Lösungsvorschlag

Aufgabe 1 Euler-Formeln (7 Punkte)

Sei $\Delta := \Delta_N$ eine Triangulierung mit Rand (und ohne Löcher), bestehend aus N Dreiecken, die ausgehend von einem Ursprungsdreieck T_0 durch $\mathcal{F}\ell$ Flaps und $\mathcal{F}\iota$ Fills erzeugt wurde, d.h. Δ ist *schälbar*.

Weiterhin sei E_I die Anzahl innerer Kanten, E_B die Anzahl der Randkanten, V_I die Anzahl innerer Eckpunkte, und V_B die Anzahl der Eckpunkte am Rand von Δ .

a) Ermitteln Sie Formeln, die E_I , E_B sowie V_I und V_B in Abhängigkeit von $\mathcal{F}\ell$ und $\mathcal{F}\iota$ bestimmen. Zeigen Sie die Korrektheit anhand einfacher induktiver Argumente.

Zeigen Sie dann anhand der Ergebnisse, dass gilt

$$E_I = 3V_I + E_B - 3$$
, sowie $N = 2V_I + E_B - 2$.

2 Punkte

Lösungsvorschlag

Durch ein einfaches induktives Argument erkennen wir, dass $E_I = \mathcal{F}\ell + 2\mathcal{F}\iota$: Für N = 1 ist die Behauptung trivialerweise erfüllt und $E_I = 0$. Sei die Behauptung für Δ_{N-1} erwiesen, dann gibt es für Δ_N zwei Fälle:

- 1. das neue Dreieck wurde mittels $\mathcal{F}\ell$ angehängt. Dann erhöht sich die Anzahl der inneren Kanten um eins.
- 2. das neue Dreieck wurde mit einem $\mathcal{F}\iota$ erzeugt. Dabei enstehen zwei neue innere Kanten.

Weiterhin ist $V_B = E_B = \mathcal{F}\ell - \mathcal{F}\iota + 3$ und $V_I = \mathcal{F}\iota$.

Somit
$$E_I = \mathcal{F}\ell + 2\mathcal{F}\iota = \mathcal{F}\ell + 2V_I$$
.

Umstellen der Gleichung für E_B nach $\mathcal{F}\ell$ ergibt $\mathcal{F}\ell=E_B+\mathcal{F}\iota-3$ und einsetzen ergibt die ursprüngliche Behauptung $E_I=3V_I+E_B-3$.

Für die zweite Gleichung $N=2V_I+E_B-2$ machen wir uns zunächst klar, dass $N=\mathcal{F}\iota+\mathcal{F}\ell+1$ (ausgehend vom Ursprungsdreieck erzeugt ein Fill oder Flap genau ein Dreieck). Setzen wir nun $E_B=\mathcal{F}\ell-\mathcal{F}\iota+3$ und $V_I=\mathcal{F}\iota$ in die Behauptung $N=2V_I+E_B-2$ ein, folgt daraus:

$$N = 2\mathcal{F}\iota + \mathcal{F}\ell - \mathcal{F}\iota + 3 - 2 = \mathcal{F}\iota + \mathcal{F}\ell + 1.$$

b) In dieser Aufgabe soll die Beziehung $N=2V_I+E_B-2$ nicht induktiv, sondern mittels der Eulerformel für schälbare Dreiecksnetze mit Rand, V-E+N=1, gezeigt werden.

Argumentieren Sie über die Anzahl der Halbkanten HE in Δ und nutzen Sie die Beziehungen 3N = HE, $V = V_I + V_B$ und $E = E_I + E_B$.

2 Punkte

Lösungsvorschlag

zu zeigen:
$$N = 2V_I + E_B - 2$$

Die Anzahl innerer Halbkanten HE_I in Δ ist $HE_I = HE - E_B = 3N - E_B$. Da jede innere Halbkante doppelt gezählt wurde, folgt

$$HE_I = 2E_I = 3N - E_B$$

und somit

$$E_I = \frac{3N - E_B}{2}$$

Weiterhin gilt $V = V_I + V_B$, $E = E_I + E_B$ und (Eulerformel)

$$(V_I + V_B) - (E_I + E_B) + N = 1.$$

Mit $V_B = E_B$ folgt

$$V_{I} - E_{I} + N = 1$$

$$V_{I} - \frac{3N - E_{B}}{2} + N = 1$$

$$V_{I} - \frac{3}{2}N + \frac{1}{2}E_{B} + N = 1$$

$$V_{I} - \frac{1}{2}N + \frac{1}{2}E_{B} = 1$$

$$2V_{I} - N + E_{B} = 2$$

$$2V_{I} + E_{B} - 2 = N$$

- c) Ein platonischer Körper ist ein regelmäßiger konvexer Polyeder mit folgenden Eigenschaften:
 - Alle Facetten sind kongruent (deckungsgleich), regelmäßig (überall gleichlange Seiten und gleiche Innenwinkel) und haben den gleichen Grad (Anzahl an Kanten).
 - Alle Knoten haben die gleiche Valenz (Anzahl adjazenter Kanten).

Es gibt genau fünf solche Körper:

Tetraeder

Hexaeder

Octaeder

Icosaeder

Dodecaeder

Im Folgenden wollen wir durch die Euler-Formel beweisen, dass es nur genau diese fünf platonischen Körper geben kann. Gehen Sie dabei wie folgt vor:

- i. Stellen Sie die Euler-Formel für einfache Polyeder auf (Abhängig von *V*,*E* und *F*).
- ii. Stellen Sie einen Zusammenhang zwischen *E* und *F* her, unter der Annahme, dass der Grad jeder Facette *n* ist.
- iii. Stellen Sie einen Zusammenhang zwischen *E* und *V* her, unter der Annahme, dass die Valenz jedes Knotens *m* ist.
- iv. Ersetzen Sie *F* und *V* aus Gleichung (i) mit den beiden gefundenen Ausdrücken aus (ii) und (iii). Die gefundene Gleichung sollte nur noch abhängig von *E*, *n* und *m* sein.
- v. Machen Sie eine Fallunterscheidung. Welche Werte können n und m annehmen, um Gleichung (iv) zu erfüllen?

Hinweis: eine Facette muss aus mindestens 3 Kanten bestehen und ein Knoten mindestens Valenz 3 besitzen, damit überhaupt ein Körper beschrieben werden kann.

3 Punkte

Lösungsvorschlag:

- i. Die Euler-Formel für geschlossene, einfache Polyeder lautet V E + F = 2.
- ii. Jede Facette hat n Kanten, wobei jede Kante zu zwei Facetten gehört. Die Relation ist also nF = 2E.
- iii. An jedem Knoten treffen m Kanten aufeinander, wobei jede Kante zwei Knoten besitzt. Die Relation ist also mV = 2E.
- iv. Setzt man die Relationen in die erste Gleichung ein erhält man $\frac{2E}{m} E + \frac{2E}{n} = 2$.
- v. Wir vereinfachen die Formel mit $\frac{1}{2E}$ weiter zu $\frac{1}{m} + \frac{1}{n} = \frac{1}{E} + \frac{1}{2}$.

Wir wissen, dass n und m größer oder gleich 3 sein müssen, um überhaupt einen Körper zu beschreiben. An der Formel kann man weiter direkt ablesen, dass n und m nicht gleichzeitig größer als 3 sein können, denn bei n=4 und m=4 wäre $\frac{1}{4}+\frac{1}{4}=\frac{1}{E}+\frac{1}{2}$. Also müsste $\frac{1}{E}\leq 0$ sein wenn n und m größer als 3 sind. Eine der Variablen n oder m muß also 3 sein.

Wir betrachten nun den Fall m=3, jeder Knoten besitzt also Valenz 3. Die Gleichung lässt sich damit nach $\frac{1}{n}=\frac{1}{E}+\frac{1}{6}$ umstellen. Dabei sind n=3, n=4 und n=5 alle zulässigen Lösungen. 6, 12 und 30 sind die entsprechenden Werte für E.

Nun der Fall n=3, bei dem also jede Facette den Grad 3 besitzt. Die Gleichung lässt sich damit nach $\frac{1}{m}=\frac{1}{E}+\frac{1}{6}$ umstellen. Dabei sind m=3, m=4 und m=5 alle zulässigen Lösungen. 6, 12 und 30 sind die entsprechenden Werte für E.

Insgesamt haben wir fünf verschiedene Lösungspaare von *m* und *n*:

m	n	E	Körper
3	3	6	Tetrahedron
3	4	12	Hexahedron
3	5	30	Dodecahedron
4	3	12	Octahedron
5	3	30	Icosahedron

Aufgabe 2 Halbkanten Datenstruktur (6 Punkte)

a) Füllen sie die folgenden Tabellen einer Halbkanten Datenstruktur entsprechend der vorgegeben Zeichnung aus.

Hinweis: Für Halbkanten am Rand des Netzes existiert keine gegenüberliegende Halbkante. In diesem Fall ist opp.= -1

3 Punkte

Lösungsvorschlag:

half	vertex	face	halfe	edges	half	vertex	face	halfe	edges
edge	vend		next	opp.	edge	vend		next	opp.
h_0	v_0	f_0	h_4	h ₉	h_5	v_3	f_0	h_0	-1
h_1	v_1	f_1	h_2	-1	h_6	v_0	f_2	h9	h_8
h_2	v_0	f_1	h_8	h_4	h_7	v_2	f_0	h_5	-1
h_3	v_4	f_2	h_6	-1	h_8	v_4	f_1	h_1	h_6
h_4	v_1	f_0	h_7	h_2	h_9	v_3	f_2	h_3	h_0

vertex	x,y,z	halfedge	
v_0		h_4	
v_1		h_7	
v_2		h_5	
v_3		h_3	
v_4		h_1	

face	halfedge
f_0	h_0
f_1	h_1
f_2	h_3

b) Gegeben sei ein geschlossenes zusammenhängendes Mesh als Halbkanten Datenstruktur. Ergänzen Sie die vorgegebene Pseudocode-Struktur, sodass ein rekursiver Algorithmus entsteht, welcher mit einer gegebenen Starthalbkante das Mesh durchgeht und alle Faces des Meshes in einer Ausgabeliste speichert. Es sollen keine Faces doppelt in der Liste sein, aber es sollen alle vorhandenen Faces enthalten halten.

Bemerkung: Sie benötigen nur die Einträge der half edge table und nicht die Einträge der face table und vertex table (Siehe Foliensatz 8 Folie 33).

3 Punkte

Lösungsvorschlag:

Algorithm 1 (Halfedge *h*, List *faceList*)

- 1: add *h.face* to *faceList*
- 2: startedge = h
- 3: repeat
- 4: **if** h.opp.face ∉ faceList **then**
- 5: getAllFaces(*h.opp*, *faceList*)
- 6: end if
- 7: h = h.next
- 8: **until** h == startedge

Aufgabe 3 Netzkompression (7 Punkte)

a) In der Vorlesung wurde die Valenz-basierte Codierung von Touma-Gotsman vorgestellt. Beachten Sie, dass alle Knoten eines Randes mit einem Dummyknoten verbunden sind und die Valenz dieser Knoten entsprechend eins höher ist als aus der Topologie hervorgeht.

Bestimmen Sie zum gegebenen Graphen die Valenzcodierung. Das Startdreieck, der anfängliche Zyklus und die aktive Liste \mathcal{A} sind mit a, b, c gegeben. Der aktuelle Fokus ist a. Zur eigenen Übersicht können Zwischenstadien mit dem aktuell erschlossenen Gebiet, dem Zyklus und der Codierung angegeben werden.

2 Punkte

Lösungsvorschlag:

Fokus	neuer Code	neue aktive Liste	Bemerkung
	Add(5), Add(5), Add(4)	a, b, c	Initialisierung
а	Add(4), Add(4), Add(5)	b, c, d, e, f	Fall a) (fill), neuer Fokus: <i>b</i>
b	Add(3), Add(Dummy,6)	<i>c, d, e, f, g,</i> Dummy	Alle Knoten sind voll

Der komplette Code des Graphen lautet damit

Add(5), Add(5), Add(4), Add(4), Add(4), Add(5), Add(3), Add(Dummy,6)

b) Bestimmen Sie die Topologie des Dreiecksnetzes zur gegebenen Valenzcodierung:

Add(3), Add(5), Add(5), Add(4), Add(Dummy,4), Add(3)

2 Punkte

c) Bestimmen Sie die Edgebreaker-Codierung zum gegebenen Dreiecksnetz mit Randknoten 1 bis 13. Zu Beginn ist das Gate die Halbkante von Knoten 13 zu Knoten 1. Neue Knoten sollen der Reihe nach aufsteigend ab 14 nummeriert werden.

GDV2 Übungsblatt 4 (20 Punkte)

3 Punkte

Lösungsvorschlag:

Die Codierung lautet:

CRCCRRCSLERRCRSLCRRRELE