The Stieltjes measure in \mathbb{R}^2 .

Modern integration theory started in 1890 when Stieltjes introduced measures on the closed real interval [0, 1]. More precisely, let s(x) be a non-decreasing continuous function on this interval where we assume that s(0) = 0 and s(1) = 1. Recall that every open subset U of [0, 1] is a disjoint union of at most denumarably many open intervals $\{\alpha_{\nu}, \beta_{\nu}\}$. Among these may occur half-open intervals $[0, \beta)$ or $[\alpha, 1]$. Following Stieltjes we assign the measure

$$\mu_s(U) = \sum (s(\beta_{\nu}) - s(\alpha_{\nu}))$$

For a closed, i.e. a compact subset K of [0,1] we define

$$\mu_s(K) = 1 - \mu_s([0,1] \setminus K)$$

The continuity of s entails that

$$\mu_s(K) = \lim_{\delta \to 0} \mu_s(K_\delta) : K_\delta = \{x : dist(x, K) < \delta\}$$

From this it follows that μ_s extends to a σ -additive measure defined on the σ -algebra \mathcal{B} of Borel sets, i.e. the smallest σ -algebra of subsets of [0,1] generated by intervals. Moreover Stieltjes constructed integrals

$$\int_0^1 f(x)d\mu_x : f \in C^0[0,1]$$

and more generally there exist well-defined integrals for every bounded Borel-function ϕ , i.e. those real-valued functions for which the sets

$$\{\phi < a\} \in \mathcal{B} : a \in \mathbf{R}$$

A null set with respect to μ_s is a set such that

$$0 = \inf \mu_s(U) \colon A \subset U$$

where the infimum is taken over open sets U which contain A. This family of sets which are negligable with respect to μ_s is denoted by $\mathcal{N}(\mu_s)$. A set A is said to be μ_s -measurable if its inner and outer measures are equal, i.e. if

$$\sup \mu_s(K) = \inf \mu_s(U) : K \subset A \subset U$$

One proves easily that if A is measurable then

$$A = F^* \cup N \quad N \in \mathcal{N}(\mu_s) \quad \& \quad F = \cup K_{\nu}$$

where the last term is given via by an increasing sequence $\{K_{\nu}\}$ of compact sets.

The family of all μ_s -measurable sets is denoted by $\mathfrak{M}(\mu_s)$.

Vitali's differential theorem. Let A be μ_s -measurable. For each point $p \in A$ and every $\epsilon > 0$ we put

$$\delta_*(\epsilon, p) = \frac{1}{s(b) - s(a)} \cdot \inf \mu_s(A \cap (a, b)) : a$$

Notice that above we compete with all open intervals which contain p, i.e. p need not be the mid-point of (a, b).

Definition. A point $p \in A$ is a point of density in the sense of Vitali if

$$\lim_{\epsilon \to 0} \, \delta_*(\epsilon, p) = 1$$

The set of points in A for which (*) hold is denoted by $\mathcal{V}(A)$ and called Vitali-points of A.

Using his famous Covering Lemma, Vitali proved the following:

Theorem. For every $A \in \mathfrak{M}(\mu_s)$ it follows that

$$A \setminus \mathcal{V}(A) \in \mathcal{N}(\mu_s)$$

The passage to \mathbb{R}^2 .

Consider the closed square

$$\Box = \{(x,y) : 0 \le x, y \le 1\}$$

Let $s(x,y) \in C^0(\square)$ be doubly non-decreasing, i.e. for every freezed y the function $x \mapsto s(x,y)$ is non-decreasing, and vice versa $y \mapsto s(x,y)$ is non-decreasing while x is freezed. In addition

$$s(0,0) = 0$$
 & $s(1,1) = 1$

In order to construct the measaure μ_s we employ dyadic grids, Thus, to a positive integer N we divide \square into 2^{2N} many squares

$$\delta_N(p,q) = \{2^{-N} \cdot p \le x \le 2^{-N}(p+1) \& 2^{-N} \cdot q \le y \le 2^{-N}(q+1)\}$$

where p, q run over integers from zero to $2^N - 1$.

Next, for every square with sides parallell to the coordinate axes we define

$$\mu_s(\Box) = s(a^*, b^*) + s(a_*, b_*) - s(a^*, b_*) - s(a_*, b^*)$$

where the square has its upper corner point at (a^*, b^*) and its lower corner point at (a_*, b_*) .

Let us now consider an - arbitrary - closed subset K of \square . When $N \geq 1$ we denote by $\mathcal{D}_N(K)$ the family of squares $\delta_N(p,q)$ for which

$$\delta_N(p,q)\cap K\neq\emptyset$$

Next, put

$$\rho_N(K) = \sum_{s=0}^{\infty} \mu_s(\delta_N(p,q)) \qquad \delta_N(p,q) \in \mathcal{D}_N(K)$$

One checks that these ρ -numbers decrease as N increases. Passing to the limit we put

(1)
$$\mu_s(K) = \lim_{N \to \infty} \rho_N(K)$$

In a similar fashion we construct $\mu_s(U)$ for open sets U, i.e. here we put

$$\rho_N(U) = \sum \mu_s(\delta_N(p,q)) : \delta_N(p,q) \subset U$$

Thus, we add measures from those cubes which are contained in U. It is clear that $N \mapsto \rho_N(U)$ increase with N and we put

(2)
$$\mu_s(U) = \lim \, \rho_N^*(U)$$

Via (1-2) one easily verifies that the measure μ_s extends to be σ -additive on $\mathcal{B}(\square)$. and we also remark that the Vitali theorem from § 1 remains valid where one now regard a point p in a μ_s -measurable set A and take limits of quotients

$$\frac{\mu_s(\delta \cap A)}{\mu_s(\delta)}$$

where δ are small squares tending to the singleton set $\{p\}$.

Remark. The construction of μ_s entails that when f(x,y) is twice continuously differentiable then

$$\iint f \cdot d\mu_s = \iint \frac{\partial^2 f}{\partial x \partial y} \cdot s(x, y) \, dx dy$$

In other words, $d\mu_s$ is the second order mixed distribution derivative $\partial_x \partial_y(s)$.

It goes withput saying that the construction for n=2 extends verbatim to every $n\geq 3$. Concerning the measures which are found above we notice that since $\{s(x,y)\}$ is continuous, it follows that every vertical line $\{x=a\}$ or horizontal line $\{y=b\}$ are nullsets. Conversely every σ -additive and non-negative measure γ on \square for which this family of lines are null-sets is equal to μ_s for a unique s(x,y). So one has - at least essentially - recovered all probability measures on \square via the constructions performed above.