Matrizes tridiagonais, tridiagonais cíclicas e sistemas.

Decomposição LU para Matrizes Tridiagonais

Marco Antônio Rudas Napoli, n°USP: 11857970

Decomposição LU

Certas matrizes podem ser triangularizadas pelo Método de Eliminação de Gauss sem que haja troca de linhas. Assim, conseguimos montar duas matrizes, L e U, a partir de uma matriz A.

A matriz L é triangular inferior com os itens da diagonal principal igual a 1 e com os demais iguais aos multiplicadores resultantes do Método de Eliminação de Gauss.

Enquanto isso, a Matriz U é simplesmente a matriz A escalonada.

Assim, conseguimos montar a relação A = LU.

Decomposição LU de uma matriz tridiagonal:

Sabemos que uma matriz tridiagonal possui o seguinte formato:

$$A = \begin{bmatrix} b_1 & c_1 \\ a_2 & b_2 & c_2 \\ & \ddots & \ddots & \ddots \\ & & a_{n-1} & b_{n-1} & c_{n-1} \\ & & & a_n & b_n \end{bmatrix}$$

Ao fazermos a decomposição, encontramos que a matriz L possui itens apenas na

diagonal secundária inferior. A matriz U possui a diagonal principal seguindo o Método de Eliminação de Gauss e a diagonal secundária superior como os mesmos itens da Matriz A, enquanto todos os outros tem valor igual a "0".

Dessa maneira podemos economizar processamento e armazenar os nossos dados de maneira mais inteligente.

Estrutura de Funções do Projeto:

Solução 1 - Decomposição LU de Matriz Tridiagonal

Após introduzirmos os valores dos vetores a, b e c a partir do seguinte código podemos iniciar o algorítimo para achar o as matrizes L e U.

```
#Mapeamento da diagonal a
i = 0
while i < ordemMatrix-1:
    numberCell = float(input(f'Insira o valor de a{i+2}:'))
    vectora.append(numberCell)

i = i + 1

#Mapeamento da diagonal b
i = 0
while i < ordemMatrix :
    numberCell = float(input(f'Insira o valor de b{i+1}:'))
    vectorb.append(numberCell)

i = i + 1

#Mapeamento da diagonal c
i = 0
while i < ordemMatrix-1 :
    numberCell = float(input(f'Insira o valor de c{i+2}:'))
    vectorc.append(numberCell)

i = i + 1</pre>
```

A partir disso, introduzimos os valores mapeados numa matriz, criada pela da função "newSquareMatrix(ordemMatrix)", utilizando a função "addVectorOnMatrix(order, vector, matrix)". (obs: O algorítmo desta última foi desenvolvido de maneira a atender o segundo exercício proposto).

```
def addVectorOnMatrix(order, vector, matrix):
   matrix = matrix
   if order = "a":
        if len(vector) = len(matrix):
           matrix[0][len(matrix)-1] = vector[0]
            for i in range(len(vector)-1):
                matrix[i+1][i] = vector[i+1]
        else:
            for i in range(len(vector)):
               matrix[i+1][i] = vector[i]
   elif order = "b":
        for i in range(len(vector)):
           matrix[i][i] = vector[i]
   elif order = "c":
        if len(vector) = len(matrix):
           matrix[len(matrix)-1][0] = vector[len(matrix)-1]
            for i in range(len(vector)-1):
                matrix[i][i+1] = vector[i]
        else:
           for i in range(len(vector)):
                matrix[i][i+1] = vector[i]
   else:
        print("Ocorreu algum ERRO, verifique os seus dados")
```

Possuindo a matriz A em mão já podemos começar a trabalhar para acharmos as matrizes U e L.

