ជំពូកទី 1

ក្រុម

1.1 និយមន័យក្រុម

1.1.1 ធាតុច្រាស

សំណុំ E ប្រដាប់ដោយម្មាណវិធីក្នុង \cdot ហើយ $e\in E$ ជាជាតុណឺត និង $a\in E$ ។ គេថា $a^{-1}\in E$ ជាជាតុច្រាសនៃ a កាលណា $aa^{-1}=a^{-1}a=e$ ។

ឧទាហរណ៍ 1.1 លើ \mathbb{Z} , \mathbb{Q} , \mathbb{R} ចំពោះប្រមាណវិធី + ធាតុប្រាសនៃ a គឺ -a ។

ឧទាហរណ៍ 1.2 លើ \mathbb{Z} , \mathbb{Q} , \mathbb{R} ចំពោះប្រមាណវិធី imes នោះធាតុច្រាសនៃ a គឺ $\frac{1}{a}$ កាលណា $a \neq 0$ ។

ទ្រីស្តីបទ 1.1

លើ E ប្រដាប់ដោយប្រមាណវិធីក្នុង \cdot ហើយ a,b មានជាតុច្រាសគេបាន

$$(ab)^{-1} = a^{-1}b^{-1}$$

សម្រាយបញ្ជាក់ យើងមាន $a,b \in E$ នោះ $ab \in E$ ។ ពិនិត្យ

$$ab \cdot b^{-1}a^{-1} = a(bb^{-1})a^{-1} = aea^{-1} = aa^{-1} = e$$

និង

$$b^{-1}a^{-1} \cdot ab = b^{-1}(a^{-1}a)b = b^{-1}eb = b^{-1}b = e$$

នោះយើងបាន $b^{-1}a^{-1}$ ជាធាតុច្រាសនៃ ab ។ ដូចនេះ $ab^{-1}=b^{-1}a^{-1}$ ។

1.1.2 ផ្នែកស្ដាប (closed)

សំណុំ E ប្រដាប់ដោយប្រមាណវិធីក្នុង \cdot ។ A ជាផ្នែកនៃ E $(A \subset E)$ ។ គេថា A ជាផ្នែកស្ដា បនៃ E លុះត្រាតែ $ab \in A$ ចំពោះគ្រប់ $a,b \in A$ ។

1.2 ប្រមាណវិធីក្រៅ

គេឱ្យ E, E ជាសំណុំ ។ យកអនុគមន៍

$$\begin{array}{ccccc} * & : & K \times E & \to & E \\ & (\lambda, x) & \mapsto & \lambda * x \end{array}$$

យើងហៅ st ជាប្រមាណវិធីក្រៅលើ E ការីក្នុង K ។

1.3 ក្រុម

1.3.1 ក៏ន្លះក្រុម (semigroup)

តិយមន័យ 1.1

គេឱ្យ G ជាសំណុំប្រមាណវិធីក្នុង \cdot ។ គេថា (G,\cdot) ជាកន្ទះក្រុមកាលណា ប្រមាណវិធីនេះមានលក្ខណ:ផ្គុំ (associativity) ។ មានន័យថាគ្រប់ $a,b,c\in G$ យើងបាន (ab)c=a(bc) ។

ឧទាហរណ៍ 1.3 យើងមាន $(\mathbb{N},+)$, $(\mathbb{Z},+)$, $(\mathbb{Q},+)$ និង $(\mathbb{R},+)$ ជាកន្លះក្រុម ។

ឧទាហរណ៍ 1.4 យើងមាន $(\mathbb{N},\cdot),\ (\mathbb{Z},\cdot),\ (\mathbb{Q},\cdot)$ និង (\mathbb{R},\cdot) ជាកន្លះក្រុម ។

ឧទាហរណ៍ 1.5 $(\mathcal{P}(E),\,\cup),\,(\mathcal{P}(E),\,\cap),\,\,\,$ ជាកន្លះក្រុម

1.3.1. កន្លះក្រម (semigroup)

