Remarks

Claims 1-18 are pending. The Examiner has entered a restriction requirement as between:

Group I – claims 1, 4, 5 and 6, drawn to an acylphosphine oxide of formula (I) and its process for preparation;

Group II – claims 2, 4, 6, 7 and 8, drawn to an acylphosphine oxide of formula (II);

Group III - claims 3, 4, 9, 10 and 11, drawn to an acylphosphine oxide of formula (III);

Group IV – claims 12-17, drawn to compositions comprising an acylphosphine initiator; and

Group V – claim 18, drawn to a method of use.

Further, the Examiner requires an election of species. Applicants elect to prosecute the invention of Group and direct the Examiner to the compound of Example 2

for the species requirement.

Claims 2 and 3 have been amended to exclude selected compounds by proviso. Applicants are permitted to exclude from their claims that which they were not the first to invent.

Respectfully submitted,

Ciba Specialty
Chemicals Corporation
A
540 White Plains Road
R

P.O. Box 2005

Tarrytown, New York 10591-9005

Tel: (914) 785-7124 Fax: (914) 785-7102

DRC/

David R. Crichton
Attorney for Applicants
Reg. No. 37,300

Amended Claims with underlining and bracketing

2. (amended) A compound of the formula II

$$\begin{array}{ccccc} O & (A)_x & O \\ II & II & II \\ C & P & C - Y_1 & (II), in which \\ R_6 & & \end{array}$$

A is O or S;

x is 0 or 1;

Ar is a group R_3 ; or Ar is cyclopentyl, cyclohexyl, naphthyl, anthracyl,

biphenylyl or an O-, S- or N-containing 5- or 6-membered heterocyclic ring, where the radicals cyclopentyl, cyclohexyl, naphthyl, anthracyl, biphenylyl and 5- or 6-membered heterocyclic ring are unsubstituted or substituted by halogen, C_1 - C_4 alkyl and/or C_1 - C_4 alkoxy;

 \mathbf{R}_1 and \mathbf{R}_2 independently of one another are \mathbf{C}_1 - \mathbf{C}_{20} alkyl, \mathbf{OR}_{11} , \mathbf{CF}_3 or halogen;

 R_3 , R_4 and R_5 independently of one another are hydrogen, C_1 - C_{20} alkyl, OR_{11} or halogen; or in each case two of the radicals R_1 , R_2 , R_3 , R_4 and R_5 together form C_1 - C_{20} alkylene which can be interrupted by O, S or $-NR_{14}$;

 R_6 is C_1-C_{24} alkyl, unsubstituted or substituted by C_5-C_{24} cycloalkenyl, phenyl, CN, C(O)R₁₁, C(O)OR₁₁, C(O)OR₁₄, OC(O)N(R₁₄)₂, OC(O)OR₁₁, OC(O)OR₁₁, N(R₁₄)C(O)N(R₁₄), OC(O)OR₁₄, N(R₁₄)C(O)OR₁₁, cycloalkyl, halogen,

$$OR_{11}$$
, SR_{11} , $N(R_{12})(R_{13})$ or $-CH_{2}$;

 C_2 - C_{24} alkyl which is interrupted once or more than once by nonconsecutive O, S or NR_{14} and which is unsubstituted or substituted by phenyl, OR_{11} , SR_{11} , $N(R_{12})(R_{13})$, CN, $C(O)R_{11}$, $C(O)OR_{11}$, $C(O)N(R_{14})_2$

and/or
$$-CH_2$$
;

 C_2 - C_{24} alkenyl which is uninterrupted or interrupted once or more than once by nonconsecutive O, S or NR₁₄ and which is unsubstituted or substituted by OR₁₁, SR₁₁ or N(R₁₂)(R₁₃);

 C_5 - C_{24} cycloalkenyl which is uninterrupted or interrupted once or more than once by nonconsecutive O, S or NR_{14} and which is unsubstituted or substituted by OR_{11} , SR_{11} or $N(R_{12})(R_{13})$;

 C_7 - C_{24} arylalkyl which is unsubstituted or substituted on the aryl group by C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy or halogen;

 C_4 - C_{24} cycloalkyl which is uninterrupted or interrupted once or more than once by O, S and/or NR_{14} and which is unsubstituted or substituted by OR_{11} , SR_{11} or $N(R_{12})(R_{13})$; or C_8 - C_{24} arylcycloalkyl or C_8 - C_{24} arylcycloalkenyl;

