#### 1 Generating Random Variables

#### Quantiles 1.1

Suppose that we are given X and a value  $p \in (0,1)$  and we are interested in computing the value of t such that

$$F_X(t) = \mathbb{P}(X \le t) = p.$$

If  $F_X$  is invertible, then  $t = F_X^{-1}(p)$ . However, not all CDFs are invertible so how does one define such a t in general. This generalized notation of an inverse is called a quantile function.

**Definition 1** (Quantile). Let  $p \in [0,1]$ . The p-quantile (or  $100 \times p$ th percentile) of the distribution of X with CDF  $F_X$  is the smallest number  $c_p$  that satisfies  $F_X(c_p) \geq p$ . In other words,

$$c_p = \inf\{x \in \mathbb{R} : F_X(x) \ge p\}.$$

**Definition 2** (Median). The *median* of a distribution is its 0.5 quantile.

The quantile function takes a probability p and returns its p-quantile.

**Definition 3** (Quantile Function). The quantile function  $F_X-1[0,1] \to \mathbb{R}$  is the function given by

$$F_X^{-1}(p) := c_p = \inf\{x \in \mathbb{R} : F_X(x) \ge p\}.$$

The quantile function is also called *generalized inverse function*, because it is a well defined function even if  $F_X$  is not strictly increasing like in the case of discrete random variables. This is why we use the same notation  $F_X^{-1}$ , even though it is not the inverse in the traditional sense. Recall that if  $F_X$  is an invertible function, then

$$F_X^{-1}(F_X(x)) = x$$
 for all  $x \in \mathbb{R}$  and  $F_X(F_X^{-1}(p)) = 0$  for all  $p \in [0, 1]$ .

In fact, the quantile behaves exactly like an inverse function, but the equalities are often replaced by inequalities.

### Proposition 1 (Properties of the Generalized Inverse)

The quantile function satisfies  $F_X^{-1}$  for  $F_X$  satisfies

- 1. For all  $x \in \mathbb{R}$ ,  $F_X^{-1}(F_X(x)) \le x$
- 2. For all  $p \in [0, 1]$ ,  $F_X(F_X^{-1}(p)) \ge p$ 3.  $F_X^{-1}(p) \le x \Leftrightarrow p \le F_X(x)$
- 4.  $F_X^{-1}(p)$  is non-decreasing and left-continuous (except for the endpoints p=0 or p=1)

**Remark 1.** To remember which way the inequalities go, recall that  $F_X$  "jumps up" at discontinuities so  $F_X(F_X^{-1}(p)) \ge p$  and the quantile function "jumps down" at discontinuities to  $F_X^{-1}(F_X(x)) \le x$ .

We can compute the quantile in the following way

• If the distribution function  $F_X$  is continuous and strictly increasing, it has an inverse  $F_X^{-1}$  so

$$c_p = F_X^{-1}(p).$$

• If  $F_X$  has jumps or flat regions, then  $F_X(x) = p$  may not have any solution or it might have infinitely many. In this case, the function  $F_X^{-1}(p)$  is the left continuous step function that interpolates between the points (p, x) where x is the location of the jumps of  $F_X$ .

# 1.2 Inverse Transform Sampling

It is "easy" to sample from the continuous uniform distribution Unif(0,1) on a computer. These uniform random variables can be used to generate samples from any distribution.

# Theorem 1 (Inverse Transform Sampling)

Let  $F_X$  be any cumulative distribution function of some random variable X and  $U \sim \text{Unif}(0,1)$ . Then the random variable  $Y = F_X^{-1}(U)$  has the same distribution as X, i.e. Y has the CDF  $F_X$ .

**Remark 2.** This is a generalization of a simple concept. For instance, if we want to generate a flip of a coin (a Ber(0.5) random variable), then we can sample a number uniformly u from [0,1] and define x = X(u) = 0 if  $u_1 \in [0,0.5]$  and x = X(u) = 1 if  $u_1 \in [0.5,1]$ . One can check that this coincides with the inverse transform sampling method (see Problem 1.4.)

# 1.3 Sampling Algorithm

- 1. No matter what CDF  $F_X$  (discrete or continuous), we can sample observations as follows:
  - (a) Sample  $u \sim \text{Unif}(0,1)$  (eg via runif())
  - (b) Return  $x = F_X^{-1}(u)$ .
- 2. Repeating this n times independently gives n realizations of X.

Example 1. We sample uniforms <- runif(5000) and then exponentials <- -log(1-uniforms)/2.



## 1.4 Example Problems

**Problem 1.1.** Consider the random variable X with

$$\mathbb{P}(X=1) = 1/6, \qquad \mathbb{P}(X=2) = 2/6 \qquad \mathbb{P}(X=3) = 3/6.$$

Sketch the CDF of X and compute  $F_X^{-1}(p)$  for  $p \in (0,1)$ .

## Solution 1.1.

1. To draw the CDF, we notice that the discontinuities of the CDF occur at  $(1, \frac{1}{6}), (2, \frac{1}{2}), (3, 1)$ . Extending this to make the function right continuous implies the CDF is

$$F_X(x) = \begin{cases} 0, & x < 1, \\ \frac{1}{6}, & 1 \le x < 2 \\ \frac{1}{2}, & 2 \le x < 3, \\ 1 & 3 \le x \end{cases}$$



2. To compute the quantile function, we notice that the discontinuities of the CDF occur at  $(1, \frac{1}{6}), (2, \frac{1}{2}), (3, 1)$ . Therefore, the discontinuities for the quantile function occur at  $(\frac{1}{6}, 1), (\frac{1}{2}, 2), (1, 3)$ . Extending this to make the function left continuous implies

$$F_X^{-1}(p) = c_p = \inf\{x \in \mathbb{R} : F_X(x) \ge p\} = \begin{cases} 1, & 0$$



**Remark 3.** Visually this corresponds to a reflection the line y = x. The dashed red line of the CDF becomes the solid line of the quantile and vice versa.

**Remark 4.** The end points of the intervals in the quantile function are the same as the p values of the CDF at the jumps. Furthermore, the < inequality is always on the left of the x and the  $\le$  inequality is always to the right of the x. This implies the quantile function is left continuous.

**Remark 5.** To find individual points of the quantile at p, we find the smallest point where the graph  $F_X(x)$  lies on or above the horizontal line p. This is demonstrated for  $p \in (0, 1/6]$  (left),  $p \in (1/6, 1/2]$  (middle) and  $p \in (1/2, 1]$  (right).



**Problem 1.2.** Let  $U \sim \text{Unif}(0,1)$ . We want to sample from the  $\text{Exp}(2^{-1})$  distribution with density

$$f_X(x) = 2e^{-2x}, \quad x > 0$$

and 0 otherwise. Write Y as a function of U such that Y is equal in distribution to X.

**Solution 1.2.** The CDF on the support of X

$$F_X(x) = \int_0^x 2e^{-2t} dt = 1 - e^{-2x},$$

which is strictly increasing for on its support  $x \ge 0$ . Solving for  $F_X(y) = x$  to recover the inverse gives  $y = F_X^{-1}(x) = -\frac{1}{2}\log(1-x)$ , so

$$F_X^{-1}(x) = -\frac{1}{2}\log(1-x)$$

for  $x \in (0,1)$ . Therefore, by Theorem 1

$$Y = -\frac{1}{2}\log(1 - U)$$

has the same distribution  $Y \sim \text{Exp}(2^{-1})$ .

**Problem 1.3.** Suppose that we wish to generate a random observation, x, from a distribution with PDF given by

$$f_X(x) = \frac{1}{8\sqrt{x}}, \quad 0 < x < 16$$

and 0 otherwise. We generate an observation, u, from a continuous Unif(0,1) distribution (using software) and get 0.1348. Determine the value x = x(u), that this value u will produce.

