

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

иональный исследовательский университет)> (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИНФОРМАТИКА И	И СИСТЕМЫ УПРАВЈ	ІЕНИЯ		
КАФЕДРА	АФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)				
НАПРАВЛЕН	ИЕ ПОДГОТОВКИ 09.03.04 «П	Ірограммная инжене ј	«RNQ		
	0	гчет			
	по лаборато	рной работе № 1			
Название:	Синхронные одноступенча	тые триггеры со ст	атическим и		
динамическ	им управлением записью				
Дисциплин	а: Архитектура ЭВМ				
	•				
(Студент гр. <u>ИУ7-43Б</u>		Н.В.Куликов		
	<u> </u>	(Подпись, дата)	(И.О. Фамилия)		
Γ	Іреподаватель		А.Ю. Попов		
		(Подпись, дата)	(И.О. Фамилия)		

Цель работы

Изучить схемы асинхронного RS-триггера, который является запоминающей ячейкой всех типов триггеров, синхронных RS- и D-триггеров со статическим управлением записью и DV-триггера с динамическим управлением записью.

1. Асинхронный RS-триггер с инверсными входами в статическом режиме

Задание:

- 1. собрать схему RS-триггера на ЛЭ И-НЕ;
- 2. к выходам Q и ¬ Q триггера подключить световые индикаторы;
- 3. задавая через переключатели необходимые сигналы на входах ¬Ѕ и ¬₨ триггера, составить таблицу переходов.

$\neg \mathbf{S}$	$\neg \mathbf{R}$	Qn	Qn+1	Режим
0	0	0	X	Запрещенное состояние
0	0	1	X	
0	1	0	1	1
0	1	1	1	
1	0	0	0	0
1	0	1	0	
1	1	0	0	Хранение
1	1	1	1	

2. Синхронный RS-триггер в статическом режиме

Задание:

- 1. собрать схему RS-триггера на ЛЭ И-НЕ;
- 2. к выходам Q и ¬Q триггера подключить световые индикаторы;
- 3. Задавая через переключатели необходимые сигналы на входах S, R и C, протестировать и составить таблицу переходов триггера. В таблице теста каждому набору S, R и Q будет соответствовать 3 строки: сначала задать C=0 (момент времени t_n), затем при C=1 (момент времени t_{n+1}) определяется Q_{n+1} и снова при C=0 переход в режим хранения.

C	$\neg S$	¬R	Q _n	Q_{n+1}	Режим
0	*	*	0	0	Хранение
0	*	*	1	1	
1	0	0	0	0	
1	0	0	1	1	
1	0	1	0	0	0
1	0	1	1	0	
1	1	0	0	1	1
1	1	0	1	1	
1	1	1	0	X	Запрещенное
1	1	1	1	X	состояние

3. D-триггер в статическом режиме

Задание:

- 1. собрать схему D-триггера на ЛЭ И-НЕ; в приложении Multisim можно использовать макросхему D-триггера;
- 2. к выходам Q и \neg Q триггера подключить световые индикаторы;
- 3. задавая через переключатели необходимые сигналы на входах D и C, протестировать и составить таблицу переходов триггера. В таблице теста каждому набору D и Q будет 10 соответствовать 3 строки: сначала задать C=0 (момент времени t_n), затем при C=1 (момент времени t_{n+1}) определяется Q_{n+1} и снова при C=0 происходит переход в режим хранения.

C	D	Qn	Q _{n+1}	Режим
0	*	0	0	Хранение
0	*	1	1	
1	0	0	0	0
1	0	1	0	
1	1	0	1	1
1	1	1	1	

4. Синхронный D-триггер с динамическим управлением

Задание:

- 1. к выходам Q и ¬Q триггера подключить световые индикаторы;
- 2. задавая через переключатели необходимые сигналы на входах D и C, протестировать и составить таблицу переходов триггера. В таблице теста следует отметить реакцию триггера на изменения сигнала D при C=0 и при C=1, а также способность триггера принимать сигнал D только по перепаду 0/1 сигнала C.

Решение:

C	D	Qn	Q _{n+1}	Режим
0	0	0	0	Хранение
0	0	1	1	
0	1	0	0	
0	1	1	1	
0->1	0	0	0	Установка 0
0->1	0	1	0	
0->1	1	0	1	Установка 1
0->1	1	1	1	

Прием информационных сигналов и передача на выход принятой информации выполняются в момент изменения синхросигнала на *C*-входе из 0 в I или из I в 0, т.е. особенностью синхронных триггеров с динамическим управлением является перепад синхросигнала.

5. Синхронный DV-триггер с динамическим управлением записью в динамическом режиме

Задание:

- 1. построить схему синхронного DV-триггера на основе синхронного D-триггера и мультиплексора MS 2-1 (выход MS 2-1 соединить с D-входом триггера, вход 0 MS 2-1 соединить с выходом Q триггера. Тогда вход 1 MS 2-1 будет D-входом, адресный вход A MS 2-1 входом V синхронного DV-триггера), вход C D-триггера входом C DV-триггера;
- 2. подать сигнал генератора на вход счетчика и на С-вход DV-триггера;
- 3. подать на входы D и V триггера сигналы с выходов 2-го и 3-го разрядов счетчика;
- 4. снять временные диаграммы синхронного DV-триггера;

При C=0 DV-триггер, как и синхронные триггеры всех типов, сохраняет предыдущее внутреннее состояние, т.е. $Q_t = Q_{t-1}$. При C=1 и при наличии сигнала V=1 разрешения приема информации DV-триггер принимает информационный сигнал, действующий на входе D, т.е. работает как асинхронный DV-триггер. При C=1 и V=0 DV-триггер сохраняет предыдущее состояние.

6. DV-триггер, включенный по схеме TV-триггера

Задание:

- 1. на вход D подать сигнал $\neg Q$, на вход C подать сигналы генератора, а на вход V с выхода 3-го разряда счетчика;
- 2. снять временные диаграммы Т-триггера; объяснить работу синхронного Т-триггера по временным диаграммам.

Асинхронный Т - триггер переходит в противоположное состояние каждый раз при подаче на T-вход единичного сигнала. T-триггер реализует счет по модулю 2: $Q_{n+1} = T \oplus Q_n$. **Синхронный Т - триггер** имеет вход C и вход T. Синхронный T-триггер переключается в противоположное состояние сигналом C, если на счетном входе T действует единичный

Ответы на контрольные вопросы

1. Что называется триггером?

сигнал.

Триггер является запоминающим элементом с двумя устойчивыми состояниями, которые кодируются цифрами 0 и 1.

2. Какова структурная схема триггера?

Структурную схему триггера можно представить в виде запоминающей ячейки (ЗЯ) и схемы управления (СУ).

- 3. По каким основным признакам классифицируют триггеры?
- 1) По способу организации логических связей, т.е. по виду логического уравнения, характеризующего состояние входов и выходов триггера в момент времени tn до его срабатывания и в момент tn+1 после его срабатывания, различают триггеры:
 - о с раздельной установкой состояний "0" и "1" (RS-триггеры);
 - о со счетным входом (Т-триггеры);
 - о универсальные с раздельной установкой состояний "0" и "1" (JK-триггеры);
 - о с приемом информации по одному входу (D триггеры); * универсальные с управляемым приемом информации по одному входу (DV триггеры);
 - о комбинированные (например, RST-, JKRS, DRS триггеры) и т.д.
- 2) По способу запаси информации различают триггеры:
 - о асинхронные (не синхронизируемые);

- о синхронные (синхронизируемые), или тактируемые.
- 3) По способу синхронизации различают триггеры: синхронные со статическим управлением записью; синхронные с динамическим управлением записью.
- 4) По способу передачи информации с входов на выход различают триггеры о одноступенчатым и двухступенчатым запоминанием информации.
 - 4. Каково функциональное назначение входов триггеров?

S-вход — вход для раздельной установки триггера в состояние "1" (Set – установка)

 ${f R}$ -вход — вход для раздельной установки триггера в состояние "0" (Reset — сброс, очистка)

J-вход — вход для установки состояния "1" в универсальном JK-триггере (Jerk — внезапное включение)

К-вход – вход для установки состояния "0" в универсальном

JK-триггере (Kill – внезапное отключение)

D-вход —информационный вход для установки триггера в состояния "1" или "0" (Data — данные, Delay — задержка)

V-вход — подготовительный управляющий вход для разрешения приема информации (Valve –клапан, вентиль)

С-вход - исполнительный управляющий (командный) вход для осуществления приема информации, вход синхронизации (Clock – источник синхросигналов)

5. Что такое асинхронный и синхронный триггеры?

Асинхронный RS -триггер - это простейший триггер, который используется как запоминающая ячейка.

Синхронный RS-триггер имеет два информационных входа R и S и вход синхронизации C.

6. Что такое таблица переходов?

Таблица переходов отражает зависимость выходного сигнала триггера в момент времени tn+1 от входных сигналов и от состояния триггера в предыдущий

7. Как работает асинхронный RS-триггер?

При S=0 и R=I триггер устанавливается в состояние "0", а при S=1 и R=0 - в состояние "1"). Если =0 и R=0, то в триггере сохраняется предыдущее внутреннее состояние). При S=R=1 состояние триггера является неопределенным (после снятия входных сигналов S и R). Такая комбинация входных сигналов S=R=1 является недопустимой (запрещенной). Для нормальной работы триггера необходимо выполнение запрещающего условия SR=0.

8. Как работает синхронный RS -триггер?

Какова его таблица переходов? Как и все синхронные триггеры, синхронный RS - триггер при C=0 сохраняет предыдущее внутреннее состояние, т.е. Qn+1=Qn . Сигналы по входам S и R переключают синхронный RS-триггер только с поступлением импульса на вход синхронизации C. При C=1 синхронный триггер переключается как асинхронный (табл.2). Одновременная подача сигналов C=S=R=1 запрещена. При S=R=0 триггер не изменяет своего состояния.

9. Что такое D-триггер?

Синхронный D -триггер имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т.е. выходные сигналы представляют собой задержанные входные сигналы. Поэтому D - триггер — элемент задержки (хранения) входных сигналов на один такт.

10. Объясните работу синхронного D-триггера.

Схему синхронного D -триггера можно получить из схемы синхронного RS — триггера, подавая сигнал D на вход S, а сигнал \overline{D} , т.е. с выхода инвертора сигнала D, на вход R. В результате на входах RS-триггера возможны только наборы сигналов SR =01 при D=0 или SR =10 при D=1, что соответствует записи в триггер логического 0 или 1. Путем логических преобразований инвертор можно исключить и получить схему синхронного D —триггера. Синхронный D-триггер имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т. е. выходные сигналы представляют собой задержанные входные сигналы.

11. Что такое DV -триггер?

Синхронный DV-триггер имеет один информационный вход D и один

подготовительный разрешающий вход V для разрешения приема информации.

12. Объясните работу DV-триггера.

При C=0 DV-триггер, как и синхронные триггеры всех типов, сохраняет предыдущее внутреннее состояние, т.е. Qn+1=Qn. При C=1 и при наличии сигнала V=1 разрешения приема информации DV-триггер принимает информационный сигнал, действующий на входе D, т.е. работает как асинхронный DV-триггер. При C=1 и V=0 DV-триггер сохраняет предыдущее внутреннее состояние, т.е. Qn+1=Qn.

- 13. Что такое T-триггер? Какова его таблица переходов? T-триггер имеет один информационный вход T, называемый счетным входом. Асинхронный T-триггер переходит в противоположное состояние каждый раз при подаче на T-вход единичного сигнала. Таким образом T-триггер реализует счет по модулю 2: $Qt = Tt 1 \oplus Qt 1$. Синхронный T-триггер имеет вход C и вход C если на счетном входе C действует сигнал логической C
- 14. Объясните работу схемы синхронного RS-триггера со статическим управлением.

При С=0 триггеры переходят в режим хранения, запоминая последнее состояние

15. Какова характерная особенность переключения синхронных триггеров с динамическим управлением записью?

Характерной особенностью синхронных триггеров с динамическим управлением записью является то, что прием информационных сигналов и передача на выход принятой информации выполняются в момент изменения синхросигнала на С -входе из "0" в "I" или из "I" в "0", т.е. перепадом синхросигнала.

16. Как работает схема синхронного D -триггера с динамическим управлением записью на основе трех RS -триггеров?

Триггер имеет асинхронные входы Sa и Ra начальной установки в состояния 1 и 0. Если схему D -триггера дополнить входом V, то получим структуру DV-триггера. Временные диаграммы D -триггера соответствуют временным диаграммам DV- триггера при V=1

17. Составьте временные диаграммы работы синхронного D-триггера с динамическим управлением записью.

18. Какова структура и принцип действия синхронного DV-триггера с динамическим управлением записью?

Синхронный DV-триггер имеет один информационный вход D и один подготовительный разрешающий вход V для разрешения приема информации. Qt = DV + VQt - 1 = DVC + (V + C)Qt - 1 При C=0 DV-триггер, как и синхронные триггеры всех типов, сохраняет предыдущее внутреннее состояние, т.е. Qt = Qt - 1. При C=1 и при наличии сигнала V=1 разрешения приема информации DV-триггер принимает информационный сигнал, действующий на входе D, т.е. работает как асинхронный DV-триггер. При C=1 и V=0 DV-триггер сохраняет предыдущее внутреннее состояние.

19. Составьте временные диаграммы синхронного DV-триггера.

Временные диаграммы находятся в разделе DV-триггеры.

20. Объясните режимы работы D-триггера.

Синхронный D-триггер имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т. е. выходные сигналы представляют собой задержанные входные сигналы.