2.Altkurzklausur-20 Montag, 15. Mai 2023 00:55	17	
_	Grenzwerte, sofern diese existieren.	
(a) $\lim_{n \to \infty} \frac{(n+2)! - n!}{(n^2 - 1) n!}$	(b) $\lim_{n \to \infty} \sqrt[n]{n^2 7^n + 3^n}$ 1 + 2	
1a) $\lim_{n\to\infty} \frac{(n+2)! - n}{(n^2-1) \cdot n}$	$ \frac{-((n+2)\cdot(n+1)\cdot n!)-n!}{(n^2-1)} $ / n! ausklammen	
	$= \frac{M! \cdot ((n+2) \cdot (n+1) - 1)}{M! \cdot (n^2 - 1)}$	
	$= \frac{(n+2) \cdot (n+1) - 1}{(n^2 - 1)}$	
	$= \frac{n^2 + 4n + 2n + 2 - 4}{(n^2 - 4)}$	
	$= \frac{n^2 + 3n + 1}{(n^2 - 1)} \qquad n^2 \text{ auoklammern}$	
	$= \frac{n^2 \cdot \left(1 + \frac{3n}{n^2} + \frac{n}{n^2}\right)}{n^2 \cdot \left(1 - \frac{n}{n^2}\right)}$	
	$\frac{1}{2} + \frac{3}{1} + \frac{3}{1}$	
	$= \frac{1 + (\frac{3}{1}) + (\frac{5}{1})}{1 - (\frac{1}{1})^2}$ $= \frac{1 + 0 + 0}{1 - 0} = \frac{1}{1}$ Brüche mit n oder n^2 im Nenner gehen gege	n 0
	= lim 1	
16) lim 1/12.71+31	7 ausklammern	
$= \sqrt[4]{7^n \cdot \left(n^2 + \frac{3^n}{4^n}\right)}$		
= 1/7" . 1/n2 + 3n7	¬ "	
= 7 . 1/1/2 + 3/1	Sandwichtheorem . man schafff Fkt du kleins und größer ist, als gegels. Fkt (müssen atriargig sein) wenn beide geschaffene Fkt gluchen Grenzwett haben, dann hat gegels. Fkt den selben Grenzw.	
$=7\cdot\sqrt{n^2+0}$	halen, dann Pal goods. Fix dun selben grenzu. $7 \cdot 7 n^2 + (\frac{3}{7})^n \le 7 \cdot 7 n^2 + 7 n^2 \cdot 7^n$ $4 \cdot 7 n^2 + (\frac{3}{7})^n \le 7$ and $7 \cdot 7 $	
7 · 1		
$= 7 \leq 7 \cdot \sqrt{n^2}$	$\frac{1}{2} \left(\frac{3}{2} \right)^{n} \leq \frac{1}{2} \qquad \text{odes} \qquad \frac{1}{2} \left(\frac{n^2 \cdot 7^n + n^2 \cdot 7^n}{n^2 \cdot 7^n + n^2 \cdot 7^n} \right)$	
7 d.h. der Grenzwer	$\frac{1}{7} \cdot \frac{1}{12^n}$	
	en Reihen auf absolute Konvergenz \cdot grometrische Reihe: $\sum_{n=0}^{\infty} q^n = \frac{1}{1-q}$; $0 \le q $	÷1
bzw. Divergenz. (a) $\sum_{n=1}^{\infty} \frac{n+2}{n^2}$ (b)	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, x \in \mathbb{R}$ 1+2 harmonische Reihe: $\sum_{n=0}^{\infty} \frac{1}{n}$ \rightarrow divergier \parallel Exp.	
(c) Bestimmen Sie die Summ		
		1 7
$\sum_{n=1}^{\infty} \frac{n+2}{n^2}$	wir suchen neuen Reihe (bn), der ähnlich zu gegeb. Reine (an) ist → suchen Reine, die wir schon kennen (harm., geom. R)	
was für Reihe kennt	a Minoranianic Commo O > h ich	

수

Jetzt ochaven, ob Minorantenk. Oder Majorkr.

$$\frac{n+2}{n^2} = \frac{2+2}{2^2} = \frac{4}{4}$$
 an

$$\frac{1}{9} = \frac{1}{2}$$

$$\frac{1}{4} \ge \frac{1}{2}$$
, d.h Minorandenkr

problem: n=2: $\frac{n+2}{n^2} = \frac{2+2}{2^2} = \frac{4}{4}$ and $\frac{1}{n} = \frac{1}{2}$ of $\frac{1}{4} \ge \frac{1}{2}$, d.h. Minorambenkr. $\frac{1}{n} \ge \frac{1}{n^2} > \frac{1}{n}$ (harmonische Reihe)

