(12) UK Patent Application (19) GB (11) 2 193 631 (13) A

(43) Application published 17 Feb 1988

- (21) Application No 8716904
- (22) Date of filing 17 Jul 1987
- (30) Priority data

(31) 61/169486 61/169487 (32) 18 Jul 1986

(33) JP

61/169488

18 Jul 1986 18 Jul 1986

61/169489

18 Jul 1986

(71) Applicant

Chugai Selyaku Kabushiki Kaisha

(Incorporated in Japan)

No 5-1 5-chome Ukima, Kita-ku, Tokyo, Japan

Minoru Machida

(74) Agent and/or Address for Service

Haseltine Lake & Co, Hazlitt House, 28 Southampton Buildings, Chancery Lane, London WC2A 1AT

- (51) INT CL4 A61K 37/02 37/43
- (52) Domestic classification (Edition J): A5B 180 230 231 232 23X 23Y 316 319 31X 31Y 341 343 34Y 351 35Y JB **U1S 2410 A5B**
- (56) Documents cited GB A 2016477
- (58) Field of search A5B Selected US specifications from IPC sub-class A61K

(54) Stable granulocyte colony stimulating factor composition

(57) A stable granulocyte colony stimulating factor-containing pharmaceutical preparation contains, in addition to the active agent, at least one substance selected from a pharmaceutically acceptable surfactant, saccharide, protein and high-molecular weight compound.

1

Ċ

Stable pharmaceutical preparation containing granulocyte colony stimulating factor and process for producing the same

5 pa-

The present invention relates to a pharmaceutical preparation containing a granulocyte colony stimulating factor. In particular, the present invention relates to a stabilized pharmaceutical preparation containing a granulocyte colony stimulating factor that is protected against loss or inactivation of the active component (i.e., granulocyte colony stimulating factor) due to adsorption on the wall of a container in which the preparation is put, or to association, polymerization or oxidation of said component.

10

Chemotherapy has been undertaken as one method for treating a variety of infectious diseases but it has recently been found that chemotherapy causes some serious clinical problems such as the generation of drug-resistant organisms, change of causative organisms, and high side effects.

15 In order to avoid these problems associated with chemotherapy involving the use of therapeutic agents such as antibiotics and bactericides, attempts are being made to use a substance that activates the prophylactic capabilities of the host of an infection-causing organism and thereby providing a complete solution to the aforementioned problems of chemotherapy. Of the various prophylactic capabilities of the host, the phagocytic bactericidal action of leucocytes is believed to cause the strongest influence in the initial period of bacterial infection and it is therefore assumed to be important to enhance the infection protecting capabilities of the host by promoting the growth of neutrophiles and their differentiation into the mature state. A granulocyte colony stimulating factor (G-CSF) is one of the very useful substances that exhibit such actions and the same assignee of the present invention previously filed a patent application on an

20

15

25 infection protecting agent using G-CSF (Japanese Patent Application No. 23777/1985).

As mentioned above, chemotherapy as currently practiced involves various unavoidable problems and intensive efforts are being made to use a drug substance that is capable of activating the prophylactic functions of the host or the person who has been infected.

25

Needless to say, G-CSF displays by itself the ability to activate the prophylactic functions of the host and it has also been found that G-CSF exhibits greater therapeutic effects in clinical applications if it is used in combination with a substance that activates the prophylactic capabilities of the host.

30

G-CSF is used in a very small amount and a pharmaceutical preparation containing 0.1—500 μg (preferably 5—50 μg) of G-CSF is usually administered at a dose rate of 1—7 times a week 35 per adult. However, G-CSF has a tendency to be adsorbed on the wall of its container such as an ampule for injection or a syringe. Therefore, if the drug is used as an injection in such a form as an aqueous solution, it will be adsorbed on the wall of its container such as an ampule or a syringe. This either results in the failure of G-CSF to fully exhibit its activity as a pharmaceutical agent or necessitates the incorporation of G-CSF in a more-than-necessary amount making 40 allowance for its possible loss due to adsorption.

35

In addition, G-CSF is labile and highly susceptible to environmental factors such as temperature, humidity, oxygen and ultraviolet rays. By the agency of such factors, G-CSF undergoes physical or chemical changes such as association, polymerization and oxidation and suffers a great loss in activity. These phenomenon make it difficult to ensure complete accomplishment of a therapeutic act by administering a very small amount of G-CSF in a very exact manner.

40

It is therefore necessary to develop a stable pharmaceutical preparation of G-CSF that is fully protected against a drop in the activity of its effective component. This is the principal object of the present invention which provides a stable pharmaceutical preparation of G-CSF.

