Chapitre 3 : Intégrales impropres

X Attention X Tous les exemples de calculs d'intégrales dans ce chapitre sont à connaître par cœur (il s'agit d'intégrales de référence), et peuvent être utilisés dans des exercices.

Généralités sur les intégrales impropres

Sur un intervalle du type $[a, +\infty[, a \in \mathbb{R}$

Définition : Soit $f:[a,+\infty[\to \mathbb{R} \text{ ou } \mathbb{C} \text{ une fonction continue.}]$

On dit que l'intégrale impropre (ou généralisée) au voisiage de $+\infty$ converge (ou existe) si $\lim_{x\to+\infty}\int_a^x f(t)dt$ existe et est finie.

Dans ce cas, on note: $\int_a^{+\infty} f(t) \, dt$ l'intégrale impropre. Si une telle limite n'existe pas, on dit que l'intégrale diverge.

1 Remarque: On utilisera la notation $\int_a^{+\infty} f(t) dt$ pour l'intégrale impropre qui converge ou diverge (on précise toujours si elle converge ou diverge).

Propriété:

Supposons que $\int_a^{+\infty} f(t) dt$ converge.

Alors, $\lim_{A \to +\infty} \int_A^{+\infty} f(t) \, dt = 0$ converge. C'est le reste de l'intégrale impropre.

Preuve:

Soit x>A>a. On a : $\int_a^x f(t)\,dt=\int_a^A f(t)\,dt+\int_A^x f(t)\,dt$.

En faisant tendre x vers $+\infty$, on obtient : $\int_a^{+\infty} f(t)\,dt = \int_a^A f(t)\,dt + \int_A^{+\infty} f(t)\,dt$. On passe à la limite sur $A,A\to +\infty$ et on obtient : $\int_a^{+\infty} f(t)\,dt = \int_a^{+\infty} f(t)\,dt + \lim_{A\to +\infty} \int_A^{+\infty} f(t)\,dt$. Donc $\lim_{A\to +\infty} \int_A^{+\infty} f(t)\,dt = 0$ \square .

$$\int_{a}^{+\infty} f(t) dt = \int_{a}^{+\infty} f(t) dt + \lim_{A \to +\infty} \int_{A}^{+\infty} f(t) dt.$$

- **1** Remarque: Si on continue f continue de $]-\infty,a]$ dans $\mathbb R$ ou $\mathbb C$, on peut définir l'intégrale impropre $\int_{-\infty}^a f(t) \, dt$ par $\lim_{x\to-\infty}\int_{x}^{a}f(t)\,dt$.
- **Exemple:** $\int_{1}^{+\infty} \frac{1}{t} dt$ converge-t-elle?
 - 1. D'abord, $t\mapsto \frac{1}{t}$ est continue sur $[1,+\infty[$.
 - 2. Soit x>1, $\int_1^x \frac{1}{t}\,dt=[\ln(t)]_1^x=\ln(x)$. Donc, $\lim_{x\to+\infty}\int_1^x \frac{1}{t}\,dt=\lim_{x\to+\infty}\ln(x)=+\infty$. Donc $\int_1^{+\infty} \frac{1}{t}\,dt$ diverge.

- **Exemple:** $\int_0^{+\infty} \cos(t) dt$ converge-t-elle?
 - 1. D'abord, $t \mapsto cos(t)$ est continue sur $[0, +\infty[$.
 - 2. Soit x > 0, $\int_0^x \cos(t) dt = [\sin(t)]_0^x = \sin(x)$. Donc, $\lim_{x\to+\infty}\int_0^x\cos(t)\,dt=\lim_{x\to+\infty}\sin(x)$ n'existe pas. Donc $\int_0^{+\infty} \cos(t) dt$ diverge.
- **Exemple:** $\int_0^{+\infty} \frac{1}{t^{\alpha}} dt$ converge-t-elle? $(\alpha \in \mathbb{R})$

- 1. D'abord, $t\mapsto \frac{1}{t^{\alpha}}$ est continue sur $[0,+\infty[$ pour $\alpha>0.$
- 2. Soit x > 0, $\int_0^x \frac{1}{t^{\alpha}} dt = \left[\frac{t^{1-\alpha}}{1-\alpha}\right]_0^x = \frac{x^{1-\alpha}}{1-\alpha}$. Donc, $\lim_{x\to+\infty} \int_0^x \frac{1}{t^\alpha} dt = \lim_{x\to+\infty} \frac{x^{1-\alpha}}{1-\alpha}$
 - Si $\alpha < 1$, alors $1 \alpha > 0$ et $\lim_{x \to +\infty} \frac{x^{1-\alpha}}{1-\alpha} = +\infty$.
 - Si $\alpha = 1$, alors $\lim_{x \to +\infty} \frac{x^{1-\alpha}}{1-\alpha}$ est indéfini.
 - Si $\alpha > 1$, alors $1 \alpha < 0$ et $\lim_{x \to +\infty} \frac{x^{1-\alpha}}{1-\alpha} = 0$.

