

6齿轮机构及其设计

- 6-1 齿轮机构的应用及分类
- 6-2 齿廓啮合基本定律
- 6-3 渐开线及渐开线齿廓
- 6-4 渐开线齿轮的主要参数
- 6-5 渐开线直齿圆柱齿轮传动

6齿轮机构及其设计

- 6-6 渐开线齿轮的加工与根切
- 6-7 变位齿轮及其传动
- 6-8 平行轴斜齿圆柱齿轮传动
- 6-9 圆锥齿轮传动
- 6-10 蜗杆传动

6齿轮机构及其设计

- ■思考题
 - 计算以下轮系的自由度

6-1齿轮机构的应用及分类

- 两轮相对运动: 平面与空间齿轮机构两类。
- 平面齿轮机构按轮齿走向分为: 直齿、斜齿、人字齿等。
- 空间齿轮机构分为:圆锥、交错轴斜齿、蜗杆、准双曲等。
- 按齿面形状可分为:新开线(1765) 与圆弧(1950)等。

6-1齿轮机构的应用及分类

■ 准双曲面齿轮机构:

6-1齿轮机构的应用及分类

■ 渐开线齿轮与圆弧齿轮机构:

6-2 齿廓啮合基本定律

K啮合点

P: 节点

$$\omega_1 |\boldsymbol{O}_1 \boldsymbol{P}| = \omega_2 |\boldsymbol{O}_2 \boldsymbol{P}|$$

$$i_{12} = \frac{\omega_1}{\omega_2} = \frac{|\boldsymbol{O}_2 \boldsymbol{P}|}{|\boldsymbol{O}_1 \boldsymbol{P}|}$$

齿廓啮合基本定律:

相互啮合的一对齿廓, 在任一位置的传动比, 都等于其连心线被过啮合点的公法线所分两线段的反比。

节线与节圆 定传动比条件:

过啮合点的公法线与两齿轮的连心线交于定点。

4

6-3 渐开线及渐开线齿廓

- ■新开线及其性质
 - 圆的渐开线的形成
 - ■渐开线的压力角
 - ■渐开线的性质
 - |KB|=ÂB :: 公法线定长
 - KB与基圆相切
 - B点是K点处曲率中心
 - ■形状完全由基圆决定
 - ■基圆内无渐开线
 - ■渐开线的方程

6-3 渐开线及渐开线齿廓

事开线齿廓啮合特性 $i_{12} = \frac{\omega_1}{\omega_2} = \frac{|O_2P|}{|O_1P|} = \frac{|O_2N_2|}{|O_1N_1|} = \frac{r_{b2}}{r_{b1}}$

■ 能够实现定比传动

- 齿廓间的正压力方向不变
 - 在定力矩时,正压力为定值
- 具有可分性
 - 给制造与装配带来方便
- ■可分性的唯一性
 - 法国Michel Fayet教授证明。
 - Journal of Mechanical Design, 2002(6):330-333。

- 齿轮各部分名称与基本参数
 - → 分度圆周长=πd=zp
 - 分度直径 $d=zp/\pi=z(p/\pi)$
 - 定义:模数*m=p/π*,则
 *d=zm及p=mπ m、z*与α并称齿轮的三个基本参数
 - 任意圆上的参数要用下标k表示,比如: $p_k=s_k+e_k=m_k\pi$, $r_k=r_b/\cos\alpha_k$
 - 节圆上的参数要用上标'表示,比如: $p'=s'+e'=m'\pi$, $r'=r_b/\cos\alpha'$ α' 又称啮合角

标准模数系列表(GB1357-87)

■ 标准直齿轮几何参数

$$s = e = p/2 = m\pi/2$$
 $h_a = h_a^* m$ $d_a = d + 2h_a = (z + 2h_a^*)m$
 $h_f = (h_a^* + c^*)m$ $d_f = d - 2h_f = (z - 2h_a^* - 2c^*)m$
 $h = (2h_a^* + c^*)m$
 $h_a^* = 1$ $c^* = 0.25$ (正常齿制)
 $h_a^* = 0.8$ $c^* = 0.2$ (短齿制)

