Long-context LLMs

CS 5624: Natural Language Processing Spring 2025

https://tuvllms.github.io/nlp-spring-2025

Tu Vu

FLASHATTENTION: Fast and Memory-Efficient Exact Attention with IO-Awareness

Tri Dao[†], Daniel Y. Fu[†], Stefano Ermon[†], Atri Rudra[‡], and Christopher Ré[†]

†Department of Computer Science, Stanford University ‡Department of Computer Science and Engineering, University at Buffalo, SUNY {trid,danfu}@cs.stanford.edu, ermon@stanford.edu, atri@buffalo.edu, chrismre@cs.stanford.edu

Why do we need to model longer sequences?

How to model longer sequences?

FlashAttention

Massive adoption

- Tiling and recomputation to reduce GPU memory IOs
 - Fast (3x) and
 memory efficient
 (10-20x) algorithm
 for exact attention
 - Longer sequences
 (up to 16K) yield
 higher quality

Attention mechanism review

all computations are parallelized

Attention mechanism review (cont'd)

all computations are parallelized

Attention mechanism review (cont'd)

masking out all values in the input of the softmax which correspond to illegal connections

Quadratic complexity

The time complexity of self-attention is quadratic in the input length $O(n^2)$

Attention mechanism review (cont'd)

Typical sequence length N: 1K – 8K Head dimension d: 64 – 128

Softmax(
$$[s_1, \dots, s_N]$$
) = $\left[\frac{e^{s_1}}{\sum_i e^{s_i}}, \dots, \frac{e^{s_N}}{\sum_i e^{s_i}}\right]$

 $O = Softmax(QK^T)V$

Attention mechanism review (cont'd)

Approximate attention

tradeoff quality for speed fewer FLOPs

does not result in an actual wall clock speedup

GPU compute model & memory hierarchy

2. Data moved to compute units & SRAM for computation

1. Inputs start out in HBM (GPU memory)

3. Output written back to HBM

GPU SRAM: 19 TB/s (20 MB)
GPU HBM: 1.5 TB/s (40 GB)

Can we exploit the memory asymmetry to get speed up?

Data movement is the key bottleneck

How to reduce HBM reads/writes: compute by blocks

Challenges:

- Compute softmax normalization without access to full input
- Backward without the large attention matrix from forward

Approaches:

- Tiling: Restructure algorithm to load block by block from HBM to SRAM to compute attention
- Recomputation: Don't store attention matrix from forward, recompute it in the backward

Tiling

 Decomposing large softmax into smaller ones by scaling

$$\operatorname{softmax}([A_1, A_2]) = [\alpha \times \operatorname{softmax}(A_1), \beta \times \operatorname{softmax}(A_2)]$$

$$\operatorname{softmax}([A_1, A_2]) \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \alpha \times \operatorname{softmax}(A_1)V_1 + \beta \times \operatorname{softmax}(A_2)V_2$$

FlashAttention - Tri Dao | Stanford MLSys #67

$$\operatorname{softmax}([a,b,c,d,e]) = \left[\frac{e^a}{e^a + e^b + e^c + e^d + e^e}, \frac{e^b}{e^a + e^b + e^c + e^d + e^e}, \frac{e^c}{e^a + e^b + e^c + e^d + e^e}, \frac{e^d}{e^a + e^b + e^c + e^d + e^e}, \frac{e^e}{e^a + e^b + e^c + e^b + e^e}, \frac{e^e}{e^a + e^b + e^c + e^b + e^e}, \frac{e^e}{e^a + e^b + e^c + e^b + e^e}, \frac{e^e}{e^a + e^b +$$

$$\operatorname{softmax}([a,b,c,d,e]) = \left[\frac{e^a + e^b + e^c}{e^a + e^b + e^c + e^d + e^e} \cdot \left(\frac{e^a}{e^a + e^b + e^c} ; \frac{e^b}{e^a + e^b + e^c} ; \frac{e^c}{e^a + e^b + e^c} \right) ; \frac{e^d + e^e}{e^a + e^b + e^c + e^d + e^e} \cdot \left(\frac{e^d}{e^d + e^e} ; \frac{e^e}{e^d + e^e} \right) \right]$$

