

### 特性

- 低功耗
- 低压降
- 较低的温度系数
- 高输入电压 (高达 30V)
- 静态电流 2.5μA
- 大电流输出: 100mA
- 输出电压精度: ±3%
- 封装类型: 3-pin TO92, 3-pin SOT89, 5-pin SOT23

### 概述

HT75xx-1 系列是一组 CMOS 技术实现的 三端低功耗高电压稳压器。输出电流为 100mA 且允许的输入电压可高达 30V。具有几个固定的输出电压,范围从 2.1V 到 12.0V。CMOS 技术可确保其具有低压降和 低静态电流的特性。

尽管主要为固定电压调节器而设计,但这 些 IC 可与外部元件结合来获得可变的电压 和电流。

## 应用领域

- 电池供电设备
- 通信设备
- 音频 / 视频设备

### 选型表

| 型号       | 输出电压  | 封装类型          | 正印                                      |
|----------|-------|---------------|-----------------------------------------|
| HT7521-1 | 2.1V  |               |                                         |
| HT7523-1 | 2.3V  |               |                                         |
| HT7525-1 | 2.5V  |               |                                         |
| HT7527-1 | 2.7V  |               |                                         |
| HT7530-1 | 3.0V  |               |                                         |
| HT7533-1 | 3.3V  |               |                                         |
| HT7536-1 | 3.6V  |               |                                         |
| HT7540-1 | 4.0V  | TO92<br>SOT89 | 75xx-1 (封装为 TO92)<br>75xx-1 (封装为 SOT89) |
| HT7544-1 | 4.4V  | SOT23-5       | 5xx1 (封装为 SOT23-5)                      |
| HT7550-1 | 5.0V  | ]             | SART (21,42,7 5 5 125 5)                |
| HT7560-1 | 6.0V  |               |                                         |
| HT7570-1 | 7.0V  |               |                                         |
| HT7580-1 | 8.0V  |               |                                         |
| HT7590-1 | 9.0V  |               |                                         |
| HT75A0-1 | 10.0V |               |                                         |
| HT75C0-1 | 12.0V |               |                                         |

注: "xx"代表输出电压。

Rev. 2.50 1 2019-03-21



## 方框图



### 引脚图



## 极限参数

| 电源供应电压0.3V~33V   | 工作环境温度40°C~85°C |
|------------------|-----------------|
| 储存温度范围50°C~125°C | 最大芯片接面温度150℃    |

注:这里只强调额定功率,超过极限参数所规定的范围将对芯片造成损害,无法预期芯片 在上述标示范 围外的工作状态,而且若长期在标示范围外的条件下工作,可能影响芯 片的可靠性。

## 热能信息

| 符号             | 参数                 | 封装类型    | 最大值  | 单位   |
|----------------|--------------------|---------|------|------|
|                | 热阻(与环境连接)(假设无环境气流、 | SOT23-5 | 500  | °C/W |
|                | 无散热片)              | SOT89   | 200  | °C/W |
|                |                    | TO92    | 200  | °C/W |
|                |                    | SOT23-5 | 0.20 | W    |
| P <sub>D</sub> | 功耗                 | SOT89   | 0.50 | W    |
|                |                    | TO92    | 0.50 | W    |

注: PD 值是在 Ta = 25°C 时测得。

Rev. 2.50 2 2019-03-21



## 引脚说明

| 引脚序号 | 引脚名称 | 说明  |
|------|------|-----|
| 1    | GND  | 地   |
| 2    | VIN  | 输入脚 |
| 3    | VOUT | 输出脚 |

## 电气特性

#### HT7521-1, +2.1V 输出类型

Ta=25°C

| 符号                                                    | 参数         | 测试条件 条件                                                       | 最小    | 典型    | 最大    | 单位      |
|-------------------------------------------------------|------------|---------------------------------------------------------------|-------|-------|-------|---------|
| V <sub>IN</sub>                                       | 输入电压       | _                                                             | _     | _     | 30    | V       |
| Vout                                                  | 输出电压       | V <sub>IN</sub> =V <sub>OUT</sub> +2V, I <sub>OUT</sub> =10mA | 2.037 | 2.100 | 2.163 | V       |
| $I_{OUT}$                                             | 输出电流       | V <sub>IN</sub> =V <sub>OUT</sub> +2V                         | 70    | 100   | _     | mA      |
| $\Delta V_{ m OUT}$                                   | 负载调节率      | $V_{IN}=V_{OUT}+2V,$ $1mA \le I_{OUT} \le 50mA$               | _     | 25    | 60    | mV      |
| $V_{ m DIF}$                                          | Dropout 电压 | $I_{OUT}=1$ mA, $\Delta V_O=2\%$                              | _     | 30    | 100   | mV      |
| $I_{SS}$                                              | 静态电流       | 无负载                                                           | _     | 2.5   | 4.0   | μА      |
| $\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$ | 输入电压调节率    | $V_0+1V \le V_{IN} \le 30V$ , $I_{OUT}=1$ mA                  |       |       | 0.2   | %/V     |
| $\frac{\Delta V_{OUT}}{\Delta T_{a} \times V_{OUT}}$  | 温度系数       | I <sub>OUT</sub> =10mA,<br>-40° C <t<sub>a&lt;85° C</t<sub>   | _     | 100   | _     | ppm/° C |

注:在  $V_{\text{IN}} = V_{\text{OUT}} + 2V$  与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

