Multivariable Calculus (Lecture-4)

Department of Mathematics Bennett University India

24th October, 2018

Learning Outcome of the Lecture

We learn

- Limits of Functions $F: S \subseteq \mathbb{R}^n \to \mathbb{R}$
- Limit and Iterated Limits
- Continuity of Functions $F: S \subseteq \mathbb{R}^2 \to \mathbb{R}$
- Properties of continuous functions

We can similarly define limits of a function $F: S \subseteq \mathbb{R}^n \to \mathbb{R}$.

We can similarly define limits of a function $F: S \subseteq \mathbb{R}^n \to \mathbb{R}$.

Definition

Let $F: S \subseteq \mathbb{R}^n \to \mathbb{R}$ be a function. Let $A = (x_1, x_2, \dots, x_n)$ be a limit point of S.

We can similarly define limits of a function $F: S \subseteq \mathbb{R}^n \to \mathbb{R}$.

Definition

Let $F: S \subseteq \mathbb{R}^n \to \mathbb{R}$ be a function. Let $A = (x_1, x_2, \dots, x_n)$ be a limit point of S. A point $L \in \mathbb{R}$ is said to be the limit of F at A if

We can similarly define limits of a function $F: S \subseteq \mathbb{R}^n \to \mathbb{R}$.

Definition

Let $F: S \subseteq \mathbb{R}^n \to \mathbb{R}$ be a function. Let $A = (x_1, x_2, \dots, x_n)$ be a limit point of S. A point $L \in \mathbb{R}$ is said to be the limit of F at A if for every $\epsilon > 0$ there exists a $\delta > 0$ such that

$$X \in S$$
 and $0 < ||X - A|| < \delta$ \Rightarrow $|F(X) - L| < \epsilon$.

We can similarly define limits of a function $F: S \subseteq \mathbb{R}^n \to \mathbb{R}$.

Definition

Let $F: S \subseteq \mathbb{R}^n \to \mathbb{R}$ be a function. Let $A = (x_1, x_2, \dots, x_n)$ be a limit point of S. A point $L \in \mathbb{R}$ is said to be the limit of F at A if for every $\epsilon > 0$ there exists a $\delta > 0$ such that

$$X \in S$$
 and $0 < ||X - A|| < \delta$ \Rightarrow $|F(X) - L| < \epsilon$.

In this case we write

$$\lim_{X \to A} F(X) = L,$$

and say that $\lim_{X\to A} F(X)$ exists and is equal to L.

We can similarly define limits of a function $F: S \subseteq \mathbb{R}^n \to \mathbb{R}$.

Definition

Let $F: S \subseteq \mathbb{R}^n \to \mathbb{R}$ be a function. Let $A = (x_1, x_2, \dots, x_n)$ be a limit point of S. A point $L \in \mathbb{R}$ is said to be the limit of F at A if for every $\epsilon > 0$ there exists a $\delta > 0$ such that

$$X \in S$$
 and $0 < ||X - A|| < \delta$ \Rightarrow $|F(X) - L| < \epsilon$.

In this case we write

$$\lim_{X\to A} F(X) = L,$$

and say that $\lim_{X\to A} F(X)$ exists and is equal to L.

In other words, we say that F(X) approaches L as X approaches A or F(X) has the limit L as X tends to A.

Important Theorem on Limits of Functions

Theorem

Let $F: S \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be a function. Then, F(X) can be written as

$$F(X) = (f_1(X), f_2(X), \dots, f_m(X))$$
 for $X \in S$,

where $f_i(1 \le i \le m)$ are component functions of F.

Important Theorem on Limits of Functions

Theorem

Let $F: S \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be a function. Then, F(X) can be written as

$$F(X) = (f_1(X), f_2(X), \dots, f_m(X))$$
 for $X \in S$,

where $f_i(1 \le i \le m)$ are component functions of F.

