Recognizing a conflictserializable schedule

Overview of this video

This video will show you how to recognize if a schedule is conflict-serializable or not

A schedule that is **not** conflict-serializable, but serializable:

Conflicts impose constraints on the order of the transactions in any conflict-equivalent serial schedule

Precedence Graph

The precedence graph for a schedule S is defined as follows:

- It is a directed graph.
- Its nodes are the transactions that occur in S.
- It has an **edge** from transaction T_i to transaction T_j if there is a conflicting pair of operations op₁ and op₂ in S such that
 - op₁ appears before op₂ in S
 - op₁ belongs to transaction T_i
 - op₂ belongs to transaction T_j.

Example:

S:
$$r_2(X)$$
; $r_1(Y)$; $w_2(X)$; $r_2(Y)$; $r_3(X)$; $w_1(Y)$; $w_3(X)$; $w_2(Y)$

Precedence graph for S:

Testing Conflict-Serializability

To test if a schedule S is **conflict-serializable**:

- Construct the precedence graph for S.
- If the precedence graph is **no cycle**, then S is conflict-serializable. Otherwise not.

Example 1: S: $r_1(X)$; $w_1(X)$; $r_2(X)$; $w_2(X)$; $r_1(Y)$; $w_1(Y)$; $r_2(Y)$; $w_2(Y)$ Precedence graph for S: T_1 has no cycle \Rightarrow S is conflict-serializable T_1

Example 2: S: $r_2(X)$; $r_1(Y)$; $w_2(X)$; $r_2(Y)$; $r_3(X)$; $w_1(Y)$; $w_3(X)$; $w_2(Y)$ Precedence graph for S: contains a cycle \rightarrow

S is not conflict-serializable

Why does this work?

This says:

There is a conflict between an operation in T₁ (that appears first) and an operation in T₂

All conflict-equivalent schedulers: operation in T_1 is before operation in T_2

Why does this work?

All conflict-equivalent schedulers: operation x in T_1 is before operation y in T_2

Proof by contradiction: Assume there is a conflict-equivalent schedule S' where this is not so

Consider first *consecutive* swap between S and S' where x goes from being before y to being after y

In that swap, either:

- We swap x and y (not legal since they conflict)
- Or we swap at most 1 of them, but then either x is swapped with something before y or y is swapped with something after x and in either cases that swap can't have put y before x. This is a contradiction! This means that our assumption is wrong and there is no such schedule

Implication of a cycle

A cycle in the precedence graph T_1 T_2

Consider some serial schedule

It must put some transaction T in the cycle first by definition

Since there is a cycle, there must be a transaction S in the cycle that points to T

By last slide, one of the operations in S must be before one of the operations in T

But then T is not the first transaction in the cycle

That is a contradiction, and we can therefore not have any serial schedule

Consider this schedule from before:

S: $w_2(X)$; $w_1(X)$; $w_1(Y)$; $w_2(Y)$; $w_3(X)$;

Consider the following schedule:

S:
$$r_1(Y)$$
, $r_3(Y)$, $r_1(X)$, $r_2(X)$, $w_2(X)$, $r_3(Z)$, $w_3(Z)$, $r_1(Z)$, $w_1(Y)$, $r_2(Z)$

Consider the following schedule:

S:
$$r_1(Y)$$
, $r_3(Y)$, $r_1(X)$, $r_2(X)$, $w_2(X)$, $r_3(Z)$, $w_3(Z)$, $r_1(Z)$, $w_1(Y)$, $r_2(Z)$

Find serial schedule:

Any topological ordering yields a conflict-equivalent serial schedule

- 1. Find a transaction with only outgoing edges
- 2. You put it next in your schedule, remove it and all outgoing edges from the graph and repeat Serial schedule: $r_3(Y)$, $r_3(Z)$, $w_3(Z)$

Consider the following schedule:

S:
$$r_1(Y)$$
, $r_2(Y)$, $r_1(X)$, $r_2(X)$, $w_2(X)$, $r_3(Z)$, $w_3(Z)$, $r_1(Z)$, $w_1(Y)$, $r_2(Z)$

Find serial schedule:

- 1. Find a transaction with only outgoing edges
- 2. You put it next in your schedule, remove it and all outgoing edges from the graph and repeat Serial schedule: $r_3(Y)$, $r_3(Z)$, $w_3(Z)$, $r_1(Y)$, $r_1(X)$, $r_1(Z)$, $w_1(Y)$

Consider the following schedule:

S:
$$r_1(Y)$$
, $r_3(Y)$, $r_1(X)$, $r_2(X)$, $w_2(X)$, $r_3(Z)$, $w_3(Z)$, $r_1(Z)$, $w_1(Y)$, $r_2(Z)$

 T_2

Find serial schedule:

- 1. Find a transaction with only outgoing edges
- 2. You put it next in your schedule, remove it and all outgoing edges from the graph and repeat Serial schedule: $r_3(Y)$, $r_3(Z)$, $w_3(Z)$, $r_1(Y)$, $r_1(X)$, $r_1(Z)$, $w_1(Y)$, $r_2(X)$, $w_2(X)$, $r_2(Z)$

Summary

A schedule is conflict-serializable if there is no cycle in the precedence graph

RECALL: A **conflict** in a schedule is a pair of operations from different transactions *that cannot be swapped* without changing the behaviour of at least one of the transactions

The precedence graph is defined as follows:

Have a state for each transaction

There is an edge from transaction 1 to transaction 2 iff there is a conflict involving them with the operation from transaction 1 being the first occurring one in the schedule