Анализ данных (Введение в Python и обработку таблиц)

Логинов Сергей НФИмд-01-22

Сылка на курс: https://stepik.org/course/126333?search=1440407514

Образовательная организация: ТюмГУ

Трудоемкость: 7 часов

В данном курсе не выдается сертификат от платформы, но имеется возможность получить удостоверение от Тюменского государственного университета. Информация по теме из курса:

Уважаемые слушатели курса!

Вы можете бесплатно получить **удостоверение государственного образца о повышении квалификации** по курсу «Анализ данных» от Тюменского государственного университета!

Пройдите регистрацию до 1 декабря 2022 года, и получите удостоверение уже в этом году.

Ссылка на регистрацию

Вам понадобятся документы:

- паспорт;
- снилс;
- документ об образовании;
- подписанное вами согласие на обработку персональных данных (форма Согласия на обработку ПД)

Сохранено азработки Google Colab. Она похожа на jupyter, но использует облачные вычисления, а значит не требует установки каких-либо программ или пакетов и не ест ресурсы комьютера. Есть интеграция с Google диском, что тоже удобно.

Основы обработки таблиц с данными на языке Python

import pandas as pd

Повторим вычисление статистических характеристик.

Для начала некоторые функции суммарной статистики по всему датасету

df.head()

	Age	Growth	Shoe size		Year of birth		Russian rating			Compute scienc ratir
0	20	170	40	2	2002	100	85	86	0	8
1	22	191	43	7	2000	307	69	74	64	7
2	21	172	41	4	2000	186	78	62	0	
3	19	168	38	2	2003	604	72	0	0	
4	23	159	36	1	1998	144	0	0	0	

5 rows x 48 columns

df.describe()

	Age	Growth	Shoe size	Course number	Year of birth	Friend number	F
count	186.000000	186.000000	186.000000	186.000000	186.000000	186.000000	186
mean	20.688172	170.661290	39.715054	3.500000	1991.107527	374.032258	81
std	3.468713	9.055881	2.814920	3.147285	132.099550	2199.541507	14
min	17.000000	153.000000	34.000000	0.000000	200.000000	0.000000	C
25%	19.000000	164.000000	38.000000	2.000000	2000.000000	74.500000	7€
50%	20.000000	169.000000	39.000000	3.000000	2001.500000	130.000000	85
75%	21.000000	178.000000	42.000000	4.000000	2003.000000	236.000000	91
max	55.000000	197.000000	48.000000	37.000000	2004.000000	30000.000000	100

8 rows × 33 columns

```
# df.value_counts() — вычисляет значения, но выглядит громоздко, 
# просто закомментируем и запомним
```

df['Growth'].mean() # средний рост = математическое ожидание 170.66129032258064

df['Growth'].median() # медиана 169.0

df.Growth.std() # CKO

9.055880959226972

Далее в курсе проводится введение в фильтрацию/селекцию данных в датасете, получение слайсов и т.д. Тема простая и заранее изученная, идет как базовая, поэтому считаю, что не обязательно полностью отражать ее в отчете. Однако, для повторения или если встретятся спорные или неизвестные моменты, они будут зафиксированы ниже

базовая селекция как образец df[df.Sex == 'женский'].head()

	Age	Growth	Shoe size	Course number	Year of birth		Russian rating		_	Comput scien rati
0	20	170	40	2	2002	100	85	86	0	
3	19	168	38	2	2003	604	72	0	0	
4	23	159	36	1	1998	144	0	0	0	
9	22	168	38	6	2000	297	71	5	0	
10	20	158	35	4	2001	1000	85	72	0	

5 rows × 48 columns

df[(df.Growth > 165) & (df.Growth < 175)].head() # двойная

	Age	Growth	Shoe size	Course number	Year of birth		Russian rating		_	Comput scien rati
0	20	170	40	2	2002	100	85	86	0	
2	21	172	41	4	2000	186	78	62	0	
3	19	168	38	2	2003	604	72	0	0	
9	22	168	38	6	2000	297	71	5	0	
12	21	169	39	4	2001	150	68	27	0	

5 rows × 48 columns

```
df[df.Age + df['Year of birth'] == 2022].shape # колиечство людей,
# которые отпраздновали
# день рождения в этом году

(102, 48)
```

df[df.Age == df.Age.max()]

	Age	Growth	Shoe size	Course number	Year of birth	Friend number	Russian rating	Maths rating	Physics rating	Comput scien rati
81	55	160	37	7	1960	2000	0	0	0	

1 rows × 48 columns

Влияние строк и столбцов друг на друга

Группировка, сортировка и корреляция

df_cut = df[['Age', 'Growth', 'Weight']]
df_cut.head()

	Age	Growth	Weight
0	20	170	64.0
1	22	191	73.0
2	21	172	60.0
3	19	168	59.0
4	23	159	57.0

Сортировка

df_cut.sort_values(by='Age', ascending=False)

	Age	Growth	Weight
81	55	160	3.0
63	35	180	78.0
99	31	165	53.0
173	29	176	70.0
82	27	168	58.0
127	18	165	46.0
61	18	182	75.0
159	18	168	70.0
115	17	175	72.0
126	17	168	71.0

186 rows × 3 columns

множественная сортировка df_cut.sort_values(by=['Age', 'Growth'], ascending=[False, True])

	Age	Growth	Weight
81	55	160	3.0
63	35	180	78.0
99	31	165	53.0
173	29	176	70.0
82	27	168	58.0
112	18	183	65.0
16	18	185	64.0
42	18	185	68.0
126	17	168	71.0
115	17	175	72.0

186 rows × 3 columns

df_sorted = df_cut.sort_values(by='Growth', ascending=False)

Обращение по индексам и слайсы

df_sorted.iloc[0,]

