Algo QCM

- 1. Dans un arbre binaire, un noeud ne possédant pas de fils est appelé?
 - (a) une racine
 - (b) noeud interne
 - (c) noeud externe
 - (d) feuille
- 2. Dans un arbre binaire, le chemin obtenu à partir de la racine en ne suivant que des liens droits est?
 - (a) le chemin gauche
 - (b) le bord droit
 - (c) la branche droite
 - (d) le chemin droite
- 3. Dans un arbre binaire, un noeud possédant juste 1 fils gauche est appelé?
 - (a) une racine
 - (b) noeud interne
 - (c) noeud externe à droite
 - (d) point simple à gauche
- 4. Un arbre binaire non vide est un arbre de taille?
 - (a) ≥ -1
 - (b) $\geqslant 0$
 - (c) ≥ 1
- 5. Un arbre binaire parfait est un arbre binaire dont?
 - (a) tous les noeuds sont simples
 - (b) tous les niveaux sont remplis sauf le dernier rempli de gauche à droite
 - (c) tous les noeuds sont doubles sauf sur le dernier niveau
 - (d) tous les noeuds sont doubles
- 6. Un arbre binaire dont tous les noeuds sont simples est?
 - (a) dégénéré
 - (b) parfait
 - (c) complet
 - (d) localement complet
 - (e) filiforme

- 7. Si LCE(B) définit la longueur de cheminement externe de B (un arbre binaire), alors PME(B) la profondeur moyenne externe de B est égale à?
 - (a) LCE(B)/f avec f le nombre de feuilles de B
 - (b) LCE(B)/n avec n le nombre de noeuds de B
 - (c) LCE(B)/n avec n le nombre de nocuds externes de B
 - (d) LCE(B).n avec n le nombre de noeuds externes de B
- 8. L'arbre défini par $B = \{E, 0, 1, 00, 01, 000, 001, 0010, 0011, 00100, 001001\}$ est?
 - (a) dégénéré
 - (b) parfait
 - (c) complet
 - (d) localement complet
 - (e) quelconque
- 9. Dans le parcours profondeur d'un arbre binaire, quels ordres ne sont pas des ordres induits?
 - (a) Préfixe
 - (b) midfixe
 - (c) Intermédiaire
 - (d) Suffixe
- 10. Combien d'ordre de passages induit le parcours en profondeur main gauche d'un arbre binaire ?
 - (a) 1
 - (b) 2
 - (c) 2 et demi
 - (d) 3
 - (e) 4

QCM N°17

lundi 5 février 2018

Question 11

- (a) L'ensemble des suites réclles bornées est un \mathbb{R} -ev
- (b) L'ensemble des suites réelles périodiques de période $p \in \mathbb{N}^*$ est un \mathbb{R} -ev
- c. L'ensemble des suites réelles monotones est un R-ev
- d L'ensemble des suites réelles (u_n) vérifiant $u_n = o\left(\frac{1}{n}\right)$ est un \mathbb{R} -ev
- e. rien de qui précède

Question 12

- (a) L'ensemble des fonctions f de $\mathbb R$ dans $\mathbb R$ telles que f(0)=f(2) est un $\mathbb R$ -ev
- (b) L'ensemble des fonctions dérivables de R dans R est un R-ev
- C L'ensemble des fonctions f continues de $\mathbb R$ dans $\mathbb R$ telles que $\int_0^1 f(x) \mathrm{d}x = 0$ est un $\mathbb R$ -ev
- (d.) L'ensemble des fonctions f de $\mathbb R$ dans $\mathbb R$ telles que f(-x)=f(x) est un $\mathbb R$ -ev
 - e. rien de ce qui précède

Question 13

- a. L'ensemble des polynômes à coefficients réels de degré 2017 est un \mathbb{R} -ev
- b. L'ensemble des polynômes à coefficients réels multiples de X-1 est un \mathbb{R} -ev
- c. L'ensemble des polynômes à coefficients réels positifs ou nuls est un R-ev
- d L'ensemble des polynômes à coefficients réels dont le terme constant est nul est un R-ev
- e. rien de ce qui précède

Question 14

Soient E un \mathbb{R} -ev quel
conque et $(x,y)\in E^2$ quelconque. Alors

- a. $xy \in E$
- b. $1 \in E$
- (c) $2(x+y) \in E$
- e. rien de ce qui précède

Question 15

Soient E un \mathbb{R} -ev et $F \subset E$. Alors F est un \mathbb{R} -ev.

