Problem: Multivariate Polynomial – Bài Tập: Đa Thức Nhiều Biến

Nguyễn Quản Bá Hồng*

Ngày 24 tháng 10 năm 2023

Muc luc

1	Multivariate Monomial Polynomial – Đơn Thức & Đa Thức Nhiều Biến	1
2	Operators \pm Multivariate Polyonimals – Phép \pm Đa Thức Nhiều Biến	1
3	Operators ·,: Multivariate Polynomial – Phép ·,: Đa Thức Nhiều Biến	2
4	Algebraic Identity – Hằng Đẳng Thức Đáng Nhớ	2
5	Phân Tích Đa Thức Thành Nhân Tử. Các Phương Pháp Thông Thường	4
6	Miscellaneous	4
Tà	ài liêu	4

1 Multivariate Monomial Polynomial – Đơn Thức & Đa Thức Nhiều Biến

1 ([Tuy23], VD1, p. 4). Cho 3 biểu thức $A = \frac{4xy}{x^2 - 2xy + y^2}$, $B = x^2 - 2xy + y^2$, C = -4xy. (a) Cho biết biểu thức nào là đơn thức nhiều biến, là đa thức nhiều biến? (b) Với $x = -\frac{1}{2}$, $y = \frac{1}{2}$, chứng minh 2 biểu thức B, C có cùng 1 giá trị.

2 ([Tuy23], 1., p. 5). Cho đơn thức $A = -2mx^3y^4$, m là hằng. Cho biết: (a) Hệ số \mathcal{E} phần biến của đơn thức A. (b) Bậc của đơn thức A đối với từng biến \mathcal{E} đối với tập hợp các biến.

3 ([Tuy23], 2., p. 5). Cho $x^2=3,\ y^2=\frac{1}{3}.$ Tính giá trị của đa thức $A=x^4-x^2y^2+y^4.$

4 ([Tuy23], 3., p. 5). Tìm các đơn thức đồng dạng trong 5 đơn thức sau $(a \neq 0 \text{ là hằng})$: $P = \frac{4}{5}x^4y^3xy$, $Q = \frac{2}{3}a^3x^3y^2x^2y$, $R = 6a^2x^2y^4ax^3$, M = -10, $N = \frac{7}{6}$.

5 ([Tuy23], 4., p. 5). Cho 3 đơn thức nhiều biến: $A = ab^2x^4y^3$, $B = ax^4y^3$, $C = b^2x^4y^3$. Các đơn thức nào đồng dạng với nhau nếu: (a) a, b là hằng $\neq 0$ còn x, y là biến. (b) $a \neq 0$ là hằng còn b, x, y là biến. (c) $b \neq 0$ là hằng còn a, x, y là biến.

 $\textbf{6} \ ([\text{Tuy23}], \, 5., \, \text{p. 5}). \ \textit{Cho biểu thức} \ A = \frac{-4ax^2y^5}{(b+1)^3}. \ \textit{Trong 3 trường hợp sau đây, trường hợp nào A là đơn thức? (a) a, b là hằng.}$ (b) a là hằng. (c) b là hằng. Trong trường hợp đó, cho biết hệ số & bậc của đơn thức đối với mỗi biến & đối với tập hợp của biến.

${f 2}$ Operators \pm Multivariate Polyonimals - Phép \pm ${f Da}$ Thức Nhiều Biến

7 ([Tuy23], VD2, p. 6). Cho 2 đơn thức $A=3m^2x^2y^3z$, $B=12x^2y^3z$ ($m\neq 0$ là hằng). (a) Tính hiệu A-B. (b) Xác định m để giá trị của 2 đơn thức A,B luôn bằng nhau với mọi $x,y,z\in\mathbb{R}$.

8 ([Tuy23], VD3, p. 6). Cho 3 đa thức $A=8a-9b,\ B=5b-c,\ C=3c-2a$ trong đó $a,b,c\in\mathbb{N}$. Không thực hiện phép tính, cho biết tính ABC có giá trị là số chẵn hay lẻ?

