

MALTA2 Grazing Angle Method Validity

Author: Elliott P Wright

Introduction

- Validation of the grazing angle method used to calculate depletion depth using Allpix² simulation
 - \circ Data already taken for a 1 x 10¹⁵ 1 MeV n_{eq}/cm^2 irradiated detector
- Simple telescope simulation constructed with MALTA2 sensors
- Same environmental, test beam and digitisation parameters used between the experiment and simulation
- Linear electric field applied inside sensors

HL - LHC Upgrade

- Current LHC producing diminishing returns
- LS3 begins December 2024
- HL LHC begins in July 2027
- Higgs physics:
 - Measurement of rare decays/production
 - Higgs mass
- Physics beyond the standard model

Higgs self-coupling: Further investigation at HL - LHC [1]

HL - LHC Upgrade

- Instantaneous luminosity increased by factor of 5 to 7.5 x 10³⁴ cm⁻² s⁻¹
- Collisions per bunch crossing 50 → 200
- Increased |η| coverage from 2.5 → 4
- Improvements on LHC Run 2+3 Inner Detector:
 - \circ Higher granularity (50 x 50 μ m²)
 - Greater radiation hardness
 - Lower material budget

ATLAS Inner Tracker Detector (ITk): Pixel (red) and strip (blue) detector modules [2]

Hybrid Detectors

- Application Specific Integrated Circuit (ASIC)
- ASIC bump-bonded to the silicon sensor
- ASIC segmented into pixels

DMAPS Benefits Over Hybrid Detectors

- Depleted monolithic active pixel sensor (DMAPS)
- DMAPS CMOS sensors better than current hybrid sensors:
 - o Smaller pixel pitches (36.4 x 36.4 μ m²) → greater granularity and tracking performance
 - ASIC and sensor on same chip and no glue → lower material budget
- MALTA2 not in ATLAS outermost ITk layer due to lower radiation hardness

Standard CMOS Sensors vs MALTA2

DMAPS: Standard design [3]

DMAPS: XDPW processed MALTA2 layout [4]

Standard CMOS Sensors vs MALTA2

DMAPS: Electric field

DMAPS: XDPW processed MALTA2 layout [4]

The Grazing Angle Method

- Aim is to calculate the depletion depth
- Compare depth to what is expected to determine radiation damage
- Radiation damage changes the depletion depth
- Create a test beam of incident particles, changing sensor angle about x-axis

Grazing angle method: incident grazing angle α , pixel pitch p, and depletion depth d

$$Cluster(an(lpha)) = rac{d}{p} an(lpha) + Cluster(0)$$

The Grazing Angle Method

- Aim is to calculate the depletion depth
- Compare depth to what is expected to determine radiation damage
- Radiation damage changes the depletion depth
- Create a test beam of incident particles, changing sensor angle about x-axis

Cz, 100 μm, H-dop back-metal, XDPW 1x10¹⁵ 1 MeV n_{eq}/cm² ITHR: 40 DAC

MALTA2

Cluster Size: Test beam, irradiated

Allpix²

- Monte Carlo simulation software for silicon detectors based on Geant4
- Performs signal propagation and digitisation
- Visualisation capabilities
- Ease of configuration with humanreadable files
- Extensive documentation:
 https://allpix-squared.docs.cern.ch/

Allpix²: MALTA2 sensors (grey squares) and test beam (blue line)

MALTA2 Parameters

Parameter	Value
Sensor Dimensions	20.2 mm x 10.1168 mm
Pixel Pitch	36.4 µm 36.4 µm
Pixel Matrix	512 x 224
Sensor Thickness	100 μm
Sensor Excess	0.7816 mm x 0.9812 mm

Allpix²: MALTA2 sensors (grey squares) and test beam (blue line)

Simulation Set-Up

Beam Parameter	Value
Particle	Proton
Beam Energy	180 GeV

Sensor Parameter	Value
Temperature	258.15 K
Digitisation Threshold	260 e
Depletion Voltage	-30 V (GUESS)

test beam (blue line)

