

Matching Striae in Bullets

Heike Hofmann, Eric Hare, Alicia Carriquiry Department of Statistics

IOWA STATE UNIVERSITY

Microscopic alignment

- Match bullets that were fired from the same barrel
- Find a probabilistic quantification of the match
- attempt at quantification:
 CMS (consecutively matching striae)
- concept goes back to Biasotti (1959)
- part of current AFTE practice

James Hamby Study

- Ten consecutively rifled Ruger P-85 pistol barrels used to fire
 - 20 'known' test bullets, 2 from each barrel
 - 15 'unknown' bullets for comparison
- Sets of 35 bullets sent to 507 FEs for examination
- 0 false positive identifications,
 8 inconclusive results (out of 7,605)

Data format

http://www.nist.gov/forensics/ballisticsdb/hamby-consecutively-rifled-barrels.cfm

- 3D topographical images of each bullet
- NanoFocus lens at 20x magnification
- x3p format in ISO5436-2 standard: header file with meta information

body: array of surface measurements at 1.5625µm by 1.5625µm

Data format

http://www.nist.gov/forensics/ballisticsdb/hamby-consecutively-rifled-barrels.cfm

- 3D topographical images of each bullet
- NanoFocus lens at 20x magnification
- x3p format in ISO5436-2 standard: header file with meta information

body: array of surface measurements at 1.5625µm by 1.5625µm

Extract a profile at fixed height

Profile plot

Extract a profile at fixed height

Profile plot

- Profile plot
- Identify grooves

- Profile plot
- Identify grooves

- Profile plot
- Identify grooves
- Get signature from loess fit

- Profile plot
- Identify grooves
- Get signature from loess fit

Determining Height

 Want to extract signature at a 'stable' region

- at the bottom of the bullet: danger of break-off
- at the top: danger of no/low impressions
- Here: extract signatures at intervals of $25\mu m$, use lowest height where signatures have ccf > 0.95
- Also serves as crude automatic quality assessment

CCF test fails

Barrel 6 Bullet 2-1

Unknown Bullet B-2

Barrel 9 Bullet 2-4

Unknown Bullet Q-4

Aligning Signatures

Raw signatures (left) and aligned signatures (right)

Alignment is based on cross correlation function(ccf)

$$(f * g)(k) = \sum_{t} f(t+k)g(t)$$

Feature extraction

- CCF
- lag
- D defined as the average of the vertical distance between f and g:

$$D^{2} = \frac{1}{\#t} \sum_{t} (f(t) - g(t))^{2}$$

CMS next ...

Peaks and valleys

Rolling median detects local mins and maxes

joint peaks and valleys

Feature extraction

Residuals of loess fit

- CCF
- lag
- D defined as the average of the vertical distance between f and g
- CMS
- # matched striae, # mis-matched striae
- Consecutively Non-Matching Striae (CNMS)
- S defined as the sum of the (abs) height of matches

Data Extraction

- Extract features from all of the known and unknown bullets of the Hamby study
- Focus on comparisons of unknown lands (88) to known lands (118) of good quality
 88 x 118 = 10,384 land-land comparisons
- 172 land-land comparisons are Known Matches

 Later we will come back to consider all possible landland comparisons

Example: Unknown Bullet C-3

 CMS of C-3 with all known lands

Distribution of CMS

Marginal distribution of all 10,384 land-land CMS

Conditional probability of Match/Non-match

match FALSE TRUE

All 42 pairs with CMS > 12 are matches

About half of pairs with CMS = 9 are matches

CMS by itself is not good enough; this is not a new finding (e.g. Miller, 1998)

Curious Case of CMS = 12

 Known Non-match with strong agreement in the middle of the lands

 visually, it is relatively easy to determine the nonmatch

Feature Densities

 All features show pretty strong differentiation between Known matches (KM) and Known Non-matches (KNM)

Receiver operating characteristic (ROC) curves

 AUC shows strength of each individual feature for distinguishing between matches and non-matches

Classification Tree

Breiman et al (1984)

- I false positive, 40 false negatives (out of 172 KM)
- CMS is not used in the tree at all

Lots of Trees ...

- A random forest (Breiman, 2001) is able to correctly predict all matches and non-matches
- OOB error rate is 0.0039 overall (for 300 trees):

composite of FP of 0.0001 and FN of 0.2267

Larger Forest

- Extract features from all remaining land-land comparisons of the Hamby study
- known-known (6,903) and unknown-unknown (3,828)
 10,731 additional land-land comparisons
- Using previously fitted random forest for predictions: 18 false negatives and 9 false positives for FN of 0.19 and FP of 0.00085
- Random forest on ALL land-land comparisons results in OOB error of 0.3% (down from 0.4%)

Conclusions/Further Work

- Overall error rate of Random forest would benefit from more data
- All results on Hamby study only:
 effect of microscope? other type of ammunition? ???
- So far: land-land comparisons what, if we use only a fraction of a land (1/2, 1/4, 1/8, ...) for a match?
- Web app with implementation of algorithm: https://erichare.shinyapps.io/x3prproto