Modulendprüfung TA.LRS.H10

Thierry Prud'homme, Peter Gruber thierry.prudhomme@hslu.ch

Aufgabenliste: #Mit Unterlagen, 240 Punkte Themen: #

[Aufgabe 1] (Blockschaltbild, 12 Punkte) In einem Auto dient der Tempomat (Bild 1) zur der automatischen Regelung der Fahrzeuggeschwindigkeit.

Abbildung 1: Tempomat

Zeichnen Sie das Blockschaltbild des Tempomats für die 2 Fälle, mit und ohne automatische Schaltung. Geben Sie für diese 2 Fälle die folgenden Signale an:

- Stellgrösse / Steuergrösse
- Ausgangsgrösse / Regelgrösse
- Störgrösse
- Referenzgrösse / Führungsgrösse

[Aufgabe 2] (Schrittantwortanalyse, 12 Punkte) Untenstehend sind Einheitsschrittantworten und Bode-Diagramme von 6 Systemen aufgezeichnet. Ordnen Sie jeder Schrittantwort das entsprechende Bode-Diagramm zu.

[Aufgabe 3] (Fragebogen, 18 Punkte) Beantworten Sie die folgenden Frage mit Ja oder Nein.

Nummer	Frage					
1	Ein lineares System 2. Ordnung kann schwingen.					
2	Ein System höherer Ordnung hat mindestens einen Speicher.					
3	Regt man ein lineares System mit einer Frequenz f_1 an, so kann am Ausgang die Frequenz $2f_1$ erscheinen					
4	Ein instabiles System kann nie mit einer Rückkopplung stabilisiert werden.					
5	Pole weit links von der reellen Achse klingen schneller ab als solche nahe der reellen Achse.					
6	Grosse Bandbreite bedeutet grosse Anstiegszeit.					
7	Grosses Überschwingen bedeutet kleine Dämpfung.					
8	Eine Totzeit im Regelkreis verbessert das Regelverhalten.					
9	Um die Stabilität des geschlossenen Regelkreises zu beurteilen muss die Nyquistkurve des offenen Kreises untersucht werden.					
10	Die Totzeit ist ein lineares Element.					
11	Mit der Laplacetransformation lassen sich nichtlineare Differentialgleichungen lösen.					
12	Ein PI-Regler kann die Phase anheben.					
13	Eine Differentialgleichung, in der die Zeit explizit auf der linken Seite vorkommt, ist nichtlinear.					
14	Die Nullstellen beeinflussen die Stabilität eines Systems.					
15	Durch die Linearisierung um einen Arbeitspunkt wird das physikalische System linear.					
16	Die Schrittantwort eines Integrators springt bei $t=0$.					
17	Die Impulsantwort eines linearen Systems ist die Ableitung der Schrittantwort.					
18	Mit der Laplacetransformation lassen sich Einschwingvorgänge berechnen.					

Tabelle 1: Fragebogen

[Aufgabe 4] (Laplace Übertragungsfunktion, 40 Punkte) Ein Prozess kann mit der folgenden Übertragungsfunktion modelliert werden:

$$\frac{Y(s)}{U(s)} = \frac{4(s+1)}{s^2 + 5s + 6}$$

wobei $Y(s) = L\{y(t)\}$ die Laplace Transformation des Ausganges des Prozesses und $U(s) = L\{u(t)\}$ die Laplace Transformation des Einganges des Prozesses sind.

- 1. Leiten Sie aus dieser Übertragungsfunktion die Differentialgleichung, die die Beziehung zwischen y(t) und u(t) beschreibt, her.
- 2. Zeichnen Sie den Wirkungsplan des Systems (wenn Sie den Wirkungsplan ohne Differentiator zeichnen können erhalten Sie 10 zusätzliche Punkte).
- 3. Berechnen Sie Nullstellen und Pole dieser Übertragungsfunktion. Ist das System stabil? Schwingend?
- 4. Berechnen Sie mit Hilfe der Partialbruchzerlegung die Sprungantwort des Systems für einen Sprung von 0 auf 1 zu der Zeit $t_0 = 0$. Wir machen die Hypothese dass $y(t_0) = \dot{y}(t_0) = 0$.
- 5. Berechnen Sie $y(\infty)$ wenn u(t) den gleichen Sprung wie zuvor macht zuerst mit der Funktion die Sie zu der vorherigen Unteraufgabe hergeleitet haben und dann mit dem Laplace Endwertsatz der Laplace Transformation.
- 6. Welchen Reglertyp PD oder PI würden Sie zu Regelung des oben genannten Prozesses bevorzugen? Begründen Sie Ihre Antwort.

