

Algorithmen

Lukas Abelt lukas.abelt@airbus.com

DHBW Ravensburg Wirtschaftsinformatik

Ravensburg 31. März 2019

Outline

- Allgemeines
 - Begriffsklärung
 - 7iele des Moduls
- Beschreibung
 - Formale Eigenschaften
 - Darstellungsformen
- Analyse
 - Korrektheit eines Algorithmus
 - Komplexitätsanalyse

Inhalt

- Allgemeines
 - Begriffsklärung
 - 7iele des Moduls
- - Formale Eigenschaften
- 3 Analyse
 - Korrektheit eines Algorithmus
 - Komplexitätsanalyse

Inhalt

- Allgemeines
 - Begriffsklärung
 - 7 iele des Moduls
- Beschreibung
 - Formale Eigenschaften
- Analyse
 - Korrektheit eines Algorithmus
 - Komplexitätsanalyse

Begriffklärung

Etymologie

- □ Leitet sich ursprünglich vom persischen Astronomen "Muhammad Ibn-Musa al-Hwarizmi" ab
 - Schrieb Bücher über das indische Zahlensystem (um 800 n. Chr.)
 - Im 12. Jh übersetzt ins lateinische
 - Dabei wurde der Namensbestandteil "al-Hwarizmi" in "Algorismi" lateinisiert
- Durch spätere Überlieferungen wurde der Begriff später als Zusammensetzung betrachtet aus...
 - Dem Namen "Algus-"…
 - und dem aus dem griechisch entlehnten "-rismus" (Zahl)

Vgl. [3]

Begriffsklärung

Was bedeutet das jetzt

Formale Definition (Nach [3])

Eine Berechnungsvorschrift zur Lösung eines Problems heißt genau dann Algorithmus, wenn eine zu dieser Berechnungsvorschrift äquivalente Turingmaschine existiert, die für iede Eingabe, die eine Lösung besitzt. stoppt.

Oder auch

Ein Algorithmus ist eine domänenunabhängige Beschreibung einer Handlungsvorschrift zur Lösung eines Problems. Eine bestimmte Eingabe wird in eine bestimmte Ausgabe überführt.

Begriffsklärung

Also

- □ Ist also die Beschreibung eines Programmes oder einer Funktion
 - Unabhängig von der verwendeten Programmiersprache!
 - Source Code direkt ist also kein Algorithmus...
 - ...aber aus diesem lässt sich der verwendete Algorithmus ableiten und beschreiben
- Algorithmen können in verschiedenen Formen dargestellt werden (Mehr dazu im nächsten Kapitel)

Inhalt

- Allgemeines
 - Begriffsklärung
 - 7iele des Moduls
- Beschreibung
 - Formale Eigenschaften
- Analyse
 - Korrektheit eines Algorithmus
 - Komplexitätsanalyse

7iele

- Am Ende des Moduls könnt ihr...
 - Einen Algorithmus in eine Implementierung umsetzen
 - Aus einer Implementierung den Algorithmus ableiten
 - Die formalen Eigenschaften von Algorithmen kennen
 - Algorithmen anhand der kennengelernten Methoden zu analysieren

Inhalt

- 1 Allgemeines
 - Begriffsklärung
 - Ziele des Moduls
- 2 Beschreibung
 - Formale Eigenschaften
 - Darstellungsformen
- 3 Analyse
 - Korrektheit eines Algorithmus
 - Komplexitätsanalyse

Inhalt

- 1 Allgemeines
 - Begriffsklärung
 - Ziele des Moduls
- 2 Beschreibung
 - Formale Eigenschaften
 - Darstellungsformer
- 3 Analyse
 - Korrektheit eines Algorithmus
 - Komplexitätsanalyse

Eigenschaften von Algorithmen

Grundlegendes

- □ Finitheit Ein Algorithmus lässt sich in endlch vielen Schritten eindeutig beschreiben
- Ausführbarkeit Jeder Einzelschritt muss tatsächlich ausführbar sein
- Platzkomplexität Ein Algorithmus benötigt zu jedem Zeitpunkt nur endlich viel Speicherplatz
- □ **Terminierung** Der Algorithmus benötigt eine endliche Anzahl von Schritten zur Ausführung
- Determiniertheit Der Algorithmus muss bei gleichen Rahmenbedingungen das gleiche Ergebnis liefern
- Determinismus Der nächste Schritt des Algorithmus ist zu jedem Zeitpunkt genau definiert

