

Design and Analysis of Algorithms Recurrence

Si Wu

School of CSE, SCUT cswusi@scut.edu.cn

TA: 1684350406@qq.com

- Induction
- Substitution Method
- Recursion-Tree Method
- Master Method

Induction used to prove that a statement T(n) holds for all integers n:

- Base case: prove T(0)
- Assumption: assume that T(n-1) is true
- Induction step: prove that T(n-1) implies T(n) for all n>0

Strong induction: when we assume T(k) is true for all $k \le n - 1$ and use this in proving T(n)

Integer Multiplication

Let X and Y be n bit integers. $X = A \mid B$ and $Y = C \mid D$ where A, B, C, and D are $n \mid 2$ bit integers.

Simple Method:
$$XY = (A2^{\frac{n}{2}} + B)(C2^{\frac{n}{2}} + D)$$

= $AC2^{n} + (AD + BC)2^{\frac{n}{2}} + BD$

Running Time Recurrence: $T(n) = 4T(\frac{n}{2}) + bn$

How do we solve it?

Induction

The most general strategy:

Guess: the form of the solution.

Verify: by induction.

Ex.
$$T(n) = 4T(n/2) + bn$$

Base case $T(1) = \Theta(1)$.
Guess $O(n^3)$.
Assume that $T(k) \le ck^3$ for $k < n$.
Prove $T(n) \le cn^3$ by induction.

Induction

$$T(n) = 4T\left(\frac{n}{2}\right) + bn$$

$$\leq 4c\left(\frac{n}{2}\right)^3 + bn$$

$$= \left(\frac{c}{2}\right)n^3 + bn$$

$$= cn^3 - \left(\left(\frac{c}{2}\right)n^3 - bn\right)$$

$$\leq cn^3$$

$$T(k) \leq ck^3 \text{ for } k < n$$

For example, if $c \ge 2b$, then $\left(\frac{c}{2}\right)n^3 - bn \ge 0$.

This bound is not tight!

Induction

We also try that $T(n) = O(n^2)$.

Assume that
$$T(k) \le ck^2$$
 for $k < n$:
$$T(n) = 4T\left(\frac{n}{2}\right) + bn$$

$$\le 4c\left(\frac{n}{2}\right)^2 + bn$$

$$= cn^2 + bn$$

$$< cn^2 X$$

A Tighter Upper Bound

Strengthen the inductive hypothesis.

Subtract a low-order term.

Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n.

$$T(n) = 4T\left(\frac{n}{2}\right) + bn$$

$$\leq 4\left(c_1\left(\frac{n}{2}\right)^2 - c_2\left(\frac{n}{2}\right)\right) + bn$$

$$= c_1n^2 - 2c_2n + bn$$

$$= c_1n^2 - c_2n - (c_2n - bn)$$

$$\leq c_1n^2 - c_2n$$

$$T(n) = O(n^2)$$

For example, if $c_2 \ge b$, then $c_2 n - b n \ge 0$.

AN THE SECOND OF THE SECOND OF

Example of Substitution

Use algebraic manipulation to make an unknown recurrence similar to what you have seen before.

Ex.
$$T(n) = 2T(\sqrt{n}) + \log n$$

Set m = log n and we have $T(2^m) = 2T(2^{m/2}) + m$

Set $S(m) = T(2^m)$ and we have S(m) = 2S(m/2) + m

$$\rightarrow$$
 $S(m) = O(m \log m)$

As a result, we have $T(n) = O(\log n \log \log n)$

A Useful Recurrence Relation

- T(n) = max number of compares to Merge-Sort a list of size ≤ n
- T(n) is monotone nondecreasing.

Merge-Sort recurrence

$$T(n) \le \begin{cases} 0, & if \ n = 1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + n, otherwise \end{cases}$$

Solution. T(n) is O(nlogn)

Assorted proofs. We describe several ways to solve this recurrence. Initially we assume n is a power of 2 and replace "≤" with "=" in the recurrence.

Proof by Induction

If T(n) satisfies the following recurrence, then T(n) is O(nlogn).

$$T(n) = \begin{cases} 0, & if \ n = 1 \\ 2T(n/2) + n, otherwise \end{cases}$$

assuming n is a power of 2

- Base case: when n = 1, T(1) = 0 = nlogn.
- Inductive hypothesis: assume T(n) = nlogn.
- Goal: show that T(2n) = 2nlog(2n)

$$T(2n) = 2T(n) + 2n$$

$$= 2nlogn + 2n$$

$$= 2n(\log(2n) - 1) + 2n$$

$$= 2nlog(2n)$$

Analysis of Merg-Sort Recurrence

If T(n) satisfies the following recurrence, then $T(n) \leq n \lceil logn \rceil$.

$$T(n) \le \begin{cases} 0, & if \ n = 1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rfloor) + n, otherwise \end{cases}$$

- Base case: n=1, T(1) = 0.
- Define: $n_1 = \lfloor n/2 \rfloor$ and $n_2 = \lceil n/2 \rceil$.
- Induction step: assume true for 1, 2, ..., n-1.

$$T(n) \leq T(n_{1}) + T(n_{2}) + n$$

$$\leq n_{1} \lceil \log_{2} n_{1} \rceil + n_{2} \lceil \log_{2} n_{2} \rceil + n$$

$$\leq n_{1} \lceil \log_{2} n_{2} \rceil + n_{2} \lceil \log_{2} n_{2} \rceil + n$$

$$= n \lceil \log_{2} n_{2} \rceil + n \qquad \qquad \log_{2} n_{2} \leq \lceil \log_{2} n \rceil - 1$$

$$\leq n (\lceil \log_{2} n \rceil - 1) + n$$

$$= n \lceil \log_{2} n \rceil$$

Recursion Tree

If T(n) satisfies the following recurrence, then T(n) is O(nlogn).

