



# การแข่งขันเคมีโอถิมปิกระดับชาติ ครั้งที่ 9 คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ 30 เมษายน 2556

เวลา 08:00 - 13:00 น.

## ข้อสอบภาคทฤษฎี

| เลขป | ระจำเ  | ทัวส <sup>.</sup> | อบ | <br>••••• | <br>•••• |
|------|--------|-------------------|----|-----------|----------|
| ศเ   | าถุ นอ | วน.               |    | <br>      |          |

MIZINEIM

| VIIIA                                   | ne<br>helium | 10 20.2<br>Ne          | neon      | 18 39.9    | Ar | argon      | 36 83.8 | Ϋ́             | krypton   | 54 131.3          | Xe       | xenon      | 86 (222)               | radon           |                                                |                                                         |
|-----------------------------------------|--------------|------------------------|-----------|------------|----|------------|---------|----------------|-----------|-------------------|----------|------------|------------------------|-----------------|------------------------------------------------|---------------------------------------------------------|
|                                         | VIIA         | 9 19.0<br><b>F</b>     | fluorine  | 17 35.5    | Ü  | chlorine   | 35 79.9 | Br             | bromine   | 53 126.9 54 131.3 | _        | iodine     | 85 (210)               | Atatine         |                                                |                                                         |
|                                         | VIA          | 8 16.0<br>O            | oxygen    | 16 32.1    | S  | sulfur     | 34 79.0 | Se             | selenium  | 52                | Le       | tellurium  | 84 (209)               | polonium        |                                                |                                                         |
|                                         | VA           | $\frac{7}{N}$          | nitrogen  | 15 31.0    | Ь  | phosphorus | 33 74.9 | As             | arsenic   | 51 121.8          | Sp       | antimony   | 83 209.0<br><b>D:</b>  | DI              |                                                |                                                         |
|                                         | IVA          | $^{6}$ 12.0 $^{\circ}$ | carbon    | 14 28.1    | Si | silicon    | 32 72.6 | ge             | germanium | 5                 | Sn       | tịu        | 82 207.2<br><b>D.</b>  | lead            |                                                |                                                         |
|                                         | IIIA         | 5 10.8<br><b>B</b>     | boron     | 13 27.0    | ΑI | aluminum   | 31 69.7 | Ga             | gallium   | 49 114.8          | =        | indium     | 81 204.4               | thallium        |                                                |                                                         |
| 1 to | ,            |                        |           | <b>-</b>   | _  | IB         | 30 65.4 | Zu             | zinc      | 48 112.4          | <u>ვ</u> | cadmium    | 80 200.6               | mercury         | 112 (277)<br><b>Uub</b>                        | ununpiinm                                               |
|                                         |              |                        |           |            |    | B          | 29 63.5 | Cn             | copper    | 47 107.9          | Ag       | silver     | 79 197.0               | gold            | 111 (272)<br>Uuu                               | unununium                                               |
|                                         |              |                        |           |            |    |            | 28 58.7 | Z              | nickel    | 46 106.4          | Pd       | palladium  | 78 195.1<br><b>D</b> 4 | platinum        | 110 (269)<br><b>Uun</b>                        | unniloctium unnilennium ununilium unununium             |
| 1.0                                     | hydrogen     |                        |           | ts         |    | VIIIB -    | 27 58.9 | <del>ర</del>   | cobalt    | 45 102.9          | Z<br>L   | rhodium    | 77 192.2               | irridium        | 109 (266)<br>Une                               | unnilennium                                             |
|                                         |              |                        |           | Elements   |    | Ц          | 26 55.8 | Fe             | iron      | 44 101.1          | Кu       | ruthenium  | 76 190.2               | osmium          | 108 (265)<br>Uno                               | unniloctium                                             |
|                                         |              |                        |           | Transition |    | VIIB       | 25 54.9 | Mn             | manganese | 43 98.9           | o<br>J   | technetium | 75 186.2<br><b>D</b>   | thenium         | 107 (262)<br>Uns                               | unnilseptium                                            |
|                                         |              |                        |           |            |    | VIB        | 24 52.0 | ن              | chromium  | 42 95.9           | Mo       | molybdenum | 74 183.9<br>XX         | tungsten        | 106 (263)<br>Unh                               | actinum rutherfordium hahnium unnilheptium unnilseptium |
|                                         | ,            |                        |           |            |    | VB         | 23 50.9 | >              | vanadium  | 41 92.9           | Q<br>N   | niobium    | 73 180.9<br>T.         | I a<br>tantalum | 104 (261) 105 (262) 106 (263) <b>Rf Ha Unh</b> | hahnium                                                 |
|                                         |              |                        |           |            |    | INB        | •       | Ξ              | titanium  |                   | Zr       | zirconium  |                        | hafnium         | 104 (261)<br><b>Rf</b>                         | rutherfordium                                           |
|                                         |              |                        |           |            | _  | IIB        | 21 45.0 | Sc             | scandium  | 39 88.9           | <b>X</b> | yttrium    | 57 138.9 72 178.5      | lanthanum       | 89 (227)<br><b>Ac</b>                          | actinum                                                 |
|                                         | IIA          | 4 9.0<br><b>Be</b>     | beryllium | 12 24.3    | Mg | magnesium  | 20 40.1 | c <sub>a</sub> | calcium   | 38 87.6           | ž        | strontium  | 55 132.9 56 137.3      | D2<br>barium    | 87 (223) 88 (226) <b>Fr</b> Ra                 | radium                                                  |
|                                         | ΥI           | 3 6.9<br>Li            | lithium   | 11 23.0    | Z  | sodium     | 19 39.1 | ¥              | potassium |                   | Kb       | mpiqinm    | 55 132.9               | cesium          | 87 (223)<br>Fr                                 | francium                                                |