Sabemos que a matriz U possui a seguinte propriedade: $u_{i, i+1} = a_{i, i+1}$. Assim temos que, a matriz U, inicialmente formada por zeros, terá sua matriz secundária superior identica à matriz A, economizando processamento para sua construção. Além disso, sabemos que a primeira linha é identica a da matriz A.

```
#A Matriz U possui a seguinte consição u(i,i+1) = a(i,i+1)
uMatrix = newSquareMatrix(ordemMatrix)
addVectorOnMatrix("c", vectorc, uMatrix)
uMatrix[0] = matrix[0]
```

Seguindo para a construção da matriz L, temos que os únicos itens que não são obrigatoriamente zeros são pertencentes à matriz principal e à secundária inferior. Tendo essa propriedade em mão, conseguimos dar o formato da matriz da seguinte forma:

```
"""A Matriz L é composta por uma diagonal principal formada por "1" e os multiplicadores
Neste caso, os unicos multiplicadores não nulos são l(i+1,i). Portanto, podemos escrever os dados em um vetor"""
lMatrix = newSquareMatrix(ordemMatrix)
addVectorOnMatrix("b", [1]*ordemMatrix, lMatrix)
lVector = []
```

Agora que já possuímos tanto o formato da matriz U e L, quanto a matriz A, podemos começar a rodar o algorítmo apresentado no enunciado deste EP, que é:

 $u_1=b_1$ para $i=2,\cdots,n$ faça $l_i=a_i/u_{i-1}$ (multiplicador) $u_i=b_i-l_ic_{i-1}$ fim

Por ser uma matriz tridiagonal, não há a necessidade de passar por todos os itens da matriz para calcularmos os

multiplicadores, apenas aqueles que não possuem 0 no item acima. Além disso, conseguimos utilizar os vetores a, b e c para melhorar a intermpretação dos cálculos. Logo, o código para acharmos a matriz L e U possue a seguinte estrutura:

Observe que sempre estamos caminhando uma coluna a menos quando comparado à linha, isso porque não faz sentido passar pelos itens que já foram zerados.

Por fim, aplicando esse algorítmo chegamos no resultado final, com a função retornando tanto a matrix U quando a L.

Segue abaixo um exemplo de funcionamento da primeira solução:

```
Seja bem vindo ao EP 1 de cálculo numérico
Neste trabalho possuímos duas grandes soluções:
A primeira é a decomposição LU de uma matriz tridiagonal, enquanto que a segunda é a resolução de um sistema a partir d
e um matriz tridiagonal cíclica:
Para iniciarmos, escolha um módulo:
(1) Decomposição LU
                           (2) Resolução de sistemas
                                                             (3) Testes Automatizados
Insira o módulo: 1
primeiro exercício consiste em realizar uma decomposição LU de uma matriz tridiagonal.
Lembre-se, a matriz a ser introduzida deve ser triangularizável pelo Método de Eliminação de Gauss sem trocas de linhas
Insira a ordem da sua matriz:4
Insira o valor de a2:1
Insira o valor de a3:2
Insira o valor de a4:3
Insira o valor de b1:4
Insira o valor de b2:5
Insira o valor de b3:4
Insira o valor de b4:6
Insira o valor de c2:7
Insira o valor de c3:8
Insira o valor de c4:9
 Matriz inserida foi:
[[4. 7. 0. 0.]
[1. 5. 8. 0.]
[0. 2. 4. 9.]
[0. 0. 3. 6.]]
Para continuar o programa escolha uma das opções abaixo:
(1) A minha matriz está correta (2) Reescrever matriz
 sua matriz U é :
                                       0.
              3.25
[ 0.
                          -0.92307692 9.
              0.
[ 0.
              0.
                                      35.25
O seu vetor L é:
[ 0.25
              0.61538462 -3.25
ou seja, sua matriz L é
[ 1.
              0.
                           0.
                                       0.
  0.25
              0.61538462
                                                  ]
]]
                          1.
                                       0.
                          -3.25
```

Solução 2 - Resolução de sistemas:

A solução dois, por sua vez, é dependente do entendimento da solução 1, já que é necessário encontrarmos a matriz U e L para resolvermos um sistema tridiagonal cícliclo.

Temos o mapeamento dos itens da matriz A e do vetor d a partir da função "mapVectorSecond()" mostrada a seguir:

```
def mapVectorSecond():
    correctMatrix = False

    ordemMatrix = int(input("Insira a ordem da sua matriz:"))

    while correctMatrix == False:

        vectora = []
        vectorb = []
        vectorc = []
        matrix = newSquareMatrix(ordemMatrix)
        vectord = []

    #Mapeamento da diagonal a
        i = 0
        while i < ordemMatrix :
            numberCell = float(input(f'Insira o valor de a{i+1}:'))
            vectora.append(numberCell)

        i = i + 1</pre>
```

```
while i < ordemMatrix :
    numberCell = float(input(f'Insira o valor de b{i+1}:'))
    vectorb.append(numberCell)
    i = i + 1
while i < ordemMatrix :</pre>
    numberCell = float(input(f'Insira o valor de c{i+1}:'))
    vectorc.append(numberCell)
    i = i + 1
print("Muito bem, agora que você já inseriu a sua matriz A, siga os próximos passos para o mapeamento do veto
for i in range(len(matrix) ):
    itemd = float(input(f'Insira o item d{i+1} do seu vetor d: '))
    vectord.append(itemd)
addVectorOnMatrix("a", vectora, matrix)
addVectorOnMatrix("b", vectorb, matrix)
addVectorOnMatrix("c", vectorc, matrix)
print(f'A Matriz inserida foi: \n {numpy.array(matrix)} \n \n e o vetor d foi: {numpy.array(vectord)}')
print('Para continuar o programa escolha uma das opções abaixo:')
validate = int(input('(1) Os meus dados estão corretos (2) Reescrever dados\n'))
if validate \neq 2:
    correctMatrix = True
```

Após mapearmos os vetores e adicionarmos na Matriz A é necessário acahrmos a subMatriz T de tamanho (n-1)x(n-1) para que possamos solucionar o sistema. Para isso, basta excluirmos as ultimas linha e coluna da matriz A.

(obs: armazenamos a ultima coluna sem o ultimo item um vetor chamado de v e, análogamente, armazenamos a ultima linha sem o último item num vettor denominado de w)

A partir do momento que possuimos a matriz T, é ncessário encontrarmos suas respectivas matrizes U e L, ou seja, conseguimos reutilizar o algorítmo feito no primeiro exercício, obviamente tratando os novos dado

```
#Criação da estrutura da Matriz L You, 4 days ago * add: functionSolveSystems ...

lMatrix = newSquareMatrix(ordemMatrix - 1)
  addVectorOnMatrix("b", [1]*(ordemMatrix-1), lMatrix)

lVector = []

#Criação da estrutura da Matriz U
  uMatrix = newSquareMatrix(ordemMatrix - 1)
  vectorcCopy = vectorc.copy()
  del(vectorcCopy[-1])
  del(vectorcCopy[-2])
  addVectorOnMatrix("c", vectorcCopy, uMatrix)
  uMatrix[0] = matrix[0].copy()
  uMatrix[0].pop()
  TMatrixCopy = numpy.copy(TMatrix)
```

Obtendo as respectivas matrizes L e U partimos para o algorítmo passado no EP para resolução de sistemas. Esta tarefa tem como objetivo encontrar os ^y e ^z, pois com eles será possível encontrar a solução do nosso sistema inicial.

```
T\tilde{y} = \tilde{d}
T\tilde{z} = v.
```

Para encontrarmos os vetores citados anteriormente foi utilizado o algorítmo proposto pelo EP, que foi:

```
Ly=d: y_1=d_1 para i=2,\cdots,n faça y_i=d_i-l_iy_{i-1} fim Ux=y: x_n=y_n/u_n para i=n-1,\cdots,1 faça x_i=(y_i-c_i\,x_{i+1})/u_i fim
```

