16 Hurewicz Theorem

Hurewicz homomorphism is a map that connects homotopy and homology groups. Recall that $H_n(S^n) \cong \mathbb{Z}$ We will denote by γ_n a chosen generator of $H_n(S^n)$. Given an element $[\varphi: (S^n, s_0) \to (X, x_0)] \in \pi_n(X, x_0)$ consider the homomorphism $\varphi_* \colon H_*(S^n) \to H_n(X)$. This homomorphism depends only on the homotopy class of φ .

16.1 Definition. The *Hurewicz homomorphism* is a function

$$h: \pi_n(X, x_0) \to H_n(X)$$

given by $h([\varphi]) = \varphi_*(\gamma_n)$.

16.2 Proposition. For any function $f: X \to Y$ the following diagram commutes:

$$\pi_n(X, x_0) \xrightarrow{f_*} \pi_n(Y, f(x_0))$$

$$\downarrow h$$

$$\downarrow h$$

$$H_n(X) \xrightarrow{f_*} H_n(Y)$$

Proof. For $[\varphi] \in \pi_n(X, x_0)$ we have

$$hf_*([\varphi]) = h([f\varphi]) = (f\varphi)_*(\gamma_n) = f_*\varphi_*(\gamma_n) = f_*h([\varphi])$$

16.3 Proposition. The Hurewicz homorphism is a group homomorphism.

Proof. Let $\varphi, \psi \colon (S^n, s_0) \to (X, x_0)$ where $n \ge 1$. Recall that the element $[\varphi] \cdot [\psi] \in \pi_n(X, x_0)$ is the homotopy class of the map

$$S^n \stackrel{p}{\longrightarrow} S^n \vee S^n \stackrel{\varphi \vee \psi}{\longrightarrow} X$$

where $p: S^n \to S^n \vee S^n$ is the pinch map. Let $r_1, r_2: S^n \vee S^n \to S^n$ be the retractions of $S^n \vee S^n$ onto the 1st and, respectively, second copy of S^n . We have a commutative diagram

This gives:

$$h([\varphi] \cdot [\psi]) = ((\varphi \vee \psi)p)_*(\gamma_n) = (\varphi_* + \psi_*)(\mathrm{id}_* \oplus \mathrm{id}_*)(\gamma_n) = \varphi_*(\gamma_n) + \psi_*(\gamma_n) = h([\varphi]) + h([\psi])$$

16.4 Hurewicz Isomorphism Theorem. Let X be a space such that for some $n \le 2$ we have $\pi_i(X) = 0$ for i < n. Then $H_i(X) = 0$ for 0 < i < n and the Hurewicz homomorphism

$$h: \pi_n(X, x_0) \to H_n(X)$$

is an isomorphism.

Proof. Assume first that $X = S^n$. We have $H_i(S^n) = 0$ for 0 < i < n. In degree n the Hurewicz homomorphism is a map $h: \mathbb{Z} \cong \pi_n(S^n) \to H_n(S^n) \cong \mathbb{Z}$. The group $\pi_n(S^n)$ is generated by the homotopy class of the identity map $\mathrm{id}_{S^n} \colon S^n \to S^n$ (10.17). We have $h([\mathrm{id}_{S^n}]) = \mathrm{id}_{S^n*}(\gamma_n) = \gamma_n$. Therefore h maps a generator of $\pi_n(S^n)$ to a generator of $H^n(S^n)$, and so it is an isomorphism.

Next, assume that $X = \bigvee_{i \in I} S^n$. Again, in this case $H_i(\bigvee_{i \in I} S^n) = 0$ for 0 < i < n. Also, the retraction maps $r_i \colon \bigvee_{i \in I} S^n \to S^n$ give a commutative diagram

$$\pi_{n}(\bigvee_{i\in I}S^{n})\xrightarrow{\cong}\bigoplus_{i\in I}\pi_{n}(S^{n})$$

$$\downarrow \qquad \qquad \cong \qquad \qquad \bigoplus_{i\in I}\pi_{n}(S^{n})$$

$$\vdash \qquad \qquad \cong \qquad \qquad \bigoplus_{i\in I}h$$

$$H_{n}(\bigvee_{i\in I}S^{n})\xrightarrow{\cong}\bigoplus_{i\in I}H_{n}(S^{n})$$

The the map $\bigoplus_{i \in I} h$ is an isomorphism by the previous case, so the left vertical map h is also an isomorphism.