| Lanthanide series | 58 140.1 59 140.9 60 144.2 <b>Ce Pr Nd</b> | 59 140.9<br><b>Pr</b> | 60 144.2<br><b>Nd</b>         | 61 (145)<br><b>Pm</b>  | 62 150.0<br><b>Sm</b> | 63 152.0<br><b>Eu</b> | 64 157.3 65<br><b>Gd</b> | 65 158.9<br><b>Tb</b> | 56 162.5<br><b>Dy</b> | 67 164.9<br><b>Ho</b> |                     | 69 168.9<br>Tm         | $\mathbf{X}\mathbf{b}$ | 71 175.0<br><b>Lu</b>  |
|-------------------|--------------------------------------------|-----------------------|-------------------------------|------------------------|-----------------------|-----------------------|--------------------------|-----------------------|-----------------------|-----------------------|---------------------|------------------------|------------------------|------------------------|
|                   | cerium                                     | perseodymium          | neodymium                     | promithium             | samarium              |                       | gadolinium               | terbium               | <b>Aysprosium</b>     | holmium               |                     | thulium                | ytterbium              | lutetium               |
| Actinide series   | 90 232.0 9                                 | 91 231.0<br><b>Pa</b> | 91 231.0 92 238.0 <b>Pa</b> U | 93 237.0<br>N <b>p</b> | 94 (244)<br><b>Pu</b> | 95 (243)<br><b>Am</b> | % (247)<br><b>Cm</b>     | 97 (247)<br><b>Bk</b> | 98 (251)<br>Cf        | 99 (254)<br><b>Es</b> | 100 (257) <b>Fm</b> | 101 (258)<br><b>Md</b> | 102 (255)<br>No        | 103 (256)<br><b>Lr</b> |
|                   | thorium                                    | protectinium          | uranium                       | neptunium              | plutonium             |                       | curium                   | berkelium             | alifornium            | cinsteinium           |                     | mendelivium            | nobelium               | awrencium              |

| Atomic  |          |
|---------|----------|
| H 100 H | hydrogen |
| Atomic  |          |

## คำชื่แจงการสอบภาคทฤษฎี

- 1. ข้อสอบมีจำนวน 12 ข้อ คะแนนรวมทั้งหมด 120 คะแนน คิดเป็น 60 % เว**ลาสอบ 08:00-13:30 น.** (5 ชั่วโมง) ประกอบด้วย
  - 1.1 ข้อสอบภาคทฤษฎี 1 ชุด จำนวน 14 หน้า (ไม่รวมปก)
  - 1.2 กระคาษคำตอบภาคทฤษฎี 1 ชุด จำนวน 23 หน้า (ไม่รวมปก)
- 2. เขียนเลขประจำตัวสอบและศูนย์ สอวน. ลงหน้าปกข้อสอบภาคทฤษฎี และกระคาษคำตอบ ภาคทฤษฎีทุกหน้า
- 3. ให้ลงมือทำข้อสอบได้เมื่อกรรมการคุมสอบประกาศให้ "ลงมือทำ" และเมื่อประกาศว่า "หมดเวลา" นักเรียนต้องหยุดทำข้อสอบทันที และรวบรวมกระดาษคำถามและกระดาษคำตอบวางไว้บนโต๊ะ ก่อนออกจากห้องสอบ
- 4. ให้เขียนตอบในกระดาษกำตอบ<u>ด้วยปากกาสีน้ำเงินหรือดำเท่านั้น</u> และเขียนให้ตรงกับข้อและเขียน ในกรอบที่กำหนดให้ กรณีเขียนผิดให้ขีดฆ่าและเขียนใหม่ให้ชัดเจน ห้ามลบด้วยน้ำยาลบกำผิด การทดหรือขีดเขียนอื่นใดให้ทำในกระดาษกำถามเท่านั้น
- 5. โจทย์คำนวณให้แสดงวิธีทำตามโจทย์กำหนด กรณีคำตอบที่เป็นตัวเลข **ต้อง**คำนึงถึงเลขนัยสำคัญ
- 6. ห้ามยืมเครื่องเขียน เครื่องคิดเลข ผู้อื่นใช้โดยเด็ดขาด
- 7. ห้ามนักเรียนนำเอกสารใด ๆ เข้าหรือออกจากห้องสอบโดยเด็ดขาด
- 8. ในระหว่างการสอบ นักเรียนสามารถรับประทานอาหารว่างที่วางไว้ให้บนโต๊ะได้
- 9. ห้ามคุยหรือปรึกษากันในช่วงเวลาสอบ หากฝ่าฝืนถือว่าทุจริตในการสอบ <u>กรณีทูจริตใด ๆ ก็ตาม</u> <u>นักเรียนจะหมดสิทธิ์ในการแข่งขัน และจะถูกให้ออกจากห้องสอบทันที</u>

## <u>ข้อมูลที่กำหนดให้</u>

1 atm = 760 mm Hg

 $0 \, ^{\circ}\text{C} = 273 \, \text{K}$ 

1 calorie = 4.18 Joules

1 Faraday =  $96,500 \text{ Coulombs mol}^{-1} (\text{J V}^{-1} \text{ mol}^{-1})$ 

 $1 \text{ Coulomb} = 1 \text{ Ampere} \cdot \text{second}$ 

ค่าคงที่ของแก๊ส,  $R = 0.082 \text{ dm}^3 \text{ atm mol}^{-1} \text{ K}^{-1} = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$ 

