```
In [8]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sbs
   sbs.set()
   from sklearn.linear_model import LinearRegression
```

```
In [9]: data = pd.read_csv('1.02. Multiple linear regression.csv')
    data.head()
```

Out[9]:

	SAT	GPA	Rand 1,2,3
0	1714	2.40	1
1	1664	2.52	3
2	1760	2.54	3
3	1685	2.74	3
4	1693	2.83	2

In [10]: | data.describe()

Out[10]:

	SAT	GPA	Rand 1,2,3
count	84.000000	84.000000	84.000000
mean	1845.273810	3.330238	2.059524
std	104.530661	0.271617	0.855192
min	1634.000000	2.400000	1.000000
25%	1772.000000	3.190000	1.000000
50%	1846.000000	3.380000	2.000000
75%	1934.000000	3.502500	3.000000
max	2050.000000	3.810000	3.000000

```
In [11]: x = data[['SAT', 'Rand 1,2,3']]
y = data['GPA']
```

```
In [12]: reg = LinearRegression()
```

```
In [13]: reg.fit(x,y)
```

Out[13]: LinearRegression()

```
In [14]: reg.coef_
Out[14]: array([ 0.00165354, -0.00826982])
In [15]: reg.intercept_
Out[15]: 0.29603261264909486
In [16]: # R-squared reg.score(x,y)
Out[16]: 0.40668119528142843
```

Formula for Adjusted R-squared

$$R_{adj.}^2 = 1 - (1 - R^2) * \frac{n-1}{n-p-1}$$

```
In [18]: x.shape
Out[18]: (84, 2)
In [19]: r2 = reg.score(x,y)
    n = x.shape[0]
    p = x.shape[1]
    adjusted_r2 = 1 - (1-r2) * (n-1)/(n-p-1)
    adjusted_r2
Out[19]: 0.39203134825134023
In [ ]:
```