Clean

In [11]: #Import Libraries
import matplotlib.pyplot as plt
import pandas as pd

In [12]: #Read in Electric Vehicle Population dataset in from data.gov
 data = pd.read_csv('https://data.wa.gov/api/views/f6w7-q2d2/rows.csv?accessType=DOWNLOAD')
 data.head()

Out[12]:

	VIN (1-10)	County	City	State	Postal Code	Model Year	Make	Model	Electric Vehicle Type	Alternative Fuel Vehicle (CAFV) Eligibility	Electric Range	Base MSRP	Legislative District	Vehi
0	5YJ3E1EB4L	Yakima	Yakima	WA	98908.0	2020	TESLA	MODEL 3	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	322	0	14.0	12717
1	5YJ3E1EA7K	San Diego	San Diego	CA	92101.0	2019	TESLA	MODEL 3	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	220	0	NaN	2666′
3	7JRBR0FL9M	Lane	Eugene	OR	97404.0	2021	VOLVO	S60	Plug-in Hybrid Electric Vehicle (PHEV)	Not eligible due to low battery range	22	0	NaN	1445(
	5YJXCBE21K	Yakima	Yakima	WA	98908.0	2019	TESLA	MODEL X	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	289	0	14.0	47703
4	5UXKT0C5XH	Snohomish	Bothell	WA	98021.0	2017	BMW	X5	Plug-in Hybrid Electric Vehicle (PHEV)	Not eligible due to low battery range	14	0	1.0	1063 ⁻

Out[13]:

:		VIN (1-10)	County	City	State	Postal Code	Model Year	Make	Model	Electric Vehicle Type	Clean Alternative Fuel Vehicle (CAFV) Eligibility	Electric Range	Base MSRP	Legislative District	Ver
	0	5YJ3E1EB4L	Yakima	Yakima	WA	98908.0	2020	TESLA	MODEL 3	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	322	0	14.0	127′
	3	5YJXCBE21K	Yakima	Yakima	WA	98908.0	2019	TESLA	MODEL X	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	289	0	14.0	4770
	5	1N4AZ0CP4F	Snohomish	Everett	WA	98201.0	2015	NISSAN	LEAF	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	84	0	38.0	107§
	6	5YJ3E1EBXJ	Kitsap	Poulsbo	WA	98370.0	2018	TESLA	MODEL 3	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	215	0	23.0	475(
	8	1N4AZ0CP3D	Kitsap	Port Orchard	WA	98366.0	2013	NISSAN	LEAF	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	75	0	26.0	2492

In [14]: #Find the mean electric range per year
mean_range_by_year = wa_bev_data.groupby('Model Year')['Electric Range'].mean()
print(mean_range_by_year)

```
Model Year
         1997
                   39.000000
         1998
                   58.000000
         1999
                   74.000000
         2000
                   58.000000
         2002
                   95.000000
         2003
                   95.000000
         2008
                  220.000000
         2010
                  245.000000
         2011
                  74.618351
         2012
                 103.372180
         2013
                  110.780089
         2014
                 127.981677
         2015
                  121.456612
         2016
                 135.345520
         2017
                 179.644719
         2018
                 209.507606
         2019
                 208.974407
         2020
                 278.297417
         2021
                    6.298762
         2022
                    0.00000
         2023
                    0.000000
         Name: Electric Range, dtype: float64
In [15]: # Create bar plot of electric range vs. model year
         plt.bar(mean range by year.index, mean range by year)
         plt.xlabel('Model Year')
         plt.ylabel('Mean Electric Range (miles)')
         plt.title('Mean Electric Range of BEVs in WA by Model Year')
         plt.show()
```


2010

Model Year

```
In [17]: #Count the data points per model year
counts = wa_bev_data['Model Year'].value_counts()
print(counts)
```