#### HT7523-1, +2.3V 输出类型

Ta=25°C

| 符号                                                    | 参数         | 测试条件                                                                                                           | 最小    | 典型          | 最大    | 单位     |
|-------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------|-------|-------------|-------|--------|
| 1ग ५                                                  | 多奴         | 条件                                                                                                             | 取小    | <b>一类</b> 至 | 取入    | 半世     |
| V <sub>IN</sub>                                       | 输入电压       | _                                                                                                              |       | _           | 30    | V      |
| V <sub>OUT</sub>                                      | 输出电压       | V <sub>IN</sub> =V <sub>OUT</sub> +2V, I <sub>OUT</sub> =10mA                                                  | 2.231 | 2.300       | 2.369 | V      |
| $I_{ m OUT}$                                          | 输出电流       | $V_{IN}=V_{OUT}+2V$                                                                                            | 70    | 100         |       | mA     |
| $\Delta V_{\text{OUT}}$                               | 负载调节率      | $V_{IN}=V_{OUT}+2V,$ $1mA \le I_{OUT} \le 50mA$                                                                | _     | 25          | 60    | mV     |
| $V_{ m DIF}$                                          | Dropout 电压 | $I_{OUT}=1$ mA, $\Delta V_{O}=2\%$                                                                             |       | 30          | 100   | mV     |
| Iss                                                   | 静态电流       | 无负载                                                                                                            |       | 2.5         | 4.0   | μА     |
| $\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$ | 输入电压调节率    | $V_O+1V \le V_{IN} \le 30V$ , $I_{OUT}=1$ mA                                                                   |       | _           | 0.2   | %/V    |
| $\Delta V$ OUT $\Delta T_a \times V$ OUT              | 温度系数       | I <sub>OUT</sub> =10mA,<br>-40° C <ta<85° c<="" td=""><td>_</td><td>100</td><td>_</td><td>ppm/°C</td></ta<85°> | _     | 100         | _     | ppm/°C |

注: 在  $V_{IN} = V_{OUT} + 2V$  与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

Rev. 2.50 3 2019-03-21



#### HT7525-1, +2.5V 输出类型

Ta=25°C

| 符号                                              | 参数                                       | 测试条件                                                                   | 最小    | 典型    | 最大    | 单位     |
|-------------------------------------------------|------------------------------------------|------------------------------------------------------------------------|-------|-------|-------|--------|
|                                                 |                                          | 条件                                                                     |       |       |       |        |
| $V_{\rm IN}$                                    | 输入电压                                     | _                                                                      | _     | _     | 30    | V      |
| Vout                                            | 输出电压                                     | V <sub>IN</sub> =V <sub>OUT</sub> +2V, I <sub>OUT</sub> =10mA          | 2.425 | 2.500 | 2.575 | V      |
| $I_{OUT}$                                       | 输出电流                                     | V <sub>IN</sub> =V <sub>OUT</sub> +2V                                  | 70    | 100   | _     | mA     |
| $\Delta V_{ m OUT}$                             | 负载调节率                                    | $V_{IN}=V_{OUT}+2V$ ,                                                  | _     | 25    | 60    | mV     |
| Z * 001                                         | 火铁师卫车                                    | $1\text{mA} \leq I_{\text{OUT}} \leq 50\text{mA}$                      |       |       |       | 111 4  |
| $V_{ m DIF}$                                    | Dropout 电压                               | $I_{OUT}=1$ mA, $\Delta V_O=2\%$                                       | _     | 30    | 100   | mV     |
| Iss                                             | 静态电流                                     | 无负载                                                                    | _     | 2.5   | 4.0   | μА     |
| ΔVουτ                                           | 输入电压调节率                                  | $V_0+1V \le V_{IN} \le 30V$ , $I_{OUT}=1$ mA                           | _     | _     | 0.2   | %/V    |
| $\Delta V_{IN} \times V_{OUT}$                  | 100/10/10/10/10/10/10/10/10/10/10/10/10/ | VO: 1 V = V IN = 50 V, 1001 111111                                     |       |       | 0.2   | 70/ 1  |
| $\Delta V_{OUT}$<br>$\Delta T_a \times V_{OUT}$ | 温度系数                                     | $I_{OUT}=10 \text{mA}, -40^{\circ}\text{C} < T_a < 85^{\circ}\text{C}$ | _     | 100   | _     | ppm/°C |
|                                                 |                                          |                                                                        | 1     |       |       |        |

注:在  $V_{\text{IN}} = V_{\text{OUT}} + 2V$  与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

