Dérivation et intégration Une première approche

Table des matières

1	Fon	ctions de $\mathbb R$ dans $\mathbb R.$	1
	1.1	Premières définitions	1
	1.2	Les fonctions polynomiales	3
	1.3	Premières caractéristiques d'une fonction	
	1.4	Opérations sur les fonctions	5
2	Trig	gonométrie	7
	2.1	Les fonctions circulaires	7
	2.2	Graphes des fonctions circulaires	Ć
	2.3	Formules de trigonométrie	10
	2.4	Equations trigonométriques	12
		2.4.1 Résolution du système (S) : $(\cos x = c) \land (\sin x = s) \dots$	12
		2.4.2 Résolution de l'équation $\cos x = c$	13
		2.4.3 Résolution de l'équation $\sin x = s$	13
		2.4.4 Résolution de l'équation $\tan x = t$	14
		2.4.5 Expressions de la forme $A \cos x + B \sin x$	15
3	Dér	rivation et intégration	15
	3.1	Pente de la tangente	15
	3.2	Règles de dérivation	16
	3.3	Dérivées d'ordre supérieur	18
	3.4	Dérivation et monotonie	18
	3.5	Intégration	19
	3.6	Primitivation	20
4	Fon	ctions Logarithmes et puissances	22
	4.1	Quelques théorèmes d'analyse	22
	4.2	Les fonctions ln et exp	
	4.3	Logarithmes et exponentielles en base a	
	4.4	Fonctions puissances	

5	Etude d'une fonction	28
	5.1 Plan d'étude d'une fonction f de $\mathbb R$ dans $\mathbb R$	28
	5.2 Etude des branches infinies	29
6	Déformations du graphe	30
7	Trigonométrie hyperbolique	33
	7.1 Les fonctions ch, sh et th	33
	7.2 Formules de trigonométrie hyperbolique	33
8	Applications trigonométriques réciproques	34
	8.1 Trigonométrie circulaire	34
	8.2 Trigonométrie hyperbolique	35
9	Calculs d'intégrales	36
	9.1 Changement de variables	36
	9.2 Intégration par parties	39

Introduction

En prenant appui sur les acquis de Terminale, l'objectif de cette partie du cours est d'étudier les fonctions numériques de la variable réelle, c'est-à-dire les fonctions de \mathbb{R} dans \mathbb{R} , du point de vue de la dérivation et de l'intégration.

Afin de mettre rapidement en place des techniques de calcul, certaines définitions manqueront de rigueur et certains résultats seront admis. Ces définitions et résultats seront repris, précisés et démontrés lors de chapitres ultérieurs.

On considère également que la géométrie plane n'a aucun secret pour vous. Sa théorie ne sera pourtant mise en place qu'en fin d'année.

1 Fonctions de \mathbb{R} dans \mathbb{R} .

Notations : Nous emploierons dans les énoncés ci-dessous l'une des deux notations suivantes :

Notation a): Soit D et E deux parties de \mathbb{R} . On considère une application f, de D dans E, ce qui signifie que, pour tout $x \in D$, on se donne un unique $f(x) \in E$.

Notation b): On considère une fonction f de \mathbb{R} dans \mathbb{R} , ce qui signifie que, pour tout $x \in \mathbb{R}$, on associe ou bien aucun réel, ou bien un unique réel qui est alors noté f(x).

Remarque. En pratique, les deux mots application et fonction sont souvent considérés comme synonymes et c'est le contexte qui permet de savoir laquelle des notations précédentes est employée.

1.1 Premières définitions

Définition. (Notation b)) Le domaine de définition de f, noté \mathcal{D}_f est l'ensemble des réels $x \in \mathbb{R}$ pour lesquels la quantité f(x) est calculable. Si l'on regarde f comme un programme informatique, dont l'input est x et l'output est f(x), le domaine de définition est l'ensemble des x qui sont acceptés par le programme en entrée sans engendrer une erreur.

Exemple. Avec
$$f(x) = \sqrt{\frac{2-x}{x-4}}$$
, $\mathcal{D}_f = [2, 4[$.

Remarque. On peut ainsi passer d'une notation à l'autre :

Si f est une application de D dans E (notation a)), alors on peut voir f comme une fonction de \mathbb{R} dans \mathbb{R} (notation b)) telle que $D \subset \mathcal{D}_f$.

Réciproquement, si f est une fonction de \mathbb{R} dans \mathbb{R} (notation b)), on peut voir f comme une application de D dans E, pour toute partie D incluse dans \mathcal{D}_f et pour toute partie E contenant $f(D) \stackrel{\Delta}{=} \{f(x) \mid x \in D\}$.

Notation. Soit f une application de D dans E (notation a)). Soit D' une partie de D et E' une partie de E.

- On note $f|_{D'}$ l'application de D' dans E qui à x associe f(x). On dit que $f|_{D'}$ est la restriction de f à D'.
- Lorsque, pour tout $x \in D$, $f(x) \in E'$, on note $f^{|E'|}$ l'application de D dans E' qui à x associe f(x). On dit que $f^{|E'|}$ est la corestriction de f à E'.
- Lorsque, pour tout $x \in D'$, $f(x) \in E'$, on note $f|_{D'}^{E'}$ l'application de D' dans E' qui à x associe f(x).

Définition.

On se place dans le plan usuel, muni d'un repère orthonormé direct (O, \vec{i}, \vec{j}) . La représentation graphique de f, aussi appelée le graphe de f, est l'ensemble des points du plan de coordonnées (x, f(x)), lorsque x décrit \mathcal{D}_f (notation b)), ou bien lorsque x décrit D (notation a)).

Exemple. Voici ce que l'on obtient pour l'exemple précédent :

Définition. (Notation b)) Lorsque y = f(x), où $x \in \mathcal{D}_f$ et $y \in \mathbb{R}$,

- on dit que y est **l'image** de x par f et
- que x est un antécédent de y par f.

Tout élément x de \mathcal{D}_f possède une unique image f(x) par f,

mais si $y \in \mathbb{R}$, y peut ne posséder aucun antécédent par f, il peut aussi en posséder plusieurs.

Définition. Soit f une application d'un ensemble quelconque E dans un ensemble quelconque F (ainsi E et F ne sont pas forcément des parties de \mathbb{R}).

- On dit que f est surjective si et seulement si $\forall y \in F, \exists x \in E, y = f(x)$. Ainsi, f est surjective si et seulement si tout élément de F possède au moins un antécédent.
- On dit que f est injective si et seulement si $\forall x, y \in E$, $[f(x) = f(y) \Longrightarrow x = y]$. Ainsi, f est injective si et seulement si, pour tout couple d'éléments distincts de E, leurs images sont différentes. f est injective si et seulement si tout élément de F possède au plus un antécédent.

1.2 Les fonctions polynomiales

Définition. Un polynôme P (à coefficients réels) est une application de \mathbb{R} dans \mathbb{R} (notation a)) de la forme $x \longmapsto a_0 + a_1 x + \cdots + a_n x^n$, où $n \in \mathbb{N}$ et $a_0, \ldots, a_n \in \mathbb{R}$. Si $a_n \neq 0$, on dit que n est le degré de ce polynôme. On note $n = \deg(P)$. Par convention, l'application identiquement nulle est un polynôme de degré égal à $-\infty$.

Remarque. Cette définition manque de rigueur. Pourquoi?

Remarque. En remplaçant \mathbb{R} par \mathbb{C} , on peut définir des polynômes à coefficients complexes. Toutes les propriétés de ce paragraphe se généralisent aux complexes.

Définition. Soit P un polynôme et $\alpha \in \mathbb{R}$.

On dit que α est une racine de P si et seulement si $P(\alpha) = 0$.

Propriété. Soit P un polynôme et $\alpha \in \mathbb{R}$. Alors α est une racine de P si et seulement si il existe un polynôme Q tel que, pour tout $x \in \mathbb{R}$, $P(x) = (x - \alpha)Q(x)$.

Propriété. Soit P un polynôme et $\alpha_1, \ldots, \alpha_k$ k réels deux à deux distincts. Alors $\alpha_1, \ldots, \alpha_k$ sont des racines de P si et seulement si il existe un polynôme Q tel que, pour tout $x \in \mathbb{R}$, $P(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_k)Q(x)$.

Propriété. Soit P et Q deux polynômes. Alors l'application $x \mapsto P(x)Q(x)$ de \mathbb{R} dans \mathbb{R} est aussi un polynôme, que l'on note PQ. De plus, $\deg(PQ) = \deg(P) + \deg(Q)$.

Théorème. Soit P un polynôme non nul à coefficients réels de degré $n \in \mathbb{N}$. Alors le nombre de racines de P est inférieur ou égal à n.

1.3 Premières caractéristiques d'une fonction

Définition. (Notation b))

- f est paire si et seulement si : $\forall x \in \mathcal{D}_f$, $[-x \in \mathcal{D}_f] \wedge [f(x) = f(-x)]$.
- f est impaire si et seulement si : $\forall x \in \mathcal{D}_f$, $[-x \in \mathcal{D}_f] \wedge [f(-x) = -f(x)]$.
- Soit T > 0. f est T-périodique si et seulement si $\forall x \in \mathcal{D}_f, [x+T \in \mathcal{D}_f] \wedge f(x+T) = f(x)$.

Exemple. $x \longmapsto e^{-\frac{1}{x^2}}$ est paire, $x \longmapsto \sin x$ est impaire et 2π -périodique. Voici leurs graphes :

Propriété.

- Le graphe d'une fonction paire est symétrique par rapport à l'axe des ordonnés.
- Le graphe d'une fonction impaire est symétrique par rapport à l'origine des axes.
- Le graphe d'une fonction T-périodique est invariant par la translation de vecteur $T\overrightarrow{\imath}$.

Démonstration.

Adapter la démonstration de la page 6.

Définition. (notation a))

- f est croissante si et seulement si $\forall x, y \in D, [x \leq y \Longrightarrow f(x) \leq f(y)].$
- - $\forall x, y \in D, \ [x < y \Longrightarrow f(x) < f(y)].$
- f est décroissante si et seulement si $\forall x, y \in D, \ [x \le y \Longrightarrow f(x) \ge f(y)].$
- f est strictement décroissante si et seulement si
 - $\forall x, y \in D, [x < y \Longrightarrow f(x) > f(y)].$
- f est monotone si et seulement si f est croissante ou décroissante.
- f est strictement monotone si et seulement si f est strictement croissante ou strictement décroissante.

Propriété. Graphiquement, les antécédents de λ par f sont les abscisses des points d'intersection du graphe de f avec la droite horizontale d'équation $y = \lambda$.

Propriété. Graphiquement, les solutions de l'inéquation $f(x) \geq \lambda$, en l'inconnue x, sont les abscisses des points du graphe de f situés au-dessus de la droite horizontale d'équation $y = \lambda$.

Définition. Une application $f: D \longrightarrow E$ est majorée si et seulement si il existe $M \in \mathbb{R}$ tel que, pour tout $x \in D$, $f(x) \leq M$, c'est-à-dire si et seulement si le graphe de f est situé sous la droite horizontale d'équation y = M.

1.4 Opérations sur les fonctions

Définition. (notation b)) Soit f et g deux fonctions de \mathbb{R} dans \mathbb{R} . Soit $\lambda \in \mathbb{R}$.

- f + g est la fonction de D dans \mathbb{R} définie par (f + g)(x) = f(x) + g(x). On a $\mathcal{D}_{f+g} = \mathcal{D}_f \cap \mathcal{D}_g$.
- λf est la fonction de D dans \mathbb{R} définie par $(\lambda f)(x) = \lambda f(x)$. On a $\mathcal{D}_{\lambda f} = \mathcal{D}_f$.
- fg est la fonction de D dans \mathbb{R} définie par $(fg)(x) = f(x) \times g(x)$. On a $\mathcal{D}_{fg} = \mathcal{D}_f \cap \mathcal{D}_g$.
- |f| est la fonction de D dans \mathbb{R} définie par |f|(x) = [f(x)]. On a $\mathcal{D}_{|f|} = \mathcal{D}_f$.
- On définit de même f g, $\frac{1}{f}$, $\frac{f}{g}$.

Définition. f est bornée si et seulement si |f| est majorée.

Définition de la composition : (Notation b)) Soit f et g deux fonctions. On note $f(g(x)) = (f \circ g)(x)$: on définit ainsi une nouvelle fonction, $f \circ g$. C'est la composée de f et g.

Exemple. Si
$$f(x) = \frac{1}{x}$$
 et $g(x) = \sqrt{x+1}$, alors $(f \circ g)(x) = \frac{1}{\sqrt{x+1}}$ et $(g \circ f)(x) = \sqrt{\frac{1}{x}+1}$. On vérifie que $\mathcal{D}_{f \circ g} =]-1, +\infty[$ et $\mathcal{D}_{g \circ f} =]-\infty, -1] \cup]0, +\infty[$. En effet, lorsque $x \in \mathbb{R}^*, \frac{1}{x}+1 \geq 0 \Longleftrightarrow \frac{1}{x} \geq -1 \Longleftrightarrow (x>0)$ ou $(x<0$ et $1 \leq -x)$.

Application réciproque :

Soit f une application de D dans E (notation a)).

- On dit que f est bijective si et seulement si f est injective et surjective, c'est-àdire si et seulement si tout élément de E possède un unique antécédent. Ainsi f est bijective si et seulement si pour tout $y \in E$, il existe un unique $x_y \in D$ tel que $y = f(x_y)$.
- En notant $x_y = f^{-1}(y)$, on définit une application f^{-1} de E dans D, qui est également bijective. C'est la bijection réciproque de la bijection f.
- On a $(f^{-1})^{-1} = f$, $f \circ f^{-1} = Id_E$ et $f^{-1} \circ f = Id_D$, où Id_E est l'application de E dans E qui à x associe x.

$D\'{e}monstration.$

Admis pour le moment \Box

Propriété. Si f est une bijection d'une partie E de \mathbb{R} vers une partie F de \mathbb{R} , alors le graphe de f^{-1} est le symétrique du graphe de f pour la symétrie orthogonale selon la première diagonale, c'est-à-dire la droite d'équation y = x.

Les deux courbes sont donc image l'une de l'autre dans un miroir oblique penché à 45°.

Démonstration.

Notons C le graphe de f et C' le graphe de f^{-1} .

Soit M un point de C, dont les coordonnées sont notées (x,y). Alors $x \in E$ et y = f(x). Donc $y \in F$ et le point M' de coordonnées $(y,x) = (y,f^{-1}(y))$ appartient à C'. La réciproque étant similaire, on a montré qu'un point de coordonnées (x,y) est dans C si et seulement si le point de coordonnées (y,x) est dans C'.

Notons P le plan usuel et s l'application de P dans P qui au point M de coordonnées (x,y) associe le point s(M) de coordonnées (y,x). Ainsi, C' est l'image de C par s, au sens que $C' = \{s(M) \mid M \in C\}$, ce que l'on écrit plus concisément sous la forme C' = s(C).

Or s est la symétrie de l'énoncé. En effet, le milieu de M et de s(M) a pour coordonnées $(\frac{x+y}{2},\frac{x+y}{2})$ donc il appartient à la première diagonale. De plus le vecteur $\overrightarrow{Ms(M)}$ a pour coordonnées (y-x,x-y): il est orthogonal au vecteur de coordonnées (1,1), qui dirige la première diagonale. \square

Exemple. Les fonctions $x \mapsto x^2$ et $x \mapsto \sqrt{x}$.

Définition. Soit f et g deux applications définies sur D à valeurs dans \mathbb{R} . On dit que f est inférieure à g sur D, et on note $f \leq g$, lorsque : $\forall x \in D$, $f(x) \leq g(x)$.

```
Remarque. La notation "f < g" désignera parfois la condition [\forall x \in D, \ f(x) < g(x)], et d'autres fois la condition [(f \leq g) \text{ et } (f \neq g)], c'est-à-dire [\forall x \in D, \ f(x) \leq g(x)] et [\exists x \in D, \ f(x) < g(x)].
```

Exercice. Interpréter graphiquement les situations $f \leq g$ et f < g.

2 Trigonométrie

Les fonctions circulaires 2.1

Définition. Vous verrez plus tard qu'on définit la fonction exponentielle complexe par la formule:

$$\forall z \in \mathbb{C}, \ e^z = \lim_{n \to +\infty} \sum_{k=0}^n \frac{z^k}{k!}.$$

Propriété. Pour tout $z \in \mathbb{C}$, $\overline{[e^z]} = e^{[\overline{z}]}$. Pour tout $z, z' \in \mathbb{C}$, $e^z \times e^{z'} = e^{z+z'}$.

Démonstration.

Admis pour le moment. □

Propriété. Pour tout $\theta \in \mathbb{R}$, le complexe $e^{i\theta}$ est sur le cercle unité.

$D\'{e}monstration.$

$$|e^{i\theta}|^2 = e^{i\theta} \times \overline{[e^{i\theta}]} = e^{i\theta} \times e^{-i\theta}$$
, donc $|e^{i\theta}|^2 = e^{i\theta - i\theta} = e^0 = 1$. \square

Propriété. Soit $\theta \in \mathbb{R}$. On admettra pour le moment que θ est l'angle $\widehat{M_1 M_0 M_{e^{i\theta}}}$ (en notant M_z le point d'affixe z).

Définition. Pour tout $\theta \in \mathbb{R}$,

$$\cos(\theta) = \operatorname{Re}(e^{i\theta}) \text{ et } \sin(\theta) = \operatorname{Im}(e^{i\theta}).$$

Cela correspond à l'interprétation géométrique usuelle : si l'on rapporte le plan usuel à un repère orthonormé direct $(O, \vec{\imath}, \vec{\jmath})$, $\cos \theta$ et $\sin \theta$ sont les abscisse et ordonnée du

point $M(\theta)$ du cercle unité (de rayon 1 centré en O) tel que l'angle $(\vec{\imath}, \overrightarrow{OM(\theta)})$ est égal à θ , modulo 2π .

Formules d'Euler : Pour tout $\theta \in \mathbb{R}$

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \quad \text{et} \quad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}.$$

$D\'{e}monstration.$

Soit
$$\theta \in \mathbb{R}$$
. Posons $z = e^{i\theta}$. $\cos \theta = \operatorname{Re}(z) = \frac{z + \overline{z}}{2} = \frac{e^{i\theta} + e^{-i\theta}}{2}$. \Box

Propriété. La fonction cos est paire.

La fonction sin est impaire.

$D\'{e}monstration.$

C'est clair avec les formules d'Euler. □

Propriété. 2π est la plus petite période de la fonction cos.

 2π est la plus petite période de la fonction sin.

Démonstration.

Admis pour le moment. □

Propriété. On démontrera également plus tard que, pour tout $\theta \in \mathbb{R}$, $\sin \theta = 0 \iff \exists k \in \mathbb{Z}, \ \theta = k\pi$

$$\stackrel{\Delta}{\Longleftrightarrow} \theta \equiv 0 \ [\pi]$$

$$\iff \theta \in \pi \mathbb{Z}, \text{ et}$$

$$\cos \theta = 0 \iff \exists k \in \mathbb{Z}, \ \theta = \frac{\pi}{2} + k\pi$$

$$\stackrel{\Delta}{\Longleftrightarrow} \theta \equiv \frac{\pi}{2} \ [\pi]$$

$$\iff \theta \in \frac{\pi}{2} + \pi \mathbb{Z}.$$

Remarque. On peut visualiser ces propriétés sur le cercle unité du plan complexe, aussi appelé le cercle trigonométrique.

Définition des fonctions tangente et cotangente : On pose

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 et $\cot \theta = \frac{\cos \theta}{\sin \theta}$.

D'après la remarque précédente, la fonction tangente est définie sur $\mathbb{R} \setminus (\frac{\pi}{2} + \pi \mathbb{Z})$ et la fonction cotangente est définie sur $\mathbb{R} \setminus \pi \mathbb{Z}$.

Ces deux nouvelles fonctions sont π -périodiques et impaires.

Remarque. D'après le théorème de Thalès, les longueurs des côtés du triangle OAB (cf figure ci-dessus) vérifient les relations $\frac{OA}{OB} = \frac{\cos \theta}{1}$ et $\frac{AB}{OB} = \frac{\sin \theta}{1}$, d'où l'on déduit

la relation $\tan \theta = \frac{AB}{OA}$. Ces relations concernent le triangle OAB, indépendamment du repère choisi.

On retrouve ainsi les formules bien connues concernant un triangle rectangle :

Formules : Soit OAB un triangle rectangle en A.

Par définition, l'hypoténuse (nom féminin) est le côté opposé à l'angle droit.

Notons $\theta = \widehat{AOB}$ l'angle au sommet O. Alors

$$\cos\theta = \frac{OA}{OB} = \frac{\text{longueur du côté adjacent}}{\text{longueur de l'hypoténuse}} \text{ et}$$

$$\sin \theta = \frac{AB}{OB} = \frac{\text{longueur du côté opposé}}{\text{longueur de l'hypoténuse}}.$$

On en déduit que

$$\tan \theta = \frac{AB}{OA} = \frac{\text{longueur du côt\'e oppos\'e}}{\text{longueur du côt\'e adjacent}}.$$

Cette dernière formule permet d'interpréter géométriquement la quantité $\tan \theta$: sur la figure suivante, c'est la longueur du segment [I,J], ou bien du segment [H,K].

2.2 Graphes des fonctions circulaires

Représentation graphique de la fonction tangente : au tableau.

2.3 Formules de trigonométrie

Formule circulaire: Pour tout $\theta \in \mathbb{R}$, $\cos^2 \theta + \sin^2 \theta = 1$.

Démonstration.

Le point $M(\theta)$ est sur le cercle unité. \square

On en déduit une autre formule :

$$1 + \tan^2 \theta = \frac{1}{\cos^2 \theta}.$$

Formules d'addition : Pour tout $a, b \in \mathbb{R}$,

$$\cos(a+b) = \cos a \cos b - \sin a \sin b \quad e$$
$$\sin(a+b) = \sin a \cos b + \cos a \sin b.$$

$D\'{e}monstration.$

 $\cos(a+b)+i\sin(a+b)=e^{i(a+b)}=e^{ia}e^{ib}=(\cos a+i\sin a)(\cos b+i\sin b)$ et on conclut en passant aux parties réelle et imaginaire. \Box

En particulier, on obtient les propriétés de symétrie suivantes :

Formules de symétrie : Lorsque les quantités qui interviennent sont définies,

$$\cos(\pi + \theta) = -\cos(\theta) \quad \sin(\pi + \theta) = -\sin(\theta) \quad \tan(\pi + \theta) = \tan(\theta)$$

$$\cos(\pi - \theta) = -\cos(\theta) \quad \sin(\pi - \theta) = \sin(\theta) \quad \tan(\pi - \theta) = -\tan(\theta)$$

$$\cos(\frac{\pi}{2} + \theta) = -\sin(\theta) \quad \sin(\frac{\pi}{2} + \theta) = \cos(\theta) \quad \tan(\frac{\pi}{2} + \theta) = -\cot(\theta)$$

$$\cos(\frac{\pi}{2} - \theta) = \sin(\theta) \quad \sin(\frac{\pi}{2} - \theta) = \cos(\theta) \quad \tan(\frac{\pi}{2} - \theta) = \cot(\theta)$$

Remarque. Apprenez ces formules par coeur, mais sachez également les retrouver rapidement en les visualisant sur le cercle trigonométrique.

Par exemple, on retrouve la dernière ligne des formules en remarquant que les points $M(\theta)$ et $M(\frac{\pi}{2} - \theta)$ sont symétriques par rapport à la première diagonale, c'est-à-dire la droite d'équation y = x, En effet, cette droite fait un angle égal à $\frac{\pi}{4}$ avec l'axe des abscisses, or $\frac{\pi}{4}$ est égal à la demi-somme de θ et de $\frac{\pi}{2} - \theta$.

Or la symétrie orthogonale selon cette première diagonale envoie le point M de coordonnées (x,y) sur le point de M' de coordonnées (y,x) (cf page 6), donc l'abscisse de $M(\theta)$ est égale à l'ordonnée de $M(\frac{\pi}{2}-\theta)$ et l'ordonnée de $M(\theta)$ est égale à l'abscisse de $M(\frac{\pi}{2}-\theta)$.

De même, on retrouve la première ligne de ces formules en remarquant que $M(\theta)$ et $M(\pi + \theta)$ sont symétriques par rapport au point O et la seconde en remarquant que $M(\theta)$ et $M(\pi - \theta)$ sont symétriques par rapport à l'axe des ordonnées.

Des formules d'addition, on déduit également les formules suivantes :

Formule : Pour tout $a, b \in \mathbb{R}$, lorsque les quantités qui interviennent sont définies,

$$\cos(a-b) = \cos a \cos b + \sin a \sin b \text{ et } \sin(a-b) = \sin a \cos b - \cos a \sin b,$$

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \text{ et } \tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}.$$

Démonstration.

Pour la formule relative à tan(a+b), on suppose que cos(a+b), cos a et cos b sont tous trois non nuls.

 $\tan(a+b) = \frac{\sin a \cos b + \sin b \cos a}{\cos a \cos b - \sin a \sin b} : \text{on conclut en divisant le numérateur et le dénominateur par la quantité } \cos a \cos b . \quad \Box$

Formules de duplication: Lorsque les quantités qui interviennent sont définies,

$$\cos(2a) = \cos^2 a - \sin^2 a = 2\cos^2 a - 1 = 1 - 2\sin^2 a,$$

$$\sin(2a) = 2\sin a\cos a,$$

$$\tan(2a) = \frac{2\tan a}{1 - \tan^2 a}.$$

Premières formules de linéarisation :
$$\cos^2 a = \frac{\cos(2a) + 1}{2}$$
 et $\sin^2 a = \frac{1 - \cos(2a)}{2} \ge 0$.

$$2\cos a \cdot \cos b = \cos(a+b) + \cos(a-b)$$

$$2\sin a \cdot \sin b = \cos(a-b) - \cos(a+b),$$

$$2\sin a.\cos b = \sin(a+b) + \sin(a-b).$$

Formules de factorisation :
$$\cos p + \cos q = 2\cos\frac{p+q}{2}\cos\frac{p-q}{2}$$
,

$$\cos p - \cos q = -2\sin\frac{p+q}{2}\sin\frac{p-q}{2},$$

$$\sin p + \sin q = 2\sin\frac{p+q}{2}\cos\frac{p-q}{2},$$

$$\sin p - \sin q = 2\sin\frac{p-q}{2}\cos\frac{p+q}{2}.$$

$D\'{e}monstration.$

- ♦ Première méthode : dans les trois dernières formules de linéarisation, on remplace a et b par $\frac{p+q}{2}$ et $\frac{p-q}{2}$.
- ♦ Seconde méthode : A l'aide des complexes.

$$\cos p + \cos q = \text{Re}(e^{ip} + e^{iq}) = \text{Re}\left(e^{i\frac{p+q}{2}}(e^{i\frac{p-q}{2}} + e^{i\frac{q-p}{2}})\right), \text{ donc}$$

$$\cos p + \cos q = 2\cos\frac{p-q}{2} \times \operatorname{Re}(e^{i\frac{p+q}{2}}) = 2\cos\frac{p+q}{2}\cos\frac{p-q}{2}.$$

Les autres formules se démontrent de la même façon. □

Remarque. Selon le programme officiel, ces formules de factorisation ne sont pas à connaître par coeur (mais ce n'est pas interdit) : vous devez être capable de les redémontrer.

Formules (hors programme): Lorsque les quantités qui interviennent sont définies: en posant $u = \tan(\frac{\theta}{2})$, on a

$$\cos \theta = \frac{1 - u^2}{1 + u^2}, \quad \sin \theta = \frac{2u}{1 + u^2}, \quad \tan \theta = \frac{2u}{1 - u^2}.$$

Démonstration.

On suppose que
$$\theta \in \mathbb{R} \setminus (\pi + 2\pi\mathbb{Z})$$
 afin que u soit défini.
Alors, $\frac{1-u^2}{1+u^2} = \frac{1-\frac{\sin^2(\theta/2)}{\cos^2(\theta/2)}}{1+\frac{\sin^2(\theta/2)}{\cos^2(\theta/2)}} = \frac{\cos^2(\theta/2)-\sin^2(\theta/2)}{\cos^2(\theta/2)+\sin^2(\theta/2)} = \cos\theta$.

On procède de même pour la seconde formule.

□

Remarque. Notons \mathcal{C} le cercle unité et M_{π} le point de coordonnées (-1,0).