**Solution 1.3.** We first compute the CDF on the support of X

$$F_X(x) = \int_0^x \frac{1}{8\sqrt{t}} dt = \frac{1}{4}\sqrt{x}, \quad 0 < x < 16.$$

which is strictly increasing on its support 0 < x < 16. Solving for  $F_X(y) = x$  to recover the inverse gives  $y = F^{-1}(x) = (4x)^2$ , so

$$F_X^{-1}(x) = (4x)^2$$

for  $x \in (0,1)$ . By the sampling algorithm, if u = 0.1348 the corresponding observation of x is

$$x = F_X^{-1}(u) = (4 \cdot 0.1348)^2 = 0.2907.$$

**Problem 1.4.** Explain how you would sample a biased flip of a coin with probability of heads p using a uniform random variable.

**Solution 1.4.** If X is the outcome of a biased flip of a coin with probability of heads p, then  $X \sim \text{Bern}(p)$ . This means that  $f_X(1) = p$  and  $f_X(0) = 1 - p$ . The CDF and quantile function is therefore,

$$F_X(x) = \begin{cases} 0 & x < 0 \\ 1 - p & 0 \le x < 1 \\ 1 & 1 \le x \end{cases} \qquad F_X^{-1}(x) = \begin{cases} 0 & 0 < x \le 1 - p \\ 1 & 1 - p < x \le 1 \end{cases}.$$

If  $U \sim \text{Unif}(0,1)$ , we know that X has the same distribution as  $F_X^{-1}(U)$ . Therefore, to generate a biased coin flip, we sample  $u \sim \text{Unif}(0,1)$  and define x(u) = 0 if u < 1 - p and x(u) = 1 if u > 1 - p.

#### Problem 1.5.

- 1. 75th percentile of the standard normal distribution
- 2. 58th percentile of the N(5,9) distribution
- 3. Let  $Z \sim N(0,1)$ . Find c such that

$$\mathbb{P}(-c \le Z \le c) = 0.95$$

#### Solution 1.5.

1. We find

$$\Phi^{-1}(0.75) = 0.6745$$

2. We need to find the 0.58 quantile of X where  $\mu = 5$  and  $\sigma = \sqrt{9} = 3$ ,

$$F_X^{-1}(0.58) = 5 + 3F_Z^{-1}(0.58) = 5 + 3\Phi^{-1}(0.58) = 5 + 3 \cdot 0.2019 = 5.6057$$

3. We solve for c using the quantile function,

$$\begin{split} 0.95 &= \mathbb{P}(-c \le Z \le c) = \Phi(c) - \Phi(-c) \\ &\Leftrightarrow 0.95 = \Phi(c) - (1 - \Phi(c)) = 2\Phi(c) - 1 \\ &\Leftrightarrow 0.975 = \Phi(c) \\ &\Leftrightarrow c = \Phi^{-1}(0.975) = 1.96 \end{split}$$

## 1.5 Proofs of Key Results

**Problem 1.6.** Prove Theorem 1 in the simpler case when  $F_X$  is invertible.

**Solution 1.6.** Let  $F_Y$  denote the CDF of the random variable  $Y = F_X^{-1}(U)$ . Then,

$$F_Y(x) = \mathbb{P}(F_X^{-1}(U) \le x) = \mathbb{P}(F_X(F_X^{-1}(U)) \le F_X(x)) = \mathbb{P}(U \le F(x)).$$

Furthermore, if  $U \sim U(0,1)$  then

$$F_Y(x) = \mathbb{P}(U \le F_X(x)) = \int_0^{F_X(x)} t \, dt = F_X(x).$$

The random variable  $Y = F_X^{-1}(U)$  has the CDF  $F_X$ , as desired.

**Problem 1.7.** If  $F_X$  is a CDF, then its quantile function  $F_X^{-1}$  satisfies

$$F_X^{-1}(p) \le x \Leftrightarrow p \le F_X(x)$$

Solution 1.7. The proof relies on the fact that  $F_X^{-1}(p)$  is the infimum of all  $\{t: F_X(t) \geq p\}$ , and therefore smaller than (or equal to) any  $x \in \{t: F_X(t) \geq p\}$ .

