Practice exercise of Lecture_1

1. Is the cross product associative?

$$(\overrightarrow{A} \times \overrightarrow{B}) \times \overrightarrow{C} \stackrel{?}{=} \overrightarrow{A} \times (\overrightarrow{B} \times \overrightarrow{C})$$

If so, prove it; if not, provide a counterexample (the simpler the better).

2. Use the cross product to find the components of the unit vector *n* perpendicular to the shaded plane in Fig. 1.

Fig. 1

- 3. For each of the following, find a vector which satisfies the given conditions.
 - (a). A unit vector which is in the opposite direction of $\mathbf{v} = 3\mathbf{i} + 4\mathbf{j}$;
 - (b). A unit vector which is in the same direction as the vector from $P_1(1, 0, 5)$ to $P_2(3, -1, 2)$;
 - (c). A vector which is in the opposite direction of $\mathbf{v} = [1, 2, 3]$ and whose magnitude is half that of \mathbf{v} ;
 - (d). A vector which is in the same direction of $\mathbf{w} = \mathbf{i} 2\mathbf{j} + 3\mathbf{k}$ and which has a length of 2;
 - (e). A vector in 2-space which makes an angle of $\theta = \pi / 6$ with the positive x-axis and which has a magnitude of 4.

4. A weight of 200 Newtons (N) is being supported by two wires, as shown in Fig. 2. Find the tension in each wire. (Assume that the system is in equilibrium)

Fig. 2

- 5. For each of the following, compute $\mathbf{u} \cdot \mathbf{v}$ based on the given information.
 - (a). $\mathbf{u} = [4, -5, 1]; \mathbf{v} = [3, 6, -1]$
 - (b). $\|\mathbf{u}\| = 3$; $\|\mathbf{v}\| = 4$; the angle between \mathbf{u} and \mathbf{v} is $\pi / 4$
- 6. Compute the area of the triangle with vertices A(1, 2, 3), B(6, 4, 7), and C(1, 5, 4, 7)2)
- 7. Let $\mathbf{u} = [3, -4, 1]$ and $\mathbf{v} = [2, -2, 3]$. Compute $\mathbf{u} \times \mathbf{v}$ and verify that it is orthogonal to both \boldsymbol{u} and $\boldsymbol{\upsilon}$
- 8. Consider the triangle, shown in Fig. 3, with vertices A(1, -2, 6), B(3, 0, -1), and C(-2, 1, 0), please compute all three angles of the triangle.

Fig. 3

9. Express the following vectors in Cartesian, cylindrical, and spherical coordinates:

a.
$$\overrightarrow{A} = \overrightarrow{a_{\rho}} \rho z \sin \phi + \overrightarrow{a_{\phi}} 3\rho \cos \phi + \overrightarrow{a_{z}} \rho \cos \phi \sin \phi$$

$$b. \qquad \overrightarrow{B} = \overrightarrow{a_r}r^2 + \overrightarrow{a_\phi}\sin\theta$$

c.
$$\overrightarrow{C} = \overrightarrow{a_x} 3x + \overrightarrow{a_y} xy^2 + \overrightarrow{a_z} yz$$