総合微分幾何講義メモ

石井大海

2014年12月11日

この文書は、大学院で受けた**総合微分幾何**(synthetic differential geometry; SDG)の講義のノートを個人的に電子化したものです。いちおう内容の一貫性については気を付けたつもりですが、多分に誤りを含む可能性があることをお断りしておきます。そうした誤りの責任はすべて筆者によるものです。

また,以下での議論は厳密には全て実際には直観主義的な(排中律の成り立たない)トポスで行われている議論です.それは,以下で展開される解析学は $d^2=0\land d\neq 0$ なる冪零無限小**実数** d の存在を前提としているからで,排中律の下でこのような実数 d が存在したとすると $d=0\land d\neq 0$ となり矛盾するからです.ですので,講義中特に注意はありませんでしたが,以下の議論では背理法による証明が用いられていないことに注意してください.

1 冪零無限小による滑らか無限小解析

1.1 冪零無限小解析入門 (第一~二講)

微分を定義する方法には二種類の流儀がある:

- 1. ε - δ 論法によってまず極限の概念を定義し、極限の概念を使って微分を定義する。
- 2. $d^2 = 0, d \neq 0$ なる**冪零無限小**を用いて定義する.

前者は普段我々が数学をする際に用いている方法で、これは 19 世紀以後数学の厳密化ということが云われるように成ってから主流になった方法である。対して、17、18 世紀の数学では後者の冪零無限小を使って定義されていた。以下では、この 17、18 世紀の方法を用いて解析学および微分幾何を展開していく。

勿論, 通常の数学では $d^2=0$ なら d=0 になってしまう訳だが, 以下では仮に $d^2=0 \land d \neq 0$ を満たすような d が潤沢に存在したとして議論を進めていくことになる。 つまり,

$$D_n := \{ d \in \mathbb{R} : d^{n+1} = 0 \}, D := D_1$$

としたとき、通常の数学なら $D = \{0\}$ となってしまうが、以下では $D \neq \{0\}$ であるとして話をすすめる。また、次のような公理の下で微積分が行われていると考える:

Def. 1 (Kock-Lawvere の公理). 任意の関数 $\varphi: D \to \mathbb{R}$ に対し、次が成立する:

$$\exists! a \in \mathbb{R} \forall d \in D \, \varphi(d) = \varphi(0) + ad$$

この時, 一般の関数 $f: \mathbb{R} \to \mathbb{R}$ の x での微分は次のように定義される:

Def. 2. $f: \mathbb{R} \to \mathbb{R}$ とする. この時, $\phi(d) = f(x+d)$ により $\phi: D \to \mathbb{R}$ を定めれば, Kock-Lawvere の公理より, $\forall d \in D \ f(x+d) = f(x) + ad$ を満たすような $a \in \mathbb{R}$ が一意に存在する. この a を f の x における微分係数と呼び, f'(x) と書く.

このような立場に立脚すると、様々な微分公式の導出が著しく簡単になる。たとえば、積の微分を通常の極限による定義で導出しようとすると、

$$\frac{f(x+h)g(x+h) - f(x)g(x)}{h} = \frac{f(x+h)g(x+h) - f(x+h)g(x) + f(x+h)g(x) - f(x)g(x)}{h}$$

$$= f(x+h)\frac{g(x+h) - g(x)}{h} + \frac{f(x+h) - f(x)}{h}g(x)$$

$$\xrightarrow{h \to 0} f(x)g'(x) + f'(x)g(x)$$

というような式変形をすることになる。このような操作はいちどやり方を見れば出来るようにはなるが、何も 知らずにパッとこれをやれと云われるとヒラメキを必要で簡単なことではない。

対して冪零無限小を使った議論では,次のようになる:

$$f(x+d)g(x+d) = \{f(x) + f'(x)d\}\{g(x) + g'(x)d\}$$
 (: Kock-Lawvere)
= $f(x)g(x) + f(x)g'(x)d + f'(x)g(x)d + f'(x)g'(x)\underbrace{d^2}_{=0}$
= $f(x)g(x) + \{f(x)g'(x) + f(x)g'(x)\}d$

よって微分の定義から

$$(fq)'(x) = f(x)q'(x) + f(x)q'(x).$$

こちらの証明では、定義通りに展開して $d^2=0$ を適用するだけで簡単に公式が導けてしまう。

続いて合成関数の微分公式を証明してみよう。まずは極限を使った流儀によって、一般に正しいとされがち x^{*1} 証明を見てみる:

$$\frac{g(f(x+h))-g(f(x))}{h} = \frac{g(f(x+h))-g(f(x))}{f(x+h)-f(x)} \cdot \frac{f(x+h)-f(x)}{h} \xrightarrow{h \to 0} g'(f(x))f'(x)$$

この変形も技巧的である. 対して, 冪零無限小を使って導出してみよう.

$$g(f(x+d)) = g(f(x) + f'(x)d)$$

ここで一般に $a \in \mathbb{R}, d \in D$ なら $(ad)^2 = a^2 d^2 = 0$ より $ad \in D$ となるので, f'(x)d で一つの冪零無限小と思えるから,

$$= g(f(x)) + g'(f(x))f'(x)d$$

^{*1} 面倒臭いから厳密にはやらない。どこが間違っているのか考えてみよう!

