CYBER502x Computer Forensics

Week 4: Linux/Unix Forensics Analysis
Technologies

Investigating Linux/Unix systems

- Evidence Collection
- Preservation
- Analysis
 - Event reconstruction with timestamps
 - password entries, log files, history files, hidden files, suid/sgid files, recently modified binaries, recently created files, deleted files
 - keyword search, hash analysis....
- Report

Analysis

- General steps:
 - Start an analysis by looking at the partition table on the suspect drive
 - Retrieve deleted files
 - Examine MAC times
 - Keyword search for terms related to your case
 - Check for password, logs, hidden data, suid/sgid files
 - Examine emails
 - ...

Hard-drive usage

- CynanLine LLC discovered this feature
- Self Monitoring Analysis Reporting Tool (SMART) displays
 - how many times has the hard-drive been turned on
 - for how many hours has it been used

Identify partitions

Use Linux fdisk

Disk /dev/hda: 64 heads, 63 sectors, 1023 cylinders Units = cylinders which is 64 * 63 * 512 bytes82 Linux swap

Device	Boot	Start	End	Blocks	ld	System
/dev/hda1	?	1	990	1995808+	83	Linux
/dev/hda2		991	1023	66528	5	Extended
/dev/hda3		XXX	XXXX	XXXXX	82	Linux swap

Identify partitions (cont'd)

- mmls (media management) from sleuthkit
 - http://www.sleuthkit.org/sleuthkit/man/mmls.html
 - -t mmtype
 - -o offset (in sector) into the image
- Examples
 - # mmls disk_image.dd
 - # mmls -t dos -o 12345 disk.dd

Separate each partitions for sleuthkit

mmls -t dos sda.dd

DOS Partition Table

Units are in 512-byte sectors

	Slot	Start	End	Length	Description
00:		000000000	000000000	0000000001	Primary Table (#0)
01:		000000001	0000000031	0000000031	Unallocated
02:	00:00	0000000032	0001800031	0001800000	Linux (0x83)
03:	00:01	0001800001	0002000000	0000200000	Linux Swap

```
# dd if=sda.dd skip=32 count=1800000 of=sda1.dd
# dd if=sda.dd skip=1800001 count=200000 of=sda2.dd
```

mmls for gpt

- mmls –t gpt /dev/sdg
- GUID Partition Table (EFI)
- Offset Sector: 0
- Units are in 512-byte sectors

	Slot	Start	End	Length	Description
00:	Meta	000000000	000000000	000000001	Safety Table
01:	Meta	000000001	000000001	000000001	GPT Header
02:	Meta	0000000002	000000033	000000032	Partition Table
04:	00	0000000040	0000409639	0000409600	EFI System Partition
05:	01	0000xxxxxx	0xxxxxxxxx	0xxxxxxxxx	Untitled
06		0xxxxxxxx	0xxxxxxxx	0000xxxxxx	unallocated

Mount 'em up!

- Mount what you think is the root f/sys
 - Do not modify in any way!
 - Mount with read-only option
 - Mount -o ro, loop /my_hda1.dd /mnt/hacked
 - Assume my_hda1.dd is a raw dd image representing a disk partition.

First analyzing MAC times...

- Key to every forensic investigation
- Modification (mtime): last time the file was written
- Access (atime): last time the file was read
- Change (ctime): last time the file's inode was changed
 - (on Windows C=file Creation time)

MAC times

 Installation of a rootkit / LKM / application leaves a number of files with timestamps very close to one another

MAC times can be changed easily

- utility for Linux/Unix file systems
 - touch can change both atime and mtime
- utility for Windows file systems
 - timestomp can change all three timestamps

Be nice to your MAC times

- MAC times are sensitive to change
- Collect MAC times before running other commands on system.
- You will use MAC times to create a timeline of activity.

mactime

- A tool in The Sleuth Kit
- A perl script that takes data files as input and sort the data to create a timeline

How to run mactime

Step1: Create an intermediate data file

• Step 2: Sort the data to create a timeline with mactime mactime -b filename [time range]

