Taxi Fare Analysis

Statistical Analysis

@shaik Irfan

Data Overview

	passenger_count	trip_distance	payment_type	fare_amount	duration
0	1	3.70	Card	24.0	27.950000
1	1	2.77	Card	18.4	19.200000
2	1	3.30	Card	22.6	27.383333
3	1	0.30	Cash	5.1	2.550000
4	1	0.83	Card	7.2	5.250000

Problem Statements

- 1. Is the choice of payment method (cash, credit card) independent of trip distance category (short, medium, long)?
- 2. check whether fare amount differs significantly depending on how many passengers are in the taxi
- 3. Do short trips generate higher fares per km than long trips?

1. Payment Type vs Trip Distance

Null Hypothesis (H_0): Payment type is independent of trip distance.

Alternative Hypothesis (H_1): Payment type is dependent on trip distance (i.e., choice of payment may vary with trip distance).

With chi-square test statistic for independence 52479.3 and p<0.05(significance level), we reject H_o suggesting that Payment type and trip distance are NOT independent

Business Insights

- The choice of payment type depends on how long the trip is.
- Short trips → more cash payments (since fares are small, passengers often pay cash).
- Long trips → more card payments (since higher fares, passengers prefer digital/card).

2. Does passenger count affect fare amount?

Null Hypothesis (H_o): Average fare amount is the same for all passenger counts.

Alternative Hypothesis (H_1): Average fare amount is the same for all passenger counts.

With Kruskal–Wallis test statistic 105792.2 and p<0.05(significance level), we reject H_o suggesting that Passenger count has a significant effect on fare amount

Business Insights

- Passenger count influences fare amount significantly.
- Solo rides are the core business: The bulk of fares (most dense, consistent) come from 1-passenger trips.
- Multi-passenger trips bring higher revenue: Even though less frequent,
 fares for 3-5 passengers are typically higher

3. Do short trips generate higher fares per km than long trips?

Null Hypothesis (H_0): Short trips and long trips have the same average fare per km.

Alternative Hypothesis (H_1): Short trips and long trips do not have same average fare per km

With mann-whitney υ test statistic whose p<0.05(significance level), we reject H_o suggesting that Short trips and long trips do not have same average fare per km

Business Insights

- short trips indeed have higher fare per km.
- Base fare & fixed charges Every trip starts with a flat booking fee or base fare. For short distances, this fixed cost makes up a large portion of the total, pushing up the per-km rate.
- Minimum fare policy Many taxi/ride companies enforce a minimum fare (e.g., ₹100 minimum). Even if the trip is very short, the passenger pays this minimum, making per-km cost higher than for long trips.

Thank you