JFK Airport Flight Data Analysis

by Athalia Setiawan 19 July 2023

UC San DiegoX: DSE200X EdX Course Final Project

Analysis on JFK Airport Flight Take Off data to find at what time of day is are there the least delays and when are there the most flights at a period of time.

```
In [116... import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sn
In [145... data = pd.read csy(' /data/lFK TakeOffData csy')
```

Out[145]:		MONTH	DAY_OF_MONTH	DAY_OF_WEEK	OP_UNIQUE_CARRIER	TAIL_NUM	DEST	DEP_DELAY	CRS_ELAPSED_TIME
-	0	11	1	5	B6	N828JB	CHS	-1	124
	1	11	1	5	В6	N992JB	LAX	-7	371
	2	11	1	5	В6	N959JB	FLL	40	181
	3	11	1	5	B6	N999JQ	MCO	-2	168
	4	11	1	5	DL	N880DN	ATL	-4	139
	5	11	1	5	AA	N983NN	ORD	-1	161
	6	11	1	5	AA	N107NN	LAX	-1	373
	7	11	1	5	В6	N274JB	BUF	-5	80
	8	11	1	5	В6	N663JB	LGB	0	368
	9	11	1	5	В6	N283JB	FLL	3	184
	10	11	1	5	В6	N962JT	LAS	-5	343
	11	11	1	5	AA	N901AN	DCA	-5	95
	12	11	1	5	AA	N157UW	PHX	-4	336
	13	11	1	5	В6	N967JT	SFO	-3	388
	14	11	1	5	В6	N998JE	SJU	108	222

Out[12]

	MONTH	DAY_OF_MONTH	DAY_OF_WEEK	OP_UNIQUE_CARRIER	TAIL_NUM	DEST	DEP_DELAY	CRS_ELAPSED_TIME
15	11	1	5	DL	N703TW	SFO	-6	391
16	11	1	5	DL	N192DN	SLC	-5	321
17	11	1	5	DL	N362NB	BOS	-5	82
18	11	1	5	AA	N115NN	SFO	-3	386
19	11	1	5	В6	N638JB	SAV	-2	143

20 rows × 23 columns

In [12]:	data.describe()	
----------	-----------------	--

]:		MONTH	DAY_OF_MONTH	DAY_OF_WEEK	DEP_DELAY	CRS_ELAPSED_TIME	DISTANCE	CRS_DEP_M	DEF
_	count	28820.000000	28820.000000	28820.000000	28820.000000	28820.000000	28820.000000	28820.000000	288
	mean	7.894240	16.021096	4.008952	6.374983	225.288203	1267.746079	831.003851	8
	std	4.991723	8.750179	1.985230	38.735144	119.482417	889.343246	299.398525	3
	min	1.000000	1.000000	1.000000	-22.000000	57.000000	94.000000	301.000000	
	25%	1.000000	8.000000	2.000000	-6.000000	124.000000	483.000000	545.000000	5
	50%	11.000000	16.000000	4.000000	-3.000000	188.000000	1029.000000	856.000000	8
	75%	12.000000	24.000000	6.000000	2.000000	365.000000	2248.000000	1095.000000	10
	max	12.000000	31.000000	7.000000	1276.000000	697.000000	4983.000000	1439.000000	14

In [35]: data.dtypes

```
Out[35]: MONTH
                                 int64
         DAY_OF_MONTH
                                 int64
         DAY OF WEEK
                                 int64
         OP UNIQUE CARRIER
                                object
         TAIL NUM
                                object
         DEST
                                object
         DEP DELAY
                                 int64
         CRS ELAPSED TIME
                                 int64
         DISTANCE
                                 int64
         CRS DEP M
                                 int64
         DEP_TIME_M
                                 int64
         CRS ARR M
                                 int64
         Temperature
                                 int64
         Dew Point
                                object
         Humidity
                                 int64
                                object
         Wind
                                 int64
         Wind Speed
         Wind Gust
                                 int64
         Pressure
                               float64
         Condition
                                object
                                 int64
         sch dep
         sch arr
                                 int64
         TAXI OUT
                                 int64
         dtype: object
In [20]:
         data.shape
Out[20]: (28820, 23)
         data.dropna()
In [21]:
         data.shape
Out[21]: (28820, 23)
```