 R_{11} is H, C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, C_3 - C_8 cycloalkyl, phenyl, benzyl or C_2 - C_{20} alkyl which is interrupted once or more than once by nonconsecutive O atoms and which is unsubstituted or substituted by OH and/or SH:

 \mathbf{R}_{12} and \mathbf{R}_{13} independently of one another are hydrogen, C_1 - C_{20} alkyl, C_3 - C_8 cycloalkyl, phenyl, benzyl or C_2 - C_{20} alkyl which is interrupted once or more than once by O or S and which is unsubstituted or

substituted by OH and/or SH; or R₁₂ and R₁₃ together are C₃-C₅alkylene which is uninterrupted or

interrupted by O, S or NR₁₄;

 Y_1 is C_1 - C_{18} alkyl which is unsubstituted or substituted by one or more phenyl; C_1 - C_{18} -halogenoalkyl; C_2 - C_{18} alkyl which is interrupted once or more than once by O or S and which can be substituted by OH and/or SH; unsubstituted C_3 - C_{18} cycloalkyl or C_3 - C_{18} cycloalkyl substituted by C_1 - C_{20} alkyl, OR_{11} , CF_3 or halogen; C_2 - C_{18} alkenyl; or Y_1 is OR_{11} , $N(R_{12})(R_{13})$ or one of the radicals

or Y_1 is cyclopentyl, cyclohexyl, naphthyl, anthracyl, biphenylyl or an O-, S- or N-containing 5- or 6-membered heterocyclic ring, where the radicals cyclopentyl, cyclohexyl, naphthyl, anthracyl, biphenylyl and 5- or 6-membered heterocyclic ring are unsubstituted or substituted by halogen, C_1 -

Calkyl and/or C1-Calkoxy;

 Y_2 is a direct bond; unsubstituted or phenyl-substituted C_1 - C_{18} alkylene; unsubstituted C_4 - C_{18} -cycloalkylene or C_4 - C_{18} cycloalkylene substituted by C_1 - C_{12} alkyl, OR_{11} , halogen and/or phenyl; unsubstituted C_5 - C_{18} cycloalkenylene or C_5 - C_{18} cycloalkenylene substituted by C_1 - C_{12} alkyl, OR_{11} , halogen and/or phenyl; unsubstituted phenylene or phenylene substituted one to four times by C_1 - C_{12} alkyl, OR_{11} , halogen, -(CO) OR_{14} , -(CO) $N(R_{12})(R_{13})$ and/or phenyl;

or
$$Y_2$$
 is a radical Y_3 or Y_4 , where these radicals are unsubstituted

or are substituted one to four times on one or both aromatic ring(s) by C_1-C_{12} alkyl, OR_{11} , halogen and/or phenyl;

Y₃ is O, S, SO, SO₂, CH₂, C(CH₃)₂, CHCH₃, C(CF₃)₂, CO or a direct bond;

is hydrogen, phenyl, C_1 - C_{12} alkyl or C_2 - C_{12} alkyl which is interrupted once or more than once by O or S and which can be substituted by OH and/or SH;

 R_1' and R_2' independently of one another have the same meanings as given for R_1 and R_2 ; and R_3' , R_4' and R_5' independently of one another have the same meanings as given for R_3 , R_4 and R_5 ; or in each case two of the radicals R_1' , R_2' , R_3' , R_4' and R_5' together form C_1 - C_{20} alkylene which may be interrupted by C_1 , C_2 or C_3 or C_4 .

with the proviso that Y₁ is not identical to Ar<u>and wherein the compounds n-butyl-(2,6-dimethoxybenzoyl)-(2,4,6-trimethylbenzoyl) phosphine oxide, i-butyl-(2,6-dimethoxybenzoyl)-(2,4,6-trimethylbenzoyl) phosphine oxide and (2,6-dimethoxybenzoyl)-(2,6-dimethylbenzoyl)-(2,4,4-trimethylpentyl) phosphine oxide are excluded.</u>

3. (amended) A compound of the formula III

$$Ar \stackrel{O}{\longrightarrow} C \stackrel{(A)_x}{\longrightarrow} Z_1$$
 (III), in which R_6

A is O or S;

x is 0 or 1;

Ar is a group
$$R_3$$
; or Ar is cyclopentyl, cyclohexyl, naphthyl, anthracyl,

biphenylyl or an O-, S- or N-containing 5- or 6-membered heterocyclic ring, where the radicals cyclopentyl, cyclohexyl, naphthyl, anthracyl, biphenylyl and 5- or 6-membered heterocyclic ring are unsubstituted or substituted by halogen, C_1 - C_4 alkyl and/or C_1 - C_4 alkoxy;

