SUBJECT INDEX

A	protein-coupled	Women's Health for the
ACE inhibitors	receptor (GPCR)	21st Century, 499
See Angiotensin-	targeting, 560-62	Aging
converting enzyme (ACE)	subtypes	silent neurotoxicity and, 99
inhibitors	14-3-3 proteins and,	See also Age
Acetylcholine (ACh), 423-43	560-62	Agonist-elicted endocytosis,
Actin binding protein-280	α_{2A} -adrenergic receptor	559, 582–86
(ABP-280)	$(\alpha_{2A}-AR)$, 582	Albumin, 503
G protein-coupled	α _{1B} -adrenergic receptor	Alcohol
receptors (GPCRs) and,	$(\alpha_{1B}-AR)$	alcohol-related birth
575-76	G protein-coupled	defects (ARBD), 98
Adefovir	receptors (GPCRs) and,	alcohol related
renal elimination of, 151	581	neurodevelopmental
Adenosine	α _{2B} -adrenergic receptor	disorders (ARND), 98
DARPP-32 and, 282	$(\alpha_{2B}-AR)$	cell injury and, 28
Adipocytes	G protein-coupled	developmental effects of,
β -adrenergic receptors	receptors (GPCRs) and,	97-99
(βARs) in, 311	586	fetal alcohol syndrome
mechanisms, 304-6	β_1 -adrenergic receptor	(FAS), 97-100
Adipose tissue, 297-98	$(\beta_1$ -AR), 583	oxidative stress and, 29
β -adrenergic receptors	β_2 -adrenergic receptor	heptotoxicity, 30
(βARs) and, 310–11	$(\beta_2$ -AR), 583–85, 587–88	liver injury and, 28, 29, 34,
brown adipose tissue	G protein-coupled	37
(BAT), 298-302, 306-9	receptors (GPCRs) and,	liver toxicity and, 35
white adipose tissue	581, 582	See also Drinking; Ethanol
(WAT), 298-302, 304-5,	β -adrenergic receptors	Alfentanil, 509
309	(βARs), 297–312	Algorithms
Adrenal corticotrophic	in adipocytes, 300-1	Nonlinear Support Vector
hormone (ACTH)	lipolysis and, 302-3	Machine (SVM), 16
corticotropin-releasing	regulation in adipose	Alpha-1 acid glycoprotein
factor (CRF), 527-29,	tissue, 310–11	(AAG), 503
531, 532, 539	Adrenocorticotropic hormone	Alphaxalone, 477
Adrenergic receptor(s)	(ACTH), 434	GABA _A receptor-targeted
α_2 -adrenergic receptor	Aequorea victorea, 49	mice and, 485, 491
$(\alpha_2$ -AR)	Affective disorders	Alternative therapies
G protein-coupled	chronic stress and, 528	drug interactions with,
receptors (GPCRs) and,	Age	116–17
581	pharmacodynamics (PD)	Alzheimer's disease (AD)
interactions with	variation and, 120	CEP-1347 and, 451, 452
spinophilin, 573	See also Aging	characterized, 454–55
models for G	Agenda for Research on	JNK pathway activation
models for G	Agendu for Research on	JIAN paniway activation

and, 455-56	pathways and,
treatments for, 455	sprouty and, 229
Amantadine	tumor, 231-32
Parkinson's disease and,	Angiotensin-conve
455	enzyme (ACE
sex-based differences in	and nitrate tolera
renal excretion of, 510	Antalarmin, 540
Amine receptors, 44, 52	Anthracyclines, 20
Amino acid(s)	Antiarrhythmics, 3
DARPP-32 and, 279-81	Antibiotics
sequence of G	dose selection, 1
protein-coupled receptors (GPCRs), 581	hearing loss and 456–57, 467
Aminoglycoside(s), 463	increasing conce
antibiotics, 467	124
hearing loss and, 451,	Anticholinergics
456–57, 467	Parkinson's dise
AMPA	455
neurotensin and, 284	Anticonvulsants, 3
AMPA-type glutamate	Antidepressant(s)
receptors	DARPP-32 and,
DARPP-32 and, 279-80	sex-based differen
Amphetamine, 278	pharmacodyna
DARPP-32 and, 286-88	Antiepileptic drugs
GABA _A receptor-targeted	developmental
mice and, 481	neurotoxicant,
Amylin receptor, 44	Antimicrobials
Anal fissure	increasing conce
organic nitrates and, 67	124
Analgesia	Antioxidant(s), 34
muscarinic	defense(s), 34
agonist-induced, 434-36	CYP2E1 and,
Analgesics	gap junctions in
sex differences in response	257
to, 511	and nitrate toler
Anesthetic(s)	possible therapi
GABA _A receptor-targeted	reactive oxygen
mice and, 490-92	244-45, 250
local, 384–87	toxicity of alcoh
sex-based differences in	Antipsychotic(s)
pharmacodynamics, 512	agents
Angiogenesis	gender differe
ephrin ligands and	effects of, 50
receptors and, 227-28	sex-based diff
hedgehog signaling and,	pharmacody
228–29	512
hypoxia signaling	DARPP-32 and

219-21 drugs, 100 9-30 Antiretrovirals sex-based differences in pharmacodynamics, erting E) inhibitors 512-13 ance, 72 Antisense deoxynucleotide (ODN), 378, 380 18 Antiviral drugs 385 renal elimination of, 151 Anxiety 115 corticotropin-releasing 1, 451, factor (CRF) and, 533-42 drug discovery for treatment of, 540 entrations, AP-1, 251, 258 carcinogenesis and, 239, ease and, 251-52, 258 Apoptosis, 31-32, 93, 349, 386-87 467 apoptosis signal-regulating . 285-86 kinase (ASK1), 252 rences in brain development of, mics, 512 91-92 glutathione and, 245-46 neurogenesis and, 89 87, 95-97 reactive oxygen species and, 250 entration, Apoptotic cell death ethanol and, 99 phenytoin induced, 97 Appetite-stimulating peptide , 37 agouti-related peptide n cells and, (AGRP), 438 Apple juice, 116 rance, 71 Arachiodonic acid (AA) es with, 35 toxicity of, 33 and, Arginine vasopressin (AVP), 588, 589 hol and, 28 Arrestins G protein-coupled receptors (GPCRs) and, ences in 583-87 08 Arrhythmia fferences in ventricular, 124 vnamics. Arteries M₅ mAChRs and, 441 Arterioles DARPP-32 and, 285

environmental insult,

88-90

M5 mAChRs and, 441 (BMP), 404, 405 B-amyloid neuronal cell death and. Botulinum toxin, 167-86 Assays for G-protein coupled 463 binding and transport, receptors (GPCRs) B-carotene 171 - 72screening, 60 quenches reactive oxygen binding to the receptor, 177-79 orphan G-protein coupled species, 244 receptors (GPCRs), 49-51 Bicucculin endocytosis receptor-mediated, 169, Astrocytes GABAA receptor-targeted brain development and, mice and, 485 177, 179-81 89-90 Bioavailability gastrointestinal system lead exposure and, 93-94 of drugs and, 170-73, 185 methylmercury and, 91, 92 disparities by sex, 500-2 inhalation vaccine for. regional differences in, 403 **Biochemical deficits** 175-76 in M1 mAChR-deficient neuromuscular junction and, 176-84 ATP-binding cassette mice, 425, 431 Bioequivalence oral vaccine for, 173-74 (ABC) and pharmacodynamics origin and mechanism of multidrug transporter, (PD) studies, 121-22 action, 167-70 154 transporter family, pH-induced translocation Bioflavanoids, 116 144-45, 157 and, 169, 177, 180-82 Biogenic amines mitochondrial function DARPP-32 and, 275-79 polypeptide and, 350-52 Biological warfare vaccines, 168 botulinum toxin and, 173, Attention disorders receptor for, 177-79 lead and, 93 174 respiratory system and, Bioluminescence resonance 174-75, 185 Autism valproic acid and, 96 energy transfer (BRET), termination of action. Autoreceptors 184-86 muscarinic, 436 G protein-coupled transport cell, 172-73 receptors (GPCRs) and, transport process, 170-72 B 567 vasculature and, 169, 176, **Barbituates Bioterrorism** 185 oxidative stress and, 243 botulinum toxin and, 174 Botulism, 167, 169, 171, 174 Barker hypothesis Birth defects categories of etiology. of silent neurotoxicity, 99 alcohol-related birth 170 - 71Basal forebrain neurons defects (ARBD), 98 Brain Bladder cancer, 254-55 DARPP-32 distribution in. and CEP-1347, 464-65 Blood-brain barrier Basal ganglia, 274 272-75 development, 88-90 Basal metabolic rate, 306 botulinum toxin and, 169, Behavioral abnormalities, 98, ethanol exposure and, 97-99 100 neurotoxicity and, 88, 90 Pb exposure and, 92-95 Benzodiazepine(s) Pb exposure and, 93, 94 binding sites, 477, 478 Blood flow malformations, 98 sex-based differences in. GABA_A receptor-targeted methylmercury exposure and, 90-92 mice and, 483, 484, 503 486-88, 490 Blood pressure susceptible to

study, 125

Bone morphogenetic protein

 β -adrenergic blockers

and nitrate tolerance, 72

See also Blood-brain	and, 578-79	and, 455
barrier	Calnexin	Carcinogenesis
Brain-derived neurotrophic factor (BDNF), 404	G protein-coupled receptors (GPCRs) and,	DNA methylation and, 254–56, 258
voltage-gated sodium	571	lipid damage and, 249, 257
channels and, 378, 379	Calpain(s), 349–62	mitochondrial DNA
Breast cancer	inhibitors, 349, 351–53,	damage and, 247–48, 257
ErbB2 overexpression and,	355–56, 361–62	oxidative DNA damage
204, 208	ion homeostasis and, 353,	and, 246-47, 257, 258
Herceptin and, 206	358–59	oxidative stress and,
2-Butoxyethanol	isoforms and mechanisms	239-58
oxidative stress and, 243	of activation, 353-55	process, 239-41
	mitochondrial dysfunction	redox state and, 245-46,
C	and, 349, 360-61	258
c-Jun N-terminal kinase(s)	in oncosis, 349-62	See also Cancer(s);
(JNK), 251	plasma membrane	Carcinogens
pathway	permeability, 349, 359-60	Carcinogens
neurodegeneration and,	substrates, 349, 356-58	liver, 257
451–57, 467	Cancer(s)	See also Cancer(s); Carcinogenesis;
type 3 cascade (JNK3), 586 See also JNK pathway	aberrant ErbB and, 195 bladder, 254–55	Hepatocarcinogenesis
Caffeine Caffeine	breast	Cardiac dysfunction
DARPP-32 and, 286, 287	ErbB2 overexpression	Herceptin and, 207, 208
Calcitonin, 44	and, 204, 208	See also Cardiovascular
calcitonin gene-related	Herceptin and, 206	disease(s); Cardiovascular
peptide (CGRP), 569, 571	CYP2E1 and, 29, 37	risk; Heart
calcitonin receptor (CTR)	ErbB(s) and, 203-4, 207-8	Cardioprotection
G protein-coupled	receptors, 196	and corticotropin-releasing
receptors (GPCRs) and,	ErbB-induced, 202	factor (CRF) family
576	lung, 255	members, 541–42
calcitonin receptor-like	pain management, 67	See also Heart
receptor (CRLR), 570, 571	reactive oxygen and, 239-58	Cardiovascular disease(s) genetic mutation and, 121
Calcium (Ca)	therapy	and nitroglycerin, 67
endoplasmic reticulum	ErbB receptors and,	See also Cardiac
(ER) Ca ²⁺	204–8	dysfunction;
cell death and, 349,	treated with Herceptin, 207	Cardiovascular risk; Heart
351-52, 358-59	vaccines, 222	Cardiovascular risk, 124
increased intracellular, 95	See also Cancinogenesis;	See also Cardiac
signaling factor, 251	Carcinogens;	dysfunction;
Calcyon	Hepatocarcinogenesis;	Cardiovascular disease(s);
G protein-coupled	Vaginal adenocarcinoma	Heart
receptors (GPCRs) and,	Carbamazepine, 386	Catechol-O-methyltrans-
580	developmental toxicant, 95, 97	ferase (COMT) inhibitors
Calmodulin G protein-coupled	95, 97 Carbidopa	Parkinson's disease and.
receptors (GPCRs)	Parkinson's disease	455
icceptors (Of CRs)	a manison s disease	733

of G protein-coupled Catecholamines, 302 Chemical(s) Cdk5, 288 receptors (GPCRs), carcinogenic, 239 559-93 DARPP-32 and, 269, 271 exposure metabotropic glutamate Central nervous system silent neurotoxicity and, receptors and, 281 (CNS) Chemotherapeutic agents, Cell death adult 205, 206 apoptotic, 36 biology of neurogenesis, ethanol and, 99 Cetuximab and, 207 neural stem cells, 402, phenytoin induced, 97 Chemotherapy chronic stress and, 528 405-12 Herceptin and, 206 ethanol and, 99 cell types of, 400 Chlorinated compounds induced, 463 challenges for repair, 413 oxidative stress and, 243 neuronal, 406-7, 463 defects, 89 Cholecystokinin DARPP-32 and, 283-84 CEP-1347 and, 461-68 developing Choline, 255 JNK signaling pathway vulnerable to injury, 87, Cholinergic nerve endings and, 453-54 oncotic, 349-62 diseases, 400, 405, 408-10, botulinum toxin and, 167-69, 176, 179, 185 phenytoin induced, 97 412 dysfunctions, 98 Cholinesterase inhibitors programmed, 89, 462 switch of mode of, 35 lead and, 93 and Alzheimer's disease, 455 two pathways, 349-50 methylmercury and, 91 repair Cidofovir two types of, 31-32 Cell growth stem cells and, 411 renal elimination of, 151 oxidative stress and. repair mechanisms in. Cigarette smokers 249-50, 258 399-400 and β -blockers, 122 Cell migration CEP-1347, 463 See also Cigarette brain development and, 88, effects of, 464 smoking; Nicotine MLKs as a target of, Cigarette smoking 89 Cell proliferation 460-61, 468 dose-exposure relationship brain development and, neurodegenerative diseases and, 117 88-89 and, 451-52 See also Cigarette smokers; carcinogenesis and, 239, neuroprotective effects of, Nicotine CK1 241 464-67 pharmacological metabotropic glutamate oxidative stress and. 249-50 development of, 457-60 receptors and, 281 tissue culture studies of. CK2 Cell replacement neuronal, 405, 407-10, 461-64 DARPP-32 and, 269, 271 412, 413 Cerebellum CKI Pb-induced damage in, 94, DARPP-32 and, 269, 271 Cell surface G protein-coupled C5L2, 58-59 receptors (GPCRs) Cerebral cortex Clonazepam delivery to, 560-72 ethanol exposure and, 98 GABA_A receptor-targeted mice and, 489 localization to, 559 prefrontal retained at, 572-80 Pb-induced damage in, Clostridia 94 food contaminated with, stabilizing at, 573-80 turnover on, 580-88 Cetuximab, 206, 207 Cellular transport side effects, 207, 208 Clostridium boratii, 167, 168

CRF binding protein

Cyclin D1 gene (CRF-BP), 526, 527, Clostridium botulinum, 167, 168, 170 530-31 AP-1 and, 252, 258 CYP Clostridium butyricum, 167, CRF-BP-KO mice, 531, enzymes 168 537 sex-based variability in, Cocaine, 278, 279 CRF-BP-OE mice, 530-31, 504-10 DARPP-32 and, 286-88 537 CRF-KO mice, 529-30 expression in vitro, 10 GABA receptor-targeted isoforms, 2, 8, 15, 17 mice and, 481, 483 behavioral responses to reaction phenotyping, 2, 8 stress, 536 Ms mAChR-deficient CYP1A2, 8 CRF-OE mice, 529, mice, 442-43 gender differences in, 508 Coenzyme Q 535-36, 538 sex-based differences in. CRFR1, 525-27, 531-33, quenches reactive oxygen 506 species, 244 541, 544 antagonist(s), 536, 538, CYP3A, 10 Cognitive function expression in males and lead exposure and, 93 539, 540 antisense studies, 535 females, 502 Cognitive impairment valproic acid and, 96 anxiety and, 534 grapefruit juice and, 116 hyperforin and, 116 Cold exposure CRFR1/2-KO mice, sex-based differences in, thermogenesis and, 306, 532-33, 539-40 CRFR2, 525-27, 529, 530, 307 Communication 532-33, 539, 541-42, 544 vary by sex, 504 antisense studies, 535 CYP3A2 intercellular, 256-57 Complex regional pain behavioral effects of sex-based differences in. 506 syndrome (CRPS), 384 antagonists, 533-34 CRFR1/2-KO mice, CYP3A4, 13, 16 Computational modeling HepG2 cells expressing, drug glucuronidation and, 532-33, 539-40 stress-induced behaviors 33, 34 1, 2, 14-18 pharmacokinetics and and, 534 CYP3A9 sex-based variability in, pharmacodynamics and, CRFR1-KO mice, 531-33, 505-6 111, 112 537-38 Concentration-response CRFR2-KO mice, 532-33, CYP3A41 sex-based differences in, pharmacokinetics and. 538-39, 541 506 113 CRFR2α, 526 CYP3A44 Constitutive active receptor CRFR2\(\beta\), 526 sex-based differences in, technology (CART), 51 CRFR2y, 526 506 Constitutive signaling family members CYP1B1 G-protein coupled peripheral roles, 541-42 receptors (GPCRs) and, receptor(s) sex-based variability in, 49-51 antagonists, 540-41 505 Corticosteroid release and ligands, 525 CYP2B6, 15 sex differences, 511 phamacology of, 526-27 vary by sex, 504 Corticosterone release Corticotropin-releasing CYP2C1 muscarinic sex-based differences in, hormone (CRH), 434 agonist-induced, 434 Craniofacial 506 dysmorphologies, 98 Corticotropin-releasing factor CYP2C9, 8, 16 (CRF) CREB, 278, 288 vary by sex, 504

