Studiengang: Intelligent Systems Design (ISD)

Lehrveranstaltung:

Mathematik II

Lineare Algebra. Matrizen

Fragen zur Selbststudiums-Wiederholung

- Skalarprodukt.
- Eigenschaften des inneren (Skalar-) Produkts.
- Vektorprodukt zweier 3d Vektoren.
- Gemischtes (Spat-) Produkt dreier 3d Vektoren.

Lernziele

- Ich weiss, was man unter einer linearen Abbildung versteht und kann diese bilden.
- Ich weiss, was man unter einer Matrix versteht.
- Ich kann feststellen, ob die gegebenen Matrizen gleich sind.
- Ich kann beurteilen zu welchem Sonderfall die Matrix gehört / welchen Typ die Matrix hat.
- Ich bin mit Matrizenoperationen vertraut und kann sie durchführen.

Grundlegende Definitionen

Bemerkung

Wir können einem *n*-dimensionalen Vektor einen *m*-dimensionalen Vektor zuordnen.

Interessant sind in diesem Zusammenhang spezielle Funktionen, so genannte lineare Abbildungen, die zusätzlich bestimmte (lineare) Eigenschaften erfüllen und üblicherweise mit φ bezeichnet werden.

Grundlegende Definitionen

Definition

Eine Abbildung $\varphi : \mathbb{R}^n \to \mathbb{R}^m$ heißt lineare Abbildung, wenn für alle \vec{x} und $\vec{y} \in \mathbb{R}^n$ und $c \in \mathbb{R}$ gilt:

$$\varphi(\vec{x}+\vec{y})=\varphi(\vec{x})+\varphi(\vec{y}),$$

$$\varphi(c\cdot\vec{x})=c\cdot\varphi(\vec{x}).$$

Praktisches Beispiel

Bilden Sie eine lineare Abbildung, die jedem Vektor

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
 einen Vektor $\vec{z} = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$ zuordnet.

Grundlegende Definitionen

Praktisches Beispiel. Lösung

Setzt man
$$\vec{x}=\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}$$
 und $\vec{z}=\begin{pmatrix} z_1\\z_2 \end{pmatrix}$, dann ist durch

$$z_1 = 3x_1 + x_2 + 5x_3$$

 $z_2 = -2x_1 + 8x_3$

offensichtlich eine lineare Abbildung $\varphi: \mathbb{R}^3 \to \mathbb{R}^2$ gegeben. Jedem Vektor $\vec{x} \in \mathbb{R}^3$ wird ein Vektor $\vec{z} \in \mathbb{R}^2$ zugeordnet.

Grundlegende Definitionen

HOCHSCHULE

Praktisches Beispiel. Bemerkung

Im Prinzip ist die Abbildung durch die Gleichungskoeffizienten definiert. Daher kann man diese auch beschreiben, indem man die Koeffizienten zu einem Schema zusammenfasst:

$$\begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} 3 & 1 & 5 \\ -2 & 0 & 8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Grundlegende Definitionen

Bemerkung. Fortsetzung

$$\begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} 3 & 1 & 5 \\ -2 & 0 & 8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Das Koeffizientenschema nennt man Matrix:

$$\left(\begin{array}{rrr}
3 & 1 & 5 \\
-2 & 0 & 8
\end{array}\right)$$

Allgemein ist eine lineare Abbildung $\phi: \mathbb{R}^n \to \mathbb{R}^m$ gegeben durch

$$z_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n$$

$$z_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n$$

$$\dots \dots \dots \dots$$

$$z_m = a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n.$$

Lineare Abbildung

Jedem Vektor $\vec{x} \in \mathbb{R}^n$ wird ein Vektor $\vec{z} \in \mathbb{R}^m$ zugeordnet.

In Matrix-Schreibweise lauten die Gleichungen dann:

$$\begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_m \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Definition

Ein rechteckiges Zahlenschema aus *m* Zeilen und *n* Spalten nennt man eine Matrix vom Typ (*m*, *n*):

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Definition. Fortsetzung

Die Zahlen a_{ik} heißen Elemente der Matrix.