D'après ces formules, un point M de coordonnées (x,y) appartient à $\mathcal{C} \setminus \{M_{\pi}\}$ si et

seulement si il existe $t \in \mathbb{R}$ tel que $x = \frac{1 - t^2}{1 + t^2}$ et $y = \frac{2t}{1 + t^2}$.

On dispose ainsi d'un paramétrage du cercle \mathcal{C} privé du point M_{π} à l'aide de fractions rationnelles (c'est-à-dire de fonctions qui s'écrivent comme un quotient de polynômes).

Propriété. Voici les valeurs à connaître des fonctions trigonométriques :

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\tan \theta$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	non défini

Remarque. Les valeurs de tan $\frac{\pi}{6}$ et de tan $\frac{\pi}{3}$ sont $\frac{1}{\sqrt{3}}$ et $\sqrt{3}$. C'est cohérent avec le caractère croissant de tan sur l'intervalle $[0, \frac{\pi}{2}]$.

$D\'{e}monstration.$

$$\Leftrightarrow \cos^2 \frac{\pi}{4} = \frac{1 + \cos(2 \cdot \frac{\pi}{4})}{2} = \frac{1}{2}.$$

$$\Leftrightarrow \text{ Posons } a = \frac{\pi}{6}.$$

 $\cos(3a) = \cos a \cos 2a - \sin a \sin 2a = \cos a(2\cos^2 a - 1) - 2\sin^2 a \cos a,$

ainsi $\cos(3a) = 4\cos^3 a - 3\cos a = 0$, car $3a = \frac{\pi}{2}$,

donc $4\cos^2 a - 3 = 0$.

2.4 Equations trigonométriques

Résolution du système (S) : $(\cos x = c) \land (\sin x = s)$ 2.4.1

On fixe $c, s \in \mathbb{R}$ et on veut résoudre le système d'équations

(S): $(\cos x = c) \wedge (\sin x = s)$, en l'inconnue $x \in \mathbb{R}$.

Si $c^2 + s^2 \neq 1$, (S) n'admet aucune solution.

Si $c^2 + s^2 = 1$, alors le point M de coordonnées (c, s) est sur le cercle unité. On justifiera plus tard qu'il existe un unique $x_0 \in [0, 2\pi[$ tel que $\cos x = \cos x_0$ et $\sin x = \sin x_0$, et que l'ensemble des solutions de (S) est $x_0 + 2\pi \mathbb{Z}$.

Exemple.
$$\cos x = \frac{\sqrt{2}}{2} = -\sin x \iff x \in -\frac{\pi}{4} + 2\pi \mathbb{Z}.$$

2.4.2 Résolution de l'équation $\cos x = c$

Définition. On démontrera plus loin que l'application cos réalise une bijection (décroissante) de $[0, \pi]$ dans [-1, 1]. On note $\boxed{\arccos}$ l'application réciproque.

Résolution de l'équation $\cos x = c$:

Soit $c \in \mathbb{R}$. On note (E) l'équation $\cos x = c$, en l'inconnue $x \in \mathbb{R}$.

Si $c \notin [-1, 1]$, (E) n'admet aucune solution.

Si $c \in [-1, 1]$, posons $x_0 = \arccos(c)$. Alors

 $(E) \iff \cos x = \cos x_0 \iff x \equiv \pm x_0 \ [2\pi].$

Ainsi, l'ensemble des solutions de (E) est $\mathcal{S} = (x_0 + 2\pi\mathbb{Z}) \cup (-x_0 + 2\pi\mathbb{Z})$.

Démonstration.

On suppose que $c \in [-1, 1]$ et on pose $x_0 = \arccos(c)$.

Il est clair que les éléments de S sont solutions de (E).

Réciproquement, supposons que $\cos x = \cos x_0$.

Premier cas: Supposons qu'il existe $k \in \mathbb{Z}$ tel que $x \in [2k\pi, (2k+1)\pi]$.

Alors $x - 2k\pi \in [0, \pi]$ et $\cos x_0 = \cos(x - 2k\pi)$, or l'application cos est une bijection de $[0, \pi]$ dans [-1, 1], donc $x = x_0 + 2k\pi$.

Second cas: Sinon, il existe $k \in \mathbb{Z}$ tel que $x \in [(2k+1)\pi, (2k+2)\pi]$.

Alors $-x \in [2k'\pi, (2k'+1)\pi]$ où k' = -k-1,

donc on peut appliquer le premier cas à -x. \square

Exemple.
$$\cos x = \frac{\sqrt{3}}{2} \iff x \in (\frac{\pi}{6} + 2\pi\mathbb{Z}) \cup (-\frac{\pi}{6} + 2\pi\mathbb{Z}).$$

Corollaire. Pour tout $u, v \in \mathbb{R}$, $\cos u = \cos v \iff u \equiv \pm v \ [2\pi]$.

Démonstration.

L'implication indirecte est claire. Réciproquement, soit $u, v \in \mathbb{R}$ tels que $\cos u = \cos v$. Posons $x_0 = \arccos(\cos v)$. Alors $\cos v = \cos x_0 = \cos u$, donc $u \equiv \pm x_0 \ [2\pi]$ et $v \equiv \pm x_0 \ [2\pi]$, ce qui permet de conclure. \square

Exercice. Résoudre l'équation (E) : $\cos x = \cos(\frac{\pi}{3} - 2x)$. Solution :

Solution:
$$(E) \iff \exists k \in \mathbb{Z}, \begin{cases} x = \frac{\pi}{3} - 2x + 2k\pi \\ \text{ou} \iff \exists k \in \mathbb{Z}, \end{cases} \begin{cases} x = \frac{\pi}{9} + 2k\frac{\pi}{3} \\ \text{ou} \\ x = -\frac{\pi}{3} + 2x + 2k\pi \end{cases}$$

Ainsi, l'ensemble des solutions est $S = (\frac{\pi}{3} + 2\pi\mathbb{Z}) \cup (\frac{\pi}{9} + 2\frac{\pi}{3}\mathbb{Z})$: modulo 2π , les solutions sont $\frac{\pi}{3}$, $\frac{\pi}{9}$, $\frac{7\pi}{9}$ et $\frac{13\pi}{9}$, que l'on peut représenter sur le cercle trigonométrique.

2.4.3 Résolution de l'équation $\sin x = s$

Définition. L'application sin réalise une bijection (croissante) de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ dans $\left[-1, 1\right]$. On note $\left[\arcsin\right]$ l'application réciproque.

Démonstration.

Pour tout $x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, posons $f(x) = \frac{\pi}{2} - x$. Ainsi f est une bijection décroissante de $[-\frac{\pi}{2}, \frac{\pi}{2}]$ dans $[0, \pi]$.

Pour tout $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $\sin(x) = \cos(\frac{\pi}{2} - x)$, donc $\sin\left| \begin{bmatrix} -1, 1 \\ -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix} \right| = \cos\left| \begin{bmatrix} -1, 1 \\ [0, \pi] \end{bmatrix} \right| \circ f$.

Ceci permet de conclure car une composée de bijections décroissantes est une bijection croissante. \Box

Résolution de l'équation $\sin x = s$:

Soit $s \in \mathbb{R}$. On note (E) l'équation $\sin x = s$, en l'inconnue $x \in \mathbb{R}$.

Si $s \notin [-1, 1]$, (E) n'admet aucune solution.

Si $s \in [-1, 1]$, posons $x_0 = \arcsin(s)$. Alors

 $(E) \Longleftrightarrow \sin x = \sin x_0 \Longleftrightarrow (x \equiv x_0 [2\pi]) \lor (x \equiv \pi - x_0 [2\pi]).$

Ainsi, l'ensemble des solutions de (E) est $\mathcal{S} = (x_0 + 2\pi\mathbb{Z}) \cup (\pi - x_0 + 2\pi\mathbb{Z})$.

Démonstration.

On suppose que $s \in [-1, 1]$ et on pose $x_0 = \arcsin(s)$.

 $(E) \iff \sin x = \sin x_0 \iff \cos(\frac{\pi}{2} - x) = \cos(\frac{\pi}{2} - x_0), \text{ donc d'après le paragraphe précédent, } (E) \iff \frac{\pi}{2} - x \equiv \pm(\frac{\pi}{2} - x_0) [2\pi] \iff (x \equiv x_0 [2\pi]) \lor (x \equiv \pi - x_0 [2\pi]). \square$

Exemple. $\sin x = \frac{\sqrt{3}}{2} \iff x \in (\frac{\pi}{3} + 2\pi\mathbb{Z}) \cup (\frac{2\pi}{3} + 2\pi\mathbb{Z}).$

Propriété. Pour tout $u, v \in \mathbb{R}$, $\sin u = \sin v \iff (u \equiv v \ [2\pi]) \lor (u \equiv \pi - v \ [2\pi])$.

Démonstration.

 $\sin u = \sin v \Longleftrightarrow \cos(\frac{\pi}{2} - u) = \cos(\frac{\pi}{2} - v) \dots \square$

2.4.4 Résolution de l'équation $\tan x = t$

Définition. On démontrera plus loin que l'application tan réalise une bijection (croissante) de $]-\frac{\pi}{2},\frac{\pi}{2}[$ dans \mathbb{R} . On note [arctan] l'application réciproque.

Résolution de l'équation $\tan x = t$:

Soit $t \in \mathbb{R}$. On note (E) l'équation $\tan x = t$, en l'inconnue $x \in \mathbb{R} \setminus (\frac{\pi}{2} + \pi \mathbb{Z})$.

Posons $x_0 = \arctan(t)$. Alors

 $(E) \iff \tan x = \tan x_0 \iff x \equiv x_0 [\pi].$

Ainsi, l'ensemble des solutions de (E) est $\mathcal{S} = x_0 + \pi \mathbb{Z}$.

Démonstration.

Résulte du fait que tan est π -périodique : $\tan(x) = \tan(x + k\pi)$ pour tout $k \in \mathbb{Z}$. \square

Exemple. $\tan x = -\sqrt{3} \iff x \in (-\frac{\pi}{3} + \pi \mathbb{Z}).$

Corollaire. Pour tout $u, v \in \mathbb{R} \setminus (\frac{\pi}{2} + \pi \mathbb{Z})$, $\tan u = \tan v \iff u \equiv v \ [\pi]$.

2.4.5 Expressions de la forme $A \cos x + B \sin x$.

Technique à connaître : transformation de $A\cos x + B\sin x$ en $r\cos(x - \varphi)$.

Première méthode :

Soit $(A, B) \in \mathbb{R}^2 \setminus \{(0, 0)\}.$

$$A\cos x + B\sin x = \sqrt{A^2 + B^2} \left(\frac{A}{\sqrt{A^2 + B^2}} \cos x + \frac{B}{\sqrt{A^2 + B^2}} \sin x \right).$$

Posons
$$c = \frac{A}{\sqrt{A^2 + B^2}}$$
 et $s = \frac{A}{\sqrt{A^2 + B^2}}$. On a $c^2 + s^2 = 1$, donc on sait qu'il existe

 $\varphi \in \mathbb{R}$ tel que $c = \cos \varphi$ et $s = \sin \varphi$. Ainsi, en posant $r = \sqrt{A^2 + B^2}$,

 $A\cos x + B\sin x = r(\cos\varphi\cos x + \sin\varphi\sin x) = r\cos(x - \varphi).$

r est appelé l'amplitude et φ la phase.

On remarquera que, par construction, $c+is=e^{i\varphi},$ donc $A+\underline{i}B=re^{i\varphi}.$

Seconde méthode : lorsque $A \neq 0$. Il existe φ tel que $\tan \varphi = \frac{B}{A}$.

Alors
$$A\cos x + B\sin x = A(\cos x + \frac{\sin\varphi}{\cos\varphi}.\sin x) = \frac{A}{\cos\varphi}\cos(x-\varphi).$$

Remarque. Ainsi, une combinaison linéaire de deux signaux sinusoïdaux de même période en quadrature (déphasage de 90 degrés) est un signal sinusoïdal déphasé.

Exercice. Résoudre l'équation (E): $-3\cos x + 4\sin x = 10$.

Exercice. Résoudre l'équation (E) : $\sqrt{3}\cos x - \sin x = 2$.

3 Dérivation et intégration

3.1 Pente de la tangente

Propriété. Les fonctions affines de \mathbb{R} dans \mathbb{R} sont exactement les applications de la forme $x \mapsto px + y_0$ où $p, y_0 \in \mathbb{R}$.

Le graphe d'une telle application est la droite d'équation $y = px + y_0$. On dit que p est la pente de cette droite et que y_0 est l'ordonnée à l'origine.

Remarque. Lorsque le plan usuel est rapporté à un repère orthonormé direct $(O, \vec{\imath}, \vec{\jmath})$, outre les droites admettant une équation de la forme $y = px + y_0$, on dispose également des droites "verticales", d'équation $x = x_0$, où $x_0 \in \mathbb{R}$. On peut dire que la pente de ces dernières est infinie.

Deux droites affines du plan sont parallèles si et seulement si elles ont la même pente.

Propriété. Soit $f : \mathbb{R} \longrightarrow \mathbb{R}$ une fonction. Pour tout $x_0, x_1 \in \mathcal{D}_f$, avec $x_0 \neq x_1$, la corde du graphe de f entre les abscisses x_0 et x_1 est par définition l'unique droite du plan passant par les points du graphe de f d'abscisses x_0 et x_1 .

Elle a pour équation :
$$y - f(x_0) = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \times (x - x_0)$$
.

En particulier, la pente de cette droite est égale à $\frac{f(x_1) - f(x_0)}{x_1 - x_0}$.

Définition. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction définie sur un intervalle I et soit $x_0 \in I$. On dit que f est dérivable en x_0 si et seulement si la quantité $\frac{f(x_1) - f(x_0)}{x_1 - x_0}$ possède une limite lorsque x_1 tend vers x_0 . Dans ce cas, cette limite est notée $f'(x_0)$ et est appelée la dérivée de f en x_0 .

Remarque. Nous ferons plus tard la théorie des notions de limite et de dérivée.

Informellement, lorsque f est dérivable en x_0 , la corde du graphe de f entre les abscisses x_0 et x_1 tend vers une droite non verticale, de pente $f'(x_0)$, que l'on appelle la tangente au graphe de f en le point de coordonnées $(x_0, f(x_0))$. Cette tangente a donc pour équation : $y - f(x_0) = f'(x_0).(x - x_0)$.

Cela dit que la meilleure approximation de f, au voisinage de x_0 , parmi l'ensemble des applications affines, est $x \mapsto f(x_0) + f'(x_0) \cdot (x - x_0)$.

