

ASSIGNMENT PROJECT

DESIGN SCHEMATICS, SIZING TRANSISTOR, CALCULATE TIME & POWER

VÕ THÀNH TIẾN -22200162

I. YÊU CẦU THIẾT KẾ ĐẶT RA

Nội dung thiết kế gồm:

- Mô phỏng schematics, xác định
- Tính toán kích thước các transistor
- Xác định các đặc tính về thời gian và công suất của thiết kế.
- Thiết kế dùng công nghệ 130nm. File mô hình: 130nm_bulk.lib

II. THIẾT KẾ

A. SƠ ĐỒ MẠCH

A	В	CIN	S	co
0	0	0	1	0
0	0	1	0	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	1
1	1	1	Ω	1

S:

CIN AB	0	1
00	1	0
01	0	1
11	1	0
10	0	1

$$S = \bar{A}\bar{B}\overline{CIN} + \bar{A}BCIN + AB\overline{CIN} + A\bar{B}CIN$$
$$= (\bar{A}\bar{B} + AB) \overline{CIN} + (\bar{A}B + A\bar{B})CIN$$

CO:

$$C0 = \overline{A}B\overline{CIN} + AB\overline{CIN} + ABCIN + A\overline{B}\overline{CIN}$$

$$= AB(\overline{CIN} + CIN) + \overline{CIN}(\overline{A}B + A\overline{B})$$

$$= AB + \overline{CIN}(A \oplus B)$$

$$= AB + A\overline{CIN} + B\overline{CIN}$$

A. SƠ ĐỒ MẠCH

B. TÍNH TOÁN KÍCH THƯỚC

· Phân tích CO:

$$\begin{split} & \text{V\'oi PDN:} \\ & \left(\frac{V}{L}\right)_{eq,n} = 1 \times W_{n,inv} = 1 \\ & \left(\frac{W}{L}\right)_{eq,n} = \left(\frac{W}{L}\right)_{AB} = \frac{1}{2}\left(\frac{W}{L}\right)_{A} = \frac{1}{2}\left(\frac{W}{L}\right)_{B} \\ & \left(\frac{W}{L}\right)_{eq,n} = \left(\frac{W}{L}\right)_{ABCIN} = \frac{1}{2}\left(\frac{W}{L}\right)_{A} = \frac{1}{2}\left(\frac{W}{L}\right)_{B} = \frac{1}{2}\left(\frac{W}{L}\right)_{CIN} \\ & = > \left(\frac{W}{L}\right)_{ail,n} = \frac{2}{1} \\ & \text{C/m:} \left(\frac{W}{L}\right)_{eq,n} = \left(\frac{W}{L}\right)_{AB} = \left(\frac{W}{L}\right)_{ABCIN} = \frac{1}{\left(\frac{L}{W}\right)_{A} + \left(\frac{L}{W}\right)_{B}} = \frac{\frac{1}{2L}}{\frac{2L}{W}} \text{V\'oi } \left(\frac{W}{L}\right)_{A} = \left(\frac{W}{L}\right)_{B} \\ & \text{M\'a:} \left(\frac{W}{L}\right)_{eq,n} = W_{n,inv} = 1 \Rightarrow \frac{1}{\frac{2L}{W}} = 1 \Rightarrow \left(\frac{W}{L}\right)_{ail,n} = 2 \\ & \text{V\'oi PUN:} \\ & \left(\frac{W}{L}\right)_{eq,AB} = \left(\frac{W}{L}\right)_{eq,ABCIN} = 2 \times W_{p,inv} = 2 \times 3 = 6 \\ & \left(\frac{W}{L}\right)_{eq,ABCIN} = \left(\frac{W}{L}\right)_{B} = \frac{6}{1} \\ & \left(\frac{W}{L}\right)_{eq,ABCIN} = \left(\frac{W}{L}\right)_{CIN} = \left(\frac{W}{L}\right)_{AB} = \frac{6}{1} \end{split}$$

 $\left(\frac{W}{L}\right)_{AB} = \frac{1}{2} \left(\frac{W}{L}\right)_{A} = \frac{1}{2} \left(\frac{W}{L}\right)_{B} = > \left(\frac{W}{L}\right)_{A} = \left(\frac{W}{L}\right)_{B} = \frac{12}{1}$

