## SÉRIES TEMPORELLES LINÉAIRES Examen 2018-2019

Durée : 2 heures. Sans document.

Les exercices sont indépendants. Il est demandé de justifier les réponses de façon concise.

Exercice 1 Soit  $(u_t)_{t\in\mathbb{N}}$  une suite de variables aléatoires réelles indépendantes et identiquement distribuées telles que  $Eu_t = m$  et  $Var(u_t) = \sigma^2$  existent. On définit la suite  $(X_t)_{t\in\mathbb{N}}$  par  $X_0 = 0$  et  $X_t = \rho X_{t-1} + u_t$  pour  $t \geq 1$ .

- 1. La suite  $(u_t)_{t\in\mathbb{N}}$  est-elle toujours ergodique? A quelle condition est-elle un bruit blanc? Quelle est la limite presque sûre de  $\frac{1}{n}\sum_{t=1}^n u_t^2$  quand  $n\to\infty$ ?
  - 2 pts : La suite  $(u_t)_{t\in\mathbb{N}}$  étant iid, elle est strictement stationnaire et ergodique. C'est un bruit blance si m=0. Par le théorème ergodique, la limite presque sûre de  $\frac{1}{n}\sum_{t=1}^n u_t^2$  quand  $n\to\infty$  est  $Eu_t^2=\sigma^2+m^2$ .
- 2. On note  $\mu_t = EX_t$ . Exprimer  $\mu_t$  en fonction de  $\rho$ , m et  $\mu_{t-1}$ , puis en fonction de  $\rho$ , m et t.

2 pts : On a  $\mu_1 = m$  et pour  $t \ge 2$ 

$$\mu_t = m + \rho \mu_{t-1} = m + \rho m + \rho^2 \mu_{t-2} = m \left\{ 1 + \rho + \rho^2 + \dots + \rho^{t-1} \right\}$$

.

- 3. La figure 1 représente une trajectoire  $X_0, X_1, \ldots, X_n$  de longueur n = 300. A la vue de ce graphique, pouvez-vous rejeter l'hypothèse que m = 0? Pouvez-vous rejeter l'hypothèse que  $\rho = 1$ ? Est-il nécessaire de faire des tests statistiques pour cela?
  - 2 pts : Si on avait m = 0 on aurait  $\mu_t = 0$  pour tout t. Si on a  $|\rho| < 1$ , cela devrait se voir sur la trajectoire car on a dans ce cas un phénomène de retour à la moyenne. La trajectoire de la figure n'est visiblement pas centrée, donc on peut rejeter l'hypothèse que m = 0 (et même deviner



FIGURE 1 – Trajectoire de la série  $(X_t)$ .

que m>0) dans le cas  $|\rho|<1$ . Si on avait  $\rho=1$  avec  $m\neq 0$  la trajectoire devrait posséder la tendance déterministe  $t\mapsto mt$ , ce qui n'est manifestement pas le cas, donc on peut rejeter l'hypothèse que  $\rho=1$  quand  $m\neq 0$ . Il est inutile de faire un test statistique pour une telle conclusion (si on admet le modèle AR(1) avec constante de l'énoncé, on se trouve dans le cas 3 du cours sur les tests de racine unité). Le seul cas non trivial à voir sur la trajectoire et  $\rho=1$  et m=0. On peut donc envisager le test de Dickey-Fuller où  $H_0$  est l'hypothèse d'une marche aléatoire sans dérive contre l'alternative  $H_1$  d'un AR(1) avec  $|\rho|<1$  et m éventuellement non nul (cas 2 du cours).

Exercice 2 Soit  $(\epsilon_{1t}, \epsilon_{2t}, \epsilon_{3t})'$  un bruit blanc fort de variance identité  $I_3$ , et  $X_t = (X_{1t}, X_{2t}, X_{3t})'$  satisfaisant

$$\begin{cases} X_{1t} = aX_{3t} + \epsilon_{1t} \\ X_{2t} = bX_{1t} + \epsilon_{2t} \\ X_{3t} = cX_{3, t-1} + \epsilon_{3t}. \end{cases}$$

1. On suppose dans cette question que |c| < 1.

(a) Ecrire ce système sous forme VAR(1) en précisant la variance du bruit et montrer qu'il satisfait la condition d'existence d'une solution stationnaire et non anticipative.

