6-fluoro-5-methoxy-1-*tert*-butoxycarbonylindole with *tert*-butyllithium followed by deprotection to give 6-fluoro-5-methoxy-2-methylindole and 4-fluoro-5-methoxy-2-methylindole; and
- (iv) de-alkylating 4-fluoro-5-methoxy-2-methylindole to give 4-fluoro-5-hydroxy-2-methylindole.

57. A process for the preparation of 4-fluoro-5-hydroxy-2-methylindole comprising the steps:

- (i) reacting alkyl or aryl acetoacetate and 1,2,3-trifluoro-4-nitrobenzene to give 3-acetymethyl-1,2-difluoro-4-nitrobenzene;
- (ii) reacting 3-acetymethyl-1,2-difluoro-4-nitrobenzene with an orthoformate to give 1,2-difluoro-3-(2,2-dimethoxypropyl)-4-nitrobenzene;
- (iii) reacting benzyl alcohol or substituted benzyl alcohol or ethanol or propanol with sodium hydride and 1,2-difluoro-3-(2,2-dimethoxypropyl)-4-nitrobenzene to give 3-acetymethyl-1-benzyloxy-2-fluoro-4-nitrobenzene; and
- (iv) hydrogenating 3-acetymethyl-1-benzyloxy-2-fluoro-4-nitrobenzene to give 4-fluoro-5-hydroxy-2-methylindole.

A22
58. A process for the preparation of 4-fluoro-5-hydroxy-2-methylindole comprising the steps:

- (i) reacting alkyl or aryl acetoacetate and 1,2,3-trifluoro-4-nitrobenzene to give 3-acetymethyl-1,2-difluoro-4-nitrobenzene;
- (ii) reacting 3-acetymethyl-1,2-difluoro-4-nitrobenzene with an orthoformate to give 1,2-difluoro-3-(2,2-dimethoxypropyl)-4-nitrobenzene;
- (iii) reacting sodium methoxide with 1,2-difluoro-3-(2,2-dimethoxypropyl)-4-nitrobenzene to give 3-acetymethyl-2-fluoro-methoxy-4-nitrobenzene;
- (iv) reacting 3-acetymethyl-2-fluoro-1-methoxy-4-nitrobenzene with titanium trichloride to give 4-fluoro-5-methoxy-2-methylindole; and
- (v) dealkylating 4-fluoro-5-methoxy-2-methylindole to give 4-fluoro-5-hydroxy-2-methylindole.

59. A process for the preparation of 4-fluoro-5-hydroxyindole or 6-fluoro-5-hydroxyindole comprising the steps:

- (i) reacting 2-fluoro-4-nitrophenol and benzyl bromide to give 2-fluoro-4-nitrobenzyloxybenzene;

- (ii) reacting 2-fluoro-4-nitro-benzyloxybenzene with 4-chlorophenoxyacetonitrile to give a mixture of 3-cyanomethyl-2-fluoro-4-nitrobenzyloxybenzene and 5-cyanomethyl-2-fluoro-4-nitrobenzyloxybenzene; and
- (iii) hydrogenating a mixture of 3-cyanomethyl-2-fluoro-4-nitrobenzyloxybenzene and 5-cyanomethyl-2-fluoro-4-nitrobenzyloxybenzene to give 4-fluoro-5-hydroxyindole and 6-fluoro-5-hydroxyindole.

60. A process for the preparation of 6-fluoro-5-hydroxy-2-methylindole comprising the steps:

- (i) reacting 2-fluoro-4-nitroanisole with 4-chlorophenoxyacetonitrile to give a mixture of 4-fluoro-5-methoxyindole and 6-fluoro-5-methoxyindole;
- (ii) reacting 4-fluoro-5-methoxyindole and 6-fluoro-5-methoxyindole with di-*tert*-butyl dicarbonate to give a mixture of 4-fluoro-5-methoxy-1-*tert*-butoxycarbonylindole and 6-fluoro-5-methoxy-1-*tert*-butoxycarbonylindole;
- (iii) reacting 4-fluoro-5-methoxy-1-*tert*-butoxycarbonylindole and 6-fluoro-5-methoxy-1-*tert*-butoxycarbonylindole with *tert*-butyllithium followed by deprotection to give 6-fluoro-5-methoxy-2-methylindole and 4-fluoro-5-methoxy-2-methylindole; and
- (iv) de-alkylating 6-fluoro-5-methoxy-2-methylindole to give 6-fluoro-5-hydroxy-2-methylindole.