Timeline example

```
Sat Dec. 12 2016 16:40:20 1234 .a. —rwxr-xr-x root root /bin/file_a
Sat Dec. 12 2016 16:40:23 4096 .a. d/drwxr-xr-x 0 0 31400 /dev/inet
32768 .a. d/drwxr-xr-x 0 0 15974/dev/cciss
....
....
....
Sat Dec. 12 2016 16:45:56 4096 mac d/drwxr-xr-x 0 0 47163 /bin/file_b
```

1234 m.c –rwxr-xr-x root root /bin/file a

Timeline reading

- Look for suspicious activity in the timeline
- Find deleted files
- For example, use fls + mactime, you get...

```
Wed Mar 20 2012 16:56:12 0 ..c s/srwxrwxr-x 500 500 127 /tmp/socket1 (deleted)
```

```
Fri Aug 23 2012 16:56:12 11 .a. l/-rw-r--r-- 0 0 34689 /tmp/file1 (deleted-realloc) 11 .a. -/-rw-r--r-- 0 0 34689 /etc/sysconfig/desktop
```

Other evidences

- Deleted files, log files and history files
 - Review as many as you can find
 - "Stupid" hackers will leave lots of clues
 - More sophisticated ones will try to cover their tracks
 - /var/log/*
 - ~/.bash_history
 - ~/.history
- emails
- pictures
- visited websites

Files and inodes in an abnormal location

- Recently created files regular files in /dev
- Finding clues using inodes
- Hash analysis to detect
 - known malware and rootkits
 - modifications to system binary files and configuration files.

Binaries that are often replaced by rootkits:

- Chfn
- Chsh
- Crontab
- Du
- Find
- Ifconfig
- Inetd
- Tcpd
- pidof

- Killall
- Login
- Ls
- Netstat
- Passwd
- Ps
- Rshd
- Syslogd
- Top
- ssh

Use find command

• to find hidden files/dir (start w/'.' or " ")

```
sudo find / -name "[.]* -type f
sudo find / -name "[.]* -type d
```

to list all world-writeable files/dir:

```
find / -type f \( -perm -2 -o -perm -20 \) -exec ls -l {} \;
find / -type d \( -perm -2 -o -perm -20 \) -exec ls -ld {} \;
```

What does SUID/SGID programs do?

 Sets a permission that allows users to run an executable with the permissions of the executable's owner/group

Use find command (cont'd)

To find all SUID/SGID files

• find / \(-perm -4000 -o -perm -2000\) -type f

Use find command (cont'd)

To find binary files that were modified in 1 day

```
find /directory_path -type f -a=x -mtime -1 - print
```

to find files that were created in less than 24 hours

```
find /directory_path -type f -a=x -bmin -24 - print
```

Data carving tools

- foremost
 - Searches for files of known file types using foremost.conf
- Scalpel (not required)
 - With foremost, only files up to 4 Gigabytes could be carved, while with Scalpel the limitation is 16 Exabytes
- Magic rescue (not required)
 - Use a recipe file that describes how to recognize the beginning of the file and what to do when a file is recognized.
- PhotoRec/TextDisk (not required)
 - http://www.cgsecurity.org/wiki/PhotoRec

Other Free Forensics Analysis Tools

- Digital Forensics with Open Source Tools by Cory Altheide and Harlan Carvey, 2011
- TCT (The Corners Toolkit) <u>www.porcupine.org/forensics/tct.html</u>
- Sleuthkit/Autopsy www.atstake.com
- Digital Forensics Framework
- SANS Investigative Forensics Toolkit SIFT

bootables

- Caine http://www.caine-live.net
- Helixs/Helix3 Pro
- Kali
- Penguin Sleuth
- F.I.R.E
- Snarl

Commercial tools

- Guidance Software's Encase
- AccessData's Forensic Toolkit (FTK)
- ProDiscover Basic

• ...

Analysis procedure

- Create a case
- Add evidence to a case
- Perform thorough analysis
- Obtain basic analysis data
- Export files
- Generate report

Practice

- http://www.honeynet.org/scans/scan29/
- http://www.sleuthkit.org/case/sotm_29/index.html
- http://www.honeynet.org/scans/scan29/sol/carrier/index.html