

Seq2Seq & Neural Machine Translation

By Sam Witteveen

Seq2Seq Model Uses

- Machine Translation
- Auto Reply
- Dialogue Systems
- Speech Recognition
- Time Series

- Chatbots
- Audio
- Image Captioning
- Q&A
- many more

Why Seq2seq

- Sequences preserve the order of the inputs
- They allow us to process information that has a time or order element to it
- They allow us to preserve information that couldn't be done done via normal neural networks

Seq2Seq Key Components

- Encoder takes info in, in time steps then creates a hidden state to be passed to the decoder
- Decoder takes the hidden state/states and uses that to predict the correct next step in the sequence
- Lots of data

Seq2Seq Key idea

The aim is to convert a sequence into a fixed size feature vector that encodes only the important information in the sequence while losing the unnecessary information.

Seq2Seq

Seq2Seq

Bidirectional Encoder

The BiLSTM Secret

- Bidirectional LSTMs generally work better than anything else for almost every NLP task
- Often the more BiLSTMs the better
- State of the art is usually BiLSTMs with Attention
- State of the art is still often lacking

Stacked

Bidirectional Encoder

Decoder

What is padding

No padding

Hello how are you today?

I am fine

Padded Length 8

'Hello' 'how' 'are' 'you' '?' '<pad>' '<pad>' '<pad>'

'l' 'am' 'fine''<pad>' '<pad>' '<pad>' '<pad>' '<pad>' '

All input sequences must be same length as each other.

All output sequences must be same length as each other.

Special Tokens

- <PAD> padded zero input
- <EOS> end of sentence
- <GO> telling the decoder to start
- <OOV> out of vocabulary
- <UNK> unknown
- <ES2> language to translate to

Lookup tables

- We can't pass words directly to the network
- We have to assign each word to an index number

```
'Hello', 'how', 'are', 'you', '?', '<pad>', '<pad>', '<pad>', '<pad>'
23,4,13,14,8,0,0,0

'Hello', 'you', '!','<pad>', '<pad>', '<pad>', '<pad>', '<pad>'
23,14,23,0,0,0,0,0
```

Lookup tables

- We often discard words that are used very little and replace them with unknown <UNK>
- The bigger the vocabulary we have the harder it will be at prediction time, so we want the words that are used the most.

Embeddings

- Embeddings allow us to extract more semantic meaning from the words
- Embeddings like Word2Vec have been trained on billions of words and have abstracted a lot of the meaning from those words.

Inputs

- Glove embedding = 100 dim
- Max sequence length = 30
- Batch size = 64
- Tensor input shape = (64,30,100)

Language Translation

- USD\$40 Billion a year
- Google translates over a 100 billion words a day
- Facebook has been working on it's own systems
- Ecommerce etc etc

Why is translation hard?

- The correct word to use depends on other words in the sentence
- Order of words can change in different languages
- Rules don't work, need to use statistical approaches
- Traditional SMT was really complicated

Why NMT

Progress in Machine Translation

[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal]

From [Sennrich 2016, http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf]

Any to Any in the past

- Google ~ 80 languages
- 6400 MT systems Bilingual systems
- Interlingua 80 Encoders 80 Decoders
 - <ES2> translate to Spanish
 - translate to Italian

NMT

Code time

Vanilla Seq2Seq Problems

- Works well on short sentences but not long ones
- LSTMs can remember out to about 30 steps
- Drops off very quickly after 30

Advanced Seq2Seq

Attention

Teacher Forcing

Peeking

Beam Search

Attention

Attention

Attention

- It even does better for short sentence length
- NMT without attention often generate sentences with good grammar but gets the name wrong or repeats itself
- Attention gives us like a fixed vector of RAM to score the words

What words are important?

Last Friday David's team went out but the others stayed in

Last Friday David's team went out but the others stayed in

Attention Scoring

Teacher Forcing

When training the network instead of letting the decoder pass its predictions to the next layer, pass the correct word/state

Peeking

Peeking

Decoder

Encoder

Keras Resources

Resources

- https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html
- http://distill.pub/2016/augmented-rnns/
- Chris Manning NLP with Deep Learning Stanford
- Quoc Le Seq2Seq Deep Learning: https://www.youtube.com/watch?v=G5RY_SUJih4
- Jeremy Howard's Advanced Deep Learning- http://course.fast.ai/ part2.html

Papers

- Grammar as a foreign language -Neubig
- Google's Neural Machine Translation System: Bridging the gap - Wu et al
- Google's multilingual MNT System: enabling zero-shot translation
- NMT and sequence to sequence models: a tutorial-Neubig

The End

Contact

email: <u>s@maclea.ai</u>

twitter: sam_witteveen

https://github.com/samwit/