

Yıldız Teknik Üniversitesi Elektrik-Elektronik Fakültesi Bilgisayar Mühendisliği Bölümü

BLM1022 Sayısal Analiz

Gr: 1

Prof. Dr. BANU DİRİ Dönem Projesi

İsim:EFE GİRGİN

No:19011095

E-posta: efegirgin05@outlook.com_

İçindekiler

Ön Bilgi	4
Ana Menü	5
Desteklenen Fonksiyonlar	6
Polinom	6
Üstel	6
Logaritmik	
Trigonometrik	6
Ters Trigonometrik	7
Örnekler	7
Matris Girişi	10
Örnek	
Bisection Yöntemi	11
Parametreler	11
Örnek	11
Regula-Falsi Yöntemi	12
Parametreler	12
Örnek	
Newton-Raphson Yöntemi	13
Parametreler	13
Örnek	13
NxN'lik Bir Matrisin Tersi	14
Parametreler	14
Örnek	14
Gauss Eliminasyon Yöntemi	15
Parametreler	15
Örnek	15
Gauss-Seidel Yöntemi	16
Parametreler	
Örnek	16
Sayısal Türev	
Parametreler	17
Örnek	
Simpson Yöntemi	
Parametreler	
Örnek	

Trapez Yöntemi	19
Parametreler	19
Örnek	19
Değişken Dönüşümsüz Gregory-Newton Enterpolasyonu	20
Parametreler	20
Örnekler	20

Ön Bilgi

Program, 10 tane belirli işlemi yerine getirebilmek için tasarlanmıştır. Bu işlemler sırasıyla şöyledir:

- 1. Bisection yöntemi
- 2. Regula-Falsi yöntemi
- 3. Newton-Rapshon yöntemi
- 4. NxN'lik bir matrisin tersi
- 5. Gauss eliminasyon yöntemi
- 6. Gauss-Seidel yöntemi
- 7. Sayısal Türev
- 8. Simpson yöntemi
- 9. Trapez yöntemi
- 10. Değişken dönüşümsüz Gregory-Newton enterpolasyonu

1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	0

Ana Menü

Çalıştırılmak istenilen işlem program çalıştırıldıktan sonra numarası girilip gereken parametrelerin verilmesiyle çalışır. Ana menüde '0' girdisi verilene kadar program çalışmaya devam eder.

Desteklenen Fonksiyonlar

Kök bulma yöntemleri (1, 2, 3), sayısal türev ve integral yöntemleri (7, 8, 9) ve enterpolasyon yöntemleri (10) için ilk istenilen parametre fonksiyondur. Bu fonksiyon sırasıyla polinom, üstel, logaritmik, trigonometrik ve ters trigonometrik fonksiyon tiplerini barındıracak şekilde ayarlanabilir. Her fonksiyon tipi için, o tipten kaç tane ifade bulunduğu girildikten sonra, girilen sayı kadar o tipin parametreleri girilir. Bu tiplerin parametreleri şöyledir:

Polinom

$$x_{coef} \times x^{x_{exp}}$$

 x_{coef} : x'in katsayısı

 x_{exp} : x'in üstü

Üstel

$$f_{op_f} \times (base^{(x_{coef} \times x^{x_{exp}})})$$

 x_{coef} : x'in katsayısı

 x_{exp} : x'in üstü

 fn_{coef} : Fonksiyonun katsayısı

 fn_{exp} : Fonksiyonun üstü

base: Üstel ifadenin tabanı

Logaritmik

$$fn_{coef} \times (\log_{base}(x_{coef} \times x))$$

 x_{coef} : x'in katsayısı

 x_{exp} : x'in üstü

 fn_{coef} : Fonksiyonun katsayısı

fnexp: Fonksiyonun üstü

base: Logaritmanın tabanı

Trigonometrik

$$fn_{coef} \times trig_{fn}(x_{coef} \times x)$$

$$sin, 0$$

$$trig_{fn}: \begin{cases} cos, 1 \\ tan, 2 \\ cot, 3 \end{cases}$$

 x_{coef} : x'in katsayısı

 x_{exn} : x'in üstü

 fn_{coef} : Fonksiyonun katsayısı

fn_{exp}: Fonksiyonun üstü

Bisection Yöntemi

Parametreler

Fonksiyon

start: Başlangıç değeri

end: Bitiş değeri

epsilon: Hata miktarı

Stopping criterion: $Durma\ koşulu = \{end-start \ \frac{f(x) \le epsilon,\ 1}{2^n} \le epsilon,\ 2\}$

Max iterations: Maksimum iterasyon sayısı

Örnek

Fonksiyon: $x^3 - 7x^2 + 14x - 6$

start: 0 **end:** 1

epsilon: 0.01

Stopping criterion: 2 ($Durma\ koşulu = \frac{end-start}{2^n} \le epsilon$)

```
C:\Users\MONSTER\Desktop\1.exe
```

```
ARALIK YARILAMA YONTEMI
DENKLEM¦N DERECES¦N¦ G¦R¦N¦Z: 3
x^0 degiskeninin katsayisi: -6
x^1 degiskeninin katsayisi: 14
x^2 degiskeninin katsayisi: -7
x^3 degiskeninin katsayisi: 1
Trigonometrik degisken var mi?
1) Var. 2) Yok.
lnx degiskeni var mi?
1) Var. 2) Yok.
 ^x degiskeni var mi?

    Var. 2) Yok.

(1.00x^3)+(-7.00x^2)+(14.00x^1)+(-6.00x^0)
Alt deger: 0
Ust deger: 1
Epsilon degeri: 0.01
alt
                  f(alt)
                                                       f(ust)
                                                                         orta
                                                                                            f(orta)
 0.000000
                  -6.000000
                                    1.000000
                                                       2.000000
                                                                         0.500000
                                                                                            -0.625000
                  -0.625000
                                    1.000000
                                                       2.000000
                                                                         0.750000
                                                                                            0.984375
0.500000
                  -0.625000
                                    0.750000
                                                       0.984375
                                                                         0.625000
                                                                                            0.259766
0.500000
                  -0.625000
                                    0.625000
                                                       0.259766
                                                                         0.562500
                                                                                            -0.161865
0.562500
                  -0.161865
                                    0.625000
                                                       0.259766
                                                                         0.593750
                                                                                            0.054047
                                                                                            -0.052624
0.562500
                  -0.161865
                                    0.593750
                                                       0.054047
                                                                         0.578125
3.578125
                  -0.052624
                                    0.593750
                                                       0.054047
                                                                         0.585938
                                                                                            0.001031 < e
  = 0.585938 degerinde saglanir.Aral²k Yar²mlama Y÷ntemi sonucu: 0.000000
```

Regula-Falsi Yöntemi

Parametreler

Fonksiyon

start: Başlangıç değeri

end: Bitiş değeri

epsilon: Hata miktarı

Stopping criterion: $Durma\ koşulu = \begin{cases} f(x) \le epsilon, \ 1 \\ \frac{end-start}{2^n} \le epsilon, \ 2 \end{cases}$