 \mathbf{R}_1 and \mathbf{R}_2 independently of one another are \mathbf{C}_1 - \mathbf{C}_{20} alkyl, \mathbf{OR}_{11} , \mathbf{CF}_3 or halogen;

 R_3 , R_4 and R_5 independently of one another are hydrogen, C_1 - C_{20} alkyl, OR_{11} or halogen; or in each case two of the radicals R_1 , R_2 , R_3 , R_4 and R_5 together form C_1 - C_{20} alkylene which can be interrupted by O_1 , O_2 or O_3 or O_4 or O_4 or O_5 or O_5 or O_5 or O_7 or O_8 o

 \mathbf{R}_{6} is C_{1} - C_{24} alkyl, unsubstituted or substituted by C_{5} - C_{24} cycloalkenyl, phenyl, CN, C(O)R₁₁, C(O)OR₁₁, C(O)OR₁₁, OC(O)N(R₁₄)₂, OC(O)R₁₁, OC(O)OR₁₁, N(R₁₄)C(O)N(R₁₄), OC(O)NR₁₄, N(R₁₄)C(O)OR₁₁, cycloalkyl, halogen,

$$OR_{11}$$
, SR_{11} , $N(R_{12})(R_{13})$ or $-CH^{O}$ CH_2 ;

 C_2 - C_{24} alkyl which is interrupted once or more than once by nonconsecutive O, S or NR₁₄ and which is unsubstituted or substituted by phenyl, OR₁₁, SR₁₁, N(R₁₂)(R₁₃), CN, C(O)R₁₁, C(O)OR₁₁, C(O)N(R₁₄)₂

and/or
$$-CH_2$$
;

 C_2 - C_{24} alkenyl which is uninterrupted or interrupted once or more than once by nonconsecutive O, S or NR₁₄ and which is unsubstituted or substituted by OR₁₁, SR₁₁ or N(R₁₂)(R₁₃);

 C_5 - C_{24} cycloalkenyl which is uninterrupted or interrupted once or more than once by nonconsecutive O, S or NR_{14} and which is unsubstituted or substituted by OR_{11} , SR_{11} or $N(R_{12})(R_{13})$;

 C_7 - C_{24} arylalkyl which is unsubstituted or substituted on the aryl group by C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy or halogen;

 C_4 - C_{24} cycloalkyl which is uninterrupted or interrupted once or more than once by O, S and/or NR₁₄ and which is unsubstituted or substituted by OR₁₁, SR₁₁ or N(R₁₂)(R₁₃); or C₈-C₂₄ arylcycloalkyl or C₆-C₃₄ arylcycloalkenyl;

 R_{11} is H, C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, C_3 - C_8 cycloalkyl, phenyl, benzyl or C_2 - C_{20} alkyl which is interrupted once or more than once by nonconsecutive O atoms and which is unsubstituted or substituted by OH and/or SH:

 R_{12} and R_{13} independently of one another are hydrogen, C_1 - C_{20} alkyl, C_3 - C_8 cycloalkyl, phenyl, benzyl or C_2 - C_{20} alkyl, which is interrupted once or more than once by O or S and which is unsubstituted or substituted by OH and/or SH; or R_{12} and R_{13} together are C_3 - C_5 alkylene which is uninterrupted or interrupted by O, S or NR_{14} ;

 Z_1 is C_1 - C_{24} alkyl, which is unsubstituted or substituted once or more than once by OR_{15} , SR_{15} ,

$$N(R_{16})(R_{17})$$
, phenyl, halogen, CN, -N=C=A, $-C \stackrel{O}{\leftarrow} CH_2$, $-C \stackrel{A}{\leftarrow} R_{18}$, $-C \stackrel{A}{\leftarrow} OR_{18}$

and/or $-C - N(R_{18})_2$ or Z_1 is $C_2 - C_{24}$ alkyl which is interrupted once or more than once by O, S or

 NR_{14} and which can be substituted by OR_{15} , SR_{15} , $N(R_{16})(R_{17})$, phenyl, halogen, $-CH_2$,

more than once by phenyl, CN, -N=C=A, $-CH_2$, $-CH_2$, $-CH_3$, $-CH_{18}$, $-CH_{18}$ and/or

 $\begin{array}{c} \overset{A_{1}}{ } \\ \overset{}{ } & \overset{}{ } \\ \overset{}{ } & \overset{}{ } &$

