導函数が有界な函数の一接連競性

| 定理 ICRは区間であると仮定する(例: I=R, $R_{>0}$, $R_{\geq 0}$, [a,b], [a,b)). $f:I\rightarrow R$ は C^{\dagger} 級凶数で $\{f'(x)|x\in I\}$ は有界であると仮定する。 この2も、 $f:I\rightarrow R$ は一接連続になる。

記明 f'はI上有界なので, あるM>Dか符在して, |f(x)| ≦M (x ∈ I). 任意に E>O E とる。 X, Q ∈ I のとき,

 $|f(x)-f(a)| = \left|\int_{a}^{x} f'(t) dt\right| \leq \left|\int_{a}^{x} |f'(t)| dt\right| \leq \left|\int_{a}^{x} M dt\right| = M|x-a|.$

 $\delta = \frac{\ell}{M} 2\pi/22, |x-a| < \delta o 25,$

 $|f(x)-f(a)| \leq M|x-a| < M\delta = M \cdot \frac{\varepsilon}{M} = \varepsilon$.

これで「f:I→Rの一接連領性か示された。

例 $f(x) = \frac{1}{2}$ は $f'(x) = -\frac{1}{2}$ なので、 d>0 について、 $|f'(x)| \le \frac{1}{2}$ (x $\ge d$) なのか $f(x) = \frac{1}{2}$ は $x \ge d$ で - 接連発になる (x > 0 では - 接連発ではない). \Box