Let X_0 be a limit point of S and let $L = (A_1, A_2, \dots, A_m)$ be a point in \mathbb{R}^m . Then,

$$\lim_{X \to X_0} F(X) = L$$

if and only if

$$\lim_{X \to X_0} f_i(X) = A_i \quad \text{for } 1 \le i \le m.$$

$$F(x,y) = \left(\frac{\sin x}{x}, \frac{x^2y}{x^2 + y^2}, 5y\right)$$

for all (x, y) with $x \neq 0$. Examine the existence of $\lim_{(x, y) \to (0, 0)} F(x, y)$.

$$F(x,y) = \left(\frac{\sin x}{x}, \frac{x^2y}{x^2 + y^2}, 5y\right)$$

for all (x, y) with $x \neq 0$. Examine the existence of $\lim_{(x, y) \to (0, 0)} F(x, y)$.

• Step 1: First Component function f_1

$$F(x,y) = \left(\frac{\sin x}{x}, \frac{x^2y}{x^2 + y^2}, 5y\right)$$

for all (x, y) with $x \neq 0$. Examine the existence of $\lim_{(x, y) \to (0, 0)} F(x, y)$.

• Step 1: First Component function f_1

$$\lim_{(x,y)\to(0,0)} f_1(x,y) = \lim_{(x,y)\to(0,0)} \frac{\sin x}{x} = 1$$

$$F(x,y) = \left(\frac{\sin x}{x}, \frac{x^2y}{x^2 + y^2}, 5y\right)$$

for all (x, y) with $x \neq 0$. Examine the existence of $\lim_{(x, y) \to (0, 0)} F(x, y)$.

• Step 1: First Component function f_1

$$\lim_{(x,y)\to(0,0)} f_1(x,y) = \lim_{(x,y)\to(0,0)} \frac{\sin x}{x} = 1$$

• Step 2: Second Component function f_2

$$F(x,y) = \left(\frac{\sin x}{x}, \frac{x^2y}{x^2 + y^2}, 5y\right)$$

for all (x, y) with $x \neq 0$. Examine the existence of $\lim_{(x, y) \to (0, 0)} F(x, y)$.

• Step 1: First Component function f_1

$$\lim_{(x,y)\to(0,0)} f_1(x,y) = \lim_{(x,y)\to(0,0)} \frac{\sin x}{x} = 1$$

• Step 2: Second Component function f_2

$$\lim_{(x,y)\to(0,0)} f_2(x,y) = \lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2 + y^2} = 0$$

$$F(x,y) = \left(\frac{\sin x}{x}, \frac{x^2y}{x^2 + y^2}, 5y\right)$$

for all (x, y) with $x \neq 0$. Examine the existence of $\lim_{(x, y) \to (0, 0)} F(x, y)$.

• Step 1: First Component function f_1

$$\lim_{(x,y)\to(0,0)} f_1(x,y) = \lim_{(x,y)\to(0,0)} \frac{\sin x}{x} = 1$$

• Step 2: Second Component function f_2

$$\lim_{(x,y)\to(0,0)} f_2(x,y) = \lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2 + y^2} = 0$$

$$F(x,y) = \left(\frac{\sin x}{x}, \frac{x^2y}{x^2 + y^2}, 5y\right)$$

for all (x, y) with $x \neq 0$.Examine the existence of $\lim_{(x, y) \to (0, 0)} F(x, y)$.

• Step 1: First Component function f_1

$$\lim_{(x,y)\to(0,0)} f_1(x,y) = \lim_{(x,y)\to(0,0)} \frac{\sin x}{x} = 1$$

• Step 2: Second Component function f_2

$$\lim_{(x,y)\to(0,0)} f_2(x,y) = \lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2 + y^2} = 0$$

$$\lim_{(x,y)\to(0,0)} f_3(x,y) = \lim_{(x,y)\to(0,0)} 5y = 0$$

$$F(x,y) = \left(\frac{\sin x}{x}, \frac{x^2y}{x^2 + y^2}, 5y\right)$$

for all (x, y) with $x \neq 0$. Examine the existence of $\lim_{(x, y) \to (0, 0)} F(x, y)$.