[Aufgabe 5] (*Linearisierung*, 30 Punkte) Ein Elektromagnet wird für die Regelung eines metallischen Körpers angewendet, siehe Bild 2

Abbildung 2: Magnetische Aufhängung

Der Prozess kann mit den folgenden Differentialgleichungen modelliert werden:

$$\begin{array}{rcl} m \ddot{x}(t) & = & = mg - F \\ F & = & \frac{mgu^2(t)}{(a_1 x(t) + a_0)^2} \end{array}$$

Daraus ergibt sich:

$$\ddot{x}(t) = g - \frac{gu^2(t)}{(a_1x(t) + a_0)^2}$$

wobei u(t) in (V) die Eingangsspannung des Elektromagneten ist. x(t) ist die vertikale Position der Kugel in (m). a_0 und a_1 sind 2 Konstante, die nehmen die folgenden Werten:

$$a_0 = 2$$

$$a_1 = 100$$

Wir machen die Hypothese dass $g = 10 \text{ (m}^2/\text{s)}.$

- 1. Beweisen Sie, dass dieser Prozess nichtlinear ist.
- 2. Zeichnen Sie den Wirkungsplan dieses nichtlinearen Prozesses.
- 3. Der Prozess ist im stationären Zustand mit $\overline{x} = 0.02$ (m). Wie gross ist die Spannung \overline{u} von u(t) in diesem Zustand?
- 4. Linearisieren Sie den Prozess um den Arbeitspunkt $(\overline{u}, \overline{x})$.
- 5. Zeichnen Sie den Wirkungsplan des linearisierten Prozesses.
- 6. Leiten Sie die Übertragungsfunktion des linearisierten Prozesses her.

[Aufgabe 6] (Regelkreis Analyse und Synthese, 54 Punkte) Im Bild 3 ist ein Regelkreis zu sehen:

Abbildung 3: Blockschaltbild des Regelkreises

Der Prozess kann wir folgt modelliert werden:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{3}{s^2}$$

- 1. Was für ein Streckentyp ist es? (mit oder ohne Ausgleich?)
- 2. Zuerst wird versucht das System mit einem Proportionalrelger zu regeln.

$$K(s) = K_p$$

Berechnen Sie die Übertragungsfunktion des offenen Regelkreises.

- 3. Zeichnen Sie das asymptotische Bode Diagramm und Nyquist Ortskurve des offenen Regelkreises.
- 4. Berechnen Sie die Führungs- und Störübertragungsfunktion. Was fällt dabei auf?
- 5. Verwenden Sie nun als Regler einen idealen PD Regler:

$$K(s) = K_n (1 + T_d s)$$

Zeichnen Sie das asymptotische Bode Diagramm und Nyquist Ortskurve des offenen Regelkreises für die 2 folgenden Fällen $(K_p = 1, T_d = 5)$ und $(K_p = 1, T_d = 0.1)$. Welche Verstärkungsreserve und Stabilitätsreserve können Sie aus den asymptotischen Bode-Diagrammen für diese 2 Fälle auslesen?

- 6. Berechnen Sie Verstärkungsreserve und Stabilitätsreseve für den Fall $(K_p = 1, T_d = 0.5)$.
- 7. Leiten Sie für $K_p = 1$ und T_d undefiniert die Führungsübertragungsfunktion (geschlossener Regelkreis) und die Störübergtragungsfunktion (geschlossener Regelkreis) her. Für welche Werte von T_d ist das Verhalten des geschlossenen Regelkreises schwingend?
- 8. Berechnen den Endwert von $y_m(t)$ für einen Führungsgrössensprung als auch für einen Störgrössensprung.
- 9. Für $T_d = 0.5$, skizzieren Sie grob den Verlauf von $y_m(t)$ für einen Führungsgrössensprung als auch für einen Störgrössensprung.