Il faut retenir que $f'(x_0)$, lorsqu'elle est définie, est la pente de la tangente au graphe de f en le point d'abscisse x_0 .

Définition. Soit I est un intervalle inclus dans \mathcal{D}_f .

On dit que f est dérivable sur I, ou bien que f est de classe D^1 sur I, si et seulement si f est dérivable en chacun des réels de I.

On dispose alors de l'application f', définie au moins sur I.

Lorsque f' est continue sur I, on dit que f est de classe C^1 sur I; on dit aussi que f est continûment dérivable sur l'intervalle I.

Exemple. Lorsque f(x) = ax + b, où a et b sont des paramètres réels, f est C^1 et, pour tout $x \in \mathbb{R}$, f'(x) = a.

Dans ce cas, le graphe de f est une droite D et toutes les cordes du graphe sont égales à D.

Exemple. Prenons $f(x) = x^2$. Alors $\frac{f(x_1) - f(x_0)}{x_1 - x_0} = x_1 + x_0 \xrightarrow[x_1 \to x_0]{} 2x_0$, donc f est dérivable sur \mathbb{R} et f'(x) = 2x.

Exercice. Calculer de la même façon la dérivée de $x \mapsto \frac{1}{x}$.

Exemple. Prenons $f(x) = \cos x$. Soit $x \in \mathbb{R}$. D'après une formule de factorisation,

$$\frac{f(x) - f(y)}{x - y} = -\sin\left(\frac{x + y}{2}\right) \times \frac{\sin\frac{x - y}{2}}{\frac{x - y}{2}}. \text{ Or } \frac{\sin t}{t} \xrightarrow[t \to 0]{} 1, \text{ donc } \frac{f(x) - f(y)}{x - y} \xrightarrow[y \to x]{} -\sin(x).$$

Ceci prouve que cos est dérivable et que $\cos' = -\sin$.

3.2 Règles de dérivation

Propriété. On démontrera plus tard les formules suivantes :

— Pour tout
$$\alpha, \beta \in \mathbb{R}$$
, $(\alpha f + \beta g)' = \alpha f' + \beta g'$.

$$--(fg)'=f'g+fg'.$$

$$\begin{split} &-\left(\frac{1}{f}\right)' = -\frac{f'}{f^2}.\\ &-\left(\frac{f}{g}\right)' = \frac{f'g - g'f}{g^2}.\\ &-\left(f \circ g\right)' = g' \times (f' \circ g).\\ &- \text{ Pour tout } n \in \mathbb{N}^*, \, (f^n)' = nf' \times f^{n-1}.\\ &- \text{ Lorsque } f \text{ est bijective, } (f^{-1})' = \frac{1}{f' \circ f^{-1}}. \end{split}$$

Les fonctions qui interviennent dans ces formules sont toutes supposées dérivables sur un intervalle. On se limite éventuellement à un sous-intervalle pour s'assurer que les quantités qui interviennent dans les formules sont bien définies.

Remarque. La dernière formule s'interprète bien géométriquement en tenant compte du fait que les graphes de f et de f^{-1} sont symétriques par rapport à la première diagonale. En effet, une droite D de pente p admet une équation de la forme $y = px + y_0$, donc le symétrique de D selon la première diagonale admet pour équation $x = py + y_0$, qui est une droite de pente $\frac{1}{p}$ lorsque $p \neq 0$.

Remarque. Selon le contexte, f^{-1} peut désigner l'application réciproque de f ou bien la quantité $\frac{1}{f}$, ce qui n'est pas du tout la même chose.

Remarque. Certaines cohérences entre ces formules aident à les retenir : $(f^2)' = (ff)' = 2ff', (f^3)' = (f^2 \times f)' = f \times (f^2)' + f^2 \times f' = 3f' \times f^2$ Par récurrence, on retrouverait par ce procédé que pour tout $n \in \mathbb{N}^*$, $(f^n)' = nf' \times f^{n-1}$. En particulier, avec f(x) = x, on obtient que

$$\forall n \in \mathbb{N}^*, \ \frac{d}{dx}(x^n) = nx^{n-1}.$$

Soit $n \in \mathbb{N}^*$. Posons $g(x) = x^n$.

Alors $(f^n)' = (g \circ f)' = f' \times g' \circ f = f' \times n \times f^{n-1}$: c'est cohérent.

 \diamond Posons $g(x) = \frac{1}{x}$. On a vu que $g'(x) = -\frac{1}{x^2}$. Ainsi, on retrouve que

$$\left(\frac{1}{f}\right)' = (g \circ f)' = f' \times g' \circ f = -\frac{f'}{f^2}.$$

Ensuite, on en déduit que $\left(\frac{f}{a}\right)' = f' \times \frac{1}{a} + f \times \left(\frac{1}{a}\right)' = \frac{f'g - g'f}{a^2}$.

Remarque. On a même, pour tout $n \in \mathbb{Z}^*$, $(f^n)' = nf' \times f^{n-1}$. En effet, fixons $n \in \mathbb{N}^*$. $\frac{d}{dx}(x^{-n}) = \frac{d}{dx}\left(\frac{1}{x^n}\right) = -\frac{nx^{n-1}}{x^{2n}} = -nx^{-n-1}$.

Exemples:

$$-\frac{d}{dx}(2x^4 + 5x^2 + \pi) = 8x^3 + 10x.$$

$$-\frac{d}{dx}(\cos^3 x) = -3\sin x \cos^2 x.$$

$$-\frac{d}{dx}\left(\frac{ax+b}{cx+d}\right) = \frac{ad-bc}{(cx+d)^2}.$$

$$-\frac{d}{dx}(\cos(\cos x)) = \sin x \times \sin(\cos x).$$

$$-\frac{d}{dx}(\tan x) = \frac{d}{dx}\left(\frac{\sin x}{\cos x}\right) = \frac{1}{\cos^2 x} = 1 + \tan^2 x.$$

$$-\frac{d}{dx}(\arcsin x) = \frac{1}{\cos(\arcsin x)} = \frac{1}{\sqrt{1 - x^2}}.$$

$$-\frac{d}{dx}(\arccos x) = \frac{1}{-\sin(\arccos x)} = \frac{-1}{\sqrt{1 - x^2}}.$$

$$-\frac{d}{dx}(\arctan x) = \frac{1}{\tan'(\arctan x)} = \frac{1}{1 + x^2}.$$

3.3 Dérivées d'ordre supérieur

Définition. Si f' est définie sur un intervalle I, on dit que f est deux fois dérivable sur I lorsque f' est dérivable en tout point de I. La dérivée de la dérivée de f est notée f''. On l'appelle la dérivée seconde de f.

Soit $n \in \mathbb{N}$. Par récurrence, la dérivée n-ième de f lorsqu'elle est définie est la dérivée de la dérivée (n-1)-ième. On la note $f^{(n)}$ ou bien $x \longmapsto \frac{d^n}{dx^n}(f(x))$.

- On dit que f est de classe D^n sur I lorsque f est n fois dérivable sur I.
- On dit que f est de classe C^n sur I lorsque f est n fois dérivable sur I et que $f^{(n)}$ est continue.
- On dit que f est de classe C^{∞} sur I lorsque, pour tout $n \in \mathbb{N}$, f est C^n sur I.

Remarque. On convient que $f^{(0)} = f$, pour toute application f de \mathbb{R} dans \mathbb{R} .

Exemple. Lorsque f(x) = ax + b, f est C^{∞} et, pour tout $n \in \mathbb{N}$ avec $n \geq 2$, pour tout $x \in \mathbb{R}$, $f^{(n)}(x) = 0$.

Exemple. Si f est de classe C^{∞} sur \mathbb{R} , pour tout $a, b \in \mathbb{R}$, $x \longmapsto f(ax+b)$ est aussi de classe C^{∞} sur \mathbb{R} et, pour tout $x \in \mathbb{R}$ et $n \in \mathbb{N}$, $\frac{d^n}{dx^n}(f(ax+b)) = a^n f^{(n)}(ax+b)$.

Exemple. On prouve que sin est dérivable, de dérivée cos. Ainsi, par récurrence, on en déduit que cos et sin sont de classe C^{∞} .

On peut montrer par récurrence les formules suivantes :

Pour tout $n \in \mathbb{N}$, pour tout $x \in \mathbb{R}$, $\cos^{(n)}(x) = \cos(x + n\frac{\pi}{2})$ et $\sin^{(n)}(x) = \sin(x + n\frac{\pi}{2})$.

Exemple. Soit $a \in \mathbb{R}$. Montrer que, pour tout $n \in \mathbb{N}$, pour tout $x \in \mathbb{R} \setminus \{-a\}$, $\frac{d^n}{dx^n} \left(\frac{1}{x+a}\right) = \frac{(-1)^n n!}{(x+a)^{n+1}}$ (on rappelle que $n! = n \times (n-1) \times \cdots \times 1$).

3.4 Dérivation et monotonie

Théorème. Soit f une fonction de I dans \mathbb{R} , où I est un **intervalle** de \mathbb{R} . On suppose que f est dérivable sur I.

— f est constante sur I si et seulement si f' est identiquement nulle sur I.

- f est croissante sur I si et seulement si $\forall x \in I, f'(x) \geq 0$.
- f est décroissante sur I si et seulement si $\forall x \in I, f'(x) \leq 0$.
- Si f'(x) est de signe constant sur I et si $\{x \in I/f'(x) = 0\}$ est fini, alors f est strictement monotone.

Démonstration.

Admis pour le moment. \Box

Exemple. Posons $f(x) = \frac{1}{x}$. L'application f est définie et dérivable sur \mathbb{R}^* et $f'(x) = -\frac{1}{x^2} < 0$, donc f est décroissante sur \mathbb{R}_+^* et sur \mathbb{R}_+^* . Attention cependant, f n'est pas globalement décroissante sur \mathbb{R}^* .

Exemple. Montrer que, pour tout x > 0, $\sin x < x$.

Pour x > 1, $\sin x < 1 < x$.

Sur I = [0, 1], posons $f(x) = x - \sin x$. f est dérivable et $f'(x) = 1 - \cos x \ge 0$. De plus, pour tout $x \in I$, $f'(x) = 0 \iff x = 0$. Ainsi f est strictement croissante sur [0, 1], donc pour tout $x \in]0, 1]$, f(x) > f(0) = 0, donc $\sin(x) < x$. On en déduit que, pour tout $x \in \mathbb{R}$, $|\sin x| \le |x|$.

Exemple. Pour tout $x \in [-1, 1]$, $\arccos x + \arcsin x = \frac{\pi}{2}$.

En effet, si l'on pose $f(x) = \arccos x + \arcsin x$, f est dérivable sur]-1,1[et f'(x)=0, donc f est constante sur]-1,1[, égale à $f(0)=\frac{\pi}{2}$.

C'est encore vrai pour $x = \pm 1$.

On peut aussi le montrer sans dériver : soit $x \in [-1, 1]$.

Posons $\theta = \arccos x$ et $\varphi = \arcsin x$.

Alors $\cos \theta = x = \sin \varphi = \cos(\frac{\pi}{2} - \varphi)$, or $\theta, \frac{\pi}{2} - \varphi \in [0, \pi]$, donc $\theta = \frac{\pi}{2} - \varphi$.

Exercice. Adapter l'exemple précédent pour montrer que, pour tout $t \in \mathbb{R}^*$, arctan $t + \arctan \frac{1}{t} = \operatorname{sgn}(t) \times \frac{\pi}{2}$, où $\operatorname{sgn}(t)$ représente le signe de t, c'est-à-dire 1 si t > 0 et -1 si t < 0.

3.5 Intégration

Définition. Soit $a, b \in \mathbb{R}$ avec a < b. Soit $f: [a, b] \longrightarrow \mathbb{R}$ une application continue. On note $\int_a^b f(t)dt$ (prononcer "intégrale de a à b de f(t) dt") l'aire comprise entre l'axe des abscisses (noté Ox) et le graphe de f, en comptant positivement les aires au dessus de l'axe Ox (donc lorsque $f(x) \ge 0$) et négativement les aires situées au dessous de l'axe Ox (lorsque $f(x) \le 0$).

Remarque. On utilise une notion d'aire mal définie. C'est une définition intuitive et informelle. Nous construirons une théorie de l'intégration plus rigoureuse ultérieurement.

Exemple. Pour tout $c \in \mathbb{R}$ et a < b, $\int_a^b c dt = c(b-a)$, car c'est l'aire d'un rectangle. Pour a > 0, $\int_a^a t dt = \frac{a^2}{2}$, car c'est la moitié de l'aire d'un carré de côté a.

Convention: Avec les notations et hypothèses précédentes, on convient que

$$\int_{b}^{a} f(t)dt = -\int_{a}^{b} f(t)dt \text{ et que } \int_{a}^{a} f(t)dt = 0.$$

On admettra pour le moment que les intégrales vérifient les propriétés suivantes : **Propriété.** Soit I un intervalle inclus dans \mathbb{R} .

Soit f et g deux applications continues de I dans \mathbb{R} .

Soit $a, b \in I$ (on peut avoir a < b, b < a ou bien a = b).

— Linéarité : Pour tout
$$\alpha, \beta \in \mathbb{R}$$
, $\int_a^b (\alpha f + \beta g) = \alpha \int_a^b f + \beta \int_a^b g$.

— Relation de Chasles : Pour tout
$$c \in I$$
, $\int_a^b f(t)dt = \int_a^c f + \int_c^b f$.

Soit $a, b \in I$: on suppose maintenant que $a \le b$.

— Positivité : si
$$f \ge 0$$
, alors $\int_a^b f(t)dt \ge 0$.

— Croissance de l'intégrale : si
$$f \leq g$$
, alors $\int_a^b f(t)dt \leq \int_a^b g(t)dt$.

— Inégalité triangulaire :
$$\left| \int_a^b f(t)dt \right| \le \int_a^b |f(t)|dt$$
.

Propriété. Soit $a, b \in \mathbb{R}$ avec a < b et soit $f : [a, b] \longrightarrow \mathbb{R}$ une application **continue et positive**, telle que $\int_a^b f(t)dt = 0$. Alors f est identiquement nulle sur [a, b].

3.6 Primitivation

Définition. Soit I un intervalle de \mathbb{R} et f une application de I dans \mathbb{R} que l'on suppose continue.

On dit que F est une primitive de f sur I si et seulement si F est dérivable et F'=f.

