In [2]: import pandas as pd
In [3]: df3=pd.read_csv("C:/Users/sujit/Downloads/twitter_training.csv")
In [4]: df3
Out[4]: Tweet ID Entity Sentiment Tweet Content

	Tweet ID	Entity	Sentiment	Tweet Content		
0	2401	Borderlands	Positive	I am coming to the borders and I will kill you		
1	2401	Borderlands	Positive	im getting on borderlands and i will kill you		
2	2401	Borderlands Positive im comi		im coming on borderlands and i will murder you		
3	2401	Borderlands	Positive	im getting on borderlands 2 and i will murder		
4	2401	Borderlands	Positive	im getting into borderlands and i can murder y		
	***	***	***	Face:		
74676	9200	Nvidia	Positive	Just realized that the Windows partition of my		
74677	9200	Nvidia	Positive	Just realized that my Mac window partition is		
74678	9200	Nvidia	Positive	Just realized the windows partition of my Mac		
74679	9200	Nvidia	Positive	Just realized between the windows partition of		
74680	9200	Nvidia	Positive	Just like the windows partition of my Mac is I		

74681 rows × 4 columns

3]:	df3:	1.						
[8]:	Tweet ID Entity		Sentiment	Tweet Content				
	0	357	2	Amazon	Neutral	BBC News - Amazon boss Jeff Bezos rejects clai		
	1	831	2	Microsoft	Negative	@Microsoft Why do I pay for WORD when it funct		
	2	437	1	CS-GO	Negative	CSGO matchmaking is so full of closet hacking,		
	3	443	3	Google	Neutral	Now the President is slapping Americans in the		
	4	627	3	FIFA	Negative	Hi @EAHelp I've had Madeleine McCann in my cel		
	***			***	***			
	994	489	1 GrandTl	heftAuto(GTA)	Irrelevant	Toronto is the arts and culture capital of		
	995	435	9	CS-GO	Irrelevant	this is actually a good move tot bring more vi		
	996	265	2	Borderlands	Positive	Today sucked so it's time to drink wine n play		
	997	8069	9	Microsoft	Positive	Bought a fraction of Microsoft today. Small wins.		
	998	6960) john	son&johnson	Neutral	Johnson & Johnson to stop selling talc baby po		
]:	df3	l.head()						
9]:	Т	weet ID	Entity	TEACHS CONSESSION	_	Tweet Content		
	0	352	Amazon	Neutral		- Amazon boss Jeff Bezos rejects clai		
	1	8312	Microsoft	Negative	@Microsoft V	Why do I pay for WORD when it funct		
	2	4371	CS-GO	CS-GO Negative		CSGO matchmaking is so full of closet hacking,		
	3	4433	Google	Google Neutral		Now the President is slapping Americans in the		
		6273	FIFA	Negative	IN CHARLES IN I	've had Madeleine McCann in my cel		

```
In [10]: vectorizer = TfidfVectorizer(max_features=10000)
         X_train = vectorizer.fit_transform(df3["Sentiment"])
         X_val = vectorizer.transform(df31["Sentiment"])
         model = MultinomialNB(alpha=1.5)
         model.fit(X_train, df3['Sentiment'])
Out[10]:
                MultinomialNB
         MultinomialNB(alpha=1.5)
         # Prediction on the validation set
In [12]:
         predictions = model.predict(X_val)
         from sklearn.metrics import f1_score
         f1 = f1_score(df31['Sentiment'], predictions, average='micro')
         print(f'F1 Score: {f1:.2f}')
         F1 Score: 1.00
         # Print classification report and confusion matrix
In [14]:
         print('Classification Report:\n', classification_report(df31['Sentiment'], predictions))
         print('Confusion Matrix:\n', confusion_matrix(df31['Sentiment'], predictions))
         Classification Report:
                                     recall f1-score
                        precision
                                                         support
           Irrelevant
                            1.00
                                       1.00
                                                 1.00
                                                            171
             Negative
                            1.00
                                       1.00
                                                 1.00
                                                            266
              Neutral
                            1.00
                                       1.00
                                                 1.00
                                                            285
             Positive
                            1.00
                                       1.00
                                                 1.00
                                                            277
             accuracy
                                                 1.00
                                                            999
                                                 1.00
                                                            999
            macro avg
                            1.00
                                       1.00
                                       1.00
                                                 1.00
                                                            999
         weighted avg
                            1.00
         Confusion Matrix:
          [[171 0 0
                          0]
            0 266
                    0
                         07
          ſ
            0 0 285
                     0 277]]
```

```
[16]: # Visualization - sentiment distribution
      sentiment_distribution = df31['Sentiment'].value_counts()
      sentiment_distribution.plot(kind='bar', color=['black', 'purple', 'yellow'])
      plt.title('Sentiment Distribution in Validation Data')
      plt.xlabel('Sentiment')
      plt.ylabel('Count')
      plt.show()
```

Sentiment Distribution in Validation Data


```
In [18]: plt.figure(figsize=(8, 6))
         sns.countplot(x=predictions, palette=['indigo', 'pink', 'black'])
         plt.title('Predicted Sentiment Distribution')
         plt.xlabel('Sentiment')
         plt.ylabel('Count')
         plt.show()
```

Predicted Sentiment Distribution


```
In [23]: import pandas as pd
         import matplotlib.pyplot as plt
         from nltk.sentiment.vader import SentimentIntensityAnalyzer
         from nltk.tokenize import word tokenize
         from nltk.corpus import stopwords
         import string
In [27]: # Initialize Sentiment Intensity Analyzer
         sid = SentimentIntensityAnalyzer()
         # Function to preprocess text
         def preprocess text(text):
             if isinstance(text, str): # Check if text is a string
                 # Tokenize text
                 tokens = word tokenize(text)
                 # Remove punctuation
                 tokens = [word for word in tokens if word.isalpha()]
                 # Convert to Lowercase
                 tokens = [word.lower() for word in tokens]
                 # Remove stopwords
                  stop words = set(stopwords.words('english'))
                  tokens = [word for word in tokens if not word in stop words]
                  return ' '.join(tokens)
             else:
                  return ' # Return empty string if text is not a string
```

```
df3['clean_text'] = df3['Tweet Content'].apply(preprocess_text)
    df3['sentiment_score'] = df3['clean_text'].apply(lambda x: sid.polarity_scores(x)['compound'])

# Plot sentiment distribution
plt.figure(figsize=(8, 6))
plt.hist(df3['sentiment_score'], bins=30, color='skyblue', edgecolor='black')
plt.title('Sentiment Distribution')
plt.xlabel('Sentiment Score')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
```



```
7]: # Convert 'text' column to string type and handle missing values
    df3['Tweet Content'] = df3['Tweet Content'].astype(str)
    # Ensure 'text' column contains only string values
    df3['Tweet Content'] = df3['Tweet Content'].apply(lambda x: x if isinstance(x, str) else "")
2]: # Function to get sentiment scores
    def get sentiment score(text):
        return sid.polarity scores(text)['compound']
    # Apply sentiment analysis
    df3['sentiment score'] = df3['Tweet Content'].apply(get_sentiment_score)
    # Generate word cloud of positive and negative sentiments
    positive_text = ' '.join(df3[df3['sentiment_score'] > 0]['Tweet Content'])
    negative_text = ' '.join(df3[df3['sentiment_score'] < 0]['Tweet Content'])</pre>
```

```
plt.figure(figsize=(15, 10))

plt.subplot(1, 2, 1)
wordcloud_positive = WordCloud(width=800, height=400, background_colors'white').generate(positive_text)
plt.imshow(wordcloud_positive, interpolations'bilinear')
plt.title('Positive Sentiment Word Cloud')
plt.axis('off')

plt.subplot(1, 2, 2)
wordcloud_negative = WordCloud(width=800, height=400, background_colors'white').generate(negative_text)
plt.imshow(wordcloud_negative, interpolations'bilinear')
plt.title('Megative Sentiment Word Cloud')
plt.axis('off')

plt.show()
```

Positive Sentiment Word Cloud

Negative Sentiment Word Cloud