Effizienz von Algorithmen

- □ Ergibt sich indirekt aus den Grundlegenden Eigenschaften
- □ Effizienz lässt sich über verschiedene Größen beschreiben:
 - Speicherverbrauch
 - Zeitverbrauch
- □ Die sind jedoch oft Implementierungs- und Rechnerabhägig
- □ Deshalb wird mit formalisierten Modellen gearbeitet
- ...Mehr dazu im Kapitel "Analyse"

Vgl. [2], S. 2f

Inhalt

- 1 Allgemeines
 - Begriffsklärung
 - Ziele des Moduls
- 2 Beschreibung
 - Formale Eigenschaften
 - Darstellungsformen
- 3 Analyse
 - Korrektheit eines Algorithmus
 - Komplexitätsanalyse

Ein kleines Beispiel

Warum wir das überhaupt brauchen (Algorithmus siehe [4])

```
float Q_rsqrt( float number ) {
    long i;
    float x2, y;
    const float threehalfs = 1.5F;
    x2 = number * 0.5F:
    v = number;
8
    i = * (long*) &v; // evil floating point bit level
      → hacking
    i = 0x5f3759df - (i >> 1); // what the fuck?
    v = *(float*) &i;
10
    y = y*(threehalfs-(x2*y*y)); // 1st iteration
11
  //v = v*(threehalfs-(x2*v*v)); // 2nd iteration, this

    ⇔ can be removed.

    return y;
13
14 }
```

Warum wir das brauchen

- □ Source Code ist nicht immer verständlich
- Benötigt spezielles Wissen über die Sprache
- □ Nutzt ggf. Besonderheiten der Sprache aus
- □ Nutzt teilweise Workarounds (zum Beispiel aus Effizienzgründen)

Möglichkeiten der Darstellung

- □ Zur Definition von Algorithmen gibt es verschiedenste Möglichkeiten
- Mit ganz eigenen Vor- und Nachteilen
- □ Wir betrachten im Rahmen der Vorlesung:
 - Prosatext
 - Pseudocode
 - Struktogramme
 - Programmablaufplan (PAP)

Was beschreiben wir?

Unser Referenzalgorithmus

□ Um die verschiedenen Elemente zu vergleichen, wollen wir mit allen den folgenden Algorithmus beschreiben:

Referenz

Für eine Zahl n (Wobei gilt: $n \in \mathbb{N}$), soll die Summe aller geraden Zahlen von 0 bis *n* berechnet werden

Darstellung als Prosatext

Der simple Weg

- □ Simpelste Herangehensweise
- □ Man beschreibt in eigenen Worten, wie man vorgehen würde um die gegebene Problemstellung zu lösen
- Achtung: Unterscheiden zwischen Problemstellung und Lösungsbeschreibung!
- Auch in Prosaform sollten die Einzelschritte eindeutig beschrieben sein
- \square Nicht standardisiert \rightarrow Beschreibung von Algorithmen inkonsistent

Prosabeschreibung

Für unseren Algorithmus

Addiere alle geraden Zahlen

Lese die Zahl n ein.

Anschließend setze die Zählvariable i sowie die Ergebnisvariable res auf 0. Wenn i gerade ist, addiere i auf die Ergebnisvariable. Erhöhe anschließend i um 1. Wiederhole die letzten zwei Schritte bis i größer ist als n. Gebe res aus

19/62

Darstellung als Pseudocode

Der Zwischenweg

- Mischung aus Prosa und tatsächlichem Code
- Orientiert sich an den in Programmiersprachen vorhandenen Strukturen (If-then-else, Schleifen...)
- Nutzt dabei aber leicht verständliche und programmiersprachenunabhängige Begriffe
- □ Wie Code in der Regel zeilenweise auf atomare Operationen beschränkt
- \blacksquare Keine formale Standardisierung, dadurch auch hier Inkonsistenzen möglich \to Aber weniger als bei Prosabeschreibung

Pseudocode

Für unser Pseudoproblem

```
1 LESE n
2 SETZE res=0
3 FUER i=0 BIS n
4 WENN istGerade(i) DANN
5 res+=i
6 ENDE WENN
7 ENDE FUER
8 GEBE res AUS
```

Struktogramme

Der erste Standard

- □ Entwickelt durch Nassi Shneidermann
- □ Grafische Darstellung von Algorithmen
- Standardisiert nach DIN 66261
- □ Die über die definierten Blöcke dargestellt werden
- □ Werden (lückenlos) von oben nach unten aneinander gereiht

Anweisung

□ Einzelne Anweisung:

Einzelne Anweisung

□ Mehrere aufeinanderfolgende Anweisungen:

Anweisung 1

Anweisung 2

Anweisung 3

Verzweigungen

□ Einfache Verzweigung(if-then-else):

□ Mehrfache Verzweigung(switch-case):

	Wert von x?	
1	7	Default
А	В	С

Zählschleifen

□ Einfache Zählschleifen(for-loop):

von 0 bis 10, Schrittweite 2

Anweisungen

Schleifen

□ Kopfgeprüfte Schleifen(while):

x>5 Anweisungen

□ Fußgeprüfte Schleifen(do-while):

Anweisungen x>5

Struktogram für unseren Algorithmus

Kontakt

Programmablaufplan

Der zweite Standard

- Bildet einen linearen Programmfluss aber
- Standardisiert nach DIN 66001
- □ Wie beim Struktogramm gibt es fest definierte Grundblöcke
- □ Diese werden hier jedoch über Pfeile verbunden

Start, Stop, Anweisungsblock, Ein- und Ausgaben

TODO: Abbildung Grundelemente

Verzweigungen

TODO: Verzweigung

Zählschleifen

TODO: Abbildung Zählschleife

Schleifen

TODO: Abbildung Schleifen

Programmablaufplan

...für unseren Algorithmus

TODO: PAP Algorithmus

Zusammenfassung

- □ Keine der dargestellten Formen ist optimal
- Verwendung kommt auf Anforderungen und persönliche Vorlieben an
- Keine der hier vorgestellten Methoden zur Abbildung komplexerer objektorientierter Zusammenhänge möglich
- □ Weitere Darstellungsformen:
 - Aktivitätsdiagramm
 - Petrinetze
 - Interaktionsdiagramme

Inhalt

- 1 Allgemeines
 - Begriffsklärung
 - Ziele des Moduls
- 2 Beschreibung
 - Formale Eigenschaften
 - Darstellungsformen
- 3 Analyse
 - Korrektheit eines Algorithmus
 - Komplexitätsanalyse

Inhalt

- 1 Allgemeines
 - Begriffsklärung
 - Ziele des Moduls
- 2 Beschreibung
 - Formale Eigenschaften
 - Darstellungsformen
- 3 Analyse
 - Korrektheit eines Algorithmus
 - Komplexitätsanalyse

Korrektheit von Algorithmen

Allgemeines (Vgl. [3])

- Jeder Algorithmus sollte auch in allen Fällen das korrekte Ergebnis liefern...
- Klingt simpel, aber eindeutiger Beweis für alle Eingaben oft schwierig
- □ Testen an ausgewählten Beispielen nicht ausreichend
 - Jedoch verringern umfangreiche Tests natürlich das Risiko eines unentdeckten Fehler
- □ Korrektheit lässt sich im Grunde nur durch formalen Beweis zeigen
 - Wie zum Beispiel Induktionsbeweis
 - Diese sind häufig sehr umfangreich und komplex...
 - ...und deshalb auch nicht Teil der Vorlesung

Korrektheit von Algorithmen

Quelle: [1]

"Program testing can be used to show the presence of bugs, but never to show their absence!."

Edsger W. Dijkstra

Inhalt

- 1 Allgemeines
 - Begriffsklärung
 - Ziele des Moduls
- 2 Beschreibung
 - Formale Eigenschaften
 - Darstellungsformen
- 3 Analyse
 - Korrektheit eines Algorithmus
 - Komplexitätsanalyse

Speicherkomplexität

Wie lässt sich diese messen?

- Wie schon erwähnt: Der verbrauchte Speicher ist Sprach- und Rechnerabhängig
- □ Mögliche Lösung über Definition von Referenzsprache und -system
- Messungen sind allerdings nicht repräsentativ
- Deswegen wird in der formalen Informatik mit dem Random-Access-Machine(RAM) Modell gearbeiteet
 - Besteht im Grunde ausabzählbar unendlich vielen addressierbaren Speicherzellen
 - Für einen Algorithmus wird dann bestimmt, wie viele Speicherzellen genutzt werden müssen
 - Dies entspricht dann der Speicherkomplexität

Laufzeitkomplexität

Grundlegendes

- Gleiches Problem wie bei der Speicherkomplexität
- □ Deswegen hier ähnliches Modell:
 - Man bestimmt die Anzahl von "atomaren Operationen" des Algorithmus
 - Diese Operationen sind vergleichbar mit Assembler-Befehlsrepertoire
- □ Beispiele für atomare Operationen:
 - Addition/Subtraktion/Multiplikation/Division zweier Zahlen
 - Lesen einer Variable von einer Speicheradresse
 - Schreiben einer Variable an eine bestimmte Adresse
 - Random Access in Arrays
 - Vergleich zweier Zahlen

