2017 2e

$$S(t) = P(Y_1 > T) = \exp\left(-t/\beta\right) \text{ (from part b)}$$
 Let $\tau\beta = \exp\left(-t/\beta\right) = S(t)$ WTS: $E(V_1|U)$ is an unbiased estimator of $S(t)$
$$E(E(V_1|U)) = E(V_1)$$

$$E(V_1) = S(t) \text{ from part c}$$
 Thus $E(E(V_1|U)) = S(t)$ Therefore $E(V_1|U)$ is an unbiased estimator of $S(t)$ WTS $U = \sum Y_i$ is a css for β
$$f_y(y|\beta) = \beta^{-n} \exp\left(-\sum Y_i/\beta\right), y > 0\beta > 0$$

$$h(x) = I(y > 0) \quad c(\beta) = \beta^{-n}$$

$$w(\beta) = -1/\beta \quad t(x) = \sum Y_i$$
 Thus $f(y|\beta) = h(x)c(\beta) \exp\left(w(\beta)t(x)\right), 0 < \beta < \infty$
$$T(x) = \sum Y_i = U \text{ is complete because:}$$
 $\{w(\beta): \beta \in (0,\infty)\}$ contains an open set in R^1 We have: V_1 an unbiased estimator of $\tau(\beta) = S(t), U$ a CSS for β Thus by lehmann-scheffe thm $E(V_1|U)$ is the UMVUE for $\tau(\beta) = S(t)$