Sinais e Sistemas Electrónicos

Capítulo 5: Noções de Sistemas e Sinais

Sinais e Sistemas Electrónicos - 2023/2024

Sumário

- Nocão de sistema;
- Sinais: definição e classificação;
- Sinais nos domínios do tempo e da frequência;
- Resposta em frequência caso do circuito RC passa-baixo;
- O decibel (dB);
- Resposta de amplitude e de fase;
- Circuito RC passa-alto;
- Diagramas de Bode;
- Resposta ao degrau tempo de subida e tilt.

Sistema

Entidade que produz um conjunto de *sinais de saída* como resposta a um conjunto de *sinais entradas*.

E. Martins, DETI Universidade de Aveiro

5-3

Sinais e Sistemas Electrónicos - 2023/2024

Sinal

É uma função do tempo que traduz informação sobre um ou mais fenómenos.

- Os sinais apresentam-se, em geral, em função do tempo:
 - Velocidade dum veículo;
 - > Temperatura ambiente;
 - Ritmo cardíaco;
 - Tensão eléctrica da rede de distribuição;
 - Som de um tema musical;
 - **>** ...

Aqui estamos particularmente interessados em sinais que podem ser representados por tensões ou correntes eléctricas.

Classificação de sinais

Contínuo no tempo e na amplitude:

Definido só em *instantes discretos*mas continuo na amplitude: ainda é
um sinal analógico

Definido em instantes discretos e com valores discretos de amplitude:

sinal digital

E. Martins, DETI Universidade de Aveiro

5-5

Sinais e Sistemas Electrónicos - 2023/2024

Classificação de sinais

Uma função x(t) é periódica, com período T, se

$$x(t) = x(t+T)$$
 para qualquer t

Sinais nos domínios do tempo e da frequência

$$v(t) = V_m \cos(\omega t + \boldsymbol{\phi})$$

 $V_{\mbox{\scriptsize m}}$ - amplitude máxima (de pico)

T - periodo (s)

f - frequência (Hz) = 1/T

ω - frequência angular (rad/s)

Φ - ângulo de fase (rad ou °)

 V_{pp} - amplitude pico a pico

A sinusóide é o sinal mais importante no estudo de circuitos electrónicos.

Porquê?

E. Martins, DETI Universidade de Aveiro

5-7

Sinais e Sistemas Electrónicos - 2023/2024

Sinais nos domínios do tempo e da frequência

... porque segundo a série/transformada de Fourier, qualquer sinal pode ser descrito como uma soma de sinusoides de diferentes amplitudes e frequências.

$$v(t) = \frac{4V}{\pi} \left(\sin \omega_0 t + \frac{1}{3} \sin 3\omega_0 t + \frac{1}{5} \sin 5\omega_0 t + \dots \right)$$

sendo
$$\omega_0 = \frac{2\pi}{T}$$
 a frequência fundamental

Sinais e Sistemas Electrónicos - 2023/2024

Sinais e Sistemas Electrónicos – 2023/2024

Aula 14

Resposta em frequência

Resposta em frequência

- Caracteriza a forma como um sistema responde a sinusóides de diferentes frequências;
- È uma característica importante exactamente porque... qualquer sinal pode ser expresso como uma soma de sinusóides.

E. Martins, DETI Universidade de Aveiro

5-11

Sinais e Sistemas Electrónicos - 2023/2024

Resposta em frequência

A resposta em frequência do amplificador é expressa pela sua função de transferência:

$$\mathbf{H}(\omega) = \frac{\mathbf{V}_{0}(\omega)}{\mathbf{V}_{i}(\omega)}$$

que inclui a resposta de amplitude, $|\mathbf{H}(\omega)|$

e a resposta de fase, $\angle H(\omega)$

Resposta em frequência

- A resposta em amplitude traduz a gama de frequências que o sistema amplifica e a gama que tende a atenuar;
- ➤ O amplificador funciona como um *filtro* com uma dada *largura de banda*;

ω₁ e ω₂ são definidas como frequências de corte: para os quais o ganho é

$$\frac{H_{\rm max}}{\sqrt{2}}$$

E. Martins, DETI Universidade de Aveiro

5-13

Sinais e Sistemas Electrónicos - 2023/2024

Resposta em frequência do circuito RC (passa-baixo)

Usando a relação do divisor de tensão, podemos escrever

$$\mathbf{V_{0}}(\omega) = \frac{1/j\omega C}{R + 1/j\omega C} \mathbf{V_{i}}(\omega)$$

Neste caso, a função de transferência é

$$\mathbf{H}(\omega) = \frac{\mathbf{V}_{0}(\omega)}{\mathbf{V}_{i}(\omega)} = \frac{1}{1 + j\omega RC}$$

Exprimindo em módulo e fase...

$$|\mathbf{H}(\omega)| = \frac{1}{\sqrt{1 + (\omega RC)^2}}$$
 $\angle \mathbf{H}(\omega) = -arctg(\omega RC)$

Comportamento na frequência do RC passa baixo

• O módulo indica a atenuação introduzida pelo circuito na sinusóide de frequência ω.

