Trabalho 1 - Similaridade entre cores

Rauan Pires - 14103318

31 de agosto de 2018

1 Introdução

Este trabalho teve como objetivo desenvolver um programa que, baseado em quatro algoritmos de seccionamento de domínio de cor, consiga estimar fronteiras e recortar um objeto de uma figura a partir de uma amostra de pontos coletados previamente pelo usuário. O domínio de cor utilizado para realizar os testes foi o RGB.

Os quatro algoritmos utilizados foram: L1-Norm ou cubo/volume no RGB, que estima um volume baseado nas amostras dentro do volume total do RGB; L2-Norm ou esfera no RGB, que estima uma esfera com centro na média de cada componente dos pontos amostrados dentro do volume total do RGB; distância de Mahalanobis, que utiliza uma elipse no RGB e estima pontos pertencentes a imagem baseando-se na variância da amostra para cada componente; K-vizinhos mais próximos, que estima múltiplas esferas ao longo da amostra dentro do volume total do RGB.

2 Imagens de teste

Para testar o funcionamento dos algoritmos desenvolvidos, algumas imagens de teste foram escolhidas. Retiradas do Berkley Image Dataset, as três figuras escolhidas podem ser visualizadas abaixo:

Figura 1: Estrela do mar

Figura 2: Flor vermelha

Figura 3: Maçã

3 Resultados

Para decidir as dimensões do volume em L1-Norm, ou o raio da esfera em L2-Norm, por exemeplo, o programa precisa de alguns parâmetros. No caso do algoritmo desenvolvido, alguns parâmetros são calculados a partir de dados da amostra enquanto outros são escolhidos pelo usuário. A relação algoritmo-parâmetro pode ser visualizada na tabela abaixo.

* "User- valor escolhido pelo usuário * -- não aplicado

	L1-Norm	L2-Norm	Mahalanobis	K-Vizinhos
Dimensão do cubo	RGBMax - RGBMin	-	-	-
Raio da esfera	-	Average(RGBMax - RGBMed)	-	User
Threshold Mahalanobis	-	-	User	-
Número de esferas	-	1	-	User

Tabela 1: Relação Algoritmo-Parâmetros

3.1 Resultados Estrela do mar

Para separar a estrela do mar de seu fundo verde, pontos foram selecionados na superfície da estrela. Com o objetivo de otimizar a figura final, os seguintes parâmetros foram escolhidos:

- 1. Mahalanobis Threshold = 3.5
- $2.\ \ K\text{-Vizinhos}$ 80 esferas de raio 30

Figura 6: Estrela do mar - Mahalanobis Figura 7: Estrela do mar - K-vizinhos

Observando as imagens obtidas é possível perceber que o algoritmo L1-Norm teve resultado muito ruim, L2-Norm teve resultado mediano porém não bom o suficiente, e os algoritmos Mahalanobis e K-Vizinhos tiveram resultados muito bons e muito similares.

3.2 Resultados Flor vermelha

Para separar a flor vermelha de seu fundo verde, pontos foram selecionados na superfície da flor. Com o objetivo de otimizar a figura final, os seguintes parâmetros foram escolhidos:

- 1. Mahalanobis Threshold = 3

Figura 10: Flor vermelha - Mahalanobis Figura 11: Flor vermelha - K-vizinhos

Observando as imagens obtidas é possível perceber que o algoritmo L1-Norm teve resultado muito ruim, L2-Norm teve resultado mediano porém não bom o suficiente, e os algoritmos Mahalanobis e K-Vizinhos tiveram resultados muito bons e muito similares.

3.3 Resultados Maçã

Para separar a maçã de seu fundo verde, pontos foram selecionados na superfície da maçã. Com o objetivo de otimizar a figura final, os seguintes parâmetros foram escolhidos:

- 1. Mahalanobis Threshold = 3
- 2. K-Vizinhos 50 esferas de raio 25

Figura 14: Maçã - Mahalanobis

Figura 15: Maçã - K-vizinhos

Observando as imagens obtidas é possível perceber que os algoritmo L1-Norm e L2-Norm tiveram resultado medianos porém não bons o suficiente, o algoritmo de Mahalanobis foi mais eficiente em cortar o fundo, porém não selecionou toda a imagem da maçã e o algoritmo de K-vizinhos obteve resultado bom, porém não ótimo.

Para o caso da imagem da maçã, os algoritmos encontraram dificuldade para seccionar a imagem da maneira que gostaríamos pois existiam reflexos e sombras na superfície da fruta, o que dificulta bastante o processo de seccionamento.