Time Series Analysis

Lecture 6: ARIMA models summary State space models

Tohid Ardeshiri

Linköping University
Division of Statistics and Machine Learning

September 27, 2019

Model selection

Fit the tentative models, compare them

- Analytical measures: AIC, BIC
 - ▶ Penalize models with many parameters → simpler models
- Residual analysis

Residual analysis

- Residuals $r_t = x_t \hat{x}_t^{t-1}$? they are innovations
 - ► Note: computed from one-step-ahead predictions!
 - Measures predictive quality of the model (compare OLS)
- Residual analysis
 - Visual inspection: stationary? Patterns?
 - ► Histograms, Q-Q plots
 - ► ACF, PACF
 - ► Runs test
 - Box-Ljung test

Residual analysis - Visual inspection

Histogram and visual inspection

If looks white is good

If looks Normal is good

Residual analysis - ACF /PACF Q-Q plots

If between the blue lines good

If along the diagonal line GOOD

Statistical tests

Tests are used to test independence

Runs test

- H_0 : x_t values are i.i.d. **p-value NOT small**
- H_a : x_t values are not i.i.d. **p-value small**

Box-Ljung test

- H_0 : data are independent **p-value NOT small**
- H_a : data are not independent **p-value small**

Overfitting

- Occams razor: among equally good models, choose the simplest one
- Overfitting: taking too complex models leads to bad predictions

• If ARIMA(p, d, q) has almost the same predictive quality as ARIMA(p', d', q'), take the one with less parameters

Overfitting

- Example: Recruitment series
 - ► Fit ARIMA(1,0,3) and ARIMA(5,0,5)

SARIMA - Air passangers

Example: Air passangers

SARIMA - Air passangers

Example: Air passangers

ARIMA $(0,1,1)_{12}$ or ARIMA $(1,1,0)_{12}$

SARIMA - Air passangers

SARIMA

Forecasting

Read home

 \bullet Shumway and Stoffer, Chapter 1, 2 and 3

ARIMA models

Time series models so far

$$\phi^p(B)x_t = \theta^q(B)w_t$$

Model	Concise form
AR(p)	$\phi^p(B)x_t = w_t$
MA(q)	$x_t = \theta^q(B)w_t$
ARMA(p,q)	$\phi^p(B)x_t = \theta^q(B)w_t$
ARIMA(p, d, q)	$\phi^p(B)(1-B)^d x_t = \theta^q(B) w_t$
$ARMA(P,Q)_s$	$\Phi^{P}(B^{s})x_{t} = \Theta^{Q}(s)w_{t}$
$ARIMA(P, D, Q)_s$	$\Phi^{P}(B^{s})(1-B^{s})^{D}x_{t} = \Theta^{Q}(B^{s})w_{t}$
$ARMA(p,q) \times (P,Q)_{\mathfrak{s}}$	$\Phi^{P}(B^{s})\phi^{p}(B)x_{t} = \Theta^{Q}(B^{s})\theta^{q}(B)w_{t}$
$ARIMA(p,d,q)\times(P,D,Q)_s$	$\Phi^{P}(B^{s})\phi^{p}(B)(1-B^{s})^{D}(1-B)^{d}x_{t} = \Theta^{Q}(B^{s})\theta^{q}(B)w_{t}$

Tohid Ardeshiri (LiU) Time Series Analysis 732A62

^{*} The notation used in this slide deviates from the notation used in the course literature so far.

Consider an AR(2) model

$$x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + w_t$$

Let
$$\mathbf{z}_t = \begin{bmatrix} x_t \\ x_{t-1} \end{bmatrix}$$
 and $\mathbf{e}_t = \begin{bmatrix} w_t \\ 0 \end{bmatrix}$.

Show that we rewrite the AR(2) model in the state space form:

$$\begin{aligned} \mathbf{z}_t &= \begin{bmatrix} \phi_1 & \phi_2 \\ 1 & 0 \end{bmatrix} \mathbf{z}_{t-1} + e_t \\ x_t &= \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{z}_t, \end{aligned}$$

ARIMA models in State Space form Whiteboard

$$\phi^p(B)x_t = \theta^q(B)w_t$$

Can we rewrite any model of this form as a state space model?

$$\mathbf{z}_t = A\mathbf{z}_{t-1} + e_t,$$

$$\mathbf{x}_t = C\mathbf{z}_t + \nu_t,$$

$$\phi^p(B)x_t = \theta^q(B)w_t$$

Outline of the solution:

Let
$$r = \max(p, q+1)$$
, $\phi^r(B) = 1 - \phi_1 B - \dots - \phi_r B^r$, $\theta^r(B) = 1 + \theta_1 B - \dots - \theta_{r-1} B^{r-1}$, $\phi^r(B)(\theta^r(B))^{-1}x_t = w_t$. Hence, for $z_t = (\theta^r(B))^{-1}x_t$ we can have $\phi^r(B)z_t = w_t$

$$\mathbf{z}_{t} = \begin{bmatrix} z_{t} \\ z_{t-1} \\ z_{t-2} \\ \vdots \\ z_{t-r+1} \end{bmatrix} \text{ and } \mathbf{z}_{t} = \begin{bmatrix} \phi_{1} & \phi_{2} & \cdots & \phi_{r} \\ 1 & 0 & \cdots & 0 \\ 0 & 1 & & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} \mathbf{z}_{t-1} + \begin{bmatrix} w_{t} \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

 $x_t = \begin{bmatrix} 1 & \theta_1 & \theta_2 & \cdots & \theta_r \end{bmatrix} \mathbf{z}_t$

State Space models - graphical models

$$\mathbf{z}_t = A\mathbf{z}_{t-1} + e_t, \qquad e_t \sim f_e(\cdot)$$

 $\mathbf{x}_t = C\mathbf{z}_t + \nu_t, \qquad \nu_t \sim f_{\nu}(\cdot)$

A probabilistic graphical model for stochastic dynamical system with latent state \mathbf{z}_k and observations \mathbf{x}_k

The main tool here is the probability Calculus; Bayes rule and marginalization.