4

6-4 渐开线齿轮的主要参数

■ 内齿轮尺寸

4

6-4 渐开线齿轮的主要参数

■ 标准齿条特点

 $e = \pi m/2$

任意圆上的齿厚

$$\angle BOB = s/r$$

$$\angle AOB = \theta = \text{inv } \alpha$$

$$\angle COC = s_k / r_k$$

$$\angle AOC = \theta_k = \text{inv } \alpha_k$$

$$\angle BOC = \theta_k - \theta = \text{inv } \alpha_k - \text{inv } \alpha$$

$$s_k = r_k (\angle COC)$$

$$= r_k (\angle BOB - 2\angle BOC)$$

$$= r_k [s/r - 2(\text{inv } \alpha_k - i \text{ nv } \alpha)]$$

$$= sr_k / r - 2r_k (\text{inv } \alpha_k - \text{inv } \alpha)$$

- 一、啮合过程(放大)正确啮合条件
- 二、无隙啮合、标准安装与非标准安装
- 三、重合度与连续传动条件

- 一、成形加工
- 二、范成加工原理与方法
- 三、根切现象及成因
- 四、标准齿轮不发生根切的最少齿数

6-7 变位齿轮及其传动

- 一、变位原理(零与正)
- 二、避免根切的最小变位系数
- 三、变位齿轮的几何尺寸
- 四、变位传动

6-8 平行轴斜齿圆柱齿轮传动

- 一、斜齿轮齿廓曲面的形成及啮合特点
- 二、斜齿轮的基本参数与几何尺寸计算
- 三、斜齿轮传动的正确啮合条件与重合度
- 四、斜齿轮的当量齿数
- 五、斜齿轮传动的优缺点

4

6-5 渐开线直齿圆柱齿轮传动

$$p_{n1}=p_{n2}=|KK'|$$

$$p_{b1} = p_{b2} = |KK'|$$

$$p_1 \cos \alpha_1 = p_2 \cos \alpha_2$$

$$m_1\pi\cos\alpha_1=m_2\pi\cos\alpha_2$$

$$\therefore \begin{cases} m_1 = m_2 = m \\ \alpha_1 = \alpha_2 = \alpha \end{cases}$$

一对齿轮的正确啮合条件是:模数与压力角分别相等。

 $a'\cos\alpha' = r_1'\cos\alpha' + r_2'\cos\alpha' = r_{b1} + r_{b2} = r_1\cos\alpha + r_2\cos\alpha = a\cos\alpha$

无隙啮合 标准安装

$$r_1' = r_1; \quad r_2' = r_2; \quad \alpha' = \alpha \qquad r_1' > r_1; \quad r_2' > r_2; \quad \alpha' > \alpha$$

$$a' = r_1' + r_2' = r_1 + r_2 = a \qquad a' = r_1' + r_2' > r_1 + r_2 = a$$

有隙啮合 非标准安装

$$r_1' = r_1; \quad r_2' = r_2; \quad \alpha' = \alpha \qquad r_1' > r_1; \quad r_2' > r_2; \quad \alpha' > \alpha$$

$$\alpha' = r_1' + r_2' = r_2 + r_2 = \alpha \qquad \alpha' = r_1' + r_2' > r_2 + r_2 = \alpha$$

齿轮与齿条啮合时: $\alpha' \equiv \alpha$,齿轮节圆恒与其分度圆重合。

非标准安装时: 齿条与其分度线分离。

 N_1 、 N_2 : 啮合极限点

 N_1N_2 : 理论啮合线

 B_1B_2 : 实际啮合线

齿廓实际工作段

 $|B_2K|=p_n=p_b$

 $\varepsilon_{\alpha} = |B_1B_2|/p_b$ 称为重合度 渐开线齿轮的连续传动条件:

 $\varepsilon_{\alpha}>1$

实际使用中: $\varepsilon_{\alpha} > [\varepsilon_{\alpha}]$

 $[\mathbf{\epsilon}_{\alpha}]$ 为许用重合度。

对标准直齿圆柱齿轮传动,有:

当两轮齿数趋 于无穷大时, ε_{α} 必达 极限,此时:

$$|PB_1| = |PB_2| = h_a^* m / \sin a$$

$$\varepsilon_{\alpha max} = 2h_a^* m / p_b \sin \alpha$$
$$= 2h_a^* m / \pi m \cos \alpha \sin \alpha$$
$$= 4h_a^* / \pi \sin 2\alpha$$

$$h_a^* = 1$$
, $\alpha = 20^\circ$
 $\varepsilon_{\alpha max} = 1.981$

盘形铣刀加工齿轮

指状铣刀加工齿轮(多用于人字齿轮)

