Búsqueda e inferencia lógica

Estrategias de resolución

Contenidos

- 1. Introducción
- 2. Refutación por resolución
- 3. Estrategias de resolución
- 4. Procedimiento de extracción de respuesta
- 5. Demostradores de teoremas

1. Introducción

Introducción

- Utilidad lógica simbólica
 - Representar problemas mediante FBF's.
 - Conjunto de FBF's consistente (teoría).
 - Solucionar problemas de forma deductiva.
 - Reglas de inferencia de la lógica.
 - Proceso de búsqueda en el espacio de FBF's.
- Dificultad: la aplicación no controlada de Reglas de Inferencia da lugar a un problema de explosión combinatoria
 - Crecimiento exponencial del nº de FBF's generadas.

Ejemplo teoría

- Axiomas (propios de la teoría)
 - Todos los hombres son mortales.
 - Sócrates es un hombre.
- Teorema (se puede derivar de los axiomas propios)
 - Sócrates es mortal.

- Axiomas
 - Todos los hombres son mortales

Sócrates es un hombre

 $\forall x (H(x) \supset M(x))$

H(Socrates)

- Teorema
 - Sócrates es mortal

M(Socrates)

Reglas de inferencias

Estructura

antecedente → consecuente, donde antecedente o premisas: secuencia de patrones de FBF consecuente: secuencia de patrones de FBF

Ejemplos:

Modus Ponens α , $\alpha \supset \beta \to \beta$ Instanciación Universal $\forall x \alpha \to \beta$

- Utilizan una única regla de inferencia.
- Una forma de reducir la complejidad de la búsqueda.
- Requieren transformar fórmulas a formato estándar.
- Refutación por resolución:
 - Para probar que $\Omega \models \alpha$, probar que $\Omega \cup \neg \alpha$ es inconsistente
 - Única regla de inferencia: resolución.

Dos aproximaciones básicas

- Sistemas de resolución:
 - Transformar FBF's a forma de cláusula.
 - Aplicar resolución hasta generar cláusula vacía.
 - Reducción complejidad sin limitar capacidad representación: selección de estrategias adecuadas.
- Programación lógica:
 - Sólo cláusula de Horn.
 - Resolución SLD
 - Reducción complejidad limitando capacidad representación: cláusulas de Horn.

2. Refutación por resolución

Refutación por resolución: procedimiento

- Sea T una teoría sólida y completa y t una FBF. Para probar ∃T ⊢ t mediante refutación por resolución:
 - Convertir los axiomas de T a FNC. Crear el conjunto S_0 como la conjunción de todas las cláusulas obtenidas.
 - Negar t y convertir a FNC. Añadir las cláusulas obtenidas a S_0 , obteniendo S.
 - Repetir hasta obtener

 o no se generen nuevas cláusulas.
 - Seleccionar dos cláusulas que se puedan resolver, formando su resolvente.
 - Si el resolvente no es □, añadir a S.

Ejemplo transformación a cláusulas

- Axiomas, LPO
 - $\forall x(H(x) \supset M(x))$
 - H(Socrates)
- Teorema
 - M(Socrates)

Axiomas, clausulas $\neg H(x) \lor M(X)$ H(Socrates)

M(Socrates)

Refutación por resolución: S_o y negación de t

- $S_0 = \{ \neg H(x) \lor M(x) , H(Socrates) \}$
- $\neg t = \neg M(Socrates)$
- $S = \{ \neg H(x) \lor M(x) , H(Socrates), \neg M(Socrates) \}$

Buscar cláusula vacía (I)

Buscar cláusula vacía (II)

Refutación por resolución: parada

- Lógica proposicional es decidible: siempre termina.
 - Generando cláusula vacía:
 - S inconsistente, $S_0 \cup \{\neg t\}$ inconsistente, $S_0 \models t$, $T \models t$ (si T completa $\exists T \vdash t$)
 - No se generan nuevas resolventes:
 - S consistente, $S_0 \cup \{\neg t\}$ consistente, $S_0 \not\models t$, $T \not\models t$, (si T sólida, $\not\exists T \vdash t$)

Refutación por resolución: parada

- Lógica de primer orden es semidecidible: el cómputo de nuevas resolventes puede no terminar, finalizando el proceso por consumo de recursos.
 - Si el cómputo termina (parada), como en el caso proposicional:
 - Generando cláusula vacía: S inconsistente.
 - No se generan nuevas resolventes: S consistente.
 - Si finaliza por consumo de recursos, no sabemos nada:
 - S consistente, se pueden generar infinitas resolventes sin generar □.
 - S inconsistente, "podríamos" generar

 asignando más recursos.

3. Estrategias de resolución

Estrategias de Resolución

- Necesidad.
 - La generación incontrolada de cláusulas hace que estas crezcan de forma exponencial.
- Tipología:
 - Simplificación: eliminan o reemplazan.
 - Dirección: siguiente cláusula a considerar.
 - Restricción: evitan generación de resolventes.

- Una estrategia de resolución es completa (para la refutación) sii usada con una regla de inferencia completa (para la refutación) garantiza que encuentra una derivación de □ a partir de una forma clausulada inconsistente
- La regla de resolución es completa para la refutación.

Estrategia de saturación por niveles

Estrategia de dirección (similar bpa).

Conjunto base: Conjunto S de todas las cláusulas de partida $S^0=S$. Si $k\in S$, k cláusula de nivel 0 $S^i=\{res(k_1, k_2) / k_1\in (S^0\cup S^1\cup ... \cup S^{i-1}), k_2\in S^{i-1}\}$ Si $k\in S^i$, $k\notin S^{i-1}$, k cláusula de nivel *i-ésimo*

- Estrategia de resolución por niveles: obtener primero todas las resolventes de nivel i antes de obtener una resolvente de nivel i+1
- COMPLETA e ineficiente.

Estrategia de saturación por niveles (I)

$$S = \{ p \lor q, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q \}$$

Estrategia de saturación por niveles (II)

■ *S*⁰

- 1. *p* ∨ *q*
- 2. ¬*p* ∨ *q*
- 4. $\neg p \lor \neg q$

Estrategia de saturación por niveles (III)

- *S*⁰
- 1. $p \vee q$
- $\neg p \lor q$
- 3. $p \vee \neg q$
- 4. $\neg p \lor \neg q$
- *S*¹
- 5. **q**
- 6. P
- 7. **q** ∨ ¬**q**
- 8. *p* ∨ ¬*p*
- 9. **q** ∨ ¬**q**
- 10. $\neg p \lor p$
- *11.* ¬*p*
- 12. $\neg Q$

- de 1) y 2)
- de 1) y 3)
- de 1) y 4)
- de 1) y 4)
- de 2) y 3)
- de 2 y 3)
- de 2 y 4)
- de 3 y 4)

Estrategia de saturación por niveles (IV)

- *S*¹
- 5. **q**
- 6. P
- 7. **q** ∨ ¬**q**
- 8. $p \lor \neg p$
- 9. **q** ∨ ¬**q**
- 10. ¬p ∨ p
- 11. **¬**p
- 12. **¬q**

- de 1) y 2)
- de 1) y 3)
- de 1) y 4)
- de 1) y 4)
- de 2) y 3)
- de 2 y 3)
- de 2 y 4)
 - de 3 y 4)

de 1) y 7)

- *S*²
- 13. p v q
- 14.
- 15.
- 39. □

de 5) y 12)

Completa e Ineficiente

- Eliminación de literales puros
- Eliminación de tautologías
- Eliminación de cláusulas subsumidas
- Asociación de procedimientos

- Def. literal puro
 - S forma clausulada, $k \in S$, $\lambda \in k$ es un literal puro sii $\not\exists k' \in S$ con $\neg \mu \in k'$ y substituciones s1 y s2 / λ s1 = μ s2
- Estrategia de eliminación de literales puros
 - eliminar todas las cláusulas que contengan literales puros
 - sólo al conjunto inicial
- COMPLETA

Eliminación de literales puros (I)

Eliminación de literales puros (II)

■
$$S = \{P(B) \lor Q(B), \neg P(B) \lor Q(B), P(B) \lor \neg Q(B), \neg P(B) \lor \neg Q(B), \neg P(B) \lor \neg Q(A)\}$$

Eliminación de literales puros (III)

■
$$S = \{P(B) \lor Q(B), \neg P(B) \lor Q(B), P(B) \lor \neg Q(B), \neg P(B) \lor \neg Q(B), \neg P(B) \lor \neg Q(A)\}$$

- $\neg Q(A)$ es un literal puro
- Se genera un nuevo S:

■
$$S = \{P(B) \lor Q(B), \neg P(B) \lor Q(B), P(B) \lor \neg Q(B), \neg P(B) \lor \neg Q(B)\}$$

Eliminación de literales puros (IV)

■
$$S = \{P(x) \lor Q(x), \neg P(x) \lor Q(x), P(x) \lor \neg Q(x), \neg P(x) \lor \neg Q(x), \neg P(x) \lor \neg Q(A)\}$$

No hay ningún literal puro

- Las cláusulas tautológicas no afectan a la satisfacibilidad
- Estrategia de eliminación de tautologías:
 - eliminar cláusulas tautológicas
 - iniciales y las que se generen
- COMPLETA

Eliminación de tautologías (I)

■ *S*⁰

- 1. p v q
- 2. $\neg p \lor q$
- 3. $p \vee \neg q$
- 4. $\neg p \lor \neg q$

■ *S*¹

- 5. **C**
- 6. **P**
- 7. q *∨* ¬*q*
- 8. **p** ∨ ¬ **p**
- 9. **q** ∨ ¬**q**
- 10. $\neg p \lor p$
- 11. **¬p**
- *12.* **¬***Q*

- de 1) y 2)
- de 1) y 3)
- de 1) y 4)
- de 1) y 4)
- de 2) y 3)
- de 2 y 3)
- de 2 y 4)
- de 3 y 4)

Sin eliminar tautologías

Eliminación de tautologías (II)

■ *S*⁰

- 1. p v q
- $\neg p \lor q$
- *3. p* ∨ ¬*q*
- 4. $\neg p \lor \neg q$

■ *S*¹

- 5. **Q**
- 6. P
- 7. **q** _ V --- **G** -
- 8. **p**_V--1**p**
- 9. **Q**_-V----**G**--
- 10. _-p----p
- 7. **¬p**
- 8. **¬q**

- de 1) y 2)
- de 1) y 3)
- de 1) y 4)
- de 1) y 4)
- de 2) y 3)
 - de 2 y 3)
 - de 2 y 4)
 - de 3 y 4)

Eliminación de cláusulas subsumidas

Def. subsunción

 k_1 , k_2 cláusulas. k_1 subsume a k_2 sii \exists substitución $s / k_1 s \subseteq k_2$ k_2 cláusula subsumida

- Estrategia de eliminación de cláusulas subsumidas
 - Hacia delante: la resolvente puede ser subsumida.
 - Hacia atrás: la resolvente puede subsumir.

Ejemplos de cláusulas subsumidas

- $p \lor q$ subsume a $p \lor q \lor r$
- P(A) subsume a $P(A) \vee Q(x)$ (substitución vacía)
- P(x) subsume a $P(A) \lor Q(x)$ $(s = \{A/x\})$
- P(x) subsume a P(A) $(s=\{A/x\})$

Eliminación de cláusulas subsumidas (I)

- *S*⁰
- 1. *p* ∨ *q*
- 2. ¬*p* ∨ *q*
- 3. $p \vee \neg q$
- 4. $\neg p \lor \neg q$
- *S*¹
- 5. **q**

de 1) y 2)

Eliminación de cláusulas subsumidas (II)

- *S*⁰
- 1.___P-V-9----
- 2. ___**-**-**p**-√**-q**-----
- *3. p* ∨ ¬*q*
- 4. $\neg p \lor \neg q$

- *S*¹
- 5. **q**

de 1) y 2)

subsumida por 5)

subsumida por 5)

Eliminación de cláusulas subsumidas (II)

- *S*⁰
- 1.___P-V-9----
- 2. ___**-**-**p**-√**-q**-----
- 3. $p \vee \neg q$
- 4. $\neg p \lor \neg q$

7

- *S*¹
- 5. **C**
- 6. **—C**

de 1) y 2)

subsumida por 5)

subsumida por 5)

de 3) y 4)

Eliminación de cláusulas subsumidas (III)

■ *S*⁰

4.
$$- q$$

subsumida por 5)

subsumida por 5)

subsumida por 6)

subsumida por 6)

■ *S*¹

de 1) y 2)

de 3) y 4)

■ *S*²

7.
$$\Box$$

de 5) y 6)

Eliminación de cláusulas subsumidas

- Completa con saturación por niveles. Puede no serlo con alguna estrategia de restricción
- MUY EFICIENTE: su aplicación suele ser imprescindible

- Estrategia de simplificación/demoduladores.
- Consiste en evaluar funciones o literales básicos sobre un dominio (interpretación parcial).
- Afecta a la satisfacibilidad pues estamos fijando una interpretación parcial.
- NO es completa.

- Asociar un símbolo de función con un procedimiento cuya evaluación devuelva un elemento del dominio.
- Evaluar particularizaciones básicas del término funcional.
- Reemplazar el término funcional por el elemento de dominio.

$$K=P(x) \lor Q(suma(3,5), y)$$

se transforma en
 $K=P(x) \lor Q(8, y)$ (con la interpretación habitual de la suma)

Evaluación de literales

- Asociar un símbolo de predicado con un procedimiento, cuya evaluación devuelva un valor de verdad.
- Evaluar particularizaciones básicas del literal.
- Si el literal se evalúa a T: eliminar la cláusula.
- Si el literal se evalúa a F: eliminar el literal de la cláusula.

$$K=P(x) \lor MAYOR(3,5)$$

se transforma en
 $K=P(x)$ (asumiendo $V(MAYOR(3,5))=F$)

Evaluación de literales

- $S = \{ \neg PAR(x) \lor IMPAR(suc(x)), \neg IMPAR(x) \lor PAR(suc(x)), PAR(X) \lor IMPAR(X), PAR(4) \lor F(4) \}$
- Interpretación parcial:
 - D=N
 - PAR^I={d∈D / resto(d, 2)=0}, IMPAR^I= D-PAR^I
 - suc^I (d)=d+1
- Evaluar particularizaciones básicas del literal: V(PAR(4))=T
- $S'=\{\neg PAR(x) \lor IMPAR(suc(x)), \neg IMPAR(x) \lor PAR(suc(x)), PAR(X) \lor IMPAR(X)\}$
- Todos los modelos de S que mantengan la interpretación parcial también son modelos de S' (y viceversa)

- Conjunto soporte.
- Resolución lineal.
- Resolución por entradas.
- Resolución unitaria.

Estrategia del conjunto soporte

- Def. Conjunto soporte
 - S forma clausulada y $T \subset S$, $T \neq S$, \varnothing
 - T se denomina conjunto soporte de S
- Def. conjunto soporte nivel i-ésimo
 - T_0 =T, T conjunto soporte de S. T_0 se denomina conjunto soporte de nivel O
 - T_i, conjunto soporte de nivel i-ésimo: conjunto de $res(k_l,k_m)$ con:
 - 1. $\exists j / k_i \in T_i$ -1 (o factor de cláusula de T_i -1)
 - (la cláusula que no cumple 1) $\in S$ (o factor de cláusula de S)

- Def. T-soporte de una cláusula S forma clausulada, T conjunto soporte, k cláusula K tiene T-soporte sii $k \in T_i$, $i \ge 0$
- Estrategia del conjunto soporte
 S conjunto base, T conjunto soporte. La estrategia del conjunto soporte solo permite obtener cláusulas que tengan T-soporte

Estrategia del conjunto soporte

$$T = \{p \lor q\}$$

¿Estrategia del conjunto soporte?

$$T = \{p \lor q\}$$

¿Estrategia del conjunto soporte?

$$T = \{p \lor q\}$$

Estrategia del conjunto soporte

$$T = \{p \lor q, \neg p \lor \neg q\} \quad \longleftarrow$$

Teorema conjunto soporte

 Sea S forma clausulada inconsistente y T un conjunto soporte de S / S-T sea consistente.

 $\exists S \vdash_r \Box$ utilizando la estrategia del conjunto soporte, con T como conjunto soporte.

- Elección habitual de T
 - Th(A) teoría de axiomas propios A, t teorema.
 - S: cláusulas de Th(A) y $\neg t$, inconsistente si t teorema.
 - T: cláusulas que provienen de t.
 - S-T: cláusulas de Th(A), normalmente consistente.

Resolución lineal

- S forma clausulada, $kc_0 \in S$ cláusula central de partida La estrategia lineal sólo permite obtener como resolventes cláusulas centrales kc_{i+1} , con:
 - 1. $kc_{i+1}=res(kc_i, B_i)$
 - 2. $B_i \in S \circ B_i = kc_j \operatorname{con} j < i \text{ (o factor)}$

 B_i : cláusula lateral

Resolución lineal

- $S = \{p \lor q, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q\}$
- $KC_0 = p \vee q$

Teorema complitud resolución lineal

• Sea S forma clausulada inconsistente y $kc_0 \in S$, de modo que $S-\{kc_0\}$ sea consistente.

 $\exists S \vdash_r \Box$ utilizando la estrategia de resolución lineal, con kc_0 como cláusula central de partida.

- Elección kc₀
 - Como conjunto soporte si la negación del teorema da lugar a una única cláusula.

- Def. cláusula de entrada: cláusulas del conjunto base, S
- Def. resolvente de entrada: resolvente con al menos un padre cláusula de entrada.
- Estrategia de resolución por entradas: sólo permite obtener resolventes de entrada.
- NO es completa.

Resolución por entradas

$$S = \{p, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q\}$$

Resolución por entradas: no es completa

$$S = \{ p \lor q, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q \}$$

- Def. resolvente unitario: resolvente en el que al menos una de las cláusulas padres es unitaria.
- Estrategia de resolución unitaria: sólo permite obtener resolventes unitarios.
- NO es completa.

Resolución unitaria

$$S = \{p, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q\}$$

Resolución unitaria: no es completa

•
$$S = \{p \lor q, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q\}$$

$$p \vee q$$

$$\neg p \lor q$$

$$p \sim q$$

$$\neg p \lor q$$
 $p \lor \neg q$ $\neg p \lor \neg q$

Sea S forma clausulada.

 $\exists S \vdash_r \Box$ utilizando la estrategia de resolución unitaria *sii* \exists $S \vdash_r \Box$ utilizando la estrategia de resolución por entradas

Resolución unitaria, no por entradas

٧.

Resolución por entradas, no unitaria

$$S = \{p, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q\}$$

Cláusulas de Horn

- Def. Cláusula de Horn (definidas): cláusula que tiene, a lo sumo, un literal positivo.
- Las cláusulas de Horn se pueden interpretar como implicaciones, con el literal positivo a la derecha del símbolo implica:

$$P(x) \lor \neg Q(x) \lor \neg R(y) \qquad \forall x \forall y (Q(x) \land R(y) \supset P(x))$$

$$P(x) \qquad \forall x (\qquad \supset P(x))$$

$$\neg Q(x) \lor \neg R(y) \qquad \forall x \forall y (Q(x) \land R(y) \supset)$$

Teorema complitud resolución por entradas (unitaria)

- Sea H una forma clausulada cuyos elementos son cláusulas de Horn.
- H es inconsistente $sii \exists S \vdash_r \Box$ utilizando la estrategia de resolución por entradas (o unitaria).

4. Procedimiento de extracción de respuesta

Procedimiento de extracción de respuesta

 Def. Extracción de respuesta mediante refutación por resolución.

Proceso de encontrar los elementos del dominio que hacen cierto el teorema a demostrar, mediante una prueba de refutación por resolución.

