Albert Wiryawan

Avw2@illinois.edu

673431511

PHYS 466: Atomic scale simulation

Homework #2

teijrhgogrojeiojgr

Problem #1

(a)

(b)

Standard deviation

(c) timestep

(d)

If you pick a very large time step the program has an error in the potentially energy function that is caused by a division of zero

Problem #2

(a)

$$r(t+h) = r(t) + v(t) h + 0.5a(t) h^2$$

 $r(t-h) = r(t) + -v(t)ht + 0.5a(t) h^2$

When r(t+h) and r(t-h) are added together, the total comes out to: $2r(t) - r(t-h) + a(t)h^2$. This is equal to the equation below.

$$r(t+h) = 2r(t) - r(t-h) + a(t)h^2$$

This equivalence proves time reversal invariance.

(b)

Since the float precision is precise to the 7^{th} decimal point. The h^2 term in the verlet equation which is said to have a time step h = 10^4. The decimals beyond that are essentially truncated and will not affect the estimation.

(c)

The equation for (9) is given by $r(t+h)=2r(t)-r(t-h)+a(t)h^2$. This equation can be converted to the form of: $v\left(t-\frac{h}{2}\right)+\frac{a(t)h}{2}$. Taking this equation and applying the derivative law, the equation turns into $v(t)=\frac{r(t+h)-r(t-h)}{2h}$. Equation 10 on the other hand is $r(t+h)=r(t)+v(t)h+\frac{a(t)h^2}{2}$ can be rearranged into $v\left(t+\frac{h}{2}\right)=v(t)+\frac{a(t)h}{2}$. Thus, this shows that (90 is equivalent to velocity Verlet. (d)

If you pick a very time step there is a division by zero error.

Problem #3

(a)

Take the derivative of $u_{LJ} = 2\epsilon \left[A_{12} \left(\frac{\sigma}{r_n} \right)^{12} - A_6 \left(\frac{\sigma}{r_n} \right)^6 \right]$ with respects to lattice parameter since $r_n = \frac{a}{\sqrt{2}}$ and set this equal to zero.

This derivative turns out to be $u_{LJ}'=2\epsilon[-12A_{12}\left(\frac{\sigma}{r_n}\right)^{13}+6A_6\left(\frac{\sigma}{r_n}\right)^{7}]$ This allows us to solve for the two parameters, thus, the $\sigma=0.1137~\dot{A}^{-1}$ and $\epsilon=2004.84~eV$ per atom/

(b) The morse potential model is given by the equation $u_{\rm M}=D_{\rm e}(e^{-2\alpha(r_n-r_e)}-2e^{-\alpha(r_n-r_e)})$. r_e can then be found by taking the derivative of this equation with respect to the lattice parameter (a), since r_n is equal to $\frac{a}{\sqrt{2}}$. This results to $u_{\rm M}{}'=D_{\rm e}(-2\alpha e^{-2\alpha(r_n-r_e)}-2\alpha e^{-\alpha(r_n-r_e)})$. Thus, $r_e=r_n=\frac{a}{\sqrt{2}}=2.546~\dot{A}$ as found when plugging r_e back to the original equation. From here, D_e is found to be -u=3.5~eV. Using the bulk modulus, B in the form of $B=v\frac{\partial}{\partial v}\frac{\partial u}{\partial v}=v\frac{\partial}{(\frac{\partial v}{\partial r})^2}\frac{\partial^2 u}{\partial r^2}=\frac{r^3}{\sqrt{2}}\frac{\partial}{\frac{\partial r^4}{2}}\frac{\partial^2 u}{\partial r^2}=\frac{\sqrt{2}}{9r}D_e(4\alpha^2e^{-2\alpha(r_n-r_e)}+2\alpha^2e^{-\alpha(r_n-r_e)})$, the constant B=134GPA can be used to find α which is $0.7437~\dot{A}$.

(c) In the Lennard-Jones model, the bulk's modulus equation is the same except for u. Thus, $B=v\,\frac{\partial}{\partial v}\frac{\partial u}{\partial v}=\,v\,\frac{\partial}{\left(\frac{\partial v}{\partial r}\right)^2}\frac{\partial^2 u}{\partial r^2}=\frac{r^3}{\sqrt{2}}\frac{\partial}{\frac{9r^4}{2}}\frac{\partial^2 u}{\partial r^2}=\frac{2\sqrt{2}\epsilon}{9r}\left[-156\mathrm{A}_{12}\left(\frac{\sigma}{r_n}\right)^{14}+42\mathrm{A}_6\left(\frac{\sigma}{r_n}\right)^8\right]$. Using the parameters found from part a the Bulk's modulus was determined to be 148.52 GPa.

(d)

$$u_M = D_e \left(e^{-2\alpha(r_n - r_e)} - 2e^{-\alpha(r_n - r_e)} \right)$$

The green plot is given by

$$u_{\mathrm{LJ}} = 2\epsilon \left[A_{12} \left(\frac{\sigma}{r_n} \right)^{12} - A_6 \left(\frac{\sigma}{r_n} \right)^6 \right]$$

While the blue plot is given by