THEORY AND MODEL ASSESSMENT THROUGH SIMULATION

Dr. Aric LaBarr
Institute for Advanced Analytics

THEORY ASSESSMENT

Central Limit Theorem

Closed Form Solutions?

- In mathematics and statistics, there are popular theories involving distributions of known values.
- The Central Limit Theorem is a classic example.
- Don't need complicated mathematics for us to approximate distributional assumptions when we use simulations.

Closed Form Solutions?

- This is especially helpful when finding a closed form solution is very difficult if not impossible.
- A closed form solution to a mathematical/statistical distribution problem means that you can mathematically calculate the distribution.
- Real world data can be very complicated and changing based on many different inputs which each have their own distribution.
- Simulation can reveal an approximation of these output distributions.

Example – Central Limit Theorem

- Assume you do not know the Central Limit Theorem, but you want to understand the sampling distribution of sample means.
- You take samples of size 10, 50, and 100 from the following three population distributions and calculate the sample means:
 - 1. Normal Distribution
 - 2. Uniform Distribution
 - 3. Exponential Distribution
- What is the sampling distribution of sample means from each of these distributions and sample sizes?

Theory Assessment for CLT – Python

```
import numpy as np
sample size = 50
simulation size = 10000
X1 = np.random.normal(loc = 0.04, scale = 0.07, size =
sample_size*simulation_size).reshape(simulation_size, sample_size)
X2 = np.random.uniform(low = 5, high = 105, size =
sample_size*simulation_size).reshape(simulation_size, sample_size)
X3 = np.random.exponential(scale = 0.333, size =
sample size*simulation size).reshape(simulation size, sample size)
Mean X1 = X1.mean(axis = 1)
Mean X2 = X2.mean(axis = 1)
Mean X3 = X3.mean(axis = 1)
```

Assessment for CLT – Python

n = 10

n = 50

n = 100

THEORY ASSESSMENT

Omitted Variable Bias

- What if you leave out a variable in a linear regression that should have been in the model?
- From the primer we learned that it would change the variance and bias of the coefficients still in the model depending on if the variable left out was correlated.
- What if you wanted to know how bad it could get?

Build the following regression model:

$$Y = -13 + 1.21X_1 + 3.45X_2 + \varepsilon$$

- Assume the errors are normally distributed with mean of 0 and standard deviation of 1.5.
- Assume the predictors follow standard normal distributions.

- Build 10,000 linear regressions (each of sample size 50) and record the coefficients from the regression model when one of the variables is omitted. Look at the following:
 - Distribution of coefficient in the model
 - What if the omitted variable isn't correlated with the others?
 - What if the omitted variable is correlated with the others?

- Build 10,000 linear regressions (each of sample size 50) and record the coefficients from the regression model when one of the variables is omitted. Look at the following:
 - Distribution of coefficient in the model
 - What if the omitted variable isn't correlated with the others? UNBIASED,
 MORE VARIANCE
 - What if the omitted variable is correlated with the others? BIASED, MORE VARIANCE

- Build 10,000 linear regressions (each of sample size 50) and record the coefficients from the regression model when one of the variables is omitted. Look at the following:
 - 2. How many times did you incorrectly NOT reject the null hypothesis on the coefficient in each of these scenarios?

- Build 10,000 linear regressions (each of sample size 50) and record the coefficients from the regression model when one of the variables is omitted. Look at the following:
 - 2. How many times did you incorrectly NOT reject the null hypothesis on the coefficient in each of these scenarios?

Model	Percentage of Time NOT Rejecting Null
Correct Model – OLS	1.18%
Correlated X2 Not in Model	0.00%
Uncorrelated X2 Not in Model	41.33%

TARGET SHUFFLING

- Target shuffling has been around for a long time but has recently been brought back into popularity by John Elder.
- **Target shuffling** is when you randomly reorder the target variable values among the sample, while keeping the predictor variable values fixed.

