# Elektronik 2

# FS 24 Guido Keel (Michael Lehmann)

Autoren: Authors

Version: 1.0.20240428

https://github.com/P4ntomime/elektronik-2



# Inhaltsverzeichnis

| l                       | Feldeffekt-Transistoren                                  | 2 | 8 Lineare Spannungsregler                                     |  |  |
|-------------------------|----------------------------------------------------------|---|---------------------------------------------------------------|--|--|
|                         | 1.1 FET-Typen und Symbole                                | 2 | 8.1 Spannungsstabilisierung mit Z-Diode und BJT               |  |  |
|                         | 1.2 Sperrschicht-FET / Junction FET (JFET)               | 2 | 8.2 Linearer Spannungsregler                                  |  |  |
|                         | 1.3 MOS-FETs                                             | 2 | 8.3 Low-Dropout-Regler mit pnp-Längstransistor (LDO)          |  |  |
|                         | 1.4 Verstärkerschaltungen mit FETs                       | 2 | 8.4 Einstellbarer Serie-Spannungsregler                       |  |  |
|                         | 1.5 MOS-FET als (Leistungs-)Schalter                     | 2 | 9 Spannungswandler mit Ladungspumpen                          |  |  |
|                         | 1.6 Transmission Gate                                    | 2 | 9.1 Grundprinzip Switched-Capacitor-Schaltungen (SC)          |  |  |
|                         |                                                          |   | 9.2 Grundprinzip Ladungspumpen                                |  |  |
| 2                       | Transistor-Transistor-Logik                              | 2 | 9.3 Allgemeine Funktionsweise geschaltete Kapazitäten         |  |  |
|                         | 2.1 Resistor Transistor Logik (RTL)                      | 2 | 9.4 Spannungsinversion mit Switched Capacitors                |  |  |
|                         | 2.2 Dioden-Transistor-Logik (DTL)                        | 3 | 9.5 Spanungsverdoppler mit Switched Capacitors                |  |  |
|                         | 2.3 Transistor-Transistor-Logik (TTL)                    | 3 | 9.6 Dickson Charge Pump (Spannungsvervielfacher)              |  |  |
|                         |                                                          |   | 10 Schaltregler                                               |  |  |
| 3                       | CMOS-Logik                                               | 3 | 10.1 Spannungswandler mit Spulen                              |  |  |
|                         | 3.1 Grundgatter in CMOS-Logik                            | 3 | 10.2 Energien in den Komponenten                              |  |  |
|                         | 3.2 Dualität NMOS - PMOS                                 | 3 | 10.3 Aufwärtswandler (Boost, Step-Up Converter)               |  |  |
|                         | 3.3 Verlustleistung bei CMOS-Logik                       | 3 | 10.4 Aufwärtswandler: Lückender Betrieb                       |  |  |
|                         | 3.4 Verzögerungszeit                                     | 3 | 10.5 Abwärtswandler (Buck, Step-Down Converter)               |  |  |
|                         |                                                          |   | 10.6 Invertierender Wandler (Buck-Boost Converter)            |  |  |
| ı                       | Schmitt-Trigger                                          | 3 | 10.7 Flyback (Sperrwandler)                                   |  |  |
|                         | 4.1 Aufbau nichtinvertierender digitaler Schmitt-Trigger | 3 | 10.8 Power Fail Control (PFC)                                 |  |  |
|                         | 4.2 Aufbau invertierender digitaler Schmitt-Trigger      | 3 | 10.9 Aufbau Modernes Netzteil                                 |  |  |
|                         | 4.3 Schmitt-Trigger vs. CMOS-Logik                       | 3 | 10.10Fazit Spannungswandler SMPS                              |  |  |
| 5 Signalübertragung 3   |                                                          | 3 | 11 Analoge Filter                                             |  |  |
| ,                       | 5.1 Leitungstheorie                                      | 3 | 11.1 Tiefpassfilter 1. Ordnung                                |  |  |
|                         | 5.2 Einfluss / Relevanz von Refelxionen                  | 3 | 11.2 Bodeplot Tiefpassfilter 1. und 2. Ordnung                |  |  |
|                         | 5.2 Emiluss / Relevanz von Releixionen                   | 3 | 11.3 Filter 2. Ordnung                                        |  |  |
|                         | High-Speed-Logik                                         | 3 | 11.4 Filter höherer Ordnung                                   |  |  |
| ,                       | 6.1 Emitter Coupled Logic (ECL)                          | 3 | 11.5 Zeitverhalten: Schrittantwort                            |  |  |
|                         | 6.2 Current Mode Logic (CML)                             | 4 | 11.6 Schrittantworten verschiedener Polgüten                  |  |  |
|                         | 0.2 Current Mode Logic (CML)                             | 4 | 11.7 Filter 2. Ordnung                                        |  |  |
| 7 Spannungsreferenzen 4 |                                                          |   | 11.9 Multiple-Feedback-Struktur                               |  |  |
|                         | 7.1 Spanungsteiler                                       | 4 | 11.10Sallen-Key vs. Multiple-Feedback Struktur                |  |  |
|                         | 7.2 Diodenreferenz                                       | 4 | 11.11 Vorgehen: UTF aus OPV-Filterschaltung ermitteln         |  |  |
|                         | 7.3 Spannungsreferenz mit mehreren Dioden                | 4 | 11.12Zustandsvariablen-Filter (Biquad-Filter)                 |  |  |
|                         | 7.4 Spannungsreferenz mit Zenerdioden (Shunt-Regler)     | 4 | 11.13 Analyse von Filterschaltungen mit Signalflussdiagrammen |  |  |
|                         | 7.5 Bootstrap-Referenz (VD Stromquelle)                  | 4 | 11.14Regel von Mason (vereinfacht)                            |  |  |
|                         | 7.6 Proportional To Absolute Temperature (PTAT)          | 4 | 12 Anhone                                                     |  |  |
|                         | 7.7 Bandgap-Spannungsreferenz                            | 4 | 12 Anhang 12.1 Temperaturabhängigkeit von Widerständen        |  |  |
|                         | 7.7 Danugap-Spannungsicicitiz                            | 4 | 12.1 Temperaturabilangigken von widerstanden                  |  |  |

# 1 Feldeffekt-Transistoren

### 1.1 FET-Typen und Symbole



### 1.1.1 Anschlüsse eines FET

Kanal von Drain zu Source (Stromfluss), gesteuert von Gate (und Bulk)

### 1.2 Sperrschicht-FET / Junction FET (JFET)

### 1.2.1 Kennlinien



### Ausgangskennlinien



### 1.2.2 Linearer Bereich (gesteuerter Widerstand)



- Für kleinen Spannung-Unterschied  ${\cal V}_{DS}$
- $V_{GS}$  ändert Dicke der Raumladungszone (Kanal)
- n-Kanal JFET: Je negativer  $V_{GS}$ , desto weniger Strom fliesst bzw. desto enger der Kanal

$$I_{D} = \frac{2 \cdot I_{DSS}}{V_{p}^{2}} \left( V_{GS} - V_{p} - \frac{V_{DS}}{2} \right) V_{DS}$$

