FCC 15.247 DSS (Class II Permissive Change) 2.4 GHz Report

for

VoxMicro LTD.

20955 Pathfinder Rd., STE100, Diamond Bar, CA 91765 United States

Brand : AIRETOS

Product Name : PCIE 802.11a/b/g/n 2.4GHz/5GHz

+ USB BT 4.0 card

Model Name : AEH-AR9462

FCC ID : 2AE3B-AEH-AR9462

Prepared by: : AUDIX Technology Corporation,

EMC Department

TABLE OF CONTENTS

Description	Page
TEST REPORT CERTIFICATION	4
1. REPORT HISTORY	4
2. SUMMARY OF TEST RESULTS	
3. GENERAL INFORMATION	
3.1. Description of EUT	
3.2. Antenna Information	
3.3. EUT Specifications Assessed in Current Report	
3.4. Test Configuration	
3.5. Tested Supporting System List	
3.6. Setup Configuration	9
3.7. Operating Condition of EUT	9
3.8. Description of Test Facility	10
3.9. Measurement Uncertainty	10
4. MEASUREMENT EQUIPMENT LIST	11
4.1. Radiated Emission Measurement	11
4.2. RF Conducted Measurement	11
5. RADIATED EMISSION MEASUREMENT	12
5.1. Block Diagram of Test Setup	12
5.2. Radiated Emission Limits	
5.3. Test Procedure	14
5.4. Measurement Result Explanation	15
5.5. Test Results	
6. MAXIMUM PEAK OUTPUT POWER MEASUREMENT	24
6.1. Block Diagram of Test Setup	24
6.2. Specification Limits	
6.3. Test Procedure	
6.4. Test Results	25
7. DEVIATION TO TEST SPECIFICATIONS	26

APPENDIX A TEST PLOTS APPENDIX B EUT PHOTOGRAPHS

TEST REPORT CERTIFICATION (Class II Permissive Change)

Applicant : VoxMicro LTD.

Product Name : PCIE 802.11a/b/g/n 2.4GHz/5GHz + USB BT 4.0 card

Model No. : AEH-AR9462

Serial No. : N/A

Brand : AIRETOS

Applicable Standards:

47 CFR FCC Rules and Regulations Part 15 Subpart C, Oct. 2015 ANSI C63.10:2013

FCC Public Notice DA 00-705

AUDIX Technology Corp. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report. **AUDIX Technology Corp.** does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens and samples.

Date of Test: 2016. 06. 06 ~ 08 Date of Report: 2016. 06. 23

Producer: Sabrina Wang

Signatory: (Ben Cheng/Manager)

File Number: C1M1606071 Report Number: EM-F160363

1. REPORT HISTORY

Edition No.	Date of Rev.	Revision Summary	Report No.
0	2016. 06. 23	Original Report.	EM-F160363

2. SUMMARY OF TEST RESULTS

Rule	Description	Results	
15.207	Conducted Emission	PASS	
15.247(d)/ 15.205	Radiated Band Edge and Radiated Spurious Emission	PASS	
15.247(b)(1) Maximum Peak Output Power		PASS	
15.203 Antenna Requirement PASS			
The Conducted Emis	ssion has been assessed in report EM-F160362 as	s representative.	

3. GENERAL INFORMATION

3.1. Description of EUT

Product	PCIE 802.11a/b/g/n 2.4GHz/5GHz + USB BT 4.0 card					
Model Number	AEH-AR9462					
Serial Number	N/A					
Brand Name	AIRETOS					
Applicant	VoxMicro LTD. 20955 Pathfinder States	Rd., STE1	00, I	Diamond Bar, CA 9	1765 Unite	ed
RF Features	WLAN: 802.11a/b/g/n Bluetooth: BT and BLE					
	2.4 GHz					
	802.11b	2T2R		UNII Ban	ds	
	802.11g	2T2R		802.11a	2T2R	
Transmit Type	802.11n-HT20	2T2R		802.11n-HT20	2T2R 2T2R	
	802.11n-HT40	2T2R			2T2R 2T2R	
	BT	1T1R		802.11n-HT40	212K	
	BLE 1T1R					
Date of Receipt of Sample	2016. 06. 06					
Information for Class II Change Permissive:	The difference with original FCC ID: 2AE3B-AEH-AR9462 is to add antenna type.					

