4. Transformace konceptuálního modelu na schéma relační databáze

Ing. Vladimír Bartík, Ph.D.

RNDr. Marek Rychlý, Ph.D.

Osnova

- 4.1 Transformace ER diagramu na tabulky relační databáze
- 4.2 Transformace objektového modelu (diagramu tříd)

Př) viz úvodní kapitola

PRV EKO

Název: Ekonomické oddělení

Náplň: Správa ekonomické agendy, ...

Vedoucí: Jana Nováková

Místnost: A-216

Telefon: 253

Os.číslo	Jméno	Příjmení	Narozen	Bydliště
30	Jana	Nováková	12.3.1950	Brno
58	Karel	Veselý	23.6.1958	Brno
80	Eva	Pokorná	3.9.1965	Blansko

Př) ER diagram odpovídající předchozímu příkladu

Př) Odpovídající tabulky relační databáze

ODDĚLENÍ

ZAMĚSTNANCI

zkratka	název	náplň	vedoucí	místnost	telefon
EKO	Ekonomické oddělení	Správa ekon. agendy,	30	A-216	253
PRV	Právní oddělení	Právní záležitosti	10	A-320	301
			:		•••

hodnoty z jiného sloupce (cizí klíč)

09	s_číslo	jméno	příjmeni	narozen	bydliště	oddělení
•••			•••		•••	
•••			•••	•••		
10		Josef	Floryán	18.3.1945	Brno	PRV
•••				•••	•••	
30		Jana	Nováková	12.3.1950	Brno	EKO
•••				•••	•••	•••
58			Veselý	23.6.1958	Brno	EKO
	unikátn	<mark>í hodnoty (</mark>	primární klíč)	•••	
80		Eva	Pokorná	3.9.1965	Blansko	EKO

- Hlavní problémy špatného návrhu
 - opakující se informace (redundance)
 - nemožnost reprezentovat určitou informaci
 - složitá kontrola integritních omezení

Př) Tabulka Zaměstnanci (nenavržená dobře)

os_číslo	jméno	příjmení	oddělení	název
10	Josef	Floryán	PRV	Právní oddělení
30	Jana	Nováková	ЕКО	Ekonomické oddělení
58	Karel	Veselý	ЕКО	Ekonomické oddělení
80	Eva	Pokorná	EKO	Ekonomické oddělení

- Cíle návrhu
 - vyvarování se problémů špatného návrhu
 - splnění dalších kritérií, především výkonnostních (nevytvářet zbytečné tabulky!)

- Pravidla transformace
 - Odstranění složených atributů (převod do 1NF) –
 Složený atribut → několik jednoduchých (složky)

- Pravidla transformace (pokračování)
 - Odstranění vícehodnotových atributů (převod do 1NF) –
 Vícehodnotový atribut → další typ entity nebo náhrada pevným počtem opakování

Případně lze provést nejdříve transformaci a poté normalizovat

- Pravidla transformace (pokračování)
 - Reprezentace typů silných entit

Pravidla transformace (pokračování)

Reprezentace typů vztahů

- Pravidla transformace (pokračování)
 - Reprezentace typů slabých entit jako silné + vztah 1:M + složený primární klíč u slabé

Př.) Ilustračn<u>í příklad</u> – Spořitelna

- Pravidla transformace (pokračování)
 - Reprezentace ternárních typů vztahů

- Pravidla transformace (pokračování)
 - Reprezentace generalizace/specializace 4 možnosti
 - 1. tabulka pro nadtyp + pro podtypy s primárním klíčem nadtypu

```
Př.) Účet (č_účtu, dat_zřízení, stav),
Běžný_účet (č_účtu, penále),
Spoření (č_účtu, úrok)
```

2. pouze tabulky pro podtypy i s atributy nadtypu

```
Př.) Běžný_účet (č_účtu, dat_zřízení, stav, penále), Spoření (č_účtu, dat_zřízení, stav, úrok)
```

3. jedna tabulka pro nadtyp a druhá pro oba podtypy

```
Př.) Účet (č_účtu, dat_zřízení, stav),
Běžný_spoření (č_účtu, typ, úrok, penále)
```


- Pravidla transformace (pokračování)
 - Reprezentace generalizace/specializace 4 možnosti
 - 4. všechno v jedné tabulce
 - Př.) Účet(č_účtu, dat_zřízení, stav, úrok, penále) resp. Účet(č_účtu, dat_zřízení, stav, typ, úrok, penále).
 - Rozlišení specializací podle prázdné hodnoty nebo tzv. diskriminátoru.
 - Nutno přihlížet zejména k tomu:
 - · zda jsou specializace disjunktní, zda je specializace totální,
 - operace s jakými daty (jen specializace nebo i generalizace) budou prováděny,
 - počet a typy rozdílných atributů,
 - · vztahy vedoucí ke generalizaci, resp. specializacím.

Př)

4.2 Transformace objektového modelu (diagramu tříd)

4.2 Transformace objektového modelu (diagramu tříd)

Problémy

- operace při návrhu tabulek neuvažujeme (bereme v úvahu při případné optimalizaci, návrhu uložených procedur apod.)
- □ identifikace pomocí OID neexistuje-li atribut s vlastnostmi identifikátoru
 → přidat
- složené, složité, vícehodnotové atributy viz normalizace u ER modelu, podpora typů proměnné délky v moderních relačních systémech (VARCHAR, BIT VARYING (BLOB)),
- generalizace/specializace
- agregace "část" jako silná nebo slabá entitní množina
- kompozice(zanořené objekty) viz složené a vícehodnotové atributy

4.2 Transformace objektového modelu (diagramu tříd)

Př.)

Literatura

- 1. Silberschatz, A., Korth H.F., Sudarshan, S.: Database System Concepts. Fifth Edition. McGRAW-HILL. 2006, str. 241-248.
- 2. Lemahieu, W., Broucke, S., Baesens, B.: Principles of Database Management. The Practical Guide to Storing, Managing and Analyzing Big and Small Data. Cambridge University Press 2018, str. 121-137.