Universidad Industrial de Santander Numerical Analysis Department of Computer Science PhD. Henry Arguello Fuentes

Undergraduate Students

Homework #4

Interpolation and Polynomial Approximation / Curve Fitting

DATE: 15th July 2020 DUE: **2nd August 2020**

Name	e:Scholar ID:
	1 Indications
	Answers with no process are not valid . Make all calculations with 5 decimal places of precision.
	2 Interpolation and Polynomial Approximation
1.	(0.6 points) Find the Taylor polynomial of degree $N=4$ and $N=6$ for $f(x)=e^{-x^2/2}$ about $x_0=0$ Process:
	$\mathbf{P_4}(\mathbf{x}) =$
	$\mathbf{P_6}(\mathbf{x}) =$
2.	(0.6 points) Find the Taylor polynomial of degree $N=5$ for $f(x)=(3+x)^{1/2}$ about $x_0=3$, and use it to find approximation to $f=4^{1/2}$.
	Process:

${f P_5(x)}=$	
$4^{1/2} =$	

- 3. (0.6 points) Compute the divided difference table for each tabulated function.
 - a) $f(x) = (x+1)^{1/2}$

k	x_k	$f(x_k)$
0	8.0	3.00000
1	9.0	3.16227
2	10.0	3.31662
3	11.0	3.46410
4	12.0	3.60555

b) $f(x) = 7.8/x^2$

k	x_k	$f(x_k)$
0	6.0	0.21666
1	7.0	0.15918
2	8.0	0.12187
3	9.0	0.09629
4	10.0	0.07800

 $f(x) = (x+1)^{1/2}$

x_k	$f(x_k)$	1st divided difference	2nd divided difference	3th divided difference	4th divided difference
$x_0 =$					
$x_1 =$					
$x_2 =$					
$x_3 =$					
$x_4 =$					

 $f(x) = 7.8/x^2$

f(x) = 1.0/x					
x_k	$f(x_k)$	1st divided	2nd divided	3th divided	4th divided
		difference	difference	difference	difference
$x_0 =$					
$x_1 =$					
$x_2 =$					
$x_3 =$					
$x_A =$					

- 4. (0.6 points) Write down the Newton polynomial $P_1(x), P_2(x)$ and $P_3(x)$ for each function in Exercise 3.
 - a) $f(x) = (x+1)^{1/2}$

l)	$f(x) = (x+1)^{-\gamma}$
	$\mathbf{P_1}(\mathbf{x}) =$
	${f P_2(x)}=$
	${f P_3(x)}=$

b) $f(x) = 7.8/x^2$

$\mathbf{P_1}(\mathbf{x}) =$	
$\mathbf{P_2}(\mathbf{x}) =$	
${f P_3(x)}=$	

Process:		
$oxed{\mathbf{L_{1,0}}}=$	$\mathbf{L_{1,1}} =$	
$P_1(x) =$	$P_1(8.4) =$	
$\mathbf{L_{2,0}} =$	$\mathbf{L_{2,1}} =$	
$oxed{\mathbf{L_{2,2}}}=$	$P_2(8.4) =$	
$P_2(x) =$		
${f L_{3,0}}=$		
13,0 =		
$oxed{\mathbf{L_{3,1}}}=$		
$\mathbf{L_{3,2}}=$		
$\mathbf{L_{3,3}} =$		

b) $\mathbf{f}(-\frac{1}{3})$, if f(-0.75) = -0.0718125, f(-0.5) = -0.02475000, f(-0.25) = 0.33493750, f(0) = 1.10100000. Specify each Lagrange multiplier.