Beispiel einer Komplexitätsanalyse

Vertauschen zweier Zahlen I

```
public void swap(int first, int second){
    int tmp = first;
    first = second;
    second = tmp;
  \square Laufzeitkomplexität: \tau(N) = 3
  □ Speicherkomplexität(In Byte): \tau(N) = 12
```

Beispiel einer Komplexitätsanalyse

Vertauschen zweier Zahlen II

```
public void swap(int first, int second){
    first = first + second:
   second = first - second;
    first = first - second;
 \square Laufzeitkomplexität: \tau(N) = 6
 □ Speicherkomplexität(In Byte): \tau(N) = 8
```

Probleme und Probleminstanzen

- Komplexität ist selten statisch
- □ In der Regel von Problem und der konkreten *Probleminstanz* abhängig
 - Problem: z B Das sortieren einer Liste
 - Probleminstanz: konkrete Liste die sortiert werden soll. z.B. (7, 3, 12, -5, 45)
- Die Probleminstanz hat meist einen oder mehrere dynamische Faktoren von denen die entgültige Komplexität abhängt
 - Für Sortieren: Länge der Liste
- □ Angegeben werden in der Komplexität nur noch die skalierenden Faktoren: O(N)

Dynamische Komplexität

Ein Beispiel

```
//A-> Array mit Elementen, n->Länge von A
  int sumList(int[] A, int n){
                    //Kosten: 1, Anzahl: 1 mal
  int sum = 0:
3
 for(int i=0; i<n; i++){ //Kosten: 2, Anzahl: n+1 mal
          sum += A[i]
                      //Kosten: 2, Anzahl: n mal
                           //Kosten: 1. Anzahl: 1 mal
   return sum:
  \tau(n) = 1 + 2 \cdot (n+1) + 2n + 1
  \tau(n) = 1 + 2n + 2 + 2n + 1
 \tau(n) = 4n + 4 \ \tau(n) = c_1 n + c_2
  \Rightarrow O(n)
```

Unterschiedliche Laufzeiten von Algorithm

- □ Bisher betrachtete Algorithmen hatten (für gegebenes *N*) feste Komplexität
- □ Algorithmen können jedoch für gleiches N verschiedene Laufzeiten haben
 - Warum?
 - Zum Beispiel bei Verzweigung innerhalb des Algorithmus (z.B. durch gesonderte Betrachtung besonderer Listenelemente o.Ä.)
- □ Beispiel: Leicht angepasste Variante unseres Algorithmus zum addieren von geraden Zahlen:

Addieren aller geraden Zahlen einer Liste

```
public int getSquareSum(int[] data, int n){
     2
     for(int i=0; i< n; i++){ //Kosten: 2. (n+1) mal
        if(data[i]\%2 == 1){//Kosten: 3, n mal}
            continue: //Kosten: 1, ? mal
        }else{
           //Kosten: 5, ? mal
7
            res += data[i]*data[i];
8
     return res:
```

Best- und Worst-Case Execution Time

- □ Für diese Fälle gibt es prinzipiell drei Betrachtungsweisen
 - Best-Case Execution Time
 - Worst-Case Execution Time
 - Average Execution Time
 - Frage: Welche ist für die Komplexitätsbetrachtung relevant?
- □ Average Execution Time lässt sich nur schwer bestimmen
 - Reiner Durchschnitt aus Best- und Worst-Case nicht praktikabel
 - Beschaffenheit der Probleminstanzen und deren Verteilung müsste bekannt sein
 - Ist jedoch selten der Fall

Best- und Worst-Case Execution Time

- □ In der Regel ist die Worst-Case Execution Time relevant
 - Simpel zu bestimmen
 - Dadurch kann sichergestellte werden, dass der Algorithmus maximal die angegebene Zeit benötigt
 - insbesondere relevant für Echtzeitsysteme

Vgl. [2] S. 3ff

Gängige Komplexitätsfaktoren

Vgl. [2]

- □ In der Regel begegnet man den folgenden Komplexitäten bei der Analyse(In Abhängigkeit von N):
 - Kein Wachstum: O(1)
 - Logarithmisches Wachstum: O(log N)
 - Lineares Wachstum: O(N)
 - N-log N-Wachstum: $O(N \cdot \log N)$
 - Polynomiales Wachstum: $O(N^2)$, $O(N^3)$...
 - Exponentielles Wachstum: $O(2^N)$, $O(3^N)$...
 - Faktorielles Wachstum: O(N!)
- □ Praktikabel sind maximal Algortihmen mit polynomialen Wachstum
- □ Exponentielle und faktorielle Algorithmen wachsen zu schnell an

