Lecture 36 Exploring Bivariate Data Using Correlation

BIO210 Biostatistics

Xi Chen

Spring, 2023

School of Life Sciences
Southern University of Science and Technology

Covariance

$$\sigma(\mathbf{X}, \mathbf{Y}) = E[(\mathbf{X} - E[\mathbf{X}]) \cdot (\mathbf{Y} - E[\mathbf{Y}])]$$

$$= E[\mathbf{X}\mathbf{Y} - \mathbf{X} \cdot E[\mathbf{Y}] - \mathbf{Y} \cdot E[\mathbf{X}] + E[\mathbf{X}] \cdot E[\mathbf{Y}]]$$

$$= E[\mathbf{X}\mathbf{Y}] - E[\mathbf{X} \cdot E[\mathbf{Y}]] - E[\mathbf{Y} \cdot E[\mathbf{X}]] + E[E[\mathbf{X}] \cdot E[\mathbf{Y}]]$$

$$= E[\mathbf{X}\mathbf{Y}] - E[\mathbf{Y}] \cdot E[\mathbf{X}] - E[\mathbf{X}] \cdot E[\mathbf{Y}] + E[\mathbf{X}] \cdot E[\mathbf{Y}]$$

$$= E[\mathbf{X}\mathbf{Y}] - E[\mathbf{X}] \cdot E[\mathbf{Y}]$$

$$Cov(x,y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

If \boldsymbol{X} and \boldsymbol{Y} are independent: $\sigma(\boldsymbol{X},\boldsymbol{Y})=0$

Visualisation of The Covariance

 $From\ stats. Stack Exchange. com$

Scatter Plot

Pearson's Correlation Coefficient (r)

x	y	y				
0.5	1.54	. 1				
-0.14	0.25	3 †		•)	
0.65	2.54	2		•		
1.52	2.13	2 †				
-0.23	-1.18	1 +				
-0.23	-0.02	1		•		
1.58	3.15	0	•		r =	\cap
0.77	2.85				, –	0.
-0.47	-0.85	-1				
0.54	0.67	ـــا	•	-	-	
$\bar{x} = 0.45,$	$\bar{v} = 1.11$	-0.5	5 0	0.5	1	-
	$s_y = 1.55$			x		

$$\begin{split} r &= \frac{1}{n-1} \sum_{i=1}^n \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right) \\ r &= \frac{1}{n-1} \sum_{n=1}^{n-1} Z_{x_i} Z_{y_i} \\ r &= \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\left[\sum_{i=1}^n (x_i - \bar{x})^2\right] \left[\sum_{i=1}^n (y_i - \bar{y})^2\right]}} \\ &= \frac{Cov(x, y)}{\sqrt{Cov(x, x) \cdot Cov(y, y)}} \end{split}$$

$$-1\leqslant r\leqslant 1$$

Pearson's Correlation Coefficient (r)

r = 0.95Be careful about outliers!

Hypothesis testing of Pearson's \boldsymbol{r}

We suspect that there is a linear relationship between the number of hours spent on study and the test scores. To find out if this is the case, we can draw a random sample and conduct a hypothesis testing.

Population correlation coefficient: ρ Sample correlation coefficient: r

$$\begin{cases} H_0: \text{no linear relationship} \\ H_1: \text{some linear relationship} \end{cases} \Leftrightarrow \begin{cases} H_0: \rho = 0 \\ H_1: \rho \neq 0 \end{cases}$$

What is the sampling distribution of r ?

Sampling Distribution of Pearson's \boldsymbol{r}

10,000 simulations under H_0 is true

Under H_0 (no linear relationship) is true:

$$r\sqrt{\frac{n-2}{1-r^2}} = \frac{r}{\sqrt{(1-r^2)/(n-2)}} \sim t_{n-2}$$

Hypothesis testing of Pearson's r

To investigate whether there is a linear relationship between the number of hours spent on study and the test scores, 20 students were randomly selected, and Pearson's r was calculated to be r=0.69.

Test statistic:
$$t = r\sqrt{\frac{n-2}{1-r^2}} = 0.69 \times \sqrt{\frac{20-2}{1-0.69^2}} = 4.04$$

Two-tailed
$$p$$
-value: $\mathbb{P}\left(|t|\geqslant 4.04\right)=2\times\mathbb{P}\left(t\geqslant 4.04\right)=0.000768$