Числовые последовательности и их пределы

Ученики 10-4 класса Оконешников Д.Д. и Паньков М.А. по лекции к.ф.-м.н. Протопоповой Т.В.

от 21 апреля 2021 г.

1 Лекция №24

1.1 Свойства бесконечно больших

- 1. Если предел последовательности $\lim_{n\to\infty} a_n = +\infty(+\infty+c)$, а $\{b_n\}$ ограничена снизу, т.е. $b_n \ge b \ \forall n$, тогда $\lim_{n\to\infty} (a_n+b_n) = +\infty$
- 2. Если $\lim_{n\to\infty}a_n=+\infty(+\infty+c),$ а $\{b_n\}$ ограничена $M:b_n\geq M>0,\ \forall n\ \lim_{n\to\infty}(a_n*b_n)=+\infty$
- 3. Если $\lim_{n \to \infty} a_n = +\infty$, а b_n ограничена, т.е. $0 < b_n < M(n \to \infty) \ \forall n$, то

$$\left(\frac{+\infty}{c>0}\right)\lim_{n\to\infty}\frac{a_n}{b_n} = +\infty$$

4. Если $\lim_{n\to\infty} a_n = \infty$, а b_n ограничена; $|b_n| \leq M \ \forall n$,

$$\left(\frac{M}{\infty}\right) \lim_{n \to \infty} \frac{b_n}{a_n} = 0$$

.

1.1.1 Неопределённости

1)
$$\infty - \infty$$

$$2n - n = n \to +\infty$$

$$\lim_{n \to \infty} \sqrt{n+1} - \sqrt{n} = \lim_{n \to \infty} \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} = 0$$

2)
$$\frac{\infty}{\infty}$$

$$n^2$$
, n , $2n$

 $\frac{n^2}{n}$

3)
$$\infty * 0$$

1.2 Теорема Вейерштрасса

Определение. Числовая последовательность целых чисел называется стабилизирующейся к ξ , если $\exists \ n_0 \ \forall n > n_0 \ a_n = \xi : a_n \to \xi$

Лемма 1. Если $\{a_n\}$ — последовательность целых неотрицательных чисел, неубывающая и ограниченная сверху, т.е. $a_n \leq N \ \forall n$, то $\exists \ \xi : a_n \to \xi \ \text{и} \ \xi \leq M$.

хотя число членов последовательности ∞ , но между a_1 (самый маленький член последовательности т.к. $a_n \nearrow$) и M есть только конечное число целых чисел, \Rightarrow только конечно число значений a_n Обозначним наибольшее значение принимаемое a_n , $\sqrt{3}$ ξ , т.е. $\exists n_0: a_{n_0} = \xi \leq M$, тогда $\forall n > n_0 \ a_n = \xi$, т.к. $a_n \downarrow$

$$\{a_n\}$$
 — б.д.д. >0

$$a_1 = \alpha_{10}, \alpha_{11}\alpha_{12}\alpha_{13}\dots$$

$$a_2 = \alpha_{20}, \alpha_{21}\alpha_{22}\alpha_{23}...$$

$$a_3 = \alpha_{30}, \alpha_{31}\alpha_{32}\alpha_{33}...$$

• • •

$$a_n = \alpha_{n_0}, \alpha_{n_1} \alpha_{n_2} \alpha_{n_3} \dots$$

$$\downarrow a = \gamma_0, \gamma_1 \gamma_2 \gamma_3 \dots$$

$$\alpha_{n_0}$$
 — целые неотр.

$$\alpha_{n_i}$$
 $j = 1, ... - \text{это} \in \{0, 1, 2, ..., 9\}$

Определение. Будем говорить, что последовательность б.д.д. (> 0) $\{a_n\}$ \Rightarrow $a=\gamma_0,\gamma_1\gamma_2\gamma_3...$ $(a_n\to a),$ если $\forall k$ α_{n_k} \Rightarrow γ_k

Лемма 2. Если $\{a_n\}$ — последовательность неотрицательных б.д.д. (*) является неубывающей и ограниченной (т.е. $\exists M$ (б.д.д., не оканчивающася последовательностью 9-ок)): $\forall n \ a_n \leq M$), то $\exists a$:

- 1) $a_n \Rightarrow a$
- $a_n \le a \le M$

↑В табл. (*) смотрим на первый столбец

 α_{10}

 α_{20}

 α_{30}

 α_{n0}

Это последовательность неубывающих целых неотр. чисел и ограниченных сверху M по **Л1** \exists номер $N_0 \ \forall \ n > N_0$

 $\alpha_{n_0} \Longrightarrow \gamma_0$

 α_{10}

 α_{20}

 α_{30}

 $\alpha_{N_00} = \gamma_0$

 γ_0

 γ_0

Пусть $n > N_1$, тогда смотрим на $\{\alpha_{n1}\}$

 α_{n1} — последовательность целых, неотр. чисел. Она ограничена 9-кой; неубывающая(т.к. $a_n \not\searrow$ и 0-й столбец уже застабилиз.) $\Rightarrow \exists N_1 \ \alpha_{n_1} \Rightarrow \gamma_1 \ \forall n > N_1 \geq N_0$

Пусть $n > N_1 \ge N_0$ и смотрим $\{\alpha_{n2}\}$

 $\{\alpha_{n2}\}$ — последовательность целых, неотр. чисел. Она ограничена 9-кой, неубывающей (т.к. $a_n \searrow$ и 1-ый столбец уже застабилиз.) $\Rightarrow \exists N_2 \quad \forall n > N_2 \geq N_1 \geq N_0 \quad \alpha_{n2} \Rightarrow \gamma_2$ и т.д.

