RSA Attacks

Michael Levin

Computer Science Department, Higher School of Economics

Outline

Simple Attacks

Small Difference

Insufficient Randomness

Hastad's Broadcast Attack

"don't attack" to Bob

Alice wants to secretly transmit "attack" or

- Alice wants to secretly transmit "attack" or "don't attack" to Bob
- Converts "attack" to message m=1, "don't attack" to message m=0

- Alice wants to secretly transmit "attack" or "don't attack" to Bob
- Converts "attack" to message m=1, "don't attack" to message m=0
- Encrypts m with RSA to get ciphertext \boldsymbol{c}

- Alice wants to secretly transmit "attack" or "don't attack" to Bob
- Converts "attack" to message m=1, "don't attack" to message m=0
- Encrypts m with RSA to get ciphertext c
- Unfortunately, it is easy to break the cipher: just encrypt both m=0 and m=1 with RSA and check which one results in c

- Alice wants to secretly transmit "attack" or "don't attack" to Bob
- Converts "attack" to message m=1, "don't attack" to message m=0
- Encrypts m with RSA to get ciphertext c
- Unfortunately, it is easy to break the cipher: just encrypt both m=0 and m=1 with RSA and check which one results in c
- Works with any small set of possible messages

Solution

- To solve this common problem, use randomness
- For example, use the first 128 bits for the message and append 128 more random bits before encryption
- Bob will be able to read the first 128 bits, and this simple attack won't work: more than 2^{128} possible messages

• Bob generates two random primes p and q

- ullet Bob generates two random primes p and q
- What if one of them, p, is less than 1 000 000?

- ullet Bob generates two random primes p and q
- What if one of them, p, is less than 1 000 000?
- Eve can try all primes up to $1\ 000\ 000$ as divisors of the public key n

- Bob generates two random primes p and q
- What if one of them, p, is less than $1\ 000\ 000$?
- Eve can try all primes up to $1\ 000\ 000$ as divisors of the public key n
- Factorize n and decrypt the cipher the same way Bob does

- Bob generates two random primes p and q
- What if one of them, p, is less than $1\ 000\ 000$?
- Eve can try all primes up to $1\ 000\ 000$ as divisors of the public key n
- Factorize n and decrypt the cipher the same way Bob does
- One typical solution is to generate random primes for the secret key uniformly among very large, 2048-bit numbers

Outline

Simple Attacks

Small Difference

Insufficient Randomness

Hastad's Broadcast Attack

- Bob generates p and q such that p < q and the difference r = q - p is small

- Bob generates p and q such that p < q and the difference r = q p is small
- What can Eve do?

•
$$n = pq, p < q \Rightarrow p < \sqrt{n} < q$$

•
$$n = pq, p < q \Rightarrow p < \sqrt{n} < q$$

•
$$\sqrt{n} - p < q - p = r \Rightarrow \sqrt{n} - r < p < \sqrt{n}$$

- $n = pq, p < q \Rightarrow p < \sqrt{n} < q$
- $\sqrt{n} p < q p = r \Rightarrow \sqrt{n} r < p < \sqrt{n}$
- Try all integers between $\sqrt{n}-r$ and \sqrt{n} as divisors of n

- $n = pq, p < q \Rightarrow p < \sqrt{n} < q$
- $\sqrt{n} p < q p = r \Rightarrow \sqrt{n} r < p < \sqrt{n}$
- Try all integers between $\sqrt{n}-r$ and \sqrt{n} as divisors of n
- Factorize n and decrypt the same way as Bob does

Even Faster

- p and q are both odd, so $\frac{p+q}{2}$ and $\frac{p-q}{2}$ are integers
- $n = pq = (\frac{p+q}{2} + \frac{p-q}{2})(\frac{p+q}{2} \frac{p-q}{2}) = (\frac{p+q}{2})^2 (\frac{p-q}{2})^2$
- So n is a difference of squares, and one of the squares is small, because |p-q| is small
- We can try adding increasing squares of integers to n until we get an exact square of integer

Solution

- Generate p and q
- If |p-q| is small, regenerate
- Repeat until |p-q| is sufficiently large

Outline

Simple Attacks

Small Difference

Insufficient Randomness

Hastad's Broadcast Attack

Attack by Heninger et al. and Lenstra et al.

keys!

- Use public keys from different devices!
- Experiment resulted in 0.4% factored HTTPS

OpenSSL RSA key generation:

```
rng = RandomNumberGenerator()
rng.seed(seed)
p = rng.big_random_prime()
rng.add_randomness(bits)
q = rng.big_random_prime()
n = p * q
```

What if the **seed** is not random enough? Example: keys are generated by the router immediately after startup, no incoming network packets to get randomness from yet.

