EECE5643 – Homework 2

1.

a.

```
for 1000 jobs

average interarrival time = 9.87

average service time ... = 7.12

average delay ..... = 18.59

average wait ..... = 25.72

maximum delay ..... = 118.76

number of jobs in the serivce node at t=400 = 7

proportion of jobs delayed = 0.72

server utilization = 0.72
```

b.

Maximum delay experienced: 118.76

c.

Jobs in the service node at t=400: 7

Each job *i* spends exactly $(c_i - a_i)$ units of time in the system from arrival a_i to departure c_i as the job *i* is in the system whenever $a_i \le t < c_i$. The number of jobs in the service node at time t *t* is $l(t) = \sum_{i=1}^{n} [a_i \le t < c_i]$.

Theorem 1.2.1 states:

$$\int_{0}^{c_{n}} l(t) dt = \sum_{i=1}^{n} (c_{i} - a_{i})$$

Summing across all jobs:

$$\int_0^{c_n} l(t) dt = \int_0^{c_n} \sum_{i=1}^n \left[a_i \le t < c_i \right] dt = \sum_{i=1}^n \int_0^{c_n} \left[a_i \le t < c_i \right] dt = \sum_{i=1}^n \left(c_i - a_i \right)$$

d.

Proportion of delayed jobs: 0.72

Server Utilization: 0.72

The server is busy 72% of the time, and consequently 72% of jobs are delayed because they arrive to find the server already busy and must be queued. The fraction of jobs that arrive with a delay matches the fraction of time the server is busy, i.e., the utilization, as utilization measures the long-term fraction of time the server is not idle.

2.

```
for 500 jobs

average interarrival time = 4.08

average service time ... = 3.03

average delay ..... = 4.54

average wait ..... = 7.57

server utilization = 0.74

traffic intensity = 0.74
```

a.

Average service time: 3.03 Server utilization: 0.74 Traffic intensity: 0.74

b.

For an incoming job i, if the arrival time a_i is less than the completion time c_{i-1} of the previous job, the job is delayed because it must wait for the previous job to finish executing.

If
$$a_i < c_{i-1}$$
 (job *i* arrives during the service of job $i-1$): $s_i = c_i - c_{i-1}$

For an incoming job i, if the arrival time a_i is greater than or equal to the completion time c_{i-1} of the previous job, then job i starts executing immediately when it arrives.

If
$$a_i \ge c_{i-1}$$
 (job *i* arrives after job $i-1$ has finished): $s_i = c_i - a_i$

Combining these two cases:

$$s_i = c_i - \max\{a_i, c_{i-1}\}$$

3.

a.

The event is the sum of the two dice or the two up faces equals 7. The event is $\{X + Y = 7\}$ where X is the outcome of the first die and Y is the outcome of the second die.

The random components are the individual die rolls that produce the random variables X and Y. Each die roll follows the specified unfair probability distribution.

Seed	P(X+Y=7)
1	0.14224
42	0.14168
2023	0.14209
40599	0.14195
99999	0.14261

b.

Possible ways to get $\{X + Y = 7\}$ with two dice:

$$(1,6), (6,1), (2,5), (5,2), (3,4), (4,3)$$

$$P(1) = \frac{1}{13}, \quad P(6) = 4 \cdot \frac{1}{13} = \frac{4}{13}, \quad P(2) = P(3) = P(4) = P(5) = 2 \cdot \frac{1}{13} = \frac{2}{13}$$

$$\begin{split} P(X+Y=7) &= P(1)\,P(6) + P(6)\,P(1) + P(2)\,P(5) + P(5)\,P(2) + P(3)\,P(4) + P(4)\,P(3) \\ &= \left(\frac{1}{13}\right)\left(\frac{4}{13}\right) + \left(\frac{4}{13}\right)\left(\frac{1}{13}\right) + \left(\frac{2}{13}\right)\left(\frac{2}{13}\right) + \left(\frac{2}{13}\right$$

4.

a.

The event is the distance between two randomly chosen points on the circumference of a circle or the chord between those two points is greater than the radius. The event is $(\text{distance}(\theta_1, \theta_2) > \rho)$ where the distance or length of the chord is $2\rho \sin\left(\frac{|\theta_1 - \theta_2|}{2}\right)$.

The random components are the positions of the two individual points on the circumference of a circle. Angle-based notation is θ_1 and θ_2 . Cartesian-based notation is (X_1, Y_1) and (X_2, Y_2) .

b.

The probability that the distance between two random points on the circumference of a circle is greater than the circle's radius does not depend on the circle's radius ρ .

Seed	$P(\operatorname{distance}(\theta_1, \theta_2) > \rho)$
1	0.66671
42	0.66659
2023	0.66686
40599	0.66770
99999	0.66653

$$2\rho \sin\left(\frac{|\theta_1 - \theta_2|}{2}\right) > \rho$$

$$\Rightarrow 2\sin\left(\frac{|\theta_1 - \theta_2|}{2}\right) > 1$$

$$\Rightarrow \sin\left(\frac{|\theta_1 - \theta_2|}{2}\right) > \frac{1}{2}$$

The expression only depends on the angles θ_1 and θ_2 and does not depend on ρ .