Max iterations: Maksimum iterasyon sayısı

Örnek

Fonksiyon: $x^3 - 2x^2 - 5$

start: 2 end: 3

epsilon: 0.01

Stopping criterion: 1 (*Durma koşulu* = $f(x) \le epsilon$)

```
REGULA FALSI YONTEMI
DENKLEM¦N DERECES¦N¦ G¦R¦N¦Z: 3
x^0 degiskeninin katsayisi: -5
c^1 degiskeninin katsayisi: 0
x^2 degiskeninin katsayisi: -2
x^3 degiskeninin katsayisi: 1
Trigonometrik degisken var mi?

    Var. 2) Yok.

lnx degiskeni var mi?
l) Var.
        Yok.
e^x degiskeni var mi?
1) Var. 2) Yok.
Denkleminiz:
(1.00x^3)+(-2.00x^2)+(-5.00x^0)
Alt deger: 2
Ust deger: 3
Epsilon degeri: 0.01
alt
                f(alt)
                                                 f(ust)
                                                                  orta
                                                                                   f(orta)
                                3.000000
2.000000
                -5.000000
                                                 4.000000
                                                                  2.555556
                                                                                  -1.371742
2.555556
                -1.371742
                                 3.000000
                                                 4.000000
                                                                  2.669050
                                                                                   -0.233802
2.669050
                -0.233802
                                 3.000000
                                                 4.000000
                                                                  2.687326
                                                                                   -0.036323
2.687326
                -0.036323
                                3.000000
                                                 4.000000
                                                                  2.690140
                                                                                   -0.005560 < e
 = 2.690140 degerinde saglanir.Regula Falsi Y÷ntemi sonucu: 0.000000
```

Newton-Raphson Yöntemi

Parametreler

Fonksiyon

 x_0 : x'in başlangıç değeri

epsilon: Hata miktarı

Max iterations: Maksimum iterasyon sayısı

Örnek

Fonksiyon: $x^3 - 7x^2 + 14x - 6$

 $x_0: 0$

epsilon: 0.000001

Max iterations: 100

C:\Users\MONSTER\Desktop\1.exe

```
NEWTON - RAPHSON YONTEMI
DENKLEM¦N DERECES¦N¦ G¦R¦N¦Z: 3
x^0 degiskeninin katsayisi: -6
x^1 degiskeninin katsayisi: 14
x^2 degiskeninin katsayisi: -7
x^3 degiskeninin katsayisi: 1
Trigonometrik degisken var mi?
1) Var. 2) Yok.
lnx degiskeni var mi?
1) Var. 2) Yok.
e^x degiskeni var mi?
1) Var. 2) Yok.
Denkleminiz:
(1.00x^3)+(-7.00x^2)+(14.00x^1)+(-6.00x^0)
(3.00x^2)+(-14.00x^1)+(14.00)
x'in baslangic degeri: 0
Epsilon degeri: 0.000001
x(k)
                 x(k+1)
                                  |x(k)-x(k+1)|
0.000000
                 0.428571
                                  0.428571
0.428571
                 0.569724
                                  0.141152
                 0.585592
0.569724
                                  0.015868
0.585592
                 0.585786
                                  0.000194
                 0.585786
0.585786
                                  0.0000000 < e
 = 0.585786 degerinde saglanir.Newton Raphson Y÷ntemi sonucu: 0.000000
```

GAUSS-ELİMİNASYON YÖNTEMİ

Parametreler

Fonksiyon

Matris değerleri:matrisimizin alıcağı değerler

Max iterations: Maksimum iterasyon sayısı

Örnek

Matrisimiz:

$$\begin{bmatrix} 3.6 & 2.4 & -1.8 & | & 6.3 \\ 4.2 & -5.8 & 2.1 & | & 7.5 \\ 0.8 & 3.5 & 6.5 & | & 3.7 \end{bmatrix}$$

```
C:\Users\MONSTER\Desktop\1.exe
```

```
GAUSS ELIMINASYONU
Denklem ve degisken sayisi: 3
Denklem katsayilarini giriniz.
1. denklemin, 1. degiskeninin katsayisi: 3.6
1. denklemin, 2. degiskeninin katsayisi: 2.4
1. denklemin, 3. degiskeninin katsayisi: -1.8

    denklemin esit oldugu deger: 6.3

2. denklemin, 1. degiskeninin katsayisi: 4.2
2. denklemin, 2. degiskeninin katsayisi: -5.8
2. denklemin, 3. degiskeninin katsayisi: 2.1
2. denklemin esit oldugu deger: 7.5
3. denklemin, 1. degiskeninin katsayisi: 0.8
3. denklemin, 2. degiskeninin katsayisi: 3.5
3. denklemin, 3. degiskeninin katsayisi: 6.5
3. denklemin esit oldugu deger: 3.7
Denklem Matrisiniz:
                                                       = 6.30
3.60(x1) 2.40(x2)
                                     -1.80(x3)
4.20(x1)
                  -5.80(x2)
                                    2.10(x3)
                                                        = 7.50
0.80(x1)
                  3.50(x2)
                                      6.50(x3)
                                                        = 3.70
Ust Ucgen Matrisiniz:
                                      -1.80(x3)
3.60(x1) 2.40(x2)
                                                         = 6.30
                                                         = 0.15
                  -8.60(x2)
0.00(x1)
                                      4.20(x3)
                 0.00(x2)
                                                         = 2.35
0.00(x1)
                                      8.35(x3)
Degiskenler:
x1 = 1.810759
x2 = 0.120125
x3 = 0.281685Gauss Yoketme Y÷ntemi sonucu: 3.000000
```