3.2. Antenna Information

No.	Antenna Part Number	Brand	Antenna Type	Frequency (MHz)	Max Gain (dBi)	Directional Gain (2T2R)(dBi)
1	WAND2DBI-SMA	OxfordTec	Omni	2.4GHz	2.0	5.01
1	WANDZDBI-SMA	Oxioidiec	Omni	5GHz	3.0	6.01
Note 1. Directional gain = $10 \log[(10^{2.0/20} + 10^{2.0/20})^2 / 2] = 5.01 dBi$ Note 2. Directional gain = $10 \log[(10^{3.0/20} + 10^{3.0/20})^2 / 2] = 6.01 dBi$						
Note	2. Directional gain = 10 l	$og[(10^{3.0/20} + 1)]$	$(10^{3.0/20})^2/2$]=6.01dE	3i		

3.3. EUT Specifications Assessed in Current Report

Mode	Fundamental Range (MHz)	Channel Number	Modulation	Data Rate (Mbps)
Bluetooth	2402-2480	79	FHSS (GFSK, π/4 DQPSK, 8-DPSK)	1/2/3

	Channel List					
Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)	
00	2402	27	2429	54	2456	
01	2403	28	2430	55	2457	
02	2404	29	2431	56	2458	
03	2405	30	2432	57	2459	
04	2406	31	2433	58	2460	
05	2407	32	2434	59	2461	
06	2408	33	2435	60	2462	
07	2409	34	2436	61	2463	
08	2410	35	2437	62	2464	
09	2411	36	2438	63	2465	
10	2412	37	2439	64	2466	
11	2413	38	2440	65	2467	
12	2414	39	2441	66	2468	
13	2415	40	2442	67	2469	
14	2416	41	2443	68	2470	
15	2417	42	2444	69	2471	
16	2418	43	2445	70	2472	
17	2419	44	2446	71	2473	
18	2420	45	2447	72	2474	
19	2421	46	2448	73	2475	
20	2422	47	2449	74	2476	
21	2423	48	2450	75	2477	
22	2424	49	2451	76	2478	
23	2425	50	2452	77	2479	
24	2426	51	2453	78	2480	
25	2427	52	2454			
26	2428	53	2455			

3.4. Test Configuration

	Item	Mode	Data Rate	Test Channel
Radiated	Radiated Band Edge Note1	8DPSK	3Mbps	00/39/78
Test Case	Radiated Spurious Emission Note 1 & 2	8DPSK	3Mbps	00/39/78
Conducted	Dools Output Dovices	GFSK	1Mbps	00/39/78
Test Case Peak Output Power	8-DPSK	3Mbps	00/39/78	

Note 1:

■Mobile Device

□Portable Device, and 3 axis were assessed. The worst scenario for Radiated Spurious Emission as follow:

■ Lie
□ Side
□ Stand

Note 2: Low, mid, and high channels were measured, only the worst channel of each modulation was presented in this report.

3.5. Tested Supporting System List

3.5.1. Support Peripheral Unit

No.	Product	Brand	Model No.	Serial No.	FCC ID
1.	Notebook PC	IBM	2652	99NXMML	ANOVNCBDC80211B
2.	Test Jig	N/A	N/A	N/A	N/A

3.5.2. Cable Lists

No.	Cable Description Of The Above Support Units			
	AC Adapter: IBM, M/N 02K6747			
1.	AC Power Cord: Unshielded, Detachable, 1.8m			
	DC Power Cord: Unshielded, Undetachable, 1.8m			

3.6. Setup Configuration

3.6.1. EUT Configuration for Radiated Emission

3.6.2. EUT Configuration for Conducted Test Items

3.7. Operating Condition of EUT

EUT was set into test mode by Notebook to set channels / hopping / modulations.

