Имеется сосуд с поршнем на одной стороне. Т. к. масса частицы пренебрежимо мала, по сравнению с массой поршня, то систему можно рассмотреть как сосуд с подвижной стенкой.

Возможны 2 варианта взаимодействия частицы с подвижной стенкой:

- 1. частица движется навстречу стенке
- 2. частица догоняет стенку

Перейдем в систему координат связанную со стенкой, выполним перерасчет скорости частицы после столкновения и перейдем обратно в неподвижную систему координат.

Очевидно, что v_y при этом никак не изменится, поэтому рассмотрим частицу движущеюся перпендикулярно стенке.

Пусть скорость частицы v_1 , скорость стенки v_2 , $O_1\,$ — начальная система отсчета, $O_2\,$ — система отсчета связанная со стенкой.

$$O_1: -v_1$$

$$O_2: -v_1-v_2$$

Удар

$$O_2: v_1 + v_2$$

$$O_1: v_1+2*v_2$$

В первом случае скорость частицы поменяет направление на противоположное и увеличится по модулю на удвоенную скорость стенки

$$O_1: -v_1$$

$$O_2: -v_1+v_2$$

Удар

$$O_2: v_1 - v_2$$

$$O_1: v_1 - 2 * v_2$$

Во втором случае скорость частицы уменьшится по модулю на удвоенную скорость стенки, а направление будет зависеть от скорости частицы до удара. Если скорость частицы больше удвоенной скорости стенки, то она поменяет направление на противоположное. Если скорость частицы меньше удвоенной скорости стенки и больше скорости стенки, то она сохранит свое направление. И если скорость частицы меньше скорости стенки, то она ее не догонит пока та не изменит направление.

Т. о. частица может столкнутся с подвижной стенкой 1 или 2 раза до столкновения с другими объектами. 2 раза она может столкнуться, либо если $|v_2| < |v_1| < 2*|v_2|$ и после 1-го столкновения частица столкнется со стенкой движущейся ей на встречу, либо если $2*|v_2| < |v_1| < 3*|v_2|$ и после 1-го столкновения стенка успеет поменять направление движения и догнать частицу. При двойном столкновении скорость частицы станет равной $4*v_2-v_1$. Т. е. замедляться будут частицы у которых $2*|v_2| < |v_1|$.