45

The present inventors conducted intensive studies in order to enhance the stability of a G-CSF containing pharmaceutical preparation and found that this object can effectively be attained by addition of a pharmaceutically acceptable surfactant, saccharide, protein or high-molecular weight compound.

50

Therefore, the stable G-CSF containing pharmaceutical preparation of the present invention is characterized by containing both G-CSF and at least one substance selected from the group of a pharmaceutically acceptable surfactant, saccharide, protein and high-molecular weight compound. The G-CSF to be contained in the pharmaceutical preparation of the present invention can be

55

obtained by any of the methods such as those described in the specifications of Japanese Patent Application Nos. 153273/1984, 269455/1985, 269456/1985, 270838/1985 and 270839/1985. For example, a human G-CSF can be prepared either by cultivating a cell strain 60 (CNCM Accession Number I-315 or I-483) collected from tumor cells of patients with oral cavity cancer, or by expressing a recombinant DNA (which has been prepared by the agency of a human G-CSF encoding gene) in an appropriate host cell (e.g. *E. coli*, C 127 cell or ovary cells of a Chinese hamster).

60

Any human G-CSF that has been purified to high degree may be employed as the G-CSF to be contained in the pharmaceutical preparation of the present invention. Preferable human G-CSFs

	cell, and	a poly ning a h	peptide nost wi	or glyco th a reco	protein mbinant	having 1 vector	the huma	an G-CS	F activit	y that is	G-CSF producing obtained by ene coding for a	
5	Two p (1) hus i) mole	particular man G-C ecular w sulfate	rly pref CSF hav reight: a	rvlamide	amples following ,000 ± ael:	of huma physic 1,000	ochemic as meas	al prope sured by	erties: electroj	phoresis	through a sodium	5
10	ii) isos 5.8 ± 0 iii) ultr	electric).1, and aviolet and	point: h pl = (absorpt	having at 6.1 ± 0.0 tion: havi	least on 1; ng a ma	ximum	absorpti	on at 28	30 nm a	ınd a mi	5.5 ± 0.1, pl = nimum absorption au-Gly-Pro-Ala-Ser-	10
15	Ser-Leu- (2) hu	Pro-Gin- man G-G	-Ser-Ph CSF co vhich is	e-Leu-Leu ntaining <i>e</i>	ı-Lys-Cy either a nted by	s-Leu-G polypep all or pa	lu-Gin-Va tide hav art of th	al ring the le amino	human g acid se	granuloc	yte stimulating shown below, or a	15
	(Met)	Thr	Pro	Leu -	Gly	Pro	Ala	Ser	Ser	Leu	Pro	20
20	Gln	Ser	Phe	Leu	Leu	Lys	Cys	Leu	Glu	Gln	Val	
	Arg	Lys	Ile	Gln	Gly	Asp	Gly	Ala	Ala	Leu	Gln	4-
25	Glu	Lys	Leu	(Val	Ser	Glu)	_m Cys	Ala	Thr	Tyr	Lys	25
	Leu	Cys	His	Pro	Glu	Glu	Leu	Val	Leu	Leu	Gly	
30	His	Ser	Leu	Gly	Ile	Pro	Trp	Ala	Pro	Leu	Ser	30
	Ser	Cys	Pro	Ser	Gln	Ala	Leu	Gln	Leu	Ala	Gly	
35	Cys	Leu	Ser	Gln	Leu	His	Ser	Gly	Leu	Phe	Leu	35
	Tyr	Gln	Gly	Leu	Leu	Gln	Ala	Leu	Glu	Gly	Ile	
40	Ser	Pro	Glu	Leu	Gly	Pro	Thr	Leu	Asp	Thr	Leu	40.
40	Gln	Leu	Asp	Val	Ala	Asp	Phe	Ala	Thr	Thr	Ile	
	Trp	Gln	G1n	Met	Glu	Glu	Leu	Gly	Met	Ala	Pro	4.5
45	Ala	Leu	Gln	Pro	Thr	Gln	Gly	Ala	Met	Pro	Ala	45
	Phe	Ala	Ser	Ala	Phe	Gln	Arg	Arg	Ala	Gly	Gly	
50	Val	Leu	Val	Ala	Ser	His	Leu	Gln	Ser	Phe	Leu	50
	Glu	Val	Ser	Tyr	Arg	Val	Leu	Arg	His	Leu	Ala	
55	Gln	Pro										55
60	For one of Japane and 27 Another with a	details on se Pate 70839/1 ther me self-pro	of the nent App 1985, a thod th oliferatir	lication N III having at can be ng malign	or prepai los: 153 been fil e emplot ant tum	ring the 3273/19 ed by t yed con	se two 1 984, 269 he assignsists of	9455/19 nee of t perform	985, 269 he presi ing fusio	9456/19 ent invel on of a	specification of 985, 270838/1985 ntion. G-CSF producing cell idoma in the	60
65	The	human	G-CSF	of mytog containin oncentrat	a solutio	on obtai required	ined may , by any	y be sto known	red in a techniq	frozen ue. Alte	state after being rnatively, the solu-	65 .

