

$$\frac{1}{2} \lim_{A \to \infty} \left[-\frac{\cos x}{x^2} \right]_{3}^{A} - \int_{3}^{3} \frac{\cos x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\cos A}{x^2} + \frac{\cos x}{3} \right) - \int_{3}^{3} \frac{\cos x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\cos A}{x^2} + \frac{\cos x}{3} \right) - \int_{3}^{3} \frac{\cos x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\cos A}{x^2} + \frac{\cos x}{3} \right) - \int_{3}^{3} \frac{\cos x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\cos x}{x^2} \right) - \int_{3}^{3} \frac{\cos x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\cos x}{x^2} \right) - \int_{3}^{3} \frac{\cos x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\cos x}{x^2} \right) - \int_{3}^{3} \frac{\cos x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\cos x}{x^2} \right) - \int_{3}^{3} \frac{\cos x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\cos x}{x^2} \right) - \int_{3}^{3} \frac{\cos x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\cos x}{x^2} \right) - \int_{3}^{3} \frac{\sin x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\cos x}{x^2} \right) - \int_{3}^{3} \frac{\sin x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\sin x}{x^2} \right) - \int_{3}^{3} \frac{\sin x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\sin x}{x^2} \right) - \int_{3}^{3} \frac{\sin x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\sin x}{x^2} \right) - \int_{3}^{3} \frac{\sin x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\sin x}{x^2} \right) - \int_{3}^{3} \frac{\sin x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\sin x}{x^2} \right) - \int_{3}^{3} \frac{\sin x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\sin x}{x^2} \right) - \int_{3}^{3} \frac{\sin x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\sin x}{x^2} \right) - \int_{3}^{3} \frac{\sin x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\sin x}{x^2} \right) - \int_{3}^{3} \frac{\sin x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\sin x}{x^2} \right) - \int_{3}^{3} \frac{\sin x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\sin x}{x^2} \right) - \int_{3}^{3} \frac{\sin x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\sin x}{x^2} \right) - \int_{3}^{3} \frac{\sin x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\sin x}{x^2} \right) - \int_{3}^{3} \frac{\sin x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\sin x}{x^2} \right) - \int_{3}^{3} \frac{\sin x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\sin x}{x^2} \right) - \int_{3}^{3} \frac{\sin x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\sin x}{x^2} \right) - \int_{3}^{3} \frac{\sin x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\sin x}{x^2} \right) - \int_{3}^{3} \frac{\sin x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\sin x}{x^2} \right) - \int_{3}^{3} \frac{\sin x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\sin x}{x^2} \right) - \int_{3}^{3} \frac{\sin x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\sin x}{x^2} \right) - \int_{3}^{3} \frac{\sin x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\sin x}{x^2} \right) - \int_{3}^{3} \frac{\sin x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\sin x}{x^2} \right) - \int_{3}^{3} \frac{\sin x}{x^2} dx$$

$$= \lim_{A \to \infty} \left(-\frac{\sin x}{x^2} \right) - \int_{3}^{3} \frac{\sin x}{x^2} dx$$

$$= \lim_{A \to \infty} \left($$

Oss. Per gli integrali impropri con problema all'infinito non è
detta che valga la cond. necessaria come per la serie, cioè
l'integrale può couvergere auche se lin € (x) non esiste,
wate was sample pulleduck.
auello che uou può succedere è che lim $f(x) = l \neq 0$.
[CRITERIO DI DIRICHLET] Considerians un integrale impropris del tipo
100
S acx b(x) dx
Supporiaus che
(i) la primitiva A(x) di a(x) è una funcione limitata
(ii) la femisione b(x) à di classe C1, decrescente e tende a 0
per x -> +00. Allora l'integrale improprio comerge.
Dim Come nei due esempi precedenti
liu $\int a(x)b(x)dx - liu \{ [A(x)b(x)] - \int A(x)b'(x)dx \}$ $R \to +\infty$ M Q G $R \to +\infty$ F G M M Q Q
= lim $\{A(R)b(R) - A(M)b(M) - \int_{M}^{R} A(x)b'(x)dx\}$
= live { A(R)b(R) - A(M)b(M) - S A(x)b'(x)dx} R-3+00 M Perché A è Perché A è
limitato e b(R) ->0
$= -A(m)b(m) - \int_{M}^{\infty} A(x)b'(x)dx$
Spers du couverga
à solut amente

