CSL204		CATECODY	L	Т	P	CDEDIT	YEAR OF	
	OPERATING SYSTEMS LAB	CATEGORY				CREDIT	INTRODUCTION	
		PCC	0	0	3	2	2019	

Preamble: The course aims to offer students a hands-on experience on Operating System concepts using a constructivist approach and problem-oriented learning. Operating systems are the fundamental part of every computing device to run any type of software.

Prerequisite: Topics covered in the courses are Data Structures (CST 201) and Programming in C (EST 102)

Course Outcomes:

At the end of the course, the student should be able to

CO1	Illustrate the use of systems calls in Operating Systems. (Cognitive knowledge: Understand)				
CO2	Implement Process Creation and Inter Process Communication in Operating Systems. (Cognitive knowledge: Apply)				
CO3	Implement Fist Come First Served, Shortest Job First, Round Robin and Priority-based CPU Scheduling Algorithms. (Cognitive knowledge: Apply)				
CO4	Illustrate the performance of First In First Out, Least Recently Used and Least Frequently Used Page Replacement Algorithms. (Cognitive knowledge: Apply)				
CO5	Implement modules for Deadlock Detection and Deadlock Avoidance in Operating Systems. (Cognitive knowledge: Apply)				
CO6	Implement modules for Storage Management and Disk Scheduling in Operating Systems. (Cognitive knowledge: Apply)				

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Ø	Ø	Ø					Ø		Ø		Ø
CO2	Ø	0	0	ΔΕ	I	iΤ		0	T A	0		Ø
CO3	Ø	Ø	9	9	NT/	X	7	Ø	1	9		Ø
CO4	Ø	Ø	9	9	N	71	¥	Ø	7	9		Ø
CO5	Ø	Ø	Ø	0	ΙV	II	0	0	Ĭ.	Ø		Ø
CO6	Ø	Ø	Ø	9				Ø		Ø		Ø

	Abstract POs	defined by N <mark>atio</mark> nal Bo	ard of Accreditation
РО#	Broad PO	PO#	Broad PO
PO1	Engineering Knowledge	PO7	Environment and Sustainability
PO2	Problem Analysis	PO8	Ethics
PO3	Design/Development of solution	ions PO9	Individual and team work
PO4	Conduct investigations of conproblems	PO10	Communication
PO5	Modern tool usage	PO11	Project Management and Finance
PO6	The Engineer and Society	PO12	Life long learning

Assessment Pattern:

Bloom's Category	Continuous Assessment Test (Internal Exam) Marks in percentage	End Semester Examination Marks in percentage		
Remember	20	20		
Understand	20	20		
Apply	60	60		
Analyse				
Evaluate				
Create				

Mark Distribution

Total Marks	CIE Marks	ESE Marks	ESE Duration		
150	75	75	3 hours		

Continuous Internal Evaluation Pattern:

Attendance : 15 marks

Continuous Evaluation in Lab : 30 marks

Continuous Assessment Test : 15 marks

Viva Voce : 15 marks

Internal Examination Pattern: The marks will be distributed as Algorithm 30 marks, Program 20 marks, Output 20 marks and Viva 30 marks. Total 100 marks which will be converted out of 15 while calculating Internal Evaluation marks.

End Semester Examination Pattern: The percentage of marks will be distributed as Algorithm 30 marks, Program 20 marks, Output 20 marks and Viva 30 marks. Total 75 marks.

Operating System to Use in Lab : Linux

Compiler/Software to Use in Lab : gcc

Progamming Language to Use in Lab: Ansi C

Fair Lab Record:

All Students attending the Operating System Lab should have a Fair Record. The fair record should be produced in the University Lab Examination. Every experiment conducted in the lab should be noted in the fair record. For every experiment in the fair record, the right hand page should contain Experiment Heading, Experiment Number, Date of experiment, Aim of the Experiment and the operations performed on them, Details of experiment including algorithm and result of Experiment. The left hand page should contain a print out of the code used for experiment and sample output obtained for a set of input.

SYLLABUS

OPERATING SYSTEMS LAB

* mandatory

- 1. Basic Linux commands
- 2. Shell programming
 - -Command syntax
 - -Write simple functions with basic tests, loops, patterns
- 3. System calls of Linux operating system:*

fork, exec, getpid, exit, wait, close, stat, opendir, readdir

- 4. Write programs using the I/O system calls of Linux operating system (open, read, write)
- 5. Implement programs for Inter Process Communication using Shared Memory *
- 6. Implement Semaphores*
- 7. Implementation of CPU scheduling algorithms. a) Round Robin b) SJF c) FCFS d) Priority *
- 8. Implementation of the Memory Allocation Methods for fixed partition*
 - a) First Fit b) Worst Fit c) Best Fit
- 9. Implement l page replacement algorithms a) FIFO b) LRU c) LFU*
- 10. Implement the banker's algorithm for deadlock avoidance. *
- 11. Implementation of Deadlock detection algorithm
- 12. Simulate file allocation strategies.
 - b) Sequential b) Indexed c) Linked
- 13. Simulate disk scheduling algorithms. *
 - c) FCFS b)SCAN c) C-SCAN

OPERATING SYSTEMS LAB - PRACTICE QUESTIONS

- 1. Write a program to create a process in linux.
- 2. Write programs using the following system calls of Linux operating system:

fork, exec, getpid, exit, wait, close, stat, opendir, readdir

3. Write programs using the I/O system calls of Linux operating system (open, read, write)

- 4. Given the list of processes, their CPU burst times and arrival times, display/print the Gantt chart for FCFS and SJF. For each of the scheduling policies, compute and print the average waiting time and average turnaround time
- 5. Write a C program to simulate following non-preemptive CPU scheduling algorithms to find turnaround time and waiting time.

a)FCFS b) SJF c) Round Robin (pre-emptive) d) Priority

6. Write a C program to simulate following contiguous memory allocation techniques

a) Worst-fit b) Best-fit c) First-fit

- 7. Write a C program to simulate paging technique of memory management.
- 8. Write a C program to simulate Bankers algorithm for the purpose of deadlock avoidance.
- 9. Write a C program to simulate disk scheduling algorithms a) FCFS b) SCAN c) C-SCAN
- 10. Write a C program to simulate page replacement algorithms a) FIFO b) LRU c) LFU
- 11. Write a C program to simulate producer-consumer problem using semaphores.
- 12. Write a program for file manipulation for display a file and directory in memory.
- 13. Write a program to simulate algorithm for deadlock prevention.
- 14. Write a C program to simulate following file allocation strategies.

a)Sequential b) Indexed c) Linked