

1 Условие задачи

1.1 Текстовая постановка задачи

Разработать алгоритм, по которому определяется рекомендуемый уровень освещения в офисе для комфортной работы сотрудников.

1.2 Входные данные

1.2.1 Время суток (в часах) {УТ, ДН, ВЧ}

- УТ Утреннее время
- ДН Дневное время
- ВЧ Вечернее время

1.2.2 Количество сотрудников (в штуках) {МС, СС, БС}

- МС Малое количество сотрудников
- СС Среднее количество сотрудников
- БС Большое количество сотрудников

1.3 Выходные данные

1.3.1 Уровень освещенности {ОМУ, МУ, СУ, ВУ, ОВУ}

- ОМУ Очень низкий уровень
- МУ Низкий уровень
- СУ Средний уровень
- ВУ Высокий уровень
- ОВУ Очень высокий уровень

2 Функция принадлежности для времени суток

$$M_{\text{УT}} = -0.1 + 1, 0 \le x \le 10$$

$$M_{\text{ДH}} = \begin{cases} 0.2x - 1.8, 9 \le x \le 14 \\ -0.25x + 4.5, 14 \le x \le 18 \end{cases}$$

$$M_{\text{BY}} = 0.125x - 2, 16 \le x \le 24$$

3 Функция принадлежности для количества сотрудников

$$M_{\text{MC}} = -\frac{1}{15}x + 1, 0 \le x \le 15$$

$$M_{\text{CC}} = \begin{cases} \frac{1}{15}x - \frac{2}{3}, 10 \le x \le 25\\ -\frac{1}{15}x + \frac{8}{3}, 25 \le x \le 40 \end{cases}$$

$$M_{\text{BC}} = \frac{1}{15} - \frac{7}{3}, 35 \le x \le 50$$

4 Функция принадлежности для оценки уровня освещения

$$M_{\text{OMV}} = -\frac{1}{10}x + 1, 0 \le x \le 10$$

$$M_{\text{MV}} = \begin{cases} \frac{1}{14}x - \frac{9}{14}, 9 \le x \le 23\\ -\frac{1}{14}x + \frac{37}{14}, 23 \le x \le 37 \end{cases}$$

$$M_{\text{CV}} = \begin{cases} \frac{1}{14}x - 2.5, 35 \le x \le 49\\ -\frac{1}{14}x + 4.5, 49 \le x \le 63 \end{cases}$$

$$M_{\text{BV}} = \begin{cases} \frac{1}{12}x - \frac{61}{12}, 61 \le x \le 73\\ -\frac{1}{12}x + \frac{85}{12}, 73 \le x \le 85 \end{cases}$$

$$M_{\text{OBV}} = 0.05x - 4, 80 \le x \le 100$$

5 Правила

Создадим базу правил

		Время суток		
		УТ	ДН	ВЧ
Количество сотрудников	БС	СУ	ВУ	ОВУ
	\mathbf{CC}	МУ	СУ	ВУ
	MC	ОМУ	МУ	СУ

6 Оценим правила

Пусть в офисе необходимо выставить оптимальное освещение, в нём находится 13 сотрудников, на часах 17 часов

6.1 Рассмотрим количество сотрудников

$$M_{\text{MC}} = -\frac{1}{15} * 13 + 1 = \frac{2}{15} = 0.4$$

 $M_{\text{CC}} = \frac{1}{15} * 13 - \frac{2}{3} = \frac{1}{5} = 0.2$

6.2 Рассмотрим время суток

$$M_{\text{ДH}} = -0.25 * 17 + 4.5 = 0.25$$

 $M_{\text{BY}} = 0.125 * 17 - 2 = 0.125$

6.3 Получившиеся правила

Таким образом получилось 4 правила:

- Мало сотрудников и день
- Мало сотрудников и вечер
- Средне сотрудников и день
- Средне сотрудников и вечер

6.4 Истинность для каждого условия

- $S_1 = \min(0.4, 0.25) = 0.25$
- $S_2 = \min(0.4, 0.125) = 0.125$
- $S_3 = \min(0.2, 0.25) = 0.2$
- $S_4 = \min(0.2, 0.125) = 0.125$

		Время суток		
		УТ	ДН	ВЧ
Количество сотрудников	БС			
	\mathbf{CC}		СУ	ВУ
	MC		МУ	СУ

Максимальная степень истинности условия соответствует правилу "Низкий уровень".

Вычислим итоговое значение:

$$\begin{cases} 0.25 = \frac{1}{14}x - \frac{9}{14} \\ 0.25 = -\frac{1}{14}x + \frac{37}{14} \end{cases}$$
$$\begin{cases} x = 12.5 \\ x = 33.5 \end{cases}$$

Среднее значение: 23

6.5 Вывод по оцениванию

Таким образом, освещение необходимо установить на уровень 23%, чтобы достичь оптимального освещения при 13 сотрудниках и 17 часов вечера