

Det matematisk-naturvitenskapelige fakultet

STK-4051/9051 Computational Statistics Spring 2022 Chapter 6 and Note on SMC from Geir Storvik

Instructor: Odd Kolbjørnsen, oddkol@math.uio.no

Integration

- 1D methods for integration $O(n^{-r})$
- Monte Carlo method in higher dimensions (Rd)
 - MC: $O(n^{-1/2})$ vs Fubini $O(n^{-r/d})$
 - Provided: var(h(X)) < ∞
- Random number generator (RNG)
 - Reproducible randomness = assign seed in a PRNG
- Sampling by inversion and transformation
- Common set up in many cases.
 - Want to sample from f(x), but get sample from g(x)
- Rejection sampling: Correct the error by an acceptance step
 - Need a bound of $f(x)/g(x) \le 1/\alpha$
 - Each sample is a random sample from f(x)
 - Need to sample many times to get one sample Probability of acceptance α Expected number of samples to get acceptance α^{-1}

Importance sampling

Rewriting

$$\mu = \int h(\mathbf{x}) f(\mathbf{x}) d\mathbf{x} = \int \frac{h(\mathbf{x}) f(\mathbf{x})}{g(\mathbf{x})} g(\mathbf{x}) d\mathbf{x} = \frac{\int \frac{h(\mathbf{x}) f(\mathbf{x})}{g(\mathbf{x})} g(\mathbf{x}) d\mathbf{x}}{\int \frac{f(\mathbf{x})}{g(\mathbf{x})} g(\mathbf{x}) d\mathbf{x}}$$

- Assume $X_1, ..., X_n$ iid from $g(\mathbf{x})$. (We know how to sample from $g(\mathbf{x})$)
- Two alternative estimates

$$\hat{\mu}_{IS}^* = \frac{1}{n} \sum_{i=1}^n h(\mathbf{X}_i) w^*(\mathbf{X}_i), \quad w^*(X_i) = \frac{f(\mathbf{X}_i)}{g(\mathbf{X}_i)}$$

$$\hat{\mu}_{IS} = \sum_{i=1}^{n} h(\mathbf{X}_i) w(\mathbf{X}_i), \quad w(\mathbf{X}_i) = \frac{w^*(\mathbf{X}_i)}{\sum_{j=1}^{n} w^*(\mathbf{X}_j)}$$

- $w^*(\mathbf{X}_i)$ called importance weights
- $w(X_i)$ called the normalized importance weights

Properly weighted sample

• A weighted random pair (X, W) is properly weighted with respect to π if for any (square integrable) function h

$$E[Wh(X)] = c \cdot E_{\pi}[h(X)]$$

for some constant c.

- A weighted random sample $\{(X^i, W^i), i = 1, ..., N\}$ is properly weighted with respect to π if each (X_i, W_i) are properly weighted.
- Consequence: If $\{(X^i, W^i), i = 1, ..., N\}$ are properly weighted iid random pairs, then

$$\hat{\mu} = \frac{\sum_{i=1}^{N} W^{i} h(X^{i})}{\sum_{i=1}^{N} W^{i}}$$
 (1)

is a consistent estimator of $\mu = E_{\pi}[h(X)]$ (with respect to increasing N).

Det matematisk-naturvitenskapelige fakultet

Effective sample size

- Assume $w_i = w(\mathbf{X}_i)$, i = 1, ..., n are normalized weights
- Define effective sample size by

$$\widehat{N}_{eff} = \frac{1}{\sum_{i=1}^{n} w_i^2}$$

Ex 1: if
$$w_i = \frac{1}{n}$$
 for all i $\widehat{N}_{eff} = n$

Ex 2: if $w_i = 0$, $i \le z$, $w_i = \frac{1}{n-z}$, $i > z$ $\widehat{N}_{eff} = n - z$

Ex 3: if $w_i = 0$, $i \ne j$, $w_j = 1$ $\widehat{N}_{eff} = 1$

Sampling importance resampling

- Assume now we want to sample from $f(\mathbf{x})$, difficult
- Easy to sample from $g(\mathbf{x})$.
- Sampling importance resampling
 - **1** Sample $Y_1, ..., Y_m$ iid from g
 - Calculate standardized importance weights

$$w(\mathbf{Y}_i) = \frac{f(\mathbf{Y}_i)/g(\mathbf{Y}_i)}{\sum_{j=1}^m f(\mathbf{Y}_j)/g(\mathbf{Y}_j)}, i = 1, ..., m$$