15

20

25

30

Linear Electric Field

$$w_d \propto \sqrt{V_b}$$

Depletion Width

Linear Electric Field

 $|w_d \propto \sqrt{V_b}|$

Depletion Width

Simulation Implementation

```
[Allpix]
                                                                [ElectricFieldReader]
log level = "INFO"
                                                                model = "linear"
log_format = "DEFAULT"
                                                               bias voltage = -15V
detectors_file = "Detector.conf"
                                                               depletion voltage = -30V
model_paths = "/home/user287/allpix-squared/Summe_Internship/'
                                                               output plots = true
number of events = 10000
                                                                [GenericPropagation]
[GeometryBuilderGeant4]
                                                                temperature = 258.15K
world_material = "vacuum"
                                                                charge_per_step = 100
world_margin_percentage = 0
                                                                integration_time = 25ns
world_minimum_margin = 2m 2m 2m
                                                               output_plots = true
                                                               #output_linegraphs = true
[DepositionGeant4]
physics_list = FTFP_BERT_LIV
                                                                [PulseTransfer]
particle_type = "Proton"
                                                                max_depth_distance = 100um
source_energy = 180GeV
                                                                output_plots = true
source_position = 0mm 0mm -100mm
source_type = "beam"
                                                                [DefaultDigitizer]
beam size = 10nm
                                                                threshold = 260e
beam direction = 0 0 1
number_of_particles = 1
                                                                [DetectorHistogrammer]
max_step_length = 1um
                                                                name = "detector4"
```

```
[detector4]
type = "alpide"
position = 0 0 550mm
orientation = 30deg 0deg 0deg
type = "monolithic"
geometry = "pixel"
number_of_pixels = 512 224
pixel size = 36.4um 36.4um
#Sensor chip size = 20.2mm 10.1168mm
sensor thickness = 100um
sensor excess top = 0.9812mm
sensor excess bottom = 0.9812mm
sensor excess left = 0.7816mm
sensor_excess_right = 0.7816mm
```

Allpix²: Simulation configuration

Allpix²: Detector set-up

Telescope Pixel Cluster Size vs Incident Angle

Cluster Size: Simulation, unirradiated

Cluster Size: Test beam, irradiated

Telescope Pixel Depletion Depth vs Incident Angle

MALTA2

Cz, 100 μm, H-dop back-metal, XDPW

1x10¹⁵ 1 MeV n_{eq}/cm² Threshold: 260 e

V_{sub} = -6.0 V V_{sub} = -15.0 V

 $V_{\text{sub}} = -20.0 \text{ V}$ $V_{\text{sub}} = -25.0 \text{ V}$

 $V_{\text{sub}} = -30.0 \text{ V}$

Depletion depth: Simulation, unirradiated

Depletion depth: Test beam, irradiated

19

Telescope Pixel Cluster Size vs tan(Incident Angle)

Average Cluster Size vs. Angle for increasing V_{bias}

Scaled Cluster Size: Simulation, unirradiated

$$Cluster(an(lpha)) = rac{d}{p} an(lpha) + Cluster(0)$$

Linear Fit to Telescope Cluster Size Data

Scaled Cluster Size: Simulation, unirradiated

Fitted Depletion Depth: Simulation, unirradiated

21

Linear Electric Field Investigation

• When $V_{\text{bias}} < V_{\text{depl}}$,

$$w_d \propto \sqrt{V_b}$$

- Undepleted region produces diffusion charges
- Test diffusion charges contribution by reducing sensor thickness for given bias voltage

Electric Field: z-projection, V_{bias} = -15V, V_{depl} = -30V, full 100 μ m thickness

Linear Electric Field Investigation Method

V _{bias} (V)	W _d (μm)
6	44.8
9	54.8
15	70.8
20	81.6
25	91.2
30	100

Electric Field: z-projection, $V_{depl} = V_{bias} = -15V$, $w_d = 70.8 \mu m$

23

Linear Electric Field Investigation Results

Average Cluster Size vs. Angle for increasing V_{bias}

Scaled Cluster Size: Simulation, unirradiated, reduced thickness

Average Cluster Size vs. Angle for increasing V_{bias}

Scaled Cluster Size: Simulation, unirradiated, 100 µm sensor thickness

Linear Electric Field Investigation Results

Average Cluster Size vs. Angle for increasing V_{bias}

Scaled Cluster Size: Simulation, unirradiated, reduced thickness

Fitted Depletion Depth: Simulation, unirradiated, reduced thickness

25

Linear Electric Field Investigation Results

Fitted Depletion Depth: Simulation, unirradiated, 100 µm sensor thickness

Fitted Depletion Depth: Simulation, unirradiated, reduced thickness

Lineplots and Hitmaps Method

- Telescope removed to reduce spread on hitmap
- 1µm pixel pitch for increasing granularity
- 10nm beam size for more repeatable hits
- 25ns integration time as standard (MALTA2 integration time)
- Data for 1 event taken to produce lineplots
- Data for 10K events taken to produce hitmaps

V_{depl} = -30V, V_{bias} = 0V

Lineplot: 45 degrees incline

$$V_{depl}$$
 = -30V, V_{bias} = -15V

Hitmap: 45 degrees incline

Lineplot: 45 degrees incline

29

$V_{depl} = -30V, V_{bias} = -30V$

Lineplot: 45 degrees incline

Hitmap: 45 degrees incline

V_{depl} = -30V, V_{bias} = -50V

Lineplot: 45 degrees incline

Hitmap: 45 degrees incline

Integration Time Investigation Cluster Sizes

Fitted Depletion Depth: Simulation, unirradiated, timing information

Integration Time Investigation Calculated and Actual Depletion Depth

information

$V_{depl} = -60V Data$

Average Cluster Size vs. Angle for increasing V_{bias}

Fitted Depletion Depth: Simulation, unirradiated

Conclusions

- Diffusion charges significant in clustering data at low bias voltages and incident angles
- Further study of timing information required to understand charge propagation
- Need to change the electric field linear → mesh using TCAD software
- Long's talk will give an overview of irradiated sensor results

