

Lecture 32

Residuals

Announcements

- Homework 10 due Thursday, 04/14
 - Turn in on Wednesday for a bonus point
- Project 2 due Friday, 04/15
 - OH Party this Friday 1-5pm in SOCS 581
- Check out the staff-created <u>tutoring videos</u>

Weekly Goals

Today

- Least squares: finding the "best" line for a dataset
- Residuals: analyzing mistakes and errors
- Wednesday
 - Regression inference
 - Uncertainty in the slope & intercept
- Friday
 - Data and privacy

Least Squares

Error in Estimation

- error = actual value estimate
- Typically, some errors are positive and some negative
- To measure the rough size of the errors
 - square the errors to eliminate cancellation
 - take the mean of the squared errors
 - take the square root to fix the units
 - root mean square error (rmse)

Numerical Optimization

- Numerical minimization is approximate but effective
- Lots of machine learning uses numerical minimization
- If the function mse(a, b) returns the mse of estimation using the line "estimate = ax + b",
 - o then minimize (mse) returns array [a₀, b₀]
 - a₀ is the slope and b₀ the intercept of the line that minimizes the mse among lines with arbitrary slope a and arbitrary intercept b (that is, among all lines)

Least Squares Line

- Minimizes the root mean squared error (rmse) among all lines
- Equivalently, minimizes the mean squared error (mse) among all lines
- Names:
 - "Best fit" line
 - Least squares line
 - Regression line

Errors and Residuals

Residuals

- Error in regression estimate
- One residual corresponding to each point (x, y)
- residual
 - = observed y regression estimate of y
 - = observed y height of regression line at x
 - = vertical distance between the point and the best line

Regression Diagnostics

Example: Dugongs

Residual Plot

A scatter diagram of residuals

- Should look like an unassociated blob for linear relations
- But will show patterns for non-linear relations
- Used to check whether linear regression is appropriate
- Look for curves, trends, changes in spread, outliers, or any other patterns

Properties of residuals

- Residuals from a linear regression always have
 - Zero mean
 - (so rmse = SD of residuals)
 - Zero correlation with x
 - Zero correlation with the fitted values

- These are all true no matter what the data look like
 - Just like deviations from mean are zero on average (Demo)

Discussion Questions

How would we adjust our regression line...

if the average residual were 10?

if the residuals were positively correlated with x?

 if the residuals were above 0 in the middle and below 0 on the left and right?