

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 0 698 102 B1

(12)

EUROPÄISCHE PATENTSCHRIFT

(45) Veröffentlichungstag und Bekanntmachung des Hinweises auf die Patenterteilung:
01.03.2006 Patentblatt 2006/09

(51) Int Cl.:
C12N 15/53 (2006.01)
C12Q 1/60 (2006.01)

C12N 9/04 (2006.01)

(21) Anmeldenummer: 94915569.1

(86) Internationale Anmeldenummer:
PCT/EP1994/001394

(22) Anmeldetag: 02.05.1994

(87) Internationale Veröffentlichungsnummer:
WO 1994/025603 (10.11.1994 Gazette 1994/25)

(54) CHOLESTERINOXIDASE AUS BREVIBACTERIUM STEROLICUM

CHOLESTEROL-OXIDASE FROM BREVIBACTERIUM STEROLICUM

CHOLESTEROL-OXYDASE DU BREVIBACTERIUM STEROLICUM

(84) Benannte Vertragsstaaten:
AT BE CH DE DK ES FR GB GRI E IT L I LU NL PT SE

(56) Entgegenhaltungen:
EP-A-0 452 112 **EP-A-0 560 983**

(30) Priorität: 05.05.1993 DE 4314793
09.12.1993 DE 4342012

- GENE. Bd. 103 , 1991 , AMSTERDAM NL Seiten 93 - 96 T. OHTA ET AL 'Sequence of gene choB encoding cholesterol oxidase of Brevibacterium sterolicum: comparison with choA of Streptomyces sp. SA-COO' in der Anmeldung erwähnt
- BIOSCIENCE, BIOTECHNOLOGY, AND BIOCHEMISTRY Bd. 56, Nr. 11 , November 1992 Seiten 1786 - 1791 T. OHTA ET AL 'Hyperexpression and analysis of choB encoding cholesterol oxidase of Brevibacterium sterolicum in Escherichia coli and Streptomyces lividans' in der Anmeldung erwähnt

(43) Veröffentlichungstag der Anmeldung:
28.02.1996 Patentblatt 1996/09

(73) Patentinhaber: Roche Diagnostics GmbH
68305 Mannheim (DE)

(72) Erfinder: JARSCH, Michael
D-83670 Bad Heilbrunn (DE)

EP 0 698 102 B1

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingereicht, wenn die Einspruchsgebühr entrichtet worden ist. (Art. 99(1) Europäisches Patentübereinkommen).

Beschreibung

[0001] Die Erfindung betrifft eine Cholesterinoxidase aus *Brevibacterium sterolicum*, ein Verfahren zur Herstellung einer rekombinanten Cholesterinoxidase aus *Brevibacterium sterolicum*, eine für dieses Verfahren geeignete DNA-Sequenz, welche eine zytoplasmatische Expression der rekombinanten Cholesterinoxidase im Wirtsbakterium bewirkt, sowie die so erhältliche rekombinante Cholesterinoxidase.

[0002] Für die enzymatische Bestimmung von Cholesterin ist die Cholesterinoxidase von großer Bedeutung. Sie katalysiert die Oxidation von Cholesterin zu Cholesten-3-on und H₂O₂. Cholesterinoxidase aus verschiedenen Organismen wie *Pseudomonas*, *Mycobacterium*, *Nocardia*, *Arthrobacter* und *Brevibacterium* sind bereits beschrieben worden (T. Uwajima et al., Agr. Biol. Chem. 37 (1973), 2345 - 2350). Alle diese bekannten Cholesterinoxidasen sind sezernierte Proteine. Das Bodenbakterium *Brevibacterium sterolicum* KY 3643 (ATCC 21387) zeigt eine besonders hohe Aktivität der Cholesterinoxidase. Aus diesem Bakterium sind drei Isoenzyme der Cholesterinoxidase bekannt, die sich in ihrem isoelektrischen Punkt, der Substratspezifität gegenüber verschiedenen Steroiden, der Affinität gegenüber Cholesterin im pH-Optimum und der DNA bzw. Aminosäuresequenz unterscheiden (EP-A 0 452 112 und EP-A 560 983). Die Cholesterinoxidase I aus *Brevibacterium sterolicum* zeigt eine geringe Affinität zu Cholesterin (K_M 1,1 x 10⁻³ mol/l) und ist aus *Brevibacterium sterolicum* nur in geringer Ausbeute erhältlich. Die Expression einer kompletten für die Cholesterinoxidase I kodierenden DNA in *E. coli* wurde bereits versucht, ist jedoch bislang nicht gelungen (K. Fujishiro et al., Biochem. Biophys. Res. Com. 172 (1990), 721 - 727, T. Ohta et al., Gene 103 (1991), 93 - 96). Auch die Expression spezieller Deletionsmutanten der für die Cholesterinoxidase I kodierenden DNA, welche mit Teilen des lac Z Gens fusioniert wurden, führte zu keiner befriedigenden Expression in *E. coli* (T. Ohta et al., Biosci. Biotech. Biochem. 56 (1992), 1786 - 1791). In der EP-A 0 452 112 wird die Klonierung und Expression von weiteren Cholesterinoxidasen aus *Brevibacterium sterolicum* beschrieben. Die Expression dieser DNAs führt jedoch ebenfalls nicht zu einer ausreichenden Menge an aktiver Cholesterinoxidase.

[0003] Aufgabe der Erfindung war es, eine Cholesterinoxidase mit hoher Affinität zu Cholesterin in großen Mengen und in aktiver Form zur Verfügung zu stellen.

[0004] Diese Aufgabe wird gelöst durch eine Cholesterinoxidase, welche die in SEQ ID NO 2 gezeigte Aminosäuresequenz aufweist. Diese Cholesterinoxidase ist aus *Brevibacterium sterolicum* erhältlich oder auch rekombinant herstellbar.

[0005] Es hat sich überraschenderweise gezeigt, daß eine derartige Cholesterinoxidase rekombinant in großer Menge und in aktiver Form hergestellt werden kann. Diese Cholesterinoxidase weist ein Molekulargewicht von 60 kD, einen isoelektrischen Punkt von ca. 5,5 (jeweils gemessen im Phast-System, Pharmacia-LKB) sowie einen K_M -Wert für Cholesterin von 1 x 10⁻⁴ mol/l (in 0,5 mol/l Kaliumphosphatpuffer pH 7,5 bei 25°C) auf und ist in einem pH-Bereich von 5,5 bis 8,0 wirksam.

[0006] Es hat sich gezeigt, daß diese Cholesterinoxidase in großer Menge in aktiver Form erhalten werden kann, wenn für eine heterologe Expression eine DNA verwendet wird, welche für ein Peptid mit Cholesterinoxidase-Aktivität kodiert mit der in SEQ ID NO 1 gezeigten DNA-Sequenz oder der dazu komplementären DNA-Sequenz.

[0007] Vorzugsweise wird eine DNA verwendet, welche die in SEQ ID NO 1 gezeigte Sequenz aufweist. In dem Fachmann geläufiger Weise können jedoch degenerierte Codons durch andere Codons, welche für die gleiche Aminosäure kodieren, ersetzt werden. Zusätzlich soll die verwendete DNA eine der in SEQ ID NO 3, 4 und/oder 5 gezeigten DNA-Sequenzen aufweisen und für ein Peptid mit Cholesterinoxidase-Aktivität kodieren. Unter einem Peptid mit Cholesterinoxidase-Aktivität ist ein solches Peptid zu verstehen, welches die Oxidation von Cholesterin (5-Cholesten-3-β-ol) zu 4-Cholesten-3-on und H₂O₂ katalysiert.

[0008] Ein weiterer Gegenstand der Erfindung ist daher eine DNA, welche für ein Peptid mit Cholesterinoxidase-Aktivität kodiert mit der in SEQ ID NO 1 gezeigten DNA-Sequenz oder der dazu komplementären DNA-Sequenz.

[0009] Mit einer solchen DNA kann eine mindestens 10fach höhere Aktivität der rekombinant hergestellten Cholesterinoxidase im Rohextrakt erhalten werden als mit den bislang beschriebenen Verfahren und Cholesterinoxidasen.

[0010] Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung einer rekombinanten Cholesterinoxidase durch Transformation einer geeigneten Wirtszelle mit einer erfundungsgemäßen DNA, welche in einem geeigneten Expressionssystem vorliegt, Kultivierung der transformierten Wirtszellen und Isolierung der gebildeten Cholesterinoxidase aus dem Zytoplasma der transformierten Zellen.

[0011] Mit diesem Verfahren ist es überraschenderweise möglich, eine rekombinante Cholesterinoxidase in großer Menge und aktiver Form aus dem Zytoplasma der transformierten Wirtszelle zu erhalten. Dabei kann die verwendete DNA am 5'-Ende eine zusätzliche Nukleotidsequenz enthalten, die ein Translations-Startcodon, jedoch kein Stopcodon aufweist, wobei diese zusätzliche Nukleotidsequenz nicht zu einer Leserasterverschiebung führt und keine für die Sekretion des gebildeten rekombinanten Enzyms funktionell aktive Signalsequenz darstellt. Die Länge dieser Nukleotidsequenz beträgt etwa 3 bis 90 Basenpaare.

[0012] Vorzugsweise weist die zusätzliche Nukleotidsequenz eine der in den Sequenzprotokollen 6, 8, 10, 12, 14 und 16 gezeigten Sequenzen anstelle der nativen Signalsequenz auf.

[0013] Ein bevorzugter Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung einer rekombinanten Cholesterinoxidase, wobei eine erfindungsgemäße DNA verwendet wird, welche am 5'-Ende eine der in SEQ ID NO 6, 8, 10, 12, 14 oder 16 gezeigten Sequenzen aufweist.

5 [0014] Die Transformation der für die rekombinante Herstellung verwendeten Wirtszellen erfolgt nach bekannten Verfahren (siehe z.B. Sambrook, Fritsch und Maniatis, "Molecular Cloning, A Laboratory Manual", Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1989). Die transformierten Wirtszellen werden dann unter Bedingungen kultiviert, die eine Expression des Cholesterinoxidase-Gens erlauben. Je nach dem verwendeten Expressionsvektor ist hierfür in bekannter Weise gegebenenfalls die Zugabe eines Induktors (z.B. Lactose oder Isopropyl- β -D-thiogalactopyranosid (IPTG)) zum Kulturmedium, eine Temperaturerhöhung oder eine limitierte Glucosezufuhr zweckmäßig. Die Isolierung 10 der rekombinanten Cholesterinoxidase aus dem Zytoplasma der transformierten Zellen erfolgt dann nach bekannten Verfahren.

[0015] Mit diesem Verfahren ist es möglich, die erfindungsgemäße Cholesterinoxidase als rekombinantes Enzym in einer Ausbeute von 8 - 20 U/ml zu erhalten. Die Expression des vollständigen Cholesterinoxidase-Gens, welches die Signalsequenz enthält, ergibt dagegen lediglich eine Ausbeute von unter 0,1 U/ml.

15 [0016] Ein bevorzugter Gegenstand der Erfindung ist eine erfindungsgemäße, für ein Peptid mit Cholesterinoxidase-Aktivität kodierende DNA, welche am 5'-Ende eine der in SEQ ID NO 6, 8, 10, 12, 14 und 16 gezeigten Sequenzen aufweist. Besonders bevorzugt sind die in den Sequenzprotokollen 18, 20, 22, 24, 26 und 29 gezeigten Sequenzen. Vorzugsweise liegen diese erfindungsgemäßen DNA-Sequenzen in einem Expressionsvektor kloniert vor. Mit Hilfe dieser DNA kann die erfindungsgemäße Cholesterinoxidase in beliebigen Mengen in den für die rekombinante Herstellung von Proteinen üblicherweise verwendeten Bakterien gewonnen werden. Vorzugsweise erfolgt die Expression in E. coli.

20 [0017] Ein weiterer Gegenstand der Erfindung ist daher eine rekombinante Cholesterinoxidase, welche von einer erfindungsgemäßen DNA kodiert wird und am N-terminalen Ende eine der in SEQ ID NO 7, 9, 11, 13, 15 oder 17 gezeigten Aminosäuresequenzen aufweist.

25 [0018] Diese rekombinante Cholesterinoxidase ist für einen enzymatischen Test zur Bestimmung von Cholesterin ebenso geeignet wie die übrigen aus dem Stand der Technik bekannten Cholesterinoxidasen. Falls erforderlich können in dem Fachmann geläufiger Weise durch in-vitro-Mutagenese zwischen diesen N-terminalen Sequenzen und der Aminosäuresequenz der reifen Cholesterin-oxidase Erkennungssequenzen für spezifische Proteasen wie z.B. der IgA-Protease, der Enterokinase oder des Faktors Xa integriert werden, so daß auch nach der zytoplasmatischen Expression 30 der um diese N-terminalen Sequenzen verlängerten Cholesterinoxidase eine Abspaltung solcher anfusionierter N-terminaler Sequenzen möglich ist.

[0019] Ein bevorzugter Gegenstand der Erfindung ist eine rekombinante Cholesterinoxidase, welche die in SEQ ID NO 21, 23, 25, 27 oder 29 gezeigte Aminosäuresequenz aufweist, sowie die Verwendung einer solchen rekombinanten Cholesterinoxidase in einem enzymatischen Test zum Nachweis von Cholesterin. Dabei wird vorzugsweise das in der Cholesterinoxidasereaktion gebildete H₂O₂ in einer nachgeschalteten Indikatorreaktion als Maß für das in der Probe vorhandene Cholesterin bestimmt.

35 [0020] Die in den Beispielen genannten Plasmide pUC-Chol-B2-BB (DSM 8274), pmgl-SphI (DSM 8272) und pfl-20AT1-SD (DSM 8273) wurden am 05.05.1993 bei der Deutschen Sammlung für Zellkulturen und Mikroorganismen GmbH, Mascheroder Weg 1b, D - 3300 Braunschweig hinterlegt.

40 [0021] Die Anmeldung wird durch die folgenden Beispiele in Verbindungen mit den Sequenzprotokollen und Figuren näher erläutert.

- SEQ ID NO 1 zeigt die Nukleinsäuresequenz der erfindungsgemäßen Cholesterinoxidase.
- 45 SEQ ID NO 2 zeigt die Aminosäuresequenz der erfindungsgemäßen Cholesterinoxidase.
- SEQ ID NO 3 - 5 zeigen Nukleotidsequenzen aus erfindungsgemäßen, für ein Peptid mit Cholesterinoxidase-Aktivität kodierenden DNA's.
- 50 SEQ ID NO 6 - 17 zeigen die N-terminalen Sequenzen der erfindungsgemäßen rekombinanten Cholesterinoxidasegene (SEQ ID NO 6, 8, 10, 12, 14 und 16) bzw. der dazugehörigen N-terminalen Aminosäuresequenzen (SEQ ID NO 7, 9, 11, 13, 15 und 17).
- 55 SEQ ID NO 18 - 29 zeigen die Nukleinsäuresequenzen und dazugehörigen Aminosäuresequenzen von erfindungsgemäßen rekombinanten Cholesterinoxidasen.

[0022] Dabei bedeuten:

	Signalsequenz	vollständige Sequenz	Konstrukt		
5	SEQ ID NO 6-7	SEQ ID NO 18-19	plac-Chol-cyt		
	SEQ ID NO 8-9	SEQ ID NO 20-21	ppfl-Chol-cyt		
	SEQ ID NO 10-11	SEQ ID NO 22-23	ppfl-MSN3H-Chol-cyt		
	SEQ ID NO 12-13	SEQ ID NO 24-25	ppfl-MSN4H-Chol-cyt		
	SEQ ID NO 14-15	SEQ ID NO 26-27	ppfl-MSN4R2K-Chol-cyt		
	SEQ ID NO 16-17	SEQ ID NO 28-29	ppfl-MVM3H-Chol-cyt		
10	SEQ ID NO 30 - 33	zeigen vier Oligonukleotide für die Amplifikation eines Fragments des erfindungsgemäßen Cholesterinoxidase-Gens.			
15	SEQ ID NO 34	zeigt die Sequenz eines Adapteroligonukleotids für die in vitro-Mutagenese des Cholesterinoxidase-Gens gemäß Beispiel 5.			
	Fig. 1	zeigt das Plasmid pUC-Chol-B2-BB.			
20	Fig. 2	zeigt das Plasmid plac-Chol-cyt.			
	Fig. 3	zeigt das Plasmid ppfl-Chol-cyt.			
	Fig. 4	zeigt das Plasmid ppfl-MSN3H-Chol-cyt.			
25	Beispiel 1				
	Klonierung des Gens für Cholesterinoxidase aus <i>Brevibacterium sterolicum</i>				
30	[0023] <i>Brevibacterium sterolicum</i> (BMTU 2407) wird in 500 ml "nutrient broth" (Difco) 20 h bei 30°C angezüchtet. Die Zellen werden durch Zentrifugation geerntet. Die so gewonnene Zellmasse wird in 20 mmol/l Tris/HCl pH 8,0 zu 0,4 g Zell-Naßgewicht/ml resuspendiert. 2,5 ml dieser Suspension werden mit 5 ml 24 % (w/v) Polyethylenglycol 6000, 2,5 ml 20 mmol/l Tris/HCl pH 8,0 und 10 mg Lysozym versetzt und 14 h bei 4°C inkubiert. Dann erfolgt die Lyse der Zellen durch Zugabe von 1 ml 20 % (w/v) SDS und 2 mg Protease K und Inkubation für 1 h bei 37°C. Diese Lösung wird mit dem gleichen Volumen 20 mmol/l Tris/HCl pH 8,0 versetzt und dann pro ml 1 g CsCl sowie 0,8 mg Ethidiumbromid zugegeben. Diese Lösung wird durch Ultrazentrifugation 24 h bei 40.000 Upm in einem TV850 Vertikal-Rotor (DuPont) aufgetrennt. Die DNA-Bande wird dann mit einer Injektionsspritze-abgezogen. Die Entfernung des Ethidiumbromids und Ethanol-Fällung der DNA erfolgt wie bei Sambrook et al., Molecular Cloning, A Laboratory Manual (1989) beschrieben.				
35	[0024] 7 µg der so gewonnenen DNA werden partiell mit der Restriktionsendonuklease NlaIII (New England Biolab) geschnitten, auf einem 0,8 % Agarosegel elektrophoretisch aufgetrennt und ein Größenbereich von ca. 2 - 12 kb ausgeschnitten. Die DNA-Fragmente werden aus dem Gel isoliert, mit SphI geschnitten und anschließend in einen mit alkalischer Phosphatase aus Kälberdarm behandelten Plasmidvektor pUC19 ligiert. Dieser Ligationsansatz wird in kompetente E. coli K12 XL1-blue (Stratagene, Katalog-Nr. 200268) transformiert. Die transformierten Zellen werden auf Agarplatten mit LB-Medium, das 100 µg/ml Ampicillin enthält, ausplattiert und über Nacht bei 37°C inkubiert. Die hochgewachsenen Kolonien werden auf Nitrocellulosefilter (Schleicher und Schüll) übertragen, durch Behandlung mit Toluol/Chloroform-Dampf lysiert und die Filter mit der Kolonieseite auf Indikatorplatten (s.u.) übertragen. Auf diesen Indikatorplatten erfolgt der Nachweis auf eine Cholesterinoxidase-Aktivität durch 15- bis 30-minütige Inkubation bei Raumtemperatur.				
40	[0025] Klone, die eine Farbreaktion zeigen, werden ausgewählt und isoliert. Zur Kontrolle werden diese E. coli-Klone auf einer Agarplatte mit LB-Medium, das 100 µg/ml Ampicillin enthält, ausgestrichen, über Nacht bei 37°C inkubiert, die angewachsenen Kolonien zur Verifizierung nochmals auf zwei verschiedene Nitrocellulosefilter transferiert und wie oben beschrieben mit Toluol/Chloroformdampf aufgeschlossen. Ein Filter wird wieder auf eine der oben beschriebenen Indikatorplatten aufgelegt, der andere Falter auf eine Indikatorplatte ohne Cholesterin. Eine positive Farbreaktion zeigt sich nur auf den kompletten Indikatorplatten mit dem Substrat Cholesterin. Damit wird nachgewiesen, daß die durch den entsprechenden E. coli-Klon hervorgerufene Farbreaktion tatsächlich durch aktive Cholesterinoxidase verursacht wird.				
45					
50					
55					

Herstellung der Indikatorplatten:

[0026] Für den Platten-Test zur Bestimmung von Cholesterinoxidase-Aktivität werden 100 ml 2%ige low-melting-point-Agarose (Sea Plaque BIOzym 50113) aufgeschmolzen und bei einer Temperatur von 42°C eine vorgewärmte Lösung von:

- 48 mg 4-Aminoantipyrin (Boehringer Mannheim GmbH, Katalog-Nr. 073474)
- 306 mg EST (N-Ethyl-N-sulfoethyl-3-methylanilinkaliumsalz (Boehringer Mannheim GmbH, Katalog-Nr. 586854))
- 2,5 mg Meerrettichperoxidase Reinheitsgrad II (ca. 260 U/mg (Boehringer Mannheim GmbH, Katalog-Nr. 005096))
- 60 µl Natriumazidlösung (20%ig)
- 10 ml 1 mol/l Kaliumphosphat pH 7,2
- 150 mg Cholsäurenatriumsalz (Merck, Katalog-Nr. 12448)
- 10 ml Cholesterinsubstratlösung (s. u.)
- H₂O ad 100 ml

zu der aufgeschmolzenen Agarose gegeben, vorsichtig gemischt, jeweils 10 ml in Petrischalen gegossen und zur Aufbewahrung dunkel gehalten.

