# Stochastic Games with Branching Time Winning Objectives

Antonín Kučera
(a joint work with Tomáš Brázdil and Vojtěch Forejt)

Faculty of Informatics, Masaryk University, Brno

#### Simple stochastic games



- $G = (V, E, (V_{\square}, V_{\Diamond}, V_{\bigcirc}), Prob)$ , each vertex has a successor
- Markov chains:  $V_{\square} = V_{\lozenge} = \emptyset$
- Markov decision processes:  $V_{\Diamond} = \emptyset$

#### **Strategies**

Let  $G = (V, E, (V_{\square}, V_{\lozenge}, V_{\bigcirc}), Prob)$  be a game.

- A strategy for player  $\square$  is a function  $\sigma$  which to every  $wv \in V^*V_{\square}$  assigns a probability distribution over the set of outgoing edges of v.
- Memory: history-dependent (H), finite-memory (F), memoryless (M)
- Randomization: randomized (R), deterministic (D)
- Thus, we obtain the classes of MD, MR, FD, FR, HD, and HR strategies.

## Plays and Winning Objectives

- Each pair  $(\sigma,\pi)$  of strategies for player  $\square$  and player  $\lozenge$  determine a unique play  $G^{(\sigma,\pi)}$ , which is a Markov chain where  $V^+$  is the set of states and transitions are defined accordingly (if  $\sigma,\pi$  are memoryless, the set of states of  $G^{(\sigma,\pi)}$  can be just V).
- A winning objective is some property P of states in Markov chains that is to be achieved by player □ and spoilt by player ◊.
- A strategy σ is winning for player □ in a vertex v iff P is valid in the state v of G<sup>(σ,π)</sup> for every strategy π of player ◊. Similarly, we define a winning strategy for player ◊.

## Winning objectives

- Linear-time objectives
  - ⋆ Qualitative/quantitative Büchi, co-Büchi, Rabin, Street, Muller, etc.
  - These games are determined, have equilibria, winning/optimal strategies are memoryless or require only a finite memory, etc.
- Branching-time objectives
  - Specified by formulae of branching-time logics that are interpreted over Markov chains.
  - $\star \mathcal{G}^{=1}(p \Rightarrow \mathcal{F}^{\geq 0.1}q)$
  - \* Properties of stochastic games with branching-time objectives are quite different from the ones with linear-time objectives.

## Properties of games with branching-time objectives (I)

· Memory and randomization help:



## Properties of games with branching-time objectives (I)

· Memory and randomization help:



Consider the following game:



- $\mathcal{X}^{=1}p \wedge \mathcal{F}^{=1}q$ . Requires memory.
- $\mathcal{X}^{>0}p \wedge \mathcal{X}^{>0}q$ . Requires randomization.
- $\mathcal{X}^{>0}p \wedge \mathcal{X}^{>0}q \wedge \mathcal{F}^{=1}\mathcal{G}^{=1}q$ . Requires both memory and randomization.
- In some cases, infinite memory is required.

## Properties of games with branching-time objectives (II)

- The games are not determined (for any strategy type).
- $\mathcal{F}^{=1}(a \lor c) \lor \mathcal{F}^{=1}(b \lor d) \lor (\mathcal{F}^{>0}c \land \mathcal{F}^{>0}d)$



# Who wins the game (MD strategies)?

#### Theorem

The existence of a winning MD strategy for player  $\square$  is  $\Sigma_2 = NP^{NP}$ -complete.

# Who wins the game (MD strategies)?

#### Theorem

The existence of a winning MD strategy for player  $\square$  is  $\Sigma_2 = NP^{NP}$ -complete.

• The membership to  $\Sigma_2$  follows easily.

## Who wins the game (MD strategies)?

#### Theorem

The existence of a winning MD strategy for player  $\square$  is  $\Sigma_2 = NP^{NP}$ -complete.

- The membership to Σ<sub>2</sub> follows easily.
- The Σ<sub>2</sub>-hardness can be established as follows:
  - ★ Let  $\exists x_1, \dots, x_n \forall y_1, \dots, y_m B$  be a  $\Sigma_2$  formula.
  - ★ Consider the following game:



★ Let  $\varphi$  be the PCTL formula obtained from B by substituting each occurrence of  $x_i$ ,  $\neg x_i$ ,  $y_j$ , and  $\neg y_j$  with  $\mathcal{F}^{>0}p_i$ ,  $\mathcal{F}^{>0}\widehat{p}_i$ ,  $\mathcal{F}^{>0}q_j$ , and  $\mathcal{F}^{>0}\widehat{q}_i$ , respectively.

# Who wins the game (MR strategies)?

#### Theorem

The existence of a winning MR strategy for player  $\square$  is  $\Sigma_2$ -hard and in **EXPTIME**. For the qualitative fragment of PCTL, the problem is  $\Sigma_2$ -complete.

## Who wins the game (HD, HR, FD, FR strategies)?

#### Theorem

The existence of a winning HD (or HR) strategy for player  $\square$  in MDPs is highly undecidable (and  $\Sigma_1^1$ -complete). Moreover, the existence of a winning FD (or FR) strategy is also undecidable.

