Математическая логика и теория алгоритмов

Сергей Григорян

4 декабря 2024 г.

Содержание

1	Лекция 5 1.1 Логический вывод	3
2	Лекция 6	6
3	Лекция 7	11
4	Лекция 8 4.1 Выр-ем задачи через вып-ть ф-л	15 15 17
5	Лекция 10 5.1 Напоминание	19
6	Лекция 11	22
7	Лекция 12 7.1 Метод автоморфизма	25 25
8	Лекция 13 8.1 Элиминация кванторов	
9	Лекция 14	32

1 Лекция 5

Пропозициональные ф-лы:

- Всегда = 1 Тавтологии Выполнимые
- М. Б. = 0 и = 1 Опровержимые Выполнимые
- Всегда = 0 Опровержимые Противоречия

"Важные" тавтологии (Логические законы):

1) Закон непротиворечия:

$$\neg (A \land \neg A)$$

2) Закон двойного отрицания:

$$\neg \neg A \leftrightarrow A$$

3) Закон исключённого третьего:

$$A \vee \neg A$$

<u>Пример</u>. Неконструктивное док-во с использованием закона исключённого третьего:

Теорема 1.1. $\exists x,y \colon x \notin Q, y \notin Q, x^y \in Q$

Доказательство. Рассм. выр-е: $(\sqrt{2})^{\sqrt{2}}$:

- 1) Оно $\in Q \Rightarrow$ нашли пример
- 2) Оно $\notin Q \Rightarrow x = (\sqrt{2})^{\sqrt{2}}, y = \sqrt{2}$:

$$x^y = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = (\sqrt{2})^2 = 2$$

4) Контрапозиция:

$$(A \to B) \leftrightarrow (\neg B \to \neg A)$$

5) Законы Де Моргана:

$$\neg (A \land B) \leftrightarrow (\neg A \lor \neg B)$$

$$\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)$$

Задача о выполнимости условий: даны ф-лы $\phi_1,\phi_2,\dots,\phi_n$

Вопрос: могут ли они все быть одновременно истинны?

Это эквив. вопросу о выполнимости:

$$\phi_1 \wedge \phi_2 \wedge \ldots \wedge \phi_n$$

Пример. Превращение мат. задачи в задачу выполнимости: 1976ε . - з-ча 4 красок решена комп. перебором. Вершина графа $v\mapsto 2$ бита. (p_v,q_v) - (область на карте) u,v - соседний области \Rightarrow условие на отличие цветов:

$$(p_u \neq p_v) \lor (q_u \neq q_v)$$

1.1 Логический вывод

Определение 1.1. Логический вывод - п-ть формул, в кот. каждая фла либо является аксиомой, либо получается из более ранних по одному из правилу вывода.

Замечание.

$$(A o (B o C))$$
 - сл-ие из 2 посылок

Схемы аскиом (Аксиомы - рез-т подстановки конкретных ф-л вместо A,B,C)

- 1) $A \to (B \to A)$
- $2) \quad (A \to (B \to C)) \to ((A \to B) \to (A \to C))$
- 3) $(A \wedge B) \rightarrow A$
- 4) $(A \wedge B) \rightarrow B$
- 5) $A \to (B \to (A \land B))$

6)
$$A \rightarrow (A \vee B)$$

7)
$$B \to (A \vee B)$$

8)
$$(A \to C) \to ((B \to C) \to ((A \lor B) \to C))$$
 - "Разбор случаев"

9)
$$\neg A \rightarrow (A \rightarrow B)$$

10)
$$(A \to B) \to ((A \to \neg B) \to \neg A)$$
 - "Рассуждение от противного"

11)
$$A \vee \neg A$$

Правило вывода: modus ponens:

$$\frac{A \qquad A \to B}{B}$$

Теорема 1.2 (О корректности). A - выводима $\Rightarrow A$ - тавтология Доказательство. Акс. 1-11 - тавтологии.

$$\begin{cases} A \text{ - тавтология} \\ A \to B \text{ - тавтология} \end{cases} \Rightarrow B \text{ - тавтология}$$

Теорема 1.3 (О полноте). A - тавтология $\Rightarrow A$ - выводима

Обозначение.

 $\vdash A$ - A выводима

 $\models A$ - A тавтология

Пример. $\vdash (A \lor B) \to (B \lor A)$

1)
$$A \rightarrow (B \lor A)$$
 - $a\kappa c$. 7

2)
$$B \to (B \lor A)$$
 - $a\kappa c.$ 6

3)
$$(A \rightarrow (B \lor A)) \rightarrow ((B \rightarrow (B \lor A)) \rightarrow ((A \lor B) \rightarrow (B \lor A)))$$
 - arc. 8

4)
$$(B \to (B \lor A)) \to ((A \lor B) \to (B \lor A))$$
 - modus ponens 1, 3

5)
$$(A \lor B) \to (B \lor A)$$
 - modus ponens 2, 4

Пример. $\vdash (A \to A)$ - Закон тождества.

1)
$$A \rightarrow ((A \rightarrow A) \rightarrow A) - a\kappa c.$$
 1

2)
$$(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow ((A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A))$$
 - arc. 2

3)
$$(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)$$
 - modus ponens 1, 2

4)
$$A \rightarrow (A \rightarrow A)$$
 - $a\kappa c.$ 1

5) $A \rightarrow A$ - modus ponens 4, 3

2 Лекция 6

Определение 2.1. Вывод - п-ть ϕ_1,\dots,ϕ_n , т. ч. $\forall i$:

- ϕ_i аксиома
- ϕ_i получается по правилам МР из $\phi_i, \phi_k, j < i, k < i.$ Это значит, что $\phi_k = \phi_j \to \phi_i$

Ф-ла **выводима** ($\vdash \phi$), если ϕ встреч-ся в нек-ром выводе.

Теорема 2.1. ϕ - тавтология \Rightarrow ($\vdash \phi$)

Пример.

$$(\neg A \lor B) \to (A \to B)$$

1)
$$\neg A \rightarrow (A \rightarrow B) \ aксиома \ 9$$

2)
$$B \rightarrow (A \rightarrow B) \text{ - аксиома 9}$$

3)
$$(\neg A \to (A \to B)) \to ((B \to (A \to B)) \to ((A \lor B) \to (A \to B)))$$

4)
$$(B \to (A \to B)) \to ((\neg A \lor B) \to (A \to B)) - MP 1, 3$$

$$(\neg A \lor B) \to (A \to B)$$

Определение 2.2. Вывод из мн-ва посылок Γ - это п-ть $\phi_1, \phi_2, \dots, \phi_n$ при этом ϕ_i может быть либо аксиомой, либо эл-т Γ , либо получается по m. p.

