Formulario di MECCANICA e FLUIDODINAMICA

Velocità media $\overline{\mathbf{v}} = \frac{x_f - x_i}{t_f - t_i}$ accelerazione media $\overline{a} = \frac{\mathbf{v}_f - \mathbf{v}_i}{t_f - t_i}$

Equazioni cinematiche moto rettilineo accelerazione costante :

$$\mathbf{v}_{x} = \mathbf{v}_{0x} + a_{x}t$$
; ; $x - x_{0} = \mathbf{v}_{0x}t + \frac{1}{2}a_{x}t^{2}$; $x - x_{0} = \frac{1}{2}(\mathbf{v}_{x} + \mathbf{v}_{0x})t$
 $\mathbf{v}_{x}^{2} = \mathbf{v}_{0x}^{2} + 2a_{x}(x - x_{0})$; $\mathbf{v} = (\mathbf{v}_{iniz} + \mathbf{v}_{fin})/2$

Traiettoria proiettile: $y = \tan \theta_0 x - (\frac{g}{2v_0^2\cos^2\theta_0})x^2$; $v_{0x} = v_0\cos\theta_0$; $v_{0x} = v_0\sin\theta_0$

$$gittata = \frac{{v_0}^2}{g} \sin(2\theta_0) \qquad Y_{\text{max}} = \frac{{v_0}^2}{2g} \sin^2 \theta_0$$

Moto circolare uniforme: $v = \omega \cdot r$; $\omega = \frac{2\pi}{T}$; $a = \frac{v^2}{r} = \omega^2 \cdot r$

Legge del moto : $\vec{F} = m\vec{a}$

Forza peso: $\vec{F}_p = m\vec{g}$; (g=9.8 m/s^2); Forza elastica: $\vec{F}_e = -k(x-x_0)\vec{i}$

Forza gravitazionale: $\vec{F}_g = -\frac{GMm}{c^2} \hat{r}$; Forza attrito: $F_a = \mu \cdot N$

Piano inclinato: $F_{\parallel} = mg \cdot \sin \alpha$; $F_{\perp} = mg \cdot \cos \alpha$

Energia cinetica: $K = \frac{1}{2}m v^2$; Lavoro di una forza: $L = \int_{i}^{f} \vec{F} \cdot d\vec{s} \stackrel{k=\cos t \to \rightarrow}{\Rightarrow} \vec{F} \cdot \vec{s}$

Teorema dell'energia cinetica : $L = K_f - K_i$;

Potenza media: $\overline{P} = \frac{L}{\Delta t}$ **Potenza istantanea:** $P = \vec{F} \cdot \vec{v}$

Energia potenziale : $U_f - U_i = -\int_{x_i}^{x_f} F_x dx$

Energia potenziale molla elastica: $U_f - U_i = \frac{1}{2}k(x_f^2 - x_i^2)$ (per $x_0 = 0$)

Energia potenziale gravitazionale: $U_f - U_i = mg(h_f - h_i)$;

Conservazione energia meccanica : $K_i + U_i = K_f + U_f$

Quantità di moto: $\vec{p}=m\,\vec{\mathrm{v}}$; Conservazione quantità di moto: $\vec{p}_{1i}+\vec{p}_{2i}=\vec{p}_{1f}+\vec{p}_{2f}$

Impulso della forza: $\vec{I} = \vec{F} \cdot \Delta t$ (valido per F costante); $\vec{I} = \vec{p}_{fin} - \vec{p}_{iniz}$

Oscillazioni: $\frac{d^2x}{dt^2} = -\frac{k}{m}x$; $x(t) = A\cos(\omega t + \varphi)$; $T = \frac{2\pi}{\omega} = 2\pi\sqrt{\frac{m}{k}}$; $f = \frac{1}{T}$

Fluidi: $A_1 V_1 = A_2 V_2$; $p_2 = p_1 + \rho hg$; $p_1 + \frac{1}{2} \rho V_1^2 + \rho g h_1 = p_2 + \frac{1}{2} \rho V_2^2 + \rho g h_2$ $(1 \text{ atm} = 1.01 \times 10^5 \text{ Pa} = 760 \text{ mm Hg})$

Vettori: prodotto scalare: $\vec{a} \cdot \vec{b} = ab \cos \theta = a_x b_x + a_y b_y + a_z b_z$ prodotto vettoriale $\vec{a} \times \vec{b}$; $|\vec{a} \times \vec{b}| = ab \sin \theta$

equazione quadratica: $ax^2 + bx + c = 0$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Trigonometria $\sin \vartheta = (\text{cateto opposto a } \theta)/\text{ipotenusa}$

 $\cos \vartheta = (\text{cateto adiacente a }\theta)/\text{ipotenusa}$

 $\cos^2 \theta + \sin^2 \theta = 1$; $\tan \theta = \frac{\sin \theta}{\cos \theta}$