Experimentalphysik II (H.-C. Schulz-Coulon)

Robin Heinemann

17. Oktober 2017

Inhaltsverzeichnis

11	Elek	trostatik	3		
	11.1	Elektrische Ladung	3		
	11.2	Mikroskopische Deutung	3		
	11.3	Coulombsches Gesetz	3		
	11.4	elektrisches Feld	4		
	11.5	Elektrischer Fluss	5		
	11.6	Elektrische Felder innerhalb von Leitern	7		
	11.7	Differentielle Form des Gaußschen Gesetzes	7		
	11.8	Elektrisches Potential	7		
	11.9	Grundgleichungen der Elektrostatik	8		
	11.10	Elektrische Felder geladener Felder	9		
	11.11	Elektrischer Dipol	11		
	11.12	2 Kapazität und Kondensator	12		
	11.13	B Kondensator als Energiespeicher	13		
	11.14	Dielektrika - Elektrostatik in Materie	14		
12	Elektrische Gleichströme 10				
	12.1	Strom und Stromdichte	16		
	12.2	Elektrischer Widerstand und Ohmsches Gesetz	17		
	12.3	Elektrische Leistung	19		
	12.4	Stromkreise - Kirchhoffsche Regeln	19		
	12.5	Strom und Spannungsquellen	20		
	12.6	Strom und Spannungsmessung	20		
13	Magnetostatik 2				
	13.1	Magnetfelder und bewegte Ladungen	22		
		Grundgleichungen der Magnetostatik			
	13.3	Zwei Anwendungsbeispiele	24		
	13.4	Biot-Savart-Gesetz	25		

14	Materie im Magnetfeld	26		
	14.1 Magnetisierung und magnetische Erregung	26		
	14.2 Dia-, Para- und Ferromagnetismus	28		
	14.3 Feldgleichungen in Materie	30		
15	5 Induktion und elektromagnetische Wechselfelder 3			
	15.1 Magnetische Induktion			
	15.2 Generatoren			
	15.3 Induktivität und Selbstinduktion			
	15.4 Verschiebungsstrom			
16	Schaltvorgänge, Wechselstrom und Schwingkreise	35		
10	16.1 Induktivität im Stromkreis (LR-Glied)			
	16.2 Kapazität im Stromkreis (RC-Glied)			
	16.3 R, L, C im Wechselstromkreis			
	16.4 Komplexe Darstellung			
	16.5 RLC-Schwingkreis			
	16.6 Transformator			
	16.7 Elektrische und magnetische Feldenergie			
17	Elektromagnetische Welle	45		
	17.1 Mechanische Wellen			
	17.2 Wellengleichung			
	17.3 Wellenpakete, Phasen- und Gruppengeschwindigkeit			
	17.4 Elektromagnetische Wellengleichung			
	17.5 Struktur elektromagnetischer Wellen			
	17.6 Energietransport elektromagnetischer Welle			
	17.7 Erzeugung elektromagnetischer Wellen			
	17.8 Elektromagnetisches Spektrum	53		
18	Natur des Lichts und Wellenoptik	54		
	18.1 Beugung und Interferenz	54		
	18.2 Reflexion und Brechung	57		
	18.3 Fermatsches Prinzip	58		
	18.4 Polarisation und Fresnelsche Formeln	59		
	18.5 Dispersion und Prismenwirkung	61		
19	Optische Abbildungen	62		
	19.1 Dünne Linsen, Linsengleichung	62		
	19.2 Einfache Anwendung des Linsegesetzes	63		
	19.3 Dicke Linsen	63		
	19.4 Linsenfehler	64		
	19.5 Optische Instrumente	64		
20	Spezielle Relativitätstheorie	64		

11 Elektrostatik

11.1 Elektrische Ladung

- Neue Kraft
- anziehend oder abstoßend
- Konzept der elektrischen Ladung

Experimentelle Erkenntnisse:

- Erzeugung von Ladungen durch Reibung
- Ladungen gleicher Vorzeichen: Abstoßung
- Ladungen ungleicher Vorzeichen: Anziehung
- · Ladung kann transportiert werden
- Elektrische Kräfte sind Fernkräfte
- Ladungen sind erhalten

Definition 11.1 Influenz Ladungstrennung durch die (Fern) Wirkung elektrischer Kräfte nennt man Influenz oder elektrostatische Induktion.

11.2 Mikroskopische Deutung

Elektron: negativ Proton: positiv

Atome elektrische neutral

- Z: Anzahl Protonen / Elektronen
- N: Anzahl Neutronen
- A: Anzahl Neutronen + Protonen

Leiter und Nichtleiter: Unterschiedliche Verfügbarkeit von Ladungsträgern

11.3 Coulombsches Gesetz

Experimentelles Resultat:

$$\vec{F}_C = K \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12}$$

Definition 11.2

$$\vec{F}_C = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12}$$

mit
$$\varepsilon_0 = 8.854\,16 \times 10^{-12}\,\mathrm{C\,N^{-1}\,m^{-2}}$$

Vergleich: Coulomb vs. Gravitation

$$\begin{split} \vec{F}_G &= -G \frac{m_1 m_2}{r_{12}^2} \hat{r}_{12} \\ \vec{F}_C &= K \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12} \\ \frac{F_C}{F_G} &= 227 \times 10^{39} \end{split}$$

11.4 elektrisches Feld

Definition 11.3 (Elektrisches Feld)

$$\vec{E}(\vec{r}) = \frac{\vec{F}_C(\vec{r})}{q} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \hat{r}$$

$$\vec{F}(\vec{r}) = q \vec{E}(\vec{r})$$

Das elektrische Feld hängt nur von der Ladung Q ab, aber nicht von der Testladung q. Es gilt damit:

$$\vec{F}(\vec{r}) = q\vec{E}(\vec{r})$$

Bedeutung das elektrischen Feldes:

Coulomb-Gesetz beschreibt Fernwirkung.

Aber: Wodurch wird diese Wirkung übertragen?

Geschieht die Übertragung instantan? (nein!)

Feldwirkungstheorie: Elektrische Kraftübertragung über Ausbreitung des elektrischen Feldes, das mit der Probeladung *q*. Elektrostatik: Fernwirkung- und Feldwirkungstheorie äquivalent.

Elektrodynamik: Feldbegriff essentiell.

Feld einer allgemeinen Ladungsverteilung:

Wichtig: Es gilt das Superpositionsprinzips. Es gilt

$$\mathrm{d}Q = \rho(\vec{r})\mathrm{d}V$$

$$\vec{E}\left(\vec{R}\right) = \frac{1}{4\pi\varepsilon_0} \int \frac{\vec{R} - \vec{r}}{\left|\vec{R} - \vec{r}\right|^3} \rho(\vec{r})\mathrm{d}V$$

Für diskrete Ladungen:

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \sum_{i} \frac{q_i}{r_i^2} \hat{r}$$

Die Anwesenheit von Ladungen verändern den Raum. Es entsteht in Vektorfeld, dessen Stärke und Richtung in jedem Raumpunkt die normierte Kraft $\frac{\vec{F}}{q}$ auf eine Probeladung angibt. Eigenschaften der Feldlinien

- 1. Das \vec{E} -Feld zeigt tangential zu den Feldlinien
- 2. Feldlinien zeigen weg von positiven Ladungen
- 3. Feldliniendichte entspricht Stärke des Feldes.

11.5 Elektrischer Fluss

Definition 11.4 (Elektrischer Fluss ϕ_E) Maß für die Anzahl der Feldlinien, die Fläche A durchstoßen.

Für geschlossene Oberflächen:

$$Q_{innen} = 0 \implies \phi_E = 0$$

 $Q_{innen} > 0 \implies \phi_E > 0$
 $Q_{innen} < 0 \implies \phi_E < 0$

Mathematisch:

- Homogenes Feld, \perp zur Oberfläche $\implies \phi E = EA$
- Homogenes elektrisches Feld $EA' = EA\cos\theta = \vec{E}\,\vec{A} = \vec{E}\,\vec{n}A$

Verallgemeinerung:

$$\begin{split} \Delta\phi_i &= \vec{E}_i \vec{n}_i \Delta A_i \\ \phi_E &= \lim_{\Delta A_i \to 0} \sum \vec{E}_i \vec{n}_i \Delta A \\ \phi_A &= \int \vec{E} \mathrm{d} \vec{A} \end{split} \tag{Definition von Elektrischem Fluss)}$$

Ladung einer Kugel:

$$\phi_A = \int \vec{E} d\vec{A}$$

$$= \frac{1}{4\pi\varepsilon_0} \frac{Q}{R^2} \int d\vec{D}$$

$$= \frac{1}{4\pi\varepsilon_0} \frac{Q}{R^2} 4\pi R^2$$

$$= \frac{Q}{\varepsilon_0}$$

Definition 11.5 (Gauß'sches Gesetz (1. Maxwell-Gleichung))

$$\oint \vec{E} \, \mathrm{d} \, \vec{A} = \frac{Q_{\mathrm{innen}}}{\varepsilon_0}$$

Das Gauß'sche Gesetz ist allgemeingültig, da:

$$\oint_{A_2} \vec{E} \, \mathrm{d} \, \vec{A} - \oint_{A_1} \vec{E} \, \mathrm{d} \, \vec{A} = 0$$

$$\oint_{A_2} \vec{E} \, \mathrm{d} \, \vec{A} = \oint_{A_1} \vec{E} \, \mathrm{d} \, \vec{A} = \frac{Q_{\mathrm{innen}}}{\varepsilon_0}$$

Zusammen mit Superpositionsprinzip und homogener Fläche erhält man die Allgemeingültigkeit des Gauß'schen Gesetz.

Herleitung des Coulombschen Gesetz mit Gauß'schen Gesetz:

$$\oint \vec{E} d\vec{A} = \frac{Q}{\varepsilon_0}$$

$$E \oint d\vec{A} = \frac{Q}{\varepsilon_0}$$

$$E4\pi R^2 = \frac{Q}{\varepsilon_0}$$

$$E(R) = \frac{Q}{4\pi\varepsilon_0} \frac{1}{R^2}$$

Beispiel 11.6 (Unendlich langer Draht) Ladungsdichte: $\lambda = Q/L$

$$\vec{E}\Big(\vec{R}\Big) = \vec{E}(R)$$

- Mantelfläche:
e $\vec{E} \parallel \operatorname{d} \vec{A}$
- Deckel: $\vec{E} \perp \mathrm{d}\,\vec{D}$

$$\phi_E = \oint \vec{E} \, \mathrm{d}\vec{A} = \int_{\mathrm{Mantel}} \vec{E} \, \mathrm{d}\vec{A} + \underbrace{\int_{\mathrm{Deckel}} \vec{E} \, \mathrm{d}\vec{A}}_{=0} = E \int_{\mathrm{Mantel}} \mathrm{d}A = E 2\pi R L = \frac{V}{\varepsilon_0}$$

$$E = \frac{\frac{Q}{L}}{2\pi R \varepsilon_0} = \frac{\lambda}{2\pi \varepsilon_0} \frac{1}{R}$$

Beispiel 11.7 (Unendlich ausgedehnte Flächenladung) Flächenladungsdichte: $\sigma = Q/A$ Symmetrie:

 $ec{E}$ konstant für festen Abstand.

 $\vec{E} \parallel \vec{A}$

$$\phi_E = \oint \vec{E} d\vec{A} = \underbrace{\int_{\text{Mantel}} \vec{E} d\vec{A}}_{0} + \int_{\text{Deckel}} \vec{E} d\vec{A} = EA_1 + EA_2 = 2EA$$

$$\phi_E = 2EA = \frac{Q}{\varepsilon_0} \implies E = \frac{\sigma}{2\varepsilon_0}$$

Beispiel 11.8 (Plattenkondensator)

$$\vec{E} = \frac{\sigma}{2\varepsilon_0}$$

11.6 Elektrische Felder innerhalb von Leitern

Innerhalb eines Leiters verschwindet das elektrostatische Feld.

Bei einem geladenem, isolierten Leiter sitzen alle Ladungen auf der Oberfläche.

Dazu betrachte Oberfläche, die gerade kleiner als der Leiter ist, dort ist das Elektrische Feld gleich Null, also folgt:

$$\oint \vec{E} \, \mathrm{d}\vec{A} = 0 = \frac{Q_{\mathrm{innen}}}{\varepsilon_0} \implies Q_{\mathrm{innen}} = 0$$

Leiter mit Hohlraum:

$$\oint_{Q} \vec{E} d\vec{A} = 0 \implies Q = 0$$

11.7 Differentielle Form des Gaußschen Gesetzes

$$\oint_A \vec{E} \, \mathrm{d}\vec{A} = \int_V \mathrm{div} \, \vec{E} \, \mathrm{d}V$$

$$\operatorname{div} \vec{E} = \partial_x E_x + \partial_y E_y + \partial_z E_z$$

Zur Divergenz:

Schreibweise: div $\vec{E} = \vec{\nabla} \cdot \vec{E}$, $\vec{\nabla} = (\partial_x, \partial_y, \partial_z)$ in Anschauung:

$$\phi_E = E_O \Delta A - E_i \Delta A$$

$$= \Delta E_x \Delta A$$

$$= \frac{\Delta E_x}{\Delta x} \Delta x \Delta A = \underbrace{\partial_x E_x}_{\text{,div}} \Delta V$$

$$\int_V \operatorname{div}\, \vec{E} \mathrm{d}V = \oint \, \vec{E} \mathrm{d}\vec{A} = \frac{Q}{\varepsilon_0} = \frac{1}{\varepsilon_0} \int_V \rho \mathrm{d}V$$

Differentielle Form des Gauß Gesetz, 1. Maxwell Gleichung:

$$\operatorname{div} \vec{E} = \frac{\rho}{\varepsilon_0}$$

 ρ : Ladungsdichte.

11.8 Elektrisches Potential

Coulombkraft ist konservativ da radialsymmetrisch.

$$\begin{split} W &= E_{pot}(2) - E_{pot}(1) = -\int_{1}^{2} \vec{F}_{C} \mathrm{d}\vec{s} \\ \vec{F}_{C} &= -\operatorname{grad} E_{pot} \\ E_{pot}(\vec{r}) &= -\int_{\infty}^{+r} \vec{F}_{C} \mathrm{d}\vec{r} = -\frac{1}{4\pi\varepsilon_{0}} \int \frac{Qq}{r^{2}} \mathrm{d}r \\ &= \frac{1}{4\pi\varepsilon_{0}} \frac{Qq}{r} \end{split} \tag{Theorie: } Qq/r) \end{split}$$

Definition 11.9 (Coulombpotential)

$$\varphi(\vec{r}) = \frac{E_{pot}(\vec{r})}{q} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r}, \varphi(\infty) = 0$$

$$\Delta \varphi = \varphi(\vec{r}_2) l \varphi \vec{r}_1 = -\int \vec{E} d\vec{s}$$

$$\oint \vec{E} d\vec{s} = 0$$

$$\vec{E}(\vec{r}) = -\operatorname{grad} \varphi(\vec{r})$$

Allgemeine Ladungsverteilung:

$$\varphi(\vec{R}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{r})}{|\vec{R} - \vec{r}|} dV$$

Definition 11.10 (Elektrische Spannung)

$$U_{12} = \varphi_2 - \varphi_1 = \Delta \varphi_{21} = -\int_1^2 \vec{E} \, \mathrm{d}\vec{s}$$

11.9 Grundgleichungen der Elektrostatik

Integralform:

$$\oint \vec{E} d\vec{A} = \frac{Q}{\varepsilon_0} \quad \oint \vec{E} d\vec{s} = 0$$

Differentialform:

$$\operatorname{div} \vec{E} = \frac{\rho}{\varepsilon_0} \quad \operatorname{rot} \vec{E} = 0$$

Stokes-scher Satz:

$$\oint_C E \mathrm{d}\vec{s} = \int_A \mathrm{rot} \; \vec{E} \mathrm{d}\vec{A}$$

Zur Rotation:

Schreibweise:

$$\operatorname{rot} \vec{E} = \vec{\nabla} \times \vec{E}, \vec{\nabla} = (\partial_x, \partial_y, \partial_z)$$
$$\operatorname{rot} \vec{E} = (\partial_y E_z - \partial_z E_y, \partial_z E_x - \partial_x E_z, \partial_x E_y - \partial_y E_x)$$

Anschauung:

$$\oint_C \vec{A} d\vec{s} = \Delta E_2 \Delta z - \Delta E_x \Delta x$$

$$= \frac{\Delta E_z}{\Delta_x} \Delta x \Delta z - \frac{\Delta E_x}{\Delta z} \Delta z \Delta x$$

$$= \underbrace{(\partial_x E_z - \partial_z E_x)}_{\text{rot}} \Delta A$$

Mathematik:

$$\begin{split} \operatorname{rot} \, \vec{E} &= -\operatorname{rot}(\operatorname{grad} \varphi) = - \vec{\nabla} \times \left(\vec{\nabla} \varphi \right) = 0 \\ \operatorname{div} \, \vec{E} &= -\operatorname{div}(\operatorname{grad} \varphi) = - \vec{\nabla} \cdot \left(\vec{\nabla} \varphi \right) = - \vec{\nabla}^2 \varphi = - \Delta \varphi \\ &= - \left(\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} \right) = \frac{\rho}{\varepsilon_0} \end{split}$$

Definition 11.11 (Poissongleichung)

$$\Delta \varphi = -\frac{\varphi}{\varepsilon_0}$$

Zentrale Gleichung der Elektrostatik

Definition 11.12 (Laplacegleichung)

$$\Delta \varphi = 0$$

Eckstein der mathematischen Physik [PTP3]

Realisierung eines Feldes der Form

$$\varphi = ax^2 + by^2 + cz^2 \quad a, b, c > 0$$
$$\Delta \varphi = 2a + 2b + 2c > 0$$

2a + 2b + 2c ist immer $> 0 \implies$ solches Feld nicht möglich.

