

Kaiming He: Single Image Haze Removal Using Dark Channel Prior

CVPR' 09 Best Paper

Shang Gao

Outline

Introduction

Preliminaries

Dark Channel Prior Haze Removal

O Discussions & Conclusions

Introduction

Image Degrade

Example of Hazy Image

- Haze, fog, and smoke are phenomena due to atmospheric absorption and scattering.
- Caused by turbid medium: waterdroplets and small floating particles such as dust and smoke in the air.
- Images degraded: lose the contrast and color fidelity

Haze Removal

Hazy Image

Haze Free Image

Goal

Raw Hazy Image

Haze Free Image

Depth Information

Preliminaries

Haze Imaging Model

$$I = J \cdot t + A \cdot (1 - t)$$

Hazy Image

Scene radiance (Haze Free Image)

Atmospheric light

Transmission

RGB Color Space

$$t(x) = \frac{|A - I(x)|}{|A - J(x)|} = \frac{A^{c} - I^{c}(x)}{A^{c} - J^{c}(x)}$$

where $c \in \{r, g, b\}$

• vectors **A**, **I**(**x**), **and J**(**x**) are coplanar and their end points are collinear

Haze Imaging Model

$$I = J \cdot t + A \cdot (1 - t)$$
Direct attenuation Airlight

- Direct attenuation (直接衰减): 描述了场景辐射和其在介质中的衰减
- Airlight (空气光): 来自于之前所提的散射的光并会导致场景颜色的偏移

Haze Imaging Model

Scene Depth

Dark Channel Prior Haze Removal

In most of the non-sky patches, at least one color channel has very low intensity at some pixels.

For an image **J**, define:

$$J^{dark}(x) = \min_{y} \left(\min_{c} (J^{c}(y)) \right)$$

where:

- $c \in \{r, g, b\}$, J^c is a color channel of J
- $\Omega(x)$ is a local patch centered at x
- J^{dark} is the dark channel of J

For an image **J**, define:

$$J^{\text{dark}}(x) = \min_{y} \left(\min_{c} (J^{c}(y)) \right)$$

Input Image

min (r, g, b)

For an image J, define: 15×15 patch

$$J^{dark}(x) = \min_{y} \left(\min_{c} (J^{c}(y)) \right)$$

Input Image

min (r, g, b)

Dark Channel

Observation: Hazy Image

Observation: Haze Free Image

Observation: Haze Free Image

Observation: Statistics

Observation

In most cases, for an outdoor haze free image J:

$$J^{dark}(x) = \min_{y} \left(\min_{c} (J^{c}(y)) \right) \to 0$$

What makes it dark?

Shadow

Colorful object

Black object

Atmospheric light

(Assume Given)

$$I = J \cdot t + A \cdot (1 - t)$$

Hazy Image

Scene radiance (Haze Free Image)

Transmission

$$I = J \cdot t + A \cdot (1 - t)$$

Normalization for each RGB channel:

$$\frac{I^{C}}{A^{C}} = \frac{J^{C}}{A^{C}}t + 1 - t$$

$$\frac{I^{C}}{A^{C}} = \frac{J^{C}}{A^{C}}t + 1 - t$$

Assume the Atmospheric light A is given and the transmission t in a local patch $\Omega(x)$ is constant:

$$\min_{c} \left(\min_{y \in \Omega(x)} \left(\frac{I^{c}(y)}{A^{c}} \right) \right) = \tilde{t}(x) \min_{c} \left(\min_{y \in \Omega(x)} \left(\frac{J^{c}(y)}{A^{c}} \right) \right) + \left(1 - \tilde{t}(x) \right)$$

where: $\tilde{t}(x)$ is the transmission of patch $\Omega(x)$

Recall: Dark Channel Prior

In most cases, for an outdoor haze free image J:

$$J^{dark}(x) = \min_{y} \left(\min_{c} (J^{c}(y)) \right) \to 0$$

$$\min_{c} \left(\min_{y \in \Omega(x)} \left(\frac{I^{c}(y)}{A^{c}} \right) \right) = \tilde{t}(x) \min_{c} \left(\min_{y \in \Omega(x)} \left(\frac{J^{c}(y)}{A^{c}} \right) \right) + \left(1 - \tilde{t}(x) \right)$$

$$\tilde{t}(x) = 1 - \min_{c} \left(\min_{y \in \Omega(x)} \left(\frac{I^{c}(y)}{A^{c}} \right) \right)$$