Sentaurus Structure Editor, showing lack of 3D rendering

References

- [1]: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/A
 TLAS-CONF-2022-050/
- [2]: https://cds.cern.ch/record/2776651/files/ATL-PHYS-PUB-2021-024.pdf
- [3]: https://eprints.gla.ac.uk/270885/1/270885.pdf
- [4]: https://cds.cern.ch/record/2894529/files/Publication.pdf

Back-up Slides

Introduction (NEED TO EDIT)

- Allpix Squared simulation constructed based on example.conf
- 7 MALTA2 detectors used with detector 4 as DUT
- Full depletion voltage set to -30V
- Cluster size data obtained for 0 60 degrees in 5-degree increments
- Bias voltages set to -6V, -9V, -15V, -20V, -25V, -30V
- Electron threshold set to 260e
- Process automated using a Python script

The MALTA2 Sensor

Parameter	Value
Sensor Dimensions	20.2 mm x 10.1168 mm
Pixel Pitch	36.4 μm x 36.4 μm
Pixel Matrix	512 x 224
Sensor Thickness	100 μm
Sensor Excess	0.7816 mm x 0.9812 mm
Target Radiation Hardness	$3 \times 10^{15} 1 \text{MeV} n_{eq} / \text{cm}^2$ and 100MRad

Fig.: XDPW processes MALTA2 layout with full lateral electric field and extra deep p-well [4]

Simulation set-up

Fig. 4: Allpix-Squared simulation visualisation

Telescope Cluster Size vs Incident Angle (before automation)

MALTA2

Cz, 100 μm, H-dop back-metal, XDPW

1x10¹⁵ 1 MeV n_{eq}/cm² ITHR: 40 DAC

Average cluster size for V_b = -30 at max_depth = 5um and 100um

Average cluster size for V_b = 0V

Depletion depth vs. Incident angle for $V_b = 0V$

3D demonstration of electron drift and diffusion in MALTA2 DUT sensor at 0 degrees incline. A full depletion voltage of -30V is used and -15V bias.

3D demonstration of electron drift and diffusion in MALTA2 DUT sensor at 60 degrees incline. A full depletion voltage of -30V is used and -15V bias.

Hitmap for pixels in the MALTA2 DUT sensor at 0 degrees incline without the telescope. A full depletion voltage of -30V is used and -30V bias.

Hitmap for pixels in the MALTA2 DUT sensor at 60 degrees incline without the telescope. A full depletion voltage of -30V is used and -30V bias.

Drift and diffusion of electrons in MALTA2 DUT sensor at 0 degree incline without the telescope. A full depletion voltage of -30V is used and -30V bias.

Drift and diffusion of electrons in MALTA2 DUT sensor at 60 degree incline without the telescope. A full depletion voltage of -30V is used and -30V bias.

Hitmap for pixels in the MALTA2 DUT sensor at 0 degrees incline without the telescope. A full depletion voltage of -30V is used and -50V bias.

Hitmap for pixels in the MALTA2 DUT sensor at 60 degrees incline without the telescope. A full depletion voltage of -30V is used and -50V bias.

$V_{depl} = -60V Data$

Depletion Depth: Test beam, unirradiated

Scaled Cluster Size: Simulation, unirradiated

34

$V_{depl} = -60V Data$

Average Cluster Size vs. Angle for increasing V_{bias}

Fitted Depletion Depth: Simulation, unirradiated

References

- [1]: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2022-050/
- [2]: https://cds.cern.ch/record/2776651/files/ATL-PHYS-PUB-2021-024.pdf
- [3]: https://eprints.gla.ac.uk/270885/1/270885.pdf
- [4]: https://cds.cern.ch/record/2894529/files/Publication.pdf
- https://cds.cern.ch/record/2639942/plots
- https://atlas.cern/Resources/Cheat-sheets
- https://indico.cern.ch/event/949529/attachments/2091301/3516122/The_MALTA_Sensor.pdf
- https://allpix-squared.docs.cern.ch/
- https://www.dropbox.com/scl/fi/sjxklgk3gb2z5e34875j6/tipp2021.pdf?rlkey=70at5vszowiaaq00rbk7zz8vq&e=2&st=pud9lppv&dl=0
- https://www.sciencedirect.com/science/article/pii/S0168900223007787
- https://www.sciencedirect.com/science/article/pii/S0168900215011122
- https://www.sciencedirect.com/science/article/pii/0168900294012318
- https://home.cern/news/news/physics/atlas-moves-top-gear-run-3
- https://www.sciencedirect.com/science/article/pii/S0168900222008890
- https://e-publishing.cern.ch/index.php/CYRM/article/view/1154/959
- https://e-publishing.cern.ch/index.php/CYRM/issue/view/94/69

