We read in the data

Out[1]:

	hour	monday	tuesday	wednesday	thursday	friday	saturday	sunday
0	0.0	21.0	34.0	43.0	47.0	51.0	89.0	106.0
1	0.1	39.0	22.0	27.0	37.0	56.0	87.0	100.0
2	0.2	31.0	24.0	26.0	42.0	50.0	98.0	77.0
3	0.3	26.0	27.0	25.0	29.0	52.0	99.0	87.0
4	0.4	19.0	24.0	29.0	29.0	50.0	98.0	69.0
235	23.5	36.0	65.0	60.0	94.0	80.0	93.0	28.0
236	23.6	37.0	61.0	66.0	100.0	81.0	95.0	28.0
237	23.7	30.0	42.0	49.0	80.0	101.0	105.0	27.0
238	23.8	33.0	52.0	47.0	79.0	91.0	93.0	24.0
239	23.9	34.0	33.0	48.0	65.0	105.0	111.0	23.0

240 rows × 8 columns

```
In [2]: plt.figure(figsize=(20,10))
plt.plot(day_hour_count.index, day_hour_count["monday"])
plt.plot(day_hour_count.index, day_hour_count["tuesday"])
plt.plot(day_hour_count.index, day_hour_count["wednesday"])
plt.plot(day_hour_count.index, day_hour_count["sunday"])
```

Out[2]: [<matplotlib.lines.Line2D at 0x1d6a723d4d0>]

Assignment 4

Explain the results in a **paragraph + charts** of to describe which model you'd recommend. This means show the data and the model's line on the same chart. The paragraph is a simple justification and comparison of the several models you tried.

1. Using the day_hour_count dataframe create 4 dataframes monday, tuesday, saturday and sunday that represent the data for those days. (hint: Monday is day=0)

```
In [3]: #Create each dataframe
         monday = day_hour_count[["hour", "monday"]].copy()
tuesday = day_hour_count[["hour", "tuesday"]].copy()
saturday = day_hour_count[["hour", "saturday"]].copy()
         sunday = day_hour_count[["hour", "sunday"]].copy()
In [4]: #drop the empty values
         monday_d = monday.dropna(subset=["monday"])
         tuesday_d = tuesday.dropna(subset=["tuesday"])
         saturday_d = saturday.dropna(subset=["saturday"])
         sunday_d = sunday.dropna(subset=["sunday"])
In [5]: monday_d.shape, tuesday_d.shape, saturday_d.shape, sunday_d.shape
Out[5]: ((238, 2), (238, 2), (240, 2), (240, 2))
In [6]: #transform into numpy array to apply models
         x_mon = monday_d[["hour"]].to_numpy()
         y_mon = monday_d[["monday"]].to_numpy()
         x_tue = tuesday_d[["hour"]].to_numpy()
         y_tue = tuesday_d[["tuesday"]].to_numpy()
         x_sat = saturday_d[["hour"]].to_numpy()
         y_sat = saturday_d[["saturday"]].to_numpy()
         x_sun = sunday_d[["hour"]].to_numpy()
         y_sun = sunday_d[["sunday"]].to_numpy()
```

2a. Create 3 models fit to (x=hour, y=monday) with varying polynomial degrees (choose from n=5,15,20). (Repeat for saturday below)

Plot all the results for each polynomial.

```
In [7]: from sklearn.preprocessing import PolynomialFeatures
from sklearn import linear_model, metrics

#transform x values
poly5 = PolynomialFeatures(degree=5)
poly15 = PolynomialFeatures(degree=15)
poly20 = PolynomialFeatures(degree=20)

x_mon_5 = poly5.fit_transform(x_mon)
x_mon_15 = poly15.fit_transform(x_mon)
x_mon_20 = poly20.fit_transform(x_mon)

x_mon_5.shape, x_mon_15.shape, x_mon_20.shape, y_mon.shape
Out[7]: ((238, 6), (238, 16), (238, 21), (238, 1))
```

```
In [8]:
        #fit each linear regression models
        linear5_mon = linear_model.LinearRegression()
        linear5_mon.fit(x_mon_5, y_mon)
        linear 15_mon = linear_model.LinearRegression()
        linear 15_mon.fit(x_mon_15, y_mon)
        linear20_mon = linear_model.LinearRegression()
        linear20_mon.fit(x_mon_20, y_mon)
Out[8]:
              LinearRegression
         LinearRegression()
In [9]: #plot each prediction values
        plt.scatter(x_mon, y_mon)
```

```
plt.plot(x_mon, linear5_mon.predict(x_mon_5), c = b)
plt.plot(x_mon, linear15_mon.predict(x_mon_15), c = 'r')
plt.plot(x_mon, linear20_mon.predict(x_mon_20), c = 'g')
```