- **3** Resample $X_1, ..., X_n$ from $\{Y_1, ..., Y_m\}$ with probabilities $w(Y_1), ..., w(Y_m)$
- Properties: As $m \to \infty$
 - X_i converges in distribution to $f(\mathbf{x})$
 - Correlations between X_i 's decreases to zero
- For finite m: Correlation between samples

Sampling importance resampling

- Assume
 - $Y_1, ..., Y_m$ iid from g
 - $X_1, ..., X_n$ resampled from $\{Y_1, ..., Y_m\}, w(Y_i) = \frac{f(Y_i)}{g(Y_i)}$
- Two possible estimates of $\mu = E^f[X]$:

$$\hat{\mu}_{SIR} = \frac{1}{m} \sum_{i=1}^{m} X_i$$
 Can show
$$\hat{\mu}_{IS} = \sum_{i=1}^{m} w(Y_i) Y_i$$

$$E[(\hat{\mu}_{IS} - \mu)^2] \leq E[(\hat{\mu}_{SIR} - \mu)^2]$$

Why consider SIR?

- Sometimes beneficial to have equally weighted samples
- May be beneficial at a later stage of analysis process
- If we want to evaluate E(h(x)) where h(x) is hard to evaluate
- Usually n < m

Example: slash distribution

- Controlled example (we know the truth)
- Y has slash distribution when $Y = \frac{X}{U}$ $X \sim N(0,1), U \sim \text{Unif}(0,1)$

$$f(y) = \begin{cases} \frac{1 - \exp\{-y^2/2\}}{y^2 \sqrt{2\pi}}, & y \neq 0, \\ \frac{1}{2\sqrt{2\pi}}, & y = 0. \end{cases}$$

- Sampling Experiments
 - 1. X from Y
 - 2. *Y* from *X*
- Methods
 - 1. Rejection sampling
 - 2. Importance sampling
 - 3. Sampling importance resampling

Two test functions

• Ex1: x

• Ex2: $h(x) = \sin(x) + 0.2\cos(2*pi*x)$

Ratios:

Det matematisk-naturvitenskapelige fakultet

- Ex1: x
- Ex2: $h(x) = \sin(x) + 0.2\cos(2*pi*x)$

```
> m = 1000
                                                               > m = 1000
> x=rnorm(m)
                                                               > x=rnorm(m)
> v =rnorm(m)/runif(m)
                                                               > y =rnorm(m)/runif(m
> show(c(mean(x), mean(h(x)))
                             , mean(y), mean(h(y))))
                                                               > show(c(sd(x), sd(h(x)), sd(y), sd(h(y))))
[1] -0.04743281 -0.02314847
                             -0.71528509
                                          0.01710263
                                                                   0.9951861 0.6712401 65.3199546
                                                               > m = 100000
> m = 100000
                                                               > x=rnorm(m)
> x=rnorm(m)
                                                               > y =rnorm(m)/runif(m
> y =rnorm(m)/runif(m)
                                                               > show(c(sd(x), sd(h(k)), sd(y), sd(h(y)))
> show(c(mean(x), mean(h(x)
                              mean(y), mean(h(y)))
                                                                      0.9956829
                                                                                   0 6726304 1328.0501683
                                                                                                              0.7122169
     0.001369078 0.001019647
                                0.542154961
                                             0.004230678
                                                               > m = 100000000
> m = 100000000
                                                               > x=rnorm(m)
> x=rnorm(m)
                                                               > y =rnorm(m)/runif(m)
> y =rnorm(m)/runif(m)
                                                               > show(c(sd(x), sd(h(x)), sd(y), sd(h(y))))
> show(c(mean(x), mean(h(x)), mean(y), mean(h(y))))
                                                               [1] 9.997296e-01 6.724661e-01 1.110357e+04 7.138005e-01
     3.115531e-05 4.417861e-05 8.361942e-01 -2.532640e-05
```

Slash distribution does not have a mean => The average does not converge

Slash distribution does not have a variance => The sd(y) increase with sample size

Rejection sampling

- Normal from slash bounded by 2
- Slash from Normal unbounded (no rejection sampling possibel)


```
> y =rnorm(m)/runif(m)
> U=runif(m)
> accept = dnorm(y)/(s(y)*2)
> sample = y[U<accept]
>
> length(sample)
[1] 49979
> max(accept)
[1] 1
> min(accept)
```

