Chapter Goals

• Data transformation and cleansing techniques.

General Lab Guidlines

- Visualization.
- Modifiable code snippets.

```
# Loading a dataset
# dataset names: "airline", "breast-cancer", "contact-lenses", "cpu",
"cpu.with.vendor", "credit-g", "diabetes", "glass", "hypothyroid",
"ionosphere", "iris.2D", "iris", "labor", "segment-challenge",
"segment-test", "soybean", "supermarket", "unbalanced", "vote",
"weather.nominal", "weather.numeric"
# df = pd.read_csv("data/weather.numeric.csv")
# instances = loader.load_file("data/weather.numeric.arff")
```

Modules & Datasets Setup

```
# @title
!apt-get install default-jdk
!apt install libgraphviz-dev
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
default-jdk is already the newest version (2:1.11-72build2).
0 upgraded, 0 newly installed, 0 to remove and 15 not upgraded.
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
libgraphviz-dev is already the newest version (2.42.2-6).
0 upgraded, 0 newly installed, 0 to remove and 15 not upgraded.
# @title
!pip install pygraphviz
!pip install python-javabridge
!pip install python-weka-wrapper3
!pip install sklearn-weka-plugin
Requirement already satisfied: pygraphviz in
/usr/local/lib/python3.10/dist-packages (1.11)
Requirement already satisfied: python-javabridge in
```

```
/usr/local/lib/python3.10/dist-packages (4.0.3)
Requirement already satisfied: numpy>=1.20.1 in
/usr/local/lib/python3.10/dist-packages (from python-javabridge)
(1.23.5)
Requirement already satisfied: python-weka-wrapper3 in
/usr/local/lib/python3.10/dist-packages (0.2.14)
Requirement already satisfied: python-javabridge>=4.0.0 in
/usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3)
(4.0.3)
Requirement already satisfied: numpy in
/usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3)
(1.23.5)
Requirement already satisfied: packaging in
/usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3)
(23.2)
Requirement already satisfied: configurable-objects in
/usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3)
(0.0.1)
Requirement already satisfied: simple-data-flow in
/usr/local/lib/python3.10/dist-packages (from python-weka-wrapper3)
(0.0.1)
Collecting sklearn-weka-plugin
  Using cached sklearn-weka-plugin-0.0.7.tar.gz (69 kB)
  Preparing metadata (setup.py) ... ent already satisfied: numpy in
/usr/local/lib/python3.10/dist-packages (from sklearn-weka-plugin)
(1.23.5)
Requirement already satisfied: python-weka-wrapper3>=0.2.5 in
/usr/local/lib/python3.10/dist-packages (from sklearn-weka-plugin)
(0.2.14)
Collecting sklearn (from sklearn-weka-plugin)
 Using cached sklearn-0.0.post12.tar.gz (2.6 kB)
 error: subprocess-exited-with-error
  x python setup.py egg info did not run successfully.
   exit code: 1
  └-> See above for output.
  note: This error originates from a subprocess, and is likely not a
problem with pip.
  Preparing metadata (setup.py) ... error: metadata-generation-failed
× Encountered error while generating package metadata.
└-> See above for output.
note: This is an issue with the package mentioned above, not pip.
hint: See above for details.
# @title
#Restart runtime after installing the dependencies
```

```
# @title
import os
import glob
import numpy as np
import pandas as pd
import weka.core.jvm as jvm
from weka.core import converters
import matplotlib.pyplot as plt
# @title
data dir = 'data'
# @title
#!rm -r weka
#!rm -r data
# @title
#ivm.stop()
jvm.start(packages=True)
DEBUG:weka.core.jvm:Adding bundled jars
DEBUG:weka.core.jvm:Classpath=['/usr/local/lib/python3.10/dist-
packages/javabridge/jars/rhino-1.7R4.jar',
'/usr/local/lib/python3.10/dist-packages/javabridge/jars/runnablequeue
.jar',
'/usr/local/lib/python3.10/dist-packages/javabridge/jars/cpython.jar',
'/usr/local/lib/python3.10/dist-packages/weka/lib/core.jar',
'/usr/local/lib/python3.10/dist-packages/weka/lib/python-weka-
wrapper.jar'
'/usr/local/lib/python3.10/dist-packages/weka/lib/mtj.jar',
'/usr/local/lib/python3.10/dist-packages/weka/lib/weka.jar',
'/usr/local/lib/python3.10/dist-packages/weka/lib/arpack combined.jar'
DEBUG:weka.core.jvm:MaxHeapSize=default
DEBUG:weka.core.jvm:Package support enabled
# @title
# Preparing Datasets
if not os.path.exists(data dir):
     !mkdir $data dir
    for file in ['airline.arff', 'breast-cancer.arff', 'contact-
lenses.arff', 'cpu.arff', 'cpu.with.vendor.arff', 'credit-g.arff',
'diabetes.arff', 'glass.arff', 'hypothyroid.arff', 'ionosphere.arff',
'iris.2D.arff', 'iris.arff', 'labor.arff', 'segment-challenge.arff',
'segment-test.arff', 'soybean.arff', 'supermarket.arff', 'unbalanced.arff', 'vote.arff', 'weather.nominal.arff',
'weather.numeric.arff',]:
'https://git.cms.waikato.ac.nz/weka/weka/-/raw/main/trunk/wekadocs/
data/' + file
```

```
!wget -P $data dir $url
    loader =
converters.Loader(classname="weka.core.converters.ArffLoader")
converters.Saver(classname="weka.core.converters.CSVSaver")
    for file in glob.glob(os.path.join(data dir, '*.arff')):
        dataset = loader.load file(file)
        filename, file extension = os.path.splitext(file)
        saver.save file(dataset, filename + '.csv')
    !wget -P $data dir https://raw.githubusercontent.com/Rytuo/ITMO-
CT/master/Others/AdvancedML/data/OpenML/data/1438.arff
    !rm -r weka
# @title
import weka.core.packages as packages
packages.install_package("simpleEducationalLearningSchemes")
packages.install package("generalizedSequentialPatterns")
packages.install package("classAssociationRules")
packages.install_package("NNge")
packages.install package("LibSVM")
from weka.core.converters import Loader
loader = Loader(classname="weka.core.converters.ArffLoader")
```

