Modulformen I

Sommersemester 2018 Vorlesung von Prof. Dr. Winfried Kohnen

> Vorlesungsmitschrieb von Patrick Arras Jonas Müller

Heidelberg, den 13. Juni 2018

Vorwort

Dies ist ein nicht offizielles Skript der Vorlesung Modulformen 1 aus dem Sommersemester 2018 gehalten von Professor Winfried Kohnen an der Universität Heidelberg. Das Skript wurde in der Vorlesung mitgetext und mit pdflatex kompiliert. Deshalb kann es Fehler enthalten und wir übernehmen keine Garantie für die Richtigkeit.

Bei Fehlern, kann ich unter folgender Mailadresse erreicht werden:

```
jj@mathphys.stura.uni-heidelberg.de
```

Die aktuellste Version des Skriptes befindet sich immer unter

https://github.com/jenuk/modulformen/blob/master/script.pdf

Die LATEX-Source Dateien findet man hier, auf Fehler kann hier alternativ über neues Issue aufmerksam gemacht werden:

https://github.com/jenuk/modulformen/tree/master

Inhaltsverzeichnis

Inl	haltsv	verzeichnis	iv
1	Grui	ndlegende Tatsachen	1
_	1.1		1
	1.1	1.1.1 Fundamentalbereich	1
		1.1.2 Modulform	2
		1.1.3 Beispiele für Modulformen	4
			5
	1.0		
	1.2	Die Modulinvariante j	9
2	Hec	keoperatoren	13
	2.1	Vorbemerkung, Motivation	13
	2.2	Die Heckeoperatoren $T(n)$	15
	2.3	Folgerungen	21
	2.4	Exkurs: Produktdarstellung der Diskriminantenfunktion	24
3	Das	Petersson'sche Skalarprodukt	27
	3.1	Invariantes Maß und Skalarprodukt	27
	3.2	Anwendung: Eine Charakterisierung der Eisensteinreihen	32
4	Poir	ncaré-Reihen	35
	4.1	Anwendungen	35
		4.1.1 Die Ramanujan τ -Funktion	40
		4.1.2 Die Peterssonschen Formeln	41
		4.1.3 Hecke-Operatoren sind hermitesch	42
		1110 120010 operators and normalises.	
5	Die	Eichler-Selberg-Spurformel auf $\mathrm{SL}_2(\mathbb{Z})$	47
In	dex		49
Lis	ste de	er Sätze	51

1 Grundlegende Tatsachen

1.1 Ergebnisse aus Funktionentheorie 2 (Errinnerung)

1.1.1 Fundamentalbereich

Wie üblich sei

$$\mathbb{H} = \{ z \in \mathbb{C} \mid \operatorname{Im} z > 0 \}$$

die obere Halbebene und

$$SL_2(\mathbb{Z}) = \{ M \in M_2(\mathbb{R}) \mid \det M = 1 \} .$$

Dann operiert $SL_2(\mathbb{Z})$ auf \mathbb{H} durch

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \circ z = \frac{az+b}{cz+d},$$

das heißt $E \circ z = z$ und $(M_1 M_2) \circ z = M_1 \circ (M_2 \circ z)$. Hierbei beachte man, dass

$$\operatorname{Im}\left(\frac{az+b}{cz+d}\right) = \frac{\operatorname{Im}z}{\left|cz+d\right|^{2}}.$$

 $\Gamma(1) = \operatorname{SL}_2(\mathbb{Z}) \subseteq \operatorname{SL}_2(\mathbb{R})$ ist eine diskrete Untergruppe, spezielle Matrizen in $\Gamma(1)$ sind

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 und $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

die Translation $T \circ z = z + 1$ und Stürzung $S \circ z = -\frac{1}{z}$.

Man interessiert sich für die Operation von diskreten Untergruppen $\Gamma \subseteq SL_2(\mathbb{Z})$ insbesondere $\Gamma = \Gamma(1)$.

Definition 1.1.1. Eine Teilmenge $\mathcal{F} \subseteq \mathbb{H}$ heißt Fundamentalbereich für die Operationen von $\Gamma \subseteq SL_2(\mathbb{R})$ auf \mathbb{H} , falls:

- (i) \mathcal{F} ist offen,
- (ii) zu jedem $z \in \mathbb{H}$ existiert ein $M \in \Gamma$ mit $M \circ z \in \overline{\mathcal{F}}$,

Abbildung 1.1: Der Fundamentalbereich \mathcal{F}_1 der vollen Modulgruppe.

(iii) Sind $z_1, z_2 \in \mathcal{F}$ und $z_2 = M \circ z_1$ mit $M \in \Gamma$, dann gilt $M = \pm E$ und somit $z_1 = z_2$.

Beispiel 1.1.2. Die Menge $\mathcal{F}_1 := \{z = x + iy \mid |x| < \frac{1}{2}, |z| > 1\}$ ist ein Fundamentalbereich für die Operation von $\Gamma(1)$ auf \mathbb{H} , dieser wird auch MODULFIGUR genannt. Siehe Abbildung 1.1.

Bemerkung 1.1.3. Identifikationen in $\overline{\mathcal{F}_1}$ finden nur auf dem Rand statt. (Die Geraden $x = \pm \frac{1}{2}$ werden miteinander identifiziert unter T bzw T^{-1} , Punkte auf den Kreisbögen rechts oder links von i werden unter S identifiziert.

Satz 1.1.4. Die Gruppe $\Gamma(1)$ wird erzeugt von S und T.

1.1.2 Modulform

Definition 1.1.5. Eine Abbildung $f: \mathbb{H} \to \overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ heißt Modulfunktion vom Gewicht $k \in \mathbb{Z}$ für $\Gamma(1)$, falls gilt:

- (i) f ist auf \mathbb{H} meromorph,
- (ii) $f(\frac{az+b}{cz+d}) = (cz+d)^k f(z)$ für alle $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(1)$,
- (iii) f ist meromorph in ∞ .

Bedeutung von (iii): Wendet man (ii) an mit M=T, so erhält man f(z+1)=f(z). Sei $\mathcal{R}=\{q\in\mathbb{C}\mid 0<|q|<1\}$. Die Abbildung $z\mapsto q=e^{2\pi iz}$ bildet \mathbb{H} auf \mathcal{R} ab und F(q):=f(z) ist wohldefiniert und holomorph bis auf mögliche Polstellen, die sich prinzipiell gegen q=0 häufen könnten. Bedingung (iii) fordert nun, dass q=0 eine unwesentliche isolierte Singularität¹ von F ist. Nach Funktionentheorie 1 hat dann F eine Laurententwicklung

$$F(q) = \sum_{n \ge n_0} a_n q^n$$
 für $0 < |q| < |q_0|$

wobei $n_0 \in \mathbb{Z}$ fest. Damit erhalten wir also

$$f(z) = \sum_{n \ge n_0} a_n e^{2\pi i n z} \qquad \text{für } 0 < y_0 < y$$

Definition 1.1.6. Ein solches f heißt MODULFORM falls f auf \mathbb{H} und in ∞ holomorph ist (letzteres bedeutet, dass F in q=0 hebbar ist, also $f(z)=\sum_{n\geqslant 0}a_ne^{2\pi inz}$ für alle $z\in\mathbb{H}$). Eine Modulform heißt Spitzenform, falls $a_0=0$.

Bemerkung 1.1.7. Die Fourierkoeffizienten a_n sind im Allgemeinen wichtige und interessante Größen (z. B. Darstellungsanzahlen von natürlichen ahlen durch quadratische Formen, etwa $r_4(n) = \#\{(x,y,z,w) \in \mathbb{Z}^4 \mid n = x^2 + y^2 + z^2 + w^2\}$ oder die Anzahl von Punkten auf elliptischen Kurven über \mathbb{F}_p).

Definition 1.1.8. Sei : $\mathbb{H} \to \mathbb{C}$, $k \in \mathbb{Z}$, $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{R})$. Man setzt

$$(f|_k M)(z) := (cz+d)^{-k} f\left(\frac{az+b}{cz+d}\right)$$

für $z \in \mathbb{H}$, dies ist der Peterssonscher Strichoperator.

Dann gilt $f|_k E = f$ und $f|_k(M_1M_2) = (f|_kM_1)|_kM_2$ für alle $M_1, M_2 \in SL_2(\mathbb{R})$. Es folgt:

(i) Es gilt $(f|_k M)(z) = (cz+d)^{-k} f(\frac{az+b}{cz+d}) = f(z)$ für alle $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(1)$ genaudann, wenn dies für S und T gilt, d. h. $f(-\frac{1}{z}) = z^k f(z)$ und f(z+1) = f(z), da S und T SL₂(\mathbb{Z}) erzeugen.

¹Das heißt es handelt sich um eine hebbare Singularität oder eine Polstelle.

1.1. Ergebnisse aus Funktionentheorie 2 (Errinnerung)

(ii) Eine Funktion $f \colon \mathbb{H} \to \mathbb{C}$ ist genau dann eine Modulform vom Gewicht k, wenn f eine Fourierentwicklung

$$f(z) = \sum_{n\geqslant 0} a_n e^{2\pi i n z}$$
 für $z \in \mathbb{H}$

hat und zusätzlich gilt

$$f\left(-\frac{1}{z}\right) = z^k f(z)$$

1.1.3 Beispiele für Modulformen

Thetareihen

Definition 1.1.9. Sei $A \in M_m(\mathbb{R})$ symmetrisch und positiv definit. Dann heißt

$$\vartheta_A(z) = \sum_{g \in \mathbb{Z}^m} e^{\pi i A[g]z}$$
 für $z \in \mathbb{H}$

eine Thetareihe, wobei $A[g] := g^t A g$ für $g \in \mathbb{Z}^m \cong M_{m,1}(\mathbb{Z})$.

Satz 1.1.10.

- (i) $\vartheta_A(z)$ ist gleichmäßig absolut konvergent auf $y \ge y_0 > 0$. Insbesondere ist $\vartheta_A(z)$ auf $\mathbb H$ holomorph.
- (ii) Es gilt die Theta-Transformationsformel: $\vartheta_{A^{-1}} = \sqrt{\det A} \cdot (\frac{z}{i})^{\frac{m}{2}} \vartheta_A(z)$.

Satz 1.1.11. Sei $A \in M_m(\mathbb{Z})$ symmetrisch, positiv definit, gerade² und det A = 1. Dann gilt 8|m und $\vartheta_A(z)$ ist eine Modulform vom Gewicht $\frac{m}{2}$ für $\Gamma(1)$.

Beachte $\vartheta_A(z) = 1 + \sum_{n \geqslant 1} r_A(n) q^n$ wobei $r_A(n)$ die Anzahl der Darstellungen von n durch die ganzzahlige, positive definite quadratische Form $x \mapsto \frac{1}{2} x^t A x$ auf \mathbb{R}^m ist.

Eisensteinreihen

Definition 1.1.12. Sei $k \in \mathbb{Z}$, k gerade und $k \geqslant 4$. Dann heißt

$$G_k(z) = \sum_{m,n}' \frac{1}{(mz+n)^k}$$
 für $z \in \mathbb{H}$

²Das heißt für alle $\mu \in \{1, ..., m\}$ gilt $a_{\mu\mu}$ ist gerade

EISENSTEINREIHE vom Gewicht k.³

Satz 1.1.13.

- (i) $G_k(z)$ ist gleichmäßig absolut konvergent auf $D_{\varepsilon} = \{ z = x + iy \mid y \geqslant \varepsilon, \ x^2 \leqslant \frac{1}{\varepsilon} \}$, insbesondere also holomorph auf \mathbb{H} .
- (ii) G_k ist Modulform vom Gewicht k für $\Gamma(1)$.
- (iii) Es gilt

$$G_k(z) = 2\zeta(k) + \frac{2(2\pi i)^k}{(k-1)!} \sum_{n>1} \sigma_{k-1}(n)q^n$$

wobei $\zeta(k) = \sum_{n=1}^{\infty} \frac{1}{n^k}$ und $\sigma_{k-1}(n) = \sum_{d|n} d^{k-1}$.

Setze $E_k := \frac{1}{2\zeta(k)}G_k$ die Normalisierte Eisensteinreihe. Benutze nun

$$\zeta(k) = \frac{(-1)^{\frac{k}{2} - 1} 2^{k - 1} B_k}{k!} \pi^k$$

für k gerade und $k \geqslant 2$. Damit folgt

$$E_k = 1 - \frac{2k}{B_k} \sum_{n \geqslant 1} \sigma_{k-1}(n) q^n$$

wobei alle B_k rationale Zahlen sind. Speziell gilt

$$B_4 = -\frac{1}{30} \qquad \Longrightarrow \qquad E_4 = 1 + 240 \sum_{n \geqslant 1} \sigma_3(n) q^n \,,$$

$$B_6 = \frac{1}{42} \qquad \Longrightarrow \qquad E_6 = 1 - 504 \sum_{n \geqslant 1} \sigma_5(n) q^n.$$

1.1.4 Valenzformel und Anwendungen

Satz 1.1.14 (VALENZFORMEL). Sei f eine Modulfunktion vom Gewicht $k \in \mathbb{Z}$, $f \not\equiv 0$. Dann gilt

$$\operatorname{ord}_{\infty} f + \frac{1}{2} \operatorname{ord}_{i} f + \frac{1}{3} \operatorname{ord}_{\rho} f + \sum_{\substack{z \in \Gamma(1) \backslash \mathbb{H} \\ z \not\sim i, \rho}} \operatorname{ord}_{z} f = \frac{k}{12}.$$

$${}^{3}\sum_{m,n}' := \sum_{\substack{(m,n) \in \mathbb{Z}^2 \\ (m,n) \neq (0,0)}}$$

Abbildung 1.2: Die Kurve $\mathcal C$ wobei A und E so gewählt sind, dass $\mathcal C$ alle Null- und Polstellen enthält.

Hierbei ist $\rho = e^{\frac{2\pi i}{3}}$ und

$$\operatorname{ord}_{\infty} f := \operatorname{ord}_{q=0} F(q)$$

mit
$$F(q) = f(z)$$
 für $q = e^{2\pi i z}$.

Beweis. Zum Nachweis reduziert man auf den Fall, dass f außer in $z=\rho, -\overline{\rho}, i$ keine Null- oder Polstellen auf $\partial \overline{F_1}$ hat und berechnet

$$\frac{1}{2\pi i} \int_{\mathcal{C}} \frac{f'(z)}{f(z)} \, \mathrm{d}z \,.$$

Wobei die Kurve \mathcal{C} wie in Abbildung 1.2 gewählt ist.

g. e. s.

Definition 1.1.15. Sei

$$\Delta(z) = \frac{1}{1728} \left(E_4^3(z) - E_6^2(z) \right)$$

die DISKRIMINANTENFUNKTION. Dann ist Δ eine Spitzenform vom Gewicht k=12 mit $\Delta(z) \neq 0 \, \forall z \in \mathbb{H}$ und $\operatorname{ord}_{\infty} \Delta = 1$, d. h. $\Delta = q + \dots$

Bemerkung 1.1.16. Δ ist in gewisser Weise die "erste" von 0 verschiedene Spitzenform und wurde von vielen Mathematikern studiert.

Beispiel 1.1.17.

- (i) Schreibe $\Delta(z) = \sum_{n\geqslant 1} \tau(n)q^n$, dann heißt $n\mapsto \tau(n)$ RAMANUJAN-FUNKTION. Es gilt: $\tau(n)\in\mathbb{Z}$ für alle $n\geqslant 1$. Ferner lässt sich zeigen, dass $\tau(n)\equiv\sigma_{11}(n)\mod 691$, mithilfe von $B_{12}=-\frac{691}{2730}$.
- (ii) Vermutung: $\tau(n) \neq 0$ für alle $n \geqslant 1$ (Lehner)

Sei M_k der C-Vektorraum der Modulformen vom Gewicht $k \in \mathbb{Z}$ und $S_k \subseteq M_k$ der Unterraum der Spitzenformen.

Bemerkung 1.1.18. $M_k = \{0\}$ für k ungerade, da $f((-E) \circ z) = f(z) = (-1)^k f(z)$.