File Number: C1M1606071 Report Number: EM-F160363

3.8. Description of Test Facility

Test Firm Name : AUDIX Technology Corporation

EMC Department

No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan

Test Location & Facility : Semi Anechoic Chamber &

Fully Anechoic Chamber No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan

NVLAP Lab. Code : 200077-0

TAF Accreditation No : 1724

FCC OET Designation : TW1004 & TW1090

3.9. Measurement Uncertainty

Test Item	Frequency Range	Uncertainty
Radiation Test	30MHz~1000MHz	± 3.68dB
(Distance: 3m)	Above 1GHz	± 5.82dB

Remark : Uncertainty = $ku_c(y)$

Test Item	Uncertainty
Maximum peak Output power	± 0.52dB

4. MEASUREMENT EQUIPMENT LIST

4.1. Radiated Emission Measurement

4.1.1. Frequency Range 9kHz~1000MHz

Item	Туре	Manufacturer	Model No.	Model No. Serial No.		Cal. Interval
1.	Spectrum Analyzer	Agilent	N9010A-526	MY53400071	2015. 09. 14	1 Year
2.	Test Receiver	R & S	ESCS30	100338	2015. 06. 24	1 Year
3.	Amplifier	HP	8447D	2944A06305	2016. 02. 23	1 Year
4.	Bilog Antenna	CHASE	CBL6112D	33821	2016. 01. 30	1 Year
5.	Loop Antenna	R&S	HFH2-Z2	891847/27	2015. 12. 24	1 Year
6.	Test Software	Audix	e3	V.6.110601	N.C.R.	N.C.R.

4.1.2. Frequency Range Above 1GHz

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Agilent	E4446A	US44300366	2015. 08. 20	1 Year
2.	Amplifier	Sonoma	310N	187161	2015. 06. 17	1 Year
	Microwave Amplifier	Keysight	83051A	MY53010042	2015. 08. 13	1 Year
4.	2.4GHz Notch Filter	K&L	7NSL10-244 1.5E130.5-00	1	2015. 07. 28	1 Year
5.	Horn Antenna	ETS-Lindgren	3117	00135902	2016. 03. 05	1 Year
6.	Horn Antenna	EMCO	3116	2653	2015. 10. 20	1 Year
7.	Test Software	Audix	e3	V.6.110601	N.C.R.	N.C.R.

4.2. RF Conducted Measurement

Item	Type	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Power Meter	Anritsu	ML2495A	1145008	2015. 10. 23	1 Year
2.	Power Sensor	Anritsu	MA2411B	1126096	2015. 10. 23	1 Year

File Number: C1M1606071 Report Number: EM-F160363

5. RADIATED EMISSION MEASUREMENT

5.1. Block Diagram of Test Setup

- 5.1.1. Block Diagram of connection between EUT and simulators Indicated as section 3.6
- 5.1.2. Semi Anechoic Chamber (3m) Setup Diagram for 9kHz-30MHz

5.1.3. Semi Anechoic Chamber (3m) Setup Diagram for 30-1000MHz

File Number: C1M1606071 Report Number: EM-F160363

5.1.4. Fully Anechoic Chamber (3m) Setup Diagram for above 1GHz

5.2. Radiated Emission Limits

In any 100kHz bandwidth outside the frequency band, the radio frequency power produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level. In addition, radiated emissions which fall in restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified as below.

Fraguency (MUz)	Distance (m)	Limi	ts	
Frequency (MHz)	Distance (m)	$dB\mu V/m$	μV/m	
0.009 - 0.490	300	67.6	2400/kHz	
0.490 - 1.705	30	87.6	24000/kHz	
1.705 - 30	30	29.5	30	
30 - 88	3	40.0	100	
88- 216	3	43.5	150	
216- 960	3	46.0	200	
Above 960	3	54.0	500	
Above 1000	3	74.0 dBμV/n	dBμV/m (Peak)	
Above 1000	3	$54.0 \text{ dB}\mu\text{V/m}$	(Average)	

Remark: (1) $dB\mu V/m = 20 \log (\mu V/m)$

- (2) The tighter limit applies to the edge between two frequency bands.
- (3) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- (4) Fundamental and emission fall within operation band are exempted from this section.
- (5) Pursuant to ANSI C63.10: 6.6.4.3, if the maximized peak measured value complies with the average limit, then it is unnecessary to perform an average measurement.

