Distributions I

1 Basic definitions

Let $\Omega \subset \mathbb{R}^n$ nonempty and open (for all sections 1-4).

Test functions. The set of test functions $D(\Omega)$ is defined as the space $C_c^{\infty}(\Omega)$ equipped with the following notion of convergence:

$$\phi_n \to \phi \ :\Leftrightarrow \left\{ \begin{array}{l} \exists K \subset \varOmega \ \text{compact, s.t.} \\ \text{(i) } \sup(\phi_n - \phi) \subset K \ \forall n \\ \text{(ii) } D^\alpha \phi_n \to D^\alpha \phi \ \text{unif. on } K \ \forall \alpha \in \mathbb{N}^n. \end{array} \right.$$

Distributions. A distribution is an element of the dual space $D'(\Omega)$, i.e. a continuous linear functional on $D(\Omega)$. We can introduce the concept of pointwise convergence on the space of distributions by

$$T_n \to T : \Leftrightarrow T_n(\phi) \to T(\phi) \ \forall \phi \in D(\Omega)$$
.

Locally integrable functions. For $1 \le p \le \infty$ we define the space of *locally integrable functions* by

$$L^p_{\mathrm{loc}}(\varOmega) := \left\{ \begin{array}{cc} f: \varOmega \to \mathbb{C} & \left\| f \right\|_{L^p(K)} < \infty \\ \text{Borel msrbl.} & \forall \; \mathrm{compact} \; K \subset \varOmega \end{array} \right\}.$$

Remarks.

- (R1) $L^p_{loc}(\Omega)$ is a vector space, but not equipped with a simple norm.
- (R2) The concepts of strong and weak convergence in L^p spaces can be transferred to $L^p_{\text{loc}}(\Omega)$: $(f_n) \subset L^p_{\text{loc}}(\Omega)$ converges strongly (weakly) to $f \in L^p_{\text{loc}}(\Omega)$ iff f_n converges strongly (weakly) to f in $L^p(K)$ for all compact subsets $K \subset \Omega$.
- (R3) We have $L^p(\Omega) \subset L^p_{loc}(\Omega)$, but $L^p_{loc}(\Omega) \not\subset L^p(\Omega)$.
- (R4) For q > p, from Hölder's inequality : $L^q_{loc}(\Omega) \subset L^p_{loc}(\Omega)$.

2 Functions as distributions

Theorem 1. Let $f \in L^1_{loc}(\Omega)$, then $T_f : D(\Omega) \to \mathbb{C}$ with $T_f(\phi) := \int_{\Omega} f \phi$ defines a distribution.

Theorem 2. Let $f, g \in L^1_{loc}(\Omega)$ with $T_f(\phi) = T_g(\phi)$ for all $\phi \in D(\Omega)$, then f(x) = g(x) for a.e. $x \in \Omega$.

Remark.

(R5) From (R4) and theorems 1 and 2, we see that it makes sense to say that functions in $L^p_{\rm loc}(\Omega)$ (for any $p\geq 1$) are distributions and we write $f(\phi):=T_f(\phi)$.

3 Derivatives of distributions

Weak derivative. Let $T \in D'(\Omega)$ and $\alpha \in \mathbb{N}^n$ (a multiindex), then the weak derivative (or distributional derivative) of T is the distribution defined by

$$(D^{\alpha}T)(\phi) := (-1)^{|\alpha|}T(D^{\alpha}\phi) \qquad \forall \phi \in D(\Omega) \,. \tag{1}$$

Remarks.

- (R6) In the case $\alpha_i = 1$ and $\alpha_j = 0$ for $j \neq i$, we have $(\partial_i T)(\phi) = -T(\partial_i \phi)$.
- (R7) The symbol $\nabla T := (\partial_1 T, \dots, \partial_n T)$ denotes the distributional gradient of T.
- (R8) For a (classically) differentiable function $f \in C^{|\alpha|}(\Omega) \subset L^1_{\text{loc}}(\Omega)$, we have $(D^\alpha T_f)(\phi) = (-1)^{|\alpha|} \int_\Omega D^\alpha \phi$ $f = \int_\Omega \phi \ D^\alpha f = T_{D^\alpha f}(\phi)$, by partial integration. In accordance with (R5), we say: The weak derivative of f is the function $D^\alpha f$, that is the distribution with values $(D^\alpha f)(\phi) = T_{D^\alpha f}(\phi)$ for all $\phi \in D(\Omega)$.
- (R9) Since $\phi \in C_c^{\infty}(\Omega)$, we see from (1) that any distribution is infinitely often differentiable.
- (R10) The map of taking the derivative $D^{\alpha}: D'(\Omega) \to D'(\Omega)$ is continuous, i.e. if $T_m \to T$, then $D^{\alpha}T_m(\phi) \to D^{\alpha}T(\phi)$ for all $\phi \in D(\Omega)$, because $D^{\alpha}\phi \in D(\Omega)$.

