Problem

Use the pumping lemma to show that the following languages are not regular.

^A**a.**
$$A_1 = \{0^n 1^n 2^n | n \ge 0\}$$

b.
$$A_2 = \{www | w \in \{a, b\}^*\}$$

^Ac.
$$A_3 = \{a^{2^n} | n \ge 0\}$$
 (Here, a^{2^n} means a string of 2^n a's.)

Step-by-step solution

Step 1 of 4

Pumping Lemma:

If A is regular language, there is a number p (the pumping length) where S is any string in A of length at least P, then S may be divided into three pieces, S = xyz, satisfying the following conditions.

- 1. For each $i \ge 0$, $xy^i z \in A$
- 2. |y| > 0, and
- 3. $|xy| \le p$

Comment

Step 2 of 4

(a)

Consider the language, $A_1 = \{0^n 1^n 2^n \mid n \ge 0\}$.

Assume A_{i} is a regular language.

Let p be the pumping length given by the pumping lemma consider a string $S = 0^p 1^p 2^p \in A$

|S| > P so, by pumping lemma, take $S = 0^p 1^p 2^p = xyz$ such that $|xy| \le p, |y| > 0$ consider the following 2 possibilities:

Let 001122 be the string that belongs to A_1 . $S = 0^p 1^p 2^p = 001122$. The pumping length of the string is 2. To satisfy the conditions of the pumping lemma, x = 0, y = 0, z = 1122.

$$S = 001122$$

$$=\frac{0}{1} \frac{0}{1122}$$

Pump the middle part such that xy^iz $(i \ge 0)$. For i=2, the y becomes 00. The string after pumping is 0001122.

$$S = (0) (0)^i (1122)$$

$$=\frac{0}{x} \frac{00}{v} \frac{1122}{z}$$
 [when $i = 2$]

The string $0001122 \notin A_{\parallel}$ because the string that is accepted by the language should have equal number of 0's, 1's and 2's. It is a contradiction. So, the pumping lemma is violated.

Therefore, A_i is not a regular language.

Step 3 of 4

(b)

Consider the language, $A_2 = \{www \mid w \in \{a, b\}^*\}$.

Assume A_2 is a regular language.

Let p be the pumping length given by the pumping lemma.

Consider a string $S = a^p b a^p b a^p b = A_2$.

By pumping lemma, this string can be divided into three pieces xyz such that $|xy| \le p, |y| > 0$ and $xy'z \in A_2 \forall i \ge 0$

So $S = a^p b a^p b a^p b = xyz$.

Let *aabaabaab* be the string that belongs to A_2 . The pumping length of the string is 2. To satisfy the conditions of the pumping lemma, x = a, y = a, z = baabaab

S = aabaabaab

$$=\frac{a}{x}\frac{a}{v}\frac{baabaab}{z}$$

Pump the middle part such that xy^iz $(i \ge 0)$. For i=2, the y becomes aa. The string after pumping is aaabaabaab.

$$S = (a) (a)^i (baabaab)$$

$$= \frac{a}{x} \frac{aa}{y} \frac{baabaab}{z} \quad [when i = 2]$$

The string $aaabaabaab \not\in A_2$. It is a contradiction. So, the pumping lemma is violated.

Therefore, A_2 is not a regular language.

Comments (8)

Step 4 of 4

(c)

Consider the language, $A_3 = \left\{ a^{2^n} \mid n \ge 0 \right\}$ (Here, a^{2^n} means a string of 2^n a's).

Assume that A_3 is regular language.

Let p be the pumping length given by pumping lemma consider a string $S = a^{2^p} \in A_3$. And |S| > p

By pumping lemma, this string can be divided into three pieces xyz such that $|xy| \le p, |y| > 0$ and $xy^iz \in A_2 \forall i \ge 0$

Let aaaa be the string that belongs to A_1 . The pumping length of the string is 2. To satisfy the conditions of the pumping lemma, x = a, y = a, z = aa.

$$S = aaaa$$

$$= \frac{a}{x} \frac{a}{y} \frac{aa}{z}$$

Pump the middle part such that xy^iz $(i \ge 0)$. For i=2, the y becomes aa. The string after pumping is aaaaa.

$$S = (a) (a)^i (aa)$$

$$= \frac{a}{x} \frac{aa}{y} \frac{aa}{z} \quad [when \ i = 2]$$

The string $aaaaa \notin A_3$. It is a contradiction. So, the pumping lemma is violated.

Therefore, A_3 is not a regular language.

Comments (9)