6 Exponent ist ≤ 1, d.h. die Reihe <u>divergiet</u>

2b) $\sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n+1}}{(2n+1)!}$ | Quotientenkriterium $\left|\frac{a_{n+1}}{a_n}\right| = a_n + 1 \cdot \frac{A}{a_n}$

$$= \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(-1)^n} \cdot \frac{x^{n+1+n+1+1}}{(n+1+n+1+1)!} \cdot \frac{(2n+1)!}{x^{2n+1}}$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{x^{2n+3} \cdot (2n+1)!}{(2n+3)! \cdot x^{2n+1}}$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{x^{2n} \cdot x^{3} \cdot (2n+1) \cdot (2n)!}{(2n+3) \cdot (2n+2) \cdot (2n+1) \cdot (2n)!} \cdot \frac{x^{2n} \cdot x^{1}}{(2n+3) \cdot (2n+2)}$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{x^{2}}{4n^{2} + 4n + 6n + 6}$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{x^{2}}{4n^{2} \cdot (4 + \frac{10n}{n^{2}} + \frac{6}{n^{2}})}$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{(x^{2})^{2} \cdot n^{2}}{4 + \frac{10}{n^{2}} + \frac{6}{n^{2}}}$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{(x^{2})^{2} \cdot n^{2}}{4 + \frac{10}{n^{2}} + \frac{6}{n^{2}}}$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{(x^{2})^{2} \cdot n^{2}}{4 + \frac{10}{n^{2}} + \frac{6}{n^{2}}}$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{(x^{2})^{2} \cdot n^{2}}{4 + \frac{10}{n^{2}} + \frac{6}{n^{2}}}$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{(x^{2})^{2} \cdot n^{2}}{4 + \frac{10}{n^{2}} + \frac{6}{n^{2}}}$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{(x^{2})^{2} \cdot n^{2}}{4 + \frac{10}{n^{2}} + \frac{6}{n^{2}}}$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{(x^{2})^{2} \cdot n^{2}}{4 + \frac{10}{n^{2}} + \frac{6}{n^{2}}}$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{(x^{2})^{2} \cdot n^{2}}{4 + \frac{10}{n^{2}} + \frac{6}{n^{2}}}$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{(x^{2})^{2} \cdot n^{2}}{4 + \frac{10}{n^{2}} + \frac{6}{n^{2}}}$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{(x^{2})^{2} \cdot n^{2}}{4 + \frac{10}{n^{2}} + \frac{6}{n^{2}}}$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{(x^{2})^{2} \cdot n^{2}}{4 + \frac{10}{n^{2}} + \frac{6}{n^{2}}}$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{(x^{2})^{2} \cdot n^{2}}{4 + \frac{10}{n^{2}} + \frac{6}{n^{2}}}$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{(x^{2})^{2} \cdot n^{2}}{4 + \frac{10}{n^{2}} + \frac{6}{n^{2}}}$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{(x^{2})^{2} \cdot n^{2}}{4 + \frac{10}{n^{2}} + \frac{6}{n^{2}}}$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{(x^{2})^{2} \cdot n^{2}}{4 + \frac{10}{n^{2}} + \frac{6}{n^{2}}}$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{(x^{2})^{2} \cdot n^{2}}{4 + \frac{10}{n^{2}} + \frac{10}{n^{2}}}$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{(x^{2})^{2} \cdot n^{2}}{4 + \frac{10}{n^{2}} + \frac{10}{n^{2}}}$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{(x^{2})^{2} \cdot n^{2}}{4 + \frac{10}{n^{2}} + \frac{10}{n^{2}}}$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{(x^{2})^{2} \cdot n^{2}}{4 + \frac{10}{n^{2}} + \frac{10}{n^{2}}}$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{(x^{2})^{2} \cdot n^{2}}{4 + \frac{10}{n^{2}} + \frac{10}{n^{2}}}$$

2c)
$$\sum_{n=0}^{\infty} \frac{(-2)^n}{3^n}$$
 $\left\| \sum_{n=0}^{\infty} \frac{9^k}{4^n} = \frac{1}{1-9} \right\|$, again. Reihe $\left(\frac{-2}{3} \right)^n = \frac{1}{1-(-\frac{2}{3})}$ $= \frac{1}{\frac{3}{3}+\frac{2}{3}}$ $= 1 \cdot \frac{3}{5} = \frac{3}{5}$