Módulo:
$$|\mathbf{H}(\omega)| = \frac{1}{\sqrt{1 + (\omega RC)^2}}$$

Frequência de corte
$$\omega_c = \frac{1}{RC}$$

 Mas esta resposta de amplitude costuma representar-se numa medida logarítmica: em decibeis (dB):

$$20\log|\mathbf{H}(\omega)| (dB)$$

E. Martins, DETI Universidade de Aveiro

5-15

Sinais e Sistemas Electrónicos - 2023/2024

Comportamento na frequência do RC passa baixo

• A fase indica o desfasamento introduzido pelo circuito na sinusóide de frequência ω.

Fase:
$$\angle \mathbf{H}(\omega) = -arctg(\omega RC)$$

Frequência de corte
$$\omega_c = \frac{1}{\text{RC}}$$

Notar:

- Eixo X normalizado;
- * Escala logarítmica em X.

deciBel (dB)

- O deciBel corresponde a 1/10 da unidade base: o bel;
- Esta unidade surgiu no contexto dos primeiros sistemas de telefones para quantificar a perda de potência de um sinal numa ligação, definindo-se como:

$$\log \frac{P_{out}}{P_{in}}$$
 (bel) ou $10\log \frac{P_{out}}{P_{in}}$ (decibel)

- Porquê uma unidade baseada na função logaritmo?
- Porque a percepção de intensidade do ouvido humano é logarítmica: e.g. se a intensidade sonora aumentar 10X a sensação é de apenas uma duplicação da intensidade!
- Tratando-se de relações entre tensões, o decibel é definido como $20 \log \frac{V_{out}}{V_{in}} \quad (decibel)$

E. Martins, DETI Universidade de Aveiro

5-17

Sinais e Sistemas Electrónicos - 2023/2024

Resposta do RC passa-baixo (em dB)

$$20\log|\mathbf{H}(\omega)| = 20\log\frac{1}{\sqrt{1+(\omega/\omega_c)^2}}$$

- Para frequências muito baixas: $|\mathbf{H}(0)| \approx 1$ ou 0dB
- Para $\omega = \omega_c$:

$$|\mathbf{H}(\omega_c)| = 1/\sqrt{2}$$

ou

$$20\log(0.707) = -3dB$$

Resposta do RC passa-alto: diagrama de Bode

$$\left|\mathbf{H}(\omega)\right| = \frac{1}{\sqrt{1 + \left(\omega_c/\omega\right)^2}}$$
 $\omega_c = \frac{1}{RC}$

$$\omega_c = \frac{1}{RC}$$

• Para a resposta em amplitude o *Diagrama de Bode* é

E. Martins, DETI Universidade de Aveiro

5-19

Sinais e Sistemas Electrónicos - 2023/2024

Resposta ao degrau

Resposta ao degrau

- Traduz a forma com o sistema reage quando lhe é aplicado na entrada um *sinal em degrau*: variação abrupta entre dois valores;
- Na prática o que se faz é aplicar, não um degrau, mas um impulso ou uma onda quadrada;
- A resposta ao degrau permite inferir sobre a resposta em frequência.

E. Martins, DETI Universidade de Aveiro

5-21

Sinais e Sistemas Electrónicos - 2023/2024

Sistema tem o comportamento dum RC passa-baixo

- A velocidade com que o circuito responde ao degrau é quantificada pelo *tempo de subida*, *t_r*;
- t_r tempo que $v_0(t)$ leva para subir de 10% de V_P até 90%;
- t_f tempo de descida define-se de forma identica (90 a 10%).

Sistema tem o comportamento dum RC passa-baixo

• Do estudo da carga do condensador é possível mostrar que ...

Ora, como
$$au=RC=1/\omega_c$$
 então $t_r=\frac{2.2}{\omega_c}$

• Portanto a resposta ao degrau é tão mais rápida quanto maior for ω_c .

E. Martins, DETI Universidade de Aveiro

5-23

Sinais e Sistemas Electrónicos - 2023/2024

Sistema tem o comportamento dum RC passa-alto

- Como responde bem às altas frequências, o circuito reproduz fielmente as transições rápidas do sinal $(t_r = 0)$;
- ... mas como responde mal às frequências baixas (incluindo DC), não reproduz bem as partes planas do sinal;
- Vejamos primeiro porque razão $v_0(t)$ tem esta forma.

Sistema tem o comportamento dum RC passa-alto

• Para se perceber a forma de $v_0(t)$, reparemos, primeiro, que o circuito é também um RC série, logo $v_C(t)$ deve ser igual à tensão de saída do RC passa-baixo.

E. Martins, DETI Universidade de Aveiro

5-25

Sinais e Sistemas Electrónicos - 2023/2024

Sistema tem o comportamento dum RC passa-alto

- A corrente no circuito, *i(t)*, deverá ter a forma...
- Em t = 0, como o condensador está descarregado $i(t = 0^+) = \frac{V_P}{R}$
- Em $t = T^+$, $v_i(t = T^+) = \theta V$ e $v_C(t = T^+) = V_P$ pelo que $i(t = T^+) = -\frac{V_P}{R}$

Sistema tem o comportamento dum RC passa-alto

• Mas note-se que esta é a resposta se T>> au

Se T for mais baixo, obtemos

E. Martins, DETI Universidade de Aveiro