

MSCA 37016 Advanced Linear Algebra for Machine Learning

Lecture 4

Danny Ng

Principal Component Analysis PCA

- Principal component analysis PCA is:
 - 1. Dimension reduction technique
 - Exploit correlation / covariance among a set of data points
 - 3. Project the data points into a suitable lower-dimensional space to reveal any low-dimensional structure of the data
 - 4. Retain as much of the **variation** in the data as possible
- It is not about predicting one variable in the data by others as in regression

• **Step 1:** Start with matrix of n observed data points in \mathbb{R}^d

• **Step 2:** Compute the j^{th} column mean

$$\mu_j = \frac{1}{n} \sum_{i=1}^n x_{ij}$$

• **Step 3:** Centering the data per column

$$X_c = X - \begin{pmatrix} \mu_1 & \cdots & \mu_d \\ \vdots & \cdots & \vdots \\ \mu_1 & \cdots & \mu_d \end{pmatrix}$$

Variance = Norm²

• **Variance** of an explanatory variables i.e. a column of X_c

$$\vec{x}_j = \begin{pmatrix} x_{1j} \\ \vdots \\ x_{nj} \end{pmatrix}$$

$$Var(X_j) = \frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \mu_j)^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} (x_{ij} - 0)^2 = \frac{1}{n} ||\vec{x}_j||^2$$

Standard deviation is

$$SD(X_j) = \frac{1}{\sqrt{n}} \|\vec{x}_j\|$$

Covariance = Dot Product

• Covariance of two explanatory variables i.e. two columns of X_c

$$\vec{x}_j = \begin{pmatrix} x_{1j} \\ \vdots \\ x_{nj} \end{pmatrix}$$
 and $\vec{x}_k = \begin{pmatrix} x_{1k} \\ \vdots \\ x_{nk} \end{pmatrix}$

$$Cov(X_j, X_k) = \frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \mu_j)(x_{ik} - \mu_k)$$
$$= \frac{1}{n} \sum_{i=1}^{n} (x_{ij} - 0)(x_{ik} - 0)$$
$$= \frac{1}{n} (\vec{x}_j \cdot \vec{x}_k)$$

Covariance Properties

Variance and covariance

$$Var(X_j) = \frac{1}{n} ||\vec{x}_j||^2$$
$$= \frac{1}{n} (\vec{x}_j \cdot \vec{x}_j) = Cov(X_j, X_j)$$

• Symmetry of covariance

$$Cov(X_j, X_k) = \frac{1}{n} (\vec{x}_j \cdot \vec{x}_k)$$
$$= \frac{1}{n} (\vec{x}_k \cdot \vec{x}_j) = Cov(X_k, X_j)$$

Uncorrelated = Orthogonal

 If two centered i.e. mean 0 explanatory variables are uncorrelated, then

$$0 = \operatorname{Cov}(X_j, X_k) = \frac{1}{n} (\vec{x}_j \cdot \vec{x}_k)$$

i.e. the two column vectors \vec{x}_j , $\vec{x}_k \in \mathbb{R}^n$ are orthogonal

$$\vec{x}_j \perp \vec{x}_k$$

- Two perspectives of data matrix $X \in \mathbb{R}^{n \times d}$:
 - 1. n rows of data points in \mathbb{R}^d
 - 2. d column vectors of explanatory variables in \mathbb{R}^n

Covariance Matrix

• Covariance matrix of d explanatory variables $X = (X_1, ..., X_d)$ is

$$\operatorname{Cov}(X) = \begin{pmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Cov}(X_1, X_d) \\ \operatorname{Cov}(X_2, X_1) & \ddots & & \vdots \\ \vdots & & \ddots & \operatorname{Cov}(X_{d-1}, X_d) \\ \operatorname{Cov}(X_d, X_1) & \cdots & \operatorname{Cov}(X_d, X_{d-1}) & \operatorname{Var}(X_d) \end{pmatrix} \in \mathbb{R}^{d \times d}$$

• Computationally, each entry $Cov(X)_{jk} = Cov(X_j, X_k) = \frac{1}{n}(\vec{x}_j \cdot \vec{x}_k)$. Therefore,

$$Cov(X) = \frac{1}{n} \begin{pmatrix} - & \vec{x}_1 & - \\ & \vdots & \\ - & \vec{x}_d & - \end{pmatrix} \begin{pmatrix} | & & | \\ \vec{x}_1 & \dots & \vec{x}_d \\ | & & | \end{pmatrix} = \frac{1}{n} X_c^T X_c$$

Covariance matrix is always symmetric

Principal Component Analysis PCA (cont'd)

• **Step 4:** Find orthogonal matrix $Q \in \mathbb{R}^{d \times d}$ to rotate the centered data X_c such that the rotated data X_r look "axis-aligned"

• Question: Why is X_c multiplied on the right side by Q^T instead of on the left side by Q?

 Linear transformation (e.g. rotation) is usually a matrix-vector multiplication

• Here each data point "vector" is a row of X_c so we need to do

Principal Component Analysis PCA (cont'd)

• Step 5: Further decompose the rotated data X_r into unit vectors U and norms D

• In other words, PCA is a decomposition of the data matrix $X_c = X_r Q = UDQ$

Singular Value Decomposition SVD

• Fact: Any matrix $A \in \mathbb{R}^{n \times d}$ can be decomposed into a product of 3 "nice" matrices

• This is the most powerful matrix decomposition because it is applicable to any matrix and reveals a lot of the structure of a matrix!

Singular Value vs Rank

The diagonal entries of

$$D = \begin{pmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_d \end{pmatrix} \in \mathbb{R}^{d \times d}$$

are the **singular values** of matrix A

Fact:

$$rank(A) = \begin{pmatrix} number of non-zero \\ singular values \end{pmatrix}$$

SVD and Invertibility

- **Fact:** For square matrix $A \in \mathbb{R}^{d \times d}$
 - 1. *U* is also an orthogonal matrix
 - 2. A is invertible if and only if all d singular values $\sigma_i \neq 0$
 - 3. In this case, the matrix inverse A^{-1} is simply

$$A^{-1} = (UDV^{T})^{-1}$$

$$= (V^{T})^{-1}D^{-1}U^{-1}$$

$$= V\begin{pmatrix} 1/\sigma_{1} & \cdots & 0\\ \vdots & \cdots & \vdots\\ 0 & \cdots & 1/\sigma_{d} \end{pmatrix} U^{T}$$

Non-Uniqueness of Singular Value Decomposition

- Different computational softwares might yield some variation e.g.
 - 1. Negate \hat{u}_i to $-\hat{u}_i$ as long as the corresponding σ_i becomes $-\sigma_i$
 - 2. Permute the columns of U and V and the diagonal entries of D together without affecting the overall matrix product

$$A = UDV^{T} = \begin{pmatrix} | & & | \\ \hat{u}_{1} & \dots & \hat{u}_{d} \\ | & | \end{pmatrix} \begin{pmatrix} \sigma_{1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_{d} \end{pmatrix} \begin{pmatrix} - & \hat{v}_{1} & - \\ & \vdots & \\ - & \hat{v}_{d} & - \end{pmatrix}$$

- Convention:
 - 1. If $\sigma_i < 0$, then change \hat{u}_i to $-\hat{u}_i$ so the singular value $-\sigma_i > 0$ is always positive
 - 2. Re-order the columns of U and V so that $\sigma_1 \ge \cdots \ge \sigma_d \ge 0$ are sorted descending

Principal Component Analysis via SVD

 Perform PCA by computing SVD of the centered data matrix

$$X_c = X_r Q = UDQ = UDV^T$$

 $\sigma_1 \ge \dots \ge \sigma_d \ge 0$

• **Principal components:** Orthonormal basis $\{\hat{v}_1, \dots, \hat{v}_d\}$ of the rotation matrix

$$Q^T = V = \begin{pmatrix} | & & | \\ \hat{v}_1 & \dots & \hat{v}_d \\ | & & | \end{pmatrix} \in \mathbb{R}^{d \times d}$$

are the major / minor axes of the data point ellipsoid

• Variance: Singular value

$$\sigma_i = \|\vec{u}_i\|$$

is (proportional to) the data variation along the i^{th} principal component axis

• **Dimension reduction:** Keep only the first k columns of X_r (with highest variances σ_i 's)

$$X_r = \begin{bmatrix} k & d-k \\ & & \\ & & \\ & & \\ & & \end{bmatrix} \in \mathbb{R}^{n \times d}$$

Eigenvalue and Eigenvector

• Let $A \in \mathbb{R}^{d \times d}$ be a square matrix. If a non-zero vector $\vec{v} \in \mathbb{R}^d$ satisfies

$$A\vec{v} = \lambda\vec{v}$$

for some $\lambda \in \mathbb{R}$, then \vec{v} is an eigenvector for A with corresponding eigenvalue λ