How many flights in each hour in one day (histogram)

```
In [146... | hours = []
         for i in range(25):
             #print(i*60)
             hours.append(i*60)
         # filters the departure time and departure delay of flights on a specific day
         def daysch(month,date):
             mask = data['MONTH']==month
             mask2 = data['DAY OF MONTH']==date
             d3 = data[['DEP TIME M', 'DEP DELAY']][mask & mask2]
             return d3
         # number of flights within each hour of the day
         def hrflight(d3):
             d4 = d3.groupby(pd.cut(d3['DEP TIME M'], hours)).count()
             d4 = d4.rename(columns={'DEP TIME M': 'dep all', 'DEP DELAY':'delays'})
             del d4['delays']
             return d4
         # number of delayed flights (flights late by more than 15 minutes) within each hour of the day
         def hrdelay(d3):
             d4 = d3[d3['DEP DELAY']>15].groupby(pd.cut(d3['DEP TIME M'], hours)).count()
             d4 = d4.rename(columns={'DEP TIME M': 'dep del', 'DEP DELAY':'delays'})
             del d4['delays']
             return d4
```

In [240... hrdelay(daysch(11,6))

Out[240]:

	DEP_TIME_M	DEP_DELAY
DEP_TIME_M		
(0, 60]	1	1
(60, 120]	0	0
(120, 180]	0	0
(180, 240]	0	0
(240, 300]	0	0
(300, 360]	0	0
(360, 420]	1	1
(420, 480]	1	1
(480, 540]	1	1
(540, 600]	2	2
(600, 660]	0	0
(660, 720]	2	2
(720, 780]	1	1
(780, 840]	1	1
(840, 900]	0	0
(900, 960]	3	3
(960, 1020]	0	0
(1020, 1080]	1	1
(1080, 1140]	1	1
(1140, 1200]	2	2
(1200, 1260]	4	4
(1260, 1320]	1	1
(1320, 1380]	1	1

Definition of all the hourly flights and hourly delays tables

```
In [140... # very important: defines all the hourly flights and hourly delays tables
    data3 = daysch(11,1)
    data4 = hrflight(data3)
    data5 = hrdelay(data3)
    #data3[(data3['DEP_TIME_M']>0) & (data3['DEP_TIME_M']<=60) ]
    data3</pre>
```

Out[140]:		DEP_TIME_M	DEP_DELAY
	0	323	-1
	1	333	-7
	2	341	40
	3	343	-2
	4	356	-4
	296	1374	-6
	297	1402	27
	298	1424	54
	299	1425	25
	300	1437	-2

301 rows × 2 columns

In [141... barcht(data4,range(24),'dep_all', 'Hours', 'Departure Count', 'Departures Histogram of one day')


```
In [142... data5 = hrdelay(data3)
barcht(data5,range(24),'dep_del', 'Hours', 'Departure Count', 'Delayed Departures Histogram of one day')
```



```
In [143... | def barcht2(df,df2, x, y,y2,xlabel,ylabel, blabel,blabel2, title):
             X = np.arange(len(x))
             Y = df[y].values
             Y2 = df2[y2].values
             width = 0.4
             #draw grouped bar chart
             fig, ax = plt.subplots()
             bar1 = ax.bar(X - width/2, Y, width, label=blabel)
             bar2 = ax.bar(X + width/2, Y2, width, label=blabel2)
             #ax.set xlabel('Year')
             ax.set xlabel(xlabel)
             ax.set ylabel(ylabel)
             ax.set title(title)
             ax.set xticks(X, x)
             ax.legend()
             #setting bar labels
             ax.bar label(bar1)
             ax.bar label(bar2)
             fig.tight layout()
             plt.show()
```

