

Emotion Detection from Uploaded Images

Using CNNs and Facial Feature Extraction

<u>Introduction</u>

Objective:-Developing a system that accurately detects and classifies emotions from facial images using CNNs.

Used In:-

- Healthcare: Mental health monitoring.
- Education: Understanding student emotions in virtual classrooms.
- Customer Service: Monitoring customer satisfaction during interactions.

Problem Statement

The challenge is to **accurately detect human emotions from facial images**. Traditional methods struggle due to:

Variability in Expressions:

- Micro-expressions: Tiny, quick facial changes that are hard to catch.
- Subtle emotions: Slight differences in expressions (e.g., a small smile vs. a big grin) are difficult to detect.
- Cultural & Individual Differences: People express emotions differently based on culture and personality.

External Factors:

- Lighting: Poor lighting makes it hard to read faces.
- Occlusion: Objects (glasses, hands) can block parts of the face.
- **Image Quality**: Blurry or low-quality images reduce accuracy.

Solution Overview

The proposed solution is to develop a comprehensive **end-to-end system** for emotion detection that combines three core components:

1. CNN-based Emotion Classification:

- Utilize Convolutional Neural Networks (CNNs) to classify emotions from facial images.
- The CNN model will be trained and fine-tuned using the **FER-2013 dataset**.

2. Facial Detection and Landmark Extraction:

- Implement facial detection to identify and isolate the face in the uploaded images.
- Use tools like **Dlib** or **Mediapipe** to extract key facial landmarks (e.g., eyes, nose, mouth) to improve emotion classification.

3. **User-Friendly Interface**:

- Design a Streamlit-based interface that allows users to upload images easily.
- Ensure the system is responsive, guiding the user to upload valid image files only.

Key Technologies

- Programming Language: Python
- Framework & Tools: Streamlit, CNNs (for emotion classification), Dlib/Mediapipe (for facial detection and landmarks)
- Dataset: FER-2013 (for training and validation)

Dataset and Preprocessing

Dataset: FER-2013

- The FER-2013 dataset consists of 35,887 grayscale images, each with a resolution of 48x48 pixels, labeled into 7 emotion categories:
 - Angry, Disgust, Fear, Happy, Sad, Surprise, and Neutral.

Data Split

The dataset is split into:

• Training set: 80%

Validation set: 10%

Test set: 10%

Preprocessing Techniques

- **Rescaling**: All images are resized to the same dimensions (48x48 pixels).
- Normalization: Pixel values are normalized to scale them between 0 and 1 for better model convergence.
- Data Augmentation:
 - Random flips: Horizontal flipping to increase data variety.
 - Rotations: Randomly rotating the images to make the model more robust to orientation changes.

Sample Images

Landmark Extraction (Facial Features)

Tools Used

- Dlib / Mediapipe:
 - These libraries are used to extract **key facial landmarks** such as eyes, nose,
 - mouth, and jawline.
 - Landmarks help identify facial structure and movements, which are critical for emotion analysis.

Role in Emotion Detection

- Facial landmarks provide significant cues for detecting emotions.
 - For example:
 - Raised eyebrows often indicate surprise.
 - Frowning or downward mouth corners suggest sadness.
 - By tracking these points, the model can better understand subtle facial changes related to emotional expressions.

CNN Architecture

Model Overview

- 1. Input Layer:
 - 48x48 grayscale images.
- 2. Convolutional Layers:
 - o Conv1: 32 filters, 3x3 kernel.
 - o Conv2: 64 filters, 3x3 kernel.
 - Conv3: 128 filters, 3x3 kernel.
- 3. **Pooling Layers**:
 - MaxPooling (2x2) after each convolution to reduce dimensions.
- 4. Fully Connected Layers:
 - FC1: 256 neurons.
 - FC2: Output to 7 emotion classes.
- 5. **Dropout Layer**:
 - 50% dropout to prevent overfitting.
- 6. **Softmax Activation**:
 - Output probabilities for each emotion class.

Key Details:

- **Batch Size**: Adjustable (e.g., 32, 64).
- Optimizer: Adam or SGD with learning rate scheduling.
- Loss Function: Categorical Cross-Entropy.

Hyperparameter Tuning and Training

Hyperparameter Tuning

- Learning Rate: Experimented values (e.g., 0.001, 0.0001).
- Batch Size: Varying between 32, 64, 128.
- Epochs: Set to 30, with early stopping to avoid overfitting.

Training Process

- Loss Function: Minimized categorical cross-entropy.
- Optimizer: Used Adam with decay and momentum for stable convergence.
- Early Stopping: Stops training if the loss does not improve after a set number of epochs (patience), saving computation time and preventing overfitting.

Training Loop Overview:

- Epochs: 30 total, adjusting the model for optimal performance.
- Accuracy Tracking: For each epoch, accuracy is calculated and printed alongside the loss.
- Early Stopping: Activated when the validation loss plateaus, stopping further training to save time and avoid overfitting.

Performance Metrics

Evaluation Metrics

- **Accuracy**: 0.6037 Percentage of correctly classified images.
- **Precision**: 0.6082 Positive predictive value for each emotion category.
- **Recall**: 0.6037 Sensitivity, or true positive rate, for each emotion category.
- **F1-Score**: 0.6032 Harmonic mean of precision and recall, providing a balanced performance measure.

<u>User Interface (Streamlit App)</u>

Streamlit Application

- **Image Upload**: Validates image file type (JPEG/PNG) and size to ensure only supported files are uploaded.
- Real-time Results: Provides immediate emotion detection feedback after the image is uploaded.
- Responsive UI: Designed to be intuitive and user-friendly, ensuring smooth interaction across devices.

App Features

- Error Handling: Displays an error message if an unsupported file type is uploaded.
- Emotion Display: Shows detected emotions with corresponding probability scores for transparency.

Screenshots of the Streamlit Interface

Challenges and Solutions

Challenges Faced

- Imbalanced Dataset: Some emotions had more samples, affecting model balance.
- Handling Difficult Emotions: Distinguishing between subtle emotions like neutral vs. sad.

Solutions

- **Data Augmentation**: Enhanced dataset diversity by applying transformations (e.g., flips, rotations).
- Advanced Architectures: Experimented with deeper models like ResNet and VGG to improve feature extraction.

Ethical Considerations

Privacy Concerns

Emphasize user consent and data protection when dealing with facial data.

Bias in Emotion Detection

Address cultural bias: Emotion expressions can vary across cultures and regions.

Mitigation Strategies

- Bias Detection: Regular checks to identify and reduce bias in predictions.
- **Diversified Dataset**: Including varied demographic data.
- Transparency: Clear communication on how predictions are made.

Future Work

<u>Improvements</u>

- Video-Based Emotion Detection: Expand from static images to real-time video (multiple frames).
- Large-Scale Deployment: Hosting on cloud services for scalability and availability.

Conclusion

Summary

- Built a CNN-based system for emotion detection from images.
- Achieved good performance with Accuracy, Precision, and Recall of 62% across various emotions.
- Real-World Uses: Can be used in healthcare and education to better understand people's emotions.

"Al for Human Understanding"