Diffusionsmodellierung der Reaktionszeiten von COVID-19 Patient*innen: Einflüsse der mentalen Fatigue

Thore Pingpank

25. Juli 2022

Inhaltsverzeichnis

Einleitung

Relevanz

Forschungsziel

Theoretischer und Empirischer Hintergrund

Mentale Fatigue

Psychomotor Vigilance Test

Methodik

Diffusionsmodellierung

Stichprobe

Tests und Skalen

Auswertungsplan

Was ist mentale Fatigue?

Fischler (1999)

"fatigue is the decline in performance that occurs in any prolonged or repeated task […] However, it is also [experienced as] a subjective sensation"

Beschreibung

"Ich fühle mich, als hätte ich einen Nebel im Gehirn." "Ich fühle mich matt im Denken." -Einleitung

Inhaltsverzeichnis

Einleitung

Relevanz

Forschungsziel

Theoretischer und Empirischer Hintergrund

Mentale Fatigue Psychomotor Vigilance Test

Methodik

Diffusionsmodellierung Stichprobe Tests und Skalen

Auswertungsplan

Fatigue als Langzeitfaktor

- ► (akute) Mentale Fatigue ist wahrscheinlich allen Menschen bekannt, starke subjektive Qualität
- ▶ Es gibt weiterhin noch eine körperliche Fatigue-Komponente
- ▶ Das dauerhafte Auftreten der subjektiven Einschränkungen wird auch als Chronisches Fatigue Syndrom (CFS) bezeichnet
- Friedman et al. (2021): Bislang kein Auslöser oder Diagnosetool zu finden

Fatigue und Infektionserkrankungen

- ➤ CFS gilt als häufige Langzeitfolge von einer COVID-19-Erkrankung (Poenaru et al., 2021).
- ► Nach Islam et al. (2020) spielte CFS auch in vergangenen Epidemien (SARS, H1N1, Ebola) eine große Rolle
- ➤ Zahl der Infizierten ist enorm, die gesellschaftlichen Auswirkungen sind demnach entsprechend groß

— Einleitung

Forschungsziel

Inhaltsverzeichnis

Einleitung

Relevanz

Forschungsziel

Theoretischer und Empirischer Hintergrund

Mentale Fatigue
Psychomotor Vigilance Test

Methodik

Diffusionsmodellierung

Stichprobe

Tests und Skalen

Auswertungsplan

— Einleitung

Forschungsziel

Aktuelle Probleme

- ► Kognitive Mechanismen weitestgehend unklar
- Objektive und subjektive Daten unterscheiden sich
- Es gibt kaum verlässliche diagnostische Verfahren
- ightarrow es müssen generalisierbare und robuste Designs gefunden werden (van der Linden, 2011)

Forschungsziel: Diagnostik

- ▶ Problem hier: Zusammenhang zwischen subjektiven und objektiven Daten ist nicht so gut, wie man sich wünschen würde
- Es wird dringend ein diagnostisches Verfahren gesucht, welches geeignet ist, Fatigue zu "messen"

Forschungsziel: Diagnostik

- Problem hier: Zusammenhang zwischen subjektiven und objektiven Daten ist nicht so gut, wie man sich wünschen würde
- Es wird dringend ein diagnostisches Verfahren gesucht, welches geeignet ist, Fatigue zu "messen"
- Standardverfahren im Bereich Ermüdbarkeit ist der psychomotor vigilance test (PVT), Daten sind Reaktionszeiten
- Sehr einfache Aufgabe, sehr einfache Durchführung
- ightharpoonup Häufige Auswertung: Mittelwertsbildung ightarrow Daten gehen verloren

Forschungsziel: Kognitive Mechanismen

- ▶ Idee: Reaktionszeiten könnten ein geeignetes Mittel in Diagnostik sein, wenn man es schafft sie differenzierter auszuwerten
- ► Hier Diffusionsmodell nach Ratcliff (1978)

Forschungsziel: Kognitive Mechanismen

- Gleichzeitig ist Forschung zu den Mechanismus hinter mentaler Fatigue dringend erforderlich
- nach Voss et al. (2013) kann der Einbezug der Verteilungen nicht nur Unterschiede in der Performanz aufzeigen, sondern auch wie ein Unterschied in kognitiven Begriffen beschrieben werden kann.
- ► Für den Einbezug von Reaktionszeiten braucht man ein theoretisches Modell über deren Zustandekommen.

