AVERY CHIU

averychiu64.github.io

linkedin.com/in/AveryChiu

(647) 830-8287

MECHATRONICS ENGINEERING STUDENT

PROGRAMMING

- Python
- C/C++
- SQL
- Java
- LabVIEW
- Git/Github/Gitlab
- Linux
- · Google Big Query
- Visual Studio Code
- Eclipse
- STM32Cube IDE

HARDWARE

- · Altium Designer
- SMD Soldering
- Digital Multimeter
- Oscilloscope
- Power Analyzer

MECHANICAL

- SOLIDWORKS
- AutoCAD

PROJECT MANAGEMENT

- Confluence
- Jira

EDUCATION

University of Waterloo

Candidate for Bachelor of Applied Science, Mechatronics Engineering (Sept 2019 - Present) GPA: 3.95

Important Courses:

- · Data Structures and Algorithms
- Microprocessors and Digital Logic

HOBBIES

- · Double bassist for the **Toronto Symphony Youth** Orchestra 2018/2019 season
- Young Hercules Weightlifting Competition silver medal in the 77kg weight category

WORK EXPERIENCE

Automotive R&D Intern

Geotab (May 2020 - Aug 2020)

- Designed, manufactured, and assembled a PCB used for testing keyless vehicle technology with Altium Designer
- Debugged a PCB for a solar tracking device with a multimeter and calculated the energy consumption of the modem, GPS, and MCU on it with a power analyzer
- Created a miniature vehicle to demonstrate keyless functionality such as being able to unlock doors with a phone through Bluetooth or an NFC reader
- Queried vehicle and sales data using Google Big Query and prepared dashboards to display visualizations with Python using Matplotlib, Pandas, and NumPy

Firmware Developer

Midnight Sun Solar Car Team (Sept 2019 - Present)

- Set up the telemetry system with Python to read CAN messages and store them in MongoDB
- Created Python scripts to generate DBC files using protocol buffers to store CAN message definitions
- Programmed firmware in C for an STM32 to process events from the control stalk and send CAN messages to toggle the output for the horn, lights, turn signal and cruise control
- Developed driver for an LTC6811 to retrieve readings from 32 thermistors connected to a multiplexer using SPI for the battery management system (BMS) of the solar car
- Improved leadership skills by assisting in recruitment and preparing documents to teach new members about GPIO, ADC, I2C, SPI, CAN, and how to read datasheets

PROJECTS

STM32F103C8 Drivers

(Aug 2020)

 Wrote GPIO, SPI, UART, and I2C drivers for an STM32F103C8 with an ARM Cortex-M3 processor in C

Bike Telematics Device

MakeUofT Hackathon (Feb 2020)

- Created a bike telematics device with Python on a Raspberry Pi
- Used a TELUS CAT-M1 cellular shield to send SMS messages to users to warn when them their bike is being stolen and provide GPS coordinates to the location of their bike
- Won the award for best use of the TELUS CAT-M1 IOT Network

Self Feeding Catheter

McMaster CAD Designathon (Jan 2020)

- Developed a medical device to assist doctors with inserting catheters into patients that uses a stepper motor and potentiometer controlled by an Arduino Uno to carefully feed guide wire into the patient
- Created a 3D model of feeding device along with the housing for the spool using SOLIDWORKS

Robot in 3 Days

FIRST Robotics Competition (Jan 2020)

• Developed different modules, following **OOP** principles, that sends **PWM** signals to motors to control their speed and toggles the extension and retraction of pneumatic pistons

Automated Ferris Wheel

Ontario Skills Competition, Robotics and Control Systems (April 2019)

• Used LabVIEW to program and build an automated and safe mini-Ferris wheel that tracks the number of customers that board the ride and runs automatically once all the seats are filled