Process:	
$\mathbf{L_{1,0}}=$	$\mathbf{L_{1,1}} =$
$P_1(x) =$	$P_1(-\frac{1}{3}) =$
$\mathbf{L_{2,0}}=$	$\mathbf{L_{2,1}} =$
$\mathbf{L_{2,2}} =$	$P_2(-\frac{1}{3}) =$
$P_2(x) =$	
$\mathbf{L_{3,0}}=$	
$\mathbf{L_{3,1}} =$	
$\mathbf{L_{3,2}} =$	
$\mathbf{L_{3,3}}=$	
$P_3(x) =$	
$P_3(-\frac{1}{3}) =$	

Process:	
$\mathbf{L_{1,0}}=$	$\mathbf{L_{1,1}} =$
$P_1(x) =$	$P_1(0.25) =$
$\mathbf{L_{2,0}}=$	$\mathbf{L_{2,1}}=$
$\mathbf{L_{2,2}} =$	$P_2(0.25) =$
$P_2(x) =$	
$\mathbf{L_{3,0}}=$	
$\mathbf{L_{3,1}}=$	
$\mathbf{L_{3,2}} =$	
$\mathbf{L_{3,3}}=$	
$P_3(x) =$	
$P_3(0.25) =$	

c) $\mathbf{f(0.25)}$, if f(0.1)=0.62049958, f(0.2)=-0.28395668, f(0.3)=0.00660095, f(0.4)=0.24842440. Specify each Lagrange multiplier.

 $\mathbf{d)} \ \ \mathbf{f(0.9)}, \ \text{if} \ f(0.6) = -0.17694460, \ f(0.7) = 0.01375227, \\ f(0.8) = 0.22363362, \\ f(1.0) = 0.65809197.$ Specify each Lagrange multiplier. Process: $\mathbf{L_{1,0}} =$ $\mathbf{L_{1,1}} =$ $P_1(0.9) =$ $P_1(x) =$ $\mathbf{L_{2,0}} =$ $\mathbf{L_{2,1}} =$ $P_2(0.9) =$ $\mathbf{L_{2,2}} =$ $P_2(x) =$ $\mathbf{L_{3,0}} =$ $\mathbf{L_{3,1}} =$ $\mathbf{L_{3,2}} =$ $\mathbf{L_{3,3}} =$ $P_3(x) =$

 $P_3(0.9) =$

	points) Use the Lagrange polynomial error formula to find an error bound for the approximations in cise 5.
a)	f(8.4)
	$\mathbf{E_1}(\mathbf{x}) =$
	$\mathbf{E_2}(\mathbf{x}) =$
	$\mathbf{E_3}(\mathbf{x}) =$
b)	$f(-\frac{1}{3})$
	$\mathbf{E_1}(\mathbf{x}) =$
	$\mathbf{E_2}(\mathbf{x}) =$
	$\mathbf{E_3}(\mathbf{x}) =$
c)	f(0.25)
	$\mathbf{E_1}(\mathbf{x}) =$
	$\mathbf{E_2}(\mathbf{x}) =$
	${f E_3(x)}=$
d)	f(0.9)
	$\mathbf{E_1}(\mathbf{x}) =$
	$\mathbf{E_2}(\mathbf{x}) =$
	$\mathbf{E_3}(\mathbf{x}) =$

3 Curve Fitting

1. (0.4 points) Find the power fitting for y=A/x and $y=B/x^2$ using the following data. Use the $E_2(y)$ error to determine which one of the curves present a better fitting to the data.

	$g\kappa$	1.1	7.7	0.2	1.0	0.0	
	Process:						
	A =			$E_2(y) =$			
-	B =			$E_2(y) =$			
							1
)	x_k	0.7	0.9	1.1	1.6	3.0	
	y_k	8.1	4.9	3.3	1.6	0.5	

y_k	8.1	4.9	3.3	1.6	0.5	
Process:						
			E (-)			
A =			$E_2(y) =$			
B =			F (a) -			
D =			$E_2(y) =$			

2. (0.4 points) Find the Least-square line for y=Ax+b for the data and calculate $E_2(y)$.

x_k	-6.0	-2.0	0.0	2.0	6.0
y_k	-5.3	-3.5	-1.7	0.2	4.0

$A = $ $b = $ $E_2(y) = $	

3. (0.4 points) Find the least-squares parabola $f(x) = Ax^2 + Bx + C$ for the data and calculate $E_2(f)$.

x_k	-2.0	-1.0	0.0	1.0	2.0
y_k	2.8	2.1	3.25	6.0	11.5

	910	_			-	
_						
Dua						
Pro	cess:					
A =	_	B =	C =		$E_2(f) =$	
11 -	_	D =			$L_2(J)$ —	