Combinatorial Mathematics

Mong-Jen Kao (高孟駿)

Monday 18:30 – 20:20

Theorem 19.2 (The Lovász Local Lemma – Asymmetric version).

Let G = (V, E) be a dependency graph of events $A_1, A_2, ..., A_n$.

Suppose that there exists real numbers $x_1, x_2, ..., x_n$ with $0 \le x_i < 1$ such that, for all i,

$$\Pr[A_i] \leq x_i \cdot \prod_{j:(i,j)\in E} (1-x_j).$$

Then

$$\Pr\left[\overline{A_1}\,\overline{A_2}\,\cdots\overline{A_n}\,\right] \geq \prod_{1\leq i\leq n} (1-x_i).$$

In particular, with positive probability, no A_i occurs.

2-Colorable Families

- In Lecture 2, we use simple union bound to show that when the size of a k-uniform family is no more than 2^{k-1} , it is 2-colorable.
- We use the Lovász Local Lemma to prove a stronger statement, which takes the structure of the family into consideration.

It says that, when the dependency of the members is bounded within 2^{k-3} , the family is 2-colorable.

Theorem 19.5 (Erdös-Lovász 1975).

If every member of a k-uniform family intersects at most 2^{k-3} other members, then the family is 2-colorable.

Q: Can we actually construct the object?

We will show in this lecture that, the object can be <u>constructed</u> in <u>expected</u> $\sum_{i} \frac{x_i}{1-x_i}$ number of <u>resamples</u>, assuming the prerequisite conditions of the local lemma, under a <u>common algorithmic variable setting</u>.

Some Notes

- The result is from the following *award-winning* paper.
 - Robin A. Moser, Gabor Tardos,
 "A constructive proof of the general Lovász local lemma."
 <u>Journal of ACM</u> 57(2): 11:1 11:15, 2010.

The result is described using only 4 pages!

- It answers a general & fundamental problem, with a <u>surprisingly simple</u> algorithm and analysis, and beautiful ideas.
- This paper was awarded *the Gödel prize* by the European Association for Theoretical Computer Science (EATCS) in 2020.

Outline

- Algorithmic Lovász Local Lemma
 - (A constructive proof for the Lovász Local Lemma)
 - The Variable Setting Assumption
 - A Simple Randomized Algorithm
 - The Analysis
 - Notations & Definitions
 - The Galton-Watson branching process
 - Coupling the execution & evaluation

The Variable Setting Assumption

- We assume the following setting,
 which is common in algorithmic context.
 - The <u>object to compute</u> is described by a set of random variables, Z_1, Z_2, \dots, Z_n , that are <u>mutually independent</u> in a fixed probability space.
 - Each bad event A_i is determined by a subset of variables in $\{Z_1, ..., Z_n\}$, denoted by $vbl(A_i)$.

A Simple & Elegant Randomized Algorithm

■ The following algorithm is due to [Moser & Tardos, 2010].

- 1. Pick an independent random assignment for Z_j , $1 \le j \le n$.
- 2. Repeat until none of the bad events A_i holds.
 - Pick a violated event, say A_i .
 - Resample the value of Z_j for all $Z_j \in vbl(A_i)$.

Roughly Speaking...

■ The algorithm *keeps refreshing* the variables in the violating event until all the events are avoided.

IS THAT IT?

Clearly,
 when the algorithm stops, we have a feasible set of assignments.

■ The question is,

Is the 'seemingly inefficient' algorithm efficient?

We can always come up with all sorts of algorithms.

The question is always, how do we be sure that it's a good one?

The Dependency Graph

- Define the dependency graph for the events as follows.
 - For any i, j, there is an edge between A_i and A_j if and only if $vbl(A_i) \cap vbl(A_j) \neq \emptyset$.
- For any i, let D_i be the neighbors of A_i in the dependency graph.

The Algorithmic Lovász Local Lemma

Theorem 1 (Moser-Tardos 2010).

In the variable setting, if there exists $x_i \in (0,1)$ such that

$$\Pr[A_i] \le x_i \cdot \prod_{j \in D_i} (1 - x_j), \quad \forall 1 \le i \le n,$$

then the algorithm resamples an event A_i at most an expected number of $\frac{x_i}{1-x_i}$ times before it finds a feasible assignment.

(Sketch)

Proof of Theorem 1

The Idea

- For any $1 \le i \le m$, let N_i denote the number of times the event A_i is resampled.
 - We will show that,

$$E[N_i] \leq \frac{x_i}{1 - x_i} \, .$$

Sequence of events resampled by the algorithm

■ To bound $E[N_i]$, for any $k \ge 1$, consider the first k events resampled by the algorithm.

We will associate the sequence $A_{\pi_1}, A_{\pi_2}, \dots, A_{\pi_k}$ with a **Proper Witness Tree**.