5.3. Test Procedure

Frequency Range 9kHz~30MHz:

The EUT setup on the turn table which has 0.8 m height to the ground. The turn table rotated 360 degrees and antenna fixed to 1 m to find the maximum emission level. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10-2013 regulation.

- (1) RBW = 9kHz with peak and average detector.
- (2) Detector: average and peak (9kHz-490kHz)

Q.P. (490kHz-30MHz)

Frequency Range 30MHz ~ 40GHz:

The EUT setup on the turn find table which has 80 cm (for 30-1000 MHz) and 1.5m (for above 1GHz) height to the ground. The turn table rotated 360 degrees and antenna varied from 1 m to 4 m to find the maximum emission level. Both horizontal and vertical polarization are required. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10-2013 regulation.

Frequency below 1 GHz:

Spectrum Analyzer is used for pre-testing with following setting:

- (1) RBW = 120KHz
- (2) $VBW > 3 \times RBW$.
- (3) Detector = Peak.
- (4) Sweep time = auto.
- (5) Trace mode = \max hold.
- (6) Allow sweeps to continue until the trace stabilizes.
- (7) When peak-detected value is lower than limit that the measurement using the Q.P. detector is not required. Otherwise using Q.P. for finally measurement.

Frequency above 1GHz to 10th harmonic:

Peak Detector:

- (1) RBW = 1MHz
- (2) $VBW \ge 3 \times RBW$.
- (3) Detector = Peak.
- (4) Sweep time = auto.
- (5) Trace mode = \max hold.
- (6) Allow sweeps to continue until the trace stabilizes.
- (7) When peak-detected value is lower than limit that the measurement using the average detector is not required. Otherwise using average for finally measurement.

Average Detector:

Option 1:

- (1) RBW = 1 MHz
- (2) VBW = 1/T
- (3) Detector = Peak.
- (4) Sweep time = auto.
- (5) Trace mode = \max hold.
- (6) Allow sweeps to continue until the trace stabilizes.

Option 2:

Average Emission Level= Peak Emission Level+ D.C.C.F.

5.4. Measurement Result Explanation

- Peak Emission Level=Antenna Factor + Cable Loss + Meter Reading
- Average Emission Level l=Antenna Factor + Cable Loss + Meter Reading
- Average Emission Level= Peak Emission Level+ DCCF

Duty Cycle Correction Factor (DCCF)= 20log (TX on/TX on+off) presented in section 3.5

EPR= Peak Emission Level-95.2dB-2.14dB

5.5. Test Results

PASSED.

