Notes in ECEN 5448

Zahary Vogel

November 9, 2015

1 Controllability

Controllability: $\forall x_0, x \in \mathbb{R}^n$. $\exists \{T, u : [0, T] \to \mathbb{R}^m, \text{ for: }$

$$\dot{x} = f(x, u), t \in [0, T]$$

 $x(0) = x_0, x(T) = x$

For LTI systems, it suffice to verify controllability condition for any initial condition $x_0 \in \mathbb{R}^n$ and $x_1 = 0.$ (why?)

Question: Under what condition for any $x(0) \in \mathbb{R}^n$, $\exists T, u : [0,T] \to \mathbb{R}^m$,

$$0 = e^{AT}x(0) + \int_0^T e^{A(T-\tau)}Bu(\tau)d\tau$$

What causes non-controllable systems?

$$\dot{x} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u(t)$$

no way to change the first coordinate.

Let us determine the necessary condition for controllability. Suppose $x(0) \in \mathbb{R}^n$ is such that:

$$0 = e^{AT}x(0) + \int_0^T e^{A(T-\tau)}Bu(\tau)d\tau$$

for some T > 0 and $u : [0, T] \to \mathbb{R}$ (B is nx1) This implies that:

$$-x(0) = \int_0^T e^{-A\tau} Bu(\tau) d\tau = \int_0^T \begin{pmatrix} f_1(\tau) \\ f_2(\tau) \\ \vdots \\ f_n(\tau) \end{pmatrix} u(\tau) d\tau$$

where $f_1(\tau) = [e^{-A\tau}B]$

 \approx by discretization of [0,T] to $h,2h,3h,\ldots,Nh$. This integral would be close to:

$$\approx h \begin{pmatrix} f_1(h)u(h) + f_1(2h)u(2h) + \dots + f_1(nh)u(nh) \\ \vdots \\ f_n(h)u(h) + f_n(2h)u(2h) + \dots + f_n(Nh)u(Nh) \end{pmatrix}$$

So controllability is related to solving y = Mu. for a given vector y and matrix $M_{n \times N}$ N¿¿n.

Fact: y = Mu has a solution for all $y \in \mathbb{R}^n$ if and only if the rows of M are linearly independent. Proof: Suppose the row vectors, M_1, M_2, \ldots, M_n are linearly dependent, and non-negative $c_1, c_2, \ldots, c_n \in \mathbb{R} \neq 0$ such that $c_1M_1 + c_2M_2 + \cdots + c_nM_n = 0 = c^TM = 0$. Let y = c and suppose that $\exists u : c = Mu$. Multiply everything by c^T , then:

$$c^T c = ||c||^2 = c^T M u = 0$$

that's a contradiction because c has to have some positive element.

Suppose that M_1, M_2, \ldots, M_n are linearly independent.

IN this case, the matrix $P = MM^T$ is a p.d. matrix because for any $x \in \mathbb{R}^n$, $x^TPx = x^TMM^Tx = ||M^Tx||^2 > 0$ for $x \neq 0$

For solving y = Au, let:

$$u = A^{T} (AA^{T})^{-1} y$$
$$Au = (Aa^{T})(AA^{T})^{-1} y = y$$

Definition: We say that $g_1, \ldots, g_n : [0,T] \to \mathbb{R}$ are linearly independent if:

$$c_1g_1(t) + c_2g_2(t) + \dots + c_ng_n(t) = O(t)$$

 $\forall t \in [0,T]$ implies that $c_1 = c_2 = c_n = 0$.

Example: Let $g_1 = 1, g_2 = t, g_3 = t^2$. Suppose $c_1 + c_2 t + c_3 t^2 = 0(t) \forall t \in [0, T]$.

We want to solve:

$$-x(0) = \int_0^T \begin{pmatrix} f_1(z) \\ \dots \\ f_n(z) \end{pmatrix} u(\tau) d\tau$$

This has a solution $u(\tau) \forall x(0) \in \mathbb{R}^n$ iff $f_1(\tau), \ldots, f_n(\tau)$ are linearly independent. Proof:Suppose f_1, \ldots, f_n are not independent $\Longrightarrow \exists c_1, c_2, \ldots, c_n : c_1 f_1(t) + \cdots + c_n f_n(t) = 0 \forall t \in [0, T]$. Let x(0) = c and suppose $\exists u : [0, T]$

$$c = \int_0^T \begin{pmatrix} f_1(\tau) \\ \vdots \\ f_n(\tau) \end{pmatrix} u(\tau) d\tau$$

multiply by c^T :

$$||c||^2 = -\int_0^T c^T \begin{pmatrix} f_1(\tau) \\ \vdots \\ f_n(\tau) \end{pmatrix} u(\tau)d\tau = 0$$

 $\implies c = 0.$

Suppose that f_1, \ldots, f_n are independent. Let:

$$M = \int_0^T F(\tau)F^T(\tau)d\tau$$

where $F(\tau) = (f_1(\tau) \dots f_n(\tau))^T$. Again W is a pd matrix when $f_1's$ are continuous.

$$x^{T}Wx = \int_{0}^{T} x^{T}F(\tau)F^{T}(\tau)xd\tau = \int_{0}^{T} ||F(\tau)x||^{2}d\tau > 0$$

Let $u(\tau) = -F^T(\tau)W^{-1}(0,T)x(0)$.

$$\implies \int_0^T f(\tau)u(\tau)d\tau = -\int_0^T F^T(\tau)F(\tau)W^{-1}[0,T]x(0)d\tau$$
$$= -\int_0^T F^T(\tau)F(\tau)d\tau W^{-1}[0,T]x(0) = -x(0)$$

So the system:

$$\dot{x} = Ax + Bu$$

is controllable iff:

$$W[0,T] = \int_0^T e^{-A\tau} B B^T e^{-A^T \tau} d\tau$$

is invertible for some T > 0. corollary that this does not depend on what T you pick for this.

W[0,T] is the controllability Gramian.

An implication of the previous result, is that the time interval is not dependent on x_0 . Thus, the T is global, but also the T doesn't matter.

2 Controllability rank test

$$\dot{x} = Ax + Bu$$

is controllabe iff $\begin{bmatrix} B & AB & \dots & A^{n-1}B \end{bmatrix}$ is full rank. This also again tells us that the time T is irrelevant.

We will continue to this test and observability next time.