

南京工业大学

《化工原理》课程设计

设计题目 6 万吨/年氯苯筛板精馏塔工艺设计

学生姓名 陈钦睿 班级 化工 1707 学号 1001170709

课程设计时间 2019 年 10 月 08 日-2019 年 11 月 08 日

课程设计成绩

	百分制	权重	
设计说明书、计算书及设			
计图纸质量,70%			
独立工作能力、综合能			
力、设计过程表现、设计			
答辩及回答问题情况,			
30%			
设计最终成绩(五级分			
制)			

指导教师签字

设计目录

一、	设计任务	1
二、	设计条件	1
三、	物性数据	1
四、	工艺说明及流程	4
五、	全塔物料衡算	5
5	5.1 料液及塔顶、塔底产品中苯的摩尔分数	5
5	5.2 平均摩尔质量	5
5	5.3 料液及塔顶、塔底产品的摩尔流率	5
六、	塔板数的确定	5
	.1 理论塔板数 N _T 的求取	
	5.2 实际塔板数 N _P	
	全塔热量衡算	
7	.1 进料焓的计算 H _F	. 8
7	.2 预热器供热量计算 Q _F	8
7	.3 塔顶产品焓的计算 H _D	. 9
7	.4 全凝器冷凝负荷的计算 Qc	10
7	.5 塔底产品焓的计算 Hw	10
7	.6 再沸器热负荷的计算 Q _R	11

7	.7 全塔热量衡算	. 12
八、	筛板塔设计计算	. 13
8	.1 筛板塔精馏段设计计算	. 13
	8.1.1 精馏段操作工艺及相关物性数据的计算	. 13
	8.1.2 精馏段的气液负荷计算	. 14
	8.1.3 精馏塔段和塔板主要工艺结构尺寸的计算	. 15
	8.1.4 精馏段塔板上的流体力学验算	. 17
	8.1.5 精馏段塔板负荷性能图	. 19
	8.1.6 筛板塔精馏段的设计计算结果一览表	. 22
8	.2 筛板塔提馏段设计计算	. 23
	8.2.1 精馏段操作工艺及相关物性数据的计算	. 23
	8.2.2 提馏段的气液负荷计算	. 24
	8.2.3 提馏塔段和塔板主要工艺结构尺寸的计算	. 24
	8.2.4 提馏段塔板上的流体力学验算	. 26
	8.2.5 提馏段塔板负荷性能图	. 27
	8.2.6 提馏段的设计计算结果一览表	. 31
九、	精馏塔的附属设备与接管尺寸计算	. 32
9	.1 进料预热器	. 32
C	2 塔顶全路器	32

化工原理课程设计

9.3 塔釜再沸器	33
9.4 精馏塔的管口直径	33
9.4.1 塔顶蒸汽出口管径	33
9.4.2 回流液管径	34
9.4.3 加料管径	34
9.4.4 料液排出管径	
9.4.5 塔釜再沸器饱和蒸汽管径	34
十、精馏塔设计工艺条件图	35
十一、安全与环保	36
11.1 安全因素	36
11.2 三废处理	37
十二、设计结果汇总与讨论	38
12.1 结果汇总	38
12.2 设计讨论	39
附录:参考资料	39

6万吨/年氯苯筛板精馏塔工艺设计计算说明书

中国的氯苯行业在国际上占有重要的地位,产量及规模均为世界第一位。作为重要的有机化工基础原料,氯苯类主要用于染料、农药、有机合成工业以及氯乙烯清漆树脂等。一氯苯在国内主要用于合成对、邻硝基氯苯、2,4-二硝基氯苯、二苯醚等,并有少量用作农药合成和溶剂。一氯苯作为氯碱生产企业平衡氯气的耗氯产品之一,国内氯苯装置基本都是在氯碱企业的基础上建立的,并配套建设硝基氯苯装置。国内 60%左右的氯苯产量用于供企业配套硝基氯苯装置自用,40%外销商品量及出口[1]。

- 一氯苯深度氯化可得对二氯苯和邻二氯苯,这两种产品都是重要的有机化工原料,主要用于杀虫剂、防霉剂、防臭剂及 2,5-二硝基氯苯以及工程塑料聚苯硫醚、农用化学品、染料化学品等的生产。
- 一氯苯的工业生产主要采用苯液相氯化法。 苯与氯气在铁催化剂作用下连续氯化生成 氯化液及氯化氢,氯化氢气体进入回收装置用水吸收得副产盐酸。 氯化液经水洗、中和、干燥,再经初馏脱苯、精馏蒸出氯苯。塔釜中残留物为二氯苯及多氯化物。苯氯化反应式为:

图 1 一氯苯生产流程框图

氯苯生产工艺流程框图如图 1 所示。

本设计暂不考虑苯氯化反应液中二氯化苯和三氯化苯的存在,试根据设计条件设计一座 筛板塔完成苯-氯苯二元混合液的精馏分离。

一、设计任务

- (1)年产氯苯 60000t/a;
- (2)原料液中含氯苯为 40%(质量分数);
- (3) 塔底氯苯产品纯度为99.8%(质量分数), 塔顶馏出液中含氯苯不高于2%(质量分数)。

二、设计条件

- (1) 塔顶压力 4 kPa (表压);
- (2)进料热状况: 饱和液体进料:
- (3)回流比取 R=2R_{min};
- (4) 塔釜加热蒸汽压力 506 kPa;
- (5)单板压降不大于 0.7 kPa;
- (6)年工作时间 7920 小时, 每天 24h 连续运行。

三、物性数据

(1)组分的饱和蒸气压

由《石油化工基础数据手册》^[2]第 306 页查得苯的分子量为 78.115, 苯的沸点为 80.1℃。 苯在 100℃以下的饱和蒸汽压单位为 mmHg,按《化工原理》^[3]附录 1mmHg=0.1333kPa 转换单位; 苯在 100℃以上饱和蒸汽压单位为大气压,按 1atm=101.33kPa 将单位转换成 kPa。

由第 458 页查得氯苯的分子量为 112.559, 沸点 $T_b=131.7$ \mathbb{C} 。氯苯在 140 \mathbb{C} 以下饱和蒸汽压单位为 mmHg,奖其转换成 kPa。苯和氯苯的饱和蒸汽压与温度关系如表 1 所示。

温	度/℃	10	20	30	40	50	60	70
$\mathbf{p}^{o}_{\mathbf{i}}$	A苯	6.069	10.024	15.871	24.308	36.079	52.063	73.256
/kPa	B 氯苯	_	ı	2.099	3.52	5.678	8.846	13.371

表 1 组分的饱和蒸气压

续表1

温	.度/℃	80	90	100	110	120	130	140
$\mathbf{p}^{o}_{\mathbf{i}}$	A苯	100.763	135.78	176.943	234.376	300.342	379.582	473.616
/kPa	B氯苯	19.654	28.173	39.478	53.393	73.008	96.684	126.042

(2)组分的液相密度

由石油化工基础数据手册^[2]第 306 页查得苯、第 458 页氯苯的液相密度单位为 g/cm³,将 其转换成 kg/m³。两纯组分液相密度与温度关系如表 2 所示。

表 2 组分的液相密度

温度	:/°C	10	20	30	40	50	60	70
ρ	A 苯	887.3	877.4	867.5	857.3	847.0	836.6	825.9
/(kg/m ³)	B氯苯	1118	1107	1097	1086	1075	1064	1053

续表 2

温度	温度/℃ 80		90	100	110	120	130	140
ρ	A苯	815.0	803.9	792.5	780.8	768.9	756.7	744.1
/(kg/m ³)	B氯苯	1042	1031	1019	1008	996.4	984.7	972.9

将表 2 的数据关联成下式:

A苯

 ρ_A =912.13 -1.1886t

B 氯苯

 $\rho_B = 1124.4 - 1.0657t$

式中, t 为温度, ℃

(3)组分的表面张力

纯组分的表面张力。由石油化工基础数据手册^[2]查得苯和氯苯的表面张力单位为:达因/厘米,按《化工原理》附录^[3] 附录 1 达因/厘米=1×10⁻³ 牛顿/米=1mN/m 换算。两纯组分的表面张力随温度变化数据如表 3 所示。

表 3 组分的表面张力

温度	€/°C	10	20	30	40	50	60	70		
σ	苯	30.09	28.80	27.52	26.25	24.99	23.74	22.50		
/(mN/m)	氯苯	33.96	32.80	31.64	30.49	29.35	28.21	27.08		
续表3										
温度	€/°C	80	90	100	110	120	130	140		
σ	苯	21.27	20.06	18.85	17.66	16.49	15.32	14.17		
/(mN/m)	氯苯	25.96	24.85	23.75	22.65	21.57	20.49	19.42		

混合液的表面张力。两组分混合液体的表面张力 σ_m 可按下式计算:

$$\sigma_{\rm m} = \frac{\sigma_{\rm A}\sigma_{\rm B}}{\sigma_{\rm A}x_{\rm B} + \sigma_{\rm B}x_{\rm A}}$$
 式中, $x_{\rm A}$ 、 $x_{\rm B}$ 为 A、B 组分的摩尔分数。

(4)组分的汽化潜热

由石油化工基础数据手册[2]查得苯和氯苯的汽化潜热单位为:卡/克分子,按1卡/克分子 =4.1868J/mol=4.1868kJ/kmol 换算。两纯组分的汽化潜热随温度变化数据如表 4 所示。

温度/℃ 10 20 **30** 40 50 60 **70** 苯 34080.55 33678.62 33251.57 32807.76 32334.66 31844.80 31325.64 γ/(kJ/kmol) 氯苯 41085.07 40729.19 39954.63 39540.14 39100.53 40352.38 38644.16 续表 4 温度/℃ 80 90 100 110 120 130 140 26988.11 苯 30785.54 30220.32 29629.98 29014.52 28369.76 27691.50 γ/(kJ/kmol) 氯苯 38166.87 37668.64 37145.29 36605.19 36044.16 35458.00 34850.92

表 4 组分的汽化潜热

氯苯常压沸点下的汽化潜热为 35.3×103 kJ/kmol。纯组分的汽化潜热与温度的关系也可

用下式表示:
$$\frac{r_2}{r_1^{0.38}} = \left(\frac{t_c - t_2}{t_c - t_1}\right)^{0.38}$$
(氯苯的临界温度: t_c =359.2 $^{\circ}$ C)

(5)组分的比热容

/[kJ/(kmol· °C)]

氯苯

160.40

163.24

由石油化工基础数据手册[2]查得苯和氯苯的比热容单位为:卡/(克分子・℃)、按 1 卡/克 分子· \mathbb{C} =4.1868kJ/(kmol· \mathbb{C})换算。两纯组分的汽化潜热随温度变化数据如表 5 所示。

	表 5 组分的比热容 ————————————————————————————————————											
温度/℃	10	20	30	40	50	60	70					
C_P	苯	132.51	134.07	135.82	138.01	140.19	142.38	144.57				
/[kJ/(kmol·℃)]	氯苯	149.43	150.01	150.77	152.36	153.57	154.79	157.55				
				续表5								
温度/℃ 80 90 100 110 120								140				
СР	苯	146.95	149.76	152.57	156.13	160.30	163.63	167.38				

166.13

169.02

171.99

174.97

177.98

(6)其他物性数据

其它物性数据可查石油化工基础数据手册或化工原理附录。

四、工艺说明及流程

工艺说明。含苯和氯苯的常温原料液经列管式预热器 E101 预热至泡点后送入连续筛板精馏 塔 T101, 塔顶蒸汽经列管式全凝器 E102 冷凝后流入回流罐 V102,冷凝液经泵 P102 输送,一部分作为回流液,其余作为产品经 E105 冷却后送至苯液储罐 V104; 塔釜采用虹吸立式再沸器 E103 提供气相流, 塔釜产品经卧式列管式冷却器 E104 冷却后送入氯苯储罐 V103。

