# **TEST REPORT**

Reference No. ..... : WTS16S1063223-2E V1

FCC ID ..... : 2AEHF-BLASTDJ

Applicant.....: NOBUX, LLC

Address.....: 8600 NW SOUTH RIVER DR #103 MIAMI, FLORIDA, United States

Manufacturer ..... : NOBUX, LLC

Address ......: 8600 NW SOUTH RIVER DR #103 MIAMI, FLORIDA, United States

Product Name ..... : Mobile Phone

Model No. ..... : BLAST DJ

Brand.....: NOBUX

Standards..... FCC CFR47 Part 22 Subpart H: 2015 FCC CFR47 Part 24 Subpart E: 2015

Date of Receipt sample .... : Oct. 20, 2016

Date of Test ...... : Oct. 21 –Nov. 04, 2016

**Date of Issue**..... : Nov. 14, 2016

Test Result..... : Pass

#### Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

#### Prepared By:

#### Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Zero Zhou / Test Engineer

de Ze

oved by:

Philo Zhong / Manager

#### 2 Laboratories Introduction

Waltek Services Test Group Ltd is a professional third-party testing and certification organization with multi-year product testing and certification experience, established strictly in accordance with ISO/IEC 17025 requirements, and accredited by CNAS (China National Accreditation Service for Conformity Assessment) AQSIQ, CMA and IECEE for CBTL. Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC(The Federal Communications Commission), CPSC(Consumer Product Safety Commission), CEC(California energy efficiency), IC(Industry Canada) and ELI(Efficient Lighting Initiative). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as UL, Intertek(ETL-SEMKO), CSA, TÜV Rheinland, TÜV SÜD, etc.



Waltek Services Test Group Ltd. is one of the largest and the most comprehensive third party testing organizations in China, our headquarter located in Shenzhen and have branches in Foshan, Dongguan, Zhongshan, Suzhou,Ningbo and Hong Kong, Our test capability covered four large fields: safety test. ElectroMagnetic Compatibility(EMC), reliablity and energy performance, Chemical test. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

## 3 Contents

|    |                                                                       | Page   |
|----|-----------------------------------------------------------------------|--------|
| 1  | COVER PAGE                                                            | 1      |
| 2  | LABORATORIES INTRODUCTION                                             | 2      |
| 3  | CONTENTS                                                              | 3      |
| 4  | REVISION HISTORY                                                      | 5      |
| 5  | GENERAL INFORMATION                                                   | 6      |
|    | 5.1 GENERAL DESCRIPTION OF E.U.T. 5.2 DETAILS OF E.U.T. 5.3 TEST MODE | 6<br>7 |
| 6  | 5.4 Test Facility  TEST SUMMARY                                       |        |
|    | EQUIPMENT USED DURING TEST                                            |        |
| 7  |                                                                       |        |
|    | 7.1 EQUIPMENTS LIST                                                   | 10     |
| 8  | RF OUTPUT POWER                                                       | 11     |
|    | 8.1 EUT OPERATION                                                     | 11     |
| 9  | PEAK-TO-AVERAGE RATIO                                                 | 15     |
|    | 9.1 EUT OPERATION                                                     | 15     |
| 10 | BANDWIDTH                                                             |        |
|    | 10.1 EUT OPERATION                                                    | 17     |
| 11 |                                                                       |        |
|    | 11.1 EUT OPERATION                                                    | 21     |
| 12 | SPURIOUS RADIATED EMISSIONS                                           | 26     |
|    | 12.1 EUT OPERATION                                                    |        |
| 13 | BAND EDGE MEASUREMENT                                                 | 30     |
|    | 13.1 EUT OPERATION                                                    | 30     |
| 14 | FREQUENCY STABILITY                                                   | 35     |
|    | 14.1 EUT OPERATION                                                    | 35     |
|    | 14.2 Teet Procedure                                                   | 25     |

## Reference No.: WTS16S1063223-2E V1 Page 4 of 39

|    | 14.3  | TEST RESULT                   | 36 |
|----|-------|-------------------------------|----|
| 15 | RF EX | POSURE                        | 38 |
| 16 | PHOT  | OGRAPHS OF TEST SETUP AND EUT | 39 |

Reference No.: WTS16S1063223-2E V1 Page 5 of 39

# 4 Revision History

| Test report No.         | Date of<br>Receipt<br>sample | Date of Test                  | Date of Issue    | Purpose   | Comment | Approved |
|-------------------------|------------------------------|-------------------------------|------------------|-----------|---------|----------|
| WTS16S1063223-<br>2E    | Oct. 20, 2016                | Oct. 21 –<br>Nov. 04,<br>2016 | Nov. 07,<br>2016 | original  | -       | Replaced |
| WTS16S1063223-<br>2E V1 | Oct. 20, 2016                | Oct. 21 –<br>Nov. 04,<br>2016 | Nov. 14,<br>2016 | Version 1 | -       | Valid    |

Reference No.: WTS16S1063223-2E V1 Page 6 of 39

#### 5 General Information

## 5.1 General Description of E.U.T.

Product Name: Mobile Phone

Model No.: BLAST DJ

Model Description: N/A

GSM Band(s): GSM 850/900/1800/1900MHz

GPRS Class: 12

WCDMA Band(s): N/A

LTE Band(s): N/A

Wi-Fi Specification: N/A

Bluetooth Version: Bluetooth v3.0+EDR

GPS: N/A

Hardware Version: SC6531\_BAR

Software Version: X506\_TC\_TCX506E-e-

omes\_P02\_M\_EZFM\_128X160\_ENG\_SPA\_2016083011

Highest frequency

26MHz

(Exclude Radio):

Storage Location: Internal Storage

This EUT has two SIM card slots, and use same one RF module. We

found that RF parameters are the same, when we insert the card 1 and

card 2. So we usually performed the test under main card slot 1.

