The generalised partition function A joined up approach to teaching and learning mathematic. mathematic.

•	How is the average energy, $\langle E \rangle$, calculated from the probabilities of being in the various microstates P_i and the energies of the various microstates P_i
•	Explain what two types of constraints are introduced on extensive thermodynamic variables when constructing thermodynamic states from the various microstates in phase space.
•	Complete the following sentence: We can determine the probability of being in any given microstate by
•	Write down the function for which we are finding the constrained minimum and the two constraints on this function

The generalised partition function

• Write down the extended function whose unconstrained optimum is found in order to find the required constrained optimum.

• Write down the partial derivative of the function you have just written down with respect to P_j .

• Explain why the derivative of $f = \sum_{i} P_{i}$ with respect to P_{j} is equal to one.

• Give an expression for the derivative of $g = \sum_i \lambda B_i P_i$ with respect to P_j .

The generalised partition function

• Give an expression for the derivative of $h = \sum_{i} P_i \ln P_i$ with respect to P_j .

• Explain (by making reference to the results that you have written down to the previous questions) why the probability of being in a microstate is given by: $P_j = \frac{e^{-\sum_k \lambda_k B_j^{(k)}}}{e^{\Psi}}$

• Give an expression for the generalised partition function and explain how this is derived.