Analyse de données transcriptomiques d'espèces sauvages apparentées au blé

Florent MARCHAL

INRAE - UMR AGAP - Ge2POP

27 août 2024

Encadrement pédagogique Anthony BOUREUX

Florent MARCHAL

INRAE - LIMB AGAP - Ge2POP

Encadrement scientifique

Concetta BURGARELLA.

Nathalie CHANTRET, Vincent RANWEZ

Problématique

Introduction

Objectif

Évaluer la qualité des données transcriptomiques issues d'une étude antérieure ([Bur+24]) pour déterminer si celles-ci peuvent être utilisées pour rechercher des traces de sélection.

2 / 32

Plan

Introduction

- 1 Introduction Modèles biologiques
- 2 Vocabulaire
- 3 Théorie
- 4 Quantification des SNP
- 6 Re-Mapping
- **6** Conclusion

Introduction

Espèces utilisées

Vocabulaire

- 13 espèces sauvages apparentées au blé
- Famille des *Poaceae* (Graminées)

Florent MARCHAL

INRAE - UMR AGAP - Ge2POP

Introduction

Espèces utilisées

- 13 espèces sauvages apparentées au blé
- Famille des *Poaceae* (Graminées)

Triticum urartu

- Génome diploide de 4,8Gpb (35,5 fois plus grand qu' Arabidopsis thaliana)
- Génome de référence disponible

5 / 32

Vocabulaire

- 2 Vocabulaire contigs et SNP Synonyme et non synonyme Polymorphisme et substitutions Substitutions

SNP et Contigs

- SNP Single nucléotidique polymorphisme
- contig
- Sites synonymes
- Sites non synonymes

SNP et Contigs

- SNP Single nucléotidique polymorphisme
- contig lci, "contig" est synonyme de "gène"
- Sites synonymes
- Sites non synonymes

Synonyme et non synonyme

Espèce	Individu	Séquence					
espèce_1	individu 1	ATG Met	CGT Arg	TGC Cys	CGA Arg	TGT Cys	TAT Tyr
espèce_1	individu 2	ATG Met	CGT Arg	TGC Cys	CGC Arg	TGT Cys	TTT Phe
espèce_1	individu 3	ATG Met	CGT Arg	TGC Cys	CGA Arg	TGT Cys	

Table 1 – Exemple de séquences

- Sites synonymes
- Sites non synonymes

Synonyme et non synonyme

Espèce	Individu	Séquence					
espèce_1	individu 1	ATG Met	CGT Arg	TGC Cys	CGA Arg	TGT Cys	TAT Tyr
espèce_1	individu 2	ATG Met	CGT Arg	TGC Cys	CG <mark>C</mark> Arg	TGT Cys	TTT Phe
espèce_1	individu 3	ATG Met	CGT Arg	TGC Cys	CG <mark>A</mark> A rg	TGT Cys	TTT Phe

Table 2 – Exemple de séquences avec un site synonyme.

- Sites synonymes codons codants pour un même acide aminé
- Sites non synonymes

Florent MARCHAL INRAE - UMR AGAP - Ge2POP

Synonyme et non synonyme

Espèce	Individu	Séquence					
espèce_1	individu 1	ATG Met	CGT Arg	TGC Cys	CGA Arg	TGT Cys	TAT T yr
espèce_1	individu 2	ATG Met	CGT Arg	TGC Cys	CGC Arg	TGT Cys	T T T Phe
espèce_1	individu 3	ATG Met	CGT Arg	TGC Cys	CGA Arg	TGT Cys	TTT Phe

Table 3 – Exemple de séquences avec un site non synonyme.

