Exploration of rate constant/time substitution

Sasha D. Hafner

10 September, 2024 Sep:09

Packages

```
library(data.table)
library(knitr)
library(ALFAM2)
library(ggplot2)

packageVersion('ALFAM2')

## [1] '4.1.3'
```

Setup

Parameters. Mitigation (0), reference (1), and doubled (2) r1 and r3.

print(ALFAM2::alfam2pars03)

man.source.pig.f0	app.mthd.cs.f0	app.mthd.os.f0	int.f0	##
-0.85171386	-7.80196997	-2.93492578	0.43613933	##
app.mthd.ts.r1	app.mthd.bc.r1	int.r1	man.dm.f0	##
-0.09333684	0.71991146	-1.46760800	0.49659337	##
wind.sqrt.r1	air.temp.r1	man.ph.r1	man.dm.r1	##
0.46628989	0.03454900	0.44886708	-0.02843126	##
app.mthd.cs.r3	int.r3	rain.rate.r2	int.r2	##
-0.34883867	-2.71593590	0.62051420	-1.20493824	##
incorp.deep.f4	<pre>incorp.shallow.f4</pre>	man.ph.r3	incorp.deep.r3	##
-3.26822034	-1.37979544	0.03557064	-1.96259695	##

```
## int.r5    rain.rate.r5
## -1.80000000     0.34944126

p0 <- c(int.f0 = 0.4, int.r1 = -1.5 - 0.3, int.r2 = -1.2, int.r3 = -2.7 - 0.3, int.r5 = -1.8)
p1 <- c(int.f0 = 0.4, int.r1 = -1.5, int.r2 = -1.2, int.r3 = -2.7, int.r5 = -1.8)
p2 <- c(int.f0 = 0.4, int.r1 = -1.5 + 0.3, int.r2 = -1.2, int.r3 = -2.7 + 0.3, int.r5 = -1.8)

Input data.
dat <- data.table(ct = c(2, 4, 8) * 24, TAN.app = 100)</pre>
```

Predictions

```
pred0 <- alfam2(dat, pars = p0)</pre>
## User-supplied parameters are being used.
## Warning in prepDat(dat, warn = warn): Argument prep.dum = TRUE but there are no variables to convert to dummy variables!
## Ignoring prep.dum = TRUE.
pred1 <- alfam2(dat, pars = p1)</pre>
## User-supplied parameters are being used.
## Warning in prepDat(dat, warn = warn): Argument prep.dum = TRUE but there are no variables to convert to dummy variables!
## Ignoring prep.dum = TRUE.
pred2 <- alfam2(dat, pars = p2)</pre>
## User-supplied parameters are being used.
## Warning in prepDat(dat, warn = warn): Argument prep.dum = TRUE but there are no variables to convert to dummy variables!
   Ignoring prep.dum = TRUE.
Doubling pars effect:
(pred2 / pred1)[, 'er'] - 1
## [1] 0.5542342 0.5382865 0.5261679
Halving:
1 - (pred0 / pred1)[, 'er']
```

```
## [1] 0.4154859 0.4085899 0.4056207
Doubling time:
pred1[3, 'er'] / pred1[2, 'er'] - 1
## [1] 0.0544534
Halving time:
1 - pred1[1, 'er'] / pred1[2, 'er']
## [1] 0.09721166
Apparent mitigation effect at reference time:
1 - pred0[2, 'er'] / pred1[2, 'er']
## [1] 0.4085899
At later time.
1 - pred0[3, 'er'] / pred1[3, 'er']
## [1] 0.4056207
And under higher emission conditions.
1 - pred1[2, 'er'] / pred2[2, 'er']
## [1] 0.349926
Later:
1 - pred1[3, 'er'] / pred2[3, 'er']
## [1] 0.3447641
Single-pool model
```

```
pred0 <- alfam2(dat, pars = p0)</pre>
## User-supplied parameters are being used.
## Warning in prepDat(dat, warn = warn): Argument prep.dum = TRUE but there are no variables to convert to dummy variables!
   Ignoring prep.dum = TRUE.
pred1 <- alfam2(dat, pars = p1)</pre>
## User-supplied parameters are being used.
## Warning in prepDat(dat, warn = warn): Argument prep.dum = TRUE but there are no variables to convert to dummy variables!
## Ignoring prep.dum = TRUE.
pred2 <- alfam2(dat, pars = p2)</pre>
## User-supplied parameters are being used.
## Warning in prepDat(dat, warn = warn): Argument prep.dum = TRUE but there are no variables to convert to dummy variables!
## Ignoring prep.dum = TRUE.
Doubling pars effect:
(pred2 / pred1)[, 'er'] - 1
## [1] 0.218729131 0.048001749 0.002307385
Halving:
1 - (pred0 / pred1)[, 'er']
## [1] 0.31779550 0.17894365 0.04548927
Doubling time:
pred1[3, 'er'] / pred1[2, 'er'] - 1
## [1] 0.04803686
Halving time:
1 - pred1[1, 'er'] / pred1[2, 'er']
## [1] 0.179772
```

Apparent mitigation effect at reference time:

```
1 - pred0[2, 'er'] / pred1[2, 'er']
## [1] 0.1789436
At later time.
1 - pred0[3, 'er'] / pred1[3, 'er']
## [1] 0.04548927
And under higher emission conditions.
1 - pred1[2, 'er'] / pred2[2, 'er']
## [1] 0.04580312
Later:
1 - pred1[3, 'er'] / pred2[3, 'er']
## [1] 0.002302073
```

Conclusions

- Predicted emission is much more sensitive to a fixed relative change in emission rate constants than to time
- But mitigation effects drop in response to increases from either time or emission rate constants, although much more for changes in emission rate constants
- For a single-pool first-order model effects of time and r1 are interchageable