# 1.2.3 Sättigungs-Bereich (Stromquelle)



- Für hohes  $V_{DS}$  wird leitender Kanal abgeschürt
- → Strom kann nicht weiter steigen (Stromquelle)
- Übergang gest. Widerstand zu Stromquelle @  ${\cal V}_{DSP}$

$$\Rightarrow V_{DSP} = V_{GS} - V_p \ (V_p = \text{Pinch-Off-Spannung})$$

$$I_D = \frac{I_{DSS}}{V_p^2} \cdot (V_{GS} - V_p)^2$$

Verstärkungsmass Transkonduktanz:

$$g_m = \frac{2 \cdot I_{DSS}}{V_p^2} \cdot (V_{GS} - V_p) = \frac{2}{|V_p|} \cdot \sqrt{I_{DSS} \cdot I_D} \qquad [g_m] = S$$

### 1.3 MOS-FETs

# 1.3.1 Aufbau



- L Länge des Transistors
- W Breite des Transistors
- · N-Kanal FET: Drain und Source sind n-dotiert
- · Kanal ist p-dotiert

# 1.3.2 Kennlinien

# Eingangskennlinie

# Ausgangskennlinien



# 1.3.3 Bereiche

- Sperrbereich:  $V_{GS} < V_{TH}$
- Linearer (Widerstands-)Bereich / Anlaufbereich:  $V_{GS} > V_{TH}$
- Sättigungsbereich (Stromquelle):  $V_{DS} > V_{GS} V_{TH}$

# **Anlaufbereich (Linearer Bereich)**

Sättigungsbereich (Stromquelle)

$$I_{D,lin} = \beta \cdot (V_{GS} - V_{TH} - \frac{V_{DS}}{2}) \cdot V_{DS} \qquad \qquad I_{D,sat} = \frac{\beta}{2} \cdot (V_{GS} - V_{TH})^2$$

# 1.3.4 Kleinsignal-Ersatzschaltung (MOS-FET)



# 1.3.5 Temperaturabhängigkeit der Übrtragungskennlinie



Für den n-Kanal FET gilt:

- Threshold-Spannung  $V_{TH}$  sinkt mit 1-2  $\frac{\mu V}{K}$
- $\beta$  sinkt mit steigender Temperatur
- Im Kompensationspunkt bleibt  $I_D$  für fixes  $V_{GS}$

# 1.4 Verstärkerschaltungen mit FETs

### 1.4.1 Source-Schaltung mit Lastwiderstand

Um den Arbeitspunkt der Schaltung zu bestimmen, wird die Lastgerade von  $R_L$  in das Ausgangskennlinienfeld eingezeichnet





### 1.4.2 Push-Pull / Digitaler Inverter



- $V_{in}$  geht auf NMOS und PMOS
- · Ermöglicht grössere Verstärkung

Für 
$$V_{in} \approx \frac{V_{DD}}{2}$$
 gilt:

$$A_{V0} = -(g_{m1} + g_{m2}) \cdot (r_{DS1} || r_{DS2})$$

### 1.5 MOS-FET als (Leistungs-)Schalter

Wenn der FET als Schalter eingesetzt wird, so arbeitet er im linearen Bereich  $(V_{GS} > V_{TH}, \text{d.h. } V_{out} < V_{DD} - V_{TH})$ 

$$I_{D,lin} = \beta \cdot (V_{GS} - V_{TH} - \frac{V_{DS}}{2}) \cdot V_{DS} \qquad r_{DS} = \frac{\mathrm{d}V_{DS}}{\mathrm{d}I_D} = \frac{1}{\beta \cdot (V_{GS} - V_{TH})}$$

$$r_{DS} = \frac{\mathrm{d}V_{DS}}{\mathrm{d}I_D} = \frac{1}{\beta \cdot (V_{GS} - V_{TH})}$$

Schalter geschlossen:  $R_{FET} = R_{DS(on)}$ 

Schalter offen:  $R_{FET} = \infty$ 

### 1.5.1 Verlustleistung / Erwärmung

$$P_V = R_{DS} * I_{DS}^2 = 0 \,\mathrm{W}$$

$$\Delta T = R_{th} \cdot P_V$$

### 1.6 Transmission Gate



Im Bild links gilt:  $V_{DD}=5\,\mathrm{V},V_{SS}=0\,\mathrm{V}$ 

- NMOS (oben) leitet für  $V_{in} < V_{DD} T_{TH,n}$
- PMOS (unten) leitet für  $V_{in} > V_{SS} T_{TH,p}$
- · Source und Drain austauschbar
  - → Strom kann in beide Richtungen fliessen

### **Transistor-Transistor-Logik**

- · Meist statischer Stromverbrauch
- Asymmetrische Schaltschwellen (weniger Marge als CMOS-Logik)

### 2.1 Resistor Transistor Logik (RTL)



Bild: NOR-Gate

- Ausgangsspannung  $V_{out} = V_{+}$  oder  $V_{out} = V_{CE,sat}$
- Fan-Out ist begrenzt (Werden zu viele weitere Gatter an den Ausgang gehängt, so reicht der Strom nicht mehr, um diese zu treiben → Spannungslevel stimmen nicht mehr, um Transisoren durchzusteuern)

# 2.2 Dioden-Transistor-Logik (DTL)



Bild: NAND-Gate

- Fan-Out grösser, da Transistor aktiv nach '0' zieht
- $R_2$  muss keine Gatter treiben (kein grosser Stromfluss)
- • Nachteile: Sehr tiefer Störabstand; Transistor leitet schon bei Spannungen, welche kaum  $>0~{\rm V}$  sind

### 2.3 Transistor-Transistor-Logik (TTL)



- Schaltschwelle am Eingang wird durch Dioden  $V_3$  und  $V_4$  um  $1.4~\mathrm{V}$  erhöht
- Dioden  $V_1$  und  $V_3$  bilden npn-Struktur  $\Rightarrow$  npn-Transistor

# 3 CMOS-Logik

- Entweder leitender Pfad nach  $V_{SS}$  (NMOS) oder  $V_{DD}$  (PMOS)
- · Kein statischer Stromverbrauch
- · Langsamer als Bipolar
- Symmetrische Schaltschwellen bei ca.  $\frac{V_{DD}}{2}$  (Übertrgaungskennlinie)
- Output-Level  $V_{ol}, V_{oh}$  näher bei Speisung als Input Level  $V_{il}, V_{ih} \implies$  mehr Marge
- Höhere Speisespannung → weniger propagation delay
- Nicht geeignet zur Datenübertragung über längere Strecken (kein  $50\,\Omega$  Abschluss)

### 3.1 Grundgatter in CMOS-Logik



### 3.2 Dualität NMOS - PMOS



### 3.3 Verlustleistung bei CMOS-Logik

$$P_V = C \cdot V_{CC}^2 \cdot f$$

C Kapazität (aus Datenblatt)

f Frequenz

### 3.4 Verzögerungszeit

# Linearer Bereich

$$t_{pHL} = 0.69 \cdot R_{on} \cdot C_L$$

→ Exponentielle Entladung!