[1] 0

Observed acceptance rate: 0.49979 Theoretical acceptance rate: 0.50000

Sample from slash, estimate propeties of normal distribution

Histogram of w1


```
> t=h(y)*w1
> mean(t)
[1] -0.0007471106
```

SIR normal from slash

Sample from

Approximate sample from f(x)

Histogram of x


```
sample(y,n,replace=T,prob=wn1)
par(mfrow=c(1,2))
hist(y, 1000000, xlim=c(-5, 5))
hist(x, 40, xlim=c(-5, 5))
```

Sample from normal, estimate in slash

SIR slash from normal

Approximate sample from $f(x)^{Histogram of x}$

50

40

30

20

10

0 -

Frequency

SIR: normal from slash and slash from normal

Problem with presented methods in high dimensions, Rejection sampling

- Assume you want to sample iid X_i , i = 1, ..., n
- Two methods with rejection sampling $\frac{f(x_i)}{g(x_i)} \le \alpha^{-1}$
 - 1. Sample X_i , i = 1, ..., n independently.
 - 2. Sample $\{X_1, X_2, ..., X_n\}$ simultaniously
- Expected time to sample complete
 - 1. $n \cdot \alpha^{-1}$ (nice \odot)
 - 2. $1 \cdot \alpha^{-n}$ (curse of dimensionality is back \oplus)
- For complex distributions in high dimensions we need a joint proposal (within this framework)

Factoring into 1D distributions

Target

$$- f(\mathbf{x}) = f(x_1)f(x_2|x_1)\cdots f(x_n|x_1,x_2,\dots,x_{n-1})$$

Simpler to sample from

$$-g(\mathbf{x}) = g(x_1)g(x_2|x_1)\cdots g(x_n|x_1,x_2,\dots,x_{n-1})$$

- Sample each component sequentially as 1D
- Markov property: (same principle simpler notation)

$$- f(\mathbf{x}) = f(x_1)f(x_2|x_1)f(x_3|x_2)\cdots f(x_n|x_{n-1})$$

$$- g(\mathbf{x}) = g(x_1)g(x_2|x_1)g(x_3|x_2)\cdots g(x_n|x_{n-1})$$

Sequential Monte Carlo in a Markov structure

- Sequential Monte Carlo: First high-dimensional setting
- Assume now $\mathbf{x} = \mathbf{x}_{1:t} = (x_1, ..., x_t)$ have a Markov structure

$$f_t(\mathbf{x}_{1:t}) = f_1(x_1) \prod_{i=2}^t f_i(x_i|x_{i-1})$$

Also assume a proposal distribution with Markov property:

$$g_t(\mathbf{x}_{1:t}) = g_1(x_1) \prod_{i=2}^t g_i(x_i|x_{i-1})$$

• Importance weights:

$$w(\mathbf{x}_{1:t}) = \frac{f_t(\mathbf{x}_{1:t})}{g_t(\mathbf{x}_{1:t})} = \frac{f_1(x_1)}{g_1(x_1)} \prod_{i=2}^t \frac{f_i(x_i|x_{i-1})}{g_i(x_i|x_{i-1})} = w(\mathbf{x}_{1:t-1}) \frac{f_t(x_t|x_{t-1})}{g_t(x_t|x_{t-1})}$$

- Opens up for sequential sampling/estimation
- Note: Easy to generalize to non-Markov settings as well
 - More computing at each step

Sequential Monte Carlo

Algorithm

- ① Sample $X_1 \sim g_1(\cdot)$. Let $w_1 = u_1 = f_1(x_1)/g_1(x_1)$. Set t = 2
- 2 Sample $X_t | x_{t-1} \sim g_t(x_t | x_{t-1})$.
- **3** Append x_t to $\mathbf{x}_{1:t-1}$, obtaining \mathbf{x}_t
- **4** Let $u_t = f_t(x_t|x_{t-1})/g_t(x_t|x_{t-1})$
- **1** Let $w_t = w_{t-1}u_t$, the importance weight for $\mathbf{x}_{1:t}$
- Increment t and return to step 2

Can simulate *m* sequences in paralell!

