Radioactivity Group Meeting 29 March 2007

The State of the SRM Program

(and what we've been doing)

Featuring:

Ron Collé

Lizbeth Laureano-Perez

We are **COORDINATORS** of program – not sole workers!

LiZBETH

Handles all administrative functions
Performs most labwork / data analyses

Learning design

Me

train / teach
make decisions / deal with bosses
enlist help / encourage others
think great thoughts / devil's advocacy
do some labwork / data analyses

Group (worker-bee) participation Activities 55Fe SRM + BIPM intercomparison (link to calorimetry) 209Po / 210Pb problems 209Po half-life (Poland, France, NIST?) 63Ni standardization & half-life --38 years (LNHB) calorimetry / 14C half-life / (Columbia Univ.) Si(Li) x-ray detection

Liz

```
Status of SRM Program

paperwork + technical

Activities

re-certifications (w & w/o meas.)

new SRMS of others [nat'l matrix (2); <sup>226</sup>Ra-Rn (6)]

new SRMs

60Co & <sup>137</sup>Cs

55Fe & <sup>210</sup>Pb

166mHo

90Sr (2)

ongoing & future SRMs

measurement comparison compilations
```

SRM Sales

The State of the SRM Program

Vastly improved – Now Good – slowly getting Great

NEI & Nat'l Matrix programs work - DFWI

Improved relations with SRM office

Paperwork moves fast now

More cooperation in Group (members now involved)

Vast productivity increases

Revised certificate

Increasing scientific / metrology rigor

worker bees who have helped

```
Dan & Ophelia (NEI program + production help)
Brian (TDCR +.....
Ryan .....
Ken's empire
    lisa (LS + Po)
    Svetlana (LS)
    Jerry (228Ra sooooooooon)
Peter (Ra & Rn)
Leticia (166mHo)
Michelle (LS + impurities)
Bruce ......
```

Fe

Calorimetry

13 independent determinations

LS intercomparisons

776 activity ratios; variables include:

- 3 counters
- 3 scintillators
- 44 matched cocktails
- 4 distinct aq. fraction (+Fe) compositions
- 2 NIST solution dilutions
- 97 days of aging

BIPM

cal soln S

 $T_0 = 30 \text{ november } 2005$

522.6 kBq/g

$$U(k=1) = 0.66 \%$$

 $T_0 = 1$ july 2004

78.78 kBq/g

SRM 4929F

 $T_0 = 30 \text{ november } 2005$

58.43 kBq/g

$$U(k=2) = 1.7 \%$$

Item	Uncertainty component	Assessment Type	Relative standard uncertainty contribution on massic activity of 55Fe (%)	
1	LS measurement precision; reproducibility in			
	activity ratio w/ 44 ⁺ sets of cocktails of matched			
	composition; std. dev mean for $v = 765$ degrees	A	0.26	
	freedom (passes Normal test)			
2	LS cocktail stability and composition mismatch			
	effects; std dev mean for v_{eff} =11 effective			
	degrees freedom (3 scintillants; 4 aqueous	A	0.47	
	fractions; 2 dilutions); passes Normal test			
3	Background LS measurement variability;	A		
	wholly embodied in items 1 & 2			
4	LS counter (energy threshold) dependencies	A	0.06	
5	Scintillator dependencies; wholly embodied in	A		
	items 1 & 2			
6	Gravimetric (mass) measurements for LS	В	0.05	
	sources			
7	Gravimetric (mass) measurements for dilutions	В	0.07	
8	Livetime determinations for LS counting time	В	0.06	
	intervals; includes uncorrected deadtime effects			
9	Decay corrections for 55Fe (assumed half-life	В	0.012	
	unc.)			
10	Limit for photon-emitting impurities	В	0.11	
11	Calorimetric primary standardization of NIST	В	0.39	
	55Fe solutiuons (see ATTACHMENT # 6)			
	COMBINED STANDARD UNCERTAINT	TY.	0.68	

NIST Uncertainty Analysis for ⁵⁵Fe Massic Activity for the BIPM International Intercomarison

Uncertainty for the ⁵⁵Fe SRM is comparable;

$$U (k=2) = 1.7 \%$$

Results (without the outlier value)

International comparison of activity measurements of a solution of ⁵⁵Fe Preliminary results; January 2007

Laboratory

²⁰⁹Po and ²¹⁰Pb problems

World needs a Po tracer standard!