### Sättigung (Stromquellen-Bereich)

$$t_{pHL} = \frac{C_L \cdot \frac{V_{swing}}{2}}{I_{sat}} \approx \frac{C_L}{k_n \cdot V_{DD}}$$

→ Lineare Entladung!

### 4 Schmitt-Trigger

- Schaltschwellen müssen nicht sehr genau sein
- Schmitt-Trigger garantieren auch bei verrauschten Signalen saubere (einmalige) Schaltschwellen, dank der Hysterese

# 4.1 Aufbau nichtinvertierender digitaler Schmitt-Trigger



- $M_1, M_2$ : Digitale Inverter
- $M_3, M_4$ : 'gesteuerte Widerstände
- Für  $V_{out} = 0$ :  $M_4$  leitet,  $M_3$  sperrt
- Für  $V_{out} = 1$ :  $M_3$  leitet,  $M_4$  sperrt
- $M_3, M_4$  verschieben Schaltschwellen abhängig von  $V_{out} \Rightarrow$  Hysterese

### 4.2 Aufbau invertierender digitaler Schmitt-Trigger



- Ohne  $M_5, M_6$ : Normaler Inverter mit je 2 Serie-Transistoren
- Für  $V_{out} = 1$ : Durch  $M_5$  fliesst Strom in  $M_1$
- V<sub>in</sub> muss höher sein, um Strom der PMOS aufzunehmen
   → Höhere Schaltschwelle für High-Log-Übergang
- 'Inverses' gilt für  ${\cal M}_6$  und  ${\cal M}_4$

# 4.3 Schmitt-Trigger vs. CMOS-Logik



### 5 Signalübertragung

### 5.1 Leitungstheorie

- Leitungen haben Widerstände, Kapazitäten und Induktivitäten → RLC-Netzwerke
- Fortpflanzungsgeschwindigkeit Signal:  $v=10-20\,\mathrm{cm/ns}$  (Lichtgeschwindigkeit:  $c=0\,\mathrm{cm/ns}$ )
- Ev. Impedanzanpassungen zur Verhinderung von Reflexionen nötig (meistens  $50 \Omega$ )
  - CMOS-Logik: tiefen Quellenwiderstand, hohen Eingangswiderstand
     Nicht geeignet zur Datenübertragung über 'längere Strecken'

### 5.2 Einfluss / Relevanz von Refelxionen

### 5.2.1 Keine Reflexionen

Wenn nichts anderes bekannt gilt:  $T_r = \frac{1}{10} \cdot T$ 

$$T_d < \frac{1}{2} \cdot T_r$$

 $T_r = T_f$  Anstiegs- / bzw. Abfallzeit des Signals  $T_d$  Laufzeit des Signals

T Periodendauer

### 5.2.2 Reflexionen



 $f_{max}$  Maximal enthaltene Frequenz im Signal l Länge der Leitung

### 6 High-Speed-Logik

- Sättigung verhindern, da langsam (bei Bipolar-Transistoren)
- Reduzierter Spannungshub
- Stromsteuerung, da Ströme schneller geschaltet werden als Spannungen

# **6.1 Emitter Coupled Logic (ECL)**

# 6.1.1 Emitter Coupled Logic (ECL)



- 2 Familien: 10k (langsamer) und 100k (schneller)
- Positive Speisung:  $V_{CC}=0\,\mathrm{V}$
- ICs werden warm (40 mW pro Gatter)



- Eingangssignal  $V_I$  wird mit fixer Referenz  $V_R$  verglichen
- • Von  $V_R-100~{
  m mV}$  bis  $V_R+100~{
  m mV}$  kippt Ausgnagsspannung von  $V_{CC}$  auf  $V_{CC}-R_C\cdot I_C$
- Differentieller Spannungshub der Ausgänge:
- $V_{diff} = \pm R_C \cdot I_C$
- Spannungspegel **nicht** kompatibel zu CMOS / TTL

# 6.1.2 Positive Emitter Coupled Logic PECL



- Positive Speisung:  $V_{CC} = 5 \,\mathrm{V}$
- Negative Speisung:  $V_{EE} = 0 \, \mathrm{V}$
- Ausgangsbeschaltung mit  $50\,\Omega$  Abschluss zu  $V_{CC}-2\,\mathrm{V}$ → Reduktion der Reflexionen!
- Spannungspegel sind kompatibel zu CMOS / TTL

# **6.1.3** Low Voltage Positive ECL (LVPECL)

- Speisespannungen:  $V_{CC}=3.3\,\mathrm{V}; V_{EE}=0\,\mathrm{V}$
- · Weniger Leisutng als 5 V Logik; leichter anpassbar an 3.3 V Logik

### **6.2 Current Mode Logic (CML)**



- Terminierung am Eingang der Folgestufe gegen  $V_{CC}$  Äquivalenter Widerstand:  $R_{C_{eq}}=50\,\Omega\,||\,50\,\Omega=25\,\Omega$

Differentielle Spannung:  $V_{diff} = \pm R_{C_{eq}} \cdot I_q$ 

# 6.2.1 CML vs. ECL

**CML** 

- · Diff-Amp mit Transistor-Bufffer; Ausgang am Emitter
- Single-ended Input (2. Eingang auf fixer Spannung)
- Single-ended Output (z.T. auch differentiell)
- · Ausgang direkt vom Diff-Amp
- Differentieller Input und differentieller Output
- Impedanzanpassung zur Reduktion von Reflexionen (50  $\Omega$ )

# 6.2.2 Vorteile / Nachteile von CML gegenüber CMOS-Logik

- high Speed
- konstanter Strom (kaum Speisungseinbriiche)
- differentiell: wenig Störung
- + kann Kabel treiben

- hoher statischer Stromverbrauch
- differentiell: benötigt doppelt so viele Leitungen
- aufwändiges PCB-Layout wegen angepassten Leistungsimpedanzen nötig

### 7 Spannungsreferenzen

- Referenzspannungsquellen liefern idealerweise Ausgangsspannungen, welche unabhängig von Temperatur, Speisespannung und Last sind
- 2 Hauptprinzipien: Zenerdioden (meistens mit  $V_Z = 5.6 \, \mathrm{V}$ ) und Bandgap-Quellen mit  $V_{out} = 1.25 \,\mathrm{V}$