Sequence of events resampled by the algorithm

Consider the witness trees for all possible prefixes of the sequence.

■ Then

$$E[N_i] = \sum_{\substack{T: \text{possible proper witness trees with root } A_i}} \Pr[T \text{ occurs in the sequence }]$$

Lemma 2. (To be proved later)

For any proper witness tree *T* of the events, we have

$$\Pr[T \text{ occurs }] \leq \prod_{v \in T} \Pr[A_{[v]}].$$

■ By Lemma 2, we have

 $A_{[v]}$ denotes the event to which node v corresponds.

$$E[N_i] = \sum_{T \in T_i} \Pr[T \ occurs] \leq \sum_{T \in T_i} \prod_{v \in T} \left(x_{[v]} \cdot \prod_{j \in D_{[v]}} (1 - x_j) \right).$$

We bound the sum using the <u>"Galton-Watson"</u> random branching process.

For any $T \in T_i$, let p_T be the probability that the random <u>Galton-Watson process</u> generates T.

Lemma 3. (To be proved)

For any $T \in T_i$, we have

$$p_T = \frac{1-x_i}{x_i} \cdot \prod_{v \in T} \left(x_{[v]} \cdot \prod_{j \in D_{[v]}} (1-x_j) \right).$$

We will describe the random process later.

Putting Things Together...

■ By Lemma 2 and Lemma 3, we obtain

$$E[N_i] = \sum_{T \in T_i} \Pr[T \ occurs] \le \sum_{T \in T_i} \prod_{v \in T} \left(x_{[v]} \cdot \prod_{j \in D_{[v]}} (1 - x_j) \right)$$

$$= \frac{x_i}{1 - x_i} \cdot \sum_{T \in T_i} p_T$$

$$\le \frac{x_i}{1 - x_i}.$$

It remains to prove the two Lemmas.

Outline

- Algorithmic Lovász Local Lemma
 - (A constructive proof for the Lovász Local Lemma)
 - The Variable Setting Assumption
 - A Simple Randomized Algorithm
 - The Analysis
 - Notations & Definitions
 - The Galton-Watson branching process
 - Coupling the execution & evaluation

Notations & Definitions

The Execution Sequence

For any $k \ge 1$, let π_k denote the index of the event that is resampled by the algorithm in the k^{th} -iteration.

Sequence of events resampled by the algorithm

The Closed Neighborhood D_i^+ of A_i

■ For any $1 \le i \le m$, let

$$D_i^+ \coloneqq D_i \cup \{A_i\}$$

be the set of events that are connected to A_i in the dependency graph and the event A_i itself.

The Witness Tree

- A witness tree is a rooted tree *T* such that
 - Each node $v \in T$ is labeled with an event in $\{A_1, \dots, A_m\}$, denoted $A_{\lceil v \rceil}$.
 - If v is a child of u in T, then $A_{[v]} \in D_{[u]}^+$.
- T is called **proper**, if for any node v, all the events labeled on the children of v are distinct.

We use [v] to denote the index of the event labeled with vertex v.

Constructing a Proper Witness Tree for any Prefix of the Execution Sequence

- For any $k \ge 1$, construct the tree T(k) as follows.
 - Consider the execution sequence in a backward manner.
 - For each event, say, A_{π_i} , attach a node labeled with A_{π_i} as a child node to **the deepest node** in the tree that is labeled with some event in $D_{\pi_i}^+$.

Consider the events in a backward manner, and construct the witness tree.

Consider the events in a <u>backward manner</u>, and construct the witness tree.

Hence, the tree is a <u>witness tree</u>.

Attach this node as a child to the deepest node in the tree that is labeled with some event in $D_{\pi_j}^+$

Consider the events in a <u>backward manner</u>, and construct the witness tree.

 $egin{bmatrix} A_{\pi_1} & A_{\pi_2} & A_{\pi_3} & \cdots & \cdots & A_{\pi_j} & \cdots & \cdots & A_{\pi_k} \end{bmatrix}$

Intuitively, the witness tree states that "resamples of the non-root events in T(k) jointly lead to the resample of A_{π_k} ."

Resamples of the nodes in the bottom-up order *causes* the resample of the root event.

Properties of

the Constructed Witness Trees

Proposition 1.

For any $k \geq 1$,

T(k) is a proper witness tree.

 \blacksquare T(k) is a witness tree by the way it is constructed.

If it is not proper, then some A_j is labeled at least twice as children of some node.

By the construction rule, one of them should be attached deeper. A contradiction.

For any proper witness tree T, we say that it occurs (in the execution sequence), if T = T(k) for some $k \ge 1$.

Lemma 2.

For any proper witness tree T of the events, we have

$$\Pr[T \text{ occurs }] \leq \prod_{v \in T} \Pr[A_{[v]}].$$

We will leave the proof of this lemma to the end of the slides.

