BIASING

- To find the *DC operating point* (bias point,
 Q-point)
- Has to precede ac analysis, since smallsignal parameters depend on the bias point
- For *diodes*: (I_D, V_D)
- For BJTs: (I_C, V_{CE})
- For MOSFETs: (I_D, V_{DS})
- Also, $P_D = V_D \times I_D$ (*Diodes*), $V_{CE} \times I_C$ (*BJTs*), and $V_{DS} \times I_D$ (*MOSFETs*)

- DC power dissipated in a circuit = (Supply Voltage) × (Supply Current)
- Circuits may be biased by single supply (positive/negative and ground) or dual supply (positive and negative)
- Devices should be *properly biased* and *ideally* should be under the *best biasing* (BB)
- Also, need voltage references to provide fixed DC voltages at some circuit nodes

• Two types:

- > Discrete Stage Biasing:
 - Uses power supplies and resistors along with the active devices
 - Used for discrete circuits assembled in breadboards
 - Also known as passive biasing
- > IC (Integrated Circuit) Stage Biasing:
 - Avoids resistors as much as possible and uses transistors as biasing elements
 - Used for *IC stages*
 - Also known as active biasing

Discrete Stage Biasing: BJT

- Will be using *quick estimate* $(V_{BE} = 0.7 \text{ V})$
- *FA mode of operation* with $V_{CE} \ge 0.2 \text{ V}$
- Error of ±5-10% perfectly acceptable
- Common Schemes:
 - > Fixed Resistor Bias
 - > Emitter Feedback Bias
 - > Collector Feedback Bias
 - ➤ Voltage Divider (or 4-Resistor) Bias

• Fixed Resistor Bias:

$$ightharpoonup I_{\rm B} = (V_{\rm CC} - V_{\rm BE})/R_{\rm B}$$

$$> I_C = \beta I_B$$

$$> I_E = (\beta + 1)I_B \approx I_C$$

$$\triangleright V_{CE} = V_{CC} - I_C R_C$$

• For BB,
$$V_{CE} = V_{CC}/2$$

$$\triangleright P_D(circuit) = V_{CC} \times I_E$$

The simplest biasing circuit, but has severe β dependence

• Emitter Feedback Bias:

- ➤ While writing KVL, never

 take CE or BC loops, since

 V_{CE} and V_{BC} are not known
- \succ Consider only BE loops with $V_{BE} = 0.7 \text{ V}$

$$\triangleright V_{CC} = I_B R_B + V_{BE} + I_E R_E$$

$$\Rightarrow I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (\beta + 1)R_{E}}$$

- $> I_C = \beta I_B$
- $V_{CE} = V_{CC} I_{C}R_{C} I_{E}R_{E} \approx V_{CC} I_{C}(R_{C} + R_{E})$
- $\triangleright P_D = V_{CC} \times I_E$
- This is a 3-element output branch, with $V_{CE} = V_{CC}/3$ for BB
- $ightharpoonup Rest\ 2V_{CC}/3\ drops\ across\ R_C\ and\ R_E$, with the ratio typically chosen to be 2:1 (reason later!)
- Circuit is *very robust* since R_E provides *negative feedback*
- \triangleright Also, has better β insensitivity

• Collector Feedback Bias:

$$V_{CC} = I_{E}(R_{C} + R_{E}) + I_{B}R_{B} + V_{BE}$$

$$V_{CC} - V_{BE}$$

$$\Rightarrow I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (\beta + 1)(R_{C} + R_{E})}$$

$$> I_C = \beta I_B$$

$$\triangleright$$
 V_{CE} = V_{CC} - I_E(R_C + R_E)

$$\triangleright P_D = V_{CC} \times I_E$$

> This circuit also provides

better \(\beta \) insensitivity

• Voltage Divider (or 4-Resistor) Bias:

- > The best: Extremely robust and versatile
- If properly designed, almostβ independent
- \triangleright If $I_1 \ge 10I_B$, $I_1 \approx I_2$

$$\Rightarrow V_{B} \simeq \frac{R_{2}}{R_{1} + R_{2}} V_{CC}$$

$$\Rightarrow$$
 $V_{\rm E} = V_{\rm B} - V_{\rm BE}$ and $I_{\rm C} \simeq I_{\rm E} = V_{\rm E} / R_{\rm E}$

- *Example*: Let $V_{CC} = 5$ V, $R_1 = 40$ k Ω , $R_2 = 10$ k Ω , $R_C = 2$ k Ω , and $R_E = 300$ Ω
 - \triangleright *Quick estimate*: Assume $\beta \ge 100$
 - \Rightarrow V_B = 1V, V_E = 0.3 V, I_C \approx I_E = 1 mA, V_{CE} = 2.7 V, and P_D = 5.5 mW
 - ⇒ Done! Piece of cake, isn't it?
 - $ightharpoonup I_1 = 100 \ \mu A$ and $I_B \le 10 \ \mu A$ (for $\beta \ge 100$): Assumption of $I_1 \ge 10I_B$ validated
 - \triangleright Actually, as I_1 and β go down, this analysis becomes more and more inaccurate!