2 pts: Puisque  $X_{1t} = acX_{3,t-1} + a\epsilon_{3t} + \epsilon_{1t}$  et  $X_{2t} = bacX_{3,t-1} + ba\epsilon_{3t} + b\epsilon_{1t} + \epsilon_{2t}$ , on a  $X_t = AX_{t-1} + \epsilon_t$  avec

$$A = \begin{pmatrix} 0 & 0 & ac \\ 0 & 0 & bac \\ 0 & 0 & c \end{pmatrix}, \quad \epsilon_t = \begin{pmatrix} a\epsilon_{3t} + \epsilon_{1t} \\ ba\epsilon_{3t} + b\epsilon_{1t} + \epsilon_{2t} \\ \epsilon_{3t} \end{pmatrix}.$$

La variance de  $\epsilon_t$  est

$$\Sigma = \begin{pmatrix} 1+a^2 & b(1+a^2) & a \\ b(1+a^2) & 1+b^2+a^2b^2 & ab \\ a & ab & 1 \end{pmatrix}.$$

Le polynôme  $\det(I_3 - Az) = 1 - cz$  n'a pas de racine à l'intérieur ou sur le cercle unité, donc le modèle VAR(1) admet une solution stationnaire non anticipative.

- (b) Le vecteur  $(X_{1t}, X_{2t})'$  cause-t-il  $X_{3t}$  au sens de Granger? Pour quelles valeurs de a, b et c la variable  $X_{3t}$  cause-t-elle le vecteur  $(X_{1t}, X_{2t})'$  au sens de Granger? A-t-on causalité instantanée entre  $X_{1t}$  et  $(X_{2t}, X_{3t})'$ ?
  - 2 pts : D'après l'emplacement des 0 dans la matrice A, le vecteur  $(X_{1,t-1},X_{2,t-1})'$  n'intervient pas dans l'expression  $X_{3t}$ , et donc  $(X_{1t},X_{2t})'$  ne cause pas  $X_{3t}$  au sens de Granger. Pour la même raison,  $X_{3t}$  cause le vecteur  $(X_{2t},X_{3t})'$  au sens de Granger si  $a\neq 0$  et  $c\neq 0$ . Daprès la forme de  $\Sigma$ , il y a causalité instantanée entre  $X_{1t}$  et  $(X_{2t},X_{3t})'$  si le vecteur  $(b(1+a^2),a)$  est non nul, donc si  $a\neq 0$  ou  $b\neq 0$ .
- 2. On suppose dans cette question que c=1. Ecrire ce système sous forme à correction d'erreur VECM. Pour quelles valeurs de a et b le processus  $X_t$  est-il cointégré? Quel est son rang de cointégration?

2 pts : La troisième équation est une marche aléatoire et les deux premières équations sont des relations de cointégration. Si  $a \neq 0$  ou  $b \neq 0$  le système est donc cointégré au sens de Granger (il est cointégré au sens large pour toutes valeurs de a et b). Le rang de cointégration est

2. On a la représentation VECM de forme  $\nabla X_t = \Pi X_{t-1} + \epsilon_t$  avec

$$\Pi = \begin{pmatrix} -1 & 0 & ac \\ 0 & -1 & abc \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ -b & -1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & -a \\ b & 1 & 0 \end{pmatrix}.$$

On retrouve les relations de cointégration dans cette décomposition, ainsi que le rang de cointégration.

Exercice 3 Il arrive souvent que l'on veuille prévoir une séries temporelle  $Y_t$  en fonction de ses valeurs passées et également d'une variable  $X_t$  dite "exogène". Ceci peut se faire à l'aide de modèles appelés ARMAX, dont nous considérons dans cet exercice la version la plus simple.

Soit  $(\epsilon_t)$  un bruit blanc et  $(X_t)$  une série temporelle univariée telle que  $X_t$  soit observable avant la variable d'intérêt  $Y_t$ . On suppose que la série bivariée  $(X_t, \epsilon_t)$  est strictement stationnaire et ergodique, avec  $EX_t^2 < \infty$ , et on considère le modèle AR(1)-X

$$Y_t = aY_{t-1} + bX_t + c + \epsilon_t, \quad t \in \mathbb{Z}.$$

1. On suppose |a| < 1, mais on n'impose aucune contrainte sur b et c. Donner la solution  $Y_t$  stationnaire et ergodique de l'équation AR(1)-X. On suppose que  $\epsilon_t$  est indépendant de  $\{X_u, u \leq t; \epsilon_u, u < t\}$ . Quelle est la meilleure prévision de  $Y_t$  en fonction de  $\{X_u, u \leq t; Y_u, u < t\}$ ? Quelle est la variance du terme d'erreur?

