

관계 중심의 사고법

쉽게 배우는 알고리즘

12주차 해시테이블

해시테이블

해시 테이블 개요

- 가장 빠른 검색 성능을 제공(*O*(1))
- 용도
 - 키 암호 알고리즘
 - 컴파일러의 심볼테이블
 - 데이터베이스 저장 스킴,
 - 데이터 동기화 검증(rsync, dropbox)
 - 개인 정보 보호 인터넷 주소 암호화(Yahoo 의 경우)

해시함수

```
int OAHT_Hash( KeyType Key, int KeyLength, int TableSize )
{
   int i = 0;
   int HashValue = 0;
        typedef char* KeyType;
        typedef char* ValueType;
        typedef char* ValueType;
}

HashValue = (HashValue << 3) + Key[i];
}

HashValue = HashValue % TableSize;
   return HashValue;
}</pre>
```

```
char key[50] = "BK";
int szHashTable = 13;
printf("key = %s, hash = %d\mm\n", key, OAHT_Hash(key, strlen(key), szHashTable));
```

해시함수

• 다음은 문자열 s 자료를 해쉬테이블에 저장하기 위해 사용하는 해쉬함수 hash_function() 을 보인 것이다.

```
# define HASHSIZE 31
int hash_function(char *s)
{
    unsigned hashval;

    for (hashval = 0; *s != '\text{\pmo}'; s++)
        hashval = *s + 31*hashval;
    return hashval % HASHSIZE;
```

해시함수

• 해쉬테이블의 크기는 HASHSIZE 에 설정한다. 자료 "home", "cat", "algorithm", "hash" 의 해쉬함수의 반환값을 하도록 프로 그램을 작성하여 결과를 보이시오.

```
home => 8
cat => 23
algorithm => 30
hash => 11
```

Collision

- Hash table의 한 주소를 놓고 두 개 이상의 원소가 자리를 다투는 것
 - Hashing을 해서 삽입하려 하니 이미 다른 원소가 자리를 차지 하고 있는 상황
- Collision resolution 방법은 크게 두 가지가 있다
 - 체이닝(Chaining)
 - 개방주소방법(Open addressing)

Hash Function

65가 삽입되기전 구성된 해시테이블을 보이시오

What happens when you try to insert: x = 65?

$$x = 65$$
 $f(x) = 5$
 $f(x) = x \% 15$

This is called a collision.

Collision의 예

입력: 25, 13, 16, 15, 7

0	13
1	
2	15
3	16
4	
5	
6	
7	7
8	
9	
10	
11	
12	25

 $h(29) = 29 \mod 13 = 3$

29를 삽입하려 하자 이미 다른 원소가 차지하고 있다!

Hash function $h(x) = x \mod 13$

Collision Resolution

- 체이닝(Chaining)
 - 같은 주소로 hashing되는 원소를 모두 하나의 linked list로 관리한다
 - 추가적인 linked list 필요
- 개방주소방법(Open addressing)
 - Collision이 일어나더라도 어떻게든 주어진 테이블 공간에서 해결한다
 - 추가적인 공간이 필요하지 않다

Chaining을 이용한 Collision Resolution의 예

Lab. Chaining을 이용한 Collision Resolution

Let each array element be the head of a chain.

$$f(x) = x \% 15$$

Where would you store: 29, 16, 14, 99, 127?

Solution. Chaining을 이용한 Collision Resolution

Let each array element be the head of a chain:

Where would you store: 29, 16, 14, 99, 127?

New keys go at the front of the relevant chain.