Creutzfeld-Jakob disease, 99

CYP2C19

understanding process gender differences in, 508 formation of, 91 CYP2D6, 10 Depression of, 408, 413 vary by sex, 504 Disopyramide, 119 corticotropin-releasing CYP2E1, 17, 27-37 factor (CRF) and, 533, Distribution and oxidative stress, 27-37 of a drug sex-based differences in. drug discovery for disparities by sex, 501-4 506 treatment of, 540 Dithiothreitol, 250 vary by sex, 504 Developmental delays **Diuretics** Cysteine sulfenic acids valproic acid and, 96 and nitrate tolerance, 72 (Cys-SOH), 325-42 Developmental toxicant, 97 DNA Cytochrome(s) P450, 34, 115 Diabetes damage CYP2E1 and, 29 carcinogenesis and, 239, drug metabolism and, 1, 2 grapefruit juice and, 116 nephrogenic diabetes 240, 258 HepG2 cells and, 33 insipidus (NDI) methylation in males and females, 502 G protein-coupled carcinogenesis and, metabolism, 241 receptor(s) (GPCRs) 254-56, 258 and nitroglycerin, 69 and, 559, 571, 588-89 mitochondrial damage X-linked, 582 carcinogenesis and, reactive oxygen species and, 243 Diazepam 247-48, 257 sex-related differences in. oxidative damage GABAA receptor-targeted 504-8 mice and, 479, 481, carcinogenesis and, 486-89, 491 246-47, 257, 258 vary by sex, 504 Cytochromes P4501A1, 117 sex-based differences in repair of oxidative damage, pharmacodynamics, 512 248-49, 258 Cytochromes P4501A2, 117 Cytochromes P4502E1, 117 Diethylstilbestrol, 100 Dopamine agonists Cytokines Dihydropyridine calcium-channel Parkinson's disease and, alcohol-generated, 37 455 AP-1 and, 252, 258 antagonists, 124 DARPP-32 and, 275-80 Cytotoxicity Dileucine CYP2E1-dependent, 27, and G protein-coupled and glutamate signaling, 281 33-34 receptor (GPCR) and oxidative stress, 31 trafficking, 563-64 neurotensin and, 284 Diphenylhydantoin, 386 psychostimulants and, 287 developmental toxicant, M4 mAChRs and, 437 DARPP-32, 269-89 95, 97 M5 mAChRs and, biochemistry of, 269-72 Disease(s) dephosphorylation of, 272 cell replacement therapy 441-42 sexual receptivity and, 285 distribution in the brain. and, 409 Dopamine- and 272-75 G protein-coupled phosphorylation, 271-72 receptor(s) (GPCRs) and, cAMP-regulated 559, 581-82, 588-92 phosphoprotein. altering, 275-88 genetic defects and, 410 Mr 32 kDa (DARPP-32), Delta 269-89 oncosis and, 350 Delta 4, 231 Notch signaling and, 226 oxidative stress and, 27-28 Dopaminergic neurons δ-opioid receptors (DOR), and CEP-1347, 466-67 reactive oxygen species 567-68 and, 241-44 substantia nigra and, 100, **Dendrites** silent neurotoxicity and, 99 466-67

Dose	disposition	response
dose-concentration	intrinsic host factors	genetic variations and,
relationship, 116	and, 113-14	121
dose-exposure profile, 116	distribution	retention, 119
dose-exposure relationship,	disparities by sex, 501-4	sex-based differences in
114-18	dosing regimen, 126	adverse reactions to,
pharmacodynamics (PD)	drug-drug interactions,	513
and, 120	126-27	tolerance, 123
dose-response	drug-environment	toxicity, 115, 117, 126
pharmacokinetics (PK)/	interactions, 116-17, 128	susceptibility to, 114
pharmacodynamics	ErbB-targeting, 204-6	transporters
(PD) studies and, 127	excretion	renal, 137-57
dose-response	sex differences, 501, 510	Dubin-Johnson syndrome,
relationship(s), 112	and food interaction,	148
nicotine and, 122	126–27	Dynamins
pharmacokinetics and,	formulation(s)	G protein-coupled receptor
113	effects, 116	(GPCR) endocytosis and,
pharmacokinetics (PK)/	and pharmacodynamics	583-86
pharmacodynamics	(PD), 121–22	Dyskinesia, 286
(PD) studies and, 126	glucuronidation, 1-18	Dyslipidaemia, 56
Drinking	extrahepatic, 14	Dystonia
during pregnancy, 100	kinetics in vitro, 10–14	botulinum toxin and, 167
See also Alcohol	in silico-in vitro	,
Drug(s)	prediction, 17-18	E
of abuse, 286–88	UGT reaction	Ebselen
action	phenotyping of, 8–10,	alcohol-induced liver
and environmental	16–18	injury and, 28
exposures, 122	interactions	Ectopic discharge, 381–82
active at G-protein coupled	transporter-mediated,	EGF-related peptide growth
receptors (GPCRs), 43	156	factors
ADMET, 3	metabolism, 2, 115-16	ligand family, 197
for Alzheimer's disease	parameters, 1–18	Electrophysiological deficits
treatment, 455	sex-based differences in,	in M ₁ mAChR-deficient
antiviral	501, 504–10	mice, 425, 430-31
renal elimination of, 151	modulatory	Embryogenesis
biodisposition, 114–15,	GABA _A receptors and,	ErbB(s), 201–2
117, 119, 122, 127	475–92	receptors, 196
biotransformation, 115–16		Enantiomers
clearance	movement in the body, 119 for Parkinson's disease	
		biodisposition and, 119
in smokers, 117	treatment, 455	pharmacodynamics (PD) and, 123
data on safety and	penetration, 118–19	
effectiveness by sex, 500	pharmacodynamics, 111–28	Endocrine disruptors, 100
discovery		Endocrine stress response,
for stress-related	pharmacokinetics, 111–28	525, 527–29
disorders, 540	sex-based differences in,	Endocytosis
discovery and	499–510, 513	agonist-elicted, 559,
development, 2	renal clearance of, 510	582–86

CYP2E1 and, 37

Eosinophils DARPP-32 and, 286, 287 agonist-evoked receptor, 559, 582-86 reactive oxygen species developmental toxicant, 87, 97-99 botulinum toxin and, 168, and, 241 169, 174, 176 Ephrin(s) GABA_A receptor-targeted mice and, 481, 482, 485 receptor-mediated angiogenesis and, 227-28 botulinum toxin and. Epidermal growth fact hepatocyte toxicity and, 28 and oxidative stress, 28 169, 177, 179-81 (EGF)-related peptides, Endophilins, 564 195, 196 toxic actions on the liver. 27 Endoplasmic reticulum (ER). Epidermal growth factor (EGF) receptors, 195 See also Alcohol Endothelial cells Epinephrine, 302 Ethnic groups pharmacodynamics (PD) Pb exposure and, 93-94 Epithelial cells **Endothelial dysfunction** botulinum toxin and, 171, variation and, 120 nitrate-induced, 79-80 172, 174-75, 186 Etomidate Endothelial nitric oxide ErbB(s) GABAA receptor-targeted synthase (eNOS), 67, 68, in adult mice, 202 mice and, 482, 484, 491 71, 76, 78-81 cancer treatment and, Exocytosis gene, 121 207 - 8botulinum toxin and, 169, 170, 183, 186 Endothelial stem cells evolved, 196 tumor angiogenesis and, human cancers and, 203-4 Exposure-effect relationship 231 mouse embryogenesis and, pharmacodynamics (PD) and, 120, 123 Endothelium 201 - 2vascular receptor(s), 195-209 Exposure-response organic nitrates and, 67, cancer therapy and, relationship(s) 79-81 204 - 8pharmacodynamics (PD) dimerization, 197-99 and, 123-24 Enflurane, 477 GABAA receptor-targeted intracellular signaling, pharmacokinetics (PK)/ 199-200 pharmacodynamics (PD) mice and, 481-83, 485, 491 signaling, 197-200 studies and, 126 Environment Erythromycin, 509 response to drugs and, 121 Extracellular domain (ECD1) drug-environment metabolism interactions, 128 sex-based differences in. of CRFR1, 544 506 Extracellular signal-regulated Environmental agents Erythropoietin (EPO) kinases (ERK), 251, neuropathology developmental of, 87-101 ErbB receptors and, 198 303-6, 586, 587 Environmental exposures Estrogen and drug action, 122 DARPP-32 and, 284-85 replacement therapy (HRT) Faroe Islands Enzyme(s) pharmacokinetics and. methylmercury exposure activity 509-10 in, 92 drug-metabolizing, 115 sex-based differences in GI Fasting CYP CYP2E1 and, 29, 37 sex-based variability in, motility, 500, 502 Fat absorption 504-10 Ethanol DNA repair, 248-49 alcoholic liver injury and, in newborn infants, 114 drug metabolizing, 1-18 33 Fatty acids nitrate action and tolerance cells treated with, 31 adipose tissue and, 298

CYP2E1 and, 28

and, 69-71

Ferrous sulfate 583-87 gender-specific variation, 502 Fetal alcohol syndrome (FAS), 97-99, 100 oxidative stress and, 29 572-80 Fetal hydantoin syndrome, Fibroblast growth factors (FGFs) ErbB receptors and, 198 Flecainide, 385 Fluorescence activated cell sorting (FACS), 49, 59, Fluorescence Imaging Plate Reader (FLIPR), 50 Fluorescence resonance energy transfer (FRET), Fluoroquinolones sex-based differences in, 503 Fluoxetine, 285, 286 Follicle-stimulating hormone receptor (FSHR), 571 Food contaminated with Clostridia, 170 and drug interaction, 126-27 intake M₃ mAChR-deficient mice and, 427, 438-39 G protein-coupled receptor(s) (GPCRs), 43-60, 200, 282, 559-93 agonist-evoked endocytosis, 559, 582-86

amino sequence of, 581

delivery to cell surface,

G protein-coupled receptor

kinase (GRK), 583-86

560-72

dimerization, 58

interactions with arrestins, recombinant expression of. 48-49 retained at the cell surface, screening assays, 49-51 turnover on the cell surface, 580-88 Gamma aminobutyric acid (GABA) DARPP-32 and, 281 G protein-coupled receptor (GPCR) oligomerization and, 566-67 GABA_A receptors, 95-96, 287, 475-92 al GABAA receptor subunit knockout mice, 476-77, 479-81 α5 GABA_A receptor subunit knockout mice, 477, 481 al (H101R) GABAA receptor knockin mice, 486-88 α6 GABAA receptor subunit knockout mice, 477-78, 481-82 $\alpha 2$ (H10R) GABA_A receptor knockin mice, a3 (H126R) GABAA receptor knockin mice, 488-89 α5 (H105R) GABAA receptor knockin mice, 489-90 β2 GABA_A receptor subunit knockout mice, 477-78, 482 β3 GABA_A receptor subunit knockout mice, 477-78, 482-83 β3 (N265M) GABA_A receptor knockin mice, 490-91

δ GABA_A receptor subunit knockout mice, 484-85 y2 GABAA receptor subunit knockout mice, 478, 483-84 ρ1 GABA_A receptor subunit knockout mice. 485 GABAR 14-3-3 proteins and, 580 receptor, 44 neurons, 274-75 valproic acid and, 96 Ganaxalone GABA_A receptor-targeted mice and, 484 Gap junctional modification oxidative stress and, 256-57 Gastrointestinal motility sex-based differences in. 500 Gastrointestinal system botulinum toxin and, 169, 170-73, 185 gClq-R G protein-coupled receptors (GPCRs) and, 572 Gender pharmacokinetics and pharmacodynamics and, 499-513 Gene(s) antiangiogenic and vascular targets, 230-31 expression carcinogenesis and, 239, 240, 241, 258 oxidative stress and, 250-54, 258 serial analysis of gene expression (SAGE), 230 valproic acid and, 96

regulation

changes, 73-74 Glutathione reductase (GR), Heart transcription 328-30 congestive heart failure voltage-gated sodium Glutathione S-transferase and nitroglycerin channels and, 378 (GST) therapy, 73 Genetic polymorphism and nitroglycerin, 69, 75-76 drugs and, 2 and nitroglycerin, 73 Genetic variability Gonadotropin releasing M₂ mAChRs and, 432 pharmacokinetics (PK) hormone (GnRH) See also Cardiac studies and, 114-15, 117 receptor, 559, 591-92 dysfunction; Cardioprotection; response to drugs and, Grapefruit juice cytochromes P450 121 Cardiovascular disease(s); Gentamicin (CYP3A) and, 116 Cardiovascular risk Green fluorescent protein hearing loss and, 456-57 Hedgehog signaling, Glial cell-derived (GFP), 49, 59 228-29 neurotrophic factor Green tea catechin, 257 Hemagglutinins (HA), (GDNF) Growth factors 168-69, 171, 185 voltage-gated sodium and neuronal cell death. Hepatic cells channels and, 378-80, 462 CYP2E1-mediated 382 Growth hormone (GH) oxidative stress, 35 Glial cells ErbB receptors and, 198, Hepatic clearance (CLH) affected in diseases, 410 of drugs, 1-3, 10-12, 18 brain development and, Growth retardation Hepatic extraction ratio (EH), 89-90 ethanol and, 97 1, 2, 10, 18 in diseased areas, 406 Guam's disease, 99 Hepatic metabolism exposure to ethanol, 98-99 Gustatory system of drugs in humans, 1-3 generation of, 400 G protein-coupled receptors Hepatitis B Gliotic scar, 410 (GPCRs), 567 alcohol and, 37 Glomerular filtration rate Hepatitis C (GFR), 510 H alcohol and, 37 Glucose Hair cell(s) Hepatocarcinogenesis, 255 intolerance, 298 aminoglycoside-induced See also Cancer(s); Carcinogens; Liver Glucuronidation death of, 461 drug, 1-18 death Hepatocytes Glutamate antibiotics and, 451, CYP2E1-overexpressing, DARPP-32 and, 279-81 456-57, 467 death inducers, 32 neurotensin and, 284 cochlear, 452 Glutaredoxin, 245 loss, 467 toxicity, 28 Glutathione (GSH), 27, 35, Halothane, 477 Hepatoma HepG2 cell lines 250, 327, 328 GABAA receptor-targeted CYP2E1, 27, 29-35 depletion, 31-33 mice and, 481, 483, 485, Herbal preparations interactions with drugs, oxidative stress and, 244-45 Hearing loss 116 precursors antibiotics and, 451, Herceptin, 204, 206-8 alcohol-induced liver 456-57, 467 Heteroreceptors injury and, 28 CEP-1347 and, 452 muscarinic, 436-37 quenches reactive oxygen JNK pathway activation in, Highly active antiretroviral species, 244 456-57, 467 therapy (HAART)