Remarque. Ainsi, l'opération de primitivation d'une fonction est l'opération réciproque de la dérivation.

Propriété. Avec les hypothèses et notations précédentes, si F_0 est une primitive de f, alors les autres primitives de f sont exactement les applications $F_0 + k$, où k est une fonction constante.

Ainsi, f ne possède pas une primitive unique, mais on peut dire que cette primitive est unique à une constante additive près.

$D\'{e}monstration.$

F est une primitive de f si et seulement si $(F_0 - F)' = 0$. \square

On admet pour le moment le théorème suivant :

Théorème fondamental de l'analyse : Soit I un intervalle de \mathbb{R} et f une application de I dans \mathbb{R} que l'on suppose continue. Soit $x_0 \in I$.

Alors $x \longmapsto \int_{x_0}^x f(t)dt$ est l'unique primitive de f qui s'annule en x_0 .

Remarque. Cela signifie que $x \mapsto \int_{x_0}^x f(t)dt$ est une fonction dérivable sur I et que $\frac{d}{dx} \left(\int_{x_0}^x f(t)dt \right) = f(x)$.

Corollaire. Soit f une application continue d'un intervalle I dans \mathbb{R} . Si F est une primitive de f, alors pour tout $a, b \in I$,

$$\int_{a}^{b} f(t)dt = F(b) - F(a) \stackrel{\Delta}{=} [F(t)]_{a}^{b}.$$

Démonstration.

Posons $F_0(x) = \int_a^x f(t)dt$: F_0 est une primitive de f, donc il existe $k \in \mathbb{R}$ tel que, pour tout $x \in I$, $F(x) = F_0(x) + k$. Ainsi, $\int_a^b f(t)dt = F_0(b) = F(b) - F(a)$. \square

Exemple.

$$-\int_0^{\pi} \cos t \ dt = \left[\sin t\right]_0^{\pi} = 0.$$

$$-\int_0^1 x \ dx = \left[\frac{x^2}{2}\right]_0^1 = \frac{1}{2}, \int_1^2 x \ dx = \frac{3}{2}, \int_2^3 x \ dx = \frac{5}{2}.$$

Corollaire. Si f est une application de classe C^1 sur [a,b], $\int_a^b f'(t) dt = f(b) - f(a)$.

Démonstration.

f est une primitive de f'. \square

Notation. L'écriture " $\int f(t) dt = F(t) + k, t \in I$ " signifiera que f est continue sur I et que l'ensemble des primitives de f est $\{F + k/k \in \mathbb{R}\}$.

Exemple.

$$-\int x^n dx = \frac{x^{n+1}}{n+1} + k, \text{ pour tout } n \in \mathbb{Z} \setminus \{-1\}.$$

$$-\int \cos^2 x dx = \int \frac{1 + \cos 2x}{2} dx = \frac{x}{2} + \frac{\sin 2x}{4} + k.$$

$$-\int \frac{dx}{1+x^2} = \arctan x + k.$$

$$-\int \frac{2x dx}{(x^2+1)^2} = \frac{-1}{x^2+1} + k.$$

Propriété. Soit $a, b \in \mathbb{R}$ avec $a \neq 0$.

Si
$$\int f(t) dt = F(t) + k$$
, alors $\int f(at+b) dt = \frac{1}{a}F(at+b) + k$.

Remarque. Si f est une application continue d'un intervalle I dans \mathbb{R} et si $u: J \longrightarrow I$ et $v: J \longrightarrow I$ sont des applications dérivables sur un intervalle J, on calcule la dérivée de $t \longmapsto \int_{u(t)}^{v(t)} f(x) \ dx$ en utilisant une primitive F de f:

$$\int_{u(t)}^{v(t)} f(x) \ dx = F(v(t)) - F(u(t)) \text{ a pour dérivée } v'(t) f(v(t)) - u'(t) f(u(t)).$$

Exemple. Si f est définie et continue sur \mathbb{R} , alors

$$\frac{d}{dx}\left(\int_{-x}^{x} f(t) dt\right) = \frac{d}{dx}(F(x) - F(-x)) = f(x) + f(-x).$$

4 Fonctions Logarithmes et puissances

4.1 Quelques théorèmes d'analyse

On montrera plus tard les théorèmes suivants :

Théorème de la limite monotone : On pose $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$.

Soit $(m, M) \in \overline{\mathbb{R}}^2$ avec m < M. Notons I =]m, M[.

Soit f une application de I dans \mathbb{R} que l'on suppose monotone.

Alors la quantité f(x) possède une limite dans $\overline{\mathbb{R}}$, lorsque x tend vers m (resp : M).

Notation. Pour la suite de ce paragraphe, on fixe un intervalle I de cardinal infini.

Théorème des valeurs intermédiaires (TVI):

Soit $f: I \longrightarrow \mathbb{R}$ une application continue à valeurs réelles. Soit $a, b \in I$ avec a < b. Alors, pour tout réel k compris entre f(a) et f(b), il existe $c \in [a, b]$ tel que f(c) = k.

Seconde formulation du TVI:

L'image d'un intervalle par une application continue à valeurs réelles est un intervalle.

Théorème. Soit $f:I \longrightarrow \mathbb{R}$ une fonction continue. Alors f est injective si et seulement si elle est strictement monotone.

Théorème de la bijection :

Soit $f: I \longrightarrow \mathbb{R}$ une application continue et strictement monotone.

Ainsi, en notant encore f la restriction $f|_{f(I)}$, f est une bijection de I dans f(I).

Alors, $f^{-1}: f(I) \longrightarrow I$ est également **continue** et strictement monotone (de même sens de variation que f).

Remarque. Il est élémentaire de démontrer que, si f est strictement monotone, alors f est une bijection de I dans f(I) et que son application réciproque f^{-1} est également monotone strictement, de même sens de variation que f. La continuité de f^{-1} est moins évidente.

Définition. Soit f une application définie sur un intervalle I et à valeurs dans un autre intervalle J de \mathbb{R} .

Soit $n \in \mathbb{N}^* \cup \{\infty\}$. On dit que f est un C^n -difféomorphisme si et seulement si f est une bijection de I sur J et si f et f^{-1} sont toutes deux de classe C^n .

Caractérisation d'un difféomorphisme : Soit f une application définie sur un intervalle I et à valeurs dans \mathbb{R} . Soit $n \in \mathbb{N}^* \cup \{\infty\}$.

f est un C^n -difféomorphisme de I dans f(I) si et seulement si f est de classe C^n et si, pour tout $x \in I$, $f'(x) \neq 0$.

Remarque. C'est cohérent avec la formule : $(f^{-1})'(f(x)) = \frac{1}{f'(x)}$.

4.2 Les fonctions ln et exp

Définition. ¹ Pour tout x > 0, on pose $\ln(x) = \int_1^x \frac{dt}{t}$.

Remarque. La dénomination logarithme, inventée par Neper, résulte de la combinaison de logos (au sens très général de mise en rapport de 2 notions; ici, x et 10^x dans une même table) et de arithmos qui signifie nombre.

Propriété. Le domaine de définition de ln est égal à \mathbb{R}_+^* .

Par construction, ln est dérivable sur \mathbb{R}_+^* et, pour tout $x \in \mathbb{R}_+^*$, $\frac{d}{dx}(\ln(x)) = \frac{1}{x}$. Ainsi, ln est strictement croissante et $\ln(1) = 0$.

Relation fonctionnelle : Pour tout $x, y \in \mathbb{R}_+^*$, $\ln(xy) = \ln x + \ln y$.

Démonstration.

Fixons $y \in \mathbb{R}_+^*$. Posons $f(x) = \ln(xy) - \ln x - \ln y$. f est dérivable sur \mathbb{R}_+^* et $f'(x) = \frac{y}{xy} - \frac{1}{x} = 0$, donc f est constante, égale à $f(1) = \ln(y) - \ln(1) - \ln(y) = 0$. \square

Remarque. Posons, pour tout $(x,y) \in (\mathbb{R}_+^*)^2$, $g(x,y) = \ln(xy) - \ln x - \ln y$: g est une fonction de plusieurs variables réelles. Ci-dessus, on a dérivé selon la variable x après avoir fixé la variable y.

C'est la définition de la dérivée partielle de g selon la variable x.

Plus généralement, si h est une application de \mathbb{R}^2 dans \mathbb{R} ,

on pose
$$\frac{\partial}{\partial x}(h(x,y)) = [x \longmapsto h(x,y)]'_{y \text{ \'etant fix\'e}}.$$

Par exemple, en généralisant dans \mathbb{R}^3 , $\frac{\partial}{\partial z}(\sqrt{x^2+y^2+z^2}) = \frac{z}{\sqrt{x^2+y^2+z^2}}$.

Propriété. Pour tout
$$n \in \mathbb{N}$$
 et $x_1, \ldots, x_n \in \mathbb{R}_+^*$, $\ln\left(\prod_{i=1}^n x_i\right) = \sum_{i=1}^n \ln(x_i)$.

Démonstration.

Par récurrence sur n à l'aide de la propriété précédente. \square

Propriété. Pour tout $x \in \mathbb{R}_+^*$, $\ln(x) \le x - 1$.

©Éric Merle 23 MPSI2, LLG

^{1.} En classe de Première, vous avez défini la fonction exp comme l'unique fonction dérivable f vérifiant la propriété (P) suivante : f' = f et f(0) = 1, mais en admettant l'existence et l'unicité relative à la propriété (P). Ensuite, en classe de Terminale, vous avez défini la fonction ln comme la fonction réciproque de la fonction exp. Maintenant, nous souhaitons proposer des définitions des fonctions élémentaires qui évite d'admettre quoi que ce soit.

$D\'{e}monstration.$

Posons $f(x) = x - 1 - \ln x$ lorsque x > 0. f est dérivable sur \mathbb{R}_+^* et $f'(x) = 1 - \frac{1}{x} = \frac{x-1}{x}$, donc f est décroissante entre 0 et 1, puis croissante entre 1 et $+\infty$. Le tableau de variations montre ainsi que, pour tout x > 0, $f(x) \ge f(1) = 0$. \square

Remarque. La démonstration précédente prouve même que, pour tout $x \in \mathbb{R}_+^* \setminus \{1\}$, $\ln(x) < x - 1$.

Propriété. $\ln(x) \xrightarrow[x \to +\infty]{} +\infty$.

Démonstration.

- \diamond ln est croissante, donc d'après le théorème de la limite monotone, il existe $\ell \in \overline{\mathbb{R}}$ tel que $\ln(x) \underset{x \to +\infty}{\longrightarrow} \ell$.
- \diamond ln est strictement croissante, donc $\ln(2) > 0 = \ln(1)$.
- \diamond Par récurrence sur $n \in \mathbb{N}$, on montre que $\ln(2^n) = n \ln 2$, donc $\ln(2^n) \xrightarrow[n \to +\infty]{} + \infty$. Mais $2^n \xrightarrow[n \to +\infty]{} + \infty$ et $\ln(x) \xrightarrow[x \to +\infty]{} \ell$, donc par composition des limites, $\ln(2^n) \xrightarrow[n \to +\infty]{} \ell$. Alors, par unicité de la limite, $\ell = +\infty$. \square

Propriété. $\ln(x) \xrightarrow[x \to 0^+]{} -\infty$.

Démonstration.

Soit $x \in \mathbb{R}_+^*$. $\ln x + \ln \frac{1}{x} = \ln 1 = 0$, donc $\ln(x) = -\ln \frac{1}{x} \xrightarrow[x \to 0^+]{} -\infty$, par composition des limites, en utilisant le fait que $\frac{1}{x} \xrightarrow[x \to 0^+]{} +\infty$ et que $\ln(y) \xrightarrow[y \to +\infty]{} +\infty$. \square

Propriété. la est un C^{∞} -difféomorphisme de \mathbb{R}_{+}^{*} dans \mathbb{R} .

Démonstration.

ln est C^{∞} sur \mathbb{R}_{+}^{*} et, pour tout $x \in \mathbb{R}_{+}^{*}$, $\ln'(x) = \frac{1}{x} \neq 0$, donc d'après le théorème de caractérisation d'un difféomorphisme, ln est un C^{∞} -difféomorphisme de \mathbb{R}_{+}^{*} dans $\ln(\mathbb{R}_{+}^{*})$.

De plus, $\ln(x) \xrightarrow[x \to +\infty]{} +\infty$ et $\ln(x) \xrightarrow[x \to 0^+]{} -\infty$, donc $\ln(\mathbb{R}_+^*)$ est un intervalle ni minoré, ni majoré. Ainsi $\ln(\mathbb{R}_+^*) = \mathbb{R}$. \square

Remarque. Les logarithmes ont été inventés par Neper (en 1614, mais pas sous forme intégrale : il faut attendre 1666 pour cela) afin de ramener le calcul d'un produit xy à celui d'une somme : $\ln x + \ln y$. Cependant, pour terminer le calcul, il est nécessaire de connaître la bijection réciproque de la bijection ln.

Corollaire. Il existe un unique $e \in \mathbb{R}$ tel que $\ln(e) = 1$. e est le nombre de Neper. Il admet pour valeur approchée $e = 2,71828183 \pm 10^{-8}$.

Propriété.
$$\left[\frac{\ln x}{x} \underset{x \to +\infty}{\longrightarrow} 0\right]$$
.

Démonstration

Pour tout $x \in [e, +\infty[$, posons $f(x) = \frac{\ln x}{x}$. f est dérivable sur $[e, +\infty[$ avec $f'(x) = \frac{1 - \ln x}{x^2}$. Soit $x \in [e, +\infty[$. Par croissance du logarithme, $\ln x \ge \ln e = 1$, donc $f'(x) \le 0$. Ainsi f est décroissante, donc d'après le théorème de la limite monotone, il existe $\ell \in \overline{\mathbb{R}}$ tel que $f(x) \xrightarrow[x \to +\infty]{} \ell$.

De plus, pour tout $n \in \mathbb{N}$, $f(2^n) = \frac{n \ln 2}{2^n}$, or on peut montrer par récurrence que pour tout $n \geq 4$, $2^n \geq n^2$, donc pour tout $n \in \mathbb{N} \cap [4, +\infty[$, $0 \leq f(2^n) \leq \frac{\ln 2}{n} \underset{n \to +\infty}{\longrightarrow} 0$, donc d'après le principe des gendarmes, $f(2^n) \underset{n \to +\infty}{\longrightarrow} 0$.