Lemma 2.

For any proper witness tree *T* of the events, we have

$$\Pr[T \text{ occurs }] \leq \prod_{v \in T} \Pr[A_{[v]}].$$

- Let T_i be the set of proper witness trees with root labeled with A_i .
- By Lemma 2, we have

$$E[N_i] = \sum_{T \in T_i} \Pr[T \ occurs] \le \sum_{T \in T_i} \prod_{v \in T} \left(x_{[v]} \cdot \prod_{j \in D_{[v]}} (1 - x_j) \right) .$$

We bound the sum by <u>relating it to a simple random process</u>.

Outline

- Algorithmic Lovász Local Lemma
 - (A constructive proof for the Lovász Local Lemma)
 - The Variable Setting Assumption
 - A Simple Randomized Algorithm
 - The Analysis
 - Notations & Definitions
 - The Galton-Watson branching process
 - Coupling the execution & evaluation

The Multi-type

Galton-Watson Branching Process

The Galton-Watson Branching Process

■ Consider the following simple random process for generating $T \in T_i$.

- 1. Generate the root node with label A_i .
- 2. While at least one node was generated in the previous iteration, do
 - For each of these newly-generated nodes, say, v, do
 - For each event $B \in D_{[v]}^+$, with probability $x_{[B]}$, generate a new child node for v with label B.
- 3. Return the tree generated.

Let [B] denote the index of the event B in $\{A_1, A_2, ..., A_m\}$.

For each $A_b \in D_i^+$, generate a new branch node A_b with probability x_b .

For each newly generated branch node, say, v, and each $A_b \in D_{[v]}^+$, generate a new branch node A_b with probability x_b .

 k^{th} round

Repeat until no vertices are newly generated.

The Process Generates a Proper Witness Tree

- We only branch for events in D^+ .
 - So it is a witness tree.
- \blacksquare Each event in D^+ is branched at most once.
 - The witness tree is proper.

The Galton-Watson Branching Process

- The speed for which the process terminates depends on the values of x_j , for all A_j that is reachable from A_i in the dependency graph.
 - The process dies out quickly when the x_i are small.
 - On the contrary, when x_i are large, the branching process may not stop at all.

For any $T \in T_i$, let p_T denote the probability that the Galton-Watson process generates T.

Lemma 3.

For any $T \in T_i$, we have

$$p_T = \frac{1-x_i}{x_i} \cdot \prod_{v \in T} \left(x_{[v]} \cdot \prod_{j \in D_{[v]}} (1-x_j) \right).$$

This lemma can be verified directly from the process.

Proof of Lemma 3

■ Consider any vertex $v \in T$. Suppose that it has children set V_v .

This happens with probability

$$\prod_{u \in V_v} x_{[u]} \cdot \prod_{j \in D^+_{[v]} \setminus [V_v]} (1 - x_j)$$

Which is equal to

$$\prod_{u \in V_{v}} \frac{x_{[u]}}{1 - x_{[u]}} \cdot \prod_{j \in D_{[v]}^{+}} (1 - x_{j})$$

We have

$$p_{T} = \prod_{v \in T} \left(\prod_{u \in V_{v}} \frac{x_{[u]}}{1 - x_{[u]}} \cdot \prod_{j \in D_{[v]}^{+}} (1 - x_{j}) \right)$$

$$= \frac{1 - x_{i}}{x_{i}} \cdot \prod_{v \in T} \left(\frac{x_{[v]}}{1 - x_{[v]}} \cdot \prod_{j \in D_{[v]}^{+}} (1 - x_{j}) \right)$$

$$= \frac{1 - x_{i}}{x_{i}} \cdot \prod_{v \in T} \left(x_{[v]} \cdot \prod_{j \in D_{[v]}} (1 - x_{j}) \right).$$

■ This proves the lemma.

Outline

- Algorithmic Lovász Local Lemma
 - (A constructive proof for the Lovász Local Lemma)
 - The Variable Setting Assumption
 - A Simple Randomized Algorithm
 - The Analysis
 - Notations & Definitions
 - The Galton-Watson branching process
 - Coupling the execution & evaluation

Strictly Proper Witness Trees

- Let *T* be a witness tree.
 - For any $v \in T$, let depth(v) be its distance to the root.
 - We say that T is <u>strictly proper</u>,

if for any $u, v \in T$ with depth(u) = depth(v),

we always have

$$vbl(A_{\lceil u \rceil}) \cap vbl(A_{\lceil v \rceil}) = \emptyset$$
.

Proposition 4.

If T occurs in the execution sequence, then T is strictly proper.

