

Kontest 5 – PreOM 2025

Zadanie 1. Czworokąt ABCD jest wpisany w okrąg. Punkt E jest przecięciem przekątnych AC i BD, a M jest środkiem łuku BC. N jest punktem przecięcia prostej ME z okręgiem na łuku AD.

Udowodnij, że dwusieczne kątów $\not AED$ i $\not AND$ przecinają się na boku AD czworokąta.

Zadanie 2. Niech x_1, x_2, \ldots, x_n oraz y_1, y_2, \ldots, y_n będą dowolnymi liczbami rzeczywistymi spełniającymi:

$$x_1^2 + x_2^2 + \ldots + x_n^2 = y_1^2 + y_2^2 + \ldots + y_n^2 = 1.$$

Udowodnij, że:

$$(x_1y_2 - x_2y_1)^2 \le 2 \left| 1 - \sum_{k=1}^n x_k y_k \right|$$

oraz wyznacz wszystkie przypadki równości.

Zadanie 3. Niech n będzie dodatnią liczbą całkowitą. Zbiór n różnych prostych dzieli płaszczyznę na różne (być może nieograniczone) obszary. Zbiór prostych nazywamy "ladnym", jeśli żadne trzy proste nie przecinają się w jednym punkcie.

"Kolorowaniem" nazywamy przypisanie dwóch kolorów do każdego regionu w taki sposób, że:

- pierwszy kolor pochodzi ze zbioru $\{A_1, A_2\}$,
- drugi kolor pochodzi ze zbioru $\{B_1, B_2, B_3\}$.

Dany "ładny" zbiór prostych nazywamy "kolorowalnym", jeśli istnieje takie kolorowanie, że:

- 1. żadne dwa regiony, które dzielą wspólną krawędź, nie mają przypisanego tego samego koloru,
- 2. dla każdego $i \in \{1,2\}$ i $j \in \{1,2,3\}$ istnieje przynajmniej jeden region pokolorowany jednocześnie kolorem A_i i B_j .

Wyznacz wszystkie wartości n, dla których każda "ładna" konfiguracja n prostych jest kolorowalna.

Zadanie 4. Udowodnij, że istnieje nieskończenie wiele liczb całkowitych n takich, że największy dzielnik pierwszy liczby $n^4 + n^2 + 1$ jest równy największemu dzielnikowi pierwszemu liczby $(n+1)^4 + (n+1)^2 + 1$.

