Learning to Optimize Multigrid PDE Solvers -Supplementary Material-

Daniel Greenfeld ¹ Meirav Galun ¹ Ron Kimmel ² Irad Yavneh ² Ronen Basri ¹

Below we prove Theorem 1. The proof is based on two supporting lemmas. We begin with some mathematical terms.

Consider the $n \times n$ block-circulant matrix of the following form, where n = kb and all numbering of rows, columns, blocks, etc., starts from 0 for convenience

$$A = \begin{pmatrix} A^{(0)} \\ A^{(1)} \\ A^{(2)} \\ \vdots \\ A^{(b-1)} \end{pmatrix},$$

where the blocks $A^{(m)}$, m = 0, ..., b-1 are $k \times n$ real or complex matrices whose elements satisfy

$$A_{l,j}^{(m)} = A_{l,\mod(j-k,n)}^{(m-1)}, \ m = 1,\dots,b-1$$
 (1)

and hence $A_{l,j} = A_{\mod(l-k,n), \mod(j-k,n)}$. Here, we are adopting the MATLAB form $\mod(x,y) = \text{"}x \mod \text{u}$ modulo y", i.e., the remainder obtained when dividing integer x by integer y. Below, we continue to use l and j to denote row and column numbers, respectively, and apply the decomposition:

$$l = l_0 + tk, \quad j = j_0 + sk,$$
 (2)

where $l_0 = \text{mod}(l, k)$, $t = \lfloor \frac{l}{k} \rfloor$, $j_0 = \text{mod}(j, k)$, $s = \lfloor \frac{j}{k} \rfloor$. Note that $l, j \in \{0, ..., n-1\}$; $l_0, j_0 \in \{0, ..., k-1\}$; $t, s \in \{0, ..., b-1\}$.

Let the column vector

$$v_m = \left[1, e^{i\frac{2\pi m}{n}}, \dots, e^{i\frac{2\pi mj}{n}}, \dots, e^{i\frac{2\pi m(n-1)}{n}}\right]^*$$

denote the unnormalized mth Fourier component of dimension n, for $m=0,\ldots,n-1$. Let W denote the $n\times n$ matrix whose nonzero values are comprised of the elements of the first b Fourier components as follows:

$$W_{l,j} = \delta_{l_0,j_0} v_s(l)$$
, (3)

Proceedings of the 36th International Conference on Machine Learning, Long Beach, California, PMLR 97, 2019. Copyright 2019 by the author(s).

where $v_s(l)$ denotes the lth element of v_s , and δ is the Kronecker delta. An example for W, with k=3 and b=4, is given in Fig. 1.

Lemma 1. $\frac{1}{\sqrt{h}}W$ is a unitary matrix.

Proof. Let W_j and W_m denote the jth and mth columns of W. Consider the inner product $W_j^\star W_m = \sum_{q=0}^{n-1} W_j^\star(q) W_m(q)$. For $\mod(j-m,k) \neq 0$, the product evidently vanishes because in each term of the sum at least one of the factors is zero. For j=m, the terms where $\mod(q,k)=j_0$ are equal to 1, while the rest are equal to zero, and therefore the product is b. Finally, for $j\neq m$ but $\mod(j-m,k)=0$, we can write m=j+rk for some integer r s.t. 0<|r|< b. Summing up the non-zero terms, we obtain:

$$\sum_{p=0}^{n-1} W_j^{\star}(p) W_m(p) = \sum_{q=0}^{b-1} v_s^{\star}(j_0 + qk) v_{s+r}(j_0 + qk)$$

$$= \sum_{q=0}^{b-1} e^{-i\frac{2\pi r(j_0 + qk)}{n}} = e^{-i\frac{2\pi rj_0}{n}} \sum_{q=0}^{b-1} \left(e^{-i\frac{2\pi r}{b}}\right)^q$$

$$= e^{-i\frac{2\pi rj_0}{n}} \frac{1 - e^{-i\frac{2\pi rb}{b}}}{1 - e^{-i\frac{2\pi rb}{b}}} = 0.$$

We conclude that $\frac{1}{\sqrt{b}}W^*\frac{1}{\sqrt{b}}W=I_n$, the $n\times n$ identity matrix. \square

Lemma 2. The similarity transformation, $\hat{A} = \frac{1}{\sqrt{b}}W^*A\frac{1}{\sqrt{b}}W$, yields a block-diagonal matrix \hat{A} with b blocks of size $k \times k$.

Proof. Denote the lth row of A by A^l . Then, the product A^lW_i reads

$$A^{l}W_{j} = \sum_{p=0}^{n-1} A^{l}(p) W_{j}(p) = \sum_{q=0}^{b-1} A^{l}(j_{0} + qk) v_{s}(j_{0} + qk)$$
$$= \sum_{p=0}^{b-1} A^{l_{0}+tk}(j_{0} + qk) e^{-is\frac{2\pi(j_{0}+qk)}{n}}.$$

¹Weizmann Institute of Science, Rehovot, Israel ²Technion, Israel Institute of Technology, Haifa, Israel. Correspondence to: Daniel Greenfeld <daniel.greenfeld@weizmann.ac.il>.