In [144... barcht2(data4,data5,range(24),'dep_all','dep_del', 'Hours', 'Departure Count','All Departures','Delayed Departures'

Heatmap of percentage of delayed flights per hour for one month

get the percentage of delayed flights per hour for one day

In [67]: data4, data5

Out[67]:	(dep_all
	DEP_TIME_M	
	(0, 60]	0
	(60, 120]	0
	(120, 180]	0
	(180, 240]	0
	(240, 300]	0
	(300, 360]	8
	(360, 420]	17
	(420, 480] (480, 540]	17
	(540, 600]	28 23
	(600, 660]	11
	(660, 720]	17
	(720, 780]	12
	(780, 840]	11
	(840, 900]	14
	(900, 960]	22
	(960, 1020]	21
	(1020, 1080]	13
	(1080, 1140]	16
	(1140, 1200]	24
	(1200, 1260]	14
	(1260, 1320]	21
	(1320, 1380]	8
	(1380, 1440]	4,
	DED TTUE !!	dep_del
	DEP_TIME_M	0
	(0, 60]	0
	(60, 120]	0 0
	(120, 180] (180, 240]	0
	(240, 300]	0
	(300, 360]	1
	(360, 420]	1
	(420, 480]	1
	(480, 540]	5
	(540, 600]	3
	(600, 660]	3 2 3
	(660, 720]	3
	(720, 780]	3
	(780, 840]	1

```
(840, 900]
                    1
(900, 960]
                     5
(960, 1020]
                     6
(1020, 1080]
                     4
(1080, 1140]
                     1
(1140, 1200]
                     3
(1200, 1260]
                     4
(1260, 1320]
                     2
(1320, 1380]
                     1
                    3)
(1380, 1440]
```

Out[80]:	dep_all
----------	---------

DEP_TIME_M	
(0, 60]	0
(60, 120]	0
(120, 180]	0
(180, 240]	0
(240, 300]	0
(300, 360]	8
(360, 420]	17
(420, 480]	17
(480, 540]	28
(540, 600]	23
(600, 660]	11
(660, 720]	17
(720, 780]	12
(780, 840]	11
(840, 900]	14
(900, 960]	22
(960, 1020]	21
(1020, 1080]	13
(1080, 1140]	16
(1140, 1200]	24
(1200, 1260]	14
(1260, 1320]	21
(1320, 1380]	8

```
dep_all
DEP_TIME_M
(1380, 1440] 4
```

```
In [137... mont = 11
         days = range(1,31)
         delpercent = data4.copy()
         del delpercent['dep all']
         allflight = delpercent.copy()
         for i in days:
             data3 = daysch(mont,i)
             data4 = hrflight(data3)
             data5 = hrdelay(data3)
             coln = 'delay '+str(i)
             delpercent[coln] = data5['dep del']/data4['dep all']*100
         for i in days:
             data3 = daysch(mont,i)
             data4 = hrflight(data3)
             coln = 'depart '+str(i)
             allflight[coln] = data4['dep all']
```

create heatmap of percentage of delayed flights per hour over a month

```
In [139... plt.imshow( delpercent)

cbar = plt.colorbar(shrink=0.75, ticks=[0, 50, 100])
cbar.ax.set_yticklabels(['0%', '50%', '100%'])

plt.title( "2-D Heat Map of delayed flights per hour in November 2019" )
plt.xlabel('Date of Month')
plt.ylabel('Hour of the Day')

plt.figure(figsize=(10,12))
plt.show()
```


<Figure size 1000x1200 with 0 Axes>

```
In [138... plt.imshow( allflight)
    plt.colorbar(shrink=0.75)

plt.title( "2-D Heat Map of all flights per hour in November 2019" )
    plt.xlabel('Date of Month')
    plt.ylabel('Hour of the Day')

plt.figure(figsize=(10,12))
    plt.show()
```


<Figure size 1000x1200 with 0 Axes>

In []: