# A Diferencial

Embora o conceito de *diferencial* tenha sua importância intrínseca devido ao fato de poder ser estendido a situações mais gerais, introduziremos agora esse conceito com o objetivo maior de dar um caráter operatório às diferenças dx e dy. Além disso, a noção de *diferencial* torna mais preciso o conceito de taxa de variação e nos auxilia no estudo das *equações diferenciais* e, consequentemente, no da *integral indefinida* que introduziremos no próximo capítulo.

Consideremos y = f(x) uma função definida em um intervalo ]a,b[ e seja  $x_0 \in ]a,b[$ . Seja  $\Delta x$  um acréscimo arbitrário dado a  $x_0$ , de forma tal que  $x_0 + \Delta x \in ]a,b[$ .

### Definição 6.1

A função y = f(x) é diferenciável em  $x_0$  se existir um número m e uma função de  $\Delta x$ ,  $R(\Delta x)$ , tal que:

$$\dot{f}(x_0 + \Delta x) = f(x_0) + m\Delta x + R(\Delta x)\Delta x, \text{com } \lim_{\Delta x \to 0} R(\Delta x) = 0.$$

O termo  $m\Delta x$  é chamado de *diferencial de y = f(x) em x*<sub>0</sub>, sendo denotado por dy, ou seja  $dy = m\Delta x$ .

Embora a definição anterior pareça ser complexa a sua utilização é simples, como mostra o exemplo a seguir.

#### Exemplo 6.1

A função  $y = x^2$  é diferenciável em  $x_0 = 1$ .

Como

$$f(x_0 + \Delta x) = f(1 + \Delta x) = (1 + \Delta x)^2$$

teremos:

$$f(1 + \Delta x) = (1 + \Delta x)^2 = 1 + 2\Delta x + (\Delta x)^2$$

ou

$$f(1 + \Delta x) = 1 + (2)\Delta x + (\Delta x)\Delta x.$$

Comparando com a expressão construída na Definição 6.1, se conclui que:

$$m=2$$
,  $R(\Delta x) = \Delta x$  e, ainda:  $\lim_{\Delta x \to 0} R(\Delta x) = \lim_{\Delta x \to 0} \Delta x = 0$ .

Portanto a função  $y = x^2$  é diferenciável em  $x_0 = 1$  e  $dy = 2\Delta x$ .

### Exemplo 6.2

Podemos estender o resultado do exemplo anterior e afirmar que a função  $y=x^2$  é diferenciável em qualquer ponto  $x_0$  do seu domínio, pois, procedendo como antes teremos:

$$f(x_0 + \Delta x) = (x_0 + \Delta x)^2 = x_0^2 + 2x_0 \Delta x + \Delta x^2.$$

Pela Definição 6.1 concluímos que:

$$m = 2x_0$$
,  $R(\Delta x) = \Delta x$ , com  $\lim_{\Delta x \to 0} R(\Delta x) = \lim_{\Delta x \to 0} \Delta x = 0$ .

Portanto,  $y = x^2$  é diferenciável em  $x_0$  e  $dy = 2x_0 \Delta x$ .

Observe que em ambos os casos o valor de m coincide com o valor da derivada de  $f(x) = x^2$  no ponto  $x_0$  considerado. Como f'(x) = 2x tivemos, no primeiro caso f'(1) = 2 e, no segundo caso,  $f'(x_0) = 2x_0$ . Assim a diferencial  $m\Delta x$  coincidiu com o valor  $f'(x_0)\Delta x$ . Isto não foi uma simples coincidência, como mostraremos a seguir.

#### Teorema 6.1

Seja y = f(x) uma função definida num intervalo ]a,b[ e  $x_0$  um ponto de seu domínio. Uma condição necessária e suficiente para que y = f(x) seja diferenciável em  $x_0$  é que ela seja derivável em  $x_0$ .

#### Demonstração

Em primeiro lugar vamos mostrar que sendo y = f(x) diferenciável em  $x_0$  então y = f(x) é derivável em  $x_0$ .