11.10 Elektrische Felder geladener Felder

"Einfach": Berechnung für bekannte Ladungsverteilung. "Schwierig": Berechnung in Anwesenheit von Leitern. Für statische Felder gilt: im Leiter $\vec{E}=0$ im Hohlraum $q=0,\,\vec{E}=0$

Oberfläche eines Leiters:

1.
$$\vec{E} \parallel \vec{A}$$

2.
$$\vec{E} = \frac{\sigma}{\varepsilon_0}$$

$$d\phi_E = \vec{A}d\vec{A} = EdA$$

$$= \frac{dQ}{d\varepsilon_0}$$

$$E = \underbrace{\frac{dQ}{dA}}_{\sigma} \frac{1}{\varepsilon_0} = \frac{\sigma}{\varepsilon_0}$$

3. $\varphi = \text{const.}$ an Leiteroberfläche.

Berechnung von Verteilungen von Ladungen schwierig. Hier nur qualitatives Verständnis. Kugelladung (Radius R):

Innen: $E=0, \varphi={\rm const.}$ Außen: $E=1/(4\pi\varepsilon_0)Q/r^2$

$$\vec{E}(\vec{R}) = \frac{\sigma}{\varepsilon_0}$$

$$\vec{E}(\vec{R}) = \frac{\vec{\varphi}(R)}{R}$$

 $\varphi = \mathrm{const.} \implies \mathrm{Erzeugung}$ hoher Felder für kleine R

Beispiel 11.13 (Zwei Kugeln (verbunden)) verbunden $\implies \varphi = \varphi_1 = \varphi_2 \implies Q_1/R_1 = Q_2/R_2$

$$R_1 > R_2$$

$$\implies Q_1 > Q_2$$

$$\sigma_1 < \sigma_2$$

$$E_1 < E_2$$

kleiner Krümmungsradius \implies größeres Feld, größere Flächenladungsdichte. Merke: Scharfe Kanten beziehungsweise kleiner Krümmungsradius bedeutet hohes E-Feld

Beispiel 11.14 (Halbraumleiter mit Ladung)

11.11 Elektrischer Dipol

Beispiel 11.15 (Dipol)

$$\begin{split} \varphi(\vec{r}) &= \frac{1}{4\pi\varepsilon_0} \left[\frac{q}{\left| \vec{r} - \frac{1}{2} \vec{d} \right|} + \frac{-q}{\left| \vec{r} + \frac{1}{2} \vec{d} \right|} \right] \\ \varphi(\vec{r}) &= \frac{\vec{p}\hat{r}}{4\pi\varepsilon_0 r^2} \\ \vec{p} &= q \vec{d} \\ \vec{E} &= y \operatorname{grad} \varphi \\ E(\vec{r}) &= \frac{3(\vec{p}\vec{r})\vec{r} - r^2 \vec{p}}{r^5} \end{split} \tag{Elektrisches Dipolfeld (ohne Beweis)}$$

Merke: Elektrischer Dipol, $r \gg d$

$$\varphi(\vec{r}) \sim \frac{1}{r^2} \qquad E(\vec{r}) \sim \frac{1}{r^3}$$

Multipolentwicklung:

$$\varphi(\vec{r}) = \frac{a_0}{r} + \frac{a_1}{r^2} + \frac{a_2}{r^3} + \dots$$
$$a_0 = \frac{Q}{4\pi\varepsilon_0} \quad a_1 = \frac{1}{4\pi\varepsilon_0} \cdot \vec{p}\hat{r}$$
$$\vec{p} = \int \rho(\vec{r})\vec{r}dQ$$

Elektrischer Dipol im homogenem Feld:

Drehmoment:

$$\vec{M} = \vec{d} \times \vec{F} = q \cdot \vec{d} \times \frac{1}{q} \vec{F} = \vec{p} \times \vec{E}$$

Kräftepaar! \implies Ausrichtung im Feld. Potentielle Energie: Drehung eines Dipols im homogenen Feld, das heißt Arbeit wird frei oder wird geleistet. Wähle: $E_{pot} = 0$ für $r = 90^{\circ}$

$$E_{pot} = -\vec{F}\vec{s} = -\vec{p}\vec{E}$$

Dipol im inhomogenen Feld: das heißt an den beiden Enden des Dipols wirken unterschiedliche Kräfte. \implies Drehmoment + resultierende Kraft. Es gilt:

$$\vec{F} = q \vec{d} \frac{d\vec{E}}{d\vec{r}} = \vec{p} \nabla \vec{E}$$

$$F_x = \vec{p} \operatorname{grad} E_x$$

$$F_y = \vec{p} \operatorname{grad} E_y$$

$$F_x = \vec{p} \operatorname{grad} E_z$$

11.12 Kapazität und Kondensator

Leiter können Ladungen speichern (zum Beispiel: Leidener Flasche, Kondensator, Metallkugel).
Kondensator = Ladungsspeicher (Ladungen werden im Kondensator "kondensiert", das heißt zusammengedrängt)
Frage: Was ist die Ladungsspeicherfähigkeit oder Kapazität eines Leiters? Dafür betrachte Kugelkondensator.
Gespeicherte Ladungsmenge auf einzelner Metallkugel:

$$\Delta \varphi = -\int_{\infty}^{R} \vec{E} d\vec{r} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{R} \to Q = 4\pi\varepsilon_0 RU$$

 $(\Delta\varphi=U)$. Das heißt gespeicherte Ladung ist proportional zur angelegten Spannung U (Allgemein: $\varphi(Q)\sim Q$, Superpositionsprinzip). Definiere Ladungsspeicherfähigkeit "pro Volt"

Definition 11.16 (Kapazität)

$$C = \frac{Q}{U}$$
 $Q = CU$

$$[C] = 1 \,\mathrm{C}\,\mathrm{V}^{-1} = 1 \,\mathrm{F}$$

Die Kapazität einer Leiteranordnung hängt von der Geometrie (und vom Material) ab. Kapazität eines Kugelkondensators: $C4\pi\varepsilon_0R$ (hier: freistehende Kugel). Einheit Farad ist sehr groß, da $1\,\mathrm{C}$ sehr groß ist.

Beispiel 11.17 Kapazität einer Kugel mit $R=1\,\mathrm{cm}\to C\approx 1\times 10^{-12}\,\mathrm{F}=1\,\mathrm{pF}$ Kapazität der Erde mit $R=7\times 10^8\,\mathrm{cm}\to C\approx 7\times 10^{-4}\,\mathrm{F}=700\,\mathrm{F}$ Trotzdem heute: Superkondensatoren mit Kapazitäten bis zu $1\times 10^4\,\mathrm{F}$

Referenzpotential $\varphi=0$ muss aber nicht im Unendlichen liegen. Allgemeiner Kondensator: Zwei Leiter mit Ladungen +Q und -Q (Realisierung durch Erdung) \implies Erhöhung der Kapazität durch Influenz.

Beispiel 11.18 (Kugelkondensator) (siehe Übungen)

Beispiel 11.19 (Plattenkondensator)

$$E = \frac{\sigma}{\varepsilon_0} = \frac{Q}{A\varepsilon_0}$$

$$\implies U = \varphi(x_2) - \varphi(x_1) = -\int_{x_1}^{x_2} \vec{E} d\vec{s}$$

$$= -E \int_{x_1}^{x_2} ds = -\frac{Q}{\varepsilon_0 A} d$$

$$\implies C = \frac{Q}{U} = \frac{\varepsilon_0 A}{d}$$

- A: Fläche der Leiterplatte
- d: Leiterplattenabstand

Kondensatorschaltungen:

Parallelschaltung:

- Gleiche Spannung an allen C_i
- Verschiedene Werte C_i

Es gilt:

$$Q = Q_1 + Q_2 + \dots + Q_n$$

$$\frac{Q}{U} = \frac{Q_1}{U} + \frac{Q_1}{U} + \dots + \frac{Q_n}{U}$$

$$\implies C = C_1 + C_2 + \dots + C_n$$

⇒ Gesamtkapazität parallelgeschalteter Kondensatoren

$$C_{ges} = \sum_{i=1}^{n} C_i$$

Reihenschaltung: Es gilt

$$U = U_1 + U_2 + \dots + U_n$$

$$\frac{Q}{C} = \frac{Q}{C_1} + \frac{Q}{C_2} + \dots + \frac{Q}{C_n}$$

$$\implies \frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$$

⇒ Gesamtkapazität von in Reihe geschalteter Kondensatoren:

$$\frac{1}{C_{ges}} = \sum_{i=1}^{n} \frac{1}{C_i}$$

Kehrwert der Gesamtkapazität ergibt sich als Summe der Kehrwerte der Einzelkapazitäten

11.13 Kondensator als Energiespeicher

Energie
dichte des elektrischen Feldes. Aufgeladener Kondensator = Energiespeicher. Frage: Wie viel
 Energie ist gespeichert? Hierzu betrachten wir einen Plattenkondensator: Ladungstransport von Platte
 A zu Platte B erfordert Arbeit

$$\implies dW = UdQ = \frac{Q}{C}dQ$$

$$W_C = \int \frac{Q}{C}dQ = \frac{1}{C} \int QdQ = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}CU^2$$

⇒ Im Plattenkondensator gespeicherte Energie:

$$E_C = \frac{1}{2}CU^2$$

gilt allgemein für in Kondensator gespeicherte Energie! (Herleitung unabhängig von Geometrie). Für Plattenkondensator gilt weiter:

$$E_C = \frac{1}{2}CU^2 = \frac{1}{2}\frac{\varepsilon_0 A}{d}U^2 = \frac{1}{2}\varepsilon_0 (Ad)\frac{U^2}{d^2} = \frac{1}{2}\varepsilon_0 V E^2$$

Änderung des Blickwinkels: Energie im elektrischen Feld gespeichert \implies Energiedichte $\omega_e=E_c/V$

$$\implies \omega_e = \frac{1}{2}\varepsilon_0 E^2$$

Gilt allgemein für alle elektrischen Felder im Vakuum.

11.14 Dielektrika - Elektrostatik in Materie

Beobachtung: Einbringen eines Isolators (Dielektrikum) in einen Kondensator hat großen Einfluss auf die Kapazität. Die Spannung sinkt \implies Kapazität steigt

Definition 11.20 (Permittivität)

$$C_{Diel} = \varepsilon_r C_{Vakuum} = \varepsilon_r C_0$$

auch Dielektrizitätskonstante, relative Dielektrizitätszahl, relative Permittivitätszahl.

Beispiel 11.21 (Plattenkondensator)

$$C_{Diel} = \varepsilon_r \varepsilon_0 \frac{A}{d}$$

$$C_{Vak} \cdot U_{Vak} = C_{Diel} U_{Diel}$$

$$\implies \frac{C_{vak}}{C_{Diel}} = \frac{U_{Diel}}{U_{vak}} = \frac{E_{Diel}}{E_{vak}} = \frac{1}{\varepsilon_r}$$

$$E_{Diel} = \frac{1}{\varepsilon_r} E_{vak}$$

das heißt das Feld im Kondensator mit Dielektrikum reduziert.

Mikroskopische Beschreibung:

Isolator: Es gibt keine freien, beweglichen Ladungsträger. Aber Polarisation, das heißt Ausrichtung von Dipolen.

Kondensator

$$C_0 = \varepsilon_0 \frac{A}{d}$$

$$C_{Diel.} = \varepsilon_r \varepsilon_0 \frac{A}{d}$$

$$E_{Diel.} = \frac{1}{\varepsilon_r} E_{\text{Vakuum}}$$

$$= \frac{1}{\varepsilon_r} E_0$$

$$\sigma_0 = \frac{Q_0}{A}$$

$$\sigma_p = \frac{Q_p}{A}$$

$$E_{Diel} = E_0 - E_p = \frac{\sigma_0}{\varepsilon_0} - \frac{\sigma_p}{e_0} = \frac{1}{\varepsilon_0} (\sigma_0 - \sigma_p) = \frac{1}{\varepsilon_r} \frac{\sigma_0}{\varepsilon_0}$$

$$\implies \sigma_p = \sigma_0 \left(1 - \frac{1}{\varepsilon_r} \right)$$

$$\implies \sigma_0 = \sigma_{frei} = \varepsilon_r \sigma_{tot}$$

$$\implies Q_0 = Q_{frei} = \varepsilon_r Q_{tot}$$

Polarisation mit Dipol
moment $\vec{p}_i = q_i\,\vec{d}_i, [P] = \mathrm{C}\,\mathrm{m}^{-2}$

Definition 11.22

$$\vec{P} = \frac{1}{V} \sum \vec{p}_i$$

 \vec{P} wächst mit stärkerer Ausrichtung des Dipols an. Und es gilt

$$\left| \vec{P} \right| = \frac{Q_p d}{V} = \frac{\sigma_p A d}{V} = \sigma_p$$

⇒ Makroskopische Polarisation = Oberflächenladungsdichte auf Dielektrikum.

$$P = \sigma_p = \sigma_0 \left(1 - \frac{1}{\varepsilon_r} \right) = \varepsilon_0 E_{vak} \left(1 - \frac{1}{\varepsilon_r} \right)$$
$$= (\varepsilon_r - 1) \varepsilon_0 E_{Diel}.$$
$$\vec{P} = \chi \varepsilon_0 \vec{E}_{Diel}.$$
$$\chi = \varepsilon_r - 1$$

Definition 11.23 (Dielektrische Verschiebung)

$$\begin{split} \vec{D} &= \varepsilon_0 \, \vec{E}_{Diel.} + \, \vec{P} \\ &= \varepsilon_0 \, \vec{E}_{vak} = \varepsilon_0 \varepsilon_r \, \vec{E}_{Diel.} \end{split}$$

Vakuum:

$$\vec{E}_{Diel} = \vec{E}_{vak} \quad \vec{D} = \varepsilon_0 \vec{E}_{vak}$$

Dielektrikum

$$\vec{E}_{Diel} = \frac{1}{\varepsilon_r} \, \vec{E}_{vak} \quad \vec{D} = \varepsilon_0 \, \vec{E}_{vak}$$

Allgemein:

$$E_{vak}^{\parallel} = E_{Diel}^{\parallel}, E_{vak}^{\perp} = \varepsilon_r E_{Diel}^{\perp}$$

$$D_{vak}^{\parallel} = \frac{1}{\varepsilon_r} D_{Diel}^{\parallel}, D_{vak}^{\perp} = D_{Diel}^{\perp}$$
$$\operatorname{div} \vec{E}_{vak} = \frac{\rho_{innen}}{\varepsilon_0}$$
$$\Longrightarrow \operatorname{div} \vec{D} = \rho_{frei}$$

⇒ 1. Maxwell Gleichung in Materie

$$\begin{split} \operatorname{div} \vec{D} &= \rho_{frei} \quad \oint \vec{D} \mathrm{d} \vec{A} = Q_{frei} \\ \operatorname{div} \vec{E} &= \frac{\rho_{frei}}{\varepsilon_0 \varepsilon_r} \quad \oint \vec{D} \mathrm{d} \vec{A} = \frac{Q_{frei}}{\varepsilon_0 \varepsilon_r} \end{split}$$

Elektrische Feldenergie im Dielektrikum

$$W_e = \frac{1}{2}Cn^2 = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}\frac{1}{\varepsilon_r}\frac{Q^2}{C_0}$$
$$\implies \omega_C = \frac{1}{2}\varepsilon_r\varepsilon_0\vec{E}^2 = \frac{1}{2}\vec{E}\vec{D}$$

Für gleiches Feld \vec{E} wächst die Energiedichte mit ε_r . Zur Energie des Feldes \vec{E} wird Polarisationsenergie der Dipole addiert.

12 Elektrische Gleichströme

12.1 Strom und Stromdichte

Definition 12.1 (Elektrischer Strom)

$$I = \frac{dQ}{dt}$$

$$[I] = C s^{-1} = A$$

$$\left| \vec{j} \right| = \frac{I}{A} = \frac{dQ}{Adt}$$

$$\vec{j} = \rho \vec{v} = nq_e \vec{v}_D$$

$$\dots \rho = \div \vec{j} = 0$$

$$I = \int \vec{j} dA = \frac{dQ}{dt} = \int \dot{\rho} dV$$

12.2 Elektrischer Widerstand und Ohmsches Gesetz

Ladungsfluss entsteht aufgrund einer Potentialdifferenz beziehungsweise eines elektrischen Feldes.

$$U = \varphi_b - \varphi_a = E\Delta l$$

Spannungsänderung

- \implies Änderung Elektrisches Feld
- \implies Änderung der Ladungsträgergeschwindigkeit
- \implies Änderung von Stromdichte und Strom

Definition 12.2 (Differentieller Widerstand)

$$\vartheta = \frac{\mathrm{d}U}{\mathrm{d}I}$$

$$[S] = A V^{-1} = S$$

Definition 12.3 (Differentielle Leitfähigkeit)

$$S = \frac{\mathrm{d}I}{\mathrm{d}U}$$

$$[\vartheta] = V A^{-1} =$$

Beobachtung: Elektrischer Leiter: $\vartheta = \text{const.}$

$$\begin{split} R &= \frac{U}{I} = \frac{El}{I} \iff I = \frac{El}{R} \\ j &= \frac{I}{A} = \frac{l}{RA}E = \sigma E = \eta q_e v_D \end{split}$$

Satz 12.4 (Ohmsches Gesetz)

$$U = RI$$
$$\vec{j} = \sigma \vec{E} = \eta_E \vec{v}_D$$

mit

$$\sigma = \frac{l}{RA} = S\frac{l}{A} \qquad \qquad \text{(spezifische Leitfähigkeit)}$$

$$\rho = \frac{1}{\sigma} \qquad \qquad = R\frac{A}{l} \qquad \qquad \text{(spezifischer Widerstand)}$$

Für ohmschen Leiter muss $ec{v}_D \sim ec{E}$ gelten.

