MATH2710 — Portfolio 4.1 - 7.1

Mike Medved

March 23rd, 2023

Mathematical Components

Lemma

Definition: A true and simple mathematical statement whose main purpose is to help a theorem.

Example: If x is a real number, then x^2 is a real number.

Theorem

Definition: A true mathematical statement of significant importance that has been proved to be true. **Example:** The Pythagorean Theorem is famous example of a theorem, it is shown below.

Corollary

Definition: A true mathematical statement that is an immediate consequence of a theorem or proposition. **Example:** Take the below theorem as an example. Below, you will see a corollary that is an immediate consequence of the theorem.

Theorem. If $\lim_{x\to\infty} f(x) = \ell$, then $\forall (a_n)m \geq 1, a_n \xrightarrow{n\to\infty} \infty, f(a_n) \xrightarrow{n\to\infty} \ell$.

Corollary. $\lim_{x\to\infty} sin(x)$ DNE.

Proof. We aim to prove the above corollary.

For
$$a_n = 2n\pi + \frac{\pi}{2} \to \infty$$
, we have $f(a_n) = 1 \xrightarrow{n \to \infty} 1$
For $b_n = 2n\pi - \frac{\pi}{2} \to \infty$, we have $f(a_n) = -1 \xrightarrow{n \to \infty} -1$

 $\xrightarrow{Theorem 1} sin(x)$ does not have a limit as $x \to \infty$.

Direct Proof

Outline

A direct proof for a statement $P \Rightarrow Q$ takes the following form:

- 1. Assume P is true, to prove: Q.
- 2. To prove: Q_1 .
- 3. ...
- 4. To prove Q_n .

In this way, Q will be transformed from $Q_1 \to Q_n$ through a series of logical implications.

Examples

Divisibility of Three Integers

Let $(a, b, c) \in \mathbb{Z}$, prove that if a|b and b|c, then a|c.

Reminder: a|b refers to the fact that $\exists n \in \mathbb{Z}, a \cdot n = b$.

Proof. We aim to prove that a divides c, thus: $\exists n \in \mathbb{Z}, a \cdot n = c$.

- 1. As a|b, we have $\exists p \in \mathbb{Z}, a \cdot p = b$
- 2. As b|c, we have $\exists m \in \mathbb{Z}, b \cdot m = c$

From (1) and (2) we get the following: $\exists p, m \in \mathbb{Z}, (a \cdot p) \cdot m = c$. As we already know that $a \cdot p = b$, we may rewrite the above with $a \cdot p = n \in \mathbb{Z}$.

Thus, we have found that $\exists n \in \mathbb{Z}, a \cdot n = c$.

Union of Two Bounded Sets

Let $A, B \subseteq \mathbb{R}$ be bounded sets, prove that $A \cup B$ is bounded.

Proof. As A, B are bounded, let's assume that $\exists m, \forall a \in A, m > a$. Similarly, let's assume that $\exists n, \forall b \in B, n > b$. From this, we can say that $k = \max(m, n)$, which means $\forall (a, b), k > a, k > b$. This means k upper-bounds both A and B.

As k upper-bounds both A and B, we can say that $A \cup B$ is bounded.

Proof by Contrapositive

Outline

A proof by contrapositive of a statement $P \Rightarrow Q$ is the direct proof of $\neg Q \Rightarrow \neg P$. Thus, the proof by contrapositive takes the following form:

- 1. Assume $\neg Q$ is true, to prove: $\neg P$.
- 2. Translate $(\neg P)_1 \to (\neg P)_n$.
- 3. Assume $\neg Q$, using logical implications show $(\neg P)_n$ is true.

Examples

Perfect Squares

Let $n \in \mathbb{N}$, prove that if n is $M_4 + 2$ or n is $M_4 + 3$, then n is not a perfect square.

Definition 1. A perfect square k is an integer k such that $\exists n \in \mathbb{N}, n^2 = k$.

Definition 2. a|b is equivalent to $\exists q \in \mathbb{Z}, b = aq$

Proof. Assume n is a perfect square, to prove: n is not $M_4 + 2$ and n is not $M_4 + 3$.

1. Case. $n ext{ is a } M_4 + 2$

Then, n = 4k + 2 for some integer k. We can rewrite n as n = 2(2k + 1).

Notice that 2k + 1 is an odd integer. We know that the square of an odd integer is always odd, so let 2k + 1 = 2m + 1 for some integer m. Then, n = 2(2m + 1).

We can see that n has a factor of 2 raised to the power of 1, but no other factors of 2 in its prime factorization. Therefore, n cannot be a perfect square.

2. **Case.** $n ext{ is a } M_4 + 3$

Then, n = 4k + 3 for some integer k. We can rewrite n as n = 1 + 4k + 2.

Using the same logic as in Case 1, we can see that n has a factor of 2 raised to the power of 1, but no other factors of 2 in its prime factorization. Therefore, n cannot be a perfect square.

Therefore, if n is a $M_4 + 2$ or $M_4 + 3$, then n is not a perfect square.

Divisibility of Two Integers

Let $x, y \in \mathbb{Z}$, prove that if $\neg(xy|11)$, then $\neg(x|11)$ and $\neg(y|11)$.

Proof. Assume xy|11, to prove: x|11 or y|11.

- 1. Case. If $x = 11c, c \in \mathbb{Z}$, then xy = 11cy, thus xy|11.
- 2. Case. If $y = 11d, d \in \mathbb{Z}$, then xy = 11xd, thus xy|11.

