United System (HRF)

White System (HRF)

Heliocentric Coordinate System

 \square ecliptic latitude ($\phi_{ecliptic}$) ecliptic longitude ($\lambda_{ecliptic}$)

Sarycentric Celestial Reference Frame (BCRF):

HRF with origin located at barycenter of solar system.

What is the relationship between α , δ and $\phi_{ecl.}$, λ_{ecl} ?

ecliptic and equatorial coordinate system

- International Celestial Reference Frame (ICRF)
 - Origin: barycenter of the solar system
 - ICRF is realized by observations of 3414 extragalactic radio sources from Very Long Baseline Interferometry (VLBI) measurements.
- Earth-based Systems
 - o Origin: Earth's center (geocentric), or at a site on the Earth's surface (topocentric)

Earth-based Systems

Geocentric Equatorial Coordinate System, IJK

Earth Centered Inertial (ECI)/Conventional Inertial System (CIS)

equator and equinox's motion ?!

- Geocentric Celestial Coordinate System, GCRF
 - o modified ECI for precession and nutation
- Body-Fixed Coordinate System, ITRF
 - ECEF (neglects polar motion)

$$\mathbf{T}^{ITRF-GCRF} = \mathbf{R}_3(\theta_{GMST})$$
?

Earth-based Systems

Topocentric Horizon Coordinate System, SEZ

$$\mathbf{T}^{SEZ-GCRF} = \mathbf{R}_2(90 - \phi_{gd})\mathbf{R}_3(\theta_{LST})$$

Topocentric Equatorial Coordinate System

What is the relationship between α_t , δ_t and Az, el?

Satellite-based Systems

- Perifocal Coordinate System, PQW
- Solution Nodal coordinate system: $\mathbf{T}^{Nodal-GCRF} = \mathbf{R}_1(i)\mathbf{R}_3(\Omega)$
- Satellite Coordinate System, RSW (Gaussian coordinate system: RTN, LVLH)

$$\mathbf{T}^{RSW-PCS} = \mathbf{R}_3(\theta)$$

$$\mathbf{T}^{RSW-NQW} = \mathbf{R}_3(\omega + \theta)$$

$$\mathbf{T}^{RSW-EQW} = \mathbf{R}_3(\Omega + \omega + \theta)$$

Satellite-based Systems

© Equinoctial coordinate system, EQW

$$\mathbf{T}^{EQW-GCRF} = \mathbf{R}_{3}(-f_{r}\Omega)\mathbf{R}_{1}(i)\mathbf{R}_{3}(\Omega)$$

$$f_{r} = \begin{cases} 1 & prograde \ orbit \\ -1 & retrograde \ orbit \end{cases}$$

Time

- © Epoch
- Time interval
 - o sidereal time

o dynamical time

o solar (universal) time

o Atomic time

Time & angle units

 $1^{h} = 60 \text{ minutes}(60^{m}) = 3600 \text{ seconds}(3600^{s})$

 $1^{\circ} = 60 \text{ arcminutes}(60') = 3600 \text{ arcseconds}(3600'')$

$$1^{h} = 15^{\circ}$$
 $1^{\circ} = \frac{1^{h}}{15} = 4^{m}$

$$1^{\rm m} = 15'$$
 $1' = \frac{1^{\rm m}}{15} = 4^{\rm s}$

$$1^{s} = 15"$$
 $1" = \frac{1^{s}}{15}$

Time

Solar day vs. sidereal day:

- Solar time is loosely defined by successive transits of the Sun over a local meridian.
- sidereal time is defined by successive transits of the stars over a particular meridian.

1 solar day = 1.002 737 909 350 795 sidereal day

1 sidereal day = 0.997 269 566 329 084 solar day

1 solar day = $24^h 3^m 56.555 367 8^s$ sidereal time

1 sidereal day = $23^h 56^m 4.090 524^s$ solar time

Apparent Solar Time

Sun's apparent motion results from a combination of the Earth's rotation on its axis and its annual orbital motion about the Sun.

The Earth moves with a variable speed in the orbit, causing the Sun to exhibit non-uniform motion along the ecliptic. In addition, the ecliptic is inclined about 23.5° to the celestial equator; thus, the solar motion on the ecliptic appears as a sinusoidal motion when projected on the celestial equator.

Apparent Solar Time

The Earth's orbit about the Sun has a small eccentricity, causing the length of each day to differ by a small amount

local apparent solar time =
$$LHA_{\odot} + 12^{h}$$

Greenwich apparent solar time =
$$\theta_{GMST} - \alpha_{\odot} + 12^{h}$$

 GHA_{\odot}

The variation in the Sun's apparent motion in right ascension (along the celestial equator) makes it a poor choice for establishing a precise time system because its observed length varies throughout the year.