Age 19.0 Growth 197.0 Weight 100.0

Name: 103, dtype: float64

Добавление столбцов в датасет

```
df_cut['BMI'] = 10000 * df_cut['Weight'] / (df_cut['Growth'] * df_cut['Growth'])
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: SettingWith A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs """Entry point for launching an IPython kernel.

df_cut.head()

	Age	Growth	Weight	BMI
0	20	170	64.0	22.145329
1	22	191	73.0	20.010416
2	21	172	60.0	20.281233
3	19	168	59.0	20.904195
4	23	159	57.0	22.546576

Коэффициент корреляции

df_cut.corr()

	Age	Growth	Weight	BMI
Age	1.000000	-0.101982	-0.185722	-0.200305
Growth	-0.101982	1.000000	0.544528	0.146201
Weight	-0.185722	0.544528	1.000000	0.904678
ВМІ	-0.200305	0.146201	0.904678	1.000000

Группировка

df.groupby('Sex')['Growth', 'Weight'].mean()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarni """Entry point for launching an IPython kernel.

Growth Weight

Sex

женский 165.725000 59.105263

мужской 179.636364 71.580645

df.groupby(['Sex', 'Chocolate'])['Russian rating', 'Maths rating'].mean()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarni """Entry point for launching an IPython kernel.

Russian rating Maths rating

Sex	Chocolate	-	_
женский	M&Ms	79.400000	51.600000
	Баунти	81.181818	56.318182
	КитКат	85.782609	61.782609
	Марс	91.166667	36.666667
	Милки Вей	79.583333	45.250000
	Натс	84.636364	53.818182
	Скиттлс (хотя это и не шоколадка)	86.000000	67.000000
	Сникерс	80.375000	61.562500
	Твикс	86.478261	55.217391
мужской	M&Ms	83.666667	76.666667
	Баунти	78.375000	68.000000
	КитКат	74.416667	51.083333
	Марс	85.600000	55.400000
	Милки Вей	72.800000	61.800000
	Натс	70.500000	72.000000
	Скиттлс (хотя это и не шоколадка)	84.000000	77.000000
	Сникерс	77.666667	59.055556
	Твикс	79.818182	75.000000

Базовые операции с данными

Визуализация данных

import seaborn as sns

гистограмма распределения
sns.displot(data=df, x='Growth')

<seaborn.axisgrid.FacetGrid at 0x7f9acb806c10>

sns.displot(data=df, x='Growth', kind='kde')

<seaborn.axisgrid.FacetGrid at 0x7f9acb162b90>

точечный график sns.scatterplot(data=df, x='Growth', y='Weight')

<matplotlib.axes._subplots.AxesSubplot at 0x7f9ac7b45810>

sns.scatterplot(data=df, x='Growth', y='Weight', hue='Sex')

<matplotlib.axes._subplots.AxesSubplot at 0x7f9ac7ac0110>

Визуализация категориальных признаков

sns.countplot(x=df['Sex']) # or data=df, x='Sex'

<matplotlib.axes._subplots.AxesSubplot at 0x7f9ac7b378d0>

sns.countplot(data=df, x='Sex', hue='Animal')

<matplotlib.axes._subplots.AxesSubplot at 0x7f9ac7999890>

Построение нескольких графиков

df_cut['Shoe_size'] = df['Shoe size']

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: SettingWith A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs """Entry point for launching an IPython kernel.

sns.pairplot(df_cut)

Здесь по диагонали находится гистограмма признака, а в остальных ячейках - парные точечные диаграммы

```
df_cut['Sex'] = df.Sex
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: SettingWith A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs """Entry point for launching an IPython kernel.

sns.pairplot(df_cut, hue='Sex')