As a next step, assume that X is an arbitrary CW complex with $\pi_i(X) = 0$ for i < n. By Proposition 5.6 we can assume that $X^{(n-1)} = *$, which gives $H_i(X) = 0$ for 0 < i < n.

Let $j: X^{(n+1)} \hookrightarrow X$ be the inclusion of the (n+1)-skeleton of X. By Proposition 16.2 we have a commutative diagram

$$\pi_{n}(X^{(n+1)}) \xrightarrow{j_{*}} \pi_{n}(X)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow$$

$$H_{n}(X^{(n+1)}) \xrightarrow{\stackrel{\cong}{\longrightarrow}} H_{n}(X)$$

The upper homomorphism j_* is an isomorphism by Proposition 5.2, and the lower j_* is an isomorphism by properties of homology groups. As a consequence, it is enough to show that $h: \pi_n(X^{(n+1)}) \to H_n(X^{(n+1)})$ is an isomorphism.

Since $X^{(n-1)} = *$, it follows that $X^{(n)} = \bigvee_{i \in I} S^n$ and $X^{(n+1)} = X^{(n)} \cup \bigcup_{k \in K} e_k^{(n+1)}$ where $\{e_k^{(n+1)}\}_{k \in K}$ are (n+1)-cells of X. Let $\varphi_k \colon S^n \to X^{(n)}$ be the attaching map of the cell e_k^{n+1} , and let $i \colon X^{(n)} \hookrightarrow X^{(n+1)}$ denote the inclusion map. We have a commutative diagram

$$\pi_{n}(\bigvee_{k\in\mathcal{K}}S^{n})\xrightarrow{(\bigvee_{k\in\mathcal{K}}\varphi_{k})_{*}}\pi_{n}(X^{(n)})\xrightarrow{i_{*}}\pi_{n}(X^{(n+1)})\longrightarrow 0$$

$$\downarrow_{n} \downarrow_{\cong} \qquad \qquad \downarrow_{n} \downarrow_{n}$$

The upper row of this diagram is exact by Proposition 11.7, and the lower row is exact by the long homology sequence associated to the map $\bigvee_{k \in K} \varphi_k$. By the Five Lemma we obtain that $h \colon \pi_n(X^{(n+1)}) \to H_n(X^{(n+1)})$ is an isomorphism.

Finally, let X be an arbitary space with $\pi_i(X) = 0$ for i < n. Let $f: Y \to X$ be a CW approximation of X (14.3). Using Theorem 15.1 and the previous case we get $H_i(X) \cong H_i(Y) = 0$ for 0 < i < n.

By Proposition 16.2 we have a commutative diagram

$$\pi_{n}(Y) \xrightarrow{f_{*}} \pi_{n}(X)$$

$$\downarrow h \qquad \cong \qquad \downarrow h$$

$$H_{n}(Y) \xrightarrow{\cong} H_{n}(X)$$

Since f is a weak equivalence, the upper homomorphism f_* is an isomorphism by definition, and the lower f_* is an isomorphism by Theorem 15.1. Also, since Y is a CW complex the left vertical map is an isomorphism by the previous case. Therefore $h: \pi_n(X) \to H_n(X)$ is an isomorphism.

16.5 Inverse Hurewicz Isomorphism Theorem. Let X be a simply connected space, and let $H_i(X) = 0$ for $1 \le i < n$ for some $n \ge 2$. Then $\pi_i(X) = 0$ for i < n and the Hurewicz homomorphism $h \colon \pi_n(X) \to H_n(X)$ is an isomorphism.

Proof. Exercise. □

Since all homology groups $H_i(X)$ are abelian but the fundamental group $\pi_1(X)$ need not be abelian, in general the Hurewicz homomorphism $h\colon \pi_1(X)\to H_1(X)$ is not an isomorphism. However, a version of Theorem 16.4 still holds with the following modification. Recall, that if G is a group then the commutator of G is the subgroup $[G,G]\subseteq G$ generated by all elements of the form $ghg^{-1}h^{-1}$ for $g,h\in G$. The commutator is a normal subgroup of G, and the quotient group $G^{ab}:=G/[G,G]$ is an abelian group. The group G^{ab} is called the abelianization of G.

