764.0 =

$$n_1 = 1$$
 0.2
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3
 0.3

$$\alpha_j = \sum_j \omega_{ij} n_i + \theta_j$$

$$y_j = F(\alpha_j) = \frac{1}{1 + e^{-\alpha_j}}$$

$$a_{4} = \omega_{14} n_{1} + \omega_{24} n_{2} + \omega_{34} n_{3} + \theta_{4}$$

$$= 0.2 \cdot 1 + 0.4 \cdot 0 + -0.5 \cdot 1 + -0.4$$

$$= -0.3 - 0.4$$

$$= -0.7$$

$$y_4 = \frac{1}{1 + e^{+0.7}}$$
= 0.332

$$a_5 = -0.3 \cdot 1 + 0.1 \cdot 0 + 0.2 \cdot 1 + 0.2$$

$$= 0.1$$

$$a_6 = -0.3 \cdot 0.332 + -0.2 \times 0.2 + 0.1$$

$$= -0.04$$

$$y_6 = \frac{1}{1+e^{0.04}}$$
 $= 1 - 0.49$
 $= 0.49$
 $= 0.49$

Bockward pan:

$$S_6 = y_6 (1-y_6)(y-y_6)$$

 $= 0.49(0.51)(0.51)$
 $= 0.127$

$$S_{S} = 0.525 (1 - 0.526) 0.127x - 0.2$$

$$= -0.006$$

$$S_4 = y_4 (1 - y_4) \sum_{K} S_K \omega_{4K}$$

$$= 0.332 (1 - 0.332) 0.127 \times (-0.3)$$

$$= -0.008$$

$$\Delta W_{56} = 9.9 \times 0.127 \times 0.525$$

$$= 0.06$$

$$\omega_{50}$$
 her = ω_{50} + $\Delta \omega_{5.6}$.

= -0.2 + 0.05

= -0.14

$$\Delta \omega_{46} = \alpha S_6 y_4$$

= 0.9 x 0.127 x 0.332
= 0.04

$$EW_{46}New = W_{46}old + BW_{46}$$

$$= -0.3 + 0.04$$

$$= -0.26$$

古人日母。

$$\Delta \omega_{14} = \propto S_4 \pi_1$$

= $0.9 \times -0.008 \times 1$
= -0.0072

$$\Delta w_{34} = \alpha S_{4} n_{3}$$

$$= 0.4 \times -0.008 \times 1$$

$$= -0.0072$$

$$w_34$$
 new = w_34 eld + Δw_34
= $-6.5 - 0.0072$
= -0.5072

$$\Delta \omega_{15} = \alpha S_{5} N_{1}$$

$$= 0.9 \times -0.006 \times 1$$

$$= -0.0036$$

$$\omega_{15}$$
 new = ω_{15} old + $\Delta \omega_{15}$ = -0.3 - 0.0036
= 0.34 - 0.3036

$$\Delta \omega_{25} = \alpha S_5 n_2$$

$$= 0.9 \times -0.006 \times 0$$

$$= 0$$

no update

$$\Delta W_{35} = 0.9 \times -0.006 \times 1$$

$$= -0.0036$$

$$\omega_{75}$$
 ner = 0.2 - 0.0036
= 0.1964

i	j	wij	S:	n;	ď	updated wij
1	7 4	0.2	-0.008	1	0.9	0.1922
1	5	-0.3	-0.006	1	0.9	-0.3036
2	4	0.4				0.4
2	5	0.1	-0.006		0.9	p. (
3	4	-0.5	- 0.000	1	0.9	11164-0.5072
3	5	0.2	-9.006		0.9	0.1964
4	6	-0.3	0.127	0.332	0.9	-0.26
5	6	-0.2	0.127	0.525	0.9	-0.14

Oj new = Ojold + & Sj

θ; old βδ; α θ; her θ6 9.1 0.127 0.9 0.218 05 0.2 -0.006 0.9 0.1946 θ4 -0.4 -0.008 0.9 -0.4072

20BRS1094 Rishik Kumar

Importing Libraries

```
import numpy as np
import pandas as pd
from sklearn.neural_network import MLPClassifier
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
```

Importing data

In [4]: data=pd.read_csv('HR_comma_sep.csv')

Visualizing data

In [5]: da	data.head()
------------	-------------

Out[5]:		satisfaction_level	last_evaluation	number_project	average_montly_hours	time_spend_company	Work_accident
	0	0.38	0.53	2	157	3	0
	1	0.80	0.86	5	262	6	0
	2	0.11	0.88	7	272	4	0
	3	0.72	0.87	5	223	5	0
	4	0.37	0.52	2	159	3	0

