Math 201A, Final Exam Problems

Problem1. Let X be a nonempty topological space and let $\{\mu_n\}_{n=1}^{\infty}$ be a sequence of Borelregular measures on X. Assume for any $A \subset X$ the sequence $\mu_n(A)$ decreases and define $\mu(A) = \lim_{n \to \infty} \mu_n(A)$. Prove that if $\mu_1(X) < \infty$, then μ is a measure on X.

Problem2 Let $f: \mathbb{R} \to \mathbb{R}$ be Lebesgue-measurable. Prove that there exists a Borel-measurable function $g: \mathbb{R} \to \mathbb{R}$ such that f(x) = g(x) a.e. in \mathbb{R} .

Problem3 Let X be nonempty and let μ be a measure on X. Assume $A_n \subset X$ are μ -measureble for $n = 1, 2, \ldots$ and assume the sequence χ_{A_n} converges in measure to some function $f: X \to \mathbb{R}$. Prove that there exists a μ -measurabe set $A \subset X$ such that $f = \chi_A$ μ -a.e. in X.

Problem4. Let X be nonempty and let μ be a measure on X. Assume $f_n, f: X \to \mathbb{R}$ are μ -measureble functions (n = 1, 2, ...) such that for each $\epsilon > 0$ one has

$$\sum_{n=1}^{\infty} \mu(\lbrace x : |f_n(x) - f(x)| > \epsilon \rbrace) < \infty.$$

Prove that $f_n \to f \mu$ -a.e. in X.