超越 RFC3550 - RTP/RTCP 协议族分析

一 前言

RF3550定义实时传输协议RTP和它的控制协议RTCP。RTP协议是Internet上针对流媒体传输的基础协议,该协议详细说明在互联网上传输音视频的标准数据包格式。RTP本身只保证实时数据的传输,并不能提供可靠传输、流量控制和拥塞控制等服务质量保证,这需要RTCP协议提供这些服务。

RTCP协议负责流媒体的传输质量保证,提供流量控制和拥塞控制等服务。 在RTP会话期间,各参与者周期性彼此发送RTCP报文。报文中包含各参与者数 据发送和接收等统计信息,参与者可以据此动态控制流媒体传输质量。RTP和 RTCP配合使用,通过有效反馈使使流媒体传输效率最佳化。

IETF的RFC3550定义RTP/RTCP协议的基本内容,包括报文格式、传输规则等。除此之外,IETF还定义一系列扩展协议,包括RTP档次扩展,RTCP报文类型扩展,等等。本文对这些协议进行初步归纳总结,在分析RFC3550的基础上,以档次为主线分析RTP系列协议,以报文类型为主线分析RTCP系列协议。

二 RFC3550协议

RFC3550 - RTP: A Transport Protocol for Real-Time Applications (RTP)

RFC3550协议定义RTP和RTCP协议的最基本内容,包括报文格式及头部扩展、 发送和接收规则、RTP Mixer和Translator、协议安全等内容。详细内容都在协议 中定义,这里只简述RTP和RTCP报文的基本格式。

图1 RTP报文头部格式[1]

RTP报文由固定头部、(可选)扩展头部和负载三部分组成,如图1所示。头部中的X域标示固定头部后面是否跟随扩展头部,PT域定义负载类型。各部分的详细定义请参考RFC3550[1]。

	0 1 2 3
	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
	+-
header	V=2 P RC PT=SR=200 length
	+-
	SSRC of sender
	+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=
sender info	NTP timestamp, most significant word
11110	NTP timestamp, least significant word
	+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
	RTP timestamp
	+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
	sender's packet count
	+-
	sender's octet count
	+=
report	SSRC_1 (SSRC of first source)
block	+-
1	fraction lost cumulative number of packets lost
	+-
	extended highest sequence number received
	+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
	interarrival jitter
	last SR (LSR)
	+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
	delay since last SR (DLSR)
report block 2	+=
	SSRC_2 (SSRC of second source)
	+-
	: :
	+=
	profile-specific extensions
	+-

图2 RTCP报文Sender Report头部格式[1]

RFC3550根据RTCP报文类型定义SR、RR、SDES、BYE和APP五种报文格式。 图2显示了SR(Sender Report)的报文格式,包括固定头部、发送端信息和报告块 三部分组成:发送端信息携带NTP时间同步和数据发送统计等内容,报告块则包 含发送端接收到数据的统计信息。关于RTCP报文格式的详细信息,请继续参考 RFC3550[1]。

二 RTP档次扩展

RFC3550关于RTP档次的定义如下[1]:

"档次定义了一系列负载类型和对应的负载格式,也定义了特定于具体应用的RTP扩展和修改。典型地,某个应用仅基于一个档次运行。"

IETF针对RFC3550在档次方面定义了一系列扩展协议,总结如下表1:

RFC定义	内容解析
RFC 3550 - RTP: A Transport Protocol	定义最基本的RTP/RTCP报文格式和收
for Real-Time Applications [1]	发规则。
RFC 3551 - RTP Profile for Audio and	RTP/AVP: 定义音视频会议最基本的音
Video Conferences with Minimal Control	视频数据负载格式、编码和传输,是其
[2]	它档次的基础。
DEC 2711 The Course Book time	PTD/CAVD 完义ZPTD左定人之面的
RFC 3711 - The Secure Real-time	RTP/SAVP: 定义了RTP在安全方面的
Transport Protocol (SRTP) [3]	增强,如加密、认证和重放保护。
RTFC 4585 - Extended RTP Profile for	RTP/AVPF: 定义了RTP基于RTCP在及
RTCP-Based Feedback (RTP/AVPF) [4]	时反馈方面的增强,如定义NACK,PLI,
	SLI等RTCP报文。
RFC 5124 - Extended Secure RTP Profile	RTP/SAVPF: 综合RTP/SAVP和
for RTCP-Based Feedback	RTP/AVPF的安全性和及时反馈性的最
(RTP/SAVPF) [5]	全面的档次。

表1 RFC 3550在档次方面的扩展

RFC 3551(RTP/AVP)在RFC3550的基础上针对RTP档次进行补充形成 RTP/APVP档次,被用在具有最小会话控制的音视频会议中,是其它扩展档次的 基础。该档次在没有参数协商和成员控制的会话中非常有用。该档次也为音视频 定义一系列编码和负载格式。对于具体的流媒体负载格式,IETF也定义一系列协议详细描述,如VP8视频负载格式[6]和H264视频负载格式[7],等等。

RFC3711(SRTP,也即RTP/SAVP)是RTP/AVP在安全方面进行扩展形成的档次,为RTP/RTCP提供数据加密、消息认证、重放保护等功能。SRTP具有高吞吐量和低数据膨胀等特点,是异构环境下对RTP/RTCP数据的有效保护。

