von-NeumannArchitektur und Struktur des Speichers

John v. Neumann

- Geb. 1903 in Budapest als János Neumann von Margitta
- Universitätskarriere in Deutschland / Schweiz (Mathematik, Quantenmechanik)
- 1933 emigriert in die USA (Princeton University)
- ab 1943 Mitarbeit im Manhattan-Projekt (Entwicklung der Atombombe)

- 1945 Entwicklung der "Von-Neumann-Architektur": Modell der meisten heutigen Computer
- Gest. 1957 in Washington, D.C.

Von-Neumann-Rechner

Von-Neumann-Rechner 3

Speicher (Random Access Memory)

Der Speicher eines Computers bietet eine lange Reihe von **Speicherzellen** für Zahlen. Eine Zelle hat Platz für 1 byte.

Jede Zelle hat eine **Adresse**, angefangen bei 0. Mithilfe der Adresse kann der Prozessor Werte in die Zelle schreiben oder von dort lesen.

Speicher (RAM)		
Adresse	Daten	
1000	0000	
1004	0000	
1008	0000	
1012	0000	
1016	0000	
1020	0000	

Speicher (Random Access Memory)

Was die Zahlen bedeuten wird erst durch die Interpretation im Programm festgelegt.

Beispiele:

- 2 byte = 1 Buchstabe (Unicode)
- 4 byte = 1 Integer (32-bit)
- 4 byte = 1 RGB-Farbe
- 8 byte = 1 Double

Ein Speicher von 1 GB kann so ca. 250 Mio. Integer speichern.

Speicher (RAM)		
Adresse	Daten	
1000	0000	
1004	0000	
1008	0000	
1012	0000	
1016	0000	
1020	0000	

Objekte im Speicher

Objekte bestehen aus Attributen: Integer, Double etc., sowie Referenzen Im Speicher wird Platz für Objekte "reserviert"

Objekte im Speicher

Neues Objekt erzeugt: mehr Speicher reserviert Werte der Attribute werden in Speicher geschrieben

Referenzen im Speicher

Speiche	r (RAM)	
Adresse	Daten	
		Attribute:
1000	0001	← anzahl
1004	/ 1012	← rs1
1008 /	0000	← aktuell
1012	0100	← X
1016	0200	← y
1020	0050	← größe

Referenz **rs1** zeigt auf das Raumschiff-Objekt Das Objekt beginnt bei Adresse **1012** → die Referenz speichert diese Adresse

Referenzen im Speicher

Zuweisung: aktuell = rs1;

- → Wert 1012 wird von rs1 nach aktuell kopiert
- → Beide Referenzen zeigen auf das gleiche Objekt

Autor / Quellen

Autor:

Christian Pothmann (cpothmann.de)
 Freigegeben unter CC BY-NC-SA 4.0, Mai 2021

Grafiken:

John v. Neumann: Copyright Los Alamos National Laboratory

Von-Neumann-Rechner 10