标准齿条刀具齿形

齿轮滚刀

$$\widehat{N_1 N_1'} = r_b \varphi = r \varphi \cos \alpha$$

$$N_1 M = r \varphi$$

$$N_1 K = N_1 M \cos \alpha$$

$$= r \varphi \cos \alpha$$

$$\widehat{N_1N_1'} = N_1K > N_1N_1'$$

所以点*N*i必定 落在刀刃的左 下方而被切掉, 形成根切。

6-6 渐开线齿轮的加工与根切

要使刀具齿顶线落在啮合极限点之下,应有:

$$PN_1 \geqslant PB$$

$$z_{\min} = 2h_a^* / \sin^2 \alpha$$

对标准直齿圆柱齿轮传动,有: $z_{min} = 17.097 \square 17$

齿条刀具中线从与齿轮毛坯分度圆相切的位置远离距离*xm*,将切出变位齿轮。

xm称为变位量。

x称为变位系数。

x>0称为正变位。

x<0称为负变位。

x=0即得标准齿轮。

为防止根切,应使:

$$xm \ge h_a^* m - N_1 Q$$

因
$$N_1Q = PN_1\sin\alpha$$

$$PN_1 = r \sin \alpha = mz \sin \alpha/2$$

$$\overrightarrow{m} N_1 Q = mz \sin^2 \alpha/2$$

$$\therefore x \ge h_a^* - z \sin^2 \alpha / 2$$

$$\pm z_{\min} = 2h_a^*/\sin^2\alpha$$

得
$$\sin^2\alpha/2 = h_a^*/z_{\min}$$

$$\therefore x \ge h_a^*(z_{\min} - z)/z_{\min}$$

$$x_{\min} = h_a^*(z_{\min} - z)/z_{\min}$$

无隙啮合方程(计算中心距以实现无隙啮合):

$$inv\alpha' = 2tg\alpha(x_1 + x_2)/(z_1 + z_2) + inv\alpha$$

无隙啮合方程(计算变位系数和以凑中心距):

$$x_1 + x_2 = (\text{inv}\alpha' - \text{inv}\alpha)(z_1 + z_2)/2 \text{tg}\alpha$$

 $ym = a' - a = (r_1 + r_2)\cos\alpha/\cos\alpha' - (r_1 + r_2)$
 $= m(z_1 + z_2)(\cos\alpha/\cos\alpha' - 1)/2$
 $y = (z_1 + z_2)(\cos\alpha/\cos\alpha' - 1)/2$
称为中心距变动系数
 $a' = a + ym = m(z_1 + z_2)/2 + ym$

可以证明: 只要 $x_1+x_2\neq 0$, 必有 $x_1+x_2>y$ 。

为保证标准顶隙,需将两轮的齿顶均减短一些,减短量为 $\sigma m = (x_1 + x_2)m - ym$

$$\sigma = (x_1 + x_2) - y$$

称为齿顶高变动系数

$$h_{ai} = h_a^* m + x_i m - \sigma m = (h_a^* + x_i - \sigma) m (i = 1, 2)$$

标准齿轮传动: $z_1 > z_{\min}$ $z_2 > z_{\min}$

$$a' = a$$
 $\alpha' = \alpha$ $y = 0$ $\sigma = 0$

高度变位传动: $x_1+x_2=0$ \vdots $z_1+z_2 \ge 2z_{\min}$

$$x_1 = -x_2$$
 $a' = a$ $\alpha' = \alpha$ $y = 0$ $\sigma = 0$

等移距变位传动的主要优点: z₁可小于z_{min}而不根切。

不等移距变位传动(角度变位传动):

正传动:
$$x_1+x_2>0$$
 $a'>a \quad \alpha'>\alpha \quad y>0 \quad \sigma>0$
负传动: $x_1+x_2<0$
 $a'0$

正传动的主要优点:

- 1. 齿数和可小于2zmin,减小机构尺寸。
- 2. 可配凑给定的中心距。
- 3. 齿轮强度提高。

正传动的主要缺点:

- 1. 重合度减小。
- 2. 需配对制造,互换性差。

β — 分度圆柱螺旋角
 β_b — 基圆柱螺旋角
 l — 导程
 d — 分度圆直径
 d_b — 基圆直径

$$\begin{aligned} \mathbf{tg} \boldsymbol{\beta}_{\mathrm{b}} &= \pi d_{\mathrm{b}} / l \\ \mathbf{tg} \boldsymbol{\beta} &= \pi d / l \\ d_{\mathrm{b}} &= d \cos \alpha_{\mathrm{t}} \end{aligned}$$

