Orbit-Stabilizer Theorem

Daniel Rostovtsev Date: 5 November, 2017

Let some finite G act on X with the group action \circ . Then $|\operatorname{orb}(x)||\operatorname{stab}(x)| = |G|$.

Proof. By Lagrange's theorem, $|G| = |\operatorname{stab}(x)|(G : \operatorname{stab}(x))$ for all $x \in X$, because $\operatorname{stab}(x) \leq G$. Therefore, if $|\operatorname{orb}(x)| = (G : \operatorname{stab}(x)) = |G/\operatorname{stab}(x)|$, then $|\operatorname{orb}(x)||\operatorname{stab}(x)| = |G|$. Let $\mu : \operatorname{orb}(x) \to G/\operatorname{stab}(x)$. Since, by definition, all $y \in \operatorname{orb}(x)$ can be expressed as $g \circ x$ for some $g \in G$, define $\mu(y) = \mu(g \circ x) = g[\operatorname{stab}(x)]$.

 $\forall g_1 \circ x, g_2 \circ x \in \operatorname{orb}(x), \ \mu(g_1 \circ x) = \mu(g_2 \circ x) \implies g_1 \circ x = g_2 \circ x ::$ $\mu(g_1 \circ x) = \mu(g_2 \circ x) \implies g_1[\operatorname{stab}(x)] = g_2[\operatorname{stab}(x)]$ $\implies g_1 \in g_2[\operatorname{stab}(x)]$ $\implies g_1 = g_2 s : s \in \operatorname{stab}(x)$ $\implies g_1 \circ x = (g_2 s) \circ x = g_2 \circ (s \circ x) = g_2 \circ x$

 $\forall g[\operatorname{stab}(x)] \in G/\operatorname{stab}(x), \exists g \circ x \in \operatorname{orb}(x) : \mu(g \circ x) = g[\operatorname{stab}(x)] \text{ by the definition of } \operatorname{orb}(x).$ Therefore μ is a bijection, and $|\operatorname{orb}(x)||\operatorname{stab}(x)| = |G|.$