Nama : Annisa Nurlaili Aulia Safitri

NIM : 1217030006

Jurusan : Fisika

Tugas Praktikum Fisika Komputasi

1. Flowchart untuk Kondisi Panas 1D dan Kondisi Panas 2D

Konduksi Panas 1D

Berikut adalah penjelasan singkat dari flowchart untuk konduksi panas 1D:

1. Start:

o Program dimulai di sini.

2. Input Parameters:

• Pengguna memberikan parameter seperti koefisien difusivitas termal, panjang plat, waktu simulasi, dan jumlah titik grid.

3. Initialize Variables:

o Variabel-variabel seperti array suhu (u), jarak antar titik grid (dx), dan ukuran waktu simulasi (dt) diinisialisasi.

4. Set Boundary Conditions:

o Kondisi batas pada ujung-ujung plat diatur. Misalnya, suhu pada ujung kiri dan kanan.

5. Visualization Setup:

o Inisialisasi plot atau visualisasi awal yang menunjukkan distribusi suhu pada plat.

6. Initialize Counter:

o Variabel counter diinisialisasi sebagai waktu simulasi.

7. Simulation Loop:

o Memulai loop simulasi untuk menghitung distribusi suhu seiring waktu.

Copy Temperature Array:

Mencopy array suhu untuk perhitungan.

Update Temperature:

• Menggunakan metode finite difference untuk menghitung suhu baru berdasarkan persamaan konduksi panas.

• Increment Counter:

Menambah nilai waktu simulasi (counter).

Visualization Update:

Memperbarui plot untuk mencerminkan distribusi suhu yang baru dihitung.

Print Information:

 Menampilkan informasi seperti waktu simulasi dan suhu rata-rata pada saat itu.

8. Check End Condition:

 Memeriksa apakah kondisi berhenti sudah terpenuhi (misalnya, mencapai waktu simulasi yang diinginkan).

9. **End Loop:**

o Jika kondisi berhenti terpenuhi, program keluar dari loop.

10. **End:**

o Program berakhir di sini.

Konduksi Panas 2D

Berikut adalah penjelasan singkat dari flowchart untuk konduksi panas 2D:

1. Start:

o Program dimulai di sini.

2. Input Parameters:

o Pengguna memberikan parameter seperti koefisien difusivitas termal, panjang plat, lebar plat, waktu simulasi, dan jumlah titik grid dalam kedua arah (x dan y).

3. Initialize Variables:

o Variabel-variabel seperti array suhu (u), jarak antar titik grid (dx dan dy), dan ukuran waktu simulasi (dt) diinisialisasi.

4. Set Boundary Conditions:

o Kondisi batas pada semua sisi plat diatur. Misalnya, suhu pada semua sisi plat.

5. Visualization Setup:

Inisialisasi plot atau visualisasi awal yang menunjukkan distribusi suhu pada plat
2D.

6. **Initialize Counter:**

o Variabel counter diinisialisasi sebagai waktu simulasi.

7. Simulation Loop:

o Memulai loop simulasi untuk menghitung distribusi suhu seiring waktu.

Copy Temperature Array:

• Mencopy array suhu untuk perhitungan.

Update Temperature:

 Menggunakan metode finite difference untuk menghitung suhu baru berdasarkan persamaan konduksi panas dalam kedua arah x dan y.

Increment Counter:

Menambah nilai waktu simulasi (counter).

Visualization Update:

 Memperbarui plot untuk mencerminkan distribusi suhu yang baru dihitung.

Print Information:

 Menampilkan informasi seperti waktu simulasi dan suhu rata-rata pada saat itu.

8. Check End Condition:

 Memeriksa apakah kondisi berhenti sudah terpenuhi (misalnya, mencapai waktu simulasi yang diinginkan).

9. End Loop:

o Jika kondisi berhenti terpenuhi, program keluar dari loop.

10. **End:**

o Program berakhir di sini.

2. Perbedaan antara Konduksi Panas 1 Dimensi dengan 2 Dimensi dalam penggunaan Metode *Finite Difference*

1. Dimensi Spasial:

Konduksi Panas 1D:

- Hanya melibatkan satu dimensi spasial, biasanya sepanjang suatu sumbu (misalnya, sumbu x).
- Variabel suhu hanya bergantung pada satu variabel spasial.

Konduksi Panas 2D:

- Melibatkan dua dimensi spasial, menciptakan bidang atau papan dengan distribusi suhu.
- Variabel suhu bergantung pada dua variabel spasial (misalnya, x dan y).

2. Persamaan Diferensial Parsial:

Konduksi Panas 1D:

 Persamaan diferensial parsial hanya memiliki turunan parsial terhadap satu variabel spasial (biasanya x).

Konduksi Panas 2D:

• Persamaan diferensial parsial memiliki turunan parsial terhadap kedua variabel spasial (x dan y).

3. Stensil Finite Difference:

Konduksi Panas 1D:

• Menggunakan stensil 1D (forward, backward, atau central difference) untuk mengaproksimasi turunan spasial.

Konduksi Panas 2D:

• Memerlukan stensil 2D yang mencakup turunan kedua variabel spasial dalam kedua arah x dan y.

4. Matriks Sistem:

Konduksi Panas 1D:

 Matriks sistem yang dihasilkan bersifat tridiagonal karena hanya ada satu dimensi spasial.

Konduksi Panas 2D:

 Matriks sistem yang dihasilkan lebih kompleks, umumnya bersifat blok atau sparse, tergantung pada struktur grid yang digunakan.

5. Kompleksitas Perhitungan:

Konduksi Panas 1D:

• Lebih sederhana secara komputasional karena hanya melibatkan perhitungan dalam satu dimensi.

Konduksi Panas 2D:

 Lebih kompleks secara komputasional karena melibatkan perhitungan dalam dua dimensi.

6. Pengaturan Batas:

Konduksi Panas 1D:

 Pengaturan batas umumnya melibatkan ujung-ujung suatu batang atau benda satu dimensi.

o Konduksi Panas 2D:

 Pengaturan batas melibatkan semua sisi objek dua dimensi (keempat sisinya).

Kesimpulan:

• Konduksi Panas 1D:

- Cocok untuk sistem yang dapat dimodelkan dengan satu dimensi spasial, seperti batang panjang atau benda serupa.
- o Lebih efisien secara komputasional.

• Konduksi Panas 2D:

- Digunakan ketika distribusi suhu dalam dua dimensi diperlukan, seperti pada permukaan plat.
- Lebih kompleks secara komputasional dan dapat memberikan hasil yang lebih realistis untuk objek dua dimensi.