

数学分析讲义

作者: Ayame

时间: December 6, 2022

前言

这是由 Ayame (千丛恋雨万花绫) 编写的数学分析讲义

目录

第1章	集合	1
1.1	集合与子集	1
1.2	集合的运算	2
1.3	映射与基数	5

第1章 集合

在中学阶段,大家已经初步接触过关于集合的知识。例如,自然数全体形成一个集合,常记为 \mathbb{N} ; 有理数形成一个集合,常记为 \mathbb{Q} ; 实数形成一个集合,记为 \mathbb{R} . 关于集合的精确定义是很难给出的,根据 Cantor 给出的概念(概括性),可以这样定义集合。

定义 1.1

集合是把具有某种特征或满足一定性质的所有对象视为整体时,这个整体是集合,而这些对象就称为集合中的元素

在这个描述性的定义上,需要建立公理,满足数学的严谨性要求。

在集合的基础上,我们可以为集合定义距离、范数、向量内积、二元运算。通过定义运算,可以形成代数结构;通过定义距离、范数、向量内积,可以形成各种空间。

在对集合有基础的了解后,我们将在最常用的集合──实数集 ℝ 上,定义序关系、加法、乘法,并开始我们的数学分析学习之旅。

1.1 集合与子集

我们约定,集合的符号用大写字母 A,B,C,\cdots,X,Y,Z 等表示,集合中的元素用 a,b,c,\cdots,x,y,z 等表示。若 a 是 A 的元素,则记为 a \in A,称 a 属于 A

对于集合, 在中学阶段我们已经学过了这些定义

定义 1.2 (子集)

对于两个集合 A, B. 若 $x \in A$ 必定有 $x \in B$, 则称 $A \neq B$ 的子集,记作:

 $A \subset B$

如果 ∃b ∈ B, b ∉ A, 则称 A ∈ B 的真子集, 记作 A ⊆ B

定义 1.3 (空集)

空集是不包含任何元素的集合,记作 Ø

规定: 空集是任何集合的子集

定义 1.4

设集合 A, B, 若 $A \subset B$ 且 $B \subset A$, 则称 $A \subseteq B$ 相等或等同,记作 A = B

对于一系列具有共同特征的集合,我们可以对每一个集合进行标号,可以将标号组成的集合记作 I,称为指标集。在此基础上,可以给出集合族的定义

定义 1.5 (集合族)

设 I 是给定的一个集合,对于每一个 $\alpha \in I$,指定一个集合 A_{α} ,这样可以得到一系列集合,它们的总体称为集合族,记为 $\{A_{\alpha}: \alpha \in I\}$ 或者 $\{A_{\alpha}\}_{\alpha \in I}$ 当 $I = \mathbb{N}$ 时,集合族也称为集合列,简记为 $\{A_{i}\}$ 这样的形式集合族常用花体字母表示,如 $\mathcal{A}, \mathcal{B}, \mathcal{P}$

事实上,上述集合的描述是不完美的。我们可以构造出一种情况,使得一个元素既不能属于一个集合,又不能不属于这个集合。

例题 1.1 罗素悖论 定义 $S = \{A : A \notin A\}$, 判断 $S \in S$ 是否成立

首先,我们需要明白的是,上面的 ∉ 并不是 ⊄,这里不是作者笔误(这是初学者常有的误解)。

为了便于理解 $A \in A$ 是什么情况,我们可以先尝试找到一个符合这种性质的集合。事实上,我们不难发现:由全体无限集组成的集合满足 $A \in A$ 。换句话说,全体无限集组成的集合属于它自身。

回到正题。假设 $S \in S$,那么根据 S 的定义,有 $S \notin S$;假设 $S \notin S$,则根据定义,有 $S \in S$. 从而无法判断 S 是否是 S 的元素

这个悖论类似于理发师悖论。感兴趣的同学可以上网搜索。

罗素悖论和它引申出的其他悖论要求对集合设置自洽的公理体系,著名的公理系统有 ZF 公理系统和 NBG 公理系统。这些内容超过了本书涉及范围,故不赘述。

1.2 集合的运算

集合的分解和合成是形成新集合的有效方法,这种分解和合成可以通过集合间的运算来表达。

在中学阶段,我们已经学过简单的集合的并、交、补。

1.2.1 交与并

定义 1.6

设集合 A, B, 称集合 $\{x: x \in A \exists x \in B\}$ 为 $A \subseteq B$ 的并集,记作 $A \cup B$.