Satz 1.1.19. Sei $k \in \mathbb{Z}$ gerade. Dann gilt:

- (i) $M_k = \{0\}$ für k < 0 und $M_2 = \{0\}$.
- (ii) $M_0 = \mathbb{C}$.
- (iii) $M_k = \mathbb{C}E_k \oplus S_k$, falls $k \geqslant 4$.
- (iv) Die Abbildung $f \mapsto f \cdot \Delta$ gibt einen Isomorphismus von M_{k-12} auf S_k .
- (v) dim $M_k < \infty$.

Satz 1.1.20. Sei $k \ge 0$ gerade. Dann gilt:

$$\dim M_k = \begin{cases} \left\lfloor \frac{k}{12} \right\rfloor & \text{falls } k \equiv 2 \mod 12\\ 1 + \left\lfloor \frac{k}{12} \right\rfloor & \text{falls } k \not\equiv 2 \mod 12 \end{cases}$$

Beispiel 1.1.21.

- (i) $M_4 = \mathbb{C}E_4$.
- (ii) $M_6 = \mathbb{C}E_6$.
- (iii) $M_8 = \mathbb{C}E_8 = \mathbb{C}E_4^2$.
- (iv) $M_{10} = \mathbb{C}E_{10} = \mathbb{C}E_4E_6$.
- (v) $M_{12} = \mathbb{C}E_{12} \oplus \mathbb{C}\Delta$.
- (vi) $M_{14} = \mathbb{C}E_{14}$.

1.1. Ergebnisse aus Funktionentheorie 2 (Errinnerung)

Satz 1.1.22. Sei $k \ge 0$ gerade. Dann bilden $E_4^{\alpha} E_6^{\beta}$ mit $4\alpha + 6\beta = k$ eine Basis von M_k , insbesondere gilt also

$$M_k = \bigoplus_{\substack{\alpha,\beta \geqslant 0\\ 4\alpha + 6\beta = k}} \mathbb{C}E_4^{\alpha} E_6^{\beta}$$

Beweis. Wir zeigen zunächst induktiv, dass die Monome M_k erzeugen. Für $k \le 10$ ist dies nach Beispiel 1.1.21 klar. Sei also $k \ge 12$. Man bestimme eine beliebige Kombination $\alpha, \beta \ge 0$ mit $4\alpha + 6\beta = k$ und setze $g := E_4^{\alpha} E_6^{\beta} \in M_k$ mit konstantem Term gleich 1.

Sei nun $f \in M_k$ beliebig mit konstantem Term a_0 . Dann ist $f - a_0 \cdot g \in S_k$. Nach Satz 1.1.19, iv) gilt daher $f - a_0 \cdot g = \Delta \cdot h$ mit $h \in M_{k-12}$. Nach Induktionsvoraussetzung ist h eine Linearkombination von Monomen $E_4^{\gamma} E_6^{\delta}$ mit $4\gamma + 6\delta = k - 12$. Aber $\Delta = \frac{1}{1728} (E_4^3 - E_6^2)$ und daher ist $f - a_0 \cdot g$ Linearkombination von Monomen $E_4^{\gamma + 3} E_6^{\delta}$ und $E_4^{\gamma} E_6^{\delta + 2}$. Wegen

$$4(\gamma + 3) + 6\delta = k - 12 + 12 = k$$

$$4\gamma + 6(\delta + 2) = k - 12 + 12 = k$$

ist also auch f als Linearkombination von Monomen der behaupteten Form schreibbar. Somit erzeugen die Monome tatsächlich M_k .

Noch zu zeigen ist, dass die Monome über $\mathbb C$ linear unabhängig sind. Beweis durch Widerspruch: Angenommen, es existiere eine nicht-triviale lineare Relation

$$\sum_{\substack{\alpha,\beta\geqslant 0\\4\alpha+6\beta=k}} \lambda_{\alpha,\beta} E_4^{\alpha} E_6^{\beta} = 0.$$

Fall 1: Sei $k \equiv 0 \mod 4$. Dann sind alle β gerade, also schreibe jeweils $\beta = 2\beta'$ mit $\beta' \geqslant 0$. Es folgt $\alpha = \frac{k}{4} - 3\beta'$ und somit

$$E_4^{\alpha} E_6^{\beta} = E_4^{\frac{k}{4} - 3\beta'} E_6^{2\beta'} = E_4^{\frac{k}{4}} \left(\frac{E_6^2}{E_4^3}\right)^{\beta'}.$$

Da $E_4^{\frac{k}{4}}$ nicht die Nullfunktion ist, ergibt sich eine nicht-triviale Polynom-Relation für $\frac{E_6^2}{E_4^3}$, d. h. die meromorphe Funktion $\frac{E_6^2}{E_4^3}$ ist Nullstelle eines nicht-trivialen Polynoms über $\mathbb C$. Da $\mathbb C$ algebraisch abgeschlossen ist (jedes nicht-konstante Polynom über $\mathbb C$ zerfällt vollständig über $\mathbb C$ in Linearfaktoren), ist $\frac{E_6^2}{E_4^3}$ somit konstant.

Wir zeigen $\frac{E_6^2}{E_4^3} \equiv 0$ mit einem Trick: Es gilt $E_6(-\frac{1}{z}) = z^6 E_6(z)$, denn $E_6 \in M_6$. Auswerten in $z = i = -\frac{1}{i}$ liefert $E_6(i) = 0$. Ferner gilt

$$E_4(z) = 1 + 240 \sum_{n \geqslant 1} \sigma_3(n) e^{2\pi i n z} \implies E_4(i) = 1 + 240 \sum_{n \geqslant 1} \sigma_3(n) e^{-2\pi n}$$
.

Da alle Summanden positiv sind, folgt $E_4(i) \neq 0$ und somit $\frac{E_6^2(i)}{E_4^3(i)} = 0$. Dies impliziert jedoch da $\frac{E_6^2}{E_3^3}$ konstant ist bereits $E_6 \equiv 0$. \not

Fall 2: Sei $k \equiv 2 \mod 4$, dann sind alle β ungerade. Analoges Vorgehen zum ersten Fall liefert ebenfalls einen Widerspruch.

Somit sind die Monome über C linear unabhängig.

g. e. s.

Bemerkung 1.1.23. Der Satz impliziert additive Faltungsformeln für die multiplikativen Funktionen $\sigma_{k-1}(n)$ (weiterhin $k \in \mathbb{Z}$, $k \ge 4$ gerade). "Multiplikativ" bedeutet hier

$$ggT(m, n) = 1 \Longrightarrow \sigma_{k-1}(m \cdot n) = \sigma_{k-1}(m) \cdot \sigma_{k-1}(n)$$
.

Beispiel 1.1.24.
$$E_8 = E_4^2$$
, ferner $E_4 = 1 + 240 \sum_{n \ge 1} \sigma_3(n) q^n$, also $\sigma_7(n) = \sigma_3(n) + 120 \sum_{m=1}^{n-1} \sigma_3(n-m) \sigma_3(m)$.

Allgemeiner kann man E_k ausdrücken als Linearkombination von Monomen der Form $E_4^{\alpha} E_6^{\beta}$ und erhält hieraus Formeln für $\sigma_{k-1}(n)$.

1.2 Die Modulinvariante j

Definition 1.2.1. Sei $j := \frac{E_4^3}{\Delta}$.

Satz 1.2.2.

- (i) j ist holomorph auf H und hat einen einfachen Pol in ∞ .
- (ii) j ist eine Modulfunktion vom Gewicht 0.
- (iii) j liefert eine Bijektion $\Gamma(1) \setminus \mathbb{H} \cong \mathbb{C}$.

Beweis.

(i) Da $\Delta(z) \neq 0$ für alle $z \in \mathbb{H}$, ist j(z) holomorph auf \mathbb{H} . Ferner gilt

$$\operatorname{ord}_{\infty} j = \operatorname{ord}_{\infty} E_{4}^{3} - \operatorname{ord}_{\infty} \Delta = 0 - 1 = -1$$
.

(ii) Da E_4^3 , $\Delta \in M_{12}$ folgt die Aussage.

(iii) Sei $\lambda \in \mathbb{C}$. Dann ist zu zeigen, dass die Modulfunktion $j_{\lambda} := j - \lambda$ vom Gewicht Null eine modulo $\mathrm{SL}_2(\mathbb{Z})$ eindeutig bestimmte Nullstelle hat. Man wendet auf j_{λ} die Valenzformel an! Es gilt $\mathrm{ord}_z \, j_{\lambda} \geqslant 0$ für alle $z \in \mathbb{H}$ und $\mathrm{ord}_{\infty} \, j_{\lambda} = -1$. Da k = 0 folgt mit der Valenzformel

$$-1 + n + \frac{n'}{2} + \frac{n''}{3} = 0$$

mit $n, n', n'' \in \mathbb{N}_0$. Also

$$n + \frac{n'}{2} + \frac{n''}{3} = 1 \tag{1.1}$$

Man prüft nach: die einzigen Lösungen $(n, n', n'') \in \mathbb{N}_0^3$ von (1.1) sind (1, 0, 0), (0, 2, 0) und (0, 0, 3). Dies impliziert die Behauptung.

Satz 1.2.3. Sei $f \colon \mathbb{H} \to \overline{\mathbb{C}}$ eine meromorphe Funktion. Dann sind folgende Aussagen äquivalent:

- (i) f ist eine Modulfunktion vom Gewicht 0.
- (ii) f ist Quotient zweier Modulformen gleichen Gewichts.
- (iii) f ist eine rationale Funktion in j.

Beweis.

(iii) \Rightarrow (ii) Sei $f = \frac{P(j)}{Q(j)}$ wobei $P(X) = a_0 + a_1 X + \ldots + a_m X^m$ mit $a_{\nu} \in \mathbb{C}$, $a_m \neq 0$ und $Q(X) = b_0 + b_1 X + \ldots + b_n X^n$ mit $b_{\nu} \in \mathbb{C}$, $b_n \neq 0$ mit $Q \not\equiv 0$, insbesondere also auch $Q(j) \not\equiv 0$. Wegen $j = \frac{E_4^3}{\Delta}$ folgt

$$f = \frac{a_0 + a_1 \frac{E_4^3}{\Delta} + \dots + a_m \left(\frac{E_4^3}{\Delta}\right)^m}{b_0 + b_1 \frac{E_4^3}{\Delta} + \dots + b_n \left(\frac{E_4^3}{\Delta}\right)^n}$$
$$= \frac{(a_0 \Delta^m + a_1 E_4^3 \Delta^{m-1} + \dots + a_m (E_4^3)^m) \cdot \Delta^n}{(b_0 \Delta^n + b_1 E_4^3 \Delta^{n-1} + \dots + b_n (E_4^3)^n) \cdot \Delta^m}.$$

Hier sind Zähler und Nenner Modulformen vom Gewicht 12(m+n). Also folgt die Behauptung.

- $(ii) \Rightarrow (i) \text{ klar}$
- (i) \Rightarrow (iii) Sei f eine Modulfunktion vom Gewicht Null und $f \not\equiv 0$. Seien $z_1, \dots z_r$ die modulo $\Gamma(1)$ verschiedenen Polstellen von f und $m_1, \dots m_r$ deren Ordnungen. Sei

$$P(z) := \prod_{\nu=1}^r (j(z) - j(z_{\nu}))^{m_{\nu}}.$$

Dann gilt

$$\operatorname{ord}_{z_{\nu}} P = \operatorname{ord}_{z_{\nu}} (j(z) - j(z_{\nu}))^{m_{\nu}} = m_{\nu} \operatorname{ord}_{z_{\nu}} (j(z) - j(z_{\nu})) \geqslant m_{\nu}.$$

Dann ist P(z)f(z) eine Modulfunktion vom Gewicht Null und holomorph auf H. Da P(z) ein Polynom in j ist, genügt es die Behauptung für P(z)f(z) zu zeigen. Insbesondere kann man voraussetzen, dass f holomorph auf H ist. Da ord $_{\infty} \Delta = 1$, gibt es $n \in \mathbb{N}_0$ so dass $g := \Delta^n f$ in unendlich holomorph ist. Dann ist $f = \frac{g}{\Delta^n}$ und g ist eine Modulform vom Gewicht 12n. Nach Satz 1.1.22 ist g eine Linearkombination von Monomen $E_4^{\alpha}E_6^{\beta}$ mit $4\alpha + 6\beta = 12n$. Es genügt somit die Behauptung für $\frac{E_4^{\alpha}E_6^{\beta}}{\Delta^n}$ zu zeigen. Insbesondere gilt $3|\alpha$ und $2|\beta$, schreibe $\alpha = 3p$ und $\beta = 2q$. Dann gilt

$$\frac{E_4^{\alpha} E_6^{\beta}}{\Delta^n} = \frac{(E_4^3)^p (E_6^2)^q}{\Delta^{p+q}} = j^p (j - 1728)^q ,$$

$$\text{denn } j - 1728 = j - \frac{E_4^3 - E_6^2}{\Delta} = \frac{E_4^3}{\Delta} - \frac{E_4^3 - E_6^2}{\Delta} = \frac{E_6^2}{\Delta} .$$

$$\textbf{g.e.s.}$$

Bemerkung 1.2.4.

- (i) Der Quotient $\Gamma(1)^{\mathbb{H}}$ besitzt in natürlicher Weise die Struktur einer Riemannschen Fläche isomorph zu $S^2 \setminus \{\text{Punkt}\}$ indem man die Ränder in $\overline{\mathcal{F}_1}$ identifiziert. Fügt man den Punkt ∞ hinzu, so erhält an $\overline{\Gamma(1)^{\mathbb{H}}} := \Gamma(1)^{\mathbb{H}} \cup \{\infty\} \cong S^2$ (die Sphäre in \mathbb{R}^3). Satz 1.2.2 (iii) besagt dann, dass j ein Isomorphismus von $\overline{\Gamma(1)^{\mathbb{H}}} \cong S^2 \cong \mathbb{P}^1(\mathbb{C}) = \mathbb{C} \cup \infty$ ist. Satz 1.2.3 entspricht dann der Tatsache, dass die einzigen meromorphen Funktionen auf S^2 die rationalen Funktionen sind.
- (ii) Man kann zeigen (schwer!)

$$\Delta(z) = q \prod_{n \ge 1} (1 - q^n)^{24}.$$

Damit folgt

$$j = \frac{E_4^3}{\Delta} = \frac{1}{q} \left(1 + 240 \sum_{n \ge 1} \sigma_3(n) q^n \right)^3 \frac{1}{\prod_{n \ge 1} (1 - q^n)^{24}}$$
$$= \frac{1}{q} \left(1 + 240 \sum_{n \ge 1} \sigma_3(n) q^n \right)^3 \prod_{n \ge 1} \left(\sum_{m \ge 0} q^{mn} \right)^{24}$$
$$= \frac{1}{q} + 744 + \sum_{n \ge 1} c(n) q^n \quad \text{mit } c(n) \in \mathbb{N} .$$

Also hat die j-Funktion eine Fourierentwicklung in q, wobei die Koeffizienten positive ganzen Zahlen sind.

(iii) Man zeigt leicht: $\frac{1}{\prod_{n\geqslant 1}(1-q^n)}=1+\sum_{n\geqslant 1}p(n)q^n$ wobei p(n) die Anzahl der Partionen von n ist, d. h. die Anzahl der Zerlegungen von n als Summe positiver, ganzer Zahlen (Beispielsweise p(4)=5, denn 4=3+1=2+2=2+1+1=1+1+1+1). Man sagt: die erzeugende Reihe von p(n) wird durch $\frac{1}{\prod_{m\geqslant 1}(1-q^n)}$ gegeben.

Beachte $1+\sum_{n\geqslant 1}p(n)q^n=\frac{e^{\pi i\frac{z}{12}}}{\eta(z)}$ wobei $\eta(z)=e^{\pi i\frac{z}{12}}\prod_{n\geqslant 1}(1-q^n)$ die sogenannte Dedekindische η -Funktion ist. Beachte $\eta^{24}=\Delta$. η sollte also eine Modulform vom Gewicht $\frac{1}{2}$ sein. Mit Hilfe der Theorie der Modulformen kann man zeigen $p(n)\sim\frac{1}{4\sqrt{3}n}\cdot e^{\pi\sqrt{\frac{3}{2}n}}$ für $n\to\infty$ (hier $a(n)\sim b(n)$ genau dann, wenn $\lim_{n\to\infty}\frac{a(n)}{b(n)}=1$).

