

December 14th 2022

OpenViBE: an open source BCI software suite

Concluding Remarks - Research

Arthur Desbois, Marie-Constance Corsi ARAMIS team, Paris Brain Institute

PART 3 - Concluding remarks & perspectives

3.3 - BCI Research

BCI Inefficiency Challenge

Great potential

Poor usability

Problem: Current BCIs fail to detect the mental intentions in ~30% of users

BCI Inefficiency Challenge - State-of-the-art

- **Machine-centered approaches**
 - Signal conditioning (Ang et al, 2012)
 - Classification algorithms (Lotte et al, 2018)

→ Rely on EEG signals

- User-centered approaches
 - Search for neurophysiological patterns (Blankertz et al, 2010)
 - Human factors (Jeunet et al, 2015)
 - → Lack of reliable markers

- → Neural mechanisms underlying BCI learning poorly understood
- → Do not consider the interconnected nature of the brain functioning

Paris Brain Institute

BCI Inefficiency Challenge - Network Approach

(Varela et al, 1999)

Use of multimodal brain networks to identify alternative features & BCI learning patterns

Network Metrics for Mental States Characterization

Network Metrics for Mental States Characterization

Brain Connectivity Changes in MI-BCI

Amplitude synchronization

Phase synchronization

VS Resting state

(Cattai et al, IEEE TNSRE, 2021)

Merging information to improve classification

Merging information to improve classification

How does one learn to control a BCI?

NETBCI project

12

Paris Brain Institute

Reinforcement of Motor-Related Activity

(Corsi et al, 2020)

Functional Disconnection of Associative Areas

Node Strength Predicts BCI Learning Rate

The *reserve* effect

Higher connectivity → higher *potential* to disconnect (learning)

Paris Brain Institute

Stroke - Cortical Reorganization

Disability

Motor Imagery

Paris Brain Institute

Stroke - Inter-hemispheric Connectivity & Efficiency

Paris Brain Institute

Stroke - Searching for alternative features...

Neurophysiological patterns of stroke recovery over 1 year (ongoing project w/ AP-HP)

New Perspectives for Optimizing BCIs

Take Home Messages

BCI

- Promising tool for clinical applications
- Multidisciplinary domain
- Growing interest in the last few years with the AI

BCI learning & inter-subject variability

- Improving the classifier / signal processing
- Improving instructions
- Finding (new) subject-related predictors

Groups & events

- International: **BCI** society, international society
- Cybathlons: competitions to promote BCI and to test the finest algorithms with end users!
- In France: <u>CORTICO</u>, French association to promote BCI

Python tools - with many tutorials

- Performing online experiments: OpenViBE, an Inria software
- Open datasets to test algorithms & check their replicability: MOABB
- M/EEG data analysis: MNE-Python
- Classification tools: Scikit-learn

Available demos (available soon)

- Visualize E/MEG data
- Data extraction (ERD/S)
- Classification

BCI Motor Imagery with OpenViBE in X-Men: First Class

Thanks for your attention! Any questions?