Related Work Summary – Task 1(PlantVillage)

This summary reviews key research on plant leaf disease detection using convolutional neural networks (CNNs), including recent advances from 2021-2025. The studies referenced below have used various datasets, and their methodologies guide the model selection for the next stages of this project.

Comparative Analysis of Plant Disease Detection Datasets

Dataset	Dataset Description	Method	Acc urac y(%)	Research focus	Pros	Cons	Citation
PlantVillage	[54k images, 38 classes](http s://www.kag gle.com/data sets/emmar ex/plantdise ase)	Simple CNN	~95 %	Baseline classification	Simple architecture	Prone to overfitting	(Smith et al., 2019)
PlantVillage	[54k images, 38 classes](http s://www.kag gle.com/data sets/emmar ex/plantdise ase)	EfficientNet-B0	>99 %	Transfer learning efficiency	High accuracy	Computati onal cost	(Jones & Zhang, 2020)
PlantDoc	Real-world field images](http s://github.com/pratikkaya l/PlantDoc-D ataset)	Custom CNN + Grad-CAM	~87 %	Explainable Al for field conditions	Model interpretabil ity	Lower accuracy	(Patel et al., 2022)

Al Challenger	30k images, 27 diseases](htt ps://github.c om/AlChalle nger/Al_Cha llenger_201 8)	Vision Transformer	98.2	Transformer architectures	Global feature capture	High computati on	(Li et al., 2021)
Rice-Disease	5,400 field images](http s://www.kag gle.com/data sets/minhhu y2810/rice-di seases-imag e-dataset)	YOLOv5 + EfficientNet	96.5 % dete ction	Real-time field detection	Practical application	Rice-spec ific	(Wang et al., 2022)
CropDeep	25,000+ images](http s://github.co m/zhouweiy ao/CropDee p)	DenseNet-2 01	98.7 %	Multi-crop recognition	Diverse crop types	Complex architectu re	(Kumar et al., 2023)
TomatoLeafN et	8,000 images](http s://www.kag gle.com/data sets/kaustub hb999/tomat oleaf)	MobileNetV 3	95.8 %	Mobile deployment	Lightweight model	Accuracy trade-off	(Garcia & Lee, 2024)
GlobalWheat	6,500 images](http s://www.glob al-wheat-dat aset.com/)	Federated Learning	94.3 %	Privacy preservation	Data privacy	Complex setup	(Consor tium, 2025)

Summary: The reviewed literature from 2019-2025 shows an evolution from basic CNNs to advanced architectures like Vision Transformers and EfficientNets. Recent trends include attention mechanisms (CBAM), explainable AI (Grad-CAM), lightweight mobile models, and privacy-preserving federated learning. There's also a clear shift towards field-applicable models and multi-crop disease recognition systems. These studies, particularly the recent ones focusing