- a. vrai
- (b.) faux

Question 16

- (a.) Toute suite réelle croissante et non majorée tend vers $+\infty$
- b. Toute suite réelle croissante et bornée converge
- (c.) Toute suite réelle décroissante et non minorée tend vers $-\infty$
- d. rien de ce qui précède

Question 17

Soit (u_n) une suite réelle.

- (a) Si (u_n) tend vers 0, il existe $N \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}$, $n \geqslant N \Longrightarrow u_n < \ln(2)$
- (b.) Si (u_n) tend vers 2, il existe $N \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}$, $n \geqslant N \Longrightarrow u_n > \ln(2)$
- (c.) Si (u_n) converge vers 1, $(\cos(n)u_n)$ converge vers 1
- d. rien de ce qui précède

Question 18

Soit (u_n) une suite réelle. Alors

- (a) (u_{n^2}) est une suite extraite de (u_n)
- b. (u_{n^2-n}) est une suite extraite de (u_n)
- (C) (u_{2n+1}) est une suite extraite de (u_n)
- d. rien de de qui précède

Question 19

Soient (u_n) et (v_n) deux suites réelles telles que pour tout $n \in \mathbb{N}$, $u_n \leq v_n$.

- a. Si (v_n) est croissante, (u_n) est majorée
- b. Si (v_n) est décroissante, (u_n) est minorée
- c. Si (v_n) converge, (u_n) converge.
- d. Si (v_n) est bornée, (u_n) est bornée
- c. rien de ce qui précède

Question 20

Soit
$$(u_n) = \left(\sum_{k=0}^n \left(\frac{1}{2}\right)^k\right)$$
. Alors (u_n)

- a. converge vers 0
- b. n'a pas de limite
- c. converge vers 1
- d. diverge vers $+\infty$
- c. rien de ce qui précède

21. The reason why Winston was so afraid about writing the diary was
A) because it had DOWN WITH BIG BROTHER written all over it
B) because it had lots of secret documents
C) because it was prohibited to write diaries
D) both a and c
22. People in Oceania were supposed to call everyone
A) Friend
B) Mr. Or Mrs.
C) Comrade
D) Hi
23. The person who knocked on Winston's door was
A) his friend Mr. O'Brien
B) his neighbour Mrs. Parsons
C) his boss
D) The Big Brother
24. 'Nearly all children nowadays were horrible.', because
A) they were ill-mannered
B) they didn't go to school
C) they adored the Party and everything that came with it
D) they all spied on their parents
25. Which one of the following is NOT a Thought Crime?
A) Writing a Diary.
B) Expressing any form of discontent about the life under the Party.
C) Drinking Victory Gin.

D) Believing that there is a truth outside the party.

1984- Chapter 2 and 3

26. What did <i>Ingsoc</i> stand for?
A) 'My Big Brother'
B) English Socialism
C) Social Policies
D) None of the above.
27. What is Doublethink?
A) Thinking twice about everything.
B) The practice of accepting and believing two contradictory ideas at the same time.
C) To not think about anything.
D) None of the above.
28. Who/What are the <i>Physical Jerks</i> ?
A) The Big Brother
B) The members of the Party
C) The traitors of the Party
D) The exercise regime that every party member had to carry out.
29. 'The two of them must evidently have been swallowed up in one of the first great purges of the fifties.' The word 'purge' here means
A) a spy
B) a traitor
C) revolution
D) an abrupt removal of a person
30. Why does Winston put a grain of dust on his diary?
A) So that he will know if someone moves his diary.
B) So that there is something to clean.
C) So that he remembers to move it.
D) None of the above.

Questions are based on Unit 3 and 4 of the MOOC "Video Game Design History"

NB. The sentence "check all that apply" indicates that more than one correct answer is possible.