9 ([Tuy23], 6., p. 7). Cho 2 đa thức $A = 3x^4 - 2x^3y + 5xy^3 - y^4$, $B = -8x^4 + 2x^3y - 9x^2y^2 - xy^3 + 4y^4$. Tính tổng A + B \mathcal{E} hiệu A - B bằng 2 cách: Cộng trừ theo hàng ngang. Cộng trừ theo cột dọc.

10 ([Tuy23], 7., p. 7). Chứng minh $o \forall n \in \mathbb{N}^*$: (a) $8 \cdot 2^n + 2^{n+1}$ có tận cùng bằng chữ số 0. (b) $3^{n+3} - 2 \cdot 3^n + 2^{n+5} - 7 \cdot 2^n \vdots 25$. (c) $4^{n+3} + 4^{n+2} - 4^{n+1} - 4^n \vdots 300$.

^{*}Independent Researcher, Ben Tre City, Vietnam

- 11 ([Tuy23], 8., p. 7). Viết tích 31 · 5² thành tổng của 3 lũy thừa cơ số 5 với số mũ là 3 số tự nhiên liên tiếp.
- 12 ([Tuy23], 9., p. 7). Viết $2 s \hat{o}$ tự nhiên sau dưới dạng 1 đa thức có 2 biến x, y: (a) \overline{xyz} . (b) $\overline{yxy5}$.
- 13 ([Tuy23], 10., p. 7). Cho da thức $P = ax^4y^3 + 10xy^2 + 4y^3 2x^4y^3 3xy^2 + bx^3y^4$. biết a, b là hằng & đa thức P có bậc 3, $tim\ a, b$.
- **14** ([Tuy23], 11., p. 7). Tính tổng $S = \overline{ab} + \overline{abc} + \overline{ba} \overline{bac}$.
- 15 ([Tuy23], 12., p. 7). Chứng minh tổng của 4 số lẻ liên tiếp thì chia hết cho 8.
- **16** ([Tuy23], 13., p. 7). Cho 3 đa thức $A = 16x^4 8x^3y + 7x^2y^2 9y^4$, $B = -15x^4 + 3x^3y 5x^2y^2 6y^4$, $C = 5x^3y + 3x^2y^2 + 17y^4 + 1$. Chứng minh ít nhất 1 trong 3 đa thức này có giá tri dương $\forall x, y \in \mathbb{R}$.
- 17 ([Tuy23], 14., p. 7). Cho đa thức $A = 2x^2 + |7x 1| (5 x + 2x^2)$. (a) Thu gọn A. (b) Tìm x để A = 2.
- **18** ([Tuy23], 15., p. 7). Tính giá trị của 2 đa thức sau biết x y = 0. (a) A = 7x 7y + 4ax 4ay 5. (b) $B = x(x^2 + y^2) y(x^2 + y^2) + 3$.
- **19** ([Tuy23], 16., p. 7). Cho 2 đa thức $A = xyz xy^2 xz^2$, $B = y^3 + z^3$. Chứng minh nếu x y z = 0 thì A, B là 2 đa thức đối nhau.
- **20** ([Tuy23], 17., p. 7). Tính giá trị của đa thức $A = 4x^4 + 7x^2y^2 + 3y^4 + 5y^2$ với $x^2 + y^2 = 5$.