GAUSS-SEIDEL YÖNTEMI

Parametreler

Fonksiyon

Matris değerleri:matrisimizin alıcağı değerler

Max iterations: Maksimum iterasyon sayısı

Örnek

Fonksiyon:

Matris:

$$3x + y - 2z = 9$$

-x + $4y - 3z = -8$
x - y + $4z = 1$

```
GAUSS-SEIDAL YONTEMI
Denklem ve degisken sayisi: 3
Denklem katsavilarini giriniz.
1. denklemin, 1. degiskeninin katsayisi: 3
1. denklemin, 2. degiskeninin katsayisi: 1
1. denklemin, 3. degiskeninin katsayisi: -2
1. denklemin esit oldugu deger: 9
2. denklemin, 1. degiskeninin katsayisi: -1
2. denklemin, 2. degiskeninin katsayisi: 4
2. denklemin, 3. degiskeninin katsayisi: -3
2. denklemin esit oldugu deger: -8
3. denklemin, 1. degiskeninin katsayisi: 1
3. denklemin, 2. degiskeninin katsayisi: -1
3. denklemin, 3. degiskeninin katsayisi: 4
3. denklemin esit oldugu deger: 1
Denklem Matrisiniz:
                                             -2.00(x3)
-3.00(x3)
3.00(x1)
-1.00(x1)
                1.00(x2)
4.00(x2)
                                                                         = 9.00
                                                                        = -8.00
= 1.00
                       -1.00(x2)
L.00(x1)
                                                4.00(x3)
(!) Yakinsama kontrolu saglanmistir.
Degiskenlerin baslangic degerlerini giriniz.
x1: 0
x2: 0
Epsilon degerini giriniz: 0.001
0.000000
                                                0.000000
                                                                                                  0.000000
3.000000
                                                -1.250000
-1.890625
                       3.000000
                                                                         1.250000
                                                                                                   -0.812500
                                                                                                                           0.812500
2.875000
                       0.125000
                                                                         0.640625
                                                                                                  -0.941406
                                                                                                                           0.128906
                      0.127604
0.010471
                                                -1.955404
                                                                                                  -0.989502
3.002604
                                                                         0.064779
                                                                                                                           0.048096
                                                                         0.038690
                                                                                                  -0.996557
                                                                                                                           0.007055
2.992133
3.000327
                       0.008194
                                                                         0.003242
                                                                                                  -0.999416
                                                                                                                           0.002859
.999501
                       0.000825
                                                -1.999686
                                                                         0.002351
                                                                                                   -0.999797
                                                                                                                           0.000381
 .000031
                       0.000529 < e
                                                -1.999840
                                                                         0.000154 < e
                                                                                                   -0.999968
                                                                                                                           0.000171 < e
```

