```
In [1]: #First import the three important library
   import numpy as np
   import matplotlib.pyplot as plt
   import pandas as pd
```

In [2]: #Load the Dataset

dataset = pd.read_csv('Mall_Customers_dataset.csv')

In [3]: dataset

L.						
Out[3]:		CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	6
	3	4	Female	23	16	77
	4	5	Female	31	17	40
	195	196	Female	35	120	79
	196	197	Female	45	126	28
	197	198	Male	32	126	74
	198	199	Male	32	137	18
	199	200	Male	30	137	83

200 rows × 5 columns

In [4]: X = dataset.iloc[:, [3, 4]].values

```
In [6]: X
                 [ 19,
                        99],
                 [ 20,
                        15],
                   20,
                        77],
                        13],
                   20,
                   20,
                        79],
                   21,
                        35],
                        66],
                   21,
                        29],
                   23,
                   23,
                        98],
                   24,
                        35],
                   24,
                        73],
                   25,
                         5],
                        73],
                   25,
                 [ 28,
                        14],
                   28,
                        82],
                   28,
                        32],
                   28,
                        61],
                  29,
                        31],
                 [ 29,
                        87],
                         4],
                 [ 30,
```

```
In [5]: #Create Dendrogram to find the Optimal Number of Clusters

import scipy.cluster.hierarchy as sch
dendro = sch.dendrogram(sch.linkage(X, method = 'ward'))
plt.title('Dendrogram')
plt.xlabel('Customers')
plt.ylabel('Euclidean distances')
plt.show()
```



```
In [6]: #Fitting Agglomerative Hierarchical Clustering to the dataset
       from sklearn.cluster import AgglomerativeClustering
       hc = AgglomerativeClustering(n clusters = 5, affinity = 'euclidean', linkage =
       y hc = hc.fit predict(X)
In [7]: y_hc
Out[7]: array([4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3,
             4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4,
                       1, 1, 1, 1, 1, 1,
                                             1,
                                               1, 1, 1, 1,
                        1,
                                          1,
                       1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 0, 2,
             1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 0, 2,
             0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,
             0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,
             0, 2], dtype=int64)
```

```
In [8]: #Visualise the clusters
    plt.scatter(X[y_hc == 0, 0], X[y_hc == 0, 1], s = 100, c = 'red', label = 'Cluplt.scatter(X[y_hc == 1, 0], X[y_hc == 1, 1], s = 100, c = 'blue', label = 'Cluplt.scatter(X[y_hc == 2, 0], X[y_hc == 2, 1], s = 100, c = 'green', label = 'Cluplt.scatter(X[y_hc == 3, 0], X[y_hc == 3, 1], s = 100, c = 'cyan', label = 'Cluplt.scatter(X[y_hc == 4, 0], X[y_hc == 4, 1], s = 100, c = 'magenta', label = plt.title('Clusters of customers')
    plt.xlabel('Annual Income (k$)')
    plt.ylabel('Spending Score (1-100)')
    plt.legend()
    plt.show()
```



```
In [ ]:
```