Dynamical systems - more general case

State Space models - Linear and Gaussian

Our main focus will be on linear and Gaussian models:

Bayesian Inference

Bayesian inference is a means of combining prior beliefs with the data (evidence) to obtain posterior beliefs.

Example: likelihood update

$$f(\mathbf{z}|\mathbf{x}) \propto f(\mathbf{x}|\mathbf{z})f(\mathbf{z})$$

Probability Calculus

$$f(\mathbf{z}, \mathbf{x}) = f(\mathbf{z}|\mathbf{x})f(\mathbf{x})$$

$$f(\mathbf{z}, \mathbf{x}) = f(\mathbf{x}|\mathbf{z})f(\mathbf{z})$$

Online recursive algorithms

Consider a stochastic dynamical system represented by the following recursion

The Bayesian filtering recursion corresponds to computing the posterior distributions $f(\mathbf{z}_k|\mathbf{x}_{1:k})$;

$$f(\mathbf{z}_k|\mathbf{x}_{1:k}) = \frac{f(\mathbf{z}_k|\mathbf{x}_{1:k-1})f(\mathbf{x}_k|\mathbf{z}_k)}{\int f(\mathbf{z}_k|\mathbf{x}_{1:k-1})f(\mathbf{x}_k|\mathbf{z}_k) \,\mathrm{d}\mathbf{z}_k}.$$
 (2)

The density $f(\mathbf{z}_k|\mathbf{x}_{1:k-1})$ in the numerator of (2) which is called the predicted density of \mathbf{z}_k and is obtained by integration as in

$$f(\mathbf{z}_{k}|\mathbf{x}_{1:k-1}) = \int f(\mathbf{z}_{k}|\mathbf{z}_{k-1})f(\mathbf{z}_{k-1}|\mathbf{x}_{1:k-1}) \, \mathrm{d}\mathbf{z}_{k-1}. \tag{3}$$

Tohid Ardeshiri (LiU)

Properties of the Normal density function

Property 1:
$$f(z)f(x|z) = f(z,x)$$

$$N(\mathbf{z}; \mu, \Sigma)N(\mathbf{x}; C\mathbf{z}, R) = N\left(\begin{bmatrix} \mathbf{z} \\ \mathbf{x} \end{bmatrix}; \begin{bmatrix} \mu \\ C\mu \end{bmatrix}, \begin{bmatrix} \Sigma & \Sigma C^{\mathrm{T}} \\ C\Sigma & C\Sigma C^{\mathrm{T}} + R \end{bmatrix}\right)$$

Property 2: marginalization and conditioning

If x, y were jointly normal:

$$f(x,y) = N\left(\begin{bmatrix} x \\ y \end{bmatrix}; \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}\right)$$

then

$$\begin{split} f(x) &= \textit{N}(x; \mu_1, \Sigma_{11}) \\ f(y) &= \textit{N}(y; \mu_2, \Sigma_{22}) \\ f(x|y) &= \textit{N}(x; \mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(y - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}) \\ f(y|x) &= \textit{N}(y; \mu_2 + \Sigma_{21}\Sigma_{11}^{-1}(x - \mu_1), \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}) \end{split}$$

The Kalman Filter's Foundation

Let **z** have a normal prior distribution with mean μ and covariance Σ , i.e., $z \sim N(z; \mu, \Sigma)$.

An observation x with the likelihood function f(x|z) = N(x; Cz, R) is in hand where C is a matrix with proper dimensions and R is a covariance matrix. The posterior distribution of z can be obtained using the Bayes' rule

$$f(\mathbf{z}|\mathbf{x}) = \frac{f(\mathbf{z})f(\mathbf{x}|\mathbf{z})}{\int f(\mathbf{z})f(\mathbf{x}|\mathbf{z}) d\mathbf{z}}$$
(4)

$$= \frac{N(\mathbf{z}; \mu, \Sigma) N(\mathbf{x}; C\mathbf{z}, R)}{\int N(\mathbf{z}; \mu, \Sigma) N(\mathbf{x}; C\mathbf{z}, R) d\mathbf{z}}.$$
 (5)

The posterior distribution f(z|x) has an analytical solution and turns out to be the normal distribution $N(\mathbf{z}; \mu', \Sigma')$ where

$$\mu' = \mu + K(\mathbf{x} - C\mu),\tag{6a}$$

$$\Sigma' = \Sigma - KC\Sigma, \tag{6b}$$

where

$$K = \sum_{C} C^{T} (C \sum_{C} C^{T} + R)^{-1} .$$
Time Series Analysis 732A62

September 27, 2019

25/25