Drude Modell

Bewegung von Elektronen in Leitern. Thermische Bewegung: $v_{th} \approx 1 \times 10^6 - 1 \times 10^7 \, \mathrm{m \, s^{-1}}$. Bewegung wird gestört durch Stöße mit Gitteratomen. Mittlere Zeit zwischen zwei Wechselwirkungen:

$$\tau = \frac{T}{N} \implies \lambda = \tau v_m$$

T: Messzeit, N: Anzahl der Stöße. Einschalten eines E-Feldes: Beschleunigung der Elektronen entgegen der Richtung des elektrischen Feldes \vec{E}

$$\vec{A} = \frac{\vec{F}}{m} = \frac{q\vec{E}}{m}$$

$$\implies \vec{v}_D(t) = \vec{v}_{th} + \frac{q\vec{E}}{m}t$$

$$\vec{v}_D = \underbrace{\langle \vec{v}_{th} \rangle}_{=0} + \frac{q\vec{E}}{m} \langle t \rangle = \frac{q}{\vec{E}} m\tau = \mu \vec{E}$$

Also gilt für einen ohmschen Leiter:

$$\vec{v}_D = \mu \vec{E}$$

mit μ : Elektronenbeweglichkeit

$$\mu = \frac{q}{\tau} m, [\mu] = \mathrm{m}^2 \, \mathrm{V}^{-1} \, \mathrm{s}$$

Mit

$$\vec{j} = nq_e \vec{v}_D = nq_e \mu \vec{E}$$

$$\sigma = n_e \mu = \frac{nq_e^2 \tau}{m}$$

Beispiel 12.5 (Kupferdraht)

$$A = 1 \,\mathrm{mm}^2, I = 1 \,\mathrm{A}, j = \frac{I}{A} \implies v_D = 10 \times 10^{-4} \,\mathrm{m \, s}^{-1}$$

Jedes Atom trägt 1 Elektron bei.

Ohmscher Leiter: $\vartheta = \text{const.}$

$$rac{\mathrm{d} artheta}{\mathrm{d} I} < 0$$
 NTC, Heißleiter
$$rac{\mathrm{d} artheta}{\mathrm{d} I} > 0$$
 PTC, Kaltleiter

12.3 Elektrische Leistung

Strom I fließt durch Widerstand beziehungsweise Verbraucher, gewonnene kinetische Energie der Elektronen wird durch Stöße in Wärme umgewandelt.

$$W = QU = UIt$$

Definition 12.6 (Leistung)

$$P = UI$$

$$[P] = W = J s^{-1} = A V^{-1}$$

Für ohmschen Leiter:

$$P = RI^2 \iff P = \frac{U^2}{R}$$

Anwendungsbeispiel: Hochspannungsleitung. Transport von elektrischer Energie: Verluste durch Wärmeerzeugung in Überlandleitung. Ziel: Minimierung von Leistungsverlusten. Kraftwerk: F=UI

Überlandleitung:

- Spannungsabfall: $U_L = R_L I$
- Verlustleistung: $P_L = U_L I = R_L I^2 = U_L^2/R$

das heißt Spannungsabfall beziehungsweise Verlustleistung klein falls I klein und U groß! \Longrightarrow Hochspannungsleitung. Verfügbare Leistung: $P_V=P-P_L$

12.4 Stromkreise - Kirchhoffsche Regeln

Haushalt, elektrische Schaltungen, . . . Im Allgemeinen Netzwerke vieler Leiter, Spannungsquellen und Verbraucher. Zur Berechnung von Strömen und Spannungen: Kirchhoffsche Regeln:

- 1. Knotenregel: An jedem Knoten gilt $\sum I_k = 0$ (Ladungserhaltung, folgt aus Kontinuitätsgleichung)
- 2. Maschenregel: Für jede Masche gilt: $\sum U_k = 0$ (Zirkulationsgesetz)

Für ohmsche Widerstände ergibt sich damit:

Reihenschaltung:

$$R = \sum_{i=1}^{n} R_i$$

Parallelschaltung:

$$\frac{1}{R} = \sum_{i=1}^{n} \frac{1}{R_i}$$

12.5 Strom und Spannungsquellen

Spannungsquelle mit Innenwiderstand R_i :

$$U_{kl} = U_0 - IR_i$$
$$= U_0 \frac{R_a}{R_a + R_i}$$

⇒ Ideale Spannungsquelle:

$$R_i \approx 0 \quad I \approx \frac{U_0}{R_a}$$

Stromquelle: Versorgung mit konstantem Strom. \implies hoher Innenwiderstand $(R_i \to \infty, R_i \gg R_a)$

$$I = \frac{U_0}{R_i + R_a} = \frac{U_0}{R_i} = \text{const.}$$

Technische Realisierung?

Prinzip: Ladungstrennung durch Energiezufuhr \implies Potentialdifferenz, leitende Verbindung \implies Stromfluss. Anwendung finden:

- elektrodynamische Generatoren, magnetische Induktion
- Batterien und Akkumulatoren, Ladungstrennung durch chemische Reaktionen
- · Solarzellen, Ladungstrennung durch Lichtenergie
- Thermische Stromquellen, Ladungstrennung durch Temperaturabhängigkeit von Kontaktpotentialen.

Galvanische Elemente \implies Galvani-Spannung: $\Delta \varphi_C \implies$ Volta-Element

Minuspol: $Zn \rightarrow Zn^{++} + 2e^{-}$

Pluspol: $2H^+ + 2e^- \rightarrow H_2$

 $Z_n + H_2SO_4 \rightarrow H_2 + ZnSO_4$

Daniel-Element: Diaphragma, dass nur SO_4 durchlässt verhindert **Vergiftung**.

Thermische Stromquellen. Bei Kontakt zweier Metalle ergibt sich Potentialdifferenz ⇒ Kontaktspannung. Ursache: Unterschiedliche Austrittsarbeit für freie Elektronen. Austrittsarbeit und Kontaktspannung hängen von Temperatur ab.

- Thermoelement
- Peltierkühlung (Umkehrung)

12.6 Strom und Spannungsmessung

Ziel: Strom- und Spannungsmessung ohne Beeinflussung des zu messendes Systems.

Strommessung: Amperemeter in Reihe mit Verbraucher, Amperemeter - $R_i \approx 0$ um zusätzlichen Spannungsabfall aus Messgerät zu minimieren.

Spannungsmessung: Voltmeter parallel zum Verbraucher geschaltet. Voltmeter - $R_i \to \infty$, um Stromfluss durch Voltmeter zu minimieren.

Messinstrumente:

- Galvanometer
- Digitalvoltmeter (mit Operationsverstärker) (Messbereichserweiterung durch Parallel- und Serienschaltung von Widerständen)

13 Magnetostatik

Neue Kraft zwischen elektisch neutralen Materialien. (später: Vereinheitlichung von Elektrizität und Magnetismus) Elektromagnetismus) Beobachtungen:

- Zwei Pole: Nord- und Südpol
- Gleichnamige Pole stoßen sich ab, ungleichnamige ziehen sich an
- Pole lassen sich nicht trennen, keine magnetische Ladungen, keine Monopole
- Magnete richten sich auf der Erde im Nord-Süd-Richtung aus

Traditionell: Definiton der magnetischen Feldstärke p in Analogie zur elektricschen Ladung Q. (Realisierung: langer Stabmagnet)

$$\implies \vec{F} = \frac{1}{4\pi\mu_0} \frac{p_1 p_2}{r^2} \hat{r}$$

 $\mathrm{mit}\,\mu_0 = 4\pi\cdot 1\times 10^{-7}\,\mathrm{V}\,\mathrm{s}\,\mathrm{A}^{-1}\,\mathrm{m}$

$$\vec{H} = \lim_{p_2 \to 0} \frac{\vec{F}}{p_2}$$

- [p] = V s = Wb
- $[H] = A m^{-1}$

Hieraus folg die historsche Bezeichnung von H als "Magnetfeld" oder "magnetische Feldstärke". Aber $\vec{B}=\mu_0\vec{H}$ wichtigere Größe, eigentliches Äquivalent zum E-Feld

Traditionell Modern

H = magnetische Feldstärke H = magnetische Erregung

B = magnetische Induktion oder magnetische Flussdichte B = Magnetfeld oder magnetische Flussdichte

Ebenfalls: In Analogie zum elektrischen Feld: Magnetischer Kraftfluss

$$\phi_m = \int \vec{B} \, \mathrm{d}\vec{A}$$

- $[B] = V s m^{-2} = T$
- $[\phi m] = V s = Wb$

13.1 Magnetfelder und bewegte Ladungen

Beobachtungen:

- 1. Ein Strom durch einen Leiter erzeugt ein Magnetfeld um denselben (Oerstedt, 1777 1851)
- 2. Auf bewegten Ladungen wird in einem Magnetfeld eine Kraft ausgeübt. Offenbar: Streuwirkung beeinflußt Kraftrichtung. (Ampere, 1775-1836)

Experiment:

1. $B \sim I/r$

2.
$$\vec{F} \sim I(\vec{e} \times \vec{B})$$

Konvention:

 \vec{l} : Streurichtung. mit $\vec{I} = \vec{j}A$:

$$\vec{F} = lA\Big(\vec{j} \times \vec{B}\Big) = lAnq\Big(\vec{v} \times \vec{B}\Big)$$

Kraft auf einen einzelnen Ladungsträger:

$$ec{F}=q\Big(ec{v} imesec{B}\Big)$$
 (Lorentzkraft (ohne E-Feld))
$$ec{F}=q\Big(ec{E}+ec{v} imes B\Big)$$
 (Lorentzkraft (allgmeine Form))

Beispiel 13.1 (Freie Ladung im homogenen B-Feld) Freie Ladung im homogenen B-Feld mit $\vec{R} \perp \vec{B}$. Bewegungsgleichung:

$$m\vec{a} = \left(\vec{r} \times \vec{B}\right)$$

Da Kraft senkrecht auf Bewegungsrichtung steht folgt eine Kreisbewegung! Also:

$$a=a_{zp}=v\omega=\frac{v^2}{r}=\frac{q}{w}vB$$

$$\omega=\frac{q}{w}B$$
 (Zyklotronfrequenz)

Beispiel 13.2 (Leiterschleife im homogenen B-Feld) Kräftepaar bewirkt Drehmoment

$$\vec{M} = \vec{d} \times \vec{F} = \vec{d} \times I \Big(\vec{l} \times \vec{B} \Big) = I \Big(\vec{A} \times \vec{B} \Big)$$

Definition 13.3 (Magnetischer Moment)

$$\vec{\mu} := I \vec{A} = I A \vec{n}$$
 $\vec{M} = \vec{\mu} \times \vec{B}$

Elektrischer Dipol Magnetischer Dipol
$$\vec{M} = \vec{p} \times \vec{E}$$
 $\vec{M} = \vec{\mu} \times \vec{B}$

Durch Vergleich mit elektrischen Dipol: Offenpor erzeugt ein Kreisstrom einen magnetischen Dipol.

Beispiel 13.4 (Hall-Effekt) Ablenkung bewegter Ladungsträger im Festkörper beziehungsweise in Leitern durch ein externes Magentfeld. Erlaubt Magnetfeldmessung.

Beobachtung: Aufbau eines elektrischen Querfeldes in einem stromdurchflossenen Leiter in einem Magnetfeld. Ursache: Lorentzkraft. Es gilt:

$$F_{el} = F_{mag}$$

$$q\frac{U_H}{b} = qvB$$

$$= \frac{I}{nbd}B$$

mit $\vec{v} \perp \vec{B}$

$$I = jA = jbd = nqvbd$$

$$U_H = \frac{1}{nq} \frac{I}{d} B = R_H \frac{I}{d} B$$

mit $R_H = (nq)^{-1}$, Hallkonstante, n = Ladungsdichte, q = Ladungsdichte, Anwendungen:

- Messungen von Dichte und Vorzeichen der bewegten Ladungsträger in Materialien (zum Beispiel Leiter / Halbleiter)
- · Messung magnetischer Felder

$$B \sim \frac{I}{r}$$

$$B(r) = \frac{\mu_0}{2\pi} \frac{I}{r} \mu_0 = 4\pi 1 \times 10^{-7} \,\text{V s A}^{-1} \,\text{m}$$

$$\vec{B}(\vec{r}) = \frac{\mu_0}{2\pi} \frac{I}{r} (\hat{l} \times \hat{r})$$

$$\vec{B}_{21} = \frac{\mu_0 I_1}{2\pi r_2} (\hat{l}_1 \times \hat{r}_{21})$$

$$\vec{F}_{21} = I_2 (\vec{l} \times \vec{B}_{21})$$

$$\vec{r}_{21} = \frac{\mu_0 I_1 I_2}{2\pi r_2 1} \hat{r}_{21}$$

13.2 Grundgleichungen der Magnetostatik

"Wir wissen": Magnetfeldlinien immer geschlossen

$$\implies \oint \vec{B} \, \mathrm{d} \, \vec{A} = 0$$

(Quellenfreiheit des Magnetfeldes)

$$\operatorname{div} \vec{B} = 0$$

(2. Maxwellsches Gesetz)

Zirkulation des B-Feldes:

Elektrostatik:

$$\int \vec{E} \, \mathrm{d}\vec{s} = U, \oint \vec{E} \, \mathrm{d}\vec{s} = 0$$

B-Feld: (Kreis senkrecht um B-Feldlinie)

$$\oint \vec{B} \, d\vec{s} = B \oint ds$$

$$= \frac{\mu_0 I}{2\pi r} 2\pi r = \mu_0 I$$

Anderer Weg (größerer Kreis)

$$\oint \vec{B} \, d\vec{s} = \int_{4}^{1} \vec{B} \, d\vec{s} + \int_{2}^{3} \vec{B} \, d\vec{s}
= \frac{\mu_{0}I}{2\pi r_{1}} f_{2} 2\pi r_{1} + \frac{\mu_{0}I}{2\pi r_{2}} f_{2} 2\pi r_{2}
= \mu_{0}I (f_{1} + f_{2}) = \mu_{0}I
\oint \vec{B} \, d\vec{s} = \mu_{0} \sum_{k} I_{k}
\text{rot } \vec{B} = \mu_{0}\vec{j}$$

⇒ Grundgleichungen der Magnetostatik:

$$\oint_{A} \vec{B} d\vec{A} = 0 \quad \oint_{C} \vec{B} d\vec{s} = \mu_{0} I_{innen}$$
$$div \vec{B} = 0 \quad \text{rot } \vec{B} = \mu \vec{j}$$

13.3 Zwei Anwendungsbeispiele

Beispiel 13.5 (Magnetfeld stromdurchflossener Leiter) Querschnitt: $A=\pi R^2$

$$j = \frac{I}{\pi R^2}$$

$$\oint \vec{B} \, \mathrm{d} \, \vec{s} = B(r) 2\pi r$$

$$r \ge R : B(r)2\pi r = \mu_0 I \implies B(r) = \frac{\mu_0 I}{2\pi r}$$
$$r > R : B(r)2\pi r = \mu_0 j\pi r^2 \implies B(r) = \frac{1}{2}\mu_0 jr = \frac{\mu_0 I}{2\pi R^2} r$$

Beispiel 13.6 (Magnetfeld einer langen Spule) N: Anzahl der Windungen, L: Länge, n=N/L Weg C:

$$\oint \vec{B} d\vec{s} = B_{12}l' - B_{34}l' \stackrel{!}{=} 0 \implies B_{12} = B_{34}$$

Weg C':

$$\oint \vec{B} d\vec{s} = Bl' = \mu_0 N J I$$

$$\implies B = \frac{\mu_0 N' L}{l'} = \mu_0 n I$$

$$B_{spule = \mu_0 n I}$$

13.4 Biot-Savart-Gesetz

Vergleich Elektro- und Magnetostatik

E-Feld einer Linienladung

$$E(r) = \frac{1}{2\pi\varepsilon_0} \frac{\lambda}{r}$$

B-Feld eines geraden Leiters

$$B(r) = \frac{\mu_0}{2\pi} \frac{I}{r}$$

Nutze Analogie!

$$\begin{split} \mathrm{d}\,\vec{E}(\,\vec{r}) &= \frac{1}{4\pi\varepsilon_0} \frac{\rho(\,\vec{r}-\vec{r}')}{|\,\vec{r}-\vec{r}'|^3} \mathrm{d}V' \\ \vec{E}(\,\vec{r}) &= \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\,\vec{r}-\vec{r}')}{|\,\vec{r}-\vec{r}'|^3} \mathrm{d}V' \end{split}$$

Ersetzen $ho
ightarrow \vec{j}, \varepsilon_0
ightarrow 1/\mu_0,
ho(\vec{r}-\vec{r}')
ightarrow \vec{j} imes (\vec{r}-\vec{r}') \implies$ Biot-Savart-Gesetz

$$d\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \frac{\vec{j}(\vec{r}) \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3} dV'$$
$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{\vec{j}(\vec{r}) \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3} dV'$$

$$d\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \frac{d\vec{s}' \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3}$$
$$B(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{d\vec{s}' \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3}$$

Beispiel 13.7 (Leiterschleife) Symmetrie: $B_{\perp}=0, B_{x}=0, B_{y}=0$

$$dB_z = dB \sin \alpha$$

$$= dB \frac{R}{|\vec{r} - \vec{r}'|}$$

$$= \frac{\mu_0 I}{4\pi} \frac{ds'}{|\vec{r} - \vec{r}'|^2} \frac{R}{|\vec{r} - \vec{r}'|} = \frac{\mu_0 I}{4\pi} \frac{R}{(z^2 + R^2)^{\frac{3}{2}}} ds'$$

$$B_z = \int dB_z = \frac{\mu_0 I}{4\pi} \frac{R}{(z^2 + R^2)^{\frac{3}{2}}} \int ds'$$

$$= \frac{\mu_0 R^2}{2(z^2 + R^2)^{\frac{3}{2}}}$$

In der Mitte des Rings: z = 0

$$B_z = \frac{\mu_0 I}{2R}$$

Weit weg: $z \gg R$

$$B_z = \frac{\mu_0 I R^2}{2z^3}$$

Allgemeine Lösung für $r \gg R$

$$B(\vec{r}) = \frac{\mu_0}{4\pi} \left(3 \frac{\vec{\mu} \, \vec{r}}{r^5} \vec{r} - \frac{1}{r^3} \vec{\mu} \right)$$

Vergleich mit Elektrischem Dipol ($r \gg d$):

$$E(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \left(3\frac{\vec{p}\,\vec{r}}{r^5}\vec{r} - \frac{1}{r^3}\vec{p} \right)$$

14 Materie im Magnetfeld

14.1 Magnetisierung und magnetische Erregung

Beobachtung: Beeinflussung des B-Feldes durch Materie. Ein Eisenkern der Länge l hat auf einer Querschnittsfläche A (Normalenvektor \vec{n}) viele Kreiströme (magnetische Dipole) I_i mit Fläche A_i .