Sequential Monte Carlo Example

Assume Markov model

$$X_1 \sim N(0, \sqrt{2})$$

$$f_t(X_t|X_{t-1}) \propto |\cos(X_t - X_{t-1})| \exp\left\{-\frac{1}{4}(X_t - X_{t-1})^2\right\}$$

Of interest:

$$\mu_t = E[X_t]$$
 = 0 due to symmetry $\sigma_t^2 = \text{var}(X_t) = E[X_t^2] - (E[X_t])^2$

Estimators by SMC simulation:

$$\hat{\mu}_{t} = \frac{\sum_{i=1}^{n} w_{t}^{i} x_{t}^{i}}{\sum_{i=1}^{n} w_{t}^{i}}$$

$$\hat{\sigma}_{t}^{2} = \frac{\sum_{i=1}^{n} w_{t}^{i} (x_{t}^{i})^{2}}{\sum_{i=1}^{n} w_{t}^{i}} - \left[\frac{\sum_{i=1}^{n} w_{t}^{i} x_{t}^{i}}{\sum_{i=1}^{n} w_{t}^{i}}\right]^{2} = \frac{\sum_{i=1}^{n} w_{t}^{i} (x_{t}^{i} - \hat{\mu}_{t})^{2}}{\sum_{i=1}^{n} w_{t}^{i}}$$

SMC_cosnorm.R

Dimension =20, m=100 000

show(w.norm.sort[1:10])

Dimension =100, m=100 000

show(w.norm.sort[1:10])

 $[1] \quad 0.47751939 \quad 0.06007770 \quad 0.04960048 \quad 0.03573471 \quad 0.03281825 \quad 0.02935132 \quad 0.02665531 \quad 0.02271621 \quad 0.02231759 \quad 0.02197812 \quad 0.02197812$

Weight degeneracy

General rule:

$$var[Y] = E[var[Y|Z]] + var[E[Y|Z]] \ge var[E[Y|Z]]$$

• $Y = w_t, Z = \mathbf{X}_{1:t-1}$ (w_{t-1} given by $\mathbf{x}_{1:t-1}$):

$$E[w_t|X_{1:t-1}] = w_{t-1}E[\frac{f_t(X_t|X_{t-1})}{g_t(X_t|X_{t-1})}|\mathbf{X}_{1:t-1}]$$

$$= w_{t-1} \cdot 1 = w_{t-1}$$

implying that

$$var[w_t] \ge var[w_{t-1}]$$

which indicates that the variance will increase at each time-step.

- Practical consequence:
 - Only a few samples will dominate the others
 - Variability of estimate will increase

Det matematisk-naturvitenskapelige fakultet

Resampling

- Degeneracy of weights a serious problem.
- Solution: Resampling (SIR idea)
 - One possible choice for resampling: Apply SIR directly
 - Each iteration:
 - Sample \tilde{x}_t^i , independently from $\{x_t^i\}$, probability of each sample is w_t^i
 - Set all new weigths equal to 1/N
 - When N_{eff} is small
 - Sample \tilde{x}_t^i , independently from $\{x_t^i\}$, probability of each sample is w_t^i
 - Set all new weigths equal to 1/N
 - SMC_cosnorm.R

Det matematisk-naturvitenskapelige fakultet

Dimension =100, m=100 000

Resample each time

Dimension =100, m=100 000

Resample n<10 000

How to resample more generally?

- Resampling \tilde{x}_t^i from x_t^i :
 - Original (normalized) weights: w_t^i
 - Resampling weights: $\widetilde{w_t}^i$
 - The number of repeats for x_t^i : N_t^i
- We need the expected number of resamples times the new weight to be the old weight
 - $-E(N_t^i \cdot \widetilde{w_t}^i) = w_t^i$
- One choice (as above)
 - Sample \tilde{x}_t^i , independently from $\{x_t^i\}$, probability of each sample is w_t^i
 - Set new weights 1/N

Det matematisk-naturvitenskapelige fakultet

Resampling

- Simplest option:
 - Resample with probabilities equal to w_t^i .
 - Put weights on resample to $\tilde{W}_t^i = N^{-1}$
 - Number of repeats of x_t^i , N_t^i is Binomial(N, w_t^i)
 - $E[N_t^i \tilde{W}_t^i] = NW_t^i$
- More general resampling strategies are possible
- Sufficient requirement: $E[N_t^i \tilde{W}_t^i] = N W_t^i$
- Optimal strategy (for equally weighted samples)
 - For i = 1, ..., N, put ($\lfloor a \rfloor$ is the largest integer smaller than a)

$$\widetilde{N}_t^i = \lfloor Nw_t^i \rfloor$$
 (Some will be zero)

