广东工业大学

2019年硕士学位研究生招生考试试题

才	肯试科目(代码)名称: <u>(832)计</u> 算	算机组成原理	满分 150 分
	(考生注意:答卷封面需填写自己的准	考证编号,答完后连同本试题一并	弁 交回!)
	一、选择题(30分,共15题,每题2		
	1、冯. 诺伊曼计算机工作的基本方式的	特点是。	
	A、多指令单数据流	B、按地址访问并顺序执行指令	
	C、堆栈操作	D、存储器按内容选择地址	
	2、若[X]*=1.1011,则真值 X 为	o	
	А, -0. 1011	C, 0. 1011 D, 0. 0101	
4	3、若采用双符号位补码运算,运算结身	具的符号位为 01,则。	
	A、产生了负溢出(下溢)	B、产生了正溢出(上溢)	
(C、结果正确,为正数	D、结果正确,为负数	
4	1、计算机系统中的存储系统是指	o	
P	、RAM 存储器	B、ROM 存储器	×
(、主存储器	D、主存储器和外主存储器	
5	、某计算机字长 16 位,存储容量是 64Kl	3, 若按字编址, 那么它的寻址范围	是。
A	、64K B、32K	C、64KB D、32KB	
6	、指令的寻址方式有顺序和跳跃两种方	式,采用跳跃寻址方式,可实现	o
A	、堆栈寻址	B、程序的条件转移	
С	、程序的无条件转移	D、程序的条件转移或无条件转移	3
7	、单地址指令为了完成两个数的算术运	算,除地址指明的一个操作数外, 9	弓一个操作数
常采用]寻址方式。		
A	、堆栈 B、立即	C、隐含 D、间接	
8	、寄存器间接寻址方式中,操作数处在_	o	
A	、通用寄存器 B、程序计数器	C、主存单元 D、堆栈	
9.	. 指令周期是指。		
A	CPU 从主存取出一条指令的时间		
В	CPU 执行一条指令的时间		

第1页 共4页

C、CPU 从主存取出一条指令的时间加上 CPU 这条指令的时间			
D、时钟周期时间			
10、操作控制器的功能是。			
A、产生时序信号 B、从主存取出一条指令			
C、完成指令操作的译码 D、产生有关的操作控制信号,以执行该指令			
11、"总线忙"信号由建立。			
A、获得总线控制权的设备 B、发出"总线请求"的设备			
C、总线控制器 D、CPU			
12、串行总线主要用于。			
A、连接主机与外围设备 B、连接主存与 CPU			
C、连接运算器与控制器 D、连接 CPU 内部各部件			
13、在常用磁盘的各磁道中。			
A、最外圈磁道的位密度最大 B、最内圈磁道的位密度最大			
C、中间磁道的位密度最大 D、所有磁道的位密度一样大			
14、为了便于实现多级中断,保护现场最有效的方法是采用。			
A、通用寄存器 B、堆栈 C、存储器 D、外存			
15、会产生 DMA 请求的总线部件是			
A、任何外设 B、高速外设			
C、需要与主机批量交换数据的外设 D、具有 DMA 接口的外设			
二、判断题(15分,共15题,每题1分)			
二、判断题(15分,共15题,每题1分) 1、()奇校验可检出奇数个错。			
2、() 动态存储器在使用时需要进行刷新。			
3、()减少指令中地址数目的办法是:采用以寄存器为基础的寻址方式。			
4、()兼容性是一个完善的指令系统应满足的要求之一。			
5、()时序产生器是产生控制信号的部件。			
6、()在微程序控制方式中,每一条机器指令用一条微指令解释执行。			
7、()总线结构不影响计算机系统的指令系统。			
8、()平均存取时间为平均找道时间与平均等待时间之和。			
9、() CPU 在中断周期中进行中断服务处理。			

第2页 共4页

- 10、()不可屏蔽中断就是不允许发生的中断。
- 11、() DMA 方式是指:由 DMA 控制器执行 I/O 程序,以实现外围设备与主存之间的数据直传。
- 12、()硬布线方式是用时序电路产生时间控制信号,用存储逻辑电路实现各种控制功能。
 - 13、()通常,磁盘存储器每条磁道的存储容量是相同的。
 - 14、()设置高速缓冲存储器的主要目的是提高存储系统的速度。
- 15、()写入硬盘时,若一个文件的长度超出一个磁道的容量,则继续写入同面的相邻磁道中。
 - 三、简答题(30分,共6题,每题5分)
 - 1、什么是指令? 什么是程序?
 - 2、主存的性能指标有哪些?说明其含义。
 - 3、DRAM 为什么需要刷新?有哪些刷新方式?
 - 4、CPU 中有哪些主要寄存器?每个寄存器的主要功能是什么?
 - 5、说明总线结构对计算机系统性能的影响。
 - 6、比较通道、DMA、中断的异同点。

四、分析计算题(30分,共3题,每题10分)

- 1、已知 X=0.11011, Y=-0.10011, 用补码运算计算 X-Y, 同时指出运算结果是否溢出。
- 2、某总线在一个总线周期中并行传送 4 个字节的数据,假设 个总线周期等于一个总线时钟周期,总线时钟频率为 33MHz,则总线带宽是多少?

若一个总线周期中并行传送 64 位数据, 总线时钟频率升为 66MHz 总线带宽是多少?

3、某磁盘有 9 块盘片, 16 个面记录数据, 每面有 256 磁道, 每道 16384 个扇区。每个扇区 512 字节, 计算该磁盘的总存储容量。

五、设计题(45分,共3题,每题15分)

1、某机器中,已知配有若干 16Kx8 的 ROM 芯片形成地址空间为 0000H–3FFFH 的 ROM 区域。再用若干 8Kx8 的 RAM 芯片形成 40Kx16 的 RAM 区域,起始地址为 6000H,假定 RAM 芯片有 \overline{CS} 和 WE 信号控制端。CPU 的地址总线为 A15–A0,数据总线为 D15–D0,控制信号为

R/W, MREQ, 要求

- (1) 设计地址译码方案;
- (2) 画出 CPU 与 ROM、RAM 的连接。
- 2、下图为双总线结构的机器 "SUB R1, (R3)"指令完成(R1)-((R3))--> R1 的操作,用方框图画出该指令的指令周期流程图,并列出相应的微操作控制信号序列。

- 3、下图所示的二维中断系统
- (1) 中断的情况下, CPU和设备的优先级如何排列?
- (2) 若 CPU 现执行设备 A 的中断服务程序, IM2, IM1, IM0 各为什么状态?若 CPU 现执行设备 G 的中断服务程序, IM2, IM1, IM0 各为什么状态?
- (3)每一级的 IM 能否对本级的某个设备单独进行屏蔽?如果不能,采用什么方法可以达到目的?

第4页 共4页