Question 3 [6+3=9 marks]

- a) For the following DFA:
 - (i) Give an equivalent minimal DFA. Don't forget to remove inaccessible states.
 - (ii) Give an equivalent regular expression.

δ	\overline{a}	b
$\rightarrow 1$	1	3
*2	6	3
3	5	7
*4	6	1
5	1	7
*6	2	7
. 7	5	3

b) Find an algorithm to test a given DFA \mathcal{M} whether the language it accepts is non-empty. Hence, or otherwise, obtain an algorithm to test, given DFS's \mathcal{M}_1 and \mathcal{M}_2 , whether $L(\mathcal{M}_1) = L(\mathcal{M}_2)$ or not.

Question 4 [2+2+2+2=8 marks]

- a) State and prove the Pumping Lemma for regular languages.
- b) Show that the following language is not regular.

$$\mathcal{L} = \{a^n b^m | 0 < n \le m\}.$$

- c) Write a short note on Myhill-Nerode relation and its applications.
- d) Prove or disprove the following:

$$(r+s)^* = ((r)^*(s)^*)^*,$$

here r and s are regular expressions. Here r=s means $L(r)=L(s),\ L(r)$ means language denoted by r.

——-The End———

Indian Institute of Technology, Kharagpur

Instruction: Answer all questions. Notations used are as explained in the class.

Question 1 [2+3=5 marks]

- a) Formally define a non-deterministic finite automation (NFA) and the language accepted by it.
- b) Construct a deterministic finite automation (DFA) accepting the following language:

 $\{w \in \{0,1\}^* : w \text{ has neither } 00 \text{ nor } 11 \text{ as a substring } \}.$

Question 2 [2+3+2+1=8 marks]

- a) Define regular expressions over a given alphabet Σ .
- b) Let $\mathcal{M} = \langle Q, \Sigma, \delta, q_1, F \rangle$ be a DFA accepting a regular language L. Suppose $Q = \{q_1, q_2, \ldots, q_n\}$. Define for $i, j > 0, k \ge 0$,

$$R_{i,j}^k = \{x \in \Sigma^* : \widehat{\delta}(q_i, x) = q_j \text{ and } \mathcal{M}$$

passes through no state q_l with $l > k$ as it reads $x\}$.

- (i) Express L in terms of the sets $R_{i,j}^k$.
- (ii) Assuming that each $R_{i,j}^k$ is regular, suppose the regular expression $r_{i,j}^k$ represents $R_{i,j}^k$ for each i, j, k. Find a regular expression for L.
- c) Let r and s be regular expressions. Consider the equation X = rX + s, where rX denotes the concatenation of r and X, and + denotes union. Under the assumption that the set denoted by r does not contain ϵ ,
 - (i) find the solution for X and
 - (ii) prove that it is unique.
- d) What is the solution if L(r) contains ϵ in Q2(c)?