 Z_1 is unsubstituted C_3 - C_{24} cycloalkyl or C_3 - C_{24} cycloalkyl substituted by C_1 - C_{20} alkyl, OR_{11} , CF_3 or halogen; unsubstituted C_2 - C_{24} alkenyl or C_2 - C_{24} alkenyl substituted by C_6 - C_{12} aryl, CN, $(CO)OR_{15}$ or $(CO)N(R_{18})_2$; or

 Z_1 is C_3 - C_{24} cycloalkenyl or is one of the radicals R_{22} R_{21} R_{22} R_{22} R

$$R_{19}$$
 R_{20} R_{19} R_{19} R_{20} R_{21} R_{20} R_{21} R_{21} R_{20} R_{20} R_{20} R_{20} R_{20} R_{20} R_{20} R_{20} R_{20} R_{20}

$$G = \begin{bmatrix} E \\ G \\ G \end{bmatrix} = \begin{bmatrix} G \\ Si \\ G \end{bmatrix} = \begin{bmatrix} G \\ Si \\ G \end{bmatrix} = \begin{bmatrix} E \\ G \\ G \end{bmatrix} = \begin{bmatrix} E \\$$

$$R_3$$
 R_4 R_2 R_3 R_4 R_3 R_4 R_3 R_4 R_5 R_5 R_4 R_5 R_5

radical is uninterrupted or interrupted once or more than once by nonconsecutive O or S, and is unsubstituted or substituted by OR_{15} , SR_{15} and/or halogen; with the proviso that Z_1 and R_6 are not identical;

A, is O, S or NR_{183} ;

 Z_2 is C_1 - C_{24} alkylene; C_2 - C_{24} alkylene interrupted once or more than once by O, S or NR_{14} ; C_2 - C_{24} alkenylene; C_2 - C_{24} alkenylene interrupted once or more than once by O, S or NR_{14} ; C_3 - C_2 - C_2 -cycloalkylene; C_3 - C_2 -cycloalkylene interrupted once or more than once by O, S or NR_{14} ; C_3 - C_2 -cycloalkylene; C_3 - C_2 -cycloalkenylene interrupted once or more than once by O, S or NR_{14} ; where the radicals C_1 - C_2 -alkylene, C_2 - C_2 -alkylene, C_2 - C_2 -alkylene, C_3 - C_2 -cycloalkylene and C_3 - C_2 -cycloalkenylene are unsubstituted or are substituted by OR_{11} , SR_{11} , $N(R_{12})(R_{13})$ and/or halogen; or Z_2

or
$$-Z_6$$
, where these radicals are unsubstituted or are substituted on the aromatic

by C_1 - C_{20} alkyl; C_2 - C_{20} alkyl which is interrupted once or more than once by nonconsecutive O atoms and which is unsubstituted or substituted by OH and/or SH; OR_{11} , SR_{11} , $N(R_{12})(R_{13})$, phenyl, halogen, NO_2 , CN, (CO)- OR_{11} , (CO)- R_{11} , (CO)- R_{12} , (CO)- R_{12} , (CO)- R_{12} , (CO)- R_{13} , (CO)- R_{14} , (CO)- R_{15} , (CO)- R_{16} , (CO)- R_{17} , (CO)- R_{19} , (CO)- R_{1

 Z_3 is CH_2 , CH(OH), $CH(CH_3)$ or $C(CH_3)_2$;

 Z_4 is S, O, CH₂, C=O, NR₁₄ or a direct bond;

Z₅ is S, O, CH₂, CHCH₃, C(CH₃)₂, C(CF₃)₂, SO, SO₂, CO;

 Z_6 and Z_7 independently of one another are CH_2 , $CHCH_3$ or $C(CH_3)_2$;

r is 0, 1 or 2;

s is a number from 1 to 12;

q is a number from 0 to 50;

t and p are each a number from 0 to 20;

E, **G**, **G**₃ and **G**₄ independently of one another are unsubstituted $C_1 - C_{12}$ alkyl or $C_1 - C_{12}$ alkyl substituted by halogen, or are unsubstituted phenyl or phenyl substituted by one or more C₁-C₄alkyl; or are C₂-C₁,alkenyl;

