Count Sketch: Finding Heavy Hitters

COMPCSI 753: Algorithms for Massive Data

Instructor: Ninh Pham

University of Auckland

Basic definitions

- Let \mathbf{U} be a universe of size \mathbf{n} , i.e. $\mathbf{U} = \{1, 2, 3, ..., \mathbf{n}\}$.
- Cash register model stream:
 - Sequence of \mathbf{m} elements $\mathbf{a_1}, \dots, \mathbf{a_m}$ where $\mathbf{a_i} \in \mathbf{U}$.
 - Elements of **U** may or may not occur once or several times in the stream.
- Finding heavy hitters in data stream (today's lecture):
 - Given a stream, finding frequent items.

Frequent items

- Each element of data stream is a tuple.
- Given a stream of \mathbf{m} elements $\mathbf{a}_1, \ldots, \mathbf{a}_m$ where $\mathbf{a}_i \in \mathbf{U}$, finding the most/top- \mathbf{k} frequent elements.
- Example:
 - $\{\underline{1}, 2, \underline{1}, 3, 4, 5\} \rightarrow \mathbf{f} = \{\underline{2}, 1, 1, 1, 1\}$
 - $\{\underline{1}, \underline{2}, \underline{1}, 3, \underline{1}, \underline{2}, 4, 5, \underline{2}, 3\} \rightarrow \mathbf{f} = \{\underline{3}, \underline{3}, 2, 1, 1\}$
- We need an approximation solution with much smaller memory with theoretical guarantees.

Randomized: CountMin sketch

- Setup:
 - d independent universal hash functions h over range [0, w)
 - **d** different counters, C_1, \ldots, C_d . Each of size **w** initialized with 0s
- Process an element a_i :
 - For each hash function, compute $h_i(a_i)$ and increment $C_i[h_i(a_i)]$ by 1

Randomized: CountMin sketch

- Query: How many times **a**_i occurred?
 - For each hash function, compute $h_i(a_j)$ and get $C_i[h_i(a_j)]$
 - Return $\min(C_1[h_1(a_j)], \dots, C_d[h_d(a_j)])$

return the minimum of values in blue cells

Randomized: Count sketch

- Setup:
 - d independent 2-wise hash functions h over range [0, w).
 - **d** independent **2**-wise hash functions **s** over range {+1, -1}.
 - d different counters, C_1, \ldots, C_d . Each of size w initialized with 0s.
- Process an element $\mathbf{a_i}$:
 - For each hash function, compute $h_i(a_j)$ and increment $C_i[h_i(a_j)]$ by $s(a_j)$.

Randomized: Count sketch

- Query: How many times **a**_i occurred?
 - For each hash function, compute $h_i(a_j)$ and get $C_i[h_i(a_j)]$.
 - Return $median(C_1[h_1(a_j)], ..., C_d[h_d(a_j)])$.

return the median of values in blue cells

2-wise hash function family

- 2-wise hash function definition:
 - A family of hash function $H = \{h : U \rightarrow \{0, 1, ..., w-1\}\}$ is 2-wise independent if for any 2 distinct keys $x_i \neq x_j \in U$ and 2 hash values (not necessary distinct) $y_i, y_j \in \{0, 1, ..., w-1\}$, we have

$$Pr_h[h(x_i) = y_i \wedge h(x_i) = y_i] = 1/w^2$$

- On our CountSketch:
 - Given two different items $a_i \neq a_j$, what is the prob. a_i and a_j collide?

$$Pr_h[h(a_i) = h(a_i)] = 1/w^2 * w = 1/w$$

- Notation:
 - Stream of m items $\{a_1, \ldots, a_m\}$ from the universe U of size n.
 - Frequency vector $\mathbf{f} = \{\mathbf{f}_1, \dots, \mathbf{f}_n\}, \|f\|_2^2 = \sum_{i=1}^n f_i^2$
- Question:
 - Given a particular item a_1 , how many times $a_i \neq a_1$ collide by h?

