PSY9511: Seminar 3

Regularization and variable selection

Esten H. Leonardsen 07.09.23

Outline

- 1. Assignment 1
- 2. Assignment 2
- 3. Regularization
 - · Variable selection
 - Shrinkage (+ live coding 66)
 - · Dimensionality reduction

Assignment 1

Assignment 1: Coding

- Create a vector of 100 standard normally distributed numbers and visualize them with a histogram.
- · Show rows 5, 8, 9, and 10 of the Auto dataset.
- · Show the last three columns of the Auto dataset.
- · Show all cars with five cylinders in the Auto dataset.

Assignment 1: Coding

- Create a vector of 100 standard normally distributed numbers and visualize them with a histogram.
- · Show rows 5, 8, 9, and 10 of the Auto dataset.
- · Show the last three columns of the Auto dataset.
- · Show all cars with five cylinders in the Auto dataset.

http://localhost:8889/notebooks/notebooks%2FAssignment%201.ipynb

Flexibility

$$f(x) = 0.39$$
 $f(x) = -3.57x^4 + 5.38x^3 - 1.22x^2 + 0.19x + 0.03$

$$f(x) = 0.39$$
 $f(x) = -3.57x^4 + 5.38x^3 - 1.22x^2 + 0.19x + 0.03$

$$f(x) = 0.39 \qquad f(x) = -3.57x^4 + 5.38x^3 - 1.22x^2 + 0.19x + 0.03$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$1 \qquad \qquad 1 \qquad \qquad 2 \qquad 3 \qquad 4 \qquad 5$$

Model flexibility: Denotes the complexity of the approximated function $\hat{y} = \hat{f}(x)$.

- · Informally: Wigglyness of the line
- Formally: Number of parameters in the function (degrees of freedom)

Assignment 2

Assignment 2: Data splitting

Assignment 2: Random seeds

Assignment 2: Log-odds vs probability vs class

Assignment 2: Eye test

${\bf Regularization}$

Regularization: Motivation

$$y \sim \beta_0 + \beta_1 * x_1 + \beta_2 * x_2 + \beta_3 * x_3$$

Regularization: Motivation

Regularization: Motivation

$$y \sim \beta_0 + \beta_1 * x_1 + \beta_2 * x_2 + \beta_3 * x_3$$

Regularization: Out-of-sample testing

```
In[1]: import pandas as pd

df = pd.read_csv('/Users/esten/Downloads/Auto.csv')
    train = df.lloc[:int(len(df) * 0.8)]
    validation = df.iloc[int(len(df) * 0.8):]
    print(f'Using {len(train)} samples for training')
    print(f'Using {len(validation)} samples for validation')
Out[1]: Using 317 samples for training
Using 80 samples for validation
```


Regularization: Methods

- 1. Variable selection
 - a. Best subset selection
 - b. Forward stepwise selection
 - c. Backward stepwise selection
- 2. Shrinkage
 - a. LASSO
 - b. Ridge Regression
- 3. Dimensionality reduction
 - a. Principal Component Regression
 - b. Partial Least Squares

Variable selection

Variable selection: Motivation

The number of predictors we are using in our model directly impacts model complexity.

Variable selection: Outline

<u>Problem</u>

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Variable selection: Outline

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Motivation

- 1. Reduce model complexity (overfitting)
- 2. Simplify interpretation

Variable selection: Outline

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Train models on all subsets *p* and select the best one.

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

```
In[1]:
      import numpy as np
      from itertools import chain, combinations
      from sklearn.linear model import LinearRegression
      subsets = list(chain.from iterable(combinations(predictors, r) \
                                           for r in range(len(predictors)+1)))
      best = {'mse': float('inf'), 'subset': None}
       for subset in subsets:
           if len(subset) == 0:
               continue
           model = LinearRegression()
           model.fit(train[list(subset)], train[target])
           predictions = model.predict(validation[list(subset)])
           mse = np.mean((predictions - validation[target]) ** 2)
           if mse < best['mse']:</pre>
               best = {'mse': mse. 'subset': subset}
      print(f'MSE: {best["mse"]:.2f}, predictors: {best["subset"]}')
```

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Train models on all subsets p and select the best one.

+ Positives

Guaranteed to find the optimal solution. Simple implementation

- Drawbacks

Need to train many $(2^{|P|})$ models.

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Start with no predictors. Iteratively add the predictor that yields the best model until all are included.

 $y \sim 1$ mse = 146.47

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

```
In[1]: def fit and evaluate(train: pd.DataFrame, validation: pd.DataFrame.
                             predictors: List[str], target: str);
           model = LinearRegression()
           model.fit(train[predictors], train[target])
           train predictions = model.predict(train[predictors])
           validation predictions = model.predict(validation[predictors])
           return np.mean((train predictions - train[target]) ** 2). \
                  np.mean((validation predictions - validation[target]) ** 2)
        predictors = ['cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'year']
        target = 'mpg'
        train['intercept'] = 1
        validation['intercept'] = 1
        train mse, validation mse = fit and evaluate(train, validation,
                                                    predictors=['intercept'],
                                                    target=target)
        print(f'[]: {validation mse:.2f} ({train mse:.2f})')
        chosen predictors = []
        while len(chosen predictors) < len(predictors):
           best_predictor = {'train_mse': None, 'validation_mse': float('inf'),
                             'predictor': None}
           for predictor in set(predictors) - set(chosen predictors):
               train mse, validation mse = fit and evaluate(train, validation,
                                           predictors=chosen predictors + [predictor].
                                           target=target)
               if validation mse < best predictor['validation mse']:
                   best predictor = { 'train mse': train mse. 'validation mse': validation mse. 'predictor': predictor}
           chosen predictors.append(best predictor['predictor'])
```

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Start with no predictors. Iteratively add the predictor that yields the best model until all are included.

