

FAKULTAS TEKNOLOGI INFORMASI

MATEMATIKA DISKRIT [MI057/ 3 SKS]AMA

Help

Pertemuan 3

LINTASAN, SIRKUIT, TERHUBUNG, SUBGRAF, KOMPLEMENT GRAF, BEBERAPA GRAF KHUSUS

Tujuan Pembelajaran

□ Mahasiswa memahai konsep Lintasan, Sirkuit, terhubung, subgraf, komplement graf, beberapa graf khusus

Lintasan (Path)

□Lintasan yang panjangnya n dari simpul awal v_n ke simpul tujuan v_n di dalam graf G ialah barisan berselangseling simpul-simpul dan sisi-sisi yang berbentuk v_0 , e_1 , v_1 , e_2 , v_2 ,..., v_{n-1} , e_n , v_n sedemikian sehingga $e_1 = (v_0, v_1), e_2 = (v_1, v_2), ..., e_n = (v_{n-1}, v_n)$ adalah sisi-sisi dari graf G.

Lintasan

Tinjau graf G_1 : lintasan 1, 2, 4, 3 adalah lintasan dengan barisan sisi (1,2), (2,4), (4,3).

Panjang lintasan adalah jumlah sisi dalam lintasan tersebut. Lintasan 1, 2, 4, 3 pada G₁ memiliki panjang 3.

Sirkuit (Circuit)/Siklus (Cycle)

Lintasan yang berawal dan berakhir pada simpul yang sama disebut sirkuit atau siklus.

Tinjau graf G₁: 1, 2, 3, 1 adalah sebuah sirkuit.

Panjang sirkuit adalah jumlah sisi dalam sirkuit tersebut.

Sirkuit 1, 2, 3, 1 pada G₁ memiliki panjang 4.

Terhubung (Connected)

Dua buah simpul v_1 dan simpul v_2 disebut **terhubung** jika terdapat lintasan dari v_1 ke v_2 . **G disebut graf terhubung** (connected graph) jika untuk setiap pasang simpul v_i dan v_j dalam himpunan V terdapat lintasan dari v_i ke v_j . Jika tidak, maka **G disebut graf tak-terhubung** (disconnected graph). Contoh graf tak terhubung

Terhubung

- □Graf berarah G dikatakan terhubung jika graf tidak berarahnya terhubung (graf tidak berarah dari G diperoleh dengan menghilangkan arahnya).
- □ Dua simpul, u dan v, pada graf berarah G disebut **terhubung kuat (strongly connected)** jika terdapat lintasan berarah dari u ke v dan juga lintasan berarah dari v ke u.
- □ Jika u dan v tidak terhubung kuat tetapi terhubung pada graf tidak berarahnya, maka u dan v dikatakan terhubung lemah (weakly coonected).

Terhubung

□Graf berarah G disebut graf terhubung kuat (strongly connected graph) apabila untuk setiap pasang simpul sembarang u dan v di G, terhubung kuat. Kalau tidak, G disebut graf terhubung lemah.

Upagraf (Subgraph) dan Komplemen Upagraf

- □Misalkan G = (V, E) adalah sebuah graf. $G_1 = (V_1, E_1)$ adalah **upagraf** (subgraph) dari G jika $V_1 \subseteq V$ dan $E_1 \subseteq E$.
- □ Komplemen dari upagraf G1 terhadap graf G adalah graf $G_2 = (V_2, E_2)$ sedemikian sehingga $E_2 = E E_1$ dan V_2 adalah himpunan simpul yang anggota-anggota E_2 bersisian dengannya.

Komponen

- □ **Komponen** graf (connected component) adalah jumlah maksimum upagraf terhubung dalam graf G.
- □Graf G di bawah ini mempunyai 4 buah komponen.

Komponen

- □ Pada graf berarah, komponen terhubung kuat (strongly connected component) adalah jumlah maksimum upagraf yang terhubung kuat.
- □Graf di bawah ini mempunyai 2 buah komponen terhubung kuat:

Upagraf Rentang (Spanning Subgraph)

□Upagraf $G_1 = (V_1, E_1)$ dari G = (V, E) dikatakan **upagraf rentang** jika $V_1 = V$ (yaitu G_1 mengandung semua simpul dari G).

Cut-Set

- □ Cut-set dari graf terhubung G adalah himpunan sisi yang bila dibuang dari G menyebabkan G tidak terhubung. Jadi, cut-set selalu menghasilkan dua buah komponen.
- □Pada graf di bawah, {(1,2), (1,5), (3,5), (3,4)} adalah cut-set. Terdapat banyak cut-set pada sebuah graf terhubung.
- □ Himpunan $\{(1,2), (2,5)\}$ juga adalah cut-set, $\{(1,3), (1,5), (1,2)\}$ ad.lah cut-set, $\{(2,6)\}$ juga cut-set.
- □tetapi $\{(1,2), (2,5), (4,5)\}$ bukan cut-set sebab himpunan bagiannya, $\{(1,2), (2,5)\}$ adalah cut-set.

Help

FAKULTAS TEKNOLOGI INFORMASI

Cut set

Graf Berbobot (Weighted Graph)

□ Graf berbobot adalah graf yang setiap sisinya diberi sebuah harga (bobot).

□ Graf Lengkap (Complete Graph)

Graf lengkap ialah graf sederhana yang setiap simpulnya mempunyai sisi ke semua simpul lainnya. Graf lengkap dengan n buah simpul dilambangkan dengan K_n . Jumlah sisi pada graf lengkap yang terdiri dari n buah simpul adalah n(n-1)/2.

Graf Lingkaran

Graf lingkaran adalah graf sederhana yang setiap simpulnya berderajat dua.

Graf lingkaran dengan n simpul dilambangkan dengan C_n.

□ Graf Teratur

Graf yang setiap simpulnya mempunyai derajat yang sama disebut graf teratur. Apabila derajat setiap simpul adalah r, maka graf tersebut disebut sebagai graf teratur derajat r.Jumlah sisi pada graf teratur adalah nr/2.

Contoh

Berapa jumlah maksimum dan jumlah minimum simpul pada graf sederhana yang mempunyai 16 buah sisi dan tiap simpul berderajat ≥ 4 ?

Penyelesaian:

- □Tiap simpul berderajat sama -> graf teratur.
- □Jumlah sisi pada graf teratur berderajat r adalah e = nr/2.Jadi, n = 2e/r = (2)(16)/r = 32/r.
- □Untuk r = 4, jumlah simpul yang dapat dibuat adalah maksimum, yaitu n = 32/4 = 8.

Contoh

- Untuk r yang lain (r > 4 dan r merupakan pembagi bilangan bulat dari 32): r = 8 -> n = 32/8 = 4 -> tidak mungkin membuat graf sederhana. r = 16 -> n = 32/16 = 2 -> tidak mungkin membuat graf sederhana.
- □ Jadi, jumlah simpul yang dapat dibuat adalah 8 buah (maksimum dan minimum).

□Graf Bipartite (Bipartite Graph)

Graf G yang himpunan simpulnya dapat dipisah menjadi dua himpunan bagian V_1 dan V_2 , sedemikian sehingga setiap sisi pada G menghubungkan sebuah simpul di V_1 ke sebuah simpul di V_2 disebut graf bipartit dan dinyatakan

sebagai $G(V_1, V_2)$.

Graf Bipartite

Graf G di bawah ini adalah graf bipartit, karena simpulsimpulnya dapat dibagi menjadi $V_1 = \{a, b, d\}$ dan $V_2 = \{c, e, f, g\}$

