Diszkrét matematika 2

13. előadás Kódelmélet

Mérai László

merai@inf.elte.hu

https://sites.google.com/view/laszlomerai

Komputeralgebra Tanszék

2023 ősz

Lineáris kódok – emlékeztető

- Legyen \mathcal{C} egy lineáris (n, k) kód, azaz \mathcal{C} egy k dimenziós altér \mathbb{F}_q^n -ben.
- ullet Ekkor $\mathcal C$ -nek létezik generátormátrixa és $oldsymbol{u}\mapsto Goldsymbol{u}$ egy kódolás
- A \mathcal{C} kód ellenőrző mátrixa H, ha $\mathbf{w} \in \mathcal{C} \iff H\mathbf{w} = 0$

Példa

- ullet n-szeres ismétléses kód ellenőrző mátrixa: $H=(\mathbf{I}_{n-1},-\mathbf{1})\in\mathbb{F}_q^{(n-1) imes n}$
- A paritásbit ellenőrző mátrixa: $H = 1 = (1, ..., 1) \in \mathbb{F}_2^{1 \times (k+1)}$
- Reed-Solomon kód:
 - ullet kódolandó szavak: $oldsymbol{\mathfrak{u}}=(u_0,u_1,\ldots,u_{k-1})\in \mathbb{F}_q^k$
 - $\mathbf{u} \leftrightarrow u(x) = u_0 + u_1 x + \dots + u_{k-1} x^{k-1} \in \mathbb{F}_q[x], \deg u(x) < k$
 - kódolás: $u(x) \mapsto (u(\alpha_0), \dots, u(\alpha_{k-1})), \alpha_0, \dots, \alpha_{k-1} \in \mathbb{F}_q$ különböző elemek
 - Reed-Solomon kódók MDS kódok: d = n k + 1.

Ciklikus kódok

A ciklikus kódok egy másik népszerű kódcsalád.

Definíció

Egy $\mathbf{c}=(c_0,\ldots,c_{n-1})$ szó ciklikus eltoltja az $S\mathbf{c}=(c_{n-1},c_0,\ldots,c_{n-2})$. Egy $\mathcal C$ kód ciklikus kód, ha minden $\mathbf{c}\in\mathcal C$ kódszóra, $S\mathbf{c}\in\mathcal C$.

Példa

- A $C = \{101, 110, 011, 111\} \subset \mathbb{F}_2^3$ kód ciklikus (de nem lineáris).
- Az ismétléses kód ciklikus. $b \mapsto (bbb)$. A kódszavak $\{000, 111\}$.
- A paritásbit kód ciklikus. $(c_1, c_2, c_3) \mapsto (c_1, c_2, c_3, c_1 + c_2 + c_3)$. Kódszavak:

```
0000 0011 0101 0110
1001 1010 1100 1111
```

Ciklikus kódok

A ciklikus kódok egy másik népszerű kódcsalád.

Definíció

Egy $\mathbf{c} = (c_0, \dots, c_{n-1})$ szó ciklikus eltoltja az $S\mathbf{c} = (c_{n-1}, c_0, \dots, c_{n-2})$. Egy \mathcal{C} kód ciklikus kód, ha minden $\mathbf{c} \in \mathcal{C}$ kódszóra, $S\mathbf{c} \in \mathcal{C}$.

Példa

- A $C = \{101, 110, 011, 111\} \subset \mathbb{F}_2^3$ kód ciklikus (de nem lineáris).
- Az ismétléses kód ciklikus.
- A paritásbit kód ciklikus.

Tétel

Legyen \mathcal{C} egy ciklikus kód és $\mathbf{c} = (c_0, \dots, c_{n-1}) \leftrightarrow c(x) = c_0 + \dots + c_{n-1}x^{n-1}$. Ekkor a \mathbf{c} kódszó $S\mathbf{c}$ eltoltjához rendelt $\hat{c}(x)$ polinom: $\hat{c}(x) \equiv xc(x) \mod x^n - 1$.

Bizonyítás. $xc(x) = c_{n-1}(x^n - 1) + \hat{c}(x)$.

Ciklikus kódok, generátorpolinom

Tétel

c(x) = u(x)g(x).

