अगिरट-सिर्देश २०१५

अंक ९५ शैक्षणिक प्रिक्षण आणि विज्ञ यात रुपी असणा-ाणि विज्ञान असणाऱ्यांसाठी

संपादक:

नीलिमा सहस्रबुद्धे, प्रियदर्शिनी कर्वे, नागेश मोने, संजीवनी कुलकर्णी, अमलेंदु सोमण, यशश्री पुणेकर.

विश्वस्त:

नागेश मोने, नीलिमा सहस्रबुद्धे, प्रियदर्शिनी कर्वे, मीना कर्वे, संजीवनी कुलकर्णी, विनय कुलकर्णी, रामचंद्र हणबर, गिरीश गोखले.

साहाय्य:

ज्योती देशपांडे.

अक्षरजुळणी व मांडणी : यदिश ग्राफीक्स

मुखपृष्ठ मांडणी : विनय धनोकर

मुद्रण : ग्रीन ग्राफीक्स

शैक्षणिक अंक ९५ ऑगस्ट-सप्टेंबर २०१५ पालकनीती परिवारासाठी निर्मिती आणि वितरण : संदर्भ

संदर्भ, द्वारा समुचित एन्व्हायरोटेक प्रा. लि., फ्लॅट नं. ६, एकता पार्क सोसायटी, निर्मिती शोरूमच्या मागे, अभिनव शाळेशेजारी, लॉ कॉलेज रस्ता, पुणे – ४११ ००४. फोन नं. २५४६०१३८

E-mail: sandarbh.marathi@gmail.com web-site: sandarbhsociety.org

चेक 'संदर्भ सोसायटी'या नावे काढावेत.

पोस्टेजसहित वार्षिक वर्गणी :₹३००/- अंकाची किंमत : ₹५०/-

एकलव्य, होशंगाबाद यांच्या सहयोगाने हा अंक प्रकाशित केला जात आहे.

मुखपृष्ठाविषयी-

मान वेळावुनी धुंद बोलू नको... असं एक गाणं होतं. माना वेळावण्याची प्रत्येकाची क्षमता वेगळी असणार. त्यात पहिला नंबर कुणाचा? आणि का? लेख वाचा पान ३१ वर.

कव्हर ४ वर

कारबोनिफेरस युगातील जंगल. या जंगलाचा दुवा आजच्या काळाशी कसा जोडलेला आहे, ते पहा पान २२ वरच्या लेखात

* सर्व चित्रे इंटरनेटवरून साभार

अनुक्रमणिका

शेक्षणिक संदर्भ अंक - ९५

• पिऊ नये ते प्यायल्यामुळे	४
● मॉन्सूनचा प्रवास - डॉ. रंजन केळकर १	Ę
• गांधीलमाशीने जगच बदलले ! - इरा फ्लॅटो, रूपांतर : मंगेश नाबर१३	४
• दगडी कोळशाच्या निर्मितीचे रहस्य - डॉ. आ. दि. कर्वे२	?
• आईनस्टाईन यांचे विचार - प्रकाश बुरटे २१	Ę
🕮 घुबडाची नजर - विनता विश्वनाथन, अनुवाद : ज्योती देशपांडे३	१
🕮 अरेच्चा ! हे असं आहे तर ! - या. इ. पेरेलमन, रूपांतर : शशी बेडेकर३१	Ę
🕮 आपोआप चालणारी कागदी होडी - प्रकल्प - किरण बर्वे४०	0
• संतुलन का असंतुलन? - विवेक मेहता, अनुवाद : ज्ञानदा गद्रे-फडके४	२
● की-बोर्ड : माहितीची गुरुकिल्ली - मुरारी तपस्वी५२	४
🕮 चाकूने कापले जाणारे धातू – माधव केळकर, अनुवाद : गो. ल. लोंढे६०	0
💷 अपूर्णांक - किरण बर्वे६१	٦
• वाट चुकलेलं कोकरू - ओमा शर्मा, स्वैर रूपांतर : प्रीती केतकर६९	ς
● १०० वर्षांपूर्वी	L
• सूची ८:	१
🖺 हे लेख शालेय पाठ्यक्रमाला पूरक आहेत.	

पिऊ नयें तें प्यायल्यामुळें

गोष्टी खाऊ नयेत किंवा पिऊ नयेत त्या खाल्ल्या किंवा प्यायल्या तर काय होते, ते सांगायला खरे तर कुणा तज्ज्ञ माणसाची गरज नाही. पण त्या गोष्टींची भेसळ जेव्हा अन्नपदार्थात होते, तेव्हा त्या नकळत खाल्ल्या-प्यायल्या जातात. कधी त्यांचा परिणाम ताबडतोब होतो तर कधी सावकाश. कधी तो तात्पुरता असतो तर कधी कायमस्वरूपी, आणि भयंकर.

ही भेसळ कधी स्वस्त गोष्टींची

असते, उदा. महाग डाळीमध्ये स्वस्त डाळ मिसळणे, तिखट-हळदीमध्ये रंग मिसळणे; तर कधी काही पदार्थ चुकून अन्नात पोचतात. उदा. खते आणि कीटकनाशके. ती वापरताना तज्ज्ञांचा सल्ला काळजीपूर्वक वापरला नाही, आणि जाहिरातींवर अवलंबून बेधडक वागलो, तर त्याचे वेगवेगळ्या पातळीवरचे परिणाम होतात. (पोट बिघडण्यापासून ते कॅन्सरपर्यंत)

यापलीकडची भेसळ म्हणजे

त्वचेवरील दुष्परिणाम

परिणामांची कल्पना असूनही केवळ स्वतःला झटपट पैसा मिळतो म्हणून केलेली.

नुकतीच भेसळयुक्त दारू घेतल्याने शंभरेक माणसे मृत्यू पावल्याची बातमी वाचनात आली. मिथेनॉल हे अल्कोहोल मिसळल्याने ही घटना घडली होती. मिथेनॉल हे पिण्याचे अल्कोहोल नाही, ते उद्योगात वापरायचे रसायन आहे. अल्कोहोलच असूनही ते इतके विषारी कसे?

खरे तर मिथेनॉल विषारी नाही, पण ते प्यायल्यावर शरीरात जी रसायने निर्माण होतात, ती मात्र भयानक परिणाम घडवतात. मिथेनॉल पचवताना फॉर्मिक ॲसिड आणि फॉर्माल्डिहाईड ही दोन रसायनेदेखील तयार होतात. फॉर्माल्डिहाईड आपल्या डोळ्यांच्या नसांवर परिणाम करते आणि त्यामुळे आंधळेपणा येतो. हा आंधळेपणा पुढे कुठल्याही औषधाने किंवा उपचाराने जात नाही. दुसरी गोष्ट म्हणजे फॉर्माल्डिहाईडचे नंतर फॉर्मिक ॲसिडमध्ये रूपांतर होते. फॉर्मिक ॲसिडमुळे शरीराला अत्यावश्यक असलेला ऑक्सिजनचा पुरवठा थांबतो आणि माणसाला मृत्यू येतो. अगदी ५०मि.लि. एवढे मिथेनॉलसुद्धा प्राणघातक ठरते. १० मि.लि. इतके मिथेनॉल आंधळेपणा आणू शकते.

ते हातावर / अंगावर पडणे देखील वाईटच ठरते, कारण त्वचा ते शोषून घेऊ शकते. तेवढ्यामुळे मृत्यू येत नसला, तरी सततच्या संपर्कामुळे दृष्टीवर मात्र परिणाम होऊ शकतो. यातली वाईट गोष्ट अशी की त्याची चव जराशीच गोडसर असल्याने, ते इथेनॉलपासून वेगळे ओळखणे शक्य नसते.

इंटरनेटवरून

लेखक: डॉ. रंजन केळकर

समुद्राच्या पाण्याचे बाष्पीभवन सतत होत असते. बाष्प कोरडचा हवेपेक्षा हलके असल्यामुळे ते वातावरणात वर चढते. वाऱ्या बरोबर वाहत ते समुद्रावरून जिमनीवर येते. हवेचे वरचे थर थंड असल्यामुळे बाष्पाचे पुन्हा जलबिंदूंत रूपांतर होते. जलबिंदूंचे ढग बनतात. ढगांतून जिमनीवर पाऊस पडतो. पावसाचे काही पाणी जिमनीत जिरते. बाकीचे पाणी वाहून जाते. त्या पाण्याचे ओढे बनतात. त्यांतून तळी आणि सरोवरे निर्माण होतात, नद्या वाहू लागतात. शेवटी नद्या परत समुद्राला जाऊन मिळतात. अशा प्रकारे पृथ्वीचे हे जलचक्र अव्याहतपणे सुरू राहते.

पाऊस रोज का पडत नाही?

भारताची भौगोलिक परिस्थिती अशी आहे की, द्वीपकल्पाच्या पश्चिमेकडे अरबी समुद्र आहे, पूर्वेकडे बंगालचा उपसागर आहे, आणि दक्षिणेकडे अथांग हिन्दी महासागर आहे. ह्या तीन समुद्रांवर पाण्याचे बाष्पीभवन होत असते. ते बाष्प भारतावर सहजपणे येण्याइतके हे समुद्र भारताच्या निकट आहेत. मग बाष्पाचे स्रोत इतके जवळ असताना भारतावर रोज पाऊस का पडत नाही, जून ते सप्टेंबर ह्या चारच महिन्यांत पाऊस का पडतो, इतर महिन्यांत पाऊस कुठे जातो, असे प्रश्न मनात येणे साहजिक आहे.

भारतावर जून ते सप्टेंबर ह्या चार महिन्यांत पडणाऱ्या पावसाला आपण मॉन्सूनचा पाऊस म्हणतो. जूनचा महिना जवळ आला की, आपण मॉन्सूनची वाट पाहायला लागतो. आणि सप्टेंबर महिन्यात पावसाळा संपू लागला की, आपण पाणी साठवून ठेवायचे प्रयत्न करू लागतो. हाच मॉन्सून कुठून येतो आणि कुठे जातो ह्याची माहिती आपण आता करून घेणार आहोत.

मॉन्सूनची निर्मिती

सर एडमंड हॅली हे एक इंग्रज खगोलशास्त्रज्ञ होते. 'हॅलीज कॉमेट' हा धूमकेतू दर ७६ वर्षांतून एकदा पृथ्वीच्या जवळ येतो आणि तेव्हा तो डोळ्यांनी पाहता येतो. एडमंड हॅली ह्यांनी त्याच्या कक्षेचा शोध लावला होता. १७०५ साली त्यांनी हे अनुमान केले की, १६८२ मध्ये दिसलेला हा धूमकेतू १७५८ साली पुन्हा दिसेल आणि तसा तो खरोखर दिसला. तेव्हा त्या धूमकेतूला हॅलींचे नाव दिले गेले. सर एडमंड हॅली ह्यांनी भारताला कधीही भेट दिलेली नसतानासुद्धा, भारतीय मॉन्सूनच्या वाऱ्याचा त्यांनी सखोल अभ्यास केला होता. १६८६ साली लंडन येथील रॉयल सोसायटीपुढे त्यांनी भारतीय मॉन्सूनविषयी एक वैज्ञानिक शोधप्रबंध प्रस्तुत केला जो अशा प्रकारचा पहिलाच होता. जगभरच्या वाऱ्याच्या दिशांमध्ये ऋतूनुसार कसा बदल होत असतो आणि त्यामागची कारणे काय असावीत ह्याचे संशोधन करून त्यांनी भारतीय मॉन्सूनच्या निर्मितीची प्रक्रिया नेमकी कशी असते ह्याचे स्पष्टीकरण दिले.

हॅलींनी असा सिद्धान्त मांडला की, पृथ्वीच्या दक्षिण गोलार्धातील हिन्दी महासागर आणि उत्तर गोलार्धातील युरेशियाचा महाखंड ह्यांच्या तापमानांत जी तफावत असते तिच्यामुळे वारे वाहू लागतात. कर्कवृत्त आणि मकरवृत्त ह्या दोन भौगोलिक सीमारेषांच्या दरम्यान सूर्य आपले स्थान वर्षभरात बदलत राहतो. सूर्याच्या बदलत्या स्थानानुसार कधी जिमनीपेक्षा समुद्र थंड असतो तर कधी समुद्रापेक्षा जमीन थंड असते. तापमानातील ही तफावत जशी बदलते तशी वाऱ्याची दिशापण बदलते. अशा प्रकारे मॉन्सूनचा खरा संबंध वाऱ्याच्या दिशा परिवर्तनाशी आहे.

थोडक्यात सांगायचे झाले तर मॉन्सून म्हणजे दिशा बदलणारे वारे. वर्षात दोनदा ते आपली दिशा बदलतात. उन्हाळ्यात उत्तर गोलार्धाची जमीन खूप तापते, पण दक्षिण गोलार्धातला समुद्र त्या मानाने तेवढा तापत नाही. हिवाळ्यात उत्तर गोलार्धाची जमीन थंड होते, पण तुलनेने दक्षिणेकडचा समुद्र गरम राहतो. त्यामुळे मॉन्सूनचे वारे उन्हाळ्यात दिक्षणेकडून उत्तरेकडे वाहतात आणि हिवाळ्यात उत्तरेकडून दिक्षणेकडे वाहतात.

मॉन्सूनचे वारे उष्ण कटिबंधातल्या अनेक देशांवर वाहतात. उदा. ऑस्ट्रेलिया, इंडोनेशिया, पूर्व आफ्रिका, वगैरे. परंतु आपल्या देशावरील मॉन्सूनचे मोठे वैशिष्ट्य हे आहे की, मॉन्सूनचे वारे हिन्दी महासागरावरून बाष्प आणि ढग आपल्याबरोबर घेऊन येतात आणि देशात भरपूर पाऊस पाडतात. भारतातील चेरापुंजी गावी तर जगात कुठेही नाही एवढा पाऊस पडतो.

हिन्दी महासागरावरचे वारे जेव्हा विषुववृत्त ओलांडून उत्तर गोलार्धात प्रवेश करतात तेव्हा पृथ्वीच्या स्वतःभोवतीच्या फिरण्यामुळे त्यांची दिशा काहीशी बदलते. पिरणामी भारताच्या पश्चिम किनारपट्टीवर जे वारे येतात त्यांची दिशा नैऋत्येकडची असते. म्हणूनच जून ते सप्टेंबर ह्या महिन्यांतील मॉन्सूनला नैऋत्य मॉन्सून (Southwest Monsoon) असे म्हटले जाते.

मॉन्सूनचे आगमन

नैर्ऋत्य मॉन्सूनच्या पावसाची सुरुवात दक्षिण भारतातील के रळ राज्यावरून होते. केरळवरील मॉन्सूनच्या आगमनाची सरासरी तारीख १ जून आहे. परंतु खरे तर मॉन्सूनचे वारे त्याच्या १५ दिवस आधीच अंदमान आणि निकोबार द्वीपसमूहाच्या भोवतीच्या समुद्रावर दाखल झालेले असतात. मॉन्सूनच्या वाऱ्याची दोन प्रवाहांत विभागणी होते. एक प्रवाह अरबी सागरावरून उत्तरेकडे जातो आणि दुसरा बंगालच्या उपसागरावरून. ह्या दोन प्रवाहांत जणू स्पर्धा निर्माण होते की, कोण मॉन्सूनला पुढे खेचून नेईल. तरी पण बंगालच्या उपसागरावरचा प्रवाह सामान्यतः अधिक प्रबळ असतो आणि तोच हे कार्य पूर्ण करतो.

१ जूनच्या
आसपास केरळात हजेरी
लावल्यानंतरच मॉन्सून
दक्षिण आणि पश्चिम
भारताच्या इतर भागांत
प्रवेश करतो. मॉन्सून
येणार हे नक्की
झाल्याशिवाय शेतकरी
पेरणीची कामे हाती
घ्यायला तथार नसतात.
म्हणून केरळवर मॉन्सून
कधी येणार ह्याकडे
दरवर्षी मे महिन्यापासूनच
सगळ्यांचे लक्ष लागलेले असते.

मॉन्सूनचे केरळात होणारे आगमन ही वातावरणातील एक जागतिक पातळीवरची घटना असते. तिच्यात वातावरणातल्या जागतिक प्रक्रियांचा सहभाग असतो आणि त्या सर्व जेव्हा अनुकूलपणे एकत्र येतात, तेव्हाच मॉन्सून केरळवर पोचतो. त्यामुळे या घटनेचे हवामानशास्त्रीय पूर्वानुमान करता येते.

पण एकदा मॉन्सून केरळात आला, की त्याच्या त्यापुढच्या वाटचालीत मात्र जागतिक प्रक्रियांचे महत्त्व कमी होते. म्हणून मॉन्सून महाराष्ट्रात सर्वसाधारणपणे १०

जूनच्या आसपास दाखल होत असला, तरी तो मुंबईला किंवा पुण्याला नक्की कोणत्या तारखेस दाखल होईल हे फक्त २-३ दिवस आधीच सांगता येते.

मॉन्सूनची वाटचाल

नैऋत्य मॉन्सूनला सबंध देश व्यापायला सुमारे दीड महिना लागतो. ह्याचे कारण आहे त्याचा आडवळणी मार्गाने प्रवास. मॉन्सूनचे वारे आधी सह्याद्रीच्या उंच पर्वतरांगा ओलांडतात. त्यामुळे डोंगरमाथ्यावर आणि कोकणपट्टीवर मुसळधार पर्जन्यवृष्टी होते. त्यानंतर मात्र बाष्पाचे प्रमाण कमीकमी होऊ लागते आणि

मध्य महाराष्ट्र आणि मराठवाडा हे पर्जन्यछायेचे प्रदेश बनतात. पुढे मॉन्सूनचे हे वारे बंगालच्या उपसागरावर पोहचतात आणि पुनरुजीवित होतात. मग ते उत्तरेकडे जातात पण पुढे हिमालयाच्या उत्तुंग पर्वतरांगा त्यांना आडवतात. बंगालच्या उपसागरावरील कमी दाबाच्या क्षेत्राला वळसा घालून ते पश्चिमेकडे जाऊ लागतात. पश्चिम बंगाल, बिहार, उत्तर प्रदेश ही राज्ये पार करून शेवटी ते राजस्थानला पोहोचतात. तोवर जुलै महिन्याची १५ तारीख आलेली असते. तेथपर्यंत जाताजाता हवेतील बाष्प जवळजवळ संपलेले असते आणि राजस्थानवर फारच कमी पाऊस पडतो. राजस्थानचे काही भाग तर वाळवंटच आहेत.

मॉन्सूनची माघार

मॉन्सून हा भारतात येणारा दर वर्षीचा पाहुणा आहे असे म्हटले तर ते वावगे होणार नाही. आणि तो दर वर्षी न चुकता नियमितपणे येतो. पण जसा आपल्या घरी आलेला पाहुणा परत जातो तसाच मॉन्सूनसुद्धा पुन्हा परत जातो. पण तो एकदम घाईने निघून जात नाही. त्याच्या माघारीचा प्रवासपण सावकाश होतो. मॉन्सूनच्या परतीचा प्रवास १ सप्टेंबरच्या सुमारास राजस्थानवरून सुरू होतो. देशाच्या वेगवेगळ्या प्रदेशावर पडत असलेला मॉन्सूनचा पाऊस हळूहळू कमी होतो आणि नंतर पूर्णपणे थांबतो. पण महाराष्ट्रावरून मॉन्सून मुककाम हलवतो तो १ ऑक्टोबरनंतरच. ऑक्टोबर महिन्यात

खरे तर नैऋत्य मॉन्सून आणि ईशान्य मॉन्सून हे निराळे आहेत हे आपण लक्षात घेतले पाहिजे. नैऋत्य मॉन्स्न हा उन्हाळी मॉन्सून आहे, तर ईशान्य मॉन्सून हा हिवाळी मॉन्सून आहे. हिवाळा आला की, य्रेशियाचा प्रदेश थंड व्हायला लागतो आणि हिन्दी महासागर तापायला लागतो. मग वारे आपली दिशा बदलतात आणि ते उत्तर गोलार्धाकडून दक्षिण गोलाधांकडे वाह

अनेकदा असेही होते की, मॉन्सून परत जात असला तरी हवेतले बाष्प संपलेले नसते आणि मेघगर्जनेसह पावसाच्या सरी पडत राहतात. विशेषकरून पश्चिम व दक्षिण महाराष्ट्रात असे होते. असा पाऊस महाराष्ट्रातील शेतकऱ्यांसाठी महत्त्वाचा आणि अतिशय उपयोगी असतो कारण जिमनीत जिरलेल्या पावसाच्या पाण्यावर त्यांना रबी पिके घेता येतात.

ईशान्य मॉन्सून (Northeast Monsoon) सामान्यपणे मॉन्सूनचा विषय निघाला की, आपण नैऋत्य मॉन्सूनविषयीच बोलतो. पण लागतात.