工艺流程。苯与氯苯精馏分离的工艺流程如图 2 所示。

V101 P101 E101 T101 E102 V102 P102 E103 E104 V103 P103 E105 V104 P104 原料罐 原料泵 原料预热器 精馏塔 全凝器 回流罐 回流泵 再沸器 釜液冷却器 釜液罐 氯苯外送泵 苯液冷却器 苯罐 苯外送泵

图 2 苯-氯苯精馏分离工艺流程简图

五、全塔物料衡算

5.1 料液及塔顶、塔底产品中苯的摩尔分数

苯和氯苯的摩尔质量分别为 78.11 kg/kmol 和 112.61 kg/kmol。

$$\begin{split} x_F &= \frac{60/78.11}{60/78.11 + 40/112.61} = 0.684 \\ x_D &= \frac{98/78.11}{98/78.11 + 2/112.61} = 0.986 \\ x_W &= \frac{0.2/78.11}{0.2/78.11 + 99.8/112.61} = 0.00288 \end{split}$$

5.2 平均摩尔质量

$$\begin{split} M_F = & 78.11 \times 0.728 + 112.\ 61 \times (1\text{-}0.728) = 89.01\ \text{kg/kmol} \\ M_D = & 78.11 \times 0.986 + 112.61 \times (1\text{-}0.986) = 78.59\ \text{kg/kmol} \\ M_W = & 78.11 \times 0.00288 +\ (1\text{-}0.00288)\ \times 112.61 = 112.5\ \text{kg/kmol} \end{split}$$

5.3 料液及塔顶、塔底产品的摩尔流率

依题给条件: 一年一共 330 天, 一天以 24h 计(7920 小时/年), 有 W'=60000t/a=7576kg/h. 全塔物料衡算:

$$\begin{cases} F' = D' + W' \\ 0.4F' = 0.02D' + 0.998W' \end{cases} \Rightarrow \begin{cases} F' = 19498 \text{ kg/h} & F = 19498/89.01 = 218.8 \text{ kmol/h} \\ D' = 11922 \text{ kg/h} & D = 11922/78.59 = 151.7 \text{ kmol/h} \\ W' = 7576 \text{ kg/h} & W = 7576/112.5 = 67.34 \text{ kmol/h} \end{cases}$$

六、塔板数的确定

6.1 理论塔板数 N_T 的求取

苯-氯苯物系属于理想物系,可采用梯级图解法(M-T法)求取 NT,步骤如下:

(1)相平衡数据求取

根据苯-氯苯的相平衡数据,利用泡点方程和露点方程求取 x-y。

依据 $\mathbf{x} = (\mathbf{p}^{0} - \mathbf{p}^{0}\mathbf{B})/(\mathbf{p}^{0}\mathbf{A} \cdot \mathbf{p}^{0}\mathbf{B}), \mathbf{y} = \mathbf{p}^{0}\mathbf{A}\mathbf{x}\mathbf{A}/\mathbf{p}^{0}$,将所得计算结果列表见表 6

温度/℃		80	90	100	110	120	130	131.8
$\mathbf{p^o_i}$	苯	760	1025	1350	1760	2250	2840	2900
	氯苯	148	205	293	400	543	719	760
两相摩尔分数	X	1	0.677	0.442	0.265	0.127	0.019	0
內相序小刀剱	y	1	0.913	0.785	0.614	0.376	0.071	0

表 6 苯-氯苯的相平衡数据

本题中, 塔内压力接近常压(实际上略高于常压), 而表中所给为常压下的相平衡数据, 因为操作压力偏离常压很小, 所以其对 x-v 平衡关系的影响完全可以忽略。

(2)确定操作的回流比 R

将表 6 中的数据作图得 x-y 曲线 (见图 3) 及 t-x (y) 曲线 (见图 4)。

图 4 t~x(y)曲线

在 x-y 图上, 因 q=1, 查得 ye=0.916, 而 xe=xF=0.684, xD=0.986.故有:

$$R_{m} = \frac{x_{D} - y_{e}}{y_{e} - x_{e}} = \frac{0.986 - 0.916}{0.916 - 0.684} = 0.302$$

考虑到精馏段操作线离平衡线较近,理论回流比最小,故取回流比为最小回流比的 2 倍,即:

$$R=2R_{min}=2\times0.302=0.604$$

(3)求理论塔板数

精馏段操作线为:

$$y = \frac{R}{R+1}x + \frac{x_D}{R+1} = 0.376x + 0.615$$

提馏段操作线过(0.00288,0.00288)和(0.684,0.872)两点的直线。

图解的 $N_{T=10.5}$ 块(含塔釜)。其中,提馏段 $N_{T1=3.5}$ 块,提馏段 $N_{T2=7}$ 块,第 4 块为加料板位置。

6.2 实际塔板数 NP

(1)全塔效率 ET

选用 Drickamer 和 Bradford 的全塔效率 ET 与液体黏度 μ L 关联式: ET=0.17-0.606lg μ m。该式适用于液相黏度 0.07~1.4 mPa·s 的烃类物系,式中 μ m 为全塔平均温度下以进料组成表示的平均黏度。塔的平均温度为 0.5× (80.47+131.41) =105.9 \mathbb{C} (取塔顶底温度的算术平均值),再此平均温度下查化工原理附录得:

 $\mu_A=0.242 \text{ mPa·s}$ $\mu_B=0.348 \text{ mPa·s}$

 $\mu_{\text{M}} = \mu_{\text{A}} x_{\text{F}} + \mu_{\text{A}} (1 - x_{\text{F}}) = 0.24 \times 0.684 + 0.34 \times (1 - 0.684) = 0.275 \text{ mPa·s}$

 $E_T=0.17-0.606lg\mu_m=0.17-0.616lg0.267=0.52$

(2)实际塔板数 Np(近似取两段效率相同)

精馏段: Np1=3.5/0.52=6.7, 取 Np1=7 块;

提馏段: Np2=7/0.52=13.5, 取 Np2=14 块;

总塔板数: NP=NP1+NP2=19 块。

七、全塔热量衡算

图 3 精馏塔热量衡算示意

精馏塔热量衡如图 3 所示。热量衡算说明:

- ① 泡点进料,泡点回流;
- ② 以 0℃常温下液态混合物状态为基准。

全塔热量衡算: $H_F + Q_F + Q_R = Q_C + H_D + H_W$

7.1 进料焓的计算 HF

设原料罐中混合液体的温度为 20℃,由进料液体的定性温度(20+0)/2=10℃,查表 5 得定性温度 10℃下的苯的比热容 C_{PA} =132.51 kJ/(kmol·℃),氯苯的比热容 C_{PB} =149.43 kJ/(kmol·℃),则进料液体的平均比热:

 $C_{PFm} = x_F C_{PA} + (1-x_F)C_{PB} = 132.51 \times 0.684 + 149.43 \times 0.316 = 138 \text{ kJ/(kmol \cdot ^{\circ}C)}$

进料液体焓: H_F=F×C_{PFm}×Δt =218.8 kmol/h×138 kJ/(kmol· °C)×(20-0) °C = 6.04×10⁵ kJ/h

7.2 预热器供热量计算 OF

根据 5.1 部分计算的原料组成 x_F=0.684,分别由苯和氯苯的 Antoine 方程试差计算出原料的泡点,由原料温度和泡点温度计算出定性温度,再由定性温度查出苯和氯苯在泡点温度下的比热容数据,按摩尔分率加和计算出原料在定性温度下的平均比热容,再计算出预热器的供热量。

进料泡点温度。查石油化工基础数据手册^[1]附录一第 1032 页、第 1036 页,分别得苯(A) 和氯苯(B)的 Antoine 常数:

苯 Antoine 方程(280~377K):

$$lnp_A(mmHg) = A - \frac{B}{T+C} = 15.9008 - \frac{2788.51}{T(K)-52.36}$$

氯苯 Antoine 方程(320~420K):

$$\ln p_B(mmHg) = A - \frac{B}{T+C} = 16.0676 - \frac{3295.12}{T(K)-55.6}$$

设进料泡点温度为 tbF=89.93℃=362.93K, 则

$$\ln p_A = 15.9008 - \frac{2788.51}{362.93-52.36} = 6.9221, p_A = e^{6.9221} = 1014.4mmHg$$
 $\ln p_B = 16.0676 - \frac{3295.12}{362.93-55.60} = 5.3458, p_B = e^{5.3458} = 209.72mmHg$
 $x_A = \frac{P - p_B}{p_A - p_B} = \frac{760 - 198.64}{969.81 - 198.64} = 0.6838 \approx 0.684$,假设正确

∴进料泡点温度为 tbF=88.23℃。

平均比热容。定性温度: (20+89.93)=54.96℃。

由表 5 可知,苯在 50℃时比热容为 140.19 kJ/(kmol·℃),60℃时的比热容为 142.38 kJ/(kmol·℃),通过插值计算得苯在 54.96℃时的比热容为:

$$C_{PFA} = C_{P50} + \frac{C_{P60} - C_{P50}}{60 - 50}(54.96 - 50) = 140.19 + \frac{142.38 - 140.19}{60 - 50} \times 4.96 = 141.28$$

由表 5 可知,氯苯在 50℃时比热容为 153.57 kJ/(kmol· \mathbb{C}),60℃时的比热容为 154.79 kJ/(kmol· \mathbb{C}),通过插值计算得氯苯在 54.96℃时的比热容为:

$$C_{PFB} = C_{P50} + \frac{C_{P60} - C_{P50}}{60 - 50} (54.96 - 50) = 153.57 + \frac{154.79 - 153.57}{60 - 50} \times 4.96 = 154.18$$

原料在 54.96℃时的平均比热容为:

 $C_{PFm}=x_AC_{PFA}+(1-x_A)C_{PFA}=0.684\times141.28+0.316\times154.79=145 \text{ kJ/ (kmol·°C)}$

预热器供热量。将原料 20℃加热到 88.23℃所需的热量:

 $Q_F = F \times C_{PFm} \times (t_{bF} - 20) = 218.8 \text{ kmol/h} \times 145 \text{ kJ/ (kmol} \cdot ^{\circ}C) \times (89.93-20) ^{\circ}C = 2.22 \times 10^6 \text{ kJ/h}$

7.3 塔顶产品焓的计算 H_D

塔顶产品泡点温度。塔顶蒸汽经全凝器冷凝至泡点后部分采出作为塔顶产品(塔顶馏出液)。因此,根据 5.1 部分计算的塔顶产品组成 $x_D=0.986$ 及苯和氯苯的 Antoine 方程,试差求出塔顶组成下的泡点温度 t_{DD} 。设塔顶产品泡点温度为: $t_{DD}=80.47$ $\mathbb{C}=353.62$ K、则

$$\ln p_A = 15.9008 - \frac{2788.51}{353.62-52.36} = 6.6446, p_A = e^{6.6446} = 768.62 \ mmHg$$
 $\ln p_B = 16.0676 - \frac{3295.12}{353.62-55.60} = 5.0109, p_B = e^{5.0109} = 150.04 \ mmHg$
 $x_A = \frac{P - p_B}{p_A - p_B} = \frac{760 - 150.04}{768.62 - 150.04} = 0.9861 \approx 0.986$,假设正确

平均比热容。定性温度(80.47+0)/2=40.24℃。

由表 5 可知, 苯在 40℃时比热容为 138.01 kJ/(kmol· °C), 50℃时的比热容为 140.19 kJ/(kmol· °C), 通过插值计算得苯在 44.24℃时的比热容为:

$$C_{PDA} = C_{P40} + \frac{C_{P50} - C_{P40}}{50 - 40}(40.24 - 40) = 138.01 + \frac{140.19 - 138.01}{50 - 40} \times 0.24 = 138.06$$