## โจทย์ข้อที่ 1 (6 คะแนน)

ผู้ที่ผ่านการอุคฟันด้วยวัสดุแบบอัลลอย เมื่อเกี้ยวแผ่นอะลูมิเนียมฟอยล์ (Al-foil) จะทำให้เกิดการเสียวฟันได้ เนื่องจากเกิดการส่งกระแสระหว่างขั้วไฟฟ้า คือ อะลูมิเนียมและวัสดุอุคฟันซึ่งเป็นอัลลอยของ Sn, Ag และ Hg โดยมีน้ำลายเป็นอิเล็กโทรไลต์

| Reduction half-reaction                           | (25 °C        | <u>C)</u>            | $\underline{\mathbf{E}^{0}\left(\mathbf{V}\right)}$ |
|---------------------------------------------------|---------------|----------------------|-----------------------------------------------------|
| $Al^{3+}(aq) + 3e^{-}$                            | $\rightarrow$ | Al(s)                | -1.66                                               |
| $\mathrm{Sn}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-}$ | $\rightarrow$ | Sn(s)                | -0.14                                               |
| $Ag^+(aq) + e^-$                                  | $\rightarrow$ | Ag(s)                | +0.80                                               |
| $Hg^{2+}(aq) + 2e^{-}$                            | $\rightarrow$ | Hg(l)                | +0.85                                               |
| $O_2(g) + 4H^+(aq) + 4e^-$                        | $\rightarrow$ | $2H_2O(1)$           | +1.23                                               |
| $O_3(g) + 2H^+(aq) + 2e^-$                        | $\rightarrow$ | $O_2(g) \ + H_2O(l)$ | +2.07                                               |

- 1.1~(3~กะแนน) จงเขียนสมการแสดงครึ่งปฏิกิริยาที่ขั้วไฟฟ้า และปฏิกิริยารวมของเซลล์กัลวานิก และค่า  ${f E}^0$  รวมที่เกิดจากปรากฏการณ์ดังกล่าว พร้อมอธิบายว่า เหตุใดจึงต้องเลือกเกิดครึ่งปฏิกิริยาที่แต่ละขั้วไฟฟ้า
- 1.2 (3 คะแนน) กรณีที่ไอออนที่เกิดจากขั้วแอโนคมีความเข้มข้น  $1.0 \times 10^{-8} \, \mathrm{M}$  ความคันของ  $\mathrm{O}_2 = 0.10 \, \mathrm{atm}$  และน้ำลายมี pH = 7 จงคำนวณความต่างศักย์ที่เกิดขึ้นที่อุณหภูมิร่างกาย 37 °C

## โจทย์ข้อที่ 2 (10 คะแนน)

ในการทดลองเพื่อศึกษาปฏิกิริยาระหว่างใอโอไดด์ไอออน ( $\Gamma$ ) กับเปอร์ออกซิไดซัลเฟตไอออน ( $S_2O_8^2$ ) ดังสมการ

$$I^{-}(aq) + S_2O_8^{2-}(aq) \rightarrow I_2(aq) + SO_4^{2-}(aq)$$
 .....(1)

ซึ่งมีกฎอัตราเร็วของปฏิกิริยาเป็น Rate = k [I^-]^m [S\_2O\_8^2-]^n =  $-\frac{\Delta[S_2O_8^2-]}{\Delta t}$ 

จะทำการติดตามการเปลี่ยนแปลงของสารตั้งต้นในช่วงเวลาสั้น ๆ คือ วัดเวลาที่บางส่วนของ  ${f S}_2{f O}_8{}^{2-}$  เกิดปฏิกิริยาไปและได้ผลิตภัณฑ์เป็น  ${f I}_2$ 

วิธีทดลองคือเติม  $S_2O_3^{2-}$  ลงในสารละลายตั้งต้นในปริมาณเล็กน้อยและคงที่ (limiting reagent) รวมทั้งเติมน้ำแป้งลงไปด้วย ซึ่ง  $S_2O_3^{2-}$  จะทำปฏิกิริยากับ  $I_2$  ที่เกิดขึ้นจากปฏิกิริยาสมการ (1) อย่างรวดเร็ว ดังสมการ (2)

$$I_2(aq) + S_2O_3^{2-}(aq) \rightarrow I^-(aq) + S_4O_6^{2-}(aq)$$
 .....(2)

เมื่อ  $S_2O_3^{2-}$  เกิดปฏิกิริยาจนหมด  $I_2$  ที่เกิดเพิ่มจากปฏิกิริยาสมการ (1) ที่อาจอยู่ในรูปไตรไอโอไดด์ ( $I_3^-$ ) ในสารละลายจะเกิดเป็นสารประกอบเชิงซ้อนกับแป้งได้เป็นสารประกอบเชิงซ้อนสีน้ำเงิน ซึ่งถือว่าเป็นจุดยุติของการทดลอง

- 2.1 (1 คะแนน) จงคุลสมการ (1) และ (2)
- 2.2 (0.5 คะแนน) เมื่อมีสีน้ำเงินเกิดขึ้น (จุดยุติ) จำนวนโมลของ  $S_2O_8^{2-}$  ที่ทำปฏิกิริยาจะเป็นสัดส่วนเท่าใด ของจำนวนโมลทั้งหมดของ  $S_2O_3^{2-}$  ที่เติมลงไป
- 2.3 (8.5 คะแนน) ในการทดลองหาอันดับของปฏิกิริยาและค่าคงที่อัตราที่อุณหภูมิห้องได้ผลการทดลองดังนี้

| การทคลอง | ความเข้มข้นเร     | รมต้นในสารละ    | ลายผสม (M)      | $\Delta[S_2O_8{}^{2-}]$ | Δt  | อัตราการเกิดปฏิกิริยา |
|----------|-------------------|-----------------|-----------------|-------------------------|-----|-----------------------|
| ครั้งที่ | [I <sup>-</sup> ] | $[S_2O_8^{2-}]$ | $[S_2O_3^{2-}]$ | (M)                     | (s) | (หน่วย)               |
| 1        | 0.080             | 0.028           | 0.0020          |                         | 35  |                       |
| 2        | 0.080             | 0.020           | 0.0020          |                         | 53  |                       |
| 3        | 0.056             | 0.040           | 0.0020          |                         | 33  |                       |
| 4        | 0.024             | 0.040           | 0.0020          |                         | 95  |                       |

เลขประจำตัวสอบ......

