Fonction de deux variables

Table des matières

1. Introduction.	1
1.1. Rappels.	1
1.2. Premières définitions.	1
2. La topologie de la norme de \mathbb{R}^2	1

1. Introduction.

1.1. Rappels.

Définition 1.1.1 (fonction d'une variable): Soit A, B deux ensembles. Une application f est la donnée d'un ensemble de départ A et d'un ensemble d'arrivée B et qui, à chaque $x \in A$ associe un unique $f(x) \in B$. On la note $f: A \to \mathbb{B}$; $x \mapsto f(x)$.

Définition 1.1.2 (Graphe d'une application): Soit $f: A \to B$ une application. On appelle graphe de f l'ensemble suivant Graphe $(f) = \{(x, f(x)) \mid x \in A\} \subset A \times B$

1.2. Premières définitions.

Définition 1.2.1 (fonction de deux variables): Soit A un sous ensemble de \mathbb{R}^2 et B un ensemble. Une application f de deux variables de A dans B est la donnée d'un ensemble de départ A et d'un ensemble d'arrivée B et qui, à chaque $(x,y) \in A$ associe un unique $f(x,y) \in B$. On la note $f:A \to A$ $B; x, y \mapsto f(x, y).$

Définition 1.2.2 (Graphe d'une application): Soit $f: A \to B$ une application de deux variables. On appelle graphe de f l'ensemble suivant $\operatorname{Graphe}(f) = \{(x,y,f(x,y)) \in \mathbb{R}^3 \mid x,y \in \mathbb{R}\}$

Exemple: L'aire d'un rectangle : $f : \mathbb{R}^2 \to \mathbb{R}$; $(x, y) \mapsto xy$. Soit a un réel fixé et $x,y\in\mathbb{R}$. l'équation associée est $a=xy\Leftrightarrow y=\frac{a}{x}.$ On cherche le rectangle d'aire a de côté x, y.

2. La topologie de la norme de \mathbb{R}^2 .

Définition 2.1 (Norme Euclidienne): Soit $v=\binom{a}{b}\in\mathbb{R}^2$. La norme Euclidienne est la longueur du vecteur v. Elle est donnée par $\|v\|=\sqrt{a^2+b^2}$.

```
Proposition 2.1: Soit v \in \mathbb{R}^2, \lambda \in \mathbb{R}. Alors \|\cdot\| vérifie:
```

- 1. $||v|| \ge 0$ et $||v|| = 0 \Leftrightarrow v = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
- 2. $\|\lambda v\| = |\lambda| \|v\|$ (homogénéïté).
- 3. $||v + u|| \le ||v|| + ||u||$ (inégalité triangulaire).

i.e la norme Euclidienne est une norme.

Démonstration:

2. Soit
$$u = \binom{a}{b} \in \mathbb{R}^2, \lambda \in \mathbb{R}$$
.

$$\begin{array}{l} \text{1. Pour tout } x \in \mathbb{R}^2, \, x^2 \geq 0 \text{ d'où } \forall u \in \mathbb{R}^2, \|u\| \geq 0. \\ \text{2. Soit } u = \binom{a}{b} \in \mathbb{R}^2, \, \lambda \in \mathbb{R}. \\ \text{On a } \|\lambda u\| = \|(\lambda a, \lambda b)\| = \sqrt{(\lambda a)^2 + (\lambda b)^2} = \sqrt{\lambda^2 (a^2 + b^2)} = |\lambda| \|u\|. \end{array}$$

3.

Corollaire 2.1: Soit $v, u \in \mathbb{R}^2$. On a :

$$||v - u|| \ge |||v|| - ||u|||.$$

Démonstration: On a $\forall u, v \in \mathbb{R}^2$,

$$\begin{split} v &= (v-u) + u \\ \|v\| &= \|v-u+u\| \leq \|v-u\| + \|u\| \\ \Leftrightarrow \|v-u\| \geq \|v\| - \|u\| \end{split}$$

De même avec u, on obtient par ailleurs $||v-u|| \ge ||u|| - ||v||$ d'où $||v-u|| \ge |||v|| - ||u|||$.

Définition 2.2: Soient $u=(a,b), v=(x,y)\in\mathbb{R}^2$. On définit le produit scalaire par

$$u \cdot v = ax + by$$
.

Proposition 2.2: Soient $u, v, w \in \mathbb{R}^2, \lambda \in \mathbb{R}$.

- 1. $u \cdot v = v \cdot u$ (symétrie).
- 2. $(w+v) \cdot u = w \cdot u + v \cdot u$ (bilinéarité).
- 3. $(v \cdot u)^2 \le ||u||^2 ||v||^2$ (inégalité de Cauchy-Schwartz).

Démonstration: Soient $u, v \in \mathbb{R}, t \in \mathbb{R}$. $\|v + tu\|^2 = (v + tu) \cdot (v + tu) = v \cdot v + 2t(v \cdot u) + (u \cdot v)$ $u)t^2$.

On pose $f(t) = \|v\|^2 + 2(v \cdot u)t + \|u\|^2 t^2$. On peut supposer que $u \neq 0$ sinon l'égalité est évidente.