よって微分の定義から

$$(g \circ f)'(x) = g'(f(x))f'(x)$$

このような形で、やはりかなりシンプルに証明することが出来る。

1.1.1 Taylor **展開**

更に、Taylor 展開の理論も冪零無限小解析では非常に簡単になる.

まず、 $D_n := \{d \in \mathbb{R} : d^{n+1} = 0\}$ とおけば、 $d \in D_n, d' \in D_m \Longrightarrow d + d' \in D_{n+m}$ かつ $d_1, \ldots, d_n \in D \Rightarrow d_1 + \cdots + d_n \in D_n$ となることが示せる.この事と、基本対称式に関する基本的な事実を押さえておけば、次の定理は n についての帰納法ですぐに示せる:

補題 1. $\varphi_n^k(x_1,\ldots,x_n)$ を k 次の n 変数基本対称式とし、 $d_i\in D$ とする時、次が成立:

$$\varphi_n^k(d_1,\ldots,d_n) = \frac{(d_1+\cdots+d_n)^k}{k!}$$

定理 1 (Taylor の定理). $f: \mathbb{R} \to \mathbb{R}$ について次が成立する:

$$f(x+d_1+\cdots+d_n)$$

$$= f(x) + f'(x)\varphi_n^1(d_1,\ldots,d_n) + f''(x)\varphi_n^2(d_1,\ldots,d_n) + \cdots + f^{(n)}(x)\varphi_n^n(d_1,\ldots,d_n)$$

$$= f(x) + \frac{d_1+\cdots+d_n}{1!}f'(x) + \frac{(d_1+\cdots+d_n)^2}{2!}f''(x) + \cdots + \frac{(d_1+\cdots+d_n)^n}{n!}f^{(n)}(x).$$

これは、無限級数の Taylor 展開に対応する定理になっている.

1.2 一般の無限小解析:一般化 Kock-Lawvere の定理 (第三. 四講)

ここまで無限小解析を行なうに当って、次の Kock-Lawvere の公理を前提としてきた:

公理 (Kock-Lawvere の公理). $\forall f: D \to \mathbb{R} \exists ! a \in \mathbb{R} \forall d \in D [f(d) = f(0) + ad]$

この公理は D という特定の無限小空間についての公理になっている。しかし、今後解析学や微分幾何を展開していくに当って、これを**一般の無限小空間**に一般化していく事を考える。その為には、

- 無限小空間とは何か?
- この等式の主張は何か?

という事を考える必要がある。D 以外の無限小空間の例としては, $D_n := \{d \in \mathbb{R}: d^{n+1} = 0\}$ などがあるが,これらの特徴を代数的構造から捉えることを以下の目標としよう.

とはいえ、まずは一番基本的な $D=D_1$ の場合から出発する。簡単な考察により、Kock-Lawvere の公理は次の主張と同値である:

公理 (Kock-Lawvere の公理その 2). $f(\varepsilon) = b + a\varepsilon \in \mathbb{R}[X]/(X^2)$ に対し、関数 ($\lambda d \in D.f(d) = b + ad$) $\in \mathbb{R}^D$ を与える \mathbb{R} -加群の準同型は、実際には同型となる(但し $\varepsilon = X + (X^2)$).

それでは、剰余環 $\mathbb{R}[X]/(X^2)$ と D の違いは何だろうか?ここで、 \mathbb{R} -加群の圏で次の図式を考えよう:

図式のような \hat{f} により \mathbb{R} -準同型 f が分解出来る必要十分条件は, $f(X)^2=0$ となることである.また,f は X の行き先を決めれば決まるので,これを可換代数の記号を使って言い換えれば,

$$\operatorname{Spec}_{\mathbb{R}}\left(\mathbb{R}[X]/(X^2)\right) = \left\{ \ d \in \mathbb{R} : d^2 = 0 \ \right\} = D$$