8.1 Attribute Selection

Scheme-independent seletion

Fliteration. By statistical correlation.

```
import numpy as np
import pandas as pd
from sklearn.datasets import make_classification

# Create a synthetic dataset
X, y = make_classification(n_samples=1000, n_features=10, random_state=42)
# Create a DataFrame from the features
df = pd.DataFrame(X, columns=[f"feature_{i}" for i in range(X.shape[1])])

# Calculate the correlation matrix
correlation_matrix = df.corr()
```

```
feature 0 feature 1 feature 2 feature 3 feature 4
feature 5
feature 0
           1.000000
                      0.058172
                                 0.935882
                                            0.012282
                                                       0.027394
0.016197
feature 1
           0.058172
                      1.000000
                                 0.062426
                                            0.022266 -0.031579
0.026735
feature 2
                      0.062426
                                 1.000000
                                            0.014551
           0.935882
                                                       0.012872 -
0.000606
           0.012282 0.022266
feature 3
                                 0.014551
                                            1.000000
                                                      -0.016467 -
0.002439
feature 4
           0.027394 -0.031579
                                 0.012872 -0.016467
                                                       1.000000
0.010388
feature 5
           0.016197
                     -0.026735
                                -0.000606
                                          -0.002439
                                                      -0.010388
1.000000
feature 6
          -0.779008 -0.059525
                                -0.949966
                                          -0.015008
                                                       0.001379
0.015440
feature 7
          -0.028237 0.037916 -0.013006
                                            0.032063 -0.039584
0.017981
feature 8
          -0.701895 -0.024690
                                -0.405943 -0.002441 -0.045036 -
0.043242
feature 9
          -0.035538 -0.048878
                                -0.025878
                                          -0.043532
                                                       0.041455 -
0.03653\overline{5}
                                feature 8
          feature 6 feature 7
                                           feature 9
feature 0
          -0.779008
                     -0.028237
                                -0.701895
                                           -0.035538
feature 1
          -0.059525
                      0.037916
                                -0.024690
                                           -0.048878
          -0.949966 -0.013006
                                -0.405943
                                           -0.025878
feature 2
feature 3
          -0.015008
                      0.032063
                                -0.002441
                                           -0.043532
feature 4
           0.001379
                     -0.039584
                                -0.045036
                                            0.041455
feature 5
           0.015440
                     -0.017981
                                -0.043242
                                          -0.036535
           1.000000 -0.001887
feature 6
                                 0.100172
                                            0.014548
feature 7
          -0.001887
                      1.000000
                                 0.046952 -0.039575
           0.100172
                      0.046952
feature 8
                                 1.000000
                                            0.039866
feature 9
           0.014548 -0.039575
                                 0.039866
                                            1.000000
# Drop features by a threshold
# Set a correlation threshold (you can adjust this)
correlation_threshold = 0.7
# Find uncorrelated features
uncorrelated features = set()
for i in range(len(correlation matrix.columns)):
    for j in range(i):
       if abs(correlation matrix.iloc[i, j]) < correlation threshold:</pre>
           colname = correlation matrix.columns[i]
           uncorrelated_features.add(colname)
# Remove the uncorrelated features
X selected = df.drop(uncorrelated features, axis=1).values
```

```
# Now X_selected contains the features after removing highly
correlated ones
print(f"Original number of features: {X.shape[1]}")
print(f"Number of features after feature selection:
{X_selected.shape[1]}")
Original number of features: 10
Number of features after feature selection: 1
```

Wrapper. By a machine learning algorithm.

```
# Train a linear regression model
# Select top k features by coefficients weights
import numpy as np
from sklearn.datasets import make regression
from sklearn.linear model import LinearRegression
from sklearn.model selection import train test split
from sklearn.metrics import mean squared error
# Create a synthetic regression dataset
X, y = make regression(n samples=1000, n features=10, noise=0.1,
random state=42)
# Split the data into training and testing sets
X train, X test, y train, y test = train test split(X, y,
test size=0.2, random state=42)
# Train a linear regression model
regressor = LinearRegression()
regressor.fit(X train, y train)
# Get the coefficients and corresponding feature names
coefficients = regressor.coef
feature names = [f"feature {i}" for i in range(X.shape[1])]
coefficients
# Create a dictionary mapping feature names to their coefficients
feature coefficients = dict(zip(feature names, coefficients))
# Sort features based on their coefficients
sorted features = sorted(feature coefficients.items(), key=lambda x:
abs(x[1]), reverse=True)
# Select the top k features based on absolute coefficient values
k = 3
selected features = sorted features[:k]
```

```
selected_features
[('feature_6', 76.33123133223371),
  ('feature_3', 75.31140259252764),
  ('feature_9', 58.29257430695129)]
```