• Geometrically, A transforms \vec{v} by simply scaling it by λ

e.g.
$$A = \begin{pmatrix} 2 & 3 \\ 4 & -2 \end{pmatrix} \qquad \vec{v} = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \qquad \lambda = -4$$

e.g.
$$A = \begin{pmatrix} 5 & 0 \\ 0 & 0 \end{pmatrix} \qquad \vec{v} = \begin{pmatrix} 0 \\ 3 \end{pmatrix} \qquad \lambda = 0$$

e.g.
$$A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix} \qquad \vec{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \lambda_1 = 4$$

$$\vec{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 $\lambda_2 = -2$

Finding Eigenvalue

- Question: How to find all eigenvalues (if any) of A?
- The following statements are equivalent:
 - 1. λ is an eigenvalue of A
 - 2. $A\vec{v} = \lambda \vec{v}$ for some $\vec{v} \neq \vec{0}$
 - 3. Homogeneous system

$$(A - \lambda I_d)\vec{v} = \vec{0}$$

has a non-trivial $\vec{v} \neq \vec{0}$ solution

- 4. Matrix $A \lambda I_d$ is non-invertible
- 5. $\det(A \lambda I_d) = 0$

Example of $A - \lambda I_d$

e.g.

$$A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$$
 $\vec{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\lambda = 4$

$$\begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 4 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \end{pmatrix} - 4 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 - 4 & 3 \\ 3 & 1 - 4 \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$A - \lambda I_d$$

Characteristic Polynomial

The function

$$f(\lambda) = \det(A - \lambda I_d)$$

is called the **characteristic polynomial** of matrix $A \in \mathbb{R}^{d \times d}$

Facts:

- 1. It is a d^{th} degree polynomial
- 2. Roots / zeros are eigenvalues of A
- 3. There can be at most d distinct roots i.e. eigenvalues
- 4. No simple formula to solve for roots of 5th+ degree polynomial

Eigenvalue Examples

e.g.

$$A = \begin{pmatrix} 2 & 3 \\ 4 & -2 \end{pmatrix}$$

$$f(\lambda) = \det(A - \lambda I_2)$$

$$= \det\begin{pmatrix} 2 - \lambda & 3 \\ 4 & -2 - \lambda \end{pmatrix} = \lambda^2 - 16$$

It has 2 distinct eigenvalues

$$\lambda_1 = 4$$
 $\lambda_2 = -4$

Eigenvalue Examples

e.g.

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
$$f(\lambda) = \det \begin{pmatrix} 2 - \lambda & 0 \\ 0 & 2 - \lambda \end{pmatrix} = (2 - \lambda)^2$$

Only one eigenvalue $\lambda = 2$

e.g.

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
$$f(\lambda) = \det \begin{pmatrix} 0 - \lambda & 1 \\ -1 & 0 - \lambda \end{pmatrix} = \lambda^2 + 1$$

No (real number) eigenvalue

Triangular Matrix Eigenvalues

For upper or lower triangular (including diagonal) matrix

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1d} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_{dd} \end{pmatrix} \in \mathbb{R}^{d \times d}$$

Characteristic polynomial is

$$f(\lambda) = \det(A - \lambda I_d)$$

= $(a_{11} - \lambda) \times \cdots \times (a_{dd} - \lambda)$

Eigenvalues are the diagonal entries of A

$$\lambda_1 = a_{11}, \dots, \lambda_d = a_{dd}$$

Finding Eigenvector

- Question: If $A \in \mathbb{R}^{d \times d}$ has eigenvalue λ , how to find all corresponding eigenvectors \vec{v} ?
- Answer: Just non-zero solutions of the homogeneous system

$$(A - \lambda I_d)\vec{v} = \vec{0}$$

The null space

$$E_{\lambda} = \text{null}(A - \lambda I_d)$$
$$= \{ \vec{v} : (A - \lambda I_d) \vec{v} = \vec{0} \}$$

is called the **eigenspace** for λ

Eigenspace Examples

e.g.

$$A = \begin{pmatrix} 2 & 3 \\ 4 & -2 \end{pmatrix}$$

$$\lambda_1 = 4$$
 $A - \lambda_1 I_2 = \begin{pmatrix} -2 & 3 \\ 4 & -6 \end{pmatrix}$

$$E_4 = \operatorname{span}\left(\begin{pmatrix} 3 \\ 2 \end{pmatrix}\right)$$

$$\lambda_2 = -4 \qquad A - \lambda_2 I_2 = \begin{pmatrix} 6 & 3 \\ 4 & 2 \end{pmatrix}$$
$$E_{-4} = \operatorname{span}\left(\begin{pmatrix} 1 \\ -2 \end{pmatrix}\right)$$

Eigenspace Examples

e.g.

