

The University of Azad Jammu & Kashmir, Muzaffarabad

Computer Architecture & Logic Design

Lab 07: Encoder & Decoder

Student Name: Shahzad Ahmed Awan

Roll No: 2024-SE-15

Course Title: C&LD

Course Code: CS-1206

Instructor: Mam Sidra Rafique

Submission Date: 20-August-2025

Department of Software Engineering

LAB Objective

To design, simulate, and verify the working of:

- 1. A Digital Encoder
- 2. A Digital Decoder

using the Virtual Workbench tool, along with truth tables, circuit diagrams, and proper inputoutput verification.

IMPORTANCE IN DIGITAL SYSTEMS

- Data Conversion: Encoders and decoders enable transformation between humanreadable values and machine-level binary codes.
- Control Signal Generation: Essential in processors, memory addressing, multiplexing, and display systems.
- Foundational Circuits: Base building blocks for ALUs, I/O modules, communication systems, and instruction decoding.

Encoder

What is an Encoder?

An encoder is a combinational logic circuit that converts active input signals into a coded binary output. It has 2ⁿ input lines and n output lines, where only one input line is active at a time.

Logic Equations:

For an 8-to-3 encoder:

- $\bullet \quad A_2 = D_4 + D_5 + D_6 + D_7$
- $A_1 = D_2 + D_3 + D_6 + D_7$
- $\bullet \quad A_0 = D_1 + D_3 + D_5 + D_7$

Only one input should be HIGH at any time for correct encoding.

Block Diagram:

Implementations in EWB

TRUTH TABLE OF ENCODER (8 to 3)

\mathbf{D}_7	D ₆	D ₅	D ₄	D ₃	D ₂	$\mathbf{D_1}$	Do	A ₂	A ₁	Ao
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

2. Decoder

A Decoder is a combinational circuit that translates n-bit binary input into 2^n unique outputs. Each output represents one possible input combination and is activated when that binary code is received.

Logic Equations

For a 3-to-8 decoder:

$$Y_0=\overline{A}_2{\cdot}\overline{A}_1{\cdot}\overline{A}_0$$

$$Y_1 = \overline{A}_2 \cdot \overline{A}_1 \cdot A_0$$

$$Y_2 = \overline{A}_2 \cdot A_1 \cdot \overline{A}_0$$

$$Y_3 = \overline{A}_2 \cdot A_1 \cdot A_0$$

$$Y_4 = A_2 \cdot \overline{A}_1 \cdot \overline{A}_0$$

$$Y_5 = A_2\!\cdot\!\overline{A}_1\!\cdot\! A_0$$

$$Y_6 = A_2 \cdot A_1 \cdot \overline{A}_0$$

$$Y_7 = A_2 \cdot A_1 \cdot A_0$$

Block Diagram:

Implementation in EWB

Basic Gate Diagram

TRUTH TABLE OF Decoder (3 to 8)

A ₂	A_1	Ao	Y ₇	Y ₆	Y5	Y ₄	Y3	Y ₂	Yı	Yo
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0