A Brief Introduction to Neural Networks (I)

Jui-Chung (Ray) Yang

 ${\sf National\ Tsing\ Hua\ University}$

May 2020

Reference

- ► Efron, B. and T. Hastie (2016), Computer Age Statistical Inference: Algorithms, Evidence and Data Science, Cambridge. https://web.stanford.edu/~hastie/CASI/index.html
- Kuan, C.-M. (2008) "Artificial neural networks," in New Palgrave Dictionary of Economics, S. N. Durlauf and L. E. Blume (eds.), Palgrave Macmillan. https://homepage.ntu.edu.tw/~ckuan/pdf/Neural-Rev.pdf
- Hastie, T., R. Tibshirani, and J. Friedman (2009), The Elements of Statistical Learning, 2nd edition, Springer-Verlag. https://web.stanford.edu/~hastie/ElemStatLearn/

Neural Networks / Deep Learning

- Introduced in the mid 1980s, neural networks marked a shift of predictive modeling towards computer science and machine learning.
 - Inspired by the architecture of the human brain, an NN is regarded as a universal approximator — a machine that with enough data could learn any smooth predictive relationship.
 - Somewhat sidelined in the mid 1990s due to the lack of computing power and ideal learning tasks...
- In the recent decade we've witnessed the re-emergence of NNs.
 - ▶ The reincarnation now being called *deep learning*.
 - Thanks to massive improvements in computer resources, some innovations, and niches such as image and video classification, speech and text processing, and AlphaGo.

A Feed-Forward NN Diagram

- ▶ 13 predictors or inputs: x_i .
- ▶ 1 hidden layer with 5 hidden units, or *neurons*.
- ▶ 1 single output unit *o*.

Feed-Forward NN

▶ In the previous slide is a 3-layer feed-forward neural network with p=13 and $p_2=5$:

$$z_{\ell}^{(2)} = w_{\ell 0}^{(1)} + \sum_{j=1}^{p} w_{\ell j}^{(1)} x_{j}, \quad a_{\ell}^{(2)} = g^{(2)} \left(z_{\ell}^{(2)} \right), \quad \ell = 1, 2, \ldots, p_{2},$$

$$z^{(3)} = w_0^{(2)} + \sum_{\ell=1}^{p_2} w_\ell^{(2)} a_\ell^{(2)}, \quad o = z^{(3)}.$$

- $\left\{w_{\ell j}^{(1)}\right\}$ and $\left\{w_{\ell}^{(2)}\right\}$ are the weights, $\left\{w_{\ell 0}^{(1)}\right\}$ and $w_{0}^{(2)}$ are the bias parameters, and $g^{(2)}\left(\cdot\right)$ is the activation function.
- In layer L_2 13 weights and 1 bias for each of the 5 neurons $\Rightarrow (13+1) \times 5 = 70$ parameters.
- In layer L_3 5 weights and 1 bias for the output $\Rightarrow 5+1=6$ parameters.

 As seen before, an NN, even with only 3 layers, can be highly parametrized.

 \triangleright More generally, we can consider a K-layer NN:

$$z_{\ell}^{(k)} = w_{\ell 0}^{(k-1)} + \sum_{j=1}^{p_{k-1}} w_{\ell j}^{(k-1)} a_j^{(k-1)}, \quad a_{\ell}^{(k)} = g^{(k)} \left(z_{\ell}^{(k)} \right),$$

for $\ell=1,2,\ldots,p_k$, where $a_i^{(1)}=x_j$ and $p_1=p$.

Or, in the matrix-vector notation,

$$\mathbf{z}^{(k)} = \mathbf{W}^{(k-1)} \mathbf{a}^{(k-1)}, \quad \mathbf{a}^{(k)} = g^{(k)} \left(\mathbf{z}^{(k)} \right).$$

- ▶ $\mathbf{W}^{(k-1)}$ is the $p_k \times (p_{k-1} + 1)$ matrix of weights that go from layer L_{k-1} to L_k .
 - lacktriangle Note that the bias parameters $\left\{ w_{\ell 0}^{(k-1)}
 ight\}$ are absorbed into $\mathbf{w}^{(k-1)}$
- **z**^(k) is the $p_k \times 1$ vector of linear transformation of $\mathbf{a}^{(k-1)}$.
- ▶ $\mathbf{a}^{(k)}$ is the $(p_k+1) \times 1$ vector of activations at layer L_k .

