A First Course in Optimization

Ishan Kapnadak

Autumn Semester 2022-23

Updated on: 2022-08-09

Abstract

Lecture Notes for the course EE 659: A First Course in Optimization taught in Spring 2022 by Prof. Vivek Borkar. Additional references include A first course in optimization by Rangarajan K. Sundaram, Optimization by vector space methods by David Luenberger, and Nonlinear programming by Dimitri P. Bertsekas

Contents

1	Lecture 1	2
2	Lecture 2	5

§1. Lecture 1

Definition 1.1: Open Ball

The *open ball* of radius ϵ centered around $\mathbf{x}_0 \in \mathbb{R}^d$ is defined as

$$B_{\epsilon}(\mathbf{x}_0) := \left\{ \mathbf{x} \in \mathbb{R}^d : \|\mathbf{x} - \mathbf{x}_0\| < \epsilon \right\}.$$

Definition 1.2: Closed Ball

The *closed ball* of radius ϵ centered around $\mathbf{x}_0 \in \mathbb{R}^d$ is defined as

$$\overline{B}_{\epsilon}(\mathbf{x}_0) := \left\{ \mathbf{x} \in \mathbb{R}^d \colon ||\mathbf{x} - \mathbf{x}_0|| \le \epsilon \right\}.$$

Definition 1.3: Open and Closed Sets

A set $A \subset \mathbb{R}^d$ is said to be *open* if for all $\mathbf{x} \in A$, there exists an $\epsilon > 0$ such that $B_{\epsilon}(\mathbf{x}) \subset A$. A set A is said to be *closed* if A^{c} is open.

We have the following properties for open and closed sets.

1. Let \mathcal{I} be an arbitrary index set. If A_{α} is open for each $\alpha \in \mathcal{I}$, then

$$\bigcup_{\alpha \in \mathcal{I}} A_{\alpha}$$

is open. In other words, open sets are closed under arbitrary unions.

2. Let \mathcal{I} be a finite index set. If A_{α} is open for each $\alpha \in \mathcal{I}$, then

$$\bigcap_{\alpha\in\mathcal{I}}A_{\alpha}$$

is open. In other words, open sets are closed under finte intersections.

3. Let \mathcal{I} be an arbitrary index set. If A_{α} is closed for each $\alpha \in \mathcal{I}$, then

$$\bigcap_{\alpha\in\mathcal{I}}A_{\alpha}$$

is closed. In other words, closed sets are closed under arbitrary intersections.

4. Let \mathcal{I} be a finite index set. If A_{α} is closed for each $\alpha \in \mathcal{I}$, then

$$\bigcup_{\alpha \in \mathcal{I}} A_{\alpha}$$

is closed. In other words, closed sets are closed under finite unions.

Definition 1.4: Convergence of a sequence

Let $\{\mathbf{x}_n\}$ be a sequence in \mathbb{R}^d . Then, $\{\mathbf{x}_n\}$ converges to \mathbf{x}^* (written $\mathbf{x}_n \to \mathbf{x}^*$) if for all $\epsilon > 0$, there exists an $n_0 \in \mathbb{N}$ such that

$$\mathbf{x}_n \in B_{\epsilon}(\mathbf{x}^*) \quad \forall n > n_0$$

 $\mathbf{x}_n \in B_\epsilon(\mathbf{x}^*) \quad \forall n > n_0.$ Equivalently, $\|\mathbf{x}_n - \mathbf{x}^*\| \to 0$.

Definition 1.5: Closure

Let $A \subset \mathbb{R}^d$. The *closure* of A (denoted \overline{A}) is the smallest closed set containing A. Equivalently, \overline{A} is the intersection of all closed sets containing A.

Definition 1.6: Interior

Let $A \subset \mathbb{R}^d$. The *interior* of A (denoted A°) is the largest open set contained in A. Equivalently, A° is the union of all open sets contained in A.

Note that by definition, we have $A^{\circ} \subset A \subset \overline{A}$.

Definition 1.7: Boundary

Let $A\subset \mathbb{R}^d.$ The boundary of A is defined as $\partial A:=\overline{A}\setminus A^{\rm o}.$

$$\partial A := A \setminus A^{\circ}$$
.

Note that for a closed set, $\overline{A} = A$, and for an open set, $A^{\circ} = A$.