- 31. What did Jules Verne do with the Game of Goose in the novel, The Will of the Eccentric?
 - a. Turned it into an educational using a map of the world.
 - b. Turned it into a track game based on the different US States.
 - c. Turned it into a metaphor for war.
 - d. All of the above
- 32. What are the game mechanics that early tabletop games use? (check all that apply)
 - a. Scarcity
 - b. Racing
 - c. Random Number Generation
 - d. Time Dependent Rewards
- 33. What makes the Checkered Game of Life different than a track game?
 - a. Random Number Generation
 - b. Moral Overlays
 - c. Points Based
 - d. The time limit
- 34. Why was the modern Game of Life created?
 - a. To celebrate 100th anniversary of the Checkered Game of Life
 - b. To teach children the value of investing
 - c. To compete with a similar game in the market
 - d. All of the above
- 35. What were the differences between the two rule sets in The Landlord's Game?
 - a. Communist rules vs. Democratic rules
 - b. Capitalist rules vs. Georgist rules
 - c. Short form rules vs. Long form rules
 - d. All of the above
- 36. Why do game designers look to Sid Sackson as a role model?
 - a. Because he invented the game of Pit
 - b. Because of the incorporated moral overlays in his design
 - c. Because of his structured approach to design and innovation
 - d. All of the above
- 37. Which crucial company did Roberts found after Tactics?
 - a. TSR
 - b. Parker Brothers
 - c. Chess International
 - d. Avalon Hill
- 38. Why did the court decide that pinball is a game of skill and not chance?
 - a. Because the players use bumpers
 - b. Because there is no time limit
 - c. Because the players use flippers
 - d. All of the above
- 39. Which manufacturer was in favor of pinball payouts?
 - a. Gottlieb
 - b. Williams
 - c. Midway
 - d. All of the above
- 40. What was the first pinball game to emerge with glass over the top?
 - a. Whiffle Board
 - b. Humpty Dumpty
 - c. Baffle Ball
 - d. All of the above

O.C.M n°11 de Physique

41- Laquelle parmi les forces citées ci-dessous n'est pas conservative?

- a) Poids \vec{P}
- b) Tension du ressort \vec{T}
- c) Force électrique \vec{F}_e
- d) Force de frottement \vec{f}

42- On considère un oscillateur formé d'un ressort de coefficient de raideur k et d'une masse m, l'équation différentielle de ce mouvement est : $x + \frac{k}{m}x = 0$. La pulsation propre ω_0 de cette oscillateur vérifie:

a)
$$\omega_0^2 = \frac{k}{m}$$

b)
$$\omega_0 = 2\pi \sqrt{\frac{m}{k}}$$

c)
$$\omega_0^2 = \frac{m}{k}$$

a)
$$\omega_0^2 = \frac{k}{m}$$
 b) $\omega_0 = 2\pi \sqrt{\frac{m}{k}}$ c) $\omega_0^2 = \frac{m}{k}$ d) $\omega_0 = 2\pi \sqrt{\frac{k}{m}}$

43- La période de l'oscillateur de la question (42) est d'expression :

a)
$$T = \frac{m}{k}$$

b)
$$T = 2\pi \sqrt{\frac{k}{m}}$$

a)
$$T = \frac{m}{k}$$
 b) $T = 2\pi \sqrt{\frac{k}{m}}$ c) $T = \frac{1}{2\pi} \sqrt{\frac{m}{k}}$ d) $T = 2\pi \sqrt{\frac{m}{k}}$

d)
$$T = 2\pi \sqrt{\frac{m}{k}}$$

44- Sur la figure ci-dessous, une masse m oscille sans frottement sur l'axe (Ox). L'énergie totale du système (masse + ressort) est

On précise que le point O $(x_0 = 0)$ représente la position d'équilibre.