• Step 1: First Component function f_1

$$\lim_{(x,y)\to(0,0)} f_1(x,y) = \lim_{(x,y)\to(0,0)} \frac{\sin x}{x} = 1$$

• Step 2: Second Component function f_2

$$\lim_{(x,y)\to(0,0)} f_2(x,y) = \lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2 + y^2} = 0$$

$$\lim_{(x,y)\to(0,0)} f_3(x,y) = \lim_{(x,y)\to(0,0)} 5y = 0$$

$$F(x,y) = \left(\frac{\sin x}{x}, \frac{xy}{x^2 + y^2}, 5\right)$$

for all (x, y) with $x \neq 0$. Examine the existence of $\lim_{(x, y) \to (0, 0)} F(x, y)$.

$$F(x,y) = \left(\frac{\sin x}{x}, \frac{xy}{x^2 + y^2}, 5\right)$$

for all (x, y) with $x \neq 0$. Examine the existence of $\lim_{(x, y) \to (0, 0)} F(x, y)$.

• Step 1: First Component function f_1

$$\lim_{(x,y)\to(0,0)} f_1(x,y) = \lim_{(x,y)\to(0,0)} \frac{\sin x}{x} = 1$$

$$F(x,y) = \left(\frac{\sin x}{x}, \frac{xy}{x^2 + y^2}, 5\right)$$

for all (x, y) with $x \neq 0$. Examine the existence of $\lim_{(x, y) \to (0, 0)} F(x, y)$.

• Step 1: First Component function f_1

$$\lim_{(x,y)\to(0,0)} f_1(x,y) = \lim_{(x,y)\to(0,0)} \frac{\sin x}{x} = 1$$

• Step 2: Second Component function f_2

$$\lim_{(x,y)\to(0,0)} f_2(x,y) = \lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2} \text{ does NOT exist.}$$

$$F(x,y) = \left(\frac{\sin x}{x}, \frac{xy}{x^2 + y^2}, 5\right)$$

for all (x, y) with $x \neq 0$. Examine the existence of $\lim_{(x, y) \to (0, 0)} F(x, y)$.

• Step 1: First Component function f_1

$$\lim_{(x,y)\to(0,0)} f_1(x,y) = \lim_{(x,y)\to(0,0)} \frac{\sin x}{x} = 1$$

• Step 2: Second Component function f_2

$$\lim_{(x,y)\to(0,0)} f_2(x,y) = \lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2} \text{ does NOT exist.}$$

$$\lim_{(x,y)\to(0,0)} f_3(x,y) = \lim_{(x,y)\to(0,0)} 5 = 5$$

$$F(x,y) = \left(\frac{\sin x}{x}, \frac{xy}{x^2 + y^2}, 5\right)$$

for all (x, y) with $x \neq 0$. Examine the existence of $\lim_{(x, y) \to (0, 0)} F(x, y)$.

• Step 1: First Component function f_1

$$\lim_{(x,y)\to(0,0)} f_1(x,y) = \lim_{(x,y)\to(0,0)} \frac{\sin x}{x} = 1$$

• Step 2: Second Component function f_2

$$\lim_{(x,y)\to(0,0)} f_2(x,y) = \lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2} \text{ does NOT exist.}$$

• Step 3: Third Component function f_3

$$\lim_{(x,y)\to(0,0)} f_3(x,y) = \lim_{(x,y)\to(0,0)} 5 = 5$$

• Step 4: Conclusion: $\lim_{(x,y)\to(0,0)} F(x,y)$ does NOT exist.

Some times converting from cartesian coordinates system to other coordinates system (\mathbb{R}^2 : Polar; \mathbb{R}^3 : Cylindrical, Spherical) will make easier to compute the limits.

Some times converting from cartesian coordinates system to other coordinates system (\mathbb{R}^2 : Polar; \mathbb{R}^3 : Cylindrical, Spherical) will make easier to compute the limits.

Compute $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2}$ converting it into polar coordinates.

Some times converting from cartesian coordinates system to other coordinates system (\mathbb{R}^2 : Polar; \mathbb{R}^3 : Cylindrical, Spherical) will make easier to compute the limits.