Donc $\int_0^{+\infty} \frac{1}{t^{\alpha}} dt$ converge si et seulement si $\alpha > 1$.

Proposition : Convergence des intégrales de Riemann

Les intégrales de la forme $\int_1^{+\infty} \frac{1}{t^{\alpha}} dt$ sont appelées des intégrales de Riemann et convergent si et seulement si $\alpha > 1$, et on a :

$$\int_1^{+\infty} \frac{1}{t^{\alpha}} \, dt = \begin{cases} \frac{1}{\alpha - 1} & \text{si } \alpha > 1 \\ \text{indéterminée} & \text{si } \alpha = 1 \\ +\infty & \text{si } \alpha < 1 \end{cases}$$

- **Exemple:** $\int_0^{+\infty} e^{-\alpha t} dt$ converge-t-elle?
 - 1. D'abord, $t\mapsto e^{-\alpha t}$ est continue sur $[0,+\infty[$ pour $\alpha>0.$
 - 2. Soit x>0, $\int_0^x e^{-\alpha t}\,dt=\left[-\frac{e^{-\alpha t}}{\alpha}\right]_0^x=\frac{1}{\alpha}(1-e^{-\alpha x}).$ La convergence de $\int_0^{+\infty}e^{-\alpha t}\,dt$ est la même que $\frac{1}{\alpha}(1-e^{-\alpha x})$, quand $x\to+\infty$. Donc, $\lim_{x\to+\infty}\int_0^x e^{-\alpha t}\,dt=\lim_{x\to+\infty}\frac{1}{\alpha}(1-e^{-\alpha x})=\frac{1}{\alpha}.$

Donc $\int_0^{+\infty} e^{-\alpha t} dt$ converge si, et seulement si, $\alpha > 0$, et vaut $\frac{1}{\alpha}$.

- **X** Attention **X** Si $\alpha \leq 0$, l'intégrale diverge.
- \bigcirc Vocabulaire : La nature de l'intégrale impropre $\int_a^{+\infty} f(t) dt$ est la convergence ou la divergence de cette intégrale.
- **Application**: Déterminer la nature de l'intégrale impropre suivante : $\int_0^{+\infty} \frac{1}{t^2+1} dt$.
- Sur un intervalle du type $]-\infty,+\infty[$

Définition : Soit $f:]-\infty, +\infty[\to \mathbb{R}$ ou \mathbb{C} une fonction continue.

On dit que l'intégrale impropre (ou généralisée) sur $]-\infty,+\infty[$ converge si pour $a\in\mathbb{R},$ les deux intégrales $\int_{-\infty}^{a} f(t) dt$ et $\int_{a}^{+\infty} f(t) dt$ convergent.

- **© Exemple :** $\int_{-\infty}^{+\infty} \frac{1}{1+t^2} dt$ converge-t-elle?
 - 1. D'abord, $t\mapsto \frac{1}{1+t^2}$ est continue sur $]-\infty,+\infty[$.
 - 2. On a $\int_0^{+\infty} \frac{1}{1+t^2} dt = \lim_{x \to +\infty} [\arctan(t)]_0^x = \frac{\pi}{2}$ (converge).
 - 3. On a $\int_{-\infty}^{0} \frac{1}{1+t^2} dt = \lim_{y \to -\infty} [\arctan(t)]_{y}^{0} = \frac{\pi}{2}$ (converge).

Donc $\int_{-\infty}^{+\infty} \frac{1}{1+t^2} dt$ converge et vaut π .

II Intégrales impropres sur des intervalles $[a,b[,b<+\infty[$

Définition : Soient $a < b \in \mathbb{R}$. Considérons une fonction continue sur [a,b[(a priori, f n'est pas continue en b car sinon $\int_a^b f(t) dt$ n'est pas impropre).

On définit l'intégrale impropre $\int_a^b f(t)\,dt$ comme la limite $\lim_{x\to b^-}\int_a^x f(t)\,dt$, si cette limite existe et est finie. Si cette limite n'existe pas, on dit que l'intégrale diverge.

- $\textbf{ 1} \textbf{ Remarque : Si } f:]a,b] \to \mathbb{R} \textbf{ est continue, on peut définir l'intégrale impropre } \int_a^b f(t) \, dt \textbf{ par } \lim_{x\to a^+} \int_x^b f(t) \, dt.$
- **© Exemple :** $\int_0^1 \frac{1}{t^{\alpha}} dt$ converge-t-elle? $\int_0^1 \ln(t) dt$ converge-t-elle?