SC-635 Advanced Topics in Mobile Robotics

Experiment Module: Filtering

February 18, 2020

Systems and Control Engineering Indian Institute of Technology Bombay

Overview

1. Filter Algorithm

2. Assignment

Filter Algorithm

Kalman Filter Equations

The Kalman filter maintains the estimates of the state:

```
\hat{\mathbf{x}}(k|k) – estimate of \mathbf{x}(k) given measurements z(k), z(k-1),...
\hat{\mathbf{x}}(k+1|k) – estimate of \mathbf{x}(k+1) given measurements z(k), z(k-1),...
```

and the error covariance matrix of the state estimate

```
P(k|k) – covariance of \mathbf{x}(k) given z(k), z(k-1),...

P(k+1|k) – estimate of \mathbf{x}(k+1) given z(k), z(k-1),...
```

We shall partition the Kalman filter recursive processing into several simple stages with a physical interpretation:

1

¹source:

Filter Algorithm (continued)

State Estimation

- 0. Known are $\hat{\mathbf{x}}(k|k)$, $\mathbf{u}(k)$, $\mathbf{P}(k|k)$ and the new measurement $\mathbf{z}(k+1)$.
- 1. State Prediction $\hat{\mathbf{x}}(k+1|k) = \mathbf{F}(k)\hat{\mathbf{x}}(k|k) + \mathbf{G}(k)\mathbf{u}(k)$ Time update
- 2. Measurement Prediction: $\hat{\mathbf{z}}(k+1|k) = \mathbf{H}(k)\hat{\mathbf{x}}(k+1|k)$
 - update
- 3. Measurement Residual: $\mathbf{v}(k+1) = \mathbf{z}(k+1) \hat{\mathbf{z}}(k+1|k)$
- 4. Updated State Estimate: $\hat{\mathbf{x}}(k+1|k+1) = \hat{\mathbf{x}}(k+1|k) + \mathbf{W}(k+1)\mathbf{v}(k+1)$ where W(k+1) is called the Kalman Gain defined next in the state

covariance estimation.

2

Filter Algorithm (continued)

State Covariance Estimation

- 1. State prediction covariance: P(k+1|k) = F(k)P(k|k)F(k)'+Q(k)
- 2. Measurement prediction covariance:

$$S(k+1) = H(k+1)P(k+1|k)H(k+1)'+R(k+1)$$

- 3. Filter Gain $\mathbf{W}(k+1) = \mathbf{P}(k+1|k)\mathbf{H}(k+1)' \mathbf{S}(k+1)^{-1}$
- 4. Updated state covariance

$$\mathbf{P}(k+1|k+1) = \mathbf{P}(k+1|k) - \mathbf{W}(k+1)\mathbf{S}(k+1)\mathbf{W}(k+1)'$$

3

³source:

Assignment 4

The robot loads with pose (0, 0, 0). Three landmarks are placed at [7,7], [7,-7], [7,-7], the distance and identity of the landmarks is being published under the topic name /trilateration.data.

- The goal of this simulation exercise is to implement EKF to obtain robot pose $x(k+1|k+1) = [x, y, \theta]^T$ using x(k|k), y_m , y(k+1|k) etc. Following functions are provided:
 - ightharpoonup predict_state : To calculate x(k+1|k)
 - predict_measurement : To calculate y(k+1|k)
 - get_current_H : To calculate H(k+1)
- Read carefully the comments in the project template (line 134-157) and handout (cheetsheet)
- A script named vis.py is provided to see the real-time motion of the robot (you may extend the same to display waypoints). This is purely for debugging purpose and doesn't carry any marks.
- Track a circular trajectory with radius 5 meter centered at origin.
- Plot the waypoints and the tracked trajectory. Save figure with labels and title.
- Calculate the mean squared error for one complete traversal of the circular trajectory.
 - Sample 100 points along the tracked trajectory
 - For each robot pose $X_r = (x, y, \theta)$ find the closest point X_c on the circle $x^2 + y^2 = 5^2$
 - Calculate the distance to Derror and square it
 - Sum all D²_{error} terms and divide by 100 to obtain you MSE. Report this number in a file named RESULT.txt.

The template project is located at :

http://bit.ly/2tdpTemplateA5

Thank you