NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS

with credits to Associate Professor Victor Tan

solutions prepared by Chang Hai Bin, Terry Lau

MA1100 Fundamental Concepts of Mathematics

AY 2009/2010 Sem 1

Question 1

(a) Case 1: Let n = 3k for certain $k \in \mathbb{N}$. So,

$$n^{3} + 2n = (3k)^{3} + 2(3k)$$
$$= 3(9k^{3} + 2k)$$

By closure properties, since $k \in \mathbb{N}$, $9k^3 + 2k$ is an integer, and hence, $n^3 + 2n$ is divisible by 3. Case 2: Let n = 3k + 1 for certain $k \in \mathbb{N}$. So,

$$n^{3} + 2n = (3k + 1)^{3} + 2(3k + 1)$$

$$= (27k^{3} + 27k^{2} + 9k + 1) + (6k + 2)$$

$$= 27k^{3} + 27k^{2} + 15k + 3$$

$$= 3(9k^{3} + 9k^{2} + 5k + 1)$$

So, $n^3 + 2n$ is divisible by 3.

Case 3: Let n = 3k + 2 for certain $k \in \mathbb{N}$. So.

$$n^{3} + 2n = (3k+2)^{3} + 2(3k+2)$$

$$= (27k^{3} + 3(3k)^{2}(2) + 3(3k)2^{2} + 2^{3}) + (6k+4)$$

$$= 27k^{3} + 54k^{2} + 42k + 12$$

$$= 3(9k^{3} + 18k^{2} + 14k + 4)$$

So, $n^3 + 2n$ is divisible by 3.

Combining the 3 cases, $n^3 + 2n$ is divisible by 3 for all natural number n.

(b) For base case $n = 1, n^3 + 2n = 3$, which is divisible by 3.

So, the statement S is true for n = 1.

Assume that the statement S is true for n = k, and $k \in \mathbb{N}$. ie. $k^3 + 2k = 3M$ for some $M \in \mathbb{Z}$. Then,

$$(k+1)^3 + 2(k+1) = k^3 + 3k^2 + 3k + 1 + 2k + 2$$
$$= k^3 + 2k + (3k^2 + 3k + 3)$$
$$= 3(M + k^2 + k + 1)$$

So, $n^3 + 2n$ is divisible by 3 for n = k + 1. Hence, by the Principle of Mathematical Induction, $n^3 + 2n$ is divisible by 3 for all natural number n.

Page: 1 of 7

Question 2

(a) The relation R is not reflexive. Counter-example: $0 \approx 0$, since $|0-0|=0 \le 3$ R is symmetric.

If $a \sim b$, ie |a - b| > 3, then |b - a| = |a - b| > 3,

hence, $b \sim a$, R is symmetric.

R is not transitive.

Counter-example: a = 0, b = 10, c = 0. |a - b| = |b - c| = 10 > 3, but $|a - c| = 0 \le 3$.

So, $0 \sim 10, 10 \sim 0$, but $0 \approx 0$

(b) If we use 0, 1, ..., 11 to represent the equivalent classes in \mathbb{Z}_{12} , then $[a]_{12} \cdot [b]_{12} = [0]_{12} \leftrightarrow ab$ is certain integer multiple of 12.

When a=0, any value of b (from 0 to 11) will satisfy the above property.

When a=1, only when b=0 (when chosen from 0 to 11) will satisfy the above property.

The rest are similar. The combinations satisfying the property is shown in the table below:

$a \cdot b$	0	1	2	3	4	5	6	7	8	9	10	11
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0											
2	0						0					
3	0				0				0			
4	0			0			0			0		
5	0											
6	0		0		0		0		0		0	
7	0											
8	0			0			0			0		
9	0				0				0			
10	0						0					
11	0											

Note: In exam, you're only needed to LIST the possible pairs. No justification required.

Question 3

(i) Counter-example: f(2)=f(-2)=0, but $2 \neq -2$

(ii) Choose $A = [0, \infty), B = [-4, \infty).$

To show $\hat{f}:[0,\infty)\to[-4,\infty)$ is a injection:

If $\hat{f}(a) = \hat{f}(b)$, $a^2 - 4 = b^2 - 4$, $a^2 = b^2$

So a = b (a = -b) is not possible if $a, b \in [0, \infty)$, hence injective.

