

Universidade Tecnológica Federal do Paraná – UTFPR Bacharelado em Ciência da Computação

BCC33B – Arquitetura e Organização de Computadores

Prof. Rogério A. Gonçalves

rogerioag@utfpr.edu.br

Aula 016

<u>Aula de Hoje</u>

- Estruturas de Interconexão do Computador:
 - **»Barramentos**

Aula de Hoje

O que é um Barramento (Bus)?

Bus: É um meio de transporte coletivo?

- Um barramento é um conector que une múltiplas fontes de dados e vias de conexão.
- Interconecta os componentes de um Sistema Computacional.
- Tipicamente consiste de um conjunto de linhas de controle, um conjunto de linhas de endereço e diversas linhas de dados.
- Normalmente, broadcast.
- Frequentemente agrupado.
 - Uma série de canais em um barramento.
 - Por exemplo: barramento de dados de 32 bits são 32 canais de bits separados.

Barramento de Dados

- Transporta dados.
- Lembre-se de que não existe diferença entre "dados" e "instruções" neste nível.
- Largura é um determinante fundamental do desempenho.
- 8, 16, 32, 64 bits.

Barramento de Endereço

- Identifica origem ou destino dos dados.
- Por exemplo: CPU precisa ler uma instrução (dados) de determinado local na memória.
- Largura do barramento determina capacidade máxima da memória do sistema.
 - Por exemplo: 8080 tem barramento de endereço de 16 bits gerando espaço de endereços de 64k.

Barramento de Controle

- Informação de controle e temporização:
- Sinal de leitura/escrita de memória.
- Solicitação de interrupção.
- Sinais de *clock*.

Esquema de interconexão de um Barramento

Conceitos

Função Lógica dos Barramentos

Características de Projetos de Barramentos

- Tipos de Barramentos
- Temporização de Barramentos
- Arbitragem de Barramentos

Exemplos de Barramentos

- · PCI
- Barramento de sistema (CPU-Memória)

Barramento: Caminho que conecta os componentes de um Sistema de Computador

Constituído de: -Partes Físicas (fios, conectores,...)

-Protocolo de Controle

Conexões:

- Cada dispositivo tem conexão individual para todos os outros:
 - custo elevado,
 - ocupa muito espaço (muita fiação),
 - desempenho bom (não há disputa).

Conexões:

- 1. Dispositivos compartilham um conjunto comum de fios
 - Barramento Compartilhado:
 - -custo menor,
 - -menor espaço,
 - -desempenho menor (disputa o barramento).

Barramento Compartilhado

Uso Compartilhado:

Requer Protocolo de Controle para coordenar as comunicações entre os dispositivos.

Precisa de um árbitro para coordenar a comunicação entre os dispositivos

Exemplo: Barramento Compartilhado

Características de Projeto

<u>Tipo:</u> Maneira como se usa as linhas do barramento

- Dedicado
- Multiplexado

<u>Temporização:</u> Modo como são coordenados os eventos no barramento

- Síncronos
- Assíncronos

Características de Projeto

<u>Largura do Barramento:</u> Impacto sobre o desempenho do Sistema de Computador

- Endereços
- Dados

<u>Arbitragem do Barramento:</u> Protocolo de Controle do Barramento

- Centralizada
- Distribuída

Tipo de Barramento

Dedicado:

- Utiliza linhas separadas (dedicadas) para dados e endereços
- Maior quantidade de fiação
- Maior custo
- Melhor desempenho (alta taxa de transferência de dados menor disputa pelo barramento)

Tipo de Barramento

Multiplexado:

- Utiliza as mesmas linhas para transferir para dados e endereços
- Usa o Método de Multiplexação no Tempo:
 - 1 transfere endereços
 - 2 transfere dados
- Menor quantidade de fiação
- Menor custo
- Pior desempenho (não pode transferir dados e endereços simultaneamente)