- Let $\delta_t^i = w_t^i \widetilde{N}_t^i/N$
- Define $K = N \sum_{i=1}^{N} \widetilde{N}_t^i$ (remaining particles that have not been allocated)
- Sample $(D_t^1, ..., \overline{D_t^N})$ from the multinomial distribution with probabilities proportional to $(\delta_t^1, ..., \delta_t^n)$.
- Put $N_t^i = \tilde{N}_t^i + D_t^i$
- Make N_t^i replicates of x_t^i , but all weights to 1/N

Original (normalized) weights: w_t^i

Resampling weights: $\widetilde{w_t}^i$

The number of repeats for x_t^i : N_t^i

Det matematisk-naturvitenskapelige fakultet

Illustration of optimal resampling

(resample weigth: 1/N)

Example optimal resampling

- N = 5, $\mathbf{w} = (0.3, 0.4, 0.05, 0.15, 0.2)$
- $N * \mathbf{w} = (1.5, 2.0, 0.25, 0.75, 1.0)$

$$|N \cdot w_t^i| \bullet \tilde{\mathbf{N}} = (1, 2, 0, 0, 1)$$

- K = 5 4 = 1
- $\tilde{N}/N = (0.2, 0.4, 0.0, 0.0, 0.2)$
- $\delta = (0.1, 0.0, 0.05, 0.15, 0.0)$
- Sample **D** from Multinom(1 : N, 1, $(\frac{0.1}{0.3}, \frac{0.0}{0.3}, \frac{0.05}{0.3}, \frac{0.15}{0.3}, \frac{0.0}{0.3})$) e.g **D** = (1, 0, 0, 0, 0)
- Put $\mathbf{N} = \tilde{\mathbf{N}} + \mathbf{D} = (2, 2, 0, 0, 1)$

Resampling properties

- Resampling will introduce extra random noise at the current time-point
- Can reduce noise at later time points

• Gives a good approximation to $f(x_n)$

• Does not give a good approximation to $f(\mathbf{x})$ or $f(x_1)$!

Resampling properties

- Resampling will introduce extra random noise at the current time-point
- Can reduce noise at later time points
- Gives a good approximation to $f(x_n)$
- Does not give a good approximation to $f(\mathbf{x})$ or $f(x_1)$!

Makes it suited for filter problem $p(x_n|y_{1:n})$

Det matematisk-naturvitenskapelige fakultet

Origin of method in state space models

- For the filtering problem the target is the distribution $p(\mathbf{x}_n|\mathbf{y}_{1:n})$
- In chapter 4, we consider a hidden Markov model the distribution of x (state) is discrete here x (the state) it can be continuous

Origin of method in state space models

- For the filtering problem the target is the distribution $p(x_n|y_{1:n})$
- Target: $f_t(x_t|x_{t-1}) \propto p(x_t|x_{t-1})p(y_t|x_t)$
- Proposal: $g_t(x_t|x_{t-1}) \propto p(x_t|x_{t-1})$

Model for GPS positioning

Model:

$$x_0 \sim N(0, \Sigma)$$

$$x_{i+1} = x_i + v_i \cdot \Delta t$$

$$v_{i+1} = v_i + \Delta v_i + \varepsilon_{v,i}$$

$$\begin{aligned} d_{i,1} &= \left\| x_i - x_{s_{2,i}} \right\| + \varepsilon_{d,i,1} \\ d_{i,2} &= \left\| x_i - x_{s_{3,i}} \right\| + \varepsilon_{d,i,2} \\ d_{i,3} &= \left\| x_i - x_{s_{2,i}} \right\| + \varepsilon_{d,i,3} \end{aligned}$$

How can this problem be solved using SMC?