If H is an abelian group then any homomorphism $\varphi\colon G\to H$ defines a unique homomorphism $\overline{\varphi}\colon G^{\mathrm{ab}}\to H$ such that $\varphi=\overline{\varphi}\eta$ where $\eta\colon G\to G^{\mathrm{ab}}$ is the quotient homomorphism. Also, if $\psi\colon G\to H$ is a homomorphism of arbitary groups, then $\psi([G,G])\subseteq [H,H]$, and so ψ induces a homomorphism of abelianizations $\psi^{\mathrm{ab}}\colon G^{\mathrm{ab}}\to H^{\mathrm{ab}}$.

16.6 Theorem. Let X be a path connected space and let $h: \pi_1(X, x_0) \to H_1(X)$ be the Hurewicz homomorphism. Then the induced homomorphism $\bar{h}: \pi_1(X, x_0)^{ab} \to H_1(X)$ is an isomorphism.

The proof will use the following algebraic fact.

16.7 Lemma. Consider a sequence of group homomorphisms

$$G \xrightarrow{\varphi} H \xrightarrow{\psi} K$$

such that ψ is onto and $\ker \psi = N_H(\operatorname{Im} \varphi)$ where $N_H(\operatorname{Im} \varphi)$ is the normalizer of $\operatorname{Im} \varphi$ in H. Then the induced sequence

$$G^{ab} \xrightarrow{\varphi^{ab}} H^{ab} \xrightarrow{\psi^{ab}} K^{ab} \longrightarrow 0$$

is exact.

Proof. Exercise. □

Proof of Theorem 16.6. Take $X = S^1$. As in the proof of Theorem 16.4 we obtain that $h: \pi_1(S^1) \to H_1(S^1)$ is an isomorphism. Also, since $\pi_1(S^1) \cong \mathbb{Z}$ is an abelian group, thus $\pi_1(S^1) \cong \pi_1(S^1)^{ab}$ and, up to this isomorphism, \bar{h} coincides with h.

Next, take $X = \bigvee_{i \in I} S^1$ and let $r_i \colon \bigvee_{i \in I} S^1 \to S^1$ be retraction maps. We have a commutative diagram

The upper map $\bigoplus r_{i*}$ essentially conincides with the abelianization of $\pi_1(\bigvee_{i\in I}S^1)$, and the map $\bigoplus_{i\in I}h$ coincides, up to an isomorphism, with $\bar{h}\colon \pi_1(\bigvee_{i\in I}S^1)^{\mathrm{ab}}\to H_1(\bigvee_{i\in I})$. It remains to notice that $\bigoplus_{i\in I}h$ is an isomorphism by the previous case.

As in the proof of Theorem 16.4, it remains to consider the case where X is a 2-dimensional CW complex of the form $X = \bigvee_{i \in I} S^1 \cup \bigcup_{k \in K} e_k^2$. Let $\varphi_k \colon S^1 \to \bigvee_{i \in I} S^1$ be the attaching map of the cell e_k^{n+1} . Denote $\psi := \bigvee_{k \in K} \varphi_k \colon \bigvee_{k \in K} S^1 \to \bigvee_{i \in I} S^1$ Also, let $j \colon \bigvee_{i \in I} S^1 \hookrightarrow X$ be the inclusion of the 1-skeleton of X. We have a sequence of group homomorphisms

$$\pi_1(\bigvee_{k\in K} S^1) \xrightarrow{\psi_*} \pi_1(\bigvee_{i\in I} S^1) \xrightarrow{j_*} \pi_1(X)$$