2 Heckeoperatoren

2.1 Vorbemerkung, Motivation

Definition 2.1.1. Definiere die Gruppe

$$\operatorname{GL}_{2}^{+}(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2}(\mathbb{R}) \mid ad - bc > 0 \right\},$$

welche $SL_2(\mathbb{R})$ als Untergruppe enthält.

Definition 2.1.2.

(i) Seien $z \in \mathbb{H}$ und

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}_2^+(\mathbb{R}) \,,$$

dann setze

$$M \circ z := \frac{az+b}{cz+d}$$
.

(ii) Für $k \in \mathbb{Z}$, $M \in \mathrm{GL}_2^+(\mathbb{R})$ und $f \colon \mathbb{H} \to \mathbb{C}$ setze

$$(f|_k M)(z) := (ad - bc)^{\frac{k}{2}} (cz + d)^{-k} f(M \circ z)$$
.

Diese Definitionen verallgemeinern die früheren Definitionen für $SL_2(\mathbb{R})$ (siehe 1.1.1). Beachte, dass weiterhin für alle $\lambda \in \mathbb{R}_+$ gilt:

$$f|_k \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = f.$$

Lemma 2.1.3.

- (i) Die Abbildung $(M,z)\mapsto M\circ z$ definiert eine Operation von $\mathrm{GL}_2^+(\mathbb{R})$ auf $\mathbb{H}.$
- (ii) Man hat $f|_k M_1 M_2 = (f|_k M_1)|_k M_2$.

Beweis.

- (i) Rechne nach und beachte hierbei, dass $\operatorname{Im}\left(\frac{az+b}{cz+d}\right) = (ad-bc)\frac{\operatorname{Im}z}{|cz+d|^2}$.
- (ii) Für $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2^+(\mathbb{R})$ setze j(M, z) := cz + d. Dann gilt für beliebige Matrizen $M_1, M_2 \in GL_2^+(\mathbb{R})$, dass

$$j(M_1M_2, z) = j(M_1, M_2 \circ z) \cdot j(M_2, z)$$

woraus wegen $(cz + d)^{-k} = j(M, z)^{-k}$ die Behauptung folgt.

g. e. s.

Ziel: Definition gewisser linearer Operatoren $T: M_k \to M_k$ auf den Vektorräumen M_k (Modulformen vom Gewicht $k \in \mathbb{Z}$) durch geeignete Mittelbildung.

Idee: Sei $\mathcal{M} \subseteq GL_2^+(\mathbb{R})$ eine Teilmenge mit folgenden Eigenschaften (mit · die gewöhnliche Matrizenmultiplikation):

- (i) $\Gamma(1) \cdot \mathcal{M} \subset \mathcal{M}$
- (ii) $\mathcal{M} \cdot \Gamma(1) \subset \mathcal{M}$
- (iii) \mathcal{M} zerfällt in endlich viele disjunkte Rechtsnebenklassen, d.h.

$$\mathcal{M} = \bigcup_{M \in \Gamma(1) \setminus \mathcal{M}} \Gamma(1) \cdot M,$$

wobei die Vereinigung disjunkt und endlich ist.

Für eine Modulform $f \in M_k$ setze dann

$$f|T_{\mathcal{M}} := \sum_{M \in \Gamma(1) \setminus \mathcal{M}} f|_k M.$$

Dann ist $f|T_{\mathcal{M}}$ wohldefiniert, denn jede Rechtsnebenklasse $\Gamma(1) \cdot M \in \Gamma(1) \setminus \mathcal{M}$ besteht aus Vertretern der Form NM mit $N \in \Gamma(1)$ und es gilt

$$f|_k NM = (f|_k N)|_k M = f|_k M$$

wegen Lemma 2.1.3, ii) und $f|_k N = f$ für beliebiges $N \in \Gamma(1)$, da $f \in M_k$.

Ferner: Sei eine Matrix $N \in \Gamma(1)$ gegeben. Dann ist

$$(f|T_{\mathcal{M}})|_k N = \sum_{M \in \Gamma(1) \setminus \mathcal{M}} f|_k M N = \sum_{M \in \Gamma(1) \setminus \mathcal{M}} f|_k M = f|T_{\mathcal{M}},$$

denn mit M durchläuft auch MN ein Vertretersystem der Rechtsnebenklassen. (Begründung: Sind zwei Matrizen $M_1, M_2 \in \mathcal{M}$ nicht äquivalent unter Linksmultiplikation mit $\Gamma(1)$, so gilt dies trivialerweise auch für M_1N, M_2N . Auch ist

$$\mathcal{M}N = \left(\bigcup_{M \in \Gamma(1) \setminus \mathcal{M}} \Gamma(1) \cdot M\right) N = \bigcup_{M \in \Gamma(1) \setminus \mathcal{M}} \Gamma(1) \cdot MN = \mathcal{M},$$

denn nach Voraussetzung gilt sowohl $\mathcal{M}N\subseteq\mathcal{M}$ als auch $\mathcal{M}=\mathcal{M}N^{-1}N\subseteq\mathcal{M}N$.)

Folgerung: $f|T_{\mathcal{M}}$ hat das Transformationsverhalten einer Modulform vom Gewicht k.

2.2 Die Heckeoperatoren T(n)

Definition 2.2.1. Sei $n \in \mathbb{N}$. Setze

$$\mathcal{M}(n) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}) \mid ad - bc = n \right\}.$$

Beobachtung: $\mathcal{M}(n)$ ist invariant unter Links- und Rechtsmultiplikation von $\Gamma(1)$.

Lemma 2.2.2.

$$\mathcal{M}(n) = \bigcup_{\substack{ad=n\\d>0\\b \pmod{d}}}^{\cdot} \Gamma(1) \cdot \begin{pmatrix} a & b\\0 & d \end{pmatrix},$$

wobei die Vereinigung über alle Matrizen $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ geht, derart dass $a,b,d \in \mathbb{Z},\ ad=n,$ d>0, und b ein volles Restsystem modulo d durchläuft (also z.B. $b\in\{1,2,\ldots,d\}$).

Beweis. Die Inklusion \supseteq ist klar, zeige also noch \subseteq . Sei dazu $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}(n)$. Da ad-bc=n>0, können a und c nicht gleichzeitig Null sein. Deswegen existiert $t:=\operatorname{ggT}(a,c)\in\mathbb{N}$. Also sind $-\frac{c}{t}$ und $\frac{a}{t}$ teilerfremd und es existieren $\alpha,\beta\in\mathbb{Z}$ mit

$$\begin{pmatrix} \alpha & \beta \\ -\frac{c}{t} & \frac{a}{t} \end{pmatrix} \in \Gamma(1) .$$

Dann ist

$$\begin{pmatrix} \alpha & \beta \\ -\frac{c}{t} & \frac{a}{t} \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}.$$

Man kann also voraussetzen, dass c=0. Wegen det M=n gilt dann ad=n. Multipliziert man gegebenenfalls mit -E, so kann man annehmen, dass d>0. Schließlich multipliziere für $\nu \in \mathbb{Z}$ mit

$$\begin{pmatrix} 1 & \nu \\ 0 & 1 \end{pmatrix} \in \Gamma(1) \Longrightarrow \begin{pmatrix} 1 & \nu \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} a & b + \nu d \\ 0 & d \end{pmatrix} \,.$$

Durch geeignete Wahl von $\nu \in \mathbb{Z}$ kann man erreichen, dass $b + \nu d$ in einem vorgegebenen Restsystem modulo d liegt. Damit ist die Inklusion \subseteq gezeigt.

Noch zu zeigen ist, dass die Vereinigung disjunkt ist (die Endlichkeit ist nach Konstruktion klar). Angenommen, für zwei Matrizen

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}, \begin{pmatrix} a' & b' \\ 0 & d' \end{pmatrix}$$

(mit $ad=n=a'd',\,d>0,\,d'>0$ und b,b' Vertreter zweier Restklassen modulo d bzw. d') existiere ein $N\in\Gamma(1)$, sodass

$$N\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} a' & b' \\ 0 & d' \end{pmatrix} .$$

Dann folgt, dass die untere linke Komponente von N Null ist, $N \in \mathrm{SL}_2(\mathbb{Z})$ also die Gestalt

$$N = \begin{pmatrix} \pm 1 & \nu \\ 0 & \pm 1 \end{pmatrix}$$

mit $\nu \in \mathbb{Z}$ hat. Damit ist

$$N\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} \pm 1 & \nu \\ 0 & \pm 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} \pm a & \pm b + \nu d \\ 0 & \pm d \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} a' & b' \\ 0 & d' \end{pmatrix}.$$

Es folgt $d' = \pm d$ und da d, d' > 0 nach Voraussetzung bereits d = d'. Die Diagonalelemente von N sind also beide +1 und es folgt $b' = b + \nu d$. Wegen d = d' stammen b, b' beide aus dem gleichen Restsystem modulo d. Da sie sich nur um ein Vielfaches von d unterscheiden, folgt

$$\begin{pmatrix} a' & b' \\ 0 & d' \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} .$$

g. e. s.

Definition 2.2.3. Sei $n \in \mathbb{N}$. Man setze dann für $f \in M_k$

$$f|T(n) := n^{\frac{k}{2}-1} \sum_{M \in \Gamma(1) \setminus \mathcal{M}(n)} f|_k M.$$

Satz 2.2.4.

- (i) Durch T(n) wird eine lineare Abbildung $M_k \to M_k$ definiert. Diese lässt S_k invariant (gemeint ist: Spitzenformen werden auf Spitzenformen geschickt). Man nennt T(n) den n-ten Hecke-Operator.
- (ii) Ist $f = \sum_{m \geqslant 0} a(m)q^m \in M_k$, so gilt

$$f|T(n) = n^{\frac{k}{2}-1} \sum_{m \geqslant 0} \left(\sum_{d|(m,n)} d^{k-1} a\left(\frac{mn}{d^2}\right) \right) q^m.$$

Beachte: Der konstante Term von f|T(n) ist gleich

$$n^{\frac{k}{2}-1} \sum_{d|n} d^{k-1} a(0) = n^{\frac{k}{2}-1} \sigma_{k-1}(n) a(0)$$

Beispiel 2.2.5. Sei n = p prim. Dann ist

$$f|T(p) = p^{\frac{k}{2}-1} \sum_{m \geqslant 0} \left(\sum_{d|(m,p)} d^{k-1} a\left(\frac{mp}{d^2}\right) \right) q^m$$
$$= p^{\frac{k}{2}-1} \sum_{m \geqslant 0} \left(a(mp) + p^{k-1} a\left(\frac{m}{p}\right) \right) q^m,$$

wobei $a\left(\frac{m}{p}\right) := 0$ für $p \not\mid m$, denn

$$\sum_{d \mid (m,p)} d^{k-1}a\left(\frac{mn}{d^2}\right) = a(mp) + \begin{cases} 0 & \text{falls } p \not\mid m \\ p^{k-1}a\left(\frac{m}{p}\right) & \text{falls } p \mid m \end{cases}$$

Beweis.

- (i) Nach den Überlegungen in Abschnitt 2.1 wissen wir, dass f|T(n) das Transformationsverhalten einer Modulform vom Gewicht k besitzt. Auch ist f|T(n) als Summe holomorpher Funktionen selbst holomorph auf \mathbb{H} . Zu zeigen verbleibt noch, dass f|T(n) holomorph in ∞ ist und den Raum S_k invariant lässt. Beides folgt direkt aus Teil ii) des Satzes.
- (ii) Benutze Lemma 2.2.2, damit folgt

$$f|T(n) = n^{\frac{k}{2}-1} \sum_{\substack{ad=n\\ b \bmod d}} f|_k \binom{a \ b}{0 \ d}$$

$$= n^{\frac{k}{2}-1} \sum_{\substack{ad=n\\ d>0\\ b \bmod d}} n^{\frac{k}{2}} d^{-k} f\left(\frac{az+b}{d}\right)$$

$$= n^{k-1} \sum_{\substack{m>0\\ ad=n,\ d>0\\ b \bmod d}} d^{-k} a(m) e^{2\pi i m \frac{az+b}{d}}$$

$$= n^{k-1} \sum_{\substack{m>0\\ d=n,\ d>0\\ b \bmod d}} d^{-k} a(m) e^{2\pi i m \frac{n}{d^2} z} \left(\sum_{b \bmod d} e^{2\pi i m \frac{b}{d}}\right).$$

Es gilt

$$\sum_{b \bmod d} e^{2\pi i m \frac{b}{d}} = \begin{cases} 0 & \text{falls } d \nmid m \\ d & \text{falls } d | m \end{cases}$$

Allgemein $1+q+\ldots q^{N-1}=\frac{q^n-1}{q-1}=0$, falls $q\neq 1$ und $q^N=1$, wende dies an mit $q=e^{2\pi i\frac{m}{d}}$, N=d. Damit erhalten wir, wobei zu beachten ist, dass die Vertauschung wegen absoluter Konvergenz gerechtfertigt sind

g. e. s.

Satz 2.2.6. Für alle $m, n \in \mathbb{N}$ gilt

$$T(m)T(n) = \sum_{d|(m,n)} d^{k-1}T\left(\frac{mn}{d^2}\right)$$

Speziell gilt (vergleiche mit Ramanujan- τ -Funktion):

- (i) T(n)T(m) = T(mn) falls ggT(m, n) = 1
- (ii) $T(p)T(p^{\nu}) = T(p^{\nu+1}) + p^{k-1}T(p^{\nu-1})$ für p prim und $\nu \geqslant 1$.

Beachte dass (ii) äquivalent ist zur Identität

$$\frac{1}{1 - T(p)X + p^{k-1}X^2} = \sum_{\nu \geqslant 0} T(p^{\nu})X^{\nu}$$

Beweis. in mehreren Schritten: 1. Schritt: Beweis von (i): Seien m, n teilerfremd. Benutze Lemma 2.2.2, dann gilt

$$f|T(m)T(n) = (mn)^{\frac{k}{2}-1} \sum_{\substack{ad=m\\d>0,\ b \bmod d}} \left(\sum_{\substack{a'd'=n\\d'>0,\ b' \bmod d'}} f|_k {ab \choose 0 \ d} {a' \choose 0 \ d'} \right)$$

$$= (mn)^{\frac{k}{2}-1} \sum_{\substack{ad=m\\d>0,\ b \bmod d}} \left(\sum_{\substack{a'd'=n\\d'>0,\ b' \bmod d'}} f|_k {aa' \ ab'+bd' \choose 0 \ dd'} \right).$$

Durchläuft d alle positiven Teiler von m und d' alle positiven Teiler von n, so durchläuft D := dd' alle positiven Teiler von mn, denn ggT(m,n) = 1. Setzt man A := aa', so gilt dann AD = mn. Ferner gilt: Durchläuft b ein volles Restsystem mod d und b' ein solches mod d', so durchläuft B = ab + bd' ein volles Restsystem mod dd', denn in der Tat genügt es zu zeigen, dass diese Zahlen inkongruent mod dd' sind, denn dann sind dies genau dd' paarweise inkongruente Zahlen. Angenommen

$$ab_1' + b_1d' \equiv ab_2' + b_2d' \mod dd',$$

dann gilt

$$a(b_1' - b_2') \equiv d(b_2 - b_1) \mod dd'$$
.