पण जिमनीकडून समुद्राकडे वाहणाऱ्या ह्या वाऱ्यात बाष्पाचे प्रमाण फार कमी असते. महणून भारताच्या बहुतांश भागांत ईशान्य मॉन्सूनच्या काळात पाऊस पडत नाही. तरी पण ईशान्याकडून येणारे काही वारे बंगालच्या उपसागरावरून बाष्प उचलतात. ते जेव्हा भारताच्या पूर्व किनाऱ्यालगतच्या पर्वत रांगांना भिडतात तेव्हा तेथे पाऊस पडतो. हा पाऊस प्रामुख्याने तामिळनाडू राज्यात ऑक्टोबरच्या मध्यापासून ते डिसेंबरच्या अंतापर्यंत पडतो. तामिळनाडू राज्यात नैऋत्य मॉन्सूनपेक्षा पुष्कळ अधिक पाऊस ईशान्य

मॉन्सूनमुळे पडतो. तामिळनाडू व्यतिरिक्त आंध्र प्रदेशच्या किनारपट्टीवर, कर्नाटक राज्याच्या आंतरिक भागांवर आणि केरळवर ईशान्य मॉन्सूनचा बऱ्यापैकी पाऊस पडतो. महाराष्ट्रापर्यंत मात्र तो पोहोचत नाही.

अवकाळी पाऊस

मॉन्सूनच्या पर्जन्यमानाचा हिशोब करण्यासाठी आणि त्याविषयी संशोधन करण्यासाठी, १ जून ते ३० सप्टेंबर हा चार महिन्यांचा कालावधी शास्त्रज्ञांनी सोईस्कर मानला आहे. भारतात बहुतेक ठिकाणी वार्षिक पर्जन्यमानातील सुमारे ८०-८५ टक्के पाऊस जून ते सप्टेंबर ह्या चार महिन्यात पडतो, आणि बाकीचा १५-२० टक्के पाऊस राहिलेल्या आठ महिन्यांत पडतो. हा सगळाच पाऊस अनपेक्षित नसतो. त्याचे पूर्वानुमानही हवामानशास्त्र विभागातर्फे वेळोवेळी केले जाते.

उन्हाळी मौसमी वारे

हिवाळी मौसमी वारे

उन्हाळ्यात महाराष्ट्रावर मॉन्सूनपूर्व सरी पडतात ज्यांना वळवाच्या सरी हे जुने नाव आहे. उन्हाळ्याने त्रासलेल्या लोकांना वळवाच्या सरींमुळे जरासा का होईना पण दिलासा मिळतो. पुन्हा ऑक्टोबर-नोव्हेंबर महिन्यांत जेव्हा मॉन्सून परतीच्या मार्गावर असतो, तेव्हासुद्धा वादळी पावसाच्या सरी पडतात. हवामानाची परिस्थिती अनुकूल झाली तर मॉन्सूनपूर्व आणि मॉन्सूनोत्तर पावसाबरोबर गारपीटसुद्धा होऊ शकते.

अजून एक गोष्ट लक्षात घेतली पाहिजे ती ही की, मॉन्सूनच्या वेळापत्रकात दर वर्षी काही ना काही परिवर्तन होत राहते. काही वर्षी मॉन्सून त्याच्या आगमनाच्या सरासरी तारखेपेक्षा थोडे दिवस आधीच येऊन ठेपतो, तर काही वर्षी तो त्याच्या परतीची सरासरी तारीख ओलांडून बरेच दिवस रेंगाळत राहतो. असा अवेळी पडणारा पाऊससुद्धा मॉन्सूनचाच असतो हे आपण ध्यानात घ्यावे आणि त्याला अवकाळी म्हणायचा मोह टाळावा.

पाण्याचे नियोजन

मॉन्सूनचा पाऊस वर्षात चारच महिने पडतो, बाकीचे आठ महिने तो पडत नाही. त्याशिवाय पावसाचा लहरीपणा तर आहेच. पण हे सामान्य ज्ञान आहे. ते सांगायला हवामानशास्त्रज्ञांची गरज नाही. म्हणून जे पाणी आपल्याला निसर्गाकडून मिळते, ते आपण अशा रीतीने वापरले पाहिजे की, साठवलेल्या पाण्यातून आपल्याला वर्षभराच्या गरजा भागवता येतील. हा निसर्गाने दिलेला धडा आहे. राज्यात जितका पाऊस पडतो, त्यापेक्षा खूप कमी प्रमाणात तो राजस्थान आणि सौराष्ट्र-कच्छ ह्या प्रदेशांत पडतो. तेथील पावसाळा तर जुलै-ऑगस्ट या दोन महिन्यांप्रताच मर्यादित असतो. पण तेथे कायमची दुष्काळी परिस्थिती असते असे मात्र नाही. कारण तेथील लोकांनी पावसाचे मिळते तेवहे पाणी जतन करून त्याचा जास्तीत जास्त काटेकोर पद्भतीने वापर करण्याचे मार्ग शोधून काढले आहेत. आणि त्यानुसार आपली जीवनशैली बनवली आहे. शेतीसाठी सिंचनाची व्यवस्था विकसित करणे हे जरी महत्त्वाचे असले, तरी हेसुद्धा ध्यानात घेतले पाहिजे, की शेवटी मॉन्सून हा पाण्याचा आपला एकमेव स्रोत आहे. मॉन्सूनमुळे होणाऱ्या पावसाच्या पाण्यानेच नद्या भरतात. तेच पाणी शेतीसाठी वापरले जाते. जिमनीत मुरून विहिरीतून किंवा बोअरवेलमधून उपसता येते. निसर्गाने आपल्याला दिलेला पाण्याचा स्रोत शेवटी एकच आहे व तो मर्यादित आहे. मॉन्सूनच्या पावसाचा सदुपयोग करणे, पाण्याचा अपव्यय टाळणे, त्याबाबत लोकांमध्ये जागृती निर्माण करणे, जलपुनर्भरणासारखे उपक्रम राबवणे, ह्यातच दुरदर्शीपणा आहे.

लेखक: **डॉ. रंजन केळकर**, पुणे. (निवृत्त महासंचालक, भारतीय हवामानशास्त्र विभाग, नवी दिल्ली)

गांधीलमाशीने जगच बदलले !

लेखक: इरा फ्लॅटो • रूपांतर: मंगेश नाबर

मित्रहो, आजकालच्या जगातली अशी एक सर्वव्यापी चीज कोणती ते तुम्हाला सांगता येईल का? मी काय वेगळे सांगणार तुम्हाला? ती अशी चीज आहे की तिच्याशिवाय तुमचे कुठलेच दैनंदिन काम होणार नाही. नाही सांगता येत? अहो. ती आहे आपल्या रोजच्या जीवनात सकाळपासून रात्रीपर्यंत नजरेस पडणारी साधी पण महत्त्वाची चीज म्हणजे कागद. आता या क्षणी तुम्ही हे सारे वाचता आहात, ते कशावर छापले आहे. कागदावरच ना. कागद ज्यापासून निर्माण केला जातो, ती झाडे इतकी मोठ्या प्रमाणावर तोडली जात आहेत, त्यावर उपाय म्हणून कागद आपण वाचवावा असे चाललेले आहे. तरी कागद हा अस्तित्वातच नाही, अशा जगातील जीवनाचे चित्र मनातल्या मनात रेखाटून पहा. अगदी फार फार पूर्वी जाण्याची गरज नाही. अठराव्या शतकाच्या सुरुवातीचा काळापर्यंत माणसे कशी व्यवहार करत होती, हे वाचले तर आज आपण किती प्रगत युगात वावरतो, याचे आपले आपल्याला कौतुक वाटते.

सन १०५ मध्ये त्साई लुन या चिनी न्यायाधिकाऱ्यानं कागदाचा शोध लावला. त्याने तुतीच्या झाडाच्या खोडाचे बारीक तुकडे करून त्याबरोबर ताग, कापडाच्या चिंध्या आणि पाणी यांच्या मिश्रणाचा लगदा केला आणि ते एका जाळीवर ठेवून त्यातील पाणी निथळू दिले. मग ते सारे उन्हात सुकवल्यावर जो पातळ सपाट ताव तयार झाला त्यावर लिहिणे शक्य झाले. त्यालाच आपण कागद म्हणू लागलो.

त्साई लुन

चिनी लोकांनी या कागदाच्या मदतीने आपली खूप प्रगती केली. एका चिनी सम्राटाच्या ग्रंथसंग्रहालयात पन्नास हजार पुस्तके होती. तुम्हाला हे वाचून आश्चर्य वाटेल पण त्या वेळी त्या मानाने युरोप मागासलेला राहिला होता. मात्र नव्या जगात इ.स. ५०० च्या सुमारास, मायन लोक अंजिराच्या झाडाचे खोड वेगळे करून ते मऊ होईपर्यंत बडवत असत. मग त्याला लिंबाचा रस लावून त्यातील पाणी काढून घेत असत. त्यावर लिहिण्यास तो योग्य होत असे. ॲझतेक (Aztek) लोकांनी या पद्धतीत

सुधारणा केली. त्यांना तो कागद इतका मौल्यवान वाटे की काही विशेष प्रसंगी भेट देण्यासाठी ते कागदाचा उपयोग करत असत. जेव्हा मूर जमातीच्या उत्तर आफ्रिकन लोकांनी इ.स. ७५१ मध्ये चिनी लोकांना पकडले, तेव्हा त्यांच्यामार्फत ही कागद बनविण्याची विद्या युरोपात पसरली. चिनी लोकांनी कागद बनविण्याचा शोध त्यापूर्वी शंभर वर्षांपूर्वी लावला होता, पण युरोपियनांना त्याचे तंत्र नीट कळत नव्हते. युरोपात त्या काळी फारशी पुस्तकेच नव्हती. जी काही होती, ती भूर्जपत्रावर, चर्मपत्रावर किंवा चिंध्यांपासून

बनवलेल्या कागदावर लिहिलेली होती.

पंधराव्या शतकाच्या मध्याधीत जोहान गुटेनबर्ग याचे हलत्या खिळ्यांचे अभिनव मुद्रण यंत्र आले आणि खरोखर त्यामुळेच कागदाला प्रचंड मागणी आली. पण त्या काळातही कागद हा कापडाच्या चिंध्यांपासूनच बनवला जात होता. हातमागावर जेवढे कापड उपलब्ध असायचे. आणि त्याच्या फाटक्यातुटक्या चिंध्यांपासून जो काही कागद तयार होई, त्यातून कागदाची मागणी कधीच पुरी होत नसे.