由表 5 可知,氯苯在 50℃时比热容为 152.36kJ/(kmol·℃),60℃时的比热容为 153.57 kJ/(kmol·℃),通过插值计算得氯苯在 44.24℃时的比热容为:

$$C_{PDB} = C_{P40} + \frac{C_{P50} - C_{P40}}{50 - 40} (40.24 - 40) = 152.36 + \frac{153.57 - 152.36}{50 - 40} \times 0.24 = 152.39$$

塔顶产品在 40.24℃时的平均比热容为:

 $C_{PDm} = x_D C_{PDA} + (1-x_D) C_{PDA} = 0.986 \times 138.06 + 0.014 \times 152.39 = 138 \text{ kJ/ (kmol \cdot ^C)}$

塔顶产品焓。塔顶产品焓由塔顶产品摩尔流率、平均比热容和温差计算而得:

 $H_D = D \times C_{PDm} \times (t_{bD} - 0) = 151.7 \text{ kmol/h} \times 138 \text{ kJ/ (kmol} \cdot ^{\circ}\text{C}) \times 80.47 ^{\circ}\text{C} = 1.68 \times 10^6 \text{ kJ/h}$

7.4 全凝器冷凝负荷的计算 Qc

塔顶蒸汽平均冷凝潜热。在 7.3 部分计算出塔顶产品泡点温度 t_{bD}=80.47 ℃。

由表 4 查得苯在 80℃下的汽化潜热为 30785.54 kJ/kmol, 在 90℃下的汽化潜热为 30220.32 kJ/kmol。经插值得苯在 80.47℃的汽化潜热: γ_{DA}= 30758.97 kJ/kmol。

由表 4 查得氯苯 80℃下的汽化潜热为 38166.87 kJ/kmol, 在 90℃下的汽化潜热为 37668.64 kJ/kmol。经插值得氯苯在 80.47℃的汽化潜热: γ_{DB}=38143.45 kJ/kmol。

在80.47℃下塔顶蒸汽平均冷凝潜热:

 $\gamma_{Vm} = x_D \times \gamma_{DA} + (1-x_D) \gamma_{DB} = 0.986 \times 30758.97 + 0.014 \times 38143.45 = 30862.35 \text{kJ/kmol}$

塔顶蒸汽冷凝负荷。由 5.3 部分得塔顶产品量 D=151.7 kmol/h,由 6.1 部分得操作回流比 R=0.603,全凝器冷凝负荷:

 $Q_{C} = V \times \gamma v_{m} = (R+1)D \times \gamma v_{m} = (0.604+1) \times 151.7 \\ kmol/h \times 30862.35 \\ kJ/kmol = 7.52 \times 10^{6} \\ kJ/h \times 151.7 \\ kmol/h \times 151.7 \\ k$

7.5 塔底产品焓的计算 Hw

塔底产品泡点温度。流至塔底液体一部分经再沸器汽化回流进塔,另一部分采出作为塔底产品。因此,根据 5.1 部分计算的塔底产品组成 xw=0.00288 及苯和氯苯的 Antoine 方程,试差求出塔底组成下的泡点温度 $t_{\rm bw}$ 。设塔底产品泡点温度为: $t_{\rm bw}=131.41$ $\mathbb{C}=404.56$ K(已超出苯的 Antoine 方程最高温度),则

$$\begin{split} \ln p_A &= 15.9008 - \frac{2788.51}{404.56-52.36} = 7.9834, p_A = e^{7.9834} = 2931.88 \ mmHg \\ \ln p_B &= 16.0676 - \frac{3295.12}{404.56-55.60} = 6.6249, p_B = e^{6.6249} = 753.63 \ mmHg \\ x_A &= \frac{P - p_B}{p_A - p_B} = \frac{760 - 753.63}{2931.88 - 753.63} = 0.00292 \approx 0.00288, 假设正确 \end{split}$$

平均比热容。定性温度(131.41+0)/2=65.71℃。

由表 5 可知, 苯在 60℃时比热容为 142.38 kJ/(kmol· °C), 70℃时的比热容为 144.57kJ/(kmol· °C), 通过插值计算得苯在 65.71℃时的比热容为:

$$C_{PWA} = C_{P60} + \frac{C_{P70} - C_{P60}}{70 - 60} (65.71 - 60) = 142.38 + \frac{144.57 - 142.38}{70 - 60} \times 5.71 = 143.63$$

由表 5 可知,氯苯在 60℃时比热容为 154.79kJ/(kmol· $^{\circ}$ C),70℃时的比热容为 157.55kJ/(kmol· $^{\circ}$ C),通过插值计算得氯苯在 65.71℃时的比热容为:

$$C_{PWB} = C_{P60} + \frac{C_{P70} - C_{P60}}{70 - 60} (65.71 - 60) = 154.79 + \frac{157.55 - 154.79}{70 - 60} \times 5.71 = 154.09$$
 塔顶产品在 65.71 ℃时的平均比热容为:

 $C_{PWm} = x_W C_{PWA} + (1-x_W) C_{PWB} = 0.00288 \times 143.63 + 0.99712 \times 154.09 = 154 \text{kJ/(kmol \cdot ^{\circ}C)}$

塔底产品焓。塔底产品焓由塔底产品摩尔流率、平均比热容和温差计算而得:

 $H_W=W\times C_{PW_m}\times (t_{bW}-0)=67.34 \text{kmol/h}\times 154 \text{kJ/(kmol}\cdot ^{\circ}\text{C})\times (131.41-0) ^{\circ}\text{C}=1.36\times 10^6 \text{ kJ/h}$

7.6 再沸器热负荷的计算 OR

塔底产品平均汽化潜热。在 7.5 部分计算出塔底产品泡点温度 tbw=131.41 ℃。

由表 4 查得苯在 130℃下的汽化潜热为 27691.50 kJ/kmol, 在 140℃下的汽化潜热为 26988.11 kJ/kmol。经插值得苯在 131.41℃的汽化潜热: ywa=27592.32 kJ/kmol。

由表 4 查得氯苯 130℃下的汽化潜热为 35458.0 kJ/kmol, 在 140℃下的汽化潜热为 34850.92 kJ/kmol。经插值得氯苯在 131.41℃的汽化潜热: γw_B=35372.4 kJ/kmol。

在 131.41℃下塔底产品平均汽化潜热:

γwm=xw×γwA+(1-xw) γwB =0.00288×27592.32+0.99712×35372.4=35350 kJ/kmol 再沸器供热负荷。泡点进料 q=1,

再沸器汽化量: V'=V-(1-q)F=V=(R+1)D= (0.604+1)×151.7 =243.3 kmol/h

再沸器热负荷:QR=γvm V'=243.3kmol/h×35350kJ/kmol=8.59×10⁶ kJ/h

7.7 全塔热量衡算

$$\mathbf{Q}_{\mathbf{F}} + \mathbf{Q}_{\mathbf{B}} = \mathbf{Q}_{\mathbf{C}} + \mathbf{H}_{\mathbf{D}} + \mathbf{H}_{\mathbf{W}}$$

全塔输入热	全塔输入热量/(kJ/h)		是(kJ/h)
原料焓 H _F	0.604×10 ⁶	全凝器冷却量 Qc	7.52×10^6
原料预热量 QF	2.22×10 ⁶	塔顶产品焓 H _D	1.68×10 ⁶
再沸器供热量 QB	8.3190×10 ⁶	塔底产品焓 Hw	1.36×10 ⁶
总输入	11.14×10 ⁶	总输出	10.56×10 ⁶

由表格中数据可以看出,全塔的热量不守恒。可能的原因有: 1、流体在输送过程中与管道及管道外空气存在热交换,造成一定量的热损失; 2、流体在塔内与蒸汽时存在热交换,同时有相变产生,过程中存在热损失; 3、在冷凝过程中由于相变而存在一定的热损失。

八、筛板塔设计计算

8.1 筛板塔精馏段设计计算

8.1.1 精馏段操作工艺及相关物性数据的计算

(1)精馏段平均压力 pm

取每层塔板压降为 0.7 kPa 计算

塔顶: pp=101.3+4=105.3 kPa

加料板: pp=105.3+7×0.7=110.2 kPa

平均压力: pm= (105.3+110.2) /2=107.8 kPa

(2) 精馏段平均温度 tm

由 7.2、7.3 计算可知,塔顶温度为 80.47℃,加料板为 89.93℃, $t_{\rm m}=\frac{80.47+89.93}{2}=85.20$ ℃。

(3)平均分子量 Mm

塔顶: y1=xD=0.986, x1=0.935 (查相平衡图 3)

 $M_{VD,m}$ =0.986×78.11+(1-0.986) ×112.61=78.59 kg/kmol

 $M_{LD,m}$ =0.935×78.11+(1-0.935) ×112.61=80.35 kg/kmol

进料板: x_F=0.684, y_F= 0.916(查相平衡图 3)

 $M_{VF,m}$ =0.916×78.11+(1-0.916) ×112.61=81.01 kg/kmol

 $M_{LF,m}$ =0.684×78.11+(1-0.684)×112.61=89.01 kg/kmol

精馏段: Mv,m=(78.59+80.35)/2=79.80 kg/kmol

 $M_{L,m}=(80.18+87.49)/2=84.68$ kg/kmol

(4)平均密度 ρm

①液相的平均密度 ρι, μ

塔顶: ρ_{LD,A}=912.13-1.1886t=912.13-1.1886×80.47=816.50 kg/m³

 $\rho_{LD,B}$ =1124.4-1.0657t=1124.4-1.0657×80.47=1038.6 kg/m³

$$\frac{1}{\rho_{LD,m}} = \frac{\alpha_A (\text{ \em below} \pm 2 \text{ \empty})}{\rho_{LD,A}} + \frac{\alpha_B}{\rho_{LD,B}} = \frac{0.98}{816.5} + \frac{0.02}{1038.6} \rightarrow \rho_{LD,m} = 819.99 \text{ kg/m}^3$$

进料板: ρ_{LF,A}=912.13-1.1886t=912.13-1.1886×89.93=805.24 kg/m³

 $\rho_{LF,B}$ =1124.4-1.0657t=1124.4-1.0657×89.93=1028.6 kg/m³

$$\frac{1}{\rho_{LF,m}} = \frac{\alpha_A}{\rho_{LF,A}} + \frac{\alpha_B}{\rho_{LF,B}} = \frac{0.60}{805.24} + \frac{0.40}{1028.6} \rightarrow \rho_{LF,m} = 881.82 \ kg/m^3$$

精馏段: ρ_{L,m}= (820.5+873.7) /2=850.90 kg/m³

②气相平均密度 pv,m

$$\rho_{V,m} = \frac{p_m M_{V,m}}{RT_m} = \frac{107.8 \times 79.80}{8.314 \times (273 + 85.20)} = 2.889 \text{ kg/m}^3$$

(5)液体的平均表面张力 om

塔顶: 80.47℃下, σ_{D,A}=21.22 mN/m; σ_{D,B}=25.91 mN/m

$$\sigma_{D,m} = \left(\frac{\sigma_A \sigma_B}{\sigma_A x_B + \sigma_B x_A}\right)_D = \left(\frac{21.22 \times 25.91}{21.22 \times 0.014 + 25.91 \times 0.986}\right) = 21.14 \text{ mN/m}$$

进料板: 89.93℃下, σ_{F.A}=20.07 mN/m; σ_{F.B}=21.86 mN/m

$$\sigma_{F,m} = \left(\frac{\sigma_A \sigma_B}{\sigma_A x_B + \sigma_B x_A}\right)_F = \left(\frac{20.07 \times 21.86}{20.07 \times 0.316 + 21.86 \times 0.684}\right) = 21.37 \ mN/m$$

精馏段: $\sigma_m = \frac{\sigma_{D,m} + \sigma_{F,m}}{2} = 21.32 \text{ mN/m}$

(6)液体的平均黏度 µL,m

塔顶:由石油化工基础数据手册[2],在80.47℃下有:

 $\mu_{LD,m}$ = ($\mu_{A}x_{A}$) D+ ($\mu_{B}x_{B}$) D=0.306×0.986+0.426×0.014=0.308 mPa·s

加料板: 由石油化工基础数据手册[2], 在89.93℃下有

 $\mu_{LF,m}$ = (μ_{AXA}) F+ (μ_{BXB}) F =0.279×0.684+0.394×0.316=0.315 mPa·s

精馏段: μL,m= (0.308+0.315) /2=0.312 mPa·s

8.1.2 精馏段的气液负荷计算

气相摩尔流率 V= (R+1) D=1.604×151.7=243.3 kmol/h

气相体积流率
$$V_S = \frac{VM_{V,m}}{3600\rho_{V,m}} = \frac{235.33 \times 79.80}{3600 \times 2.889} = 1.867 \text{ m}^3/\text{s}$$

气相体积流率 $V_h = 6720 \text{ m}^3/h$

液相回流摩尔流率 L=RD=0.604×151.7=91.60 kmol/h

液相体积流量
$$L_S = \frac{LM_{L,m}}{3600\rho_{L,m}} = \frac{91.60 \times 84.68}{3600 \times 850.90} = 0.00253 \text{ m}^3/s$$

液相体积流量 L_h = 79.12 m³/h

8.1.3 精馏塔段和塔板主要工艺结构尺寸的计算

8.1.3.1 精馏段塔径

①选塔板间距 H_T=500 mm 及板上液层高度 H_L=60 mm,则

$$H_T$$
- H_L =0.5-0.06=0.44 mm

(2)按 Smith 法求取允许的空塔气速 umax (及泛点气速 uF)

$$\left(\frac{L_S}{V_S}\right) \left(\frac{\rho_L}{\rho_V}\right)^{0.5} = \left(\frac{0.00253}{1.867}\right) \left(\frac{850.90}{2.889}\right)^{0.5} = 0.0232$$

查《化工原理》[3]教材第四版费尔液泛气相负荷因子关联图 8-25, 得 Cf20=0.068

负荷因子表面张力校正:
$$C = C_{20} \left(\frac{\sigma}{20}\right)^{0.2} = 0.0925 \times \left(\frac{21.26}{20}\right)^{0.2} = 0.0725$$

泛点气速:
$$u_{max} = C \left(\frac{\rho_L - \rho_V}{\rho_V}\right)^{0.5} = 0.0725 \sqrt{\frac{850.90 - 2.889}{2.889}} = 1.24 \text{ m/s}$$

- (3)操作气速,取 u=0.75umax=0.930 m/s
- 4)精馏段塔径

$$D = \sqrt{\frac{4V_S}{\pi u}} = \sqrt{\frac{4 \times 1.795}{3.14 \times 0.930}} = 1.599 \text{ m}$$

圆整取 D=1600 mm,此时操作气速 u=0.928 m/s;塔横截面积 $A_T=0.785D^2=2.01$ m²

8.1.3.2 精馏段塔板工艺结构尺寸的设计与计算

(1)溢流装置

采用单溢流型的平顶弓形溢流堰、弓形降液管、平行受液盘,且不设进口内堰。

①溢流堰长(出口堰长)Lw

取 $L_{W}=0.7D=0.7\times1.6=1.12$ m,堰上溢流强度 $L_{h}/L_{W}=9.12/1.12=8.14$ m³/(m·h)<100~300 m³/(m·h),满足筛板塔的堰上溢流强度要求。

②出口堰高 hw

由 $L_W/D=0.7$ 及 $L_h/L_w^{2.5}=9.12/1.12^{2.5}=6.87$,查《化工原理》 $^{[3]}$ 教材第四版液流收缩系数图 8-19 得 E=1.02;又对平直堰,堰上液层高度 $h_{OW}=0.00284E(L_h/L_w)^{2/3}$,则可得:

$$h_{ow} = 0.00284 \times 1.02 \times (9.12/1.12)^{2/3} = 0.0117 \text{ m} > 0.006 \text{ m}$$
 (满足要求)

$$h_w = H_L - h_{ow} = 0.06 - 0.0117 = 0.0483 \text{ m}$$

③降液管的宽度 Wd 和降液管的面积 Af

由 Lw/D=0.7,查《化工原理》^[3]教材第四版图 8-17 弓形降液管的几何关系得: $W_d/D=0.14$, $A_f/A_T=0.087$,即 $W_d=0.224$ m, $A_f=0.087$ $A_T=0.175$ m²

液体在降液管内停留时间为: $\tau=A_fH_T/L_s=0.175\times0.5/0.00253=34.58$ s>5s(满足要求)

4)降液管的底隙高度 h。

液体通过降液管底隙的流速一般为 0.07~0.25 m/s, 取液体通过降液管底隙的流速 $u_0=0.08$ m/s, 则

$$h_0 = \frac{L_S}{L_W u_0} = \frac{0.00253}{1.12 \times 0.08} = 0.0282 \text{ m } (h_0 不宜小于 0.02~0.025, 本结果满足要求)$$

(2)塔板布置

表 7 塔板分块数与塔径关系

塔径/mm	800~1200	1400~1600	1800~2000	2200~2400
塔板分块数	3	4	5	6

- ①塔板分布,因 D=1600 mm,根据表7将塔板分作4块安装。
- ②边缘区宽度 Wc 与安定区宽度 Ws

边缘区宽度 Wc: 一般为 50~75 mm, D>2 m, Wc 可达 100 mm

安定区宽度 Ws: 规定 D<1.5 m 时 Ws=75 mm; D>1.5 m 时, Ws=100 mm

本设计取 Wc=60 mm, Ws=100 mm

③ 开孔区面积 Aa

$$r=D/2 - W_c=0.8-0.060=0.740 m$$

$$x=D/2 - (W_d+W_s)=0.8 - (0.224+0.100) = 0.476 m$$

$$\begin{split} A_a &= 2 \left[x \sqrt{R^2 - x^2} + \frac{\pi}{180} R^2 \sin^{-1} \left(\frac{x}{R} \right) \right] \\ &= 2 \left[0.476 + \frac{\pi}{180} 0.74^2 \sin^{-1} \left(\frac{0.476}{0.740} \right) \right] \\ &= 1.304 \text{ m}^2 \end{split}$$

表 5 开孔区面积示意图

取筛孔的孔径 $d_0=5$ mm, 正三角形排列, 筛板采用碳钢, 其厚度 $\delta=3$ mm, 且取 $t/d_0=2.5$,

故孔心距 t=2.5×5=12.5 mm。

每层塔板的开孔数
$$\mathbf{n} = \left(\frac{1158 \times 10^3}{t^2}\right) \mathbf{A}_a = \left(\frac{1158 \times 10^3}{12.5^2}\right) \times 1.304 = 9644$$
(个)

每层塔板的开孔率
$$\phi = \frac{0.907}{(t/do)^2} = \frac{0.907}{2.5^2} = 0.145$$
(ϕ 应在 5%~15%,故满足要求)

每层塔板的开孔面积 A₀=φA_a=0.145×1.304=0.189 m²

气体通过筛孔的孔速 u₀=V_s/A₀=1.867/0.189=9.88m/s

(4)精馏段的塔高 Z1

$$Z_1 = (N_{p1}-1) H_T = (7-1) \times 0.5 = 3 m$$

- 8.1.4 精馏段塔板上的流体力学验算
- (1)气体通过筛板压降 hf 和 Δpf 的验算

$$h_f = h_d + h_L$$

① 气体通过干板的压降 hd

由 $\delta/d_0=3/5=0.6$ 和开孔率 $\phi=0.145$ 查《化工原理》 [3]图 8-21 得出孔流系数 $C_0=0.78$ 。

$$h_d = 0.051 \left(\frac{u_o}{C_o}\right)^2 \frac{\rho_V}{\rho_I} = 0.051 \times \left(\frac{9.88}{0.78}\right)^2 \times \frac{2.889}{850.90} = 0.0278 \ m$$

② 气体通过板上液层的压降 h_L

$$h_L$$
=β(h_w + h_{ow})= β H_L (板上液层高度)

式中, 充气系数 β 的求取如下: 气体通过有效流通截面的气速 ua, 对单流型塔有:

$$u_a = \frac{V_s}{A_T - 2A_f} = \frac{1.867}{2.01 - 2 \times 0.181} = 1.133 \text{m/s}$$

动能因子 $F_a=u_a\sqrt{\rho_V}=1.133\sqrt{2.889}=1.926$

查《化工原理》 $^{[2]}$ 图 8-23 可得,液层充气系数 β=0.59(一般可近似取 β=0.5~0.6)

$$h_L = \beta(h_w + h_{ow}) = \beta H_L = 0.59 \times 0.060 = 0.035 \text{ m}$$

③ 气体通过筛板的压降(单板压降) h_f 和 Δp_f

$$h_f = h_d + h_L = 0.0278 + 0.035 = 0.0628 \text{ m}$$

 $\Delta P_f = \rho_L g h_f = 850.90 \times 9.81 \times 0.0628 = 0.524 k Pa < 0.7 k Pa (与设计要求相符)$

(2)雾沫夹带量 ev 的验算

$$u_n = \frac{V_S}{A_T - A_f} = \frac{1.867}{2.01 - 0.175} = 1.02 \text{ m/s}$$

取板上泡沫层高度 H_f=2.5H_L 板上液层高度,则:

$$e_V = \frac{5.7 \times 10^{-6}}{\sigma_m} \Big(\frac{u_n}{H_T - H_f}\Big)^{3.2} = \frac{5.7 \times 10^{-6}}{21.26 \times 10^{-3}} \times \Big(\frac{1.02}{0.5 - 2.5 \times 0.06}\Big)^{3.2}$$

=0.00819kg 液/kg 气<0.1 kg 液/kg 气(满足要求)

验算结果表明不会产生过量液沫夹带。

(3)漏液的计算

漏液点气速 uom。按如下经验公式计算漏液点气速:

$$u_{om} = 4.4C_0\sqrt{(0.0056 + 0.13H_L - h_\sigma)\rho_L/\rho_V}$$

克服筛孔处界面张力所产生的压降:

$$\begin{split} h_{\sigma} &= \frac{4 \times 10^{-3} \sigma_m}{\rho_L g d_o} = \frac{4 \times 10^{-3} \times 21.32}{845.9 \times 9.81 \times 0.005} = 0.00210 ~(\mathring{\pi} \mathring{\pi} \dot{t}) \\ u_{om} &= 4.4 C_0 \sqrt{(0.0056 + 0.13 H_L - h_{\sigma}) \, \rho_L/\rho_V} \end{split}$$

 $=4.4\times0.78\sqrt{(0.0056+0.13\times0.06-0.00210)\times850.90/2.889}=6.28\text{m/s}$ 筛板的稳定性系数:

$$K = \frac{u_o}{u_{om}} = \frac{9.88}{6.28} = 1.57 > 1.5 (不会产生过量液漏)$$

(4)液泛的计算

为防止降液管发生液泛,应使降液管中的清液层高度: $H_d \leq \Phi(H_T + h_W)$

$$H_d = h_f($$
板压降 $) + H_L($ 板上液层高度 $) + \Sigma H_f($ 降液管阻力 $)$

降液管阻力:
$$\Sigma H_f = 0.153 \left(\frac{L_S}{L_W h_o}\right)^2 = 0.153 \times \left(\frac{0.00213}{1.12 \times 0.0282}\right)^2 = 0.000981 \, m$$

降液管清液层高度: $H_d = 0.0628 + 0.06 + 0.000981 = 0.133m$

降液管内泡沫密度与清液密度之比即相对泡沫密度 Φ 取 0.5,则有

$$\Phi(H_T + h_w) = 0.5 \times (0.5 + 0.0483) = 0.27m$$
 $H_d \le \Phi(H_T + h_w)$ 成立,故不会产生液泛。

