第4章 整数规划

第1节 整数规划问题的特征 第2节 分支定界法 第3节 割平面法 第4节 0-1规划 第5节 0-1规划建模 第6节 指派问题

第一节 整数规划问题的特征

目标函数和约束函数是<u>线性函数</u>;决策变量取<u>整数值</u>, 称为<u>线性整数规划</u>,简称<u>整数规划(integer programming, IP)</u>。

所有变量取整数, 称为纯整数规划;

部分变量取整数,称为混合整数规划(MIP);

变量只取 0 或 1, 称为 <u>0-1 规划</u>;

某些约束函数或目标函数非线性,称为非线性(纯/混合)

整数规划(NIP, NMIP)。

典型的整数规划问题:

- 运作问题(Operational problems): 货物的分配, 生产调度、机器排序等;
- <u>计划问题(Planning problems)</u>:资金预算、设施选址、证券组合分析等;
- <u>设计问题(Design problems)</u>: 通信和交通网络设计、集成电路设计、自动化生产线设计等;
- <u>路线优化(Design problems)</u>: 旅行商问题、邮递 员问题等。

求解思路一: 先解相应的线性规划, 得到最优解后再四

舍五入(圆整化),作为整数最优解?

考虑如下整数规划问题

min
$$-13x_1 - 3x_2$$

s.t. $-8x_1 + 11x_2 \le 82$
 $9x_1 + 2x_2 \le 40$
 $x_1, x_2 \ge 0$, 且为整数

去掉整数限制后,可求得线性规划的最优解 (x_1, x_2) = (2.4,9.2),目标函数最优值 f = -58.8。

圆整化得到整数点 $(x_1,x_2) = (2,9)$,但不满足第 1 个约束条件,因此不是整数规划的<u>可行点</u>,当然不是整数规划的<u>最</u>优解。

该问题确实存在整数最优解:

 $(x_1, x_2) = (4,2)$,目标函数的最优值 $f^* = -58$ 。

四舍五入取整的作法一般不可取: 经四舍五入得到的解不一定是整数规划的可行解; 即使是可行解, 也不一定是整数规划的最优解。

求解思路二:如果可行域是有界的,穷举变量所有可能的整数组合,比较它们的目标函数值以定出最优解?

对于小规模问题,变量数少,可行的整数组合数也少, 穷举法(exhaustive search)是可行的;对于大规模问题, 整数组合数会很大,会出现"<u>组合爆炸</u>"问题。即便用最快 速的计算机,穷举法也无能为力。

穷举法完全依赖于计算机的计算能力,因此也称"暴力 穷举/破解"(brute-force search/ cracking)。 整数规划属于一类所谓排列组合问题:解的表达采取变量的某种排列组合方式,呈现离散状态。

排列组合通常导致维数爆炸:设想有一种二维三阶"魔方",那么可能的组合形式不大于9! = 362880种。

若仅仅升高一个维度到三维空间,其三阶魔方的可能组合为:

$$\frac{8! \times 3^8 \times 12! \times 2^{12}}{3 \times 2 \times 2} = 43,252,003,274,489,856,000$$

假设"穷举"上述所有情况,每秒检查 300 种情况,则 一共需要 45 亿年,大约是地球的年龄!

恢复魔方不能靠穷举法。人类思维通过优化,可以得到的恢复魔方最少步数大约为 30 步; 计算机可以优化至 15-20 步。

恢复三维魔

方的世界记录:

3 阶: 6 秒左右

4 阶: 60 秒左右

5 阶: 100 秒左右

6 阶: 360 秒左右

7 阶: 400 秒左右

→ 计算复杂性

为评价算法效率,需要衡量算法的计算时间,它反映了计算量(或者计算时间/步数)和问题规模的关系,称为"计算复杂性"。

<u>旅行商问题(Traveling salesman problem,TSP)</u>:

给定 n 个城市和任意两城市之间的距离,要求确定一条 最短路线,该路线经过各城市一次且仅一次。

以城市个数n表示问题规模,那么以任一城市为起点, 穷举所有可能的路径需要的计算量为(n-1)!。 假设计算机 1s 可以穷举 23 个城市的所有路径,那么解决 24 个城市的 TSP 问题,穷举法计算时间为 1s;

当城市数为 25 个时: 以第 1 个城市为起点,第 2 个到达城市有可能是第 2、第 3.....或第 25 个城市,共 24 种情况。

每种情况需要花费 1s 时间穷举剩余 23 个城市的所有路径。因此,25 个城市的枚举需要 24s。

计算时间和不同城市数目的关系如下:

城市数	24	25	26	27	28	29	30	31
计算时间	1s	24s	10min	4.3h	4.9d	136.5d	10.8y	325y

可见,随着问题的规模增加,穷举法的计算复杂性有可能是阶乘级的,因而增长异常迅速,导致算法在实践上并不可行。

排列组合问题(包括整数规划问题)的求解需要开发专门的方法。

整数规划的几种成熟求解方法:

- ✓ 分支定界法
- ✓ 割平面法
- ✓ 针对 0-1 规划的隐枚举法(隐数法)
- ✓ 分解协调与启发式方法

第二节 分支定界法

分支定界法 (branch and bound, B&B): 设有最大化整数规划问题 A, 忽略其整数约束,就得到相应的线性规划问题 B。

B 称为线性松弛 (relaxation) 问题。

求解问题 B,如果得到的最优解是整数,则直接得到原问题的整数最优解。

如果得不到整数解......

- 如果问题 B 的最优解不是整数,则对于整数最大化问题 A, B 的最优目标函数值必是 A 的最优目标函数值 z^* 的上界,记作 \bar{z} ,有: $z^* \leq \bar{z}$;
- 如果能找到原问题 A 的任意一个整数可行解,则对应的目标函数值显然是 z^* 的一个下界z,有: $z^* \ge z$ 。

分支定界法将问题 B 的可行域分成子区域(称为分支)构造子问题,通过求解子问题,逐步减小上界 \bar{z} 、增大下界 z,直到二者相等,则最终即可求得 z^* 。

例 1, 求解问题 A

$$\max z = 40x_1 + 90x_2$$
 (1)
s. t. $9x_1 + 7x_2 \le 56$ (2)
 $7x_1 + 20x_2 \le 70$ (3) (1)
 $x_1, x_2 \ge 0$ (4)

(5)

解,不考虑约束⑤,解线性松弛问题 B ①-④,得最优解

$$x_1 = 4.81, x_2 = 1.82, z_0 = 356$$

 x_1, x_2 为整数

不符合整数条件⑤。

显然, $z_0 = 356$ 是 A 的最优值 z^* 的上界,记: $\bar{z} = z_0$ 。

观察可知, $x_1 = x_2 = 0$ 是 A 的整数可行解,对应目

标函数值Z=0。

z = 0是原问题 最优目标函数值 z^* 的一个下界。

记 $\underline{z}=0$,则有:

 $z^* \in [\underline{z}, \overline{z}], \mathbb{P}$

 $0 \le z^* \le 356$

分支定界法: 考虑其中某个<u>非整数</u>变量,如问题 B中的 $x_1 = 4.81$,若 x_1 是整数,则必然满足:

 $x_1 \le 4$ 或 $x_1 \ge 5$

于是原问题可分解为两支子问题,其中每支是在两过更基础上增加了一个约束条件:

注 1: 分支后并不影响问题 A 的可行域。

$$\max z = 40x_1 + 90x_2$$

$$\begin{cases} 9x_1 + 7x_2 \le 56 \\ 7x_1 + 20x_2 \le 70 \\ x_1 \le 4 \\ x_1, x_2 \in Z \setminus Z^- \end{cases}$$

$$\downarrow 松弛子问题B_1$$
 $\max z = 40x_1 + 90x_2$

$$\begin{cases} 9x_1 + 7x_2 \le 56 \\ 7x_1 + 20x_2 \le 70 \\ x_1 \le 4 \\ x_1, x_2 \ge 0 \end{cases}$$

$$\max z = 40x_1 + 90x_2$$

$$\begin{cases} 9x_1 + 7x_2 \le 56 \\ 7x_1 + 20x_2 \le 70 \\ x_1 \ge 5 \\ x_1, x_2 \in Z \setminus Z^- \end{cases}$$

$$\downarrow 松弛子问题B_2$$
 $\max z = 40x_1 + 90x_2$

$$\begin{cases} 9x_1 + 7x_2 \le 56 \\ 7x_1 + 20x_2 \le 70 \\ x_1 \ge 5 \\ x_1, x_2 \ge 0 \end{cases}$$

不考虑整数条件分别求解两个线性松弛子问题,得到两个松弛子问题的最优解分别为:

松弛子问题 B ₁	松弛子问题 B ₂
$z_1 = 349$	$z_2 = 341$
$\mathbf{x}^* = (x_1, x_2) = (4.00, 2.10)$	$\mathbf{x}^* = (x_1, x_2) = (5.00, 1.57)$

还是没有得到全部变量为整数的解!

