Build a Personalized Online Course Recommender System with Machine Learning

NGOUMLA Denilson 29/03/2025

Outline

- Introduction and Background
- Exploratory Data Analysis
- Content-based Recommender System using Unsupervised Learning
- Collaborative-filtering based Recommender System using Supervised learning
- Conclusion
- Appendix

Introduction

Project Background and Context

Recommendation systems are essential for filtering and personalizing content across various domains (e-commerce, streaming, social media). This project aims to develop a recommendation system by exploring multiple approaches: collaborative filtering, content-based filtering, hybrid methods, and deep learning. The goal is to optimize the accuracy and relevance of recommendations based on user needs.

Problem Statement and Hypotheses

Problems:

- Data sparsity and cold start issues
- · Scalability and real-time performance
- Bias and lack of diversity in recommendations

Hypotheses:

- Hybrid approaches improve accuracy
- Deep learning provides better recommendations
- · Matrix factorization and graph-based methods reduce sparsity
- Dynamic personalization enhances user experience

Exploratory Data Analysis

Course counts per genre

Course enrollment distribution

20 most popular courses

	TITLE	Enrolls
0	python for data science	14936
1	introduction to data science	14477
2	big data 101	13291
3	hadoop 101	10599
4	data analysis with python	8303
5	data science methodology	7719
6	machine learning with python	7644
7	spark fundamentals i	7551
8	data science hands on with open source tools	7199
9	blockchain essentials	6719
10	data visualization with python	6709
11	deep learning 101	6323
12	build your own chatbot	5512
13	r for data science	5237
14	statistics 101	5015
15	introduction to cloud	4983
16	docker essentials a developer introduction	4480
17	sql and relational databases 101	3697
18	mapreduce and yarn	3670
19	data privacy fundamentals	3624

Word cloud of course titles

Content-based Recommender System using Unsupervised Learning

Flowchart of content-based recommender system using user profile and course genres

Evaluation results of user profile-based recommender system

score_threshold = 10.0

On average, how many new/unseen courses have been recommended per user (in the test user dataset)

```
res_df['SCORE'].mean()
```

18.62679972290352

What are the most frequently recommended courses? Return the top-10 commonly recommended courses across all users

excourse22	579
excourse62	579
DS0110EN	562
excourse65	555
excourse63	555
excourse72	551
excourse68	550
excourse67	539
excourse74	539
BD0145EN	506

Flowchart of content-based recommender system using course similarity

Evaluation results of course similarity based recommender system

Threshold = 0.6

On average, how many new/unseen courses have been recommended per user (in the test user dataset)

```
s = 0
for i in range(len(res_df['COURSE_ID'])):
    s+=len(res_df['COURSE_ID'].iloc[i])
avg = s/len(res_df['COURSE_ID'])
```

```
avg
11.377
```

What are the most frequently recommended courses? Return the top-10 commonly recommended courses

```
excourse22
              579
              579
excourse62
              562
DS0110EN
              555
excourse65
              555
excourse63
              551
excourse72
              550
excourse68
              539
excourse67
              539
excourse74
BD0145EN
              506
```

Flowchart of clustering-based recommender system

Evaluation results of clustering-based recommender system

Number of clusters = 20

On average, how many new/unseen courses have been recommended per user (in the test user dataset)

```
s = 0
for r in user_recommendations.value
    s+=r[1:].sum()
avg=s/len(user_recommendations)
print(avg)
5.733
```

What are the most frequently recommended courses? Return the top-10 commonly recommended courses

```
DS0103FN
               579
DA0101FN
               532
BD0111EN
               456
DS0101EN
               444
BD0101EN
               428
PY0101EN
               386
DS0105EN
               319
ML0101ENv3
               299
BC0101EN
               296
ML0115EN
               286
```

Collaborative-filtering Recommender System using Supervised Learning

Flowchart of KNN based recommender system

Flowchart of NMF based recommender system

Flowchart of Neural Network Embedding based recommender system

Compare the performance of collaborative-filtering models

Conclusions

- Similar performance of models
- User profile based has highest number of
- recommendations
- Stacking Classifier has best performance
- Similarity matrix's high complexity
- NMF as a solution

Appendix

A Neural Network Embedding-based Recommender System maps users and items into dense vectors, capturing hidden patterns. A neural network processes these embeddings to compute similarity or predict ratings. The system then ranks items and recommends the most relevant ones based on the predicted scores.