To show the range of \hat{f} with domain $[0, \infty)$ is $[-4, \infty)$, $\forall y \in [-4, \infty)$, we can find $x = \sqrt{y+4} \ge 0$,, such that $\hat{f}(x) = y$ And for y < -4, there are no $x \in \mathbb{R}$, such that f(x) = y (or else $x^2 < 0$)

Reason for choosing $A = [0, \infty)$:

From the graph of f, we notice that f is symmetric about x=0. For $\hat{f}:A\to\mathbb{R}$ to be injective, 0 must not be an interior point of A. thus we can choose either $[0,\infty)$ or $(-\infty,0]$. i.e. A is not the form $(-\alpha,\beta),[-\alpha,\beta],[-\alpha,\beta]$ for positive (or infinite) α,β , or else $\hat{f}(-\gamma)=\hat{f}(\gamma),\gamma=\min\{\frac{\alpha}{2},\frac{\beta}{2},1\}$

Page: 2 of 7

Note: We can choose $A=(-\infty,0]$ instead.

Reason for choosing $B = [-4, \infty)$:

It is not possible to have $x \in B$, with x < -4 (or else \hat{f} is not surjective)

Opting out any element in $[-4, \infty)$ out of B would mean that some of the elements in $[0, \infty)$ would not have an image to map onto, and hence \hat{f} would not be a function.

(iii)
$$\hat{f}(\hat{f}^{-1}(y)) = y$$
 for all $y \in B$.
$$(\hat{f}^{-1}(y))^2 - 4 = y,$$
 $\hat{f}^{-1}(y) = \sqrt{y+4}$ (Take positive square root)

- (iv) Counter-example: $g \circ f(2) = g(f(2)) = g(0) = g(f(-2)) = g \circ f(-2)$
- (v) Let $h(x) = 2^{1/4}$ for all real x. So, $f \circ h(x) = f(h(x)) = f(2^{1/4}) = \sqrt{2} - 4$ for all real x. So, the range = $\{\sqrt{2} - 4\}$ contains irrational points only.

Question 4

(a) (i)

$$262 = 2 \cdot 124 + 14$$

$$124 = 8 \cdot 14 + 12$$

$$14 = 1 \cdot 12 + 2$$

$$12 = 6 \cdot 2 + 0$$

So, gcd(124, 262) = 2.

(ii)

$$2 = 14 - 12$$

$$= 14 - (124 - 8 \cdot 14)$$

$$= 9 \cdot 14 - 124$$

$$= 9 \cdot (262 - 2 \cdot 124) - 124$$

$$= 9 \cdot 262 - 19 \cdot 124$$

So, let x=-19, y=9 (Other choices of x,y are also possible)

- (b) (i) $a_1 = 2, b_1 = 4, c_1 = 6$ gcd(2, 4) = gcd(2, 6) = gcd(2, 24) = 2
 - (ii) $a_2 = 4, b_2 = 2, c_2 = 6$ gcd(4, 2) = gcd(4, 6) = 2, and gcd(4, 12) = 4
 - (iii) Given gcd(a, b) = gcd(a, c) = 2, So a, b, c are divisible by 2. a, bc are both divisible by 2. Hence, gcd(a, bc) must be certain multiple of 2 (even number).

As gcd(a,b) = gcd(a,c) = 2,

We can write 2 in terms of linear combination of (a, b) and (a, c). ie. for suitable $K_1, K_2, L_1, L_2 \in \mathbb{Z}$

$$\begin{cases} K_1a + K_2b &= 2\\ L_1a + L_2c &= 2 \end{cases}$$

By multiplying the 2 equations, we get

$$4 = K_1 L_1 a^2 + K_1 L_2 ac + K_2 L_1 ab + K_2 L_2 bc$$

= $(K_1 L_1 a + K_1 L_2 c + K_2 L_1 b)a + (K_2 L_2)bc$

So, 4 is a linear combination of (a, bc). Hence, $gcd(a, bc) \le 4$. Since we know that gcd(a, bc) is even(in above), gcd(a, bc) must be either 2 or 4.

Question 5

- (a) 1, 3, 4, 7, 11, 18, 29, 47, 76, 123
- (b) Fibonacci Sequence: 1, 1, 2, 3, 5, 8, 13,...... $L_2=3=1+2=F_1+F_3, L_3=4=1+3=F_2+F_4$. Base cases, n=2 and 3, are true. Assume that $L_n=F_{n-1}+F_{n+1}$ is true for $n=k, k\in\mathbb{N}, k\geq 3$, then:

$$L_{k+1} = L_k + L_{k-1}$$

$$= (F_{k+1} + F_{k-1}) + (F_k + F_{k-2})$$

$$= F_{k+2} + F_k$$

$$= F_{(k+1)+1} + F_{(k+1)-1}$$

So, by Strong Principle of Mathematical Induction, $L_n = F_{n+1} + F_{n-1}$ for all natural n>1

(c) The problem comes from the inductive step used on case n=2 and n=3.