10

15

20

25

30

35

40

45

50

55

60

65

tion may be stored after being dehydrated by such means as freeze-drying.

All of the human G-CSFs thus prepared can be processed as specified by the present

invention in order to attain stable G-CSF containing pharmaceutical preparations. Typical examples of the surfactant that is used to attain the stable G-CSF containing pharma-5 ceutical preparation of the present invention are listed below: nonionic surfactants with HLB of 6-18 such as sorbitan aliphatic acid esters (e.g. sorbitan monocaprylate, sorbitan monolaurate and sorbitan monopalmitate), glycerin aliphatic acid esters (e.g. glycerin monocaprylate, glycerin monomyristate, and glycerin monostearate), polyglycerin aliphatic acid esters (e.g. decaglyceryl monostearate, decaglyceryl distearate and decaglyceryl monolinoleate), polyoxyethylene sorbitan 10 aliphatic acid esters (e.g. polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan trioleate, and polyoxyethylene sorbitan tristearate), polyoxyethylene sorbitol aliphatic acid esters (e.g. polyoxyethylene sorbitol tetrastearate and polyoxyethylene sorbitol tetraoleate), polyethylene glycerin aliphatic acid esters (e.g. polyoxyethylene glyceryl monostearate), 15 polyethylene glycol aliphatic acid esters (e.g. polyethylene glycol distearate), polyoxyethylene alkyl ethers (e.g. polyoxyethylene lauryl ether), polyoxyethylene polyoxypropylene alkyl ethers (e.g. polyoxyethylene polyoxypropylene glycol ether, polyoxyethylene polyoxypropylene propyl ether, and polyoxyethylene polyoxypropylene cetyl ether), polyoxyethylene alkylphenyl ethers (e.g. polyoxyethylene nonylphenyl ether), polyoxyethylated castor oil, polyoxyethylated hardened castor 20 oil (polyoxyethylated hydrogenated castor oil), polyoxyethylated beeswax derivatives (e.g. polyoxyethylated sorbitol beeswax), polyoxyethylene lanolin derivatives (e.g. polyoxyethylene lanolin), and polyoxyethylene aliphatic acid amides (e.g. polyethylene stearic acid amide); nonionic surfactants such as alkyl sulfuric acid salts having a C10-C18 alkyl group (e.g. sodium cetyl sulfate, sodium lauryl sulfate and sodium oleyl sulfate), polyoxyethylene alkyl ether sulfuric acid salts

25 wherein the average molar number of ethylene oxide addition is 2-4 and the alkyl group has 10-18 carbon atoms (e.g. polyoxyethylene sodium lauryl sulfate), salts of alkyl sulfosuccinate esters wherein the alkyl group has 8 -18 carbon atoms (e.g. sodium lauryl sulfosuccinate ester); and natural surfactants such as lecithin, glycerophospholipid, sphingophospholipid (e.g. sphingomyelin), and sucrose aliphatic acid esters wherein the aliphatic acid has 12-18 carbon atoms. 30 These surfactants may of course be used either independently or in admixture.

The surfactants listed above are preferably used in amounts of 1--10,000 parts by weight

per part by weight of G-CSF.

The saccharide to be used in making the stable G-CSF containing pharmaceutical preparation of the present invention may be selected from among monosaccharides, oligosaccharides, and 35 polysaccharides, as well as phosphate esters and nucleotide derivatives thereof so long as they are pharmaceutically acceptable. Typical examples are listed below: trivalent and higher sugar alcohols such as glycerin, erythritol, arabitol, xylitol, sorbitol, and mannitol; acidic sugars such as glucuronic acid, iduronic acid, neuraminic acid, galacturonic acid, gluconic acid, mannuronic acid, ketoglycolic acid, ketogalactonic acid and ketogulonic acid; hyaluronic acid and salts thereof, 40 chondroitin sulfate and salts thereof, heparin, inulin, chitin and derivatives thereof, chitosan and derivatives thereof, dextrin, dextran with an average molecular weights of 5,000 - 150,000, and alginic acid and salts thereof. All of these saccharides may be used with advantage either independently or in admixture.

The saccharides listed above are preferably used in amounts of 1-10,000 parts by weight

45 per part by weight of G-CSF.