Out[9]: [<matplotlib.lines.Line2D at 0x1d6b8513cd0>]

2b. Repeat 2a for saturday

```
In [10]: #transform x values
         x_sat_5 = poly5.fit_transform(x_sat)
         x_sat_15 = poly15.fit_transform(x_sat)
         x_sat_20 = poly20.fit_transform(x_sat)
         x_sat_5.shape, x_sat_15.shape, x_sat_20.shape, y_sat.shape
Out[10]: ((240, 6), (240, 16), (240, 21), (240, 1))
```

```
In [11]: #fit each linear regression models
         linear5_sat = linear_model.LinearRegression()
         linear5_sat.fit(x_sat_5, y_sat)
         linear15_sat = linear_model.LinearRegression()
         linear 15_sat.fit(x_sat_15, y_sat)
         linear20_sat = linear_model.LinearRegression()
         linear20_sat.fit(x_sat_20, y_sat)
Out[11]:
               LinearRegression
          LinearRegression()
In [12]: #plot each prediction values
         plt.scatter(x_sat, y_sat)
         plt.plot(x_sat, linear5_sat.predict(x_sat_5), c = 'b')
         plt.plot(x_sat, linear15_sat.predict(x_sat_15), c = 'r')
         plt.plot(x_sat, linear20_sat.predict(x_sat_20), c = 'g')
Out[12]: [<matplotlib.lines.Line2D at 0x1d6a4265b90>]
```


3. Using the best monday model's prediction, determine the errors (MSE, MAE, MAPE) between the prediction with the monday and tuesday datasets

Repeat for saturday / sunday

3-A. Monday/Tuesday

Step 1. Which model fits best with monday? Answer: polynomial 15

Step 2. compare errors of monday and tuesday dataset with monday prediction model

Answer: MSE and MAE is lower in monday, but MAPE is lower in tuesday dataset

3-B. Saturday/Sunday

Step 1. Which model fits best with saturday?

Answer: Polynomial 15 for MSE and MAE, Polynomial 5 for MAPE

Step 2. errors of saturday and sunday dataset with monday prediction model

Answer: in all cases, error in saturday is lower than sunday

4. With saturday, use train_test_split to create training and test sets and build a model. Create predictions using the xtest from and determine the errors between these predictions and the ytest (MSE, MAE, MAPE).

repeat for monday

4-A. Saturday

```
In [25]: from sklearn.model_selection import train_test_split

#use train/test split for saturday data
    xtrain_sat, xtest_sat, ytrain_sat, ytest_sat = train_test_split(x_sat, y_sat)
    linear_sat = linear_model.LinearRegression().fit(xtrain_sat, ytrain_sat)

#build polynomial models for train and test set(n = 5, 15, 20)
    xtrain5_sat = PolynomialFeatures(degree=5).fit_transform(xtrain_sat)
    xtest5_sat = PolynomialFeatures(degree=5).fit_transform(xtrain_sat)

    linear5_sat_train = linear_model.LinearRegression().fit(xtrain5_sat, ytrain_sat)

    xtrain15_sat = PolynomialFeatures(degree=15).fit_transform(xtrain_sat)
    xtest15_sat = PolynomialFeatures(degree=15).fit_transform(xtest_sat)

linear15_sat_train = linear_model.LinearRegression().fit(xtrain15_sat, ytrain_sat)

    xtrain20_sat = PolynomialFeatures(degree=20).fit_transform(xtrain_sat)
    xtest20_sat = PolynomialFeatures(degree=20).fit_transform(xtest_sat)

linear20_sat_train = linear_model.LinearRegression().fit(xtrain20_sat, ytrain_sat)
```

```
In [26]: #Plot prediction values
         plt.scatter(xtest_sat, ytest_sat)
         plt.scatter(xtest_sat, linear5_sat_train.predict(xtest5_sat), c='b')
         plt.scatter(xtest_sat, linear15_sat_train.predict(xtest15_sat), c='r')
         plt.scatter(xtest_sat, linear20_sat_train.predict(xtest20_sat), c='g')
Out[26]: <matplotlib.collections.PathCollection at 0x1d6a4284a10>
          400
          200
In [27]: #MSE: Polynomial 15 has the least error
             metrics.mean_squared_error(ytest_sat, linear5_sat_train.predict(xtest5_sat)),
             metrics.mean_squared_error(ytest_sat, linear15_sat_train.predict(xtest15_sat)),
             metrics.mean_squared_error(ytest_sat, linear20_sat_train.predict(xtest20_sat))
Out[27]: (828.3942364798181, 862.7715913191707, 5352.183505537066)
In [28]: #MAE: polynomial 15 has the least error
             metrics.mean_absolute_error(ytest_sat, linear5_sat.predict(xtest5_sat)),
             metrics.mean_absolute_error(ytest_sat, linear15_sat.predict(xtest15_sat)),
             metrics.mean_absolute_error(ytest_sat, linear20_sat.predict(xtest20_sat))
Out[28]: (21.347731605982265, 22.62669888873941, 56.62798776037457)
In [29]:
         #MAPE : polynomial 5 has the least error
             metrics.mean_absolute_percentage_error(ytest_sat, linear5_sat.predict(xtest5_sat)),
             metrics.mean_absolute_percentage_error(ytest_sat, linear15_sat.predict(xtest15_sat)),
             metrics.mean_absolute_percentage_error(ytest_sat, linear20_sat.predict(xtest20_sat))
```

