南京大学大学数学试卷 答案

一、 简答题(每小题7分,共4题,计28分)

1. 计算
$$D_n = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 2 & 2^2 & 2^3 & \cdots & 2^n \\ 3 & 3^2 & 3^3 & \cdots & 3^n \\ \vdots & \vdots & \vdots & & \vdots \\ n & n^2 & n^3 & \cdots & n^n \end{vmatrix}$$
.

解:
$$|D_n| = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 2 & 2^2 & 2^3 & \cdots & 2^n \\ 3 & 3^2 & 3^3 & \cdots & 3^n \\ \vdots & \vdots & \vdots & & \vdots \\ n & n^2 & n^3 & \cdots & n^n \end{vmatrix} = n! \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 2^2 & \cdots & 2^{n-1} \\ 1 & 3 & 3^2 & \cdots & 3^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & n & n^2 & \cdots & n^{n-1} \end{vmatrix}$$

由 n 阶范德蒙行列式,有

$$D_n = n!(2-1)(3-1)\cdots(n-1)(3-2)(4-2)\cdots(n-2)\cdots[n-(n-1)] = n!\cdot(n-1)!\cdots 2!\cdot 1!.$$

2. 已知2阶实可逆矩阵 A 的特征值为整数 λ_1,λ_2 ,若矩阵 B 的特征值为 -5,-7 且 $B=(A^{-1})^2-6A^{-1}$,求 λ_1 和 λ_2 .

解: 若 A 的特征值为 λ ,则 A^{-1} 的特征值为 $\frac{1}{\lambda}$,那么 $B = (A^{-1})^2 - 6A^{-1}$ 的特征值为 $\frac{1}{\lambda^2} - \frac{6}{\lambda} = -5$ 或 7,又由于 A 的特征值为整数,解之得: $\lambda_1 = 1, \lambda_2 = -1$.

3. 设
$$A,B$$
 都是3阶方阵,且满足 $AB+E=A^2+B$,又设 $A=\begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix}$,求矩阵 B .

解: 因为
$$|A-E| = \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{vmatrix} = 1 \neq 0$$
,所以 $A-E$ 可逆,即 $(A-E)^{-1}$ 存在.
$$AB+E=A^2+B\Rightarrow AB-B=A^2-E\Rightarrow (A-E)B=(A-E)(A+E)\Rightarrow B=A+E,$$
 故 $B=A+E=\begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ -1 & 0 & 2 \end{pmatrix}$.

4. 设 $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, 且 ad-bc=1, |a+d|>2, 判断 A 是否相似于对角矩阵?

解: 计算特征多项式 $p(\lambda) = |\lambda E - A| = (\lambda - a)(\lambda - d) - bc = \lambda^2 - (a + d)\lambda + ad - bc = \lambda^2 - (a + d)\lambda + 1.$ 它的判别式 $(a + d)^2 - 4 > 2^2 - 4 = 0$,所以 $p(\lambda) = 0$ 有两个互异的根,也就是 A 的特征值互异,所以 A 相似于对角矩阵.

二、 (本题12分) 已知 $\alpha = (1,1,1)^T$ 是二次型 $f = 2x_1^2 + x_2^2 + ax_3^2 + 2x_1x_2 + 2bx_1x_3 + 2x_2x_3$ 对应矩阵的特征向量,判断该二次型是否正定?

解: 二次型矩阵为 $A=\begin{pmatrix}2&1&b\\1&1&1\\b&1&a\end{pmatrix}$. 设 α 是对应于特征值 λ_0 的特征向量,即 $A\alpha=\lambda_0\alpha$,则

$$\begin{pmatrix} 2 & 1 & b \\ 1 & 1 & 1 \\ b & 1 & a \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \lambda_0 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbb{P} \; \begin{cases} 2+1+b=\lambda_0 \\ 1+1+1=\lambda_0 \\ b+1+a=\lambda_0 \end{cases}, \quad \text{if } \; \Re \; \lambda_0 = 3, a=2, b=0.$$

对于
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$
,因 $|A| = 0$,故 f 不是正定二次型.

三. (本题12分) 已知向量组 $\alpha_1, \dots, \alpha_s$ 线性无关,设 $\beta_1 = \alpha_1 + \alpha_2, \beta_2 = \alpha_2 + \alpha_3, \dots, \beta_{s-1} = \alpha_{s-1} + \alpha_s, \beta_s = \alpha_s + \alpha_1$,讨论向量组 β_1, \dots, β_s 的线性相关性.

解: 由于
$$(\beta_1, \beta_2, \cdots, \beta_s) = (\alpha_1, \alpha_2, \cdots, \alpha_s) \begin{pmatrix} 1 & & & 1 \\ 1 & 1 & & \\ & \ddots & \ddots & \\ & & 1 & 1 \end{pmatrix}$$
, 而 $\begin{vmatrix} 1 & & & 1 \\ 1 & 1 & & \\ & \ddots & \ddots & \\ & & 1 & 1 \end{vmatrix} = 1 + (-1)^{s+1}$,所以

当 s 为奇数时,此行列式= $2 \neq 0$,故 $\beta_1, \beta_2, \dots, \beta_s$ 线性无关; 当 s 为偶数时,此行列式= 0,故 $\beta_1, \beta_2, \dots, \beta_s$ 线性相关.

四. (本题12分) 求
$$\lim_{k\to\infty} \begin{pmatrix} 1/2 & 2 & 5 \\ & 0 & -1 \\ & & -1/3 \end{pmatrix}^k$$
.

