Practice Midsemester Exam

Adam Piggott

April 2021

- **Problem 1 (5 marks)** (a) For each of the following terms, state a formal definition of the term and give an example: statement, predicate, argument.
 - (b) Write a sentence which does not use the word 'not' and is logically equivalent to the negation of the following statement:
 - For all integers a and b, if a < b, then there exists a unique solution to the equation E(a, b).
 - (c) Represent the form of the following argument using one of the notations introduced in class, and then establish or refute the validity of the argument.
 - "There is no water on Planet X. If there is life on Planet X, then Planet X contains water. Planet X will be invited to join the Confederation of Lively Planets only if there is life on Planet X. Therefore, Planet X will not be invited to join the Confederation of Lively Planets."
 - (d) Is the set $\{\neg, \lor\}$ a functionally complete set of logical connectives? Justify your answer.

- **Problem 2 (5 marks)** (a) Describe an example of each of the following: a set A containing 6 elements defined using set-roster notation; a set B containing 27 elements defined using set-builder notation; a partition of the integers that contains exactly four sets.
 - (b) Let A denote the lower-case English alphabet $\{a, b, c, \ldots, z\}$ and let $X = A \times \mathbb{Z} \times A \times (\mathbb{Q} \setminus \mathbb{Z})$. Use set-roster notation to give an example of a subset of X that has exactly three elements.
 - (c) Recall that \mathbb{N} denotes the set of positive integers. We define a sequence by $(a_n)_{n\in\mathbb{N}}$ by

$$\begin{cases} a_1 = 2 \\ \forall n \in \mathbb{N} \ a_{n+1} = a_n + (n+1)2^{n+1} \end{cases}$$

Prove that the following is an explicit definition of the same sequence

$$\forall n \in \mathbb{N} \ a_n = (n-1)2^{n+1} + 2.$$

(d) Use the logical equivalences below and the definitions of set operations to prove, or provide a counterexample to disprove, the following set identity:

$$(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$$

The following is taken from the optional text. The text uses \sim instead of \neg for negation. You should use \neg .

Theorem 2.1.1 Logical Equivalences

Given any statement variables p, q, and r, a tautology t and a contradiction c, the following logical equivalences hold.

1	. Commutative laws:	$p \wedge q \equiv q \wedge p$	$p \vee q \equiv q \vee p$
2	Associative laws:	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	$(p \vee q) \vee r \equiv p \vee (q \vee r)$
3.	Distributive laws:	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	$p\vee (q\wedge r)\equiv (p\vee q)\wedge (p\vee q)$
4.	Identity laws:	$p \wedge \mathbf{t} \equiv p$	$p \lor \mathbf{c} \equiv p$
5.	Negation laws:	$p \lor \sim p \equiv \mathbf{t}$	$p \land \sim p \equiv \mathbf{c}$
6.	Double negative law:	$\sim (\sim p) \equiv p$	
7.	Idempotent laws:	$p \wedge p \equiv p$	$p \lor p \equiv p$
8.	Universal bound laws:	$p \lor \mathbf{t} \equiv \mathbf{t}$	$p \wedge \mathbf{c} \equiv \mathbf{c}$
9.	De Morgan's laws:	$\sim (p \wedge q) \equiv \sim p \vee \sim q$	$\sim (p \lor q) \equiv \sim p \land \sim q$
10.	Absorption laws:	$p\vee(p\wedge q)\equiv p$	$p \wedge (p \vee q) \equiv p$
11.	Negations of t and c :	$\sim t \equiv c$	$\sim c \equiv t$

- **Problem 3 (5 marks)** (a) Let A and B be sets. State the definition of each of the following: a relation from A to B; a relation on A; the inverse relation R^{-1} of a relation R from A to B.
 - (b) A relation R is defined on the set $\{1, 2, 3, 4, 5\}$ by the rule

$$xRy \Leftrightarrow x + 2y < 10.$$

Draw a digraph representing R.

- (c) Let A and B be sets. Suppose that R is a relation from A to B. What must be true about R for it to be an injective function? State you answer in English using quantification and a predicate.
- (d) Is the function $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ given by $f(z) = (z-3)^2 + 1$ surjective? Justify your answer.
- (e) Prove or disprove the following: Let A, B and C be sets, and let $f:A\to B$ and $g:B\to C$ be functions. If f and g are injective, then $g\circ f$ is an injective function from $A\to C$.

- **Problem 4 (5 marks)** (a) Write the hexadecimal and decimal representations of the integer: $(1101001101)_2$
 - (b) Find all of the integers z such that $z \mod 11 = 3$ and $z \operatorname{div} 11 = -4$
 - (c) Suppose that we agree to represent a non-zero rational number $q = (-1)^2 \times m \times 2^n$ by 12 bits using: 1 bit to store s; followed by 3 bits to store a non-negative integer representing n+3; followed by 8 bits to store the bits that appear after the binary point in the mantissa m. The hexadecimal string B3A represents a rational number q in this scheme. Find the decimal representation of q.
 - (d) The list $(X_i)_{1..8} = (D, I, S, C, R, E, T, E)$ is to be sorted using Selection sort. The sorting is to be achieved by progressively modifying an index function π , rather than by shuffling members of the list itself. So initially $(X_i)_{1..8} = (X_{\pi(i)})_{1..8}$ where $\pi(i) = i$ for i = 1, ..., 8, and when sorting is complete π is sufficiently changed so that $(X_{\pi(i)})_{1..8}$ is in alphabetical order. Find the state of the index function π after the least element algorithm has been called three times by Selection Sort.