Hyperactivity, 97 Intracellular poisoning sex differences in response botulinum toxin and. lead and, 93 to. 513 Hippocampal subgranular Hyperalgesia 182-84 inflammatory Intracellular signaling zone models, 379-80 ErbB receptors and, adult neurogenesis in, 401 sodium channels and. 199-200 Hippocampus Ion homeostasis ethanol exposure and, 98 377-80 Pb-induced damage in, calpain and, 353, 358-59 Hyperforin in St. John's wort, 116 94-95 IO scores Hypogonadotrophic blood lead levels (BLLs) phenobarbital and, 96-97 hypogonadism and, 93 proliferating cell clusters G protein-coupled receptor decreased, 97 in. 403 HM74A, 54-57 (GPCR) mislocalization Iressa, 205, 207 and, 591 side effects, 207, 208 Homeostasis Hypolipidemic agents, 125 Iron, 34 organismal corticotropin-releasing Hypothalamic-pituitarychelated, 30 adrenal (HPA) chelators factor (CRF) family and, 525-44 axis toxicity of alcohol and, Homer hormone production, 534 28 cell surface G stress response CYP2E1 and, 37 protein-coupled receptors corticotropin-releasing liver injury and, 28, (GPCRs), 574-75 factor (CRF) and. 33 Homone sensitive lipase 527-33 Isoflurane (HSL), 303 Hypothermia GABAA receptor-targeted Hormonal fluctuations muscarinic agonistmice and, 491 pharmacokinetics and, mediated, 433 Isoform(s) Hypoxia, 230-31 CYP. 2, 8, 15, 17 508-10 adult neural stem cells and, drug metabolism and, Hormone(s) CYP2E1 and, 29 1.2 production, 534 hypoxia-inducible factor 1 UGT, 6-7, 10, 13, 15-18 (HIF1), 219 UGT isoform substate See also Estrogen; signaling pathways and, selectivity, 7-8, 15 Progesterone 219-21 Hsp70 G protein-coupled J receptors (GPCRs) and, JNK pathway Immunosupressants, 116 activation in Alzheimer's disease, 455-56 Human immunodeficiency In vitro-in vivo correlation drug metabolism and, 1, 2, virus (HV) activation in hearing loss, pharmacokinetics 4, 10-14 456-57, 467 activation in Parkinson's variability by sex, 512-13 **Infants** Hydralazine fat absorption in, 114 disease, 456 and nitrate tolerance, 72 Inflammation CEP-1347 and, 460-64, 8-Hydroxydeonyguanosine neurogenic, 379-80 468 (OH8dG), 247, 249, 255 Insulin resistance, 298 MLK family regulates, Hydroxyl radical Interleukin-1, 253 453-54 oxidative DNA damage Interneurons See also C-Jun N-terminal and, 246 GABAergic, 476 kinase(s) (JNK)

K	L	Lipolysis, 302-3
k-opioid receptors (KOR),	L-arginine	Lipopolysaccharide (LPS),
567–68	and nitrate tolerance, 72	100
K252a	L-buthionine sulfoximine	Liver
neurotrophic activities of,	(BSO)	injury
458–59	cells treated with, 31-33	alcohol and, 27-29, 33,
semisynthetic, 459-60	L-DOPA, 286	34, 37
Kanamycin	Lamotrigine, 386–87	microsomal drug
hearing loss and, 456–57	Laval University Disability	metabolism, 10–13
Kidney	Scale, 467	toxicity
drug clearance and, 14	Lead (Pb)	alcohol-induced, 35
See also Renal clearance;		
The second secon	developmental	tumor promoters, 257
Renal drug elimination	neurotoxicant, 87, 88,	See also Carcinogens;
Kinase(s)	92–95, 100	Hepatocarcinogenesis
ErbB receptors and,	synaptic connections and,	Locomotor activity
200	89	in M ₁ mAChR-deficient
extracellular	Learning	mice, 425, 429
signal-regulated kinases	disabilities, 97	Long-term potentiation (LTP)
(ERK), 251, 303-6, 586,	disorders	Pb-induced changes in, 94
587	lead and, 93	Lung cancer, 255
G protein-coupled receptor	in M ₁ mAChR-deficient	See also Cancer(s)
kinase (GRK), 583-86	mice, 425, 429-30	Lutropin/choriogonadotropin
kinase insert domain	M ₂ mAChRs and, 434	receptor (LHR), 571
(KDR), 221	Leptin, 297	
mixed lineage kinases	Leutenizing	M
(MLK)	hormone-releasing	M cells
biology of, 452-54	hormone (LHRH),	botulinum toxin and,
family, 452-53	122-23	172-73
neurodegeneration and,	Levodopa, 127	M2 mAChR-deficient mice,
451–68	Parkinson's disease and,	423-24, 426-27, 431-37
target of CEP-1347,	455	M ₄ mAChR-deficient mice,
460–61, 468	Lidocaine, 385-86	423–24, 427–28,
receptor tyrosine kinase	Ligand(s)	431-32, 435-38
(RTK), 195	ErbB, 197	Macrophages
stress-activated protein	receptors and, 196, 199,	reactive oxygen species
kinase (SAPK), 451	203	and, 241
tyrosine kinase	at orphan G-protein	Madin-Darby canine kidney
inhibitor(s), 196, 204–5	coupled receptors, 43–60	(MDCK) cells, 560–62,
See also C-Jun N-terminal	Lipid(s)	565, 573
	•	botulinum toxin and,
kinase(s) (JNK);	damage	171–72
Mitogen-activated protein	carcinogenesis and, 249,	
(MAP); Protein kinase A	257	plasma membrane
(PKA); Protein kinase C	orphan G-protein coupled	permeability changes and
(PKC); Protein kinase G	receptors (GPCRs) and,	349, 359–60
(PKG)	52–53	Malondiadiehyde (MDA),
Kupffer cell(s), 241, 243,	peroxidation, 28, 30, 31,	249
244	33, 34, 36	Mammary gland

ErbB receptors and, 202 MAP kinase See Mitogen-activated protein (MAP) Maturation drug metabolism and, 115 MDR1 MDR1/p-glycoprotein, 154 Mehionine, 255 Membrane trafficking of G protein-coupled receptors (GPCRs), 559-93 Memory M₂ mAChRs and, 434 in M1 mAChR-deficient mice, 426, 429-30 Menopause pharmacokinetics and, 509-10 Menstrual cycle pharmacokinetics and, 508-9 Mental retardation, 98 carbamazepine and, 97 valproic acid and, 96 Mephenytoin, 508 Metal(s) ions oxidative stress and, 243 redox-active cells treated with, 31-34 Methionine sulfoxide reductases (MSRs), 336-37 Methotrexate (MTX) in combination therapy, organic anion transporters (OATs) and, 146-48

protein (MRP) 3

Methylation

DNA

transporters and, 149

carcinogenesis and, 254-56, 258 Methylmercury (MeHg) developmental neurotoxicant, 87, 88, 90-92, 100 Metronidazole sex-based differences in. 503 Mexiletine, 385 Mice al GABAA receptor subunit knockout mice. 476-77, 479-81 α5 GABAA receptor subunit knockout mice. 477, 481 al (H101R) GABAA receptor knockin mice, 486-88 α6 GABAA receptor subunit knockout mice, 477-78, 481-82 α2 (H10R) GABAA receptor knockin mice, α3 (H126R) GABAA receptor knockin mice, 488-89 a5 (H105R) GABAA receptor knockin mice, 489-90 82 GABAA receptor subunit knockout mice, 477-78, 482 **B3 GABA** receptor subunit knockout mice. 477-78, 482-83 β3 (N265M) GABA_A receptor knockin mice, 490-91 CRF-BP-KO, 531, 537 CRF-BP-OE, 530-31, 537 behavioral responses to

stress, 536

CRF-OE, 529, 535-36, 538

CRFR1-KO, 531-33, 537-38 CRFR2-KO, 532-33, 538-39, 541 δ GABA receptor subunit knockout mice, 484-85 DARPP-32 knockout. 277-79, 282, 284-88 deficient for both corticotropin-releasing factor (CRF) receptors, 532-33 deficient for corticotropin-releasing factor (CRF-KO), 529-30 y2 GABAA receptor subunit knockout mice, 478, 483-84 GABAA receptor-targeted mice, 475-92 lacking GABAA receptor subunits, 475-78 M1 mAChR-deficient. 425-26, 428-31 M2 mAChR-deficient, 423-24, 426-27, 431-37 M₃ mAChR-deficient, 423-24, 427, 432-33, 438-40 M₄ mAChR-deficient, 423-24, 427-28, 431-32, behavioral phenotypes, 427, 437-38 M5 mAChR-deficient, 423-24, 428, 441-43 muscarinic acetylcholine receptor knockout, 423-43 ρ1 GABA_A receptor subunit knockout, 485 UcnI-KO, 536 UcnI-KO), 530 Microcephaly, 97 Microencephaly, 98 Microglia brain development and, 89

receptors and, 280 Microsomes oxidative stress and, 30-31 p38, 304, 305, 307, 308 Spry 4 and, 229-30 Microtubules methylmercury and, 91, 92 Mixed lineage kinases (MLK) See Kinases, mixed lineage Midazolam clearance Mizolastine sex-related difference in, gender-specific variation, 508-9 502 587-88 GABA_A receptor-targeted Monoamine oxidase (MAO) mice and, 482, 484 inhibitors NADPH Parkinson's disease and. metabolism sex-related difference in. 455 NASH 506, 507 Mood disorders Minamata disease, 91 chronic stress and, 528 Nav 1.1, 374 Mineral supplements, 116 Morepinephrine, 302 Nav 1.2, 374 Mitochondria Morphine brown adipose tissue and, M₅ mAChR-deficient 299 mice, 442-43 Nav 1.6, 374 damage by CYP2E1-Multidrug derived oxidants, 34 resistance-associated Mitochondrial damage protein(s) (MRPs) toxic agents and, 32-33, 36 family, 148-49 382 - 84Mitochondrial DNA transporter families, 141, damage 144-45 387 carcinogenesis and, Multidrug resistance 247-48, 257 transporter-1 (MDR-1), Mitochondrial dysfunction calpain and, 349, 360-61 Muscarinic acetylcholine Mitochondrial function receptors (mAChRs), and ATP, 350-52 423-43 Mitochondrial membrane Muskelin 587-88 potential, 32-33, 36 G protein-coupled Neocortex Mitochondrial permeability receptors (GPCRs) and, transition (MPT) Neomycin calpain and, 360-61 Mutation(s) Mitogen-activated protein carcinogenesis and, 239, 240, 258 Neonates (MAP) DNA carcinogenesis and, 251-52, 255, 258 carcinogenesis and, Neoplasia kinase (MAPK), 199, 200, 247-48, 257 in neoplasia, 247 278, 452, 586 β -adrenergic receptors Myelin-derived growth (βARs) and, 304-5, inhibitors, 410 311 in M1 mAChR-deficient mice, 431 N-acetyl cysteine (NAC), 462, 463

250, 252

metabotropic glutamate

N methyl D aspartate (NMDA) receptors Pb exposure and, 94 Na+/H+ exchange regulatory cofactor (NHERF) G protein-coupled receptors (GPCRs) and, NADH peroxidase, 328-29 CYP2E1 and, 30 CYP2E1 and, 29 Nav 1.3, 374, 381-82 Nav 1.5, 374, 375 Nav 1.7, 374-75, 380, 383 Nav 1.8, 371, 374-81, 387-88 and neuropathic pain, Nav 1.9, 374-76, 379, 381, and neuropathic pain, 384 NBI 30775, 540, 541 Necrosis, 31-32 NEM-sensitive factor (NSF) G protein-coupled receptors (GPCRs) and, neurogenesis in, 408 hair cells and, 463 hearing loss and, 456-57 drug disposition in, 114 chemically induced, 239 induction of, 240-41 Nephrogenic diabetes insipidus (NDI) See Diabetes Nerve growth factor (NGF),

PKC activity and, 457-58

voltage-gated sodium channels and, 378-80	immature generation of, 407	oxidative stress and, 35, 36 Nicotine
Neural networks	migrating, 405	cravings, 123
dynamics, 475-76	migration	dose-response relationship
Neural stem cells, 400-1	brain development and,	and, 122
in adult CNS, 402, 405-12	91–92	sex differences in response
fate specification of, 404-5	from neural stem cells, 401	to, 511
proliferation of, 404	neurogenesis and, 406	See also Cigarette smoking
Neurodegeneration	new, 399, 400, 406, 408,	Nicotinic acid receptor, 44,
c-Jun N-terminal kinase	410, 411, 413	54–57
(JNK) pathway and,	after lesion, 412	Nina A
451–57, 467	newly generated, 401-2	G protein-coupled receptor
Neurodegenerative diseases, 399	sensory primary afferent, 371–74	(GPCRs) trafficking and, 568–69
genetic defects and, 410	and prostaglandins, 377	Nitrate(s)
and mixed lineage kinases,	sriatal	metabolism, 67, 69-71
451-68	DARPP-32 and, 275	organic, 67-81
Neurogenesis	stages in development, 402	tolerance, 71-79
adult, 412	steps in integration of, 401	Nitrogen (N)
environmental control	striatal	oxidative stress and, 239
of, 402-5	subpopulations, 274-75,	Nitroglycerin (NTG), 67-81
in the adult brain, 399-413	278	8-Nitroguanine, 247
adult hippocampal, 401-2	superior cervical ganglion	NMDA
biology of, 400-5	(SCG), 462, 463	neurotensin and, 284
cellular control of, 403	CEP-1347 and, 464	NMDA receptor
cortical, 408	Neuropathology	DARPP-32, 279-80, 287
dopaminergic, 408	developmental	Nonesterified fatty acids
excess of neurons and, 89	of environmental agents,	(NEFAs), 298, 302
following lesion, 412	87-101	Nonhemagglutinin (NTNH),
hippocampal, 406	Neuropeptide(s)	168-69, 171, 185
lesion-induced, 408, 409	DARPP-32 and, 283	Notch
limited to specific regions,	neuropeptide Y (NPY1R),	signaling, 224-26, 229
401–2	54	NSAIDs
molecular control of,	Neuropilins	in combination therapy,
403-5	vascular endothelial growth	156
Neuromedin U, 44	factor (VEGF) and,	organic anion transporters
Neuromodulators, 282-83	223-24	(OATs) and, 145, 146, 148
Neuromuscular junction	Neurotensin, 284	Nucleoside reverse
botulinum toxin and,	Neurotoxicity	transcriptase inhibitors
176–84	developmental, 87-101	(NRTIs)
Neuron(s)	silent, 87, 99–100	sex-based differences in
basal forebrain	Neutrophils	pharmacodynamics, 512
and CEP-1347, 464-65	reactive oxygen species	Nucleotide
dopaminergic, 410–12	and, 241	sequence homology
and CEP-1347, 466-67	NF-κβ	orphan G-protein
excess of, 89	carcinogenesis and, 239,	coupled receptors
generation of, 411	251–54, 258	(GPCRs) and, 52–54

330-36

and redox signaling,

Peroxiredoxins

334-38

pharmacokinetics, 510 transport systems, 155-57 functional characteristics, 141, P-glycoprotein (P-gp) Nucleus accumbens dopamine release in. 145 gender-specific variation. 441-42 502 Organic anion transporter polypeptide(s) (OATP), hyperforin and, 116 O 141-43 MDR1/p-glycoprotein, 154 12-o-tetradecanoylphorbolfamily, 147-48, 157 transport activity, 156 13-atinocytes, 257 Organic cation transporter(s) Pain Obesity, 298 chronic (OCT) β -adrenergic receptors family, 149-54 sodium channel blockers identification of, 152-54 and, 371 (BARs) and, 310-11 CYP2E1 and, 29, 37 systems, 151-54, 157 treatment of, 372 ODR-4 functional complex regional pain G protein-coupled receptor characteristics, 152 syndrome (CRPS), 384 (GPCR) delivery, 569 neuropathic, 381-82, Osteoporosis OhrR organic nitrates and, 67 384-87 and anticonvulsants, redox signaling and, 340 Ototoxicity aminoglycoside-induced, 386-87 Olfactory sensory neurons sodium channels in. (OSN) 457 380-84 G protein-coupled receptor Oxidative stress (GPCR) trafficking and, in alcohol toxicity, 28 sex differences in response carcinogenesis and, 239-58 to, 511 Oligodendrocytes cell growth regulation and, Parkinsonism-Dementia, brain development and, 249-50, 258 89-90 CYP2E1 and, 27-37 Parkinson's disease (PD), Oligomerization diseases and, 27-28 127, 410 CEP-1347 and, 452 of G protein-coupled gap junctional receptors (GPCRs), modification, 256-57 developing, 100 565-67 gene expression and, JNK pathway activation in, 250-54, 258 456 Oligonucleotides antisense studies with. microsomal, 30 treatment, 286, 455, 467 534-35 vascular nitrate tolerance Pentobarbital Omeprazole, 508 and, 68, 76-79 GABA_A receptor-targeted Oncosis, 349-62 mice and, 481, 482, 484 Oxygen (O) Ontogeny reactive Peptide receptor, 44 DARPP-32 and, 273 Peptide transport systems, cancer, 239-58 Opioid(s) sources, 241-44 154-55, 157 analgesics OxvR Peroxidases sex differences in redox signaling and, bacterial response to, 511 338-40 in redox signaling, DARPP-32 and, 283 331-34 Organic anion transporter(s) cysteine based P-aminohippurate (PAH) (OAT) in redox signaling,

MRP2 and, 149

and organic anion transport

P-aminohippuric acid (PAH)

