Pulse Oximetry

Pulse oximetry

Combination of two technologies:

1. Photospectrometry, whereby the saturation of haemoglobin with oxygen is estimated

Optical plethysmography, which focuses the measurement on pulsatile arterial blood

things we need to know the preparing the AL-

- 1. Absorption spectrum for different Hbs
- 2. Beer-Lambert's law about absorption of light
- 3. A/C and D/C components
- 4. Absorption ratio and the saturation algorithm
- 5. Limitations and errors

ne for FRCA com

Pulse Oximeter

 Estimates SpO₂ from the differential absorption of red (660nm) and infrared (940nm) light in tissue

 Two wavelengths allow differentiation of reduced hemoglobin and oxyhemoglobin

 Reduced hemoglobin absorbs more light in the red band (660nm) than oxyhemoglobin ng for FRCA com

Pulse Oximeter

Oxyhemoglobin absorbs more light in the infrared band (940nm)

 Computes the ratio between these two signals and relates this ratio to the arterial oxygen saturation, using an empirical algorithm

Absorption Spectrum

INB FOR FRED COM

Absorption spectrum

Absorption Spectrum HbO₂

Preparing for FRCA Arbsorption Spectrum Deoxy Hb

Absorption Spectrum Oxy and Deoxy Hb*

Red Infra-red **Isobestic Point** Absorption HbO₂ **HHb** 600 700 800 900 1000 Wavelength (nm)

Beer Lambert's Law

I₂ > I₁, Absorption proportional to concentration; Beer's law

I₂ > I₁, absorption is proportional to the distance light travels; Lambert's law

Combining the two laws

$$I_0 \longrightarrow C \longrightarrow I$$

$$I_0 / I = e^{-EdC}$$

E: Extinction coefficient, a constant

e: natural log

In simple terms

Absorption of light passing through a medium increases with

- 1. Concentration: greater the number of molecules, greater the absorption
- 2. The distance through which the light travels: greater the distance, more the number of molecules it encounters on the way, greater the absorption

AC/DC Components

Pulsatile and Non Pulsatile components

Skin and Subcutaneous Tissues Muscle and Bones Blood Vessels FRCAM

ng for FRCA com

Pulse oximeters

Discriminates between arterial blood and other components by determining the change in transmitted light caused by the flow of arterial blood

 The two LEDs cycle ON and OFF between 2000 and 3000 times / sec, with only one ON at a time, and a third point in the cycle when both are OFF, so the photodetector can adjust for ambient light ne for FRCA com

Pulse oximeters

At the trough, the light is transmitted through a vascular bed that contains mainly capillary and venous blood as well as intervening tissue

At the peak, it shines through all this plus arterial blood

 The rapid sampling rate allows recognition of the peak and trough of each pulse wave

Preparing for FRCA COM

Pulse oximeters

 A photodiode collects the transmitted light and converts it into electrical signals

 The emitted signals are then amplified, processed, and displayed on the monitor

ne for FRCA COM

Plethysmography

During each arterial pulsation the site expands in volume as arterial blood enters during systole, and then contracts as the blood leaves during diastole

 The path length of light through the finger- tip increases and decreases cyclically with each pulsation, and is "seen" by the photodetector as pulsatile changes in absorbance at the two wavelengths of light, 660 nm and 940 nm

Teparing Arca Light absorbance in tissue

1. Nonpulsatile component: nonpulsatile blood and tissue (i.e., bone, skin, muscle) pigmentation that produces a (nonpulsatile) direct current (DC)

2. Pulsatile component: pulsation of the artery, which produces an alternating current (AC)

Preparing for FRCA COM

Light absorption

- During diastole, only by deoxygenated (venous blood, DC components)
- During systole, is increased at both wavelengths, and these pulse-added absorbances are therefore caused by hemoglobin in the arterial blood (in addition to DC components).