एकोणिसाव्या शतकाच्या प्रारंभीसुद्धा कागद निर्मितीची प्रक्रिया संथ आणि गुंतागुंतीची होती. तो कागद हा हातकागदच, म्हणजे कागदाचा प्रत्येक ताव हा हातांनी बनवला जात असे. दोन हजार वर्षांपूर्वीच्या प्राचीन चिनी पद्धतीत फारशी सुधारणा झालेली नव्हती. चांगला कागद बनवणारा एखादा कुशल कारागीर दिवसाकाठी जास्तीत जास्त ७५० ताव बनवू शकत असे.

अठराव्या शतकानंतर लोक कागद इतरही कामांसाठी वापरू लागले, लोकांची कागदाची मागणी जसजशी वाढू लागली, तसतशी चिंध्यांना अभूतपूर्व मागणी येऊ लागली. (कागद घराच्या बांधकामासाठी वापरू लागले. १७७२ मध्ये हेन्री क्ले या ब्रिटीश माणसाने लॅमिनेटेड (laminated) कागदाच्या पेटंटसाठी अर्ज केला होता. असा कागद घराच्या भिंती, जिमनी, कॅबिनेट, टेबले, खुर्च्या बनवण्यासाठी वापरला जाणार होता. १७९३ मध्ये कागदापासून चक्क एक चर्च बांधले होते.) यानंतर कागदिनमिते लगदा बनवणाऱ्या यंत्रात चिंध्यांच्या धाग्यांऐवजी कोणताही प्रतीचा चिंध्यांचा माल वापरू लागले. त्यामुळे कागदाचा दर्जा खालावला आणि तो एकसारखा राहिला नाही, हे तितकेच खरे होते.

अमेरिकन स्वातंत्र्ययुद्धात सैनिकांना बंदुकीच्या पुंगळ्या नेण्यासाठी जेव्हा कागद कमी पडले, तेव्हा त्यांनी पुस्तकाची पाने फाडली होती. १७८९ मध्ये कागदाच्या या तुटवड्यातून बाहेर येण्यास तंत्रज्ञानाला धावून यावे लागले. याच सुमारास यंत्राच्या मदतीने लोक कागद बनवू लागले. फ्रान्समधील कागदाच्या गिरणीतील निकोलस लुईस रॉबर्ट

या एका कारकुनाने न संपणाऱ्या गुंडाळीचा (continuous roll) कागद बनवणाऱ्या यंत्राची कल्पना अमलात आणली. अशा यंत्रातून होत असलेल्या निर्मितीला वेग येऊन कागदाची मागणी वाढती राहिली.

एवढे संशोधन होत राहन आणि नवनवीन कल्पक कागदनिर्माते उदयास येऊनही कागद उद्योगाच्या अडचणींचे सत्र संपता संपत नव्हते. याच वेळी एक फ्रेंच शास्त्रज्ञ या रंगमंचावर आला. त्याच्या रानातील भ्रमंतीतून जणू आशेचा किरण गवसला. रेने अंतोनी फार्शूल्त डी रुम्र (Rene Antonie Ferschault De Reaumur) नावाचा तो महान शास्त्रज्ञ फ्रान्स देशात होऊन गेला. फ्रान्सने जगाला त्याच्या रूपाने दिलेली देणगी आहे. १६८३ मध्ये जन्मलेला हा थोर विद्वान अनेक विद्या आणि अभियांत्रिकी विषयातील जाणकार होता. भौतिकशास्त्र. गणित आणि रासायनिक अभियांत्रिकी यात त्याला कमालीचा रस होता. आणि या तीनही विषयात त्याने प्रावीण्य मिळवले. युरोपातून त्याचा सल्ला मागण्यासाठी लोक येत असत. रॉयल सोसायटी ऑफ ग्रेट ब्रिटन, दि अकेदेमिक्स सायन्सेस ऑफ फ्रान्स, तसेच रशिया, प्रशिया आणि स्वीडन या देशातील शास्त्रज्ञांच्या मोठमोठ्या संस्थांचे सभासदत्व त्याला सन्मानाने देऊ केले होते. पोलादाची अन्वेषणाम्ळे (१७२२) निर्मिती आणि त्यावरील प्रक्रिया यावरील त्याच्या संशोधनाने फ्रान्समधील लोह - उद्योगाला जणू संजीवनी प्राप्त झाली. रुमुरने लावलेला तापमापकाचा शोध हा त्याने संपादन केलेल्या कित्येक यशस्वी संशोधनाच्या मालिकेतील मानाचा शिरपेच मानला जातो आणि त्यावर

रुमुर

रुमुरचे नाव कोरण्यात आले आहे.

कीटकांचे निरीक्षण हा रुमुरचा एक मनस्वी छंद होता आणि त्यासाठी तो वेळात वेळ काढून कुठेही जाण्यास तयार असे. कीटक विज्ञानात तो रस घेत होता हे आपले सुदैवच म्हणावे लागेल. पक्ष्यांच्या पोटातील ते खात असलेल्या कीटकांचे अवशेष निरखण्यात तो तासन तास घालवत असे. पक्षी आणि कीटक यांच्यावरील त्याच्या अभ्यासाचे सहा खंडी निरीक्षण ग्रंथ प्रसिद्ध झाले होते.

वाचकहो, तुम्ही म्हणाल आजच्या कागदाच्या विषयाचा आणि या रुमुर या शास्त्रज्ञाच्या कीटक विज्ञानाशी काय संबंध आहे बुवा? पण रुमुरने कागदाच्या तुटवड्याच्या समस्येवर कसा काय तोडगा शोधून काढला हे पाहणे अत्यंत मनोवेधक आहे. कागदाच्या तत्कालीन तुटवड्यामुळे त्याला आपले लिखाणाचे ग्रंथ छापून घेण्यात खूप अडचणी आल्या असतील, म्हणून तो या संशोधनाच्या मागे हात धूवून लागला असेल का? जंगलातून भटकताना रुमुरची शोधक नजर गांधीलमाशीने सोडून दिलेल्या एका घरावर सहज गेली. कोणता निसर्गाचा अभ्यासक ही आयती चालून आलेली संधी सुखासुखी सोडून देईल बरे? एखाद्या जंगली श्वापदाची गुहा आणि दंश करणाऱ्या कीटकाचे घर, यजमान खुद्द हजर नसताना, निरीक्षण करायला क्रचितच मिळते. हे गांधीलमाशीचे घर, त्याची अंतस्थ रचना अगदी बारकाईने निरखताना, रुमुर आश्चर्याने थक्क होऊन गेला. त्याच्या डोक्यात तत्काळ काहीतरी विलक्षण चमकून गेले. ते गांधीलमाशीचे घर पहाताना त्याला आढळले. की ते घर कागदाचे बनवलेले होते ! ते होते दिसायला ओबडधोबड, पण आजूबाजूच्या लहरी निसर्गाशी सामना करण्यास ते समर्थ होते.

विशेष म्हणजे गांधीलमाशीने तो कागद चिंध्यांशिवाय बनवला होता. हे कसे काय झाले बरे? एक पिटुकली गांधीलमाशी आपल्या घरासाठी कागद बनवताना कोणता बरे कच्चा माल वापरते, की त्याचा मानवाला थांग पत्ताही लागू नये, याचे रुमुरसारख्या कुशाग्र बुद्धीच्या शास्त्रज्ञाला नवल वाटले. आणि तो त्याच्या उत्तरासाठी इकडे तिकडे पाहू लागला. आणि काय आश्चर्य, ते उत्तर रुमूरच्या पायाशी पडले होते आणि ते त्याच्याकडे आ वासून बघत होते.

ते होते वाळलेले लाकूड. पिटुकली गांधीलमाशी रानात जागोजागी पडणाऱ्या काटक्यांपासून आपल्या गृहनिर्माणासाठी लागणारा कागद बनवत होती तर! त्यासाठी आवश्यक असे, उष्णता, मिश्रणाची टाकी कुठे होती? ती माशी कागद निर्मितीसाठी कोणती पद्धत वापरत होती बरे? तिचा कारखाना कुठे होता? काटक्यांचे कागदात रूपांतर करण्यासाठी गांधीलमाशी कोणत्या मुशीचा उपयोग करत होती? रुमुरच्या मनातील या सर्व शंकांचे उत्तर अगदीच प्राथमिक स्वरूपाचे निघाले. ते होते गांधीलमाशीचे पोट आणि तिची पचनसंस्था.

केवढा विलक्षण व क्रांतिकारक शोध रुमुरने लावला होता ! आजवर कित्येक निसर्गवेड्या अभ्यासकांनी जंगलात असा फेरफटका मारला असेल आणि अशी गांधीलमाशांची घरे पाहिली असतील, पण किती अभ्यासकांना या शोधाचे मूळ म्हणून गांधीलमाशीच्या पचनसंस्थेचा अभ्यास उपयोगी पडला असेल? इथे रुमुरने आपल्या अलौकिक बुद्धिमत्तेच्या जोरावर शोध लावला. अगोदरच हा पक्ष्यांच्या पचनसंस्थेचा अभ्यास करणारा एक नाणावलेला शास्त्रज्ञ होता. मग त्याला गांधीलमाशीच्या पोटातील पाचक रसाचे सूत्र उमगले नसते तरच नवल होते.

पुढल्या काही महिन्यात रुम्र गांधीलमाशांच्या बारीकसारीक हालचालींवर डोळे लावून बसला आणि ती झाडांच्या वाळलेल्या डहाळीचे कसे बारीक बारीक तुकडे करते, कसे ते गिळते, त्यांचे तिच्या पोटात पचन होऊन ती कागदाच्या रूपाने बाहेर टाकते कसे, याचा अत्यंत चिकाटीने रुमुरने अभ्यास केला. या उद्योगशील कीटकाची प्रत्येक हालचाल रुमुर अत्यंत काळजीपूर्वक टिपत राहिला आणि गांधीलमाशीवरील आपले हे महत्त्वपूर्ण संशोधन त्याने १५ नोव्हेंबर १७१९ रोजी फ्रेंच रॉयल अकादमीच्या माध्यमातून प्रसिद्ध केले. रुम्रच्या या संशोधनात त्याला आढळलेल्या या अमेरिकन गांधीलमाशीवर त्याने लिहिले आहे:

'अमेरिकन गांधीलमाशी आपल्यासारखा पातळ कागद तयार करते. ती ज्या देशात वसती करते, तेथील झाडाचे लाकूड ती तंतुच्या रुपाने बाहेर टाकते. ती

जणू आपल्याला शिकवते आहे की वनस्पतीच्या तंतूपासून कागद बनवता येतो. त्यासाठी चिंध्या व कापडाची गरज नाहीये. आपल्याला हे एक निमंत्रण आहे. आपल्याला विशिष्ट लाकडापासून उत्तम व पातळ कागद बनवणे का येऊ नये? त्या गांधीलमाशा ज्या लाकडापासून कागद बनवतात असेल, ते लाकूड आपल्याकडे उपलब्ध असेल, तर आपण अधिक पांढरा शुभ्र व पातळ कागद बनवू शकू. माझ्या या अभ्यासाकडे दुर्लक्ष होऊ नये. हे निरीक्षण अत्यंत महत्त्वाचे आहे.''