в итоге $\forall n > N_k \geq N_{k-1} \geq ... \geq N_0 \quad \{\alpha_{nk}\} \implies \gamma_k$, то $a_n \implies a = \gamma_0, \gamma_1 \gamma_2 \gamma_3 ... \gamma_k ...$

Из построения $a_n \leq a$

Осталось показать, что а \leq M

Будем доказывать от противного: т.е. пусть a>M, т.е. $a_{(k)}=\gamma_0, \ \gamma_1, \ \gamma_2, \ ..., \ \gamma_k>M$

 a_k — прибл. по недост. для а, но тогда a_n $n>N_k$

 $a_n = \alpha_{n0}, \ \alpha_{n1}, \ \alpha_{n2}, \ ..., \ \alpha_{nk}, \ \alpha_{nk+1}, \ ... = \gamma_0, \ \gamma_1, \ ..., \ \gamma_k \alpha_{nk+1} > a_{(k)} > M$, противоречие с тем, что $a_n \leq M \ \forall n \ \downarrow$

1.2.1 Теорема Вейерштрасса

Если $\{x_n\}$ — числовая последовательность неубывает и ограничена сверху, то она сходится.

↑

- 1. Пусть $x_1 > 0 \Rightarrow \forall n \ x_n > 0$ т.к. $(x_n \searrow)$.
- 2. Любое $x_n \in \mathbb{R}$ представлена в виде б.д.д.
- 3. По **Л2**, такая (1) $x_n \rightrightarrows a$
- 4. Покажем, что $x_n \longrightarrow_{n \to \infty} a$ Надо $\forall \varepsilon > 0 \ \exists N \ \ \forall n > N, |x_n - a| < \varepsilon$

пусть $n > N_k$, где N_k - номер, когда k-ый столбец в (*) застабилиз., тогда

$$|x_n - a| = |\gamma_0, \gamma_1 \dots \gamma_k \alpha_{nk+1} \alpha_{nk+2} \dots - \gamma_0, \gamma_1 \gamma_2 \dots \gamma_k \gamma_k + 1 \gamma_{k+2} \dots|$$

$$= 0, \underbrace{0 \dots 0}_{k} \beta_{k+1} \beta_{k+2} \dots < 0, \underbrace{0 \dots 0}_{k-1} 1 = \frac{1}{10^k} < \frac{1}{9k} < \varepsilon$$

$$k > \frac{1}{9\varepsilon}$$
 $\varepsilon \to k \to N_k = N \downarrow$

Замечание 1. Если $x_1 < 0$, тогда рассм. $y_1 = x_1 + c : y_1 > 0$, тогда по доказ. $y_n = x_n + c \searrow$, ограничена сверху и $y_1 > 0 \Rightarrow$ по доказ $y_n \xrightarrow[n \to \infty]{} \Rightarrow$

Замечание 2. Аналогично можно доказать, что, если $\{x_n\} \nearrow$ и ограничена снизу, то она сх-ся.

В общем случае:

Если последовательность монотонна и ограничена, то она сх-ся ↓

Пример.

 $a_{n+1}=rac{a_n+1}{2};\ a_1=2,$ доказать, что $\{a_n\}$ сх-ся и найти lim.

$$a_1=2;\ a_2=\frac{1}{2}(2+1)=\frac{3}{2};\ a_3=\frac{5}{4};\ a_4=\frac{9}{8}$$
 Предположение: \searrow и $1< a_n\leq 2$

$$\begin{array}{l} a=\frac{a+1}{2}\\ 2a=a+1 \end{array}$$

$$a = 1$$

- І. Покажем, что $1 < a_n \le 2$ 1) База n = 1 $1 < a_1 = 2 \le 2$ верно
 - 2) Пусть при $n = k 1 < a_k \le 2$ выполнено

II.
$$a_{n+1}-a_n=\frac{(a_n+1)}{2}-a_n=\frac{1-a_n}{2}(a_n>1$$
 из опр $<0)<0\Rightarrow a_{n+1}< a_n \forall \ n\in N$ т.е. a_n - убыв.

III. Из I и II по Т. Вейерштрасса $\exists \ lim_{n\to\infty}a_n$. Пусть $lim_{n\to\infty}=a\Rightarrow a=\frac{a+1}{2}\Rightarrow a=1$