[Aufgabe 7] (IT_1T_t Prozessidentifikation, 34 Punkte) Die Sprungantwort eines ungeregelten Systems ist im Bild 4 zu sehen. Der Sprung hat eine Amplitude von 1. Die Einheit der x-Achse ist in Sekunden (sec).

Abbildung 4: Sprungantwort des Prozesses

1. Leiten Sie aus der Sprungantwort die Übertragungsfunktion des Prozesses $G(s) = \frac{Y(s)}{U(s)}$ her. Die Sprungantwort des Prozesses ist gegeben durch:

$$y_{\epsilon}(t) = K\left(t - T_t - T\left(1 - e^{-\frac{(t - T_t)}{T}}\right)\right)$$
 für $t \ge T_t$

Wir gross werden K, T und T_t .

2. Es wird nun ein idealer PD-Regler mit der folgenden Übertragungsfuntion K(s) eingesetzt:

$$K(s) = K_p(1 + sT_d) \tag{1}$$

wobei die Nullstelle des Reglers den einen Pol der Übertragung des Prozesses kompensieren soll. Wie gross wird somit T_d ? Leiten Sie jetzt die Übertragungsfunktion des offenen Regelkreises her.

- 3. Skizzieren Sie die Nyquist-Ortskurve des offenen Regelkreises für $K_p=0.25$.
- 4. Berechnen Sie für $K_p = 0.25$ die Phasenreserve (Hinweis: Bestimmen Sie zuerst die Kreisfrequenz bei der der Betrag eins wird).
- 5. Gibt es Werte für K_p die zu einem instabilen Verhalten führen? Wenn ja, bestimmen Sie den Wert von K_p für den die Ortskurve durch den kritischen Pukt (-1,0) geht.
- 6. Leiten Sie die Übertragungsfunktion des geschlossenen Regelkreises her.

7.	Gibt es ein einen Sprun	e stationäre ig macht?	Ungenauigkeit	für das	Führungsverhalten	wenn	der	Sollwert

[Aufgabe 8] (\ddot{U} bertragungsfunktionen, 40 Punkte) — Im Bild 5 ist eine Rückkopplungsschaltung zu untersuchen.

Abbildung 5: Blockschaltbild der Rückkopplungsschaltung

1. Berechnen Sie die folgenden Übertragungsfunktionen:

$$G_{y_m,y_s} = \frac{Y_m(s)}{Y_s(s)} \text{ mit } z_1 = z_2 = 0$$

$$G_{y_m,z_1} = \frac{Y_m(s)}{Z_1(s)} \text{ mit } z_2 = y_s = 0$$

$$G_{y_m,z_2} = \frac{Y_m(s)}{Z_2(s)} \text{ mit } z_1 = y_s = 0$$

- 2. Für den normierten Nenner $s^2 + 2d\omega_0 s + \omega_0^2$ wählen Sie nun $d = \frac{1}{\sqrt{2}}$ und $\omega_0 = 4$. Bestimmen Sie für diese Werte K_1 und K_2 und daraus die 3 oben definierten Übertragungsfunktionen. Mit welchem Überschwingen müssen Sie rechnen wenn ein Führungsschritt anliegt?
- 3. Welcher stationäre Fehler $e(\infty)$ stellt sich ein, falls an allen drei Eingänge gleichzeitig ein Schritt angelegt wird?
- 4. Skizzieren Sie die Bode Diagramme von G_{y_m,y_s} . Was ändert sich an diesem Bode Diagramm für die 2 anderen Übertragunsfunktionen G_{y_m,z_1} und G_{y_m,z_2} bezüglich asymptotischen Amplitudengang und Phasengang.

