Design and Analysis of Algorithms Part III: Greedy Algorithms

Lecture 17: Fractional Knapsack

童咏昕

北京航空航天大学 计算机学院

贪心策略篇概述

在算法课程第三部分"贪心策略"主题中,我们将主要聚焦于如下 经典问题:

Fractional Knapsack Problem (部分背包问题)

Huffman Coding Problem (赫夫曼编码问题)

Activity Selection Problem (活动选择问题)

贪心策略篇概述

在算法课程第三部分"贪心策略"主题中,我们将主要聚焦于如下 经典问题:

Fractional Knapsack Problem (部分背包问题)

Huffman Coding Problem (赫夫曼编码问题)

Activity Selection Problem (活动选择问题)

问题背景

• 调制饮品比赛

- 参赛者拥有容量为800ml的杯子,可任选不超过体积上限的饮料进行混合
- 调制饮品价格为各所使用饮料的价格之和,所得饮品价格之和最高者获胜

饮料	价格(元)	体积(ml)
莎 苏打水	60	600
管 汽水	10	250
後 橙汁	36	200
→ 苹果汁	16	100
🥳 西瓜汁	45	300

问题: 如何使调制的饮品价格最高?

部分背包问题

Fractional Knapsack Problem

输入

- n个物品组成的集合o,每个物品有两个属性 v_i 和 p_i ,分别表示体积和价格
- 背包容量为C

选取物品的比例

输出

• 求解一个解决方案 $S = \{x_i | 1 \le i \le n, 0 \le x_i \le 1\}$,使得:

$$\max \sum_{x_i \in S} x_i \cdot p_i$$
 优化目标

$$s.t.$$
 $\sum_{x_i \in S} x_i \cdot v_i \leq C$ 约束条件

部分背包问题

Fractional Knapsack Problem

输入

• n个物品组成的集合O,每个物品有两个属性 v_i 和 p_i ,分别表示体积和价格

• 背包容量为C

选取物品的比例

x_i只能取0或1时 变为0-1背包问题

输出

• 求解一个解决方案 $S = \{x_i | 1 \le i \le n, 0 \le x_i \le 1\}$,使得:

$$\max \sum_{x_i \in S} x_i \cdot p_i$$
 优化目标

$$s.t.$$
 $\sum_{x_i \in S} x_i \cdot v_i \leq C$ 约束条件

贪心策略

- 最高性价比优先
 - 性价比 = 价格/体积
 - 优先选择高性价比饮料全部装入,尽可能装满杯子

饮料	价格 (元)	体积 (ml)	性价比 (元/ml)
莎 苏打水	60	600	0.10
管 汽水	10	250	0.04
後 橙汁	36	200	0.18
→ 苹果汁	16	100	0.16
参西瓜汁	45	300	0.15

• 最高性价比优先

饮料	价格	体积	总价格
	(元)	(ml)	(元)
₩ 橙汁	36	200	

饮料	价格 (元)	体积 (ml)	性价比 (元/ml)
後 橙汁	36	200	0.18
並果汁	16	100	0.16
参西瓜汁	45	300	0.15
5 苏打水	60	600	0.10
管 汽水	10	250	0.04

• 最高性价比优先

饮料	价格 (元)	体积 (ml)	总价格 (元)
後 橙汁	36	200	
🎳 苹果汁	16	100	

饮料	价格 (元)	体积 (ml)	性价比 (元/ml)
後 橙汁	36	200	0.18
並果汁	16	100	0.16
参西瓜汁	45	300	0.15
莎 苏打水	60	600	0.10
汽水	10	250	0.04

• 最高性价比优先

饮料	价格 (元)	体积 (ml)	总价格 (元)
後 橙汁	36	200	
→ 苹果汁	16	100	
🍎 西瓜汁	45	300	

饮料	价格 (元)	体积 (ml)	性价比 (元/ml)
後 橙汁	36	200	0.18
並果汁	16	100	0.16
参西瓜汁	45	300	0.15
莎 苏打水	60	600	0.10
汽水	10	250	0.04