- Cada dispositivo no barramento deve ser mais complexo para controlar

a multiplexação

Temporização

<u>Síncronos</u>

- Sinal de Clock é usado para sincronizar as operações do barramento (todos dispositivos "seguem" o clock)
- Ciclo de Barramento: Ciclo do Barramento
 - Vários ciclos podem ser necessários para se completar uma transação no barramento
- Todos os eventos devem começar no início de um ciclo de clock
- Protocolo de controle é simples (pouca lógica nos dispositivos)
- Escorregamento de Clock: inviabiliza barramentos síncronos longos
- Usados para conectar processador-memória: dispositivos que estão próximos e operam em alta velocidade

Exemplo: Barramento Síncrono

Temporização

<u>Assíncronos</u>

- Não usam sinal de clock para sincronizar as operações do barramento
- Os eventos no barramento dependem de um evento ocorrido anteriormente
- Protocolo de controle é mais complexo (exige handshake)
- Mais flexíveis: podem "acomodar" tanto dispositivos lentos quanto dispositivos rápidos

Exemplo: Barramento Assíncrono

Leitura assíncrona de uma palavra da memória

Síncrono x Assíncrono

Barramento Síncrono:

- Sinais de Controle e Dados são acionados com relação a clock comum.
- Vantagem: baixa latência e alta taxa de transferência.
- Desvantagens:
 - Cada dispositivo no barramento deve trabalhar na mesma taxa de clock
 - Para evitar o clock skew, barramento não pode ser longo se ele for rápido

Barramento Assíncrono:

- Não segue o clock
- Pode acomodar uma ampla variedade de dispositivos
- Pode ser comprido (longo) sem se importar com o clock skew
- Protocolo de Comunicação é mais complicado

Clock Skew

Escorregamento de Clock - Limite de Velocidade

t_{prop} ⇒ Tempo de propagação: tempo necessário para propagar a entrada do FF para a saída

t_{comb} ⇒ Tempo combinacional: tempo necessário para atravessar o circuito combinacional

test ⇒ Tempo de estabelecimento: tempo mínimo durante o qual a entrada do FF precisa permanecer válida antes da transição do clock

25

Clock Skew

Escorregamento de Clock - Limite de Velocidade

Num sistema ideal o período do clock precisa ser no mínimo tão grande quanto:

Clock Skew

Escorregamento de Clock - Limite de Velocidade

Escorregamento do clock: É a diferença de tempo entre os instantes em que os dois dispositivos "enxergam" o sinal de clock. Ocorre porque o sinal de clock percorre caminhos diferentes para se propagar até os dispositivos.

Num sistema <u>real</u> deve-se considerar o tempo de escorregamento t_{escorreg}. O período do clock precisa ser no mínimo tão grande

 $quanto: T_{clock} = t_{prop} + t_{comb} + t_{esc} + t_{esc}$

Largura do Barramento

Quanto maior a largura do barramento de endereços:

- maior o número de posições endereçáveis
- melhor o desempenho
- mais fiação
- mais espaço físico
- maior custo

Exemplos:

- a) Barramento de 8 bits: 28 = 256 posições
- b) Barramento de 16 bits: 2^{16} = 65.536 (64K) posições
- c) Barramento de 32 bits: 2³² = 4G posições
- d) Barramento de 64 bits: 2⁶⁴= 16777216 T posições ~ 16384 P ~ 16 E

Largura do Barramento

Quanto maior a largura do barramento de dados:

- maior o número de bits transferidos por vez
- melhor o desempenho (maior taxa de transferência)
- mais fiação
- mais espaço físico
- maior custo

Exemplo:

- Barramento de 8 bits e memória de 16 bits ⇒ requer 2 acessos à memória para buscar o dado.
- Barramento de 32 bits e memória de 16 bits → em um único acesso à memória dois dados podem ser acessados.

Arbitragem do Barramento

Arbitragem

- Como o barramento é compartilhado, é necessário um árbitro para controlar o acesso ao barramento.
- Árbitro escolhe o "mestre" do barramento.

Tipos de Arbitragem:

- -Centralizada
- -Distribuída

Escolhendo um mestre

Como decidir qual dispositivo será o mestre do barramento – aquele que inicia uma transação no barramento?

