

Informe 4 Laboratorio de Maquinas: Motores de Combustión Interna Ensayo de un Grupo Electrógeno

José Luis Riveros

Profesores: Tomás Herrera Muñoz

Cristóbal Galleguillos Ketterer

ICM557-2

indice:

- 1. Introducción
- 2. Objetivos
 - 2.1. Objetivos específicos
- 3. Esquema de la instalación
- 4. tabulación de valores
- 5. desarrollo
- 6. Gráficos y análisis
 - 6.1. ¿Existe alguna fórmula que relacione las RPM con la frecuencia, si es así a cuantas RPM funcionó el motor?
 - 6.2. Identificación de constantes
 - 6.3. Gráfico de los datos obtenidos y funcionamiento
 - 6.4. Comparación con tarifa chilquinta
 - 6.5. Comparación con otro grupo electrógeno, pero más moderno
- 7. Conclusión

1. Introducción

Durante este ensayo analizaremos el funcionamiento de un motor de combustión interna en aplicación a un grupo electrógeno, el uso de estos es de gran importancia debido a su versatilidad para proporcionar electricidad en lugares alejados de la red o de difícil acceso, están presente en casi todo tipo de industrias, como en la minería, forestal, construcción. También hay empresas que lo utilizan en los horarios punta debido a que como su consumo de electricidad es tan elevado se desconectan de la red para dejar energía disponible para usos más domésticos.

Estos actualmente no se encuentran regulados en chile, desde el año 2016 se inició la regulación del grupo electrógeno junto a la regulación de emisiones, actualmente se sigue tramitando la regulación, pero se ha visto paralizado por el contexto de pandemia.

2. Objetivos

Analizar el comportamiento un motor de combustión interna en aplicación a un grupo electrógeno.

- 2.1 Objetivos especificos
 - -determinar el costo kWh generado
 - -Determinar el punto de funcionamiento optimo ¿a qué RPM?

3. Esquema general de la instalación

La obtención de potencia del motor se realiza de acuerdo al esquema presentado en la siguiente ilustración (figura 1)

Figura 1

El diagrama del generador se presenta en:

Figura 2

4. Tabulación de valores y datos técnicos

En la siguiente tabla están los datos obtenidos durante el laboratorio.

	Variables eléctricas					Combustible			
#	I1 [A]	I2 [A]	I3 [A]	V2 [V]	V2 [V]	V3 [V]	f [Hz]	Vol [cm3]	t [s]
1	26	26	27	404	404	404	51,5	375	150
2	28	29	29	402	402	402	51	375	146
3	39	39	37	400	400	400	50,5	375	132
4	42,5	42,6	40,9	400	400	400	50	375	125
5	46,4	46,5	44,6	399,9	399,9	399,9	50	375	120

Tabla 1

Placa del motor que indica algunas de sus características

Figura 3

Densidad del diesel= 850 Kg/M^3

5. Desarrollo

Plantearemos las fórmulas y ecuaciones para obtener: la corriente media, tensión media, potencia eléctrica, consumo especifico en bornes alternador, costo kWh generado.

 $I_m = \frac{I_1 + I_2 + I_3}{3} [A]$ Corriente media:

 $V_m = \frac{V_1 + V_2 + V_3}{3} \; [V] \label{eq:Vm}$ Tensión media:

Potencia eléctrica: $P_{el} = \cos \varphi * V_m * I_m [W]$

 $b_{el} = \rho_c * \frac{\dot{Q}_{cb}}{P_{el}} \left[\frac{kg}{kWh} \right]$

Consumo especifico en bornes alternador:

 $C_{kWh} = \frac{\dot{Q}_{cb} * c}{P_{el}} \; [\frac{\$}{kWh}]$

Costo del kWh generado:

La siguiente tabla nos indica los datos calculados con las formulas recien planteados y utilizando datos de la tabla 1

Im	Vm	Pel[W]	Pel[kW]	Qcob[m^3/h]	bel[kg/kWh]	C[\$/kWh]
26,3333333	404	8510,933	8,510933	0,009	0,89884384	513,292706
28,6666667	402	9219,2	9,2192	0,00924658	0,85252398	486,841339
38,3333333	400	12266,67	12,26667	0,01022727	0,7086833	404,699852
42	400	13440	13,44	0,0108	0,68303571	390,053571
45,8333333	399,9	14663	14,663	0,01125	0,65215167	372,416968

Tabla 2

6. Gráficos y análisis

6.1 ¿Existe alguna fórmula que relacione las RPM con la frecuencia, si es así a cuantas RPM funcionó el motor?

