Teorema de Gauss Teorema de Stokes

- 1. Verifique o Teorema de Gauss, calculando as duas integrais do enunciado para
 - (a) $\vec{F}(x,y,z) = (x,y,z)$ e o sólido W limitado pelas superfícies $z = x^2 + y^2$ e z = 4.
 - (b) $\vec{F}(x,y,z) = (z+1) \vec{k}$ e o sólido W limitado pelas superfícies $z = 1 x^2 y^2$ e z = 0.
- 2. Seja $\vec{F}(x,y,z) = 6x \ \vec{i} 2y \ \vec{j} + 5z \ \vec{k}$. Seja S a superfície da esfera com centro (1,0,1) e raio 5. Ache o fluxo de \vec{F} , de dentro para fora de S.
- 3. Calcule $\iint_S \vec{F} \cdot \vec{n} \ dS$, onde $\vec{F}(x,y,z) = (x+y) \ \vec{i} + (y+z) \ \vec{j} + z^2 \ \vec{k}$, S é a fronteira do cilindro $W = \left\{ (x,y,z) \in \mathbb{R}^3; \ x^2 + y^2 \leq 1, \ 0 \leq z \leq 1 \right\}$ e \vec{n} orientada para fora de W.
- 4. Calcule $\iint_S \vec{F} \cdot \vec{n} \ dS$, onde $\vec{F}(x,y,z) = x^3 \ \vec{i} + y^3 \ \vec{j} + z^3 \ \vec{k}$, S é a superfície esférica $x^2 + y^2 + z^2 = 1$ e \vec{n} a orientação normal exterior a S.
- 5. Calcule o fluxo do campo $\vec{F}(x,y,z) = (x + \cos x, y + y \sin x, 2z)$, através do tetraedro limitado pelos planos coordenados e pelo plano x + y + z = 1, onde \vec{n} é a normal unitária exterior a S.
- 6. Calcule o fluxo do campo $\vec{F}(x,y,z) = -y \vec{i} + x \vec{j} + 4z^2 \vec{k}$, através da superfície do sólido limitado pelo cilindro $x^2 + y^2 = 1$ e pelos planos z = 0 e z + y = 2, com a normal S apontando para fora do sólido.
- 7. Calcule o fluxo do campo $\vec{F}(x,y,z) = \left(xy^2 + e^y\right) \vec{i} + \left(yz^2 + \sin^2 x\right) \vec{j} + \left(5 + zx^2\right) \vec{k}$, através da superfície aberta $S: z = \sqrt{4 x^2 y^2}, z \ge 0$, com \vec{n} tendo componente z positiva.
- 8. Seja $\vec{F}(x,y,z)=z\arctan\left(y^2\right)\,\vec{i}+z^3\ln\left(x^2+1\right)\,\vec{j}+z\,\vec{k}$. Determine o fluxo de \vec{F} através da parte do paraboloide $x^2+y^2+z=2$ que está acima do plano z=1, sendo \vec{n} a normal com componente z não negativa.
- 9. Calcule $\iint_S \vec{F} \cdot \vec{n} \ dS$, onde $\vec{F}(x,y,z) = x \ \vec{i} + (-2y + e^x \cos z) \ \vec{j} + (z + x^2) \ \vec{k}$ e S é definida por $\{z = 9 x^2 y^2, \ 0 \le z \le 5\}$, $\{z = 5, \ 1 \le x^2 + y^2 \le 4\}$ e $\{z = 8 3(x^2 + y^2), \ x^2 + y^2 \le 1\}$.
- 10. Calcule o fluxo do campo $\vec{F}(x,y,z)=\left(\frac{x^3}{3}+y,\frac{y^3}{3},\frac{z^3}{3}+2\right)$, através da superfície S do sólido W definido por $W=\left\{(x,y,z)\in\mathbb{R}^3;\ x^2+y^2+z^2\geq 1,\ x^2+y^2+(z-2)^2\leq 4,\ z\geq \sqrt{x^2+y^2}\right\}$, com campo de vetores normais a S apontando para fora de W.
- 11. Seja T o tetraedro de vértices $O=(0,0,0),\ A=(2,0,0),\ B=(0,6,0),\ C=(0,0,2).$ Sejam S a superfície lateral de T, constituída pelas faces de T que não estão no plano xy e $\vec{F}(x,y,z)=(3y+z,x+4z,2y+x)$ um campo vetorial de \mathbb{R}^3 . Calcule $\iint_S (rot\vec{F})\cdot\vec{n}\ dS$, com a normal exterior a S.
- 12. Seja a superfície cônica S de vértice (0,0,h), (h>0), de base situada no plano xy com raio 1 e \vec{n} com componente \vec{k} não negativa. Seja $\vec{F}(x,y,z) = \frac{\partial f}{\partial y}(x,y,z) \, \vec{i} \frac{\partial f}{\partial x}(x,y,z) \, \vec{j} + 2(z+1) \, \vec{k}$, sendo f(x,y,z) de classe C^2 em \mathbb{R}^3 . Calcule o fluxo de \vec{F} através de S.
- 13. Seja $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ de classe C^2 , tal que $\nabla^2 f = x^2 + y^2 + z^2$. Calcule $\iint_S \nabla f \cdot \vec{n} \, dS$ onde S é a esfera $x^2 + y^2 + z^2 = 1$, com \vec{n} exterior a S.
- 14. Seja S a calota esférica dada pela equação $x^2+y^2+z^2=4$, onde $0 \le z \le 2$. Sobre S fixe a orientação \vec{n} , tal que $\vec{n}(0,0,2)=\vec{k}$. Calcule $\iint_S (rot\vec{F}) \cdot \vec{n} \ dS$, onde $\vec{F}(x,y,z)=\left(\frac{-y^3}{3}+ze^x,\frac{x^3}{3}-\cos(yz),xy\right)$.

