Lunes:

la tabla de vida como población estacionaria

Tim Riffe

13 de junio de 2015

1. Columnas de la tabla de vida estándar.

La tabla de vida tiene ya bastantes columnas. Algunas son instrumentales en el sentido de que nos sirven principalmente para calcular alguna otra columna $[a_x, T_x]$, mientras otras son de interés directo $[l_x, q_x, m_x, e_x]$. El d_x , la distribución de defunciones por edad, normalmente se considera instrumental, pero hoy veremos que tiene interpretaciones varias y que por lo tanto tiene un interés propio. Doy unas interpretaciones básicas de las columnas distintas en el siguiente listado:

- M_x La tasa especifica de mortalidad en el intervalo de edad [x, x + 1). Está definida como el número de defunciones dividido por la exposición en terminos de años personas vividos dentro del intervalo.
- m_x Suele ser igual que M_x , pero se supone que sea la tasa valida para calcular la tabla de vida. Puede ser una version suavizada o ajustada de M_x . Normalmente imaginamos que sea la version discreta de $\mu(x)$, la fuerza pura de la mortalidad. Para mi, $\mu(x)$ es igual al h(x), el hazard de la mortalidad, pero no se si alguien se pondria filosófico sobre el tema.
- a_x la duración media de vida dentro del intervalo [x, x + 1) de los que mueren dentro del mismo intervalo.
- q_x la probabilidad de morir en el intervalo [x, x + a), supuesta la supervivencia hasta la edad x. Algunos demografos lo llaman la tasa especifica de la mortalidad, pero realmente m_x es la tassa especifica y q_x es la probabilidad especifica. Suele tener un valor cerca a lo de m_x , menos cuando m_x es grande. q_x tiene que estar entre 0 y 1, pero m_x entre 0 y ∞ 1.
- l_x La dicha curva de supervivencia. $\frac{l_x}{l_0}$ es la probabilidad de sobrevivir a la edad x desde 0. La area por debajo de esa curva es la esperanza de vida.
- d_x the diferencia entre l_x y l_{x+1} , o la probabilidad de morir en el intervalo de edad [x, x+1) desde 0, o la distribución de defunciones de la tabla de vida (es decir, estandarizada). Y más ...
- L_x la expoción especifica de la tabla de vida, es decir todos los años hipotéticos vividos dentro del intervalo de edad [x, x + 1). Hay muchas aproximaciones. Lo importante es saber que L_x es una área, mientras l_x es un valor exacto a un punto de tiempo.

Bueno, $m_x = \infty$ solo podria pasar si todos mueren a una edad exacta, justo al llegar a esa edad, como la edad 18 en Children of the Corn (1984) (La cosecha del terror: los niños del maíz) http://www.imdb.com/title/tt0087050/

- T_x todos los años de vida hipotética vividos hipoteticamente a partir de la edad exacta x, es decir la área por debajo de l_x entre x y ∞ , o ω si queremos ser finitos. Aunque tenga interpretaci'on, se suele usar como el paso penultimo de la tabla de vida para calcular la esperanza de vida restante...
- e_x la esperanza de vida restante suponiendo la supervivencia hasta la edad x. Una esperanza en ese sentido es una media y nada más. Es decir, es la media sencilla de todas las duraciones de vida hipotéticas (dentro de la tabla de vida) que pasen por la edad x. Esto es lo que todo el mundo quiere saber, y su interpretación es fácil, pero también fácil de sobreinterpretar y malutilizar.

Dependiendo de la disponibilidad de información sobre el cohorte de nacimiento para las defunciones, se puede también pasar de calcular m_x y a_x y empezar directamente con q(x), definido de otra forma que lo de antes. Esto sería el dicho método francés.

2. Unas columnas nuevas

Normalmente estamos satisfechos con citar la esperanza de vida y acabar así la tarea. Hay otras cosas que se puede preguntar, como la varianza alrededor de la esperanza de vida. Que quiere decir la varianza alrededor de la esperanza de vida? 2

- 1. Que es la precición de nuestra estimación de e_x , dado la aleatoriedad aparente en los datos debido al tamaño de la población, el nivel y forma aparente de la mortalidad, y nuestro instrumento de observación? Existen formulas para contestar esta pregunta, pero dependen de propiedades asimptoticas de los proceses generadores. Luego podemos hacer esimulaciones de esto si alguién pregunta
- 2. La precición de nuestra estimación de e_x dado nuestra tabla de vida (forma y nivel de la mortalidad), la población estacionaria implicada por l_x , y un valor dado de l_0 ³. Es diferente de lo anterior ya que su población de referência es hipotética.
- 3. La fiabilidad de e_x como una estiamción de los años realmente restantes para la gente que ha cumplido x años. Como e_x es la media de una distribución de algo...duraciones de vida restantes, pués podemos saber si es muy informativo o no.⁴

La tercera version de la varianza alrededor de la esperanza de vida restante es la que nos interesa hoy. Es lo que tu quieres saber como individuo. Yo tengo 34 años y la tabla de vida de EEUU me pone 45 años restantes... A parte de mis sesgos personales sobre mi mortalidad probable, y los sesgos implicados por la perspectiva transversal, quiero saber algo de la variabilidad de las duraciones de vida resumida con el número e_x . Algunos moriran antes y otros después de lo que pone e_x .

Ahora unas formulas continuas que usaré durante la clase:

Definición normal de e(x)

$$e(x) = \frac{1}{l(x)} \int_0^\infty l(x+y) \, \mathrm{d}y \qquad , \tag{1}$$

²Estoy seguro de que cada unos de estas definiciones este escondido dentro de Chiang (1984), pero aquel libro está mal organizado y utiliza una notación casi impenetrable.