#### 5.2 Details of E.U.T.

Note:

Operation Frequency: GSM/GPRS 850: 824~849MHz

PCS/GPRS 1900: 1850~1910MHz

Bluetooth: 2402~2480MHz

Max. RF output power: GSM 850: 32.62dBm

PCS1900: 29.95dBm

Bluetooth: 3.05dBm

Type of Modulation: GSM,GPRS: GMSK

Bluetooth: GFSK, Pi/4 DQPSK, 8DPSK

Antenna installation: GSM: internal permanent antenna

Bluetooth: internal permanent antenna

Antenna Gain : GSM 850: 1.0dBi

PCS1900: 0.8dBi

Bluetooth: 0.5dBi

Technical Data: Battery DC 3.7V, 800mAh

DC 5V, 0.5A, charging from adapter (Adapter Input: 110-240V~50/60Hz 0.12A)

Waltek Services (Shenzhen) Co.,Ltd.

http://www.waltek.com.cn

Reference No.: WTS16S1063223-2E V1 Page 7 of 39

> Adapter: Manufacture: Shenzhen ZhengHengda Technology Co. Ltd.

> > Model No.: M1

Type of Emission: GSM850: 250KGXW, GPRS850: 242KGXW,

PCS1900: 247KGXW, GPRS1900: 244KGXW,

#### **Test Mode** 5.3

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

| Support Band       | Test Mode                         | Channel Frequency | Channel Number |
|--------------------|-----------------------------------|-------------------|----------------|
|                    |                                   | 824.2 MHz         | 128            |
| GSM 850            | GSM/GPRS                          | 836.6 MHz         | 190            |
|                    |                                   | 848.8 MHz         | 251            |
|                    |                                   | 1850.2 MHz        | 512            |
| PCS 1900           | GSM/GPRS                          | 1880.0 MHz        | 661            |
|                    |                                   | 1909.8 MHz        | 810            |
| Remark: All mode(s | s) were tested and the worst data | was recorded.     |                |

#### 5.4 Test Facility

The test facility has a test site registered with the following organizations:

#### IC - Registration No.: 7760A

Waltek Services(Shenzhen) Co., Ltd. Has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration number 7760A, October 15, 2015.

#### FCC Test Site 1#- Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

#### FCC Test Site 2#- Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

Reference No.: WTS16S1063223-2E V1 Page 8 of 39

# 6 Test Summary

| Test Items                             | Test Requirement                        | Result |  |  |
|----------------------------------------|-----------------------------------------|--------|--|--|
|                                        | 2.1046                                  |        |  |  |
| RF Output Power                        | 22.913 (a)                              | PASS   |  |  |
|                                        | 24.232 (c)                              |        |  |  |
| Peak-to-Average Ratio                  | 24.232 (d)                              | PASS   |  |  |
|                                        | 2.1049                                  |        |  |  |
| Bandwidth                              | 22.905                                  | PASS   |  |  |
| Baridwidti                             | 22.917                                  | PASS   |  |  |
|                                        | 24.238                                  |        |  |  |
|                                        | 2.1051                                  |        |  |  |
| Spurious Emissions at Antenna Terminal | missions at Antenna Terminal 22.917 (a) |        |  |  |
|                                        | 24.238 (a)                              |        |  |  |
|                                        | 2.1053                                  |        |  |  |
| Field Strength of Spurious Radiation   | 22.917 (a)                              | PASS   |  |  |
|                                        | 24.238 (a)                              |        |  |  |
| Out of hand omission, Rand Edge        | 22.917 (a)                              | PASS   |  |  |
| Out of band emission, Band Edge        | 24.238 (a)                              | PASS   |  |  |
|                                        | 2.1055                                  |        |  |  |
| Frequency Stability                    | 22.355                                  | PASS   |  |  |
|                                        | 24.235                                  |        |  |  |
| Maximum Permissible Exposure           | 1.1307                                  | DACC   |  |  |
| (SAR)                                  | 2.1093                                  | PASS   |  |  |