• Exact Analysis:

- > Sufficiently more complicated
- > Open the base lead and
 Thevenize the left branch

$$\Rightarrow V_{B} = \frac{R_{2}}{R_{1} + R_{2}} V_{CC} = 1 V$$

$$R_{B} = R_{1} || R_{2} = 8 k\Omega$$

ightharpoonup Also, $V_B = I_B R_B + V_{BE} + I_E R_E$ $V_B = V_B R_B + V_{BE} + I_E R_E$

$$\Rightarrow I_{B} = \frac{V_{B} - V_{BE}}{R_{B} + (\beta + 1)R_{E}}$$

• Gives:

- $ightharpoonup I_B = 7.83 \, \mu A$, $I_C = 0.78 \, mA$, and $V_{CE} = 3.2 \, V$ for $β = 100 \, ($ *quite off from quick estimate*!)
- $ightharpoonup I_B = 3.6 \ \mu A, I_C = 0.9 \ mA, and V_{CE} = 2.93 \ V \ for$ $<math>\beta = 250 \ (within \ \pm 10\% \ error \ band)$
- Thus, as $\beta \uparrow$, accuracy of quick estimate \uparrow
- Also, as $R_B \checkmark$, accuracy \uparrow
- R_B should not be too small, since P_D ?
- Thus, there are *various design constraints*

Discrete Stage Biasing: MOSFET

- Almost universally biased using 4-Resistor Bias
- Significantly more complicated than BJT biasing, since there is no quick estimate
- Also, body effect and CLM complicate matters

• No $I_G \Rightarrow R_1$ - R_2 combination provides a perfect voltage division

$$\Rightarrow V_{G} = \frac{R_{2}}{R_{1} + R_{2}} V_{DD}$$

•
$$V_S = I_D R_S$$
 and $V_D = V_{DD} - I_D R_D$

$$\Rightarrow I_{D} = \frac{k_{N}}{2} (V_{G} - I_{D}R_{S} - V_{TN})^{2} \times$$

$$\left(1 + \lambda \left[V_{DD} - I_{D}(R_{S} + R_{D})\right]\right)$$

• Also:

$$V_{TN} = V_{TN0} + \gamma \left(\sqrt{2\phi_F + I_D R_S - V_B} - \sqrt{2\phi_F} \right)$$

- Extremely intimidating!
- I_D equation becomes cubic!
- Thus, bias calculation including all higher order effects is pretty tedious, and almost impossible for hand analysis
- Need to make approximations!

• Assume $\lambda V_{DS} < 0.1$:

$$\Rightarrow I_{D} = \frac{k_{N}}{2} (V_{G} - I_{D}R_{S} - V_{TN})^{2}$$

- Even then it's quite complicated, since V_{TN} has a square root dependence on I_D
- Tie B and S together \Rightarrow $V_{SB} = 0$ and $V_{TN} = V_{TN0}$
 - > Note that it can't be done always!

$$\Rightarrow I_{D} = \frac{k_{N}}{2} (V_{G} - I_{D}R_{S} - V_{TN0})^{2}$$

- Even now, it's a quadratic equation in I_D
- However, much easier to solve than earlier cases
- No further simplification possible!
- Solving, we will get 2 values of I_D : one will be the correct one, while the other one will be unphysical
- 2 values of I_D will give 2 different values of V_{GS} : one > V_{TN0} and the other < V_{TN0}

- Obviously, I_D for $V_{GS} < V_{TN0}$ is completely meaningless, since the device is off under that condition
- Compute $V_{DS} = [V_{DD} I_D(R_S + R_D)]$
 - \gt Should be $\gt V_{GT}$ (saturation mode)
 - \succ For BB, $V_{DS} = V_{DD}/3$
- $P_D = V_{DD} \times (I_D + I_1)$ $[I_1 = V_{DD}/(R_1 + R_2)]$
- Here, no constraints on R_1 and R_2 , and they can be made as large as physically possible to reduce I_1 , and thus P_D

IC Stage Biasing

- Avoids resistors as much as possible
 - > Resistors take up very large area on IC chips, which is at a premium
- Uses transistors as biasing elements
 - > Much more compact than resistors, and area consumption is almost negligible as compared to resistors
- Also known as *active biasing*

• Parameters:

- \triangleright Output Current I_0
 - As per specification
- \triangleright Output Resistance R_0
 - $R_0 = \Delta V_0 / \Delta I_0 = dV_0 / dI_0 = v_0 / i_0 (ac)$
 - As large as possible ideally infinite
- ➤ Minimum Allowed Output Voltage V_{0,min}
 - As small as possible ideally zero
 - Dictated by:
 - ***** For BJT: $V_{CE}(min) = V_{CE}(SS) = 0.2 \text{ V}$
 - ***** For MOSFET: $V_{DS}(min) = V_{GT}(min) = 80 \text{ mV}$

- \succ I_0 should be independent of power supply and temperature
 - Temperature and Supply Independent Biasing
- > Should use minimum number of circuit elements
 - Economization of space
- > Should not affect frequency response
- It is almost impossible to satisfy all these constraints simultaneously
 - > Look for optimization

Current Sources/Sinks

- Also known as *Current Mirrors* (CM)
- Can be used for biasing as well as load elements (known as active load)
- Designed based on required specifications
- Two sources of errors:
 - > Systematic: Even when devices are matched
 - > Random: When there is a random mismatch between devices

• Simple npn CM:

- \triangleright Q₁ has its **B** and **C** shorted
 - Can never saturate $(V_{BC} = 0)$
 - Known as diode-connectedBJT
- \triangleright Q₁ and Q₂ have *same* V_{BE}
- $I_{REF} = Reference Current$ $= (V_{CC} V_{BE})/R$
- $ightharpoonup I_0 = Output Current = I_{C2}$
- $> V_0 = Output Voltage$
 - Variable, depends on the load connected to it

