2013 Manipulator Mechanics Final Exam.

(Closed Book, No Question)

RK (36). A

1. For $\{A\} \rightarrow \{B\}$, Find transformation matrix (B^T) .

where ${}^{A}(\widehat{x_{B}}) = [0.43, -0.50, 0.75]^{T}$, ${}^{A}(\widehat{y_{B}}) = [0.25, 0.87, 0.43]^{T}$

2.

- 1) When plate ABCD is sequentially rotated by 30° about \hat{x} and rotated by 30° about \hat{y} shown in the right Fig. Answer the corresponding coordinates of C (10pts) $R_{x}(30)$.
- 2) When plate ABCD is sequentially rotated by 30° about \hat{x} and rotated by 30° about \hat{y} in Euler angle convention Answer the corresponding coordinates of D (10pts) $\chi_{\chi}(39)\chi_{\chi}(30)$. D

3) When plate ABCD is rotated by 30° about $\hat{k} = [\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}]^T$,

Answer the corresponding coordinates of A (10pts)

Equivalent angle Angle and Axis:

$$\begin{pmatrix} k_x k_x v \theta + c \theta & k_z k_y v \theta - k_z s \theta & k_x k_z v \theta + k_y s \theta \\ k_x k_y v \theta + k_z s \theta & k_y k_y v \theta + c \theta & k_y k_z v \theta - k_z s \theta \\ k_x k_z v \theta - k_y s \theta & k_y k_z v \theta + k_z s \theta & k_z k_z v \theta + c \theta \end{pmatrix}$$
 Where $c\theta = \cos \theta$, $s\theta = \sin \theta$, $v\theta = 1 - \cos \theta$, and $gK = [k_x | k_y | k_z]^T$

1) For the following PRR Manipulator, Assign the required coordinate frames, and fill out the corresponding DH parameter table. The current configuration is shown as

$en d_1 = 1 , \Theta_2$	$=30^{\circ}, \ \Theta_{3} = 90^{\circ} (20_{I})$	ots) $z_{i-1} \rightarrow z_i / \hat{x}_{i-1}$	X1-17 X1. 7.	X: . 7 V: 2.
	α_{i-1}	a_{i-1}	d_i	θ_{i}
1)	0	0	01.	D
(2)	0	Ò	da	(60+ or) A
(3)	90	. az	0 /	03
- (4) $-$	0	Ry	Ó	0

- 2) When $d_1=1$, $\Theta_2=30^\circ$, $\Theta_3=90^\circ$. Find the position of robot tip point with respect to the $\{0\}$ -coordinate frame (10pts)
- 3) When d_1 = 1 , θ_2 =30°, θ_3 = 90°, Find the Jacobian (6 by 3 matrix) ith respect to the {0}-coordinate frame.(10pts)

$$\vec{t}^{-1}T = \begin{bmatrix} c\theta_i & -s\theta_i & 0 & a_{i-1} \\ s\theta_i c\alpha_{i-1} & c\theta_i c\alpha_{i-1} & -s\alpha_{i-1} & -s\alpha_{i-1}d_i \\ s\theta_i s\alpha_{i-1} & c\theta_i s\alpha_{i-1} & c\alpha_{i-1} & c\alpha_{i-1}d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- 4. Robot Dynamic Equation is given as $\tau = M(\theta)\ddot{\theta} + V(\theta,\dot{\theta}) + G(\theta)$ For the desired joint trajectory($\theta_d(t)$),
 - 1) draw the Block diagram for Independent Joint PID control (10pts)
 - 2) draw the Block diagram of Computed torque control (10pts)
 - 3) discuss about merits and demerits of above controllers (10pts)