Assim, traduzindo para a linguagem python temos:

Observe que o algorítmo é achamado a partir de uma função, podendo ser utilizado para qualquer sistema tridiagonal.

```
#Encontrando o vetor y~ e o vetor z~

vectordCopy = vectord.copy()
vectordCopy.pop()
vectory = SystemSolutionUL(lMatrix, uMatrix, vectordCopy)
vectorz = SystemSolutionUL(lMatrix, uMatrix, VVector)
```

Após encontrarmos ^y e ^z, basta seguirmos as recomendações de cálculos mostrados no enunciado:

```
x_n = \frac{d_n - c_n \tilde{y}_1 - a_n \tilde{y}_{n-1}}{b_n - c_n \tilde{z}_1 - a_n \tilde{z}_{n-1}} \quad e \quad \tilde{x} = \tilde{y} - x_n \tilde{z}
```

Que, transformando para a linguagem python, obtemos:

Assim, o usuário obterá o vetor solução do sistema inicial.

Segue abaixo o funcionamento da segunda solução

```
Insira a ordem da sua matriz:5
Insira o valor de a1:1
Insira o valor de a2:1
Insira o valor de a3:2
Insira o valor de a4:3
Insira o valor de a5:4
Insira o valor de b1:4
Insira o valor de b2:5
Insira o valor de b3:4
Insira o valor de b4:6
Insira o valor de b5:7
Insira o valor de c1:7
Insira o valor de c2:8
Insira o valor de c3:9
Insira o valor de c4:10
Insira o valor de c5:11
Muito bem, agora que você já inseriu a sua matriz A, siga os próximos passos para o mapeamento do vetor d
Insira o item d1 do seu vetor d: 1
Insira o item d2 do seu vetor d: 2
Insira o item d3 do seu vetor d: 3
Insira o item d4 do seu vetor d: 4
Insira o item d5 do seu vetor d: 5
```

```
A Matriz inserida foi:
[[ 4. 7. 0. 0. 1.]
[ 1. 5. 8. 0. 0.]
[ 0. 2. 4. 9. 0.]
[ 0. 0. 3. 6. 10.]
[ 11. 0. 0. 4. 7.]]

e o vetor d foi: [1. 2. 3. 4. 5.]

Para continuar o programa escolha uma das opções abaixo:
(1) Os meus dados estão corretos (2) Reescrever dados

1

O seu vetor solução é:

x = [ 0.19678328 -0.00861568 0.23078689 0.20940838 0.27317663]
```

Solução 3 – Testes automatizados

Basicamente na solução 3 o usuário possui a opção de realizar os testes 1 e 2 a partir de vetores a, b, c e d definidos no enunciado do EP, ou seja:

$$\begin{split} a_i &= \frac{2i-1}{4i}, \ 1 \leq i \leq n-1, \ a_n = \frac{2n-1}{2n}, \\ c_i &= 1-a_i, \ 1 \leq i \leq n, \\ b_i &= 2, \ 1 \leq i \leq n, \\ d_i &= \cos\left(\frac{2\pi i^2}{n^2}\right), \ 1 \leq i \leq n. \end{split}$$

Que, ao passarmos para o algorítmo, o

```
def createVectors(number, module):
    vectora = []
    vectorb=[]
    vectorc=[]
    vectord = []
    for j in range(number):
        i = j + 1
        if i = number:
            ai = (2*number - 1)/(2*number)
        else:
            ai = (2*i - 1)/(4*i)
        ci = 1-ai
        vectora.append(ai)
        vectorc.append(ci)
        vectorb.append(2)
        if module = 2:
            di = math.cos((2*math.pi*(i**2))/(number**2))
            vectord.append(di)
                                                            btemos:
```

```
ordemMatrix = len(vectorb)

if module = 1:
    matrix = newSquareMatrix(len(vectora))
    vectora.pop()
    vectorc.pop()
    addVectorOnMatrix("a", vectora, matrix)
    addVectorOnMatrix("b", vectorb, matrix)
    addVectorOnMatrix("c", vectorc, matrix)
    return matrix, vectora, vectorb, vectorc, ordemMatrix

if module = 2:
    matrix = newSquareMatrix(len(vectora))
    addVectorOnMatrix("a", vectora, matrix)
    addVectorOnMatrix("b", vectorb, matrix)
    addVectorOnMatrix("c", vectorb, matrix)
    return matrix, vectora, vectorb, vectorc, vectord, ordemMatrix
```