(OAT), 141, 145, 146, 147

families, 142-43

identification of, 145-51

systems, 141-51, 156

family, 145-47

DNA damage and, 246–47 pH-induced translocation botulinum toxin and, 169, 177, 180–82 Pharmacodynamics (PD), 111–13, 120–28 differences in the sexes, 499, 510–13 extrinsic factors and, 121–22 intrinsic factors and, 120–21 limitations, 123–25 sex-related disparities in, 499, 500 Pharmacokinetics (PK), 111–22, 124–28 Platelet-derived growth factor (PDGF) ErbB receptors and, 198 Prostaglandins channels and, Prostaglandins sensory primary and, 377 Protease inhibitors sex-based differ pharmacodyna Prostaglandins sensory primary and, 377 Protease inhibitors sex-based differ pharmacodyna Prostaglandins sensory primary and, 377 Protease inhibitors sex-based differ pharmacodyna Prostaglandins sensory primary and, 377 Protease inhibitors sex-based differ pharmacodyna prostaglandins sex-based differ pharmacodyna prostaglandins sex-based differ pharmacodyna prostaglandins sex-based differ pharmacodyna prostaglandins sex-based differ	amics, 512 PGE ₂), 377 odium 378 y afferent s (PIs) rences in amics, 512
differences in the sexes, 499, 510–13 extrinsic factors and, 121–22 Polycyclic aromatic intrinsic factors and, 120–21 Polyproline limitations, 123–25 sex-related disparities in, 499, 500 Pharmacokinetics (PK), Process developmental neurotoxicants, 88 in the Faroe Islands, 92 Protease inhibitors sex-based differ pharmacodyna Protein(s) 14-3-3 G protein-coupled trafficking, 565 Polysialated glycoprotein Prostaglandins sensory primary and, 377 Protease inhibitors sex-based differ pharmacodyna Protein(s) 14-3-3 G protein-coupled receptors (CPCR) Folysialated glycoprotein	y afferent s (PIs) rences in amics, 512
121–22 Polycyclic aromatic sex-based differ pharmacodyna 120–21 Polyproline Protein(s) limitations, 123–25 and G protein-coupled sex-related disparities in, 499, 500 trafficking, 565 receptors (CPK), Polysialated glycoprotein sex-based differ pharmacodyna Protein(s) 14-3-3 G protein-coupled receptors (GPCR) receptors (CPCR) rec	rences in amics, 512
limitations, 123–25 and G protein-coupled sex-related disparities in, 499, 500 trafficking, 565 receptors (CPK), Polysialated glycoprotein 580	
sex-related disparities in, receptor (GPCR) G protein-coi 499, 500 trafficking, 565 receptors (C Pharmacokinetics (PK), Polysialated glycoprotein 580	
111-22, 124-26 Heurar Cell addression Of 50 kDa, 257	
of drugs molecule (PSA-NCAM), binding	
sex-based differences in, 405 pregnancy are 499–510, 513 Polyunsaturated fat sex-based differences in sex-based differenc	
extrinsic factors and, alcohol-induced liver 503 116–17 injury and, 28 botulinum toxir	
intrinsic factors and, Polyunsaturated fatty acids 168–69	i uno,
113–16 alcoholic liver injury and, (bZIP), 251 limitations, 118–19 33 CYP	
Phenobarbital cells treated with, 31–34 sex-related developmental CYP2E1 and, 37 in, 504–10	ifferences
neurotoxicant, 95-96 Prednisolone ErbB receptors	
Phenylethanolamine pharmacokinetics, 509 G-protein coup N-methyltransferase sex-based differences in, (PNMT), 530 503 43-60, 573-80	PCRs) and,
(PNMT), 530 503 43–60, 573–8 Phenytoin, 386 sex-based human UGT, 4	
developmental toxicant, pharmacodynamic methylmercury 95, 97 differences, 510–11 PP-1 binding	
Phorbol esters Pregnancy DARPP-32 a	nd, 270-71
oxidative stress and, 243 binding proteins and, receptor activity. Phosphatidyl inositol (PI) 503-4 proteins (RAM)	
in M ₁ mAChR-deficient drinking during, 100 569–70	
mice, 431 Progesterone receptor components of the properties of the progesterone process of the progesterone receptor components of the progesterone process of the progesterone receptor components of the progesterone receptor components of the progesterone process of the progesterone receptor components of the progesterone process of the progesterone receptor components of the progesterone process of the progesterone receptor components of the progesterone process of the progesterone process of the progesterone process of the	ment protein
and nitrate tolerance, 72 sex-based differences in GI Placenta growth factor motility, 500, 502 sulfenic acids in	
(PLGF), 220, 221 Prooxidants signaling, 325	
Plasma CYP2E1 and, 37 uncoupling pro	

(UCP1), 300, 305, 307-9, drug metabolism and, 3, 14-15, 17, 18 311 vesicle-associated **Ouantitative structure** metabolism relationships membrane protein (VAMP), 170, 184 (QSMR) See also Multidrug drug metabolism and, 3-4, Redox state 17, 18 resistance-associated protein(s) (MRPs) R Protein carbonyl formation, 28 R121919, 540, 541 Protein kinase A (PKA), 308 β -adrenergic receptors Race pharmacodynamics (PD) (βARs) and, 303, 305 calpain and, 355 variation and, 120 DARPP-32 and, 269-71. Radiation, 205 277, 278, 280, 288 oxidative stress and, 243 lipolysis and, 304-5 RanBP2 114 G protein-coupled Protein kinase C (PKC), 251, 457-58 receptors (GPCRs) and, Pb and, 95 571 Protein kinase G (PKG) Ranocoumarins DARPP-32 and, 269, 270, cytochromes P450 278, 283, 288 (CYP3A) and, 116 Protein 4.1N Reaction phenotyping G protein-coupled CYP, 2, 8 receptors (GPCRs) and, drug metabolism and, 2 576-77 in silico, 14-17 Protein phosphatase of UGT substrates, 8-10, DARPP-32 and, 272 16 - 18Protein phosphatase-1 (PP-1) in vitro, 8-10 DARPP-32 and, 269-71, Receptor(s) 138 - 40278, 284, 286, 288 for botulinum toxin, Protein tyrosine phosphatases 177 - 79G-protein coupled (PTPs), 328 receptors (GPCRs), 43-60 PSD-95 G protein-coupled Receptor activity modifying receptors (GPCRs) and, proteins (RAMPs) 577-78 G protein-coupled receptors (GPCRs) and, Psychiatric disorders medications for, 278 569-70 Psychotropic medications Receptor component protein Rhodopsin sex-based differences in (RCP) pharmacodynamics, G protein-coupled 512 receptors (GPCRs) and, 565, 581 571 Receptor tyrosine kinase Quantitative structure activity (RTK), 195 589-91

Recombinant expression

relationships (OSAR)

of orphan G-protein coupled receptors (GPCRs), 48-49 Redox signaling sulfenic acids, 325-42 carcinogenesis and, 245-46, 258 cellular, 244 Renal clearance of drugs, 510 See also Kidney; Renal drug elimination Renal development drug disposition and, 113, Renal drug elimination, 137-57 See also Kidney; Renal clearance Renal drug transporters, 137-57 Renal proximal tubule(s) drug transport and, 137, 149, 151, 154 organic anion and cation transporters in, 146 Renal transporters molecular characteristics, Respiratory system botulinum toxin and, 169, 174-75, 185 Retinitis pigmentosa G protein-coupled receptor (GPCR) and, 559, 589-91 Reverse transcriptase-coupled polymerase chain reaction (RT-PCR), 374 G protein-coupled receptors (GPCRs) and, mutant, 559, 589-91 retinitis pigmentosa,

Rhodopsin 1 (Rh 1)