Dies impliziert $a(b'_1 - b'_2) \equiv 0 \mod d'$. Aber ggT(a, d') = 1, denn a|m und d'|n und ggT(m, n) = 1 nach Voraussetzung. Also folgt $b'_1 \equiv b'_2 \mod d'$, also $b'_1 = b'_2$. Es folgt jetzt $b_2 \equiv b_1 \mod d$, also $b_2 = b_1$. Also folgt die Behauptung. Und damit

$$f|T(m)T(n) = (mn)^{\frac{k}{2}-1} \sum_{\substack{AD=mn \\ D>0, \ B \bmod D}} f|_k \left(\begin{smallmatrix} A & B \\ 0 & D \end{smallmatrix} \right) = f|_k T(mn).$$

2. Schritt: Beweis von (ii): Es gilt nach Lemma 2.2.2:

$$f|T(p) = p^{\frac{k}{2}-1} \left(f|_k \binom{p \ 0}{0 \ 1} + \sum_{\mu \bmod p} f|_k \binom{1 \ \mu}{0 \ p} \right)$$

und

$$f|T(p^{\nu}) = (p^{\nu})^{\frac{k}{2}-1} \sum_{\substack{0 \leqslant \beta \leqslant \nu \\ b \bmod p^{\beta}}} f|_{k} {p^{\nu-\beta} \choose 0 p^{\beta}}.$$

Dann

$$f|T(p)T(p^{\nu}) = (p^{\nu+1})^{\frac{k}{2}-1} \left(\sum_{\substack{0 \leqslant \beta \leqslant \nu \\ b \bmod p^{\beta}}} f|_k {p \choose 0} {p^{\nu-\beta} \choose 0} + \sum_{\substack{0 \leqslant \beta \leqslant \nu \\ b \bmod p^{\beta} \\ \mu \bmod p}} f|_k {1 \choose 0} {p^{\nu-\beta} \choose 0} \right)$$

$$= (p^{\nu+1})^{\frac{k}{2}-1} \left(\sum_{\substack{0 \leqslant \beta \leqslant \nu \\ b \bmod p^{\beta}}} f|_{k} {p^{\nu+1-\beta} pb \choose 0 p^{\beta}} + \sum_{\substack{0 \leqslant \beta \leqslant \nu \\ b \bmod p^{\beta} \\ \mu \bmod p}} f|_{k} {p^{\nu-\beta} b + \mu p^{\beta} \choose 0 p^{\beta+1}} \right)$$
(2.1)

Betrachte 2. Summe in (2.1): Durchläuft b ein Restsystem modulo p^{β} und μ ein Restsystem modulo p, so durchläuft $b + \mu p^{\beta}$ ein solches modulo $p^{\beta+1}$ (denn insgesamt $p^{\beta+1}$ Zahlen, paarweise inkongruent modulo $p^{\beta+1}$). Man sieht daher, dass die 2. Summe gleich

$$f|T(p^{\nu+1}) - (p^{\nu+1})^{\frac{k}{2}}f|_k \binom{p^{\nu+1}}{0}$$

ist.

Betrachte 1. Summe in (2.1). Diese ist gleich

$$(p^{\nu+1})^{\frac{k}{2}-1} \left(f|_k \left(\begin{smallmatrix} p^{\nu+1} & 0 \\ 0 & 1 \end{smallmatrix} \right) + \sum_{\substack{1 \leq \beta \leq \nu \\ b \bmod p^{\beta}}} f|_k \left(\begin{smallmatrix} p^{\nu+1-\beta} & pb \\ 0 & p^{\beta} \end{smallmatrix} \right) \right).$$

Man erhält also

$$f|_{k}T(p)T(p^{\nu}) = f|_{T}(p^{\nu+1}) + (p^{\nu+1})^{\frac{k}{2}-1} \underbrace{\sum_{\substack{1 \leq \beta \leq \nu \\ b \bmod p^{\beta}}} f|_{k}\binom{p\ 0}{0\ p}|_{k}\binom{p^{\nu-\beta}\ b}{0\ p^{\beta-1}}}_{=:R}$$

In R ersetze β durch $\beta + 1$, erhalte

$$R = \sum_{\substack{0 \leqslant \beta \leqslant \nu - 1\\ h \bmod p^{\beta + 1}}} f|_k {\binom{p^{\nu - 1 - \beta} b}{0 p^{\beta}}},$$

Man setze $b=\widetilde{b}+\mu p^{\beta}$ wobe
i μ modulo p und \widetilde{b} modul
o p^{β} läuft

$$R = \sum_{\substack{0 \leqslant \beta \leqslant \nu - 1 \\ \widetilde{b} \bmod p^{\beta} \\ \mu \bmod p}} f|_{k} {\left(\begin{smallmatrix} 1 & \mu \\ 0 & 1 \end{smallmatrix}\right)}|_{k} {\left(\begin{smallmatrix} p^{\nu - 1 - \beta} & \widetilde{b} \\ 0 & p^{\beta} \end{smallmatrix}\right)}$$

da f Periode 1 hat, erhält man

$$(p^{\nu+1})^{\frac{k}{2}-1}R = p^{k-1}(p^{\nu-1})^{\frac{k}{2}-1} \sum_{\substack{0 \leqslant \beta \leqslant \nu-1\\ \widetilde{b} \bmod p^{\beta}}} f|_k \binom{p^{\nu-1-\beta}}{0}^{\widetilde{b}}_{p^{\beta}} = p^{k-1}f|_k T(p^{\nu-1})$$

3. Schritt: zeige durch Induktion nach $s \in \mathbb{N}$ (Übungsaufgabe), dass

$$T(p^{\nu})T(p^{s}) = \sum_{\alpha=0}^{\min\{\nu, s\}} (p^{\alpha})^{k-1}T(p^{\nu+s-2\alpha}),$$

was sich mit Teilern der Form $d = p^{\alpha}$ umschreiben lässt zu

$$T(p^{\nu})T(p^s) = \sum_{d|(p^{\nu},p^s)} d^{k-1}T(\frac{p^{\nu+s}}{d^2}).$$

4. Schritt: der allgemeine Fall! Induktion über die verschiedenen Primteiler von m. Sei $m = p^r m'$, $n = p^s n'$ mit $p \nmid m'$, $p \nmid n'$. Dann folgt mit i), dass

$$T(m)T(n) = T(m'p^r)T(n'p^s) = T(m')T(p^r)T(n')T(p^s)$$
$$= T(m')T(n')T(p^r)T(p^s).$$

Wendet man dieses Argument nun induktiv auf T(m')T(n') und weitere gemeinsame Primteiler an, so kann man davon ausgehen, dass m', n' nach endlich vielen Iterationen teilerfremd sind. Dann kann man mit i) und Schritt 3 schreiben

$$T(m)T(n) = \left(\sum_{d \mid (m',n')} d^{k-1}T\Big(\frac{m'n'}{d^2}\Big)\right) \left(\sum_{t \mid (p^r,p^s)} t^{k-1}T(\frac{p^rp^s}{t^2})\right),$$

was sich nach erneuter Anwendung von i) vereinfacht zu

$$T(m)T(n) = \sum_{\substack{d \mid (m', n') \\ t \mid (p^r, p^s)}} (dt)^{k-1} T\left(\frac{p^r m' p^s n'}{(dt)^2}\right)$$

und mit D = dt schließlich zu

$$T(m)T(n) = \sum_{D|(m,n)} D^{k-1}T\left(\frac{mn}{D^2}\right).$$

g. e. s.

2.3 Folgerungen

Satz 2.3.1. Die Hecke-Operatoren T(n) für $n \in \mathbb{N}$ erzeugen eine kommutative \mathbb{C} -Algebra von Endomorphismen von M_k , welche S_k stabil lässt. Die Algebra wird sogar bereits von den Hecke-Operatoren T(p) für p prim erzeugt.

Beweis. Die Kommutativität folgt direkt aus Satz 2.2.6. Wir zeigen noch, dass für beliebiges $n \in \mathbb{N}$ der Hecke-Operator T(n) durch Hecke-Operatoren der Form T(p) mit p prim darstellbar ist. Sei dazu $n = \prod_{i=1}^r p_i^{\alpha_i}$ die Primzahlzerlegung von n, dann ist nach Satz 2.2.6, i)

$$T(n) = \prod_{i=1}^{r} T(p_i^{\alpha_i}).$$

Ferner gilt nach Satz 2.2.6, ii)

$$T(p)T(p^{\nu}) = T(p^{\nu+1}) + p^{k-1}T(p^{k-1}),$$

also lässt sich beispielsweise durch Wahl von $\nu=1$ und Umstellen der Gleichung der Hecke-Operator $T(p^2)$ als Funktion von $T(p^1)=T(p)$ und $T(p^0)=T(1)=\mathrm{id}_{M_k}$ ausdrücken. Induktiv gilt dies für alle Hecke-Operatoren der Form $T(p_i^{\alpha_i})$, sodass sich T(n) bereits als Funktion der $T(p_i)$ darstellen lässt. Damit erzeugen die Hecke-Operatoren T(p) mit p prim bereits die gesamte Algebra.

Definition 2.3.2. Sei $f \in M_k$ mit k > 0. Dann heißt f HECKE-EIGENFORM, falls gilt

- (i) $f \not\equiv 0$,
- (ii) $f|T(n) = \lambda(n)f$ für alle $n \in \mathbb{N}$, wobei $\lambda(n) \in \mathbb{C}$.

Satz 2.3.3. Sei $f = \sum_{m \geq 0} a(m)q^m \in M_k$ eine Hecke-Eigenform mit $f|T(n) = \lambda(n)f$ für alle $n \in \mathbb{N}$, dann gilt

- (i) $a(n) = \lambda(n) \cdot a(1)$ für alle $n \in \mathbb{N}$,
- (ii) $a(1) \neq 0$,

(iii)

$$\lambda(m)\lambda(n) = \sum_{d \mid (m,n)} d^{k-1}\lambda\left(\frac{mn}{d^2}\right)$$

für alle $m, n \in \mathbb{N}$. Speziell ist für (m, n) = 1

$$\lambda(m)\lambda(n)=\lambda(mn)$$

sowie für $\nu \geqslant 1$ und p prim

$$\lambda(p)\lambda(p^{\nu}) = \lambda(p^{\nu+1}) + p^{k-1}\lambda(p^{\nu-1}).$$

Beweis.

(i) Nach Satz 2.2.4, ii) gilt

$$\lambda(n)f = f|T(n) = \sum_{m \geqslant 0} \left(\sum_{d \mid (m,n)} d^{k-1}a\left(\frac{mn}{d^2}\right) \right) q^m.$$

Koeffizientenvergleich bei q^1 liefert sofort $\lambda(n) \cdot a(1) = a(n)$.

- (ii) Angenommen, a(1) = 0. Dann ist nach i) auch a(n) = 0 für alle $n \in \mathbb{N}$. Somit ist f = a(0) konstant und daher in M_0 . Da für eine Hecke-Eigenform $f \in M_k$ nach Definition k > 0 gefordert wird, folgt aus $f \in M_0 \cap M_k$ bereits $f \equiv 0$, was im Widerspruch zur Definition der Hecke-Eigenformen steht.
- (iii) Folgt aus Satz 2.2.6 und wegen $f \not\equiv 0$. Genauer gilt

$$f|T(m)T(n) = \sum_{d|(m,n)} d^{k-1}f|T\left(\frac{mn}{d^2}\right) \Longrightarrow \lambda(m)\lambda(n) = \sum_{d|(m,n)} d^{k-1}\lambda\left(\frac{mn}{d^2}\right).$$

g. e. s.

Definition 2.3.4. Man nennt $f = \sum_{m \ge 0} a(m)q^m$ eine normalisierte Hecke-Eigenform, falls a(1) = 1.

Bemerkung 2.3.5. Durch Division durch $a(1) \neq 0$ lässt sich jede Hecke-Eigenform normalisieren. Beachte jedoch, dass zum Beispiel die "normalisierten Eisensteinreihen" E_k zwar Hecke-Eigenformen, aber keine normalisierten Hecke-Eigenformen sind. Die beiden Normalisierungsbegriffe unterscheiden sich also.

Frage: Gibt es immer Hecke-Eigenformen? Gibt es vielleicht sogar eine Basis von Hecke-Eigenformen?

Bemerkung 2.3.6.

(i) Man zeigt "leicht", dass die Eisensteinreihe

$$E_k = 1 - \frac{2k}{B_k} \sum_{n \ge 1} \sigma_{k-1}(n) q^n$$
 mit $\sigma_{k-1}(n) = \sum_{d \mid n} d^{k-1}$

eine Hecke-Eigenform ist mit $E_k|T(n) = \sigma_{k-1}(n)E_k$ für alle $n \ge 1$.

In der Tat: Der konstante Term von $E_k|T(n)$ ist gleich $\sigma_{k-1}(n)$, siehe 2.2.4. Die höheren Terme ergeben sich nach demselben Satz als

$$-\frac{2k}{B_k} \sum_{d|(m,n)} d^{k-1} \sigma_{k-1} \left(\frac{mn}{d^2} \right) = -\frac{2k}{B_k} \sigma_{k-1}(m) \sigma_{k-1}(n)$$

wegen

$$\sum_{d|(m,n)} d^{\alpha} \sigma_{\alpha} \left(\frac{mn}{d^2} \right) = \sigma_{\alpha}(m) \sigma_{\alpha}(n) .$$

für beliebiges $\alpha \in \mathbb{N}$. Diese Identität lässt sich leicht induktiv zeigen (Übungsaufgabe), besitzt jedoch nur für $\alpha = k - 1$ im Kontext der Modulformen eine sinnvolle Interpretation.

(ii) Es ist $S_{12} = \mathbb{C}\Delta$, wobei $\Delta = \frac{1}{1728}(E_4^3 - E_6^2) = \sum_{n \geqslant 1} \tau(n)q^n$ mit $\tau(n) \in \mathbb{Z}$ und $\tau(1) = 1$. Daher ist Δ eine normalisierte Hecke-Eigenform in S_{12} . Insbesondere ist

$$\tau(m)\tau(n) = \sum_{d|(m,n)} d^{11}\tau\left(\frac{mn}{d^2}\right),$$

$$\tau(m)\tau(n) = \tau(mn) \qquad \text{für } (m,n) = 1,$$

$$\tau(p)\tau(p^{\nu}) = \tau(p^{\nu+1}) + p^{11}\tau(p^{\nu-1}) \qquad \text{für } p \text{ prim.}$$

(iii) Man kann S_k mit einem Skalarprodukt versehen, derart dass die T(n) hermitesch bezüglich dieses Skalarproduktes sind. Dann folgt aus der Linearen Algebra bereits, dass die T(n) simultan diagonalisierbar sind. Dies garantiert die Existenz einer Basis von Hecke-Eigenformen.

2.4 Exkurs: Produktdarstellung der Diskriminantenfunktion

Satz 2.4.1. Für die Diskriminantenfunktion Δ gilt die Produktentwicklung

$$\Delta(z) := \frac{1}{1728} \left(E_4^3(z) - E_6^2(z) \right) = q \prod_{m=1}^{\infty} \left(1 - q^m \right)^{24},$$

wobei wie üblich $q := \exp(2\pi i z)$ ist.

Beweis. Ein erster Beweis dieser Identität stammt von Jacobi; ein weiterer Beweis, der allein mit elementaren Mitteln auskommt, wird auf Übungsblatt 4 geführt werden. Im Folgenden soll ein vergleichsweise einfacher Beweis von Professor Kohnen selbst vorgestellt werden, der unter anderem auf die Hecke-Operatoren zurückgreift.

1. Schritt: Wir leiten eine zur Behauptung äquivalente Aussage her. Nehme also an, die Produktdarstellung gelte, dann können wir die logarithmische Ableitung bilden (verifiziere durch Nachrechnen unter Beachtung der Produktregel):

$$\frac{\Delta'}{\Delta} = 2\pi i - 2\pi i \cdot 24 \sum_{m=1}^{\infty} m \frac{q^m}{1 - q^m}$$
$$= 2\pi i \left(1 - 24 \sum_{m=1}^{\infty} m \sum_{a=1}^{\infty} q^{ma} \right)$$
$$= 2\pi i \left(1 - 24 \sum_{n=1}^{\infty} \sigma_1(n) q^n \right).$$

Es genügt also, folgende Aussage zu zeigen:

$$\frac{\Delta'}{\Delta} = 2\pi i E_2 \,, \tag{*}$$

wobei $E_2(z) := 1 - 24 \sum_{n=1}^{\infty} \sigma_1(n) q^n$. Dies ist der ...