Работа с пропусками в данных и отсутствующими значениями

```
# Простое удаление пропусков
df1 = df.dropna()
df1.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 118 entries, 0 to 185
Data columns (total 48 columns):

Data	co camin's (coca c 40 co camin's):		
#	Column	Non-Null Count	Dtype
0	Age	118 non-null	int64
1	Growth	118 non-null	int64
2	Shoe size	118 non-null	int64
3	Course number	118 non-null	int64
4	Year of birth	118 non-null	int64
5	Friend number	118 non-null	int64
6	Russian rating	118 non-null	int64
7	Maths rating	118 non-null	int64
8	Physics rating	118 non-null	int64
\cap	Computer eciance retina	110 000 0111	+ ~ + C 1

17.11.2022, 01:23 da_course.ipynb - Colaboratory

9	computer scrence rating		non-nu t t	111LD4	
10	Chemistry rating		non-null	int64	
11	Literature rating		non-null	int64	
12	History rating		non-null	int64	
13	Geography rating		non-null	int64	
14	Biology rating		non-null	int64	
15	Foreign language rating		non-null	int64	
16	Social science rating		non-null	int64	
17	Distance to home km		non-null	int64	
18	Minutes to first class	118	non-null	int64	
19	Children number	118	non-null	float64	
20	Removed teeth	118	non-null	float64	
21	Weight	118	non-null	float64	
22	Glasses	118	non-null	object	
23	Sex	118	non-null	object	
24	Problems in last semester	118	non-null	object	
25	Coin	118	non-null	object	
26	Rock paper scissors	118	non-null	object	
27	Animal	118	non-null	object	
28	Month of birthday	118	non-null	int64	
29	Your rating in university	118	non-null	object	
30	Fastfood	118	non-null	object	
31	Height of 5000 mm	118	non-null	int64	
32	Width of 5000 mm	118	non-null	int64	
33	Putin age	118	non-null	int64	
34	Army	118	non-null	object	
35	Hostel	118	non-null	object	
36	Hair length	118	non-null	float64	
37	Floor number	118	non-null	int64	
38	Social network duration min	118	non-null	int64	
39	Chocolate		non-null	object	
40	City population		non-null	float64	
41	Strange people		non-null	object	
42	Your insitute		non-null	object	
43	Brother-sister		non-null	object	
44	Plane seat		non-null	object	
45	MIddle and index finger		non-null	int64	
46	Middle and ring finger		non-null	float64	
47	Middle and little finger		non-null	float64	
	types: float64(7), int64(26), object(15)				
	rv usage: 45.2+ KB	,	· /		

memory usage: 45.2+ KB

Удалили много теоретически полезной информации, лучше воспользоваться заменой пропусков

df.isnull().sum()

Age	0
Growth	0
Shoe size	0
Course number	0
Year of birth	0
Friend number	0
Russian rating	0
Maths rating Physics rating	0
Computer science rating	0
Chemistry rating	0
Literature rating	0
History rating	0
Geography rating	0
Biology rating	0
Foreign language rating	0
Social science rating	0
Distance to home km	0
Minutes to first class	0
Children number	36
Removed teeth	38
Weight	29
Glasses	2
Sex Problems in last semester	0
Coin	0
Rock paper scissors	0
Animal	0
Month of birthday	0
Your rating in university	0
Fastfood	0
Height of 5000 mm	0
Width of 5000 mm	0
Putin age	0
Army	0
Hostel	0
Hair length	0
Floor number	0
Social network duration min Chocolate	0
City population	0
Strange people	0
Your insitute	0
Brother-sister	0
Plane seat	0
MIddle and index finger	0
Middle and ring finger	0
Middle and little finger	0
dtype: int64	

dt2 = dt.tillna(0)
df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 186 entries, 0 to 185
Data columns (total 48 columns):

# 	Column	Non-Null Count	Dtype
0	Age	186 non-null	int64
1	Growth	186 non-null	int64
2	Shoe size	186 non-null	int64
3	Course number	186 non-null	int64
4	Year of birth	186 non-null	int64
5	Friend number	186 non-null	int64
6	Russian rating	186 non-null	int64
7	Maths rating	186 non-null	int64
8	Physics rating	186 non-null	int64
9	Computer science rating	186 non-null	int64
10	Chemistry rating	186 non-null	int64
11	Literature rating	186 non-null	int64
12	History rating	186 non-null	int64
13	Geography rating	186 non-null	int64
14	Biology rating	186 non-null	int64
15	Foreign language rating	186 non-null	int64
16	Social science rating	186 non-null	int64
17	Distance to home km	186 non-null	int64
18	Minutes to first class	186 non-null	int64
19	Children number	186 non-null	float64
20	Removed teeth	186 non-null	float64
21	Weight	186 non-null	float64
22	Glasses	186 non-null	object
23	Sex	186 non-null	object
24	Problems in last semester	186 non-null	object
25	Coin	186 non-null	object
26	Rock paper scissors	186 non-null	object
27	Animal	186 non-null	object
28	Month of birthday	186 non-null	int64
29	Your rating in university	186 non-null	object
30	Fastfood	186 non-null	object
31	Height of 5000 mm	186 non-null	int64
32	Width of 5000 mm	186 non-null	int64
33	Putin age	186 non-null	int64
34	Army	186 non-null	object
35	Hostel	186 non-null	object
36	Hair length	186 non-null	float64
37	Floor number	186 non-null	int64
38	Social network duration min	186 non-null	int64
39	Chocolate	186 non-null	object
40	City population	186 non-null	float64
41	Strange people	186 non-null	object
42	Your insitute	186 non-null	object
43	Brother-sister	186 non-null	object
44	Plane seat	186 non-null	object
45	MIddle and index finger	186 non-null	int64

46 Middle and ring finger 186 non-null float64 47 Middle and little finger 186 non-null float64 dtypes: float64(7), int64(26), object(15)

memory usage: 69.9+ KB

Можно также заменить на медиану/среднее значение и тд

df2.isnull().sum()

Age	0
Growth	0
Shoe size	0
Course number	0
Year of birth	0
Friend number	0
Russian rating	0
Maths rating	0 0
Physics rating	
Computer science rating	0 0
Chemistry rating Literature rating	0
History rating	0
Geography rating	0
Biology rating	0
Foreign language rating	0
Social science rating	0
Distance to home km	0
Minutes to first class	0
Children number	0
Removed teeth	0
Weight	0
Glasses	0
Sex	0
Problems in last semester	0
Coin	0
Rock paper scissors	0
Animal	0
Month of birthday	0
Your rating in university	0
Fastfood	0
Height of 5000 mm	0
Width of 5000 mm	0
Putin age	0
Army	0
Hostel	0
Hair length	0
Floor number	0
Social network duration min	0
Chocolate City population	0
Strange people	0
Your insitute	0
Brother-sister	0
Plane seat	0
MIddle and index finger	0
Middle and ring finger	0
Middle and little finger	0
dtype: int64	

Замена по столбцу

```
df['Weight'].fillna(df['Weight'].mean())
    0
            64.0
    1
            73.0
    2
            60.0
    3
            59.0
    4
            57.0
    181
            59.0
    182
            43.0
    183
            51.0
    184
            62.0
    185
            54.0
    Name: Weight, Length: 186, dtype: float64
```

Замена пропусков в категориальных признаках