# 7 Equipment Used during Test

# 7.1 Equipments List

| Condu  | cted Emissions Test                        |                         |                 |                     |                             |                         |  |  |  |  |  |  |  |
|--------|--------------------------------------------|-------------------------|-----------------|---------------------|-----------------------------|-------------------------|--|--|--|--|--|--|--|
| Item   | Equipment                                  | Manufacturer            | Model No.       | Serial No.          | Last<br>Calibration<br>Date | Calibration<br>Due Date |  |  |  |  |  |  |  |
| 1.     | EMI Test Receiver                          | R&S                     | ESCI            | 100947              | Sep.12,2016                 | Sep.11,2017             |  |  |  |  |  |  |  |
| 2.     | LISN                                       | R&S                     | ENV216          | 101215              | Sep.12,2016                 | Sep.11,2017             |  |  |  |  |  |  |  |
| 3.     | Cable                                      | Тор                     | TYPE16(3.5M)    | -                   | Sep.12,2016                 | Sep.11,2017             |  |  |  |  |  |  |  |
| 4      | Universal Radio<br>Communication<br>Tester | R&S                     | CMU 200         | 112461              | Apr.13,2016                 | Apr.12,2017             |  |  |  |  |  |  |  |
| Condu  | Conducted Emissions Test Site 2#           |                         |                 |                     |                             |                         |  |  |  |  |  |  |  |
| Item   | Equipment                                  | Manufacturer            | Model No.       | Serial No.          | Last<br>Calibration<br>Date | Calibration<br>Due Date |  |  |  |  |  |  |  |
| 1.     | EMI Test Receiver                          | R&S                     | ESCI            | 101155              | Sep.12,2016                 | Sep.11,2017             |  |  |  |  |  |  |  |
| 2.     | LISN                                       | SCHWARZBECK             | NSLK 8128       | 8128-289            | Sep.12,2016                 | Sep.11,2017             |  |  |  |  |  |  |  |
| 3.     | Limiter                                    | York                    | MTS-IMP-136     | 261115-001-<br>0024 | Sep.12,2016                 | Sep.11,2017             |  |  |  |  |  |  |  |
| 4.     | Cable                                      | LARGE                   | RF300           | -                   | Sep.12,2016                 | Sep.11,2017             |  |  |  |  |  |  |  |
| 5      | Universal Radio<br>Communication<br>Tester | R&S                     | CMU 200         | 112461              | Apr.13,2016                 | Apr.12,2017             |  |  |  |  |  |  |  |
| 3m Ser | mi-anechoic Chamber                        | for Radiation Emis      | sions Test site | 1#                  |                             |                         |  |  |  |  |  |  |  |
| Item   | Equipment                                  | Manufacturer            | Model No.       | Serial No.          | Last<br>Calibration<br>Date | Calibration<br>Due Date |  |  |  |  |  |  |  |
| 1      | Spectrum Analyzer                          | R&S                     | FSP             | 100091              | Apr.29, 2016                | Apr.28, 2017            |  |  |  |  |  |  |  |
| 2      | Active Loop Antenna                        | Beijing Dazhi           | ZN30900A        | -                   | Apr.09,2016                 | Apr.08,2017             |  |  |  |  |  |  |  |
| 3      | Trilog Broadband<br>Antenna                | SCHWARZBECK             | VULB9163        | 336                 | Apr.09,2016                 | Apr.08,2017             |  |  |  |  |  |  |  |
| 4      | Coaxial Cable<br>(below 1GHz)              | Тор                     | TYPE16(13M)     | -                   | Sep.12,2016                 | Sep.11,2017             |  |  |  |  |  |  |  |
| 5      | Broad-band Horn<br>Antenna                 | SCHWARZBECK             | BBHA 9120 D     | 667                 | Apr.09,2016                 | Apr.08,2017             |  |  |  |  |  |  |  |
| 6      | Broad-band Horn<br>Antenna                 | SCHWARZBECK             | BBHA 9170       | 335                 | Apr.09,2016                 | Apr.08,2017             |  |  |  |  |  |  |  |
| 7      | Broadband<br>Preamplifier                  | COMPLIANCE<br>DIRECTION | PAP-1G18        | 2004                | Apr.13,2016                 | Apr.12,2017             |  |  |  |  |  |  |  |
| 8      | Coaxial Cable<br>(above 1GHz)              | Тор                     | 1GHz-25GHz      | EW02014-7           | Apr.13,2016                 | Apr.12,2017             |  |  |  |  |  |  |  |
| 9      | Universal Radio<br>Communication<br>Tester | R&S                     | CMU 200         | 112461              | Apr.13,2016                 | Apr.12,2017             |  |  |  |  |  |  |  |
| 10     | Signal Generator                           | R&S                     | SMR20           | 100046              | Sep.12,2016                 | Sep.11,2017             |  |  |  |  |  |  |  |
|        |                                            |                         |                 |                     |                             |                         |  |  |  |  |  |  |  |

| 3m Ser | mi-anechoic Chamber                        | for Radiation Emis               | sions Test site | 2#         |                             |                         |
|--------|--------------------------------------------|----------------------------------|-----------------|------------|-----------------------------|-------------------------|
| Item   | Equipment                                  | Manufacturer                     | Model No.       | Serial No  | Last<br>Calibration<br>Date | Calibration<br>Due Date |
| 1      | Test Receiver                              | R&S                              | ESCI            | 101296     | Apr.13,2016                 | Apr.12,2017             |
| 2      | Trilog Broadband<br>Antenna                | SCHWARZBECK                      | VULB9160        | 9160-3325  | Apr.09,2016                 | Apr.08,2017             |
| 3      | Amplifier                                  | Compliance pirection systems inc | PAP-0203        | 22024      | Apr.13,2016                 | Apr.12,2017             |
| 4      | 4 Cable HUBER+SUHNER                       |                                  | CBL2            | 525178     | Apr.13,2016                 | Apr.12,2017             |
| RF Cor | nducted Testing                            |                                  |                 |            |                             |                         |
| Item   | Equipment                                  | Manufacturer                     | Model No.       | Serial No. | Last<br>Calibration<br>Date | Calibration<br>Due Date |
| 1.     | EMC Analyzer<br>(9k~26.5GHz)               | Agilent                          | E7405A          | MY45114943 | Sep.12,2016                 | Sep.11,2017             |
| 2.     | Spectrum Analyzer (9k-6GHz)                | R&S                              | FSL6            | 100959     | Sep.12,2016                 | Sep.11,2017             |
| 3.     | Universal Radio<br>Communication<br>Tester | R&S                              | CMU 200         | 112461     | Apr.13,2016                 | Apr.12,2017             |
| 4      | Signal Analyzer<br>(9k~26.5GHz)            | Agilent                          | N9010A          | MY50520207 | Sep.12,2016                 | Sep.11,2017             |

