

Unidades y Análisis dimensional

1. En las ecuaciones siguientes, la distancia x está en metros, el tiempo t en segundos, y la velocidad v en metros/segundo. ¿Cuáles son las unidades SI de las constantes C_1 , y C_2 ?

$$\checkmark$$
 a) $x=C_1+C_2t$ C1= $\%$ (2: $\%$)

 \checkmark b) $x=\%$ C1t C1= $\%$ (3)

 \checkmark c) $v^2=2C_1x$ C1= $\%$ /s

 \checkmark d) $x=C_1cos\theta$ C1= $\%$
 \checkmark e) $v=C_1e^{-C_2t}$ C1= $\%$ /s (exp. tient goe set adimessional)

Indicación: Los argumentos de las funciones trigonométricas y exponenciales deben ser adimensionales. El «argumento» de $\cos\theta$ es θ y el de e^x es x.

2. Comprobar si existe consistencia dimensional de las ecuaciones siguientes:

√a)
$$v^2 + v^3 = 2ax$$
 $\frac{m^2}{\sqrt{2}} + \frac{m^2}{\sqrt{2}}$ NO
√b) $x = \frac{v^2}{a}$ $m = \frac{m^2/2}{\sqrt{2}} = m$ ≤1
✓c) $v = at^2 \operatorname{sen}\left[\left(\frac{x}{t^2}\right)/a\right]$ $\frac{m^2}{\sqrt{2}} = \frac{m}{\sqrt{2}}$ $\frac{m^2}{\sqrt{2}} = \frac{m^2}{\sqrt{2}}$ $\frac{m^2}{\sqrt{2}} = \frac{m^2}{\sqrt{2}}$ $\frac{m^2}{\sqrt{2}} = \frac{m^2}{\sqrt{2}} = \frac{m^2}{\sqrt{$

donde v, a, x, t denotan velocidad, aceleración, espacio y tiempo, respectivamente.

3. Un objeto situado en el extremo de una cuerda se mueve según un círculo. La fuerza ejercida por la cuerda depende de la masa del objeto, de su velocidad y del radio del círculo. ¿Qué combinación de estas variables ofrece las dimensiones correctas (ML/T^2) de la fuerza?

4. La fórmula de la fuerza de viscosidad que actúa sobre una esfera de radio r que cae en un fluido con velocidad v es $F = 6\pi \eta r v$, donde η es el coeficiente de viscosidad. ¿Cuáles son sus dimensiones?

5. La densidad del agua se mide en kgm^{-3} , indica su fórmula.

6. En la ecuación $v^n = k\alpha^j x$ ¿qué se puede averiguar de las dimensiones de k a partir del análisis dimensional? ¿qué valores de n y j hacen dimensionalmente correcta la ecuación?