```
df['Glasses'] = df['Glasses'].fillna('да')
```

Выбросы и аномалии

Очень часто их можно найти при парном анализе двух признаков

Можно проверить с помощью визуализации (box plot)

sns.boxplot(df['Age'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWar FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f9ac4a8d510>

sns.boxplot(df['Growth'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWar FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f9ac4a3e450>

sns.boxplot(df['Weight'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWar FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f9ac49979d0>

1 метод удаления выбросов

Найти среднее значение т

Найти СКО ѕ

Построить интервал m-3s; m+3s, все наблюдения за пределами интервала удалить из таблицы

То есть используется простейшее правило трех сигм, которое покрывает 99% значений

sns.boxplot(df['Weight'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWar FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f9ac4916190>

2 способ

а - 25 процентиль

b - 75 процентиль

Строится интервал вида a - 1.5(b - a); b + 1.5(b - a)

Наблюдения за пределами также удаляются

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWar FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f9ac4a25910>

$$df = df[(df['Age'] > a - 1.5 * (b - a)) & (df['Age'] < b + 1.5 * (b - a))]$$

sns.boxplot(df['Age'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWar FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f9ac486cf50>

Кластеризация

```
from sklearn.cluster import KMeans
```

```
df_cut = df[['Weight', 'Growth', 'Sex']]
```

```
df_cut = df_cut.dropna()
```

```
kmeans = KMeans(n_clusters=2, random_state=0)
kmeans.fit(df_cut[['Weight', 'Growth']])
df_cut['Label'] = kmeans.labels_
```

df_cut.head()

Label	Sex	Growth	Weight	
1	женский	170	64.0	0
0	мужской	191	73.0	1
1	мужской	172	60.0	2
1	женский	168	59.0	3
1	женский	159	57.0	4

sns.scatterplot(data=df_cut, x='Weight', y='Growth', hue='Label')

<matplotlib.axes._subplots.AxesSubplot at 0x7f9ac4240490>

Сравним с разбиением по полу

sns.scatterplot(data=df_cut, x='Weight', y='Growth', hue='Sex')

Пример простейшей проверки точности кластеризации

24 ошибки в определении мужчин

```
kmeans = KMeans(n_clusters=3, random_state=0)
kmeans.fit(df_cut[['Weight', 'Growth']])
df_cut['Label'] = kmeans.labels_
```

sns.scatterplot(data=df_cut, x='Weight', y='Growth', hue='Label')

<matplotlib.axes._subplots.AxesSubplot at 0x7f9ac2b8a910>

Базовые методы машинного обучения

Предсказание (классификация - категориальный признак) и регрессия (числовой признак)

Линейная регрессия

```
df_cut = df[['Growth', 'Shoe size']]
df_cut = df_cut.dropna()
```

from sklearn.linear_model import LinearRegression

sns.scatterplot(data=df_cut, x='Shoe size', y='Growth')

<matplotlib.axes. subplots.AxesSubplot at 0x7f9ac2b25210>

Просматривается линейная зависимость, значит можно прменять линейную регрессию.

Целевой признак - рост

```
results.coef_, results.intercept_ # коэффициент и свободный член (array([2.77966583]), 60.26465138793836)
```

df_cut['Predicted Growth'] = results.predict(df_cut['Shoe size'].values.reshape(

df_cut.head()

	Growth	Shoe size	Predicted Growth
0	170	40	171.451284
1	191	43	179.790282
2	172	41	174.230950
3	168	38	165.891953
4	159	36	160.332621

Проверим точность предсказаний, посчитаем среднюю абсолютную ошибку

```
from sklearn.metrics import mean_absolute_error
mean_absolute_error(df_cut['Growth'], df_cut['Predicted Growth'])
```

3,4686666590527797

Теперь множественная линейная регрессия

df_cut

	MIddle and index finger	Middle and ring finger	Middle and little finger
0	20	10.0	40.0
1	5	5.0	20.0
2	13	10.0	26.0
3	12	13.5	35.0
4	10	11.0	22.0
181	13	23.0	45.0
182	8	9.0	15.0
183	9	16.0	35.0
184	9	15.0	25.0
185	7	10.0	35.0

171 rows \times 3 columns

(array([0.11527745, 0.04296171]), 7.4077839882224925)

Итоговая модель:

MIddle and index finger = 0.115 * Middle and ring finger + 0.043 * Middle and little finger + 7.41

df_cut['Predicted'] = results.predict(df_cut[['Middle and ring finger', 'Middle

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: SettingWith A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs """Entry point for launching an IPython kernel.

```
mean_absolute_error(df_cut['MIddle and index finger'], df_cut['Predicted'])
3.1885190843328126
```

Проверка точности модели на новой выборке Предыдущие тесты точности алгоритма были не совсем верными, так как модель обучалась и проверялась на одних и тех же данных

Далее рассказывается о стандартном подходе разделения на тренировочную и тестовую выборку

Здесь будут использоваться два датасета

Используем функцию predict на тестовую выборку

```
df_test_cut['Predicted'] = results.predict(df_test_cut[['Middle and ring finger'
    /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: SettingWith
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs """Entry point for launching an IPython kernel.

Алгоритмы классификации

Метод k ближайших соседей (kNN)

from sklearn.neighbors import KNeighborsClassifier

```
df_cut = df[['Growth', 'Weight', 'Sex']]
df_cut = df_cut.dropna()
```

sns.scatterplot(data=df_cut, x='Weight', y='Growth', hue='Sex')

<matplotlib.axes._subplots.AxesSubplot at 0x7f9ac2b25450>

Для корректного подсчета расстояний необходимо провести нормировку данных

from sklearn.preprocessing import StandardScaler

```
# обучение нормировщика scaler.fit(df_cut[['Weight', 'Growth']].values.reshape(-1, 2))
```

StandardScaler()

scaler = StandardScaler()

```
# нормировка arr = scaler.transform(df_cut[['Weight', 'Growth']].values.reshape(-1, 2))
```

