PResUP: Physiological Response based User Profiling for Opportunistic Emotion Annotation

Surjya Ghosh

Assistant Professor
Intelligent Human Machine Interaction (IHMI) Lab
Dept. of Computer Science and Information Systems

BITS Pilani K K Birla Goa Campus India

Motivation and Background

- Video-based applications
- Emotion Detection Using ML
 Models : A Multi-Modal Approach
 - Integrating Multiple Modalities
 - Emotion ground truth

Typical ML-based emotion detection model

Motivation and Background

Emotion Self-Annotation

- Post-interaction/ post stimuli
 - Fails to capturing subtle intra-video nuances.

Motivation and Background

Emotion Self-Annotation

- Continuous annotation
 - Degrades viewing experience.
 - Increases cognitive load, leading to less accurate emotion labels.

Participant watching videos and annotate continuously

Can we develop an intelligent annotation approach to address this problem?

Capture opportune moments for emotion self-report collection

Can we develop an intelligent annotation approach to address this problem?

- opportune moments
 - are the ones when there is large variation in emotion

Can we develop an intelligent annotation approach to address this problem?

opportune moments

- are the ones when there is large variation in emotion
- rationale
 - if the emotion does not change, no need to annotate
 - in a video, the emotion does not change very frequently

Can we develop an intelligent annotation approach to address this problem?

Capture opportune moments for emotion self-report collection

Opportunistic annotation \rightarrow reduces the cognitive workload and the number of self-annotations

- Experiment apparatus
 - Sensor setup
 - Annotate app

- Experiment apparatus
 - Sensor setup
 - GSR sensor (GSR V1.2, Seeed Studio Grove)
 - Pulse rate sensor (HW-827, World Famous Electronics LLC)

Experiment apparatus

- Annotate app
 - Annotate using arrow keys
 - Red dot → feedback
 - Valence, arousal → 1 to 9

Study procedure

- 36 participants (18M, 18F).
- 8 stimuli videos in random order
- 2-minute blue screen interleaving the videos to avoid the carry-over effect

Video id	Emotion	Valence	Arousal	Duration (in sec.)
1	amusing	med/high	med/high	185
2	amusing	med/high	med/high	173
3	boring	low	low	119
4	boring	low	low	160
5	relaxing	med/high	low	145
6	relaxing	med/high	low	147
7	scary	low	high	197
8	scary	low	high	144

Details of the stimuli videos

Dataset: Pre-processing

Dataset: Descriptive Statistics

Dataset description

Total number of segments	8608
Total number of opportune segments	1303
Total number of inopportune segments	7305
Average (SD) number of segments per users	239 ± 1.29
Duration of every segment	5 Second
Duration of total sensor dataset	11.96 Hr.

Final dataset details

(a) User-wise segment distribution

(b) Segment distribution (total)

PResUP: Physiological Response based User Profiling

- Detects opportune moments
- Reduces continuous emotion selfreport annotation effort by probing at these opportune moments only

The parameterized Elliott activation functions: $f(x) = \frac{px}{1 + |x|}$

p-LSTM architecture used in PResUP

Evaluation: Model Performance

	Probing rate↓	TPR (%) ↑	FPR (%) ↓	LR+↑
TBS	29.89 (0.00)	100.00 (0.00)	100.00 (0.00)	1.00
RPS	17.93 (0.01)	60.28 (0.01)	59.98 (0.01)	1.00
RePS	28.79 (0.01)	99.39 (0.02)	95.77 (0.01)	1.04
PPS	21.59 (3.46)	71.53 (0.23)	9.96 (0.04)	7.18
FBS	5.60 (4.58)	53.23 (0.03)	9.53 (0.17)	5.59
APS	7.18 (5.32)	65.27 (0.24)	15.88 (0.16)	4.11
GBPS	6.68 (4.96)	66.84 (0.24)	14.32 (0.14)	4.67
GPS	7.79 (3.11)	76.21 (0.18)	19.72 (0.11)	3.86
RNNPS	6.08 (3.25)	61.16 (0.38)	14.08 (0.12)	4.34
GRUPS	7.65 (3.60)	67.50 (0.36)	18.83 (0.09)	3.58
CNNPS	6.13 (1.75)	68.80 (0.19)	13.13 (0.08)	5.24
PResUP	5.48 (1.73)	80.07 (0.16)	9.30 (0.05)	8.61

- Probing rate → the average number of probes issued per video for every user
- LR+ = (TPR)/(FPR)

Evaluation: Annotation Quality

Continuous: Original valence (and arousal) present in continuous annotation Probed: Sampled valence (and arousal) using PResUP

- (a) Comparison of valence scores
- (b) Comparison of arousal scores

No significant difference between ground truth continuous annotations and probed values using PResUP

PResUP: Deployment

- Experiment Apparatus
 - Sensor setup
 - Annotate app

- Experiment apparatus
 - Sensor setup (same as earlier)
 - Galvanic skin response sensor (GSR V1.2)
 - Pulse rate sensor (HW-827)

- Experiment apparatus
 - Annotate app (minor change)
 - No continuous annotation
 - Stops video and probes only when the moment is opportune

Please give valence and arousal rating:

Valence (1-9): 7

Arousal (1-9): 6

Resume

- Study procedure
 - 18 participants (13M, 5F)
 - Different from user study I participants.
 - Each subject watched the 8 videos
 - First video → physiological response profile creation

- Available segments for probing: 3912
 - 703 → (predicted as) opportune

Evaluation: Post-deployment

	Probing rate ↓	TPR (%) ↑	FPR (%) ↓	LR+↑
TBS	34.42 (0.00)	100 (0.00)	100 (0.00)	1.00
RPS	23.99 (0.01)	69.79 (0.01)	69.6 (0.01)	1.00
RePS	30.38 (0.10)	98.82 (0.01)	96.25 (0.00)	1.03
PPS	12.16 (1.62)	78.8 (0.18)	9.49 (0.03)	8.30
FBS	5.81 (2.57)	61.62 (0.15)	9.21 (0.02)	6.69
APS	7.77 (5.21)	71.23 (0.20)	12.11 (0.12)	5.88
GBPS	7.65 (4.94)	73.82 (0.20)	11.3 (0.11)	6.53
GPS	8.22 (4.02)	64.77 (0.41)	17.54 (0.18)	3.69
RNNPS	8.09 (3.94)	54.9 (0.36)	21.29 (0.10)	2.58
GRUPS	7.36 (3.77)	51.16 (0.39)	19.7 (0.09)	2.60
CNNPS	9.59 (1.98)	34.82 (0.18)	31.13 (0.06)	1.12
PResUP	5.79 (2.54)	82.26 (0.09)	9.01 (0.06)	9.13

- Probing rate → the average number of probes issued per video for every user
- LR+ = (TPR)/(FPR)

Post-study User Survey

Q1. The self-reports were issued when the emotional variations occurred [1: Strongly disagree, 5: Strongly agree]

- Q2. Rate the interruption caused by the proposed opportunistic annotation method [1: Very high, 5: Very low]
- Q3. Rate the ease of use of the proposed opportunistic annotation interface [1: Very difficult, 5: Very easy]
 - Q4. Rate your user experiences of the annotation interface [1: Very dissatisfying, 5: Very satisfying]

Boxplot showing the scores as obtained from the survey participants for the four survey questions in the questionnaire. Higher values for each of the four questions are desired.

Conclusion and Future Works

- Opportunistic annotation appears to be a feasible alternative of continuous annotation
 - reduces annotation effort
 - does not deteriorate the viewing experience
- Future works
 - Deploying PResUP on mobile platforms Applicability
 - Enhance user experience further

Thank you!!