Cholesterinsubstratlösung:

[0027] 500 mg Cholesterin (Boehringer Mannheim GmbH, Katalog-Nr. 121312) werden in 12,5 ml 1-Propanol (Merck, Katalog-Nr. 997) gelöst, nach Zugabe von 10 g Thesit (Boehringer Mannheim GmbH, Katalog-Nr. 006190) gut gemischt und H₂O ad 100 ml zugegeben. Die Substratlösung kann bei Raumtemperatur mehrere Monate aufbewahrt werden.

Beispiel 2

Charakterisierung des Cholesterinoxidase-Gens

[0028] Das Plasmid eines gemäß Beispiel 1 erhaltenen Klons (pUC-Chol-B2) wird nach Standardmethoden isoliert und einer Restriktionskartierung mit den Restriktionsendonukleasen BamHI, EcoRI, KpnI, Xhol, PstI unterzogen. Es zeigt sich, daß ein DNA-Fragment aus dem Genom von *Brevibacterium* in der Größe von ca. 5,5 kb in dem Plasmid pUC-Chol-B2 insertiert ist. Durch Subklonierung verschiedener Teilstücke dieses 5,5 kb-Stückes und anschließender Bestimmung der Cholesterin-oxidase-Aktivität der erhaltenen *E. coli*-Klone kann das Cholesterinoxidase-Gen auf ein BamHI-Fragment von 2,3 kb-Größe eingeengt werden. Das Plasmid mit diesem Fragment wird pUC-Chol-B2-BB genannt (Fig. 1). Die DNA-Sequenz dieses Fragmentes wird bestimmt und auf einem Leseraster, das für Cholesterinoxidase kodiert, hin untersucht. Die Sequenz dieses Leserahmens für die reife Cholesterinoxidase ist in SEQ ID NO 1 wiedergegeben.

Beispiel 3

Konstruktion eines Plasmids zur Expression des Cholesterinoxidase-Gens mit heterologer Signalsequenz

[0029] Ein Vergleich der N-terminalen Aminosäuresequenz von Cholesterinoxidase, die aus *Brevibacterium* isoliert wurde, mit dem gesamten für Cholesterinoxidase kodierenden Leseraster von pUC-Chol-B2-BB zeigt, daß im reifen Protein die ersten 52 kodierten Aminosäuren der Gensequenz fehlen. Diese 52 Aminosäuren zeigen die Struktur einer typischen Exportsignalsequenz gram-positiver Prokaryonten (von Heijne, Biochim. Biophys. Acta 947 (1988), 307 - 333). Für die Konstruktion von rekombinanten Cholesterinoxidase-Genen, bei denen diese Signalsequenz gegen andere Sequenzen ersetzt ist, wird zunächst ein 387 bp großes DNA-Fragment aus dem Plasmid pUC-Chol-B2-BB unter Verwendung der in SEQ ID NO 30 und 31 gezeigten Oligonukleotide mittels PCR amplifiziert. Dieses Fragment enthält den für den N-terminalen Teil der reifen Oxidase kodierenden Bereich mit einer neuen SphI-Schnittstelle direkt vor dem N-Terminus der Aminosäuresequenz des reifen Enzyms. Dieses PCR-Fragment wird mit SphI und PstI gespalten und zusammen mit einem PstI EcoRI-Fragment aus pUC-Chol-B2-BB, das den restlichen Anteil des Cholesterinoxidase-Gens enthält, in den mit SphI und EcoRI gespaltenen Expressionsvektor pmglSphI ligiert und so der Vektor pmgl-Chol-SB erhalten. In diesem Vektor enthält das Cholesterinoxidase-Gen eine in *E. coli* funktionelle Signalsequenz aus *Salmonella typhimurium* (beschrieben in WO 88/093773).

Beispiel 4**Konstruktion eines Plasmids zur Expression des Cholesterin-oxidase-Gens ohne Signalpeptid-kodierende Sequenz unter Kontrolle des lacUV5-Promotors**

[0030] Aus dem Plasmid pmgl-Chol-SB wird durch Behandlung mit den Restriktionsendonukleasen SphI und BamBI ein DNA-Fragment von ca. 1,85 kb Größe herausgeschnitten, das den gesamten Anteil der kodierenden Sequenz der reifen Cholesterinoxidase, aber nicht die für das Signal-Peptid kodierende Sequenz enthält. Dieses Fragment wird in den vorher mit SphI und BamBI geschnittenen Plasmidvektor pUC19 eingesetzt. In dem so erhaltenen Plasmid plac-Chol-cyt liegt das Cholesterin-oxidase-Gen im korrekten Leseraster an die ersten zehn Codons des lacZ'-Gens aus pUC19 anfusioniert vor und liegt unter der Kontrolle des lacUV5-Promotors (Fig. 2).

Beispiel 5**Konstruktion eines Plasmids zur Expression des Cholesterin-oxidase-Gens ohne Signalpeptid-kodierende Sequenz unter Kontrolle des sauerstoffregulierten pfl-Promotors**

[0031] Durch PCR-Technik wird aus dem Plasmid plac_Chol_cyt unter Verwendung der in SEQ ID NO 32 und 33 dargestellten Oligonukleotide ein DNA-Fragment von 432 bp Größe erzeugt, das vor dem ATG-Startcodon eine Clal-Schnittstelle enthält. Dieses PCR-Fragment wird mit Clal und PstI geschnitten. Durch Behandlung mit den Restriktionsendonukleasen PstI und BamHI wird aus dem Plasmid plac-Chol-cyt weiterhin ein Fragment mit dem restlichen C-terminalen Anteil des Cholesterinoxidase-Gens herausgeschnitten. Beide Fragmente werden simultan in den mit BamHI und Clal gespaltenen Expressionsvektor pfl 20AT1-SD einligiert. Das korrekte Ligationsprodukt enthält nun den Leserahmen der reifen Cholesterinoxidase anfusioniert an die ersten zehn Codons des lacZ'-Gens aus pUC19 unter der Kontrolle des sauerstoffregulierten pfl-Promotors (Fig. 3). Dieses Plasmid trägt die Bezeichnung ppfl-Chol-cyt.

Beispiel 6**Konstruktion eines Plasmids zur Expression des Cholesterin-oxidase-Gens mit alternativer N-terminaler Fusionssequenz**

[0032] Zur Entfernung der im 3' untranslatierten Bereich des Cholesterinoxidase-Gens gelegenen SphI-Schnittstelle des Plasmids ppfl-Chol-cyt wird die Plasmid-DNA mit SmaI und EcoRV geschnitten und wieder religiert. 100 ng des so entstandenen Plasmids ppfl-Chol-cyt-Aterm werden dann mit den Restriktionsenzymen Clal und SphI gespalten. Das entstandene 4,76 kb große DNA-Fragment wird in low-melting-point Agarose elektrophoretisch aufgetrennt, ausgeschnitten und eluiert (Glassmilk®-Kit, Bio 101). 100ng des so gereinigten DNA-Fragments werden mit 50 pmol eines Adapter-Oligonukleotids mit der in SEQ ID NO 34 dargestellten Sequenz (wobei "N" eine äquimolare Mischung aller 4 Basen bedeutet) versetzt und 2 Stunden bei 37°C mit T4-DNA-Ligase behandelt. Anschließend wird der Ansatz mit einer Mischung aus 4 dNTP's (Endkonz. 0,125 mmol/l) versetzt und 40 Minuten bei 37°C mit Klenow-DNA-Polymerase behandelt. Die so erhaltene Plasmid-DNA wird in E. coli XL1-blue (Stratagene) transformiert. Mit Hilfe des in Beispiel 1 beschriebenen Kolonie-Aktivitätstest werden einzelne Kolonien von erhaltenen Klonen bezüglich ihrer Cholesterinoxidase-Aktivität verglichen. Klone mit hoher Cholesterinoxidase-Aktivität werden isoliert und die Plasmid-DNA durch Restriktionsanalyse und DNA-Sequenzierung charakterisiert. Für das Plasmid eines Klons mit besonders hoher Cholesterinoxidase-Aktivität wird die Sequenz SEQ ID NO 23 ermittelt. Das betreffende Plasmid wird ppfl-MSN3H-Chol-cyt-Aterm genannt. Es ist zu erwarten, daß in der dargestellten Art und Weise nach Isolierung und Charakterisierung genügend vieler verschiedener Klone auch noch weitere für eine besonders hohe Expression geeignete Klone gefunden werden können. Zur Wiedervervollständigung des 3'-untranslatierten Anteils wird das Plasmid ppfl-MSN3H-Chol-cyt-Aterm mit Clal und Xhol geschnitten. Ein DNA-Fragment von ca. 1,1kb mit der Translationsinitiationsregion und dem N-terminalen Anteil des Cholesterinoxidase-Gens wird isoliert und in das ebenfalls mit Clal und Xhol geschnittene Plasmid ppfl-Chol-cyt einligiert (Fig. 4). Das erhaltene Plasmid trägt die Bezeichnung ppfl-MSN3H-Chol-cyt.

Beispiel 7**Vergleich der Bildung von Cholesterinoxidase durch die verschiedenen Expressionsplasmide in E. coli**

[0033] Die Plasmide pUC-Chol-B2, pUC-Chol-B2-BB, pmgl-Chol-SB, plac-Chol-cyt, ppfl-Chol-cyt, ppfl-MSN3H-Chol-cyt werden jeweils in E. coli K12 XL1-blue transformiert. Zum Vergleich der gebildeten Enzymmenge werden die Klone jeweils 15 Stunden bei 30°C in LB-Medium, das 200 µg/ml Ampicillin und folgende weiteren Zusätze

enthält, angezogen:

Klone mit den Plasmiden pUC-Chol-B2, pUC-Chol-B2-BB, plac-Chol-cyt, bei denen das Cholesterinoxidase-Gen jeweils unter der Kontrolle des lacUV5-Promotors steht, bekommen zusätzlich 1 mmol/l IPTG, der Klon mit dem Plasmid pmgl-Chol-SB mit dem Glucose-reprimierten mgl-Promotor erhält keinen weiteren Zusatz, Klone mit den Plasmiden ppfl-Chol-cyt, ppfl-MSN3H-Chol-cyt mit dem sauerstoffregulierten pfl-Promotor erhalten 0,4% Glucose und werden in Stickstoff begasten verschlossenen Serumflaschen angezogen, wobei das Medium mit KOH auf pH 7,0 eingestellt wurde. Nach erfolgter Anzucht wird die erreichte Zelldichte durch photometrische Messung der Trübung bei 420 nm bestimmt. Die Zellen von 1 ml Kulturbrühe werden dann durch Zentrifugation in einer Mikrozentrifuge bei 10.000 g sedimentiert und wieder in 0,5 ml H₂O bidest resuspendiert. Der Zellaufschluß erfolgt durch 2 x 30 Sekunden Ultraschallbehandlung (Branson Sonifier, Modell 450, Standard-Microtip, Konisch). Die so erhaltenen Zellextrakte werden nach entsprechender Verdünnung in den folgenden Enzymtest eingesetzt: Hierzu werden in Quartz-Küvetten pipettiert: 3 ml Kaliumphosphatpuffer (0,5 mol/l, pH 7,5), der 0,4 % Thesit® (Boehringer Mannheim GmbH, Katalog-Nr. 006190) enthält,

0,1 ml Cholesterinlösung (0,4 % Cholesterin, 10 % 1-Propanol, 10 % Thesit®),

0,02 ml H₂O₂ (0,49 mol/l in bidest. Wasser),

es wird gemischt, nach Zugabe von 0,02 ml Katalase (aus Rinderleber, 20 mg Protein/ml, spezifische Aktivität ca. 65.000 U/mg, Boehringer Mannheim GmbH, Katalog-Nr. 0156744 unmittelbar vor Messung mit eiskaltem Kaliumphosphatpuffer, der 0,4 % Thesit enthält, auf 0,075 - 0,15 U/ml verdünnt) erneut gemischt, die Lösung auf eine Temperatur von 25°C gebracht und anschließend die Reaktion durch Zugabe von 0,05 ml Probelösung gestartet. Nach vorsichtigem Mischen wird die Absorptionsänderung bei 240 nm verfolgt und die Aktivität der Cholesterinoxidase aus dem linearen Bereich der Absorptionskurve ermittelt:

25 **3,19**

$$\text{Aktivität} = \frac{\Delta A \text{ min.}}{\epsilon 240 \times 0,05 \times 1} \text{ (U/ml Probelösung)}$$

30 wobei $\epsilon 240 = 15,5 \text{ mmol}^{-1} \times 1 \times \text{cm}^{-1}$ ist.

[0034] Die erhaltenen Werte für Zelldichte und Enzymaktivität sind in Tabelle 1 dargestellt.

Tabelle 1

Klon/Plasmid	Zelldichte (E 420)	Units je Zelldichte	Units pro ml
pUC-Chol-B2	7,0	0,007	0,049
pUC-Chol-B2-BB	8,4	0,068	0,571
pmgl-Chol-SB	1,3	0,014	0,018
plac-Chol-cyt	8,6	0,725	6,235
ppfl-Chol-cyt	1,25	1,675	2,094
ppfl-MSN3H-Chol-cyt	3,7	1,463	5,413

45 [0035] Die erhaltenen Ergebnisse zeigen, daß mit solchen Konstrukten, die eine zytoplasmatische Expression der Cholesterinoxidase bewirken, eine deutlich höhere Aktivität der rekombinant hergestellten Cholesterinoxidase erhalten werden kann als mit solchen Konstrukten, die zu einer Sekretion der rekombinant hergestellten Cholesterinoxidase führen.

50 SEQUENZPROTOKOLL

[0036]

(1) ALGEMEINE INFORMATION:

55

(i) ANMELDER:

(A) NAME: Boehringer Mannheim GmbH

- (B) STRASSE: Sandhofer Str. 116
- (C) ORT: Mannheim
- (E) LAND: Deutschland
- (F) POSTLEITZAHL: D - 6800

5

(ii) ANMELDESTITEL: Cholesterinoxidase aus *Brevibacterium sterolicum*

(iii) ANZAHL DER SEQUENZEN: 34

10

(iv) COMPUTER-LESBARE FORM:

- (A) DATENTRÄGER: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPA)

15

(2) INFORMATION ZU SEQ ID NO: 1:

20

(i) SEQUENZ CHARAKTERISTIKA:

- (A) LANGE: 1683 Basenpaare
- (B) ART: Nukleinsäure
- (C) STRANGFORM: Einzel
- (D) TOPOLOGIE: linear

25

(ii) ART DES MOLEKÜLS: DNS (genomisch)

30

(ix) MERKMALE:

- (A) NAME/SCHLÜSSEL: CDS
- (B) LAGE: 1..1683

35

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

40

45

50

55

	TCG ACC GGG CCG GTC GCG CCG CTT CCG ACG CCG CCG AAC TTC CCG AAC	48
	Ser Thr Gly Pro Val Ala Pro Leu Pro Thr Pro Pro Asn Phe Pro Asn	
	1 5 10 15	
5	GAC ATC GCG CTG TTC CAG CAG GCG TAC CAG AAC TGG TCC AAG GAG ATC	96
	Asp Ile Ala Leu Phe Gln Gln Ala Tyr Gln Asn Trp Ser Lys Glu Ile	
	20 25 30	
10	ATG CTG GAC GCC ACT TGG GTC TGC TCG CCC AAG ACG CCG CAG GAT GTC	144
	Met Leu Asp Ala Thr Trp Val Cys Ser Pro Lys Thr Pro Gln Asp Val	
	35 40 45	
15	GTT CGC CTT GCC AAC TGG GCG CAC GAG CAC GAC TAC AAG ATC CGC CCG	192
	Val Arg Leu Ala Asn Trp Ala His Glu His Asp Tyr Lys Ile Arg Pro	
	50 55 60	
	CGC GGC GCG ATG CAC GGC TGG ACC CCG CTC ACC GTG GAG AAG GGG GCC	240
	Arg Gly Ala Met His Gly Trp Thr Pro Leu Thr Val Glu Lys Gly Ala	
	65 70 75 80	
20	AAC GTC GAG AAG GTG ATC CTC GCC GAC ACG ATG ACG CAT CTG AAC GGC	288
	Asn Val Glu Lys Val Ile Leu Ala Asp Thr Met Thr His Leu Asn Gly	
	85 90 95	
25	ATC ACG GTG AAC ACG GGC CCC GTG GCT ACC GTC ACC GCC GGT GCC	336
	Ile Thr Val Asn Thr Gly Gly Pro Val Ala Thr Val Thr Ala Gly Ala	
	100 105 110	
	GGC GCC AGC ATC GAG GCG ATC GTC ACC GAA CTG CAG AAG CAC GAC CTC	384
	Gly Ala Ser Ile Glu Ala Ile Val Thr Glu Leu Gln Lys His Asp Leu	
	115 120 125	
30	GGC TGG GCC AAC CTG CCC GCT CCG GGT GTG CTG TCG ATC GGT GGC GCC	432
	Gly Trp Ala Asn Leu Pro Ala Pro Gly Val Leu Ser Ile Gly Gly Ala	
	130 135 140	
35	CTT GCG GTC AAC GCG CAC GGT GCG GCG CTG CCG GCC GTC GGC CAG ACC	480
	Leu Ala Val Asn Ala His Gly Ala Ala Leu Pro Ala Val Gly Gln Thr	
	145 150 155 160	
	ACG CTG CCC GGT CAC ACC TAC GGT TCG CTG AGC AAC CTG GTC ACC GAG	528
	Thr Leu Pro Gly His Thr Tyr Gly Ser Leu Ser Asn Leu Val Thr Glu	
	165 170 175	
40	CTG ACC GCG GTC GTC TGG AAC GGC ACC ACC TAC GCA CTC GAG ACG TAC	576
	Leu Thr Ala Val Val Trp Asn Gly Thr Thr Tyr Ala Leu Glu Thr Tyr	
	180 185 190	
45	CAG CGC AAC GAT CCT CGG ATC ACC CCA CTG CTC ACC AAC CTC GGG CGC	624
	Gln Arg Asn Asp Pro Arg Ile Thr Pro Leu Leu Thr Asn Leu Gly Arg	
	195 200 205	
	TGC TTC CTG ACC TCG GTG ACG ATG CAG GCC GGC CCC AAC TTC CGT CAG	672
	Cys Phe Leu Thr Ser Val Thr Met Gln Ala Gly Pro Asn Phe Arg Gln	
	210 215 220	
50	CGG TGC CAG AGC TAC ACC GAC ATC CCG TGG CGG GAA CTG TTC GCG CCG	720
	Arg Cys Gln Ser Tyr Thr Asp Ile Pro Trp Arg Glu Leu Phe Ala Pro	
	225 230 235 240	

