

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЁТ

По лабораторной работе № 2

По курсу: «Моделирование»

Тема: «Распределение случайных величин»

Вариант: $6 \equiv 2 \pmod{4}$

Студент: Керимов А. Ш.

Группа: ИУ7-74Б

Оценка (баллы): _____

Преподаватель: Рудаков И. В.

Оглавление

1	Теоретическая часть		3
	1.1	Равномерное распределение	3
	1.2	Нормальное распределение	3
2	Рез	Результат работы	
	2.1	Равномерное распределение	4
	2.2	Нормальное распределение	5
Вывод			6

1 Теоретическая часть

1.1 Равномерное распределение

Случайная величина имеет равномерное распределение на отрезке [a,b], где $a,b\in\mathbb{R}$, если её плотность имеет вид:

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b], \\ 0, & x \notin [a,b]. \end{cases}$$
 (1.1)

Функция равномерного распределения:

$$F_X(x) = \begin{cases} 0, & x < a, \\ \frac{x - a}{b - a}, & a \le x < b, \\ 1, & x \ge b. \end{cases}$$
 (1.2)

Обозначают: $X \sim R(a, b)$.

1.2 Нормальное распределение

Случайная величина имеет нормальное распределение, если её плотность имеет вид:

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$
 (1.3)

где

- параметр $\mu \in \mathbb{R}$ математическое ожидание, определяет центр симметрии распределения,
- параметр $\sigma \in \mathbb{R}_{>0}$ среднеквадратичное отклонение, определяет степень разброса случайной величины относительно математического ожидания.

Функция нормального распределения:

$$F_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx,$$
 (1.4)

Обозначают: $X \sim N(\mu, \sigma^2)$.

2 Результат работы

2.1 Равномерное распределение

Рис. 2.1: Графики плотности равномерного распределения при различных a и b

Рис. 2.2: Графики функции равномерного распределения при различных a и b

2.2 Нормальное распределение

Рис. 2.3: Графики плотности нормального распределения при различных μ и σ^2

Рис. 2.4: Графики функции нормального распределения при различных μ и σ^2

Вывод

В ходе выполнения лабораторной работы были рассмотрены равномерное и нормальное распределения, а также построены графики функций и плотностей распределений при различных параметрах.