Math 121 Homework 7

Thomas Slavonia; UID: 205511702

February 2024

2.11.3.

The proof is very similar to the proof that every vector space has a basis. Let Sbe the family of all linearly independent subsets of V that contain A, and with the usual set inclusion, S becomes partially ordered. Let τ be a totally ordered subset of S. Define $B = \bigcup \{T : T \in \tau\}$. Let $v_1, \ldots, v_m \in B$ and let $a_1, \ldots, a_m \in F$ the field satisfy $a_1v_1 + \cdots + a_mv_m = 0$. For $1 \le j \le m$ take $T_j \in \tau$ such that $v_j \in T_j$. Since T_j 's are totally ordered, and finite $\exists T_l$ such that $T_j \subseteq T_l$ for $1 \leq j \leq m$ which implies $v_i \ni T_l$. Since T_l is linearly independent $a_1 = \cdots = a_m = 0$. We can gather that B is an upper bound for S, and a maximal element C of S exists using Zorn's Lemma. By definition of S, we have $A \subseteq C$. To show C is a basis for the vector space, note that it is linearly independent. If $v \in C$, then v is in the span of C. Hence, we will now consider the case where $v \notin C$. Since C is the maximal linearly independent set that contains $A, C \cup \{v\}$ is not linearly independent. Thus, $\exists v_1, \dots, v_n$ in $C \cup \{v\}$ and scalars $a_1, \dots, a_n \in F$ such that $a_1v_1 + \cdots + a_nv_n = 0$ and there exists some $a_k \neq 0$ for $1 \leq k \leq n$. We may assume each $a_k \neq 0$. Since C is linearly independent, one of the v_k must be v. Without loss of generality, suppose $v_1 = v$. Then

$$v = \left(-\frac{a_2}{a_1}v_2\right) + \dots + \left(-\frac{a_n}{a_1}v_n\right)$$

expresses v as the linear combination of elements in C which implies that C is a basis that contains A.

2.12.3.

Look at the restriction π_{β} to $X_{\beta} \times \{y\}$ $\pi_{\beta} : X_{\beta} \times \{y\} \to X_{\beta}$. We first want to show that π_{β} is an open map. Let U be open. We have that $\pi_{\beta}(U \times \emptyset) = \pi_{\beta}(\pi_{\beta}^{-1}(U_{\beta})) = U$ which is open or we have $\pi_{\beta}(U \times \{y\}) = U$ which is open. Therefore, we have that π_{β} is an open map. Because we know that $\pi_{\beta}^{-1}(U) = U$ or $\pi_{\beta}^{-1}(U) = U \times \{y\}$ both of which are open, we know that π_{β} is continuous as the preimage of an open set is open. For $(x_{\beta}, y), (x'_{\beta}, y) \in X_{\beta} \times \{y\}$ suppose

 $\pi_{\beta}(x_{\beta},y) = \pi_{\beta}(x'_{\beta},y)$. Then, we would have that $x_{\beta} = x'_{\beta}$ and hence it must be that $(x_{\beta},y) = (x'_{\beta},y)$ which implies surjectivity. To see surjectivity is quite trivial, as for any $x_{\beta} \in X_{\beta}$ we will clearly be able to find a $(x_{\beta},y) \in X_{\beta} \times \{y\}$ such that $\pi_{\beta}(x_{\beta},y) = x_{\beta}$. Lastly, $\pi_{\beta}^{-1}: X_{\beta} \to X_{\beta} \times \{y\}$ is clearly continuous as the preimage of any open U in X_{β} is still just U and will be open in $X_{\beta} \times \{y\}$. Hence, we have a homeomorphism.

2.12.4.

Suppose X_{α} is Hausdorff for all $\alpha \in A$ an index set. Let $X = \prod_{\alpha \in A} X_{\alpha}$. Let $x, y \in X$ such that $x \neq y$. Therefore, $\exists \beta \in A$ such that $x_{\beta} \neq y_{\beta}$. Since X_{β} is Hausdorff, $\exists U, V \in X_{\beta}$ open and disjoint sets such that $x_{\beta} \in U$ and $y_{\beta} \in V$. Consequently, we get $\pi_{\beta}^{-1}(U)$ and $\pi_{\beta}^{-1}(V)$ are open and disjoint sets of the product space with $x \in \pi_{\beta}^{-1}(U)$ and $y \in \pi_{\beta}^{-1}(V)$. We conclude that X is Hausdorff.

2.12.7.

Let $E \subseteq X$ be connected. Then, $\pi_{\alpha}(E) = E_{\alpha}$ is connected and $E_{\alpha} \subseteq X_{\alpha}$ by the fact that if a topological space is connected, then its image under a continuous function is connected. We must have that $E_{\alpha} \subseteq F_{\alpha} \subseteq X$ where F_{α} is the connected component of X_{α} that contains E_{α} . Therefore, $E \subseteq \prod F_{\alpha} \subseteq X$ and thus the connected components are of the form $\prod F_{\alpha}$ where each F_{α} is a connected component of X_{α} .

2.12.8.