- Sites synonymes codons codants pour un même acide aminé
- Sites non synonymes codons ne codants pas pour un même acide aminé

Florent MARCHAL INRAE - UMR AGAP - Ge2POP

Polymorphisme et substitutions

Les sites peuvent s'étudier :

Au sein d'une même population : on parle de polymorphisme Au sein d'un groupe de population : on parle de substitutions

Espèce	Individu	Séquence					
espèce_1	individu 1	ATG Met	CGT Arg	TGC Cys	CGA Arg	TGT C ys	TAT Tyr
espèce_1	individu 2	ATG Met	CG <mark>T</mark> Arg	TGC Cys	CGC Arg	TGT C ys	TTT Phe
espèce_1	individu 3	ATG Met	CGT Arg	TGC Cys	CGA Arg	TGT C ys	TTT Phe
espèce_2	individu 1	ATG Met	CG <mark>A</mark> Arg	TGC Cys	CGA Arg	CGT Arg	TTT Phe
espèce_2	individu 2	ATG Met	CG <mark>A</mark> Arg	TGC Cys	CGA Arg	CGT Arg	TTT Phe
espèce_2	individu 3	ATG Met	CG <mark>A</mark> Arg	TGC Cys	CGA Arg	CGT Arg	TTT Phe

Table 4 – Exemple de substitution synonyme et non synonyme. Les substitutions synonymes sont en rouge. Les substitutions non synonymes sont en orange

Conclusion

- 1 Introduction
- 2 Vocabulaire
- 3 Théorie Sélections Indicateurs
- 4 Quantification des SNP
- **6** Re-Mapping

Sélections

L'absence de sélection

 Les sites synonymes et non synonymes se fixent à la même vitesse

L'absence de sélection

Les sites synonymes et non synonymes se fixent à la même vitesse

La sélection purificatrice

• S'oppose à la fixation des sites non synonymes

Théorie

Sélections

L'absence de sélection

Les sites synonymes et non synonymes se fixent à la même vitesse

La sélection purificatrice

S'oppose à la fixation des sites non synonymes

Théorie

La sélection positive

Favorise la fixation de sites synonymes

L'absence de sélection

Les sites synonymes et non synonymes se fixent à la même vitesse

La sélection purificatrice

S'oppose à la fixation des sites non synonymes

Théorie

La sélection positive

- Favorise la fixation de sites synonymes
- → Création d'un déséquilibre

Théorie

Indicateurs

	Sites polymorphiques	Site Fixés
Non synonyme	P_n	D_n
Synonyme	P_s	D_s

Table 5 – Indicateurs utilisés pour la recherche de traces de sélection

Utilisation

- $\frac{P_n}{P_n}$ Étude du polymorphisme
- $\frac{D_n}{D_n}$ Étude des substitutions
 - $\frac{D_n}{D_s} > 1$ Conservation des Substitutions $\frac{D_n}{D_s} < 1$ Élimination des substitutions

Conclusion

Besoin de sites variables

- → Grand nombre de sites.
- → Grand nombre de contigs

- Introduction
- 2 Vocabulaire
- 4 Quantification des SNP Outil fait maison Résultats
- **6** Re-Mapping

Données initiales

- Des tableaux contenant le nombre de SNP par contig
- → Tableaux générés avec "dNdSpiNpiS" ([dNd])

Théorie

→ Utilisation du mapping utilisant le transcriptome de référence de l'équipe

Création d'un outil

Introduction

Données initiales

- Des tableaux contenant le nombre de SNP par contig
- → Tableaux générés avec "dNdSpiNpiS" ([dNd])
- → Utilisation du mapping utilisant le transcriptome de référence de l'équipe

Objectif

Visualiser la distribution du nombre de SNP par contig

Création d'un outil

Fonctionnement

- Chargement des données
- Création d'une matrice
- Génération de figures (MatPlotLib [Hun07])

Reproductibilité / Tracabilité

- Génération d'un fichier README à chaque exécution
- Disponible sur GitHub: [Mar24]

Besoins

- Au moins 5 SNP par contig
- Sur au moins 70% des contigs

INRAF - UMR AGAP - Ge2POP

Résultats

Figure 1 – Nombre de SNP par contig

Conclusion

Quantification des SNP Re-Mapping Conclusion Vocabulaire Théorie

Résultats

Figure 1 – Nombre de SNP par contig

Résultats

Florent MARCHAL

- Seule 1 des 13 espèces atteint le seuil (Aegilops speltoides)
- Grande variabilité dans le nombre de SNP (Aegilops searsii)
- Aegilops speltoides candidat pour une étude préparatoire