गांधीलमाशीच्या कलाकु सरीचे विशेषतः कॅनडामधील गांधीलमाशीने बनवलेल्या अधिक उच्च प्रतीच्या कागदाकडे रुमुरने सर्वांचे लक्ष वेधले होते. तो लिहितो, ''या माशीच्या घराच्या पृष्ठभागाचे काळजीपूर्वक निरीक्षण केल्यानंतर असे वाटते की हे काम कुणा माणसाच्या हातून तर झाले नसेल ना? त्याचे आवरण इतक्या उत्तम प्रतीचे आहे की ते आणि आपण बनवतो तो कागद, यात फरक करणे कठीण व्हावे. तेवढीच तकाकी आणि रंगछटा आहे की तो जणू पूर्वीच्या पांढऱ्या शुभ्र असलेल्या कागदाचा एक तुकडा आहे, असे वाटावे. वजन आपल्या एखाद्या सामान्य दर्जाच्या कागदाच्या वजनाएवढे आहे.''

या ऐतिहासिक निरीक्षणाशिवाय रुमुरने गांधीलमाशीने जे केले त्याचे अनुकरण करून एखादा कागदाचा नमुना तयार केला असावा. पण त्याने त्याची नोंद ठेवली नाही. पुढे १७४२ मध्ये त्याने या भूलचुकीबाबत खंत व्यक्त केली आहे:

"मी या प्रयोगापुढे का गेलो नाही, याची मला लाज वाटते. आज जवळजवळ २० वर्षांनतर मला त्याचे महत्त्व जाणवत आहे आणि मी ते निवेदन करत आहे. पण मला आशा होती, की कुणी तरी रस घेऊन त्यावर व्यवसाय करायला हवा होता."

लाकडापासून कागद बनवण्यात जेव्हा लोक यशस्वी झाले, तेव्हा रुमुर हयात नव्हता. त्याने केलेल्या कळकळीच्या आवाहनाचा परिणाम असा झाला की

युरोपियन कागद बनवण्यासाठी इतर कच्चा माल शोधू लागले. अल्बर्ट सेबा या फ्लेमिश निसर्ग अभ्यासक व इतिहासकाराने १७३४ ते १७६५ या काळात एक पुस्तकांचा संच प्रसिद्ध केला आणि त्यात त्याने असे सुचवले की समुद्रकाठाने वाढणाऱ्या अल्गा मरीना नावाच्या शेवाळाचा उपयोग कागद बनवण्यासाठी करावा. रॉयल अकादमी ऑफ सायन्सेसच्या जीन एटीन गुतार्दने १७४१ मध्ये पाणथळ प्रदेशात येणारे शेवाळ हे कागद बनवण्यासाठी वापरावे, असे लिहिले आहे. १७६४ मध्ये इंग्लिश जॉन स्ट्रेंजने झुडपापासून केलेल्या झाडूचा उपयोग कागद निर्मितीतील कच्चा माल म्हणून केला, अशी सूचना केली आहे.

हे सारे बोलले जात होते, चर्चा होत होत्या, पण ठोस कृती होत नव्हती. एका जर्मन धर्मगुरूच्या वाचनात रुमुरचे संशोधन आले आणि त्याने त्याची चाचपणी करण्याचे ठरवले. या जेकब ख्रिश्चन शोफरने वेगवेगळ्या प्रकारच्या ८० वनस्पती गोळा केल्या व त्यापासून कागद बनवण्याचा प्रयत्न केला. त्याने वनस्पतींचे हातांनी तुकडे केले. मग काटक्या बारीक करणारे यंत्र शोधून काढले. १७६५ ते १७७१ या काळात त्याने आपल्या अभ्यासाचे सहा खंड प्रसिद्ध केले. बरेचसे गांधीलमाशीचे प्रयोग तो आपल्या घरी करत असे. त्याच्या समग्र निष्कर्षात घर, गवताच्या काड्या, कोबी, अभ्रक, पाईन, बटाटे, समुद्र किनाऱ्यावर मिळणारे गोटे यांपासून बनवलेल्या कागदाचे विविध नमुने आजही दिसून येतात.

अखेरीस प्रत्यक्षात लाकडापासून कागद तयार करण्याचा पहिला मान लंडनस्थित मत्तीयास कुप्स या हॉलंडच्या उद्योजकाला मिळाला. लाकूड आणि गवत यांच्या मिश्रणावर प्रक्रिया करणारी पहिली कागदाची गिरणी त्याने स्थापन केली. वेगवेगळ्या वनस्पती आणि लाकडांपासून कागद तयार करण्याची दोन ब्रिटीश पेटंटस त्याने मिळवली होती. तरी त्याने जे काही निर्माण केले ते तो काही विकू शकला नाही. कारण त्या वेळच्या सनातन व पुराणमतवादी लोकांनी अन्य कोणत्याही कच्च्या मालाचा उपयोग करून बनवलेला कागद वापरण्याचे नाकारले. कृप्सचे दिवाळे निघाले !

त्यानंतरची दहा एक वर्षे युरोपने तशीच घालवली. १८४० मध्ये फ्रेडिरिक केलर या जर्मन कोष्ट्याने रुमुरचे संशोधन वाचले. त्याने लाकूड दळण्याच्या यंत्राचे पेटंट घेतले. त्याच्या यंत्रात लाकूड दळल्यावर त्याचा लगदा केला जाई. पण त्यापासून तयार झालेला कागद हा कापडाच्या चिंध्यांपासून बनवलेल्या कागदाहून अगदीच हलक्या प्रतीचा होता. त्याची कल्पना चांगली होती, पण तिचा विकास होण्याची गरज होती. केलरचे पेटंट १८४६ मध्ये हेनरीच व्होल्तर या जर्मन उद्योजकाने विकत घेतले. त्याने

या यंत्राच्या दोन प्रतिकृती तयार केल्या. १८६६ मध्ये या दळणाऱ्या यंत्राची अमेरिकन आवृत्ती तयार झाली.

७ जानेवारी रोजी अमेरिकेत लाकडाचा लगदा वापरून बनवलेल्या कागदाचे पहिले वृत्तपत्र निघाले. वर्ल्ड आणि न्यूयॉर्क टाईम्सने त्याचे कालांतराने अनुकरण केले. पण लाकडाचा लगदा वापरून बनवलेल्या कागदाचा उपयोग रूळण्यास १८८० हे वर्ष उजाडावे लागले.

वाचकहों, आज जो कागद आपण पाहतों, वापरतों, तो ९० टक्के कागद हा लाकडापासून बनवला जातों. तथापि हे घडून यायला २५० वर्षे इतका प्रदीर्घ काळ लागला. पण याच्या मुळाशी थोर शास्त्रज्ञ रुमुर आणि त्याची ती गांधीलमाशी होती हे कदापि विसरून चालणार नाही. आता तुम्हाला मी लेखाच्या शीर्षकात ''गांधीलमाशीने जगच बदलले'' असे का म्हणालों ते पटले ना !

* आज हा लेख मात्र आपण संगणकाच्या पडद्यावरही वाचू शकता. त्यासाठी कागद आवश्यक नसला तरी या लेखाचा प्रिंट आउट हवा असेल तर कागद लागणारच ना!

लेखक: इरा फ्लॅटो, (The Wasp that changed the world), छायाचित्रे विकिपिडीया वरून साभार, पूर्वप्रसिद्धी: मैत्री अनुदिनी ब्लॉग, दैनिक नवप्रभा, पणजी, गोवा.

रूपांतर : मंगेश नाबर mangeshnabar@gmail.com

दगडी कोळशाच्या निर्मितीचे रहस्य

लेखक: डॉ. आ. दि. कर्वे

सुमारे ३५ ते ३० कोटी वर्षांपूर्वी पृथ्वीच्या दक्षिण गोलार्धातले बरेच भूभाग गोंडवनलॅंड या नावाने ओळखल्या जाणाऱ्या एकाच विस्तृत अशा भूभागात समाविष्ट होते. भारतही त्या काळी गोंडवनलॅंडमध्ये समाविष्ट होता. उत्तर गोलार्धातले प्रदेश मात्र अशा प्रकारे एकमेकांना जोडलेले नव्हते. गोंडवनलॅंड आणि त्याच्या उत्तरेकडील भूभागांमध्ये टेथिस या नावाने ओळखला जाणारा एक समृद्र होता.

खनिज कोळशाची निर्मिती

त्या काळी संपूर्ण जग प्रामुख्याने नेचेवर्गीय वृक्षांनी व्यापलेले होते. गोंडवनलॅंडमधल्या वृक्षांचा सविस्तर अभ्यास गेल्या शतकात लखनौ येथे कार्यरत असलेल्या डॉ. बीरबल साहानी नामक भारतीय वनस्पतिशास्त्रज्ञानी केला होता. या काळात हे वृक्ष मेले की त्यांची खोडे एकावर एक पडून रहात, पुढे काही उत्पातांमुळे ही खोडे जिमनीत गाडली गेली आणि भूगर्भातल्या उष्णतेने त्यांचे कोळशात रूपांतर झाले. हाच कोळसा आपण आज खनिज कोळसा या नावाने भूगर्भातून

खणून काढतो. ही प्रक्रिया पृथ्वीच्या इतिहासात ३५ ते ३० कोटी वर्षांपूर्वी एकदाच घडली. त्यानंतरच्या काळात पृथ्वीवर कधीही खनिज कोळसा निर्माण झाला नाही, जगातला सर्व खनिज कोळसा याच कालखंडात निर्माण झाल्याने त्या कालखंडाला भूवैज्ञानिक परिभाषेत कारबॉनिफेरस (कोळसा निर्मितीचे) युग असे म्हटले जाते. येवढ्या मोठ्या प्रमाणावर कोळसा निर्माण होण्याचे प्रमुख कारण असे होते की त्या काळात जे वृक्ष मेले, त्यांची खोडे न कुजता जिमनीच्या पृष्ठभागावरच लाखो वर्षे पडून राहिली, आणि हे जिमनीवर साठलेले कोटचवधी टन लाकूड जेव्हा भूकंपासारख्या एखाद्या उत्पाताद्वारे जिमनीत गाडले गेले, तेव्हा त्याचे भूगर्भातील उष्णतेने कोळशात रूपांतर झाले. आजच्या काळात जर जंगलातला एखादा वृक्ष मेला तर त्याचे खोड वर्षा-दोन वर्षांत कुजून जाते, मग कारबॉनिफेरस काळात ही खोडे लक्षावधी वर्षे न कुजता भूपृष्ठावर कशी राहिली?