2.Schritt: Für $n \in \mathbb{N}$ betrachte nun wie in Definition 2.2.1

$$\mathcal{M}(n) := \left\{ M \in \mathbb{Z}^{2 \times 2} \mid \det(M) = n \right\}.$$

Wohl bekannt ist aus Lemma 2.2.2, dass

$$\mathcal{M}(n) = \bigcup_{\substack{ad=n\\d>0\\b \pmod{d}}}^{\cdot} \Gamma(1) \cdot \begin{pmatrix} a & b\\0 & d \end{pmatrix}$$

und damit $\# \Gamma(1) \setminus \mathcal{M}(n) = \sigma_1(n)$. Definiere nun einen "multiplikativen Hecke-Operator" \mathfrak{M}_n , der eine Modulform f vom Gewicht k bezüglich $\Gamma(1)$ auf eine solche von Gewicht $\sigma_1(n) \cdot k$ abbildet durch

$$\mathfrak{M}_{n}(f) := \prod_{\substack{\gamma \in \Gamma(1) \backslash \mathcal{M}(n) \\ b \pmod{d}}} f|_{k} \gamma = \prod_{\substack{ad = n \\ b \pmod{d}}} f|_{k} \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}. \tag{1}$$

Dies ist wohldefiniert (argumentiere dazu wie bei T(n) in Abschnitt 2.1). Wendet man dies nun auf $f = \Delta$ an, dann ist $\mathfrak{M}_n(f) = \mathfrak{M}_n(\Delta)$ eine Modulform vom Gewicht $12\sigma_1(n)$ ohne Nullstellen in \mathbb{H} und mit $\operatorname{ord}_{\infty}(\mathfrak{M}_n(\Delta)) = \sigma_1(n)$.

Aus der Valenzformel folgt jetzt $\mathfrak{M}_n(\Delta) = c \cdot \Delta^{\sigma_1(n)}$ für ein $c \in \mathbb{C}^{\times}$. Durch logarithmisches Ableiten beider Seiten von Gleichung 1 erhalten wir mit $f = \Delta$ und $\mathfrak{M}_n(\Delta) = c \cdot \Delta^{\sigma_1(n)}$, dass

$$\sigma_1(n) \frac{\Delta'}{\Delta} = \sum_{\substack{ad=n\\d>0\\b \pmod{d}}} d^{-2} n \frac{\Delta'}{\Delta} \left(\frac{az+b}{d} \right) = \sum_{\substack{ad=n\\d>0\\b \pmod{d}}} \frac{\Delta'}{\Delta} \Big|_2 \begin{pmatrix} a & b\\0 & d \end{pmatrix}, \tag{2}$$

denn die Ableitung von

$$f|_{k}\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = n^{\frac{k}{2}} d^{-k} f\left(\frac{az+b}{d}\right)$$

ist für beliebiges $f \colon \mathbb{H} \to \mathbb{C}$ gegeben durch

$$\left(f|_{k}\left(\begin{smallmatrix} a & b \\ 0 & d \end{smallmatrix}\right)\right)' = n^{\frac{k}{2}}d^{-k}\frac{a}{d}f'\left(\frac{az+b}{d}\right) = n^{\frac{k}{2}}d^{-k-2}nf'\left(\frac{az+b}{d}\right).$$

Setzt man $\frac{\Delta'}{\Delta} = 2\pi i \sum_{m=0}^{\infty} a(m)q^m$, so ergibt sich aus Gleichung 2 unter formaler Anwendung der Hecke-Operatoren (siehe Beweis von Satz 2.2.4, ii)) für beliebige $m, n \in \mathbb{N}$

$$\sigma_1(n)a(m) = \sum_{d|(m,n)} da(\frac{mn}{d^2}).$$

Einsetzen von m=1 liefert

$$\sigma_1(n)a(1) = a(n)$$

und garantiert damit, dass $\frac{\Delta'}{\Delta}$ von der Form

$$\frac{\Delta'}{\Delta}(z) = 2\pi i \left(a(0) + a(1) \sum_{n=1}^{\infty} \sigma_1(n) q^n \right)$$

ist. Multipliziert man nun beide Seiten mit $\Delta(z) = \sum_{m=1}^{\infty} \tau(m) q^m$ und beachtet dabei $\tau(1) = 1$ sowie $\tau(2) = -24$, ergibt sich durch Koeffizientenvergleich

$$a(0) = 1$$
 und $a(1) = -24$,

womit alles gezeigt ist.

3 Das Petersson'sche Skalarprodukt

3.1 Invariantes Maß und Skalarprodukt

Ziel: Definition eines "natürlichen" Skalarprodukts auf S_k . Hierzu benötigt man zunächst ein $\Gamma(1)$ -invariantes Maß auf \mathbb{R}^2 .

Definition 3.1.1. Für $z = x + iy \in \mathbb{H}$ setze man

$$\mathrm{d}\omega(z) := \frac{\mathrm{d}x\,\mathrm{d}y}{y^2}$$

Satz 3.1.2. Die Differentialform $dw = \frac{dy dy}{y^2}$ für $z = x + iy \in \mathbb{H}$ ist $SL_2(\mathbb{R})$ -invariant, d. h. $dw(M \circ z) = dw$ für alle $M \in SL_2(\mathbb{R})$.

Beweis. Es gilt $d\omega(z) = \frac{i}{2y^2} dz \overline{dz}$, denn

$$dz \overline{dz} = (dx + i dy)(dx - i dy)$$

$$= dx dx - i dx dy + i dy dx + dy dy$$

$$= 0 - i dx dy - i dx dy + 0$$

$$= -2i dx dy.$$

Sei nun $M=\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \mathrm{SL}_2(\mathbb{R}),$ dann gilt unter Verwendung von

$$\frac{d(M \circ z)}{dz} = \frac{d\frac{az+b}{cz+d}}{dz} = \frac{a(cz+d) - (az+b)c}{(cz+d)^2} = \frac{1}{(cz+d)^2}$$

die Behauptung nach

$$d\omega(M \circ z) = \frac{i}{2(\operatorname{Im} (M \circ z)^2)} d(M \circ z) \overline{d(M \circ z)}$$
$$= \frac{i}{2\frac{y^2}{|cz+d|^4}} \frac{dz}{(cz+d)^2} \overline{\frac{dz}{(cz+d)^2}}$$

3.1. Invariantes Maß und Skalarprodukt

$$= \frac{i}{2\frac{y^2}{|cz+d|^4}} \frac{\mathrm{d}z}{(cz+d)^2} \frac{\overline{\mathrm{d}z}}{(cz+d)^2}$$
$$= \frac{i|cz+d|^4}{2y^2} \cdot \frac{1}{|cz+d|^4} \cdot \mathrm{d}z \overline{\mathrm{d}z}$$
$$= \frac{i}{2y^2} \, \mathrm{d}z \, \overline{\mathrm{d}z}$$
$$= \mathrm{d}\omega(z).$$

g. e. s.

Ansatz: $f, g \in S_k$, setze:

$$< f, g > := \int_{\overline{F}} y^k f(z) \overline{g(z)} d\omega$$

wobei \mathcal{F} ein Fundamentalbereich ist.

Bemerkung 3.1.3. Sei $\eta = \frac{dz}{y}$. Dann gilt $d\eta = \frac{dx dy}{y^2}$, denn

$$\mathrm{d}\eta = \,\mathrm{d}\Big(\frac{\mathrm{d}x}{y} + i\frac{\mathrm{d}y}{y}\Big) = -\frac{1}{y^2}\,\mathrm{d}y\,\mathrm{d}x + i\Big(-\frac{1}{y^2}\Big)\,\mathrm{d}y\,\mathrm{d}y = \frac{\mathrm{d}x\,\mathrm{d}y}{y^2}\,.$$

Erinnerung. Eine Teilmenge $\mathcal{F} \subseteq \mathbb{H}$ heißt Fundamentalbereich (für $\Gamma(1)$), falls gilt

- (i) \mathcal{F} ist offen,
- (ii) für alle $z\in\mathbb{H}$ existiert $M\in\Gamma(1)$ mit $M\circ z\in\overline{\mathcal{F}},$
- (iii) sind $z_1, z_2 \in \mathcal{F}$ und $z_2 = M \circ z_1$ mit $M \in \Gamma(1)$, dann gilt $M = \pm E$ und $z_1 = z_2$.

Beobachtung: Für $A \subseteq \mathbb{C} \cong \mathbb{R}^2$ ist der Rand ∂A abgeschlossen, daher meßbar. Wir werden oft fordern, dass ∂F eine Nullmenge ist.

Beispiel 3.1.4. Der Rand des Standardfundamentalbereich

$$\mathcal{F}_1 = \left\{ z = x + iy \in \mathbb{H} \mid |x| < \frac{1}{2}, |z| > 1 \right\}$$

ist eine Nullmenge.

Satz 3.1.5. Seien \mathcal{F}_1 und \mathcal{F}_2 Fundamentalbereiche derart, dass ∂F_1 und ∂F_2 Nullmengen sind. Sei $f \colon \mathbb{H} \to \mathbb{C}$ meßbar und $\Gamma(1)$ -invariant, d. h. $f(M \circ z) = f(z)$ für alle $M \in \Gamma(1)$. Ferner gelte

$$\int_{\overline{\mathcal{F}_1}} |f| \, \mathrm{d}w < \infty \,,$$

d. h. also dass |f| über $\overline{\mathcal{F}_1}$ integrierbar ist, dies impliziert, dass f über $\overline{\mathcal{F}_1}$ integrierbar ist. Dann ist f auch über $\overline{F_2}$ integriebar und

$$\int_{\overline{\mathcal{F}_1}} f \, \mathrm{d} w = \int_{\overline{\mathcal{F}_2}} f \, \mathrm{d} w.$$

Beweis. Nach Eigenschaft (ii) eines Fundamentalbereichs gilt (mit $\Gamma(1)' = \Gamma(1)/_{\pm E}$)

$$\mathbb{H} = \bigcup_{M \in \Gamma(1)'} M^{-1} \circ \overline{\mathcal{F}_1} = \bigcup_{M \in \Gamma(1)'} M \circ \overline{\mathcal{F}_2}.$$

Nach (iii) gilt $M \circ \mathcal{F}_1 \cap N \circ \mathcal{F}_1 = \emptyset$ für $M \neq \pm N$. Wegen $\overline{\mathcal{F}_1} = \mathcal{F}_1 \cup \partial \mathcal{F}_1$ und da ∂F_1 eine Nullmenge, folgt, dass

$$M \circ \overline{\mathcal{F}_1} \cap N \circ \overline{\mathcal{F}_2}$$
 eine Nullmenge für $M \neq \pm N$,

denn

$$M \circ \overline{F_1} \cap N \circ \overline{F_1} = M \circ (\mathcal{F}_1 \cup \partial \mathcal{F}_1) \cap N \circ (\mathcal{F}_1 \cup \partial \mathcal{F}_1)$$
$$= (M \circ \mathcal{F}_1 \cup M \circ (\partial \mathcal{F}_1)) \cap (N \circ \mathcal{F}_1 \cup N \circ (\partial \mathcal{F}_1))$$
$$= (M \circ \mathcal{F}_1 \cap N \circ \mathcal{F}_1) \cup (M \circ \mathcal{F}_1 \cap N \circ (\partial \mathcal{F}_1)) \cup \dots$$

Es gilt

$$\int_{\overline{\mathcal{F}}_1} f \, \mathrm{d}w = \int_{\substack{\bigcup M \circ \overline{\mathcal{F}}_2 \cap \overline{\mathcal{F}}_1}} f \, \mathrm{d}w \,,$$

wobei zu beachten ist, dass es sich um eine abzählbare Vereinigung von meßbaren Mengen handelt und die Durchschnitte haben Maß Null, also gilt die abzählbare Additivität des Integrals:

$$\int_{\overline{\mathcal{F}_1}} f \, \mathrm{d}w = \sum_{M \in \Gamma(1)'} \int_{M \circ \overline{\mathcal{F}_2} \cap \overline{\mathcal{F}_1}} f \, \mathrm{d}w = \sum_{M \in \Gamma(1)'} \int_{\overline{\mathcal{F}_2} \cap M^{-1} \overline{F_1}} f(M \circ z) \, \mathrm{d}w (M \circ z)$$

$$= \sum_{M \in \Gamma(1)'} \int_{\overline{\mathcal{F}_2} \cap M^{-1} \circ \overline{F_2}} f \, \mathrm{d}w = \dots = \int_{\overline{F_2}} f \, \mathrm{d}w.$$

g. e. s.

Beispiel 3.1.6. Für jeden Fundamentalbereich \mathcal{F} , so dass $\partial \mathcal{F}$ eine Nullmenge ist, gilt

$$\operatorname{vol}(\Gamma(1)\backslash \mathbb{H}) = \int_{\overline{\mathcal{F}}} dw = \frac{\pi}{3} < \infty$$

Beweis. Es genügt nach Satz 3.1.5 den Fall von $\mathcal{F} = \mathcal{F}_1$ zu betrachten wobei \mathcal{F}_1 der Standard Fundamentalbereich ist (siehe Beispiel 3.1.4).

Es gilt für $\mathcal{F}_c := \mathcal{F}_1 \cap \{ z \in \mathbb{H} \mid y \leqslant c \}$

$$\int_{\overline{\mathcal{F}}_{c}} \frac{\mathrm{d}x \, \mathrm{d}y}{y^{2}} = \lim_{c \to \infty} \int_{\overline{\mathcal{F}}_{c}} \frac{\mathrm{d}x \, \mathrm{d}y}{y^{2}} = \lim_{c \to \infty} \int_{\overline{\mathcal{F}}_{c}} \mathrm{d}\eta = \lim_{c \to \infty} \int_{\partial \overline{\mathcal{F}}_{c}} \frac{\mathrm{d}z}{y},$$

wobei die letzte Gleichheit wegen dem Satz von Stokes und Bemerkung 3.1.3 folgt.

Das Integral über die Gerade z(t) = ic + t für $t \in [-\frac{1}{2}, \frac{1}{2}]$ ergibt

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{c} dt = -\frac{1}{c} \xrightarrow{c \to \infty} 0.$$

Die Integrale über die beiden Geradenstücke heben sich auf, wegen entgegengesetzer Orientierung und da y invariant unter $z\mapsto z+1$. Damit bleibt das Integral über den Kreisbogen, dieser wird parametrisiert durch

$$z(z) = e^{it} = \cos t + i \sin t$$
 für $\frac{2\pi}{3} \leqslant t \leqslant \frac{\pi}{3}$.

Integral ist reellwertig und hat damit den Wert

$$\int_{\frac{2\pi}{3}}^{\frac{\pi}{3}} \frac{i(\cos t + i\sin t)}{\sin t} dt = \int_{\frac{2\pi}{3}}^{\frac{\pi}{3}} \operatorname{Re}\left(\frac{i\cos t - \sin t}{\sin t}\right) dt = \int_{\frac{2\pi}{3}}^{\frac{\pi}{3}} (-1) dt = \frac{2\pi}{3} - \frac{\pi}{3} = \frac{\pi}{3}.$$

g. e. s.

Satz 3.1.7. Für $f \in M_k$ setze man $g(z) := y^{\frac{k}{2}} |f(z)|$ für $z \in \mathbb{H}$. Dann gilt

- (i) g ist invariant unter $\Gamma(1)$,
- (ii) ist $f \in S_k$, dann ist g auf \mathbb{H} beschränkt.

Beweis.

(i) Es gilt

$$g\left(\frac{az+b}{cz+d}\right) = \left(\operatorname{Im}\left(\frac{az+b}{cz+d}\right)\right)^{\frac{k}{2}} \left| f\left(\frac{az+b}{cz+d}\right) \right| = \left(\frac{y}{|cz+d|^2}\right)^{\frac{k}{2}} |cz+d|^k |f(z)| = g(z).$$

(ii) Es ist $\mathbb{H} = \bigcup_{M \in \Gamma(1)} M \circ \overline{\mathcal{F}}$. Da nach (i) g invariant unter $\Gamma(1)$ ist, genügt es zu zeigen, dass g auf $\overline{\mathcal{F}}_1$ beschränkt ist. Aber

$$\overline{\mathcal{F}_1} \cap \overline{\mathcal{F}_c}$$
 ist kompakt.