RNA nitrogen adduct, 247 Rostral migratory pathway (RMP), 402, 406 Roundabouts angiogenesis and, 230 angiogenesis and, 230 Smokers Roundabouts angiogenesis and, 230 angiogenesis and, 230 Smokers Roundabouts angiogenesis and, 230 Smoking dose-exposure relationship and, 117 Smooth ER Ca ²⁺ -ATPase (SERCA), 351–52 Saccharomyces cerevisiae, 48, 50 Yap1-Gpx3 (Orp1), 341–42 Salicylate, 502 Salivary secretion M3 mAChRs and, 440 M5 mAChRs and, 440 M5 mAChRs and, 443 Scar formation, 410 Seizure activity in M1 mAChR-deficient mice, 425, 428 Semaphorin receptors, 223–24 Sensory neurons, 371–77 voltage-gated sodium channels in, 374–77 Sequence homology and ligands and, organismal responsible factor (CRF) rec and ligands and, organismal responsible factor (CRF) recaptors (SECA), 351–52 Straitum end, 432–33 Stricture activity organismal responsible factor (CRF) recaptors (SECA) and hyperalgesia, 377–80 phosphory and ligands and, 432–33 Stricture activity organism	G protein-coupled receptor (GPCRs) and, 568-69	Simliki Forest virus, 181 Slits	Stress chronic, 528
nitrogen adduct, 247 Rostral migratory pathway (RMP), 402, 406 Roundabouts angiogenesis and, 230 S Sadehonsyl-methionine, 255 Saccharomyces cerevisiae, 48, 50 Yap1-Gpx3 (Orp1), 341-42 Salicylate, 502 Salivary secretion M3 mAChRs and, 440 M5 mAChRs and, 440 M5 mAChRs and, 440 M5 mAChRs and, 440 M5 mAChRs and, 440 Sera formation, 410 Seizure activity and ligands for orphan G-protein coupled receptors (GPCRs), 52-54 Ser 102 DARPP-32 and, 269, 271 phosphorylation of DARPP-32 and, 269, 271 phosphorylation of DARPP-32 and, 278-79 serectonin		DALVO	
Rostral migratory pathway (RMP), 402, 406 Roundabouts angiogenesis and, 230 S Sadenosyl-methionine, 255 Saccharomyces cerevisiae, 48, 50 Yap1-Gpx3 (Orp1), 341–42 Salicylate, 502 Salivary secretion M3 mAChRs and, 440 M5 mAChRs and, 440 M5 mAChRs and, 440 M5 mAChRs and, 440 M6 maChRs and, 440 M6 maChRs and, 440 M7 mAChR-deficient mice, 425, 428 Semaphorin receptors, 223–24 Sensory neurons, 371–77 voltage-gated sodium channels in, 374–77 Sequence homology and ligands for orphan G-protein coupled receptors (GPCRs), 52–54 Ser ¹³⁷ DARPP-32 and, 269, 271 Ser ¹³⁷ DARPP-32 and, 269, 271 Ser ¹³⁷ DARPP-32 and, 269, 271 Serotonin DARPP-32 and, 269, 271 sperbory, 287, 581 Seychelles methylmercury exposure in, 92 Signaling hedgehog, 228–29 pathways drug clearance in, 117 Se also Cigarette smokers Smoking dose-exposure relationship and, 117 See also Cigarette smokers Smoking dose-exposure relationship and, 117 See also Cigarette smokers Smoking dose-exposure relationship and, 117 Smooth ER Ca²+-ATPase (SERCA), 351–52 Stread, 439–40 Stroath 439–40 Sutriatal neurons DARPP-32 and, 240 Sutrestoprois Stress-activated prof Stress-activated pr			
Roundabouts angiogenesis and, 230 Sealso Cigarette smokers Smoking dose-exposure relationship and, 117 Smooth ER Ca ²⁺ -ATPase (SERCA), 351–52 Saccharomyces cerevisiae, 48, 50 Yap1-Gpx3 (Orp1), 341–42 Salicylate, 502 Salivary secretion M ₃ mAChRs and, 440 M ₅ mAChRs and, 440 M ₅ mAChRs and, 440 Scar formation, 410 Seizure activity in M ₁ mAChR-deficient mice, 425, 428 Semaphorin receptors, 223–24 Sensory neurons, 371–77 voltage-gated sodium channels in, 374–77 Sequence homology and ligands for orphan G-protein coupled receptors (GPCRs), 52–54 Ser ¹⁰² DARPP-32 and, 269, 271 phosphorylation of DARPP-32 and, 269, 271 phosphorylation of DARPP-32 and, 279 Serotonin DARPP-32 and, 278–79 receptors, 287, 581 Seychelles methylmercury exposure in, 92 Signaling hedgehog, 228–29 pathways Sealso Cigarette smokers Smoking dose-exposure relationship and, 117 Smooth ER Ca ²⁺ -ATPase (SERCA), 351–52 Stresscopin, 526 Striatal neuroso. Stress-activated prot kinase (SAPK) Stresscopin, 526 Striatal neurons DARPP-32 and, 49 subtyperal gesia, 377–80 phenytoin and, 97 subtypes sensory neurons and, 373–74 voltage-gated sodium channels (VGSCs), 371–88 Spina bifida valproic acid and, 96 Spinal cord injuries, 408 Spina bifida valproic acid and, 96 Spinal cord injuries, 408 Spina bifida valproic acid and, 96 Spinal cord injuries, 408 Spina bifida valproic acid and, 96 Spinal cord injuries, 408 Spina bifida valproic acid and, 96 Spinal cord injuries, 408 Spina bifida valproic acid and, 96 Spinal cord injuries, 408 Spina bifida valproic acid and, 96 Spinal cord injuries, 408 Spina bifida valproic acid and, 96 Spinal cord injuries, 408 Spina bifida valproic acid and, 96 Spinal cord injuries, 408 Spina bifida valproic acid and, 96 Spinal cord injuries, 408 Spi			and ligands and, 525-44
angiogenesis and, 230 S	(RMP), 402, 406	See also Cigarette smokers	organismal response to,
S-adenosyl-methionine, 255 Saccharomyces cerevisiae, 48, 50 Yap1-Gpx3 (Orp1), 341-42 Salicylate, 502 Salivary secretion M ₃ mAChRs and, 440 M ₅ mAChRs and, 443 Scar formation, 410 Seizure activity in M ₁ mAChR-deficient mice, 425, 428 Semaphorin receptors, 223-24 Sensory neurons, 371-77 voltage-gated sodium channels in, 374-77 Sequence homology and ligands for orphan G-protein coupled receptors (GPCRs), 52-54 Ser ¹⁰² DARPP-32 and, 269, 271 DARPP-32 and, 269, 271 Phosphorylation of DARPP-32 and, 278-79 Serotonin DARPP-32 and, 269, 271 Seriolis DARPP-32 and, 278-79 Serotonin DARPP-32 and, 269, 271 Seriolis DARPP-32 and, 278-79 Serotonin DARPP-32 and, 278-79 Serotonin DARPP-32 and, 269, 271 Seriolis DARPP-32 and, 278-79 Serotonin DARPP-32 and, 278-79 Serotonin DARPP-32 and, 269, 271 Seriolis Simaling Ma mAChRs and, 432-33 M ₃ mAChRs and, 439-40 Sodium channel(s) Sodium channel(s) Sodium channel(s) Subtypes Stroke, 410 Substantia nigra dopamine release Stroke, 410 Substantia nigra dopaminergic net 100, 410-12 neurogenesis in, 40 subventricular zone astrocytes in, 403 subvontricular zone astrocytes in, 403 subrotricular zone astrocytes in, 403 subrotricular zone astrocytes in, 403 subrotricular zone in 00, 410-12 neurogenesis in, 40 subryona dopaminerelease Stroke, 410 Subratian ingra dop			
S-adenosyl-methionine, 255 Saccharomyces cerevisiae, 48, 50 Yap1-Gpx3 (Orp1), 341-42 Salicylate, 502 Salivary secretion M ₃ mAChRs and, 440 M ₅ mAChRs and, 443 Scar formation, 410 Seizure activity in M ₁ mAChR-deficient mice, 425, 428 Semaphorin receptors, 223-24 Sensory neurons, 371-77 voltage-gated sodium channels (VGSCs), 371-88 Semaphorin receptors (GPCRs), 52-54 Sequence homology and ligands for orphan G-protein coupled receptors (GPCRs), 52-54 DARPP-32 and, 269, 271 DARPP-32 and, 269, 271 DARPP-32 and, 279 Serotonin DARPP-32 and, 278-79 receptors, 287, 581 Seychelles methylmercury exposure in, 92 Signaling hedgehog, 228-29 pathways Streskopin, 526 Striatal neurons DARPP-32 and, 432-33 M ₃ mAChRs and, 432-33 M ₃ mAChRs and, 432-33 Smooth muscle M ₂ mAChRs and, 432-33 M ₃ mAChRs and, 439-40 Striatum dopamine release Stroke, 410 Substantia nigra dopaminergic net 100, 410-12 neurogenesis in, 4 Subventricular zone adult neurogenesis in, 4 Subventricular zone adult neurogenesis in, 4 Subrencellos neurol servicular sone adult neurogenesis in, 4 Subrencellos neurol servicular zone adult neurogenesis in, 4 Subrohydion cell surface G protein-coupled receptor (GPCR), 573 SSR 125543A, 540, 541 Striatum CRAPP-32 and, 269, 271 Steroids Subventricular zone adult neurogenesis in, 4 Subrencellos neurogenesis in, 4 Sulfenic acid(s) formation and res 326-28 in redox signaling stabilization, 328 Sulfhydryl groups methylmercury aposure in nonneurogenic regions, 406-7 Steroids Striatum dopaminer elease Stroke, 410 Substantia nigra dopaminergic net 100, 410-12 neurogenesis in, 4 Subventricular zone adult neurogenesi satrocytes in, 408 Subrotylea Subrotylea Subrotylea Surbrote, 410 Substantia nigra sensory neurons and, 100, 410-12 neurogenesis in, 4 Subrotylea in nourogenesis in, 4 Subrotyl	angiogenesis and, 230	and, 117	silent neurotoxicity and, 99 Stress-activated protein
Saccharomyces cerevisiae, 48, 50 Yap1-Gpx3 (Orp1), 341–42 Salicylate, 502 Salivary secretion M3 mAChRs and, 440 M5 mAChRs and, 443 Scar formation, 410 Seizure activity in M1 mAChR-deficient mice, 425, 428 Semaphorin receptors, 223–24 Sensory neurons, 371–77 voltage-gated sodium channels in, 374–77 Sequence homology and ligands for orphan G-protein coupled receptors (GPCRs), 52–54 Ser ¹⁰² DARPP-32 and, 269, 271 DARPP-32 and, 269, 271 phosphorylation of DARPP-32 and, 279 Serotonin DARPP-32 and, 279 Serotonin DARPP-32 and, 278 Smooth muscle M2 mAChRs and, 432–33 M3 mAChRs and, 439–40 Sodium channels(s) Carbamazepine and, 97 and hyperalgesia, 377–80 phenytoin and, 97 subtypes Subtypes Striatum dopaminer release Stroke, 410 Substantia nigra dopaminergic net 100, 410–12 neurogenesis in, 4 subventricular zone adult neurogenesis in, 4 subrollini cell surface G protein-coupled receptor (GPCR), 573 Sprouty Sprouty angiogenesis and, 229–30 SSR 125543A, 540, 541 Stem cells in CNS repair, 411 endogenous, 405–13 neural, 400–1 in nonneurogenic regions, A06–7 Steroids DARPP-32 and, 278 Superior cervical gas Suffhydryl hypothes Straitum and nitrate tole 71–73 Superior cervical gas Supe	S		kinase (SAPK), 451
48, 50 Yap1-Gpx3 (Orp1), 341–42 Salicylate, 502 Salivary secretion M ₃ mAChRs and, 440 M ₅ mAChRs and, 440 Scar formation, 410 Seizure activity in M ₁ mAChR-deficient mice, 425, 428 Semaphorin receptors, 223–24 Sensory neurons, 371–77 voltage-gated sodium channels in, 374–77 Sequence homology and ligands for orphan G-protein coupled receptors (GPCRs), 52–54 Ser ¹⁰² DARPP-32 and, 269, 271 DARPP-32 and, 269, 271 phosphorylation of DARPP-32 and, 278 Serotonin DARPP-32 and, 278 Serotonin DARPP-32 and, 278 Seroids DARPP-32 and, 278 Siriatum dopamine release Stroke, 410 Substantia nigra dopaminergic net 100, 410–12 neurogenesis in, 403 subpopulations, 2 278 Striatum dopamine release Stroke, 410 Substantia nigra dopaminergic net 100, 410–12 neurogenesis in, 403 neural stem cells neurogenesis in, 403 neural stem cells neurons from, 40 new neurons from proliferation of procells in 404 Sulfenic acid(s) formation and rea 326–28 in redox signaling stabilization, 328 Sulfhydryl hypother neural, 400–1 in nonneurogenic regions, 406–7 Steroids DARPP-32 and, 278 Superior cervical gas (SCG), 462 Superoxide	S-adenosyl-methionine, 255	(SERCA), 351–52	•
Yap1-Gpx3 (Orp1), 341–42 Salicylate, 502 Salivary secretion M ₃ mAChRs and, 440 M ₅ mAChRs and, 443 Scar formation, 410 Seizure activity in M ₁ mAChR-deficient mice, 425, 428 Semaphorin receptors, 223–24 Sensory neurons, 371–77 voltage-gated sodium channels in, 374–77 Sequence homology and ligands for orphan G-protein coupled receptors (GPCRs), 52–54 Ser ¹⁰² DARPP-32 and, 269, 271 DARPP-32 and, 269, 271 phosphorylation of DARPP-32 and, 278 Serotonin DARPP-32 and, 278 Serotonin DARPP-32 and, 278 Seroids DARPP-32 and, 278 Seroids Seroids DARPP-32 and, 278 Siriatum dopamine release Stroke, 410 Substantia nigra dopaminergic net 100, 410–12 neurogenesis in, 40 Subventricular zone adult neurogenesis in, 40 subropricacid and, 96 Subventricular zone adult neurogenesis in, 40 neural stem cells neurogenesis in, 40 suffenic acid(s) formation and rea 326–28 in redox signaling stabilization, 328 Sulfhydryl hypother Needleman and nitrate tole 71–73 Superior cervical ga (SCG), 462 Superoxide	Saccharomyces cerevisiae,	Smooth muscle	Striatal neurons
Salicylate, 502 Salivary secretion M ₃ mAChRs and, 440 M ₅ mAChRs and, 443 Scar formation, 410 Seizure activity in M ₁ mAChR-deficient mice, 425, 428 Semaphorin receptors, 223–24 Sensory neurons, 371–77 voltage-gated sodium channels (VGSCs), 371–88 Semaphorin receptors, 223–24 Sensory neurons, 371–77 Sequence homology and ligands for orphan G-protein coupled receptors (GPCRs), 52–54 Ser ¹⁰² DARPP-32 and, 269, 271 Ser ¹³⁷ DARPP-32 and, 269, 271 Sprouty DARPP-32 and, 269, 271 Serotonin DARPP-32 and, 278–79 receptors, 287, 581 Seychelles methylmercury exposure in, 92 Signaling hedgehog, 228–29 pathways Sodium channel(s) carbamazepine and, 97 striatum dopamine release substypes Substantia nigra dopaminergic net 100, 410–12 neurogenesis in, 4 Subventricular zone adult neurogenesis in, 4 Subventricular zone adult neurogenesis in, 4 Subventricular zone adult neurogenesis in, 4 Spinal cord injuries, 408 Subtenticular zone adult neurogenesis in, 4 Subventricular zone adult neurogenesis in, 4 Subrental injuries, 408 Subtenticular zone in 100, 410–12 neurogenesis in, 4 Subrental injuries, 408 Subrental injuries, 408 Subrent		M ₂ mAChRs and, 432-33	DARPP-32 and, 275
Salicylate, 502 Salivary secretion M ₃ mAChRs and, 440 M ₅ mAChRs and, 443 Scar formation, 410 Seizure activity in M ₁ mAChR-deficient mice, 425, 428 Semaphorin receptors, 223–24 Sensory neurons, 371–77 voltage-gated sodium channels (VGSCs), 371–88 Semaphorin receptors, 223–24 Sensory neurons, 371–77 Sequence homology and ligands for orphan G-protein coupled receptors (GPCRs), 52–54 Ser ¹⁰² DARPP-32 and, 269, 271 Ser ¹³⁷ DARPP-32 and, 269, 271 Sprouty DARPP-32 and, 269, 271 Serotonin DARPP-32 and, 278–79 receptors, 287, 581 Seychelles methylmercury exposure in, 92 Signaling hedgehog, 228–29 pathways Sodium channel(s) carbamazepine and, 97 striatum dopamine release substypes Substantia nigra dopaminergic net 100, 410–12 neurogenesis in, 4 Subventricular zone adult neurogenesis in, 4 Subventricular zone adult neurogenesis in, 4 Subventricular zone adult neurogenesis in, 4 Spinal cord injuries, 408 Subtenticular zone adult neurogenesis in, 4 Subventricular zone adult neurogenesis in, 4 Subrental injuries, 408 Subtenticular zone in 100, 410–12 neurogenesis in, 4 Subrental injuries, 408 Subrental injuries, 408 Subrent	Yap1-Gpx3 (Orp1), 341-42	M ₃ mAChRs and, 439-40	subpopulations, 274-75,
M ₃ mAChRs and, 440 M ₅ mAChRs and, 443 Scar formation, 410 Seizure activity in M ₁ mAChR-deficient mice, 425, 428 Semaphorin receptors, 223–24 Sensory neurons, 371–77 voltage-gated sodium channels in, 374–77 Sequence homology and ligands for orphan G-protein coupled receptors (GPCRs), 52–54 Ser ¹⁰² DARPP-32 and, 269, 271 Ser ¹³⁷ DARPP-32 and, 269, 271 Sphabifida DARPP-32 and, 269, 271 Serotonin DARPP-32 and, 278–79 receptors, 287, 581 Seychelles methylmercury exposure in, 92 Signaling hedgehog, 228–29 pathways and hyperalgesia, 377–80 shophorylation and, 97 subtypes Substantia nigra dopamine release Stroke, 410 Substantia nigra dopaminergic net 100, 410–12 neurogenesis in, 4 Subventricular zone adult neurogenesis n, 40s neural stem cells neurogenesis in, 4 neuros from, 40 new neurons from proliferation of proliferation of proliferation and rea 326–28 in redox signaling stabilization, 328 Sulfhydryl hypother Needleman and nitrate tole 71–73 Superior cervical ga (SCG), 462 Superoxide dismutase		Sodium channel(s)	278
Scar formation, 410 Scar formation, 410 Seizure activity in M ₁ mAChR-deficient mice, 425, 428 Semaphorin receptors, 223–24 Sensory neurons, 371–77 voltage-gated sodium channels in, 374–77 Sequence homology and ligands for orphan G-protein coupled receptors (GPCRs), 52–54 Ser ¹⁰² DARPP-32 and, 269, 271 DARPP-32 and, 269, 271 phosphorylation of DARPP-32 and, 278–79 Serotonin DARPP-32 and, 278–79 Serotonin DARPP-32 and, 278–79 serotonin DARPP-32 and, 278–79 serotonin DARPP-32 and, 278–79 receptors, 287, 581 Seychelles methylmercury exposure in, 92 Signaling hedgehog, 228–29 pathways Semsory neurons and, 373–74 voltage-gated sodium channels (VGSCs), 371–88 Subventricular zone adult neurogenesis in, 4 Subvencis in, 408 Subrendells neuros from protiferation of protein-coupled receptor and inpure deadeney are fell on tout of the fell on tout of the fell on tout of the	Salivary secretion	carbamazepine and, 97	Striatum
Scar formation, 410 Seizure activity Seizure activity Seizure activity Semaphorin receptors, 223–24 Sensory neurons, 371–77 voltage-gated sodium channels in, 374–77 Sequence homology and ligands for orphan G-protein coupled receptors (GPCRs), 52–54 Ser ¹⁰² DARPP-32 and, 269, 271 DARPP-32 and, 269, 271 phosphorylation of DARPP-32 and, 278–79 Serotonin DARPP-32 and, 278–79 receptors, 287, 581 Seychelles methylmercury exposure in, 92 Signaling Semaphorin sensory neurons and, 373–74 voltage-gated sodium channels (VGSCs), 371–88 Subventricular zone adult neurogenesis in, 4 Spinal cord injuries, 408 Spinophilin neurons from 40 new neurons from proliferation of procells in, 404 Sulfenic acid(s) formation and rea 326–28 in redox signaling stabilization, 328 Sulfhydryl groups methylmercury a Sulfhydryl hypothes Needleman and nitrate tole 71–73 Superior cervical ge (SCG), 462 Superoxide dismutase	M ₃ mAChRs and, 440	and hyperalgesia, 377-80	dopamine release in, 442
Seizure activity in M ₁ mAChR-deficient mice, 425, 428 Semaphorin receptors, 223–24 Sensory neurons, 371–77 voltage-gated sodium channels (VGSCs), somition of the cell surface G particular coupled receptors (GPCRs), 52–54 Ser ¹⁰² DARPP-32 and, 269, 271 phosphorylation of DARPP-32 and, 278–79 receptors, 287, 581 Seychelles methylmercury exposure in, 92 Signaling hedgehog, 228–29 pathways Semaphorin channels (VGSCs), 371–88 Spinal sifida voltage-gated sodium channels (VGSCs), 371–88 Spinal sifida voltage-gated sodium channels (VGSCs), 371–88 Subventricular zone adult neurogenesis in, 4 Subventricular zone adult neurogenesis in, 4 Subventricular zone adult neurogenesis astrocytes in, 403 neural stem cells neurogenesis in, 4 Subventricular zone adult neurogenesis astrocytes in, 403 neural stem cells neurogenesis in, 4 Subventricular zone adult neurogenesis astrocytes in, 403 neural stem cells neurogenesis in, 4 Subventricular zone adult neurogenesis in, 404 Sulfenic acid(s) formation and rea 326–28 in redox signaling stabilization, 328 Sulfhydryl groups methylmercury a Sulfhydryl pyother Needleman and nitrate tole 71–73 Superior cervical gr	M ₅ mAChRs and, 443	phenytoin and, 97	Stroke, 410
in M ₁ mAChR-deficient mice, 425, 428 Semaphorin receptors, 223–24 Sensory neurons, 371–77 voltage-gated sodium channels (VGSCs), 371–88 Sensory neurons, 371–77 voltage-gated sodium channels in, 374–77 Sequence homology and ligands for orphan G-protein coupled receptors (GPCRs), 52–54 Ser ¹⁰² DARPP-32 and, 269, 271 DARPP-32 and, 269, 271 phosphorylation of DARPP-32 and, 278–79 receptors, 287, 581 Seychelles methylmercury exposure in, 92 Signaling hedgehog, 228–29 pathways I 100, 410–12 neurogenesis in, 4 Subventricular zone adult neurogenesis in, 4 Subventricular zone adult neurogenesis astrocytes in, 403 neural stem cells neurogenesis in, 4 Subventricular zone adult neurogenesis in, 4 Subventricular zone adult neurogenesis in, 4 Subventricular zone adult neurogenesis in, 4 Neurogenesis in, 4 Subventricular zone adult neurogenesis in, 4 Neurogenesis in, 4 Subventricular zone adult neurogenesis in, 4 Neurogen	Scar formation, 410	subtypes	Substantia nigra
mice, 425, 428 Semaphorin receptors, 223–24 Sensory neurons, 371–77 voltage-gated sodium channels (VGSCs), 371–88 Sensory neurons, 371–77 voltage-gated sodium channels in, 374–77 Sequence homology and ligands for orphan G-protein coupled receptors (GPCRs), 52–54 Ser ¹⁰² DARPP-32 and, 269, 271 DARPP-32 and, 269, 271 phosphorylation of DARPP-32 at, 279 Serotonin DARPP-32 and, 278–79 receptors, 287, 581 Seychelles methylmercury exposure in, 92 Signaling hedgehog, 228–29 pathways Spinophilin valproic acid and, 96 Spinal bifida valproic acid and, 96 Spinal bifida valproic acid and, 96 Spinal bifida sastrocytes in, 403 neural stem cells neurogenesis in, 4 neuros from, 400 new neurons from, 400 sulfenic acid(s) formation and res stabilization, 328 Sulfhydryl groups methylmercury a Sulfhydryl groups methylmercury a Sulfhydryl hypother Needleman and nitrate tole 71–73 Superoic cervical gs subventricular zone adult neurogenesis in, 4 Subventricular zone adult neurogenesis in, 403 neural stem cells neuros from, 400 new neurons from, 400 new neurons from, 404 Sulfenic acid(s) formation and res 326–28 in redox signaling stabilization, 328 Sulfhydryl groups methylmercury a Sulfhydryl hypother Needleman and nitrate tole 71–73 Superior cervical gs (SCG), 462 Superoxide dismutase	Seizure activity	sensory neurons and,	dopaminergic neurons,
Semaphorin receptors, 223–24 371–88 30ult neurogenesis astrocytes in, 403 neural stem cells neurogenesis in, 404 new neurons from, 400 new neurons from proliferation of protein-coupled receptor (GPCR), 573 cells in, 404 sulfenic acid(s) formation and read stabilization and read stabilization, 328 neural, 400–1 stabilization, 328 sulfhydryl groups methylmercury and nonneurogenic regions, 8eychelles 406–7 methylmercury exposure in, 92 DARPP-32 and, 284–85 Sulfnydryl hypothem and nitrate tole formation and read stabilization, 328 sulfhydryl hypothem and nitrate tole formation and read stabilization, 328 sulfhydryl groups methylmercury and nonneurogenic regions, 8eychelles 406–7 methylmercury exposure in, 92 DARPP-32 and, 284–85 Superior cervical graph hedgehog, 228–29 pathways Streptomycin dismutase	in M ₁ mAChR-deficient	373-74	100, 410–12
Semaphorin receptors, 223–24 371–88 30ult neurogenesis astrocytes in, 403 neural stem cells neurogenesis in, 404 new neurons from, 400 new neurons from proliferation of protein-coupled receptor (GPCR), 573 cells in, 404 sulfenic acid(s) formation and read stabilization and read stabilization, 328 neural, 400–1 stabilization, 328 sulfhydryl groups methylmercury and nonneurogenic regions, 8eychelles 406–7 methylmercury exposure in, 92 DARPP-32 and, 284–85 Sulfnydryl hypothem and nitrate tole formation and read stabilization, 328 sulfhydryl hypothem and nitrate tole formation and read stabilization, 328 sulfhydryl groups methylmercury and nonneurogenic regions, 8eychelles 406–7 methylmercury exposure in, 92 DARPP-32 and, 284–85 Superior cervical graph hedgehog, 228–29 pathways Streptomycin dismutase	mice, 425, 428	voltage-gated sodium	neurogenesis in, 408
receptors, 223–24 Sensory neurons, 371–77 voltage-gated sodium channels in, 374–77 Sequence homology and ligands for orphan G-protein coupled receptors (GPCRs), 52–54 Ser ¹⁰² DARPP-32 and, 269, 271 phosphorylation of DARPP-32 at, 279 Serotonin DARPP-32 and, 278–79 receptors, 287, 581 Seychelles methylmercury exposure in, 92 Sensory neurons, 371–77 Spinal bifida valproic acid and, 96 Spina bifida valproic acid and, 96 Spina bifida valproic acid and, 96 spinal cord injuries, 408 Spina bifida valproic acid and, 96 spinal cord injuries, 408 spina bifida sastrocytes in, 403 neural stem cells neurons from, 400 new neurons from, 400 sulfenic acid(s) formation and resistabilization, 328 stabilization, 328 Sulfhydryl groups methylmercury a Sulfhydryl hypother in nonneurogenic regions, Seychelles methylmercury exposure in, 92 Signaling hedgehog, 228–29 pathways Straitum Spinal bifida astrocytes in, 403 neural stem cells neuros from, 400 new neurons from, 400 sulfenic acid(s) formation and resistabilization, 328 Sulfhydryl groups methylmercury a Sulfhydryl hypother Needleman and nitrate tole 71–73 Superior cervical groups straitum (SCG), 462 Superoxide dismutase	Semaphorin	channels (VGSCs),	Subventricular zone (SVZ)
Sensory neurons, 371–77 voltage-gated sodium channels in, 374–77 Sequence homology and ligands for orphan G-protein coupled receptors (GPCRs), 52–54 Ser ¹⁰² DARPP-32 and, 269, 271 DARPP-32 and, 269, 271 phosphorylation of DARPP-32 and, 278–79 serotonin DARPP-32 and, 278–79 receptors, 287, 581 Seychelles methylmercury exposure in, 92 Signaling hedgehog, 228–29 pathways Spina bifida valproic acid and, 96 Spina bifida valproic acid and, 96 Spinal cord injuries, 408 spinal cord injuries, 408 neural stem cells neurogenesis in, 4 neurons from, 40 new neurons from, 40 new neurons from, 40 spinal cord injuries, 408 neural stem cells neurogenesis in, 4 neurons from, 40 new neurons from, 40 spinal cord injuries, 408 neural stem cells neurogenesis in, 4 neurons from, 40 new neurons from, 40 spinal cord injuries, 408 neural stem cells neurons from, 40 new neurons from, 40	-		adult neurogenesis in, 401
voltage-gated sodium channels in, 374–77 Sequence homology and ligands for orphan G-protein coupled receptors (GPCRs), 52–54 Ser ¹⁰² DARPP-32 and, 269, 271 Ser ¹³⁷ Serouty DARPP-32 and, 269, 271 Serouty DARPP-32 and, 269, 271 Serotonin DARPP-32 and, 278–79 receptors, 287, 581 Seychelles methylmercury exposure in, 92 Signaling Sequence homology Spinophilin cell surface G protein-coupled receptor (GPCR), 573 Sprouty Sulfenic acid(s) formation and read stem cells neurons from, 40 new neurons from, 40 sulfenic acid(s) formation and read stem cells in els sulfiny dry lightly receptors, 287, 581 Seychelles methylmercury exposure in, 92 Signaling hedgehog, 228–29 pathways Streptomycin valproic acid and, 96 spinal cord injuries, 408 spinal cord injuries, 408 neural stem cells neurons from, 40 new neurons from, 40 sulfenic acid(s) formation and read stem cells in recovents in redox signaling stabilization, 328 Sulfhydryl groups methylmercury and nonneurogenic regions, Needleman and nitrate tole 71–73 Superior cervical gets (SCG), 462 Superoxide dismutase		Spina bifida	astrocytes in, 403
channels in, 374–77 Sequence homology and ligands for orphan G-protein coupled receptors (GPCRs), 52–54 Ser ¹⁰² DARPP-32 and, 269, 271 phosphorylation of DARPP-32 at, 279 Serotonin DARPP-32 and, 278–79 receptors, 287, 581 Seychelles methylmercury exposure in, 92 Signaling Sequence homology Spinophilin cell surface G protein-coupled receptor (GPCR), 573 Sprouty Sulfenic acid(s) formation and reading stabilization, 328 sulfhydryl groups serotonin DARPP-32 and, 278–79 receptors, 287, 581 Seychelles methylmercury exposure in, 92 Signaling hedgehog, 228–29 pathways Spinophilin neurons from, 40 new neurons from, 40 sulfenic acid(s) formation and reading in redox signaling stabilization, 328 Sulfhydryl groups methylmercury a Sulfhydryl hypother Needleman and nitrate tole 71–73 Superior cervical get (SCG), 462 Superoxide dismutase		•	neural stem cells in, 402
Sequence homology and ligands for orphan G-protein coupled receptors (GPCRs), 52–54 (GPCR), 573 (GPCRs), 52–54 (GPCR), 573 (CPCRs), 573 (CPCRs)			neurogenesis in, 412
and ligands for orphan G-protein coupled receptors (GPCRs), 52-54 Ser ¹⁰² DARPP-32 and, 269, 271 DARPP-32 and, 269, 271 phosphorylation of DARPP-32 at, 279 Serotonin DARPP-32 and, 278-79 receptors, 287, 581 Seychelles methylmercury exposure in, 92 Signaling Serotonin DARPP-32 and, 278-29 signaling hedgehog, 228-29 pathways cell surface G protein-coupled receptor (GPCR), 573 Sulfenic acid(s) Sulfenic acid(s) Sulfenic acid(s) Sulfenic acid(s) sulfenic acid(s) formation and real stabilization, 328 sulfhydryl groups methylmercury at sulfhydryl groups sulfhydryl protein receptors, 287, 581 Seychelles methylmercury exposure in, 92 Signaling Straitum Seychelles Straitum Stra			neurons from, 409
G-protein coupled receptors (GPCRs), 52–54 Ser ¹⁰² DARPP-32 and, 269, 271 Phosphorylation of DARPP-32 and, 279 Serotonin DARPP-32 and, 278–79 receptors, 287, 581 Seychelles methylmercury exposure in, 92 Signaling hedgehog, 228–29 pathways protein-coupled receptor (GPCR), 573 Sulfencia cid(s) Sulfencia cid(s) formation and read stabilization, 328 Sulfhydryl groups methylmercury amount and nitrate tole of 71–73 Sulfhydryl hypother (Steroids) T1–73 Superior cervical gets (SCG), 462 Superoxide dismutase			new neurons from, 408
receptors (GPCRs), 52–54 Ser ¹⁰² Sprouty DARPP-32 and, 269, 271 Sor 137 Sor 125543A, 540, 541 DARPP-32 and, 269, 271 phosphorylation of DARPP-32 at, 279 Serotonin DARPP-32 and, 278–79 receptors, 287, 581 Seychelles methylmercury exposure in, 92 Signaling hedgehog, 228–29 pathways Cells in, 404 Sulfenic acid(s) Sorouty Sulfenic acid(s) formation and read signaling stabilization, 328 Sulfhydryl groups methylmercury and sulfhydryl groups in nonneurogenic regions, Needleman and nitrate tole 71–73 Sulfhydryl pyother Sulfhydryl pyother and nitrate tole 71–73 Superior cervical groups (SCG), 462 Superoxide dismutase			proliferation of progenitor
Ser ¹⁰² DARPP-32 and, 269, 271 Ser ¹³⁷ DARPP-32 and, 269, 271 phosphorylation of DARPP-32 at, 279 Serotonin DARPP-32 and, 278–79 receptors, 287, 581 Seychelles methylmercury exposure in, 92 Signaling hedgehog, 228–29 pathways Syr 125543A, 540, 541 326–28 in redox signaling stabilization, 328 Sulfhydryl groups methylmercury a methylmercury exposure in, 92 Signaling Seroids Sprouty Sulfenic acid(s) formation and rea 326–28 in redox signaling stabilization, 328 Sulfhydryl groups methylmercury a methylmercury exposure in nonneurogenic regions, Steroids T1–73 Superior cervical ga (SCG), 462 Superoxide dismutase			
DARPP-32 and, 269, 271 Ser ¹³⁷ SSR 125543A, 540, 541 DARPP-32 and, 269, 271 phosphorylation of DARPP-32 at, 279 Serotonin DARPP-32 and, 278–79 receptors, 287, 581 Seychelles methylmercury exposure in, 92 Signaling hedgehog, 228–29 pathways SR 125543A, 540, 541 326–28 in redox signaling stabilization, 328 Sulfhydryl groups methylmercury a Sulfhydryl hypother shedden an and nitrate tole 71–73 Superior cervical graph and, 274 Streptomycin Syraitum Syr			
Ser ¹³⁷ DARPP-32 and, 269, 271 phosphorylation of DARPP-32 at, 279 Serotonin DARPP-32 and, 278–79 receptors, 287, 581 Seychelles methylmercury exposure in, 92 Signaling hedgehog, 228–29 pathways SRI 125543A, 540, 541 326–28 in redox signaling stabilization, 328 Sulfhydryl groups methylmercury a Sulfhydryl hypother Sulfhydryl hypother stabilization, 328 Sulfhydryl groups methylmercury a Sulfhydryl hypother Sulfhydryl hypother Sulfhydryl hypother Sulfhydryl hypother Sulfhydryl hypother and nitrate tole 71–73 Superior cervical gr (SCG), 462 Superoxide Superoxide dismutase			formation and reactivity,
phosphorylation of DARPP-32 at, 279 in CNS repair, 411 Sulfhydryl groups Serotonin endogenous, 405–13 methylmercury at Sulfhydryl hypothes receptors, 287, 581 in nonneurogenic regions, Seychelles 406–7 and nitrate tole methylmercury exposure in, 92 DARPP-32 and, 284–85 Signaling Straitum (SCG), 462 Signaling bedgehog, 228–29 pathways Streptomycin sin CNS repair, 411 Sulfhydryl groups methylmercury at Sulfhydryl hypothes and nitrate tole 71–73 Superior cervical gas Signaling Straitum (SCG), 462 Superior cervical gas Signaling Straitum (SCG), 462 Superoxide dismutase	Ser ¹³⁷	SSR 125543A, 540, 541	326–28
DARPP-32 at, 279 Serotonin DARPP-32 and, 278–79 receptors, 287, 581 Seychelles methylmercury exposure in, 92 Signaling hedgehog, 228–29 pathways in CNS repair, 411 endogenous, 405–13 methylmercury and sulfhydryl hypother in nonneurogenic regions, A06–7 Steroids 71–73 Sulfhydryl hypother sulfhydryl groups methylmercury an sulfhydryl hypother sulf			in redox signaling, 325-42
Serotonin endogenous, 405–13 methylmercury at neural, 400–1 Sulfhydryl hypother neceptors, 287, 581 in nonneurogenic regions, Needleman and nitrate tole methylmercury exposure in, 92 DARPP-32 and, 284–85 Signaling Straitum (SCG), 462 Signathy pathways Streptomycin dismutase			stabilization, 328-30
DARPP-32 and, 278–79 receptors, 287, 581 Seychelles methylmercury exposure in, 92 Signaling hedgehog, 228–29 pathways DARPP-32 and, 284–85 Superior cervical gas and ganglia and, 274 Streptomycin Sulfhydryl hypother Needleman and nitrate tole 71–73 Superior cervical gas (SCG), 462 Superoxide dismutase			
receptors, 287, 581 in nonneurogenic regions, Seychelles 406–7 and nitrate tole methylmercury exposure in, 92 DARPP-32 and, 284–85 Superior cervical ga Signaling Straitum (SCG), 462 hedgehog, 228–29 basal ganglia and, 274 Superoxide pathways Streptomycin dismutase	Serotonin		methylmercury and, 91
Seychelles 406–7 and nitrate tole 71–73 and nitrate tole 71–73 sin, 92 DARPP-32 and, 284–85 Superior cervical graph 192 basal ganglia and, 274 pathways Streptomycin dismutase			Sulfhydryl hypothesis
methylmercury exposure in, 92 DARPP-32 and, 284–85 Superior cervical gas Signaling Straitum (SCG), 462 hedgehog, 228–29 basal ganglia and, 274 pathways Streptomycin dismutase		in nonneurogenic regions,	Needleman
in, 92 DARPP-32 and, 284-85 Superior cervical gars Signaling Straitum (SCG), 462 hedgehog, 228-29 basal ganglia and, 274 Superoxide pathways Streptomycin dismutase		406–7	and nitrate tolerance,
Signaling Straitum (SCG), 462 hedgehog, 228–29 basal ganglia and, 274 Superoxide pathways Streptomycin dismutase	methylmercury exposure	Steroids	71–73
hedgehog, 228-29 basal ganglia and, 274 Superoxide pathways Streptomycin dismutase	in, 92	DARPP-32 and, 284-85	Superior cervical ganglion
pathways Streptomycin dismutase			(SCG), 462
· · · · · · · · · · · · · · · · · · ·	hedgehog, 228-29		Superoxide
anningspie 210 22 haning-1 456 57	pathways	Streptomycin	dismutase
angiogenic, 219–32 nearing loss and, 430–37 alcohol-induce	angiogenic, 219-32	hearing loss and, 456-57	alcohol-induced liver