> General Analysis:

$$I_{REF} = I_{C1} + I_{B1} + I_{B2} = I_{C1} \left(1 + \frac{1}{\beta_1} \right) + \frac{I_{C2}}{\beta_2}$$

> Now:

$$V_{BE} = V_{T} \ln \left(\frac{I_{C2}}{I_{S2}} \right) = V_{T} \ln \left(\frac{I_{C1}}{I_{S1}} \right)$$

$$\Rightarrow I_{C2} = KI_{C1} \quad (K = I_{S2}/I_{S1})$$

> Thus:

$$I_{REF} = I_{C2} \left[\frac{1}{\beta_2} + \frac{1}{K} \left(1 + \frac{1}{\beta_1} \right) \right]$$

> Finally:

$$I_{0} = I_{C2} = \frac{I_{REF}}{\frac{1}{\beta_{2}} + \frac{1}{K} \left(1 + \frac{1}{\beta_{1}}\right)}$$

- This is the *exact expression* of I₀, *without* making any assumptions/approximations whatsoever
- The *only assumption* so far is that we have neglected Early effect, which we would include soon

> Now, we *make approximations/assumptions*:

1.
$$\beta_1 = \beta_2 = \beta$$
:

$$\Rightarrow I_0 = \frac{KI_{REF}}{1 + \frac{1 + K}{\beta}}$$

2.
$$I_{S1} = I_{S2} = I_{S}$$
 (K = 1):

$$\Rightarrow I_0 = \frac{I_{REF}}{1 + 2/\beta}$$

3. And finally $\beta >> 2$:

$$\Rightarrow$$
 $I_0 = I_{REF} \Rightarrow Current Mirror!$

- For this to happen, Q_1 and Q_2 must have $same \beta (>> 2)$, and $same I_S$
- If two BJTs have same β , I_S , and V_A , they are known as a matched pair
- If $I_{S1} \neq I_{S2}$ and/or $\beta_1 \neq \beta_2$, then $I_0 \neq I_{REF}$
 - > Leads to *random error* (*process induced*)
- If $\beta_1 = \beta_2$, but $I_{S1} \neq I_{S2}$, then $I_0 = KI_{REF}$
 - > K or 1/K can only be integers
 - I_0 and I_{REF} become integer multiples of each other

• Multi-Emitter B.JT:

$$\succ I_{S1} = I_{S2} \Rightarrow I_{E1} = I_{E2} = I_{E} \Rightarrow I_{C} \approx 2I_{E}$$

• This does not imply that $\alpha = 2$, since there are two emitters

• Systematic Error:

- From if Q_1 and Q_2 are perfectly matched and $\beta >> 2$, still I_0 may not equal I_{REF} !
- > Recall:

$$I_{C} = I_{S}[exp(V_{BE}/V_{T})](1 + V_{CE}/V_{A})$$

> Thus:

$$\frac{I_{C2}}{I_{C1}} = \frac{I_0}{I_{C1}} = \frac{1 + V_{CE2}/V_A}{1 + V_{CE1}/V_A} = \frac{1 + V_0/V_A}{1 + V_{BE}/V_A}$$

 \succ Therefore, $I_0 = I_{C1}$ only when $V_0 = V_{BE}$

$$V_{0,min} = V_{CE2}(SS) = 0.2 V$$

• Simple npn CM:

- \triangleright Q₁ has its **B** and **C** shorted
 - Can never saturate $(V_{BC} = 0)$
 - Known as diode-connectedBJT
- \triangleright Q₁ and Q₂ have *same* V_{BE}
- $I_{REF} = Reference Current$ $= (V_{CC} V_{BE})/R$
- $ightharpoonup I_0 = Output Current = I_{C2}$
- $> V_0 = Output Voltage$
 - Variable, depends on the load connected to it

• Output Resistance R_0 :

 \succ First, investigate Q_1

- The *small-signal equivalent* consists simply of r_E , which is the same as that for a *diode*
 - Hence the name diode-connected BJT

- Algorithm to find R_0 :
 - > Short all independent DC/ac voltage sources
 - > Open all independent DC/ac current sources
 - > Replace the active device by its low-frequency hybrid-π model
 - Excite the output terminal by a test voltage source (ac) v_t
 - \succ Find the current (ac) i_t drawn from v_t
 - ightharpoonup Then, $R_0 = v_t/i_t$

• For the complete circuit:

Left part of the circuit has no source

$$\Rightarrow$$
 $\mathbf{v}_2 = 0$

$$\Rightarrow$$
 $g_{m2}v_2 = 0$

- ightharpoonup Thus, $R_0 = v_t/i_t = r_{02} = V_{A2}/I_0$
- For a good current source, R_0 should be as large as possible (ideally infinite)
 - \Rightarrow V_{A2} should be as large as possible and/or I_0 should be as small as possible

• Simple NMOS CM:

- \triangleright $V_{GS1} = V_{GS2} = V_{GS}$
- \triangleright M₁ has its *D* and *G*

shorted
$$\Rightarrow$$
 $V_{GD1} = 0$

- \Rightarrow always in saturation, since $V_{DS1} > V_{GT1}$
- \Rightarrow Known as *diode-*

connected MOSFET

 \triangleright Even though $I_G = 0$, the analysis is slightly more cumbersome than simple BJT CM