2015

2020

2000

2005

```
2022
        23466
2021
        14704
2023
        11846
2018
         9927
2020
         9290
2019
         8557
2017
         4450
2016
         3884
2015
         3607
2013
         2933
2014
         1801
2012
          798
2011
          752
2008
           21
2010
           21
             9
2000
1999
             4
2002
             2
1998
            1
2003
            1
1997
            1
Name: Model Year, dtype: int64
```

```
In [18]: #Based on the first barplot and counts/year output, as well as our desire to see trends in more recent years.
         #Create bar plot of electric range vs. model year for years 2011-2020
         filtered wa bev data = wa bev data['Model Year'] >= 2011) & (wa bev data['Model Year'] <= 2020)]
         filtered mean = filtered wa bev data.groupby('Model Year')['Electric Range'].mean()
         plt.bar(filtered mean.index, filtered mean)
         plt.xlabel('Model Year')
         plt.ylabel('Mean Electric Range (miles)')
         plt.title('Mean Electric Range of BEVs in WA by Model Year for 2011-2020')
         plt.savefig('barplot.png')
         plt.show()
```

Mean Electric Range of BEVs in WA by Model Year for 2011-2020


```
In [25]: # The following analysis was not included in the research paper.
# I still wanted to show you the work I did, since I spent a lot of time figureing it out.

In [26]: #Linear regression analysis of electric range and model year.
#Hypothesis: As time passes, the electric range of BEVs increases.

In [27]: # Import Libraries
import numpy as np
from sklearn.linear_model import LinearRegression

In [22]: # Sort the subset of data by Model Year
subset_sorted = filtered_wa_bev_data .sort_values(by=['Model Year'])

In [29]: # Since simple linear regression with time series data does not work, I relabeled model year
# Replace Model Year values 2011-2020 with 1-10
```

Clean

```
subset_sorted['Model Year'] = subset_sorted['Model Year'].apply(lambda x: x - min(subset_sorted['Model Year']
subset_sorted.head()
```

Out[29]:

		VIN (1-10)	County	City	State	Postal Code	Model Year	Make	Model	Electric Vehicle Type	Alternative Fuel Vehicle (CAFV) Eligibility	Electric Range	Base MSRP	Legislative District
	52733	JN1AZ0CP5B	King	Seattle	WA	98107.0	1	NISSAN	LEAF	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	73	0	36.0
	79402	JN1AZ0CP0B	Thurston	Olympia	WA	98502.0	1	NISSAN	LEAF	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	73	0	35.0
	119584	JN1AZ0CP7B	Pierce	University Place	WA	98467.0	1	NISSAN	LEAF	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	73	0	28.0
	71541	JN1AZ0CP6B	King	Bothe ll	WA	98011.0	1	NISSAN	LEAF	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	73	0	1.0
	38310	JN1AZ0CP5B	King	Covington	WA	98042.0	1	NISSAN	LEAF	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	73	0	47.0

```
In [33]: # Set X and Y
X = subset_sorted['Model Year'].values.reshape(-1, 1)
Y = subset_sorted['Electric Range'].values.reshape(-1, 1)

# Create a scatter plot of the data
plt.scatter(subset_sorted['Model Year'], subset_sorted['Electric Range'])
plt.xlabel('Model Year')
plt.ylabel('Electric Range of BEVs (miles)')
```

Out[33]:

```
plt.title('Electric Vehicle Range vs. Model Year of BEVs in WA where 1-10 Represents 2011-2020')
#Linear Regression
model = LinearRegression()
model.fit(X, Y)
clf = model.fit(X, Y)
predicitons = np.dot(X, clf.coef)
for index in range (len(predicitons)):
    predicitons[index] = predicitons[index] + clf.intercept
#Print equation for linear regression line in slope-intercept form
m = model.coef [0]
b = model.intercept
print(f"y = \{m\}x + \{b\}")
#R squared score --> positive correlation between model year and electric range
r squared = model.score(X, Y)
print(f"R-squared score: {r squared:.2f}")
# Display the linear regression line on the scatter plot
plt.plot(X, predicitons, color='red')
y = [23.08433411]x + [23.0004163]
R-squared score: 0.52
[<matplotlib.lines.Line2D at 0x7f9dc02a3fd0>]
```

Electric Vehicle Range vs. Model Year of BEVs in WA where 1-10 Represents 2011-2020

In []: