Chapter #3 A Top-Level View of Computer Function

Computer Architecture Components

- Central Processing Unit:
 - —Control Unit (fetch & decode instruction)
 - —Arithmetic Logic Unit (execution)
- Main memory:
 - —Temporary storage of code and results
- I/O:
 - —"Permanent" storage of data and instructions, and display of results

Components: Top Level View

Instruction Cycle -- State Diagram

Interrupts

- Mechanism by which other modules (e.g. I/O) may interrupt normal sequence of processing
- Program
 - —e.g. overflow, division by zero
- Timer
 - —Timer w/in processor, allowing regular O/S functions
- I/O
 - —from I/O controller
 - -e.g. Printer, disk, communication
- Hardware failure
 - —e.g. memory parity error

Interrupt Cycle

- Added to instruction cycle
- Processor checks for interrupt
 - —Indicated by an interrupt signal
- If no interrupt, fetch next instruction
- If interrupt pending:
 - —Suspend execution of current program
 - —Save context
 - —Set PC to start address of interrupt handler routine
 - —Process interrupt
 - —Restore context and continue interrupted program

Transfer of Control via Interrupts

Instruction Cycle (with Interrupts) State Diagram

Multiple Interrupt Handling

- Disabled interrupt/Sequential
 - —Processor will ignore further interrupts while processing one interrupt
 - —Interrupts remain pending and are checked after first interrupt has been processed
 - —Interrupts handled in sequence as they occur
- Defined priorities/Nested
 - Low priority interrupts can be interrupted by higher priority interrupts
 - —When higher priority interrupt has been processed, processor returns to previous interrupt

Multiple Interrupts - Sequential

Multiple Interrupts – Nested

Time Sequence of Multiple Interrupts

