CS & IT

ENGINERING

Theory of Computation

DFA

Lecture No.- 02

Recap of Previous Lecture

Topic

Topic Introduction

Finite Automata

Topic

Finite Automaton & Regular Languages.

Topic

Pushdown Automata & Context free Languages.

Topic

Turing Machine & Recursive Enumerable Languages.

Topic

Undecidability.

Topic: Theory of Computation

Topic: Introduction:

It is the mathematical study of computing machines and their capability

or

It is the study of automata theory and formal languages.

Applications of Theory of Computation:

- Algorithm design and analysis
- Compiler design
- Cryptography and network security
- Artificial intelligence and machine learning
- Database systems and query optimization
- Software verification and model checking

Decidable Problem

Undecidable Problem

Topic: Terminologies:

Alphabet(Σ): Finite non-empty set of symbols

Topic: Terminologies:

Alphabet(\Sigma): Finite non-empty set of symbols

String: Finite sequence of symbols over the given alphabet Σ .

Ex:-

Topic: String:

Language: Any set of strings over the given alphabet $\Sigma = \{a, b\}$.

$$L_1 = \{ ab, ba, abab \} -$$

$$L_2 = \{ a, ab, aba, \} -$$

$$L_3 = \{\}$$
 \longrightarrow Empty Language.
 $L_4 = \{\epsilon\}$ \longrightarrow finite Language.

$$L_5 = \{a\}$$
-

Sub - String: Consecutive sequence of symbols over the given string.

Total no of substring for the given string = n(n + 1)/2 + 1

FINITE AUTOMATA

Topic: Finite Automata

It is a mathematical model which contains finite number of states and transitions.

Lexical Analysis:

String Matching

Network Protocol Analysis:

Digital Circuit Design:

Regular Expression Engines:

Natural Language Processing

DFA: It is a finite automata in which from every state on every input symbol exactly one transition should exits.

FORMAL DFA:

DFA is defined as

DFA =
$$(Q, \Sigma, q_0, F, \delta)$$

Q: Finite set of states

 Σ : Input alphabet

q₀: Initial state

F: Set of final states

δ: Transition function Q * Σ → Q

Example of DFA:

(4)

Example of DFA:

(7)

Example of DFA:

(8)

Example of DFA:

(8)

DFA acceptance method:

- 1.Start at the Initial State: Begin at the initial state of the DFA.
- 2.Read Input Symbols: For each symbol in the input string, read it one by one.
- 3.Follow Transitions: Based on the current state and the input symbol being read, follow the transition defined by the transition function of the DFA. This transition function specifies the next state of the automaton for each combination of current state and input symbol.
- 4.Repeat Until End of Input: Continue this process of reading input symbols and following transitions until you reach the end of the input string.
- 5.Final State: Once you have processed all input symbols, check the current state of the DFA. If it is one of the accepting states (states designated as final states), then the input string is accepted. Otherwise, it is rejected.
- 6.Acceptance: If the DFA halts in an accepting state after reading the entire input string, then the Input is accepted.

$$= \{0,00,10---\}$$

#Q. Identify language accepted by following DFA

#Q. Identify language accepted by following DFA

A
$$L = \{a^n b^m \mid n, m \ge 1\} = \{b^n = b^m \mid n, m \ge 1\}$$

$$L = \{a^{n}[b^{m}] | n \ge 1, m \ge 0\}$$

$$L = \{a^n b^m \mid n, m \ge 0\} = \{e\} --\}$$
 None

- **A** $L = \{a^n b^m | n, m ≥ 1\}$
- C $L = \{a^n b^m | n, m \ge 0 \}$

- **B** $L = \{a^n b^m | n \ge 1, m \ge 0\}$
- D None

a's even and # b's even

a's odd and # b's odd

a's odd and # b's even

a's even and # b's odd

a's even and # b's even = $\{ \{ \} \}$

a's odd and # b's even

a's odd and # b's odd

D

#a's even and #b's odd

a's even and # b's even

a's even and # b's odd

a's odd and # b's even

a's odd and # b's odd

a's even and # b's even

a's odd and # b's odd

a's odd and # b's even

a's even and # b's odd

A Length of the string alteast 6

0's exactly4 and 1's atleast 3

0's atleast 4 and # 1's exactly 2

D

None

VENKAT SIR PW 112 members, 3 online

Info

t.me/VenkatSirPW

Invite Link

Notifications

On

THANK - YOU