Searching the Attribute Space

Recursive Feature Elimination

```
# This is achieved by fitting the given machine learning algorithm
used in the core of the model
# ranking features by importance,
# discarding the least important features,
# and re-fitting the model.
# This process is repeated until a specified number of features
remains.
import pandas as pd
from sklearn.model selection import train test split
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature selection import RFE
from sklearn.metrics import accuracy score
# Set a random seed for reproducibility
np.random.seed(42)
# Step 1: Generate a dummy dataset
def generate dummy data(n samples=1000):
    data = {
        'feature1': np.random.rand(n samples),
        'feature2': np.random.rand(n samples),
        'feature3': np.random.rand(n samples),
        'feature4': np.random.rand(n samples),
        'target': np.random.choice([0, 1], size=n samples)
    }
    return pd.DataFrame(data)
# Step 2: Split the dataset into training and testing sets
def split data(df):
    X = df.drop('target', axis=1)
    y = df['target']
    return train test split(X, y, test size=0.2, random state=42)
# Step 3: Build a model and evaluate it
def train and evaluate model(X train, X test, y train, y test):
    model = RandomForestClassifier(n_estimators=100, random state=42)
    model.fit(X train, y train)
```

```
v pred = model.predict(X test)
    accuracy = accuracy score(y test, y pred)
    return accuracy
# Step 4: Run the RFE feature selection
def rfe feature selection demo(df, num features to select=1):
    X_train, X_test, y_train, y_test = split_data(df)
    model = RandomForestClassifier(n estimators=100, random state=42)
    # Create the RFE model and select features
    rfe = RFE(model, n features to select=num features to select)
    X train rfe = rfe.fit transform(X train, y train)
    X test rfe = rfe.transform(X test)
    # Train and evaluate the model on the selected features
    model.fit(X train rfe, y train)
    y_pred = model.predict(X_test_rfe)
    accuracy = accuracy score(y test, y pred)
    print(f'Selected Features: {X train.columns[rfe.support ]}')
    print(f'Accuracy with Selected Features: {accuracy:.4f}')
# Step 5: Run the RFE feature selection demo
dummy data = generate dummy data()
rfe feature selection demo(dummy data, num features to select=2)
Selected Features: Index(['feature2', 'feature4'], dtype='object')
Accuracy with Selected Features: 0.5600
```

Scheme-specific Selection

Task 8.1.1 Demonstrate the following quote from the book:

A simple method for accelerating scheme-specific search is to preselect a given number of attributes by ranking them first using a criterion like the information gain and discarding the rest before applying scheme-specific selection.

e.g. ou can combine the statistical correlation with recursive feature elimination shown to you.

8.2 Discretizing Numeric Attributes

Unsupervised equal-interval binning is demonstrated early.

Task 8.2.1 Search and demonstrate the following unsupervised discretization method.

the number of bins is chosen in a data-dependent fashion by setting it to the square root of the number of instances. This method is called *proportional k-interval discretization*.

Entropy-based

```
# 'information' is the amount of information required to specify the
individual values of yes and no given the split.
# We seek a discretization that makes the subintervals as pure as
possible
# hence, we choose to split at the point where the information value
is smallest.
# in other words, where we don't need to specify a lot to reach yes
and no instances.
import numpy as np
import pandas as pd
from sklearn.preprocessing import KBinsDiscretizer
# Generate some example numeric data
np.random.seed(42)
numeric_data = np.random.rand(100, 1) * 10 # Replace this with your
own numeric data
# Set the number of bins (adjust this based on your dataset)
num bins = 5
# Create a KBinsDiscretizer with 'entropy' as the criterion
kbd = KBinsDiscretizer(n bins=num bins, encode='ordinal',
strategy='uniform', criterion='entropy')
# Fit and transform the numeric data
discretized_data = kbd.fit_transform(numeric_data)
# Convert the result to a DataFrame for better visualization
discretized df = pd.DataFrame(discretized data,
columns=['Discretized'])
# Display the original and discretized data side by side
print(pd.DataFrame(np.hstack([numeric data, discretized data]),
columns=['Original', 'Discretized']))
```

8.3 Projections

Principal Component Analysis (PCA)

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
```

```
# Load the Iris dataset
iris = load iris()
X = iris.data
v = iris.target
feature_names = iris.feature_names
# 4 features
X.shape
(150, 4)
# Standardize the data (important for PCA)
scaler = StandardScaler()
X std = scaler.fit transform(X)
# Apply PCA
pca = PCA(n components=2)
X_pca = pca.fit_transform(X_std)
# 2 features in reduced data
X pca.shape
(150, 2)
# Create a DataFrame for visualization
df_pca = pd.DataFrame(data=X_pca, columns=['Principal Component 1',
'Principal Component 2'1)
df pca['Target'] = y
# Visualize the results
plt.figure(figsize=(10, 6))
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.title('PCA of Iris Dataset')
plt.scatter(df pca['Principal Component 1'], df pca['Principal
Component 2'], c = df pca['Target'])
plt.show()
```


Task 8.3.1 Train a machine learning model before and after PCA. Compare evaluation metrics.

8.4 Sampling

