Cílem dnešního cvičení je pochopit, proč je kukač
čí hashování dobré. Budeme předpokládat, že máme k dispozici "dokonalou rodinu hashova
cích funkcí \mathcal{H} ", pro kterou platí

$$\Pr_{h \in \mathcal{H}}[h(x) = i] = \frac{1}{m},$$

kde m je velikost oboru hodnot právě voleného h. Zpravidla je $\operatorname{rng}(h) = \{0, \dots, m-1\}$.

Definice. Mějme kukaččí hashovací tabulku velikosti m obsahující prvky S, kde n=|S|. Kukaččí graf G má vrcholy $V(G)=\{0,\ldots,m-1\}$. Pro každý prvek $x\in S$ obsahuje G neorientovanou hranu $\{h_1(x),h_2(x)\}$.

Užitečné nástroje.

- Union bound. Nechť A_1, \ldots, A_n jsou nějaké jevy. Pak $\Pr[A_1 \cup \cdots \cup A_n] \leq \Pr[A_1] + \cdots + \Pr[A_n]$. (Uměli byste důkaz?)
- Linearita střední hodnoty. Nechť X_1, \ldots, X_n jsou nějaké náhodné veličiny a $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$. Pak $\mathbb{E}[\alpha_1 X_1 + \cdots + \alpha_n X_n] = \alpha_1 \mathbb{E}[X_1] + \cdots + \alpha_n \mathbb{E}[X_n]$.
- Podmíněná pravděpodobnost. Pravděpodobnost $\Pr[A \mid B]$ (čteno "pravděpodobnost jevu A za předpokladu, že nastal jev B") je $\Pr[A \mid B] = \frac{\Pr[A \cap B]}{\Pr[B]}$, neboli $\Pr[A \cap B] = \Pr[A \mid B] \Pr[B]$.
- 1. Kdy může dojít k selhání vkládání? To se stane, pokud pro vkládaný prvek x platí, že $h_1(x)$ leží na cyklu kukačkového grafu.

Dokažte následující tvrzení.

Nechť c>1 je konstanta a $\frac{n}{m} \leq \frac{1}{2c}$. Pro dva vrcholy $s,t \in V(G)$ platí, že pravděpodobnost existence cesty z s do t délky k je nejvýše $\frac{1}{mc^k}$.

Pro řešení následujících úloh můžete předpokládat, že jste vyřešili Úlohu 1.

2. Jak dlouho může trvat vkládání prvku x?

Dokažte následující tvrzení.

Nechť c > 1 je konstanta. Střední délka cesty začínající v $h_1(x)$ je $\mathcal{O}(1)$.

3. Kolikrát může dojít k přehashování?

Dokažte následující tvrzení.

Nechť c>1 je konstanta. Střední počet přehashování při vkládání n prvků do prázdné tabulky velikosti m je $\mathcal{O}(1)$, pokud $\frac{n}{m} \leq \frac{1}{2c}$.

Poznámka. Kukačkové hashování vyžaduje, aby tabulka byla zaplněná z maximálně 25 %. Jde získat konstantní operace (s vysokou pravděpodobností) a mít zaplněnost, dejme tomu, aspoň 99 %? Ano,

https://arxiv.org/abs/2109.04548v2

Poznámka. Mít zcela dokonalou rodinu hashovacích funkcí je nepraktické. Zkoumat vlastnosti rodin hashovacích funkcí je naopak otravné (např $\{ax \mod m\}_{a \in \mathbb{N}}$ je 2-nezávislé). Stejně používáme náhodné bity, je možné je přímo použít na konstrukci slovníků? Ano,

https://arxiv.org/abs/2209.06038

Užitečná poznámka. Až budete implementovat kukaččí hashování v domácím úkolu, nevymýšlejte blbosti a pseudokód vkládání prostě opište. Sice se vám bude zdát, že dochází k nekonečné rekurzi, ale to je ok.