# Автоматическая суммаризация новостных статей для русского языка



#### Содержание

- (1) Введение
- 2 Теоретические основы
- 3 Анализ и подготовка данных
- 4 Предварительная обработка данных
- б Метрики для оценки качества суммаризации

- 6 Разработка базовой модели
- 7 Разработка продвинутой модели
- 8 Анализ результатов
- 9 Заключение



### Введение



#### Актуальность темы. NLP и ATS

- Ежедневный рост объема информации
- Важность обработки естественного языка (NLP) в современном мире
- Автоматическая суммаризация текста (ATS) как решение проблемы информационной перегрузки



### Теоретические основы



#### Основные подходы к ATS



#### Extractive summarization

Заключается в выборе ключевых предложений или фраз из исходного текста, которые затем объединяются для создания суммарного текста. Экстрактивные методы просты в реализации и требуют меньше вычислительных ресурсов, однако их результат может быть менее естественным и связным.

#### Abstractive summarization

Предполагает создание нового текста, который передает основную идею исходного документа, используя перефразирование и генерацию новых предложений. Абстрактивная суммаризация более сложна в реализации, но позволяет получить более естественный и читаемый текст.

#### Основные методы предобработки текста

- 1) Приведение к нижнему регистру
- 2 Удаление знаков препинания
- з Удаление стоп-слов
- 4 Лемматизация
- 5 Стемминг
- 6 Токенизация



#### Основные методы ATS

#### Современные методы

Включают модели на основе глубокого обучения, такие как трансформеры. Они позволяют учитывать контекст и генерировать более осмысленные и естественные суммаризации. Методы, основанные на глубоком обучении, характеризуются тем, что они могут создавать краткие содержания, которые по смыслу близки к тем, что составлены человеком.



#### Традиционные методы

Включают частотный анализ и методы на основе графов. Частотный анализ основан на подсчете частоты появления слов в тексте и выборе наиболее частотных слов для создания резюме. Методы на основе графов используют графовые структуры для представления текста и выбора ключевых предложений.

### Анализ и подготовка данных



#### Датасет "Gazeta"

Датасет "Gazeta" представляет собой коллекцию новостных статей с сайта www.gazeta.ru. Каждая запись включает URL новости, полный текст, заголовок, краткое резюме и дату публикации. Датасет разделён на тренировочный, тестовый и валидационный наборы, что позволяет корректно обучить и оценить модель.

```
{
  "url": "https://www.gazeta.ru/science/2020/02/14_a_12960289.shtml",
  "text": "Американское аэрокосмическое агентство NASA огласило
названия четырех космических миссий...",
  "title": "Венера, Ио или Тритон: куда полетит NASA",
  "summary": "В NASA назвали четыре миссии в дальний космос...",
  "date": "2020-02-14 16:39:11"
}
```

#### Статистический анализ данных

Статистика набора данных после перевода текстов в нижний регистр

|           | Train   |         | Validation |         | Test    |         |  |
|-----------|---------|---------|------------|---------|---------|---------|--|
|           | Text    | Summary | Text       | Summary | Text    | Summary |  |
| Pairs     | 52      | 52 400  |            | 5265    |         | 5770    |  |
| UW        | 611 829 | 148 073 | 167 612    | 42 104  | 175 369 | 44 169  |  |
| UL        | 282 867 | 63 351  | 70 210     | 19 698  | 75 214  | 20 637  |  |
| Common UL | 60      | 60 992  |            | 19 138  |         | 20 098  |  |
| Min words | 28      | 15      | 191        | 18      | 357     | 18      |  |
| Max words | 1500    | 85      | 1500       | 85      | 1498    | 85      |  |
| Avg words | 766.5   | 48.8    | 772.4      | 54.5    | 750.3   | 53.2    |  |
| Avg UW    | 419.1   | 41.3    | 424.2      | 46.0    | 415.7   | 45.1    |  |
| Avg UL    | 350.0   | 40.2    | 352.5      | 44.6    | 345.4   | 43.9    |  |
|           |         |         |            |         |         |         |  |

#### Статистический анализ данных

Построим гистограммы распределения длины текстов и заголовков





# Предварительная обработка данных



#### Подготовка текста

#### Удаление лишних символов

Удаление HTML-тегов, пунктуации и приведение текстов к нижнему регистру позволяет добиться унификации текста и упрощения его анализа.

#### Удаление стоп-слов

Стоп-слова — это слова, которые часто встречаются в тексте, но не несут значимой смысловой нагрузки и могут быть исключены из анализа текста. В основном, это предлоги, союзы, местоимения и другие служебные части речи.



#### Токенизация

Токенизация — это процесс разбиения текста на более мелкие единицы, называемые токенами. Этот процесс является фундаментальным шагом в NLP, так как он преобразует текст в формат, который нейронные сети могут анализировать и обучаться на нём.