ឧទាហរណ៍ 1.6 លើ ℤ ប្រដាប់ដោយប្រមាណវិធី ∗ កំណត់ដោយ

$$a * b = a + b - ab$$

គ្រប់ $a,b\in\mathbb{Z}$ ។ បង្ហាញថា $(\mathbb{Z},*)$ ជាកន្លះក្រុម ។

សម្រាយបញ្ជាក់ គ្រប់ $a,b,c\in\mathbb{Z}$ យើងមាន

$$(a*b)*c = (a+b-ab)*c$$

= $(a+b-ab)+c-(a+b-ab)c$
= $a+b+c-ab-bc-ca+abc$

និង

$$a * (b * c) = a * (b + c - bc)$$

= $a + (b + c - bc) - a(b + c - bc)$
= $a + b + c - ab - bc - ca + abc$

នោះយើងបាន (a*b)*c=a*(b*c) ដូចនេះ $\fbox{(\mathbb{Z},*)}$ ជាកន្លះក្រុម ។

ឧទាហរណ៍ 1.7 លើ \mathbb{R}_+^* ប្រដាប់ដោយប្រមាណវិធីក្នុង * កំណត់ដោយ

$$a * b = a^{\ln b}$$

គ្រប់ $a,b\in\mathbb{R}_+^*$ ។ បង្ហាញថា $(\mathbb{R}_+^*,*)$ ជាកន្លះក្រុម ។

សម្រាយបញ្ជាក់ គ្រប់ $a,b,c\in\mathbb{R}_+^*$ យើងមាន

$$(a*b)*c = (a^{\ln b})*c$$
$$= (a^{\ln b})^{\ln c}$$
$$= a^{(\ln b)(\ln c)}$$

និង

$$a*(b*c) = a*(b^{\ln c})$$
$$= a^{\ln(b^{\ln c})}$$
$$= a^{(\ln b)(\ln c)}$$

នោះយើងបាន (a*b)*c=a*(b*c) ដូចនេះ $\boxed{(\mathbb{R}_+^*,*)}$ ជាកន្លះក្រុម ។

គេឱ្យ (G,*) ជាកន្លះក្រុម ហើយចំពោះ $x_1,x_2,\ldots,x_n\in G$ គេតាង

$$\begin{array}{l}
 \stackrel{n}{*} = x_1 * x_1 * \dots * x_n \\
 \stackrel{i=1}{=} \begin{pmatrix} k \\ * \\ i=1 \end{pmatrix} * \begin{pmatrix} n \\ * \\ i=k+1 \end{pmatrix}$$

ហើយគេកំណត់សរសេរ

នោះយើងបាន $(x^n)^m = xnm$ និង $x^n * x^m = x^{n+m}$ ។

1.3.2 ម៉ូណូអ៊ីត (Monoide)

តិយមន័យ 1.2

សំណុំ G ប្រដាប់ដោយប្រមាណវិធីក្នុង * ។ គេថា (G, *) ជាម៉ូណូអ៊ីតកាល ណា (G, *) ជាកន្វះក្រុមហើយមានជាតុណឺត ។ នោះយើងបាន

$$\circ \ a*(b*c)=(a*b)*c$$
 ନ୍ଧି ଓ a, b, $c\in G$ និ ର୍ଷ

 \circ មាន $e \in G$ ដែលe*a = a*e = a គ្រប់ $a \in G$ ។

ឧទាហរណ៍ 1.8 $(\mathbb{N},+)$, $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$ ជាម៉ូណូអ៊ីត ។

ឧទាហរណ៍ 1.9 (\mathbb{N},\cdot) , (\mathbb{Z},\cdot) , (\mathbb{Q},\cdot) , (\mathbb{R},\cdot) ជាម៉ូណូអ៊ីត ។

ឧទាហរណ៍ 1.10 លើ \mathbb{R}_+^* ប្រដាប់ដោយប្រមាណវិធីក្នុង * កំណត់ដោយ

$$a * b = a^{\ln b}$$

ចំពោះគ្រប់ $a,b\in\mathbb{R}_+^*$ ។ តើ $(\mathbb{R}_+^*,\ *)$ ជាម៉ូណូអ៊ីតឬទេ ។

សម្រាយបញ្ជាក់ តាមសម្រាយខាងលើ $(\mathbb{R}_+^*, *)$ ជាកន្លះក្រុម ។ ដើម្បីស្រាយថា $(\mathbb{R}_+^*, *)$ ជាម៉ូណូអ៊ីតយើងត្រូវរក $x \in \mathbb{R}_+^*$ ដែល x * a = a * x = a គ្រប់ $a \in \mathbb{R}_+^*$ ។ យើងមាន

$$a * e = a^{\ln e} = a$$

និង

ឧទាហរណ៍ $\mathbf{1.11} \ (\mathcal{P}(E), \ \cup)$ និង $(\mathcal{P}(E), \ \cup)$ ជាម៉ូណូអ៊ីត ។