In [7]: data.tail()

Out[7]:		satisfaction_level	last_evaluation	number_project	average_montly_hours	time_spend_company	Work_accid
	14994	0.40	0.57	2	151	3	
	14995	0.37	0.48	2	160	3	
	14996	0.37	0.53	2	143	3	
	14997	0.11	0.96	6	280	4	
	14998	0.37	0.52	2	158	3	

In [8]: data.size

Out[8]: 149990

In [9]: data.shape

Out[9]: (14999, 10)

In [10]: data.ndim

Out[10]: 2

PreProcessing

```
In [13]: label_encode = preprocessing.LabelEncoder()
         data['salary']=label_encode.fit_transform(data['salary'])
         data['sales']=label_encode.fit_transform(data['sales'])
In [15]: data.head()
Out[15]:
            satisfaction_level last_evaluation number_project average_montly_hours time_spend_company Work_accident
         0
                       0.38
                                    0.53
                                                     2
                                                                       157
                                                                                            3
                                                                                                          0
          1
                       0.80
                                    0.86
                                                     5
                                                                       262
                                                                                                          0
                                                                                            6
         2
                       0.11
                                    0.88
                                                     7
                                                                       272
                                                                                            4
                                                                                                          0
                                    0.87
                                                     5
                                                                       223
         3
                       0.72
                                                                                            5
         4
                       0.37
                                    0.52
                                                     2
                                                                       159
                                                                                            3
                                                                                                          0
In [16]: x=data[['satisfaction_level', 'last_evaluation', 'number_project', 'average_montly_hours', 'time
         y=data['left']
In [18]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
         Model
In [19]:
         clf = MLPClassifier(hidden_layer_sizes=(2,),random_state=1,verbose=True,learning_rate_init=0.9)
In [20]: clf.fit(x_train,y_train)
         Iteration 1, loss = 0.58423237
         Iteration 2, loss = 0.55316835
         Iteration 3, loss = 0.55527560
         Iteration 4, loss = 0.55256458
         Iteration 5, loss = 0.55143350
         Iteration 6, loss = 0.55178761
         Iteration 7, loss = 0.55703662
         Iteration 8, loss = 0.55289345
         Iteration 9, loss = 0.55424176
         Iteration 10, loss = 0.55471256
         Iteration 11, loss = 0.55316791
         Iteration 12, loss = 0.55158679
         Iteration 13, loss = 0.56315907
         Iteration 14, loss = 0.55408114
         Iteration 15, loss = 0.55226062
         Iteration 16, loss = 0.55492089
         Training loss did not improve more than tol=0.000100 for 10 consecutive epochs. Stopping.
Out[20]:
                                                 MLPClassifier
         MLPClassifier(hidden layer sizes=(2,), learning_rate_init=0.9, random_state=1,
                          verbose=True)
```

Testing

```
In [21]: ypred=clf.predict(x_test)
```

```
In [23]: accuracy_score(y_test,ypred)
Out[23]: 0.76633333333333333
In [24]: #Changing random state
         clf = MLPClassifier(hidden_layer_sizes=(2,),random_state=5,verbose=True,learning_rate_init=0.9)
In [25]: clf.fit(x_train,y_train)
         Iteration 1, loss = 1.88619726
         Iteration 2, loss = 0.55200770
         Iteration 3, loss = 0.55201958
         Iteration 4, loss = 0.55237469
         Iteration 5, loss = 0.55392407
         Iteration 6, loss = 0.55163944
         Iteration 7, loss = 0.55246462
         Iteration 8, loss = 0.55376748
         Iteration 9, loss = 0.55204566
         Iteration 10, loss = 0.55375577
         Iteration 11, loss = 0.55434810
         Iteration 12, loss = 0.55228695
         Iteration 13, loss = 0.55223622
         Iteration 14, loss = 0.55365294
         Iteration 15, loss = 0.55310372
         Iteration 16, loss = 0.55694861
         Iteration 17, loss = 0.56117006
         Training loss did not improve more than tol=0.000100 for 10 consecutive epochs. Stopping.
Out[25]:
                                                MLPClassifier
         MLPClassifier(hidden layer sizes=(2,), learning rate init=0.9, random state=5,
                         verbose=True)
In [26]: ypred=clf.predict(x_test)
         accuracy_score(y_test,ypred)
Out[26]: 0.76633333333333333
```