Auf der Oberfläche des Eisenkern gibt es also einen Strom I_m : molekularer Strom. Für ein infinitesimales Stück es Eisenkerns $\mathrm{d}l$ erhält man:

$$I_i = I_m \frac{\mathrm{d}l}{l}$$

$$B_{mag} = \mu_0 \frac{I_m}{l}$$

Definition 14.1 (Magnetisierung)

$$\vec{M} = \frac{1}{V} \sum_{i} \vec{\mu}_{i}$$

mit $\mu := I_i A_i \, \vec{n}$. (Erinnerung Spule: $B = \mu_0(NI)/l$)

$$\implies \vec{M} = \frac{1}{V} \sum_{i} A_{i} I_{i} \vec{n} = \frac{1}{V} A_{i} \frac{I_{m}}{l} \vec{n} \int dl$$

$$= \frac{1}{V} \frac{I_{m}}{l} \sum_{i} A_{i} \vec{n} l$$

$$= \frac{I_{m}}{l} \vec{n}$$

Magnetfeld rein aufgrund der Magnetisierung:

$$\vec{B}_{mag} = \mu_0 \, \vec{M}$$

Jetzt: Eisenkern mit Draht

$$\implies \vec{B} = \vec{B}_0 + \mu_0 \vec{M}$$

 \vec{B}_0 : Magnetfeld aufgrund äußerer Ströme

$$\oint_C \vec{B} d\vec{s} = \oint_C \vec{B}_0 d\vec{s} + \mu_0 \oint_C \vec{M} d\vec{s}$$

$$= \mu_0 N I + \mu_0 \oint_C \vec{M} d\vec{s}$$

$$= \mu_0 I_{frei} + \mu_0 I_m$$

$$\oint (\vec{B} - \mu_0 \vec{M}) d\vec{s} = \mu_0 I_{frei}$$

Definition 14.2 (Magnetische Erregung)

$$\vec{H} = \frac{1}{\mu_0} \vec{B} - \vec{M}$$
 $\vec{B} = \mu_0 (\vec{H} + \vec{M})$
$$\oint \vec{H} d\vec{s} = I_{frei} \quad \text{rot } \vec{H} = \vec{j}_{frei}$$

(2. Maxwellsches Gesetz, Amperesches Durchflutungsgesetz)

Auch: rot
$$\vec{M}=\vec{j}_{geb}$$
, rot $\vec{B}=\mu_0\vec{j}_{ges}$

14.2 Dia-, Para- und Ferromagnetismus

Experimentelle Beobachtung:

Definition 14.3

$$\vec{M} = \chi_m \vec{H}$$

mit $\mu_0\,\vec{B}=\,\vec{B}=\mu_0\,\vec{M}.$ Gilt nicht immer!, χ_m : magnetische Suszeptibilität.

$$\vec{B} = \mu_0 \left(\vec{H} + \vec{M} \right) \qquad = \mu_0 (\chi_m + 1) \vec{H} = \mu_0 \mu_r \vec{H}$$

$$\vec{B} = \mu \mu_0 \vec{H}$$

$$\mu = \mu_r = \chi_m + 1$$

Bisher: $\chi_n > 0$. Gilt dies immer? \implies nein!

• $\chi_m > 0, \mu_r > 1$

Paramagnetismus

• $\chi_m < 0, \mu_r < 1$

Diamagnetismus

• $\chi_m \gg 0, \mu_r \gg 1$

Ferromagnetismus

• Dia:
$$-1 \times 10^{-6} \le \chi_m \le -1 \times 10^{-9}$$

• Para:
$$1 \times 10^{-6} \le \chi_m \le 1 \times 10^{-9}$$

• Ferro:
$$1 \times 10^2 \le \chi_m \le 1 \times 10^5$$

Paramegnetismus: Wolfram, Nickel

$$\begin{split} E_{pot} &= -\vec{M}\,\vec{B}\,\vec{v} \\ &= -\vec{\mu}\,\vec{B} \\ \vec{F} &= \vec{M}\,\mathrm{grad}\,\vec{B}V \end{split}$$

Diamagnetismus: Wismut Mikroskopische Beschreibung

 $\chi_m < 0 (\mu < 1)$: Diamagnetismus. Induktion eines magnetischen Dipol
moments $r = {\rm const...}$ Zwei Atome:

$$\vec{\mu}' = \vec{\mu}_1' + \vec{\mu}_2' \neq \emptyset$$

Ursache: Lorentzkraft:

$$v'_{1} > v_{1} \qquad v'_{2} < v_{2}$$

$$F'_{2}p > F_{2}p \qquad F'_{2}p < F_{2}p$$

$$\mu'_{1} > \mu_{1} \qquad \mu'_{1} < \mu_{2}$$

$$\vec{B} = \mu_{0}\mu\vec{H} = \mu_{0}(1 + \chi_{m})\vec{H}$$

$$= (1 + \chi_{m})\vec{B}_{0} \to \chi_{m} < 0$$

 \implies Alle Stoffe sind diamagnetisch. Aber Möglichkeit der Überlagerung mit Para- beziehungsweise Ferromagnetismus. $\chi_m>0$: Paramagnetismus

Ausrichtung permanenter magnetischer Dipole mit außerem B-Feld. Vergleich:

- Elektrische Ausrichtung führt zur Abschwächung
- Magnetostatische Ausrichtung führt zur Verstärkung

Thermische Bewegung wirkt der Ausrichtung entgegen \implies Temperaturabhängigkeit der Magnetisierung: (Curie-Gesetz)

$$\vec{M} = \frac{1}{3} \frac{\mu B_{ext}}{k_B T} \vec{M}_s$$

 \vec{M}_s : Sättigungsmagnetismus

 $\chi_m \gg 0$ Ferromagnetismus

Paramagnetische Materie mit zusätzlicher Wechselwikung der magnetischen Dipole miteinander.

Weißsche Bezirke

Ohne Magnetfeld: Statistische Ausrichtung $\vec{M}=0$ Mit Magnetfeld: Ausrichtung der Bezirke entlang \vec{B}

$$\chi_m \gg 0, M \gg 1 \implies \vec{M} = \mu \vec{M} \gg \vec{H}$$

Ferromagnet:

Beobachtung: Magnetisierung durch B-Feld ist abhängig von "Vorgeschichte"

- "Hinweg": Koerzitiv Kraft
- "Rückweg": Remanenz Kraft

Magnetisch hartes Eisen:

- große Remanenz
- große Koerzitiv

Magnetisch weiches Eisen:

- · kleine Remanenz
- kleine Koerzitiv

Ferromagnetismus ist Temperaturabhäsgig

- geht oberhalb T_C verloren
- T_C kritische Temperatur

Oberhalb von $F_C \implies$ Curie-Weiß Gesetz

$$\chi(T) = \frac{C}{T - T_C}$$

14.3 Feldgleichungen in Materie

Vakuum: $\vec{B} = \mu_0 \vec{H}$

Materie: $\vec{B} = \mu \mu_0 \vec{H} = \mu_0 (\vec{H} + \vec{M})$, allgemein: $\mu = \mu(H)$.

Außerdem:

$${
m div} \; \vec{B} = 0 \; {
m auch} \; {
m in} \; {
m Materie} \qquad {
m rot} \; \vec{H} = \vec{j}_{frei}$$

Verhalten an Grenzflächen

$$H_{\parallel}^{(1)} = H_{\parallel}^{(2)} \implies \frac{B_{\parallel}^{(1)}}{\mu_{1}} = \frac{B_{\parallel}^{(2)}}{\mu_{2}}$$

$$B_{\parallel}^{(1)} = B_{\parallel}^{(2)} \implies \mu_{1}H_{\parallel}^{(1)} = \mu_{2}H_{\parallel}^{(2)}$$

⇒ Maxwell-Gleichungen der Elektro- und Magnetostatik

$$\begin{split} & \text{rot } \vec{E} = 0 \qquad \text{rot } \vec{H} = \vec{j}_{frei} \\ & \text{div } \vec{D} = \rho \qquad \text{div } \vec{B} = 0 \end{split}$$

Anwendung: Toroidmagnet mit Luftspalt

Radius des Torus: R, Eisenkern $\implies \mu \gg 1$, N Windungen um Kern mit Strom I, Breite des Luftspaltes: d. \implies Feld im Luftspalt: Ampersches Gesetz:

$$\oint \vec{H} d\vec{s} = NI = \int_{Eisen} \vec{H}_{Fe} d\vec{s} + \int_{Luft} \vec{H}_{Luft} d\vec{s}$$

$$\vec{B}_{Fe} = \vec{B}_{Luft} \implies \mu \vec{H}_{Fe} = \vec{H}_{Luft}$$

$$\implies NI = \oint \vec{H} d\vec{s} = H_{Fe} (2\pi R - d) + H_{Luft} d$$

$$= \frac{H_{Luft}}{\mu} (2\pi R - d) + dH_{Luft}$$

$$H_{Luft} = \frac{NI\mu}{(\mu - 1)d + 2\pi R} \approx \frac{\mu NI}{\mu d + 2\pi R}$$

$$\implies B = \mu_0 H_{Luft} = \frac{\mu_0 \mu NI}{\mu d + 2\pi R}$$

15 Induktion und elektromagnetische Wechselfelder

Bisher: stationäre, das heißt zeitunabhängige Felder Jetzt:

- zeitabhängige B-Felder \rightarrow magnetische Induktion
- zeitabhängige E-Felder \rightarrow Verschiebungsstrom

15.1 Magnetische Induktion

Beobachtungen

- · Bewegte Leiterschleife im Magnetfeld resultiert in Induktion und Spannugsstößen
- · Vorzeichen abhängig von Bewegungsrichtung und Richtung des Magnetfelds
- Mehrere Windungen (beziehungsweise größere Fläche) \rightarrow höhere Spannungen
- Drehung Leiterschleife → Wechselspannung

$$\int U(t)dt = \Delta \phi_m \quad \text{mit} \quad \phi_m = \int \vec{B} d\vec{A}$$

$$U_{ind} = -\dot{\phi}_m$$
 beziehungsweise $U_{ind} = -N\dot{\phi}_m$

Ursache? ⇒ Lorentzkraft

$$\vec{F} = q \Big(\vec{b} \times \vec{B} \Big)$$

$$dU_{ind} = E_{ind}dl = \frac{F}{q}dl = vBdl$$

$$U_{ind} = \int_{1}^{2} E_{ind}dl = vBl$$

$$U_{ind} = \oint Edl = \int_{1}^{2} Edl + \int_{2}^{1} Edl = vBl$$

Beliebige Schleife

$$\begin{split} U_{ind} &= \oint \left(\vec{v} \times \vec{B} \right) \mathrm{d}\vec{l} \\ &= \oint \vec{E}_{ind} \mathrm{d}\vec{l} \\ &= \oint \left(\mathrm{d}\vec{l} \times \vec{v} \right) \vec{B} \\ &= -\oint \left(\vec{v} \times \mathrm{d}\vec{l} \right) \vec{B} \\ &= -\oint \left(\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} \times \mathrm{d}\vec{l} \right) \vec{B} = -\oint \frac{\mathrm{d}\vec{A}}{\mathrm{d}t} \vec{B} \\ &= -\frac{\mathrm{d}}{\mathrm{d}t} \int \vec{B} \mathrm{d}\vec{A} = -\dot{\phi}_m \end{split} \tag{Für } \vec{B} = \mathrm{const.})$$

$$\phi_m = \int \vec{B} \mathrm{d}\vec{A} = Bls$$

$$\dot{\phi}_m = Bl\dot{s} = Blv$$

Neu: Induktion durch $\dot{\vec{B}}$. Rein experimentelle Beobachtung

Satz 15.1 (Faradaysches Induktionsgesetz)

$$U_{ind} = \oint E_{ind} d\vec{s} = -\dot{\phi}_m$$

mit
$$\phi_m = \int \vec{B} d\vec{A}$$

Neue grundlegende Eigenschaft: Wichtig: rot $\vec{E} \neq 0$

$$\begin{split} \oint_C \vec{E} \, \mathrm{d} \, \vec{s} &= - \dot{\phi}_m = - \frac{\mathrm{d}}{\mathrm{d}t} \int_O \vec{B} \, \mathrm{d} \, \vec{A} \\ \Longrightarrow \int_O \mathrm{rot} \, \vec{E} \, \mathrm{d} \, \vec{A} &= - \frac{\mathrm{d}}{\mathrm{d}t} \int_O \vec{B} \, \mathrm{d} \, \vec{A} = - \int_O \dot{\vec{B}} \, \mathrm{d} \, \vec{A} \quad \text{(Falls O beziehungsweise C konstant)} \end{split}$$

Satz 15.2 (3. Maxwell-Gleichung)

$$\oint_C \vec{E} \, \mathrm{d}\vec{s} = -\frac{\mathrm{d}}{\mathrm{d}t} \int_O \vec{B} \, \mathrm{d}\vec{A}$$
 (E-Feld nicht mehr Wirbelfrei) rot $\vec{E} = -\vec{B}$ (Induktion nur in Verbindung mit der Lorenzkraft)

Satz 15.3 (Lenzsche-Regel) Die durch Induktion entstehende Spannungen, Ströme, Felder und Kräfte wirken der die Induktion hervorrufenden Ursache stets entgegen.

15.2 Generatoren

$$\phi_m = \int \vec{B} d\vec{A} = BA \cos \omega t$$
$$\dot{\phi_m} = -U_{ind} = \omega BA \sin \omega t$$

15.3 Induktivität und Selbstinduktion

Betrachte stromdurchflossene Leiterschleife $B \sim I, \phi_m \sim I$

Definition 15.4 (Induktivität)

$$\phi_m = LI$$

L: Eigenschaft des felderzeugenden Leiters.

Induktivität einer Spule: N Windungen, l Länge, n=N/l, Querschnittsfläche A

$$B = \mu \mu_0 nI$$

$$\phi_m = NBA = nlBA$$

$$\phi_m = \underbrace{\mu \mu_0 n^2 Al}_{L} I$$

$$\implies U_{ind} = -\dot{\phi_m} = -L\dot{I}$$

Weitere Beispiele:

• Drahtschleife: $L = \mu_0 R \ln R/r$

• Doppelleitung: $L = \mu_0 l / \pi \ln a / r$

• Koaxialkabel: $L = \mu_0 l/(2\pi) \ln r_a/r_i$

Außerdem: Zeitlich veränderlicher Stromfluß durch eine Leiteranordnug führt zu einer zeitlichen Veränderung des erzeugten B-Feldes \rightarrow Flußänderung \rightarrow Spannungsindukiton.

$$U_{ind} = -\dot{\phi}_m = -L\dot{I}$$

15.4 Verschiebungsstrom

Für zeitlich veränderliche B-Felder:

$$\operatorname{rot} \vec{E} = 0 \to \operatorname{rot} \vec{E} = -\dot{\vec{B}}$$

$$\oint \vec{E} d\vec{s} = 0 \to \oint \vec{E} ds = -\int \dot{\vec{B}} d\vec{A}$$

Jetzt: Betrachte Ampersches Durchflutungsgesetz

$$\operatorname{rot} \, \vec{B} = \mu_0 \, \vec{j} \iff \oint \vec{B} \} \vec{s} = \mu_0 I$$

Betrachte Leiter durch Kondensator. Danng gilt:

$$\oint \vec{B} d\vec{s} = B2\pi r = \mu_0 I \to B = \frac{\mu_0 I}{2\pi r}$$

Aber: Verschiebung des Integrationsweges zwischen die beiden Kondensatorplatten liefert:

$$\oint \vec{B} \, \mathrm{d}\vec{s} = 0$$

Dies erscheint unmöglich! B-Feld kann im Kondensator nicht abrupt verschwinden. Außerdem:

$$\oint_C \vec{B} \, \mathrm{d}\vec{s} = \mu_0 \int_A \vec{j} \, \mathrm{d}\vec{A}$$

(gilt für alle Flächen mit Randkurve C). Fläche A_1 : Kreisfläche um Leiter, Fläche A_2 : Fläche mit Kondensator \Longrightarrow

- Fläche $A_1: B = \mu_0 I/(2\pi r)$
- Fläche A_2 : B = 0

⇒ offensichtlicher Widerspruch. ⇒ Etwas fehlt! Berücksichtigung des durch Kondensatoraufladung erzeugten zeitlich sich ändernden elektrischen Feldes. Kontinuitätsgleichung:

$$\operatorname{div} \vec{j} = -\dot{\rho} \iff \oint \vec{j} \, \mathrm{d}\vec{A} = -\frac{\mathrm{d}q}{\mathrm{d}t}$$

Es gilt:

$$\oint \vec{E} d\vec{A} = q/\varepsilon_0 \to \frac{dq}{dt} = \varepsilon_0 \frac{d}{dt} \oint \vec{E} d\vec{A} = \varepsilon_0 \oint \frac{\partial \vec{E}}{\partial t} d\vec{A} = \varepsilon_0 \oint \dot{\vec{E}} d\vec{A}$$

Konsistente Beschreibung falls:

- Fläche A_1 : $\oint \vec{B} d\vec{s} = \mu_0 \int_{A_1} \vec{j} d\vec{A}$
- Fläche A_2 : $\oint \vec{B} \mathrm{d}\vec{s} = \mu_0 \varepsilon_0 \int_{A_2} \dot{\vec{E}} \mathrm{d}\vec{A} = \mu_0 \int_{A_2} \vec{j}_v \mathrm{d}\vec{A}$ mit

$$\vec{j}_v = \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$

"Verschiebungsstrom"