Fragestellungen

- 1. Lässt sich das Verhalten der Versuchspersonen im PVT durch Diffusionsmodellierung darstellen?
- 2. Zeigt sich ein Unterschied in den Parametern zwischen Patienten mit hoher reporteter Fatigue und denen mit niedriger Fatigue?
- Zeigen sich Korrelationen zwischen Parametern und subjektiven Fatigue-Maßen? (Sind die Parameter den Reaktionszeiten überlegen?)
- 4. Wie hoch ist die prädiktive Validität der Parameterschätzungen?

└─ Theoretischer und Empirischer Hintergrund └─ Mentale Fatigue

Inhaltsverzeichnis

Einleitung

Relevanz

Forschungsziel

Theoretischer und Empirischer Hintergrund

Mentale Fatigue

Psychomotor Vigilance Test

Methodik

Diffusionsmodellierung

Stichprobe

Tests und Skalen

Auswertungsplan

└ Mentale Fatigue

Definition

Balkin & Wesensten (2011)

"The word fatigue has been defined so inconsistently and applied so loosely in the scientific literature that its meaning is now obscure."

- ► Fatigue ist seit über 100 Jahren Forschungsobjekt
- Bis heute ist es schwierig, eine einheitliche Definition zu finden.
- ➤ Van der Linden (2011): komplizierter Zustand, der neben Veränderungen in der Informationsverarbeitung sowohl motivationale, emotionale und behaviorale Aspekte umfasst
- ► Wie damit umgehen?

Charakterisierung

- ▶ van der Linden, 2011: Drang, keine weitere Mühe mehr in eine Aufgabe zu investieren
- ▶ Haupteigenschaft sind Aufmerksamkeitsprobleme, welche die Beziehung zwischen Fatigue und verringerter Performanz mediieren sollen (Hancock & Desmond, 2001).
- ▶ Insbesondere exekutive Kontrolle ist betroffen, w\u00e4hrend automatische Verarbeitung relativ unempfindlich ist (van der Linden et al., 2003)

☐ Theoretischer und Empirischer Hintergrund ☐ Mentale Fatigue

Abgrenzung

Ackerman (2011) argumentiert, dass mentale bzw. kognitive Anstrengung sich klar von körperlicher Anstrengung unterscheidet. Somit ist auch die Unterscheidung in kognitive Fatigue und mentale Fatigue angemessen.

└ Mentale Fatigue

Abgrenzung

Ackerman (2011) argumentiert, dass mentale bzw. kognitive Anstrengung sich klar von körperlicher Anstrengung unterscheidet. Somit ist auch die Unterscheidung in kognitive Fatigue und mentale Fatigue angemessen.

- ► Tendenz zur Vermischung von sleepiness und fatigue
- Begriffe sind in der echten Welt auch häufig konfundiert
- Auf Konstruktebene gibt es aber zunächst nicht notwendigerweise einen Grund

└ Mentale Fatigue

Abgrenzung zur Müdigkeit (2)

Nach Balkin & Wesensten (2011)

Mentale Fatigue

Subjektive Fatigue vs. Performanz

- ightharpoonup Objektive (Leistungseinbrüche) und Subjektive (Anstrengung) Fatigue zeigen keinen befriedigenden Zusammenhang ightarrow für Diagnostik unbefriedigend
- ► Mögliche Erklärung: Leistungsabfall kann möglicherweise gegen kognitive Anstrengung kompensiert werden
- ► Im Störungsbild spielt hauptsächlich die subjektive Fatigue eine Rolle
- ▶ Dann würde auch die Kompensationsstrategie eine Rolle spielen

└ Mentale Fatigue

Kompensationsstrategien

- ▶ Bei einer Aufgabe unter hoher exekutiver Kontrolle müsste eine Fatigue klare Leistungsdefizite erzeugen.
- ► Empirisch können VPn die Leistung erstandlich lange aufrecht erhalten

Mentale Fatigue

Kompensationsstrategien

- ▶ Bei einer Aufgabe unter hoher exekutiver Kontrolle müsste eine Fatigue klare Leistungsdefizite erzeugen.
- Empirisch können VPn die Leistung erstandlich lange aufrecht erhalten
- Kompensationsstrategien sorgen für methodische Schwierigkeiten, weil Fehlerzahlen und Reaktionszeiten nicht ausreichen.
- Subgruppen mit verschiedenen Strategien könnten sich ausmitteln (Speed-Accuracy-Tradeoff)

