

18PYB101J MODULE-5 LECTURE 15

- FIBRE OPTIC COMMUNICATION SYSTEM
- FIBRE OPTIC SENSORS

Fiber optic communication system

Introduction

- In the early stages of development, fiber communication promised extremely high data rates, which would allow large masses of data to be transmitted quickly.
- It also had the potential for transmission over long distances without the need to amplify and retransmit along the way.
- Recent developments have exceeded the hope of those involved in the technology.

Basic model

- The bandwidth of the fiber optic communication system, which determines the maximum data rate, depends on the major components of the system.
- Fig. shows the block diagram of fiber optic communication system.
- The information signal to be transmitted may be voice, video or computer data.
- The first step is to convert the information into a form compatible with the communications medium.
- This is usually done by converting continuous analog signals such as voice and video (TV) signals into a series of digital pulses.
- ☑ An Analog to Digital (A/D) converter is used for this purpose. Computer data is already in the digital form.

- These digital pulses are then used to flash a powerful light source (i.e.) off and on very rapidly.
- In a simple low cost system that transmits over short distances, the light source is usually a light emitting diode (LED).
- This is a semiconductor device that puts out a low intensity red light beam. Other colours are also used.
- Infrared beams like those used in TV remote controls are also used in transmission.
- Another commonly used light source is the solid state laser.
- This is also a semiconductor device that generates an extremely intense single frequency light beam.

- The light beam pulses are then fed into a fiber optic cable where they are transmitted over long distances.
- At the receiving end, a light sensitive device known as a photocell or light detector is used to detect the light pulses.
- This photocell or photo detector converts the light pulses into an electrical signal.
- The electrical pulses are amplified and reshaped back into digital form.
- They are fed to a decoder, such as a Digital to Analog converter (D/A), where the original voice or video is recovered.

- Both the light sources at the sending end and the light detectors on the receiving end must be capable of operating at the same data rate.
- The circuitry that drives the light source and the circuitry that amplifies and processes the detected light must both have suitable high-frequency response.
- The fiber itself must not distort the high-speed light pulses used in the data transmission.

- In very long transmission systems, repeater units must be used along the way.
- Since the light is greatly attenuated when it travels over long distances, at some point it may be too weak to be received reliably.
- To overcome this problem, special relay stations are used to pick up light beam, convert it back into electrical pulses that are amplified and then retransmit the pulses on another beam.
- Several stages of repeaters may be needed over very long distances.
- But despite the attenuation problem, the loss is less than the loss that occurs with the electric cables.

FIBRE OPTIC SENSORS

- •Sensor is a transducer which is used to convert one physical variable into another
- •Fibre optic sensors are fibre based devices for sensing some quantity, typically temperature mechanical strain, but sometimes also displacements, vibrations, pressure, acceleration or concentrations of chemical species.

Introduction

- Fiber Optic Sensor Classifications
 - Sensing region: Intrinsic vs. Extrinsic
 - •Intrinsic fiber optic sensor has a sensing region within the fiber and light never goes out of the fiber.
 - •In extrinsic sensors, light has to leave the fiber and reach the sensing region outside and then comes back to the fiber.
 - Optical modulation mechanism
 - Intensity modulated
 - Phase modulated
 - Wavelength modulated
 - Polarization modulated

CLASSIFICATION

EXTRINSIC SENSORS

WHERE THE LIGHT LEAVES THE FEED OR
TRANSMITTING FIBER TO BE CHANGED
BEFORE IT CONTINUES TO THE DETECTOR
BY MEANS OF THE RETURN OR RECEIVING FIBER

CLASSIFICATION

INTRINSIC SENSORS

INTRINSIC SENSORS ARE DIFFERENT IN THAT THE LIGHT BEAM DOES NOT LEAVE THE OPTICAL FIBER BUT IS CHANGED WHILST STILL CONTAINED WITHIN IT.

DISPLACEMENT SENSOR (Intrinsic)

• Optical fiber placed between a pair of ridged plates which impart a periodic perturbation to the fiber.

- •The quantity to be measured acts directly on the fiber to modify the radiation passing through it.
- The plates induce micro bend losses due to displacement
- •The intensity of the light output varies
- •By measuring the change in intensity, displacement is measured.

POSITION SENSOR (Extrinsic)

• It consists of two fibers, one to transmit light from source to object and other to collect light from the object.

- •The quantity to be measured acts indirectly on the fiber to modify the radiation.
- Change in the position of the object will result in changes in the amount of light collected by the detector.
- By recording the change in intensity, the position is estimated.