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

Only one eigenvalue $\lambda = 2$

$$A - \lambda I_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$E_2 = \mathbb{R}^2 = \operatorname{span}\left(\binom{1}{0}, \binom{0}{1}\right)$$

$$\uparrow \qquad \uparrow$$
still can find 2 linearly independent eigenvectors

e.g.

$$A = \begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}$$

Only one eigenvalue $\lambda = 2$

$$A - \lambda I_2 = \begin{pmatrix} 0 & 3 \\ 0 & 0 \end{pmatrix}$$

$$E_2 = \operatorname{span}\left(\binom{1}{0}\right)$$

only 1 linearly independent eigenvector

Diagonalization

- A matrix $A \in \mathbb{R}^{d \times d}$ is **diagonalizable** if:
 - 1. It has d linearly independent eigenvectors $\vec{v}_1, ..., \vec{v}_d$
 - 2. So enough eigenvectors to form a basis for \mathbb{R}^d
- Let $\lambda_1, ..., \lambda_d$ be the corresponding (not necessarily distinct) eigenvalues

Diagonalizable vs Not Examples

e.g.

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

$$\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \& \lambda_1 = 2 \qquad \vec{v}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \& \lambda_2 = 2$$

e.g.

$$A = \begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}$$

Only has one (1-dimensional) eigenspace E_2 so A cannot have two linearly independent eigenvectors

$$E_2 = \operatorname{span}\left(\binom{1}{0}\right)$$

Eigen-Decomposition / Spectral Decomposition

• Suppose $A \in \mathbb{R}^{d \times d}$ is diagonalizable with d linearly independent eigenvectors

$$\vec{v}_1, \dots, \vec{v}_d$$

and corresponding eigenvalues $\lambda_1, \dots, \lambda_d$

• Let

$$V = \begin{pmatrix} | & & | \\ \vec{v}_1 & \dots & \vec{v}_d \\ | & & | \end{pmatrix} \in \mathbb{R}^{d \times d}$$

$$D = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_d \end{pmatrix} \in \mathbb{R}^{d \times d}$$

• Since $A \vec{v}_i = \lambda_i \vec{v}_i$ for each $i=1,\ldots,d$, we can write

$$A\begin{pmatrix} | & & | \\ \vec{v}_1 & \dots & \vec{v}_d \\ | & & | \end{pmatrix}$$

$$=\begin{pmatrix} | & & | \\ \vec{v}_1 & \dots & \vec{v}_d \\ | & & | \end{pmatrix} \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_d \end{pmatrix}$$

In other words,

$$AV = VD$$

Eigen-Decomposition / Spectral Decomposition

 Since V has d linearly independent column vectors, it is invertible. We can rewrite

$$AV = VD$$

as

$$A = VDV^{-1}$$

 We decompose A into a product of (structurally simpler) invertible and diagonal matrices e.g.

$$A = \begin{pmatrix} 2 & 3 \\ 4 & -2 \end{pmatrix}$$
$$= \begin{pmatrix} 3 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & -4 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & -2 \end{pmatrix}^{-1}$$

e.g.

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}^{-1}$$

Non-Uniqueness of Eigen-Decomposition

Can re-order the eigenvectors

$$A = \begin{pmatrix} 2 & 3 \\ 4 & -2 \end{pmatrix}$$

$$= \begin{pmatrix} 3 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & -4 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & -2 \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} 1 & 3 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} -4 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ -2 & 2 \end{pmatrix}^{-1}$$

• **Convention 1:** Sort the eigenvalues

$$\lambda_1 \geq \cdots \geq \lambda_d$$

descending

Can scale each eigenvector

$$A = \begin{pmatrix} 2 & 3 \\ 4 & -2 \end{pmatrix}$$

$$= \begin{pmatrix} 3 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & -4 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & -2 \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} 15 & -1 \\ 10 & 2 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & -4 \end{pmatrix} \begin{pmatrix} 15 & -1 \\ 10 & 2 \end{pmatrix}^{-1}$$

 Convention 2: Use normalized unit eigenvectors

$$\begin{pmatrix} 3/\sqrt{13} & 1/\sqrt{5} \\ 2/\sqrt{13} & -2/\sqrt{5} \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & -4 \end{pmatrix} \begin{pmatrix} 3/\sqrt{13} & 1/\sqrt{5} \\ 2/\sqrt{13} & -2/\sqrt{5} \end{pmatrix}^{-1}$$