Activation Function

- $g^{(k)}\left(\cdot\right)$ is known as the activation function.
 - ➤ As the neurons in the human brain, the idea was that each neuron in the network would be a simple binary on/off.
 - In practice, people usually consider smooth and differentiable compromises:

Sigmoid or the *logistic* function delivers values in (0,1).

$$\sigma\left(z\right) = \frac{1}{1 + e^{-z}}.$$

Tangent hyperbolicus or the *hyperbolic tangent* function delivers values in (-1,1).

$$\tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}},$$

Nowadays, some other functions with cheaper gradient computations are often used:

ReLU the rectified linear unit, the rectifier, or the positive-part function, delivers values in $[0, +\infty)$.

$$g\left(z\right) =z_{+}=\max \left(0,z\right) .$$

Leaky ReLU avoids flat spots and accompanying zero gradients. The nonnegative α is usually close to zero, e.g., $\alpha=0.01$.

$$g_{\alpha}(z)=z_{+}-\alpha z_{-}=\max\left(0,z\right)-\alpha\max\left(0,-z\right).$$

- ▶ $\{g^{(k)}\}$ at the inner layers can be the same or different, depending on how complicated the problem is.
- ▶ The final transformation is usually simply the identity function:

$$g^{(K)}(z)=z.$$

Classification

► For *M*-class classification, the number of output units is usually *M*, and the final activation function is usually the softmax function:

$$g_m^{(K)}\left(z_m,\mathbf{z}\right) = \frac{e^{z_m}}{\sum_{\ell=1}^M e^{z_\ell}},$$

which computes a number (probability) between zero and one, and all M of them sum to one.

Universal Approximator

- What makes the NN a useful econometric tool is its universal approximation property.
 - ► A multi-layered NN with a large number of hidden units can well approximate a large class of functions.
- ► E.g., an NN with one hidden layer and one single output unit (using the identity function) can be written as:

$$o = w_0^{(2)} + \sum_{\ell=1}^{p_2} w_\ell^{(2)} g^{(2)} \left(w_{\ell 0}^{(1)} + \sum_{j=1}^p w_{\ell j}^{(1)} x_j \right).$$

- When $\left\{w_{\ell j}^{(1)}\right\}$ are fixed, the network reduces to a basis expansion.
- An important enhancement is that $(\left\{w_{\ell j}^{(1)}\right\})$, the parameters of basis functions, are learned from the data.
- ► For a formal treatment, see Hornik (1991), Barron (1993), or Kuan (2008).

Fitting a Neural Network

As we have seen, a neural network is a complex, hierarchical function $f(\mathbf{x}; \mathcal{W})$ of the the feature vector \mathbf{x} , and the collection of weights \mathcal{W} .

- For the feed-forward NN of K layers with p₁, p₂, ..., pK neurons, the number of parameters is ∑_{k=1}^{K-1} p_{k+1} (p_k + 1).
- In this example, the number of parameters is 5 × 14 + 3 × 6 + 1 × 4 = 92.

Fitting a Neural Network

▶ In principle, for the training set $(\mathbf{x}_i, y_i)_{i=1}^n$ and the loss function $L(y, f(\mathbf{x}))$, one might seek to solve

$$\min_{\mathcal{W}} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(\mathbf{x}_i; \mathcal{W})).$$

- ► E.g., $L(y, f(\mathbf{x})) = \frac{1}{2} (y f(\mathbf{x}))^2$, and the model might be estimated by a nonlinear least squares (NLS).
- In practice, loss functions are usually convex only in f, but not in elements of W.
- The minimization problem is difficult, and at best we seek good local optima.
- Nowadays, the estimation is usually via the backpropagation.