解:由于矩阵 $A=\begin{pmatrix} 1/2 & 2 & 5 \\ & 0 & -1 \\ & & -1/3 \end{pmatrix}$ 的特征值为 1/2,0,-1/3 互不相同,所以 A 相似于对角矩阵,即存在

可逆矩阵
$$P$$
 使得 $P^{-1}AP = \begin{pmatrix} 1/2 \\ 0 \\ -1/3 \end{pmatrix}$. 那么有
$$\lim_{k \to \infty} A^k = \lim_{k \to \infty} P \begin{pmatrix} 1/2 \\ 0 \\ -1/3 \end{pmatrix}^k P^{-1} = \lim_{k \to \infty} P \begin{pmatrix} (1/2)^k \\ 0^k \\ (-1/3)^k \end{pmatrix} P^{-1}$$
$$= P \cdot \lim_{k \to \infty} \begin{pmatrix} (1/2)^k \\ 0^k \\ (-1/3)^k \end{pmatrix} \cdot P^{-1} = P \cdot O \cdot P^{-1} = O.$$

五. (本题12分) 已知3阶矩阵 A 的第一行是 (a,b,c), a,b,c 不全为零,矩阵 $B=\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & k \end{pmatrix}$ (k) 为常数),且 AB=O,求线性方程组 Ax=0 的通解.

解: 由于 AB=O,故 $\mathbf{r}(A)+\mathbf{r}(B)\leq 3$,又由 a,b,c 不全为零,可知 $\mathbf{r}(A)\geq 1$. 当 $k\neq 9$ 时, $\mathbf{r}(B)=2$,于是 $\mathbf{r}(A)=1$. 当 k=9 时, $\mathbf{r}(B)=1$,于是 $\mathbf{r}(A)=1$ 或 $\mathbf{r}(A)=2$.

(1) 对于
$$k \neq 9$$
,由 $AB = O$ 可得 $A \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = 0$ 和 $A \begin{pmatrix} 3 \\ 6 \\ k \end{pmatrix} = 0$,

由于 $\eta_1 = (1,2,3)^T$, $\eta_2 = (3,6,k)^T$ 线性无关,故 η_1, η_2 为 Ax = 0 的一个基础解系,于是 Ax = 0 的通解为 $x = c_1\eta_1 + c_2\eta_2$,其中 c_1, c_2 为任意常数.

- (2) 对于 k = 9, 分别就 r(A) = 2 和 r(A) = 1 进行讨论.
- (i) 如果 $\mathbf{r}(A)=2$,则 Ax=0 的基础解系由一个向量构成,又因为 $A(1,2,3)^T=0$,所以 Ax=0 的通解为 $x=c_1(1,2,3)^T$,其中 c_1 为任意常数.
- (ii) 如果 $\mathbf{r}(A) = 1$,则 Ax = 0 的基础解系由两个向量构成,又因为 A 的第一行为 (a,b,c) 且 a,b,c 不全为零,所以 Ax = 0 等价于 $ax_1 + bx_2 + cx_3 = 0$.

不妨设 $a \neq 0$,则 $\eta_1 = (-b, a, 0)^T$, $\eta_2 = (-c, 0, a)^T$ 是 Ax = 0 的两个线性无关的解, 故 Ax = 0 的通解为 $x = c_1\eta_1 + c_2\eta_2$, 其中 c_1, c_2 为任意常数.

六. (本题12分) 设 R^3 的两组基为 $\alpha_1=(1,1,1)^T,\alpha_2=(1,0,-1)^T,\alpha_3=(1,0,1)^T$ 和 $\beta_1=(1,2,1)^T,\beta_2=(2,3,4)^T,\beta_3=(3,4,3)^T$,求由基 $\alpha_1,\alpha_2,\alpha_3$ 到基 β_1,β_2,β_3 的过渡矩阵和 β_1 在基 $\alpha_1,\alpha_2,\alpha_3$ 下的坐标.

解: 设
$$(\beta_1, \beta_2, \beta_3) = (\alpha_1, \alpha_2, \alpha_3)P$$
,则由基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵为
$$P = (\alpha_1, \alpha_2, \alpha_3)^{-1}(\beta_1, \beta_2, \beta_3) = \begin{pmatrix} 2 & 3 & 4 \\ 0 & -1 & 0 \\ -1 & 0 & -1 \end{pmatrix}.$$
 又因为 β_1 在基 $\beta_1, \beta_2, \beta_3$ 下的坐标是 $(1, 0, 0)^T$,所以 β_1 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标为

$$\begin{pmatrix} 2 & 3 & 4 \\ 0 & -1 & 0 \\ -1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}.$$

七. (本题12分) 证明: 二次型 $f = x^T A x$ 在 $x^T x = 1$ 条件下的最大(小)值,等于实对称矩阵 A 的最大(小)特 征值.

证:下证最大值的情形(最小值情形同理可证):

设 A 的 n 个特征值为 $\lambda_1,\lambda_2,\cdots,\lambda_n$,不妨设 λ_n 为其中最大值,且 $Ax_n=\lambda_nx_n$. 因为 A 实对称矩阵,所以对二次型 $f=x^TAx$,存在正交变换 x=Qy,使

$$f = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2 \le \lambda_n (y_1^2 + y_2^2 + \dots + y_n^2).$$

 $f = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2 \le \lambda_n (y_1^2 + y_2^2 + \dots + y_n^2).$ 由于 $x^T x = (Qy)^T (Qy) = y^T (Q^T Q) y = y^T y$,故当 $x^T x = 1$ 时, $y^T y = 1$,即 $y_1^2 + y_2^2 + \dots + y_n^2 = 1$,故 $f \le \lambda_n$. 又因为 $f(x_n) = x_n^T A x_n = x_n^T \lambda_n x_n = \lambda_n x_n^T x_n = \lambda_n$,所以有 $\max f(x) = \lambda_n$.