1.3.3 ម៉ូណូអ៊ីតរង

និយមន័យ 1.3

គេឱ្យ (G,*) ជាម៉ូណូអ៊ីត និង $H\supset G$ ជាផ្នែកមិនទទេនៃ G ។ គេថា (H,*) ជាម៉ូណូអ៊ីតរង់ប្រដាប់ដោយប្រមាណវិធី * លុះត្រាតែបើធាតុ e ជាធាតុណឺត នៃ G នោះ $e\in H$ និង

$$a * b \in H$$

ប៉ំពោះ $a,b \in H$ ៗ

ឧទាហរណ៍ 1.12 គេយក $n \in \mathbb{N}$ នោះយើងបាន $(n\mathbb{Z}, +)$ ជាម៉ូណូអ៊ីតវង់នៃ $(\mathbb{Z}, +)$ ព្រោះ 0 ជាធាតុណឺតរបស់ \mathbb{Z} ហើយ $0 = 0 \cdot n \in n\mathbb{Z}$ នោះ $n\mathbb{Z} \neq \emptyset$ ។ ម្យ៉ាងទៀត បើ $a,b \in n\mathbb{Z}$ នោះមាន $x,y \in \mathbb{Z}$ ដែល a = nx, b = ny ហេតុនេះ

$$a + b = nx + nx = n(x + y) \in n\mathbb{Z}$$

នោះ $(n\mathbb{Z}, +)$ ជាធាតុ

ទ្រឹស្តីបទ 1.2

ប្រសព្វនៃពីរម៉ូណូអ៊ីតរង៍នៃម៉ូណូអ៊ីត (G,*) ក៏ជាម៉ូណូអ៊ីតរង៍នៃ (G,*) ដែរ

សម្រាយបញ្ជាក់ តាង e ជាធាតុណឺតនៃ G ហើយតាង $A,B\subseteq G$ ជាម៉ូណូអ៊ីតវងនៃ (G,*) ។ នោះ $e\in A$ និង $e\in B$ ហេតុនេះ $e\in A\cap B$ ។

បន្ទាប់មកទៀតយើងស្រាយលក្ខណៈស្ដាប ។ យក $x,y\in A\cap B$ នោះ

$$\begin{cases} x \in A \\ y \in A \end{cases}$$
 ই \(\begin{aligned} x \in B \\ y \in B \end{aligned} \)
$$\implies x * y \in A \quad \(\beta \) \(\beta \) \(x * y \in B \)$$

នោះយើងបាន $x*y\in A\cap B$ ។ សរុបមកយើងបាន $(A\cap B,*)$ ជាម៉ូណូអ៊ីតរងនៃ (G,*) ។

<mark>រិបាក 1.3</mark> ប្រសព្វនៃគ្រួសារម៉ូណូអ៊ីតរង់នៃ (G, *) ជាម៉ូណូអ៊ីតរង់នៃ (G,*) ។

សម្រាយបញ្ជាក់ តាង $\mathcal{I} = \left\{ i \in \mathbb{N} : A_i \subset G \ \$$ ង $(A_i, *)$ ជាម៉ូណូអ៊ីត $\right\}$ ជាសំណុំ សន្ទស្ស៊ីនៃគ្រូសារម៉ូណូអ៊ីតរងនៃ (G, *) ។ យើងចង់ស្រាយថា $A := \bigcap_{i \in \mathcal{I}}$ ជាម៉ូណូអ៊ីតរង ដែរ ។

តាង e ជាធាតុណឺតរបស់ G ។ យើងឃើញថា $A\neq\emptyset$ ព្រោះ $e\in A_i$ គ្រប់ $i\in\mathcal{I}$ នោះ យើងបាន $e\in\bigcap_{i\in\mathcal{I}}A_i=A$ ។ បន្ទាប់មកទៀតយើងស្រាយលក្ខណៈស្ដាបលើ A ។ យក $x,y\in A$ នោះគ្រប់ $i\in\mathcal{I}$ យើងបាន

$$x \in A_i \land y \in A_i$$
 $\Rightarrow x * y \in A_i$ (លក្ខណៈស្ដាបរបស់ A_i) $\Rightarrow x * y \in \bigcap_{i \in \mathcal{I}} A_i$

នោះ (A, *) មានធាតុណឹត e ហើយមានលក្ខណៈស្ថាបលើប្រមាណវិធី * ។

ដូចនេះ A, + ជាម៉ូណូអ៊ីតរងនៃ B, * ។

1.3.3. ម៉ូណូអ៊ីតរង៍

សម្ពាល់៖ ប្រជុំនៃពីរម៉ូណូអ៊ីតមិនមែនជាម៉ូណូអ៊ីតទូទៅទេ ។ ឧទាហរណ៍ $(2\mathbb{Z},+)$, $(3\mathbb{Z},+)$ ជាម៉ូណូអ៊ីតរងនៃ $(\mathbb{Z},+)$ តែ $(2\mathbb{Z}\cup 3\mathbb{Z},+)$ មិនមែនជាម៉ូណូអ៊ីតទេព្រោះ $2\in 2\mathbb{Z}$ ហើយ $3\in 3\mathbb{Z}$ ក៏ប៉ុន្តែ $5=2+3\notin 2\mathbb{Z}\cup 3\mathbb{Z}$ ។