Note that L_2 and F_2 are not defined in terms of $L_0, L_1, F_0, or F_1$ (in fact, L_0 and F_0 is not defined at all)

So, the inductive step CANNOT be used to prove the case n=2 (and in fact, by checking the definition of L_2, F_2 , we know $L_2 > F_2$, and the statement is false)

For us to use the inductive step to prove case n = 3, we need the statement be true for n = 1, and n = 2.

But since the statement is false for case n = 2, the inductive step fails to provide us the truth of the statement for case n = 3.

And since the truth of the statement for case n=3 is unknown, the inductive fails to prove the case n=4, and n=5, and so on.

Question 6

(a) (i)
$$[1]_4 = \{1, 5, 9\}, [2]_4 = \{2, 6, 10\},$$

 $[3]_4 = \{3, 7\}, [4]_4 = \{4, 8\}.$
(ii)

$$card(R) = card([1] \times [1]) + card([2] \times [2]) + card([3] \times [3]) + card([4] \times [4])$$
$$= 3^2 + 3^2 + 2^2 + 2^2 = 26$$

(b) (i) We can count the number of partitions using the table below, which is 52. So, the number of equivalence relations is 52.

partition	type	number of ways
$\{\{a\},\{b\},\{c\},\{d\},\{e\}\}$	11111	1
$\{\{a,b\},\{c\},\{d\},\{e\}\}$	2111	10
$\{\{a,b\},\{c,d\},\{e\}\}$	221	15
$\{\{a,b,c\},\{d\},\{e\}\}$	311	10
$\{\{a,b,c\},\{d,e\}\}$	32	10
$\{\{a,b,c,d\},\{e\}\}$	41	5
$\{\{a,b,c,d,e\}\}$	5	1
sum		52

Note: We can also use the property of the Bell numbers, with $B_5 = 52$

(ii) $S = \{(a, a), (a, d), (d, a), (d, d), (b, b), (c, c), (c, e), (e, c), (e, e)\}$ (Since d is in the same equivalence class with a, and e is neither in the equivalence class including a and b. By referring to the table above, the only possible "case" will be the "221" case)

Question 7

(a) Prove by contradiction.

Suppose (for a contradiction) that n is a positive odd integer of the form 4k + 3, and n does not have prime factor of the form 4k + 3.

Case 1: n has at least one even prime factor,

ie. of the form 4k + 2 or 4k, then n is an even number (product of even number to any natural number is even), and so n can take the form 4k or 4k + 2(even), but not 4k + 3 (odd). Hence, a contradiction.

Case 2: n has no prime factors of the form 4k, or 4k + 2,

And by the assumption, no prime factors of n can take the form 4k + 3

Hence, all of the prime factors of n (assume to be $a_1, a_2, ... a_j$) take the form 4k+1.

$$n = a_1 \cdot a_2 \cdot \dots \cdot a_j \equiv 1 \cdot 1 \cdot \dots \cdot 1 \mod 4$$

$$\equiv 1 \mod 4$$

So, n is not of the form 4k+3.

Conclusion: Either case, there is a contradiction.

Hence, if n is a positive odd integer of the form 4k + 3, then n does not have prime factor of this form as well.

(b)

$$2^{p-1} + 2^p + \dots + 2^{2p-2} = 2^{p-1} \cdot (1 + 2 + 2^2 + \dots + 2^{p-1})$$

= $2^{p-1} \cdot (2^p - 1)$ (Geometric Sum)

Given $2^p - 1$ is prime, so the proper divisor of $2^{p-1} + 2^p + ... + 2^{2p-2}$ include:

Those without 2^p-1 , ie. $1,2,4,...,2^{p-1}$, and those with (2^p-1) , ie. $2^p-1,(2^p-1)\cdot 2,...,(2^p-1)\cdot 2^{p-2}$

$$(1+2+4+...+2^{p-1}) + ((2^{p}-1)+(2^{p}-1)\cdot 2+...+(2^{p}-1)\cdot 2^{p-2})$$

$$= (2^{p}-1) + (2^{p}-1)(2^{p-1}-1)$$

$$= (2^{p}-1)(1+2^{p-1}-1)$$

$$= (2^{p}-1)(2^{p-1})$$

Page: 5 of 7

So, $2^{p-1} + 2^p + ... + 2^{2p-2}$ is a perfect number.

Question 8

(a) Define: $S_2 = \{2^n : n \in \mathbb{N}\}$ $S_3 = \{3^n : n \in \mathbb{N}\}$ $S_p = \{p^n : n \in \mathbb{N}\}$ for prime numbers p. $S_0 = \{x : x = 1 \text{ or } x \neq k^n \ \forall k, n \in \mathbb{N}\}$

Note that these sets form a partition of \mathbb{N} .