#### Лемматизация

Лемматизация — процесс приведения словоформы к лемме — её нормальной (словарной) форме

#### Пример предобработанных данных

| N° | Title                                          | Cleaned title                                | Tokenized title                                     | Title without stop words                        | Lematized title                              |
|----|------------------------------------------------|----------------------------------------------|-----------------------------------------------------|-------------------------------------------------|----------------------------------------------|
| 1  | Прогноз не успевает за оттоком                 | прогноз не успевает за<br>оттоком            | [прогноз, не, успевает, за,<br>оттоком]             | [прогноз, успевает,<br>оттоком]                 | [прогноз, успевать, отток]                   |
| 2  | Google закончил поиск                          | google закончил поиск                        | [google, закончил, поиск]                           | [google, закончил, поиск]                       | [google, закончить, поиск]                   |
| 3  | «Фигуранты дела могут<br>давить на свидетелей» | фигуранты дела могут<br>давить на свидетелей | [фигуранты, дела, могут,<br>давить, на, свидетелей] | [фигуранты, дела, могут,<br>давить, свидетелей] | [фигурант, дело, мочь,<br>давить, свидетель] |
| 4  | «С последних традиционно «отжимают» больше»    | с последних традиционно<br>отжимают больше   | [с, последних, традиционно,<br>отжимают, больше]    | [последних, традиционно,<br>отжимают]           | [последний, традиционно,<br>отжимать]        |
| 5  | Третий «Голос» за<br>Градского                 | третий голос за градского                    | [третий, голос, за,<br>градского]                   | [третий, голос, градского]                      | [третий, голос, градский]                    |

# Метрики для оценки качества суммаризации



#### ROUGE

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) - метрика, сравнивающая n-граммы, лексические цепочки и последовательности слов между сгенерированным и эталонным текстами.

ROUGE - 
$$1 = \frac{\sum_{i} Count_{match}(u_i)}{\sum_{i} Count_{ref}(u_i)}$$

ROUGE - 
$$2 = \frac{\sum_{i} Count_{match}(b_i)}{\sum_{i} Count_{ref}(b_i)}$$

$$ext{ROUGE - L} = rac{LCS\left(S,G
ight)}{\max\left(|S|,|G|
ight)}$$

#### **BLEU**

BLEU (Bilingual Evaluation Understudy) - метрика для оценки качества машинного перевода, основанная на количестве совпадающих n-грамм в переведённом машиной и эталонном текстах.

$$ext{BLEU} = ext{BP} \cdot \exp\left(\sum_{n=1}^N w_n \log p_n
ight)$$

$$p_n = rac{\sum_{i=1}^{N} \sum_{n-gram \in c_i} Count(n-gram)_{r_i}}{\sum_{i=1}^{N} \sum_{n-gram \in c_i} Count(n-gram)}$$

$$ext{BP} = \left\{ egin{aligned} 1, \ if \ c > r \ e^{(1-r/c)}, \ if \ c \leq r \end{aligned} 
ight.$$

#### **BERTScore**

BERT (Bidirectional Encoder Representations from Transformers) - метрика, использующая модель BERT при оценке схожести текстов, сравнивая их векторные представления для определения семантической близости.

$$P_{BERT} = rac{1}{|\hat{x}|} \sum_{\hat{x}_j \in \hat{x}} \max_{x_i \in x} \overbrace{x_i^T \hat{x}_j}^{ ext{cosine similarity}}$$
 greedy matching

$$R_{BERT} = rac{1}{|x|} \sum_{x_i \in x} \max_{\hat{x}_j \in \hat{x}} \overbrace{x_i^T \hat{x}_j}^{ ext{cosine similarity}}$$
 greedy matching

$$F_{BERT} = 2 \cdot rac{P_{BERT} \cdot R_{BERT}}{P_{BERT} + R_{BERT}}$$

# Разработка базовой модели



#### Baseline

В качестве базовой модели использовалась модель для экстрактивной суммаризации, которая выбирает первое предложение статьи и использует его в качестве заголовка. Этот подход позволяет получить начальные результаты для сравнения с более сложными моделями.



# Разработка продвинутой модели



#### Выбор модели для суммаризации

Transformer-based архитектуры показали превосходные результаты в задачах обработки естественного языка. Эти модели могут эффективно обрабатывать длинные тексты и сохранять контекст на больших расстояниях, что особенно важно для генерации заголовков. В данной работе была выбрана модель ruT5-base. Этот выбор обоснован её высокой производительностью и возможностью эффективной генерации текстов на русском языке.



# Анализ результатов



#### ROUGE, BLEU u BERTScore

Видим, что удалось улучшить метрики BERTScore и BLEU, а вот значения метрики ROUGE ухудшились. Однако, уменьшение метрики ROUGE не означает снижение качества модели. Разница в метриках указывает на то, что модель ruT5-base лучше передаёт общий смысл и точность соответствия с точки зрения семантики, но менее точно совпадает с эталонными заголовками по конкретным словам и фразам.

| Model     | BERTScore | ROUGE-1-F | ROUGE-2-F | ROUGE-L-F | BLEU     |
|-----------|-----------|-----------|-----------|-----------|----------|
| baseline  | 67.557621 | 6.742888  | 0.742854  | 6.669108  | 1.791344 |
| ruT5-base | 70.542961 | 3.893125  | 0.280185  | 3.856153  | 2.761424 |

### Заключение



#### Резюме выполненной работы

В данной работе была разработана модель для автоматической генерации заголовков русскоязычных новостных статей на основе архитектуры трансформеров. Были рассмотрены различные подходы к суммаризации текста, проведён анализ данных и обучена модель ruT5-base. Качество полученных заголовков было оценено с использованием метрик ROUGE, BLEU и BERTScore. Получила подтверждение эффективность подходов на основе глубокого обучения для задач суммаризации. Модель показала неплохие результаты при генерации заголовков, однако некоторые ошибки указывают на необходимость дальнейшего улучшения и тонкой настройки модели.

#### Направления для будущих исследований

В будущем возможно улучшение модели за счёт использования более объёмных и разнообразных данных, а также применения новых архитектур и методов глубокого обучения для повышения качества генерируемых заголовков.



# Спасибо за внимание!