- $(\Longrightarrow)$  Suppose that  $F_X^{-1}(p) \leq x$ . This implies that  $x \in \{t : F_X(t) \geq p\}$  so  $p \leq F_X(x)$ .
- $(\longleftarrow)$  Suppose that  $p \leq F_X(x)$ . This implies that  $x \in \{t : F_X(t) \geq p\}$  so  $F_X^{-1}(p) \leq x$ .

#### **Problem 1.8.** Prove Theorem 1.

Solution 1.8. Let  $F_Y$  denote the CDF of the random variable  $Y = F_X^{-1}(U)$ . Using the properties of the quantile function (Problem 1.7), we have that

$$F_X^{-1}(p) \le x \Leftrightarrow p \le F_X(x).$$

So we can conclude that

$$\{F_X^{-1}(U) \le x\} = \{U \le F_X(x)\}$$

Therefore, the CDF of Y is

$$F_Y(x) = \mathbb{P}(F_X^{-1}(U) \le x) = \mathbb{P}(U \le F_X(x)) = F_X(x).$$

**Problem 1.9.** Prove the following properties for the quantile function

- 1. For all  $x \in \mathbb{R}$ ,  $F_X^{-1}(F_X(x)) \le x$
- 2. For all  $p \in [0, 1]$ ,  $F_X(F_X^{-1}(p)) \ge p$
- 3.  $F_X^{-1}(p) \le x \Leftrightarrow p \le F_X(x)$
- 4.  $F_X^{-1}(p)$  is non-decreasing and left-continuous (except for the endpoints p=0 or p=1)

#### Solution 1.9.

1. We have

$$F_X^{-1}(F_X(x)) = \inf_{t \in \mathbb{R}} \{F_X(t) \ge F_X(x)\} \le x$$

since  $x \in \{t \in \mathbb{R} : F_X(t) \ge F_X(x)\}.$ 

2. Since  $F_X$  is right continuous and increasing we have  $\{F_X(x) \ge p\}$  is a closed set, so it attains its infimum. Therefore,  $c_p \in \{F_X(x) \ge p\}$  so

$$F_X(F_X^{-1}(p)) = F_X(c_p) \ge p.$$

3. This was shown in Problem 1.7.

4. Suppose that  $p_1 \leq p_2$ . Then

$$F_X^{-1}(p_1) = \inf_{x \in \mathbb{R}} \{ F_X(x) \ge p_1 \} \le \inf_{x \in \mathbb{R}} \{ F_X(x) \ge p_2 \} = F_X^{-1}(p_2)$$

since  $\{F_X(x) \ge p_1\} \subseteq \{F_X(x) \ge p_2\}$ , so  $F_X^{-1}$  is non-decreasing.

To see left continuity, notice that monotone functions can only have jump discontinuities, so it suffices to show that  $\sup_{q < p} F_X^{-1}(q) = F_X^{-1}(p)$ . For each q < p and  $\epsilon > 0$ , we have by definition of the supremum

$$\sup_{q < p} F_X^{-1}(q) + \epsilon \ge F_X^{-1}(q) \stackrel{(3)}{\Longrightarrow} F_X(\sup_{q < p} F_X^{-1}(q) + \epsilon) \ge q.$$

So taking  $\epsilon \to 0$  by right continuity of  $F_X$  implies that  $F_X(\sup_{q < p} F_X^{-1}(q)) \ge q$  for all q < p so  $F_X(\sup_{q < p} F_X^{-1}(q)) \ge p$ . Property 3 above implies that

$$\sup_{q < p} F_X^{-1}(q) \ge F_X^{-1}(p).$$

This combined with monotonicity  $\sup_{q < p} F_X^{-1}(q) \le F_X^{-1}(p)$  implies that  $\sup_{q < p} F_X^{-1}(q) = F_X^{-1}(p)$  as required.