## ECE/CS 498 DSU/DSG Spring 2020 In-Class Activity 6

NetID:

chuhaof2

The purpose of the in-class activity is for you to:

- (i) Review concepts related to SVM and neural networks
- (ii) Work out steps in backpropagation for optimization of a neural network

## Support Vector Machine

1. Linear decision boundary

Sketch the hyperplane  $-2 + x_1 + 2x_2 = 0$ . Indicate the set of points for which  $-2 + x_1 + 2x_2 > 0$ , as well as the set of points for which  $-2 + x_1 + 2x_2 \le 0$ .



2. Non-linear decision boundary

a) Sketch the curve  $(1 + x_1)^2 + (2 - x_2)^2 = 4$ 



- b) On your sketch, indicate the region for which  $(1 + x_1)^2 + (2 x_2)^2 > 4$ , as well as the region for which  $(1 + x_1)^2 + (2 x_2)^2 \le 4$ .
- c) Suppose that a classifier assigns an observation  $(x_1, x_2)$  to the blue class if  $(1 + x_1)^2 + (2 x_2)^2 > 4$ , and to the red class otherwise. To what class is the observation (0,0) classified? (-1,1)?

$$(-1,1) \rightarrow \text{red class}$$

d) The decision boundary equation in c) is not linear in terms of an input  $x = (x_1, x_2)$ since it has  $x_1^2$  and  $x_2^2$  terms. However, suppose that we instead consider  $\mathbf{x} = (x_1,$  $x_1^2$ ,  $x_2$ ,  $x_2^2$ ). This might be the case after applying a kernel transformation to the dataset. Is the decision boundary equation linear then? What might be a reason for

applying this kernel transformation? after sin plificath:  $(1+x_1)^2 + (2-x_2)^2 = 4 \implies 1+2x_1+x_1^2 - 4x_2+x_2^2 = 0$  $\phi(x) = [1, x_1, x_2, x_1^2, x_2^2] \in K[x_i, x_j] = [tx_1 + x_2 + x_1^2 + x_2^2 + x_1x_2] \in K[x_i, x_j] = [tx_1 + x_2 + x_1^2 + x_1x_2] \in K[x_i, x_j] = [tx_1 + x_2 + x_1^2 + x_1x_2] \in K[x_i, x_j] = [tx_1 + x_2 + x_1^2 + x_1x_2] \in K[x_i, x_j] = [tx_1 + x_2 + x_1^2 + x_1x_2] \in K[x_i, x_j] = [tx_1 + x_2 + x_1^2 + x_1x_2] \in K[x_i, x_j] = [tx_1 + x_2 + x_1^2 + x_1x_2] \in K[x_i, x_j] = [tx_1 + x_2 + x_1^2 + x_1x_2] \in K[x_i, x_j] = [tx_1 + x_2 + x_1^2 + x_1x_2] \in K[x_i, x_j] = [tx_1 + x_1 + x_2 + x_1^2 + x_1x_2] \in K[x_i, x_j] = [tx_1 + x_1 + x_2 + x_1^2 + x_1x_2] \in K[x_i, x_j] = [tx_1 + x_1 + x_2 + x_1^2 + x_1x_2] \in K[x_i, x_j] = [tx_1 + x_1 + x_2 + x_1^2 + x_1x_2] \in K[x_i, x_j] = [tx_1 + x_1 + x_2 + x_1x_2] \in K[x_i, x_j] = [tx_1 + x_1 + x_2 + x_1x_2] \in K[x_i, x_j] = [tx_1 + x_1 + x_2 + x_1x_2] \in K[x_i, x_j] = [tx_1 + x_1 + x_2 + x_1x_2] \in K[x_i, x_j] = [tx_1 + x_1 + x_2 + x_1x_2] \in K[x_i, x_j] = [tx_1 + x_1 + x_2 + x_1x_2] \in K[x_i, x_j] = [tx_1 + x_1 + x_2 + x_1x_2] \in K[x_i, x_j] = [tx_1 + x_1 + x_2 + x_1x_2] \in K[x_i, x_j] = [tx_1 + x_1 + x_2 + x_1x_2] \in K[x_i, x_j] = [tx_1 + x_1 + x_2 + x_1x_2] \in K[x_i, x_j] = [tx_1 + x_1 + x_2 + x_1x_2] \in K[x_i, x_j] = [tx_1 + x_1 + x_2 + x_1x_2] \in K[x_i, x_j] = [tx_1 + x_1 + x_2 + x_1x_2] = [tx_1 + x_1 + x_1x_2] = [tx_1 + x_1x_$ 

3. Hard margin SVM Suppose we are learning a hard margin SVM with two real-valued features  $x_1, x_2$  and

binary label  $y \in \{-1, +1\}$  (represented by  $\triangle$  and  $\bigcirc$ , respectively). The training data is  $\neg$ pictured in the figure below. Our linear classifier takes the form  $\mathbf{w} \cdot \mathbf{x} + b = 0$ . boundary will



- a) According to the maximum margin principle, identify the support vectors, and sketch the decision boundary of the trained SVM. The red-circled points are the support vetors.
- b) Suppose hyperplane  $H_1$  takes the form  $\mathbf{w} \cdot \mathbf{x} + b = 1$ , write down the equations for  $H_2$ . H2: w·x+b=-1
- c) The constraints for linear hard margin SVM can be written as  $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$ ,  $\forall i \in \{1, ..., N\}$ . Explain why. This equation can be interpreted as any given point in the space is at least I away from the hyperplane and the training set are seperated 100% correct J
  - d) What condition do the data points have to satisfy such that a feasible w exists? requirement of the hard All data points are classified correctly Margin SVM

e) Calculate the distance between  $H_1$  and  $H_2$ .

Margin distance = 
$$\frac{\vec{w}^T \vec{x} + b + \vec{1} - (\vec{w}^T \vec{x} + b - \vec{1})}{||\vec{w}||} = \frac{2}{||\vec{w}||}$$

f) Based on your answer to the above questions, write down the optimization problem whose solution is hard margin SVM.

$$\max \frac{2}{||\vec{w}||} \Rightarrow \min ||\vec{w}|| \Rightarrow \min \frac{||\vec{w}||^2}{2}$$
  
\Rightarrow \text{argmin}\_{\vec{w}} \frac{1}{2} ||\vec{w}||^2 \text{ such that } 1 \leq y\_i (\vec{w}^T \vec{x}\_i + b) \, \forall i \in \{1, \ldots, N\}

g) For the following data points  $x_1 = (1, 2, 3)$ ,  $x_2 = (4, 1, 2)$ ,  $x_3 = (-1, 2, -1)$  corresponding to class  $y_1 = +1$ ,  $y_2 = +1$ ,  $y_3 = -1$ , one of the following w, b gives the correct SVM decision boundary ( $w \cdot x + b = 0$ ). Which one is it? Show your work.

A. 
$$w = [0.3, 0, 0.4]', b = -0.4$$
B.  $w = [0.2, 0, 0.4]', b = -0.4$ 
C.  $w = [0.1, 0, 0.4]', b = -0.4$ 
For y1: 1.1
For y2: 1.6
For y3: 1.1

D. 
$$w = [0.4, 0, 0.2]', b = -0.4$$

B is the correct SVM decision boundary. For y2: 1. 2000000000000002

C.

В.

For y1: 0.90000000000000002

For y2: 0.8000000000000002

For y3: 0.9

D.

For y1: 0.6

For y2: 1.6

For y3: 1.0

Compare the objective for A and B

A: 0.125

B: 0.100000000000000002

4. Soft margin SVM

Recall the program for solving the soft margin SVM:

$$\min_{\mathbf{w}, \ \xi_{I} \ge 0} \frac{1}{2} ||\mathbf{w}||^{2} + C \sum_{i}^{N} \xi_{i} \qquad s.t. \quad 1 - \xi_{i} \le y_{i}(\mathbf{w}^{T} \mathbf{x}_{i} + b) \quad \forall i \in \{1, \dots, N\}$$

We have plotted the SVM solutions for a training dataset in Figure (a) and (b) corresponding to two values of C:



- a) Indicate non-zero  $\xi_i$ s on both plots (a) and (b). The red-circled points are those non-zero  $\xi_i$ s.
- b) Which figure corresponds to a larger value of C? Explain why. Figure (a) corresponds to a larger value of C, because the amount of allowed slack is smaller in (a) than that in (b). With a larger C, the amount of allowed slack should be smaller.