• 最高性价比优先

• 解决方案

饮料	价格 (元)	体积 (ml)	总价格 (元)
₩ 橙汁	36	200	
▶ 苹果汁	16	100	
🍎 西瓜汁	45	300	
🧵 苏打水	20	200	

饮料	价格 (元)	体积 (ml)	性价比 (元/ml)
後 橙汁	36	200	0.18
並果汁	16	100	0.16
参 西瓜汁	45	300	0.15
🚡 苏打水	60	600	0.10
汽水	10	250	0.04

• 最高性价比优先

饮料	价格 (元)	体积 (ml)	总价格 (元)
後 橙汁	36	200	
● 苹果汁	16	100	117
🥌 西瓜汁	45	300	117
🏅 苏打水	20	200	

饮料	价格 (元)	体积 (ml)	性价比 (元/ml)
後 橙汁	36	200	0.18
並果汁	16	100	0.16
参 西瓜汁	45	300	0.15
莎 苏打水	60	600	0.10
汽水	10	250	0.04

• 贪心策略: 最高性价比优先

• 贪心策略: 最高性价比优先

• 证明: 贪心解不劣于最优解

替换为

贪心解S'

按性价比 递减顺序 进行替换

替换后单位体积价值均不减少 故贪心解不劣于最优解

伪代码

• FractionalKnapsack(n, p, v, C)

```
输入: 商品数量n,各商品的价值p, 各商品的体积v, 背包容量C
输出: 商品价格的最大值,最优解方案
计算商品性价比Ratio[1..n]并按降序排序
//Ratio[i], p[i], v[i]分别表示性价比第i大的商品的性价比、价格和体积
ans \leftarrow 0
//根据贪心策略求解
while C > 0 and i \le n do
   if v[i] \leq C then
      选择商品i
      ans \leftarrow ans + p[i]
      C \leftarrow C - v[i]
   end
   else
      选择C体积的商品i
      ans \leftarrow ans + p[i] \cdot \frac{C}{v[i]}
   end
   i \leftarrow i + 1
end
return ans
```

按性价比排序,并初始化

• FractionalKnapsack(n, p, v, C)

```
输入: 商品数量n,各商品的价值p, 各商品的体积v, 背包容量C
输出: 商品价格的最大值,最优解方案
计算商品性价比Ratio[1..n]并按降序排序
//Ratio[i], p[i], v[i]分别表示性价比第i大的商品的性价比、价格和体积
i \leftarrow 1
ans \leftarrow 0
//根据贪心策略求解
while C > 0 and i \le n do
   if v[i] \leq C then
       选择商品i
      ans \leftarrow ans + p[i]
      C \leftarrow C - v[i]
   end
   else
       选择C体积的商品i
      ans \leftarrow ans + p[i] \cdot \frac{C}{v[i]}
      C \leftarrow 0
   end
   i \leftarrow i + 1
end
return ans
```

当背包未装满且商品未装完时

• FractionalKnapsack(n, p, v, C)

```
输入: 商品数量n,各商品的价值p, 各商品的体积v, 背包容量C
输出: 商品价格的最大值,最优解方案
计算商品性价比Ratio[1..n]并按降序排序
//Ratio[i], p[i], v[i]分别表示性价比第i大的商品的性价比、价格和体积
i \leftarrow 1
ans \leftarrow 0
//根据贪心策略求解
while C > 0 and i \le n do
   if v[i] \leq C then
      选择商品i
      ans \leftarrow ans + p[i]
      C \leftarrow C - v[i]
   end
   else
      选择C体积的商品i
      ans \leftarrow ans + p[i] \cdot \frac{C}{v[i]}
   end
  i \leftarrow i + 1
end
return ans
```

商品体积不大于容量则全部装入

• FractionalKnapsack(n, p, v, C)

```
输入: 商品数量n,各商品的价值p, 各商品的体积v, 背包容量C
输出: 商品价格的最大值,最优解方案
计算商品性价比Ratio[1..n]并按降序排序
//Ratio[i], p[i], v[i]分别表示性价比第i大的商品的性价比、价格和体积
i \leftarrow 1
ans \leftarrow 0
//根据贪心策略求解
while C > 0 and i \le n do
   if v[i] \leq C then
      选择商品i
      ans \leftarrow ans + p[i]
      C \leftarrow C - v[i]
   end
   else
      选择C体积的商品i
      ans \leftarrow ans + p[i] \cdot \frac{C}{v[i]}
      C \leftarrow 0
   end
  i \leftarrow i + 1
end
return ans
```