Wegen Stetigkeit genügt es also zu zeigen, dass g für $y \to \infty$ beschränkt ist. Sei $f(z) = \sum_{n \ge 1} a(n) e^{2\pi i n z}$, beachte $n \ge 1$, denn $f \in S_k$. Dann gilt

$$|g(z)| = y^{\frac{k}{2}} |f(z)| = y^{\frac{k}{2}} \left| e^{2\pi z} \sum_{n \ge 1} a(n) e^{2\pi i (n-1)z} \right|$$

$$\leq y^{\frac{k}{2}} e^{-2\pi y} \left(\sum_{n \ge 1} |a(n)| e^{-2\pi (n-1)y} \right)$$

$$= y^{\frac{k}{2}} e^{-2\pi y} e^{2\pi c} \left(\sum_{n \ge 1} |a(n)| e^{-2\pi nc} \right)$$

$$= \frac{y^{\frac{k}{2}}}{e^{2\pi y}} \cdot K \xrightarrow{y \to \infty} 0$$

g. e. s.

Definition 3.1.8. Für $f, g \in M_k$ derart, dass $fg \in S_{2k}$, setze

$$\langle f, g \rangle := \int_{\overline{\mathcal{F}}} f(z) \overline{g(z)} y^k \, \mathrm{d}w \,,$$
 (3.1)

wobei \mathcal{F} ein Fundamentalbereich wie oben ist.

Satz 3.1.9.

- (i) (3.1) ist absolut konvergent und hängt nicht von der Auswahl von \mathcal{F} ab.
- (ii) $S_k \times S_k \to \mathbb{C}$, $(f, g) \mapsto \langle f, g \rangle$ ist ein Skalarprodukt auf S_k .

Beweis.

(i) Beachte $fg \in S_{2k}$ und $|f(z)\overline{g(z)}|y^k = y^k|f(z)g(z)|$, wende Satz 3.1.7 (ii) an und bemerke $\int_{\overline{\mathcal{F}}} dw < \infty$. Unabhängig von \mathcal{F} folgt aus Satz 3.1.5.

3.2 Anwendung: Eine Charakterisierung der Eisensteinreihen

Satz 3.2.1. Sei $k \in 2\mathbb{Z}$, $k \geqslant 4$. Sei $C_k := \{ f \in M_k \mid \langle f, g \rangle = 0 \ \forall g \in S_k \}$ ein Unterraum von M_k . Dann gilt $C_k = \mathbb{C}E_k$.

Beweis. Der Beweis erfolgt in mehreren Schritten:

Lemma 3.2.2. Es gilt $M_k = C_k \oplus S_k$ (und $M_k = \mathbb{C}E_k \oplus S_k$).

Beweis. Sei $f \in C_k \cap S_k$. Dann $\langle f, f \rangle = 0$, also f = 0.

Sei $f \in M_k$. Die Abbildung $S_k \to \mathbb{C}$, $g \mapsto \langle g, f \rangle$ ist ein lineares Funktional. Nach dem Satz von Riesz-Fischer existiert daher ein eindeutig bestimmtes Element $g_0 \in S_k$, so dass $\langle g, f \rangle = \langle g, g_0 \rangle$ für alle $g \in S_k$. Daher $\langle g, f - g_0 \rangle = 0$ für alle $g \in S_k$, d. h. $\langle f - g_0, g \rangle = 0$ für alle $g \in S_k$. Also ist $f - g_0 \in C_k$ nach Definition und somit

$$f = \underbrace{(f - g_0)}_{\in C_k} + \underbrace{g_0}_{\in S_k}.$$

g. e. s.

Es folgt

$$\dim C_k = \dim M_k - \dim S_k = 1 + \dim S_k - \dim S_k = 1.$$

Daher genügt es zu zeigen, dass $E_k \in C_k$, d. h. $\langle E_k, g \rangle = 0$ für alle $g \in S_k$.

Lemma 3.2.3. Es gilt

$$E_k(z) = \frac{1}{2} \sum_{M \in \Gamma(1)_{\infty} \setminus \Gamma(1)} (1|_k M)(z),$$

wobei $\Gamma(1)_{\infty} = \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \mid n \in \mathbb{Z} \right\}$ und $(1|_k M) = (cz + d)^{-k}$.

Beweis. Es gilt $E_k = \frac{1}{2\zeta(k)}G_k$ mit $G_k = \sum_{m,n}' \frac{1}{(mz+n)^k}$. Ist $(m,n) \in \mathbb{Z}^2 \setminus \{(0,0)\}$, so schreibe $(m,n) = \lambda(c,d)$ wobei $\lambda = \operatorname{ggT}(m,n) \in \mathbb{N}$ und $(c,d) \in \mathbb{Z}^2$ mit $\operatorname{ggT}(c,d) = 1$. Also

$$G_k(z) = \underbrace{\zeta(k)}_{\substack{\sum \\ =\sum \\ \lambda=1}} \cdot \underbrace{\sum_{k=1}^{\infty} \frac{1}{\lambda^k}}_{\text{ggT}(c,d)=1} (cz+d)^{-k}.$$

Damit

$$E_k = \frac{1}{2} \sum_{\substack{(c,d) \in \mathbb{Z}^2 \\ \text{ggT}(c,d)=1}} (cz+d)^{-k}.$$

Daher genügt es zu zeigen

$$\sum_{M \in \Gamma(1)_{\infty} \setminus \Gamma(1)} (1|_k M)(z) = \sum_{\substack{(c,d) \in \mathbb{Z}^2 \\ \text{ggT}(c,d) = 1}} (cz+d)^{-k}.$$

Jeder Summand links hat die Gestalt $(cz+d)^{-k}$ mit $\operatorname{ggT}(c,d)=1$. Umgekehrt ist zu zeigen: Jedes $(c,d)\in\mathbb{Z}^2$ mit $\operatorname{ggT}(c,d)=1$ lässt sich vervollständigen zu $M=\left(\begin{smallmatrix} a&b\\c&d\end{smallmatrix}\right)\in\Gamma(1)$ eindeutig bis auf Links-Multiplikation eines Elementes in $\Gamma(1)_{\infty}$. Es gilt:

- $\operatorname{ggT}(c,d) = 1$, also exisitieren $a, b \in \mathbb{Z}$ mit ad bc = 1, denn \mathbb{Z} ist ein Hauptidealring. Also $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(1)$.
- $\bullet \ \, \left(\begin{smallmatrix} 1 & n \\ 0 & 1 \end{smallmatrix}\right)\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) = \left(\begin{smallmatrix} a+nc & b+nd \\ c & d \end{smallmatrix}\right).$
- Seien $\binom{a}{c}\binom{a}{d}$, $\binom{a'}{c}\binom{b'}{d} \in \Gamma(1)$. Dann ad bc = 1 = a'd b'c. Also (a a')d = (b b')c, also $\frac{c}{d} = \frac{a a'}{b b'}$. Da $\operatorname{ggT}(c, d) = 1$ folgt a a' = nc, b b' = nd mit $n \in \mathbb{Z}$. Das heißt $\binom{a}{c}\binom{a}{d} = \binom{1}{0}\binom{n}{1}\binom{a'}{c}\binom{b'}{d}$.

q. e. s.

Man kann dies schreiben als

$$E_k(z) = \sum_{M \in \Gamma(1)'_{\infty} \backslash \Gamma(1)'} (1|_k M)(z),$$

wobei $\Gamma(1)' = \Gamma(1)/\{\pm E\}$ und $\Gamma(1)'_{\infty} = \{\begin{pmatrix} \pm 1 & n \\ 0 & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z} \}/\{\pm E\}$. Sei $g \in S_k$, zu zeigen ist $\langle E_k, g \rangle = 0$.

Nach Definition

$$\langle E_k, g \rangle = \int_{\overline{\mathcal{F}}} E_k(z) \overline{g(z)} y^k \, \mathrm{d}w = \int_{\overline{\mathcal{F}}} \left(\sum_{M \in \Gamma(1)' \setminus \Gamma(1)'} (1|_k M)(z) \overline{g(z)} (\operatorname{Im} z)^k \right) \mathrm{d}w(z)$$

Beachte

$$(1|_k M)(z)\overline{g(z)}(\operatorname{Im} z)^k = (1|_k M)(z)\overline{g(M \circ z)(1|_k M)(z)}(\operatorname{Im} M \circ z)^k |(1|_k M)(z)|^{-2}$$
$$= \overline{g(M \circ z)}(\operatorname{Im} M \circ z)^k.$$

Sei $\widetilde{\mathcal{F}} := \bigcup_{M \in \Gamma(1)'_{\infty} \setminus \Gamma(1)'} M \circ \overline{\mathcal{F}}$ ein Fundamentalbereich für die Untergruppe $\Gamma(1)'_{\infty} \subseteq \Gamma(1)'$, welche durch $z \mapsto z + n$ operiert. Dann folgt, wobei die zweite Gleichheit durch Substitution und Vertauschung erfolgt, diese ist aufgrund der absoluten Konvergenz gerechtfertigt:

$$\langle E_k, g \rangle = \sum_{M \in \Gamma(1)'_{\infty} \backslash \Gamma(1)'} \int_{M \circ \overline{\mathcal{F}}} \overline{g(z)} y^{k-2} dx dy = \int_{\widetilde{\mathcal{F}}} \overline{g(z)} y^{k-2} dx dy.$$

3.2. Anwendung: Eine Charakterisierung der Eisensteinreihen

Man zeigt formal: Integral ist unabhängig der Auswahl des Fundamentalbereichs \mathcal{G} . Man wähle für \mathcal{G} einen Steifen der Breite 1, etwa $\mathcal{G} = \left\{z = x + iy \in \mathbb{H} \mid |x| < \frac{1}{2}\right\}$. Dann

$$\langle E_k, g \rangle = \int_0^\infty \int_{-\frac{1}{2}}^{\frac{1}{2}} \overline{g(z)} y^{k-2} dx dy$$

Sei $g(z) = \sum_{n\geqslant 1} a(n)e^{2\pi inz} = \sum_{n\geqslant 1} a(n)e^{2\pi inx}e^{-2\pi ny}$, daher $\overline{g(z)} = \sum_{n\geqslant 1} \overline{a(n)}e^{-2\pi ny}e^{-2\pi inx}$.

$$\langle E_k, g \rangle = \int_0^\infty \int_{-\frac{1}{2}}^{\frac{1}{2}} \left(\sum_{n \geqslant 1} \overline{a(n)} e^{-2\pi ny} y^{k-2} e^{-2\pi i nx} \right) dx dy = 0$$

Vertausche Summe und Integral (den
n $g\in S_k)$ und beachte $\int_{-\frac{1}{2}}^{\frac{1}{2}}e^{-2\pi inx}\,\mathrm{d}x=0,$ da
 $n\neq 0.$

4 Poincaré-Reihen

Motivation: Die Abbildung $S_k \to \mathbb{C}$, $f \mapsto a_f(n) = n$ -ter Fourierkoeffizient von f ist ein lineares Funktional. Nach dem Darstellungssatz von Fréchet-Riesz existiert ein eindeutig bestimmtes \widetilde{P}_n für $n \in \mathbb{N}$ mit

$$a_f(n) = \langle f, \widetilde{P}_n \rangle$$
 für alle $f \in S_k$.

Frage: Kann man \widetilde{P}_n explizit angeben? Antwort: ja!

Definition 4.0.1. Sei $k \in 2\mathbb{Z}$, $k \geqslant 4$, $n \in \mathbb{N}$. Dann heißt die formale Reihe

$$P_n(z) = \frac{1}{2} \sum_{\substack{(c,d) \in \mathbb{Z}^2 \\ \text{ggT}(c,d)=1 \\ ad-bc=1}} (cz+d)^{-k} e^{2\pi i n \frac{az+b}{cz+d}} \qquad \text{für } z \in \mathbb{H}$$

die n-te Poincaré Reihe vom Gewicht k für $\Gamma(1)$. Summiert wird über alle $(c,d) \in \mathbb{Z}^2$ mit $\operatorname{ggT}(c,d)=1$ und zu jedem solchen Paar ist $(a,b) \in \mathbb{Z}^2$ zu bestimmen, so dass ad-bc=1, d. h. $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(1)$). Dies ist unabhängig von der Auswahl von a,b, denn ist auch a',b' ein solches Paar, so gilt a'=a+mc, b'=b+md für ein $m \in \mathbb{Z}$ und somit

$$\frac{a'z+b'}{cz+d} = \frac{az+b}{cz+d} + m$$

mit $m \in \mathbb{Z}$ und $e^{2\pi i n m} = 1$.

4.1 Anwendungen

Bemerkung 4.1.1. Es gilt $P_0 = E_k$, wie man durch Vergleich mit Lemma 3.2.3 leicht einsieht.

Satz 4.1.2.

(i) Die Reihe P_n konvergiert auf Kompakta in \mathbb{H} gleichmäßig absolut, stellt also dort eine holomorphe Funktion dar. Es gilt $P_n \in S_k$ für $n \ge 1$.

(ii) Es gilt

$$\langle f, P_n \rangle = \frac{(k-2)!}{(4\pi n)^{k-1}} a_f(n).$$

für alle $f \in S_k$ mit $f = \sum_{m \ge 1} a_f(m)q^m$.

Beweis.

(i) Wegen $\frac{az+b}{cz+d} \in \mathbb{H}$ ist

$$\left| e^{2\pi i n \frac{az+b}{cz+d}} \right| \leqslant 1$$

und daher

$$\sum_{\substack{(c,d) \in \mathbb{Z}^2 \\ \text{ggT}(c,d)=1 \\ ad-bc=1}} |cz+d|^{-k} \cdot \left| e^{2\pi i n \frac{az+b}{cz+d}} \right| \leqslant \sum_{\substack{(c,d) \in \mathbb{Z}^2 \\ \text{ggT}(c,d)=1 \\ ad-bc=1}} |cz+d|^{-k} ,$$

sodass die Reihe der Absolutbeträge nach Lemma 3.2.3 durch die Eisensteinreihe von Gewicht k majorisiert wird. Letztere konvergiert nach FT 2 auf Kompakta in $\mathbb H$ gleichmäßig absolut.

Zeige noch $P_n \in S_k$ für $n \ge 1$. Schreibe zunächst

$$P_n(z) = \frac{1}{2} \sum_{M \in \Gamma(1)_{\infty} \backslash \Gamma(1)} (e^n | {}_k M)(z),$$

mit $e^n(z) := e^{2\pi i n z}$ und beachte, dass $e^n|_k M = e^n$ für $M \in \Gamma(1)_{\infty}$. Hierbei ist wie in Lemma 3.2.3

$$\Gamma(1)_{\infty} := \left\{ M \in \mathrm{SL}_2(\mathbb{Z}) \mid M = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \right\}.$$

Für $P_n \in S_k$ müssen wir zeigen, dass $P_n|_k M = P_n$ für alle $M \in \mathrm{SL}_2(\mathbb{Z})$ und zudem in $z = i\infty$ verschwindet. Wie im Fall der Eisensteinreihen ist hierfür zu zeigen, dass

$$\lim_{z \to i\infty} P_n(z) = 0 \,,$$

also

$$\lim_{\nu \to \infty} P_n(z_{\nu}) = 0$$

für jede Folge von $z_{\nu} \in \mathbb{H}$ mit $z_{\nu} \to i\infty$. Wegen gleichmäßiger Konvergenz gilt

$$\lim_{\nu \to \infty} P_n(z_{\nu}) = \frac{1}{2} \sum_{\substack{(c,d) \in \mathbb{Z}^2 \\ \text{ggT}(c,d) = 1 \\ ad - bc = 1}} \lim_{\nu \to \infty} (cz_{\nu} + d)^{-k} e^{2\pi i n \frac{az_{\nu} + b}{cz_{\nu} + d}}$$

und alle Grenzwerte unter der Summe sind 0. In der Tat ist der Exponentialterm wegen $\frac{az_{\nu}+b}{cz_{\nu}+d}\in\mathbb{H}$ beschränkt und für $c\neq 0$ strebt $(cz_{\nu}+d)^{-k}$ gegen 0. Andererseits ist für c=0 der vordere Term gleich d^{-k} und somit beschränkt, während

$$\frac{az_{\nu}+b}{d} \to i\infty \quad \Longrightarrow \quad e^{2\pi i n \frac{az_{\nu}+b}{d}} \to 0.$$

Damit ist alles gezeigt.

