Considering Interface Concavity in Spongy Mesophyll Segmentation

Evan Cook

About Me

- Undergrad, rising senior at the University of Chicago
- Double major in Math and CS
- Grew up in Cupertino, California

Project Motivation I

- Recall: goal is "spongy mesophyll segmentation"
- Correct segmentation → data collection for future studies
- Current pipeline is below:
 - (1) **Threshold** pixel values + remove artifact holes
 - (2) Perform watershed transform → 'naive' result
 - (3) **Prune** (merge) false watershed borders

Project Motivation II

- Results are generally good, but includes some 'blobs'
- **Undersegmentation** problem vs. **oversegmentation** preference
- Intuition for 'correct' cell borders is there how to translate to algorithm?

2D Concavity Intuition I

- Intuition has many names 'necking,' 'pinching,'
 'concavity', etc.
- Want to make intuition quantitative, and merge borders using concavity 'score'
- Parallel to cell border, then perpendicular to cell matter → resulting distance measures concavity

concave border → lower distance

convex border → higher distance

2D Concavity Intuition II

lower distances \rightarrow 2 cells

higher distances > 1 cell 2 cells in 3D

3D Algorithm I

- Most of previous pipeline is preserved
- partial prune: like the original pruning stage, but with lower merge strength
- Remove thin strips, let concavity handle edge cases

naive watershed

partial prune

Previous Algorithm

3D Algorithm II

threshold +

remove holes

binary

watershed algorithm

naïve watershed

pruning stage

pruned watershed

Concavity Algorithm

- 1. Sample points from cell-cell border
- 2. Fit a plane to border sample using PCA
- **3.** Shift plane to border center, and decompose into unit vectors of various rotations
- 4. Extend parallel to cell border along vectors
- **5.** Find **perpendicular** distance from each extension, and process distances into single score
- 6. Merge borders with scores over set threshold

Principal Component Analysis

Algorithm Demo

Algorithm Behavior I

Algorithm Behavior II

Sample Output (Camellia yunnanensis)

previous algorithm

concavity algorithm

Sample Output (Camellia yunnanensis)

previous algorithm

concavity algorithm

Sample Output (Arabidopsis thaliana)

unsegmented binary

segmented via algorithm

Improvements + Next Steps

- Promising results, but some potential improvements
 - Automating tuning parameters
 - Undersegmentations around border (survivor bias)
 - Viability towards other species/cell shapes

case with score ≈ 150

Thanks for Listening