3 Operators ·,: Multivariate Polynomial – Phép ·,: Đa Thức Nhiều Biến

- **21** ([Tuy23], VD4, p. 8). Cho 3 đơn thức $A = -3xy^3$, $B = 8xy^2$, $C = \frac{5}{3}x^2y$. Chứng minh 3 đơn thức này không thể cùng có giá trị đương.
- **22** ([Tuy23], VD5, p. 9). Chứng minh đẳng thức $(x+y)(x+y+2)-2(x+1)(y+1)+2=x^2y^2$.
- **23** ([Tuy23], VD6, p. 9). Tìm giá trị của biểu thức $A = (5x^5 + 5x^4) : 5x^2 (2x^4 8x^2 6x + 12) : (2x 4) tại <math>x = -2$.
- **24** ([Tuy23], 18., p. 9). Cho biểu thức $E = x(x-y) + y(x+y) (x+y)(x-y) 2y^2$. Với mọi giá trị của x, y thì giá trị của biểu thức E là 1 số âm hay là 1 số dương?
- **25** ([Tuy23], 19., p. 9). Cho xy = 1. Chứng minh đẳng thức x(y+1) + y(x+1) = (x+1)(y+1).
- **26** ([Tuy23], 20., p. 9). Chứng minh đẳng thức $(x-y)(x^3+x^2y+xy^2+y^3)=x^4-y^4$.
- **27** ([Tuy23], 21., p. 9). Tìm $n \in \mathbb{N}$ để mỗi phép chia sau đều là phép chia hết: (a) $7x^{n+2}y^n : 4x^3y^4$. (b) $-\frac{2}{3}x^{2n}y^7 : \frac{4}{9}x^{n+3}y^n$.
- **28** ([Tuy23], 22., p. 10). Tim x, y biết: [(x-2y)(x-7y)-(x-2y)(x+2y)]: (x-2y)=18.
- **29** ([Tuy23], 23., p. 10). Tim qiá tri của biểu thức $A = (3x^4 x^2 2x)$: $(3x^2 + 3x + 2) + (x^4 x^2)$: $(x^2 x)$ tai x = -5.
- **30** ([Tuy23], 24., p. 10). Không làm phép chia đa thức, tìm số dư trong phép chia đa thức f(x) cho đa thức g(x) trong 3 trường hợp sau: (a) $f(x) = x^{101} + x^{102} + x^{103} + 51$, g(x) = x + 1. (b) $f(x) = 2x^3 3x^2 + 4x 17$, g(x) = x 2. (c) $f(x) = x^4 + 5x^3 + 6x + 30$, g(x) = x + 5.
- **31** ([Tuy23], 25., p. 10). Tìm các giá tri của m, n để đa thức $A = 2x^4 + 3x^3 3x^2 + mx + n$ chia hết cho đa thức $B = x^2 + 1$.
- **32** ([Tuy23], 26., p. 10). Chứng minh đa thức $f(x) = (x^2 + 4x 20)^{51} + (x^3 2x 22)^{50} 2$ chia hết cho đa thức x 3.
- 33 ([Tuy23], 27., p. 10). Cho đa thức $A = -3x^3 + 20x^2 + 20x + 10$. Chia đa thức A cho đa thức B được thương là 3x + 1 & dư x + 6. Tìm đa thức B.
- **34** ([Tuy23], 28., p. 10). Cho đa thức $4x^3 + ax + b$ chia hết cho 2 đa thức x 2 & x + 1. Tính 2a 3b.
- **35** ([Tuy23], 29., p. 10). Tìm giá trị nguyên của x để giá trị của đa thức $A = 10x^4 13x^3 9x^2 + x + 19$ chia hết cho giá trị của đa thức B = 2x 3.

4 Algebraic Identity – Hằng Đẳng Thức Đáng Nhớ

- **36** ([Tuy23], VD7, p. 11). Cho x + y = 9, xy = 14. Tính giá trị của 3 biểu thức: x y, $x^2 + y^2$, $x^3 + y^3$.
- **37** ([Tuy23], VD8, p. 12). Tìm GTNN của biểu thức $A = (x + 3y 5)^2 6xy + 26$.
- **38** ([Tuy23], 30., p. 12). Chứng minh đẳng thức: (a) $(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1) = 2^{32}-1$. (b) $100^2+103^2+105^2+94^2 = 101^2+98^2+96^2+107^2$.