Sendo y = f(x) diferenciável em  $x_0$  segue-se pela Definição 6.1 que existem m e  $R(\Delta x)$  de modo que:

$$f(x_0 + \Delta x) = f(x_0) + m\Delta x + R(\Delta x)\Delta x, com \lim_{\Delta x \to 0} R(\Delta x) = 0.$$

Então  $f(x_0 + \Delta x) - f(x_0) = m\Delta x + R(\Delta x)\Delta x$  e dividindo-se ambos os membros por  $\Delta x$ , obtemos:

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = m + R(\Delta x)$$

que, passando ao limite com  $\Delta x \rightarrow 0$ , fica:

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} [m + R(\Delta x)] = m + \lim_{\Delta x \to 0} R(\Delta x) = m.$$

Logo y = f(x) é derivável em  $x_0$  e  $f'(x_0) = m$ .

Para concluir, vamos mostrar que ao supor y = f(x) derivável em  $x_0$  concluiremos que ela é, também, diferenciável em  $x_0$ .

Com y = f(x) derivável em  $x_0$ , teremos:

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x_0) \quad ou \lim_{\Delta x \to 0} \left[ \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} - f'(x_0) \right] = 0.$$

Logo

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} - f'(x_0) = R(\Delta x), \text{com } R(\Delta x) \to 0 \text{ quando } \Delta x \to 0.$$

Daí, concluímos que:

$$f(x_0 + \Delta x) - f(x_0) = f'(x_0) \Delta x + R(\Delta x) \Delta x, \operatorname{com} \lim_{\Delta x \to 0} R(\Delta x) = 0.$$

Portanto y=f(x) diferenciável em  $x_0$  e  $dy=f'(x_0)\Delta x$  o que completa a demonstração.

O Teorema 6.1 nos mostra que os conceitos de derivabilidade e diferenciabilidade para uma função real de variável real são equivalentes. Os dois conceitos são importantes, sendo o primeiro pelo se lado prático e o segundo pelo alcance teórico.

Como consequência do Teorema 6.1 a diferencial de uma função y=f(x) em  $x_0$ , é da forma  $dy=f'(x_0)\Delta x$  ou  $d(f(x))=f'(x_0)\Delta x$ , onde  $\Delta x$  independe da função y=f(x) e do ponto  $x_0$ . Consequentemente, tomando-se a função f(x)=x teremos:  $dx=1.\Delta x=\Delta x$ . Desta forma, dada uma função y=f(x) a sua diferencial em x será representada por uma das formas:

$$dy = f'(x)dx$$
 ou  $df = f'(x)dx$ 

Essas representações correspondem às formas usualmente empregadas e que serão utilizadas no restante deste livro.

Um aspecto ainda a se observar na definição da diferencial é o seguinte: retornando à expressão indicada na Definição 6.1 e utilizando as notações acima, para uma função y = f(x) diferenciável em x, teremos:

$$f(x + \Delta x) = f(x) + dy + R(\Delta x)\Delta x$$

ou

$$\Delta y = dy + R(\Delta x)\Delta x$$

ou, ainda

$$\Delta y - dy = R(\Delta x)\Delta x$$
,  $com \lim_{\Delta x \to 0} R(\Delta x)\Delta x = 0$ 

A conclusão é que embora tenhamos, no geral,  $\Delta y \neq dy$  o que se observa é que eles passam ter valores próximos à medida que  $\Delta x$  tende para zero, isto é:

$$|\Delta y - dy| \rightarrow 0$$
 quando  $\Delta x \rightarrow 0$ 

A interpretação geométrica apresentada a seguir ajuda a esclarecer esse fato.

No gráfico são exibidos uma função y = f(x), a reta r, tangente à curva em (x, f(x)), e o acréscimo  $\Delta x$  de forma que  $x + \Delta x$  se encontre no domínio da função.



No triângulo de vértices P, S e R tem-se:

$$RS = tg\theta PR = tg\theta \Delta x = f'(x)dx$$

de onde se conclui que dy coincide, em valor absoluto, com o comprimento RS, para x e  $\Delta x$  fixados.