Proposition 1.8

A set $A \subset \mathbb{R}^d$ is closed if and only if $\mathbf{x}_n \to \mathbf{x}^*, \mathbf{x}_n \in A \forall n \implies \mathbf{x}^* \in A.$

$$\mathbf{x}_n \to \mathbf{x}^*, \mathbf{x}_n \in A \forall n \implies \mathbf{x}^* \in A.$$

Proof. Let $A \subset \mathbb{R}^d$ be closed, $\mathbf{x}_n \in A$ for all n, and $\mathbf{x}_n \to \mathbf{x}^*$. Assume to the contrary that $\mathbf{x}^* \notin A$. Then, $\mathbf{x}^* \in A^{\mathsf{c}}$, which is open by assumption. Thus, $\exists \epsilon > 0$ such that $B_{\epsilon}(\mathbf{x}^*) \subset A^{\mathsf{c}}$. This implies that $\mathbf{x}_n \notin B_{\epsilon}(\mathbf{x}^*)$ for all n, and thus $\mathbf{x}_n \not\to \mathbf{x}^*$, a contradiction. To prove the converse, assume that A is not closed. Thus, there exists a $\tilde{\mathbf{x}} \in \partial A$ such that $\tilde{\mathbf{x}} \notin A$. Then, for all $\epsilon > 0$, $B_{\epsilon}(\tilde{\mathbf{x}}) \cap A \neq \emptyset$. Let $\epsilon_n \downarrow 0$ and let $\mathbf{x}_n \in B_{\epsilon_n}(\tilde{\mathbf{x}}) \cap A$. Then, $\mathbf{x}_n \to \tilde{\mathbf{x}} \notin A$, a contradiction.

Definition 1.9: Limit Point

Let $\{\mathbf{x}_n\}$ be a sequence in \mathbb{R}^d . $\tilde{\mathbf{x}}$ is a *limit point* of $\{\mathbf{x}_n\}$ if there exists a subsequence $\{\mathbf{x}_{n_k}\}$ such that $\mathbf{x}_{n_k} \to \tilde{\mathbf{x}}$.

Proposition 1.10

 $\{\mathbf{x}_n\}$ converges if and only if $\{\mathbf{x}_n\}$ has a unique limit point.

Definition 1.11: Supremum and Infimum

Let
$$A \subset \mathbb{R}$$
 be bounded. Then,
$$\sup A := \text{ smallest } x \in \mathbb{R} \cup \{+\infty\} \text{ such that } y \in A \implies y \leq x,$$

$$\inf A := \text{ largest } x \in \mathbb{R} \cup \{-\infty\} \text{ such that } y \in A \implies y \geq x.$$

Definition 1.12: Cauchy Sequence

A sequence $\{\mathbf{x}_n\}$ is said to be *Cauchy* if $\lim_{m,n\uparrow\infty} \|\mathbf{x}_m - \mathbf{x}_n\| = 0$.

Proposition 1.13

Cauchy sequences are bounded.

Proof. Let $\{\mathbf{x}_n\}$ be a Cauchy sequene and let $\epsilon > 0$. Pick N large enough such

$$n, m > N \implies \|\mathbf{x}_m - \mathbf{x}_n\| < \epsilon.$$

We then have

$$\mathbf{x}_n \in B_{\epsilon}(\mathbf{x}_m) \quad \forall n > N$$

 $\implies \{\mathbf{x}_n \colon n > N\} \text{ is bounded}$

 $\implies \{\mathbf{x}_n\} \text{ is bounded.}$

Cauchy sequences have at most one limit point.

Proof. Suppose $\{\mathbf{x}_n\}$ is a Cauchy sequence having two limit points, $\tilde{\mathbf{x}}$ and $\bar{\mathbf{x}}$. Then,

there exist subsequences $\mathbf{x}_{\tilde{n}_k} \to \tilde{\mathbf{x}}$ and $\mathbf{x}_{\overline{n}_l} \to \overline{\mathbf{x}}$. We then have

$$\lim_{\tilde{n}_{l}, \overline{n}_{l} \uparrow \infty} \|\mathbf{x}_{\tilde{n}_{k}} - \mathbf{x}_{\overline{n}_{l}}\| = 0 \implies \tilde{\mathbf{x}} = \overline{\mathbf{x}}.$$

Definition 1.15: Complete Space

A metric space is *complete* if every Cauchy sequence converges.

§2. Lecture 2

Theorem 2.1: Bolzano-Weierstrass Theorem

Every bounded sequence]oin \mathbb{R}^d has a convergent subsequence.