Das Element a_{ik} steht in der i-ten Zeile und k-ten Spalte.

Daher heißt i Zeilenindex und k Spaltenindex.

Bemerkung

Die Gleichungen

können jetzt abkürzend geschrieben werden.

Bemerkung. Fortsetzung

Wir erhalten

$$\vec{z} = A\vec{x}$$
.

Die *i*-te Komponente z_i des Vektors \vec{z} ergibt sich immer als Skalarprodukt aus der *i*-ten Matrixzeile und dem Vektor \vec{x} :

$$z_i = (a_{i1}, a_{i2}, \dots, a_{in}) \cdot \vec{x}.$$

Praktisches Beispiel

a) Schreiben Sie die Gleichungen von $\vec{z} = A\vec{x}$ mit

$$A = \left(\begin{array}{rrr} 2 & 0 & 4 & 7 \\ -5 & 1 & 3 & 0 \end{array}\right)$$

aus.

Praktisches Beispiel. Lösung

$$\vec{z} = A\vec{x}$$

$$A = \begin{pmatrix} 2 & 0 & 4 & 7 \\ -5 & 1 & 3 & 0 \end{pmatrix}$$

Der (2,4)-Matrix A entnimmt man, dass

$$a_{11} = 2$$
, $a_{12} = 0$, $a_{13} = 4$, $a_{14} = 7$ (1. Zeile) und

$$a_{21} = -5$$
, $a_{22} = 1$, $a_{23} = 3$, $a_{24} = 0$ (2. Zeile) ist.

Somit lauten die Gleichungen:

$$z_1 = 2x_1 + 0x_2 + 4x_3 + 7x_4$$
$$z_2 = -5x_1 + 1x_2 + 3x_3 + 0x_4$$

Praktisches Beispiel

b) Welches Bild \vec{z} ergibt sich für $\vec{x}^T = (1, 2, 3, 4)$?

Lösung:

Konkret ergibt sich

$$z_1 = 2 \cdot 1 + 0 \cdot 2 + 4 \cdot 3 + 7 \cdot 4 = 42$$

 $z_2 = -5 \cdot 1 + 1 \cdot 2 + 3 \cdot 3 + 0 \cdot 4 = 6.$

Matrizen. Weitere Begriffe

Bemerkung

Matrizen notiert man üblicherweise mit großen Buchstaben: A, B, C, \ldots Möchte man auch den Typ aufführen, so schreibt man kurz $A_{(m,n)}$ für eine (m,n)-Matrix. Gebräuchlich ist auch die Schreibweise

$$(a_{ik}), (b_{ik}), (c_{ik}), \ldots,$$

wenn man notieren möchte, wie das allgemeine Element der jeweiligen Matrix in Position (i, k) definiert ist.

HOCHSCHULE

Matrizen. Weitere Begriffe

Sonderfälle

• Eine Matrix A mit gleich vielen Zeilen und Spalten, d.h. eine (m,m)-Matrix, nennt man quadratisch. Ihre Elemente $a_{11}, a_{22}, \ldots, a_{mm}$ bilden die so genannte Hauptdiagonale. Ihren Typ, üblicherweise Ordnung genannt, notiert man abkürzend zu A_m .

$$A_3 = \begin{pmatrix} 7 & 0 & -1 \\ 3 & 2 & 0 \\ 4 & 1 & 5 \end{pmatrix}$$
. Die Hauptdiagonale ist $(a_{11}, a_{22}, a_{33}) = (7, 2, 5)$.

Matrizen. Weitere Begriffe

Sonderfälle

• Eine quadratische (m, m)-Matrix D_m , bei der alle Elemente außerhalb der Hauptdiagonalen verschwinden $(d_{ik} = 0 \text{ für } i \neq k)$, heißt Diagonalmatrix. Abkürzend schreibt man auch $D_m = \text{diag}(d_{11}, d_{22}, \dots, d_{mm})$.