Preguntas

- En general, cualquier FBF.
- Por motivos prácticos, sentencias en FNP con:
 - Matriz: conjunción de literales.
 - Prefijo: sólo cuantificadores existenciales.

$$\exists x \exists y (P(x) \land Q(x, y))$$

- Interpretación.
 - La demostración se puede interpretar como la pregunta: ¿Existen substituciones de variables que hagan cierto el teorema?
- Propiedad.
 - La negación de estos teoremas da lugar a una única cláusula

$$\neg \exists x \exists y (P(x) \land Q(x, y)) = \forall x \forall y (\neg P(x) \lor \neg Q(x, y))$$

Literal respuesta

Def. Literal respuesta.

Sea P pregunta y x_1 , x_2 ,... ..., x_n las variables que ocurren en P.

Un literal respuesta para P es:

$$RES(x_1, x_2, ..., x_n)$$

- Si P es una pregunta y $RES(x_1, x_2, ..., x_n)$ su literal respuesta, la respuesta se obtiene
 - negando *P* y transformándolo a cláusulas
 - formando la disyunción de las cláusulas obtenidas en 1 con $RES(x_1, x_2, ..., x_n)$
 - buscando derivaciones de cláusulas que solo contengan literales respuestas

- Axiomas, LPO
 - $\forall x(H(x) \supset M(x))$
 - H(Socrates)
- Teorema: Pregunta
 - ∃M(x)

Axiomas, clausulas $\neg H(x) \lor M(X)$ H(Socrates)

$$\neg M(x)$$

Obtención de la respuesta I

- Axiomas, LPO
 - $\forall x(H(x) \supset M(x))$
 - H(Socrates)
- Teorema: Pregunta
 - M(Socrates)

Axiomas, clausulas $\neg H(x) \lor M(X)$ H(Socrates)

¬M(Socrates)

Obtención de la respuesta II

- Puede contener más de un literal.
- No es única:
 - Depende de la derivación que la produce.

Respuesta: más de un literal

- España o Alemania ganará el mundial.
- ¿Quién ganará el mundial?
 GANARA(España) ∨ GANARA(Alemania)
 ∃xGANARA(X)

Respuesta: depende de la refutación encontrada

Teoría:

- Juan es el padre de Luis.
- Rosa es la madre de Luis.
- El padre de una persona es uno de sus progenitores.
- La madre de una persona es uno de sus progenitores.

Pregunta:

¿Quién es el progenitor de Luis?

Respuesta: depende de la refutación encontrada

5. Demostradores de teoremas

Demostradores de teoremas

- Programas que dada Th(AP) y FBF t, intentan comprobar si $\exists AP \vdash t$
- Generalmente, aceptan FBFs de LPO como entrada.
- Generalmente basados en refutación por resolución.
- Estrategias de control para limitar búsqueda.

- Búsqueda: descenso iterativo, completa (en vez de bpp)
 - La inferencia es completa con la regla de resolución lineal y por entradas
- Negación lógica: se implementa una rutina para probar
 P y otra para probar notP.
- (Re)Introduce chequeo de ocurrencias en la unificación.

OTTER (Organized Techniques for Theorem-proving and Effective Research)

- Refutación por resolución.
- Uno de los primeros y más populares.
 - Sucesor: prover9
- Libre disposición
 - http://www.cs.unm.edu/~mccune/otter/
- Utilizado en:
 - Investigación matemática.
 - Verificación de hardware.

Entrada de OTTER

- Hechos importantes sobre el dominio (SOS, Set of Support).
- Conocimiento sobre el problema: axiomas de utilidad (Usables).
- Demoduladores: reglas de reescritura.
- Parámetros y cláusulas que definen la estrategia de control.

Procedimiento OTTER

```
Procedimiento OTTER(SOS, Usables)
entrada: SOS, Usables
repetir
cláusula ← elemento de SOS de menor peso
llevar cláusula de SOS a Usables
Procesar (Inferir (cláusula, Usables), SOS)
hasta SOS=∅ ó se ha encontrado refutación
end OTTER
```

Procedimiento OTTER

- Inferir (cláusula, Usables)
 - Resuelve cláusula con todas las de Usables
 - Filtra cláusulas
- Procesar (resolventes, SOS)
 - Estrategias simplificación.
 - Llevar cláusulas a SOS según pesos.
 - Comprobar presencia de cláusula unitaria y su complementario.