

ARM® ARM926EL-S Based 32-bit Microprocessor

NK-980loT User Manual NUC980DK61Y

The information described in this document is the exclusive intellectual property of nuvoTon Technology Corporation and shall not be reproduced without permission from nuvoTon.

nuvoTon is providing this document only for reference purposes of NuMicro microcontroller based system design. nuvoTon assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: nuvoTon Technology Corporation.

www.nuvoton.com

Table of Contents

1		Overview3
2		Introduction to NK-980IoT Board4
	2.1	NK-980IoT Board Features
	2.2	NK-980IoT Board - Front View 5
	2.3	NK-980IoT Board - Rear View11
	2.4	NK-980IoT Board PCB Placement
3		Starting to Use VCOM Function
	3.1	Download and Install VCOM Driver13
	3.2	Connect to PC HOST14
4		NK-980IoT Schematics
	4.1	NK-980IoT - Block Diagram Schematic16
	4.2	NK-980IoT - GPIO List Schematic
	4.3	NK-980IoT - Power Schematic
	4.4	NK-980IoT - NUC980DK Schematic19
	4.5	NK-980IoT - Power Filter Schematic20
	4.6	NK-980IoT - Configure Schematic21
	4.7	NK-980IoT - NUC123ZD4AN0 Schematic
	4.8	NK-980IoT - Memory Schematic23
	4.9	NK-980IoT - RMII_PE Schematic24
	4.10	NK-980IoT - Audio Codec Schematic25
	4.11	NK-980IoT - SD1/eMMC1 Schematic26
	4.12	NK-980IoT - Arduino Uno Interface Schematic
	4.13	NK-980IoT - USB Schematic28
	4.14	NK-980IoT - Expand EBI Interface Schematic29
5		Revision History

1 OVERVIEW

This user manual is aimed to give users an introduction the specification, features, and uses of NK-980IoT board to develop network as well as Internet of Thing (IoT) applications.

Figure 1-1 NK-980IoT Board

2 INTRODUCTION TO NK-980IOT BOARD

The NK-980IoT is a development board based on an ARM® ARM926EJ-S microprocessor NUC980DK61Y which has very rich peripherals to help users easily to design-in their products or application systems.

The NK-980IoT board uses NUC980DK61Y microprocessor run up to 300 MHz with built-in 64MB DDR2 memory, 16 KB I-cache, 16 KB D-cache and MMU, 16 KB embedded SRAM and 16.5 KB IBR (Internal Boot ROM) for system booting from USB, SPI NAND flash and SD/eMMC, All functions of the NUC980DK61Y are placed on the board, including peripheral interfaces such as memory (SPI NAND Flash, eMMC, SD), UART, Audio controller(NAU8822L), 10/100 Mb Ethernet MAC controller, high speed USB(device, HOST), JTAG and EBI, furthermore, the board provides Arduino Uno compatible interface for expansion. Users can use it to develop and verify applications to emulate the real behavior.

2.1 NK-980IoT Board Features

- NUC980DK61Y: LQFP128 pin MCP package with DDR2 (64 MB), which can run up to 300MHz operating speed
- SPI Flash: Quad mode system booting or data storage, use W25N01GVZE1G SPI-NAND (128 MB)
- SD1/eMMC1: User SD/eMMC memory card for system booting, data storage or SDIO (Wi-Fi) device
- UART0: Connected to Virtual COM port for system development, debug message output
- Arduino Uno compatible interface connectors (NU1, NU2, NU3, NU4 and NU5)
- JTAG interface provided for software development
- RJ45 port with Ethernet 10/100Mbps MAC (Ethernet0)
- EBI interface with pin header
- Microphone input and Earphone/Speaker output with 24-bit stereo audio codec (NAU8822L) for I2S interfaces
- 3 sets of LED for status indication
- 2 sets of user-configurable push button keys
- USB port-0 that can be used as Device/HOST and USB port-1 that can be used as HOST Supports pen drives, keyboards, mouse and printers
- Provides over-voltage and over current protection
- 3.3V I/O power, 1.8V Memory power and 1.2V core power

