Quelques métriques « topologiques » de centralité

Pour un sommet s d'un graphe g=(S,A) **connexe** de n sommets et m arêtes/arcs :

Degré (nbr d'amis...): nombre deg(s) de voisins de s

Coefficient de clustering : ratio des voisins de s qui sont connectés

$$C(s) = \frac{|paires \ de \ voisins \ de \ s \ connectés|}{\binom{\deg(s)}{2}}$$

Proximité : distance moyenne de s aux autres sommets

$$\bar{d}(s) = E_{s'}(d(s,s')) = \frac{\sum_{s' \in S} d(s,s')}{n-1}$$

Intermédiarité (betweenness): nombre de plus courts chemins passant par s

$$I(s) = \frac{1}{\binom{n-1}{2}} \sum_{\{s_1, s_2\} \subseteq S \setminus \{s\}} \frac{|plus \ courts \ chemins \ entre \ s_1et \ s_2 \ passant \ par \ s|}{|plus \ courts \ chemins \ entre \ s_1et \ s_2|}$$

i	1	2	3	4
deg(i)	4	2	3	3
C(i)	$\frac{3}{6}$	1	$\frac{2}{3}$	$\frac{1}{3}$
$\bar{d}(i)$	$\frac{9}{6}$	$\frac{13}{6}$	$\frac{10}{6}$	$\frac{9}{6}$
I(i)	$\frac{5}{15}$	0	1,5 15	8 15

Quelques métriques topologiques globales

Diamètre: plus grande des distances (longueur d'un plus court chemin) entre deux sommets

$$D = \max_{s_1 \in S, s_2 \in S} d(s_1, s_2)$$

Rayon : plus grande distance du centre (sommet le moins éloigné de tout autre sommet) à un sommet

$$R = \min_{C \in S} \left(\max_{s \in S} d(s, C) \right)$$

Longueur moyenne : distance moyenne pour chaque paire de sommet

$$\bar{L} = E(d(s_1, s_2)) = \frac{\sum_{s_1 \in S, s_2 \in S} d(s_1, s_2)}{n(n-1)}$$

Densité: ratio du nbr. d'arêtes sur nbr. des arêtes d'un graphe complet

$$d = \frac{2m}{n(n-1)}$$

Degré moyen : moyenne des degrés des sommets

$$\delta = \frac{2m}{n}$$

Coefficient de clustering : moyenne des coefficients de clustering des sommets

$$\bar{C} = E(C(s)) = \frac{3 \times nbr. de sous graphes triangulaires}{nbr. de sous graphes connexes à 3 sommets}$$

$$n = 7m = 9$$
 $D = 4 R = 2\bar{L} = 1,7$
 $d = 0,4 \delta = 2,6$
 $\bar{C} = 0.7$