Überblick - VL 5

1. VL 4 - Bemerkungen

2. Vom äußeren Maß zum Maß

3. Messbare Mengen

Subadditivität von voln auf Quadern

Satz 1.45

Seien $I, I_1, \ldots, I_m \in \mathbb{J}(n)$ gegeben mit $I \subseteq \bigcup_{j=1}^m I_j$. Dann gilt

$$\operatorname{vol}_n(I) \leq \sum_{j=1}^m \operatorname{vol}_n(I_j).$$

Das heißt, vol_n ist subadditiv auf $\mathbb{J}(n)$.

7_{um} Beweis:

- Durchgehen und skizzieren für n = 2.
- Durchgehen und Argumente anpassen für n=1.
- Alternativer Beweis in Forster: Analysis 3, §2.

Überblick - VL 5

1. VL 4 - Bemerkungen

2. Vom äußeren Maß zum Maß

3. Messbare Mengen

Äußere Maße i.A. sind nicht additiv

Beispiel 1.21

$$\varphi: \mathcal{P}(X) \to [0, +\infty], \quad \varphi(A) = \begin{cases} 1 & \text{falls } A \neq \emptyset, \\ 0 & \text{falls } A = \emptyset. \end{cases}$$

Nicht additiv, falls X mehr als ein Element enthält.

Äußere Maße i.A. sind nicht additiv

Beispiel 1.21

$$\varphi: \mathcal{P}(X) \to [0, +\infty], \quad \varphi(A) = \begin{cases} 1 & \text{falls } A \neq \emptyset, \\ 0 & \text{falls } A = \emptyset. \end{cases}$$

Nicht additiv, falls X mehr als ein Element enthält. Setze

$$K = {\emptyset, X}, \ \nu(\emptyset) = 0, \ \nu(X) = 1.$$

Dann ist

$$arphi(A) = \inf \left\{ \sum_{j=1}^{\infty}
u(K_j) : \ K_j \in K, \ \bigcup_{j=1}^{\infty} K_j \supseteq A
ight\}.$$

Additive äußere Maße sind σ -additiv

Satz

Sei μ^* ein additives äußeres Maße. Dann ist μ^* σ -additiv.

Beweis: Seien (A_i) paarweise disjunkt. Dann ist

$$\sum_{j=1}^m \mu^*(A_j) = \mu^* \left(\bigcup_{j=1}^m A_j \right) \leq \mu^* \left(\bigcup_{j=1}^\infty A_j \right) \leq \sum_{j=1}^\infty \mu^*(A_j).$$

Jetzt noch $m \to \infty$.

Überblick - VL 5

1. VL 4 - Bemerkungen

2. Vom äußeren Maß zum Maß

3. Messbare Mengen

Idee: Schränken das äußere Maß ein.

Vorteil: bekommen ein Maß auf einer σ -Algebra

Nachteil: das Maß ist nicht mehr für jede Menge definiert; nicht jede Menge ist messbar

Äußeres Maß - Approximation von außen

Sei $A \subseteq \mathbb{R}^2$ beschränkt.

[aus: Amann, Escher: Analysis III]

Äußeres Maß - Approximation von innen

Seien $A, D \subseteq \mathbb{R}^2$ beschränkt mit $A \subseteq D$.

[aus: Amann, Escher: Analysis III]

Schön wäre doch, wenn gilt

$$\mu^*(A) = \mu^*(D) - \mu^*(D \cap A^c).$$

Und das für alle D.

Definition

Umstellen dieser Gleichung zu

$$\mu^*(A) + \mu^*(D \cap A^c) = \mu^*(D).$$

Definition

Umstellen dieser Gleichung zu

$$\mu^*(A) + \mu^*(D \cap A^c) = \mu^*(D).$$

Ohne $A \subseteq D$ und Beschränktheit von A, D

$$\mu^*(D\cap A) + \mu^*(D\cap A^c) = \mu^*(D).$$

Definition

Umstellen dieser Gleichung zu

$$\mu^*(A) + \mu^*(D \cap A^c) = \mu^*(D).$$

Ohne $A \subseteq D$ und Beschränktheit von A, D

$$\mu^*(D \cap A) + \mu^*(D \cap A^c) = \mu^*(D).$$

Das soll für alle D gelten:

Definition 1.51

Sei μ^* ein äußeres Maß auf X. Eine Menge $A\subseteq X$ heißt μ^* -messbar, falls gilt

$$\mu^*(D) = \mu^*(A \cap D) + \mu^*(A^c \cap D) \quad \forall D \subseteq X.$$

Es sei $\mathcal{A}(\mu^*)$ die Menge der μ^* -messbaren Mengen. Ist $\mu^*(N)=0$, dann heißt N μ^* -Nullmenge.

