Reti Logiche

A.A. 2024/2025 - Prof. Roberto Passerone

Introduzione

Benvenuti al corso

Docenti

- Prof. Roberto Passerone
 - ▶ Tel: **0461 28-3971**
 - ► E-mail: roberto.passerone@unitn.it
 - Ufficio al secondo piano, lato valle,Povo 2
 - Ricevimento su appuntamento
- ▶ Ing. Massimo Gandola
 - ► E-mail: mgandola@fbk.eu

Benvenuti al corso

Reti logiche

- Secondo anno, laurea triennale in Ingegneria Informatica, delle Comunicazioni ed Elettronica
- Secondo anno, laurea triennale in Informatica
- ▶ 48 ore, 6 crediti

Orario

	Lunedi	Martedi	Mercoledi	Giovedi	Venerdi
8:30 – 9:30					
9:30 – 10:30					
10:30 - 11:30				B107	
11:30 – 12:30				B107	
12:30 – 13:30					
13:30 – 14:30					
14:30 – 15:30					
15:30 – 16:30			A101		9
16:30 – 17:30			A101		10 10
17:30 – 18:30					

Valutazione

Esame scritto

- Obbligatorio
- Domande di teoria e progetto di macchina a stati
- Valutato tra 0 e 30

Relazioni di laboratorio

pass, no pass

Esame orale

- Facoltativo, solo se ottenuto almeno 15 allo scritto
- Aumenta o diminuisce il voto dello scritto [-3, +3]

Provette

Non previste

Progetto

- Facoltativo, solo se sufficiente allo scritto
- Punteggio (fino a 4 punti) dipende da complessità del sistema e dalla numerosità del gruppo
- Implementazione su FPGA

Laboratorio e Progetto

Sviluppare un sistema digitale

- Gruppi da 2 persone, o più di 2 per progetti più complessi
- Specifica da discutere

La scheda include

 display, bottoni, interruttori, ingresso e uscite audio/video, ethernet, sensori (temperatura, accelerometro, mic.), etc.

Esempi di progetti passati

- Terminale
- Pong su VGA
- Termometro Internet
- MasterMind
- I giochini in generale si prestano bene

Risultato del progetto

- Sistema funzionante sulla scheda
- Relazione sul progetto
- Presentazione del progetto

Materiale e testi

Slide e dispense

Disponibili sul sito del corso su ESSE3

Circuiti combinatori e sequenziali

- Mano-Kime. Reti logiche. Quinta edizione, Pearson, Addison Wesley
- Mano-Kime. Logic and Computer Design Fundamentals. Pearson, Prentice Hall

VHDL, FPGA

- Volnei Pedroni. Circuit Design with VHDL. Third edition. The MIT Press
- Mark Zwolinski. VHDL Progetto di sistemi digitali. Pearson, Prentice Hall
- Clive Maxfield. The Design Warrior's Guide to FPGAs. Elsevier

Pre-requisiti

Nozioni di logica e programmazione

- Comprensione di logica matematica, operatori logici, dimostrazioni, etc.
- ▶ Un linguaggio di programmazione classico (tipo C, C++, Java)
- ► Familiarità con i sistemi di sviluppo (compilatori, sistemi integrati IDE, etc.)

Programma del corso

Reti Logiche

Struttura del corso

Mettere assieme porte logiche per fare cose utili

Struttura del corso

Sequenzializzare le operazioni, gestire la memoria

Struttura del corso

Circuiti sequenziali

Laboratorio

- Linguaggi ad alto livello
- VHDL
- Simulazione
- Sintesi e Implementazione
- Dispositivi FPGA

Descrivere il sistema, simulare, implementare

Perché digitale?

Segnale analogico

Segnale continuo

- Segnale proporzionale alla grandezza che si vuole rappresentare
- Semplice ed intuitivo
- Un segnale porta tutta l'informazione

Influenzato da rumore

- ▶ Il rumore si somma al segnale
- Altera dunque la rappresentazione
- Va mantenuto entro limiti accettabili

Segnale digitale

Segnale discreto

- Può assumere solo due livelli
- Definiamo una soglia a metà tra i due livelli
- ▶ Interpretazione: se sopra la soglia è alto, se sotto la soglia è basso
- Precisione limitata!

Non influenzato da rumore

- Se il rumore non provoca il sorpasso della soglia
- ▶ La distanza dalla soglia determina il margine di rumore sopportabile

Segnale digitale

- Un solo segnale insufficiente per rappresentare una grandezza continua
 - ▶ Permette di discriminare solo due livelli: 0 e 1
 - Quantizzazione troppo cruda
- Si usano allora più segnali per grandezza
 - ▶ Due segnali permettono di discriminare 4 livelli: 00, 01, 10, 11
 - ▶ In generale, n segnali discriminano 2ⁿ livelli
 - Grandezza rappresentata come numero binario

Segnale digitale

- Precisione controllata scegliendo il numero di segnali
 - Non dipende in generale dalle tolleranze dei componenti

Se con n segnali posso rappresentare $v = 2^n$ livelli allora per rappresentare v livelli ho bisogno di $n = \log_2(v)$ segnali

Il numero di segnali non cresce così in fretta!

Tecnologie di implementazione

Applicazioni

- Microprocessori & Microcontrollori
 - Work-horse del digitale
- **▶** GPUs
 - Parallelismo, high throughput
- Al
 - ▶ E.g., Autonomous driving, data analysis
- Server farms
 - Database, financial analysis, genomics
- Signal processing
 - Medical imaging, filtering, SDR, MIMO
- Security
 - Cryptography, currency mining

Take away

Vantaggi dei segnali digitali

- ▶ Il rumore, se contenuto, non produce variazioni sul segnale interpretato come cifra binaria
- ▶ Il numero di cifre stabilisce la precisione (controllabile)
- ▶ Le tolleranze, se contenute, non influiscono sul funzionamento
- ▶ Facilità di memorizzazione ed integrazione

Svantaggi dei segnali digitali

- Necessari più segnali per rappresentare grandezze continue
- Apparentemente i circuiti sono più grossi
- I trasduttori operano solitamente con segnali continui
 - Necessario effettuare trasformazioni dei segnali analogici in digitali, e viceversa (ADC e DAC)

Obiettivi del corso

Comprendere il funzionamento dei circuiti e delle reti logiche combinatorie e sequenziali

Saper gestire la complessità del progetto tramite decomposizione

Realizzare sistemi digitali in VHDL e verificarne il funzionamento tramite simulazione ed implementazione su schede FPGA