функан

дальневосточный федеральный университет институт математики и компьютерных технологий. 6-й семестр, 2024-2025 учебный год. лектор: чеботарёв александр юрьевич.

2025-02-28

метрическое пространство

определение

пусть X — некоторое множество.

если на этом множестве мы определим функцию $ho: X imes X o \mathbb{R}_+$

- 1. $\rho(x,y)=0 \Leftrightarrow x=y$ аксиома тождества
- 2. $\rho(x,y)=\rho(y,x)$ аксиома симметрии
- 3. $\rho(x,y) \leq \rho(x,z) + \rho(z,y)$ неравенство господина треугольника

пример

$$\rho(x,y) = \begin{cases} 0, x = y \\ 1, x \neq y \end{cases}$$

замечание

$$(1),(3) \Rightarrow (2)$$

определение

$$\left\{ x_{j}\right\} \subset X,\ a\in X-$$
 м.п.

$$x_j \overset{X}{\to} a \; \Leftrightarrow \; \rho \big(x_j, a \big) \to 0$$

или просто записывают как $\lim_X x_j = a$.

утверждение

$$\begin{cases} x_j \to a \\ x_j \to b \end{cases} \Rightarrow a = b$$

определение

шар:

$$B(a,r) = \{x \in X : \rho(x,a) < r\}$$

$$a \in X, r > 0$$

замкнутый шар:

$$\overline{B}(a,r) = \{x \in X : \rho(x,a) \leq r\}$$

определение

маша ограниченная, если её можно загнать в шар:

$$M \subset X$$
 — ограничено

$$\exists r>0, a\in X$$

$$M\subset B(a,r)$$

определение

$$a \in X$$
 — предельная точка $M \subset X$, если

$$\exists x_j \in M, \ x_j \to a$$

определение

замыкание множества M:

$$\overline{M} = M \cup \{$$
предельные точки $M\}$

$$M$$
 — замкнутное $\Leftrightarrow M = \overline{M}$

определение

a — внутренняя точка:

$$\exists r > 0, \ B(a,r) \subset M$$

определение

множество открыто, если все его точки внутренние.

определение

$$M$$
 плотно в $N \Leftrightarrow M \subset N \subset \overline{M}$

определение

$$M$$
 всюду плотно $\Leftrightarrow \overline{M} = X$

определение

точка a — граничная точка M

$$\Leftrightarrow$$

$$\forall r>0\ \exists x\in M, y\neq M,\ x,y\in B(a,r)$$

определение

 ∂M — множество всех граничных точек M, называется границей M.

вспомним, что такое функция

$$f: X \to Y$$

$$\forall x \in X \stackrel{f}{\rightarrow} ! \ y \in Y$$

пусть
$$M \in X$$

$$f(M) = \{y \in Y : \exists x \in M, y = f(x)\}$$
 — образ M

 $\operatorname{Im} f = f(X)$ — множество значений, образ f, ранг f

определение

X,Y— метрические пространства с метриками ρ_x,ρ_y

$$a \in X, f: X \to Y$$

f непрерывна в точке $a \Leftrightarrow f\big(x_j\big) \overset{Y}{\to} f(a) \ \forall x_j \overset{X}{\to} a$

определение

 $M\subset X$ f непрерывна на M если f непрерывна в любой точке M

пример

$$f(x)=
ho(x,a), a\in X$$
 — фиксирована

$$f:X o\mathbb{R}+$$
 непр

пусть $x_j \overset{X}{ o} x$, тогда (докажем) $\rho \big(x_j, a \big) o \rho (x, a)$

$$\rho\big(x_j,a\big) \leq \rho\big(x_j,x\big) + \rho(x,a)$$

$$\rho\big(x_j,a\big)-\rho(x,a)\leq \rho\big(x_j,x\big)\to 0$$

$$\rho(x_i, a) - \rho(x, a) \le 0$$

если записать неравенсвто в обратную сторону:

$$\left|\rho\big(x_j,a\big)-\rho(x,a)\right|\leq \rho\big(x_j,x\big)\to 0$$

гомеоморфизм:

функция $f:X \to Y$ называется гомеоморфизмом

1.
$$f(X)=Y, \ f(x_1)=f(x_2)\Rightarrow x_1=x_2$$
 т.е. $\exists f^{-1}\ Y\to X$

2. f, f^{-1} — непрерывные.

