Alex Valentino Homework 350H

Let V, W be finite dimensional vector spaces, where $\beta = (v_1, \ldots, v_n)$, $\Gamma = (w_1, \ldots, w_n)$ are vector spaces of V and W respectively. Let dim(W) = dim(V) = n. We must show that $V \cong W$. Let $L: V \to W$ be the linear transformation given by $L(v_i) = w_i$ for all $i \in [n]$. Since every basis vector in V is mapped to a non-zero vector in W, then rank(L) = n, therefore by the rank nullity theorem nullity(T) = 0. Therefore L is injective. Since L is injective and dim(V) = dim(W), then L is onto. Therefore T is a bijection, thus $V \cong W$.