Лекция 4

4. Случайные величины и функции распределения

4.1. Определения

Пусть $(\Omega, \mathcal{F}, \mathsf{P})$ — произвольное вероятностное пространство.

Определение 1. Числовая функция $\xi(\omega)$ на множестве элементарных событий Ω ($\xi: \Omega \to \mathbb{R}$) называется *случайной величиной*, если для всякого $x \in \mathbb{R}$

$$\{\xi < x\} = \{\omega \in \Omega : \xi(\omega) < x\} \in \mathcal{F}. \tag{1.1}$$

Свойство (1.1) гарантирует, что при любом действительном x множество $\{\xi < x\}$ является событием и, следовательно, имеет смысл говорить о его вероятности.

Из (1.1) следует, что

$$\{\xi \ge x\} = \overline{\{\xi < x\}} \in \mathcal{F},$$

$$\{x_1 \le \xi < x_2\} = \{\xi < x_2\} - \{\xi < x_1\} \in \mathcal{F},$$

$$\{\xi = x\} = \bigcap_{n=1}^{\infty} \left\{ x \le \xi < x + \frac{1}{n} \right\} \in \mathcal{F}.$$
(1.2)

Определение 2. Функция

$$F(x) = F_{\xi}(x) = P\{\xi < x\},$$
 (1.3)

определённая при всех $x \in \mathbb{R}$, называется функцией распределения.

Очевидно, что функция распределения F(x) удовлетворяет неравенству

$$0 \le F(x) \le 1 \tag{1.4}$$

при всяком $x \in \mathbb{R}$

Будем пользоваться обозначениями

$$F(x-0) = \lim_{y \to x-0} F(y), \quad F(x+0) = \lim_{y \to x+0} F(y), \quad F(\pm \infty) = \lim_{y \to \pm \infty} F(y).$$

Справедливы равенства:

i)
$$P\{x_1 \le \xi < x_2\} = F_{\varepsilon}(x_2) - F_{\varepsilon}(x_1)$$
,

ii)
$$P\{\xi = x\} = F_{\xi}(x+0) - F_{\xi}(x)$$
,

iii)
$$P\{x_1 \le \xi \le x_2\} = F_{\xi}(x_2 + 0) - F_{\xi}(x_1),$$

iv)
$$P\{x_1 < \xi < x_2\} = F_{\xi}(x_2) - F_{\xi}(x_1 + 0),$$

v)
$$P\{x_1 < \xi \le x_2\} = F_{\xi}(x_2 + 0) - F_{\xi}(x_1 + 0).$$

Доказательство.

і) Так как

$$\{\xi < x_2\} = \{\xi < x_1\} + \{x_1 \le \xi < x_2\},\$$

то из аддитивности Р получаем

$$P\{\xi < x_2\} = P\{\xi < x_1\} + P\{x_1 \le \xi < x_2\}.$$

Отсюда следует (і).

іі) Из третьего равенства (1.2) и непрерывности Р получаем

$$\mathsf{P}\{\xi = x\} = \mathsf{P}\left(\bigcap_{n=1}^{\infty} \left\{ x \le \xi < x + \frac{1}{n} \right\} \right) = \lim_{n \to \infty} \mathsf{P}\left\{ x \le \xi < x + \frac{1}{n} \right\}.$$

Применим (і). Имеем

$$P\{\xi = x\} = \lim_{n \to \infty} \left\{ F_{\xi} \left(x + \frac{1}{n} \right) - F_{\xi}(x) \right\} = F_{\xi}(x+0) - F_{\xi}(x).$$

ііі) Это следует из

$${x_1 \le \xi \le x_2} = {x_1 \le \xi < x_2} + {\xi = x_2},$$

аддитивности Р и равенств (i) и (ii).

(iv) Это следует из

$${x_1 \le \xi < x_2} = {x_1 < \xi < x_2} + {\xi = x_1},$$

аддитивности Р и равенств (i) и (ii).

(v) Это следует из

$${x_1 < \xi \le x_2} = {x_1 < \xi < x_2} + {\xi = x_2},$$

аддитивности Р и равенств (iv) и (ii). ■

 Π р и м е р 1. Рассмотрим схему Бернулли, состоящую из n испытаний с вероятностью успеха p. Обозначим через μ число успехов. Случайная величина μ принимает все целочисленные значения от 0 до n включительно. Согласно предыдущей главе

$$P(\mu = m) = P_n(m) = C_n^m p^m q^{n-m}, \quad m = 0, \dots, n.$$

Функция распределения случайной величины ц равна:

$$F(x) = \begin{cases} 0 & \text{при} \quad x \le 0, \\ \sum_{k < x} P_n(k) & \text{при} \quad 0 < x \le n, \\ 1 & \text{при} \quad x > n. \end{cases}$$

Функция распределения представляет собой ступенчатую функцию со скачками в точках $x=0,\ldots,n$; скачок в точке x=k равен $P_n(k)$.

Каждая случайная величина однозначно определяет свою функцию распределения. Обратное неверно, т. е. одной функцию распределения могут соответствовать сколь угодно различных случайных величин.

