Machine Learning

1. Introduction

List of contents

Introductory overview of:

- Real-world applications of Machine Learning (ML)
- Definitions of ML
- Types of ML
 - Unsupervised learning
 - Supervised learning
 - Linear models
 - Nonlinear models
- Model assessment and selection
- Introduction to Python programming

Real-world applications of machine learning

- ML involves "computer algorithms" that learn how to perform different tasks
 - Robotics
 - Board Games
 - Voice Recognition
 - Digit Recognition

Examples - Robotics

- ML is a fundamental part of robotics for enabling robots to perform -
 - household work ranging from cleaning, cooking, reading and scheduling tasks
 - Simultaneous Localization and Mapping (SLAM)
 - walking patterns of humanoid robots
 - finding routes for rescue robots

Examples - Board Games

one of the oldest applications of ML

 in March 2016, AlphaGo, the board-game-playing Al from Google's DeepMind played Korean Go

Champion Lee Sedol

AlphaGo won the game
 4 points to 1.

Examples - Voice Recognition

- benefited from advances in deep learning
- as well as big data
- Siri from Google uses
 - speech recognizer,
 - natural language processing
 - text-to-speech techniques

Examples - Digit Recognition

- The task of reading in the images of handwritten numbers and letters
- Recognise the digits
 - output the machine-encoded equivalent
- ML methods (SVM and Deep Learning) have hit
 >99% accuracy for this task

Definitions of ML

- "Field of study that gives computers the ability to learn without being explicitly programmed," (Samuel 1959)
- If not explicitly programmed can it learn to do things?
 How? Magic?
- "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E," (Mitchell 1997, p. 2)

Steps in ML

- How do we learn to perform a task?
 - have access to data from which we can learn (Data Manipulation)
 - find patterns or build the model (Analytics)
 - finally, evaluate the model and visualise results (Evaluation and Visualisation)

Data representation

Text data

- Without tools, it's difficult for humans to analyse and interpret larges volumes of data
- ML requires data to be described by attributes or parameters prior to learning a model

Data representation...

- Image data
 - build a system able to identify if a given image is from outdoors or not
 - needs to be represented in a vector of features
 - consider a image divided into 9×15=135 blocks
 - For these blocks we can compute Mean, Variance, radiant, other statistics
 - p features per block leads to
 - **135p** features per image
 - for n images, the size of Feature Matrix is 135p×n

ML Type - Unsupervised learning

- How do you find the underlying structure of a dataset which is unlabelled?
- Popular approaches Clustering (similaritybased)
 - the process of grouping similar points together
 - gives insight into underlying patterns of different groups

ML Type - Unsupervised learning...

- Common examples -
 - Data understanding and visualization
 - Anomaly detection
 - Information retrieval
 - Data compression (reduction)

ML Type - Supervised learning

- "Learn a function (model) from data to relate the inputs with outputs."
- In supervised learning, the training data includes output information (labels/targets)
- Target function: f:X→Y
- Examples: It is in the form of (x,y), denoted as (x1,y1), ..., (xn,yn)
- **Hypothesis** $g:X\to Y$ such that g(x)=f(x)
 - -x = set of attribute values
 - y = discrete label (classification), real valued number (regression)

ML Type - Supervised learning..

- Classification problem
 - with two classes, decision boundaries are a hypersurface that partitions data space into two sets
 - each of these sets represents one of the classes
 - linear vs non-linear decision boundary

ML Type - Supervised learning...

- Regression problem
 - to examine the relationship between response variables and one or more predictor variables

- examination can result in a hyperplane, representing

the regression analysis

- regression problem in 2 dimensions

Model assessment and adjustment

- Model evaluation
 - to determine if it will do a perfect job of predicting the labels on new and future test data
 - randomly split examples into a training set and test set
 - use training set to learn a model

evaluate the model using test set and a measurement (such as

accuracy of prediction)

- repeat for different random splits and average results
- more training data, more accuracy

Model assessment and adjustment...

- Model selection
 - how to find the BEST model (hypothesis)?
 - There are often many knobs (parameters and hyperparameters) that we can use to vary its fitness to the data
 - effective ways in which people approach this problem
 - look at averaged evaluation score on many random test sets
 - cross-validation (train using one set and test on the other, rotate them) etc.
 - be aware of *Over-fitting*

Thank You.