144 Γ*nasa* 10

Доказательство. Случай $h{=}0$ очевиден. Для $h{>}0$, соответственно, $h{<}0$, утверждение очевидным образом следует из теоремы 177, соответственно 178, с заменой n на $n{+}1$, так как, по теореме 170,

$$(x^v)^{(n+1)} = 0$$
 при $0 \le v \le n$

и потому

$$f^{(n+1)}(x) = 0$$

Теорема 180 (биномальная теорема). Для всех целых n>=0

$$(a+b)^{n} = \sum_{\nu=0}^{n} \left(\frac{n}{\nu}\right) a^{n-\nu} b^{\nu}$$

Доказательства. 1) Теорема 179 с

$$f(x) = x^n$$
, $\xi = a$, $h = b$

в силу теоремы 170, дает:

$$(a+b)^n = \sum_{\nu=0}^n \frac{1}{\nu!} (\frac{n}{\nu}) a^{n-\nu} b^{\nu}$$

2) (непосредственно:) для n=0 — ясно; из n следует n+1, так как тогда, в силу теоремы 172,

$$(a+b)^{n+1} = (a+b)^n (a+b) = \sum_{\nu=0}^n \left(\frac{n}{\nu}\right) a^{n-\nu} b^{\nu} (a+b) =$$

$$= \sum_{\nu=0}^n \left(\frac{n}{\nu}\right) a^{n-\nu} b^{\nu} + \sum_{\nu=0}^n \left(\frac{n}{\nu}\right) a^{n-\nu} b^{\nu+1} =$$

$$= \sum_{\nu=0}^n \left(\frac{n}{\nu}\right) a^{n-\nu} b^{\nu} + \sum_{\nu=1}^{n+1} \left(\frac{n}{\nu-1}\right) a^{n+1-\nu} b^{\nu} =$$

$$= a^{n+1} \sum_{\nu=0}^n \left(\left(\frac{n}{\nu}\right) + \left(\frac{n}{\nu-1}\right)\right) a^{n+1-\nu} + b^{n+1} =$$

$$= \sum_{\nu=0}^{n+1} (\frac{n+1}{\nu}) a^{n+1-\nu} b^{\nu}$$

3) В силу теоремы 173 с

$$f(x) = e^{ax}, g(x) = e^{bx}$$

и теоремы 174, имеем:

$$(a+b)^n e^{(a+b)x} = (e^{(a+b)x})^{(n)} = (e^{ax}e^{bx})^{(n)} =$$

$$= \sum_{\nu=0}^n (\frac{n}{\nu})(e^{ax})^{(n-\nu)}(e^{bx})^{(\nu)} = \sum_{\nu=0}^n (\frac{n}{\nu})a^{n-\nu}e^{ax}b^{\nu}e^{bx} =$$

$$= \sum_{\nu=0}^n (\frac{n}{\nu})a^{n-\nu}b^{\nu} \cdot e^{(a+b)x}$$

Теорема 181. Для каждого целого $m \geqslant 0$ и x > 0 существует ν такое, что

$$1 < \nu < 1 + x, \ \sqrt{1+x} = \sum_{\nu=0}^{m} (\frac{1}{2})x^{\nu} + (\frac{1}{2})\frac{x^{m+1}}{\nu^{m+\frac{1}{2}}}$$

Доказательство. Для

$$f(x) = x^{\frac{1}{2}} (x > 0)$$

при целом $\nu \geqslant 0$ имеем, по теореме 171,

$$f^{(\nu)}(x) = (\frac{\frac{1}{2}}{\nu})\nu!x^{\frac{1}{2}-\nu}.$$

Следовательно, теорема 177 с $\xi = 1, h = x, n = m+1$ обеспечивает существование и такого, что

$$1 < \nu < 1 + x,$$

$$\sqrt{1+x} = \sum_{\nu=0}^{m} \frac{1}{\nu!} \left(\frac{\frac{1}{2}\nu}{\nu}! x^{\nu} + \frac{m^{m+1}}{(m+1)!} \left(\frac{\frac{1}{2}}{m+1} \right) (m+1)! \nu^{\frac{1}{2}-m-1}.$$

103ak. 848