Especificación de las Máquinas de Turing

Teoría de la Computación Universidad ORT Uruguay

Otoño 2024

Componentes.

Memoria:

Es una cinta infinita, dividida en casilleros, cada uno de los cuales está ocupado por un símbolo. Los símbolos conforman un alfabeto finito \sum que incluye al menos dos símbolos, uno de los cuales es distinguido, será representado #, y denominado blanco. En cada momento de la ejecución de una máquina la cinta contendrá un número finito de símbolos distintos de #.

Para saber en que posición de la cinta nos encontramos, contamos con un *cabezal lector*. El símbolo que se encuentra bajo el cabezal lector se le puede llamar símbolo *corriente*.

Control:

El control de ejecución está dado por una **tabla** cuyas *claves* son parejas formadas por un *estado* y un símbolo del alfabeto, y cuyos datos asociados también son parejas, formadas por una acción y un estado.

Los estados constituyen un conjunto finito de Q que contiene dos elementos distinguidos i (**init**) y h (**halt**), llamados respectivamente el estado inicial y el estado terminal de la máquina. El estado terminal no forma parte de ninguna clave de la tabla.

Las acciones son las siguientes: (σ, l) , (σ, r) y (σ, d) donde σ es cualquier símbolo, con los siguientes significados respectivos:

- Sobreescribir el símbolo corriente por σ y mover el cabezal lector a la izquierda.
- Sobreescribir el símbolo corriente por σ y mover el cabezal lector a la derecha.
- Sobreescribir el símbolo corriente por σ y dejar el cabezal lector sobre el símbolo escrito.

Operación.

Configuraciones:

Llamamos configuración de una máquina de Turing a a una pareja formada por un estado y una cinta (con cierto contenido). La idea es que, dada una configuración y la tabla de control queda determinada la operación a realizar y el nuevo estado al que pasa la máquina. Cada máquina comenzará en el estado **init** y un cierto contenido (inicial) de la cinta y cambiará sucesivamente de configuración, de acuerdo a la función step que presentamos aquí debajo.

Notación:

En la función step, la notación a usar para denotar el contenido de la cinta es de las letras x, y, s, σ para símbolos y la notación de vector usual para las secuencias de símbolos (Por ej: \overline{xs}). El símbolo corriente (donde se encuentra el cabezal lector) aparecerá subrayado (Por ej: \underline{s}). Los estados serán denotados por q, q. Una transición (paso) entre una configuracion γ y otra δ será notada $\gamma \rhd \delta$. Por otro lado, la tabla de control (programa) de la máquina será llamada T y la operación de lookup sobre ella será notada como $\stackrel{T}{\mapsto}$.

Step:

$$left \xrightarrow{(q,s)} \xrightarrow{T} ((\sigma,l), q')$$

$$(q, \overline{ys} \ y \ \underline{s} \ \overline{xs}) \ \triangleright \ (q', \overline{ys} \ \underline{y} \ \sigma \ \overline{xs})$$

$$right \xrightarrow{(q,s)} \xrightarrow{T} ((\sigma,r), q')$$

$$(q, \overline{ys} \ \underline{s} \ x \ \overline{xs}) \ \triangleright \ (q', \overline{ys} \ \sigma \ \underline{x} \ \overline{xs})$$

$$defer \xrightarrow{(q,s)} \xrightarrow{T} ((\sigma,d), q')$$

$$(q, \overline{ys} \ \underline{s} \ \overline{xs}) \ \triangleright \ (q', \overline{ys} \ \underline{\sigma} \ \overline{xs})$$

Por último nos falta mencionar como sería la ejecución de una máquina de Turing. La ejecución completa es una secuencia de transiciones o pasos (steps) que comienza con una configuración donde el estado es **init**. Esta ejecución, si es finita y exitosa, es una que finaliza con una configuración cuyo estado es **halt**. Si un lookup falla durante la ejecución la misma se detendrá.