Lab 3 - Wyatt Madden & Dan Crowley

February 5, 2020

1 3.1

```
In [1]: import scipy.io as scipy
        import random as random
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        import pandas as pand
In [67]: # PRINcipal COMPonent calculator
             Calculates the principal components of a collection of points.
         # Input:
             X - D-by-N data matrix of N points in D dimensions.
         # Output:
         \# W - A D-by-M matrix containing the M principal components of the data.
         \# Z - A M-by-N matrix containing the latent variables of the data.
         # mu - A D-by-1 vector containing the mean of the data.
             lambda - A vector containing the eigenvalues associated with the above principal co
         def pca(X, M):
             mu = X.mean(axis = 1)
             X_centered = np.transpose(X) - mu
             S = np.cov(np.transpose(X_centered))
             eig_vals, eig_vecs = np.linalg.eigh(S)
             top_M_eigs_inds = np.argpartition(eig_vals, -M)[-M:][::-1]
             lambdas = eig_vals[top_M_eigs_inds]
             W = eig_vecs[:, top_M_eigs_inds]
             Z = np.matmul(np.transpose(W), np.transpose(X_centered))
             return W, Z, mu, lambdas
```

2 3.2

```
X = cbcl['X']
X_shaped = np.reshape(X, (int(np.sqrt(X.shape[0])),
                               int(np.sqrt(X.shape[0])),
                               X.shape[1]))
x_axis_points = np.repeat(list(range(X_shaped.shape[0] - 1, -1, -1)),
                          X_shaped.shape[0])
y_axis_points = np.tile(list(range(X_shaped.shape[0] - 1, -1, -1)),
                        X_shaped.shape[0])
def plot_19_grid(colour, title):
    cmap = sns.cubehelix_palette(as_cmap=True)
    f, ax = plt.subplots()
    points = ax.scatter(x_axis_points,
                        y_axis_points,
                        c = colour,
                        s = 250,
                        cmap = cmap)
    f.colorbar(points)
    ax.set_title(title)
rand_ints_25 = random.sample(range(0, 139), 25)
for i in rand_ints_25:
    one_face = X[:, i]
    X_shaped = np.reshape(X, (int(np.sqrt(X.shape[0])),
                              int(np.sqrt(X.shape[0])),
                               X.shape[1]))
    plot_19_grid(one_face, str(i + 1) + "th face")
```

/Users/wyattmadden/anaconda3/lib/python3.6/site-packages/matplotlib/pyplot.py:537: RuntimeWarnin max_open_warning, RuntimeWarning)

3 3.3

It looks like the eigenvectors corrspond with the follow information:

First: The general construct of a face (shading).

Second: Nose and mouth contours and differences in shading.

Third: Differences in lighting, from left to right.

Fourth: Depth of brow.

Fifth: Location of eyes and mouth expression.

4 3.4

Looks like there are two possible clusters of data within their respective two leading eigenvectors. One has a positive relationship between eigenvector one and two. One of these clusters are a group of faces that with generally darker overall shading also have generally darker mouth and eye shadding, while the other does not have a very apparent relationship between overall shading and mouth/eye shading.

5 3.5

6 3.6

In [8]: plt.plot(list(range(1 ,6)), lead_5_eig_vals)

Out[8]: [<matplotlib.lines.Line2D at 0x1a1fefbe10>]

It appears that the first eigenvector captures the majority of variation, and after second, third, and fourth eigenvectors are accounted for, only marginal gains are encountered with further eigenvectors. This suggests to me that for "optimal" dimensionality reduction, M should be at least four.

7 3.7

Out[72]:		M	random_faces	x_coord	y_coord	faces_approx
	0	1	25	18	18	0.363026
	1	1	25	18	17	0.404401
	2	1	25	18	16	0.418836
	3	1	25	18	15	0.414741
	4	1	25	18	14	0.431306
	5	1	25	18	13	0.469787
	6	1	25	18	12	0.527512
	7	1	25	18	11	0.584590
	8	1	25	18	10	0.617562
	9	1	25	18	9	0.626386
	10	1	25	18	8	0.607084
	11	1	25	18	7	0.570492
	12	1	25	18	6	0.527732
	13	1	25	18	5	0.491100
	14	1	25	18	4	0.467950
	15	1	25	18	3	0.455584
	16	1	25	18	2	0.437411
	17	1	25	18	1	0.414428
	18	1	25	18	0	0.373515
	19	1	25	17	18	0.454016
	20	1	25	17	17	0.483078
	21	1	25	17	16	0.459860
	22	1	25	17	15	0.426264
	23	1	25	17	14	0.430649
	24	1	25	17	13	0.468876
	25	1	25	17	12	0.552107
	26	1	25	17	11	0.632521
	27	1	25	17	10	0.668545
	28	1	25	17	9	0.672978
	29	1	25	17	8	0.649516
	7190	25	43	1	10	0.558612
	7191	25	43	1	9	0.573366
	7192	25	43	1	8	0.569104
	7193	25	43	1	7	0.546560
	7194	25	43	1	6	0.498241
	7195	25	43	1	5	0.439064
	7196	25	43	1	4	0.405226
	7197	25	43	1	3	0.405198
	7198	25	43	1	2	0.410108
	7199	25	43	1	1	0.395521
	7200	25	43	1	0	0.357467
	7201	25	43	0	18	0.282639
	7202	25	43	0	17	0.291208
	7203	25	43	0	16	0.300475
	7204	25	43	0	15	0.270345
	7205	25	43	0	14	0.229803

7206	25	43	0	13	0.287186
7207	25	43	0	12	0.384215
7208	25	43	0	11	0.469835
7209	25	43	0	10	0.515413
7210	25	43	0	9	0.527880
7211	25	43	0	8	0.520276
7212	25	43	0	7	0.493546
7213	25	43	0	6	0.450504
7214	25	43	0	5	0.405428
7215	25	43	0	4	0.381773
7216	25	43	0	3	0.374712
7217	25	43	0	2	0.362616
7218	25	43	0	1	0.337710
7219	25	43	0	0	0.289022

[7220 rows x 5 columns]

0, s = 250)

Out[73]: <seaborn.axisgrid.FacetGrid at 0x1a2dcfb898>

