

LOCAL BARYCENTRIC COORDINATES

TEACHERS: D. SC JORGE POCO MEDINA

D. Sc Erick Gómez Nieto

COURSE: GRAPHICS

SPEAKERS: CHRISTIAN CÓRDOVA

ABSTRACT

BARYCENTRIC COORDINATES YIELD A POWERFUL AND YET SIMPLE PARADIGM TO INTERPOLATE DATA VALUES ON POLYHEDRAL DOMAINS. LBC IS A FAST DEFORMATIONS OF A MODEL.

Affine combination

$$\sum_{i=1}^n lpha_i \cdot x_i = lpha_1 x_1 + lpha_2 x_2 + \dots + lpha_n x_n, \quad \sum_{i=1}^n lpha_i = 1.$$

ABSTRACT

A LOCAL CHANGE IN THE VALUE AT A SINGLE CONTROL POINT WILL CREATE A GLOBAL CHANGE BY PROPAGATION INTO THE WHOLE DOMAIN.

Given a real vector space X together with a convex, real-valued function defined on a convex subset $\mathcal X$ of X

$$f:\mathcal{X} o\mathbb{R}; orall x_1, x_2\in\mathcal{X}, orall t\in [0,1]: \qquad f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2),$$

the problem is to find any point x^* in $\mathcal X$ for which the number f(x) is smallest, i.e., a point x^* such that

$$f(x^*) \leq f(x)$$
 for all $x \in \mathcal{X}$.

INTRODUCTION

- LBC ARE COMPUTED BY MINIMIZING A TARGET FUNCTIONAL BASED ON TOTAL VARIATION, SUBJECT TO A SET OF CONSTRAINTS THAT ENSURE DESIRED PROPERTIES.
- THE RESULTING IS LOCAL, MEANING THAT EACH CONTROL
 POINT ONLY INFLUENCES A NEARBY REGION.
- As benefit, LBC induce lower computational cost for APPLICATIONS SUCH AS CAGE-BASED DEFORMATION.

BENEFITS

VS

STORAGE REQUIREMENTS AS WELL AS COMPUTATIONAL COST.

OBJECTIVE

 Ω : domain bounded by the cage. Find $\omega_i : \Omega \to \mathbb{R}$

FOR EACH C_i THEN

$$f(x) = \sum_{i=1}^{n} w_i(x) \ f(C_i)$$

Where $[w_i(x), ..., w_n(x)]$ is a set of generalized barycentric coordinates of $x \in \Omega$.

FOR TE QUALITY OF THE INTERPOLATION, WE NEED SOME PROPERTIES:

OBJECTIVE

PROPERTIES:

- 1. Reproduction: $\sum_{i=1}^{n} w_i(\mathbf{x}) \mathbf{c}_i = \mathbf{x}, \ \forall \mathbf{x} \in \Omega;$
- 2. Partition of unity: $\sum_{i=1}^{n} w_i(\mathbf{x}) = 1$;
- 3. Non-negativity: $w_i(\mathbf{x}) \geq 0 \ \forall i$;
- 4. Lagrange property: $w_i(\mathbf{c}_j) = \begin{cases} 0, & \text{if } i \neq j, \\ 1, & \text{otherwise;} \end{cases}$
- 5. Linearity: functions $\{w_i\}$ are linear on cage edges and faces;
- 6. Smoothness: functions $\{w_i\}$ vary smoothly on Ω ;
- Locality: a control point only influences its nearby regions, and a point x ∈ Ω is influenced by a small number of control points, i.e., the vector [w₁(x),..., wn(x)] is sparse.

CONTRIBUTION

DATA

DATA

LOAD A MODEL (CAGE-DEFORMATION)

CREATE A DELAUNAY
TRIANGULATION FOR
THE INSIDE OF THE BOX.

APPLY THE LOCAL
BARYCENTRIC SOLVER
METHOD TO GENERATE
DISTORTIONS ON EACH
CONTROL POINT.

PROBLEM 3D – NO CAGE DATA

STEPS - 3D

LOAD A MODEL (CAGE-DEFORMATION)

CREATE A DELAUNAY
TRIANGULATION FOR
THE INSIDE OF THE BOX.

COMPILATION

- LANGUAGE: C++ 11
- FRAMEWORK: QT 5.2.0 MINGW 32 BIT
- EXTERNAL LIBRARIES:
 - EIGEN: FOR LINEAR ALGEBRA OPERATIONS (OPENMP)
 - TRIANGLE: FOR DELAUNAY TRIANGULATION (2D)

CONCLUSIONS

- THE CODE WAS INITIALLY IMPLEMENTED ONLY FOR CAGE-BASE IN 2D.
- THE FIRST CONTRIBUTION WAS TO USE MODERN OPENGL TO RENDER MODELS, EITHER IN 2D.
- THE SECOND CONTRIBUTION WAS TO LOAD MODELS IN 3D, BUT WITH THE ABSENCE OF THEIR BOXES, BECAUSE THE CODE WORKED ON IT.
- THANKS TO THE AUTHORS I WAS ABLE TO LOAD A MODEL SHOWN IN THE PAPER,
 THEN FOR A TIME IT WAS NOT POSSIBLE TO IMPLEMENT THE LBC ALGORITHM FOR
 3D BOXES, IT WOULD REMAIN AS FUTURE WORK.

THANKS