Cálculo III

- 15. Considere o campo vetorial $\vec{F}(x,y,z) = (2x+e^z)\vec{i} + (3y-ze^x)\vec{j} + (z-2)\vec{k}$, seja S a calota esférica $x^2+y^2+z^2=a^2$, com $z\geq 0$ e raio a>0. Sabendo que o fluxo de \vec{F} na direção da normal exterior \vec{n} é igual a $2\pi a^3$, calcule o raio da calota.
- 16. Calcule $\iint_S (rot\vec{F}) \cdot \vec{n} \ dS$, sendo $\vec{F}(x,y,z) = (x^2y+2)\vec{i} + (x^3+y^4)\vec{j} + (2yz-1)\vec{k}$ e S a parte da esfera $x^2+y^2+z^2-4z=0$, com $z \leq 1$, orientada com \vec{n} exterior.
- 17. Seja $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ de classe \mathcal{C}^2 . Seja W um sólido e seja S a fronteira de W, com normal exterior \vec{n} . Prove que $\iint_S \frac{\partial f}{\partial \vec{n}} \ dS = \iiint_W \nabla^2 f \ dx dy dz$, onde $\frac{\partial f}{\partial \vec{n}}$ é a derivada direcional de f na direção do vetor unitário \vec{n} .
- 18. Seja $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ de classe \mathcal{C}^2 , tal que $\nabla^2 f = x^2 + y^2$ e $\frac{\partial f}{\partial z}(x,y,1) = \frac{1}{3}$, para todo $(x,y,1) \in \mathbb{R}^3$. Calcule $\iint_S \frac{\partial f}{\partial \overline{n}} \, dS$, onde S é a lata cilíndrica com fundo e sem tampa dada por $x^2 + y^2 = 1$, $0 \le z \le 1$, z = 0, $x^2 + y^2 \le 1$, com normal \overrightarrow{n} apontando para fora de S.
- 19. Considere o campo vetorial $\vec{F} = (x + f(y, z))\vec{i} + (x y + z)\vec{j} + (z^4 3a^2)\vec{k}$, onde $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ é de classe C^1 . Seja S uma lata cilíndrica com fundo e sem tampa dada por $x^2 + y^2 = a^2$, $0 \le z \le \sqrt{a}$, a > 0 e $x^2 + y^2 \le a^2$, z = 0. Sabendo que o fluxo de \vec{F} através de S, de dentro para fora é igual a πa^3 , calcule o valor de a.
- 20. Encontre o fluxo do campo $\vec{F}=(e^y+\cos(yz))\vec{i}+(-2zy+\sin(xz))\vec{j}+\left(z^2+\frac{3}{\sqrt{2}}\right)\vec{k}$ através da superfície S, orientada positivamente, $S=S_1\cup S_2$, onde $S_1: z=4-2x^2-y^2, \ 0\leq z\leq 2$ e $S_2: z=1+x^2+\frac{y^2}{2}, \ 1\leq z\leq 2.$