a)
$$E_m = \frac{1}{2}m(x)^2 + \frac{1}{2}kx^2$$

b)
$$E_m = \frac{1}{2}m(x)^2 + \frac{1}{2}kx^2$$

c)
$$E_m = \frac{1}{2}m(x)^2 + kx$$

d)
$$E_m = \frac{1}{2}m(x)^2 + mgz$$

45- La dérivée par rapport au temps de l'énergie potentielle du système (question 44) est :

a)
$$\frac{dE_p}{dt} = k.s$$

b)
$$\frac{dE_p}{dt} = k x x$$

a)
$$\frac{dE_p}{dt} = k.x$$
 b) $\frac{dE_p}{dt} = k.x.$ c) $\frac{dE_p}{dt} = kxx$ d) $\frac{dE_p}{dt} = 0$

d)
$$\frac{dE_p}{dt} = 0$$

46- La dérivée par rapport au temps de l'énergie cinétique du système (question 44) est

a)
$$\frac{dE_c}{dt} = m.x$$

a)
$$\frac{dE_c}{dt} = m.\dot{x}$$
 b) $\frac{dE_c}{dt} = mx\dot{x}$ c) $\frac{dE_c}{dt} = m.x\dot{x}$

c)
$$\frac{dE_c}{dt} = m.xx$$

47- L'équation différentielle $x + \frac{\alpha}{m}x + \omega_0^2x = 0$ est celle d'un

- (a) Oscillateur amorti
- b) Mouvement sinusoïdal d'amplitude constante
- c) Oscillateur harmonique

48- Quel régime est décrit par le graphique ci-dessous ?

- a) critique
- b) apériodique
- c) pseudopériodique

49-La résolution de l'équation différentielle $x + \frac{\alpha}{m}x + \omega_0^2x = 0$ nécessite de distinguer trois régimes. Le régime apériodique correspond à une condition sur la constante α donnée par :

a)
$$\alpha < 2m\omega_0$$

b)
$$\alpha = m\omega_0$$

c)
$$\alpha = 2m\omega_0$$

d)
$$\alpha > 2m\omega_0$$

50- Pour un oscillateur amorti (ressort +masse), l'énergie mécanique E_m vérifie :

a)
$$\frac{dE_m}{dt} = T.V$$

a) $\frac{dE_m}{dt} = T \dot{V}$ (T est la tension du ressort)

b)
$$\frac{dE_m}{dt} = P.V$$

b) $\frac{dE_m}{dt} = \stackrel{\circ}{P}.\stackrel{\circ}{V}$ ($\stackrel{\circ}{P}$ est le poids de la masse m)

c)
$$\frac{dE_m}{dt} = \int_0^\infty \int_0^\infty dt$$

c) $\frac{dE_m}{dt} = f \stackrel{P}{N} \stackrel{P}{V}$ (f est la force de frottement)

QCM - Electronique

Pensez à bien lire les questions ET les réponses proposées (attention à la numérotation des réponses)

Soit le signal ci contre :

- La valeur moyenne de v(t) vaut :
 - (a) 0 V
 - b. 15 V
 - c. 5 V
 - d. -5V

- La valeur efficace de v(t) vaut :
 - a. 0 V
 - b. $5.\sqrt{3} V$

- (c. $5.\sqrt{2} V$ d. $-\sqrt{50.\frac{\tau}{3}} V$

Soit un courant sinusoïdal $i(t) = I.\sqrt{2}.\sin(\omega t + \varphi)$

- Par convention, I est une grandeur réelle quelconque, en Ampère.
 - a. VRAI

b. FAUX

- Que représente ω? Q4.
 - (a) la pulsation
 - b. La fréquence

- c. La période
- d. La phase à l'origine
- Quelle relation est correcte ? T représente la période de i(t) et f , sa fréquence.
- a. $f = \frac{2.\pi}{\omega}$
- b. $\omega = 2.\pi.T$
- c. $\frac{\omega}{T} = \frac{2.\pi}{f}$

- La valeur efficace de i(t)est : Q6.
 - a. $I.\sqrt{2}$

c. 0

(b) I

d. $\frac{I}{\sqrt{2}}$

La valeur moyenne du courant variable i(t) est la valeur du courant continu I qui dissiperait, dans la même résistance, la même énergie (le même nombre de joules) que i(t), pendant la même durée.

a- Vrai

b) Faux

- On considère les signaux ci-contre. Parmi ces propositions, lesquelles sont vraies : (une ou plusieurs réponses possibles)
 - (a) La tension est en avance de phase sur le courant.
 - b. Le courant est en avance de phase sur la tension.
 - (c.) Les deux signaux ont la même fréquence.
 - d. Les deux signaux ont des fréquences différentes.