### 7.1 Spanungsteiler



### Speisespannungsabhängigkeit

Spannungsänderung:

$$\Delta V_{ref} = \Delta V_{POS} \frac{1}{R_1 + R_2}$$

$$V_{ref} S_{V_{POS}} = \frac{\Delta V_{ref}}{\Delta V_{POS}} = 1 \implies \text{schlecht}$$

Sensitivität:

### Temperaturabhängigkeit

Da die Widerstände gleichen Temperaturkoeffizeienten haben ändert sich der Strom durch  $R_1$  und  $R_2$ , jedoch nicht das Widerstandsverhältnis  $\Rightarrow V_{ref}$  bleibt konstant  $\Rightarrow$  gut

### Spannungsänderung bei Lastwechsel



Ersatzschaltung der Referenzquelle durch Thévenin-Äquivalent mit

 $R_P = R_1 || R_2 \implies$  sehr lastabhängig, da  $R_P$  gross

### 7.2 Diodenreferenz



 $V_{ref} = V_D = n \cdot V_T \cdot \ln\left(\frac{I}{I_G}\right)$  mit  $V_T = \frac{kT}{g} \approx 25 \,\mathrm{mA}$ 

# Speisespannungsabhängigkeit

 $\stackrel{V_{ref}}{S} = \frac{1}{\ln\left(\frac{I}{I_C}\right)} = 0.065 \implies \text{gut}$ 

# Temperaturabhängigkeit

Diode hat einen Temperaturkoeffizeient von  $-2\frac{\mathbf{mV}}{\mathbf{K}}$ , d.h.  $V_{ref}$  ändert ebenfalls mit  $-2\frac{mV}{K}$   $\implies$  schlecht

# Spannungsänderung bei Lastwechsel



Diode durch Kleinsignal-Ersatzschaltung ersatzen und Ersatzschaltung der Referenzquelle durch Thévenin-Äquivalent mit

$$R_P=R_1||r_D|$$
  $\implies$  weniger lastabhängig, da  $r_D=\frac{n\cdot V_T}{I_D}pprox 7\,\Omega$ 

### 7.3 Spannungsreferenz mit mehreren Dioden



- m = Anzahl Dioden in Serie (links: m = 4)
- Strom durch Dioden muss > 0 A sein, damit  $V_D \approx 0.7$  V
- Spannung über m Dioden:  $V_{out} = m \cdot V_D$
- Max. Ausgangsstrom:  $\boxed{I_{out,max} = \frac{V_{pos} V_{out}}{R_1}}$
- Temperaturabhängig $\ker TK_{tot} = m \cdot 2 rac{\mathrm{mV}}{\mathrm{r}}$

# 7.4 Spannungsreferenz mit Zenerdioden (Shunt-Regler)

Shunt-Regler: Überflüssiger Strom wird durch ein Element abgeführt → Je nach Last wird mehr oder weniger Strom in Z-Diode verheizt



- $V_{REF}$  entspricht Zener-Spannung der Z-Diode
- Häufigste Zener-Spannung:  $5.6\,\mathrm{V}$   $\Rightarrow$  TK =  $0\,\mathrm{\frac{mV}{K}}$
- Strom  $I = \frac{V_{POS} V_{REF}}{R_1}$  fliesst entweder durch Diode oder durch Last  $\bullet \ I_{out} < I_{out,max} = \frac{V_{POS} - V_{REF}}{R_1}$

# 7.5 Bootstrap-Referenz ( $V_D$ Stromquelle)



- Stromspiegel  $M_3$  und  $M_4 \Rightarrow I_1 = I_2$
- Stromspiegel  $M_1$  und  $M_2$   $\Rightarrow$   $V_{GS1} = V_{GS1}$  da  $I_1 = I_2$  Da Temperaturkoeffizeient von  $V_{D1} \approx -2 \frac{\text{mV}}{\text{K}}$  nimmt  $I_{out}$
- Da Temperaturkoeffizeient von  $V_{D1} \approx -2 \frac{\mathrm{m}}{\mathrm{k}}$ mit steigender Temperatur ab → schlechte Referenz
- Schaltung hat zwei mögliche Arbeitspunkte (AP  $I_1 = I_2 =$ () ist unerwünscht!)

$$V_{D1} = I_2 \cdot R_2 = V_{R2}$$
  $I_{REF} = I_1 = I_2$ 

# 7.6 Proportional To Absolute Temperature (PTAT)



$$V_D = n \cdot \frac{kT}{q} \cdot \ln\left(\frac{I_D}{I_S}\right)$$
  $V_{DN} = n \cdot \frac{kT}{q} \cdot \ln\left(\frac{I_D}{N \cdot I_S}\right)$ 

$$\Delta V_D = V_D - V_{DN} = n \cdot \frac{kT}{q} \cdot \ln(N) = TK \cdot T$$

 $\Rightarrow \Delta V_T$  ist Proportional zur absoluten Temperatur T

### 7.7 Bandgap-Spannungsreferenz



- $V_{REF} = K \cdot V_{PTAT} + V_D$
- ullet Der positive Temperaturkoeffizient von  $V_{PTAT}$  wird mit dem Faktor K verstärkt, sodass  $K \cdot TK_{PTAT} = +2 \frac{\text{mV}}{\text{K}}$
- Der nun positive Temperaturkoeffizient wird mit einer Diodenquelle mit  $TK_{Diode} = -2 \frac{\text{mV}}{\text{K}}$  kompensiert
- Der gesamte Temperaturkoeffizient  $TK_{bandgap} = 0 \frac{\text{mV}}{\text{K}}$
- $V_{REF}$  buffern, damit der Ausgang belastet werden darf

### Beispiel: LM4041 Shunt Voltage Bandgap Reference



$$V_{out} = V_Z = V_{REF} \left( 1 + \frac{R_2}{R_1} \right)$$

- Einstellbare Referenzspannung  $V_Z = V_{out}$
- Interne Referenz:  $V_{REF} = 1.25 \, \mathrm{V}$  (Bandgap-Referenz)

# 8 Lineare Spannungsregler

### 8.1 Spannungsstabilisierung mit Z-Diode und BJT



- $V_{out} = V_Z V_{BE}$
- Ausgang kann viel Strom liefern Ausgangsspannung sinkt um ca. 20 mV bei Verdoppelung des Stroms
- Ausgangsspannung **sinkt** um  $-2\frac{\text{mV}}{\text{L'}}$
- Keine Regelung der Ausgangsspannung
- · Schnell und stabil, aber nicht genau

### 8.2 Linearer Spannungsregler



$$V_a = V_{ref} \left( 1 + \frac{R_1}{R_2} \right) \qquad \boxed{P_V = V_{CE} \cdot I}$$

- OpAmp Ausgang ändert so lange, bis für die Spannungen gilt:  $V_{R2} = V_{ref} (= 1.25 \text{ V})$
- Minimaler Spannungsabfall  $V_{CE}$  über Regler: bis 2.5 V
- Regler kann sehr warm werden  $\Rightarrow$  Verlustleistung  $P_V$