примеры метрических пространств:

пример 1

$$\mathbb{R}$$
 $\rho(x,y) = |x-y|$

пример 2

$$\mathbb{R}^{N} = \left\{ x = \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix}, x_{j} \in \mathbb{R} \right\} \qquad \rho(x,y) = \sqrt{\sum_{1}^{n} \left(x_{j} - y_{j} \right)^{2}}$$

в общем случае:

$$\rho_p(x,y) = \sum_1^n \left(\left| x_j - y_j \right|^p \right)^{\frac{1}{p}}, p \ge 1$$

$$\rho_{\infty}(x,y) = \max_{1 \leq j \leq n} \bigl| x_j - y_j \bigr|$$

пример 3

$$C[a,b] = \{x = x(t), t \in [a,b] \text{ непр}\}$$

$$\rho(x,y) = \text{max}_{a \leq t \leq b} |x(t) - y(t)|$$

тут уже расстояние между функциями.

равномерная сходимость:

$$\begin{array}{ccc} x_j \overset{C[a,b]}{\longrightarrow} x \; \Leftrightarrow \; \max_{[a,b]} \Bigl| x_{j(t)} - x(t) \Bigr| \to 0 \\ x_{j(t)} \overset{[a,b]}{\rightrightarrows} x(t) \end{array}$$

пример 4

$$L^{p}(a,b) = \left\{ x = x(t), t \in (a,b) : \int_{a}^{b} |x(t)|^{p} dt < +\infty \right\}, p \ge 1$$

пространство лебега с р инт. функций

$$\rho(x,y) = \left(\int_a^b |x(t) - y(t)|^p dt\right)^{\frac{1}{p}}$$

полнота

определение

 $\left\{x_j\right\}\subset X$ называется фундаментальной $\rho\big(x_j,x_k\big)\to 0,\ j,k\to\infty$

утверждение (теоремой называть сложно)

 $\left\{ x_{j}\right\}$ сходится \Rightarrow $\left\{ x_{j}\right\}$ фундаментальная

пусть $x_j \to a$

$$0 \le \rho(x_i, x_k) \le \rho(x_i, a) + \rho(x_k, a) \to 0$$

пример

фундаментальная, но нет предела:

$$\mathbb{Q} = \left\{ \frac{m}{n}, m \in \mathbb{Z}, n \in \mathbb{N} \right\}$$

$$x_k \coloneqq \left(1 + \frac{1}{k}\right)^k \in \mathbb{Q}$$

$$|x_k - x_j| \to, \ k, j \to \infty$$

потому что мы знаем, что эта последовательность сходится к ешке, но $e \notin \mathbb{Q}$.

метрическое пространство X называется полным, если любая фундаментальная последовательность сходистя.

например $\mathbb Q$ неполное, но существует процедура пополнения метрических пространств :)

 $\mathbb{R}^n,\ C[a,b],\ L^p(a,b)$ — полные метрические пространства.

