

Stream ciphers

Stream ciphers are semantically secure

Goal: secure PRG ⇒ semantically secure stream cipher

Stream ciphers are semantically secure

Thm: G:K $\rightarrow \{0,1\}^n$ is a secure PRG \Rightarrow

stream cipher E derived from G is sem. sec.

Dan Bosels

Proof: Let A be a sem. sec. adversary.

For b=0,1: $W_b := [$ event that b'=1].

$$Adv_{SS}[A,E] = | Pr[W_0] - Pr[W_1] |$$

For b=0,1:
$$R_b := [event that b'=1]$$

Dan Boneh

Proof: Let A be a sem. sec. adversary.

Claim 1:
$$|Pr[R_0] - Pr[R_1]| = Adv_s (A, orp) = 0$$

Claim 2: $\exists B: |Pr[W_b] - Pr[R_b]| = Adv_{RE}(86)$ For b=0.1

$$\Rightarrow$$
 Adv_{SS}[A,E] = $|Pr[W_0] - Pr[W_1]| \le 2 \cdot Adv_{PRG}[B,G]$

Penn Bounds

Proof of claim 2:
$$\exists B: |Pr[W_0] - Pr[R_0]| = Adv_{PRG}[B,G]$$

Algorithm B:

Dan Boneh

Proof: Let A be a sem. sec. adversary.

$$\Rightarrow Adv_{SS}[A,E] = Pr[W_0] - Pr[W_1] \ge 2 \cdot Adv_{PRG}[B,G]$$

Penn Bounds

End of Segment