Test Date	2016/06/08	Temp./Hum.	26°C/43%
Test Voltage		DC 3.3V	

5.5.1. Emissions within Restricted Frequency Bands

5.5.1.1. Frequency 9kHz~30MHz The emissions (9kHz~30MHz) not reported for there is no emission be found.

5.5.1.2. Frequency Below 1 GHz

Modulati	on	8-DPS1	K	Frequency	T	X 2480M	IHz
Antenna a	ıt Horizon	tal Polar	rization				
Emission Frequency	Antenna Factor	Cable Loss	Meter Readin		Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	(dBµV	$(dB\mu V/m)$	$\left(dB\mu V/m\right)$	(dB)	
99.84	10.90	3.22	20.32	34.44	43.50	9.06	Peak
224.97	10.93	4.17	19.51	34.61	46.00	11.39	Peak
298.69	13.10	4.65	25.49	43.24	46.00	2.76	Peak
459.71	16.42	6.14	5.40	27.96	46.00	18.04	Peak
830.25	20.20	7.28	5.45	32.93	46.00	13.07	Peak
Antenna a	ıt Vertical	Polariza	ıtion				
Emission Frequency	Antenna Factor	Cable Loss	Meter Readin		Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	(dBµV	$(dB\mu V/m)$	$\left(dB\mu V/m\right)$	(dB)	
99.84	10.90	3.22	18.38	32.50	43.50	11.00	Peak
211.39	10.05	4.07	19.80	33.92	43.50	9.58	Peak
299.66	13.12	4.65	22.31	40.08	46.00	5.92	Peak
450.01	16.29	6.07	4.19	26.55	46.00	19.45	Peak
849.65	20.32	7.36	4.11	31.79	46.00	14.21	Peak

5.5.1.3. Frequency Above 1 GHz to 10th harmonics

Band Edge:

Mode	8-DPSK	Frequency	TX 2402MHz
107 Level (dBuV/m)			
100			3
80			ABOVE 1GHZ(PK)
60		1 .	
40	tageth for the contract of the	and the second and th	hand had been been been been been been been bee
20			
02310 2320.	2340. 2360). 2380. Frequency (MHz)	2400. 2420. 2430

Antenna at Horizontal Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
2381.04	32.13	5.71	11.53	49.37	74.00	24.63	Peak
2390.04	32.16	5.72	8.77	46.65	74.00	27.35	Peak
2401.80	32.16	5.72	53.14	91.02			Peak

Antenna at Horizontal Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$\left(dB\mu V/m\right)$	$(dB\mu V/m)$	(dB)	
2322.00	32.06	5.67	-1.75	35.98	54.00	18.02	Average
2390.04	32.16	5.72	-4.86	33.02	54.00	20.98	Average
2402.04	32.16	5.72	50.90	88.78			Average

Antenna at Vertical Polarization

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
2322.24	32.06	5.67	13.75	51.48	74.00	22.52	Peak
2390.04	32.16	5.72	5.60	43.48	74.00	30.52	Peak
2402.04	32.16	5.72	56.98	94.86			Peak

Antenna at Vertical Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
2322.00	32.06	5.67	9.24	46.97	54.00	7.03	Average
2390.04	32.16	5.72	-4.54	33.34	54.00	20.66	Average
2402.04	32.16	5.72	53.72	91.60			Average

Antenna at Vertical Polarization

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	(dB)	Detector
2480.96	32.28	5.82	55.84	93.94			Peak
2483.52	32.28	5.82	8.45	46.55	74.00	27.45	Peak
2483.60	32.28	5.82	7.65	45.75	74.00	28.25	Peak

Antenna at Vertical Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
2481.04	32.28	5.82	52.53	90.63			Average
2483.52	32.28	5.82	2.10	40.20	54.00	13.80	Average
2483.60	32.28	5.82	1.03	39.13	54.00	14.87	Average

Antenna at Horizontal Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
2481.04	32.28	5.82	58.71	96.81			Peak
2483.52	32.28	5.82	9.50	47.60	74.00	26.40	Peak
2483.60	32.28	5.82	8.90	47.00	74.00	27.00	Peak

Antenna at Horizontal Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$\left(dB\mu V/m\right)$	$(dB\mu V/m)$	(dB)	
2481.04	32.28	5.82	55.85	93.95			Average
2483.52	32.28	5.82	5.22	43.32	54.00	10.68	Average
2483.60	32.28	5.82	3.95	42.05	54.00	11.95	Average

5.5.2. Emissions outside the frequency band:

The emissions (up to 25GHz) not reported for there is no emission be found.