- 21. Calcule $\iint_S (rot\vec{F}) \cdot \vec{n} \ dS$, sendo $\vec{F}(x,y,z) = x \ \vec{j} + xy \ \vec{k}$, através de $S: x^2 + y^2 + \frac{z^2}{4} = 1$, $z \le 1$, orientada de forma que o vetor normal no ponto (0,0,-2) seja o vetor $-\vec{k}$.
- 22. Verifique o teorema de Stokes, calculando as duas integrais do enunciado para
 - (a) $\vec{F}(x,y,z) = (y,-x,0)$, S o paraboloide $z = x^2 + y^2$, $0 \le z \le 1$ e \vec{n} apontando para fora de S.
 - (b) $\vec{F}(x,y,z) = y \ \vec{i} + z \ \vec{j} + x \ \vec{k}$, S o hemisfério $z = \sqrt{a^2 x^2 y^2}$, a > 0, orientada com \vec{n} normal unitária exterior a S.
- 23. Use o o teorema de Stokes para mostrar que a integral de linha é igual ao valor dado, indicando a orientação da curva $\,C\,$ em:
 - (a) $\oint_C (3y+z) dx + (x+4y) dy + (2x+y) dz = -\frac{3\sqrt{2}\pi}{4}$, onde C é a interseção da esfera $x^2+y^2+z^2=1$ com o plano y+z=1.
 - (b) $\oint_C (y+z) dx + (z+2x) dy + (x+y) dz = -\pi$, onde C é a interseção do plano y=z com o cilindro $x^2+y^2=2y$.
 - (c) $\oint_C (2xy) dx + \left[(1-y)z + x^2 + x \right] dy + \left(\frac{x^2}{2} + e^z \right) dz = \pi$, onde C é a interseção do cilindro $x^2 + y^2 = 1$ com o cone $z = \sqrt{x^2 + (y-1)^2}$.
 - (d) $\oint_C (8x-2y) dx + y dy + 3z dz = -4$, onde C é a fronteira do triângulo situado no plano x+z=2, de vértices (2,0,0), (2,2,0) e (0,0,2).
- 24. Calcule $\oint_C \vec{F} \cdot d\vec{r}$, sendo $\vec{F} = (x y^2)\vec{i} + (x z + \frac{y^2}{2 + \text{sen } y})\vec{j} + y \vec{k}$ e C a interseção do paraboloide $4z = x^2 + y^2$ com o cilindro $x^2 + y^2 = 4$, orientada no sentido anti-horário se projetada no plano xy.
- 25. Calcule $\oint_C \vec{F} \cdot d\vec{r}$, sendo $\vec{F}(x,y,z) = (yz+z,xz+e^{-y},xy+e^{-z})$ e C a curva interseção das superfícies $x^2+y^2=4$ e z=y+3, orientada no sentido anti-horário quando projetada no plano xy.
- 26. Calcule $\int_C (e^{x^2} + y^2) dx + (e^{y^2} z^2) dy + (e^{z^2} x^2) dz$, onde C é o contorno da parte do plano x + y + z = 1, que está no primeiro octante, no sentido anti-horário.