Beispiel
$$D_3 = \begin{pmatrix} 7 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$
. Hier ist $D_3 = (d_{11}, d_{22}, d_{33}) = (7, 2, 5)$.

Die folgenden Elemente verschwinden: $d_{12} = d_{13} = d_{21} = d_{23} = d_{31} = d_{32}$

Die Zeilen- und Spaltenindizes verschwundener Elemente sind unterschiedlich.

ISD

Mathematik II

Matrizen. Weitere Begriffe

Sonderfälle

 Eine quadratische Matrix, die nur auf und oberhalb bzw. unterhalb der Hauptdiagonalen von Null verschiedene Elemente haben darf, heißt obere Dreicksmatrix bzw. untere Dreiecksmatrix.

Beispiele

Die von Null verschiedenen Elemente befinden sich auf und

$$B = \begin{pmatrix} 7 & 1 & 4 \\ 0 & 2 & 3 \\ 0 & 0 & 5 \end{pmatrix}.$$

(ii) unterhalb
$$C = \begin{pmatrix} 7 & 0 & 0 \\ -1 & 2 & 0 \\ 6 & 4 & 5 \end{pmatrix}.$$

der Hauptdiagonale.

Matrizen. Weitere Begriffe

Sonderfälle

• Eine quadratische (m, m)-Matrix, die auf der Hauptdiagonalen nur "1", sonst "0" stehen hat, nennt man *Einheitsmatrix* der Ordnung m. Üblicherweise bezeichnet man sie mit I_m oder I (I für Identität).

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, bzw. $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Matrizen. Weitere Begriffe

Sonderfälle

• Eine (m,n)-Matrix, deren Elemente alle 0 sind, heißt *Nullmatrix*, bezeichnet mit 0 bzw. $0_{(m,n)}$.

$$O_{(2,3)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Matrizen. Weitere Begriffe

Sonderfälle

 Ein Spezialfall ist die (m, 1)-Matrix, sie besteht nur aus einer Spalte und ist unser üblicher Spaltenvektor. Eine (1, n)-Matrix besteht dagegen nur aus einer Zeile und wird Zeilenvektor genannt.

(i) Eine
$$(m,1) = (3,1)$$
 Matrix ist ein Spaltenvektor $S_{(3,1)} = \begin{pmatrix} 9 \\ 4 \\ 5 \end{pmatrix}$

(ii) Eine (1,n) = (1,3) Matrix ist ein Zeilenvektor
$$Z_{(1,3)} = (2 \ 1 \ 3)$$
.

Matrizen. Weitere Begriffe

Praktisches Beispiel

Nennen Sie den Sonderfall und die Ordnung / den Typ der Matrix:

$$D_4 = \begin{pmatrix} 7 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 \end{pmatrix}, \quad I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$O_{(3,2)} = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right)$$

Mathematik II ISD

Matrizen. Weitere Begriffe

Praktisches Beispiel. Lösung

 $D_4 = diag(7, 2, 0, 5)$ ist eine Diagonalmatrix der Ordnung 4.

 I_3 ist die Einheitsmatrix der Ordnung 3.

 $O_{(3,2)}$ ist die (3,2)-Nullmatrix.

HOCHSCHULE HAMM-LIPPSTADT

Operationen und Rechenregeln für Matrizen

Zunächst halten wir fest, dass zwei Matrizen A, B genau dann *gleich* sind (im Zeichen A = B), wenn sie vom gleichen Typ sind *und* elementweise übereinstimmen ($a_{ik} = b_{ik}$ für alle i, k).

Im Folgenden werden wir nun die wichtigsten Rechenregeln für Matrizen aufführen.

Skalarmultiplikation

Eine Matrix A wird mit einem Skalar λ multipliziert, indem man *alle* Elemente von A mit λ multipliziert:

$$\lambda A = \lambda \cdot (a_{ik}) = (\lambda \cdot a_{ik}).$$

Praktisches Beispiel.

