Floating Point Numbers

Explain how floating point numbers are represented in a computer in terms of the sign, mantissa and exponent. Find the binary representation of the number 123. Find the exact binary representation of the number 5/9. Use the round-to-nearest rule to determine the double precision floating point representation of the number 5/9.

Programming Skills

Understand the basic control structures of Matlab, such as if-else blocks and for loops. Know the various ways in which Matlab indexes matrices and vectors. Be able to define a Matlab function and read an existing function to understand its behavior.

Bisection Method

Write down the bisection method. Use the intermediate value theorem to prove that $f(x) = x^3 + x - 1$ has a root on the interval [0, 1]. Starting with this interval, how many iterations must you perform in order to approximate the root with 10 correct decimal places?

Fixed Point Iteration

Find at least three functions that you can iterate on to find a root of $f(x) = x^3 + x - 1$. Define local convergence. Under what conditions does a fixed-point iteration locally converge? Evaluate the convergence properties of the iterations that you have found previously. What are three possible stopping criteria?

Newton's Method

Write down Newton's method. What does it mean for an iterative method to converge quadratically? Prove that Newton's method exhibits local quadratic convergence to a simple root. What happens in the case of a multiple root?