## **Grafos**

# Algumas Operações com Grafos

7 de novembro de 2021

### Operações Binárias

Normalmente definidas para grafos não orientados.

Possuem dois grafos como operandos e conjuntos dijuntos de vértices:  $G_1 = (V_1, E_1)$  e  $G_2 = (V_2, E_2)$ .

O resultado é o grafo G = (V, E)

#### União

A união de dois grafos dijuntos  $G_1=(V_1,E_1)$  e  $G_2=(V_2,E_2)$  é o grafo G(V,E) onde  $V=V_1\cup V_2$  e  $E=E_1\cup E_2$ 

Obs: Note que o grafo resultante é conexo.

Exemplo:

# Interseção

#### Interseção

Sejam dois grafos rotulados  $G_1=(V_1,A_1)$  e  $G_2=(V_2,A_2)$ , a interseção  $G_1\cap G_2$  é o grafo  $G=(V_1\cap V_2,A_1\cap A_2)$ 

# Soma (Join)

A soma (Join) de dois grafos dijuntos  $G_1=(V_1,E_1)$  e  $G_2=(V_2,E_2)$  é o grafo G(V,E), onde :  $V=V_1\cup V_2$  e  $E=E_1\cup E_2\cup \{v,w\}|v\in V_1\wedge w\in V_2$ 

# Soma (Join)

A soma (Join) de dois grafos dijuntos  $G_1 = (V_1, E_1)$  e  $G_2 = (V_2, E_2)$  é o grafo G(V, E), onde :  $V = V_1 \cup V_2$  e  $E = E_1 \cup E_2 \cup \{v, w\} | v \in V_1 \land w \in V_2$ 

#### Exemplo:



#### Exercício

Sejam dois grafos não orientados  $G_1 = (V_1, E_1)$  e  $G_2 = (V_2, E_2)$ , onde  $V_1 = \{a, b, c\}$ ,  $E_1 = \{(a, b), (b, c), (a, c)\}$ ,  $V_2 = \{d, e\}$ ,  $E_2 = \{(d, e)\}$ , encontre a soma:

# Grafo Complemento (Goldbarg)

## Grafo Complemento $\overline{G}$

Seja um grafo G=(V,A) rotulado,  $\overline{G}=(V_c,A_c)$  é um grafo complemento de G quando  $V=V_c$ ,  $A\cap A_c=\emptyset$  e  $A\cup A_c=U$ , onde U é o conjunto de arestas de um grafo completo contendo n vértices.

#### Produto Cartesiano

Sejam dois grafos  $G_1=(V_1,E_1)$  e  $G_2=(V_2,E_2)$ , onde  $E_1=\{u_1,\ldots,u_r\}$  e  $E_2=\{v_1,\ldots,v_s\}$ , o grafo resultante do produto cartesiano de  $G_1\times G_2$  resulta em um grafo  $G_3$  onde:

- O conjunto de vértices de G<sub>3</sub> corresponde ao produto cartesiano dos vértices, ou seja, V<sub>3</sub> = V<sub>1</sub> × V<sub>2</sub>;
- O conjunto de arestas de  $G_3$  é formado tal que: Existe uma aresta  $(a_k, b_c) \in G_3$ , onde  $a_k = (u_i, v_j)$  e  $b_c = (u_x, v_y)$  se:  $u_i = u_x$  e  $\exists (v_j, v_y) \in G_2$  ou  $v_j = v_y$  e  $\exists (u_i, u_x) \in G_1$

#### Produto Cartesiano

#### Exemplo:

$$G_1 = (V_1 = \{1, 2\}, E_1 = \{(1, 2)\}), G_2 = (V_2 = \{1, 2, 3\}, E_2 = \{(1, 2), (1, 3), (2, 3)\})$$



### Produto Cartesiano

#### Exercício:

Encontre o produto cartesiano entre os seguintes grafos:



### Operações Unárias

Aplicadas em grafos orientados ou não.

Seja um grafo simples G=(V,E) (sem laços), por meio da operação unária G é transformado em um novo grafo.

## Contração de Vértices

A contração de dois vértices v e w em um novo vértice vw resulta em grafo G = (V, E) onde  $(V - \{v, w\}) \cup \{vw\}$ . Todas as ligações que possuem v e w deverão conter agora vw. Deve-se eliminar a ligação entre v e w se ela existir e identificar ligações que se confundirem.



Qual o grafo resultante da contração dos vértices 5 e 3

# Exercício Contração de Vertices

Qual o grafo resultante da contração dos vértices u e v.



# Bibliografia

- NETTO, Paulo O. B. Teoria e Modelos e Algoritmos, 4<sup>a</sup>.
  ed. Edgard Blücher. São Paulo, 2006;
- GROSS, Jonthan L., YELLEN, Jay. Graph Theory and Its Applications, Second Edition, Chapman and Hall/CRC, 2005;
- GOLDBARG, M., GOLDBARG, E. Grafos Conceitos, algoritmos e aplicações, 1 Edição, Editora Campus, 2012;