CMPUT 428: 3D Modeling

Roderick Lan

Contents

1	Eye	2
2	Retina	2
3	Photoreceptors	2
4	How the eye works	2
5	Interneurons and Ganglion cells	2
6	Visual system adjusts itself	2
7	Color opponent ganglion cells	3
8	LGN	3
9	Simple Cells in V1	3
10	Receptive field	3
11	Dorsal + Ventral	3
12	Boundary effect	3
13	Attention	3

Final Lecture

Goal of computer vision

1 Eye

6 muscles that adjust

2 Retina

Light only detected at back of retina Photons refract before it reaches back of retina, eyes need to recalibrate how it processes signals

3 Photoreceptors

```
Rods - night vision; no color
125 mill, none in fovea
20 rods : 1 cone
Cones - color sensitive; poor light sens
6.4 mill, peak density in fovea
```

4 How the eye works

```
large molecules, need large geometric changes to activate cis retinal - low energy trans retinal - slightly higher energy  \begin{array}{c} \text{cis retinal } \xrightarrow{\text{energy from incoming light photon}} \text{trans retinal} \end{array}
```

5 Interneurons and Ganglion cells

6 Visual system adjusts itself

```
Adjusts both in time and space.

Adjusts for:

light sensitivity / gain

neural fatigue

adjustient of priors (opposite dir.)

error correction
```

7 Color opponent ganglion cells

8 LGN

high motion and fast things switchboard b/w retina and visual cortex

9 Simple Cells in V1

Direction sensitive "line finders"

10 Receptive field

11 Dorsal + Ventral

Dorsal - spatial vision Ventral - object recognition

12 Boundary effect

13 Attention