Example. It is easy to check, that $\delta_y(\phi) := \phi(y)$ defines a distribution. Then we have $(\partial_i \delta_y)(\phi) = -\partial_i \phi(y)$.

 $W_{\text{loc}}^{1,p}(\Omega)$. The class of functions in $L_{\text{loc}}^p(\Omega)$ with first weak derivatives that are also functions in $L_{\text{loc}}^p(\Omega)$ is denoted by $W_{\text{loc}}^{1,p}(\Omega)$.

Remarks

- Remarks. (R11) Explicitly, for $f \in W^{1,p}_{loc}(\Omega)$ there is a function $g \in L^p_{loc}(\Omega)$ s.t. $(\partial_i T_f)(\phi) = -\int_{\Omega} f \partial_i \phi = \int_{\Omega} g \phi = T_g(\phi)$ for all $\phi \in D(\Omega)$. Thus we write $g := \partial_i f$.
- (R12) $W_{\text{loc}}^{1,p}(\Omega)$ is a vector space.
- (R13) If p < q, we have for each $f \in W^{1,q}_{loc}(\Omega)$, that $\partial_i f \in L^q_{loc}(\Omega) \subset L^p_{loc}(\Omega)$. Thus $W^{1,q}_{loc}(\Omega) \subset W^{1,p}_{loc}(\Omega)$.

Sobolev spaces. Since $L^p(\Omega) \subset L^p_{loc}(\Omega)$, it makes sense to speak of the class of functions in $L^p(\Omega)$ with first weak derivatives that are also in $L^p(\Omega)$. This space is denoted by $W^{1,p}(\Omega)$. For the first m weak derivatives to be in $L^p(\Omega)$, the spaces are called *Sobolev spaces* $W^{m,p}(\Omega)$. They can be endowed with several norms, e.g. $\|f\|_{W^{m,p}} := \sum_{|\alpha| \leq m} \|D^{\alpha} f\|_{L^p(\Omega)}$ in order to form Banach spaces.

4 Calculating with distributions

Lemma. Let $\phi \in D(\Omega)$, $z \in \mathbb{R}^n$, $T \in D'(\Omega)$ and define $\phi_z(x) := \phi(x-z)$, $\mathcal{O}_{\phi} := \{y \in \mathbb{R}^n | \operatorname{supp} \phi_y \subset \Omega\}$. Then

- (i) \mathcal{O}_{ϕ} is open and non-empty.
- (ii) $y \mapsto T(\phi_y)$ is in $C^{\infty}(\mathcal{O}_{\phi})$ and $D_y^{\alpha}T(\phi_y) = (D^{\alpha}T)(\phi_y)$.
- (iii) For $\psi \in L^1(\mathcal{O}_{\phi})$ with compact support:

$$\int_{\mathcal{O}_{\phi}} \psi(y) T(\phi_y) dy = T(\psi * \phi). \tag{2}$$

Theorem. The so called fundamental theorem of calculus for distributions states the following:

(i) Let $T \in D'(\Omega)$, $\phi \in D(\Omega)$ and $y \in \mathbb{R}^n$ s.t. $\phi_{ty} \in D(\Omega)$ $\forall t \in [0, 1]$, then

$$T(\phi_y) - T(\phi) = \int_0^1 \sum_{j=1}^n y_j(\partial_j T)(\phi_{ty}) dt$$
. (3)

(ii) For $f \in W^{1,1}_{loc}(\mathbb{R}^n)$ we get $\forall y \in \mathbb{R}^n$ and a.e. $x \in \mathbb{R}^n$:

$$f(x+y) - f(x) = \int_0^1 y \cdot \nabla f(x+ty) dt.$$
 (4)