<u>Лемма</u> 2.2 (О дедукции).

$$\Gamma \vdash A \to B \iff \Gamma \cup \{A\} \vdash B$$

Пример (Силлогизм).

$$\vdash (A \to B) \to ((B \to C) \to (A \to C)) \iff$$

$$\iff \{A \to B\} \vdash (B \to C) \to (A \to C)$$

$$\iff \{A \to B, B \to C\} \vdash (A \to C)$$

$$\iff \{A, A \to B, B \to C\} \vdash C$$

- 1) A посылка
- 2) $A \rightarrow B$ посылка
- 3) B no MP 1, 2
- 4) $B \to C$ посылка
- 5) C MP 3. 4

Доказательство. \Rightarrow) Если вывели $A \to B$, то из $\Gamma \cup \{A\}$ можно вывести B по MP

 \Leftarrow) Пусть $\Gamma \cup \{A\} \vdash B$. Тогда сущю вывод $\phi_1, \dots, \phi_n = B$ из $\Gamma \cup \{A\}$

Каждый ϕ_i - либо акс., либо $\in \Gamma$, либо = A, либо вывод-ся по MP. Мы докажем по инд-ции, что $\Gamma \vdash A \to \phi_i$:

- 1) ϕ_i akc.
 - 1) ϕ
 - 2) $\phi_i \to (A \to \phi_i)$ A1

3)
$$A \rightarrow \phi_i$$
, MP 1, 2.

- 2) $\phi_i \in \Gamma$, аналогичен (1)
- 3) $\phi_i = A$. На прошлой лекции выводили $\vdash A \to A$ без Γ
- 4) ϕ_i по MP: $\exists j, k, < i$:

$$\phi_k = (\phi_i \to \phi_i)$$

По инд-ции: $\Gamma \vdash A \to \phi_j, \Gamma \vdash A \to \phi_k$, т. е. $\Gamma \vdash A \to (\phi_j \to \phi_i)$:

$$(A \to (\phi_j \to \phi_i)) \to ((A \to \phi_j) \to (A \to \phi_i))$$
 - A2
 $(A \to \phi_j) \to (A \to \phi_i)$ - MP
 $(A \to \phi_i)$ - MP

Пример.

$$\vdash (A \land B) \to (B \land A)$$
$$A \land B \vdash B \land A$$

- 1) $A \wedge B$ посылка
- 2) $(A \wedge B) \rightarrow B a\kappa c.$ 4
- 3) B MP 1, 2
- 4) $(A \wedge B) \rightarrow A a\kappa c. 3$
- 5) A MP 1, 4
- 6) $(B \rightarrow (A \rightarrow (B \land A)))$ arc. 5
- 7) $A \rightarrow (B \wedge A)$ MP 3, 6
- 8) $B \wedge A MP 5$, 7

<u>Лемма</u> 2.3 (Правила введения и разбиения конъюнкции).

$$\Gamma \cup \{A \land B\} \vdash C$$

$$\iff \Gamma \cup \{A, B\} \vdash C$$

Также:

$$\Gamma \vdash A \land B \iff \begin{cases} \Gamma \vdash A \\ \Gamma \vdash B \end{cases}$$

Пример.

$$(A \to \neg A) \to \neg A$$

Вывод:

1-5)
$$A \rightarrow A$$

6)
$$(A \rightarrow A) \rightarrow ((A \rightarrow \neg A) \rightarrow \neg A) - A10$$

7)
$$(A \rightarrow \neg A) \rightarrow \neg A - MP 5.6$$

Пример.

$$\vdash A \to \neg \neg A$$

$$\iff A \vdash \neg \neg A$$

$$\vdash \neg A \to (A \to B) \iff$$

$$\neg A \vdash A \to B \iff \neg A, A \vdash B \iff A \vdash \neg A \to B$$

$$\vdash A \to (\neg A \to B)$$

$$A \vdash \neg \neg A$$

1)
$$A \to (\neg A \to B)$$

- 2) А посылка
- 3) $\neg A \rightarrow B$, $mp\ 2$, 1
- 4) $A \rightarrow (\neg A \rightarrow \neg B)$
- 5) $\neg A \rightarrow \neg B$, MP 2, 4

6)
$$(\neg A \rightarrow B) \rightarrow ((\neg A \rightarrow \neg B) \rightarrow \neg \neg A) - A10$$

7)
$$(\neg A \rightarrow \neg B) \rightarrow \neg \neg A - MP 3, 6$$

Лемма 2.4 (Правило рассуждения от противного).

$$\begin{array}{c|c} \Gamma, A \vdash B & \Gamma, A \vdash \neg B \\ \hline \Gamma \vdash \neg A & \end{array}$$

Доказательство.

$$\begin{cases} \Gamma, A \vdash B \iff \Gamma \vdash A \to B \\ \Gamma, A \vdash \neg B \iff \Gamma \vdash A \to \neg B \end{cases} \iff \Gamma \vdash \neg A, \text{ A10} + \text{MP x2}$$

Пример (Закон контрапозиции).

Пример (Закон Де Моргана).

$$\vdash (\neg A \lor \neg B) \to \neg (A \land B)$$

$$\iff (\neg A \lor \neg B) \vdash A \land B$$

- 1) $(A \wedge B) \rightarrow A a\kappa c.$ 3
- 2) $\neg A \rightarrow \neg (A \land B)$ закон контрапозиции.
- 3) $(A \wedge B) \rightarrow B a\kappa c.$ 4
- 4) $\neg B \rightarrow \neg (A \land B)$ контрапозиция
- 5) $(\neg A \rightarrow \neg (A \land B)) \rightarrow ((\neg B \rightarrow \neg (A \land B)) \rightarrow ((\neg A \lor \neg B) \rightarrow \neg (A \land B)))$
- 6) MP 2x

<u>Лемма</u> **2.5** (Правило контрапозиции). $\frac{\Gamma, A \vdash B}{\Gamma, \neg B \vdash \neg A}$

<u>Лемма</u> **2.6** (Правило разбора случаев).

$$\begin{array}{c|c}
\Gamma, A \vdash C & \Gamma, B \vdash C \\
\hline
\Gamma, A \lor B \vdash C
\end{array}$$

Лемма 2.7 (Правило исчерп. разбора случаев).

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash B} \qquad \frac{\Gamma, \neg A \vdash B}{\Gamma}$$

3 Лекция 7

Теорема 3.1 (О полноте ИВ). ϕ - тавтология $\Rightarrow \phi$ выводима

Правило исчерп. разбора случаев: Пусть Γ - нек-рое мн-во ф-ул, при это $\Gamma, A \vdash B$ и $\Gamma, \neg A \vdash B$

Тогда: $\Gamma \vdash B$

$$\begin{array}{c|c} \Gamma, A \vdash B & \Gamma, \neg A \vdash B \\ \hline \Gamma \vdash B & \end{array}$$

Обозначение.

$$p^{\varepsilon} = \begin{cases} p, \varepsilon = 1 \\ \neg p, \varepsilon = 0 \end{cases}$$

<u>Лемма</u> **3.2** (Основная). Пусть ϕ - ϕ -ла от n переменных $(\overline{p} = (p_1, \dots, p_n))$.

$$(a_1, \ldots, a_n) \in \{0, 1\}^n, \phi(a_1, \ldots, a_n) = a \in \{0, 1\}$$

Тогда:

$$p_1^{a_1}, p_2^{a_2}, \dots, p_n^{a_n} \vdash \phi^a$$

Рассм. переход:

ОСНОВНАЯ ЛЕММА ⇒ ТЕОРЕМА О ПОЛНОТЕ ИВ

$$\phi$$
 - тавтология \Rightarrow при всех (a_1, \ldots, a_n) $\phi(a_1, \ldots, a_n) = 1 \underset{\text{По лемме}}{\Longrightarrow} p_1^{a_1}, \ldots, p_n^{a_n} \vdash \phi$

Пример. n = 3: le Picture

<u>Лемма</u> 3.3 (Базовая).

