10. Implizit definierte Funktionen

Beispiele:

(1) $f(x,y) = x^2 + y^2 - 1$. $f(x,y) = 0 \iff y^2 = 1 - x^2 \iff y = \pm \sqrt{1 - x^2}$.

Sei $(x_0, y_0) \in \mathbb{R}^2$ mit $f(x_0, y_0) = 0$ und $g(x_0) > 0$. Dann existiert eine Umgebung U von x_0 und genau eine Funktion $g: U \to \mathbb{R}$ mit $g(x_0) = y_0$ und $f(x, g(x)) = 0 \ \forall x \in U$, nämlich $g(x) = \sqrt{1 - x^2}$

Sprechweisen: "g ist implizit durch die Gleichung f(x,y) = 0 definiert" oder "die Gleichung f(x,y) = 0 kann in der Form y = g(x) aufgelöst werden"

(2) $f(x,y,z) = y + z + \log(x+z)$. Wir werden sehen: \exists Umgebung $U \subseteq \mathbb{R}^2$ von (0,1) und genau eine Funktion $g: U \to \mathbb{R}$ mit g(0,-1) = 1 und $f(x,y,g(x,y)) = 0 \; \forall \; (x,y) \in U$.

Der allgemeine Fall: Es seien $p, n \in \mathbb{N}$, $\emptyset \neq D \subseteq \mathbb{R}^{n+p}$, D offen, $f = (f_1, \dots, f_p) \in C^1(D, \mathbb{R}^p)$. Punkte in D (bzw. \mathbb{R}^{n+p}) bezeichnen wir mit (x, y), wobei $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ und $y = (y_1, \dots, y_p) \in \mathbb{R}^p$, also $(x, y) = (x_1, \dots, x_n, y_1, \dots, y_p)$. Damit:

$$f' = \underbrace{\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_p}{\partial x_1} & \cdots & \frac{\partial f_p}{\partial x_n} \end{pmatrix}}_{=:\frac{\partial f}{\partial x}} \underbrace{\begin{pmatrix} \frac{\partial f_1}{\partial y_1} & \cdots & \frac{\partial f_1}{\partial y_p} \\ \vdots & & \vdots \\ \frac{\partial f_p}{\partial y_1} & \cdots & \frac{\partial f_p}{\partial y_p} \end{pmatrix}}_{=:\frac{\partial f}{\partial x} (p \times p) - \text{Matrix}}; \text{ also } f'(x, y) = \left(\frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y)\right)$$

Satz 10.1 (Satz über implizit definierte Funktionen)

Sei $(x_0, y_0) \in D$, $f(x_0, y_0) = 0$ und det $\frac{\partial f}{\partial y}(x_0, y_0) \neq 0$. Dann existiert eine offene Umgebung $U \subseteq \mathbb{R}^n$ von x_0 und genau eine Funktion $g: U \to \mathbb{R}^p$ mit:

(1)
$$(x, g(x)) \in D \ \forall x \in U$$

(2)
$$g(x_0) = y_0$$

$$(3) f(x, g(x)) = 0 \forall x \in U$$

$$(4) \ g \in C^1(U, \mathbb{R}^p)$$

(5)
$$\det \frac{\partial f}{\partial y}(x, g(x)) \neq 0 \ \forall x \in U$$

(6)
$$g'(x) = -\left(\frac{\partial f}{\partial y}(x, g(x))^{-1}\right) \cdot \frac{\partial f}{\partial x}(x, g(x)) \ \forall x \in U$$

Beweis

Definition: $F: D \to \mathbb{R}^{n+p}$ durch F(x,y) := (x, f(x,y)). Dann: $F \in C^1(D, \mathbb{R}^{n+p})$ und

$$F'(x,y) = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ & \ddots & & \vdots & & \vdots \\ & 0 & 1 & 0 & \cdots & 0 \\ \hline & \frac{\partial f}{\partial x}(x,y) & & \frac{\partial f}{\partial y}(x,y) \end{pmatrix}$$

Dann:

(I) $\det F'(x,y) \stackrel{\text{LA}}{=} \det \frac{\partial f}{\partial y}(x,y)$ $((x,y) \in D)$, insbesondere: $\det F'(x_0,y_0) \neq 0$. Es ist $F(x_0,y_0)=(x_0,0)$. $9.3 \Longrightarrow \exists$ eine offene Umgebung $\mathbb U$ von (x_0,y_0) mit: $\mathbb U \subseteq D, f(\mathbb U)=\vartheta$. F ist auf $\mathbb U$ injektiv, $F^{-1}:\vartheta\to\mathbb U$ ist stetig differenzierbar und

