Question 1

Let \bar{Y} and S^2 be the mean and the variance of a random sample of size 25 from $N(\mu=3,\sigma^2=100)$. Find $P((1<\bar{Y}<5)\cap(65.24< S^2<189.82))$.

Hint: recall the following facts:

- 1. \bar{Y} and S^2 are independent.
- 2. $\bar{Y} \sim N(\mu, \sigma^2/n)$.
- 3. $(n-1)S^2/\sigma^2 \sim \chi^2(n-1)$

From Nint (1):

ind P(12725)xP(65.24<52<189.82)

using hints (2) and (3):

$$= P\left(\frac{1-\mu}{\sqrt{\sigma^{2}/n}} < \frac{\sqrt{1-\mu}}{\sqrt{\sigma^{2}/n}} < \frac{5-\mu}{\sqrt{\sigma^{2}/n}}\right) \times P\left(\frac{65.24(n-1)}{\sigma^{2}} < \frac{5^{2}(n-1)}{\sigma^{2}} < \frac{189.82(n-1)}{\sigma^{2}}\right)$$

Here,
$$\mu = 3$$
, $\sigma^2 = 100$, $\int_{0}^{2} = \int_{0}^{100} = \int_{0}^{0} = \int_{0}^{100} = \int_{0}^{100} = \int_{0}^{100} = \int_{0}^{100} = \int_{0$

$$= P\left(-1 < 2 < 1\right) \times P\left(\frac{65.24(24)}{100} < \chi^{2}_{(24)} < \frac{189.82(24)}{100}\right)$$

$$= (1 - P(z>1)) - P(z>1)$$

$$= 1 - 2 \times P(2) = 1 - 2(0.1587)$$

$$= 0.9 - 0.005 = 0.895$$