Modulati	Modulation 8-DPSK		K	Frequency	Т	X 2402M	ПНz
2.20 0,0,200							
Antenna a	t Horizor	tal Polar	rization				
Emission Frequency	Antenna Factor	Cable Loss	Meter Readin	21111001011	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	(dBµV	$(dB\mu V/m)$	$\left(dB\mu V/m\right)$	(dB)	
4805.00	34.22	7.86	-0.90	41.18	54.00	12.82	Peak
7205.00	35.80	9.22	-1.78	43.24	54.00	10.76	Peak
Antenna a	it Vertica	Polariza	ation				
Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Readin	g Level		_	Detector
(MHz)	(dB/m)	(dB)	(dBµV	$(dB\mu V/m)$	$\left(dB\mu V/m\right)$	(dB)	
4805.00	34.22	7.86	-0.47	41.61	54.00	12.39	Peak
7205.00	35.80	9.22	-1.90	43.12	54.00	10.88	Peak

Modulati	Modulation 8-DPSK		Frequency	Т	X 2441N	ſНz				
Antenna a	Antenna at Horizontal Polarization									
Emission Frequency	Antenn Factor	a Cable Loss	Meter Readir		Limits	Margin	Detector			
(MHz)	(dB/m)	(dB)	(dBµV	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)				
4880.00 7325.00	34.25 35.80	8.35 9.89	-0.55 -0.91		54.00 54.00	11.95 9.22	Peak Peak			
Antenna a	t Vertica	al Polariza	ation							
Emission Frequency	Antenn Factor		Meter Readir		Limits	Margin	Detector			
(MHz)	(dB/m)	(dB)	(dBµV	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)				
4880.00	34.25	8.35	0.18	42.78	54.00	11.22	Peak			
7325.00	35.80	9.89	-1.01	44.68	54.00	9.32	Peak			

Modulati	Modulation 8-DPSK		Frequency	T	X 2480N	ИНz			
Antenna a	Antenna at Horizontal Polarization								
Emission Frequency	Antenn Factor		Meter Readir		Limits	Margin	Detector		
(MHz)	(dB/m)	(dB)	(dBµV	V) (dB μ V/m)	$(dB\mu V/m)$	(dB)			
4960.00 7440.00	34.29 35.80	8.68 10.40	0.61 -1.55		54.00 54.00	10.42 9.35	Peak Peak		
Antenna a	t Vertic	al Polariza	tion						
Emission Frequency	Antenn Factor		Meter Readir		Limits	Margin	Detector		
(MHz)	(dB/m)	(dB)	(dBµV	V) (dB μ V/m)	$\left(dB\mu V/m\right)$	(dB)			
4960.00	34.29	8.68	-0.64	42.33	54.00	11.67	Peak		
7440.00	35.80	10.40	-0.96	5 45.24	54.00	8.76	Peak		

5.5.3. Emissions in Non-restricted Frequency Bands

All emission levels below the 15.209 general radiated emissions limits is not required.

6. MAXIMUM PEAK OUTPUT POWER MEASUREMENT

6.1. Block Diagram of Test Setup

6.2. Specification Limits

The Limits of maximum Peak Output Power for frequency hopping systems in 2400-2483.5MHz is: 0.125Watt. (21dBm)

6.3. Test Procedure

Following measurement procedure is reference to DA00-705:

- (1) Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel
- (2) RBW \geq 1% of the span
- (3) $VBW \ge RBW$
- (4) Sweep = auto
- (5) Detector function = peak
- (6) Trace = \max hold

AUDIX Technology Corp. No. 53-11, Dingfu, Linkou, Dist., New Taipei City244, Taiwan Tel: +886 2 26099301 Fax: +886 2 26099303

6.4. Test Results

Test Date	2016/06/06	Temp./Hum.	25°C/58%
Cable Loss		Test Voltage	DC 3.3V

6.4.1. Output Power

Modulation	Centre Frequency	Peak Out	Limit	
Modulation	(MHz)	dBm	W	Lillit
	2402	4.44	0.002780	
GFSK	2441	4.81	0.003027	21dBm (0.125W)
	2480	5.16	0.003281	(0.120 11)
	2402	6.11	0.004083	
8-DPSK	2441	6.60	0.004571	21dBm (0.125W)
	2480	6.70	0.004677	(0.120 11)

Note: All results have been included cable loss.

7. **DEVIATION TO TEST SPECIFICATIONS**[NONE]