# RS485 control board communication protocol

- 一、Hardware interface:
- 1.Communication method: RS485 communication, 2.Baud rate 9600; data bit 8; stop bit 1; flow control None.
- 3. The unlock command is hexadecimal; the data format is Hex.
- 4. Working voltage DC12~24V
- 4. Support up to 31 control boards in series.
- 5.Can control normally closed electric locks. (Control normally open electromagnetic locks need to be customized)
- 二、Control Commands:
- 1. Full open command (Send this command to open all electric locks of a control panel)

| Command header | Board address | Lock address | Function code | Check code<br>/BCC |
|----------------|---------------|--------------|---------------|--------------------|
| 8A             | 01            | 00           | 11            | 9A                 |

For example, the host computer sends 8A 01 00 11 9A to the lock board of address 1 and after receiving this command, all the locks on the No. 1 board are opened at an interval of 300 milliseconds; until the last one.

### 2. Unlock command:

| Command header | Board<br>address | Lock address | Function code | Check code<br>/BCC |
|----------------|------------------|--------------|---------------|--------------------|
| 8A             | 01               | 01           | 11            | 9B                 |

- ·The board address is the address number set by the DIP switch on the lock board.
- ·Lock address is the number of the channel that needs to be unlocked.
- The unlock function code is fixed at 11
- 3. For example, the host computer sends 8A 01 01 11 9B (hexadecimal) and returns the following data after 500 milliseconds. (The feedback data includes the board number, lock number and the current status of unlocking.

# The format of the feedback data is as follows:

| Command header | Board<br>address | Lock address | Unlocked<br>state 11/00 | Check code<br>/BCC |
|----------------|------------------|--------------|-------------------------|--------------------|
| 8A             | 01               | 01           | 00                      | 8A                 |

- ·Note: The unlocking state is related to the lock. Locks are divided into door opening feedback type and door closing feedback type.
- Door closing feedback type: the door opening feedback status is 00, which means unlocking is successful; 11 means unlocking failed;
- ·Door opening feedback type: unlocking feedback 11 means unlocking is successful; 00 means unlocking failed

For example, a closed door feedback type electric lock will feedback the following data after unlocking:

- ·8A 01 01 00 8A (indicating successful unlocking)
- ·8A 01 01 11 9B (indicating unlock failure)

# 三、Query the status of the lock

## 1. Query the status of a single lock:

| Command header | Board<br>address | Lock address | Function code | Check code<br>/BCC |
|----------------|------------------|--------------|---------------|--------------------|
| 80             | 01               | 01           | 33            | В3                 |

·For example: the upper computer sends 80 01 01 33 B3 (hexadecimal)

200ms after the lock board will feedback the following data:

| Command | Board   | Lock address | Feedback     | Check code |
|---------|---------|--------------|--------------|------------|
| header  | address | 200K dadrood | status 00/11 | /BCC       |
| 80      | 01      | 01           | 33           | B3         |

- ·Door open feedback type lock: query status feedback 11 means the lock status is open; 00 means the current lock status is closed.
- ·Closed door feedback type lock: query status feedback 00 indicates that the lock state is open; 11 indicates that the current lock state is closed.
- ·For example, the lock query status feedback of the closed door feedback type is in the following format:
- 80 01 01 00 80 (indicating that the lock is open)
- 80 01 01 11 91 (indicating that the lock is closed)

# 四、Query the status of all locks

In actual use, the user needs to know the status of all the locks of each cabinet, so it is possible to query all the lock statuses and query the status of all the locks on a lock board.

## 1. Query command:

| Command<br>header | Board<br>address | Fixed code | Function code | Check code<br>/BCC |
|-------------------|------------------|------------|---------------|--------------------|
| 80                | 01               | 00         | 33            | B2                 |

For example, the host computer sends 80 01 00 33 B2 (hexadecimal) to read the status of all electric locks on board 1

·After the query, the following data is returned:

| Command header | Board address | State 1          | State 2         | State 3        | Function code | Check code /BCC |
|----------------|---------------|------------------|-----------------|----------------|---------------|-----------------|
| 80             | 01            | CH 17-24<br>lock | CH 9-16<br>lock | CH 1-8<br>lock | 33            | XX              |

Taking the 24-channel lock board as an example, there are three byte states for feedback of all lock states.

- 1. State 1 is the lock state of channels 17-24. 01 02 04 08 10 20 40 80 represents the state of 8 locks  $_{\circ}$
- 2. State 2 is the lock state of channels 9-16. 01 02 04 08 10 20 40 80 represents the state of 8 locks  $_{\circ}$
- 3. State 3 is the lock state of channels 1-8. 01 02 04 08 10 20 40 80 represents the state of 8 locks
- ·For example, closed door feedback type lock: the data returned by the command to query all lock states is 80 01 01 01 01 33 B3, which means that the three locks 17, 9, and 1 of the lock plate are closed, and the rest of the locks are open.

# Note: The check code can be calculated by BCC check (exclusive OR check)

### 五、Multi-channel unlock command

| Command header | Board<br>address | State 1     | State 2         | State 3       | Check code<br>/BCC |
|----------------|------------------|-------------|-----------------|---------------|--------------------|
| 90             | 01               | CH 1-8 lock | CH 9-16<br>lock | CH 17-24 lock | XX                 |

<sup>·</sup>For example, the host computer sends 90 01 02 02 02 93 (hexadecimal), which means to open the 2, 10, 18 channel lock.

- 六、The following functions need to be customized by contacting us (the following functions are not included by default)
- 1. Active feedback function: After the lock status changes, the data is actively uploaded to the host computer to feedback the opening or closing information. The feedback data format is as follows:

| Command header | Board<br>address | Lock address | Lock state | Check code<br>/BCC |
|----------------|------------------|--------------|------------|--------------------|
| 82             | 01               | 01           | 00/11      | **                 |

For example: the No. 1 lock on the No. 1 board uses the lock with feedback of closing the door; the main upload after closing the lockThe data is 82 01 01 11 93; the status bit is 11; if the door open feedback lock is used, the status bit is 00 after the lock is closed.

#### 2. Long power-on function:

This function is suitable for controlling the magnetic lock that is unlocked after power off, that is, the magnetic lock will be locked after the magnetic force is generated by the continuous power on; the magnetic lock will be unlocked after the power is off.

•The host computer sends the following data to turn on the long power-on:

| Command | Board   | Lock address   | Function | Check code |
|---------|---------|----------------|----------|------------|
| header  | address | 20011 01001000 | code     | /BCC       |
| 9A      | 01      | 01             | 11       | **         |

For example, the host computer sends: 9A 01 01 11 8B; it represents the number 1 lock plate Channel 1 performs long power-on operation; and uploads the feedback status of the channel.

•The host computer sends the following data to turn off the long boot:

|   | Command header | Board<br>address | Lock address | Function code | Check code<br>/BCC |
|---|----------------|------------------|--------------|---------------|--------------------|
| ĺ | 9B             | 01               | 01           | 11            | **                 |

For example, the host computer sends: 9B 01 01 11 8A; it represents the number 1 lock plate Channel 1 closes the long power-on operation; and uploads the feedback status of the channel.

<sup>·</sup>Note: The check code can be calculated by BCC check (exclusive OR check)

# 七、Modify the communication baud rate (default baud rate is 9600) The baud rate can be modified to: 9600, 19200, 38400, 57600, 115200

# 八、1~24 channel unlock commands corresponding to the 1st board Full open command: 8A 01 00 11 9A

| 8A 01 01 11 9B Open channel 1  | 8A 01 02 11 98 Open channel 2  |
|--------------------------------|--------------------------------|
| 8A 01 03 11 99 Open channel 3  | 8A 01 04 11 9E Open channel 4  |
| 8A 01 05 11 9F Open channel 5  | 8A 01 06 11 9C Open channel 6  |
| 8A 01 07 11 9D Open channel 7  | 8A 01 08 11 92 Open channel 8  |
| 8A 01 09 11 93 Open channel 9  | 8A 01 0A 11 90 Open channel 10 |
| 8A 01 0B 11 91 Open channel 11 | 8A 01 0C 11 96 Open channel 12 |
| 8A 01 0D 11 97 Open channel 13 | 8A 01 0E 11 94 Open channel 14 |
| 8A 01 0F 11 95 Open channel 15 | 8A 01 10 11 8A Open channel 16 |
| 8A 01 11 11 8B Open channel 17 | 8A 01 12 11 88 Open channel 18 |
| 8A 01 13 11 89 Open channel 19 | 8A 01 14 11 8E Open channel 20 |
| 8A 01 15 11 8F Open channel 21 | 8A 01 16 11 8C Open channel 22 |
| 8A 01 17 11 8D Open channel 23 | 8A 01 18 11 82 Open channel 24 |
|                                |                                |

# 九、1~24 channel query lock status command corresponding to No. 1 board Query all lock status commands: 80 01 00 33 B2

| 80 01 01 33 B3 Query channel 1  | 80 01 02 33 B0 Query channel 2  |
|---------------------------------|---------------------------------|
| 80 01 03 33 B1 Query channel 3  | 80 01 04 33 B6 Query channel 4  |
| 80 01 05 33 B7 Query channel 5  | 80 01 06 33 B4 Query channel 6  |
| 80 01 07 33 B5 Query channel 7  | 80 01 08 33 BA Query channel 8  |
| 80 01 09 33 BB Query channel 9  | 80 01 0A 33 B8 Query channel 10 |
| 80 01 0B 33 B9 Query channel 11 | 80 01 0C 33 BE Query channel 12 |
| 80 01 0D 33 BF Query channel 13 | 80 01 0E 33 BC Query channel 14 |
| 80 01 0F 33 BD Query channel 15 | 80 01 10 33 A2 Query channel 16 |
| 80 01 11 33 A3 Query channel 17 | 80 01 12 33 A0 Query channel 18 |
| 80 01 13 33 A1 Query channel 19 | 80 01 14 33 A6 Query channel 20 |
| 80 01 15 33 A7 Query channel 21 | 80 01 16 33 A4 Query channel 22 |
| 80 01 17 33 A5 Query channel 23 | 80 01 18 33 AA Query channel 24 |
|                                 |                                 |

# +, Address code switch setting

·No. 12345 switch respectively represents the number 1, 2, 4, 8, and 16; this number can be added together; you can set the address of the No. 1-31 board at most.



```
Verification method:
#include <stdio.h>
Use online tools to calculate the value of 485 input
unsigned char txbuff[6]=\{0x90,0x01,0x01,0x11,0x01,0x00\};
unsigned char CRC XOR(unsigned char *buff,unsigned char len)
unsigned char i;
unsigned char temp;
for(i=0; i<len; i++)
temp ^= buff[i];
return temp;
}
int main () {
unsigned char i,j;
for(i=0x00; i<0x19; i++)
txbuff[2] = i;
txbuff[5] = CRC_XOR(txbuff,5);
for(j=0; j<6; j++ )
if(txbuff[j]<0x10)
printf("0%x
",txbuff[j]);
else
printf("%x ",txbuff[j]);
printf("\n");
return 0;
```