B. TÍNH TOÁN KÍCH THƯỚC

· Phân tích

TRANSISTOR

$$\begin{split} \left(\frac{W}{L}\right)_{gq,\bar{A}\bar{B},AB,A\bar{C}\bar{I}\bar{N}} &= \left(\frac{W}{L}\right)_{gq,\bar{C}\bar{I}\bar{N}} = \left(\frac{W}{L}\right)_{cIN} = 2 \times W_{p,inv} = 2 \times 3 = 6 \\ \left(\frac{W}{L}\right)_{gq,\bar{C}\bar{I}\bar{N}} &= \left(\frac{W}{L}\right)_{gq,\bar{A}\bar{B},AB} = 2 \left(\frac{W}{L}\right)_{\bar{A}\bar{B}} = 2 \left(\frac{W}{L}\right)_{AB} = \left(\frac{W}{L}\right)_{\bar{A}} = \left(\frac{W}{L}\right)_{\bar{B}} = \left(\frac{W}{L}\right)_{A} = \left(\frac{W}{L}\right)_{B} = \frac{6}{1} \\ \left(\frac{W}{L}\right)_{gq,\bar{A}\bar{B}\bar{A}BC\bar{I}\bar{N}} &= 2 \left(\frac{W}{L}\right)_{gq,\bar{A}\bar{B}} = 2 \left(\frac{W}{L}\right)_{gq\bar{A}\bar{B}} = \left(\frac{W}{L}\right)_{CIN} = \left(\frac{W}{L}\right)_{\bar{A}} = \left(\frac{W}{L}\right)_{B} = \left(\frac{W}{L}\right)_{A} = \left(\frac{W}{L}\right)_{\bar{B}} \\ &= \frac{12}{1} \end{split}$$

Với PDN:

$$\begin{split} \left(\frac{W}{L}\right)_{eq,n} &= 1 \times W_{n,inv} = 1 \\ \left(\frac{W}{L}\right)_{eq,n} &= \frac{1}{\frac{L}{W} + \frac{L}{W}} = \frac{1}{\frac{2L}{W}} = > 1 = \frac{1}{\frac{2L}{W}} = > \left(\frac{W}{L}\right)_{\overline{CIN}} = \frac{2}{1} \\ \frac{2}{1} &= > \left(\frac{W}{L}\right)_{eq,n} = \frac{1}{\frac{L}{W} + \frac{L}{W}} = \frac{1}{\frac{2L}{W}} = > \left(\frac{W}{L}\right)_{\overline{A},\overline{B},A,B} = \frac{4}{1} \end{split}$$

Tương tự đối với phía đối diện => $(\frac{W}{L})_{\overline{A},B,A,\overline{B}} = \frac{4}{1}$

C. KẾT QUẢ MÔ

PHẢNG

D. VỀ THỜI GIAN VÀ CÔNG SUẤT

A → S↑	200.668 ps	116.926 ps		
A → S↓	263.533 ps	159.102 ps		
B→S↑	203.025 ps	119.541 ps		
B→S↓	267.504 ps	120.032 ps		
CIN → S↑	187.049 ps	101.973 ps		
CIN → S↓	229.005 ps	122.797 ps		
A → CO↑	203.298 ps	101.873 ps		
A → CO↓	214.746 ps	108.538 ps		
B→CO↑	189.664 ps	105.821 ps		
B → CO↓	212.261 ps	105.008 ps		
CIN → CO↑	206.726 ps	121.850 ps		
CIN → CO [↑]	240.068 ps	134.901 ps		

D. VỀ THỜI GIAN VÀ CÔNG

· Hình Cload 20 trans đơn vị:

Tính công suất của mạch trong trường hợp $A \rightarrow S\uparrow$, $A \rightarrow S\downarrow$, $B \rightarrow S\uparrow$, $A \rightarrow CO\uparrow$, $A \rightarrow CO\downarrow$:

P avg: AVG(-V(VDD)*I(VDD))=4.7158103129e-05 FROM 1e-08 TO 2e-08

Tính công suất của mạch trong trường hợp $B \rightarrow S\uparrow$, $B \rightarrow S\downarrow$, $B \rightarrow CO\uparrow$, $B \rightarrow CO\downarrow$:

P_avg: AVG(-V(VDD)*I(VDD))=3.13865227443e-05 FROM 1e-08 TO 2e-08

Tính công suất của mạch trong trường hợp CIN → S↑, CIN → S↓, CIN → CO↑, CIN → CO↓

P_avg: AVG(-V(VDD)*I(VDD))=8.92321429101e-05 FROM 1e-08 TO 2e-08

Hình Cload bằng 50 transistor đơn vị:

Tính công suất của mạch trong trường hợp $A \rightarrow S \uparrow$, $A \rightarrow S \downarrow$, $B \rightarrow S \uparrow$, $A \rightarrow CO \uparrow$, $A \rightarrow CO \downarrow$:

P avg: AVG(-V(VDD)*I(VDD))=9.73913240368e-05 FROM 1e-08 TO 2e-08

Tính công suất của mạch trong trường hợp $B \rightarrow S \uparrow$, $B \rightarrow S \downarrow$, $B \rightarrow CO \uparrow$, $B \rightarrow CO \downarrow$:

P_avg: AVG(-V(VDD)*I(VDD))=6.54266140988e-05 FROM 1e-08 TO 2e-08

Tính công suất của mạch trong trường hợp CIN → S↑, CIN → S↓, CIN → CO↑, CIN → CO↓

P_avg: AVG(-V(VDD)*I(VDD))=0.000180283434227 FROM 1e-08 TO 2e-08

E. ĐIỂM TỰ ĐÁNH GIÁ

Nội dung	Hình thức	Hình thức	Tính toán	Sơ đồ	Kết quả mô	Các thông
đánh giá	báo cáo	báo cáo	kích thước	mạch các	phỏng	số timing ,
	file Word	file PPT	các	khối và	Schematics	power
			transistor	top level		
Tối đa	10%	10%	10%	20%	20%	30%
Nhóm tự	8	8	10	10	10	8
đánh giá						

