Calculus I, Gradescope Assignment, Week 7

Q1. Find an expression for $\frac{dy}{dx}$ in terms of x and y given the relation $2y^{3/2} + xy - x = 0$. 2 marks

Solution:

Differentiating with respect to x gives $3\sqrt{y}y' + y + xy' - 1 = 0$ 1 mark hence $y' = (1 - y)/(3\sqrt{y} + x)$. 1 mark

Q2. Given that y is a differentiable function of x and satisfies the equation, $x^3 - 2y^2 + xy = 0$, calculate y' at the point (x, y) = (1, 1). 3 marks

Solution:

Differentiating with respect to x gives $3x^2 - 4yy' + y + xy' = 0$ 1 mark At (x, y) = (1, 1) this becomes 3 - 4y' + 1 + y' = 01 mark so y' = 4/3. 1 mark

Q3. Find all local maxima and minima, and hence the global extreme values, of

$$f(x) = x^4 - 2x^2 + 1$$
 in the interval $[-2, 2]$. 7 marks

Solution:

Solution:

Note that $f(x) = x^4 - 2x^2 + 1$ is twice differentiable at all points.

$$f'(x) = 4x(x^2 - 1)$$
, hence $f'(x) = 0$ at $x = 0, \pm 1$, which are all in $[-2, 2]$. 1 mark Also, $f''(x) = 4(3x^2 - 1)$.

$$f''(0) = -4 < 0$$
, hence $x = 0$ is a local maximum with $f(0) = 1$. 1 mark $f''(\pm 1) = 8 > 0$, hence $x = \pm 1$ are local minima with $f(\pm 1) = 0$. 1 mark

$$f''(\pm 1) = 8 > 0$$
, hence $x = \pm 1$ are local minima with $f(\pm 1) = 0$.

$$f'(-2) = -24 < 0$$
, hence $x = -2$ is an endpoint maximum with $f(-2) = 9$. 1 mark

$$f'(2) = 24 > 0$$
, hence $x = 2$ is an endpoint maximum with $f(2) = 9$. 1 mark
The global minimum is therefore 0 1 mark

1 mark

10 marks

Q4. Find the global extreme values of $f(x) = x|x^2 - 6| - \frac{3}{2}x^2 + 2$ in [-2, 4].

Note that $f(x)=x|x^2-6|-\frac{3}{2}x^2+2$ is differentiable everywhere in (-2,4) except at 1 mark

First restrict to $x \in (-2, \sqrt{6})$, then $f(x) = -x(x^2 - 6) - \frac{3}{2}x^2 + 2$ with

$$f'(x) = -3x^2 + 6 - 3x = -3(x+2)(x-1).$$

Hence
$$f'(x) = 0$$
 in $(-2, \sqrt{6})$ iff $x = 1$. $f(1) = \frac{11}{2}$.

Now restrict to $x \in (\sqrt{6},4),$ then $f(x) = x(x^2-6) - \frac{3}{2}x^2 + 2$ with

$$f'(x) = 3x^2 - 6 - 3x = 3(x - 2)(x + 1).$$
 1 mark Hence $f'(x) \neq 0$ in $(\sqrt{6}, 4)$. 1 mark

The only other possibilities for the global extreme values are $x=\sqrt{6}$ (where f(x) is not differentiable) and the endpoints x = -2, 4. Checking these values gives

$$f(\sqrt{6}) = -7$$

$$f(-2) = -8 1 \text{ mark}$$

$$f(4) = 18. 1 \text{ mark}$$

The global maximum is
$$\max\{\frac{11}{2}, -7, -8, 18\} = 18$$
. 1 mark

1 mark

1 mark

1 mark

The global minimum is
$$\min\{\frac{11}{2}, -7, -8, 18\} = -8$$
.

Q5. Either find the global maximum or justify that it does not exist for $f(x) = x^4 - 2x^2$ in $\left[-\frac{1}{3}, \frac{4}{3}\right],$ 6 marks

Solution:

$$f'(x) = 4x(x^2 - 1) = 0$$
 in $(-\frac{1}{3}, \frac{4}{3})$ iff $x = 0, 1$.

$$f(0)=0 \hspace{1.5cm} 1 \hspace{1.5cm} \mathrm{mark}$$

$$f(1) = -1$$
 1 mark

$$f(-\frac{1}{3}) = -\frac{17}{81}$$
 1 mark
$$f(\frac{4}{3}) = -\frac{32}{81}$$
 1 mark

$$f(\frac{3}{3}) = \frac{32}{81}$$
1 mark

Q6. Either find the global maximum or justify that it does not exist for
$$f(x)=x^4-2x^2$$
 in $[-\frac{1}{3},2].$ 2 marks

Solution:

Same as in the previous question, $f'(x) = 4x(x^2 - 1) = 0$ in $(-\frac{1}{3}, 2)$ iff x = 0, 1.

$$f(0) = 0, \ f(1) = -1, \ f(-\frac{1}{3}) = -\frac{17}{81}$$

except that now
$$f(2) = 8$$
 1 mark

Q7. Either find the global maximum or justify that it does not exist for $f(x) = x^4 - 2x^2$ in (0,1].4 marks

Solution:

$$f'(x) = 4x(x^2 - 1) < 0 \text{ in } (0, 1)$$
 1 mark

so
$$f(x)$$
 is decreasing in this interval. 1 mark

As the left-hand point is not contained in the given interval
$$(0,1]$$
 1 mark

then there is no global maximum in
$$(0,1]$$
. 1 mark