Выпуклые множества

Сумма Минковского множеств $A, B \in \mathbb{R}^n$ — это множество

$$A + B = \{x \in \mathbb{R}^n \mid \exists a \in A, b \in B, x = a + b\}$$

Гомотетия — это отображение $A \to \lambda A$, $v \mapsto \lambda v$. Мы предполагаем ниже, что $\lambda > 0$.

- 1. Докажите, что $\lambda(A+B) = \lambda A + \lambda B$.
- **2.** Пусть A выпуклый многогранник. Проверьте, что $(\lambda + \mu)A = \lambda A + \mu A$. Верно ли это для невыпуклых многогранников?
- **3.** Сколько сторон имеет сумма Минковского $S_3 + \ldots + S_{10}$, где S_n правильный n-угольник, если у разных слагаемых нет параллельных сторон?
- **4.** Какие правильные многогранники являются прямыми произведениями двумерных фигур?
- **5.** (*Теорема Минковского*) Существует и единственен (с точностью до сдвига) многогранник с предписанными площадями граней и направлениями нормалей к ним.
- **6.** Докажите, что выпуклый многогранник центрально симметричен, если и только если для каждой его грани существует параллельная ей грань той же площади.
- **7.** (Теорема Каратеодори) Пусть $X \subset \mathbb{R}^n$ конечный набор не менее чем из n+1 точки, и пусть $p \in \operatorname{Conv}(X)$. Тогда найдётся симплекс с вершинами в точках множества X, содержащий p.
- **8.** (Теорема Каратеодори, многоцветная версия). Пусть $X_1, \ldots, X_{n+1} \subset \mathbb{R}^n$ конечные наборы точек, и пусть $p \in \text{Conv}(X_k)$ для всех k. Тогда найдутся такие $x_1 \in X_1, \ldots, x_{n+1} \in X_{n+1}$, что симплекс $\text{Conv}(x_1, \ldots, x_{n+1})$ содержит p.

Дополнительные теоремы для размышления

(Теорема Штайница) Граф трёхмерного многогранника является планарным 3-связным графом (т.е. граф остаётся связным при удалении любых двух вершин). И наоборот, любой планарный 3-связный граф, имеющий хотя бы 4 вершины, является графом трёхмерного многогранника.

 $(Sylvester-Gallai\ Theorem)$. Пусть $X\in\mathbb{R}^n$ — конечный набор точек, не лежащий целиком на одной прямой. Тогда найдётся прямая, содержащая ровно две точки из X.

В частности, плоскость Фано не реализуема в евклидовом пространстве.