AND-ы:

$$A, B \vdash A \land B$$
$$\neg A, B \vdash \neg (A \land B)$$
$$A, \neg B \vdash \neg (A \land B)$$
$$\neg A, \neg B \vdash \neg (A \land B)$$

OR- $b\iota$:

$$A, B \vdash A \lor B$$

$$\neg A, B \vdash A \lor B$$
$$A, \neg B \vdash A \lor B$$
$$\neg A, \neg B \vdash \neg (A \lor B)$$

Implication-ы:

$$A, B \vdash A \to B$$

$$\neg A, B \vdash A \to B$$

$$A, \neg B \vdash \neg (A \vdash B)$$

$$\neg A, \neg B \to A \to B$$

И ещё:

$$\neg A \vdash \neg A$$
$$A \vdash \neg (\neg A)$$

Док-во основной леммы. Инд-ция по построению ф-лы:

База) Переменная: $p_i^{a_i} \vdash p_i^{a_i}$

Переход) Пусть, например:

$$\phi = (\xi \wedge \eta)$$

$$\xi(a_1, \dots, a_n) = a, \eta(a_1, \dots, a_n) = b \Rightarrow \phi(a_1, \dots, a_n) = a \cdot b$$

По предположению индукции:

$$p_1^{a_1}, p_2^{a_2}, \dots, p_n^{a_n} \vdash \xi^a \bowtie p_1^{a_1}, p_2^{a_2}, \dots, p_n^{a_n} \vdash \eta^b$$

По базовой лемме:

$$\xi^a, \eta^b \vdash \phi^{a \cdot b}$$

Запишем эти 3 вывода (подряд):

$$p_1^{a_1}, \dots, p_n^{a_n} \phi^{a \cdot b}$$

Определение 3.1. Γ **совместно**, если при некот. значениях переменных все ф-лы из Γ истинны.

Определение 3.2. Γ - **противоречиво**, если для некот. ф-лы ϕ верно:

$$\begin{cases} \Gamma \vdash \phi \\ \Gamma \vdash \neg \phi \end{cases}$$

Теорема 3.4. Γ совместна $\stackrel{*}{\iff}$ Γ непротиворечива.

Рассмотрим связь теоремы о совм. и непрот. с теор. о корр. и полн.:

Теорема 3.5 (О корректности).

$$\vdash \phi \Rightarrow \{ \neg \phi \}$$
 - противор. $\stackrel{*}{\Longrightarrow} \{ \neg \phi \}$ - несовм. $\Rightarrow \forall a, \neg \phi(a) = 0 \iff \phi(a) = 1 \Rightarrow \phi$ - тавтология

Теорема 3.6 (О полноте).

 ϕ - тавтология \Rightarrow $\{ \neg \phi \}$ - несовм. $\stackrel{*}{\Rightarrow} \{ \neg \phi \}$ - противоречиво $\Rightarrow \neg \neg \phi \vdash \phi$

$$\begin{array}{c|c} \neg \phi \vdash B & \neg \phi \vdash \neg B \\ \hline & \vdash \neg \neg \phi \end{array}$$

Доказательство. 1) Γ против. \Rightarrow Γ несовм.

Теорема 3.7 (Обобщённая теорема о корректности). Если $\Gamma \vdash A$ и все ф-лы из Γ верны на (a_1, \ldots, a_n) , то и A верна на том же наборе.

Д-во: индукция по номеру ф-лы в выводе.

 Γ - совм. $\Rightarrow~$ Все ф-лы из Γ верны на нек-ром наборе.

$$\Gamma \vdash \phi \Rightarrow \phi$$
 верно на том же наборе

$$\Gamma \vdash \neg \phi \Rightarrow \neg \phi \Rightarrow ---- || -----$$

Но ϕ и $\neg \phi$ не м. б. верны одновременно. Противор.

2) Γ непрот. \Rightarrow Γ совм. Пусть \triangle непрот. Будем говорить, что \triangle - полное, если для $\forall \phi$ верно $\triangle \vdash \phi$ или $\triangle \vdash \neg \phi$.

<u>Лемма</u> 3.8 (I). Γ непрот $\Rightarrow \Gamma \subset \triangle$ для некот. полного непрот. \triangle <u>Лемма</u> 3.9 (II). \triangle полное, непрот. $\Rightarrow \triangle$ - совм.

Док-во леммы I для счётного мн-ва перемен. Если переменных сч. мн-во то и ф-лы тоже.

Пусть $\phi_1, \phi_2, \dots, \phi_n$ - все ф-лы.

Oпр. Γ_i по инд-ции:

$$\Gamma_0 = \Gamma, \Gamma_i = \begin{cases} \Gamma_{i-1} \cup \{ \phi_i \}, \text{ - если это непрот.} \\ \Gamma_{i-1} \cup \{ \neg \phi_i \} \text{ - иначе} \end{cases}$$

Утверждение 3.1. *Все* Γ_i - *непрот*.

Доказательство.

$$\begin{cases} \Gamma_{i-1} \cup \{ \phi_i \} & \text{- прот.} \Rightarrow \Gamma_{i-1} \vdash \neg \phi_i \\ \Gamma \cup \{ \neg \phi_i \} & \text{- прот.} \Rightarrow \Gamma_{i-1} \vdash \neg \neg \phi_i \end{cases}$$

 $\Rightarrow \Gamma_{i-1}$ - прот. \Rightarrow пришли к противоречию.

 $\Gamma_0 \subset \Gamma_1 \subset \Gamma_2 \subset \dots$ $\Delta = \bigcup_{i=0}^{\infty} \Gamma_i$ - тоже непрот.

Если \triangle прот., то прот. использ. кон. число ф-л из \triangle . Каждое δ_j лежит в Γ_{k_j} . Тогда прот. выв-ся из $\Gamma_{max\{\,k_j\,\}}$. Но все конечные Γ_i непрот.

 \mathcal{A} ок-во леммые II. \triangle - полн. \Rightarrow для перем. $p_i,$ $\triangle \vdash p_i \lor \triangle \vdash \neg p_i.$ Набор. значений:

$$p_i = \begin{cases} 1, \triangle \vdash p_i \\ 0, \triangle \vdash \neg p_i \end{cases} \tag{1}$$

Д-м, что ф-лы из \triangle верны на системе (1). Ф-ла - перем. \Rightarrow согл. опр. системы (1):

$$\phi = \neg \psi$$

Более общ утв.:

$$\begin{cases} \triangle \vdash \phi \Rightarrow \phi \text{ верна на системе (1)} \\ \triangle \not\vdash \phi \Rightarrow \phi \text{ - неверна на системе (1)} \end{cases}$$

4 Лекция 8

Ф-лы				
Выполнимые	Невыполнимые			

4.1 Выр-ем задачи через вып-ть ф-л

1) Раскраски:

Дан граф G = (V, E). Цель, построить 3-раскраску

$$V \to \{\,1,2,3\,\}: (v,u) \in E \Rightarrow col(u) \neq col(v)$$

Вершина	$u \mapsto (p_u, q_u)$
цвет	знач перем
не сущ	00
1	01
2	10
3	11

Усл-ие на ребро:

$$(v,u) \mapsto (p_u \neq p_v) \lor (q_u \neq q_v)$$

Итоговая ф-ла:

$$\bigcap_{(v,u)\in E} (p_u \neq p_v) \vee (q_u \neq q_v)$$

Вып-ма т. и т. т., когда граф раскрашен в 3 цвета.