# 8.3 Low-Dropout-Regler mit pnp-Längstransistor (LDO)



- Feedback auf **positiven** OpAmp-Eingang!
- Ansteuerung Längstransistor mit Basisspannung  $< V_{out}$
- · Kleiner minimaler Spannungsabfall  $V_{CE}$  über Regler
- Auch erhältlich mit PMOS-Transistor statt pnp-Transistor → Dropout-Spannung über Regler (PMOS) ist dann abhängig vom Laststrom (PMOS = gesteuerter Widerstand)

# Einstellbarer Serie-Spannungsregler



$$V_a = V_{ref} \cdot \left(1 + \frac{R_2}{R_1}\right) + I_{adj} \cdot R_2$$

- Widerstände  $R_1$  und  $R_2$  sind **extern** beschaltet!
- Interne Referenz:  $V_{ref}=1.25\,\mathrm{V}$  (Bandgap) 
   OpAmp regelt, damit  $V_{R1}=V_{ref}$
- Damit wird  $V_{R2} = V_{ref} \cdot \frac{R_2}{R_1} + I_{adj} \cdot R_2$

# 9 Spannungswandler mit Ladungspumpen

- · Ladung kann nicht springen und nicht vernichtet werden
- → Ladung wird umverteilt!
- Ladungspumpen sind billige, effiziente Spannungswandler (Wirkungsgrad > 99 % möglich)



# 9.1 Grundprinzip Switched-Capacitor-Schaltungen (SC)



Hinweis:  $R_S$  entspricht dem Schalter-Widerstand Weiter gilt:  $t^* = t - \frac{T}{2}$ 

Phase PH1 (S1 geschl.) 
$$I_{in} = I_C = \frac{V_{in}}{R_S} \cdot e^{\frac{t}{R_S \cdot C}}$$

$$I_C = -I_{out} = -\frac{V_{in}}{R_S} \cdot e^{\overline{R_S}} \cdot \overline{I_{out}} = \frac{\Delta Q}{R_S} = \frac{C}{2} \cdot V_{in}$$

Phase PH2 (S2 geschl.) 
$$I_{cn} = I_C = \frac{V_{in}}{R_S} \cdot e^{\frac{t^*}{R_S} \cdot C}$$
 Durchschnittl. Strom 
$$I_{out} = \frac{\Delta Q}{T} = \frac{C}{T} \cdot V_{in}$$
 Der 'switched capacitor'  $C$  hat einen **äquivalenten Widerstand**  $R_{eq} = \frac{T}{C} = \frac{1}{f \cdot C}$ 

# 9.2 Grundprinzip Ladungspumpen





### Ausgangsspannung $V_{out}$ nähert sich schrittweise exponentiell der Eingangsspannung an!

Im ersten Zyklus ist  $V_{out} = 0 \, \text{V}$ 

Phase PH1 Kapazität  $C_1$  wird auf  $V_{in}$  geladen

$$Q_1 = C_1 \cdot V_{in} \text{ und } Q_2 = C_2 \cdot V_{out}$$

Phase PH2 Ladung **verschiebt** sich von  $C_1$  auf  $C_2$ , bis beide Kapazitäten

dieselbe Spannung aufweisen

$$Q_{tot} = Q_1 + Q_2 = C_1 \cdot V_{in} + C_2 \cdot V_{out}$$

 $\rightarrow$  Neue Ausgangsspannung:  $V_{out} = \frac{Q_{tot}}{C_1 + C_2}$ 

### 9.3 Allgemeine Funktionsweise geschaltete Kapazitäten

Switched Capacitor C<sub>1</sub>

Ersatzschaltung mit  $R_{eq}$ 





- Strom fliesst in 'Paketen':  $\Delta Q = C_1 \cdot \Delta V$
- Durchschnittlicher Strom proportional zu  $C_1$ ,  $\Delta V$  und Schaltfrequenz f



- · Durchschnittlicher Strom proportio-
- nal zu  $\Delta V$  und  $\frac{1}{R}$  Geschaltetes  $C_1$  bildet äquivalenten Widerstand  $R_{eq} = \frac{1}{f \cdot C_1} = \frac{T}{C}$

Für beide Schaltungen gilt, dass der finale Wert der Ausgangsspannung  $V_{out} = V_2$ durch den  ${\bf Spannungsteiler}$  von  $R_L$  und  $R_{eq}$  bestimmt wird:

$$V_{out} = V_{in} \cdot \frac{R_L}{R_{eq} + R_L}$$

$$I = \frac{V_1 - V_2}{R_{eq}}$$

### 9.4 Spannungsinversion mit Switched Capacitors



### Ausgangsspannung $V_{out}$ nähert sich schrittweise exponentiell $-V_{SRC}$ an! Im ersten Zyklus ist $V_{out} = 0 \, \text{V}$

Kapazität  $C_1$  wird auf  $V_{SRC}$  geladen Phase PH1

$$Q_1 = C_1 \cdot V_{SRC}$$
 und  $Q_2 = C_2 \cdot V_{out}$ 

Positiver Anschluss von  $C_1$  wird mit GND verbunden Für  $C_1 = C_2$  än-Phase PH2

$$\rightarrow$$
 Negativer Anschluss von  $C_1$  auf Potential  $-V_{SRC}$ 

$$Q_{tot} = Q_2 - Q_1 = C_2 \cdot V_{out} - C_1 \cdot V_{SRC}$$

$$\Rightarrow$$
 Neue Ausgangsspannung:  $V_{out} = \frac{Q_{tot}}{C_1 + C_2}$ 

dert sich die Ausgangsspannung  $V_{out}$  folgendermassen:

$$V_{out} = (-\frac{1}{2}, -\frac{3}{4}, -\frac{7}{8} \dots -1) \cdot V_{SRC}$$

# 9.5 Spanungsverdoppler mit Switched Capacitors



- PH1:  $C_1$  wird auf Eingangsspannung  $V_{in}$  aufgeladen
- PH2: Negativer Anschluss CAPN wird mit  $V_{SRC}$  verbunden  $\Rightarrow$  Positiver Anschluss  $C_1$  springt auf  $2 \cdot V_{SRC}$
- Ladung teilt sich zwischen  $C_1$  und  $C_2$  auf, sodass  $V_{out}$  schrittweise ansteigt

### 9.6 Dickson Charge Pump (Spannungsvervielfacher)



- Mehrstufige Spannungsvervielfacher (hier: einstufig)
- Anzahl Dioden n
- Kaskadierung möglich

$$V_{out} = n \cdot (V_{SRC} - V_D)$$

### 9.6.1 Mehrstufige Dickson Charge Pump



 Mehrstufige Spannungsvervielfacher

$$V_{out} = n \cdot (V_{SRC} - V_D)$$

### 10 Schaltregler

SMPS (switched-mode-power-supply) sind getaktete Systeme, deren übliche Schaltfrequenzen im Beriech von 20 kHz bis zu einigen MHz liegen.

