CLAIMS:

5

- 1. A fluidising admixture for use with sprayable cementitious compositions, the admixture consisting of
 - (1) 2-phosphonobutane-1,2,4-tricarboxylic acid;
 - (2) optionally, citric acid; and
- at least one polymer derived from ethylenically-unsaturated mono-or dicarboxylic acids, and characterised in that the polymer consists of
 - a) 51-95 mole % of moieties of formula 1a and/or 1b and/or 1c

20

wherein R^{1} = hydrogen or a C ₁₋₂₀ aliphatic hydrocarbon residue;

$$X = O_a M$$
, $-O-(C_m H_{2m}O)_n-R^2$, $-NH-(C_m H_{2m}O)_n-R^2$,

M = hydrogen, a mono-or divalent metal cation, an ammonium ion or an organic amine residue;

25 a=0.5 or 1;

 R^2 = hydrogen, C_{1-20} aliphatic hydrocarbon, C_{5-8} cycloaliphatic hydrocarbon or optionally substituted C_{6-14} aryl residue;

$$Y=0, NR^2$$
;

$$m = 2-4$$
; and

$$n=0-200$$

b) 1-48.9 mole% of moieties of the general formula II

$$-CH_2 - CR^3 - (CH_2)_{\overline{P}} - O - (C_mH_{2m}O)_n - R^2$$
 II

wherein

 R^3 = hydrogen or C_{1-5} aliphatic hydrocarbon;

p = 0-3; and

R² has the meaning given previously;

c) 0.1-5 mole % of moieties of Formulae IIIa or IIIb

wherein

$$S = H$$
, $-COO_aM$, $-COOR^5$

15

20

5

$$T = U^{1}$$
-(CH-CH₂-O)_x- (CH₂-CH₂O)_yR⁶
. CH³

-W-R⁷

 $-CO-[NH-(CH_2)_3]_s-W-R^7$

-CO-O-(CH_2)_z-W-R⁷

 $-(CH_2)_z$ -V- $(CH_2)_z$ -CH=CH-R²

= - $COOR^5$ when S is - $COOR^5$ or COO_a M

 $U^{1} = -CO-NH-, -O-, -CH_{2}O-$

 $U^2 = - NH-CO-, -O-, -OCH_2-$

 $V = -O-CO-C_6H_4-CO-O-$ or -W-

25

$$W = \begin{pmatrix} CH_3 \\ | \\ -Si - O \\ | \\ CH_3 \end{pmatrix}_r CH_3$$

30

$$R^4 = H, CH_3$$

 R^5 = a C_{3-20} alphatic hydrocarbon residue, a C_5 - C_8 cycloaliphatic hydrocarbon residue or a C_{6-14} aryl residue;

$$R^6 = R^2$$
, $-CH_2$ - CH - U^2 - C = CH
 R^4
 R^4
 S

$$R^7 = R^2$$
, -[(CH₂)₃-NH]_s-CO-C=CH
 R^4 S

$$-(CH2)z-O-CO-C=CH$$

 $R4$ S

10 wherein

$$r = 2-100$$

$$s = 1, 2$$

$$z = 0-4$$

$$x = 1-150$$

$$y = 0-15$$

15

5

d) 0-47.9 mole % of moieties of the general formula IVa and / or IV b:

$$\begin{array}{c|c}
-CH & CH \\
\hline
C & C \\
C & C
\end{array}$$

20

IVa

IVb

wherein a, M, X and Y have the significances hereinabove defined.

25

30

- 2. A fluidising admixture according to claim 1, in which
 - a) the moiety is according to formula Ia;

R¹, R² are independently H or CH₃;

$$X = O_a M$$
, $-O-(C_m H_{2m}O)_n-R^2$

M = H or a mono-or divalent metal cation;

$$a = 1;$$

$$Y=O, NR^2;$$

5

$$m= 2-3$$
; and $n= 20-150$;

- b) R^2 , R^3 are independently H or CH₃; and p = 0-1;
 - c) the moiety is according to formula IIIa;

$$S = H, -COO_{a}M, -COOR^{5}$$

$$T = U^{1} - (CH - CH_{2} - O)_{x} - (CH_{2} - CH_{2}O)_{y}R^{6}$$

$$CH^{3}$$

$$-CO - [NH - (CH_{2})_{3}]_{s} - W - R^{7}$$

$$-CO - O - (CH_{2})_{z} - W - R^{7}$$

$$R^{4}, R^{5} \text{ are independently } H, CH_{3};$$

$$R^{6} = R^{2}, -CH_{2} - CH - U^{2} - C = CH$$

$$R^{4} R^{4} S$$

$$R^{7} = R^{2}, -[(CH_{2})_{3} - NH]_{s} - CO - C = CH$$

$$R^{4} S$$

$$-(CH_{2})_{z} - O - CO - C = CH$$

$$R^{4} S$$

20 wherein

$$U^{1} = -CO-NH_{-}, -O_{-}, -CH_{2}O_{-}$$

 $U^{2} = -NH-CO_{-}, -O_{-}, -OCH_{2}$
 $x = 20-50;$
 $y = 1-10;$ and
 $z = 0-2.$

25

- 3. A fluidising admixture according to claim 2, in which
 - a) the moiety is according to formula Ia;

30
$$R^{1} = H;$$

$$R^{2} = CH_{3};$$

$$X = O_{a} M;$$

$$M = a \text{ mono-or divalent metal cation};$$

$$Y = 0$$
, NR^2 ;
 $m = 2$; and
 $n = 25-50$;

5 b)
$$R^2$$
, $R^3 = H$; and $p = 0$;

c) the moiety is according to formula IIIa;

$$S = H, -COO_{a}M;$$

$$T = U^{1} - (CH - CH_{2} - O)_{x} - (CH_{2} - CH_{2}O)_{y}R^{6}$$

$$CH^{3}$$

$$-CO - O - (CH_{2})_{z} - W - R^{7}$$

$$R^{4}, R^{5} = H;$$

$$R^{6} = R^{2}, -CH_{2} - CH - U^{2} - C = CH$$

$$R^{4}, R^{4}, R^{5} = H$$

$$R^7 = R^2$$
, $-[(CH_2)_3-NH]_s$ -CO-C=CH R^4 S $-(CH_2)_z$ -O-CO-C=CH R^4 S

wherein

20

25

30

$$U^{1} = -CO-NH-;$$

 $U^{2} = -NH-CO-, -O-, -OCH_{2}-x = 20-50;$
 $y = 5-10;$ and
 $z = 1-2.$

4. A method of imparting flow to a cementitious composition, comprising the addition thereto of an admixture according to any one of claims 1-3.

5. A method of spraying a cementitious composition by preparing a cementitious mix and conveying the mix to a spray nozzle, there being added to the mix at preparation an admixture according to claim 1.