; denotes concatenation note that the terms involving $e^a + e^b + e^c$ cancel out each other same for the $e^d + e^e$ terms

$$\operatorname{softmax}([a,b,c,d,e]) = \underbrace{\left[rac{e^a + e^b + e^c}{e^a + e^b + e^c + e^d + e^e}
ight)}_{egin{array}{c} e^a + e^b + e^c + e^d + e^e \end{array}}_{egin{array}{c} e^a + e^b + e^c + e^d + e^e \end{array}} \operatorname{softmax}([a,b,c]) \underbrace{\left[rac{e^d + e^e}{e^a + e^b + e^c + e^d + e^e}
ight)}_{egin{array}{c} e^a + e^b + e^c + e^d + e^e \end{array}}_{egin{array}{c} e^a + e^b + e^c + e^d + e^e \end{array}} \operatorname{softmax}([a,b,c]) \underbrace{\left[rac{e^d + e^e}{e^a + e^b + e^c + e^d + e^e}
ight)}_{egin{array}{c} e^a + e^b + e^c + e^d + e^e \end{array}}_{egin{array}{c} e^a + e^b + e^c + e^d + e^e \end{array}}$$

Tiling for matrix multiplication

B C

 We can view the computation as decomposing if we consider subsets of rows/columns

$$C_{(1,1):(3,3)} = A_{(1,1):(3,9)} \times B_{(1,1):(9,3)}$$

Tiling for matrix multiplication (cont'd)

- Tiling capitalizes on this decomposition
- Each output tile is computed by multiplying a pair of input tiles and adding it to the appropriate output tile

$$A = \begin{bmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \end{bmatrix} \quad B = \begin{bmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \\ B_{20} & B_{21} \end{bmatrix} \quad \text{with each } C_{ij} \in \mathbb{R}^{3 \times 3}$$
 with each $A_{ij} \in \mathbb{R}^{3 \times 3}$ with each $B_{ij} \in \mathbb{R}^{3 \times 3}$ and $B_{ij} \in \mathbb{R}^{3 \times 3}$ with each $B_{ij} \in \mathbb{R}^{3 \times 3}$ and $B_{ij} \in \mathbb{R}^{3 \times 3}$ with each $B_{ij} \in \mathbb{R}^{3 \times 3}$ and B_{ij}

$$C = \begin{bmatrix} C_{00} & C_{01} \\ C_{10} & C_{11} \end{bmatrix}$$
 with each $C_{ij} \in \mathbb{R}^{3 \times 3}$
$$C_{00} = A_{00}B_{00} + A_{01}B_{10} + A_{02}B_{20}$$

$$C_{01} = A_{00}B_{01} + A_{01}B_{11} + A_{02}B_{21}$$

$$C_{10} = A_{10}B_{00} + A_{11}B_{10} + A_{12}B_{20}$$

$$C_{11} = A_{10}B_{01} + A_{11}B_{11} + A_{12}B_{21}$$

Tiling for matrix multiplication (cont'd)

large/slow memory

 Tiling enables matrix
 multiplication of two very large matrices to capitalize on the small amount of fast memory on a device (e.g. GPU)

Start by putting

the input

matrices and

storage for the output matrix

into large/slow

A

$$C_{00} = A_{00}B_{00} + A_{01}B_{10} + A_{02}B_{20}$$

X

$$X = A_{00}$$

 $Y = B_{00}$
 $Z = XY$
 $X = A_{01}$ $X = A_{02}$
 $Y = B_{10}$ $Y = B_{20}$
 $Z = Z + XY$ $Z = Z + XY$
 $C_{00} = Z$

Tiling (cont'd)

- 1. Load inputs by blocks from HBM to SRAM.
- 2. On chip, compute attention output with respect to that block.
- 3. Update output in HBM by scaling.

Demo

https://jacksoncakes.com/flashattention-fast-and-memory-efficient-exact-attention/

Recomputation (backward pass)

 By storing softmax normalization from forward (size N), quickly recompute attention in the backward from inputs in SRAM.

Attention	Standard	FlashAttention
GFLOPs	66.6	75.2 (<mark>个13%</mark>)
HBM reads/writes (GB)	40.3	4.4 (↓9x)
Runtime (ms)	41.7	7.3 (↓6x)

FlashAttention: 2-4x speedup, 10-20x memory reduction

Faster Training: MLPerf Record for Training BERT-large

- MLPerf: (highly optimized) standard benchmark for training speed
- Time to hit an accuracy of 72.0% on MLM from a fixed checkpoint, averaged across 10 runs on 8 x A100 GPUs

BERT Implementation	Training time (minutes)
Nvidia MLPerf 1.1 [58]	20.0 ± 1.5
FLASHATTENTION (ours)	17.4 ± 1.4

Faster Training, longer context

Faster Training, longer context

Thank you!