+ Positives

Need to train fewer models.

- Drawbacks

Not guaranteed to find the optimal solution.

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Start with all predictors. Iteratively remove the predictor that yields the best model until all you have none left.

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Start with all predictors. Iteratively remove the predictor that yields the best model until all you have none left.

+ Positives

Need to train fewer models.

- Drawbacks

Not guaranteed to find the optimal solution.

Shrinkage

$$y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6$$


```
Out[1]: coef std err P>|t| [0.025 0.975]

Intercept -14,5353 4,764 0.002 -23,90 -5,16 cylinders -0.3299 0.332 0.321 -0.98 0.32 displacement 0.0077 0.007 0.297 -0.00 0.02 horsepower -0.0004 0.014 0.977 -0.02 0.02 weight -0.0068 0.001 0.000 -0.00 -0.00 acceleration 0.0853 0.102 0.404 -0.11 0.28 year 0.7534 0.053 0.000 0.655 0.85
```

$$y \sim \beta_0 + \frac{\beta_1}{\beta_1} x_1 + \frac{\beta_2}{\beta_2} x_2 + \frac{\beta_3}{\beta_3} x_3 + \frac{\beta_4}{\beta_4} x_4 + \frac{\beta_5}{\beta_5} x_5 + \frac{\beta_6}{\beta_6} x_6$$

$$mse = bias^2 + variance + irreducible error$$

salary
$$\sim \beta_0 + \beta_1 * age$$

salary
$$\sim \beta_0 + \beta_1 * age$$

$$salary \sim 300000 + 10000*age$$

salary
$$\sim$$
 600000 + 0 * age

$$loss_{mse} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2$$

$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

Shrinkage

$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

$$X = \frac{X - \mu_X}{\sigma_X^2}$$

$$X = \frac{X - \mu_X}{\sigma_X^2}$$

```
In[1]: for col in predictors:
    print(f'{col}: {np.mean(df[col]):.2f} ({np.std(df[col]):.2f})')

# z-score standardization
for col in predictors:
    df[col] = (df[col] - np.mean(df[col])) / np.std(df[col])

for col in predictors:
    print(f'{col} after: {np.mean(df[col]):.2f} ({np.std(df[col]):.2f})')
```

$$X = \frac{x - \mu_X}{\sigma_X^2}$$

```
In[1]: for col in predictors:
             print(f'{col}: {np.mean(df[col]):.2f} ({np.std(df[col]):.2f})')
         # z-score standardization
         for col in predictors:
             df[col] = (df[col] - np.mean(df[col])) / np.std(df[col])
         for col in predictors:
             print(f'{col} after: {np.mean(df[col]):.2f} ({np.std(df[col]):.2f})')
Out[1]: cylinders: 5.47 (1.70)
         displacement: 194.41 (104.51)
         horsepower: 104.47 (38.44)
         weight: 2977.58 (848.32)
         acceleration: 15.54 (2.76)
         year: 75.98 (3.68)
         cylinders after: -0.00 (1.00)
         displacement after: -0.00 (1.00)
         horsepower after: -0.00 (1.00)
         weight after: -0.00 (1.00)
         acceleration after: 0.00 (1.00)
         year after: -0.00 (1.00)
```

http://localhost:8888/notebooks/notebooks/Live%20coding.ipynb

Shrinkage: Ridge regression

$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

Regularization through shrinking the model covariates towards zero.

$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

$$loss_{lasso} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} |\beta_j|$$

Predictor	Ridge	LASSO
Intercept	23.44	23.44
Weight	-5.59	-4.78
Year	2.75	2.00
Horsepower	-0.07	-0.09
Cylinders	-0.54	0
Acceleration	0.19	0
Displacement	0.66	0

Predictor	Didge	1,4000
Predictor	Ridge	LASSO
Intercept	23.44	23.44
Weight	-5.59	-4.78
Year	2.75	2.00
Horsepower	-0.07	-0.09
Cylinders	-0.54	0
Acceleration	0.19	0
Displacement	0.66	0

A coefficient of 0 does not mean the predictor has no predictive value for the outcome!

Shrinkage: Summary

$$loss_{mse} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2$$

Fits the **best** model to the data.

Shrinkage: Summary

$$loss_{mse} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2$$

$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

Fits the **best** model to the data.

Fits the **best** model to the data while **shrinking** coefficients towards zero.

Shrinkage: Summary

$$loss_{mse} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2$$

$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

$$loss_{lasso} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} |\beta_j|$$

Fits the **best** model to the data.

Fits the **best** model to the data while **shrinking** coefficients towards zero.

Fits the **best** model to the data while **shrinking** coefficients towards zero such that some variables are effectively **removed**.

