AP - repetition - Serial position analysis (v5)

```
# do this in calling R script
# library(qqplot2)
# library(fmsb) # for TestModels
# library(lme4)
# library(kableExtra)
# library(MASS) # for dropterm
# library(tidyverse)
# library(dominanceanalysis)
# library(cowplot) # for multiple plots in one figure
# library(formatters) # to wrap strings for plot titles
# library(pals) # for continous color palettes
# load needed functions
# source(pasteO(RootDir, "/src/function_library/sp_functions.R"))
# do this in the calling R script
# for testing - set by calling script normally
# ppt_parms <- read.csv(config$patient_param_file)</pre>
# CurPat <- ppt_parms$patient</pre>
# CurTask <- ppt_parms$task</pre>
# MinLength <- ppt_parms$min_length
# MaxLength <- ppt_parms$max_length</pre>
# RemoveFinalPosition <- ppt_parms $ remove_final_position
# create patient directory if it doesn't already exist
if(!dir.exists(pasteO(RootDir,"/output/",CurPat))){
  dir.create(pasteO(RootDir, "/output/", CurPat), showWarnings = TRUE)
TablesDir <- pasteO(RootDir,"/output/",CurPat,"/tables/")</pre>
if(!dir.exists(TablesDir)){
  dir.create(TablesDir,showWarnings = TRUE)
FigDir <- pasteO(RootDir,"/output/",CurPat,"/fig/")</pre>
if(!dir.exists(FigDir)){
  dir.create(FigDir,showWarnings = TRUE)
ReportsDir <- pasteO(RootDir, "/output/", CurPat, "/reports/")</pre>
if(!dir.exists(ReportsDir)){
  dir.create(ReportsDir,showWarnings = TRUE)
}
results_report_DF <- data.frame(Description=character(), ParameterValue=double())
ModelDatFilename<-paste0(RootDir,"/data/",CurPat,"/",CurPat,"_",CurTask,"_posdat.csv")
if(!file.exists(ModelDatFilename)){
  print("**ERROR** Input data file not found")
  print(sprintf("\tfile: ",ModelDatFilename))
 print(sprintf("\troot dir: ",RootDir))
```

```
PosDat<-read.csv(ModelDatFilename)
# may already be done in datafile
# if(RemoveFinalPosition){
  PosDat <- PosDat[PosDat$pos < PosDat$stimlen,] # remove final position
# }
PosDat <- PosDat[PosDat$stimlen >= MinLength,] # include only lengths with sufficient N
PosDat <- PosDat[PosDat$stimlen <= MaxLength,]</pre>
# include only correct and nonword errors (not no response, word or w+nw errors)
PosDat <- PosDat[(PosDat\err_type == "correct") | (PosDat\err_type == "nonword"), ]
PosDat <- PosDat[(PosDat$pos) != (PosDat$stimlen), ]</pre>
# make sure final positions have been removed
PosDat$stim_number <- NumberStimuli(PosDat)</pre>
PosDat$raw_log_freq <- PosDat$log_freq</pre>
PosDat$log_freq <- PosDat$log_freq - mean(PosDat$log_freq) # centre frequency
PosDat$CumErr <- CalcCumErrFromPreserved(PosDat)</pre>
# plot distribution of complex onsets and codas
# across serial position in the stimuli -- do complexities concentrate
# on one part of the serial position curve?
# syll_component = 1 is coda
# syll_component = S is satellite
# get counts of syllable components in different serial positions
syll_comp_dist_N <- PosDat %>% mutate(pos_factor = as.factor(pos), syll_component_factor = as.factor(sy
syll_comp_dist_perc <- syll_comp_dist_N %>% ungroup() %>%
 mutate(across(0:S, ~ . / total))
kable(syll_comp_dist_N)
```

pos_factor	O	Р	V	1	S	total
1	556	35	130	NA	NA	721
2	67	NA	444	98	112	721
3	317	NA	174	214	16	721
4	308	NA	244	70	39	661
5	238	NA	216	73	39	566
6	211	1	142	71	22	447
7	180	NA	104	29	19	332
8	94	NA	55	24	4	177
9	74	NA	2	NA	7	83

kable(syll comp dist perc)

pos_factor	O	P	V	1	S	total
1	0.7711512	0.0485437	0.1803051	NA	NA	721
2	0.0929265	NA	0.6158114	0.1359223	0.1553398	721
3	0.4396671	NA	0.2413315	0.2968100	0.0221914	721
4	0.4659607	NA	0.3691377	0.1059002	0.0590015	661
5	0.4204947	NA	0.3816254	0.1289753	0.0689046	566
6	0.4720358	0.0022371	0.3176734	0.1588367	0.0492170	447

pos_factor	О	P	V	1	S	total
7	0.5421687	NA	0.3132530	0.0873494	0.0572289	332
8	0.5310734	NA	0.3107345	0.1355932	0.0225989	177
9	0.8915663	NA	0.0240964	NA	0.0843373	83

```
# get percentages only from summary table
syll_comp_perc <- syll_comp_dist_perc[,2:(ncol(syll_comp_dist_perc)-1)]</pre>
syll_comp_perc$pos <- as.integer(as.character(syll_comp_dist_perc$pos_factor))</pre>
syll_comp_perc <- syll_comp_perc %>% rename("Coda" ="1","Satellite"="S")
# pivot to long format for plotting
syll_comp_plot_data <- syll_comp_perc %>% pivot_longer(cols=seq(1:(ncol(syll_comp_perc)-1)),
            names_to="syll_component", values_to="percent") %>% filter(syll_component %in% c("Coda", "Sa
# plot satellite and coda occurances across position
syll_comp_plot <- ggplot(syll_comp_plot_data,</pre>
                         aes(x=pos,y=percent,group=syll_component,
                             color=syll_component,
                             linetype = syll_component,
                             shape = syll_component)) +
  geom_line() + geom_point() + scale_color_manual(name="Syllable component", values = palette_values) +
syll_comp_plot <- syll_comp_plot + scale_y_continuous(name="Percent of segment types") + scale_linetype
  scale_shape_discrete(name="Syllable component")
ggsave(paste0(FigDir,CurPat,"_",CurTask,"_pos_of_syll_complexities_in_stimuli.png"),plot=syll_comp_plot
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_line()`).
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_point()`).
syll_comp_plot
## Warning: Removed 3 rows containing missing values or values outside the scale range (`geom_line()`).
```

Removed 3 rows containing missing values or values outside the scale range (`geom_point()`).

```
Percent of segment types 0.2
                                                                         Syllable component
                                                                              Coda
                                                                              Satellite
                2
                               Word position
# len/pos table
pos_len_summary <- PosDat %>% group_by(stimlen,pos) %>% summarise(preserved = mean(preserved))
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
min_preserved_raw <- min(as.numeric(unlist(pos_len_summary$preserved)))</pre>
max_preserved_raw <- max(as.numeric(unlist(pos_len_summary$preserved)))</pre>
preserved_range <- (max_preserved_raw - min_preserved_raw)</pre>
min_preserved <- min_preserved_raw - (0.1 * preserved_range)</pre>
max_preserved <- max_preserved_raw + (0.1 * preserved_range)</pre>
pos_len_table <- pos_len_summary %>% pivot_wider(names_from = pos, values_from = preserved)
write.csv(pos_len_table,paste0(TablesDir,CurPat,"_",CurTask,"_preserved_percentages_by_len_position.csv
pos_len_table
## # A tibble: 7 x 10
## # Groups:
                stimlen [7]
                `1`
                      `2`
                                            `5`
                                                    `6`
                                                                   .8,
                                                                          `9`
       <int> <dbl> <dbl> <dbl>
##
                                  <dbl>
                                          <dbl>
                                                 <dbl>
                                                         <dbl>
                                                                <dbl>
                                                                        <dbl>
            4 0.917 0.983 0.983 NA
                                         NA
                                                NA
                                                        NA
                                                               NA
           5 0.926 0.947 0.968 0.958 NA
                                                NA
                                                               NA
                                                                       NA
## 2
                                                        NA
           6 0.916 0.964 0.952 0.950
                                         0.961 NA
## 3
## 4
           7 0.913 0.974 0.948 0.961
                                         0.961
                                                 0.991 NA
           8 0.887 0.955 0.955 0.945
                                         0.948
                                                 0.952
                                                         0.945 NA
```

0.3 -

6

7

len/pos table

9 0.957 0.959 0.920 0.933

10 0.928 0.972 0.952 0.940

0.918

0.968

0.947

0.928

pos_len_N <- PosDat %>% group_by(stimlen,pos) %>% summarise(preserved = mean(preserved), N=n()) %>% dply

0.952 0.938 NA

0.950

0.970

```
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
pos_len_N_table <- pos_len_N %>% pivot_wider(names_from = pos, values_from = N)
write.csv(pos_len_N_table,paste0(TablesDir,CurPat,"_",CurTask,"_N_by_len_position.csv"))
pos_len_N_table
## # A tibble: 7 x 10
## # Groups:
              stimlen [7]
              `1`
                    `2`
                          `3`
                                 `4`
                                      `5`
                                            `6`
                                                   `7`
                                                         .8.
                                                               -9-
     stimlen
##
       ## 1
          4
               60
                     60
                           60
                                 NA
                                       NA
                                             NA
                                                   NA
                                                         NA
                                                               NA
## 2
          5
               95
                     95
                           95
                                 95
                                       NA
                                             NΙΔ
                                                   NΑ
                                                         NΑ
                                                               NΑ
## 3
          6
              119
                    119
                          119
                                119
                                      119
                                             NA
                                                   NA
                                                         NA
                                                               NA
## 4
          7
                                                               NA
              115
                    115
                          115
                                115
                                      115
                                            115
                                                   NA
                                                         NA
## 5
          8
               155
                     155
                          155
                                 155
                                      155
                                            155
                                                   155
                                                         NA
                                                               NA
## 6
          9
               94
                     94
                           94
                                 94
                                       94
                                             94
                                                   94
                                                         94
                                                               NA
## 7
         10
               83
                     83
                           83
                                 83
                                       83
                                             83
                                                   83
                                                         83
                                                               83
obs linetypes <- c("solid", "solid", "solid", "solid",
                      "solid", "solid", "solid", "solid")
pred_linetypes <- "dashed"</pre>
pos_len_summary$stimlen<-factor(pos_len_summary$stimlen)</pre>
pos_len_summary$pos<-factor(pos_len_summary$pos)</pre>
# len_pos_plot <- qqplot(pos_len_summary,aes(x=pos,y=preserved,qroup=stimlen,shape=stimlen,color=stimle
len_pos_plot <- plot_len_pos_obs_predicted(PosDat,</pre>
                                          pasteO(CurPat),
                                          NULL,
                                           c(min_preserved,max_preserved),
                                          palette_values,
                                          shape values,
                                          obs_linetypes,
                                          pred_linetypes)
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## Scale for y is already present. Adding another scale for y, which will replace the existing
## scale.
ggsave(paste0(FigDir,CurPat,"_",CurTask,"_percent_preserved_by_length_pos.png"),
      plot=len_pos_plot,device="png",unit="cm",width=15,height=11)
```

len_pos_plot

Length and position

```
# length and position
LPModelEquations<-c("preserved ~ 1",</pre>
            "preserved ~ stimlen",
            "preserved ~ pos",
            "preserved ~ stimlen + pos",
            "preserved ~ stimlen*pos",
            "preserved ~ I(pos^2)+pos",
            "preserved ~ stimlen + I(pos^2) + pos",
            "preserved ~ stimlen * (I(pos^2) + pos)"
)
LPRes<-TestModels(LPModelEquations,PosDat)</pre>
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 6
```

```
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                   pos
      2.27136
                  -0.03485
                               0.34100
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4426 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1765 AIC: 1883
## log likelihood: -882.592
## Nagelkerke R2: 0.005762917
## % pres/err predicted correctly: -437.4149
## % of predictable range [ (model-null)/(1-null) ]: 0.001958543
## **********
## model index: 5
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                                   pos stimlen:pos
      2.04452
                   0.06847
                               0.46804
                                           -0.04716
##
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4425 Residual
## Null Deviance:
                      1774
## Residual Deviance: 1764 AIC: 1883
## log likelihood: -882.1167
## Nagelkerke R2: 0.006412045
## % pres/err predicted correctly: -437.3415
## % of predictable range [ (model-null)/(1-null) ]: 0.002125627
## *********
## model index: 7
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                              I(pos^2)
                   stimlen
                                                pos
      2.67025
                  -0.05465
                              -0.03197
                                            0.33256
## Degrees of Freedom: 4428 Total (i.e. Null); 4425 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1764 AIC: 1883
## log likelihood: -881.8111
## Nagelkerke R2: 0.006829321
## % pres/err predicted correctly: -437.238
## % of predictable range [ (model-null)/(1-null) ]: 0.002361305
## **********
## model index: 8
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
```

```
##
## Coefficients:
                             stimlen
##
       (Intercept)
                                             I(pos^2)
                                                                   pos stimlen:I(pos^2)
                             0.14617
                                             -0.14894
                                                                1.35133
                                                                                 0.01412
##
           1.09205
##
       stimlen:pos
          -0.12602
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4423 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1761 AIC: 1884
## log likelihood: -880.3555
## Nagelkerke R2: 0.008816083
## % pres/err predicted correctly: -436.9552
## % of predictable range [ (model-null)/(1-null) ]: 0.003005029
## *********
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                                   pos
      3.19685
                  -0.07088
##
                                0.06428
## Degrees of Freedom: 4428 Total (i.e. Null); 4426 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1769 AIC: 1886
## log likelihood: -884.4989
## Nagelkerke R2: 0.00315719
## % pres/err predicted correctly: -437.7649
## % of predictable range [ (model-null)/(1-null) ]: 0.001161809
## *********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
##
        2.891
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4428 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1774 AIC: 1886
## log likelihood: -886.8073
## Nagelkerke R2: -6.728935e-16
## % pres/err predicted correctly: -438.2752
## % of predictable range [ (model-null)/(1-null) ]: 0
## *********
## model index: 2
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
```

```
## Coefficients:
## (Intercept)
                    stimlen
       3.20465
##
                   -0.04068
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4427 Residual
## Null Deviance:
                        1774
## Residual Deviance: 1773 AIC: 1886
## log likelihood: -886.2955
## Nagelkerke R2: 0.0007002624
## % pres/err predicted correctly: -438.1319
## % of predictable range [ (model-null)/(1-null) ]: 0.0003262443
## *********
## model index: 3
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
       data = PosDat)
##
## Coefficients:
## (Intercept)
                        pos
##
        2.7265
                     0.0439
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4427 Residual
## Null Deviance:
                        1774
## Residual Deviance: 1772 AIC: 1886
## log likelihood: -885.8618
## Nagelkerke R2: 0.00129358
## % pres/err predicted correctly: -438.0882
## % of predictable range [ (model-null)/(1-null) ]: 0.0004258722
## **********
BestLPModel<-LPRes$ModelResult[[1]]</pre>
BestLPModelFormula<-LPRes$Model[[1]]</pre>
LPAICSummary<-data.frame(Model=LPRes$Model,</pre>
                       AIC=LPRes$AIC,
                       row.names = LPRes$Model)
LPAICSummary $DeltaAIC <- LPAICSummary $AIC - LPAICSummary $AIC [1]
LPAICSummary $AICexp <-exp(-0.5*LPAICSummary $DeltaAIC)
LPAICSummary $AICwt <-LPAICSummary $AICexp/sum(LPAICSummary $AICexp)
LPAICSummary$NagR2<-LPRes$NagR2
LPAICSummary <- merge(LPAICSummary, LPRes Coefficient Values, by='row.names', sort=FALSE)
LPAICSummary <- subset(LPAICSummary, select = -c(Row.names))</pre>
write.csv(LPAICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_len_pos_model_summary.csv"),row.names = FA
kable(LPAICSummary)
Model
                        DeltaAlaICexpAlCwt NagR2 (Interceps)imlen pos
                                                                      stimlen:plopos^2)stimlen:I(pos^2)
                  AIC
preserved \sim
                  1883.000.000000000000000023422930057629271361 NA
                                                                0.3410029\,\mathrm{NA}
                                                                                         NA
                                                                              0.0348462
I(pos^2) + pos
preserved ~
                  1883.097.09622609530261223226700641200445230.0684741.4680428
                                                                                NA
                                                                                         NA
```

