SKOLORNAS MATEMATIKTÄVLING

Svenska Matematikersamfundet

Finaltävling i Lund den 20 november 2010

- 1. Finns det en triangel vars tre höjder har måtten 1, 2 respektive 3 längdenheter?
- 2. Betrakta fyra linjer $y=kx-k^2$ för olika heltal k. Fyra olika punkter (x_i,y_i) , i=1,2,3,4, är sådana att var och en tillhör två olika linjer och på varje linje ligger precis två av dem.

Låt $x_1 \le x_2 \le x_3 \le x_4$. Visa att $x_1 + x_4 = x_2 + x_3$ och $y_1y_4 = y_2y_3$.

- 3. Finn alla naturliga tal $n \ge 1$ sådana att det finns ett polynom p(x) med heltalskoefficienter för vilket p(1) = p(2) = 0 och där p(n) är ett primtal.
- 4. Vi skapar en talföljd genom att sätta $a_1 = 2010$ och kräva att a_n är det minsta tal som är större än a_{n-1} och dessutom är delbart med n. Visa att $a_{100}, a_{101}, a_{102}, \ldots$ bildar en aritmetisk talföljd.
- 5. Betrakta mängden av trianglar där sidlängderna uppfyller

$$(a+b+c)(a+b-c) = 2b^2$$
.

Bestäm vinklarna i den triangel för vilken vinkeln mitt emot sidan med längden a är så stor som möjligt.

- 6. Ett ändligt antal rutor på ett oändligt rutat papper är målade röda. Visa att man på papperet kan rita in ett antal kvadrater, med sidor utefter rutnätets linjer, sådana att:
 - (1) ingen ruta i nätet tillhör mer än en kvadrat (en kant kan däremot tillhöra mer än en kvadrat),
 - (2) varje $r\ddot{o}d$ ruta ligger i någon av kvadraterna och antalet röda rutor i en sådan kvadrat är minst $\frac{1}{5}$ och högst $\frac{4}{5}$ av antalet rutor i kvadraten.

Skrivtid: 5 timmar

Formelsamling och miniräknare är inte tillåtna!