В итоге данные превращаются в обезличенный массив

arr

```
array([[-0.01667202, -0.1499425], [0.54119943, 2.09919504], [-0.26461489, 0.06426107], [-0.3266006. -0.36414608].
```

```
[-0.45057203, -1.32806217],
[-0.88447205,
               0.59977001],
[-0.57454347,
               0.92107538],
[ 3.45452809,
               0.92107538],
0.29325656.
               1.456584321.
[-0.38858632, -0.36414608],
[-1.0704292, -1.43516396],
[ 2.09084234,
               1.24238074],
[-1.00844348, -0.57834966],
[-0.01667202]
               1.45658432],
[-0.26461489,
               1.24238074],
[-0.6985149, -0.47124787],
[-0.3266006, -0.79255323],
[ 1.78091375.
               1.5636861 ],
[-0.57454347, -0.36414608],
[-0.51255775, -1.43516396],
[ 0.0453137 ,
               1.777889681.
[ 0.0453137 ,
               0.59977001],
[0.35524228, -0.79255323],
[-0.26461489, -0.89965502],
               2.31339862],
[-0.20262917.
[ 1.5949566 , -0.89965502],
[ 0.35524228,
               1.02817716],
[0.0453137, -0.1499425],
[ 1.90488519.
              1.777889681.
               1.45658432],
[-0.01667202]
[ 0.0453137 ,
               0.59977001],
[-0.6985149, -1.00675681],
[ 1.22304231,
               1.5636861 ].
[-0.3266006, -0.68545144],
[0.66517086, -1.11385859],
[ 0.23127085, 1.45658432],
[-1.00844348, -0.1499425]
[ 0.23127085, 1.02817716],
               1.24238074],
[ 0.47921371,
[-0.14064345]
               0.92107538],
[-0.38858632,
               0.49266822],
[-0.14064345]
               0.06426107],
[ 0.35524228.
               0.7068718 ],
[ 0.66517086,
               0.38556644],
[-0.6985149, -0.89965502],
[-1.00844348, -1.64936753],
[ 1.71892804,
               0.92107538],
[-0.38858632, -0.89965502],
[0.72715658, -0.25704429],
[0.0453137, -0.25704429],
[-0.07865774, -0.1499425],
[-0.6985149, -0.1499425],
[ 0.66517086,
               1.13527895],
[ 0.10729941,
               1.67078789],
[-0.38858632.
               0.7068718 ],
[ 0.85112801.
               0.7068718 ],
[ 0.0453137 ,
               0.92107538],
[ 2.52474235.
               1.028177161.
```

```
[-0.88447205, -0.89965502],
```

Сама классификация

```
model = KNeighborsClassifier(n_neighbors=1) # инициализация model.fit(arr, y=df_cut['Sex'].values)
```

KNeighborsClassifier(n_neighbors=1)

Модель обучена, можно проверять ее на тестовой выборке

```
df_test_cut = df_test[['Growth', 'Weight', 'Sex']]
df_test_cut = df_test_cut.dropna()

arr_test = scaler.transform(df_test_cut[['Weight', 'Growth']].values.reshape(-1,
df_test_cut['Predicted'] = model.predict(arr_test)
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: SettingWith A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs """Entry point for launching an IPython kernel.

df_test_cut.head()

Predicted	Sex	Weight	Growth	
мужской	мужской	78.0	180.0	0
женский	женский	50.0	167.0	1
мужской	женский	70.0	178.0	2
женский	женский	47.0	156.0	3
мужской	мужской	94.0	186.0	4

Метрики качества алгоритма классификации

Матрица сопряженности

pd.crosstab(df_test_cut['Sex'], df_test_cut['Predicted'])

Predicted женский мужской

Sex		
женский	39	8
мужской	3	27

Закодируем результаты

```
df_test_cut['Code'] = 0
df_test_cut.loc[(df_test_cut['Sex'] == 'мужской') & (df_test_cut['Predicted'] ==
df_test_cut.loc[(df_test_cut['Sex'] == 'женский') & (df_test_cut['Predicted'] ==
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: SettingWith A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs """Entry point for launching an IPython kernel.

/usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py:1817: Settin A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs self._setitem_single_column(loc, value, pi)

sns.scatterplot(data=df_test_cut, x='Weight', y='Growth', hue='Code')

<matplotlib.axes. subplots.AxesSubplot at 0x7f9ac2996cd0>

Линейный классификатор

from sklearn.linear_model import SGDClassifier

sns.scatterplot(data=df_cut, x='Weight', y='Growth', hue='Sex')

<matplotlib.axes. subplots.AxesSubplot at 0x7f9ac2929bd0>

Задача линейного классификатора - разделить данные на группы прямой линией

```
df_test_cut['Predicted'] = model.predict(arr_test)

pd.crosstab(df_test_cut['Predicted'], df_test_cut['Sex'])
```

Sex женский мужской

Predicted		
женский	44	4
мужской	3	26

```
df_test_cut['Code'] = 0
df_test_cut.loc[(df_test_cut['Sex'] == 'мужской') & (df_test_cut['Predicted'] ==
df_test_cut.loc[(df_test_cut['Sex'] == 'женский') & (df_test_cut['Predicted'] ==
```

sns.scatterplot(data=df_test_cut, x='Weight', y='Growth', hue='Code')