2 pts: En itérant, on voit que la solution stationnaire est

$$Y_t = \sum_{i=0}^{\infty} a^i (bX_{t-i} + c + \epsilon_{t-i}).$$

Cette série est bien absolument convergente avec probabilité 1 car

$$E\sum_{i=0}^{\infty} |a|^{i} |bX_{t-i} + c + \epsilon_{t-i}| \le \frac{|b|E|X_{1}| + |c| + E|\epsilon_{1}|}{1 - |a|} < \infty.$$

Au sens des moindres carré, la prévision optimale est

$$\hat{Y}_t = aY_{t-1} + bX_t + c$$

avec le terme d'erreur  $\epsilon_t$  de variance  $\sigma^2_{\epsilon}$ 

- 2. On étudie dans cette question les conséquences de l'oubli de la variable exogène. On suppose que  $X_t = \eta_t + d\eta_{t-1}$  avec |d| < 1 et  $(\eta_t)$  un bruit blanc fort de variance  $\sigma_\eta^2$ , indépendant du bruit fort  $(\epsilon_t)$  de variance  $\sigma_\epsilon^2$ . Posons  $Z_t = bX_t + \epsilon_t$ .
  - (a) Déterminer la fonction d'autocovariance de  $(Z_t)$ . Quel est le modèle ARMA suivi par  $Z_t$ ? Quel est le modèle ARMA suivi par  $Y_t$ ?

2 pts : On a

$$Var(Z_t) = \sigma_{\epsilon}^2 + b^2 \sigma_n^2 (1 + d^2), \quad Cov(Z_t, Z_{t-1}) = b^2 d\sigma_n^2$$

et  $\operatorname{Cov}(Z_t, Z_{t-h}) = 0$  pour h > 1, donc  $Z_t \sim MA(1)$  de la forme  $Z_t = u_t + \varphi u_{t-1}$  où  $u_t$  est un bruit blanc faible de variance  $\sigma_u^2$ . Par conséquent  $Y_t \sim ARMA(1, 1)$ .

(b) Quelle est approximativement la variance du terme d'erreur du modèle ARMA suivi par  $(Y_t)$  quand |b| est très grand? Quelle est alors la conséquence de l'oubli de la variable exogène pour la prévision de  $Y_t$ ?

2 pts : Les paramètres  $\varphi$  et  $\sigma_u^2$  de la MA(1 ) sont tels que

$$\gamma_Z(0) = \sigma_u^2(1 + \varphi^2) = \sigma_\epsilon^2 + b^2 \sigma_\eta^2(1 + d^2),$$
  
$$\gamma_Z(1) = \sigma_u^2 \varphi = b^2 \sigma_\eta^2 d.$$

Lorsque  $\sigma_{\epsilon}^2$  est négligeable devant  $b^2\sigma_{\eta}^2,$  par identification , on trouve

$$\varphi \sim d, \qquad \sigma_u^2 \sim b^2 \sigma_\eta^2.$$

Puisque  $\sigma_u^2 >> \sigma_\epsilon^2$ , l'oubli de la variable exogène dégrade fortement la qualité de la prévision.

3. On étudie dans cette question les conséquences de l'oubli de la dynamique de  $Y_t$ . Pour que les calculs soient simples, on suppose maintenant que la suite  $(X_t)$  est iid indépendante de  $(\epsilon_t)$ . Dans le modèle de régression

$$Y_t = \tilde{b}X_t + \tilde{c} + e_t,$$

où  $e_t$  est centré et non corrrélé avec  $X_t$ , que valent  $\tilde{b}$ ,  $\tilde{c}$  et la variance de  $e_t$ ? Quelle est alors la conséquence de l'oubli de la dynamique de  $Y_t$ ? Pour estimer les paramètres de ce modèle, peut-on faire confiance aux sorties des logiciels de régression usuels?

2 pts : Avec des notations évidentes, on a

$$\operatorname{Var}(Y_t) = \frac{b^2 \sigma_X^2 + \sigma_{\epsilon}^2}{1 - a^2}, \qquad EY_t = \frac{b \, m_X + c}{1 - a}, \quad \operatorname{Cov}(X_t, Y_t) = b\sigma_X^2$$

d'où

$$\tilde{b} = \frac{\operatorname{Cov}(X_t, Y_t)}{\operatorname{Var}(X_t)} = b, \qquad \tilde{c} = EY_1 - \tilde{b}EX_1 = \frac{c + ab \, m_X}{1 - a}$$

 $\operatorname{et}$ 

$$\sigma_e^2 = \operatorname{Var} Y_t - \frac{\left\{\operatorname{Cov}(X_t, Y_t)\right\}^2}{\operatorname{Var}(X_t)} = \frac{b^2 a^2 \sigma_X^2 + \sigma_\epsilon^2}{1 - a^2}.$$

Puisque  $\sigma_e^2 > \sigma_\epsilon^2$  on perd également en négligeant la dynamique. Comme le couple  $(X_t, Y_t)$  est stationnaire ergodique, les estimateurs MCO de la régression convergent, mais les lois asymptotiques (t-statistiques en particulier) ne sont pas les mêmes que celles d'une régression ordinaire, ce qui rend délicat l'interprétation des sorties des logiciels standard.