2. FIELD THEORY FRAMEWORK

As explained in the introduction, the vacuum state in QCD may be pictured as a colordielectric medium characterized by long-range order parameters. Consider the vacuum expectation values (vev's) of the normal-ordered products of color-singlet and Lorentz scalar (pseudoscalar) functions χ (U) [8, 15]

$$\langle 0 | \chi(F_a^{\mu\nu}) | 0 \rangle \; ; \qquad \langle 0 | U(\psi_i, \overline{\psi}_i) | 0 \rangle \; ,$$
 (1)

where $F_a^{\mu\nu}$ is the usual SU(3) field strength tensor, ψ , $\overline{\psi}$ the quark fields, and $\chi(0)$, U(0) is set to be zero. For instance, χ can be $f_{abc}F_{\mu\nu}^aF_{\nu\lambda}^bF_{\lambda\mu}^c$ or $(F_{\mu\nu}^aF_{\mu\nu}^a)^2$, or other combinations. Similarly, U may be composed of $Tr[(\overline{\psi}_i\psi_j)^2]$, $Tr[(\overline{\psi}_i\overline{\psi}_j\psi_k\psi_l)^2]$, etc.. These vev's are physical quantities that characterize the structure of the QCD vacuum [16] and are related to the measurable gluon and quark condensates, respectively.

Clearly, if we take the long wavelength limit $L \to \infty$ and simultaneously let the coupling strength g_s among the fields tend to zero, we have in general the non-comutativity of the double limits

$$\lim_{L \to \infty} \lim_{g_s \to 0} \langle 0 | \chi(F_a^{\mu\nu}) | 0 \rangle = 0 \qquad \neq \quad \lim_{g_s \to 0} \lim_{L \to \infty} \langle 0 | \chi(F_a^{\mu\nu}) | 0 \rangle$$

$$\lim_{L \to \infty} \lim_{g_s \to 0} \langle 0 | U(\psi_i, \overline{\psi}_j) | 0 \rangle = 0 \qquad \neq \quad \lim_{g_s \to 0} \lim_{L \to \infty} \langle 0 | U(\psi_i, \overline{\psi}_j) | 0 \rangle , \qquad (2)$$

with $\langle 0|F_a^{\mu\nu}|0\rangle = 0 = \langle 0|\psi_i|0\rangle$. Eq. (2) is a pure quantum phenomenon and a typical property of phase transitions. It implies that there is long-range order in the vacuum which can be characterized by the operator functions χ and U.

In order to embody this concept into a field theory formulation, let us define the distance measure L for the space-time separation between two points r and r' $(r^{\mu} = (t, \vec{r}))$:

$$L := \sqrt{(r - r')_{\mu}(r - r')^{\mu}} , \qquad (3)$$

and introduce a characteristic length scale L_c that separates short distance $(L \ll L_c)$ and long range $(L \gtrsim L_c)$ physics in QCD. The scale L_c can be associated with the confinement length of the order of a hadron radius, as we will specify more precisely later.