

VGS > Vt ⇒ channel created.

VDS=OV ⇒ iD=OA.

c)
$$V_{s}=3v$$
, $V_{6}=5v$, $V_{0}=3.2v$

$$V_{6s} > V_{t} & V_{Ds} > 0 \Rightarrow Triode$$

$$\Rightarrow i_{D} = MnCox \underline{W} \left[\left(V_{6s} - V_{t} \right) V_{Ds} - \frac{V_{Ds}^{2}}{2} \right]$$

d)
$$V_S=3V$$
, $V_G=5V$, $V_D=4V$

e)
$$V_5 = 3V, V_6 = 5V, V_0 = 8V$$

3V, 5V 8V

Int 1 depletion region

3/10

$$V_t = 1V$$

 $k_p = 4mA/V^2$
 $N = 0$.

ohearbt=0

Both transistors are in saturation:

$$V_{0V_2} = V_{5G_2} - V_t = V_1 - V_2 - 1$$

$$\Rightarrow (\text{Vov})^2 = 1$$

$$\Rightarrow$$
 $V_{oV} = \pm 1$

| Vov | = Vsg-Vt has to be the.

$$\Rightarrow 4-V_1=1 \Rightarrow V_1=3V_1$$

$$\Rightarrow V_{0V_2} = 3 - V_2 - 1 = 2 - V_2$$
.

⇒ equal deop across Q, 2 Q2 which makes Sense because they have same Ip and hence lance Vov. > same Vos > same Vos!

Vt = -0.5V => |V+|=0.5V Mp Cox = 100 MA/V2 L=0.18mm. W=?

transistor is in saturation =) $I_D = \frac{1}{2} \mu \rho Cox \frac{W}{U} \left(V_{SG} - V_{t} \right)^{2}$ $\Rightarrow 180 \mu = \frac{1}{2} \times 100 \mu \times \frac{W}{0.18 \mu} \left(1.8 - 1 - 0.5 \right)^{2}$ $\Rightarrow 180 = \frac{1}{2} \times 100 \times \frac{W}{0.18 \mu} \left(0.3 \right)^{2}$

5/10

allempt=0

IL = 36 MA.

Mn Cox = 0.4 mA/V2.

Since both transistors are matched and $V_{GS_1} = V_{GS_2} \Rightarrow I_{sef} = I_L$.

②
$$V_{DS,=0.8V} \Rightarrow V_{D=0.8V} \Rightarrow R = 2 - 0.8 = 33.3 k \Omega$$

Rhoad max => Qz operates at verge of sat & triode => VDS2 = VGS2 - Vt.

$$= 0.3V$$

3)
$$\Rightarrow$$
 Road (max) = $\frac{2-0.3}{36\mu} = 47.2 \text{ k}\Omega$

Vt=1V kn=4mA/V2. VA=100V

DC Analysie:

3

$$\frac{15V}{4}$$

$$\frac{15V}{4}$$

$$\frac{1}{5}$$

assume saturation operation 'cos its an amplifies:

⇒
$$Vov = \pm 0.5V$$
 for NMOS $Vov > 0V$ for it to conduct
⇒ $Vov = + 0.5V$

$$V_G = \frac{6}{5+10} \times 15 = 5V \cdot \checkmark$$

$$= 5 - 1.5 = 3.5$$

$$\Rightarrow Rs = 3.5 - 0 = 7k\Omega$$

small signal AC analysis ->.

$$Av = \frac{V_{out}}{V_{in}}$$
 and $r_{o} = \frac{V_{A}}{I_{D}} = 200 k \Omega$

$$V_{out} = -9 m V_{gs} \cdot (r_{o} || R_{D} || R_{L}) \cdot V$$

$$R_{D} = ?$$

Gr =
$$\frac{\text{Vout}}{\text{Vsig}}$$
 = $\frac{\text{Vout} \cdot \text{v}}{\text{Vin}}$ $\frac{\text{Vin}}{\text{Vsig}}$
 $\text{Vin} = \text{Vgr} = \frac{3.33 \text{M}}{3.33 \text{M} + 0.2 \text{M}}$
= 0.94

$$\Rightarrow G_V = -15 \times 0.94$$
 = 14.1 V_V

where gn= 2To = 2mA/V.

assumed saturation

$$V_{DS} = V_D - V_S$$
.

$$=\frac{3.9V}{(3.9V > 0.5V)}$$

> VDS is greater than Vov, hence valid assumption.

To find the resistor values, we need the De bids current, ID.

$$g_m = \frac{2I_0}{V_{0V}}$$

$$\Rightarrow 2 MA/\sqrt{\frac{2 \times I_0}{0.4 \times 10^{-10}}}$$

Now perform DC analysis to find the value of RD.

DC Analysie:

$$R_{G}$$
 S_{G}
 S_{G

$$V_S = I_D R_S - 5 = (0.4 \text{m})(10 \text{k}) - 5 = -1 \text{V}$$

$$R_{D} = \frac{5 - 0.2}{0.4m} = 12k\Omega \Rightarrow R_{D} \leq 12k\Omega$$

if RD712KD → VD ∠0.2V and the output swing would reduce from 0.8V.