

Estimating economic outcomes using conv. neural networks and satellite imagery

Cooper Nederhood (cnederhood@uchicago.edu) MA Computational Social Science, University of Chicago

Training #1: Landsat to

Luminosity

Insufficient DHS cluster data to

directly train CNN (279 clusters)

Train CNN to predict night-time

image (>30,000 image pairs)

luminosity given a daytime Landsat

Background

- Developing economies can have few reliable measures of economic conditions
- QUESTION: can we use publicly available Landsat 7 satellite imagery to estimate ground-truth economic measures?
- SOLUTION: exploit transfer learning to train a convolutional neural network (CNN) to estimate wealth given publicly available satellite imagery

Data: DHS survey locations

Okrtipupa	Epugu
Cluster count	279
Mean asset index	54,925

72,651

But luminosity is unbalanced

And 30m resolution does not allow for traditional object detection

- Resulting 34x34 pixel images are much smaller than most computer vision tasks
- Can meaningful features be extracted from coarse imagery?
- Does transfer learning from ImageNet-trained models still apply?

Results of CNN training

Madal	Param	Weight
Model count		init
Large pic	2,602,179	Rand
Small pic	11,275,779	Rand
Transfer	877,571	VGG16

Conclusion

Features learned by convolutional neural networks when identifying night-time luminosity from daytime Landsat images do explain cross-sectional variations in economic outcomes, as measured by an asset index

Data: Landsat 7 satellite

- •3 bands (Red-Green-Blue)
- •30 meter resolution
- Region around mega-city of Lagos, Nigeria

Std asset index

Data: Night-time luminosity

- 1 band (1-63 light intensity)
- 1 km resolution
- Night-time luminosity is correlated with economic activity

Data: economic ground truth

- Asset index from DHS survey Nigeria
- Households aggregated to cluster level analysis

Validation accuracy and loss Limitations Large pics Small pics

- Model is highly unbalanced need to implement asymmetric loss function or stratified sample from map
- More fine-tuning of CNN structure
- Transfer learning options in Keras are extremely limited and often incompatible
- Computational restraints from using free trial Google Compute

Training #2: Using the trained CNN as a feature extractor

Val loss

Val_acc

Features derived from Landsat images that are predictive of night-time luminosity which is correlated with economic activity

Future developments

- All satellite data exists as timeseries as well
- Can apply video classification techniques to identify patterns in time-series developments of economic conditions

Acknowledgements

Relies heavily on Jean (2016) "Combining satellite imagery and machine learning to predict poverty"