Exercícios:

Sabendo-se da existência da decomposição LU, podemos obter os coeficientes de L e de U usando-se somente as propriedades dessas matrizes, sem termos de necessariamente fazer as contas na ordem da eliminação de Gauss. Note que, se A = LU, com L triangular inferior e U triangular superior, então

 $A_{ij} = \sum_{k=1}^{\min\{i,j\}} L_{ik} U_{kj}.$ (exercício)

1.

ofor persurmos mua making A, tudiagonal, comequanos aplacas o metado de Gaun da regente manera

p/ a luka 3, fozemos L3 - a31. L1. p/a luka 4: L4-a41. L4, e anum

 $\begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ O & a'_{22} & a'_{23} & \cdots & a'_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ O & a'_{n2} & a'_{n3} & \cdots & a'_{nn} \end{pmatrix} = A'$ dosove que diferemon:

Logo podemos enerer: A. [= A) / [= (1 0 0 ... 0) / μm = pm

Agora, podemos realizar as mermas sperações, entretarbo comparamdos todas as lunas abaixo da 2 com a 2, da seguente buna:

A'
$$\xrightarrow{L_3 = \mu_{32} L_2}$$
 | an anz ans ... an
 $\frac{(a)_{32}}{a_{22}} = \mu_{32}$ | an anz aiz ... aizn azn
0 0 dizz aizz ... aizn - μ_{32} . aizn
0 0 dizz ainz ... aizn - μ_{32} . aizn
0 0 dinz ainz ... ainn

Despendo a menua lógica pl todas as lenhas, obtenuos

$$\begin{pmatrix}
a_{11} & a_{12} & a_{13} & ... & a_{1m} \\
0 & a_{22} & a_{23} & ... & a_{2m} \\
0 & 0 & a_{23} & ... & a_{2m} \\
0 & 0 & a_{m3} & ... & a_{mn}
\end{pmatrix} = A'' ; tol que: A'' = A'. \tilde{L}_{2}

$$\begin{pmatrix}
1 & 0 & 0 & ... & 0 \\
0 & 1 & 0 & ... & 0 \\
0 & -\mu_{32} & 1 & ... & 0
\end{pmatrix}$$$$

ou reja A · Li · L2 · L3 ·... · Ln = V re workungrund o process p/ todas as leukas, tal que V e a making escalmada. Definimen TT Li = (L) A.LI=V.L + A.I=L.V + A.I,

CS Digitalizado com CamScanner

Usando-se também o fato de que $L_{ii} = 1$, os coeficientes podem ser calculados em uma ordem diferente do Método de Eliminação de Gauss da seguinte maneira (exercício):

para
$$i = 1, \dots, n$$
 faça

$$U_{ij} = A_{ij} - \sum_{k=1}^{i-1} L_{ik} U_{kj}, \quad j = i, \dots, n$$
 (1)

$$L_{ji} = \left(A_{ji} - \sum_{k=1}^{i-1} L_{jk} U_{ki}\right) / U_{ii}, \quad j = i+1, \cdots, n$$
 (2)