- Question:
 - Given a particular item a_1 , how many times $a_i \neq a_1$ collide by h.

- Answer:
 - Let X_i be contribution of a_i in the bucket $h(a_1)$.

•
$$X_i = \begin{cases} f_i, & \text{which happens with prob. } 1/2w \\ 0, & \text{which happens with prob. } 1-1/w \\ -f_i, & \text{which happens with prob. } 1/2w \end{cases}$$

• Error source caused by the item a_i : $E[X_i] = 0$

- Observation: Our estimate is unbiased.
- Question: How large error do we have?
- Analysis of variance of contribution of a particular item $\mathbf{a_i}$:
 - Let X_i be contribution of a_i in the bucket $h(a_1)$.
 - $X_i = \begin{cases} f_i, & \text{which happens with prob. } 1/2w \\ 0, & \text{which happens with prob. } 1 1/w \\ -f_i, & \text{which happens with prob. } 1/2w \end{cases}$
 - Expectation: $E[X_i] = 0$.
 - Variance: $Var[X_i] = E[X_i^2] (E[X_i])^2 = f_i^2/w$.

- Observation: Our estimate is unbiased.
- Question: How large error do we have?
- Analysis of variance of error:
 - Let X_2, \ldots, X_n be contributions of a_2, \ldots, a_n in the bucket $h(a_1)$.
 - Let $Y = X_2 + ... + X_n$ be the total contributions by other item $a_i \neq a_1$.
 - Variance of error:

$$Var[Y] = Var[X_2] + ... + Var[X_n] = (f_2^2 + ... + f_n^2)/w \le ||f||_2^2/w.$$

Basic tools: Tail inequality

• Chebyshev's inequality for $\mathbf{E}[\mathbf{Y}] = \boldsymbol{\mu}$ and $\mathbf{Var}[\mathbf{Y}] = \boldsymbol{\sigma}^2$: $\Pr\left[|\mathbf{Y} - \boldsymbol{\mu}| \geq \varepsilon\right] \leq \frac{\sigma^2}{\varepsilon^2} \text{ for any } \varepsilon > 0.$

- Question: How large error do we have?
- Analysis of variance of error:
 - Let X_2, \ldots, X_n be contributions of a_2, \ldots, a_n in the bucket $h(a_1)$.
 - Let $Y = X_2 + ... + X_n$ be the total contributions by other item $a_i \neq a_1$.
 - Expectation: E[Y] = 0.
 - Variance: $Var[Y] = Var[X_2] + ... + Var[X_n] = (f_2^2 + ... + f_n^2)/w \le \frac{\|f\|_2^2}{w}$
- Chebyshev's inequality:
 - Pr $[|\mathbf{Y}| \ge \varepsilon ||\mathbf{f}||_2] \le \frac{1}{w\varepsilon^2} = 1/2$ if we choose $\mathbf{w} = 2/\varepsilon^2$.
 - The error is at most $\varepsilon ||f||_2$ with the probability 1/2.

- Boosting the accuracy:
 - Using **d** independent hash functions corresponding to **d** independent arrays of counters.
 - $F_1 = median(C_1[h_1(a_1)], ..., C_d[h_d(a_1)]) = median(f'_1, f'_2, ..., f'_d).$
- Analysis:
 - $E[f'_1] = E[f'_2] = ... = E[f'_d] = f_1$.
 - Choose $d = log(1/\delta)$ and apply Chernoff bound, we have

$$\Pr[| F_1 - f_1 | \le \varepsilon || f ||_2] \ge 1 - \delta$$

• With probability at least $1 - \delta$, we have

$$|\mathbf{f}_1 - \varepsilon||\mathbf{f}||_2 \le |\mathbf{f}_1 - \varepsilon||\mathbf{f}||_2$$

Homework

- Implement the CountSketch algorithm on the dataset from assignment 1:
 - Description: Each line (doc ID, word ID, freq.) as a stream tuple.
 - Query: What are the most and top-10 frequent word ID have been used?
- What are the average errors of CountMin Sketch and CountSketch?