2) Расстановка ферзей:

$$n \times n$$
: $p_{ij} = \begin{cases} 1, \text{ на клетке } (i,j) \text{ стоит ферзь} \\ 0, \text{ иначе} \end{cases}$ $(p_{i1} \vee \ldots \vee p_{in})$ - в і-ой строке > 1 Φ . $(\neg p_{ij} \vee \neg p_{ik})$ - в і-ой строке ≤ 1 Φ $(\neg p_{ik} \vee \neg p_{jk})$ - в і-ой вертикали ≤ 1 Φ $(\neg p_{ij} \vee \neg p_{i-k,j-k})$ на диагонали ≤ 1 Φ $(\neg p_{ij} \vee \neg p_{i-k,j-k})$ на побочной диагонали ≤ 1 Φ

Вся ф-ла - конкатенация всех условий.

3) 3-ча о клике:

Дан граф $G, q_{uv} = 1 \iff (u, v) \in E$ Вопрос: \exists ? клика из k вершин.

$$(v_1, v_2, \dots, v_k) \colon \forall i \neq j, (v_i, v_j) \in E$$

$$\bigvee_{(v_1, v_2, \dots, v_k)} \bigwedge_{i \neq j} q_{v_i, v_j} -$$
длина $\sim C_n^k =$
$$= \frac{n!}{k!(n-k)!} > \frac{(n-k)^k}{k!} > \left(\frac{n-k}{k}\right)^k = 0$$

Можно ли понимать v_1, v_2, \ldots, v_k как перемен. и написать ф-лу:

$$\bigwedge_{i\neq j} (v_i \neq v_j \land q_{v_i,v_j})?$$

Это не булева ф-ла, т. к. перем. встреч. в индексе.

$$p_u = egin{cases} 1, \ ext{u в клике} \ 0, \ ext{иначе} \ (p_u \wedge p_v)
ightarrow q_{uv} \ p_1 + p_2 + \ldots + p_n \geq k \end{cases}$$

Или: $(u,v) \notin E \Rightarrow (\neg p_u \wedge \neg p_v).$

Будем делать так:

$$p_{iu}$$
 - вершина u - i -ая в клике

$$(p_{i1} \lor \ldots \lor p_{in})$$
 - под каждым номером есть вершина, $i \in \{1, \ldots, k\}$ $i \neq j \Rightarrow (\neg p_{iv} \lor \neg p_{jv})$ - у одной верш. не м. б. 2 номеров. $(u,v) \not\in E \Rightarrow (\neg p_{iu} \lor \neg p_{jv})$ - антиребро не м. б. внутри клики.

4.1.1 Обобщаем. Метод резолюций

Ф-ла - конъюнкция всех усл. - КНФ.

Пусть дана КНФ, будем рассм. её как набор дизъюнктов.

Правило Res:

$$\cfrac{A \lor x}{A \lor B$$
 - резольвента

Утверждение 4.1. Если на данном наборе вып. $A \lor x$ и $B \lor \neg x$, то вып-мо и $A \lor B$

Следствие. Если исх. ф-ла вып-ма, то и все резольвенты тоже.

Пустой дизъюинкт: \bot

$$\begin{array}{c|c}
x & \neg x \\
 & \bot \\
\hline
x \lor y & \neg x \lor \neg y \\
\hline
y \lor \neg y \\
\hline
p \lor x & p \lor r \lor \neg x \\
\hline
p \lor r
\end{array}$$

Метод резолюций: строим всё новые резольвенты, пока либо не будет выведен \bot , либо не прекратится появление новых дизъюнктов.

Теорема 4.1 (О корректности метода резол.). *Если исх. ф-ла вып., то* \perp *нельзя вывести.*

Доказательство. Если можно вывести, то \perp будет ист., но он $\equiv 0$

Пример. Φ ерзи 2 x 2

Усл-ие:

$$p \lor q$$

$$r \lor s$$

$$\neg p \lor \neg q$$

$$\neg r \lor \neg q$$

$$\neg p \lor \neg s$$

$$\neg q \lor \neg r$$

$$p \lor q \qquad \neg p \lor \neg s$$

$$q \lor \neg s$$

Picture

Теорема 4.2. (О полноте) Если \bot нельзя вывести, то ϕ -ла выполнима.

Доказательство. Все выводимые дизъюнкты разобъём на классы.

$$C_0 \subset C_1 \subset C_2 \subset \ldots \subset C_k$$

 C_i - дизъюнкты, зависящ. только от переменных p_1, \dots, p_i ($C_0 = \emptyset$, т. к. \bot - невыводим).

Будем док-ть по инд-ции, что одновр. вып. все дизъюнкты из C_i . ММИ:

• База: $C_0 = \emptyset \Rightarrow$ очев.

• Переход: пусть все ф-лы из C_{i-1} вып-ны на знач. $a_1, \ldots a_{i-1}$. Рассм. ф-лы из C_i , кот. ещё не выполнены за счёт этих значений. Предположим, что среди них есть ф-ла с p_i и ф-ла с $\neg p_i$:

$$p_i \vee D_0$$
 и $\neg p_i \vee D_1$

Раз эти ф-лы остались, то $D_0(a_1,\ldots,a_{i-1})=0$ и $D_1(a_1,\ldots,a_{i-1})=0$. Но $D_0\vee D_1$ явл-ся резольвентой: $(p_i\vee D_0), (\neg p_i\vee D_1)$. Тогда $D_0\vee D_1\in C_{i-1}$, и тогда должно быть: $D_0\vee D_1=1!!!$ Следовательно, все оставшиеся ф-лы либо с $p_i\Rightarrow p_i=1$, либо с $\neg p_i\Rightarrow p_i=0$

Как это связано с тафтологиями? А это уже совсем другая история.

5 Лекция 10

5.1 Напоминание

 σ - сигнатура, сост. из функц. и пред. символов. и им соотв. валентности.

 $\mu = (M, I_M), I_M$ - соотв. символам σ функций и предикатов

$$\pi: Var \to M$$

$$[\phi]_M(\pi) - ?$$

Рекурсия по постр. ϕ :

1)
$$\phi = P(t_1, \dots, t_n)$$

$$[\phi]_M(\pi) = [P]_M([t_1]_M(\pi), \dots, [t_n]_M(\pi))$$
 2)
$$\phi = (\psi_0(operation)\psi_1), \phi = \neg \psi - \text{аналогично.}$$

$$[\phi]_M(\pi) = \underset{OBJMPL}{AND}([\psi_0]_M(\pi), [\psi_1]_M(\pi))$$

$$\phi=\exists x,\psi$$

$$[\phi]_M(\pi)=1\iff \text{ найдётся }a\in M,\text{ т. ч. }[\phi]_M(\pi_{x\to a})=1$$

$$[\phi]_M(\pi)=\bigvee_{a\in M}[\phi]_M(\pi_{x\mapsto a})$$

$$\pi_{x\to a}(y)=\begin{cases}\pi(y),y\neq x\\a,y=x\end{cases}$$

4) Аналогично (3), но с ∧ вместо ∨

Определение 5.1. Параметры терма t:

1)
$$t = x \in Var \Rightarrow Par(t) = \{x\}$$

2)
$$t = c \text{ - константа из } \sigma \Rightarrow Par(t) = \emptyset$$

 $t=f(t_1,\ldots,t_n), f$ - функциональный символ вал-ти $n\Rightarrow Par(t)=igcup_{i=1}^n Par(t_i)$