Multiplizieren Sie die gegebene Matrix mit dem Skalar 3.

$$A = \left(\begin{array}{rrr} -1 & 2 & 3 \\ 4 & 5 & 0 \end{array}\right)$$

Skalarmultiplikation

Praktisches Beispiel. Lösung

Multiplizieren Sie die gegebene Matrix mit dem Skalar 3.

$$A = \begin{pmatrix} -1 & 2 & 3 \\ 4 & 5 & 0 \end{pmatrix} \Longrightarrow 3A = \begin{pmatrix} -3 & 6 & 9 \\ 12 & 15 & 0 \end{pmatrix}$$

Matrixaddition/-subtraktion

Zwei Matrizen $A = (a_{ik})$ und $B = (b_{ik})$ des *glei-chen Typs* werden addiert bzw. subtrahiert, indem man ihre entsprechenden Elemente addiert bzw. subtrahiert:

$$A \pm B = (a_{ik}) \pm (b_{ik}) = (a_{ik} \pm b_{ik}).$$

HOCHSCHULE

Matrixaddition/-subtraktion

Praktisches Beispiel

Berechnen Sie:

$$\left(\begin{array}{cc}1&2\\3&4\end{array}\right)+\left(\begin{array}{cc}-1&5\\6&-7\end{array}\right)$$

HOCHSCHULE

Matrixaddition/-subtraktion

Praktisches Beispiel. Lösung

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} -1 & 5 \\ 6 & -7 \end{pmatrix} = \begin{pmatrix} 1-1 & 2+5 \\ 3+6 & 4-7 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 7 \\ 9 & -3 \end{pmatrix}$$

Vertauscht man in einer Matrix A Zeilen mit Spalten, so entsteht die Transponierte von A: A^T . Für die Elemente von $A = (a_{ik})$ und $A^T = (a_{ik}^T)$ gilt

$$a_{ik}^T = a_{ki}$$
 für alle i und k .

HOCHSCHULE

Transponierte einer Matrix

Praktisches Beispiel

Transponieren Sie die gegebene Matrix :

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$$

HOCHSCHULE

Transponierte einer Matrix

Praktisches Beispiel. Lösung

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \implies A^T = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$$

Transponierte einer Matrix

Bemerkung

Für transponierte Matrizen folgen unmittelbar aus der Definition die Rechengesetze:

$$(A + B)^T = A^T + B^T$$
 und $(A^T)^T = A$.

HOCHSCHULE HAMM-LIPPSTADT

Transponierte einer Matrix

Bemerkung

In vielen Anwendungen treten übrigens so genannte symmetrische Matrizen auf, bei denen die Elemente spiegelsymmetrisch zur Hauptdiagonalen angeordnet sind, d.h. es gilt

$$a_{ik} = a_{ki}$$
 für alle i und k bzw. $A^T = A$.

Transponierte einer Matrix Praktisches Beispiel

Vereinfachen Sie den Ausdruck

$$(A^T + B)^T - A.$$

HOCHSCHULE

Transponierte einer Matrix

Praktisches Beispiel. Lösung

$$(A^T + B)^T - A = (A^T)^T + B^T - A$$

= $A + B^T - A = B^T$.

Die Matrizenmultiplikation

Die Multiplikation zweier Matrizen A und B wird so definiert, dass sie der Hintereinanderschaltung der zugehörigen Abbildungen entspricht. Wir betrachten hierzu zunächst ein Beispiel:

HOCHSCHULE

Die Matrizenmultiplikation Beispiel

Gegeben seien die zwei Abbildungen

$$\vec{y} = B\vec{x}$$

d.h
$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

und

Die Matrizenmultiplikation Beispiel

und

$$\vec{z} = A\vec{y}$$

$$d.h \quad \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}.$$

Die Matrizenmultiplikation Beispiel

Gesucht ist nun die zusammengesetzte Abbildung $\vec{z} = C\vec{x}$, die \vec{z} direkt in Abhängigkeit von \vec{x} darstellt.

