2. MEĐUISPIT IZ "ELEKTROMEHANIČKIH SUSTAVA"

1. U sklopu prikazanom na slici sklopka 5 zatvorena je 1 ms, a otvorena 3 ms. U za to predviđeni prostor nacrtajte valni oblik napona i struje induktiviteta (i_L, u_L). Izračunajte srednju snagu P koju izvor U_{B1} predaje izvoru U_{B2}. Izračunajte vršnu vrijednost struje induktiviteta I_{LM}. Rezultate upišite u predviđeni prostor! Poznati su sljedeći podaci: U_{B1} = 100 V, U_{B2} = 200 V, L = 2 mH.

2. Autonomni izmjenjivač s naponskim ulazom upravlja se tako da mu je u izlaznom naponu v_O uklonjen 3 harmonik. U predviđeni prostor nacrtajte valni oblik izlaznog napona v_O i skicirajte valni oblik izlazne struje i_O u ustaljenom stanju. Uz pretpostavku da se utjecaj strujnih harmonika od 5. naviše (uključujući 5.) može zanemariti, izračunajte efektivnu vrijednost I_{Orms} izlazne struje i srednju snagu na trošilu P_O ! Dobivene rezultate upišite u predviđeni prostor.

Poznati su sljedeći podaci: $U_B = 100 \text{ V}, R = 5 \Omega, L = 10 \text{ mH}, f_o = 83 \text{ Hz}$

$$I_{Orms} = 10.8 A$$
 $P_O = 583 W$

2. MEĐUISPIT IZ "ELEKTROMEHANIČKIH SUSTAVA"

3. Slika prikazuje usmjerivač u jednofaznom mosnom spoju opterećen jako induktivnim trošilom (RL) s protuelektromotornom silom E. Sve su komponente sklopa idealne, a struja trošila je kontinuirana i nevalovita. Usmjerivač radi u izmjenjivačkom načinu rada. Potrebno je odrediti kut upravljanja tiristora α takav da se dobije struja trošila $I_d = 20$ A. Izračunajte snagu P_d koju istosmjerni sustav predaje izmjeničnoj mreži! Za tako izračunati kut upravljanja α nacrtajte u za to predviđeno mjesto valne oblike napona i struje izmjeničnog izvora (u_s , i_s), napona i struje tiristora T1 (u_{T1} , i_{T1}), te napona i struje trošila (u_d , i_d)! Ukoliko ne znate izračunati potreban kut upravljanja, sami odaberite jedan kut upravljanja u izmjenjivačkom načinu rada (napišite koji ste kut odabrali), te ucrtajte odgovarajuće valne oblike.

Poznati su podaci sklopa:

- a) djelatni otpor trošila $R_d = 2 \Omega$
- b) iznos protuelektromotorne sile E = 130 V
- c) efektivna vrijednost izmjeničnog napona U_s = 220 V

Potreban kut upravljanja $\alpha = \frac{117^{\circ} \text{ d.}}{}$

Snaga istosmjernog sustava P_d = 1800 W

 (u_{T1}, i_{T1})

J.)
$$U_d = R_d \cdot I_d - E = 0.9 \cdot U_{Stms} \cdot \cos \alpha$$

$$\cos \alpha = \frac{R_d \cdot I_d - E}{0.9 \cdot U_{Stms}} = \frac{90}{198} \qquad \alpha = \arccos \left(-\frac{90}{198}\right)$$

$$\alpha = 117 \cdot al.$$

2.
$$\hat{V}_{4} = \frac{4 \cdot U_{B}}{\pi} \cdot \cos \delta = \frac{4 \cdot 100}{\pi} \cdot \cos 30^{\circ} = 140,3 \text{ V}$$

$$V_{1 \text{rms}} = 78 \text{ V}$$

$$I_{4 \text{rms}} = \frac{V_{4 \text{rms}}}{\sqrt{(\omega L)^{2} + R^{2}}} = \frac{78}{7,22} = 10,8 \text{ A}$$

$$P = I_{4 \text{rms}}^{2} \cdot R = 10,8^{2} \cdot 5 = 583 \text{ W}$$

1.
$$I_{LM} = \frac{U_{B1}}{L} \cdot \Delta t = 50 \, A$$
 $I_{L(\Delta V)} = I_{B4(\Delta V)} = 12.5 \, A$

$$P = P_{B4} = U_{B4} \cdot I_{L(\Delta V)} = 100 \cdot 12.5 = 1250 \, W$$

$$P = P_{B2} = U_{B2} \cdot I_{B2(\Delta V)} = 200 \cdot 6.25 = 1250 \, W$$

$$I_{L(\Delta V)} = I_{B4(\Delta V$$

!! Ne može računati preko akumulirane energije W_L, jer se osim akumulirane energije u L, izvoru U_{BZ} predaje još i izravno energije iz U_{B1}.