Email cui inviare il compito: etcdispari02@gmail.com

Giustificare le risposte; risposte non giustificate non sono valutate

1. (16 punti)

- a) Dare la definizione (formale e rigorosa) di automa finito non deterministico.
- b) Definire un automa A che accetta tutte e sole le stringhe determinate da $E = a^*(\epsilon \cup b(aa^*b)^*a^*)$.

2. (18 punti)

- a) Dato il linguaggio L definire la Klene star L^* di L.
- b) Dimostrare che se L é regolare allora anche L^* é un linguaggio regolare e
- c) applicare la dimostrazione all'automa A avente $Q = \{q_0, q_1, q_2, q_3\},\$
- $\Sigma = \{a, b, c\}, F = \{q_1, q_2\} \in \delta$ descritta dalla tabella

	a	b	c
q_0	q_1	q_2	q_0
q_1	q_1	q_0	q_2
q_2	q_2	q_0	q_3
q_3	q_2	q_3	q_1

3. (16 punti)

Mostrare che $L = \{ \langle M \rangle | M$ é una TM tale che L(M) é decidibile non é decidibile.

4. (16 punti)

Definire il linguaggio $HALT_{TM}$ e, sapendo che A_{TM} non é decidibile, mostrare che $HALT_{TM}$ non é decidibile.

5. (16 punti)

- a) Fornire la definizione di riduzione polinomiale
- b) Definire i problemi Vertex-Cover e Set-Cover
- c) Illustrare $Vertex-Cover \leq_P Set-Cover$ utilizzando l'istanza composta dal grafo in figura e l'intero 3.
- d) data una soluzione per l'istanza di Vertex-Cover determinare la soluzione corrispondente per Set-Cover.

6. (18 punti)

- Fornire la definizioni rigorosa e formale della classe NP.
- Per ognuna delle seguenti affermazioni dire se é vera, falsa, o non si sa. Giustificare la risposta.
 - a) Se $X \leq_P Y$, $Y \leq_P Z$ e $Z \in NP$, allora $X \in NP$ e $Y \in NP$.
 - b) Se $X \in NP$ allora $\overline{X} \in NP$ (un' istanza risulta vera per \overline{X} sse essa risulta falsa per X)
 - c) Se $X \leq_P Y$, $X \leq_P Z$ allora $Y \leq_P Z$.

7. (Extra)

Sia Σ un alfabeto. Si considerino i seguenti linguaggi:

$$DEC = \{ \langle D \rangle \mid D \text{ è un decider} \}, \qquad SIG = \{ \langle M \rangle \mid M \text{ è una TM con } L(M) = \Sigma^* \}.$$

Provare formalmente e con precisione che $DEC \leq_m SIG$.

Sugg.: Si definisca una funzione f tale che f(< D >) = < M > dove M accetta sse $D \dots$