Università degli studi di Verona Dipartimento di Informatica — Settore di Matematica Prova scritta di Algebra lineare — 6 luglio 2017 — Compito A

matricola		nome		cognome
Votazione:	TI	E1		
	T2	E2		
		E3		

T1) Si enunci il teorema nullità + rango e lo si applichi per dimostrare che, date le applicazioni lineari $f\colon U\to V$ e $g\colon V\to W$, si ha

$$\dim \operatorname{Im}(g \circ f) \leq \dim \operatorname{Im}(f) \qquad \text{e} \qquad \dim \operatorname{Im}(g \circ f) \leq \dim \operatorname{Im}(g)$$

T2) Si dia la definizione di H-trasposta e di rango di una matrice e si dimostri che, data la matrice A di forma $m \times n$, allora $rk(A^HA) = rk(A)$.

E1) Si consideri, al variare di $\alpha \in \mathbb{C}$, la matrice

$$\mathbf{A}_{\alpha} = \begin{bmatrix} 2 & -2 & 6 & 8 & 4 \\ 1-\alpha & \alpha-1 & 2-2\alpha & 3-3\alpha & 1-\alpha \\ 0 & 0 & 1 & 1 & 3\alpha-2 \\ 3 & -3 & 8 & 11 & \alpha+4 \end{bmatrix}.$$

Trovare, per ogni $\alpha \in \mathbb{C}$ la decomposizione LU oppure la P^TLU . Per $\alpha=1$ si trovino una base ortogonale di $C(\mathbf{A}_1)$ e una base ortogonale di $N(\mathbf{A}_1)$.

Interpretando \mathbf{A}_{α} come la matrice completa di un sistema lineare, per quali valori di α il sistema ha soluzione?

E2) Si dimostri che $\mathscr{B} = \{\mathbf{v}_1 = \mathbf{e}_2; \mathbf{v}_2 = \mathbf{e}_1 + \mathbf{e}_3; \mathbf{v}_3 = 2\mathbf{e}_1 + \mathbf{e}_3\}$ (\mathbf{e}_i sono i vettori della base canonica di \mathbb{C}^3) è una base di \mathbb{C}^3 . Si consideri poi l'unica applicazione lineare $f : \mathbb{C}^3 \to \mathbb{C}^3$ tale che

$$f(\mathbf{v}_1) = 2\mathbf{v}_1 - \mathbf{v}_3$$

 $f(\mathbf{v}_2) = \mathbf{v}_1 + \mathbf{v}_3$
 $f(\mathbf{v}_3) = 2\mathbf{v}_3$

(a) Si determini la matrice ${\bf B}$ associata a f rispetto alle basi canoniche.

(b) Si calcoli la dimensione dell'immagine di f.

(c) Si dica se la matrice B è diagonalizzabile.

(d) Si calcoli una base dello spazio nullo dell'applicazione lineare f.

E3) Si determini per quali valori del parametro $\beta \in \mathbb{C}$ la matrice

$$\mathbf{B}_{\beta} = \begin{bmatrix} 1 & 0 & 0 \\ -\beta & 2\beta - 3 & 2\beta - 6 \\ \beta & 3 - \beta & 6 - \beta \end{bmatrix}$$

è diagonalizzabile. Si dica per quali valori del parametro β esiste una base di \mathbb{C}^3 formata da autovettori di \mathbf{B}_{β} e la si determini.