Cálculo III

- 27. Calcule $\int_C \vec{F} \cdot d\vec{r}$, onde $\vec{F}(x,y,z) = (z-x+\sin x, z-x+\cos y, x-y+e^z)$ e C é a interseção do cilindro $x^2+y^2=a^2$ com o plano $\frac{x}{a}+\frac{z}{b}=1,\ a>0,\ b>0$, orientada no sentido anti-horário quando vista de cima.
- 28. Calcule a circulação do campo $\vec{F}(x,y,z) = y \vec{i} + xz \vec{j} + z^2 \vec{k}$ ao redor da curva C fronteira do triângulo recortado do plano x + y + z = 1 pelo primeiro octante, no sentido horário quando vista da origem.
- 29. Calcule $\oint_C (e^{-x^3/3} yz) dx + (e^{-y^3/3} + xz + 2x) dy + (e^{-z^3/3} + 5) dz$, onde C é dada por $\vec{r}(t) = (\cos t, \sin t, 2), \ t \in [0, 2\pi].$
- 30. Calcule $\int_C \vec{F} \cdot d\vec{r}$, onde $\vec{F}(x,y,z) = yz^2 \vec{i} + 2xz \vec{j} + \cos(xyz) \vec{k}$ e C é a interseção da superfície $z = x^2 + y^2$ com $z = 10 x^2 y^2$, orientada no sentido anti-horário quando vista de cima.
- 31. Calcule o trabalho realizado pelo campo de forças $\vec{F}(x,y,z) = (2^x + z^2)\vec{i} + (2^y + x^2)\vec{j} + (2^z + y^2)\vec{k}$ quando uma partícula se move sob sua influência ao redor da borda da esfera $x^2 + y^2 + z^2 = 4$ que está no primeiro octante, no sentido anti-horário quando vista de cima.
- 32. Calcule $\int_C (z-y)\,dx + \ln\left(1+y^2\right)\,dy + \left[\ln(1+z^2)+y\right]\,dz, \quad \text{sendo} \quad C \quad \text{dada por } \vec{r}(t) = (4\cos t, 4\sin t, 4-4\cos t), \ 0 \leq t \leq 2\pi.$
- 33. Seja o campo \vec{F} , tal que $rot \vec{F} = (-4x, 2(y-1), f(z))$, onde $f: \mathbb{R} \longrightarrow \mathbb{R}$ é de classe C^1 com f(0) = 1. Calcule $\int_C \vec{F} \cdot d\vec{r}$, onde C é a curva dada pela interseção das superfícies $z = x^2 + y^2$ e $x^2 + (y-1)^2 = 1$, orientada no sentido anti-horário quando vista de cima.
- 34. Calcule $\int_C \vec{F} \cdot d\vec{r}$, sendo \vec{F} um campo em \mathbb{R}^3 dado por $\vec{F} = (-y, x, f(x, y, z))$, onde $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ é de classe C^1 , tal que $\nabla f \cdot \vec{i} = -3$ em \mathbb{R}^3 e C é a interseção da superfície $x^2 + y^2 = 1$ com o plano z y = 2, com uma orientação tal que quando projetada no plano z = 0 produz um percurso no sentido horário.
- 35. Utilizando o teorema de Stokes, transforme $\iint_S rot \vec{F} \cdot \vec{n} \ dS$ em uma integral de linha e calcule:
 - (a) $\vec{F}(x,y,z) = y \vec{k}$, $S: \vec{r}(u,v) = (u,v,u^2+v^2)$, com $u^2+v^2 \le 1$, sendo \vec{n} a normal apontando para cima
 - (b) $\vec{F}(x,y,z)=y\,\vec{i}$, S a superfície $x^2+y^2+z^2=2$, $x^2+y^2\leq 1$ e $z\geq 0$, sendo \vec{n} a normal apontando para cima.
 - (c) $\vec{F}(x,y,z) = x\vec{j} + xy\vec{k}$, $S: x^2 + y^2 + \frac{z^2}{4} = 1$, $z \le 1$, sendo \vec{n} tal que $\vec{n}(0,0,-2) = -\vec{k}$.
 - (d) $\vec{F}(x,y,z) = x^2y\vec{i} + 2y^3z\vec{j} + 3z\vec{k}$, $S: \vec{r}(r,\theta) = (r\cos\theta)\vec{i} + (r\sin\theta)\vec{j} + r\vec{k}$, com $0 \le r \le 1$, $0 \le \theta \le 2\pi$, sendo \vec{n} a normal exterior.
- 36. Calcule $\iint_S rot \vec{F} \cdot \vec{n} dS$, onde $\vec{F}(x,y,z) = (y,2x,xyz)$, S é formada pelas cinco faces do cubo $[0,2] \times [0,2] \times [0,2]$ que não estão no plano xy com \vec{n} exterior a S.
 - (a) Utilizando o teorema de Gauss
 - (b) Utilizando o teorema de Stokes.
- 37. Calcule $\int_C \vec{F} \cdot d\vec{r}$, onde $\vec{F}(x,y,z) = \left(z^2 + e^{x^2}, xz + e^y, 2xy + ze^z\right)$ e C é a curva obtida como interseção da superfície $z = 1 y^2, \ z \ge 0$, com o plano x + z = 2, orientada no sentido anti-horário quando vista do eixo x positivo.
- 38. Calcule $\int_C \vec{F} \cdot d\vec{r}$, onde $\vec{F}(x,y,z) = (z,z^2 + y\cos y, 2yz + ze^{-z})$ e C é a curva obtida como interseção da superfície $z = x^2$, com o plano y + z = 4, orientada no sentido anti-horário quando vista de cima.
- 39. Calcule $\int_C \vec{F} \cdot d\vec{r}$, onde $\vec{F}(x,y,z) = \left(-2y + e^{\sin x}, -z + y, x^3 + e^{\sin z}\right)$ e C é a interseção da superfície $z = y^2$, com o plano x + z = 1, orientada no sentido de crescimento de y.