```
# Reservoir Sampling

# Generating a random sample of an input stream without storing all
the instances beforehand
# Fill the reservoir
# The next one of stream will be included in the sample with
probability r/(r+1)

import random

def reservoir_sampling(stream, k):
    Perform reservoir sampling on a data stream.

Parameters:
    - stream: An iterable representing the data stream.
    - k: The number of elements to sample.

Returns:
    A list of k sampled elements.
```

```
0.00
    reservoir = []
    # Fill the reservoir with the first k elements
    for i, element in enumerate(stream):
        if i < k:
            reservoir.append(element)
        else:
            # Randomly replace elements in the reservoir
            j = random.randint(0, i)
            if j < k:
                reservoir[j] = element
    return reservoir
# Example usage
data_stream = range(1, 11) # Example data stream from 1 to 100
sample size = 2
reservoir_sampling(data_stream, sample_size)
[6, 8]
```

8.5 Cleansing

Task 8.5.1 Demonstrate the following.

decision trees induced from training data can often be simplified, without loss of accuracy, by discarding misclassified instances from the training set, relearning, and then repeating until there are no misclassified instances.

You may find code snippets from the previous lab useful.

```
# Media regression

# Robust against outliers

import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt

# Generate some example data
np.random.seed(42)
X = np.random.rand(100, 1) * 10
y = 2 * X + 3 + np.random.normal(0, 1, size=(100, 1))

# Add some outliers to the data
```

```
outliers = np.random.randint(0, 100, 10)
y[outliers] += 20 # Introduce outliers
# Perform L1 median regression
X with intercept = sm.add constant(X)
median_model = sm.RLM(y, X_with_intercept,
M=sm.robust.norms.TrimmedMean())
median_results = median_model.fit()
# Get the regression line parameters
intercept, slope = median results.params
# Visualize the data and the regression line
plt.scatter(X, y, label='Data')
plt.plot(X, intercept + slope * X, color='red', label='L1 Median
Regression Line')
plt.title('L1 Median Regression')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.show()
```

L1 Median Regression

Task 8.5.2 Make a regression more robust against outliers by one of the following:

- Train a regression model with absolute-value distance measure instead of the usual squared one.
- Train a regression line and then eliminate the 10% of points that lie furthest from the line.

Compare and evaluate with the standard approach.

8.6 Transforming Multiple Classes to Binary Ones

```
# transform multiclass problems into multiple two-class one
# the dataset is decomposed into several two-class problems
# the algorithm is run on each one
# outputs of the resulting classifiers are combined
from sklearn.datasets import load iris
from sklearn.model selection import train test split
from sklearn.svm import SVC
from sklearn.multiclass import OneVsRestClassifier
# Load the Iris dataset
iris = load iris()
X, y = iris.data, iris.target
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y,
test size=0.2, random state=42)
# Create a Support Vector Machine (SVM) classifier
svm classifier = SVC(kernel='linear', C=1.0)
# One-vs-Rest strategy
ovr classifier = OneVsRestClassifier(svm classifier)
# Train the classifier using the one-vs-rest strategy
ovr classifier.fit(X train, y train)
# Make predictions
y pred ovr = ovr classifier.predict(X test)
# print
y pred ovr
# Observe we have 3 classes
```

```
array([1, 0, 2, 1, 1, 0, 1, 2, 1, 1, 2, 0, 0, 0, 0, 2, 2, 1, 1, 2, 0, 2, 2, 2, 2, 2, 2, 2, 0, 0])
```

Task 8.6.1 Try *One Vs One* strategy with by substituting line: ovo_classifier = OneVsOneClassifier(svm_classifier). Evaluate and compare results.