TRAPEZ YÖNTEMİ

Parametreler

Fonksiyon

Alt değer: Başlangıç

Üst değer: Bitiş

Aralık Sayısı: Kaç aralığa bölündüğü

Max iterations: Maksimum iterasyon sayısı

Örnek

Fonksiyon:

$$I = \int_{-2}^{-1} (x^3 + 2x^2 - x - 2) dx$$

Alt değer: -2 Üst değer: -1 Aralık Sayısı:4

```
TRAPEZ YONTEMI
DENKLEM'N DERECES'N' G'R'N'Z: 3
x^0 degiskeninin katsayisi: -2
x^1 degiskeninin katsayisi: -1
x^2 degiskeninin katsayisi: 2
x^3 degiskeninin katsayisi: 1
Trigonometrik degisken var mi?
1) Var. 2) Yok.
lnx degiskeni var mi?

    Var. 2) Yok.

e^x degiskeni var mi?

    Var. 2) Yok.

Denkleminiz:
(1.00x^3)+(2.00x^2)+(-1.00x^1)+(-2.00x^0)
Integralin hesaplanacagi aralik icin...
Alt deger: -1
Ust deger: -2
Aralik sayisi: 4
Integral degeri: -0.390625Trapez Y÷ntemi sonucu: 0.000000
```

SIMPSON YÖNTEMİ

Parametreler

Fonksiyon

Alt değer: Başlangıç

Üst değer: Bitiş Aralık sayısı:4

Max iterations: Maksimum iterasyon sayısı

Örnek

Fonksiyon: Fonksiyon:

$$I = \int_{-2}^{-1} (x^3 + 2x^2 - x - 2) dx$$

Alt değer: -2

Üst değer: -1

Aralık Sayısı:4

```
SIMPSON YONTEMI
DENKLEM¦N DERECES¦N¦ G¦R¦N¦Z: 3
x^0 degiskeninin katsayisi: -2
x^1 degiskeninin katsayisi: -1
x^2 degiskeninin katsayisi: 2
x^3 degiskeninin katsayisi: 1
Trigonometrik degisken var mi?

    Var. 2) Yok.

lnx degiskeni var mi?

    Var. 2) Yok.

e^x degiskeni var mi?

    Var. 2) Yok.

Denkleminiz:
(1.00x^3)+(2.00x^2)+(-1.00x^1)+(-2.00x^0)
Integralin hesaplanacagi aralik icin...
Alt deger: -1
Ust deger: -2
Aralik sayisi: 4
Integral degeri: -0.416667Simpson Y÷ntemi sonucu: 0.000000
```

MATRISIN TERSI

Parametreler

Fonksiyon

Matris:girilen matris değerleri

Max iterations: Maksimum iterasyon sayısı

Örnek

Fonksiyon:

Matris:

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 1 & 2 & 2 & 3 \\ 4 & 5 & 1 & 2 \end{bmatrix}$$

```
C:\Users\MONSTER\Desktop\SAYISAL ANAL\Z\PROJE\say2sal analiz projesi\4.matrisin_tersi.exe
```

```
lutfen kare matrisin boyutunu giriniz
A[0][0]=1
A[0][1]=2
A[0][2]=3
A[0][3]=4
A[1][0]=2
A[1][1]=3
A[1][2]=4
A[1][3]=5
A[2][0]=1
A[2][1]=1
A[2][2]=2
A[2][3]=3
A[3][0]=4
A[3][1]=5
A[3][2]=1
A[3][3]=2
kullanicidan aldigimiz matris
1.000000
           2.000000
                       3.000000
                                  4.000000
2.000000
           3.000000
                       4.000000
                                   5.000000
1.000000
           1.000000
                       2.000000
                                   3.000000
4.000000
                                   2.000000
           5.000000
                       1.000000
matrisin tersi:
-2.000000
            1.000000
                        1.000000
                                    0.000000
1.400000
           -0.600000
                        -1.000000
                                     0.200000
-1.800000
            2.200000
                        -1.000000
                                     -0.400000
1.400000
           -1.600000
                        1.000000
                                    0.200000
```