否则装人部分商品填满背包

复杂度分析

• FractionalKnapsack(n, p, v, C)

```
输入: 商品数量n,各商品的价值p, 各商品的体积v, 背包容量C
输出: 商品价格的最大值,最优解方案
计算商品性价比Ratio[1..n]并按降序排序
//Ratio[i], p[i], v[i]分别表示性价比第i大的商品的性价比、价格和体积
i \leftarrow 1
ans \leftarrow 0
//根据贪心策略求解
while C > 0 and i \le n do
   if v[i] \leq C then
      选择商品i
      ans \leftarrow ans + p[i]
      C \leftarrow C - v[i]
   end
   else
      选择C体积的商品i
     ans \leftarrow ans + p[i] \cdot \frac{C}{v[i]}
   end
  i \leftarrow i + 1
end
return ans
```

 $O(n \log n)$

复杂度分析

• FractionalKnapsack(n, p, v, C)

```
输入: 商品数量n,各商品的价值p, 各商品的体积v, 背包容量C
输出: 商品价格的最大值,最优解方案
计算商品性价比Ratio[1..n]并按降序排序
//Ratio[i], p[i], v[i]分别表示性价比第i大的商品的性价比、价格和体积
                                                                     O(n \log n)
i \leftarrow 1
ans \leftarrow 0
//根据贪心策略求解
while C > 0 and i \le n do
   if v[i] \leq C then
      选择商品i
      ans \leftarrow ans + p[i]
      C \leftarrow C - v[i]
   end
                                                                     O(n)
   else
      选择C体积的商品i
      ans \leftarrow ans + p[i] \cdot \frac{C}{v[i]}
      C \leftarrow 0
   end
  i \leftarrow i + 1
end
return ans
```

复杂度分析

• FractionalKnapsack(n, p, v, C)

```
输入: 商品数量n,各商品的价值p, 各商品的体积v, 背包容量C
输出: 商品价格的最大值,最优解方案
计算商品性价比Ratio[1..n]并按降序排序
//Ratio[i], p[i], v[i]分别表示性价比第i大的商品的性价比、价格和体积
                                                                   O(n \log n)
i \leftarrow 1
ans \leftarrow 0
//根据贪心策略求解
while C > 0 and i \le n do
   if v[i] \leq C then
      选择商品i
      ans \leftarrow ans + p[i]
      C \leftarrow C - v[i]
   end
                                                                   O(n)
   else
      选择C体积的商品i
     ans \leftarrow ans + p[i] \cdot \frac{C}{v[i]}
      C \leftarrow 0
   end
  i \leftarrow i + 1
end
                                   时间复杂度: O(n \log n)
return ans
```

贪心策略:一般步骤

提出贪心策略

观察问题特征,构造贪心选择

证明策略正确

假设最优方案,通过替换证明

对比0-1背包问题

- 0-1背包问题
 - 贪心算法结果:

• 动态规划算法结果:

商品	价格	体积	性价比	
谭 啤酒	24	10	2.40	
二 牛奶	9	4	2.25	
❸ 饼干	9	4	2.25	
面包	10	5	2.00	
まり作刊 生1つ				

背包体积为13

0-1背包问题不能使用贪心算法

对比0-1背包问题

问题定义:

物品不可分割

啤酒

饼干

面包

牛奶

• 解决方法:

动态规划

物品可分割

苏打水 汽水

橙汁 苹果汁 西瓜汁

贪心策略

饮料	价格 (元)	体积 (ml)	性价比 (元/ml)
後 橙汁	36	200	0.18
並果汁	16	100	0.16
参 西瓜汁	45	300	0.15
🍒 苏打水	60	600	0.10
管 汽水	10	250	0.04