²¹⁰Po

0.4 a

5.3 MeV α

²⁰⁸Po

2.9 a

5.1 MeV α

²⁰⁹Po

102 a

4.9 MeV α + junk

Fig. 2. Partial decay scheme for the 219 Po alpha and electron capture branch decays.

Fig. 6. Comparison of the 209Po LS spectra obtained with the

1995

Fig. 12. LS counting rate concentrations $R_{\alpha e}$ and R_{α} as a function of m_s (analogous to that of Fig. 11) as obtained with the Packard instrument.

Fig. 11. LS counting rate concentrations $R_{\alpha e}$ (closed triangles) and R_{α} (closed circles) obtained with the Beckman instrument for the N series samples as a function of m, (and sample quenching). The solid lines are linear regressions fitted to the data.

Same in 2005

Fig. 13. LS counting rate concentrations $R_{\alpha e}$ and R_{α} obtained with the two LS systems for the P and Q series samples in 1994. Closed squares ($R_{\alpha e}$) and open squares (R_{α}) represent the mean values for samples Q5 through Q8 with the Packard; closed and open triangles represent $R_{\alpha e}$ and R_{α} , respectively, for samples P1 through P5 with the Packard; closed and open triangles ($R_{\alpha e}$ and R_{α}) are for samples Q1 through Q4 with the Beckman; and closed and open circles ($R_{\alpha e}$ and R_{α}) are for samples P1 through P5 with the Beckman. Each plotted value corresponds to the mean of 5 to 18 replicate measurements on each sample. The error bars represent standard deviation uncertainty intervals on the means. The solid lines are unweighted linear fits to the data. Although the $R_{\alpha e}$ values vary with the instrument used to perform the measurements (Packard or Beckman) and with sample compositions, all of the R_{α} values are statistically equivalent and invariant.

15 march 1994
$$R_{\alpha} = (85.42 \pm 0.18) \text{ s}^{-1}\text{g}^{-1}$$

15 November 2005
$$R_{\alpha} = (80.20 \pm 0.22) \text{ s-1g-1}$$

2 point fit gives

$$T_{1/2} = 128 \text{ a}$$

$$U = 5.5 \% (7 a)$$

Not considered a new determination

²⁰⁹Po half-life in error by 25 %!!

Result supported by work on ²¹⁰Pb – next story

Collé, Laureano, Outola, Appl. Radiat. Isot. In press

New determination urgently needed

$$\frac{A/N = \lambda}{\frac{(link)}{}}$$

Collaboration with Polish Academy of Sciences labs
Institute of Nuclear Physics (Krakow)
Institute of Geological Sciences (Warsaw)
not going well ...

210Pb

LS results (CN2003 code)

Pb-210

Series	Average	sd (%)	Normal	nc	ns	Counter	Scint	Age start	Age end	f _{H2O}	ε _{H-3}
	9037.397	0.029	Υ	3	11	Packard	HS	0.21	2.12		
	9043.779	0.008	Υ	3	11	Beckman	HS	2.95	4.65	1	
	9041.030	0.014	Υ	3	11	Wallac	HS	10.76	12.4	0.1	0.36-0.30
1	9030.169	0.021	Y*	3	11	Packard	HS	13	14.9	1	
- 1	9030.377	0.017	Y*	5	11	Packard	HS	17.22	20.46	1	
	9046.129	0.007	Y*	3	11	Wallac	HS	26.93	28.57	1	
	9034.269	0.031	N	5	7	Packard	PCS	0.11	4.06	0.01	
	9035.597	0.035	Υ	5	7	Packard	PCS	0.11	4.06	0.04	1
2	9039.466	0.027	N	3	7	Wallac	PCS	4.78	6.91	0.01	1
	9044.048	0.014	Υ	3	7	Wallac	PCS	4.78	6.91	0.04	0.40-0.22
	9040.539	0.026	no	3	7	Beckman	PCS	10.74	12.83	0.01	
	9041.935	0.026	yes	3	7	Beckman	PCS	10.74	12.83	0.04	
	9032.072	0.056	no	5	7	Packard	PCS	14.17	18.6	0.01	
	9026.263	0.034	yes	5	7	Packard	PCS	14.17	18.6	0.04	

* Data normal after removing sample with unstable cocktail

436 determinations

Series	Average	SD	SD (%)	Normal
1	9038.147	6.7577	0.07477	Yes
2	9036.774	5.8702	0.06496	Yes
Total	9037.362	6.0511	0.06696	Yes

CN2003 vs EFFY4 code differences

(just Beta efficiency part)

