## Scilab Textbook Companion for Principles of Electronics by V. K. Mehta and R. Mehta<sup>1</sup>

Created by
Kavan Patel
B.Tech
Instrumentation Engineering
Dharmsinh Desai University
College Teacher
None
Cross-Checked by
Chaitanya

July 11, 2017

<sup>&</sup>lt;sup>1</sup>Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

# **Book Description**

Title: Principles of Electronics

Author: V. K. Mehta and R. Mehta

Publisher: S.Chand, New Delhi

Edition: 9

**Year:** 2005

**ISBN:** 81-219-2450-2

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

**AP** Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

# Contents

| Lis       | st of Scilab Codes                 | 4   |
|-----------|------------------------------------|-----|
| 1         | Introduction                       | 5   |
| 2         | Electron emission                  | 15  |
| 3         | Vacuum tubes                       | 17  |
| 4         | Vacuum tube rectifiers             | 22  |
| 5         | Vacuum tube amplifiers             | 27  |
| 9         | Semiconductor diode                | 31  |
| 10        | Special purpose diodes             | 53  |
| 11        | Transistors                        | 57  |
| <b>12</b> | Transistor biasing                 | 70  |
| 13        | Single stage transistor amplifiers | 93  |
| 14        | Multistage transistor amplifiers   | 108 |
| <b>15</b> | Transistor audio power amplifiers  | 122 |
| <b>16</b> | Amplifiers with negative feedback  | 131 |
| 17        | Sinusoidal oscillations            | 144 |

| 18 Transi  | istor tuned amplifiers   | 149 |
|------------|--------------------------|-----|
| 19 Modu    | lation and demodulation  | 154 |
| 20 Regul   | ated dc power supply     | 163 |
| 21 Solid   | state switching circuits | 172 |
| 22 Field   | Effect Transistors       | 181 |
| 23 Silicon | n controlled rectifiers  | 188 |
| 24 Power   | r electronics            | 194 |
| 25 Electr  | ronic instruments        | 196 |
| 26 Integr  | rated circuits           | 203 |
| 27 Hybri   | d parameters             | 204 |
| 28 Digita  | al electronics           | 211 |

# List of Scilab Codes

| Exa 1.1  | terminal voltage | 5  |
|----------|------------------|----|
| Exa 17.1 | Example 1        | 5  |
| Exa 1.2  | Exmaple 2        | 6  |
| Exa 1.3  | Exmaple 3        | 7  |
| Exa 1.4  | Exmaple 4        | 7  |
| Exa 1.5  | Exmaple 5        | 8  |
| Exa 1.6  | Exmaple 6        | 9  |
| Exa 1.7  | Exmaple 7        | 9  |
| Exa 1.8  | Exmaple 8        | 10 |
| Exa 1.9  | Exmaple 9        | 11 |
| Exa 1.10 | Exmaple 10       | 12 |
| Exa 1.11 | Exmaple 11       | 13 |
| Exa 1.12 |                  | 14 |
| Exa 2.1  | Example 1        | 15 |
| Exa 2.2  | Example 2        | 15 |
| Exa 3.1  | Example 1        | 17 |
| Exa 3.2  | Example 2        | 17 |
| Exa 3.3  | Example 3        | 18 |
| Exa 3.4  | Example 4        | 19 |
| Exa 3.5  | Example 5        | 20 |
| Exa 4.1  | Example 1        | 22 |
| Exa 4.2  | Example 2        | 23 |
| Exa 4.3  | Example 3        | 23 |
| Exa 17.4 | Example 4        | 24 |
| Exa 4.4  | Example 4        | 25 |
| Exa 4.5  | Example 5        | 25 |
| Exa 5.1  | Example 1        | 27 |
| Eva 5.2  | Example 2        | 27 |

| Exa 5.3   | Example 3                | 28 |
|-----------|--------------------------|----|
| Exa 5.4   | Example 4                | 29 |
| Exa 5.5   | Example 5                | 30 |
| Exa 9.1   | Example 1                | 31 |
| Exa 9.2   | Example 2                | 32 |
| Exa 9.3   | Example 3                | 33 |
| Exa 9.4   | Example 4                | 33 |
| Exa 9.5   | Example 5                | 34 |
| Exa 9.6   | Example 6                | 34 |
| Exa 9.7   | Example 7                | 35 |
| Exa 9.8   | Example 8                | 36 |
| Exa 9.9   | Example 9                | 36 |
| Exa 9.10  | Example 10               | 37 |
| Exa 9.11  | Example 11               | 38 |
| Exa 9.12  | Example 12               | 38 |
| Exa 9.13  | Example 13               | 39 |
| Exa 19.14 |                          | 39 |
| Exa 9.14  | Example 14               | 40 |
| Exa 9.15  | Example 15               | 41 |
| Exa 9.16  | Example 16               | 42 |
| Exa 9.17  | Example 17               | 44 |
| Exa 9.18  | Example 18               | 44 |
| Exa 9.19  | Example 19               | 45 |
| Exa 9.20  | Example 20               | 46 |
| Exa 9.21  | Example 21               | 47 |
| Exa 9.22  | Example 22               | 48 |
| Exa 9.23  | Example 23               | 48 |
| Exa 9.24  | Example 24               | 49 |
| Exa 9.25  | Example 25               | 50 |
| Exa 9.26  | Example 26               | 50 |
| Exa 9.27  | Example 27               | 51 |
| Exa 9.28  | Example 28               | 52 |
| Exa 10.1  | required series resistor | 53 |
| Exa 10.2  | current through LED      | 53 |
| Exa 10.3  | dark resistance          | 54 |
| Exa 10.4  | reverse current          | 54 |
| Exa 10.5  | resonant frequency       | 55 |
| Exa 10.11 | base current             | 55 |

| Exa 11.1  | voltage amplification               | 57 |
|-----------|-------------------------------------|----|
| Exa 11.2  | base current                        | 57 |
| Exa 11.3  | base current                        | 58 |
| Exa 11.4  | amplification factor                | 58 |
| Exa 11.5  | collector current                   | 59 |
| Exa 11.6  | base current                        | 59 |
| Exa 11.7  | collector curent                    | 60 |
| Exa 11.8  | Example 8                           | 61 |
| Exa 11.9  | Example 9                           | 61 |
| Exa 11.10 | collector current                   | 62 |
| Exa 11.11 | base current                        | 62 |
| Exa 11.12 | collector emitter voltage           | 63 |
| Exa 11.13 | base current                        | 63 |
| Exa 11.14 | dc load line                        | 64 |
| Exa 11.15 | Q point                             | 64 |
| Exa 11.16 | collector load                      | 65 |
| Exa 11.17 | input resistance                    | 66 |
| Exa 11.18 | output resistance                   | 66 |
| Exa 11.19 | voltage gain                        | 67 |
| Exa 11.20 | saturation collector current        | 67 |
| Exa 11.21 | maximum allowable collector current | 68 |
| Exa 12.1  | circuit diagram                     | 70 |
| Exa 12.2  | maximum input signal voltage        | 71 |
| Exa 12.3  | Example 3                           | 72 |
| Exa 12.4  | Example 4                           | 73 |
| Exa 12.5  | Example 5                           | 74 |
| Exa 12.6  | Example 6                           | 74 |
| Exa 12.7  | Example 7                           | 75 |
| Exa 12.8  | Example 8                           | 76 |
| Exa 12.9  | Example 9                           | 77 |
| Exa 12.10 | base resistance                     | 78 |
| Exa 12.11 | voltage across                      | 78 |
| Exa 12.12 | thevenin.                           | 79 |
| Exa 19.12 | Example 12                          | 80 |
| Exa 12.13 | collector current                   | 81 |
| Exa 12.14 | collector emitter                   | 82 |
| Exa 12.15 | Kirchoff voltage law                | 83 |
|           | collector resistance                | 84 |

| Exa 12.17 | thevenin                             | 84  |
|-----------|--------------------------------------|-----|
| Exa 12.18 | kilo ohm                             | 85  |
| Exa 12.19 | transistor                           | 86  |
| Exa 12.20 | circuit is not mid-point biased      | 87  |
| Exa 12.21 | circuit is not mid-point biased      | 88  |
| Exa 12.22 | base current                         | 88  |
| Exa 12.23 | collector cutoff current             | 89  |
| Exa 12.24 | base current                         | 90  |
| Exa 12.25 | since base voltage is zero           | 91  |
| Exa 12.26 | voltage at base                      | 91  |
| Exa 1.1   | collector current                    | 93  |
| Exa 1.2   | Thevenin circuit                     | 94  |
| Exa 13.3  | the operating point                  | 95  |
| Exa 13.4  | maximum collector                    | 96  |
| Exa 13.5  | plot                                 | 98  |
| Exa 13.6  | voltage gain                         | 99  |
| Exa 13.7  | output voltage                       | 100 |
| Exa 13.8  | input impedence                      | 100 |
| Exa 13.9  | output voltage                       | 101 |
| Exa 13.10 | circuit                              | 102 |
| Exa 13.11 | ac emitter resistance                | 102 |
| Exa 13.12 | voltage gain                         | 103 |
| Exa 13.13 | voltage gain                         | 103 |
| Exa 13.14 | input impedence of amplifier circuit | 104 |
| Exa 13.15 | Class A                              | 105 |
| Exa 13.16 | required input signal voltag         | 105 |
| Exa 13.17 | magnitude of output voltage          | 106 |
| Exa 13.18 | required signal voltage              | 107 |
| Exa 14.1  | gain                                 | 108 |
| Exa 14.2  | gain                                 | 108 |
| Exa 14.3  | total voltage gain                   | 109 |
| Exa 14.4  | Example 4                            | 109 |
| Exa 14.5  | Example 5                            | 110 |
| Exa 14.6  | output voltage                       | 110 |
| Exa 14.7  | minimum value of load resistance     | 111 |
| Exa 14.8  | output voltage                       | 112 |
| Exa 14.9  | frequency                            | 112 |
| Exa 14.10 |                                      | 113 |

| Exa 14.11 | gain                                                |
|-----------|-----------------------------------------------------|
| Exa 14.12 | voltage gain                                        |
| Exa 14.13 | biasing potential                                   |
| Exa 14.14 | voltage gain                                        |
| Exa 14.15 | transformer                                         |
| Exa 14.16 | voltage across external load                        |
| Exa 14.17 | turn ratio for maximum power transfer               |
| Exa 14.18 | inductance                                          |
| Exa 14.19 | inductance                                          |
| Exa 15.1  | maximum collector current                           |
| Exa 15.2  | maximum collector current                           |
| Exa 15.3  | ac output                                           |
| Exa 15.4  | collector efficiency                                |
| Exa 15.5  | collector efficiency                                |
| Exa 15.6  | maximum ac power output                             |
| Exa 15.7  | power dissipation                                   |
| Exa 15.8  | loudspeaker                                         |
| Exa 15.9  | current                                             |
| Exa 15.10 | maximum ambient temperature at which transistor can |
|           | be operated                                         |
| Exa 15.11 | maximum power dissipation                           |
| Exa 15.12 | allowed collector current                           |
| Exa 16.1  | voltge gain with negative feedback                  |
| Exa 12.2  | fraction of output fed back to input                |
| Exa 16.3  | overall gain                                        |
| Exa 16.4  | fraction of output fed back to input                |
| Exa 16.5  | percentage reduction in gain                        |
| Exa 16.6  | percentage change in gain                           |
| Exa 16.7  | voltage gain with negative feedback                 |
| Exa 16.8  | voltage gain with negative feedback                 |
| Exa 16.9  | Example 9                                           |
| Exa 16.10 | distortion of amplifier with negative feedback 136  |
| Exa 16.11 | cutoff frequency with negative feedback 137         |
| Exa 16.12 | effective current gain of amplifier                 |
| Exa 16.13 | input impedence with negative feedback              |
| Exa 16.14 | output impedence with negative feedback 139         |
| Exa 16.15 | Bandwidth with negative feedback                    |
| Eva 16 16 | voltage across                                      |

| Exa 16.17 | voltage gain                      | 10         |
|-----------|-----------------------------------|------------|
| Exa 16.18 | voltage gain                      | 1          |
| Exa 16.19 | input impedence                   | 1          |
| Exa 16.20 | output impedence                  | 2          |
| Exa 17.1  | frequency of oscillations         | 4          |
| Exa 17.2  | operating frequency               | 4          |
| Exa 17.3  | feedback function                 | 15         |
| Exa 17.4  | frequency of oscillations         | 6          |
| Exa 17.5  | frequency of oscillations         | 6          |
| Exa 17.6  | thickness of crystal              | 17         |
| Exa 17.7  | resonant frequency                | 17         |
| Exa 18.1  | impedence of circuit at resonance | 19         |
| Exa 18.2  | circuit                           | 9          |
| Exa 18.3  | frequency                         | 0          |
| Exa 18.4  | frequency                         | 1          |
| Exa 18.5  | co-efficient of coupling          | 1          |
| Exa 18.6  | ac load                           | i2         |
| Exa 18.7  | load                              | 3          |
| Exa 19.1  | Vmax&Vmin                         | 4          |
| Exa 19.2  | modulation factor                 | 4          |
| Exa 19.3  | modulation factor                 | 5          |
| Exa 19.4  | Bandwidth for RF amplifier        | 5          |
| Exa 19.5  | amplitudes of components          | 6          |
| Exa 19.6  | amplitude of each sideband term   | 7          |
| Exa 19.7  | power of modulated wave           | 8          |
| Exa 19.8  | sideband power                    | 8          |
| Exa 19.9  | modulating signal                 | 9          |
| Exa 19.10 | frequencie & bandwith             | 9          |
| Exa 19.11 | antenna current                   | 60         |
| Exa 19.12 | modulation factor                 | 60         |
| Exa 19.13 | modulation factor                 | 1          |
| Exa 19.14 | AM wave                           | ;1         |
| Exa 20.1  | regulation                        | 3          |
| Exa 20.2  | full load voltage                 | 3          |
| Exa 20.3  | regulation for power              | <b>j</b> 4 |
| Exa 20.4  | minimum load resistance           | 5          |
| Exa 20.5  | maximum zener current             | 5          |
| Exa 20.6  | required series resistance        | 6          |

| Exa 20.7  | load voltage & current                  | 67 |
|-----------|-----------------------------------------|----|
| Exa 20.8  |                                         | 67 |
| Exa 20.9  | Zener diode                             | 68 |
| Exa 20.10 |                                         | 69 |
| Exa 20.11 | closed loop voltage gain                | 70 |
| Exa 20.12 | collector current                       | 70 |
| Exa 21.1  | voltage required to saturate transistor | 72 |
| Exa 21.2  | square wave                             | 72 |
| Exa 21.3  | differentiating circuit                 | 73 |
| Exa 21.4  | output voltage                          | 73 |
| Exa 21.5  | plotting input and output waveforms 17  | 74 |
| Exa 21.6  | plotting input and output waveforms     | 75 |
| Exa 21.7  | plotting input and output waveforms     | 76 |
| Exa 21.8  | plotting input and output waveforms     | 76 |
| Exa 21.9  | empty                                   | 78 |
| Exa 21.10 | plot input and output waveforms         | 78 |
| Exa 21.11 | plot input and output waveforms         | 79 |
| Exa 22.1  | Id                                      | 31 |
| Exa 22.2  | drain current                           | 31 |
| Exa 22.3  | pinch off voltage                       | 32 |
| Exa 22.4  | gate source resistance                  | 32 |
| Exa 22.5  | transconductance                        | 33 |
| Exa 22.6  | amplification factor                    | 33 |
| Exa 22.7  | Kirchoff's law                          | 34 |
| Exa 22.8  | required value of Rs                    | 35 |
| Exa 22.9  |                                         | 36 |
| Exa 22.10 | Vds                                     | 86 |
| Exa 22.11 | dc voltage of drain                     | 37 |
| Exa 23.1  | Breakover voltage                       | 88 |
| Exa 23.2  | rating                                  | 39 |
| Exa 23.3  | maximum allowable duration of surge     | 39 |
| Exa 23.4  | average current                         | 90 |
| Exa 23.5  | power output                            | 91 |
| Exa 23.6  | forward breakdown voltage               | 91 |
| Exa 23.7  |                                         | 92 |
| Exa 24.1  |                                         | 94 |
| Exa 24.2  |                                         | 94 |
| Exa. 25.1 |                                         | 96 |

| Exa 25.2   | equivalent resistance of meter         | 196 |
|------------|----------------------------------------|-----|
| Exa 25.3   | voltage read by multimeter             | 197 |
| Exa 25.4   | voltage read by multimete              | 198 |
| Exa 25.5   | resistance of voltmeter                | 198 |
| Exa 25.6   | spot shift                             | 200 |
| Exa 25.7   | applied voltage                        | 200 |
| Exa 25.8   | unknown voltage                        | 201 |
| Exa 25.9   | ratio of fv to fh                      | 201 |
| Exa 26.1   | regulated dc output voltage            | 203 |
| Exa 27.1   | ratio                                  | 204 |
| Exa 27.2   | impedence                              | 205 |
| Exa 27.3   | voltage gain of circuit                | 206 |
| Exa 27.4   | approximate current gain               | 207 |
| Exa 27.5   | input impedence                        | 208 |
| Exa 27.6   | voltage gain                           | 208 |
| Exa 27.7   | micro mho                              | 209 |
| Exa 28.1   | binary equivalent of decimal number 37 | 211 |
| Exa 28.2   | binary equivalent of decimal number 23 | 211 |
| Exa 28.3   | equivalent decimal of binary 110001    | 212 |
| Exa 28.4   | page598                                | 212 |
| Exa 28.5   | page598                                | 213 |
| Exa 28.6   | factorize                              | 213 |
| Exa 28.7   | Apply cumulative law and theorem       | 214 |
| Exa 28.8   | Based on theorem 16 & 3                | 215 |
| Exa 28.9   | Using De Morgan theore                 | 216 |
| Exa 28.10  | De Morgan theorem                      | 216 |
| Exa 28.11  | De Morgan theorem                      | 217 |
| Exa 28.12  | theorem                                | 218 |
| Exa. 28 13 | theorem                                | 218 |

### Introduction

### Scilab code Exa 1.1 terminal voltage

Scilab code Exa 17.1 Example 1

```
1 //chapter17
2 //example17.1
3 //page375
4
5 L1=58.6d-6 // H
6 C1=300d-12 // F
7
8 f=1/(2*%pi*(L1*C1)^0.5)
9 printf("frequency of oscillations = %.3 f Hz or %.3 f kHz",f,f/1000)
10
11 // in book the answer is 1199 kHz but the accurate answer is 1200.358 kHz
```

### Scilab code Exa 1.2 Exmaple 2

```
1 //chapter1
2 // example 1.2
3 / page 10
4
5 \text{ Eg=500} // \text{ V}
6 Ri = 1000 // ohm
8 // \text{ for Rl} = 10 \text{ ohm}
9 Rl1=10 // ohm
10 I1=Eg/(Rl1+Ri)
11 printf("load current for Rl=10ohm is \%.3 \, f \, A \, n", I1)
12
13 // \text{ for Rl} = 10 \text{ ohm}
14 R12=50 // ohm
15 I2=Eg/(R12+Ri)
16 printf ("load current for Rl=50ohm is \%.3 \, f \, A \, n", I2)
17
18 // \text{ for Rl} = 10 \text{ ohm}
19 R13=100 // ohm
```

```
20 I3=Eg/(R13+Ri)
21 printf("load current for Rl=100ohm is %.3 f A", I3)
```

#### Scilab code Exa 1.3 Exmaple 3

```
1 //chapter1
2 // example 1.3
3 //page11
5 V=10 // V
6 R=10 // ohm
 I=V/R // calculate short-circuit current by shorting
  printf("equivalent current source has magnitude = %
     .3 f A",I)
10
11 // no load is connected across AB and 10V source has
      negligible resistance
12 // so resistance across AB is 10 ohm
13
14 // the constant voltage source when converted to
     constant current source will thus have a source
     of 1A in parallel with resistor of 10 ohm
```

#### Scilab code Exa 1.4 Exmaple 4

```
1 //chapter1
2 //example1.4
3 //page12
4
5 I=6 // mA
6 R=2 // kilo ohm
```

#### Scilab code Exa 1.5 Exmaple 5

```
1 //chapter1
2 // example 1.5
3 / page 13
4
5 E = 200 // V
6 Ri=100 // ohm
8 R1=100 // for load=100ohm
9 I=E/(Ri+R1)
10 Pl=I^2*Rl
11 Pt=I^2*(R1+Ri)
12 efficiency=(P1/Pt)*100
13 printf("for load=100 ohm, power delivered to load= %
      .3 f W and efficiency=\%.3 f percentage \n \n",Pl,
      efficiency)
14
15 R1=300 // \text{for load} = 300 \text{ohm}
16 I=E/(Ri+R1)
17 Pl=I^2*R1
18 Pt=I^2*(Rl+Ri)
19 efficiency=(P1/Pt)*100
20 printf ("for load=300 ohm, power delivered to load= \%
      .3 f W and efficiency=\%.3 f percentage \n \n",Pl,
      efficiency)
21
```

```
22 printf("comment: \n ")
23 printf("if load resistance is equal to internal
    resistance, maximum power is \n transferred but
    efficiency is low \n ")
24 printf("if load resistance is more than internal
    resistance, power transferred \n is less but
    efficiency is high")
```

### Scilab code Exa 1.6 Exmaple 6

```
1 //chapter1
2 //example1.6
3 / page 14
5 //for maximum power transfer, resistance of load and
       amplifier should match
6 //so we take load=15 ohm
8 Rl=15 // ohm
9 Ri=15 // ohm
10 \ V = 12 \ // \ V
11
12 Rt=R1+Ri
13 I = V/Rt
14 P=I^2*R1
15
16 printf("for maximum power transfer load must equal
      amplifier resistance \nso required load = \%d ohm\
      n \setminus n, R1)
17 printf ("power delivered to load = \%.3 \text{ f W}", P)
```

#### Scilab code Exa 1.7 Exmaple 7

```
1 //chapter1
2 // example 1.7
3 / page 14
5 V = 50 / V
6 Rl = 100 // ohm
7 \text{ Zi} = 100 + 50 * \%i
  //for maximum power transfer load impedence should
      be conjugate of internal resistance so
  Z1=100-50*%i
10
11 Zt = Zi + Z1
12 I=V/Zt
13 P=I^2*R1
14
15 printf("load for maximum power (in ohms)=")
16 disp(Z1)
17
18 printf("maximum power transferred to load=%.3 f W",P)
```

#### Scilab code Exa 1.8 Exmaple 8

```
1  //chapter1
2  //example1.8
3  //page21
4
5  R=8  // ohm
6  R1=10  // ohm
7  R2=20  // ohm
8  R3=12  // ohm
9  //removing 100 ohm resistance, we form linear equations by assuming currents I1 through loop1 and I2 through loop2
10
11  //100=10*I1+20*(I1-I2)
```

```
12 / 0 = (12+8) * I2 + 20 * (I2-I1)
13
14 //thus we get the following linear equations
15
16 //30*I1 - 20*I2 = 100
17 // -20*I1 + 40*I2 = 0
18 //solving these equations
19
20 a = [30 -20; -20 40]
21 b=[100;0]
22 x=inv(a)*b // matrix of I1 and I2
24 I2=x(2,1) // current through 8 ohm resistor
25
26 E0 = I2 * R
27 printf("voltage across AB with 100 ohm resistance
      not connected = \%.3 \, f \, V \, n, E0)
28
29 R_{equi} = (R1*R2/(R1+R2))+R3
30 R0=R_equi*R/(R_equi+R)
31 printf("resistance between AB with 100 ohm removed
      and voltage source shorted = \%.3 \, \text{f} ohm \n",R0)
32
33 I = EO / (RO + R1)
34 printf("current through 100 ohm resistor = \%.3 \, \mathrm{f} A",I
```

#### Scilab code Exa 1.9 Exmaple 9

```
1  // chapter1
2  // exzmple1.8
3  // page16
4
5  R1=1 // kilo ohm
6  R2=1 // kilo ohm
```

### Scilab code Exa 1.10 Exmaple 10

```
1 //chapter1
2 //example1.10
3 //page18
5 V = 120 // V
6 R1 = 40 // ohm
7 R2=20 // ohm
8 R3 = 60 // ohm
10 //removing load, voltage across AB is
11 E0=R2*V/(R1+R2)
12
13 //replacing voltage source by short and removing
     load, resistance across AB is
14 R0=R3+(R1*R2/(R1+R2))
15
16 //for maximum power transfer, load must be equal to
      resistance across AB so
17 Rl = RO
18
```

### Scilab code Exa 1.11 Exmaple 11

```
1 //chapter1
2 //example1.11
3 / page 20
5 R1=4 // ohm
6 R2=6 // ohm
7 R3=5 // ohm
8 R4=8 // ohm
9 V = 40 / V
10
11 // load is removed and A and B are shorted
12 load_source=R1+(R2*R3/(R2+R3))
13 source_current=V/load_source
14
15 norton_current=source_current*(R2/(R2+R3)) // short
      circuit current in AB
16
17 printf ("shortcircuit current in AB = \%.3 f A \n",
     norton_current)
18
19 // load is removed and battery is replaced by a
      short
20 norton_resistance=R3+(R1*R2/(R1+R2))
21 printf("norton resistance= \%.3 \, \text{f ohm } \n",
     norton_resistance)
22
23 // equivalent circuit is norton current source in
      parallel with norton resistance
```

### Scilab code Exa 1.12 Exmaple 12

```
1 // chapter 1
2 // example 1.12
3 // page 21
4
5 printf("To find Norton equivalent circuit we need to find \nNorton current I_N and Norton resistance R_N \n \n")
6 printf("If Thevenin resistance = Ro and Thevenin voltage = Eo then \n \n")
7 printf("To convert Thevenin circuit to Norton circuit, \n")
8 printf("I_N=Eo/Ro and R_N=Ro \n \n")
9 printf("To convert Norton circuit to Thevenin circuit, \n")
10 printf("Eo=I_N*R_N and Ro=R_N \n")
```

### Electron emission

### Scilab code Exa 2.1 Example 1

```
1 // chapter 2
2 //example 2.1
3 //page 29
5 A=60.2d4 // ampere per square m per square kelvin
6 T=2500 // kelvin
7 phi=4.517 // eV
8 \ d=0.01d-2 \ // m
9 \ 1=5d-2 \ // m
10
11 b=11600*phi
12 Js=A*T^2*exp(-b/T)
13 \ a = \%pi * d * 1
14
15 emission_current=Js*a
16
17 printf("emission current=%f A", emission_current)
```

