Fundamentals of GIS Emphasizing GIS Use for Natural Resource Management Produced for: Basic Science and Remote Sensing Initiative Department of Geography Michigan State University

FUNDAMENTALS OF GIS

EMPHASIZING GIS USE FOR NATURAL RESOURCE MANAGEMENT

David P. Lusch, Ph.D

Senior Research Specialist

Center For Remote Sensing and Geographic Information Science

Michigan State University

November, 1999

OVERVIEW OF GIS

GIS

Geographic Information Systems

An INTEGRATED SYSTEM of COMPUTER HARDWARE and SOFTWARE coupled with *PROCEDURES* and a *HUMAN ANALYST* which together support the CAPTURE, MANAGEMENT, MANIPULATION, <u>ANALYSIS</u>, <u>MODELLING</u>, and DISPLAY of SPATIALLY REFERENCED DATA

G	IS	Ca	pal	oiliti	es:
	_	_	_		

QUERY FOR LOCATION

> "Show me all the countries of South America that have a population greater than 20,000,000. "

FUNDAMENTALS OF GIS

QUERY FOR CONDITION

> "Display the population of each country I point to on the map."

TREND ANALYSIS

> "Show me where the census blocks are that have experienced more than a 50% population change between 1980 and 1990."

PATTERNS ANALYSIS

> "Calculate the fragmentation index for all the forest patches in the municipio."

MODELLING

> "Which route for the new highway has the lowest cost in terms of losses of housing, prime farmland, and wetlands, while minimizing the needs for cutting and filling."

Point	Line	Area	Volume
•			
0			
Well or Town	Stream or Road	City or Field	Fertilizer or Yield

Geometric Classes of Data

DATA TYPES

VECTOR

RASTER

Point = Position, no area

Point = 1 cell

Line = Length, no width

Line = Multiple cells joined at edges or corners, usually with only 1 or 2 neighbors

Polygon = Area and perimeter

Polygon = Group of contiguous cells joined at edges or corners

VECTOR STRUCTURE

FUNDAMENTALS OF GIS

Advantages

Good representation of the landscape being mapped
Topology can be completely described, including network linkages
Great looking graphics ("Looks like a map is supposed to")
Generalization of the graphics is possible while still maintaining the great look ("What the map reader doesn't know won't hurt them")

RASTER STRUCTURE

Advantages

Overlaying maps is easy and "perfect" (i.e. no possibility of sliver polygons developing since all raster cell borders are coincident
Integration of remotely sensed imagery (satellite images or scanned airphotos) is straight-forward
A huge variety of complex spatial analyses are supported
Software is generally cheaper and easier to learn compared to vector GISs

TOPOLOGY

Geometrical relationships between spatial objects (Points, Lines, and Areas), such as adjacency, that are not altered by distortion, as long as the surface is not torn

Example of "Built" Topology (from Arc/Info)

8

Vector GIS ATTRIBUTE DATABASE

ID	Name	Qualit	У		Lakes
0	N/A				
1	Fir Lake	High			
ID	Species	Size	<u> </u>		0
0	N/A				
1	Jack Pine	Pole	+-		Forest Types
2	Spruce	Sapli	ng		1
3	Jack Pine	Sapli	ng		2
					3
ID	Туре	Depth			Soils
0	N/A	`\\			5 6
1	В				
2	A				2 3
3	В			\	
4	С	Type	Drainage		•
5	С	-7F	Fair		:
6	A	В	Poor		Related Table
7	R		Good		"Type" is KEY FIELD
		R	Rock		

ENTITY RELATIONSHIPS

Point - Point Is nearest to ...

Interacts with ...

Point - Line Is on ...

Is nearest to ...

Point - Area Is within ...

Is adjacent to ...

Line - Line Intersects ...

Is upstream of ...

Line - Area Crosses ...

Is contained within ...

Is nearest to ...

Area - Area Is adjacent to ...

Overlaps ...

Is enclosed by ...

FUNDAMENTALS OF GIS

A Classification of GIS Functions

- Analysis of Spatial and Attribute Data
 - Non-spatial analyses

Attribute query and display
Map retrieval and display
Attribute classification
Map measurements (distance, direction, area, etc.)

- Spatial analyses

Overlay operations

Neighborhood functions

Distance and Connectivity functions
Contiguity measures
Proximity analysis
Network analysis
Spread functions
Seek operands
Intervisibility analysis
Solar illumination calculation
Perspective view

Search operations

Line-in-polygon; Point-in-polygon Topographic functions Thiessen polygons Interpolation Contour generation

This classification has been adapted from:

Aronoff, Stan. 1989. <u>Geographic Information Systems: A Management Approach.</u> Ottawa, Ontario, Canada: WDL Publications. 294p.

FUNDAMENTALS OF GIS

A Classification of GIS Functions

Maintenance of Attribute Data

> Format conversions Database error checking **Database editing**

Maintenance of Spatial Data

> Format conversions Geometric transformations **Projection conversions** Conflation **Edge matching Editing of graphic elements** Line coordinate thinning

Output functions

> Map annotation Text labels **Texture patterns and line styles Graphic symbols Plotting** Printing (laser printers, color inkjet printers, etc.)