(ii) Unter Benutzung der Darstellung

$$P_n(z) = \frac{1}{2} \sum_{M \in \Gamma(1)_{\infty} \setminus \Gamma(1)} (e^n|_k M)(z)$$

zeigt man mit dem gleichen "Konvolutionstrick" wie im Beweis von Satz 3.2.1, dass

$$\langle f, P_n \rangle = \int_0^\infty \int_{-\frac{1}{2}}^{\frac{1}{2}} f(z) e^{\overline{2\pi i n z}} y^{k-2} dx dy.$$

Man stelle sich hierzu vor, dass H als disjunkte Vereinigung von Bildern des exakten Fundamentalbereichs unter Linksmultiplikation mit $M \in \Gamma(1)$ entsteht. Teilt man nun $\Gamma(1)_{\infty}$ heraus, also alle Translationen, so verbleibt noch der Streifen $|x| < \frac{1}{2}, y > 0$.

Es gilt weiter für beliebiges $f \in S_k$ mit Darstellung $f(z) = \sum_{m \ge 1} a(m)q^m$, wie üblich $q = \exp(2\pi i z)$ und z = x + i y, dass

$$\langle f, P_n \rangle = \int_0^\infty \int_{-\frac{1}{2}}^{\frac{1}{2}} \sum_{m \geqslant 1} a(m) e^{2\pi i m x} e^{-2\pi m y} e^{-2\pi i n x} e^{-2\pi n y} y^{k-2} \, \mathrm{d}x \, \mathrm{d}y$$
$$= \int_0^\infty \int_{-\frac{1}{2}}^{\frac{1}{2}} \sum_{m \geqslant 1} a(m) e^{2\pi i (m-n) x} e^{-2\pi (n+m) y} y^{k-2} \, \mathrm{d}x \, \mathrm{d}y.$$

Wegen

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{2\pi i r x} \, \mathrm{d}x = \delta_{r,0} := \begin{cases} 1, & r = 0 \\ 0, & r \neq 0 \end{cases}$$
 (Kronecker-Delta)

für beliebiges $r \in \mathbb{Z}$ folgt

$$\langle f, P_n \rangle = \int_0^\infty \sum_{m \geqslant 1} a(m) \delta_{m,n} e^{-2\pi(n+m)y} y^{k-2} \, \mathrm{d}y$$

$$= a(n) \int_0^\infty e^{-4\pi n y} y^{k-2} \, \mathrm{d}y$$

$$= a(n) \frac{1}{(4\pi n)^{k-1}} \underbrace{\int_0^\infty e^{-y} y^{k-2} \, \mathrm{d}y}_{=\Gamma(k-1)}$$

$$= a(n) \frac{(k-2)!}{(4\pi n)^{k-1}} \, .$$

g. e. s.

Korollar 4.1.3. Die Poincaré-Reihen $\{P_n \mid n \in \mathbb{N}\}$ zu einem festen Gewicht $k \ge 4$ mit k gerade, erzeugen den Raum S_k .

Beweis. Angenommen die P_n erzeugen nicht ganz S_k , dann existiert ein $f \in S_k$ mit $\langle f, P_n \rangle = 0$ für alle $n \in \mathbb{N}$. Mit Satz 4.1.2, ii) folgt hieraus aber a(n) = 0 für alle $n \in \mathbb{N}$ und damit $f \equiv 0$.

Satz 4.1.4. Die Reihe P_n hat die Fourier-Entwicklung

$$P_n(z) = \sum_{m>1} g_n(m)q^m$$

mit

$$g_n(m) := \delta_{m,n} + 2\pi \cdot (-1)^{\frac{k}{2}} \cdot \left(\frac{m}{n}\right)^{\frac{k-1}{2}} \cdot \sum_{c>1} \left[\frac{1}{c} \cdot K(m,n,c) \cdot J_{k-1}\left(\frac{4\pi\sqrt{mn}}{c}\right)\right].$$

Hierbei ist die Kloosterman-Summe K definiert als

$$K(m, n, c) := \sum_{\substack{d \pmod c \\ (c, d) = 1}} e^{2\pi i \frac{md + n\bar{d}}{c}},$$

wobei $\bar{d} \in \mathbb{Z}$ mit $\bar{d}d \equiv 1 \mod c$ ist, und die Besselfunktion J_{k-1} definiert als

$$J_{k-1}(x) := \left(\frac{x}{2}\right)^{k-1} \sum_{\ell \geqslant 0} \frac{\left(-\frac{1}{4}x^2\right)^{\ell}}{\ell!(k-1+\ell)!}.$$

Beweis. Nach Definition ist

$$P_n(z) = \frac{1}{2} \sum_{\substack{(c,d) \in \mathbb{Z}^2 \\ \text{ggT}(c,d)=1 \\ ad-bc-1}} (cz+d)^{-k} e^{2\pi i n \frac{az+b}{cz+d}}.$$

Ist c=0, so folgt aus ggT(c,d)=1 bereits $d=a=\pm 1$ und unabhängig von $b\in \mathbb{Z}$ ergibt sich zweimal der Term

$$\frac{1}{2}(\pm 1)^{-k}e^{2\pi in\frac{\pm z+b}{\pm 1}} = \frac{1}{2}e^{2\pi inz}e^{\pm 2\pi inb} = \frac{1}{2}e^{2\pi inz}\,,$$

zusammengenommen also $e^{2\pi inz}$. Die übrigen Terme ergeben den Beitrag

$$\sum_{\substack{c \geqslant 1, d \in \mathbb{Z} \\ \gcd T(c, d) = 1 \\ ad - bc = 1}} (cz + d)^{-k} e^{2\pi i n \frac{az + b}{cz + d}} = \sum_{\substack{c \geqslant 1 \\ \gcd T(c, d') = 1 \\ ad' - b' c = 1}} \sum_{\nu \in \mathbb{Z}} (c(z + \nu) + d')^{-k} e^{2\pi i n \frac{a(z + \nu) + b'}{c(z + \nu) + d'}}.$$

Die rechte Seite entsteht aus der linken, indem man für festes $c \ge 1$ und ein festes Vertretersystem d'(mod c) jedes $d \in \mathbb{Z}$ mit ggT(c,d) = 1 in der Form $d = d' + c\nu$ mit $v \in \mathbb{Z}$ und d' im vorgegebenen Vertretersystem schreibt. Schreibt man zudem mit geeignetem $b' \in \mathbb{Z}$ auch $b = b' + a\nu$, so wird die Bedingung ad - bc = 1 zu

$$1 = ad - bc = a(d' + c\nu) - (b' + a\nu)c = ad' - b'c$$

und die obige Darstellung folgt durch Ausklammern von c und a. Im Folgenden schreiben wir wieder d und b statt d' und b'.

Lemma 4.1.5. Sei $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R})$ mit c > 0. Sei $\gamma > 0$ beliebig (insbesondere nicht unbedingt ganzzahlig). Dann gilt

$$\sum_{\nu \in \mathbb{Z}} (c(z+\nu) + d)^{-k} e^{2\pi i \gamma \frac{a(z+\nu) + b}{c(z+\nu) + d}} = \frac{2\pi (-1)^{\frac{k}{2}}}{c} \sum_{m \geqslant 1} \left(\frac{m}{\gamma}\right)^{\frac{k-1}{2}} J_{k-1} \left(\frac{4\pi \sqrt{m\gamma}}{c}\right) e^{\frac{2\pi i}{c} (\gamma a + md)} e^{2\pi i mz}.$$

Beweis. Es genügt, diese Aussage nur für den Fall $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ zu zeigen, d.h.

$$\sum_{\nu \in \mathbb{Z}} (z+\nu)^{-k} e^{-2\pi i \gamma \frac{1}{z+\nu}} = 2\pi (-1)^{\frac{k}{2}} \sum_{m \geqslant 1} \left(\frac{m}{\gamma}\right)^{\frac{k-1}{2}} J_{k-1} (4\pi \sqrt{m\gamma}) e^{2\pi i m z} .$$

In der Tat: Ersetzt man in dieser Gleichung z durch $z + \frac{d}{c}$ und γ durch $\frac{\gamma}{c^2}$ und multipliziert dann mit $c^{-k}e^{2\pi i\gamma\frac{a}{c}}$, so wird die linke Seite zu

$$c^{-k}e^{2\pi i\gamma\frac{a}{c}} \sum_{\nu \in \mathbb{Z}} (z + \frac{d}{c} + \nu)^{-k}e^{-2\pi i\frac{\gamma}{c^2}\frac{1}{z + \frac{d}{c} + \nu}} = \sum_{\nu \in \mathbb{Z}} (cz + d + c\nu)^{-k}e^{2\pi i\gamma\frac{a}{c} - 2\pi i\frac{\gamma}{c}\frac{1}{cz + d + c\nu}}$$

$$= \sum_{\nu \in \mathbb{Z}} (c(z + \nu) + d)^{-k}e^{\frac{2\pi i\gamma}{c}\left(a - \frac{1}{c(z + \nu) + d}\right)}$$

$$= \sum_{\nu \in \mathbb{Z}} (c(z + \nu) + d)^{-k}e^{\frac{2\pi i\gamma}{c}\frac{ac(z + \nu) + ad - 1}{c(z + \nu) + d}}$$

$$= \sum_{\nu \in \mathbb{Z}} (c(z + \nu) + d)^{-k}e^{2\pi i\gamma\frac{a(z + \nu) + b}{c(z + \nu) + d}}$$

sowie die rechte Seite zu

$$c^{-k}e^{2\pi i\gamma\frac{a}{c}}2\pi(-1)^{\frac{k}{2}}\sum_{m\geqslant 1}\left(\frac{mc^2}{\gamma}\right)^{\frac{k-1}{2}}J_{k-1}\left(4\pi\sqrt{\frac{m\gamma}{c^2}}\right)e^{2\pi im(z+\frac{d}{c})}$$
(4.1)

$$= c^{-k+2\frac{k-1}{2}} 2\pi (-1)^{\frac{k}{2}} \sum_{m \geqslant 1} \left(\frac{m}{\gamma}\right)^{\frac{k-1}{2}} J_{k-1} \left(\frac{4\pi\sqrt{m\gamma}}{c}\right) e^{2\pi i \gamma \frac{a}{c} + 2\pi i mz + 2\pi i m \frac{d}{c}}$$

$$=\frac{2\pi(-1)^{\frac{k}{2}}}{c}\sum_{m\geq 1}\left(\frac{m}{\gamma}\right)^{\frac{k-1}{2}}J_{k-1}\left(\frac{4\pi\sqrt{m\gamma}}{c}\right)e^{\frac{2\pi i}{c}(\gamma a+md)}e^{2\pi imz}.$$

Die linke Seite von (4.1) konvergiert gleichmäßig absolut auf kompakten Mengen in \mathbb{H} und hat den Limes 0 für $q \to \infty$ (gleicher Beweis wie in Satz 4.1.2). Sie hat daher eine Fourierentwicklung $\sum_{m\geq 1} c(m)q^m$ mit

$$c(m) = \int_{ic}^{ic+1} \left(\sum_{\nu \in \mathbb{Z}} (z+\nu)^{-k} e^{-2\pi\gamma \frac{1}{z+\nu}} \right) e^{-2\pi i m z} dz \stackrel{z \mapsto is}{=} -i^{-k+1} \int_{c-i\infty}^{c+i\infty} s^{-k} e^{-2\pi \frac{\gamma}{s}} e^{2\pi m s} ds$$

Es gilt nach "Abramowitz-Stegun", Seite 1026, Formel 29.3.80:

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} s^{-k} e^{-\frac{\alpha}{s}} e^{ts} \, \mathrm{d}s = \left(\frac{t}{\alpha}\right)^{\frac{k-1}{2}} J_{k-1}(2\sqrt{\alpha t})$$

Setzt man $\alpha = 2\pi\gamma$, $t = 2\pi m$, so folgt

$$c(m) = -i^{-k+1} \cdot 2\pi i \left(\frac{2\pi m}{2\pi \gamma}\right)^{\frac{k-1}{2}} J_{k-1}(2\sqrt{2\pi \gamma - 2\pi m}) = (-1)^{\frac{k}{2}} \cdot 2\pi \left(\frac{m}{\gamma}\right)^{\frac{k-1}{2}} J_{k-1}(2\pi \sqrt{m\gamma})$$

wie behauptet.

g. e. s.

Nach dem Lemma folgt nun

$$P_n(z) = e^{2\pi nz} + \sum_{c \geqslant 1} \sum_{\substack{d \bmod c \\ \text{ggT}(d,c) = 1}} \frac{2\pi (-1)^{\frac{k}{2}}}{c} \sum_{m \geqslant 1} \left(\frac{m}{n}\right)^{\frac{k-1}{2}} J_{m-1}\left(\frac{4\pi\sqrt{mn}}{c}\right) \cdot e^{\frac{2\pi i}{c}(na+md)} e^{2\pi i mz}$$

und die Behauptung folgt nach Vertauschung der Summation über c
 und m (absolute Konvergenz). Beachte $ad \equiv 1 \mod c$.

g. e. s.

4.1.1 Die Ramanujan τ -Funktion

Satz 4.1.6. Sei
$$\Delta(z)=\sum_{n\geqslant 1}\tau(n)q^n\in S_{12}$$
 $(\tau(1)=1,\,\tau(2)=-24,\ldots).$ Dann gilt
$$\tau(n)\neq 0\Longleftrightarrow P_{n,12}\neq 0$$

$$\iff g_n(n) \neq 0$$

wobei $g_n(n)$ der n-te Fourier-Koeffizient von $P_{n,12}$ ist (siehe Satz 4.1.4).

Beweis. Es gilt $P_n = c_n \cdot \Delta$ mit $c_n \in \mathbb{C}$. Durch Vergleich des ersten Fourier-Koeffizienten folgt $c_n \in \mathbb{R}$. Aus $\langle \Delta, P_n \rangle \sim \tau(n)$ (siehe Satz 4.1.2 (ii)) folgt $c_n \langle \Delta, \Delta \rangle \sim \tau(n)$, also gilt $\tau(n) = 0$ genau dann, wenn $c_n = 0$. Aber $c_n = 0$ genau dann, wenn $P_n \equiv 0$ g

Bemerkung 4.1.7. Es wird vermutet, dass $\tau(n) \neq 0$ für alle $n \in \mathbb{N}$ (Lehmer).

4.1.2 Die Peterssonschen Formeln und Abschätzungen für Fourier-Koeffizienten

Sei $\{f_1, f_2, \dots f_g\}$ irgendeine orthogonale Basis von S_k (nach dem Gram-Schmidt-Verfahren kann man z. B. jedes $f \in S_k \setminus \{0\}$ zu irgendeiner orthogonalen Basis $\{f, \dots, f_g\}$ ergänzen). Dann gilt nach Satz 4.1.2 (ii) für jedes $n \in \mathbb{N}$:

$$P_n = \frac{(k-2)!}{(4\pi n)^{k-1}} \sum_{\nu=0}^{g} \frac{\overline{a_{\nu}(n)} f_{\nu}}{\langle f_{\nu}, f_{\nu} \rangle}$$

wenn $f_{\nu} = \sum_{m \geqslant 1} a_{\nu}(m) q^m$. Nimmt man auf beiden Seiten den *m*-ten Fourier-Koeffizieten so erhält man

$$g_n(m) = \frac{(k-2)!}{(2\pi n)^{k-1}} \sum_{\nu=1}^g \frac{a_{\nu}(m) \overline{a_{\nu}(m)}}{\langle f_{\nu}, f_{\nu} \rangle}$$

Damit folgt

$$g_n(n) = \frac{(k-2)!}{(4\pi n)^{k-1}} \sum_{\nu=1}^g \frac{|a_{\nu}(n)|^2}{\langle f_{\nu}, f_{\nu} \rangle}$$

Speziell ist

$$|a_{\nu}(n)|^2 \leqslant ||f||^2 \frac{(4\pi n)^{k-1}}{(k-2)!} g_n(n)$$

Für $g_n(n)$ substituiert man aus Satz 4.1.4 explizite Formeln. Benutzt man $J_n(x) = \mathcal{O}(\min\{x^{-\frac{1}{2}}, x^n\})$ (einfach) und $k(n, n, c) = \mathcal{O}_{\varepsilon}((n, c)^{\frac{1}{2}}c^{\frac{1}{2}+\varepsilon})$ (Weilsche Abschätzung, tiefliegend) so erhält man nach einigen Rechnungen

$$g_n(n) = \mathcal{O}(n^{\frac{1}{2} + \varepsilon})$$

also folgt

$$a_{\nu}(n) = \mathcal{O}_{\varepsilon}(n^{\frac{k}{2} - \frac{1}{4} + \varepsilon}).$$

Satz 4.1.8. Sei $f \in S_k$. Dann gilt $a(n) = \mathcal{O}_{\varepsilon}(n^{\frac{k}{2} - \frac{1}{4} + \varepsilon})$, für $\varepsilon > 0$.