- ➤ In general, for NMOS (PMOS), the B terminal is always connected to the most negative (positive) potential available in the circuit to ensure that SB and DB junctions never get forward biased
- ► Both M_1 and M_2 have their B terminals grounded $\Rightarrow V_{SB1} = V_{SB2} = 0$
 - $V_{TN1} = V_{TN01}$ and $V_{TN2} = V_{TN02}$
- > Thus:

$$I_{REF} = I_{D1} = \frac{k'_{N1}}{2} \left(\frac{W}{L}\right)_{1} (V_{GS} - V_{TN01})^{2}$$

- For a given V_{DD} and R, the equation has 2 unknowns: I_{D1} and V_{GS}
- ➤ Need *another equation* for *unique solution*, which is the *load line equation*:

$$I_{D1} = (V_{DD} - V_{GS})/R$$

- \gt Simultaneous solution of these two equations would give a unique solution for I_{D1} and V_{GS}
 - Caution: 2 roots, out of which, one will be unphysical
- So far, we have *neglected CLM*, which we would include soon!

> Now:

$$V_{GS} = V_{TN01} + \sqrt{\frac{2I_{REF}}{k'_{N1}(W/L)_{1}}} = V_{TN02} + \sqrt{\frac{2I_{0}}{k'_{N2}(W/L)_{2}}}$$

> Thus:

$$I_{0} = \frac{k'_{N2} (W/L)_{2}}{2} \left[(V_{TN01} - V_{TN02}) + \sqrt{\frac{2I_{REF}}{k'_{N1} (W/L)_{1}}} \right]^{2}$$

This is the *exact expression* of I₀, *without* making any assumptions/approximations whatsoever

Now, if $V_{TN01} = V_{TN02} = V_{TN0}$, and $k'_{N1} = k'_{N2} = k'_{N}$:

$$I_0 = \frac{\left(W/L\right)_2}{\left(W/L\right)_1} I_{REF}$$

- ➤ Very similar to BJT CM, but with a big exception:
 - In BJT CM, this ratio could only be an integer
 - In MOS CM, no such restriction exists: $(W/L)_2$ can be >, =, or < $(W/L)_1$ ⇒ any arbitrary current ratio can be obtained

- Finally, if $(W/L)_2 = (W/L)_1$: $I_0 = I_{REF} \Rightarrow Current Mirror!$
- Two MOSFETs are deemed to constitute a matched pair, if they have same V_{TN0} , γ , ϕ_F , λ , and k'_N
 - Note that all of these are process parameters
 - (W/L) is NOT a process parameter, since it's under designer's control
 - If (W/L)s are also same, then the pair is known as perfectly matched

• Systematic Error:

- From if M_1 and M_2 are *perfectly matched*, still I_0 may not equal I_{REF} !
- > Recall:

$$I_{D} = \frac{k_{N}}{2} V_{GT}^{2} \left(1 + \lambda V_{DS} \right)$$

> Thus:

$$\frac{I_0}{I_{REF}} = \frac{1 + \lambda V_{DS2}}{1 + \lambda V_{DS1}} = \frac{1 + \lambda V_0}{1 + \lambda V_{GS}}$$

 \succ Therefore, $I_0 = I_{REF}$ only when $V_0 = V_{GS}$

Output Resistance R₀:

 \succ First, *investigate* M_1

- The *small-signal equivalent* consists simply of $1/g_m$, which is similar to r_D for *diodes*
 - Hence the name diode-connected MOSFET

• For the complete circuit:

Left part of the circuit has no source

$$\Rightarrow$$
 $\mathbf{v}_2 = 0$

$$\Rightarrow$$
 $g_{m2}v_2 = 0$

- ightharpoonup Thus, $R_0 = v_t/i_t = r_{02} = 1/(\lambda I_0)$
- For a good current source, R_0 should be as large as possible (ideally infinite)
 - \Rightarrow λ should be as small as possible and/or I_0 should be as small as possible

- Golden Rule for Calculation of R_0 :
 - \succ For a **BJT** (or **MOSFET**):
 - With E (or S) *grounded*
 - No electrical connection (feedback) between C (or D) and B (or G)
 - **Looking from** the C (or D)
 - **❖** The only resistance seen will be the output resistance of the BJT (or MOSFET)

• npn Current Repeater:

- > Uses multi-emitter BJTs
- ➤ Maximum number of emitters = 4
- > All emitters tied together
- > All Qs have same

 V_{BE}
- $ightharpoonup I_{REF} = (V_{CC} V_{BE})/R$

\triangleright Neglecting I_B :

$$I_{02} = I_{REF}, I_{03} = 2I_{REF}, I_{04} = 3I_{REF}, \dots$$

- > Limitations:
 - Output current can never be a non-integer ratio of $I_{REF} \Rightarrow$ no arbitrary scaling possible
 - Loading Problem:
 - \bullet I_{REF} not only supplies I_{CI} , but I_{BS} of all the Q_{S}
 - $As more Qs are added, I_Bs will keep on increasing$
 - $ightharpoonup I_{C1}$ starts to depart significantly from I_{REF}
 - \clubsuit It's not I_{REF} that's mirrored, it's I_{C1}
 - riangle A reduction in I_{C1} will affect all output currents
 - * Hence, this circuit is not very popular

