ALGEBRA Y ALGEBRA LINEAL 520142 Listado 2 (Conjuntos)

- 1. Dados los conjuntos: $A = \{x \in \mathbb{R} : x^2 1 = 0\}, B = \{x \in \mathbb{R} : x + 1 \ge 2\}$ y $C = \{x \in \mathbb{R} : |x| \ge 2\}$. Determine: (En práctica todo)
 - a) $A \cap \mathbb{N} \ y \ A^c \cap B$

d) $A \cap B \vee B \cap C$

b) $|A| y |A \cap C|$

e) $A \times B$

- c) $\mathcal{P}(A)$
- 2. Demuestre que:

(En práctica: b), d), g) y i))

a) $A \cap B \subseteq A$

- f) $(A-B) \cup (A \cap B) \cup (B-A) = A \cup B$

- a) $A \cap B \subseteq A$ b) $(A \cap B = B) \Leftrightarrow (B \subseteq A)$ c) $A B = A \cap B^c$ d) $A = (A B) \cup (A \cap B)$ i) $(A B) \cup (B A) = A$ g) $(A C) \cup (B C) = (A \cup B) C$ h) $(A B) \cap (A C) = A (B \cup C)$ i) $A \times (B \cup C) = (A \times B) \cup (A \times C)$

- e) $(A \cap B^c = \emptyset) \Rightarrow (A \cap B = A)$ j) $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- 3. La diferencia simétrica entre un conjunto A y un conjunto B está definida por:

$$A \triangle B = (A - B) \cup (B - A)$$

El objetivo de este problema es demostrar que la diferencia simétrica es asociativa. Para ello:

- a) Demuestre que: $\forall x \in U, x \in (A \triangle B) \iff (x \in A) \veebar (x \in B), \text{ donde } \veebar \text{ es el}$ conectivo disvunción excluvente definido en el Listado 1.
- b) Pruebe que el conectivo \vee es asociativo.
- c) Concluya que la diferencia simétrica entre conjuntos es asociativa.
- d) Para el caso particular de $A = \{x \in \mathbb{N} : x \leq 10\}, B = \{x \in \mathbb{N} : x \leq 15 \land x \text{ par}\}$ y $C = \{x \in \mathbb{N} : 3 \le x^2 \le 20\}$, verifique que $(A \triangle B) \triangle C = A \triangle (B \triangle C)$.
- 4. Sean A_1, A_2, \ldots, A_n subconjuntos de \mathbb{N} definidos por $A_k = \{i \in \mathbb{N} : 1 \le i \le k+10\}$.
 - a) Pruebe que $\bigcup_{k=1}^{n} A_k = A_n$ y $\bigcap_{k=1}^{n} A_k = A_1$.
 - b) Determine $\bigcup_{k=1}^{n} A_k^c \ y \bigcap_{k=1}^{n} A_k^c$.
 - c) Sean $B_1 = A_1, B_2 = A_2 A_1$ y $B_3 = A_3 (A_2 \cup A_1)$. Verifique que $\{B_1, B_2, B_3\}$ es (En práctica: b) y c)) una partición de A_3 .
- 5. Sean A y B dos subconjuntos del conjunto universo U. Demuestre que:
 - a) $A \subseteq B \Longrightarrow \mathcal{P}(A) \subseteq \mathcal{P}(B)$ c) $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$ b) $\mathcal{P}(A) = \mathcal{P}(B) \Longrightarrow A = B$ d) $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$
- d) $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$ (¿por qué no =?)

(En práctica: b) y d))

- 6. Del total de 1186 alumnos del liceo "Andalién," 879 están tomando un curso intensivo de inglés, 378 uno de alemán y 690 uno de francés. Se sabe que 506 alumnos están en cursos de inglés y francés, que 77 están en alemán y francés, que los que están en alemán pero no en inglés son 159 y que hay 13 en los tres cursos de idiomas.
 - a) ¿Cuántos alumnos no estudian ninguno de los idiomas?
 - b) ¿Cuántos estudian sólo el inglés y el francés?
- 7. En una encuesta a 200 estudiantes se encontró que

(En práctica todo)

- (i) 68 prefieren matemáticas, 138 son deportistas y 160 son artistas,
- (ii) 120 son artistas y deportistas,
- (iii) 20 prefieren matemáticas pero no son deportistas,
- (iv) 13 prefieren matemáticas y son deportistas pero no artistas
- (v) 15 prefieren matemáticas y son artistas pero no deportistas.

Determine:

- a) Cuántos prefieren matemáticas, son artistas y son deportistas.
- b) Cuántos son artistas y deportistas pero no prefieren matemáticas.
- c) Cuántos no prefieren matemáticas, no son deportistas ni artistas.
- 8. Un conjunto $M \subseteq \mathcal{P}(E)$ se denomina un álgebra de las partes de E si verifica las siguientes propiedades:
 - (i) $E \in M$,
 - (ii) $\forall A, B \in M : A \cup B \in M$,
 - (iii) $\forall A \in M : (E A) \in M$.

Se pide:

- a) Demostrar que $\emptyset \in M$.
- b) Demostrar que si $A, B \in M$, entonces $A \cap B \in M$.
- c) Sea $E = \{1, 2, 3, 4\}$ y sea $M = \{\emptyset, E, \{1\}, \{2\}, \{1, 2\}, \{3, 4\}\}$. ¿Es M un álgebra? Si no lo es, agregue el menor número de conjuntos para que lo sea.
- 9. Demuestre los siguientes teoremas. Para ello puede usar las propiedades de los números reales vistas en Calculo I y II.
 - a) Dado $a \in \mathbb{R}$, son equivalentes las siguientes proposiones: (En Práctica)
 - 1) $a \neq 2$.
 - 2) $(\exists x \in \mathbb{R}) \ 2x a = x 1 \land x \neq 1.$
 - 3) $(\exists x \in \mathbb{R}) \frac{2x-a}{x-1} = 1.$
 - b) $(\forall n, m \in \mathbb{N})$ $[nm \text{ es par } \rightarrow (n \text{ es par } \lor m \text{ es par })].$