stimlen * pos

0.0471590

```
stimlen + I(pos^2)
                                                                0.0546476
                                                                                       0.0319727
+ pos
                    1884.498.49775084728981110766600881610920530.1461657.3513261
preserved ~
                                                                                           - 0.0141222
stimlen * (I(pos^2)
                                                                               0.1260168.1489375
+ pos
preserved ~
                    1885.50 \\ \mathbf{2}.50 \\ 220 \\ \mathbf{07} \\ 28618 \\ \mathbf{97} \\ 06703 \\ \mathbf{400} \\ 0315 \\ \mathbf{72} \\ 196854
                                                                    - 0.0642846 NA
                                                                                         NA
                                                                                                   NA
stimlen + pos
                                                                0.0708790
                    1885.652.65706702648654062039200000020890849 NA
                                                                                         NA
                                                                                                   NA
preserved \sim 1
                                                                         NA
                                                                                 NA
preserved ~
                    1886.29 \\ \mathbf{3.} 29245 \\ \mathbf{06} \\ 19277 \\ \mathbf{56} \\ 04515 \\ \mathbf{37} \\ 00070 \\ \mathbf{63} \\ 204652
                                                                         NA
                                                                                 NA
                                                                                         NA
                                                                                                   NA
stimlen
                                                                0.0406791
preserved \sim pos
                    1886.4930.48959071746806040915300129326726530 NA 0.0439037NA
                                                                                         NA
                                                                                                   NA
print(BestLPModelFormula)
## [1] "preserved ~ I(pos^2) + pos"
print(BestLPModel)
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
        data = PosDat)
##
## Coefficients:
## (Intercept)
                      I(pos^2)
                                          pos
##
        2.27136
                      -0.03485
                                      0.34100
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4426 Residual
## Null Deviance:
                           1774
## Residual Deviance: 1765 AIC: 1883
PosDat$LPFitted<-fitted(BestLPModel)</pre>
fitted_len_pos_plot <- plot_len_pos_obs_predicted(PosDat, PosDat$patient[1],
                              NULL,palette_values=palette_values)
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
# len/pos table
fitted_pos_len_summary <- PosDat ">" group_by(stimlen,pos) ">" summarise(fitted = mean(LPFitted))
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
fitted_pos_len_table <- fitted_pos_len_summary %>% pivot_wider(names_from = pos, values_from = fitted)
fitted_pos_len_table
## # A tibble: 7 x 10
## # Groups:
                 stimlen [7]
                 `1`
                       `2`
                               `3`
                                       `4`
                                               `5`
                                                       `6`
                                                                       .8.
                                                                               `9`
##
      stimlen
##
        <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
                                                           <dbl>
## 1
            4 0.929 0.943 0.952 NA
                                           NA
                                                   NA
                                                           MΔ
                                                                   NΑ
                                                                           NΔ
## 2
            5 0.929 0.943 0.952 0.956 NA
                                                   NA
                                                           NA
                                                                   NA
                                                                           NA
                                                                           NΑ
## 3
            6 0.929 0.943 0.952 0.956 0.957 NA
                                                                   NΔ
## 4
            7 0.929 0.943 0.952 0.956 0.957 0.955 NA
                                                                           NA
```

AIC DeltaAIATCexpAICwt NagR2 (Intercept)imlen pos stimlen:ptopos^2)stimlen:I(pos^2)

- 0.3325629NA

1883.15**7**.15617**2**492488**4**721663**5**100682**2**3670253

Model

5

preserved ~

NΑ

8 0.929 0.943 0.952 0.956 0.957 0.955 0.950 NA

```
## 6
                               9 0.929 0.943 0.952 0.956 0.957 0.955 0.950
                                                                                                                                                                           0.941 NA
## 7
                            10 0.929 0.943 0.952 0.956 0.957
                                                                                                                                 0.955
                                                                                                                                                    0.950
                                                                                                                                                                          0.941 0.925
fitted_pos_len_summary$stimlen<-factor(fitted_pos_len_summary$stimlen)</pre>
fitted_pos_len_summary$pos<-factor(fitted_pos_len_summary$pos)</pre>
 \textit{\# fitted\_len\_pos\_plot <- ggplot(pos\_len\_summary, aes(x=pos, y=preserved, group=stimlen, shape=stimlen, color aes(x=pos, y=preserved, group=stimlen, shape=stimlen, sha
 \textit{\# fitted\_len\_pos\_plot <- fitted\_len\_pos\_plot + geom\_line(data=fitted\_pos\_len\_summary, \ aes(x=pos,y=fitted\_pos\_len\_summary, \ aes(x=pos,y=fitted\_pos\_len\_summary, \ aes(x=pos,y=fitted\_pos\_plot) } 
\# geom\_point(data=fitted\_pos\_len\_summary, aes(x=pos, y=fitted, group=stimlen, shape=stimlen)) + <math>ggtitle(pas)
fitted_len_pos_plot <- plot_len_pos_obs_predicted(PosDat,</pre>
                                                                                                                        pasteO(PosDat$patient[1]),
                                                                                                                        "LPFitted",
                                                                                                                        NULL,
                                                                                                                        palette_values,
                                                                                                                        shape_values,
                                                                                                                        obs_linetypes,
                                                                                                                        pred_linetypes = c("longdash")
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
ggsave(paste0(FigDir,CurPat,"_",CurTask,"_percent_preserved_by_length_pos_wfit.png"),plot=fitted_len_po
```