$$T(n) = \begin{cases} 0, & if \ n = 1 \\ 2T(n/2) + n, otherwise \end{cases}$$

assuming n is a power of 2

Solve
$$T(n) = 3T(n/4) + n^2$$
:

T(*n*)

Solve $T(n) = 3T(n/4) + n^2$:

22

Geometric Series

Fact 1. For
$$r \neq 1$$
, $1 + r + r^2 + r^3 + \ldots + r^{k-1} = \frac{1 - r^k}{1 - r}$

Fact 2. For
$$r = 1$$
, $1 + r + r^2 + r^3 + \ldots + r^{k-1} = k$

Fact 3. For
$$r < 1$$
, $1 + r + r^2 + r^3 + \dots = \frac{1}{1 - r}$

$$1 + 1/2 + 1/4 + 1/8 + \dots = 2$$

Master Method

Goal. Recipe for solving common divide-and-conquer recurrences:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

With T(0) = 0 and $T(1) = \Theta(1)$.

Terms.

- $a \ge 1$ is the (integer) number of subproblems.
- b > 1 is the (integer) factor by which the subproblem size decreases.
- f(n) = work to divide and combine subproblems.

Recursion tree.

- Number of levels:
- Number of subproblems at level i:
- Size of subproblem at level i:
- Number of leaves:

Master Method

Goal. Recipe for solving common divide-and-conquer recurrences:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

With T(0) = 0 and $T(1) = \Theta(1)$.

Terms.

- $a \ge 1$ is the (integer) number of subproblems.
- b > 1 is the (integer) factor by which the subproblem size decreases.
- f(n) = work to divide and combine subproblems.

Recursion tree.

- Number of levels: $k = \log_b n$.
- Number of subproblems at level i: a^i .
- Size of subproblem at level $i: n/b^i$.
- Number of leaves: $n^{\log_b a}$.

Master Theorem

Master Theorem. Suppose that T(n) is a function on the non-negative integers that satisfies the recurrence:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

with T(0) = 0 and $T(1) = \Theta(1)$, where n/b means either $\lfloor n/b \rfloor$ or $\lfloor n/b \rfloor$. Then,

Case 1. If $f(n) = O(n^k)$ for some constant $k < \log_b a$, then $T(n) = \Theta(n^{\log_b a})$.

Ex.
$$T(n) = 3T(n/2) + 5n$$

 $a = 3, b = 2, f(n) = 5n, k = 1, \log_b a = 1.58$
 $T(n) = \Theta(n^{\log_2 3})$

Master Theorem

Master Theorem. Suppose that T(n) is a function on the non-negative integers that satisfies the recurrence:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

with T(0) = 0 and $T(1) = \Theta(1)$, where n/b means either $\lfloor n/b \rfloor$ or $\lfloor n/b \rfloor$. Then,

Case 2. If $f(n) = \Theta(n^k \log^p n)$ for $p \ge 0$ and $k = \log_b a$, then $T(n) = \Theta(n^k \log^{p+1} n)$.

Ex.
$$T(n) = 2T(n/2) + 17n \log n$$

 $a = 2, b = 2, f(n) = 17n \log n, k = 1, p = 1, \log_b a = 1$
 $T(n) = \Theta(n \log^2 n)$

Master Theorem

Master Theorem. Suppose that T(n) is a function on the non-negative integers that satisfies the recurrence:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

with T(0) = 0 and $T(1) = \Theta(1)$, where n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then,

Case 3. If $f(n) = \Omega(n^k)$ for some constant $k > \log_b a$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Ex.
$$T(n) = 3T(n/2) + n^2$$

 $a = 3, b = 2, f(n) = n^2, k = 2, \log_b a = 1.58$
Regularity condition: $3(n/2)^2 \le cn^2$ for $c = 3/4$
 $T(n) = \Theta(n^2)$

A PL ST

Master Theorem

Master Theorem. Suppose that T(n) is a function on the non-negative integers that satisfies the recurrence:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

with T(0) = 0 and $T(1) = \Theta(1)$, where n/b means either $\lfloor n/b \rfloor$ or $\lfloor n/b \rfloor$.

Case 1. If $f(n) = O(n^k)$ for some constant $k < \log_b a$, then $T(n) = \Theta(n^{\log_b a})$. Case 2. If $f(n) = \Theta(n^k \log^p n)$ for $p \ge 0$ and $k = \log_b a$, then $T(n) = \Theta(n^k \log^{p+1} n)$.

Case 3. If $f(n) = \Omega(n^k)$ for some constant $k > \log_b a$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Master Theorem Need Not Apply

Gaps in master theorem

Number of subproblems must be a constant.

$$T(n) = nT(n/2) + n^2$$

• Number of subproblems must be ≥ 1 .

$$T(n) = \frac{1}{2}T(n/2) + n^2$$

• Non-polynomial separation between f(n) and $\log n$.

$$T(n) = 2T(n/2) + \frac{n}{\log n}$$

• f(n) is not positive.

$$T(n) = 2T(n/2) - n^2$$

Regularity condition does not hold.

$$T(n) = T(n/2) + n(2 - \cos n)$$