3	(a)	Wann heißt eine Funktion $f:\mathbb{R} \to \mathbb{R}$ stetig in $\ x_0 \in D(f) = \mathbb{R}$?	1
	(b)	Untersuchen Sie die Funktion $f:\mathbb{R} \to \mathbb{R}$ $\left\{\frac{ x }{x \neq 0}\right\}$	
		$f(x) = \begin{cases} \frac{ x }{x}, & x \neq 0,\\ 1, & x = 0, \end{cases}$ auf Stetigkeit in $x_0 = 0$.	2

3b)
$$\lim_{X\to 0^+} f(x) = \lim_{X\to 0^+} \frac{1/1}{x} = \lim_{X\to 0^+} \frac{1}{x} = 1$$

$$\lim_{X\to 0^-} f(x) = \lim_{X\to 0^-} \frac{|x|}{x} = \lim_{X\to 0^-} \frac{-x}{x} = -\Lambda$$
Conditional General.

I Grenzwerte sind unterschuldlich → Unstädligkeit
V nicht stetig 11

Wiederholung - Alt Klausur:

		0				
1	Bestimmen Sie die folgenden Grenzwerte, sofern diese existieren.					
	(a)	$\lim_{n\to\infty}\frac{(n+2)!-n!}{(n^2-1)n!}$	(b)	$\lim_{n\to\infty}\sqrt[n]{n^2\;7^n+3^n}$	1+2	

$$\int_{n\to\infty}^{\infty} \frac{(n+2)! - n!}{(n^2-4) \cdot n!} = \frac{(n+2) \cdot (n+4) \cdot n! - n!}{(n^2-4) \cdot n!}$$

1a)
$$\lim_{n\to\infty} \frac{(n+2)! - n!}{(n^2 - A) \cdot n!} = \frac{(n+2) \cdot (n+A) \cdot n! - n!}{(n^2 - A) \cdot n!}$$

$$= \frac{n!}{n!} \cdot \frac{(n+2) \cdot (n+A) - A}{(n^2 - A)}$$

$$= \frac{n^2 + 4n + 2n + 2 - A}{n^2 - A}$$

$$= \frac{n^2 + 3n + A}{n^2 - A} \qquad || n^2 \text{ anoklammetr}$$

$$= \frac{n^2 \cdot (A + \frac{3n}{n^2} + \frac{A}{n^2})}{n^2 \cdot (A - \frac{A}{n^2})}$$

$$= \frac{A + \frac{3}{n^2} + \frac{A}{n^2}}{A - \frac{A}{n^2}}$$

1b)
$$\lim_{n\to\infty} \sqrt[n]{n^2 \cdot 7^n + 3^{n^2}} = \sqrt[n]{7^n \cdot (n^2 + \frac{3^n}{7^n})}$$

= $7 \cdot \sqrt{n^2 + (\frac{3}{7})^n}$

-> Sand wijchtheorem

$$7 \cdot \sqrt[n]{n^2} \le 7 \cdot \sqrt{n^2 + \left(\frac{3}{7}\right)^n} \le \sqrt[n]{n^2 + \sqrt[n]{n}} \cdot 7$$

$$\frac{7 \cdot \sqrt{n^2 + \left(\frac{3}{7}\right)^n}}{\sqrt{n^2 + \left(\frac{3}{7}\right)^n}} \le \frac{7 \cdot \sqrt{n^2 + \sqrt[n]{n}}}{\sqrt{n^2 + \sqrt[n]{n}}} \cdot 7$$

$$\frac{7 \cdot \sqrt{n^2 + \left(\frac{3}{7}\right)^n}}{\sqrt{n^2 + \left(\frac{3}{7}\right)^n}} \le \frac{7 \cdot \sqrt{n^2 + \sqrt[n]{n}}}{\sqrt{n^2 + \sqrt[n]{n}}} \cdot 7$$

$$\frac{7 \cdot \sqrt{n^2 + \left(\frac{3}{7}\right)^n}}{\sqrt{n^2 + \left(\frac{3}{7}\right)^n}} \le \frac{7 \cdot \sqrt{n^2 + \sqrt[n]{n}}}{\sqrt{n^2 + \sqrt[n]{n}}} \cdot 7$$

$$\frac{7 \cdot \sqrt{n^2 + \left(\frac{3}{7}\right)^n}}{\sqrt{n^2 + \left(\frac{3}{7}\right)^n}} \le \frac{7 \cdot \sqrt{n^2 + \sqrt[n]{n}}}{\sqrt{n^2 + \sqrt[n]{n}}} \cdot 7$$

$$\frac{7 \cdot \sqrt{n^2 + \left(\frac{3}{7}\right)^n}}{\sqrt{n^2 + \left(\frac{3}{7}\right)^n}} \le \frac{7 \cdot \sqrt{n^2 + \sqrt[n]{n}}}{\sqrt{n^2 + \sqrt[n]{n}}} \cdot 7$$