Pela figura pode-se perceber que, ao fazer  $\Delta x \to 0$ , o ponto Q, ao longo da curva, aproxima-se do ponto P e, portanto,  $QS = |\Delta y - dy| \to 0$ 

### Exemplo 6.3

Vamos considerar a função  $f(x) = x^3$  e escolher como referência o valor x = 1. A tabela, colocada em seguida, apresenta diferentes valores de  $\Delta x$  e os correspondentes  $\Delta y$  e dy, para a função e o ponto considerados.

| $\Delta x$ | 1         | 0,1       | 0,01      | 0,001     | 0,0001    |
|------------|-----------|-----------|-----------|-----------|-----------|
| $\Delta y$ | 7,0000000 | 0,3310000 | 0,0303011 | 0,0030030 | 0,0003000 |
| dy         | 3,0000000 | 0,3000000 | 0,0300000 | 0,0030000 | 0,0003000 |

Para pequenos valores de  $\Delta x$  vê-se, pela tabela, que  $\Delta y$  se aproxima de dy. Vejamos o que ocorre algebricamente:

$$\Delta y = f(1 + \Delta x) - f(1) = (1 + \Delta x)^3 - 1 = 3\Delta x + 3(\Delta x)^2 + (\Delta x)^3.$$

Como  $dy=f'(x_0)\Delta x$  teremos, para  $f(x)=x^3$  e  $x_0=1$ ,  $dy=3\Delta x$  e, assim, relação anterior fica:

$$\Delta y = dy + (3\Delta x + \Delta x^2)\Delta x$$
, onde  $R(\Delta x)\Delta x = (3\Delta x + \Delta x^2)\Delta x$ .

Vejamos a tabela a seguir:

| $\Delta x$            | 1        | 0,1      | 0,01     | 0,001    |
|-----------------------|----------|----------|----------|----------|
| dy                    | 3,000000 | 0,300000 | 0,030000 | 0,003000 |
| $R(\Delta x)\Delta x$ | 4,000000 | 0,031000 | 0,000301 | 0,000003 |

Observe na tabela apresentada que quando  $\Delta x$  tende a zero o mesmo acontece com  $R(\Delta x)\Delta x$ . Por esse motivo costuma-se afirmar, em linguagem clássica, que  $\Delta x$  e  $R(\Delta x)\Delta x$  são *infinitésimos*. Na tabela percebe-se, ainda, que  $R(\Delta x)\Delta x$  tende a zero mais rapidamente que  $\Delta x$  e, por esse motivo, afirma-se que  $R(\Delta x)\Delta x$  é um infinitésimo de *ordem superior* ao infinitésimo  $\Delta x$ .

O fato de que  $\Delta y \neq dy$  é bastante útil para calcular valores aproximados de uma função num ponto x quando, por algum motivo, não se tem acesso ao valor exato de f(x). Para tanto, considera-se  $x = x_0 + \Delta x$ , sendo  $x_0$  um ponto tal que  $f(x_0)$  seja conhecido, e, em seguida, toma-se:

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x. \quad (2)$$

Pelo que foi visto, o resultado será tanto melhor quanto menor for  $\Delta x$ .

#### Exemplo 6.4

Usando diferencial vamos calcular o valor aproximado de  $\sqrt[3]{9}$ .

Vamos considerar a função  $f(x) = \sqrt[3]{x}$  e o valor  $x_0 = 8$ , que é o valor mais próximo de 9 para o qual a raiz cúbica é exata. Desta forma, tomaremos  $\Delta x = 1$  e, em virtude da expressão (2), teremos:

$$f(9) = f(8+1) \approx f(8) + f'(8).1$$

ou

$$f(9) \approx 2 + 0.0833 = 2.0833.$$

A conclusão é que 2,0833 é um valor aproximado de  $\sqrt[3]{9}$ .

