10-26-2018 Keras API Functions

```
model.add(layers.Conv2D(32, (3, 3), activation='relu', input shape=(28, 28, 1)))
2
model.add(layers.MaxPooling2D((2, 2)))
3
model.add(layers.Flatten())
4
model.add(layers.Dense(64, activation='relu'))
 5
 tf.keras.layers.Dropout(0.2)(fc_1)
 6
 model.summary()
```

10-26-2018 ConvNet Architecture Design

Step 1. Repeating conv2D() layer and MaxPooling() layer

Example

1 model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))

2 model.add(layers.MaxPooling2D((2, 2)))

6 model.summary()

To display the network architecture

10-26-2018 3 ConvNet Examples

10-26-2018 Comparison of 3 ConvNets

Table 1. Three well trained convnet examples

1 convnet1	Satellite imagery	40K images	ConvPool1+ConvPool2+Flatten+Den1+Den2
2 convnet2	NIST digits 0-9	60K images	ConvPool1+ConvPool2+Conv+Flatten+Den1+Den2
3 convnet3	Chollet cat-dog	1K images	ConvPool1+ConvPool2+ConvPool3 +ConvPool4
			+Flatten+Den1+Den2

Table 2. Sample code for 3 well trained convnets

Network	Programs	
convnet1	5model.py	
convnet2	7convnets-NumeralDetection-ch05.py	
convnet3	8convnets-SmallData-cats-dogs-ch05.py	

10-26-2018 3 ConvNet Examples

10-26-2018 Dense Layer Output Design

Example: NIST 10 digits (0-9) convnet Dense layer

from keras import models from keras import layers

network = models.Sequential() network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,))) network.add(layers.Dense(10, activation='softmax'))

Sample code : https://github.com/fchollet/deep-learning-with-python-notebooks

The network consists of 2 Dense layers, densely-connected ("fully-connected") neural layers. The output layer is a 10-way "softmax" layer, it returns an array of 10 probability scores (summing to 1). Each score will be the probability that the current digit image belongs to one of our 10 digit classes.

Illustration of the softmax block diagram from Milos Hauskrecht, milos@cs.pitt.edu,5329 Sennott Square

CAT-II Path Primitives

2018F Harry Li, Ph.D.

9-25-2018 Primitive Features for CAT-II Path Classification

1. r_ang_big 2. r_ang_med 3. r_ang_sml 4. r_ang_hor 5. l_ang_big 6. l_ang_med 7. l_ang_sml 8. l_ang_hor 9. cr_ang_big 10. cr_ang_big 11. cr_ang_sml 12. cl_ang_big 13. cl_ang_med	right angle big right angle medium right angle small right angle horizon left angle big left angle medium left angle small left angle horizon centeral-right big central angle medium central angle small centeral-right angle
12. cl_ang_big	centeral-right angle
13. cl_ang_med	central angle medium
14. cl_ang_sml	central angle small
15. c_ang_big	centeral-angle big
16. c_ang_med	central-ang medium
17. c_ang_sml	central-ang small
18. full	full block

10-26-2018 Softmax Output Design for CATIII

 r_ang_big r_ang_med r_ang_sml r ang hor 	right angle big right angle medium right angle small right angle horizon
5. Lang big	left angle big
6. l_ang_med	left angle medium
7. l_ang_sml 8. l ang hor	left angle small left angle horizon
9. cr_ang_big 10. cr_ang_med	centeral-right big central angle medium
11. cr_ang_sml	central angle small
12. cl_ang_big 13. cl ang med	centeral-right angle central angle medium
14. cl_ang_sml	central angle small
15. c_ang_big	centeral-angle big
16. c_ang_med 17. c ang sml	central-ang medium central-ang small
18. full	full block

Where Prob(y=0 | X) + Prob(y=1 | X) + ... + Prob(y=17 | X) = 1

