

Problem Statement & Challenges

Problem Statement:

We want to use the taxi data we acquired to generate driving speed of different road segments at different time of a day at in Manhattan.

Challenges:

- 1. Generate estimated routes from GPS positions.
- 2. Set up acceptance criteria
- 3. Process large amount of data
- 4. Data visulization

Approach

Taxi Data

1	А	В	С	D	Е	F	G	Н	1	J	K	L	M	N
1	medallion	hack_lice	vendor	rate	store_	pickup_datetime	dropoff_datetim	passeng	trip_time	trip_distance	pickup_longitude	pickup_latitude	dropoff_longit	dropoff_la
2	7989C2AB	65F4F6E9E	VTS	1		1/6/2012 21:51	1/6/2012 21:55	5	240	0.77	-73.980003	40.780548	-73.974693	40.79012
3	42F3B79B8	08644C2B2	VTS	1		1/5/2012 22:37	1/5/2012 23:08	1	1860	16.23	-73.969505	40.753155	-73.902054	40.66234
4	9DF23399F	D05DEF3D	VTS	1		1/6/2012 21:53	1/6/2012 21:59	1	360	1.08	-73.969681	40.785549	-73.954247	40.77895
5	2636E8237	C202CE0A	VTS	1		1/6/2012 21:57	1/6/2012 21:59	1	120	0.41	0	0	0	0
6	ECB759140	FA61D921	VTS	1		1/5/2012 22:45	1/5/2012 23:02	2	1020	6.03	-74.00531	40.726933	-73.971939	40.79643
7	8A5D3960	F9D825C7	VTS	1		1/9/2012 18:24	1/9/2012 18:32	1	480	1.01	-73.983536	40.750446	-73.999298	40.75384
8	3056502BE	2E96D0D5	VTS	1		1/10/2012 13:18	1/10/2012 13:39	5	1260	3.44	-73.957214	40.780415	-73.992821	40.75218
9	5CA47E9F	9C016289[VTS	1		1/6/2012 21:29	1/6/2012 21:55	5	1560	9.89	-73.966003	40.76516	-73.99881	40.66299
10	AC77B897	3F26175C2	VTS	1		1/5/2012 22:52	1/5/2012 23:00	1	480	2.34	-73.975105	40.760731	-73.949615	40.77528
11	311388FEE	D80AAE46	VTS	1		1/5/2012 22:54	1/5/2012 23:03	1	540	2.09	-74.004509	40.724358	-73.984909	40.74147
12	A5B75D2E	2B393B920	VTS	1		1/5/2012 22:49	1/5/2012 23:03	1	840	4.25	-73.976013	40.744919	-73.963982	40.79223
13	503547D2F	9D1B49F1	VTS	1		1/5/2012 22:46	1/5/2012 23:00	1	840	4.85	-74.007553	40.705742	-73.980049	40.74812

Contains: (accuracy)

F: pickup date and time

G: drop-off date and time

H: number of passengers

I: trip time (10 seconds)

J: trip distance (0.01 mile)

K: pickup longitude (0.000001 deg)

L: pickup latitude (0.000001 deg)

M: pickup longitude (0.000001 deg)

N: pickup latitude (0.000001 deg)

Road GIS Data

- Find road gis data. (.shp)
 Source: OpenStreetMap http://download.geofabrik.de/north-america.html
- 2. Use QGIS to select Manhattan as the "area of interest".
- 3. Export road layer to ".bna" and ".csv" format file.
- 4. use ".bna" and ".csv" to generate "edges" and "vertices" which enable us to use shortest path algorithm to find the estimated route.

Road GIS Data

.csv file

osm_id	name	ref	type	oneway	bridge	tunnel	maxspeed
4820562			footway	0	0	0	
5668966	West 106t	h Street	secondary	0	0	0	
5668968	West 80th	Street	residentia	1	0	0	
5668973			tertiary_li	1	0	0	
5668977	West 84th	Street	residentia	1	0	0	
5668983	Szold Plac	e	residentia	1	0	0	
5668986	La Salle St	reet	residentia	0	0	0	
5668989	West 9th	Street	unclassifie	1	0	0	
5668993			service	0	0	0	

.csv file contains information of road id, road name, type of road, whether is oneway, bridge, tunnel and max speed

Shortest Path Algorithm

Dijkstra's algorithm:

The algorithm is to find the path with lowest cost between vertices. In our problems, vertices are intersections. Edges are road segments that connect two vertices.

Resources:

Dijkstra's shortest path algorithm

YouTube http://www.youtube.com/watch?v=87_1K2GQFdU

Matlab command:

http://www.mathworks.com/help/bioinfo/ref/graphshortestpath.html

Acceptance Criteria

Errors data come from three aspects:

- 1. Resolution of trip distance data which is of 0.01 mile.
- 2. Distance form pick up and drop-off point to the nearest intersections or vertices, because our algorithm can only search trip distances form vertex to vertex.
- 3. Others factors that we cannot control, such as drivers might not take the shortest path, or passengers want to drop off a friend along the way.

Acceptance criteria involves two aspects:

- 1.Absolution value should be within a bound which is the data resolution plus the length of pickup and drop-off road segments. This account for errors in the first and second category
- 2. Relative error less than 10% which account for the errors in the third category.

Driving Speed Model

The driving speed during rush hours and other times of a day can be very different. We divide time segments every half an hour.

We assume a taxi travels at a same speed during a trip. So we put the speed in "cell" which is assigned for this specific road segment and time. If the a trip is made during two time sections, we will put the speed in both time segment.

The average value of each "cell" represent the driving speed of a road segment and time segment.

Data Statistics

1 Distribution of the difference between estimated and real trip distance

2 Distribution of number of data in road segments.

Data Statistics

3 Distribution of standard deviation within each cells

4. Distribution of read segment driving speed

Time lapse

Red: Slow Traffic Green: Fast Traffic White: Do not have data

2:00-2:30 am

6:00-6:30 pm

9:00-9:30 am

10:00-10:30 pm