• NMOS Current Repeater:

$$I_{REF} = I_{D1} = (V_{DD} - V_{GS})/R$$

$$I_{D1} = \frac{k'_{N}}{2} \left(\frac{W}{L}\right)_{1} V_{GT}^{2} \quad (assuming \ \lambda V_{DS} < 0.1)$$

 \triangleright All Ms have same V_{GS} and are matched

$$\Rightarrow I_{0i} = \frac{\left(W/L\right)_{i}}{\left(W/L\right)_{1}}I_{REF} \quad (i = 2, 3, 4, ...)$$

- > Tremendous flexibility
 - * Any arbitrary current ratio can be obtained
 - * No loading effect
 - * Highly popular and universal choice

- More on W/L Ratio:
 - ➤ Generally, in technology, W/L is kept between 0.01 and 100
 - > The ideal ratio is between 0.02 and 50
 - > Minimum Feature Size (MFS):
 - Minimum dimension that can be resolved in an IC chip
 - **❖** Has gone down from 10s of µm in 80s to a few nm now!
 - For W/L > 1 (or < 1), L (or W) is chosen equal to MFS
 - *Yields minimum possible device area* (W × L)

• npn CM With Better β Insensitivity:

- $ightharpoonup I_{REF} = (V_{CC} 2V_{BE})/R$
- \triangleright Neglecting I_{B3} :

$$I_{C1} = I_{REF}$$

> If Q_1 and Q_2 are matched:

$$I_0 = I_{C2} = I_{C1} = I_{REF}$$

 \Rightarrow *Simple CM*

> The actual advantage of the circuit lies elsewhere!

 \triangleright First, assume R_B is absent

$$\Rightarrow I_{E3} = I_{B1} + I_{B2} = I_{C1}/\beta_1 + I_{C2}/\beta_2 = 2I_0/\beta_1$$
(assuming $\beta_1 = \beta_2$)

$$\Rightarrow I_{B3} = \frac{I_{E3}}{\beta_3 + 1} = \frac{2I_0}{\beta_1 (\beta_3 + 1)}$$

$$I_{REF} = I_{C1} + I_{B3} = I_0 \left[1 + \frac{2}{\beta_1 (\beta_3 + 1)} \right]$$

$$\Rightarrow I_0 = \frac{I_{REF}}{1 + \frac{2}{\beta_1(\beta_3 + 1)}}$$

- Now, if $\beta_1 = \beta_3 = \beta$, and $\beta >> 1$: $I_0 \approx I_{REF}(1 - 2/\beta^2)$
- > Compare with that of simple CM:

$$I_0 \approx I_{REF}(1 - 2/\beta)$$

- > The advantage is obvious!
- > Further Insights:
 - $A I_{E3} (= I_{B1} + I_{B2}) \sim few \ 10s \ of \ \mu A$
 - * At such a low current, β drops significantly from its nominal value
 - Thus, full advantage of the circuit can't be exploited

\triangleright Here comes the role of R_B :

- It drains a constant current (= V_{BE}/R_B), which gets added to ($I_{B1} + I_{B2}$), and boosts I_{E3} (and, thus, I_{C3})
- Thus, β_3 gets pulled up to its nominal value
- This resistor has a special name: Keep Alive, since it keeps Q_3 alive!
- > However, it creates some issues as well:
 - Additional power drain due to the additional current flowing through R_R
 - If I_{E3} 7, so would I_{B3} $\Rightarrow I_{C1} \text{ may depart from } I_{REF}$
 - Design optimization needed

- > *Now, for R*₀:
 - Looking at C_2
 - E₂ grounded
 - No connection between C_2 and B_2 (no feedback)
 - **Therefore, by inspection:**

$$R_0 = r_{02} = V_{A2}/I_0$$

> Also, by inspection:

$$V_{0,min} = V_{CE2}(SS) = 0.2 \text{ V}$$

There is no MOS counterpart for this circuit for obvious reasons!

• npn Ratioed CM:

- $\triangleright Q_1$ - Q_2 matched pair
- $ightharpoonup Neglecting all I_B$, $I_{E1} = I_{C1}$ = I_{REF} , and $I_{E2} = I_{C2} = I_0$
- $I_{REF} = (V_{CC} 2V_{BE})/(R + R_1)$
- \succ KVL around Q_1 - Q_2 BE loop:

$$V_{BE1} + I_{REF}R_1 = V_{BE2} + I_0R_2$$

$$\Rightarrow I_0 = (I_{REF}R_1 + \Delta V_{BE})/R_2$$

$$\Delta V_{BE} = V_{BE1} - V_{BE2}$$

$$= V_T ln(I_{REF}/I_0)$$

> Note the ln dependence:

- For $I_{REF}/I_0 = 2$, $\Delta V_{BE} = 18 \text{ mV}$
- $For I_{REF}/I_0 = 10, \Delta V_{RE} = 60 \text{ mV}$
- $\Rightarrow \Delta V_{BE}$ can be neglected if $I_{REF}R_1 > 10\Delta V_{BE}$
- $\Rightarrow I_0 = (R_1/R_2)I_{REF}$ (Ratioed Mirror)
- Thus, by tinkering R_1 and R_2 , any ratio between I_0 and I_{REF} can be obtained
 - Tremendous advantage
 - * Widely used
- **By inspection:**

$$V_{0,min} = V_{CE2}(SS) + I_0R_2 = 0.2 + I_0R_2$$

\succ Calculation of R_0 :

