

Plano de Ensino

Curso: Mestrado Profissional em Computação Aplicada

Componente Curricular: Reconhecimento de Padrões

Período de Execução: 2022-1

Professor (es): Francisco de Assis Boldt

Período Letivo: N/A

Carga Horária: 45 h | Aulas Previstas: 45 | Teoria: 30 | Prática: 15

OBJETIVOS

Geral:

Proporcionar o entendimento das principais técnicas de aprendizado de máquina, assim como suas utilizações em problemas técnico-científicos atuais.

Específicos:

Conhecer diferentes classes de problemas em aprendizado de máquina. Técnicas e métricas de validação para escolha de algoritmos com e sem ajuste. Implementação de algoritmos básicos. Utilização de bibliotecas livres para implementação de métodos de aprendizado de máquina sofisticados.

EMENTA

Visão geral de reconhecimento de padrões e aprendizado de máquina; Regressão; Classificação; Métodos de Generalização Baseados em Instâncias; Métodos Lineares; Métodos Baseados em Árvores de Decisão; Ensembles; Redução de Dimensionalidade; Aprendizado não supervisionado; Métodos e métricas para avaliação de algoritmos de aprendizado de máquina.

PRÉ-REQUISITOS OU CO-REQUISITOS (SE HOUVER)

CONTEÚDOS PROGRAMÁTICOS	CARGA HORÁRIA
Reconhecimento de Padrões e Aprendizado de Máquina	6
Regressão	6
Classificação	6
Generalização	9
Árvores de Decisão e Ensembles	9
Aprendizado não supervisionado	9
TOTAL	

ESTRATÉGIAS DE APRENDIZAGEM

Aulas teóricas e práticas acompanhadas de tutoriais de programação. Conceitos são explicados de acordo com a evolução dos tutoriais.

RECURSOS DIDÁTICOS

Aulas expositivas com projetor; Ambiente virtual de aprendizagem - AVA; Youtube; GitHub.

ATIVIDADES A DISTÂNCIA							
Tipo (s)	Metodologia (s) de Utilização	Atividade (s)	Carga Horária				
Vídeos, Exercícios e	Ambiente Virtual de	Execução de experimentos	9				
Material de Leitura	Aprendizagem	e escrita de relatórios.					

AVALIAÇÃO DA APRENDIZAGEM

Critérios:

Instrumentos:

10 atividades de programação valendo 10 pontos cada.

Extensão do prazo para entrega dos

exercícios e dos trabalhos.

AÇÕES PEDAGÓGICAS ADEQUADAS ÀS NECESSIDADES ESPECÍFICAS

BIBLIOGRAFIA BÁSICA (Título. Periódicos, etc.)								
Autor	Título	Ed	Local	Editora	Ano			
Géron, Aurélien	Hands-on machine learning with Scikit-Learn, Keras & TensorFlow: concepts, tools, and techniques to build intelligent systems.	2	Sebastapol	O'Reilly Media, Inc.	2019			
Duda, R. O., Hart, P. E., & Stork	Pattern classification.	2	New York	John Wiley & Sons	2012			
Bishop, C. M.	Pattern recognition and machine learning.	1	New York	Springer	2006			
BIBLIOGRAFIA COMPLEMENTAR (Título. Periódicos, etc.)								
Autor	Título	Ed	Local	Editora	Ano			
FUKUNAGA, K.	Introduction to Statistical Pattern Recognition	2	New York	Academic Press	1990			
SCHALKHOFF, R.	Pattern Recognition, statistical, structural and neural approaches	1	New York	John Wiley and Sons	1992			
SCHÜRMANN, J.	Pattern Classification: A Unified View of Statistical and Neural Approaches	1	New York	John Wiley and Sons	1996			
VAPNIK, V. N.	The Nature Of Statistical Learning Theory	1	New York	Springer	1996			
DEVIJVER, P. A.; KITTLER, J.	Pattern Recognition: A Statistical Approach	1	London	Prentice/ Hall Int	1982			