- **39** (Mở rộng [Tuy23], 30., p. 12). *Tính:* (a) $\prod_{i=1}^{n} (2^{2^i} + 1) = (2+1)(2^{2^1} + 1)(2^{2^2} + 1)(2^{2^3} + 1) \cdots (2^{2^n} + 1), \prod_{i=m}^{n} (2^{2^i} + 1) = (2^{2^m} + 1)(2^{2^{m+1}} + 1) \cdots (2^{2^n} + 1).$ (b) $\prod_{i=1}^{n} (a^{2^i} + 1), \prod_{i=m}^{n} (a^{2^i} + 1).$ (c) $\prod_{i=m}^{n} (a^{2^i} + b^{2^i}).$
- **40** ([Tuy23], 31., p. 12). Tính hợp lý, $\forall a, b \in \mathbb{R}$, $\forall m, n \in \mathbb{N}$, $m \le n$: (a) $\frac{258^2 242^2}{254^2 246^2}$. (b) $263^2 + 74 \cdot 263 + 37^2$. (c) $136^2 92 \cdot 136 + 46^2$. (d) $(50^2 + 48^2 + 46^2 + \dots + 2^2) (49^2 + 47^2 + 45^2 + \dots + 1^2)$.
- **41** ([Tuy23], 32., p. 12). Cho $a, b \in \mathbb{R}$ thỏa $2(a^2 + b^2) = (a b)^2$. Chứng minh a, b là 2 số đối nhau.
- **42** ([Tuy23], 33., p. 12). Cho $a, b, x, y \in \mathbb{R}^{\star}$ thỏa $(a^2 + b^2)(x^2 + y^2) = (ax + by)^2$. Tìm hệ thức liên hệ giữa 4 số a, b, x, y.
- **43** ([Tuy23], 34., p. 12). Cho $a^2 + b^2 + c^2 = ab + bc + ca$. Chứng minh a = b = c.
- **44** ([Tuy23], 35., p. 12). Chứng minh không có $x, y \in \mathbb{R}$ nào thỏa mãn đẳng thức: (a) $3x^2 + y^2 + 10x 2xy + 26 = 0$. (b) $4x^2 + 3y^2 4x + 30y + 78 = 0$.
- **45** ([Tuy23], 36., p. 12). Cho $a \in \mathbb{N}$. Chứng minh đẳng thức $(10a+5)^2 = 100a(a+1) + 25$. Áp dụng để tính nhẩm $35^2, 85^2, 105^2$.
- **46** ([Tuy23], 37., p. 13). Chứng minh: (a) Biểu thức $A = x^2 + x + 1$ luôn luôn dương $\forall x \in \mathbb{R}$. (b) Biểu thức $B = x^2 xy + y^2$ luôn luôn dương $\forall x \in \mathbb{R}$ không đồng thời bằng 0. (c) Biểu thức $C = 4x 10 x^2$ luôn luôn âm $\forall x \in \mathbb{R}$. (d) Tìm các biểu thức bậc 2 luôn dương dương, luôn luôn âm tương tự.
- **47** ([Tuy23], 38., p. 13). Tìm GTNN của biểu thức: (a) $A = 25x^2 + 3y^2 10x + 11$. (b) $B = (x 3)^2 + (x 11)^2$. (c) C = (x + 1)(x 2)(x 3)(x 6).
- **48** ([Tuv23], 39., p. 13). Tìm GTLN của biểu thức: (a) $2x x^2$. (b) $B = 19 6x 9x^2$.
- **49** ([Tuy23], 40., p. 13). Chứng minh: (a) 2 số chẵn hơn kém nhau 4 đơn vị thì hiệu các bình phương của chúng chia hết cho 16. (b) 2 số lẻ hơn kém nhau 6 đơn vị thì hiệu bình phương của chúng chia hết cho 24.
- **50** ([Tuy23], 41., p. 13). Cho x > y > 0, x y = 7, xy = 60. Không tính x, y, tính: (a) $x^2 y^2$. (b) $x^4 + y^4$.
- **51** ([Tuy23], 42., p. 13). Cho a+b+c=2p. Chứng minh: (a) $a^2-b^2-c^2+2bc=4(p-b)(p-c)$. (b) $p^2+(p-a)^2+(p-b)^2+(p-c)^2=a^2+b^2+c^2$.
