Molekuláris képalkotás

Funkcionális képalkotó eljárások, multimodális módszerek

Máthé Domokos PhD

Nanobiotechnology and In Vivo Imaging Center

Nanobiotechnológiai és In Vivo Képalkotó Központ

Molekuláris képalkotás-molecular imaging

 "A képalkotás az időben és térben meghatározott információ kinyerésének tudománya minden fizikai szerveződési szinten "

(Dr. Elias Zerhouni, a NIH volt igazgatója)

 "A molekuláris képalkotás a biológiai folyamatok molekuláris és sejtszintű láthatóvá tétele, jellemzése és mérése az élő rendszerekben"

(Society for Nuclear Medicine and Molecular Imaging-Amerikai Nukleáris Medicina Társaság

(Molekuláris biológia -> Molekuláris képalkotás)

Nanobiotechnology and In Vivo Imaging Center

Nanobiotechnológiai és In Vivo Képalkotó Központ

Szerkezet

- Molekuláris képalkotás miért ez a neve?
- Mi mindent alkalmazhatunk molekuláris képalkotásra? (jelentősebb és extrém módszerek példákkal)
- A molekuláris képalkotás módszerei a kutatásban (áttekintés)
- A molekuláris képalkotás alkalmazási lehetőségei a klinikumban (szűrés, diagnosztika, személyre szabott kezelés, nyomon követés)
- A legjelentősebb molekuláris képalkotási módszerek a klinikumban ma, kitekintés a holnapra
 - PET, SPECT, MRI, Planáris fluoreszcencia, Optikai tomográfiák)
 Onkológia, idegtudomány, kardiovaszkuláris medicina, reumatológia, endokrinológia, sebészet
- Multimodális képalkotási módszerek lehetőségei (multimodális és multiplex rendszerek)
- Funkcionális és morfológiai információ korrelációja
- Kép-szegmentáció és regisztráció klinikai haszna

Nanobiotechnology and In Vivo Imaging Center

Nanobiotechnológiai és In Vivo Képalkotó Központ

Mi mindent alkalmazhatunk molekuláris képalkotásra?

1. A kezdetek (és a velünk élő klasszikus): hisztokémiai reakciók

Gömöri-festés a vese tubulussejtek alkalikus foszfatáz enzimtartalmának kimutatására

2. Immunhisztokémia és –fluoreszcencia: mikroszkópia

Immunhisztokémia: szomatosztatin 2a receptor elleni antitest reakció insulinoma máj-áttétben (300x, H&E háttérfestés)

A431 sejtvonalból (epithelialis cc.) származó tumorsejtek, a magok Hoechst-festéssel kékre, a sejtmembrán foszforilált EGF-receptorai az **antitesthez kötött**, 488 nm-en emittáló DyLight festéssel **zöldre** festődnek

Nanobiotechnology and In Vivo Imaging Center

Nanobiotechnológiai és In Vivo Képalkotó Központ

Nagyfelbontású módszerek - élő sejteken is: AFM/TIRF

Kellermayer et al. Biophys J. 2006

Nanobiotechnology and In Vivo Imaging Center

Nanobiotechnológiai és In Vivo Képalkotó Központ

Nagyfelbontású módszerek élő szervezetben: in vivo kétfoton-mikroszkópia jó jel/zaj arány

Semmelweis

Véredények és neuronok (dextran Texas Red és GFP-TG egér)

Amiloid plakkok (kék), vérerek (piros) és neuronok (zöld)

Nanobiotechnology and In Vivo Imaging Center

Nanobiotechnológiai és In Vivo Képalkotó Központ

Terápiás hatást hordozó részlet

Molekuláris képalkotó "szondák" vagy "kontrasztanyagok" általános szerkezete

Molekuláris célponthoz kötődésért felelős rész

Kontrasztot/jelet adó alkotóelem

Kis molekulák Peptidek Fehérjék

Semmelweis

Antitestek vagy részeik

<u>Kémiai jeladók:</u>

PET/SPECT: radioaktív izotópok Optikai/Akusztikus: fluoreszcens festékek

MRI: Gd, Fe

CT: jód, bárium-szulfát

Nano/mikrorészecskék:

Optikai: quantum dot, szén nanocsövek,

arany részecskék

MRI: vas-oxid, mangán-oxid részecskék

CT: arany részecskék

Modalitás	Előnyei	Hátrányai	Fontos kontrasztanyag/jel	Klinikai alkalmazás példái
СТ	Bármilyen mélységű kép Jó térbeli felbontás Egésztest-képalkotás Perces kép-idők Közepesen drága Anatómiai módszer	Sugárterhelés Rossz lágyszöveti kontraszt Jelenleg csak anatómiai és funkcionális képalk.	Ba, I, Kr, Xe	Tumor perfúzió,
PET	Bármilyen mélységű kép Egésztest-képalkotás Kvantitatív mérések Kombinálható CT/MRI-vel	Sugárterhelés Drága Milliméteres felbontás Hosszabb képidő (perc-óra)	C-11, F-18, Ga-68, Cu-64, Zr-89	FDG-PET tumor staging, különböző betegségek diagnosztikája
SPECT	Bármilyen mélységű kép Egésztest-képalkotás Kvantitatív mérések Multiplex Teragnosztika Kombinálható CT-vel	Sugárterhelés Szubmilliméteres-milliméteres felbontás Hosszabb képidők	Tc-99m, I-123, In-111, Lu- 177	Molekuláris diagnosztika Radioterápia (NHL, NET, pm. cc.)
MRI	Bármilyen mélységű kép Egésztest-képalkotás Nincs ionizáló sugárzás Kitűnő lágyszöveti kontraszt	Drága Hosszú képidők Korlátozott érzékenység	Gd³+, vas-oxid részecskék (SPIO, USPIO)	Prosztata daganat nycs. met. Fokális májléziók Szív perfúzió
MRS	Nincs ionizáló sugárzása Egésztest-képalkotás	Drága Hosszú képidők Kis érzékenység	Kolin, laktát, kreatin, lipidek, N-acetil-aszpartát	Agytumorok anyagcseréje Alzheimer-kór követése
ИН	Nincs ionizáló sugárzás Rövid/valósidejű képalkotás Nagy térbeli felbontás Olcsóság Nagy érzékenység	Egésztest-képalkotás nincs Kontrasztanyagok csak az érrendszerre Operátor-függő	Mikro-buborékok	Fokális májléziók, echokardiográfia, Tumor perfúzió
Optikai módszerek	Nincs ionizáló sugárzás Rövid/valósídejű képalkotás Nagy térbeli felbontás Olcsóság Nagy érzékenység, kvantitatív Multiplex	Korlátozott áthatolóképesség (1 cm) Nincs egésztest-képalkotás	Fluoreszcens molekulák és festékek, fény-elnyelő nanorészecskék	OCT-érelmeszesedés, retinopathiák, kolonoszkópia

Szűrés-konfokális endo-mikroszkópia

Nyelőcső, gyomor, epeutak, vastagbél, tüdő, húgyhólyag hámszöveteinek autofluoreszcencián alapuló száloptikás mikroszkópos vizsgálata

Emberi vastagbél kelyhek in vivo, valósidejű mikroszkópos képe

Személyre szabott kezelés: SPECT/MRI/RNT

Nanobiotechnológiai és In Vivo Képalkotó Központ

Nyomon követés: FDG-PET

Nanobiotechnology and In Vivo Imaging Center

Nanobiotechnológiai és In Vivo Képalkotó Központ

Planáris fluoreszcencia

Fluoreszcens sentinel nyirokcsomó keresés melanomában a bal testfélen

Nanobiotechnology and In Vivo Imaging Center

Nanobiotechnológiai és In Vivo Képalkotó Központ

Planáris autofluoreszcencia-endoszkópia

C: Barrett-oesophagus endoszkópia, D: autofluoreszcencia (lila) E: nagyfelbontású endoszkópia-irreguláris mintázat. A biopszia adenocc.-t igazolt.

OCT (optical coherence tomography)

- Retina:
- Mucosák
- Porc
- Agyi vérkeringés
- Pár mm-es áthatolóképesség
- Mikronos felbontás
- Valós idejű képalkotás

Nanobiotechnology and In Vivo Imaging Center

Nanobiotechnológiai és In Vivo Képalkotó Központ PET/MRI PET/CT PET/CT PET/MR Nanobiotechnology and In Vivo Imaging Center

Köszönöm a figyelmet!

• domokos.mathe@cromedresearch.com