2.2 NK-980IoT Board — Front View

Figure 2-1 shows the main components from the front view of NK-980IoT board

• +5V In (CON1): Power adaptor 5V input

Power Model	CON4 USB Port (Micro-B)	CON9 USB Port (Micro-B)	CON1
Model 1	Connect to PC	-	-
Model 2	-	Connect to PC	-
Model 3	-	-	VDD5V Input

Power indication LEDs (LED1, LED2):

LED	Color	Descriptions
LED1	Red	The system power will be terminated and LED1 lighting when the input voltage is over 5.7V or the current is over 1.7A.
LED2	Green	Power normal state.

- RTC Battery (CON2): External Battery supply for RTC 3.3V powered
 - CON2.1: Positive (+)
 - CON2.2: Negative (-)
- System Reset (SW2): System will be reset if the SW2 button is pressed
- Virtual COM (CON4, U6): NUC123ZD4AN0 microcontroller (U6), USB micro-B connector (CON4) to PC, for debug message output
- User indication LEDs (LED3, LED4, LED5):

LED	Color	GPIO pin of NUC980
LED3	Yellow	PB8
LED4	Green	PG15
LED5	Red	PB13

- SPI NAND Flash (U7, U8): Use Winbond W25N01GVZE1G 128MB (U8) for system booting, only one (U7 or U8) SPI Flash can be used, support dual / quad mode
- JTAG interface and UART0 (CON3)

Connector	GPIO pin of NUC980	Function
CON3.1	-	VDD33
CON3.2	GPG15	nTRST
CON3.3	GPG14	TDI
CON3.4	GPG13	TMS
CON3.5	GPG12	TCK

CON3.6	GPG11	TDO
CON3.7	-	nRESET
CON3.8	GPF12	UART0_TXD
CON3.9	GPF11	UART0_RXD
CON3.10	-	VSS

• User Key SWs (K1 and K2)

Key	GPIO pin of NUC980
K1	GPE10
K2	GPE12

Arduino UNO compatible interface (NU1, NU2, NU3, NU4 and NU5)

Connector	GPIO pin of NUN980	Function
NU1.1	-	-
NU1.2	-	VDD33
NU1.3	-	nRESET
NU1.4	-	VDD33
NU1.5	-	VIN
NU1.6	-	VSS
NU1.7	-	VSS
NU1.8	-	VIN

Connector	GPIO pin of NUN980	Function
NU2.1	GPF7	PWM2
NU2.2	GPF8	PWM3
NU2.3	GPG11	SPI1_SS
NU2.4	GPG14	SPI1_DO
NU2.5	GPG13	SPI1_DI
NU2.6	GPG12	SPI1_CLK
NU2.7	-	VSS
NU2.8	-	ADC VDD33
NU2.9	GPB7	I2C2_SDA
NU2.10	GPB5	I2C2_SCL

Connector	GPIO pin of NUN980	Function
NU3.1	GPB1	UART9_TXD
NU3.2	GPB3	UART9_RXD
NU3.3	GPB2	ADC_AIN[2]
NU3.4	GPB0	ADC_AIN[0]
NU3.5	GPB6	UART7_TXD
NU3.6	GPB4	UART7_RXD

Connector	GPIO pin of NUN980	Function
NU4.1	GPF9	UART1_RXD
NU4.2	GPF10	UART1_TXD
NU4.3	GPD12	UART4_TXD
NU4.4	GPD13	UART4_RXD
NU4.5	GPD15	I2C3_SDA
NU4.6	GPD14	I2C3_SCL
NU4.7	GPG6	UART5_RXD
NU4.8	GPG7	UART5_TXD

Connector	GPIO pin of NUN980	Function
NU5.1	GPD11	SPI0_DI
NU5.2	-	VDD33
NU5.3	GPD9	SPI0_CLK
NU5.4	GPD10	SPI0_DO
NU5.5	-	-
NU5.6	-	VSS
NU5.7	GPD8	SPI0_SS
NU5.8	-	-

EBI port for user use (CON11)

Connector	GPIO pin of NUN980	Function
CON11.1	GPC0	EBI_DATA0
CON11.2	GPC1	EBI_DATA1
CON11.3	GPC2	EBI_DATA2
CON11.4	GPC3	EBI_DATA3
CON11.5	GPC4	EBI_DATA4
CON11.6	GPC5	EBI_DATA5
CON11.7	GPC6	EBI_DATA6
CON11.8	GPC7	EBI_DATA7
CON11.9	GPC8	EBI_DATA8
CON11.10	GPC9	EBI_DATA9
CON11.11	GPC10	EBI_DATA10
CON11.12	GPC11	EBI_DATA11
CON11.13	GPC12	EBI_DATA12
CON11.14	GPC13	EBI_DATA13
CON11.15	GPC14	EBI_DATA14
CON11.16	GPC15	EBI_DATA15
CON11.17	GPA7	EBI_nWE
CON11.18	GPA8	EBI_nRE
CON11.19	GPA9	EBI_nCS0
CON11.20	GPA12	EBI_ADDR8
CON11.21	GPA11	EBI_ADDR9
CON11.22	GPA10	EBI_ADDR10
CON11.23	GPB0	ADC_AIN[0]
CON11.24	GPB2	ADC_AIN[2]
CON11.25	GPB4	ADC_AIN[4]
CON11.26	GPB6	ADC_AIN[6]
CON11.27	-	VDD33
CON11.28	-	VSS

 SD1/eMMC1 (CON8): Use Micro SD/eMMC memory card for system booting, data storage or SDIO (Wi-Fi) device

Power on setting (SW1, R24~R27)

Switch	Status	Function	GPIO pin of NUC980
SW1.2/SW1.1	ON/ON	Boot from USB	GPG1/GPG0
SW1.2/SW1.1	ON/OFF	Boot from SD/eMMC	GPG1/GPG0
SW1.2/SW1.1	OFF/ ON	Boot from NAND Flash	GPG1/GPG0
SW1.2/SW1.1	OFF/OFF	Boot from QSPI0 Flash	GPG1/GPG0

Resistance	Status	Function	GPIO pin of NUC980
R24	Solder R	Watchdog Timer OFF	GPG3
R24	Remove	Watchdog Timer ON	GPG3

Resistance	Status	Function	GPIO pin of NUC980
R25	Solder R	UART0 debug message ON	GPG5
R25	Remove	UART0 debug message OFF	GPG5

Resistance	Status	Function	GPIO pin of NUC980
R27/R26	Solder R/ Solder R	SPI-NAND Flash boot with 1-bit mode	GPG9/GPG8
R27/R26	Solder R/ Remove	SPI-NAND Flash boot with 4-bit mode	GPG9/GPG8
R27/R26	Remove/ Solder R	SPI-NOR Flash boot with 4-bit mode	GPG9/GPG8
R27/R26	Remove/ Remove	SPI-NOR Flash boot with 1-bit mode	GPG9/GPG8

- Audio CODEC (U11, M1, CON6, CON7, CN1): nuvoTon NAU8822L (U11) connects to NUC980 using I2S interface
 - Microphone (M1): Through the NAU8822L chip sound input
 - Speaker output (CON6): Through the NAU8822L chip sound output

Connector	Pin Name	Functions
CON6.1	SPKOUT_R	NAU8822L BTL Speaker Positive Output or Right high current output.
CON6.2	SPKOUT_L	NAU8822L BTL Speaker Negative Output or Left high current output.

■ Earphone output (CON7): Through the NAU8822L chip sound output

- USB0 Device/HOST (CON9, JP1): USB0 Device/HOST Micro-B connector, By JP1 status or defined by the ID pin of the USB cable
- USB1 HOST (CON10): USB1 for USB HOST with type-A connector
- Ethernet0_PE (CON5, U9): For Ethernet port, the NUC980 support RMII interface which add one Ethernet PHY IP101GR to RJ45 connector with LED indicator
- SOC CPU: NUC980DK61Y (U5)

Figure 2-1 NK-980IoT Board (Front View)

2.3 NK-980IoT Board — Rear View

Figure 2-2 shows the main components from the rear view of NK-980IoT board

 VCOM ICE interface: ICE Controller NUC123ZD4AN0 (U6), USB connector (CON3) to PC Host

Connector	Pin Name	Functions
CON3.1	VDD33	DC 3.3V
CON3.2	ICE_DAT	Serial Wired Debugger Data
CON3.3	ICE_CLK	Serial Wired Debugger Clock
CON3.4	RST#	VCOM Chip Reset, Active Low.
CON3.5	VSS	Power Ground

 Audio CODEC (U11, M1, CON6, CON7, CN1): nuvoTon NAU8822L (U11) connects to NUC980 using I2S interface

■ Auxiliary Input and Output(CN1)

Connector	Pin Name	Functions
CN1.1	AUXOUT1	Mono Mixed Output / Line Output
CN1.2	AUXOUT2	Line Output
CN1.3	AUXINR	Right Auxiliary Input
CN1.4	AUXINL	Left Auxiliary Input

MicroSD Card Slot: T-Flash slot (CON8)

Figure 2-2 NK-980IoT Board (Rear View)

2.4 NK-980IoT Board PCB Placement

The following figure shows NK-980loT board PCB placement.

Figure 2-3 NK-980IoT Board Front PCB Placement

Figure 2-4 NK-980IoT Board Back PCB Placement

3 STARTING TO USE VCOM FUNCTION

3.1 Download and Install VCOM Driver

Please visit nuvoTon's NuMicro™ website (http://www.nuvoton.com/NuMicro) to download the "NuMicro™ ICP Programming Tool" file. After the ICP Programming Tool driver is downloaded, please unzip the file and execute the "ICP Programming Tool.exe". Simply follow the installation and optional steps to install ICP Programming Tool and Nu-Link USB Driver, which included VCOM driver.

Figure 3-1 Optional Step after ICP Programming Tool Installation

Figure 3-2 Install nuvoTon COM &LPT Driver

Figure 3-3 Install nuvoTon Universal Serial Bus Controllers

3.2 Connect to PC HOST

Connect the USB micro-B port (CON4) to the PC HOST.

The PC HOST will supply 5V power to the NK-980IoT board and will recognize the board as a USB composite device.

The VCOM port function is used to print some messages on PC API, such as Tera Term, through the standard UART protocol to help user to debug program.

3.2.1 Open the Serial Port Terminal

Use the serial port terminal, SecureCRT for example, to print out debug message.

Figure 3-4 NK-980IoT board in "Device Manager"

Figure 3-5 SecureCRT Baud Rate Setting

3.2.2 Reset Chip

nuvoTon

After pressing the reset button, the chip will reprogram application and print out debug message.

Figure 3-4 Serial Port Terminal Windows

4 NK-980IOT SCHEMATICS

4.1 NK-980IoT — Block Diagram Schematic

4.2 NK-980IoT — GPIO List Schematic

									ı	$\overline{}$			
PIN	FUNCTION	PIN	FUNCTION	PIN	FUNCTION	PIN	FUNCTION	PIN	FUNCTION	PIN	FUNCTION	PIN	FUNCTION
PAO	I2CO_SDA	PB0	ADC_AIN[0]	PC0	EBI_DATA0	PD2	QSPIO_SSO	PE0	RMIIO_RXERR	PF0	BD1_CMD eMMC1_CMD	PGO	CFG[0]
PA1	I2CO_SCL	PB1	ADC_AIN[1] UART9_TXD	PC1	EBI_DATA1	PD3	QSPIO_CLK	PE1	RMIIO_CRSDV	PF1	eMMC1_CLK	PG1	CFG[1]
PA2	123_LRCK	PB2	ADC_AIN[2]	PC2	EBI_DATA2	PD4	QSPIO_DO	PE2	RMIIO_RXD1	PF2	SD1_DATA0 eMMC1_DATA0	PG3	CFG[3]
PAS	128_BCLK		ADC_AIN[3] UART9_RXD	PC3	EBI_DATAS	PDS	QSPIO_DI	PES	RMIIO_RXDO	PF3	BD1_DATA1 eMMC1_DATA1	PGS	CFG[5]
PA4	123_DI		I2C1_SCL	PC4	EBI_DATA4	PD6	QSPIO_D2	PE4	RMIIO_REFCLK	PF4	BD1_DATA2 eMMC1_DATA2	PG6	UART5_RXD PWM10
PAS	128_DO	PB4	ADC_AIN[4] UART7_RXD	PC5	EBI_DATA5	PD7	QSPIO_D3	PES	RMIIO_TXEN	PFS	SD1_DATA3 eMMC1_DATA3	PG7	UARTS_TXD
PA6	I28_MCLK	PB5	I2C2_SCL ADC_AIN[5]	PC 6	EBI_DATA6	PD8	3PIO_330	PE6	RMIIO_TXD1	PF6	SD1_nCD		PWM11
PA7	EBI_nWE		I2C1_SDA ADC AIN[6]	PC7	EBI_DATA7	PD9	SPIO_CLK	PE7	RMIIO_TXDO	PF7	PWM02	PG8	CFG[8]
PAS	EBI_nRE		UART7_TXD	PC8	EBI_DATA8	PD10	SPIO_DO UART6_TXD	PE8	RMIIO_MDIO	PF8	PWM03	PG9	CFG[9] JTAG0 TD0
PA9	EBI_nC80	PB7	I2C2_SDA ADC_AIN[7]	PC9	EBI_DATA9	PD11	SPIO DI	PE9	RMIIO_MDC	PF9	UART1_RXD PWM10		3PI1_330 PWM10
PA10	EBI_ADDR10 (LCD_R8)	PB8	LED_Y	PC10	EBI_DATA10		UART6_RXD	PE10	Keyl	PF10	UART1_TXD PWM11	PG12	JTAGO_TCK SPI1_CLK PWM11
PA11	EBI_ADDR9 (LCD_RESET)	PB13	LED_R	PC11	EBI_DATA11	PD12	UART4_TXD PWM00	PE11	USBO_VBUSVLD	PF11	UARTO_RXD	PG13	JTAGO_TMS SPI1_DO
PA12	EBI_ADDR8 (LCD_BL)			PC12	EBI_DATA12	PD13	UART4_RXD PWM01	PE12	Key2	PF12	UARTO_TXD		PWM12 UART5_RXD
				PC13	EBI_DATA13	PD14	I2C3 SCL					PG14	JTAGO_TDI SPI1_DI
				PC14	EBI_DATA14	1	PWM02 12C3_SDA						PWM13 UART5_TXD
				PC15	EBI_DATA15		PWM03					PG15	JTAGO_NTRST LED_G
										νοΤο	n Technol	logy	Corp.
										K-980			
									^ G	PIO Li	st		1.0
									Date: Thursdo	y, January '	17, 2019 Bh	eet 2	of 14

4.3 NK-980IoT — Power Schematic

4.4 NK-980IoT — NUC980DK Schematic

4.5 NK-980IoT — Power Filter Schematic

4.6 NK-980loT — Configure Schematic

4.7 NK-980IoT - NUC123ZD4AN0 Schematic

4.8 NK-980IoT-Memory Schematic

4.9 NK-980IoT — RMII_PE Schematic

4.10 NK-980IoT — Audio Codec Schematic

4.11 NK-980IoT — SD1/eMMC1 Schematic

4.12 NK-980IoT — Arduino Uno Interface Schematic

4.13 NK-980loT — USB Schematic

4.14 NK-980IoT — Expand EBI Interface Schematic

5 REVISION HISTORY

Date	Revision	Description
2019.02.25	1.00	Initially issued.

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice.

All the trademarks of products and companies mentioned in this datasheet belong to their respective owners