自注意力机制

Hung-yi Lee 李宏毅

Sophisticated Input

• Input is a vector 之前的输入: 一个向量

• Input is a set of vectors 现在我们开始考虑的输入:一排向量

dog

cat

tree

• flower

rabbit

Word Embedding

 $dog = [0 \ 0 \ 0 \ 1 \ 0 \dots]$

elephant = $[0 \ 0 \ 0 \ 1 \dots]$

- 1. length of vectors = # of words
- 2. 问题:假设word之间没有关系

To learn more: https://youtu.be/X7PH3NuYW0Q (in Mandarin)

run

jump

frame (window)

400 sample points (16KHz) 39-dim MFCC

80-dim filter bank output

• Graph is also a set of vectors (consider each **node**

Graph is also a set of vectors (consider each node

as **a vector**)

$$H = [1 \ 0 \ 0 \ 0 \ \dots]$$

$$C = [0 \ 1 \ 0 \ 0 \ 0 \dots]$$

$$O = [0 \ 0 \ 1 \ 0 \ 0 \dots]$$

What is the output? 有三种可能性。

1. • Each vector has a label.

Example Applications

What is the output?

1. • Each vector has a label.

2. • The whole sequence has a label. Sequence-to-vector model

Example Applications

this is good Sentiment analysis 情感分析 positive

What is the output?

Each vector has a label.

focus of this lecture

² • The whole sequence has a label.

³ • Model decides the number of labels itself.

seq2seq

Sequence Labeling

FC Fullyconnected How to

Is it possible to consider the context?

FC can consider the neighbor

How to consider the whole sequence? a window covers the whole sequence?

self-attention层可以叠加

https://arxiv.org/abs/1706.03762₁₂

Can be either input or a hidden layer

怎么产生b1呢? 第一步:根据找出a1和其他向量的关联程度α

Find the relevant vectors in a sequence

如何计算α呢?两种常见的方法。

- dot-product
 additive

- 1. q : query 2. k : key
- 3. attention score

$$\alpha'_{1,i} = exp(\alpha_{1,i}) / \sum_{j} exp(\alpha_{1,j})$$

$$k^1 = W^k a^1$$

value

Self-attention Extract information based on attention scores

$$\mathbf{b^1} = \sum_i \alpha'_{1,i} \mathbf{v^i}$$

Can be either input or a hidden layer

矩阵运算的角度:

Q/K/V

Self-attention 计算: Q/K α

$$\alpha_{1,1} = k^1 q^1 \alpha_{1,2} = k^2 q^1$$

$$\alpha_{1,3} = k^3 q^1 \alpha_{1,4} = k^4 q^1$$

$$\begin{array}{c}
\alpha_{1,1} \\
\alpha_{1,2} \\
\alpha_{1,3}
\end{array} = \begin{array}{c}
k^1 \\
k^2 \\
k^3
\end{array}$$

$$\begin{array}{c}
q^1 \\
k^4
\end{array}$$

Self-attention Q/K a a' $\alpha_{1,1}$ k^1 $\alpha_{1,1} = \begin{array}{|c|c|} k^1 & q^1 \end{array}$ $\alpha_{1,2}$ $\alpha_{1,2} = |\mathbf{k^2}| \mathbf{q^1}$ k^2 $\alpha_{1,3}$ k^3 $\alpha_{1,3} = \begin{array}{|c|c|} k^3 & q^1 & \alpha_{1,4} = \begin{array}{|c|c|} k^4 \end{array}$ $\alpha_{1,4}$ k^4 $\alpha_{2,1}$ $\alpha_{2,2}$ $\alpha_{2,3}$ $\alpha_{2,4}$ $\alpha'_{1,1} \ \alpha'_{2,1} \ \alpha'_{3,1} \ \alpha'_{4,1}$ $\alpha_{1,1}$ $\alpha_{2,1}$ $\alpha_{3,1}$ $\alpha_{4,1}$ k^1 $\alpha'_{1,2} \ \alpha'_{2,2} \ \alpha'_{3,2} \ \alpha'_{4,2}$ $\alpha_{1,2} \alpha_{2,2} \alpha_{3,2} \alpha_{4,2}$ k^2 $\alpha'_{1,3} \; \alpha'_{2,3} \; \alpha'_{3,3} \; \alpha'_{4,3}$ $\alpha_{1,3} \ \alpha_{2,3} \ \alpha_{3,3} \ \alpha_{4,3}$ k^3 $\alpha'_{1,4} \; \alpha'_{2,4} \; \alpha'_{3,4} \; \alpha'_{4,4}$ $\alpha_{1,4} \ \alpha_{2,4} \ \alpha_{3,4} \ \alpha_{4,4}$ k^4 softmax 23

V/α'

Multi-head Self-attention Different types of relevance

Multi-head Self-attention Different types of relevance

Multi-head Self-attention Different types of relevance

Each column represents a

Positional Encoding

- No position information in self-attention.
- Each position has a unique positional vector e^i
- hand-crafted
- learned from data

Table 1. Comparing position representation methods

https://arxiv.org/abs/ 2003.09229

Methods	Inductive	Data-Driven	Parameter Efficient
Sinusoidal (Vaswani et al., 2017)	✓	X	✓
Embedding (Devlin et al., 2018)	×	✓	×
Relative (Shaw et al., 2018)	×	✓	✓
This paper	✓	✓	✓

Many applications ...

Transformer

https://arxiv.org/abs/1706.03762

BERT

https://arxiv.org/abs/1810.04805

Widely used in Natural Langue Processing (NLP)!

Self-attention for Speech FELDINGH

10_{ms}

Speech is a very long vector sequence.

sequence很长

If input sequence is length L

L A'

Attention

Matrix
L

Self-attention for Image 影像处理上的应用

Source of image: https://www.researchgate.net/figure/Color-image-representation-and-RGB-matrix_fig15_282798184

DEtection Transformer (DETR)

https://arxiv.org/abs/2005.12872

Self-attention v.s. CNN

CNN: self-attention that can only attends in a receptive field

> CNN is simplified self-attention.

Self-attention: CNN with learnable receptive field

➤ Self-attention is the complex version of CNN.

Self-attention v.s. CNN

On the Relationship between Self-Attention and Convolutional Layers

https://arxiv.org/abs/1911.03584

Self-attention v.s. CNN

Good for more data

Self-attention

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale https://arxiv.org/pdf/2010.11929,pdf

Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention https://arxiv.org/abs/2006.16236

To learn more about RNN

https://youtu.be/xCGidAeyS4M

(in Mandarin)

2017年ML课RNN

https://youtu.be/Jjy6ER0bHv8
(in English)

Graph可以被看作是set of vectors

Self-attention for Graph

Consider **edge**: only attention to connected nodes

This is one type of **Graph Neural Network (GNN)**.

Self-attention for Graph

To learn more about GNN ...

https://youtu.be/eybCCtNKwzA (in Mandarin)

https://youtu.be/M9ht8vsVEw8 (in Mandarin)

To Learn More ...

self-attention的变形 self-attention的运算量很大, 怎么较少运算量是未来的一个课题。

> Long Range Arena: A Benchmark for Efficient Transformers

https://arxiv.org/abs/2011.04006

Efficient Transformers: A Survey

https://arxiv.org/abs/2009.06732