EFFY 4 CN 2003

Corne A

differences not due to spectra

CN2003 vs EFFY4 code differences – due to assumed Quench function

²¹⁰Pb massic activity results

	kBq/g (k = 2)	diff from LS	
LS (CN2003)	9.037 ± 2.4 %		
γ-spect (HPGe)	9.46 ± 8.3 %	+ 4.7 %	Big unc. if don't use ²¹⁰ Pb γ std
4πβ(LS)-γ(NaI) anticoincidence (attempt)	9.10 ± 3.3 %	+ 0.7 %	might be wishful thinking
α -spect	8.77	- 3.0 %	$T_{1/2} = 102 \text{ a}$
(Po tracer)	± 1 %		
	8.92	- 1.3 %	$T_{1/2}$ = 128 a

Relatively large 2.4 % uncertainty because of

- (1) LS cocktail composition effects
- (2) tracing code differences & assumptions,
- (3) lack of good confirmatory measurements,

63Ni

38 years of ⁶³Ni results

Specific activity determination (Barnes, et al. 1971) = (101.2 ± 2.0) a.

Decay value from data up to $1995 = (101.1 \pm 2.0)$ a.

Fitted values for the ⁶³Ni half-life as obtained from weighted nonlinear regressions

Data set used for fit	v	T _{1/2} / a	goodness of fit
All six values	4	100.7 ± 1.3	0.65
excludes 1984 CNET value	3	100.9 ± 1.4	0.70
excludes both 1984 & 1995 CNET values	2	100.9 ± 1.8	0.85
Excludes all three CNET values	1	101.2 ± 1.5	0.70

T1/2 (present determination) = (101.2 ± 1.5) a,

 $T_{1/2}$ (recommended) = (101.2 ± 1.2) a.

55Fe SRM + BIPM intercomparison (link to calorimetry)

209Po / 210Pb problems

209Po half-life (Poland, France, NIST?)

63Ni standardization & half-life --38 years (LNHB)

calorimetry / 14C half-life / (Columbia Univ.)

Si(Li) x-ray detection

LIZBETH

SRMs to Stock

	Year	NE I	Rewritten (w/o meas)	Recertifie d (w/meas)	New (others)	New (SRM)
z.	2002	9	0	0	0	0
Old Era	2003	9	0	0	0	232U
	2004	9	³ H (2)	0	0	²²⁶ Ra
	2005	9	0	0	0	0
New Era	2005	9	⁶³ Ni	²⁴³ Am, ²⁰⁹ Po	²²⁶ Ra/ ²²² Rn (4)	⁶⁰ Co ¹³⁷ Cs
New	2006	9	Pu , ²⁴⁴ Cm, ¹³³ Ba, ¹²⁹ I	(⁶³ Ni)	Seaweed	⁵⁵ Fe, ^{166m} Ho, ²¹⁰ Pb
	2007	2	³ H (3), ²²⁶ Ra	0	Rocky Flats	
	to		Natural		#2	
	date		Uranium		²²⁶ Ra (2)	⁹⁰ Sr (2)

60Co

- 48 ampoules prepared in 2003
- Ion Chamber "A" measurements in 2004

- Ion Chamber "A" measurements in 2005
 - Two occasions
- Data reconciliation
- Certified

137**C**S

- 100 ampoules prepared in 2000
- Ion Chamber "A" measurements in 2001
 - 4 occasions
- Data reconciliation for 2001 measurements in 2005
- Re-measurement in Ion Chamber "A" in 2005
- Data Reconciliation
- Certified

⁵⁵Fe and ²¹⁰Pb

⁵⁵Fe

- Master and ampoules prepared in 2005
- LS measurements
- Intercomparison
- Certified

²¹⁰Pb

- Ampoules prepared in 1999
- LS measurements in 2006
- Certified

^{166m}Ho

- 226 ampoules prepared in 1997
- IC measurements in 1997

- High resolution gamma-ray spectrometry
 - gamma-ray emission rates
- IC Measurements in 2006 for confirmation
 - (based on K-value from Lucas with Nal total γ)
- Data reconciliation
- Certified

Sr-90 History

90**S**r

Two activity levels

- High- LS CNET
 - 294 activity determinations, variables include
 - 7 samples
 - 3 counters (one to two occasions)
 - 3 to 5 cycles
 - 3 cocktails composition
 - 15 day aging
- Low
 - 6 activity ratios for dilution confirmation

Recent Comparison of Primary Methods

Nuclide	Methods	% Difference
	TDCR (LNHB)	-0.31%
⁶³ Ni	TDCR (BEZ)	1
	CNET	-0.77%*
⁹⁰ Sr	TDCR (BEZ)	1
	CNET	+0.09%
²¹⁰ Pb	CNET	1
	Anticoincidence $\beta(LS)-\gamma(NaI)$	+0.7%
²⁴¹ Pu	TDCR (BEZ)	Coming
	CNET	
²⁴¹ Am	CNET	Coming
	Anticoincidence β(LS)-γ(NaI)	

^{*} was +0.16% from certificate

Working on...

