苏州大学 <u>高等数学一(上)</u>期中试卷 共 6 页 考试形式: 闭卷

院系	年级	专业	
学号	姓名		
特别提醒:请	将答案填写在答题:	纸上,若填写在试卷纸_	上无效.
一. 选择题:	(每小题3分,共	15分)	
1. 函数 $f(x) = \frac{1}{1+}$	$\frac{x}{x^2}$ 在定义域内()	
A. 有上界无下界	早	B. 有下界无上界	
C. 有界且 $-\frac{1}{2}$:	$\leq f(x) \leq \frac{1}{2}$	D. 有界且 $-\frac{1}{5} \le f(x)$	$\leq \frac{1}{5}$
2. 则下列命题正	确的是()		
A. 若数列{x,	$\}$ 收敛,而数列 $\{y_n\}$	支散,则数列 $\left\{x_n+y_n\right\}$ 与数列	$J\{x_ny_n\}$ 都发散
B. 若数列{x,	$\}$ 与数列 $\{y_n\}$ 均发散,	则数列 $\{x_n + y_n\}$ 与数列 $\{x_n\}$	y"} 可能都收敛
C. 若数列{x,	,}发散,则该数列一只	它无界	
D. 若数列{x,	$\{y_n\}$ 收敛于 $\{y_n\}$ 为	为任意数列,则 $\lim_{n\to\infty} x_n y_n = 0$	
3. 当 x → 1 时,函	函数 $\frac{x^2-1}{x-1}$ e ^{$\frac{1}{x-1}$} 的极限是	ε()	
A. 2	B. 0		在但不为∞
4. 设 f(x) 在点 x	$= x_0$ 处可导,且 $f'(x_0)$	$\lim_{h \to 0} \frac{f(x_0 - h) - f(x_0 - h)}{h}$	$\frac{(x_0)}{(x_0)} = (x_0)$
A. 2	B. $\frac{1}{2}$	C. -2 D. $-\frac{1}{2}$	
5. 下列函数 f(x)在x=0处可导的是	()	
A. y = x	$B. y = \sqrt[3]{x^5}$	C. $y = \sqrt[3]{x^2}$ D. y	$= \begin{cases} x^2 + 1, x \ge 0 \\ x^3, x < 0 \end{cases}$
二. 填空题:	(每小题 3 分, 共	(15分)	
1. 当 $x \to 0$ 时,	$2\sin x - \sin 2x = \int x^k$	为等价无穷小,则 k =	<u>·</u>
2. 已知 $y = \varphi(s)$	$\operatorname{in} x^n$),且 $\varphi'(u)$ 存在,员	則 dy =	

3. 已知函数
$$f(x) = \begin{cases} \frac{a(1-\cos 10x)}{e^{x^2}-1}, & x \neq 0 \\ 50, & x = 0 \end{cases}$$
 在 $x = 0$ 处连续,则 $a =$ ______.

- 4. 设函数 $y = x(x^3 + 2x + 1)^2 + e^{2x}$, 则 $y^{(7)}(0) = _____$
- 5. 设 f(u) 可导, $y = f(x^2)$ 当自变量 x 在 x = -1 处取得增量 $\Delta x = -0.1$ 时,相应的函数增量 Δy 的线性主部为 0.1,则 $f'(1) = ______.$

三. 解下列各题: (每小题 8 分, 共 40 分)

1. 求下列函数的极限:

(1)
$$\lim_{x\to 0} (1+3x)^{\frac{2}{\sin x}};$$
 (2) $\lim_{x\to 0} \frac{1}{\ln^3 (1+x)} \left[\left(\frac{2+\cos x}{3} \right)^x - 1 \right].$

- 2. 若 $\lim_{x\to\infty} (\frac{x^2+1}{2x+1} ax+b) = 3$, 求 a,b 的值.
- 3. 求曲线 $\begin{cases} x = \frac{3at}{1+t^2}, \\ y = \frac{3at^2}{1+t^2} \end{cases}$ 在相应于 t = 2 的点处的法线方程.
- 4. 设函数 y = y(x) 由方程 $e^{y} + xy = e$ 所确定, 求 y''(0).
- 5. 找出函数 $f(x) = \frac{x x^3}{\sin(\pi x)}$ 的可去间断点,并补充定义,使该函数在这些点处连续.

四. 解下列各题: (每小题 10 分, 共 30 分)

1. 求极限
$$\lim_{n\to\infty} \left(\frac{1}{n^2+n+1} + \frac{2}{n^2+n+2} + \dots + \frac{n}{n^2+n+n} \right)$$
.

- 2. 设 f(x) 在 $(-\infty, +\infty)$ 上有定义,且 $x \in [0, 2]$, $f(x) = x(x^2 4)$,且若 $\forall x \in (-\infty, +\infty)$,有 f(x) = kf(x + 2),则 k 为何值时, f(x) 在点 x = 0 处可导?
- 3. 设f(x)在[0,1]上连续,且f(0) = f(1).
- (1) 证明: 存在 $\xi \in [0,1]$, 使得 $f(\xi) = f(\xi + \frac{1}{2})$;
- (2) 证明: 存在 $\eta \in [0,1]$, 使得 $f(\eta) = f(\eta + \frac{1}{n})(n > 2 \text{ 且} n$ 为正整数).

参考答案

一、选择

- 1. C 2. B 3. D 4. A 5. B

二、填空

- 1. k = 3 2. $dy = \varphi'(\sin x^n)\cos x^n nx^{n-1} dx$
- 3. a = 1 4. $7! + 2^7$
- 5. $\frac{1}{2}$

三、解下列各题

- 1. (1) e^6 (2) $-\frac{1}{6}$
- 2. $a = \frac{1}{2}$, $b = \frac{13}{4}$
- 3. $y \frac{12}{5}a = \frac{3}{4}(x \frac{6}{5}a)$
- 4. $\frac{1}{e^2}$
- 5. 可去间断点: $0,\pm 1$; 补充定义 $f(0) = \frac{1}{\pi}$, $f(1) = \frac{2}{\pi} = f(-1)$

四、解下列各题

- 1. $\frac{1}{2}$
- 2. $k = -\frac{1}{2}$
- 3. (1) $g(x) = f(x) f(x + \frac{1}{2})$, $g(0) = f(0) f(\frac{1}{2})$, $g(\frac{1}{2}) = f(\frac{1}{2}) f(0)$
- (2) $h(x) = f(x) f(x + \frac{1}{n}), \quad h(0) + h(\frac{1}{n}) + h(\frac{2}{n}) + \dots + h(\frac{n-1}{n}) = 0$