- Golden Rule can't be used since emitter of Q_2 is not grounded (R_2 present there)
- Needs analysis
 - ⇒ Leads to a module that is frequently encountered
- Base of Q_1 - Q_2 at a fixed DC potential \Rightarrow ac ground

$$i_{t} = g_{m2}v_{2} + (v_{t} + v_{2})/r_{02}$$

$$= v_{t}/r_{02} + (g_{m2} + 1/r_{02})v_{2} \approx v_{t}/r_{02} + g_{m2}v_{2}$$

$$v_{2} = -i_{t}R_{eff}$$

$$\Rightarrow i_{t} = v_{t}/r_{02} - g_{m2}R_{eff}i_{t}$$

$$\Rightarrow R_{0} = v_{t}/i_{t} = r_{02}(1 + g_{m2}R_{eff})$$

- This is a *Golden Equation*, which would be used frequently
 - Carefully note the topology that produces this result
- \succ Exercise: Reverse v_2 and show that the expression for R_0 remains invariant

- ightharpoonup If $r_{\pi 2} >> R_2$, $R_0 = r_{02}(1 + g_{m2}R_2)$
- > If $R_2 >> r_{\pi 2}$, $R_0 \approx \beta_2 r_{02}$ (since $\beta = g_m r_{\pi} >> 1$)
- ► Under the second condition, the circuit produces enormously large value of R_0 ~ 10s of $M\Omega$ or greater
 - Almost approaches a constant current source!
- It's good to check the relative values of R_2 and $r_{\pi 2}$ before using either of the equations
- This circuit does not have any MOS counterpart for obvious reasons!

• Cascode Current Source:

- > The best and most widely used
- > Almost universal choice for biasing IC stages
- \triangleright Produces extremely high R_0
- \triangleright Original cascode needs higher values of $V_{0,min}$
- ightharpoonup Modified cascode gets rid of this problem and pushes $V_{0,min}$ down
- The topology is basically two simple CMs stacked one upon the other
- > Both npn and NMOS implementations exist

• npn Cascode:

- > All Qs are perfectly matched
- \triangleright Neglecting I_B and V_A :

$$I_0 = I_{REF} = (V_{CC} - 2V_{BE})/R$$

> Show that if *I_B* can't be neglected, but all *Qs* have same β:

$$I_0 = \frac{I_{REF}}{1 + \left(4\beta + 2\right) / \beta^2}$$

 \triangleright Thus, β immunity is not that pronounced

 \triangleright All Qs operate with the same V_{BE}

$$\Rightarrow$$
 $V_{B1} = V_{B2} = V_{BE}$, $V_{B3} = V_{B4} = 2V_{BE}$

$$\Rightarrow$$
 $V_{E4} = V_{C2} = V_{BE}$

$$\Rightarrow$$
 $V_{BE2} = V_{CE2}$

 $\Rightarrow Q_2$ can never saturate, but Q_4 can!

$$\Rightarrow$$
 V_{0,min} = V_{BE} + V_{CE4}(SS) = 0.7 + 0.2 = 0.9 V

- The output voltage swing is sacrificed quite a bit!
- \triangleright However, the main advantage of this circuit is enormously large R_0

\succ Calculation of R_0 :

Exact Equivalent

• Q_1 and Q_3 diode-connected \Rightarrow r_{E1} and r_{E3}

Note that to a *first-order estimate*, bases of Q_1 - Q_2 and Q_3 - Q_4 can be considered to be at a *fixed DC* potential, and thus, ac ground

$$\Rightarrow$$
 $v_2 = 0 \Rightarrow g_{m2}v_2 = 0$

 \Rightarrow Leads to the *simplified*

equivalent (looks
familiar?)

By inspection:

$$R_0 \approx r_{o4}(1 + g_{m4}r_{\pi4})$$

$$\approx \beta_4 r_{04}$$
(assuming $r_{o2} >> r_{\pi4}$)

• Actual analysis gives:

$$R_0 = \beta_4 r_{04}/2$$
 (*large error*!)

Simplified Equivalent

\succ Calculation of R_0 :

Exact Equivalent

• Q_1 and Q_3 diode-connected \Rightarrow r_{E1} and r_{E3}

> Simplification:

■ Bases of Q_1 - Q_2 and Q_3 - Q_4 can be approximated to be at ac ground (a first-order estimate)

Equivalent after First-Order Simplification

■ ⇒
$$v_2 = 0$$
 ⇒ $g_{m2}v_2 = 0$
⇒ Leads to the *simplified equivalent* (looks familiar?)

By inspection:

$$R_0 \approx r_{o4}(1 + g_{m4}r_{\pi 4})$$

$$\approx \beta_4 r_{04}$$
(assuming $r_{o2} >> r_{\pi 4}$)

• Actual analysis gives:

$$R_0 = \beta_4 r_{04}/2$$
 (*large error*!)