- 2.3.1 จงเติมค่าความเข้มข้นของ  $S_2O_8^{2-}$  ที่ใช้ไป และอัตราการเกิดปฏิกิริยา (Rate of reaction) ลงใน ช่องว่างของตาราง พร้อมระบุหน่วย และแสดงวิธีคิดของการทดลองครั้งที่ 1
- 2.3.2 จากตารางที่กำหนด จงคำนวณหา
  - อันดับของปฏิกิริยา m, n
  - ค่าคงที่อัตรา (k) ของการทคลองครั้งที่ 4 พร้อมระบุหน่วย

## โจทย์ข้อที่ 3 (3 คะแนน)

ธาตุกัมมันตรังสีในธรรมชาติชนิดหนึ่ง หลังจากสลายตัวอย่างต่อเนื่อง 5 ขั้นตอนได้ผลิตภัณฑ์เป็น <sup>226</sup><sub>88</sub> Ra ถ้าแต่ละขั้นของอนุกรมการสลายตัวดังกล่าวปล่อยอนุภากแอลฟาหรือบีตาชนิดใดชนิดหนึ่งเท่านั้น จงเขียน สัญลักษณ์นิวเคลียร์ของธาตุกัมมันตรังสีเริ่มต้นที่มีเลขมวลและเลขอะตอมตรงกับธาตุที่ปรากฏในตาราง<sub>ธาตุ</sub>

|       | ไระจำตัวสลาเ        |  |
|-------|---------------------|--|
| 12010 | ໄ≲໙ລາຫາສລາເ         |  |
| 10111 | 132.91 101 161 9111 |  |

## โจทย์ข้อที่ 4 (10 คะแนน)

A และ B เป็นของแข็งที่สามารถหลอมรวมกันเป็นสารละลาย และสร้าง phase diagram จากการนำ สารตัวอย่าง (1-7) ที่มี A และ B ผสมกันในปริมาณต่าง ๆ ไปหาจุดหลอมเหลว ได้ผลดังนี้

| สารตัวอย่าง      | 1  | 2  | 3  | 4  | 5  | 6  | 7   |
|------------------|----|----|----|----|----|----|-----|
| A (% w/w)        | 0  | 10 | 20 | 40 | 60 | 80 | 100 |
| จุคหลอมเหลว (°C) | 50 | 45 | 40 | 30 | 40 | 50 | 60  |

- 4.1 (1 คะแนน) จงเขียน phase diagram ระหว่างอุณหภูมิ ณ จุดหลอมเหลว และ % w/w ของ A พร้อมทั้งแสดง รายละเอียดใน diagram
- 4.2 (8 คะแนน) นำของแข็ง A 90.0 กรัม ผสมกับของแข็ง B 10.0 กรัม แล้วทำให้อุณหภูมิเป็น 70 °C สารทั้งหมด จะหลอมเหลวรวมกัน จากนั้นค่อย ๆ ลดอุณหภูมิลงมา ที่อุณหภูมิใดเริ่มมีของแข็งเกิดขึ้น และของแข็งที่เกิดขึ้น คือสารใดบ้าง
  - 4.2.1 เมื่อลดอุณหภูมิต่อลงมาจนถึง 40 °C จะได้ระบบที่มี 2 phase

มี solid phase เท่าใด

มี liquid phase เท่าใด

ใน solid phase มี A(s) เท่าใด

ใน liquid phase มี A(l) เท่าใด

- 4.2.2 ถ้าต้องการให้ระบบส่วนที่เป็น liquid phase มี A เหลือ 50 % w/w ต้องลดอุณหภูมิลงมาถึงเท่าใด
- 4.2.3 ถ้าลดอุณหภูมิลงมาจาก 50 °C เป็น 40 °C จะเกิดของแข็งเพิ่มขึ้นเท่าใด
- 4.3 (1 คะแนน) กำหนด cooling curve 2 แบบ ดังนี้





สารตัวอย่างใดบ้างมี cooling curve ตามแบบที่ 1

## โจทย์ข้อที่ 5 (5 คะแนน)

A(g) ทำปฏิกิริยากับ B(g) ได้  $A_2B(g)$  เพียงชนิคเคียว

ที่ 300 K นำ A(g) และ B(g) อย่างละ 10 mol ใส่ในภาชนะปิดขนาด 20 L แยกกัน เมื่อต่อท่อให้แก๊สทั้งสอง ผสมกันและเกิดปฏิกิริยาสมบูรณ์ พบว่า อุณหภูมิไม่เปลี่ยนแปลง จงคำนวณความดันรวมของแก๊สผสมและ ความดันย่อยของแก๊สแต่ละชนิด

เลขประจำตัวสอบ.....

#### Problem 6 (10 points)

Sawflies are major pests for pine forests. In search for effective insecticides (chemical to kill them), a sawfly pheromone **H** was isolated. A university student had successfully synthesized **H** using the reaction sequence below.

OH

$$H_2$$
, Ni

high pressure
high temperature

A

 $CrO_3$ , H<sup>+</sup>

B

 $C$  (major) + D (minor)

The student found that compound **C** was formed as a major product together with compound **D** as a minor product. When only **C** was treated further with 1-octyl lithium, **E** was obtained. When **E** was treated with a solution of 2,4-dinitrophenylhydrazine, yellow precipitates were observed. Compound **E** can be converted to **F** and then **G** which was 3,7-dimethyl-2-pentadecanol.

- 6.1 (6.5 points) Show the structures of compounds A to G.
- 6.2 (1 point) What is the structure of Reagent **X** used for the last transformation?
- 6.3 (1 point) What is the number of all possible stereoisomers for pheromone **H**?
- 6.4 (1.5 points) Draw the structure of the (2R,3S,7R)-**H** isomer.

#### Problem 7 (12 points)

Vitamin C or ascorbic acid is made in nature from  $\alpha$ -D-glucose according to the following equations.