length and position without fragments to see if this changes position 2 influence

```
# first number responses, then count resp with fragments - below we will eliminate fragments
# and re-run models
# number responses
resp num<-0
prev_pos<-9999 # big number to initialize (so first position is smaller)
resp_num_array <- integer(length = nrow(PosDat))</pre>
for(i in seq(1,nrow(PosDat))){
  if(PosDat$pos[i] <= prev_pos){ # equal for resp length 1</pre>
    resp_num <- resp_num + 1</pre>
 resp_num_array[i] <-resp_num</pre>
  prev_pos <- PosDat$pos[i]</pre>
PosDat$resp_num <- resp_num_array
# count responses with fragments
resp_with_frag <- PosDat %>% group_by(resp_num) %>% summarise(frag = as.logical(sum(fragment)))
num_frag <- resp_with_frag %>% summarise(frag_sum = sum(frag), N=n())
num_frag
## # A tibble: 1 x 2
    frag sum
##
        <int> <int>
## 1
           8
              721
num_frag$percent_with_frag[1] <- (num_frag$frag_sum[1] / num_frag$N[1])*100
## Warning: Unknown or uninitialised column: `percent with frag`.
print(sprintf("The number of responses with fragments was %d / %d = %.2f percent",
              num_frag$frag_sum[1],num_frag$N[1],num_frag$percent_with_frag[1]))
## [1] "The number of responses with fragments was 8 / 721 = 1.11 percent"
write.csv(num_frag,paste0(TablesDir,CurPat,"_",CurTask,"_percent_fragments.csv"),row.names = FALSE)
# length and position models for data without fragments
NoFragData <- PosDat %>% filter(fragment != 1)
NoFrag_LPRes<-TestModels(LPModelEquations,NoFragData)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 5
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
```

```
##
## Coefficients:
## (Intercept)
                   stimlen
                                   pos stimlen:pos
      1.79189
                   0.08625
##
                                0.62824
                                           -0.06023
## Degrees of Freedom: 4411 Total (i.e. Null); 4408 Residual
## Null Deviance:
                       1679
## Residual Deviance: 1661 AIC: 1776
## log likelihood: -830.5382
## Nagelkerke R2: 0.01265424
## % pres/err predicted correctly: -407.4542
## % of predictable range [ (model-null)/(1-null) ]: 0.003906182
## *********
## model index: 7
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                               I(pos^2)
                                                pos
##
      2.70928
                  -0.06905
                               -0.03142
                                            0.37074
##
## Degrees of Freedom: 4411 Total (i.e. Null); 4408 Residual
## Null Deviance:
                       1679
## Residual Deviance: 1663 AIC: 1779
## log likelihood: -831.7335
## Nagelkerke R2: 0.0109485
## % pres/err predicted correctly: -407.564
## % of predictable range [ (model-null)/(1-null) ]: 0.003638268
## **********
## model index: 6
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                    pos
##
      2.20346
                  -0.03505
                                0.38162
##
## Degrees of Freedom: 4411 Total (i.e. Null); 4409 Residual
## Null Deviance:
                       1679
## Residual Deviance: 1666 AIC: 1779
## log likelihood: -832.9321
## Nagelkerke R2: 0.009237201
## % pres/err predicted correctly: -407.794
## % of predictable range [ (model-null)/(1-null) ]: 0.003077398
## ***********
## model index: 8
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
##
       (Intercept)
                             stimlen
                                             I(pos^2)
                                                                    pos stimlen:I(pos^2)
```

```
##
          1.242237
                            0.131263
                                            -0.090569
                                                               1.152146
                                                                                0.008605
##
       stimlen:pos
##
         -0.107151
##
## Degrees of Freedom: 4411 Total (i.e. Null); 4406 Residual
## Null Deviance:
                       1679
## Residual Deviance: 1660 AIC: 1779
## log likelihood: -829.9814
## Nagelkerke R2: 0.01344851
## % pres/err predicted correctly: -407.2841
## % of predictable range [ (model-null)/(1-null) ]: 0.004321002
## ***********
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                                   pos
##
       3.1970
                   -0.0836
                                 0.1125
##
## Degrees of Freedom: 4411 Total (i.e. Null); 4409 Residual
## Null Deviance:
                       1679
## Residual Deviance: 1668 AIC: 1780
## log likelihood: -834.0236
## Nagelkerke R2: 0.007678074
## % pres/err predicted correctly: -407.9949
## % of predictable range [ (model-null)/(1-null) ]: 0.002587537
## **********
## model index: 3
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                       pos
##
       2.6370
                    0.0896
##
## Degrees of Freedom: 4411 Total (i.e. Null); 4410 Residual
## Null Deviance:
                       1679
## Residual Deviance: 1672 AIC: 1782
## log likelihood: -835.8429
## Nagelkerke R2: 0.005077525
## % pres/err predicted correctly: -408.3718
## % of predictable range [ (model-null)/(1-null) ]: 0.001668432
## ***********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
##
        2.963
```

```
##
## Degrees of Freedom: 4411 Total (i.e. Null); 4411 Residual
## Null Deviance:
                          1679
## Residual Deviance: 1679 AIC: 1786
## log likelihood: -839.3906
## Nagelkerke R2: 0
## % pres/err predicted correctly: -409.0559
## % of predictable range [ (model-null)/(1-null) ]: 0
## **********
## model index: 2
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
## (Intercept)
                     stimlen
       3.22137
                    -0.03349
##
##
## Degrees of Freedom: 4411 Total (i.e. Null); 4410 Residual
## Null Deviance:
                          1679
## Residual Deviance: 1678 AIC: 1787
## log likelihood: -839.0657
## Nagelkerke R2: 0.000465333
## % pres/err predicted correctly: -408.9671
## % of predictable range [ (model-null)/(1-null) ]: 0.0002165214
## *********
NoFragBestLPModel<-NoFrag_LPRes$ModelResult[[1]]
NoFragBestLPModelFormula <- NoFrag_LPRes $Model[[1]]
NoFragLPAICSummary <- data.frame (Model=NoFrag_LPRes$Model,
                         AIC=NoFrag_LPRes$AIC,
                         row.names = NoFrag_LPRes$Model)
NoFragLPAICSummary $DeltaAIC <- NoFragLPAICSummary $AIC-NoFragLPAICSummary $AIC [1]
NoFragLPAICSummary$AICexp<-exp(-0.5*NoFragLPAICSummary$DeltaAIC)
NoFragLPAICSummary $AICwt <- NoFragLPAICSummary $AICexp/sum(NoFragLPAICSummary $AICexp)
NoFragLPAICSummary$NagR2<-NoFrag_LPRes$NagR2
NoFragLPAICSummary <- merge(NoFragLPAICSummary, NoFrag_LPRes CoefficientValues, by='row.names', sort=FALS
NoFragLPAICSummary <- subset(NoFragLPAICSummary, select = -c(Row.names))
write.csv(NoFragLPAICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_no_fragments_len_pos_model_summary.c
kable(NoFragLPAICSummary)
Model
                         DeltaAlaICexpAICwt NagR2 (Interceps)imlen pos
                                                                          stimlen:plopos^2)stimlen:I(pos^2)
                   1776.08 \\ 0.00000 \\ 0.00000 \\ 0.0053300 \\ 3901265427918880.086245 \\ 1.6282356
                                                                                             NA
preserved ~
                                                                                    NA
stimlen * pos
                                                                          0.0602328
preserved \sim
                   1778.61 \\ \mathbf{20}.53011 \\ \mathbf{0}.28222 \\ \mathbf{238} \\ 15042 \\ \mathbf{04} \\ 01094 \\ \mathbf{257} \\ 09283
                                                                   0.3707373\,\mathrm{NA}
                                                                                             NA
stimlen + I(pos^2)
                                                            0.0690487
                                                                                  0.0314169
+ pos
preserved ~
                   1779.220.139410.208106211092040092322203459 NA 0.3816241NA
                                                                                             NA
                                                                                  0.0350549
I(pos^2) + pos
```

```
preserved ~
                                                   1779.343.263596.1955776104248601344852422370.13126251521461
                                                                                                                                                                                                                               - 0.0086053
stimlen * (I(pos^2)
                                                                                                                                                                                                  0.107151 0.0905692
+ pos
                                                   1780.224.141202.1261100067217010076781196955
                                                                                                                                                                                                                          NA
                                                                                                                                                                                                                                                    NA
preserved ~
                                                                                                                                                                         - 0.1125330NA
stimlen + pos
                                                                                                                                                              0.0836049
                                                   1781.995.915945.051924102767570050725636993 NA
                                                                                                                                                                                0.0895953\,\mathrm{NA}
                                                                                                                                                                                                                          NA
                                                                                                                                                                                                                                                    NA
preserved \sim pos
preserved \sim 1
                                                   1785.77%.697298.0078390004178200000020963368 NA
                                                                                                                                                                                    NA
                                                                                                                                                                                                                          NA
                                                                                                                                                                                                                                                    NA
                                                   1786.94 \\ B \\ 0.8622 \\ \mathbf{59} \\ 00437 \\ \mathbf{81} \\ 00233 \\ \mathbf{36} \\ 00046 \\ \mathbf{53} \\ 221367
                                                                                                                                                                                                                          NA
preserved \sim
                                                                                                                                                                                    NA
                                                                                                                                                                                                       NA
                                                                                                                                                                                                                                                    NA
                                                                                                                                                              0.0334903
stimlen
 # plot no fragment data
NoFragData$LPFitted<-fitted(NoFragBestLPModel)
nofrag_obs_len_pos_plot <- plot_len_pos_obs_predicted(NoFragData, NoFragData$patient[1],</pre>
                                                                          NULL,palette_values=palette_values)
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
 # len/pos table
nofrag_fitted_pos_len_summary <- NoFragData %% group_by(stimlen,pos) %% summarise(fitted = mean(LPFit
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
nofrag_fitted_pos_len_table <- nofrag_fitted_pos_len_summary %>% pivot_wider(names_from = pos, values_f
nofrag_fitted_pos_len_table
## # A tibble: 7 x 10
## # Groups:
                                          stimlen [7]
                                           `1`
                                                           `2`
                                                                            `3`
                                                                                                 `4`
                                                                                                                    `5`
                                                                                                                                       `6`
                                                                                                                                                                               `8`
##
              stimlen
                    <int> <dbl> <dbl> <dbl> <dbl>
                                                                                                              <dbl>
                                                                                                                                 <dbl>
                                                                                                                                                     <dbl>
                                                                                                                                                                         <dbl>
##
                               4 0.926 0.948 0.964 NA
## 1
                                                                                                           NA
                                                                                                                              NA
                                                                                                                                                  NΑ
                                                                                                                                                                      NA
                                                                                                                                                                                          NΑ
                               5 0.928 0.947 0.961 0.972 NA
## 2
                                                                                                                              NΑ
                                                                                                                                                  NΑ
                                                                                                                                                                      NΑ
                                                                                                                                                                                          NΑ
                                                                                                                                                                                          NΑ
## 3
                               6 0.929 0.945 0.957 0.967
                                                                                                            0.975 NA
                                                                                                                                                                      NΔ
                               7 0.931 0.943 0.953 0.962 0.969
                                                                                                                                0.974 NA
                                                                                                                                                                                          NΑ
## 5
                               8 0.933 0.941 0.949 0.956 0.961 0.966 0.971 NA
                                                                                                                                                                                          NA
                               9 0.934 0.939 0.944 0.948 0.953 0.956 0.960 0.963 NA
## 7
                             10 0.936 0.937 0.939 0.940 0.942 0.943 0.945 0.946 0.947
fitted_pos_len_summary$stimlen<-factor(nofrag_fitted_pos_len_summary$stimlen)
fitted_pos_len_summary$pos<-factor(nofrag_fitted_pos_len_summary$pos)</pre>
 \#\ fitted\_len\_pos\_plot <-\ ggplot(pos\_len\_summary, aes(x=pos,y=preserved, group=stimlen, shape=stimlen, color + fitted\_len\_group=stimlen, shape=stimlen, color + fitted\_len\_group=stimlen, shape=stimlen, color + fitted\_len\_group=stimlen, shape=stimlen, color + fitted\_len\_group=stimlen, shape=stimlen, shape=stimlen,
 \# fitted_len_pos_plot <- fitted_len_pos_plot + geom_line(data=fitted_pos_len_summary, aes(x=pos,y=fitted_pos_len_summary)
  \# \ geom\_point(data=fitted\_pos\_len\_summary, aes(x=pos,y=fitted,group=stimlen,shape=stimlen)) \ + \ ggtitle(pas,y=fitted,group=stimlen,group=stimlen,group=stimlen)) \ + \ ggtitle(pas,y=fitted,group=stimlen,group=stimlen,group=stimlen)) \ + \ ggtitle(pas,y=fitted,group=stimlen,group=stimlen,group=stimlen,group=stimlen)) \ + \ ggtitle(pas,y=fitted,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,gr
nofrag_fitted_len_pos_plot <- plot_len_pos_obs_predicted(NoFragData,</pre>
                                                                                                                      paste0(NoFragData$patient[1]),
                                                                                                                       "LPFitted",
                                                                                                                      NULL,
                                                                                                                      palette_values,
                                                                                                                       shape_values,
                                                                                                                       obs_linetypes,
                                                                                                                       pred_linetypes = c("longdash")
```

DeltaAl@ICexpAlCwt NagR2 (Interceps)imlen pos

stimlen:plopsos^2)stimlen:I(pos^2)

Model

AIC

```
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
ggsave(paste0(FigDir,CurPat,"_",CurTask,"no_fragments_percent_preserved_by_length_pos_wfit.png"),plot=n
nofrag_fitted_len_pos_plot
```

`summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.