## HT7527-1,+2.7V 输出类型

Ta=25°C

| 符号                                                                   | <b>全</b> 粉 | 测试条件                                                                 | 旦小    | 典型    | 旦十    | 单位     |
|----------------------------------------------------------------------|------------|----------------------------------------------------------------------|-------|-------|-------|--------|
| 1寸写                                                                  | 参数         | 条件                                                                   | 最小    | 典型    | 最大    | 半辺     |
| V <sub>IN</sub>                                                      | 输入电压       | _                                                                    | _     | _     | 30    | V      |
| V <sub>OUT</sub>                                                     | 输出电压       | V <sub>IN</sub> =V <sub>OUT</sub> +2V, I <sub>OUT</sub> =10mA        | 2.619 | 2.700 | 2.781 | V      |
| I <sub>OUT</sub>                                                     | 输出电流       | V <sub>IN</sub> =V <sub>OUT</sub> +2V                                | 70    | 100   | _     | mA     |
| $\Delta V_{	ext{OUT}}$                                               | 负载调节率      | V <sub>IN</sub> =V <sub>OUT</sub> +2V,<br>1mA≤I <sub>OUT</sub> ≤50mA | _     | 25    | 60    | mV     |
| $V_{ m DIF}$                                                         | Dropout 电压 | $I_{OUT}=1$ mA, $\Delta V_O=2\%$                                     |       | 30    | 100   | mV     |
| $I_{SS}$                                                             | 静态电流       | 无负载                                                                  |       | 2.5   | 4.0   | μΑ     |
| $\frac{\Delta V \text{OUT}}{\Delta V \text{IN} \times V \text{OUT}}$ | 输入电压调节率    | $V_O+1V \le V_{IN} \le 30V$ , $I_{OUT}=1$ mA                         | _     | _     | 0.2   | %/V    |
| $\frac{\Delta V_{OUT}}{\Delta T_{a} \times V_{OUT}}$                 | 温度系数       | I <sub>OUT</sub> =10mA, -40°C <t<sub>a&lt;85°C</t<sub>               | _     | 100   |       | ppm/°C |

注: 在  $V_{\text{IN}} = V_{\text{OUT}} + 2V$  与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

Rev. 2.50 4 2019-03-21



#### HT7530-1,+3.0V 输出类型

Ta=25°C

| 符号                                                    | 参数         | 测试条件 条件                                                       | 最小    | 典型    | 最大    | 单位     |
|-------------------------------------------------------|------------|---------------------------------------------------------------|-------|-------|-------|--------|
| V <sub>IN</sub>                                       | 输入电压       | _                                                             | _     | _     | 30    | V      |
| Vout                                                  | 输出电压       | V <sub>IN</sub> =V <sub>OUT</sub> +2V, I <sub>OUT</sub> =10mA | 2.910 | 3.000 | 3.090 | V      |
| $I_{OUT}$                                             | 输出电流       | $V_{IN}=V_{OUT}+2V$                                           | 70    | 100   |       | mA     |
| $\Delta V_{ m OUT}$                                   | 负载调节率      | $V_{IN}=V_{OUT}+2V,$ $1mA \le I_{OUT} \le 50mA$               | _     | 25    | 60    | mV     |
| $V_{\mathrm{DIF}}$                                    | Dropout 电压 | $I_{OUT}=1$ mA, $\Delta V_O=2\%$                              | _     | 30    | 100   | mV     |
| Iss                                                   | 静态电流       | 无负载                                                           |       | 2.5   | 4.0   | μΑ     |
| $\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$ | 输入电压调节率    | $V_O+1V \le V_{IN} \le 30V$ , $I_{OUT}=1$ mA                  |       | _     | 0.2   | %/V    |
| $\frac{\Delta V_{OUT}}{\Delta T_{a} \times V_{OUT}}$  | 温度系数       | I <sub>OUT</sub> =10mA, -40°C <t<sub>a&lt;85°C</t<sub>        | _     | 100   | _     | ppm/°C |

注:在  $V_{\text{IN}} = V_{\text{OUT}} + 2V$  与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

## HT7533-1,+3.3V 输出类型

Ta=25°C

| 符号                                                    | 参数         | 测试条件 条件                                                              | 最小    | 典型    | 最大    | 单位     |
|-------------------------------------------------------|------------|----------------------------------------------------------------------|-------|-------|-------|--------|
| V <sub>IN</sub>                                       | 输入电压       | _                                                                    | _     | _     | 30    | V      |
| V <sub>OUT</sub>                                      | 输出电压       | V <sub>IN</sub> =V <sub>OUT</sub> +2V, I <sub>OUT</sub> =10mA        | 3.201 | 3.300 | 3.399 | V      |
| I <sub>OUT</sub>                                      | 输出电流       | V <sub>IN</sub> =V <sub>OUT</sub> +2V                                | 70    | 100   | _     | mA     |
| $\Delta V_{	ext{OUT}}$                                | 负载调节率      | V <sub>IN</sub> =V <sub>OUT</sub> +2V,<br>1mA≤I <sub>OUT</sub> ≤50mA | _     | 25    | 60    | mV     |
| $V_{ m DIF}$                                          | Dropout 电压 | $I_{OUT}=1$ mA, $\Delta V_O=2\%$                                     | _     | 25    | 55    | mV     |
| $I_{SS}$                                              | 静态电流       | 无负载                                                                  | _     | 2.5   | 4.0   | μΑ     |
| $\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$ | 输入电压调节率    | $V_O+1V \le V_{IN} \le 30V$ , $I_{OUT}=1$ mA                         | _     | _     | 0.2   | %/V    |
| $\frac{\Delta V_{OUT}}{\Delta T_{a} \times V_{OUT}}$  | 温度系数       | I <sub>OUT</sub> =10mA, -40°C <t<sub>a&lt;85°C</t<sub>               | _     | 100   | _     | ppm/°C |

注: 在  $V_{IN} = V_{OUT} + 2V$  与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

