

Università di Roma Tor Vergata

Tutoraggio Tabelle Hash

Laura Trivelloni 29 Novembre 2017

Ingegneria degli algoritmi A.A. 2017/2018

Tabelle Hash

Funzioni hash

- Metodo della divisione
- Metodo del ripiegamento

Liste di collisione

Indirizzamento aperto

- Scansione lineare
- Scansione quadratica
- Hashing doppio

Funzioni Hash

→ Metodo della divisione:

$$h(k) = k \mod m$$

- k = chiave
- m = dimensione tabella

→ Metodo del ripiegamento

$$h(k) = f(k_1, k_2, ..., k_n)$$

Indirizzamento aperto

Scansione lineare:

$$c(k,i) = [h(k) + i] \mod m$$

- \mathbf{k} = chiave
- i = numero progressivo di scansione
- \mathbf{m} = dimensione della tabella

Scansione quadratica:

$$c(k,i) = [h(k) + c_1^*i + c_2^*i^2] \mod m$$

 $c_1, c_2 = \text{costanti}$

Hashing doppio:

$$c(k,i) = [h_1(k) + i*h_2(k)] \mod m$$

Tempi di esecuzione

LISTE DI COLLISIONE	
insert()	T(n) = O(1)
search()	$T_{avg}(n) = O(1+n/m)$
delete()	$T_{avg}(n) = O(1+n/m)$
INDIRIZZAMENTO APERTO	
scansione lineare	$T_{avg}(n) = O(m/(m-n)^2)$
scansione quadratica	$T_{avg}(n) = O(m/(m-n))$
hashing doppio	$T_{avg}(n) = O(m/(m-n))$

Esercizio

Eseguire e osservare i risultati dei test **significativi** sulle diverse tabelle hash implementate, al variare della dimensione della tabella, il numero di elementi inseriti.

Esempio: la "brutta scelta" di $m = 2^i$ per il metodo della divisione.