### 10.1 Spannungswandler mit Spulen

- Energie wird au einer (Spannungs-)Quelle bezogen, in verlustarmen Elementen (Spulen, Kondensatoren) zwischengespeichert, auf die gewünschte Spannung gebracht und stabilisiert.
- Gemeinsamkeiten aller aufgeführten Spannungswandler mit Spulen
  - Energie wird in Magnetfeld gespeichert  $E_L = \frac{1}{2}L \cdot i_L^2$
  - Spannung über Spule bewirkt Änderung des Stroms

 $V_L = L \cdot \frac{\mathrm{d}i_L}{\mathrm{d}t}$  oder  $I_L = \frac{1}{L} \int V_L(t) \ \mathrm{d}t + I_0 = \frac{V_L}{L} \cdot t + I_0$ 

- Zur Stabilisierung der Spannung werden Kondensatoren benötigt (potentieller LC-Schwingkreis!)
- Für die meisten Rechnungen kann man annehmen, dass:
  - \*  $V_{in}$  und  $V_{out}$  konstant sind
- \* Die Schalter ideal sind (kein Schaltwiderstand)
- \* die Dioden keinen Spannungsabfall haben

Hinweis: Zur Steigerung der Effizienz werden Dioden manchmal durch MOS-FETs ersetzt ('nur'  $R_{DS,on}$  statt grosser Spannungsabfall). Die Schalter werden in der Praxis ebenfalls mit einem FET realisiert.

### 10.2 Energien in den Komponenten

 $\begin{array}{ll} \text{Energie in Spule} & E_L = \frac{1}{2} \cdot L \cdot i_L^2 \\ \text{Energie in Kondensator} & E_C = \frac{1}{2} \cdot C \cdot V_C^2 \\ \text{Energie in Last (pro Periode)} & E_{load} = \frac{1}{2} P_{load} \cdot T_{clk} = \frac{1}{2} \cdot \frac{V_{out}^2}{R_{load}} \cdot T_{clk} \end{array}$ 

# 10.3 Aufwärtswandler (Boost, Step-Up Converter)



•  $V_L = V_{in}$  liegt an Spule an

· Schalter geschlossen

1. Phase Energie in Spule speichern

•  $i_L$  muss nicht bei  $I_0 = 0$  starten!

 $\frac{\mathrm{d}i}{\mathrm{d}t} = \frac{V_L}{L}$   $\frac{\mathrm{d}i}{\mathrm{d}t} = \frac{-V_L}{L}$ 

2. Phase Entmagnetisierung

ullet Eingeschwungener Zustand:  $i_L=I_0$ 

In beiden Phasen gelten die folgenden Formeln:



Die Ausgangsspannung  $V_{out}$  ist abhängig von der Last  $\Rightarrow$  Bei hochohmiger Last kann die Ausgangsspannung sehr gross werden!

### 10.3.1 Synchronous Boost Converter



- Diode ersetzt durch Schalter SW2
- Entweder SW1 oder SW2 geschlossen
- ullet VSW somit immer leitend verbunden, entweder mit GND oder mit  $V_{out}$ 
  - → In Spule fliesst immer ein Strom

**Achtung:** Bei kleinen Lasten fliesst Strom in die Quelle zurück und die Verlustleistung in der Spule ist grösser (Drahtwiderstand)

### 10.4 Aufwärtswandler: Lückender Betrieb





- Es existiert ein 3. Zustand, in welchem kein Strom durch Spule fliesst
- Aus  $i_L = 0$  folgt  $V_L = 0$
- Schalter SW offen, damit Spannung am Knoten SW =  $V_{in}$  wird  $\Rightarrow$  Diode sperrt
- Control schliesst Schalter, nachdem  $V_{out} < V_{out,soll}$  ist  $\Rightarrow$  Regelung von  $V_{out}$

# 10.4.1 Regelung der Ausgangsspannung: voltage-mode control



- Verstärker mit Verstäkung A0
- Komparator vergleicht  $V_{ERROR}$  mit  $V_{RAMP}$
- $V_{RAMP}$   $V_{OUT} V_{REF}$   $\uparrow$ ,  $V_{ERROR}$   $\uparrow$ , Schalter muss länger geschlossen bleiben  $\Rightarrow$  grösserer Duty Cycle  $\Rightarrow V_{OUT}$   $\uparrow$

# 10.4.2 Regelung der Ausgangsspannung: current-mode control



- Strom wird mit Shund-Widerstand durch Spannung  $V_{SENSE}$  gemessen
- Verstärker mit Verstäkung A0
- Komparator resettiert Flip-Flop ⇒ Schalter (FET) öffnet
- Häufiger zur Regelung verwendet als vorherige Schaltung

### 10.5 Abwärtswandler (Buck, Step-Down Converter)





Vereinfachungen:  $V_{out}$  konstant, kein Spannungsabfall über Diode und Schalter Formeln gelten nur, wenn immer ein Strom in der Spule fliesst

Ladephase

Entladephase

 $\Delta I_{L_{on}} = \frac{1}{L} \cdot (V_{in} - V_{out}) \cdot t_{on}$   $I_{L_{on}} = \frac{1}{L} \cdot (V_{in} - V_{out}) \cdot t_{on} + I_{0}$   $\Delta I_{L_{off}} = -\frac{1}{L} \cdot V_{out} \cdot t_{off}$   $I_{L_{off}} = -\frac{1}{L} \cdot V_{out} \cdot t_{off} + I_{0}$ 

Gleichgewicht (eingeschwungen)

Ausgangsspannung

 $\Delta I_{Lon} = -\Delta I_{Loff}$   $V_{out} = V_{in} \cdot \frac{t_{on}}{T}$ 

# 10.6 Invertierender Wandler (Buck-Boost Converter)





Der Converter kann im buck-mode oder boost-mode betrieben werden buck-mode: Duty Cycle  $\frac{t_{on}}{T} < 0.5$ ; boost-mode: Duty Cycle  $\frac{t_{on}}{T} > 0.5$ 

Ladephase

Entladephase ( $V_{out} < 0$ )

 $\Delta I_{L_{on}} = \frac{1}{L} \cdot V_{in} \cdot t_{on}$   $\Delta I_{L_{off}} = \frac{1}{L} \cdot V_{out} \cdot t_{off}$   $\Delta I_{L_{on}} = -\Delta I_{L_{off}}$ 

Ausgangsspannung  $V_{out} = -V_{in} \cdot \frac{t_{on}}{t_{off}}$ 

# 10.7 Flyback (Sperrwandler)

Gleichgewicht (eingeschwungen)