 $^{^{3}}l_{0}$ es el radix, o la población de inicio de la tabla de vida.

⁴Estoy trabajando en desarollar medidas relacionadas con esta tercera, y puedes ver un esbozo de un paper (aun en obras) aqui: http://paa2015.princeton.edu/abstracts/151529.

⁵Es decir, si me haces una proyección buena y sale algo más razonable, como $e_{34} = 52$, todavia tendré la misma preocupación.

Donde x es la edad (años vividos) y y son los años restantes.

También podemos pensar de e(x) como la media ponderada de y para la gente que ha sobrevivido hasta x, donde el ponderador es la siguiente:

$$f(y|x) = \frac{1}{l(x)}\mu(x+y)l(x+y) \qquad . \tag{2}$$

f(y|x) es como d_x de la tabla de vida, pero cada edad tiene su propia curva, como si todos fueron la edad 0 en la tabla de vida. Entonces ponderamos y así:

$$e(x) = \int_{y=0}^{\infty} y f(y|x) \, \mathrm{d}y \qquad . \tag{3}$$

Esta forma es un poco más exótica, pero f(y|x) resulta ser útil para otras cosas también. Definimos los momentos centrales alrededor de la media condicional de f(y|x): $\eta_n(y|x)$, donde n es el número del momento.

$$\eta_n(y|x) = \int_{y=0}^{\infty} (y - e(x))^n f(y|x) \, dy$$
(4)

Entonces se ve que $\eta_1(y|x)$ es igual a 0, y la varianza de la distribución de duraciones de vida restantes es $\eta_2(y|x)$ (también llamado $\sigma^2(y|x)$). Se puede resumir la asimetría de f(y|x) (Skew(y|x)) con:

$$Skew(y|x) = \frac{\eta_3(y|x)}{\sigma(y|x)^3} \tag{5}$$

Si Skew(y|x) < 0 la distribución tira a edades jovenes, mientras Skew(y|x) > 0 pone más peso a las edades mayores. El curtósis (apuntamiento) de f(y|x), Kurt(y|x) se define como:

$$Kurt(y|x) = \frac{\eta_4(y|x)}{\sigma(y|x)^4} - 3 \tag{6}$$

Kurt(y|x) > 0 Nos dice si la distribución está relativamente puntuosa, mientras < 0 quiere decir decir que esta más gorda (plana) que lo normal. Normal en este sentido quiere decir una distribución normal, no mortalidad normal. La mortalidad normal seria difícil de definir...

Finalmente, podemos definir la coeficiente de variación de los años restantes, CV(y|x):

$$CV(y|x) = \frac{\sigma(y|x)}{e(x)}$$
 (7)

 $\sigma^2(y|x)$, y las equaciones (5), (6), y (7) son pensables como columnas nuevas de la tabla de vida, calculadas por su interpretación directa desde la perspectiva de un individuo cuyo trayectoria de vida este condicionada por la misma tabla de vida. La curva de edad de estas cuatro columnas es informativa para cualquier plan de vida.

3. Relaciones entre la tabla de vida y poblaciones estacionarias.

Ahora quiero explicar una equivalencia entre la curva de supervivencia, l_x , y la estructura estable de edades de la población estacionaria. Unas referéncias serían Brouard (1989) (francés), Vaupel (2009) y Riffe (2015). Brevemente, d_x es la distribución de defunciones dentro de la tabla de vida, pero también es la distribución de duraciones de vida de cada cohorte nacido dentro de la población ficticia que pase por la tabla de vida. Si l_0 es el tamaño de cada cohorte nacido dentro de la población, entonces la disminución de cada cohorte sigue la pauta de l_x , y son equivalentes.

En esta población también se puede decir que la estructura estacionaria por años restantes es identica a lo de los años vividos. N. Brouard ha sido el primer en describirlo, y luego J. Carey, seguido por J. Vaupel, quien lo llama erróneamente *Carey's equality*. Se puede buscar las demostraciones en las fuentes citadas, pero intentaré explicarlo bién en la clase. Lo importante es añadir interpretaciones a estas columnas básicas que ya tenemos.

Entonces añadimos una interpretación a la columna d_x que ahora puede resultar básica: también es la distribución de años restantes de cada cohorte al nacer. Con aquel perspectivo, se puede seguir cada cohorte en el tiempo y saber como cambia su distribución de años restantes con el paso de tiempo, y calcula como se mezclan diferentes cohortes de nacimiento en cada cohorte de defunciones. Será que la distribución de años vividos dentro de cada cohorte de defunciones es igual al d_x también, y eso solo es otra manera de decir lo que ha sido la definición original de d_x .

Referencias

Nicolas Brouard. Mouvements et modèles de population. Institut de formation et de recherche démographiques, 1989.

Chin Long Chiang. The life table and its applications. Malabar Fla Robert E. Krieger Publishing 1984., 1984. Chapter 10, Equation 6.10.

Timothy Riffe. The force of mortality by life lived is the force of increment by life left in stationary populations. *Demographic Research*, S8(29):827-834, 2015. doi: 10.4054/DemRes.2015.32.29. URL http://www.demographic-research.org/special/8/29/.

James W. Vaupel. Life lived and left: Carey's equality. *Demographic Research*, S8(3):7-10, 2009. doi: 10.4054/DemRes.2009.20.3. URL http://www.demographic-research.org/special/8/3/.