Определение 5.2. Параметры формулы ϕ :

1)
$$\phi = P(t_1, \dots, t_n) \Rightarrow Par(\phi) = \bigcup_{i=1}^n Par(t_i)$$

2)
$$\phi = \neg \psi \Rightarrow Par(\phi) = Par(\psi)$$

3)
$$\phi = (\psi_0(operation)\psi_1) \Rightarrow Par(\phi) = Par(\psi_0) \cup Par(\psi_1)$$

$$\uparrow \land \lor, \lor, \rightarrow$$

4)
$$\phi = (\exists/\forall)x, \psi \Rightarrow Par(\phi) = Par(\psi) \{x\}$$

Теорема 5.1. а) Если π, π' — оценки и для любой пер. $x \in Par(t), \pi(x) = \pi'(x), mo [t]_M(\pi) = [t]_M(\pi')$

b) Если π, π' - оценки, т. ч. для $\forall x \in Par(\phi), \pi(x) = \pi'(x)$ то $[\phi]_M(\pi) = [\phi]_M(\pi')$

Доказательство. a) Индукция по пост. t:

1)
$$t = x \Rightarrow [t]_M(\pi) = \pi(x) = \pi'(x) = [t]_M(\pi')$$

2)
$$t = c \Rightarrow [t]_M(\pi) = [c]_M = [t]_M(\pi')$$

3)

 $t=f(t_1,\ldots,t_n), f$ — функциональный символ вал-ти n

$$Par(t_i) \subset Par(t)$$
$$[t]_M(\pi) = [f]_M([t_1]_M(\pi), \dots, [t_n]_M(\pi)) =$$
$$= [f]_M([t_1]_M(\pi'), \dots, [t_n]_M(\pi')) = [t]_M(\pi')$$

- b) Индукция по построению ϕ :
 - 1) $\phi = P(t_1, \dots, t_n) \Rightarrow [\phi]_M(\pi) =$ $= [P]_M([t_1]_M(\pi), \dots, [t_n]_M[\pi]) = [P]_M([t_1]_M(\pi'), \dots, [t_n]_M(\pi')) = [\phi]_M(\pi'))$
 - 2) $\phi = (\psi_0 \wedge \psi_1) \Rightarrow [\phi]_M[\pi] = AND([\psi_0]_M(\pi), [\psi_1]_M(\pi)]) = And([\psi_0]_M(\pi'), [\psi_1]_M(\pi')) = [\phi]_M(\pi')$ Аналогично для других операций и для отрицания.
 - 3) $\phi = \exists x, \psi$

$$Par(\phi) = Par(\psi) \setminus \{x\}$$

$$[\phi]_M(\psi) = \bigvee_{a \in M} [\phi]_M(\pi_{x \mapsto a}) = \bigvee_{a \in M} [\phi]_M(\pi'_{x \mapsto a}) = [\phi]_M(\pi')$$

4) $\phi = \forall x, \psi$ - аналогично 3)

6 Лекция 11

Определение 6.1. Предварённая нормальная формула:

Теорема 6.1. У любой ф-лы 1-ого порядка \exists эквив. ей формула в предв. нормальной форме.

Доказательство. Будем проводить эквив-ные преобразования:

1) $\neg \exists x \phi \sim \forall x \neg \phi$

$$\neg \forall x \phi \sim \exists x \neg \phi$$

2) $(\forall x \phi \land \forall x \psi) \sim \forall x (\phi \land \psi)$

$$(\exists x \phi \lor \exists x \psi) \sim \exists x (\phi \lor \psi)$$

3)

$$\exists x(\phi \land \psi) \rightarrow (\exists x\phi \land \exists x\psi)$$

Это не эквивалентность! Поэтому нельзя применять

$$(\forall x \phi \lor \forall x \psi) \to \forall x (\phi \lor \psi)$$

Нужно сделать замену переменной.

$$\exists x \phi \sim \exists y \underline{\phi(y/x)}$$

Получили ф-лу ϕ с подстановкой y вместо x.

$$\phi(y/x)$$
 — все свободные вхожд. x замен-ся на y

! При этом, эти вхождения не должны подпадать под д-ие кванторов по y, и y не входит свободно в ф-лу ϕ .

Рассм. примеры некорректных подстановок:

- 1) $\exists x \forall y A(x,y) \not\rightarrow \exists y \forall y A(y,y)$
- $2) \quad \exists x A(x,y) \not\to \exists y A(y,y)$

Иначе, замена на новую переменную корректна.

4)
$$(\exists x\phi) \land \psi \sim \exists x(\phi \land \psi)$$
, причём $x \notin Params(\psi)$

 $(\exists x\phi \wedge \psi) \sim \exists y\phi(y/x) \wedge \psi \sim \exists y(\phi(y/x) \wedge \psi), \text{ если } x \in Params(\psi), y$ не встречается в ϕ и ψ

$$\exists \phi \lor \psi \sim \exists x (\phi \lor \psi), \forall$$
 — аналог.

$$(\exists x \phi \to \psi) \sim \forall x (\phi \to \psi)$$

$$(\psi \to \exists x \phi) \sim \exists x (\psi \to \phi)$$

<u>Замечание</u>. Значение ф-лы зависит только от значения её параметров. $\Rightarrow \Phi$ -ла с k пар-рами при фикс. интерпретации задаёт k-местный предикат.

Определение 6.2. Предикат наз-ся выразимым в данной интерпретации, если его можно задать ф-лой 1-ого порядка.

Пример.
$$(\mathbb{N}, S, =), S(n) = n + 1$$
. *Torda:*

$$\frac{\mathbf{\Pi}\mathbf{ример.}}{x=0} (\mathbb{N}, \cdot, =)$$

$$x=0 \iff \forall y \cdot x = x$$

$$x=1 \iff \forall y \cdot x = y$$

$$x: y \iff \exists z(x = y \cdot z)$$

$$p - npocmoe \iff (p \neq 1 \land \forall q (p : q \rightarrow (q = 1 \lor q = p)))$$
$$d = gcd(x, y) \iff (x : d \land y : d \land \forall k ((x : k \land y : k) \rightarrow d : k))$$

$$d = lcm(x, y) \iff (c : x \land c : y \land \forall k ((k : x \land k : y) \rightarrow k : c))$$

23

Пример.
$$(2^A, \subset)$$

$$x = y \iff (x \subset y \land y \subset x)$$

$$x = \emptyset \iff \forall y \colon x \subset y$$

$$|x| = 1 \iff (\neg(x = \emptyset) \land \forall y (y \subset x \rightarrow (y = \emptyset \lor y = x)))$$

$$z = x \cup y \iff (x \subset z \land y \subset z \land \forall t ((x \subset t \land y \subset t) \rightarrow (z \subset t)))$$

Пример. Метрическая геометрия:

 $(\mathbb{R}^2,E),E(x,y)$ — значит, что |x-y|=1, т. е. расстояние от точки x до y=1

$$x = y \iff \forall z (E(x, z) \to E(y, z))$$

 $|x - y| = 2 \iff \exists! z (E(x, z) \land E(y, z))$

Или:

$$\exists z ((E(x,z) \land E(y,z)) \land \forall t ((E(x,t) \land E(y,t)) \rightarrow t = z))$$
$$|x-y| = \sqrt{3}$$