4.1. Anwendungen

Bemerkung 4.1.9.

- (i) Man kann leicht zeigen, dass $a(n) \ll_f n^{\frac{k}{2}}$ (siehe später)
- (ii) Mit der Theorie der L-Reihen zu Modulformen kann man

$$a(n) \ll_{f,\varepsilon} n^{\frac{k}{2} - \frac{1}{4} + \varepsilon}$$

zeigen

(iii) Nach Deligne (sehr tiefliegend) gilt sogar $a(n) \ll_{f,\varepsilon} n^{\frac{k}{2} - \frac{1}{2} + \varepsilon}$, $\varepsilon > 0$ (Ramanujan-Petersson-Vermutung). Dies ist bestmöglich, denn nach Rankin gilt

$$\limsup_{n \to \infty} \frac{|a_f(n)|^2}{n^{k-1}} = \infty$$

4.1.3 Hecke-Operatoren sind hermitesch

Satz 4.1.10. Sei P_m für $m \in \mathbb{N}$ die m-te Poincaré-Reihe in S_k . Dann

$$P_m|T(m) = \sum_{d|(m,n)} \left(\frac{n}{d}\right)^{k-1} P_{\frac{mn}{d^2}}.$$

Beweis. Nach Definition ist

$$P_m = \frac{1}{2} \sum_{M \in \Gamma(1)_{\infty} \backslash \Gamma(1)} e^m |_k M$$

unabhängig vom Vertretersystem von $\,_{\Gamma(1)_{\infty}}\!\!\setminus^{\Gamma(1)}.$ Es gilt

$$2P_m|T(m) = n^{\frac{k}{2}-1} \sum_{\substack{M \in \Gamma(1)_{\infty} \setminus \Gamma(1) \\ N \in \Gamma(1) \setminus \mathcal{M}(n)}} e^m|_k MN = n^{\frac{k}{2}-1} \sum_{\substack{R \in \Gamma(1)_{\infty} \setminus \mathcal{M}(n) \\ }} e^m|_R$$

Wir behaupten nun, dass die Menge

$$\{\,MN\;|N=\left(\begin{smallmatrix}a&b\\0&d\end{smallmatrix}\right)\colon ad=n,d>0,\ b\bmod d,$$

$$M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \colon (\gamma, \delta) \in \mathbb{Z}^2 \colon \operatorname{ggT}(\gamma, \delta) = 1 \text{ und } (\alpha, \beta) \in \mathbb{Z}^2 \text{ fixiert s. d. } \alpha \delta - \beta \gamma = 1 \}$$

ein Vertretersystem für $\Gamma(1)_{\infty}\setminus \mathcal{M}(n)$ ist.

Wir zeigen zunächst, dass die gesamten Matrizen inäquivalent modulo $\Gamma(1)_{\infty}$ sind. Angenommen

$$\left(\begin{smallmatrix} 1 & \nu \\ 0 & 1 \end{smallmatrix} \right) NM = N'M'$$

mit $\nu \in \mathbb{Z}$ und N, N' und M, M' wie oben. Daraus folgt

$$N'^{-1} \begin{pmatrix} 1 & \nu \\ 0 & 1 \end{pmatrix} N = M' M^{-1}$$

also

$$\begin{pmatrix} \frac{d'}{d} & \frac{d'b-b'd+\nu d'd}{n} \\ 0 & \frac{d}{d'} \end{pmatrix} = M'M^{-1}$$

Da $M'M^{-1}$ Komponenten in \mathbb{Z} hat, folgt $\frac{d}{d'}$, $\frac{d'}{d} \in \mathbb{Z}$, also $d = \pm d'$, also d = d' und a' = a und somit

$$M'M^{-1} \in \Gamma(1)_{\infty}$$

d. h. M' = M, da Vertretersystem modulo $\Gamma(1)_{\infty}$. Dann folgt aber $\begin{pmatrix} 1 & \nu \\ 0 & 1 \end{pmatrix} N = N'$, bzw. $b' = b + \nu d$, also b = b' und damit N' = N. Die Matrizen in der oben angegebenen Menge sind also tatsächlich inäquivalent modulo $\Gamma(1)_{\infty}$.

Es verbleibt noch zu zeigen, dass sich jedes $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathcal{M}(n)$ schreiben lässt als

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 & \nu \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} ,$$

d.h.

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix} = \begin{pmatrix} 1 & \nu \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$$

mit $\nu \in \mathbb{Z}$ und $ad = n, d > 0, b \pmod{d}$ und $(\gamma, \delta) \in \mathbb{Z}^2, \operatorname{ggT}(\gamma, \delta) = 1, \alpha\delta - \beta\gamma = 1$. Man bestimmt zunächst $(\gamma, \delta) \in \mathbb{Z}^2$ mit $\operatorname{ggT}(\gamma, \delta) = 1$, sodass $C\delta - D\gamma = 0$, dann ist

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix} = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \in \mathcal{M}(n),$$

also

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix} = \begin{pmatrix} a & \widetilde{b} \\ 0 & d \end{pmatrix}$$

mit $\widetilde{b} \in \mathbb{Z}$, ad = n. Indem man gegebenenfalls mit -E multipliziert, d.h. (γ, δ) durch $(-\gamma, -\delta)$ ersetzt, kann man auch d > 0 erreichen. Wähle nun $\nu \in \mathbb{Z}$, sodass $\widetilde{b} = b + \nu d$. Dies zeigt die Behauptung, dass die oben angegebene Menge ein Vertretersystem für $\Gamma(1)_{\infty} \setminus \mathcal{M}(n)$ ist.

Es gilt nun

$$2P_m|T(n) = n^{\frac{k}{2}-1} \sum_{\substack{M \in \Gamma(1)_{\infty} \setminus \Gamma(1) \\ b \pmod{d}}} \left(\sum_{\substack{ad=n,d>0 \\ b \pmod{d}}} e^m|_k \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \right)|_k M.$$

Die innere Summe ist gleich

$$\sum_{d|n} n^{\frac{k}{2}} d^{-n} e^{2\pi i m \left(\frac{n}{d^2} z + \frac{b}{d}\right)} = n^{\frac{k}{2}} \sum_{d|(m,n)} d^{1-k} e^{2\pi i \frac{mn}{d^2} z},$$

wegen

$$\sum_{b \pmod{d}} e^{2\pi i \frac{b}{d} m} = \begin{cases} d, & d | m \\ 0, & \text{sonst} \end{cases}.$$

Hieraus folgt die Behauptung.

g. e. s.

Satz 4.1.11. Die Operatoren $T(n), n \in \mathbb{N}$ eingeschränkt auf S_k sind hermitesch bezüglich des Petersson-Skalarproduktes, d.h.

$$\langle f|T(n), g\rangle = \langle f, g|T(n)\rangle \quad \forall f, g, \in S_k.$$

Beweis. Man zeigt dies normalerweise, indem man Modulformen zu sogenannten Kongruenzuntergruppen von $\Gamma(1)$ und deren Skalarprodukt definiert und dann gewisse Invarianzeigenschaften des Skalarproduktes (beim Übergang von einer Untergruppe zur anderen) beachtet. Wir werden hier die Behauptung unter Benutzung von Satz 4.1.10 beweisen. Da die P_m mit $m \in \mathbb{N}$ den Raum S_k erzeugen, genügt es zu zeigen, dass

$$\langle f|T(n), P_m\rangle = \langle f, P_m|T(n)\rangle.$$

Man schreibe $f=\sum_{l\geqslant 1}a(l)q^l$ und $f|T(n)=\sum_{l\geqslant 1}b(l)q^l.$ Nach Satz 4.1.2, ii) ist

$$\langle f|T(n), P_m \rangle = \frac{(k-2)!}{(4\pi m)^{k-1}} b(m)$$

= $\frac{(k-2)!}{(4\pi m)^{k-1}} \sum_{d|(m,n)} d^{k-1} a\left(\frac{mn}{d^2}\right)$.

Andererseits ist nach Satz 4.1.10:

$$\langle f, P_m | T(n) \rangle = \sum_{d \mid (m,n)} \left(\frac{n}{d} \right)^{k-1} \langle f, P_{\frac{mn}{d^2}} \rangle$$

$$= \sum_{d \mid (m,n)} \left(\frac{n}{d} \right)^{k-1} \frac{(k-2)!}{(4\pi \frac{mn}{d^2})^{k-1}} a\left(\frac{mn}{d^2} \right)$$

$$= \frac{(k-2)!}{(4\pi m)^{k-1}} \sum_{d \mid (m,n)} d^{k-1} a\left(\frac{mn}{d^2} \right).$$

g. e. s.

Korollar 4.1.12. Die Eigenwerte von T(n) sind reell.

Beweis. Ist nach Satz 4.1.11 und LA 1 klar.

g. e. s.

Korollar 4.1.13. Seien f, g normalisierte Eigenformen in S_k . Dann ist entweder f = g oder $\langle f, g \rangle = 0$.

Beweis. Seien $f = \sum_{n \geqslant 1} a(n)q^n$ und $g = \sum_{n \geqslant 1} b(n)q^n$. Wegen a(1) = b(1) = 1 ist dann f|T(n) = a(n)f und g|T(n) = b(n)g. Daher gilt mit Satz 4.1.11

$$a(n)\langle f, g \rangle = \langle f|T(n), g \rangle = \langle f, g|T(n) \rangle = \overline{b(n)}\langle f, g \rangle = b(n)\langle f, g \rangle.$$

Aus $\langle f, g \rangle \neq 0$ folgt damit a(n) = b(n) für alle $n \in \mathbb{N}$, also f = g.

Lemma 4.1.14. Sei V ein endlich-dimensionaler komplexer Hilbertraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$ und sei $\{T_{\mu}\}_{{\mu} \in I}$ eine Familie von hermiteschen, miteinander kommutierenden Endomorphismen von V. Dann besitzt V eine orthogonale Basis bestehend aus gemeinsamen Eigenvektoren aller Operatoren T_{μ} mit $\mu \in I$.

Beweis. Sei W die Menge der C-linearen Endomorphismen von V, aufgefasst als reeller Vektorraum. Wegen $\dim_{\mathbb{C}} V < \infty$ ist auch $\dim_{\mathbb{R}} W < \infty$. Die T_{μ} erzeugen daher einen endlich-dimensionalen Unterraum von W, sodass es genügt, die Aussage für endlich viele Operatoren T_1, \ldots, T_m zu zeigen.

Wir zeigen zunächst durch Induktion nach m, dass V einen gemeinsamen nichttrivialen Eigenvektor von T_1, \ldots, T_m enthält. Für m=1 ist dies klar, da V wegen T_1 hermitesch einen nichttrivialen Eigenvektor von T_1 enthält. Sei nun $m \geqslant 2$ und λ ein Eigenwert von T_1 mit zugehörigem Eigenraum $V_{\lambda} := \{v \in V \mid T_1 v = \lambda v\}$. Für alle $\mu \in \{2, \ldots, m\}$ besteht nach Voraussetzung die Kommutativität $T_{\mu}T_1 = T_1T_{\mu}$ und daher gilt $T_{\mu}V_{\lambda} \subseteq V_{\lambda}$. Nach Induktionsvoraussetzung besitzt nun V_{λ} einen nichttrivialen gemeinsamen Eigenvektor von T_2, \ldots, T_m . Dieser ist nach Definition von V_{λ} auch Eigenvektor von T_1 .

Wir zeigen abschließend die Aussage des Lemmas durch Induktion nach $\dim_{\mathbb{C}} V$. Für $\dim_{\mathbb{C}} V = 1$ ist die Aussage klar. Sei also $m = \dim_{\mathbb{C}} V \geqslant 2$. Man schreibe $V = \mathbb{C}v \oplus (\mathbb{C}v)^{\perp}$, wobei v ein Eigenvektor aller T_{μ} mit $\mu \in \{1, \ldots, m\}$ ist. Da die T_{μ} hermitesch sind und $\mathbb{C}v$ invariant lassen, lassen sie auch $(\mathbb{C}v)^{\perp}$ invariant. Nach Induktionsvoraussetzung besitzt $(\mathbb{C}v)^{\perp}$ bereits eine orthogonale Basis von Eigenvektoren für alle T_{μ} . Hieraus folgt die Behauptung.

Korollar 4.1.15. Der Raum S_k besitzt eine orthogonale Basis von gemeinsamen Eigenfunktionen für alle T(n) mit $n \in \mathbb{N}$.

Beweis. Folgt direkt aus dem obigen Lemma mit $V = S_k$ und $\{T_\mu\}_{\mu \in I} = \{T(n)\}_{n \in \mathbb{N}}$.

4.1. Anwendungen

Bemerkung 4.1.16. Nach Korollar 4.1.13 ist diese orthogonale Basis bis auf Permutation und Multiplikation mit Skalaren in \mathbb{C}^{\times} eindeutig bestimmt.

5 Die Eichler-Selberg-Spurformel auf $\mathrm{SL}_2(\mathbb{Z})$

Sei von nun an stets $k \ge 4$ gerade und wie üblich T(m) mit $m \ge 1$ der m-te Hecke-Operator auf $M_k(\Gamma(1))$. Wir wissen bereits, dass wir T(m) zu einem Endomorphismus auf S_k einschränken können.

Ziel: Bestimmung einer analytischen (einfach) und arithmetischen (schwer) Formel für die Spur $\operatorname{Tr} T(m)$ für alle $m \in \mathbb{N}$.

Sei \mathbb{H} wie üblich die obere Halbebene und h eine Funktion $h: \mathbb{H} \times \mathbb{H} \to \mathbb{C}, (z, z') \mapsto h(z, z'),$ welche in beiden Variablen eine Spitzenform von Gewicht k darstellt, d.h.

$$h(\cdot, z') \in S_k \quad \forall z' \in \mathbb{H} \quad \text{und} \quad h(z, \cdot) \in S_k \quad \forall z \in \mathbb{H}.$$

Für $f \in S_k$ definieren wir dann f * h als die Funktion

$$f * h : \mathbb{H} \to \mathbb{C}, z' \mapsto (f * h)(z') := \int_{\mathcal{F}} f(z) \overline{h(z, \overline{-z'})} y^{k-2} \, \mathrm{d}x \, \mathrm{d}y \qquad (z = x + iy).$$

Dies ist im Wesentlichen das Petersson-Skalarprodukt $\langle f, h(\cdot, \overline{-z'}) \rangle$. Wir wollen zunächst zeigen, dass $T(m) \colon S_k \to S_k$ als ein Integral dieses Typs geschrieben werden kann mit einem bestimmten Kern $h = h_m$ (bis auf eine Konstante). Aus diesen Überlegungen folgt dann auch sogleich eine analytische Formel für $\operatorname{Tr} T(m)$.

Index

Dedekindische η -Funktion, 12	Modulform, 3
Diskriminantenfunktion, 6	Modulfunktion, 2
Eisensteinreihe, 5	normalisierte Eisensteinreihe, 5
Fundamentalbereich, 1	Peterssonscher Strichoperator, 3
Hecke-Eigenform, 22 Hecke-Operator, 16	Ramanujan-Funktion, 7
Modulfigur, 2	Thetareihe, 4

Liste der Sätze

1.1.14Satz (Valenzformel)		5
---------------------------	--	---