back to full data

```
results_report_DF <- AddReportLine(results_report_DF, "min preserved", min_preserved)
results_report_DF <- AddReportLine(results_report_DF, "max preserved", max_preserved)
print(sprintf("Min/max preserved range: %.2f - %.2f", min_preserved, max_preserved))
```

```
## [1] "Min/max preserved range: 0.88 - 1.00"

# find the average difference between lengths and the average difference
# between positions taking the other factor into account

# choose fitted or raw -- we use fitted values because they are smoothed averages
# that take into account the influence of the other variable
table_to_use <- fitted_pos_len_table
# take away column with length information
table_to_use <- table_to_use[,2:ncol(table_to_use)]

# take averages for positions
# don't want downward estimates influenced by return upward of U
# therefore, for downward influence, use only the values before the min
# take the difference between each value (differences between position proportion correct) **NOTE** pro
# average the difference in probabilities</pre>
```

```
# in case min is close to the end or we are not using a min (for non-U-shaped)
# functions, we need to get differences _first_ and then average those (e.g.
# if there is an effect of length and we just average position data,
# later positions) will have a lower average (because of the length effect)
# even if all position functions go upward
table_pos_diffs <- t(diff(t(as.matrix(table_to_use))))</pre>
ncol pos diff matrix <- ncol(table pos diffs)</pre>
first col mean <- mean(as.numeric(unlist(table pos diffs[,1])))</pre>
potential_u_shape <- 0</pre>
if(first_col_mean < 0){ # downward, so potential U-shape</pre>
  # take only negative values from the table
 filtered_table_pos_diffs<-table_pos_diffs</pre>
 filtered_table_pos_diffs[table_pos_diffs >= 0] <- NA
 potential_u_shape <- 1</pre>
}else{
  # upward - use the positive values
  # take only negative values from the table
 filtered_table_pos_diffs<-table_pos_diffs
  filtered_table_pos_diffs[table_pos_diffs <= 0] <- NA
}
average_pos_diffs <- apply(filtered_table_pos_diffs,2,mean,na.rm=TRUE)
OA_mean_pos_diff <- mean(average_pos_diffs,na.rm=TRUE)</pre>
table len diffs <- diff(as.matrix(table to use))
average_len_diffs <- apply(table_len_diffs,1,mean,na.rm=TRUE)</pre>
OA_mean_len_diff <- mean(average_len_diffs,na.rm=TRUE)</pre>
CurrentLabel <- "mean change in probability for each additional length: "
print(CurrentLabel)
## [1] "mean change in probability for each additional length: "
print(OA_mean_len_diff)
## [1] 0
results_report_DF <- AddReportLine(results_report_DF, CurrentLabel,OA_mean_len_diff)
CurrentLabel <- "mean change in probability for each additional position (excluding U-shape): "
print(CurrentLabel)
## [1] "mean change in probability for each additional position (excluding U-shape): "
print(OA mean pos diff)
## [1] 0.006926761
results_report_DF <- AddReportLine(results_report_DF, CurrentLabel,OA_mean_pos_diff)
if(potential_u_shape){ # downward, so potential U-shape
  # take only positive values from the table
  filtered_pos_upward_u<-table_pos_diffs
  filtered_pos_upward_u[table_pos_diffs <= 0] <- NA</pre>
  average pos u diffs <- apply(filtered pos upward u,
                                2, mean, na.rm=TRUE)
  OA_mean_pos_u_diff <- mean(average_pos_u_diffs,na.rm=TRUE)</pre>
```

```
if(is.nan(OA_mean_pos_u_diff) | (OA_mean_pos_u_diff <= 0)){</pre>
    print("No U-shape in this participant")
    results_report_DF <- AddReportLine(results_report_DF, "U-shape", 0)
    potential_u_shape <- FALSE</pre>
  }else{
    results report DF <- AddReportLine(results report DF, "U-shape", 1)
    CurrentLabel <- "Average upward change after U minimum"
    print(CurrentLabel)
    print(OA mean pos u diff)
    results_report_DF <- AddReportLine(results_report_DF, CurrentLabel, OA_mean_pos_u_diff)
    CurrentLabel <- "Proportion of average downward change"
    prop_ave_down <- abs(OA_mean_pos_u_diff/OA_mean_pos_diff)</pre>
    results_report_DF <- AddReportLine(results_report_DF, CurrentLabel, prop_ave_down)
}else{
  print("No U-shape in this participant")
  results_report_DF <- AddReportLine(results_report_DF, "U-shape", 0)</pre>
}
## [1] "No U-shape in this participant"
if(potential_u_shape){
  n_rows<-nrow(table_to_use)</pre>
  downward_dist <- numeric(n_rows)</pre>
  upward_dist <- numeric(n_rows)</pre>
  for(i in seq(1,n_rows)){
    current_row <- as.numeric(unlist(table_to_use[i,1:9]))</pre>
    current row <- current row[!is.na(current row)]</pre>
    current_row_len <- length(current_row)</pre>
    row min <- min(current row,na.rm=TRUE)
    min_pos <- which(current_row == row_min)</pre>
    left max <- max(current row[1:min pos],na.rm=TRUE)</pre>
    right_max <- max(current_row[min_pos:current_row_len])</pre>
    left_diff <- left_max - row_min</pre>
    right_diff <- right_max - row_min</pre>
    downward_dist[i]<-left_diff</pre>
    upward_dist[i]<-right_diff
  print("differences from left max to min for each row: ")
  print(downward_dist)
  print("differences from min to right max for each row: ")
  print(upward_dist)
  # Use the max return upward (min of upward_dist) and then the
  # downward distance from the left for the same row
  print(" ")
  biggest_return_upward_row <- which(upward_dist == max(upward_dist))</pre>
  CurrentLabel <- "row with biggest return upward"</pre>
  print(CurrentLabel)
  print(biggest return upward row)
  results_report_DF <- AddReportLine(results_report_DF, CurrentLabel, biggest_return_upward_row)
```

```
print(" ")
  CurrentLabel <- "downward distance for row with the largest upward value"
  print(CurrentLabel)
  print(downward dist[biggest return upward row])
  results_report_DF <- AddReportLine(results_report_DF, CurrentLabel, downward_dist[biggest_return_upwa
  CurrentLabel<-"return upward value"
  print(upward dist[biggest return upward row])
  results_report_DF <- AddReportLine(results_report_DF,</pre>
                                       CurrentLabel,
                                       upward_dist[biggest_return_upward_row])
  print(" ")
  # percentage return upward
  percentage_return_upward <- upward_dist[biggest_return_upward_row]/downward_dist[biggest_return_upwar
  CurrentLabel <- "Return upward as a proportion of the downward distance:"
  print(CurrentLabel)
 print(percentage_return_upward)
  results_report_DF <- AddReportLine(results_report_DF, CurrentLabel,</pre>
                        percentage_return_upward)
}else{
  print("no U-shape in this participant")
## [1] "no U-shape in this participant"
FLPModelEquations<-c(
  # models with log frequency, but no three-way interactions (due to difficulty interpreting and small
            "preserved ~ stimlen*log_freq",
            "preserved ~ stimlen+log_freq",
            "preserved ~ pos*log_freq",
            "preserved ~ pos+log_freq",
            "preserved ~ stimlen*log_freq + pos*log_freq",
            "preserved ~ stimlen*log_freq + pos",
            "preserved ~ stimlen + pos*log_freq",
            "preserved ~ stimlen + pos + log_freq",
            "preserved ~ (I(pos^2)+pos)*log_freq",
            "preserved ~ stimlen*log_freq + (I(pos^2) + pos)*log_freq",
            "preserved ~ stimlen*log_freq + I(pos^2) + pos",
            "preserved ~ stimlen + (I(pos^2) + pos)*log_freq",
            "preserved ~ stimlen + I(pos^2) + pos + log_freq",
            # models without frequency
            "preserved ~ 1",
            "preserved ~ stimlen",
            "preserved ~ pos",
            "preserved ~ stimlen + pos",
            "preserved ~ stimlen*pos",
            "preserved ~ I(pos^2)+pos",
            "preserved ~ stimlen + I(pos^2) + pos",
            "preserved ~ stimlen * (I(pos^2) + pos)"
FLPRes<-TestModels(FLPModelEquations,PosDat)</pre>
```

```
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## **********
## model index: 9
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
                                                                     log_freq I(pos^2):log_freq
##
         (Intercept)
                              I(pos^2)
                                                      pos
##
            2.217905
                              -0.037576
                                                 0.381802
                                                                     0.003075
                                                                                       -0.009111
##
       pos:log_freq
            0.088439
##
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4423 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1744 AIC: 1862
## log likelihood: -871.7941
## Nagelkerke R2: 0.02047529
## % pres/err predicted correctly: -435.0271
## % of predictable range [ (model-null)/(1-null) ]: 0.007394369
## ***********
## model index: 13
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                               I(pos^2)
                                                 pos
                                                          log_freq
##
      2.311903
                 -0.004462
                               -0.032765
                                            0.339269
                                                          0.156293
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4424 Residual
## Null Deviance:
                       1774
```

```
## Residual Deviance: 1746 AIC: 1863
## log likelihood: -872.8267
## Nagelkerke R2: 0.01907143
## % pres/err predicted correctly: -435.2375
## % of predictable range [ (model-null)/(1-null) ]: 0.006915347
## **********
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                               log_freq
                       pos
                                0.15994
##
      2.70921
                   0.05915
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4426 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1751 AIC: 1864
## log likelihood: -875.7344
## Nagelkerke R2: 0.01511488
## % pres/err predicted correctly: -435.7635
## % of predictable range [ (model-null)/(1-null) ]: 0.005717879
## **********
## model index: 12
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
##
        (Intercept)
                               stimlen
                                                I(pos^2)
                                                                                      log_freq
                                                                        pos
##
           2.264070
                             -0.006309
                                                -0.037227
                                                                   0.380661
                                                                                      0.001178
## I(pos^2):log_freq
                          pos:log_freq
##
          -0.009083
                              0.088452
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4422 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1744 AIC: 1864
## log likelihood: -871.7848
## Nagelkerke R2: 0.02048804
## % pres/err predicted correctly: -435.0268
## % of predictable range [ (model-null)/(1-null) ]: 0.007394874
## **********
## model index: 3
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
   (Intercept)
##
                                  log_freq pos:log_freq
                         pos
##
       2.67588
                     0.07083
                                   0.10047
                                                0.01658
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4425 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1751 AIC: 1865
```

```
## log likelihood: -875.2605
## Nagelkerke R2: 0.01576006
## % pres/err predicted correctly: -435.7203
## % of predictable range [ (model-null)/(1-null) ]: 0.005816287
## **********
## model index: 11
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
##
                                                                I(pos^2)
        (Intercept)
                             stimlen
                                              log_freq
                                                                                       pos
                                              0.219534
                                                               -0.033042
##
          2.311926
                           -0.005775
                                                                                  0.341506
## stimlen:log_freq
##
         -0.008149
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4423 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1746 AIC: 1865
## log likelihood: -872.7539
## Nagelkerke R2: 0.01917053
## % pres/err predicted correctly: -435.2292
## % of predictable range [ (model-null)/(1-null) ]: 0.006934251
## **********
## model index: 8
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                   stimlen
                                    pos
                                            log_freq
##
      2.85245
                  -0.02137
                                0.06460
                                             0.15527
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4425 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1751 AIC: 1866
## log likelihood: -875.6214
## Nagelkerke R2: 0.01526875
## % pres/err predicted correctly: -435.7381
## % of predictable range [ (model-null)/(1-null) ]: 0.005775651
## model index: 10
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
##
         (Intercept)
                               stimlen
                                                 log_freq
                                                                    I(pos^2)
                                                                                            pos
                                                                   -0.036945
##
           2.272757
                             -0.009300
                                                 0.087262
                                                                                      0.380911
##
   stimlen:log_freq log_freq:I(pos^2)
                                             log_freq:pos
##
          -0.011966
                             -0.008578
                                                 0.087759
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4421 Residual
## Null Deviance:
                       1774
```

```
## Residual Deviance: 1743 AIC: 1866
## log likelihood: -871.6538
## Nagelkerke R2: 0.02066599
## % pres/err predicted correctly: -435.0097
## % of predictable range [ (model-null)/(1-null) ]: 0.00743383
## **********
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                               log_freq
                   stimlen
##
     2.860544
                  0.008938
                               0.155124
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4426 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1755 AIC: 1866
## log likelihood: -877.4268
## Nagelkerke R2: 0.01280957
## % pres/err predicted correctly: -436.0994
## % of predictable range [ (model-null)/(1-null) ]: 0.004953243
## **********
## model index: 7
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
## Coefficients:
   (Intercept)
                    stimlen
                                               log_freq pos:log_freq
                                      pos
##
       2.84426
                    -0.02531
                                  0.07774
                                                0.09215
                                                              0.01736
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4424 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1750 AIC: 1866
## log likelihood: -875.1031
## Nagelkerke R2: 0.0159743
## % pres/err predicted correctly: -435.6892
## % of predictable range [ (model-null)/(1-null) ]: 0.005886965
## ***********
## model index: 6
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
                                                                    pos stimlen:log_freq
##
       (Intercept)
                             stimlen
                                             log_freq
##
          2.855893
                           -0.022450
                                             0.199595
                                                                               -0.005713
                                                               0.064603
## Degrees of Freedom: 4428 Total (i.e. Null); 4424 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1751 AIC: 1868
## log likelihood: -875.5864
## Nagelkerke R2: 0.01531643
```

```
## % pres/err predicted correctly: -435.7257
## % of predictable range [ (model-null)/(1-null) ]: 0.005803904
## model index: 5
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
##
       (Intercept)
                            stimlen
                                              log_freq
                                                                     pos stimlen:log_freq
##
           2.84943
                            -0.02867
                                               0.19595
                                                                 0.08046
                                                                                  -0.01545
##
      log_freq:pos
           0.02176
##
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4423 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1750 AIC: 1868
## log likelihood: -874.8788
## Nagelkerke R2: 0.01627961
## % pres/err predicted correctly: -435.6458
## % of predictable range [ (model-null)/(1-null) ]: 0.005985846
## model index: 1
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
##
       (Intercept)
                                              log_freq stimlen:log_freq
                             stimlen
          2.864004
                            0.007859
                                              0.199435
                                                               -0.005711
##
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4425 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1755 AIC: 1868
## log likelihood: -877.3918
## Nagelkerke R2: 0.01285726
## % pres/err predicted correctly: -436.0867
## % of predictable range [ (model-null)/(1-null) ]: 0.004982058
## **********
## model index: 19
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
                  I(pos^2)
## (Intercept)
                                    pos
      2.27136
                  -0.03485
##
                                0.34100
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4426 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1765 AIC: 1883
## log likelihood: -882.592
## Nagelkerke R2: 0.005762917
## % pres/err predicted correctly: -437.4149
```

```
## % of predictable range [ (model-null)/(1-null) ]: 0.001958543
## *********
## model index: 18
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                   stimlen
                                    pos stimlen:pos
      2.04452
                   0.06847
                                0.46804
##
                                           -0.04716
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4425 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1764 AIC: 1883
## log likelihood: -882.1167
## Nagelkerke R2: 0.006412045
## % pres/err predicted correctly: -437.3415
## % of predictable range [ (model-null)/(1-null) ]: 0.002125627
## **********
## model index: 20
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
## Coefficients:
## (Intercept)
                   stimlen
                               I(pos^2)
                                                pos
##
      2.67025
                  -0.05465
                               -0.03197
                                             0.33256
## Degrees of Freedom: 4428 Total (i.e. Null); 4425 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1764 AIC: 1883
## log likelihood: -881.8111
## Nagelkerke R2: 0.006829321
## % pres/err predicted correctly: -437.238
## % of predictable range [ (model-null)/(1-null) ]: 0.002361305
## **********
## model index: 21
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
##
       (Intercept)
                             stimlen
                                             I(pos^2)
                                                                    pos stimlen:I(pos^2)
           1.09205
                             0.14617
                                             -0.14894
                                                              1.35133
##
                                                                                  0.01412
##
       stimlen:pos
##
          -0.12602
## Degrees of Freedom: 4428 Total (i.e. Null); 4423 Residual
## Null Deviance:
                      1774
## Residual Deviance: 1761 AIC: 1884
## log likelihood: -880.3555
## Nagelkerke R2: 0.008816083
## % pres/err predicted correctly: -436.9552
## % of predictable range [ (model-null)/(1-null) ]: 0.003005029
```

```
## ************
## model index: 17
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                                   pos
##
      3.19685
                  -0.07088
                                0.06428
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4426 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1769 AIC: 1886
## log likelihood: -884.4989
## Nagelkerke R2: 0.00315719
## % pres/err predicted correctly: -437.7649
## % of predictable range [ (model-null)/(1-null) ]: 0.001161809
## model index: 14
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
        2.891
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4428 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1774 AIC: 1886
## log likelihood: -886.8073
## Nagelkerke R2: -6.728935e-16
## % pres/err predicted correctly: -438.2752
## % of predictable range [ (model-null)/(1-null) ]: 0
## ***********
## model index: 15
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
      3.20465
                  -0.04068
##
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4427 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1773 AIC: 1886
## log likelihood: -886.2955
## Nagelkerke R2: 0.0007002624
## % pres/err predicted correctly: -438.1319
## % of predictable range [ (model-null)/(1-null) ]: 0.0003262443
## **********
## model index: 16
##
```

```
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
       data = PosDat)
##
## Coefficients:
## (Intercept)
                          pos
        2.7265
                       0.0439
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4427 Residual
## Null Deviance:
                          1774
## Residual Deviance: 1772 AIC: 1886
## log likelihood: -885.8618
## Nagelkerke R2: 0.00129358
## % pres/err predicted correctly: -438.0882
## % of predictable range [ (model-null)/(1-null) ]: 0.0004258722
## ************
BestFLPModel<-FLPRes$ModelResult[[1]]</pre>
BestFLPModelFormula<-FLPRes$Model[[1]]</pre>
FLPAICSummary <- data.frame (Model=FLPRes$Model,
                         AIC=FLPRes$AIC,row.names=FLPRes$Model)
FLPAICSummary $DeltaAIC <-FLPAICSummary $AIC-FLPAICSummary $AIC[1]
FLPAICSummary$AICexp<-exp(-0.5*FLPAICSummary$DeltaAIC)
FLPAICSummary $AICwt <-FLPAICSummary $AICexp/sum(FLPAICSummary $AICexp)
FLPAICSummary$NagR2<-FLPRes$NagR2
FLPAICSummary <- merge(FLPAICSummary,FLPRes$CoefficientValues,
                            by='row.names',sort=FALSE)
FLPAICSummary <- subset(FLPAICSummary, select = -c(Row.names))</pre>
write.csv(FLPAICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_freq_len_pos_model_summary.csv"),row.name
kable(FLPAICSummary)
               AIC\ Delta \textbf{AIC} explCwN agR \textbf{2} nterseiph) eng\_fsteinplewg\_pfosedologgfr \textbf{freig} (ppost2) os^2 2) weg freight (plost i ph) en: I(pos^2)
Model
preserved ~
               1862.44.940.0000000000000000002.7247.90A 0.003.0VA8 0.3818.002843.95
                                                                                   NA
                                                                                         NA NA
                                                                        0.0376769491112
(I(pos^2) +
pos) *
log_freq
               1863.0895646424324659692344903 0.1562928 0.3392689 NA
preserved ~
                                                                             NA
                                                                                   NA NA NA
stimlen +
                                          0.0044622
                                                                        0.0327655
I(pos^2) +
pos +
log freq
               1863.834204517108425052952.74992NA 0.15993342 0.059N507 NA NA NA
                                                                                   NA NA NA
preserved ~
pos +
log freq
preserved ~
               1864.14783225709.75507.702025264079 0.001 NAS 0.3806668845A9
                                                                                   NA
                                                                                         NA NA
                                          0.0063086
                                                                        0.037227390826
stimlen +
(I(pos^2) +
pos) *
log freq
               1864/7.7763093172633174891183576675877 0.1004Y04 0.07082525532 NA NA NA NA NA
preserved ~
pos *
log_freq
```