Рисуем прямоугольный треугольник с гипотенузой длины = 2 и катетом длины = 1. Тогда катет от x до y имеет длину $\sqrt{3}$

$$\exists z \exists t (E(x,z) \land E(z,t) \land E(x,t) \land E(y,t) \land |y-z| = 2)$$

Пример.
$$(\mathbb{N}, S, =)$$

$$y = x + k, k - napaмemp$$

 $y = S(S(S(\dots(S(x)))))$

$$y = x + k \iff \exists z (y = z + \frac{k}{2} \land z = x + \frac{k}{2})$$

$$\iff \exists z \forall u \forall v \left(((u = y \land v = z) \lor (u = z \land v = x)) \to u = v + \frac{k}{2} \right)$$

$$len(k) = len(\frac{k}{2}) + C$$

$$k=1$$
 — база индукции, $y=x+1 \iff y=S(x)$

Общая длина: $C \log_2 k$

$$k$$
 — нечётно $\Rightarrow y = x + k \iff \exists z(y = S(z) + \frac{k-1}{2} \land z = x + \frac{k-1}{2})$

7 Лекция 12

$$\langle \mathbb{Z}, S, = \rangle$$

 $x = 0 \iff x + x = x$
 $\langle \mathbb{N}, \cdot, = \rangle$

7.1 Метод автоморфизма

Аддитивная ф-ция:

$$f(x+y) = f(x) + f(y)$$

Лин. ф-ция:

$$f(\alpha \cdot x + \beta \cdot y) = \alpha f(x) + \beta f(y)$$

Мультипликативная ф-ция:

$$\phi(x \cdot y) = \phi(x) \cdot \phi(y)$$

Монотонная ф-ция:

$$x \le y \iff f(x) \le f(y)$$

Задана сигнатура (P, \ldots, f, \ldots) . Интерпретации с носит. A и B:

$$[P]_A,\ldots,[f]_A$$
 и $[P]_B,\ldots,[f]_B$

$$\gamma\colon A o B$$
 — гомоморфизм, если

1) При всех $x_1, \ldots, x_k \in A$.

$$[P]_A(x_1,\ldots,x_k) \iff [P]_B(\gamma(x_1),\ldots,\gamma(x_k))$$

"Предикаты сохраняются"

2) При всех $x_1, \ldots x_k \in A$:

$$\gamma([f]_A(x_1,\ldots,x_k))=[f]_B(\gamma(x_1),\ldots,\gamma(x_k))$$

Для конст. симв.:

$$\gamma([c]_A) = [c]_B$$

Определение 7.1. Автоморфизм:

- 1) A = B
- 2) γ биекция

Теорема 7.1 (Об автоморфизмах). Пусть A — интерпр. сигнатуры (P, \ldots, f, \ldots) , α — автоморфизм, Q — выразимый предикат. Тогда при всех $x_1, \ldots, x_k \in A$:

$$Q(x_1, \dots, x_k) \iff Q(\alpha(x_1), \dots, \alpha(x_k))$$
 (2)

Cл-ие, если при некот-ром автоморфизме α эквиваленция (2) неверна, то Q невыразим:

Пример.
$$(\mathbb{Z},S,=)$$

$$\alpha(x=x+C)$$

$$Q(x) \iff x : 2$$

Пример. $(\mathbb{Z},+,=)$

$$\alpha(x) = -x$$

$$Q(x, y) \iff x > y$$

Пример.

$$n = 2^{a} \cdot 3^{b} \cdot k, k \not: 2, k \not: 3$$
$$\alpha(2^{a} \cdot 3^{b} \cdot k) = 2^{b} \cdot 3^{a} \cdot k$$
$$\alpha(0) = 0$$
$$Q(x, y) \iff x > y$$

Доказательство теоремы: Докажем индукцией по построению:

1) t — терм \Rightarrow при всех $x_1, \dots, x_k \in A$:

$$[t](\alpha(x_1),\ldots,\alpha(x_k))=\alpha([t](x_1,\ldots,x_k))$$

2) $\phi - \varphi$ -ла \Rightarrow При всех $x_1, \dots, x_k \in A$:

$$[\phi](\alpha(x_1),\ldots,\alpha(x_k)) \iff [\phi](x_1,\ldots,x_k)$$

3) Переменная $\alpha(x) = \alpha(x)$, конст. символ $[c] = \alpha([c])$ Конст. символ: $[c] = \alpha([c])$ Сост. терм:

$$[f(t_1, \dots, t_m)](\alpha(x_1), \dots \alpha(x_k)) = [f]([t_1](\alpha(x_1), \dots, \alpha(x_k)), [t_m]) =$$

$$= [f](\alpha([t_1](x_1, \dots, x_k)), \dots, \alpha([t_m](x_1, \dots, x_k))) =$$

$$= \alpha([f]([t_1](x_1, \dots, x_k), [t_m](x_1, \dots, x_k))) =$$

$$= \alpha([f(t_1, \dots, t_m)](x_1, \dots, x_k))$$

Атом. формулы — аналогично термам

$$\bigwedge_{y} [\phi](\alpha(x_1), \dots, \alpha(x_k), y) = \bigwedge_{y} [\phi](\alpha(x_1), \dots, \alpha(x_k), \alpha(y)) = \\
= \bigwedge_{y} (x_1, \dots, x_k, y) = [\forall y, \phi](x_1, \dots, x_k)$$

Пример.

 $<\mathbb{N}, S, =>$ — нет автоморфизма, \leq — невыраз.

0 — выразим: $x=0 \iff \neg \exists y \colon x = S(y)$

<u>Следствие</u>. Выразим $e < \mathbb{N}, S, => \iff$ выразим $e < \mathbb{N}, S, 0, =>$

Теорема 7.2 (Об элиминации кванторов). Любая ф-ла в $< \mathbb{N}, S, 0, =>$ равна некот. бесквант. ф-ле

Следствие. $x \leq y$ не выраз. $e < \mathbb{N}, S, =>$

Доказательство. $x \leq y$ выразима в $< \mathbb{N}, S, => \Rightarrow x \leq y$ выразима в $< \mathbb{N}, S, 0, =>$ бескванторной ф-лой, т. е. пропозиц. формулой, в к-рую, вместо переменных подставл. атомарн. формулы.

Ат. формулы:

$$S(S(\ldots S(U))) = S(S(\ldots S(v)))$$
 u — переменная или $0, v$ — тоже

Значит $u = v + d, d \in \mathbb{Z}$ (ф-ла-комбинация кон. числа усл-ий)

$$d_1, \ldots, d_n$$
 — все числа из усл.

$$M = max \{ d_1, \dots, d_n \} + 1$$

Рассм x = m, y = 2M и x = 2M, y = M

Все атом. ф-лы, кроме тожд. истины, будут ложны \Rightarrow комбинация приним. одинаковые значения:

Но $x \leq y$ верно для x = M, y = 2M и неверно для $x = 2M, y = M \Rightarrow$ наша ф-ла не выр-ет $x \leq y$

Доказательство теоремы об элиминации. 1) Ат. ф-лы бескв.