принцип сжимающих отображений или принцип банахова

X - пмп (полное метрическое пространство)

 $K \subset X$

A:K o X— сжимающий оператор (сжатие)

 $\forall x_1,x_2 \in K \quad \rho(Ax_1,Ax_2) \leq q \rho(x_1,x_2) \quad (q \in (0,1)$ не зависит от $x_1,x_2)$

теорема (принцип банахова)

$$X$$
 — полное, $\overline{K} = K \in X$

$$A:K o K$$
 — сжатие

тогда:

 $\exists ! x_* \in K \quad Ax_* = x_* -$ неподвижная точка

1) пусть $x_0 \in K$, $x_{k+1} = Ax_k, k = 0, 1, 2, ... \Rightarrow \{x_k\} \in K$ фундаментальная $\Rightarrow \exists x_* = K$

$$x_*=Ax_*$$

2) единственность:

$$x = Ax, y = Ay$$

$$0 \le \rho(x,y) = \rho(Ax,Ay) \le q\rho(x,y) \Rightarrow \rho(x,y) = 0, x = y$$

компактность метрических пространств

рубрика «чебот держит в курсе»:

«чехособаки стырили золотой запас россии, а ещё они воюют против россии»

определение

множество $K \in X$ называют компактным множеством (компактом), если :

1)

$$\forall \big\{ x_j \big\} \in K \; \exists x_{j'} \to a \in K$$

2)

M — относительно компакт, если \overline{M} — компакт

утверждение

пусть M — относительно компактное, тогда M ограничено.

от противного. $x_1\in M$ окружаем шариком радиуса 1. либо всё множество попало в шарик, тогда оно ограничено. но мы то предполагаем противное, то есть неограниченное. значит есть $x_2: \rho(x_1,x_2)>1$. тогда сущестует $x_3\in M$, $\rho(x_1,x_3)>1$, $\rho(x_2,x_3)>1$. получается, если множество неограничено, то получим последовательность:

$$\{x_k\}\subset M, \rho\big(x_j,x_k\big)>1, j\neq k$$

существует подпоследовательность этого множества, которая сходится (не обязательно к элементу этого множества), а значит она фундаментальная.

$$\exists \big\{ x_{j'} \big\} \subset M \Rightarrow \rho\big(x_{j'}, x_{k'} \big) \to 0$$

получили противоречие.

компакт \Rightarrow ограничено + замкнуто.

в обратную сторону не всегда. покажем в следующий раз.

в качетсве пространства возьмём $X = \mathbb{R}^n$. $K \subset \mathbb{R}^n$. выясним, когда оно компактно.

оно компакто если и только если, если K ограничено + замкнуто.

в качестве второго примера, возьмём X=C[0,1], $\rho(x,y)=\max_{0\leq t\leq 1}|x(t)-y(t)|$ — метрика для функций.

$$M = \{x \in C[0,1] : x(0) = 0, x(1) = 1, |x(t)| \le 1\}$$

графически — это разные функции, значения которых не выходят за пределы [-1, 1]

но это не компактное множество (см. ниже).

непрерывные функции на компактах

теорема

пусть X,Y — метрические пространства. множество K(компакт) \subset X. $f:K \to Y$ (непрерывная).

тогда, образ непрерывный образ компакта будет компактом. то есть f(K) — компакт в пространтсве Y.

доказательство несколько строчек. берём последовательность $\left\{y_j\right\}\subset f(K)$, то есть $\exists x_j\in K,\ y_j=f\big(x_j\big)$. отсюда вытекает, что $x_{j^{`}}\to \hat{x}\in K$. тогда $f\big(x_{j^{`}}\big)\to f(\hat{x}).\ y_{j^{`}}\to f(\hat{x})\in f(K)$.

следствие — теорема вейерштрасса

 $Y=\mathbb{R}, K$ — компактно в $X. f:K
ightarrow \mathbb{R}$ непрерывна.

было вякнуто, что (см. ниже). сейчас разберём.

пример. некомпактность большой маши M

определим $f(x)_{\forall x \in M} = \int_0^1 x^2(t) \, \mathrm{d}t \ge 0$

ещё одна гейская шутка от чебота +1

 $\inf_M f = 0$, докажем это.

$$M\ni x_n(t)=t^k,\ k=1,2,...,\ t\in [0,1]$$

$$f(x_k) = \int_0^1 t^{2k} dt = \frac{1}{2k+1} \to 0$$

но если M — компакт, тогда:

$$\exists x_{\min} \in M, f(x_{\min}) = 0$$

отсюда вытекает, что:

$$\forall t \in [0,1] \ x_{\min}(t) = 0$$

$$\notin M$$

получили противоречие.