- 7.1 (4 points) Name the type of reaction for each step, as an oxidation or a reduction. If it is not a redox reaction, define that reaction as substitution, addition, or elimination. Suggest a common laboratory reagent for each step. If none of the laboratory reagent is applicable, give an explanation.
- 7.2 (2 points) Provide a reaction mechanism for the transformation in step III.
- 7.3 (2 points) Vitamin C is also called <u>ascorbic acid</u>, although no carboxylic acid functional group is presence in the structure. Identify the most acidic proton for ascorbic acid and write its conjugate base with a brief explanation.
- 7.4 (1 point) Vitamin C is a powerful natural anti-oxidant, suggest a structure of the oxidized form in nature of vitamin C in the equation below.

$$\begin{array}{c} OH \\ \hline HO \\ \hline HO \\ OH \\ \hline \\ reduction \\ \hline \\ reduced form of vitamin C \\ or ascorbic acid \\ \hline \\ \\ oxidized form of vitamin C \\ \hline \\ oxidized form of vitamin C \\ \hline \\ \\ oxidized form of vitamin C \\ \hline \\ \\ oxidized form of vitamin C \\ \hline \\ oxidized form of vitamin$$

7.5 (2 points) D-glucuronic acid, one of a precursor for the formation of vitamin C, is found widely in plants and animals in  $\alpha$  and  $\beta$ -forms. Show a reaction mechanism for the interconversion of  $\alpha$  and  $\beta$ -forms.

$$\alpha$$
-D-glucuronic acid  $\alpha$ -D-glucuronic acid  $\alpha$ -D-glucuronic acid

**7.6** (1 point) D-glucuronic acid can detoxify poisonous HO-containing compounds to form glucuronides which are water soluble and can be excreted in urine. Suggest a structure of a glucuronide when β-glucuronic acid reacts with a phenol.

## โจทย์ข้อที่ 8 (9 คะแนน)

แบตเตอรี่สังกะสี-อากาศ (แสดงดังแผนภาพ) เป็นแบตเตอรี่ที่มีน้ำหนักเบาและอัดไฟใหม่ได้ มีสังกะสีเป็น แอโนดและออกซิเจนในอากาศเป็นแคโทด



- 8.1 (1 คะแนน) จงเขียนสมการครึ่งปฏิกิริยา และปฏิกิริยารวมของแบตเตอรี่สังกะสี-อากาศ
- 8.2 (2.5 คะแนน) จงคำนวณ emf มาตรฐานที่ 25 °C

|                  | $\Delta H_{\rm f}^0$ (kJ/mol) | $\Delta G_f^0$ (kJ/mol) | S <sup>0</sup> (J/K·mol) |
|------------------|-------------------------------|-------------------------|--------------------------|
| О                | 249.4                         | 230.1                   | 160.9                    |
| $O_2$            | 0                             | 0                       | 205.0                    |
| Zn               | 0                             | 0                       | 41.6                     |
| Zn <sup>2+</sup> | -152.4                        | -147.2                  | 106.5                    |
| ZnO              | -348.0                        | -318.2                  | 43.9                     |

- 8.3 (1.5 คะแนน) จงคำนวณ emf เมื่อความคันย่อยของออกซิเจนเป็น 0.30 atm
- 8.4 (3.5 คะแนน) ถ้าต้องการให้แบตเตอรี่ สังกะสี-อากาศ มีกระแส  $2.0 \times 10^5$  A อย่างต่อเนื่อง จะต้องผ่าน อากาศปริมาตรกี่ลิตรต่อวินาทีเข้าไปในแบตเตอรี่ ที่อุณหภูมิ 25 °C ความคันบรรยากาศ 1 atm (ที่ความคัน 1 atm อากาศประกอบด้วย  $O_2$  ร้อยละ 20 โดยปริมาตร)

| 1 | 1 。 2 |  |
|---|-------|--|
|   |       |  |
|   |       |  |
|   |       |  |

## โจทย์ข้อที่ 9 (23 คะแนน)

สารละลายตัวอย่างชนิดหนึ่งประกอบด้วยใจออนโลหะ 3 ชนิดผสมกัน ได้แก่  $Pb^{2+}$ ,  $Zn^{2+}$  และ  $Mg^{2+}$  เมื่อ ทดสอบปฏิกิริยาการตกตะกอนได้ผลดังแผนภาพ



การหาปริมาณ  $Pb^{2+}$ ,  $Zn^{2+}$  และ  $Mg^{2+}$  ที่ผสมกันในสารละลายตัวอย่างทำโดยไทเทรตกับ EDTA หรือ ethylenediaminetetraacetic acid  $(Y^{4-})$  ซึ่งเป็นสารคีเลตที่สามารถเกิดเป็นสารเชิงซ้อนกับไอออนโลหะได้ หลายชนิด โดยมีขั้นตอนดังต่อไปนี้

**ขั้นที่ 1** เติมสารละลาย NaCN มากเกินพอลงในสารละลายตัวอย่าง จะเกิดปฏิกิริยาดังนี้

$$Zn^{2+} + 4CN^- \rightleftharpoons Zn(CN)_4^{2-}$$

จากนั้นไทเทรตหาปริมาณ  $Pb^{2+}$  และ  $Mg^{2+}$  ด้วยสารละลายมาตรฐาน EDTA ปฏิกิริยาการไทเทรต เป็นดังนี้

$$\begin{split} Pb^{2+} + Y^{4-} &\rightleftharpoons PbY^{2-} \\ Mg^{2+} + Y^{4-} &\rightleftharpoons MgY^{2-} \end{split}$$

**ขั้นที่ 2** นำสารละลายผสมในขั้นที่ 1 มาเติมสารละลาย 2,3-dimercapto-1-propanol (CH<sub>2</sub>SHCHSHCH<sub>2</sub>OH) หรือเขียนแบบย่อเป็น LH<sub>2</sub> ซึ่งเป็นลิแกนค์อีกชนิดหนึ่ง โดย LH<sub>2</sub> จะเกิดปฏิกิริยากับ PbY<sup>2-</sup> ดังนี้

$$PbY^{2-} + 2LH_2 \rightarrow PbL_2^{2-} + 4H^+ + Y^{4-}$$

จากนั้นหาปริมาณ  $\mathbf{Y}^{4-}$  ที่เกิดจากปฏิกิริยาข้างต้นโดยการไทเทรตด้วยสารละลายมาตรฐาน  $\mathbf{Mg}^{2+}$  ขั้นที่  $\mathbf{3}$  นำสารละลายผสมในขั้นที่ 2 มาเติม formaldehyde เกิดปฏิกิริยาดังนี้

$$Zn(CN)_4^{2-} + HCHO + H_2O \ \rightleftharpoons \ Zn^{2+} + HOCH_2CN + OH^-$$
 (สมการยังไม่คุล)

จากนั้นหาปริมาณ  ${f Zn^{2+}}$  ที่เกิดจากปฏิกิริยาข้างต้น โดยการไทเทรตด้วยสารละลายมาตรฐาน  ${f EDTA}$ 

เลขประจำตัวสอบ.....