injury and, 28	Thioredoxins, 245	botulinum toxin and, 168
production	Thr ³⁴ , 279	7-Transmembrane receptor,
vascular nitrate tolerance	DARPP-32	45-47, 51
and, 68, 76-79	phosphorylation and, 269,	Transporter(s)
Sympathetic nervous system	270, 277, 279, 280, 282,	drug elimination and,
(SNS)	283, 285-88	137-57
lipolysis and, 302	dephosphorylation of, 272	family
Synapses	phosphorylation of, 271,	ABC, 144-45, 157
loss of, 89	272	Tremor
Synaptobrevin, 170	Thr ⁷⁵	muscarinic
Synaptosomal-associated	dephosphorylation of	agonist-induced, 433
protein of 25 kDa	DARPP-32 at, 284	Triacylglycerol (TG), 298,
(SNAP-25), 170, 183	phosphorylation of	302
(======================================	DARPP-32 at, 277, 286	Tumor(s)
T	Thyroid, 100	angiogenesis
Taste receptors (TRs)	Thyrotropin-stimulating	endothelial stem cells
G protein-coupled, 567	hormone receptor	and, 231
Tetanus toxin, 171	(TSHR), 571	ephrin ligands and
Tetrodotoxin (TTX), 371, 373	Time-resolved fluorescence	receptors and, 227-28
TTX-resistance (TTX-R)	resonance energy	Delta-4 and, 226
sodium currents, 371,	transfer (TR-FRET), 58	ErbB2-overexpressing,
375-77, 379-81, 383,	Tirilazad, 509	207–8
385, 387–88	Tobacco smoke, 117	ErbB receptors and, 196,
modulation of, 378	See also Nicotine	203, 204
in neuropathic pain, 381	Tocainide, 385	growth
PGE2-induced	Tolerance	Cetuximab and, 206
hyperalgesia, 378	nitrate metabolism and,	hypoxia and, 220
TTX-sensitive (TTX-S)	71–79	Iress and, 205
sodium currents, 375,	Toxic agents	Herceptin and, 206
376, 380–83, 385, 387	mitochondrial damage and,	Iressa and, 207
in neuropathic pain, 381	32–33, 36	promoter, 256
TGFα, 404	Toxicity	promoting compounds, 252
exogenous, 410–11	alcohol, 37	promotion stage of
Theophylline, 117		carcinogenesis, 243
	drug, 115, 117, 126	suppressor genes, 254–55
Thermogenesis, 302, 306–9 nonshivering, 298, 299,	susceptibility to, 114	tumor endothelial markers
	hepatocyte, 28	
306	synergistic, 34	(TEMs), 230–31
obesity and, 310	Transcription factors	tumor necrosis factor
Thermogenin, 299	redox signaling and,	(TNF)
Thilotransferase, 245	338–42	carcinogenesis and, 253,
Thiols	Transcriptional programs	258
and nitrate tolerance, 71	ErbB signaling network,	vascular endothelial growth
Thionitrate oxidation	200	factor (VEGF) receptors
hypothesis	Transcytosis	and, 222
of nitrate metabolism and	botulinum toxin and, 169,	vasculature, 231–32
tolerance, 67, 70-72, 79	171–73, 176	Tyrosine
Thiopurine, 115	Translocation pathway	and G protein-coupled

Vaccine(s)

