Simulation of Biomolecules

Clustering

Dr Matteo Degiacomi University of Edinburgh

matteo.degiacomi@ed.ac.uk

Dr Antonia Mey
University of Edinburgh

antonia.mey@ed.ac.uk

The Data Mining world

From scikit-learn.org 2

The Data Mining world

From scikit-learn.org

Clustering (i.e., unsupervised learning)

Known number of clusters? Flat geometry? Even cluster size? Outliers? Centroids needed?

Clustering algorithms

How does k-means work?

Input: K, set of points $x_1...x_n$ (can be in N-dimensional)

Place centroids, c₁..., c_n at random locations

Repeat until convergence:

For each point x_i:

Find nearest centroid $c_{j} = \arg \min_{j} D(x_{i}, c_{j})$ Assign the point x_{i} to cluster j

For each cluster j = 1...K:

Compute the centroid mean for all points in one cluster and update the centroid

$$c_j(a) = \frac{1}{n_j} \sum_{x_i \to c_j} x_i(a)$$

How does k-means work?

Input: K, set of points $x_1...x_n$ (can be in N-dimensional)

Place centroids, c₁..., c_n at random locations

Repeat until convergence:

For each point x_i:

Find nearest centroid $c_{j} = \arg \min_{j} D(x_{i}, c_{j})$ Assign the point x_{i} to cluster j

For each cluster j = 1...K:

Compute the centroid mean for all points in one cluster and update the centroid

$$c_j(a) = \frac{1}{n_j} \sum_{x_i \to c_j} x_i(a)$$

[Example] k-means vs solvent-graphite interactions

- k-means useful when number of clusters can be estimated, and cluster are approximately circular. Useful if cluster centres are required.
- Example: Molecular Dynamics simulation of graphite immersed in solvents.
 Centroids as representatives of >100k individual solvent-graphene interactions

Density-based and spectral clustering

Useful when number of clusters is unknown, or clusters are not circular

DBSCAN

Spectral Clustering

Density-based and spectral clustering

Useful when number of clusters is unknown, or clusters are not circular

DBSCAN

Spectral Clustering

- Find points in the ε neighbourhood of every point, identify core points with more than n neighbours.
- Find the connected components of core points on the neighbour graph, ignoring all non-core points.
- Assign each non-core point to a nearby cluster if the cluster is an ε neighbour, otherwise assign to noise otherwise.

- Calculate the Laplacian
- Calculate the first k eigenvectors
- Consider the matrix formed by the first k-eigenvectors
- Cluster the graph nodes based on these features (e.g., k-means)

[Example] DBSCAN for noise detection in EM maps

- Load electron density map and chose a threshold t
- Place pseudoatoms where intensity > t
- Cluster beads and delete small clusters (<1% of total beads

