

#### Was ist ein Plasma?

griechisch: Plasma =  $\pi\lambda\alpha\sigma\mu\alpha$  (das Geformte)

Plasma = Ionisiertes Gas

Geladene Teilchen: Elektronen und Ionen

Gas: kurzreichweitige Stösse "ideales" Gas

Plasma: Coulomb-Wechselwirkung

lange Reichweite kollektive Effekte

→ "Vierter Aggregatszustand"



Chaiten-Vulkan, Chile, 2008

Quelle: wordpress.com

#### Plasmen sind überall

Mehr als 99 % der sichtbaren Materie im Universum ist im Plasmazustand.

Oft gelten dieselben physikalischen Gesetze, jedoch auf anderen Längen- und Zeitskalen.

Weltraum:

Sterne, interplanetarer Raum Ionosphäre, Magnetosphäre

**Erde:** 

Labor:

Technische Plasmen, Kernfusion







Orion-Nebel

Quelle: space.com, Brian Davis

Aurora borealis

von der ISS gesehen

Quelle: NASA

Mega Ampere

Spherical Tokamak

Quelle: CCFE, fusenet.eu

## Gasentladungslampen

Energiesparlampe

(www.vis.bayern.de)

Neon-Leuchte

(www.savingsahead.com)

Xenon-Bogenlampe

Osram XBO 75W/2

Hg-Dampf-Lampe Osram HQA 80W











Glimmlampe (www.alibaba.com)

## **Plasma-Bildschirm**



### Prozesstechnologie für Halbleitermaterialien

Plasmaätzen mit hohem Aspektverhältnis

"Photonische" Kristalle

Quelle: IBM

http://photonics.tfp.uni-karlsruhe.de





## **Fusionsplasma**

### ASDEX Upgrade, Garching.



Rechte Seite:  $D_{\alpha}$  (Balmer  $n=3\to 2$ ) transition ( $\lambda=656$  nm)

Quelle: Max-Planck-Institut für Plasmaphysik, Garching

## Sonnenkorona, Sonnenwind, Erd-Magnetosphäre



Quellen:

SOHO, http://sohowww.nascom.nasa.gov

Max-Planck-Institut für Sonnensystemforschung, http://www2.mps.mpg.de

### Polarlicht (Aurora borealis)



Anregung von neutralen Atomen durch Stöße mit Elektronen aus der Magnetosphäre.

Linienstrahlung:

O: 557.7 nm (grün, 100-200 km), 630.0 nm (rot)

*N*<sub>2</sub>: 391.4, 427.0, 470.0 nm

 $IR(O_2)$  und  $UV(N_2, O)$ 

Nordlicht am Donnely Creek, Alaska; 17.03.2015 (S. Saarloss), Quelle: NASA Goddard Space Flight Centre

# **Typische Plasmaparameter**

|                    | Längenskala      | Teilchendichte          | Elektronen-       | Magnetfeld         |  |
|--------------------|------------------|-------------------------|-------------------|--------------------|--|
|                    |                  |                         | temperatur        | (Flussdichte)      |  |
|                    | (m)              | $(m^{-3})$              | (eV)              | (T)                |  |
| Gasentladungen     | $10^{-2}$        | $10^{18}$               | 2                 | -                  |  |
| Prozessplasmen     | $10^{-1}$        | $10^{18}$               | $10^{2}$          | $10^{-1}$          |  |
| Fusionsexperiment  | 1                | $10^{19} \dots 10^{20}$ | $10^3 \dots 10^4$ | 5                  |  |
| Fusionsreaktor     | 2                | $10^{20}$               | $10^{4}$          | 5                  |  |
| Ionosphäre         | 10 <sup>5</sup>  | 10 <sup>11</sup>        | $10^{-1}$         | $3 \times 10^{-5}$ |  |
| Van Allen-Gürtel   | $10^{6}$         | 10 <sup>9</sup>         | $10^{2}$          | $10^{-6}$          |  |
| Sonnenkorona       | 108              | 10 <sup>13</sup>        | 10 <sup>2</sup>   | $10^{-9}$          |  |
| Sonnenwind         | $10^{10}$        | $10^{7}$                | 10                | $10^{-8}$          |  |
| Interstellares Gas | 10 <sup>16</sup> | 10 <sup>6</sup>         | 1                 | $10^{-10}$         |  |

## Programm der Vorlesung

#### **Plasmen**

- Niedertemperatur-Plasmen ("Technische" Plasmen)
- Astrophysikalische Plasmen
- Hochtemperatur-Plasmen im Labor
  Kernfusion speziell auch nächste Vorlesung

### Plasma-Beschreibung

- Einzelteilchen im vorgegebenen Feld
- Vielteilchen-System
  - → Kinetische Verteilung
- Beschreibung als Flüssigkeit(en)
  "Magnetohydrodynamik"

#### Plasma-Phänomene

- Elektromagnetische Wechselwirkung, Ladungsneutralität
- Ionisation, Rekombination, "elektrischer Durchbruch"
- Anregung, Strahlung, Stoßprozesse
- Teilchen-Bahnen, -Driften
- Plasma-Randschicht
- Schwingungen und Wellen
- Instabilität, Turbulenz
- Teilchen-, Wärme-Transport
- ...