localhost:8888/notebooks/OneDrive/바탕 화면/(2024 Spring) 470.667 Machine Learning Method and Applications/Assignments/Assignment_Week4.i...

Out[29]: (0.4644772958620213, 0.7818309914378647, 2.6764788634421683)

4-B. Monday

```
In [30]: #use train/test split for monday data
         xtrain_mon, xtest_mon, ytrain_mon, ytest_mon = train_test_split(x_mon, y_mon)
         linear_mon = linear_model.LinearRegression().fit(xtrain_mon, ytrain_mon)
         #build polynomial models for train and test set(n = 5, 15, 20)
         xtrain5_mon = PolynomialFeatures(degree=5).fit_transform(xtrain_mon)
         xtest5_mon = PolynomialFeatures(degree=5).fit_transform(xtest_mon)
         linear5_mon_train = linear_model.LinearRegression().fit(xtrain5_mon, ytrain_mon)
         xtrain15_mon = PolynomialFeatures(degree=15).fit_transform(xtrain_mon)
         xtest15_mon = PolynomialFeatures(degree=15).fit_transform(xtest_mon)
         linear15_mon_train = linear_model.LinearRegression().fit(xtrain15_mon, ytrain_mon)
         xtrain20_mon = PolynomialFeatures(degree=20).fit_transform(xtrain_mon)
         xtest20_mon = PolynomialFeatures(degree=20).fit_transform(xtest_mon)
         linear20_mon_train = linear_model.LinearRegression().fit(xtrain20_mon, ytrain_mon)
In [31]: #Plot prediction values
         plt.scatter(xtest_mon, ytest_mon)
         plt.scatter(xtest_mon, linear5_mon_train.predict(xtest5_mon), c='b')
         plt.scatter(xtest_mon, linear15_mon_train.predict(xtest15_mon), c='r')
         plt.scatter(xtest_mon, linear20_mon_train.predict(xtest20_mon), c='g')
Out[31]: <matplotlib.collections.PathCollection at 0x1d6ba984790>
           800
           600
           200
          -200
In [32]: # MSE: polynomial 15 has the least error
             metrics.mean_squared_error(ytest_mon, linear5_mon_train.predict(xtest5_mon)),
             metrics.mean_squared_error(ytest_mon, linear15_mon_train.predict(xtest15_mon)),
             metrics.mean_squared_error(ytest_mon, linear20_mon_train.predict(xtest20_mon))
Out[32]: (39704.36537355736, 21769.81033890615, 33704.127256534244)
```

localhost:8888/notebooks/OneDrive/바탕 화면/(2024 Spring) 470.667 Machine Learning Method and Applications/Assignments/Assignment Week4.i...

Conclusion: the result of linear regression using train/test set (Assignment 4) is similar with linear regression using the whole data (Assignment 3)