Scilab code Exa 2.2 Example 2

```
1 // Chapter 2
2 // example 2.2
3 // page 29
4 Js=0.1 // ampere per square cm
5 A=60.2 // ampere per square cm per square kelvin
6 T=1900 // kelvin
8 // Js=A*T^2*exp(-b/T) so b=-T*log(Js/(A*T^2))
10 b=-T*log(Js/(A*T^2))
11
12 // b=11600*phi so making phi as subject
13
14 phi=b/11600
15
16 printf ("work function=\%f eV \n", phi)
17 // the accurate answer is 3.521466
18 // but in the book it is mistakenly written as 3.56
19
20 \text{ if} (2.63 < \text{phi & phi} < 4.52)
        printf("thoriated tungsten has work function
21
           between 2.63eV to 4.52eV.\nSo sample is
           likely to be thoriated tingsten")
22 elseif (phi <= 2.63 | phi > 4.52)
            printf("tungsten is contaminated") // for
23
               pure tungsten, phi must be 4.52 exactly
24 else
       printf("tungsten is pure") // phi=4.52 implies
25
          tungsten is pure
26 \, \text{end}
27
28 // please note that there is error in the answer of
      work function phi in the book
29 // The correct answer is 3.521466 eV and not 3.56 eV
```

### Vacuum tubes

### Scilab code Exa 3.1 Example 1

```
1 //chapter3
2 //example3.1
3 //page41
4
5 Ib1=10 // mA
6 Eb1=100 // V
7 Ib2=20 // mA
8
9 // Ib is proportional to Eb^(3/2)
10 // so we can say Ib1/Ib2 = Eb1^1.5/Eb2^1.5
11 //thus we can write
12
13 log_Eb2=(2/3)*log(Eb1^1.5*Ib2/Ib1)
14 Eb2=exp(log_Eb2)
15 printf("required plate voltage = %.3 f V",Eb2)
```

Scilab code Exa 3.2 Example 2

```
1 //chapter3
2 //example3.2
3 //page49
4
5 mu=20
6 rp=8000 // ohm
7
8 gm=mu/rp // since mu=rp*gm
9 gm_micro=gm*10^6 //micro mho
10 printf("mutual conductance of triode = %f mho or %.3 f micro mho", gm, gm_micro)
```

### Scilab code Exa 3.3 Example 3

```
1 //chapter3
2 //example3.3
3 / page 49
5 // for constant Ec=-1.5
6 Eb1=100 // V
7 Eb2=150 // V
8 Ib1=7.5d-3 // A
9 lb2=12d-3 // A
10
11 Eb_diff=Eb2-Eb1
12 Ib_diff=Ib2-Ib1
13
14 rp=Eb_diff/Ib_diff
15 rp_kilo_ohm=rp/10^3 //kilo_ohm
16
17 printf("plate resistance = \%.3 f ohm or \%.3 f kilo ohm
       \n",rp,rp_kilo_ohm)
18
19 // for constant Eb=150
20 Ib1=5d-3 // A
```

```
21 \text{ Ib2=12d-3} // A
22 \text{ Ec1} = -3 // V
23 \text{ Ec2} = -1.5 // v
24
25 Ib_diff=Ib2-Ib1
26 Ec_diff=Ec2-Ec1
27
28 gm=Ib_diff/Ec_diff
29 gm_micro_mho=gm*10^6 //micro mho
30 printf("mutual conductance=%.3 f mho or %.3 f micro
      mho \ \ n", gm, gm_micro_mho)
31
32 \text{ mu=rp*gm}
33 printf("amplification factor = \%.3 \, \text{f}", mu)
34
35 //in book the answer of amplification factor i.e.
      51.852 is rounded off to 52
```

### Scilab code Exa 3.4 Example 4

```
1  //chapter3
2  //example3.4
3  //page50
4
5  Eb=250  // V
6  Ec=-3  // V
7
8  // given that Ib=0.003*(Eb+30*Ec)^1.5 mA
9  // differentiating w.r.t Ec with Eb=constant, we get
10  gm=0.003*1.5*(Eb+30*Ec)^0.5*30*10^-3
11  mutual_inductance_micro=gm*10^6
12
13  printf("mutual conductance = %f mho or %.3 f micro mho \n",gm,mutual_inductance_micro)
```

```
15 // differentiating given equation w.r.t Ec with Ib=
      constant, we get
16 \ // \ 0=0.003*10^{-3}*1.5*(Eb+Ec)^{1.5*(mu+30)} where mu is
       equal to ratio of changes in Eb and Ec i.e.
      amplification factor
17 // thus mu+30=0 hence we get
18 \, \text{mu} = -30
       printf("here negative sign of amplification
19
           factor indicates that Eb and Ec are in
           opposite direction. n n")
20 // here we need not worry as to if mu may be
      positive because the equation given in problem
      statement will always give mu+30=0 i.e. mu=-30
21
22 printf ("amplification factor = \%.3 \,\mathrm{f} \, \mathrm{n}", mu)
23
24 rp=mu/gm
25 if rp<0
              // rp can not be negative
       rp=-rp
26
27 end
28
29 printf("plate resistance = \%.3 \, \text{f ohm } \text{n}",rp)
30
31 //in book, the answers are less accurate. The
      accurate answers are
32 // gm = 1707.630 micro mho
33 // plate resistance = 17568.209 ohm
```

### Scilab code Exa 3.5 Example 5

```
1 //chapter3
2 //example3.5
3 //page58
4
5 // use of Rsg = to obtain desired potential on
```

```
screen grid since it is connected between power
      supply and screen grid
6 // use of Csg = to provide ac grounding for the
      screen
8 \text{ Ebb} = 300 // V
9 Ib = 10d - 3 // A
10 R1=4.7d3 // ohm
11 Rk=68 // ohm
12 Isg=3d-3 // A
13 Vsg=150 // V
14
15 cathode_voltage=Ebb-(Ib*R1)
16 grid_cathode_bias=-Rk*(Ib+Isg) // since current
      through cathode resistance is Ib+Isg
17 Rsg=(Ebb-Vsg)/Isg // since plate supply voltage =
      grid voltage + drop across Rsg
18 Rsg_kilo_ohm=Rsg/10^3 // in kilo ohm
19
20 printf("zero signal plate cathode voltage = \%.3 \,\mathrm{f} V \
      n", cathode_voltage)
21 printf("grid cathode bias = \%.3 \, f \, V \, n",
      grid_cathode_bias)
22 printf ("Resistor Rsg = \%.3 f ohm or \%.3 f kilo ohm \n"
      , Rsg, Rsg_kilo_ohm)
```

### Vacuum tube rectifiers

### Scilab code Exa 4.1 Example 1

```
1 //chapter4
2 // example 4.1
3 / page 68
5 rp=300 // ohm
6 R1 = 1200 // ohm
8 Vm = 200 * 2^0.5 / V
9 \text{ Im=Vm/(rp+R1)}
10 Idc=Im/%pi // in ampere
11 Idc_mA = Idc*1000 // in mA
12 Irms = Im/2
13 Irms_mA = Irms *1000
14 \, \text{Pdc=Idc^2*Rl}
15 \text{ Pac=Irms}^2*(rp+R1)
16 efficiency=(Pdc/Pac)*100
17
18 printf("dc current = \%.3 \, f A or \%.3 \, f mA \n", Idc,
       Idc_mA)
19 printf("rms current = \%.3 \, f A or \%.3 \, f mA \n", Irms,
       Irms_mA)
```

### Scilab code Exa 4.2 Example 2

```
1 //chapter4
2 // example 4.2
3 //page68
5 rp=200 // ohm
6 R1=800 // ohm
7 Edc=100 // V
8
9 // if maximum ac voltage required=Vm then
10 // Edc=Idc*Rl i.e. Edc=Vm*Rl/(\%pi*(rp+Rl))
11 // thus
12
13 Vm = Edc * \%pi * (rp + R1) / R1
14 efficiency = (0.406/(1+(rp/R1)))*100
15
16 printf ("required ac voltage = \%.3 \, \text{f V } \text{n}", Vm)
17 printf ("rectification efficiency = \%.3 f percentage",
      efficiency)
```

### Scilab code Exa 4.3 Example 3

```
1 //chapter4
2 //example4.3
3 //page69
```

```
5 \text{ Vm} = 1000 // \text{ V}
6 rp=500 // ohm
7 R1 = 4500 // ohm
8
9 Im=Vm/(rp+Rl) // in A
10 Idc=Im/%pi // in A
11 Idc_mA = Idc*1000 // in mA
12 Irms=Im/2 // since ac current is equal to rms
      current
13 Irms_mA=Irms*1000 // in mA
14 W=Irms^2*(rp+R1) // in watts
16 printf("dc ammeter reading = \%.3 f A or \%.3 f mA \n",
      Idc,Idc_mA)
17 printf ("reading of ac ammeter = \%.3 \, f A or \%.3 \, f mA \n
      ", Irms, Irms_mA)
18 printf ("reading of wattmeter = \%.3 \, \text{f W}', W)
```

### Scilab code Exa 17.4 Example 4

```
1 //chapter17
2 //example17.4
3 //page381
4
5 R=1d6 // ohm
6 C=68d-12 // F
7
8 fo=1/(2*%pi*R*C*(6)^0.5)
9 printf("frequency of oscillations = %.3 f Hz",fo)
10
11 // in book the answer given is 954 Hz but the accurate answer is 955.511 Hz
```

### Scilab code Exa 4.4 Example 4

```
1 //chapter4
2 // example 4.4
3 / page 74
5 \text{ Vs} = 300 // \text{ V}
6 rp=500 // ohm
7 R1 = 2000 // ohm
8 Vm = Vs *2^0.5 // in V
9 Im=Vm/(rp+R1) // A
10 Idc=2*Im/\%pi/A
11 Pdc=Idc^2*Rl // W
12 Irms=Im/2^0.5 //A
13 Pac=Irms^2*(rp+R1) // W
14 efficiency=(Pdc/Pac)*100
15
16 printf("dc power output = \%.3 \text{ f W } \text{n}", Pdc)
17 printf("ac power input = \%.3 \, f \, W \, n", Pac)
18 printf ("efficiency = \%.2 \, \text{f} percentage", efficiency)
```

#### Scilab code Exa 4.5 Example 5

```
1 //chapter4
2 //example4.5
3 //page74
4
5 Vm=1000 // V
6 rp=500 // ohm
7 Rl=4500 // ohm
8
9 Im=Vm/(rp+Rl) // in ampere
10 Idc=2*Im/%pi // in ampere
11 Idc_mA=Idc*1000 // in mA
12 Iac=Im/2^0.5 // in ampere
```

# Vacuum tube amplifiers

### Scilab code Exa 5.1 Example 1

```
1  // chspter5
2  // example5.1
3  // page85
4
5  mu=20
6  rp=10  // kilo ohm
7  Rl=15  // kilo ohm
8
9  Av=mu*R1/(rp+R1)
10
11  printf("voltage gain = %.3f", Av)
```

### Scilab code Exa 5.2 Example 2

```
1 //chspter5
2 //example5.2
3 //page85
```

```
5 \, \text{mu} = 20
6 rp=10 // kilo ohm
7 Rl=15 // kilo ohm
8 \text{ Eg=3} // V
9
10 // the diagram in book is for understanding only.
      Also we do not have a block of "triode" in scilab
        xcos. The figure is not required to solve the
      problem.
11
12 Av=mu*R1/(rp+R1)
13 Ip=(mu*Eg/2^0.5)/(rp+R1)
14 V_out=Ip*R1
15
16 printf ("voltage gain = \%.3 \, \text{f} \, \text{n}", Av)
17 printf("load current = \%.3 \, \text{f mA } \setminus \text{n}", Ip)
18 printf("output voltage = \%.3 \, f \, V", V_{out})
19
20 // the accurate answer for output voltage is 25.456\mathrm{V}
        but in book it is given as 25.35V
```

#### Scilab code Exa 5.3 Example 3

```
1  //chapter5
2  //example5.3
3  //page85
4
5  // for Rl=50, Av=30
6  //for Rl=85, Av=34
7
8  // Av=mu*Rl/(rp+Rl)
9  // thus
10  // Av*rp-mu*Rl=-Av*rl
11  // substituting for Rl=50 and Rl=85 we get the following linaer equations
```

```
12
13 // 30*rp - 50*mu = -1500 and
14 // 34*rp -85*mu = -2890
15 // solving by matrix
16
17 a = [30 34 ; -50 -85]
18 b = [-1500 -2890]
19 solution=b/a
20 \text{ mu=solution}(1,2)
21 rp=solution(1,1) // in kilo ohms since RL was in
       kilo ohm in the equations
22
23 gm_kilo_mho=mu/rp
24 \text{ gm=gm\_kilo\_mho/1000}
25 printf("mu = \%.3 f \ n", mu)
26 printf("rp = \%.3 \, \text{f} kilo ohm \n",rp)
27 printf("gm = \%.4 \text{ f mho } \n",gm)
```

## Scilab code Exa 5.4 Example 4

```
1 //chapter5
2 //example5.4
3 //page86
4
5 mu=6
6 Eg=9 // V
7 rp=2400 // ohm
8 R1=3000 // ohm
9
10 Ip=mu*Eg/(rp+R1) // A
11 power=Ip^2*R1 // W
12
13 printf("ac power in load = %.3 f W", power)
```

#### Scilab code Exa 5.5 Example 5

```
1 //chapter5
2 // example 5.5
3 / page 95
5 rp=1000 // ohm
6 \text{ Rl=10} // \text{ohm}
7 \text{ Eg=8} // V
8 \text{ mu} = 20
10 // the diagram in book is for understanding only.
      Also we do not have a block of "triode" in scilab
       xcos. The figure is not required to solve the
      problem.
11 // however, the equivalent circuit has been drawn in
       xcos for reference.
12
13 // since rp=n^2*Rl for maximum power transfer so
14 n = (rp/R1)^0.5
15
16 // P_max=Ip^2*RE where Ip=mu*Eg/(rp+RE) and RE=rp
17 // thus
18 P_{max}=((mu*Eg)^2)/(4*rp)
19
20 printf ("transformation ratio n = \%.2 f \ n",n)
21 printf("power supplied to speaker when signal is 8V
      rms is = \%.3 \, f \, W, P_max)
```

## Chapter 9

## Semiconductor diode

## Scilab code Exa 9.1 Example 1

```
1 / chapter 9
2 // example 9.1
3 / page142
5 printf("in fig. (i), the conventional current coming
      out of battery flows in the \nbranch circuits.
     In diode D1, the conventional current flows in the
      \ndirection of arrowhead and hence this diode is
      forward biased. \nHowever in diode D2, the
     conventional current flows opposite \nto
     arrowhead and hence this diode is reverse biased
     . \ n \ n")
6 printf("in fig. (ii), During the positive half cycle
      of input ac voltage, the \nconventional current
     flows in the direction of arrowhead and hence
     diode \nis forward biased. However, during the
     negative half cycle \nof input ac voltage, the
     diode is reverse biased.\n \n")
7 printf("in fig. (iii), During the positive half
     cycle of input ac voltage, the \nconventional
     current flows in the direction of arrowhead in D1
```

but it flows \nopposite to arrowhead in D2. So during positive half cycle, \ndiode D1 is forward biased and diode D2 is reverse biased. \nHowever in the negative half cycle of the input ac voltage, diode D2 \nis forward biased and diode D1 is reverse biased.\n \n")

8 printf("in fig. (iv), During the positive half cycle of input ac voltage, \nboth diodes are reverse biased. However in the negative half cycle of the \ninput ac voltage, both diodes are forward biased.\n \n")

### Scilab code Exa 9.2 Example 2

```
1 //chapter9
2 // example 9.2
3 / page 145
5 \text{ Vi_p=20} // \text{V}
6 \text{ rf} = 10 // \text{ ohm}
7 \text{ R1} = 500 // \text{ ohm}
8 \text{ Vo} = 0.7 // \text{ V}
9 \text{ Vin=20} // V
10
  // peak current through diode will occur when Vin=Vf
11
        SO
12 Vf = Vin
13 // since Vf=Vo+If_peak(rf+Rl) making If_peak as
       subject we get
14 If_peak1=(Vf-Vo)/(rf+Rl) // in ampere
15 Vout_peak1=If_peak1*Rl
16
17 // for ideal diode, Vo=0 and rf=0 so
18 // Vf = If_peak*Rl so we get
19 If_peak2=Vf/Rl // in ampere
```

```
20 Vout_peak2=If_peak2*Rl
21
22 printf("peak current through given diode = %.3 f mA
          and peak output voltage = %.3 f V \n", If_peak1
          *1000, Vout_peak1)
23 printf("peak current through ideal diode = %.3 f mA
          and peak output voltage = %.3 f V \n", If_peak2
          *1000, Vout_peak2)
```

## Scilab code Exa 9.3 Example 3

```
1  //chapter9
2  //example9.3
3  //page146
4
5  R1=50  // ohm
6  R2=5  // ohm
7  V=10  // V
8
9  Eo=V*R2/(R1+R2)  // thevenin voltage
10  Ro=R1*R2/(R1+R2)  // thevenin resistance
11  I_D=Eo/Ro  // current through diode in ampere
12
13  printf("current through diode = %.3 f mA \n", I_D
     *1000)
```

#### Scilab code Exa 9.4 Example 4

```
1 //chapter9
2 //example9.4
3 //page146
4
5 V=10 // V
```

```
6  V_D1=0.7 // V
7  V_D2=0.7 // V
8  R=48 // ohm
9  R_D1=1 // ohm
10  R_D2=1 // ohm
11
12 // D1 and D3 are forward biased while D2 and D4 are reverse biased thus
13  V_net=V-V_D1-V_D2
14  R_t=R_D1+R+R_D2
15  I=V_net/R_t
16
17  printf("circuit current = %.3 f mA \n", I*1000)
```

## Scilab code Exa 9.5 Example 5

```
1 //chapter9
2 //example9.5
3 //page147
4
5 E1=24 // V
6 E2=4 // V
7 Vo=0.7 // V
8 R=2 // kilo ohm
9
10 // diode D1 is forward biased and diode D2 is reverse biased so
11 I=(E1-E2-Vo)/R
12
13 printf("current in the circuit = %.3 f mA \n",I)
```

#### Scilab code Exa 9.6 Example 6

```
1 //chapter9
2 //example9.6
3 //page147
4
5 V=20 // V
6 V_D_Ge=0.3 // V
7
8 // when voltage is applied, Ge diode turns on first and 0.3 V is maintained across circuit so Si diode never turns on. So
9 V_A=V-V_D_Ge
10
11 printf("voltage V_A at point A = %.3f V \n", V_A)
```

## Scilab code Exa 9.7 Example 7

```
1 //chapter9
2 // example 9.7
3 //page148
4
5 V = 10 / V
6 V_D = 0.7 / V
7 R_BC=2 // kilo ohm
8 R=2 // kilo ohm
10 // by Kirchoff voltage law we get
11 // -V_D-I_D*R_BC-2*I_D*R+V=0 thus making I_D as
      subject we get
12 I_D = (V - V_D) / (R_BC + 2 * R)
13 V_Q = 2 * I_D * R
14
15 printf("I_D = \%.3 f mA \n", I_D)
16 printf("V_Q = \%.3 f V n", V_Q)
```

## Scilab code Exa 9.8 Example 8

```
1  //chapter9
2  //example9.8
3  //page148
4
5  V=15  //  V
6  R=0.5  //  kilo ohm
7  V_D=0.7  //  V
8
9  // both diodes are forward biased
10
11  I1=(V-V_D)/R
12  I_D1=I1/2
13  I_D2=I_D1
14
15  printf("current through diode D1 = %.3 f mA and diode D2 = %.3 f mA \n", I_D1, I_D2)
```

#### Scilab code Exa 9.9 Example 9

```
1 //chapter9
2 //example9.9
3 //page151
4
5 P_dc=40 // W
6 P_ac=100 // W
7
8 efficiency=100*P_dc/P_ac
9
10 printf("rectification efficiency = %.3f percent \n \n", efficiency)
```

11 printf("remaining 60 watts are not lost. Crystal diode consumes only a \nlittle power due to its small internal resistance. \nActualy 100 W ac power is contained as 50 W in positive half \ncycle and 50 W in negative half cycle.\nThe 50 W of negative half cycle are not supplied at all. \nThe 50 W of positive half cycle are converted to 40 W \n")

## Scilab code Exa 9.10 Example 10

```
1 //chapter9
2 // example 9.10
3 / page 152
5 n = 10
6 \text{ Vp} = 230 // \text{ V}
8 Vpm = 2^0.5 * Vp
9 Vsm=Vpm/n // since n=Vpm/Vsm=N1/N2
10
11 // Idc=Im/\%pi and Vdc=Idc*Rl so
12 // Vdc = (Im/\%pi)*Rl . Also Im*Rl = Vsm so
13 Vdc=Vsm/%pi
14
  // in negative half cycle diode is reverse biased so
15
        maximum secondary voltage appears across diode.
16 PIV=Vsm
17
18 printf("output dc voltage = \%.2 \, \text{f V } \text{n}", Vdc)
19 printf ("peak inverse voltage = \%.2 \,\mathrm{f} \,\mathrm{V} \,\mathrm{n}", PIV)
20
21 // accurate answer for output dc voltage is 10.35~
m{V}
      not 10.36 V
```

## Scilab code Exa 9.11 Example 11

```
1 //chapter9
2 //example9.11
3 / page 152
5 \text{ rf} = 20 // \text{ ohm}
6 R1=800 // ohm
7 \text{ Vm} = 50 // V
9 Im=Vm/(rf+R1) // in ampere
10 Idc=Im/%pi // in ampere
11 Irms=Im/2 // in ampere
12 Pac=Irms^2*(rf+R1)
13 Pdc = Idc^2 * R1
14 Vout=Idc*Rl
15 efficiency=100*Pdc/Pac
16
17 printf ("Im = \%.1 \text{ f mA } \n", Im*1000)
18 printf ("Idc = \%.1 \text{ f mA } \n", Idc *1000)
19 printf ("Irms = \%.1 \text{ f mA } \text{ } \text{n} \text{ } \text{,} \text{Irms*1000})
20 printf("ac power input = \%.3 \, \text{f W } \setminus \text{n}", Pac)
21 printf("dc power output = \%.3 \text{ f W } \text{ n} \text{ ,Pdc})
22 printf("dc output voltage = \%.3 \, f \, V \, n \, n", Vout)
23 printf ("efficiency = \%.3 f percent \n", efficiency)
```

#### Scilab code Exa 9.12 Example 12

```
1 //chapter9
2 //example9.12
3 //page153
```

```
5  Vdc=50  // V
6  rf=25  // ohm
7  R1=800  // ohm
8
9  // Vdc=Idc*Rl and Idc=Im/%pi so
10  // Vdc=Im*Rl/%pi
11  // but Im=Vm/(rf+Rl) so
12  // Vdc=Vm*Rl/(%pi*(rf+Rl))
13  // making Vm as subject we get
14
15  Vm=Vdc*%pi*(rf+Rl)/Rl
16
17  printf("ac voltage required = %.1 f V \n", Vm)
```

## Scilab code Exa 9.13 Example 13

```
1 //chapter9
2 //example9.13
3 //page157
4
5 rf=20 // ohm
6 Rl=980 // ohm
7 Vs=50 // V
8
9 Vm=Vs*2^0.5
10 Im=Vm/(rf+Rl)
11 Idc=2*Im/%pi // in ampere
12 Irms=Im/2^0.5 // in ampere
13
14 printf("mean load current = %.3 f mA \n", Idc*1000)
15 printf("rms load current = %.3 f mA \n", Irms*1000)
```

Scilab code Exa 19.14 power

```
1 //chapter19
2 //example19.14
\frac{3}{\sqrt{\text{page}424}}
5 \text{ Vc=} 5 // \text{ V}
6 V_{lower=2.5} // V
7 V_upper=2.5 // V
8 R=2 // kilo ohm
10 // figure given in book is just for understanding
      purpose. It is not a part of solution.
11 // however, the figure has been made in xcos and
      screenshot has been attached for reference
12
13 // since power=(rms voltage)^2/R we get
14
15 Pc = (0.707 * Vc)^2/R
16 P_lower = (0.707 * V_lower)^2/R
17 P_upper = (0.707 * V_upper)^2/R
18 Pt=Pc+P_lower+P_upper
19
20 printf ("power delivered by carrier =\%.3\,\mathrm{f} mW \n",Pc)
21 printf ("power delivered by lower sideband = \%.3 f mW
      n, P_lower)
22 printf ("power delivered by upper sideband = \%.3 f mW
      \n", P_upper)
23 printf ("total power delivered by AM wave = \%.3 \,\mathrm{f} mW \
      n",Pt)
```

## Scilab code Exa 9.14 Example 14

```
1 //chapter9
2 //example9.14
3 //page157
```

```
5 \text{ rf} = 0
6 n=5
7 \text{ Vp=230 } // \text{ V rms}
8 Rl = 100 / ohm
10 Vs = Vp/n // V rms
11 Vsm=Vs*2^0.5 // maximum voltage across secondary
12 Vm=Vsm/2 // maximum voltage across half secondary
       winding
13
14 Idc=2*Vm/(%pi*R1)
15 Vdc=Idc*Rl
16 \text{ PIV=Vsm}
17 efficiency=100*0.812/(1+rf/Rl)
18
19 printf("dc output voltage = \%.3 \, \text{f V } \text{n}", Vdc)
20 printf ("PIV = \%.3 \, \text{f V } \setminus \text{n}", PIV)
21 printf("efficiency = \%.3 f percent \n", efficiency)
```

## Scilab code Exa 9.15 Example 15

```
1 //chapter9
2 //example9.15
3 //page158
4
5 n=4
6 R1=200 // ohm
7 fin=50 // Hz
8 Vp=230 // V rms
9
10 Vs=Vp/n // V rms
11 Vsm=Vs*2^0.5 // maximum voltage across secondary
12
13 Idc=2*Vsm/(%pi*R1)
14 Vdc=Idc*R1
```

```
15 PIV=Vsm
16
17 // in full wave rectifier, output frequency is twice
        input frequency since there are two ouput pulses
        for each cycle of input
18 fout=2*fin
19
20 printf("dc output voltage = %.3 f V \n", Vdc)
21 printf("peak inverse voltage = %.3 f V \n", PIV)
22 printf("output frequency = %.3 f Hz", fout)
23
24 // the accurate answer for dc output voltage is
        51.768 V but in book it is given as 52 V
```