## 6.1 Regras de Diferenciação

Como a diferencial de y = f(x) é dada por dy = f'(x)dx segue-se que são válidas para as diferenciais regras operatórias semelhantes às de derivação. Listamos a seguir essas regras:

1) 
$$d(f \pm g) = df \pm dg$$

2) 
$$d(kf) = kdf, k \in R$$

3) 
$$d(f,g) = fdg + gdf$$

4) 
$$d\left(\frac{f}{g}\right) = \frac{gdf - fdg}{g^2}, \ g(x) \neq 0$$

### Exemplo 6.5

A regra da diferencial de uma soma, regra (1) relacionada anteriormente é demonstrada da seguinte maneira:

$$d(f+g) = (f+g)'(x)dx = [f'(x) + g'(x)]dx = f'(x)dx + g'(x)dx = df + dg.$$

Outras regras são, também, demonstradas utilizando-se das regras conhecidas para a derivação.

O conceito de diferencial foi criado por Leibniz e, como consequência, ele criou também as notações dv e dx para simbolizar os diferenciais em v e x, respectivamente. São dele, também, as regras de diferenciação enunciadas anteriormente. Em sua obra<sup>1</sup>, publicada em 1684, ele concebeu dy e dx como sendo as menores diferenças ou diferencas infinitamente pequenas em y e x, respectivamente. Nesse mesmo sentido considerava que o quociente dy/dx representava a divisão dos dois infinitésimos como resultado da razão incremental  $\Delta y/\Delta x$ , quando  $\Delta x$  e, consequentemente,  $\Delta y$  tornavamse arbitrariamente próximos de zero. Em razão disso é que em laboratórios, dependendo da precisão exigida, costuma-se aproximar o valor de dv/dx pelo valor do quociente  $\Delta v/\Delta x$ .

#### Exercício 6.1

1) Para cada uma das funções y = f(x) dadas a seguir calcule  $\Delta y$  e dy para valores genéricos de x e de  $\Delta x$ . Use os resultados obtidos para preencher a tabela dada em seguida, calculando-os para os valores particulares de x e  $\Delta x$  dados.

| х | $\Delta x$ | Δy | dy | $\Delta y - dy$ |
|---|------------|----|----|-----------------|
| 2 | 0,1        |    |    |                 |
| 2 | 0,01       |    |    |                 |
| 2 | 0,001      |    |    |                 |

a) 
$$y = 4x^2 - 3x + 1$$

b) 
$$y = x^3 + x$$

a) 
$$y = 4x^2 - 3x + 1$$
 b)  $y = x^3 + x$  c)  $y = \frac{x+1}{x-1}$ 

2) Use diferenciais para encontrar o valor aproximado de:

a) 
$$\sqrt[5]{33}$$

b) 
$$(4.01)^{\frac{3}{2}} + 4.01 + (4.01)^{-\frac{1}{2}}$$
 c)  $\sqrt[3]{26} + \frac{1}{\sqrt{13}}$ 

c) 
$$\sqrt[3]{26} + \frac{1}{\sqrt{13}}$$

e) 
$$(8,01)^{\frac{4}{3}} + (8,01)^{-\frac{1}{3}} + 8,01$$
 f)  $(15,99)^{\frac{1}{4}} + (15,99)^{\frac{1}{2}}$ 

f) 
$$(15,99)^{\frac{1}{4}} + (15,99)^{\frac{1}{2}}$$

- 3) A medida do lado de um cubo é encontrada como sendo igual a 15cm, com possibilidade de erro de 0,01cm. Use diferencial para encontrar o erro aproximado no cálculo de:
  - a) Volume do cubo;
  - b) Área de uma face.
- 4) Usando diferencial, mostre que:
  - a)  $senx \approx x$  para x próximo de zero;
  - b)  $tg(0,1) \approx 0,1$ .

<sup>&</sup>lt;sup>1</sup> A obra de Leibniz publicada em 1684, que se constitui na primeira exposição do Cálculo Diferencial, recebeu o seguinte nome: *Nova* methodus pro maximis et minimis, itemque tangentibus, qua nec irrationales quantitates moratur (Um novo método para máximos e mínimos e também para tangentes que não é obstruído por quantidades irracionais), como encontra-se citado no livro: História da Matemática, de Carl B. Boyer, Ed. Edgar Blucher, p.278. Esse livro do Boyer, bem como inúmeros sites que são encontrados na internet constituem excelentes fontes de referências sobre o desenvolvimento do Cálculo e da matemática em geral.