book club: chapters 8.4 – 8.6

> selection bias & censoring

> adjustment for selection bias

> selection without bias

Selection bias review

```
n=1000
coin1 = rbinom(n,size=1,prob=0.5)
coin2 = rbinom(n,size=1,prob=0.5)

flips <- data.frame(coin1=coin1, coin2=coin2, selected= coin1 | coin2)
head(flips)</pre>
```

	coin1 <int></int>	coin2 <int></int>	selected < g >
1	0	0	FALSE
2	1	1	TRUE
3	1	0	TRUE
4	1	1	TRUE
5	0	0	FALSE
6	0	0	FALSE
6 rows			

```
prob.coin= subset(flips,coin2==0)

paste0("p[coin1=head|coin2=tail]: ",signif(sum(prob.coin$coin1)/nrow(prob.coin),3))
```

```
[1] "p[coin1=head|coin2=tai1]: 0.498"
```


simultaneously flipping two coins

tail (0) coin1

head (1) coin2

Selection bias review

	coin1 <int></int>	coin2 <int></int>	selected < g >
2	1	1	TRUE
3	1	0	TRUE
4	1	1	TRUE
7	1	1	TRUE
8	1	1	TRUE
10	1	1	TRUE
rows			
			Hid

Selection bias review

| Hide | prob.coin= subset(prob.coin,coin2==0) | paste0("p[coin1=head|coin2=tail]: ",signif(sum(prob.coin\$coin1)/nrow(prob.coin),3)) | | [1] "p[coin1=head|coin2=tail]: 1"

case I: we do get data from all participants

	alive	dead	
A=0 (- wasabi)	13	17 - 3	0
A=1 (+ wasabi	13	17 - 3	0
	26	34 6	0

associational risk ratio:

$$Pr[Y^{a=1}=1] / Pr[Y^{a=0}=1] = 1$$

case I: we do get data from all participants

26

34

case II: we do NOT get data from all participants

(4/9) / (11/20) =**0.89**

on uncensored data

case II: we do NOT get data from all participants

case II: selection bias - conditioning on collider (backdoor path)

case III: selection bias - blocking the backdoor path

conditional risk ratio:

Pr[Y=1|A=1,C=0,L=I] / Pr[Y=1|A=0,C=0,L=I]

case III: selection bias - blocking the backdoor path

page 107:

In causal diagrams with no arrow from censoring C to the observed outcome Y, we could replace Y by the counterfactual outcome $Y^{c=0}$ and add arrows $Y^{c=0} \longrightarrow Y$ and $C \longrightarrow Y$.

1: censored

0: uncensored

-> stratification

page 109:

conditioning on A and L is sufficient in blocking the backdoor path $\mathbf{C} \leftarrow \mathbf{L} \leftarrow \mathbf{U} \rightarrow \mathbf{Y}$ between \mathbf{C} and \mathbf{Y}

we assume:

identifiability conditions:

- exchangeability
- positivity

-> inverse probability (IP) weighting

use IP weight to redirect unobserved (C=1) population to an estimated **pseudo-population**

-> conditioning on L (stratification) opens backdoor path

1: censored

0: uncensored

our focus in verifying exchangeability

conditioning is represented by colored node

-> conditioning on L (IP weighting) d-seperates backdoor path

our focus in verifying exchangeability

conditioning is represented by colored node

conditioning on the common effect Y induces conditional association between A and E

special situation (e.g. independent mechanisms):

dead Y=1: if
$$(Y_0=1)$$
 or $(Y_A=1)$ or $(Y_E=1)$ alive Y=0: if $(Y_0=0)$ and $(Y_A=0)$ and $(Y_E=0)$

special situation (e.g. independent mechanisms):

A remains conditionally independent to E even if conditioning on the common effect Y within one stratum

dead Y=1: if
$$(Y_0=1)$$
 or $(Y_A=1)$ or $(Y_E=1)$
enforced determinism: alive Y=0: if $(Y_0=0)$ and $(Y_A=0)$ and $(Y_E=0)$

the data in fig 8.13 follow a multiplicative survival model

Technical Point 8.2

Multiplicative survival model. When the conditional probability of survival $\Pr[Y=0|E=e,A=a]$ given A and E is equal to a product g(e)h(a) of functions of e and a, we say that a multiplicative survival model holds. A multiplicative survival model

$$\Pr\left[Y=0|E=e,A=a\right]=g(e)h(a)$$

is equivalent to a model that assumes the survival ratio $\Pr\left[Y=0|E=e,A=a\right]/\Pr\left[Y=0|E=e,A=0\right]$ does not depend on e and is equal to h(a). The data follow a multiplicative survival model when there is no interaction between A and E on the multiplicative scale as depicted in Figure 8.13. If $\Pr\left[Y=0|E=e,A=a\right]=g(e)h(a)$, then $\Pr\left[Y=1|E=e,A=a\right]=1-g(e)h(a)$ does not follow a multiplicative mortality model. Hence, when A and E are conditionally independent given Y=0, they will be conditionally dependent given Y=1.

common mechanisms:

conditioning on common effects renders A and E conditionally dependant

interpretation:

conditioning on a collider always induces an association beetween its causes, but this association could be restricted to certain levels of the common effect. Collider stratification is not always a source of selection bias.