目标函数的上界存在于上述两个松弛子问题中,且问题的上界不会大于 $\max(z_1, z_2) = 349$,故将上界 \overline{z} 改为 $\overline{z} = 349$,则整数最优解的目标值 z^* 满足: $0 \le z^* \le 349$ 。

继续分解: 先分解最优值较大的子问题 B_1 , 在 B_1 上分别 增加条件 $x_2 \leq 2\pi x_2 \geq 3$,构造松弛于问题 B_3 和 B_4 。

$$\max z = 40x_{1} + 90x_{2}$$

$$\begin{cases} 9x_{1} + 7x_{2} \leq 56 \\ 7x_{1} + 20x_{2} \leq 70 \\ x_{1} \leq 4 \\ x_{2} \leq 2 \end{cases}$$

$$\mathbf{x}_{\mathrm{B3}}^{*} = (4.00, 2.00), z_{\mathrm{B3}} = 340$$

$$\max z = 40x_{1} + 90x_{2}$$

$$\begin{cases} 9x_{1} + 7x_{2} \le 56 \\ 7x_{1} + 20x_{2} \le 70 \\ x_{1} & \le 4 \\ x_{2} \le 2 \end{cases}$$

$$\Rightarrow (4.00, 2.00) = -240$$

$$\max z = 40x_{1} + 90x_{2}$$

$$\begin{cases} 9x_{1} + 7x_{2} \le 56 \\ 7x_{1} + 20x_{2} \le 70 \\ x_{1} & \le 4 \\ x_{2} \ge 3 \end{cases}$$

$$\mathbf{x}_{\text{B3}}^* = (4.00, 2.00), z_{\text{B3}} = 340 \quad \mathbf{x}_{\text{B4}}^* = (1.42, 3.00), z_{\text{B4}} = 327$$

线性松弛问题 B3 的最 优解: $\mathbf{x}_{B3}^* = (4.00, 2.00)$ 是 整数,目标值: $z_{B3} = 340$, 可取为新下界: z = 340; 它大于 $Z_{B4} = 327$,故最优 解不可能在 B_4 中,于是剪 掉B4这一支。

再看松弛问题 B2:

松弛问题 B_2 的最优值 $Z_2 = 341$,所以原问题最优值可能在[340,341]之间有整数解。

继续对 B_2 分解,得子问题 B_5 和 B_6 :

$$\max z = 40x_1 + 90x_2$$

$$\begin{cases} 9x_1 + 7x_2 \le 56 \\ 7x_1 + 20x_2 \le 70 \\ x_1 \ge 5 \\ x_2 \ge 2 \end{cases}$$

 B_5 的松弛问题无整数 M_5 M_5

$$z_{\text{B3}} = \underline{z} = z^* = 340$$

子问题 B3 的解:

$$x_1 = 4.00, x_2 = 2.00$$

为原问题的最优整数解。

≫ 最大化问题的分支定界算法步骤:

将要求解的整数规划问题称为问题 A,相应的线性松弛 LP问题称为问题 B。

- (1) 解线性松弛问题 B, 可能得到以下情况之一:
 - ① B 无可行解,这时 A 也无可行解,停止计算。
- ② B 有最优解,并满足 A 的整数条件,B 的最优解即为 A 的最优解,停止计算。
- ③ B 有最优解,但不满足 A 的整数条件,记其目标值为 \bar{z} (上界)。

(2) 用观察法 ¹找到 A 的一个整数可行解,求其目标值,记作 \underline{z} (下界)。以 z^* 表示 A 的最优目标值,此时有 $\underline{z} \leq z^* \leq \overline{z}$

进行迭代。

①: <u>分支与定界</u>,在 B 的最优解中任选一个不符合整数条件的变量 x_j ,设其值为 b_j 。以[b_j]表示小于 b_j 的最大整数。构造两个约束条件: $x_i \leq [b_i]$ 和 $x_i \geq [b_i]$ + 1。

将这两个约束分别加入问题 B,构造两个后继规划问题 B₁和 B₂。不考虑整数条件求解这两个后继问题。

¹ 注,即便观察不出一个整数可行解,也没有关系。如果原问题确实有整数可行解,则在 后面的分支过程中,整数解总会"浮现"出来。

<u>定界</u>:以每个后继问题为一个分支求解最优值,与其他 分支的解比较,找出最优目标值最大者作为新的上界*z*。

从符合整数条件的各分支中,找出目标值最大者作为新的下界*z*,若无整数可行解,*z*不变。

②: <u>比较与剪支</u>,各分支的最优目标值中若有小于已知下界z者,则剪掉该支,以后不再考虑。

若大于 \underline{z} ,且不满足整数条件,则重复 $\mathbf{1}$ 。直到 $z^* = \underline{z}$ 为止,得最优整数解 x_i^* ,(j = 1, ..., n)。

▶ 最小化问题的分支定界算法步骤:

将要求解的整数规划问题称为问题 A,相应的线性松弛 LP问题称为问题 B。

- (1) 解线性松弛问题 B, 可能得到以下情况之一:
 - ① B 无可行解,这时 A 也无可行解,停止计算。
- ② B 有最优解,并满足 A 的整数条件,B 的最优解即为 A 的最优解,停止计算。
- ③ B 有最优解,但不满足 A 的整数条件,记其目标值为z (下界)。

(2)用观察法找 A 的一个整数可行解,求其目标值,记作 \bar{z} (上界)。以 z^* 表示 A 的最优目标值,此时有

$$\underline{z} \le z^* \le \bar{z}$$

进行如下迭代。

①: <u>分支与定界</u>,在 B 的最优解中任选一个不符合整数条件的变量 x_j ,设其值为 b_j 。以[b_j]表示小于 b_j 的最大整数。构造两个约束条件: $x_i \leq [b_i]$ 和 $x_i \geq [b_i]$ + 1。

将这两个约束分别加入问题 B,构造两个后继规划问题 B₁和 B₂。不考虑整数条件求解这两个后继问题。

定界:以每个后继问题为一分支求解最优值,与其他分 支的解比较,找出最优目标值最小者作为新的下界_Z。

从已符合整数条件的各分支中,找出目标值最小者作为 新的上界*z*,若无整数可行解,*z*不变。

②: <u>比较与剪支</u>,各分支的最优目标值中若有大于已知 上界z者,则剪掉该支,以后不再考虑。

若小于 \bar{z} ,且不满足整数条件,则重复①。直到 $z^* = \bar{z}$ 为止,得最优整数解 x_i^* ,(j = 1, ..., n)。

例 2, 用分枝定界法求解整数规划

min
$$z = 2x_1 - x_2$$

s. t. $5x_1 + 4x_2 \le 20$
A: $-3x_1 + x_2 \le 3$
 $x_1, x_2 \ge 0$, 且为整数

$$\min z = 2x_1 - x_2$$

解,求解线性松弛问题 B:

s.t.
$$5x_1 + 4x_2 \le 20$$

 $-3x_1 + x_2 \le 3$
 $x_1, x_2 \ge 0$

 $(\overline{x}_1, \overline{x}_2) = (8/17,75/17)$,<u>最小值</u> $z_0 = -59/17$;由此知 A 的 最优目标值的一个<u>下界</u>z = -59/17。

而(0,0)为可行解,则目标函数值的上界 $\overline{z} = 0$ 。故 A 的最优目标值上下界可知:

$$z^* \in [-59/17,0]$$

由于 B 的解不满足整数性要求,注意到 $\bar{x}_1 = 8/17$,于是关于 x_1 引进条件

$$x_1 \leq \lfloor \overline{x}_1 \rfloor$$
 π $x_1 \geq \lfloor \overline{x}_1 \rfloor + 1$

即

$$x_1 \leq 0$$
 及 $x_1 \geq 1$

将 A 分解成 2 个子问题:

A1:

min
$$z = 2x_1 - x_2$$

s. t. $5x_1 + 4x_2 \le 20$
 $-3x_1 + x_2 \le 3$

$$x_1 \leq 0$$

$$x_1, x_2 \geq 0$$
,且为整数

 A_2 :

$$\min z = 2x_1 - x_2$$

s.t. $5x_1 + 4x_2 \le 20$
 $-3x_1 + x_2 \le 3$
 $x_1 \ge 1$
 $x_1, x_2 \ge 0$,且为整数

不考虑整数约束,求解相应的<u>松弛问题</u> B_1 和 B_2 ,分别得到最优解:

$$\mathbf{x}_{\mathbf{B}_1}^* = (0,3)^{\mathrm{T}}, z_{\mathbf{B}_1}^* = -3; \ \mathbf{x}_{\mathbf{B}_2}^* = (1,4/15)^{\mathrm{T}}, z_{\mathbf{B}_2}^* = -7/4$$

分支 B_1 的最优解为整数解,所以是 A 的可行解,因此将原问题 A 的最优值的上界更新为:

$$\bar{z} = -3 \rightarrow z^* \in [-59/17, -3]$$

由于问题 B₂ 的最小值比最新上界还大,因此 B₂分支被剪掉,最优解即为(0,3)^T。

第三节 割平面法

割平面法由 R.E. Gomory 1958 年提出, <u>基本思想</u>: 首先求解整数规划的<u>线性松弛问题</u>。如果得到的最优解满足整数要求,则为整数规划的最优解。

否则,选择一个不满足整数要求的<u>基变量</u>,定义切割约束,增加到原来的约束方程中,以切掉一部分不满足整数要求的可行解,缩小可行域,而保留全部整数可行解,再求解新的松弛线性规划。重复以上过程,直至求出整数最优解。

割平面法的关键:如何定义切割约束?

