SOFT-SUBSPACE CLUSTERING ON A HIGH-DIMENSIONAL MUSICAL DATASET

Emil Juzovitski June 26, 2019

Master Thesis Presentation

Examiner: Pawel Herman Supervisor: Johan Gustavsson

TABLE OF CONTENTS

Introduction

Background

Method

Results

Discussion

INTRODUCTION

BACKGROUND

METHOD

RESULTS

DISCUSSION

What is clustering analysis about?

Finding clusters (groups) in a set of data objects

What is clustering analysis about?

Finding clusters (groups) in a set of data objects, with feature similar data objects partitioned into the same cluster

What is clustering analysis about?

Finding clusters (groups) in a set of data objects, with feature similar data objects partitioned into the same cluster, and feature dissimilar data objects partitioned into different cluster.

Clustering analysis

Finding clusters (groups) in a set of data objects.

Clustering analysis

Finding clusters (groups) in a set of data objects.

- feature similar data objects partitioned into the same cluster
- feature dissimilar data objects partitioned into different cluster.

Clustering analysis

Finding clusters (groups) in a set of data objects

Clustering analysis

Finding clusters (groups) in a set of data objects

- feature similar data objects partitioned into the same cluster
- feature dissimilar data objects partitioned into different cluster.

Clustering analysis

Finding clusters (groups) in a set of data objects, based on similarity

Example Tasks:

- Fitting products into different aisles in a grocery store
- · Grouping distributors based on the products they sell

Clustering analysis

Finding clusters (groups) in a set of data objects, based on similarity

How do we measure similarity?

Clustering analysis

Finding clusters (groups) in a set of data objects, based on similarity

How do we measure similarity?

By defining a distance measurement between points:

Clustering analysis

Finding clusters (groups) in a set of data objects, based on similarity

How do we measure similarity?

By defining a distance measurement between points:

$$D(X_1, X_2)$$

Clustering analysis

Finding clusters (groups) in a set of data objects, based on similarity

How do we measure similarity?

By defining a distance measurement between points:

$$D(X_1, X_2) = \sum_{j=1}^{m} d(x_{1j}, x_{2j})$$

AN ALGORITHM FOR FINDING PRIMES NUMBERS.

```
int main (void)
{
  std::vector<bool> is_prime (100, true);
  for (int i = 2; i < 100; i++)</pre>
```

AN ALGORITHM FOR FINDING PRIMES NUMBERS.

```
int main (void)
{
  std::vector<bool> is_prime (100, true);
  for (int i = 2; i < 100; i++)

if (is_prime[i])
{</pre>
```

AN ALGORITHM FOR FINDING PRIMES NUMBERS.

```
int main (void)
 std::vector<bool> is prime (100, true);
 for (int i = 2; i < 100; i++)
if (is prime[i])
std::cout << i << " ":
for (int j = i; j < 100;
is prime [j] = false, j+=i);
```

An Algorithm For Finding Primes Numbers.

```
int main (void)
 std::vector<bool> is prime (100, true);
 for (int i = 2; i < 100; i++)
if (is prime[i])
std::cout << i << " ";</pre>
for (int j = i; j < 100;
is prime [j] = false, j+=i);
```

FEATURES

Describes a property of a object/point

FEATURES

- · Describes a property of a object/point
- An object e.g. A shoe, can be represented by features such as brand (nike, adidas), style (sneaker, flip-flops, leather), and cost (\$)

FEATURES

- · Describes a property of a object/point
- An object e.g. A shoe, can be represented by features such as brand (nike, adidas), style (sneaker, flip-flops, leather), and cost (\$)
- · brand is categorical
- cost is numerical

INTRODUCTION

BACKGROUND

METHOD

RESULTS

DISCUSSION

THIRD FRAME

Hello, world!

Example

Hello

INTRODUCTION

BACKGROUND

METHOD

RESULTS

DISCUSSION

FOURTH FRAME

Hello, world!

INTRODUCTION

BACKGROUND

METHOD

RESULTS

DISCUSSION

INTRODUCTION

BACKGROUND

METHOD

RESULTS

DISCUSSION

FOURTH FRAME

Hello, world!