EP 0 698 102 B1

	AAG GGC GCC GAC GGC CGC ACG TTC GAG AAG TTC GTC GCG GAA TCG GGC Lys Gly Ala Asp Gly Arg Thr Phe Glu Lys Phe Val Ala Glu Ser Gly 245 250 255	768
5	GGC GCC GAG GCG ATC TGG TAC CCG TTC ACC GAG AAG CCG TGG ATG AAG Gly Ala Glu Ala Ile Trp Tyr Pro Phe Thr Glu Lys Pro Trp Met Lys --- 260 265 270	816
10	GTG TGG ACG GTC TCG CCG ACC AAG CCG GAC TCG TCG AAC GAG GTC GGA Val Trp Thr Val Ser Pro Thr Lys Pro Asp Ser Ser Asn Glu Val Gly 275 280 285	864
	AGC CTC GGC TCG GCG GGC TCC CTC GTC GGC AAG CCT CCG CAG GCG CGT Ser Leu Gly Ser Ala Gly Ser Leu Val Gly Lys Pro Pro Gln Ala Arg 290 295 300	912
15	GAG GTC TCC GGC CCG TAC AAC TAC ATC TTC TCC GAC AAC CTG CCG GAG Glu Val Ser Gly Pro Tyr Asn Tyr Ile Phe Ser Asp Asn Leu Pro Glu 305 310 315 320	960
20	CCC ATC ACC GAC ATG ATC GGC GCC ATC AAC GCC GGA AAC CCC GGA ATC Pro Ile Thr Asp Met Ile Gly Ala Ile Asn Ala Gly Asn Pro Gly Ile 325 330 335	1008
	GCA CCG CTG TTC GGC CCG GCG ATG TAC GAG ATC ACC AAG CTC GGG CTG Ala Pro Leu Phe Gly Pro Ala Met Tyr Glu Ile Thr Lys Leu Gly Leu 340 345 350	1056
25	GCC GCG ACG AAT GCC AAC GAC ATC TGG GGC TGG TCG AAG GAC GTC CAG Ala Ala Thr Asn Ala Asn Asp Ile Trp Gly Trp Ser Lys Asp Val Gln 355 360 365	1104
30	TTC TAC ATC AAG GCC ACG ACG TTG CGA CTC ACC GAG GGC GGC GGC GCC Phe Tyr Ile Lys Ala Thr Thr Leu Arg Leu Thr Glu Gly Gly Ala 370 375 380	1152
	GTC GTC ACG AGC CGC GCC AAC ATC GCG ACC GTG ATC AAC GAC TTC ACC Val Val Thr Ser Arg Ala Asn Ile Ala Thr Val Ile Asn Asp Phe Thr 385 390 395 400	1200
35	GAG TGG TTC CAC GAG CGC ATC GAG TTC TAC CCG GCG AAG GGC GAG TTC Glu Trp Phe His Glu Arg Ile Glu Phe Tyr Arg Ala Lys Gly Glu Phe 405 410 415	1248
40	CCG CTC AAC GGT CCG GTC GAG ATC CGC TGC TGC GGG CTC GAT CAG GCA Pro Leu Asn Gly Pro Val Glu Ile Arg Cys Cys Gly Leu Asp Gln Ala 420 425 430	1296
	GCC GAC GTC AAG GTG CCG TCG GTG GGC CCG CCG ACC ATC TCG GCG ACC Ala Asp Val Lys Val Pro Ser Val Gly Pro Pro Thr Ile Ser Ala Thr 435 440 445	1344
45	CGT CCG CGT CCG GAT CAT CCG GAC TGG GAC GTC GCG ATC TGG CTG AAC Arg Pro Arg Pro Asp His Pro Asp Trp Asp Val Ala Ile Trp Leu Asn 450 455 460	1392
50	GTT CTC GGT GTT CCG GGC ACC CCC GGC ATG TTC GAG TTC TAC CGC GAG Val Leu Gly Val Pro Gly Thr Pro Gly Met Phe Glu Phe Tyr Arg Glu 465 470 475 480	1440
55	ATG GAG CAG TGG ATG CGG AGC CAC TAC AAC AAC GAC GAC GCC ACC TTC Met Glu Gln Trp Met Arg Ser His Tyr Asn Asn Asp Asp Ala Thr Phe 485 490 495	1488

CGG CCC GAG TGG TCG AAG GGG TGG GCG TTC GGT CCC GAC CCG TAC ACC Arg Pro Glu Trp Ser Lys Gly Trp Ala Phe Gly Pro Asp Pro Tyr Thr 500 505 510	1536
5	
GAC AAC GAC ATC GTC ACG AAC AAG ATG CGC GCC ACC TAC ATC GAA GGT Asp Asn Asp Ile Val Thr Asn Lys Met Arg Ala Thr Tyr Ile Glu Gly 515 520 525	1584
10	
GTC CCG ACG ACC GAG AAC TGG GAC ACC GCG CGC GCT CGG TAC AAC CAG Val Pro Thr Thr Glu Asn Trp Asp Thr Ala Arg Ala Arg Tyr Asn Gln 530 535 540	1632
15	
ATC GAC CCG CAT CGC GTG TTC ACC AAC GGA TTC ATG GAC AAG CTG CTT Ile Asp Pro His Arg Val Phe Thr Asn Gly Phe Met Asp Lys Leu Leu 545 550 555 560	1680
CCG Pro	1683

20 (2) INFORMATION ZU SEQ ID NO: 2:

(i) SEQUENZ CHARAKTERISTIKA:

- (A) LANGE: 561 Aminosäuren
- (B) ART: Aminosäure
- (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Protein

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:

30

35

40

45

50

55

Ser Thr Gly Pro Val Ala Pro Leu Pro Thr Pro Pro Asn Phe Pro Asn
 1 5 10 15

5 Asp Ile Ala Leu Phe Gln Gln Ala Tyr Gln Asn Trp Ser Lys Glu Ile
 20 25 30

Met Leu Asp Ala Thr Trp Val Cys Ser Pro Lys Thr Pro Gln Asp Val
 35 40 45

10 Val Arg Leu Ala Asn Trp Ala His Glu His Asp Tyr Lys Ile Arg Pro
 50 55 60

Arg Gly Ala Met His Gly Trp Thr Pro Leu Thr Val Glu Lys Gly Ala
 65 70 75 80

15 Asn Val Glu Lys Val Ile Leu Ala Asp Thr Met Thr His Leu Asn Gly
 85 90 95

Ile Thr Val Asn Thr Gly Gly Pro Val Ala Thr Val Thr Ala Gly Ala
 100 105 110

20 Gly Ala Ser Ile Glu Ala Ile Val Thr Glu Leu Gln Lys His Asp Leu
 115 120 125

Gly Trp Ala Asn Leu Pro Ala Pro Gly Val Leu Ser Ile Gly Gly Ala
 130 135 140

25 Leu Ala Val Asn Ala His Gly Ala Ala Leu Pro Ala Val Gly Gln Thr
 145 150 155 160

Thr Leu Pro Gly His Thr Tyr Gly Ser Leu Ser Asn Leu Val Thr Glu
 165 170 175

30 Leu Thr Ala Val Val Trp Asn Gly Thr Thr Tyr Ala Leu Glu Thr Tyr
 180 185 190

Gln Arg Asn Asp Pro Arg Ile Thr Pro Leu Leu Thr Asn Leu Gly Arg
 195 200 205

Cys Phe Leu Thr Ser Val Thr Met Gln Ala Gly Pro Asn Phe Arg Gln
 210 215 220

40 Arg Cys Gln Ser Tyr Thr Asp Ile Pro Trp Arg Glu Leu Phe Ala Pro
 225 230 235 240

Lys Gly Ala Asp Gly Arg Thr Phe Glu Lys Phe Val Ala Glu Ser Gly
 245 250 255

45 Gly Ala Glu Ala Ile Trp Tyr Pro Phe Thr Glu Lys Pro Trp Met Lys
 260 265 270

50

55

Val Trp Thr Val Ser Pro Thr Lys Pro Asp Ser Ser Asn Glu Val Gly
 275 280 285
 5 Ser Leu Gly Ser Ala Gly Ser Leu Val Gly Lys Pro Pro Gln Ala Arg
 290 295 300
 Glu Val Ser Gly Pro Tyr Asn Tyr Ile Phe Ser Asp Asn Leu Pro Glu
 305 310 315 320
 10 Pro Ile Thr Asp Met Ile Gly Ala Ile Asn Ala Gly Asn Pro Gly Ile
 325 330 335
 Ala Pro Leu Phe Gly Pro Ala Met Tyr Glu Ile Thr Lys Leu Gly Leu
 340 345 350
 15 Ala Ala Thr Asn Ala Asn Asp Ile Trp Gly Trp Ser Lys Asp Val Gln
 355 360 365
 Phe Tyr Ile Lys Ala Thr Thr Leu Arg Leu Thr Glu Gly Gly Gly Ala
 20 370 375 380
 Val Val Thr Ser Arg Ala Asn Ile Ala Thr Val Ile Asn Asp Phe Thr
 385 390 395 400
 Glu Trp Phe His Glu Arg Ile Glu Phe Tyr Arg Ala Lys Gly Glu Phe
 25 405 410 415
 Pro Leu Asn Gly Pro Val Glu Ile Arg Cys Cys Gly Leu Asp Gln Ala
 420 425 430
 Ala Asp Val Lys Val Pro Ser Val Gly Pro Pro Thr Ile Ser Ala Thr
 30 435 440 445
 Arg Pro Arg Pro Asp His Pro Asp Trp Asp Val Ala Ile Trp Leu Asn
 450 455 460
 Val Leu Gly Val Pro Gly Thr Pro Gly Met Phe Glu Phe Tyr Arg Glu
 35 465 470 475 480
 Met Glu Gln Trp Met Arg Ser His Tyr Asn Asn Asp Asp Ala Thr Phe
 485 490 495
 Arg Pro Glu Trp Ser Lys Gly Trp Ala Phe Gly Pro Asp Pro Tyr Thr
 40 500 505 510
 Asp Asn Asp Ile Val Thr Asn Lys Met Arg Ala Thr Tyr Ile Glu Gly
 515 520 525
 45 Val Pro Thr Thr Glu Asn Trp Asp Thr Ala Arg Ala Arg Tyr Asn Gln
 530 535 540
 Ile Asp Pro His Arg Val Phe Thr Asn Gly Phe Met Asp Lys Leu Leu
 50 545 550 555 560
 Pro

55 (2) INFORMATION ZU SEQ ID NO: 3:

(i) SEQUENZ CHARAKTERISTIKA:

- (A) LÄNGE: 48 Basenpaare
(B) ART: Nukleinsäure
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear

5

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:

TTCCCGCTCA ACGGTCCGGT CGAGATCCGC TGCTGCGGGC TCGATCAG

48

10

(2) INFORMATION ZU SEQ ID NO: 4:

(i) SEQUENZ CHARAKTERISTIKA:

15

- (A) LÄNGE: 48 Basenpaare
(B) ART: Nukleinsäure
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear

20

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:

GCGATCTGGC TGAACGTTCT CGGTGTTCCG GGCACCCCCG GCATGTTTC

48

25

(2) INFORMATION ZU SEQ ID NO: 5:

(i) SEQUENZ CHARAKTERISTIKA:

30

- (A) LÄNGE: 36 Basenpaare
(B) ART: Nukleinsäure
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear

35

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:

GACGCCACCT TCCGGCCCCGA GTGGTCGAAG GGGTGG

36

40

(2) INFORMATION ZU SEQ ID NO: 6:

(i) SEQUENZ CHARAKTERISTIKA:

45

- (A) LÄNGE: 46 Basenpaare
(B) ART: Nukleinsäure
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear

50

(ix) MERKMALE:

- (A) NAME/SCHLÜSSEL: CDS
(B) LAGE: 17..46

55

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:

CACACAGGAA ACAGCT ATG ACC ATG ATT ACG CCA AGC TTG CAT GCC
 Met Thr Met Ile Thr Pro Ser Leu His Ala
 1 5 10

46

5

(2) INFORMATION ZU SEQ ID NO: 7:

10

- (i) SEQUENZ CHARAKTERISTIKA:
 (A) LÄNGE: 10 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

15

- (ii) ART DES KOLEKULS: Protein
 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:

20

Met Thr Met Ile Thr Pro Ser Leu His Ala
 1 5 10

(2) INFORMATION ZU SEQ ID NO: 8:

25

- (i) SEQUENZ CHARAKTERISTIKA:
 (A) LÄNGE: 49 Basenpaare
 (B) ART: Nukleinsäure
 (C) STRANGFORM: Einzel
 (D) TOPOLOGIE: linear

30

- (ix) MERKMALE:

35

- (A) NAME/SCHLÜSSEL: CDS
 (B) LAGE: 20..49
 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 8:

40

GAATTTAAGG GGAACATCG ATG ACC ATG ATT ACG CCA AGC TTG CAT GCC
 Met Thr Met Ile Thr Pro Ser Leu His Ala
 1 5 10

49

45

(2) INFORMATION ZU SEQ ID NO: 9:

50

50

- (i) SEQUENZ CHARAKTERISTIKA:
 (A) LÄNGE: 10 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear
 (ii) ART DES MOLEKÜLS: Protein
 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 9:

55

Met Thr Met Ile Thr Pro Ser Leu His Ala
 1 5 10

(2) INFORMATION ZU SEQ ID NO: 10:

5 (i) SEQUENZ CHARAKTERISTIKA:

- (A) LÄNGE: 43 Basenpaare
- (B) ART: Nukleinsäure
- (C) STRANGFORM: Einzel
- (D) TOPOLOGIE: linear

10 (ix) MERKMALE:

- (A) NAME/SCHLÜSSEL: CDS
- (B) LAGE: 20..43

15 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 10:

GAATTTAAGG GGAACATCG ATG AGT AAT CAC CAT GGG CAT GCC
Met Ser Asn His His Gly His Ala
20 1 5

43

(2) INFORMATION ZU SEQ ID NO: 11:

25 (i) SEQUENZ CHARAKTERISTIKA:

- (A) LÄNGE: 8 Aminosäuren
- (B) ART: Aminosäure
- (D) TOPOLOGIE: linear

30 (ii) ART DES MOLEKÜLS: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:

35 Met Ser Asn His His Gly His Ala
1 5

(2) INFORMATION ZU SEQ ID NO: 12:

40 (i) SEQUENZ CHARAKTERISTIKA:

- (A) LÄNGE: 45 Basenpaare
- (B) ART: Nukleinsäure
- (C) STRANGFORM: Einzel
- (D) TOPOLOGIE: linear

45 (ix) MERKMALE:

- (A) NAME/SCHLÜSSEL: CDS
- (B) LAGE: 19..45

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 12:

55 AATTGGAGG GGAACATT ATG AGT AAT CAT CAC CAT GGG CAT GCC
Met Ser Asn His His Gly His Ala
1 5

45

(2) INFORMATION ZU SEQ ID NO: 13:

(i) SEQUENZ CHARAKTERISTIKA:

- 5 (A) LÄNGE: 9 Aminosäuren
(B) ART: Aminosäure
(D) TOPOLOGIE: linear

10 (ii) ART DES MOLEKÜLS: Protein

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 13:

Met Ser Asn His His Gly His Ala
1 5

15 (2) INFORMATION ZU SEQ ID NO: 14:

(i) SEQUENZ CHARAKTERISTIKA:

- 20 (A) LÄNGE: 58 Basenpaare
(B) ART: Nukleinsäure
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear

25 (ix) MERKMALE:

- (A) NAME/SCHLÜSSEL: CDS
(B) LAGE: 20..58

30 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 14:

GAATTTAAGG GGAACATCG ATG AGT AAT ACG CGT AAA CGC AAG CGC CGT ACG
Met Ser Asn Thr Arg Lys Arg Lys Arg Arg Thr
1 5 10

52

35 CAT GCC
His Ala

58

40 (2) INFORMATION ZU SEQ ID NO: 15:

(i) SEQUENZ CHARAKTERISTIKA:

- 45 (A) LÄNGE: 13 Aminosäuren
(B) ART: Aminosäure
(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Protein

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 15:

50 Met Ser Asn Thr Arg Lys Arg Lys Arg Arg Thr His Ala
1 5 10

55 (2) INFORMATION ZU SEQ ID NO: 16:

(i) SEQUENZ CHARAKTERISTIKA:

- 5
(A) LANGE: 48 Basenpaare
(B) ART: Nukleinsäure
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear

5

(ix) MERKMALE:

- (A) NAME/SCHLÜSSEL: CDS
(B) LAGE: 25..48

10

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 16:

15

GAATTCACAC AGGAAACAGA ATTC ATG GTT ATG CAC CAT GGG CAT GCC
Met Val Met His His Gly His Ala
1 5

48

20

(2) INFORMATION ZU SEQ ID NO: 17:

25

(i) SEQUENZ CHARAKTERISTIKA:

- (A) LANGE: 8 Aminosäuren
(B) ART: Aminosäure
(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Protein

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17:

30

Met Val Met His His Gly His Ala
1 5

35

(2) INFORMATION ZU SEQ ID NO: 18:

40

(i) SEQUENZ CHARAKTERISTIKA:

- (A) LANGE: 1729 Basenpaare
(B) ART: Nukleinsäure
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear

45

(ix) MERKMALE:

- (A) NAME/SCHLÜSSEL: CDS
(B) LAGE: 17..1729

50

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 18:

55

CACACAGGAA ACAGCT ATG ACC ATG ATT ACG CCA AGC TTG CAT GCC TCG Met Thr Met Ile Thr Pro Ser Leu His Ala Ser 1 5 10	49
5 ACC GGG CCG GTC GCG CCG CTT CCG ACG CCG CCG AAC TTC CCG AAC GAC Thr Gly Pro Val Ala Pro Leu Pro Thr Pro Pro Asn Phe Pro Asn Asp 15 20 25	97
10 ATC GCG CTG TTC CAG CAG GCG TAC CAG AAC TGG TCC AAG GAG ATC ATG Ile Ala Leu Phe Gln Gln Ala Tyr Gln Asn Trp Ser Lys Glu Ile Met 30 35 40	145
15 CTG GAC GCC ACT TGG GTC TGC TCG CCC AAG ACG CCG CAG GAT GTC GTT Leu Asp Ala Thr Trp Val Cys Ser Pro Lys Thr Pro Gln Asp Val Val 45 50 55	193
CGC CTT GCC AAC TGG GCG CAC GAG CAC GAC TAC AAG ATC CGC CCG CGC Arg Leu Ala Asn Trp Ala His Glu His Asp Tyr Lys Ile Arg Pro Arg 60 65 70 75	241

