

Probabilistic Machine Learning

or...the importance of modeling unknowns

Yunus Saatchi, October 2018

yunus.saatchi@amplyfi.com

Machine Learning is HOT

Many application domains in almost all verticals of tech

Speech and Language Technologies,

automatic speech recognition, machine translation, question-answering, dialog systems

Computer Vision: Object, Face and Handwriting Recognition, Image Captioning

Scientific Data Analysis (e.g. Bioinformatics, Astronomy)

Recommender Systems

Self-driving cars

Financial Prediction and Automated Trading

Machine Learning Concept Map

As of 2018...

Deep (Supervised) Learning

The darling child of Machine Learning

- Actually invented in the 80s and 90s!
- Become popular after a landmark paper by Krizhevsky et al. demonstrating state-of-art computer vision results. Key idea: Train it on a lot of data!
- Works very well with web-scale data.
- And a lot of computation.
- And some very good autodiff libraries: e.g. PyTorch, TensorFlow and MXNet.

Deep Unsupervised/Semi-supervised Learning

Generative Adversarial Networks

Deep Unsupervised/Semi-supervised Learning

Variational Autoencoders

Deep Reinforcement Learning

And the art of machine learning hype using games

Deep Reinforcement Learning

And the art of machine learning hype using games

$$Q^{\pi}(s_t, a_t) = \underline{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | s_t, a_t]$$

Q value for that state given that action

Expected discounted cumulative reward ...

given that state and that action

Deep Reinforcement Learning

But not all games...

Probabilistic Machine Learning

In one slide

Everything follows from two simple rules:

Sum rule: $P(x) = \sum_{y} P(x, y)$ **Product rule:** P(x, y) = P(x)P(y|x)

Learning:

$$P(\theta|\mathcal{D},m) = \frac{P(\mathcal{D}|\theta,m)P(\theta|m)}{P(\mathcal{D}|m)} \quad \begin{array}{l} P(\mathcal{D}|\theta,m) & \text{likelihood of parameters } \theta \text{ in model } m \\ P(\theta|m) & \text{prior probability of } \theta \\ P(\theta|\mathcal{D},m) & \text{posterior of } \theta \text{ given data } \mathcal{D} \end{array}$$

Prediction:

$$P(x|\mathcal{D},m) = \int P(x|\theta,\mathcal{D},m)P(\theta|\mathcal{D},m)d\theta$$

Model Comparison:

$$P(m|\mathcal{D}) = \frac{P(\mathcal{D}|m)P(m)}{P(\mathcal{D})}$$

Probabilistic Supervised Learning

Example: Gaussian Processes

$$p(y|x,\mathcal{D})$$

Probabilistic Unsupervised Learning

Probabilistic Graphical Models & Probabilistic Programming

Taken from: http://pyro.ai/examples/air.html

Probabilistic Reinforcement Learning

Gaussian Processes & Bayesian Optimization

Probabilistic Reinforcement Learning

Model-based Reinforcement Learning

$$\underset{\textit{using}}{\operatorname{argmax}_{\theta}} \mathbb{E}((\sum_{t=0}^{T} \gamma^{t} r_{t}) | \pi(a|s,\theta))$$

The Future is Deep + Probabilistic ML

Use deep learning as a powerful tool for inference in complicated probabilistic models of the real world

Come help build the Future at Amplyfi!

are on the hunt for exceptional talent...

Current vacancies:

- DevOps Engineer
- Software Architects
- Senior Software Engineers
 - Strategy Analysts

Interested to hear more?

Contact Chloe Murray, Talent Manager chloe.murray@amplyfi.com www.amplyfi.com