Compute $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2}$ converting it into polar coordinates.

$$\lim_{(x,y)\to(0,0)} \frac{x^2 y^2}{x^2 + y^2} = \lim_{r\to 0^+} \frac{r^4 \cos^2 \theta \sin^2 \theta}{r^2}$$
$$= \lim_{r\to 0^+} r^2 \cos^2 \theta \sin^2 \theta \le \lim_{r\to 0^+} r^2 = 0$$

Therefore,

Some times converting from cartesian coordinates system to other coordinates system (\mathbb{R}^2 : Polar; \mathbb{R}^3 : Cylindrical, Spherical) will make easier to compute the limits.

Compute $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2}$ converting it into polar coordinates.

$$\lim_{(x,y)\to(0,0)} \frac{x^2 y^2}{x^2 + y^2} = \lim_{r\to 0^+} \frac{r^4 \cos^2 \theta \sin^2 \theta}{r^2}$$
$$= \lim_{r\to 0^+} r^2 \cos^2 \theta \sin^2 \theta \le \lim_{r\to 0^+} r^2 = 0$$

Therefore,

$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2} = 0.$$

Sequences Criteria for Limits of Functions

Theorem

Let $F: S \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be a function. Let X_0 be a limit point of S and let L be a point in \mathbb{R}^m . Then,

Sequences Criteria for Limits of Functions

Theorem

Let $F: S \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be a function. Let X_0 be a limit point of S and let L be a point in \mathbb{R}^m . Then,

$$\lim_{X \to X_0} F(X) = L$$

if and only if

Sequences Criteria for Limits of Functions

Theorem

Let $F: S \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be a function. Let X_0 be a limit point of S and let L be a point in \mathbb{R}^m . Then,

$$\lim_{X \to X_0} F(X) = L$$

if and only if

For every sequence $\{X_k\}$ in S (with $X_k \neq X_0$ for all k) converging to X_0 the sequence $\{F(X_k)\}$ converges to L.

Iterated Limits of Scalar Valued Functions

Let $f: S \subseteq \mathbb{R}^2 \to \mathbb{R}$ be a real valued function. Let (x_0, y_0) be a limit point of S. The limits

$$\lim_{x \to x_0} \lim_{y \to y_0} f(x, y), \quad \text{if it exists}$$

$$\lim_{y \to y_0} \lim_{x \to x_0} f(x, y), \quad \text{if it exists}$$

are called the iterated limits of f at (x_0, y_0) .

Iterated Limits of Scalar Valued Functions

Let $f: S \subseteq \mathbb{R}^2 \to \mathbb{R}$ be a real valued function. Let (x_0, y_0) be a limit point of S. The limits

$$\lim_{x \to x_0} \lim_{y \to y_0} f(x, y), \quad \text{if it exists}$$

$$\lim_{y \to y_0} \lim_{x \to x_0} f(x, y), \quad \text{if it exists}$$

are called the iterated limits of f at (x_0, y_0) . Then, the limit

$$\lim_{(x,y)\to(0,0)} f(x,y)$$
, if it exists

is called the (double) limit of f at (x_0, y_0) .

Iterated Limits of Scalar Valued Functions

Let $f: S \subseteq \mathbb{R}^2 \to \mathbb{R}$ be a real valued function. Let (x_0, y_0) be a limit point of S. The limits

$$\lim_{x \to x_0} \lim_{y \to y_0} f(x, y), \quad \text{if it exists}$$

$$\lim_{y \to y_0} \lim_{x \to x_0} f(x, y), \quad \text{if it exists}$$

are called the iterated limits of f at (x_0, y_0) . Then, the limit

$$\lim_{(x,y)\to(0,0)} f(x,y), \text{ if it exists}$$

is called the (double) limit of f at (x_0, y_0) .

Question: What is the relation between the existence of these three limits? - Analyze.