Cálculo III

40. Determine $\int_C \vec{F} \cdot d\vec{r}$, onde $\vec{F}(x,y,z) = \left(yz + x^3, xz + 3y^2, xy + 4\right)$ e C é a curva obtida como interseção da superfícies $z = 5 - y^2, \ z \ge 1$ e x + z = 5, orientada no sentido de crescimento de y.

41. Calcule $\int_C \left(ze^{xz} + ye^{xy} + 6x\right) \, dx + \left(xe^{xy} + ze^{yz}\right) \, dy + \left(xe^{xz} + ye^{yz} - \operatorname{sen}z\right) \, dz, \text{ onde } C \text{ \'e a curva dada por } \vec{r}(t) = t^2 \, \vec{i} + (t-1)(t-3) \, \vec{j} + \pi t^3 \, \vec{k}, \quad 0 \le t \le 1.$

42. Calcule $\int_C \vec{F} \cdot d\vec{r}$, onde $\vec{F}(x,y,z) = (e^{-y} - ze^{-x}, e^{-z} - xe^{-y}, e^{-x} - ye^{-z})$ e C é a curva parametrizada por $\vec{r}(t) = \left(\frac{\ln(1+t)}{\ln 2}, \, \sin\left(\frac{\pi t}{2}\right), \, \frac{1-e^t}{1-e}\right), \quad 0 \le t \le 1.$

43. Calcule a integral do campo vetorial $\vec{F}(x,y,z) = \left(x+y+z,z+x+e^{-y^2/2},x+y+e^{-z^2/2}\right)$ ao longo da curva interseção da superfície $\frac{x^2}{4} + \frac{y^2}{9} + z^2 = 1$, $z \ge 0$, com o plano y = -1, orientada no sentido de crescimento de x.

44. Seja o campo vetorial $\vec{F} = (3yz^2 - 2xe^z)\vec{i} + (3xz^2 + \cos y)\vec{j} + (6xyz - x^2e^z)\vec{k}$

(a) \vec{F} é conservativo? Por quê?

(b) Calcule $\int_C \vec{F} \cdot d\vec{r}$, se C é a curva descrita por $\vec{r}(t) = t \vec{i} + \left(\frac{\pi}{2}t^3\right) \vec{j} + (t-1)(t-2) \vec{k}$, $0 \le t \le 1$

(c) Calcule $\int_C \vec{F} \cdot d\vec{r}$, onde C é a fronteira do plano x+y+z=2, que fica no primeiro octante, orientada no sentido anti-horário.

Respostas

	1 4	-
1 /	0	9/10
1. (a	24π

(b) $\frac{\pi}{2}$

2. 1500π

3. 3π

4. $\frac{12\pi}{5}$

5. $\frac{2}{3}$

6. 17π

7. $\frac{164\pi}{5}$

8. $\frac{3\pi}{2}$

9. $\frac{81\pi}{4}$

10. $\frac{\pi}{15} \left(890 + 3\sqrt{2} \right)$

11. -12

12. $\frac{2\pi}{3}(h+3)$

13. $\frac{4\pi}{5}$

14. 8π

15. 1

16. $\frac{-9\pi}{2}$

18. $\frac{\pi}{6}$

19. $\frac{1}{3}$

 20.6π

1999

21. $\frac{-3\pi}{4}$

22. (a) 2π

(b) $-\pi a^2$

24. 4π

25. -4π

26. $\frac{1}{3}$

27. $-2\pi a(a+b)$

28. $-\frac{1}{2}$

29. 6π

30. 75π

31. 16

32. 32π

33. 5π

34. π

35. (a) 0

(b) $-\pi$

(c) $-\frac{3\pi}{4}$

(d) $\frac{\pi}{4}$

36. (a) 4

(b) 4

37. $\frac{8}{3} - e + e^{-1}$

 $38. -\frac{16}{2}$

39. 2

40. 32

41. e^{π}

42. $3e^{-1}$

43. $-\frac{8\sqrt{2}}{3}$

44. (a) É conservativo

(b) 0

(c) 0