A real-time surveillance dashboard for monitoring viral phenotype from sequence

Eric J. Ma¹ & Jonathan A. Runstadler^{1,2}

¹Department of Biological Engineering and ²Division of Comparative Medicine, MIT

Dashboard Vision

We envision building a real-time phenotypic interpretation system for viral genomic data. The

goal is to predict, with associated uncertainty, quantitative and epidemiologically-relevant

phenotype from genotype. Below we outline the technical foundations for this vision.

Iterative Phenotyping

By explicitly modelling uncertainty in phenotype measurements, we can re-test genotypes that have high measurement variance, iteratively improving precision.

Microservices Architecture

Adopting a microservices architecture increases modularity, making the phenotypic interpretation system easier to maintain and resilient against failures.

Bayesian ConvNets on Protein Structure

Using convolutional neural networks that take protein structures as inputs allows us to accurately and interpretably learn features predictive of phenotype.

Open Source Software

We use open source software for scientific reproducibility and transparency. All work is conducted openly on GitHub.

ericmjl/genomic-surveillance-dashboard ericmjl/protein-systematic-characterization

Predictions with Uncertainty

PQVTLWQRPIVTIKIGGQLKEALLDTGADDTV...

From the convolutional neural network, we will produce predictions with uncertainty, a step up from point estimates, allowing for more rational decision making.

Thoughts & Suggestions