

OPC UA (Unified Architecture)

Jouni.Aro@prosysopc.com 10.11.2015

Contents

- 1. OPC Unified Architecture
- 2. Applications
- 3. Specification
- 4. Information Models
- 5. Communication Model
- 6. Development / Usage

1. OPC Unified Architecture

- New generation of OPC
- Replaces DCOM communication specific TCP/IP protocols
 - Enables OPC in any OS and language
 - Enables OPC in devices (embedded software)
 - Enables WAN (Secure Internet/Intranet/Extranet)
 - Improves Security Management
- Combines all previous protocols to a common (unified) data model
- Standardised 2011 as IEC 62541

2. Applications

3. Specification

Layered design

3.1 Base Specifications

- Part 1 Concepts
 - A short white-paper like overview of UA
- Part 2 Security
 - A non-normative introduction to the threats and countermeasures
- Part 3 Address Space Model
 - Building block constructs of UA (Nodes, Objects, Events ...)
- Part 4 Services
 - Service methods exposed by UA Servers and called by UA Clients
- Part 5 Information Model
 - UA defined objects (e.g. Diagnostic Object, Audit Events)
- Part 6 Mappings
 - Details that allow implementation on current technology (e.g. UA Binary, HTTPS)
- Part 7 Profiles
 - Defines conformity groups for implementation and certification

3.2 Information Model Specifications

- Part 8 Data Access
 - Adds OPC-DA constructs (e.g. Engineering Units, Ranges...)
- Part 9 Alarms and Conditions
 - Adds stateful Alarm and Condition types
- Part 10 Programs
 - Adds long running executable entities
- Part 11 Historical Access
 - Adds Historical Data and Event constructs
- Part 12 Discovery
 - Details about UA Discovery Servers and interaction with UA apps
- Part 13 Aggregates
 - Aggregating functions for e.g. Historical Data

3.3 Companion specifications

- OPC UA For Devices (DI)
 - Common model for devices and components
- OPC UA For Analyser Devices (ADI)
 - Information model for analysers (spectrometers, chromatographs, etc)
- OPC UA For IEC 61131-3 (PLCopen)
 - Information model for PLC devices
- OPC UA For ISA95
 - Information model for MES/ERP data
- BACNet, AutomationML, AutoID, MDIS, etc.

4. Basic Information Model

4.1 Address Space

- Combines the old DA & AE address space information
- Network, Plant & other hierarchies available at the same time

4.2 Type Information

Servers also declare supported data types in the address

space

 Servers may define custom data types

 Standard information models can be defined in server address spaces

– FDT

PLCopen

ISA S95/88

MIMOSA

– ...

5. Communication Model

5.1 Protocols

- Transport
 - TCP/IP
 - HTTPS (New: 1.02)
 - HTTP
- Messaging
 - UA TCP, optimized binary protocol
 - HTTPS, binary/XML encapsulated in standard HTTP
 - SOAP, generic messaging (Deprecated: 1.03)
- Message Security
 - UA Security (UA TCP)
 - TLS Security (HTTPS)
 - Web Service (WS) Security
- Message encoding
 - **UA Binary**
 - UA XMI
- Open for additional protocols in future

5.2 Security

- OPC Unified Architecture includes full public key based security features in OPC clients and servers
 - Authentication of client & server applications by X.509 certificates
 - Authentication of users by X.509 certificates or UserName/Password or external tokens
 - Optional message signing & encryption
- Binary and HTTPS communication via one (configurable) TCP/IP port, which can be opened in Firewalls as necessary
- Alternative security algorithms defined for signing and encryption
- HTTPS protocol enables standard TLS security applied
- OPC UA Proxy and Wrapper components can be used to "tunnel" DCOM-based OPC traffic securely

5.3 Robustness

- Keep-alive (heartbeat) messages
 - Clients can detect a connection failure
- Life-time monitoring
 - Servers can detect connection failures
- Message buffering
 - Clients can detect missing data
 - Missing messages can be re-requested
- Redundancy support
 - Can be built to both clients and servers

6.1 Server Profiles

- OPC UA Profiles defined to allow clients and servers with different capability levels
- Applications define which profiles they support, e.g.:
 - Subscriptions
 - Security
 - Redundancy
 - Data Access
 - Alarms & Conditions
 - Historical Access
- Compliance testing verifies applications against the supported profiles
- End-users can purchase products that include the functionality they need by looking at the supported and certified profiles

6.2 Development Platforms

AnsiC

- UA Binary communication
- HTTPS communication
- Open SSL Security
- Platform specific parts (Windows, Linux, etc)
- SDKs for C/C++ (Unified Automation, Softing)

.NET

- UA Binary communication
- HTTPS communication
- (HTTP/SOAP communication with WS Security)
- NET Security
- SDKs for .NET (Unified Automation, Softing, etc.)

Java

- UA Binary communication (pure Java)
- HTTPS communication
- Java Security
- SDK for Java from Prosys

6.3 Application capabilities

- Communication Stacks provide interoperable communication
- SDKs provide standard implementation of UA services

UA Client

UA SDK

(High Level API)

Current Values Information Models

Events Node Mgmt

Alarms Subscription Mamt

History Session Mgmt
Methods Identity Mgmt

UA Stack

(Low Level API)

Message Encoding

Message Security

Message Transport

UA Secure Channel

TCP/IP (UA Binary, HTTPS, SOAP)

UA Server

UA SDK

(High Level API)

Current Values Information Models

Events Node Mgmt

Alarms Subscription Mgmt

History Session Mgmt

Methods Identity Mgmt

UA Stack

(Low Level API)

Message Encoding

Message Security

Message Transport

6.4 UA & DCOM

- Smooth transfer of application technology from DCOM OPC to UA should not be a problem
- UA Proxy & Wrapper components enable communications between UA and DCOM versions of OPC applications
- UA Gateway
 - commercial implementation

References, literature

- OPC Foundation: Unified Architecture, <u>http://www.opcfoundation.org/</u>
- Mahnke, Leitner, Damm: OPC Unified Architecture, 2009, ISBN 3-540-68898-6

Prosys PMS Ltd

Tekniikantie 14, 02150 Espoo, Finland

Phone: +358 9 420 9007

Emails

Team: firstname.lastname@prosysopc.com

Sales: sales@prosysopc.com

Technical support: support@prosysopc.com

General inquiries: info@prosysopc.com

www.prosysopc.com