Let X_{α} be path connected for all $\alpha \in A$. Let $x, y \in X = \prod X_{\alpha}$. We know that for all $\alpha \in A \ \exists \gamma_{\alpha} : [0,1] \to X_{\alpha}$ continuous such that $\gamma_{\alpha}(0) = x_{\alpha}$ and $\gamma_{\alpha}(1) = y_{\alpha}$. Let $\gamma : [0,1] \to X$ be continuous. Because γ is continuous, we know have previously shown that implies $\pi_{\alpha} \circ \gamma$ is continuous because both are continuous functions. If we set $(\gamma(t))_{\alpha}$ to $\gamma_{\alpha}(t)$ we can then conclude that $\gamma(0) = x$ and $\gamma(1) = y$.

2.12.9

Let S_{α} be a nonempty set with $\alpha \in A$ an index set. Let X_{α} be obtained from S_{α} by adjoining one point p_{α} . Let X_{α} be endowed with the cofinite topology including \emptyset and $\{p_{\alpha}\}$. We have previously proven that any topological space with the cofinite topology is compact. Thus, X_{α} is compact. By Tychonoff's Theorem, $\prod X_{\alpha}$ is compact. Now, look at the subsets $\pi_{\alpha}^{-1}(S_{\alpha}) \subseteq \prod X_{\alpha}$. Note

that each S_{α} is closed, as $X \setminus S_{\alpha} = \{p_{\alpha}\}$ which is open. Since π_{α}^{-1} is continuous, we know that $\pi_{\alpha}^{-1}(S_{\alpha})$ is closed in $\prod X_{\alpha}$. Then, since each S_{α} is nonempty, $\bigcup_{i=1}^{n} \left(\pi_{\alpha}^{-1}(S_{\alpha})\right)_{i} \neq \emptyset$ as $\prod X_{\alpha}$ is compact. Thus, $\exists x \in \bigcup_{i=1}^{n} \left(\pi_{\alpha}^{-1}(S_{\alpha})\right)_{i}$ and each component of that element must be one element of S_{α} , $x_{\alpha} \in S_{\alpha}$. This is a rephrasing of the Axiom of Choice.

2.12.11.

a.

Let $x \in \prod X_{\alpha}$. Then, $x_{\alpha} \in U_{\alpha}$ some open subset of X_{α} . Hence, $x \in \prod U_{\alpha}$ an open subset of β . Hence, every $x \in \prod X_{\alpha}$ is in some element of β . For $1 \le i \le n$ look at a finite subset of the products $\{(\prod U_{\alpha})_i\}_i \subseteq \beta$ for $1 \le i \le n$. Then, the intersection $\bigcap_{i=1}^{n} (\prod U_{\alpha})_i$ is the product of $\bigcap_{i=1}^{n} U_{\alpha_i}$. The finite intersection of open sets here is of the same form as the original open sets, so we have that $\bigcap_{i=1}^{n} (\prod U_{\alpha})_i \in \beta$. Thus, β is closed under intersection, and we have met an equivalent definition for β being a base.

b.

Suppose X_{α} has the discrete topology for all $\alpha \in A$. Then every subset $U_{\alpha} \subseteq X_{\alpha}$ is open. Thus, every $U = \prod_{\alpha \in A} U_{\alpha}$ is open.

c.

Let X_{α} have the discrete topology and consist of two points $\{0,1\}$. Therefore, by the previous part of this problem, $\prod X_{\alpha}$ is discrete. Let A be infinite. Then, for every open cover, there will be no finite subcover.

d.

Suppose X_{α} is Hausdorff for all $\alpha \in A$. Let $x, y \in \prod X_{\alpha}$ such that $x \neq y$. If $x \neq y$, then $\exists \beta \in A$ such that $x_{\beta} \neq y_{\beta}$. Since X_{β} is Hausdorff $\exists U_{\beta}, V_{\beta} \subseteq X_{\beta}$ open and disjoint such that $x_{\beta} \in U_{\beta}$ and $y_{\beta} \in V_{\beta}$. Therefore, $x \in \prod U_{\alpha}$ and $y \in \prod V_{\alpha}$ which are disjoint, so $\prod X_{\alpha}$ is Hausdorff.

Let each X_{α} be regular. Let $E \subset \prod X_{\alpha}$ be closed and $x \in \prod X_{\alpha} \setminus E$. Then, for E_{α} and $x_{\alpha} \exists U_{\alpha}, V_{\alpha} \subseteq X_{\alpha}$ open and disjoint such that $E_{\alpha} \subset U_{\alpha}$ and $x_{\alpha} \subset V_{\alpha}$. Thus, $E = \prod E_{\alpha} \subset \prod U_{\alpha}$ open and $x \subset \prod V_{\alpha}$ with $\prod U_{\alpha} \cap \prod V_{\alpha} = \emptyset$ open. Thus, we have that it is regular.

It is not true that it is normal as the example for the half-open interval topology on $\mathbb R$ that $\mathbb R \times \mathbb R$ is not normal, but $\mathbb R$ is.