- Ermöglicht galvanische Trennung zwischen Ein- und Ausgang
- Transformator mit grosser Induktivität nötig zur Energiespeicherung (mit Luftspalt)
- Phase 1 (Schalter geschlossen)
- Linear steigender Strom auf Primärseite; Energie wird im Magnetfeld gespeichert
- Phase 2 (Schalter offen)
  - Linear sinkender Strom auf Sekundärseite; Magnetfeld baut sich über Sekundärspule ab
- Phase 3 (LC-Schwingkreis)
  - C parallel zu Schalter auf Primärseite wird wirksam

### 10.8 Power Fail Control (PFC)





- Strom fliesst nur wenn  $V_{in} > V_C$  (nur bei Spannungsmaximum)
  - → erzeugt Oberwellen (Blindleistung)
- Mit PFC
- Strom soll **möglichst sinusförmig** fliessen, nicht nur beim Spannungsmaximum
- Lösung: 1. Stufe mit Boost Converter

### 10.9 Aufbau Modernes Netzteil



- 1. Stufe: Gleichrichtung und Boost Converter mit PFC
- 2. Stufe: Reduktion auf Systemspannung (Bus voltage) mit Flyback-Converter
- 3. Stufe: Buck Converter (ev. mehrere)

### 10.10 Fazit Spannungswandler SMPS

- Geschaltete Spannungsregler generrieren weniger Verlustleistung als Linearregler
- Ausgangsspannung geschalteter Spannungsregler hat Rippel der Schaltfrequenz
   → Muss ev. mit Linearrregler zusätzlich stabilisiert werden

# 11 Analoge Filter

 $f_{3\,\mathrm{dB}}$  Cut-Off-Frequency, Corner-Frequency Dämpfung von  $3\,\mathrm{dB}$  (d.h. Amplitude wird mit  $\frac{1}{\sqrt{2}}$  'verstärkt'), Phase:  $-45^\circ$ 

 $f_S$  Sampling-Frequenz (ADC, digitale Filter)

 $\Rightarrow$  Alle Frequnezen über  $\frac{f_S}{2}$  müssen unterdrückt werden UTF Übertragungsfunktion G(s)

### 11.1 Tiefpassfilter 1. Ordnung



 $G(s) = \frac{V_{out}}{V_{in}} = \frac{1}{1 + s \cdot \underbrace{R \cdot C}_{T}}$ 

 $f_{3\,\mathrm{dB}} = \frac{1}{2\pi \underbrace{RC}_{T}}$ 

**Hinweis:** Die Zeitkonstante T entspricht immer dem Parameter vor dem s. Beim Tiefpass 1. Ordnung entspricht dies  $T=R\cdot C$ 

# 11.2 Bodeplot Tiefpassfilter 1. und 2. Ordnung

1. Ordnung

2. Ordnung

- Abfall von −20dB / Dekade
- Phasenschiebung von maximal  $-90^{\circ}$ (bei  $f_g = -45^{\circ}$ )
- Abfall von −40dB / Dekade
- Phasenschiebung von maximal  $-180^{\circ}$ (bei  $f_g = -90^{\circ}$ )

# 11.3 Filter 2. Ordnung

### 11.3.1 Kaskadierung von zwei gleichen Filtern

$$G_{11}(s) = \frac{1}{1 + s \cdot \underbrace{R \cdot C}_{T_2}} \cdot \frac{1}{1 + s \cdot \underbrace{R \cdot C}_{T_2}} \qquad T_2 = \frac{\sqrt{\sqrt{2} - 1}}{2\pi f_{3 \text{ dB}}} \approx 0.64 \cdot T_1$$

$$T_2 = \frac{\sqrt{\sqrt{2} - 1}}{2\pi f_{3 \text{ dB}}} \approx 0.64 \cdot T_1$$

Daraus folgt, dass bei 2 identischen Stufen die Grenzfrequenz  $f_{3\,\mathrm{dB}}$  der einzelnen Stufen  $\frac{1}{0.64}=1.56$  mal **höher** gewählt werden muss als bei einem Filter 1. Ordnung.

### 11.3.2 Filter 2. Ordnung mit komplexen Polen

$$G(s) = \frac{A_0 \cdot p_1 \cdot p_2}{(p_1 + s) \cdot (p_2 + s)} = \frac{A_0 \cdot \omega_0^2}{s^2 + \frac{\omega_0}{Q} s + \omega_0^2}$$

komplex für  $Q > \frac{1}{2}$ Polgüte / Filtergüte

Polfrequenz

$$p_{1,2} = \frac{\omega_0}{2Q} (1 :$$

$$p_{1,2} = \frac{\omega_0}{2Q} (1 \pm \sqrt{1 - 4Q^2})$$

# 11.4 Filter höherer Ordnung

- Systeme höherer Ordnung können aufgeteilt werden in kaskadierte Teilsysteme 1. und
- Höhere Ordnung und komplexe Pole ermöglichen steileren Übergang zwischen Durchlass- und Sperrbereich

Folgende Filter erzielen durch unterschiedliche Polverteilungen unterschiedliches Verhal-

- Butterworth: Konstant im Durchlassbereich der UTF
- Bessel: Beste Rechteckübertragung, kein Überschwingen
- Tschebyscheff: Steilster Abfall im Sperrbereich der UTF

# 11.5 Zeitverhalten: Schrittantwort

- 1. Frenqenzbereich: Multiplikation der UTF mit  $\frac{1}{s}$
- 2. Rücktransformation in den Zeitbereich, um  $t_{step}(t)$  zu erhalten

### 11.5.1 Tiefpass 1. Ordnung



$$t_{step,1}(t) = 1 - e^{-\frac{t}{T_1}}$$

# 11.5.2 Tiefpass 2. Ordnung



$$t_{step2a}(t) = 1 - e^{-\frac{t}{T_1}} \cdot \left(1 + \frac{t}{T_1}\right)$$

$$t_{step2b}(t) = 1 - \Big(\frac{T_1 \cdot e^{-\frac{t}{T_1}} - T_2 \cdot e^{-\frac{t}{T_2}}}{T_1 - T_2}\Big)$$

### 11.6 Schrittantworten verschiedener Polgüten



Komplexe Pole ( $Q\ >\ 0$ ) führt zu Über-

Bei einer Polgüte von  $Q=\frac{1}{\sqrt{2}}\approx 0.7$  (grüne Kruve) schwingt das System am

### 11.7 Filter 2. Ordnung

$$G(s) = \frac{V_{out}}{V_{in}} = \frac{A_0}{1 + \frac{1}{\omega_0 \cdot Q} s + \frac{1}{\omega_0^2} s^2}$$

$$G(s) = \frac{V_{out}}{V_{in}} = \frac{A \cdot \frac{\omega_0}{Q} \cdot s}{s^2 + \frac{\omega_0}{Q} s + \omega_0^2}$$

Passive RC-Filter können maximal Güte 0.5 haben (entkoppelte reelle Pole). Filter höherer Güte benötigen entweder Spulen oder Verstärker.

