BENDUKIDZE CAMPUS 18.11.2024 | 18:00

Seminar Series vol.1

Read and prepared by Zurabi Ugulava

What to expect next?

- Three Body problem/ Astrophysical insight
- Introduction to chaotic systems
- From Conwoy game to Ising 2D model MCS
- Data analysis module
- And many more...

https://www.mathworks.com/company/technical-articles/using-image-processing-and-statistical-analysis-to-quantify-cell-scattering-for-cancer-drug-research.html

Bill Gosper's <u>Glider Gun</u> in action—a variation of Conway's Game of Life. This image was made by using Life32 v2.15 beta, by Johan G. Bontes.

Intro to molecular dynamics

Physics of planar lattice

(a) The original atomic-resolution image and elemental mapping: Sn (red), Cu (green), Ni (yellow); (b) Noise reduction image of atomic-resolution elemental mapping: Overlay, Sn (red), Cu (green), Ni (yellow).

Matsumura, Syo. (2019). Atom locations in a Ni doped η-(Cu,Ni)6Sn5 intermetallic compound. Scripta Materialia. 158. 1-5. 10.1016/j.scriptamat.2018.08.020.

Strontium Titanate

$$M\frac{dv}{dt} = \sum F_i$$

$$E = \frac{1}{2}mv^2 + \frac{1}{2}kx^2$$

$$p = \sum_{i} m_i v_i$$

$$p = \sum m_i v_i$$

Establishing the system in space:

$$\vec{r}_1 = (x_1, y_1, z_1)$$

$$\vec{r}_2 = (x_2, y_2, z_2)$$
 $\vec{R} \equiv \vec{r}_{12} = \vec{r}_2 - \vec{r}_1$

Ordinary Hook's Law:

$$x = |\vec{R}| - L_0$$
 Force \sim displacement $\vec{F} = k\vec{x} = k\left(1 - \frac{|\vec{R}|}{L_0}\right)\hat{R}$

Ordinary Hook's Law:

$$x = |\vec{R}| - L_0$$
 Force \sim displacement

$$\vec{F} = k\vec{x} = kL_0 \left(1 - \frac{|\vec{R}|}{L_0} \right) \hat{R}$$

Equations of motion:

$$m_1 \frac{d^2 \vec{r}_1}{dt^2} = \vec{F} = kL_0 \left(1 - \frac{|\vec{R}|}{L_0} \right) \hat{R}$$

$$m_2 \frac{d^2 \vec{r}_2}{dt^2} = -\vec{F} = -kL_0 \left(1 - \frac{|\vec{R}|}{L_0} \right) \hat{R}$$

$$m_1 \frac{d^2 \vec{z}_1}{dt^2} = k(z_2 - z_1 - L_0)\hat{R}$$

$$m_2 \frac{d^2 \vec{z}_2}{dt^2} = -k(z_2 - z_1 - L_0)\hat{R}$$

$$z_1(t) = A_1 \sin(\omega t + \varphi_1)$$

 $z_2(t) = A_2 \sin(\omega t + \varphi_2)$
$$\omega^2 = \frac{\mu}{k} = \frac{1}{k} \cdot \frac{m_1 m_2}{m_1 + m_2}$$

What to observe in periodic system:

What to observe in periodic system:

Physical description:

Governing physics described by Differential equations!

But how do we handle differential equations?

Manual Integration/

$$f'(x) - \frac{1}{x} = 0 \qquad f(x) = \ln(x) + C$$

$$f(x) = \ln(x) + \mathcal{C}$$

$$f''(x) - x = 0$$

$$f''(x) - x = 0$$
 $f(x) = \frac{1}{6}x^3 + \frac{1}{2}C_1x^2 + C_2$

Another way to handle them?

Let's remember Taylor series:

$$f(\vec{r},t+\delta t) = f(\vec{r},t) + \frac{1}{1!} \left(\frac{df}{dt}\right) \delta t + \frac{1}{2!} \left(\frac{d^2f}{dt^2}\right) \delta t^2 + \cdots$$

$$\underbrace{f(\vec{r}_t, t)}_{t_0} \rightarrow \underbrace{f(\vec{r}_{t+\delta t}, t+\delta t)}_{t_1} \rightarrow \underbrace{f(\vec{r}_{t_1+\delta t}, t_1+\delta t)}_{t_2} \rightarrow \cdots$$

Let's remember Taylor series:

$$f(\vec{r}, t + \delta t) = f(\vec{r}, t) + \frac{1}{1!} \left(\frac{df}{dt}\right) \delta t + \frac{1}{2!} \left(\frac{d^2 f}{dt^2}\right) \delta t^2 + \cdots$$