The unconstrained form of the above optimization problem is given as:

$$\min_{\mathbf{w}, \mathbf{b}} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{N} \max\{0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b)\}$$

c) Draw the function  $g(z) = \max\{0, z\}$  for scalar variable z. What is the derivative  $\frac{dg(z)}{dz}$ ? Draw the derivative.





d) Compute the gradient of this unconstrained program w.r.t w. [Hint: Think of z in part (c) as  $1 - y_i(w^Tx_i + b)$ , you can express max in terms of an indicator function]

$$\Rightarrow C\vec{w} + \sum_{i=1}^{M} -y_i \vec{x_i}$$
, where  $x_i \in \{x_1, x_2, \dots, x_M\}$  satisfy  $1 - y_i (\vec{w}^T \vec{x_i} + b) > 0$ 

e) Suppose you are training your SVM using gradient descent and the gradient derived in (d), the original gradient is  $\mathbf{w} = [2,2]'$ , b = -1. The first iteration we trained on data point  $\mathbf{x_1} = (1,1)$ ,  $\mathbf{y_1} = 1$ ; the second iteration we trained on data point  $\mathbf{x_2} = (-1,-1)$ ,  $\mathbf{y_2} = -1$ ,  $\lambda = 1$ , assuming both C and learning-rate to be 1 calculate the gradient after these two iterations.

$$\therefore 1 - y_1(\vec{w}^T \vec{x}_1 + b) = -2 < 0$$

$$\therefore \nabla \vec{w} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$\therefore \vec{w}_1 = \vec{w} - 1 \times \nabla \vec{w} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\therefore 1 - y_2(\vec{w}^T \vec{x}_2 + b) = 0$$

$$\therefore \nabla \vec{w} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \vec{x}_2$$

$$\therefore \vec{w}_2 = \vec{w}_1 - 1 \times \nabla \vec{w} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

## Neural Networks

1. Partial derivatives

Consider the network shown in the figure below. All the hidden units use the ReLU- $h_i(z_i) = \max\{z_i, 0\}$ . We are trying to minimize a cost function C which depends only on the activation of the output unit y. The unit  $h_1$  (marked with a \*) receives an input of  $z_i = -1$  on a training iteration, so its output is 0. Based only on this information, which of the following weight derivatives are guaranteed to be 0 for this training case? Write YES or NO for each. Justify your answers informally. (Hint: don't work through the backprop computations. Instead think about what the partial derivatives really mean.)



a) 
$$\frac{\partial C}{\partial w_1}$$
 NO

b) 
$$\frac{\partial C}{\partial w_2}$$
 YES

c) 
$$\frac{\partial C}{\partial w_3}$$
 YES

$$z_i = -1$$

 $h'_1(z_i) = 0$ , according to problem 4.(c) in SVM

 $\therefore$  any weight derivative including  $\frac{dh_1(z_i)}{z_i}$  should be 0

 $\therefore$  based on the network,  $\frac{\partial C}{\partial w_2}$  and  $\frac{\partial C}{\partial w_3}$  includes  $\frac{dh_1(z_i)}{z_i}$ 

 $\therefore \frac{\partial C}{\partial w_2}$  and  $\frac{\partial C}{\partial w_3}$  are gauranteed to be 0 while the value of  $\frac{\partial C}{\partial w_1}$  is not sure

## 2. Backpropagation

The neural network considered in this question has three input neurons, one hidden layer with two neurons, and one output layer with two neurons.  $b_1$  and  $b_2$  are bias terms.



a) Suppose  $zh_1 = w_1x_1 + w_3x_2 + w_5x_3 + b_1$ ,  $h_1 = \text{sigmoid}(zh_1)$ , and similar relationships hold for the other neurons in the hidden/output layer. Assume the current parameters of the networks  $w_1, w_2, w_3, w_4, w_5, w_6, w_7, w_8, w_9, w_{10} = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1, <math>b_1, b_2 = 0.5, 0.5$ . Given input  $x_1, x_2, x_3 = 1, 4, 5$ , use forward propagation to find out the value of  $h_1, o_1$ . You can think of writing a Python program.

```
In [4]:
              def sigmoid(x):
                  return 1/(1 + np. exp(-x))
              x = np. array([1, 4, 5])
              w_h = np. array([[.1, .2],
                                [.3, .4],
                                [.5, .6]
              w_o = np. array([[.7, .9],
                                [.8,.1]
              b_1 = np. array([.5, .5])
              b_2 = np. array([.5, .5])
              zh = np. dot(x, w_h) + b_1
              zo = np. dot(zh, w_o) + b_2
              print('h1\n', sigmoid(zh[0]))
              print('o1\n', sigmoid(zo[0]))
              h1
               0.9866130821723351
              01
               0.9995694429186754
```

b) Let  $t_1, t_2$  represent the true labels. Define the sum of squared loss  $E = \frac{1}{2}((o_1 - t_1)^2 + (o_2 - t_2)^2)$ . Write down the partial derivatives  $\frac{\partial E}{\partial w_1}, \frac{\partial E}{\partial b_2}, \frac{\partial E}{\partial w_1}$ 

according to the chain rule. Example for 
$$\frac{\partial E}{\partial w_{10}}$$
,  $\frac{\partial E}{\partial w_2}$  is given below.

