A
Algebraic lopology
Algebraic Topology Notes Juboyer Ibo Hamid
Umbayer Ibn Hamid

These notes are a combination of notes from Alby Hatcher's book
These notes are a combination of notes from Allen Hatcher's book "Algebraic Topology" and Prof. Ciprian Manolescu's lectures from MATH 215a at Stanford University.
MATH 215a at Stanford University.

Basic Constructions

Def: Homeomorphism

Let X and Y be topological spaces. $f: X \to Y$ is a homeomorphism if f is bijective and both f and f^{-1} are continuous. We say $X \cong Y$

Def: Homotopy

A family of maps, $f_t: X \to Y$ where $t \in I = [0,1]$ 5.t.

The associated map $F: X \times [0,1] \to Y$ given by $f(x,t) = f_t(x)$ is continuous.

The maps $f_0, f_1: X \to Y$ are homotopic if there exists

a homotopy $F: X \times [0,1] \to Y$ 5.t $f(x,0) = f_t(x)$ $\forall x \in X$

F(x, i) = f(x)we say $[f_0 \sim f_1]$

Del: Homotopy Equivalence

A map f: X -> Y is a homotopy equivalence if $\exists g: Y \rightarrow X$ s.t fog $\simeq id_Y$ and $g \circ f \simeq id_X$ [Ny say the spaces X and Y are homotopy equivalent

We say the spaces X and Y are homotopy equinclent

- can prove easily that this is an equivalence relation.

Examples of homotopy equivalence

(i)
$$\mathbb{R}^n \simeq a \text{ point}$$
 (even though $\mathbb{R}^n \not\equiv a \text{ point}$)

infinite finite

Why? $f: \mathbb{R}^{n} \longrightarrow \{0\}$ and take $g: \{c\}$

and take $g: \{c\} \rightarrow \mathbb{R}^n$ by g(o) = 0Then $f \circ g = id_{\{o\}}$ and $(g \circ f)(x) = 0$ $\forall x \in \mathbb{R}^n$ Now $g \circ f \sim id_{\mathbb{R}^n}$ by $f_{\{c\}}(x) = +\infty$ where $f_{\{c\}} = 0$ and $f_{\{c\}} = id_{\mathbb{R}^n}$

(2) $D^n : \{x \in \mathbb{R}^n \mid ||x|| \leq 1\} \cong a \text{ point}$ $B^n : \{x \in \mathbb{R}^n \mid ||x|| \leq 1\} \cong a \text{ point}$

Det: Contractive

We say the space X is contactible if $X \cong point$.

Let X be a space and let ACX.

then, a retraction is a map $r: X \longrightarrow X$ st

r(X) = A and $r|_{A} = id_{A}$.

Det: Deformation Retraction

A deformation retraction of X onto a subspace A is

a family of maps $f_t: X \to X$, with $t \in I$ set

 $f_0 = id\chi'$ and $f_1(X) = A$ and $f_{t|_A} = id_A$ for $\forall t \in I$.

The family f_{t} must also be continuous

an example of a homotop from id_{x} to a retraction of X onto ACX.

 \rightarrow in this case, $A \cong X$ as $f: A \to X$ by id_X

f.: X - A on above

the f.f. = idx

and fof = idA

Examples of deformation retraction:

(2) Look at deformations of

(3) $X = \mathbb{R}^2 - \{0\}$. A = S'

(he $f(x,t) = (1-t)x + t \frac{x}{\|x\|}$

Det! Mapping Cylinder ("the structure through which the det retraction occurs")
for a map $f: X \to Y$, the mapping cylinder M_f is the quotient space of the disjoint union $(X \times I) \coprod Y$ obtained by the agriculture $(x, 1) \in X \times I \sim f(x) \in Y$
quotient space of the disjoint union (X x I) II Y obtained by
the equivalence (x,1) E X x I ~ f(x) E Y
Make the endpoint of the deformation
Makee the endpoint of the deformation equivalent to the image. It the map.
Mapping aylinders are continuous.
Def: Homotopy relative to A (homotopy rel. A)
A homotopy fx: X -> Y whose restriction to a subspace
ACX is independent of L.
Def: Homotopy relative to A (homotopy rel. A) A homotopy $f_t: X \longrightarrow Y$ whose restriction to a subspace A C X is independent of it. In other words, f_t is a homotopy and $f_t _A$ is independent of t .
'/'
-> def. retraction of X anto A is a homotopy rel. A from
olaf. retraction of X anto A is a homotopy rel. A from id x to a retraction of X anto ACX.

Cell Complexes

5' x 8' can be constructed from the square

Generally, an orientable surface My of genns g can be constructed from a polygon of egg sides by dentifying pairs of edges.

2 all: interior of a polygon which is an open disk 1 cell: an open interval like (0,1)

3 all: an open boll.

n-cell: open-disk

	Det: Cell Complex (or CW complex)
	A space constructed as follows: (i) Start with discrete set X° - the points are D-cells
	(2) Industively, form the n-skeleton Xn from Xn-1
	by attaching n-cells en via maps
	by attaching n-cells e^n via maps $ \begin{array}{cccccccccccccccccccccccccccccccccc$
	\rightarrow 50, χ^n is the quotient space of $\chi^{n-1} \coprod_{\alpha} \mathbb{D}^n_{\alpha}$ under the equivalence $\chi \sim \mathcal{P}_{\alpha}(\chi) \ \forall \chi \in \partial \mathbb{D}^n_{\alpha}$ of $\chi^{n-1} \coprod_{\alpha} \mathbb{D}^n_{\alpha}$ under the equivalence $\chi \sim \mathcal{P}_{\alpha}(\chi) \ \forall \chi \in \partial \mathbb{D}^n_{\alpha}$
1	Xn-1 1 D? under the equivalence $x \sim P_{x}(x) \ \forall x \in \partial D^{n}$
-	& South To
	(n-1) skeleton n-disks
	ie attach boundaries of the n-disk
	to the (n-i) - skeleton
	×2 = ×2-1 La e a where e a is an
	$\frac{1}{x^2 - x^{n-1} \coprod_{\alpha} e^{\alpha}} $ where e^{α} is an open n -disk
	'
	(3) Fither Stop this induction at a finite stage
	and set $X = X^n$ for $n < \infty$
	or continue indefinitely, setting
	X = V X^
	in-Iluis case, X hou
	The weak topology:
	. 7
	ACX is open iff Anx
	is open in Xn for each n
	· ·

Examples of Cell Complexes:

- (1) 1-dimentional cell complex: X=X'
- (2) The sphere S^n has a cell complex with two cells, e^o and e^n where e^n is altached by $\varrho: S^{n-1} \to e^o$

.. S^n is being regarded as the quotient space $\mathbb{D}^n/\partial\mathbb{D}^n$

(3) Cell Complex of a torus

Step 1: X° is just of point -> .

Step 2: Attach two 1-cells to this

x' =

Step 3: Attach a disk bowday to X'.

Each cell ex in a cell complex X has a characteristic map $\frac{1}{4}: \mathbb{D}^n \longmapsto X$ which extends the attaching map la and is a homeomorphism from the interior of Da onto la - Id is the composition $D_{\alpha}^{n} \longrightarrow X^{n-1} \coprod_{\alpha} D_{\alpha}^{n} \longrightarrow X^{n} \longrightarrow X$ the quotient map that defines X^{n} (i) Recall: S^n can be constructed by two cells: e^o and e^n where e^n is attached to e^o by $\varphi: S^{n-1} \longrightarrow e^o$ Then, the characteristic non e^n Thun, the characteristic map of en is $\frac{\pi}{4}: \mathcal{D}_{\alpha}^{n} \longrightarrow \mathcal{S}^{n} \quad \text{which collapses } \partial \mathcal{D}_{\alpha}^{n} + \delta \in \mathbb{C}$

A subcomplex of a cell complex X is a closed subspace ACX that is a union of cells of X. -> As A is closed, for each all in A, the image of its attaching map I contained in A .'. A is a cell complex as well A all complex X and a subcomplex A -forms a pair (X,A) Frangk of subcomplex Fach skeledon, X^n , is a subcomplex. — in RP and CP, the only subcomplexes are RP and CPk, $\forall k \leq n$ Property of subcomplexes (i) Closure of a collection of cells is a subcomplex.

Operations on Spaces

QI. Products

X,Y → cell complexes

 $\times \times \Upsilon \rightarrow \text{cell complex with the cells } e^m \times e^n$ $\text{cells } e^m \times e^n$

Given (X, A) a CW pais, Protients

the quotient space X/A also has a cell complex structure: -> the cells of X/A are the cells of X-A and a new O-cell which is the image of A in X/A.

> \Rightarrow for a cell en of X-A attached by $\varphi_X: S^{n-1} \to X^{n-1}$, the attaching map for the corresponding cell in X/A is the composition $S^{n-1} \rightarrow X^{n-1} \rightarrow X^{n-1}/A^{n-1}$

Wedge Sum Given spaces X and Y with chosen points xo EX and yo EY, -Iw medge sum XVY ic - The quotient of X H Y by identifying Xo and yo to a stugle point

→ Éxample: S'VS' -

-> VXx for an arbitrary collection of spaces Xx: start with $\prod_{\alpha} \chi_{\alpha}$ and then identify $\chi_{\alpha} \in \chi_{\alpha}$ to one point.

If Xx are all complexes and the points xx are 0-cells, then $\sqrt{\chi}$ is a cell complex because us obtain it from the cell complex $H_{\alpha}X_{\alpha}$ and attach by For a cell complex X, the quotient X^n/X^{n-1} is a wedge sum of n-spheres V S^n with one sphere for each n-cell of X

Ju Smark Product

Javide the product space X x Y, there are copies of X and Y: X x {yo} and {xo} x Y for points yo t Y and xo EX.

Three copies of X and Y intersect only at (Xo, Yo) 50 their union can be identified with the wedge sum XXI

ie (x x {ro}) U({xo} x Y) = X v Y = (X IIY) / (xo~ Yo)

The smark product X ^ I is the quotient X * Y/X vY

(5 i.e we are collapsing away the separate
factors X and Y.

且	Supersion
	for a space X, the surgension 3X is
	for a space X . the surpension $3X$ is the quotient of $X \times I$ by collapsing $X \times \{0\}$ to a point and $X \times \{1\}$ to another.
	a point and X × {1} to another.
	-
	Example
	Example C) X = 5 ⁿ
	SX = Sn+1 with the two suspension points at Nosth and South of Sn+1
	and South of S