 Π р и м е р 2. Пусть случайная величина ξ принимает два значения -1 и +1, каждое с вероятностью 1/2. Случайная величина $\mathbf{v} = -\xi$ всегда отлична от ξ . При этом обе эти случайные величины имеют одну и ту же функцию распределения

$$F(x) = \begin{cases} 0 & \text{при} \quad x \le -1, \\ 1/2 & \text{при} \quad -1 < x \le 1, \\ 1 & \text{при} \quad x > 1. \end{cases}$$

4.2. Свойства функции распределения

Пусть ξ — случайная величина. Функция распределения $F(x) = F_{\xi}(x)$ обладает следующими свойствами:

 $\mathbf{F1.}\ F(x)$ не убывает.

 $\mathbf{F2.}\ F(x)$ непрерывна слева.

F3.
$$F(-\infty) = 0$$
, $F(+\infty) = 1$.

Доказательство.

- 1. Пусть $x_1 < x_2$. Тогда $\{\xi < x_1\} \subset \{\xi < x_2\}$ и, следовательно, $F(x_1) \leq F(x_2)$.
- 2. Пусть числовая последовательность $\{y_n\}$ возрастает и $\lim_{n\to\infty}y_n=x_0$. Тогда

$$\{\xi < y_n\} \subset \{\xi < y_{n+1}\}, \quad \bigcup_{n=1}^{\infty} \{\xi < y_n\} = \{\xi < x_0\}.$$

Из непрерывности Р и монотонности функции распределения получаем

$$F(x_0 - 0) = \lim_{n \to \infty} P\{\xi < y_n\} = P\{\xi < x_0\} = F(x_0).$$

3. В силу п. 1, F монотонна и поэтому существуют пределы $F(\pm \infty) = \lim_{x \to +\infty} F(x)$.

Пусть $A_k = \{k-1 \le \xi < k\}$. Ясно, что $\Omega = \sum_{k=-\infty}^{\infty} A_k$ и $\mathsf{P}(A_k) = F(k) - F(k-1)$. Получаем

$$1 = \mathsf{P}(\Omega) = \sum_{k = -\infty}^{\infty} \mathsf{P}(A_k) = \lim_{N \to \infty} \sum_{k = -N+1}^{N} \mathsf{P}(A_k) = \\ = \lim_{N \to \infty} \left(F(N) - F(-N) \right) = F(+\infty) - F(-\infty).$$

Из неравенства (1.4) следует, что $0 \le F(\pm \infty) \le 1$. Следовательно, $F(-\infty) = 0$ и $F(+\infty) = 1$. \blacksquare

 Π ример 1. Рассмотрим случайную величину ξ , принимающую единственное значение a, т. е. $\xi(\omega)=a$. Тогда

$$F_{\xi}(x) = \begin{cases} 0 & \text{при} \quad x \le a, \\ 1 & \text{при} \quad x > a. \end{cases}$$

Теорема 2.1. Пусть Функция F(x) обладает свойствами F1, F2 и F3. Тогда существует вероятностное пространство $(\Omega, \mathcal{F}, \mathsf{P})$ и случайная величина ξ на этом пространстве такая, что $F_{\xi}(x) = F(x)$.

4.3. Дискретные и абсолютно непрерывные распределения

Распределение случайной величины ξ называется *дискретным*, если существует конечное или счётное множество чисел x_1, x_1, \dots таких, что

$$P\{\xi = x_n\} = p_n, \ n = 1, 2, \dots,$$
(3.1)

где числа p_n удовлетворяют условиям

$$p_n > 0, \ n = 1, 2, \dots, \quad \sum_{n=1}^{\infty} p_n = 1.$$
 (3.2)

Равенства (3.1) мы будем называть *законом распределения* дискретной случайной величины ξ. Случайная величина, имеющая дискретное распределение называется *дискретной случайной величиной*.

Функция распределения дискретной случайной величины ξ равна:

$$F_{\xi}(x) = \sum_{x_n < x} p_n, \tag{3.3}$$

Функция распределения $F_{\xi}(x)$ дискретной случайной величины представляет собой ступенчатую функцию со скачками в точках $x_n, n = 1, 2, \ldots$ Скачок в точке x_n равен p_n .

Распределение случайной величины ξ называется *абсолютно непрерывным*, если существует неотрицательная функция $p_{\xi}(x)$ такая, что для всякого $x \in \mathbb{R}$

$$F_{\xi}(x) = P\{\xi < x\} = \int_{-\infty}^{x} p_{\xi}(t) dt.$$
 (3.4)

Функция $p_{\xi}(x)$ называется *плотностью распределения вероятностей* и удовлетворяет условиям:

- 1) $p_{\varepsilon}(x) \geq 0, x \in \mathbb{R};$
- $2) \int_{-\infty}^{\infty} p_{\xi}(x) \, dx = 1;$
- 3) $F'_{\xi}(x) = p_{\xi}(x)$ в точках непрерывности $p_{\xi}(x)$.