Aerial Perspective

- The atmosphere is not absolutely free of any particle even in clear days.
- The haze still exists when we look at distant objects.
- The presence of haze is a fundamental cue for human to perceive depth.
- If the haze is removed thoroughly, the image may seem unnatural and the feeling of depth may be lost.

$$\tilde{t}(x) = 1 - \min_{c} \left(\min_{y \in \Omega(x)} \left(\frac{I^{c}(y)}{A^{c}} \right) \right)$$

Keep a very small amount of haze for the distant objects by introducing a constant parameter ω (0< ω <1)

$$\tilde{t}(x) = 1 - \omega \min_{c} \left(\min_{y \in \Omega(x)} \left(\frac{I^{c}(y)}{A^{c}} \right) \right)$$

Example

$$\tilde{t}(x) = 1 - \omega \min_{c} \left(\min_{y \in \Omega(x)} \left(\frac{I^{c}(y)}{A^{c}} \right) \right)$$

$$I = J \cdot t + A \cdot (1 - t)$$

Input I

Estimated t

Haze Free Image J

Contains some block effects since the transmission is not always constant in a patch.

Haze Free Image J

Therefore, let $t \Leftrightarrow \alpha$ and use soft matting algorithm to refine transmission.

Haze imaging model Matting model [Levin et al., CVPR '06]

$$I = J \cdot t + A \cdot (1 - t)$$
$$I = F \cdot \alpha + B \cdot (1 - \alpha)$$

Estimated \tilde{t}

Refined *t*

Estimating the Atmospheric Light

Use the dark channel to improve the atmospheric light estimation:

- Pick the top 0.1% brightest pixels in the dark channel.
- Among these pixels, the pixels with highest intensity in the input image I is selected as the atmospheric light.

Scene Radiance Restoration

Atmospheric light

$$I = J \cdot t + A \cdot (1 - t)$$

Hazy Image

Haze Free Image

Transmission

Scene Radiance Restoration

Atmospheric light

Haze Free Image

Hazy Image

Transmission

Discussions & Conclusions

Applications: Video

Applications: De-Focus

Input Image

Depth

Haze Free Image

Applications: De-Focus

Input Image

Depth

De-Focused Haze Free Image

Recall

For an image **J**, define:

$$J^{\text{dark}}(x) = \min_{y} \left(\min_{c} (J^{c}(y)) \right)$$

Input Image

min (r, g, b)

Dark Channel

Patch Size

Haze Free Image

3 x 3 patch

15 x 15 patch

● 用小窗口恢复的图像有过饱和现象,而大窗口恢复的图像有光晕现象。

Recall

In most of the non-sky patches, at least one color channel has very low intensity at some pixels.

Estimate Transmission for Sky Patches

The color of the sky is usually very similar to the atmospheric light A in a haze image.

Estimate Transmission for Sky Patches

$$\min_{c} \left(\min_{y \in \Omega(x)} \left(\frac{I^{c}(y)}{A^{c}} \right) \right) \to 1$$

$$\tilde{t}(x) \to 0$$

Limitations

Inherently white or grayish objects

Input Image

Transmission (大理石的传输率被低估)

Result

Limitations

Haze imaging model is invalid

Input Image

Result (non-constant A)

Limitations

Soft matting is slow

Conclusions

- Dark channel prior
 - A natural phenomenon
 - Very simple but effective
 - Put a bad image to good use
- Improvements
 - Replace Soft Matting with <u>Guided Image Filtering [He et al., ECCV '10]</u> (Next Week)

Thank You