NOTES ON MATHEMATICAL ANALYSIS

YANNAN MAO

9TH MARCH 2024

CONTENTS

1 ′	The Calculus of Variations	1
1.1	Linear Forms	1
1.2	Functionals and Their Extrema	1
1.3	Vanishing of the First Variation	1
1.4	The Fundamental Lemma of the Calculus of Variations	2
1.5	The Euler–Lagrange Equation	3

THE CALCULUS OF VARIATIONS

1.1 LINEAR FORMS

Let F be a field, and let V be a vector space over F. A linear map from V into F is referred to as a *linear form on* V. Equivalently, a function $f:V\to F$ is a linear form if $f(\lambda a + b) = \lambda f(a) + f(b)$ for any $\lambda \in F$ and any $a, b \in V$. Linear forms are also known as *linear functionals*.

Let $[x_0, x_1]$ be a closed interval on \mathbb{R} , and let $C^0([x_0, x_1])$ be the vector space of continuous real functions on $[x_0, x_1]$. Then $J: C^0([x_0, x_1]) \to \mathbb{R}$ defined by

$$J(f) = \int_{x_0}^{x_1} f(x) \, \mathrm{d}x$$

is a linear form on $C^0([x_0, x_1])$.

1.2 FUNCTIONALS AND THEIR EXTREMA

Let $[x_0, x_1]$ be a closed interval on \mathbb{R} , and let $C^2([x_0, x_1])$ be the set of twice continuously differentiable real functions on $[x_0, x_1]$. We refer to linear forms on $C^2([x_0, x_1])$ as *functionals*. We denote a functional by enclosing its variable in square brackets.

Let $\Omega \subseteq C^2([x_0, x_1])$ be a set of functions. A functional $J: \Omega \to \mathbb{R}$ is said to obtain an extremum at function f if there exists an $\varepsilon \in \mathbb{R}_{>0}$ such that J[g] - J[f] has the same sign for any $g \in \Omega$ which satisfies $\forall x \in [x_0, x_1] (|g(x) - f(x)| < \varepsilon)$.

1.3 Vanishing of the First Variation

Let $\Omega \subset C^2([x_0,x_1])$ be given by $\Omega = \{f \in C^2([x_0,x_1]) : y_0 = f(x_0) \land y_1 = f(x_1)\}$ wherein $y_0,y_1 \in \mathbb{R}$ are prescribed. Consider a functional of the form

$$J[f] = \int_{x_0}^{x_1} L(x, f'(x), f(x)) dx$$
 (1)

wherein L is a twice continuously differentiable function with respect to x, f', and f.

Suppose $f \in \Omega$ is a function whereat the functional J obtains an extremum. Take another function $\eta \in C^2([x_0,x_1])$ which vanishes at x_0 and x_1 . We then form the family of functions

$$\varphi(x,\varepsilon) = f(x) + \varepsilon \eta(x)$$

with $\varepsilon \in \mathbb{R}$. Note that with any given ε we have $\varphi \in \Omega$.

We see that

$$\eta(x) = \frac{\partial \varphi}{\partial \varepsilon},$$

and so we refer to $\varepsilon \eta(x)$ as a *variation of f* and denote it by δf .

Let $\psi(\varepsilon) = J[f + \varepsilon \eta]$ be a real function. The postulate that f shall give an extremum of J implies that ψ shall possess an extremum for $\varepsilon = 0$, and so it is necessary that

$$\psi'(0) = 0.$$

If f satisfies $\psi'(0) = 0$ for any η , we then say that J is *stationary at* f.

In general, we refer to $\varepsilon \psi'(0)$ as the *first variation of J* and denote it by δJ . Thus, the stationary character of *J* at *f* is equivalent to the vanishing of the first variation.

1.4 THE FUNDAMENTAL LEMMA OF THE CALCULUS OF VARIATIONS

Lemma 1 (fundamental lemma of the calculus of variations). *If a function* $f \in C^0([x_0, x_1])$ *satisfies*

$$\int_{x_0}^{x_1} \eta(x) f(x) \, \mathrm{d}x = 0$$

for any $\eta \in C^2([x_0, x_1])$ such that $\eta(x_0) = \eta(x_1) = 0$, then f(x) = 0 for any $x \in [x_0, x_1]$.

Proof. We assume, for the sake of contradiction, that there exists a $\xi \in [x_0, x_1]$ such that $f(\xi) > 0$ and which satisfies all the prescribed conditions. Then, as f is continuous on $[x_0, x_1]$, there exists an $\alpha \in \mathbb{R}_{>0}$ such that f(x) > 0 for any $x \in [\xi - \alpha, \xi + \alpha] \subseteq [x_0, x_1]$.

