Quiz 4 Score: 13/14

1. What is hierarchical clustering?

A method for classifying objects into a structure of clusters

A method for dimensionality reduction

A method for outlier detection

A method for regression analysis

Explanation

Hierarchical clustering is a type of clustering algorithm that builds a hierarchy of clusters. It can be agglomerative (bottom-up) or divisive (top-down).

2. Which of the following is a linkage criterion used in hierarchical clustering?

Single-linkage

Spectral clustering

Random noise clustering

DBSCAN clustering

Explanation

Linkage criteria determine the distance between clusters and impact the structure of the dendrogram in hierarchical clustering. Common linkage criteria include single-linkage, complete-linkage, average-linkage, and ward's method.

3. In DBSCAN clustering, what is the meaning of 'epsilon'?

Minimum number of points to form a cluster

Maximum distance between two data points to form a cluster

Maximum distance between two data points to be considered as in the same neighborhood

Minimum distance to form a core object

Explanation

'Epsilon' is the maximum distance between two data points to be considered as in the same neighborhood. It is a crucial parameter in DBSCAN algorithm.

4. What does the 'minPts' parameter represent in DBSCAN clustering?

Maximum distance between two data points to form a cluster

Explanation

Minimum distance to form a core object

Minimum number of points to form a cluster

Maximum number of iterations in the algorithm

'minPts' defines the minimum number of data points required to form a dense region in DBSCAN clustering. It influences the differentiation of core, border, and outlier points in the dataset.

5. What is the time complexity of hierarchical clustering?

O(n^2)

O(n log n)

O(n^3)

O(n)

Explanation

The time complexity of hierarchical clustering is generally O(n^3), where n is the number of data points. This makes it computationally expensive for large datasets.

6. Which of the following is a disadvantage of hierarchical clustering?

Can handle large datasets efficiently

Not sensitive to noise and outliers

Computationally expensive for large datasets

Requires predetermined number of clusters

Explanation

One disadvantage of hierarchical clustering is its computational complexity, especially for large datasets. It also suffers from sensitivity to noise and outliers.

7. In hierarchical clustering, what do dendrograms represent?

Visual representation of k-means clusters

Graphical representation of DBSCAN clustering

Illustration of the arrangement of clusters

Visualization of support vector machine decisions

Explanation

Dendrograms are tree-like diagrams that illustrate the arrangement of the clusters produced by hierarchical clustering. They are useful for understanding the hierarchical relationships among data points.

Centroid-based clustering	Explanation
Density-based clustering	DBSCAN is a density-based clustering algorithm that can identify clusters of irregular shapes and is robust to noise and outliers in the data.
Partitioning clustering	
Agglomerative clustering	
9. Which of the following is a characteristic of	DBSCAN clustering?
Suitable only for spherical clusters	Explanation
Sensitive to noise and outliers	DBSCAN can identify clusters of arbitrary shape and sizes, making it effective in scenarios wher clusters have varying densities and shapes.
Can identify clusters of arbitrary shapes and sizes	
Requires predefined number of clusters	
0. In DBSCAN clustering, what is a 'core point'	'?
•	'? Explanation
O. In DBSCAN clustering, what is a 'core point' A noise point A border point	Explanation A 'core point' is a data point that has at least 'minPts' data points within a distance of 'epsilor
A noise point	Explanation A 'core point' is a data point that has at least
A border point A data point with at least 'minPts' data	Explanation A 'core point' is a data point that has at least 'minPts' data points within a distance of 'epsilor indicating that it is in a dense region and likely
A noise point A border point A data point with at least 'minPts' data points within 'epsilon' A point with maximum distance to form a cluster	Explanation A 'core point' is a data point that has at least 'minPts' data points within a distance of 'epsilor indicating that it is in a dense region and likely part of a cluster.
A noise point A border point A data point with at least 'minPts' data points within 'epsilon' A point with maximum distance to form a cluster	Explanation A 'core point' is a data point that has at least 'minPts' data points within a distance of 'epsilor indicating that it is in a dense region and likely part of a cluster.
A noise point A border point A data point with at least 'minPts' data points within 'epsilon' A point with maximum distance to form a cluster 1. What measure is commonly used to evalue	Explanation A 'core point' is a data point that has at least 'minPts' data points within a distance of 'epsilor indicating that it is in a dense region and likely part of a cluster.
A noise point A border point A data point with at least 'minPts' data points within 'epsilon' A point with maximum distance to form a cluster 1. What measure is commonly used to evalue clustering?	Explanation A 'core point' is a data point that has at least 'minPts' data points within a distance of 'epsilor indicating that it is in a dense region and likely part of a cluster. Explanation Explanation The most common measure for evaluating the quality of clustering in hierarchical clustering is
A noise point A border point A data point with at least 'minPts' data points within 'epsilon' A point with maximum distance to form a cluster 1. What measure is commonly used to evalue clustering? Silhouette coefficient	Explanation A 'core point' is a data point that has at least 'minPts' data points within a distance of 'epsilor indicating that it is in a dense region and likely part of a cluster. ate the quality of clustering in hierarchical Explanation The most common measure for evaluating the

Jaccard distance	Explanation
Cosine similarity	In hierarchical clustering, commonly used distance measures include Euclidean distance, Manhattan distance, and Mahalanobis distance among others.
Euclidean distance	
Hamming distance	
8. What is the main advantage of hierarchic	al clustering over k-means clustering?
Faster convergence	Explanation
Scalability to large datasets	One of the main advantages of hierarchical clustering over k-means clustering is that it does not require the number of clusters to be specified a priori, allowing for a more exploratory data analysis approach.
Does not require the number of clusters to be specified	
Robustness to noise and outliers	
4. In DBSCAN clustering, what is the purpose	of the 'eps-neighborhood' of a point?
To identify noise points	Explanation
To define the maximum cluster size	The 'eps-neighborhood' of a point includes all points within a distance of 'epsilon' from the given point. It is used to identify core points and expand clusters in DBSCAN.
To determine the density of the point	•