Typical examples of the protein to be used in making the stable G-CSF containing pharmaceutical preparation of the present invention include human serum albumin, human serum globulin, gelatin, acid-treated gelatin (average mol. wt. = 7,000-100,000), alkali-treated gelatin (average mol. wt. = 7,000-100,000), and collagen. Needless to say, these proteins may be used either 50 independently or in admixture.

The proteins listed above are preferably used in amounts of 1-20,000 parts by weight per part by weight of G-CSF.

Typical examples of the high-molecular weigh compound to be used in making the stable G-CSF containing pharmaceutical preparation of the present invention include: natural polymers such 55 as hydroxypropyl cellulose, hydroxymethyl cellulose, sodium carboxymethyl cellulose, and hydroxvethyl cellulose; and synthetic polymers such as polyethylene glycol (mol. wt. = 300-6,000), polyvinyl alcohol (mol. wt. = 20,000-100,000), and polyvinylpyrrolidone (mol. wt. = 20,000-100,000). Needless to say, these high-molecular weight compounds may be used either alone or in combination.

The high-molecular weight compounds listed above are desirably used in amounts of 1-20,000 parts by weight per part by weight of G-CSF.

In addition to the surfactant, saccharide, protein or high-molecular weight compound described above, at least one member selected from the group consisting of an amino acid, a sulfureous reducing agent and an antioxidant may also be incorporated in making the G-CSF containing 65 pharmaceutical preparation of the present invention. Illustrative amino acids include glycine,

threonine, tryptophan, lysine, hydroxylysine, histidine, arginlne, cysteine, cystine, and methionine. Illustrative sulfureous reducing agents include: N-acetylcysteine, N-acetylhomocysteine, thioctic acid, thiodiglycol, thioethanolamine, thioglycerol, thiosorbitol, thioglycolic acid and salts thereof, sodium thiosulfate, sodium hydrogensulfite, sodium pyrosulfite, sodium sulfite, thiolactic acid, dithiothreitol, glutathione, and a mild sulfureous reducing agent having a sulfhydryl group such as 5 a C₁—C₇ thioalkanoic acid. Illustrative anti-oxidants include erythorbic acid, dibutylhydroxytoluene, butylhydroxyanisole, dl-α-tocopherol, tocopherol acetate, L-ascorbic acid and salts thereof, Lascorbic acid palmitate, L-ascorbic acid stearate, triamyl gallate, propyl gallate and chelating agents such as disodium ethylenediaminetetraacetate (EDTA), sodium pyrophosphate and sodium 10 10 metáphosphate. The above-listed amino acids, sulfureous reducing agents and antioxidants or mixtures thereof are preferably used in amounts of 1-10,000 parts by weight per part by weight of G-CSF. For the purpose of formulating the stable G-CSF containing preparation of the present invention in a suitable dosage form, one or more the following agents may be incorporated: a diluent, 15 a solubilizing aid, an isotonic agent, an excipient, a pH modifier, a soothing agent, and a buffer. 15 The stabilized G-CSF pharmaceutical preparation of the present invention may be formulated either for oral administration or for parenteral administration such as by injection applied in various ways, and a variety of dosage forms may be employed depending upon the specific mode of administration. Typical dosage forms include: those intended for oral administration 20 such as tablets, pills, capsules, granules and suspensions; solutions, suspensions and freeze-20 dried preparations principally intended for intravenous injection, intramuscular injection, subcutaneous injection and intracutaneous injection; and those intended for transmucosal administration such as rectal suppositories, nasal drugs, and vaginal suppositories. According to the present invention, at least one substance selected from the group consisting 25 of a surfactant, a saccharide, a protein or a high-molecular weight compound is added to a G-25 CSF containing pharmaceutical preparation so that it is prevented from being adsorbed on the wall of its container or a syringe while at the same time, it remains stable over a prolonged period of time. The detailed mechanism by which the substances mentioned above stabilized G-CSF or prevent 30 it from being adsorbed is yet to be clarified. In the presence of a surfactant, the surface of G-30 CSF which is a hydrophobic protein would be covered with the surfactant to become solubilized so that the G-CSF present in a trace amount is effectively prevented from being adsorbed on the wall of its container or a syringe. A saccharide or hydrophilic high-molecular weight compound would form a hydrated layer between G-CSF and the adsorptive surface of the wall of its 35 container or a syringe, thereby preventing adsorption of G-CSF in an effective manner. A protein 35 would compete with G-CSF for adsorption on the wall of its container or a syringe, thereby effectively inhibiting adsorption of G-CSF. Besides the prevention of G-CSF adsorption, the substances mentioned above would also contribute to the prevention of association or polymerization of the molecules of G-CSF. In the 40 presence of a surfactant, saccharide, protein or high-molecular weight compound, the individual 40 molecules of G-CSF are dispersed in these substances and the interaction between the G-CSF molecules is sufficiently reduced to cause a significant decrease in the probability of their association or polymerization. In addition, these substances would retard the autoxidation of G-CSF that is accelerated under high temperature or humidity or prevent G-CSF from being associ-45 ated or polymerized as a result of its autoxidation. These effects of retarding autoxidation of G-45 CSF or preventing it from being associated or polymerized would be further enhanced by addition of an amino acid, a sulfureous reducing agent or an antioxidant. The problems described above are particularly noticeable in solutions for injection and in suspensions but they also occur during the process of formulating G-CSF in other dosage forms 50 such as tablets. The addition of surfactants, saccharides, proteins or high-molecular weight 50 compounds is also effective in this latter case. Through the addition of at least one substance selected from the group consisting of a surfactant, saccharide, protein and a high-molecular weight compound, G-CSF is highly stabilized and maintains its activity for a prolonged period of time, as will be demonstrated in the 55 examples that follow. To attain these results, the amount of each of these substances, in 55 particular its lower limit, is critical and the following ranges are desirable: 1-10,000 parts by weight of surfactant, 1-10,000 parts by weight of saccharide, 1-20,000 parts by weight of protein, and 1-20,000 parts by weight of high-molecular weight compound, per 1 part by weight of G-CSF. According to the present invention, a surfactant, a saccharide, a protein and/or a high-60 molecular weight compound is used in a specified concentration and this is effective not only in preventing G-CSF from being adsorbed on the wall of its container or a syringe but also in enhancing the stability of a G-CSF containing pharmaceutical preparation. As a result, it becomes