例 3, 求解下述整数规划问题

$$\max z = x_1 + x_2$$

$$\begin{cases} -x_1 + x_2 \le 1 \\ 3x_1 + x_2 \le 4 \end{cases}$$

$$\begin{cases} x_1, x_2 \ge 0,$$
 为整数

不考虑整数约束得到

$$\mathbf{x}^* = \left(\frac{3}{4}, \frac{7}{4}\right)^{\mathrm{T}}, z^* = 10/4$$

如图中 A 点:

若能用直线 CD 切割原可行域,则新的线性规划问题最优解为 $(1,1)^{T}$,正好是原整数规划问题的最优解。

如何构造直线 CD?

考虑单纯形法:加入松弛变量x3,x4,构造标准型:

$$\begin{cases} -x_1 + x_2 + x_3 = 1 & \text{1} \\ 3x_1 + x_2 + x_4 = 4 & \text{2} \end{cases}$$

松弛问题的初始单纯形表为

	$c_j \rightarrow$			1	1	0	0
	$\mathbf{c}_{\mathbf{B}}$	X _B	b	x_1	x_2	x_3	x_4
初始表	0	x_3	1	-1	1	1	0
	0	x_4	4	3	1	0	1
$c_j - z_j$			1	1	0	0	

迭代得到最终的最优单纯形表:

$c_j \rightarrow$			1	1	0	0
c _B	X _B	b	x_1	x_2	x_3	x_4
1	x_1	3/4	1	0	-1/4	1/4
1	x_2	7/4	0	1	3/4	1/4
$c_j - z_j$			0	0	-1/2	-1/2

最优解:

最优表

$$x_1 = 3/4$$
, $x_2 = 7/4$, $x_3 = x_4 = 0$, $z^* = 5/2$

最优表中的约束关系式为

$$x_1 - \frac{1}{4}x_3 + \frac{1}{4}x_4 = \frac{3}{4} \operatorname{Im} x_2 + \frac{3}{4}x_3 + \frac{1}{4}x_4 = \frac{7}{4}$$

选其中基变量为非整数的约束,将系数分解为整数部分和非负真分数之和。假设考虑 x_1 :

$$x_{1} - \frac{1}{4}x_{3} + \frac{1}{4}x_{4} = \frac{3}{4} \Rightarrow x_{1} + (-1 + \frac{3}{4})x_{3} + \frac{1}{4}x_{4} = \frac{3}{4} \Rightarrow$$
$$x_{1} - x_{3} = \frac{3}{4} - (\frac{3}{4}x_{3} + \frac{1}{4}x_{4})$$

由①、②式知, x_3 , x_4 必为整数,于是 $x_1 - x_3$ 必为整数。 而($\frac{3}{4}x_3 + \frac{1}{4}x_4$)必为正数: 真分数 3/4 减去一个正数,还要求结果为整数,那么就不可能是大于 0 的整数,因此有

$$\frac{3}{4} - (\frac{3}{4}x_3 + \frac{1}{4}x_4) \le 0 \Leftrightarrow -3x_3 - x_4 \le -3$$

若将这一新约束加到单纯形表中,则考虑 LP 的标准形式,就需要引入松弛变量 x_5 :

$$-3x_3 - x_4 + x_5 = -3$$

注意,为了使新的松弛变量 x_5 也为整数 2 ,新增约束的系

数,都必须先化为整数。

将这个约束加入到最终单纯形表中,有:

² 对于原问题约束上增加的松弛变量,也有同样要求。因此,割平面法需要约束方程的系数、常数项都应首先化为整数。

		$c_j \rightarrow$		1	1	0	0	0
	$\mathbf{c}_{\mathbf{B}}$	X _B	b	x_1	x_2	x_3	x_4	x_5
水广丰	1	x_1	3/4	1	0	-1/4	1/4	0
新表	1	x_2	7/4	0	1	3/4	1/4	0
	0	x_5	-3	0	0	[-3]	-1	1
	($c_j - z_j$			0	-1/2	-1/2	0

上述检验数都非正,因此根据对偶单纯形法,确定 x_5 为出基变量, x_3 为换入变量,有:

	$c_j \rightarrow$			1	1	0	0	0
最优表	$\mathbf{c}_{\mathbf{B}}$	X _B	b	x_1	x_2	x_3	x_4	x_5
	1	x_1	1	1	0	0	1/3	-1/12
	1	x_2	1	0	1	0	0	1/4
	0	x_3	1	0	0	1	1/3	-1/3
$c_j - z_j$			0	0	0	-1/3	-1/6	