Age	Loyalty Program	Buy Product?	
25	Υ	1	
31	N	0	
28	N	1	
42	Υ	0	
39	Y	1	
34	N	0	

Age	Loyalty Program	Buy Product?	<i>Y</i> ₁	
25	Y	1	0	
31	N	0	1	
28	N	1	1	
42	Υ	0	0	
39	Y	1	0	
34	N	0	1	

Age	Loyalty Program	Buy Product?	<i>Y</i> ₁	
25	Υ	1	0	
31	N	0	1	
28	N	1	1	
42	Υ	0	0	
39	Υ	1	0	
•••				
34	N	0	1	
			_	

Age	Loyalty Program	Buy Product?	<i>Y</i> ₁	Y_2	
25	Υ	1	0	1	
31	N	0	1	1	
28	N	1	1	1	
42	Υ	0	0	0	
39	Υ	1	0	0	
	•••				
34	N	0	1	0	

Age	Loyalty Program	Buy Product?	Y_1	Y_2	
25	Υ	1	0	1	
31	N	0	1	1	
28	N	1	1	1	
42	Υ	0	0	0	
39	Υ	1	0	0	
•••					
34	N	0	1	0	

- Target shuffling has been around for a long time, but has recently been brought back into popularity by John Elder.
- Target shuffling is when you randomly reorder the target variable values among the sample, while keeping the predictor variable values fixed.
- Build model from each of these reshuffled targets and record some measurement of model success (R_A^2 , AUC, MAPE, etc.)

Model metric from each model!

Age	Loyalty Program	Buy Product?	Y_1	Y_2	
25	Y	1	0	1	
31	N	0	1	1	
28	N	1	1	1	
42	Υ	0	0	0	
39	Y	1	0	0	
34	N	0	1	0	

Placebo Effect

- Build model from each of these reshuffled targets and record some measurement of model success (R_A^2 , AUC, MAPE, etc.)
- This should remove the pattern from the data, but some pattern may exist due to randomness.
- Look at distribution of all measurements of model success and find your value from the true model!

Placebo Effect

- Build model from each of these reshuffled targets and record some measurement of model success (R_A^2 , AUC, MAPE, etc.)
- This should remove the pattern from the data, but some pattern may exist due to randomness.
- Look at distribution of all measurements of model success and find your value from the true model!
- What is probability your model would have occurred due to randomness?

- Randomly generated 8 variables that follow a Normal distribution with mean of 0 and standard deviation of 8.
- Defined relationship with target variable:

$$y = 5 + 2x_2 - 3x_8 + \varepsilon$$

Defined relationship with target variable:

$$y = 5 + 2x_2 - 3x_8 + \varepsilon$$

Performed target shuffle on the model.

```
np.random.seed(12345)
Fake = np.random.normal(loc = 0, scale = 1, size = 8*100).reshape(100, 8)
Fake = pd.DataFrame(Fake)
Fake.columns = ['X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X7', 'X8']
Fake['Y'] = 5 + 2*Fake['X2'] - 3*Fake['X8'] + np.random.normal(loc = 0, scale = 6,
size = 100)
sim = 1000
iteration = 1
for i in range(sim):
  data = Fake['Y']
  data = pd.DataFrame(data)
  data['uni'] = np.random.uniform(size = 100)
  data = data.sort values(by = ['uni'])
  data = data.reset index()
  col name = 'Y' + str(iteration)
  Fake.loc[:, col name] = data['Y']
  iteration = iteration + 1
```

```
import statsmodels.api as sm
X = Fake.iloc[:, range(8)]
X = sm.add_constant(X)
R   A = []
for i in range(1000):
  Y = Fake.iloc[:, i + 9]
  model = sm.OLS(Y, X).fit()
  rsa = model.rsquared_adj
  R_sq_A.append(rsa)
Y = Fake.iloc[:, 8]
model = sm.OLS(Y, X).fit()
rsa = model.rsquared_adj
R sq A.append(rsa)
R_sq_A = pd.DataFrame(R_sq_A)
R_sq_A.columns = ['R_sq_A']
```

- Randomly generated 8 variables that follow a Normal distribution with mean of 0 and standard deviation of 8.
- Defined relationship with target variable:

$$y = 5 + 2x_2 - 3x_8 + \varepsilon$$

Adjusted R² from this model: 0.204

Target Shuffle with 1000 Simulations

```
Y = Fake.iloc[:, 9]
model = sm.OLS(Y, X).fit()
Pval = pd.DataFrame(model.pvalues)
for i in range(999):
  Y = Fake.iloc[:, i + 10]
  model = sm.OLS(Y, X).fit()
  Pval2 = model.pvalues
  Pval = pd.concat([Pval, Pval2], axis = 1)
Pval = Pval < 0.05
Pval.sum(axis = 1)
```

