CS 215 Data Analysis and Interpretation

Multivariate Statistics: Multivariate Gaussian

Suyash P. Awate

Multivariate Gaussian – Definition

- Consider a vector random variable X := [X₁; X₂; ...; X_D]
 - Column vector of length D

Definition: The RV X has a multivariate (jointly) Gaussian PDF if \exists a finite set of i.i.d. univariate standard-normal RVs W_1, \dots, W_N (with $D \leq N$) such that each X_d can be expressed as $X_d = \mu_d + \sum_n A_{dn} W_n$ (i.e., $X = AW + \mu$).

- Consider a vector random variable X := [X₁; X₂; ...; X_D]
 - Column vector of length D

Definition: The RV X has a multivariate (jointly) Gaussian PDF if \exists a finite set of i.i.d. univariate standard-normal RVs W_1, \dots, W_N (with $D \le N$) such that each X_d can be expressed as $X_d = \mu_d + \sum_n A_{dn} W_n$ (i.e., $X = AW + \mu$).

- Example 1 (Zero-Mean + Isotropic / Spherical Gaussian): The case of independent standard-normal RVs W_1, \dots, W_D with $A := I_{D \times D}$ and $\mu := 0$, i.e. X = W
- Then, the Gaussian PDF is $p(w) = \prod_d p(w_d) = \frac{1}{(2\pi)^{D/2}} \exp(-0.5w^{\top}w)$

• What are the <u>level sets</u> of the PDF?

In mathematics, a **level set** of a real-valued function *f* of *n* real

variables is a set of the form $L_c(f) = \{(x_1, \cdots, x_n) \mid f(x_1, \cdots, x_n) = c \} \; ,$ that is, a set where the function takes on a given constant value c.

- Isotropic / spherical multivariate Gaussian
 - Level sets

$$p(w) = \prod_d p(w_d) = \frac{1}{(2\pi)^{D/2}} \exp(-0.5w^{\top}w)$$

Isotropic / spherical multivariate Gaussian

Multivariate Gaussian – Diagonal A

- $X = A W + \mu$
- What is PDF q(X) for **non-singular** square **diagonal** matrix A, some μ ?
 - $X_1 = A_{11} W_1 + \mu_1$: Gaussian with mean μ_1 , standard deviation $\sigma_1 = |A_{11}|$
 - $X_2 = A_{22} W_2 + \mu_2$: Gaussian with mean μ_2 , standard deviation $\sigma_2 = |A_{22}|$
 - ...
 - $X_D = A_{DD} W_D + \mu_D$: Gaussian with mean μ_D , standard deviation $\sigma_D = |A_{DD}|$
 - $P(X) = P(X_1, X_2, ..., X_D) = G(X_1; \mu_1, \sigma_1^2) G(X_2; \mu_2, \sigma_2^2) ... G(X_D; \mu_D, \sigma_D^2)$
 - Any level set of PDF q(X) is a hyper-ellipsoid with:
 - Center at μ
 - Axes aligned with cardinal axes

Multivariate Gaussian – Diagonal A

- $X = A W + \mu$
- What is PDF q(X) for **non-singular** square **diagonal** matrix A, some μ ?
 - $P(X) = P(X_1, X_2, ..., X_D) = G(X_1; \mu_1, \sigma_1^2) G(X_2; \mu_2, \sigma_2^2) ... G(X_D; \mu_D, \sigma_D^2)$
 - Example 1-3 (left to right): both means (μ_1, μ_2) are zero, both variances are (σ_1^2, σ_2^2) : (4,4), (9,1),(1,9)

- $X = A W + \mu$
- What is PDF q(X) for **non-singular square** matrix A and $\mu = 0$?
- Transformation of random variables (multivariate case)
 - Transformation is X := g(W) := A W
 - Inverse transformation is $W = g^{-1}(X) = A^{-1}X$
 - Univariate case
 - We wanted magnitude of derivative of g⁻¹(.)
 - Measured local scaling in lengths caused by g⁻¹(.)
 - Multivariate case
 - Measure local scaling in volumes caused by g⁻¹(.)
 - We want the magnitude of the volume-scaling given by Jacobian of g⁻¹(.)
 - Magnitude of determinant of Jacobian of g⁻¹(.)

