

周宇航

南京大学

模型训练

Question: 大模型训练有哪些方面的性能问题?

优化分类

Parallel

数据/流水线/张量/序列并行 自动并行: Alpa, ...

Computation

通算融合: T3, ... 显存管理: GMLake, ... 编译优化: Cocktailer, ...

<u>I/O</u>

CPU预处理: Pecan, ... Cache策略: UGACHE, ... 数据获取: Fastensor, ...

Communication

通信调度: Syndicate, ... 拓扑架构: TopoOpt, ... 集合通信: TCCL, ...

数据并行

- 数据并行会自动拆分训练数据,并将模型作业发送到多个 GPU。每个模型完成后,数据并行会累积梯度。
- FSDP 会将模型的所有参数、梯度和优化器状态分片到多个GPU上,并可以选择将分片后的模型参数卸载到 CPU 上。

模型并行

- 流水线并行:按模型layer层切分到不同设备,即层间并行
- 张量并行:将计算图中的层内的参数切分到不同设备,即层内并行

混合并行

DP+PP+TP

Figure 2: Combination of tensor and pipeline model parallelism (MP) used in this work for transformer-based models.

1/0优化

问题来源

- 随机访存
- CPU预处理
- 多线程并行效率低

解决方案

- 文件合并、数据压缩
- 缓存策略
- 多线程并行

计算优化

- Flash Attention
- 算子融合

通信优化

- NCCL等通信库
- 通信拓扑
- 计算通信并行

Thanks!

Q&A