Legyen $\mathcal{C} \subset \mathbb{F}_q[x]$ egy (n,k) paraméterű lineáris, ciklikus kód. Ekkor egyértelműen létezik olyan $g(x) \in \mathcal{C}$ polinom, melynek főegyütthatója $1, \deg g(x) = n-k$ és $c(x) \in \mathcal{C} \iff g(x) \mid c(x),$ azaz minden $c(x) \in \mathcal{C}$ kódpolinomhoz létezik olyan $u(x) \in \mathbb{F}_q[x]$, melyre

Bizonyítás 1/3. (g konstrukciója)

- Legyen $q(x) = c_0 + c_1 x + \cdots + c_s x^s \in \mathcal{C} \setminus \{0\}$ egy legkisebb fokú kódpolinom.
- Mivel $\mathcal C$ lineáris, így $c_s^{-1}q(x)=g(x)$ szintén kódszó: $g(x)\in\mathcal C$.
- Egyértelműség: ha $\tilde{g}(x) \in \mathcal{C}$ szintén ilyen polinom, akkor a linearitás miatt $g(x) \tilde{g}(x) \in \mathcal{C}$. De $\deg(g(x) \tilde{g}(x)) < s$, így a minimalitás miatt $g(x) = \hat{g}(x)$. $(s = \deg g(x) = n k$ bizonyítása a 3/3 részben!)

Ciklikus kódok, generátorpolinom

Tétel

Legyen $\mathcal{C} \subset \mathbb{F}_q[x]$ egy (n,k) paraméterű lineáris, ciklikus kód. Ekkor egyértelműen létezik olyan $g(x) \in \mathcal{C}$ polinom, melynek főegyütthatója $1, \deg g(x) = n-k$ és $c(x) \in \mathcal{C} \iff g(x) \mid c(x),$ azaz minden $c(x) \in \mathcal{C}$ kódpolinomhoz létezik olyan $u(x) \in \mathbb{F}_q[x]$, melyre

c(x) = u(x)g(x).

Bizonyítás 2/3. (\Leftrightarrow bizonyítása) Legyen $s = \deg g(x)$.

- \Leftarrow : A ciklikusság miatt $g(x), xg(x), x^2g(x), \dots, x^{n-s-1}g(x) \in \mathcal{C}$, és a linearitás miatt $u(x)g(x) = u_0g(x) + u_1xg(x) + u_2x^2g(x) + \dots + u_{n-s-1}x^{n-s-1}g(x) \in \mathcal{C}$.
- \Rightarrow : Legyen $c(x) \in \mathcal{C}$. Osszuk el maradékosan c(x)-et, g(x)-szel: c(x) = q(x)g(x) + r(x), $\deg r(x) < s$. A " \Leftarrow " miatt $q(x)g(x) \in \mathcal{C}$, a linearitás miatt $r(x) = c(x) q(x)g(x) \in \mathcal{C}$. A $s = \deg g(x)$ minimalitása miatt r(x) = 0, azaz c(x) = q(x)g(x).

Ciklikus kódok, generátorpolinom

Tétel

Legyen $\mathcal{C} \subset \mathbb{F}_q[x]$ egy (n,k) paraméterű lineáris, ciklikus kód. Ekkor egyértelműen létezik olyan $g(x) \in \mathcal{C}$ polinom, melynek főegyütthatója $1, \deg g(x) = n - k$ és $c(x) \in \mathcal{C} \iff g(x) \mid c(x),$

azaz minden $c(x) \in \mathcal{C}$ kódpolinomhoz létezik olyan $u(x) \in \mathbb{F}_q[x]$, melyre c(x) = u(x)g(x).

Bizonyítás 3/3. $(\deg g(x) = n - k \text{ bizonyítása})$

- Minden $c(x) \in \mathcal{C}$ kódpolinom előáll $c(x) = u(x)g(x) = u_0g(x) + u_1xg(x) + u_2x^2g(x) + \cdots + u_{n-s-1}x^{n-s-1}g(x)$ alakban.
- Ilyen c(x) (ill. u(x)) polinomból q^{n-s} darab van.
- A \mathcal{C} kód (n,k) lineáris kód, azaz $\dim \mathcal{C} = k \Rightarrow q^k = \#\mathcal{C} = q^{n-s} \Rightarrow \deg g(x) = s = n-k$.

A g(x) polinomot a kód generátorpolinomjának nevezzük.

Ciklikus kódok konstrukciója

Tétel

Minden $\mathcal C$ ciklikus, lineáris kód g(x) generátorpolinomjára $g(x) \mid x^n-1$. Megfordítva, ha $g(x) \mid x^n-1$, akkor létezik olyan ciklikus, lineáris kód, melynek generátorpolinomja g(x).

```
Bizonyítás. Legyen \deg g = n - k.
```

```
\Rightarrow:Mivel a kód ciklikus, x^{k-1}g(x) \in \mathcal{C}, \deg x^{k-1}g(x) = n-1. Mivel g(x) főegyütthatója 1, x^kg(x) - (x^n-1) \in \mathcal{C}. Azaz x^kg(x) - (x^n-1) = a(x)g(x), így a kettő különbsége (= x^n-1) osztható g(x)-szel.
```

 \Leftarrow : Legyen $\mathcal{C} = \{c(x) = a(x)g(x) : \deg a(x) < k\}$. Megmutatjuk, hogy ez ciklikus, azaz a(x), $\deg a(x) < k$ polinomhoz létezik b(x), $\deg b(x) < k$ polinom, hogy $xc(x) = xa(x)g(x) \equiv b(x)g(x) \mod x^n - 1$.

Ehhez, ha $\deg a(x) < k-1$, legyen b(x) = xa(x). Ha $\deg a(x) = k-1$, legyen a_{k-1} az a(x) főegyütthatója. Ekkor $xc(x) = xa(x)g(x) = a_{k-1}(x^n-1) + r(x)$, ahol $\deg r(x) < n$. Mivel g(x) osztja a bal oldalt, ill. x^n-1 -et, osztja r(x)-et: r(x) = b(x)g(x).

Ciklikus kódok generálása

A ciklikus kódok előnye, hogy sokféleképpen lehet a kódszavakat generálni:

- Generálás generátorpolinommal: $u(x) \mapsto u(x)g(x) \mod x^n 1$.
- Generálás generátormátrixszal: legyen $g(x) = x^{n-k} + g_{n-k-1}x^{n-k-1} + \cdots + g_0$. Ekkor a $G \in \mathbb{F}_q^{n \times k}$ a kód generátormátrixa:

$$G = \begin{pmatrix} g_0 & 0 & \dots & 0 & 0 \\ g_1 & g_0 & \dots & 0 & 0 \\ g_2 & g_1 & \dots & 0 & 0 \\ \vdots & & \dots & \vdots & \vdots \\ g_{n-k-1} & g_{n-k-2} & \dots & g_1 & g_0 \\ 1 & g_{n-k-1} & \dots & g_2 & g_1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \vdots & \dots & 1 & g_{n-k-1} \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

Ciklikus kódok generálása

A ciklikus kódok előnye, hogy sokféleképpen lehet a kódszavakat generálni:

- Generálás generátorpolinommal: $u(x) \mapsto u(x)g(x) \mod x^n 1$.
- Generálás generátormátrixszal.

A szisztematikus kódolás egy praktikus módja:

- Legyen $u(x) \in \mathbb{F}_q[x]$, $\deg u(x) < k$ egy üzenetpolinom.
- Ekkor $c(x) = u(x)x^{n-k} (u(x)x^{n-k} \mod g(x))$ egy kódszó.
- Továbbá, ez szisztematikus kódolás: $\geq n-k$ fokú tagok adják az u(x) polinomot.

Ciklikus kód ellenőrzőmátrixa

Ciklikus kód ellenőrzőmátrixa is leírható polinomokkal.

Tétel

Legyen \mathcal{C} egy (n,k) paraméterű lineáris, ciklikus kód $g(x) \in \mathbb{F}_q[x]$

generátorpolinommal. Ekkor a $h(x) = \frac{x^n - 1}{g(x)}$ a kód ellenőrzőpolinomja, azaz

$$c(x) \in \mathcal{C} \iff c(x)h(x) \equiv 0 \mod x^n - 1.$$

Bizonyítás. Mivel $g(x) \mid x^n - 1$, ezért a definíció értelmes.

Legyen
$$c(x)$$
 egy szó. Ekkor $c(x) \in \mathcal{C} \Longleftrightarrow c(x) = a(x)g(x) \Longleftrightarrow c(x)h(x) = a(x)g(x)h(x) = a(x)(x^n - 1) \equiv 0 \mod x^n - 1.$

Példa ciklikus kódokra

Legyen q = 2 és n = 7. Ekkor $g(x) \mid x^7 - 1$.

Az
$$x^7 - 1$$
 irreducibilis faktorizációja: $x^7 - 1 = (x - 1)(x^3 + x + 1)(x^3 + x^2 + 1)$.

Ekkor g(x) generátorpolinomra a következő lehetőségeink vannak:

- g(x) = x 1. Ekkor C egy (7,6) kód: $h = x^6 + x^5 + \cdots + x + 1 \rightarrow \text{paritásbit kód.}$
- $g(x) = x^6 + x^5 + \dots + x + 1$. Ekkor \mathcal{C} egy (7,1) kód: $h = x 1 \rightarrow 7$ -szeres ismétléses kód.
- $g(x) = x^3 + x + 1$. Ekkor C egy (7,4) kód.

Ciklikus kódok alkalmazása

- A ciklikus kódok a leghosszabb múlttal rendelkező kódok.
- Gyakran CRC (Cyclic Redundancy Check) kódoknak hívják.
- Felhasználásuk: visszacsatolással rendelkező zajos csatornán. Hiba észlelése esetén újraküldés: ARQ (Automatic Repeat reQuest).
- CITT: bináris ciklikus kód $g(x)=x^{16}+x^{12}+x^5+1$ generátorpolinommal. Használatuk integrált áramkörökben: SNC 2653, INTEL 82586, INTEL 8274, Signetics 2652