# Literaturempfehlung

| U Stroth                     | Plasmaphysik                                   |  |  |
|------------------------------|------------------------------------------------|--|--|
|                              | Vieweg & Teubner, ISBN 978-3-8348-1615-3       |  |  |
| M Kaufmann                   | Plasmaphysik und Fusionsforschung              |  |  |
|                              | 2. überarbeitete Auflage                       |  |  |
|                              | Teubner, ISBN 3-658-03238-3                    |  |  |
| F F Chen                     | Introduction to Plasma Physics                 |  |  |
|                              | and controlled fusion                          |  |  |
|                              | Cambridge University Press, ISBN 0-306-41332-9 |  |  |
| D A Gurnett, A Bhattacharjee | Introduction to Plasma Physics                 |  |  |
|                              | Plenum Press, ISBN 0-521-36483-3               |  |  |

## **Grundlegende Plasmaparameter**

Was kennzeichnet ein Plasma?

- 1. Quasineutralität Ladungsabschirmung
- 2. Kollektives Verhalten der Teilchen
- 3. Zustandsgrenzen (elektrostatische vs. thermische vs. Fermi-Energie)

## 1. Ladungsabschirmung

Bewegliche Ladungen (Elektronen) schirmen Potenzialstörungen ab.



Betrachte ebene Potenzialstörung  $\rightarrow$  eindimensionales Problem

## Berechne Potenzial mit der Poisson-Gleichung

Φ: elektrisches Potenzial

q: Ladungsdichte

 $n_e$ : Elektronendichte

 $n_i$ : Ionendichte

 $Z_i$  Ionenladungszahl

$$\varepsilon_0 \nabla^2 \Phi = \varepsilon_0 \frac{\mathrm{d}^2 \Phi}{\mathrm{d}x^2} = -q(x) = -e(Z_i n_i(x) - n_e(x))$$

Randbedingung für  $x \to \infty$ :

Plasma ist neutral

$$Z_i n_i(\infty) = n_e(\infty) \equiv n_\infty$$

Allerdings hängt  $n_e$  von  $\Phi$  ab

 $\rightarrow$  Differenzialgleichung.

Ann.: Elektronen nicht entartet

⇒ Fermi-Verteilung wird durch

Boltzmann-Verteilung angenähert:

$$f_e(v,x) \propto \exp\left[-\left(\frac{1}{2}m_ev^2 - e\Phi\right)/k_BT_e\right]$$

Integration über die Geschwindigkeit v:

"Boltzmann-Relation"

$$n_e = n_\infty \exp(e\Phi/k_B T_e).$$

## Lösung: Räumlich exponentiell abfallendes Potenzial

Betrachte hinreichend hohe Frequenz: Ruhende Ionen.

1-D Poisson-Gleichung mit  $n_i = const.$  und Boltzmann-Relation

$$\varepsilon_0 \frac{\mathrm{d}^2 \Phi}{\mathrm{d}x^2} = e n_\infty \left( \exp \left[ \frac{e \Phi}{k_B T_e} \right] - 1 \right) \approx \frac{e^2 n_\infty}{k_B T_e} \Phi$$

(Erste Ordnung in der rechten Seite,  $e\Phi/k_BT_e\ll 1$ )

Ansatz:  $\Phi = \phi_0 \exp(-|x|/\lambda_D)$ 

### Debye-Länge:

$$\lambda_D = \left(\frac{\varepsilon_0 k_B T_e}{e^2 n_e}\right)^{1/2}$$

Räumliche Skala für Neutralität!

## **Abgeschirmtes Potenzial**



## Der "Plasmaparameter"

Zahl der Teilchen in der "Debye-Kugel" (Kugel mit dem Radius  $\lambda_D$ ):

$$N_D = n \left(\frac{4}{3}\pi\lambda_D^3\right) = \left(\frac{\epsilon_0}{e^2}\right)^{3/2} \frac{(k_B T_e)^{3/2}}{n^{1/2}}$$

Abschirmung von Ladungsstörungen nur für  $N_D \gg 1!$ 

## Plasmaschwingungen

- Die Relativbewegung zwischen Elektronen und Ionen baut ein elektrisches Feld auf.
- Die Trägheit der Elektronen führt zu Schwingungen

Vereinfachtes Modell:

Kasten, Querschnittsfläche A

Elektronen-Auslenkung x



Elektrische Feldstärke *E* (analog Plattenkondensator)

$$E = \frac{Q}{A\varepsilon_0} = \frac{en_e x}{\varepsilon_0}$$

$$m_e \ddot{x} = -eE = -\frac{e^2 n_e x}{\varepsilon_0}$$

Ansatz  $x(t) = x_0 \exp(i\omega_p t)$ 

"Plasmafrequenz":

$$\omega_p^2 = \frac{e^2 n_e}{m_e \varepsilon_0}$$

Zeitskala für Neutralität!