Случайная величина, имеющая абсолютно непрерывное распределение называется абсолютно непрерывной случайной величиной.

Из равенства (3.4) следует, что функция распределения абсолютно непрерывной случайной величины является непрерывной функцией. Следовательно,

$$P\{\xi = x\} = 0 (3.5)$$

для любого $x \in \mathbb{R}$ и

$$P\{a \le \xi \le b\} = P\{a < \xi \le b\} = P\{a \le \xi < b\} = P\{a < \xi < b\} = \int_{a}^{b} p_{\xi}(x) dx, \qquad (3.6)$$

для любых $a \in \mathbb{R}$ и $b \in \mathbb{R}$, $a \leq b$.

Непрерывные функции распределения, не имеющие плотностей называются cun- cynярными. В общем случае любая функция распределения F(x) можно представить в виде

$$F(x) = a_1 F_{discr}(x) + a_2 F_{cont}(x) + a_3 F_{sing}(x),$$

где $a_i \ge 0$, $a_1 + a_2 + a_3 = 1$, $F_{discr}(x)$ — дискретная функция распределения, $F_{cont}(x)$ — абсолютно непрерывная функция распределения, $F_{sing}(x)$ — сингулярная функция распределения.

4.4. Примеры функций распределения

Рассмотрим дискретную случайную величину ξ , принимающую конечное число значений x_1,\ldots,x_n с соответствующими вероятностями p_1,\ldots,p_n . Будем считать, что $x_1 < x_2 < \ldots < x_n$. В этом случае закон распределения ξ удобно представлять в виде таблицы

ξ	x_1	x_2	 x_n
p	p_1	p_2	 x_n

Используя формулу (3.3), запишем функцию распределения случайной величины ξ:

$$F(x) = \begin{cases} 0 & \text{при } x \le x_1, \\ \sum_{i=1}^k p_i & \text{при } x_k < x \le x_{k+1}, \ k = 1, \dots n-1 \\ 1 & \text{при } x > x_n. \end{cases}$$

1. Вырожденное распределение:

$$P\{\xi = a\} = 1, \quad a - \text{постоянная}.$$

2. Гипергеометрическое распределение $(N, M, n - \text{натуральные числа}, M \le N, n \le N)$:

$$P\{\xi = m\} = \frac{C_M^m C_{N-M}^{n-m}}{C_N^n}, \quad m = 0, 1, \dots, \min\{M, n\}.$$

3. Биномиальное распределение (n - натуральные число, 0 :

$$P\{\xi = k\} = C_n^k p^k (1 - p)^{n - k}, \quad k = 0, 1, \dots, n.$$

Рассмотрим дискретную случайную величину ξ , принимающую счётное число значений x_1, x_2, \ldots с соответствующими вероятностями p_1, p_2, \ldots Будем считать, что $x_1 < x_2 < \ldots$ Используя формулу (3.3), запишем функцию распределения случайной величины ξ :

$$F(x) = \begin{cases} 0 & \text{при} \quad x \le x_1, \\ \sum_{i=1}^k p_i & \text{при} \quad x_k < x \le x_{k+1}, \ k = 1, 2, \dots \end{cases}$$

4. Распределение Пуассона $(\lambda > 0)$:

$$P\{\xi = k\} = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, \dots$$

5. Геометрическое распределение (0 :

$$P\{\xi = k\} = (1-p)^{k-1}p, \quad k = 1, 2...$$

Рассмотрим некоторые абсолютно непрерывные распределения, указав их плотности.

6. Равномерное распределение на отрезке [a, b], a < b:

$$p(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b], \\ 0, & x \notin [a,b]. \end{cases}$$

Найдём функцию распределения, используя формулу (3.4). Пусть $x \in [a, b]$. Тогда

$$F(x) = \int_{a}^{x} \frac{dx}{b-a} = \frac{x-a}{b-a}.$$

Следовательно,

$$F(x) = \begin{cases} 0 & \text{при} \quad x \le a, \\ \frac{x-a}{b-a} & \text{при} \quad a < x \le b, \\ 1 & \text{при} \quad x \ge b, \end{cases}$$

7. Показательное распределение с параметром $\lambda > 0$:

$$p(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

Имеем

$$F(x) = \int_0^x \lambda e^{-\lambda x} dx = -e^{-\lambda x} \Big|_0^x = 1 - e^{-\lambda x}.$$

Следовательно,

$$F(x) = \begin{cases} 0 & \text{при } x \le 0, \\ 1 - e^{-\lambda x} & \text{при } x > 0. \end{cases}$$

8. Нормальное распределение с параметрами (m, σ^2) $(\sigma > 0, m \in \mathbb{R})$:

$$\varphi(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-m)^2}{2\sigma^2}}.$$

Нормальное распределение также называется $\mathit{гауссовым}$. Нормальное распределение с параметрами (0,1) называется $\mathit{стандартным}$ нормальным $\mathit{pacnpedenenuem}$. Функция распределения имеет вид

$$\Phi(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t-m)^2}{2\sigma^2}} dt.$$