Examples

• Let
$$f(x,y) = \frac{x^2}{x^2 + y^2}$$
 for $(x,y) \neq (0,0)$.

$$\lim_{x \to 0} \left(\lim_{y \to 0} f(x,y) \right) = \lim_{x \to 0} 1 = 1$$

$$\lim_{y \to 0} \left(\lim_{x \to 0} f(x,y) \right) = \lim_{y \to 0} 0 = 0$$

Examples

• Let
$$f(x,y) = \frac{x^2}{x^2 + y^2}$$
 for $(x,y) \neq (0,0)$.

$$\lim_{x \to 0} \left(\lim_{y \to 0} f(x,y) \right) = \lim_{x \to 0} 1 = 1$$

$$\lim_{y \to 0} \left(\lim_{x \to 0} f(x,y) \right) = \lim_{y \to 0} 0 = 0$$

 $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

Examples

• Let
$$f(x, y) = \frac{x^2}{x^2 + y^2}$$
 for $(x, y) \neq (0, 0)$.

$$\lim_{x \to 0} \left(\lim_{y \to 0} f(x, y) \right) = \lim_{x \to 0} 1 = 1$$

$$\lim_{y \to 0} \left(\lim_{x \to 0} f(x, y) \right) = \lim_{y \to 0} 0 = 0$$

 $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

• Let
$$f(x, y) = \frac{x^2 y^2}{x^2 y^2 + (x - y)^2}$$
 if $x^2 y^2 + (x - y)^2 \neq 0$.

$$\lim_{x \to 0} \left(\lim_{y \to 0} f(x, y) \right) = \lim_{x \to 0} 0 = 0$$

$$\lim_{y \to 0} \left(\lim_{x \to 0} f(x, y) \right) = \lim_{y \to 0} 0 = 0$$

Examples

• Let
$$f(x, y) = \frac{x^2}{x^2 + y^2}$$
 for $(x, y) \neq (0, 0)$.

$$\lim_{x \to 0} \left(\lim_{y \to 0} f(x, y) \right) = \lim_{x \to 0} 1 = 1$$

$$\lim_{y \to 0} \left(\lim_{x \to 0} f(x, y) \right) = \lim_{y \to 0} 0 = 0$$

 $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

• Let
$$f(x, y) = \frac{x^2 y^2}{x^2 y^2 + (x - y)^2}$$
 if $x^2 y^2 + (x - y)^2 \neq 0$.

$$\lim_{x \to 0} \left(\lim_{y \to 0} f(x, y) \right) = \lim_{x \to 0} 0 = 0$$

$$\lim_{y \to 0} \left(\lim_{x \to 0} f(x, y) \right) = \lim_{y \to 0} 0 = 0$$

Still $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

Note on Iterated Limits and (Double) Limit

Important Note:

- Existence of the (double) limit does **NOT** guarantee existence of iterated limits.
- Existence of the iterated limits do NOT guarantee existence of (double) limit.
- If (double) limit and iterated limits exist then they are all equal.

Definition

Let $F: S \subseteq \mathbb{R}^2 \to \mathbb{R}$ be a function. Let $X_0 \in S$. We say that F is continuous at the point X_0 if

Definition

Let $F: S \subseteq \mathbb{R}^2 \to \mathbb{R}$ be a function. Let $X_0 \in S$. We say that F is continuous at the point X_0 if for each $\epsilon > 0$, there exists a real number $\delta > 0$ such that

Definition

Let $F: S \subseteq \mathbb{R}^2 \to \mathbb{R}$ be a function. Let $X_0 \in S$. We say that F is continuous at the point X_0 if for each $\epsilon > 0$, there exists a real number $\delta > 0$ such that

$$X \in S$$
, $||X - X_0|| < \delta$ \Rightarrow $|F(X) - F(X_0)| < \epsilon$.

Definition

Let $F: S \subseteq \mathbb{R}^2 \to \mathbb{R}$ be a function. Let $X_0 \in S$. We say that F is continuous at the point X_0 if for each $\epsilon > 0$, there exists a real number $\delta > 0$ such that

$$X \in S$$
, $||X - X_0|| < \delta$ \Rightarrow $|F(X) - F(X_0)| < \epsilon$.

If F is continuous at each point of S then we say that F is continuous in the set S.