या प्रक्रियेचे स्पष्टीकरण देण्यासाठी शास्त्रज्ञांनी अनेक तर्क लढवले. त्यांपैकी सर्वमान्य स्पष्टीकरण असे आहे, की कारबाँ निफेरस युगातल्या वृक्षांच्या खोडांमधील पेशिकांच्या पेशिभित्तिकांवर असणारा लिग्नीनचा थर हा आजकालच्या वृक्षांच्या मानाने अधिक जाड होता. आणि तसेच आजच्या वृक्षांच्या मानाने त्यांच्या खोडावर असणारी सालही अत्यंत जाड होती. लिग्नीन हा एक बहुवारिक पदार्थ असून जैव घटकांद्वारे त्याचे सहजपणे विघटन होत नाही. तसेच वनस्पतींच्या खोडांवर असलेल्या सालीत टॅनीन नामक एक पदार्थ असतो. हा पदार्थही जैवविघटनाला विरोधच करतो.

लिग्नीनचा आधार

वनस्पतींची उत्पत्ती पाण्यात झाली. पाणी वनस्पतींचे वजन तोलून धरीत असल्याने पाण्यात वाद्वणाऱ्या वनस्पतींना आधारासाठी कोणत्याही कणखर ऊतींची गरज नव्हती, पण पाण्यातून जिमनीवर आल्यावर मात्र त्यांना आपले वजन तोलून धरण्यासाठी कणखर अशा ऊतींची गरज भासू लागली. भू-वनस्पतींच्या उत्क्रांतीच्या पहिल्या टप्प्यातल्या वनस्पती अत्यंत खुरट्या आणि जिमनीसरपट वाढणाऱ्या अशा होत्या पण उत्क्रांतीच्या पुढच्या टप्प्यात जिमनीवर वाढणाऱ्या वनस्पती वृक्षांच्या रूपाने जिमनीवर ताठ उभ्या राह् लागल्या. या बदलाला कारणीभूत ठरले ते लिमीन नावाचे एक वनस्पतिजन्य बह्वारिक.

वनस्पतींमधल्या ज्या अवयवांना आधाराची किंवा वजन पेलण्याची गरज भासते, तेथल्या पेशिकांच्या पेशिकावरणावर लिग्नीनचा थर आहळतो.

आजच्या युगातल्या वनस्पतींच्या खोडांमधील लिग्नीन हे मुख्यतः त्यांच्या झायलेम या नावाने ओळखल्या जाणाऱ्या जलवाहक ऊतींमध्येच आढळते, पण कारबॉनिफेरस युगातल्या वनस्पतींमध्ये ते संपूर्ण खोडात आढळते. तसेच कारबॉनिफेरस युगातल्या वृक्षांची सालही खूप जाड, म्हणजे आजच्या वृक्षांच्या मानाने दुप्पट ते चौपट इतकी जाड असे. सर्व वृक्षांच्या सालींमध्ये टॅनीन असते. टॅनीन हा पदार्थ वनस्पतींचे रोगजंतूंपासून रक्षण करतो.

लियीनचे विघटन

लिग्नीन कुजविणाऱ्या सूक्ष्मजंतूंना हवेतल्या ऑक्सिजनची गरज भासते आणि ऑक्सिजनचे हे प्रमाण कमीत कमी ५ टक्के तरी असावे लागते. ऑक्सिजनविरहित वातावरणात कोणत्याही जीवमात्राला लिग्नीनचे विघटन करता येत नाही, म्हणून कारबॉनिफेरस युगात हवेतल्या ऑक्सिजनचे प्रमाण कमी असावे असाही एक तर्क मांडण्यात येतो. पण त्या काळात सर्व जग वृक्षांनी व्यापलेले होते. हे सर्व वृक्ष प्रकाशसंश्लेषण करीत असल्याने ते हवेत प्रचंड प्रमाणात ऑक्सिजन सोडत असले पाहिजेत. शिवाय ते मेल्यानंतर कुजतही नव्हते, कुजण्याच्या प्रक्रियेत हवेतला ऑक्सिजन वापरला जातो, पण तसेही होत नसल्याने हवेतला ऑक्सिजन सतत वाढतच गेला असणार आणि त्यामुळे त्याकाळी हवेतल्या ऑक्सिजनचे प्रमाण सुमारे ३५ टक्के असावे असा अंदाज केला जातो. कारबॉनिफेरस युगात हवेतल्या ऑक्सिजनचे प्रमाण अधिक असण्याचा आणखी एक प्रावा असा की त्या काळातले कीटक आणि अन्य संधिपाद प्राण्यांचा अवाढव्य आकार. त्या काळातली पैशाची अळी सुमारे २ मीटर लांबीची, पंख पसरलेल्या चतुर कीटकाचा आकार ७० सेंटिमीटर तर विंचवाची लांबी ७५ सेंटिमीटर असे. येवढ्या मोठ्या आकाराच्या संधिपाद प्राण्यांची उत्क्रांती आणि विकास हवेतल्या ऑक्सिजनचे प्रमाण वाढल्यासच होऊ शकते.

दुसरा एक तर्क असा करण्यात आला की निबंड अरण्यातील जिमनीवर वृक्षांनी त्याजलेल्या पानांचा एक जाड थर निर्माण झालेला असतो. मातीतले सूक्ष्मजंतू ही पाने कुजवितात. या प्रक्रियेतून सतत कार्बन डायॉक्साइड हा वायू बाहेर पडतो. कार्बन डायक्साइड हा वायू हवेच्या सुमारे दीडपट जड असल्याने तो जिमनीजवळच साठून राहतो. शिवाय वनस्पती रात्री जे श्वसन करतात त्यामुळे वनस्पतींच्या सान्निध्यात रात्रीच्या वेळी हवेतल्या कार्बनडायॉक्साइडचे प्रमाण वाढते आणि हवेपेक्षा जड असल्याने हाही कार्बनडायॉक्साइड जिमनीजवळच साठून राहतो. काही शास्त्रज्ञांच्या मते जिमनीवर पडलेली पाने कुजणे आणि वनस्पतींनी रात्री निर्माण केलेला कार्बनडायॉक्साइड जिमनीलगत साठून राहणे, या दोन प्रक्रियांमुळे कारबॉनिफेरस युगात निबिड अरण्यातील जिमनीलगतच्या हवेत कार्बनडायॉक्साइडचे प्रमाण खूप वादून तिथल्या अरण्यांमधील जिमनीलगच्या वातावरणातील ऑक्सिजनचे प्रमाण कमी झाले असणार. पण हाही मुद्दा न पटण्यासारखाच आहे. आपल्या आजच्या कालातही निबिड अरण्यांतल्या जिमनीवर कुजणाऱ्या पानांचा थर असतोच आणि आजच्या युगातील वृक्षसुद्धा रात्री श्वसनाने कार्बनडायॉक्साइड निर्माण करतात. परंतु तरीही आजच्या निबिड अरण्यात जिमनीलगतच्या वातावरणातील कार्बनायॉक्साइडचे प्रमाण रात्रीच्या वेळी ०.१२ टक्के इतकेच असते आणि दिवसा ते पुन्हा कमी होऊन ते ०.०४ त्या आसपास येते. या कार्बनडायॉक्साइडमुळे अरण्याच्या भूपृष्ठावरील ऑक्सिजनच्या प्रमाणात फारसा फरक पडत नाही, आणि ते सतत २० टक्क्यांच्या आसपासच राहते. थोडक्यात म्हणजे हवेतल्या ऑक्सिजनचे प्रमाण कमी झाल्याने मेलेल्या झाडांची खोडे कुजली नसावीत हा तर्क काही सयक्तिक वाटत नाही.

मग जिमनीच्या पृष्ठभागावर पडलेले हे लाकूड न कुजता तसेच राह्न त्याचे मोठाले साठे निर्माण होण्यामागचे अन्य कोणते कारण असावे ? सध्या सर्वमान्य असलेले मत असे आहे की मानवाने आपल्या सोयीसाठी निर्माण केलेल्या प्लॅस्टिक नामक बहवारिकाचे जसे आज कोणत्याच जैव घटकाद्वारे विघटन होऊ शकत नाही, त्याचप्रमाणे ३५-३० कोटी वर्षांपूर्वी वनस्पतींनी आपल्या सोयीसाठी निर्माण केलेल्या लिग्नीन नामक बहवारिकाचे विघटन करण्याची क्षमता त्या काळातल्या कोणत्याच जैव घटकात नव्हती. लिग्नीनचे विघटन करणाऱ्या जैव घटकांची उत्क्रांत्ती कारबॉनिफेरस युगानंतर झाली आणि त्यामुळे कारबॉनिफेरस युगानंतर जगात कधीही आणि कोठेही खनिज कोळशाची निर्मिती होऊ शकली नाही. उत्क्रांतीच्या प्रक्रियेत लिग्नीनचे विघटन करण्याची क्षमता फक्त बुरशी या गटातल्याच काही विशिष्ट प्रजातींमध्ये निर्माण झाली आणि त्या प्रजातींची संख्याही केवळ हाताच्या बोटांवर मोजता येतील इतकी कमी आहे. वाळवी लाकूड खाते आणि अन्य काही कीटक लाकूड पोखरतात. त्यामुळे त्यांच्या आतडचातील काही सूक्ष्मजंतू लिग्नीन पचवू शकत असले पाहिजेत असाही समज मध्यंतरी प्रचलित झाला होता, पण आता हे सिद्ध झाले आहे की हे कीटक लाकडातले

फक्त सेल्युलोजच पचवितात, लिग्नीन नाही.

जैव घटक कोणते पदार्थ पचवू शकतात आणि कोणते नाहीत याचा आपण जर विचार केला तर असे दिसून येईल की वनस्पतींनी निर्माण केलेले लिग्नीन आणि वनस्पतींपासूनच भूगर्भात निर्माण झालेले पेट्रोलियम हे दोन्ही पदार्थ सेंद्रिय असूनही जवळजवळ कोणत्याच जैव घटकाला ते पचिवता येत नाहीत. जैव घटक पचवू शकतील असे पदार्थ हे मुख्यतः शर्करा, पिष्टमय पदार्थ, प्रथिन आणि मेद या गटातलेच असतात. लिम्रीन आणि पेट्रोलियम हे पदार्थ यांपैकी कोणत्याच गटात मोडत नाहीत. पाच्य आणि अपाच्य सेंद्रिय पदार्थांची तुलना केल्यास असे दिसेल की सर्ब पाच्य पदार्थांमध्ये कमी अधिक प्रमाणात ऑक्सिजन असतो तर अपाच्य पदार्थामध्ये तो नसतो

लेखक: आ. दि. कर्वे, ज्येष्ठ शास्त्रज्ञ, शेती तज्ञ, अप्रोपियेट रुरल टेक्नोलॉजी इन्स्टिट्यूटचे संस्थापक.