Variable	Times Appeared Significant (p < 0.05) in a Model
X1	47
X2	41
X3	48
X4	39
X5	51
X6	66
X7	52
X8	41

Fake Data Example – # Significant Variables

Student Grade Analogy

Student Grade Analogy

Hours vs. Grades - Actual

Student Grade Analogy

Hours vs. Grades - Actual

- How many different ways can four students get the grades 75, 85, 87, and 95?
- 24 possible ways this happens!

- How many different ways can four students get the grades 75, 85, 87, and 95?
- 24 possible ways this happens!

1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
75	85	87	95	75	95	85	87	85	87	75	95	87	75	85	95	87	95	75	85	95	85	75	87
1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
75	87	85	95	75	95	87	85	85	87	95	75	87	75	95	85	87	95	75	85	95	87	75	85
1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
75	85	95	87	85	75	87	95	85	95	75	87	87	85	75	95	95	75	85	87	95	85	87	75
1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
75	87	95	85	85	75	95	87	85	95	87	75	87	85	95	75	95	75	87	85	95	87	85	75

- How many different ways can four students get the grades 75, 85, 87, and 95?
- 24 possible ways this happens!
- There are 3 possible combinations that produce a regression with an \mathbb{R}^2 that is greater than or equal to our actual data.

- How many different ways can four students get the grades 75, 85, 87, and 95?
- 24 possible ways this happens!

1	2	3	4	1	2	3	4	_1	2	3	4	_1	2	3	4_	_1	2	3	4	1	2	3	4
75	85	87	95	75	95	85	87	85	87	75	95	87	75	85	95	87	95	75	85	95	85	75	87
1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
75	87	85	95	75	95	87	85	85	87	95	75	87	75	95	85	87	95	75	85	95	87	75	85
_1	2	3	4	1	2	3	4	_1	2	3	4	1	2	3	4	1	2	3	4	_1	2	3	4
75	85	95	87	85	75	87	95	85	95	75	87	87	85	75	95	95	75	85	87	95	85	87	75
1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
75	97	05	85	0.5	75	OF	07	0.5	OF	97	75	97	0.5	OF	75	0.E	75	97	0.5	0.E	07	05	75

How many different ways can four students get the grades 75, 85, 87, and 95?

Hours Studied

24 possible ways this happens!

	3	4	1	2	3	4
7	75	85	95	85	75	87
	3	4	1	2	3	4
7	75	85	95	87	75	85
	3	4	1	2	3	4
8	35	87	95	85	87	75
	3	4	1	2	3	4
8	37	85	95	87	85	75

- How many different ways can four students get the grades 75, 85, 87, and 95?
- 24 possible ways this happens!

3	4	1	2	3	4
75	85	95	85	75	87
3	4	1	2	3	4
75	85	95	87	75	85
3	4	1	2	3	4
3 85				3 87	
	87		85	87	75

How many different ways can four students get the grades 75, 85, 87, and 95?

Hours Studied

24 possible ways this happens!

3	4	1	2	3	4
75	85	95	85	75	87
3	4	1	2	3	4
75	85	95	87	75	85
3	4	1	2	3	4
3 85			2 85		
		95 1		87	75 4

- How many different ways can four students get the grades 75, 85, 87, and 95?
- 24 possible ways this happens!
- There are 4 possible combinations that produce a regression with an \mathbb{R}^2 that is greater than or equal to our actual data.

$$\frac{4}{24} = \frac{1}{6} = 16.67\%$$

Permutations vs. Target Shuffling

4 possible test grades:

$$4! = 24$$

40 possible test grades:

$$40! = 8.16 \times 10^{47}$$

Permutations vs. Target Shuffling

4 possible test grades:

$$4! = 24$$

40 possible test grades:

$$40! = 8.16 \times 10^{47}$$

NEED TO SAMPLE!!!