Rev. 2.50 5 2019-03-21



#### HT7536-1,+3.6V 输出类型

Ta=25°C

| 符号                                                    | 参数         | 测试条件 条件                                                       | 最小    | 典型    | 最大    | 单位     |
|-------------------------------------------------------|------------|---------------------------------------------------------------|-------|-------|-------|--------|
| V <sub>IN</sub>                                       | 输入电压       | _                                                             | _     | _     | 30    | V      |
| Vout                                                  | 输出电压       | V <sub>IN</sub> =V <sub>OUT</sub> +2V, I <sub>OUT</sub> =10mA | 3.492 | 3.600 | 3.708 | V      |
| $I_{OUT}$                                             | 输出电流       | V <sub>IN</sub> =V <sub>OUT</sub> +2V                         | 70    | 100   | _     | mA     |
| $\Delta V_{ m OUT}$                                   | 负载调节率      | $V_{IN}=V_{OUT}+2V,$ $1mA \le I_{OUT} \le 50mA$               | _     | 25    | 60    | mV     |
| $V_{\mathrm{DIF}}$                                    | Dropout 电压 | $I_{OUT}=1$ mA, $\Delta V_O=2\%$                              | _     | 25    | 55    | mV     |
| Iss                                                   | 静态电流       | 无负载                                                           | _     | 2.5   | 4.0   | μΑ     |
| $\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$ | 输入电压调节率    | $V_O+1V \le V_{IN} \le 30V$ , $I_{OUT}=1$ mA                  | _     | _     | 0.2   | %/V    |
| $\Delta V_{OUT} \over \Delta T_a \times V_{OUT}$      | 温度系数       | I <sub>OUT</sub> =10mA, -40°C <t<sub>a&lt;85°C</t<sub>        | _     | 100   | _     | ppm/°C |

注:在  $V_{\text{IN}} = V_{\text{OUT}} + 2V$  与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

### HT7540-1, +4.0V 输出类型

Ta=25°C

| 符号                                                    | 参数         | 测试条件                                                                 | 最小    | 典型       | 最大    | 单位     |
|-------------------------------------------------------|------------|----------------------------------------------------------------------|-------|----------|-------|--------|
| 1寸写                                                   | 多数         | 条件                                                                   | 取小    | <b>一</b> | 取入    | 半四     |
| $V_{IN}$                                              | 输入电压       | _                                                                    | _     |          | 30    | V      |
| V <sub>OUT</sub>                                      | 输出电压       | V <sub>IN</sub> =V <sub>OUT</sub> +2V, I <sub>OUT</sub> =10mA        | 3.880 | 4.000    | 4.120 | V      |
| I <sub>OUT</sub>                                      | 输出电流       | V <sub>IN</sub> =V <sub>OUT</sub> +2V                                | 70    | 100      |       | mA     |
| $\Delta V_{	ext{OUT}}$                                | 负载调节率      | V <sub>IN</sub> =V <sub>OUT</sub> +2V,<br>1mA≤I <sub>OUT</sub> ≤50mA | _     | 25       | 60    | mV     |
| $V_{ m DIF}$                                          | Dropout 电压 | $I_{OUT}=1$ mA, $\Delta V_{O}=2\%$                                   |       | 25       | 55    | mV     |
| $I_{SS}$                                              | 静态电流       | 无负载                                                                  |       | 2.5      | 4.0   | μΑ     |
| $\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$ | 输入电压调节率    | $V_O+1V \le V_{IN} \le 30V$ , $I_{OUT}=1$ mA                         | _     |          | 0.2   | %/V    |
| $\Delta V$ OUT $\Delta T_a \times V$ OUT              | 温度系数       | I <sub>OUT</sub> =10mA, -40°C <t<sub>a&lt;85°C</t<sub>               | _     | 100      | _     | ppm/°C |

注: 在  $V_{IN} = V_{OUT} + 2V$  与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

Rev. 2.50 6 2019-03-21



#### HT7544-1, +4.4V 输出类型

Ta=25°C

| 符号                                                    | 参数         | 测试条件 条件                                                       | 最小    | 典型    | 最大    | 单位     |
|-------------------------------------------------------|------------|---------------------------------------------------------------|-------|-------|-------|--------|
| V <sub>IN</sub>                                       | 输入电压       | _                                                             | _     |       | 30    | V      |
| V <sub>OUT</sub>                                      | 输出电压       | V <sub>IN</sub> =V <sub>OUT</sub> +2V, I <sub>OUT</sub> =10mA | 4.268 | 4.400 | 4.532 | V      |
| I <sub>OUT</sub>                                      | 输出电流       | V <sub>IN</sub> =V <sub>OUT</sub> +2V                         | 70    | 100   | _     | mA     |
| $\Delta V_{ m OUT}$                                   | 负载调节率      | $V_{IN}=V_{OUT}+2V,$ $1mA \le I_{OUT} \le 50mA$               | _     | 25    | 60    | mV     |
| $V_{ m DIF}$                                          | Dropout 电压 | I <sub>OUT</sub> =1mA, ΔV <sub>O</sub> =2%                    | _     | 25    | 55    | mV     |
| Iss                                                   | 静态电流       | 无负载                                                           | _     | 2.5   | 4.0   | μА     |
| $\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$ | 输入电压调节率    | $V_O+1V \le V_{IN} \le 30V$ , $I_{OUT}=1$ mA                  |       | _     | 0.2   | %/V    |
| $\Delta V_{OUT} \over \Delta T_a \times V_{OUT}$      | 温度系数       | I <sub>OUT</sub> =10mA, -40°C <t<sub>a&lt;85°C</t<sub>        | _     | 100   | _     | ppm/°C |

注:在  $V_{\text{IN}} = V_{\text{OUT}} + 2V$  与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

#### HT7550-1, +5.0V 输出类型

Ta=25°C

| <i>⁄</i> ⁄⁄⁄ □                                                       | <b>₩</b>   | 测试条件                                                                 | <b>□</b> ,1, | # #1  | 日上    | * /÷   |
|----------------------------------------------------------------------|------------|----------------------------------------------------------------------|--------------|-------|-------|--------|
| 符号                                                                   | 参数         | 条件                                                                   | 最小           | 典型    | 最大    | 単位     |
| V <sub>IN</sub>                                                      | 输入电压       | _                                                                    | _            |       | 30    | V      |
| V <sub>OUT</sub>                                                     | 输出电压       | $V_{IN}=V_{OUT}+2V$ , $I_{OUT}=10mA$                                 | 4.850        | 5.000 | 5.150 | V      |
| I <sub>OUT</sub>                                                     | 输出电流       | V <sub>IN</sub> =V <sub>OUT</sub> +2V                                | 100          | 150   | _     | mA     |
| $\Delta V_{	ext{OUT}}$                                               | 负载调节率      | V <sub>IN</sub> =V <sub>OUT</sub> +2V,<br>1mA≤I <sub>OUT</sub> ≤70mA | _            | 25    | 60    | mV     |
| $V_{ m DIF}$                                                         | Dropout 电压 | $I_{OUT}=1$ mA, $\Delta V_O=2\%$                                     | _            | 25    | 55    | mV     |
| $I_{SS}$                                                             | 静态电流       | 无负载                                                                  | _            | 2.5   | 4.0   | μΑ     |
| $\frac{\Delta V \text{OUT}}{\Delta V \text{IN} \times V \text{OUT}}$ | 输入电压调节率    | $V_O+1V \le V_{IN} \le 30V$ , $I_{OUT}=1$ mA                         | _            |       | 0.2   | %/V    |
| $\Delta V$ OUT $\Delta T_a \times V$ OUT                             | 温度系数       | I <sub>OUT</sub> =10mA, -40°C <t<sub>a&lt;85°C</t<sub>               | _            | 100   | _     | ppm/°C |

注: 在  $V_{IN}$  =  $V_{OUT}$  + 2V 与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

Rev. 2.50 7 2019-03-21



#### HT7560-1, +6.0V 输出类型

Ta=25°C

| 符号                                                 | 参数                   | 测试条件                                                          | 最小    | 典型    | 最大    | 单位     |
|----------------------------------------------------|----------------------|---------------------------------------------------------------|-------|-------|-------|--------|
| 13.5                                               | 2 30                 | 条件                                                            | 40.3  | 八工    | 427   | 7-12   |
| $V_{\rm IN}$                                       | 输入电压                 | _                                                             |       |       | 30    | V      |
| $V_{OUT}$                                          | 输出电压                 | V <sub>IN</sub> =V <sub>OUT</sub> +2V, I <sub>OUT</sub> =10mA | 5.820 | 6.000 | 6.180 | V      |
| $I_{OUT}$                                          | 输出电流                 | V <sub>IN</sub> =V <sub>OUT</sub> +2V                         | 150   |       |       | mA     |
| ΛVOUT                                              | 负载调节率                | $V_{IN}=V_{OUT}+2V$                                           | _     | 25    | 60    | mV     |
| A V 001                                            | 火 枫 啊 P 干            | 1mA≤I <sub>OUT</sub> ≤70mA                                    |       | 23    | 00    | 111 V  |
| $V_{ m DIF}$                                       | Dropout 电压           | $I_{OUT}=1$ mA, $\Delta V_O=2\%$                              |       | 25    | 55    | mV     |
| $I_{SS}$                                           | 静态电流                 | 无负载                                                           | _     | 2.5   | 4.0   | μΑ     |
| ΔVουτ                                              | 输入电压调节率              | $V_O+1V \le V_{IN} \le 30V$ , $I_{OUT}=1$ mA                  | _     | 0.2   | _     | %/V    |
| $\Delta V$ IN $\times$ VOUT                        | 1007 (10777 )/4 14 — | VO: 1 V = V IN = 50 V, 1001 111111                            |       | 0.2   |       | 70/ 1  |
| $\Delta V_{OUT} \over \Delta T_{a} \times V_{OUT}$ | 温度系数                 | I <sub>OUT</sub> =10mA, -40°C <t<sub>a&lt;85°C</t<sub>        | _     | 100   |       | ppm/°C |

注:在  $V_{\text{IN}} = V_{\text{OUT}} + 2V$  与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

### HT7570-1, +7.0V 输出类型

Ta=25°C

| 符号                                                    | 参数         | 测试条件 条件                                                              | 最小    | 典型    | 最大    | 单位     |
|-------------------------------------------------------|------------|----------------------------------------------------------------------|-------|-------|-------|--------|
| V <sub>IN</sub>                                       | 输入电压       | _                                                                    |       |       | 30    | V      |
| V <sub>OUT</sub>                                      | 输出电压       | V <sub>IN</sub> =V <sub>OUT</sub> +2V, I <sub>OUT</sub> =10mA        | 6.790 | 7.000 | 7.210 | V      |
| Iout                                                  | 输出电流       | V <sub>IN</sub> =V <sub>OUT</sub> +2V                                | 150   | _     | _     | mA     |
| $\Delta V_{	ext{OUT}}$                                | 负载调节率      | V <sub>IN</sub> =V <sub>OUT</sub> +2V,<br>1mA≤I <sub>OUT</sub> ≤70mA | _     | 25    | 60    | mV     |
| $V_{ m DIF}$                                          | Dropout 电压 | $I_{OUT}=1$ mA, $\Delta V_O=2\%$                                     |       | 25    | 55    | mV     |
| I <sub>SS</sub>                                       | 静态电流       | 无负载                                                                  | _     | 2.5   | 4.0   | μΑ     |
| $\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$ | 输入电压调节率    | V <sub>O</sub> +1V≤V <sub>IN</sub> ≤30V, I <sub>OUT</sub> =1mA       | _     | 0.2   | _     | %/V    |
| $\frac{\Delta V_{OUT}}{\Delta T_{a} \times V_{OUT}}$  | 温度系数       | I <sub>OUT</sub> =10mA, -40°C <t<sub>a&lt;85°C</t<sub>               | _     | 100   | _     | ppm/°C |

注:在  $V_{\text{IN}} = V_{\text{OUT}} + 2V$  与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

Rev. 2.50 8 2019-03-21



#### HT7580-1, +8.0V 输出类型

Ta=25°C

| 符号                                           | 参数                    | 测试条件                                                          | 最小    | 典型    | 最大    | 単位     |
|----------------------------------------------|-----------------------|---------------------------------------------------------------|-------|-------|-------|--------|
| 13.3                                         | 2 30                  | 条件                                                            | -12.3 | 八工    | 427   | 712    |
| $V_{IN}$                                     | 输入电压                  | _                                                             |       |       | 30    | V      |
| $V_{OUT}$                                    | 输出电压                  | V <sub>IN</sub> =V <sub>OUT</sub> +2V, I <sub>OUT</sub> =10mA | 7.760 | 8.000 | 8.240 | V      |
| $I_{OUT}$                                    | 输出电流                  | $V_{IN}=V_{OUT}+2V$                                           | 150   | _     | _     | mA     |
| $\Delta V_{ m OUT}$                          | 负载调节率                 | V <sub>IN</sub> =V <sub>OUT</sub> +2V,                        | _     | 25    | 60    | mV     |
| A V 001                                      | 火软师下平                 | 1mA≤I <sub>OUT</sub> ≤70mA                                    |       | 23    | 30    | 111 V  |
| $V_{ m DIF}$                                 | Dropout 电压            | $I_{OUT}=1$ mA, $\Delta V_{O}=2\%$                            |       | 25    | 55    | mV     |
| $I_{SS}$                                     | 静态电流                  | 无负载                                                           |       | 2.5   | 4.0   | μΑ     |
| ΔVоυт                                        | 输入电压调节率               | $V_0+1V \le V_{IN} \le 30V$ , $I_{OUT}=1$ mA                  |       | 0.2   |       | %/V    |
| $\Delta V$ IN $\times$ $V$ OUT               | 1107 ( 1072 ) ( 174 ) | VO: 1 V = V IN = 50 V, 1001 THE 1                             |       | 0.2   |       | 70/ 1  |
| $\Delta V_{OUT}$ $\Delta T_a \times V_{OUT}$ | 温度系数                  | I <sub>OUT</sub> =10mA, -40°C <t<sub>a&lt;85°C</t<sub>        |       | 100   |       | ppm/°C |

注:在  $V_{\text{IN}} = V_{\text{OUT}} + 2V$  与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

### HT7590-1,+9.0V 输出类型

Ta=25°C

| 符号                                                                   | 参数         | 测试条件 条件                                                              | 最小    | 典型    | 最大    | 单位     |
|----------------------------------------------------------------------|------------|----------------------------------------------------------------------|-------|-------|-------|--------|
| V <sub>IN</sub>                                                      | 输入电压       | _                                                                    | _     |       | 30    | V      |
| V <sub>OUT</sub>                                                     | 输出电压       | V <sub>IN</sub> =V <sub>OUT</sub> +2V, I <sub>OUT</sub> =10mA        | 8.730 | 9.000 | 9.270 | V      |
| Iout                                                                 | 输出电流       | V <sub>IN</sub> =V <sub>OUT</sub> +2V                                | 150   | _     | _     | mA     |
| $\Delta V_{ m OUT}$                                                  | 负载调节率      | V <sub>IN</sub> =V <sub>OUT</sub> +2V,<br>1mA≤I <sub>OUT</sub> ≤70mA | _     | 25    | 70    | mV     |
| $V_{\mathrm{DIF}}$                                                   | Dropout 电压 | $I_{OUT}=1$ mA, $\Delta V_{O}=2\%$                                   | _     | 25    | 55    | mV     |
| $I_{SS}$                                                             | 静态电流       | 无负载                                                                  | _     | 2.5   | 4.0   | μΑ     |
| $\frac{\Delta V \text{OUT}}{\Delta V \text{IN} \times V \text{OUT}}$ | 输入电压调节率    | $V_O+1V \le V_{IN} \le 30V$ , $I_{OUT}=1$ mA                         | _     | 0.2   |       | %/V    |
| $\Delta V$ OUT $\Delta T_a \times V$ OUT                             | 温度系数       | I <sub>OUT</sub> =10mA, -40°C <t<sub>a&lt;85°C</t<sub>               | _     | 100   |       | ppm/°C |