Teniendo la frecuencia del motor establecemos la siguiente relación para obtener las RPM:

$$1[Hz] = \frac{60 \, rev}{1 \, min} * \frac{2}{p}$$

Con p= N° de polos => P=4

Aplicando esta relación a los datos tabulados obtenemos

f [Hz]	RPM
51,5	1545
51	1530
50,5	1515
50	1500
50	1500

Tabla 3

6.2 Identificación de constantes

En este casos tuvimos cuatro valores constantes:

- densidad del Diesel, 850 kg sobre metro cubico
- el precio del Diesel, que no siempre es constante y puede variar de un día a otro, en este caso tenemos que es de \$485,4 por litro
- volumen del ensayo, que utilizamos para medir el caudal de combustible, que es de 375 cm³
- el angulo relativo fasorial, de las corrientes, 120°

6.3 Grafico de los datos obtenidos y funcionamiento

Gráfico 1

Grafico 2

Al analizar los gráficos 1 y 2, los de consumo especifico v/s corriente y el de costo v/s corriente podemos ver el el punto mas optimo es en los 50 Hz, en las 1500 rpm. En este punto es donde hay mayor corriente y menor consumo de combustible.

6.4 Comparación con tarifa chilquinta

La tarifa de chilquinta para la zona de quilpue es 83,568 \$/kWh y nuestro generador en su punto mas optimo tiene un costo de 372,4 \$/kWh por lo que es más barato obtener electricidad entregada por chilquinta que la que producimos con nuestro generador.

6.5 Comparación con otro grupo electrógeno, pero más moderno

En este caso compararemos con el grupo electrógeno CATERPILLAR DE55E0, que es más moderno y tenemos las características entregadas por el fabricante.

Output Ratings					
Generator Set Model - 3 Phase	Prime*	Standby*			
400/230 V, 50 Hz	50.0 kVA	55.0 kVA			
	40.0 kW	44.0 kW			
480/277 V, 60 Hz	56.3 kVA	62.5 kVA			
	45.0 kW	50.0 kW			

 $^{^{\}star}$ Refer to ratings definitions on page 4. Ratings at $_{0.8}\,$ power factor.

Technical Data					
Engine Make & Model:	Cat [®] C3.3				
Generator Model:	R1935L4				
Control Panel:	EMCP 4.1				
Base Frame Type:	Heavy Duty Fabricated Steel				
Circuit Breaker Type:	3 Pole MCB / 3 Pole MCCB				
Frequency:	50 Hz	60 Hz			
Engine Speed: RPM	1500	1800			
Fuel Tank Capacity: litres (US gal)	219 (57.9)				
Fuel Consumption, Prime: I/hr (US gal/hr)	11.6 (3.1)	13.7 (3.6)			
Fuel Consumption, Standby : I/hr (US gal/hr)	12.8 (3.4)	15.2 (4.0)			

En este caso el costo de producción de energía es de 122 \$/kWh. Este valor es menor que el costo de nuestro grupo electrógeno, pero a pesar de seguir siendo mas caro que chilquinta es un costo mucho mas razonable. Esta diferencia nos permite ver la mala eficiencia que posee nuestro motor en comparación a un motor mas moderno.

7. Conclusión

Al analizar y comparar los datos pudimos ver la baja eficiencia que tenia el motor. A pesar de que sigue funcionando y cumple con su función, es necesario hacer un análisis tal como lo hicimos en el ensayo de desarme de un motor y buscar alguna pieza que a causa del roce, las cargas cíclicas o la exposición a altas temperaturas haya variado sus dimensiones y este generando algún roce o produciendo otro tipo de perdida mecánica.