Tutoría 09

Problema 1: Sea el siguiente diagrama la magnitud de Bode de una respuesta en frecuencia $H(\omega)$.

Figura 1. Diagrama de magnitud

a) A partir del diagrama anterior, determine $\boldsymbol{H}(\omega)$ en su forma estándar.

Respuesta:

•
$$H(\omega) = \frac{\pm 10\left(1 + \frac{j\omega}{2}\right)}{\left(1 + \frac{j\omega}{20}\right)\left(1 + \frac{j\omega}{100}\right)}$$

b) Grafique el diagrama de fase de la función $H(\omega)$ (Considere que la ganancia K es positiva).

Respuesta:

•
$$\Theta(\omega) = tan^{-1}\left(\frac{\omega}{2}\right) - tan^{-1}\left(\frac{\omega}{20}\right) - tan^{-1}\left(\frac{\omega}{100}\right)$$

• K = 10

Problema 2: Calcule la frecuencia de resonancia del siguiente circuito:

Figura 2. Circuito para el problema 2

Respuesta:

• $\omega_0 = 12,9 \, [Mrad/s]$

Problema 3: Considere el siguiente circuito:

Figura 3. Circuito para el problema 3

a) Encuentre el valor de frecuencia f a la cual la tensión de la fuente estaría en fase con la señal de corriente de esta.

Respuesta:

• $\omega_o = 770,51 \, [Hz]$

Problema 4: Diseñe un RLC en serie con BW=20 [rad/s] y $\omega_0=1000$ [rad/s]. Encuentre la Q del circuito. Considere una R=10 Ω .

Respuesta:

- L = 0.5 H
- $C = 2 \mu F$

Problema 5: Para el siguiente circuito determine ω_0 , B y Q. Considere la salida como la tensión vista en la bobina.

Figura 4. Circuito par el problema 5

Respuesta:

• $\omega_0 = 1414,21 \ [rad/s]$

- $\bullet \quad B = \frac{16}{15} \left[\frac{rad}{s} \right]$
- Q = 1325,82

Problema 6: El puente de Wheatstone es un circuito eléctrico ampliamente utilizado en instrumentación electrónica. El siguiente circuito representa una configuración de impedancias definida según la topología del puente Wheatstone:

Figura 5. Circuito para el problema 6

a) Determine una expresión para la frecuencia de resonancia ω_0 del circuito del puente de Wheatstone anterior en función de los elementos que forman parte del circuito. Respuesta:

$$\omega_0 = \sqrt{\frac{R_2^2 L - R_2^2 R_1^2 C}{L^2 R_1^2 C - R_1^2 C^2 R_2^2 L}}$$

b) Calcule el valor de la frecuencia de resonancia ω_0 si $R_1=1\,k\Omega,\ R_2=1,5\,k\Omega,\ C=10\,\mu F$ y $L=1\,mH.$

Respuesta:

$$\omega_0 = 9999,72 \, rad/s$$

c) Calcule la potencia promedio consumida por el puente de Wheatstone cuando se encuentra en resonancia si la fuente de alimentación es $V_s=12\angle 45^o\ V_{rms}$. Respuesta:

$$P = 864,06 W$$

Problema 7: Un sintonizador AM (Amplitud Modulada), se conforma por un circuito resonante de tipo RLC paralelo con un $L = 1 \,\mu H$, donde su intervalo de transmisión en AM va de los 540 kHz hasta los 1600 kHz. Con base en el escenario anterior determine el rango del capacitor C que permite sintonizar ese intervalo de frecuencias en AM.

Respuesta:

$$9.9 < C < 86.9 \ nF$$