Вероятностные алгоритмы

Вместо предсказания дают вероятность принадлежности к одному или другому классу

from sklearn.ensemble import RandomForestClassifier

```
df_cut = df[['Growth', 'Weight', 'Sex', 'Hair length', 'Children number']]
df_cut = df_cut.dropna()
```

```
model = RandomForestClassifier(max_depth=2, random_state=0)
model.fit(df_cut[['Growth', 'Weight', 'Hair length', 'Children number']].values.
          y=df cut['Sex'].values)
    RandomForestClassifier(max depth=2, random state=0)
df_test_cut = df_test[['Growth', 'Weight', 'Sex', 'Hair length', 'Children numbe
df test cut = df test cut.dropna()
Для получения вероятности используем метод predict_proba
result = model.predict_proba(df_test_cut[['Growth', 'Weight', 'Hair length', 'Ch
print(result)
     [[0.05717479 0.94282521]
      [0.95703983 0.04296017]
      [0.92220778 0.07779222]
      [0.94430864 0.05569136]
      [0.04557862 0.95442138]
      [0.95326172 0.04673828]
      [0.95058413 0.04941587]
      [0.20051871 0.79948129]
      [0.08046935 0.91953065]
      [0.60783415 0.39216585]
      [0.70492419 0.29507581]
      [0.06705782 0.93294218]
      [0.6689992 0.3310008 ]
      [0.96331532 0.03668468]
      [0.96513351 0.03486649]
      [0.05959696 0.94040304]
      [0.14395969 0.85604031]
      [0.03395659 0.96604341]
      [0.96193671 0.03806329]
      [0.05959696 0.94040304]
      [0.03654891 0.96345109]
      [0.03654891 0.96345109]
      [0.10687531 0.89312469]
      [0.95703983 0.04296017]
      [0.92891486 0.07108514]
      [0.68630715 0.31369285]
      [0.07115209 0.92884791]
      [0.10142245 0.89857755]
      [0.93072869 0.06927131]
      [0.96513351 0.03486649]
      [0.95507991 0.04492009]
```

0.0353857 1

MARTER

[0.93724458 0.06275542]

[0.9646143

[W 0361300

```
「の『コンハエマココ
           ן דפוסכטפים
[0.12028684 0.87971316]
[0.04479506 0.95520494]
[0.0434047 0.9565953 ]
[0.06923173 0.93076827]
[0.96279612 0.03720388]
[0.9646143 0.0353857]
[0.9646143 0.0353857]
[0.93359305 0.06640695]
[0.95703983 0.04296017]
[0.12121668 0.87878332]
[0.96513351 0.03486649]
[0.56588125 0.43411875]
[0.0434047 0.9565953]
[0.9646143
           0.0353857 1
[0.88054449 0.11945551]
[0.93241863 0.06758137]
[0.95703983 0.04296017]
[0.9646143 0.0353857]
[0.82292556 0.17707444]
[0.96193671 0.03806329]
[0.93259282 0.06740718]
[0.89663671 0.10336329]
[0.72626932 0.27373068]
[0.9347861 0.0652139 ]
[0.03395659 0.96604341]
[0 20051071 0 700/0120]
```

Получили вероятности принадлежности к классу

```
df_test_cut['pr class 0'] = result[:, 0]
df_test_cut['pr class 1'] = result[:, 1]
df_test_cut.head()
```

	Growth	Weight	Sex	Hair length	Children number	pr class 0	pr class 1
0	180.0	78.0	мужской	1.2	2.0	0.057175	0.942825
1	167.0	50.0	женский	30.0	2.0	0.957040	0.042960
3	156.0	47.0	женский	20.0	2.0	0.922208	0.077792
5	150.0	40.0	женский	30.0	2.0	0.944309	0.055691
7	183.0	80.0	мужской	2.0	0.0	0.045579	0.954421

Селекция признаков

Использование нецелевых категориальных признаков

from sklearn import tree

Заменим признак категориальный признак пола числами, для этого просто кодируем разные метки нулями и единицами

```
from sklearn import preprocessing
coder = preprocessing.LabelEncoder()
coder.fit(df['Sex'])
    LabelEncoder()
coder.transform(df['Sex'])
    array([0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0,
           0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1,
           1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1,
           0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1,
           1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0,
           0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0,
           0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
           0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0])
df1 = df
df1['Sex'] = coder.transform(df1['Sex'])
for name in ['Coin', 'Animal', 'Army']:
  coder.fit(df1[name])
  df1[name] = coder.transform(df1[name])
df_cut = df1[['Growth', 'Weight', 'Sex', 'Hair length',
               'Coin', 'Children number', 'Animal', 'Army']]
df_cut = df_cut.dropna()
```

Визуализация результатов

DecisionTreeClassifier(max_depth=4)


```
for name in['Sex', 'Animal', 'Army', 'Coin']:
  coder.fit(df_test_cut[name])
  df_test_cut[name] = coder.transform(df_test_cut[name])
df_test_cut['Predict'] = model.predict(df_test_cut[['Growth', 'Weight', 'Coin',
                                                     'Hair length', 'Army', 'Anim
                                                     'Children number']].values.r
quality = pd.crosstab(df_test_cut['Predict'], df_test_cut['Sex'])
quality
         Sex
               0
                  1
     Predict
        0
              30
                  0
        1
              12 26
# recall (ж) - доля правильно предсказанных женщин
quality[0][0] / sum(quality[0])
    0.7142857142857143
# recall (м)
quality[1][1] / sum(quality[1])
    1.0
# precision (ж) — доля истинных женщин среди людей, которых классификатор отнес
quality[0][0] / (quality[0][0] + quality[1][0])
    1.0
# precision (м)
quality[1][1] / (quality[1][1] + quality[0][1])
    0.6842105263157895
```

