Concours d'accès en 1ère année de Médecine Dentaire WOXALIME PHIMARRED UNIVERSITE MOHAMMED V SOUISSI Session: 26/07/2014 EPREUVE DE : CHIMIE Nom et Prénom du candidat :.... FACULTE DE MEDECINE DENTAIRE Code National Etudiant :.....Numéro d'examen :..... Page 1/2 موضوع مادة: الكيمياء مدة الإنجاز: 30 دقيقة لا يسمح باستعمال أي آلة حاسبة أجب بصحيح أو خطأ وذلك بوضع العلامة (X) في الدائرة الموافقة يتكون الموضوع من أربعة (4) تمارين الكيمياء 1 (4 نقط)، التحولات الكيميائيين ندخل في قارورة سعتها $300 \, \mathrm{mL}$ فارغة من الهواء، عند 27° 2، قرصا للأسبرين $C_9H_8O_4$ غير الفوار ونظيف إليه $10 \, \mathrm{mL}$ من محلول هيدر وجينو كربونات الصوديوم ذي التركيز المولي $C = 0.5 \, mol. L^{-1}$ متمنياتنا في $C_9H_8O_4(s) + HCO_3^-(aq) \rightleftharpoons C_9H_7O_4^-(aq) + CO_2(g) + H_2O(l)$. معادلة التحول الكيميائي الحاصل هي $M(C_9H_8O_4)=180\ g.\ mol^{-1}$ نعطى: $x_f=2,5.10^{-3}\ mol$ هي نعطى: التقدم النهائي للتفاعل هي تابع 1. سرعة هذا التفاعل تتزايد دائما مع الزمن. 2. المتفاعل المُحِد هو أيون الهيدر وجينو كربونات. $x = 2.10^{-3} \ mol$: قيمة تقدم التفاعل هي $t = 100 \ s$ عند يمة زمن نصف التفاعل أكبر من t=100s 4. قرص الأسبرين المستعمل هو الأسبرين 450 mg. الكيمياء 2 (4 نقط): التحول حمض . قاعدة في كأس به ماء خالص نذيب، عند الحالة البدئية، كميات من الأحماض وقواعدها المرافقة كما يبين الجدول التالي. يحدث تحول كيميائي $.HCO_{2}^{-}(aq)$ و $CH_{3}CO_{2}H(aq)$ $CH_3CO_2H(aq)$ $CH_3CO_2^-(aq) + Na^+(aq)$ $HCO_2H(aq)$ $HCO_2^-(aq) + Na^+(aq)$ $n_1 = 2, 0.10^{-3} \text{ mol}$ $n_2 = 1, 0.10^{-3} \text{ mol}$ $n_3 = 1, 0.10^{-3} \text{ mol}$ $n_4 = 1, 0.10^{-3} \text{ mol}$

 $(CH_3CO_2H(aq)/CH_3CO_2(aq))$: $Ka_1 = 1,8.10^{-4}$ $(HCO_2H(aq)/HCO_2^-(aq))$: $Ka_2 = 1,8.10^{-5}$

خطا	صحيح		
0	0	1. التفاعل المحدث هو تفاعل أكسدة اختزال.	_
0	9.	$CH_3CO_2H(aq) + HCO_2^-(aq) \Rightarrow CH_3CO^-(aq) + HCO_2H(aq)$ هذا التحول منمذج بالمعادلة الكيميائية التالية: 2. هذا التحول منمذج بالمعادلة الكيميائية التالية	2
\bigcirc	<u></u>	3. قيمة ثابتة التوازن المقرونة بهذه المعادلة هي: $K\!=\!10$.	3
0	<u></u>	$Q_{r,i}=1,0$. قيمة خارج التفاعل عند الحالة البدئية هي: $Q_{r,i}=1,0$	1

NE RIEN ECRIRE DANS CE CADRE

 $r_{th\acute{e}} = 100\%$. القيمة النظرية لمردود هذا التصنيع هي:

7. نسبة الارتياب لقيمة مردود هذا التصنيع هي: % = 1,4%

Page 2/2
الكيمياء 3 (4 نقط): العمود Pb/Ag
يتكون العمود Pb/Ag مما يلي: $V_1 = 100 \ mL - C_1 = 0.1 \ mol.L^{-1} - Pb^{2+}(aq) + 2NO_3^-(aq)$ محلول Pb محلول (1): صفيحة Pb محلول (2): معلول العمود (1): صفيحة Pb/Ag مما يلي:
- نصف العمود (2): سلك Ag - محلول $Ag^+(aq) + NO_3^-(aq) + NO_3^-(aq)$ ؛ $V_2 = 100 \ mL - C_2 = 0.1 \ mol.L^{-1} - Ag^+(aq) + NO_3^-(aq)$. $Ag^+(aq) + NO_3^-(aq)$. $Ag^+($
. $K = 6,8.10^{28}$ قيمة ثابتة توازنها $2Ag^{+}(aq) + Pb(s) \rightleftharpoons 2Ag(s) + Pb^{2+}(aq)$ نعطی: $36x64 \approx 2300$ و نر مز للغرادای بالحرف 3
محيح خطا صحيح خطا .1. قيمة خارج التفاعل عند الحالة البدئية للمجموعة الكيميانية هي: Q _{r,i} = 1,0 .
$I = 64 \ mA$ من اشتغال العمود، يغذي هذا الأخير الدارة بتيار كهربائي شدته ثابتة $I = 64 \ mA$.
Q = 230 C هي: $Q = 230 C$
الكيمياء 4 (8 نقط)، تصنيع الأسبرين
يمكن تصنيع الأسبرين (حمض الأستيلساليسيليك) انطلاقا من حمض الساليسيليك وأندريد الإيثانويد. ندخل في حوجلة جافة مكن تصنيع الأسبرين (حمض الساليسيليك وحجما وافرا من أندريد الإيثانويك و5 قطرات من حمض الكبريتيك المركز. نسخن بالارتداد $m(apirine) = 11.1 g$ ثم نظيف عبر المبرد الماء البارد ونضع الحوجلة في الثلج لكي يتبلور الأسبرين. نحصل على الكتلته $m(apirine) = 11.1 g$
أي n(aspirine) = 6,2.10 ⁻² mol نعطي: 86 ≈ 36 ÷ 60 صحیح خطا
1. يُستعمل أندريد الإيثانويك بدل حمض الإيثانويك ليكون تفاعل الأسترة تاماً.
2. يُمكِّنُ حمض الكبريتيك من الرفع في سرعة التفاعل، وتغيير الحالة النهائية للمجموعة الكيميائية.
3. يُمكِّنُ التسخين بالارتداد من الحصول على مردود جيد للتصنيع. 4. نظرة بالداء وند ذولة التفاول الترويد الارثان العراق الترويد الارثان العربية المرتان العربية المرتان العربية
4. نظيف الماء عند نهاية التفاعل لتحويل أندريد الإيثانويك المتبقي إلى حمض الإيثانويك. $r_{exp} = 86\%$. القيمة التجريبية لمردود هذا التصنيع هي: $r_{exp} = 86\%$