

Objectives

Analyze the data of **Global Shark Attacks** and convince investors to set up an Ocean Guardian franchise in North America and South America.

[Off Topic]

<u>Objective</u>: Analyze an external data set and apply the knowledge of data manipulation, data cleaning and data organization.

Data project

In this stage, the Dataset was prepared so that, after cleaning and organizing the data, it could support the arguments for the proposed purpose.

)up) tei	shark_atack_studies Last Checkpoint: Última Quinta-feira às 22:27 (autosaved)
File Edit	View Insert Cell Kernel Widgets Help Trusted Python 3
8 + × ¢	h To The Theorem C Hardown C S
	Global Shark Attack DataSet Analysis
	Objective: Analyze an external dataset and apply the knowledge of Data Manipulation, Data Cleaning and Data Wrangling.
	Main Question: What is the activity with the most shark attacks?
In [72]:	import pandas as pd
	import os import numpy as np
	from datetime import datetime
	import matplotlib as mpl import seaborn as sns
	amport doubles us dis
In [73]:	! pwd
	/Users/diegoalves/Documents/Iron_Hack/Modulos_exercicios/Chalenges/Chalenge_1
In [74]:	Importing DataSet - originally downloaded from Kagle
	hark_attacks = pd.read_csv ('/Users/diegoalves/Documents/Iron_Hack/Modulos_exercicios/Chalenges/Chalenge_1/attacks.csv'
In [75]:	Making a copy
	<pre>df = shark_attacks.copy()</pre>
	as bond ()
In [76]:	di.nead ()

Workflow used in this project

Global Shark Attack DataSet Analysis

Objective: Analyze an external dataset and apply the knowledge of Data Manipulation, Data Cleaning and Data Wrangling.

Main Question: What is the activity with the most shark attacks?

```
In [72]: import pandas as pd
import os
import numpy as np
from datetime import datetime
import matplotlib as mpl
import seaborn as sns

In [73]: !pwd
    /Users/diegoalves/Documents/Iron_Hack/Modulos_exercicios/Chalenges/Chalenge_1

In [74]: Importing DataSet - originally downloaded from Kagle
hark_attacks = pd.read_csv ('/Users/diegoalves/Documents/Iron_Hack/Modulos_exercicios/Chalenges/Chalenge_1/attacks.csv'

In [75]: #Making a copy
df = shark_attacks.copy()
```

```
Out[78]: Index(['Case Number', 'Date', 'Year', 'Type', 'Country', 'Area', 'Location',
                'Activity', 'Name', 'Sex ', 'Age', 'Injury', 'Fatal (Y/N)', 'Time',
                'Species ', 'Investigator or Source', 'pdf', 'href formula', 'href',
                'Case Number.1', 'Case Number.2', 'original order', 'Unnamed: 22',
                'Unnamed: 23'1,
               dtype='object')
In [79]: #Declaring function for clean columns
         def clear columns (df):
             x = []
             for columns in df.columns:
                 columns = columns.strip().lower()
                 columns = columns.replace ('.', ' ')
                 columns = columns.replace (' ', ' ')
                 x.append (columns)
             df.columns = x
             return df.columns
In [80]: clear columns (df)
Out[80]: Index(['case number', 'date', 'year', 'type', 'country', 'area', 'location',
                'activity', 'name', 'sex', 'age', 'injury', 'fatal (y/n)', 'time',
                'species', 'investigator or source', 'pdf', 'href formula', 'href',
                'case number 1', 'case number 2', 'original order', 'unnamed: 22',
                'unnamed: 23'],
               dtype='object')
```

In [91]: df_droped = df.drop (columns = ['unnamed:_22' ,'unnamed:_23'], inplace = True)

In [92]: df.head ()

Out[92]:

	case_number	date	year	type	country	area	location	activity	name	sex	 fatal_(y/n)	time	species	investigator_or_sc
0	2018.06.25	25- Jun- 2018	2018.0	Boating	USA	California	Oceanside, San Diego County	Paddling	Julie Wolfe	F	 N	18h00	White shark	R. Collier, (
1	2018.06.18	18- Jun- 2018	2018.0	Unprovoked	USA	Georgia	St. Simon Island, Glynn County	Standing	Adyson McNeely	F	 N	14h00 -15h00	NaN	K.McM TrackingSharks
2	2018.06.09	09- Jun- 2018	2018.0	Invalid	USA	Hawaii	Habush, Oahu	Surfing	John Denges	М	 N	07h45	NaN	K.McM TrackingSharks
3	2018.06.08	08- Jun- 2018	2018.0	Unprovoked	AUSTRALIA	New South Wales	Arrawarra Headland	Surfing	male	М	 N	NaN	2 m shark	B. Myatt, (
4	2018.06.04	04- Jun- 2018	2018.0	Provoked	MEXICO	Colima	La Ticla	Free diving	Gustavo Ramos	М	 N	NaN	Tiger shark, 3m	A .K

5 rows × 22 columns

```
In [53]: df['activity'].value counts()
Out[53]: Surfing
                                                           965
         Swimming
                                                           845
         Fishing
                                                           418
         Spearfishing
                                                           324
         Bathing
                                                           154
                                                          . . .
         Diving (Hookah)
         Gaffing netted shark
         Swimming / Whale Watching
         The steamships Thingvalla and Geiser collided
         Lobstering
         Name: activity, Length: 1420, dtype: int64
In [54]: df['activity']
Out[54]: 0
                     Paddling
                     Standing
                      Surfing
                      Surfing
                  Free diving
         6296
                     Swimming
         6297
                       Diving
                 Pearl diving
         6298
         6299
                     Swimming
         6301
                     Swimming
         Name: activity, Length: 5874, dtype: object
```



```
In [55]: top eight = df['activity'].value counts().nlargest(8).index
In [56]: top eight
Out[56]: Index(['Surfing', 'Swimming', 'Fishing', 'Spearfishing', 'Bathing', 'Wading',
                'Diving', 'Standing'],
               dtype='object')
In [57]: top_ten = df['activity'].value counts().nlargest(10).index
In [58]: top ten
Out[58]: Index(['Surfing', 'Swimming', 'Fishing', 'Spearfishing', 'Bathing', 'Wading',
                'Diving', 'Standing', 'Snorkeling', 'Scuba diving'],
               dtype='object')
In [59]: top twelve = df['activity'].value counts().nlargest(12).index
In [60]: top_twelve
Out[60]: Index(['Surfing', 'Swimming', 'Fishing', 'Spearfishing', 'Bathing', 'Wading',
                'Diving', 'Standing', 'Snorkeling', 'Scuba diving', 'Body boarding',
                'Body surfing'],
               dtype='object')
```



```
In [48]: df['country'].value_counts(normalize=True).head(12).plot(kind='bar')
```

Out[48]: <matplotlib.axes._subplots.AxesSubplot at 0x11ee68650>

Business opportunities

<u>Objective</u>: convince investors to set up an Ocean Guardian franchise in North America and South America.

3.000.000

Brazil

2.800.000

E.U.A

1.700.000

Australia

"Stop selling. Start helping" – Zig Ziglar

Our Solution

Thanks

Any questions?

You can find me at diegoalvesteo@gmail.com