Model	$AIC\ Delta \textbf{AIC} expCwN agR(\textbf{2}nterseipn) dag_fsteiqnlenploog_fsteinploof_fste$
preserved ~ stimlen * log_freq + I(pos^2) + pos	1864 2905 0 83299666730 298592.7305 1926 0.2195336 0.341 505 8 NA - NA NA NA NA 0.0057752 0.0081488 0.0330419
$\begin{array}{l} preserved \sim \\ stimlen + pos \\ + log_freq \end{array}$	1865. 63.5614020056305030503020526852 446 0.155 264 8 0.064 802 3 NA NA NA NA NA NA NA NA NA
preserved ~ stimlen * log_freq + (I(pos^2) + pos) * log_freq	1866.3L894.498E6616.2R395.4620026272757 0.0872624 0.380NA)6 0.0877593 NA - NA NA 0.0093003 0.0119662 0.0369451 0.0085782
$\begin{array}{l} {\rm preserved} \sim \\ {\rm stimlen} \ + \\ {\rm log_freq} \end{array}$	1866 3L96 6 9 2 5B 3 77 4 3B386 2712 3 8960 50440 893775 12A1 NA NA NA NA NA NA NA NA
preserved ~ stimlen + pos * log_freq	1866 3L39 408635 73638 2.1215 2.7843126
preserved ~ stimlen * log_freq + pos	1867.55.5587357970949508452.8555893 0.1995953 0.0648027 NA
preserved ~ stimlen * log_freq + pos * log_freq	1867 59.4411 683006066 422253006162.78949428 0.1959539 0.08030627 0.0217636 NA NA NA NA 0.0286718 0.0154451
preserved ~ stimlen * log_freq	1868 .53.696607253022415022122.557310 00407 0 585994353 NA
$\begin{array}{l} \text{preserved} \sim \\ \text{I}(\text{pos}^2) + \\ \text{pos} \end{array}$	1883 20 .50 676320 3510 00865 7(223) 36A NA NA 0.341 302 9 NA - NA NA NA NA NA 0.0348462
preserved ~ stimlen * pos	1883 20.7 50 2989203860008162.12204523 68 47A 1 NA 0.468 N 4 2 8 NA NA NA NA - NA 0.0471590
$\begin{array}{l} \text{preserved} \sim \\ \text{stimlen} + \\ \text{I}(\text{pos}^2) + \\ \text{pos} \end{array}$	1883 205.756 2930 500 3126 00 3063 2373) 253 NA NA 0.332 3062 9 NA - NA NA NA NA 0.0546476 0.0319727
$\begin{array}{l} preserved \sim \\ stimlen \ ^* \\ (I(pos^2) + \\ pos) \end{array}$	1884 229.8 0 450.000 1600 0 008 8.0002 0053 46 N6\$ 7 NA 1.351 826 1 NA - NA NA - 0.0141222 0.1489375 0.1260168
$preserved \sim stimlen + pos$	1885 230.30089003001000000033 5736 854 NA NA 0.064 284 6 NA
preserved ~ 1 preserved ~	1885 253 8.6 9 83000000000000000000000000000000000000
$\begin{array}{c} \text{stimlen} \\ \text{preserved} \sim \\ \text{pos} \end{array}$	0.0406791 1886 223.0 9963500000000000000000000000000000000000

```
print(BestFLPModelFormula)
## [1] "preserved ~ (I(pos^2) + pos) * log_freq"
print(BestFLPModel)
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
       data = PosDat)
##
## Coefficients:
                                                                      log_freq I(pos^2):log_freq
##
         (Intercept)
                               I(pos^2)
                                                        pos
##
            2.217905
                              -0.037576
                                                 0.381802
                                                                      0.003075
                                                                                         -0.009111
##
        pos:log_freq
            0.088439
##
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4423 Residual
## Null Deviance:
                        1774
## Residual Deviance: 1744 AIC: 1862
# do a median split on frequency to plot hf/ls effects (analysis is continuous)
median_freq <- median(PosDat$log_freq)</pre>
PosDat$freq_bin[PosDat$log_freq >= median_freq]<-"hf"
PosDat$freq_bin[PosDat$log_freq < median_freq]<-"lf"</pre>
PosDat$FLPFitted<-fitted(BestFLPModel)
HFDat <- PosDat[PosDat$freq_bin == "hf",]</pre>
LFDat <- PosDat[PosDat$freq_bin == "lf",]</pre>
HF_Plot <- plot_len_pos_obs_predicted(HFDat,paste0(CurPat," - High frequency"), "FLPFitted",c(min_preser
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## Scale for y is already present. Adding another scale for y, which will replace the existing
## scale.
LF_Plot <- plot_len_pos_obs_predicted(LFDat,paste0(CurPat, " - Low frequency"), "FLPFitted", c(min_preser
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## Scale for y is already present. Adding another scale for y, which will replace the existing
## scale.
library(ggpubr)
Both Plots <- ggarrange(LF Plot, HF Plot) # labels=c("LF", "HF", ncol=2)
## Warning: Removed 1 row containing missing values or values outside the scale range
## (`geom_point()`).
## Warning: Removed 1 row containing missing values or values outside the scale range
## (`geom_line()`).
ggsave(paste0(FigDir,CurPat,"_",CurTask,"_frequency_effect_length_pos_wfit.png"),device="png",unit="cm"
print(Both_Plots)
```



```
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4427 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1662 AIC: 1757
## log likelihood: -831.2166
## Nagelkerke R2: 0.07512643
## % pres/err predicted correctly: -413.9801
## % of predictable range [ (model-null)/(1-null) ]: 0.05530734
## **********
## model index: 1
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   CumPres
##
       2.5131
                    0.1589
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4427 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1752 AIC: 1866
## log likelihood: -876.1936
## Nagelkerke R2: 0.0144895
## % pres/err predicted correctly: -435.94
## % of predictable range [ (model-null)/(1-null) ]: 0.005316175
## **********
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                   pos
##
      2.27136
                  -0.03485
                                0.34100
## Degrees of Freedom: 4428 Total (i.e. Null); 4426 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1765 AIC: 1883
## log likelihood: -882.592
## Nagelkerke R2: 0.005762917
## % pres/err predicted correctly: -437.4149
## % of predictable range [ (model-null)/(1-null) ]: 0.001958543
## **********
## model index: 6
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
##
        2.891
## Degrees of Freedom: 4428 Total (i.e. Null); 4428 Residual
## Null Deviance:
                       1774
```

```
## Residual Deviance: 1774 AIC: 1886
## log likelihood: -886.8073
## Nagelkerke R2: -6.728935e-16
## % pres/err predicted correctly: -438.2752
## % of predictable range [ (model-null)/(1-null) ]: 0
## **********
## model index: 5
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                  stimlen
      3.20465
                 -0.04068
##
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4427 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1773 AIC: 1886
## log likelihood: -886.2955
## Nagelkerke R2: 0.0007002624
## % pres/err predicted correctly: -438.1319
## % of predictable range [ (model-null)/(1-null) ]: 0.0003262443
## **********
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                       pos
##
        2.7265
                    0.0439
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4427 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1772 AIC: 1886
## log likelihood: -885.8618
## Nagelkerke R2: 0.00129358
## % pres/err predicted correctly: -438.0882
## % of predictable range [ (model-null)/(1-null) ]: 0.0004258722
## **********
BestMEModel<-MERes$ModelResult[[ BestModelIndexL1 ]]</pre>
BestMEModelFormula<-MERes$Model[[BestModelIndexL1]]</pre>
MEAICSummary<-data.frame(Model=MERes$Model,</pre>
                      AIC=MERes$AIC,row.names=MERes$Model)
MEAICSummary DeltaAIC - MEAICSummary AIC - MEAICSummary AIC [1]
MEAICSummary $AICexp <-exp(-0.5 * MEAICSummary $DeltaAIC)
MEAICSummary $AICwt <-MEAICSummary $AICexp/sum (MEAICSummary $AICexp)
MEAICSummary$NagR2<-MERes$NagR2
MEAICSummary <- merge(MEAICSummary, MERes Coefficient Values,
                          by='row.names',sort=FALSE)
MEAICSummary <- subset(MEAICSummary, select = -c(Row.names))</pre>
```

write.csv(MEAICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_main_effects_model_summary.csv"),row.names
kable(MEAICSummary)

Model	AIC	DeltaAI	ICex	pAICw	rtNagR2 (Intercep	t)CumPresC	CumEr	r I(pos^2)	pos	stimlen
preserved ~	1757.47	780.0000	1	1	0.075126 3 .195941	NA	-	NA	NA	NA
CumErr						1	.02683	9		
preserved \sim	1866.32	28108.8504	0	0	0.014489 2 .513149	0.1589193	NA	NA	NA	NA
CumPres										
preserved \sim	1883.00	01125.5230	0	0	$0.005762 \\ 2.271361$	NA	NA	-	0.3410029	9 NA
$(I(pos^2) + pos)$								0.034846	32	
preserved ~ 1	1885.65	58128.1800	0	0	0.00000002.890849	NA	NA	NA	NA	NA
preserved \sim	1886.29	93128.8154	0	0	0.0007003.204652	NA	NA	NA	NA	-
stimlen									(0.040679
preserved $\sim pos$	1886.49	90129.0126	0	0	0.001293 0.726530	NA	NA	NA	0.043903'	7 NA

```
if(DoSimulations){
      BestMEModelFormulaRnd <- BestMEModelFormula</pre>
    if(grepl("CumPres", BestMEModelFormulaRnd)){
      BestMEModelFormulaRnd <- gsub("CumPres", "RndCumPres", BestMEModelFormulaRnd)
    }else if(grepl("CumErr", BestMEModelFormulaRnd)){
      BestMEModelFormulaRnd <- gsub("CumErr", "RndCumErr", BestMEModelFormulaRnd)
    RndModelAIC<-numeric(length=RandomSamples)</pre>
    for(rindex in seq(1,RandomSamples)){
    # Shuffle cumulative values
      PosDat$RndCumPres <- ShuffleWithinWord(PosDat, "CumPres")</pre>
      PosDat$RndCumErr <- ShuffleWithinWord(PosDat,"CumErr")</pre>
      BestModelRnd <- glm(as.formula(BestMEModelFormulaRnd),</pre>
                           family="binomial",data=PosDat)
      RndModelAIC[rindex] <- BestModelRnd$aic</pre>
    ModelNames<-c(paste0("***",BestMEModelFormula),</pre>
                   rep(BestMEModelFormulaRnd,RandomSamples))
    AICValues <- c(BestMEModel$aic,RndModelAIC)
    BestMEModelRndDF <- data.frame(Name=ModelNames,AIC=AICValues)</pre>
    BestMEModelRndDF <- BestMEModelRndDF %>% arrange(AIC)
    BestMEModelRndDF <- rbind(BestMEModelRndDF,</pre>
                               data.frame(Name=c("Random average"),
                                           AIC=c(mean(RndModelAIC))))
    BestMEModelRndDF <- rbind(BestMEModelRndDF,</pre>
                               data.frame(Name=c("Random SD"),
                                           AIC=c(sd(RndModelAIC))))
    write.csv(BestMEModelRndDF,
              pasteO(TablesDir,CurPat,"_",CurTask,
                      " best main effects model with random cum term.csv"),
              row.names = FALSE)
syll component summary <- PosDat %>%
 group_by(syll_component) %>% summarise(MeanPres = mean(preserved),
```

```
N = n())
write.csv(syll_component_summary,paste0(TablesDir,CurPat,"_",CurTask,"_syllable_component_summary.csv")
kable(syll_component_summary)
```

syll_component	MeanPres	N
1	0.9689119	579
O	0.9336593	2045
P	1.0000000	36
S	0.8733850	258
V	0.9691154	1511

```
# main effects models for data without satellite positions
keep_components = c("0","V","1")
OV1Data <- PosDat[PosDat$syll_component %in% keep_components,]</pre>
OV1Data <- OV1Data %>% select(stim_number,
                            stimlen, stim, pos,
                            preserved,syll_component)
OV1Data$CumPres <- CalcCumPres(OV1Data)</pre>
OV1Data$CumErr <- CalcCumErrFromPreserved(OV1Data)</pre>
SimpSyllMEAICSummary <- EvaluateSubsetData(OV1Data, MEModelEquations)</pre>
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## ************
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
## Coefficients:
## (Intercept)
                     CumErr
##
        3.302
                    -1.192
## Degrees of Freedom: 4134 Total (i.e. Null); 4133 Residual
## Null Deviance:
                        1560
## Residual Deviance: 1442 AIC: 1522
## log likelihood: -721.2182
## Nagelkerke R2: 0.08890546
## % pres/err predicted correctly: -353.2898
## % of predictable range [ (model-null)/(1-null) ]: 0.06653638
## *********
## model index: 1
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
```

```
##
## Coefficients:
## (Intercept)
                   CumPres
       2.5484
                    0.1974
##
## Degrees of Freedom: 4134 Total (i.e. Null); 4133 Residual
## Null Deviance:
                       1560
## Residual Deviance: 1534 AIC: 1633
## log likelihood: -767.1557
## Nagelkerke R2: 0.01939561
## % pres/err predicted correctly: -375.9757
## % of predictable range [ (model-null)/(1-null) ]: 0.006764906
## *********
## model index: 3
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                    pos
                   -0.0475
##
       2.1620
                                 0.4589
##
## Degrees of Freedom: 4134 Total (i.e. Null); 4132 Residual
## Null Deviance:
                       1560
## Residual Deviance: 1546 AIC: 1650
## log likelihood: -773.1127
## Nagelkerke R2: 0.01026818
## % pres/err predicted correctly: -377.261
## % of predictable range [ (model-null)/(1-null) ]: 0.003378357
## ************
## model index: 6
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
##
        2.978
##
## Degrees of Freedom: 4134 Total (i.e. Null); 4134 Residual
## Null Deviance:
                       1560
## Residual Deviance: 1560 AIC: 1657
## log likelihood: -779.7937
## Nagelkerke R2: 0
## % pres/err predicted correctly: -378.5433
## % of predictable range [ (model-null)/(1-null) ]: 0
## ***********
## model index: 4
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                       pos
```

```
0.05397
##
      2.77543
##
## Degrees of Freedom: 4134 Total (i.e. Null); 4133 Residual
## Null Deviance:
                      1560
## Residual Deviance: 1557 AIC: 1658
## log likelihood: -778.5626
## Nagelkerke R2: 0.001894671
## % pres/err predicted correctly: -378.3066
## % of predictable range [ (model-null)/(1-null) ]: 0.0006236181
## *********
## model index: 5
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                  -0.02054
##
      3.13563
## Degrees of Freedom: 4134 Total (i.e. Null); 4133 Residual
## Null Deviance:
                       1560
## Residual Deviance: 1559 AIC: 1659
## log likelihood: -779.6798
## Nagelkerke R2: 0.0001753863
## % pres/err predicted correctly: -378.5055
## % of predictable range [ (model-null)/(1-null) ]: 9.939848e-05
## *********
write.csv(SimpSyllMEAICSummary,
         pasteO(TablesDir,CurPat,"_",CurTask,
                "_OV1_main_effects_model_summary.csv"),row.names = FALSE)
kable(SimpSyllMEAICSummary)
```

