Assignment 3 (Week 3)

Due on 2016-02-20, 00:29 IST

Submitted assignment

1)	Null and alternate Hypotheses are statements about:	1 point
	Population parameters	
	Sample parameters	
	 Sampling statistics 	
	O None of these	
2)	In hypothesis testing a type-II error occurs when	1 point
	The null hypothesis is not rejected when the null hypothesis is true	
	The null hypothesis is rejected when the null hypothesis is true	
	The null hypothesis is not rejected when the alternate hypothesis is true	
	O None of these	
3)	The null and alternative hypotheses divide all possibilities into:	1 point
	two sets that overlap	
	two non-overlapping sets	

	Both of these	
	O None of these	
4)	A two-tailed test is one where:	1 point
	results in only one direction can lead to rejection of the null hypothesis	
	negative sample means lead to rejection of the null hypothesis	
	results in either of two directions can lead to rejection of the null hypothesis	
	O None of these	
5)	If random samples of size \geq 30 are drawn from a population with known population variance (σ^2), the sample means follow:	1 point
	F-distribution	
	onormal distribution	
	t-distribution	
	Chi-square distribution	
ô)	A random sample of size n = 4 is drawn from a population with μ =200, σ^2 =100. Test the hypothesis for the following conditions and choose the correct one: H0: μ = 200 and H1: μ > 200, when the sample mean is 214.	1 point
	Null hypothesis is rejected	
	Alternate hypothesis is rejected	
	Cannot be determined	
7)	Using the data given in question no. 6, set the hypotheses for a two-tailed test.	1 point
	\Box H0: μ = 200 and H1: μ < 200	
	H0: μ = 200 and H1: μ > 200	
	• H0: μ = 200 and H1: $\mu \neq$ 200	
	None of the above.	
3)	Choose the correct 95% confidence interval (CI) of population mean for the given information that: (i) it is a normal population, (ii) population standard deviation $\sigma = 3.50$ (iii) sample size $n = 30$ (iv) sample mean = 20	2 points

	18.75 <= μ <= 21.25		
	25.00 <= μ <= 30.25		
	35.00 <= μ <= 39.25		
	$37.75 \le \mu \le 48.25$		
_	nsider question no. 8. Choose the correct 95% CI of μ when σ 1 is unknown, and sample standard deviation (s) is 4.25. 28.75<= μ <=30.25	points	
	29.75<=μ<=35.00		
	36.75<=μ<=38.25		
	18.48<=µ<=21.52		
10) A 95% confidence interval for the mean of a population is such that:			
	It contains 95% of the values of the population		
	There is a 95% chance that it contains all the values of the population.		
	There is a 95% chance that it contains the mean of the population		
	None of these		
of th	researcher computes a 95% confidence interval for μ whereas σ is known. The confidence interval is 18000 to 22000, the value the sample mean is:	points	
	81000		
	90000		
	20000		
	None of these		
inde stati	a hypothesis testing of equality of two population means, i.e., H0: μ 1 = μ 2, the test statistic follows t-distribution. If two dependent samples of size n1 = n2 = n are collected from the two populations, respectively, the degrees of freedom of the test distribution: $2n - 1$	1 point	

- 2n 2
- n 2
- None of these