критерий компактности

 ${\cal X}$ - некоторое метрическое пространство.

определение

множество $N\subset X$ называется ε -сетью множества $M\subset X$:

если
$$\forall x \in M \ \exists y \in N \ \rho(x,y) < \varepsilon$$

на рисунке это значит, что все синие точки должны попасть в сеть:

определение

множество M называется вполне ограниченным, если

 $\forall \varepsilon > 0 \; \exists$ конечная ε -сеть M.

теорема хаусдорфа

X — полное метрическое пространство.

 \overline{K} — компакт, если и только если K вполне ограничено.

 \Rightarrow

 \overline{K} — компакт, берём $\forall \varepsilon>0.\ x_1\in K,\ x_2\in K,\ ...,x_j\in K.\ \big\{x_j\big\}\in K\exists x_j,\ \to \hat{x}.$

$$\varepsilon<\rho\big(x_{j^{\, {}^{\backprime}}},x_{k^{\, {}^{\backprime}}}\big)\to 0,\ j^{\, {}^{\backprime}},k^{\, {}^{\backprime}}\to\infty$$

следствие

 $\forall \varepsilon \; \exists \;$ компактная ε -сеть K, тогда \overline{K} — компакт.

линейные нормированные пространства

примеры:

- 1. \mathbb{R}^n , dim $\mathbb{R}^n = n$.
- 2. C[a, b], $\dim C[a, b] = \infty$ $\{1, t, t^2, ..., t^{n-1}\}.$
- 3. $L^p(a,b) = \left\{ x(t), t \in (a,b) : \int_a^b |x(t)|^p dt < +\infty \right\}$ $p \ge 1, \dim L^p(a,b) = +\infty.$

определение

пусть E — линейное пространство. $L \subset E$ — линейное многообразие, если

$$\forall x, y \in L, \ c_{1,2} \in \mathbb{R}(\mathbb{C}) \ c_1 x + c_2 y \in L$$

E — линейное пространство.

- $\forall x \in E \mapsto \|x\| > 0 \text{ (норма } x).$ 1. $x = 0 \Leftrightarrow \|x\| = 0$ 2. $\|\lambda x\| = |\lambda| \|x\| \ \forall \lambda \in \mathbb{R}(\mathbb{C})$ 3. $\|x + y\| \leq \|x\| + \|y\|, \ \forall x, y \in E$

тогда E называется линейным нормированным пространством.

оказывается, каждое нормированное пространство является метрическим, если определить расстояние (метрику) $\rho(x,y) = \|x-y\|$. аксиомы: неотрицательность, случай нуля, симметрия, неравенство треугольника.

поэтому все определения для метрических пространств годятся и для нормированных. в частности, определения шаров, определения сходимости:

$$x_i \stackrel{E}{\to} x \Leftrightarrow ||x_i - x|| \to 0$$

полное нормированное пространство по определению — банахово пространство.

примеры:

1. $E = \mathbb{R}^n$

$$||x||_p = \left(\sum_{j=1}^n |x_j|^p\right)^{\frac{1}{p}}, \ p \ge 1$$

неравенство юнга

$$\forall u, v > 0 \ \underline{uv \le \frac{1}{p}u^p + \frac{1}{q}v^q}, \ p > 1, \ \frac{1}{p} + \frac{1}{q} = 1(pq = p + 1)$$

неравенство гёльдера

$$\sum_{1}^{n} \left| a_{j} b_{j} \right| \leq \|a\|_{p} \|b\|_{q}, \ p > 1$$

неравенство минковского

$$\|x+y\|_p \leq \|x\|_p + \|y\|_p$$

$$\|x\|_{\infty} = \lim_{p \to \infty} \|x\|_p = \max_{1 \le j \le n} \left|x_j\right|$$