定义 1.7

设集合 A, B, 称集合 $\{x : x \in A \perp x \in B\}$ 为 $A \vdash B$ 的交集,记作 $A \cap B$. 若 $A \cap B = \emptyset$,则称 $A \vdash B$ 互不相交。

显然,集合的运算满足结合律、交换律、分配律

定理 1.1

交换律:

$$A \cup B = B \cup A, \ A \cap B = B \cap A; \tag{1.1}$$

结合律:

$$A \cup (B \cup C) = (A \cup B) \cup C,$$

$$A \cap (B \cap C) = (A \cap B) \cap C;$$
(1.2)

分配律:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C);$$
(1.3)

类似于两个集合的交、并,可以定义多个集合的交、并。(此处的多个可以是无穷多个, 甚至可以是比自然数的个数更大的无穷)

定义 1.8

设集合族 $\{A_{\alpha}\}_{\alpha\in I}$, 定义并集和交集如下:

$$\bigcup_{\alpha \in I} A_\alpha = \{x: \exists \alpha \in I, x \in A_\alpha\}$$

$$\bigcap_{\alpha \in I} A_\alpha = \{x : \forall \alpha \in I, x \in A_\alpha\}$$

根据上述定义,对于任意多(可以是无穷多)个的并或交,改变计算顺序不会影响结果。 注上述结论并非通过数学归纳法和两个集合的交、并的性质得出。数学归纳法只能保证"任意有限"成立,对"无限"不能保证成立。

分配律对于多个集合的运算依然成立。

定理 1.2

多个集合运算的分配律:

$$A \cap \left(\bigcup_{\alpha \in I} B_{\alpha}\right) = \bigcup_{\alpha \in I} (A \cap B_{\alpha});$$

$$A \cup \left(\bigcap_{\alpha \in I} B_{\alpha}\right) = \bigcap_{\alpha \in I} (A \cup B_{\alpha}).$$

$$(1.4)$$

例题 1.2 康托尔集 取闭区间 [0,1], 挖去中间的 1/3, 得到两个部分(闭区间), 再分别对两个部分挖去中间,得到 4个部分。不断地进行挖去中间的操作,重复无穷多次后,得到的集合就是康托尔集。请尝试用交集和并集表示康托尔集。

第一次挖去中间时,得到的两个闭区间是 [0,1/3],[2/3,1],第二次挖去中间时,挖去的是 [1/9,2/9],[7/9,8/9]. 注意到分母总是 3^n ,并且保留部分区间下限的分子始终是偶数,区

间上限的分子始终是下限+1.于是,康托尔集可以写成这样的形式

$$\bigcap_{k=0}^{\infty} \bigcup_{i=0}^{3^k} \left[\frac{2i}{3^k}, \frac{2i+1}{3^k} \right]$$

1.2.2 差与补

定义 1.9 (差集)

设集合 A, B, 称 $\{x : x \in A, x \notin B\}$ 为 $A \subseteq B$ 的差集,记作 $A \setminus B$. (读作 $A \bowtie B$) 当 $B \subseteq A$ 时,称 $A \setminus B$ 为集合 B 相对于 A 的补集 (或余集)。

在讨论某一问题时,常常规定一个默认的最大集合 X,我们称 X 为全集,此时,集合 B 相对于全集的补集就简称 B 的补集,并记作 B^c

显然,有如下事实:

- 1. $A \cup A^c = X, A \cap A^c = \emptyset, (A^c)^c = A$
- 2. $X^c = \varnothing, \varnothing^c = X$
- 3. $A \setminus B = A \cap B^c$
- 4. 若 $A \supset B$, 则 $A^c \subset B^c$
- 5. 若 $A \cap B = \emptyset$, 则 $A \subset B^c$ 集合的补与交、并有如下运算法则

定理 1.3 (De.Morgan 法则)

$$\left(\bigcup_{\alpha \in I} A_{\alpha}\right)^{c} = \bigcap_{\alpha \in I} A_{\alpha}^{c} \tag{1.5}$$

$$\left(\bigcap_{\alpha \in I} A_{\alpha}\right)^{c} = \bigcup_{\alpha \in I} A_{\alpha}^{c} \tag{1.6}$$

证明 以(1.5)为例,对于任意 $x \in \left(\bigcup_{\alpha \in I} A_{\alpha}\right)^{c}$,有 $x \notin \bigcup_{\alpha \in I} A_{\alpha}$,即 $\forall \alpha \in I, x \notin A_{\alpha}$ 也就是说 $\forall \alpha \in I, x \in A_{\alpha}^{c}$,故 $x \in \bigcap_{\alpha \in I} A_{\alpha}^{c}$

所以,
$$\left(\bigcup_{\alpha\in I}A_{\alpha}\right)^{c}\subset\bigcap_{\alpha\in I}A_{\alpha}^{c}$$

反过来,对于任意 $x\in\bigcap_{\alpha\in I}A_{\alpha}^{c}$,有 $\forall \alpha\in I, x\in A_{\alpha}^{c}$,即 $\forall \alpha\in I, x\notin A_{\alpha}$

所以
$$x \in \left(\bigcup_{\alpha \in I} A_{\alpha}\right)^{c}$$

所以 $\bigcap_{\alpha \in I} A_{\alpha}^{c} \subset \left(\bigcup_{\alpha \in I} A_{\alpha}\right)^{c}$

综上, (1.5)得证

请读者模仿上述证明过程, 自行证明(1.6)