## 7.2 Measurement Uncertainty

| Parameter                               | Uncertainty                             |
|-----------------------------------------|-----------------------------------------|
| Radio Frequency                         | ± 1 x 10 <sup>-6</sup>                  |
| RF Power                                | ± 1.0 dB                                |
| RF Power Density                        | ± 2.2 dB                                |
| Dedicted Courieus Emissions tost        | ± 5.03 dB (Bilog antenna 30M~1000MHz)   |
| Radiated Spurious Emissions test        | ± 5.47 dB (Horn antenna 1000M~25000MHz) |
| Conducted Emissions test                | ± 3.64 dB (AC mains 150KHz~30MHz)       |
| Confidence interval: 95%. Confidence fa | actor:k=2                               |

## 7.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS16S1063223-2E V1 Page 11 of 39

## **8 RF OUTPUT POWER**

Test Requirement: FCC Part 2.1046,22.913 (a),24.232 (c)

Test Method: TIA/EIA-603-D:2010

KDB971168 D01 v02r02

Test Mode: TX transmitting

#### 8.1 EUT Operation

Operating Environment:

Temperature: 22.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

#### 8.2 Test Procedure

Conducted method:

The RF output of the transmitter was connected to the wireless test set and the spectrum analyzer through sufficient attenuation.



#### Radiated method:

- 1. The setup of EUT is according with per TIA/EIA Standard 603D.
- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- 4. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Reference No.: WTS16S1063223-2E V1 Page 12 of 39

## 8.3 Test Result

## **Conducted Power**

| GSM - Burst Average Power (dBm) |       |        |       |        |         |        |  |  |  |  |  |  |  |
|---------------------------------|-------|--------|-------|--------|---------|--------|--|--|--|--|--|--|--|
| Band                            |       | GSM850 |       |        | PCS1900 |        |  |  |  |  |  |  |  |
| Channel                         | 128   | 190    | 251   | 512    | 661     | 810    |  |  |  |  |  |  |  |
| Frequency (MHz)                 | 824.2 | 836.6  | 848.8 | 1850.2 | 1880    | 1909.8 |  |  |  |  |  |  |  |
| GSM                             | 32.59 | 32.51  | 32.35 | 29.31  | 29.62   | 29.91  |  |  |  |  |  |  |  |
| GPRS (1 slot)                   | 32.62 | 32.57  | 32.38 | 29.26  | 29.62   | 29.95  |  |  |  |  |  |  |  |
| GPRS (2 slots)                  | 31.78 | 31.94  | 31.27 | 28.47  | 28.59   | 28.67  |  |  |  |  |  |  |  |
| GPRS (3 slots)                  | 30.18 | 30.57  | 30.18 | 27.45  | 27.29   | 27.31  |  |  |  |  |  |  |  |
| GPRS (4 slots)                  | 29.65 | 29.50  | 29.31 | 26.09  | 26.47   | 26.37  |  |  |  |  |  |  |  |

#### **Radiated Power**

#### ERP and EIRP

Cellular Band 850 (Part 22H)

| Celiulai Bariu 000 (Part 22H) |                     |                |        |        |             |           |                 |          |       |        |  |  |
|-------------------------------|---------------------|----------------|--------|--------|-------------|-----------|-----------------|----------|-------|--------|--|--|
| <b></b>                       | Receiver            | Turn           | RX An  | tenna  | :           | Substitut | ed              | Absolute | Part  | :22H   |  |  |
| Frequency                     | Reading             | table<br>Angle | Height | Polar  | SG<br>Level | Cable     | Antenna<br>Gain | Level    | Limit | Margin |  |  |
| (MHz)                         | (dBµV)              | Degree         | (m)    | (H/V)  | (dBm)       | (dB)      | (dB)            | (dBm)    | (dBm) | (dB)   |  |  |
|                               | GSM 850 Channel 128 |                |        |        |             |           |                 |          |       |        |  |  |
| 824.20                        | 93.31               | 200            | 1.7    | Н      | 26.28       | 0.20      | 0.00            | 26.08    | 38.45 | -12.37 |  |  |
| 824.20                        | 97.12               | 138            | 2.1    | V      | 30.02       | 0.20      | 0.00            | 29.82    | 38.45 | -8.63  |  |  |
|                               |                     |                | (      | GSM 85 | 0 Chann     | el 190    |                 |          |       |        |  |  |
| 836.60                        | 90.19               | 234            | 1.3    | Н      | 23.16       | 0.20      | 0.00            | 22.96    | 38.45 | -15.49 |  |  |
| 836.60                        | 97.39               | 301            | 2.0    | V      | 30.29       | 0.20      | 0.00            | 30.09    | 38.45 | -8.36  |  |  |
|                               |                     |                | (      | GSM 85 | 0 Chann     | el 251    |                 |          |       |        |  |  |
| 848.80                        | 91.59               | 260            | 1.9    | Н      | 24.56       | 0.20      | 0.00            | 24.36    | 38.45 | -14.09 |  |  |
| 848.80                        | 97.13               | 170            | 2.4    | V      | 30.03       | 0.20      | 0.00            | 29.83    | 38.45 | -8.62  |  |  |
|                               |                     |                | (      | PRS 85 | 0 Chanr     | nel 128   |                 |          | T     |        |  |  |
| 824.20                        | 90.91               | 265            | 2.4    | Н      | 23.88       | 0.20      | 0.00            | 23.68    | 38.45 | -14.77 |  |  |
| 824.20                        | 97.13               | 122            | 1.1    | V      | 30.03       | 0.20      | 0.00            | 29.83    | 38.45 | -8.62  |  |  |
|                               |                     |                | (      | PRS 85 | 0 Chanr     | nel 190   |                 |          | T     |        |  |  |
| 836.60                        | 92.38               | 272            | 1.3    | Н      | 25.35       | 0.20      | 0.00            | 25.15    | 38.45 | -13.30 |  |  |
| 836.60                        | 97.57               | 70             | 1.2    | V      | 30.47       | 0.20      | 0.00            | 30.27    | 38.45 | -8.18  |  |  |
|                               |                     |                | C      | PRS 85 | 50 Chanr    | nel 251   |                 |          | T     |        |  |  |
| 848.80                        | 90.68               | 254            | 1.4    | Н      | 23.65       | 0.20      | 0.00            | 23.45    | 38.45 | -15.00 |  |  |
| 848.80                        | 97.81               | 186            | 2.2    | V      | 30.71       | 0.20      | 0.00            | 30.51    | 38.45 | -7.94  |  |  |