## Scilab code Exa 9.16 Example 16

```
1 //chapter9
2 //example9.16
3 //page158
4
  // for dc output
6
       // for centre-tap circuit
7
           n=5
           Vp = 230 // V rms
8
           Rl = 100 / ohm
9
           Vs = Vp/n // V rms
10
           Vsm=Vs*2^0.5 // maximum voltage across
11
              secondary
12
           Vm=Vsm/2 // maximum voltage across half
              secondary winding
           Vdc=2*Vm/\%pi // since Vdc=Idc*Rl and Idc=2*
13
              Vm/(%pi*Rl)
14
15
       // for bridge circuit
16
           n_dash=5
```

```
{\tt Vp\_dash=230~//~V~rms}
17
             Rl_dash=100 / ohm
18
             Vs_dash=Vp_dash/n_dash// V rms
19
             Vsm_dash=Vs*2^0.5 // maximum voltage across
20
                secondary
21
             Vm_dash = Vsm_dash
             \label{local_vdc_dash} $$Vdc_dash=2*Vm_dash/\%pi // since Vdc=Idc*Rl$$
22
                and Idc = 2*Vm/(\%pi*Rl)
23
24
25 // for same dc output Vm must be same for both
       circuits i.e. n=5 for centre-tap and n=10 for
       bridge
26
        // for centre-tap circuit
27
             n1=5
             Vs1=Vp/n1 // V rms
28
             Vsm1=Vs1*2^0.5 // maximum voltage across
29
                secondary
             Vm1 = Vsm1/2
30
31
             PIV1=2*Vm1
32
        // for bridge circuit
33
34
             n2=5
             Vs2=Vp/n2 // V rms
35
             Vsm2=Vs2*2^0.5 // maximum voltage across
36
                secondary
37
             Vm2 = Vsm2/2
             PIV2 = Vm2
38
39
40 printf("dc output voltage for centre-tap circuit = \%
       .3 f V \n, Vdc)
41 printf ("dc output voltage for bridge circuit = \%.3 f
      V \setminus n \setminus n", Vdc_dash)
42
43 printf ("for same output, PIV for centre-tap circuit
      = \%.3 \,\mathrm{f} \,\mathrm{V} and bridge circuit = \%.3 \,\mathrm{f} \,\mathrm{V} \,\mathrm{n}, PIV1,
      PIV2)
44
```

```
45 // the figure of transformer is for reference only.

Also it cannot be plotted in scilab since scilab does not have centre—tap transformer
```

## Scilab code Exa 9.17 Example 17

```
1 //chapter9
2 //example9.17
3 //page160
5 \text{ Vin} = 240 // \text{ V rms}
6 \text{ Rl} = 480 // \text{ ohm}
7 rf=1 // ohm
9 \text{ Vm} = \text{Vin} * 2^0.5
10 // for bridge rectifier we know that
11 Im=Vm/(2*rf+R1)
12 Idc=2*Im/%pi
13 Irms = Im/2
14 P = Irms^2 * rf
15
16 printf ("mean load current = \%.3 f A \n", Idc)
17 printf("power dissipated in each diode = \%.3 \, f \, W \setminus n",
      P)
18
19 // the accurate answers are mean load current =
       0.448 A and power dissipated in each diode =
       0.124 W
```

#### Scilab code Exa 9.18 Example 18

```
1 //chapter9
2 //example9.18
```

```
3 / page 162
5 \text{ Vrms}_A=0.5 // V
6 \text{ Vdc}_A=10 // V
7 Vrms_B=1 // V
8 \text{ Vdc}_B=25 // V
9
10 ripple_A=Vrms_A/Vdc_A
11 ripple_B=Vrms_B/Vdc_B
12
13 if ripple_A>ripple_B
       printf("power supply B is better \n")
15 elseif ripple_B>ripple_A
      printf("power supply A is better \n")
16
17 else
       printf("both are equal \n")
18
19 end
```

## Scilab code Exa 9.19 Example 19

```
1 //chapter9
2 //example9.19
3 //page165
4
5 // the waveform given in book is for understanding only. It is not required to solve the problem.
    Also it cannot be plotted in scilab unless Vm and Vdc are given.
6
7 R=25 // ohm
8 R1=750 // ohm
9 Vm=25.7 // V
10
11 Vdc_dash=2*Vm/%pi
12 Vdc=Vdc_dash*R1/(R+R1)
```

```
13
14 printf("voltage across load is %.3f V plus a small
            ripple \n", Vdc)
15
16 // the accurate answer is 15.833 V but in book it is
            given as 15.9 V
```

## Scilab code Exa 9.20 Example 20

```
1 //chapter9
2 // example 9.20
3 / page 170
5 R=5 // kilo ohm
6 R1=10 // kilo ohm
7 Ei=120 // V
8 \ Vz = 50 \ // \ V
10 V=Ei*Rl/(R+Rl) // voltage across open circuit if
      zener diode is removed
11 Vo=Vz // output voltage
12 V_R=Ei-Vz // drop across R
13 Il=Vz/Rl // load current
14 I=V_R/R // current through R
15
16 // by Kirchoff first law I=Iz+Il
17 Iz=I-I1
18
19 printf("output voltage = \%.3 \, f \, V \, n", Vo)
20 printf ("voltage drop across series resistance = \% . 3 f
      V \setminus n", V_R)
21 printf ("current through Zener diode = \%.3 \,\mathrm{f} mA \n", Iz
      )
```

## Scilab code Exa 9.21 Example 21

```
1 //chapter9
2 //example9.21
3 / page171
5 \text{ Vmax}=120 // V
6 \text{ Vmin=80} // V
7 \ Vz = 50 \ // \ V
8 R_L=10 // kilo ohm
9 R1=5 // kilo ohm
10
11 // zener diode is on for Vmax and Vmin both since
      they are > Vz
12
13 // \text{ for max Iz}
14
        V_R1 = V_{max} - V_{z}
15
        I=V_R1/R1 // current through R1
        I_L=Vz/R_L // current through load
16
        // by Kirchoff first law I=I_L+Iz so applying it
17
            we get
18
        Iz_max=I-I_L
19
20 // for min Iz
21
        V_R1_dash = Vmin - Vz
22
        I_dash=V_R1_dash/R1// current through R1
        I_L_dash=Vz/R_L // current through load
23
        // by Kirchoff first law I=I_L+Iz so we get
24
25
        Iz_min=I_dash-I_L_dash
26
27 printf("maximum zener current = \%.3 \text{ f mA } \text{ } \text{n}", Iz_max)
28 printf ("minimum zener current = \%.3 \, \text{f mA } \, \text{n",Iz_min})
```

## Scilab code Exa 9.22 Example 22

```
1 //chapter9
2 // \text{example } 9.22
3 / page 172
5 \text{ Ei} = 12 // V
6 \text{ Vz} = 7.2 // \text{ V}
7 Eo = Vz
8 Iz_min=10d-3 // A
9 Il_max=100d-3 // A
10
11 // we see that R=(Ei-Eo)/(Iz-I1) and minimum Iz
      occurs when Il is maximum so
12 R=(Ei-Eo)/(Iz_min+Il_max)
13
14 printf("required series resistance = \%.3 \, \text{f} ohm \n",R)
15
16 // on inserting this series resistance the output
      voltage will remain constant at 7.2 V
17
18 // the accurate answer is 43.636 ohm but in book it
      is given as 43.5 ohm
```

### Scilab code Exa 9.23 Example 23

```
1 //chapter9
2 //example9.23
3 //page172
4
5 Ei=22 // V
6 Vz=18 // V
```

```
7 Rl=18 // ohm
8 \text{ Eo=Vz}
9 Iz_min=200d-3 // A
10
11 // Zener current will be min when input voltage is
      min
12
13 // load current is
14 Il_max=Vz/Rl
15
  // we see that R=(Ei-Eo)/(Iz-Il) and minimum Iz
      occurs when Il is maximum so
17
  R=(Ei-Eo)/(Iz_min+Il_max)
18
19 printf ("required series resistance = \%.3 \, \text{f} ohm \n",R)
21 // on inserting this series resistance the output
      voltage will remain constant at 18 V
```

## Scilab code Exa 9.24 Example 24

```
1  //chapter9
2  //example9.24
3  //page172
4
5  Ei=13  // V
6  Vz=10  // V
7  Eo=Vz
8  Iz_min=15d-3  // A
9  Il_max=85d-3  // A
10
11  // Zener current will be min when input voltage is min
12
13  // we see that R=(Ei-Eo)/(Iz-II) and minimum Iz
```

```
occurs when Il is maximum so
14 R=(Ei-Eo)/(Iz_min+Il_max)
15
16 printf("required series resistance = %.3 f ohm \n",R)
```

## Scilab code Exa 9.25 Example 25

```
1  //chapter9
2  //example9.25
3  //page173
4
5  Ei = 45  // V
6  Vz1 = 15  // V
7  Vz2 = 15  // V
8  Iz = 200d - 3  // current rating for each zener in ampere
9
10  Eo = Vz1 + Vz2
11
12  R = (Ei - Eo) / Iz
13
14  printf("regulated output voltage = %.3 f V \n", Eo)
15  printf("required series resistance = %.3 f ohm \n", R)
```

## Scilab code Exa 9.26 Example 26

```
1 //chapter9
2 //example9.26
3 //page173
4
5 Ei=45 // V
6 Vz1=10 // V
7 Vz2=10 // V
8 Vz3=10 // V
```

## Scilab code Exa 9.27 Example 27

```
1 //chapter9
\frac{2}{\sqrt{\text{example 9.27}}}
3 //page174
5 R = 200 // ohm
6 R1=2000 // ohm
7 Eo = 30 // V
8
9 // for minimum input voltage i.e. Iz=0
10 Il = Eo/Rl
11 I=I1 // since Iz=0
12 Vin_min = Eo + I * R
13
14 // for maximum input voltage i.e. Iz=25 mA
15 \text{ Iz} = 25d - 3 // A
16 Il_dash=Eo/Rl
17 I_dash=Il_dash+Iz
18 \quad Vin_max = Eo + I_dash * R
19
20 printf ("minimum input voltage = \%.3 \, \text{f V } \text{n}", Vin_min)
```

```
printf("maximum input voltage = \%.3 \, f \, V \, n", Vin_max) printf("thus range of input = \%.3 \, f \, to \, \%.3 \, f \, V \, n", Vin_min, Vin_max)
```

## Scilab code Exa 9.28 Example 28

```
1 //chapter9
\frac{2}{\sqrt{\text{example 9.28}}}
3 / page 174
5 Ei=16 // V
6 \ Vz = 12 // V
                     since we want to ragulate at 12 V
7 Eo = Vz
8 \text{ Iz\_min=0} // A
9 Il_max = 200d - 3 // A
10
11 // Zener current will be min when input voltage is
      min
12
13 // we see that R=(Ei-Eo)/(Iz-I1) and minimum Iz
       occurs when Il is maximum so
14 R=(Ei-Eo)/(Iz_min+Il_max)
15
16 Izm=Il_max
17 \text{ Pzm} = \text{Vz} * \text{Izm}
18
19 printf("Zener voltage = \%.3 \, f \, V \, n", Vz)
20 printf("required series resistance = \%.3 \text{ f ohm } \text{n}",R)
21 printf ("maximum power rating of zener diode = \%.3 \,\mathrm{f} W
        \n", Pzm)
```

# Chapter 10

# Special purpose diodes

## Scilab code Exa 10.1 required series resistor

```
1 //chapter10
2 //example10.1
3 //page182
4
5 Vs=10 // V
6 Vd=1.6 // V
7 If=20d-3 // A
8
9 Rs=(Vs-Vd)/If
10
11 printf("required series resistor = %.3f ohm", Rs)
```

## Scilab code Exa 10.2 current through LED

```
1 //chapter10
2 //example10.2
3 //page183
```

#### Scilab code Exa 10.3 dark resistance

```
//chapter10
//example10.3
//page187

//from graph, we see that for zero illumination, the reverse current i.e. dark current is 50 micro ampere

Ir=50d-6 // A
Vr=10 // V

Rr=Vr/Ir

printf("dark resistance = %.3 f ohm or %.3 f kilo ohm", Rr, Rr/1000)
```

## Scilab code Exa 10.4 reverse current

```
1 //chapter10
2 //example10.4
3 //page188
```

## Scilab code Exa 10.5 resonant frequency

```
1 //chapter10
2 //example10.5
3 //page192
4
5 L=1d-3 // H
6 C=100d-12 // F
7
8 fr=1/(2*%pi*(L*C)^0.5)
9
10 printf("resonant frequency = %.3 f Hz or %.3 f kHz",fr,fr/1000)
```

#### Scilab code Exa 10.11 base current

```
1  //chapter11
2  //example11.11
3  //page210
4
5  V_Rc=1
6  gain_beta=45
7  Rc=1  // kilo ohm
8
```

```
9 Ic=V_Rc/Rc

10 //since gain_beta=Ic/Ib

11 Ib=Ic/gain_beta

12

13 printf("base current = %.3 f mA", Ib)
```

# Chapter 11

## **Transistors**

## Scilab code Exa 11.1 voltage amplification

```
1  //chapter11
2  //example11.1
3  //page202
4
5  Rin=20  //ohm
6  Rout=100d3  //ohm
7  Rc=1d3  //ohm
8  signal=500d-3  //V
9
10  Ie=signal/Rin  // A
11  Ic=Ie
12  Vout=Ic*Rc
13  Av=Vout/signal
14
15  printf("voltage amplification = %.2 f \n",Av)
```

Scilab code Exa 11.2 base current

```
1 //chapter11
2 //example11.2
3 //page205
4
5 Ie=1 //mA
6 Ic=0.95 //mA
7
8 // since Ie=Ib+Ic we get
9 Ib=Ie-Ic
10
11 printf("base current = %.3 f mA \n", Ib)
```

#### Scilab code Exa 11.3 base current

```
1 //chapter11
2 //example11.3
3 //page205
4
5 alpha=0.9
6 Ie=1 //mA
7
8 // since alpha=Ic/Ie we get
9
10 Ic=alpha*Ie
11
12 // since Ie=Ic+Ib we get
13
14 Ib=Ie-Ic
15
16 printf("base current = %.3 f mA \n", Ib)
```

Scilab code Exa 11.4 amplification factor

```
1 //chapter11
2 //example11.4
3 //page205
4
5 Ic=0.95
6 Ib=0.05
7
8 Ie=Ib+Ic
9 alpha=Ic/Ie
10
11 printf("amplification factor = %.3f \n",alpha)
```

#### Scilab code Exa 11.5 collector current

```
1 //chapter11
2 //example11.5
3 //page205
4
5 Ie=1 //mA
6 alpha=0.92
7 Icbo=50d-3 //mA
8
9 Ic=alpha*Ie+Icbo
10
11 printf("collector current = %.3 f mA \n", Ic)
```

#### Scilab code Exa 11.6 base current

```
1 //chapter11
2 //example11.6
3 //page205
4
5 alpha=0.95
```

```
6  V_Rc=2 // V
7  Rc=2 // kilo ohm
8
9  Ic=V_Rc/Rc // mA
10
11  // since alpha=Ic/Ie
12  Ie=Ic/alpha
13
14  // since Ie=Ib+Ic
15  Ib=Ie-Ic
16
17  printf("base current = %.3 f mA \n", Ib)
```

## Scilab code Exa 11.7 collector curent

```
1 / chapter 11
2 //example11.7
3 / page 206
5 Vbe=0.7 // V
6 \text{ Vcc=18} // \text{V}
7 Vee=8 // V
8 Rc=1.2 // kilo ohm
9 Re=1.5 //kilo ohm
10
11 // by Kirchoff's voltage law to emitter side loop,
      we get Vee=Ie*Re+Vbe so
12 Ie=(Vee-Vbe)/Re
13 Ic=Ie // nearly
14
15 // by Kirchoff's voltage law to collector side loop,
       we get Vcc=Ic*Rc=Vcb so
16 Vcb=Vcc-Ic*Rc
17
18 printf ("collector curent = \%.3 \, \text{f mA } \, \text{n}", Ic)
```

## Scilab code Exa 11.8 Example 8

```
1 //chapter11
2 //example11.8
3 //page209
4
5 alpha1=0.9
6 alpha2=0.98
7 alpha3=0.99
8
9 beta1=alpha1/(1-alpha1)
10 beta2=alpha2/(1-alpha2)
11 beta3=alpha3/(1-alpha3)
12
13 printf("for alpha=0.9, beta=%.1 f \n",beta1)
14 printf("for alpha=0.98, beta=%.1 f \n",beta2)
15 printf("for alpha=0.99, beta=%.1 f \n",beta3)
```

#### Scilab code Exa 11.9 Example 9

```
1 //chapter11
2 //example11.9
3 //page210
4
5 gain_beta=50
6 Ib=20d-3 // mA
7
8 // since gain_beta = Ic/Ib we get
9 Ic=gain_beta*Ib
10 Ie=Ic+Ib
11
```

```
12 printf("emitter current = \%.3 \, \text{f mA } \setminus \text{n}", Ie)
```

#### Scilab code Exa 11.10 collector current

```
1 //chapter11
2 //example11.10
3 //page210
4
5 gain_beta=49
6 Ib=240d-3 // mA
7 Ie=12 // mA
8
9 alpha=gain_beta/(1+gain_beta)
10 Ic=alpha*Ie // or Ic=gain_beta*Ib
11
12 printf("collector current = %.3 f mA \n",Ic)
```

#### Scilab code Exa 11.11 base current

```
1  //chapter11
2  //example11.11
3  //page210
4
5  V_Rc=1
6  gain_beta=45
7  Rc=1  // kilo ohm
8
9  Ic=V_Rc/Rc
10  //since gain_beta=Ic/Ib
11  Ib=Ic/gain_beta
12
13  printf("base current = %.3 f mA", Ib)
```

#### Scilab code Exa 11.12 collector emitter voltage

```
1  //chapter11
2  //example11.12
3  //page210
4
5  Rc=800d-3  // kilo ohm
6  V_Rc=0.5  // V
7  Vcc=8  // V
8  alpha=0.96
9
10  Vce=Vcc-V_Rc
11  Ic=V_Rc/Rc  // mA
12  gain_beta=alpha/(1-alpha)
13  Ib=Ic/gain_beta
14
15  printf("collector emitter voltage = %.3 f V \n", Vce)
16  printf("base current = %.3 f mA \n", Ib)
```

#### Scilab code Exa 11.13 base current

```
11
12 //since Iceo=Icbo/(1-alpha) we get
13 alpha=1-(Icbo/Iceo)
14
15 // since Ic=alpha*Ie+Icbo we get
16 Ie=(Ic-Icbo)/alpha
17 Ib=Ie-Ic
18
19 printf("alpha = %.3 f \n",alpha)
20 printf("emitter current = %.3 f micro ampere \n",Ie)
21 printf("base current = %.3 f micro ampere \n",Ib)
```

# Scilab code Exa 11.14 dc load line

```
1 //chapter11
2 //example11.14
3 //page218
4
5 Vcc=12.5 // V
6 Rc=2.5 // kilo ohm
7
8 // we know that Vce=Vcc-Ic*Rc
9 // when Ic=0, Vce=Vcc i.e. 12.5V
10 // when Vce=0, Ic=Vcc/Rc i.e.5mA
11
12 // so equation of load line becomes Ic=-0.4*Vce+5
13 x=linspace(0,12.5,5)
14 y=-0.4*x+5
15 clf()
16 xtitle("dc load line","Vce(volts)","Ic(mA)")
17 plot2d(x,y,style=3,rect=[0,0,13,6])
```

Scilab code Exa 11.15 Q point

```
1 //chapter11
2 //example11.15
3 / page 219
5 \text{ Vcc=12} // \text{V}
6 \text{ Rc}=6 // \text{ kilo ohm}
  // we know that Vce=Vcc-Ic*Rc
9 // when Ic=0, Vc=Vcc i.e. 12V
10 // when Vce=0, Ic=Vcc/Rc i.e. 2mA
11
12 // so equation of load line becomes Ic = -(1/6) *Vce + 2
13 x=linspace(0,12,5)
14 y = -(1/6) * x + 2
15 clf()
16 xtitle("dc load line", "Vce(volts)", "Ic(mA)")
17 plot2d(x,y,style=3,rect=[0,0,13,6])
18
19
20 // for Q point
21 \text{ Ib} = 20d - 3 // \text{ mA}
22 gain_beta=50
23
24 Ic=gain_beta*Ib
25 Vce=Vcc-Ic*Rc
26
27 printf ("Q point = \%.3 \, f V and \%.3 \, f mA i.e. (\%.3 \, f, \%.3 \, f
```

#### Scilab code Exa 11.16 collector load

```
1 //chapter11
2 //example11.16
3 //page219
```

```
5 Vcc=10
6 Ic=1 // mA
7 Rc1=4 // kilo ohm
8 Rc2=5 // kilo ohm
9
10 Vce1=Vcc-Ic*Rc1
11 Vce2=Vcc-Ic*Rc2
12
13 printf("for collector load = 4 kilo ohm, operating point is %.3 f V,%.3 f mA \n", Vce1, Ic)
14 printf("for collector load = 5 kilo ohm, operating point is %.3 f V,%.3 f mA \n", Vce2, Ic)
```

## Scilab code Exa 11.17 input resistance

```
1 //chapter11
2 //example11.17
3 //page222
4
5 del_Vbe=200 //mV
6 del_Ib=100 // micro ampere
7
8 Ri=del_Vbe/del_Ib
9
10 printf("input resistance = %.3 f kilo ohm \n",Ri)
```

#### Scilab code Exa 11.18 output resistance

```
1 //chapter11
2 //example11.18
3 //page222
4
5 Vce2=10 // V
```

```
6  Vce1=2 // V
7  Ic1=2 // mA
8  Ic2=3 // mA
9
10  del_Vce=Vce2-Vce1 // V
11  del_Ic=Ic2-Ic1 // mA
12
13  Ro=del_Vce/del_Ic
14
15  printf("output resistance = %.3 f kilo ohm \n",Ro)
```

# Scilab code Exa 11.19 voltage gain

```
//chapter11
//example11.19
//page223

Rc=2 // kilo ohm
Ri=1 // kilo ohm
gain_beta=50

// for single stage, R_AC=Rc so voltage gain becomes
Av=gain_beta*Rc/Ri

printf("voltage gain = %.3f \n", Av)
```

#### Scilab code Exa 11.20 saturation collector current

```
1 //chapter11
2 //example11.20
3 //page224
4
5 Vcc=20 // V
```

```
6 \text{ Rc=1} // \text{ kilo ohm}
8 // for saturation collector current, knee voltage
     becomes 0V so we get
9 Ic_sat=Vcc/Rc
10
11 // it can be seen from the circuit that cut-off
      voltage (i.e. when Ib=0) equals Vcc itself
12 Vce_cutoff=Vcc
13
14 // the equation of load line becomes Ic=-Vce+20
15
16 clf()
17 x = linspace(0, 20, 5)
18 \quad y = -x + 20
19 plot2d(x,y,style=3,rect=[0,0,21,21])
20 xtitle("dc load line", "Vce(volts)", "Ic(mA)")
21
22 printf ("saturation collector current = \%.3 \, \mathrm{f} \, \mathrm{mA} \, \setminus \mathrm{n}",
      Ic_sat)
23 printf("cut-off collector emitter voltage = %.3 f V \
      n", Vce_cutoff)
```

#### Scilab code Exa 11.21 maximum allowable collector current

```
1 //chapter11
2 //example11.21
3 //page225
4
5 Vce=20 // V
6 Pd=100 // mW
7
8 // since Pd=Vce*Ic we get
9 Ic=Pd/Vce
10
```

11 printf("maximum allowable collector current =  $\%.3\,\mathrm{f}$  mA \n ",Ic)

# Chapter 12

# Transistor biasing

#### Scilab code Exa 12.1 circuit diagram

```
1 // chapter 12
2 // example 12.1
3 // page 235
5 \text{ V_CC=}6 \text{ // V}
6 R_C=2.5 // kilo ohm
8 // for faithful amplification V_CE should not be
      less than V<sub>CC</sub> for Si transistor so
9 \quad V_max = V_CC-1
10 I_max = V_max/R_C
11
12 // As negative and positive half cyces of input are
      equal, change in collector current will be equal
      and opposite so
13 I_min=I_max/2
14
15 printf("Maximum allowable collector current = \%.3 f
      mA \setminus n", I_max)
16 printf ("Minimum zero signal collector current = \%.3 f
       mA \setminus n", I_min)
```

```
17
18  // the circuit diagram is constructed on xcos and
    its screenshot has been taken.
19  // the waveform given can not be obtained in xcos
    unless we assume necessary values as data is
    insufficient for plotting graph in scilab.
20  // so waveform is constructed as below
21
22  clf()
23  x=linspace(1,5*%pi,100)
24  [t]=sin(x)+1
25  plot(x,[t])
26  xtitle("max and min allowable collector currents","t
    ","i_c (mA)")
```

## Scilab code Exa 12.2 maximum input signal voltage

```
1  //chapter12
2  //example12.2
3  //page236
4
5  Vcc=13  // V
6  V_knee=1  // V
7  Rc=4  // kilo ohm
8  gain_beta=100
9
10  V_Rc=Vcc-V_knee
11  Ic=V_Rc/Rc
12  Ib=Ic/gain_beta
13  Vs=Ic/5  // since  Ic/Vs = 5 mA/V given
14
15  printf("maximum input signal voltage = %.3 f V or %.3 f mV \n", Vs, Vs*1000)
```

# Scilab code Exa 12.3 Example 3

```
1 / chapter 12
2 // example 12.3
3 / page 240
5 \text{ Vbb=2} // \text{V}
6 \text{ Vcc=9} // \text{V}
7 Rc=2 // kilo ohm
8 Rb=100 // kilo ohm
9 gain_beta=50
10
11 // by Kirchoff voltage law on base side, we get Ib*
      Rb+Vbe=Vbb so
12 Ib=Vbb/Rb // Vbe is negligible
13 Ic=gain_beta*Ib
14
15 // by Kirchoff voltage law on collector side, we get
       Ic*Rc+Vce=Vcc so
16 Vce=Vcc-Ic*Rc
17
18 // now for Rb=50 kilo ohm
19 Rb2=50 // kilo ohm
20
21 // since Rb is halved, Ib is doubled so
22 \text{ Ib2=2*Ib}
23 Ic2=Ib2*gain_beta
24 \text{ Vce2=Vcc-Ic2*Rc}
25
26 printf ("for Rb = 100 kilo ohm, collector current = \%
      .3 f mA \nand collector emitter voltage = \%.3 f V \
      n \setminus n", Ic, Vce)
27 printf("for Rb = 50 kilo ohm, collector current = \%
      .3 f mA \ nand collector emitter voltage = \%.3 f V \
```

## Scilab code Exa 12.4 Example 4

```
1 / chapter 12
2 //example12.4
3 / page 241
 5 \text{ Vcc=} 6 // \text{ V}
6 Rb=530 // kilo ohm
7 \text{ Rc}=2 // \text{ kilo ohm}
8 gain_beta=100
9 Vbe=0.7 // V
10
11 // when Ic=0, Vce=Vcc i.e. Vce=6 and when Vce=0, Ic=
      Vcc/Rc i.e. Ic=6/2
12 // so equation of load line becomes Ic = -0.5*Vce + 3
13
14 \text{ x=linspace}(0,6,5)
15 y = -0.5 * x + 3
16 plot2d(x,y,style=3,rect=[0,0,7,4])
17 xtitle("dc load line", "Vce(volts)", "Ic(mA)")
18
19 // since Vcc=Ib*Rb+Vbe we get
20 \quad Ib = (Vcc - Vbe)/Rb
21 Ic=Ib*gain_beta
22 \ Vce=Vcc-Ic*Rc
23
24 printf ("the operating point is \%.3 \,\mathrm{f} V and \%.3 \,\mathrm{f} mA \n
      ", Vce, Ic)
25
26 stability_factor=gain_beta+1
27
28 printf ("stability factor=\%.1 \,\mathrm{f} \, \mathrm{n}", stability_factor)
```

# Scilab code Exa 12.5 Example 5

```
1 / chapter 12
\frac{2}{\sqrt{\text{example}12.5}}
3 / page 242
 5 \text{ Vcc}=12 // V
 6 gain_beta=100
 7 Vbe=0.3 // V
8 \text{ Ic=1} // \text{mA}
10 // since gain_beta=Ic/Ib
11 Ib=Ic/gain_beta
12
13 // since Vcc=Ib*Rb+Vbe we get
14 Rb=(Vcc-Vbe)/Ib
15
16 gain_beta2=50
17
18 // since Vcc=Ib*Rb+Vbe we get
19 Ib2=(Vcc-Vbe)/Rb
20 Ic2=Ib2*gain_beta2
21
22 printf("for beta = 100, base resistor = \%.3 f kilo
      ohm \n", \mathbb{R}b)
23 printf("for beta = 50, zero signal collector current
        for same Rb is = \%.3 \, \text{f mA } \setminus \text{n}", Ic2)
```

#### Scilab code Exa 12.6 Example 6

```
1 //chapter12
2 //example12.6
```

```
3 / page 242
5 \text{ Vcc=10} // \text{V}
6 R_B=1d3 // kilo ohm
7 R_E=1 // kilo ohm
8 Vbe=0 // since it is negligible
9 gain_beta=100
10
11 // by Kirchoff voltage law to base side we get Vcc=
      I_B*R_B+Vbe+I_E*R_E
12 // but I_E=I_B+I_C and I_C=gain_beta*I_B
13 // so we get Vcc=I_B*R_B+Vbe+R_E*I_B*(1+gain_beta)
14 // making I_B as subject we get
15
16 I_B=(Vcc-Vbe)/(R_B+R_E*(1+gain_beta)) // in ampere
17 I_C=gain_beta*I_B // in ampere
18 I_E=I_C+I_B // in ampere
19
20 printf("base current = \%.4 \, \text{f mA } \, \text{n}",I_B)
21 printf("collector current = \%.4 \text{ f mA } \text{n}",I_C)
22 printf("emitter current = \%.4 \, \text{f mA } \, \text{n}",I_E)
```

# Scilab code Exa 12.7 Example 7

```
1 //chapter12
2 //example12.7
3 //page243
4
5 V_CC=15 // V
6 gain_beta=100
7 V_BE=0.6 // V
8 V_CE=8 // V
9 I_C=2 // mA
10
11 // here V_CC=V_CE+I_C*R_C so we get
```

# Scilab code Exa 12.8 Example 8

```
1 / chapter 12
2 // example 12.8
3 / page 245
5 V_{CC} = 20 / V
6 R_B=100 // kilo ohm
7 R_C=1 // kilo ohm
8 V_BE=0.7 // V
9 gain_beta=100
10
11 // we know that R_B = (V_CC - V_BE - gain_beta * R_C * I_B)
      I_B so we get
12 I_B=(V_CC-V_BE)/(R_B+gain_beta*R_C)
13
14 I_C=gain_beta*I_B
15
16 \quad V_CE = V_CC - I_C * R_C
17
18 printf ("operating point is \%.3 \, \text{f V}, \%.3 \, \text{f mA } \n", V_CE,
      I_C)
19
20 // the accurate answer is 10.35V,9.65mA but in book
```

## Scilab code Exa 12.9 Example 9

```
1 / chapter 12
2 // example 12.9
3 / page 245
5 V_{CC} = 12 / V
6 gain_beta1=100
7 gain_beta2=50
8 V_BE=0.3 // V
9 \ V_CE = 8 \ // \ V
10 I_C=1 // mA
11
12 // here V_CC=V_CE+I_C*R_C so we get
13 R_C = (V_CC - V_CE) / I_C
14
15 I_B=I_C/gain_beta1
16
17 // we know that R_B = (V_CC - V_BE - gain_beta1 * R_C * I_B)
      I_B so
18 R_B = (V_CC - V_BE - gain_beta1 * R_C * I_B) / I_B
19
20
21 // for gain_beta=50 i.e. gain_beta2
22
23 // we know that R_B = (V_CC - V_BE - gain_beta2 * R_C * I_B)/
      I_B so we get
I_B2=(V_CC-V_BE)/(R_B+gain_beta2*R_C)
25
26 I_C2=gain_beta2*I_B2
27
V_CE2 = V_CC - I_C2 * R_C
29
```

```
30 printf("for beta=100, required base resistance = %.3 f
            kilo ohm \n", R_B)
31 printf("for beta=50, new operating point is %.3 f V, %
            .3 f mA \n", V_CE2, I_C2)
```

#### Scilab code Exa 12.10 base resistance

```
1 / chapter 12
2 //example12.10
3 / page 246
5 V_BE=0.7 // V
6 gain_beta=100
7 I_C=1 // mA
8 \text{ V_CE=2} // \text{ V}
9
10 I_B=I_C/gain_beta
11
12 // \text{since V_CE=V_BE+V_CB we get}
13 \quad V_CB = V_CE - V_BE
14
15 R_B=V_CB/I_B
16
17 printf("base resistance=%.3f kilo ohm \n",R_B)
```

## Scilab code Exa 12.11 voltage across

```
1 //chapter12
2 //example12.11
3 //page248
4
5 Vcc=15 // V
6 Re=2 // kilo ohm
```

```
7 \text{ Rc=1} // \text{ kilo ohm}
8 gain_beta=100
9 Vbe=0.7 // V
10 R1=10 // kilo ohm
11 R2=5 // kilo ohm
12
13 // when Ic=0, Vce=Vcc i.e. Vce=6 and when Vce=0, Ic=
      Vcc/(Rc+Re) i.e. Ic=15/(1+2)
14 // so equation of load line becomes Ic = -(1/3) *Vce + 5
15
16 clf()
17 x = linspace(0, 15, 5)
18 y = -(1/3) * x + 5
19 plot2d(x,y,style=3,rect=[0,0,16,6])
20 xtitle("dc load line", "Vce(volts)", "Ic(mA)")
21
22 V2=Vcc*R2/(R1+R2) // voltage across R2 i.e. 5 kilo
      ohm
23 Ie=(V2-Vbe)/Re
24 Ic=Ie
25 \text{ Vce=Vcc-Ic*(Rc+Re)}
26
27 printf ("the operating point is \%.3 \,\mathrm{f} V and \%.3 \,\mathrm{f} mA \n
      ", Vce, Ic)
```

#### Scilab code Exa 12.12 thevenin

```
1 //chapter12
2 //example12.12
3 //page249
4
5 Vcc=15 // V
6 Re=2 // kilo ohm
7 Rc=1 // kilo ohm
8 gain_beta=100
```

```
9 Vbe=0.7 // V
10 R1=10 // kilo ohm
11 R2=5 // kilo ohm
12
13 Eo = Vcc * R2 / (R1 + R2)
14 Ro=R1*R2/(R1+R2)
15
16 printf ("thevenin voltage = \%.3 \, \text{f V } \text{n}", Eo)
17 printf ("thevenin resistance = \%.3 f kilo ohm \n", Ro)
18
19 // here Eo=Ib*Ro+Vbe+Ie*Re
20 // now considering Ie=gain_beta*Ib, and making Ib as
       subject we get
21 // Ib = (Eo-Vbe)/(Ro+gain_beta*Re)
22 // Ic=gain_beta*Ib=gain_beta*(Eo-Vbe)/(Ro+gain_beta*
  // dividing numerator and denominator by gain_beta
23
      we get
24 // Ic = (Eo-Vbe) / (Re+Ro/gain_beta)
25 // Ro/gain_beta is negligible compared to Re so
26 \text{ Ic=(Eo-Vbe)/Re}
27 \text{ Vce=Vcc-Ic*(Rc+Re)}
28
29 printf ("the operating point is \%.3 \,\mathrm{f} V and \%.3 \,\mathrm{f} mA \n
      ", Vce, Ic)
```

#### Scilab code Exa 19.12 Example 12

```
1 //chapter19
2 //example19.12
3 //page424
4
5 It=8.93 // A
6 Ic=8 // A
```

#### Scilab code Exa 12.13 collector current

```
1 //chapter12
2 // example 12.13
3 / page 250
5 R1=50 // kilo ohm
6 R2=10 // kilo ohm
7 Re=1 // kilo ohm
8 \text{ Vcc=12} // \text{V}
9 \text{ Vbe1=0.1 } // \text{ V}
10 Vbe2=0.3 // V
11
12 V2=Vcc*R2/(R1+R2) // voltage across R2
13
14 // \text{ for Vbe} = 0.1 \text{ V}
15 Ic1 = (V2 - Vbe1) / Re
16
17 // \text{ for Vbe} = 0.3 \text{ V}
18 \text{ Ic2=(V2-Vbe2)/Re}
19
20 printf("for V_BE=0.1 V, collector current = \%.3 \, \text{f mA}
      \n", Ic1)
21 printf("for V_BE=0.3 V, collector current = \%.3 \,\mathrm{f} mA
       n \n, Ic2)
22
23 Vbe_change=100*(Vbe2-Vbe1)/Vbe1
24 Ic\_change = -100*(Ic2-Ic1)/Ic1 // negative sign since
```

#### Scilab code Exa 12.14 collector emitter

```
1 //chapter12
2 // example 12.14
3 / page 251
5 \text{ Vcc}=20 // V
6 \text{ Re=5} // \text{ kilo ohm}
7 \text{ Rc=1} // \text{kilo ohm}
8 Vbe=0 // considering it as negligible
9 R1=10 // kilo ohm
10 R2=10 // kilo ohm
11
12 V2=Vcc*R2/(R1+R2)
13
14 // since V2=Vbe+Ie*Re so
15 Ie=(V2-Vbe)/Re
16 Ic=Ie
17
18 Vce=Vcc-Ic*(Rc+Re)
19 Vc = Vcc - Ic * Rc
20
21 printf ("emitter current = \%.3 \, \text{f mA } \setminus \text{n}", Ie)
22 printf("collector emitter voltage = \%.3 \,\mathrm{f} V \n", Vce)
23 printf ("collector potential = \%.3 \, \text{f V } \text{n}", Vc)
```

#### Scilab code Exa 12.15 Kirchoff voltage law

```
1 / chapter 12
2 / \text{example} 12.15
3 / page 252
4
5 R_C=2.2 // kilo ohm
6 V_CC=9 // V
7 gain_beta=50
8 V_BE=0.3 // V
9 I_C=2 // mA
10 V_CE=3 // V
11
12 I_B=I_C/gain_beta
13 I1=10*I_B
14
15 // I1=V_{-}CC/(R1+R2) so let Rt=R1+R2 thus we get
16 Rt = V_CC/I1
17
18 // by Kirchoff voltage law to collector side we get
19 // V_{CC}=I_{C}*R_{C}+V_{CE}+I_{E}*R_{E} and also we have I_{C}=I_{C}
      I_E so
20 // V_CC=I_C*R_C+V_CE+I_C*R_E so making R_E as
      subject we get
21 R_E = ((V_CC - V_CE)/I_C) - R_C // in kilo ohm
22
23 V2=V_BE+I_C*R_E // since V_E=I_C*R_E
24 R2=V2/I1
25 R1=Rt-R2
26
27 printf ("emitter resistance = \%.3 \text{ f ohm } \text{n}", R_E*1000)
28 printf("R1 = \%3f kilo ohm \n",R1)
29 printf ("R2 = \%3f kilo ohm \n", R2)
```

#### Scilab code Exa 12.16 collector resistance

```
1 / chapter 12
2 //example12.16
3 / page 252
 5 alpha=0.985
6 V_BE=0.3 // V
7 \text{ V_CC=16} // \text{V}
8 \text{ V}_{\text{CE}=6} // \text{ V}
9 I_C=2 // mA
10 R_E=2 // kilo ohm
11 R2=20 // kilo ohm
12
13 gain_beta=alpha/(1-alpha)
14 I_B=I_C/gain_beta
15
16 V_E=I_C*R_E
17 \quad V2 = V_BE + V_E
18 V1 = V_CC - V2
19
20 I1 = V2/R2
21 R1 = V1/I1
22
23 V_RC=V_CC-V_CE-V_E
24 R_C=V_RC/I_C
25
26 printf("R1 = \%.3 \, \text{f} kilo ohm \n",R1)
27 printf("collector resistance = \%.3 \, f kilo ohm n, R_C
```

Scilab code Exa 12.17 thevenin

```
1 / chapter 12
2 / \exp 12.17
3 / page 253
5 \text{ Vcc=15} // \text{V}
6 \text{ Re=2} // \text{ kilo ohm}
7 Rc=1 // kilo ohm
8 gain_beta=100
9 Vbe=0.7 // V
10 R1=10 // kilo ohm
11 R2=5 // kilo ohm
12
13 Eo = Vcc * R2/(R1 + R2)
14 Ro = R1 * R2 / (R1 + R2)
15
16 printf("thevenin voltage = \%.3 \, f \, V \, n", Eo)
17 printf("thevenin resistance = \%.3 \,\text{f} kilo ohm \n", Ro)
18
19 // here Eo=Ib*Ro+Vbe+Ie*Re
20 // now considering Ie=gain_beta*Ib, we can replace
      Ib=Ie/gain_beta
21 // Eo=(Ie/gain_beta)*Ro+Vbe+Ie*Re
22 // making Ie as subject we get
23 Ie=(Eo-Vbe)/(Re+Ro/gain_beta)
24
25 printf("emitter current = \%.3 \, \text{f mA } \setminus \text{n}", Ie)
```

#### Scilab code Exa 12.18 kilo ohm

```
1 //chapter12
2 //example12.18
3 //page254
4
5 V_CC=10 // V
6 V_BE=0.2 // V
```

```
7  I_E=2 // mA
8  I_B=50d-3 // mA
9  R_E=1 // kilo ohm
10  R2=10 // kilo ohm
11
12  V2=V_BE+I_E*R_E
13  I2=V2/R2
14
15  I1=I2+I_B
16  V1=V_CC-V2
17  R1=V1/I1
18
19  printf("R1 = %.3 f kilo ohm \n",R1)
```

#### Scilab code Exa 12.19 transistor

```
1 / chapter 12
2 //example12.19
3 / page 255
5 printf(" i) if R2 is shorted, base will be grounded.
      It will be \n left without forward bias and
     transistor \n will be cutoff so output is zero
     . \ n \ n"
6 printf(" ii) if R2 is open, forward bias will be very
     high. The \n
                  collector current will be very
     high and collector \n emitter voltage will be
     very low. \n \n")
7 printf(" iii) if R1 is shorted, transistor will be
    in saturation \n due to excessive forward bias
     . The base will be at \n
                               Vcc and emitter will
     be slightly below Vcc. n n")
8 printf(" iv) if R1 is open, transistor will be
     without forward bias.\n Hence transistor will
    be cutoff i.e. output will be zero. \n")
```

#### Scilab code Exa 12.20 circuit is not mid-point biased

```
1 / chapter 12
2 / \exp 12.20
3 //page256
4
5 \text{ Vcc=8} // \text{V}
6 Rb=360 // kilo ohm
7 \text{ Rc}=2 // \text{ kilo ohm}
8 gain_beta=100
9 Vbe=0.7 // V
10
11 // when Ic=0, Vce=Vcc i.e. Vce=8 and when Vce=0, Ic=
      Vcc/Rc i.e. Ic=8/2
  // so equation of load line becomes Ic = -0.5*Vce + 4
13
14 clf()
15 \text{ x=linspace}(0,8,5)
16 \quad y = -0.5 * x + 4
17 plot2d(x,y,style=3,rect=[0,0,9,5])
18 xtitle("dc load line","Vce(volts)","Ic(mA)")
19
20 // since Vcc=Ib*Rb+Vbe we get
21 Ib = (Vcc - Vbe)/Rb
22 Ic=Ib*gain_beta
23 Vce=Vcc-Ic*Rc
24
25 printf ("the operating point is \%.3\,\mathrm{f} V and \%.3\,\mathrm{f} mA \n
      ", Vce, Ic)
  if Vce<Vcc/2+0.1 | Vce>Vcc/2-0.1 // check if V_CE is
       nearly half of V<sub>CC</sub>
        printf("circuit is mid-point biased \n")
27
28 else
        printf("circuit is not mid-point biased. \n")
29
```

## Scilab code Exa 12.21 circuit is not mid-point biased

```
1 //chapter12
2 // example 12.21
3 / page 257
5 V_{CC} = 10 / V
6 R1=12 // kilo ohm
7 R2=2.7 // kilo ohm
8 V_BE=0.7 // V
9 R_E=180d-3 // kilo ohm
10 R_C = 620d - 3 // kilo ohm
11
12 V2=V_CC*R2/(R1+R2)
13 I_E = (V2 - V_BE)/R_E
14 I_C=I_E
15 V_CE = V_CC - I_C * (R_C + R_E)
16
17 printf ("the operating point is \%.3 \,\mathrm{f} V and \%.3 \,\mathrm{f} mA \n
      ", V_CE, I_C)
18 if V_CE < V_CC / 2 + 0.1 | V_CE > V_CC / 2 - 0.1 // check if
      V_CE is nearly half of V_CC
19
       printf("circuit is mid-point biased \n")
20 else
       printf("circuit is not mid-point biased. \n")
21
22 \text{ end}
23
24 // the accurate answer for collector current is
      6.315 mA but in book it is given as 6.33 mA
```

Scilab code Exa 12.22 base current

```
1 / chapter 12
2 / \exp 12.22
3 / page 257
5 V_{CC} = 10 / V
6 R1=1.5 // kilo ohm
7 R2=0.68 // kilo ohm
8 R_E=0.24 // kilo ohm
9 V_BE=0.7 / V
10 \text{ beta_min=} 100
11 beta_max = 400
12
13 V2=V_CC*R2/(R1+R2)
14 I_E = (V2 - V_BE) / R_E
15 I_C=I_E
16
17 beta_avg=(beta_min*beta_max)^0.5
18 I_B=I_E/(beta_avg+1)
19
20 printf("base current = \%f micro ampere \n",I_B*1000)
21
22 // the accurate answer for base current is 50.151
      micro ampere but in book it is given as 49.75
      micro ampere
```

#### Scilab code Exa 12.23 collector cutoff current

```
1 //chapter12
2 //example12.23
3 //page258
4
5 gain_beta=40
6 I_C1=2 // mA
7 t1=25 // degrees
8 t2=55 // degrees
```

```
9 I_CB01=5d-3 // mA
10
11 // for LCBO=5 micro ampere at 25 degrees
12 I_CE01=(1+gain_beta)*I_CB01
13
14 I_CBO2=I_CBO1*2^((t2-t1)/10) // since it doubles
      every 10 degrees. So for t2-t1, it becomes 2^((t2
     -t1)/10) times.
15 I_CEO2 = (1+gain_beta) * I_CBO2
16 I_C2=I_CEO2+I_C1
17 I_C_{change} = 100*(I_C2-I_C1)/I_C1
18
19 // for LCBO=0.1 micro ampere at 25 degrees
20 t1_dash=25 // degrees
21 t2_{dash}=55 // degrees
22 I_CB01_dash = 0.1d-3 // mA
23 I_C1_dash=2 // mA
24
25 I_CBO2_dash=I_CBO1_dash*2^((t2-t1)/10) // since it
      doubles every 10 degrees. So for t2-t1, it
      becomes 2^{((t2-t1)/10)} times.
I_CEO2_dash = (1+gain_beta)*I_CBO2_dash
27 I_C2_dash=I_CE02_dash+I_C1_dash
I_C_{change_dash=100*}(I_C2_{dash}-I_C1_{dash})/I_C1_{dash}
29
30 printf("collector cutoff current = \%.3 \text{ f mA } \text{ n } \text{ n}",
      I_CEO1)
31 printf("percent change in zero signal current given
      that \nI_CBO=5 micro ampere at 25 degree is =\%.3
      f percent \n, I_C_change)
32 printf ("percent change in zero signal current given
      that \nLCBO = 0.01 micro ampere at 25 degree is =
     \%.3 f percent \n", I_C_change_dash)
```

Scilab code Exa 12.24 base current

```
1 / chapter 12
2 / \text{example} 12.24
3 / page 259
5 \text{ alpha=0.99}
6 I_E=1 // mA
7 t1=27 // degrees
8 t2=57 // degrees
9 I_CB01=0.02d-3 // mA
10
11 I_CB02=I_CB01*2^((t2-t1)/6) // since it doubles
      every 6 degrees. So for t2-t1, it becomes 2^((t2-
      t1)/6) times.
12
13 I_C=alpha*I_E+I_CB02
14 I_B=I_E-I_C
15
16 printf("base current = %.1 f micro ampere", I_B*1000)
```

# Scilab code Exa 12.25 since base voltage is zero

```
1 //chapter12
2 //example12.25
3 //page261
4
5 printf("since base voltage is zero, it means that there is no path \nfor current in the base circuit. So the transistor will be off i.e. I_C =0,I_E=0. \nSo V_C=10V and V_E=0.\nSo obvious fault is R1 is open.\n")
```

Scilab code Exa 12.26 voltage at base

```
1 //chapter12
2 //example12.26
3 //page261
4
5 R1=18 // kilo ohm
6 R2=4.7 // kilo ohm
7 Re=1 // kilo ohm
8 Vcc=10 // V
9
10 V_B=Vcc*R2/(R1+R2)
11
12 printf("voltage at base = %.3 f V \n", V_B)
13 printf("The fact that V_C=10V and V_E is nearly equal to V_B reveals \nthat I_C=0 and I_E=0.So I_B drops to zero.So obvious fault is R_E is open . \n")
```

# Chapter 13

# Single stage transistor amplifiers

#### Scilab code Exa 1.1 collector current

```
1 // chapter 13
2 // example 13.1
3 // page 272
5 \text{ Rc}=4 \text{ // kilo ohm}
6 \text{ Vcc=10} // \text{V}
7 Ib_zero=10d-3 // mA
8 \text{ Ib\_max}=15d-3 // \text{mA}
9 Ib_min=5d-3 // mA
10 gain_beta=100
11
12 Ic_zero=Ib_zero*gain_beta
13 Ic_max=Ib_max*gain_beta
14 Ic_min=Ib_min*gain_beta
15
16 Vc_zero=Vcc-Ic_zero*Rc
17 Vc_max=Vcc-Ic_max*Rc
18 Vc_min=Vcc-Ic_min*Rc
```

```
20 printf ("As collector current increases from %.3 f mA
      to %.3 f mA \noutput voltage decreases from %.3 f V
       to \%.3 \, f \, V \, n, Ic_zero, Ic_max, Vc_zero, Vc_max)
21 printf("As collector current decreases from %.3 f mA
      to %.3 f mA \noutput voltage increases from %.3 f V
       to %.3 f V \n", Ic_max, Ic_min, Vc_max, Vc_min)
22 printf ("Thus output voltage is 180 degrees out of
      phase from input voltage \n")
23
24 printf("Note: \ni) input voltage and input current
      are in phase \nii) input voltage and output
      current are in phase \niii) output voltage is 180
       degrees out of phase with input voltage\n")
25
26
27 // plotting base current and collector current and
      output voltage in same graph using following code
       instead of xcos
28 clf()
29 x=linspace(0,2*%pi,100)
30 \text{ ib=}5*sin(x)+10
31 ic=0.5*sin(x)+1
32 \text{ vc} = -4*\sin(x)+6
33 plot2d(x,ib,style=1,rect=[0,0,20,20])
34 xtitle ("base current (micro ampere) - Black
                             collector current (mA) -
                                output voltage(V) - Green
      Blue
35 plot2d(x,ic,style=2,rect=[0,0,20,20])
36 \text{ plot2d}(x,vc,style=3,rect=[0,0,20,20])
```

#### Scilab code Exa 1.2 Thevenin circuit

```
1 // chapter 13
2 // example 13.2
```

```
3 // page 274
5 printf("i) Referring to the Thevenin circuit, we see
     that voltage source \nis short and resistances
     except Rc and Re are bypassed.\nThus dc load = Rc
      + Re \langle n \rangle
6 printf(" Referring to ac equivalent circuit, Rc is
     parallel with Rl.\nThus ac load = Rc*Rl/(Rc+Rl) \
     n \setminus n \setminus n")
  printf("ii) Since Vcc=Vce+Ic*(Rc+Re) we get \n max
     Vce = Vcc \text{ and } max \text{ Ic} = Vcc/(Rc+Re) \setminus n \setminus n")
8 printf("iii)On applying ac signal, collector current
      and collector emitter \nvoltage change about Q
     point.\nMaximum collector current = Ic.\nMaximum
     positive swing of ac collector emitter voltage =
     Ic*R_AC \n So total maximum collector emitter
     voltage = Vce+Ic*R_AC \n\nMaximum positive swing
     of ac collector current = Vce/R_AC so \nTotal
     maximum collector current = Ic+Vce/R\_AC \setminus n")
```

#### Scilab code Exa 13.3 the operating point

```
1 // chapter 13
2 // example 13.3
3 // page 278
4
5 Vcc=15 // V
6 Re=2 // kilo ohm
7 Rc=1 // kilo ohm
8 Rl=1 // kilo ohm
9 Vbe=0.7 // V
10
11 // dc load line
12
13 // when Ic=0, Vce=Vcc i.e. Vce=15 and when Vce
```

```
=0, Ic=Vcc/(Rc+Re) i.e. Ic=15/3
14
       // so equation of load line becomes Ic = -(1/3)*
          Vce+15
15
16
           clf()
17
       x=linspace(0,15,5)
       y = -(1/3) * x + 5
18
       plot2d(x,y,style=3,rect=[0,0,16,6])
19
       xtitle("dc load line-green
20
                                              ac load line-
          blue", "collector emitter voltage (volts)", "
          collector current (mA)")
21
22
       V2=5 // V
       // since voltage across R2 is V2=5 V and V2=Vbe+
23
          Ie*Re we get
24
       Ie=(V2-Vbe)/Re
25
       Ic=Ie
26
       Vce=Vcc-Ic*(Rc+Re)
27
       printf ("the operating point is %.3 f V and %.3 f
28
          mA \setminus n", Vce, Ic)
29
30
  // ac load line
31
32
33
       R_AC=Rc*R1/(Rc+R1) // ac load
34
       V_ce=Vce+Ic*R_AC // maximum collector emitter
          voltage
       I_c=Ic+Vce/R_AC // maximum collector current
35
       // the equation of ac load line in terms of V_ce
36
           and I_c becomes
       y=-(I_c/V_ce)*x+I_c
37
        plot2d(x,y,style=2,rect=[0,0,10,20])
38
```

