

Entwicklung eines TIA-Projektes

Hausarbeit Industrielle Bussysteme

Studiengang Elektrotechnik

Studienrichtung Automation

Duale Hochschule Baden-Württemberg Ravensburg, Campus Friedrichshafen

von

Simon Schäffler, Alexander Drexl und Florian Prumbs

Abgabedatum: 28. November 2024

Bearbeitungszeitraum: 15.11.2024 - 06.12.2024

Matrikelnummer Simon Schäffler: 5710369
Martikelnummer Alexander Drexl: 3982016
Martikelnummer Florian Prumbs: 1848162
Kurs: FN -TEA22

Ausbildungsfirma: Webasto Roof & Components SE

Erklärung

gemäß Ziffer 1.1.13 der Anlage 1 zu §§ 3, 4 und 5 der Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg vom 29.09.2017 in der Fassung vom 25.07.2018.

Wir versichern hiermit, dass unsere Hausarbeit mit dem Thema:

Entwicklung eines TIA-Projektes

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt wurden.

Friedrichshafen, den 28. November 2024

Simon Schäffler

Alexander Drexl

Florian Prumbs

Konzeptentwurf

State Machine

Initialzustand

Das System startet im Initialzustand und wechselt direkt in den sogenannten Idle-Zustand. Im Idle-Zustand sind beide LEDs der Anzeige AC2398 ausgeschaltet. In diesem Zustand kann das System je nach den erkannten Eingaben oder Ereignissen in andere Zustände wechseln. Wenn der grüne Knopf gedrückt wird und kein RFID-Tag erkannt wird, speichert das System die aktuelle Systemzeit und bleibt im Idle-Zustand. Dieser Vorgang wird im Diagramm als SSave Time"bezeichnet.

Tag-Erkennung und Verarbeitung

Wird ein NFC-Tag erkannt und liegt kein Fehlerzustand vor, wechselt das System in den Zustand "Tag Detected Handling". In diesem Zustand blinkt die grüne LED mit einer Frequenz von einer Sekunde, um anzuzeigen, dass ein Tag erkannt wurde. Es gibt zwei mögliche Aktionen, vorausgesetzt, es liegt kein Fehlerzustand vor:

Write Tag Handling: Wenn der grüne Knopf gedrückt wird, während das RFID-Tag erkannt wird und die Systemzeit vorhanden ist, wechselt das System in den Zustand "Write Tag Handling". In diesem Zustand wird die zuvor gespeicherte Systemzeit auf das RFID-Tag geschrieben. Die grüne LED leuchtet dauerhaft, um anzuzeigen, dass der Schreibvorgang erfolgreich abgeschlossen wurde. Sobald das RFID-Tag nicht mehr erkannt wird, kehrt das System in den Idle-Zustand zurück.

Delete Tag Handling: Alternativ kann der rote Knopf gedrückt werden, während das RFID-Tag erkannt wird und kein Fehlerzustand vorliegt. In diesem Fall wechselt das System in den Zustand "Delete Tag Handling". Hier werden die gespeicherten Daten des RFID-Tags gelöscht, und beide LEDs leuchten dauerhaft, solange das Tag erkannt wird. Sobald das RFID-Tag nicht mehr erkannt wird, kehrt das System in den Idle-Zustand zurück.

Fehlerbehandlung

Wenn während des Prozesses ein Fehlerzustand auftritt, wechselt das System in den Zustand Error State Handling". In diesem Zustand blinkt die rote LED mit einer Frequenz von einer Sekunde, während die grüne LED ausgeschaltet bleibt, um den Fehler anzuzeigen. Der Fehlerzustand bleibt bestehen, bis die Ursache des Fehlers behoben ist. Anschließend erreicht das System den Finalzustand und der gesamte Ablauf beginnt erneut.

Abbildung 1: State-Machine-Diagramm

Name	Datentyp	Adresse	Kommentar
RED_button_released	Bool	%I193.2	1 wenn roter Taster nicht gedrückt
Green_button_pressed	Bool	%I193.3	1 wenn grüner Taster gedrückt
Red_button_LED_ON	Bool	%Q192.0	wenn 1 dann rote LED vom Taster an
Green_button_LED_ON	Bool	%Q192.1	wenn 1 grüne LED vom Taster an

Tabelle 1: Variablentabelle von AC2398 (Tasterblock)

Name	Datentyp	Adresse	Kommentar
Output_Param.Done	Bool	%I6.0	
Output_Param.Busy	Bool	%I6.1	
Output_Param.Error	Bool	%I6.2	
Output_Param.Status	Word	%IW8	
Output_Param.ExtStatus	DWord	%ID10	
Output_Param.RdValue	UInt	%IW14	
Output_Data.TagPresent	Bool	%192.0	
Output_Data.Done	Bool	%I92.1	
Output_Data.Busy	Bool	%192.2	
Output_Data.Error	Bool	%192.3	
Output_Data.Status	Word	%IW94	
Output_Data.ExStatus	Word	%IW96	
Input_Param.Execute	Bool	%Q0.0	
Input_Param.Mode	UInt	%QW2	
Input_Param.SetValue	UInt	%QW4	
Input_Data.DT_InAddr	UInt	%QW16	
Input_Data.DT_OutAddr	UInt	%QW18	
Input_Data.Execute	Bool	%Q20.0	
Input_Data.Force	Bool	%Q20.1	
Input_Data.Mode	UInt	%QW22	
Input_Data.TagMemAddr	UInt	%QW24	
Input_Data.Length	UInt	%QW26	
Input_Data.WrData	Array[031] of Byte	%Q28.0	
Input_Data.RdData	Array[031] of Byte	%Q60.0	

Tabelle 2: Variablentabelle von DTI515 (NFC-Modul)

Umsetzung

Umsetzung in TIA v18 in Labor H001 Implementierung Kommentierung Test der Funktionalität