Lecture 11 Segment 2

Details: Centering and dummy coding

- To center means to put in deviation form
 - $X_C = X M$
- Why center?
 - Two reasons
 - Conceptual
 - Statistical

- Conceptual reason
 - Suppose
 - Y = child's language development
 - X1 = mother's vocabulary
 - X2 = child's age

- Conceptual reason
 - The intercept, B₀, is the predicted score on Y when all X are zero
 - If X = zero is meaningless, or impossible, then B_0 will be difficult to interpret
 - If X = zero is the average then B_0 is easy to interpret

- Conceptual reason
 - The regression coefficient B₁ is the slope for X1 assuming an average score on X2
 - No moderation implies that B₁ is consistent across the entire distribution of X2

- Conceptual reason
 - However, moderation implies that B₁ is NOT consistent across the entire distribution of X2
 - Where in the distribution of X2 is B₁ most representative?
 - Let's look at this graphically

Uncentered, Additive

 $\dot{Y} = 2 + .2X1 + .6X2$

Centered, Additive

 $\dot{Y} = 6 + .2X1 + .6X2$

Uncentered, Moderation

 $\acute{Y} = 2 + .2X1 + .6X2 + .4X1*X2$

Centered, Moderation

- Statistical reason
 - The predictors, X1 and X2, can become highly correlated with the product, X1*X2
 - Can result in multi-colinearity

Centering for moderation: Summary

- Center predictors
- Run sequential regression (2 steps)
 - Step 1: Main effects
 - Step 2: Moderation effect
 - Evaluate B for PRODUCT or ΔR^2 from Model 1 to Model 2

Dummy coding

• A system to code categorical predictors in a regression analysis

Dummy coding

- Example
 - IV: Area of research
 - Cognitive
 - Social
 - Neuroscience
 - Cognitive neuroscience
 - DV: # of publications

Dummy coding

	C1	C2	C3
Cognitive	0	0	0
Social	1	0	0
Neuro	0	1	0
Cog neuro	0	0	1

Data file

Case	Group	DV	C1	C2	C3
1	Cog	61	0	0	0
2	Soc	78	1	0	0
3	Neuro	47	0	1	0
4	CN	65	0	0	1

Regression model

•
$$\hat{\mathbf{Y}} = \mathbf{B}_0 + \mathbf{B}_1(\mathbf{C}1) + \mathbf{B}_2(\mathbf{C}2) + \mathbf{B}_3(\mathbf{C}3)$$

Coefficients

		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
Model		В	Std. Error	Beta		
1	(Constant)	93.308	6.495		14.366	.000
	Social (C1)	-32.641	10.155	514	-3.214	.003
	Neuro (C2)	10.192	11.558	.138	.882	.384
	Cog Neuro (C3)	-23.183	10.523	351	-2.203	.035

Descriptive Statistics Dependent Variable: Publications

Area	Mean	Std. Deviation	N
Cognitive	93.3077	29.48272	13
Cog Neuro	70.1250	21.82029	8
Neuro	103.5000	23.64530	6
Social	60.6667	11.12430	9
Total	81.6944	27.88017	36

Unweighted effects coding

	C 1	C2	C3
Cognitive	-1	-1	-1
Social	1	0	0
Neuro	0	1	0
Cog neuro	0	0	1

		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
Model		В	Std. Error	Beta		
1	(Constant)	81.900	4.055		20.198	.000
	Social (C1)	-21.233	6.849	598	-3.100	.004
	Neuro (C2)	21.600	7.883	.550	2.740	.010
	Cog Neuro (C3)	-11.775	7.122	322	-1.653	.108

Weighted effects coding

	C 1	C2	C3
Cognitive	$-n_s/n_c$	$-n_{\rm n}/n_{\rm c}$	$-n_{\rm cn}/n_{\rm c}$
Social	1	0	0
Neuro	0	1	0
Cog neuro	0	0	1

© 2012 Andrew Conway