 \mathbf{R}_{11a} is C_1-C_{20} alkyl substituted once or more than once by OR_{15} or $-\overset{\bigcirc}{C_1}-CH_2$; or is C_2-C_{20} alkyl which is interrupted once or more than once by nonconsecutive O atoms and is unsubstituted or substituted once or more than once by OR_{15} , halogen or $-\overset{\circ}{C}-CH_2$; or R_{11a} is C_2-C_{20} alkenyl, C_3-C_{12} alkynyl; or R_{11a} is C_3 - C_{12} cycloalkenyl which is substituted once or more than once by halogen, NO_2 , C_1 - C_6 alkyl, OR_{11} or C(O)OR₁₈; or C₇-C₁₆arylalkyl or C₈-C₁₆arylcycloalkyl; \mathbf{R}_{14} is hydrogen, phenyl, C_1 - C_{12} alkoxy, C_1 - C_{12} alkyl or C_2 - C_{12} alkyl which is interrupted once or more

than once by O or S and which is unsubstituted or substituted by OH and/or SH;

has one of the meanings given for R_{11} or is a radical $-C-R_{18}$, $-C-OR_{18}$ or

$$-\frac{A_1}{C} - N(R_{18})_2$$

 \mathbf{R}_{16} and \mathbf{R}_{17} independently of one another have one of the meanings given for \mathbf{R}_{12} or are a radical

$$A = C - R_{18}$$
, $A = C - C - R_{18}$ or $C - R_{18}$)₂;

 \mathbf{R}_{18} is hydrogen, C_1 - C_{24} alkyl, C_2 - C_{12} alkenyl, C_3 - C_8 cycloalkyl, phenyl, benzyl; C_2 - C_{20} alkyl which is interrupted once or more than once by O or S and which is unsubstituted or substituted by OH; \mathbf{R}_{18a} and \mathbf{R}_{18b} independently of one another are hydrogen; C_1 - C_{20} alkyl, which is substituted once or more than once by OR_{15} , halogen, styryl, methylstyryl, -N=C=A or $-\overset{\smile}{C}_1 - \overset{\smile}{C}_1 - \overset{\smile}{C}_{10} - \overset{\smile}{C}_{10}$ interrupted once or more than once by nonconsecutive O atoms and which is unsubstituted or substituted once or more than once by OR_{1s} , halogen, styryl, methylstyryl or $-\overset{\circ}{C}-CH_2$; or R_{1sa} and

 R_{18b} are C_2 - C_{12} alkenyl; C_5 - C_{12} cycloalkyl, which is substituted by -N=C=A or -CH₂-N=C=A and is additionally unsubstituted or substituted by one or more C_1 - C_4 alkyl; or R_{18a} and R_{18b} are C_6 - C_{12} aryl, unsubstituted or substituted once or more than once by halogen, NO₂, C₁-C₀alkyl, C₂-C₄alkenyl, OR₁₁, -N=C=A, -CH₂-N=C=A or C(O)OR₁₈; or R_{18a} and R_{18b} are C₇-C₁₆ arylalkyl; or R_{18a} and R_{18b} together are C₈-

 C_{16} arylcycloalkyl; or R_{18a} and R_{18b} independently of one another are

is O, S, SO, SO₂, CH₂, C(CH₃)₂, CHCH₃, C(CF₃)₂, (CO), or a direct bond;

 \mathbf{R}_{19} , \mathbf{R}_{20} , \mathbf{R}_{21} , \mathbf{R}_{22} and \mathbf{R}_{23} independently of one another are hydrogen, C_1 - C_{20} alkyl; C_2 - C_{20} alkyl, which is interrupted once or more than once by nonconsecutive O atoms and which is unsubstituted or substituted by OH and/or SH; or R_{19} , R_{20} , R_{21} , R_{22} and R_{23} are OR_{11} , SR_{11} , $N(R_{12})(R_{13})$, NO_2 , CN, SO_2R_{24} , R_{24} , R_{25} , R_{25

 OSO_2R_{24} , CF_3 , CCI_3 , halogen; or phenyl which is unsubstituted or substituted once or more than once by C_1 - C_4 alkyl or C_1 - C_4 alkoxy;

or in each case two of the radicals R_{19} , R_{20} , R_{21} , R_{22} and R_{23} together form C_1 - C_{20} alkylene which is

uninterrupted or interrupted by O, S or -NR₁₄;

 R_{24} is C_1 - C_{12} alkyl, halogen-substituted C_1 - C_{12} alkyl, phenyl, or phenyl substituted by OR_{11} and/or SR_{11} ; with the proviso that R_6 and Z_1 are not identical and wherein the compounds benzyl-n-butyl-(2,6-dimethoxybenzoyl) phosphine oxide and benzyl-n-butyl-(2,4,6-trimethylbenzoyl) phosphine oxide are excluded.

09/871,373 - 18 - CO/2-22210/US/A