(All other elements not in the form k^n will be assigned to S_0 , and $S_2, S_3, S_5, ...$ are disjoint due to properties of prime numbers.)

As there are infinitely many prime numbers, there are infinitely many sets S_p , where p is prime. And each of $S_2, S_3, S_5, ...$ contains infinitely many elements (exists a bijection from \mathbb{N} to each of them)

We can try to prove S_0 also contains infinitely many elements. (See Notes) Alternatively, let $R_2 = S_2 \cup S_0$, and let $C = \{R_2, S_3, S_5, S_7, S_{11}, ...\}$ This partition C would satisfy the required condition.

Note: Consider $K_0 \subset S_0, K_0 = \{2 \times 3, 2 \times 3^2, 2 \times 3^3, \dots\}, K_0$ is infinite and hence S_0 is infinite.

(b) Functions maps each value in the domain to a specific value in the codomain.

Let
$$f_{(m,n)}$$
 be the function which $f_{(m,n)}(0) = m, f_{(m,n)}(1) = n,$
then $A = \{f_{(m,n)} : (m,n) \in \mathbb{N} \times \mathbb{N}\}$

There exists a bijection ϕ between A and $\mathbb{N} \times \mathbb{N}$. e.g. $\phi: A \to \mathbb{N} \times \mathbb{N}, \phi(f_{(m,n)}) = (m,n)$ and $\mathbb{N} \times \mathbb{N}$ is countable.

So, A is countable.

Note: We only concern ourselves with the value of the function on $\{0, 1\}$.

The value of the function outside these 2 points are ignored.

For example, f(x) = 0 and g(x) = x(x-1) are considered the same function under domain $\{0,1\}$

To show ϕ is bijective,

Note that for every $(x,y) \in \mathbb{N} \times \mathbb{N}$, consider $f_{(x,y)}(\alpha) = x + (y-x)(\alpha)$, so that $f_{(x,y)}(0) = m$, $f_{(x,y)}(1) = n \cdot \phi(f_{(x,y)}) = (x,y)$ So, ϕ is surjective.

If
$$(x_1, y_1) = \phi(f_{(x_1, y_1)}) = \phi(f_{(x_2, y_2)}) = (x_2, y_2)$$
, then

$$f_{(x_1,y_1)}(0) = x_1 = x_2 = f_{(x_2,y_2)}(0),$$

 $f_{(x_1,y_1)}(1) = y_1 = y_2 = f_{(x_2,y_2)}(1)$

Page: 6 of 7

Hence $f_{(x_1,y_1)}=f_{(x_2,y_2)}$ (Under the domain $\{0,1\}$), ϕ is injective

Question 9

(a) Define
$$f: C \to \mathbb{Q}^+$$
 by
$$f([(a,b)]) = \frac{a}{b},$$

To show that the function is well defined, suppose
$$(x_1, y_1) \sim (x_2, y_2)$$
, $x_1y_2 = x_2y_1$. $\frac{x_1}{y_1} = \frac{x_2}{y_2}$. So $f([(x_1, y_1)]) = f([(x_2, y_2)])$,

To show that it is injective, if f([(a,b)]) = f([(c,d)])

then
$$\frac{a}{b} = \frac{c}{d}$$
, $\rightarrow ad = bc$ (for $b, d \in \mathbb{N}$)
hence $[(a,b)] = [(c,d)]$

To show that it is surjective, for all positive rational number q, we can write

$$q = \frac{m}{n}$$
 with $gcd(m, n) = 1$,
then $f([(m, n)]) = \frac{m}{n} = q$.

Hence, this function f is bijective.

(b) f is a bijection from C to $\mathbb{N} \times \mathbb{N}$, a countable set. So, C is a countably infinite set. (From result of (a))

Let
$$S=[(x,y)] \in C$$
 If $gcd(x,y) = u > 1$, let

$$x = u \times x_1, \quad y = u \times y_1, \quad x \times y_1 = x_1 \times u \times y_1 = x_1 \times y_1$$

So $[(x,y)] = [(x_1,y_1)]$, with $gcd(x_1,y_1) = 1$. As $(x_1,y_1), (2 \times x_1, 2 \times y_1), (3 \times x_1, 3 \times y_1), \dots, \in S$ define

$$\phi: \mathbb{N} \to [x_1, y_1], \quad n \mapsto (nx, ny)$$

Page: 7 of 7

 ϕ is a bijection from $\mathbb{N} \to [x_1, y_1]$. So, S is countably infinite.

Conclusion: S and C are both countably infinite. |S| = |C|