²³⁰ Th (ampoules prepared)
²⁴¹ Pu (material at hand)
²⁴¹ Am (material at hand)
²⁴² Pu (buy back & dilute)
²²⁸ Ra -Jerry

Next

²⁰⁹ Po
⁶³ Ni
⁹⁹ Tc

Later

Lawi
²⁴⁴ Cm
²²⁹ Th

Projected Out of Stock

110	Jeered Out of	DIUCK
SRM	Name	Status
4353	Rocky Flats Soil #2	Out of Stock
4342	Thorium-230	Out of Stock
4340A	Plutonium-241	Out of Stock
4322B	Americium-241	Out of Stock
4326	Polonium-209	Out of Stock
4339A	Radium-228	Out of Stock
4320A	Curium-244	Out of Stock
4328B	Thorium-229	Out of Stock
4355	Peruvian Soil Powder	Out of Stock
4332D	Americium-243	Jun-07
4966	Radium-226	Sep-07
4357	Ocean Sediment	Jan-08
4218F	Europium-152 PS	Mar-08
4341	Neptunium-237	May-08
4927F	Hydrogen-3	Jul-08
4973	Radon-222 Emanation std	Aug-08
4354	Lake Sediment	Nov-08
4325	Beryllium-10/9	Jan-09
4334H	Plutonium-242	Mar-09
4926E	Hydrogen-3	Apr-09
4226C	Nickel-63	Jun-09
4974	Radon-222 Emanation std	Jun-09
4990C	Oxalic Acid	Jan-10
4350B	River Sediment	May-10
4943	Chlorine-36	May-10
4361C	Hydrogen-3	Jun-10
4949C	lodine-129	Sep-10

Projected Out of Stock

4222C	Carbon-14 (as hexadecane)	Jan-11
4965	Radium-226	Mar-11
4947C	Hydrogen-3 (Toluene)	Jul-11
4321C	Natural Uranium	Aug-11
4929F	Iron-55	Nov-11
4324B	Uranium-232	Dec-11
4967A	Radium-226	Feb-12
4251C	Barium-133	Mar-12
4323B	Plutonium-238	Jun-12
4338A	Plutonium-240	Nov-12
4972	Radon-222 Emanation std	Jan-14
4241C	Barium-133 PS	Mar-14
4329	Curium-243	Mar-14
4330B	Plutonium-239	Mar-14
4351 Human Lung		Nov-14
4233E	Cesium-137	Dec-18
4971	Radon-222	Sep-19
4370C	Europium-152	Apr-23
4356	Ashed Bone	Jan-24
4352	Human Liver	Dec-24
4969	Radium-226	Feb-27
4201B	Niobium-94	Apr-51
4274	Holmium-166m	N/A
4337	Lead-210	N/A
4359	Seaweed	N/A

SRMs Sale History

March 9

	FY01	FY02	FY03	FY04	FY05	FY06	YTD
Total	554	492	483	528	482	424	177
NEI	135	136	107	123	116	109	42
Natural Matrix	57	18	60	88	62	36	7
SRM Program	362	338	316	317	304	279	128

Must think about NOW

3 H

SRM Number	Out of Stock	Activity Level	Volume/ Container
4927F	July 2008	600 kBq•g ⁻¹	5-mL ampoule
4926E	April 2009	5 kBq•g ⁻¹	20-mL septum vial
4361C	June 2010	2 Bq•g ⁻¹	500-mL bottle

Who? When? What plan?

3H plans!

Ampoules

Jupitor balance

Chemicals in attic (who responsible)

```
Prep. Help – 242Pu re-do (dispense & sealing)
241Pu (ophelia + dan prep)
241Am (ophelia + dan prep)
228Ra (jerry chem)
229Th (ken....)
```

Calib. Help – 241Pu (brian) 241Am (ryan)