Progettazione e sviluppo di una interfaccia web-based per la visualizzazione e il monitoraggio di reti basate su SDN

Tesi di Laurea in Ingegneria Informatica

CandidatoGabriele Pianigiani

Relatori

Dott. Antonio Virdis Prof. Enzo Mingozzi

Introduzione e Problema

- **SDN**: Software Defined Networking descrive un'architettura che consente la gestione di una rete informatica basata su software. Piano dati e piano di controllo vengono separati fisicamente, il primo è distribuito, mentre il secondo risulta logicamente centralizzato
- **Architettura**: SDN è costituito da tre livelli:
 - Livello basso
 - Livello medio
 - Livello alto
- Controllore SDN

- **Problema**: il controllore di riferimento è Floodlight, il quale offre all'utente una interfaccia che consente la visualizzazione statica di alcune informazioni riguardo la rete, non vi è la possibilità di osservare statistiche in tempo reale per monitorare lo stato di una rete
- **Obiettivo**: creare una interfaccia web-based che consenta ad un gestore della rete di visualizzare informazioni in tempo reale sullo stato della rete in modo da riscontrare malfunzionamenti o situazioni di sovraccarico

Gabriele Pianigiani 2

Architettura e Componenti

Le componenti principali per lo sviluppo dell'applicazione sono le seguenti:

- **Floodlight**: controllore SDN utilizzato, il quale offre alcune API che consentono di ricavare informazioni relative alla rete
- **Backend**: creazione di pagine in linguaggio PHP con i seguenti scopi:
 - **Visualizzazione** delle informazioni sulla rete
 - **Interazione** con il controllore sfruttando le API
 - Aggiornamento dei dati in tempo reale
- **Frontend**: gestione dell'interazione con l'utente utilizzando:
 - **JavaScript**: creazione della topologia di rete e gestione delle interazioni tra essa e l'utente
 - AJAX: aggiornamento asincrono delle componenti dinamiche dell'interfaccia

- Pagina principale: costituita dai seguenti elementi:
 - Numero di componenti presenti nella rete
 - Form per inserire un range di throughput
 - Topologia di rete con statistiche dinamiche

- **Pagine secondarie**: contengono tabelle in forma estesa:
 - Flow table
 - Port table
 - Throughput table

- Una volta creata l'interfaccia risulta necessario verificare la correttezza e la coerenza delle informazioni visualizzate, questa fase si suddivide in due step:
 - Creazione di un prototipo di rete, composto da host e switch virtuali
 - Generazione di traffico nella rete simulata in modo da testarne le prestazioni
- Gli strumenti utilizzati nei due step sono i seguenti:
 - **Mininet**: utilizzato per creare una rete virtuale che si comporta come se fosse reale
 - **Iperf**: utilizzato per inviare una certa quantità di byte ad una certa bandwidth tra due host

Gabriele Pianigiani 5