Diagonalizable Matrix Properties

• If $A \in \mathbb{R}^{d \times d}$ is diagonalizable with

$$A = VDV^{-1}$$

- Facts:
 - 1. Determinant

$$\det(A) = \det(D) = \lambda_1 \times \dots \times \lambda_d$$

2. Trace

$$tr(A) = tr(D) = \lambda_1 + \dots + \lambda_d$$

3. Rank

$$rank(A) = rank(D)$$

= number of non-zero λ_i 's

- Facts (cont'd):
 - 4. Compute matrix power easily

$$A^k = (VDV^{-1})(VDV^{-1}) \dots (VDV^{-1})$$

= VD^kV^{-1}

e.g. Markov chain k^{th} step transition probability matrix

Set of eigenvalues is called spectrum of A.
 It captures a lot of characteristics of the matrix.

Diagonalizability

- Question: How do we know if a matrix $A \in \mathbb{R}^{d \times d}$ is diagonalizable i.e. its eigenspaces have enough dimensions together to yield d linearly independent eigenvectors?
- Answer: In general, it is difficult to tell unless we do the computation to obtain the eigenspaces and their dimensions

Different Eigenvalues

• Fact: Eigenvectors $\vec{v}_1, ..., \vec{v}_k$ that correspond to different eigenvalues $\lambda_1 \neq \cdots \neq \lambda_k$ are always linearly independent

e.g.

$$A = \begin{pmatrix} 2 & 3 \\ 4 & -2 \end{pmatrix}$$

$$\lambda_1 = 4$$
 $E_4 = \operatorname{span}\left(\binom{3}{2}\right)$

$$\lambda_2 = -4$$
 $E_{-4} = \operatorname{span}\left(\binom{1}{-2}\right)$

Not coincident that eigenvectors from E_4 and E_{-4} are linearly independent

Totally Distinct Eigenvalues

• Fact: If a matrix $A \in \mathbb{R}^{d \times d}$ has d distinct eigenvalues

$$\lambda_1 \neq \cdots \neq \lambda_d$$

then

- 1. Eigenspaces E_{λ_1} , ..., E_{λ_d} are all 1-dimensional
- 2. Choose an eigenvector $\vec{v}_i \in E_{\lambda_i}$ then $\{\vec{v}_1, \dots, \vec{v}_d\}$ is linearly independent
- 3. A is diagonalizable

- But the converse is not true i.e. this is a sufficient but not necessary condition
- A matrix with repeated eigenvalues can still be diagonalizable

e.g.

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1/\sqrt{2} \\ -1 & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1/\sqrt{2} \\ -1 & 1/\sqrt{2} \end{pmatrix}^{-1}$$

Symmetric Matrix is Orthogonally Diagonalizable

- **Fact:** If $A \in \mathbb{R}^{d \times d}$ is symmetric, then
 - 1. It has eigenvalue(s)
 - 2. It has *d* linearly independent eigenvectors i.e. enough
 - 3. It is diagonalizable
 - 4. Eigenvectors \vec{v}_i and \vec{v}_j for distinct eigenvalues $\lambda_i \neq \lambda_j$ are orthogonal

$$\vec{v}_i \perp \vec{v}_i$$

e.g.

$$A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$$

$$\lambda_1 = 4 \qquad E_4 = \operatorname{span}\left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}\right)$$

$$\lambda_2 = -2 \qquad E_{-2} = \operatorname{span}\left(\begin{pmatrix} 1 \\ -1 \end{pmatrix}\right)$$

e.g.

$$A = \begin{pmatrix} 2 & 3 \\ 4 & -2 \end{pmatrix}$$

$$\lambda_1 = 4 \qquad E_4 = \operatorname{span}\left(\begin{pmatrix} 3 \\ 2 \end{pmatrix}\right)$$

$$\lambda_2 = -4 \qquad E_{-4} = \operatorname{span}\left(\begin{pmatrix} 1 \\ -2 \end{pmatrix}\right)$$