आईनस्टाईन यांचे विचार

लेखक: प्रकाश बुरटे

न्तिपत्र वाचणाऱ्या, रेडिओ ऐकणाऱ्या अथवा टीव्ही पाहाणाऱ्या सर्व व्यक्तींना अल्बर्ट आईनस्टाईन यांचे नाव माहिती अमतेच असते. त्यांच्या वयस्क छबीतील अस्ताव्यस्त केसांतून प्रकटणारे E=mc² हे पदार्थविज्ञानातील सूत्रदेखील काही जणांना ऐकून माहिती असते. ते व्हायोलीन उत्तम वाजवीत असत, याचीही माहिती काही जणांच्या मनात घर करून असते. आयुष्यभर कायम जागतिक शांततेचा उद्घोष करणाऱ्या या शांतीद्ताने आपले शांततेचे पंख शांतीच्या स्मृतीस्तंभाच्या पायथ्याशी उतरवून ठेवत बाह्या सरसावून अमेरिकेने अण्वस्त्रे बनविली पाहिजेत असे अमेरिकन राष्ट्राध्यक्षांना १९३९ मध्ये पटविले, या व्यंगचित्राचीही कुणाकुणाला कुणकुण असते. थोडक्यात, अशा आईनस्टाईन यांचा जन्म १४ मार्च १८७९ रोजी जर्मनीत झाला आणि मृत्यू १८ एप्रिल १९५५ रोजी वयाच्या ७६ व्या वर्षी झाला. त्यामुळे २०१५ या वर्षी आईन्स्टाईन यांची दखल घेण्याचे कारण नक्कीच या दोन तारखांपलीकडचे आहे. ते कारण आहे, या वर्षी सापेक्षतेचा सामान्य सिद्धांत प्रस्थापित होऊन १०० वर्षे पूर्ण होत आहेत.

पार्श्वभूमी

आईनस्टाईन यांना पीएचडीची पदवी १९०५ या वर्षात मिळाली आणि याच वर्षात त्यांनी भविष्याचा वेध घेणारे चार महत्त्वाचे संशोधन निबंधदेखील प्रसिद्ध केले (त्यानिमित्ताने संयुक्त राष्ट्रसंघाने २००५ हे वर्ष आंतरराष्ट्रीय पदार्थविज्ञान वर्ष म्हणून घोषित केल्याचे अनेक वाचकांना आठवत असेल). त्यावेळी आईनस्टाईन यांचे वय केवळ २५ वर्षे होते. सहसा कुठे न दिसणारी त्या वयातील त्यांची छबी सोबत आहे. त्या चारपैकी तीन निबंधांचे विषय होते १) फोटो इलेक्ट्रिक परिणाम. याच्या आधारे सौरऊर्जेचे विद्युत ऊर्जेत रुपांतर करण्याचे तंत्रज्ञान विकसित केले गेले. या संशोधनासाठी त्यांना १९२१ या वर्षी पदार्थविज्ञानातील नोबेल पारितोषिक मिळाले:

२) वस्तुमान आणि ऊर्जा यांतील समतोल (इक्विव्हॅलेन्स ऑफ मास अँड एनर्जी). दोन वस्तूंमध्ये गुरुत्वाकर्षण तयार होते ते त्यामधील द्रव्यामुळे (मॅटर). हे द्रव्य म्हणजे वस्तुमान. न्यूटनचे गतिशास्त्र वस्तुमान आणि ऊर्जा या दोन स्वतंत्र अविनाशी कोटी मानते. वस्तुमानाच्या अविनाशित्वावर अभेद्य अणुची (आणि नंतर अणुकेंद्राचीदेखील) संकल्पना आणि रासायनिक प्रक्रियांचा डोलारा उभा आहे. ऊर्जेची रूपे बदलतात, परंतु एकूण ऊर्जा नष्ट होत नाही की नव्याने तयार होत नाही, हा ऊर्जेच्या अविनाशित्वाचा अर्थ आहे. परंतु आईन्स्टाईन यांच्या सिद्धांताने वस्तुमान आणि ऊर्जा यातील द्वैत संपुष्टात आले. वस्तुमानाचे ऊर्जेत आणि ऊर्जेचे वस्तुमानात रुपांतर होऊ शकते हे मान्य झाले. परिणामी, अणुपासोनी ब्रह्मांडाच्या अंतरंगाचे वेगळे दर्शन (षटदर्शनातील दर्शन या अर्थाने) होण्याच्या शक्यता अवतरल्या.

३) विशेष सापेक्षतावादाचा सिद्धांत(स्पेशल थियरी ऑफ रिलेटीव्हिटी).

विशेष सापेक्षता वादाची मांडणी १९०५ या वर्षात झाली असली, तरी त्याच्या सत्यतेबद्दल पुरावा नव्हता. या सिद्धांताने सूर्याच्या गुरुत्वाकर्षणामुळे शून्य वस्तुमानाचा प्रकाशदेखील सूर्याकडे खेचला जाईल हे भाकीत मात्र वर्तविले होते. खग्रास सूर्यग्रहणाच्या जागी जाऊन झाकलेल्या सूर्याच्या जवळून येणाऱ्या ताऱ्याच्या प्रकाशाकडे दुर्बिणी रोखून भाकिताची सत्यता पडताळणे शक्य होते. त्यासाठी सध्याच्या रिशया – युक्रेन जवळील काळ्या समुद्रातील क्रिमिया या बेटावर जाऊन १९१४ सालच्या सूर्यग्रहणात संबंधित मोजमापे करण्याची मोहीम इर्विन फ्रेऊनडलिश (Erwin Freundlich) या जर्मन खगोलतज्जाने

आखली; आणि मोहिमेची टीम तिकडे खाना झाली. त्याच वर्षी पहिल्या महायुद्धाच्या तोफा धडधडू लागल्या. परिणामी रशियन अधिकाऱ्यांनी या मोहिमेतील वैज्ञानिकांना कैद केले आणि त्यांची सयंत्रे जप्त केली. मोहीम फसली. पुढे १९१९ मध्ये झालेल्या खग्रास सूर्यग्रहणात सावो टोमि या देशाच्या अखत्यारीत असलेल्या प्रिन्सिपे या बेटावर जाऊन ब्रिटीश खगोल तज्ज्ञ सर अर्विन एडिंग्टन यांच्या टीमने ते काम फत्ते केले. जर्मन संशोधकाच्या सापेक्षता वादाचा पुरावा एका ब्रिटीश नागरिकाने उभारला. त्याबद्दल महायुद्धाच्या काळातदेखील आईनस्टाईन किंवा एडिंग्टन यांना देशद्रोहाची दूषणे कुणी चिकटवली नाहीत, ही आजही भारतीयांनी लक्षात घेण्याजोगी गोष्ट आहे.

वैज्ञानिक कारकीर्दीमधील एक महत्त्वाचा टप्पा – १९१५

सात वर्षांच्या पाठपुराव्यानंतर १९१५ या वर्षात आईनस्टाईन यांचे विचारविश्व विशेष सापेक्षतावादाच्या मर्यादा ओलांडून सापेक्षता सिद्धांताच्या सार्वित्रिकीकरणाकडे (जनरल थियरी ऑफ रिलेटीव्हिटी) झेपावले होते. काळ महायुद्धाचा होता. हा सिद्धांत आत्मविश्वासाने मांडण्यासाठी बुध या ग्रहाच्या सूर्याभोवताली फिरण्याच्या कक्षेच्या अनियमितपणाच्या वादविवादाने निमित्त प्रविले होते.

न्यूटनचे गतिशास्त्र सांगते की सूर्याशिवाय इतर कोणतीही मोठी अवकाशीय वस्तू जवळपास नसणाऱ्या बुधासारख्या ग्रहाची सूर्याभोवती फिरण्याची लंबवर्तुळाकार भ्रमणकक्षेची पातळी वर्षानुवर्षे स्थिर असली पाहिजे. परंतु १८५९ मध्ये उर्बेन ले वेरीअर (Urbain Le Verrier) या फ्रेन्च खगोल

तज्ज्ञाने (त्यातल्या त्यात) बुधाच्या जवळच्या ग्रहांचा परिणाम लक्षात घेऊन ही पातळी कितपत वरखाली होत राहील याचे गणित न्यूटनच्या गतीशास्त्रानुसार मांडले होते. प्रत्यक्षात या गणितापेक्षा कक्षेच्या पातळीमधील थोडे जास्त बदल दिसत होते. या फरकाचे स्पष्टीकरण देण्यासाठी या तज्ज्ञाने सूर्य आणि बुध या दरम्यान एखादा अज्ञात लघुग्रह पट्टा (steroid belt) असावा असे सुचविले. सोबतच्या चित्रात मंगळ आणि गुरु या ग्रहांच्या दरम्यान दिसणारा लघु ग्रहाचा पट्टा त्या सूचनेचा आधार होता. परंतु तसा पट्टा सूर्य आणि बुध या दरम्यान आढळला नाही. कुणी या ग्रहाच्या जवळ एखादा अज्ञात ग्रह असण्याची शक्यता वर्तविली. कुणी न्यूटनच्या गतीशास्त्रावर आधारलेली गणिते आणि वास्तव यातील फरक पुन्हा पुन्हा तपासला, तर कुणी न्यूटनच्या गतीशास्त्रातील चौकटीतच त्यातील त्रुटी शोधायला

सरसावले. हे सगळे प्रयत्न अयशस्वी झाले. बुधाची बदलती कक्षापातळी शास्त्रज्ञांना वाकुल्या दाखवीतच होती.