注:在  $V_{\text{IN}}$  =  $V_{\text{OUT}}$  + 2V 与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

Rev. 2.50 9 2019-03-21



#### HT75A0-1,+10.0V 输出类型

Ta=25°C

| 符号                                                    | 参数         | 测试条件 条件                                                        | 最小    | 典型     | 最大     | 单位     |
|-------------------------------------------------------|------------|----------------------------------------------------------------|-------|--------|--------|--------|
| V <sub>IN</sub>                                       | 输入电压       | _                                                              | _     | _      | 30     | V      |
| Vout                                                  | 输出电压       | V <sub>IN</sub> =V <sub>OUT</sub> +2V, I <sub>OUT</sub> =10mA  | 9.700 | 10.000 | 10.300 | V      |
| I <sub>OUT</sub>                                      | 输出电流       | V <sub>IN</sub> =V <sub>OUT</sub> +2V                          | 150   | _      | _      | mA     |
| $\Delta V_{ m OUT}$                                   | 负载调节率      | $V_{IN}=V_{OUT}+2V,$ $1mA \le I_{OUT} \le 70mA$                | _     | 25     | 70     | mV     |
| $V_{ m DIF}$                                          | Dropout 电压 | $I_{OUT}=1$ mA, $\Delta V_{O}=2\%$                             | _     | 25     | 55     | mV     |
| Iss                                                   | 静态电流       | 无负载                                                            | _     | 2.5    | 4.0    | μΑ     |
| $\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$ | 输入电压调节率    | V <sub>0</sub> +1V≤V <sub>IN</sub> ≤30V, I <sub>OUT</sub> =1mA | _     | 0.2    | _      | %/V    |
| $\frac{\Delta V_{OUT}}{\Delta T_{a} \times V_{OUT}}$  | 温度系数       | I <sub>OUT</sub> =10mA, -40°C <t<sub>a&lt;85°C</t<sub>         |       | 100    |        | ppm/°C |

注: 在  $V_{IN} = V_{OUT} + 2V$  与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。.

### HT75C0-1,+12.0V 输出类型

Ta=25°C

| 符号                                                    | 参数         | 测试条件 条件                                                       | 最小     | 典型     | 最大     | 单位     |
|-------------------------------------------------------|------------|---------------------------------------------------------------|--------|--------|--------|--------|
| V <sub>IN</sub>                                       | 输入电压       | _                                                             | _      | _      | 30     | V      |
| Vout                                                  | 输出电压       | V <sub>IN</sub> =V <sub>OUT</sub> +2V, I <sub>OUT</sub> =10mA | 11.640 | 12.000 | 12.360 | V      |
| Iout                                                  | 输出电流       | V <sub>IN</sub> =V <sub>OUT</sub> +2V                         | 150    | _      | _      | mA     |
| $\Delta V_{	ext{OUT}}$                                | 负载调节率      | $V_{IN}=V_{OUT}+2V,$ $1mA \le I_{OUT} \le 70mA$               | _      | 25     | 70     | mV     |
| $V_{ m DIF}$                                          | Dropout 电压 | $I_{OUT}=1$ mA, $\Delta V_{O}=2\%$                            |        | 25     | 55     | mV     |
| Iss                                                   | 静态电流       | 无负载                                                           |        | 2.5    | 4.0    | μΑ     |
| $\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$ | 输入电压调节率    | $V_O+1V \le V_{IN} \le 30V$ , $I_{OUT}=1$ mA                  |        | 0.2    |        | %/V    |
| $\frac{\Delta V_{OUT}}{\Delta T_{a} \times V_{OUT}}$  | 温度系数       | I <sub>OUT</sub> =10mA, -40°C <t<sub>a&lt;85°C</t<sub>        | _      | 100    | _      | ppm/°C |

注: 在  $V_{IN} = V_{OUT} + 2V$  与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

Rev. 2.50 10 2019-03-21



### 典型性能特点

除非另有说明,此规格测试条件是: V<sub>IN</sub> = V<sub>OUT</sub>+2V, I<sub>OUT</sub>=10mA, T<sub>J</sub>=25℃。

#### 输出电压与输入电压





#### 静态电流 (Iour=0mA) 与温度





#### 输出电压与温度





#### 输出电压与温度







# 应用电路

## 基本电路



### 大电流输出正电压调节器



### Tr1 短路保护电路



Rev. 2.50 2019-03-21



#### 用于增加输出电压的电路



 $V_{OUT}=V_{XX} (1+R2/R1)+I_{SS}\times R2$ 

#### 用于增加输出电压的电路



#### 恒流调节器



 $I_{OUT} \!\!=\!\! V_{XX} \!/ R_A \!\!+\!\! I_{SS}$ 

#### 双电源电路



Rev. 2.50 13 2019-03-21



## 封装信息

请注意,这里提供的封装信息仅作为参考。由于这个信息经常更新,提醒用户咨询  $\underline{\text{Holtek}}$   $\underline{\text{Modified}}$  现式以获取最新版本的<u>封装信息</u>。