By van Kampen's Theorem we have $\pi_1(X) \cong \pi_1(\bigvee_{i \in I} S^1)/N_{\pi_1(\bigvee_{i \in I} S^1)}(\operatorname{Im} \psi_*)$. Cosider the commutative diagram

$$\pi_{1}(\bigvee_{k\in\mathcal{K}}S^{1})^{ab} \xrightarrow{\psi_{*}} \pi_{1}(\bigvee_{i\in I}S^{1})^{ab} \xrightarrow{i_{*}} \pi_{1}(X)^{ab} \longrightarrow 0$$

$$\downarrow \overline{h} \qquad \qquad \downarrow \overline{h} \qquad \qquad \downarrow \overline{h} \qquad \qquad \downarrow \Xi$$

$$H_{1}(\bigvee_{i\in I}S^{1}) \xrightarrow{\psi_{*}} H_{1}(\bigvee_{i\in I}S^{1}) \xrightarrow{i_{*}} H_{1}(X) \longrightarrow 0$$

The upper row is exact by Lemma 16.7 and the lower row by the long exact homology sequence associated to ψ_* . Using the Five Lemma we obtain that $\bar{h} \colon \pi_1(X)^{ab} \to H_1(X)$ is an isomorphism. \square

16.8 Relative Hurewicz Homomorphism. Recall that $H_n(D^n, S^{n-1}) \cong \mathbb{Z}$. Let $\bar{\gamma}_n$ denote a chosen generator of $H_n(D^n, S^{n-1})$. Given a pointed pair (X, A, x_0) , and an element $[\varphi \colon (D^n, S^{n-1}, s_0) \to (X, A, x_0)] \in \pi_n(X, A, x_0)$ consider the homomorphism $\varphi_* \colon H_n(D^n, S^{n-1}) \to H_n(X, A)$.

16.9 Definition. The *relative Hurewicz homomorphism* is a function

$$h: \pi_n(X, A, x_0) \to H_n(X, A)$$

given by $h([\varphi]) = \varphi_*(\bar{\gamma}_n)$.

- **16.10 Relative Inverse Hurewicz Isomorphism Theorem.** Let (X,A) be a pair of simply connected CW complexes. If $H_i(X,A) = 0$ for all 0 < i < n for some $n \ge 2$ then $\pi_i(X,A)$ for all i < n and the Hurewicz homomorphism $h: \pi_n(X,A) \to H_n(X,A)$ is an isomorphism.
- **16.11 Theorem.** Let X, Y be simply connected CW complexes and let $f: X \to Y$ be a map such that for some $n \ge 2$ the homorphism $f_*: H_i(X) \to H_i(Y)$ is an isomorphism for i < n and epimorphism for i = n. Then $f_*: \pi_i(X) \to \pi_i(Y)$ is an isomorphism for i < n and epimorphism for i = n.

Proof. Let M_f be the mapping cylinder of f. The assumption about f is equivalent to the statement that $H_i(M_f, X) = 0$ for i < n. By Theorem 16.10 this gives $\pi_i(M_f, X) = 0$ for i < n. The statement then follows from the long exact sequence of homotopy groups of the pair (M_f, X) .

16.12 Theorem. Let $f: X \to Y$ be a map of simply connected CW complexes such that $f_*: H_i(X) \to H_i(Y)$ is an isomorphism for all $i \ge 0$. Then f is a homotopy equivalence.

Given a CW complex X let $p_X \colon \widetilde{X} \to X$ denote the universal cover of X. Given a map $f \colon X \to Y$ we can find a map $\widetilde{f} \colon \widetilde{X} \to \widetilde{Y}$ such that the following diagram commutes:

16.13 Theorem. Let $f: X \to Y$ be a map of path connected CW complexes. If the homomorphisms $f_*: \pi_1(X) \to \pi_1(Y)$ and $\widetilde{f}_*: H_i(\widetilde{X}) \to H_i(\widetilde{Y})$ for all $i \geq 0$ are isomorphisms then f is a homotopy equivalence.

Proof. By Theorem 16.11 the map $\widetilde{f}_* \colon \pi_i(\widetilde{X}) \to \pi_i(\widetilde{Y})$ is an isomorphism for all $i \geq 0$. Since $\pi_i(\widetilde{X}) \cong \pi_i(X)$ and $\pi_i(\widetilde{X}) \cong \pi_i(X)$ for $i \geq 2$ this gives that $f_* \colon \pi_i(X) \to \pi_i(Y)$ is an isomorphism for $i \geq 2$. By assumption, $f_* \colon \pi_1(X) \to \pi_1(Y)$ is an isomorphism as well, so f is a weak equivalence. \square