20

25

30

35

40

45

50

55

	GGC GCG ATG CAC GGC TGG ACC CCG CTC ACC GTG GAG AAG GGG GCC AAC Gly Ala Met His Gly Trp Thr Pro Leu Thr Val Glu Lys Gly Ala Asn 80 85 90	289
5	GTC GAG AAG GTG ATC CTC GCC GAC ACG ATG ACG CAT CTG AAC GGC ATC Val Glu Lys Val Ile Leu Ala Asp Thr Met Thr His Leu Asn Gly Ile 95 100 105	337
10	ACG GTG AAC ACG GGC CCC GTG GCT ACC GTC ACC GCC GGT GGC GGC Thr Val Asn Thr Gly Gly Pro Val Ala Thr Val Thr Ala Gly Ala Gly 110 115 120	385
	GCC AGC ATC GAG GCG ATC GTC ACC GAA CTG CAG AAG CAC GAC CTC GGC Ala Ser Ile Glu Ala Ile Val Thr Glu Leu Gln Lys His Asp Leu Gly 125 130 135	433
15	TGG GCC AAC CTG CCC GCT CCG GGT GTG CTG TCG ATC GGT GGC GCC CTT Trp Ala Asn Leu Pro Ala Pro Gly Val Leu Ser Ile Gly Gly Ala Leu 140 145 150 155	481
20	GCG GTC AAC GCG CAC GGT GCG GCG CTG CCG GCC GTC GGC CAG ACC ACG Ala Val Asn Ala His Gly Ala Ala Leu Pro Ala Val Gly Gln Thr Thr 160 165 170	529
	CTG CCC GGT CAC ACC TAC GGT TCG CTG AGC AAC CTG GTC ACC GAG CTG Leu Pro Gly His Thr Tyr Gly Ser Leu Ser Asn Leu Val Thr Glu Leu 175 180 185	577
25	ACC GCG GTC TGG AAC GGC ACC ACC TAC GCA CTC GAG ACG TAC CAG Thr Ala Val Val Trp Asn Gly Thr Thr Tyr Ala Leu Glu Thr Tyr Gln 190 195 200	625
30	CGC AAC GAT CCT CGG ATC ACC CCA CTG CTC ACC AAC CTC GGG CGC TGC Arg Asn Asp Pro Arg Ile Thr Pro Leu Leu Thr Asn Leu Gly Arg Cys 205 210 215	673
	TTC CTG ACC TCG GTG ACG ATG CAG GCC GGC CCC AAC TTC CGT CAG CGG Phe Leu Thr Ser Val Thr Met Gln Ala Gly Pro Asn Phe Arg Gln Arg 220 225 230 235	721
35	TGC CAG AGC TAC ACC GAC ATC CCG TGG CGG GAA CTG TTC GCG CCG AAG Cys Gln Ser Tyr Thr Asp Ile Pro Trp Arg Glu Leu Phe Ala Pro Lys 240 245 250	769
40	GGC GCC GAC GGC CGC ACG TTC GAG AAG TTC GTC GCG GAA TCG GGC GGC Gly Ala Asp Gly Arg Thr Phe Glu Lys Phe Val Ala Glu Ser Gly Gly 255 260 265	817
	GCC GAG GCG ATC TGG TAC CCG TTC ACC GAG AAG CCG TGG ATG AAG GTG Ala Glu Ala Ile Trp Tyr Pro Phe Thr Glu Lys Pro Trp Met Lys Val 270 275 280	865
45	TGG ACG GTC TCG CCG ACC AAG CCG GAC TCG TCG AAC GAG GTC GGA AGC Trp Thr Val Ser Pro Thr Lys Pro Asp Ser Ser Asn Glu Val Gly Ser 285 290 295	913
50	CTC GGC TCG GCG GGC TCC CTC GTC GGC AAG CCT CCG CAG GCG CGT GAG Leu Gly Ser Ala Gly Ser Leu Val Gly Lys Pro Pro Gln Ala Arg Glu 300 305 310 315	961
55	GTC TCC GGC CCG TAC AAC TAC ATC TTC TCC GAC AAC CTG CCG GAG CCC Val Ser Gly Pro Tyr Asn Tyr Ile Phe Ser Asp Asn Leu Pro Glu Pro 320 325 330	1009

	ATC ACC GAC ATG ATC GGC GCC ATC AAC GCC GGA AAC CCC GGA ATC GCA Ile Thr Asp Met Ile Gly Ala Ile Asn Ala Gly Asn Pro Gly Ile Ala 335 340 345	1057
5	CCG CTG TTC GGC CCG GCG ATG TAC GAG ATC ACC AAG CTC GGG CTG GCC Pro Leu Phe Gly Pro Ala Met Tyr Glu Ile Thr Lys Leu Gly Leu Ala 350 355 360	1105
10	GCG ACG AAT GCC AAC GAC ATC TGG GGC TGG TCG AAG GAC GTC CAG TTC Ala Thr Asn Ala Asn Asp Ile Trp Gly Trp Ser Lys Asp Val Gln Phe 365 370 375	1153
15	TAC ATC AAG GCC ACG ACG TTG CGA CTC ACC GAG GGC GGC GGC GCC GTC Tyr Ile Lys Ala Thr Thr Leu Arg Leu Thr Glu Gly Gly Gly Ala Val 380 385 390 395	1201
	GTC ACG AGC CGC GCC AAC ATC GCG ACC GTG ATC AAC GAC TTC ACC GAG Val Thr Ser Arg Ala Asn Ile Ala Thr Val Ile Asn Asp Phe Thr Glu 400 405 410	1249
20	TGG TTC CAC GAG CGC ATC GAG TTC TAC CGC GCG AAG GGC GAG TTC CCG Trp Phe His Glu Arg Ile Glu Phe Tyr Arg Ala Lys Gly Glu Phe Pro 415 420 425	1297
25	CTC AAC GGT CCG GTC GAG ATC CGC TGC TGC GGG CTC GAT CAG GCA GCC Leu Asn Gly Pro Val Glu Ile Arg Cys Cys Gly Leu Asp Gln Ala Ala 430 435 440	1345
	GAC GTC AAG GTG CCG TCG GTG GGC CCG CCC ACC ATC TCG GCG ACC CGT Asp Val Lys Val Pro Ser Val Gly Pro Pro Thr Ile Ser Ala Thr Arg 445 450 455	1393
30	CCG CGT CCG GAT CAT CCG GAC TGG GAC GTC GCG ATC TGG CTG AAC GTT Pro Arg Pro Asp His Pro Asp Trp Asp Val Ala Ile Trp Leu Asn Val 460 465 470 475	1441
35	CTC GGT GTT CCG GGC ACC CCC GGC ATG TTC GAG TAC TAC CGC GAG ATG Leu Gly Val Pro Gly Thr Pro Gly Met Phe Glu Phe Tyr Arg Glu Met 480 485 490	1489
40	GAG CAG TGG ATG CGG AGC CAC TAC AAC AAC GAC GAC GCC ACC TTC CGG Glu Gln Trp Met Arg Ser His Tyr Asn Asn Asp Asp Ala Thr Phe Arg 495 500 505	1537
	CCC GAG TGG TCG AAG GGG TGG GCG TTC GGT CCC GAC CCG TAC ACC GAC Pro Glu Trp Ser Lys Gly Trp Ala Phe Gly Pro Asp Pro Tyr Thr Asp 510 515 520	1585
45	AAC GAC ATC GTC ACG AAC AAG ATG CGC GCC ACC TAC ATC GAA GGT GTC Asn Asp Ile Val Thr Asn Lys Met Arg Ala Thr Tyr Ile Glu Gly Val 525 530 535	1633
50	CCG ACG ACC GAG AAC TGG GAC ACC GCG CGC GCT CGG TAC AAC CAG ATC Pro Thr Thr Glu Asn Trp Asp Thr Ala Arg Ala Arg Tyr Asn Gln Ile 540 545 550 555	1681
	GAC CCG CAT CGC GTG TTC ACC AAC GGA TTC ATG GAC AAG CTG CTT CCG Asp Pro His Arg Val Phe Thr Asn Gly Phe Met Asp Lys Leu Leu Pro 560 565 570	1729
55		

(2) INFORMATION ZU SEQ ID NO: 19:

(i) SEQUENZ CHARAKTERISTIKA:

- (A) LÄNGE: 571 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Protein

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 19:

10 Met Thr Met Ile Thr Pro Ser Leu His Ala Ser Thr Gly Pro Val Ala
 1 5 10 15
 15 Pro Leu Pro Thr Pro Pro Asn Phe Pro Asn Asp Ile Ala Leu Phe Gln
 20 25 30
 20 Gln Ala Tyr Gln Asn Trp Ser Lys Glu Ile Met Leu Asp Ala Thr Trp
 35 40 45
 25 Val Cys Ser Pro Lys Thr Pro Gln Asp Val Val Arg Leu Ala Asn Trp
 50 55 60
 30 Ala His Glu His Asp Tyr Lys Ile Arg Pro Arg Gly Ala Met His Gly
 65 70 75 80
 35 Trp Thr Pro Leu Thr Val Glu Lys Gly Ala Asn Val Glu Lys Val Ile
 85 90 95
 40 Leu Ala Asp Thr Met Thr His Leu Asn Gly Ile Thr Val Asn Thr Gly
 100 105 110
 30 Gly Pro Val Ala Thr Val Thr Ala Gly Ala Gly Ala Ser Ile Glu Ala
 115 120 125
 45 Ile Val Thr Glu Leu Gln Lys His Asp Leu Gly Trp Ala Asn Leu Pro
 130 135 140
 35 Ala Pro Gly Val Leu Ser Ile Gly Gly Ala Leu Ala Val Asn Ala His
 145 150 155 160
 40 Gly Ala Ala Leu Pro Ala Val Gly Gln Thr Thr Leu Pro Gly His Thr
 165 170 175
 45 Tyr Gly Ser Leu Ser Asn Leu Val Thr Glu Leu Thr Ala Val Val Trp
 180 185 190
 50 Asn Gly Thr Thr Tyr Ala Leu Glu Thr Tyr Gln Arg Asn Asp Pro Arg
 195 200 205
 45 Ile Thr Pro Leu Leu Thr Asn Leu Gly Arg Cys Phe Leu Thr Ser Val
 210 215 220
 50 Thr Met Gln Ala Gly Pro Asn Phe Arg Gln Arg Cys Gln Ser Tyr Thr
 225 230 235 240
 55 Asp Ile Pro Trp Arg Glu Leu Phe Ala Pro Lys Gly Ala Asp Gly Arg
 245 250 255
 55 Thr Phe Glu Lys Phe Val Ala Glu Ser Gly Gly Ala Glu Ala Ile Trp
 260 265 270

Tyr Pro Phe Thr Glu Lys Pro Trp Met Lys Val Trp Thr Val Ser Pro
 275 280 285
 5 Thr Lys Pro Asp Ser Ser Asn Glu Val Gly Ser Leu Gly Ser Ala Gly
 290 295 300
 Ser Leu Val Gly Lys Pro Pro Gln Ala Arg Glu Val Ser Gly Pro Tyr
 305 310 315 320
 10 Asn Tyr Ile Phe Ser Asp Asn Leu Pro Glu Pro Ile Thr Asp Met Ile
 325 330 335
 Gly Ala Ile Asn Ala Gly Asn Pro Gly Ile Ala Pro Leu Phe Gly Pro
 340 345 350
 15 Ala Met Tyr Glu Ile Thr Lys Leu Gly Leu Ala Ala Thr Asn Ala Asn
 355 360 365
 Asp Ile Trp Gly Trp Ser Lys Asp Val Gln Phe Tyr Ile Lys Ala Thr
 20 370 375 380
 Thr Leu Arg Leu Thr Glu Gly Gly Ala Val Val Thr Ser Arg Ala
 385 390 395 400
 Asn Ile Ala Thr Val Ile Asn Asp Phe Thr Glu Trp Phe His Glu Arg
 25 405 410 415
 Ile Glu Phe Tyr Arg Ala Lys Gly Glu Phe Pro Leu Asn Gly Pro Val
 420 425 430
 Glu Ile Arg Cys Cys Gly Leu Asp Gln Ala Ala Asp Val Lys Val Pro
 30 435 440 445
 Ser Val Gly Pro Pro Thr Ile Ser Ala Thr Arg Pro Arg Pro Asp His
 450 455 460
 Pro Asp Trp Asp Val Ala Ile Trp Leu Asn Val Leu Gly Val Pro Gly
 35 465 470 475 480
 Thr Pro Gly Met Phe Glu Phe Tyr Arg Glu Met Glu Gln Trp Met Arg
 485 490 495
 Ser His Tyr Asn Asn Asp Asp Ala Thr Phe Arg Pro Glu Trp Ser Lys
 40 500 505 510
 Gly Trp Ala Phe Gly Pro Asp Pro Tyr Thr Asp Asn Asp Ile Val Thr
 515 520 525
 Asn Lys Met Arg Ala Thr Tyr Ile Glu Gly Val Pro Thr Thr Glu Asn
 55 530 535 540
 Trp Asp Thr Ala Arg Ala Arg Tyr Asn Gln Ile Asp Pro His Arg Val
 545 550 555 560
 50 Phe Thr Asn Gly Phe Met Asp Lys Leu Leu Pro
 565 570

(2) INFORMATION ZU SEQ ID NO: 20:

55

(i) SEQUENZ CHARAKTERISTIKA:

(A) LÄNGE: 1732 Basenpaare

- (B) ART: Nukleinsäure
 (C) STRANGFORM: Einzel
 (D) TOPOLOGIE: linear

5 (ix) MERKMALE:

- (A) NAME/SCHLÜSSEL: CDS
 (B) LAGE: 20..1732

10 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 20:

	GAATTTAAGG GGAACATCG ATG ACC ATG ATT ACG CCA AGC TTG CAT GCC TCG	52
15	Met Thr Met Ile Thr Pro Ser Leu His Ala Ser	
	1 5 10	
	ACC GGG CCG GTC GCG CCG CTT CCG ACG CCG CCG AAC TTC CCG AAC GAC	100
	Thr Gly Pro Val Ala Pro Leu Pro Thr Pro Pro Asn Phe Pro Asn Asp	
	15 20 25	
20	ATC GCG CTG TTC CAG CAG GCG TAC CAG AAC TGG TCC AAG GAG ATC ATG	148
	Ile Ala Leu Phe Gln Gln Ala Tyr Gln Asn Trp Ser Lys Glu Ile Met	
	30 35 40	
25	CTG GAC GCC ACT TGG GTC TGC TCG CCC AAG ACG CCG CAG GAT GTC GTT	196
	Leu Asp Ala Thr Trp Val Cys Ser Pro Lys Thr Pro Gln Asp Val Val	
	45 50 55	
	CGC CTT GCC AAC TGG GCG CAC GAG CAC GAC TAC AAG ATC CGC CCG CGC	244
	Arg Leu Ala Asn Trp Ala His Glu His Asp Tyr Lys Ile Arg Pro Arg	
	60 65 70 75	
30	GGC GCG ATG CAC GGC TGG ACC CCG CTC ACC GTG GAG AAG GGG GCC AAC	292
	Gly Ala Met His Gly Trp Thr Pro Leu Thr Val Glu Lys Gly Ala Asn	
	80 85 90	
35	GTC GAG AAG GTG ATC CTC GCC GAC ACG ATG ACG CAT CTG AAC GGC ATC	340
	Val Glu Lys Val Ile Leu Ala Asp Thr Met Thr His Leu Asn Gly Ile	
	95 100 105	
40	ACG GTG AAC ACG GGC GGC CCC GTG GCT ACC GTC ACC GCC GGT GCC GGC	388
	Thr Val Asn Thr Gly Gly Pro Val Ala Thr Val Thr Ala Gly Ala Gly	
	110 115 120	
	GCC AGC ATC GAG GCG ATC GTC ACC GAA CTG CAG AAG CAC GAC CTC GGC	436
	Ala Ser Ile Glu Ala Ile Val Thr Glu Leu Gln Lys His Asp Leu Gly	
	125 130 135	
45	TGG GCC AAC CTG CCC GCT CCG GGT GTG CTG TCG ATC GGT GGC GCC CTT	484
	Trp Ala Asn Leu Pro Ala Pro Gly Val Leu Ser Ile Gly Gly Ala Leu	
	140 145 150 155	
50	GCG GTC AAC GCG CAC GGT GCG GCG CTG CCG GCC GTC GGC CAG ACC ACG	532
	Ala Val Asn Ala His Gly Ala Ala Leu Pro Ala Val Gly Gln Thr Thr	
	160 165 170	
	CTG CCC GGT CAC ACC TAC GGT TCG CTG AGC AAC CTG GTC ACC GAG CTG	580
	Leu Pro Gly His Thr Tyr Gly Ser Leu Ser Asn Leu Val Thr Glu Leu	
	175 180 185	

55

	ACC GCG GTC GTC TGG AAC GGC ACC ACC TAC GCA CTC GAG ACG TAC CAG Thr Ala Val Val Trp Asn Gly Thr Thr Tyr Ala Leu Glu Thr Tyr Gln 190 195 200	628
5	CGC AAC GAT CCT CGG ATC ACC CCA CTG CTC ACC AAC CTC GGG CGC TGC Arg Asn Asp Pro Arg Ile Thr Pro Leu Leu Thr Asn Leu Gly Arg Cys 205 210 215	676
10	TTC CTG ACC TCG GTG ACG ATG CAG GCC CCC AAC TTC CGT CAG CGG Phe Leu Thr Ser Val Thr Met Gln Ala Gly Pro Asn Phe Arg Gln Arg 220 225 230 235	724
	TGC CAG AGC TAC ACC GAC ATC CCG TGG CGG GAA CTG TTC GCG CCG AAG Cys Gln Ser Tyr Thr Asp Ile Pro Trp Arg Glu Leu Phe Ala Pro Lys 240 245 250	772
15	GGC GCC GAC GGC CGC ACG TTC GAG AAG TTC GTC GCG GAA TCG GGC GGC Gly Ala Asp Gly Arg Thr Phe Glu Lys Phe Val Ala Glu Ser Gly Gly 255 260 265	820
20	GCC GAG GCG ATC TGG TAC CCG TTC ACC GAG AAG CCG TGG ATG AAG GTG Ala Glu Ala Ile Trp Tyr Pro Phe Thr Glu Lys Pro Trp Met Lys Val 270 275 280	868
25	TGG ACG GTC TCG CCG ACC AAG CCG GAC TCG TCG AAC GAG GTC GGA AGC Trp Thr Val Ser Pro Thr Lys Pro Asp Ser Ser Asn Glu Val Gly Ser 285 290 295	916
	CTC GGC TCG GCG GGC TCC CTC GTC GGC AAG CCT CCG CAG GCG CGT GAG Leu Gly Ser Ala Gly Ser Leu Val Gly Lys Pro Pro Gln Ala Arg Glu 300 305 310 315	964
30	GTC TCC GGC CCG TAC AAC TAC ATC TTC TCC GAC AAC CTG CCG GAG CCC Val Ser Gly Pro Tyr Asn Tyr Ile Phe Ser Asp Asn Leu Pro Glu Pro 320 325 330	1012
35	ATC ACC GAC ATG ATC GGC GCC ATC AAC GCC GGA AAC CCC GGA ATC GCA Ile Thr Asp Met Ile Gly Ala Ile Asn Ala Gly Asn Pro Gly Ile Ala 335 340 345	1060
	CCG CTG TTC GGC CCG GCG ATG TAC GAG ATC ACC AAG CTC GGG CTG GCC Pro Leu Phe Gly Pro Ala Met Tyr Glu Ile Thr Lys Leu Gly Leu Ala 350 355 360	1108
40	GCG ACG AAT GCC AAC GAC ATC TGG GGC TGG TCG AAG GAC GTC CAG TTC Ala Thr Asn Ala Asn Asp Ile Trp Gly Trp Ser Lys Asp Val Gln Phe 365 370 375	1156
45	TAC ATC AAG GCC ACG ACG TTG CGA CTC ACC GAG GGC GGC GGC GGC GTC Tyr Ile Lys Ala Thr Thr Leu Arg Leu Thr Glu Gly Gly Gly Ala Val 380 385 390 395	1204
	GTC ACG AGC CGC GCC AAC ATC GCG ACC GTG ATC AAC GAC TTC ACC GAG Val Thr Ser Arg Ala Asn Ile Ala Thr Val Ile Asn Asp Phe Thr Glu 400 405 410	1252
50	TGG TTC CAC GAG CGC ATC GAG TTC TAC CGC GCG AAG GGC GAG TTC CCG Trp Phe His Glu Arg Ile Glu Phe Tyr Arg Ala Lys Gly Glu Phe Pro 415 420 425	1300
55	CTC AAC GGT CCG GTC GAG ATC CGC TGC TGC GGG CTC GAT CAG GCA GCC Leu Asn Gly Pro Val Glu Ile Arg Cys Cys Gly Leu Asp Gln Ala Ala 430 435 440	1348