2. fim

Suponha una modriz Anen Tanones acompainer ren escalonancentes:
(tudingoual)
an are are arm an are are an
234 ase-Linais ass-Linais ass-Linais
ans ans ans and - ann / Lon and - Long and -
Podanos excrever a rilfana making conco: Un Viz Unz Un e Lm = am Lxx Vzz Vzz Vzn
Im-ans-Lm Viz ano-Lm. Viz ann-Lm. Vin e 130 = 032-131 012
Vanuer realizar mais mua eterpa!
Van Viz Viz Viz Viz Vin Vin Lan Vin Lan Viz Viz Viz Vin Lan Viz Viz Viz Viz Vin Lan Vin Lan Viz Viz Ass-Lan Viz Ass-Lan Viz Ass Lan Viz Ass-Lan Viz Ass Lan Viz Ass Lan Viz Ass Viz As
Line 4 Line: ang-L31 Vio - Lne Vio - ann-Lni Vin - Lne - Vin
Line # Lt. 2: ang-L3. Vio - Lne 023 - Louver evaluande a moding, encontramos Assim, observe que conforme mó voume evaluando a moding, encontramos Assim, observe que conforme mó voume evaluando a moding, encontramos Assim, observe que conforme mó voume evaluando a moding, encontramos pum padrão, fal que: V33 = a33 - L3. V13 - L32. V23 = a33 - L3. V13
Ou reja, de maneria geral, pera quelquer cetula dos matriz v, podemos
escrever. Off High Zi Lik Ohi I John I John I
40 obsorvarmen o multiplicador, temos que: 122 = a32-L31 V12; ou sego,
podemos everer: $L_{ji} = \left(\frac{A_{ji} - \sum_{i=1}^{j} L_{ji} V_{ki}}{V_{ij}} \right), f = i+1,, n$
7

CS Digitalizado com CamScanner

O armazenamento também pode ser feito de forma eficiente, sendo desnecessário guardar os valores que sabemos que são nulos. A matriz tridiagonal

$$A = \begin{bmatrix} b_1 & c_1 \\ a_2 & b_2 & c_2 \\ & \ddots & \ddots & \ddots \\ & & a_{n-1} & b_{n-1} & c_{n-1} \\ & & & a_n & b_n \end{bmatrix}$$

pode ser armazenada em três vetores

$$a = (0, a_2, \dots, a_{n-1}, a_n), \quad b = (b_1, b_2, \dots, b_{n-1}, b_n) \quad c = (c_1, c_2, \dots, c_{n-1}, 0)$$

e os coeficientes $u_i = U_{ii}$ e $l_{i+1} = L_{i+1,i}$ da decomposição LU podem ser calculados pelo algoritmo (exercício)

 2

$$u_1=b_1$$
 para $i=2,\cdots,n$ faça $l_i=a_i/u_{i-1}$ (multiplicador) $u_i=b_i-l_ic_{i-1}$

fim

3. sendo possível armazená-los também em vetores. Lembre-se que $U_{i,i+1} = c_i$.

Superha que temos uma matriz tudiagonal, ou reja: / 61 c1 0 ... 0 fo iniciarmos o processo de exalonamento observamos us requirter fatos: La- Hall / ba or 0 0 ... 0 0 ps-herci cs-her.0 ... 0 1000 ... an bn 1. be se mantoin comforte, ou reja, u= 61 / vi= Viii. 2. Toda célula que pour O acuna se manteu contoute, ou reja, todo itom da diagonal reundation hyperior (Vi, in = Ci) Assim, fa pouremer ma previsão do formato de V, ou rega, 0 Tamos realizar man mua etope do escalmamento: 13- 1432.La e1 0 0 ... O 62 0 bz-flere ez 0 -.. ba-flarce observe que o protecuo multiplicador, ou reja, da troca La-flas L3 , ou reja, podema encrever fini-1= ai Adrivats, consequimos defener o demoninados como Vi,i, ou melhos, mete caso, Logo, para encontrar o multiplicados podemos aplicar o requeste algoritmo: Da minua maneira, se vanor observar Vi. Este reque a requeste formate: Ui = bi - Kiji-1 · Ci-1 , ou reja wi= bi - li· Ci-1}