となる。即ち,無限小空間 D は \mathbb{R} -代数 $\mathbb{R}[X]/(X^2)$ の $\mathrm{Spec}_{\mathbb{R}}$ として実現出来ることがわかる。同様に,一般 の D_n についても,

$$\operatorname{Spec}_{\mathbb{R}}\left(\mathbb{R}[X]/(X^{n+1})\right) = D_n$$

という関係が成立している。よって, $\mathbb{R}[X]/(X^n)$ らに共通の性質を取り出して,その Spec が同型になる,という形で定式化できそうである。そのような代数を Weil 代数と呼び,些か天下り的ではあるが,次で定義される:

- **Def. 3.** \mathbb{R} -加群 \mathbb{R}^{n+1} 上に二項演算 $m:\mathbb{R}^{n+1}\times\mathbb{R}^{n+1}\to\mathbb{R}^{n+1}$ が定義されている時, (\mathbb{R},m) を**有** 限次元拡張可換ユニタリ \mathbb{R} -代数 (augmented commutative unitary \mathbb{R} -algebra of finite dimension) と呼ぶ:
 - (i) m は双線型かつ結合的, 可換
 - (ii) $(1,0,\ldots,0)$ が m の単位元

この時、射影 $\pi_0: (a_0, a_1, \ldots, a_n) \mapsto (a_1, \ldots, a_n)$ は \mathbb{R} -加群準同型であり、その核

$$\ker \pi_0 = J = \{ (0, a_1, \dots, a_n) : a_i \in \mathbb{R} \}$$

を拡張イデアル (the ideal of augmentation) と呼ぶ.

• W が Weil 代数 control of the control of the con

- $f: W_1 \to W_2$ が Weil 代数の準同型 $\stackrel{\text{def}}{\Longleftrightarrow} f$ は \mathbb{R} -代数の準同型であり、 $f[J_1] \subseteq J_2$.
- Weil 空間 W について、 $\operatorname{Spec}_{\mathbb{R}} W$ をその無限小空間と呼ぶ.

簡単な計算により、今までに見た $\mathbb{R}[X]/(X^{n+1})$ が Weil 代数であることは簡単に示せる。例えば、 $\mathbb{R}[X]/(X^2)$ の場合、 $f \in \mathbb{R}[X]/(X^2)$ は $f(\varepsilon) = a + b\varepsilon$ の形に書けるので、これを (a,b) と同一視して演算を入れてやればいい。これら対応する無限小空間が D_n であったので、 D_n の形以外の例を考えてみよう。

例えば、 $\mathbb{R}[X,Y]/(X^2,Y^2)$ は Weil 代数であり、対応する無限小空間は $\operatorname{Spec}_{\mathbb{R}}(\mathbb{R}[X]/(X^2,Y^2)) = D \times D = \{(x,y) \in \mathbb{R}^2 : x^2 = y^2 = 0\}$ となる。他にも、Weil 代数 $\mathbb{R}[X,Y]/(X^2,XY,Y^2)$ を考えれば、これに対応する無限小空間は $D(2) := \{(d_1,d_2) \in D \times D : d_1d_2 = 0\}$ となる。

こうした例からも明らかなように、Weil 代数は $\mathbb R$ を有限個の冪零無限小で拡張したような代数を形式化したものになっている。より詳しくは、「通常の」 $\mathbb R$ の元を表すのが第 0 成分であり、残りは夾雑物のスカラー倍の有限和になっているが、余り「実数」と異なる代数的な性質を持たないようになっている。これが augmented commutative unitary $\mathbb R$ -algebra であるという要請の意味である。対して、それらの間には何らかの「冪零的」な代数的な関係が入っている、というのが拡張イデアルが冪零であるという Weil 代数の条件に対応しているのである。

以上を踏まえれば、Kock-Lawvere の公理は次のように一般化出来る:

公理 (一般化 Kock-Lawvere の公理). 任意の Weil 代数 W に対し次の対応は Weil 代数の同型である:

$$f: W \longrightarrow \mathbb{R}^{\operatorname{Spec}_{\mathbb{R}} W}$$

$$\cup \qquad \qquad \cup$$

$$a \longmapsto \lambda \left(f \in \operatorname{Spec}_{\mathbb{R}}(W) \right) . f(a)$$

2 総合微分幾何

2.1 準余極限図式

前節までで無限小空間を体系的に導入出来たので、以下一般化 Kock-Lawvere の公理を前提として総合微分幾何を組み立てていく。総合微分幾何で対象とする空間は、微小線型空間 (microlinear space) と呼ばれる。微小線型空間の定義は非常に抽象的に与えられるので、まずはそれに必要な圏論的な定義から始める事にする。

Def. 4. 無限小空間の圏の図式 $\mathcal D$ が、Weil 代数の圏の極限図式の反変函手 $\operatorname{Spec}_{\mathbb R}(-)$ による像になっている時、 $\mathcal D$ は**準余極限図式** $(quasi\text{-}colimit\ diagram)$ であると云う。

Kock-Lawvere の公理より, $\mathcal D$ が準余極限図式であることと, $\mathcal D$ の $\mathbb R^{(-)}=\mathrm{Hom}(-,\mathbb R)$ による像が極限図式であることは同値である.