OpenSSL RSA key generation:

```
rng = RandomNumberGenerator()
rng.seed(seed)
p = rng.big_random_prime()
rng.add_randomness(bits)
q = rng.big_random_prime()
n = p * q
```

What if the **seed** is not random enough? Example: keys are generated by the router immediately after startup, no incoming network packets to get randomness from yet.

Sometimes the same p will be generated, with different q

• If the public keys n_1 and n_2 are generated using the same p, but different q, then $\mathrm{GCD}(n_1,n_2)=p$, and we can factorize both n_1 and n_2 .

- If the public keys n_1 and n_2 are generated using the same p, but different q, then $\mathrm{GCD}(n_1,n_2)=p$, and we can factorize both n_1 and n_2 .
- Take keys from many routers and try to combine all pairs

- If the public keys n_1 and n_2 are generated using the same p, but different q, then $\mathrm{GCD}(n_1,n_2)=p$, and we can factorize both n_1 and n_2 .
- Take keys from many routers and try to combine all pairs
- Make sure the random number generator is properly seeded

- If the public keys n_1 and n_2 are generated using the same p, but different q, then $\mathrm{GCD}(n_1,n_2)=p$, and we can factorize both n_1 and n_2 .
- Take keys from many routers and try to combine all pairs
- Make sure the random number generator is properly seeded
- Some computer programs ask the user to move mouse for some time to get randomness

Outline

Simple Attacks

Small Difference

Insufficient Randomness

Hastad's Broadcast Attack

Hastad's Broadcast Attack

- Hastad came up with an attack in case Bob sends the same message m to several recipients using their public keys
- Uses the fact that the same message m is sent using different keys
- We will consider a very simplified case as an example

Alice

Bob

Angelina

Adriana

Alice

Bob O m

Adriana

Angelina

 $\mathrm{GCD}(N_i,N_j)=1$, otherwise Eve can factor N_i and N_j to decrypt as in the previous attack.

 $\mathrm{GCD}(N_i,N_j)=1$, otherwise Eve can factor N_i and N_j to decrypt as in the previous attack.

Use Chinese Remainder Theorem to construct c such that $0 \le c < N_1 N_2 N_3$ and

 $c \equiv c_1 \mod N_1, c \equiv c_2 \mod N_2, c \equiv c_3 \mod N_3$

 $c \equiv c_1 \mod N_1, c \equiv c_2 \mod N_2, c \equiv c_3 \mod N_3$

 $\mathrm{GCD}(N_i,N_j)=1$, otherwise Eve can factor N_i and N_i to decrypt as in the previous attack.

Use Chinese Remainder Theorem to construct c such that $0 \le c < N_1 N_2 N_3$ and

 $c \equiv c_1 \mod N_1, c \equiv c_2 \mod N_2, c \equiv c_3 \mod N_3$

Again by Chinese Remainder Theorem,

 $c \equiv m^3 \mod N_1 N_2 N_3$

$$0 \leq c, m^3 < N_1 N_2 N_3$$

 $c \equiv m^3 \mod N_1 N_2 N_3$

$$c \equiv m^3 \bmod N_1 N_2 N_3$$

 $0 \le c, m^3 < N_1 N_2 N_3$

So $c = m^3$

$$c \equiv m^3 \bmod N_1 N_2 N_3$$

$$0 < a m^3 < N N N$$

Eve can decode m as $m = \sqrt[3]{c}$

So $c = m^3$

 $0 \le c, m^3 < N_1 N_2 N_3$

- Broadcasting the same fixed message is a problem
- Hastad's original attack works even with bigger and different e_i
- Solution add random padding to m before encryption
- Then it is impossible to compute m using all c_i , because each c_i includes some randomness apart from m

More Attacks

- Time to compute $c^d \mod n$ can expose d if one can send ciphertexts to the server which decrypts them and sends some response
- Error return code in case of incorrect ciphertext can expose the message in the same case
- Power consumption while computing $c^d \mod n$ can expose d if one tries to decrypt an encrypted hard drive on a stolen computer, or withdraw cash from a stolen card using an ATM

Conclusion

- RSA is a powerful method which is used everywhere
- Hard to implement correctly, although the algorithm itself is relatively simple
- Attacks from unexpected angles
- Deeper dive in dedicated cryptography courses
- Have fun with the problems: let's break some ciphers!