封装信息的相关内容如下所示,点击可链接至 Holtek 网站相关信息页面。

- 封装信息(包括外形尺寸、包装带和卷轴规格)
- 封装材料信息
- 纸箱信息

Rev. 2.50 14 2019-03-21



## 3-pin TO92 外形尺寸



| 符号   | 尺寸(单位: inch) |           |       |  |  |
|------|--------------|-----------|-------|--|--|
| 19 5 | 最小           | 正常        | 最大    |  |  |
| A    | 0.173        | 0.180     | 0.205 |  |  |
| В    | 0.170        | _         | 0.210 |  |  |
| С    | 0.500        | 0.580     | _     |  |  |
| D    | _            | 0.015 BSC | _     |  |  |
| Е    | _            | 0.010 BSC | _     |  |  |
| F    | _            | 0.050 BSC | _     |  |  |
| G    | _            | 0.035 BSC | _     |  |  |
| Н    | 0.125        | 0.142     | 0.165 |  |  |

| 符号               | 尺寸(单位: mm) |          |      |  |  |
|------------------|------------|----------|------|--|--|
| 1য় <del>চ</del> | 最小         | 正常       | 最大   |  |  |
| A                | 4.39       | 4.57     | 5.21 |  |  |
| В                | 4.32       | _        | 5.33 |  |  |
| С                | 12.70      | 14.73    | _    |  |  |
| D                | _          | 0.38 BSC | _    |  |  |
| Е                | _          | 2.54 BSC | _    |  |  |
| F                | _          | 1.27 BSC | _    |  |  |
| G                | _          | 0.89 BSC | _    |  |  |
| Н                | 3.18       | 3.61     | 4.19 |  |  |

Rev. 2.50 2019-03-21



## 3-pin SOT89 外形尺寸



| 符号   | 尺寸(单位: inch) |           |       |  |  |
|------|--------------|-----------|-------|--|--|
| 1975 | 最小           | 正常        | 最大    |  |  |
| A    | 0.173        | _         | 0.185 |  |  |
| В    | 0.053        | _         | 0.072 |  |  |
| С    | 0.090        | _         | 0.106 |  |  |
| D    | 0.031        | _         | 0.047 |  |  |
| Е    | 0.155        | _         | 0.173 |  |  |
| F    | 0.014        | _         | 0.019 |  |  |
| G    | 0.017        | _         | 0.022 |  |  |
| Н    | _            | 0.059 BSC | _     |  |  |
| I    | 0.055        | _         | 0.063 |  |  |
| J    | 0.014        | _         | 0.017 |  |  |

| 符号   | 尺寸(単位: mm) |          |      |  |  |
|------|------------|----------|------|--|--|
| 19.5 | 最小         | 正常       | 最大   |  |  |
| A    | 4.40       | _        | 4.70 |  |  |
| В    | 1.35       | _        | 1.83 |  |  |
| C    | 2.29       | _        | 2.70 |  |  |
| D    | 0.80       | _        | 1.20 |  |  |
| Е    | 3.94       | _        | 4.40 |  |  |
| F    | 0.36       | _        | 0.48 |  |  |
| G    | 0.44       | _        | 0.56 |  |  |
| Н    | _          | 1.50 BSC | _    |  |  |
| I    | 1.40       | _        | 1.60 |  |  |
| J    | 0.35       | _        | 0.44 |  |  |

Rev. 2.50 16 2019-03-21



## 5-pin SOT23 外形尺寸



| 符号 | 尺寸(单位: inch) |           |       |  |
|----|--------------|-----------|-------|--|
|    | 最小           | 正常        | 最大    |  |
| A  | _            | _         | 0.057 |  |
| A1 | _            | _         | 0.006 |  |
| A2 | 0.035        | 0.045     | 0.051 |  |
| ь  | 0.012        | _         | 0.020 |  |
| С  | 0.003        | _         | 0.009 |  |
| D  | _            | 0.114 BSC | _     |  |
| Е  | _            | 0.063 BSC | _     |  |
| e  | _            | 0.037 BSC | _     |  |
| e1 | _            | 0.075 BSC | _     |  |
| Н  | _            | 0.110 BSC | _     |  |
| L1 | _            | 0.024 BSC |       |  |
| θ  | 0°           | _         | 8°    |  |

| 符号 | 尺寸(单位: mm) |          |      |  |
|----|------------|----------|------|--|
|    | 最小         | 正常       | 最大   |  |
| A  | _          | _        | 1.45 |  |
| A1 | _          | _        | 0.15 |  |
| A2 | 0.90       | 1.15     | 1.30 |  |
| ь  | 0.30       | _        | 0.50 |  |
| С  | 0.08       | _        | 0.22 |  |
| D  | _          | 2.90 BSC | _    |  |
| Е  | _          | 1.60 BSC | _    |  |
| e  | _          | 0.95 BSC | _    |  |
| e1 | _          | 1.90 BSC | _    |  |
| Н  | _          | 2.80 BSC | _    |  |
| L1 | _          | 0.60 BSC | _    |  |
| θ  | 0°         | _        | 8°   |  |

Rev. 2.50 17 2019-03-21



#### Copyright© 2019 by HOLTEK SEMICONDUCTOR INC.

使用指南中所出现的信息在出版当时相信是正确的,然而 Holtek 对于说明书的使用不负任何责任。文中提到的应用目的仅仅是用来做说明,Holtek 不保证或表示这些没有进一步修改的应用将是适当的,也不推荐它的产品使用在会由于故障或其它原因可能会对人身造成危害的地方。Holtek 产品不授权使用于救生、维生从机或系统中做为关键从机。Holtek 拥有不事先通知而修改产品的权利,对于最新的信息,请参考我们的网址 http://www.holtek.com/zh/.

Rev. 2.50 18 2019-03-21