通过流体力学验算,可认为精馏塔塔径及塔板工艺结构尺寸合适,

8.1.5 精馏段塔板负荷性能图

负荷性能图的绘制步骤,按如下的方式进行。

(1)雾沫夹带线

液沫夹带量可按如下经验公式(a)计算

$$\begin{split} e_V &= \frac{5.7 \times 10^{-6}}{\sigma} \bigg[\frac{u_n}{H_T - H_f(\text{核上泡沫层高度})} \bigg]^{3.2} \\ u_n &= \frac{V_S}{A_T - A_f} = \frac{V_S}{2.01 - 0.175} = 0.545 V_S \end{split} \tag{a}$$

取塔板上泡沫层高度 H_f 为板上液层高度 H_L 的 2.5 倍,则:

$$\begin{split} H_f &= 2.5 H_L = 2.5 (h_w + h_{ow}) = 2.5 \times \left[0.0483 + 0.00284 \left(\frac{3600 L_s}{L_W} \right)^{2/3} \right] \\ &= 2.5 \left[0.0483 + 0.00284 \left(\frac{3600 L_s}{1.12} \right)^{2/3} \right] = 0.121 + 1.546 L_S^{2/3} \end{split}$$

取 ev=0.1,将已知数据代入(a)式:

$$\begin{split} \frac{5.7\times10^{-6}}{21.32\times10^{-3}}\times\left(\frac{0.545V_S}{0.5-0.121-1.546L_S^{2/3}}\right)^{3.2}&=0.1\\ \left(\frac{0.545V_S}{0.5-0.121-1.546L_S^{2/3}}\right)^{3.2}&=\frac{0.1\times21.32\times10^{-3}}{5.7\times10^{-6}}=374.03\\ \frac{0.545V_S}{0.5-0.124-1.546L_S^{2/3}}&=\frac{^{3.2}\sqrt{374.03}}{6.3684}=6.3684 \end{split}$$

化简得雾沫夹带线方程:

$$V_{S} = 4.46 - 18.2L_{S}^{2/3}$$
 (b)

在操作范围内,任取几个 L_s 值,依式(b)式算出对应的 V_s 值,列于表 8。

表8式(b)中Vs-Ls关系数据

$L_{\rm S}/~({\rm m}^3/{\rm s})$	0.000955	0.001	0.005	0.010	0.015	0.0175
$V_{S}/(m^3/s)$	4.283	4.278	3.928	3.615	3.353	3.233

依据表中数据在图 6 中做出雾沫夹带线 1。

(2)液泛线 (气相负荷上限线)

$$\Phi(H_T + h_w) = h_f + h_w + h_{ow} + \Sigma H_f$$
 (c)

把以上各式代入(c)式:

$$\begin{aligned} 0.5\times(0.5+0.0483) &= \left(0.0117V_S^2+0.028+0.36L_S^{2/3}\right)+0.0483+0.6185L_S^{2/3}+153.4L_S^2 \\ \\ 0.274 &= 0.0117V_S^2+0.076+0.98L_S^{2/3}+153.4L_S^2 \end{aligned}$$

整理得液泛线方程:
$$V_S^2 = 16.9 - 55.94L_S^{2/3} - 1.31 \times 10^4L_S^2$$
 (d)

在操作范围内,任取几个 Ls 值,依式(d)算出对应的 Vs 值,列于表 9。

表9式(d)中Vs-Ls关系数据

$L_{\rm S}/~({\rm m}^3/{\rm s})$	0.000955	0.001	0.005	0.010	0.015	0.0175
$V_{S}/(m^3/s)$	4.043	4.041	3.865	3.605	3.248	3.020

依据表中数据在图 6 中做液泛线 2。

(3)漏液线(液相负荷下限线)

$$h_L = h_W + h_{OW} = 0.0483 + 0.6185 L_S^{2/3}$$

将漏液点气速:

$$\begin{aligned} \mathbf{u}_{\text{om}} &= 4.4C_0 \sqrt{\frac{\rho_V(0.0056 + 0.13h_L)}{\rho_L}} \\ &= 4.4 \times 0.8 \times \sqrt{\frac{\left[0.0056 + 0.13\left(0.0483 + 0.6185L_S^{2/3}\right)\right] \times 850.90}{2.889}} \end{aligned}$$

代入方程 Vs =Aouom,整理得漏液线方程:

$$V_s^2 = 9.96L_S^{2/3} + 1.47 (e)$$

在操作范围内,任取几个 Ls值,依式(e)算出对应的 Vs值,列于表 10。

$L_{\rm S}/~({\rm m}^3/{\rm s})$	0.000955	0.001	0.005	0.010	0.015	0.0175
$V_{S}/(m^3/s)$	1.251	1.252	1.327	1.390	1.441	1.463

表 10 式(f)中 Vs-Ls 关系数据

依据表中数据在图 6 中做出漏夜线 3。

(4)液相负荷下限线

取平堰堰上液层高度 how=0.006 m, 根据 8.1.3.2 部分计算结果, 取液流收缩系数 E≈1.0

$$\begin{split} h_{ow} &= 0.00284 E \left(\frac{3600 L_{s,min}}{L_w} \right)^{2/3} = 0.00284 \times 1 \times \left(\frac{3600 L_{s,min}}{1.12} \right)^{2/3} = 0.006 \\ L_{s,min} &= 9.55 \times 10^{-4} \, m^3/s \end{split} \tag{f}$$

依据式(f)在图 6 中做出液相负荷下限线 4。

(5)液相负荷上限线

$$L_{s,max} = \frac{H_T A_f}{\tau} = \frac{0.5 \times 0.175}{5} = 0.0175 \text{ m}^3/\text{s}$$
 (g)

依式(g)在图 6 中做出液相负荷上限线 5。

(6)操作线与操作弹性

由 8.1.2 汽相流量与液相流量计算操作气液比: $V_S/L_S = 1.867/0.00253 = 737.9$ 过 (0,0) 和 (0.00253, 1.867) 两点,在图 6 中做出操作线 6.

从图中可以看出,操作线的上限由液泛所控制,下线由漏液所控制,其操作弹性为:

操作弹性 =
$$\frac{V_{s,max}}{V_{s,min}}$$
 = $\frac{3.85}{1.27}$ = 3.03

图 6 精馏段塔板负荷性能图

8.1.6 筛板塔精馏段的设计计算结果一览表

表 11 筛板塔精馏段的设计计算结果一览表

		符号	单位	精馏段计算结果
		,,,,		
4	均压力	p _m	kPa	107.8
7	均温度	t _m	ဗ	85.20
 平均流量	气相	Vs	m ³ /s	1.867
1 4 4 0 10	液相	Ls	m ³ /s	0.00253
实	际塔板数	N _{P1}	块	7
7	扳间距	Нт	m	0.5
塔段	的有效高度	Z	m	3
	塔径	D	m	1.6
空	塔气速	u	m/s	0.928
塔板	〔液流型式			单流型
	溢流管型式			弓形
	堰长	Lw	m	1.12
溢流装置	堰高	hw	m	0.0486
	溢流堰宽度	$\mathbf{W}_{\mathbf{d}}$	m	0.224
	降液管低隙高度	ho	m	0.0282
板上	清液层高度	$\mathbf{H}_{\mathbf{L}}$	m	0.060
	孔径	$\mathbf{d_o}$	mm	5
,	孔间距	t	mm	12.5
	孔数	n	个	9644
Э	孔面积	Ao	\mathbf{m}^2	0.189
銷	訊气速	uo	m/s	9.88
增	板压降	$\mathbf{h_f}$	kPa	0.70
液体在降液管中的停留时间		τ	s	34.58
降液管内清液高度		H_d	m	0.133
雾	雾沫夹带量		kg 液/kg 气	0.00819
负荷上限				液泛控制
负荷下限				漏夜控制
气机	 最大负荷	V _{s,max}	m ³ /s	3.85
气相	最小负荷	V _{s,min}	m ³ /s	1.27
搏	操作弹性			3.03

8.2 筛板塔提馏段设计计算

8.2.1 精馏段操作工艺及相关物性数据的计算

(1)提馏段平均压力 pm

取每层塔板压降为 0.7 kPa 计算

加料板: pF=110.2 kPa

塔底: pw=110.2+14×0.7=120.0 kPa

平均压力: pm=(110.2+120.0)/2=115.1 kPa

(2)提馏段平均温度 tm

由 7.2、7.5 计算可知, 加料板温度为 89.93 ℃, 塔底温度为 131.41℃。

可得
$$t_m = \frac{89.93 + 131.41}{2} = 110.67 \, \mathbb{C}$$
。

(3)平均分子量 Mm

进料板: 由 8.1.1 (3) 得: MvF,m=81.01 kg/kmol, MLF,m=89.01kg/kmol

塔底: xw=0.00288, vw=0.0109 (查相平衡图 3)

 $M_{VW,m}=0.0109\times78.11+(1-0.0109)\times112.61=112.2$ kg/kmol

 $M_{LW,m}$ =0.00288×78.11+(1-0.00288)×112.61=112.5 kg/kmol

提馏段: Mv,m=(78.59+80.35)/2=96.60 kg/kmol

$$M_{L,m}=(80.18+87.49)/2=100.8 \text{ kg/kmol}$$

(4)平均密度 ρm

①液相的平均密度 plm

进料板: 由 8.1.1 (4) 得 ρ_{LF,m} = 881.82 kg/m3

塔底: ρLW,A=912.13-1.1886t=912.13-1.1886×131.41=755.93 kg/m³

 $\rho_{LW,B}$ =1124.4-1.0657t=1124.4-1.0657×131.41=984.36 kg/m³

$$\frac{1}{\rho_{LW,m}} = \frac{\alpha_A}{\rho_{LW,A}} + \frac{\alpha_B}{\rho_{LW,B}} = \frac{0.00288}{755.93} + \frac{0.99712}{984.36} \rightarrow \rho_{LF,m} = 983.76 \ kg/m^3$$

②气相平均密度 ρv,m

$$\rho_{V,m} = \frac{p_m M_{V,m}}{R T_m} = \frac{115.1 \times 96.60}{8.314 \times \ (273 + 110.67)} = 3.486 \ kg/m^3$$

(5)液体的平均表面张力 σm

进料板: 由 8.1.1 (5) 得: σ_{E,m} = 21.37 mN/m

塔底: 131.41℃下,σw,A=15.16 mN/m; σw,B=20.34 mN/m (88℃)

$$\sigma_{D,m} = \left(\frac{\sigma_A \sigma_B}{\sigma_A x_B + \sigma_B x_A}\right)_W = \left(\frac{20.20 \times 25.34}{20.20 \times 0.272 + 25.34 \times 0.728}\right) = 17.75 \ mN/m$$

提馏段: $\sigma_m = \frac{\sigma_{F,m} + \sigma_{W,m}}{2} = 19.56$ mN/m

(6)液体的平均黏度 µL,m

加料板: 由 8.1.1 (6) 得: μLF,m=0.315 mPa·s

塔底: 由石油化工基础数据手册[2], 在 131.41℃下有:

 μ_{LWm} = (μ_{AXA}) w+ (μ_{BXB}) w =0.196×0.00288+0.290×0.99712=0.290 mPa·s

提馏段: μ_{L,m}= (0.315+0.290)/2=0.302 mPa·s

8.2.2 提馏段的气液负荷计算

气相摩尔流率
$$V = V_{table} - (1 - q)F$$

∴q = 1,
$$V = V_{\text{精馏段}} = 243.3 \text{ kmol/h}$$

气相体积流率
$$V_S = \frac{VM_{V,m}}{3600\rho_{V,m}} = \frac{243.3 \times 96.60}{3600 \times 3.486} = 1.873 \text{m}^3/\text{s}$$

$$V_h = 1.873 \text{ m}^3/\text{s} = 6742 \text{ m}^3/\text{h}$$

液相回流摩尔流率 $L = L_{fightarrow} + qF = 310.4 \text{ kmol/h}$

$$L_S = \frac{_{LM_{L,m}}}{_{3600\rho_{L,m}}} = \frac{_{310.4\times100.8}}{_{3600\times932.79}} = 0.00932~m^3/s$$

$$L_s = 0.00932 \, \text{m}^3/\text{s} = 33.5 \, \text{m}^3/\text{h}$$

8.2.3 提馏塔段和塔板主要工艺结构尺寸的计算

8.2.3.1 提馏段塔径

提馏段塔径应与精馏段相同,即 D=1600 mm

操作气速
$$\mathbf{u} = \frac{4V_S}{\pi D^2} = 0.932 \text{ m/s}$$

塔横截面积 AT = 0.785D2 = 2.01 m2

8.2.3.2 提馏段塔板工艺结构尺寸的设计与计算

(1)溢流装置

采用单溢流型的平顶弓形溢流堰、弓形降液管、平行受液盘,且不设进口内堰。

① 溢流堰长(出口堰长)Lw

取 $L_W=0.7D=0.7\times1.6=1.12$ m,堰上溢流强度 $L_h/L_W=33.5/1.12=29.9$ m³/(m·h)<100~300 m³/(m·h),满足筛板塔的堰上溢流强度要求。

②出口堰高 hw

对平直堰, 堰上液层高度 $h_{OW} = 0.00284E(L_h/L_w)^{2/3}$

由 Lw/D=0.7 及 $L_h/L_w^{2.5}=33.5/1.12^{2.5}=25.2$,查《化工原理》 $^{[3]}$ 教材第四版液流收缩系数图 8-19 得 E=1.045,于是:

$$h_{ow}=0.00284 \times 1.045 \times (33.5/1.12)^{2/3}=0.0286~m>0.006~m~$$
 (满足要求)
$$h_{w}=H_{L}-h_{ow}=0.06-0.0286=0.0314~m$$

② 降液管的宽度 Wd 和降液管的面积 Af

由 Lw/D=0.7, 查《化工原理》^[3]教材第四版图 8-17 弓形降液管的几何关系得: $W_d/D = 0.14$, $A_f/A_T = 0.087$, 即 $W_d = 0.224$ m, $A_f = 0.087$ A_T = 0.175 m²

液体在降液管内停留时间为: $\tau = A_f H_T/L_s = 0.175 \times 0.5/0.00932 = 9.83 \text{ s} > 5s(满足要求)$

4)降液管的底隙高度 h。

取液体通过降液管底隙的流速 u₀=0.08 m/s,则

$$h_0 = \frac{L_S}{L_W u_0} = \frac{0.00932}{1.12 \times 0.08} = 0.104 \text{ m} (h_0 不宜小于 0.02~0.025, 本结果满足要求)$$

(2)塔板布置

由于提馏段与精馏段塔径相同,故提馏段与精馏段塔板分布 W_{C} 、边缘区宽度 W_{S} 、安定区宽度 A_{a} 、开孔区面积均相同

(3)开孔数 n 和开孔率 φ

取筛孔的孔径 $d_0=5$ mm, 正三角形排列, 筛板采用碳钢, 其厚度 $\delta=3$ mm, 且取 $t/d_0=2.5$, 故孔心距 $t=2.5\times5=12.5$ mm。

每层塔板的开孔数
$$\mathbf{n}=\left(\frac{1158\times10^3}{t^2}\right)\mathbf{A}_a=\left(\frac{1158\times10^3}{12.5^2}\right)\times\mathbf{1}.\,304=9644$$
(个)

每层塔板的开孔率
$$\phi = \frac{0.907}{(t/do)^2} = \frac{0.907}{2.5^2} = 0.145$$
(ϕ 应在 5%~15%,故满足要求)

每层塔板的开孔面积 A₀=φA_a=0.145×1.304=0.189 m²

气体通过筛孔的孔速 u₀=V_s/A₀=1.873/0.189=9.91 m/s

(4)提馏段的塔高 Z1

$$Z_{2}=(N_{p2}-1)$$
 $H_{T}=(14-1)\times0.5=6.5$ m

8.2.4 提馏段塔板上的流体力学验算

(1)气体通过筛板压降 hf 和 Δpf 的验算

① 气体通过干板的压降 hd

由 $\delta/d_0=3/5=0.6$ 和开孔率 $\phi=0.145$ 查《化工原理》 [3]图 8-21 得出孔流系数 $C_0=0.78$ 。

$$h_d = 0.051 \left(\frac{u_o}{C_o}\right)^2 \frac{\rho_V}{\rho_L} = 0.051 \times \left(\frac{9.91}{0.78}\right)^2 \times \frac{3.486}{984.36} = 0.0308 \ m$$

② 气体通过板上液层的压降 hL

充气系数 β 的求取如下: 气体通过有效流通截面的气速 u_a , 对单流型塔有:

$$u_a = \frac{V_s}{A_T - 2A_f} = \frac{1.873}{2.01 - 2 \times 0.175} = 1.128 \text{m/s}$$

动能因子 $F_a = u_a \sqrt{\rho_V} = 1.128 \sqrt{3.486} = 2.106$

查《化工原理》[2]图 8-23 可得,液层充气系数 β=0.58。由

$$h_L = \beta(h_w + h_{ow})$$

得:

$$h_L = \beta H_L = 0.57 \times 0.06 = 0.0348 \ m$$

③ 气体通过筛板的压降(单板压降) h_f 和 Δp_f

$$h_f = h_d + h_L = 0.0308 + 0.0348 = 0.0656 \text{ m}$$

$$\Delta P_f = \rho_L g h_f = 932.79 \times 9.81 \times 0.0656 = 0.6 \text{ kPa} > 0.7 \text{ kPa}$$

(2)雾沫夹带量 ev 的验算

$$u_n = \frac{V_S}{A_T - A_f} = \frac{1.873}{2.01 - 0.175} = 1.02 \text{ m/s}$$

取板上泡沫层高度 H=2.5HL板上液层高度,则:

$$e_V = \frac{5.\,7\times 10^{-6}}{\sigma_m} \Big(\frac{u_n}{H_T-H_f}\Big)^{3.2} = \frac{5.\,7\times 10^{-6}}{19.\,56\times 10^{-3}} \times \Big(\frac{1.\,02}{0.\,5-2.\,5\times 0.\,06}\Big)^{3.2}$$

=0.00893kg 液/kg 气<0.1 kg 液/kg 气

验算结果表明不会产生过量液沫夹带。

(3)漏液的计算

漏液点气速 uom。按如下经验公式计算漏液点气速:

$$u_{om} = 4.4C_0\sqrt{(0.0056 + 0.13H_L - h_\sigma)\rho_L/\rho_V}$$

克服筛孔处界面张力所产生的压降:

$$\begin{split} h_{\sigma} = & \frac{4 \times 10^{-3} \sigma_m}{\rho_L g d_o} = \frac{4 \times 10^{-3} \times 19.56}{932.79 \times 9.81 \times 0.005} = 0.00171 ~(\coloredge{fix} \coloredge{keps} \coloredge{h} \col$$

 $=4.4\times0.78\sqrt{(0.0056+0.13\times0.06-0.00171)\times932.79/3.486}=6.07\text{m/s}$ 筛板的稳定性系数:

$$K = \frac{u_o}{u_{om}} = \frac{9.91}{6.07} = 1.63 > 1.5 (不会产生过量液漏)$$

(4)液泛的计算

为防止降液管发生液泛,应使降液管中的清液层高度: $H_d \leq \Phi(H_T + h_W)$

$$H_d = h_f($$
板压降 $) + H_L($ 板上液层高度 $) + \Sigma H_f($ 降液管阻力 $)$

降液管阻力:
$$\Sigma H_f = 0.153 \left(\frac{L_S}{L_W h_o}\right)^2 = 0.153 \times \left(\frac{0.00932}{1.12 \times 0.0104}\right)^2 = 0.000980 \ m$$

降液管清液层高度: $H_d = 0.656 + 0.06 + 0.000980 = 0.126m$

降液管内泡沫密度与清液密度之比即相对泡沫密度 Φ 取 0.5,则有

$$\Phi(H_T + h_W) = 0.5 \times (0.5 + 0.0314) = 0.266m$$
 $H_d \le \Phi(H_T + h_W)$ 成立,故不会产生液泛。

通过流体力学验算,可认为提馏塔塔径及塔板工艺结构尺寸合适,

8.2.5 提馏段塔板负荷性能图

负荷性能图的绘制步骤同8.1.5。

(1)雾沫夹带线

液沫夹带量可按如下经验公式(a)计算

$$\begin{split} e_V &= \frac{5.7 \times 10^{-6}}{\sigma} \Bigg[\frac{u_n}{H_T - H_f \big(\text{ KL2 REB} \big)} \Bigg]^{3.2} \\ u_n &= \frac{V_S}{A_T - A_f} = \frac{V_S}{2.01 - 0.175} = 0.545 V_S \end{split} \tag{a}$$

取塔板上泡沫层高度 H_f 为板上液层高度 H_L 的 2.5 倍,则:

$$\begin{split} H_f &= 2.5 H_L = 2.5 (h_w + h_{ow}) = 2.5 \times \left[0.0314 + 0.00284 \left(\frac{3600 L_s}{L_W} \right)^{2/3} \right] \\ &= 2.5 \left[0.0314 + 0.00284 \left(\frac{3600 L_s}{1.12} \right)^{2/3} \right] = 0.0785 + 1.54 L_S^{2/3} \end{split}$$

取 ev=0.1,将已知数据代入(a)式:

$$\begin{split} \frac{5.7\times10^{-6}}{19.56\times10^{-3}}\times\left(\frac{0.545V_S}{0.5-0.0785-1.54L_S^{2/3}}\right)^{3.2} &= 0.1\\ \left(\frac{0.545V_S}{0.5-0.0785-1.54L_S^{2/3}}\right)^{3.2} &= \frac{0.1\times19.56\times10^{-3}}{5.7\times10^{-6}} = 343.16\\ \frac{0.545V_S}{0.5-0.0785-1.54L_S^{2/3}} &= \frac{^{3.2}\sqrt{343.16}}{5.7\times10^{-6}} = 6.1993 \end{split}$$

化简得雾沫夹带线方程:

$$V_{S} = 4.795 - 17.52L_{S}^{2/3} \tag{b}$$

在操作范围内,任取几个 L_s 值,依式(b)式算出对应的 V_s 值,列于表 12。

表 12 式(b)中 V_S-L_S 关系数据

$L_{\rm S}/~({\rm m}^3/{\rm s})$	0.000955	0.001	0.005	0.010	0.015	0.0175
$V_S/(m^3/s)$	4.625	4.620	4.283	3.982	3.729	3.205