# **Beispiel: UTF Tiefpass 2. Ordnung**



$$A_0 = 1 \qquad \omega_0 = \frac{1}{\sqrt{C_1 C_2 R_1 R_2}}$$
$$Q = \frac{\sqrt{C_1 C_2 R_1 R_2}}{C_1 R_1 + C_2 R_1 + C_2 R_2}$$

$$G(s) = \frac{V_{out}}{V_{in}} = \frac{1}{1 + (C_1R_1 + C_2R_1 + C_2R_2) \cdot s + C_1C_2R_1R_2 \cdot s^2}$$

# 11.8 Sallen-Key-Filter (Einfachmitkopplung)



### Stromgleichungen:

$$\begin{aligned} &\text{V2:} &&0 = (V_2 - V_{in}) \frac{1}{R_1} + (V_2 - V_3) \frac{1}{R_2} + (V_2 - V_{out}) \cdot s \cdot C_1 \\ &\text{V3:} &&0 = (V_3 - V_2) \frac{1}{R_2} + V_3 \cdot s \cdot C_2 \end{aligned}$$

# 11.8.1 Sallen-Key-Filter bei hohen Frequnezen



$$\boxed{\frac{V_{out}}{V_{in}} = \approx \frac{r_{OL}}{R_1 + r_{OL}}}$$

 $r_{OL}$  ist der OpAmp open-loop Ausgangswiderstand (bei hohen Frequenzen  $\approx 100 \,\Omega$ )

• Dämpfung ist limitiert auf obigen Spannungsteiler → Sallen-Key-Filter sind nicht geeignet für Systeme mit hohen Frequenzanteilen z.B. PWM-DAC

### 11.9 Multiple-Feedback-Struktur



### Stromgleichungen:

V2: 
$$0 = (V_2 - V_{in}) \frac{1}{R_1} + (V_2 - V_{out}) \frac{1}{R_2} + (V_2 - V_3) \frac{1}{R_3} + V_2 \cdot s \cdot C_1$$
  
V3:  $0 = (V_3 - V_2) \frac{1}{R_3} + (V_3 - V_{out}) \cdot s \cdot C_2$ 

### 11.10 Sallen-Key vs. Multiple-Feedback Struktur

### Sallen-Key

### Multiple-Feedback

- · Nicht-invertierend
- ullet Q sensitiver auf Toleranzen
- Vorwärtspfad für hohe Frequenzen
- Noise-Gain: A
- Eher für
  - Hochpass
  - kleine Verstärkungen
- Invertierend
- f<sub>q</sub> sensitiver auf Toleranzen
- Noise-Gain: A+1
- Eher für
  - Tiefpass, Bandpass
  - grössere Verstärkungen

### 11.11 Vorgehen: UTF aus OPV-Filterschaltung ermitteln

- Stromgleichungen (Knotengleichungen) aufstellen
- Gleichungen ineinander einsetzen
- Umformen nach  $G(s) = \frac{V_{out}}{V_{i-1}}$

### 11.12 Zustandsvariablen-Filter (Biquad-Filter)



Mit dieser Topologie sind alle drei Parameter  $f_0$ , Q und  $A_0$  frei wählbar!

An Vout herrscht Tiefpass-

$$G(s) = \frac{-\frac{R_{fb}}{R_{in}}}{s^2 \cdot C_{i1}C_{i2}R_{fb}R_{i2}\frac{R_1}{R_2} + s \cdot C_{fb}R_{fb} + 1}$$

$$f_0 = \frac{1}{2\pi\sqrt{C_{i1}C_{i2}R_{fb}R_{i2}\frac{R_1}{R_0}}} \qquad Q = \frac{1}{C_{fb}}\sqrt{C_{i1}C_{i2}\frac{R_1}{R_2R_{fb}}} \qquad A_0 = -\frac{R_{fb}}{R_{in}}$$

# 11.12.1 Allgemein: FIlter mit mehreren OpAmps

Mit der Filter-Struktur aus Abschnitt 11.12 können auch Bandpass- und Hochpass-Filter gebildet werden:

- **Tiefpass:** Abgriff beim 3. OpAmp ( $V_{out}$  gemäss Abschnitt 11.12)
- Bandpass: Abgriff beim 2. OpAmp (an Knoten V2)
- Hochpass: Abgriff beim 2. OpAmp, Einspeisung am neg. Eingang des 2. OpAmps

### 11.13 Analyse von Filterschaltungen mit Signalflussdiagrammen

Aktive Filterschaltungen (mit OpAmps) können mittels Signalflussdiagrammen (SFDs) analysiert werden. Dazu wird die gesamte Schaltung in einzelne Komponenten aufgeteilt. Diese Komponeten werden dann mit Impedanz- bzw. Admittanzfunktionen abgebildet. Um die Übertragungsfunktion (UTF) der gesamten Schaltung zu erhalten, muss die **Regel von Mason** angewendet werden.

# 11.13.1 Eingangsadmittanzen / (Eingangsimpedanzen)

Hinweis: Es wird normalerweise mit Eingangsadmittanzen gearbeitet!

Komponente Admittanz Y (Impedanz Z)

| Komponente       | rumitume 1                      | (Impedanz 2)                      |
|------------------|---------------------------------|-----------------------------------|
| Widerstand $R$   | $Y_{res} = \frac{1}{R}$         | $(Z_{res} = R)$                   |
| Kapazität $C$    | $Y_{cap} = s \cdot C$           | $(Z_{cap} = \frac{1}{s \cdot C})$ |
| Induktivität $L$ | $Y_{ind} = \frac{1}{s \cdot I}$ | $(Z_{ind} = s \cdot L)$           |

### 11.13.2 OpAmp Impedanzfunktionen

# $\begin{array}{ll} \textbf{Hinweis:} \ Es \ geht \ um \ negatives \ Feedback \ bzw. \ Gegenkopplung \\ Schaltung \ (Feedback) & Impedanz \ Z \end{array}$

 $\begin{array}{ll} \text{Widerstand } R_f \text{ im Feedback} & Z_{op} = -R_f \\ \text{Kapazität } C_f \text{ im Feedback} & Z_{op} = -\frac{1}{s \cdot C_f} \\ R_f C_f \text{ (parallel) im Feedback} & Z_{op} = -\frac{R_f}{1 + s \cdot C_f \cdot R_f} \\ \end{array}$ 

### Beispiel: Summierender Verstärker



### Beispiel: Aktiver Tiefpass 1. Ordnung



### 11.14 Regel von Mason (vereinfacht)

$$\mbox{UTF:} \quad G(s) = \frac{V_{out}}{V_{in}} = \frac{\mbox{Produkt der Transmittanzen im Vorwärtspfad}}{1 - \mbox{Summe aller Schleifentransmittanzen}}$$

# Beispiel: Analyse Bandpass mittels SFD und Regel von Mason



### 12 Anhang

# 12.1 Temperaturabhängigkeit von Widerständen