176, 185

Vasopressin (AVP)

and nitrate tolerance, 72

Vasodilators

receptor (GPCR) protein,

botulinum toxin 562-63 Tyrosine kinase polypeptides and, 168 inhibitor(s), 196, 204-5 inhalation for botulinum toxin. 175-76 U UcnI oral in CRFR2 mice, 539 for botulinum toxin. UcnI-KO mice, 530, 536 173-74 Vaginal adenocarcinoma, 100 UcnIII in CRFR2 mice, 539 Valproic acid neurotoxicity, 95, 96 UDP-glucuronic acid (UDPGA), 4, 6 Vascular endothelial growth UDP-glucuronosyltransferase factor (VEGF), 219, (UGT) 220, 404 activity in vivo, 7-8 endocrine gland-derived, drug metabolism and, 1, 2, 222 - 23ErbB receptors and, 198 4-8, 12-14, 18 heterogeneity, 4-5 neuropilins and isoform substate semaphorin receptors and, 223-24 selectivity, 7-8, 15 isoforms, 6-7, 10, 13, Notch-1 and Delta-4 and, 15 - 18226 receptor family and membrane localization, 6 ligands, 221-22 **QSMR**, 17, 18 regulation of expression, receptors 6-7 and tumors, 222 Vascular endothelial growth substrates, 17 reaction phenotyping, factor (VEGFR1) signaling, 221 8-10, 16-18 Uncoupling protein (UCP1), Vascular endothelium organic nitrates and, 67, 300, 305, 307-9, 311 79-81 UrocortinI, 525-27, 529-30, Vascular tolerance 533, 536, 541, 542, 544 UrocortinII, 525-27, 533, 544 nitrate metabolism and. 71-79 UrocortinIII, 525-27, 533, Vasculature 544 botulinum toxin and, 169,

V2 vasopressin receptor

(V2R), 559, 563, 567,

571, 582, 585, 588-89

532 Verapamil sex-based differences in pharmacokinetics, 511 sex-based differences in pharmacological effect, 502, 506-7 Vesicle-associated membrane protein (VAMP), 170, 184 Vitamin C and nitrate tolerance, 71 quenches reactive oxygen species, 244 Vitamin E. 257 alcohol-induced liver injury and, 28 HepG2 cells and, 33 and nitrate tolerance, 71 quenches reactive oxygen species, 244 Vitamin K and wayfarin, 122 W Warfarin vitamin K and, 122

CRF and, 527-28, 531,

X Xenobiotics, 250 alter gene expression, 250-51 oxidative stress and, 243 Xenopus laevis, 50 Xenopus melanophores, 49-51

Z
Zolpidem
GABA_A receptor-targeted
mice and, 479, 484, 487

CUMULATIVE INDEXES

CONTRIBUTING AUTHORS, VOLUMES 40-44

A

Abdel-Rahman SM. 44:111-36 Adams JP, 42:135-63 Allio T, 43:125-47 Altman RB, 42:113-33 Anderson SP, 40:491-518 Angers S. 42:409-35 Aschner M. 44:87-110 Atkinson AJ Jr. 41:347-66 Aweeka F. 44:499-523

Bagdassarian CK, 41:661-90 Baldwin LA, 43:175-97 Bale TL, 44:525-58 Barber DL, 42:527-52 Barnes PJ, 42:81-98 Bearss DJ, 43:359-79 Bertaccini E, 41:23-51 Besirli CG, 44:451-74 Beutler B, 43:609-28 Bicknell R, 44:219-38 Blackburn TP, 40:319-34 Blaschke TF, 44:499-523 Blau HM, 40:295-317 Bode-Böger SM, 41:79-99 Böger RH, 41:79-99 Blakely RD, 43:521-44 Boekelheide K, 43:125-47 Bogdanffy MS, 43:485-520 Bolt HM, 43:485-520 Bortner CD, 42:259-81 Bouvier M, 42:409-35 Bradfield CA, 40:519-61 Brady AE, 44:559-609 Branchek TA, 40:319-34 Breyer MD, 41:661-90 Brever RM, 41:661-90

Broder S. 40:97-132 Brown JH, 40:459-89 Brunton LL, 41:751-73 Burgen ASV, 40:1-16 Burke MD, 41:297-316

Calabrese EJ, 43:175-97 Carlsson A, 41:237-60 Carlsson ML, 41:237-60 Caro AA, 44:27-42 Caron MG, 43:261-84 Cederbaum AI, 44:27-42 Chan PLS, 41:625-59 Changeux J-P, 40:431-58 Chun J. 41:507-34 Cidlowski JA, 42:259-81 Claiborne A. 44:325-47 Clancy CE, 43:441-61 Colamarino SA, 44:399-421 Coles P. 41:175-202 Collins S, 44:297-323 Conney AH, 43:1-30 Contos JJA, 41:507-34 Corringer P-J, 40:431-58 Corton JC, 40:491-518 Costa LG, 44:87-110 Coyle JT, 42:165-79

D

Davis KL, 41:203-36 de Boer AG, 43:629-56 Debouck C, 40:193-208 Defer N, 41:145-74 de Groat WC, 41:691-721 Denhardt DT, 41:723-49 Denison MS, 43:309-34 Denker SP, 42:527-52 De Vries L, 40:235-71

Ding X. 43:149-73 Doull J, 41:1-21 DuBois RN, 42:55-80

10

Eichelbaum M, 43:285-307 Elenko E. 40:235-71 Elliott JD, 40:177-91 Elsayed Y, 43:199-231 Embree-Ku ME, 43:125-47 Eudy JD, 42:181-208 Evans WE, 41:101-21

Farquhar MG, 40:235-71 Fernandez EJ, 42:469-99 Finnell RH, 42:181-208 Fischer T. 40:235-71 Fisone G, 44:269-96 Fleming SL, 43:125-47 Flexner C, 40:651-76 Fromm MF, 43:285-307 Fu H. 40:619-49 Fukushima N, 41:507-34 Fung H-L, 44:67-85

G

Gaillard PJ, 43:629-56 Gainetdinov RR, 43:261-84 Gandhi M. 44:499-523 Gelineau-van Waes J. 42:181-208 Giachelli CM, 41:723-49 Gillette JR, 40:19-41 Girault J-A, 44:269-96 Giri SN, 43:73-95

Gold MS, 44:371-97

Golding BT, 42:325-48

Gage FH. 44:399-421

Goodman JI, 42:501–25 Goodwin B, 42:1–23 Greenblatt RM, 44:499–523 Greengard P, 44:269–96 Greenlee WF, 41:297–316 Griffin RJ, 42:325–48 Gu Y-Z, 40:519–61 Guyton KZ, 41:421–42

H

Hall SJ, 43:125-47 Hanoune J. 41:145-74 Hardcastle IR, 42:325-48 Harris AL, 44:219-38 Harris RA. 41:23-51 Hengstler JG, 43:485-520 Hickson ID, 41:367-401 Highfield Nickols H, 44:559-609 Hogenesch JB, 40:519-61 Hogg N, 42:585-600 Holbro T. 44:195-217 Holford NHG, 40:209-34; 41:625-59 Holm-Waters S. 41:237-60 Hook SS, 41:471-505 Houghten RA, 40:273-82 Hunter JC, 44:371-97 Hurley LH, 43:359-79 Hynes NE, 44:195-217

I

Ignarro LJ, 43:97–123 Insel PA, 41:593–624 Ishii I, 41:507–34

J

Javitch JA, 42:437–67 Johnson EM Jr, 44:451–74 Johnson KJ, 43:125–47 Juliano RL, 42:283–323 Jupe SC, 44:43–66

K

Kamendulis LM, 44:239–67 Kaminsky LS, 43:149–73 Karplus PA, 44:325–47 Kass RS, 43:441-61 Kauffman RE, 44:111-36 Kedzierski RM, 41:851-76 Keefer LK, 43:585-607 Kenakin T, 42:349-79 Kensler TW, 41:421-42 Kim G, 43:199-231 Kim RB, 41:815-50; 44:137-66 Kimko HC, 40:209-34 Kinsel JF, 43:463-84 Kitteringham NR, 41:443-70 Klaunig JE, 44:239-67 Klein PS, 41:789-813 Klein TE, 42:113-33 Kliewer SA, 42:1-23 Kootstra NA, 43:413-39 Kurokawa J, 43:441-61 Kwon EJ, 43:125-47

L

Lai J. 44:371-97 Law P-Y, 40:389-430 Lebedeva I, 41:403-19 Lee HC, 41:317-45 Lee SJ, 41:569-91 Lee W, 44:137-66 Lefer DJ, 40:283-94 Le Novère N, 40:431-58 Lesko LJ, 41:347-66 Li T-K, 41:53-77 Lie DC, 44:399-421 Liggett SB, 43:381-411 Limbird LE, 44:559-609 Lin JH, 41:535-67 Linden J, 41:775-87 Liu LF, 41:53-77 Liu X, 44:349-70 Loh HH, 40:389-430 Lolis E, 42:469-99 Lu AYH, 41:535-67

M

Mackenzie PI, 44:1–25 Maliakal P, 42:25–54 Marnett LJ, 42:55–80 Martin E, 41:203–36 Martin TL, 44:297-323 Masters SC, 40:619-49 McCammon AJ, 43:31-45 McEwen BS, 41:569-91 McGraw DW, 43:381-411 McKinnon RA, 44:1-25 McLeod HL, 41:101-21 Means AR, 41:471-505 Melvin WT, 41:297-316 Meng X, 42:25-54 Metcalf B, 40:193-208 Michel JJ, 42:235-57 Miners JO, 44:1-25 Ming G-1, 44:399-421 Möhler H, 44:475-98 Monga M, 43:199-231 Monteleone JPR, 40:209-34 Montfort WR, 41:261-95 Murad F. 41:203-36 Murray GI, 41:297-316 Myers SA, 41:661-90

N

Nagata K, 40:159–76 Nagy SR, 43:309–34 Nairn AC, 44:269–96 Napoli C, 43:97–123 Nass R, 43:521–44 Negishi M, 41:123–43 Nemeroff CB, 41:877–906 Neu J, 42:381–408 Nguyen T, 43:233–60 Nilsson M, 41:237–60 Nishi A, 44:269–96 Norbury CJ, 41:367–401 North RA, 40:563–80

0

Oesch F, 43:485–520 Ohlstein EH, 40:177–91 O'Neill PM, 41:443–70 Owens MJ, 41:877–906 Ozawa CR, 40:295–317

P

Park BK, 41:443-70 Patel SR, 43:125-47 Peck CC, 40:209–34 Petralia RS, 43:335–58 Phiel CJ, 41:789–813 Pickett CB, 43:233–60 Plaa GL, 40:43–65 Poole LB, 44:325–47 Pootoolal J, 42:381–408 Porreca F, 44:371–97 Posner GH, 41:421–42 Powis G, 41:261–95 Prybylowski K, 43:335–58 Putney LK, 42:527–52

R

Rana BK, 41:593–624 Rasoulpour RJ, 43:125–47 Redinbo MR, 42:1–23 Rees S, 44:43–66 Rezler EM, 43:359–79 Rittling SR, 41:723–49 Robidoux J, 44:297–323 Rosenquist TH, 42:181–208 Rudolph U, 44:475–98 Ruffolo RR Jr, 40:177–91

S

Sagi SA, 40:459-89 Sah VP. 40:459-89 Salahpour A, 42:409-35 Sans N. 43:335-58 Sausville EA, 43:199-231 Schnellmann RG, 44:349-70 Schenk D, 43:545-84 Schoenfeld HA, 43:125-47 Schwab M, 43:285-307 Scott JD, 42:235-57 Seasholtz TM, 40:459-89 Selkoe DJ, 43:545-84 Sheiner L, 40:67-96 Sherratt PJ, 43:233-60 Shi L, 42:437-67 Shiina T, 41:593-624

Shoham M, 41:175-202 Simpson LL, 44:167-93 Small KM, 43:381-411 Smith PA, 44:1-25 Soldin OP. 44:87-110 Song H, 44:399-421 Sorich MJ, 44:1-25 Springer ML, 40:295-317 Standly S, 43:335-58 Starkov AA, 40:353-88 Stauber A, 40:491-518 Steimer J-L, 40:67-96 Stein CA, 41:403-19 Stein CM, 41:815-50 Steinberg SF, 41:751-73 Stout SC, 41:877-906 Strassburg CP, 40:581-618 Straus SE, 43:463-84 Subramanian RR, 40:619-49 Sueyoshi T, 41:123-43 Surprenant A, 40:563-80 Svenningsson P. 44:269–96 Svensson CI, 42:553-83 Sweatt JD, 42:135-63 Syversen T, 44:87-110

T

Tan CM, 44:559–609
Tateyama M, 43:441–61
Taylor SL, 42:99–112
Tedroff J, 41:237–60
Thibonnier A, 41:175–202
Thibonnier M,
41:175–202
Thompson S, 43:125–47
Trudell JR, 41:23–51
Tsai G, 42:165–79
Tukey RH, 40:581–618
Turko IV, 41:203–36

U Ulrich RG, 40:335–52

V

Vale WW, 44:525–58 van der Sandt ICJ, 43:629–56 Van Vleet T, 44:349–70 Venter JC, 40:97–132 Verma IM, 43:413–39 Vitalone A, 44:87–110

W

Wallace KB, 40:353-88 Wang LH, 44:451-74 Wang O. 44:559-609 Waring JF, 40:335-52 Waters N. 41:237-60 Watson RE, 42:501-25 Wehrens XHT, 43:441-61 Wei L-N, 43:47-72 Weiner JA, 41:507-34 Wenthold RJ, 43:335-58 Wess J, 44:423-50 White RE, 40:133-57 Wise A, 44:43-66 Wong CF, 43:31-45 Wong YH, 40:389-430 Wood AJJ, 41:815-50 Wright GD, 42:381-408

X

Xie H-G, 41:815-50

Y

Yaksh TL, 42:553–83 Yamakura T, 41:23–51 Yamazoe Y, 40:159–76 Yanagisawa M, 41:851–76 Yang CS, 42:25–54 Yoshimura N, 41:691–721

Z

Zhang Z-Y, 42:209-34 Zheng B, 40:235-71

CHAPTER TITLES, VOLUMES 40-44

Prefatory

PHARMACOLOGY

Targets of Drug Action	A Burgen	40:1-16
High-Throughput Screening in Drug		
Metabolism and Pharmacokinetic		
Support of Drug Discovery	RE White	40:133-57

TOXICOLOGY		
Laboratory of Chemical Pharmacology,		
National Heart, Lung, and Blood		
Institute, NIH: A Short History	JR Gillette	40:19-41
Chlorinated Methanes and Liver Injury:		
Highlights of the Past 50 Years	GL Plaa	40:4365
Central Role of Peroxisome		
Proliferator-Activated Receptors in the		
Actions of Peroxisome Proliferators	JC Corton,	40:491-518
	SP Anderson,	
	A Stauber	
Toxicology Comes of Age	J Doull	41:1-21
Induction of Drug-Metabolizing Enzymes:		
A Path to the Discovery of Multiple		
Cytochromes P450	AH Conney	43:1-30

General Topics in Pharmacology and	Toxicology	
Hormesis: The Dose-Response Revolution	EJ Calabrese, LA Baldwin	43:175–97
Regulatory Mechanisms Controllong Gene		
Expression Mediated by the Antioxidant		
Response Element	T Nguyen,	43:233-60
	PJ Sherratt,	
	CB Pickett	
Voltage-Gated Sodium Channels and		
Hyperalgesia	J Lai J, F Porreca,	44:371-97
	JC Hunter,	
	MS Gold	

RECEPTORS

5-HT ₆ Receptors as Emerging Targets for		
Drug Discovery	TA Branchek,	40:319-34
	TP Blackburn	

Nicotinic Receptors at the Amino Acid		
Level	P-J Corringer,	40:431-58
	N Le Novère,	
	J-P Changeux	
Pharmacology of Clonded P2X Receptors	RA North,	40:563-80
	A Surprenant	44 505 04
Lysophospholipid Receptors	N Fukushima, I Ishii,	41:507–34
	JJ Contos, JA Weiner.	
	J Chun	
Genetic Variations and Polymorphisms of	J Chuli	
G Protein-Coupled Receptors:		
Functional and Therapeutic Implications	BK Rana, T Shiina,	41:593-624
Tunetional and Therapeute Impleations	PA Insel	11.070 021
Prostanoid Receptors: Subtypes and		
Signaling	RM Breyer,	41:661-90
	CK Bagdassarian,	
	SA Myers,	
	MD Breyer	
Role of Osteopontin in Cellular Signaling		
and Toxicant Injury	DT Denhardt,	41:723-49
	CM Giachelli,	
	SR Rittling	
Molecular Approach to Adenosine		
Receptors: Receptor-Mediated	***-1	41 775 07
Mechanisms of Tissue Protection Glutamatergic Mechanisms in	J Linden	41:775–87
Schizophrenia	G Tsai, JT Coyle	42:165-79
Drug Efficacy at G Protein-Coupled	G Isai, II Coyle	42.103-79
Receptors	T Kenakin	42:349-79
Dimerization: An Emerging Concept for	* Heliumii	12.515 15
G Protein-Coupled Receptor Ontogeny		
and Function	S Angers,	42:409-35
	A Salahpour,	
	M Bouvier	
The Binding Site of Aminergic G		
Protein-Coupled Receptors: The		
Transmembrane Segments and Second		
Extracellular Loop	L Shi, JA Javitch	42:437–67
Retinoid Receptors and Their Coregulators	L-N Wei	43:47–72
Trafficking of NMDA Receptors	RJ Wenthold,	43:335–58
	K Prybylowski,	
	S Standly, N Sans, RS Petralia	
The Identification of Licende at Orthon	KS Petralia	
The Identification of Ligands at Orphan G-Protein Coupled Receptors	A Wise, SC Jupe,	44:43-66
G-Frotein Coupled Receptors	S Rees	44.45-00
	3 Rees	