RFC 4585(RTP/AVPF)是RTP/AVP在及时反馈方面进行扩展形成的档次,使得接收端能够向发送端提供及时反馈,实现短时调整和基于反馈的修复机制。该协议定义早期RTCP报文以实现及时反馈,并定义一系列通用RTCP反馈报文和特定于应用的反馈报文,如NACK、PLI、SLI、RPSI等。

RTC 5124(RTP/SAVPF)则是RTP/SAVP和RTP/AVPF的综合。SAVP和AVPF 在使用时,需要参与者借助于SDP协议[8]就档次和参数信息达成一致。但是对一个RTP会话来说,这两种档次不能同时被协商。而实际应用中,我们有同时使用 这两种档次的需要。因此,RTP/SAVPF档次应运而生,它能够使得RTP会话同时 具有安全和及时反馈两方面的特性。

本节对RFC3550在档次方面扩展形成的一系列协议进行初步分析。可以看到, RFC3550只定义最基本的内容,在实际应用中会对其在安全性、及时反馈等方面 进行扩展。

三 RTCP报文类型扩展

RFC 3550定义五种RTCP报文,类型在报文头部的PT域定义。表2对它们作简单描述。

类型	缩写	用途
200	SR (Sender Report)	发送端报告
201	RR (Receiver Report)	接收端报告
202	SDES (Source Description)	源端描述
203	BYE	离开会话
204	APP	特定于应用

表2 RFC 3550定义的五种RTCP报文

SR报文用于发送端报告本端的数据发送统计信息和数据接收统计信息,RR 报文用于报告本端的数据接收统计信息,SDES报文用于报告本端的描述性信息, BYE在本端离开会话时发送,而APP则是特定于应用的数据。

IETF根据实际需求对RTCP的报文类型进行扩展,定义了一系列协议。对这类RTCP报文总结如表3所示:

类型	缩写	用途	所在RFC
195	IJ (Extended Jitter Report)	扩展Jitter报告	RFC 5450 [9]
205	RTPFB (Transport FB)	传输层反馈	RFC 4585 [4]
206	PSFB (Payload-specific FB)	负载相关反馈	RFC 5104 [10]
207	XR (Extended Report)	扩展报告块	RFC 3611 [11]

表3 RTCP其它报文及所在RFC

下面对这些RFC做进一步分析:

RFC 5450 - Transmission Time Offsets in RTP Streams

该协议在定义一种更精细地描述传输时间的方法的基础上,定义一种改进的 Jitter报告报文,负载类型为195。

RFC 5104 - Codec Control Messages in the RTP Audio-Visual Profile with Feedback (AVPF)

该协议对RFC 4585 AVPF档次进一步补充,定义一系列传输层和特定于负载的RTCP报文格式。该系列报文对SR/RR报文的RC域重定义为FMT域,用以区分报文的子类型。综合RFC 4585所定义的报文,如下表4所示:

类型	子类型	缩写	用途
205	1	Generic NACK	RTP丢包重传
RTPFB	3	TMMBR	Temporary Maximum Media Stream Bitrate Request
	4	TMMBN	Temporary Maximum Media Stream Bitrate Notification
206	1	PLI	Picture Loss Indication
PSFB	2	SLI	Slice Loss Indication
	3	RPSI	Reference Picture Selection Indication
	4	FIR	Full Intra Request
	5	TSTR	Temporal-Spatial Trade-off

		Request
6	TSTN	Temporal-Spatial Trade-off Notification
7	VBCM	Video Back Channel Message

表4 RTPFB和PSFB及其子类型

RFC3611 - RTP Control Protocol Extended Reports (RTCP XR)

该协议定义RTCP扩展报告块,负载类型为207。RTCP扩展报告块在SR/RR 报告块的基础上传输更多的信息。RFC3661定义了7种子报告块,总结如表5:

子类型	名称	用途
1	LLRE	Loss LRE Report Block
2	DLRE	Duplicate LRE RB
3	PRTR	Packet Receipt Times RB
4	RRTR	Receiver Reference Time RB
5	DLRR RB	Delay Since Last
		Receiver Report
6	SS RB	Statistics Summary RB
7	VoIP Metrics RB	VoIP Metrics

表5 RFC 3611扩展报告块

本节以报文类型为主线,归纳总结RTCP报文及其扩展报文,内容比较多也 比较繁琐。这些报文为RTP提供更丰富的控制信息和统计数据。

四 总结

本文在分析RTP/RTCP基础协议RFC3550的基础上,以档次为主线分析RTP系列扩展协议,以报文类型为主线分析RTCP系列扩展协议。通过以上工作,得到一个较为清晰的框架和流程,为进一步学习RTP/RTCP协议打下良好基础。

参考文献

- [1] RFC3550 RTP: A Transport Protocol for Real-Time Applications
- [2] RFC3551 RTP Profile for Audio and Video Conferences with Minimal Control
- [3] RFC3711 The Secure Real-time Transport Protocol (SRTP)
- [4] RFC4585 Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF)
- [5] RFC5124 Extended Secure RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/SAVPF)
- [6] RFC7741 RTP Payload Format for VP8 Video
- [7] RFC6184 RTP Payload Format for H.264 Video
- [8] RFC4566 SDP: Session Description Protocol

[9] RFC 5450 - Transmission Time Offsets in RTP Streams

[10] RFC 5104 - Codec Control Messages in the RTP Audio-Visual Profile with Feedback (AVPF)

[11] RFC3611 - RTP Control Protocol Extended Reports (RTCP XR)