Definition

Let $F: S \subseteq \mathbb{R}^2 \to \mathbb{R}$ be a function. Let $X_0 \in S$. We say that F is continuous at the point X_0 if for each $\epsilon > 0$, there exists a real number $\delta > 0$ such that

$$X \in S$$
, $||X - X_0|| < \delta$ \Rightarrow $|F(X) - F(X_0)| < \epsilon$.

If F is continuous at each point of S then we say that F is continuous in the set S.

NOTE: Limit and Continuity are closely related. Justify?

• In continuity function must be defined at the point X_0 , that is, X_0 must be an element of the domain S,

• In continuity function must be defined at the point X_0 , that is, X_0 must be an element of the domain S, while in limit X_0 is a limit point of set S and it need not belong to the set S.

- In continuity function must be defined at the point X_0 , that is, X_0 must be an element of the domain S, while in limit X_0 is a limit point of set S and it need not belong to the set S.
- In continuity limit of the function at X_0 must be equal to $F(X_0)$ (that is, the function value at X_0).

- In continuity function must be defined at the point X_0 , that is, X_0 must be an element of the domain S, while in limit X_0 is a limit point of set S and it need not belong to the set S.
- In continuity limit of the function at X_0 must be equal to $F(X_0)$ (that is, the function value at X_0). While in limit it need not be.

- In continuity function must be defined at the point X_0 , that is, X_0 must be an element of the domain S, while in limit X_0 is a limit point of set S and it need not belong to the set S.
- In continuity limit of the function at X_0 must be equal to $F(X_0)$ (that is, the function value at X_0). While in limit it need not be.
- In continuity at X_0 , we have for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$X \in S \text{ and } ||X - X_0|| < \delta \quad \Rightarrow \quad |F(X) - F(X_0)| < \epsilon.$$

- In continuity function must be defined at the point X_0 , that is, X_0 must be an element of the domain S, while in limit X_0 is a limit point of set S and it need not belong to the set S.
- In continuity limit of the function at X_0 must be equal to $F(X_0)$ (that is, the function value at X_0). While in limit it need not be.
- In continuity at X_0 , we have for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$X \in S \text{ and } ||X - X_0|| < \delta \quad \Rightarrow \quad |F(X) - F(X_0)| < \epsilon.$$

<u>While</u> in limit at X_0 is L, then we have for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$X \in S \text{ and } 0 < ||X - X_0|| < \delta \implies |F(X) - L| < \epsilon.$$

We can similarly define continuity of a function $F: S \subseteq \mathbb{R}^n \to \mathbb{R}$.

Definition			

We can similarly define continuity of a function $F: S \subseteq \mathbb{R}^n \to \mathbb{R}$.

Definition

Let $F: S \subseteq \mathbb{R}^n \to \mathbb{R}$ be a function. Let $X_0 \in S$. We say that F is continuous at the point X_0 if

We can similarly define continuity of a function $F: S \subseteq \mathbb{R}^n \to \mathbb{R}$.

Definition

Let $F: S \subseteq \mathbb{R}^n \to \mathbb{R}$ be a function. Let $X_0 \in S$. We say that F is continuous at the point X_0 if for each $\epsilon > 0$, there exists a real number $\delta > 0$ such that

We can similarly define continuity of a function $F: S \subseteq \mathbb{R}^n \to \mathbb{R}$.

Definition

Let $F: S \subseteq \mathbb{R}^n \to \mathbb{R}$ be a function. Let $X_0 \in S$. We say that F is continuous at the point X_0 if for each $\epsilon > 0$, there exists a real number $\delta > 0$ such that

$$X \in S$$
, $||X - X_0|| < \delta$ \Rightarrow $|F(X) - F(X_0)| < \epsilon$.

We can similarly define continuity of a function $F: S \subseteq \mathbb{R}^n \to \mathbb{R}$.