Or, par composition des limites, $f(2^n) \underset{n \to +\infty}{\longrightarrow} \ell$, donc par unicité de la limite, $\ell = 0$. \Box

Graphe de ln : au tableau.

Définition. La bijection réciproque de la bijection $\ln |_{\mathbb{R}_+^*}^{\mathbb{R}}$ est notée exp. exp est un C^{∞} difféomorphisme de \mathbb{R} dans \mathbb{R}_+^* .

Pour tout $x \in \mathbb{R}_+^*$, $\exp(\ln x) = x$ et, pour tout $x \in \mathbb{R}$, $\ln(\exp(x)) = x$.

Propriété. $\exp(1) = e$.

$$\forall x \in \mathbb{R}, \ \frac{d}{dx}(\exp(x)) = \exp(x).$$

 $\forall x, y \in \mathbb{R}, \ \exp(x+y) = \exp(x)\exp(y).$

Démonstration.

D'après la formule de dérivation d'une bijection réciproque,

$$\frac{d}{dx}(\exp(x)) = \frac{1}{\ln'(\exp(x))} = \exp(x).$$
 Soit $x, y \in \mathbb{R}$. $\ln(\exp(x+y)) = x+y$ et $\ln(\exp(x)\exp(y)) = \ln(\exp(x)) + \ln(\exp(y)) = x+y$, or \ln est strictement croissante, donc elle est injective, donc $\exp(x+y) = \exp(x)\exp(y)$. \square

Remarque. Par récurrence, on montre que, pour tout $n \in \mathbb{N}$, $\exp(n) = \underbrace{e \times \cdots \times e}_{\text{n fois}} = e^n$.

De plus, pour tout $n \in \mathbb{N}$, $\exp(n) \times \exp(-n) = \exp(0) = 1$, donc pour tout $n \in \mathbb{Z}$, $\exp(n) = e^n$.

Notation. En cohérence avec cette dernière propriété, on note le plus souvent

$$\forall x \in \mathbb{R}, \ \exp(x) = e^x.$$

Remarque. On montrera plus loin que, pour tout $x \in \mathbb{R}$, $e^x = \lim_{n \to +\infty} \sum_{k=0}^n \frac{x^k}{k!}$. Il est donc cohérent de définir e^z lorsque $z \in \mathbb{C}$ par la formule $e^z = \lim_{n \to +\infty} \sum_{k=0}^n \frac{z^k}{k!}$.

Propriété. Pour tout $x \in \mathbb{R}$, $e^x \ge 1 + x$.

Démonstration.

Soit $x \in \mathbb{R}$. Posons $t = e^x$. Ainsi t > 0, donc on sait que $x = \ln t \le t - 1 = e^x - 1$. Ainsi, $e^x \geq x + 1$. \square

Graphe de exp : au tableau.

Propriété. Regroupons les propriétés fondamentales des fonctions ln et $x \mapsto e^x$:

- \diamond Fonction logarithme: Pour tout $x, y \in \mathbb{R}_+^*$ et $n \in \mathbb{Z}$,
 - $\ln(xy) = \ln x + \ln y,$
 - $-\ln(1) = 0$ et $\ln(e) = 1$,

 - $-\ln\left(\frac{1}{x}\right) = -\ln x,$ $-\ln\left(\frac{x}{y}\right) = \ln x \ln y,$
 - $-\ln(x^n) = n \ln x$
 - l
n est définie sur $\mathbb{R}_+^*,$ elle est strictement croissante,
 - $\ln x \le x 1,$
 - $\ln(t) \xrightarrow[t \to 0]{} -\infty, \ln(t) \xrightarrow[t \to +\infty]{} +\infty, \frac{\ln(t)}{t} \xrightarrow[t \to +\infty]{} 0.$
- \diamond Fonction exponentialle: Pour tout $x, y \in \mathbb{R}$ et $n \in \mathbb{Z}$,
 - $-e^{x+y}=e^xe^y$,
 - $-e^0 = 1 \text{ et } e^1 = e,$

 - $-e^{x} > 0,$ $-e^{-x} = \frac{1}{e^{x}},$ $-e^{x-y} = \frac{e^{x}}{e^{y}}.$

 - exp est définie sur \mathbb{R} , elle est strictement croissante,

 - $-e^{x} \ge 1 + x,$ $-e^{t} \underset{t \to -\infty}{\longrightarrow} 0, e^{t} \underset{t \to +\infty}{\longrightarrow} +\infty.$ $-\frac{e^{t}}{t} \underset{t \to +\infty}{\longrightarrow} +\infty.$

$D\'{e}monstration.$

Pour l'avant-dernière ligne, ces limites existent dans $\overline{\mathbb{R}}$ d'après le théorème de la limite monotone et elles ont les valeurs indiquées car $e^{-n\ln 2}=e^{\ln(2^{-n})}=2^{-n}=\frac{1}{2^n}\underset{n\to+\infty}{\longrightarrow}0$ et

$$e^{n \ln 2} = 2^n \underset{n \to +\infty}{\longrightarrow} +\infty.$$

Pour la dernière limite : $\frac{x}{\ln x} \xrightarrow[x \to +\infty]{} + \infty$ et $e^t \xrightarrow[t \to +\infty]{} + \infty$, donc par composition des

limites,
$$\frac{e^t}{t} = \frac{e^t}{\ln(e^t)} \xrightarrow[t \to +\infty]{} +\infty$$
.

Logarithmes et exponentielles en base a. 4.3

Définition. Soit $a \in \mathbb{R}_+^* \setminus \{1\}$. Le logarithme en base a est l'application notée \ln_a

définie par :

$$\forall x \in \mathbb{R}_+^*, \ \ln_a(x) = \frac{\ln x}{\ln a}.$$

Remarque. Le logarithme en base 10, souvent noté log, est utilisé en chimie (pH) et en acoustique (dB).

Le logarithme en base 2 est utilisé en informatique.

Remarque. Pour tout x > 0, $\frac{d}{dx}(\ln_a(x)) = \frac{1}{x \ln a}$.

Définition. Soit $a \in \mathbb{R}_+^*$. On montre facilement que, pour tout $n \in \mathbb{Z}$, $a^n = e^{n \ln a}$.

On convient de noter, pour tout $x \in \mathbb{R}$, $a^x \stackrel{\Delta}{=} e^{x \ln a} = \exp_a(x)$: c'est la fonction "exponentielle en base a".

Remarque. Pour tout $x \in \mathbb{R}$, $\frac{d}{dx}(a^x) = (\ln a)a^x$.

Propriété. Soit $a \in \mathbb{R}_+^* \setminus \{1\}$. Les fonctions \ln_a et $x \longmapsto a^x$ sont des bijections, réciproques l'une de l'autre :

$$\forall x \in \mathbb{R}, \ \ln_a(a^x) = x \quad \text{et} \quad \forall x \in \mathbb{R}_+^*, \ a^{\ln_a x} = x.$$

Propriété. Regroupons les propriétés fondamentales des fonctions \ln_a et $x \longmapsto a^x$:

- \diamond Fonction logarithme en base $a \in \mathbb{R}_+^* \setminus \{1\}$: Pour tout $x, y \in \mathbb{R}_+^*$ et $b \in \mathbb{R}$,
 - $\ln_a(xy) = \ln_a x + \ln_a y,$
 - $-\ln_a(1) = 0 \text{ et } \ln_a(a) = 1,$

 - $-\ln_a\left(\frac{1}{x}\right) = -\ln_a x,$ $-\ln_a\left(\frac{x}{y}\right) = \ln_a x \ln_a y,$
 - $\ln_a(x^b) = b \ln_a x,$
- \diamond Fonction exponentielle en base a: Pour tout $x, y \in \mathbb{R}$,
 - $--a^{x+y} = a^x a^y,$
 - $-a^{0} = 1 \text{ et } a^{1} = a,$ $-a^{x} > 0,$

 - $-a^{-x} = \frac{1}{a^x},$
 - $-a^{x-y} = \frac{a^x}{a^y},$
 - pour tout $b \in \mathbb{R}$, $a^{bx} = (a^x)^b$. Pour tout b > 0, $a^x b^x = (ab)^x$.

Fonctions puissances 4.4

Définition. Un monôme de degré $n \in \mathbb{N}$ est une application de la forme $x \longmapsto ax^n$, où a est un paramètre réel. Cette application est définie sur \mathbb{R} .

Définition. Une fonction polynomiale est une somme finie de monômes.

Exemple. $x \longmapsto x^{10} - 6x^3 + x$ est une application polynomiale.

Représentation graphique de $x \mapsto x^n$ où $n \in \mathbb{N}$: au tableau. Discuter selon la parité de n.

Remarque. Lorsque n est un entier relatif strictement négatif, $x \mapsto x^n$ est défini sur \mathbb{R}^* .

Représentation graphique de $x \mapsto x^n$ où $n \in \mathbb{Z}$ avec n < 0: au tableau. Discuter selon la parité de n.

Définition. Soit $\alpha \in \mathbb{R}$.

La fonction puissance d'exposant α est l'application $x \longmapsto x^{\alpha} = e^{\alpha \ln x}$. Elle est définie sur \mathbb{R}_{+}^{*} .

Lorsque $\alpha \in \mathbb{Z}$, cette application coïncide avec les applications précédentes sur \mathbb{R}_{+}^{*} .

Représentation graphique de $x \mapsto x^{\alpha}$ où $\alpha \in \mathbb{R}$, lorsque x décrit \mathbb{R}_{+}^{*} . On discutera selon la position de α par rapport à 0 et 1.

Remarque. L'application $x \longmapsto x^3$ est un C^{∞} -difféomorphisme de \mathbb{R} dans \mathbb{R} . Il nous arrivera de noter $x \longmapsto x^{\frac{1}{3}}$ son application réciproque, qui est ainsi définie sur \mathbb{R} en entier et pas seulement sur \mathbb{R}_+^* .

Plus généralement, on peut envisager de prolonger la notation $x^{\frac{1}{q}}$ à tout x réel lorsque q est un entier strictement positif et impair.

Cependant cette notation est risquée car on pourrait se croire autorisé d'écrire :

 $-2 = (-8)^{\frac{1}{3}} = (-8)^{\frac{2}{6}} = ((-8)^2)^{\frac{1}{6}} = 64^{\frac{1}{6}} = 2$, ce qui est faux bien entendu, mais pour une raison délicate : la quantité $(-8)^{\frac{2}{6}}$ ne vaut ni $((-8)^2)^{\frac{1}{6}}$ (qui est positif), ni $((-8)^{\frac{1}{6}})^2$ qui n'est pas défini.

Aussi, en dehors du cas particulier $x^{\frac{1}{q}}$ avec q impair, on évitera d'utiliser $x^{\frac{p}{q}}$ lorsque $p,q\in\mathbb{Z}$ avec $q\geq 2$ et $x\leq 0$.

Convention : Pour tout $b \in \mathbb{R}_+^*$, $0^b = 0$ et $\boxed{0^0 = 1}$. C'est cohérent avec le fait que, pour b > 0 fixé, $x^b \underset{x \to 0^+}{\longrightarrow} 0$ et que $x^x \underset{x \to 0^+}{\longrightarrow} 1$.

5 Etude d'une fonction

5.1 Plan d'étude d'une fonction f de \mathbb{R} dans \mathbb{R}

- 1. On détermine le domaine de définition \mathcal{D}_f de f.
- 2. On réduit \mathcal{D}_f à un domaine d'étude D en profitant des symétries de f : parité, imparité, période.
- 3. On détermine sur quel domaine $D'\subset D,$ f est dérivable. On calcule la dérivée de f sur D' et on étudie son signe.

- 4. On trace le tableau de variations de f (cf exemples). Ce tableau indique le signe de la dérivée, les sens de variation de f, les limites de f aux bornes des intervalles dont D est la réunion, certaines valeurs remarquables de f et f'. On repère ainsi les tangentes remarquables ainsi que les asymptotes verticales et horizontales.
- 5. Lorsque $f(x) \underset{x \to \pm \infty}{\longrightarrow} \pm \infty$, on dit que le graphe de f admet une branche infinie. On recherche alors une éventuelle asymptote oblique, selon la méthode présentée ci-dessous.

Exemple. Posons $f(x) = \sin^3 x$. Ainsi, $\mathcal{D}_f = \mathbb{R}$.

f étant 2π -périodique, on peut réduire l'intervalle d'étude à tout intervalle longueur 2π , par exemple $[-\pi,\pi]$. De plus f est impaire, donc on peut se limiter à $[0,\pi]$.

En remarquant que $f(\pi - x) = f(x)$, on peut même réduire l'intervalle d'étude à $I = [0, \frac{\pi}{2}]$: on fera subir au graphe obtenu sur I une symétrie par rapport à la droite verticale d'abscisse $\frac{\pi}{2}$ pour récupérer le graphe de $f|_{[0,\pi]}$.

f est croissante sur I et f' s'annule uniquement pour x=0 et $x=\frac{\pi}{2}$. Ceci permet d'effectuer le tracé du graphe de f.

Remarque. Dans ce contexte, la possession et la maîtrise d'une calculatrice graphique est un atout.

Exemple. Etude de la fonction $x \mapsto \frac{\ln x}{r}$.

5.2 Etude des branches infinies

Soit $\varepsilon \in \{-1,1\}$. On suppose que $f(x) \underset{x \to \varepsilon \infty}{\longrightarrow} \pm \infty$. On cherche une asympote oblique, c'est-à-dire une droite d'équation $y = \mu x + \alpha$ avec $\mu \neq 0$, telle que au voisinage de l'infini, le graphe de f épouse l'asymptote, c'est-à-dire telle que $f(x) - \mu x - \alpha$ tend vers 0 lorsque x tend vers $\varepsilon \infty$.

• Premier cas. S'il existe $\mu \in \mathbb{R}$ tel que $\frac{f(x)}{x} \xrightarrow[x \to \epsilon \infty]{} \mu$. Dans ce cas, on dit que le graphe de f admet une direction asymptotique de pente μ .

1.1 S'il existe $\alpha \in \mathbb{R}$ tel que $f(x) - \mu x \xrightarrow[x \to \epsilon \infty]{} \alpha$.

Dans ce cas, la droite affine d'équation $y = \mu x + \alpha$ est une asymptote de la courbe au voisinage de $\varepsilon \infty$.

