Problem statement

The number of books sold by a bookseller per day is given in 'bookseller.csv'.

Let

X = Number of books sold by a bookseller per day

X is a Discrete Random variable (because it represents the book count). Let's see the distribution of X and answer the below questions.

- 1. Find the probability that more than (or equal to) 96 books will be sold on a given day
- 2. Find the probability that less than (or equal to) 92 books will be sold on a given day

```
import pandas as pd
import numpy as np
df = pd.read csv('/Users/vishal/Desktop/CSV files/Bookseller.csv')
df.head()
   S.No
                     Number of Books Sold
               Date
0
      1 01-01-2020
                                        90
      2
        02-01-2020
                                       100
1
2
      3 03-01-2020
                                       100
3
      4 04-01-2020
                                        97
4
      5 05-01-2020
                                        93
```

	S.No	Date	Number of Books Sold
0	1	01-01-2020	90
1	2	02-01-2020	100
2	3	03-01-2020	100
3	4	04-01-2020	97
4	5	05-01-2020	93

df.ta	df.tail()					
361 362 363 364 365	363 364 365	Date 27-12-2020 28-12-2020 29-12-2020 30-12-2020 31-12-2020	Number	of	Books	Sold 91 90 92 92 99

	S.No	Date	Number of Books Sold
361	362	27-12-2020	91
362	363	28-12-2020	90
363	364	29-12-2020	92
364	365	30-12-2020	92
365	366	31-12-2020	99

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 366 entries, 0 to 365
Data columns (total 3 columns):
                          Non-Null Count Dtype
#
    Column
    ----
- - -
                          -----
    S.No
0
                          366 non-null
                                         int64
1
                          366 non-null
                                         object
    Number of Books Sold 366 non-null
2
                                         int64
```

dtypes: int64(2), object(1)
memory usage: 8.7+ KB

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 366 entries, 0 to 365 Data columns (total 3 columns):

#	Column	Non-Null Count	Dtype
0	S.No	366 non-null	int64
1	Date	366 non-null	object
2	Number of Books Sold	366 non-null	int64

dtypes: int64(2), object(1)

memory usage: 8.7+ KB

df.describe()

	S.No	Number of Books Sold
count	366.000000	366.000000
mean	183.500000	94.961749
std	105.799338	3.178465
min	1.000000	90.000000
25%	92.250000	92.000000
50%	183.500000	95.000000
75%	274.750000	98.000000
max	366.000000	100.000000

S.No Number of Books Sold

count	366.000000	6.000000 366.000000	
mean	183.500000	94.961749	
std	105.799338	3.178465	
min	1.000000	90.000000	
25%	92.250000	92.000000	
50%	183.500000	95.000000	
75 %	274.750000	98.000000	
max	366.000000	100.000000	

Check the distribution Number of Books sold

```
book distribution = df['Number of Books
Sold'].value counts().sort index()
prob distribution = book distribution / book distribution.sum()
prob distribution
Number of Books Sold
90
       0.087432
91
       0.095628
92
       0.092896
93
       0.117486
94
       0.068306
95
       0.087432
96
       0.087432
97
       0.084699
98
       0.087432
99
       0.112022
100
       0.079235
Name: count, dtype: float64
```

```
Number of Books Sold
90
       0.087432
91
       0.095628
92
       0.092896
93
       0.117486
94
       0.068306
95
       0.087432
       0.087432
96
97
       0.084699
98
       0.087432
       0.112022
99
100
       0.079235
Name: count, dtype: float64
```

Calculate the probability of selling >= 96 books

```
prob_more_equal_96 = prob_distribution[prob_distribution.index >=
96].sum()
print(f"Probability of selling >= 96 books: {prob_more_equal_96}")
Probability of selling >= 96 books: 0.4508196721311476
```

Calculate the probability of selling <= 92 books

```
prob_less_equal_92 = prob_distribution[prob_distribution.index <=
92].sum()
print(f"Probability of selling <= 92 books: {prob_less_equal_92}")
Probability of selling <= 92 books: 0.27595628415300544</pre>
```

Probability of selling <= 92 books: 0.27595628415300544

Optional: Visualize the Probability Distribution

```
import matplotlib.pyplot as plt

# Plot the probability distribution
prob_distribution.plot(kind='bar')
plt.title('Probability Distribution of Number of Books Sold per Day')
plt.xlabel('Number of Books Sold')
plt.ylabel('Probability')
plt.show()
```


Problem statement

IT industry records the amount of time a software engineer needs to fix a bug in the initial phase of software development in 'debugging.csv'.

Let

X = Time needed to fix bugs

X is a continuous random variable. Let's see the distribution of X and answer the below questions.

- 1. Find the probability that a randomly selected software debugging requires less than three hours
- 2. Find the probability that a randomly selected software debugging requires more than two hours
- 3. Find the 50th percentile of the software debugging tire

```
import pandas as pd
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt

df = pd.read_csv('/Users/vishal/Desktop/CSV files/Debugging.csv')

df.head()
```

	Bug ID	Time Taken to fix the bug
0	12986	2.42
1	12987	2.03
2	12988	2.74
3	12989	3.21
4	12990	3.40

df.tail()

	Bug ID	Time Taken to fix the bug
2093	15079	4.17
2094	15080	1.05
2095	15081	2.50
2096	15082	2.85
2097	15083	2.64

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2098 entries, 0 to 2097
Data columns (total 2 columns):

#	Column	Non-Null Count	Dtype
0	Bug ID	2098 non-null	int64
1	Time Taken to fix the bug	2098 non-null	float64

dtypes: float64(1), int64(1)

memory usage: 32.9 KB

df.describe()

Bug ID Time Taken to fix the bug

count	2098.000000	2098.000000
mean	14034.500000	3.012531
std	605.784753	1.147148
min	12986.000000	1.010000
25%	13510.250000	2.010000
50%	14034.500000	3.005000
75%	14558.750000	4.030000
max	15083.000000	5.000000

Check the Distribution of 'Time Taken to Fix the Bug'

```
# Plot a histogram to visualize the distribution
plt.hist(df['Time Taken to fix the bug'], bins=30, edgecolor='k',
alpha=0.7)
plt.title('Distribution of Time Taken to Fix Bugs')
plt.xlabel('Time (hours)')
plt.ylabel('Frequency')
plt.show()
```


Calculate the Mean and Standard Deviation

```
mean_time = df['Time Taken to fix the bug'].mean()
std_time = df['Time Taken to fix the bug'].std()
print(f"Mean Time to Fix: {mean_time}")
print(f"Standard Deviation of Time to Fix: {std_time}")
```

Mean Time to Fix: 3.012530981887512 Standard Deviation of Time to Fix: 1.1471482047102495

Find the probability that Time Taken to Fix is less than 3 hours

```
prob_less_than_3 = stats.norm.cdf(3, loc=mean_time, scale=std_time)
print(f"Probability that debugging requires less than 3 hours:
{prob_less_than_3}")
```

Probability that debugging requires less than 3 hours: 0.4956422029421937

Find the Probability That Debugging Takes More Than 2 Hours

```
prob_more_than_2 = 1 - stats.norm.cdf(2, loc=mean_time,
scale=std_time)
print(f"Probability that debugging requires more than 2 hours:
{prob_more_than_2}")
```

Probability that debugging requires more than 2 hours: 0.8112874434344626

Find the 50th Percentile (Median)

```
percentile_50 = stats.norm.ppf(0.5, loc=mean_time, scale=std_time)
print(f"50th percentile (median) of time to fix bugs:
{percentile_50}")
```

50th percentile (median) of time to fix bugs: 3.012530981887512