Отчёт по лабораторной работе № 5

Создание и процесс обработки программ на языке ассемблера NASM

Давит Оганнисян Багратович

Содержание

1	Цел	ь работы	5
2	Зада 2.1 2.2 2.3 2.4 2.5 2.6	яние Программа Hello world! Транслятор NASM Расширенный синтаксис командной строки NASM Компоновщик LD Запуск исполняемого файла Задание для самостоятельной работы	6 6 6 6 6 6
3	Теор	ретическое введение	7
4	Вып 4.1 4.2 4.3 4.4 4.5 4.6	олнение лабораторной работы Создаем каталог для работы с программами на языке ассемблера NASM, переходим в него и создаем текстовый файл с именем hello.asm. Открываем этот файл с помощью любого текстового редактора, например, gedit и вводим нужный нам текст	8 9 10 10 10
5	Выв	ОЛЫ	12

Список иллюстраций

4.1	Создание hello.asm
4.2	Текст
4.3	Превращение текста программы в объектный код и компилирова-
	ние hello.asm в obj.o
4.4	Передача объектного файла на обработку компоновщику 10
4.5	Создание также исполняемый файл main
4.6	Hello world!
4.7	Фамилия Имя
4.8	Копирование
4.9	Загрузка на гитхаб

Список таблиц

1 Цель работы

Освоение процедуры компиляции и сборки программ, написанных на ассемблере NASM.

2 Задание

- 2.1 Программа Hello world!
- 2.2 Транслятор NASM
- 2.3 Расширенный синтаксис командной строки NASM
- 2.4 Компоновщик LD
- 2.5 Запуск исполняемого файла
- 2.6 Задание для самостоятельной работы

3 Теоретическое введение

NASM — это открытый проект ассемблера, версии которого доступны под различные операционные системы и который позволяет получать объектные файлы для этих систем. В NASM используется Intel-синтаксис и поддерживаются инструкции x86-64. Типичный формат записи команд NASM имеет вид: [метка:] мнемокод [операнд {, операнд}] [; комментарий] Здесь мнемокод — непосредственно мнемоника инструкции процессору, ко-торая является обязательной частью команды. Операндами могут быть числа, данные, адреса регистров или адреса оперативной памяти. Метка — это иденти- фикатор, с которым ассемблер ассоциирует некоторое число, чаще всего адрес в памяти. Т.о. метка перед командой связана с адресом данной команды. Допустимыми символами в метках являются буквы, цифры, а также следую- щие символы:, \$, #, @,~,. и ?. Начинаться метка или идентификатор могут с буквы, ., и ?. Перед иденти- фикаторами, которые пишутся как зарезервированные слова, нужно писать \$, чтобы компилятор трактовал его верно (так называемое экранирование). Макси- мальная длина идентификатора 4095 символов. Программа на языке ассемблера также может содержать директивы — ин- струкции, не переводящиеся непосредственно в машинные команды, а управ- ляющие работой транслятора. Например, директивы используются для опреде- ления данных (констант и переменных) и обычно пишутся большими буквами.

4 Выполнение лабораторной работы

4.1 Создаем каталог для работы с программами на языке ассемблера NASM, переходим в него и создаем текстовый файл с именем hello.asm. Открываем этот файл с помощью любого текстового редактора, например, gedit и вводим нужный нам текст

```
[dbogannisyan@fedora ~]$ mkdir ~/work/arch-pc
[dbogannisyan@fedora ~]$ mkdir ~/work/arch-pc/lab05
[dbogannisyan@fedora ~]$ cd ~/work/arch-pc/lab05
[dbogannisyan@fedora lab05]$ touch hello.asm
[dbogannisyan@fedora lab05]$ gedit hello.asm
```

Рис. 4.1: Создание hello.asm

Рис. 4.2: Текст

4.2 Превращение текста программы в объектный код и компилирование hello.asm в obj.o

```
[dbogannisyan@fedora lab05]$ nasm -f elf hello.asm
[dbogannisyan@fedora lab05]$ nasm -o obj.o -f elf -g -l list.lst hello.asm
[dbogannisyan@fedora lab05]$ ls
hello.asm hello.o list.lst obj.o
```

Рис. 4.3: Превращение текста программы в объектный код и компилирование hello.asm в obj.o

4.3 Передача объектного файла на обработку компоновщику

```
[dbogannisyan@fedora lab05]$ ld -m elf_i386 hello.o -o hello
[dbogannisyan@fedora lab05]$ ls
hello hello.asm hello.o list.lst obj.o
```

Рис. 4.4: Передача объектного файла на обработку компоновщику

4.4 Создаем также исполняемый файл main

```
[dbogannisyan@fedora lab05]$ ld -m elf_i386 obj.o -o main
```

Рис. 4.5: Создание также исполняемый файл main

4.5 Запуск исполняемого файла

```
[dbogannisyan@fedora lab05]$ ./hello
Hello world!
```

Рис. 4.6: Hello world!

4.6 Задание для самостоятельной работы

```
[dbogannisyan@fedora lab05]$ cp ~/work/arch-pc/lab05/hello.asm ~/work/arch-pc/lab05/lab5.asm
[dbogannisyan@fedora lab05]$ gedit lab5.asm
[dbogannisyan@fedora lab05]$ nasm -f elf lab5.asm
[dbogannisyan@fedora lab05]$ nasm -o obj.o -f elf -g -l list.lst lab5.asm
[dbogannisyan@fedora lab05]$ ld -m elf_i386 lab5.o -o lab5
[dbogannisyan@fedora lab05]$ ./lab5
Давит Оганнисян
```

Рис. 4.7: Фамилия Имя

[dbogannisyandfedora labb5]\$ cp -/mork/arch-pc/labb5/hello.asm -/mork/study/2022-2023/"Apxurentypa компьютера"/study_2022-2023_arh-pc/labs/labb5/labb5.asm -/mork/study/2022-2023/"Apxurentypa компьютера"/study_2022-2023_arh-pc/labs/labb5.asm

Рис. 4.8: Копирование

```
[dbogannisyan@fedora study_2022-2023_arh-pc]$ git add .
[dbogannisyan@fedora study_2022-2023_arh-pc]$ git commit -am 'lab05'
[master 3ed46c7] lab05
4 files changed, 76 insertions(+), 37 deletions(-)
delete mode 100644 labs/lab03/report/.~lock.report.docx#
create mode 100644 labs/lab05/lab05.hello.asm
create mode 100644 labs/lab05/lab5.asm
[dbogannisyan@fedora study_2022-2023_arh-pc]$ git push
Перечисление объектов: 19, готово.
Подсчет объектов: 100% (19/19), готово.
При сжатии изменений используется до 8 потоков
Сжатие объектов: 100% (11/11), готово.
Запись объектов: 100% (11/11), готово.
Запись объектов: 100% (11/11), готово.
Запись объектов: 100% (11/11), сотово.
Запись объектов: 100% (11/11), сотово.
Запись объектов: 100% (11/11), сотово.
Запись объектов: 100% (11/11), сотовоно (изменений 0), повторно использовано пакетов 0
remote: Resolving deltas: 100% (5/5), completed with 4 local objects.
To github.com:dbogannisyanNKA/study_2022-2023_arh-pc.git
d70681e..3ed46c7 master -> master
[dbogannisyan@fedora study 2022-2023 arh-pc.git
```

Рис. 4.9: Загрузка на гитхаб

5 Выводы

Я освоил процедуры компиляции и сборки программ, написанных на ассемблере NASM.