$$\frac{\partial E}{\partial w_{10}} = \frac{\partial E}{\partial o_{2}} \frac{\partial o_{2}}{\partial z_{02}} \frac{\partial z_{02}}{\partial z_{02}} \frac{\partial z_{02}}{\partial w_{10}}$$

$$\frac{\partial E}{\partial w_{2}} = \frac{\partial E}{\partial o_{2}} \frac{\partial o_{2}}{\partial z_{02}} \frac{\partial z_{02}}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{02}} \frac{\partial z_{02}}{\partial w_{2}} \frac{\partial z_{02}}{\partial w_{2}} \frac{\partial z_{02}}{\partial v_{2}} \frac{\partial z_{02}}{\partial v_{2$$

For  $\frac{\partial E}{\partial w_2}$ , look at the two paths which lead from  $w_2$  to E. Backpropagation includes both the paths in the calculation.

$$\frac{\partial E}{\partial w_7} = \frac{\partial E}{\partial o_1} \frac{\partial o_1}{\partial zo_1} \frac{\partial zo_1}{\partial w_7}$$

$$\frac{\partial E}{\partial b_2} = \frac{\partial E}{\partial o_1} \frac{\partial o_1}{\partial zo_1} \frac{\partial zo_1}{\partial b_2} + \frac{\partial E}{\partial o_2} \frac{\partial o_2}{\partial zo_2} \frac{\partial zo_2}{\partial b_2}$$

$$\frac{\partial E}{\partial w_1} = \frac{\partial E}{\partial o_1} \frac{\partial o_1}{\partial z o_1} \frac{\partial z o_1}{\partial h_1} \frac{\partial h_1}{\partial z h_1} \frac{\partial z h_1}{\partial w_1} + \frac{\partial E}{\partial o_2} \frac{\partial o_2}{\partial z o_2} \frac{\partial z o_2}{\partial h_1} \frac{\partial h_1}{\partial z h_1} \frac{\partial z h_1}{\partial w_1}$$

Suppose  $t_1, t_2 = 0.1, 0.05$ , learning rate  $\alpha = 0.01$ . Calculate the updated  $w_7, b_2, w_1$  after one iteration of backpropagation. Use  $h_2 = 1$ ,  $o_2 = 0.8$ .

$$\therefore \frac{\partial E}{\partial o_1} = o_1 - t_1 = 0.89956944, \ \frac{\partial E}{\partial o_2} = o_2 - t_2 = 0.75$$

$$\therefore \frac{\partial o_1}{\partial z o_1} = o_1(1 - o_1) = 0.00043037, \ \frac{\partial o_2}{\partial z o_2} = o_2(1 - o_2) = 0.16$$

$$\because \frac{\partial zo_1}{\partial w_7} = h_1 = 0.98661308, \ \frac{\partial zo_1}{\partial b_2} = 1, \ \frac{\partial zo_2}{\partial b_2} = 1$$

$$\therefore \frac{\partial zo_1}{\partial h_1} = w_7 = 0.7, \ \frac{\partial zo_2}{\partial h_1} = w_8 = 0.8$$

$$\therefore \frac{\partial h_1}{\partial z h_1} = h_1 (1 - h_1) = 0.013207710, \ \frac{\partial z h_1}{\partial w_1} = x_1 = 1$$

3. Neural Network Playground (for you to explore)

https://developers.google.com/machine-learning/crash-course/introduction-to-neural-networks/playground-exercises :  $\frac{\partial E}{\partial w_2} = 0.00038196$ ,  $\frac{\partial E}{\partial b_2} = 0.12038715$ ,  $\frac{\partial E}{\partial w_1} = 0.00127152$ 

$$w_7^+ = w_7 - \alpha \times \frac{\partial E}{\partial w_7} = 0.69999618$$

$$\therefore b_2^+ = b_2 - \alpha \times \frac{\partial E}{\partial b_2} = 0.49879613$$

$$\therefore w_1^+ = w_1 - \alpha \times \frac{\partial E}{\partial w_1} = 0.09998728$$