Figure 1. An example for W with k = 3 and b = 4.

By repeated use of (1), this yields

$$l_0 \in \{0, \dots, k-1\}$$
 and $t \in \{0, \dots, b-1\}$, yields

$$\begin{split} A^{l}W_{j} &= \sum_{q=0}^{b-1} A^{l_{0}} \left(j_{0} + \operatorname{mod} \left(q - t, b \right) k \right) e^{-is \frac{2\pi(j_{0} + qk)}{n}} \\ &= e^{-is \frac{2\pi tk}{n}} \sum_{q=0}^{b-1} A^{l_{0}} \left(j_{0} + \operatorname{mod} \left(q - t, b \right) k \right) e^{-is \frac{2\pi(j_{0} + qk)}{n}} \\ &= e^{-is \frac{2\pi tk}{n}} \sum_{q=0}^{b-1} A^{l_{0}} \left(j_{0} + \operatorname{mod} \left(q - t, b \right) k \right) e^{-is \frac{2\pi(j_{0} + \operatorname{mod}\left(q - t, b \right) k)}{n}} \\ &= e^{-is \frac{2\pi t}{b}} \sum_{q=0}^{b-1} A^{l_{0}} \left(j_{0} + \operatorname{mod} \left(q - t, b \right) k \right) e^{-is \frac{2\pi(j_{0} + \operatorname{mod}\left(q - t, b \right) k)}{n}} \\ &= e^{-is \frac{2\pi t}{b}} A^{l_{0}} \left(j_{0} + \operatorname{mod} \left(q - t, b \right) k \right) e^{-is \frac{2\pi(j_{0} + \operatorname{mod}\left(q - t, b \right) k)}{n}} \\ &= e^{-is \frac{2\pi t}{b}} A^{l_{0}} W_{j}. \end{split}$$

Denoting $u_j = A^{(0)}W_j$, we thus obtain

$$AW_{j} = \begin{pmatrix} u_{j} \\ e^{-i\frac{2\pi s}{b}}u_{j} \\ e^{-2i\frac{2\pi s}{b}}u_{j} \\ \vdots \\ e^{-(b-1)i\frac{2\pi s}{b}}u_{j} \end{pmatrix},$$

For $t \neq s$, the final sum yields

$$\sum_{q=0}^{b-1} e^{qi\frac{2\pi(t-s)}{b}} = \sum_{q=0}^{b-1} \left(e^{qi\frac{2\pi(t-s)}{b}}\right)^q = \frac{1-e^{i2\pi(t-s)}}{1-e^{i\frac{2\pi(t-s)}{b}}} = 0.$$

We conclude that $W_l^{\star}AW_j$ vanishes unless t=s, which implies the block-periodic form stated in the proposition.

where the qth element of u_j , q = 0, ..., k - 1, is given by

$$u_j(q) = A^q W j = \sum_{q=0}^{b-1} A^q (j_0 + qk) v_s (j_0 + qk).$$

Multiplying on the left by W_l^{\star} for any $l = l_0 + tk$ with

For t=s, all the terms in the final sum in the proof are equal to 1, and therefore the sum is equal to b. This yields the following.

Theorem 1. Let W be the matrix defined in (3). Then, $\hat{A} = \frac{1}{\sqrt{b}}W^*A\frac{1}{\sqrt{b}}W = \operatorname{blockdiag}(B^{(0)},\ldots,B^{(b-1)})$, where the elements of the $k \times k$ blocks $B^{(s)}$, $s = 0,\ldots,b-1$, are

given by

$$\begin{split} B_{l_0,j_0}^{(s)} &= e^{i\frac{2\pi s l_0}{n}} u_j \left(l_0 \right) \\ &= e^{i\frac{2\pi s l_0}{n}} \sum_{q=0}^{b-1} A^{l_0} \left(j_0 + qk \right) v_s \left(j_0 + qk \right) \\ &= e^{i\frac{2\pi s l_0}{n}} \sum_{q=0}^{b-1} A^{l_0} \left(j_0 + qk \right) e^{-i\frac{2\pi s (j_0 + qk)}{n}} \\ &= e^{i\frac{2\pi s (l_0 - j_0)}{n}} \sum_{q=0}^{b-1} A^{l_0} \left(j_0 + qk \right) e^{-i\frac{2\pi s q}{b}}. \end{split}$$

Remark 1. In the context of multigrid analysis, particularly in the present paper, the block size is chosen to be at least as large as the stencil. In such cases, the coefficients $A^{l_0}(j_0 + qk)$ are equal to zero for all non-zero q, yielding the simple form:

$$B_{l_{0},j_{0}}^{(s)}=e^{i\frac{2\pi s(l_{0}-j_{0})}{n}}A^{l_{0}}\left(j_{0}\right)=e^{i\frac{2\pi s(l_{0}-j_{0})}{n}}A_{l_{0},j_{0}}.$$

Remark 2. The block Fourier analysis is applicable to discretized partial differential equations of any dimension d by recursion. That is, for d>1 the blocks of A are themselves block-circulant, and so on. Remark 1 also generalizes to any dimension. That is, if the diameter of the discretization stencil is at most k then each element of B is easily computed from a single element of A.