On positionne éventuellement la courbe par rapport à l'asymptote en recherchant le signe de la quantité $s(x) = f(x) - \mu x - \alpha$ pour $x \in D$. Si s(x) > 0, le point d'abscisse x du graphe est situé au dessus de l'asymptote, et si s(x) < 0, le point est sous l'asymptote.

On dit que l'arc présente au voisinage de $\varepsilon \infty$ une branche parabolique de pente μ .

C'est en particulier le cas lorsque $\mu=0$, c'est-à-dire lorsque $\frac{f(x)}{x} \underset{x \to \infty}{\longrightarrow} 0$: on est en présence d'une branche parabolique horizontale. La courbe ressemble à celle de l'application $x \longmapsto \sqrt{x}$.

 \diamond 1.3 Autres cas.

Il y a seulement une direction asymptotique.

• Deuxième cas. Si $\frac{f(x)}{x} \xrightarrow[x \to \epsilon \infty]{} \pm \infty$.

Dans ce cas, le graphe de f admet une branche parabolique verticale. La courbe ressemble à celle de l'application $x \longmapsto x^2$.

• Troisième cas. Dans tous les autres cas, on peut seulement dire que f présente une branche infinie lorsque x tend vers $\varepsilon \infty$.

Exemple. Posons $f(x) = \frac{x^2 + 2x + 5}{x + 1}$.

 $f(x) = x \times \frac{x+2+\frac{5}{x}}{x+1} \xrightarrow[x \to +\infty]{} +\infty$, donc f présente une branche infinie au voisinage de $+\infty$ (et aussi de $-\infty$).

 $\frac{f(x)}{x} = \frac{x+2+\frac{5}{x}}{x+1} \xrightarrow[x \to +\infty]{'} 1$, donc le graphe de f admet une direction asymptotique de pente 1.

De plus $f(x) - x = \frac{x^2 + 2x + 5}{x + 1} - x = \frac{x + 5}{x + 1} \xrightarrow[x \to +\infty]{} 1$, donc le graphe de f admet pour asymptote au voisinage de $+\infty$ la droite d'équation y = x + 1.

Lorsque x + 1 > 0, $\frac{x + 5}{x + 1} > 1$, donc le graphe de f est au dessus de l'asymptote.

6 Déformations du graphe

Notation. On fixe à nouveau une partie D de \mathbb{R} . f désigne une fonction de D dans \mathbb{R} .

Propriété. On fixe un réel a.

- Le graphe de $x \mapsto f(x) + a$ se déduit du graphe de f par la translation de vecteur $a \overrightarrow{f}$.
- Le graphe de $x \mapsto f(x+a)$ se déduit du graphe de f par la translation de vecteur $-a\overrightarrow{t}$.
- Le graphe de $x \mapsto f(a-x)$ se déduit du graphe de f par la symétrie orthogonale selon la droite verticale d'abscisse $\frac{a}{2}$.
- Le graphe de $x \mapsto f(ax)$ se déduit du graphe de f par une affinité orthogonale d'axe invariant Oy et de coefficient $\frac{1}{a}$, qui a pour effet,
 - lorsque a > 1, d'écraser le graphe de f d'un facteur a vers l'axe des ordonnées, parallèlement à l'axe Ox,
 - lorsque 0 < a < 1, d'étirer le graphe de f d'un facteur $\frac{1}{a}$ autour de l'axe Oy, parallèlement à l'axe Ox.
 - lorsque a < 0, on peut voir cette transformation opérant sur f comme la composée de la transformation qui à f associe $x \mapsto f((-a)x)$ avec la transformation qui à f associe $x \mapsto f(-x)$.

— Le graphe de $x \mapsto af(x)$ se déduit du graphe de f par une affinité d'axe invariant Ox et de coefficient a.

Démonstration.

Pour cet énoncé comme pour la démonstration, on s'est placé dans un plan P usuel que l'on a muni d'un repère orthonormé direct $R = (O, \vec{i}, \vec{j})$. De plus, pour alléger la démonstration, on convient d'identifier un point M du plan avec le couple (x,y) de ses coordonnées (x, y). Alors :

- \diamond le point d'abscisse x du graphe $t \longmapsto f(t) + a$ est égal à (x, f(x) + a). Il est bien obtenu à partir du point (x, f(x)) par la translation verticale de vecteur $a\vec{j}$.
- \diamond les points du graphe de $x \longmapsto f(x+a)$ sont les (x, f(x+a)) ou encore les (x-a, f(x)). Ce dernier point se déduit bien du point (x, f(x)) par la translation de vecteur $-a \overrightarrow{t}$.
- \diamond Le point (x, f(a-x)) se déduit du point (a-x, f(a-x)) par la symétrie s selon la droite verticale D d'abscisse $\frac{a}{2}$, car ces deux points ont même ordonnée et ont pour milieu $(\frac{a}{2}, f(a-x)) \in D$.
- \diamond Par définition, l'affinité d'axe invariant Oy et de rapport $\frac{1}{a}$ est la transformation du plan suivante : $g: P \longrightarrow P$ $(x,y) \longmapsto (\frac{x}{a},y)$. Les points du graphe de $x \longmapsto f(ax)$ sont les (x,f(ax)), ou encore les $(\frac{x}{a},f(x))$. \square

Exemples:

Remarque. On peut bien sûr composer ces différentes transformations, en considérant par exemple $x \mapsto a f(bx + c) + d$.

Remarque. En particulier, la transformation T qui remplace f par $x \mapsto f(a-x)$ est la composée

- de la transformation T_1 qui remplace f par $x \mapsto f(-x)$, laquelle remplace le graphe de f par son symétrique selon l'axe Oy,
- et de la transformation T_2 qui remplace g par $t \mapsto g(t-a)$, laquelle translate le graphe de g selon le vecteur horizontal $a\vec{i}$.

En effet, $(T_2 \circ T_1)(f)(x) = T_2(g)(x)$, où $g = T_1(f)$, donc $(T_2 \circ T_1)(f)(x) = g(x-a) = T_1(f)(x-a) = (t \longmapsto f(-t))(x-a) = f(a-x)$.

Ainsi, $(T_2 \circ T_1)(f)(x) = T(f)(x)$, pour tout f et pour tout x.

On peut montrer directement que la symétrie orthogonale s par rapport à la droite verticale D d'équation $x=\frac{a}{2}$ s'écrit $s=g_2\circ g_1$, où g_1 est la symétrie orthogonale selon l'axe Oy et où g_2 est la translation de vecteur $a\vec{i}$:

il suffit d'écrire que, pour tout $(x,y) \in P$, $(g_2 \circ g_1)(x,y) = g_2(-x,y) = (a-x,y)$.

Exemple. $\forall x \in \mathbb{R}$, $\sin(x + \frac{\pi}{2}) = \cos x$, donc le graphe de la fonction cos est le translaté du graphe de sin par le vecteur $-\frac{\pi}{2}\vec{i}$.

Exemple. Le graphe de l'application $x \mapsto \sqrt{1-x^2}$ sur [-1,1] est le demi-cercle C de centre O et de rayon 1 situé au dessus de l'axe Ox (exercice).

Ainsi, le graphe de l'application $x \mapsto \sqrt{1 - (2x)^2}$ sur $[-\frac{1}{2}, \frac{1}{2}]$ est l'image de C par l'affinité orthogonale d'axe Oy et de rapport $\frac{1}{2}$, qui contracte le demi-cercle C contre l'axe Oy: on obtient une demi-ellipse.

De même, le graphe de l'application $x \mapsto 2\sqrt{1-x^2}$ sur [-1,1] est l'image de C par l'affinité orthogonale d'axe Ox et de rapport 2, qui dilate le demi-cercle C autour de l'axe Ox: on obtient une autre demi-ellipse.

7 Trigonométrie hyperbolique

7.1 Les fonctions ch, sh et th

Définition. On définit les fonctions usuelles suivantes :

- cosinus hyperbolique : $\forall x \in \mathbb{R}, \ \operatorname{ch} x = \frac{e^x + e^{-x}}{2},$
- sinus hyperbolique : $\forall x \in \mathbb{R}, \text{ sh} x = \frac{e^x e^{-x}}{2},$
- tangente hyperbolique : $\forall x \in \mathbb{R}$, $\operatorname{th} x = \frac{\sinh x}{\cosh x} = \frac{e^x e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} 1}{e^{2x} + 1}$.

Remarque. On notera l'analogie de ces formules avec les formules d'Euler :

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$
, et $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$,

On peut utiliser ces différentes relations pour prolonger les fonctions cos, sin, ch et sh sur \mathbb{C} en entier (Hors programme).

Alors, pour tout $z \in \mathbb{C}$, $\operatorname{ch}(z) = \cos(iz)$ et $\operatorname{sh}(z) = -i\sin(iz)$. Cela justifie la terminologie employée.

Propriété. Les fonctions sh, ch sont de classe C^{∞} sur \mathbb{R} et :

$$ch' = sh$$
, $sh' = ch$.

Représentations graphiques : Au tableau.

Les graphes de sh, ch et th résument leurs propriétés de parité ou imparité et leurs comportements en l'infini et au voisinage de 0.

Le graphe de ch s'appelle aussi une chaînette : c'est la forme que prend une chaîne tenue par ses deux extrémités et soumise à la seule force gravitationnelle.

7.2 Formules de trigonométrie hyperbolique

Toute formule de la trigonométrie circulaire est associée avec une formule duale de la trigonométrie hyperbolique. Cependant, le programme officiel se limite à la formule suivante :

Formule: $\forall x \in \mathbb{R}, \ \operatorname{ch}^2 x - \operatorname{sh}^2 x = 1.$

Démonstration.

$$\operatorname{ch}^{2} x - \operatorname{sh}^{2} x = (\operatorname{ch} x - \operatorname{sh} x)(\operatorname{ch} x + \operatorname{sh} x) = e^{x} \times e^{-x} = 1. \ \Box$$

Mais il n'est pas interdit de connaître quelques formules de trigonométrie hyperbolique :

Propriété (hors programme):

$$-- \operatorname{ch}(a+b) = \operatorname{ch}a.\operatorname{ch}b + \operatorname{sh}a.\operatorname{sh}b,$$

$$-- \sinh(a+b) = \sinh a \cdot \cosh b + \cosh a \cdot \sinh b,$$

$$- \cosh^2 a = \frac{\cosh(2a) + 1}{2}, \, \sinh^2 a = \frac{\cosh(2a) - 1}{2} \ge 0.$$

Propriété. th est de classe C^{∞} sur \mathbb{R} et,

$$\forall x \in \mathbb{R}, \ \operatorname{th}'(x) = 1 - \operatorname{th}^2 x = \frac{1}{\operatorname{ch}^2 x}.$$

8 Applications trigonométriques réciproques

8.1 Trigonométrie circulaire

La fonction arcsin : l'application sin : $[-\frac{\pi}{2}, \frac{\pi}{2}] \longrightarrow [-1, 1]$ est surjective, continue et strictement croissante. On note arcsin son application réciproque, de [-1, 1] dans $[-\frac{\pi}{2}, \frac{\pi}{2}]$. Elle est continue, impaire et strictement croissante sur [-1, 1].

Pour tout
$$t \in]-\frac{\pi}{2}, \frac{\pi}{2}[, \sin'(t) = \cos(t) \neq 0, \text{ et sin est } C^{\infty},$$

donc sin est un C^{∞} -difféomorphisme de] $-\frac{\pi}{2}, \frac{\pi}{2}$ [sur] -1, 1 [.

Pour tout
$$x \in]-1,1[$$
, $\arcsin'(x) = \frac{1}{\cos(\arcsin x)} = \frac{1}{\sqrt{1-x^2}}$.

arcsin n'est pas dérivable en 1 et -1. Sa restriction à]-1,1[est de classe C^{∞} .

Représentation graphique : au tableau.

Propriété. Voici les valeurs usuelles de la fonction arcsin :

s	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\arcsin(s)$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$

Propriété. $\forall t \in [-1, 1] \quad \sin(\arcsin t) = t,$

mais si
$$t \in [-\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi]$$
, alors $\arcsin(\sin t) = t - 2k\pi$, et si $t \in [\frac{\pi}{2} + 2k\pi, \frac{3\pi}{2} + 2k\pi]$, $\arcsin(\sin t) = \pi - t + 2k\pi$.

La fonction arccos : l'application cos : $[0, \pi] \longrightarrow [-1, 1]$ est surjective, continue et strictement décroissante. On note arccos son application réciproque, de [-1, 1] dans $[0, \pi]$. Elle est continue et strictement décroissante sur [-1, 1].

Pour tout $t \in]0, \pi[, \cos'(t) = -\sin(t) \neq 0$, et cos est C^{∞} ,

donc cos est un C^{∞} -difféomorphisme de $]0,\pi[$ sur]-1,1[, dont arccos est le C^{∞} -difféomorphisme réciproque.

Pour tout
$$x \in]-1,1[$$
, $\arccos'(x) = \frac{1}{\sin(\arccos x)} = \frac{-1}{\sqrt{1-x^2}}$.

arccos n'est pas dérivable en 1 et -1. Sa restriction à]-1,1[est de classe C^{∞} .

Représentation graphique : au tableau.

Propriété. Voici les valeurs usuelles de la fonction arccos :

c	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
$\arccos(c)$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π

Propriété. $\forall t \in [-1, 1] \quad \cos(\arccos t) = t$,

mais en général, $\arccos(\cos t) \neq t$. Plus précisément, $\arccos(\cos t) = t \iff t \in [0, \pi]$. Ainsi, lorsque $t \notin [0, \pi]$, $\arccos(\cos t) = t_0$ où $t_0 \in [0, \pi]$ et $\cos t = \cos t_0$.

La fonction arctan : l'application tan :] $-\frac{\pi}{2}, \frac{\pi}{2}[\longrightarrow \mathbb{R}$ est surjective, continue et strictement croissante. On note arctan son application réciproque, de \mathbb{R} dans] $-\frac{\pi}{2}, \frac{\pi}{2}[$. Elle est continue, <u>imp</u>aire et strictement croissante sur \mathbb{R} .

Pour tout $t \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, $\tan'(t) = 1 + \tan^2 t \neq 0$, et tan est C^{∞} ,

donc tan est un C^{∞} -difféomorphisme de] $-\frac{\pi}{2}, \frac{\pi}{2}[$ sur \mathbb{R} , dont arctan est le C^{∞} -difféomorphisme réciproque.

Pour tout
$$x \in \mathbb{R}$$
, $\arctan'(x) = \frac{1}{\tan'(\arctan x)} = \frac{1}{1+x^2}$.