Simplified Equivalent

• NMOS Cascode:

- > All Ms perfectly matched
- > All bodies connected to ground
 - M₁-M₂ does not have body effect, but M₃-M₄ does!
 - Makes hand analysis quite tedious
 - \Rightarrow Neglect body effect
- \triangleright All Ms operate with same V_{GS}
- ightharpoonup Define $\Delta V = V_{GS} V_{TN} = V_{GT}$
 - $\Delta V = Gate Overdrive$

> The reference current:

$$I_{REF} = \frac{V_{DD} - 2V_{GS}}{R} = \frac{k_{N}}{2}V_{GT}^{2} \quad (neglecting \ \lambda)$$

$$\gt V_{GS}$$
 and I_{REF} can be found $\Rightarrow I_0 = I_{REF}$

$$V_{G1} = V_{G2} = V_{GS} = V_{TN} + \Delta V$$

$$V_{G3} = V_{G4} = 2V_{GS} = 2(V_{TN} + \Delta V)$$

$$\triangleright V_{S4} = V_{D2} = V_{TN} + \Delta V$$

$$\Rightarrow$$
 $V_{GS2} = V_{DS2}$

$$\Rightarrow M_2$$
 can never enter linear region

$$\Rightarrow V_{0,min} = V_{DS2} + V_{DS4} = V_{TN} + 2\Delta V$$

- This can be quite significant, since V_{TN} is added to ΔV
 - Assuming $\Delta V \sim 0.1~V$ and $V_{TN} \sim 0.7~V$, $V_{0,min} \sim 0.8~V$, which is very large
 - This is one of the drawbacks of this simple cascode circuit (modified cascode doesn't have this problem)
- ► If V_0 drops below ($V_{TN} + 2\Delta V$), first M_4 enters linear region, and circuit performance starts to get affected
- For further drop in V_0 , M_2 also enters linear region, and the current mirror collapses!

\succ Calculation of R_0 :

Exact Equivalent

■ M_1 and M_3 diode-connected $\Rightarrow 1/g_{m1}$ and $1/g_{m3}$

• The left part of the circuit has no source

$$\Rightarrow$$
 $v_2 = 0 \Rightarrow g_{m2}v_2 = 0$

- ⇒ Leads to the simplified

 equivalent (now should
 look very familiar!)
- By inspection:

$$R_0 \approx r_{o4}(1 + g_{m4}r_{02})$$
$$\approx g_{m4}r_{02}r_{04}$$

Can be huge!

Simplified Equivalent

• Double Cascode:

- > Can be implemented in both BJT & MOS
- ► In npn Double Cascode, another pair Q_5 - Q_6 stacked upon Q_3 - Q_4
 - Find $V_{0,min}$ and R_0
- ► In NMOS Double Cascode, another pair M_5 - M_6 stacked upon M_3 - M_4
 - Find $V_{0,min}$
 - $R_0 \approx g_{m6} r_{06} R_0 (R_0 \approx g_{m4} r_{02} r_{04})$
- \blacktriangleright Hence, show that double cascode in BJT offers absolutely no advantage in terms of R_0

- Low Value Current Source:
 - > Current thrust: Low-power circuits
 - ⇒ Increase in battery life
 - Figure 1 If bias current can be reduced from mA to μA, for the same power supply voltage, power drawn reduces by three orders of magnitude!
 - Normal CMs can also produce bias current in μ A range, however, the required resistance will be huge \Rightarrow uneconomical for ICs
 - > Most common: Widlar Current Source
 - After its inventor Bob Widlar (father of op-amp)

• Widlar Current Source:

- $> Q_1 Q_2$ matched pair
- $ightharpoonup I_{REF} = (V_{CC} V_{BE1})/R_1$
- ightharpoonup If $I_0 = I_{REF}$, then $V_{BE1} = V_{BE2}$
 - No drop across R_2 !

$$\Longrightarrow I_0 \neq I_{REF}$$

➤ Actually, the difference
between V_{BE1} and V_{BE2}
drops across R₂

\succ KVL around Q_1 - Q_2 BE loop:

$$V_{BE1} = V_{BE2} + I_0 R_2$$

$$\Rightarrow I_0 = \frac{V_{BE1} - V_{BE2}}{R_2} = \frac{V_T}{R_2} \ln \left(\frac{I_{REF}}{I_0} \right)$$
(since $I_{SI} = I_{S2}$)

- \succ Transcendental equation in I_0
- > If I_0 is known, finding R_2 is absolutely easy!
- \triangleright On the other hand, if R_2 is given, to find I_0 , need to iterate, but the solution will converge rapidly (Why?)

- The Infunction compresses a large difference between I_{REF} and I_0 into a small range
 - For $I_{REF} \sim mA$, $I_0 \sim \mu A$, with $R_1 \sim few k\Omega s$ and $R_2 \sim few 10s$ of $k\Omega$
 - \Rightarrow Significant flexibility!
- $V_{0,\text{min}} = V_{\text{CE2}}(SS) + I_0 R_2$ $\sim 0.3\text{-}0.4 \ V \ for \ practical \ values \ of \ I_0 \ and \ R_2$
- $ightharpoonup R_0$ can be obtained by sheer inspection of the circuit by noting that the base of Q_2 is approximately at ac ground
- \triangleright Also, $r_{\pi 2} >> R_2$ (*Why*?)

> Thus,

$$R_0 \approx r_{02}(1 + g_{m2}R_2)$$

- Note: To approximate this as $g_{m2}r_{02}R_2$, first make sure that $g_{m2}R_2 >> 1$ (may not be!)
- > Actual expression:

$$R_0 \approx r_{02}(1 + g_{m2}R_{eff})$$
 with $R_{eff} = R_2||r_{\pi 2}||$

- > During further simplification, always check the validity of your assumption/approximation
 - Otherwise it may lead to large errors!
- > Counterpart of this circuit in MOS technology does not exist (Why?)