Proof. Suppose d=1. Since $\{x_n\}$ is bounded, we have $x_n \in [a,b]$ for all n where $a,b \in \mathbb{R}$ and a < b. The idea is to keep halving the interval and pick a half interval containing infinitely many points. For example, consider the two half intervals $[a, \frac{a+b}{2}]$ and $[\frac{a+b}{2}, b]$. Since $\{x_n\}$ has infinitely many points, at least one of these two half intervals has infinitely many points. Call this half interval $[a_1, b_1]$ and repeat this argument again for $[a_1, b_1]$. This gives us a sequence $\{(a_n, b_n)\}$ satisfying

$$a_0 \le a_1 \le a_2 \le \cdots b \implies a_n \to a^*$$

 $b_0 \ge b_1 \ge b_2 \ge \cdots a \implies b_n \to b^*$

where we define $a_0 := a$ and $b_0 := b$. Moreover, we have

$$|b_n - a_n| = \frac{b - a}{2^n} \to 0 \implies a^* = b^*.$$

Since there are infinitely many x_n 's in $[a_k, b_k]$ for any k, pick $\tilde{x}_k \in [a_k, b_k] \cap \{x_n\}$ such that $\tilde{x}_k \neq \tilde{x}_j$ for j < k. Thus, $\tilde{x}_k \to a^* = b^*$. This can be generalised to d > 1 via induction and we leave this as an exercise to the reader.

Note that the above argument does not generalise to infinite dimensions. For example, consider the complete orthonormal space

$$\mathcal{L}_2[0,T] := \left\{ f \colon [0,T] \to \mathbb{R} \colon \int_0^T f^2(t) \, \mathrm{d}t < \infty \right\}$$

with inner product

$$\langle f, g \rangle := \int_0^T f(t)g(t) dt.$$

Consider an orthonormal basis $\{e_n\}$ satisfying

$$\langle e_n, e_m \rangle = \begin{cases} 1 & \text{if } n = m, \\ 0 & \text{if } n \neq m. \end{cases}$$

Note that $||e_n - e_m|| = \sqrt{2}$ whenever $n \neq m$ and thus $\{e_n\}$ has no convergent subsequence.

Proposition 2.2

Let $f: C \subset \mathbb{R}^d \to \mathbb{R}$ be bounded from below. Let $\beta = \inf_{\mathbf{x} \in C} f(\mathbf{x})$. Then, $\exists \{\mathbf{x}_n\} \in C \text{ such that } f(\mathbf{x}_n) \downarrow \beta$.

Theorem 2.3: Weierstrass Theorem

Let $C \subset \mathbb{R}^d$ be closed and bounded, and let $f \colon C \to \mathbb{R}$ be continuous. Then, f attains its minimum and maximum.

Proof. Let $\{\mathbf{x}_n\} \in C$ be such that $f(\mathbf{x}_n) \downarrow \beta := \inf_{\mathbf{x} \in C} f(\mathbf{x})$. By Bolzano-Weierstrass, $\exists \{\mathbf{x}_{n_k}\}$ such that $\mathbf{x}_{n_k} \to \mathbf{x}^*$. Since C is closed, $\mathbf{x}^* \in C$. Since f is continuous, $f(\mathbf{x}_{n_k}) \to f(\mathbf{x}^*) \implies f(\mathbf{x}^*) = \beta$. A similar argument holds for maximum.

Corollary 2.1

Let $C\subset\mathbb{R}^d$ be closed and let $f\colon C\to\mathbb{R}$ satisfy $\lim_{\|\mathbf{x}\|\uparrow\infty}f(\mathbf{x})=\infty.$ Then, f attains its minimum on C.

$$\lim_{\|\mathbf{x}\| \uparrow \infty} f(\mathbf{x}) = \infty.$$

Proof. Let $\{\mathbf{x}_n\}$ be such that $f(\mathbf{x}_n) \downarrow \beta := \inf_{\mathbf{x} \in C} f(\mathbf{x})$. Then, $\{\mathbf{x}_n\}$ is bounded, since otherwise $\exists \{\mathbf{x}_{n_k}\}$ such that $\|\mathbf{x}_{n_k}\| \uparrow \infty \implies f(\mathbf{x}_{n_k}) \to \infty \neq \beta$. The previous argument now follows through.