Scilab code Exa 13.4 maximum collector

```
1 // \text{ chapter } 13
2 // example 13.4
3 // page 279
5 \text{ Vcc}=20 // V
6 Re=0 // kilo ohm, since given as negligible
7 Rc=10 // kilo ohm
8 R1=30 // kilo ohm
9 Vbe=0.7 // V
10
11 Vce=10 // \text{ mV}
12 Ic=1 // mA
13
14 // dc load line
15
       // when Ic=0, Vce=Vcc i.e. Vce=15 and when Vce
16
          =0, Ic=Vcc/(Rc+Re) i.e. Ic=20/10 mA
       // so equation of load line becomes Ic = -(1/10)*
17
          Vce+2
18
19
        clf()
20
       x = linspace(0, 20, 5)
       y = -(1/10) * x + 2
21
       plot2d(x,y,style=3,rect=[0,0,21,6])
22
       xtitle("dc load line-green
23
                                               ac load line-
          blue", "collector emitter voltage (volts)", "
          collector current (mA)")
24
  // ac load line
25
26
27
       R_AC=Rc*R1/(Rc+R1) // ac load
28
       V_ce=Vce+Ic*R_AC // maximum collector emitter
          voltage
       I_c=Ic+Vce/R_AC // maximum collector current
29
30
       // the equation of ac load line in terms of V<sub>ce</sub>
           and I_c becomes
       x=linspace(0, V_ce, 10)
31
       y=-(I_c/V_ce)*x+I_c
32
```

#### Scilab code Exa 13.5 plot

```
1 // chapter 13
2 // example 13.5
3 // page 280
5 printf ("operating point is (8V,1mA). During positive
      half cycle of \nac signal collector current
     swings from 1 mA to 1.5 mA \nand collector
      emitter voltage swings from 8 V to 7 V.\nThis is
      at A. During negative half cycle of \nac signal
      collector current swings from 1 mA to 0.5 mA
     nand collector emitter voltage swings from 8 V to
      9 V.\nThis is at B. \n")
7 printf("Note: When ac signal is applied, ac signal
      collector current and \ncollector emitter voltage
      variations take place about Q point. \nAlso,
     operating point moves along load line.\n")
8
9 clf()
10 x=linspace(-3*\%pi,-\%pi,10)
11 plot(x, -0.5*sin(x)+1)
12
13 x = linspace(7, 9, 10)
14 plot (x, 5-0.5*x)
15
16 x=linspace(-3*%pi,-%pi,10)
17 plot(-sin(x)+8,x)
18 plot(x,xgrid())
19 xtitle ("collector current and collector emitter
     voltage swings", "collector emitter voltage (volts
     ", "collector current (mA)")
```

```
20 a=gca(); // Handle on axes entity
21 a.x_location = "origin";
22 a.y_location = "origin";
23
24 // Some operations on entities created by plot ...
25 \ a = gca();
26 a.isoview='on';
27 a.children // list the children of the axes : here
     it is an Compound child composed of 2 entities
28 poly1= a.children.children(2); //store polyline
     handle into poly1
29 poly1.foreground = 4; // another way to change the
     style ...
30 poly1.thickness = 3; // ...and the tickness of a
31 poly1.clip_state='off' // clipping control
32 a.isoview='off';
```

#### Scilab code Exa 13.6 voltage gain

```
1  //chapter13
2  //example13.6
3  //page282
4
5  Rc=2  // kilo ohm
6  Rl=0.5  // kilo ohm
7  Rin=1  // kilo ohm
8  gain_beta=60
9
10  R_AC=Rc*Rl/(Rc+Rl)
11  Av=gain_beta*R_AC/Rin
12
13  printf("voltage gain = %.3 f \n",Av)
```

# Scilab code Exa 13.7 output voltage

```
1 //chapter13
2 //example13.7
3 / page 282
5 \text{ Rc}=10 // \text{ kilo ohm}
6 Rl=10 // kilo ohm
7 Rin=2.5 // kilo ohm
8 gain_beta=100
9 Vin=1 // mV
10
11 R_AC=Rc*R1/(Rc+R1)
12 Av=gain_beta*R_AC/Rin
13
14 // since Av=Vout/Vin we get
15 Vout = Av * Vin
16
17 printf("output voltage = \%.3 \, f \, mV \, n", Vout)
```

# Scilab code Exa 13.8 input impedence

```
1 //chapter13
2 //example13.8
3 //page282
4
5 del_Ib=10d-3 // mA
6 del_Ic=1 // mA
7 del_Vbe=0.02 // V
8 Rc=5 // kilo ohm
9 Rl=10 // kilo ohm
10 gain_beta=60.0;
```

```
11
12 Ai=del_Ic/del_Ib
13 Rin=del_Vbe/del_Ib
14 R_AC=Rc*R1/(Rc+R1)
15 Av=gain_beta*R_AC/Rin
16 \text{ Ap=Av*Ai}
17
18 printf ("current gain = \%.3 \, \text{f} \, \text{n}", Ai)
19 printf("input impedence = \%.3 \, \text{f} kilo ohm \n", Rin)
20 printf("ac load = \%.3 \, \text{f} kilo ohm \n", R_AC)
21 printf ("voltage gain = \%.3 \, \text{f} \, \text{n}", Av)
22 printf ("power gain = \%.3 \, \text{f} \, \text{n}", Ap)
23
24 // the accurate answer for voltage gain = 166.667
       and for power gain = 16666.667 but in book they
       are given as 165 and 16500 respectively.
```

#### Scilab code Exa 13.9 output voltage

```
1 //chapter13
2 // example 13.9
3 //page283
4
5 \text{ Rc}=3 // \text{ kilo ohm}
6 Rl=6 // kilo ohm
7 Rin=0.5 // kilo ohm
8 \text{ Vin=1} // \text{mV}
9 gain_beta=50
10
11 R_AC=Rc*R1/(Rc+R1)
12 Av=gain_beta*R_AC/Rin
13
14 // since Av=Vout/Vin we get
15 Vout = Av * Vin
16
```

#### Scilab code Exa 13.10 circuit

```
1 //chapter13
2 //example13.10
3 / page 283
5 R1=1 // kilo ohm
6 R2=2 // kilo ohm
7 \text{ Vt} = 6 // V
9 \text{ Vb=Vt*R1/(R1+R2)}
10
11 if Vb == 4
12
       printf("circuit is operating properly \n")
13 else
       printf("circuit is not operating properly
14
           because voltage at B should be %.1f V instead
            of 4 V \setminus n", Vb)
15 end
```

#### Scilab code Exa 13.11 ac emitter resistance

```
1  // chapter13
2  // example13.11
3  // page284
4
5  R1=40  // kilo ohm
6  R2=10  // kilo ohm
7  Re=2  // kilo ohm
8  Vcc=10  // V
9  Vbe=0.7  // V
```

```
10
11  V2=Vcc*R2/(R1+R2) // voltage across R2
12  Ve=V2-Vbe // voltage across Re
13  Ie=Ve/Re
14  re_dash=25/Ie
15
16  printf("ac emitter resistance = %.3 f ohm \n",re_dash
)
```

#### Scilab code Exa 13.12 voltage gain

```
1 //chapter13
2 //example13.12
3 //page286
5 R1=150 // kilo ohm
6 R2=20 // kilo ohm
7 Re=2.2 // kilo ohm
8 \text{ Rc}=12 // \text{ kilo ohm}
9 \ Vcc = 20 \ // \ V
10 Vbe=0.7 // V
11
12 V2=Vcc*R2/(R1+R2) // voltage across R2
13 Ve=V2-Vbe // voltage across Re
14 Ie=Ve/Re
15 re_dash=1d-3*25/Ie // in kilo ohm
16 Av=Rc/re_dash
17
18 printf ("voltage gain = \%.3 \, \text{f} \, \text{n}", Av)
19
20 // the accurate answer is 360.642
```

Scilab code Exa 13.13 voltage gain

```
1 //chapter13
2 //example13.13
3 //page287
4
5 Rc=12 // kilo ohm
6 Rl=6 // kilo ohm
7 re_dash=33.3d-3 // kilo ohm
8
9 R_AC=Rc*Rl/(Rc+Rl)
10 Av=R_AC/re_dash
11
12 printf("voltage gain = %.3 f \n", Av)
13
14 // the accurate answer is 120.120
```

# Scilab code Exa 13.14 input impedence of amplifier circuit

```
1 //chapter13
2 // example 13.14
3 / page 288
5 R1=45 // kilo ohm
6 R2=15 // kilo ohm
9 Vbe=0.7 // V
10 gain_beta=200
11
12 V2=Vcc*R2/(R1+R2) // voltage across R2
13 Ve=V2-Vbe // voltage across Re
14 Ie=Ve/Re
15 re_dash=1d-3*25/Ie // in kilo ohm
16 Zin_base=gain_beta*re_dash
17 \quad Zin=Zin_base*(R1*R2/(R1+R2))/(Zin_base+R1*R2/(R1+R2))
     )
```

```
18
19 printf("input impedence of amplifier circuit = %.3 f
          kilo ohm \n", Zin)
20
21 // the accurate answer for input impedence is 3.701
        kilo ohm but in book it is given as 3.45 kilo ohm
```

#### Scilab code Exa 13.15 Class A

```
1 //chapter13
2 //example13.15
3 / page 289
5 printf("i) Class A amplifier means that it raises
     voltage level of signal and its \nmode of
     operation is such that collector current flows
     for whole input signal. \n \n")
6 printf("ii) Audio voltage amplifier means it raises
     voltage level of audio signal \nand its mode of
     operation is class A. \n \n")
7 printf("iii) Class B power amplifier means that it
     raises power level of signal and its \nmode of
     operation is such that collector current flows
     for half cycle of input signal only. \n \n")
8 printf("iv) Class A transformer coupled power
     amplifier means that power amplification \nis
     being done, coupling is by tranformer and mode of
      operation is class A. \n")
```

#### Scilab code Exa 13.16 required input signal voltag

```
1 //chapter132 //example13.16
```

```
3 //page290
4
5 Ao=1000
6 Rout=1 // ohm
7 R1=4 // ohm
8 Rin=2d3 // ohm
9 I2=0.5 // A
10
11 // here I2/I1=Ao*Rin/(Rout+Rl) so
12 I1=I2*(Rout+Rl)/(Ao*Rin)
13 V1=I1*Rin // in V
14
15 printf("required input signal voltage = %.3 f mV \n", V1*1d3)
```

# Scilab code Exa 13.17 magnitude of output voltage

```
1 //chapter13
2 //example13.17
3 / page 291
5 \text{ Ao} = 1000
6 \text{ Es} = 10 \text{d} - 3 // \text{V}
7 Rs=3d3 // ohm
8 Rin=7d3 // ohm
9 Rout=15 // ohm
10 R1=35 // ohm
11
12 I1=Es/(Rs+Rin)
13 V1=I1*Rin
14 Av = Ao * R1 / (Rout + R1)
15 // \text{ since } V2/V1=Av, \text{ we get}
16 V2=V1*Av
17
18 P2=V2^2/R1
```

```
19 P1=V1^2/Rin
20 Ap=P2/P1
21
22 printf("magnitude of output voltage = %.2 f V \n", V2)
23 printf("power gain = %.2 f \n", Ap)
```

# Scilab code Exa 13.18 required signal voltage

```
1 //chapter13
2 //example13.18
3 / page 292
5 \text{ Av} = 80
6 \text{ Ai} = 120
7 V2=1 // V
8 Rout=1 // ohm
9 R1=2 // ohm
10
11 V1=V2/Av // in V
12
13 // Av=Ao*Rl/(Rout+Rl) and Ai=Ao*Rin/(Rout+Rl) so
14 // Av/Ai=Rl/Rin hence
15 Rin=Rl*Ai/Av
16
17 I1=V1/Rin // in mA
18 Ap = Av * Ai
19
20 printf("required signal voltage = \%.2 f mV and
      current = \%.2 f micro ampere \n", V1*1d3, I1*1d3)
21 printf("power gain = \%.3 \, f \, \backslash n", Ap)
```

# Chapter 14

# Multistage transistor amplifiers

# Scilab code Exa 14.1 gain

```
1 //chapter 14
2 //example 14.1
3 //page 301
4
5 Av=20*log10(30)
6
7 Pv=10*log10(100)
8
9 printf("voltage gain = %.3 f db \n", Av)
10 printf("power gain = %.3 f db \n", Pv)
```

# Scilab code Exa 14.2 gain

```
1 //chapter 14
2 //example 14.2
3 //page 301
4
5 Ap1=40 // db
```

```
6 Ap2=43 // db
7
8 // since Ap = 10*log10(power_gain), we get
9 power_gain1=10^(Ap1/10)
10 power_gain2=10^(Ap2/10)
11
12 printf("power gain of 40 db = %.3 f \n",power_gain1)
13 printf("power gain of 43 db = %.3 f \n",power_gain2)
14
15 // the accurate answer for power gain of 43 db is
19952 but in book it is given as 20000 db
```

# Scilab code Exa 14.3 total voltage gain

```
1 //chapter 14
2 //example 14.3
3 //page 301
4
5 Av1=20*log10(100) // db
6 Av2=20*log10(200) // db
7 Av3=20*log10(400) // db
8
9 Av_total=Av1+Av2+Av3
10
11 printf("total voltage gain = %.3 f db \n", Av_total)
```

#### Scilab code Exa 14.4 Example 4

```
1 //chapter 14
2 //example 14.4
3 //page 302
4
5 gain_abs=30
```

```
6    n=5
7
8    Ap1=10*log10(gain_abs) // db
9    Ap_tot=Ap1*n
10    Ap_f=Ap_tot-10 // db
11
12    printf("total power gain = %.3 f db \n", Ap_tot)
13    printf("power gain with negative feedback = %.3 f db \n", Ap_f)
```

# Scilab code Exa 14.5 Example 5

```
1 //chapter 14
2 //example 14.5
3 //page 302
4
5 P1=1.5 // W
6 P2=0.3 // W
7 Pi=10d-3 // W
8
9 // power gain at 2 kHz
10 Ap1=10*log10(P1/Pi)
11
12 // power gain at 20 Hz
13 Ap2=10*log10(P2/Pi)
14
15 Ap_diff=Ap1-Ap2
16 printf("fall in gain from 2 kHz to 20 Hz = %.3f db \ n", Ap_diff)
```

# Scilab code Exa 14.6 output voltage

```
1 // chapter 14
```

```
2 //example 14.6
3 //page 302
4
5 Av=15 // db
6 V1=0.8 // V
7
8 // since db voltage gain Av=20*log10(V2/V1) making V2 as subject we get
9
10 V2=V1*10^(Av/20)
11
12 printf("output voltage = %.2 f V \n", V2)
```

#### Scilab code Exa 14.7 minimum value of load resistance

```
1 / chapter 14
2 //example 14.7
3 //page 302
5 \text{ Ao\_db} = 70 // \text{db}
6 \text{ Av\_db=67} // \text{db}
7 Rout=1.5 // kilo ohm
9 // since 20*log(Ao)-20*log(Av)=Ao_db-Av_db we get
10 // 20*log(Ao/Av) = Ao_db-Av_db so
11 // Ao/Av = 10^{((Ao_db-Av_db)/20)}
12 // and also Ao/Av=1+Rout/Rl since Av/Ao=Rl/(Rl+Rout)
14 // so making Rl as subject we get
15 Rl=Rout/(10^((Ao_db-Av_db)/20)-1)
16
17 printf("minimum value of load resistance = %.3 f kilo
       ohm \n",R1)
18
19 // the accurate answer is 3.636 kilo ohm
```

# Scilab code Exa 14.8 output voltage

# Scilab code Exa 14.9 frequency

```
1 // chapter14
2 // example14.9
3 // page 303
4
5 // figure given in book is for reference only. It is not required to solve the example since the required details are very clearly specified in the problem statement.
6 // moreover more data is needed to plot the graph given in book.
```

```
8 \text{ Av_max1} = 2000 // \text{ for } 2 \text{ kHz}
9 Av_sqrt_2=1414 // for 10 kHz and 50 Hz
10
11 percent_Av_max1=70.7*Av_max1/100
12 printf ("70.7 percent of maximum gain 2000 is = \%.3 f
      \n", percent_Av_max1)
13
14 if Av_sqrt_2==percent_Av_max1
15 printf ("we observe that 70.7 percent of max gain
      2000 \text{ is } 1414 \text{ } \text{n}")
16 printf ("this gain 1414 is at 50 Hz and 10 kHz \n")
17 printf ("so bandwidth = 50 Hz to 10 kHz n n")
18
19 printf ("since frequency on lower side at which gain
      falls to \n70.7 percent is 50 Hz. So lower cutoff
      frequency = 50 \text{ Hz } \text{n } \text{n}
20 printf ("since frequency on upper side at which gain
      falls to \n70.7 percent is 10 kHz. So upper cutoff
       frequency = 10 \text{ kHz } \text{n } \text{n}
21 else printf("data is insuficient for finding
      bandwidth and cutoff frequencies \n")
22 end
```

#### Scilab code Exa 14.10 gain

```
1 // chapter14
2 // example14.10
3 // page 305
4
5 Rc=500 // ohm
6 Rin=1d3 // ohm
7
8 // gain of second stage is 60 since it has no loading effect of any stage so
9 Av2=60
```

```
10 load1=Rc*Rin/(Rc+Rin)
11 Av1=Av2*load1/Rc
12 Av=Av1*Av2
13
14 printf("total gain = %.3f \n",Av)
15 printf("comment: gain of one stage=60.So total gain should be 60*60=%d but here it is %.3f.\nThis is because of loading effect of input impedence of second stage on first stage. \n",60*60,Av)
16 printf("So gain of first stage decreases.\nHowever, second stage has no loading effect of any next stage.So its gain does not decrease.\n")
17
18 // the accurate answer for total gain is 2400 but in book it is given as 2397
```

# Scilab code Exa 14.11 gain

```
1 // chapter14
2 // example14.11
3 // page 306
4
5 Rin=1 // kilo ohm
6 Rc= 2 // kilo ohm
7 gain_beta=100
8
9 // since first stage has loading effect of input impedence of second stage, we get effective load of first stage as
10 R_AC=Rc*Rin/(Rc+Rin)
11 Av1=gain_beta*R_AC/Rin
12
13 // second stage has no loading effect so its gain
14 Av2=gain_beta*Rc/Rin
15 Av=Av1*Av2
```

```
16
17 printf("voltage gain of first stage = %.3f \n",Av1)
18 printf("voltage gain of second stage = %.3f \n",Av2)
19 printf("total voltage gain = %.3f \n",Av)
20
21 // the accurate answer for gain of first stage is
66.667 and total gain is 13333.33 but in book
they are given as 66 and 13200 respectively
```

# Scilab code Exa 14.12 voltage gain

```
1 // chapter14
2 // example14.12
3 // page 307
5 \text{ Rin}=1d3 // ohm
6 \text{ Rc} = 10 \text{ d} 3 \text{ // ohm}
7 R1 = 100 // ohm
8 gain_beta=100
9
10 // effective collector load is
11 R_AC=Rc*R1/(Rc+R1)
12 Av=gain_beta*R_AC/Rin
13
14 printf ("voltage gain = \%.3 \, \text{f} \, \text{n}", Av)
15 printf("comment : load is only 100 ohm so efective
      load of amplifier is too much reduced.\nThus
      voltage gain is very small.\n")
16 printf("In such cases we can use a step down
      transformer to serve the purpose. \n")
```

#### Scilab code Exa 14.13 biasing potential

```
1 // chapter14
2 // example14.13
3 // page 307
5 \text{ Vcc}=20 // V
6 R3=10 // kilo ohm
7 R4=2.2 // kilo ohm
8 \text{ Rc}=3.6 // \text{ kilo ohm}
10 V_B = Vcc * R4/(R3 + R4)
11
12 // replacing Cc by wire
13 Req=R3*Rc/(R3+Rc)
14 V_B2=Vcc*R4/(Req+R4)
15
16 printf ("biasing potential before replacing Cc = \%.3 f
       V \setminus n", V_B)
17 printf ("biasing potential after replacing Cc = \%.3 f
      V \setminus n \setminus n", V_B2)
18 printf("thus biasing potential of second stage
      changes.\nThis could cause the transistor to
      saturate and it would not work as amplifier.\n")
19 printf("Also, we see the use of coupling capacitor
      to maintain \nindependent biasing potential for
      each stage.\nThis allows ac output from one stage
       to pass to next stage.\n")
```

#### Scilab code Exa 14.14 voltage gain

```
1 // chapter14
2 // example14.14
3 // page 308
4
5 Vcc=15 // V
6 R1=22 // kilo ohm
```

```
7 R2=3.3 // kilo ohm
8 R3=5 // kilo ohm
9 R4=1 // kilo ohm
10 R5=15 // kilo ohm
11 R6=2.5 // kilo ohm
12 R8=1 // kilo ohm
13 R3=5 // kilo ohm
14 R7=5 // kilo ohm
15 Rl=10 // kilo ohm
16 gain_beta=200
17 Vbe=0.7 // V
18
19 // for second stage
20 V_R6 = Vcc*R6/(R6+R5)
21 V_R8 = V_R6 - Vbe
22 I_E2=V_R8/R8 // emitter current in R8
23 re_dash2=25d-3/I_E2
24 Zin_base=gain_beta*re_dash2
25 \text{ Zin} = R5*(R6*Zin\_base/(R6+Zin\_base))/(R5+(R6*Zin\_base)
      /(R6+Zin_base)))
26 R_AC2 = R7 * R1 / (R7 + R1)
27 \text{ Av2=R_AC2/re_dash2}
28
29 // for first stage
30 V_R2 = Vcc*R2/(R2+R1)
31 V_R4 = V_R2 - Vbe
32 I_E1=V_R4/R4 // emitter current in R4
33 re_dash1=25d-3/I_E1
34 R_AC1=R3*Zin/(R3+Zin)
35 \text{ Av1=R\_AC1/re\_dash1}
36
37 \text{ Av} = \text{Av1} * \text{Av2}
38
39 printf ("voltage gain of first stage = \%.3 \, \text{f} \, \text{n}", Av1)
40 printf("voltage gain of second stage = \%.3 \, \text{f} \, \text{n}", Av2)
41 printf("overall voltage gain= \%.3 \text{ f} \setminus \text{n}", Av)
42
43 // the accurate answers are voltage gain of first
```

```
stage = 52.616, voltage gain of second stage = 192.381, overall voltage gain= 10122.329. In book the answers are 53,191.4 and 10144
```

#### Scilab code Exa 14.15 transformer

```
1 // chapter14
2 // example 14.15
3 // page 311
5 // for maximum power transfer, primary impedence =
      transistor output impedence and secondary
      impedence = load impedence
6 \text{ Rp=1d3} // \text{ ohm}
7 \text{ Rs} = 10 // \text{ ohm}
9 // since Rp=(Np/Ns)^2*Rs, making Np/Ns i.e. n as
      subject we get
10 n = (Rp/Rs)^{(0.5)}
11
12 printf("required turn ratio = \%d \n",n)
13
14 if n>1
       printf("transformer required is step down
15
          tranformer \n")
16 elseif n<1
17
       printf("transformer required is step up
          tranformer \n")
18 else // n=1
       printf("transformer is not required \n")
19
20 end
```

#### Scilab code Exa 14.16 voltage across external load

```
1 // chapter 14
2 // example14.16
3 // page 312
5 \text{ Vp=10} // \text{V}
6 // for maximum power transfer, primary impedence =
      output impedence of aource
7 \text{ Rp} = 10 \text{ d} 3 \text{ // ohm}
8 \text{ Rs} = 16 // \text{ ohm}
10 // since Rp=(Np/Ns)^2*Rs, making Np/Ns i.e. n as
       subject we get
11 n=(Rp/Rs)^{(0.5)}
12
13 // since Vs/Vp=Ns/Np, making Vs as subject we get
14 Vs = (1/n) * Vp
15 printf("required turn ratio = \%d \ n",n)
16 printf ("voltage across external load = \%.3 \,\mathrm{f} V \n", Vs
      )
```

#### Scilab code Exa 14.17 turn ratio for maximum power transfer

#### Scilab code Exa 14.18 inductance

```
// chapter14
// example14.18
// page 313

f=200 // Hz
Ro=10d3 // ohm, transistor output impedence
Zi2=2.5d3 // ohm, input impedence of next stage

// since Ro=2*%pi*f*Lp, making Lp as subject we get
Lp=Ro/(2*%pi*f)

// since Zi2=2*%pi*f*Ls, making Ls as subject we get
Ls=Zi2/(2*%pi*f)

printf("primary inductance = %.1 f H \n", Lp)
printf("secondary inductance = %.1 f H \n", Ls)
```

#### Scilab code Exa 14.19 inductance

```
1 // chapter14
2 // example14.19
3 // page 313
4
5 L=10d-6 // H
6 N=1 // turn
7 Lp=8 // H
```

# Chapter 15

# Transistor audio power amplifiers

Scilab code Exa 15.1 maximum collector current

Scilab code Exa 15.2 maximum collector current

```
1 //chapter15
```

```
//example15.2
//page321

V=12 // V
R=4 // kilo ohm

//since maximum collector current will flow when whole battery voltgage is dropped across Rc, we get
Ic_max=V/R

printf("maximum collector current = %.3 f mA \n", Ic_max)
```

# Scilab code Exa 15.3 ac output

```
1 //chapter15
2 //example15.3
3 //page321
4
5 P=50 // W
6 R=8 // ohm
7
8 // since p=V^2/R we get
9 V=(P*R)^0.5
10 I=V/R
11
12 printf("ac output voltage = %.3 f V \n",V)
13 printf("ac output current = %.3 f A \n",I)
```

# Scilab code Exa 15.4 collector efficiency

```
1 / chapter 15
```

```
2 // example 15.4
3 //page325
5 \text{ Vcc}=20 // V
6 \text{ Vbe=0.7} // V
7 Rb=1d3 // ohm
8 \text{ Rc} = 20 // \text{ ohm}
9 \text{ gain} = 25
10
11 Ib=(Vcc-Vbe)/Rb
12 \text{ Ic=Ib*gain}
13 Vce=Vcc-Ic*Rc
14
15 \text{ ib_peak=} 10d-3
16 ic_peak=gain*ib_peak
17 Po_ac=ic_peak^2*Rc/2
18 P_dc = Vcc * Ic
19 eta=(Po_ac/P_dc)*100
20
21 printf ("operating point = \%.3 \,\mathrm{f} V and \%.3 \,\mathrm{f} mA \n", Vce
       ,Ic*1000)
22 printf("output power = \%.3 \, f \, W \, n", Po_ac)
23 printf("input power = \%.3 \, f \, W \, n", P_dc)
24 printf ("collector efficiency = \%.3 f percent \n", eta)
```

