The University of Western Australia SCHOOL OF MATHEMATICS & STATISTICS

AMO TRAINING SESSIONS

2001 Senior Mathematics Contest Problems

- 1. Prove that there is no function $f: \mathbb{R} \to \mathbb{R}$ such that for all $r \in \mathbb{R}$,
 - (i) $f(r^2) (f(r))^2 \ge \frac{1}{4}$, and
 - (ii) the equation f(x) = r has at most one solution.
- 2. In a certain village there are m houses around a circular pond, where m > 1 is odd. In each house live exactly n people.

Show that in the village there is either a female with at least n female neighbours or a male with at least n male neighbours.

- 3. The real numbers $\ldots, a_{-2}, a_{-1}, a_0, a_1, a_2, \ldots$ satisfy
 - (i) $a_1 = 1$, and
 - (ii) $a_{m+n} mn = a_m + a_n + 1$ for all $m, n \in \mathbb{Z}$.

Find a formula for a_n in terms of n (for all integers n).

4. In $\triangle ABC$, let P_A , P_B , P_C be points on BC, CA, AB (extended if necessary), respectively. Let ℓ_A , ℓ_B , ℓ_C be lines in the plane of $\triangle ABC$ through P_A , P_B , P_C , respectively, such that $\ell_A \perp BC$, $\ell_B \perp CA$, $\ell_C \perp AB$.

Prove that ℓ_A , ℓ_B , ℓ_C are concurrent if and only if

$$P_A C^2 + P_B A^2 + P_C B^2 = P_A B^2 + P_B C^2 + P_C A^2.$$

5. Prove that there is no pair of integers (x, y) other than the pairs (0, 0) and (0, -1) that satisfies the equation

$$y + y^2 = x + x^2 + x^3.$$