ErbB Receptors: Directing Key Signaling		
Networks Throughout Life Voltage-Gated Sodium Channels and	T Holbro, NE Hynes	44:195–217
Hyperalgesia	J Lai J, F Porreca, JC Hunter, MS Gold	44:371–97
Membrane Trafficking of		
G Protein-Coupled Receptors	CM Tan, AE Brady, H Highfield Nickols, Q Wang, LE Limbird	44:559–609
RENAL SYSTEM		
Pharmacology of the Lower Urinary Tract	WC de Groat, N Yoshimura	41:691-721
SIGNAL TRANSDUCTION		
Physiological Functions of Cyclic ADP-Ribose and NAADP as Calcium Messengers	HC Lee	41:317-45
Cellular Mechanisms for the Repression of	110 200	
Apoptosis	CD Bortner, JA Cidlowski	42:259-81
Protein Sulfenic Acids in Redox Signaling	LB Poole, A Karplus, A Claiborne	44:325–47
SYNAPTIC FUNCTIONS		
The Regulator of G Protein Signaling		
Family	L De Vries, B Zheng, T Fischer, E Elenko, MG Farquhar	40:235–71
Pharmacology of Selectin Inhibitors in		40.000.04
Ischemia/Reperfusion States The Role of Rho in G Protein Coupled	DJ Lefer	40:283–94
Receptor Signal Transduction	VP Sah, TM Seasholtz, SA Sagi, JH Brown	40:459–89
14-3-3 Proteins: Structure, Function, and		
Regulations	H Fu, RR Subramanian, SC Masters	40:619–49
Molecular Psychology: Roles for the ERK		
MAP Kinase Cascade in Memory	JP Adams, JD Sweatt	42:135–63

Identification of the Major Steps in		
Botulinum Toxin Action	LL Simpson	44:167-93
DARPP-32: An Integrator of		
Neurotransmission	P Svenningsson,	44:269–96
	A Nishi,	
	G Fisone,	
	J-A Girault,	
	AC Nairn,	
Marie Carlot Anna Labeller December	P Greengard	
Muscarinic Acetylcholine Receptor Knockout Mice: Novel Phenotypes and		
Clinical Implications	J Wess	44:423-50
Chinical Implications	J MC22	44.423-30
ION CHANNELS		
Voltage-Gated Sodium Channels and		
Hyperalgesia	J Lai, F Porreca,	44:371-97
	JC Hunter,	
	MS Gold	
TRANSPORTERS		
Compartmentation of G Protein-Coupled		
Signaling Pathways in Cardiac		
Myocytes	SF Steinberg,	41:751-73
• •	LL Brunton LL	
AKAP-Mediated Signal Transduction	JJC Michel,	42:235-57
	JD Scott	
The Changing Face of the Na ⁺ /H ⁺		
Exchanger, NHE1: Structure,		
Regulation, and Cellular Actions	LK Putney,	42:527-52
	SP Denker,	
	DL Barber	
Monoamine Transporters: From Genes to		
Behavior	RR Gainetdinov,	43:261-84
	MG Caron	
Genetic Polymorphisms of the Human		
MDR1 Drug Transporter	M Schwab,	43:285-307
	M Eichelbaum,	
	MF Fromm	
The Caenorhabditis elegans Dopaminergic		
System: Opportunities for Insights into		
Dopamine Transport and	D.M. DD.DI.L.L.	42.521.44
Neurodegeneration	R Nass, RD Blakely	43:521–44
The Role of Drug Transporters at the Blood-Brain Barrier	AG de Boer.	43:629-56
Diood-Brain Barrier	ICJ van der Sandt,	43.029-30
	PI Gaillard	
	rj Gamard	

	MES	

ENZYMES		
Human UDP-Glucuronosyltransferases:		
Metabolism, Expression, and Disease	RH Tukey, CP Strassburg	40:581–618
Tumor Cell Death Induced by	•	
Topoisomerase-Targeting Drugs	T-K Li, LF Liu	41:53-77
Phenobarbital Response Elements of Cytochrome P450 Genes and Nuclear		41 100 40
Receptors	T Sueyoshi, M Negishi	41:123-43
Regulation and Role of Adenylyl Cyclase Isoforms	J Hanoune, N Defer	41:145-74
Regulation of CYP3A Gene Transcription		
by the Pregnane X Receptor	B Goodwin, MR Redinbo, SA Kliewer	42:1–23
Protein Allergenicity Assessment of Foods		
Produced Through Agricultural		
Biotechnology	SL Taylor	42:99-112
The Biochemistry and Physiology of		
S-Nitrosothiols	N Hogg	42:585-600
Telomere Inhibition and Telomere		
Disruption as Processes for Drug		
Targeting	EM Rezler,	43:359-79
	DJ Bearss,	
	LH Hurley	
The Role of Calpain in Oncotic Cell Death	X Liu, T Van Vleet, RG Schnellmann	44:349–70
Mixed-Lineage Kinases: A Target for the		
Prevention of Neurodegeneration	LH Wang, CG Besirli, EM Johnson Jr.	44:451–74
CHEMICAL AGENTS		
	DILD.	44 70 00
The Clinical Pharmacology of L-Arginine	RH Böger, SM Bode-Böger	41:79–99
The Basic and Clinical Pharmacology of		
Nonpeptide Vasopressin Receptor		
Antagonists	M Thibonnier, P Coles,	41:175–202
	A Thibonnier, M Shoham	
Novel Effects of Nitric Oxide	KL Davis, E Martin, IV Turko, F Murad	41:203–36
Inhibition of Carcinogenesis by Tea	CS Yang, P Maliakal, X Meng	42:25–54
Nitric Oxide-Releasing Drugs	C Napoli, LJ Ignarro	43:97-123

2,5-Hexandione-Induced Testicular Injury	K Boekelheide, SL Fleming,	43:125-47
	T Allio,	
	ME Embree-Ku,	
	SJ Hall, KJ Johnson,	
	EJ Kwon, SR Patel,	
	RJ Rasoulpour,	
	HA Schoenfeld,	
	S Thompson	
Progress Toward Clinical Application of	•	
the Nitric Oxide-Releasing		
Diazeniumdiolates	LK Keefer	43:585-607
		10.000
PEPTIDES AND PROTEINS		
Protein Allergenicity Assessment of Foods Produced Through Agricultural		
Biotechnology	SL Taylor	42:99-112
BIOTRANSFORMATION		
Metabolism of Fluorine-Containing Drugs	BK Park,	41:443-70
	NR Kitteringham,	
	PM O'Neill	
Interindividual Variability in Inhibition and		
Induction of Cytochrome P450 Enzymes	JH Lin, AYH Lu	41:535-67
Regulation of CYP3A Gene Transcription	,	
by the Pregnane X Receptor	B Goodwin,	42:1-23
,	MR Redinbo,	
	SA Kliewer	
Human Extrahepatic Cytochromes P450:		
Function in Xenobiotic Metabolism and		
Tissue-Selective Chemical Toxicity in		
the Respiratory and Gastrointestinal		
Tracts	X Ding, LS Kaminsky	43:149-73
Predicting Human Drug Glucuronidation	g, <u></u>	1012 12 12
Parameters: Application of In Vitro and		
In Silico Modeling Approaches	JO Miners, PA Smith,	44:1-25
an onle viousing approunts	MJ Sorich.	20
	RA McKinnon.	
	PI Mackenzie	
Oxidative Stress, Toxicology, and	T T T T T T T T T T T T T T T T T T T	
Pharmacology of CYP2E1	AA Caro, AI Cederbaum	44:27-42
NUCLEIC ACIDS		
Cellular Responses to DNA Damage	CJ Norbury, ID Hickson	41:367-401
Ca ²⁺ /CaM-Dependent Kinases: From	Co Troibuly, and Talekholi	72.507 101
Activation to Function	SS Hook, AR Means	41:471-505
	Jo 1100ii, alt Hatuilo	11.171 000

PHARMACOKINETICS/TOXICOKINETICS		
Mitochondrial Targets of Drug Toxicity	KB Wallace, AA Starkov	40:353-88
The Integration of Pharmacokinetics and		
Pharmacodynamics: Understanding		
Dose-Response	SM Abdel-Rahman, RE Kauffman	44:111–36
Transporters and Renal Drug Elimination	W Lee, RB Kim	44:137–66
CANCER AND CARCINOGENESIS		
Properties and Biological Activities of		
Thioredoxins	G Powis,	41:261-95
	WR Montfort	
Cancer Chemoprevention Using Natural		
Vitamin D and Synthetic Analogs	KZ Guyton,	41:421-42
	TW Kensler.	
	GH Posner	
Inhibition of Carcinogenesis by Tea	CS Yang, P Maliakal,	42:25-54
announce of continuous of the	X Meng	
COX-2: A Target for Colon Cancer		
Prevention	LJ Marnett.	42:55-80
	RN DuBois	
Glycopeptide Antibiotic Resistance	J Pootoolal, J Neu,	42:381-408
C.) copopular i minorona i i commune	GD Wright	
Altered DNA Methylation: A Secondary		
Mechanism Involved in Carcinogenesis	JI Goodman,	42:501-25
•	RE Watson	
Signal Transduction-Directed Cancer		
Treatments	EA Sausville,	43:199-231
	Y Elsayed,	
	M Monga, G Kim	
The Role of Oxidative Stress in	•	
Carcinogenesis	JE Klaunig,	44:239-67
	LM Kamendulis	
CLINICAL THERAPEUTICS		
Dual Protease Inhibitor Therapy in		
HIV-Infected Patients: Pharmacologic		
Rationale and Clinical Benefits	C Flexner	40:651-76
Pharmacogenomics: Unlocking the Human		
Genome for Better Drug Therapy	HL McLeod,	41:101-21
	WE Evans	
Antisense Oligonucleotides: Promise and		
Reality	I Lebedeva, CA Stein	41:403-19
Glycopeptide Antibiotic Resistance	J Pootoolal, J Neu,	42:381-408
	GD Wright	

JF Kinsel, SE Straus	43:463–84
J Wess	44:423–50
RA Houghten	40:273-82
Tu Tioughion	
CR Ozawa	40:295-317
	40.275-317
Hivi Biau	
I I aska	41:347-66
	41:347-00
AJ Atkinson Jr.	
DILE' II	12 101 200
	42:181–208
TH Rosenquist	
Z-Y Zhang	42:209-34
IR Hardcastle,	42:325-48
BT Golding,	
RJ Griffin	
CF Wong,	43:31-45
JA McCammon	
NA Kootstra,	43:413-39
IM Verma	
D Lie, H Song.	44:399-421
o ming, i oage	
	SE Straus J Wess RA Houghten CR Ozawa, ML Springer, HM Blau L Lesko, AJ Atkinson Jr. RH Finnell, J Gelineau-van Waes, JD Eudy, TH Rosenquist Z-Y Zhang IR Hardcastle, BT Golding, RJ Griffin CF Wong, JA McCammon NA Kootstra,

DEVELOPMENT AND AGING		
Developmental Neuropathology of Environmental Agents	LG Costa, M Aschner, A Vitalone, T Syversen, OP Soldin	44:87–110
	Or Soluli	
MUSCLE AND ADIPOSE TISSUE		
β-Adrenergic Receptors and Regulation of Energy Expenditure: A Family Affair	J Robidoux, TL Martin, S Collins	44:297–323
IMMUNE SYSTEM/INFLAMMATION		
Signal Transduction by Cell Adhesion Receptors and the Cytoskeleton: Functions of Integrins, Cadherins, Selectins, and		
Immunoglobulin-Superfamily Members Structure, Function, and Inhibition of	RL Juliano	42:283–323
Chemokines Innate Immune Responses to Microbial Poisons: Discovery and Function of the	EJ Fernandez, E Lolis	42:469–99
Toll-Like Receptors	B Beutler	43:609–28
CENTRAL NERVOUS SYSTEM		
Molecular Mechanisms and Regulation of		
Opiod Receptor Signaling	P-Y Law, YH Wong, HH Loh	40:389-430
Anesthetics and Ion Channels: Molecular		
Models and Sites of Action	T Yamakura, E Bertaccini, JR Trudell, RA Harris	41:23–51
Interactions Between Monoamines, Glutamate, and GABA in		
Schizophrenia: New Evidence	A Carlsson, N Waters, S Holm-Waters, J Tedroff, M Nilsson, ML Carlsson	41:237–60
Drug Treatment Effects on Disease		
Progression	P Chan, N Holford	41:625-59
Molecular Targets of Lithium Action Neurokinin1 Receptor Antagonists as	CJ Phiel, PS Klein	41:789–813
Potential Antidepressants	SC Stout, MJ Owens,	41:877–906

CB Nemeroff

Glutamatergic Mechanisms in		
Schizophrenia	G Tsai, JT Coyle	42:165-79
The Spinal Phospholipase-	•	
Cyclooxygenase-Prostanoid Cascade in		
Nociceptive Processing	CI Svensson, TL Yaksh	42:553–83
Alzheimer's Disease: Molecular		
Understanding Predicts Amyloid-Based		
Therapeutics	DJ Selkoe, D Schenk	43:545-84
Neurogenesis in the Adult Brain: New		
Strategies for Central Nervous System		
Diseases	D Lie, H Song, SA Colamarino, G Ming, F Gage	44:399–421
Muscarinic Acetylcholine Receptor	G Willig, I Gage	
Knockout Mice: Novel Phenotypes and		
Clinical Implications	J Wess	44:423-50
Analysis of GABA _A Receptor Function	3 11033	44.425-50
and Dissection of the Pharmacology of		
Benzodiazepines and General		
Anesthetics Through Mouse Genetics	U Rudolph, H Möhler	44:475-98
CRF and CRF Receptors: Role in Stress	о такогра, такова	
Responsivity and Other Behaviors	TL Bale, WW Vale	44:525-58
AUTONOMIC NERVOUS SYSTEM		
Genetic Variations and Polymorphisms of		
G Protein-Coupled Receptors:		
Functional and Therapeutic Implications	BK Rana, T Shiina, PA Insel	41:593–624
Biochemical Mechanism of Nitroglycerin		
Action and Tolerance: Is This Old		
Mystery Solved?	H-L Fung	44:67–85
CARDIOVASCULAR SYSTEM		
Endothelin System: The Double-Edged		
Sword in Health and Disease	RM Kedzierski, M Yanagisawa	41:851–76
K+ Channel Structure-Activity		
Relationships and Mechanisms of		
Drug-Induced QT Prolongation	CE Clancy,	43:441-61
	J Kurokawa,	
	M Tateyama,	
	XHT Wehrens,	
	RS Kass	
Novel Angiogenic Signaling Pathways and		
Vascular Targets	R Bicknell,	44:219–38
	AL Harris	

ENDOCRINE SYSTEM		
Neurotrophic and Neuroprotective Actions of Estrogens and Their Therapeutic		
Implications	SJ Lee, BS McEwen	41:569–91
PULMONARY SYSTEM		
Cytokine Modulators as Novel Therapies for Asthma Novel Pharmacological Approaches to Manage Interstitial Lung Fibrosis in the	PJ Barnes	42:81-98
Twenty-First Century	SN Giri	43:73–95
Miscellaneous		
TECHNIQUES		
The Impact of Genomics-Based Technologies on Drug Safety Evaluation Challenges for Biomedical Informatics and	JF Waring, RG Ulrich	40:335–52
Pharmacogenomics	RB Altman, TE Klein	42:113-33
ENVIRONMENTAL TOXICITY		
The PAS Superfamily: Sensors of Environmental and Developmental		
Signals	Y-Z Gu, JB Hogenesch, CA Bradfield	40:519–61
Challenging Dogma: Thresholds for Genotoxic Carcinogens? The Case of		
Vinyl Acetate	JG Hengstler, MS Bogdanffy, HM Bolt, F Oesch	43:485–520
Pharmacology and Toxicology in the	New Millennium	
Pharmacokinetic/Pharmacodynamic		
Modeling in Drug Development	LB Sheiner, J-L Steimer	40:67–96
Sequencing the Entire Genomes of Free-Living Organisms: The Foundation	C. D d IC V	40-07 122
of Pharmacology in the New Millenium High-Throughput Screening in Drug Metabolism and Pharmacokinetic	S Broder, JC Venter	40:97–132
Support of Drug Discovery	RE White	40:133-57
Pharmacogenetics of Sulfotransferase Drug Discovery in the Next Millennium	K Nagata, Y Yamazoe EH Ohlstein, RR Ruffolo Jr, JD Elliott	40:159–76 40:177–91

The Impact of Genomics on Drug Discovery

Simulation of Clinical Trials

C Debouck, 40:193–208

B Metcalf NHG Holford, 40:209-34

NHG Holford, HC Kimko,

JPR Monteleone,

CC Peck