Primary Symbol Index

主要符号索引

p 压力

τ 拟计算时间

V(t) 单胞的体积(i,j,k),即由八个网格点构成的六面体

S(t) 控制体六个边界的表面

n 控制体六个边界的表面单位向外法向矢量

u_g 移动单胞表面的局部速度

S 局部比例因子

Ψ 流函数

 $A_{\rm w}$ 机翼的总面积 \hat{s} 沿椭圆的切线向量

 σ_{ij}^{+} 翅膀边界外表面上的应力张量 n_{i} 向外指向的表面法线向量 σ_{ii}^{-} 翅膀边界内表面的应力张量

 $arepsilon_{ij}$ 二维 Levi-Civita 符号

r_i 从翅膀质心到其边界的矢径

abla 梯度算子 Δt 时间增量 τ_{rt} 弛豫时间

f, 分布函数的后碰撞状态

 f_i^{eq} 均衡分布函数

 w_i 加权系数

 c_s 声速

 $C_{
m V}$ 垂直力系数 $C_{
m H}$ 水平力系数

 Δp 瞬时压力波动轮廓

AR 展弦比

AR_{vari} 动态比例可缩放翅膀的可变展弦比

 Re
 雷诺数

 ρ
 当地空气密度

 ν
 运动粘度

C_{aver} 平均弦长

C_{aver,orig} 原始翅膀的平均弦长

C_{aver.vari} 可变平均弦长

 $C_{
m ratio}$ 可变平均弦长和原始翅膀的平均弦长的比值

C(r)前后缘之间的弦长 $\hat{C}(\hat{r})$ 无量纲弦长分布

翅膀平面的前缘轮廓上的最大点与 X。轴之间的投影距离 $Z_{le,maxp}$

翅膀的前缘轮廓上的最大值点和后缘轮廓上的最小值点之间的 $C_{\it max,letotr}$

距离

初始翅膀的实际前缘轮廓的最高点和 X - 轴之间的投影距离 Z_{le,orig,maxp}

初始翅膀的实际前缘最高点和实际后缘最低点之间的投影距离 $C_{\text{max,letotr,orig}}$

 $z_{\text{le,orig}}(r)$, $z_{\text{tr,orig}}(r)$ 原始翅平面的前缘和后缘轮廓 $\hat{z}_{\mathrm{le}}(\hat{r}), \hat{z}_{\mathrm{tr}}(\hat{r})$ 翅平面的无量纲前缘和后缘轮廓

 $R_{\rm eff}$ 翅膀有效长度

 $R_{\rm eff,orig}$ 原始翅膀的有效翅膀长度

R_{eff,vari} 可变翅膀有效长度

可变翅膀有效长度和原始翅膀的有效翅膀长度的比值 $R_{\rm ratio}$

无量纲径向距离 \hat{r}_1 一阶面积矩回转半径 \hat{r}_2 二阶面积矩回转半径 无量纲翅根偏置 $\hat{x}_{\mathbf{r}}$ $\hat{x}_{r,vari}$ 可变无量纲翅根偏置 \hat{x}_0 无量纲俯仰轴位置 $\hat{x}_{0,\text{vari}}$ 可变无量纲俯仰轴位置 可变的俯仰扭转轴 x_p

 \hat{r}_{cop} 无量纲展向压心 I_{ij} 翅膀的惯性张量

 $I_{ij,vari}$ 动态比例可缩放翅膀的惯性张量

 $\phi(t), \psi(t)$ 拍打角和俯仰角

拍打角幅值和俯仰角幅值 ϕ_m , ψ_m

 K_{ϕ}, C_{ψ} 拍打角和俯仰角轮廓的可调节参数 ζ 相对于拍打角的俯仰角相位偏置

 α 几何攻角 或 无量纲拉格朗日参数

 $C_{\rm L}(\alpha)$ 平动升力系数

 $\tilde{C}_{\rm L}(\alpha)$ 平均平动升力系数

 $\tilde{C}_{\rm D}(\alpha)$ 平均平动阻力系数

 $C_{\rm L}(\alpha_0)$ 与半冲程中点攻角 (α_0) 对应的平动升力系数 $C_{\rm D}(\alpha_0)$ 与半冲程中点攻角 (α_0) 对应的平动阻力系数

三维升力系数,这里 $\eta(t)$ 是扭转角 $C_{\text{L.s}}(\eta(t))$

 $C_{\rm D}(0)$ 几何攻角为零度时的压阻力系数

几何攻角为九十度时的压阻力系数

 $C_{\rm D}(\alpha)$ 平动阻力系数 $C_{\mathrm{F}}(\alpha)$ 气动升阻力系数

 $C_{
m N}(lpha)$ 法向平动气动力系数 $C_{
m R}$ 理论转动气动力系数 $C_{
m rd}$ 转动阻尼力矩系数

 $oldsymbol{arGamma}_{ ext{trans}}$ 平动环量 $oldsymbol{arGamma}_{ ext{rot}}$ 转动环量 $oldsymbol{arGamma}_{ ext{QS}}(oldsymbol{r},oldsymbol{t})$ 准稳态环量 $oldsymbol{\Phi}_{(oldsymbol{r},oldsymbol{t})}$ 瓦格纳函数

 β_n 翅截面的虚质量系数

 C_3 和 C_{add} 虚质量系数

 $d_{\scriptscriptstyle 0}(r)$ 前缘至扭转轴的无量纲弦向距离

 C_{Lp} 零前缘吸力的势流升力系数

 C_{L_v} 涡升力系数

E 边缘修正因子

E_{vari,ec} 动态比例可缩放翅膀的可变边缘修正因子

λ, 和 λ, 形状因子

k 诱导功率因子 或 缩减频率 $k_{s,\phi}$ 沿着拍打轴线的铰链刚度系数

k_{s,₩} 沿着翅膀俯仰轴线的俯仰铰链刚度系数

 $M_{
m act}$ 驱动力矩 A 驱动力矩幅值 $\delta_{
m act}$ 驱动力矩相位 η 驱动力矩偏置

 f_n 翅膀俯仰运动的自然频率

λ 频率比 或 拟压缩系数 或 波长

 $k_{\text{pitch,hinge}}$ 翅膀俯仰铰链刚度系数

δ 理论预测俯仰角相对于实测的拍打角之间的相位偏置

 $F_{
m trans,y}$ 平动法向气动力 $F_{
m rot,y}$ 转动法向气动力 $F_{
m add,y}$ 虚质量法向力 $\hat{F}_{
m trans}$ 无量纲平动气动力

 $F_{\text{inert,i}}$ 翅膀自身的绕翅平面坐标系的 i-轴的惯性力 $\hat{M}_{\text{coeff,trans.z}}$ 沿着翅肩坐标系 z-轴的无量纲平动气动力矩

 $\hat{r}_{\text{spw,cop,trans}}$ 平动气动力压心相对于翅肩坐标系 z-轴的展向无量纲位置

 $z_{\text{cop}}(r)$ 压心相对于翅平面俯仰轴线的弦向距离

 $\hat{d}_{con}(\alpha)$ 压心相对前缘的无量纲弦向位置分布

 $\hat{z}_{\text{cop}}(\hat{r}_{\text{spw,cop,trans}})$ 平动气动力压心相对于俯仰轴线的无量纲弦向位置分布 $\hat{F}_{\rm rot}$ 无量纲转动气动力 $\hat{M}_{\text{coeff.rot.z}}$ 翅肩坐标系下沿着 z-轴的无量纲转动气动力矩 $\hat{r}_{\text{spw,cop,rot}}$ 转动气动力压心相对于翅肩坐标系 z-轴的展向无量纲位置 $\hat{z}_{\text{cop}}(\hat{r}_{\text{spw,cop,rot}})$ 转动气动力压心相对于俯仰轴线的无量纲弦向位置分布 $\hat{M}_{\text{coeff,rd,x}}$ 翅肩坐标系下沿着 x-轴无量纲转动阻尼系数 $\hat{z}_{\rm rd}(\hat{r})$ 阻尼有效力臂相对于俯仰轴的无量纲相对距离 $\hat{M}_{\text{coeff.rd.z}}$ 翅肩坐标系下沿着 z-轴的无量纲转动阻尼力矩系数 $\hat{z}_{h}(\hat{r})$ 俯仰轴线与某一片条单元中点之间的无量纲偏置距离 $\hat{F}_{\text{coeff,add,y,1}}$ 无量纲转动虚拟质量力 $\hat{I}_{xx.am}$, $\hat{I}_{xz.am}$, 无量纲转动虚拟质量力矩 $\hat{M}_{\text{coeff,add,z,1}}$ $M_{z,T,P}$ 和 $M_{z,R,P}$ 平动和转动气动力矩系数 $M_{x,Rd,P}$ 和 $M_{z,Rd,P}$ 沿着 x-轴和 z-轴的转动阻尼力矩系数 $I_{xz,am,P}$, $I_{xx,am,P}$ 和 虚拟质量力矩系数 $M_{z,R,P}$ p^* 功率密度 LtoW 升重比 \bar{P}_{ϕ} , \bar{P}_{ψ} 平均拍打和俯仰功率 $P_{x,\text{total}}$, $P_{Z,\text{total}}$ 拍打和俯仰气动总功率 $P_{x,\text{trans}}$, $P_{Z,\text{trans}}$ 平动环量气动功率 $P_{x,\text{rot}}$, $P_{Z,\text{rot}}$ 转动环量气动功率 $P_{x.rd}$, $P_{Z,rd}$ 转动阻尼功率 $P_{x,add}$, $P_{Z,add}$ 虚质量功率 $P_{x,\text{inert}}$, $P_{z,\text{inert}}$ 拍打和俯仰惯性功率 $P_{x,\text{total,posi}}$, $P_{Z,\text{total,posi}}$ 正的拍打和俯仰机械总功率 Φ 冲程角的峰峰值 Φ_{st} 静态总拍打角峰峰值 T 传动比 T_{est} 传动比的线性近似预测值 F_b 压电驱动器堵死力的幅值 静态或者自由位移幅值 δ_{st}

 $egin{array}{ll} egin{array}{ll} egin{array} egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{a$

 F_a

压电驱动器产生的输出驱动力

k_{eq} 振翅动力学系统的等效刚度系数

k_t 传动机构的刚度系数

b_{eq} 振翅动力学系统的等效阻尼系数

 r_{cp} 平动气动力的展向压心

 \hat{r}_{cp} 平动气动力的无量纲展向压心

X 压电驱动器输出位移的幅值

 \hat{X} 振幅比放大因子

 ϕ_p 压电驱动器输出位移的相位

b 阻尼系数

eta 振翅动力学系统的相位特性 $oldsymbol{\omega}_n$ 振翅动力学系统的自然频率 $oldsymbol{q}$ 振翅动力学系统的品质因子

 μ_p 负载质量百分比

 μ_a 压电驱动器质量百分比

 μ_b 电池质量百分比

S_a 压电驱动器的能量密度

 S_b 电池的能量密度 R_{crit} 临界翅膀长度 最小的翅膀长度

 t_f 悬飞时长

 t_f^* 最大的飞行时间

J 前进比 或 雅克比行列式

V 前飞速度 $d_{
m max}$ 前程

 $\delta_{
m tip}$ 翼尖变形位移

 $I_{w,\alpha}$ 梁型截面的二阶面积矩

*I*₀ 圆的二阶面积矩

 $\phi_{\mathrm{B}}^{\mathrm{e}}$ 梁型截面的形状因子

应变

ε

σ 应力 或 转换参数

υ 电位移

 $e_{\rm max}$ 最大应变能密度

 $arepsilon_{
m max}$ 最大应变

 d_{31} 压电陶瓷(PZT-5H)的压电系数 $E_{
m pzt}$ 压电陶瓷(PZT-5H)的弹性模量

 $E_{\rm p,1}$ 压电陶瓷板不受拉压应力作用时的模量

 $E_{p,2}$ 压电陶瓷板随着应变变化而改变的模量

 $\sigma_{_{
m u}}$ 极限应力 泊松比 ν_{12} 剪切模量 G_{12} 电场强度 E_3 $E_{3,\text{max}}$ 最大电场强度 $\mathcal{E}_{1,\max}$ 最大机械应变 $\xi_{1,\text{max}}$ 最大压电应变

 $F_{\rm b.ext}$ 压电驱动器的远端尖部固定时堵死力的峰值

 $\delta(l+l_{ext})_{max}$ 压电驱动器的远端尖部输出的无负载自由位移的峰峰值

热膨胀系数 α $[\bar{\alpha}]$ 形变热膨胀系数 Q_{ij} 柔顺刚度矩阵的元素 ε^0 中性平面的应变 中性平面的应变曲率

单位宽度的外部力和力矩 N^{ext} 和 M^{ext} 单位宽度的压电力和力矩 N^p 和 M^p

单位宽度的热膨胀或收缩力和力矩 $N^t \in M^t$

外载荷作用在压电驱动器自由端时产生的沿截面分布的力矩 $M_{r}(x)$

 $\delta_{\scriptscriptstyle
m pp}$ 驱动器远端的峰峰值位移 碳纤维聚合物的弹性模量 $E_{\rm CF}$

 $t_{\rm pzt}$ 压电陶瓷的厚度 碳纤维聚合物的厚度 $t_{\rm CF}$ $L_{
m act}$ 压电陶瓷的长度 $L_{\rm ext}$ 氧化铝延伸段的长度

宽度因子, 即压电陶瓷近端根部宽度和其平均宽度的比值 $W_{\rm r}$

长度因子,即延伸段和压电陶瓷长度的比值 l_{r} 名义宽度,也被称为压电陶瓷的平均宽度 w_{nom}

 $G_{F_{"}}$ 输出力几何尺寸常量

 ED_{m} 能量密度

 $\rho_n \approx t_n$ 分别表示第n层片的密度和厚度

 $F_{\rm max}$ 压电驱动器的最大堵死力

 $\delta(x)$ 压电驱动器沿着长度方向分布的速率 w(x)压电驱动器沿着长度方向分布的宽度

 $m_{\rm act}$ 压电驱动器的理论质量 有效质量系数 或 马赫数 M

 $d_{\mathbf{r}}$ 厚度因子,即压电陶瓷层与中间碳纤维结构层的厚度比

压电驱动器的共振频率 $f_{\mathbf{d}}$ 压电驱动器的机电耦合系数 f_{31}