Definition 2.4: Limit Supremum and Limit Infimum

Let $\{x_n\} \in \mathbb{R}$. We define

$$\lim \sup_{n \uparrow \infty} x_n := \lim_{n \uparrow \infty} \sup_{m \ge n} x_m = \inf_{n \ge 1} \sup_{m \ge n} x_m$$
$$\lim \inf_{n \uparrow \infty} x_n := \lim_{n \uparrow \infty} \inf_{m \ge n} x_m = \sup_{n \ge 1} \inf_{m \ge n} x_m$$

We sometimes also denote the limit supremum as $\overline{\lim} x_n$ and the limit infimum

Note that \limsup and \liminf are always well-defined if we allow $\{\pm\infty\}$ as possibilities. This is because $\sup_{m>n} x_m$ is a non-increasing sequence and thus must converge (possibly to $-\infty$). Similarly, $\inf_{m\geq n} x_m$ is a non-decreasing sequence and thus must converge (possibly to $+\infty$). We also note that

- 1. $\limsup x_n \ge \liminf x_n$.
- 2. If $\limsup_{n \uparrow \infty} x_n = \liminf_{n \uparrow \infty} x_n = x^*$, then $x_n \to x^*$.

Definition 2.5: Lower and Upper Semicontinuous

 $f: C \subset \mathbb{R}^d \to \mathbb{R}$ is said to be lower semicontinuous (l.s.c) if whenever $\mathbf{x}_n \to \mathbf{x}^*$ in C, then $\liminf_{n \uparrow \infty} f(\mathbf{x}_n) \geq f(\mathbf{x}^*)$. $f: C \subset \mathbb{R}^d \to \mathbb{R} \text{ is said to be upper semicontinuous (u.s.c) if whenever } \mathbf{x}_n \to \mathbf{x}^*$ in C, then $\limsup_{n \uparrow \infty} f(\mathbf{x}_n) \leq f(\mathbf{x}^*)$.

Corollary 2.2 If $f\colon C\subset\mathbb{R}^d\to\mathbb{R}$ is lower semicontinuous, C is closed and bounded, then f attains its minimum.

Proof. Let $\{\mathbf{x}_n\} \in C$ be such that $f(\mathbf{x}_n) \downarrow \beta := \inf_{\mathbf{x} \in C} f(\mathbf{x})$. By Bolzano-Weierstrass, $\exists \{\mathbf{x}_{n_k}\}$ such that $\mathbf{x}_{n_k} \to \mathbf{x}^*$. Since C is closed, $\mathbf{x}^* \in C$. Then,

$$\beta = \lim_{n \uparrow \infty} f(\mathbf{x}_{n_k}) = \liminf_{n \uparrow \infty} f(\mathbf{x}_{n_k}) \ge f(\mathbf{x}^*) \ge \beta \implies f(\mathbf{x}^*) = \beta.$$

Similarly, an upper semicontinuous function attains its maximum on a closed and bounded domain.

Proposition 2.6

$$f(\mathbf{x}) := \sup_{\mathbf{y} \in D} g(\mathbf{x}, \mathbf{y}) \quad (\text{resp. } \inf_{\mathbf{y} \in D} g(\mathbf{x}, \mathbf{y}))$$

Let $g: C \times D \to \mathbb{R}$ where $C \subset \mathbb{R}^n$, $D \subset \mathbb{R}^m$. Define $f: C \to \mathbb{R}$ as $f(\mathbf{x}) := \sup_{\mathbf{y} \in D} g(\mathbf{x}, \mathbf{y}) \quad (\text{resp. inf } g(\mathbf{x}, \mathbf{y}))$ Suppose $f(\mathbf{x}) < \infty$ (resp. $f(\mathbf{x}) > -\infty$) for all $\mathbf{x} \in C$. If $g(\mathbf{x}, \mathbf{y})$ is continuous in \mathbf{x} for all $\mathbf{y} \in D$, then f is lower semicontinuous (resp. upper semicontinuous).

Proof. Let $\mathbf{x}_n \to \mathbf{x}^*$ in C. Then,

$$\lim_{n \uparrow \infty} \inf f(\mathbf{x}_n) \ge \lim_{n \uparrow \infty} \inf g(\mathbf{x}_n, \mathbf{y}) \, \forall \mathbf{y} \in D$$

$$= \lim_{n \uparrow \infty} g(\mathbf{x}_n, \mathbf{y})$$

$$= g(\mathbf{x}^*, \mathbf{y}).$$

Thus,

$$\lim_{n \uparrow \infty} \inf f(\mathbf{x}_n) \ge g(\mathbf{x}^*, \mathbf{y}) \quad \forall \mathbf{y} \in D$$

$$\implies \lim_{n \uparrow \infty} \inf f(\mathbf{x}_n) \ge \sup_{\mathbf{y} \in D} g(\mathbf{x}^*, \mathbf{y}) = f(\mathbf{x}^*).$$