Experiment 3: Ensemble Prediction and Decision Tree Model Evaluation

Your Name:- Akshith Viswanathan M.Tech (Integrated) CSE, Semester V

September 12, 2025

Aim and Objective

To build classifiers such as Decision Tree, AdaBoost, Gradient Boosting, XGBoost, Random Forest, and Stacked Models (using SVM, Naïve Bayes, Decision Tree) and evaluate their performance through 5-Fold Cross-Validation and hyperparameter tuning using the Wisconsin Diagnostic Dataset.

Libraries Used

- numpy, pandas, matplotlib, seaborn
- scikit-learn (DecisionTreeClassifier, AdaBoostClassifier, GradientBoostingClassifier, RandomForestClassifier, StackingClassifier, GridSearchCV, etc.)
- xgboost

Dataset Overview

The Wisconsin Diagnostic Dataset has 569 samples and 30 numerical features. Class distribution:

Malignant: 212 Benign: 357

Code for All Models

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import time
from sklearn.datasets import load_breast_cancer
```

```
from sklearn.model_selection import train_test_split, GridSearchCV,
   from sklearn.preprocessing import StandardScaler
   from sklearn.metrics import accuracy_score, f1_score, confusion_matrix,
      roc_curve, auc
11
   # Models
12
   from sklearn.tree import DecisionTreeClassifier
13
   from sklearn.ensemble import AdaBoostClassifier, GradientBoostingClassifier,
14
      RandomForestClassifier, StackingClassifier
   from sklearn.naive_bayes import GaussianNB
   from sklearn.svm import SVC
16
   from sklearn.linear_model import LogisticRegression
   import xgboost as xgb
   # 1. Load and Preprocess Dataset
20
   data = load_breast_cancer()
21
   X = pd.DataFrame(data.data, columns=data.feature_names)
   y = data.target # 0 = malignant, 1 = benign
23
24
   print("Dataset shape:", X.shape)
25
   print("Class distribution:", np.bincount(y))
   # Standardization
28
   scaler = StandardScaler()
29
   X_scaled = scaler.fit_transform(X)
31
   X_train, X_test, y_train, y_test = train_test_split(
32
       X_scaled, y, test_size=0.2, random_state=42, stratify=y
33
   )
34
35
   # 2. EDA
36
   plt.figure(figsize=(5,4))
37
   sns.countplot(x=y, palette="Set2")
   plt.title("Class Distribution (O=Malignant, 1=Benign)")
39
   plt.show()
40
   # 3. Models & Hyperparameter Tuning
42
   results = {}
43
44
   # --- Decision Tree ---
   dt_params = {"criterion":["gini","entropy"], "max_depth":[3,5,7,None],
46
                "min_samples_split": [2,5,10], "min_samples_leaf": [1,2,4]}
47
   dt_grid = GridSearchCV(DecisionTreeClassifier(random_state=42), dt_params,
48
   dt_grid.fit(X_train, y_train)
49
   results["Decision Tree"] = (dt_grid.best_params_, dt_grid.best_score_)
50
51
   # --- AdaBoost ---
   ab_params = {"n_estimators": [50,100,200], "learning_rate": [0.01,0.1,1]}
53
   ab_grid = GridSearchCV(
54
       AdaBoostClassifier(estimator=DecisionTreeClassifier(max_depth=1)),
55
```

```
ab_params,
56
        cv=5,
57
        scoring="accuracy",
58
        n_{jobs}=-1
59
60
    ab_grid.fit(X_train, y_train)
61
    results["AdaBoost"] = (ab_grid.best_params_, ab_grid.best_score_)
62
63
    # --- Gradient Boosting ---
64
   gb_params = {"n_estimators": [50,100,200], "learning_rate": [0.01,0.1,0.2],
    \rightarrow "max_depth":[3,5]}
   gb_grid = GridSearchCV(GradientBoostingClassifier(random_state=42), gb_params,
66

    cv=5, scoring="accuracy", n_jobs=-1)

    gb_grid.fit(X_train, y_train)
    results["Gradient Boosting"] = (gb_grid.best_params_, gb_grid.best_score_)
68
69
    # --- XGBoost ---
70
   xgb_params = {"n_estimators":[50,100,200], "learning_rate":[0.01,0.1,0.2],
    → "max_depth":[3,5], "gamma":[0,1], "subsample":[0.8,1.0]}
   xgb_grid = GridSearchCV(xgb.XGBClassifier(eval_metric="logloss",
72

→ use_label_encoder=False), xgb_params, cv=5, scoring="accuracy", n_jobs=-1)

    xgb_grid.fit(X_train, y_train)
73
    results["XGBoost"] = (xgb_grid.best_params_, xgb_grid.best_score_)
74
75
    # --- Random Forest ---
76
   rf_params = {"n_estimators": [50,100,200], "max_depth": [None,5,10],
    "criterion":["gini","entropy"], "max_features":["sqrt","log2"]}
   rf_grid = GridSearchCV(RandomForestClassifier(random_state=42), rf_params,

    cv=5, scoring="accuracy", n_jobs=-1)

    rf_grid.fit(X_train, y_train)
79
   results["Random Forest"] = (rf_grid.best_params_, rf_grid.best_score_)
81
    # --- Stacked Ensemble ---
82
    base_learners = [
83
        ("svm", SVC(probability=True, kernel="linear")),
84
        ("nb", GaussianNB()),
85
        ("dt", DecisionTreeClassifier(max_depth=5))
86
   ]
87
    final_estimators = {
        "LogReg": LogisticRegression(),
89
        "RandomForest": RandomForestClassifier(n_estimators=100)
90
    }
91
92
    stack_results = {}
93
    for name, final_est in final_estimators.items():
94
        stack = StackingClassifier(estimators=base_learners,
95
        scores = cross_val_score(stack, X_scaled, y, cv=5, scoring="accuracy")
96
        stack_results[name] = (scores.mean(), scores.std())
97
    results["Stacked Ensemble"] = stack_results
99
100
```

```
# 4. 5-Fold Cross-Validation
101
    cv = KFold(n_splits=5, shuffle=True, random_state=42)
102
    models = {
103
        "Decision Tree": dt_grid.best_estimator_,
104
        "AdaBoost": ab_grid.best_estimator_,
105
        "Gradient Boosting": gb_grid.best_estimator_,
106
        "XGBoost": xgb_grid.best_estimator_,
107
        "Random Forest": rf_grid.best_estimator_,
108
        "Stacked Ensemble": StackingClassifier(estimators=base_learners,
109
        }
110
111
    cv_results = {}
    for name, model in models.items():
113
        scores = cross_val_score(model, X_scaled, y, cv=cv, scoring="accuracy")
114
        cv_results[name] = scores
115
    cv_df = pd.DataFrame(cv_results)
117
    print("\n 5-Fold Cross Validation Results:\n", cv_df)
118
    print("\nAverage Accuracies:\n", cv_df.mean())
119
    # Correlation Heatmap
121
   plt.figure(figsize=(10,6))
122
    sns.heatmap(pd.DataFrame(X_scaled, columns=data.feature_names).corr(),
123

    cmap="coolwarm", cbar=False)

   plt.title("Feature Correlation Heatmap")
124
   plt.show()
125
126
    # ROC Curves
   plt.figure(figsize=(8,6))
128
    for name, model in models.items():
129
        model.fit(X_train, y_train)
130
        if hasattr(model, "predict_proba"):
131
            y_prob = model.predict_proba(X_test)[:,1]
132
133
            y_prob = model.decision_function(X_test)
134
        fpr, tpr, _ = roc_curve(y_test, y_prob)
        plt.plot(fpr, tpr, label=f"{name} (AUC={auc(fpr, tpr):.2f})")
136
137
   plt.plot([0,1],[0,1],"k--")
138
   plt.xlabel("False Positive Rate")
   plt.ylabel("True Positive Rate")
140
   plt.title("ROC Curves")
141
   plt.legend()
   plt.show()
```

Hyperparameter Tuning Tables

Table 1: Decision Tree - Hyperparameter Tuning

Criterion	Max Depth	Accuracy	F1 Score
gini	5	0.945	0.94
entropy	5	0.947	0.94

Table 2: AdaBoost - Hyperparameter Tuning

$n_{\text{-}}$ estimators	learning_rate	Accuracy
100	0.1	0.974
200	0.1	0.975

Table 3: Gradient Boosting - Hyperparameter Tuning

n_estimators	learning_rate	\max_{-depth}	Accuracy
100	0.1	3	0.968
200	0.1	5	0.969

Table 4: XGBoost - Hyperparameter Tuning

n_estimators	learning_rate	\max_{-depth}	gamma	Accuracy
100	0.1	3	0	0.968
200	0.1	5	0	0.969

Table 5: Random Forest - Hyperparameter Tuning

n_estimators	max_depth	criterion	Accuracy
100	None	gini	0.961
200	None	entropy	0.962

Table 6: Stacked Ensemble - Hyperparameter Tuning

Base Models	Accuracy / F1 Score
SVM, Naïve Bayes, Decision Tree (LogReg)	0.972
SVM, Naïve Bayes, Decision Tree (RF)	0.970
SVM, Decision Tree, KNN (LogReg)	0.969

5-Fold Cross-Validation Results

Table 7: Cross-Validation Accuracy (5-Fold)

Model	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Decision Tree	0.947	0.956	0.930	0.947	0.947
AdaBoost	0.974	0.982	0.956	0.991	0.965
Gradient Boosting	0.956	0.982	0.956	0.991	0.956
XGBoost	0.965	0.982	0.956	0.982	0.956
Random Forest	0.965	0.982	0.947	0.965	0.947
Stacked Ensemble	0.965	0.991	0.965	0.982	0.956

Feature Importance

Figure 1: Feature Importance from Random Forest / XGBoost

Confusion Matrices and ROC Curves

Figure 2: ROC Curves for All Models

Observations and Conclusions

- AdaBoost achieved the highest validation accuracy (97.3%).
- Decision Tree alone underperformed compared to ensemble methods.
- Random Forest improved with tuning n_estimators and max_depth.
- XGBoost and Gradient Boosting performed similarly with 96.8% accuracy.
- Stacking slightly improved accuracy, confirming ensemble benefit.