- The proof is straightforward,
 by the way how witness trees are constructed
 from the execution sequence.
 - If there exist $u, v \in T$ with the same depth and $vbl(A_{[u]}) \cap vbl(A_{[v]}) \neq \emptyset$, then one of them should be attached at a deeper level.

Lemma 2.

For any proper witness tree T of the events, we have

$$\Pr[T \text{ occurs in execution }] \leq \prod_{v \in T} \Pr[A_{[v]}].$$

By Proposition 4, for witness trees that are not strictly proper,

$$\Pr[T \text{ not strictly proper occurs}] = 0 \le \prod_{v \in T} \Pr[A_{[v]}].$$

Hence, it suffices to prove the statement for strictly proper witness trees.

Proof of Lemma 2

It remains to prove the statement of Lemma 2.

This is the part for which the *algorithmic variable-setting* is truly involved.

To Prove:

For any strictly proper witness tree T of the events, we have

$$\Pr[T \text{ occurs in execution }] \leq \prod_{v \in T} \Pr[A_{[v]}].$$

- Consider the following <u>evaluation process</u> for T.
 - For each $v \in T$ in a <u>reversed-BFS order</u>, sample the values of the variables in $vbl(A_{\lceil v \rceil})$.

■ For each $v \in T$ in a <u>reversed-BFS order</u>, sample the values of the variables in $vbl(A_{[v]})$.

To Prove:

For any strictly proper witness tree *T* of the events, we have

$$\Pr[T \text{ occurs in execution }] \leq \prod_{v \in T} \Pr[A_{[v]}].$$

- \blacksquare Consider the following <u>evaluation process</u> for T.
 - For each $v \in T$ in a <u>reversed-BFS order</u>, sample the values of the variables in $vbl(A_{\lceil v \rceil})$.
 - Furthermore, suppose that, in the evaluation process,
 we use the same random source with the algorithm execution.

The Execution Coupling

- Imagine that, for each $1 \le j \le n$, in the evaluation process, we use *an identical random source* that is used in the algorithm execution for variable Z_j .
 - Therefore, the evaluation process gets <u>the same random</u> sequence with the algorithm execution when it samples Z_i .

- Consider the following evaluation process.
 - For each $v \in T$ in a reversed-BFS order, sample the values of the variables in $vbl(A_[v])$.
- We say that the sample in v is <u>successful</u>, if it makes $A_{[v]}$ true.

Clearly, $Pr[\text{ sample in } v \text{ successful }] = Pr[A_{[v]}].$

■ We say that the *evaluation process succeeds*, if the samples in all vertices are successful.

It follows that $\Pr[\text{ evaluation succeeds }] = \prod_{v \in T} \Pr[A_{[v]}]$.

```
It suffices to prove that, for <u>strictly proper witness tree</u> T,

Pr[T occurs in execution] \leq Pr[evaluation succeeds].
```

- We show that, if we couple up (by using the same random sources)
 - the execution of the algorithm and
 - the evaluation process of the witness tree,
 then, whenever T occurs in the execution sequence,
 the evaluation process for T must succeed.
- Note that, this implies the conclusion we want.

■ We couple up <u>the execution sequence of the algorithm</u> and <u>the evaluation process of the witness tree</u> $T \in T_k$.

Consider a node $v \in T \in T_k$ and any $Z_j \in vbl(A_{[v]})$. Suppose that it is the i^{th} -item in the execution sequence, i.e., $[v] = \pi_i$.

None of the nodes at the same level, other than v, contains Z_i .

The number of times Z_j is sampled at

$$\{ u \in T \ : \ depth(u) > depth(v) \}$$
 and

$$\left\{A_{\pi_1},A_{\pi_2},\ldots,A_{\pi_{i-1}}\right\}$$

are $\underline{the same}$, since T is strictly proper.

All of these events that contain Z_j appear at depth deeper than depth(v).

- Consider a node $v \in T \in T_k$ and any $Z_j \in vbl(A_{[v]})$. Suppose that it is the i^{th} -item in the execution sequence, i.e., $[v] = \pi_i$.
- The number of times Z_i is sampled at

```
\{u \in T : depth(u) > depth(v)\} and \{A_{\pi_1}, A_{\pi_2}, \dots, A_{\pi_{i-1}}\} are <u>the same</u>, since T is strictly proper.
```

- Since the algorithm <u>makes one more sampling on Z_j initially</u>, the result the evaluation process gets at node v is the current value of Z_j at the i^{th} -iteration of the algorithm.
- This argument holds for all variables in $vbl(A_{[v]})$.

When the process samples $vbl(A_{[v]})$ at v, what it gets is the assignment the algorithm has for $vbl(A_{[v]})$ at the beginning of the i^{th} -iteration! $A_{[v]}$ Since A_{π_i} is true (the algorithm resamples it), the evaluation at v must be successful. A_{π_i} A_{π_1} A_{π_2} nodes deeper than v