Nome:	nº	

DEPARTAMENTO DE ENGENHARIA INFORMÁTICA

2015-2016

TEORIA DA COMPUTAÇÃO

11/Nov./2015 17h

<u>Duração: 120m</u> · 1ª Frequência

Leia atentamente:

- 1º- A prova é sem consulta.
- 2º- Responda na folha do enunciado.
- 3º- Não responda à sorte: respostas (de escolha) erradas têm pontuação negativa; respostas em branco têm pontuação nula.
- 4°- Para responder só pode utilizar os espaços do enunciado. Seja conciso e diga só o essencial. Quando a resposta for de escolha, assinale com X a que julgar certa.
- 5°- Coloque o nome e o nº de estudante em **todas** as folhas da prova.
- 1. Escreva uma gramática para a linguagem no alfabeto $\Sigma = \{0, 1\}$ que inclui todas as cadeias em que se verifica uma das duas situações seguintes: (a) tem pelo menos um I e não tem nenhum '0'; (b) cada subcadeia de Os consecutivos é seguida de uma subcadeia de Os comprimento igual ou maior (incluindo comprimento zero).

$$S \to A \mid B$$

$$A \to IA \mid I$$

$$B \to \lambda \mid IB \mid CB$$

$$C \to \lambda \mid 0CI$$

2. Desenhe um autómato finito determinístico, com o menor número de estados, que aceite a linguagem no alfabeto $\Sigma = \{a, b, c\}$ composta por todas as cadeias **não vazias**, em que nunca ocorrem nem dois 'b' consecutivos nem dois 'c' consecutivos. Por exemplo, as cadeias 'cbba', 'accab', 'abccabbca', não devem ser aceites.

3. Seja o seguinte autómato finito não determinístico no alfabeto $\Sigma = \{0, 1\}$.

a) Converta-o num autómato finito determinístico com o menor número de estados possível. Desenhe previamente a respetiva tabela de transições.

Ta	Tabela de transições				
	ı		ı		
	0	1			
q013	q4	q2			
q4	q135	1			
q2	-	q31			
q135	q4	q2			
q13	q4	q2			
_	-	-			

Grafo:

b) Descreva a linguagem por ele aceite

Todas as cadeias em que as corridas de 0s e 1s têm comprimento par, incluindo a cadeia vazia.

4. Com base no seguinte autómato e, com o alfabeto $\Sigma = \{0, 1\}$, construa a sua expressão regular apresentando todos os passos do algoritmo de eliminação de estados abordado nas aulas.

Nome: _____n^o _____

- 5. Considere a seguinte Expressão Regular 010 (11*+0*1+1) * no alfabeto $\Sigma = \{0, 1\}$.
- a) Converta-a no seu autómato finito não determinístico.

Nome:			n°		
b) Converta o autóma menor número de pro	-	nea anterior na	sua Gramátic	a Regular util	izando o
S->010 A A->1A 0BA λ B->0B 1					
6. Classifique as segu	intes afirmações con	no verdadeiras	ou falsas:		
(i) Qualquer §	gramática linear à es	querda é regul	ar.	V X	F
regular.	agem gerada por qua		ca linear é	V	F X
		tifique:		V	FF
$S \to Aab$ $A \to BAb \mid \lambda$ $B \to aA \mid \lambda$	Por duas razões: -Tem uma produçã e outra linear à dire - Tem uma produç	ão linear à esqu	uerda		
7. Sendo L, M, N exp falsas:	ressões regulares, di	ga se as seguir	ntes igualdade	s são verdade	iras ou
a) (L + M) N*= LN* b) (NLN + NMN) = N c) (L*M*)* = (M + L Justifique c) :		ladeira: x□ / Verdadeira X□ / Falsa:	n: x □ / Falsa:		

 $(M+L)^*=(L^*M^*)^*$ (propriedade demonstrável do fecho estrela). L^* pode ser gerada por $(L^*\lambda)$ e M^* por (λM^*) . Logo L^* e M^* estão contidas em $(L^*M^*)^*$, ou seja, estão contidas em $(M+L)^*$, donde $(M+L)^*+M^*+L^*=(M+L)^*=(L^*M^*)^*$, q.e.d.

8. Sendo A, B e C linguagens regulares, e <u>L</u> complemento de L, as linguagens seguintes são regulares:				
(i) <u>A-B</u>	Verdadeiro: x□ / Falso: □			
Justifique (i) A família das linguagens regulares é fechada em relação à diferença (e por isso A-B é regular) e em relação à complementação (e por isso o complemento da diferença é regular)				
Justifique (ii)				
A família das linguagens interseção, e á união.	regulares é fechada em relação à complementação, à			

 n^{o}

9. Prove pelo lema da bombagem que a linguagem $L = \{ba^pba^pb^{2p}ab, p>0\}$ não é regular.

Para qualquer m que me apresentes considere-se a cadeia $ba^mba^mb^{2m}ab$

Nome:

Ela é de comprimento 4m+4, e portanto maior do que m, e pertence à linguagem. Nela poderemos contradizer o lema; se o conseguirmos provamos que a linguagem é não-regular. A identificação da cadeia na qual vamos trabalhar é importante na demonstração. Notese que ao escolhermos esta cadeia assegura-se que os primeiros m caracteres serão necessáriamente b seguido de m-1 a's. A decomposição xy <= m, como tem que estar no princípio da cadeia, é composta apenas por b+a's e portanto y será sempre composta ou por a's ou por a's precedidos por b; y pode ser a, ou a^2 , ou a^3 , ... ou a^{m-1} , ou ba^{m-1} . A bombagem só produz a's ou então a's precedidos de b.. Por exemplo se y = a, $x = ba^{m-2}$, $y^5 = aaaaa$ vai produzir uma cadeia com m+4 a's, mantendo-se os m a's no meio da cadeia e os 2m b's na parte final. Portanto quebrando a regra das cadeias. Bombeou-se assim para fora da linguagem. Se y contém a's precedido de b, então a bombagem de y para além de desequilibrar o número de a's introduz b's em posições erradas, produzindo cadeias cuja estrutura não obedece à linguagem. Qualquer bombagem de y, excepto y^1 , resulta numa cadeia que não pertence a L (mas bastava até que só acontecesse para um caso).. Não existe a tal decomposição xyz.

Como tudo isto acontece para quaquer m, não existe nenhuma m que satisfaça o lema da bombagem, e por isso a linguagem não é regular.

10. Dada uma linguagem regular num certo alfabeto, existe algum algoritmo para decidir se a uma qualquer cadeia nesse alfabeto pertence à linguagem ? Se sim qual ?

Existe: dada a linguagem regular L, constrói-se o DFA M(L). Dada qualquer cadeia dá-se a M(L). Se o autómato ler a cadeia e terminar num estado aceitador, a cadeia pertence a L; se terminar num estado não aceitador, a cadeia não pertence a L.