Computing the Gradient: Backpropagation

- ▶ The backpropagation computes the derivative of L(y, f(x; W)) w.r.t. any of the elements of W for a generic pair (x, y), using the chain rule for differentiation.
 - Since the objective is an average, the overall gradient will be the average of these individual gradient elements over the training pairs $(\mathbf{x}_i, y_i)_{i=1}^n$.
- ▶ Given a training generic pair (x,y), we first make a forward pass through the network, which creates activations at each of the nodes $a_{\ell}^{(k)}$ in each of the layers.
- We would, then, like to compute an error term $\delta_{\ell}^{(k)}$ that measures the responsibility of each node for the error in predicting the true output y.
 - For the output activations $a^{(K)}$ these errors are easy.
 - For activations at inner layers, $\delta_{\ell}^{(k)}$ will be a weighted sum of the errors terms of nodes that use $a_{\ell}^{(k)}$ as inputs.

Algorithm (Backpropagation)

- 1. Given a pair (\mathbf{x}, y) , perform a "feedforward pass," computing the activations $a_{\ell}^{(k)}$ at each of the layers L_2, L_3, \ldots, L_K ; i.e. compute $f(\mathbf{x}; \mathcal{W})$ at \mathbf{x} using the current \mathcal{W} , saving each of the intermediary quantities along the way.
- 2. For each output unit ℓ in layer L_K , compute

$$\delta_{\ell}^{(K)} = \frac{\partial L\left(y, f\left(\mathbf{x}; \mathcal{W}\right)\right)}{\partial z_{\ell}^{(K)}} = \frac{\partial L\left(y, f\left(\mathbf{x}; \mathcal{W}\right)\right)}{\partial a_{\ell}^{(K)}} \dot{g}^{(K)} \left(z_{\ell}^{(K)}\right),$$

where $\dot{g}^{(K)}$ denotes the derivative of $g^{(K)}\left(z\right)$ wrt z.

► E.g.,
$$L(y, f(\mathbf{x})) = \frac{1}{2} (y - f(\mathbf{x}))^2$$
, $\delta_{\ell}^{(K)}$ becomes $-(y - a^{(K)}) \cdot \dot{g}^{(K)} (z_{\ell}^{(K)})$.

Algorithm (Backpropagation, cont'd)

3 For layers k = K - 1, K - 2, ..., 2, and for each node ℓ in layer L_k , set

$$\delta_{\ell}^{(k)} = \frac{\partial L\left(y, f\left(\mathbf{x}; \mathcal{W}\right)\right)}{\partial z_{\ell}^{(k)}} = \left(\sum_{j=1}^{p_{k+1}} w_{j\ell}^{(k)} \delta_{j}^{(k+1)}\right) \dot{g}^{(k)}\left(z_{\ell}^{(k)}\right).$$

4. The partial derivatives are given by

$$\frac{\partial L\left(y, f\left(\mathbf{x}; \mathcal{W}\right)\right)}{\partial w_{\ell j}^{(k)}} = \frac{\partial L\left(y, f\left(\mathbf{x}; \mathcal{W}\right)\right)}{\partial z_{\ell}^{(k+1)}} \frac{\partial z_{\ell}^{(k+1)}}{\partial w_{\ell j}^{(k)}} = a_{j}^{(k)} \delta_{\ell}^{(k+1)}.$$

Again, the matrix-vector notation simplifies these expressions.
 Recall that

$$\mathbf{z}^{(k)} = \mathbf{W}^{(k-1)} \mathbf{a}^{(k-1)}, \quad \mathbf{a}^{(k)} = g^{(k)} \left(\mathbf{z}^{(k)} \right).$$

By the chain rule,

$$\begin{split} & \boldsymbol{\delta}^{(K)} = \nabla_{\mathbf{z}^{(K)}} L\left(y, f\left(\mathbf{x}\right)\right) = \nabla_{a^{(K)}} L\left(y, f\left(\mathbf{x}\right)\right) \cdot \dot{g}^{(K)}\left(\mathbf{z}^{(K)}\right), \\ & \boldsymbol{\delta}^{(k)} = \mathbf{W}^{(k)\prime} \boldsymbol{\delta}^{(k+1)} \circ \dot{g}^{(k)}\left(\mathbf{z}^{(k)}\right), \\ & \frac{\partial L\left(y, f\left(\mathbf{x}; \mathcal{W}\right)\right)}{\partial \mathbf{W}^{(k)}} = \boldsymbol{\delta}^{(k+1)} \mathbf{a}^{(k)\prime}, \end{split}$$

where o denotes the Hadamard (elementwise) product.