- **52** ([Tuy23], 43., p. 13). Cho $a = m^2 + n^2, b^2 = m^2 n^2, c = 2mn$. Chứng minh $a^2 = b^2 + c^2$.
- **53** ([Tuy23], 44., p. 13). Tính giá trị biểu thức: (a) $A = x^3 + 9x^2 + 27x + 27$ với x = -103. (b) $B = x^3 15x^2 + 75x$ với x = 25. (c) $C = (x+1)(x-1)(x^2+x+1)(x^2-x+1)$ với x = -3.
- **54** ([Tuy23], 45., p. 13). Cho x y = 2. Tính giá trị biểu thức $A = 2(x^3 y^3) 3(x + y)^2$.
- **55** ([Tuy23], 46., p. 13). Cho x + y + z = 0. Chứng minh $x^3 + y^3 + z^3 = 3xyz$.
- **56** ([Tuy23], 47., p. 13). Rút gọn biểu thức $A = (x y 1)^3 (x y + 1)^3 + 6(x y)^2$.
- **57** ([Tuy23], 48., p. 13). Cho $(x+2y)(x^2-2xy+4y^2)=0, (x-2y)(x^2+2xy+4y^2)=16$. Tim x,y.
- **58** ([Tuy23], 49., p. 13). Chứng minh: $742^3 692^3 \\dots 200$. (b) $685^3 + 315^3 \\dots 25000$.
- **59** ([Tuy23], 50., p. 13). Cho a + b + c + d = 0. Chứng minh: $a^3 + b^3 + c^3 + d^3 = 3(b+c)(ad-bc)$.
- **60** ([Tuy23], 51., p. 13). Cho a+b+c=0. Chứng minh: (a) $(ab+bc+ca)^2=a^2b^2+b^2c^2+c^2a^2$. (b) $a^4+b^4+c^4=2(ab+bc+ca)^2$.
- **61** ([Tuy23], 52., p. 14). Xác định 2 hệ số a, b để đa thức $A = x^4 2x^3 + 3x^2 + ax + b$ là bình phương của 1 đa thức.
- **62** ([Tuy23], 53., p. 14). Cho a + b + c = 0, $a^2 + b^2 + c^2 = 1$. Chứng minh $a^4 + b^4 + c^4 = \frac{1}{2}$.
- **63** ([Tuy23], 54., p. 14). Cho $a, b, c \in \mathbb{R}$ không đồng thời bằng 0. Chứng minh có ít nhất 1 trong 3 biểu thức sau có giá trị dương: $x = (a b + c)^2 + 8ab, y = (a b + c)^2 + 8bc, z = (a b + c)^2 8ca$.
- **64** ([Tuy23], 55., p. 14). Tính tổng các hệ số của tất cả các hạng tử trong khai triển của nhị thức: (a) $(5x-3)^2$. (b) $(3x-4y)^{20}$.
- **65** ([Tuy23], 56., p. 14). Da thức $(x+2)^5$ được khai triển theo lũy thừa giảm của x. Biết hạng tử thứ 2 & hạng tử thứ 3 có giá trị bằng nhau khi cho x=a,y=b, trong đó a,b là 2 số thực dương, a-b=1. Tìm a,b.
- **66** ([Tuy23], 57., p. 14). Tinh: (a) $(x+2)^5$. (b) $(x-1)^6$. (c) $(x-1)^5$.
- **67** ([Tuy23], 58., p. 14). Tìm số dư của phép chia 38^{10} cho $13 \& 38^{9}$ cho 13.
- **68** ([Tuy23], 59., p. 14). Chứng minh 2 chữ số tận cùng của 7^{43} là 43.

- 5 Phân Tích Đa Thức Thành Nhân Tử. Các Phương Pháp Thông Thường
- 6 Phân Tích Đa Thức Thành Nhân Tử Bằng 1 Số Phương Pháp Khác
- 7 Miscellaneous

Tài liệu

[Tuy23] Bùi Văn Tuyên. *Bài Tập Nâng Cao & Một Số Chuyên Đề Toán 8*. Tái bản lần thứ 18. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 188.