Symmetric Matrix is Orthogonally Diagonalizable

- **Fact:** If $A \in \mathbb{R}^{d \times d}$ is symmetric, then
 - 4. Eigenvectors from different eigenspaces $E_{\lambda_i} \neq E_{\lambda_j}$ are already orthogonal
 - Basis within each eigenspace can made orthogonal using Gram-Schmidt orthogonalization process
 - 6. Overall, A has an orthonormal basis of eigenvectors $\hat{v}_1, \dots, \hat{v}_d$

e.g. $A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ $E_2 = \mathbb{R}^2 = \operatorname{span}\left(\binom{1}{1}, \binom{2}{2}\right)$

orthonormal eigenvectors

by Gram-Schmidt

Spectral Theorem

- **Fact:** If $A \in \mathbb{R}^{d \times d}$ is symmetric, then
 - 6. It has an orthonormal basis of eigenvectors $\hat{v}_1, ..., \hat{v}_d$
 - 7. Can be decomposed into

$$A = QDQ^T$$

$$Q = \begin{pmatrix} | & & | \\ \hat{v}_1 & \dots & \hat{v}_d \\ | & & | \end{pmatrix} \in \mathbb{R}^{d \times d}$$

$$D = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_d \end{pmatrix} \in \mathbb{R}^{d \times d}$$

Singular Value and Singular Vector

• For general $A \in \mathbb{R}^{n \times d}$, its SVD is

$$AV = UD$$

$$A\begin{pmatrix} | & & | \\ \hat{v}_1 & \dots & \hat{v}_d \\ | & & | \end{pmatrix}$$

$$= \begin{pmatrix} | & & | \\ \hat{u}_1 & \dots & \hat{u}_d \\ | & | \end{pmatrix} \begin{pmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_d \end{pmatrix}$$

$$A \hat{v}_i = \sigma_i \hat{u}_i \quad \text{for } i=1,\dots,d$$
 left singular vector singular value

Principal Component Analysis via Cov(X)

- Question: Is PCA related to spectral decomposition of the (symmetric) covariance matrix Cov(X) of data X?
- Method 1: Do spectral decomposition

$$Cov(X) = C = QDQ^T$$

$$D = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_d \end{pmatrix}$$

- **Answer:** Yes. Centered data matrix X_c and its covariance matrix C are related:
 - 1. Eigenvectors of C are Q = V are left singular vectors of X_C
 - 2. Eigenvalues of C and singular values of X_c are related

$$\lambda_i = \sigma_i^2/n$$

• Method 2: Do SVD on data $X_c = U\Sigma V^T$

$$C = \frac{1}{n} X_c^T X_c = \frac{1}{n} (V \Sigma^T U^T) (U \Sigma V^T) = \frac{1}{n} V \Sigma^2 V^T = V \begin{pmatrix} \sigma_1^2 / n & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_d^2 / n \end{pmatrix} V^T$$

Total Variance and Variance Explained

$$Cov(X) = \begin{pmatrix} Var(X_1) & \dots & Cov(X_1, X_d) \\ \vdots & \ddots & \vdots \\ Cov(X_d, X_1) & \dots & Var(X_d) \end{pmatrix} = Q \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_d \end{pmatrix} Q^T$$

• **Total variance** in the data *X* is

$$Var(X_1) + \cdots + Var(X_d) = tr(Cov(X)) = \lambda_1 + \cdots + \lambda_d$$

$$\lambda_i = egin{pmatrix} {\sf variance\ along\ } i^{\sf th}\ {\sf principal} \\ {\sf component\ direction\ } \widehat{v}_i \end{pmatrix} \propto i^{\sf th}\ {\sf axis\ length\ of\ the\ data\ ellipsoid}$$

• Percent of variance explained by the first k principal components (out of all d) is

$$\frac{\lambda_1 + \dots + \lambda_k}{\lambda_1 + \dots + \lambda_d} = \frac{\sigma_1^2 + \dots + \sigma_k^2}{\sigma_1^2 + \dots + \sigma_d^2} \in (0,1)$$

Matrix Invertibility Criteria (cont'd)

- The following statements are equivalent:
 - 1. The matrix $A \in \mathbb{R}^{d \times d}$ is invertible
 - 2. The matrix A^T is invertible
 - 3. The determinant $det(A) \neq 0$
 - 4. The d row (or column) vectors of A are linearly independent / span \mathbb{R}^d / is a basis for \mathbb{R}^d
 - 5. The matrix A has full rank d
 - 6. The system $A\vec{x} = \vec{0}$ only has trivial solution $\vec{x} = \vec{0}$
 - 7. $null(A) = \{\vec{0}\}\$
 - 8. $\operatorname{nullity}(A) = 0$
 - 9. The system $A\vec{x} = \vec{b}$ has unique solution $\vec{x} = A^{-1}\vec{b}$
 - 10. $\lambda = 0$ is not an eigenvalue of A
 - 11. All singular values $\sigma_i > 0$ of A are positive