Verschobene Ladung:  $Q = en_eAx$ 

## Schlussfolgerungen

### **Quasi-Neutralität**

Für lange Skalen

$$\lambda \gg \lambda_D = \left(\frac{\varepsilon_0 k_B T_e}{e^2 n_e}\right)^{1/2}$$

und langsame Vorgänge

$$\omega \ll \omega_p = \left(\frac{e^2 n_e}{m_e \varepsilon_0}\right)^{1/2}$$

ist ein Plasma "quasi" neutral.

### Plasma-Näherung

"Das Plasma ist quasi-neutral, obwohl  $\Phi \neq const$ ."

Beispiel:

Um eine (große) elektrische Feldstärke von E = 50 kV/m auf  $\Delta x = 1 \text{ cm}$  zu erzeugen, genügt eine Ladungsdichte von

$$\Delta n \times e \sim \varepsilon_0 \frac{E}{\Delta x} \approx 10^{14} \text{m}^{-3} \times e$$

also 0.001...1% einer Plasmadichte von  $10^{19}...10^{16}~\text{m}^{-3}$ 

Auf grossen Skalen  $(x \gg \lambda_D, \omega \ll \omega_p)$  kann das elektrische Potential nicht mit Hilfe der Poisson-Gleichung bestimmt werden.

### 2. Kollektives Verhalten

(a) Grosse Zahl von Teilchen im Plasma:

$$N = n_e L^3 \gg 1$$

- (Ansonsten Vielteilchenproblem statt kontinuierlicher Grössen)
- (b) Abschirmung wird durch kontinuierlichen Potenzialverlauf (mit Debye-Länge als Skala) nur beschrieben, wenn

$$N_D \gg 1$$

(kritisch bei sehr kleinen Temperaturen)

## **Plasmaparameter (revisited)**

|                    | L                | $n_e$            | $T_e$           | N                  | $\lambda_D$           | $N_D$               | $\omega_p/2\pi$   |
|--------------------|------------------|------------------|-----------------|--------------------|-----------------------|---------------------|-------------------|
|                    | (m)              | $(m^{-3})$       | (eV)            |                    | (m)                   |                     | (Hz)              |
| Gasentladungen     | $10^{-2}$        | $10^{18}$        | 2               | $1 \times 10^{12}$ | $11 \times 10^{-6}$   | $4.9\times10^3$     | $8.9\times10^9$   |
| Prozessplasmen     | $10^{-1}$        | $10^{18}$        | $10^{2}$        | $1 \times 10^{15}$ | $74 \times 10^{-6}$   | $1.7 \times 10^6$   | $8.9 \times 10^9$ |
| Fusionsexperiment  | 1                | 10 <sup>19</sup> | 10 <sup>4</sup> | $1 \times 10^{19}$ | $0.23 \times 10^{-3}$ | $5.4 \times 10^{8}$ | $28 \times 10^9$  |
| Fusionsreaktor     | 2                | $10^{20}$        | $10^{4}$        | $8 \times 10^{20}$ | $74 \times 10^{-6}$   | $1.7 \times 10^8$   | $89 \times 10^9$  |
| Ionosphäre         | 10 <sup>5</sup>  | 10 <sup>11</sup> | $10^{-1}$       | $1 \times 10^{26}$ | $7 \times 10^{-3}$    | $1.7 \times 10^5$   | $2.8 \times 10^6$ |
| Van Allen-Gürtel   | $10^{6}$         | $10^{9}$         | $10^{2}$        | $1 \times 10^{27}$ | 2.4                   | $5.4\times10^{10}$  | $280 \times 10^3$ |
| Sonnenkorona       | 108              | 10 <sup>13</sup> | 10 <sup>2</sup> | $1 \times 10^{37}$ | 0.02                  | $5.4 \times 10^{8}$ | $28 \times 10^6$  |
| Sonnenwind         | $10^{10}$        | $10^{7}$         | 10              | $1 \times 10^{37}$ | 7.4                   | $1.7\times10^{10}$  | $28 \times 10^3$  |
| Interstellares Gas | 10 <sup>16</sup> | 10 <sup>6</sup>  | 1               | $1 \times 10^{54}$ | 7.4                   | $1.7 \times 10^9$   | $8.9 \times 10^3$ |

## 3. Zustandsgrenzen

- 1. Nicht-ideale Plasmen (elektrostatische > thermische Energie)
- 2. Entartete Plasmen (Fermienergie > thermische Energie)
- 3. Relativistische Plasmen (thermische Energie nahe  $m_0c^2$ )

Zustandsgrenzen hängen von der Temperatur und z.T. von der Dichte ab.