This classification has been adapted from:

Aronoff, Stan. 1989. Geographic Information Systems: A Management Approach. Ottawa, Ontario, Canada: WDL Publications. 294p.

12

Spatial Analyses

Basic Functional Classes

Reclassifying Maps Vector and Raster

- **Overlaying Maps**
- Measuring Distance and Connectivity
- **Characterizing Neighborhoods**

Position

Vector and Raster

"only those in the NW"

Value

Vector and Raster

change feet to meters"

"elevations between 20 & 40 feet"

RECLASSIFYING

Size

Vector and Raster

"larger than 80 acres"

Contiguity

Raster Only

"work with individual members rathers than the class as a whole"

Shape

Vector and Raster

Spatial Integrity

[# Holes - (# Fragments - 1)]

• Boundary Configuration

SPATIAL ANALYSES

Basic Functional Classes

- **Reclassifying Maps**
- **Overlaying Maps**

Vector and Raster

- Measuring Distance and Connectivity
- **Characterizing Neighborhoods**

Point by Point

Vector and Raster

"piercing - needle" approach

All locations in the coverage or grid are evaluated. The results extend to the spatial limits of the input maps.

OVERLAYING MAPS

Region-wide

Vector and Raster

cookie-cutter" approach

All locations in the coverage or grid are not necessarily evaluated. The results are constrained to the spatial nature of the reference map.

Average slope

Vector Only

Topologic <u>Overlay</u>

co-occurrence" mapping

Note the new NODE - topologically correct areas were created

OVERLAYING MAPS

Boolean <u>Overlay</u>

Vector and Raster

Intersection "Forest AND Soil A"

Union "Forest OR Soil A"

Negate "Forest, but NOT on Soil A"

 Exclusive Or "Forest XOR Soil A"

Note: Most relational database management systems support a "SWAP" function which selects the *currently unselected* items in the database. In the example above, the "SWAP" function would return the white areas after the hatched areas had initially been selected.

18

FUNDAMENTALS OF GIS

SPATIAL ANALYSES

Basic Functional Classes

- Reclassifying Maps
- **Overlaying Maps**
- Measuring Distance and Connectivity
- **Characterizing Neighborhoods**

DISTANCE MEASURES

Point to Point

Vector and Raster

"How far is it from A to B?" USEFUL, BUT LIMITED

Proximity

Raster Only

"How far from the forest is every location on the map?"

POWERFUL AND VERY DIFFICULT TO DO BY HAND

20

Simple (i.e. unweighted) PROXIMITY SURFACE

DISTANCE MEASURES

<u>Movement</u>

Raster Only

Start Location

Travel Time (Impedance = 0)

II<u>Movement</u>

Raster Only

A = gently sloping grassland B = steeply sloping forest C = gently sloping forest

1 = easy hiking2 = harder hiking 3 = difficult hiking

Start Location

Travel Time (with variable impedances)

Least-Cost Pathway Analyses

FUNDAMENTALS OF GIS

- Create a FRICTION map from one or more existing coverages
- Create a COST SURFACE map by executing the PROXIMITY analysis WEIGHTED BY the FRICTION map
- **Execute the LEAST-COST PATHWAY module** from one or more starter entities (points, lines or areas) to a destination. It will FIND the one (or more) routes that ACCUMULATE the least cost.

Cost Surface (Proximity x Friction)

Least-Cost Pathway

Least-Cost Pathway

CONNECTIVITY

Buffering

Vector and Raster

establish limited use zones

100 m 500 m

1st-order streams 200 m 2nd-order streams 3rd-order streams

SPATIAL ANALYSES

Basic Functional Classes

- Reclassifying Maps
- Overlaying Maps
- Measuring Distance and Connectivity
- **Characterizing Neighborhoods**

Raster Only

CHARACTERIZING NEIGHBORHOODS

30

WINDOW OPERATIONS

Raster Only

Slope

Slope Aspect

Maximum, Minimum

Mean, Median, Mode

Standard Deviation

Majority, **Minority**

Total Count

Diversity

Large number of Spatial Pattern or Texture Indexes (e.g. Dominance Index, Relative Richness, etc.)

Examples of Neighborhood Operations to Determine Spatial Pattern

Each of the following measures are calculated within a **3 x 3 pixel window** which systematically roves throught the data set. The outcome calculation is assigned to the center cell in the window (in the output file), then the window moves over one pixel along a row and recalculates a new value for that center-pixel location, etc.

Relative Richness = n / (nmax) x 100

where n = number of different classes present

Diversity = -sum[(p) x ln(p)]

where sum = the sum over all classes; p = proportion of the footprint in each class; ln = natural logarithm

Dominance = Hmax - H

where H = Diversity; Hmax = maximum diversity = ln(n); n = number of different classes present; ln = natural logarithm

from: Turner, M.G. 1989. Landscape Ecology: The Effect of Pattern on Process, Annu. Rev. Ecol. Syst., 20, 171-197.

Dominance Index Relative Richness