Da μ^* monoton ist, ist die μ^* -Messbarkeit von A äquivalent zu

$$\mu^*(D) \geq \mu^*(A \cap D) + \mu^*(A^c \cap D) \qquad \forall D: \ \mu^*(D) < +\infty.$$

Da μ^* monoton ist, ist die μ^* -Messbarkeit von A äquivalent zu

$$\mu^*(D) \ge \mu^*(A \cap D) + \mu^*(A^c \cap D) \qquad \forall D: \ \mu^*(D) < +\infty.$$

Direkte Folgerungen:

• Nullmengen sind messbar: Ist $\mu^*(A) = 0$, dann $\mu^*(A \cap D) = 0$ und $\mu^*(A^c \cap D) < \mu^*(D)$.

Da μ^* monoton ist, ist die μ^* -Messbarkeit von A äquivalent zu

$$\mu^*(D) \ge \mu^*(A \cap D) + \mu^*(A^c \cap D) \qquad \forall D: \ \mu^*(D) < +\infty.$$

Direkte Folgerungen:

- Nullmengen sind messbar: Ist $\mu^*(A) = 0$, dann $\mu^*(A \cap D) = 0$ und $\mu^*(A^c \cap D) \le \mu^*(D)$.
- Ø und X sind messbar.

Da μ^* monoton ist, ist die μ^* -Messbarkeit von A äquivalent zu

$$\mu^*(D) \ge \mu^*(A \cap D) + \mu^*(A^c \cap D) \qquad \forall D: \ \mu^*(D) < +\infty.$$

Direkte Folgerungen:

- Nullmengen sind messbar: Ist $\mu^*(A) = 0$, dann $\mu^*(A \cap D) = 0$ und $\mu^*(A^c \cap D) \le \mu^*(D)$.
- ∅ und X sind messbar.
- Ist A messbar, dann auch A^c.

Messbarkeit und Additivität

Folgerung

Sei μ^* ein äußeres Maß auf X. Dann ist jede Menge $A\subseteq X$ μ^* -messbar genau dann, wenn μ^* additiv ist.

Messbarkeit und Additivität

Folgerung

Sei μ^* ein äußeres Maß auf X. Dann ist jede Menge $A\subseteq X$ μ^* -messbar genau dann, wenn μ^* additiv ist.

Beweis: Ist μ^* additiv, dann gilt

$$\mu^*(D) = \mu^*(A \cap D) + \mu^*(A^c \cap D)$$

für alle A, D.

Messbarkeit und Additivität

Folgerung

Sei μ^* ein äußeres Maß auf X. Dann ist jede Menge $A\subseteq X$ μ^* -messbar genau dann, wenn μ^* additiv ist.

Beweis: Ist μ^* additiv, dann gilt

$$\mu^*(D) = \mu^*(A \cap D) + \mu^*(A^c \cap D)$$

für alle A, D.

Sei nun jede Teilmenge von X μ^* -messbar. Seien A_1, A_2 disjunkt.

 $\mathsf{Mit}\ D := A_1 \cup A_2\ \mathsf{folgt}$

$$\mu^*(A_1 \cup A_2) = \mu^*(D) = \mu^*(A_1 \cap D) + \mu^*(A_1^c \cap D) = \mu^*(A_1) + \mu^*(A_2).$$

Endliche Additivität folgt per Induktion.

Resultat

Es funktioniert!

Satz 1.60

Sei μ^* ein äußeres Maß auf X. Dann ist $\mathcal{A}(\mu^*)$ eine σ -Algebra, und $\mu^*|_{\mathcal{A}(\mu^*)}$ ist ein vollständiges Maß.

Schritt 1. Seien $A_1, A_2 \in \mathcal{A}(\mu^*)$. Sei $D \subseteq X$ mit $\mu^*(D) < +\infty$. Zu zeigen:

$$\mu^*((A_1 \cup A_2) \cap D) + \mu^*((A_1 \cup A_2)^c \cap D) \leq \mu^*(D).$$

Schritt 1. Seien $A_1, A_2 \in \mathcal{A}(\mu^*)$. Sei $D \subseteq X$ mit $\mu^*(D) < +\infty$. Zu zeigen:

$$\mu^*((A_1 \cup A_2) \cap D) + \mu^*((A_1 \cup A_2)^c \cap D) \leq \mu^*(D).$$

Testmenge $A_2^c \cap D$:

$$\mu^*((A_1 \cup A_2)^c \cap D) = \mu^*(A_1^c \cap (A_2^c \cap D))$$

= $\mu^*(A_2^c \cap D) - \mu^*(A_1 \cap A_2^c \cap D),$

Schritt 1. Seien $A_1, A_2 \in \mathcal{A}(\mu^*)$. Sei $D \subseteq X$ mit $\mu^*(D) < +\infty$. Zu zeigen:

$$\mu^*((A_1 \cup A_2) \cap D) + \mu^*((A_1 \cup A_2)^c \cap D) \leq \mu^*(D).$$

Testmenge $A_2^c \cap D$:

$$\mu^*((A_1 \cup A_2)^c \cap D) = \mu^*(A_1^c \cap (A_2^c \cap D))$$

= $\mu^*(A_2^c \cap D) - \mu^*(A_1 \cap A_2^c \cap D),$

Zerlegung $A_1 \cup A_2 = (A_1 \cap A_2^c) \cup A_2$:

$$\mu^*((A_1 \cup A_2) \cap D) = \mu^*((A_1 \cap A_2^c \cap D) \cup (A_2 \cap D))$$

$$\leq \mu^*(A_1 \cap A_2^c \cap D) + \mu^*(A_2 \cap D).$$

Schritt 1. Seien $A_1, A_2 \in \mathcal{A}(\mu^*)$. Sei $D \subseteq X$ mit $\mu^*(D) < +\infty$. Zu zeigen:

$$\mu^*((A_1 \cup A_2) \cap D) + \mu^*((A_1 \cup A_2)^c \cap D) \leq \mu^*(D).$$

Testmenge $A_2^c \cap D$:

$$\mu^*((A_1 \cup A_2)^c \cap D) = \mu^*(A_1^c \cap (A_2^c \cap D))$$

= $\mu^*(A_2^c \cap D) - \mu^*(A_1 \cap A_2^c \cap D),$

Zerlegung $A_1 \cup A_2 = (A_1 \cap A_2^c) \cup A_2$:

$$\mu^*((A_1 \cup A_2) \cap D) = \mu^*((A_1 \cap A_2^c \cap D) \cup (A_2 \cap D))$$

$$\leq \mu^*(A_1 \cap A_2^c \cap D) + \mu^*(A_2 \cap D).$$

Addieren

$$\mu^*((A_1 \cup A_2) \cap D) + \mu^*((A_1 \cup A_2)^c \cap D) \le \mu^*(A_2^c \cap D) + \mu^*(A_2 \cap D))$$

 $\le \mu^*(D).$

Schritt 2. Disjunkte Vereinigungen, σ -Additivität. Hier kann $\mu^*(D) = +\infty$ sein!

Schritt 3: abzählbare Vereinigungen.

Sind genug Mengen messbar?

Nicht unbedingt.

Sind genug Mengen messbar?

Nicht unbedingt.

Beispiel 1.21

$$\varphi: \mathcal{P}(X) \to [0, +\infty], \quad \varphi(A) = egin{cases} 1 & \mathsf{falls} \ A
eq \emptyset, \\ 0 & \mathsf{falls} \ A = \emptyset. \end{cases}$$

 φ ist äußeres Maß. Nur \emptyset und X sind φ -messbar! Sei $A \neq \emptyset$, $A \neq X$. Dann

$$1 = \varphi(X) < \varphi(A \cap X) + \varphi(A^c \cap X) = 1 + 1 = 2.$$

Lemma 1.66

Sei λ_n^* das Lebesguessche äußere Maß. Für $k \in \{1 \dots n\}$ und $t \in \mathbb{R}$ definiere den offenen Halbraum $H := \{x \in \mathbb{R}^n : \ x_k < t\}$. Dann ist H λ_n^* -messbar.

Lemma 1.66

Sei λ_n^* das Lebesguessche äußere Maß. Für $k \in \{1 \dots n\}$ und $t \in \mathbb{R}$ definiere den offenen Halbraum $H := \{x \in \mathbb{R}^n : x_k < t\}$. Dann ist $H \lambda_n^*$ -messbar.

Beweis: Ist $I \subseteq \mathbb{R}^n$ ein offener Quader, dann ist auch $I \cap H$ ein offener Quader, und $\bar{I} \cap H^c$ ein abgeschlossener Quader. Weiter ist $\operatorname{vol}_n(I) = \operatorname{vol}_n(I \cap H) + \operatorname{vol}_n(\bar{I} \cap H^c)$.

Lemma 1.66

Sei λ_n^* das Lebesguessche äußere Maß. Für $k \in \{1 \dots n\}$ und $t \in \mathbb{R}$ definiere den offenen Halbraum $H := \{x \in \mathbb{R}^n : x_k < t\}$. Dann ist H λ_n^* -messbar.

Beweis: Ist $I \subseteq \mathbb{R}^n$ ein offener Quader, dann ist auch $I \cap H$ ein offener Quader, und $\bar{I} \cap H^c$ ein abgeschlossener Quader. Weiter ist $\operatorname{vol}_n(I) = \operatorname{vol}_n(I \cap H) + \operatorname{vol}_n(\bar{I} \cap H^c)$.