Mentale Fatigue

Kompensationsstrategien

- ▶ Bei einer Aufgabe unter hoher exekutiver Kontrolle müsste eine Fatigue klare Leistungsdefizite erzeugen.
- Empirisch können VPn die Leistung erstandlich lange aufrecht erhalten
- Kompensationsstrategien sorgen für methodische Schwierigkeiten, weil Fehlerzahlen und Reaktionszeiten nicht ausreichen.
- Subgruppen mit verschiedenen Strategien könnten sich ausmitteln (Speed-Accuracy-Tradeoff)
- Hier Diffusionsmodellierung ggf. vielversprechend
- Mögliche Kompensationsstrategien von Hockey (1997)
 könnten Möglichkeiten zur Parameterinterpretation bieten

Psychomotor Vigilance Test

Inhaltsverzeichnis

Einleitung

Relevanz

Forschungsziel

Theoretischer und Empirischer Hintergrund

Mentale Fatigue

Psychomotor Vigilance Test

Methodik

Diffusionsmodellierung

Stichprobe

Tests und Skalen

Auswertungsplan

- Theoretischer und Empirischer Hintergrund
 - └─Psychomotor Vigilance Test

Psychomotor Vigilance Test

- 1. Proband*innen sehen weißes Kreuz
- 2. nach n (randomisiert) Sekunden erscheint ein roter Counter
- 3. dieser Counter wird gestoppt, wenn ein Mausklick erfolgt
- 4. die resultierende Zahl ist die Reaktionszeit
- Repeat

- Vorteil: Keine Speed-Accuracy-Tradeoffs, einfach
- ► Einwand: mentale Fatigue betrifft eher exekutive Kontrolle als Reaktionszeiten
- Replik: Vigilanz aufrecht erhalten ist auch anstrengend und benötigt exekutive Kontrolle

Inhaltsverzeichnis

Einleitung

Relevanz

Forschungsziel

Theoretischer und Empirischer Hintergrund

Mentale Fatigue Psychomotor Vigilance Test

Methodik

Diffusionsmodellierung

Stichprobe Tosts und Skal

lests und Skalen

Auswertungsplan

– Methodik

Diffusionsmodellierung

Warum Diffusionsmodellierung?

- Ziel: Nutzung der gesamten Verteilung der Reaktionszeiten statt Mittelwert
- Reaktionszeiten sind oft nicht normalverteilt sondern zeigen "heavy tails"
- Möglicherweise plausibler als linare Modelle
- ➤ Ratcliff & Van Dongen (2011) zeigt erfolgreiches Anwenden von Diffusionsmodell auf PVT-Daten

Methodik

☐ Diffusionsmodellierung

Genauere Betrachtung der Reaktionszeit

- ▶ Die Reaktionszeit ist $RT = T_d + T_{er}$
- $ightharpoonup T_{er} = T_a + T_b$, encoding time und response execution sind im Modell nicht trennbar
- Erster Modellparameter: T_{er} variiert zwischen Trials in einer Gleichverteilung mit Range s_t
- T_d ist charakterisiert durch einen Wienerprozess, der auch Molekularbewegungen beschreibt (daher Diffusionsmodell)

– Methodik

— Diffusionsmodellierung

Grundidee der Diffusionsmodellierung

Response A

Response B

Nach Ratcliff (1987), innerhalb eines Trials:

- Informationen sammeln sich bis zur Entscheidungsschwelle
- Dazu kommen normalverteilte random effects
- Gleicher Stimulus kann zu verschiedenen Zeiten führen! (Video)

_ Methodik

☐ Diffusionsmodellierung

One-choice diffusion model

modifiziert von Ratcliff & Van Dongen (2011)

- Es gibt nur eine obere Schranke, keinen *bias*, der Startpunkt der Aktivierung ist 0
- ▶ Validität teilweise durch Ratcliff & Strayer (2014) untersucht

Mathematische Modellierung eines Trials

- Sei A_n das Aktivierungslevel zum Zeitpunkt n. Es gilt $A_0 = 0$.
- ▶ Entscheidung für Tastendruck erfolgt, wenn $A_n > a$, wobei a die Schwelle darstellt. n ist dann die Reaktionszeit.
- Ab Beginn des Entscheidungsprozesses wird Evidenz akkumuliert. Dies geschieht alle δ_t ms (wird fixiert)
- ▶ A_{n+1} verändert sich dann gegenüber A_n jeweils um den Drift V_n . Die V_n sind (bei äquivalenten Stimuli und Bedingungen) u.V. und normalverteilt mit M = v, $SD = \eta$.

