# Self Interference Mitigation for Full Duplex Systems

Shachar Shayovitz and Dan Raphaeli

Tel Aviv University

Presented in IEEE SSP 2018

June 20, 2018

# Full Duplex can potentially increase capacity by 2!



Figure: From "RF Self-Interference Cancellation for Full-Duplex" by van Liempd et al 2014

## Use Case: Remote Radio Head System



## Use Case: Remote Radio Head System

- Future 5G systems may use the oblivious approach which constructs universal relaying components serving many diverse users and operators (multi channel wide band)
- It is not dependent on a priori knowledge of the modulation method and coding (SW configurable)
- Need to be low cost and light weight (minimal HW, all digital computation)
- This approach might benefit systems used in cloud communication (CRAN)

# Remote Radio Head Block Diagram



Note: Aux path may be optional



# Self Interference - Spectrum of DL signal masking the UL signal



# Self Interference Mitigation

#### Why cancel interference at the RRH?

- It is preferable to remove the interference as close as possible to the antenna, in order to avoid over-modeling of PA IMD and tracking issues.
- At the Base Band Unit (BBU), several fibers connect and the interferences add up casuing higher noise floor.
- No need to pass the reference to the BBU too.

#### **Current Solutions**

- Half duplex (IMD issues) Sharp analog filters
- Full Duplex RLS and LMS at the RRH

# Rejection Target



# System Model

We describe the signal received in the RX after ADC as,

$$\underline{y} = X\underline{h} + \underline{s}$$

- <u>s</u> is the UL modeled as a size N proper complex Gaussian vector
- <u>h</u> is the self-interference filter of length M
- X is an NxM tall Toeplitz matrix  $(N \gg M)$  with  $X_{ij} = x[i+j]$  for  $0 \le i < N$  and  $0 \le j < M$ . The matrix multiplication  $X\underline{h}$ , is the equivalent of convolving the DL with an FIR filter:  $\underline{h}$  (neglecting boundary effects).

# Maximum Likelihood Estimation of the self Interference Filter

Our main objective is to recover the UL signal -  $\underline{s}$ , from the RX ADC measurements y and TX signal X.

#### Interference Removal

We propose to use an ML estimation of the self interference filter  $\hat{\underline{h}}$  and subtract it from y.

$$\underline{\hat{s}} = \underline{y} - X\underline{\hat{h}}$$

where  $\hat{\underline{s}}$  and  $\hat{\underline{h}}$  are the estimations of the UL and the self interference filter respectively.

## Maximum Likelihood Estimation of the self Interference Filter

The ML solution for the leakage filter finds the vector  $\underline{h}$  which maximizes the log likelihood function,

$$\log \left( p(\underline{y} | \underline{h}; \Sigma) \right) \propto - \log (\det \Sigma) - \left( \underline{y} - X \underline{h} \right)^{\bigstar} \Sigma^{-1} \left( \underline{y} - X \underline{h} \right)$$

where  $\Sigma$  is the covariance matrix of the vector  $\underline{s}$  and ()\* is the matrix conjugate transpose operator.

## Known Solutions

| Algorithm | Complexity | Optimal (ML)     | Online | Adaptive |
|-----------|------------|------------------|--------|----------|
| LS        | High       | Need white UL    | No     | No       |
| RLS       | Medium     | Same as LS       | Yes    | Yes      |
| LMS       | Low        | Need white UL,DL | Yes    | Yes      |

### **Problem**

- If Σ was known a-priori, then ML would reduce to a closed form solution (Weighted Least Squares (WLS)).
- In the multi channel scenario, the UL signal is comprised of multiple carriers with different bandwidths and power levels.
- s has unknown statistics.
- UL is clearly not spectrally white and thus RLS and LMS will have a significant performance loss compared to ML

# Modeling UL as AR process

- ML depends on  $\Sigma$ , thus only the UL's PSD is of interest.
- ARMA models define a dense set in the class of all continuous PSDs
- The second order statistics of an ARMA process can approximate most well-behaved WSS processes and in particular the UL.
- Causal and invertible ARMA processes can be written as AR process of infinite order.
- We suggest to approximate the UL signal <u>s</u>, as a complex valued autoregressive process of order p.

# Modeling UL as AR process

#### **AR Process**

$$s[n] = \sum_{k=1}^{p} g_k s[n-k] + u[n]$$

where  $\underline{g}$  is an unknown vector of size p u[n] is  $\overline{a}$  circularly-symmetric complex normal i.i.d process with zero mean and variance  $\sigma_u^2$ .

The choice of *p* determines the approximation's accuracy, and it effects the model's frequency selectivity.

# Modeling UL as AR process

In matrix form,

$$\underline{u} = W\underline{s}$$

where W is a square Toeplitz whitening matrix with dimension N, which is the size of vectors  $\underline{u}$  and  $\underline{s}$ 

$$W = \begin{pmatrix} 1 & -g_1 & -g_2 & \dots & -g_p & 0 & 0 & \dots & 0 \\ 0 & 1 & -g_1 & -g_2 & \dots & -g_p & 0 & \dots & 0 \\ \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 & 1 & -g_1 \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 & 0 & 1 \end{pmatrix}$$

The matrix  $\Sigma$  can be written as,

$$\Sigma^{-1} = \frac{W^{\star}W}{\sigma_u^2}$$



### Joint Minimization

Therefore ML reduces to joint minimization of,

$$\underline{\hat{h}}, \underline{\hat{g}} = \arg\min_{\underline{h},\underline{g}} \left( \underline{y} - X\underline{h} \right)^{\star} W^{\star} W \left( \underline{y} - X\underline{h} \right)$$

- Since the optimization is also done on the covariance's parameters, the problem does not have a simple closed form solution and a unique algorithm is developed.
- We use alternating minimization of the likelihood function and converge to a joint solution for both filters.

# Alternating Minimization - Step 1

- Assuming known AR filter, then the covariance matrix is known.
- The ML problem becomes a conventional WLS problem.
- This result has the following interpretation: passing the DL and UL signals through a whitening filter and performing LS estimation of the self interference filter.

- In the second step of each iteration, we use the previous estimation of the self interference filter,  $\underline{h}^k$  and minimize over the vector g.
- We define the following residual vector:

$$\underline{e}_k = \underline{y} - X\underline{h}^k$$

Thus the ML reduces to,

$$\underline{g}^{k+1} = \arg\min_{\underline{g}} \|W\underline{e}_k\|^2$$

# Alternating Minimization - Step 2

The resulting objective becomes,

$$\underline{\underline{g}}^{k+1} = \arg\min_{\underline{\underline{g}}} \left\| \underline{\underline{e}}_k - \begin{pmatrix} e_k(N-1) & e_k(N-2) & \dots & e_k(N-p) \\ e_k(N-2) & e_k(N-3) & \dots & e_k(N-(p+1)) \\ \dots & \dots & \dots & \dots \end{pmatrix} \underline{\underline{g}} \right\|^2$$

We notice that this is equivalent to the Yule-Walker problem for the estimation of AR parameters (solved by LS)

# JWRLS Block Diagram



# Two Strong Users



### Near Far Scenario

