Inventory Management Decision Model Report

Yash S

Date: 2025-02-24

Northeastern University: College of Professional Studies

Introduction

Introduction

Effective inventory management is a cornerstone of operational efficiency in manufacturing, directly impacting cost control, production continuity, and overall customer satisfaction. The challenge lies in striking a balance between maintaining adequate stock levels to meet demand while minimizing excess inventory costs. This report presents an Inventory Management Decision Model aimed at optimizing inventory decisions for a critical engine component.

To achieve this, a deterministic model was developed using Excel, and a probabilistic simulation was conducted using R to assess the model's robustness under varying demand conditions. The primary objective was to identify the optimal order quantity (Q) that minimizes Total Inventory Cost, which is the sum of Annual Ordering Cost and Annual Holding Cost.

This report outlines the methodological framework, including key parameters and formulas, and presents findings derived from both Excel analysis and R simulations. A sensitivity analysis is also performed to evaluate how changes in Order Quantity (Q) and Holding Cost (H) influence Total Cost. Finally, actionable recommendations are provided to enhance the company's inventory management strategy, reduce costs, and improve overall efficiency.

Methodology

Data and Parameters

The following parameters are used in the analysis:

Parameter	Value
Annual Demand (D)	15000
Unit Cost (C)	80
Holding Cost Rate (H%)	0.18
Ordering Cost (S)	220
Holding Cost (H)	14.4
Daily Demand	41.09589041

Total Cost Calculation

The Total Cost is calculated as:

Total Cost = Annual Ordering Cost + Annual Holding

Where:

Annual Ordering Cost: D/Q×S

Annual Holding Cost: Q/2×H

Excel Analysis

A data table was constructed to evaluate how Total Cost varies with different order quantities (Q):

- Order Quantity (Q): Number of units ordered per batch.
- Annual Ordering Cost: Decreases as Q increases, since fewer orders are placed annually.
- Annual Holding Cost: Increases as Q increases, due to higher storage costs.
- Total Cost: The sum of ordering and holding costs, with an optimal Q minimizing the total.

	Data Table		
Order Quantity(Q)	Annual Ordering Cost	Annual Holding Cost	Total Cost
100	33000	720	33720
200	16500	1440	17940
300	11000	2160	13160
400	8250	2880	11130
500	6600	3600	10200
600	5500	4320	9820
700	4714.285714	5040	9754.285714
800	4125	5760	9885
900	3666.666667	6480	10146.66667
1000	3300	7200	10500
1100	3000	7920	10920
1200	2750	8640	11390
1300	2538.461538	9360	11898.46154
1400	2357.142857	10080	12437.14286
1500	2200	10800	13000

A graphical analysis was conducted to visualize the Total Cost vs. Order Quantity, revealing a clear minimum point where Total Cost is at its lowest.

A two-way sensitivity analysis was performed, showing that:

- As Q increases, Total Cost initially declines and then rises.
- As H increases, Total Cost rises, highlighting the importance of optimizing inventory policies to control storage expenses.

				Two-Way Table				
					Holding Cost(H)		20	22
Order Quantity(Q)	9754.285714	10	12	14	16			
	100	33500	33600	33700	33800	33900	34000	34100
	200	17500	17700	17900	18100	18300	18500	18700
	300	12500	12800	13100	13400	13700	14000	14300
	400	10250	10650	11050	11450	11850	12250	12650
	500	9100	9600	10100	10600	11100	11600	12100
	600	8500	9100	9700	10300	10900	11500	12100
	700	8214.285714	8914.285714	9614.285714	10314.28571	11014.28571	11714.28571	12414.28571
	800	8125	8925	9725	10525	11325	12125	12925
	900	8166.666667	9066.666667	9966.666667	10866.66667	11766.66667	12666.66667	13566.66667
	1000	8300	9300	10300	11300	12300	13300	14300
	1100	8500	9600	10700	11800	12900	14000	15100
	1200	8750	9950	11150	12350	13550	14750	15950
	1300	9038.461538	10338.46154	11638.46154	12938.46154	14238.46154	15538.46154	16838.46154
	1400	9357.142857	10757.14286	12157.14286	13557.14286	14957.14286	16357.14286	17757.14286
	1500	9700	11200	12700	14200	15700	17200	18700

R Output

Given the potential variability in demand, a triangular probability distribution was used to simulate annual demand fluctuations:

Minimum demand: 13,000 units

Most likely demand: 15,000 units

• Maximum demand: 17,000 units

```
> cat("Optimal Order Quantity:", optimal_Q, "\n")
   Optimal Order Quantity: 700
> cat("Minimum Total Cost:", optimal_cost, "\n")
   Minimum Total Cost: 9754.286
> cat("Expected Minimum Total Cost:", mean_cost, "\n")
Expected Minimum Total Cost: 9742.768
> cat("95% Confidence Interval for Total Cost:", ci_cost, "\n"
95% Confidence Interval for Total Cost: 9226.344 10240.34
>
```

Total Cost vs. Order Quantity

On implementing the simulation in R to evaluate the stability of the optimal order quantity under different demand conditions. The simulation confirmed that the optimal Q remained stable at 700 units, demonstrating the model's robustness despite fluctuations in demand.

Conclusion

Key Insights

- The optimal order quantity was identified as 700 units, minimizing Total Inventory Cost.
- Excel and R analyses produced consistent results, reinforcing the model's accuracy and reliability.

- The two-way data table analysis underscored the sensitivity of Total Cost to variations in Q and H, emphasizing the need for precise inventory planning.
- The simulation results validated the robustness of the model, ensuring stable inventory decisions even under fluctuating demand scenarios.

References

- Anderson, D. R., Sweeney, D. J., & Williams, T. A. (2020). *An introduction to management science: Quantitative approaches to decision making*. Cengage Learning.
- R Core Team (2021). *R: A language and environment for statistical computing*. R Foundation for Statistical Computing.