

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková
	organizace, Praskova 399/8, Opava, 746 01
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20
	vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	MEC IIIa
Popis sady vzdělávacích materiálů:	Mechanika III – dynamika a hydrostatika, 3. ročník.
Sada číslo:	G-20
Pořadové číslo vzdělávacího materiálu:	07
Označení vzdělávacího materiálu:	VY_32_INOVACE_G-20-07
(pro záznam v třídní knize)	
Název vzdělávacího materiálu:	Dynamika těles
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Karel Procházka

Dynamika těles

Dynamika posuvného pohybu

Dynamické úkoly převádíme v mechanice připojením setrvačných sil na statické úkoly a řešíme je z podmínek statické rovnováhy. Používáme přitom d'Alembertovu větu: "Při jakémkoli pohybu tělesa je rovnováha mezi silami vnějšími a opačně zrychlujícími či setrvačnými."

$$a = \frac{F_R}{m}$$

Při zrychleném pohybu částice hmoty \mathbf{m} musíme překonávat odpor – setrvačnou sílu. Ta je stejně velká jako F_R , ale opačného smyslu. Dle d´Alemberta platí:

$$F_R - F_S = 0$$

$$F_R - m \cdot a = 0$$

Př.: Výtah jedoucí svisle vzhůru se zastaví s konstantním zpožděním z rychlosti $v_0 = 2.5 \text{ m} \cdot \text{s}^{-1}$ na dráze s = 2 m. Jakou reakci F_N (síla na dno) způsobí osoba o hmotnosti m = 70 kg podlaze klece?

$$s = \frac{v_0 + v}{2} \cdot t, \ v = 0, \rightarrow t = \frac{2 \cdot s}{v_0}$$

$$a = \frac{v}{t} = \frac{{v_0}^2}{2 \cdot s} = \frac{2.5^2}{2 \cdot 2} = 1.56 \ m \cdot s^{-2}$$

Setrvačná síla při pohybu rovnoměrně zrychleném působí vždy proti směru pohybu (brzdím a tím působím proti pohybu).

Při pohybu zpožděném působí ve směru pohybu.

Podmínka rovnováhy:

$$\sum F_i = 0$$

$$F_N - m \cdot g + m \cdot a = 0$$

$$F_N = m \cdot g - m \cdot a$$

$$F_N = m \cdot (g - a) = 70 \cdot (10 - 1,56) = 591 N$$

Př.: Z vodorovně upevněné vzduchovky byla vystřelena střela o hmotnosti m = 25 g = 0,025 kg. Náboj byl vystřelen pomocí pružiny, která byla před vystřelením stlačena o vzdálenost s = 120 mm = 12 cm. Nenapnutá pružina má délku l = 260 mm a její tuhost (pružinová konstanta) je $c = 8,4N \cdot cm^{-1}$. Určete rychlost v vystřeleného náboje.

$$W = E_{\kappa}$$

Pro pružinu platí:

$$\frac{1}{2}F \cdot s = \frac{1}{2}m \cdot v^2 \to v = \sqrt{\frac{2 \cdot F \cdot s}{2 \cdot m}} = \sqrt{\frac{F \cdot s}{m}} = \sqrt{\frac{s \cdot c \cdot s$$

$$=\sqrt{\frac{12cm \cdot 8,4\frac{N}{cm} \cdot 0,12m}{0,025kg}} = \sqrt{\frac{12cm \cdot 8,4\frac{N}{cm} \cdot 0,12m}{0,025\frac{N \cdot s^2}{m}}} = 22 \, m/s$$

Vázaný pohyb tělesa

Volný pohyb: těleso o hmotnosti m se nestýká za pohybu s jiným tělesem.

Vázaný pohyb: je omezený vazebními podmínkami (např. vlak na kolejích).

Je-li těleso vázáno na vedení, působí toto vedení na těleso vazebnou silou či reakcí vedení.

Při výpočtu vázaného pohybu uvolníme těleso tak, že odstraníme omezující podmínky a připojíme k akčním silám reakce, jakými na něj působila podpora nebo závěs. Složky reakcí kolmé na vedení F_N značíme F_N a tečné F_T .

Pohyb tělesa po vodorovné rovině

Hnací síla rovnoběžná s rovinou

Pokud na těleso začne od určitého okamžiku působit síla ${\bf F}$ rovnoběžná s rovinou, způsobí tato síla změnu pohybu. Těleso uvolníme tak, že zaneseme do příkladu reakci podpory F_R , kterou můžeme rozdělit do normálné a tečné složky. Přidáním setrvačné síly můžeme řešit případ podmínek statické rovnováhy.

$$\sum F_{ix} = 0$$

$$\sum F_{iy} = 0$$

$$F_T = F_N \cdot f = m \cdot g \cdot f$$

$$s = \frac{v + v_0}{2} \cdot t \Longrightarrow v$$

$$\sum F_{ix} = F - m \cdot a - F_T = 0 \Rightarrow a = \frac{F - F_T}{m}$$

$$\sum F_{iy} = F_N - m \cdot g = 0$$

Z těchto podmínek můžu vypočítat F, v, a, s.

Př.: Určete velikost hnací síly F, kterou musíme působit na těleso o hmotnosti m = 20 kg, jestliže těleso má na dráze s = 2 m dosáhnout rychlosti $v = 2.5 \, \text{m/s}$ z klidu; f = 0,1. Hnací síla působí rovnoběžně s vodorovnou rovinou.

$$s = \frac{1}{2}v \cdot t \to t = \frac{2s}{v} = \frac{2 \cdot 2}{2,5} = 1,6 s$$

$$a = \frac{v}{t} = \frac{2.5}{1.6} = 1.56 \, \text{m/s}^2$$

$$\sum F_{iy} = F_N - m \cdot g = 0 \to F_N = m \cdot g$$

$$F_T = F_N \cdot f = m \cdot g \cdot f$$

$$\sum F_{ix} = F - m \cdot a - F_T = 0 \rightarrow F = m \cdot a + F_T = m \cdot a + m \cdot g \cdot f = 0$$

$$= m \cdot (a + g \cdot f) = 20 \cdot (1,56 + 9,81 \cdot 0,1) = 51N$$

• Hnací síla v obecném směru

Tuto sílu rozložíme do dvou složek, z nichž jedna je kolmá na vedení a druhá rovnoběžná s vedením. Další řešení je stejné.

Seznam použité literatury:

- MRŇÁK L. DRDLA A.: MECHANIKA Pružnost a pevnost pro střední průmyslové školy strojnické.
 Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA II Kinematika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA III Dynamika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA IV Mechanika tekutin a termomechanika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- TUREK, I., SKALA, O., HALUŠKA J.: MECHANIKA Sbírka úloh. Praha: SNTL, 1982.
- LEINVEBER, J. VÁVRA, P.: Strojnické tabulky. 5. doplněné vydání. Praha: Albra, 2011. ISBN 80-7361-033-7.