A solução mais simples:

- O processador é o único mestre do barramento
- Principal problema: o processador fica envolvido em todas as transações

Múltiplos mestres:

- Um mestre do barramento que precise usar o barramento faz um pedido (request)
- Ele n\(\tilde{a}\)o pode usar o barramento at\(\tilde{e}\) que seu pedido seja atendido
- Ele deve liberar o barramento quando ele finalizar o uso Barramento PCI usa sinais "request" and "grant"

Arbitragem: Daisy Chain

Vantagem: simples

Desvantagens:

- Não assegura "justiça": Um dispositivo de baixa prioridade pode ficar bloqueado indefinidamente
- O sinal "grant daisy chain" também limita a velocidade do barramento

Arbitragem Centralizada: PCI

- -Cada mestre possui uma linha de "grant" e "request" independente dos demais
- -Permite arbitragem em paralelo com transferência de dados do mestre atual
- -PCI permite vários protocolos de controle: FIFO, Round-Robin, Prioridades,...

Arbitragem Distribuída

- Não há Árbitro Central
- Cada dispositivo verifica se o barramento está livre:
 - Caso esteja livre:
 - -Dispositivo comunica que vai usar o barramento
 - -Ativa a "linha de ocupado" do barramento
 - Dispositivo usa o barramento e depois desativa a "linha de ocupado"
 - Caso esteja ocupado:
 - -Espera nova oportunidade e verifica periodicamente a ocupação do barramento

Largura de Banda

Vazão do Sistema:

Quantidade de informação transferida por unidade de tempo

Analogia: Avenida

- Potencial de Banda Passante
- Degradação de Desempenho

Aumento da Banda Passante

1. Aumento da velocidade do clock

Aumento da Banda Passante

2. Transferência em Blocos

Aumento da Banda Passante

- 1. Largura do Barramento (transfere mais palavras em menos ciclos)
- 2. Barramentos Dedicados (linhas separadas para endereços e dados consome menos ciclos de barramento)

Hierarquia de Barramentos

Hierarquia de Barramentos

Ponto de Vista Lógico:

-Todos os dispositivos do sistema estão conectados diretamente ao barramento do sistema

Obs.: Barramentos operam com diferentes velocidades, larguras e formatos de dados

Ponto de Vista Operacional:

- -Os barramentos são separados por "pontes" ("bridges").
- -Pontes: transportam informações de um barramento para outro, tratando formatos distintos de dados e protocolos.

Vantagens dos Barramentos

Versatilidade:

- Novos dispositivos podem ser facilmente adicionados.
- Dispositivos periféricos podem ser movidos entre sistemas de computadores que usam o mesmo padrão de barramentos.

Baixo Custo:

• Um único conjunto de fios é compartilhado de várias maneiras.

Fornece uma maneira de gerenciar a complexidade do projeto

• Dispositivo apenas tem de implementar o padrão do barramento.

Desvantagens dos Barramentos

Barramento cria um "gargalo" de comunicação

• Largura de Banda do barramento pode limitar o desempenho de E/S.

A velocidade máxima do barramento é amplamente limitada por:

- O comprimento do barramento.
- O número de dispositivos no barramento.
- A necessidade de suportar uma variedade de dispositivos com:
 - Ampla variação de latências.
 - Ampla variação de taxas de transferências de dados.

Questões

- 1. O que é um barramento?
- 2. Quais são as funções lógicas de um barramento?
- 3. Explique as seguintes características dos barramentos:
 - Tipo: Dedicado x Multiplexado
 - Temporização:
 - Síncrona
 - Assíncrona
 - Largura:
 - Endereços
 - Dados
 - Arbitragem:
 - Centralizada
 - Distribuída
- 4. O que é hierarquia de barramento?
- 5. O que significa escorregamento de clock?
- 6. Como se pode aumentar a largura de banda do barramento?

Resumo da Aula de Hoje

<u>Tópicos mais importantes:</u>

- Barramentos
- Entregar folha com:
 - Nome
 - RA
 - Data de Hoje
 - Resumo

Referências

- Notas de aula do Prof. João Angelo Martini do DIN-UEM.
- Livro do Stalings, capítulo 3.