Let $\eta \in C^2([x_0, x_1])$ be defined by

$$\eta(x) = \begin{cases} \left((x - \xi)^2 - \alpha^2 \right)^4 & \text{if } x \in [\xi - \alpha, \xi + \alpha], \\ 0 & \text{otherwise.} \end{cases}$$

We see that $\eta(x)f(x) > 0$ for any $x \in [\xi - \alpha, \xi + \alpha]$ and that $\eta(x)f(x) = 0$ for any $x \in [x_0, \xi - \alpha) \cup (\xi + \alpha, x_1]$. It follows that

$$\int_{x_0}^{x_1} \eta(x) f(x) \, \mathrm{d}x > 0,$$

which is a contradiction. Therefore, $f(\xi)$ cannot be positive. For the same reasons, $f(\xi)$ cannot be negative. Hence, f(x) must vanish for any $x \in [x_0, x_1]$.

Thus, the lemma holds.

1.5 THE EULER-LAGRANGE EQUATION

Theorem 1 (Euler–Lagrange). The functional J defined in (1) is stationary at function f if and only if

$$\frac{\partial L}{\partial f}(x, f(x), f'(x)) - \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial L}{\partial f'}(x, f(x), f'(x)) = 0$$

for any $x \in [x_0, x_1]$.

Proof. As shown in subsection 1.3, that J is stationary at f is equivalent to the vanishing of

$$\begin{split} \frac{\mathrm{d}\psi}{\mathrm{d}\varepsilon}(\varepsilon)\Big|_{\varepsilon=0} &= \frac{\mathrm{d}}{\mathrm{d}\varepsilon} \int_{x_0}^{x_1} J\big[f(x) + \varepsilon \eta(x)\big] \, \mathrm{d}x \bigg|_{\varepsilon=0} \\ &= \frac{\mathrm{d}}{\mathrm{d}\varepsilon} \int_{x_0}^{x_1} L\big(x, f(x) + \varepsilon \eta(x), f'(x) + \varepsilon \eta'(x)\big) \, \mathrm{d}x \bigg|_{\varepsilon=0} \\ &= \int_{x_0}^{x_1} \frac{\partial}{\partial \varepsilon} L\big(x, f(x) + \varepsilon \eta(x), f'(x) + \varepsilon \eta'(x)\big) \bigg|_{\varepsilon=0} \, \mathrm{d}x \\ &= \int_{x_0}^{x_1} \left(\frac{\partial}{\partial \varepsilon} \big(f(x) + \varepsilon \eta(x)\big) \bigg|_{\varepsilon=0} \, \frac{\partial L}{\partial (f + \varepsilon \eta)} \big(x, f(x) + \varepsilon \eta(x), f'(x) + \varepsilon \eta'(x)\big) \bigg|_{\varepsilon=0} \end{split}$$

$$\begin{split} & + \left. \frac{\partial}{\partial \varepsilon} \big(f'(x) + \varepsilon \eta'(x) \big) \bigg|_{\varepsilon = 0} \left. \frac{\partial L}{\partial (f' + \varepsilon \eta')} \big(x, f(x) + \varepsilon \eta(x), f'(x) + \varepsilon \eta'(x) \big) \bigg|_{\varepsilon = 0} \right) \mathrm{d}x \\ & = \int_{x_0}^{x_1} \bigg(\eta(x) \frac{\partial L}{\partial f} \big(x, f(x), f'(x) \big) + \eta'(x) \frac{\partial L}{\partial f'} \big(x, f(x), f'(x) \big) \bigg) \mathrm{d}x. \end{split}$$

We further see that

$$\begin{split} \int_{x_0}^{x_1} \eta'(x) \frac{\partial L}{\partial f'} \Big(x, f(x), f'(x) \Big) \, \mathrm{d}x &= \eta(x) \frac{\partial L}{\partial f'} \Big(x, f(x), f'(x) \Big) \bigg|_{x_0}^{x_1} \\ &- \int_{x_0}^{x_1} \eta(x) \, \mathrm{d}\frac{\partial L}{\partial f'} \Big(x, f(x), f'(x) \Big) \\ &= - \int_{x_0}^{x_1} \eta(x) \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial L}{\partial f'} \Big(x, f(x), f'(x) \Big) \, \mathrm{d}x. \end{split}$$

By integration by parts, the equivalent condition is then

$$\int_{x_0}^{x_1} \eta(x) \left(\frac{\partial L}{\partial f}(x, f(x), f'(x)) - \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial L}{\partial f'}(x, f(x), f'(x)) \right) \mathrm{d}x = 0.$$

By lemma 1, we then conclude that

$$\frac{\partial L}{\partial f}\big(x,f(x),f'(x)\big) - \frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial L}{\partial f'}\big(x,f(x),f'(x)\big) = 0$$

for any $x \in [x_0, x_1]$.

Hence, the theorem holds.