Your Name Goes Here Math 387 Analysis I Homework 9

<u>Problem List</u> **5.1** {1,2,7,10,11}

Due: Wednesday, April 6

H/T: Last Names

Spring 2016

Unassigned, but suggested: Problems 3,5 in Section 5.1

9.1 Problem 5.1.1

Let $f:[0,1]\to\mathbb{R}$ be defined by $f(x):=x^3$ and let $P:=\{0,0.1,0.4,1\}$. Compute L(P,f) and U(P,f).

Solution.

9.2 Problem 5.1.2

Let $f: [0,1] \to \mathbb{R}$ be defined by f(x) := x. Show that $f \in \mathcal{R}[0,1]$ and compute $\int_0^1 f$ using the definition of the integral (but feel free to use the propositions of this section).

 \Box

9.3 Problem 5.1.7

Suppose $f: [a, b] \to \mathbb{R}$ is Riemann integrable. Let $\epsilon > 0$ be given. Then show that there exists a partition $P = \{x_0, x_1, \dots, x_n\}$ such that if we pick any set of numbers $\{c_1, c_2, \dots, c_n\}$ with $c_k \in [x_{k-1}, x_k]$ for all k, then

$$\left| \int_{a}^{b} f - \sum_{k=1}^{n} f(c_k) \Delta x_k \right| < \epsilon.$$

 \Box

9.4 Problem 5.1.10

Let $f: [0,1] \to \mathbb{R}$ be a bounded function. Let $P_n = \{x_0, x_1, \dots, x_n\}$ be a uniform partition of [0,1], that is, $x_j := j/n$. Is $\{L(P_n, f)\}_{n=1}^{\infty}$ always monotone? Yes/No: Prove or find a counterexample.

 \Box

9.5 Problem 5.1.11

For a bounded function $f: [0,1] \to \mathbb{R}$ let $R_n := (1/n) \sum_{j=1}^n f(j/n)$ (the uniform right hand rule). a) If f is Riemann integrable show $\int_0^1 f = \lim_{n \to \infty} R_n$. b) Find an f that is not Riemann integrable, but $\lim_{n \to \infty} R_n$ exists.

 \Box