Soit un condensateur de capacité C. On note u(t), la tension à ses bornes et i(t), le courant qui le traverse. On utilise la convention récepteur pour flécher courant et tension. Choisir la relation correcte:

(a)
$$i(t) = C \cdot \frac{du}{dt}$$
 b. $i(t) = \frac{1}{C} \cdot \frac{du}{dt}$ c. $u(t) = C \cdot \frac{di}{dt}$ d. $u(t) = \frac{1}{C} \cdot \frac{di}{dt}$

b.
$$i(t) = \frac{1}{c} \cdot \frac{du}{dt}$$

c.
$$u(t) = C \cdot \frac{di}{dt}$$

d.
$$u(t) = \frac{1}{c} \cdot \frac{di}{dt}$$

Q10. Soit une bobine d'inductance L. On note u(t), la tension à ses bornes et i(t), le courant qui la traverse. On utilise la convention récepteur pour flécher courant et tension. Choisir la relation correcte:

a.
$$i(t) = L \cdot \frac{du}{dt}$$

b.
$$i(t) = \frac{1}{L} \cdot \frac{du}{dt}$$

(c.)
$$u(t) = L \cdot \frac{di}{dt}$$

a.
$$i(t) = L \cdot \frac{du}{dt}$$
 b. $i(t) = \frac{1}{L} \cdot \frac{du}{dt}$ c. $u(t) = L \cdot \frac{di}{dt}$ d. $u(t) = \frac{1}{L} \cdot \frac{di}{dt}$

QCM 3 Architecture des ordinateurs

Lundi 5 février 2018

- 11. Quelle valeur peut-être codée sur n bits signés ?
 - A. 2^n
 - B. $2^{n}-1$
 - C. -2^{n-1}
 - D. $-2^{n-1}-1$
- 12. $1000110100_2 =$
 - A. $10001101_2 \times 2^{-2}$
 - B. $10001101000000_2 \times 2^{-4}$
 - C. $100011010000_2 \times 2^2$
 - D. $100011_2 \times 16$
- 13. Comment reconnaît-on le codage d'un NaN?
 - A. E = 111...1 et $M \neq 000...0$
 - B. E = 111...1 et M = 000...0
 - C. E = 000...0 et M = 111...1
 - D. E = 000...0 et $M \neq 000...0$
- 14. Donnez la représentation IEEE 754, en simple précision, du nombre suivant : -120,25
- 15. Donnez la représentation décimale associée au codage IEEE 754 suivant : 4044 4000 0000 0000₁₆
 - A. 20
 - B. 40
 - C. 40,5
 - D. 20,25

- 16. En simple précision, quelle est la valeur minimum du champ *E* pour un codage à mantisse normalisée?
 - A. 0
 - B. 1
 - C. 2
 - D. Aucune de ces réponses.
- 17. En double précision, quelle est la valeur minimum du champ *E* pour un codage à mantisse normalisée ?
 - A. 0
 - B. 1
 - C. 2
 - D. Aucune de ces réponses.
- 18. En double précision, quelle est la valeur maximum du champ *E* pour un codage à mantisse normalisée ?
 - A. 1 023
 - B. 1024
 - C. 2046
 - D. 2047
- 19. Donnez la représentation décimale associée au codage simple précision IEEE 754 suivant : 0020 000016
 - A. 2⁻¹²⁴
 - B. 2⁻¹²⁶
 - C. 2⁻¹²⁸
 - D. Aucune de ces réponses.
- 20. Lorsque les entrées R et S d'une bascule RS sont à 1 :
 - A. La sortie ne change pas.
 - B. La sortie est toujours à 1.
 - C. La sortie est toujours à 0.
 - D. Cet état est interdit.