Cellular Band 1900 (Part 24E)

| _                    | Receiver |                | RX An  |         | 1900 (      | Substitut | <u>,                                      </u> | Absolute     | Part  | : 22H  |  |
|----------------------|----------|----------------|--------|---------|-------------|-----------|------------------------------------------------|--------------|-------|--------|--|
| Frequency            | Reading  | table<br>Angle | Height | Polar   | SG<br>Level | Cable     | Antenna<br>Gain                                | Level        | Limit | Margin |  |
| (MHz)                | (dBµV)   | Degree         | (m)    | (H/V)   | (dBm)       | (dB)      | (dB)                                           | (dBm)        | (dBm) | (dB)   |  |
| PCS 1900 Channel 512 |          |                |        |         |             |           |                                                |              |       |        |  |
| 1850.20              | 84.89    | 56             | 2.2    | Н       | 10.92       | 0.31      | 10.40                                          | 21.01        | 33    | -11.99 |  |
| 1850.20              | 92.93    | 36             | 1.2    | V       | 19.65       | 0.31      | 10.40                                          | 29.74        | 33    | -3.26  |  |
|                      |          |                | F      | PCS 190 | 0 Chann     | el 661    | <del>,</del>                                   | ·            |       |        |  |
| 1880.00              | 86.18    | 287            | 1.1    | Н       | 12.33       | 0.31      | 10.40                                          | 22.42        | 33    | -10.58 |  |
| 1880.00              | 92.10    | 355            | 1.5    | V       | 18.98       | 0.31      | 10.40                                          | 29.07        | 33    | -3.93  |  |
|                      |          |                | F      | PCS 190 | 0 Chann     | el 810    | <del>,</del>                                   | ·            |       |        |  |
| 1909.80              | 87.19    | 11             | 2.0    | Н       | 13.46       | 0.32      | 10.40                                          | 23.54        | 33    | -9.46  |  |
| 1909.80              | 92.96    | 121            | 2.3    | V       | 20.00       | 0.32      | 10.40                                          | 30.08        | 33    | -2.92  |  |
|                      |          |                | G      | PRS 19  | 00 Chan     | nel 512   |                                                | T            | T     |        |  |
| 1850.20              | 84.28    | 147            | 2.4    | Н       | 10.31       | 0.31      | 10.40                                          | 20.40        | 33    | -12.60 |  |
| 1850.20              | 92.34    | 111            | 1.3    | V       | 19.06       | 0.31      | 10.40                                          | 29.15        | 33    | -3.85  |  |
|                      |          |                | G      | PRS 19  | 00 Chan     | nel 661   |                                                |              |       |        |  |
| 1880.00              | 84.96    | 299            | 2.1    | Н       | 11.11       | 0.31      | 10.40                                          | 21.20        | 33    | -11.80 |  |
| 1880.00              | 92.57    | 19             | 2.0    | V       | 19.45       | 0.31      | 10.40                                          | 29.54        | 33    | -3.46  |  |
|                      |          |                | G      | PRS 19  | 00 Chan     | nel 810   | <del>,</del>                                   | <del>,</del> |       |        |  |
| 1909.80              | 86.55    | 141            | 1.0    | Н       | 12.82       | 0.32      | 10.40                                          | 22.90        | 33    | -10.10 |  |
| 1909.80              | 92.57    | 104            | 1.3    | V       | 19.61       | 0.32      | 10.40                                          | 29.69        | 33    | -3.31  |  |

Reference No.: WTS16S1063223-2E V1 Page 15 of 39

## 9 Peak-to-Average Ratio

Test Requirement: 24.232 (d)

Test Method: N/A

Test Mode: TX transmitting

## 9.1 EUT Operation

Operating Environment:

Temperature: 22.5 °C
Humidity: 52.3% RH
Atmospheric Pressure: 101.2kPa

#### 9.2 Test Procedure

1. The EUT was connected to spectrum analyzer and system simulator via a power divider.

- 2. Set EUT to transmit at maximum output power.
- 3. When the duty cycle is less than 98%, then signal gating will be implemented on the spectrum analyzer by triggering from the system simulator.
- 4. Set the CCDF (Complementary Cumulative Distribution Function) option of the spectrum analyzer. Record the maximum PAPR level associated with a probability of 0.1%.