	GAC GTC AAG GTG CCG TCG GTG GGC CCG CCG ACC ATC TCG GCG ACC CGT Asp Val Lys Val Pro Ser Val Gly Pro Pro Thr Ile Ser Ala Thr Arg 445 450 455	1396
5	CCG CGT CCG GAT CAT CCG GAC TGG GAC GTC GCG ATC TGG CTG AAC GTT Pro Arg Pro Asp His Pro Asp Trp Asp Val Ala Ile Trp Leu Asn Val 460 465 470 475	1444
10	CTC GGT GTT CCG GGC ACC CCC GGC ATG TTC GAG TTC TAC CGC GAG ATG Leu Gly Val Pro Gly Thr Pro Gly Met Phe Glu Phe Tyr Arg Glu Met 480 485 490	1492
15	GAG CAG TGG ATG CGG AGC CAC TAC AAC AAC GAC GAC GCC ACC TTC CGG Glu Gln Trp Met Arg Ser His Tyr Asn Asn Asp Asp Ala Thr Phe Arg 495 500 505	1540
20	CCC GAG TGG TCG AAG GGG TGG GCG TTC GGT CCC GAC CCG TAC ACC GAC Pro Glu Trp Ser Lys Gly Trp Ala Phe Gly Pro Asp Pro Tyr Thr Asp 510 515 520	1588
25	AAC GAC ATC GTC ACG AAC AAG ATG CGC GCC ACC TAC ATC GAA GGT GTC Asn Asp Ile Val Thr Asn Lys Met Arg Ala Thr Tyr Ile Glu Gly Val 525 530 535	1636
30	CCG ACG ACC GAG AAC TGG GAC ACC GCG CGC GCT CGG TAC AAC CAG ATC Pro Thr Thr Glu Asn Trp Asp Thr Ala Arg Ala Arg Tyr Asn Gln Ile 540 545 550 555	1684
	GAC CCG CAT CGC GTG TTC ACC AAC GGA TTC ATG GAC AAG CTG CTT CCG Asp Pro His Arg Val Phe Thr Asn Gly Phe Met Asp Lys Leu Leu Pro 560 565 570	1732

(2) INFORMATION ZU SEQ ID NO: 21:

- (i) SEQUENZ CHARAKTERISTIKA:
- 35 (A) LANGE: 571 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear
- 40 (ii) ART DES MOLEKÜLS: Protein
 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 21:

45

50

55

Met Thr Met Ile Thr Pro Ser Leu His Ala Ser Thr Gly Pro Val Ala
 1 5 10 15

5 Pro Leu Pro Thr Pro Pro Asn Phe Pro Asn Asp Ile Ala Leu Phe Gln
 20 25 30

Gln Ala Tyr Gln Asn Trp Ser Lys Glu Ile Met Leu Asp Ala Thr Trp
 35 40 45

10 Val Cys Ser Pro Lys Thr Pro Gln Asp Val Val Arg Leu Ala Asn Trp
 50 55 60

Ala His Glu His Asp Tyr Lys Ile Arg Pro Arg Gly Ala Met His Gly
 65 70 75 80

15 Trp Thr Pro Leu Thr Val Glu Lys Gly Ala Asn Val Glu Lys Val Ile
 85 90 95

20

25

30

35

40

45

50

55

Leu Ala Asp Thr Met Thr His Leu Asn Gly Ile Thr Val Asn Thr Gly
 100 105 110
 5 Gly Pro Val Ala Thr Val Thr Ala Gly Ala Gly Ala Ser Ile Glu Ala
 115 120 125
 Ile Val Thr Glu Leu Gln Lys His Asp Leu Gly Trp Ala Asn Leu Pro
 130 135 140
 Ala Pro Gly Val Leu Ser Ile Gly Gly Ala Leu Ala Val Asn Ala His
 145 150 155 160
 Gly Ala Ala Leu Pro Ala Val Gly Gln Thr Thr Leu Pro Gly His Thr
 165 170 175
 15 Tyr Gly Ser Leu Ser Asn Leu Val Thr Glu Leu Thr Ala Val Val Trp
 180 185 190
 Asn Gly Thr Thr Tyr Ala Leu Glu Thr Tyr Gln Arg Asn Asp Pro Arg
 195 200 205
 20 Ile Thr Pro Leu Leu Thr Asn Leu Gly Arg Cys Phe Leu Thr Ser Val
 210 215 220
 Thr Met Gln Ala Gly Pro Asn Phe Arg Gln Arg Cys Gln Ser Tyr Thr
 225 230 235 240
 25 Asp Ile Pro Trp Arg Glu Leu Phe Ala Pro Lys Gly Ala Asp Gly Arg
 245 250 255
 Thr Phe Glu Lys Phe Val Ala Glu Ser Gly Gly Ala Glu Ala Ile Trp
 260 265 270
 30 Tyr Pro Phe Thr Glu Lys Pro Trp Met Lys Val Trp Thr Val Ser Pro
 275 280 285
 Thr Lys Pro Asp Ser Ser Asn Glu Val Gly Ser Leu Gly Ser Ala Gly
 290 295 300
 35 Ser Leu Val Gly Lys Pro Pro Gln Ala Arg Glu Val Ser Gly Pro Tyr
 305 310 315 320
 Asn Tyr Ile Phe Ser Asp Asn Leu Pro Glu Pro Ile Thr Asp Met Ile
 40 325 330 335
 Gly Ala Ile Asn Ala Gly Asn Pro Gly Ile Ala Pro Leu Phe Gly Pro
 340 345 350
 Ala Met Tyr Glu Ile Thr Lys Leu Gly Leu Ala Ala Thr Asn Ala Asn
 45 355 360 365
 Asp Ile Trp Gly Trp Ser Lys Asp Val Gln Phe Tyr Ile Lys Ala Thr
 370 375 380
 50 Thr Leu Arg Leu Thr Glu Gly Gly Ala Val Val Thr Ser Arg Ala
 385 390 395 400
 Asn Ile Ala Thr Val Ile Asn Asp Phe Thr Glu Trp Phe His Glu Arg
 405 410 415
 55 Ile Glu Phe Tyr Arg Ala Lys Gly Glu Phe Pro Leu Asn Gly Pro Val
 420 425 430

Glu Ile Arg Cys Cys Gly Leu Asp Gln Ala Ala Asp Val Lys Val Pro
 435 440 445
 5 Ser Val Gly Pro Pro Thr Ile Ser Ala Thr Arg Pro Arg Pro Asp His
 450 455 460
 Pro Asp Trp Asp Val Ala Ile Trp Leu Asn Val Leu Gly Val Pro Gly
 465 470 475 480
 10 Thr Pro Gly Met Phe Glu Phe Tyr Arg Glu Met Glu Gln Trp Met Arg
 485 490 495
 Ser His Tyr Asn Asn Asp Asp Ala Thr Phe Arg Pro Glu Trp Ser Lys
 500 505 510
 15 Gly Trp Ala Phe Gly Pro Asp Pro Tyr Thr Asp Asn Asp Ile Val Thr
 515 520 525
 Asn Lys Met Arg Ala Thr Tyr Ile Glu Gly Val Pro Thr Thr Glu Asn
 530 535 540
 20 Trp Asp Thr Ala Arg Ala Arg Tyr Asn Gln Ile Asp Pro His Arg Val
 545 550 555 560
 Phe Thr Asn Gly Phe Met Asp Lys Leu Leu Pro
 565 570
 25

(2) INFORMATION ZU SEQ ID NO: 22:

- (i) SEQUENZ CHARAKTERISTIKA:
- 30 (A) LÄNGE: 1726 Basenpaare
 (B) ART: Nukleinsäure
 (C) STRANGFORM: Einzel
 (D) TOPOLOGIE: linear

- 35 (ix) MERKMALE:
- (A) NAME/SCHLÜSSEL: CDS
 (B) LAGE: 20..1726

- 40 (xi) SEQUENZ BESCHREIBUNG: SEQ ID NO: 22:

45

50

55

EP 0 698 102 B1

GAATTTAAGG GGAACATCG ATG AGT AAT CAC CAT GGG CAT GCC TCG ACC GGG Met Ser Asn His His Gly His Ala Ser Thr Gly 1 5 10	52
5 CCG GTC GCG CCG CTT CCG ACG CCG AAC TTC CCG AAC GAC ATC GCG Pro Val Ala Pro Leu Pro Thr Pro Pro Asn Phe Pro Asn Asp Ile Ala 15 20 25	100
10 CTG TTC CAG CAG GCG TAC CAG AAC TGG TCC AAG GAG ATC ATG CTG GAC Leu Phe Gln Gln Ala Tyr Gln Asn Trp Ser Lys Glu Ile Met Leu Asp 30 35 40	148
GCC ACT TGG GTC TGC TCG CCC AAG ACG CCG CAG GAT GTC GTT CGC CTT Ala Thr Trp Val Cys Ser Pro Lys Thr Pro Gln Asp Val Val Arg Leu 45 50 55	196
15 GCC AAC TGG GCG CAC GAG CAC GAC TAC AAG ATC CGC CCG CGC GGC GCG Ala Asn Trp Ala His Glu His Asp Tyr Lys Ile Arg Pro Arg Gly Ala 60 65 70 75	244

20

25

30

35

40

45

50

55

	ATG CAC GGC TGG ACC CCG CTC ACC GTG GAG AAG GGG GCC AAC GTC GAG Met His Gly Trp Thr Pro Leu Thr Val Glu Lys Gly Ala Asn Val Glu 80 85 90	292
5	AAG GTG ATC CTC GCC GAC ACG ATG ACG CAT CTG AAC GGC ATC ACG GTG Lys Val Ile Leu Ala Asp Thr Met Thr His Leu Asn Gly Ile Thr Val 95 100 105	340
10	AAC ACG GGC GGC CCC GTG GCT ACC GTC ACC GCC GGT GCC GGC GCC AGC Asn Thr Gly Gly Pro Val Ala Thr Val Thr Ala Gly Ala Gly Ala Ser 110 115 120	388
	ATC GAG GCG ATC GTC ACC GAA CTG CAG AAG CAC GAC CTC GGC TGG GCC Ile Glu Ala Ile Val Thr Glu Leu Gln Lys His Asp Leu Gly Trp Ala 125 130 135	436
15	AAC CTG CCC GCT CCG GGT GTG CTG TCG ATC GGT GGC GCC CTT GCG GTC Asn Leu Pro Ala Pro Gly Val Leu Ser Ile Gly Gly Ala Leu Ala Val 140 145 150 155	484
20	AAC GCG CAC GGT GCG GCG CTG CCG GCC GTC GGC CAG ACC ACG CTG CCC Asn Ala His Gly Ala Ala Leu Pro Ala Val Gly Gln Thr Thr Leu Pro 160 165 170	532
	GGT CAC ACC TAC GGT TCG CTG AGC AAC CTG GTC ACC GAG CTG ACC GCG Gly His Thr Tyr Gly Ser Leu Ser Asn Leu Val Thr Glu Leu Thr Ala 175 180 185	580
25	GTC GTC TGG AAC GGC ACC ACC TAC GCA CTC GAG ACG TAC CAG CGC AAC Val Val Trp Asn Gly Thr Thr Tyr Ala Leu Glu Thr Tyr Gln Arg Asn 190 195 200	628
30	GAT CCT CGG ATC ACC CCA CTG CTC ACC AAC CTC GGG GGC TGC TTC CTG Asp Pro Arg Ile Thr Pro Leu Leu Thr Asn Leu Gly Arg Cys Phe Leu 205 210 215	676
	ACC TCG GTG ACG ATG CAG GCC GGC CCC AAC TTC CGT CAG CGG TGC CAG Thr Ser Val Thr Met Gln Ala Gly Pro Asn Phe Arg Gln Arg Cys Gln 220 225 230 235	724
35	AGC TAC ACC GAC ATC CCG TGG CGG GAA CTG TTC GCG CCG AAG GGC GCC Ser Tyr Thr Asp Ile Pro Trp Arg Glu Leu Phe Ala Pro Lys Gly Ala 240 245 250	772
	GAC GGC CGC ACG TTC GAG AAG TTC GTC GCG GAA TCG GGC GGC GCC GAG Asp Gly Arg Thr Phe Glu Lys Phe Val Ala Glu Ser Gly Gly Ala Glu 255 260 265	820
40	GCG ATC TGG TAC CCG TTC ACC GAG AAG CCG TGG ATG AAG GTG TGG ACG Ala Ile Trp Tyr Pro Phe Thr Glu Lys Pro Trp Met Lys Val Trp Thr 270 275 280	868
	GTC TCG CCG ACC AAG CCG GAC TCG TCG AAC GAG GTC GGA AGC CTC GGC Val Ser Pro Thr Lys Pro Asp Ser Ser Asn Glu Val Gly Ser Leu Gly 285 290 295	916
45	TCG GCG GGC TCC CTC GTC GGC AAG CCT CCG CAG GCG CGT GAG GTC TCC Ser Ala Gly Ser Leu Val Gly Lys Pro Pro Gln Ala Arg Glu Val Ser 300 305 310 315	964
	GGC CCG TAC AAC TAC ATC TTC TCC GAC AAC CTG CCG GAG CCC ATC ACC Gly Pro Tyr Asn Tyr Ile Phe Ser Asp Asn Leu Pro Glu Pro Ile Thr 320 325 330	1012

	GAC ATG ATC GGC GCC ATC AAC GCC GGA AAC CCC GGA ATC GCA CCG CTG Asp Met Ile Gly Ala Ile Asn Ala Gly Asn Pro Gly Ile Ala Pro Leu 335 340 345	1060
5	TTC GGC CCG GCG ATG TAC GAG ATC ACC AAG CTC GGG CTG GCC GCG ACG Phe Gly Pro Ala Met Tyr Glu Ile Thr Lys Leu Gly Leu Ala Ala Thr 350 355 360	1108
10	AAT GCC AAC GAC ATC TGG GGC TGG TCG AAG GAC GTC CAG TTC TAC ATC Asn Ala Asn Asp Ile Trp Gly Trp Ser Lys Asp Val Gln Phe Tyr Ile 365 370 375	1156
15	AAG GCC ACG ACG TTG CGA CTC ACC GAG GGC GGC GGC GCC GTC GTC ACG Lys Ala Thr Thr Leu Arg Leu Thr Glu Gly Gly Ala Val Val Thr 380 385 390 395	1204
	AGC CGC GCC AAC ATC GCG ACC GTG ATC AAC GAC TTC ACC GAG TGG TTC Ser Arg Ala Asn Ile Ala Thr Val Ile Asn Asp Phe Thr Glu Trp Phe 400 405 410	1252
20	CAC GAG CGC ATC GAG TTC TAC CGC GCG AAG GGC GAG TTC CCG CTC AAC His Glu Arg Ile Glu Phe Tyr Arg Ala Lys Gly Glu Phe Pro Leu Asn 415 420 425	1300
25	GGT CCG GTC GAG ATC CGC TGC TGC GGG CTC GAT CAG GCA GCC GAC GTC Gly Pro Val Glu Ile Arg Cys Cys Gly Leu Asp Gln Ala Ala Asp Val 430 435 440	1348
	AAG GTG CCG TCG GTG GGC CCG ACC ATC TCG GCG ACC CGT CCG CGT Lys Val Pro Ser Val Gly Pro Pro Thr Ile Ser Ala Thr Arg Pro Arg 445 450 455	1396
30	CCG GAT CAT CCG GAC TGG GAC GTC GCG ATC TGG CTG AAC GTT CTC GGT Pro Asp His Pro Asp Trp Asp Val Ala Ile Trp Leu Asn Val Leu Gly 460 465 470 475	1444
35	GTT CCG GGC ACC CCC GGC ATG TTC GAG TTC TAC CGC GAG ATG GAG CAG Val Pro Gly Thr Pro Gly Met Phe Glu Phe Tyr Arg Glu Met Glu Gln 480 485 490	1492
	TGG ATG CGG AGC CAC TAC AAC AAC GAC GAC GCC ACC TTC CGG CCC GAG Trp Met Arg Ser His Tyr Asn Asn Asp Asp Ala Thr Phe Arg Pro Glu 495 500 505	1540
40	TGG TCG AAG GGG TGG GCG TTC GGT CCC GAC CCG TAC ACC GAC AAC GAC Trp Ser Lys Gly Trp Ala Phe Gly Pro Asp Pro Tyr Thr Asp Asn Asp 510 515 520	1588
45	ATC GTC ACG AAC AAG ATG CGC GCC ACC TAC ATC GAA GGT GTC CCG ACG Ile Val Thr Asn Lys Met Arg Ala Thr Tyr Ile Glu Gly Val Pro Thr 525 530 535	1636
	ACC GAG AAC TGG GAC ACC GCG CGC GCT CGG TAC AAC CAG ATC GAC CCG Thr Glu Asn Trp Asp Thr Ala Arg Ala Arg Tyr Asn Gln Ile Asp Pro 540 545 550 555	1684
50	CAT CGC GTG TTC ACC AAC GGA TTC ATG GAC AAG CTG CTT CCG His Arg Val Phe Thr Asn Gly Phe Met Asp Lys Leu Leu Pro 560 565	1726
55	(2) INFORMATION ZU SEQ ID NO: 23:	

(i) SEQUENZ CHARAKTERISTIKA:

- (A) LANGE: 569 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

5

- (ii) ART DES MOLEKÜLS: Protein
 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 23:

	Met Ser Asn His His Gly His Ala Ser Thr Gly Pro Val Ala Pro Leu			
10	1	5	10	15
	Pro Thr Pro Pro Asn Phe Pro Asn Asp Ile Ala Leu Phe Gln Gln Ala			
	20	25	30	
15	Tyr Gln Asn Trp Ser Lys Glu Ile Met Leu Asp Ala Thr Trp Val Cys			
	35	40	45	
	Ser Pro Lys Thr Pro Gln Asp Val Val Arg Leu Ala Asn Trp Ala His			
	50	55	60	
20	Glu His Asp Tyr Lys Ile Arg Pro Arg Gly Ala Met His Gly Trp Thr			
	65	70	75	80
	Pro Leu Thr Val Glu Lys Gly Ala Asn Val Glu Lys Val Ile Leu Ala			
	85	90	95	
25	Asp Thr Met Thr His Leu Asn Gly Ile Thr Val Asn Thr Gly Gly Pro			
	100	105	110	
	Val Ala Thr Val Thr Ala Gly Ala Gly Ala Ser Ile Glu Ala Ile Val			
	115	120	125	
30	Thr Glu Leu Gln Lys His Asp Leu Gly Trp Ala Asn Leu Pro Ala Pro			
	130	135	140	
	Gly Val Leu Ser Ile Gly Gly Ala Leu Ala Val Asn Ala His Gly Ala			
	145	150	155	160
35	Ala Leu Pro Ala Val Gly Gln Thr Thr Leu Pro Gly His Thr Tyr Gly			
	165	170	175	
	Ser Leu Ser Asn Leu Val Thr Glu Leu Thr Ala Val Val Trp Asn Gly			
40	180	185	190	
	Thr Thr Tyr Ala Leu Glu Thr Tyr Gln Arg Asn Asp Pro Arg Ile Thr			
	195	200	205	
	Pro Leu Leu Thr Asn Leu Gly Arg Cys Phe Leu Thr Ser Val Thr Met			
45	210	215	220	
	Gln Ala Gly Pro Asn Phe Arg Gln Arg Cys Gln Ser Tyr Thr Asp Ile			
	225	230	235	240
	Pro Trp Arg Glu Leu Phe Ala Pro Lys Gly Ala Asp Gly Arg Thr Phe			
50	245	250	255	
	Glu Lys Phe Val Ala Glu Ser Gly Gly Ala Glu Ala Ile Trp Tyr Pro			
	260	265	270	

55

Phe Thr Glu Lys Pro Trp Met Lys Val Trp Thr Val Ser Pro Thr Lys
 275 280 285
 5 Pro Asp Ser Ser Asn Glu Val Gly Ser Leu Gly Ser Ala Gly Ser Leu
 290 295 300
 Val Gly Lys Pro Pro Gln Ala Arg Glu Val Ser Gly Pro Tyr Asn Tyr
 305 310 315 320
 10 Ile Phe Ser Asp Asn Leu Pro Glu Pro Ile Thr Asp Met Ile Gly Ala
 325 330 335
 Ile Asn Ala Gly Asn Pro Gly Ile Ala Pro Leu Phe Gly Pro Ala Met
 340 345 350
 15 Tyr Glu Ile Thr Lys Leu Gly Leu Ala Ala Thr Asn Ala Asn Asp Ile
 355 360 365
 Trp Gly Trp Ser Lys Asp Val Gln Phe Tyr Ile Lys Ala Thr Thr Leu
 20 370 375 380
 Arg Leu Thr Glu Gly Gly Ala Val Val Thr Ser Arg Ala Asn Ile
 385 390 395 400
 Ala Thr Val Ile Asn Asp Phe Thr Glu Trp Phe His Glu Arg Ile Glu
 25 405 410 415
 Phe Tyr Arg Ala Lys Gly Glu Phe Pro Leu Asn Gly Pro Val Glu Ile
 420 425 430
 Arg Cys Cys Gly Leu Asp Gln Ala Ala Asp Val Lys Val Pro Ser Val
 30 435 440 445
 Gly Pro Pro Thr Ile Ser Ala Thr Arg Pro Arg Pro Asp His Pro Asp
 450 455 460
 35 Trp Asp Val Ala Ile Trp Leu Asn Val Leu Gly Val Pro Gly Thr Pro
 465 470 475 480
 Gly Met Phe Glu Phe Tyr Arg Glu Met Glu Gln Trp Met Arg Ser His
 485 490 495
 40 Tyr Asn Asn Asp Asp Ala Thr Phe Arg Pro Glu Trp Ser Lys Gly Trp
 500 505 510
 Ala Phe Gly Pro Asp Pro Tyr Thr Asp Asn Asp Ile Val Thr Asn Lys
 515 520 525
 45 Met Arg Ala Thr Tyr Ile Glu Gly Val Pro Thr Thr Glu Asn Trp Asp
 530 535 540
 Thr Ala Arg Ala Arg Tyr Asn Gln Ile Asp Pro His Arg Val Phe Thr
 545 550 555 560
 50 Asn Gly Phe Met Asp Lys Leu Leu Pro
 565

55 (2) INFORMATION ZU SEQ ID NO: 24:

(i) SEQUENZ CHARAKTERISTIKA:

- (A) LÄNGE: 1728 Basenpaare
 (B) ART: Nukleinsäure
 (C) STRANGFORM: Einzel
 (D) TOPOLOGIE: linear

5

(ix) MERKMALE:

- (A) NAME/SCHLÜSSEL: CDS
 (B) LAGE: 19..1728

10

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 24:

	AATTTGGAGG GGAACATT ATG AGT AAT CAT CAC CAT GGG CAT GCC TCG ACC	51
15	Met Ser Asn His His His Gly His Ala Ser Thr	
	1 5 10	
	GGG CCG GTC GCG CCG CTT CCG ACG CCG AAC TTC CCG AAC GAC ATC	99
	Gly Pro Val Ala Pro Leu Pro Thr Pro Pro Asn Phe Pro Asn Asp Ile	
20	15 20 25	
	GCG CTG TTC CAG CAG GCG TAC CAG AAC TGG TCC AAG GAG ATC ATG CTG	147
	Ala Leu Phe Gln Gln Ala Tyr Gln Asn Trp Ser Lys Glu Ile Met Leu	
	30 35 40	
25	GAC GCC ACT TGG GTC TGC TCG CCC AAG ACG CCG CAG GAT GTC GTT CGC	195
	Asp Ala Thr Trp Val Cys Ser Pro Lys Thr Pro Gln Asp Val Val Arg	
	45 50 55	
30	CTT GCC AAC TGG GCG CAC GAG CAC GAC TAC AAG ATC CGC CCG CGC GGC	243
	Leu Ala Asn Trp Ala His Glu His Asp Tyr Lys Ile Arg Pro Arg Gly	
	60 65 70 75	
	GCG ATG CAC GGC TGG ACC CCG CTC ACC GTG GAG AAG GGG GCC AAC GTC	291
	Ala Met His Gly Trp Thr Pro Leu Thr Val Glu Lys Gly Ala Asn Val	
	80 85 90	
35	GAG AAG GTG ATC CTC GCC GAC ACG ATG ACG CAT CTG AAC GGC ATC ACG	339
	Glu Lys Val Ile Leu Ala Asp Thr Met Thr His Leu Asn Gly Ile Thr	
	95 100 105	
40	GTG AAC ACG GGC GGC CCC GTG GCT ACC GTC ACC GCC GGT GCC GGC GGC	387
	Val Asn Thr Gly Gly Pro Val Ala Thr Val Thr Ala Gly Ala Gly Ala	
	110 115 120	
45	AGC ATC GAG GCG ATC GTC ACC GAA CTG CAG AAG CAC GAC CTC GGC TGG	435
	Ser Ile Glu Ala Ile Val Thr Glu Leu Gln Lys His Asp Leu Gly Trp	
	125 130 135	
	GCC AAC CTG CCC GCT CCG GGT GTG CTG TCG ATC GGT GGC GCC CTT GCG	483
	Ala Asn Leu Pro Ala Pro Gly Val Leu Ser Ile Gly Gly Ala Leu Ala	
	140 145 150 155	
50	GTC AAC GCG CAC GGT GCG GCG CTG CCG GCC GTC GGC CAG ACC ACG CTG	531
	Val Asn Ala His Gly Ala Ala Leu Pro Ala Val Gly Gln Thr Thr Leu	
	160 165 170	
55	CCC GGT CAC ACC TAC GGT TCG CTG AGC AAC CTG GTC ACC GAG CTG ACC	579
	Pro Gly His Thr Tyr Gly Ser Leu Ser Asn Leu Val Thr Glu Leu Thr	
	175 180 185	

	GCG GTC GTC TGG AAC GGC ACC ACC TAC GCA CTC GAG ACG TAC CAG CGC Ala Val Val Trp Asn Gly Thr Thr Tyr Ala Leu Glu Thr Tyr Gln Arg 190 195 200	627
5	AAC GAT CCT CGG ATC ACC CCA CTG CTC ACC AAC CTC GGG CGC TGC TTC Asn Asp Pro Arg Ile Thr Pro Leu Leu Thr Asn Leu Gly Arg Cys Phe 205 210 215	675
10	CTG ACC TCG GTG ACG ATG CAG GCC GGC CCC AAC TTC CGT CAG CGG TGC Leu Thr Ser Val Thr Met Gln Ala Gly Pro Asn Phe Arg Gln Arg Cys 220 225 230 235	723
15	CAG AGC TAC ACC GAC ATC CCG TGG CGG GAA CTG TTC GCG CCG AAG GGC Gln Ser Tyr Thr Asp Ile Pro Trp Arg Glu Leu Phe Ala Pro Lys Gly 240 245 250	771
	GCC GAC GGC CGC ACG TTC GAG AAG TTC GTC GCG GAA TCG GGC GGC GCC Ala Asp Gly Arg Thr Phe Glu Lys Phe Val Ala Glu Ser Gly Gly Ala 255 260 265	819
20	GAG GCG ATC TGG TAC CCG TTC ACC GAG AAG CCG TGG ATG AAG GTG TGG Glu Ala Ile Trp Tyr Pro Phe Thr Glu Lys Pro Trp Met Lys Val Trp 270 275 280	867
25	ACG GTC TCG CCG ACC AAG CCG GAC TCG TCG AAC GAG GTC GGA AGC CTC Thr Val Ser Pro Thr Lys Pro Asp Ser Ser Asn Glu Val Gly Ser Leu 285 290 295	915
	GCG TCG GCG GGC TCC CTC GTC GGC AAG CCT CCG CAG GCG CGT GAG GTC Gly Ser Ala Gly Ser Leu Val Gly Lys Pro Pro Gln Ala Arg Glu Val 300 305 310 315	963
30	TCC GGC CCG TAC AAC TAC ATC TTC TCC GAC AAC CTG CCG GAG CCC ATC Ser Gly Pro Tyr Asn Tyr Ile Phe Ser Asp Asn Leu Pro Glu Pro Ile 320 325 330	1011
35	ACC GAC ATG ATC GGC GCC ATC AAC GCC GGA AAC CCC GGA ATC GCA CCG Thr Asp Met Ile Gly Ala Ile Asn Ala Gly Asn Pro Gly Ile Ala Pro 335 340 345	1059
	CTG TTC GGC CCG GCG ATG TAC GAG ATC ACC AAG CTC GGG CTG GCC GCG Leu Phe Gly Pro Ala Met Tyr Glu Ile Thr Lys Leu Gly Leu Ala Ala 350 355 360	1107
40	ACG AAT GCC AAC GAC ATC TGG GGC TGG TCG AAG GAC GTC CAG TTC TAC Thr Asn Ala Asn Asp Ile Trp Gly Trp Ser Lys Asp Val Gln Phe Tyr 365 370 375	1155
45	ATC AAG GCC ACG ACG TTG CGA CTC ACC GAG GGC GGC GGC GCC GTC GTC Ile Lys Ala Thr Thr Leu Arg Leu Thr Glu Gly Gly Ala Val Val 380 385 390 395	1203
	ACG AGC CGC GCC AAC ATC GCG ACC GTG ATC AAC GAC TTC ACC GAG TGG Thr Ser Arg Ala Asn Ile Ala Thr Val Ile Asn Asp Phe Thr Glu Trp 400 405 410	1251
50	TTC CAC GAG CGC ATC GAG TTC TAC CGC GCG AAG GGC GAG TTC CCG CTC Phe His Glu Arg Ile Glu Phe Tyr Arg Ala Lys Gly Glu Phe Pro Leu 415 420 425	1299
55	AAC GGT CCG GTC GAG ATC CGC TGC TGC GGG CTC GAT CAG GCA GCC GAC Asn Gly Pro Val Glu Ile Arg Cys Cys Gly Leu Asp Gln Ala Ala Asp 430 435 440	1347

	GTC AAG GTG CCG TCG GTG GGC CCG CCG ACC ATC TCG GCG ACC CGT CCG Val Lys Val Pro Ser Val Gly Pro Pro Thr Ile Ser Ala Thr Arg Pro 445 450 455	1395
5	CGT CCG GAT CAT CCG GAC TGG GAC GTC GCG ATC TGG CTG AAC GTT CTC Arg Pro Asp His Pro Asp Trp Asp Val Ala Ile Trp Leu Asn Val Leu 460 465 470 475	1443
10	GGT GTT CCG GGC ACC CCC GGC ATG TTC GAG TTC TAC CGC GAG ATG GAG Gly Val Pro Gly Thr Pro Gly Met Phe Glu Phe Tyr Arg Glu Met Glu 480 485 490	1491
15	CAG TGG ATG CGG AGC CAC TAC AAC AAC GAC GAC GCC ACC TTC CGG CCC Gln Trp Met Arg Ser His Tyr Asn Asn Asp Asp Ala Thr Phe Arg Pro 495 500 505	1539
20	GAG TGG TCG AAG GGG TGG GCG TTC GGT CCC GAC CCG TAC ACC GAC AAC Glu Trp Ser Lys Gly Trp Ala Phe Gly Pro Asp Pro Tyr Thr Asp Asn 510 515 520	1587
25	GAC ATC GTC ACG AAC AAG ATG CGC GCC ACC TAC ATC GAA GGT GTC CGG Asp Ile Val Thr Asn Lys Met Arg Ala Thr Tyr Ile Glu Gly Val Pro 525 530 535	1635
30	ACG ACC GAG AAC TGG GAC ACC GCG CGC GCT CGG TAC AAC CAG ATC GAC Thr Thr Glu Asn Trp Asp Thr Ala Arg Ala Arg Tyr Asn Gln Ile Asp 540 545 550 555	1683
	CCG CAT CGC GTG TTC ACC AAC GGA TTC ATG GAC AAG CTG CTT CCG Pro His Arg Val Phe Thr Asn Gly Phe Met Asp Lys Leu Leu Pro 560 565 570	1728

(2) INFORMATION ZU SEQ ID NO: 25:

- 35 (i) SEQUENZ CHARAKTERISTIKA:
- (A) LANGE: 570 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear
- 40 (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 25:

45

50

55

Met Ser Asn His His His Gly His Ala Ser Thr Gly Pro Val Ala Pro
1 5 10 15

Leu Pro Thr Pro Pro Asn Phe Pro Asn Asp Ile Ala Leu Phe Gln Gln
5 20 25 30

Ala Tyr Gln Asn Trp Ser Lys Glu Ile Met Leu Asp Ala Thr Trp Val
35 40 45

Cys Ser Pro Lys Thr Pro Gln Asp Val Val Arg Leu Ala Asn Trp Ala
10 50 55 60

His Glu His Asp Tyr Lys Ile Arg Pro Arg Gly Ala Met His Gly Trp
65 70 75 80

Thr Pro Leu Thr Val Glu Lys Gly Ala Asn Val Glu Lys Val Ile Leu
15 85 90 95

20

25

30

35

40

45

50

55

Ala Asp Thr Met Thr His Leu Asn Gly Ile Thr Val Asn Thr Gly Gly
 100 105 110
 5 Pro Val Ala Thr Val Thr Ala Gly Ala Gly Ala Ser Ile Glu Ala Ile
 115 120 125
 Val Thr Glu Leu Gln Lys His Asp Leu Gly Trp Ala Asn Leu Pro Ala
 130 135 140
 10 Pro Gly Val Leu Ser Ile Gly Gly Ala Leu Ala Val Asn Ala His Gly
 145 150 155 160
 Ala Ala Leu Pro Ala Val Gly Gln Thr Thr Leu Pro Gly His Thr Tyr
 165 170 175
 15 Gly Ser Leu Ser Asn Leu Val Thr Glu Leu Thr Ala Val Val Trp Asn
 180 185 190
 Gly Thr Thr Tyr Ala Leu Glu Thr Tyr Gln Arg Asn Asp Pro Arg Ile
 195 200 205
 20 Thr Pro Leu Leu Thr Asn Leu Gly Arg Cys Phe Leu Thr Ser Val Thr
 210 215 220
 Met Gln Ala Gly Pro Asn Phe Arg Gln Arg Cys Gln Ser Tyr Thr Asp
 225 230 235 240
 25 Ile Pro Trp Arg Glu Leu Phe Ala Pro Lys Gly Ala Asp Gly Arg Thr
 245 250 255
 Phe Glu Lys Phe Val Ala Glu Ser Gly Gly Ala Glu Ala Ile Trp Tyr
 260 265 270
 30 Pro Phe Thr Glu Lys Pro Trp Met Lys Val Trp Thr Val Ser Pro Thr
 275 280 285
 Lys Pro Asp Ser Ser Asn Glu Val Gly Ser Leu Gly Ser Ala Gly Ser
 35 290 295 300
 Leu Val Gly Lys Pro Pro Gln Ala Arg Glu Val Ser Gly Pro Tyr Asn
 305 310 315 320
 Tyr Ile Phe Ser Asp Asn Leu Pro Glu Pro Ile Thr Asp Met Ile Gly
 40 325 330 335
 Ala Ile Asn Ala Gly Asn Pro Gly Ile Ala Pro Leu Phe Gly Pro Ala
 340 345 350
 Met Tyr Glu Ile Thr Lys Leu Gly Leu Ala Ala Thr Asn Ala Asn Asp
 45 355 360 365
 Ile Trp Gly Trp Ser Lys Asp Val Gln Phe Tyr Ile Lys Ala Thr Thr
 370 375 380
 Leu Arg Leu Thr Glu Gly Gly Ala Val Val Thr Ser Arg Ala Asn
 50 385 390 395 400
 Ile Ala Thr Val Ile Asn Asp Phe Thr Glu Trp Phe His Glu Arg Ile
 405 410 415
 55 Glu Phe Tyr Arg Ala Lys Gly Glu Phe Pro Leu Asn Gly Pro Val Glu
 420 425 430

Ile Arg Cys Cys Gly Leu Asp Gln Ala Ala Asp Val Lys Val Pro Ser
 435 440 445
 5 Val Gly Pro Pro Thr Ile Ser Ala Thr Arg Pro Arg Pro Asp His Pro
 450 455 460
 Asp Trp Asp Val Ala Ile Trp Leu Asn Val Leu Gly Val Pro Gly Thr
 465 470 475 480
 10 Pro Gly Met Phe Glu Phe Tyr Arg Glu Met Glu Gln Trp Met Arg Ser
 485 490 495
 His Tyr Asn Asn Asp Asp Ala Thr Phe Arg Pro Glu Trp Ser Lys Gly
 500 505 510
 15 Trp Ala Phe Gly Pro Asp Pro Tyr Thr Asp Asn Asp Ile Val Thr Asn
 515 520 525
 Lys Met Arg Ala Thr Tyr Ile Glu Gly Val Pro Thr Thr Glu Asn Trp
 20 530 535 540
 Asp Thr Ala Arg Ala Arg Tyr Asn Gln Ile Asp Pro His Arg Val Phe
 545 550 555 560
 25 Thr Asn Gly Phe Met Asp Lys Leu Leu Pro
 565 570

(2) INFORMATION ZU SEQ ID NO: 26:

- 30 (i) SEQUENZ CHARAKTERISTIKA:
- (A) LÄNGE: 1741 Basenpaare
 - (B) ART: Nukleinsäure
 - (C) STRANGFORM: Einzel
 - (D) TOPOLOGIE: linear