(0,1)(1,1)Linear transformation

- Linear transformation W := A⁻¹ X
 - Transformation A⁻¹ maps an infinitesimal hyper-cube (dX) δ x δ x ... x δ (D times) \rightarrow an infinitesimal hyper-parallelepiped (dW)
 - If axes of hyper-cube were unit vectors along cardinal axes, then axes of hyper-parallelepiped are columns of A⁻¹
 - If volume of the hyper-cube (dX) is δ^D , then volume of hyper-parallelepiped (dW) is δ^D det(A⁻¹) = δ^D / det(A)

- Volume of a parallelepiped (in 3D)
 - Scalar triple product

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} = \begin{vmatrix} a_x & b_x & c_x \\ a_y & b_y & c_y \\ a_z & b_z & c_z \end{vmatrix}$$
$$= \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$$
$$= -\mathbf{a} \cdot (\mathbf{c} \times \mathbf{b}) = -\mathbf{c} \cdot (\mathbf{b} \times \mathbf{a}) = -\mathbf{b} \cdot (\mathbf{a} \times \mathbf{c})$$

The notation [\mathbf{a} , \mathbf{b} , \mathbf{c}] is also used for $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$.

Volume = area of base · height
=
$$\|\mathbf{a} \times \mathbf{b}\| \|\mathbf{c}\| |\cos \phi| = |(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}|$$

- Why is volume of hyper-parallelepiped given by determinant of matrix with columns as sides of hyper-parallelepiped?
 - The following is an argument (not a proof; a separate inductive proof exists):
 - 2 important properties from linear algebra: Adding multiples of one column/side vector to another:
 - 1. doesn't change determinant, because determinant function is multi-linear
 - 2. doesn't change volume, because it causes a skew translation of hyper-parallelepiped
 - Using Gram-Schmidt orthogonalization, transform matrix A⁻¹ to a matrix, say, A⁻¹_{ortho} with orthogonal columns (NOT orthonormal columns; that would have determinant 1)
 - This doesn't change determinant or volume

- Gram–Schmidt orthogonalization
 - $\{v_1, v_2\}$ to $\{u_1, u_2\}$

- Why is volume of hyper-parallelepiped given by determinant of matrix with columns as sides of hyper-parallelepiped?
 - The following is an argument (not a proof; a separate inductive proof exists):
 - 2 important properties from linear algebra: Adding multiples of one column/side to another:
 - 1) doesn't change determinant, because determinant function is multi-linear
 - 2) doesn't change volume, because it causes a skew translation of hyper-parallelepiped
 - Using Gram-Schmidt orthogonalization, transform matrix A⁻¹ to a matrix, say, A⁻¹_{ortho} with orthogonal columns (NOT orthonormal columns; that would have determinant 1)
 - Rotate A⁻¹_{ortho} to make it to diagonal form (align columns to cardinal axes)
 - This doesn't change determinant or volume

 Rotation / alignment to cardinal axes

- Why is volume of hyper-parallelepiped given by determinant of matrix with columns as sides of hyper-parallelepiped?
 - An intuitive argument (not a proof; a separate inductive proof exists):
 - Adding multiples of one column/side to another:
 - 1) doesn't change determinant, because determinant function is multi-linear
 - 2) doesn't change volume, because it causes a skew translation of hyper-parallelepiped
 - Using Gram-Schmidt orthogonalization, transform matrix A⁻¹ to a matrix, say, A⁻¹_{ortho} with orthogonal columns (NOT orthonormal columns; that would have determinant 1)
 - Rotate A⁻¹_{ortho} to make it to diagonal form (align columns to cardinal axes)
 - For this diagonal matrix (aligned hyper-rectangle),
 determinant magnitude (= product of diagonal-entries' magnitudes) =
 volume of a hyper-rectangle (= product of side lengths)
 - Now trace back all operations

- $X = A W + \mu$
- What is the PDF q(X) for non-singular square matrix A and $\mu = 0$?
- Transformation of random variables (multivariate case)
 - Transformation is X := g(W) := A W
 - Inverse transformation is $W = g^{-1}(X) = A^{-1}X$
 - Multivariate case
 - Measure local scaling in volumes caused by g⁻¹(.)
 - We want the magnitude determinant of Jacobian of g⁻¹(.)

$$q(X) = p(A^{-1}X) \frac{1}{|\det(A)|} = \frac{1}{(2\pi)^{D/2} |\det(A)|} \exp(-0.5X^{\top} (A^{-1})^{\top} A^{-1} X)$$