- 2) $\phi \wedge \phi' \Rightarrow \neg \phi \wedge \neg \phi'$, аналог. для $\wedge, \vee, \rightarrow$
- 3) $\forall x \phi \sim \neg \exists x \neg \phi$
- 4) $\exists x\phi \sim \exists x \qquad \phi'$ бескванторный Атомарные ф-лы, зависящие от x: $T, \bot, x = t_i$

8 Лекция 13

8.1 Элиминация кванторов

 $\langle N, S, O, = \rangle$, S - successor

Теорема 8.1. Любая ф-ла в сигнатуре (S, O, =) эквив-на в вышеуказанной интерпретации нек-рой бескванторной ф-ле. (T. e. булевой комбинации атомарных формул.)

Доказательство. Инд-ция по построению ф-лы.

- 1) База: атомарная ф-лы бескванторная
- 2) Переход:
 - $-\phi = \neg \psi \Rightarrow$ по предположению индукции, $\psi \sim \psi', \psi'$ бескванторная $\Rightarrow \phi \sim \neg \psi'$ бесквант.
 - $-\phi=(\psi\wedge\eta)\Rightarrow\psi\sim\psi',\eta\sim\eta',\phi\sim(\psi'\wedge\eta')$ аналогично, \vee,\to

$$\forall x \phi \sim \neg \exists x \neg \phi$$

В случае с $\exists x\phi$ нужны содержательные рассуждения, т. е. цель:

∃ → конечная дизъюнкция

$$\exists x \phi \sim \exists x \phi', \phi' - \text{бесквант.}$$

Рассмотрим атомарные формулы:

$$S(S(\dots(S(u)))) = S(S(S(\dots(S(v)))))$$

u, v — либо переменные, либо 0

$$u = v = x \Rightarrow ф$$
-ла \bot или T

Рассм., что может быть в ϕ :

$$S(S(\dots(S(0)))) = x$$
 — задано значение x
$$S(S(\dots(S(x)))) = 0$$
 — тождественная ложь, т. к. \mathbb{N}
$$S(S(\dots(S(y)))) = x, x = y + c$$

$$S(S(\dots(S(x)))) = y$$

Итог: $\exists x \phi, \phi$ — бул. комбинация \bot, T и равенств вида x = d, x = y + c, x = y - c, а также некот. кол-во t_1, \ldots, t_k — все правые части. Опять же, рассм несколько случаев:

- I) $x \notin \{t_1, \dots, t_k\} \Rightarrow$ все рав-ва $x = t_i$ ложны $\Rightarrow \phi(x)$ не зависит от конкретного значения x.
- II) Иначе:

$$\exists x \phi \sim \phi|_{\text{все } x = t_i \text{ ложны}} \lor \bigvee_i \phi[t_i/x]$$

<u>Замечание</u>. Выражения с вычет. преобразуются, в сложение с другой части.

Определение 8.1. Две интерпретации одной сигнатуры элемент. эквив., если в них верны один и те же ф-лы 1-ого порядка.

Теорема 8.2. $<\mathbb{R}, \le>, <\mathbb{Q}, \le>$ — элементарно эквив-ны.

Доказательство. В обеих интерпретациях верна теорема об элиминации кванторов, причём она происходит одинаково.

Отличие предыдущих в формуле $\exists x \phi$. Заменим ϕ на эквив. ДНФ.

$$x = y \iff (x \le y \land y \le x)$$
$$x < y \iff (x \le y \land \neg (y \le x))$$
$$\phi = C_1 \lor \dots \lor C_k$$

где C_i — конъюнкция $x_j \leq y_j$ или $\neg (x_j \leq y_j)$:

$$(x_j \le y_j) \mapsto (x_j < y_j) \lor (x_j = y_j)$$

$$\neg (x_j \le y_j) \mapsto y_j < x_j$$

Рассмотрим по дистриб. $\Rightarrow \phi = C_1' \lor \ldots \lor C_m'$ C_i' — конъюнкция ф-ул вида $x_i = y_i$ или $x_i < y_i$

$$\exists x \phi \sim \exists x (C'_1 \vee \ldots \vee C'_m) \sim \exists x C'_1 \vee \ldots \vee \exists x C'_m$$

$$\exists x ((x > a_1) \wedge \ldots \wedge (x > a_o) \wedge (x < b_1) \wedge \ldots \wedge (x < b_q)) \wedge$$

$$\wedge (x = c_1) \wedge \ldots \wedge (x = c_r) \wedge (\text{возможно.}) \wedge x = x \wedge x < x \wedge y < z$$

Пример.

$$\exists x (x > a \land x > b \land x < c \land x < d) \iff a < c \land a < d \land b < c \land b < d$$

8.1.1 Игра Эренфойхтаза

Теорема 8.3. *Интерпретации. элем. эквив-ны* \iff

В некот-рой игре есть выигр. страт. у нек-рого игрока.

Правила: заданы 2 интерпретации A и B, сигнат. которых сост. только из предикатных символов. (P_1, \ldots, P_n)

30

2 игрока: новатор и консерватор

Цель новатора (Н): показать, что А и В отличаются

Цель консерватора (K): показать, что A=b

Подготовка: (Н) фиксир. число ходов т

На i-ой $cma\partial uu$: $ommeчeнo\ a_1, \ldots, a_{i-1} \in A,\ b_1, \ldots, b_{i-1} \in B$

H выбирает $a_i \in A$ или $b_i \in B$, K отмечает. наоборот, $b_i \in B$ или $a_i \in A$ cooms.

Итог игры:

 P_{i} — предикат вал-сти l

$$P_i(a_{i_1},\ldots a_{i_l}) \neq P_i(b_{i_1},\ldots b_{i_l}) \Rightarrow$$
 выиграл H

Пример. $<\mathbb{N}, \leq>, <\mathbb{Z}, \leq>$

$$\exists x \forall y, x \leq y - \epsilon p n o \epsilon \mathbb{N}, n o n e \epsilon \mathbb{Z}$$

Н выигравает за 2 хода:

- 1) $H: 0 \in \mathbb{N}, K: b \in \mathbb{Z}$
- 2) $H:(b-1)\in\mathbb{Z}, K:a\in\mathbb{N}$

Ho $a \ge 0$ — верно, $a \ b - 1 \ge b$ — ложно.

Пример. $<\mathbb{Z},\leq>,<\mathbb{Q},\leq>$

$$\forall y \forall z (y < z \rightarrow \exists v (y < v < z))$$

Н выигрывает за 3 хода:

- 1) $H: 0 \in \mathbb{Z}, K: b_0 \in \mathbb{Q}$
- 2) $H: 1 \in \mathbb{Z}, K: b_1 \in \mathbb{Q}$

$$b_0 \ge b_1 \Rightarrow H$$
 — выиграл

$$b_0 < b_1 \Rightarrow H : \frac{b_0 - b_1}{2}, K : a \in \mathbb{Z}, \ npuчём: a \le 0 \lor a \ge 1 \Rightarrow H - выиграл$$

Пример.
$$\langle \mathbb{Q}, \leq \rangle \ u < \mathbb{R}, \leq \rangle$$

 $\overline{B_{burpub}}$ ает K, даже если не фиксировать число ходов.

H ставит точку, либо совпадающую с уже выбранной, либо больше всех, либо меньше всех, либо внутри интервала.

Пример. $\mathbb{Z} \ u \ \mathbb{Z} + \mathbb{Z}$

 $\overline{3}$ аметим, что в $\mathbb{Z} + \mathbb{Z}$ есть есть беск. интервалы.

Поэтому выигр. K, <u>если</u> кол-во ходов фикс.

