Chapitre

Lois de base en régime continu

1. Puissance et mode de fonctionnement

On cherche à déterminer les puissances associées au dipôles D1 et D2. On sait que le circuit fonctionne avec U = 6V et I = 0.5A.

On calule la puissance avec $P=U\times I$. Il faut donc obtenir la tension et ainsi que l'intensité (le courant) qui traversent D1. On introduit pour cela 2 points C et D placés à l'entrée et à la sortie de D_1 . On remarque que la tension entre ces deux points est la même qu'entre A et B, donc $u=U_{D_1}=U$. Au point C un courant i arrive et repart au point D. I=i.

La puissance vaut donc $P = U_{AB}i$.

On remarque que dans D_1 , $\overrightarrow{U_{AB}}$ est dans le même que celui du courant traversant le dipôle. On en déduit que D_1 est en convention générateur. Il va donc perdre de la puissance pour en fournir au circuit. Sa puissance sera donc négative. $^{\times}$

De la même manière, on introduit pour cela 2 points E et F placés à l'entrée et à la sortie de D_2 . On remarque que la tension entre ces deux points est la même qu'entre A et B, donc $u=U_{D_2}=U$ $^{\mathbb{Q}}$. Au point E un courant i arrive et repart au point f. I=i.

La puissance vaut donc $P = U_{AB}i$.

On remarque que dans D_2 , $\overrightarrow{U_{AB}}$ est dans le sens contraire au courant traversant le dipôle. On en déduit que D_1 est en convention récepteur.

× Difficulté

Pour trouver le signe de la puissance, on étudie non pas l'effet du dipole sur le circuit, mais ce qui se passe dans le dipôle. Ici, comme le dipôle fournit de l'énergie, lui en perd, d'où une puissance négative.

Astuce

On peut le vérifier. Il y a un générareur de tension 3V en série avec une résistance de 6ω . La tension de la résistance vaut $U=RI=6\times0.5=3$, donc $U_{D_2}=3+3=6$ V, ce qui correspond à U

Il va donc gagner de la puissance pour fonctionner. Sa puissance sera donc positive.

1. 12 oi des noeuds / loi des mailles

1.2. Loi des noeuds

On peut utiliser la loi des noeuds pour trouver des relations entre différents courants en un point. Par exemple, si un courant i_1 arrive en un point et deux courants i_2 et i_3 , alors $i_1 - i_2 - i_3 = 0 \iff i_1 = i_2 + i_3$

1.2.2oi des mailles

On peut utiliser la loi des mailles pour trouver des relations entre la tension de différents dipôles.

Résistances

En présence de résistance, on peut facilement combiner ces 2 lois en utilisant la relation $U=R\times I$.

Exemple V

On se trouve dans la situation suivante :

On cherche à exprimer la tension aux bornes du générateur en fonction de I_1 et des résistances.

On va d'abord simplifier le circuit en introduisant R_A la résistance équivalente à R_1 et R_5 et R_B la résistance équivalente à R_2 et R_3 . En appliquant les formules de résistance en série, on obtient $R_A=R_2+R_3$ et $R_B=R_1+R_5$. $^{\bigcirc}$

On obtient le schéma suivant :

Astuce

Comme les 2 résistances équivalentes sont des équivalences de résistances en séries, le courant qui passe par la résistance équivalente est le même qui passe dans les 2 résistances originelles. ÉLECTROCINÉTIQUE & Lois de base en régime continu, Exemple V)

On peut exprimer la relation entre les courants aux points A et B. On a $I_1=I_2+I_3$. On va maintenant exprimer les courants traversants chaque dipôle en fonction de I_1 et des résistances. D'après l'expression précédente, on a $I_1=\frac{U_4}{R_4}+\frac{U_B}{R_B}$.

En effet,
$$I_2=rac{U_4}{R_4}$$
 et $I_3=rac{U_B}{R_B}$

Il faut ensuite remarquer que $U_4=U_B=U_{AB}$. Avec cette nouvelle égalité, on va pouvoir exprimer U_{AB} en fonction de I_1 et des résistances. En effet, on a

$$I_{1} = \frac{U_{AB}}{R_{4}} + \frac{U_{AB}}{R_{B}}$$

$$= \frac{U_{AB}(R_{4} + R_{B})}{R_{4}R_{B}}$$

$$U_{AB} = I_{1}\frac{R_{4}R_{B}}{R_{4} + R_{B}}$$

On peut maintenant exprimer les courants I_2 et I_3 en fonction de I_1 et des résistances :

$$I_2 = \frac{U_{AB}}{R_4}$$

$$= I_1 \frac{R_B}{R_4 + R_B}$$

$$I_3 = \frac{U_{AB}}{R_B}$$

$$= I_1 \frac{R_4}{R_4 + R_B}$$

En appliquant la loi des mailles à celle qui contient le générateur, on obtient cette égalité : $E_1-U_A-U_4=0$ où l'on peut remplacer U_A et U_4 par leurs expression :

$$E_1 = U_A + U_4$$
$$= R_1 \times I_1 + R_4 \times I_2$$

Ainsi, en connaissant uniquement I_1 et les valeurs des résistances, on peut calculer la valeur de E_1 .