Let
$$C := AA^{\top}$$
. Then, $C^{-1} = (A^{-1})^{\top}A^{-1}$ and $\det(C) = \det(A)\det(A^{\top}) = (\det(A))^2$

$$q(X) = \frac{1}{(2\pi)^{D/2}|C|^{0.5}} \exp(-0.5X^{\top}C^{-1}X)$$

Multivariate Gaussian – Non-Singular A, Non-Zero μ

• If X = A W is a multivariate Gaussian, then $Y = X + \mu$ is a multivariate Gaussian with

$$p(y) = \frac{1}{(2\pi)^{D/2}|C|^{0.5}} \exp(-0.5(y-\mu)^{\top}C^{-1}(y-\mu))$$

- Proof:
 - Follows from the transformation $X := Y \mu := g^{-1}(Y)$

Multivariate Gaussian – Composite Transformations

- If Y is multivariate Gaussian,
 then Z := BY + c is multivariate Gaussian,
 where matrix B is square invertible
- Proof:
 - Because Y is multivariate Gaussian, we have $Y = AW + \mu$, where A is invertible
 - Thus,
 Z
 = B (AW + μ) + c
 = (BA)W + (Bμ + c), where matrix BA is invertible

Multivariate Statistics – Mean

• For an general random (column) vector X, the mean vector is $E_{P(X)}[X]$

= à (column) vector with the i-th component as $E_{P(X)}[X_i] = E_{P(Xi)}[X_i]$

Multivariate Statistics – Covariance

• Covariance matrix for a general random (column) vector Y: $C := E_{P(Y)} [(Y - E[Y]) (Y - E[Y])^T]$

```
• So,

C_{ij}

= E_{P(Y)} [ (Y_i - E[Y_i]) (Y_j - E[Y_j]) ]

= E_{P(Y_i,Y_j)} [ (Y_i - E[Y_i]) (Y_j - E[Y_j]) ]

= Cov (Y_i, Y_i)
```

Multivariate Statistics – Covariance

More properties of covariance matrix C (for a general random vector X)

(1)
$$C = E[XX^{\top}] - E[X](E[X])^{\top}$$

Proof: Expand the terms in the definition

- (2) C is symmetric
- Proof: $C_{ij} = Cov(X_i, X_j) = Cov(X_j, X_i) = C_{ji}$

(3) C is positive semi-definite (PSD)

Proof: For any $D \times 1$ non-zero vector a, we get $a^{\top}Ca = E[a^{\top}(X - E[X])(X - E[X])^{\top}a] = E[A(X)]^{\top}a$

 $E[(f(X))^{\top}f(X)] \geq 0$ that is the variance of a scalar RV $f(X) = (X - E[X])^{\top}a$

Multivariate Gaussian – Mean

- The **mean** vector of $X := AW + \mu$ is μ
- Proof:
 - When $X = AW + \mu$, $E_{P(X)}[X] = E_{P(W)}[AW + \mu] = \mu + E_{P(W)}[AW] = \mu + A E_{P(W)}[W] = \mu$
 - Notes:
 - Take the expectation of first component of AW, i.e., $E_{P(W)}[A_{11}W_1 + A_{12}W_2 + ... A_{1D}W_D]$ = $A_{11}E_{P(W)}[W_1] + A_{12}E_{P(W)}[W_2] + ... + A_{1D}E_{P(W)}[W_D]$
 - So, for the whole vector: $E_{P(W)}[AW] = A E_{P(W)}[W]$

Multivariate Gaussian – Covariance

• The **covariance** matrix of $X := AW + \mu$ is AA^T

$$Cov(W) = E[WW^{\top}] = I$$
 because:

- (i) $Cov(W_i, W_i) = 1$ and
- (ii) $Cov(W_i, W_{i\neq i}) = 0$ because of independence of W_i and W_i

$$\begin{aligned} &\mathsf{Cov}(X) = E[(X - E[X])(X - E[X])^\top] = E[(AW)(AW)^\top] = E[AWW^\top A^\top] = AE[WW^\top]A^\top = AA^\top \end{aligned}$$

Thus, the RV $X = AW + \mu$ has covariance $C = AA^{\top}$, where $C_{ij} = \text{Cov}(X_i, X_j)$.