Sei $D \subseteq \mathbb{R}^n$ mit $\lambda_n^*(D) < \infty$, $\epsilon > 0$. Dann gibt es eine Überdeckung von D mit offenen Quadern (I_j) , so dass $\sum_{j=1}^{\infty} \operatorname{vol}_n(I_j) \leq \lambda_n^*(D) + \epsilon$.

Lemma 1.66

Sei λ_n^* das Lebesguessche äußere Maß. Für $k \in \{1 \dots n\}$ und $t \in \mathbb{R}$ definiere den offenen Halbraum $H := \{x \in \mathbb{R}^n : x_k < t\}$. Dann ist H λ_n^* -messbar.

Beweis: Ist $I \subseteq \mathbb{R}^n$ ein offener Quader, dann ist auch $I \cap H$ ein offener Quader, und $\bar{I} \cap H^c$ ein abgeschlossener Quader. Weiter ist $\operatorname{vol}_n(I) = \operatorname{vol}_n(I \cap H) + \operatorname{vol}_n(\bar{I} \cap H^c)$.

Sei
$$D \subseteq \mathbb{R}^n$$
 mit $\lambda_n^*(D) < \infty$, $\epsilon > 0$. Dann gibt es eine Überdeckung von D mit offenen Quadern (I_j) , so dass $\sum_{j=1}^{\infty} \operatorname{vol}_n(I_j) \leq \lambda_n^*(D) + \epsilon$.

Dann ist $(I_j \cap H)$ eine Überdeckung von $D \cap H$ mit offenen Quadern.

$$\lambda_n^*(D\cap H) \leq \sum_{i=1}^\infty \operatorname{vol}_n(I_i\cap H)$$

 $(\bar{l}_j \cap H^c)$ ist eine Überdeckung von $D \cap H^c$ mit abgeschlossenen Quadern. Satz 1.55:

$$\lambda_n^*(D \cap H^c) \leq \sum_{j=1}^{\infty} \operatorname{vol}_n(\bar{I}_j \cap H^c)$$

 $(\bar{I}_j \cap H^c)$ ist eine Überdeckung von $D \cap H^c$ mit abgeschlossenen Quadern. Satz 1.55:

$$\lambda_n^*(D \cap H^c) \le \sum_{j=1}^{\infty} \operatorname{vol}_n(\bar{I}_j \cap H^c)$$

Addieren

$$\lambda_n^*(D \cap H) + \lambda_n^*(D \cap H^c) \le \left(\sum_{j=1}^{\infty} \operatorname{vol}_n(I_j \cap H)\right) + \left(\sum_{j=1}^{\infty} \operatorname{vol}_n(\overline{I_j} \cap H^c)\right)$$
$$= \sum_{j=1}^{\infty} \operatorname{vol}_n(I_j) \le \lambda_n^*(D) + \epsilon.$$

Da $\epsilon > 0$ beliebig war, folgt die Messbarkeit von H.

Satz 1.67

Sei λ_n^* das Lebesguessche äußere Maß. Dann gilt $\mathcal{B}^n\subseteq\mathcal{A}(\lambda_n^*)$.

Satz 1.67

Sei λ_n^* das Lebesguessche äußere Maß. Dann gilt $\mathcal{B}^n \subseteq \mathcal{A}(\lambda_n^*)$.

Beweis. Sei $a \le b$. Dann ist

$$[a,b) = \bigcap_{k=1}^{n} (\{x \in \mathbb{R}^n : x_k < a_k\}^c \cap \{x \in \mathbb{R}^n : x_k < b_k\}).$$

Satz 1.67

Sei λ_n^* das Lebesguessche äußere Maß. Dann gilt $\mathcal{B}^n \subseteq \mathcal{A}(\lambda_n^*)$.

Beweis. Sei a < b. Dann ist

$$[a,b) = \bigcap_{k=1}^{n} (\{x \in \mathbb{R}^n : x_k < a_k\}^c \cap \{x \in \mathbb{R}^n : x_k < b_k\}).$$

Wegen Lemma 1.66 alles λ_n^* -messbar, also [a, b) λ_n^* -messbar.

Satz 1.67

Sei λ_n^* das Lebesguessche äußere Maß. Dann gilt $\mathcal{B}^n \subseteq \mathcal{A}(\lambda_n^*)$.

Beweis. Sei $a \le b$. Dann ist

$$[a,b) = \bigcap_{k=1}^{n} (\{x \in \mathbb{R}^n : x_k < a_k\}^c \cap \{x \in \mathbb{R}^n : x_k < b_k\}).$$

Wegen Lemma 1.66 alles λ_n^* -messbar, also [a,b) λ_n^* -messbar.

$$\Rightarrow \ \mathbb{J}_r(n) \subseteq \mathcal{A}(\lambda_n^*) \ \Rightarrow \ \mathcal{B}^n = \mathcal{A}_\sigma(\mathbb{J}_r(n)) \subseteq \mathcal{A}(\lambda_n^*).$$