#### 9.3 Test Result

Cellular Band (Part 24E)

Remark: Only the worst case (middle channel mode) were reported.

| Mode                          |        | PCS 1900 |        | O      | SPRS 190 | 0      |       |
|-------------------------------|--------|----------|--------|--------|----------|--------|-------|
| Channel                       | 512    | 661      | 810    | 512    | 661      | 810    | Limit |
| Frequency<br>(MHz)            | 1850.2 | 1880.0   | 1909.8 | 1850.2 | 1880.0   | 1909.8 | (dB)  |
| Peak-to-Average<br>Ratio (dB) | 9.08   | 9.15     | 9.12   | 9.06   | 9.10     | 9.03   | 13    |

Test Plots (Part 24E)

#### PCS1900 Middle Channel



GPRS 1900 Middle Channel



Reference No.: WTS16S1063223-2E V1 Page 17 of 39

#### 10 BANDWIDTH

Test Requirement: FCC Part 2.1049,22.917,22.905,24.238

Test Method: TIA/EIA-603-D:2010

KDB971168 D01 v02r02

Test Mode: TX transmitting

## 10.1 EUT Operation

Operating Environment:

Temperature:  $22.5 \, ^{\circ}\text{C}$  Humidity:  $52.3\% \, \text{RH}$  Atmospheric Pressure:  $101.2 \, \text{kPa}$ 

#### 10.2 Test Procedure

The RF output of the transmitter was connected to the wireless test set and the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 3 kHz (Cellular /PCS) and the 26 dB & 99%bandwidth was recorded.



## 10.3 Test Result

Remark: Only the worst case (middle channel mode) were reported.

## Cellular Band (Part 22H)

| Test Mode | Channel | Frequency<br>(MHz) | 99% Occupied Bandwidth(kHz) | 26 dB Emission<br>Bandwidth(kHz) |
|-----------|---------|--------------------|-----------------------------|----------------------------------|
|           | 128     | 824.2              | 250.43                      | 298.32                           |
| GSM 850   | 190     | 836.6              | 250.46                      | 298.40                           |
|           | 251     | 848.8              | 250.44                      | 298.36                           |
|           | 128     | 824.2              | 241.83                      | 311.25                           |
| GPRS 850  | 190     | 836.6              | 241.94                      | 311.30                           |
|           | 251     | 848.8              | 241.94                      | 311.23                           |

#### Cellular Band (Part 24E)

| Test Mode | Channel | Frequency<br>(MHz) | 99% Occupied Bandwidth(kHz) | 26 dB Emission<br>Bandwidth(kHz) |
|-----------|---------|--------------------|-----------------------------|----------------------------------|
|           | 512     | 1850.2             | 246.83                      | 311.58                           |
| PCS 1900  | 661     | 1880.0             | 246.92                      | 311.70                           |
|           | 810     | 1909.8             | 246.84                      | 311.68                           |
|           | 512     | 1850.2             | 244.09                      | 314.49                           |
| GPRS 1900 | 661     | 1880.0             | 244.25                      | 314.50                           |
|           | 810     | 1909.8             | 244.19                      | 314.45                           |

# Test Plots (worst case) Cellular Band (Part 22H)

#### **GSM 850**



#### **GPRS 850**



## Cellular Band (Part 24E)

#### PCS 1900



#### **GPRS 1900**



Reference No.: WTS16S1063223-2E V1 Page 21 of 39

## 11 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Test Requirement: FCC Part 2.1051,22.917(a),24.238(a)

Test Method: TIA/EIA-603-D:2010

KDB971168 D01 v02r02

Test Mode: TX transmitting

## 11.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.3kPa

#### 11.2 Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonics.



#### 11.3 Test Result

Remark: only the worst data were recorded.

Cellular Band (Part 22H)

GSM 850 - channel 128

30MHz-1GHz

Fundamental





Cellular Band (Part 22H) GPRS 850 - channel 128



Fundamental

# Above 1GHz



# Cellular Band (Part 24E) PCS 1900 - channel 512





Cellular Band (Part 24E) GPRS 1900 - channel 512





Reference No.: WTS16S1063223-2E V1 Page 26 of 39

#### 12 SPURIOUS RADIATED EMISSIONS

Test Requirement: FCC Part 2.1053,22.917,24.238

Test Method: TIA/EIA-603-D:2010

KDB971168 D01 v02r02

Test Mode: TX transmitting

## 12.1 EUT Operation

Operating Environment:

Temperature:  $23.5 \, ^{\circ}\text{C}$  Humidity:  $52.1 \, ^{\circ}\text{RH}$  Atmospheric Pressure: 101.2kPa

## 12.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site. The test setup for emission measurement from 30 MHz to 1 GHz.





The test setup for emission measurement above 1 GHz.

## 12.3 Spectrum Analyzer Setup

| 30MHz ~ 1GH | Z                    |         |
|-------------|----------------------|---------|
|             | Sweep Speed          | . Auto  |
|             | Detector             | .PK     |
|             | Resolution Bandwidth | .100kHz |
|             | Video Bandwidth      | .300kHz |
| Above 1GHz  |                      |         |
|             | Sweep Speed          | . Auto  |
|             | Detector             | .PK     |
|             | Resolution Bandwidth | .1MHz   |
|             | Video Bandwidth      | .3MHz   |
|             | Detector             | .Ave.   |
|             | Resolution Bandwidth | .1MHz   |
|             | Video Bandwidth      | .10Hz   |

Reference No.: WTS16S1063223-2E V1 Page 28 of 39

#### 12.4 Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from 30MHz up to the tenth harmonic of the highest fundamental frequency.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the Z position. So the data shown was the Z position only.
- 7. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.
  - Spurious emissions in dB =  $10 \log (TXpwr in Watts/0.001)$  the absolute level Spurious attenuation limit in dB =  $43 + 10 \log 10$  (power out in Watts)
- 8. Repeat above procedures until the measurements for all frequencies are completed.