$$\frac{7 \cdot \sqrt{n^2 + \left(\frac{3}{7}\right)^n}}{\sqrt{n^2 + \left(\frac{3}{7}\right)^n}} \le \frac{7 \cdot \sqrt{n^2 + \sqrt[n]{n}}}{\sqrt{n^2 + \sqrt[n]{n}}} \cdot 7$$

$$\frac{7 \cdot \sqrt{n^2 + \left(\frac{3}{7}\right)^n}}{\sqrt{n^2 + \left(\frac{3}{7}\right)^n}} \le \frac{7 \cdot \sqrt{n^2 + \sqrt[n]{n}}}{\sqrt{n^2 + \sqrt[n]{n}}} \cdot 7$$

$$\frac{7 \cdot \sqrt{n^2 + \left(\frac{3}{7}\right)^n}}{\sqrt{n^2 + \left(\frac{3}{7}\right)^n}} \le \frac{7 \cdot \sqrt{n^2 + \sqrt[n]{n}}}{\sqrt{n^2 + \sqrt[n]{n}}} \cdot 7$$

$$\frac{7 \cdot \sqrt{n^2 + \left(\frac{3}{7}\right)^n}}{\sqrt{n^2 + \left(\frac{3}{7}\right)^n}} \le \frac{7 \cdot \sqrt{n^2 + \sqrt[n]{n}}}{\sqrt{n^2 + \sqrt[n]{n}}} \cdot 7$$

$$\frac{7 \cdot \sqrt{n^2 + \left(\frac{3}{7}\right)^n}}{\sqrt{n^2 + \left(\frac{3}{7}\right)^n}} \le \frac{7 \cdot \sqrt{n^2 + \sqrt[n]{n}}}{\sqrt{n^2 + \sqrt[n]{n}}} \cdot 7$$

2)a)
$$\underset{n=1}{\overset{\infty}{=}} = \frac{n+2}{n^2} > \underset{n=1}{\overset{\infty}{=}} \frac{n}{n^2} = \frac{n}{n}$$
 \Rightarrow harmonische Reihe \Rightarrow Exponent von n ist klaims gleich 1 \Rightarrow new geochaffere Reine divergiert \Rightarrow nach Minoranten kriterium divergiert also auch die gegebene Reihe

$$\begin{aligned} & 2b) \sum_{n=0}^{\infty} (-1)^{n} \cdot \frac{x^{2n+1}}{(2n+1)!} & || QK : \left| \frac{a_{n+1}}{a_{n}} \right| = \left| a_{n+1} \cdot \frac{1}{a_{n}} \right| \\ & = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(-1)^{n}} \cdot \frac{x^{2} \cdot (n+1) + 1}{(2(n+1)+1)!} \cdot \frac{(2n+1)!}{x^{2n+1}} \\ & = \sum_{n=0}^{\infty} -1 \cdot \frac{x^{2n+3} \cdot (2n+1)!}{(2n+3)! \cdot (2n+2) \cdot (2n+1) \cdot x!} \\ & = \sum_{n=0}^{\infty} -1 \cdot \frac{x^{2n} \cdot x^{2} \cdot (2n+1) \cdot x!}{(2n+3) \cdot (2n+2) \cdot (2n+1) \cdot x!} \\ & = \sum_{n=0}^{\infty} -1 \cdot \frac{(2n+1)}{(2n+3) \cdot (2n+2)} \\ & = \sum_{n=0}^{\infty} -1 \cdot \frac{2n+1}{(4n^{2}+4n+6n+6)} \\ & = \sum_{n=0}^{\infty} -1 \cdot \frac{2n+1}{(4n^{2}+4n+6n+6$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{2n + \frac{4n^2}{n^2}}{4 + \frac{4n}{n} + \frac{6}{n^2}}$$

$$= \sum_{n=0}^{\infty} -1 \cdot \frac{0 + 6}{4 + 0 + 0}$$

$$= \sum_{n=0}^{\infty} 0 -1 \cdot \frac{0 + 6}{4 + 0 + 0}$$

$$= \sum_{n=0}^{\infty} (-2)^n = \sum_{n=0}^{\infty} (-\frac{2}{3})^n \quad \text{|| agametrische Reihe:} \quad \sum_{n=0}^{\infty} q^n = \frac{1}{1 - q}$$

$$= \frac{1}{1 - (-\frac{2}{3})}$$

$$= \frac{4}{3} + \frac{2}{3}$$

$$= \frac{1}{3} = 1 \cdot \frac{3}{5} = \frac{35}{5}$$