# Scilab code Exa 15.5 collector efficiency

```
1 //chapter15
2 //example15.5
3 //page328
4
5 Pdc=10 // W
6 Po=4 // W
7
8 eta=(Po/Pdc)*100
```

```
9
10 // maximum power dissipation in a transistor occurs under zero signal conditions so
11 P=Pdc
12
13 printf("collector efficiency = %.3 f percent \n",eta)
14 printf("power rating of transistor = %.3 f W \n",P)
```

# Scilab code Exa 15.6 maximum ac power output

```
1 //chapter15
2 //example15.6
3 //page328
4
5 Rl=100 // ohm
6 n=10
7 Ic=100d-3 // ampere
8
9 Rl_1=n^2*Rl
10 Pmax=0.5*Ic^2*Rl_1
11
12 printf("maximum ac power output = %.3 f W \n", Pmax)
```

# Scilab code Exa 15.7 power dissipation

```
1  //chapter15
2  //example15.7
3  //page329
4
5  Vcc=5 // V
6  Ic=50d-3 // ampere
7
8  Pac_max=Vcc*Ic/2
```

# Scilab code Exa 15.8 loudspeaker

```
1 //chapter15
2 //example15.8
3 / page 329
4
5 del_Ic=100d-3 // ampere
6 \text{ del_Vce=} 12 // V
7 R1=5 // ohm
8
9 //case 1 : louspeaker directly connected
10 V=del_Ic*Rl
11 P=V*del_Ic
12
13 //case2 : loudspreaker transformer coupled
14 R_primary=del_Vce/del_Ic // for maximum power
      transfer the primary resistance should be equal
      to R
15 n=(R_primary/R1)^0.5
16 V_secondary=del_Vce/n
17 Il=V_secondary/Rl
18 P_1=I1^2*R1
19
20 printf("case1 : loudspeaker connected directly \n
           power transferred to loudspeaker = \%.3 f mW \
```

# Scilab code Exa 15.9 current

```
1 / chapter 15
2 //example15.9
3 //page331
5 \text{ Vcc} = 17.5 // V
6 ic_max=35d-3 // ampere
7 ic_min=1d-3 // ampere
8 IC=18 // ampere
9 gain=100
10 \text{ vce_max=30} // V
11 vce_min=5 // V
12 R1=81.6 // ohm
13
14 IC=ic_min+((ic_max-ic_min)/2)
15 IB=IC/gain
16 VCE=vce_min+((vce_max-vce_min)/2)
17
18 Pdc=Vcc*IC
19 Vce = (vce_max - vce_min) / (2*2^0.5)
20 Ic=(ic_max-ic_min)/(2*2^0.5)
21 Pac=Vce*Ic
22
23 eta=(Pac/Pdc)*100
24
25 slope=(ic_max-ic_min)/(vce_min-vce_max)
26 Rl_dash = -1/slope
27 n=(Rl_dash/Rl)^0.5
28
```

Scilab code Exa 15.10 maximum ambient temperature at which transistor can be operated

```
1 //chapter15
2 //example15.10
3 //page333
4
5 P_total=4 // W
6 T_Jmax=90 // degree celcius
7 theta=10 // degree celcius per watt
8
9 // P_total=(T_Jmax-Tamb)/theta so making Tamb as subject we get
10 Tamb=T_Jmax-P_total*theta
11
12 printf("maximum ambient temperature at which transistor can be operated = %.3 f degree C \n", Tamb)
```

Scilab code Exa 15.11 maximum power dissipation

```
1 //chapter15
2 //example15.11
3 //page333
```

```
5 T_Jmax=90 // degree celcius
6 T_amb=30 // degree celcius
7
8 //case 1 : without heat sink
9 theta1=300 // degree celcius per watt
10 P_total1=(T_Jmax-T_amb)/theta1
11
12 //case 2 : with heat sink
13 theta2=60 // degree celcius per watt
14 P_total2=(T_Jmax-T_amb)/theta2
15
16 printf("case 1 : without heat sink \n maximum power dissipation = %.3 f mW \n",P_total1*1000)
17 printf("case 2 : with heat sink \n maximum power dissipation = %.3 f mW \n",P_total2*1000)
```

# Scilab code Exa 15.12 allowed collector current

```
1 //chapter15
2 //example15.12
3 //page334
4
5 T_Jmax=200 // degree celcius
6 T_amb1=25 // degree celcius
7 T_amb2=75 // degree celcius
8 theta=20 // degree celcius per watt
9 \text{ Vcc=4} // \text{V}
10
11 P_{total1}=(T_{max}-T_{amb1})/theta
12 Ic1=P_total1/Vcc
13
14 P_{total2}=(T_{Jmax}-T_{amb2})/theta
15 Ic2=P_total2/Vcc
16
```

- 17 printf("for ambient = 25 degree C, allowed collector current =  $\%.3 \, f \, A \, n$ ", Ic1)
- 18 printf("for ambient = 75 degree C, allowed collector current =  $\%.3 \, f$  A \n", Ic2)

# Chapter 16

# Amplifiers with negative feedback

Scilab code Exa 16.1 voltge gain with negative feedback

```
//chapter16
//example16.1
//page345

Av=3000
mv=0.01

Avf=Av/(1+Av*mv)
printf("voltge gain with negative feedback = %.3 f \n ", Avf)

// accurate answer is 96.774 but in book it is given as 97
```

Scilab code Exa 12.2 fraction of output fed back to input

```
1 //chapter16
2 //example16.2
3 //page346
4
5 Av=140
6 Avf=17.5
7
8 // since Avf=Av/(1+Av*mv), making mv as subject we get
9 mv=(Av/Avf-1)/Av
10 printf("fraction of output fed back to input = %.3f \n", mv)
```

# Scilab code Exa 16.3 overall gain

```
1 //chapter16
2 //example16.3
3 //page346
4
5 Av1=100
6 Avf1=50
7 Avf2=75
8
9 // since Avf=Av/(1+Av*mv), we get
10 mv=(Av1/Avf1-1)/Av1
11 Av2=Avf2/(1-mv*Avf2)
12
13 printf("fraction of output fed back to input = %.3 f \n",mv)
14 printf("for overall gain = 75 and same fraction, required gain = %.3 f \n",Av2)
```

Scilab code Exa 16.4 fraction of output fed back to input

# Scilab code Exa 16.5 percentage reduction in gain

```
1 //chapter16
2 //example16.5
3 //page347
4
5 Av=50
6 Avf=25
7
8 // since Avf=Av/(1+Av*mv), we get
9 mv=(Av/Avf-1)/Av
10
11 // without feedback, gain falls from 50 to 40
12 Av1=50
13 Av2=40
14 reduction1=100*(Av1-Av2)/Av1
15
16 // with feedback
```

```
17 Av3=25
18 Av4=Av2/(1+mv*Av2)
19 reduction2=100*(Av3-Av4)/Av3
20
21 printf("percentage reduction in gain : \n with
    feedback = %.3 f percent \n ",reduction1)
22 printf("without feedback = %.3 f perent",reduction2)
```

# Scilab code Exa 16.6 percentage change in gain

```
1 //chapter16
2 //example16.6
3 / page 347
5 \text{ Av} = 100
6 \text{ mv} = 0.1
8 \text{ Avf} = \text{Av}/(1+\text{Av}*\text{mv})
9 mv = (Av/Avf-1)/Av
10
11 // fall in gain is 6dB so 20 \log (Av/Av1)=6
12 // making Av1 as subject we get
13 Av1=Av/\exp(6*\log(10)/20)
14 Avf_new = Av1/(1+Av1*mv)
15 change=100*(Avf-Avf_new)/Avf
16
17 printf ("percentage change in gain = \%.3 f percent \n"
      ,change)
18
19 // the accurate answer is 8.297 percent but in book
      it is given as 8.36 percent
```

Scilab code Exa 16.7 voltage gain with negative feedback

```
1 // chapter 16
2 // example 16.7
3 / page 348
4
5 \quad A0 = 1000
6 Rout=100 // ohm
7 R1 = 900
8 \text{ mv} = 1/50
9
10 Av = A0 * R1 / (Rout + R1)
11 Avf = Av/(1+Av*mv)
12 printf ("voltage gain with negative feedback = \%.3 f
      n", Avf)
13
14 // the accurate answer is 47.368 but in book it is
      given as 47.4
```

# Scilab code Exa 16.8 voltage gain with negative feedback

```
1  // chapter16
2  // example16.8
3  // page351
4
5  Av=10000
6  R1=2  //  kilo  ohm
7  R2=18  //  kilo  ohm
8  Vi=1  //  mV
9
10  mv=R1/(R1+R2)
11  Avf=Av/(1+Av*mv)
12  Vout=Avf*Vi
13
14  printf("feedback fraction = %.1 f \n", mv)
15
16  printf("voltage gain with negative feedback = %.1 f \n"
```

## Scilab code Exa 16.9 Example 9

```
1 //chapter16
2 // example 16.9
3 //page351
4
5 \text{ Av} = 10000
6 R1=10 // kilo ohm
7 R2=90 // kilo ohm
8 Zin=10 // kilo ohm
9 Zout=100d-3 // kilo ohm
10
11 \text{ mv} = R1/(R1+R2)
12 Avf = Av/(1+Av*mv)
13 Zin_dash = (1 + Av * mv) * Zin
14 Zout_dash=Zout/(1+Av*mv)
15
16 printf ("feedbackfraction = \%.1 \text{ f } \text{ n}", mv)
17
18 printf ("voltage gain with negative feedback = \%.1 \,\mathrm{f} \
      n", Avf)
19
20 printf ("input impedence with feedback = \%.3 \,\mathrm{f} kilo
      ohm or \%.3 \, \text{f} mega ohm \n", Zin_dash, Zin_dash/1000)
21
22 printf ("output impedence with feedback = %f kilo ohm
        or \%.3 \, f ohm \n", Zout_dash, Zout_dash*1000)
```

Scilab code Exa 16.10 distortion of amplifier with negative feedback

```
1 //chapter16
2 //example16.10
3 //page352
4
5 Av=150
6 D=5/100
7 mv=10/100
8
9 Dvf=100*D/(1+Av*mv) // in percent
10
11 printf("distortion of amplifier with negative feedback = %.3 f percent", Dvf)
```

## Scilab code Exa 16.11 cutoff frequency with negative feedback

```
1 //chapter16
2 //example16.11
3 //page352
5 \text{ Av} = 1000
6 \text{ mv} = 0.01
7 f1=1.5 // kHz
8 f2=501.5 // kHz
10 f_1f = f_1/(1 + Av * mv)
11 f_2f = f_2*(1+mv*Av)
12
13 printf("new lower cutoff frequency with negative
      feedback = \%.3 f kHz or \%.3 f Hz \n",f_1f_1f
      *1000)
14 printf ("new upper cutoff frequency with negative
      feedback = \%.3 f kHz or \%.3 f MHz \n",f_2f,f_2f
      /1000)
15
16 // the accurate answers are 136.364 Hz and 5.516 MHz
```

## Scilab code Exa 16.12 effective current gain of amplifier

```
1 //chapter16
2 //example16.12
3 //page353
4
5 Ai=200
6 mi=0.012
7
8 Aif=Ai/(1+mi*Ai)
9
10 printf("effective current gain of amplifier = %.3f \ n", Aif)
```

## Scilab code Exa 16.13 input impedence with negative feedback

```
1 //chapter16
2 //example16.13
3 //page354
4
5 Zin=15// kilo ohm
6 Ai=240
7 mi=0.015
8
9 Zin_dash=Zin/(1+mi*Ai)
10
11 printf("input impedence with negative feedback = %.3 f kilo ohm \n", Zin_dash)
```

## Scilab code Exa 16.14 output impedence with negative feedback

```
1 //chapter16
2 //example16.14
3 //page355
4
5 Zout=3 // kilo ohm
6 Ai=200
7 mi=0.01
8
9 Zout_dash=Zout*(1+mi*Ai)
10
11 printf("output impedence with negative feedback = % .3 f kilo ohm \n", Zout_dash)
```

# Scilab code Exa 16.15 Bandwidth with negative feedback

```
1 //chapter16
2 //example16.15
3 //page355
4
5 BW=400 // kHz
6 Ai=250
7 mi=0.01
8
9 BW_dash=BW*(1+mi*Ai)
10
11 printf("Bandwidth with negative feedback = %.3 f kHz \n", BW_dash)
```

## Scilab code Exa 16.16 voltage across

```
1 //chapter16
2 //example16.16
3 / page 356
5 \text{ Vcc=18} // \text{V}
6 R1=16 // kilo ohm
7 R2=22 // kilo ohm
8 Vbe=0.7 // V
9 Re=910d-3 // kilo ohm
10
11 V2 = Vcc*R2/(R1+R2)
12 \quad Ve = V2 - Vbe
13 Ie=Ve/Re
14
15 printf ("voltage across Re = \%.3 \, \text{f V } \text{n}", Ve)
16 printf("emitter current = \%.3 \, \text{f mA } \setminus \text{n}", Ie)
17
18 clf()
19 x=linspace(0,18,100)
20 y = -(19.78/18) *x + 19.78
21 xtitle("dc load line", "Vce(volts)", "Ic(mA)")
22 plot2d(x,y,style=3,rect=[0,0,19,20])
```

## Scilab code Exa 16.17 voltage gain

```
1  // chapter16
2  // example16.17
3  // page357
4
5  Vcc=10  // V
6  R1= 10  // kilo ohm
7  R2=10  // kilo ohm
8  Vbe=0.7  // V
```

```
9 Re=5000 // ohm
10
11 V2=Vcc*R2/(R1+R2)
12 Ve=V2-Vbe
13 Ie=Ve/(Re/1000) // in mA
14 re_dash=25/Ie
15 Av=Re/(re_dash+Re)
16
17 printf("voltage gain = %.3 f \n", Av)
```

## Scilab code Exa 16.18 voltage gain

```
1 //chapter16
2 //example16.18
3 //page358
4
5 Re=5d3 // ohm
6 Rl=5d3 // ohm
7 re_dash=29.1 // in ohm, from example 16_17
8
9 Re_dash=Re*Rl/(Re+Rl)
10 Av=Re_dash/(re_dash+Re_dash)
11
12 printf("voltage gain = %.3 f \n", Av)
```

## Scilab code Exa 16.19 input impedence

```
1 //chapter16
2 //example16.19
3 //page359
4
5 Vcc=10 // V
6 R1= 10 // kilo ohm
```

```
7 R2=10 // kilo ohm
8 \text{ Vbe=0.7 } // \text{ V}
9 Re=4.3 // kilo ohm
10 gain_beta=200
11
12 V2=Vcc*R2/(R1+R2)
13 \text{ Ve=V2-Vbe}
14 Ie=Ve/Re
15 \text{ re_dash=}25/Ie
16 Re_dash=Re*R1/(Re+R1)
17 Zin_base=gain_beta*(re_dash+Re_dash)
18 Zin=Zin_base*(R1*R2/(R1+R2))/(Zin_base+R1*R2/(R1+R2))
19
20 printf("input impedence = \%.3 \, \text{f} kilo ohm \n", Zin)
22 // the accurate answer is 4.996 kilo ohm but in book
       it is given as 4.96 kilo ohm
```

## Scilab code Exa 16.20 output impedence

```
1 //chapter16
2 //example16.20
3 //page361
4
5 R1=3d3 // ohm
6 R2=4.7d3 // ohm
7 Rs=600 // ohm
8 re_dash=20// ohm
9 gain_beta=200
10
11 Rin_dash=R1*(R2*Rs/(R2+Rs))/(R1+(R2*Rs/(R2+Rs)))
12
13 Zout=re_dash+Rin_dash/gain_beta
14
```

15 printf("output impedence =  $\%.1 \, f$  ohm  $\n$ ", Zout)

# Chapter 17

# Sinusoidal oscillations

## Scilab code Exa 17.1 frequency of oscillations

```
1 //chapter17
2 //example17.1
3 //page375
4
5 L1=58.6d-6 // H
6 C1=300d-12 // F
7
8 f=1/(2*%pi*(L1*C1)^0.5)
9 printf("frequency of oscillations = %.3 f Hz or %.3 f kHz",f,f/1000)
10
11 // in book the answer is 1199 kHz but the accurate answer is 1200.358 kHz
```

### Scilab code Exa 17.2 operating frequency

```
1 //chapter17
2 //example17.2
```

```
3 //page377
4
5 C1=0.001d-6 // F
6 C2=0.01d-6 // F
7 L=15d-6 // H
8
9 Ct=C1*C2/(C1+C2) // since both are in series
10
11 f=1/(2*%pi*(L*Ct)^0.5)
12 mv=C1/C2
13
14 printf("operating frequency = %.3 f Hz or %.3 f kHz \n ",f,f/1000)
15 printf("feedback function = %.3 f",mv)
16
17 //in book the answer given is 1361 kHz but accurate answer is 1362.922 kHz
```

## Scilab code Exa 17.3 feedback function

```
1  //chapter17
2  //example17.3
3  //page379
4
5  L1=1000d-6  // H
6  L2=100d-6  // H
7  M=20d-6  // H
8  C=20d-12  // F
9
10  Lt=L1+L2+2*M
11
12  f=1/(2*%pi*(Lt*C)^0.5)
13  mv=L2/L1
14
15  printf("operating frequency = %.3 f Hz or %.3 f kHz \n
```

```
",f,f/1000)

16 printf("feedback function = %.3f",mv)

17

18 //in book the answer is 1052 kHz but the accurate answer is 1054.029 kHz
```

## Scilab code Exa 17.4 frequency of oscillations

```
1 //chapter17
2 //example17.4
3 //page381
4
5 R=1d6 // ohm
6 C=68d-12 // F
7
8 fo=1/(2*%pi*R*C*(6)^0.5)
9 printf("frequency of oscillations = %.3 f Hz",fo)
10
11 // in book the answer given is 954 Hz but the accurate answer is 955.511 Hz
```

## Scilab code Exa 17.5 frequency of oscillations

```
1 //chapter17
2 //example17.5
3 //page382
4
5 R=220d3 // ohm
6 C=250d-12 // F
7
8 f=1/(2*%pi*R*C)
9 printf("frequency of oscillations = %.3 f Hz",f)
10
```

```
11 //in book the answer given is 2892 Hz but the accurate answer is 2893.726 Hz
```

## Scilab code Exa 17.6 thickness of crystal

```
//chapter17
//example17.6
//page387

// frequency is inversely proportional to thickness
// so if thickness is reduced by 1%, frequency increases by 1%

printf("If thickness of crystal is reduced by 1 percent, then \nfrequency is increased by 1 percent \nbecause frequency is inversely proportional to thickness \n")
```

#### Scilab code Exa 17.7 resonant frequency

```
1 //chapter17
2 //example17.7
3 //page387
4
5 L=1 // H
6 C=0.01d-12 // F
7 Cm=20d-12 // F
8
9 fs=1/(2*%pi*(L*C)^0.5)
10 Ct=C*Cm/(C+Cm)
11 fp=1/(2*%pi*(L*Ct)^0.5)
12
```

# Chapter 18

# Transistor tuned amplifiers

Scilab code Exa 18.1 impedence of circuit at resonance

Scilab code Exa 18.2 circuit

```
1 // chapter 18
2 // example 18.2
3 //page396
5 L=100d-6 // H
6 C = 100d - 12 // F
7 R=10 // ohm
8 V = 10 // V
9
10 fr = (((1/(L*C)) - (R^2/L^2))^0.5)/(2*\%pi)
11 Zr=L/(C*R)
12 I=V/Zr
13
14 printf ("resonant frequency of circuit = \%.3 f Hz or \%
      .3 f \text{ kHz } \n", fr, fr/1000)
15 printf ("impedence of circuit at resonance = \%.3 f ohm
       or \%.3 f kilo ohm or \%.3 f mega ohm\n", Zr, Zr/1000,
      Zr/1d6)
16 printf ("line current = \%.4 \,\mathrm{f} ampere or \%.3 \,\mathrm{f} micro
      ampere", I, I * 1 d6)
17
18 // the accurate answer for resonant frequency is
      1591.470 kHz
```

## Scilab code Exa 18.3 frequency

```
1 //chapter18
2 //example17.3
3 //page398
4
5 fr=1200 // kHz
6 Q=60
7
8 BW=fr/Q
9 f1=fr-(BW/2)
```

```
10 f2=fr+(BW/2)
11
12 printf("bandwidth = %.3 f kHz \n",BW)
13 printf("lower cut-off frequency = %.3 f kHz \n",f1)
14 printf("upper cut-off frequency = %.3 f kHz \n",f2)
```

## Scilab code Exa 18.4 frequency

```
1 //chapter18
2 // example 18.4
3 / page 401
5 L=33d-3 // H
6 C=0.1d-6 // F
7 R=25 // ohm
8
9 fr=1/(2*\%pi*(L*C)^0.5)
10 X1=2*%pi*fr*L
11 Q=X1/R
12 BW=fr/Q
13
14 printf ("resonant frequency = \%.3 \, \text{f} Hz or \%.3 \, \text{f} kHz \n"
      ,fr,fr/1000)
15 printf("quality factor = \%.3 \, f \, n",Q)
16 printf ("bandwidth = \%.3 \, \text{f Hz } \setminus \text{n}", BW)
17
18 // the accurate answer for bandwidth is 120.572 Hz
      but in book it is given as 120 Hz
19 // the accurate answer for quality factor is 22.978
      but in book it is given as 23
```

Scilab code Exa 18.5 co-efficient of coupling

```
1 //chapter18
2 //example18.5
3 //page402
4
5 BW=200 // kHz
6 fr=10d3 // kHz
7
8 k=BW/fr
9
10 printf("co-efficient of coupling = %.3 f \n",k)
```

#### Scilab code Exa 18.6 ac load

```
1 //chapter18
2 //example18.6
3 / page 405
5 L=50.7d-6 // H
6 C = 500d - 12 // F
7 R=10 // ohm
8 Rl = 1 d6 // ohm
9
10 fr=1/(2*\%pi*(L*C)^0.5)
11 R_dc=R
12 X1=2*%pi*fr*L
13 Q=X1/R
14 \text{ Rp} = Q * X1
15 R_ac=Rp*R1/(Rp+R1)
16
17 printf ("resonant frequency = \%.3 \, \text{f} Hz or \%.3 \, \text{f} kHz \n"
      ,fr,fr/1000) // amswer in book is incorrect
18 printf("dc load = \%.3 \, f ohm \n", R_dc)
19 printf("ac load = \%.3 f ohm or \%.3 f kilo ohm \n",R_ac
      ,R_ac/1000)
20
```

```
21 // in book the aswer for resonant frequency is 106

Hz which is incorrect
22 // the correct answer is 999.611 kHz
23
24 // the accurate answer for ac load is 10.038 kilo ohm
```

### Scilab code Exa 18.7 load

```
1 //chapter18
2 //example18.7
3 //page406
4
5 Vcc=50 // V
6 Np=5
7 Ns=1
8 R=50 // ohm
9 R_ac=(Np/Ns)^2*R
10 Po=Vcc^2/R_ac
11
12 printf("ac load = %.3 f ohm \n", R_ac)
13 printf("maximum load power = %.3 f W \n", Po)
```

# Chapter 19

# Modulation and demodulation

### Scilab code Exa 19.1 Vmax&Vmin

```
//chapter19
//example19.1
//page416
// the figure in book is for reference only as equations for Ec and Es are already explained in the theory in the book.

printf("Ec=(Vmax+Vmin)/2 \n")
printf("Es=(Vmax-Vmin)/2 \n")
printf("But, Es=m*Ec \n")
printf("So (Vmax-Vmin)/2 = m*(Vmax+Vmin)/2 \n")
printf("thus, m = (Vmax-Vmin)/(Vmax+Vmin) \n")
```

#### Scilab code Exa 19.2 modulation factor

```
1 //chapter19
2 //example19.2
```

```
//page416
// figure is given in book for understanding purpose only. It is not required for solving the example as maximum and minimum peak voltages are given in the problem statement itself.

Vmax_pp=16 // mV
Vmin_pp=4 // mV
Vmin_pp=4 // mV

m=(Vmax-Vmin_pp/2

m=(Vmax-Vmin)/(Vmax+Vmin)

printf("modulation factor = %.3 f \n",m)
```

#### Scilab code Exa 19.3 modulation factor

```
1 //chapter19
2 //example19.3
3 //page417
4
5 Es=50 // V
6 Ec=100 // V
7
8 m=Es/Ec
9
10 printf("modulation factor = %.3 f \n",m)
```

Scilab code Exa 19.4 Bandwidth for RF amplifier

```
1 / chapter 19
```

```
2 // example 19.4
3 / page 419
5 \text{ fc} = 2500 // \text{ kHz}
6 \text{ fs_min=0.05} // \text{kHz}
7 fs_max=15 // kHz
8
9 upper_sideband_min=fc+fs_min
10 upper_sideband_max=fc+fs_max
11
12 lower_sideband_min=fc-fs_min
13 lower_sideband_max=fc-fs_max
14
15 BW=upper_sideband_max-lower_sideband_max
16
17 printf("lower sideband is from \%.3 \, \text{f} to \%.3 \, \text{f} kHz \n",
      lower_sideband_min,lower_sideband_max)
18 printf("upper sideband is from \%.3 f to \%.3 f kHz \n",
      upper_sideband_min,upper_sideband_max)
19 printf ("Bandwidth for RF amplifier = \%.3 \, \text{f kHz } \, \text{n}", BW
      )
```

## Scilab code Exa 19.5 amplitudes of components

```
1 //chapter19
2 //example19.5
3 //page420
4
5 // v=5*(1+0.6*cos(6280*t))*sin(211d4*t) V
6 // compare with v=Ec*(1+m*cos(ws*t))*sin(wc*t) we get
7 Ec=5 // V
8 m=0.6
9 fs=6280/(2*%pi) // Hz
10 fc=211d4/(2*%pi) // Hz
```

```
11
12 Vmin=Ec-m*Ec
13 \quad Vmax = Ec + m * Ec
14
15 f1=(fc-fs)/1000 // in kHz
16 	ext{ f2=fc/1000 // in kHz}
17 f3=(fc+fs)/1000 // in kHz
18
19 V1 = m * Ec/2
20 \ V2 = Ec
21 V3 = m * Ec/2
22
23 printf("minimum amplitude = \%.3 f V and maximum
       amplitude = \%.3 \, f \, V \, \backslash n", Vmin, Vmax)
24 printf ("frequency components = \%.1 \, \text{f} \, \text{kHz}, \%.1 \, \text{f} \, \text{Hz}, \%
       25 printf ("amplitudes of components = \%.3 \,\mathrm{f} V, \%.3 \,\mathrm{f} V, \%
       .3 f V \ n", V1, V2, V3)
26
27 // in book there is error of 0.2 kHz in every
       frequency component. The accurate answers are
       334.8,335.8,336.8 kHz
```

