Classification: Introduction

Application Examples

Example

- You are a bank loan officer and need to know which loan applicants are "safe" and which are "risky" for the bank
 - in other words, you want to assign labels "safe" or "risky" to a loan applicant

Example

- You are a marketing manager at an electronics consumer shop and want to guess whether a customer will buy a new computer
- "buys" or "doesn't buy" to a customer

Example

- You are a medical researcher and want to predict which of (say three) specific treatments a patient should receive
- "treat_A" or "treat_B" or "treat_C" to a patient

How To Do That?

1. Gather a set of previous (e.g., archived) data

- such as past loan applicant/customer/patient data
- this dataset is called training set

- each object in the training set may have a set of attributes (of any type)
- each object <u>must have</u> a <u>categorical attribute</u> that takes as values the desired <u>labels</u>.
 - this attribute is called class attribute.
 - the class attribute values must be available in the training set

How To Do That?...

2. Analyze the training set

 create a model (or classifier) that takes as input the non-class attribute values and returns a class value

Example

$$f(age, income)$$

 $f(age = "young", income = "low") = "risky"$

- the classifier can be implemented in different ways
 - decision trees
 - rule-based classification
 - Bayesian classification
 - neural network-based classification
 - support vector machines
 - k-nearest neighbor classification

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

How To Do That?...

3. Evaluate the accuracy of the classifier

- find another set of previous (archived) data, with the same attributes as the training set
 - the new data tuples should be <u>disjoint</u> from those in the training set.
 - the new dataset is called test set
- the accuracy of the classifier will be evaluated based on the test set

How To Do That?...

Classification Accuracy

How to measure the accuracy of a classifier?

- suppose we have already selected the training and test sets,
 and we have created a classifier based on the training set
- <u>predict</u> the class value of every tuple in the set, and compare it against their <u>actual</u> ones (which are already stored in the set)

Accuracy Measures: Classification Accuracy

- the percentage of tuples that are correctly classified by the classifier
- a useful tool for analyzing how well the classifier can recognize tuples of different classes is the confusion matrix

		accuracy of classifyin "yes" tuples			
Actual	Classes	buys_computer="yes"	buys_computer="no"	Total	Accuracy/#1 (%)
	buys_computer="yes"	6,954	46	7,000	99.34
	buys_computer="no"	412	2,588	3,000	86.27
	Total	7,366	2,634	10,000	95.42
			A		tal accuracy 54 + 2,588) / 10,000

- rows and columns are the different classes
- $c_{i,j}$: value of cell at row i and column j
- c_{i,j}: number of tuples from class i that are classified as those of class j by the classifier

Can be Misleading

- Let us focus on a two-class problem (e.g., "non_cancer" / "cancer" patients) where
 - number of class C₁ tuples: 9,990
 - number of class C2 tuples: 10
- If the classifier predicts everything to be class C_1 , then $Acc_1 = 9{,}990/10{,}000 = 99.9\%$
- However, this is misleading because the classifier does not correctly predict any tuple form C₂

Alternative Accuracy Measures

Consider a two-class problem and the confusion matrix below

• the positives refer to the tuples of the main class of interest

Document Collection

Alternative Accuracy Measures...

 C_1 is the main class of interest

Predicted class

Actual class

	Classes	C_1	C_2	Total
1	C_1	true positives (t_pos)	false negatives (f_neg)	positives (pos)
	C_{2}	false positives (f_pos)	true negatives (t_neg)	negatives (neg)

- precision = $\frac{TP}{TP+FP}$
 - (information retrieval) the fraction of retrieved documents that are relevant to the search (i.e., probability that a (randomly selected) retrieved document is relevant)
- recall = $\frac{TP}{TP+FN}$
 - (IR) the fraction of the documents that are relevant to the query that are successfully retrieved (i.e., probability that a (randomly selected) relevant document is retrieved in a search)
- F-measure = $\frac{2 \cdot \text{recall} \times \text{precision}}{\text{recall} + \text{precision}}$
 - combines precision and recall (harmonic mean)

Performance Evaluation

How do we select the training and test sets?

Holdout method

- suppose we possess a dataset D with |D| tuples
- randomly partition D into two disjoint datasets D_1 and D_2
 - typically $|D_1|=\frac{2}{3}|D|$ and $|D_2|=\frac{1}{3}|D|$
- use D_1 as the training set and D_2 as the test set
- use the accuracy measures to derive the classifier's accuracy

Weakness

- fewer records are available for training because some are used in the test set
 - the classifier may not be as good as when all the records of D
 are used
- the induced classifier may be highly dependent on the composition of the training and test sets
- a class over-represented in the training set will be under-represented in the test set, and vice versa

Better Approaches

Random subsampling, cross-validation

- all these use <u>several</u> different training sets and test sets
- for every new training set we select, we create a new classifier that is tested against the respective new test set
- the final accuracy estimate is the <u>average</u> over these accuracies

Repeated Subsampling

- repeat the holdout method k times (creating a new classifier each time)
- the overall accuracy estimate is the <u>average</u> of the classifier accuracies obtained from each iteration

k-Fold Cross-Validation

- suppose we possess a dataset D with |D| tuples
- partition D into k disjoint datasets D_1, D_2, \ldots, D_k (called folds) of approximately equal size
- training and testing is performed k times
- in iteration *i*, D_i is selected as the test set (validation set), and the rest collectively serve as the training set

k-Fold Cross-Validation

Each example is used

- in the validation set once, and
- in the training set for the other k-1 folds

A high proportion of the available data $(1-\frac{1}{k})$ is used for training, while making use of all the data in computing the error

How many times do we need to perform training?

ullet typically, $k\sim 10$ is considered reasonable

If
$$k = |D|$$

- train on |D| 1 examples and validate on 1 example
- called leave-one-out cross-validation
- useful for small data sets

k-fold Stratified Cross-validation

Another problem:

- examples in the training set of each fold may not be representative
- ullet e.g., all the examples of a certain class are missing o the classifier cannot learn to predict this class

How to ensure that each class is represented with approximately equal proportions in both the training and validation sets?

- partition the |D| examples into k folds such that each class is uniformly distributed among the k folds
- the class distribution in each fold is similar to that in the original data set
- typically, use 10-fold (stratified) cross-validation

Cross-validation...

Which classifier should we eventually create in order to make predictions for the future (i.e., unseen) tuples?

- create the classifier using the <u>entire</u> dataset (D)
- it contains the maximum possible data we can find and thus may lead to better accuracy