1

Assignment 4: Example 13

Abhay Shankar K: cs21btech11001

Question:

A committee of two persons is selected from two men and two women. Find the probability that the committee will have:

- (i) no men
- (ii) one man
- (iii) two men

Solution:

Let the random variable X represent the number of men in the committee.

TABLE I RANGE OF X

Value of X	Represents
0	No men
1	1 man
2	2 men

Let the set of possible candidates for the committee, i.e. the sample space, be denoted as S.

$$S = \{m_1, m_2, w_1, w_2\} \tag{1}$$

where $[m_i]$ are men and $[w_i]$ are women.

Define the relation R on the set S to be:

$$R = \{(a, b) \mid \text{a and b are both in the committee}\}$$
 (2)

R is also clearly the set of all subsets of S (equation (1)) of cardinality 2.

In roster form, we can represent the relation (equation (2)) as follows.

$$R = \{(w_1, w_2), (w_1, m_2), (m_1, w_2), (w_1, m_1), (m_2, w_2), (m_1, m_2)\}$$
(3)

Therefore, upon reviewing (3), the frequency distribution of the number of men in the committee (X) is as given in table II.

TABLE II FREQUENCY OF X

X	Frequency
0	1
1	4
2	1

The probabilities are then:

(i)
$$P_X(0) = \frac{1}{6}$$

(ii)
$$P_X(1) = \frac{4}{6} = \frac{2}{3}$$

(iii)
$$P_X(2) = \frac{1}{6}$$

Alternatively:

$$P_X(r) = \frac{(^2C_r)^2}{^4C_2}$$
 (4)

Upon substitution of $r \in \{0, 1, 2\}$ into equation (4), we get the same result as above.

(i)
$$P_X(0) = \frac{1}{6}$$

(ii)
$$P_X(1) = \frac{4}{6} = \frac{2}{3}$$

(iii)
$$P_X(2) = \frac{1}{6}$$