Problem 1. Losses occur with the following distribution.

$$F_X(x) = \begin{cases} 0 & \text{if } x < 0\\ 1 - e^{-x/\theta} & \text{otherwise} \end{cases}$$

Assignment Project Exam Help Suppose we have an ordinary deductible of \$d. Please find the following:

(1) The per-payment Distribution Function (2) The per-last Supisal Function WCOGET.COM

(3) The Expected Cost per loss

Problem 2. Use the same loss distribution as the prvious problem, with $\theta = 40$ but that our policy has a deductible a limit of \$20 Wc Ca dust ince of 75%. We assume an annual inflation rate of 2% What is the variance of each loss? You may assume that $\Gamma(3; 200/1.02) = 1$.

Problem 3. Determine the first four probabilities for an ETNB distribution with r=2 and $\beta=1$. Do this both for the truncated version and for the modified version, with $p_0^M = 0.1$

Problem 4. Consider a Poisson random variable with parameters $\lambda = 2$. Determine the first four probabilities for this random variable. Then determine the corresponding probabilities for the zero-truncated and zero-modified (with $p_0^M = 0.2$) versions.

Standard Normal Distribution Table

$$\Phi(z) = \mathbb{P}(Z \le z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx, \qquad \Phi(-z) = 1 - \Phi(z)$$

Z	0	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0,8348	S) 18 <u>8</u> 6 ()	1088	0.8977		(1) 89 4	Xan	0. ₹9 ₹ €	08997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332		-0.9357	9. 9370	0,9382	1.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9453	9474	0 9484	V V.9495	4.95 05	6.9313	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9749		Ø. # 2	79738		V COC		0.9761	0.9767
2	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

Solutions

This is an Exponential(θ) distribution

Problem 1.

(1) Per-Payment Distribution Function:

$$F_{Y^{p}}(y) = \frac{F_{X}(y+d) - F_{X}(d)}{1 - F_{X}(d)}$$

$$= \frac{e^{-d/\theta} - e^{-(y+d)/\theta}}{e^{-d/\theta}}$$

$$= \frac{e^{-d/\theta} - e^{-y/\theta}e^{-d/\theta}}{e^{-d/\theta}}$$

Assignment Project Exam Help

(2) Per-Loss Survival Function:

https://poweoder.com

(3) Expected Cost per Loss for ordinary deductible: $Add_{\mathbb{E}(X)} = \underbrace{ Pe^{-d/\theta}}_{\mathbb{E}(X)}$ $= \theta e^{-d/\theta}$

Problem 2.

(1) Per-Payment **density** Function:

$$f_{YP}(y) = \frac{f_X(y)}{S_X(d)}, \ y > d$$
$$= \frac{e^{-y/\theta}e^{d/\theta}}{\theta} = \frac{e^{(d-y)/\theta}}{\theta}$$

(2) Per-Loss hazard rate Function:

$$h_{Y^L}(y) = \begin{cases} 0 & 0 < y < d \\ h_X(y) & y > d \end{cases}$$
 (assume $y > d$) = $\frac{e^{-y/\theta}e^{y/\theta}}{\theta} = 1$

(3) Expected Cost per payment for franchise deductible:

$$\frac{\mathbb{E}(X) - \mathbb{E}(X \wedge d)}{1 - F(d)} + d = (\theta - \theta(1 - e^{-d/\theta}))e^{d/\theta} + d$$
$$= \theta(e^{-d/\theta}e^{d/\theta}) + d = \theta + d$$

Problem 3.

(1) The Loss Elimination Ratio:

$$\frac{\mathbb{E}(X \wedge d)}{\mathbb{E}(X)} = \frac{\theta(1 - e^{-d/\theta})}{\theta} = 1 - e^{-d/\theta}$$

(2) The expected cost per loss is defined as:

$$(1+r) \{ \mathbb{E}[X] - \mathbb{E}[X \wedge d/(1+r)] \} = (1.02) \{ \mathbb{E}[X] - \mathbb{E}[X \wedge d/1.02] \}$$

Assignment $Projec_{\theta_e} E_{xam}^{\theta(1-e^{-(d/1.02\theta)})}$

https://powcoder.com

Problem 4.

Based on our loss distribution and policy details, we have the following per-loss random variable:

Add WeChat powcoder
$$Y^{L} = \begin{cases} \alpha(1+r)X & 0 \leq X < \frac{u}{1.02} \\ \alpha u & X \geq \frac{u}{1.02} \end{cases}$$

We need the 1st and 2nd moments of our new variable Y^L . Note that because d=0, $\mathbb{E}[X \wedge d] = \mathbb{E}[X \wedge 0] = 0$ because we always have $0 \leq X$. It follows that:

$$\mathbb{E}[Y^L] = \alpha(1+r) \left(\mathbb{E}[X \wedge \frac{u}{1.02}] \right)$$

= $\alpha(1+r)\theta(1 - e^{-(u/1.02\theta)}) = 30.373$

and (again, because d = 0)

$$\mathbb{E}[Y^{L^2}] = \alpha^2 (1+r)^2 \mathbb{E}[(X \wedge (u/1.02))^2]$$

= $\alpha^2 (1+r)^2 \theta^2 \Gamma(3) \Gamma(3; u/(1.02\theta)) + (u/1.02\theta)^2 e^{-(u/1.02\theta)} = 2032.625$

Combining these, we have:

$$\mathsf{Var}(Y^L) = 2032.625 - 30.373^2 = 1110.132$$