possible to ensure the administration of a small but highly precise dose of G-CSF to patients; 65 since G-CSF is costly, its efficient utilization will lead to lower costs for the production of G-CSF

5		·			GB 2 193 631A	5
5	The following extion but are in nowas determined by (a) Soft agar me A horse serum (marrow cell suspeculture solution coculture (35 mm²), humidity. The numcells) and the activ	sense to be taken as y one of the following athod using mouse bon (0.4 m) , 0.1 m of the ension $(0.5 - 1 \times 10^5 \text{ entaining } 0.75\%$ of aga coagulated, and culture aber of colonies formed with was determined with coors of the colonies formed with the the colo	limiting. In these of methods. The marrow cells: a sample, 0.1 ml of nuclear cells), and ar were mixed, pour ded for 5 days at 3 d was counted (or with one unit being	of a C3H I 0.4 ml ured into 17°C in ! ne colon the acti	illustrating the present inven- s, the residual activity of G-CSF //He (female) mouse bone of a modified McCoy's 5A of a plastic dish for tissue 5% CO ₂ /95% air and at 100% y consisting of at least 50 vity for forming one colony.	5
	Twelve grams o medium (Nissui Se penicillin G were o	iyaku Co., Ltd.), 2.18	solution (Gibco), 2 g of sodium bicar ml of distilled wa	2.55 g d bonate a	of MEM amino acid-vitamin and 50,000 units of potassium the solution was aseptically	15
20	Using a reverse- cetic acid mixture	high-performance liquid phase C8 column (4.6 as a mobile phase, the) was determined under	$6 \text{ mm} \times 300 \text{ mm};$ e residual activity	5 μm) : of G-CS	and an n-propanol/trifluoroa- F (injected in an amount conditions:	25
	Time (sec)	Solvent (A)	Solvent (B	क्र द	radient	
30	0 15	0 <i>\$</i> 100 <i>\$</i>	0% 100%	}	linear	30
	25	100%	0%	}	linear	
35	Solvent (B): 60% Detection was of	n-propanol and 0.1% to n-propanol and 0.1% to conducted at a waveler calculated by the follow	trifluoroacetic acid ngth of 210 nm ar		percentage of the residual G-	35
40	Residual G-C activity (%)	CSF after th	sidual amoun ne lapse of nitial amoun	a qiv	en time	40
45	The residual am result attained in I	ount of G-CSF as dete measurement by the se	ermined by this me oft agar method (a	ethod co a) using	orrelated very well with the mouse bone marrow cells.	45
50 55	was aseptically di 7.4) to make a ph freezer-dried. The results are shown of G-CSF relative	ssolved in a 20 mM b narmaceutical preparation time-dependent chang	ouffer solution (conton containing 5 μ go in G-CSF activity (%)" in 1	itaining g of G-C y was n the table	1 was added and the mixture 100 mM sodium chloride; pH SF per ml, which was then neasured by method (a) and the represents the residual activity formula:	50 55
	Activity (%)	activit) = <u>the lapse</u> initial	ty unit afte of a given activity un		× 100	
60		vas conducted by the f			•	60