- 9.1 (2.5 คะแนน) จงระบุสูตรของ A, B, C, D และ E
- 9.2 (0.5 กะแนน) จงระบุ geometry ของสาร E
- 9.3 (2 คะแนน) จงเรียงลำดับค่า  $K_f$  (formation constant) ของสารเชิงซ้อนต่อไปนี้จาก<u>มากไปน้อย</u>  $PbY^{2-}$ ,  $Zn(CN)_4^{2-}$ ,  $PbL_2^{2-}$ ,  $ZnL_2^{2-}$
- 9.4 (1 คะแนน) จงคุลสมการต่อไปนี้
  Zn(CN)<sub>4</sub><sup>2-</sup> + HCHO + H<sub>2</sub>O ≠ Zn<sup>2+</sup> + HOCH<sub>2</sub>CN + OH<sup>-</sup>
- 9.5 (6 คะแนน) จงคำนวณร้อยละโคยมวล (% w/w) ของ  $Pb^{2+}$ ,  $Zn^{2+}$  และ  $Mg^{2+}$  ในสารละลายตัวอย่าง 0.400~g เมื่อทำการทดลองดังที่ได้กล่าวไว้ข้างต้น โดย
  - ขั้นที่ 1 ใช้สารละลายมาตรฐาน EDTA 0.0200 mol/L ปริมาตร 40.00 mL
  - ขั้นที่ 2 ใช้สารละลายมาตรฐาน  ${
    m Mg}^{2+}$   $0.00750~{
    m mol/L}$  ปริมาตร  $15.00~{
    m mL}$
  - ขั้นที่ 3 ใช้สารละลายมาตรฐาน EDTA 0.0200 mol/L ปริมาตร 25.00 mL
- 9.6 (1.5 คะแนน) หากต้องการหาปริมาณ  ${
  m Mg}^{2+}$  เท่านั้นโดยการไทเทรตกับ EDTA เพียง 1 ขั้น จะทำ อย่างไร
- 9.7 (7 คะแนน) การไทเทรตระหว่างไอออนโลหะกับสารละลายมาตรฐาน EDTA ต้องควบคุมให้ pH คงที่ เพื่อให้ EDTA ทำปฏิกิริยากับไอออนโลหะได้สมบูรณ์ เช่น การไทเทรต  $\mathbf{Zn}^{2+}$  ในขั้นที่ 3 ต้องมี pH เป็น 5.5 ส่วนการไทเทรตหาปริมาณ  $\mathbf{Y}^{4-}$  ด้วยสารละลายมาตรฐาน  $\mathbf{Mg}^{2+}$  ในขั้นที่ 2 ต้องมี pH เป็น  $\mathbf{10.0}$ 
  - 9.7.1 ถ้าต้องการเตรียมสารละลายบัฟเฟอร์ pH 5.5 เพื่อใช้ในการไทเทรต Zn<sup>2+</sup> จะต้องใช้บัฟเฟอร์ของ สารคู่ใดต่อไปนี้ จึงจะมีความจุของบัฟเฟอร์ (buffer capacity) สูงที่สุด

acetic acid / sodium acetate

lactic acid / sodium lactate

potassium hydrogen phthalate / potassium phthalate

sodium dihydrogen phosphate / sodium hydrogen phosphate

9.7.2 ถ้าต้องการเตรียมสารละลายบัฟเฟอร์ pH 10.0 ปริมาตร 250 mL ซึ่งประกอบด้วย NH $_3$  2.0 M และ NH $_4$ Cl จงคำนวณปริมาตรของสารละลาย NH $_3$  เข้มข้น 28% โดยมวล (ความหนาแน่น 0.88 g/mL) และน้ำหนักของ NH $_4$ Cl ที่ต้องใช้

| - 1   |         | 9    |     |  |  |  |  |
|-------|---------|------|-----|--|--|--|--|
| เลดเจ | ไระเจ้า | าตาก | าคา |  |  |  |  |
|       |         |      |     |  |  |  |  |

## กำหนดค่าคงที่สมคุลการแตกตัวของกรคบางชนิด ดังนี้

|                 |                   | $K_{a1}$              | $K_{a2}$           | $K_{a3}$            |
|-----------------|-------------------|-----------------------|--------------------|---------------------|
| Acetic acid     | CH₃COOH           | $1.8\times10^{-5}$    |                    |                     |
| Lactic acid     | СН₃СНОНСООН       | $1.4\times10^{-4}$    |                    |                     |
| Phthalic acid   | $C_6H_4(COOH)_2$  | $1.1\times10^{-3}$    | $3.9\times10^{-6}$ |                     |
| Phosphoric acid | $H_3PO_4$         | $7.5\times10^{-3}$    | $6.2\times10^{-8}$ | $4.2\times10^{-13}$ |
| Ammonium ion    | $\mathrm{NH_4}^+$ | $5.6 \times 10^{-10}$ |                    |                     |

9.8 (2.5 คะแนน) ในทางการแพทย์ ผู้ป่วยที่มีโลหะหนักในเลือด จะได้รับการรักษาโดยใช้สารผสมที่มีชื่อ สามัญทางยาว่า DIMERCAPROL INJECTION, USP ซึ่งฉลากยาระบุดังนี้

BAL (2,3-dimercapto-1-propanol) 10 % w/w, Benzyl Benzoate 20 % w/w in Peanut Oil

แพทย์จะรักษาโคยการฉีดยานี้เข้าเส้นเลือด โดยสารออกฤทธิ์คือ BAL จะเกิดสารเชิงซ้อนกับโลหะหนัก และถูกขับออกทางปัสสาวะ สมมุติว่าโลหะหนักทุกชนิดเกิดสารเชิงซ้อนกับ BAL ได้ในทำนองเดียวกับ โลหะตะกั่ว และประสิทธิภาพการรักษาของยานี้เป็น 100 %

การฉีดยา 1000 mg จะกำจัดโลหะหนักในเลือดได้เท่าใด

## โจทย์ข้อที่ 10 (10 คะแนน)

Platinum เป็นโลหะที่มีการใช้งานอย่างแพร่หลาย เช่น ทำเป็นตัวเร่งปฏิกิริยา ขั้วไฟฟ้า และเครื่องประดับ Cisplatin มีชื่อทางเคมีว่า *cis*-diamminedichloroplatinum(II) เป็นสารประกอบสีเหลือง มีสมบัติยับยั้ง เซลล์มะเร็ง จึงนำมาใช้เป็นยาต้านมะเร็ง

- 10.1 (1 คะแนน) จงเขียนโครงสร้างสามมิติของ cisplatin
- 10.2 (2 คะแนน) จงเขียนแผนภาพการแยกระดับพลังงานของ d-orbital ของ cisplatin โดยใช้ ligand field theory พร้อมระบุชื่อ d-orbital ทั้งหมด และจัดเรียงอิเล็กตรอน
- 10.3 (1.5 คะแนน) หากเปลี่ยนโครงสร้างของ cisplatin โดยการเติม ligand เข้าไปอีกจนมีโครงสร้างเป็น square pyramid จะเกิดการเปลี่ยนแปลงพลังงานของ d-orbital ต่าง ๆ อย่างไรบ้าง
- 10.4 (5.5 คะแนน) เมื่อนำเอา cisplatin มาละลายในน้ำจะเกิดปฏิกิริยา 2 ขั้นตอนคือ
  - **ขั้นที่ 1** น้ำ 1 โมเลกุลจะเข้าไปแทนที่  $CI^-$  ได้ผลิตภัณฑ์เป็นสารเชิงซ้อน  ${f A}$  และ  $CI^-$  กำหนดให้ปฏิกิริยาขั้นนี้มีค่าคงที่สมดุลเท่ากับ  $3.6 \times 10^{-3}$
  - **ขั้นที่ 2** น้ำอีก 1 โมเลกุลจะเข้าไปแทนที่  $\mathbf{Cl}^-$  ที่เหลืออยู่ในสารเชิงซ้อน  $\mathbf{A}$  ได้ผลิตภัณฑ์เป็นสารเชิงซ้อน  $\mathbf{B}$  และ  $\mathbf{Cl}^-$  กำหนดให้ปฏิกิริยาขั้นนี้มีค่าคงที่สมคุลเท่ากับ  $1.1 \times 10^{-6}$
  - 10.4.1 จงเขียนสมการเกมีที่เกิดขึ้นในขั้นที่ 1 โดยแสดงสูตรเกมีให้ชัดเจน
  - 10.4.2 กำหนดให้ความเข้มข้นเริ่มต้นของสารละลาย cisplatin ในน้ำเป็น  $0.20~{
    m M}~$  จงคำนวณหา [A], [B] และ [Cl-] ที่สมคุล

| 1 。 2        |  |
|--------------|--|
| ไระจำตัวสลาเ |  |
|              |  |

### โจทย์ข้อที่ 11 (10.5 คะแนน)

แมงกานีสเป็นโลหะที่มีเลขออกซิเดชันได้หลายค่า และเกิดสารประกอบกับลิแกนด์ได้หลายชนิด เช่น  $H_2O$ , CO,  $SCN^-$ ,  $CN^-$ ,  $OH^-$ ,  $C_2O_4{}^{2-}$  เป็นต้น สารประกอบ  $MnO_2$  มีสีดำเป็นสารที่ไม่ละลายน้ำในภาวะที่เป็น กลาง แต่หากมี  $C_2O_4{}^{2-}$  จะได้สารเชิงซ้อนสีแดงละลายได้ในน้ำซึ่งไม่เสถียร โดยเปลี่ยนเป็นสารเชิงซ้อนอื่นที่ เลขออกซิเดชันของแมงกานีสเปลี่ยนไป และ  $C_2O_4{}^{2-}$  สลายตัวไปเป็น  $CO_2$  ได้อีกด้วย หากมีสารละลายของ สารเชิงซ้อนออกตะฮีดรัลของแมงกานีส  $\mathbf{A} - \mathbf{F}$  รวม 6 ชนิด และมีข้อมูลเพิ่มเติมดังนี้

- 1) หากสารเชิงซ้อนมีประจุ ให้ counter cation เป็น  $K^+$  และ counter anion เป็น  $SO_4^{2-}$  เสมอ
- 2) ค่าความแรงของสนามถิแกนค์ของ  $C_2O_4^{2-}$  ใกล้เคียงกับของน้ำ
- 3) สารเชิงซ้อน  ${f A} {f F}$  นี้ แบ่งออกได้เป็นสามกลุ่ม คือ
  - กลุ่มที่ 1 เป็นสารเชิงซ้อนของ  $C_2O_4{}^{2-}$  กับ Mn(II) หรือ Mn(III) หรือ Mn(IV)
  - กลุ่มที่ 2 เป็นสารเชิงซ้อนของ  $C_2O_4^{2-}$  และ  $H_2O$  กับ Mn(II) หรือ Mn(III) หรือ Mn(IV)
  - กลุ่มที่ 3 เป็นสารเชิงซ้อน  $ML_6$  ของ Mn(II) กับ  $H_2O$  หรือ  $CN^-$  หรือ  $CI^-$
- 4) สี การนำไฟฟ้า และข้อมูลอื่น ๆ ของสารละลาย  ${f A} {f F}$  แสดงได้ดังตารางข้างล่าง