→ Erweiterung des Ampereschen Durchflutungsgesetzes:

Satz 15.5 (Ampere-Maxwell-Gesetz (4. Maxwell-Gleichung für Vakuum))

$$\oint \vec{B} d\vec{s} = \mu_0 \int \vec{j} d\vec{A} + \mu_0 \varepsilon_0 \int \frac{\partial \vec{E}}{\partial t} d\vec{A}$$

$$\operatorname{rot} \vec{B} = \mu_0 \vec{j} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$

Bemerkung 15.6 Für j=0 gilt: rot $\vec{B}=1/c^2\dot{\vec{E}}$, das heißt elektrische Wechselfelder erzeugen ein magnetisches Wirbelfeld, umgekehrt erzeugen wegen rot $\vec{E}=-\dot{\vec{B}}$ magnetische Wechselfelder ein eletrisches Wirbelfeld. \rightarrow elektromagnetische Wellen (siehe unten)

Jetzt: Verschiebungsstrom in Matrie

$$\oint \vec{B} d\vec{s} = \mu_0 I_{ges} = \mu_0 I_L + \mu_0 I_M + \mu_0 I_v + \mu_0 I_P$$

- I_L : Leitungsstrom (frei Ströme)
- I_M : Molekularstrom
- I_V : Verschiebungsstrom
- I_P : Polarisationssrom (nur für nicht-stationäre E-Felder)

Molekulorstrom:

$$\oint \vec{M} \, d\vec{s} = I_M$$

$$\oint \vec{H} \, d\vec{s} = \oint \left(\frac{1}{\mu_0} \vec{B} - \vec{M}\right) d\vec{s} = I_L + I_V + I_P = I_L + \varepsilon_0 \int_A \dot{\vec{E}} \, d\vec{A} + I_P$$

$$= I_L + \varepsilon_0 \int_A \dot{\vec{E}} \, d\vec{A} + \int \vec{j}_P \, d\vec{A}$$

Polarisationsstrom: Ergibt sich aufgrund des Flusses gebundener Ladungen in Richtung des elektrischen Feldes \rightarrow zeitlich veränderlicher Strom für zeitlich veränderliche E-Felder

$$\vec{j}_P = nq\vec{v} = nq\frac{\mathrm{d}\vec{s}}{\mathrm{d}t}, \, \mathrm{d}\vec{p} = q\mathrm{d}\vec{s}, \, \mathrm{d}\vec{P} = nd\vec{p}$$

$$\vec{j}_P = n\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \frac{\mathrm{d}\vec{P}}{\mathrm{d}t} \iff \vec{j}_P \iff \frac{\partial\vec{P}}{\partial t} = \dot{\vec{P}}$$

Damit

$$\oint \vec{H} d\vec{s} = I_L + \varepsilon_0 \int \dot{\vec{E}} d\vec{A} = I_L + \int \dot{\vec{D}} d\vec{A}$$

$$\vec{E} = \varepsilon_0 \vec{E} + \vec{P}$$

Satz 15.7 (Ampere-Maxwell-Gesetz in Matrie (4. Maxwellsche Gleichung))

$$\oint \vec{H} d\vec{s} = \int \vec{j} d\vec{A} + \int \frac{\partial \vec{E}}{\partial t} d\vec{A}$$

$$\operatorname{rot} \vec{H} = \vec{j} + \dot{\vec{D}}$$

16 Schaltvorgänge, Wechselstrom und Schwingkreise

16.1 Induktivität im Stromkreis (LR-Glied)

Einschalten:

$$U_{ind} = -L\dot{I}$$

Außerdem gilt: (Kirchhoffsche Maschenregel)

$$U_0 + U_{ind} = IR$$
$$U_0 - L\dot{I} = IR$$

Man erhält eine inhomogene, lineare Differentialgleichung erster Ordnung, Lösung: allgemeine Lösung der homogenen Differentialgleichung + spezielle Lösung der inhomogenen Differentialgleichung + Anfangsbedingungen

$$\implies \frac{\mathrm{d}I}{\mathrm{d}t} + \frac{R}{L}I = \frac{U_0}{L}$$

$$\implies I(t) = \frac{U_0}{R} + Ce^{-\frac{R}{L}t}$$

Mit der Anfangsbedingung I(0) = 0 folgt:

$$I(t) = \frac{U_0}{R} \left(1 - e^{-\frac{R}{L}t} \right)$$
$$= \frac{U_0}{R} \left(1 - e^{-t/\tau} \right)$$
$$\tau = L/R$$

Ausschalten:

$$U_{ind} = -L\dot{I}, U_{ind} = IR$$

$$\frac{\mathrm{d}I}{\mathrm{d}t} + \frac{R}{L}I = 0$$

An
fangsbedingung: $I(0) = U_0/R$. Damit folgt:

$$I(t) = \frac{U_0}{R}e^{-t/\tau}$$

Spannungsabfall am Widerstand:

$$U(t) = I(t)R = U_0 e^{-t/\tau}$$

Aber: Was passiert beim Öffnen des Schalters tatsächlich? $R_{offen} = \tilde{R} \approx \infty.$

$$U(t) = I(t)\tilde{R} = U_0 \frac{\tilde{R}}{R} e^{-t/\tau}$$

 \implies Riesiger Spannungsstoß für $\tilde{R} \rightarrow \infty \implies$ Lichtbogen.

16.2 Kapazität im Stromkreis (RC-Glied)

Einschalten:

$$U_C = Q/C, Q = Q(t)$$

Außerdem gilt: $U_0 = IR + Q/C$. Differenzieren:

$$\dot{I}R + \frac{\dot{Q}}{C} = IR + \frac{I}{C} = 0$$

$$\implies \frac{\mathrm{d}I}{\mathrm{d}t} + \frac{1}{RC}I = 0$$

Anfangsbedingung: $I(0) = U_0/R$. Damit folgt:

$$I(t) = \frac{U_0}{R}e^{-t/(RC)} = \frac{U_0}{R}e^{-t/\tau}$$

 $\tau=RC$. Spannung:

$$U_C(t) = U_0 - I(t)R = U_0 \left(1 - e^{-t/\tau}\right)$$

Ausschalten, das heißt Entladung:

$$IR + Q/C = 0 \rightarrow \dot{I}R = -\frac{1}{C}I$$

$$\dot{I} = -\frac{1}{\tau}I$$

Mit $I(0) = -U_0/R$ als Anfangsbedingung folgt:

$$I(t) = -\frac{U_0}{R}e^{-t/\tau}$$
$$U_C(t) = U_0e^{-t/\tau}$$

16.3 R, L, C im Wechselstromkreis

Beobachtung: Lämp
chen brennen für verschiedene Frequenzen $f=\omega/(2\pi)$ unterschiedlich hell.

- 1. Widerstand: Lämpchen leuchtet unabhängig von der eingestellten Frequenz immer gleich hell
- 2. Kapazität:
 - Niedrige Frequenz \rightarrow Lämpchen aus
 - Hohe Frequenz \rightarrow Lämpchen leuchtet
- 3. Induktivität:
 - Niedrige Frequenz \rightarrow Lämpchen leuchtet
 - Hohe Frequenz \rightarrow Lämpchen aus
- \rightarrow Kondensator und Spule verhalten sich wie frequenzabhängige Widerstände. Quantitative Betrachtung:
 - 1. Ohmscher Widerstand:

$$U_0(t) = U_0 \cos \omega t$$

$$\implies I(t) = \frac{1}{R}U(t)$$

$$= \frac{U_0}{R} \cos \omega t$$

$$= I_0 \cos \omega t$$

Leistung:

$$P(t) = U(t)I(t) = I_0U_0\cos^2\omega t$$

⇒ mittlere Leistung

$$\vec{P} = \frac{1}{T} \int_0^T P(t) dt$$

$$\vec{P} = \frac{1}{T} \int_0^T I_0 U_0 \cos^2 \omega t dt = \frac{I_0 U_0}{T} \int_0^T \cos^2 \omega t dt = \frac{1}{2} U_0 I_0$$

Definition 16.1 (Wirkleistung)

$$\vec{P} = \frac{1}{2}U_0I_0 = U_{eff}I_{eff}$$

mit
$$U_{eff}=rac{1}{\sqrt{2}}U_0$$
, $I_{eff}=rac{1}{\sqrt{2}}I_0$

2. Induktiver Widerstand:

$$U_s(t) = U_0 \cos \omega t$$

$$U_s(t) + U_{ind} = 0, U_{ind} = -L\dot{I}$$

$$\implies U_s(t) = L\dot{I}$$

Interpretation:

$$\int U_0 \cos \omega t dt = U_0 \frac{1}{\omega} \sin \omega t = LI$$

$$\implies I(t) = \frac{U_0}{\omega L} \sin \omega t = \frac{U_0}{\omega L} \cos \left(\omega t - \frac{\pi}{2}\right) = I_0 \cos \left(\omega t - \frac{\pi}{2}\right)$$

$$\implies U(t) = U_0 \cos \omega t$$

$$I(t) = I_0 \cos \left(\omega t - \frac{\pi}{2}\right)$$

$$I_0 = \frac{U_0}{\omega L}$$

 \Longrightarrow Strom läuft der Spannung um 90° hinterher, da der Strom nach Anlegen der Spannung U_1 erst allmählich zu fließen beginnt.

3. Kapazitiver Widerstand

$$U_s(t) = U_c, U_c = \frac{Q}{C}, I = \dot{Q}$$

$$Q = CU_s = CU_0 \cos \omega t$$

$$\dot{Q} = I = -\omega CU_0 \sin(\omega t)$$

$$= \omega CU_0 \cos\left(\omega t + \frac{\pi}{2}\right) = U_0 \cos\left(\omega t \beta \frac{\pi}{2}\right)$$

$$U(t) = U_0 \cos \omega t$$

$$I(t) = I_0 \cos\left(\omega t + \frac{\pi}{2}\right)$$

$$I_0 = \omega CU_0$$

 \implies Strom läuft der Spannung um 90° voraus, da zuerst Ladung auf den Kondensator fließen muss, bevor Spannung an Kondensator abfällt.

Merke:

• Ohmscher Widerstand: $Z_R=R, \varphi=0^\circ$

• Induktiver Widerstand: $Z_L=\omega L, \varphi=-90^\circ$

• Kapazitiver Widerstand: $Z_C = 1/\omega C, \varphi = 90^\circ$

• Blindleistung Kapazität:

$$\vec{P} = \frac{1}{T} \int_0^T U_c(t) I_c(t) dt = -\frac{1}{T} \int_0^T U_0 I_0 \cos \omega t \sin \omega t dt = 0$$

Induktivität:

$$\vec{P} = \frac{1}{T} \int_0^T U_L(t) I_L(t) dt = \frac{1}{T} \int_0^T U_0 I_0 \underbrace{\cos \omega t \sin \omega t}_{\frac{1}{2} \sin 2\omega t} dt = 0$$

Die sogenannte Blindleistung verschwindet im Mittel, da die Energie zum Aufbau der (elektrischen und magnetischen) Felder wieder in den Generator zurückfließt \rightarrow Blindstrom. Aber: Auch der Blindstrom macht Drähte warm und die Blindleistung muss temporär zur Verfügung gestellt werden. (Wichtig bei Auslegung von Netzwerken)

16.4 Komplexe Darstellung

Strom und Spannung im Wechselstromkreis:

$$U(t) = U_0 \cos \omega t$$
$$I(t) = I_0 \cos(\omega t + \varphi)$$

Übertragung ins Komplexe:

$$U(t) = U_0 e^{i\omega t}$$

$$I(t) = I_0 e^{i(\omega t + \varphi)} = I_0 e^{i\varphi} e^{i\omega t}$$

$$= I_0 \cos(\omega t + \varphi) + iI_0 \sin(\omega t + \varphi)$$

Die Verwendung komplexer Zahlen bedeutet rechnerisch eine wesentliche Vereinfachung! Ansonsten äquivalent!

Warum funktioniert das?

Grund \rightarrow Linearität der auftretenden Differentialgleichungen.

• Homogene Differentialgleichung:

$$\begin{cases} \dot{z} = 0\\ \ddot{z} + \gamma \dot{z} + z = 0 \end{cases}$$

Erste Ordnung: z(t)=a(t)+ib(t) sei Lösung $\to z^*(t)=a(=)-ib(t)$ ebenfalls Lösung. das heißt: $\Re(z)=1/2(z+z^*)$ ist auch ein Lösung der homogenen Differentialgleichung. Zweite Ordnung: \to es gibt zwei linear unabhängige Lösungen $z(t),z^*(t)$. Also $\Re(z)=1/2(z+z^*)=a(t)$ und $i\Im(z)=1/2(z+z^*)=ib(t)$ sind auch unabhängige Lösungen.

• Inhomogene Differentialgleichungen:

$$\begin{cases} \dot{z} = \xi \\ \ddot{z} + \gamma \dot{z} + z = \xi \end{cases}$$

→ zusätzliche partikuläre Lösung.

Erste Ordnung: $\dot{z}=\alpha+i\beta\to \text{spezielle L\"osung: }z(t)=a(t)+ib(t), \text{ dann }a(t),b(t)$ partikuläre L\"osungen des reellen / imaginären Teils. Zweite Ordnung: analog.

Bei Verwendung komplexer Darstellung: Ohmscher Widerstand

$$U(t) = U_0 e^{i\omega t} = \hat{U} e^{i\omega t}$$
$$I(t) = \frac{U_0}{R} e^{i\omega t} = \hat{I} e^{i\omega t}$$

Induktiver Widerstand:

$$U(t) = U_0 e^{i\omega t} = \hat{U} e^{i\omega t}$$

$$I(t) = \frac{U_0}{\omega L} e^{i(\omega t - \pi/2)} = \frac{U_0}{\omega L} e^{-i\pi/2} e^{i\omega t}$$

$$= \frac{U_0}{i\omega L} e^{i\omega t} = \hat{I} e^{i\omega t}$$

Kapazitiver Widerstand:

$$U(t) = U_0 e^{i\omega t} = \hat{U}e^{i\omega t}$$

$$I(t) = \omega C U_0 e^{i(\omega t + \pi/2)} = \omega C U_0 e^{+i\pi/2} e^{i\omega t}$$

$$= i\omega C U_0 e^{i\omega t} = \hat{I}e^{i\omega t}$$

Offenbar gilt: $\hat{I}=\hat{U}/\hat{z}$, wobei die Phase gegenüber der Spannung im komplexen Widerstand \hat{z} steckt. \Longrightarrow Wechselstromwiderstände:

$$\begin{split} \hat{Z}_R &= R \\ \hat{Z}_L &= i\omega L = \omega L e^{i\pi/2} \\ \hat{Z}_C &= \frac{1}{i\omega C} = \frac{1}{\omega C} e^{-i\pi/2} \end{split}$$

⇒ Ohmsches Gesetz:

$$\hat{U} = \hat{z} \cdot \hat{I}$$

Beispiel 16.2 (RC-Serienschaltung) Kirchhoff: $I_R = I_C = I, U_G = U_R + U_C$. Also:

$$\begin{split} I(t) &= I_0 e^{i\omega t} \\ \Longrightarrow U_R &= I_0 R e^{i\omega t} \\ U_C &= I_0 \frac{1}{i\omega C} e^{i\omega t} \\ \\ U_G &= U_R + U_C = I_0 \left(\underbrace{R + \frac{1}{i\omega C}}_{\text{Impedany } \hat{z}}\right) e^{i\omega t} = I_0 \underbrace{|\hat{z}| e^{i\varphi}}_{\hat{z}} e^{i\omega t} \end{split}$$

mit

$$\hat{z} = |\hat{z}|e^{i\varphi}, |\hat{z}| = \sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}, \varphi = \arctan\left(\frac{1}{\omega RC}\right)$$

⇒ Lösung:

$$I(t) = I_0 e^{i\omega t}$$

$$U(t) = \hat{z}I_0 e^{i\omega t} = I_0 |\hat{z}| [\cos(\omega t + \varphi) + i\sin(\omega t + \varphi)]$$

Beispiel 16.3 (RC-Parallelschaltung) Kirchhoff: $U=U_R=U_C, I_G=I_R+I_C$. Also

$$U(t) = U_0 e^{i\omega t}$$

$$\implies I_R = \frac{U_0}{\hat{z}_R} e^{i\omega t}, I_C = \frac{U_0}{\hat{z}_c} e^{i\omega t}$$

$$I_R = \frac{U_0}{R} e^{i\omega t}, I_C = i\omega C U_0 e^{i\omega t}$$

$$I = I_R + I_C = U_0 \left(\frac{1}{\hat{z}_R} + \frac{1}{\hat{z}_C}\right) e^{i\omega t}$$

$$= U_0 \underbrace{\left(\frac{1}{R} + i\omega C\right)}_{=\frac{1}{z}} e^{i\omega t}$$

Die beiden Beispiele zeigen, dass für Impedanzen im Wechselstromkreis offenbar die gleichen Regeln wie für Widerstände im Gleichstromkreis gelten. Damit: Erweiterte Kirchhoffsche Regeln:

$$\begin{split} \sum \hat{I} &= 0 & \text{(Knotenregel)} \\ \sum \hat{U} &= 0 & \text{(Maschenregel)} \\ \hat{Z} &= \sum \hat{z}_i & \text{(Reihenschaltung)} \\ \hat{Z}^{-1} &= \sum \hat{z}_i^{-1} & \text{(Parallelschaltung)} \end{split}$$

16.5 RLC-Schwingkreis

Ohne Stromquelle:

$$U_{ind} = IR + Q/C$$

$$-L\dot{I} = IR + Q/C$$

$$L\dot{I} + IR + Q/C = 0$$

Ableiten:

$$L\ddot{I} + R\dot{I} + \frac{1}{C}I = 0$$

Gedämpfter harmonischer Oszillator:

$$\begin{split} m\ddot{+}\beta\dot{x}+kx&=0\\ \ddot{x}+2\gamma\dot{x}+\omega_0^2x&=0\\ \omega_0^2&=k/m\\ \gamma&=\beta/(2m)\\ \gamma&=R/(2L)\\ \omega_0^2&=\frac{1}{LC} \end{split}$$

Ansatz: $ce^{\lambda t}$

$$I(t) = C_1 e^{-\gamma t} e^{i\omega_R t} + C_2 e^{-\gamma t} e^{-i\omega_R t}$$
$$\omega_R = \sqrt{\omega_0^2 - \gamma^2}$$

3 Fälle:

• $\gamma < \omega_0$: Schwingfall

• $\gamma > \omega_0$: Kriechfall

• $\gamma = \omega_0$: Aperiodischer Grenzfall

Mechanik: $\gamma=\beta/(2m), \omega_0^2=k/m$ Schwingkreis: $\gamma=R/(2L), \omega_0^2=1/(LC)$ Mit Stromquelle:

$$U_G + U_{ind} = IR + Q/C$$

$$L\dot{I} + IR + Q/Ce^{i\omega t} = U_0e^{i\omega t}$$

$$L\ddot{Q} + \dot{Q}R + Q/C = U_0e^{i\omega t}$$

Ableiten:

$$L\ddot{I} + R\dot{I} + \frac{1}{C}I = \omega U_0 e^{i(\omega t + \pi/2)}$$

Ansatz:

$$I(t) = \rho e^{i\varphi} e^{i\Omega t}$$

Einsetzen \rightarrow

$$\Omega = \omega
\rho = \frac{\omega U_0}{L} \frac{1}{\sqrt{(\omega_0^2 - \omega^2)^2 + 2\gamma^2 \omega^2}} = \frac{U_0}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}}
\varphi = \arctan\left(\frac{\omega_0^2 - \omega^2}{2\gamma\omega}\right)$$

Einfacher:

$$\begin{split} I(t) &= U_0 \frac{1}{\hat{z}} e^{i\omega t}, \hat{z} = \hat{z}_R + \hat{z}_L + \hat{z}_C \\ I(t) &= \frac{U_0}{R + i\omega L + \frac{1}{i\omega C}} e^{i\omega t} = \frac{U_0}{R + i\left(\omega L - \frac{1}{\omega C}\right)} e^{i\omega t} \\ &= (a + ib)e^{i\omega t} = \left(\frac{U_0 R}{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} - i\frac{U_0\left(\omega L - \frac{1}{\omega C}\right)}{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}\right) e^{i\omega t} \\ &= C e^{i\varphi} e^{i\omega t} \\ C &= \sqrt{a^2 + b^2} \\ \tan \varphi &= \frac{b}{a} \\ C &= \rho = \frac{U_0}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}} \\ \varphi &= \arctan\left(\frac{\omega_0^2 - \omega^2}{\omega^2 \gamma}\right) \\ \varphi &= \frac{\pi}{2} - \arctan\left(\frac{\omega^2 \gamma}{\omega_0^2 - \omega^2}\right) \end{split}$$

16.6 Transformator

Große Bedeutung in der Wechselstromtechnik. Insbesondere Transformation von Spannungen für Hochspannungsübertragung. Annahme: Magnetische Feldlinien verlaufen vollständig innerhalb des Eisenjochs, das heißt alle Streufelder werden vernachlässigt. Unbelasteter Transformator:

$$U_1=U_0\cos\omega t$$
 (Primärseite) $U_1+U_{ind,1}=0$ $U_1=-U_{ind,1}=N_1\dot{\phi}_m$

Magnetischer Fluss ist auf Primär und Sekundärseite gleich:

$$U_2=-U_{ind,2}=N_2\dot{\phi}_m=rac{N_2}{N_1}U_1$$
 (Sekundärseite)

Außerdem gilt bei Vernachlässigung von Leistungsverlusten

$$P = U_1 I_1 = U_2 I_2$$

$$\implies I_2 = \frac{N_1}{N_2} I_1$$

Magnetfeldführung: Braucht großes μ :

$$B_{\perp,Fe} = B_{\perp,Lu}$$
$$B_{\parallel,Fe} = \mu B_{\parallel,Lu}$$

Das heißt: B-Feld im Eisen im wesentlichen tangential zur Oberfläche.

Satz 16.4 (Unbelasteter Transformator) Transformatorgleichung für verlustfreien, unbelasteten Transformator

$$U_2 = \frac{N_2}{N_1} U_1 \qquad I_2 = \frac{N_1}{N_2} I_1$$

Mögliche Verluste:

- · Wirbelströme
- Streufelder

Komplizierter: belasteter Transformator (siehe Literatur, Übungen, Praktikum)

16.7 Elektrische und magnetische Feldenergie

Elektrische und magnetische Feldenergie: Elektrische Leistung im RC-Glied:

$$P(t) = I(t)U(t) = C\dot{U}U$$

$$= CU\frac{dU}{dt}$$

$$\implies W_{el} = \int_0^t P(t)dt = \int_0^t CUdU = \frac{1}{2}CU(t)^2$$

Elektrische Leistung im LR-Glied:

$$P(t) = I(t)U(t) = L\dot{I}I = LI\frac{\mathrm{d}I}{\mathrm{d}t} \implies W_m = \int_0^t P(t)\mathrm{d}t = \int_0^t LI\mathrm{d}I = \frac{1}{2}LI(t)^2$$

Also:

- $W_{el}=rac{1}{2}CU^2$ gespeicherte Energie im Kondensator, elektrische Feldenergie
- $\,W_m=rac{1}{2}LI^2$ gespeicherte Energie in Induktivität, magnetische Feldenergie

Energiedichte des elektrischen Feldes

$$W_{el} = \frac{1}{2}CU^2 = \frac{1}{2}\varepsilon\varepsilon_0 \frac{A}{d}U^2$$
$$= \frac{1}{2}\varepsilon\varepsilon_0 \frac{A}{d}E^2 d^2 = \frac{1}{2}\varepsilon\varepsilon_0 V E^2$$
$$\implies \omega_{el} = \frac{1}{2}\varepsilon\varepsilon_0 E^2 = \frac{1}{2}ED$$

Energiedichte des magnetischen Feldes:

$$W_m = \frac{1}{2}LI^2 = \frac{1}{2}\mu\mu_0 \frac{N^2}{l}AI^2 = \frac{1}{2}\mu\mu_0 \frac{A}{l}M^2l^2$$
$$= \frac{1}{2}\mu\mu_0 VH^2$$
$$\omega_m = \frac{1}{2}\mu\mu_0 H^2 = \frac{1}{2}BH$$

Allgemein gilt:

$$\omega_{elektrom.} = \frac{1}{2} \Big(\vec{E} \, \vec{D} + \vec{B} \, \vec{H} \Big)$$

17 Elektromagnetische Welle

17.1 Mechanische Wellen

Eine Welle ist ein Vorgang bei dem sich eine Schwingung vom Ort ihrer Erregung in Folge von Kopplungen an benachbarte schwingungsfähige Systeme im Raum ausbreitet. Man unterscheidet

- Transversale Wellen \rightarrow Ausbreitung senkrecht zur Schwingungsrichtung
- Longitudinale Wellen \rightarrow Ausbreitung entlang der Schwingungsrichtung

Eindimensionale harmonische Welle \rightarrow harmonische Anregung Bei t=0:

$$y(x) = A\sin(kx), k = \frac{2\pi}{\lambda}$$

Zusätzliche Zeitabhängigkeit:

$$y(x,t) = A \sin(k(x - v_{ph}t))$$

$$= A \sin(kx - kv_{ph}t)$$

$$= A \sin(kx - \omega t)$$

$$v_{ph} = \frac{\lambda}{T} = \frac{\omega}{k}$$

Harmonische ebene Welle:

$$y(x,t) = A\sin(kx \pm \omega t) \tag{1 dim}$$

$$y(\vec{x},t) = A\sin(\vec{k}\vec{x} \pm \omega t)$$
 (3 dim)

- Wellenzahl: $k=2\pi/\lambda$, $\vec{\lambda}\parallel$ Ausbreitungsrichtung
- Wellenlänge: $\lambda = 2\pi/k$
- Phasengeschwindigkeit: $v_{ph} = \omega/k$
- Amplitude: A

Wesentliche Eigenschaften:

Superposition und Interferenz:

Superposition \longleftrightarrow Überlagerung von Wellen

$$y(\vec{x},t) = \sum_{i=1}^{n} y_i(\vec{k},t)$$

Überlagerung von Wellen (1 dimensional)

$$\xi_{1}(x,t) = A\cos(k_{1}x - \omega_{1}t)$$

$$\xi_{2}(x,t) = A\cos(k_{2}x - \omega_{2}t)$$

$$\xi = \xi_{1} + \xi_{2} = A(\cos(k_{1}x - \omega_{1}t) + \cos(k_{2}x - \omega_{2}t))$$

$$= 2A\cos\left(\frac{k_{1} + k_{2}}{2}x - \frac{\omega_{1} + \omega_{2}}{2}t\right)\cos\left(\frac{k_{1} - k_{2}}{2}x - \frac{\omega_{1} - \omega_{2}}{2}t\right)$$

Jetzt: $k_1 \approx k_2, \omega_1 \approx \omega_2 \implies$ Schwebung mit mittlerer Frequenz als Schwebungsfrequenz.

Satz 17.1 (Fouriertheorem) Jede periodische und aperiodische Funktion kann durch harmonische ebene Wellen dargestellt werden. Fourier-Reihe:

$$f(t) = f(t+T) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\omega t) + b_n \sin(n\omega t)$$

mit

$$a_i = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(i\omega t) dt$$
$$b_i = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(i\omega t) dt$$

aperiodische F: Fourier-Integral:

$$f(t) = \frac{1}{\pi} \int_0^\infty a(\omega) \cos(\omega t) + b(\omega) \sin(\omega t) d\omega$$
$$a(\omega) = \int_{-\infty}^\infty f(t) \cos \omega t dt$$
$$b(\omega) = \int_{-\infty}^\infty f(t) \sin \omega t dt$$

Daher genügt es oft harmonische ebene Wellen zu betrachten.

17.2 Wellengleichung

Welle \rightarrow Ausbreitung einer Schwingung im Raum. Gesucht: Differentialgleichung die die Ausbreitung von Störungen beschreibt. Sich ausbreitende Störung $\stackrel{\wedge}{=}$ Wellenpaket.

$$\psi_{+}(x,t) = f(x - vt)$$

$$\psi_{-}(x,t) = f(x + vt)$$

$$\frac{\partial \psi}{\partial x} = f', \frac{\partial \psi}{\partial t}$$

$$= \pm vf'$$

$$\frac{\partial^{2} \psi}{\partial x^{2}} = f''$$

$$\frac{\partial \psi}{\partial t^{2}} = v^{2}f''$$

Klassische Wellengleichung:

$$\frac{\partial^2 \psi}{\partial t^2} = v^2 \frac{\partial^2 \psi}{\partial x^2} \tag{1 dim}$$

$$\frac{\partial^2 \psi}{\partial t^2} = v^2 \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} \right) = v^2 \Delta \psi \tag{3 dim}$$

 v^2 : Phasengeschwindigkeit. Eigenschaften:

- lineare Differential gleichung \rightarrow Superposition und Interferenz
- Ebene Wellen sind Lösung der Wellengleichung
- · Auftreten solcher Gleichungen weist auf Wellenchararkter der Lösung hin

17.3 Wellenpakete, Phasen- und Gruppengeschwindigkeit

Wellenpaket

$$\psi(x,t) = \frac{1}{\pi} \int_0^\infty \{a(k)\cos kx + b(k)\sin kx\} dt$$
$$\psi(x,t) = \frac{1}{\pi} \int_0^\infty \{a(k)\cos(k(x - v_{ph}t)) + b(k)\sin(k(x - v_{ph}t))\}$$

Jetzt: Übergang ins komplexe:

$$\cos \varphi = \frac{e^{i\varphi} + e^{-i\varphi}}{2}$$

$$\sin \varphi = \frac{e^{i\varphi} - e^{-i\varphi}}{i2}$$

$$e^{i\varphi} = \cos \varphi + i \sin \varphi$$

$$\Rightarrow \psi(x,t) = \frac{1}{\pi} \int_0^\infty \{\frac{1}{2}a(k) + \frac{1}{2i}b(k)\}e^{ik(x-v_{ph}t)}dk + \frac{1}{\pi} \int_0^\infty \{\frac{1}{2}a(k) - \frac{1}{2i}b(k)\}e^{-ik(x-v_{ph}t)}dk$$

$$= \frac{1}{\sqrt{2\pi}} \int_0^\infty A(k)e^{ik(x-v_{ph}t)}dk + \frac{1}{\sqrt{2\pi}} \int_0^\pi A^*(k)e^{-ik(x-v_{ph}t)}dk \quad (\omega = |k|v_{ph} > 0)$$

Damit ergibt sich dann allgemein:

$$\psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} A(k)e^{ikx - \omega t} dk$$
$$A(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \psi(x,0)e^{i(kx)} dx$$

Phasengeschwindigkeit: $v_{ph} = \omega/k \leftrightarrow$ Ausbreitungsgeschwindigkeit gleicher Phasen. Phasengeschwindigkeit kann aber für unterschiedliche k, das heißt unterschiedliche Wellenlängen $\lambda = 2\pi/k$ unterschiedlich sein \rightarrow Dispersion. Dispersionsrelation:

$$\omega(k) = \omega(k_0) + \frac{\mathrm{d}\omega}{\mathrm{d}k}\big|_{k_0}(k - k_0) + \dots$$

(Taylorentwicklung). Dispersion führt im Allgemeinen dazu, dass Wellenpakete mit der Zeit auseinander fließen. Bei schwacher Abhängigkeit der Ausbreitungsgeschwindigkeit von der Wellenlänge bewegt sich das Wellenpaket ein beträchtliches Stück, bevor es nicht wieder zuerkennen ist. Für Wellenpakete für die A(k) nur in einem schmalen Bereich um k_0 von Null verschieden ist - was für die meisten relevanten Wellenpakete der Fall ist - kann man eine Wellenpaketgeschwindigkeit herleiten:

$$v_{gr} = \frac{\mathrm{d}\omega}{\mathrm{d}k}\big|_{k_0}$$

⇒ Gruppengeschwindigkeit, Geschwindigkeit des Schwerpunktes eines Wellenpakets:

$$v_{gr} = \frac{\mathrm{d}\omega}{\mathrm{d}k}$$

Einfaches Beispiel: Schwebung:

$$\xi(x,t) = 2A\cos\left(\frac{k_1 + k_2}{2}x - \frac{\omega_1 + \omega_2}{2}t\right)\cos\left(\frac{k - k_2}{2}x - \frac{\omega_1 - \omega_2}{2}t\right)$$
$$= 2A\cos(\bar{k} - \bar{\omega}t)\cos\left(\frac{\Delta k}{2}x - \frac{\Delta \omega}{2}t\right)$$
$$\implies v_{ph} = \frac{\bar{\omega}}{\bar{k}}, v_{gr} = \frac{\Delta \omega}{\Delta k}$$

17.4 Elektromagnetische Wellengleichung

Maxwell-Gleichung im Vakuum ($\implies \rho = 0, \vec{j} = 0$):

$$\operatorname{div} \vec{E} = 0 \qquad \operatorname{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\operatorname{div} \vec{B} = 0 \qquad \operatorname{rot} \vec{B} = \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$$

Ableiten:

$$\frac{\partial}{\partial t} \operatorname{rot} \vec{B} = \varepsilon_0 \mu_0 \frac{\partial^2 \vec{P}}{\partial t^2}$$

$$\operatorname{rot} \left(\operatorname{rot} \vec{E} \right) = -\operatorname{rot} \frac{\partial \vec{B}}{\partial t} = -\frac{\partial}{\partial t} \operatorname{rot} \vec{B}$$

$$\Longrightarrow \operatorname{rot} \operatorname{rot} \left(\vec{E} \right) = -\varepsilon_0 \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2}$$

$$\operatorname{rot} \left(\operatorname{rot} \left(\vec{E} \right) \right) = \underbrace{\operatorname{grad} \left(\operatorname{div} \vec{E} \right)}_{=0} - \underbrace{\div \left(\operatorname{grad} \vec{E} \right)}_{\Delta \vec{E}}$$

$$\Longrightarrow \Delta \vec{E} = \varepsilon_0 \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2}$$

$$\Longrightarrow \frac{\partial^2 \vec{E}}{\partial t^2} = \frac{1}{\varepsilon_0 \mu_0} \Delta \vec{E}$$

Analog:

$$\frac{\partial}{\partial t} \operatorname{rot} \vec{E} = -\frac{\partial^2 \vec{B}}{\partial t^2}, \operatorname{rot} \operatorname{rot} \vec{B} = \dots$$

$$\implies \frac{\partial^2 \vec{B}}{\partial t^2} = \frac{1}{\varepsilon_0 \mu_0} \Delta \vec{B}$$

⇒ Wellengleichungen für elektromagnetische Wellen. Im Vakuum:

$$\frac{\partial^2 \vec{E}}{\partial t^2} = \frac{1}{\varepsilon_0 \mu_0} \Delta \vec{E}$$
$$\frac{\partial^2 \vec{B}}{\partial t^2} = \frac{1}{\varepsilon_0 \mu_0} \Delta \vec{B}$$

In Materie:

$$\begin{split} \frac{\partial^2 \vec{E}}{\partial t^2} &= \frac{1}{\varepsilon \mu \varepsilon_0 \mu_0} \Delta \vec{E} \\ \frac{\partial^2 \vec{B}}{\partial t^2} &= \frac{1}{\varepsilon \mu \varepsilon_0 \mu_0} \Delta \vec{B} \end{split}$$

mit Lichtgeschwindigkeit:

$$c = \sqrt{\frac{1}{\varepsilon_0 \mu_0}}$$

$$c_{mat} = \sqrt{\frac{1}{\varepsilon \mu \varepsilon_0 \mu_0}} = \frac{c}{n}$$

17.5 Struktur elektromagnetischer Wellen

Ebene Welle

$$\vec{E}(\vec{r},t) = \vec{E}_0 \sin(kx - \omega t)$$

$$kx = \vec{k}\vec{r}$$

$$\implies \vec{E}(\vec{r},t) = \vec{E}_0 \sin(\vec{k}\vec{r} - \omega t) \div \vec{E} \stackrel{!}{=} 0 = \frac{\partial E_x}{\partial x} + \underbrace{\frac{\partial E_y}{\partial y}}_{=0} + \underbrace{\frac{\partial E_z}{\partial z}}_{=0} = \frac{\partial E_x}{\partial x} \stackrel{!}{0}$$

$$\implies E_x = \text{const.}$$

Wahl der Randbedingung \to wähle $E_x=0$. Fazit: Im Vakuum gibt es keine longitudinalen, sondern nur transversale elektromagnetische Wellen. Jetzt: Verknüpfung von E -und B -Feld. Ansatz: Linear polarisierte Welle (das heißt \vec{E} , \vec{B} zeigen immer in eine Richtung)

$$\vec{E}(x,t) = (0, E_y(x,t), 0)$$
$$E_y(x,t) = E_0 \sin(kx - \omega t)$$

Maxwell: rot $\vec{E} = -\dot{\vec{B}}$, rot $\vec{B} = 1/c^2\dot{\vec{E}}$

$$\implies \frac{\partial E_y}{\partial x} = -\frac{\partial B_z}{\partial t} \implies \frac{\partial B_z}{\partial t} = -kE_0 \cos(kx - \omega t), \frac{\partial B_x}{\partial t} = \frac{\partial B_y}{\partial t} = 0$$

$$\frac{1}{c^2} = -\frac{\partial B_x}{\partial x} \implies \frac{\partial B_z}{\partial x} = \frac{\omega}{c^2} E_0 \cos(kx - \omega t), \frac{\partial B_x}{\partial x} = \frac{\partial B_y}{\partial x} = 0$$

$$\implies \vec{B}(x,t) = (0,0,B_z(x,t)), B_z(x,t) = \frac{E_0}{c} \sin(kx - \omega t)$$

⇒ Magnetisches Wechselfeld muss in z-Richtung zeigen falls das elektrische Feld in y-Richtung polarisiert ist. das heißt für elektromagnetische, ebene Wellen im Vakuum gilt:

 $\vec{E} + \vec{B}$

$$\ddot{\vec{E}}=c^2\Delta\,\vec{E}$$

$$\ddot{\vec{B}}=c^2\Delta\,\vec{B}$$
 $\Longrightarrow \; \vec{E}(\vec{r},t)=\vec{E}_0\sim\left(\vec{k}\,\vec{r}-\omega t\right)$ (Ebene Welle)

Mit rot $\vec{E} = -\dot{\vec{B}}$, rot $\vec{B} = 1/c^2\dot{\vec{E}}$

$$\vec{E}(x,t) = (0, E_y, 0)$$

$$E_y = E_0 \sin(kx - \omega t)$$

$$\vec{B} = (0, 0, B_z)$$

$$B_z = \frac{E_0}{c} \sin(kx - \omega t)$$

 $\implies \vec{E} \perp \vec{B}, \vec{E}, \vec{B} \perp \vec{K}, \vec{E}, \vec{B}$ in Phase

$$\begin{vmatrix} \vec{B} \end{vmatrix} = \frac{\begin{vmatrix} \vec{E} \end{vmatrix}}{C}$$
$$\vec{B} = \frac{1}{\omega} (\vec{k} \times \vec{E})$$

Zirkular polarisierte Welle:

$$[E_{0,x} = E_{0,y}, \varphi = 90^{\circ}]$$

Elliptisch Polarisierte Welle:

$$[E_{0,x} \neq E_{0,y}, \varphi = 90^{\circ}]$$

Unpolarisierte Welle:

[keine feste Phasenverschiebung]

Kugelwellen:

$$\vec{E} = \frac{\vec{E}_0}{r} \sin\left(\vec{k}\vec{r} - \omega t\right)$$
$$\vec{B} = \frac{\vec{B}_0}{r} \sin\left(\vec{k}\vec{r} - \omega t\right)$$

17.6 Energietransport elektromagnetischer Welle

Energiedichte im Vakuum:

$$\omega_{em} = \frac{1}{2} \left(\vec{E} \vec{D} + \vec{B} \vec{H} \right) = \frac{1}{2} \varepsilon_0 E^2 + \frac{1}{2\mu_0} B^2 = \varepsilon_0 E^2(t)$$

$$\langle \omega_{em} \rangle = \langle \omega_{em}(t) \rangle = \frac{1}{2} \varepsilon_0 E_0^2$$

Energiestromdichte (oder Intensität)

$$S = \frac{\text{Strahlungsleistung}}{\text{Fläche}} = \frac{\text{Energie}}{\text{Fläche} \cdot \text{Zeit}}$$
 = Energiedichte \cdot Geschwindigkeit

$$\implies S = \omega_{em}c = \varepsilon_0 c E^2(t) = \varepsilon_0 c^2 E B = \frac{1}{\mu_0} E B = E H$$

Definition 17.2 (Poyntingvektor)

$$\vec{S} = \frac{1}{\mu_0} (\vec{E} \times \vec{B}) = \vec{E} \times \vec{H}$$

17.7 Erzeugung elektromagnetischer Wellen

Hetzscher Dipol:

$$\omega = \frac{1}{\sqrt{LC}}$$

 ω groß $\to L, C$ klein

- Spule \rightarrow Draht
- Kondensator → Draht
- ⇒ geraderiung: PTP3

$$\begin{split} \vec{B}(\vec{v},t) &= \frac{1}{4\pi\varepsilon_0 c^2 r^3} \Big(\dot{\vec{p}} \times \vec{r} + \frac{r}{C} \Big(\ddot{\vec{p}} \times \vec{r} \Big) \Big) \\ \vec{E}(\vec{r},t) &= \frac{1}{4\pi\varepsilon_0 r^3} \Big(\vec{p} + \frac{r}{C} \dot{\vec{p}} + 3 \Big(\Big(\vec{p} + \frac{r}{C} \dot{\vec{p}} \Big) \hat{r} \Big) \hat{r} \Big) + \frac{1}{4\pi E_0 c^2 r^2} \Big(\ddot{\vec{p}} \times \vec{r} \Big) \times \vec{r} \end{split}$$

- ⇒ Hertzscher Dipol
 - Nahfeld: $E \sim 1/r^3$, $B \sim 1/r^2$, E, B phasenverschoben, $\varphi = 90^\circ$
 - Fernfeld: $E \sim 1/r$, $b \sim 1/r$, $\vec{E} \perp \vec{B} \perp \vec{k}$, $\varphi = 0^{\circ}$

$$\Longrightarrow \left| \vec{S} \right| \sim EB \sim 1/r^2$$
 Symmetrie:

- $S = \sigma(r) \cdot \xi(\theta)$
- $\vec{S} \parallel \vec{r}$
- $\oint \vec{S} d\vec{A} = \text{const.}$

$$\oint \sigma(r)\xi(\theta)r^2\mathrm{d}\Omega = \sigma(r)r^2\underbrace{\oint \xi(\theta)\mathrm{d}\Omega}_{\text{konstant}} = C\sigma(r)r^2 \stackrel{!}{=} \text{const.}$$

 $\implies \sigma(r) \sim 1/r^2, S \sim 1/r^2$. Also: Die 1/r-Abhängigkeit von E, B-Feld und die $1/r^2$ Abhängigkeit von E, Bvon $|\vec{S}|$ ergeben sich für das Fernfeld aus der Symmetrie und der Erhaltung des Energieflusses. Außerdem: Fernfeld = reines Wellenfeld im freien Raum. Daher sind \vec{E} , \vec{B} rein transversal, \vec{E} , \vec{B} in Phase. Nahfeld: $r \gg d \implies \dot{B}$, \dot{E} phasenverschoben. Vorbemerkung: Hochfrequente Wechselspannung auf einem Leiter führt zu elektromagnetischen Wellen entlang des Leiters, da sich die Oberflächenladung σ nur mit endlicher Geschwindigkeit ausbreitet. (Drahtwelle) \implies Hertzscher Dipol: Stehende

Phasenverschiebung: $\pi/2$

Drahtwellen:

$$I(z,t) = I_0(z) \sin \omega t$$
$$U(z,t) = U_0(z) \cos \omega t$$

Randbedingungen

$$I_0\left(\pm \frac{1}{2}l\right) = 0$$

$$U_0\left(\pm \frac{1}{2}l\right) = U_0$$

$$U_0(0) = 0$$

Daraus folgt

$$I_0(z) = I_0 \cos\left(\frac{\pi x}{l}\right)$$
$$U_0(z) = U_0 \sin\left(\frac{\pi x}{l}\right)$$

Abstrahlungscharakteristik::

$$\left| \vec{S} \right| = \sigma(r) \cdot \xi(\theta) \sim EB \text{ (Fernfeld)} \implies \xi(\theta) =?, \sigma(r) \sim 1/r^2. \text{ Fernfeld:}$$

$$\vec{E} \sim \frac{1}{r^3} \Big(\ddot{\vec{p}} \times \vec{r} \Big) \times \vec{r} = -\frac{1}{r^2} \Big(\ddot{\vec{p}} r^2 - \vec{r} (\ddot{p} \cdot \vec{r}) \Big)$$

in Kugelkoordinaten mit $\hat{p} = \cos \theta \, \vec{e}_r - \sin \theta \, \vec{e}_r$ folgt

$$= \frac{\left| \ddot{\vec{p}} \right|}{r} \cdot (\hat{r} \cos \theta - \hat{p})$$

$$= \frac{\ddot{\vec{p}}}{r} \sin \theta \, \vec{e}_r$$

$$\left| \vec{S} \right| \sim \frac{\sin^2 \theta}{r^2} \sim \left| \vec{E} \right|^2, S = c \varepsilon_0 E^2$$

⇒ Strahlungsgleichung des Hertzschen Dipols:

$$S(r,\theta) = \frac{p_0^2 \omega^4 \sin^2 \theta}{16\pi^2 \varepsilon_0 c^3 \tau^2} \sin^2(\omega t - kr)$$

17.8 Elektromagnetisches Spektrum

$$\begin{split} \lambda &= \frac{c}{\nu} \\ \nu &= 100\,\mathrm{MHz} &\rightarrow \quad \lambda \sim 3\,\mathrm{m} \\ \nu &= 10\,\mathrm{GHz} &\rightarrow \quad \lambda \sim 3\,\mathrm{cm} \\ \nu &= 1 \times 10^{14}\,\mathrm{Hz} &\rightarrow \quad \lambda \sim 3\,\mathrm{m} \\ \nu &= 1 \times 10^{15}\,\mathrm{Hz} &\rightarrow \quad \lambda \sim 300\,\mathrm{nm} \end{split}$$

Radiowellen

- Mikrowellen
- · Infrarotstrahlung
- Licht
- Röntgenstrahlung
- Gammastrahlung

Quantenphysik: Elektromagnetische Strahlung $\stackrel{\wedge}{=}$ Photonen $\gamma \to E_\gamma = h \nu$, h: Plancksches Wirkungsquantum $h=6.626 \times 10^{-34} \, \mathrm{J\,s}$

18 Natur des Lichts und Wellenoptik

Wellencharakter \rightarrow Interferenz und Beugung, insbesondere zum Beispiel Poissonscher Fleck.

18.1 Beugung und Interferenz

Beugung: Ableitung von Wellen an einem Hindernis.

Inferferenz: Konstruktive und destruktive Überlagerung von Wellen.

Beruht auf: Superposition und Prinzip von Huygens. Prinzip von Hulgens: Jeder Punkt einer Wellenfront ist Ausgangspunkt einer neuen (Elementar) Welle. Lage der Wellenfront ergibt sich durch Überlagerung (Superposition) sämtlicher Elementarwellen. Beachte: Elementarwellen haben Kugel-/Kreisform \implies auch rücklaufende Welle. Betrachte Einzelspalt mit Breite $a. \implies$ Erste Nullstelle:

$$\frac{\lambda}{2} = \frac{a}{2}\sin\theta, \lambda = a\sin\theta$$

Weitere Nullstellen:

$$a\sin\theta = m\lambda, m = \in \mathbb{N}$$

Intensitätverteilung: Betrachte $N\to\infty$ Schwinger in Einzelspalt von Breite a. Abstand zwischen zwei Schwingern: $d=a/N\to 0$. Einzelschwingung: Amplitunde A_0 . Phasenverschiebung zwischen zwei Schwingern:

$$\delta = \frac{2\pi}{\lambda} d\sin\theta$$

Vorwärtsrichtung: $\theta=0^{\circ} \implies A=A_{max}=NA_0$ Richtung $\theta\neq 0$

$$A_1 = A_0 \cos \omega t$$
$$A_2 = A_0 \cos(\omega t + \delta)$$

$$A_3 = A_0 \cos(\omega t + 2\delta)$$

:

Betrachte Kreisbogen, damit

$$\sim \frac{1}{2}\phi = \frac{A}{2r} \to A = 2r\sin\frac{1}{2}\phi$$
$$r = \phi A_{max} \to \phi = \frac{A_{max}}{r}$$

$$A = 2\frac{A_{max}}{\phi} \sin \frac{1}{2}\phi$$

$$\frac{A}{A_{max}} = \frac{\sin \frac{1}{2}\phi}{\frac{1}{2}\phi}$$

$$\implies \frac{I}{I_0} = \frac{A^2}{A_{max}^2} = \left(\frac{\sin \frac{1}{2}\phi}{\frac{1}{2}\phi}\right)^2$$

$$\phi = N\delta = Nd\frac{\pi}{\lambda}\sin\theta$$

⇒ Intensitätsverteilung für Beugung im Einzelspalt

$$I(\theta) = I_0 \left(\frac{\sin(\frac{\pi a}{\lambda} \sin \theta)}{\frac{\pi a}{\lambda} \sin \theta} \right)^2 = I_0 i(\theta) = I_0 \left(\frac{\sin(\frac{\pi a}{\lambda} \sin \theta)}{\frac{\pi a}{\lambda} \sin \theta} \right)^2$$

Doppelspalt: Zuerst: unendlich dünne Spaltteile, Abstand \boldsymbol{d}

- Interferenzminima: $d\sin\theta = \left(m + \frac{1}{2}\right)\lambda, m = 0, 1, \dots$
- Interferenz
maxima: $d \sim \theta = m \lambda, m = 0, 1, \dots$
- · Intensitätsverteilung:

$$E_1 = A_0 \sin \omega t$$

$$E_2 = A_0 \sim (\omega t + \delta)$$

$$\delta = \frac{2\pi}{\lambda} d \sin \theta$$

$$E = E_1 + E_2 = 2A_0 \cos \frac{1}{2} \delta \sin \left(\omega t + \frac{1}{2} \delta\right)$$

mit

$$\sin \alpha + \sin \beta = 2 \cos \left(\frac{1}{2}(\alpha - \beta)\right) \sin \left(\frac{1}{2}(\alpha + \beta)\right)$$

$$I \sim E^2$$

$$I = 4I_0 \cos^2 \frac{1}{2}\delta$$

$$I_0 \sim A_0^2$$

$$\delta = \frac{\pi}{\lambda} \sim \theta d$$

Jetzt: Doppelspalt mit Spaltbreite a.

$$I = 4I_0 \cos^2 \frac{1}{2} \delta \left(\frac{\sin(\frac{1}{2}\phi)}{\frac{1}{2}\phi} \right)^2$$
$$\phi = \frac{2\pi}{\lambda} a \sin \theta$$
$$\delta = \frac{2\pi}{\lambda} d \sin \theta$$

Frauenhofer Beugung: Annahmen:

- Abstand L groß gegen Abstand Objekt / Spalt
- · Huygensches Prinzip
- Einfallende ebene Welle
- Kohärenz

Definition 18.1 (Kohärenzlänge) Waximale Wellenlägen / Laufzeitunterschiede, die zwei Teilwellen haben dürfen, um stabil zu interferieren.

Definition 18.2 (Kohärenzzeit) Mittleres Zeitinterwall, in der sich die Phase einer Teilwelle um maximal 2π ändert.