依据表中数据在图7中做出雾沫夹带线1。

(2)液泛线 (气相负荷上限线)

$$\Phi(\mathbf{H}_{\mathrm{T}} + \mathbf{h}_{\mathrm{w}}) = \mathbf{h}_{\mathrm{f}} + \mathbf{h}_{\mathrm{w}} + \mathbf{h}_{\mathrm{ow}} + \Sigma H_{f}$$
 (c)

$$h_{ow} = 0.00284 E \left(\frac{3600 L_S}{L_W}\right)^{2/3} = 0.00284 \times 1 \times \left(\frac{3600 L_S}{1.12}\right)^{2/3} = 0.6185 L_s^{2/3}$$

$$\begin{split} h_d &= 0.051 \left(\frac{u_0}{C_0}\right)^2 \left(\frac{\rho_V}{\rho_L}\right) = 0.051 \left(\frac{V_S}{C_0 A_0}\right)^2 \left(\frac{\rho_V}{\rho_L}\right) \\ &= 0.051 \left(\frac{V_S}{0.78 \times 0.189}\right)^2 \left(\frac{3.486}{932.79}\right) = 0.00877 V_S^2 \\ h_L &= \beta(h_w + h_{ow}) = 0.58 \times \left(0.0314 + 0.6185 L_S^{2/3}\right) = 0.018 + 0.36 L_S^{2/3} \\ \γ_L &= h_d + h_L = 0.0117 V_S^2 + 0.018 + 0.36 L_S^{2/3} \\ \γ_L &= 0.153 \left(\frac{L_S}{L_w h_o}\right)^2 = 0.153 \left(\frac{L_S}{1.12 \times 0.104}\right)^2 = 11.28 L_S^2 \end{split}$$

把以上各式代入(c)式:

$$\begin{aligned} 0.5 \times (0.5 + 0.0314) &= \left(0.00877 V_S^2 + 0.018 + 0.36 L_S^{2/3}\right) + 0.0314 + 0.6185 L_S^{2/3} + 11.28 L_S^2 \\ \\ 0.266 &= 0.00877 V_S^2 + 0.049 + 0.98 L_S^{2/3} + 11.28 L_S^2 \end{aligned}$$

整理得液泛线方程:

$$V_S^2 = 24.7 - 111.7L_S^{2/3} - 1.29 \times 10^3 L_S^2$$
 (d)

在操作范围内,任取几个 Ls 值,依式(d)算出对应的 Vs 值,列于表 13。

表 13 式(d)中 Vs-Ls 关系数据

$L_{\rm S}/~({\rm m}^3/{\rm s})$	0.000955	0.001	0.005	0.010	0.015	0.0175
$V_{S}/(m^3/s)$	4.860	4.856	4.626	4.402	4.197	4.096

依据表中数据在图7中做液泛线2。

(3)漏液线(液相负荷下限线)

$$h_L = h_W + h_{OW} = 0.0314 + 0.6185 L_S^{2/3} \label{eq:hL}$$

将漏液点气速:

$$u_{om} = 4.4C_{o} \sqrt{\frac{\rho_{V}(0.0056 + 0.13h_{L})}{\rho_{L}}}$$

$$= 4.4 \times 0.78 \times \sqrt{\frac{\left[0.0056 + 0.13\left(0.0314 + 0.6185L_{S}^{2/3}\right)\right] \times 932.79}{3.486}}$$

代入方程 Vs =Aouom,整理得漏液线方程:

$$V_s^2 = 9.96L_s^{2/3} + 1.09$$
 (e)

在操作范围内,任取几个 Ls值,依式(e)算出对应的 Vs值,列于表 14。

$L_{S}/(m^3/s)$	0.000955	0.001	0.005	0.010	0.015	0.0175
$V_{S}/(m^3/s)$	1.088	1.090	1.175	1.246	1.302	1.332

表 14 式(e)中 V_S-L_S 关系数据

依据表中数据在图7中做出漏夜线3。

(4)液相负荷下限线

取平堰堰上液层高度 how=0.006 m, 根据 8.1.3.2 部分计算结果, 取液流收缩系数 E≈1.0

$$\begin{split} h_{ow} &= 0.00284 E \left(\frac{3600 L_{s,min}}{L_w} \right)^{2/3} = 0.00284 \times 1 \times \left(\frac{3600 L_{s,min}}{1.12} \right)^{2/3} = 0.006 \\ L_{s,min} &= 9.55 \times 10^{-4} \, m^3/s \end{split} \tag{f}$$

依据式(f)在图 7 中做出液相负荷下限线 4。

(5)液相负荷上限线

$$L_{s,max} = \frac{H_T A_f}{\tau} = \frac{0.5 \times 0.175}{5} = 0.0175 \text{ m}^3/\text{s}$$
 (g)

依式(g)在图 7 中做出液相负荷上限线 5。

(6)操作线与操作弹性

由 8.2.2 汽相流量与液相流量计算操作气液比: $V_S/L_S = 1.873/0.00932 = 201.0$ 过 (0,0) 和 (0.00932, 1.873) 两点,在图 7 中做出操作线 6.

从图中可以看出,操作线的上限由液泛所控制,下线由漏液所控制,其操作弹性为:

操作弹性 =
$$\frac{V_{s,max}}{V_{s,min}}$$
 = $\frac{4.00}{1.19}$ = 3.36

图 7 提馏段塔板负荷性能图

8.2.6 提馏段的设计计算结果一览表

表 15 提馏段的设计计算结果一览表

项目 		符号	单位	提馏段计算结果		
7	均压力	p _m	kPa	115.1		
4	均温度	t _m	${\mathfrak C}$	110.67		
平均流量	气相	Vs	m ³ /s	1.873		
1 20加重	液相	Ls	m ³ /s	0.00932		
实	际塔板数	NP	块	14		
7	扳间距	Нт	m	0.5		
塔段(的有效高度	Z	m	6.5		
	塔径	D	m	1.6		
空	塔气速	u	m/s	0.928		
塔板	液流型式			单流型		
	溢流管型式			弓形		
	堰长	Lw	m	1.12		
溢流装置	堰高	hw	m	0.0314		
	溢流堰宽度	$\mathbf{W}_{\mathbf{d}}$	m	0.224		
	降液管低隙高度	ho	m	0.104		
板上	青液层高度	$\mathbf{H}_{\mathbf{L}}$	m	0.060		
	孔径	$\mathbf{d}_{\mathbf{o}}$	mm	5		
-	孔间距	t	mm	12.5		
	孔数	n	个	9644		
Э	孔面积	Ao	m ²	0.189		
觧	孔气速	uo	m/s	9.91		
增	板压降	$\mathbf{h_f}$	kPa	0.656		
液体在降液	液体在降液管中的停留时间		液体在降液管中的停留时间		s	9.38
降液管	降液管内清液高度		降液管内清液高度		m	0.126
雾	雾沫夹带		kg 液/kg 气	0.00893		
负	负荷上限			液泛控制		
负	负荷下限			漏夜控制		
气相	最大负荷	V _{s,max}	m ³ /s	4.00		
气相	最小负荷	V _{s,min}	m³/s	1.19		
操	操作弹性			3.36		

九、精馏塔的附属设备与接管尺寸计算

9.1 进料预热器

由 7.2 部分计算得到原料从 20° 预热至泡点 88.23° 所需的热量为: $Q_{F}=2.22\times10^{6}$ kJ/h,温度为 130° 、压力为 270.25 kPa 水蒸汽走壳程,原料走管程。根据水蒸汽冷凝加热轻有机物时换热器的传热系数经验值范围为: $580\sim1190$ W/($m^2\cdot$ °C),取 K=700 W/($m^2\cdot$ °C)。由传热速率方程 $Q_{F}=KA_F \triangle t_m$,估算出预热器的换热面积 A_F 。

原料液从 20℃被加热到 89.93℃,蒸汽温度保持在 130℃。

$$\begin{split} \Delta t_1 &= 130 - 20 = 110 ~ \text{°C} \qquad \Delta t_2 = 130 - 89.93 = 40.07 ~ \text{°C} \\ \Delta t_m &= \frac{\Delta t_1 - \Delta t_2}{ln \frac{\Delta t_1}{\Delta t_2}} = \frac{110 - 40.07}{ln \frac{110}{40.07}} = 69.25 ~ \text{°C} \\ A_F &= \frac{Q_F}{K\Delta t_m} = \frac{2.22 \times 10^6}{3.6 \times 600 \times 69.25} = 14.84 ~ m^2 \end{split}$$

9.2 塔顶全凝器

由 7.3 部分计算塔顶蒸汽温度为 80.47 $^{\circ}$ 、由 7.4 部分算得塔顶全凝器的热负荷 Q_{C} =7.52 × 10 6 kJ/h,苯蒸汽走壳程被冷凝。管程走冷却水,进口水温为 35 $^{\circ}$ C,出口水温为 45 $^{\circ}$ C。也可用原料液作冷凝介质,原料同时被预热。为避免冷却水在管壁上严重结垢,冷却水出口温度不应超过 50 $^{\circ}$ C。根据水为介质冷凝轻有机化合物蒸汽时的传热系数经验值范围为: 580~1160 W/(\mathbf{m}^2 · $^{\circ}$ C),取 K=700 W/(\mathbf{m}^2 · $^{\circ}$ C)。由传热整率方程 Q_{C} =KAc Δ t_m,估算出预热器的换热面积 AC。

冷却水从 35℃被加热到 45℃, 苯蒸汽温度保持在 80.47℃。

$$\begin{split} \Delta t_1 &= 80.47 - 35 = 45.47 \text{ °C} & \Delta t_2 = 80.47 - 45 = 35.47 \text{ °C} \\ \Delta t_m &= \frac{\Delta t_1 - \Delta t_2}{ln\frac{\Delta t_1}{\Delta t_2}} = \frac{45.47 - 35.47}{ln\frac{45.47}{35.47}} = 40.26 \text{ °C} \\ A_C &= \frac{Q_C}{K\Delta t_m} = \frac{7.52 \times 10^6}{3.6 \times 700 \times 40.26} = 74.12 \text{ m}^2 \end{split}$$

9.3 塔釜再沸器

因为饱和液体进料,故 V`=V-(1-q)F=V。在满足恒摩尔流假设的热损失的前提下,再沸器的热负荷与塔顶的全凝器应完全相同。实际上,塔顶和塔底的汽化摩尔潜热并不完全一致,且存在塔的热损失(一般情况下约为提供总热量的 5%~10%),塔底再沸器的热负荷一般都大于塔顶冷凝器。

由 7.5 部分计算塔底泡点温度为 131.41 $^{\circ}$ 、由 7.6 部分算得塔底再沸器的热负荷 Q_{R} = 8.59 × 10 6 kJ/h。温度为 170 $^{\circ}$ 、压力 792.59kPa 的水蒸汽走壳程冷凝放热,氯苯走管程被加热沸腾汽化。根据水蒸汽冷凝加热轻有机物时换热器的传热系数经验值范围为: 580~1190 W/(\mathbf{m}^2 · $^{\circ}$),取 K=700 W/(\mathbf{m}^2 · $^{\circ}$)。由传热整率方程 Q_{R} =KA $_{R}$ Δ t $_{m}$,估算出预热器的换热面积 A $_{R}$ 。

水蒸汽温度保持在 160℃, 苯蒸汽温度保持在 131.41℃。

$$\Delta t_{\rm m} = 160 - 131.41 = 28.59^{\circ}$$

$$A_R = \frac{Q_R}{K\Delta t_m} = \frac{8.59 \times 10^6}{3.6 \times 700 \times 28.59} = 119.2 \ m^2$$

9.4 精馏塔的管口直径

根据

$$V = \frac{\pi}{4} d^2 u$$
, $d = \sqrt{\frac{4V}{\pi u}}$ (计算管径数值要圆整到标准管径)

9.4.1 塔顶蒸汽出口管径

依据流速选取,但塔顶蒸汽出口流速与塔内操作压力有关,常压可取 12~20 m/s。由 8.1.2 得 $V_S=1.867~m^3/s$,取 u=15~m/s

$$d = \sqrt{\frac{4V_S}{\pi u}} = \sqrt{\frac{4 \times 1.867}{3.141 \times 15}} = 0.3981m$$

根据 GB8163-87 进行圆整,取外径为 426mm, 壁厚为 10mm 的无缝钢管。

9.4.2 回流液管径

根据回流液量,因采用泵输送回流液,流速可取 1.5~2.5 m/s,依此计算回流管管径。由 8.1.2 得 $L_{S}=0.00253$ m³/s,取 u=2 m/s

$$d = \sqrt{\frac{4L_S}{\pi u}} = \sqrt{\frac{4 \times 0.00253}{3.141 \times 2}} = 0.04013m$$

