Dynamic Programming

Recursion with memory

Problems so far:

- Sorting
- Multiplication

Problems so far:

- Sorting
- Multiplication

Property:

Same work is not (necessarily) repeated.

Problems so far:

- Sorting
- Multiplication

Property:

Same work is not (necessarily) repeated.

Often in recursion:

The very same thing is computed over and over again

Problems so far:

- Sorting
- Multiplication

Property:

Same work is not (necessarily) repeated.

Often in recursion:

The very same thing is computed over and over again

Dynamic Programming:

Store the results of earlier computations in a look-up table. No need to compute the same thing twice.

Dynamic Programming:

Store the results of earlier computations in a look-up table. No need to compute the same thing twice.

Learning objectives:

You are able to

- apply dynamic programming to compute Fibonacci numbers.
- describe the advantage of using memoization
- describe the computation of Fibonacci numbers as a DAG

Fibonacci numbers:

$$F_0 = 0$$

 $F_1 = 1$
 $F_n = F_{n-1} + F_{n-2}$

Fibonacci numbers:

$$F_0 = 0$$

 $F_1 = 1$
 $F_n = F_{n-1} + F_{n-2}$

Task:

Calculate F_n .

Fibonacci numbers:

$$F_0 = 0$$

 $F_1 = 1$
 $F_n = F_{n-1} + F_{n-2}$

Recursive algorithm:

```
FIBO(n)

If (n == 0 \text{ or } n == 1)

return n
```

Else return FIBO(n-1) + FIBO(n-2)

Recursive algorithm:

```
FIBO(n)

If (n == 0 \text{ or } n == 1)

return n
```

Else return FIBO(n-1) + FIBO(n-2)

Runtime recurrence:

$$T(n)$$

= $T(n-1) + T(n-2) + O(\log n)$

Recursive algorithm:

```
FIBO(n)

If (n == 0 \text{ or } n == 1)

return n
```

Else return FIBO(n-1) + FIBO(n-2)

Runtime recurrence:

$$T(n)$$

= $T(n-1) + T(n-2) + O(\log n)$

Addition of two $O(\log n)$ digit numbers

Runtime recurrence:

$$T(n) = T(n-1) + T(n-2) + O(\log n)$$

 $\ge 2 \cdot T(n-2)$

```
FIBO(n)
If (n == 0 \text{ or } n == 1)
return n

Else
return FIBO(n - 1) + FIBO(n - 2)
```

Runtime recurrence:

$$T(n) = T(n-1) + T(n-2) + O(\log n)$$

 $\ge 2 \cdot T(n-2)$

For $n \ge 2$, $T(n) \ge 2^{n/2}$

Runtime recurrence:

$$T(n) = T(n-1) + T(n-2) + O(\log n)$$

We are performing the same calculations over again

Runtime recurrence:

$$T(n) = T(n-1) + T(n-2) + O(\log n)$$

We are performing the same calculations over again

Runtime recurrence:

$$T(n) = T(n-1) + T(n-2) + O(\log n)$$

We are performing the same calculations over and over again.

Dynamic Programming: Write down the intermediate solutions.

Dynamic Programming:
Write down the

Write down the intermediate solutions.

Array F[n] of integers for intermediate solutions.

Dynamic Programming:

Write down the intermediate solutions.

Array F[n] of integers for intermediate solutions.


```
Fibo(n):

If (n == 0 \text{ or } n == 1)

return n

If (F[n] \text{ undefined})

F[n] \coloneqq \text{Fibo}(n-1) + \text{Fibo}(n-2)

Return F[n]
```

Dynamic Programming:

Write down the intermediate solutions.

Memoization:

Once we know F_2 , no need to evaluate it again. The grayed-out parts are never computed

Dynamic Programming: Write down the intermediate solutions.

Same for F_3 .

Dynamic Programming: Write down the intermediate solutions.

Only the black nodes are evaluated. Other values are just fetched from memory

Computation as a Directed Acyclic Graph

Think of the computation as a DAG.

It is always possible to evaluate a sink using one addition.

Runtime: O(n) additions

Computation as a Directed Acyclic Graph

Think of the computation as a DAG.

It is always possible to evaluate a sink using one addition.

Runtime: O(n) additions

Caveat: Integer sizes are large

Dynamic Programming

In a recursion tree, every branch is evaluated

Dynamic Programming:

Smart recursion

Represent the recursion tree as a DAG

Works beyond Fibonacci numbers.