HOCHSCHULE

Die Matrizenmultiplikation

Beispiel. Lösung

$$z_{1} = a_{11}y_{1} + a_{12}y_{2}$$

$$= a_{11}(b_{11}x_{1} + b_{12}x_{2} + b_{13}x_{3}) + a_{12}(b_{21}x_{1} + b_{22}x_{2} + b_{23}x_{3})$$

$$= \underbrace{(a_{11}b_{11} + a_{12}b_{21})}_{=: c_{11}} x_{1} + \underbrace{(a_{11}b_{12} + a_{12}b_{22})}_{=: c_{12}} x_{2}$$

$$+ \underbrace{(a_{11}b_{13} + a_{12}b_{23})}_{=: c_{13}} x_{3}$$

$$=: c_{13}$$

HOCHSCHULE

Die Matrizenmultiplikation

Beispiel. Lösung. Fortsetzung

$$z_{2} = a_{21}y_{1} + a_{22}y_{2}$$

$$= a_{21}(b_{11}x_{1} + b_{12}x_{2} + b_{13}x_{3}) + a_{22}(b_{21}x_{1} + b_{22}x_{2} + b_{23}x_{3})$$

$$= \underbrace{(a_{21}b_{11} + a_{22}b_{21})}_{=: c_{21}} x_{1} + \underbrace{(a_{21}b_{12} + a_{22}b_{22})}_{=: c_{22}} x_{2}$$

$$+ \underbrace{(a_{21}b_{13} + a_{22}b_{23})}_{=: c_{23}} x_{3}$$

$$=: c_{23}$$

Die Matrizenmultiplikation Beispiel. Bemerkung

Man erkennt, dass sich die c_{ik} jeweils als *Skalar-produkt* der i-ten Zeile von A und k-ten Spalte von B ergeben!

HOCHSCHULE HAMM-UPPSTADT

Die Matrizenmultiplikation

Beispiel. Bemerkung. Fortsetzung

Es gilt einerseits

$$\vec{z} = C\vec{x}$$
 mit $C = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \end{pmatrix}$,

andererseits aber

$$\vec{z} = A\vec{y} = AB\vec{x}.$$

Man definiert daher C als Produkt:

$$C = A \cdot B$$
.

Die Matrizenmultiplikation

Definition

Für zwei Matrizen A und B ist das Produkt A - B genau dann definiert, wenn die Spaltenzahl von A gleich der Zeilenzahl von B ist. Es gilt dann

$$A_{(m,n)} \cdot B_{(n,s)} = C_{(m,s)}$$

HOCHSCHULE

Die Matrizenmultiplikation

Definition. Fortsetzung

Die Elemente
$$c_{ik}$$
 $(i = 1, ..., m; k = 1, ..., s)$

von C sind definiert als Skalarprodukte der *i*-ten Zeile von A und der *k*-ten Spalte von B:

$$c_{ik} = a_{i1}b_{1k} + a_{i2}b_{2k} + \dots + a_{in}b_{nk}$$

Die Matrizenmultiplikation Typcheck

Ob ein Produkt $A \cdot B$ definiert ist, lässt sich leicht überprüfen, wenn man den Typ notiert :

$$A_{(m,n)} \cdot B_{(r,s)} = C_{(m,s)}.$$

Die inneren Elemente n,r der beiden "Typ-Paare" müssen gleich sein: n=r. In diesem Fall kann man den Typ der Produktmatrix ablesen: Er entspricht den beiden äußeren Elementen, d.h. ergibt sich zu (m,s).

Die Matrizenmultiplikation Bemerkung

Die Berechnung des Elementes c_{ik} der Produktmatrix lässt sich einfach durchführen, wenn man die Matrizen nebeneinander schreibt und das Skalarprodukt aus der i-ten Zeile von A mit der k-ten Spalte von B bildet.