Clarity

Proof by Contradiction

Contradiction of P

A proof by contradiction on a statement of type P is the direct proof of $\neg P \Rightarrow c$ for some initially unknown contradiction c. Thus, the proof by contradiction on P takes the following form:

- 1. To prove: P.
- 2. To prove: $\neg P \Rightarrow c$.
- 3. Assume $\neg P$, translate $(\neg P)_1 \rightarrow (\neg P)_n$ until you arrive at c.

Examples

Irrationality of $\sqrt{5}$

Proof. Assume absurdly that $\sqrt{5}$ is rational. $q \in \mathbb{Q}$ take the form $\frac{a}{b}, (a, b) \in \mathbb{Z}, b \neq 0$. Thus, $\sqrt{5} = \frac{a}{b}$ for some $a, b \in \mathbb{Z}, b \neq 0$. We can then square both sides, giving us: $\frac{a^2}{b^2} = 5$. Further, we are able to multiply both sides by y^2 to isolate $x^2, 5y^2 = x^2$.

Since $5y^2=x^2$, they must have the same number of prime factors. This shows that both x^2, y^2 have an even number of prime factors, and $5y^2$ has an odd number of prime factors. This is a contradiction, as $5y^2=x^2$, yet they have a different amount of prime factors. Thus, our assumption was invalidated, and $\sqrt{5}$ is irrational.

Finding $x, y \in \mathbb{Z}$ for $x^2 + 3y^2 = n$

Let n be an even integer that is not M_4 , prove by contradiction that we cannot find $x, y \in \mathbb{Z}$ such that $x^2 + 3y^2 = n$.

Proof. Assume absurdly that for some $n \in \mathbb{Z}$, $n \in M_4$, $\exists (x,y) \in \mathbb{Z}$, $x^2 + 3y^2 = n$. Since n is M_4 , we can write n = 4k for some $k \in \mathbb{Z}$. Thus, $x^2 + 3y^2 = 4k$, and $x^2 + 3y^2 = 4k + 1$, and $x^2 + 3y^2 = 4k + 2$, and $x^2 + 3y^2 = 4k + 3$. Thus, $x^2 + 3y^2$ is congruent to 0, 1, 2, 3 modulo 4. This is a contradiction, as $x^2 + 3y^2$ is congruent to 0, 1, 2, 3 modulo 4, yet n is M_4 . Thus, our assumption was invalidated, and we cannot find $x, y \in \mathbb{Z}$ such that $x^2 + 3y^2 = n$.

Contradiction of $P \Rightarrow Q$

A proof by contradiction on a statement of type $P \Rightarrow Q$ is the direct proof of $\neg (P \Rightarrow Q) \Rightarrow c$ for some initially unknown contradiction c. Thus, the proof by contradiction on $P \Rightarrow Q$ takes the following form:

- 1. To prove: $P \Rightarrow Q$.
- 2. To prove: $\neg (P \Rightarrow Q) \Rightarrow c$.
- 3. To prove: $(P \wedge (\neg Q)) \Rightarrow c$.
- 4. Assume $P \wedge (\neg Q)$, translate through logical implications until c is discovered.

Similarities with Proof by Contrapositive

One similarity between the Proof by Contradiction of $P \Rightarrow Q$ and that of the Proof by Contrapositive is that we assume $\neg Q$ in both proofs.

Differences with Proof by Contrapositive

One difference between the Proof by Contradiction of $P \Rightarrow Q$ and that of the Proof by Contrapositive is that prove $\neg P$ in the contrapositive proof, whereas in the contradiction proof we prove a contradiction c.

Biconditionality

Ways to Read

- 1. $P \Leftrightarrow Q$ can be read as "P if and only if Q".
- 2. $P \Leftrightarrow Q$ can be read as "P is a necessary and sufficient condition for Q".
- 3. $P \Leftrightarrow Q$ can be read as "P is equivalent to Q".

Outline

Use any means necessary to prove the below statements.

- 1. To prove: $P \Rightarrow Q$.
- 2. To prove: $Q \Rightarrow P$.

Example 1

Let $x, y \in \mathbb{Z}$, prove that $4|x^2 - y^2|$ iff x, y have the same parity.

Proof. First, we must prove $P \Rightarrow Q$. That is, that assuming $4|x^2 - y^2$, we can conclude that x, y have the same parity.

Assume $4|x^2-y^2$, then $x^2-y^2=4k$ for some $k \in \mathbb{Z}$. Thus, $x^2=4k+y^2$ or $y^2=4k+x^2$. Since x^2,y^2 are both even, they must both be congruent to 0 modulo 4. Thus, $x^2=4k+y^2$ or $y^2=4k+x^2$ implies that x^2,y^2 are both congruent to 0 modulo 4. Thus, x,y have the same parity.

Now, we must prove the converse, that $Q \Rightarrow P$. That is, that assuming x, y have the same parity, we can conclude that $4|x^2 - y^2$.

Assume x, y have the same parity. Since x, y have the same parity, they must both be even or both be odd. Thus, x^2, y^2 are both even or both odd. Since x^2, y^2 are both even or both odd, they must both be congruent to 0 modulo 4. Thus, $x^2 = 4k + y^2$ or $y^2 = 4k + x^2$ implies that x^2, y^2 are both congruent to 0 modulo 4. Thus, $x^2 - y^2 = 4k$ for some $k \in \mathbb{Z}$, and $4|x^2 - y^2$.

Example 2

Let $x, y \in \mathbb{Z}$, prove that $x^2 = y^2$ iff x = y or x = -y.

Proof. In the case of this proof, we are able to immediately show that the inequality holds for both x=y and x=-y since $|x|=|y| \Leftrightarrow x=\pm y$. Thus, we do not need to evaluate both $P\Rightarrow Q$ and $Q\Rightarrow P$ explicitly. \square