COMP9020 Problem Set 7

Kai Engelhardt

September 22, 2016

Exercise 1 Three quantities associated with an undirected graph G are its degree (the maximum degree of any of its nodes), its chromatic number $\chi(G)$ (the minimum number of colours needed to paint the nodes such that no two adjacent nodes have the same colour), and its maximum clique size $\kappa(G)$ (the number of nodes in the largest subgraph that is complete). Derive inequalities that must hold between these numbers and explain why they must hold.

Exercise 2 Recall the complete bipartite graph $K_{m,n}$ of m+n nodes. For what values of m and n is it planar?

Given a state machine $M = (S, s_0, \to)$, a derived variable is a function $f : S \to T$ for some set T. Of particular interest for termination proofs are ranges T that are equipped with a well-order (T, <). If we can then show that there exists a derived variable f that is strictly decreasing, that is, $s \to s' \Rightarrow f(s') < f(s)$ for all $s \in S$, then the range of f being a well-order implies that every execution is necessarily finite.

Exercise 3 Problem 12.43 in [LLM16].

There are many more fun exercises about graphs, for instance those in the 12.50ies. Feel free to pick any and discuss them!

References

[LLM16] Eric Lehman, F. Thomson Leighton, and Albert R. Meyer. Mathematics for computer science. Available at https://courses.csail.mit.edu/6.042/spring16/mcs.pdf; check https://courses.csail.mit.edu/6.042 for newer versions, 2016.