i	0	1	2	3	4
x_i	1	1,69	2,25	2,89	4
$f(x_i) = \sqrt{x_i}$	1	1,3	1,5	1,7	2
h_i	0,69	0,56	0,64	1,11	
Δf_i	0,3	0,2	0,2	0,3	

Víme, že $c_0 = 0$. Pro neznámé c_1, c_2, c_3 dostaneme podle 5.19 soustavu rovnic

Řešením této soustavy je $c_1 = -0,087085,\ c_2 = -0,027155,\ c_3 = -0,031231.$

Koeficienty b_i a d_i , i=0,1,2,3, dopočítáme podle vzorců 5.20 a 5.21. (Při výpočtu b_3 a d_3 použijeme $c_4=0$.)

Tedy např.
$$b_0 = \frac{1, 3-1}{0,69} - \frac{-0,087085 + 2 \cdot 0}{3} \cdot 0,69 \doteq 0,454812$$

Ostatní koeficienty by se vypočítaly podobně. Vyjde:

i	0	1	2	3
a_i	1	1,3	1,5	1,7
b_i	0,454812	0,394724	0,330749	0,293381
c_i	0	-0,087085	-0,027155	-0,031231
d_i	-0,042070	0,035672	-0,002123	0,009379

Výsledný přirozený kubický splajn je tedy

$$S(x) = \begin{cases} S_0(x) = 1 + 0.454812(x - 1) - 0.042070(x - 1)^3 & x \in <1; 1,69 > \\ S_1(x) = 1.3 + 0.394724(x - 1,69) - 0.087085(x - 1,69)^2 + 0.035672(x - 1,69)^3 & x \in <1,69; 2,25 > \\ S_2(x) = 1.5 + 0.330749(x - 2,25) - 0.027155(x - 2,25)^2 - 0.002123(x - 2,25)^3 & x \in <2,25; 2,89 > \\ S_3(x) = 1.7 + 0.293381(x - 2,89) - 0.031231(x - 2,89)^2 + 0.009379(x - 2,89)^3 & x \in <2,89; 4 > \end{cases}$$

Přibližnou hodnotu funkce f v bodě x=2 nyní vypočteme jako $S_1(2) \doteq 1,415058$ (protože $2 \in \langle 1,69;2,25 \rangle$). Pro srovnání, přesná hodnota je $\sqrt{2} \doteq 1,414214$.

5.3 Metoda nejmenších čtverců

V předchozích částech této kapitoly jsme požadovali, aby interpolační polynom, resp. splajn, nabýval v uzlových bodech stejných hodnot jako funkce, již se snažíme aproximovat. V případě, že jsou funkční hodnoty získány experimentálně, např. jako výsledky nějakého měření, je interpolace nevhodná. Výsledky jsou totiž zatíženy chybami a interpolační funkce by tyto chyby kopírovala, což je přesně to, čeho se chceme vyvarovat. Kromě toho povaha experimentů nevylučuje možnost několika měření při nezměněné hodnotě x, tj. nemusí být všechny uzlové body navzájem různé. Vzhledem k těmto okolnostem není dobré požadovat, aby aproximační funkce nabývala v uzlových bodech předem daných hodnot. V mnoha případech máme určitou představu o povaze funkce, jejíž hodnoty jsme naměřili, např. může se jednat o lineární nebo kvadratickou závislost. Pak hledáme mezi všemi funkcemi tohoto známého typu takovou, která prochází k zadaným bodům v jistém smyslu nejblíže.

Numerické metody 70

Formulace problému

Jsou dány body x_i , i = 0, ..., n a funkční hodnoty v nich y_i . Dále jsou dány funkce $\varphi_i, i = 0, ..., m, m < n$. Mezi všemi funkcemi tvaru

$$P_m(x) = c_0 \varphi_0(x) + c_1 \varphi_1(x) + \dots + c_m \varphi_m(x), \tag{5.22}$$

 c_0, \ldots, c_m jsou reálná čísla, hledáme takovou, pro niž veličina

$$\rho^{2}(c_{0}, \dots c_{m}) = \sum_{i=0}^{n} (y_{i} - P_{m}(x_{i}))^{2},$$

kterou nazýváme kvadratická odchylka, nabývá minimální hodnoty.

(Kvadratická odchylka ρ^2 udává součet obsahů čtverců se stranami o délkách $|y_i - P_m(x_i)|$, $i = 0, \ldots, n$, viz obrázek 5.8. Odtud pochází název metody.)

Takovou funkci pak nazýváme **nejlepší aproximací** experimentálních dat $y_0, \ldots y_n$ v dané třídě funkcí **ve smyslu metody nejmenších čtverců**.

Obrázek 5.8: Metoda nejmenších čtverců - mezi všemi funkcemi známého typu 5.22 (zde jsou to paraboly) hledáme tu, pro kterou je součet obsahů čtverců nejmenší možný.

Nalezení nejlepší aproximace

Protože body $[x_i, y_i]$, i = 0, ..., n, a funkce φ_i , i = 0, ..., m, jsou dány, kvadratická odchylka

$$\rho^{2} = \sum_{i=0}^{n} (y_{i} - c_{0}\varphi_{0}(x_{i}) - c_{1}\varphi_{1}(x_{i}) - \dots - c_{m}\varphi_{m}(x_{i}))^{2}$$

závisí pouze na koeficientech c_0, \ldots, c_m . Z diferenciálního počtu funkcí více proměnných je známo, že nutnou podmínkou pro to, aby $\rho^2(c_0, \ldots, c_m)$ nabývala minima, je splnění rovnic

$$\frac{\partial}{\partial c_j}(\rho^2) = \frac{\partial}{\partial c_j} \left[\sum_{i=0}^n (y_i - c_0 \varphi_0(x_i) - c_1 \varphi_1(x_i) - \dots - c_m \varphi_m(x_i))^2 \right] = 0, \quad j = 0, \dots, m$$

Zderivováním dostaneme

$$\sum_{i=0}^{n} 2(y_i - c_0 \varphi_0(x_i) - c_1 \varphi_1(x_i) - \dots - c_m \varphi_m(x_i))(-\varphi_j(x_i)) = 0, \quad j = 0, \dots, m.$$

Rovnice vydělíme -2 a rozdělíme na jednotlivé sumy:

$$\sum_{i=0}^{n} y_i \varphi_j(x_i) - \sum_{i=0}^{n} c_0 \varphi_0(x_i) \varphi_j(x_i) - \dots - \sum_{i=0}^{n} c_m \varphi_m(x_i) \varphi_j(x_i) \quad j = 0, \dots, m.$$

Z každé sumy můžeme vytknout odpovídající koeficient c_k . Snadnou úpravou pak dostaneme tzv. **normální rovnice** pro neznámé c_0, \ldots, c_m :

$$c_0 \sum_{i=0}^n \varphi_0(x_i)\varphi_j(x_i) + \dots + c_m \sum_{i=0}^n \varphi_m(x_i)\varphi_j(x_i) = \sum_{i=0}^n y_i \varphi_j(x_i) \quad j = 0, \dots, m.$$

Tato soustava rovnic po rozepsání vypadá takto:

$$c_{0} \sum_{i=0}^{n} \varphi_{0}^{2}(x_{i}) + c_{1} \sum_{i=0}^{n} \varphi_{1}(x_{i})\varphi_{0}(x_{i}) + \dots + c_{m} \sum_{i=0}^{n} \varphi_{m}(x_{i})\varphi_{0}(x_{i}) = \sum_{i=0}^{n} y_{i}\varphi_{0}(x_{i})$$

$$c_{0} \sum_{i=0}^{n} \varphi_{0}(x_{i})\varphi_{1}(x_{i}) + c_{1} \sum_{i=0}^{n} \varphi_{1}^{2}(x_{i}) + \dots + c_{m} \sum_{i=0}^{n} \varphi_{m}(x_{i})\varphi_{1}(x_{i}) = \sum_{i=0}^{n} y_{i}\varphi_{1}(x_{i})$$

$$\vdots$$

$$c_{0} \sum_{i=0}^{n} \varphi_{0}(x_{i})\varphi_{m}(x_{i}) + c_{1} \sum_{i=0}^{n} \varphi_{1}(x_{i})\varphi_{m}(x_{i}) + \dots + c_{m} \sum_{i=0}^{n} \varphi_{m}^{2}(x_{i}) = \sum_{i=0}^{n} y_{i}\varphi_{m}(x_{i})$$

$$(5.23)$$

Získaná soustava rovnic vypadá možná poněkud hrozivě a nepřehledně, ale uvidíme, že s konkrétními funkcemi φ_i se situace vyjasní.

Aproximace metodou nejmenších čtverců algebraickými polynomy

Velmi častá volba funkcí φ_i je $\varphi_i(x) = x^i$, $i = 0, 1, \dots, m$, tj.

$$\varphi_0(x) = 1, \varphi_1(x) = x, \dots, \varphi_m(x) = x^m$$

Aproximující funkce P_m je pak tvaru

$$P_m(x) = c_0 + c_1 x + \dots + c_m x^m$$

Numerické metody 72

a jednotlivé sumy v soustavě normálních rovnic vyjdou

$$\sum_{i=0}^{n} \varphi_0^2(x_i) = \sum_{i=0}^{n} 1 = \underbrace{1+1+\dots+1}_{n+1} = n+1 \; , \; \sum_{i=0}^{n} \varphi_1(x_i)\varphi_0(x_i) = \sum_{i=0}^{n} x_i \cdot 1 = \sum_{i=0}^{n} x_i \; , \dots$$

obecně

$$\sum_{i=0}^{n} \varphi_k(x_i)\varphi_l(x_i) = \sum_{i=0}^{n} x_i^k \cdot x_i^l = \sum_{i=0}^{n} x_i^{k+l}, \quad k, l = 0, \dots, m$$

Soustava normálních rovnic pak vypadá následovně

$$c_{0}(n+1) + c_{1} \sum_{i=0}^{n} x_{i} + \dots + c_{m} \sum_{i=0}^{n} x_{i}^{m} = \sum_{i=0}^{n} y_{i}$$

$$c_{0} \sum_{i=0}^{n} x_{i} + c_{1} \sum_{i=0}^{n} x_{i}^{2} + \dots + c_{m} \sum_{i=0}^{n} x_{i}^{m+1} = \sum_{i=0}^{n} x_{i}y_{i}$$

$$\vdots$$

$$c_{0} \sum_{i=0}^{n} x_{i}^{m} + c_{1} \sum_{i=0}^{n} x_{i}^{m+1} + \dots + c_{m} \sum_{i=0}^{n} x_{i}^{2m} = \sum_{i=0}^{n} x_{i}^{m}y_{i}$$

$$(5.24)$$

Speciálně pro aproximaci přímkou $P_1(x) = c_0 + c_1 x$ dostaneme soustavu

$$c_0(n+1) + c_1 \sum_{i=0}^n x_i = \sum_{i=0}^n y_i$$

$$c_0 \sum_{i=0}^n x_i + c_1 \sum_{i=0}^n x_i^2 = \sum_{i=0}^n x_i y_i$$
(5.25)

a pro aproximaci parabolou $P_2(x) = c_0 + c_1 x + c_2 x^2$ soustavu

$$c_{0}(n+1) + c_{1} \sum_{i=0}^{n} x_{i} + c_{2} \sum_{i=0}^{n} x_{i}^{2} = \sum_{i=0}^{n} y_{i}$$

$$c_{0} \sum_{i=0}^{n} x_{i} + c_{1} \sum_{i=0}^{n} x_{i}^{2} + c_{2} \sum_{i=0}^{n} x_{i}^{3} = \sum_{i=0}^{n} x_{i} y_{i}$$

$$c_{0} \sum_{i=0}^{n} x_{i}^{2} + c_{1} \sum_{i=0}^{n} x_{i}^{3} + c_{2} \sum_{i=0}^{n} x_{i}^{4} = \sum_{i=0}^{n} x_{i}^{2} y_{i}$$

$$(5.26)$$

Příklad 5.6 Funkci zadanou následující tabulkou bodů aproximujte metodou nejmenších čtverců pomocí přímky.

	/	0,5	/	,	,	2,9	,
y_i	16,58	19,30	18,12	20,94	20,90	24,66	24,50

Řešení: Bylo zadáno 7 bodů, proto n = 6. Koeficienty přímky získáme jako řešení soustavy rovnic 5.25. Pro přehlednost si všechny potřebné hodnoty zapíšeme do tabulky:

i	x_i	y_i	x_i^2	x_iy_i
0	0,2	16,58	0,04	3,316
1	0,5	19,30	0,25	9,650
2	0,9	18,12	0,81	16,308
3	1,6	20,94	2,56	33,504
4	2,0	20,90	4,00	41,800
5	2,9	24,66	8,41	71,514
6	3,5	24,50	12,25	85,750
\sum	11,6	145,00	28,32	261,842

Nyní můžeme sestavit normální rovnice:

$$7 c_0 + 11, 6 c_1 = 145$$

 $11, 6 c_0 + 28, 32 c_1 = 261, 842$

Jejich řešením je $c_0 \doteq 16,788$, $c_1 \doteq 2,370$.

Hledaná přímka je tedy $P_1(x) = 16,788+2,370 x$. Zadané body jsou spolu s touto přímkou zobrazeny na obrázku 5.9.

Obrázek 5.9: K příkladu 5.6: zadané body a nalezená přímka

Poznámka. Pokud naměřené hodnoty vykazují periodické chování, je vhodnější je pomocí metody nejmenších čtverců aproximovat trigonometrickými polynomy. Za funkce φ_i můžeme volit

$$\varphi_0(x) = 1$$
, $\varphi_1(x) = \cos x$, $\varphi_2(x) = \sin x$, $\varphi_3(x) = \cos 2x$, $\varphi_4(x) = \sin 2x$, ...

Shrnutí pojmů

Aproximace funkce spočívá v nahrazení zkoumané funkce f jednodušší funkcí, která nabývá přibližně stejných hodnot jako funkce f a se kterou se snadno pracuje.

Numerické metody 74

U interpolace hledáme funkci, která má s f společné funkční hodnoty v tzv. uzlových bodech x_0, x_1, \ldots, x_n . Nejčastěji to bývá interpolační polynom nebo splajn.

Interpolační polynom $P_n(x)$ je algebraický polynom stupně nanejvýš n, pro nějž platí $P(x_i) = f(x_i), i = 0, 1, ..., n$. Interpolační polynom pro zadané body existuje vždy právě jeden, ale můžeme jej vyjádřit v různém tvaru.

Existují speciální tvary interpolačních polynomů pro ekvidistatní uzly, tj. uzly takové, že krok mezi všemi dvojicemi sousedních uzlů je konstantní.

Lagrangeův interpolační polynom sestavíme přímo ze zadaných uzlů a funkčních hodnot v nich. Pro konstrukci Newtonova interpolačního polynomu musíme napřed vypočítat poměrné (jedná-li se o neekvidistantní uzly) nebo obyčejné (jedná-li se o ekvidistantní uzly) diference a interpolační polynom pak sestavíme pomocí nich. Výhodou Newtonova interpolačního polynomu oproti Lagrangeovu je, že se do něj snadněji dosazuje a snadněji lze přidat další uzel.

Za příznivých okolností platí v neuzlových bodech $f(x) \doteq P_n(x)$. Použijeme-li však příliš mnoho uzlových bodů, interpolační polynom může (i když nemusí) začít oscilovat. Proto je pro aproximaci funkce na dlouhém intervalu lepší splajn.

Splajn S(x) je také funkce, pro niž platí $S(x_i) = f(x_i)$, $i = 0, 1, \ldots, n$, ale na rozdíl od interpolačního polynomu je to funkce definovaná po částech, je dána jiným předpisem na každém z intervalů $\langle x_i, x_{i+1} \rangle$, $i = 0, 1, \ldots, n-1$. Nejčastěji se používá tzv. přirozený kubický splajn. To je funkce, která je na každém intervalu $\langle x_i, x_{i+1} \rangle$ polynom třetího stupně $S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$. Jednotlivé polynomy S_i a S_{i+1} na sebe musí v bodě x_{i+1} (tj. v bodě, kde se jejich definiční obory stýkají) spojitě navazovat až do druhé derivace včetně. Navíc požadujeme platnost okrajových podmínek $S_0''(x_0) = S_{n-1}''(x_n) = 0$.

Při výpočtu splajnu nejprve najdeme koeficienty c_i jako řešení jisté soustavy lineárních rovnic. Koeficienty b_i a d_i pak vypočteme pomocí nich. Pro koeficienty a_i platí $a_i = f_i$. Metoda nejmenších čtverců se používá především v případě, kdy máme hodnoty $[x_i, y_i]$, $i = 0, 1, \ldots, n$, získané nějakým měřením (tj. zatížené chybami) a máme určitou představu o povaze funkční závislosti y na x. Předpokládáme, že tato funkční závislost je typu $y = c_1\varphi_1(x) + \cdots + c_m\varphi_m(x)$, kde φ_i , $i = 0, \ldots, m$, jsou známé funkce. Mezi všemi funkcemi tohoto známého typu hledáme tu, pro kterou je minimální tzv. kvadratická odchylka. Nalezení této funkce spočívá v nalezení hodnot koeficientů c_i , $i = 0, \ldots, m$. Ty najdeme jako řešení tzv. soustavy normálních rovnic. Pro aproximaci algebraickým polynomem je tvar soustavy známý. Speciálně pro polynom prvního stupně, přímku, je to 5.25 a pro polynom druhého stupně, parabolu, 5.26. Chceme-li použít jiný typ funkcí, dosadíme do obecného tvaru soustavy 5.23.

5.4 Otázky a příklady ke cvičení

U následujících výroků rozhodněte, zda se jedná o výrok pravdivý či nepravdivý.

Otázka 5.1 Pomocí interpolačního polynomu můžeme vypočítat přibližnou hodnotu interpolované funkce v neuzlovém bodě.