| กลุ่ม | สารละลาย | สี           | การนำไฟฟ้าใกล้เคียงกับสารละลาย      | ข้อมูลอื่น ๆ                         |
|-------|----------|--------------|-------------------------------------|--------------------------------------|
| 1     | A        | แคง          | K <sub>3</sub> Fe(CN) <sub>6</sub>  | ไวต่อแสง                             |
| 1     | В        | ชมพู         | K <sub>4</sub> Fe(CN) <sub>6</sub>  | สลายตัวได้ถ้ามีกรด                   |
| 2     | C        | แดง          | $C_6H_{12}O_6$                      | สลายตัวได้เอง                        |
| 2     | D        | ชม <b>ฟู</b> | Ni(en) <sub>3</sub> Cl <sub>2</sub> | สลายตัวได้ถ้ามีกรด                   |
| 3     | E        | ชมพูอ่อน     | Mn(SiF <sub>6</sub> )               | ตกตะกอนเมื่อเติม Ba <sup>2+</sup>    |
| 3     | F        | ม่วงเข้ม     | K <sub>4</sub> Fe(CN) <sub>6</sub>  | Mn(II) complex ไม่กี่ชนิดที่มีสีเข้ม |

จากข้อมูลข้างต้น ให้ตอบคำถามต่อไปนี้

- 11.1 (2.5 กะแนน) สารใดที่ยังไม่สามารถระบุสูตรเกมีที่ชัดเจนได้ สารนี้มีสูตรเกมีที่แสดงส่วนของ สารเชิงซ้อนเป็นอย่างไรได้บ้าง เสนอการทดลองเพื่อยืนยันชนิดสาร
- 11.2 (2 คะแนน) วาคแผนภาพแสดงระดับพลังงานของ d-orbital ของสารเชิงซ้อน  ${f A}$  และ  ${f F}$  และบรรจุ อิเล็กตรอนลงในแผนภาพนั้น โดยถือว่าโลหะอยู่ใน octahedron field เสมือน  ${f ML}_6$
- 11.3 (6 คะแนน) ถ้าสารเชิงซ้อน **G** เกิดจากการแทนที่น้ำ 1 โมเถกุลในสาร **D** ด้วย SCN<sup>-</sup> ให้หาจำนวน ใอโซเมอร์ของสาร **G** ที่เป็นไปได้ทั้งหมด เขียนชื่อภาษาอังกฤษของสารเชิงซ้อน **G** ที่เป็นไปได้ทั้งหมด โดยไม่ต้องระบุชื่อใอโซเมอร์ และเลือกสารมา 1 ชื่อเพื่อวาดรูปของ geometrical isomer ทุกไอโซ เมอร์ของสารนั้น

|       | ไระจำตัวสอบ         |  |
|-------|---------------------|--|
| 12010 | ໄ≲໙ລາຫາຂອງເ         |  |
| 10111 | 132.91 101 161 9111 |  |

## โจทย์ข้อที่ 12 (11.5 คะแนน)

แร่ที่สำคัญของโครเมียมคือ chromite (FeCr<sub>2</sub>O<sub>4</sub>) ในการถลุงแร่นี้ ถ้าไม่ได้ต้องการโครเมียมบริสุทธิ์สูงจะใช้ วิธีรีคิวซ์ด้วยการ์บอน ได้ผลิตภัณฑ์เป็นโลหะโครเมียมและเหล็กผสมกัน และได้แก๊ส X ที่มีสมบัติเป็นตัวรีคิวซ์ ถ้าต้องการโลหะโครเมียมบริสุทธิ์ จะออกซิไดส์แร่ chromite ด้วยแก๊สออกซิเจนในด่างหลอมเหลว ทำให้เกิดโครเมตซึ่งละลายน้ำแล้วแยกออกมาเป็น  $Na_2Cr_2O_7$  จากนั้นรีคิวซ์  $Na_2Cr_2O_7$  ด้วยการ์บอน จะได้  $Cr_2O_3$ ,  $Na_2CO_3$  และแก๊ส X ขั้นสุดท้ายจึงรีคิวซ์  $Cr_2O_3$  ด้วยอะลูมิเนียม (Thermite Process)

- 12.1 (3 คะแนน) Fe และ Cr ในแร่ chromite มีการจัดอิเล็กตรอนเป็นอย่างไร และมี unpaired electron จำนวนเท่าใด
- 12.2 (1.5 คะแนน) จงเขียนสมการแสดงปฏิกิริยาการรีดิวซ์แร่ chromite ได้โครเมียมที่ยังไม่บริสุทธิ์ และ ปฏิกิริยาการรีดิวซ์  $Na_2Cr_2O_7$  จนได้โครเมียมบริสุทธิ์ พร้อมทั้งคุลสมการ
- 12.3 (2.5 คะแนน) ถ้าเริ่มด้วยแร่ chromite หนัก 10 kg ที่มี FeCr<sub>2</sub>O<sub>4</sub> 80 % และผ่านขั้นตอนต่าง ๆ ที่มี ประสิทธิภาพ 100 % เพื่อให้ได้โลหะโครเมียมบริสุทธิ์ จะต้องใช้อะลูมิเนียมอย่างน้อยกี่กิโลกรัม
- 12.4 (2 คะแนน) โลหะ Al และ Cr มีโครงสร้างผลึกเป็นแบบ face-centered cubic และ body-centered cubic ตามลำดับ ผลึกของโลหะใดมีประสิทธิภาพการเรียงตัว (มีการเรียงอะตอมได้ใกล้ชิด) สูงกว่า ให้ เหตุผลและวาครูปประกอบ
- 12.5 (2.5 คะแนน) รัศมีอะตอมของ Cr เท่ากับ 130 pm ถ้ากำหนดให้โครงสร้างผลึกของ Cr เป็นแบบ simple cubic ความหนาแน่นของผลึกโครเมียมจะเป็นเท่าใด

|        | 1 。 2              |  |
|--------|--------------------|--|
| 12019  | ไระจำตัวสลาเ       |  |
| ILIMII | 1 12.41 101 111 11 |  |