Hands on!

A gentle introduction to inlabru

Preferential sampling

Counts

Poisson

Points

Log-Gaussian Cox Process

$$N(A) \sim \int_{A} \lambda(s)d(s)$$
$$\log(\lambda(s)) = Z(s)$$

$$Z(s) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + W(s)$$

Traditional SDM approach: grid

- Loss of information

- Scale dependent
- Spatial autocorrelation ignored

Traditional SDM approach: grid

- Loss of information

- Scale dependent
- Spatial autocorrelation ignored

Traditional SDM approach: grid

- Loss of information

- Scale dependent
- Spatial autocorrelation ignored

$$N(A) \sim \int_{A} \lambda(s)d(s)$$
$$\log(\lambda(s)) = Z(s)$$

$$Z(s) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + W(s)$$

Go to R script 1.1_basic_example.R...

... and don't panic

INLA and inlabru: do I need to understand it?

Inlabru

Finn Lindgren

a Virginia Morera Pujol,R-inla discussion group

Hi,

personally, when I'm not specifically speaking about the implementation details, I would simply write the continuous formulation of the model, i.e.

 $\log \lambda(s) = \beta(s),$ {y_i} ~ Poisson process with intensity $\lambda(s)$ on $\beta(s)$

where \eta(s) is the linear predictor evaluated at some location s, and mention that the integral \int \lambda(s) ds in the likelihood is (with default settings) implemented using a trapezoidal integration scheme based on the triangulation mesh used to define the spde model. But if I really needed to write the approximation explicitly, I'd write that

This is a basic numerical integration scheme for a sufficiently smooth function.

Prof. Finn Lindgren University of Edinburgh

PC priors: inference's best friend

PC priors: inference's best friend