Freeze-drying was conducted by the following procedures:

The G-CSF solution containing a stabilizing agent was put into a sterile sulfa-treated glass vial, frozen at -40°C or below for 4 hours, subjected to primary drying by heating from -40°C to 0°C over a period of 48 hours with the pressure increased from 0.03 to 0.1 torr, then to secondary during by heating from 0°C to 20°C for a period of 12 hours with the pressure

increased from 0.03 to 0.08 torr; thereafter, the interior of the vial was filled with a sterile dry nitrogen gas to attain an atmospheric pressure and the vial was plugged with a freeze-drying rubber stopper, then sealed with an aluminum cap.

സമ	hl.	Δ.	1
10	UI.	_	1

		<u>Table 1</u>		,	
			Activi	ty (%)	
5	Stabilizing agent	Amount (parts by weight)	After storage at 4°C for 6 months	After storage at 37°C for 1 month	5
10	xylitol	10,000	92	86	10
	mannitol	10,000	91	85	
15	glucuronic acid	10,000	86	82	15
	hyaluronic acid	2,000	92	89	
20	dextran (m.w. 40,000)	2,000	95	90	20
	heparin	5,000	85	80	
0.5	chitosan	2,000	93	91	25
25	alginic acid	2,000	90	90	
	human serum albumin	1,000	98	99	
30	human serum globulin	1,000	98	95	30
	acid-treated gelatin	2,000	97	95	
35	alkali-treated gelatin	1,000	99	96	35
	collagen	2,000	95	90	
40	polyethylene glycol (m.w. 4,000)	10,000	94	90	40
	hydroxypropyl cellulose	1,000	98	94	
45	sodium carboxymethyl cellulose	1,000	88	80	45
	hydroxymethyl cellulose	5,000	92	90	
50	polyvinyl alcohol (m.w. 50,000)	2,000	96	95	50
55	polyvinylpyrrolidone (m.w. 50,000)	2,000	95	94	55
60	human serum albumin mannitol cysteine	2,000 2,000 100	100	97	60

Table 1 (cont'd)

			Activi	ty (%)	
5	Stabilizing agent	Amount (parts by weight)	After storage at 4°C for 6 months	After storage at 37°C for 1 month	5 10
10	human serum albumin	2,000			10
15	polyoxyethylene sorbitan monolaurate	100	99	96	15
	mannitol	2,000			
20	human serum albumin hydroxypropyl cellulose dextran (m.w. 40,000)	2,000 500 2,000	98	92	20
25	polyoxyethylene sorbitan monolaurate	100	98	96	25
30	polyoxyethylated hardened castor oil	100	94	92	30
	dextran (m.w. 40,000)	2,000			
35	not added	-	74	58	35

Example 2
40 To 10 μ g of G-CSF, one of the stabilizing agents listed in Table 2 was added and the mixture was aseptically dissolved in a 20 mM phosphate buffer solution (containing 100 mM sodium chloride; pH, 7.4) to make a pharmaceutical preparation containing 10 μ g of G-CSF per ml. The preparation was aseptically charged into a sulfa-treated glass vial and sealed to make a G-CSF solution. The time-dependent change in the activity of G-CSF in this solution was measured by the same method as used in Example 1 and the results are shown in Table 2.

40

		Table 2				
ſ			A	ctivity (ફ)	
5	Stabilizing agent	Amount (parts by weight)	After storage at 4°C for 7 days	After storage at 4°C for 2 months	After storage at RT for 1 month	10
,,	mannitol	5,000	91	87	82	
	hyaluronic acid	2,000	93	87	70	15
15	dextran (m.w. 40,000)	2,000	96	95	85	
	glycerin	10,000	. 90	90	88	
20	neuraminic acid	5,000	93	91	84	20
	chitin	2,000	95	92	86	
25	dextrin	2,000	90	92	87	25
	human serum albumin	1,000	99	95	92	·
30	human serum globulin	1,000	98	94	90	30
	acid-treated gelatin	2,000	97	96	87	
	alkali-treated gelatin	500	99	95	92	35
35	collagen	2,000	99	94	88	
40	polyethylene glycol (m.w. 4,000)	10,000	94	89 -	90	40
	hydroxypropyl cellulose	2,000	98	95	92	-
45	sodium carboxymethyl cellulose	2,000	92	91	80	45
	hydroxyethyl cellulose	4,000	92	94	90	_
50	polyvinyl alcohol (m.w. 50,000)	4,000	97	93	90	50
	polyvinylpyrrolidone (m.w. 50,000)	4,000	95	95	92	55
55	sorbitan monolaurate	400	97	96	95	, ,
60	polyoxyethylene sorbitan monolaurate	400	100	96	94	60

