Mathematical Proof

John Shea

February 03, 2019

Assignment #4

Question 1

Theorem 1. If $0 < \frac{1}{a} < \frac{1}{b}$, then b < a.

Proof. Suppose $0 < \frac{1}{a} < \frac{1}{b}$ Because both $\frac{1}{a}$ and $\frac{1}{b}$ are both greater than zero, both a and b must be positive. Therefore, all terms can be multiplied by a and b without needing to change the direction of the inequality. Thus, when all three terms are multiplied by a, the result is $0 < 1 < \frac{a}{b}$. Then when all three terms are multiplied by b, the result is 0 < b < a. Therefore b is less than a.

A more visual depiction:

$$0 < \frac{1}{a} < \frac{1}{b}$$

$$\equiv 0 \cdot a < \frac{1}{a} \cdot a < \frac{1}{b} \cdot a \qquad \text{(multiply all terms by a)}$$

$$\equiv 0 < 1 < \frac{a}{b} \qquad \text{(simplify)}$$

$$\equiv 0 \cdot b < 1 \cdot b < \frac{a}{b} \cdot b \qquad \text{(multiply all terms by b)}$$

$$\equiv 0 < b < a \qquad \text{(simplify)}$$

$$b < a \qquad \text{(conclusion)}$$

Question 2

Theorem 2. Given $A \subseteq B$ and $x \in A$, if $x \notin B \setminus C$ then $x \in C$.

Proof. Suppose
$$x \notin C$$
. Then

A more visual depiction:

Question 3

Theorem 3. Given $A \setminus B \subseteq C \cap D$ and $x \in A$, if $x \notin C$, then $x \in B$

Proof. Suppose \Box

Question 4

Theorem 4. If x is a negative real number and $x < \frac{1}{x}$, then x < -1.

Proof. Suppose a is the absolute value of x. Then the given statement can be written as $-a < -\frac{1}{a}$. Then multiply both sides by -a and we get $a^2 > 1$. We then take the principle square root of both sides (because a is known to be an absolute value, it is not necessary to take the plus or minus square root) and arrive at a > 1. Then we multiply both sides by -1 and get -a < -1. Finally, we insert x for -a and we get the desired x < -1.

A more visual depiction:

$$x < 0 \land x < \frac{1}{x}$$

$$a = |x| \qquad \qquad \text{(stipulation)}$$

$$-a < -\frac{1}{a} \qquad \qquad \text{(restatement)}$$

$$-a \cdot -a < -\frac{1}{a} \cdot -a \qquad \qquad \text{(mutliply both sides by -a)}$$

$$a^2 > 1 \qquad \qquad \text{(result of multiplication)}$$

$$\sqrt{a^2} > \sqrt{1} \qquad \qquad \text{(take principal square root of both sides)}$$

$$a > 1 \qquad \qquad \text{(result)}$$

$$a \cdot -1 < 1 \cdot -1 \qquad \qquad \text{(mutliply both sides by -1)}$$

$$-a < -1 \qquad \qquad \text{(result)}$$

$$x < -1 \qquad \qquad \text{(substitute x for -1)}$$

Question 5

Theorem 5. If x is a real number and $x \neq 2$, then there is a real number y such that $x = \frac{2y+1}{y-1}$.

Proof. Suppose $\frac{2y+1}{y-1} = x$ and $x \neq 2$ Therefore, $\frac{2y+1}{y-1} \neq 2$. To solve, we first multiply both sides by y-1 with the stipulation that $y \neq 1$ because y=1 would create a division by zero, which is undefined. With that stipulation, we arrive at $2y+1 \neq 2y-2$. We then subtract 1 from both sides, resulting in $2y \neq 2y-3$. We then subtract 2y from both sides, which results in $0 \neq -3$. Because $0 \neq -3$ for all values of y, this provides for an infinite number of solutions to the second step of the equation. However, we began withe the stipulation that $y \neq 1$. Therefore, we have shown that $\frac{2y+1}{y-1} \neq 2$ for all real numbers except 1, which proves that there exists a real number y, in fact infinitely many, for which $\frac{2y+1}{y-1} = x$ and $x \neq 2$. \square

$$\frac{2y+1}{y-1} \neq 2, y \neq 1$$

$$\frac{2y+1}{y-1} \cdot (y-1) \neq 2 \cdot (y-1) \qquad \text{(mutliply both sides by y-1)}$$

$$2y+1 \neq 2(y-1) \qquad \text{(simplify)}$$

$$2y+1 \neq 2y-2 \qquad \text{(distribute)}$$

$$2y+1-1 \neq 2y-2-1 \qquad \text{(subtract 1 from both sides)}$$

$$2y \neq 2y-3 \qquad \text{(simplify)}$$

$$2y-2y \neq 2y-3-2y \qquad \text{(subtract 2y from both sides)}$$

$$0 \neq -3 \qquad \text{(result)}$$

$$y = (-\infty,1) \cup (1,\infty) \qquad \text{(solution)}$$

Question 6

Theorem 6. If \mathscr{F} is a non-empty family of sets, B is a set, and $\forall A \in \mathscr{F}(A \subseteq B)$, then $\cup \mathscr{F} \subseteq B$.

Proof. Suppose $x \in \cup \mathscr{F}$, then x must be a member of at least one of the sets that comprise \mathscr{F} . As we are given that every set in \mathscr{F} is a subset of B, x must exist in B.