Constructions

EGMOTC 2023 - Rohan

December 27, 2023

Problems

Problem 1

ISL 1995: Let a and b be non-negative integers such that $ab \geq c^2$, where c is an integer. Prove that there is a number n and integers $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n$ such that

$$\sum_{i=1}^{n} x_i^2 = a, \sum_{i=1}^{n} y_i^2 = b, \text{ and } \sum_{i=1}^{n} x_i y_i = c$$

Problem 2

ELMO: Sahil chooses a functional expression* E which is a finite nonempty string formed from a set x_1, x_2, \ldots of variables and applications of a function f, together with addition, subtraction, multiplication (but not division), and fixed real constants. He then considers the equation E = 0, and lets E denote the set of functions E where E such that the equation holds for any choices of real numbers E such that the equation holds for any choices of real numbers E such that the equation holds for any choices of real numbers E such that the equation holds for any choices of real numbers E such that the equation holds for any choices of real numbers E such that the equation holds for any choices of real numbers E such that the equation holds for any choices of real numbers E such that the equation holds for any choices of real numbers E such that the equation holds for any choices of real numbers E such that the equation holds for any choices of real numbers E such that the equation holds for any choices of real numbers E such that the equation holds for any choices of real numbers E such that the equation holds for any choices of real numbers E such that the equation holds for any choices of real numbers E such that the equation holds for any choices of real numbers E such that the equation holds for any choices of real numbers E such that the equation holds for any choices of real numbers E such that the equation holds for any choices of real numbers E such that the equation holds for any choices of real numbers E such that E is the equation holds for any choices of real numbers E such that E is the equation holds for any choices of real numbers E is the equation holds.

$$f(2f(x_1) + x_2) - 2f(x_1) - x_2 = 0,$$

then S consists of one function, the identity function.

- 1. Let X denote the set of functions with domain \mathbb{R} and image exactly \mathbb{Z} . Show that Sahil can choose his functional equation such that S is nonempty but $S \subseteq X$.
- 2. Can Sahil choose his functional equation such that |S| = 1 and $S \subseteq X$?

*These can be defined formally in the following way: the set of functional expressions is the minimal one (by inclusion) such that (i) any fixed real constant is a functional expression, (ii) for any positive integer i, the variable x_i is a functional expression, and (iii) if V and W are functional expressions, then so are f(V), V + W, V - W, and $V \cdot W$.