 $\therefore tg\beta_b = tg\beta \cos\alpha_t$

- 法面参数(加工、受力)
- 端面参数(与渐开线相关的几何计算)

$$p_{n} = p_{t} \cos \beta$$

$$p_{n} = m_{t} \cos \beta$$

$$p_{n} = \pi m_{n} \quad p_{t} = \pi m_{t}$$

$$m_{n} = m_{t} \cos \beta$$

$$tg \beta_{b} = tg \beta \cos \alpha_{t}$$

$$tg \alpha_{n} = tg \alpha_{t} \cos \beta$$

$$h_{a} = h_{an}^{*} m_{n}, \quad h_{f} = (h_{an}^{*} + c_{n}^{*}) m_{n}$$

$$d = z m_{t} = z m_{n} / \cos \beta$$

$$a = (d_1 + d_2)/2 = m_n(z_1 + z_2)/2\cos\beta$$

6-8 平行轴斜齿圆柱齿轮传动

一对斜齿圆柱齿轮的正确啮合条件

1) 外啮合时,两轮的螺旋角 β 应大小相等,方向相反,即

内啮合时,两轮的螺旋角 β 应大小相等,方向相同,即 $\beta_1 = \beta_2$

2)两齿轮的法面模数 m_n 和法面压力角 α_n 应分别相等,即

因
$$m_{t1} = m_{t2}$$
 $\alpha_{t1} = \alpha_{t2}$

正确啮合条件 $\beta_1 = -\beta_2$ $m_{n1} = m_{n2}$ $\alpha_{n1} = \alpha_{n2}$ 总重合度 $\varepsilon_{\gamma} = \varepsilon_{\alpha} + \varepsilon_{\beta}$ ε_{α} 端面重合度

$$m_{n1} = m_{n2}$$
 $\alpha_{n1} = \alpha_{n1}$
 ε_{α} 端面重合度
 ε_{β} 轴面重合度
 $\varepsilon_{\alpha} = L/p_{bt}$
 $\varepsilon_{\beta} = \Delta L/p_{bt} = Btg\beta_b/p_{bt}$
 $\therefore tg\beta_b = \pi d_b/l = \pi d\cos\alpha_t/l$
 $= tg\beta\cos\alpha_t$
 $\therefore \varepsilon_{\beta} = Btg\beta\cos\alpha_t/p_t\cos\alpha_t$
 $= (B\sin\beta/\cos\beta)/(p_n/\cos\beta)$
 $= B\sin\beta/\pi m_n$

$$\varepsilon_{\alpha} = \left[z_1 (\operatorname{tg} \alpha_{\text{at1}} - \operatorname{tg} \alpha_t') + z_2 (\operatorname{tg} \alpha_{\text{at2}} - \operatorname{tg} \alpha_t') \right] / 2\pi$$

分度圆柱与法截面交成一椭圆:

$$a = d/2\cos\beta$$

$$b = d/2$$

$$\rho = a^2/b = d/2\cos^2\beta$$

$$z_v = 2\rho/m_n = d/m_n\cos^2\beta$$

$$= zm_t/m_n\cos^2\beta$$

$$= z/\cos^3\beta$$

$$z_v = z/\cos^3\beta$$

当量齿数的用途:

成形铣选刀号、强度计算。

$$z_{\min} = z_{\text{vmin}} \cos^3 \beta$$

斜齿轮的优点:

- 1. 啮合性能好。
- 2. 重合度大。
- 3. 结构紧凑。

斜齿轮的缺点:

- 1. 有轴向力。
- 2. 加工要求高。

$$F_{\rm a} = F_{\rm t} \, \operatorname{tg} \beta$$

$$\beta = 8^{\circ} \sim 20^{\circ}$$

- 一、直齿圆锥齿轮的几何尺寸(弧齿圆锥齿轮)
- 二、圆锥齿轮的<u>背锥</u>与<u>当量齿轮</u>
- 三、圆锥齿轮的正确啮合条件、重合度与根切

圆锥齿轮的模数及分度圆定义大端:

正确啮合条件: $m_1=m_2$ $\alpha_1=\alpha_2$

重合度:按当量齿轮计算。

不根切的最小齿数: $z_v \ge z_{vmin} = 2h_a^* / \sin^2 \alpha$

6-10 蜗杆传动

蜗杆传动分类:

- 圆柱蜗杆
 - 普通圆柱蜗杆
 - 阿基米德蜗杆 π
 - 渐开线蜗杆
 - ■圆弧圆柱蜗杆
- 环面蜗杆
- 锥蜗杆

6-10 蜗杆传动

环面蜗杆

锥蜗杆

6-10 蜗杆传动

■ 普通圆柱蜗杆主要参数

6-10 蜗杆传动

导程: *l*

导程角:γ

轴向齿距: p_{x1}

$$tg \gamma_1 = \frac{l}{\pi d_1} = \frac{z_1 p_{x1}}{\pi d_1} = \frac{mz_1}{d_1}$$

6-10 蜗杆传动

正确啮合条件:

 $\gamma_1 = \beta_2$ $m_{t2} = m_{x1} = m$ $\alpha_{t2} = \alpha_{x1} = \alpha$

蜗杆蜗轮传动转向判断

右旋蜗杆