HW #2.2 AutoML Vision and Timeseries

> Vision

 $(\underline{https://codelabs.developers.google.com/codelabs/automl-vision-edge-in-mlkit\#0})$

I. Setup

Packages download:

- Zip file with source code, the training dataset
- Google-services.json config file

II. Running iOS App

Professor Vijay Eranti

> Timeseries Forecast

 $(\underline{https://codelabs.developers.google.com/codelabs/time-series-forecasting-with-cloud-ai-platform\#0})$

I. Setup

Create an instance on the AI Platform Notebooks section with the following setup:

- Instance name = timeseries cloud
- Zone = us-central1-a
- Environment = TensorFlow:2.3
- GPUs = None

Instance name *			
timeseriescloud			
63-char limit with lowercase letters, digits, or with a ".	only. Must start with a letter. Cannot end		
Region *	Zone *		
us-central1 (lowa) 🔻 🔞	us-central1-a ▼ @		
service availability.			
nvironment		•	
II environment have the latest NVIDIA GPU	libraries (CUDA CuDNN NCCL) and latest		
ntel® libraries (Intel® MKL_DNN/MKL) read			
ntel® libraries (Intel® MKL_DNN/MKL) reac Irivers. Select the specific image based on t	ly to go, along with the latest supported he primary machine learning framework yo	u	
ntel® libraries (Intel® MKL_DNN/MKL) read Irivers. Select the specific image based on t vill be using. If the library you would like to u	ly to go, along with the latest supported he primary machine learning framework yo	u	
ntel® libraries (Intel® MKL_DNN/MKL) reac Irivers. Select the specific image based on t	ly to go, along with the latest supported he primary machine learning framework yo	u	
ntel® libraries (Intel® MKL_DNN/MKL) reac Irivers. Select the specific image based on t will be using. If the library you would like to un which provides core packages. Operating System *	ly to go, along with the latest supported he primary machine learning framework yo	u T	
ntel® libraries (Intel® MKL_DNN/MKL) reac rivers. Select the specific image based on t rill be using. If the library you would like to u rhich provides core packages. Operating System *	ly to go, along with the latest supported he primary machine learning framework yo	u	
ntel® libraries (Intel® MKL_DNN/MKL) reac trivers. Select the specific image based on t vill be using. If the library you would like to u which provides core packages.	ly to go, along with the latest supported he primary machine learning framework yo		
ntel® libraries (Intel® MKL_DNN/MKL) reac rivers. Select the specific image based on t will be using. If the library you would like to u which provides core packages. Operating System * Debian 10	ly to go, along with the latest supported he primary machine learning framework y use is not listed, choose the base image,		
ntel® libraries (Intel® MKL_DNN/MKL) reac rivers. Select the specific image based on t vill be using. If the library you would like to u which provides core packages. Operating System * Debian 10	ly to go, along with the latest supported he primary machine learning framework y uses is not listed, choose the base image,		

CMPE 258 Haley Feng

Professor Vijay Eranti

II. Model in BigQueryML

CMPE 258 Haley Feng

Professor Vijay Eranti

III. Custom Forecasting Model

Open the 02-model notebook from source material with the exercise for:

- Removing outliers from time series data
- Long Short Term Memory (LSTM)
- Convolutional Neural Network (CNN)
- Random Walk ARIMA model
- Season Naïve -SARIMA
- Exponential Smoothing method

ML Models In this section, you will build models using popular neural network architectures for time-series data. Long Short Term Memory (LSTM) [20]: # Reshape test data to match model inputs and outputs X_train = X_train_reframed.values.reshape(-1, n_input_steps, n_features) X_test = X_test_reframed.values.reshape(-1, n_input_steps, n_features) Y_train = Y_train_reframed.values.reshape(-1, n_output_steps, 1) TODO 2: Update the LSTM architecture Try increasing and decreasing the number of LSTM units and see if you notice any accuracy improvements. You can use hyper-parameter tuning to search for optimal values, but that's outside the scope of this lab. [21]: # Try increasing and decreasing the number of LSTM units and see if you notice any accuracy imp. # Run the next cell to evaluate the results in more detail. model = Sequential([LSTM(64, input_shape=[n_input_steps, n_features]), Dense(n_output_steps])

CMPE 258 Haley Feng

Professor Vijay Eranti

IV. Challenge: 311 service requests