Разделим все интервалы на большие (бесконечные или кон. $\geq 2^l$, где l - число ходов до конца игры) и малые ($< 2^l$)

Новатор не может поделить большой интервал на два маленьких

9 Лекция 14

Расшир. ИВ на ф-лы 1-ого порядка.

{Вывод. ф-лы}	=	{ Общезнач. ф-лы }
	\subset	Теор. о корр.
	\supset	Теор. о полноте

Новый список аксиом:

- Аксиомы 1-11
- Аксиомы 12: $\forall x \phi \to \phi(t/x), t$ терм, подстановка t/x корректна.
- $\phi(t/x) \to \exists x \phi$ $\phi(t/x)$ результат замены своб. вхожд. x на t, при этом своб. переменные из t не попадают под д-ие кванторов ϕ

Подстановка точно корректна, если:

- 1) t замкн. терм (сост. только из констант)
- $2) \quad t = x$

Примеры вывод ф-л:

0) Все тавтологии (с подст. формул вместо переменных)

 $1) \quad \forall x\phi \to \exists x\phi$

Вывод:

1.
$$\forall x \phi \rightarrow \phi - A12$$

2.
$$\phi \to \exists x \phi \ A13$$

3. $\forall x \phi \rightarrow \exists x \phi$ — силлогизм.

Правила Бёрнайса:

- Σ -правило:

$$\frac{\phi \to \psi}{\exists x \phi \to \psi}$$

<u>Замечание</u>. Условие применимости: x не параметр $\psi!$

— П-правило:

$$\frac{\psi \to \phi}{\psi \to \forall x \phi}$$

Опять же: x не параметр ψ

 $2) \quad \exists x \forall y \phi \to \forall y \exists x \phi$

Вывод:

1.
$$\forall y \phi \rightarrow \phi \ A12$$

2.
$$\phi \to \exists x \phi \ A13$$

3.
$$\forall y\phi \rightarrow \exists x\phi$$
 — силлогизм

4.
$$\exists x \forall y \phi \rightarrow \exists x \phi - \Sigma - \text{Бёрн.}, 3$$

5.
$$\exists x \forall y \phi \rightarrow \forall y \exists x \phi - \prod$$
— Бёрн., 4

Правило обобщения (Gen):

$$\frac{\phi}{\forall x \phi}$$

 ϕ общезн. $\Rightarrow \forall x \phi$ общезн.

При этом $(\phi \to \forall x \phi)$ — необщезн.

3) Вывод **Gen**:

$$\vdash \phi \Rightarrow \vdash \forall x \phi$$

- 1. ϕ выводима
- 2. ψ (любая замкн. акс.)
- 3. $\phi \to (\psi \to \phi)$ A1
- 4. $\psi \rightarrow \phi$ MP 1, 3
- 5. $\psi \to \forall x \phi \prod$ -Бёрн., 4
- 6. $\forall x \phi \text{ MP } 2, 5$
- 4) $\neg \exists x \phi \leftrightarrow \forall x \neg \phi$

$$\neg \forall x \phi \leftrightarrow \exists x \neg \phi$$

$$\forall x \neg \phi \rightarrow \neg \phi$$

$$\phi \to \neg \forall x \neg \phi$$

$$\exists x \phi \to \neg \forall x \neg \phi$$

$$\forall x \neg \phi \rightarrow \neg \exists x \phi$$
 — контрапоз.

5) Лемма о дедукции для ИП:

В кач-ве посылок используются только замкн. ф-лы (посылки также наз-ют аксиомами)

Теория — любое мн-во замкн. ф-л

Модель теории — интерпретация, в кот-рой все ф-лы теории истины.

Лемма о дедукции: Пусть Γ — теория, A — замкн. ф-ла, B — произв. ф-ла.

Тогда: $\Gamma \vdash (A \rightarrow B) \iff \Gamma \cup \{A\} \vdash B$

 $\ensuremath{\mathcal{A}\xspace}$ оказательство. \Rightarrow) 1. A o B (вывод)

- $2. \ A$ посылка
- 3. B (MP 1, 2)
- \Leftarrow) Инд-ция C_1,\ldots,C_n вывод B из $\Gamma\cup\{A\}$. По инд-ции докажем $\Gamma\vdash A\to C_i$:

 C_i — акс., эл-т Γ , ф-ла A или получ. по MP — аналог. д-ву для ИВ.

$$C_i$$
 — получ. по Σ -прав.
$$C_i = (\exists x\phi \to \psi), C_j = (\phi \to \psi), j < i$$
 По предположению инд-ции: $\Gamma \vdash (A \to (\phi \to \psi))$ Тавтология: $(A \to (\phi \to \psi)) \leftrightarrow (\phi \to (A \to \psi))$ $\Rightarrow \Gamma \vdash (\phi \to (A \to \psi)) \Rightarrow$ $\Rightarrow \Gamma \vdash (\exists x\phi \to (A \to \psi)) - \Sigma$ -Бёрн $\Rightarrow \Gamma \vdash (A \to (\exists x\phi \to \psi)) \Rightarrow \Gamma \vdash (A \to C_i)$ C_i — получ. по Π -правилу:
$$\Gamma \vdash (A \to (\psi \to \phi)) \Rightarrow \Gamma \vdash (A \to (\psi \to \forall x\phi))$$
 $\Rightarrow \Gamma \vdash ((A \land \psi) \to \psi) \Rightarrow \Gamma \vdash ((A \land \psi) \to \forall x\phi)$

Слабая форма.:

Теперь перейдём к теоремам:

Теор. о корр. ИП: $\vdash \phi \Rightarrow \phi$ — общезначима.

Теор. о полн. ИП: ϕ — общезнач. \Rightarrow \vdash ϕ

Сильная форма:

У любой непротиворечивой теории существует модель

Сильная форма \Rightarrow слабая форма.

$$\phi$$
 — общ. $\Rightarrow \forall x\phi$ — общ. $\Rightarrow \{ \neg \forall x\phi \}$ — не имеет модели \Rightarrow $\Rightarrow \{ \neg \forall x\phi \}$ — против. \Rightarrow $\Rightarrow \begin{cases} \{ \neg \forall x\phi \} \vdash A \\ \{ \neg \forall x\phi \} \vdash \neg A \end{cases} = \begin{cases} \vdash \neg \forall x\phi \rightarrow A \\ \vdash \neg \forall x\phi \rightarrow \neg A \end{cases}$ Γ — непротив. теория \Rightarrow Есть модель.

Строим модель из замкн. термов.

Проблема: может не быть конст. символов или функц. симв. Неясно, как опред. пред. симв.

Определение 9.1. Γ — полная теория, если для любой замкн. ϕ верно $\Gamma \vdash \phi$ или $\Gamma \vdash \neg \phi$

<u>Лемма</u> 9.1. Любая непрот. теория вложена в нек-рую полную.

Проблема: если $\Gamma \vdash \exists x \phi$, то ψ должна быть ист. для нек-рого эл-та модели.

Определение 9.2. Теория Γ наз-ся экзистенциально полной, если из $\Gamma \vdash \exists x \phi$ следует $\Gamma \vdash \phi(t/x)$ для некоторого замкн. терма t

<u>Лемма</u> 9.2. Если Γ — непрот. теория в сигнатуре $\sigma \Rightarrow \exists \tau \supset \sigma, \Delta \supset \Gamma$: Δ — непрот. теория в сигн. τ и Δ — экзистенциально полная.