Fictitious Mean Sun (1895)

based on the assumption of uniform motion along the celestial equator.

$$\alpha_{FMS}$$
 = 18^h 38^m 45.836^s + 8,640,184.542^s T + 0.0929^s T ²

Mean Solar Time

equation of time: difference between apparent and mean solar time

$$\begin{split} EQ_{time} &= -1.914\ 666\ 471^{\circ} \text{SIN}(M_{\odot}) - 0.019\ 994\ 643\ \text{SIN}(2M_{\odot}) \\ &+ 2.466\ \text{SIN}(2\lambda_{ecliptic}) - 0.0053\ \text{SIN}(4\lambda_{ecliptic}) \end{split}$$

Equation of Time Variation

Universal Time

Universal time, UT, is defined as the mean solar time at Greenwich

$$UT0 = 12^{h} + GHA_{\odot} = 12^{h} + LHA_{\odot} - \lambda$$

UT1: corrected UT0 for polar motion

$$UT1 = UT0 - (x_p SIN(\lambda) + y_p COS(\lambda)) TAN(\phi_{gc})$$
instantaneous positions of the pole latitude of the observing site

- © Coordinated Universal Time, UTC, is based on atomic clocks. It's designed to follow UT1 within ±0.9s (1972).
- UTC does not change for daylight savings time.

Time Zone	Standard	Daylight Savings	Central Meridian
Atlantic	UTC – 4 ^h	UTC – 3 ^h	-60°
Moscow	$UTC + 4^h$		40°
China	$UTC + 8^{h}$		100°
Japan	$UTC + 9^h$		140°

Julian Date

The Julian date, JD, is the interval of time measured in days from the epoch January 1, 4713 B.C., 12:00.

JULIAN DATE (yr, mo, d, h, min, $s \Rightarrow JD$) {1900 to 2100}

$$JD = 367(yr) - INT \left\{ \frac{7 \left\{ yr + INT \left(\frac{mo + 9}{12} \right) \right\}}{4} \right\} + INT \left(\frac{275 \, mo}{9} \right) + d + 1,721,013.5 + \frac{\left(\frac{s}{60*} + min \right)}{24} + h$$

- This formula is valid for the interval of March 1, 1900 to February 28, 2100. (*use 61 seconds if the day contains a leap second).
- Modified Julian Date: $MJD = JD 2,400,000\underline{0.5}$ \longrightarrow JD of Nov. 17,1858, 0:00
- Julian century (from J2000): $T_{xxx} = \frac{JD_{xxx} 2,451,545.0_{xxx}}{36,525}$ xxx = UT1....

Sidereal Time

- The changing instantaneous the Earth rotation axis causes station locations to continually changes.
- Sidereal time as the hour angle of the vernal equinox relative to the local meridian.

$$\theta_{LST} = \theta_{GMST} + \lambda$$

Apparent sidereal time vs. mean sidereal time

$$\theta_{LST} = \alpha_{star} + GHA_{star} + \lambda = \alpha_{star} + LHA_{star}$$

$$LHA_{star} = GHA_{star} + \lambda$$

Sidereal Time

Greenwich mean sidereal time at midnight

$$\theta_{GMST\,0^{\rm h}} = 24,110.548\,41^{\rm s} + 8,640,184.812\,866\,T_{UT1} + 0.093\,104\,T_{UT1}^2 - 6.2\times10^{-6}\,T_{UT1}^3$$

$$\theta_{GMST\,0^{\rm h}} = 100.460\,618\,4^{\circ} + 36,000.770\,053\,61\,T_{UT1} + 0.000\,387\,93\,T_{UT1}^2 - 2.6\times10^{-8}\,T_{UT1}^3$$

Julian centuries elapsed from the epoch J2000.0 at 0h 0m 0s of the day

To consider the elapsed UT1 time on the day of interest

$$\theta_{GMST} = \theta_{GMST\,0^{\text{h}}} + \omega_{\oplus_{prec}} UT1$$

The most useful relation for computer software

$$\theta_{GMST} = 67,310.548 \, 41^{\text{s}} + (876,600^{\text{h}} + 8,640,184.812 \, 866^{\text{s}}) T_{UT1}$$

$$+ 0.093 \, 104 \, T_{UT1}^2 - 6.2 \times 10^{-6} \, T_{UT1}^3$$