Représentation graphique : au tableau.

Propriété. Voici les valeurs usuelles de la fonction arctan :

t	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$\longrightarrow +\infty$
$\arctan(t)$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\longrightarrow \frac{\pi}{2}$

Propriété. $\forall t \in \mathbb{R} \quad \tan(\arctan t) = t$,

mais si $t \in]-\frac{\pi}{2}+k\pi, \frac{\pi}{2}+k\pi[$, alors $\arctan(\tan t)=t-k\pi.$

8.2 Trigonométrie hyperbolique

Les fonctions réciproques des fonctions ch, sh et th ne sont pas au programme.

La fonction argsh : sh est un C^{∞} -difféomorphisme de \mathbb{R} dans \mathbb{R} , dont le difféomorphisme réciproque est noté argsh ("argument sinus hyperbolique"). Ainsi argsh est une application C^{∞} , impaire, strictement croissante.

On a
$$\operatorname{argsh}'(x) = \frac{1}{\operatorname{sh}'(\operatorname{argsh}x)} = \frac{1}{\sqrt{1+x^2}}.$$

On peut tracer le graphe de argsh.

Exercice. Montrer que, pour tout $x \in \mathbb{R}$, $\operatorname{argsh} x = \ln(x + \sqrt{1 + x^2})$.

La fonction argch : L'application che est une bijection continue strictement croissante de \mathbb{R}_+ dans $[1, +\infty[$. Son application réciproque est notée argch. C'est une bijection continue strictement croissante de $[1, +\infty[$ dans \mathbb{R}_+ . che est un C^{∞} -difféomorphisme de \mathbb{R}_+^* dans $]1, +\infty[$, donc argch est C^{∞} sur $]1, +\infty[$.

On a
$$\operatorname{argch}'(x) = \frac{1}{\operatorname{sh}(\operatorname{argch} x)} = \frac{1}{\sqrt{x^2 - 1}}.$$

On peut tracer le graphe de argch.

Exercice. Montrer que, pour tout $x \in [1, +\infty[$, $\operatorname{argch} x = \ln(x + \sqrt{x^2 - 1})$.

La fonction argth : th est un C^{∞} -difféomorphisme de \mathbb{R} dans]-1,1[, dont le difféomorphisme réciproque est noté argth Ainsi argth est une application C^{∞} , impaire, strictement croissante de]-1,1[dans \mathbb{R} .

On a
$$\operatorname{argth}'(x) = \frac{1}{\operatorname{th}'(\operatorname{argth}x)} = \frac{1}{1 - x^2}$$
.

On peut tracer le graphe de argth.

Exercice. Montrer que, pour tout $x \in]-1,1[$, $\operatorname{argth} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$.

9 Calculs d'intégrales

9.1 Changement de variables

Théorème. On suppose que f est une application continue d'un intervalle I dans \mathbb{R} , et que φ est une application de classe C^1 d'un intervalle J dans I. Alors,

$$\forall (\alpha, \beta) \in J^2 \left[\int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx. \right]$$
 (1)

Lorsque l'on remplace un membre de cette égalité par l'autre, on dit que l'on effectue le changement de variable $x = \varphi(t)$.

$D\'{e}monstration.$

Il existe au moins une primitive F de f. Alors $F \circ \varphi$ est de classe C^1 et $(F \circ \varphi)' = \varphi' \times (f \circ \varphi)$. Ainsi $F \circ \varphi$ est une primitive de $\varphi' \times (f \circ \varphi)$ (laquelle est une application continue). Ainsi

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt = (F \circ \varphi)(\beta) - (F \circ \varphi)(\alpha) = F(\varphi(\beta)) - F(\varphi(\alpha)) = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x)dx. \ \Box$$

Remarque. Cette formule n'est pas à apprendre par coeur. Il faut savoir l'appliquer *mécaniquement* en menant mentalement le "raisonnement" suivant :

- Lorsque t varie entre α et β , $x = \varphi(t)$ varie entre $\varphi(\alpha)$ et $\varphi(\beta)$,
 - donc l'intégrale $\int_{\alpha}^{\beta} \cdots dt$ devient $\int_{\alpha(\alpha)}^{\varphi(\beta)} \cdots dx$.
- En outre, $dx = d(\varphi(t)) = \varphi'(t)dt$, donc $f(x)dx = f(\varphi(t))\varphi'(t)dt$.

Exemple. Calculons $I = \int_0^{\frac{3\pi}{2}} \sin^2 t \cos t \ dt$.

On devine que $\sin^2 t \cos t = \frac{d(\sin t)}{dt} \sin^2 t$, donc si l'on pose $x = \sin t$,

 $\sin^2 t \, \cos t \, dt = x^2 \, dx.$

Par ailleurs, pour déterminer comment les bornes sont modifiées par ce changement de variable, il suffit de dire que lorsque t varie entre 0 et $3\frac{\pi}{2}$, $x = \sin t$ varie entre 0 et -1 (en fait c'est faux, mais c'est ainsi que l'on retrouve la formule correcte énoncée dans le théorème).

Ainsi, $I = \int_0^{\frac{3\pi}{2}} \frac{d(\sin t)}{dt} \sin^2 t \ dt = \int_0^{-1} x^2 dx = -\frac{1}{3}$. On a utilisé le changement de variable $x = \sin t$, ce qui est valable car sin est une application de classe C^1 sur \mathbb{R} .

Exemple. Calcul de
$$I = \int_{-1}^{1} \sqrt{1-x^2} \ dx$$
.

L'application $f: x \longrightarrow \sqrt{1-x^2}$ est bien définie et continue sur I = [-1, 1].

L'application sin étant de classe C^1 , on peut poser $x = \sin t$.

Pour que $x = \sin t$ varie entre -1 et 1, il suffit de faire varier t entre $-\frac{\pi}{2}$ et $\frac{\pi}{2}$.

 $dx = d(\sin t) = \cos t \ dt$, donc $\sqrt{1-x^2} \ dx = \sqrt{\cos^2 t} \cos t \ dt$, or pour $t \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, $\cos t \ge 0$, donc $\sqrt{1-x^2} \ dx = \cos^2 t \ dt$.

Par ce changement de variable, on obtient donc

$$J = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 t dt = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \cos(2t)}{2} dt = \left[\frac{t}{2} + \frac{\sin 2t}{4} \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{\pi}{2}.$$

Géométriquement, I correspond à l'aire du demi-disque de centre O et de rayon 1 situé au dessus de l'axe Ox. On retrouve ainsi que l'aire du disque unité est égale à π .

Remarque. Ces deux exemples montrent que la formule de changement de variable est autant utilisable de la gauche vers la droite que de la droite vers la gauche.

Dans le premier sens, on a reconnu une expression de la forme $\varphi'(t)f(\varphi(t))$ dt, donc on dispose de la fonction φ de changement de variable.

Dans l'autre sens, on décide de poser $x=\varphi(t)$ où x est l'ancienne variable d'intégration et où t est la nouvelle.

Remarque. On peut utiliser cette formule pour calculer des primitives.

Exemple. Soit
$$a \in \mathbb{R}_+^*$$
. Calculer $\int \frac{t \ dt}{\sqrt{t^2 + a}}$.

$$\int_0^T \frac{t \ dt}{\sqrt{t^2 + a}} = \int_0^T \frac{1}{2} \frac{d(t^2 + a)}{dt} \frac{dt}{\sqrt{t^2 + a}}.$$

On pose $x = t^2 + a$. C'est valable car $t \mapsto t^2 + a$ est de classe C^1 .

Lorsque t varie entre 0 et T, x varie entre X_0 (dont la valeur n'importe pas ici) et $X = T^2 + a$, donc

$$\int_0^T \frac{t \ dt}{\sqrt{t^2 + a}} = \int_{X_0}^X \frac{dx}{2\sqrt{x}} = \sqrt{X} + k, \text{ où } k \text{ est une constante.}$$

On en déduit que
$$\int \frac{t \ dt}{\sqrt{t^2 + a}} = \sqrt{t^2 + a} + k, t \in \mathbb{R}.$$

Ici, il est facile de "deviner" que la dérivée de $t \longrightarrow \sqrt{t^2+a}$ est égale à l'application à intégrer, ce qui court-circuite le calcul.

Exemple. Calcul de $\int \frac{dx}{x\sqrt{1+x^2}}$

La fonction f à intégrer est définie et continue sur \mathbb{R}_+^* et sur \mathbb{R}_-^* . On calcule donc les

primitives de f sur l'intervalle I, où $I \in \{\mathbb{R}_+^*, \mathbb{R}_-^*\}$. Posons $x = \frac{1}{t}$, ce qui est possible car $t \longmapsto \frac{1}{t}$ est une application C^1 sur I.

$$\int_{1}^{X} \frac{dx}{x\sqrt{1+x^{2}}} = \int_{1}^{T} \frac{-dt}{t^{2} \frac{1}{t} \sqrt{1+\frac{1}{t^{2}}}} = -\int_{1}^{T} \frac{dt}{\sqrt{1+t^{2}}} = -\ln(T+\sqrt{1+T^{2}}) + k.$$

Ainsi,
$$\int \frac{dx}{x\sqrt{1+x^2}} = -\ln\left(\frac{1}{x} + \sqrt{1+\frac{1}{x^2}}\right) + k, x \in I.$$

On peut simplifier cette expression, mais en séparant les cas x > 0 et x < 0, car $\sqrt{1 + \frac{1}{x^2}} = \sqrt{\frac{1}{x^2}(x^2 + 1)} = \begin{cases} \frac{1}{x}\sqrt{1 + x^2} & \text{lorsque } x > 0 \\ -\frac{1}{x}\sqrt{1 + x^2} & \text{lorsque } x < 0 \end{cases}$

Propriété. Soit $a \in \mathbb{R}_+^*$ et soit f une application continue sur [-a, a].

Si
$$f$$
 est paire, alors $\int_{-a}^{a} f(t) dt = 2 \int_{0}^{a} f(t) dt$, et si f est impaire, $\int_{-a}^{a} f(t) dt = 0$.

$D\'{e}monstration.$

Supposons que f est paire. $\int_{0}^{a} f(t) dt = \int_{0}^{a} f(t) dt + \int_{-a}^{0} f(t) dt$.

On peut poser t = -x dans la dernière intégrale, ce qui donne

$$\int_{-a}^{0} f(t) dt = \int_{a}^{0} f(-x)(-dx) = \int_{0}^{a} f(x)dx, \text{ car } f \text{ est paire } \dots \square$$

Remarque. Pour des changements de variables aussi simples, de la forme $x = \alpha t + \beta$ il est inutile de justifier que l'application de changement de variable est de classe C^1 (cf le programme officiel), afin de ne pas surcharger la rédaction des copies.

Théorème. Soit $T \in \mathbb{R}_+^*$. On suppose que f est une fonction continue et T-périodique définie sur \mathbb{R} . Alors, $\forall t_0 \in \mathbb{R}$ $\int_0^T f(t) dt = \int_t^{T+t_0} f(t) dt$.

Démonstration.

Première méthode :
$$\int_{t_0}^{T+t_0} f = \int_{t_0}^{0} f + \int_{0}^{T} f + \int_{T}^{T+t_0} f(t) dt.$$
On pose $x = t - T$ dans la dernière intégrale :

On pose
$$x = t - T$$
 dans la dernière intégrale :
$$\int_{T}^{T+t_0} f(t)dt = \int_{0}^{t_0} f(x+T) dx = -\int_{t_0}^{0} f$$
, car f est T -périodique.

Seconde méthode: Notons
$$F$$
 une primitive de f .
Alors $\frac{d}{dt} \left(\int_t^{t+T} f(x) \ dx \right) = \frac{d}{dt} (F(t+T) - F(t)) = f(t+T) - f(t) = 0$. \square

9.2 Intégration par parties

Théorème. Soit $u: I \longrightarrow \mathbb{R}$ et $v: I \longrightarrow \mathbb{R}$ deux applications de classe C^1 sur I.

Pour tout
$$(a,b) \in I^2$$
, $\int_a^b u(t)v'(t) dt = [u(t)v(t)]_a^b - \int_a^b u'(t)v(t) dt$.

 $D\'{e}monstration.$

$$\int_{a}^{b} u(t)v'(t)dt + \int_{a}^{b} u'(t)v(t)dt = \int_{a}^{b} \frac{d[u(t)v(t)]}{dt}dt = [u(t)v(t)]_{a}^{b}. \quad \Box$$

Exemple. Calculons $I = \int_0^{\frac{\pi}{2}} t \sin t \ dt$.

On pose u(t) = t et $v'(t) = \sin t$. On peut choisir $v(t) = -\cos t$. Ainsi,

$$I = \left[-t \cos t \right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \cos t \ dt = \left[\sin t \right]_0^{\frac{\pi}{2}} = 1.$$

Remarque. Dans cet exemple on a pris $v(t) = -\cos t$, mais pour toute constante C, on aurait pu prendre $v(t) = -\cos t + C$. Il arrive qu'un choix judicieux de la constante C simplifie les calculs.

Théorème. Soit $u: I \longrightarrow \mathbb{R}$ et $v: I \longrightarrow \mathbb{R}$ deux applications de classe C^1 sur I.

Alors,
$$\int u(t)v'(t) dt = u(t)v(t) - \int u'(t)v(t) dt$$
, $t \in I$.

$D\'{e}monstration.$

Soit $a \in I$. Pour tout $x \in I$,

$$\int_{a}^{x} u(t)v'(t) \ dt = u(x)v(x) - \int_{a}^{x} u'(t)v(t) \ dt - u(a)v(a). \ \Box$$

Exemple. Les primitives de ln sont à connaître.

Pour calculer $\int \ln t \ dt$, on pose $u(t) = \ln t \ \text{et} \ v'(t) = 1$. On choisit v(t) = t:

$$\int \ln t \ dt = t \ \ln t - \int dt = t \ln t - t + k, t \in \mathbb{R}_+^*.$$

Exemple. Calculer les primitives de arctan.

Pour calculer $\int \arctan t \, dt$, on pose $u(t) = \arctan t \, et \, v'(t) = 1$. On choisit v(t) = t:

$$\int \arctan t \ dt = t \ \arctan t - \int \frac{t \ dt}{1 + t^2} = t \ \arctan t - \frac{1}{2} \ln(1 + t^2) + k, \ \ t \in \mathbb{R}.$$