Komplexität von Algorithmen

Visueller Vergleich

Kontakt

Kein Wachstum

```
public void swap(int[] data, int first, int second){
      int tmp = data[first];
2
      data[first] = data[second]:
      data[second] = tmp;
```

 Algorithmus ist in keiner Weise von der Länge von data abhängig (Abgesehen von eventueller Fehlerbetrachtung)

Logarithmisches Wachstum

```
public void logNComplexity(int n){
for(int i=1; i<=n; i = i * 2){

System.out.println(i);
}
}</pre>
```

- □ Indikator für Logarithmisches Wachstum:
 - Zählvariable steigt multiplikativ/verringert sich durch Division
 - Größe der Probleminstanz verringert sich in jedem Schritt mit bestimmtem Faktor
- □ Basis des Logarithmus ist nicht von Relevanz, da nur konstanter Faktor
- □ In der Regel handelt es sich aber um log₂
- Beispiel: Binäre Suche

Lineares Wachstum

```
public int sum(int[] data, int n){
       int res=0:
       for(int i=0:i<n:i++){
            res+=data[i];
5
       return res;
    □ Grundlegend alle Schleifen, die von 0 bis N iterieren (Mit Schrittweite 1)
      Beispiele:
         Summen von Listen
         ■ Finden von Mini-/Maxima in unsortierten Listen
```

N-log N-Wachstum

```
public void nlogNComplexity(int n){
    for(int i=0;i<n;i++){
        for(int j=0;j<n;j=j*2){
            System.out.println(i);
            System.out.println(j);
        }
}</pre>
```

- □ Entsteht durch die Kombination von linearem und logarithmischen Wachstums
- Beispiele:
 - Heap Sort
 - Quick Sort

Polynomiales Wachstum

```
//Unter der Annahme, dass data ein n*n Array ist
public void print2DArray(int[][] data, int n){
for(int i=0;i<n;i++){
  for(int j=0;j<n;j++){
        System.out.println(data[i][j]);
}
}
}
</pre>
```

- \square Entsteht durch die Verschachtelung mehrerer O(n) Algorithmen
- Beispiele:
 - Insertion Sort
 - Traversieren von N-Dimensionalen Arrays

Polynomiales Wachstum

```
//Unter der Annahme, dass data ein n*n Array ist
public void print2DArray(int[][] data, int n){
for(int i=0;i<n;i++){
  for(int j=0;j<n;j++){
       System.out.println(data[i][j]);
}
}
</pre>
```

- \square Entsteht durch die Verschachtelung mehrerer O(n) Algorithmen
- Beispiele:
 - Insertion Sort
 - Traversieren von N-Dimensionalen Arrays

Exponentielles Wachstum

- □ Hier ist mir leider kein leichtes Codebeispiel eingefallen
- □ Beispiele:
 - Bruteforce von Passwörtern
 - Damenproblem (mit naiver Implementierung)

Faktorielles Wachstum

- Häufig in rekursiven Algorithmen
- □ Beispiele:
 - Finden aller Permutationen in einem Array
 - Travelling Salesman Problem (Primitiver Ansatz)

Quellen I

- [1] Wikimedia Commons. File:Edsger Wybe Dijkstra.jpg Wikimedia Commons, the free media repository. 2017. URL: https://commons.wikimedia.org/w/index.php?title=File: Edsger_Wybe_Dijkstra.jpg&oldid=244763264 (besucht am 29.03.2019).
- [2] T. Ottmann und P. Widmayer. *Algorithmen und Datenstrukturen*. Spektrum Akademischer Verlag, 2017. ISBN: 9783662556498.
- [3] Wikipedia. Algorithmus Wikipedia, Die freie Enzyklopädie. 2019. URL: https://de.wikipedia.org/w/index.php?title= Algorithmus&oldid=186838998 (besucht am 29.03.2019).

Quellen II

[4] Wikipedia contributors. Fast inverse square root — Wikipedia, The Free Encyclopedia. 2019. URL: https://en.wikipedia.org/w/index.php?title=Fast_inverse_square_root&oldid=887505872 (besucht am 29.03.2019).

Literatur

Kontakt

- □ E-Mail: lukas.abelt@airbus.com
- □ GitHub: https://www.github.com/LuAbelt
- □ GitLab: https://www.gitlab.com/LuAbelt
- □ Telefon(Firma): 07545 8 8895
- □ Telegram: LuAbelt