### 3.1. Nicht-ideale Plasmen

Elektrostatische Wechselwirkung dominiert kollektives Verhalten, wenn

$$\frac{e^2}{4\pi\varepsilon_0}\overline{d}^{-1} > \frac{3}{2}k_BT$$

Mittlerer Abstand  $\overline{d} = n^{-1/3}$ 

Kritische Temperatur  $T_{stat}$  als Funktion der Plasmadichte:

$$\frac{3}{2}k_BT_{stat} = \frac{e^2}{4\pi\varepsilon_0}n^{1/3}$$

Quelle: www.mpe.mpg.de

Max-Planck-Institut für Extraterrestrische Physik, Garching

Plasma-"Kristall"





### 3.2. Entartete Plasmen

Elektronen sind "Fermionen".

Fermi-Dirac Besetzungsstatistik

für Energieniveau *E*:

$$f(E,T) = \frac{1}{1 + \exp\frac{E - E_f}{k_B T}}$$

Fermi-Energie im Vakuum (Herleitung s. Anhang):

$$E_f = \frac{\hbar}{2m_e} \left( 3\pi^2 n_e \right)^{2/3}$$

Anschaulich: Besetzungsgrenze bei T = 0.

"Entartetes" Plasma:

$$E_f > \frac{3}{2}k_BT_e$$

Weißer Zwerg (Elektronen-entartet) Sirius B (Pfeil) neben Sirius A



Quelle: Wikipedia

### 3.3. Relativistische Plasmen

Relativistische Effekte (Elektronen) wichtig, wenn

$$\frac{3}{2}k_BT > m_{0,e}c^2$$

(Falls gleichzeitig entartet, liegt die Fermi-Besetzungsgrenze auch bei kleinen Temperaturen bei relativistischen Energien  $\rightarrow$  Weisse Zwerge).

#### Konsequenzen:

- relativistische Kinetik
- modifizierte Wirkungsquerschnitte für
- Stoßprozesse
- evtl. Paarerzeugung

Kielfeld-Beschleuniger (wakefield accelerator) nicht-thermisch relativistisch



Quelle: plasma.desy.de

## Übersicht Zustandsgrenzen



## Zusammenfassung

- > 99% der sichtbaren Materie sind "Plasma" = ionisiertes Gas.
- Elektrische und magnetische Felder beeinflussen ein Plasma (und umgekehrt).
- Für Skalen  $\lambda \gg \lambda_D$  und  $\omega \ll \omega_p$  ist das Plasma quasi-neutral.
- Die Plasmabeschreibung durch kontinuierliche Grössen (n, T). setzt kollektives Verhalten voraus:  $N, N_D \gg 1$ .
- Viele Plasmen sind ideal, nicht entartet und nicht-relativistisch, und diese sind Gegenstand der Vorlesung.

## Anhang: Berechnung der Fermienergie im Vakuum

Schrödergleichung für ein freies Teilchen im Vakuum:

$$H\Psi = \frac{\hbar^2}{2m} (k_x^2 + k_y^2 + k_z^2) = E\Psi$$

 $E = E_F$ : Kugeloberfläche im k-Raum ("Fermikugel").

Radius  $k_F = (2E_F m)^{1/2} / \hbar$ .

Würfel mit Kantenlänge *L*, periodische Randbedingungen: Lösungen der SGL sind ebene Wellen mit diskreten Wellenvektoren

$$k_{x,y,z} = \frac{2\pi n_{x,y,z}}{L}$$

Im k-Raum nimmt ein Zustand also das Volumen  $(2\pi/L)^3$  ein.

### Fermi-Energie im Vakuum (2)

T=0, Zahl der besetzbaren Zustände bis zur Energie E: Volumen der Fermikugel, geteilt durch das Volumen pro Zustand, multipliziert mit dem Faktor 2 (für beide Spinrichtungen):

$$N(E) = 2\frac{4\pi}{3} \frac{k(E)^3}{(2\pi/L)^3} = 2\frac{4\pi}{3} \left(\frac{2m}{\hbar}E\right)^{3/2} \left(\frac{L}{2\pi}\right)^3$$

Mit  $n_e = N/V = N/L^3$  und  $E = E_F$ :

$$E_f = \frac{\hbar}{2m_e} \left( 3\pi^2 n_e \right)^{2/3}$$