- 35 (ix) MERKMALE:

- 40 (A) NAME/SCHLÜSSEL: CDS
 (B) LAGE: 20..1741

- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 26:

45

50

55

GAATTTAAGG GGAACATCG ATG AGT AAT ACG CGT AAA CGC AAG CGC CGT ACG Met Ser Asn Thr Arg Lys Arg Lys Arg Arg Thr 1 5 10	52
5 CAT GCC TCG ACC GGG CCG GTC GCG CCG CTT CCG ACG CCG CCG AAC TTC His Ala Ser Thr Gly Pro Val Ala Pro Leu Pro Thr Pro Pro Asn Phe 15 20 25	100
10 CCG AAC GAC ATC GCG CTG TTC CAG CAG GCG TAC CAG AAC TGG TCC AAG Pro Asn Asp Ile Ala Leu Phe Gln Gln Ala Tyr Gln Asn Trp Ser Lys 30 35 40	148
15 GAG ATC ATG CTG GAC GCC ACT TGG GTC TGC TCG CCC AAG ACG CCG CAG Glu Ile Met Leu Asp Ala Thr Trp Val Cys Ser Pro Lys Thr Pro Gln 45 50 55	196
20 GAT GTC GTT CGC CTT GCC AAC TGG GCG CAC GAG CAC GAC TAC AAG ATC Asp Val Val Arg Leu Ala Asn Trp Ala His Glu His Asp Tyr Lys Ile 60 65 70 75	244
25	
30	
35	
40	
45	
50	
55	

	CGC CCG CGC GGC GCG ATG CAC GGC TGG ACC CCG CTC ACC GTG GAG AAG Arg Pro Arg Gly Ala Met His Gly Trp Thr Pro Leu Thr Val Glu Lys 80 85 90	292
5	GGG GCC AAC GTC GAG AAG GTG ATC CTC GCC GAC ACG ATG ACG CAT CTG Gly Ala Asn Val Glu Lys Val Ile Leu Ala Asp Thr Met Thr His Leu 95 100 105	340
10	AAC GGC ATC ACG GTG AAC ACG GGC CCC GTG GCT ACC GTC ACC GCC Asn Gly Ile Thr Val Asn Thr Gly Gly Pro Val Ala Thr Val Thr Ala 110 115 120	388
	GGT GCC GGC GCC AGC ATC GAG GCG ATC GTC ACC GAA CTG CAG AAG CAC Gly Ala Gly Ala Ser Ile Glu Ala Ile Val Thr Glu Leu Gln Lys His 125 130 135	436
15	GAC CTC GGC TGG GCC AAC CTG CCC GCT CCG GGT GTG CTG TCG ATC GGT Asp Leu Gly Trp Ala Asn Leu Pro Ala Pro Gly Val Leu Ser Ile Gly 140 145 150 155	484
20	GGC GCC CTT GCG GTC AAC GCG CAC GGT GCG GCG CTG CCG GCC GTC GGC Gly Ala Leu Ala Val Asn Ala His Gly Ala Ala Leu Pro Ala Val Gly 160 165 170	532
	CAG ACC ACG CTG CCC GGT CAC ACC TAC GGT TCG CTG AGC AAC CTG GTC Gln Thr Thr Ile Pro Gly His Thr Tyr Gly Ser Leu Ser Asn Leu Val 175 180 185	580
25	ACC GAG CTG ACC GCG GTC GTC TGG AAC GGC ACC ACC TAC GCA CTC GAG Thr Glu Leu Thr Ala Val Val Trp Asn Gly Thr Thr Tyr Ala Leu Glu 190 195 200	628
30	ACG TAC CAG CGC AAC GAT CCT CGG ATC ACC CCA CTG CTC ACC AAC CTC Thr Tyr Gln Arg Asn Asp Pro Arg Ile Thr Pro Leu Leu Thr Asn Leu 205 210 215	676
	GGG CGC TGC TTC CTG ACC TCG GTG ACG ATG CAG GCG GGC CCC AAC TTC Gly Arg Cys Phe Leu Thr Ser Val Thr Met Gln Ala Gly Pro Asn Phe 220 225 230 235	724
35	CGT CAG CGG TGC CAG AGC TAC ACC GAC ATC CCG TGG CGG GAA CTG TTC Arg Gln Arg Cys Gln Ser Tyr Thr Asp Ile Pro Trp Arg Glu Leu Phe 240 245 250	772
40	GCG CCG AAG GGC GCC GAC GGC CGC ACG TTC GAG AAG TTC GTC GCG GAA Ala Pro Lys Gly Ala Asp Gly Arg Thr Phe Glu Lys Phe Val Ala Glu 255 260 265	820
	TCG GGC GGC GCC GAG GCG ATC TGG TAC CCG TTC ACC GAG AAG CCG TGG Ser Gly Gly Ala Glu Ala Ile Trp Tyr Pro Phe Thr Glu Lys Pro Trp 270 275 280	868
45	ATG AAG GTG TGG ACG GTC TCG CCG ACC AAG CCG GAC TCG TCG AAC GAG Met Lys Val Trp Thr Val Ser Pro Thr Lys Pro Asp Ser Ser Asn Glu 285 290 295	916
50	GTC GGA AGC CTC GGC TCG GCG GGC TCC CTC GTC GGC AAG CCT CCG CAG Val Gly Ser Leu Gly Ser Ala Gly Ser Leu Val Gly Lys Pro Pro Gln 300 305 310 315	964
55	GCG CGT GAG GTC TCC GGC CCG TAC AAC TAC ATC TTC TCC GAC AAC CTG Ala Arg Glu Val Ser Gly Pro Tyr Asn Tyr Ile Phe Ser Asp Asn Leu 320 325 330	1012

	CCG GAG CCC ATC ACC GAC ATG ATC GGC GCC ATC AAC GCC GGA AAC CCC Pro Glu Pro Ile Thr Asp Met Ile Gly Ala Ile Asn Ala Gly Asn Pro 335 340 345	1060
5	GGA ATC GCA CCG CTG TTC GGC CCG GCG ATG TAC GAG ATC ACC AAG CTC Gly Ile Ala Pro Leu Phe Gly Pro Ala Met Tyr Glu Ile Thr Lys Leu 350 355 360	1108
10	GGG CTG GCC GCG ACG AAT GCC AAC GAC ATC TGG GGC TGG TCG AAG GAC Gly Leu Ala Ala Thr Asn Ala Asn Asp Ile Trp Gly Trp Ser Lys Asp 365 370 375	1156
15	GTC CAG TTC TAC ATC AAG GCC ACG ACG TTG CGA CTC ACC GAG GGC GGC Val Gln Phe Tyr Ile Lys Ala Thr Thr Leu Arg Leu Thr Glu Gly Gly 380 385 390 395	1204
20	GGC GCC GTC GTC ACG AGC CGC GCC AAC ATC GCG ACC GTG ATC AAC GAC Gly Ala Val Val Thr Ser Arg Ala Asn Ile Ala Thr Val Ile Asn Asp 400 405 410	1252
25	TTC ACC GAG TGG TTC CAC GAG CGC ATC GAG TTC TAC CGC GCG AAG GGC Phe Thr Glu Trp Phe His Glu Arg Ile Glu Phe Tyr Arg Ala Lys Gly 415 420 425	1300
30	GAG TTC CCG CTC AAC GGT CCG GTC GAG ATC CGC TGC TGC GGG CTC GAT Glu Phe Pro Leu Asn Gly Pro Val Glu Ile Arg Cys Cys Gly Leu Asp 430 435 440	1348
35	CAG GCA GCC GAC GTC AAG GTG CCG TCG GTG GGC CCG CCG ACC ATC TCG Gln Ala Ala Asp Val Lys Val Pro Ser Val Gly Pro Pro Thr Ile Ser 445 450 455	1396
40	GCG ACC CGT CCG CGT CCG GAT CAT CCG GAC TGG GAC GTC GCG ATC TGG Ala Thr Arg Pro Arg Pro Asp His Pro Asp Trp Asp Val Ala Ile Trp 460 465 470 475	1444
45	CTG AAC GTT CTC GGT GTT CCG GGC ACC CCC GGC ATG TTC GAG TTC TAC Leu Asn Val Leu Gly Val Pro Gly Thr Pro Gly Met Phe Glu Phe Tyr 480 485 490	1492
50	CGC GAG ATG GAG CAG TGG ATG CGG AGC CAC TAC AAC AAC GAC GAC GCC Arg Glu Met Glu Gln Trp Met Arg Ser His Tyr Asn Asn Asp Asp Ala 495 500 505	1540
55	ACC TTC CGG CCC GAG TGG TCG AAG GGG TGG GCG TTC GGT CCC GAC CCG Thr Phe Arg Pro Glu Trp Ser Lys Gly Trp Ala Phe Gly Pro Asp Pro 510 515 520	1588
60	TAC ACC GAC AAC GAC ATC GTC ACG AAC AAG ATG CGC GCC ACC TAC ATC Tyr Thr Asp Asn Asp Ile Val Thr Asn Lys Met Arg Ala Thr Tyr Ile 525 530 535	1636
65	GAA GGT GTC CCG ACG ACC GAG AAC TGG GAC ACC GCG CGC GCT CGG TAC Glu Gly Val Pro Thr Thr Glu Asn Trp Asp Thr Ala Arg Ala Arg Tyr 540 545 550 555	1684
70	AAC CAG ATC GAC CCG CAT CGC GTG TTC ACC AAC GGA TTC ATG GAC AAG Asn Gln Ile Asp Pro His Arg Val Phe Thr Asn Gly Phe Met Asp Lys 560 565 570	1732
75	CTG CTT CCG Leu Leu Pro	1741

(2) INFORMATION ZU SEQ ID NO: 27:

(i) SEQUENZ CHARAKTERISTIKA:

- 5 (A) LANGE: 574 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

10 (ii) ART DES MOLEKÜLS: Protein

 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 27:

15

20

25

30

35

40

45

50

55

Met Ser Asn Thr Arg Lys Arg Lys Arg Arg Thr His Ala Ser Thr Gly
 1 5 10 15

5 Pro Val Ala Pro Leu Pro Thr Pro Pro Asn Phe Pro Asn Asp Ile Ala
 20 25 30

Leu Phe Gln Gln Ala Tyr Gln Asn Trp Ser Lys Glu Ile Met Leu Asp
 35 40 45

10 Ala Thr Trp Val Cys Ser Pro Lys Thr Pro Gln Asp Val Val Arg Leu
 50 55 60

Ala Asn Trp Ala His Glu His Asp Tyr Lys Ile Arg Pro Arg Gly Ala
 65 70 75 80

15 Met His Gly Trp Thr Pro Leu Thr Val Glu Lys Gly Ala Asn Val Glu
 85 90 95

Lys Val Ile Leu Ala Asp Thr Met Thr His Leu Asn Gly Ile Thr Val
 100 105 110

20 Asn Thr Gly Gly Pro Val Ala Thr Val Thr Ala Gly Ala Ser
 115 120 125

Ile Glu Ala Ile Val Thr Glu Leu Gln Lys His Asp Leu Gly Trp Ala
 25 130 135 140

Asn Leu Pro Ala Pro Gly Val Leu Ser Ile Gly Gly Ala Leu Ala Val
 145 150 155 160

Asn Ala His Gly Ala Ala Leu Pro Ala Val Gly Gln Thr Thr Leu Pro
 30 165 170 175

Gly His Thr Tyr Gly Ser Leu Ser Asn Leu Val Thr Glu Leu Thr Ala
 180 185 190

Val Val Trp Asn Gly Thr Thr Tyr Ala Leu Glu Thr Tyr Gln Arg Asn
 35 195 200 205

Asp Pro Arg Ile Thr Pro Leu Leu Thr Asn Leu Gly Arg Cys Phe Leu
 210 215 220

Thr Ser Val Thr Met Gln Ala Gly Pro Asn Phe Arg Gln Arg Cys Gln
 40 225 230 235 240

Ser Tyr Thr Asp Ile Pro Trp Arg Glu Leu Phe Ala Pro Lys Gly Ala
 245 250 255

Asp Gly Arg Thr Phe Glu Lys Phe Val Ala Glu Ser Gly Gly Ala Glu
 45 260 265 270

Ala Ile Trp Tyr Pro Phe Thr Glu Lys Pro Trp Met Lys Val Trp Thr
 275 280 285
 5 Val Ser Pro Thr Lys Pro Asp Ser Ser Asn Glu Val Gly Ser Leu Gly
 290 295 300
 Ser Ala Gly Ser Leu Val Gly Lys Pro Pro Gln Ala Arg Glu Val Ser
 305 310 315 320
 10 Gly Pro Tyr Asn Tyr Ile Phe Ser Asp Asn Leu Pro Glu Pro Ile Thr
 325 330 335
 Asp Met Ile Gly Ala Ile Asn Ala Gly Asn Pro Gly Ile Ala Pro Leu
 340 345 350
 15 Phe Gly Pro Ala Met Tyr Glu Ile Thr Lys Leu Gly Leu Ala Ala Thr
 355 360 365
 Asn Ala Asn Asp Ile Trp Gly Trp Ser Lys Asp Val Gln Phe Tyr Ile
 20 370 375 380
 Lys Ala Thr Thr Leu Arg Leu Thr Glu Gly Gly Ala Val Val Thr
 385 390 395 400
 Ser Arg Ala Asn Ile Ala Thr Val Ile Asn Asp Phe Thr Glu Trp Phe
 25 405 410 415
 His Glu Arg Ile Glu Phe Tyr Arg Ala Lys Gly Glu Phe Pro Leu Asn
 420 425 430
 Gly Pro Val Glu Ile Arg Cys Cys Gly Leu Asp Gln Ala Ala Asp Val
 30 435 440 445
 Lys Val Pro Ser Val Gly Pro Pro Thr Ile Ser Ala Thr Arg Pro Arg
 450 455 460
 35 Pro Asp His Pro Asp Trp Asp Val Ala Ile Trp Leu Asn Val Leu Gly
 465 470 475 480
 Val Pro Gly Thr Pro Gly Met Phe Glu Phe Tyr Arg Glu Met Glu Gln
 485 490 495
 40 Trp Met Arg Ser His Tyr Asn Asn Asp Asp Ala Thr Phe Arg Pro Glu
 500 505 510
 Trp Ser Lys Gly Trp Ala Phe Gly Pro Asp Pro Tyr Thr Asp Asn Asp
 515 520 525
 45 Ile Val Thr Asn Lys Met Arg Ala Thr Tyr Ile Glu Gly Val Pro Thr
 530 535 540
 Thr Glu Asn Trp Asp Thr Ala Arg Ala Arg Tyr Asn Gln Ile Asp Pro
 545 550 555 560
 50 His Arg Val Phe Thr Asn Gly Phe Met Asp Lys Leu Leu Pro
 565 570

55

(2) INFORMATION ZU SEQ ID NO: 28:

(i) SEQUENZ CHARAKTERISTIKA:

- (A) LÄNGE: 1731 Basenpaare
 (B) ART: Nukleinsäure
 (C) STRANGFORM: Einzel
 (D) TOPOLOGIE: linear

5

(ix) MERKMALE:

- (A) NAME/SCHLÜSSEL: CDS
 (B) LAGE: 25..1731

10

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 28:

	GAATTCACAC AGGAAACAGA ATTC ATG GTT ATG CAC CAT GGG CAT GCC TCG	51
15	Met Val Met His His Gly His Ala Ser	
	1 5	
	ACC GGG CCG GTC GCG CCG CTT CCG ACG CCG CCG AAC TTC CCG AAC GAC	99
	Thr Gly Pro Val Ala Pro Leu Pro Thr Pro Pro Asn Phe Pro Asn Asp	
	10 15 20 25	
20	ATC GCG CTG TTC CAG CAG GCG TAC CAG AAC TGG TCC AAG GAG ATC ATG	147
	Ile Ala Leu Phe Gln Gln Ala Tyr Gln Asn Trp Ser Lys Glu Ile Met	
	30 35 40	
25	CTG GAC GCC ACT TGG GTC TGC TCG CCC AAG ACG CCG CAG GAT GTC GTT	195
	Leu Asp Ala Thr Trp Val Cys Ser Pro Lys Thr Pro Gln Asp Val Val	
	45 50 55	
30	CGC CTT GCC AAC TGG GCG CAC GAG CAC GAC TAC AAG ATC CGC CCG CGC	243
	Arg Leu Ala Asn Trp Ala His Glu His Asp Tyr Lys Ile Arg Pro Arg	
	60 65 70	
	GGC GCG ATG CAC GGC TGG ACC CCG CTC ACC GTG GAG AAG GGG GCC AAC	291
	Gly Ala Met His Gly Trp Thr Pro Leu Thr Val Glu Lys Gly Ala Asn	
	75 80 85	
35	GTC GAG AAG GTG ATC CTC GCC GAC ACG ATG ACG CAT CTG AAC GGC ATC	339
	Val Glu Lys Val Ile Leu Ala Asp Thr Met Thr His Leu Asn Gly Ile	
	90 95 100 105	
40	ACG GTG AAC ACG GGC GGC CCC GTG GCT ACC GTC ACC GCC GGT GCC GGC	387
	Thr Val Asn Thr Gly Gly Pro Val Ala Thr Val Thr Ala Gly Ala Gly	
	110 115 120	
	GCC AGC ATC GAG GCG ATC GTC ACC GAA CTG CAG AAG CAC GAC CTC GGC	435
	Ala Ser Ile Glu Ala Ile Val Thr Glu Leu Gln Lys His Asp Leu Gly	
	125 130 135	
45	TGG GCC AAC CTG CCC GCT CCG GGT GTG CTG TCG ATC GGT GGC GCC CTT	483
	Trp Ala Asn Leu Pro Ala Pro Gly Val Leu Ser Ile Gly Gly Ala Leu	
	140 145 150	
50	GCG GTC AAC GCG CAC GGT GCG GCG CTG CCG GCC GTC GGC CAG ACC ACG	531
	Ala Val Asn Ala His Gly Ala Ala Leu Pro Ala Val Gly Gln Thr Thr	
	155 160 165	
	CTG CCC GGT CAC ACC TAC GGT TCG CTG AGC AAC CTG GTC ACC GAG CTG	579
	Leu Pro Gly His Thr Tyr Gly Ser Leu Ser Asn Leu Val Thr Glu Leu	
	170 175 180 185	