Fraunhofer Beugung o Erzeugung von Kugelwellen ausgehend von jedem Punk im Objektspalt

$$E \sim \frac{A_0}{r} e^{i(kr - \omega t)} \sim \frac{A_0}{r} e^{ik(\sqrt{L^2 + x'^2} + \Delta(x))} e^{-i\omega t}$$

Einzelspalt:

$$E(x,t) = A(x)e^{-i\omega t}$$

Gangunterschied: $\Delta(x) = x \sin \theta = x = x'/L$ Phasendifferenz:

$$\begin{split} \delta(x) &= k\Delta(x) = \frac{2\pi}{\lambda}\Delta(x) = \frac{2\pi}{\lambda}x\frac{x'}{L} \\ &= kx\frac{x'}{L} \\ E(\theta,t) \sim \int_{-\infty}^{\infty} A(x)e^{i\delta(x)}e^{-i\omega t}\mathrm{d}r \\ &= e^{i\omega t}\int_{-\infty}^{\infty} A(x)e^{ikx\frac{x'}{L}}\mathrm{d}x \\ &= e^{i\omega t}\int_{-\infty}^{\infty} A(x)e^{iKx}\mathrm{d}x \quad K = k\frac{x'}{L} = k\sin\theta \end{split}$$

Frauenhofer-Beugung: Im Fernfeld ist die Winkelverteilung der Amplitude die Fouriertransformation der Amplitudenverteilung in der Bildebene

$$E(\theta, t) \sim e^{-i\omega t} \int A(x)e^{iKx}n$$

 $mit K = k \sin \theta = \frac{2\pi}{\lambda} \sin \theta$

Damit berechne Einzelspalt (Breite a von -a/2 nach a/2):

$$F(K) = \int_{-\infty}^{\infty} A(x)e^{iKx} dx$$

$$= \frac{1}{a} \int_{-a/2}^{a/2} e^{iKx} dx = \frac{1}{raK} \left[e^{iKx} \right]_{a/2}^{-a/2}$$

$$= \frac{2}{Ka} \frac{e^{iK\frac{a}{2}} - e^{-iK\frac{a}{2}}}{2i} = \frac{2}{Ka} \sin\left(K\frac{a}{2}\right)$$

$$F(k) \sim E(\theta, t) \sim \frac{\sin\left(K\frac{a}{2}\right)}{K\frac{a}{2}}$$

$$I(\theta) = I_0 \left(\frac{\sin\left(\frac{\pi a}{\lambda}\sin\theta\right)}{\frac{\pi a}{\lambda}\sin\theta}\right)^2$$

mit

$$I \sim E^2, K = \frac{2\pi}{\lambda} \sin \theta = k \sin \theta$$

Doppelspalt, zentriert um Null, Abstand der Spaltmittelpunkte ist d, Spaltgröße ist a.

$$F(K) = 2\cos\left(K\frac{a}{2}\right) \frac{\sin\left(K\frac{a}{2}\right)}{K\frac{a}{2}}$$

$$I(\theta) = 4I_0 \cos^2\left(K\frac{a}{2}\right) \left(\frac{\sin\left(K\frac{a}{2}\right)}{K\frac{a}{2}}\right)^2$$

$$K = k \sin \theta \qquad = \frac{2\pi}{\lambda} \sin \theta$$

Gitter mit m Spalte:

$$I(\theta) \sim \left(\frac{\sin(mK\frac{a}{2})}{\sin(K\frac{a}{2})}\right)^2 \left(\frac{\sin(K\frac{a}{2})}{K\frac{a}{2}}\right)^2$$

Hauptmaxima: $\sin\theta=n\frac{\lambda}{d}$ Auflösungsvermögen: $\frac{\lambda}{\Delta\lambda}\leq nm$

18.2 Reflexion und Brechung

Reflexion: Einfallswinkel = Ausfallswinkel, Beobachtung! Ergibt sich aus Huygenschem Prinzip. Einfallende Wellenfromnt AP trifft reflektierende Oberfläche zuerst im Punkt A. Die von dort ausgehende

Gugelwelle bildet zusammen mit den von A' und A'' ausgehenden Wellen zum Zeitpunkt t die Wellenfront der reflektirten Welle BQ. ABP und ABQ kongruentn $\to \theta_r = \theta_i$. Brechung: Lichtlaufzeiten mi Medium größer, Verringerung der Lichtgeschwindigkeit in Materie.

$$c = \frac{1}{\sqrt{\varepsilon\mu\varepsilon_0\mu_0}} = \frac{c_0}{\sqrt{\varepsilon\mu}} = \frac{n_0}{n}$$

n: Brechzahl. Damit verändert sich im Medium auch die Wellenlänge, da die Atome das Licht mit gleicher Frequenz absorbieren und abstrahlen. Es gilt:

$$k = \frac{\omega}{c} = \frac{2\pi}{\lambda}, \omega = 2\pi\nu \implies c = \nu\lambda$$

Das heißt für $c\downarrow\Longrightarrow\lambda\downarrow$ für $\nu=$ const.. Wellenlänge nimmt ebenfalls ab! Brechungsgesetz mit Huygeschen Prinzip: Die einfallende Wellenfront AP trifft die Grenzfläche zuerst im Punkt A. Die von dort ausgehende Kugelwelle breitet sich im Medium 2 mit $c_2< c_1$ aus und trifft im Punkt Q ein, wenn die einlaufende Wellenfront Punkt B erreicht. Die neue Wellenfront BQ verläuft demnach nicht parallel zu AP und man erhält:

$$\sin \theta_1 = \frac{c_1 t}{\overline{AB}}$$

$$\sin \theta_2 = \frac{c_2 t}{\overline{AB}}$$

$$\implies \frac{c_1}{c_2} = \frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1}$$

mit $c_i = c/n_i$. Gesetz von Snellius:

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Totalreflexion ⇒ Übergang vom Licht von einem optisch dichteren in optisch dünneres Medium. Kritischer Winkel:

$$\sin \theta_k = \frac{n_1}{n_2}, n_1 < n_2$$

18.3 Fermatsches Prinzip

Der Weg, den das Licht beschreibt wenn es sich von einem Punkt zu einem anderen bewegt ist stets so, dass die Zeit, die das Licht für das Zurücklegen des Weges braucht, ein (lokales) Minimum aufweist. Licht wählt den kürzesten optischen Weg: s'=ns.

Reflexion: \implies Spiegelung ist Minimum \implies Einfallswinkel = Ausfallswinkel. Brechung:

$$t = \frac{l_1}{c_1} + \frac{l_2}{c_2} = \frac{n_1 l_1}{c} + \frac{n_2 l_2}{c}$$

Minimum:

$$\frac{\mathrm{d}t}{\mathrm{d}x} = \frac{1}{c} \left(n_1 \frac{\partial l_1}{\partial x} + n_2 \frac{\mathrm{d}l_2}{\mathrm{d}x} \right)$$

18.4 Polarisation und Fresnelsche Formeln

Elekromagnetische Wellen sind transversal, das heißt Schwingungsebene steht senkricht auf der Ausbreitungsrichtung. Möglichkeit der Polarisation::

- linear polarisierte EM-Welle
- zirkular / elliptische polarisierte EM-Welle

Erzeugung von Polarisation: Apsorption, Streuung, Reflexion und Doppelbrechung.

Polarisation durch Absorption: Polarisation durch die Absorption einer Schwingungsrichtung mit

Hilfe dichromatischer Kristalle oder polarisierender Folie aus langkettigen, ausgerichteten Kohlenwasserstoffmolekülen.

(Absorption des E-Felder entlang der Moleküle). Gesatz von Malus (Intensität von polarisiertem

Licht nach einem weiterem Polarisationsfilter):

$$I = I_0 \cos^2 \theta$$

Polarisation durch Streuung. Streuung: Absorption + Wiederabstrahlung. Elektromagnetische Wellen:

- Rayleich-Streuung (Himmelblau, ω^4)
- · Ramen-Streuung
- · Mie-Streuung

Gestreutes Licht ist je nach Streurichtung unterschiedlich polarisiert, Ausbildung eines Winkelabhängigen Polarisationsmusters. (zum Beispiel Polarisationsmuster am Himmel wird von Bienen zur Orientierung genutzt).

Polarisation durch Reflexion: Reflexion beziehungsweise Transmission an dielektrischer Grenzfläche

- transmittierter und reflektierter Strahl sind (teilweise) polarisiert, Polarisationsgrad abhängig vom Einfallswinkel α .
- Für $\alpha = \theta_{Br}, \theta_{Br}$: Brewsterwinkel. Vollständige Polarisation des reflektierten Strahls in Richtung senkrecht zur Einfallsebene.

Fresnelsche Formeln:

Reflexion des senkrecht zur Einfallsrichtung polarisierten Strahls

$$R_{\perp}(\alpha, \beta) = \left(\frac{\sin(\alpha - \beta)}{\alpha + \beta}\right)^2$$

Reflexion des parallel zur Einfallsrichtung polarisierten Strahls

$$R_{\parallel}(\alpha, \beta) = \left(\frac{\tan(\alpha - \beta)}{\tan(\alpha + \beta)}\right)^2$$

Transmission des senkrecht zur Einfallsrichtung polarisierten Strahls

$$T_{\perp}(\alpha, \beta) = \left(\frac{2\sin\beta\cos\alpha}{\sin(\alpha+\beta)}\right)^2$$

Transmission des parallel zur Einfallsrichtung polarisierten Strahls

$$T_{\parallel}(\alpha, \beta) = \left(\frac{2\sin\beta\cos\alpha}{\sin(\alpha + \beta)\cos(\alpha - \beta)}\right)^{2}$$

$$R_{\perp} + T_{\perp} = 1$$

$$R_{\parallel} + T_{\parallel} = 1$$

Bemerkung 18.3 Herleitung der Fresnelschen Formeln mit Hilfe der Maxwellschen Gleichungen beziehungsweise den aus diesen folgenden Stätigkeitsbedingungen für das E- und das D-Feld an Grenzflächen sowie dem Brechungsgesetz unter Beachtung der Energieerhaltung der Lichtströme an der Grenzfläche (siehe Demtröder).

Aus de Fresnel-Formeln folgt: $R_{\parallel}=0$ für $\alpha+\beta=90^{\circ}$, das heißt der Brewsterwinkel θ_{Br} ist der Winkel, bei dem reflektierter und gebrochener Strahl senkrecht aufeinander stehen. Es folgt:

$$n_1 \sin \theta_{Br} = n_2 \sin \theta_2 = n_2 \sin(90^\circ - \theta_{Br}) = n_2 \cos \theta_{Br}$$

⇒ Gesetz von Brewster:

$$\tan \theta_{Br} = \frac{n_2}{n_1}$$

Qualitative, anschauliche Erklärung für das Gesetz von Brewster: Sei das E-Feld in der Einfallsebene, also parallel (\parallel) polarisiert. Dann schwingen auch die von ihm erzeugten atomaren Dipole \vec{p} in dieser Ebene. Die (kohärente) Abstrahlung dieser Dipole ist aber für das Zustandekommen der reflektierten Welle verantwortlich. Ist $\alpha=\theta_{Br}$ beziehungsweise $\alpha+\beta=90^\circ$ so zeigen die Dipole in Richtung des reflektierten Strahlt; ein Dipol emittiert aber nicht in diese Richtung. Für $\alpha=\theta_{Br}$ (Brewsterwinkel)

 \implies vollständige Polarisation des reflektierten Strahls. Für $\alpha, \beta \to 0$ gilt $\sin \alpha \approx \alpha, \sin \beta \approx \beta$ und $\alpha/\beta \approx n_2/n_1$. Damit lässt sich der Reflexionsgrad bei senkrechten Einfall herleiten:

$$R_{\parallel} = R_{\perp} = \left(\frac{n_2 - n_1}{n_2 + n_1}\right)^2$$

das heißt der Reflexionsgrad ist für beide Komponenten gleich, wie man es aus Symmetriegründen auch erwartet.

Bemerkung 18.4 Aufgrund der (teilweisen) Polarisation von reflektiertem Licht schützen Sonnebrillen mit Gläsern aus polarisierendem Material besonders gut vor zu grellem Licht. Zum Beispiel Reflektion an Wasseroberfläche → horizontale Polarisation, das heißt Sonnenbrillen haben vertikale Transmissionsachse.

Polarisation durch Doppelbrechung.

Wichtiger Effekt. Auftreten in optischen anisotropen Materialien (zum Beispiel Kalkspat CaCO3), das heißt Materialien bei denen sich das Licht in verschiedenen Richtungenn mit unterschiedlichen Geschwindigkeiten ausbreitet. Lichtgeschwindigkeit im Medium c_{med} abhängig von

- Polarisation
- Ausbreitungsrichtung
- ⇒ Phänomen der Doppelbrechung. Ausgezeichnete optische Achse.
 - Parallel zur optischen Achse

$$\implies c_{med} = c/n_0$$

 n_0 : normaler Brechungsindex

• Senkrecht zur optischen Achse \bot Polarisation $\implies c_0 = c/n_0$ ordentliches Verhalten $\parallel \implies c_{ao} = c/n_{ao}$ außerordentliches Verhalten mit $c_0 \neq c_{ao}$

⇒ 3 Fälle:

- 1. Lichteinfall parallel zur optischen Achse. ⇒ normale Lichtausbreitung beider Polarisationsrichtung
- 2. Lichteinfall senkrecht zur optischen Achse. Unterschiedlich polarisierte Teilstrahlen breiten sich mit unterschiedlicher Geschwindigkeit aus (=>> Phasenverschiebung)
- 3. Lichteinfall unter einem von Null verschiedenen Winkel. ⇒ Aufspaltung des einfallenden Lichtes in ordentlichen und außerordentlichen Strahl

Doppelbrechende Kristalle erlauben Erzeugung definieter Gangunterschiede ($\lambda/4, \lambda/2$ -Plättchen) (Einfall senkrecht zur optischen Achse)

18.5 Dispersion und Prismenwirkung

Dispersion: Abhängigkeit der Ausbreitungsgeschwindigkeit von der Wellenzahl k beziehungsweise der Wellenlänge λ . Snellius: $n_1 \sin \theta_1 = n_2 \sin \theta_2$. \rightarrow Aufspaltung des Lichts in Farben bei Brechung an Grenzfläche (zum Beispiel Prisma). (Wichtige Anwendung: Prismenspektrograh).

19 Optische Abbildungen

Sehr breites Thema mit einer Fülle von Instrumenten. Zum Beispiel moderne bildgebende Methoden wie Hologromme, Ultraschall, Temographie. Hier nur einige Grundprinzipien.

19.1 Dünne Linsen, Linsengleichung

das heißt: Linsendicke vernachlässigbar, schwahce Krümmung, alle Lichtbündel achsennah, kleine Öffnungswinkel, $\sin \alpha \approx \tan \alpha \approx \alpha$.

Linsenwirkung beruht auf Brechung an gekrümmten Grenzflächen zwischen optische dichteren und optisch dünneren Medien. Fokussierend und Defokussierend. Wichtige Begrifflichkeiten

- · Optische Achse
- · Brennpunkt
- Brennweite f
- Brennebene
- · Gegenstand
- · Bildpunkt, virtuelles Bild

Linsengleichung: Betrachte dünne Linse, d vernachlässigbar. Es gilt:

$$\frac{\sin \alpha}{\sin \beta} = \frac{\alpha}{\beta} = n$$
 (Snellius)
$$\frac{\sin \delta}{\sin \gamma} = \frac{\delta}{\sigma} = n$$

Außerdem:

$$\alpha = \varepsilon + \xi$$

$$\delta = \eta + \kappa$$

$$\beta + \gamma = \eta + \xi$$

$$\implies \frac{\alpha}{n} + \frac{\delta}{n} = \eta + \xi$$

Einsetzen von α und δ liefert:

$$\frac{1}{n}(\varepsilon + \xi + \eta + \kappa) = \eta + \xi$$

$$\Rightarrow \frac{1}{n}\left(\frac{1}{g} + \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{b}\right) = \frac{1}{r_1} + \frac{1}{r_2}$$

$$\Rightarrow \frac{1}{g} + \frac{1}{b} = \underbrace{(n-1)\left(\frac{1}{r_1} + \frac{1}{r_2}\right)}_{f}$$

$$\Rightarrow \frac{1}{g} + \frac{1}{b} = \frac{1}{f}$$
(Linsengleichung)

mit

$$f = \frac{r_1 r_2}{(n-1)(r_1 + r_2)}$$
 (Brennweite)

Diese Gleichung lässt sich mit einiger Mühe auch für achsennahe Gegenstans- und Bildpunkte herleiten → Existenz Bildebene. Damit folgt dann auch:

$$\frac{B}{G} = \frac{b}{g}$$

Ähnliche Abbildung. Folgt mit Hilfe des Strahlensatzes.

Bemerkung 19.1 Linsengleichung gilt auch für sphärische Spigel, hier ligen dann Bild und Gegenstand auf der gleichen Seite

19.2 Einfache Anwendung des Linsegesetzes

Bekannt: Brennfunkte F_1 , F_2 im Abstand f. Geometrische Konstruktion:

- Parallelstrahl \rightarrow Brennstrahl
- Zentralstrahl \rightarrow Zentralstrahl
- Brennstral \rightarrow Parallelstrahl

Für $g \ge f$: reelles Bild.

Für g < f: virtuelles Bild.

Virtuelles Bild kann nicht direkt auf Schirm dargestellt werden. Aber: Virtuelles Bild kann von Auge (= 2. Linse) sehr wohl auf die Netzhaut als reelles Bild fokussiert werden. Bildrekunstruktion für zwei Linsen mit virtuellem Zwischenbild. (hier konkave und konvexe Linse)

- 1. Rekonstruktion des virtuellen Bildes für (konkave) Linse 1 (Hautebene H).
- 2. Rekonstruktion des reellen Bildes mit Hilfe des virtuellen Bildes als Gegenstand und (konvexer) Linse 2 (Hauptebene H')

19.3 Dicke Linsen

Dicke der Linse nicht vernachlässigbar, das heißt $d \approx r_1, r_2$ (r_1, r_2 : Krümmugsradius). Gültigkeit des Linsengesetzes bleibt bestehen, wenn dicke Linse als ein (Linsen) System mit zwei Hauptebenen betrachtet wird. Auch dann gilt:

$$\frac{1}{f} = \frac{1}{g} + \frac{1}{b}$$

mit $f = f(r_1, r_2, n, d)$, $H_1 = H_1(r_2, f, d)$, $H_2 = H_2(r_1, f, d)$. Bildrekonstruktion mittels fiktiver Strahlen, die nur an den jeweiligen Hauptebenen gebrochen werden.

19.4 Linsenfehler

- Sphärische Aberration. Von optischer Achse weiter entfernte Strahlen werden stärker gebrochen; Abhilfe: asphärische Linsen.
- Chromatische Aberation. Unterschiedliche Fokussierung aufgrund der Dispersion. Abhilfe: achromatische Linsen
- · Astigmatissmus. Schärfefehler für schräg einfallende Strahlenbündel

19.5 Optische Instrumente

- Mikroskop
- Spektrograph
- Auge
- Fernrohr
- Interferometer

20 Spezielle Relativitätstheorie

In Intertialsystemen gelten die Newtonschen Gesetze. Klassisches Relativitätsprinzip: Alle relativ zu einem Intertialsystem gleichförmig bewegten Bezugssysteme sind ebenfalls Inertialsysteme und im Rahmen der Newtonschen Mechanik gleichwertig. \implies Galilei Transformationen

$$x' = x - ut$$

$$y' = y$$

$$z' = z$$

$$t = t'$$

$$\Rightarrow \Delta x' = \Delta x$$

$$\Delta y' = \Delta y$$

$$\Delta z' = \Delta z$$

$$\Delta t' = \Delta t$$

$$\frac{dx'}{dt'} = \frac{dx}{dt} - \frac{d}{dt}(ut)$$

$$v' = v - u$$

Raum und Zeil sind absolut. Es gibt keine absoluten Geschwindigkeiten.