INRAE - UMR AGAP - Ge2POP

- Introduction
- 2 Vocabulaire
- 4 Quantification des SNP
- **5** Re-Mapping Justifications Outils Résultats
- **6** Conclusion

Potentielle explication des résultats précédents

- Trop peu de reads ont mappés
- Le transcriptome référence provenant de l'équipe est potentiellement incomplet

Nouveaux mappings

- Sur le génome de référence
- Sur le transcriptome de référence
- Sur l'ancien transcriptome de référence

Attendus

Génome > Transcriptome > Ancien transcriptome

Outils

GeCKO [Ard+24]

- Analyses de données NGS
- « user-friendly »

Mappers

- Transcriptomes : BWA-MEM
- Génome : Minimap2

Outils

GeCKO [Ard+24]

- Analyses de données NGS
- « user-friendly »

Mappers

- Transcriptomes : BWA-MEM
- Génome: Minimap2 (Non-fonctionnel)

Théorie

Génome : STAR (Arrivé trop tard)

Théorie

Analyses

Données brutes

- Fichiers FASTQ
- 44 fichiers de 24 000 000 reads
- → Utilisation d'un cluster de calcul

Analyses

- Nombre de reads par contig
- Nombre de contigs ayant reçu des reads
- Qualité du mapping

Analyses

Données brutes

- Fichiers FASTQ
- 44 fichiers de 24 000 000 reads
- → Utilisation d'un cluster de calcul

Analyses

- Nombre de reads par contig
- Nombre de contigs ayant reçu des reads
- Qualité du mapping
- → Le mapping sur l'ancien transcriptome est meilleur.

Conclusion et Perspectives

Conclusion

• Le jeu de données risque de ne pas convenir

Conclusion et Perspectives

Conclusion

Le jeu de données risque de ne pas convenir

Perspectives

- Analyses du mapping sur le génome de référence
- La quantification des SNP n'a eu lieu que sur les "anciens **BAM**^{II}

Phylogénie

Figure 2 — Relation phylogénétique entre les 13 espèces diploïdes du genre Aegilops / Triticum. Les couleurs représentent un gradient d'auto-fécondation. Les espèces heterogame (SI) strictes sont bleues, les espèces avec un mode de reproduction mixte (SC) sont en vert / jaune et les espèces autogame (Highly Selfing) sont en rouge. Cette figure est issue de [Bur+24] et sa légende a été adaptée et traduite par l'auteur de ce rapport.

(ロ) (리) (트) (트) (리) (리)

Heatmaps complètes (Analyse des SNP)

Florent MARCHAL

INRAE - UMR AGAP - Ge2POP

Figure 4 – Boîte à moustaches du nombre de reads par contig

Références I

- [Ard+24] Morgane Ardisson et al. « GeCKO : user-friendly workflows for genotyping complex genomes using target enrichment capture. A use case on the large tetraploid durum wheat genome. ». In : (mars 2024). doi: 10.21203/rs.3.rs-4123643/v1.
- [Bur+24] Concetta Burgarella et al. « Mating systems and recombination landscape strongly shape genetic diversity and selection in wheat relatives ». In:

 Evolution Letters (août 2024), qrae039. issn:
 2056-3744. doi: 10.1093/evlett/qrae039. url:
 https://doi.org/10.1093/evlett/qrae039 (visité le 17/08/2024).

Références II

[dNd] dNdSpiNpiS. *PopPhyl.* url: https://kimura.univ-montp2.fr/PopPhyl/index.php?section=tools (visité le 19/08/2024).

[Hun07] John D. Hunter. « Matplotlib : A 2D Graphics Environment ». In : Computing in Science & Engineering 9.3 (mai 2007). Conference Name : Computing in Science & Engineering, p. 90-95. issn : 1558-366X. doi: 10.1109/MCSE.2007.55. url: https://ieeexplore.ieee.org/document/4160265 (visité le 19/08/2024).

Références III

```
[Mar24] Florent Marchal. F-Marchal/M1BioinfoInternship2024-INRAE_AGAP_GE2POP. original-date: 2024-07-26T07:35:22Z. Juill. 2024. url: https://github.com/F-Marchal/M1BioinfoInternship2024-INRAE_AGAP_GE2POP (visité le 02/08/2024).
```