#### Scilab code Exa 19.6 amplitude of each sideband term

```
1 //chapter19
2 //example19.6
3 //page420
4
5 fc=1000 // kHz
6 fs=5 // kHz
7 m=0.5
8 Ec=100 // V
9
10 lower_sideband=fc-fs
```

```
11 upper_sideband=fc+fs
12 amplitude=m*Ec/2
13
14 printf("lower and upper sideband frequencies = %.3f
    kHz and %.3f kHz \n",lower_sideband,
    upper_sideband)
15 printf("amplitude of each sideband term = %.3f V \n"
    ,amplitude)
```

## Scilab code Exa 19.7 power of modulated wave

```
1 //chapter19
2 //example19.7
3 //page422
4
5 Pc=500 // W
6 m=1
7
8 Ps=0.5*m^2*Pc
9 Pt=Pc+Ps
10
11 printf("sideband power = %.3 f W \n",Ps)
12 printf("power of modulated wave = %.3 f W \n",Pt)
```

## Scilab code Exa 19.8 sideband power

```
1 // chapter19
2 // example19.8
3 // page422
4
5 m1=0.8
6 m2=0.1
7 Pc=50 // kW
```

```
8
9 Ps1=0.5*m1^2*Pc
10 Ps2=0.5*m2^2*Pc
11
12 printf("for m=0.8, sideband power = %.3 f kW \n",Ps1)
13 printf("for m=0.1, sideband power = %.3 f kW \n",Ps2)
```

## Scilab code Exa 19.9 modulating signal

```
1 / chapter 19
2 //example19.9
3 / page 422
5 // block diagram is for understanding purpose inly.
      It is not required to solve the example
6 m=1
7 \text{ eta} = 0.72
8 // carrier is not affected by modulating signal so
      its power level remains unchanged before and
      after modulation
9 \text{ Pc}=40 \text{ // kW}
10 Ps = 0.5*m^2*Pc
11 P_audio=Ps/eta
12
13 printf ("carrier power after modulation = \%.3 \text{ f kW } \text{ } \text{n}"
      ,Pc)
14 printf ("required audio power = \%.3 \text{ f kW } \text{n}", P_audio)
```

### Scilab code Exa 19.10 frequencie & bandwith

```
1 //chapter19
2 //example19.10
3 //page423
```

#### Scilab code Exa 19.11 antenna current

```
1  //chapter19
2  //example19.11
3  //page423
4
5  m=0.4
6  Ic=8  // A
7  // Pt=Pc+Ps and Ps=0.5*m^2*Pc so Pt=Pc*(1+m^2/2)
8  // so Pt/Pc=1+m^2/2 but P is proportional to I^2 so 9  // (It/Ic)^2=1+m^2/2 and thus we get
10
11  It=Ic*(1+m^2/2)^0.5
12
13  printf("antenna current for m=0.4 is = %.3 f A \n",It
    )
```

#### Scilab code Exa 19.12 modulation factor

```
1 //chapter19
2 //example19.12
```

```
3 //page424
4
5 It=8.93 // A
6 Ic=8 // A
7
8 // we know that (It/Ic)^2=1+m^2/2 so making m as subject we get
9 m=(2*((It/Ic)^2-1))^0.5
10
11 printf("modulation factor = %.3 f or %.3 f percent \n", m, m*100)
```

#### Scilab code Exa 19.13 modulation factor

```
1  //chapter19
2  //example19.13
3  //page424
4
5  Vt=110  // V
6  Vc=100  // V
7
8  // since Pt/Pc=1+m^2/2 and P is proportional to V^2
      we get (Vt/Vc)^2=1+m^2/2
9  // making m as subject we get
10
11  m=(2*((Vt/Vc)^2-1))^0.5
12
13  printf("modulation factor = %.3 f or %.3 f percent \n"
      ,m,m*100)
```

#### Scilab code Exa 19.14 AM wave

```
1 / chapter 19
```

```
2 //example19.14
3 / page 424
5 \text{ Vc=5} // \text{V}
6 \text{ V_lower=2.5} // \text{ V}
7 V_upper=2.5 // V
8 R=2 // kilo ohm
10 // figure given in book is just for understanding
      purpose. It is not a part of solution.
11 // however, the figure has been made in xcos and
      screenshot has been attached for reference
12
13 // since power=(rms voltage)^2/R we get
14
15 Pc = (0.707 * Vc)^2/R
16 P_lower=(0.707*V_lower)^2/R
17 P_upper = (0.707 * V_upper)^2/R
18 Pt=Pc+P_lower+P_upper
19
20 printf ("power delivered by carrier = \%.3 \, \mathrm{f} \, \mathrm{mW} \, \mathrm{n}", Pc)
21 printf ("power delivered by lower sideband = \%.3 \,\mathrm{f} mW
      n, P_lower)
22 printf ("power delivered by upper sideband = \%.3 \text{ f mW}
      n, P_upper)
23 printf("total power delivered by AM wave = \%.3 \text{ f mW}\
      n",Pt)
```

# Chapter 20

# Regulated dc power supply

## Scilab code Exa 20.1 regulation

```
1 //chapter20
2 //example20.1
3 //page437
4
5 V_NL=400 // V
6 V_FL=300 // V
7
8 regulation=((V_NL-V_FL)/V_FL)*100
9
10 printf("percent voltage regulation = %.3 f percent \n ", regulation)
```

# Scilab code Exa 20.2 full load voltage

```
1 //chapter20
2 //example20.2
3 //page437
```

### Scilab code Exa 20.3 regulation for power

```
1 / \cosh apter 20
2 // example 20.3
3 / page 437
5 // for power supply A
6 V_NL1=30 // V
7 V_{FL1} = 25 // V
9 regulation1=((V_NL1-V_FL1)/V_FL1)*100
10
11 // for power supply B
12 \quad V_NL2=30 // V
13 V_FL2=29 // V
14
15 regulation2=((V_NL2-V_FL2)/V_FL2)*100
16
17 printf ("regulation for power supply A = \%.3 f percent
      \n", regulation1)
18 printf ("regulation for power supply B =\%.3 f percent
      \n", regulation2)
19
20 if regulation1>regulation2 then
           printf("thus, power supply B is better \n")
21
22
       elseif regulation2>regulation1 then
```

```
printf("thus, power supply A is better \n")
else printf("both are equally good \n")
end
```

#### Scilab code Exa 20.4 minimum load resistance

```
1  //chapter20
2  //example20.4
3  //page438
4
5  V_NL=500  // V
6  V_FL=300  // W
7  I_FL=120  // mA
8
9  regulation=((V_NL-V_FL)/V_FL)*100
10
11  Rl_min=V_FL/I_FL
12
13  printf("voltage regulation = %.3 f percent \n", regulation)
14  printf("minimum load resistance = %.3 f kilo ohm \n", Rl_min)
```

#### Scilab code Exa 20.5 maximum zener current

```
1  // chapter 20
2  // example 20.5
3  // page 441
4
5  Vin = 24  // V
6  Vout = 12  // V
7  Rs = 160  // ohm
8  Rl_min = 200  // ohm
```

```
10 Is=(Vin-Vout)/Rs // in ampere
12 // minimum load occurs when Rl tends to infinity so
13 I1_min=0
14
15 // maximum load occurs when R1=200 ohm
16 Il_max=Vout/Rl_min // in ampere
17
18 Iz_min=Is-Il_max // in ampere
19 Iz_max=Is-Il_min // in ampere
20
21 printf("current through series reistance = \%.3 f mA \
      n \setminus n", Is *1000)
22 printf ("minimum load current = \%.3 \,\mathrm{f} mA \n", Il_min
23 printf("maximum load current = \%.3 \,\mathrm{f} mA \n",Il_max
24 printf ("minimum zener current =\%.3\,\mathrm{f} mA \ln, Iz_min
      *1000)
25 printf("maximum zener current = \%.3 \, \mathrm{f} mA n n,
      Iz_max*1000)
26
27 printf ("comment : current Is through Rs is constant
      .\nAs load current increases from 0 to 60 mA,
      zener current decreases from 75 to 15 mA, \
      nmaintaining Is constant.\nThis is the normal
      operation of zener regulator \ni.e. Is and Vout
      remain constant inspite of changes in load or
      source voltage.")
```

## Scilab code Exa 20.6 required series resistance

```
1 //chapter20
2 //example20.6
```

```
//page441

Vin_min=22 // V
Vout=15 // V
Il_max=0.1 // A

// for maximum series resistance, we consider the case when input voltage is minimum and load current is maximum because then zener current drops to minimum. Thus,
Rs_max=(Vin_min-Vout)/Il_max

printf("required series resistance = %.3 f ohm \n", Rs_max)
```

## Scilab code Exa 20.7 load voltage & current

```
1 //chapter20
2 //example20.7
3 //page442
4
5 Vz=10 // V
6 Vbe=0.5 // V
7 Rl=1000 // ohm
8
9 Vout=Vz-Vbe
10 Il=Vout/Rl
11
12 printf("load voltage = %.3 f V \n", Vout)
13 printf("load current = %.3 f mA \n", Il*1000)
```

Scilab code Exa 20.8 Zener diode

```
1 / chapter 20
2 // example 20.8
\frac{3}{\sqrt{\text{page}441}}
5 \text{ Ic=1} // A
6 gain=50
7 Vout=6 // V
8 Vbe=0.5 // V
9 \text{ Vin=10} // V
10 Iz=10d-3 // A
11
12 Ib=Ic/gain
13 Vz=Vbe+Vout // Vout=Vz-Vbe
14
15 \quad V_Rs = Vin - Vz
16 Rs=V_Rs/(Ib+Iz)
17
18 printf("required breakdown voltage for zener diode =
       \%.3 f V \n", Vz)
19 printf ("required value of Rs = \%.3 \, \text{f} ohm \n", Rs)
20
  // in book Rs=117 ohm but accurate answer is 116.667
21
       ohm
22
23 // note : in xcos, there is no Zener diode so in the
       result (circuit) file a simple diode is used to
      represent a zener diode
```

### Scilab code Exa 20.9 Zener diode

```
1 //chapter20
2 //example20.9
3 //page443
4
5 Vz=12 // V
```

```
6 Vbe=0.7 // V
7 Vin=20 // V
8 \text{ Rs} = 220 // \text{ ohm}
9 Rl=1d3 // ohm
10 gain=50
11
12 \quad Vout = Vz - Vbe
13 \quad V_Rs = Vin - Vz
14 I_Rs=V_Rs/Rs
15 Il=Vout/Rl
16 Ic=I1
17 Ib=Ic/gain
18 Iz=I_Rs-Ib
19
20 printf("output voltage = \%.3 \, f \, V \, n", Vout)
21 printf("zener current = \%.3 \text{ f mA } \text{ n}", Iz*1000)
```

## Scilab code Exa 20.10 regulated output voltage

```
1 //chapter20
2 //example20.10
3 //page445
4
5 R2=1 // kilo ohm
6 R1=2 // kilo ohm
7 Vz=6 // V
8 Vbe=0.7 // V
9
10 m=R2/(R1+R2)
11 A_CL=1/m
12 Vout=A_CL*(Vz+Vbe)
13
14 printf("regulated output voltage = %.3 f V \n", Vout)
```

## Scilab code Exa 20.11 closed loop voltage gain

```
1 //chapter20
2 //example20.11
3 //page445
4
5 R2=10 // kilo ohm
6 R1=30 // kilo ohm
7
8 m=R2/(R1+R2)
9 A_CL=1/m
10
11 printf("closed loop voltage gain = %.3 f \n", A_CL)
```

#### Scilab code Exa 20.12 collector current

```
1 // chapter20
2 // example20.12
3 // page446
4
5 Vz=8.3 // V
6 Vbe=0.7 // V
7 Rl=100 // ohm
8 Rs=130 // ohm
9 Vin=22 // V
10
11 Vout=Vz+Vbe
12 Il=Vout/Rl
13 Is=(Vin-Vout)/Rs
14 Ic=Is-Il
15
16 printf("regulated output voltage = %.3 f V \n", Vout)
```

```
17 printf("load current = \%.3 \, f mA \n",I1*1000)
18 printf("current through Rs = \%.3 \, f mA \n",Is*1000)
19 printf("collector current = \%.3 \, f mA \n",Ic*1000)
```

# Solid state switching circuits

Scilab code Exa 21.1 voltage required to saturate transistor

Scilab code Exa 21.2 square wave

```
1  //chapter21
2  //example21.2
3  //page463
4
5  R=10d3  // ohm
6  C=0.01d-6  // F
7
8  T=1.4*R*C
9  f=1/T
10
11  printf("time period of square wave = %.3 f ms \n", T *1000)
12  printf("frequency of square wave = %.3 f kHz \n", f /1000)
13
14  // the accurate answer for frequency is 7.143 kHz but in book it is given 7 kHz
```

#### Scilab code Exa 21.3 differentiating circuit

```
1 // chapter 21
2 // example 21.3
3 // page 468
4
5 printf("In RC differentiating circuit, the output votage is taken across \nR and waveform of output depends on time constant of \ncircuit. For proper functioning, product RC should be many \ntimes smaller than time period of input wave. \n")
```

#### Scilab code Exa 21.4 output voltage

```
1 //chapter21
2 //example21.4
3 //page468
4
5 R=10d3 // ohm
6 C=2.2d-6 // F
7 V1=0 // V
8 V2=10 // V
9 t1=0 // sec
10 t2=0.4 // sec
11
12 Eo=R*C*(V2-V1)/(t2-t1)
13
14 printf("output voltage = %.3 f V \n",Eo)
```

#### Scilab code Exa 21.5 plotting input and output waveforms

```
1 / chapter 21
2 // example 21.5
3 / page 472
5 \text{ Vin_peak=12} // V
7 // for positive half cycle diode conducts so
8 Vout_peak=Vin_peak-0.7 // V
10 // for negative half cycle diode does not conduct so
11 Vout_min=0 // V
12
13 printf ("peak output voltage = \%.3 \,\mathrm{f} V in positive
      half cycle and \n
                                                 \%.3 f V in
       negative half cycle", Vout_peak, Vout_min)
14
15 // plotting input and output waveforms in same graph
       using following code instead of using xcos
```

```
16  clf()
17  t=linspace(0,2*%pi,100)
18  Vin=12*sin(t)
19  Vout=Vout_peak*sin(t)+Vout_min
20  plot2d(t,Vin,style=2,rect=[0,0,10,20])
21  xtitle("input - blue output - green","t","volts")
22  plot2d(t,Vout,style=3,rect=[0,0,10,20])
```

#### Scilab code Exa 21.6 plotting input and output waveforms

```
1 / chapter 21
2 // example 21.6
3 / page 472
5 \text{ Rl}=4 // \text{ kilo ohm}
6 R=1 // kilo ohm
7 Vin_peak=10 // V
9 Vout_peak=Vin_peak*R1/(R1+R)
10 Vout_min=0 // because of diode
11 printf ("peak output voltage = \%.3 \, \text{f V } \text{n}", Vout_peak)
12
13 // plotting input and output waveforms in same graph
       using following code instead of using xcos
14 clf()
15 t=linspace(0,2*%pi,100)
16 Vin=Vin_peak*sin(t)
17 Vout=Vout_peak*sin(t)+Vout_min
18 plot2d(t, Vin, style=2, rect=[0,0,10,20])
19 xtitle("input - blue output - green", "t", "volts"
      )
20 plot2d(t, Vout, style=3, rect=[0,0,10,20])
```

#### Scilab code Exa 21.7 plotting input and output waveforms

```
1 / chapter 21
2 / \exp 21.7
3 / page 473
5 V = -10 // V
6 Vout = -0.7 // V
8 Vr = V - Vout
10 printf("output voltage = \%.3 \, f \, V \, n", Vout)
11 printf("voltage across R = \%.3 \, f \, V \, n", Vr)
12
13 // plotting input and output waveforms in same graph
       using following code instead of using xcos
14 clf()
15 t=linspace(0, %pi, 100)
16 Vin=V*sin(t)
17 Vout=Vr*sin(t)
18 subplot (1,2,2)
19 plot2d(t, Vout, style=3, rect=[0, -0.7, 10, 11])
20 xtitle("Vout", "t", "volts")
21
22 subplot (1,2,1)
23 plot2d(t, Vin, style=2, rect=[0,-11,10,1])
24 xtitle("Vin","t","volts")
```

#### Scilab code Exa 21.8 plotting input and output waveforms

```
1 //chapter21
2 //example21.8
```

```
\frac{3}{\sqrt{\text{page}473}}
5 Rl=1d3 // ohm
6 R = 200 // ohm
8 // for positive half cycle, diode is forward biased
      and since load is in parallel with diode we get
9 \quad V_{out_p=0.7} // V
10
11 // for negative half cycle, diode is reverse biased
      so it is open. Hence
12 V_{in} = -10 // V
13 V_{out_n=V_in*R1/(R1+R)}
14
15 printf ("output voltage for positive cycle = \%.3 \,\mathrm{f} \,\mathrm{V}
      nand for negative cycle = \%.3 \, f \, V", V_{out_p}, V_{out_n}
      )
16
17 // plotting input and output waveforms in same graph
       using following code instead of using xcos
18 clf()
19 t=linspace(0, %pi, 100)
20 Vin=V_in*sin(t)
21 Vout = - V_out_n * sin(t)
22 subplot (2,2,1)
23 plot2d(t,-Vin,style=3,rect=[0,0,10,11])
24 xtitle("Vin +ve","t","volts")
25 subplot (2,2,2)
26 plot2d(t, Vout, style=2, rect=[0,-5,10,0.7])
27 xtitle("Vout", "t", "volts")
28 t=linspace(%pi,2*%pi,100)
29 Vin=V_in*sin(t)
30 subplot (2,2,3)
31 plot2d(t,-Vin,style=3,rect=[0,-11,10,0])
32 xtitle("Vin -ve","t","volts")
33 subplot (2,2,4)
34 plot2d(t,-Vout,style=2,rect=[0,-11,10,0])
35 xtitle("Vout","t","volts")
```

#### Scilab code Exa 21.9 empty

This code can be downloaded from the website wwww.scilab.in

#### Scilab code Exa 21.10 plot input and output waveforms

```
1 // chapter 21
2 // example 21.10
3 // page 478
4
5 V=2 // V
6 Vin=5 // V
7
8 // during positive half cycle
9 Vc_p=Vin-V // since Vin-Vc-V=0
10 // thus capacitor charges to Vc_p
11
12 // during negative half cycle
13 Vout=-Vin-Vc_p // since Vin-Vc_p-Vout=0
```

#### Scilab code Exa 21.11 plot input and output waveforms

```
1 // chapter 21
2 // example 21.11
3 // page 479
4
5 V = -2 // V
6 \text{ Vin=5} // \text{V}
7
8 // during positive half cycle
9 Vc_p=Vin-V // since Vin-Vc-V=0
10 // thus capacitor charges to Vc_p
11
12 // during negative half cycle
13 Vout=-Vin-Vc_p // since Vin-Vc_p-Vout=0
14
  // we plot input and output waveforms using the
15
      following code instead of using xcos
16
17 clf()
18 t=0:0.1:5*\%pi
19 plot(t,5*squarewave(t,50))
20 \text{ plot2d}(t,-Vc_p+(-Vout+V)*squarewave}(t,50)/2,style=3)
21 xtitle("input - blue
                                                 output -
```

green","t","volts")

### Field Effect Transistors

#### Scilab code Exa 22.1 Id

```
1  //chpater22
2  //example22.1
3  //page491
4
5  I_DSS=12  // mA
6  V_GS_off=-5  // V
7
8  printf("I_D=%d*(1+V_GS/%d)^2 mA \n",I_DSS,-V_GS_off)
```

#### Scilab code Exa 22.2 drain current

```
1 //chapter22
2 //example22.2
3 //page491
4
5 I_DSS=32 // mA
6 V_GS=-4.5 // V
7 V_GS_off=-8 // V
```

```
8
9 I_D=I_DSS*(1-V_GS/V_GS_off)^2
10
11 printf("drain current = %.3 f mA \n",I_D)
```

#### Scilab code Exa 22.3 pinch off voltage

```
1  //chapter22
2  //example22.3
3  //page491
4
5  I_D=5  // mA
6  I_DSS=10  // mA
7  V_GS_off=-6  // V
8
9  // we know that I_D=I_DSS*(1-V_GS/V_GS_off)^2 so making V_GS as subject we get
10
11  V_GS=V_GS_off*(1-(I_D/I_DSS)^0.5)
12  V_P=-V_GS_off
13
14  printf("gate source voltage = %.3 f V \n", V_GS)
15  printf("pinch off voltage = %.3 f V \n", V_P)
```

#### Scilab code Exa 22.4 gate source resistance

```
1 //chapter22
2 //example22.4
3 //page493
4
5 V_GS=15 // V
6 I_G=1d-9 // A
```

#### Scilab code Exa 22.5 transconductance

```
1 //chapter22
2 //example22.5
3 //page493
4
5 Vgs1=-3.1 // V
6 Vgs2=-3 // V
7 Id1=1d-3 // A
8 Id2=1.3d-3 // A
9
10 g_fs=(Id2-Id1)/(Vgs2-Vgs1)
11
12 printf("transconductance = %.3 f mho or %.3 f micro mho \n",g_fs,g_fs*1d6)
```

#### Scilab code Exa 22.6 amplification factor

```
1 //chapter22
2 //example22.6
3 //page493
4
5 // for V_GS = 0V constant
6 V_DS1=7 // V
7 V_DS2=15 // V
8 I_D1=10 // mA
9 I_D2=10.25 // mA
10
```

```
11 rd = (V_DS2 - V_DS1) / (I_D2 - I_D1)
12
13 // \text{ for } V_DS = 15V \text{ constant}
14 V_GS1=0
15 \ V_{GS2} = 0.2
16 I_D1=9.65
17 I_D2=10.25
18
19 g_fs = (I_D2 - I_D1) / (V_GS2 - V_GS1)
20
21 \text{ mu=rd*g\_fs}
22
23 printf("ac drain resistance = \%.3 f ohm or \%.3 f kilo
       ohm \n",rd/1000,rd)
24 printf ("transconductance = \%.3 f mho or \%.3 f micro
       mho \ \ n", g_fs, g_fs*1000)
25 printf("amplification factor = \%.3 \, \text{f} \, \text{n}", mu)
```

#### Scilab code Exa 22.7 Kirchoff's law

```
1  //chapter22
2  //example22.7
3  //page496
4
5  I_DSS=5d-3  // A
6  V_DD=20  // V
7  V_DS=10  // V
8  V_P=-2  // V
9  V_G=0  // V
10  I_D=1.5d-3  // A
11
12  V_GS=V_P*(1-((I_D/I_DSS)^0.5))  // I_D=I_DSS*(1-V_GS/V_P)^2
13  V_S=V_G-V_GS
14  R_S=V_S/I_D
```

#### Scilab code Exa 22.8 required value of Rs

```
1 / chapter 22
2 // example 22.8
3 / page 496
4
5 V_P = -5 // V
6 V_DD = 30 // V
7 I_DSS=10 // mA
8 I_D=2.5 // mA
9 R1=1000 // kilo ohm
10 R2=500 // kilo ohm
11
12 // since I_D=I_DSS*(1-(V_GS/V_P))^2, making V_GS as
      subject we get
13
14 V_{GS} = V_{P} * (1 - (I_{D}/I_{DSS})^{0.5})
15
16 V2 = V_DD * R2 / (R1 + R2)
17
  // \text{ since } V2 = V_GS + I_D*Rs, making Rs as subject we
       get
19
20 Rs=(V2-V_GS)/I_D
21
22 printf ("required value of Rs = \%.3 f kilo ohm n", Rs)
```

#### Scilab code Exa 22.9 voltage amplification of the circuit

#### Scilab code Exa 22.10 Vds

```
1 //chapter22
2 //example22.10
3 //page498
4
5 V_DD=30 // V
6 I_D=2.5d-3 // A
7 R_D=5d3 // ohm
8 R_S=200 // ohm
9
10 V_DS=V_DD-I_D*(R_D+R_S)
11 V_GS=-I_D*R_S
12
13 printf("V_DS = %.3 f V \n", V_DS)
14 printf("V_GS = %.3 f V \n", V_GS)
```

#### Scilab code Exa 22.11 de voltage of drain

```
1 / chapter 22
2 // example 22.11
 3 / page 498
5 V_DD = 30 // V
 6 I_D1 = 2.15d - 3 // A
7 I_D2=9.15d-3 // A
8 R_D1 = 8.2 d3 // ohm
9 R_D2 = 2d3 // ohm
10 R_S1=680 // ohm
11 R_S2=220 // ohm
12
13 V_RD1 = I_D1 * R_D1
14 V_D1=V_DD-V_RD1
15 V_S1=I_D1*R_S1
16
17 V_RD2 = I_D2 * R_D2
18 \quad V_D2 = V_DD - V_RD2
19 V_S2=I_D2*R_S2
20
21 printf ("For stage 1 : dc voltage of drain = \%.3 \,\mathrm{f} V
      and source = \%.3 \, f \, V \, n, V_D1, V_S1)
22 printf("For stage 2 : dc voltage of drain = \%.3 \,\mathrm{f} V
      and source = \%.3 \, f \, V \, \backslash n, V_D2, V_S2)
```

### Silicon controlled rectifiers

#### Scilab code Exa 23.1 Breakover voltage

```
1 //chapter23
2 //example23.1
3 / page 509
5 printf("1) Breakover voltage of 400V: It means that
      if gate is open and the \n")
              supply voltage is 400V, then SCR will
     start conducting heavily. \n")
              However, as long as the supply voltage <
     400V, SCR stays open. n n
9 printf("2) Trigger current of 10mA: It means that
     if the supply voltage is n")
10 printf("
              less than breakover voltage and a minimum
      gate current of 10 mA \n")
11 printf("
              is passed, SCR conducts. It wont conduct
      if gate current is less \n")
12 printf("
              than 10\text{mA}. \n\n")
13
14 printf("3) Holding current of 10mA: When SCR is
     conducting, it will not open \n")
```

#### Scilab code Exa 23.2 rating

```
1 //chapter23
2 // example 23.2
3 / page 510
5 t=12d-3 // sec
6 I = 50 // A
7 fuse_rating=I^2*t
9 if fuse_rating < 90
        printf ("rating = \%.3 f ampere square second
10
           which is less than maximum \nrating so
           device will not be destroyed \n", fuse_rating
11 else printf ("rating = \%.3 f ampere square second
      which is more than maximum \nrating so device may
       get damaged \n",fuse_rating)
12
13 end
```