Model	AIC	DeltaAI	& ICes	pAICw	rtNagR2	(Intercep	t)CumPres	CumErr	I(pos^2)	pos	stimlen
preserved ~	1522.103	20.0000	1	1	0.088905	5 3 .301816	NA	-	NA	NA	NA
CumErr							1	.192296	3		
preserved \sim	1633.483	3111.3809	0	0	0.019395	60.548435	0.1973672	2 NA	NA	NA	NA
CumPres											
preserved \sim	1650.43'	7128.3344	0	0	0.010268	3 2 .161996	NA	NA	-	0.458916	8 NA
$(I(pos^2) + pos)$									0.047504	3	
preserved ~ 1	1657.334	435.2318	3 0	0	0.000000	0.977599	NA	NA	NA	NA	NA
preserved \sim pos	1657.958	5135.8526	0	0	0.001894	2 .775426	NA	NA	NA	0.053969	6 NA
preserved \sim	1659.018	8136.9155	0	0	0.000175	3 .135634	NA	NA	NA	NA	-
stimlen											0.0205405

```
preserved,syll_component)
OVData$CumPres <- CalcCumPres(OVData)</pre>
OVData$CumErr <- CalcCumErrFromPreserved(OVData)</pre>
SimpSyllMEAICSummary2<-EvaluateSubsetData(OVData, MEModelEquations)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## **********
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
        3.195
                    -1.203
##
##
## Degrees of Freedom: 3555 Total (i.e. Null); 3554 Residual
## Null Deviance:
## Residual Deviance: 1319 AIC: 1390
## log likelihood: -659.7486
## Nagelkerke R2: 0.06864086
## % pres/err predicted correctly: -326.2426
## % of predictable range [ (model-null)/(1-null) ]: 0.04971291
## ************
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   CumPres
       2.5769
                    0.1829
##
##
## Degrees of Freedom: 3555 Total (i.e. Null); 3554 Residual
## Null Deviance:
                       1400
## Residual Deviance: 1384 AIC: 1466
## log likelihood: -692.2273
## Nagelkerke R2: 0.01325527
## % pres/err predicted correctly: -341.7047
## % of predictable range [ (model-null)/(1-null) ]: 0.004812123
## *********
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
```

```
## Coefficients:
## (Intercept)
                  I(pos^2)
                                   pos
      2.09680
                                0.46468
##
                  -0.04736
##
## Degrees of Freedom: 3555 Total (i.e. Null); 3553 Residual
## Null Deviance:
                       1400
## Residual Deviance: 1386 AIC: 1472
## log likelihood: -693.108
## Nagelkerke R2: 0.01173934
## % pres/err predicted correctly: -342.0133
## % of predictable range [ (model-null)/(1-null) ]: 0.003915911
## ***********
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                       pos
##
      2.67879
                   0.06468
##
## Degrees of Freedom: 3555 Total (i.e. Null); 3554 Residual
## Null Deviance:
                       1400
## Residual Deviance: 1396 AIC: 1479
## log likelihood: -698.2185
## Nagelkerke R2: 0.002927467
## % pres/err predicted correctly: -343.0178
## % of predictable range [ (model-null)/(1-null) ]: 0.0009990628
## **********
## model index: 6
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
##
        2.918
##
## Degrees of Freedom: 3555 Total (i.e. Null); 3555 Residual
## Null Deviance:
                       1400
## Residual Deviance: 1400 AIC: 1479
## log likelihood: -699.9131
## Nagelkerke R2: 0
## % pres/err predicted correctly: -343.3618
## % of predictable range [ (model-null)/(1-null) ]: 0
## **********
## model index: 5
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                  stimlen
##
      3.05096
                  -0.01734
```

Model	AIC DeltaAI	ICex	cpAI Cw	vtNagR2 (Intercept	t)CumPresC	umEr	r I(pos^2)	pos	stimlen
preserved ~	1390.38@.00000	1	1	0.068640 9 .194552	NA	-	NA	NA	NA
CumErr					1	.20284	1		
preserved \sim	1466.30075.91991	0	0	0.013255 3 $.576900$	0.1828897	NA	NA	NA	NA
CumPres									
preserved \sim	$1471.804\!\!81.42400$	0	0	$0.011739 \\ 3.096801$	NA	NA	_	0.464676	6 NA
$(I(pos^2) + pos)$							0.047355	8	
preserved \sim pos	$1479.207\!88.82654$	0	0	$0.002927 \\ 3.678794$	NA	NA	NA	0.064680	O NA
preserved ~ 1	1479.32288.94112	0	0	0.00000002.917919	NA	NA	NA	NA	NA
preserved ~	1481.09790.71622	0	0	0.000129 3 .050958	NA	NA	NA	NA	-
stimlen									0.0173376

```
# plot prev err and prev cor plots
PrevCorPlot<-PlotObsPreviousCorrect(PosDat,palette_values,shape_values)</pre>
```

`summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
print(PrevCorPlot)

PrevErrPlot<-PlotObsPreviousError(PosDat,palette_values,shape_values)</pre>

`summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
print(PrevErrPlot)

PrevCorPlot<-PlotObsPredPreviousCorrect(PosDat, "preserved", "MEPred", palette_values, shape_values)

`summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
`summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.

print(PrevCorPlot)

PrevErrPlot<-PlotObsPredPreviousError(PosDat, "preserved", "MEPred", palette_values, shape_values)

`summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
`summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
print(PrevErrPlot)


```
## Saving 6.5 \times 4.5 in image
PlotName<-paste0(FigDir,CurPat,"_",CurTask,"PrevErrPlot_ObsPredME")</pre>
ggsave(filename=paste0(PlotName,".tif"),plot=PrevErrPlot,device="tiff",compression = "lzw")
```

Saving 6.5 x 4.5 in image

```
45
```

```
CumAICSummary <- NULL
#######
# level 2 -- Add position squared (quadratic with position)
#######
# After establishing the primary variable, see about additions
BestMEFactor <- BestMEModelFormula
OtherFactor<-"I(pos^2) + pos"
OtherFactorName<-"quadratic_by_pos"
if(!grepl("pos", BestMEFactor, fixed = TRUE)){ # if best model does not include pos
  AICSummary <- TestLevel 2 Models (PosDat, BestMEFactor, Other Factor, Other Factor Name)
 CumAICSummary <- AICSummary</pre>
 kable(AICSummary)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 2
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
## Coefficients:
## (Intercept)
                     CumErr
                               I(pos^2)
                                                  pos
      2.13401
                  -1.25484
                               -0.03513
                                              0.48213
## Degrees of Freedom: 4428 Total (i.e. Null); 4425 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1630 AIC: 1729
## log likelihood: -815.0914
## Nagelkerke R2: 0.0965678
## % pres/err predicted correctly: -410.5956
## % of predictable range [ (model-null)/(1-null) ]: 0.06301197
```

```
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
##
        3.196
                    -1.027
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4427 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1662 AIC: 1757
## log likelihood: -831.2166
## Nagelkerke R2: 0.07512643
## % pres/err predicted correctly: -413.9801
## % of predictable range [ (model-null)/(1-null) ]: 0.05530734
## *********
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                   pos
##
      2.27136
                  -0.03485
                               0.34100
## Degrees of Freedom: 4428 Total (i.e. Null); 4426 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1765 AIC: 1883
## log likelihood: -882.592
## Nagelkerke R2: 0.005762917
## % pres/err predicted correctly: -437.4149
## % of predictable range [ (model-null)/(1-null) ]: 0.001958543
## *********
```

Model	AIC	DeltaAIC	AICexp	AICwt	NagR2	(Intercept)	CumErr	$I(pos^2)$	pos
$\overline{\text{preserved} \sim \text{CumErr} + \text{I}(\text{pos}^2) +}$	1729.330	0.00000	1e+00	0.9999992	0.0965678	2.134007	-1.254841	-0.0351303	0.4821333
nos									

Model	AIC	DeltaAIC	AICexp	AICwt	NagR2	(Intercept)	CumErr	I(pos^2)	pos
preserved ~ CumErr	1757.478	28.14771	8e-07	0.0000008	0.0751264	3.195941	-1.026839	NA	NA
$preserved \sim I(pos^2) + pos$	1883.001	153.67068	0e + 00	0.0000000	0.0057629	2.271361	NA	-0.0348462	0.3410029

```
#######
# level 2 -- Add length
#######
BestMEFactor <- BestMEModelFormula
OtherFactor <- "stimlen"
if(!grepl(OtherFactor,BestMEFactor,fixed = TRUE)){
 AICSummary <- TestLevel 2 Models (PosDat, Best MEFactor, Other Factor)
 CumAICSummary <- ConcatAndAddMissingColumns(CumAICSummary, AICSummary)</pre>
 kable(AICSummary)
}
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## ************
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
## Coefficients:
## (Intercept)
                    CumErr
        3.196
                    -1.027
##
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4427 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1662 AIC: 1757
## log likelihood: -831.2166
## Nagelkerke R2: 0.07512643
## % pres/err predicted correctly: -413.9801
## % of predictable range [ (model-null)/(1-null) ]: 0.05530734
## *********
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                  CumErr
                               stimlen
##
     3.130254 -1.029434
                               0.008636
## Degrees of Freedom: 4428 Total (i.e. Null); 4426 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1662 AIC: 1759
## log likelihood: -831.1955
## Nagelkerke R2: 0.07515459
## % pres/err predicted correctly: -413.9545
## % of predictable range [ (model-null)/(1-null) ]: 0.0553655
## *********
## model index: 3
```

```
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                  stimlen
      3.20465
                 -0.04068
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4427 Residual
## Null Deviance:
                      1774
## Residual Deviance: 1773 AIC: 1886
## log likelihood: -886.2955
## Nagelkerke R2: 0.0007002624
## % pres/err predicted correctly: -438.1319
## % of predictable range [ (model-null)/(1-null) ]: 0.0003262443
## *********
```

