관계형 데이터베이스 개요

이 문서는 SQLD(SQL Developer) 시험을 위한 관계형 데이터베이스의 기본 개념과 특징을 다룹니다. 데이터베이스의 정의, 관계형 데이터베이스의 구성요소, DBMS, SQL, 트랜잭션 등의 주요 개념을 설명하고, SQLD 시험 대비를 위한 팁을 제공합니다.

1. 데이터베이스의 기본 개념

1.1 데이터베이스의 정의

- 데이터베이스(Database)
 - 특정 조직의 업무를 수행하는 데 필요한 상호 관련된 데이터들의 모임
 - 중복된 데이터를 최소화하고 구조적으로 통합/관리되는 데이터의 집합 • 여러 사용자가 실시간으로 공유하고 동시에 접근 가능

• 실시간 접근성(Real-Time Accessibility)

1.2 데이터베이스의 특징

- 사용자의 요구에 실시간 응답
- 계속적인 변화(Continuous Evolution)
- 데이터는 지속적으로 삽입/수정/삭제되며 현재의 정확한 데이터 유지
- 동시 공유(Concurrent Sharing)
- 여러 사용자가 동시에 같은 데이터에 접근하여 이용 가능
- 내용 참조(Content Reference)
- 저장된 주소나 위치가 아닌 데이터의 내용으로 참조

2.1 관계형 데이터베이스의 정의

2. 관계형 데이터베이스의 개념

• 데이터를 2차원 테이블 형태로 표현

- 테이블간의 관계를 기반으로 데이터 저장/관리
- 속성(Attribute)과 튜플(Tuple)로 구성된 테이블로 데이터 표현
- 2.2 관계형 데이터베이스의 구성요소

• 테이블(Table)

○ 데이터를 저장하는 기본 단위

예시: 사원테이블

- 행(Row)과 열(Column)로 구성된 2차원 구조

| 사원ID | 이름 | 부서 | | E001 | 김철수 | 영업 | | E002 | 이영희 | 개발 | • 속성(Attribute/Column)

○ 데이터의 공통된 특성/성질 • 튜플(Tuple/Row)

○ 테이블의 열(Column)

- 테이블의 행(Row)
- 관계된 데이터의 묶음
- 도메인(Domain) 하나의 속성이 가질 수 있는 모든 값의 집합
 - 예: 성별 도메인 = {남, 여}
- 3. 관계형 데이터베이스의 특징

3.1데이터의 무결성(Integrity) • 개체 무결성(Entity Integrity)

• 기본키는 중복된 값을 가질 수 없음

- 참조 무결성(Referential Integrity)
 - 외래키는 참조하는 테이블의 기본키와 동일한 값을 가지거나 NULL

• 도메인 무결성(Domain Integrity)

○ 참조 관계의 일관성 보장

• 기본키는 NULL 값을 가질 수 없음

속성의 값은 정의된 도메인에 속한 값이어야 함

○ 논리적 구조가 변경되어도 응용 프로그램은 영향 받지 않음

- 3.2 데이터의 독립성
- 논리적 독립성 ○ 응용 프로그램과 데이터베이스를 독립시킴
- 물리적 독립성 ○ 물리적 저장구조가 변경되어도 응용 프로그램은 영향 받지 않음
- 4. DBMS(Database Management System) 4.1 DBMS의 정의

• 데이터 정의(Definition) ○ 데이터베이스 구조 정의/수정/삭제

- o DDL(Data Definition Language) 사용 • 데이터 조작(Manipulation) ○ 데이터 검색/삽입/삭제/수정
- o DML(Data Manipulation Language) 사용 • 데이터 제어(Control) ○ 데이터 무결성/보안/권한 관리

o DCL(Data Control Language) 사용

- 4.3 DBMS의 장점
- 데이터 중복 최소화 • 데이터 공유
- 데이터 무결성 유지 • 보안 향상

• DCL (Data Control Language) GRANT, REVOKE

○ 데이터 조회/삽입/수정/삭제

• 사용자 권한 부여/회수

- 원자성(Atomicity)
- 일관성(Consistency) ○ 트랜잭션 실행 전후의 데이터베이스는 일관된 상태를 유지
- 독립성(Isolation) ○ 동시에 실행되는 트랜잭션들은 서로 영향을 미치지 않음
 - 성공적으로 완료된 트랜잭션의 결과는 영구적으로 보장
- 주요 출제 포인트
- 관계형 데이터베이스의 특징과 구성요소 ○ 테이블, 속성, 튜플, 도메인의 개념
- 개체, 참조, 도메인 무결성의 개념과 차이 ○ 무결성 제약조건의 종류
- SQL의 종류와 특징 ○ DDL, DML, DCL, TCL의 구분
- 트랜잭션의 특성
- ACID 특성의 이해
- 학습 전략
- 1. 기본 개념을 정확히 이해하고 암기
- 3. 각 용어의 정확한 정의 숙지

- 데이터베이스를 관리하고 운영하는 소프트웨어 • 사용자와 데이터베이스 사이에서 중개 역할 4.2 DBMS의 주요 기능

 - 데이터 독립성 확보
 - 5. SQL(Structured Query Language)

• 데이터 일관성 유지

 DDL (Data Definition Language) CREATE, ALTER, DROP, RENAME, TRUNCATE

5.1 SQL의 종류

- 데이터베이스 객체 정의/변경/삭제 DML (Data Manipulation Language) • SELECT, INSERT, UPDATE, DELETE
 - COMMIT, ROLLBACK, SAVEPOINT ㅇ 트랜잭션 제어

6. 트랜잭션(Transaction)

○ 트랜잭션은 모두 실행되거나 전혀 실행되지 않아야 함

TCL (Transaction Control Language)

- 6.1 트랜잭션의 특성 (ACID)
- 지속성(Durability)
- SQLD 시험 대비 TIP
- 키(Kev)의 종류와 특징 • 데이터 무결성
- 각 언어별 주요 명령어
- 트랜잭션 제어 명령어
- 2. 실제 SOL문을 작성하면서 개념 적용
- 4. 데이터 무결성과 트랜잭션 특성 중점 학습