hw1

Question 2

- a. Classification Prediction n=200 p =4
- b. Regression Prediction n= 20 p=3
- c. Regression Inference n= 600 p=5

Question 3

a. Political Science: During an election, whether a person casts his vote or not. We can sdetermine if he casts vote or not and calculate approximately the total number of votes to be casted in the elections.

Response: Vote

Predictors: Sex, Age, Income, Education Goal = Prediction

Sports: Suppose we take a cricket game between Team A and Team B for analysis. This is an example of classification of whether Team A would win the game or Team B. The result depends on different factors such as the location, players in the team, team's history, etc.

Response: Team A or Team B

Predictors: Players, Location of Match, Climate on that day, History of the team's winning in that location.

Goal: Prediction.

Area of my choice: To decide the stadium for a particular sport during Olympics.

Response: Stadium name

Predictors: Type of Game, Number of Competitors, Number of sub categories, Previous year population attending the game, Previous year spending; Profit/Loss analysis for the past Olympic games etc., Stadium Size, Population size

Goal: Inference

Agriculture: Relationship between water use and amount of fertilizer/type

Predictors: year, amount of water used for a particular year, amount of fertilizer used/type for that year

Goal = Inference

Business= effect of currency value on company's share/stock value or company's profits.

Predictors: currency value over the years, company's share value/profit over the years, no. of employees, avg. salary range etc.)

Goal = Prediction

Area of my choice: In real estate, to predict the price of the house with its relationship to the square footage.

Response: House sale price

Predictors: Square feet

Goal: Prediction.

c. Education: Which student classification needs more attention. Depending on the research of characteristics of the students, they are clustered into groups.

Response: Groups (High scorer, Medium scorer, Low scorer)

Predictors: psychological situation, environment, aptitude, attitude

Goal= Inference.

Meteorology: Ozone level prediction in various states of the country

Response: Ozone level

Predictors: weekdays ozone level, weekends ozone level, type of industries, number of vehicles bought in that year, number of vehicles registered in that state etc.

Goal= Inference

Area of my choice: To determine whether the people in a particular community are store loyal or brand loyal.

Response: Store or Brand loyal

Predictors: Age, Sex, Income, Location, etc.

Goal= Inference

Question 4

```
a. sqrt [(X1test-X1)^2 + (X2test-X2)^2 + (X3test-X3)^2]
train <- data.frame(Obs = c(1:6), X1 = c(0,2,0,-1,-3,1), X2 = c(4,0,1,1,0,0),
X3 = c(0,1,4,2,1,1), Y = c("Green", "Red", "Red", "Green", "Green", "Red"))
test <- data.frame(train, x1test = rep(0, 6), x2test = rep(0, 6), x3test = re
p(0, 6))
test$EuclideanDistance <- sqrt((test$x1test - test$X1)^2 + (test$x2test - test$x2test - test
```

```
t$X2)^2 + (test$x3test - test$X3)^2)
test
##
     Obs X1 X2 X3
                       Y x1test x2test x3test EuclideanDistance
                0 Green
## 1
       1
          0
             4
                              0
                                      0
                                             0
                                                         4.000000
## 2
       2
          2
             0
                1
                     Red
                              0
                                      0
                                             0
                                                         2.236068
## 3
       3
          0
             1
                4
                     Red
                              0
                                      0
                                             0
                                                         4.123106
             1 2 Green
                                      0
## 4
       4 -1
                              0
                                             0
                                                         2.449490
       5 -3
                1 Green
                                      0
                                             0
## 5
             0
                              0
                                                         3.162278
## 6
       6 1
             0 1
                     Red
                              0
                                      0
                                             0
                                                         1.414214
```

- b. If K = 1, the closest point to it is Observation 6, hence our prediction=Red
- c. If K=3, the three points tell red, green and red. Hence our prediction is red.
- d. For this question, since the data is small we need a high k value because we do not want to catch any noise.

Question 5a

```
college <- read.csv("College.csv")</pre>
```

Question 5b

```
#View(college)
rownames(college) <- college[,1]</pre>
college <- college[,-1]</pre>
head(college[,1:5])
##
                                  Private Apps Accept Enroll Top10perc
## Abilene Christian University
                                      Yes 1660
                                                  1232
                                                          721
                                                                      23
## Adelphi University
                                      Yes 2186
                                                  1924
                                                          512
                                                                      16
## Adrian College
                                      Yes 1428
                                                  1097
                                                          336
                                                                      22
## Agnes Scott College
                                      Yes 417
                                                   349
                                                          137
                                                                      60
## Alaska Pacific University
                                      Yes 193
                                                   146
                                                           55
                                                                      16
## Albertson College
                                      Yes 587
                                                   479
                                                          158
                                                                      38
```

Question 5c

```
summary(college)
                                                    Enroll
                                                                 Top10perc
##
    Private
                   Apps
                                   Accept
                               Min.
                                          72
##
    No :212
              Min.
                          81
                                               Min.
                                                       : 35
                                                               Min.
                                                                       : 1.00
##
    Yes:565
              1st Qu.:
                        776
                               1st Qu.:
                                         604
                                               1st Qu.: 242
                                                               1st Qu.:15.00
##
              Median : 1558
                               Median : 1110
                                               Median : 434
                                                               Median :23.00
##
                      : 3002
                                      : 2019
                                                       : 780
              Mean
                               Mean
                                               Mean
                                                               Mean
                                                                       :27.56
              3rd Ou.: 3624
                               3rd Ou.: 2424
##
                                                3rd Ou.: 902
                                                               3rd Ou.:35.00
                                                       :6392
##
              Max.
                      :48094
                               Max.
                                      :26330
                                               Max.
                                                               Max.
                                                                      :96.00
##
                     F. Undergrad
                                      P. Undergrad
                                                           Outstate
      Top25perc
##
                    Min.
                               139
                                                        Min.
                                                               : 2340
    Min.
          :
              9.0
                                     Min.
                                                  1.0
##
    1st Qu.: 41.0
                    1st Qu.:
                               992
                                     1st Qu.:
                                                95.0
                                                        1st Qu.: 7320
    Median: 54.0
                    Median : 1707
                                     Median :
                                                        Median: 9990
##
                                                353.0
##
   Mean
           : 55.8
                    Mean
                            : 3700
                                     Mean
                                               855.3
                                                        Mean
                                                               :10441
    3rd Qu.: 69.0
                    3rd Qu.: 4005
                                                        3rd Qu.:12925
                                     3rd Qu.:
                                               967.0
```

```
Max. :31643
   Max. :100.0
                                   Max. :21836.0
                                                     Max. :21700
##
                                      Personal
                                                       PhD
      Room.Board
                      Books
          :1780
                  Min. : 96.0
                                   Min. : 250
                                                  Min. : 8.00
##
   Min.
                                                  1st Qu.: 62.00
##
   1st Qu.:3597
                  1st Qu.: 470.0
                                   1st Qu.: 850
                  Median : 500.0
                                                  Median : 75.00
##
   Median :4200
                                   Median :1200
##
          :4358
                  Mean : 549.4
                                         :1341
                                                  Mean : 72.66
   Mean
                                   Mean
##
    3rd Qu.:5050
                  3rd Qu.: 600.0
                                   3rd Qu.:1700
                                                  3rd Qu.: 85.00
##
                  Max. :2340.0
                                                  Max. :103.00
   Max.
          :8124
                                   Max.
                                          :6800
##
      Terminal
                     S.F.Ratio
                                                       Expend
                                    perc.alumni
          : 24.0
##
   Min.
                   Min.
                          : 2.50
                                   Min.
                                          : 0.00
                                                   Min. : 3186
##
    1st Qu.: 71.0
                   1st Qu.:11.50
                                   1st Qu.:13.00
                                                   1st Qu.: 6751
##
   Median: 82.0
                   Median :13.60
                                   Median :21.00
                                                   Median: 8377
##
   Mean
         : 79.7
                   Mean
                          :14.09
                                   Mean
                                                   Mean : 9660
                                          :22.74
##
    3rd Qu.: 92.0
                   3rd Qu.:16.50
                                   3rd Qu.:31.00
                                                   3rd Qu.:10830
##
   Max.
         :100.0
                   Max.
                         :39.80
                                   Max.
                                          :64.00
                                                   Max.
                                                          :56233
##
     Grad.Rate
##
   Min.
         : 10.00
##
   1st Qu.: 53.00
   Median : 65.00
##
         : 65.46
##
   Mean
##
   3rd Qu.: 78.00
##
   Max.
         :118.00
pairs(college[, 5:15])
```


plot(college\$Private, college\$Room.Board, xlab = "Private University", ylab =
"Room and Board Costs in USD", main = "Room and Board Costs Plot")

Room and Board Costs Plot

Private University

```
Elite <- rep("No", nrow(college))
Elite[college$Top10perc > 50] <- "Yes"
Elite <- as.factor(Elite)
college=data.frame(college, Elite)
summary(college$Elite)

## No Yes
## 699 78

plot(college$Elite, college$Room.Board, xlab = "Elite University", ylab ="Room and Board costs in USD", main = "Room and Board Costs Plot")</pre>
```

Room and Board Costs Plot

Elite University

```
par(mfrow = c(2,2))
hist(college$Books, col = 2, xlab = "Books", ylab = "Count", breaks=5)
hist(college$Outstate, col = 3, xlab = "Outstate", ylab = "Count", breaks=10)
hist(college$Grad.Rate, col = 4, xlab = "Grad Rate", ylab = "Count", breaks=1
5)
hist(college$F.Undergrad, col = 6, xlab = "F.Undergrad", ylab = "Count", breaks=20)
```

Histogram of college\$Books Histogram of college\$Outstat

Histogram of college\$Grad.Ra Histogram of college\$F.Underg

Question 6a

```
library(ISLR)
Auto <- na.omit(Auto)</pre>
```

"Name"" is qualitative and rest of the predictors are quantitative.

```
summary(Auto)
##
                       cylinders
                                      displacement
                                                        horsepower
##
    Min.
           : 9.00
                     Min.
                            :3.000
                                     Min.
                                             : 68.0
                                                              : 46.0
                                                      Min.
    1st Qu.:17.00
                     1st Qu.:4.000
##
                                     1st Qu.:105.0
                                                      1st Qu.: 75.0
    Median :22.75
                     Median :4.000
                                     Median :151.0
                                                      Median: 93.5
##
##
    Mean
           :23.45
                     Mean
                            :5.472
                                     Mean
                                             :194.4
                                                      Mean
                                                              :104.5
                                                      3rd Qu.:126.0
##
    3rd Qu.:29.00
                     3rd Qu.:8.000
                                     3rd Qu.:275.8
##
    Max.
           :46.60
                    Max.
                            :8.000
                                     Max.
                                             :455.0
                                                      Max.
                                                              :230.0
##
                     acceleration
##
        weight
                                                         origin
                                          year
##
    Min.
           :1613
                   Min.
                           : 8.00
                                    Min.
                                            :70.00
                                                     Min.
                                                             :1.000
##
    1st Qu.:2225
                   1st Qu.:13.78
                                    1st Qu.:73.00
                                                     1st Qu.:1.000
##
    Median :2804
                   Median :15.50
                                    Median :76.00
                                                     Median :1.000
##
    Mean
           :2978
                   Mean
                           :15.54
                                    Mean
                                            :75.98
                                                     Mean
                                                             :1.577
    3rd Qu.:3615
                    3rd Qu.:17.02
                                    3rd Qu.:79.00
                                                     3rd Qu.:2.000
```

```
:24.80
                                             :82.00
##
    Max.
           :5140
                    Max.
                                     Max.
                                                      Max.
                                                              :3.000
##
##
                     name
##
                          5
    amc matador
                       :
##
    ford pinto
                          5
    toyota corolla
                          5
##
    amc gremlin
##
##
    amc hornet
                          4
    chevrolet chevette:
                          4
    (Other)
                        :365
```

We observe that "origin" variable takes only values of 1,2,3 and probably should be a factor.

```
Auto$origin <- as.factor(Auto$origin)
```

To understand the numeric or quantitative variables

```
quant <- sapply(Auto, is.numeric)</pre>
quant
##
                     cylinders displacement
                                                                    weight
                                                 horsepower
             mpg
##
            TRUE
                          TRUE
                                         TRUE
                                                       TRUE
                                                                      TRUE
## acceleration
                          year
                                       origin
                                                       name
            TRUE
                          TRUE
                                        FALSE
                                                      FALSE
```

All variables except origin and name are quantitative.

Question 6b

```
sapply(Auto[, c(1,2,3,4,5,6,7)], range)
##
         mpg cylinders displacement horsepower weight acceleration year
## [1,]
                                              46
                                                                  8.0
                                                                        70
         9.0
                      3
                                  68
                                                   1613
## [2,] 46.6
                      8
                                 455
                                             230
                                                                 24.8
                                                   5140
                                                                        82
```

Question 6c

```
sapply(Auto[, quant], function(x) c(mean(x), sd(x)))
##
              mpg cylinders displacement horsepower
                                                        weight acceleration
## [1,] 23.445918
                  5.471939
                                 194.412
                                          104.46939 2977.5842
                                                                  15.541327
                                           38.49116 849.4026
## [2,] 7.805007
                   1.705783
                                 104.644
                                                                   2.758864
##
             year
## [1,] 75.979592
## [2,] 3.683737
```

Question 6d

```
sapply(Auto[1:(nrow(Auto)-50), quant], range)
         mpg cylinders displacement horsepower weight acceleration year
                     3
## [1,]
         9.0
                                  68
                                             46
                                                   1613
                                                                 8.0
                                                                        70
## [2,] 46.6
                     8
                                 455
                                            230
                                                   5140
                                                                24.8
                                                                        81
```

```
sapply(Auto[1:(nrow(Auto)-50), quant], function(x) c( mean(x), sd(x)))
##
              mpg cylinders displacement horsepower
                                                       weight acceleration
## [1,] 22.315497
                  5.622807
                                203.3260
                                          107.82164 3045.5789
                                                                   15.38363
## [2,] 7.456385
                   1.741626
                                107.4587
                                           39.69976 872.8565
                                                                    2.78170
##
             year
## [1,] 75.157895
## [2,] 3.196164
```

Question 6e

pairs(Auto)

We can see that Displacement, weight and horsepower, weight are highly positively correlated. While horsepower, acceleration and mpg, weight are negatively correlated.

Question 6f

From the pairs plot, we can see that mpg is correlated to displacement, horsepower, weight, year.

```
cor(Auto$mpg, Auto$horsepower)
```

```
## [1] -0.7784268

cor(Auto$mpg, Auto$displacement)

## [1] -0.8051269

cor(Auto$mpg, Auto$weight)

## [1] -0.8322442

cor(Auto$mpg, Auto$year)

## [1] 0.580541
```

From the correlation factors, it is understood that mpg is negatively correlated to horsepower, displacement and weight, and is positively correlated to the year.