L Methodik

☐ Diffusionsmodellierung

Vom Modell zur Verteilung

- ightharpoonup Reaktionszeiten sind gemeinsame Verteilungen der T_{er} und T_d
- $ightharpoonup T_{er}$ ist eindeutig durch s_t festgelegt
- ▶ Gibt man die Modellparameter a, v, η an, ist die Verteilung von T_d (bei Festlegung einer Diffusionskonstante) exakt festgelegt, und damit die Verteilung der Reaktionszeiten

Von der Verteilung zum Modell

- Viele Durchgänge liefern empirische Verteilungsfunktion der Reaktionszeiten
- ► Auf dieser Grundlage werden die Modellparameter geschätzt
- ▶ Das Verfahren zur Parameterschätzung wird hier ausgespart. Für einen Überblick siehe Ratcliff (1978)

Grundsätzlich gibt es aber drei verschiedene Optimierungskriterien: Maximum-Likelyhood, χ^2 und Kolmogorow-Smirnow. Letzeres ist Kompromiss mit guter Robustheit und mittlerer Trialzahl

Psychologische Interpretation der Parameter

Nach Voss et al. (2013)

- v: Geschwindigkeit der Informationsaufnahme (Performanz)
 - ► Zwischen Bedingungen: Aufgabenschwierigkeit
 - Zwischen Personen: Individuelle kognitive oder perzeptionelle Geschwindigkeit
- a: Anzahl der Informationen, welche zur Reaktion benötigt werden → Reaktionsstil, hohes a bedeutet konservativ
- ► T_{er}: Enkodierung, Konfiguration Arbeitsgedächtnis, Motoraktivität, z.B. auch "Task switching"

└ Diffusionsmodellierung

Modellannahmen

Aus dem dargestellten Modell ergeben sich Modellannahmen

- Kontinuierliche Suche
- Singulärer Vorgang
- Konstante Parameter

L Methodik

☐ Diffusionsmodellierung

Time-on-Task-Effekte

- Großes Problem, da nicht im klassischen Diffusionsmodell modelliert
- Andererseits: Andere Studien haben in deutlich längeren PVT-Sitzungen dennoch gute Modellpassungen gefunden
- ► Im 5-Minuten-PVT vielleicht zu vernachlässigen

☐ Diffusionsmodellierung

Time-on-Task-Effekte

- Großes Problem, da nicht im klassischen Diffusionsmodell modelliert
- Andererseits: Andere Studien haben in deutlich längeren PVT-Sitzungen dennoch gute Modellpassungen gefunden
- ► Im 5-Minuten-PVT vielleicht zu vernachlässigen
- Eine andere Rechtfertigung könnte darauf Bezug nehmen, dass die Reihenfolge der Ergebnisse für die Verteilung keine Rolle spielt
- Das Modell verliert dann jedoch an Glaubwürdigkeit

Inhaltsverzeichnis

Einleitung

Relevanz

Forschungsziel

Theoretischer und Empirischer Hintergrund

Mentale Fatigue

Psychomotor Vigilance Test

Methodik

Diffusionsmodellierung

Stichprobe

Tests und Skalen

Auswertungsplan

— Methodik

Stichprobe

COVIDOM-Studie

Beschreibung

Eine populationsrepräsentative Studie zu Folgeerkrankungen von COVID-19 in Schleswig-Holstein

- Sehr heterogene Stichprobe
- n > 1000
- ▶ Proband*innen durchlaufen etwa 4 Stunden lang Untersuchungen in verschiedensten Bereichen
- Im Praktikum für 5 Monate Testungen durchgeführt

Stichprobe

Ausschluss

Neben dem Ausschluss bei unvollständigen Daten:

- Mentale Fatigue bei diversen Vorerkrankungen, u.A. auch Depression
- Sollte ein Ausschluss erfolgen?
- Bislang geht es in dieser Studie nicht um die Effekte von COVID-19, sondern Grundlagen

LTests und Skalen

Inhaltsverzeichnis

Einleitung

Relevanz Forschungsziel

Theoretischer und Empirischer Hintergrund

Mentale Fatigue Psychomotor Vigilance Test

Methodik

Diffusionsmodellierung Stichprobe

Tests und Skalen

Auswertungsplan

Lests und Skalen

PVT

- Programm von Dipl. Psych. Julius Welzel
- ▶ 50 Durchgänge, zuvor Probedurchgang