Hidden Markov models - state space

Assume

 $X_1 \sim p_{x_1}(x_1)$ $X_t \sim p_x(x_t|x_{t-1})$ $Y_t \sim p_y(y_t|x_t)$

models

- $\{y_t\}$ observed, $\{x_t\}$ hidden
- Chapter 4: $\{x_t\}$ discrete. Now possibly continuous
- Aim: $f(\mathbf{x}_{1:t}|\mathbf{y}_{1:t})$ or $f(\mathbf{x}_t|\mathbf{y}_{1:t})$
- Recursive relationship (misprint in book):

$$f(\mathbf{x}_{1:t}|\mathbf{y}_{1:t}) = \frac{f(\mathbf{x}_{1:t}, y_t|\mathbf{y}_{1:t-1})}{f(y_t|\mathbf{y}_{1:t-1})}$$

$$= \frac{f(\mathbf{x}_{1:t-1}|\mathbf{y}_{1:t-1})p_x(x_t|x_{t-1})p_y(y_t|x_t)}{f(y_t|\mathbf{y}_{1:t-1})}$$

$$\propto f(\mathbf{x}_{1:t-1}|y_{1:t-1})p_x(x_t|x_{t-1})p_y(y_t|x_t)$$

Sequential Monte Carlo and HMM

• Assume $g_t(x_t|x_{t-1}) = p_x(x_t|x_{t-1})$

$$w_{t} = \frac{f(\mathbf{x}_{1:t}|\mathbf{y}_{1:t})}{g(\mathbf{x}_{1:t})}$$

$$\propto \frac{f(\mathbf{x}_{1:t-1}|y_{1:t-1})p_{x}(x_{t}|x_{t-1})p_{y}(y_{t}|x_{t})}{p_{x_{1}}(x_{1})\prod_{s=2}^{t}p_{x}(x_{s}|x_{s-1})}$$

$$= \frac{f(\mathbf{x}_{1:t-1}|y_{1:t-1})}{g(\mathbf{x}_{1:t-1})} \frac{p_{x}(x_{t}|x_{t-1})p_{y}(y_{t}|x_{t})}{p_{x}(x_{t}|x_{t-1})}$$

$$= w_{t-1}p_{y}(y_{t}|x_{t})$$

Algorithm

- **1** Sample $X_1^i \sim p_{X_1}(\cdot)$, i = 1, ..., n.
- 2 Let $w_1^{*i} = u_1^i = p_y(y_1|x_1^i)$, normalize to $w_i^i = w_1^{*i} / \sum_i w_1^{*i}$. Set t = 2
- **3** Sample $X_t^i | x_{t-1}^i \sim p_X(x_t | x_{t-1}^i), i = 1, ..., n.$
- **4** Append x_t^i to $\mathbf{x}_{1:t-1}^i$, obtaining \mathbf{x}_t^i
- **1** Let $w_t^{*i} = w_{t-1}^i u_t^i$, normalize to $w_t^i = w_t^{*i} / \sum_j w_t^{*j}$.
- \bigcirc If \hat{N}_{eff} is small, perform resampling
- Increment t and return to step 3

Solving two different ways

- Solving for the filter distribution
- Solving for the posterior [degeneracy issue]

Code GPS_EX.R

Data

Filter solution

$$p(x_t, v_t | d_1, \dots, d_t)$$

Smoothing «solution»

$$p(x_t, v_t | d_1, \dots, d_t, \dots, d_n)$$

Problem with Degeneracy!

Det matematisk-naturvitenskapelige fakultet

Terrain navigation

Assume movement model for airplane

Model

$$\mathbf{X}_t = \mathbf{x}_{t-1} + \mathbf{d}_t + \boldsymbol{\varepsilon}_t$$

 $\mathbf{d}_t = \text{Drift of plane measured by internal}$ navigation system (assumed known)

$$oldsymbol{arepsilon}_t = \mathbf{R}_t^T \mathbf{Z}_t$$

$$\mathbf{R}_{t} = \frac{1}{\sqrt{X_{1,t-1}^{2} + X_{2,t-1}^{2}}} \begin{pmatrix} -X_{1,t-1} & X_{2,t-1} \\ -X_{2,t-1} & -X_{1,t-1} \end{pmatrix}$$

$$\mathbf{Z}_t \sim N_2 \left(\mathbf{0}, q^2 \begin{pmatrix} 1 & 0 \\ 0 & k^2 \end{pmatrix} \right)$$

Data

$$Y_t = m(\mathbf{x}_t) + \delta_t$$

Map

 $m(\mathbf{x}_t) = \text{Elevation at point } \mathbf{x}_t$

• Example_6_7.R

Uncertainty ε_t , δ_t

Det matematisk-naturvitenskapelige fakultet

Terrain navigation

← path (given)

```
##INITIAL VALUES
n=100
sigma=75
q.value=400
k=.5
sdx0=50
sqrtP0=sdx0 #My change
wti=rep(1/n,n)
```