Gradient Descent

- ▶ The backpropagation algorithm computes the gradient of the loss function at a single generic pair (x, y).
- lacksquare With n training pairs, the gradient w.r.t. $w_{\ell j}^{(k)}$ is given by

$$\Delta \mathbf{W}^{(k)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial L(y, f(\mathbf{x}; \mathcal{W}))}{\partial \mathbf{W}^{(k)}},$$

 Given a set of starting values for all the weights, a gradient-descent update is

$$\mathbf{W}^{(k)} \leftarrow \mathbf{W}^{(k)} - \alpha \Delta \mathbf{W}^{(k)}, \quad k = 1, 2, \dots, K - 1,$$

where $\alpha > 0$ is the *learning rate*.

Intuitively, $\Delta w_{\ell j}^{(k)} > 0$ suggests that the starting value of $w_{\ell j}^{(k)}$ is too big, and vice versa.

Stochastic Gradient Descent

- Rather than process all observations before making a gradient step, it can be more efficient to process smaller batches at a time.
 - Even batches of size one!
 - These batches can be sampled at random, or systematically processed.
 - For large data sets distributed on multiple computer cores, this can be essential for reasons of efficiency.
- ▶ An *epoch* of training means that all *n* training samples have been used in gradient steps, irrespective of how they have been grouped.

Example: Boston Housing

Boston data frame in MASS library in R has housing values of 506 nbhds around Boston (Harrison and Rubinfeld, 1978).

crim	per capita crime rate by town.
zn	prop. of residential land zoned for lots over 25,000 sq.ft.
indus	prop. of non-retail business acres per town.
chas	Charles River dummy variable (= 1 if tract bounds river).
nox	nitrogen oxides concentration (parts per 10 million).
rm	average number of rooms per dwelling.
age	proportion of owner-occupied units built prior to 1940.
dis	wt. mean of distances to five Boston employment centres.
rad	index of accessibility to radial highways.
tax	full-value property-tax rate per \$10,000.
ptratio	pupil-teacher ratio by town.
black	$1000 (Bk - 0.63)^2$, Bk: the prop. of blacks by town.
lstat	lower status of the population (percent).
medv	median value of owner-occupied homes in \$1000s.

neuralnet

- We use the neuralnet package in R.
 - Other popular choices includes Python packages such as keras or PyTorch.

```
library(neuralnet)
library(MASS)
data <- Boston
set.seed(500)
index <- sample(1:nrow(data),
round(0.75*nrow(data)))
train <- data[index,]
test <- data[-index,]</pre>
```

Scaling

- ► The scaling of the inputs can have a large effect on the quality of the final solution.
- Usually all inputs are standardized to have mean zero and standard deviation one.
 - This also allows one to choose a meaningful range for the random starting weights.
 - Usually $\mathcal{U}[-0.7, 0.7]$.

```
maxs <- apply(data, 2, max)
mins <- apply(data, 2, min)
scaled <- as.data.frame(scale(data, center = mins,
scale = maxs - mins))
train_ <- scaled[index,]
test_ <- scaled[-index,]</pre>
```

- neuralnet trains neural networks.
 - hidden is a vector of integers specifying the number of hidden neurons in each layer.

```
set.seed(500)
n <- names(train_)
f <- as.formula(paste("medv ~", paste(n[!n %in%
"medv"], collapse = " + ")))
nn <- neuralnet(f, data = train_, hidden = c(5,3),
linear.output = T)
windows()
plot(nn)</pre>
```