Кодирование категориальных признаков и их полезность

```
coder = preprocessing.LabelEncoder()
df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/students.csv',
                 delimiter=',')
Переведем все категории в числа
df1 = df.dropna()
for name in ['Sex', 'Coin', 'Animal', 'Army', 'Glasses',
              'Your rating in university', 'Fastfood',
              'Hostel', 'Chocolate', 'Brother-sister',
              'Plane seat', 'Problems in last semester',
              'Rock paper scissors', 'Strange people',
             'Your insitute']:
             coder.fit(df1[name])
             df1[name] = coder.transform(df1[name])
    /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:9: SettingWith
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead
    See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs">https://pandas.pydata.org/pandas-docs</a>
       if __name__ == '__main__':
Проверим важность признаков
from sklearn.ensemble import ExtraTreesClassifier
selector = ExtraTreesClassifier()
result = selector.fit(df1[df1.columns], df1['Sex'])
result.feature_importances_
    array([0.00486312, 0.05612654, 0.1077762 , 0.00277149, 0.004382
            0.00374471, 0.01107933, 0.00502965, 0.01358079, 0.02781332,
            0.00137147, 0.00303761, 0.0038468 , 0.00117425, 0.0059186 ,
            0.00166235, 0.00488792, 0.00341772, 0.00588856, 0.00385442,
            0.00341795, 0.0133458, 0.0073797, 0.41186935, 0.00735933,
            0.02651898, 0.00213353, 0.00393967, 0.00334157, 0.00258795,
            0.00384484, 0.00422083, 0.00554578, 0.0071112, 0.09920971,
            0.00242854, 0.06129814, 0.0059842 , 0.0042773 , 0.00561605,
```

0.00609938, 0.00336402, 0.00399035, 0.00661712, 0.00565334,

0.00348775, 0.01189274, 0.00523805])

features_table.sort_values(by='Importance', ascending=False)

	Importance
Sex	0.411869
Shoe size	0.107776
Army	0.099210
Hair length	0.061298
Growth	0.056127
Computer science rating	0.027813
Coin	0.026519
Physics rating	0.013581
Weight	0.013346
Middle and ring finger	0.011893
Russian rating	0.011079
Glasses	0.007380
Problems in last semester	0.007359
Putin age	0.007111
Brother-sister	0.006617
City population	0.006099
Floor number	0.005984
Biology rating	0.005919
Minutes to first class	0.005889
Plane seat	0.005653
Chocolate	0.005616
Width of 5000 mm	0.005546
Middle and little finger	0.005238
Maths rating	0.005030
Social science rating	0.004888

Age	0.004863
Year of birth	0.004382
Social network duration min	0.004277
Height of 5000 mm	0.004221
Your insitute	0.003990
Animal	0.003940

Видим убывающий список наиболее эффективных признаков, описывающих пол человека

Оставим только часть значимых признаков

Strange people 0.003364

Другой способ кодирования категориальных признаков

df_cut = pd.get_dummies(df_cut)
df_cut.head()

	Shoe size	Hair length	Growth	Computer science rating	Weight	Army_могут призвать	агту_не призовут (по разным причинам)	Coin_Opeл	•
0	40	50.0	170	84	64.0	0	1	1	
1	43	7.0	191	72	73.0	0	1	1	
2	41	4.0	172	0	60.0	1	0	0	
3	38	20.0	168	0	59.0	0	1	0	

Получили дополнительные столбцы с различными вариантами ответов

Теперь удалим лишние столбцы, тк, например, в случае пола, нам хватит только столбца с одним полом, чтобы знать данные по каждому полу

	Shoe size	Hair length	Growth	Computer science rating	Weight	Агту_не призовут (по разным причинам)	Coin_Решка	Sex_мужской
0	40	50.0	170	84	64.0	1	0	0
1	43	7.0	191	72	73.0	1	0	1
2	41	4.0	172	0	60.0	0	1	1

Удалили избыточность

DecisionTreeClassifier(max_depth=3)

da_course.ipynb - Colaboratory

```
17.11.2022, 01:23
dot_data = tree.export_graphviz(model, out_file=None,
                                  feature_names=['Army_не призовут (по разным прич
                   'Shoe size',
                   'Growth',
                   'Hair length',
                   'Coin_Решка',
                   'Computer science rating',
                   'Weight'],
                   class_names=['f', 'm'],
                   filled=True, rounded=True,
                   special_characters=True)
graph = graphviz.Source(dot_data)
graph
                                                               Shoe size \leq 40.5
                                                                  gini = 0.478
                                                                samples = 157
                                                                value = [95, 62]
                                                                    class = f
                                                         True
                                           Hair length ≤ 7.5
                                              qini = 0.083
                                             samples = 92
                                            value = [88, 4]
                                                class = f
                          Army_не призовут (по разным причинам) ≤ 0.5
```

	Shoe size	Hair length	Computer science rating	Weight	Growth	Агту_не призовут (по разным причинам)	Coin_Решка	Sex_мужской
0	44.0	1.2	88	78.0	180.0	1	0	1
1	38.0	30.0	0	50.0	167.0	1	0	0
2	41.0	50.0	0	70.0	178.0	1	0	0

pd.crosstab(df_test_cut['Predict'], df_test_cut['Sex_мужской'])

```
      Sex_мужской
      0
      1

      Predict
      1

      0
      46
      1

      1
      1
      29
```

Решающие деревья

```
df_cut = df[['Growth', 'Weight', 'Sex', 'Hair length', 'Children number']]
df_cut = df_cut.dropna()
```

sns.pairplot(df_cut, hue='Sex')

model = tree.DecisionTreeClassifier()

Большой плюс - для деревьев не нужно нормировать данные

pd.crosstab(df_test_cut['Predicted'], df_test_cut['Sex'])

50.1	женекии	- ужекей
Predicted		
женский	41	1
мужской	1	25

Sex женский мужской

Минусы - громоздкая визуализация. Выйти из ситуации можно с помощью установки параметра max_depth, дерево станет более компактным. Однако точность классификатора может снизиться.