Die Matrizenmultiplikation Bemerkung. Veranschaulichung

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & \dots & b_{1k} \\ \vdots & & \vdots \\ b_{n1} & \dots & b_{nk} \end{pmatrix} = \begin{pmatrix} c_{11} & \dots & c_{1k} & \dots & c_{1s} \\ \vdots & & \vdots & & \vdots \\ c_{i1} & \dots & c_{ik} & \dots & c_{is} \\ \vdots & & \vdots & & \vdots \\ c_{m1} & \dots & c_{mk} & \dots & c_{ms} \end{pmatrix}$$

Die Matrizenmultiplikation Praktisches Beispiel

Berechnen Sie das Produkt $C = A \cdot B$ der Matrizen

$$A_{(2,3)} = \begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 0 \end{pmatrix} \text{ und } B_{(3,2)} = \begin{pmatrix} 5 & 6 \\ -1 & 7 \\ 0 & -8 \end{pmatrix}.$$

Ist auch das Produkt $B \cdot A$ definiert? Von welchem Typ ist es?

Mathematik II ISD

Die Matrizenmultiplikation

Praktisches Beispiel. Lösung. Falk-Schema

$$C = A_{(2,3)} \cdot B_{(3,2)}$$

$$0 1 2 0 \cdot 5 - 1 \cdot 1 + 2 \cdot 0 = -1 0 \cdot 6$$

 $3 4 0 3 \cdot 5 - 4 \cdot 1 + 0 \cdot 0 = 11 3 \cdot 6$

3 4 0
$$3 \cdot 5 - 4 \cdot 1 + 0 \cdot 0 = 11$$

$$3 \cdot 6 + 4 \cdot 7 - 0 \cdot 8 = 46$$

Die Matrizenmultiplikation Praktisches Beispiel. Lösung. Fortsetzung

Das Produkt $B_{(3,2)} \cdot A_{(2,3)}$ ist wegen 2 = 2 (innere Elemente) ebenfalls definiert und vom Typ (3,3) (äußere Elemente).

Die Matrizenmultiplikation

Rechenregeln

Auch bei der Multiplikation von Matrizen gelten viele, von den reellen Zahlen her bekannte, Rechengesetze:

- Assoziativgesetz: (AB)C = A(BC),
- Distributivgesetze: A(B+C) = AB + AC, (A+B)C = AC + BC,
- Speziell gilt: AI = IA = A (I: Einheitsmatrix),
- $(\lambda A)B = A(\lambda B) = \lambda(AB)$,
- $\bullet (AB)^T = B^T A^T.$

Die Matrizenmultiplikation

Praktisches Beispiel

a) Gegeben seien die Matrizen

$$A_{(2,3)} = \begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 0 \end{pmatrix}, \quad B_{(3,2)} = \begin{pmatrix} 5 & 6 \\ -1 & 7 \\ 0 & -8 \end{pmatrix}$$

und C = AB.

Berechnen Sie möglichst einfach das Produkt ABC.

HOCHSCHULE

Die Matrizenmultiplikation

Praktisches Beispiel. Lösung

a) Es ist nach Assoziativgesetz ABC = (AB)C = CC

$$= \begin{pmatrix} -1 \cdot (-1) - 9 \cdot 11 & -1 \cdot (-9) - 9 \cdot 46 \\ 11 \cdot (-1) + 46 \cdot 11 & 11 \cdot (-9) + 46 \cdot 46 \end{pmatrix}$$
$$= \begin{pmatrix} -98 & -405 \\ 495 & 2017 \end{pmatrix}.$$

Die Matrizenmultiplikation

Praktisches Beispiel

b) Vereinfachen Sie den Ausdruck:

$$(C+I)^T D^T - (DC)^T.$$

HOCHSCHULE

Die Matrizenmultiplikation

Praktisches Beispiel. Lösung

$$(C+I)^T D^T - (DC)^T = C^T D^T + I^T D^T - C^T D^T$$

= $ID^T = D^T$.

Zusammenfassung

- Lineare Abbildung.
- Matrix. Matrizengleicheit.
- Sonderfall und Typ einer Matrix.
- Matrizenoperationen und Typcheck.