上述新约束确实切掉了非整数解:如果将新约束 -3 $x_3 - x_4 \le -3$,用 x_1, x_2 表示(见①、②式),则得到 -3 $(1 + x_1 - x_2) - (4 - 3x_1 - x_2) \le -3 \Rightarrow x_2 \le 1$

在图形上,相当于可行域被新加的直线 CD 切割为:

命题: 切割约束切掉了一部分非整数解,但没有切掉任何整数解*。

证明:设如下纯整数规划问题(2)

max cx

s.t.
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 (2) $\mathbf{x} \ge \mathbf{0}, \mathbf{x}$ 为整数

其松弛问题为

max **cx**

s.t.
$$Ax = b$$
 (3) $x \ge 0$

 ϕp_i 为矩阵 A 的第 j 列,设最优基为 B ,则最优解为

^{*}即,割平面法增加的切割约束,并未改变原问题的性质。

$$\mathbf{x}^* = \begin{bmatrix} \mathbf{x}_{\mathbf{B}} \\ \mathbf{x}_{\mathbf{N}} \end{bmatrix} = \begin{bmatrix} \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{\bar{b}} \\ \mathbf{0} \end{bmatrix} \geq \mathbf{0}$$

若 \mathbf{x}^* 的分量均为整数,则它是问题(2)的<u>最优解</u>,否则选择一个不满足整数要求的<u>基变量</u>,比如 $x_{\mathbf{B}_i}$,那么在最优单纯形表中,含有 $x_{\mathbf{B}_i}$ 的<u>约束方程</u>为

$$x_{\mathbf{B}_i} + \sum_{j \in J} y_{ij} x_j = \overline{b}_i \tag{4}$$

J为<u>非基变量下标集</u>, y_{ij} 是 $\mathbf{B}^{-1}\mathbf{p}_{j}$ 的第 i 个分量。

上式称为<mark>源约束</mark>,基于源约束,定义<u>切割约束</u>,以切掉 非整数解。 其中 [X]表示不大于 X 的最大整数, $0 < f_i < 1$, $0 < f_{ij} < 1$ 为正的真分数,则(4)式改写成

$$x_{\mathbf{B}_i} + \sum_{j \in R} [y_{ij}] x_j - [\bar{b}_i] = f_i - \sum_{j \in R} f_{ij} x_j \qquad (5)$$

对于整数可行解, (5) 式左端为整数,则右端必为小于1的整数,因此整数解的<mark>必要条件</mark>为

$$f_i - \sum_{j \in R} f_{ij} x_j \le 0 \tag{6}$$

即整数解必满足(6)式。将(6)式作为切割条件,增加到原问题(3)的约束中,得到新的线性规划问题为

max cx

s.t.
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

$$f_i - \sum_{j \in R} f_{ij} x_j \le 0$$

$$\mathbf{x} \ge \mathbf{0}$$
(7)

由于(6)式是根据"解是整数"这一整数型性要求推出来的必要条件,因此(6)式的引入,并不会影响整数解的可行性,即原问题的任何一个整数解都不会在新问题(7)中被切掉。

下面证明新约束确实切掉了一部分非整数解。

对于原来的非整数最优解 $\mathbf{x}^* = [\mathbf{x}_{\mathbf{B}}, \mathbf{x}_{\mathbf{N}}]$,(7)式中的 x_j ($j \in R$)均为非基变量,满足

$$x_j = 0, \forall j \in R$$

代入问题(7),就必然有

$$f_i - \sum_{j \in R} f_{ij} x_j = f_i > 0$$

即原来的非整数最优解违反了新约束,意味着增加条件(6)而形成的新问题(7)确实切掉了一部分非整数最优解。

例 4, 用割平面法求解整数规划:

$$\min x_1 - 2x_2$$

s.t. $-x_1 + 3x_2 \le 2$
 $x_1 + x_2 \le 4$
 $x \ge 0$, 且为整数

解, 先化为 max 型问题 *

$$\max -x_1 + 2x_2$$

s.t. $-x_1 + 3x_2 \le 2$
 $x_1 + x_2 \le 4$
 $\mathbf{x} \ge \mathbf{0}$

50 / 67

^{*}由于割平面法需要使用对偶单纯形法,为方便,可一律转化为最大化问题。

引入松弛变量x3,x4,以单纯形法解得最优单纯形表:

	c_j –	>	-1	2	0	0
\mathbf{c}_{B}	$\mathbf{x}_{\mathbf{B}}$	b	x_1	x_2	x_3	x_4
2	x_2	2/3	-1/3	1	1/3	0
0	x_4	2/3 10/3	4/3	0	-1/3	1
	σ_j -)	-1/3	0	-2/3	0