개방주소 방법

- 빈자리가 생길 때까지 해시값을 계속 만들어 낸다
 - $h_0(x)$, $h_1(x)$, $h_2(x)$, $h_3(x)$, ...
- 중요한 세가지 방법
 - 선형 조사
 - 이차원 조사
 - 더블 해싱

선형 조사Linear Probing

$$h_i(x) = (h(x) + i) \bmod m$$

예: 입력 순서 25, 13, 16, 15, 7, 28, 31, 20, 1, 38

		-
0	13	
1		
2	15	ŀ
3	16	1
4	28	ľ
4 5		
6		
7	7	
8		
9		
10		
11		
12	25	

		_
0	13	
1		
2	15	
3	16	
4 5	28	
5	31	
6		
7	7	ŀ
8	20	4
9		
10		
11		
12	25	

_	
0	13
1	1
2	15
3	16
4	28
5	31
6	38
7	7
8	20
9	
10	
11	
12	25

 $h_i(x) = (h(x) + i) \bmod 13$

선형 조사는 1차군집에 취약하다

1차군집: 특정 영역에 원소가 몰리는 현상

0	
1	
2	15
3	16
4	28
5	31
6	44
7	
8	
9	
10	
11	37
12	

← 1차군집의 예

이차원 조사Quadratic Probing

$$h_i(x) = (h(x) + c_1i^2 + c_2i) \mod m$$

예: 입력 순서 15, 18, 43, 37, 45, 30

0	
1	
2	15
3	
4	43
5	18
6	45
7	
8	30
9	
10	
11	37
12	

$$h_i(x) = (h(x) + i^2) \mod 13$$

이차원 조사는 2차군집에 취약하다

2차군집: 여러 개의 원소가 동일한 초기 해시 함수값을 갖는 현상

0	
1	
2	15
3	28
4	
5	54
6	41
7	
8	21
9	
10	
11	67
12	

← 2차군집의 예

더블 해싱Double Hashing

$$h_i(x) = (h(x) + i f(x)) \bmod m$$

예: 입력 순서 15, 19, 28, 41, 67

0	
1	
2	15
3	67
4	
5	
6	19
7	
8	28
9	
10	41
11	
12	

$$h_0(15) = h_0(28) = h_0(41) = h_0(67) = 2$$

 $h_1(67) = 3$

$$h_1(28) = 8$$

$$h(x) = x \mod 13$$

 $h_1(41) = 10$ $f(x) = x \mod 11$
 $h_i(x) = (h(x)+i f(x)) \mod 13$

삭제시 조심할 것

개방주소 선형 조사시

13
1
15
16
28
31
38
7
20
25

H(25) = H(38) = 12

		Q
0	13	
1		V
2	15	
3	16	
4	28	
5	31	
6	38	
7	7	
8	20	
9		
10		
11		
12	25	

(a) 원소 1 삭제

(b) 38 검색, 선형조사 수형
문제발생
결과없음을 반환

0	13	
1	DELETED	K
2	15	K
3	16	K
4	28	K
5	31	STANA STANA
6	38	
7	7	
8	20	
9		
10		
11		
12	25	

(c) 표식을 해두면 문제없다

문제풀이

```
- 계산이 간단해야 한다↓
(pp.228-229) 충돌해결 방법 중 체이닝(chaining)을 사용하여 자료가 해시테이블에 저장될 때 적재율과 충돌횟수를 각각 작성하시오.↓
(pp.230-232) 선형조사와 이차원 조사의 문제점을 각각 작성하시오.↓
(pp. 233-236) 해시테이블에서 자료 <u>삭제시</u> 발생할 수 있는 문제점과 해결방법을 각각 작성하시오.↓
(pp. 237) 체인당 방법을 사용할 때 적재율이 α일때, 실패하는 검색에 조사횟수의 기대치는 α이다.↓
```

과제

Test_Chaining.c 의 내용을 참고하여 자료를 해시테이블에 추가할 때 다음의 답하시오. 단, 해시 테이블의 크기는 10, 13, 15에 대해 각각 결과를 구하시오.

- 1) 새롭게 추가된 자료의 해시값를 출력하시오.
- 2) 해시테이블의 적재율(Load factor)를 구하시오
- 3) 해시테이블의 충돌(collision)의 발생 횟수와 관련 키를 구하시오.

제공된 프로그램을 사용하여 과제를 수행하고 해당 과제내용별로 출력내용을 보이시오.