## Who wins the game (HD, HR, FD, FR strategies)?

#### Theorem

The existence of a winning HD (or HR) strategy for player  $\square$  in MDPs is highly undecidable (and  $\Sigma_1^1$ -complete). Moreover, the existence of a winning FD (or FR) strategy is also undecidable.

- The result holds for the  $\mathcal{L}(\mathcal{F}^{=1/2},\mathcal{F}^{=1},\mathcal{F}^{>0},\mathcal{G}^{=1})$  fragment of PCTL (the role of  $\mathcal{F}^{=1/2}$  is crucial).
- The proof is obtained by reduction of the problem whether a given non-deterministic Minsky machine has an infinite recurrent computation.

#### The undecidability proof

• A non-deterministic Minsky machine  $\mathcal{M}$  with two counters  $c_1, c_2$ :

$$1: ins_1, \cdots, n: ins_n$$

where each *ins*; takes one of the following forms:

- $\star c_i := c_i + 1$ ; goto k
- \* if  $c_j$ =0 then goto k else  $c_j := c_j 1$ ; goto m
- \* *goto* {*k or m*}

#### The undecidability proof

• A non-deterministic Minsky machine  $\mathcal{M}$  with two counters  $c_1, c_2$ :

$$1: ins_1, \cdots, n: ins_n$$

where each ins; takes one of the following forms:

- $\star c_j := c_j + 1$ ; goto k
- \* if  $c_j$ =0 then goto k else  $c_j := c_j 1$ ; goto m
- \* *goto* {*k or m*}
- The problem whether a given non-deterministic Minsky machine with two counters initialized to zero has an infinite computation that executes  $ins_1$  infinitely often is  $\Sigma_1^1$ -complete.

#### The undecidability proof

• A non-deterministic Minsky machine  $\mathcal{M}$  with two counters  $c_1, c_2$ :

$$1: ins_1, \cdots, n: ins_n$$

where each ins; takes one of the following forms:

- $\star c_j := c_j + 1$ ; goto k
- \* if  $c_j=0$  then goto k else  $c_j:=c_j-1$ ; goto m
- ★ goto {k or m}
- The problem whether a given non-deterministic Minsky machine with two
  counters initialized to zero has an infinite computation that executes ins<sub>1</sub>
  infinitely often is Σ<sup>1</sup><sub>1</sub>-complete.
- For a given machine  $\mathcal{M}$ , we construct a finite-state MDP  $G(\mathcal{M})$  and a formula  $\varphi \in \mathcal{L}(\mathcal{F}^{=1/2}, \mathcal{F}^{=1}, \mathcal{F}^{>0}, \mathcal{G}^{=1})$  such that  $\mathcal{M}$  has an infinite recurrent computation iff player  $\square$  has a winning HD (or HR) strategy for  $\varphi$  in a distingushed vertex v of  $G(\mathcal{M})$ .

## The construction of $G(\mathcal{M})$ and $\varphi$



# The construction of $G(\mathcal{M})$ and $\varphi$



# The construction of $G(\mathcal{M})$ and $\varphi$



- $I = J < \omega$  iff  $v \models \mathcal{F}^{>0}r \land \mathcal{F}^{=1/2}(p \lor q)$
- The probability of  $\mathcal{F}(p \lor q)$ :  $0.01 \underbrace{0 \cdots 0}_{l} 01 + 0.001 \underbrace{1 \cdots 1}_{J} 1$

 We restrict ourselves to qualitative fragments of probabilistic branching time logics.

- We restrict ourselves to qualitative fragments of probabilistic branching time logics.
- Even MDPs with qualitative PCTL objectives may require infinite memory.

- We restrict ourselves to qualitative fragments of probabilistic branching time logics.
- Even MDPs with qualitative PCTL objectives may require infinite memory.



$$\mathcal{G}^{>0}(\neg stop \wedge \mathcal{F}^{>0} stop)$$

- We restrict ourselves to qualitative fragments of probabilistic branching time logics.
- Even MDPs with qualitative PCTL objectives may require infinite memory.



 A winning strategy: if #left < #right use the red transition, otherwise use the green one.

- We restrict ourselves to qualitative fragments of probabilistic branching time logics.
- Even MDPs with qualitative PCTL objectives may require infinite memory.



 A winning strategy: if #left < #right use the red transition, otherwise use the green one.



#### The Result

#### **Theorem**

- The existence of a winning HD (or HR) strategy for player □ in MDPs with qualitative PECTL\* objectives is decidable in time which is polynomial in the size of MDP and doubly exponential in the size of the formula.
- Moreover, iff there is a winning HD (or HR) strategy, there is also a one-counter winning strategy and one can effectively construct a one-counter automaton which implements this strategy (the associated complexity bounds are the same as above).

#### Open problems

- Exact complexity bounds (e.g., the existence of a winning MR strategy for MDPs or stochastic games with PCTL objectives).
- How about stochastic games with qualitative branching-time objectives?
- How about infinite-state MDPs and stochastic games?