Absorption ratio

• The ratio of pulse-added absorbances AC_{660} / AC_{940} nm is made independent of the intensity of the incident light by calculating the absorption ratio, R, where

The Value

The algorithm

Preparing for FRCA COM

Oxygen saturation

 Fractional oxygen saturation (% HbO₂) is the ratio of oxyhemoglobin to the sum of all hemoglobin species present, whether available for reversible binding to oxygen or not

 Functional oxygen saturation (SaO₂) is defined as the ratio of oxyhemoglobin to all functional hemoglobins

Functional vs fractional

*HHb = 0, HbO2 = 96%, COHb = 2%, metHb = 2%

• Functional saturation (SaO₂) = 96/(96 + 0) = 100%

Fractional saturation (HbO₂ %) = 96/(96 + 2 + 2)
 = 96%

Most manufacturers chose to use functional saturation in creating their algorithms

The algorithm

Preparing for FRCA COM

Limitations

Preparing for FRCA com Preparing Africa com Preparing Africa Com

Safe Limitations

- Mechanical/Motion artefacts
- Electromagnetic interference
- M.R.I

Physiological

- Pulse dependence
- Pulse Volume
- Pulse Rhythm

Dangerous Limitations

Technical

- Accuracy
- Calibration
- Flooding
- Penumbra

Physiological

- Abnormal Hb
- Other absorbents and pigmentations
- Dyes
- Delay
- Pulsatile veins

Artifacts in pulse oximetry

Toxic Alterations in Hemoglobin

Carla ava da ana ani alaina	Cliebt reduction of the accessors set of
Carboxyhemoglobin	Slight reduction of the assessment of
(COHb)	oxygen saturation (SaO ₂) by pulse
	oximetry (SpO ₂) (i.e., overestimates
	the fraction of hemoglobin available for
	O ₂ transport)
Cyanmethemoglobin	Not reported
Methemoglobin	At high levels of MetHb, SpO ₂
(MetHb)	approaches 85%, independent of
	actual SaO ₂
Sulfhemoglobin	Not reported (affects CO oximetry by
	producing a falsely high reading of
	MetHb)

Structural Hemoglobinopathies

Hemoglobin F	No significant effect
Hemoglobin H	No significant effect (i.e.,
	overestimates the fraction of
	hemoglobin available for O2
	transport)
Hemoglobin Köln	Artifactual reduction in SpO ₂ of 8%
	to 10%
Hemoglobin S	No significant effect

Hb substitutes

Diaspirin cross-linked	No significant effect
hemoglobin	
Bovine polymerized	No significant effect
hemoglobin (oxygen carrier-	
201)	

Dyes

.0.5	
Fluorescein	No significant effect
Indigo carmine	Transient decrease
Indocyanine	Transient decrease
green	
Isosulfan blue	No significant effect at low dose;
(patent blue V)	prolonged reduction in SpO ₂ at high
	dose
Methylene blue	Transient, marked decrease in SpO ₂
	lasting up to several minutes; possible
	secondary effects as a result of effects
	on hemodynamics

Hb Concentration

Anemia	If SaO ₂ is normal, no effect; during hypoxemia with Hb values less than 14.5 g/dL, progressive underestimation of actual SaO ₂
Polycythemia	No significant effect

Others

.0.4	
Acrylic fingernails	No significant effect
Ambient light	Bright light, particularly if flicker
interference	frequency is close to a harmonic of the light-emitting diode switching
	frequency, can falsely elevate the SpO ₂ reading
Arterial O ₂	Depends on manufacturer; during
saturation	hypoxemia, SpO ₂ tends to be
	artifactually
low Blood flow	Reduced amplitude of pulsations can
	hinder obtaining a reading or cause a
	falsely low reading
Henna	Red henna, no effect; black henna,
	may block light sufficiently to preclude
	measurement

Others

.0.8	
Jaundice	No effect; multiwavelength laboratory oximeters may register a falsely low
	SaO ₂ and falsely high COHb and
	MetHb
Motion	Movement, especially shivering, may
	depress the SpO ₂ reading
Nail polish	Slight decrease in SpO ₂ reading, with
	greatest effect using blue nail polish,
	or no change
Sensor contact	"Optical shunting" of light from source
	to detector directly or by reflection
	from skin results in falsely low SpO ₂
	reading

Others

	0,	
Q	Skin pigmentation	Small errors or no significant effect reported; deep pigmentation can result in reduced signal
	Tape	Transparent tape between sensor and skin has little effect; falsely low SpO ₂ has been reported when smeared adhesive is in the optical path
	Vasodilatation	Slight decrease
	Venous pulsation	Artifactual decrease in SpO ₂
	(e.g., tricuspid insufficiency)	

Preparing4frca.com

Dr S Singh
Consultant in Anaesthesia
Royal Liverpool University Hospitals