## 12.5 Summary of Test Results

For 26MHz~30MHz,

The measurements were more than 20 dB below the limit and not reported.

Remark: Test performed from 30MHz to 10<sup>th</sup> harmonics with low/middle/high channels, only the worst data were recorded.

## Cellular Band (Part 22H)

| Receiver  |                     | Turn           |        |       | Substituted |       |                 | Absolute | Result |        |
|-----------|---------------------|----------------|--------|-------|-------------|-------|-----------------|----------|--------|--------|
| Frequency | Reading             | table<br>Angle | Height | Polar | SG<br>Level | Cable | Antenna<br>Gain | Level    | Limit  | Margin |
| (MHz)     | (dBµV)              | Degree         | (m)    | (H/V) | (dBm)       | (dB)  | (dB)            | (dBm)    | (dBm)  | (dB)   |
|           | GSM 850 Channel 128 |                |        |       |             |       |                 |          |        |        |
| 199.65    | 43.06               | 208            | 1.3    | Н     | -67.45      | 0.15  | 0.00            | -67.60   | -13.00 | -54.60 |
| 199.65    | 44.58               | 168            | 2.0    | V     | -63.01      | 0.15  | 0.00            | -63.16   | -13.00 | -50.16 |
| 1648.40   | 56.02               | 233            | 1.6    | Н     | -57.95      | 0.30  | 9.40            | -48.85   | -13.00 | -35.85 |
| 1648.40   | 35.64               | 40             | 1.5    | V     | -77.89      | 0.30  | 9.40            | -68.79   | -13.00 | -55.79 |
| 2472.60   | 55.67               | 44             | 1.2    | Н     | -58.33      | 0.43  | 10.60           | -48.16   | -13.00 | -35.16 |
| 2472.60   | 48.76               | 149            | 1.1    | V     | -61.52      | 0.43  | 10.60           | -51.35   | -13.00 | -38.35 |

#### Cellular Band (Part 24E)

|                   | Receiver             | Turn   | RX Ar | Antenna     |        | Substituted     |       | Absolute | Result |        |
|-------------------|----------------------|--------|-------|-------------|--------|-----------------|-------|----------|--------|--------|
| Frequency Reading | table<br>Angle       | Height | Polar | SG<br>Level | Cable  | Antenna<br>Gain | Level | Limit    | Margin |        |
| (MHz)             | (dBµV)               | Degree | (m)   | (H/V)       | (dBm)  | (dB)            | (dB)  | (dBm)    | (dBm)  | (dB)   |
|                   | PCS 1900 Channel 512 |        |       |             |        |                 |       |          |        |        |
| 199.65            | 46.48                | 300    | 1.5   | Н           | -64.03 | 0.15            | 0.00  | -64.18   | -13.00 | -51.18 |
| 199.65            | 39.61                | 270    | 1.6   | V           | -67.98 | 0.15            | 0.00  | -68.13   | -13.00 | -55.13 |
| 3700.40           | 65.95                | 317    | 1.3   | Н           | -45.59 | 2.37            | 12.50 | -35.46   | -13.00 | -22.46 |
| 3700.40           | 59.98                | 223    | 2.1   | V           | -49.83 | 2.37            | 12.50 | -39.70   | -13.00 | -26.70 |
| 5550.60           | 53.58                | 239    | 1.7   | Н           | -56.03 | 2.86            | 12.90 | -45.99   | -13.00 | -32.99 |
| 5550.60           | 44.73                | 144    | 1.8   | V           | -64.15 | 2.86            | 12.90 | -54.11   | -13.00 | -41.11 |

Note: 1) Absolute Level = SG Level - Cable loss + Antenna Gain

2) Margin = Limit- Absolute Level

Reference No.: WTS16S1063223-2E V1 Page 30 of 39

## 13 Band Edge Measurement

Test Requirement: FCC Part 2.1051,22.917(a),24.238(a)

Test Method: TIA/EIA-603-D:2010

KDB971168 D01 v02r02

Test Mode: TX transmitting

## 13.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.3 % RH
Atmospheric Pressure: 101.3kPa

#### 13.2 Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

According to FCC Part 22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the TX transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

According to FCC Part 24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the TX transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The center of the spectrum analyzer was set to block edge frequency



#### 13.3 Test Result

Test plots
Cellular Band (Part 22H)









## Cellular Band (Part 24E)

PCS 1900 band edge-left side











Reference No.: WTS16S1063223-2E V1 Page 35 of 39

#### 14 FREQUENCY STABILITY

Test Requirement: FCC Part 2.1055,22.355,24.235

Test Method: TIA/EIA-603-D:2010

KDB971168 D01 v02r02

Test Mode: TX transmitting

## 14.1 EUT Operation

Operating Environment:

Temperature: 22.9 °C
Humidity: 52.0 % RH
Atmospheric Pressure: 101.3kPa

#### 14.2 Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: For hand carried, battery powered equipment; reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.