DC Voltage References

- Along with current sources/sinks, also need stable and precise DC voltage references
- Provides DC bias voltages at specific points of the circuit
- Should be independent of power supply and temperature
- Can range from —ve to +ve power supplies
- On-Chip: Generated within the chip itself

- In ICs, diodes are not fabricated as such
 - ➤ BJTs/MOSFETs are used as diodes by shorting their B/G and C/D terminals
- Various Voltage References:
 - ➤ Single Diode Reference
 - > Multiple Diode Reference
 - $\succ V_{BE}$ (or V_D) Multiplier
 - > Saturated Transistor
 - > NMOS Voltage Reference

• Single Diode Reference:

- > I_{REF}: *DC Bias Current*
- > Creates a voltage drop of V_D (or V_{BE}) across the diode of $\sim 0.7 \ V$
- \succ Known as V_{BE} (or V_D)

 Reference
- > Precision quite poor
- > Thermal tracking poor

• Multiple Diode Reference:

- > Putting multiple diodes in series
- > DC bias current I_{REF}
 pushed through them
- Each diode creates a drop of V_D across it
- > Has same problems as Single Diode Reference
- Note: n can only be an integer

- V_{BE} (or V_D) Multiplier Circuit:
 - Previous two circuits provide $V_0 = nV_D$, with n being an integer ≥ 1
 - For any arbitrary value of n
 (≥1), this circuit becomes useful
 - > Immensely popular because of its simplicity and effectiveness
 - ➤ Biased by a DC current source

 I_{REF}

> Neglecting base current:

$$V_{BE} = \frac{R_2}{R_1 + R_2} V_0$$

$$\Rightarrow V_0 = \left(1 + \frac{R_1}{R_2}\right) V_{BE}$$

- $\Rightarrow V_{BE}$ Multiplier with multiplication factor $(1 + R_1/R_2)$
- Any arbitrary ratio of R_1 and R_2 can be used, but the multiplication factor is always ≥ 1

- ► Least possible $V_0 = V_{BE} [R_1 = 0 \text{ (short-circuit)}]$ and $R_2 \to \infty \text{ (open-circuit)}]$
 - ⇒ Diode-Connected BJT
- ightharpoonup Has excellent thermal tracking, since TC_F of R_1 and R_2 cancel each other, but the TC_F of V_{RF} remains
- So far, we have got voltage references having $V_0 \ge V_{BE}$
- \succ How to have a voltage reference having $V_0 < V_{BE}$?

• Saturated Transistor:

> Neglecting base current:

$$V_0 = V_{BE} - I_{REF}R$$

- Note: V_0 is actually V_{CE} ,

 which is $< V_{BE}$
 - $\Rightarrow Q$ saturated
 - ⇒ Analysis highly approximate, since base current can't be neglected in saturation
- > Typical range of $V_0 \sim 0.2$ -0.7 V

• NMOS Voltage Reference:

- ➤ Highly popular due to its simplicity and effectiveness
- Can generate n voltage references from (n + 1)
 MOSFETs
- > All MOSFETs diode-connected
 - \Rightarrow Always saturated
- > No resistors needed
- > All bodies connected to ground

- \triangleright Only for M_1 , $V_{TN1} = V_{TN0}$
- > All other MOSFETs will have body effect, e.g., $V_{TN2} = V_{TN0} + \gamma \left(\sqrt{2\phi_F + V_{01}} - \sqrt{2\phi_F} \right)$
- Figure Generally, all λs also same, but aspect ratios are different
- $\gt V_{01}, V_{02}, ..., V_{0n}$ are the *needed reference taps*
- $V_{GS1} = V_{DS1} = V_{01}, V_{GS2} = V_{DS2} = V_{02} V_{01}, V_{GS3} = V_{DS3} = V_{DS3} = V_{03} V_{02}, \dots$
- $V_{SB1} = 0$, $V_{SB2} = V_{01}$, $V_{SB3} = V_{02}$, ...
- Same DC current I_{REF} flows through all MOSFETs

Assuming that *all MOSFETs* have *same* λ and *same* k'_{N} :

$$\begin{split} I_{REF} &= \frac{k'_{N}}{2} \left(\frac{W}{L} \right)_{1} \left(V_{01} - V_{TN1} \right)^{2} \left(1 + \lambda V_{01} \right) \\ &= \frac{k'_{N}}{2} \left(\frac{W}{L} \right)_{2} \left(V_{02} - V_{01} - V_{TN2} \right)^{2} \left[1 + \lambda \left(V_{02} - V_{01} \right) \right] \end{split}$$

- •••
- First I_{REF} needs to be found by ensuring that the circuit dissipates least DC power
- > Then, all (W/L)s can be calculated

- > Choice depends on several design paradigms
- $\triangleright P_D = V_{DD} \times I_{REF}$
 - \Rightarrow For minimum P_D , I_{REF} should be minimum
- ➤ Need to pick up a reference MOSFET to start the design process
- \triangleright Area of a MOSFET = W × L
- \succ For minimum area, W = L = MFS
 - MFS: Minimum Feature Size (that is allowed by the technology)
- Pick the *reference MOSFET* by choosing its (W/L) = 1, and having the *least* $V_{GT}^2 (1 + \lambda V_{DS})$

- \succ This will yield minimum P_D
- > Once the reference MOSFET is chosen, I_{REF} becomes known, and (W/L)s of all other MOSFETs can be calculated
- > Total area taken up by the circuit:

$$\sum_{n} (W \times L)_{n}$$

- > Care: No dimension can be < MFS
- \gt Then what to do if (W/L) < 1?