注 证明两个集合互为子集是证明两个集合相等的一种常用方法。这种方法也可以推广到其他 与"子集"相关的证明,如数论中证明两个整数相等可以用互相整除证明。

集合列的极限

本部分将在极限章节中讲述

1.2.3 笛卡尔积

笛卡尔积(Cartesian product)又称直积,是一种将多个集合中的元素直接组合起来的运算。

定义 1.10

设集合 X,Y, $x \in X$, $y \in Y$, 称一切形如 (x,y) 的有序"元素对"形成的集合为 X,Y 的笛卡尔积、记作 $X \times Y$ 、即

$$X \times Y = \{(x, y) : x \in X, y \in Y\}$$

集合对自身的笛卡尔积如 $X \times X$ 可以记为 X^2

1.2.4 幂集

定义 1.11

设X是一个非空集合,由X的一切子集(包括 \varnothing 和自身)为元素形成的集合称为X的 幂集,记作 $\mathcal{P}(X)$

例题 1.3 设 E 是有 n 个元素的有限集, 求 $\mathcal{P}(E)$ 的元素个数

对于任何一个元素,要么它在 E 的子集中,要么不在。并且,一个元素是否在子集不影响另外一个元素是否在子集中。所以, $\mathcal{P}(E)$ 的元素个数为 2^n

1.3 映射与基数

通过映射,我们把不同的集合联系起来。而运用映射联系不同的集合时,有时会出现不能建立联系的情况,这种情况发生的原因是因为集合中元素的多少不同。

对于有限集,我们很容易描述它元素的个数来表示其中元素的多少;而对于无限集,元 素的多少是难以描述的。同为无限集时,有些集合的元素远多于另一个集合以至于不能一一 对应。但有时,看起来元素不一样多的集合却能够形成一一对应的关系(比如说整数和偶数)。 为了衡量集合中元素的多少,引入基数的概念。

1.3.1 映射

在中学中,我们已经学过函数的概念。函数是从定义域到 \mathbb{R} 的一种对应关系,我们把这种概念推广到一般的集合。

定义 1.12 (映射)

设非空集合 X,Y,若 $\forall x \in X$,存在唯一的 $y \in Y$ 与之对应,则称这个对应为映射。若用 f 表示这种对应,则记作

$$f: X \to Y$$

并称f是从X到Y的一个映射。

类似于复合函数,有复合映射

定义 1.13

设 $f: X \to Y, g: Y \to W$, 则

$$h(x) = g(f(x)), x \in X$$

定义的h称为g与f的复合映射,可记作 $f \circ g$

类似于函数的自变量和因变量,映射有"像"和"原像"。

定义 1.14 (像、原像)

设 $x \in X$, $y \in Y$ 中与 x 对应的元素,称 y = f(x) 是 x 的像,x 是 y 的原像。对于集合,称 $f(A) = \{y \in Y : x \in A, y = f(x)\}$ 为 A 的像集(可简称为像);称 $f^{-1}(B) = \{x \in X : y \in B, y = f(x)\}$ 为 B 关于 f 的原像集(可简称为原像)。

显然,像具有以下性质

1.
$$f\left(\bigcup_{\alpha\in I}A_{\alpha}\right)=\bigcup_{\alpha\in I}f(A_{\alpha})$$

2.
$$f\left(\bigcap_{\alpha\in I}A_{\alpha}\right)\subset\bigcap_{\alpha\in I}f(A_{\alpha})$$

3.
$$f^{-1}\left(\bigcup_{\alpha\in I}B_{\alpha}\right)=\bigcup_{\alpha\in I}f^{-1}(B_{\alpha})(B_{\alpha}\subset Y,\alpha\in I)$$

4.
$$f^{-1}\left(\bigcap_{\alpha\in I}B_{\alpha}\right)=\bigcap_{\alpha\in I}f^{-1}(B_{\alpha})(B_{\alpha}\in Y,\alpha\in I)$$

5. 若 $B_1 \subset B_2 \subset Y$,则 $f^{-1}(B_1) \subset f^{-1}(B_2)$ 接下来,将要讲到 3 个重要的映射——单射、满射、双射。

定义 1.15 (单射)

不同元有不同像的映射是单射,即:

设 $f: X \to Y$, 若 $\forall x_1, x_2 \in X$ 且 $x_1 \neq x_2$ 时,有 $f(x_1) \neq f(x_2)$,则f是单射。

一种单射的等价描述是: 任何一个像都只有一个原像的映射是单射

定义 1.16 (满射)

Y 是像的映射是满射, 即:

设 $f: X \to Y$, 若 $\forall y \in Y, \exists x \in X, y = f(x)$, 则f是满射。

定义 1.17 (双射)

既是单射又是满射的映射是双射

不难发现,整数集和偶数集能够形成双射。事实上,与真子集形成双射是无限集区别于有限集的一个重要特征。

命题 1.1

一个集合能够与它的真子集形成双射当且仅当它是无限集。

证明先证明充分性。