Table 2 (co	nt	'a)	
-------------	----	-----	--

	Yor	TE A (CO.	iic u,			
ſ			A	ctivity (%) .	
10	Stabilizing agent	Amount (parts by weight)	After storage at 4°C for 7 days	After storage at 4°C for 2 months	After storage at RT for 1 month	5
	polyoxyethylene sorbitan monostearate	400	98	97	94	
15	polyoxyethylene polyoxypropylene glycol ether	400	100	94	93	15
20	polyoxyethylated hardened castor oil	400	99	98	90	20
	sodium lauryl sulfate	2,000	97	93	87	
25	lecithin	2,000	97	94	90	25
30	human serum albumin mannitol cysteine	2,000 2,000 100	100	99	97	30
	human serum albumin	2,000	·			
35	polyoxyethylene sorbitan monolaurate	100	99	97	95	35
	mannitol	2,000				1
40	human serum albumin hydroxypropyl cellulose dextran (m.w. 40,000)	1,000 500 2,000	99	97	95	40
45	polyoxyethylene sorbitan monopalmitate	100	96	96	93	45
50	sorbitol	2,000				50
-	polyoxyethylated hardened castor oil	100	95	92	92	
55	dextran (m.w. 40,000)	2,000	ļ	ļ		55
	not added	<u> </u>	72	61	47	

Example 3

To 10 μg of G-CSF, one of the stabilizing agents listed in Table 3 was added and the mixture was aseptically dissolved in a 20 mM phosphate buffer solution (containing 100 mM sodium chloride; pH, 7.4) to make a pharmaceutical preparation containing 10 μg of G-CSF per ml. One milliliter of the preparation was charged into a sulfa-treated silicone-coated glass vial and left at 4°C. The effectiveness of each stabilizing agent in preventing G-CSF adsorption was evaluated by measuring the residual activity of G-CSF in the solution after 0.5, 2 and 24 hours. The measurement was conducted by method (b) using reverse-phase high-performance liquid chromatography. The results are shown in Table 3.

ş

The same	h1	•	2
Įα	UJ.	⊂	

		Table 3					
{		Amount	Resid	ual act	ivity	(%)	
5	Stabilizing agent	(parts by weight)	initial	0.5 h	2 h	24 h	. 5
ļ	monnitol	5,000.	100	93	90	91	
10	hyaluronic acid	2,000	100	97	92	92	. 10
	dextran (m.w. 40,000)	2,000	100	98	95	96	
15	glycerin	10,000	100	94	91	90	15
	heparin	2,000	100	92	90	90	
20	glucuronic acid	5,000	100	96	90	. 91	20
	ketoglycolic acid	5,000	·100	92	88	90	
0.5	human serum albumin	1,000	100	100	101	99	25
25	human serum globulin	1,000	100	98	100	98	25
,	alkali-treated gelatin	500	100	99	98	99	i
30	acid-treated gelatin	2,000	100	99	97	97	30
	collagen	2,000	100	100	98	99	
35	polyethylene glycol (m.w. 4,000)	10,000	100	100	100	99	35
	hydroxypropyl cellulose	2,000	100	100	100	.99	
40	sodium carboxymethyl cellulose	2,000	100	98	96	95	40
	hydroxyethyl cellulose	4,000	100	96	93	92	
45	polyvinyl alcohol (m.w. 50,000)	4,000	100	99	100	98	45
50	polyvinylpyrrolidone (m.w. 50,000)	4,000	100	98	98	96	50
	sorbitan monocaprylate	400	100	100	100	98	
55	polyoxyethylene sorbitan monostearate	400	100	100	98	100	55
60	polyoxyethylated hardened castor oil	400	100	99	101	99	60

Table 3 (cont'd)

		310 3 (00					
		Amount	Resid	ual act	ivity	(%)	
5	Stabilizing agent	(parts by weight)	initial	0.5 h	2 h	24 h	
	sodium lauryl sulfate	2,000	100	100	99	97	
)	lecithin	2,000	100	99	100	98	
5	human serum albumin mannitol cysteine	2,000 2,000 100	100	100	100	101	
,	human serum albumin polyoxyethylene sorbitan monolaurate	2,000 100	100	100	98	99	
	mannitol	2,000					
	human serum albumin hydroxypropyl cellulose dextran (m.w. 40,000)	1,000 500 2,000	100	101	99	100	
	polyoxyethylene sorbitan monolaurate sorbitol	100 2,000	100	100	99	99	
•	polyoxyethylated hardened castor oil	100	100	100	98	97	
	dextran (m.w. 40,000)	2,000	100	91	72	73	1

.

