Lesson Objectives

- 1. Basic Terms with Polynomial Functions
- 2. Describe the End Behavior of a Polynomial
- 3. Overview of Polynomials through 5th Degree
- 4. Find Turning Points using Graphing Calculator
- 5. Determine Intervals of Increase and/or Decrease

-	 						
A. Basic Terms with Polynom	ial Functions						
Poly: many Nomial: term Polynomial: many terms							
: the h	ighest-exponent term of	a polynomial					
	O see a pro-						
Leading Coefficient : the coefficient found with the exponent (DEG							
:	where the graph of a pol-	ynomial changes from increasing to					
decreasing and vice-versa. Include	les local maximum ("hillto	op") and local minimum ("valley").					
A graph may or may not have tur	ning points.						
B. Describe End Behavior of a	a Polynomial						
Polynomials ALWAYS have a dom	nain of all real numbers (-	$-\infty,\infty$).					
They go on FOREVER, left to right	t.						
The graph of a polynomial is (no sharp points) and							
(r							
	_: what happens to a gra	ph when either:					
x gets very small ($x \rightarrow -\infty$	read as: "x approach	nes negative infinity")					
or							
x gets very large ($x \rightarrow \infty$ r	ead as: "x approaches po	ositive infinity")					
The end behavior of polynomials	falls into one of 4 catego	ories:					
 Left end rises and right end 	d rises (–)					
 Left end falls and right end falls (
 Left end rises and right end 	d falls (–)					
 Left end falls and right end rises (

The term containing the **leading coefficient** tells you how these ends ("tails") of the graph will look. You can perform a **Leading Coefficient (Term) Test** to figure this out.

Decision Chart (diagram) for End Behavior - The Leading Coefficient (Term) Test

- **EXAMPLE:** Complete parts (a) and (b) for $f(x) = -2x^3 2x^4 5$. [4.2.39]
 - (a) State the degree and leading coefficient of f.
 - **(b)** State the end behavior of the graph of *f*.
 - A. The graph of *f* falls both to the left and to the right.
 - B. The graph of f rises to the left and falls to the right.
 - C. The graph of *f* falls to the left and rises to the right.
 - D. The graph of f rises both to the left and to the right.

(a) (Circle the term that contains the degree)
$$f(x) = -2x^3 - 2x^4 - 5$$

The degree (highest exponent) of f is _____ and its leading coefficient is _____.

(b) Degree 4 is ______, which means the _____.

Coefficient – 2 is ______ (right tail _____),

so use _______ - _____. Correct choice is _____.

When in doubt - GRAPH IT OUT!!

- **EXAMPLE:** State the end behavior of the graph of f. $f(x) = 2x \frac{1}{6}x^3$ [4.2-20]
 - A. Up on left side, down on right side
 - B. Down on both sides
 - C. Up on both sides
 - D. Down on left side, up on right side

(Circle the term that contains the degree)

$$f(x) = 2x - \frac{1}{6}x^3$$

Degree is _____

End Behavior is: _____ – ____

(rises left and falls right) Correct answer:

When in doubt - GRAPH IT OUT!!

EXAMPLE: Pick which graph satisfies the given conditions.

[4.2-38]

Degree 5 with 1 x-intercept and a positive leading coefficient.

Degree 5 (odd = _____). Answers A and D are incorrect (ends are the _____).

Leading Coefficient positive (right tail ______). Answer C is incorrect (right tail is ______). Correct answer is _____.

C. Overview of Polynomials through 5th Degree

Function Type	Degree	(maximum) x-intercepts	(maximum) turning points	Example Graphs				
				$ \begin{array}{ccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		y = g(x) $y = 2$ $y = 3$ y		
				a > 0 y	a > 0		a < 0 $x = 0$	
				no x-intercepts $y = f(x) \qquad 3$ 1 -3 -3 -3	one x-intercept y $y = g(x)$ 1 -3 -1 -3 $0 > 0$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
				a < 0 3 x-intercepts 2 turning points	one x-inte no turning (has inflectio	points	a > 0 2 x-intercepts 2 turning points	
				y = f(x) 4 2 -6 -4 4 6 x	a < 0 2 x-intercepts 1 turning point (also has 1 inflection point)		y = h(x) $y = h(x)$ $y = h(x)$	
				a > 0 4 x-intercepts 3 turning points			a < 0 3 x-intercepts 3 turning points	
				$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-6 -4 -2	$y = g(x)$ $\begin{array}{c} 1 & 1 \\ 4 & 6 \end{array}$	y 8 6 4 4 4 4 4 4 4 4 4 4	
				a > 0 5 x-intercepts 4 turning points	a > 0 one x-intercept no turning points (has inflection point)		a < 0 2 x-intercepts 2 turning points (also has 1 inflection point)	
7 th Degree 10 th Degree n th Degree								

• **EXAMPLE:** Use the graph of the polynomial function shown to the right to complete the following. Let a be the leading coefficient of the polynomial f(x). [4.2.7]

- (b) State whether a > 0 or a < 0.
- (c) Determine the minimum degree of f.

(a) How many turning points does the graph have? _____

The x-intercept(s) is/are: (,0), (,0), (,0), (,0), (,0) (write as ordered pairs, separating separate answers with a comma)

- (b) State whether a > 0 or a < 0. Choose the correct answer below.
 - A. a < 0
 - B. a > 0

Since the **right** tail is ______, the leading coefficient (a) is ______. Answer: _____.

(c) The minimum degree of f must be _____ (tails are in ____ directions).

Since there are 5 *x*-intercepts, degree can't be lower than .

Since there are 4 turning points, degree still can't be lower than _____.

Therefore, the minimum degree of f is _____.

(This means that other, higher ODD-degree functions might look like the given graph. A 7^{th} -degree polynomial, or a 9^{th} -degree polynomial, or a 11^{th} -degree polynomial, etc. could look like that, too.)

D. Find Turning Points Using Graphing Calculator

• **EXAMPLE:** Approximate the coordinates of each turning point by graphing f(x) in the standard viewing rectangle.

$$f(x) = 2x^3 - 6x^2 - 2x + 5$$
 [4.2-14]

(go on to the next page)

E. Determine Intervals of Increase and/or Decrease

You **MUST** know ______ to find intervals of increase and/or decrease!

• **EXAMPLE:** Identify where f is increasing or where f is decreasing, as indicated.

$$f(x) = x^3 - 6x - 6$$
; decreasing [1.4-42]

(Use interval notation. Round your answer to two decimal places when appropriate.)

(go on to the next page)

The x-coordinates of the two turning points divide the domain (number line) into 3 regions:

With inequalities:

With interval notation:

(here is the problem again, for reference:)

• **EXAMPLE:** Identify where *f* is increasing or where *f* is decreasing, as indicated.

$$f(x) = x^3 - 6x - 6$$
; decreasing [1.4-42]

(Use interval notation. Round your answer to two decimal places when appropriate.)

Sources Used:

- 1. MyLab Math for *College Algebra with Modeling and Visualization*, 6th Edition, Rockswold, Pearson Education Inc.
- 2. Number Line Inequalities (modified) from Desmos, https://www.desmos.com/calculator/evxn1e1njv, © 2019, Desmos, Inc.
- 3. Wabbitemu calculator emulator version 1.9.5.21 by Revolution Software, BootFree ©2006-2014 Ben Moody, Rom8x ©2005-2014 Andree Chea. Website https://archive.codeplex.com/?p=wabbit