準余極限図式を用いた議論はよく見られるので、例を一つ見て慣れておこう.

例 1. $m(d_1, d_2) = d_1 d_2$ とおけば、以下の図式は準余極限図式である:

$$D \times D \times D \xrightarrow{\underset{\text{id} \times m}{m \text{ id}}} D \times D \xrightarrow{m} D$$

一般化 Kock-Lawvere の公理があるので、次の図式が極限図式(特にイコライザ)であることを示せばよい:

$$\mathbb{R}^{D\times D\times D} \xleftarrow{\mathbb{R}^{(m\times \mathrm{id})}}_{\mathbb{R}^{(\mathrm{id}\times m)}} \mathbb{R}^{D\times D} \xleftarrow{\mathbb{R}^m} \mathbb{R}^D$$

今,我々はイイ感じのトポスで議論をしているので、点を取って議論を進めることが出来る。よって、示すべきことは次の事である:

 $\forall f: D \times D \to \mathbb{R} \ [\forall (d_1, d_2, d_3) \in D^3, f(d_1 d_2, d_3) = f(d_1, d_2 d_3) \Longrightarrow \exists !g: D \to \mathbb{R}, f(d_1, d_2) = g(d_1 d_2)]$

実際,これが示せれば上の図式がイコライザであることが言える. $\mathbb{R}^{m imes id} \circ h = \mathbb{R}^{id imes m} \circ h$ となるような $h: Z \to \mathbb{R}^{D imes D}$ があったとき, $\mathbb{R}^m \circ \varphi = h$ となるような射 $\varphi: Z \to \mathbb{R}^D$ が一意に存在することを示せばよい.まず,前提を各点ごとに考えれば $\forall z \in Z, (\mathbb{R}^{m imes id})(h(z)) = (\mathbb{R}^{id imes m})(h(z))$ ということであり,従って $\forall z \in Z \forall (d_1, d_2, d_3) \in D^3, h(z)(d_1d_2, d_3) = h(z)(d_1, d_2d_3)$ である.よって上の条件から $h(z) = g \circ m$ となるような $g: D \to \mathbb{R}$ が一意に存在する.よって,各 $z \in Z$ に対し $g \in \mathbb{R}^D$ を割り当てる対応を φ とすれば,これが $Z \to \mathbb{R}^D$ の一意な射となることがわかる.こうした議論は準余極限図式である証明で頻出なので,以下では断りなくこの論法を用いる.

では、上の条件を示そう.一般化 Kock-Lawvere の公理から、任意の $f:D\times D\to \mathbb{R}$ は $f(d_1,d_2)=a_0+a_1d_1+a_2d_2+a_{12}d_1d_2$ という形で書けているとして良い.この時, $f\circ (m\times \mathrm{id})=f\circ (\mathrm{id}\times m)$ とすれば, $f(d_1d_2,d_3)=a_0+a_1d_1d_2+a_2d_3+a_{12}d_1d_2d_3$ かつ $f(d_1,d_2d_3)=a_0+a_1d_1+a_2d_2d_3+a_{12}d_1d_2d_3$ であるので,辺々見比べれば $a_1=a_2=0$ でなくてはらならない.また,この条件を満たすなら確実に $f\circ (m\times \mathrm{id})=f\circ (\mathrm{id}\times m)$ となる.よって,以下 $f(d_1,d_2)=a+bd_1d_2$ という形に書けているとしてよい.あとは,この条件の下で $f(d_1,d_2)=g(d_1d_2)$ となるような $g:D\to \mathbb{R}$ が一意に存在する事が示せればよい.しかし,Kock-Lawvere よりすべての $g:D\to \mathbb{R}$ は g(d)=c+g'(0)d の形に一意に表せたことを思い出せば,これは明らかである.

以下の議論では、ある無限小空間の図式が準余極限図式であることを用いて、様々な演算や概念を定義していく. 逆に云えば、そうした操作を許すような対象こそ、我々が以下で扱う「図形」である:

 $m{Def. 5 (微小線型空間).}~M$ が微小線型空間 $(microlinear\ space) \stackrel{ ext{def}}{\Longleftrightarrow}$ 任意の準余極限図式 $\mathcal D$ について、その $M^{(-)}$ による像が極限図式となる。