55

	ACC GCG GTC GTC TGG AAC GGC ACC ACC TAC GCA CTC GAG ACG TAC CAG Thr Ala Val Val Trp Asn Gly Thr Thr Tyr Ala Leu Glu Thr Tyr Gln 190 195 200	627
5	CGC AAC GAT CCT CGG ATC ACC CCA CTG CTC ACC AAC CTC GGG CGC TGC Arg Asn Asp Pro Arg Ile Thr Pro Leu Leu Thr Asn Leu Gly Arg Cys 205 210 215	675
10	TTC CTG ACC TCG GTG ACG ATG CAG GCC GGC CCC AAC TTC CGT CAG CGG Phe Leu Thr Ser Val Thr Met Gln Ala Gly Pro Asn Phe Arg Gln Arg 220 225 230	723
15	TGC CAG AGC TAC ACC GAC ATC CCG TGG CGG GAA CTG TTC GCG CCG AAG Cys Gln Ser Tyr Thr Asp Ile Pro Trp Arg Glu Leu Phe Ala Pro Lys 235 240 245	771
	GGC GCC GAC GGC CGC ACG TTC GAG AAG TTC GTC GCG GAA TCG GGC GGC Gly Ala Asp Gly Arg Thr Phe Glu Lys Phe Val Ala Glu Ser Gly Gly 250 255 260 265	819
20	GCC GAG GCG ATC TGG TAC CCG TTC ACC GAG AAG CCG TGG ATG AAG GTG Ala Glu Ala Ile Trp Tyr Pro Phe Thr Glu Lys Pro Trp Met Lys Val 270 275 280	867
25	TGG ACG GTC TCG CCG ACC AAG CCG GAC TCG TCG AAC GAG GTC GGA AGC Trp Thr Val Ser Pro Thr Lys Pro Asp Ser Ser Asn Glu Val Gly Ser 285 290 295	915
	CTC GGC TCG GCG GGC TCC CTC GTC GGC AAG CCT CCG CAG GCG CGT GAG Leu Gly Ser Ala Gly Ser Leu Val Gly Lys Pro Pro Gln Ala Arg Glu 300 305 310	963
30	GTC TCC GGC CCG TAC AAC TAC ATC TTC TCC GAC AAC CTG CCG GAG CCC Val Ser Gly Pro Tyr Asn Tyr Ile Phe Ser Asp Asn Leu Pro Glu Pro 315 320 325	1011
35	ATC ACC GAC ATG ATC GGC GCC ATC AAC GCC GGA AAC CCC GGA ATC GCA Ile Thr Asp Met Ile Gly Ala Ile Asn Ala Gly Asn Pro Gly Ile Ala 330 335 340 345	1059
	CCG CTG TTC GGC CCG GCG ATG TAC GAG ATC ACC AAG CTC GGG CTG GCC Pro Leu Phe Gly Pro Ala Met Tyr Glu Ile Thr Lys Leu Gly Leu Ala 350 355 360	1107
40	GCG ACG AAT GCC AAC GAC ATC TGG GGC TGG TCG AAG GAC GTC CAG TTC Ala Thr Asn Ala Asn Asp Ile Trp Gly Trp Ser Lys Asp Val Gln Phe 365 370 375	1155
45	TAC ATC AAG GCC ACG ACG TTG CGA CTC ACC GAG GGC GGC GGC GCC GTC Tyr Ile Lys Ala Thr Thr Leu Arg Leu Thr Glu Gly Gly Ala Val 380 385 390	1203
	GTC ACG AGC CGC GCC AAC ATC GCG ACC GTG ATC AAC GAC TTC ACC GAG Val Thr Ser Arg Ala Asn Ile Ala Thr Val Ile Asn Asp Phe Thr Glu 395 400 405	1251
50	TGG TTC CAC GAG CGC ATC GAG TTC TAC CGC GCG AAG GGC GAG TTC CCG Trp Phe His Glu Arg Ile Glu Phe Tyr Arg Ala Lys Gly Glu Phe Pro 410 415 420 425	1299
55	CTC AAC GGT CCG GTC GAG ATC CGC TGC TGC GGG CTC GAT CAG GCA GCC Leu Asn Gly Pro Val Glu Ile Arg Cys Cys Gly Leu Asp Gln Ala Ala 430 435 440	1347

	GAC GTC AAG GTG CCG TCG GTG GGC CCG ACC ATC TCG GCG ACC CGT Asp Val Lys Val Pro Ser Val Gly Pro Pro Thr Ile Ser Ala Thr Arg 445 450 455	1395
5	CCG CGT CCG GAT CAT CCG GAC TGG GAC GTC GCG ATC TGG CTG AAC GTT Pro Arg Pro Asp His Pro Asp Trp Asp Val Ala Ile Trp Leu Asn Val 460 465 470	1443
10	CTC GGT GTT CCG GGC ACC CCC GGC ATG TTC GAG TTC TAC CGC GAG ATG Leu Gly Val Pro Gly Thr Pro Gly Met Phe Glu Phe Tyr Arg Glu Met 475 480 485	1491
15	GAG CAG TGG ATG CGG AGC CAC TAC AAC AAC GAC GAC GCC ACC TTC CGG Glu Gln Trp Met Arg Ser His Tyr Asn Asn Asp Asp Ala Thr Phe Arg 490 495 500 505	1539
20	CCC GAG TGG TCG AAG GGG TGG GCG TTC GGT CCC GAC CCG TAC ACC GAC Pro Glu Trp Ser Lys Gly Trp Ala Phe Gly Pro Asp Pro Tyr Thr Asp 510 515 520	1587
25	AAC GAC ATC GTC ACG AAC AAG ATG CGC GCC ACC TAC ATC GAA GGT GTC Asn Asp Ile Val Thr Asn Lys Met Arg Ala Thr Tyr Ile Glu Gly Val 525 530 535	1635
30	CCG ACG ACC GAG AAC TGG GAC ACC GCG CGC GCT CGG TAC AAC CAG ATC Pro Thr Thr Glu Asn Trp Asp Thr Ala Arg Ala Arg Tyr Asn Gln Ile 540 545 550	1683
35	GAC CCG CAT CGC GTG TTC ACC AAC GGA TTC ATG GAC AAG CTG CTT CCG Asp Pro His Arg Val Phe Thr Asn Gly Phe Met Asp Lys Leu Leu Pro 555 560 565	1731

(2) INFORMATION ZU SEQ ID NO: 29:

(i) SEQUENZ CHARAKTERISTIKA:

- 35 (A) LANGE: 569 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

- 40 (ii) ART DES MOLEKÜLS: Protein

- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 29:

45

50

55

Met Val Met His His Gly His Ala Ser Thr Gly Pro Val Ala Pro Leu
1 5 10 15

5 Pro Thr Pro Pro Asn Phe Pro Asn Asp Ile Ala Leu Phe Gln Gln Ala
20 25 30

Tyr Gln Asn Trp Ser Lys Glu Ile Met Leu Asp Ala Thr Trp Val Cys
35 40 45

10 Ser Pro Lys Thr Pro Gln Asp Val Val Arg Leu Ala Asn Trp Ala His
50 55 60

Glu His Asp Tyr Lys Ile Arg Pro Arg Gly Ala Met His Gly Trp Thr
65 70 75 80

15 Pro Leu Thr Val Glu Lys Gly Ala Asn Val Glu Lys Val Ile Leu Ala
85 90 95

20

25

30

35

40

45

50

55

Asp Thr Met Thr His Leu Asn Gly Ile Thr Val Asn Thr Gly Gly Pro
 100 105 110
 5 Val Ala Thr Val Thr Ala Gly Ala Gly Ala Ser Ile Glu Ala Ile Val
 115 120 125
 Thr Glu Leu Gln Lys His Asp Leu Gly Trp Ala Asn Leu Pro Ala Pro
 130 135 140
 10 Gly Val Leu Ser Ile Gly Gly Ala Leu Ala Val Asn Ala His Gly Ala
 145 150 155 160
 Ala Leu Pro Ala Val Gly Gln Thr Thr Leu Pro Gly His Thr Tyr Gly
 165 170 175
 15 Ser Leu Ser Asn Leu Val Thr Glu Leu Thr Ala Val Val Trp Asn Gly
 180 185 190
 Thr Thr Tyr Ala Leu Glu Thr Tyr Gln Arg Asn Asp Pro Arg Ile Thr
 195 200 205
 20 Pro Leu Leu Thr Asn Leu Gly Arg Cys Phe Leu Thr Ser Val Thr Met
 210 215 220
 Gln Ala Gly Pro Asn Phe Arg Gln Arg Cys Gln Ser Tyr Thr Asp Ile
 225 230 235 240
 25 Pro Trp Arg Glu Leu Phe Ala Pro Lys Gly Ala Asp Gly Arg Thr Phe
 245 250 255
 Glu Lys Phe Val Ala Glu Ser Gly Gly Ala Glu Ala Ile Trp Tyr Pro
 260 265 270
 30 Phe Thr Glu Lys Pro Trp Met Lys Val Trp Thr Val Ser Pro Thr Lys
 275 280 285
 Pro Asp Ser Ser Asn Glu Val Gly Ser Leu Gly Ser Ala Gly Ser Leu
 290 295 300
 35 Val Gly Lys Pro Pro Gln Ala Arg Glu Val Ser Gly Pro Tyr Asn Tyr
 305 310 315 320
 Ile Phe Ser Asp Asn Leu Pro Glu Pro Ile Thr Asp Met Ile Gly Ala
 325 330 335
 40 Ile Asn Ala Gly Asn Pro Gly Ile Ala Pro Leu Phe Gly Pro Ala Met
 340 345 350
 Tyr Glu Ile Thr Lys Leu Gly Leu Ala Ala Thr Asn Ala Asn Asp Ile
 355 360 365
 45 Trp Gly Trp Ser Lys Asp Val Gln Phe Tyr Ile Lys Ala Thr Thr Leu
 370 375 380
 Arg Leu Thr Glu Gly Gly Gly Ala Val Val Thr Ser Arg Ala Asn Ile
 385 390 395 400
 Ala Thr Val Ile Asn Asp Phe Thr Glu Trp Phe His Glu Arg Ile Glu
 405 410 415
 50 Phe Tyr Arg Ala Lys Gly Glu Phe Pro Leu Asn Gly Pro Val Glu Ile
 420 425 430

Arg Cys Cys Gly Leu Asp Gln Ala Ala Asp Val Lys Val Pro Ser Val
 435 440 445
 5 Gly Pro Pro Thr Ile Ser Ala Thr Arg Pro Arg Pro Asp His Pro Asp
 450 455 460
 Trp Asp Val Ala Ile Trp Leu Asn Val Leu Gly Val Pro Gly Thr Pro
 10 465 470 475 480
 Gly Met Phe Glu Phe Tyr Arg Glu Met Glu Gln Trp Met Arg Ser His
 485 490 495
 Tyr Asn Asn Asp Asp Ala Thr Phe Arg Pro Glu Trp Ser Lys Gly Trp
 15 500 505 510
 Ala Phe Gly Pro Asp Pro Tyr Thr Asp Asn Asp Ile Val Thr Asn Lys
 515 520 525
 20 Met Arg Ala Thr Tyr Ile Glu Gly Val Pro Thr Thr Glu Asn Trp Asp
 530 535 540
 Thr Ala Arg Ala Arg Tyr Asn Gln Ile Asp Pro His Arg Val Phe Thr
 545 550 555 560
 25 Asn Gly Phe Met Asp Lys Leu Leu Pro
 565

(2) INFORMATION ZU SEQ ID NO: 30:

30 (i) SEQUENZ CHARAKTERISTIKA:

- (A) LÄNGE: 36 Basenpaare
- (B) ART: Nukleinsäure
- (C) STRANGFORM: Einzel
- (D) TOPOLOGIE: linear

35 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 30:

40 TCGCATGCCT CGACGGGCC CGTGGCGCCG CTTCCG

36

(2) INFORMATION ZU SEQ ID NO: 31:

45 (i) SEQUENZ CHARAKTERISTIKA:

- (A) LÄNGE: 25 Basenpaare
- (B) ART: Nukleinsäure
- (C) STRANGFORM: Einzel
- (D) TOPOLOGIE: linear

50 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 31:

55 CGTGCTTCTG CAGTCGGTG ACGAT

25

(2) INFORMATION ZU SEQ ID NO: 32:

(i) SEQUENZ CHARAKTERISTIKA:

- 5 (A) LÄNGE: 39 Basenpaare
 (B) ART: Nukleinsäure-
 (C) STRANGFORM: Einzel
 (D) TOPOLOGIE: linear

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 32:

10

TCCCATGGCA CACAGGAAAC ATCGATGACC ATGATTACG**39**

(2) INFORMATION ZU SEQ ID NO: 33:

15

(i) SEQUENZ CHARAKTERISTIKA:

20

- (A) LÄNGE: 25 Basenpaare
 (B) ART: Nukleinsäure
 (C) STRANGFORM: Einzel
 (D) TOPOLOGIE: linear

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 33:

25

CGTGCTTCTG CAGTCGGTG ACGAT**25**

(2) INFORMATION ZU SEQ ID NO: 34:

30

(i) SEQUENZ CHARAKTERISTIKA:

35

- (A) LÄNGE: 18 Basenpaare
 (B) ART: Nukleinsäure
 (C) STRANGFORM: Einzel
 (D) TOPOLOGIE: linear

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 34:

40

CGATGCACCA TGGGCATG**18**45 **Patentansprüche**

1. Aktive Cholesterinoxidase, **dadurch gekennzeichnet, daß sie die in SEQ ID NO 2 gezeigte Aminosäuresequenz aufweist.**
- 50 2. DNA, welche für ein Peptid mit Cholesterinoxidase-Aktivität kodiert mit der in SEQ ID NO 1 gezeigten DNA-Sequenz oder der dazu komplementären DNA-Sequenz.
3. Verfahren zur Herstellung einer rekombinanten Cholesterinoxidase durch Transformation einer geeigneten Wirtszelle mit einer DNA gemäß Anspruch 2, welche in einem geeigneten Expressionssystem kloniert vorliegt, Kultivierung der transformierten Wirtszellen und Isolierung der exprimierten Cholesterinoxidase aus dem Zytoplasma der transformierten Zellen.
- 55 4. Verfahren gemäß Anspruch 3, **dadurch gekennzeichnet, daß die verwendeten DNA am 5'-Ende eine der in SEQ**

ID NO 6, 8, 10, 12, 14 oder 16 gezeigten Sequenzen aufweist.

5. DNA gemäß Anspruch 2, **dadurch gekennzeichnet, daß sie am 5'-Ende eine der in SEQ ID NÖ 6, 8, 10, 12, 14 oder 16 gezeigten Sequenzen aufweist.**
6. DNA gemäß Anspruch 5, **dadurch gekennzeichnet, daß sie eine der in SEQ ID NO 18, 20, 22, 24, 26 oder 28 gezeigten Sequenzen aufweist.**
10. 7. Rekombinante Cholesterinoxidase, **dadurch gekennzeichnet, daß sie von einer DNA gemäß Anspruch 2 kodiert wird und am N-terminalen Ende eine der in SEQ ID NO 7, 9, 11, 13, 15 oder 17 gezeigten Sequenzen aufweist.**
8. Rekombinante Cholesterinoxidase gemäß Anspruch 7, **dadurch gekennzeichnet, daß sie eine der in SEQ ID NO 21, 23, 25, 27 und 29 gezeigten Sequenzen aufweist.**
15. 9. Verwendung einer rekombinanten Cholesterinoxidase gemäß einem der Ansprüche 7 oder 8 in einem enzymatischen Test zur Bestimmung von Cholesterin.

Claims

20. 1. Active cholesterol oxidase, **characterized in that it has the amino acid sequence shown in SEQ ID NO 2.**
2. DNA which codes for a peptide with cholesterol oxidase activity having the DNA sequence shown in SEQ ID NO 1 or the DNA sequence which is complementary thereto.
25. 3. Process for the production of a recombinant cholesterol oxidase by transformation of a suitable host cell with a DNA as claimed in claim 2 which is present cloned in a suitable expression system, culturing the transformed host cells and isolating the expressed cholesterol oxidase from the cytoplasm of the transformed cells.
30. 4. Process as claimed in claim 3, **characterized in that the DNA used has one of the sequences shown in SEQ ID NO 6, 8, 10, 12, 14 or 16 at the 5' end.**
5. DNA as claimed in claim 2, **characterized in that it has one of the sequences shown in SEQ ID NO 6, 8, 10, 12, 14 or 16 at the 5' end.**
35. 6. DNA as claimed in claim 5, **characterized in that it has one of the sequences shown in SEQ ID NO 18, 20, 22, 24, 26 or 28.**
7. Recombinant cholesterol oxidase, **characterized in that it is coded by a DNA as claimed in claim 2 and has one of the sequences shown in SEQ ID NO 7, 9, 11, 13, 15 or 17 at the N-terminal end.**
40. 8. Recombinant cholesterol oxidase as claimed in claim 7, **characterized in that it has one of the sequences shown in SEQ ID NO 21, 23, 25, 27 or 29.**
9. Use of a recombinant cholesterol oxidase as claimed in one of the claims 7 or 8 in an enzymatic test for the determination of cholesterol.

Revendications

50. 1. Cholestérol oxydase active, **caractérisée en ce qu'elle présente la séquence d'acides aminés représentée dans SEQ ID NO: 2.**
2. ADN qui code pour un peptide possédant une activité de cholestérol oxydase comprenant la séquence d'ADN représentée dans SEQ ID NO: 1 ou la séquence d'ADN complémentaire à celle-ci.
55. 3. Procédé pour la préparation d'une cholestérol oxydase recombinante par transformation d'une cellule hôte appropriée avec un ADN selon la revendication 2, qui est présent à l'état cloné dans un système d'expression approprié,

par mise en culture des cellules hôtes transformées et par isolation de la cholestérol oxydase exprimée à partir du cytoplasme des cellules transformées.

4. Procédé selon la revendication 3, **caractérisé en ce que l'ADN utilisé présente, à l'extrémité 5'**, une des séquences représentées dans SEQ ID NO: 6, 8, 10, 12, 14 ou 16.
5
5. ADN selon la revendication 2, **caractérisé en ce qu'il présente, à son extrémité 5'**, une des séquences représentées dans SEQ ID NO: 6, 8, 10, 12, 14 ou 16.
- 10 6. ADN selon la revendication 5, **caractérisé en ce qu'il présente une des séquences représentées dans SEQ ID NO: 18, 20, 22, 24, 26 ou 28.**
- 15 7. Cholestérol oxydase recombinante, **caractérisée en ce qu'elle est encodée par un ADN selon la revendication 2 et en ce qu'elle présente, à son extrémité amino terminale, une des séquences représentées dans SEQ ID NO: 7, 9, 11, 13, 15 ou 17.**
8. Cholestérol oxydase recombinante selon la revendication 7, **caractérisé en ce qu'elle présente une des séquences représentées dans SEQ ID NO: 21, 23, 25, 27 et 29.**
- 20 9. Utilisation d'une cholestérol oxydase recombinante selon l'une quelconque des revendications 7 ou 8, dans un test enzymatique pour la détermination de cholestérol.

25

30

35

40

45

50

55

Figure 1

Figur 2

Figur 3

Figur 4

(19)

JAPANESE PATENT OFFICE

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 03024057 A

(43) Date of publication of application: 01.02.91

(51) Int. Cl

C07D211/40
A61K 31/445

(21) Application number: 01158162

(71) Applicant: TOSOH CORP

(22) Date of filing: 22.06.89

(72) Inventor: NAKANO KOICHI
HASHIMOTO HIRONOBU

(54) POLYHYDROXYPIPERIDINES AND PRODUCTION THEREOF

removed by a catalytic reduction, thus obtaining the objective compound of formula I.

(57) Abstract:

COPYRIGHT: (C)1991,JPO&Japio

NEW MATERIAL: Compounds of formula I (R₁ is H or methyl; One of R₂ and R₃ is H and the other is OH).

EXAMPLE:
2-O-Benzyl-3,4,6-tri-O-acetyl-5-O-trimethylsilyl-D-allono nitrile.

USE: A glycosidase inhibitor.

PREPARATION: A ribofuranoside derivative of formula II [One of R₄ and R₅ is H and the other is alkoxy or formula III (X is R, CH₃, OCH₃ or Cl); One of R₆ and R₇ is H and the other is acyloxy, etc.; R₈ is acyloxy, etc.; R₉ is acyloxy, azide, etc.] and an arabinofuranoside derivative are reacted with cyanotrimethylsilane in the presence of a Lewis acid and the resultant compound is then subjected to ring opening and carbon increase to obtain a compound of formula IV. The trimethylsilyl group of the resultant compound is substituted for a suitable elimination group and the cyano group thereof is subjected to ring closure by reduction to obtain a compound of formula V. Protective groups of the obtained compound of formula V are