Definition

Let $F: S \subseteq \mathbb{R}^n \to \mathbb{R}$ be a function. Let $X_0 \in S$. We say that F is continuous at the point X_0 if for each $\epsilon > 0$, there exists a real number $\delta > 0$ such that

$$X \in S$$
, $||X - X_0|| < \delta$ \Rightarrow $|F(X) - F(X_0)| < \epsilon$.

If F is continuous at each point of S then we say that F is continuous in the set S.

We can similarly define continuity of a function $F: S \subseteq \mathbb{R}^n \to \mathbb{R}^m$.

We can similarly define continuity of a function $F: S \subseteq \mathbb{R}^n \to \mathbb{R}^m$.

Theorem

Let $F: S \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be a function. Then, F(X) can be written as

$$F(X) = (f_1(X), f_2(X), \dots, f_m(X))$$
 for $X \in S$,

where $f_i (1 \le i \le m)$ are component functions of F.

We can similarly define continuity of a function $F: S \subseteq \mathbb{R}^n \to \mathbb{R}^m$.

Theorem

Let $F: S \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be a function. Then, F(X) can be written as

$$F(X) = (f_1(X), f_2(X), \dots, f_m(X)) \quad \text{for } X \in S,$$

where $f_i (1 \le i \le m)$ are component functions of F.

Let $X_0 \in S$. Then F is continuous at X_0 , i.e.,

We can similarly define continuity of a function $F: S \subseteq \mathbb{R}^n \to \mathbb{R}^m$.

Theorem

Let $F: S \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be a function. Then, F(X) can be written as

$$F(X) = (f_1(X), f_2(X), \dots, f_m(X)) \quad \text{for } X \in S,$$

where $f_i (1 \le i \le m)$ are component functions of F.

Let $X_0 \in S$. Then F is continuous at X_0 , i.e.,

$$\lim_{X \to X_0} F(X) = F(X_0)$$

We can similarly define continuity of a function $F: S \subseteq \mathbb{R}^n \to \mathbb{R}^m$.

Theorem

Let $F: S \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be a function. Then, F(X) can be written as

$$F(X) = (f_1(X), f_2(X), \dots, f_m(X))$$
 for $X \in S$,

where $f_i (1 \le i \le m)$ are component functions of F.

Let $X_0 \in S$. Then F is continuous at X_0 , i.e.,

$$\lim_{X \to X_0} F(X) = F(X_0)$$

if and only if

We can similarly define continuity of a function $F: S \subseteq \mathbb{R}^n \to \mathbb{R}^m$.

Theorem

Let $F: S \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be a function. Then, F(X) can be written as

$$F(X) = (f_1(X), f_2(X), \dots, f_m(X))$$
 for $X \in S$,

where $f_i (1 \le i \le m)$ are component functions of F.

Let $X_0 \in S$. Then F is continuous at X_0 , i.e.,

$$\lim_{X \to X_0} F(X) = F(X_0)$$

if and only if

 $f_i(X)$ is continuous at X_0 for each i, i.e.,

We can similarly define continuity of a function $F: S \subseteq \mathbb{R}^n \to \mathbb{R}^m$.

Theorem

Let $F: S \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be a function. Then, F(X) can be written as

$$F(X) = (f_1(X), f_2(X), \dots, f_m(X))$$
 for $X \in S$,

where $f_i (1 \le i \le m)$ are component functions of F.

Let $X_0 \in S$. Then F is continuous at X_0 , i.e.,

$$\lim_{X \to X_0} F(X) = F(X_0)$$

if and only if

 $f_i(X)$ is continuous at X_0 for each i, i.e.,

$$\lim_{X \to X_0} f_i(X) = f_i(X_0) \quad \text{for } 1 \le i \le m.$$

Results for continuity of the function similar to limit of the function.

Results for continuity of the function similar to limit of the function.

• Sequential criteria for continuity at $X_0 \in S$.

Results for continuity of the function similar to limit of the function.

- Sequential criteria for continuity at $X_0 \in S$.
- Algebra of continuous functions.

Results for continuity of the function similar to limit of the function.

- Sequential criteria for continuity at $X_0 \in S$.
- Algebra of continuous functions.
- F is continuous if and only if all component functions of F are continuous.