Initial ensemble members equal weight

```
##SET UP TRUE STARTING POINT, 100 INITIAL POINTS
##AND FIRST ELEVATION OBSERVATION
x0hat.x=0; x0hat.y=30000 #start at true X0 here

truex=x0hat.x
truey=x0hat.y
xthat.x=truex
xthat.y=truey
xt.x=rnorm(n,x0hat.x,sqrtP0) #was x.xold
xt.y=rnorm(n,x0hat.y,sqrtP0) #was y.yold
```

Initial ensemble (n = 100)

```
# n = number of sampled trajectories
# Yt = observed elevation data
# mxti = map elevations
# xt.x, xt.y = current position of point
# uti = weight adjustment factors
# wti = weights
# Neff = effective sample size
# alpha = rejuvenation trigger
# dsubt.x, dsubt.y = true drift
# epst.x, epst.y = location error
```

- Initialization
 - Path is constructed
 - Radius of curve 30 000

```
##SET UP TRUE DRIFT
route.theta=seq(0,pi/2,length=101) Just one
route.x=30000*cos(route.theta)
route.y=30000*sin(route.theta)
way to get it
route.x=rev(route.x)
route.y=rev(route.y)
dsubt.x=diff(route.x)
dsubt.y=diff(route.y)
synthetic
```

Det matematisk-naturvitenskapelige fakultet

Terrain navigation

Mimic observation process

Update weights from data

Current estimate

```
#preliminary calcs for drawing the plot
  xthat.old=c(xthat.x,xthat.y)
  xthat.x=sum(wti*xt.x)
  xthat.y=sum(wti*xt.y)
```

```
# n = number of sampled trajectories
# Yt = observed elevation data
# mxti = map elevations
# xt.x, xt.y = current position of point
# uti = weight adjustment factors
# wti = weights
# Neff = effective sample size
# alpha = rejuvenation trigger
# dsubt.x, dsubt.y = true drift
# epst.x, epst.y = location error
```

```
 \begin{split} \mathbf{X}_t =& \mathbf{x}_{t-1} + \mathbf{d}_t + \boldsymbol{\varepsilon}_t \\ \text{#update cloud} \\ \text{tangent.slope--truex/truey} \\ \text{Zsigmamat=cbind(c(q.value^2,0),1*c(0,(k*q.value)^2))} \\ \text{xtnext=rotnorm(n,tangent.slope,Zsigmamat)} \\ \text{epst.x=xtnext[,1]} \\ \text{epst.y=xtnext[,2]} \\ \\ \text{rotnorm=function(N,slope,sigmamat)} \\ \text{v=rmvnorm(N,mean=c(0,0),sigma=sigmamat)} \\ \text{xy=c(1,slope)} \\ \text{Rot=cbind(c(-xy[1],-xy[2]),c(xy[2],-xy[1]))/sqrt(sum(xy^2))} \\ \text{therot=t(Rot%*%t(v))} \\ \text{therot} \\ \end{split}
```

Det matematisk-naturvitenskapelige fakultet

Terrain navigation

```
Resample?

if (Neff<(alpha*n)) {
   idx=sample(1:n,n,replace=T,prob=wti)
   xtnew.x=xt.x[idx]
   xtnew.y=xt.y[idx]
   wti=rep(1/n,n)
   rejuvcount=rejuvcount+1
   reset=T }
```

Update according to dynamic model

```
if (!reset) {
    xtnext.x=xt.x+dsubt.x[i]+epst.x  #still using old points
    xtnext.y=xt.y+dsubt.y[i]+epst.y
} else {
    xtnext.x=xtnew.x+dsubt.x[i]+epst.x  #start with new points
    xtnext.y=xtnew.y+dsubt.y[i]+epst.y
    reset=F
}
xt.x=xtnext.x
xt.y=xtnext.y
```

```
# n = number of sampled trajectories
# Yt = observed elevation data
# mxti = map elevations
# xt.x, xt.y = current position of point
# uti = weight adjustment factors
# wti = weights
# Neff = effective sample size
# alpha = rejuvenation trigger
# dsubt.x, dsubt.y = true drift
# epst.x, epst.y = location error
```