Scilab code Exa 23.3 maximum allowable duration of surge

```
1 //chapter23
2 //example23.3
3 //page510
4
5 rating=50 // ampere square second
6 Is=100 // A
7
8 t_max=rating/Is^2
9 printf("maximum allowable duration of surge = %.3 f s or %.3 f ms\n",t_max,t_max*1000)
```

#### Scilab code Exa 23.4 average current

```
1 / chapter 23
2 //example23.4
3 / page 514
5 v = 100 // V
6 \text{ Vm} = 200 // \text{ V}
7 R_L = 100 // ohm
9 // since v=Vm*sin(theta), we get
10
11 theta=asin(v/Vm)*180/%pi // in terms of degrees
12
13 \text{ phi=} 180 \text{--theta}
14
15 V_{avg}=Vm*(1+cos(theta*\%pi/180))/(2*\%pi)
16
17 I_avg=V_avg/R_L
18
19 printf ("firing angle = \%.2 \, \text{f} degrees \n", theta)
20 printf("conduction angle = \%.2 \, \text{f} degrees \n", phi)
21 printf("average current = \%.4 \, f \, A \, n", I_avg)
```

```
22
23 // the accurate answer for average current is 0.594
A but in book it is given as 0.5925 A
```

#### Scilab code Exa 23.5 power output

```
1 / chapter 23
2 // example 23.5
3 / page 515
5 \text{ Vm} = 400 // \text{ V}
6 v = 150 // V
7 R_L = 200 // ohm
9 // since v=Vm*sin(theta), we get
10
11 theta=asin(v/Vm)*180/%pi // in terms of degrees
12
13 V_{av} = Vm * (1 + \cos(theta * \%pi/180))/(2 * \%pi)
14 I_av=V_av/R_L
15 P=V_av*I_av
16
17 printf("firing angle = \%.2 \, f degrees \n", theta)
18 printf("average output voltage = \%.3 \, f \, V \, n", V_av)
19 printf ("average current for load of 200 ohm = \%.3 \,\mathrm{f} A
       \n", I_av)
20 printf ("power output = \%.3 \text{ f W } \text{ n}", P)
21
22 // the accurate answer for power output is 75.250 W
      but in book it is given as 75.15 W
```

Scilab code Exa 23.6 forward breakdown voltage

```
1 // chapter 23
2 // example 23.6
3 / page 515
5 \text{ Vm} = 240 // \text{ V}
6 v = 180 // V
8 // figure given is for understanding purpose only.
      It is not required to solve the example
10\ //\ SCR remains off till it reaches 180\ V i.e.
      forward breakdown voltage
11
12 // since v=Vm*sin(theta), we get
13
14 theta=asin(v/Vm) // firing angle in terms of degrees
15
16 // since theta=314*t, we get
17
18 t=theta/314 // seconds
19
20 printf("off duration of SCR = \%.3 \, \text{f ms } \ \text{n",t*1000}) //
      multiply t by 1000 to display time in
      milliseconds
```

#### Scilab code Exa 23.7 voltage

```
1 //chapter23
2 //example23.7
3 //page517
4
5 alpha=60 // degrees
6 Vm=200 // V
7 R_L=100 // ohm
8
```

```
9 V_av=Vm*(1+cos(alpha*%pi/180))/%pi
10
11 I_av=V_av/R_L
12
13 printf("dc output voltage = %.3 f V \n", V_av)
14 printf("load current for firing angle of 60 degrees = %.3 f A \n", I_av)
```

### Power electronics

```
Scilab code Exa 24.1 (RB1+RB2) = RB1/Rbb
```

```
1 //chapter24
2 //example24.1
3 //page533
4
5 RBB=10 // kilo ohm
6 eta=0.6
7
8 //eta=RB1/(RB1+RB2) = RB1/Rbb so
9 RB1=eta*RBB
10 RB2=RBB-RB1
11 printf("RB1 = %.3 f kilo ohm \n",RB1)
12 printf("RB2 = %.3 f kilo ohm",RB2)
```

#### Scilab code Exa 24.2 voltage

```
1 //chapter24
2 //example24.2
3 //page533
```

## Electronic instruments

#### Scilab code Exa 25.1 sensitivity

```
1  //chapter25
2  //example25.1
3  //page543
4
5  Ig=1d-3 // A
6
7  S=1/Ig
8
9  printf("sensitivity = %.3 f ohm per volt \n",S)
```

#### Scilab code Exa 25.2 equivalent resistance of meter

```
1 //chapter25
2 //example25.2
3 //page543
4
5 S=1000 // ohm per volt
6 V=50 // V
```

```
7 R=50d3 // ohm
9 R_meter=S*V
10
11 R_equi=R*R_meter/(R+R_meter) //equivalent resistance
       of meter and given resistance across which meter
       is connected
12
13 printf("ratio of circuit resistance before and after
       connecting multimeter = \%.3 \, f \, n, R/R_equi)
14 printf ("Thus equivalent resistance is reduced to
      half. So current drawn is double \n")
15 printf("Thus multimeter will give highly incorrect
      reading \n \n")
16 printf ("As a rule, multimeter resistance should be
     100 times the resistance across \nwhich voltage
     is to be measured \n")
```

#### Scilab code Exa 25.3 voltage read by multimeter

```
1  //chapter25
2  //example25.3
3  //page544
4
5  S=4  // kilo ohm per volt
6  V_range=10  // V
7  V=20  // V
8  R=10  // kilo ohm
9
10  R_meter=S*V_range
11  R_equi=R+R*R_meter/(R+R_meter)
12  I=V/R_equi
13  V_reading=I*R*R_meter/(R+R_meter)
14
15  printf("voltage read by multimeter = %.3 f V \n",
```

#### Scilab code Exa 25.4 voltage read by multimete

```
1 / \cosh apter 25
2 // example 25.4
3 / page 544
5 S=20 // kilo ohm per volt
6 \text{ V\_range=10} // \text{ V}
7 V = 20 // V
8 R=10 // kilo ohm
9
10 R_meter=S*V_range
11 R_equi=R+R*R_meter/(R+R_meter)
12 I=V/R_equi
13 V_reading=I*R*R_meter/(R+R_meter)
14
15 printf("voltage read by multimeter = \%.3 \, f \, V \, n",
      V_reading)
16
17 // answer in book is 9.88V but accurate answer is
      9.756V
```

#### Scilab code Exa 25.5 resistance of voltmeter

```
1 //chapter25
2 //example25.5
3 //page545
4
5 R1=20d3 // ohm
6 R2=20d3 // ohm
7 R3=30d3 // ohm
```

```
8 R4 = 30 d3 // ohm
9 V = 100 / V
10 Rm = 60 d3 // ohm
11
12 // case 1 : meter is not connected
13 R=R1+R2+R3+R4
14 I = V/R
15 V_A = V
16 V_B = V - I * R2
17 V_C = V - I * (R1 + R2)
18 V_D = V - I * (R1 + R2 + R3)
19
20 // case2 : meter is connected
21
        // At A
22
        V_A1=V
23
24
        // At B
        R_{total_B=R1+(Rm*(R2+R3+R4)/(Rm+R2+R3+R4))}
25
26
        I1=V/R_total_B
27
        V_B1=I1*(Rm*(R2+R3+R4)/(Rm+R2+R3+R4))
28
29
        // At C
30
        R_{total_C=R1+R2+(Rm*(R3+R4)/(Rm+R3+R4))}
        I2=V/R_total_C
31
32
        V_C1 = V * (Rm * (R3 + R4) / (Rm + R3 + R4)) / R_total_C
33
34
        // At D
        R_{total_D} = R1 + R2 + R3 + (Rm * R4 / (Rm + R4))
35
        I2=V/R_total_D
36
37
        V_D1=V*(Rm*R4/(Rm+R4))/R_total_D
38
39 printf("CASE 1 : meter is not connected \n
      Voltage at A = \%.3 f V \setminus n Volatge at B = \%.3 f
      V \setminus n Volatge at C = \%.3 f V \setminus n
                                                 Volatge at
      D = \%.3 f V \setminus n", V_A, V_B, V_C, V_D)
40 printf("CASE 2 : meter is connected \n
                                                       At A
      then voltage at A = \%.3 f V, V_A1
41 printf("\n
                At B then voltage at B = \%.3 f V,
```

#### Scilab code Exa 25.6 spot shift

```
1 //chapter25
2 //example25.6
3 //page552
4
5 S=0.01 //mm per volt
6 V=400 // V
7
8 spot_shift=S*V
9
10 printf("spot shift = %.3 f mm \n", spot_shift)
```

#### Scilab code Exa 25.7 applied voltage

```
1  // chapter25
2  // example25.7
3  // page552
4
5  S=0.03  // mm per volt
6  spot_shift=3  // mm
7
```

#### Scilab code Exa 25.8 unknown voltage

```
1  //chapter25
2  //example25.8
3  //page555
4
5  V1=200  // V
6  d1=2  // cm
7  d2=3  // cm
8
9  // since sensitivity = voltage / deflection we get
10  S=V1/d1
11  V2=S*d2
12
13  printf("unknown voltage = %.3 f V", V2)
```

#### Scilab code Exa 25.9 ratio of fv to fh

```
1 //chapter25
2 //example25.9
3 //page556
4
5 fh=1000 // Hz
6
7 // case (i) :- ratio of fv to fh = 1:1
8 fv1=1*fh
9
10 // case (ii) :- ratio = 2:1
```

# Integrated circuits

#### Scilab code Exa 26.1 regulated dc output voltage

```
1 //chapter26
2 //example26.1
3 //page570
4
5 R2=2.4d3 // ohm
6 R1=240 // ohm
7
8 V_out=1.25*(1+R2/R1)
9
10 printf("regulated dc output voltage = %.3f V \n", V_out)
```

# Hybrid parameters

#### Scilab code Exa 27.1 ratio

```
1 //chapter27
2 // example 27.1
3 / page 574
5 R1=10 // ohm
6 R2=5 // ohm
  // for h11 and h21, imagine that output terminals
      are shorted hence it is clear that input
     impedence is equal to R1.
       // this is h11 by definition so
9
       h11=R1
10
11
12
       // now current will flow of same magnitude but
          in opposite directions through input and
          output terminals so output_current/
          input\_current = -1
13
       // but this ratio is h21 by definition. Thus
       h21 = -1
14
15
16 // for h12 and h22 imagine a voltage source on
```

```
output terminals
       // this voltage will be avilable on input
17
           terminals also since current through 10 ohm
           resistor = 0.
       // hence input_voltage/output_voltage = 1
18
        // but this ratio is h12 by definition. Thus
19
       h12=1
20
21
22
       // here output impedence looking into output
           terminals with input terminals open is 5 ohm.
        // its reciprocal is h22 by definition. Thus
23
24
       h22=1/5
25
26 printf("h11 = \%.3 \text{ f ohm } \n", h11)
27 printf ("h21 = \%.3 \text{ f } \n", h21)
28 printf ("h12 = \%.3 \text{ f } \n", h12)
29 printf ("h22 = \%.3 \text{ f ohm } \n", h22)
```

#### Scilab code Exa 27.2 impedence

```
1 / chapter 27
2 / \exp 27.2
3 //page575
5 R1=4 // ohm
6 R2=4 // ohm
7 R3=4 // ohm
9 // for h11 and h21, imagine that output terminals
     are shorted hence it is clear that input
     impedence is equal to R1+R2*R3/(R2+R3)
      // this is h11 by definition so
10
11
      h11=R1+R2*R3/(R2+R3)
12
13
       // now current will divide equally at junction
```

```
of 4 ohm resistors so output_current/
           input_current = -0.5
       // but this ratio is h21 by definition. Thus
14
       h21 = -0.5
15
16
17
  // for h12 and h22 imagine a voltage source on
      output terminals
       // this voltage will be divided by a factor 2
18
19
       // hence input_voltage/output_voltage = 0.5
       // but this ratio is h12 by definition. Thus
20
       h12=0.5
21
22
23
       // here output impedence looking into output
           terminals with input terminals open is 8 ohm.
       // its reciprocal is h22 by definition. Thus
24
       h22=1/8
25
26
27 printf ("h11 = \%.3 \text{ f ohm } \n", h11)
28 printf ("h21 = \%.3 \text{ f } \n", h21)
29 printf ("h12 = \%.3 \text{ f } \n", h12)
30 printf ("h22 = \%.3 \text{ f ohm } \n", h22)
```

#### Scilab code Exa 27.3 voltage gain of circuit

```
1 //chapter27
2 //example27.3
3 //page578
4
5 h11=10
6 h12=1
7 h21=-1
8 h22=0.2
9 rL=5 // ohm
10
11 Zin=h11-(h12*h21/(h22+1/rL))
```

```
12 Av=-h21/(Zin*(h22+1/rL))
13
14 printf("input impedence = %.3 f ohm \n",Zin)
15 printf("voltage gain of circuit = %.3 f \n",Av)
```

#### Scilab code Exa 27.4 approximate current gain

```
1 / chapter 27
2 / \exp 27.4
3 / page 581
5 \text{ hie}=2000 // \text{ ohm}
6 \text{ hoe}=1d-4 // \text{ mho}
7 \text{ hre=} 1d-3
8 \text{ hfe} = 50
9 rL=600 // ohm
10
11 Zin=hie-hre*hfe/(hoe+1/rL)
12 // here second term can be neglected compared to hie
        SO
13 Zin_approx=hie
14
15 Ai=hfe/(1+hoe*rL)
16 // if hoe*rL << 1 then
17 Ai_approx=hfe
18
19 Av=-hfe/(Zin*(hoe+1/rL))
20 // negative sign indicates phase shift between input
        and output
21
22 printf("input impedence = \%.3 \text{ f ohm } \text{n}", Zin)
23 printf ("current gain = \%.3 \, \text{f} \, \text{n}", Ai)
24 printf ("voltage gain = \%.3 \, \text{f}. Here negative sign
       indicates phase shift between input and output.\n
        \n", Av)
```

## Scilab code Exa 27.5 input impedence

```
1 / chapter 27
2 // example 27.5
3 / page 582
5 \text{ hie}=1700 // \text{ ohm}
6 \text{ hre=} 1.3d-4
7 hoe=6d-6 // mho
8 \text{ hfe}=38
9 rL=2000 // ohm
10
11 Zin=hie-hre*hfe/(hoe+1/rL)
12
13 Ai=hfe/(1+hoe*rL)
14
15 Av=-hfe/(Zin*(hoe+1/rL))
16
17 printf("input impedence = \%.3 \text{ f ohm } \text{n}", Zin)
18 printf("current gain = \%.3 \, \text{f} \, \text{n}", Ai)
19 printf ("voltage gain = \%.3 \, \text{f} \, \text{n}", -Av) // considering
       magnitude of Av, we neglect its negative sign and
       so we display -Av instead of Av
```

## Scilab code Exa 27.6 voltage gain

```
1 / chapter 27
```

```
2 / \exp 27.6
3 / page 582
5 \text{ hie} = 1500 // \text{ ohm}
6 \text{ hre}=4d-4
7 hoe=5d-5 // mho
8 \text{ hfe}=50
9 Rc=10d3 // ohm
10 R_L=30d3 // ohm
11 R1=80d3 // ohm
12 R2 = 40 d3 // ohm
13
14 \text{ rL}=\text{Rc}*\text{R_L}/(\text{Rc}+\text{R_L})
15 Zin=hie-hre*hfe/(hoe+1/rL)
16 Zin_stage=Zin*(R1*R2/(R1+R2))/(Zin+(R1*R2/(R1+R2)))
17
18 Av=-hfe/(Zin*(hoe+1/rL))
19
20 printf("input impedence = \%.3 \, \text{f ohm } \n", Zin_stage)
21 printf("voltage gain = \%.3 \, \text{f} \, \text{n}", Av)
22
23 // the accurate answers are input impedence =
       1321.957 ohm and voltage gain = -196.078 but in
       book they are given as 1320 ohm and -196
       respectively
```

#### Scilab code Exa 27.7 micro mho

```
1 //chapter27
2 //example27.7
3 //page584
4
5 Vbe=10d-3 // V
6 Vbe2=0.65d-3 // V
7 Vce=1 // V
```

## Chapter 28

# Digital electronics

Scilab code Exa 28.1 binary equivalent of decimal number 37

```
1 //chapter28
2 //example28.1
3 //page590
4
5 a= dec2bin (37)
6 disp(a,'binary equivalent of decimal number 37 = ')
```

Scilab code Exa 28.2 binary equivalent of decimal number 23

```
1 //chapter28
2 //example28.2
3 //page590
4
5 a= dec2bin (23)
6 disp(a,'binary equivalent of decimal number 23 = ')
```

#### Scilab code Exa 28.3 equivalent decimal of binary 110001

```
1 //chapter28
2 //example28.3
3 //page591
4
5 a= bin2dec ( ' 110001 ' )
6 printf("equivalent decimal of binary 110001 is %d \n ",a)
```

## Scilab code Exa 28.4 page598

```
1 / chapter 28
2 // example 28.4
3 / page 598
                                                     Y = Y_dash.A
5 disp(" A
                     В
                              Y_{dash} = A + B
6 disp(" 0
                                                         0
                                                                 ")
                     0
                                    0
7 disp(" 1
                     0
                                    1
                                                         1
                                                                 ")
8 disp(" 0
                     1
                                    1
                                                         0
                                                                 ")
                                                                 ")
9 disp(" 1
                     1
                                     1
                                                         1
10
11 printf(" \setminus nexplanation : \setminus n")
12 printf ("A=0 and B=0 give A'=1 and B'=1 so Y_{-}dash = A
        + B is 0 and Y = Y_{-}dash.A is 0 \n")
13
14 printf ("A=1 and B=0 give A'=0 and B'=1 so Y_{a} dash = A
        + B is 1 and Y = Y_{-}dash.A is 1 \n")
15
16 printf ("A=0 and B=1 give A'=1 and B'=0 so Y_{-}dash = A
        + B \text{ is } 1 \text{ and } Y = Y_{-} \text{dash.A is } 0 \setminus n")
17
18 printf ("A=1 and B=1 give A'=0 and B'=0 so Y_{-}dash = A
        + B \text{ is } 1 \text{ and } Y = Y_{-} \text{dash.A is } 1 \setminus n")
```

## Scilab code Exa 28.5 page 598

```
1 //chapter28
\frac{2}{\text{example }28.5}
3 / page 598
                          A'
                                                       В'
5 disp(" A
                  В
                                 Y_dash = A'. B
           Y = Y_dash + B'")
6 disp(" 0
                  0
                                                       1
                                     0
                   1 ")
7 disp(" 1
                  0
                                     0
                                                       1
                   1 ")
8 disp(" 0
                  1
                                     1
                                                       0
                   1 ")
9 disp(" 1
                                     0
                                                       0
                  1
                   0 ")
10
11 printf("\nexplanation: \n")
12 printf("A=0 and B=0 give A'=1 and B'=1 so Y_dash = A
      '.B is 0 and Y = Y_{-}dash + B' is 1 \n")
13
14 printf ("A=1 and B=0 give A'=0 and B'=1 so Y_{dash} = A
      '.B is 0 and Y = Y_{-}dash + B' is 1 \n")
15
16 printf ("A=0 and B=1 give A'=1 and B'=0 so Y_{-}dash = A
      '.B is 1 and Y = Y_{dash} + B' is 1 \n")
17
18 printf ("A=1 and B=1 give A'=0 and B'=0 so Y_{-}dash = A
      '.B is 0 and Y = Y_{-}dash + B' is 0 \n")
```

#### Scilab code Exa 28.6 factorize

```
1 // chapter 28
2 // example 28.6
3 / page 606
5 printf("Y = A . B . C' . D' + A' . B . C' . D' + A'
      . B . C . D' + A . B . C . D' n")
6 printf("taking out the common factors \n")
7 printf("Y = B . C' . D' . ( A + A' ) + B . C . D' .
      (A + A') \setminus n"
8 printf("By theorem 3 \setminus n")
9 printf("Y = B . C' . D' + B . C . D' \n")
10 printf("again factorize \n")
11 printf("Y = B . D' ( C + C' ) \n")
12 printf("By theorem 3 \setminus n")
13 printf ("Y = B . D' . 1 \n")
14 printf("thus \n")
15 printf("Y = B . D' n")
```

#### Scilab code Exa 28.7 Apply cumulative law and theorem

```
14 printf("Apply cummulative law and theorem 7 \ n")
15 printf("Y = A . B + A . C + B . 1 \n")
16 printf("Apply theorem 2 \ n")
17 printf("Y = A . B + A . C + B \n")
18 printf("Factor B out of first and third terms \n")
19 printf("Y = B . (A + 1 ) + A . C \n")
20 printf("Apply theorem 7 \ n")
21 printf("Y = B . 1 + A . C \n")
22 printf("Apply theorem 2 \ n")
23 printf("Y = B + A . C \n")
```

## Scilab code Exa 28.8 Based on theorem 16 & 3

```
1 //chapter28
2 // example 28.8
3 / page 607
4
5 printf("i) Y = A + A' . B \n")
6 printf("
                 By theorem 16 \setminus n")
                 Y = A + A . B + A' . B \n")
7 printf("
8 printf("
                    = A + B (A + A') \setminus n"
9 printf("
                  By theorem 3 \setminus n")
                 Y = A + B \setminus n \setminus n")
10 printf("
11
12 printf("ii) Y = A \cdot B + A' \cdot C + B \cdot C \setminus n")
                     = A \cdot B + A' \cdot C + B \cdot C \cdot (A + A') \setminus n''
13 printf("
       )
14 printf("
                     = A . B + A' . C + A . B . C + A' . B
       C \setminus n")
                     = A . B (1 + C) + A' . C(1 + B) \setminus n
15 printf("
       ")
                     = A \cdot B + A' \cdot C \setminus n")
16 printf("
```

## Scilab code Exa 28.9 Using De Morgan theore

```
1  //chapter28
2  //example28.9
3  //page607
4
5  printf("Y = ( ( A + B ) ' . C . D' ) ' \n")
6  printf("Using De Morgan theorem \n")
7  printf("Y = ( A + B ) + C' + D \n")
8  printf("Y = A + B + C' + D \n")
```

#### Scilab code Exa 28.10 De Morgan theorem

```
1 //chapter28
2 // example 28.10
3 / page 607
4
5 \text{ printf}("1) Y = A . B . C' + A . (B . C) ' \n")
            Y' = (A . B . C' + A . (B . C)')' n
6 printf("
     )
7 printf("
              By De Morgan theorem \n")
              Y' = (A . B . C')' . (A . (B . C)')'
8 printf("
     \n")
9 printf("
              By De Morgan theorem \n")
              Y' = (A' + B' + C) \cdot (A' + B + C) \setminus n
10 printf("
     \n")
11 printf("2) Y = A' . (B.C' + B' . C) \n")
              Y' = (A' . (B .C' + B' . C))' \n"
12 printf("
              By De Morgan theorem \n")
13 printf("
              Y' = A + (B \cdot C' + B' \cdot C)' \setminus n"
14 printf("
              By De Morgan theorem n")
15 printf("
              Y' = A + (B . C')' . (B' . C)' \setminus n"
16 printf("
              By De Morgan theorem \n")
17 printf("
              Y' = A + (B' + C) . (B + C') \n")
18 printf("
19 printf("
              Y' = A + (B \cdot C)' + (B \cdot C) \setminus n"
```

## Scilab code Exa 28.11 De Morgan theorem

```
1 //chapter28
2 // example 28.11
3 / page 608
4
5 \text{ printf}("1) Y = (A + B + C) . (A + B) \ \ "
                Y = A . A + A . B + B . A + B . B + C . A
6 printf("
       + C \cdot B \setminus n")
7 printf("
                 Using A . A = A we get n")
                Y = A + A . B + A . B + B + A . C + B . C
8 printf("
       \n")
9 printf("
                Using A . B + A . B = A . B we get n")
10 printf("
                Y = A + A . B + B + A . C + B . C \n")
11 printf("
                Using A + A . B = A we get n")
12 printf("
                Y = A + B + A \cdot C + B \cdot C \setminus n")
                  = A \cdot (1 + C) + B \cdot (1 + C) \setminus n")
13 printf("
                Using 1 + C = 1 we get n")
14 printf("
                Y = A . 1 + B . 1 \n")
15 printf("
                Y = A + B \setminus n \setminus n")
16 printf("
17
18 printf("2) Y = A \cdot B + A \cdot B \cdot C + A \cdot B \cdot C' \setminus n")
                  = A . B + A . B (C + C') \setminus n"
19 printf("
                Since C + C' = 1 we get n")
20 printf("
                Y = A \cdot B + A \cdot B \setminus n")
21 printf("
22 printf("
                  = A \cdot B \setminus n \setminus n")
23
24
25 printf("3) Y = 1 + A . (B. C' + B. C + B' . C') +
       A \cdot B' \cdot C + A \cdot C \setminus n")
26 printf("
                Using 1 + A = 1 and 1 + A. (B. C' + B)
      C + (B \cdot C)' = 1 \text{ we get } n
27 printf("
                Y = 1 + A . B' . C + A . C \n"
              Y = 1 + A \cdot C \setminus n")
28 printf("
```

```
29 printf("
             Y = 1 \setminus n \setminus n")
30
31 printf("4) Y = ((A + B' + C) + (B + C'))' \setminus n")
32 printf("
               By De Morgan theorem \n")
33 printf("
               Y = (A + B' + C)' . (B + C')' / n"
               By De Morgan theorem \n")
34 printf("
              Y = (A' . B . C') . (B' . C) \n"
35 printf("
               Since B . B' = 0 and C . C' = 0 we get \n
36 printf("
      ")
37 printf("
              Y = 0 \ \backslash n")
```

## Scilab code Exa 28.12 theorem

```
1 //chapter28
2 //example28.12
3 //page609
4
5 printf(" Y = A . B' . D + A . B' . D' \n")
6 printf(" Factor out A . B' by theorem 14 \n")
7 printf(" Y = A . B' ( D + D' ) \n")
8 printf(" But by theorem 3 D + D' = 1 \n")
9 printf(" Y = A . B' . 1 \n")
10 printf(" By theorem 2 \n")
11 printf(" Y = A . B' \n")
```

#### Scilab code Exa 28.13 theorem

```
1 //chapter28
2 //example28.13
3 //page609
4
5 printf(" Y = ( A' + B ) . ( A + B ) \n")
6 printf(" By theorem 15 \n")
```

```
7 printf(" Y = A' . A + A' . B + B . A + B . B \n")
8 printf(" By theorem 4 and 6 \n")
9 printf(" Y = 0 + A' . B + B . A + B \n")
10 printf(" Y = A' . B + B . A + B \n")
11
12 printf(" By theorem 14 \n")
13 printf(" Y = B . ( A' + A + 1 ) \n")
14 printf(" By theorem 7 \n")
15 printf(" Y = B . ( A' + 1 ) \n")
16 printf(" By theorem 7 \n")
17 printf(" By theorem 7 \n")
18 printf(" By theorem 2 \n")
19 printf(" Y = B \n")
```