松弛问题的最优解 $x_1 = 0, x_2 = 2/3$,不满足整数要求。

考虑非整数<u>基变量</u> x_2 ,由上表知,<u>源约束</u>为

$$-\frac{1}{3}x_1 + x_2 + \frac{1}{3}x_3 = \frac{2}{3}$$

将非基变量x1和x3的系数以及常数项分别分解为

$$-\frac{1}{3} = -1 + \frac{2}{3}$$
, $\frac{1}{3} = 0 + \frac{1}{3}$, $\frac{2}{3} = 0 + \frac{2}{3}$

根据(6)式,得到切割条件

$$\frac{2}{3} - \frac{2}{3}x_1 - \frac{1}{3}x_3 \le 0$$

<u>系数化为整数</u>,即: $-2x_1 - x_3 \le -2$

引进松弛变量x5得到

$$-2x_1 - x_3 + x_5 = -2$$

将此条件置入最优单纯形表,得到

	c_j -)	-1	2	0	0	0
$\mathbf{c}_{\mathbf{B}}$	$\mathbf{x}_{\mathbf{B}}$	b	x_1	x_2	x_3	x_4	x_5
2	x_2	2/3	-1/3	1	1/3	0	0
0	x_4	10/3	4/3	0	-1/3	1	0
0	x_5	-2	[-2]	0	-1	0	1
	σ_j -	→	-1/3	0	-2/3	0	0

表中的判别数均非正,显然是对偶可行的。用<u>对偶单纯形</u>方法求解,再经1次迭代达到最优:

	c_j -)	-1	2	0	0	0
$\mathbf{c}_{\mathbf{B}}$	c _B x _B b		x_1	x_2	x_3	x_4	x_5
2	x_2	1	0	1	1/2	0	-1/6
0	x_4	2	0	0	-1	1	2/3
-1	x_1	1	1	O	1/2	0	-1/2
	$\sigma_j \rightarrow$			0	-1/2	0	-1/6

最优解为 $x_1 = 1$, $x_2 = 1$,最优值 $z^* = -1$,这个解也是整数规划的最优解。

▶添加切割约束时,必须保证松弛变量也是整数

情况 1: 若切割约束的系数和右端项都是整数,那么添加的松弛变量在可行解中,必然是整数;

情况 2: 若切割约束的系数和右端项不都是整数,则应该在添加松弛变量之前,将系数化为整数。*

例: $-\frac{1}{3}x_1 + 3x_2 \le -\frac{2}{3}$,化为 $-x_1 + 9x_2 \le -2$,若加入松弛变量 x_3 : $-x_1 + 9x_2 + x_3 = -2$,则 x_3 必为整数。

割平面法虽然理论完备,但在实际应用中,其收敛速度较慢,因此独立应用比较困难,往往需要配合其他算法才能收到好的效果。

^{*}对整数规划的<mark>原问题</mark>也应如此处理。

第四节 0-1规划

例 5,某公司拟在市东、西、南三区建立零售店,有 7 个位置 (A_i) 可供选择。要求:

东区从A₁、A₂、A₃三个点中至多选两个;

西区从A₄、A₅两个点中至少选一个;

南区从A6、A7两个点中至少选一个。

选用 A_i 点,则设备投资为 b_i 元,每年可获利润 c_i 元,但投资总额不能超过 30 万元。问应选择哪几个点才能使总利润最大?

解,引入
$$0-1$$
 变量 x_i , $x_i = \begin{cases} 1, & \text{if } A_i \text{ is selected} \\ 0, & \text{if } A_i \text{ is not selected} \end{cases}$

$$\max z = \sum_{i=1}^{7} c_i x_i$$
s. t. $\sum_{i=1}^{7} b_i x_i \le 30$

$$x_1 + x_2 + x_3 \le 2$$

$$x_4 + x_5 \ge 1$$

$$x_6 + x_7 \ge 1$$

$$x_i = 0 \text{ or } 1$$
(8)

穷举法: 检查变量取值为 0 或 1 的每一种组合,比较目标函数值以找到最优解。

设变量总数为n,则穷举法需要检查n个变量的 2^n 个可能组合。

如果 n 较大, 穷举法是不可能的。

需要设计一些方法,只检查变量取值组合的一部分,就 能找到最优解。

部分穷举:隐枚举法(implicit enumeration)。

例 6, 用隐枚举法求如下 0-1 整数规划

$$\max z = 3x_1 - 2x_2 + 5x_3$$
s.t. $x_1 + 2x_2 - x_3 \le 2$ ①
$$x_1 + 4x_2 + x_3 \le 4$$
 ②
$$x_1 + x_2 \le 3$$
 ③
$$4x_2 + x_3 \le 6$$
 ④
$$x_i = 0 \text{ or } 1$$
 ⑤

先通过试探找一个可行解,如 $(x_1, x_2, x_3) = (1,0,0)$ 是一个可行解,目标值z = 3。

对于极大化问题求最优解,自然希望 $z \ge 3$,于是增加一个约束条件:

$$3x_1 - 2x_2 + 5x_3 \ge 3$$

 \oplus

该条件称为<u>过滤条件</u>(filtering constraint)。原问题约束就变成 5 个(先不考虑 0-1 约束)。

用全部枚举的方法,3 个变量共有 $2^3 = 8$ 个解,原来 4 个约束条件,共需 32 次运算。

若增加过滤条件,就可减少运算次数:

将约束条件按⊕(过滤条件)、①、②、③、④顺序排列:

######################################			条件			满足条件?	一片
解	⊕≥3	<u>1</u>)≤2	2 ≤ 4	3≤3	4 ≥6	是(√) 否(x)	z值
(0,0,0)	[0]					×	
(0,0,1)	5	-1	1	0	1	√	5
(0,1,0)	[-2]					×	
(0,1,1)	3	1	[5]			×	
(1,0,0)	3	1	1	1	0	√	3
(1,0,1)	8	0	2	1	1	√	8
(1,1,0)	[1]					×	
(1,1,1)	6	2	[6]			×	

对每个解,依次代入约束条件左侧,求出数值,看是否适合不等式条件。

最先进行的应该是新添加进去的关于目标函数当前最优 值过滤条件的检查。

如某一条件不适合,同一行以后各条件就不必再检查,因而减少了运算次数。

本例实际只作24次运算,可求出最优解

$$(x_1, x_2, x_3)^* = (1,0,1), z^* = 8$$

规则改进1-动态改变约束条件:

在计算中若遇到z值已超过过滤条件⊕右边的值,应立即 动态改变过滤条件⊕,使过滤值为迄今为止最大者,然后继 续。

如检查点(0,0,1)时,z = 5 > 3,应将条件 \oplus 换成 $3x_1 - 2x_2 + 5x_3 \ge 5$

这种对过滤条件的改进,更可以减少计算量。

规则改进 2-递增排列系数:

一般可重新排列 x_i 的顺序使目标函数中 x_i 的系数是递增(不减)的。上例中改写

$$z = 3x_1 - 2x_2 + 5x_3 = -2x_2 + 3x_1 + 5x_3$$

因-2,3,5 是递增的,变量 (x_2,x_1,x_3) 也按下述顺序取值:

$$(x_2, x_1, x_3) = (0,0,0), (0,0,1), (0,1,0), (0,1,1), \dots$$

这样最优解容易较早发现。再结合过滤条件的改进,更可简化计算。

$$\max z = -2x_2 + 3x_1 + 5x_3$$
s. t. $-2x_2 + 3x_1 + 5x_3 \ge 3 \oplus 2x_2 + x_1 - x_3 \le 2 \oplus 2x_2$

$$4x_2 + x_1 + x_3 \le 4 \oplus 2x_2 + x_1 \le 3 \oplus 3x_2 + x_1 \le 3 \oplus 3x_2 + x_1 \le 3 \oplus 3x_2 + x_2 \le 6 \oplus 3x_2 + x_3 \le 6 \oplus 3x_3 + x_3$$

按下述步骤进行:

点			满足条件?	z值			
(x_2, x_1, x_3)	⊕ (3)	①(<u>2</u>)	2 (4)	③(<mark>3</mark>)	4 (6)	是(√)否(x)	
(0,0,0)	[0]					×	
(0,0,1)	5	-1	1	0	1		5

改进过滤条件,用

$$-2x_2 + 3x_1 + 5x_3 \ge 5$$

 \oplus'

代替⊕,继续进行。

点			满足条件?	z值			
(x_2, x_1, x_3)	⊕′(<mark>5</mark>)	①(<u>2</u>)	2 (4)	3(3)	4 (6)	是(√)否(x)	Z頂
(0,1,0)	[3]					×	
(0,1,1)	8	0	2	1	1		8

再改进过滤条件,用

$$-2x_2 + 3x_1 + 5x_3 \ge 8$$

代替⊕′,再继续进行。

点			条件		满足条件?	z值	
(x_2, x_1, x_3)	⊕''(<mark>8</mark>)	①(<u>2</u>)	2 (4)	3(3)	4 (6)	是(√)否(×)	Z頂
(1,0,0)	[2]					×	
(1,0,1)	[3]					×	
(1,1,0)	[1]					×	
(1,1,1)	[6]					×	

至此, z值已不能改进, 即得到最优解(共计算16次)。