

Bayesian Approach to A/B Testing

Varun Panicker

Flow

- Frequentist vs Bayesian Statistics
- Traditional A/B Testing
- Bayesian A/B Testing

Frequentist vs Bayesian Approach

Problem: I have lost my phone but I know it is somewhere in my house

Frequentist Reasoning

I can hear the phone beeping. I also have a mental model which helps me identify the area from which the sound is coming. Therefore, upon hearing the beep, I infer the area of my home I must search to locate the phone.

Frequentist vs Bayesian Approach

Bayesian Reasoning

I can hear the phone beeping. Now, apart from a mental model which helps me identify the area from which the sound is coming from, I also know the locations where I have misplaced the phone in the past. So, I combine my inferences using the beeps and my prior information about the locations I have misplaced the phone in the past to identify an area I must search to locate the phone.

I FOUND MY PHONE!!!

- Let's say John has been diagnosed with a rare disease that affects 0.1% of the population
- The test John underwent for diagnosis claims to have an accuracy of 99%

What are the chances that John has the disease?

Did you guess 99%? Well, think Bayes!

John actually has the disease, given $P(H \mid E) = \frac{P(E \mid H) \times P(H)}{P(H) \times P(E \mid H) + P(-H) \times P(E \mid -H)}$ John tested positive for it

$$P(H \mid E) = \frac{P(E \mid H) \times P(H)}{P(H) \times P(E \mid H) + P(-H) \times P(E \mid -H)}$$

$$P(H \mid E) = \frac{0.99 \times 0.001}{0.001 \times 0.99 + 0.999 \times 0.01}$$

$$P(H \mid E) = 9\%$$

 Hence, we can say that John is a part of a group of 11 people out of which only 1 person has the disease.

• Therefore, the chances of him actually having it are $\frac{1}{11}$ = 9%

John now decides to do a second test to conclude!

Posterior probability (9 %)

$$P(H \mid E) = \frac{P(E \mid H) \times P(H)}{P(H) \times P(E \mid H) + P(-H) \times P(E \mid -H)}$$

$$P(H \mid E) = \frac{0.99 \times 0.09}{0.09 \times 0.99 + 0.91 \times 0.01}$$

$$P(H \mid E) \sim = 91\%$$

Thomas Bayes

• An Essay towards solving a Problem in the Doctrine of Chances, 1763 http://www.stat.ucla.edu/history/essay.pdf

Traditional A/B testing

- A typical A/B test compares the values of a parameter across two variations (control and treatment)
- Uses standard frequentist parameter testing measures, i.e., p-values and confidence intervals.

Traditional A/B testing

Revenue Increase Test

Testing how the Pareto principle influences our revenue based on small but effective changes.

Variation Name	Traffic	Visitors	Unique Visitors	Sales	Revenue	Revenue per Visitor	Conversion Rate	Improvement	Chance to bea	at
☑ AB Test	34	196	196	62	1240.00	6.33	31.63%	[This is the Contro	1	
✓ Variation 2	33%	150	150	60	1200.00	8	40%	26.46%	94.63%	0
☑ Variation 3	33%	141	141	77	1540.00	10.92	54.61%	72.65%	100.00%	0

Automatic winner settings disabled

Graph interval:

Daily

CHANGE

« BACK TO PAGE SETTINGS

STOP TEST AND CHOOSE WINNER

Traditional A/B testing

Run Duration and "Peeking"

The only point at which you should evaluate significance is the endpoint that you predetermined for your test

A/A Tests

- A/A testing uses two identical versions of a page against each other.
- It is done to check that the tool being used to run the experiment is statistically fair
- In an A/A test, the tool should report no difference in conversions between the control and variation, if the test is implemented correctly.

Traditional A/B testing

Drawbacks-

- Does not consider priors (Eg: Prior knowledge of Variant A)
- If a change is not significant enough, we fall back and continue with our control
- Not conclusive due to vagueness around significance

- Send an email newsletter to a group of 300 recipients
 - Variant A- Contains a big picture/logo like it always does
 - Variant B- Does not contain the picture

- Establish prior probability
- We've run email campaigns earlier so we expect that the probability of the recipient clicking the link to blog on any given email should be around 30%
- For simplicity, we'll use the same prior for A and B
- Beta(α,β)
 - α = Number of Times Success Observed
 - β = Number of Times Failure Observed
- Therefore, **Beta(3,7**)

• PDF for our Beta (3,7)

Moment of truth!

	Clicked	Not Clicked	Observed Conversion Rate
Variant A	36	114	0.24
Variant B	50	100	0.33

 Variant A is going to be represented by Beta(36+3,114+7) and Variant B by Beta(50+3,100+7)

• Estimated distributions for Variants A and B

Monte Carlo Simulation

```
n.trials <- 100000
prior.alpha <- 3
prior.beta <- 7
a.samples <- rbeta(n.trials,36+prior.alpha,114+prior.beta)
b.samples <- rbeta(n.trials,50+prior.alpha,100+prior.beta)
p.b_superior <- sum(b.samples > a.samples)/n.trials
```

Output: *p.b_superior* = 0.96

- Magnitude is more important than Significance
- Frequentist statistics tells us Significance, but what we're really after is Magnitude!
- This can be confirmed by Bayesian A/B Testing

Sources

- Vwo.com
- stats.stackexchange.com/users/100906/flimzy
- Veritasium
- pngtree.com
- Peeking at A/B Tests- Ramesh Johari, Pete Koomen, Leonid Pekelis, David Walsh
- conversionsciences.com/blog/ab-testing-statistics
- thrivethemes.com/optimize
- www.optimizely.com/optimization-glossary
- drjasondavis.com/blog
- countbayesie.com/blog

Thank You!

