Linear Algebra Done Right of Sheldon Axler Notes

Diego R.R.

October 13, 2023

Contents

1	$\overline{\text{Vec}}$	etor Spaces	2
	1.1	R^n and C^n	2
	1.2	Definition of a Vector Space	2
	1.3	Subspaces	2
		1.3.1 exercises	2

Chapter 1

Vector Spaces

- 1.1 R^n and C^n
- 1.2 Definition of a Vector Space
- 1.3 Subspaces
- 1.3.1 exercises

Exercise 1. $7 U = \{(a_1, a_2) \in \mathbb{R}^2 : a_1, a_2 \in \mathbb{N}\}.$

Exercise 2. 8 Let $A = c(a_1, a_2), B = d(b_1, b_2)$, one example is $A \cup B$.

Exercise 3. 9 It is not subspace because it is true that for some $P = p_1 * p_2$, then (f+g)(x+P) = f(x+P) + g(x+P) = f(x) + g(x) = (f+g)(x). But only iff p_1 and p_2 are both rational numbers. The reason for that if not, then you can write some irrational number p_1 or p_2 as a rational which is a contradiction.

Exercise 4. 10 clear

Exercise 5. 11 clear

Exercise 6. 12 We have that $u+w\in U\cup W$, then assume that $W\nsubseteq U$ and $U\nsubseteq W$, then $\exists u$ such that $u\in U$ and $u\notin W$. Similarly, $\exists w$ such that $w\in W$ and $w\notin U$. Then $u+w\notin U\cup W$ which is a contradiction.