$G = H + Hb + \dots + Hb^{m-1}.$

The equation (3.1.1) contains all possible cosets of H and these are different, since $b^i = hb^j$ with $i \neq j$ in the range from 0 to m-1 would give a smaller positive power of b in H, this being either b^{i-j} or b^{j-i} . Hence [G:H] = m. Here m is the smallest positive power of b contained in H and also is the index of H in G. Thus, if G is infinite, since for any positive m the elements $(b^m)^r$ form a subgroup, there is a unique subgroup of index m. If G is finite, of order n, then $b^n = 1$, and so n = mr, and m is a divisor of n. Here, for any m dividing n, if n = mr we have the elements 1, b^m , b^{2m} , ..., $b^{(r-1)m}$ forming a subgroup of order r and index n. Since n = mr can be any factorization of n into two factors, we see that there is one, and only one, subgroup of each order r dividing n.

3.2. Some Structure Theorems for Abelian Groups.

An infinite Abelian group may have a very complicated structure. As a relatively simple example, the multiplicative group of all complex numbers except zero contains elements of infinite order and also of every finite order.

If $a^n = 1$, $b^m = 1$ in an Abelian group, then $(a^{-1})^n = 1$ and $(ab)^m = 1$, whence the elements of finite order in any Abelian group A form a subgroup P. Every endomorphism α of A maps an element of finite order onto an element of finite order. Thus, in the sense of \$2.4, F is a fully invariant subgroup of A. In §1.8 we introduced the term periodic group (the term torsion group is used in certain applications) for a group all of whose elements are of finite order. In contrast a group in which no element except the identity is of finite order is called an aperiodic group (or torsion-free group).

Theorem 3.2.1. Given an Abelian group A. Let F be the subgroup of elements of finite order. Then A/F is aperiodic.

Proof: Suppose to the contrary that $x \neq 1$ in A/F is of finite order m. Then in the homomorphism $A \to A/F$ let $u \to x$. Then $u^m \to x^m = 1$, whence $u^m \in F$ and u^m is of some finite order, say, n. Here $(u^m)^n = 1$ and u itself is of finite order. Thus $u \in F$ and $u \to 1$ although we assumed $x \neq 1$.

This theorem reduces the problem of constructing all Abelian groups to three more explicit problems:

- Some Structure Theorems for Abelian Groups
- 1) The determination of all periodic Abelian groups.
- 1) The determination of all aperiodic Abelian groups.
- If the construction of an Abelian group A with a given periodic group F as a subgroup, such that the factor group A/F shall be isomorphic to a given aperiodic group H. No one of these is conjudently settled, but it appears that we know most about the first and least.

We shall say that a set of elements a_i in an Abelian group A is such pendent if a finite product $\prod_i a_i^{ii} = 1$ only when $a_i^{ij} = 1$ for every i. If the a_i are independent and also generate A, we say that the a_i form a basis for A. Thus elements a_i form a basis for A if, and only if, A is the direct product of the cyclic groups generated by

Huppose an Abelian group A is generated by elements a_1, \dots, a_r . Then every element of A is of the form $a_1^{u_1} \cdots a_r^{u_r}$, where the u_i are integers. If

$$a_1^{x_1} \cdots a_r^{x_r} = 1$$

a rolation on these generators, we say that

$$(a_1^{-x_1} \cdots a_r^{-x_r} =$$

In the inverse relation. From a set S of relations holding in A we may be the first of S. Two sets of relations S_1 and S_2 are said to be equivalent of the relations of each set may be derived in this way from the relations of the other set. This is easily seen to be a true equivalence. We may that a set S is a set of defining relations for A if every relation in A may be derived from those of S. It may be shown that we white a S of relations on generators a_1, \dots, a_r is a set of defining relations for that Abelian group A generated by a_1, \dots, a_r in which the relations derived from S hold, but no others hold.

Theorem 3.2.2. An Abelian group generated by a finite number r of sense the has a basis of, at most, r elements.

Final The theorem is trivially true for r = 1, since then the group suppose that A is generated by a_1, \dots, a_r . Our proof

will be based on induction on r, and for fixed r on the smallest positive integer m such that $x_i = m$ in a relation

$$\alpha_1^{x_1}\cdots\alpha_r^{x_r}=1.$$

If there is only the relation with all $x_i = 0$, then A is the direct product of the infinite cyclic groups $\{a_i\}$ and our theorem is true. Otherwise, some relation or its inverse will contain some positive exponents. Let us renumber the a's, if necessary, so that the smallest positive exponent in a relation is $x_1 = m$. If m = 1, then we have

$$a_1 = a_2^{-x_2} \cdots a_r^{-x_r},$$

and A is generated by the r-1 elements a_2, \dots, a_r , and by induction our theorem is true. Now suppose $x_1=m>1$ in the relation

$$a_1^m a_2^{x_2} \cdots a_r^{x_r} = 1.$$

Let y_1, \dots, y_r be the exponents in a further relation. Then, for any integer k, from this relation and (3.2.5) we may derive a relation with exponents $y_1 - km$, $y_2 - kx_2, \dots, y_r - kx_r$. We may choose k so that $0 \le y_1 - km < m$. But since m was the smallest positive exponent in any relation, we must have $y_1 - km = 0$, and so the relation with exponents y_1, \dots, y_r can be derived from (3.2.5) and the relations for A is equivalent to the set S consisting of (3.2.5) and relations involving only a_2, \dots, a_r .

In (3.2.5) let $x_2 = \tilde{k}_2 m + s_2, \dots, x_r = k_r m + s_r$, where we choose $k_i, i = 2, \dots, r$ so that $0 \le s_i < m$. If we take a new element

$$a_1{}^*=a_1a_2^{k_2}\,\cdots\,a_r^{k_r},$$

then a_1^*, a_2, \dots, a_r also generate A, and in terms of these generators, (3.2.5) becomes

$a_1^* m a_2^{s_2} \cdot \cdots \cdot a_r^{s_r} = 1.$

Here if any s is different from zero, it is a positive number less than m and we may apply our induction. But if $s_2 = \cdots = s_r = 0$, then (3.2.7) becomes

$a_1^* = 1,$

and since (3.2.5) and relations involving only a_2, \dots, a_r were a defining set of relations for A in terms of generators a_1, a_2, \dots, a_r , it follows

that (1.28) and relations involving only a_2, \dots, a_r are a defining set in that one in terms of generators a_1^*, a_2, \dots, a_r . Hence A is the first product of the cyclic group of order m generated by a_1^* and the generated by the r-1 elements a_2, \dots, a_r , which by our submitten in the direct product of, at most, r-1 cyclic groups.

The study periodic Abelian groups we need a lemma which holds in

LEANNA 3.2.1. Let x be an element of order mn in any group where x = mn in orderively prime integers. Then x has a unique representation x = mn, where y is of order m and z of order n. Both y and z y = mn in n is n or n.

and s_1 are permuting elements of order n. Hence the element wwhether $w^{n} = 1$ and also $w^{n} = 1$, and since (m, n) = 1, this yields $y_1 = y_1 x$ and $xz_1 = z_1 y_1 z_1 = z_1 x$. But then y_1 and z_1 permute with y and z, which are powers of x. Now $yz = x = y_1 z_1$ leads to and s_1 of order n, let us note first that y_1 and z_1 permute with x, since which $y_1 = z_1 z^{-1}$. But y and y₁ are permuting elements of order m, $|x| + \ln d$ a second representation $x = y_1 z_1 = z_1 y_1$ with y_1 of order m $= 1_1 \otimes 0$, $\mu_1 = y$, $z_1 = z$, proves the uniqueness of the representation. $x = x^{nm}$. Then x = yz = zy and $y^m = x^{nnm} = 1$, and \mathbf{r}_{1} Thus the exact order of y is some divisor m_1 of m_2 and of a norme divisor n_1 of n. But from x = yz = zy it will follow That the order of x is a divisor of m_1n_1 . Since this order was mn, it where that $m_1 = m$ is the order of y and $n_1 = n$ is the order of z. The statement that m and n are relatively prime is that $|\mathbf{n}|_{\mathbf{n}} = 1$. From the Euclidean algorithm, integers u and v exist while that um + vn = 1, and hence $x = x^{vn}x^{um} = x^{um}x^{vn}$. Put $V_{\rm con}/V_{\rm co}$ write (a,b) for the greatest common divisor of two by repeated application of this lemma we find:

Here $x_i = 1$ for $i \neq j$. Then x has a unique representation $x = x_1x_2$.

Here $x_i x_i = x_i x_j$ and x_i is of order n_i . Every x_i is a power of x_i .

Here $x_j x_i = x_i x_j$ and x_i is of order n_i . Every x_i is a power of x_i .

Here $x_j x_i = x_i x_j$ and $x_i = x_j x_j$, where y_1, \dots, y_r are distinct the may apply this lemma with $n_i = p_i^{e_i}$.

In a pariodic Abelian group A consider the set of elements P whose mater are powers of a fixed prime p, where we include the identity as