Definición

Si *R* es un esquema de relación descompuesto en los esquemas $R_1, R_2, ..., R_k$ y F es un conjunto de dependencias, decimos que la descomposición es sin pérdida de información (SPI) con respecto a F, si para toda relación r para R que satisfaga *F*:

$$r = \pi_{R_1}(r) \bowtie \pi_{R_2}(r) \bowtie \ldots \bowtie \pi_{R_k}(r)$$

Es decir, no debe perderse información en el proceso de descomposición, de manera tal que r es la junta natural de sus proyecciones sobre los R_i

Andrea Manna DC-FCEN-UBA

Teorema de la Descomposición Binaria

La descomposición ρ de R, ρ = (R_1 , R_2) es SPI respecto a un conjunto de dependencias funcionales F sí y sólo sí:

$$F^+$$
 contiene la DF: $R_1 \cap R_2 \rightarrow (R_1 - R_2)$

0

$$F^+$$
 contiene la DF: $R_1 \cap R_2 \rightarrow (R_2 - R_1)$

Definición de Tableau

Dado $R = (A_1, \ldots, A_n)$, un tableau T para una descomposición $\rho = (R_1, \dots, R_k)$ de R se define de la siguiente forma:

- T tiene n columnas, una para cada atributo de R
- **2** T tiene k filas, una para cada esquema de ρ
- 3 Dadas la fila i y la columna j (esquema R_i y atributo A_i), el contenido del tableau será:

$$a_j \text{ si } A_j \in R_i$$

o
 $b_{ij} \text{ si } A_i \notin R_i$

Los a_i se denominan símbolos distinguidos, y los b_{ii} no distinguidos.

000000000000000000

Algoritmo del Tableau

Algoritmo del Tableau

INPUT: Un esquema de relación R, un conjunto de dependencias funcionales F, y una descomposición ρ . OUTPUT: Una decisión de si ρ es SPI.

Construir el Tableau T **mientras** hava cambios sobre T para cada df $X \rightarrow Y \in F$

> buscar filas que coincidan en todos los símbolos de X Si se encontrasen dos filas, igualar los simbolos para los atributos de Y. Cuando se igualan 2 símbolos, si alguno de ellos es a_i , asignarle al otro a_i . Si ellos son b_{ii} y b_{li} , asignarle a ambos b_{ii} o b_{li} .

> Si hay una fila con todos símbolos distinguidos, retornar Sí

end (mientras)

Retornar No.

Preservación de Dependencias Funcionales

Dados un esquema de relación R, una descomposición ρ = (R_1, \ldots, R_k) , y un conjunto F de dependencias funcionales.

 $\pi_z(F)$: proyección de F sobre un conjunto de atributos Z

Conjunto de dependencias $X \to Y$ en F^+ tal que $XY \subseteq Z$

Testeo (orden exponencial)

La descomposición ρ preserva F si $F^+ = (\bigcup_{i=1}^k \pi_{B_i}(F))^+$

Es decir, la descomposición ρ preserva el conjunto de dependencias F si la unión de todas las dependencias en $\pi_{R_i}(F)$ implica lógicamente a todas las dependencias en F

Testeo Polinomial de Preservación de Dependencias Funcionales

```
Dados un esquema de relación R, una descomposición \rho =
(R_1, \ldots, R_k), y un conjunto F de dependencias funcionales.
Para toda dependencia funcional X \to Y \in F:
      Verificar que se preserva X \rightarrow Y:
           Z = X
           while Z cambia
                for i = 1 to k do
                     /* clausura con respecto a F */
                     Z = Z \cup ((Z \cap R_i)^+ \cap R_i)
           Si Y \nsubseteq Z retornar No
Retornar Sí
```

Ejercitación

Preservación de Dependencias Funcionales: Resolución Ejercicio

$$R = (A, B, C, D, E)$$

 $F = \{AB \rightarrow C, A \rightarrow D, D \rightarrow E, E \rightarrow C\}$
 $\rho = \{AD, DE, ECB\}$

Estrategia de Resolución:

Las dependencias $A \rightarrow D, D \rightarrow E, E \rightarrow C$ se preservan trivialmente (por qué?), y no es necesario aplicarles el algoritmo.

Le aplicaremos el algoritmo a la dependencia $AB \rightarrow C$ para ver si se preserva.

Andrea Manna DC-FCEN-UBA

- 1 Obtener el conjunto S de atributos que no figuran en un lado derecho de una DE
- 2 Verificar si ese conjunto es superclave. Si lo es, es clave UNICAL
- 3 Si no lo era, agregar paulatinamente a S todas las combinaciones posibles de subconjuntos de R-S (todos los de cardinalidad 1, luego de los de 2, etc) (llamémoslo S') y verificar si cada uno de esos conjuntos es superclave. En este paso se deben obviar todos aquellos S' que contienen una superclave ya calculada, ya que no van a ser minimales.

Todos los conjuntos de atributos obtenidos que determinan a todo R son las claves.