## 14.3 Test Result

Cellular Band (Part 22H)

| Celidial Balld (Falt 2211)      |                    |                                            |         |                |  |  |  |  |
|---------------------------------|--------------------|--------------------------------------------|---------|----------------|--|--|--|--|
| GSM 850 Test Frequency:836.6MHz |                    |                                            |         |                |  |  |  |  |
| Temperature<br>( )              | Power Supply (VDC) | Frequency Error (Hz) Frequency Error (ppm) |         | Limit<br>(ppm) |  |  |  |  |
| 50                              |                    | 0                                          | 0.0000  | 2.5            |  |  |  |  |
| 40                              |                    | 1                                          | 0.0012  | 2.5            |  |  |  |  |
| 30                              |                    | -1                                         | -0.0012 | 2.5            |  |  |  |  |
| 20                              |                    | -4                                         | -0.0048 | 2.5            |  |  |  |  |
| 10                              | 3.7                | -6                                         | -0.0072 | 2.5            |  |  |  |  |
| 0                               |                    | 3                                          | 0.0036  | 2.5            |  |  |  |  |
| -10                             |                    | -4                                         | -0.0048 | 2.5            |  |  |  |  |
| -20                             |                    | -5                                         | -0.0060 | 2.5            |  |  |  |  |
| -30                             |                    | -12                                        | -0.0143 | 2.5            |  |  |  |  |
| 20                              | 3.3                | -6                                         | -0.0072 | 2.5            |  |  |  |  |
| 20                              | 4.2                | -5                                         | -0.0060 | 2.5            |  |  |  |  |

| GPRS 850 Test Frequency:836.6MHz |                    |    |        |                |  |  |  |
|----------------------------------|--------------------|----|--------|----------------|--|--|--|
| Temperature ( )                  | Power Supply (VDC) |    |        | Limit<br>(ppm) |  |  |  |
| 50                               |                    | 2  | 0.0024 | 2.5            |  |  |  |
| 40                               |                    | 3  | 0.0036 | 2.5            |  |  |  |
| 30                               |                    | 3  | 0.0036 | 2.5            |  |  |  |
| 20                               |                    | 9  | 0.0108 | 2.5            |  |  |  |
| 10                               | 3.7                | 18 | 0.0215 | 2.5            |  |  |  |
| 0                                |                    | 7  | 0.0084 | 2.5            |  |  |  |
| -10                              |                    | 16 | 0.0191 | 2.5            |  |  |  |
| -20                              |                    | 2  | 0.0024 | 2.5            |  |  |  |
| -30                              |                    | 2  | 0.0024 | 2.5            |  |  |  |
| 20                               | 3.3                | 6  | 0.0072 | 2.5            |  |  |  |
| 20                               | 4.2                | 14 | 0.0167 | 2.5            |  |  |  |

PCS Band (Part 24E)

| FCS Ballu (Falt 24E) |                                   |                         |                       |                |  |  |  |  |  |
|----------------------|-----------------------------------|-------------------------|-----------------------|----------------|--|--|--|--|--|
|                      | PCS 1900 Test Frequency:1880.0MHz |                         |                       |                |  |  |  |  |  |
| Temperature ( )      | Power Supply (VDC)                | Frequency Error<br>(Hz) | Frequency Error (ppm) | Limit<br>(ppm) |  |  |  |  |  |
| 50                   |                                   | 2                       | 0.0011                | 2.5            |  |  |  |  |  |
| 40                   |                                   | -1                      | -0.0005               | 2.5            |  |  |  |  |  |
| 30                   |                                   | 6                       | 0.0032                | 2.5            |  |  |  |  |  |
| 20                   |                                   | 1                       | 0.0005                | 2.5            |  |  |  |  |  |
| 10                   | 3.7                               | 9                       | 0.0048                | 2.5            |  |  |  |  |  |
| 0                    |                                   | -7                      | -0.0037               | 2.5            |  |  |  |  |  |
| -10                  |                                   | -3                      | -0.0016               | 2.5            |  |  |  |  |  |
| -20                  |                                   | 9                       | 0.0048                | 2.5            |  |  |  |  |  |
| -30                  |                                   | -1                      | -0.0005               | 2.5            |  |  |  |  |  |
| 20                   | 3.3                               | 7                       | 0.0037                | 2.5            |  |  |  |  |  |
| 20                   | 4.2                               | 1                       | 0.0005                | 2.5            |  |  |  |  |  |

| GPRS 1900 Test Frequency:1880.0MHz |                    |                                            |         |                |  |  |  |
|------------------------------------|--------------------|--------------------------------------------|---------|----------------|--|--|--|
| Temperature ( )                    | Power Supply (VDC) | Frequency Error Frequency Error (Hz) (ppm) |         | Limit<br>(ppm) |  |  |  |
| 50                                 |                    | 10                                         | 0.0053  | 2.5            |  |  |  |
| 40                                 |                    | 4                                          | 0.0021  | 2.5            |  |  |  |
| 30                                 |                    | 0                                          | 0.0000  | 2.5            |  |  |  |
| 20                                 | 3.7                | 4                                          | 0.0021  | 2.5            |  |  |  |
| 10                                 |                    | -4                                         | -0.0021 | 2.5            |  |  |  |
| 0                                  |                    | -4                                         | -0.0021 | 2.5            |  |  |  |
| -10                                |                    | 8                                          | 0.0043  | 2.5            |  |  |  |
| -20                                |                    | 9                                          | 0.0048  | 2.5            |  |  |  |
| -30                                |                    | 0                                          | 0.0000  | 2.5            |  |  |  |
| 20                                 | 3.3                | 1                                          | 0.0005  | 2.5            |  |  |  |
| 20                                 | 4.2                | 8                                          | 0.0043  | 2.5            |  |  |  |

Reference No.: WTS16S1063223-2E V1 Page 38 of 39

# 15 RF Exposure

Remark: refer to SAR test report: WTS16S1063222E.

Reference No.: WTS16S1063223-2E V1 Page 39 of 39

# 16 Photographs of test setup and EUT.

Note: Please refer to appendix: WTS16S1063223E\_Photo.

===== End of Report =====