ALGEBRA LINEARE A.A. 2020-2021 Esame 30/06/2021

Il tempo di risoluzione del compito è di **90 minuti**. Giustificare le risposte in modo chiaro e conciso. Risposte prive di giustificazione non verranno considerate.

Esercizio 1. Si individui quale tra le seguenti è un'equazione del piano π passante per il punto

$$P_0 = (1, 1, -1)$$
 e ortogonale al vettore $\mathbf{n} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$.

- a) 2x + z 3 = 0.
- b) x + y z 3 = 0.
- c) 2x + z 1 = 0.
- d) 2x + y + z = 0.

Soluzione: La risposta esatta è la c). Data l'equazione cartesiana ax + by + cy + d = 0 di un piano nello spazio, i coefficienti a, b, c sono le componenti di un vettore ortogonale al piano.

Cerchiamo quindi un'equazione in cui il vettore $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ è proporzionale al vettore \mathbf{n} . La nostra

scelta si restringe dunque alle opzioni a) e c). Imponendo il passaggio per P_0 si ottiene che l'equazione di π è quella al punto c).

Esercizio 2. Sia $t \in \mathbb{R}$ e sia $T_t : \mathbb{R}^n \to \mathbb{R}^n$ l'applicazione lineare definita da $T_t(\mathbf{x}) = t\mathbf{x}$ per ogni $\mathbf{x} \in \mathbb{R}^n$. Si determini la matrice associata all'applicazione lineare T_t rispetto alla base canonica.

Soluzione: La matrice A associata all'applicazione lineare T_t è la matrice tI, dove I è la matrice identità di dimensione n. In altre parole $A=(a_{ij})$ con $a_{ii}=t$ e $a_{ij}=0$ per ogni $1 \le i, j \le n$ e $j \ne i$.

Esercizio 3. Dato il sistema lineare

$$\Sigma_k = \begin{cases} x + y + (2k - 1)z = 3\\ (k - 2)x - 2y + 2z = -6\\ (k - 1)x - y + z = k - 3 \end{cases}$$

con $k \in \mathbb{R}$, determinare:

- i) i valori di k per cui il sistema è compatibile;
- ii) i valori di k per cui il sistema ammette una e una sola soluzione;
- iii) i valori di k per cui il sistema ammette infinite soluzioni. Solo per tali valori di k si esplicitino le soluzioni del sistema.

Soluzione: La matrice dei coefficienti A_k e la matrice completa A'_k del sistema Σ_k sono:

$$A_k = \begin{pmatrix} 1 & 1 & 2k-1 \\ k-2 & -2 & 2 \\ k-1 & -1 & 1 \end{pmatrix}, \qquad A'_k = \begin{pmatrix} 1 & 1 & 2k-1 & 3 \\ k-2 & -2 & 2 & -6 \\ k-1 & -1 & 1 & k-3 \end{pmatrix}.$$

Osserviamo che det $A_k = 2(k-1) - (k-2) + (2k-1)(2-k+2(k-1)) = k+k(2k-1) = 2k^2 = 0$ se e solo se k=0. Ne segue che per $k \neq 0$, $\operatorname{rg}(A_k) = \operatorname{rg}(A_k') = 3$ quindi per il teorema di Rouché-Capelli il sistema è compatibile e ammette una e una sola soluzione.

Se k = 0 le matrici dei coefficienti e completa del sistema diventano:

$$A_0 = \begin{pmatrix} 1 & 1 & -1 \\ -2 & -2 & 2 \\ -1 & -1 & 1 \end{pmatrix}, \qquad A'_0 = \begin{pmatrix} 1 & 1 & -1 & 3 \\ -2 & -2 & 2 & -6 \\ -1 & -1 & 1 & -3 \end{pmatrix}.$$

Una volta ridotte a scala tramite l'algoritmo di Gauss:

$$A_0 \to \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad A'_0 \to \begin{pmatrix} 1 & 1 & -1 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Pertanto $rg(A_0) = rg(A'_0) = 1$. Ne segue che il sistema è ancora compatibile e (poiché 1 < 3) ammette infinite soluzioni. Per descrivere l'insieme S delle soluzioni consideriamo l'equazione x + y - z = 3 (ottenuta dalla riduzione a scala della matrice completa del sistema). Da essa ricaviamo che

$$S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : z = x + y - 3; \ x, y \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} x \\ y \\ x + y - 3 \end{pmatrix} : x, y \in \mathbb{R} \right\}.$$

Ricapitolando: Σ_k è compatibile per ogni $k \in \mathbb{R}$. Per $k \neq 0$ esso ammette una e una sola soluzione mentre per k=0 ne ammette infinite. L'insieme delle soluzioni di Σ_k per k=0 è l'insieme S descritto sopra.

Esercizio 4. Si dia la definizione di base di uno spazio vettoriale e si mostri che i vettori $\binom{2}{1}$, $\binom{-1}{0}$ costituiscono una base di \mathbb{R}^2 .

Soluzione: Sia V uno spazio vettoriale. Un insieme $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ di vettori di V è una base di V se:

- $\mathbf{v}_1, \dots, \mathbf{v}_n$ sono linearmente indipendenti;
- Span($\mathbf{v}_1, \dots, \mathbf{v}_n$) = V, ovvero $\mathbf{v}_1, \dots, \mathbf{v}_n$ generano lo spazio V (o costituiscono un sistema di generatori di V).