CLAIMS

1. A stable granulocyte colony stimulating factor containing pharmaceutical preparation that contains, in addition to the granulocyte colony stimulating factor present as the effective ingredient, at least one substance selected from the group consisting of a pharmaceutically acceptable surfactant, saccharide, protein and high-molecular weight compound.

2. A stable granulocyte colony stimulating factor containing pharmaceutical preparation according to Claim 1 which contains the surfactant in an amount of 1—10,000 parts by weight per

part by weight of the granulocyte colony stimulating factor.

3. A stable granulocyte colony stimulating factor containing pharmaceutical preparation according to Claim 1 or 2 wherein said surfactant is at least one member selected from the group consisting of a nonionic surfactant, an anionic surfactant and a natural surfactant, the nonionic surfactant being a sorbitan aliphatic acid ester, a glycerin aliphatic acid ester, a polyglycerin aliphatic acid ester, a polyoxyethylene sorbitan aliphatic acid ester, a polyoxyethylene sorbitol aliphatic acid ester, a polyoxyethylene glycerin aliphatic acid ester, a polyoxyethylene alkyl ether, a polyoxyethylene polyoxypropylene alkyl ether, a polyoxyethylene alkyl ether, a polyoxyethylene lanolin derivative, or a polyoxyethylene aliphatic acid amide, the anionic surfactant being an alkyl sulfate salt, a polyoxyethylene alkyl ether sulfate salt, or an alkyl sulfosuccinate ester salt, and the natural surfactant being lecithin, glycerophospholipid.

20 sphingophospholipid, or a sucrose aliphatic acid ester.
4. A stable granulocyte colony stimulating factor containing pharmaceutical preparation according to Claim 1 which contains the saccharide in an amount of 1—10,000 parts by weight per

part by weight of the granulocyte colony stimulating factor.

5. A stable granulocyte colony stimulating factor containing pharmaceutical preparation according to Claim 1 or 4 wherein said saccharide is at least one member selected from the group consisting of glycerin, erythritol, arabitol, xylitol, sorbitol, mannitol, glucuronic acid, iduronic acid, galacturonic acid, neuraminic acid, glyconic acid, mannuronic acid, ketoglycolic acid, ketogalactonic acid, ketogulonic acid, hyaluronic acid and salts thereof, chondroitin sulfate and salts thereof, heparin, inulin, chitin and derivatives thereof, chitosan and derivatives thereof, dextrin, dextran with an average molecular weight of 5,000 -150,000, and alginic acid and salts thereof.

6. A stable granulocyte colony stimulating factor containing pharmaceutical preparation according to Claim 1 which contains the protein in an amount of 1—20,000 parts by weight per part

by weight of the granulocyte colony stimulating factor.

7. A stable granulocyte colony stimulating factor containing pharmaceutical preparation accord-35 ing to Claim 1 or 6 wherein said protein is at least one member selected from the group consisting of human serum albumin, human serum globulin, gelatin, acid- or alkali-treated gelatin with an average molecular weight of 7,000—100,000, and collagen.

8. A stable granulocyte colony stimulating factor containing pharmaceutical preparation according to Claim 1 which contains the high-molecular weight compound in an amount of 1—20,000

40 parts by weight per part by weight of the granulocyte colony stimulating factor.

9. A stable granulocyte colony stimulating factor containing pharmaceutical preparation according to Claim 1 or 8 wherein said high-molecular weight compound is at least one member selected from the group consisting of hydroxypropyl cellulose, hydroxymethyl cellulose, sodium carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol with a molecular weight of 300—6,000, polyvinyl alcohol with a molecular weight of 20,000—100,000, and polyvinylpyrrolidone with a molecular weight of 20,000—100,000.

10. A process for producing a stable granulocyte colony stimulating factor containing pharmaceutical preparation that contains, in addition to the granulocyte colony stimulating factor present as the effective ingredient, at least one substance selected from the group consisting of a pharmaceutically acceptable surfactant, saccharide, protein and high-molecular weight compound.

11. A stable granulocyte colony stimulating factor containing pharmaceutical preparation substantially as hereinbefore described, with reference to Example 1, 2 or 3.

12. A process for producing a stable granulocyte colony stimulating factor containing pharmaceutical preparation substantially as hereinbefore described, with reference to Example 1, 2 or 3.

10

5

15

20

25

30

35

40

45

50

ou