根据 GB8163-87 进行圆整,取外径为 50mm,壁厚为 3.5mm 的无缝钢管。

9.4.3 加料管径

料液由高位槽自流,流速可取 $0.4\sim0.8$ m/s; 泵输送时流速可取 $1.5\sim2.5$ m/s,本设计采用的是泵送。由 5.3 得 F' = 19498 kg/h = 22.111 m³/h = 0.0061420 m³/s,取 u = 2 m/s

$$d = \sqrt{\frac{4F'}{\pi u}} = \sqrt{\frac{4 \times 0.0061420}{3.141 \times 2}} = 0.06253m$$

根据 GB8163-87 进行圆整,取外径为 70mm, 壁厚为 3.5mm 的无缝钢管。

9.4.4 料液排出管径

塔釜液出塔的流速可取 0.5~1.0 m/s。由 8.2.2 得 L_{S} ′ = 0.00932 m^3 /s,取 u = 0.7 m/s

$$d = \sqrt{\frac{4L_{S}'}{\pi u}} = \sqrt{\frac{4 \times 0.00932}{3.141 \times 0.7}} = 0.1302m$$

根据 GB8163-87 进行圆整,取外径为 146mm, 壁厚为 6mm 的无缝钢管。

9.4.5 塔釜再沸器饱和蒸汽管径

由 8.2.2 得 Vs'=1.873m³/s, 蒸汽流速在小于 295kPa 的情况下可取 30m/s。

$$d = \sqrt{\frac{4V_S'}{\pi u}} = \sqrt{\frac{4 \times 1.873}{3.141 \times 30}} = 0.2819m$$

根据 GB8163-87 进行圆整,取外径为 325mm,壁厚为 15mm 的无缝钢管。

十、精馏塔设计工艺条件图

	技术特性表					
序号	名称	指标				
1	操作压力	常压				
2	操作温度	约140°C				
3	工作介质	苯-氯苯混合液				
4	塔板型式	分块式筛孔塔板				
5	有效高度	10.3m				
6	塔板数	21块				
7	塔径	Ø1600mm				

	管	口及仪表接口表	
符号	规格	用途	连接方式
a _{1~3}	Ø70×3.5	原料液进口接管	平焊法兰连接
b	Ø426×10	塔顶气相出口接管	平焊法兰连接
С	Ø50×3.5	塔顶液相回流入口	平焊法兰连接
d	Ø146×6	塔釜液出口接管	平焊法兰连接
e	Ø146×6	排液管接口	平焊法兰连接
f	Ø325×15	塔釜气相回流入口	平焊法兰连接
M _{1~3}		人孔	平焊法兰连接
P _{1,2}		压力计接口	螺纹丝扣联接
T ₁₋₅		温度计接口	螺纹丝扣联接
H _{1,2}		液位指示接口	螺纹丝扣联接
L _{1,2}		自控液位接口	螺纹丝扣联接

	5		溢流	溢流堰板					
	4		弓形阵	峰液管					
	3		筛孔	筛孔塔板					
	2		圆筒	圆筒形塔体					
	1		圆锥	圆锥形裙座					
	序号	图号		名称		数量	材料	备注	
-00	534 52tr #6	100:45.45.4	比例		图号				
4	经加加金	!筛板塔i							
设	设计				南京工业大学			学	
80	制图		日期	日期		化工学院			
审	审核 E			明 化工07班 陈			班 陈钦	钦睿	

图 9 精馏塔设计工艺条件简图

十一、安全与环保

11.1 安全因素

苯的闪点为-11℃,其蒸汽在空气中的爆炸极限为 1.2%~8%(V); 氯苯的闪点为 28℃,在空气中的爆炸极限为 1.83%~9.23%,都属于甲类火灾危险物品,易燃,遇明火、高热或氧化剂接触,有引起燃烧爆炸的危险。苯是致癌物质,氯苯对人体中枢神经系统有抑制和麻醉作用。因此,在精馏分离生产中要严格采取防火、防爆、防毒等安全卫生预防措施。

(1)防火防爆措施

防火防爆基本措施的着眼点应放在限制和消除燃烧爆炸危险物、助燃物、着火源三者的相互作用上,防止燃烧三个条件(燃烧三要素)同时出现在一起。主要措施有着火源控制与消除、工艺过程的安全控制和限制火灾蔓延措施等几方面。

- ①严禁明火产生。加强加热用火管理措施;加强检修用火管理:对检修动火、使用喷灯、 浇注沥青等作业要严格管理措施;加强流动火花和飞火管理措施。
- ②避免摩擦、撞击产生火花和危险温度。轴承转动摩擦、铁器撞击、工具使用过程打击都有可能产生火花和危险温度。因而设备转动部位应保持良好的润滑,以防断油发热;采用有色金属工用具,防止撞击火花的产生;搬运物料要轻搬轻放,防止发生火花。
- ③消除电气火花和危险温度。要根据爆炸和火灾危险等级和爆炸、火灾危险物质的性质,按照国家有关规定进行设计、安装。对车间内的电气动力设备、仪器、仪表、照明装置和电气线路等,分别采用防爆、封闭、隔离等措施。以防止电气火花和危险温度。
- ④安装避雷设施。为防止精馏塔、原料罐、中间罐、产品罐等设配遭遇雷击, 应在精馏装置区内独立设置避雷设施,并定期检查维护。
- ⑤消除静电积聚。在化工企业从厂房设计、工艺设计、建设安装等方就应充分考虑导除 静电的措施,如全厂地下接地网络设计、防雷、避雷设计,在易燃易爆车间,对工艺管线、 设备等均要进行有效的接地,对一些电阻率高的易燃液体在运输、输送、罐装、搅拌中应设 法导除静电,勿使静电积聚。对一些特别易燃易爆的岗位还应禁止穿易产生静电的化纤人造 面料的服装。
- ⑥采用安全合理的工艺过程,制定科学、合理、严密的安全操作规程和工艺操作规程, 在生产中尽可能用危险性小的物质代替危险性大的物质。

(2)卫生健康措施

- ①严格操作章程。生产操作人员进入精馏装置时,需做好防护工作,应佩戴有褐色色标 滤毒罐的防毒面具,防止苯和氯苯蒸汽吸入体内而中毒;同时在塔外需有监管人员对入塔时 间进行监控。
 - ②配备冲洗设施。装置区域内应备有安全沐浴处和眼睛冲洗器具。

11.2 三废处理

(1)废气处理

装置区域内的废气来源主要是贮罐、塔顶及塔釜换热器的尾气,这些尾气应通过管道统一收集,首先经过活性碳或其它吸附剂将烟气中的固体吸附,之后送入焚烧工段处理剩余的可燃物质,最后需对尾气中苯及氯苯的含量进行检测,达标后才可放空。吸附剂应定期检查,及时更换或再生。

(2)废水处理

废水处理相当复杂,处理方法的选择,必须根据废水的水质和数量,排放到的接纳水体 或水的用途来考虑。同时还要考虑废水处理过程中产生的污泥、残渣的处理利用和可能产生 的二次污染问题,以及絮凝剂的回收利用等。常用的废水处理基本方法可以分为以下几种:

- (1)物理法:利用物理作用处理、分离和回收废水中的污染物。例如用沉淀法除去水中相对密度大于1的悬浮颗粒的同时回收这些颗粒物;浮选法(或气浮法)可除去乳状油滴或相对密度近于1的悬浮物;过滤法可除去水中的悬浮颗粒;蒸发法用于浓缩废水中不挥发性的可溶性物质等。
- (2) 化学法:利用化学反应或物理化学作用回收可溶性废物或胶体物质,例如,中和法用于中和酸性或碱性废水;萃取法利用可溶性废物在两相中溶解度不同的"分配",回收酚类、重金属等;氧化还原法用来除去废水中还原性或氧化性污染物,杀灭天然水体中的病原菌等。
- (3)生物法:利用微生物的生化作用处理废水中的有机物。例如,生物过滤法和活性污泥法用来处理生活污水或有机生产废水,使有机物转化降解成无机盐而得到净化。

以上方法各有其适应范围,必须取长补短,相互补充,往往很难用一种方法就能达到良好的治理效果。

十二、设计结果汇总与讨论

12.1 结果汇总

表 16 精馏塔的设计计算结果汇总一览表

项目		<i>/</i> 20/7-127	se n.	计算结果		
		符号	单位	精馏段	提馏段	
	平均压力	p _m	kPa	107.8	115.1	
平均温度		t _m	${\mathbb C}$	85.20	110.67	
파나파티	气相	$\mathbf{v}_{\mathbf{s}}$	m³/s	1.867	1.873	
平均流量	液相	$\mathbf{L}_{\mathbf{S}}$	m³/s	0.00253	0.00932	
实际塔板数		NP	块	7	14	
	板间距	Нт	m	0.5	0.5	
塔县	股的有效高度	Z	m	3	6.5	
	塔径	D	m	1.6	1.6	
空塔气速		u	m/s	0.928	0.928	
塔	板液流型式			单流型	单流型	
	溢流管型式			弓形	弓形	
	堰长	$\mathbf{L}_{\mathbf{W}}$	m	1.12	1.12	
溢流装置	堰高	hw	m	0.0486	0.0314	
	溢流堰宽度	$\mathbf{W_d}$	m	0.224	0.224	
	降液管低隙高度	ho	m	0.0282	0.104	
板上清液层高度		\mathbf{H}_{L}	m	0.060	0.060	
孔径		$\mathbf{d}_{\mathbf{o}}$	mm	5	5	
	孔间距	t	mm	12.5	12.5	
孔数		n	个	9644	9644	
开孔面积		Ao	\mathbf{m}^2	0.189	0.189	
筛孔气速		uo	m/s	9.88	9.91	
	塔板压降	$\mathbf{h_f}$	kPa	0.70	0.656	
液体在降	液管中的停留时间	τ	s	34.58	9.38	
降液	管内清液高度	Hd	m	0.133	0.126	
	雾沫夹带	ev	kg 液/kg 气	0.00819	0.00893	
	负荷上限			液泛控制	液泛控制	
	负荷下限			漏夜控制	漏夜控制	
气	相最大负荷	V _{s,max}	m ³ /s	3.85	4.00	
气	相最小负荷	$V_{s,min}$	m³/s	1.27	1.19	
				3.03	3.36	

12.2 设计讨论

本设计设计了一套每小时处理量为 4.5 吨的含氯苯 99.5%的苯—氯苯混合料液分离过程 板式精馏塔工艺。为了满足生产工艺的要求,对精馏塔进行物料衡算、对塔的工艺条件及物 性数据和塔体、塔板工艺尺寸进行了计算,还绘制了工艺流程图,并对塔的主要接管的尺寸进行了计算。对塔的工艺条件及物性数据和塔体、塔板工艺尺寸进行了计算,还绘制了工艺流程图,并对塔的主要接管的尺寸进行了计算。

附录:参考资料

- [1] 任志远,陈楠. 氯苯行业生产现状及二恶英类污染物管理分析[J]. 中国氯碱, 2013,(12): 26~29
- [2]卢焕章等. 石油化工基础数手册[M]. 化学工业出版社, 1982
- [3] 管国锋等.化工原理(第四版)[M]. 化学工业出版社, 2015
- [4] 中石化上海工程有限公司编.化工工艺设计手册(上下册,第 5 版)[M]. 化学工业出版社, 2018
- [5] 刘仁桓,徐书根,蒋文春编,化工设备设计基础[M],中国石化出版社,2015
- [6] 化工设备设计手册编写组. 化工设备设计手册(上下册)[M]. 化学工业出版社, 2005
- [7] 时钧等编。化学工程手册第 13 篇《汽液传质设备》[M].化学工业出版社, 1979