1st order approximation

Euler Algorithm:

$$f(\vec{r}, t + \delta t) = f(\vec{r}, t) + f'(\vec{r}, t) \, \delta t$$

$$f'(\vec{r}, t + \delta t) = f'(\vec{r}, t) + f''(\vec{r}, t) \, \delta t$$

$$\circ \, \circ \, \circ$$

$$f^{n-2}(\vec{r}, t + \delta t) = f^{n-2}(\vec{r}, t) + f^{n-1}(\vec{r}, t) \, \delta t$$

$$f^{n-1}(\vec{r}, t + \delta t) = f^{n-1}(\vec{r}, t) + f^{n}(\vec{r}, t) \, \delta t$$

RK-4 Algorithm:

$$f(\vec{r}, t + \delta t) = f(\vec{r}, t) + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4) \, \delta t$$

$$k_1 = f'(\vec{r}, t)$$

$$k_2 = f' \left(\vec{r} + \frac{1}{2} k_1 \delta t, t + \frac{1}{2} \delta t \right)$$

$$k_3 = f' \left(\vec{r} + \frac{1}{2} k_2 \delta t, t + \frac{1}{2} \delta t \right)$$

$$k_4 = f'(\vec{r} + k_3 \delta t, t + \delta t)$$

What is required to run a Simulation?

```
Main physical quantities
m1 = 10; m2 = 1; k = 10; l = 1;
le = Sqrt[(x2[t] - x1[t])^2 + (y2[t] - y1[t])^2 + (z2[t] - z1[t])^2];
                                                                                                      Governing Equations
eqs = {
   m1 * x1''[t] - k * (1 - 1/1e) * (x2[t] - x1[t]) == 0, m1 * y1''[t] - k * (1 - 1/1e) * (y2[t] - y1[t]) == 0,
   m1 * z1''[t] - k * (1 - 1/1e) * (z2[t] - z1[t]) == 0, m2 * y2''[t] + k * (1 - 1/1e) * (x2[t] - x1[t]) == 0,
   m2 * x2''[t] + k * (1-1/1e) * (y2[t] - y1[t]) == 0, m2 * z2''[t] + k * (1-1/1e) * (z2[t] - z1[t]) == 0;
init = {
   x1[0] = 2, y1[0] = 0, z1[0] = 0,
                                                                                                     Initial Conditions
   x2[0] = 1.1, y2[0] = 0, z2[0] = 0,
   x1'[0] = 0, y1'[0] = 0, z1'[0] = 0,
   x2'[0] == 0, v2'[0] == 0, z2'[0] == 0;
                                                                                                      Solver Algorithm
sol = NDSolve[Join[eqs, init], {x1, y1, z1, x2, y2, z2}, {t, 0, 100}];
Plot[Evaluate[{x1[t]}] /. sol, {t, 0, 10}]
                                                                                                        Visualization
```


<u>Trajectory in 3D Space:</u>

2D Projection

What could possibly go wrong?

Truncation error always will be exposed after sufficient iterations

Moving onto the spring chain

$$m_1 \ddot{x}_1 = k_{11} x_1 + k_{12} x_2 + \dots k_{1n} x_n$$

$$m_2\ddot{x}_2 = k_{21}x_1 + k_{22}x_2 + \cdots k_{2n}x_n$$

$$m_n \ddot{x}_n = k_{n1} x_1 + k_{n2} x_2 + \dots k_{nn} x_n$$

$$\begin{aligned}
m\ddot{x}_1 &= k_{11}x_1 + k_{12}x_2 + \cdots k_{1n}x_n \\
m\ddot{x}_2 &= k_{21}x_1 + k_{22}x_2 + \cdots k_{2n}x_n \\
& \circ \circ \circ \\
m\ddot{x}_n &= k_{n1}x_1 + k_{n2}x_2 + \cdots k_{nn}x_n
\end{aligned}$$

Matrix form

$$m\begin{pmatrix} \ddot{x}_1 \\ \ddot{x}_2 \\ \ddot{x}_3 \\ \cdots \\ \ddot{x}_n \end{pmatrix} = \begin{pmatrix} k_{11} & \cdots & k_{n1} \\ \vdots & \ddots & \vdots \\ k_{1n} & \cdots & k_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \cdots \\ x_n \end{pmatrix}$$

Small aid from Linear Algebra:

Matrix form

$$m\begin{pmatrix} \ddot{x}_1 \\ \ddot{x}_2 \\ \ddot{x}_3 \\ \cdots \\ \ddot{x}_n \end{pmatrix} = \begin{pmatrix} k_{11} & \cdots & k_{n1} \\ \vdots & \ddots & \vdots \\ k_{1n} & \cdots & k_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \cdots \\ x_n \end{pmatrix}$$

$$m \ddot{X} = K X$$

Let's search solution in form of:

$$X(t) = X_0 e^{i\omega t}$$

Characteristic equation:

$$-\omega^2 m X_0 e^{i\omega t} = K X_0 e^{i\omega t}$$

Or simply we have eigenvalue problem:

$$(K + \omega^2 mI)X = 0$$

$$\det(K + \omega^2 m I) = 0$$

$$\det(K + \omega^2 mI) = 0$$

I dare you to solve this set manually

2D Square lattice

Discretization saves the day:

For (i,j) particle:

$$m\ddot{x}_{ij} = -k(x_{ij+1} - x_{ij}) + k(x_{ij} - x_{i-1j})$$
$$= k(x_{ij+1} + x_{ij-1} - 2x_{ij})$$

$$m\ddot{x}_{ij} = k(x_{ij+1} + x_{ij-1} - 2x_{ij})$$

But in our case we can always simulate piecewise way!!


```
% lattice constants:
 4
          M=1;
 6
          k=100;
          % distance and size:
          lattice_width=5;
 9
          lattice height=5;
10
          10=1;
11
          xdis=1;
          ydis=1;
12
13
          %initial Coordinates
14
15
          x matrix=zeros(lattice height, lattice width);
16
          y_matrix=zeros(lattice_height,lattice_width);
17
          %initial velocities
18
          vx_matrix=zeros(lattice_height,lattice_width);
19
20
          vy_matrix=zeros(lattice_height,lattice_width);
21
          %masses on the lattice
22
23
          mass_matrix=zeros(lattice_height,lattice_width);
```



```
% Horizontal springs (Runge-Kutta 4th order)
for a = 1:lattice height
    for b = 1:lattice width - 1
        % Calculate forces using RK4 for horizontal springs
        % Initial orientation and displacement vector
       orient = [x_matrix(a, b+1) - x_matrix(a, b), y_matrix(a, b+1) - y_matrix(a, b)];
        norm orient = norm(orient);
        % Calculate intermediate forces for RK4
        ac1_k1 = (1 - 10 / norm_orient) * orient * k / mass_matrix(a, b);
       ac2_k1 = -(1 - 10 / norm_orient) * orient * k / mass_matrix(a, b+1);
        % Half step for k2
        orient_k2 = orient + 0.5 * dt * ac1_k1;
        norm orient k2 = norm(orient k2);
        ac1_k2 = (1 - 10 / norm_orient_k2) * orient_k2 * k / mass_matrix(a, b);
       ac2_k2 = -(1 - 10 / norm_orient_k2) * orient_k2 * k / mass_matrix(a, b+1);
        % Half step for k3
        orient k3 = orient + 0.5 * dt * ac1 k2;
        norm orient k3 = norm(orient k3);
        ac1_k3 = (1 - 10 / norm_orient_k3) * orient_k3 * k / mass_matrix(a, b);
        ac2_k3 = -(1 - 10 / norm_orient_k3) * orient_k3 * k / mass_matrix(a, b+1);
        % Full step for k4
        orient k4 = orient + dt * ac1 k3;
        norm orient k4 = norm(orient k4);
        ac1_k4 = (1 - 10 / norm_orient_k4) * orient_k4 * k / mass_matrix(a, b);
        ac2 k4 = -(1 - 10 / norm orient k4) * orient k4 * k / mass matrix(a, b+1);
        % Update velocities using RK4 weighted sum
        vx matrix(a, b) = vx matrix(a, b) + dt * (ac1 k1(1) + 2*ac1 k2(1) + 2*ac1 k3(1) + ac1 k4(1)) / 6;
        vy matrix(a, b) = vy matrix(a, b) + dt * (ac1 k1(2) + 2*ac1 k2(2) + 2*ac1 k3(2) + ac1 k4(2)) / 6;
        vx_matrix(a, b+1) = vx_matrix(a, b+1) + dt * (ac2_k1(1) + 2*ac2_k2(1) + 2*ac2_k3(1) + ac2_k4(1)) / 6;
       vy_matrix(a, b+1) = vy_matrix(a, b+1) + dt * (ac2_k1(2) + 2*ac2_k2(2) + 2*ac2_k3(2) + ac2_k4(2)) / 6;
    end
end
```


Single cell simulation

References:

- Matsumura, Syo. (2019). Atom locations in a Ni doped η-(Cu,Ni)6Sn5 intermetallic compound. Scripta Materialia.
 158. 1-5. 10.1016/j.scriptamat.2018.08.020.
- Lipson, R. & Lu, C. (2009). Photonic crystals: A unique partnership between light and matter. EUROPEAN JOURNAL OF PHYSICS Eur. J. Phys. 30. 33-48. 10.1088/0143-0807/30/4/S04.

Suggested material to check out:

https://lampz.tugraz.at/~hadley/ss1/phonons/1d/1dphonons.php

Until we meet again? 雲ですが、なにか?

Appendix