Еще раз про показатели качества классификации

Основных два - precision и recall

precision - доля верных наблюдений в предсказанной группе

recall - доля верных наблюдений среди всех наблюдений данной группы (изначальных, не предсказанных)

Для их подсчета есть функция

```
from sklearn.metrics import precision recall fscore support
```

Здесь важен порядок, первый аргумент - истинные метки, второй - предсказанные. Только в таком случае результаты будут верные

```
precision_recall_fscore_support(df_test_cut['Sex'], df_test_cut['Predicted'])
        (array([0.97619048, 0.96153846]),
        array([0.97619048, 0.96153846]),
        array([0.97619048, 0.96153846]),
        array([42, 26]))
```

Первая строка - precision для каждого пола

Вторая строка - recall для каждого пола

Третья строка - F1 метрика

4 - количество наблюдений каждого класса

Задача регрессии. Дерево решений

```
df_cut = df[['Growth', 'Weight', 'Hair length', 'Shoe size']]
df_cut = df_cut.dropna()
```

sns.pairplot(df_cut)

Будем предсказывать рост по всем остальным признакам с помощью DecisionTree**Regressor**

```
model = tree.DecisionTreeRegressor(max_depth=2)
model.fit(df_cut[['Weight', 'Hair length', 'Shoe size']].values.reshape(-1, 3),
          y=df_cut['Growth'].values)
    DecisionTreeRegressor(max depth=2)
dot_data = tree.export_graphviz(model, out_file=None,
                                 feature_names=['Weight', 'Hair length', 'Shoe si
                                 class_names='Growths',
                                 filled=True, rounded=True,
                                 special_characters=True)
graph = graphviz.Source(dot_data)
graph
                                                    Shoe size \leq 41.5
                                                squared error = 84.631
                                                     samples = 157
                                                    value = 171.159
                                                True
                                                                    False
                                     Shoe size \leq 38.5
                                                                   Shoe size \leq 42
                                  squared error = 37.26
                                                               squared error = 3
                                      samples = 107
                                                                    samples = 50
                                     value = 166.364
                                                                    value = 181.4
      squared error = 19.8
                                  squared error = 26.65
                                                               squared error = 1
                                                                    samples = 18
          samples = 60
                                       samples = 47
          value = 163.0
                                      value = 170.66
                                                                   value = 177.22
df_test_cut = df_cut[['Growth', 'Weight', 'Shoe size', 'Hair length']]
df test cut = df test cut.dropna()
df_test_cut['Predicted'] = model.predict(df_test_cut[['Weight', 'Hair length', '
```

В отличие от классификации, здесь для проверки качества используем среднюю абсолютную ошибку

```
mean_absolute_error(df_test_cut['Growth'], df_test_cut['Predicted'])
3.7618918552649414
```

Для разных значений глубины поиска можно получать разные значения точности. Но не всегда большее значение ведет к возрастанию точности. Здесь можно столкнуться с проблемой переобучения.

Бустинг и ансамбли алгоритмов

С точки зрения статистики, совместное использование (ансамбль) нескольких алгоритмов машинного обучения будет давать большую точность, чем эти алгоритмы по-отдельности

Пример - RandomForest, составленный из различных деревьев

RandomForestClassifier(max_depth=2, random_state=0)

```
df_test_cut = df_test[['Growth', 'Weight', 'Sex', 'Hair length', 'Children numbe
df_test_cut = df_test_cut.dropna()
```

```
df_test_cut['Predicted'] = model.predict(df_test_cut[['Growth', 'Weight','Hair l
```

```
pd.crosstab(df_test_cut['Sex'], df_test_cut['Predicted'])
```

Predicted женский мужской

Sex		
женский	42	0
мужской	1	25

Градиентный бустинг

```
from sklearn.ensemble import GradientBoostingClassifier
```

GradientBoostingClassifier(random_state=0)

```
pd.crosstab(df_test_cut['Sex'], df_test_cut['Predicted'])
```

Predicted Женский мужской

Sex		
женский	42	0
мужской	1	25

В данном месте повторяется раздел "Вероятностные алгоритмы"

Повторим итог

RandomForestClassifier(max_depth=2, random_state=0)

```
df_test_cut['pr class 0'] = result[:, 0]
df_test_cut['pr class 1'] = result[:, 1]
df_test_cut.head()
```

	Growth	Weight	Sex	Children number	Hair length	pr class 0	pr class 1
0	180.0	78.0	мужской	2.0	1.2	0.111984	0.888016
1	167.0	50.0	женский	2.0	30.0	0.960954	0.039046
3	156.0	47.0	женский	2.0	20.0	0.930384	0.069616
5	150.0	40.0	женский	2.0	30.0	0.954804	0.045196
7	183.0	80.0	мужской	0.0	2.0	0.072297	0.927703

 $df_test_cut[(df_test_cut['Sex'] == 'мужской') & (df_test_cut['pr class 1'] > 0.9$

	Growth	Weight	Sex	Children number	Hair length	pr class 0	pr class 1
7	183.0	80.0	мужской	0.0	2.0	0.072297	0.927703
23	194.0	97.0	мужской	0.0	5.0	0.057225	0.942775
25	185.0	72.3	мужской	100.0	4.0	0.098636	0.901364
27	185.0	93.0	мужской	2.0	10.0	0.094359	0.905641
28	193.0	105.0	мужской	2.0	11.0	0.094359	0.905641
33	196.0	97.0	мужской	2.0	15.0	0.096930	0.903070
45	185.0	65.0	мужской	2.0	4.0	0.076419	0.923581
48	185.0	85.0	мужской	2.0	4.0	0.079070	0.920930
60	191.0	85.0	мужской	2.0	3.0	0.079070	0.920930
82	182.0	92.0	мужской	0.0	4.0	0.057225	0.942775
93	183.0	68.0	мужской	0.0	8.0	0.076349	0.923651
97	188.0	73.0	мужской	2.0	3.0	0.079070	0.920930

Платные продукты Colab - Отменить подписку