- 1. Proband*innen sehen weißes Kreuz
- 2. nach n (randomisiert) Sekunden erscheint ein roter Counter
- 3. dieser Counter wird gestoppt, wenn ein Mausklick erfolgt
- 4. die resultierende Zahl ist die Reaktionszeit
- 5. Repeat

Lests und Skalen

Aus dem PVT zu extrahierende Maße

Zum Vergleich

- Mittelwert
- Median
- ► Anzahl *lapses* (*RT* > 500*ms*)
- ► Mittelwert der besten 10 Versuche
- Mittelwert der schlechtesten 10 Versuche

Tests und Skalen

Fatigue-Maße

Es handelt sich um Maße der chronischen Fatigue, also Bezug auf die vergangenen Wochen.

- Multidimensional Fatigue Inventory (MFI)
- Functional Assessment of Chronic Illness Therapy Fatigue (FACIT-F)

- ► MFI hat Subskalen, unter anderem "mentale Fatigue". Diese soll als Zielvariable verwendet werden.
- Nur 4 Items, für korrelative Analyse: Rechtfertigung des gesamten Fragebogens

└─ Methodik └─ Auswertungsplan

Inhaltsverzeichnis

Einleitung

Kelevanz

Theoretischer und Empirischer Hintergrund

Mentale Fatigue Psychomotor Vigilance Test

Methodik

Diffusionsmodellierung Stichprobe Tests und Skalen

Auswertungsplan

Möglicher Vortest

- Modellierung der ersten Hälfte der Durchgänge gegen die zweite Hälfte der Durchgänge
- Kolmogorow-Smirnow-Statistik: Wie stark unterscheiden sich die Verteilungen?
- ▶ Möglicher Hinweis auf das Ausmaß der time-on-task-Effekte auf Parameterschätzungen
- Anzahl der Versuche zu klein, daher Untersuchung der Verteilungen in Super-Subjekten

L Auswertungsplan

Supersubjects

- ► Pro Person zu wenig Durchgänge, Zusammenfassung um zusätzliche Analysen durchzuführen
- ► Es muss irgendwie gerechtfertigt werden, dass ähnliche "Mechanismen" vorliegen → schnell Validitätsprobleme
- ► (Problem: Für Kompensationsstrategien ist dies nicht möglich...)
- Vorschlag Voss et al. (2011): Auf Basis ähnlicher Verteilungen

Auswertungsprozedur

- ▶ Datenvorbehandlung (Ausreißer mit RT < 200ms und RT > 5000ms werden entfernt
- Wahl eines Optimierungskriteriums (hier: KS)
- Pro Person werden Parameterschätzungen durchgeführt (wenig Durchgänge, aber vereinfachtes Modell)
- Pro Person wird der Modellfit bestimmt. Ist dieser in 95% der Fälle zufriedenstellend ist man zufrieden, sonst wird das Modell verworfen oder angepasst.
- Personen mit mangelndem fit werden ausgeschlossen (kritische Analyse!)
- Die Parameter k\u00f6nnen dann f\u00fcr Korrelationsanalysen und Inferenzstatistik eingesetzt werden

Recap: Fragestellungen (1)

- ► Lässt sich das Verhalten der Versuchspersonen im PVT durch Diffusionsmodellierung darstellen?
- ► Zeigen über 95% der Personen eine gute Modellpassung?

- ➤ Zeigt sich ein Unterschied in den Parametern zwischen Patienten mit hoher reporteter Fatigue und denen mit niedriger Fatigue?
- ightharpoonup Unterscheiden sich die Parameter-Verteilungen? ightarrow KS-Test

Recap: Fragestellungen (2)

- Zeigt sich eine Korrelation zwischen Parametern und Fatigue-Maßen? Sind die Parameter den PVT-Maßen überlegen?
- ► → Korrelationstabelle, Koeffiziententests

- Wie hoch ist die prädiktive Validität der Parameterschätzungen?
- Hier müsste man ggf. einen machine-learning-Ansatz wählen

Einschränkungen

- Veränderung innerhalb der Versuchspersonen ist nicht berücksichtigt!
- Modelle können äquivalent bzw. Paramater nicht identifizierbar sein
- ightharpoonup Es gibt Unklarheiten über die Robustheit der Schätzungen und die psychometrische Qualität der Parameter ightharpoonup weitere Forschung