Logik und diskrete Stukturen

Felix (2807144) & Philipp (2583572) Müller

WS 14/15

Blatt 4

Aufgabe 1

R ist eine Äquivalenzrelation \iff R ist reflexiv, symmetrisch und transitiv.

- a) $R: \forall a_1, a_2 \in A: (a_1 \sim a_2 \iff f(a_1) = f(a_2))$ ist Äquivalenzrelation.
 - i) reflexiv: $\forall a \in M : aRa$. Es gilt $a_1 \sim a_2 \iff f(a_1) = f(a_2) \checkmark$
 - ii) symmetrisch: $\forall a, b \in M : (aRb \implies bRa)$.

$$aRb \implies a \sim b \iff f(a) = f(b) \implies f(b) = f(a) \iff b \sim a \iff bRa\checkmark$$

iii) transitiv: $\forall a, b, c \in M : ((aRb \land bRc) \implies aRc)$:

$$(aRb \implies a \sim b \iff f(a) = f(b)) \land (bRc \implies b \sim c \iff f(b) = f(c))$$

Wegen f(a) = f(b) und f(b) = f(c) gilt f(a) = f(c) und somit $a \sim c \iff aRc$. \checkmark Somit ist R Äquivalenzrelation.

b) Ist \sim eine beliebige Äquivalenzrelation auf A und ist $C = \{a_{\sim} \mid a \in A\}$ die Menge der Äquivalenzklassen von \sim , so gibt es eine Abbildung $p: A \to C$, so dass für alle $a_1, a_2 \in A$:

$$a_1 \sim a_2 \iff p(a_1) = p(a_2)$$

Da \sim eine Äquivalenzrelation auf A ist, ist sie reflexiv, symmetrisch und transitiv. Weil in C alle Äquivalenzklassen von \sim enthalten sind, welche aufgrund der Definition der Äquivalenzrelation o.g. Eigenschaften besitzen musst es für zwei Elemente a, b, welche $a \sim b$ erfüllen auch solche $p(a), p(b) \in C$ geben, so dass p(a) = p(b) gilt.

Die Äquivalenzklassen zu zwei Elementen sind entweder gleich oder disjunkt, ersteres genau dann, wenn die Elemente äquivalent sind. Es gilt:

$$[a_1] = [a_2] \iff a_1 \sim a_2 \iff a_1 \in [a_2] \iff a_2 \in [a_1]$$

Somit sind beide Inklusionen gezeigt.

c) Seien \sim und C wie in Aufgabenteil **b**). Ist $f: A \to B$ eine Abbildung und gilt $\forall a_1, a_2 \in A:$ $(a_1 \sim a_2 \implies f(a_1) = f(a_2))$ so wird durch $g([a]_{\sim}) = f(a)$ für alle $a \in A$ eine Abbildung $g: C \to B$ definiert. Wir suchen also eine Abbildung $g: \{[a]_{\sim} \mid a \in A\} \to f(a) \forall A.$

Aus http://www.roeglin.org/teaching/WS2012/LuDS/LuDS.pdf 2.12.

Definition. Eine Relation $f \subseteq A \times B$ heißt Abbildung oder Funktion, wenn jedes $a \in A$ zu genau einem Element $b \in B$ in Relation steht. Um anzudeuten, dass f eine Abbildung ist, schreiben wir $f: A \to B$ [...]

Es muss also gezeigt werden, dass jedes $c \in C$ mit einem $b \in B$ in Relation steht. Wir betrachten $g:[a] \to f(a)$ mit f(a). f ist funktional fast äquivalent zu p, nur nicht bidirektional. Da wir uns aber nur für $g:C \to B$ interessieren ist dies keine Einschränkung. Damit gilt auch $C \subseteq B$. Weil f ein eindirektionales p ist gilt auch, dass $g([a]_{\sim}) = f(a)$ für alle $a \in A$ mit $g:C \to B$.

Aufgabe 2

- a) Beschreiben Sie für die Äquivalenzrelationen aus Aufgabe 2.a) und 2.c) vom Übungsblatt 3 die Äquivalenzklassen.
 - i) 2.a) |a|=|b|. Daher beispielsweise $[1]=\{-1,1\}$ und [2]=[-2,2] Es gilt allgemein $[a]=\{-a,a\}$ $\forall a.$
 - ii) 2.c) $\{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid \exists z \in \mathbb{Z} : a-b=z \cdot p\}$, für ein $p \in \mathbb{N}$. Für $z=1, \ p=1$ findet man $[2]=\{1\}$ sowie $[3]=\{2\}$ usw. Allgemein gilt für hiermit $[n]=\{n-1\}$ für $n \in \mathbb{Z}$. Ebenso [n]=n-p für z fix und analog für p.
- b) Bestimmen Sie folgende Äquivalenzklassen:
 - i) $[42] \oplus_{47} [276]$

Aus http://www.roeglin.org/teaching/WS2012/LuDS/LuDS.pdf 2.17.:

Definition. $[a] \oplus_n [b] = [a+b]_n$

Daher suchen wir $[42+276]_{47} = [318]_{47}$ Rest ist 36, daher gilt $[318]_{47} = \{x \mod 47 = 36 \iff x = 47n + 36, n \in \mathbb{Z}\}$

ii) $[7] \odot_{11} [19]$. Es folgt wieder $[7 \cdot 19]_{11} = [133]_{11}$, Rest ist 1, daher gilt $[133]_{11} = \{ x = 11n + 1, n \in \mathbb{Z} \iff [1] \text{ mit } \equiv_3 \}$.

Aufgabe 3

Eine reguläre Grammatik ist ein Tupel (Σ, V, S, P) .

- a) Die Sprache aller Wörter, die maximal viermal die 1 enthalten.
 - i) $\Sigma = \{0, 1\}$
 - ii) $V = \{S\}$
 - iii) $P = \{S \to \epsilon, S \to 0S, S \to S0, S \to 1^nS, S \to S1^n, n \in \mathbb{N}_0, n \le 4\}$
- b) Die Sprache aller Wörter, bei denen keine zwei 0 hintereinanderstehen.
 - i) $\Sigma = \{0, 1\}$
 - ii) $V = \{S\}$
 - iii) $P = \{S \to \epsilon, S \to 01S, S \to S01, S \to 1^nS, S \to S1^n, n \in \mathbb{N}_0\}$

Aufgabe 4

DEA besteht aus einem Tupel $(Q, \Sigma, \delta, q_0 \in Q, F \subseteq Q)$

- a) 3.a)
 - i) $Q = \{q_i, i \in \{0, \dots, 4\}\}$
 - ii) $\Sigma = \{0, 1\}$
 - iii) $q_0 = q_0$
 - iv) F = Q
 - v) δ :

- b) 3.b)
 - i) $Q = \{q_0, q_1\}$
 - ii) $\Sigma = \{0, 1\}$
 - iii) $q_0 = q_0$
 - iv) F = Q

v) δ:

