18.335 Take-Home Midterm Exam: Spring 2021

Posted 3pm Thursday April 15, due 3pm Friday April 16.

Problem 0: Honor code

Copy and sign the following in your solutions:

I have not used any resources to complete this exam other than my own 18.335 notes, the textbook, running my own Julia code, and posted 18.335 course materials.

your signature

Problem 1: (34 points)

Horner's method evaluates the degree n-1 polynomial $p(x) = c_0 + c_1 x + c_2 x^2 + \cdots + c_{n-1} x^{n-1}$ via

$$p(x) = c_0 + x(c_1 + x(c_2 + x(\cdots)))$$

using n-1 additions and n-1 multiplications.

Define

$$f(c,x) = c_0 + c_1x + c_2x^2 + \dots + c_{n-1}x^{n-1}$$

where $c \in \mathbb{R}^n$ are the *n* coefficients and $x \in \mathbb{R}$ is the *x* value. Define $\tilde{f}(c,x)$ to be the algorithm that evaluates f(c,x) in floating-point arithmetic (replace addition with \oplus and multiplication with \otimes) by Horner's method.

- Show that \tilde{f} is **backwards stable** with respect to the input c by itself, for any given x, in the usual sense from class: $\tilde{f}(c,x) = f(\tilde{c},x)$ for some \tilde{c} satisfying $\|\tilde{c} c\| = \|c\|O(\varepsilon_{\text{machine}})$ (the leading coefficient in the $O(\varepsilon)$ can depend on n and x but not c). For simplicity, you can assume that $c \in \mathbb{F}^n$ and $x \in \mathbb{F}$.
 - Hint: you can write Horner's method as a recurrence: define $s_k = c_k + x s_{k+1}$ with $s_{n-1} = c_{n-1}$, so that $f = s_0$ (and more generally $s_k = \sum_{j=k}^{n-1} c_j x^{j-k}$). Similarly for \tilde{f} .
 - Note also that you can bound polynomials like p(x) as $|p(x)| \le ||c||_1 \cdot \max\{1, |x|^{n-1}\}$ in terms of ||c||.

Problem 2: (33 points)

Suppose that

is an $m \times m$ Hermitian $(T = T^*)$ complex tridiagonal matrix.

- (a) Show that $T = D\hat{T}D^{-1}$ where \hat{T} is a real tridiagonal matrix and D is diagonal and unitary.
- (b) In computing the eigenvalues of T, istead of applying QR iterations directly to T, you should instead apply QR to ______, which gives the same result because ____ and is faster (in terms of flop counts) because _____.

Problem 3: (33 points)

Suppose A is an $m \times n$ matrix with n > m and rank m (linearly independent rows): a "wide" matrix. In this case, Ax = b has infinitely many solutions x for any right-hand side $b \in \mathbb{C}^m$ (it is an *underdetermined* system of equations). We compute the QR factorization of the conjugate-transpose $A^* = QR = \hat{Q}\hat{R}$ by some backwards-stable algorithm (e.g. Householder QR), where Q is $n \times n$ and R is $n \times m$, and \hat{Q} is the "thin" QR (the first m columns of Q) and \hat{R} is correspondingly the first m rows of R.

- (a) Using this QR factorization, devise an efficient algorithm to find the *minimum-norm* solution x of Ax = b: the solution x for which $||x||_2$ is as small as possible.
 - Hint: write the solutions x in the basis of the columns of $Q = \begin{pmatrix} \hat{Q} & Q_{\perp} \end{pmatrix}$, where the n-m columns Q_{\perp} span the orthogonal complement of \hat{Q} . In this basis, which components are the same for all solutions of Ax = b, and which can vary? What does that tell you about the minimum-norm solution in this basis?
- (b) What is the cost of your algorithm in the "big O" sense (i.e. is it $\Theta(m^3n^2)$ or ...?), *not* including the $\Theta(nm^2)$ cost of finding the QR factorization by Householder?