Model	AIC	DeltaAIC	AICexp	AICwt	NagR2	(Intercept)	CumErr	stimlen
$preserved \sim CumErr$	1757.478	0.00000	1.0000000	0.729618	0.0751264	3.195941	-	NA
							1.026839	
preserved $\sim \text{CumErr} +$	1759.463	1.98537	0.3705802	0.270382	0.0751546	3.130254	-	0.0086356
stimlen							1.029434	
preserved \sim stimlen	1886.293	128.81543	0.0000000	0.000000	0.0007003	3.204652	NA	-
								0.0406791

```
#######
# level 2 -- add cumulative preserved
########

BestMEFactor<-BestMEModelFormula
OtherFactor<-"CumPres"

if(!grepl(OtherFactor,BestMEFactor,fixed = TRUE)){
    AICSummary<-TestLevel2Models(PosDat,BestMEFactor,OtherFactor)
    CumAICSummary <- ConcatAndAddMissingColumns(CumAICSummary,AICSummary)
    kable(AICSummary)
}

## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!</pre>
```

```
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                    CumErr
                                CumPres
##
       2.7595
                   -1.0633
                                0.1895
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4426 Residual
```

```
## Null Deviance:
## Residual Deviance: 1636 AIC: 1732
## log likelihood: -817.9419
## Nagelkerke R2: 0.09278882
## % pres/err predicted correctly: -410.9008
## % of predictable range [ (model-null)/(1-null) ]: 0.06231717
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                     CumErr
##
         3.196
                     -1.027
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4427 Residual
## Null Deviance:
                        1774
## Residual Deviance: 1662 AIC: 1757
## log likelihood: -831.2166
## Nagelkerke R2: 0.07512643
## % pres/err predicted correctly: -413.9801
## % of predictable range [ (model-null)/(1-null) ]: 0.05530734
## **********
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
## (Intercept)
                    CumPres
##
        2.5131
                     0.1589
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4427 Residual
## Null Deviance:
                        1774
## Residual Deviance: 1752 AIC: 1866
## log likelihood: -876.1936
## Nagelkerke R2: 0.0144895
## % pres/err predicted correctly: -435.94
## % of predictable range [ (model-null)/(1-null) ]: 0.005316175
## **********
Model
                       AIC
                             DeltaAIC AICexp AICwt
                                                        NagR2 (Intercept)
                                                                                   CumPres
                                                                          CumErr
                    1732.196  0.00000  1.0e+00  0.9999968  0.0927888  2.759476
                                                                                   0.1895276
preserved ~ CumErr +
CumPres
                                                                          1.063251
preserved \sim CumErr
                     1757.478 \ 25.28188
                                        3.2e-0.0000032\ 0.0751264\ 3.195941
                                                                                       NA
                                         06
                                                                          1.026839
preserved \sim CumPres
                     1866.328 134.13224 0.0e+00 0.0000000 0.0144895 2.513149
                                                                              NA
                                                                                   0.1589193
```

```
BestMEFactor <- BestMEModelFormula
OtherFactor<-"pos"
if(!grepl(OtherFactor,BestMEFactor,fixed = TRUE)){
 AICSummary <- TestLevel 2 Models (PosDat, Best MEFactor, Other Factor)
 CumAICSummary <- ConcatAndAddMissingColumns(CumAICSummary, AICSummary)</pre>
 kable(AICSummary)
}
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
                                    pos
##
       2.5699
                   -1.2528
                                 0.1895
## Degrees of Freedom: 4428 Total (i.e. Null); 4426 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1636 AIC: 1732
## log likelihood: -817.9419
## Nagelkerke R2: 0.09278882
## % pres/err predicted correctly: -410.9008
## % of predictable range [ (model-null)/(1-null) ]: 0.06231717
## *********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                    CumErr
        3.196
                    -1.027
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4427 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1662 AIC: 1757
## log likelihood: -831.2166
## Nagelkerke R2: 0.07512643
## % pres/err predicted correctly: -413.9801
## % of predictable range [ (model-null)/(1-null) ]: 0.05530734
## **********
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
```

```
## Coefficients:
## (Intercept)
                    pos
##
       2.7265
                 0.0439
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4427 Residual
## Null Deviance:
                    1774
## Residual Deviance: 1772 AIC: 1886
## log likelihood: -885.8618
## Nagelkerke R2: 0.00129358
## % pres/err predicted correctly: -438.0882
## % of predictable range [ (model-null)/(1-null) ]: 0.0004258722
## *************
```

Model	AIC	DeltaAIC	AICexp	AICwt	NagR2	(Intercept)	CumErr	pos
preserved ~ CumErr	1732.196	0.00000	1.0e+00	0.9999968	0.0927888	2.569948	-	0.1895276
+ pos							1.252779	
$preserved \sim CumErr$	1757.478	25.28188	3.2e-	0.0000032	0.0751264	3.195941	-	NA
			06				1.026839	
$preserved \sim pos$	1886.490	154.29444	0.0e+00	0.0000000	0.0012936	2.726530	NA	0.0439037

CumAICSummary <- CumAICSummary %>% arrange(AIC)
BestModelFormulaL2 <- CumAICSummary\$Model[BestModelIndexL2]
write.csv(CumAICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_main_effects_plus_one_model_summary.csv")
kable(CumAICSummary)</pre>

Model	AIC DeltaAI&ICexp AICwt NagR2 (Intercept	tÇumErrl	[(pos^2)	pos	stimlen	CumPres
preserved ~	1729.330.00000 1.00000000999999209656728134007	-	-	0.48213	333 NA	NA
CumErr +		1.2548410	0.035130)3		
$I(pos^2) + pos$						
preserved \sim	$1732.19 \\ 6.00000 \ 1.0000000099999680927888759476$	-	NA	NA	NA	0.1895276
CumErr +		1.063251				
CumPres						
preserved \sim	$1732.19 \\ \textcolor{red}{0.00000} \ 1.000000 \\ \textcolor{red}{0.009999990} \\ \textcolor{red}{0.0027888569948}$	-	NA	0.18952	276 NA	NA
CumErr + pos		1.252779				
preserved \sim	$1757.47 \\ 28.1477 \\ 10.000000 \\ 08000000 \\ 08075126 \\ 4195941$	-	NA	NA	NA	NA
CumErr		1.026839				
preserved \sim	$1757.47 \\ 0.00000 \ 1.000000 \\ 000 \\ 72961 \\ 000 \\ 075126 \\ 195941$	-	NA	NA	NA	NA
CumErr		1.026839				
preserved \sim	$1757.47 \\ 25.2818 \\ 20.00000 \\ 32000003 \\ 2075126 \\ 4195941$	-	NA	NA	NA	NA
CumErr		1.026839				
preserved \sim	$1757.47 \\ 25.2818 \\ 20.00000 \\ 32000003 \\ 2075126 \\ 4195941$	-	NA	NA	NA	NA
CumErr		1.026839				
preserved \sim	$1759.46 {\color{red}3}.98537 \ 0.37058 {\color{red}0} {\color{blue}2} 27038 {\color{red}2} {\color{blue}0} 075154 {\color{red}6} 130254$	-	NA	NA	0.00863	56 NA
CumErr + stimlen		1.029434				
preserved \sim	1866.32 \$ 34.132 2400000 00000000001448 2513149	NA	NA	NA	NA	0.1589193
CumPres						
preserved \sim	$1883.00153.670 \\ 68000000 \\ 000000000000005762 \\ 29271361$	NA	-	0.34100	029 NA	NA
$I(pos^2) + pos$		(0.034846	32		
preserved \sim	$1886.29 \\ 3 \\ 28.815 \\ 48 \\ 00000 \\ 000 \\ 00000 \\ 000 \\ 000070 \\ 204 \\ 652$	NA	NA	NA	-	NA
stimlen					0.04067	91
$preserved \sim pos$	$1886.49 \\ 0 54.294 \\ 0 100000 \\ 0 000000 \\ 0 00129 \\ 3 6726530$	NA	NA	0.04390	037 NA	NA

```
# explore influence of frequency and length
if(grep1("stimlen", BestModelFormulaL2)){ # if length is already in the formula
  Level3ModelEquations<-c(
     BestModelFormulaL2, # best model from level 2
    "preserved ~ 1", # null model
      paste0(BestModelFormulaL2," + log_freq")
}else if(grepl("log_freq",BestModelFormulaL2)){ # if log_freq is already in the formula
   Level3ModelEquations<-c(
      BestModelFormulaL2, # best model from level 2
    "preserved ~ 1", # null model
      paste0(BestModelFormulaL2," + stimlen")
  )
}else{
  Level3ModelEquations<-c(
      BestModelFormulaL2, # best model from level 2
    "preserved ~ 1", # null model
     paste0(BestModelFormulaL2," + log_freq"),
     paste0(BestModelFormulaL2," + stimlen"),
     paste0(BestModelFormulaL2," + stimlen + log_freq")
}
Level3Res<-TestModels(Level3ModelEquations,PosDat)</pre>
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## **********
## model index: 3
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
## (Intercept)
                   CumErr
                               I(pos^2)
                                                  pos
                                                          log_freq
##
       2.13205
                   -1.22847
                               -0.03373
                                              0.48251
                                                           0.13015
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4424 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1618 AIC: 1716
## log likelihood: -808.8152
## Nagelkerke R2: 0.1048711
## % pres/err predicted correctly: -410.0033
## % of predictable range [ (model-null)/(1-null) ]: 0.06436031
## model index: 5
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
```

```
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                               I(pos^2)
                    CumErr
                                                 pos
                                                         stimlen
                                                                     log_freq
##
      2.30403
                  -1.23119
                               -0.03255
                                             0.47885
                                                         -0.02345
                                                                      0.12490
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4423 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1617 AIC: 1717
## log likelihood: -808.6895
## Nagelkerke R2: 0.1050371
## % pres/err predicted correctly: -409.9953
## % of predictable range [ (model-null)/(1-null) ]: 0.06437864
## **********
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
                               I(pos^2)
                                                         stimlen
                                                 pos
      2.60819
                  -1.26008
                               -0.03166
                                             0.47218
                                                         -0.06484
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4424 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1628 AIC: 1729
## log likelihood: -814.0398
## Nagelkerke R2: 0.09796062
## % pres/err predicted correctly: -410.5211
## % of predictable range [ (model-null)/(1-null) ]: 0.06318161
## *********
## model index: 1
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                               I(pos^2)
                    CumErr
                                                 pos
##
      2.13401
                  -1.25484
                               -0.03513
                                             0.48213
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4425 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1630 AIC: 1729
## log likelihood: -815.0914
## Nagelkerke R2: 0.0965678
## % pres/err predicted correctly: -410.5956
## % of predictable range [ (model-null)/(1-null) ]: 0.06301197
## *********
## model index: 2
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
```

```
## (Intercept)
         2.891
##
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4428 Residual
## Null Deviance:
                        1774
## Residual Deviance: 1774 AIC: 1886
## log likelihood: -886.8073
## Nagelkerke R2: -6.728935e-16
## % pres/err predicted correctly: -438.2752
## % of predictable range [ (model-null)/(1-null) ]: 0
## *********
BestModelL3<-Level3Res$ModelResult[[ BestModelIndexL3 ]]</pre>
BestModelFormulaL3<-Level3Res$Model[[BestModelIndexL3]]</pre>
AICSummary <- data.frame (Model=Level3Res$Model,
                       AIC=Level3Res$AIC,
                       row.names = Level3Res$Model)
AICSummary$DeltaAIC<-AICSummary$AIC-AICSummary$AIC[1]
AICSummary$AICexp<-exp(-0.5*AICSummary$DeltaAIC)
AICSummary$AICwt<-AICSummary$AICexp/sum(AICSummary$AICexp)
AICSummary$NagR2<-Level3Res$NagR2
AICSummary <- merge(AICSummary, Level3Res Coefficient Values,
                          by='row.names',sort=FALSE)
AICSummary <- subset(AICSummary, select = -c(Row.names))
write.csv(AICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_main_effects_plus_one_len_freq_summary.csv")
kable(AICSummary)
```

Model	AIC	$\label{eq:local_local_local} Delta Al \texttt{A} I C exp A I C wt \ Nag R 2 \left(Intercep \texttt{C} \right) um Er \texttt{I} \left(pos^2 2 \right) \ pos^2 \left(pos^$	os log_fr	e q timlen
preserved ~ CumErr +	1715.	6690000001.0000000070192621048721132055 - 0.4	8251 05 1301	494NA
$I(pos^2) + pos +$		1.228469.0337298		
\log _freq				
preserved \sim CumErr +	1717.	3947246490.42217 9 529633 76 10503 7 3304032 - 0.4	7885 0 :7248	961 -
$I(pos^2) + pos + stimlen$		1.23118 $\overline{0}.0325536$		0.0234514
$+ \log_{freq}$				
preserved \sim CumErr $+$	1728.	81 15 3.1462 89 00139 7 400098 0 999796 2 6608192 - 0.4	72175 N A	-
$I(pos^2) + pos + stimlen$		1.26008 2 $.0316618$		0.0648436
preserved \sim CumErr +	1729.	33\text{03.6609366001080400075830965678\text{134007} - 0.4	82133 3 IA	NA
$I(pos^2) + pos$		1.25484 0 $.0351303$		
preserved ~ 1	1885.	65 & 69.988 6 8 5 00000 0 00000000 0 000000 2 &90849 NA NA N	A NA	NA

```
# BestModelIndex is set by the parameter file and is used to choose
# a model that is essentially equivalent to the lowest AIC model, but
# simpler (and with a slightly higher AIC value, so not in first position)
BestModelL3<-Level3Res$ModelResult[[ BestModelIndexL3 ]]
BestModelFormulaL3<-Level3Res$Model[BestModelIndexL3]

BestModel<-BestModelL3
BestModelDeletions<-arrange(dropterm(BestModel),desc(AIC))</pre>
```

```
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
# order by terms that increase AIC the most when they are the one dropped
BestModelDeletions
## Single term deletions
##
## Model:
## preserved ~ CumErr + I(pos^2) + pos + log_freq
          Df Deviance
                          AIC
          1 1745.7 1841.7
## CumErr
           1 1631.5 1727.5
## pos
## log_freq 1 1630.2 1726.2
## I(pos^2) 1
                1622.8 1718.9
## <none>
                 1617.6 1715.7
####################################
# Single deletions from best model
###################################
write.csv(BestModelDeletions, paste0(TablesDir, CurPat, "_", CurTask, "_best_model_single_term_deletions.csv
# plot prev err and prev cor with predicted values
PosDat$OAPred<-fitted(BestModel)</pre>
PrevCorPlot<-PlotObsPredPreviousCorrect(PosDat, "preserved", "OAPred", palette_values, shape_values)
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
print(PrevCorPlot)
```


