Factorielles

Ex 1 Soient n, p des entiers tels que $1 \le p \le n$. Exprimer à l'aide de factorielles les produits suivants :

$$\prod_{k=p}^{n} k$$
 ; $\prod_{k=1}^{p} (n+k)$; $\prod_{k=1}^{p} (n-p+k)$; $\prod_{k=1}^{p} \frac{n-p+k}{k}$

- **Ex 2** Pour $n \in \mathbb{N}$, calculer $\exp\left(\sum_{k=1}^n \ln \frac{k}{n}\right)$ à l'aide de factorielles
- **Ex 3** Soit $n \in \mathbb{N}^*$. Ecrire $u_n = \prod_{k=1}^n \frac{2k-1}{2k}$ à l'aide de factorielles (on pourra introduire les nombres pairs).

Télescopages et translations d'indices

- **Ex 4** Soit $(a_k)_{k\in\mathbb{N}}$ une suite et $n\in\mathbb{N}^*$. Simplifier la somme $S_n=\sum_{k=1}^n (a_{k+2}+a_{k+1}-2a_k)$
- **Ex 5** Calculer en fonction de $n \in \mathbb{N}^*$:

a)
$$\sum_{k=1}^{n} \ln \left(1 + \frac{1}{k} \right)$$

a)
$$\sum_{k=1}^{n} \ln\left(1 + \frac{1}{k}\right)$$
 b) $\sum_{k=0}^{n} x^{k} (1 - x) \quad (x \in \mathbb{C})$ c) $\sum_{k=0}^{n} \frac{k}{(k+1)!}$ d) $\sum_{k=1}^{n} k \times k!$ e) $\prod_{k=2}^{n} \left(1 - \frac{1}{k}\right)$ f) $\prod_{k=2}^{n} \left(1 - \frac{1}{k^{2}}\right)$

$$c) \quad \sum_{k=0}^{n} \frac{k}{(k+1)!}$$

$$d) \quad \sum_{k=1}^{n} k \times k!$$

e)
$$\prod_{k=2}^{n} \left(1 - \frac{1}{k}\right)$$

$$f) \quad \prod_{k=2}^{n} \left(1 - \frac{1}{k^2} \right)$$

Ex 6 Montrer que $\forall k \in \mathbb{N}^*$, $\frac{1}{(k+1)\sqrt{k}+k\sqrt{k+1}} = \frac{\sqrt{k}}{k} - \frac{\sqrt{k+1}}{k+1}$ et en déduire une simplification de

$$S = \frac{1}{2 + \sqrt{2}} + \frac{1}{3\sqrt{2} + 2\sqrt{3}} + \dots + \frac{1}{100\sqrt{99} + 99\sqrt{100}}$$

Ex 7 Trouver deux réels a et b tels que $\forall x \in \mathbb{R} \setminus \{-1, -2\}$, $\frac{1}{x^2 + 3x + 2} = \frac{a}{x+1} + \frac{b}{x+2}$

En déduire une simplification pour tout $n \in \mathbb{N}$ de $S_n = \sum_{k=0}^n \frac{1}{k^2 + 3k + 2}$ et sa limite.

Ex 8 Soit $x\in]0,\pi[$ et $n\in \mathbb{N}^*.$ A l'aide de la formule $\sin{(2a)}=2\sin{a}\cos{a}$, simplifier le produit :

$$P_n = \prod_{k=1}^n \cos\left(\frac{x}{2^k}\right)$$

Ex 9 Soit $n \in \mathbb{N}$. A l'aide du changement d'indice j = n - k, calculer $S_n = \sum_{k=0}^n \cos^2\left(\frac{k\pi}{2n}\right)$ (on calculera $2S_n$)

Sommes classiques

- **Ex 10** Soit $n \in \mathbb{N}^*$. Calcul de $T_n = \sum_{n=1}^{\infty} k^2$
 - a) Première méthode:
 - i. Trouver un polynôme P du troisième degré tel que $\forall x \in \mathbb{R}, \ P(x+1) P(x) = x^2$. Le factoriser.
 - ii. En déduire une expression (factorisée) de T_n
 - b) Deuxième méthode : relier $\sum_{k=0}^{n} (k+1)^3$ et $\sum_{k=1}^{n} k^3$, et en déduire une expression (factorisée) de T_n

PCSI 1 Thiers 2019/2020 **Ex 11** Calculer une expression factorisée de $U_n = \sum_{i=1}^n k^3$ en adaptant les méthodes de l'exercice précédent.

Ex 12 Pour $a \in \mathbb{R}$ et $n \in \mathbb{N}^*$ on pose : $S_n = \sum_{k=1}^n ka^k$

- a) Calculer S_n si a = 1.
- b) Si $a \neq 1$, calculer $aS_n S_n$. En déduire la valeur de S_n .
- c) Retrouver ce résultat en dérivant la fonction $x \mapsto \sum_{k=0}^{n} x^{k}$

Sommes doubles

Ex 13 Pour $n \in \mathbb{N}^*$, calculer les sommes et produits suivants :

a)
$$\sum_{i=1}^{n} \sum_{j=1}^{n} (i+j)$$

$$b) \quad \sum_{i=1}^{n} \sum_{j=1}^{n} ij$$

c)
$$\sum_{0\leqslant i,j\leqslant n} x^{i+j}$$
 e)
$$\prod_{1\leqslant i,j\leqslant n} i^j$$

d)
$$\sum_{i=1}^{n} \sum_{j=0}^{n} (1 - 2^{i}) 2^{ij}$$
f)
$$\prod_{1 \leq i, j \leq n} x^{i+j}$$

e)
$$\prod_{1 \leqslant i, j \leqslant n} i$$

f)
$$\prod_{1 \le i, i \le n} x^{i+1}$$

Ex 14 Pour $n \in \mathbb{N}^*$, calculer les sommes (triangulaires) suivantes :

$$\mathrm{a)}\quad \sum_{1\leqslant i\leqslant j\leqslant n}\frac{i}{j}$$

b)
$$\sum_{1 \le i \le j \le n} (i+j)$$

c)
$$\sum_{1 \leqslant i \leqslant j \leqslant n} 2^j$$

d)
$$\sum_{k=1}^{n} \sum_{i=k}^{n} \frac{1}{i}$$

Ex 15 (*) Pour tout entier naturel i et j, on pose : $\max(i,j) = \begin{cases} i \text{ si } i \geqslant j \\ j \text{ si } j \geqslant i \end{cases}$ et $\min(i,j) = \begin{cases} i \text{ si } i \leqslant j \\ j \text{ si } j \leqslant i \end{cases}$ a) Soit $n \in \mathbb{N}^*$. Montrer que $\sum_{1 \leqslant i,j \leqslant n} \min(i,j) = \frac{n(n+1)(2n+1)}{6}$.

a) Soit
$$n \in \mathbb{N}^*$$
. Montrer que $\sum_{1 \leqslant i,j \leqslant n} \min(i,j) = \frac{n(n+1)(2n+1)}{6}$

- b) Pour tout entier i et j, simplifier $\max(i, j) + \min(i, j)$.
- c) En déduire l'expression de $\sum_{1\leqslant i,j\leqslant n} \max(i,j)$.