Per mostrare che i vettori $\mathbf{u} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$ costituiscono una base di \mathbb{R}^2 dobbiamo far vedere che sono linearmente indipendenti e che generano tutto \mathbb{R}^2 .

Siano $a, b \in \mathbb{R}$ tali che $a\mathbf{u} + b\mathbf{v} = 0$. Ma allora

$$\begin{cases} 2a - b = 0 \\ a = 0 \end{cases} \implies a = b = 0,$$

quindi \mathbf{u} e \mathbf{v} sono linearmente indipendenti. Sia ora \mathbf{x} un generico vettore di \mathbb{R}^2 . Per provare che Span $(\mathbf{u}, \mathbf{v}) = \mathbb{R}^2$ devo mostrare che esistono $\alpha, \beta \in \mathbb{R}$ tali che $\alpha \mathbf{u} + \beta \mathbf{v} = \mathbf{x}$. Posto $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, è immediato verificare che per $\alpha := x_2$ e $\beta := (2x_2 - x_1)$, $\alpha \mathbf{u} + \beta \mathbf{v} = \mathbf{x}$.

Esercizio 5. Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ l'endomorfismo definito dalle relazioni

$$T(\mathbf{e}_1) = \mathbf{e}_1 - \mathbf{e}_2, \ T(\mathbf{e}_2) = \mathbf{e}_1 + 2\mathbf{e}_2 + \mathbf{e}_3, \ T(\mathbf{e}_3) = 2\mathbf{e}_1 + \mathbf{e}_2 + 3\mathbf{e}_3,$$

dove $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ sono i vettori della base canonica di \mathbb{R}^3 .

- 1. Si studino nucleo e immagine di T.
- 2. Si trovi il polinomio caratteristico di T.
- 3. Si trovino autovalori e relativi autospazi di T.
- 4. Si dica se T è diagonalizzabile e in caso affermativo si trovi una base di autovettori che diagonalizza T.

Soluzione: Sia $A = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix}$ la matrice associata a T rispetto alla base canonica.

1. Per trovare $\ker T$ risolviamo il sistema omogeneo $A\mathbf{x} = 0$:

$$\begin{cases} x+y+2z=0\\ -x+2y+z=0\\ y+3z=0 \end{cases} \rightarrow \begin{cases} x-z=0\\ -x-5z=0\\ y=-3z \end{cases} \rightarrow \begin{cases} x=z\\ -6z=0\\ y=-3z \end{cases} \Longrightarrow x=y=z=0.$$

Ne segue che ker $T = \{0\}$ e quindi $\text{Im} T = \mathbb{R}^3$.

- 2. $p_T(\lambda) = \det(\lambda I A) = \det\begin{pmatrix} \lambda 1 & -1 & -2 \\ 1 & \lambda 2 & -1 \\ 0 & -1 & \lambda 3 \end{pmatrix} = (\lambda 1)((\lambda 2)(\lambda 3) 1) + 2 + \lambda 3 = (\lambda 1)(\lambda^2 5\lambda + 6) = (\lambda 1)(\lambda 2)(\lambda 3).$
- 3. Gli autovalori di T sono gli zeri del suo polinomio caratteristico, dunque $\mathrm{Spec}T=\{1,2,3\}$. Troviamone i relativi autospazi.

Per trovare V_1 risolviamo il sistema omogeneo $(I - A)\mathbf{x} = 0$:

$$\begin{pmatrix} 0 & -1 & -2 \\ 1 & -1 & -1 \\ 0 & -1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \to \begin{cases} y + 2z = 0 \\ x - y - z = 0 \\ y + 2z = 0 \end{cases} \to \begin{cases} x = -z \\ y = -2z \end{cases}$$

Ne segue che $V_1 = \text{Span}\left(\begin{pmatrix} -1\\ -2\\ 1 \end{pmatrix}\right)$.

Per trovare V_2 risolviamo il sistema omogeneo $(2I - A)\mathbf{x} = 0$:

$$\begin{pmatrix} 1 & -1 & -2 \\ 1 & 0 & -1 \\ 0 & -1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \to \begin{cases} x - y - 2z = 0 \\ x - z = 0 \\ y + z = 0 \end{cases} \to \begin{cases} x = z \\ y = -z \end{cases}.$$

Ne segue che
$$V_2 = \operatorname{Span}\left(\begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix}\right)$$
.

Per trovare V_3 risolviamo il sistema omogeneo $(3I-A)\mathbf{x}=0$:

$$\begin{pmatrix} 2 & -1 & -2 \\ 1 & 1 & -1 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \to \begin{cases} 2x - y - 2z = 0 \\ x + y - z = 0 \\ y = 0 \end{cases} \to \begin{cases} x = z \\ y = 0 \end{cases}.$$

Ne segue che
$$V_3 = \operatorname{Span}\left(\begin{pmatrix}1\\0\\1\end{pmatrix}\right)$$
.

 $4. \ T$ ha 3 autovalori distinti quindi è diagonalizzabile. Una base di autovettori che diagona-

lizza
$$T \in \mathcal{B} = \left\{ \begin{pmatrix} -1\\-2\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\}.$$