PrevErrPlot<-PlotObsPredPreviousError(PosDat, "preserved", "OAPred", palette_values, shape_values)

```
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
print(PrevErrPlot)
```



```
PlotName<-paste0(FigDir,CurPat,"_",CurTask,"_ObsPred_BestFullModel")
ggsave(filename=paste(PlotName,"_prev_correct.tif",sep=""),plot=PrevCorPlot,device="tiff",compression =
## Saving 6.5 \times 4.5 in image
ggsave(filename=paste(PlotName,"_prev_error.tif",sep=""),plot=PrevErrPlot,device="tiff",compression = "
## Saving 6.5 \times 4.5 in image
if(DoSimulations){
  BestModelFormulaL3Rnd <- BestModelFormulaL3</pre>
  if(grepl("CumPres", BestModelFormulaL3Rnd)){
    BestModelFormulaL3Rnd <- gsub("CumPres", "RndCumPres", BestModelFormulaL3Rnd)</pre>
  if(grepl("CumErr",BestModelFormulaL3Rnd)){
    BestModelFormulaL3Rnd <- gsub("CumErr","RndCumErr",BestModelFormulaL3Rnd)</pre>
  }
  RndModelAIC<-numeric(length=RandomSamples)</pre>
  for(rindex in seq(1,RandomSamples)){
  # Shuffle cumulative values
    PosDat$RndCumPres <- ShuffleWithinWord(PosDat, "CumPres")</pre>
    PosDat$RndCumErr <- ShuffleWithinWord(PosDat, "CumErr")</pre>
    BestModelRnd <- glm(as.formula(BestModelFormulaL3Rnd),</pre>
                         family="binomial",data=PosDat)
    RndModelAIC[rindex] <- BestModelRnd$aic</pre>
  ModelNames<-c(paste0("***",BestModelFormulaL3),</pre>
```

```
rep(BestModelFormulaL3Rnd,RandomSamples))
  AICValues <- c(BestModelL3$aic,RndModelAIC)
  BestModelRndDF <- data.frame(Name=ModelNames,AIC=AICValues)</pre>
  BestModelRndDF <- BestModelRndDF %>% arrange(AIC)
  BestModelRndDF <- rbind(BestModelRndDF,</pre>
                          data.frame(Name=c("Random average"),
                                      AIC=c(mean(RndModelAIC))))
  BestModelRndDF <- rbind(BestModelRndDF,</pre>
                          data.frame(Name=c("Random SD"),
                                      AIC=c(sd(RndModelAIC))))
  write.csv(BestModelRndDF,paste0(TablesDir,CurPat,"_",CurTask,
                                   "_best_model_with_random_cum_term.csv"),
            row.names = FALSE)
}
# plot influence factors
num_models <- nrow(BestModelDeletions) - 1</pre>
# minus 1 because last
# model is always <none> and we don't want to include that
if(num_models > 4){
 last_model_num <- 4</pre>
}else{
  last_model_num <- num_models</pre>
FinalModelSet<-ModelSetFromDeletions(BestModelFormulaL3,
                                      BestModelDeletions,
                                      last_model_num)
PlotName<-pasteO(FigDir,CurPat,"_",CurTask,"_FactorPlots")</pre>
FactorPlot<-PlotModelSetWithFreq(PosDat,FinalModelSet,</pre>
                                 palette_values,FinalModelSet,PptID=CurPat)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## ************
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
## (Intercept)
                     CumErr
         3.196
                     -1.027
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4427 Residual
## Null Deviance:
                        1774
## Residual Deviance: 1662 AIC: 1757
## log likelihood: -831.2166
```

```
## Nagelkerke R2: 0.07512643
## % pres/err predicted correctly: -413.9801
## % of predictable range [ (model-null)/(1-null) ]: 0.05530734
## *********
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                    CumErr
                                    pos
##
       2.5699
                   -1.2528
                                 0.1895
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4426 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1636 AIC: 1732
## log likelihood: -817.9419
## Nagelkerke R2: 0.09278882
## % pres/err predicted correctly: -410.9008
## % of predictable range [ (model-null)/(1-null) ]: 0.06231717
## *********
## model index: 3
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
                                   pos
## (Intercept)
                    CumErr
                                           log_freq
       2.5495
                   -1.2258
                                 0.2020
                                             0.1324
##
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4425 Residual
## Null Deviance:
                       1774
## Residual Deviance: 1623 AIC: 1718
## log likelihood: -811.4233
## Nagelkerke R2: 0.1014235
## % pres/err predicted correctly: -410.227
## % of predictable range [ (model-null)/(1-null) ]: 0.06385111
## *********
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
                                           log_freq
                                                        I(pos^2)
                                    pos
                  -1.22847
##
      2.13205
                                0.48251
                                            0.13015
                                                        -0.03373
##
## Degrees of Freedom: 4428 Total (i.e. Null); 4424 Residual
## Null Deviance:
                      1774
## Residual Deviance: 1618 AIC: 1716
## log likelihood: -808.8152
## Nagelkerke R2: 0.1048711
## % pres/err predicted correctly: -410.0033
## % of predictable range [ (model-null)/(1-null) ]: 0.06436031
```

```
## ***********
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'freq_bin'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'freq_bin'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'freq_bin'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'freq_bin'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'freq_bin'. You can override using the `.groups` argument.
## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
## difficult to discriminate
## i you have requested 7 values. Consider specifying shapes manually if you need that many have
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_point()`).
## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
## difficult to discriminate
## i you have requested 9 values. Consider specifying shapes manually if you need that many have
## Warning: Removed 5 rows containing missing values or values outside the scale range
## (`geom point()`).
## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
## difficult to discriminate
## i you have requested 7 values. Consider specifying shapes manually if you need that many have
     them.
## Warning: Removed 9 rows containing missing values or values outside the scale range (`geom_point()`)
## Removed 9 rows containing missing values or values outside the scale range (`geom_point()`).
## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
## difficult to discriminate
## i you have requested 9 values. Consider specifying shapes manually if you need that many have
    them.
## Warning: Removed 5 rows containing missing values or values outside the scale range (`geom_point()`)
```

difficult to discriminate

##

them.

Removed 5 rows containing missing values or values outside the scale range (`geom_point()`).

i you have requested 7 values. Consider specifying shapes manually if you need that many have

Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes

```
## Warning: Removed 9 rows containing missing values or values outside the scale range (`geom_point()`)
## Removed 9 rows containing missing values or values outside the scale range (`geom_point()`).
## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
## difficult to discriminate
## i you have requested 9 values. Consider specifying shapes manually if you need that many have
## Warning: Removed 5 rows containing missing values or values outside the scale range (`geom_point()`)
## Removed 5 rows containing missing values or values outside the scale range (`geom_point()`).
## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
## difficult to discriminate
## i you have requested 7 values. Consider specifying shapes manually if you need that many have
    them.
## Warning: Removed 9 rows containing missing values or values outside the scale range (`geom_point()`)
## Removed 9 rows containing missing values or values outside the scale range (`geom_point()`).
## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
## difficult to discriminate
## i you have requested 9 values. Consider specifying shapes manually if you need that many have
    them.
## Warning: Removed 5 rows containing missing values or values outside the scale range (`geom_point()`)
## Removed 5 rows containing missing values or values outside the scale range (`geom_point()`).
## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
## difficult to discriminate
## i you have requested 7 values. Consider specifying shapes manually if you need that many have
    them.
## Warning: Removed 9 rows containing missing values or values outside the scale range (`geom_point()`)
## Removed 9 rows containing missing values or values outside the scale range (`geom_point()`).
## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
## difficult to discriminate
## i you have requested 9 values. Consider specifying shapes manually if you need that many have
    them.
## Warning: Removed 5 rows containing missing values or values outside the scale range ('geom_point()')
```

Removed 5 rows containing missing values or values outside the scale range (`geom_point()`).
ggsave(paste0(PlotName,".tif"),plot=FactorPlot,width = 360,height=400,units="mm",device="tiff",compress
use \blandscape and \elandscape to make markdown plots landscape if needed
FactorPlot

DA.Result<-dominanceAnalysis(BestModel)</pre>

```
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
```

```
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!

DAContributionAverage
ConvertDominanceResultToTable(DA.Result)
write.csv(DAContributionAverage,pasteO(TablesDir,CurPat,"_",CurTask,"_dominance_analysis_table.csv"),row
kable(DAContributionAverage)
```

CumErr $I(pos^2)$ pos \log_{freq} McFadden 0.07530620.00318470.00568720.0103129SquaredCorrelation 0.03141410.00131490.00234500.0043164Nagelkerke 0.03141410.0013149 0.00234500.0043164

0.0014127

0.0025275

0.0044882

0.0329076

Estrella

Warning in eval(family\$initialize): non-integer #successes in a binomial glm!

```
deviance_differences_df<-GetDevianceSet(FinalModelSet,PosDat)</pre>
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
write.csv(deviance_differences_df,paste0(TablesDir,CurPat,"_",CurTask,"_deviance_differences_table.csv"),row.names = FALSE)
deviance differences df
##
                                                                     model deviance
## CumErr + pos + log_freq + I(pos^2) CumErr + pos + log_freq + I(pos^2) 1617.630
## CumErr + pos + log_freq
                                                  CumErr + pos + log_freq 1622.847
## CumErr + pos
                                                             CumErr + pos 1635.884
## CumErr
                                                                    CumErr 1662.433
## null
                                                                      null 1773.615
                                       deviance_explained percent_explained
## CumErr + pos + log freq + I(pos^2)
                                                 155.9842
                                                                   8.794705
## CumErr + pos + log freq
                                                 150.7680
                                                                   8.500607
## CumErr + pos
                                                 137.7306
                                                                   7.765533
                                                                    6.268632
## CumErr
                                                 111.1814
## null
                                                   0.0000
                                                                   0.000000
                                       percent of explained deviance increment in explained
## CumErr + pos + log freq + I(pos^2)
                                                           100.00000
                                                                                    3.344039
## CumErr + pos + log freq
                                                            96.65596
                                                                                    8.358144
## CumErr + pos
                                                            88.29782
                                                                                   17.020476
                                                            71.27734
## CumErr
                                                                                   71.277341
## null
                                                                   NA
                                                                                    0.000000
kable(deviance differences df[,2:3], format="latex", booktabs=TRUE) %%
 kable_styling(latex_options="scale_down")
kable(deviance differences df[,c(4:6)], format="latex", booktabs=TRUE) %%
 kable_styling(latex_options="scale_down")
NagContributions <- t(DAContributionAverage[3,])</pre>
NagTotal<-sum(NagContributions)</pre>
NagPercents <- NagContributions / NagTotal</pre>
NagResultTable <- data.frame(NagContributions = NagContributions, NagPercents = NagPercents)</pre>
```

names(NagResultTable)<-c("NagContributions", "NagPercents")</pre>

	deviance	deviance_explained
$CumErr + pos + log_freq + I(pos^2)$	1617.630	155.9842
$CumErr + pos + log_freq$	1622.847	150.7680
CumErr + pos	1635.884	137.7306
CumErr	1662.433	111.1814
null	1773.615	0.0000

	percent_explained	percent_of_explained_deviance	increment_in_explained
$CumErr + pos + log_freq + I(pos^2)$	8.794705	100.00000	3.344039
$CumErr + pos + log_freq$	8.500607	96.65596	8.358144
CumErr + pos	7.765533	88.29782	17.020476
CumErr	6.268632	71.27734	71.277341
null	0.000000	NA	0.000000

```
write.csv(NagResultTable,paste0(TablesDir,CurPat," ",CurTask," nagelkerke contributions table.csv"),row.names = TRUE)
NagPercents
##
            Nagelkerke
## CumErr 0.79750786
## I(pos^2) 0.03338019
## pos
            0.05953230
## log_freq 0.10957965
sse_results_list<-compare_SS_accounted_for(FinalModelSet, "preserved ~ 1", PosDat, N_cutoff=10)
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
```

```
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in (null_cumerr_resid^2) * (N_values$len_pos_N): longer object length is not a
## multiple of shorter object length
## Warning in (null cumcor resid^2) * (N values$len pos N): longer object length is not a
## multiple of shorter object length
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in (null cumerr resid^2) * (N values$len pos N): longer object length is not a
## multiple of shorter object length
## Warning in (null_cumerr_resid^2) * (N_values$len_pos_N): longer object length is not a
## multiple of shorter object length
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in (null_cumerr_resid^2) * (N_values$len_pos_N): longer object length is not a
## multiple of shorter object length
## Warning in (null_cumerr_resid^2) * (N_values$len_pos_N): longer object length is not a
## multiple of shorter object length
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
```

```
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in (null cumerr resid^2) * (N values$len pos N): longer object length is not a
## multiple of shorter object length
## Warning in (null_cumerr_resid^2) * (N_values$len_pos_N): longer object length is not a
## multiple of shorter object length
sse table<-sse results table(sse results list)</pre>
write.csv(sse_table,paste0(TablesDir,CurPat,"_",CurTask,"_sse_results_table.csv"),row.names = TRUE)
sse table
##
                                        model p accounted for model deviance diff CumErr
                                                    0.8177851
## 1
                           preserved ~ CumErr
                                                                     1662.433 0.00000000
## 2
              preserved ~ CumErr+pos+log freq
                                                    0.8579462
                                                                     1622.847 0.04016117
                       preserved ~ CumErr+pos
## 3
                                                    0.8625122
                                                                     1635.884 0.04472716
## 4 preserved ~ CumErr+pos+log freq+I(pos^2)
                                                    0.8910590
                                                                     1617.630 0.07327393
    diff_CumErr+pos+log_freq diff_CumErr+pos diff_CumErr+pos+log_freq+I(pos^2)
## 1
                  -0.04016117
                                  -0.04472716
                                                                     -0.07327393
## 2
                   0.00000000
                                  -0.00456599
                                                                     -0.03311276
## 3
                   0.00456599
                                   0.00000000
                                                                     -0.02854677
## 4
                   0.03311276
                                   0.02854677
                                                                      0.00000000
kable(sse_table[,1:3], format="latex", booktabs=TRUE) %>%
  kable styling(latex options="scale down")
write.csv(results_report_DF,paste0(TablesDir,CurPat,"_",CurTask,"_results_report_df.csv"),row.names = FALSE)
kable(sse table[,c(1,4:6)], format="latex", booktabs=TRUE) %>%
  kable styling(latex options="scale down")
```

89

	_	
c		2
3	7	
С	С	
	-	

model	diff_CumErr	diff_CumErr+pos+log_freq	diff_CumErr+pos
preserved ~ CumErr	0.0000000	-0.0401612	-0.0447272
preserved ~ CumErr+pos+log_freq	0.0401612	0.0000000	-0.0045660
preserved ~ CumErr+pos	0.0447272	0.0045660	0.0000000
$preserved \sim CumErr + pos + log_freq + I(pos^2)$	0.0732739	0.0331128	0.0285468