(II)
$$\det F'(x,y) \stackrel{\text{(I)}}{=} \det \frac{\partial f}{\partial y}(x,y) \neq 0 \ \forall \ (x,y) \in \mathbb{U}$$

Bezeichnungen: Sei $(s,t) \in \vartheta$ $(s \in \mathbb{R}^n, t \in \mathbb{R}^p)$, $F^{-1}(s,t) =: (u(s,t), v(s,t))$, also $u : \vartheta \to \mathbb{R}^n$ stetig differenzierbar, $v : \vartheta \to \mathbb{R}^p$ stetig differenzierbar. Dann: $(s,t) = F(F^{-1}(s,t)) = (u(s,t), f(u(s,t), v(s,t))) \implies u(s,t) = s \implies F^{-1}(s,t) = (s, v(s,t))$. Für $(x,y) \in \mathbb{U} : f(x,y) = 0 \iff F(x,y) = (x,0) \iff (x,y) = F^{-1}(x,0) = (x,v(x,0)) \iff y = v(x,0)$, insbesondere: $y_0 = v(x_0,0)$. $U := \{x \in \mathbb{R}^n : (x,0) \in \vartheta\}$. Es gilt: $x_0 \in U$. Übung: U ist eine offene Umgebung von x_0 .

Definition: $g: U \to \mathbb{R}^p$ durch g(x) := v(x,0), für $x \in U$ gilt: $(x,0) \in \vartheta \implies F^{-1}(x,0) = (x,v(x,0)) = (x,g(x)) \in \mathbb{U}$. Dann gelten: (1), (2), (3) und (4). (5) folgt aus (II).

Zu (6): Definition für $x \in U : \psi(x) := (x, g(x)), \psi \in C^1(U, \mathbb{R}^{n+p}),$

$$\psi'(x) = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ & 0 & 1 \\ & & \\ & & q'(x) \end{pmatrix}$$

 $(3) \implies 0 = f(\psi(x)) \ \forall x \in U. \ 5.4 \implies 0 = f'(\psi(x)) \cdot \psi'(x) = \left(\frac{\partial f}{\partial x}(x,g(x)) \left| \frac{\partial f}{\partial y}(x,g(x)) \right.\right) \cdot \psi'(x) = \left(\frac{\partial f}{\partial x}(x,g(x)) + \frac{\partial f}{\partial y}(x,g(x)) \cdot g'(x) \ \forall x \in U. \ (5) \implies \frac{\partial f}{\partial y}(x,g(x)) \ \text{invertierbar, Multiplikation von links mit } \frac{\partial f}{\partial y}(x,g(x))^{-1} \ \text{liefert } (6).$

Beispiel

 $f(x,y,z) = y + z + \log(x+z)$. Zeige: \exists offene Umgebung U von (0,1) und genau eine stetig differenzierbare Funktion $g: U \to \mathbb{R}$ mit g(0,-1)=1 und f(x,y,g(x,y))=0 $\forall (x,y)\in U$. Berechne g' an der Stelle (0,-1).

 $f(0,-1,1)=0, f_z=1+\frac{1}{x+z}; f_z(0,-1,1)=2\neq 0$. Die Behauptung folgt aus dem Satz über impliziert definierte Funktionen. Also: $0=y+g(x,y)+\log(x+g(x,y))$ $\forall (x,y)\in U$.

Differentiation nach $x: 0 = g_x(x, y) + \frac{1}{x + g(x, y)} (1 + g_x(x, y)) \ \forall (x, y) \in U \stackrel{(x, y) = (0, -1)}{\Longrightarrow} 0 = g_x(0, -1) + \frac{1}{1} (g_x(0, -1) + 1) \implies g_x(0, -1) = -\frac{1}{2}.$

Differentiation nach $y: 0 = 1 + g_y(x, y) + \frac{1}{x + g(x, y)} g_y(x, y) \ \forall (x, y) \in U \xrightarrow{(x, y) = (0, -1)} g_y(0, -1) = -\frac{1}{2}$. Also: $g'(0, -1) = (-\frac{1}{2}, -\frac{1}{2})$.