यावर भारतीय शिक्षणव्यवस्थेत घडलेली व्यक्ती म्हणेल, बुधाच्या कक्षेची पातळी स्थिर किंवा बदलती राहिल्याने रोजच्या जगण्यात काय फरक पडतो? फुकटची माथापच्ची कुणी सांगितलीय? आणि कक्षेची ती पातळी वरखाली होणे म्हणजे तरी काय हो? असली मल्लीनाथी - पैशांचे हिशोब ठेवता येणे एवढेच गणिताचे काम, घरात आलेला टीव्ही चालू - बंद करता येणे व चॅनेल सर्फिंग करता येणे हे विज्ञान -तंत्रज्ञानाचे काम, शिवजयंती केव्हा साजरी करायची ते सांगणे हे इतिहासाचे काम, मोरोपंतांच्या काव्याप्रमाणे मर्देकरांची कविता गेय नसल्याने ती नसल्यात जमा करणे हे साहित्यशिक्षणाचे काम मानते. ती शिक्षणाचा हेतू नोकरी करून पैसा मिळविणे येवढाच विशाल मानत असल्याने कुतूहलाच्या कक्षांना भक्कम कुंपणे घालते. परंतु आईनस्टाईन हे रसायन वेगळे होते. मग्गा मारत शिकण्या-सवरण्यावरून त्यांचे वयाच्या पंधराव्या वर्षी शाळेशी खटके उडाले होते. परिणामी त्यांनी ती शाळा आणि विद्युत अभियांत्रिकीचा अभ्यासक्रम सोडून दिला. कुतुहलांना मर्यादा पडणे त्यांना अमान्य होते.

त्यांनी बुधाचा गुंता कसा सोडविला हे पाहण्याआधी एखाद्या ग्रहाच्या

भ्रमणकक्षेची पातळी बदलती असणे याचा अर्थ फिरत्या भिंगरीच्या उदाहरणाने समजावून घेऊ या. वर्त्वाकार पुठ्ठ्याच्या चकतीच्या मधोमध एक दात कोरायची काडी बसवून मस्त भिंगरी बनविता येते. चकतीला जेथे काडीचा अक्ष छेदतो, तेथे लाल रंगाने सूर्य दाखवा आणि बुध या ग्रहाची भ्रमणकक्षा चकतीवरील काळ्या वर्तुळाने दाखवा. ही भिंगरी फिरवा. एरवी अक्षावर उभी न राह शकणारी भिंगरी वेगाने फिरताना सरळ उभी राहाते. तिची चकतीदेखील स्थिर भासते. भिंगरीचा वेग कमी होताना मात्र तिचा अक्ष गोते खातो. त्यावेळी फिरती चकती वर-खाली होताना दिसते. चकतीची पातळी वर-खाली होते. शेवटी भिंगरी क्षणभर थांबते. परत उलट्या दिशेने थोडी फिरते आणि शेवटी कायमची थांबते. या निरीक्षणांचे स्पष्टीकरण न्यूटनचे गतीशास्त्र व्यवस्थितपणे देते. बुध ग्रहाच्या भ्रमणकक्षेची पातळी भिंगरीच्या चकतीप्रमाणे अशीच वरखाली होताना आदळते.

फरक एवढाच आहे की भिंगरीला घर्षण आहे; तसे घर्षण अवकाशीय ग्रहगोलांना नसते. परिणामी बुध ग्रहाची चक्रीय गती स्थिर आहे. सूर्यापासून सर्वात जवळ असणारा सूर्यमालेतील सर्वात लहान बुध हा ग्रह स्वतःभोवती पृथ्वीच्या ५९ दिवसात एक प्रदक्षिणा पूर्ण करतो. त्याचसोबत तो सूर्यभोवती ८८ पृथ्वी – दिवसात एक फेरा पूर्ण करतो. यांमध्ये बदल होत नाहीत. ब्धाच्या कक्षपातळीचे वरखाली होणे यावरील वाद आईनस्टाईन यांच्या या संशोधनामुळे समाधानकारकतेने मिटला. सापेक्षतेच्या सामान्य सिद्धांताने अवकाश -काळ (Space-Time) या एकात्म जाळ्याची वक्रता हे गुरुत्त्वाकर्षणाचे कारण असल्याचे प्रस्थापित केले. प्रथम १९०५ या वर्षी आईनस्टाईन यांच्या विचारविश्वाने वस्तुमान - ऊर्जा यामधील द्वैत वितळविले. त्यानंतर १९१५ मध्ये अवकाश आणि काळ यामधील द्वैत वितळले. वस्तुमानामुळे या अद्वैती जाळ्याला प्राप्त झालेली वक्रता हे गुरुत्त्वाकर्षण उद्भवण्याचे कारण मान्य झाल्याने, त्याचे स्वतंत्र अस्तित्व मानण्याची गरज संपली.

या यशाने खूपच उल्हिसत झाल्याची नोंद तरुण अल्बर्ट आईनस्टाईन यांनी केली आहे. त्यात ते म्हणतात, '...या संशोधनानंतर काही दिवस हृदयस्पंदने वाढली (पाल्पिटेशन) होती. ही थियरी रचणाऱ्या माझ्याकडेच मी कौतुकभरत्या नजरेने एखाद्या त्रयस्थासारखा आश्चर्याने पाहत होतो...' बुध या ग्रहाने आईनस्टाईन यांच्या सापेक्षतेच्या सामान्य सिद्धांताला (जनरल थियरी ऑफ रिलेटीव्हिटी) सर्वमान्यता प्राप्त करून दिली. मागे वळून पाहताना आईनस्टाईन यांच्या संशोधन कारिकर्दीच्या या टप्प्याने कृष्णविवरे, अणुऊर्जा – अण्वस्त्रे यांचे शोध घेण्याची

आणि त्यांच्या अस्तित्त्वांची स्पष्टीकरणे देण्याची प्रेरणा मिळाली. अणुऊर्जेचे पहिले विश्वरूप दर्शन हिरोशिमा - नागासाकी येथील अमानुष विध्वंसाने झाल्याने शांतता आणि जागतिक पातळीवर लोकशाही प्रक्रिया रुजणे या मूल्यांचे महत्त्व पुन्हा एकदा अधोरेखित झाले. आईन्स्टाईन - स्मरणाच्या निमित्ताने त्यांचे पुढील विधान आठवते: '...विशिष्ट विचारचौकटीतून तयार झालेल्या प्रश्नांची उकल त्याच विचारचौकटीतून नाही होऊ शकत. त्यासाठी जुनी विचार चौकट ओलांडून नवी वाट धैर्याने चोखाळावी लागते...' न्यूटनच्या दबदब्याला कदाचित वचक्रन पुढील ३०० वर्षात गुरुत्वाकर्षणाच्या उगमाबाबत कुणी ब्र काढला नव्हता. आईनस्टाईन यांच्याही अभ्यासिकेत चार आदरणीय शास्त्रज्ञांची छायाचित्रे होती. त्यातील एक आयझॅक न्यूटन यांचे होते. अशा न्यूटनला ओलांडून गुरुत्वाकर्षणाचा उगम अवकाश - काळ यांच्या जाळ्याला वस्तुमानामुळे येणारी वक्रता कारणीभूत असते असे सांगणाऱ्या आईनस्टाईन यांच्या स्मरणाने भक्तिभावाची जागा आदराला मिळून आदरणीय व्यक्तींना ओलांडण्याचे धैर्य भारतीय मनामनात अंकुरण्याची आशा करू.

लेखक : प्रकाश बुरटे,

अनेक वर्षे भाभा अणुसंशोधन केंद्रात काम. विज्ञान शिक्षणात रस. त्यासंबंधी संशोधन आणि लेखन. prakashburte123gmail.com

घुबडाची नजर

लेखक: विनता विश्वनाथन

अनुवाद: ज्योती देशपांडे

माझ्या पदव्युत्तर संशोधनातला बराच काळ मी जंगलामधे भटकण्यात घालवला. जंगलात राहाणे हे माझ्यासारख्या शहरी माणसासाठी आव्हानात्मक तर होतेच पण त्यात मजापण खूप आली. तेव्हाची एक गोष्ट मला खूप आवडायची, ती म्हणजे रात्रीच्या वेळी जागे राहन जंगलातून येणारे आवाज ऐकणे. आमची राहाण्याची जागा गावापासून द्र असल्याने तिथे रात्रीच्या शांततेत विविध जनावरांचे आवाज ऐकू यायचे. चितळ, सांबार, तरस, कोल्हा, लांडगा, घुबड, वटवाघूळ, बेडूक, कितीतरी आवाज ऐकायला मिळत! यातला एक आवाज मला आवडायचा 'हू हू ऊ ऊ ऊ' सावकाश आणि गंभीर असा हा आवाज ब्राऊन फिश घुबडाचा होता. कधी एकाच घ्बडाच्या ओरडण्याचा आवाज असायचा तर कधी दोन घुबडांचा संवाद चालू असायचा.

कधीकधी जंगलातून फिरताना त्यांचा आवाज उडत उडत एका दिशेने जाताना ऐकू येत असे. या दोन फूट पक्ष्याला मी दिवसा उजेडी एकदाच पाहिलं होतं. हा पक्षी बहुतेक दिवसभर आराम करतो आणि रात्री सिक्रय असतो. पण यांचा आवाज नेहमीच ऐकू येतो.

घुबडाबद्दल तेव्हा मला कमीच माहिती होती पण त्यांना ओळखायला कधी अडचण आली नाही. त्याच्या चेहऱ्याची वैशिष्ट्यपूर्ण ठेवण आणि त्याचे डोळे हे इतर पक्ष्यांपेक्षा खूपच मोठे असतात. २/३ फुटी घुबडाचे डोळे ५/६ फुटी माणसाच्या डोळ्यांइतके मोठे असतात. डोळ्याप्रमाणेच त्याची बुबुळेही मोठी असतात. जास्तीतजास्त प्रकाश आत येऊ शकेल अशी त्यांची रचना असते. त्यामुळे रात्रीच्या अंधारात सुद्धा ते स्पष्टपणे बघू शकतात. त्याच्या डोळ्यांची आणखीही

काही वैशिष्ट्ये आहेत. घुबडाचे डोळे इतर पक्ष्यांप्रमाणे चोचीच्या दोन बाजूंना नसतात तर चेहऱ्याच्या समोरच्या पुढील सपाट बाजूवर असतात. घुबडाला बुबुळे हलवता येत नाहीत. माणूस जसा समोर येणाऱ्या वस्तू नुसते डोळे हलवून पाहू शकतो (मान न हलवता) तसं घुबडाला जमत नाही. समोरच्या दिशेने बघत असतील तर इतर पक्ष्यांच्या तुलनेने घुबडाचे दृष्टी-क्षेत्र (field of vision) खूपच कमी असते. दुसऱ्या दिशेला बघायचे तर त्याला मानच फिरवावी लागते. त्यासाठीच त्यांची मान २७० अंशात फिरू शकते, म्हणजे घुबड मान फिरवून मागचं बघू शकतो! डावीकडून मान फिरवून उजवीकडचंही बघू शकतो आणि वर बघत बघत मान उलटी करून मागेपण बघू शकतो!

आपण माणसं आपली मान जास्तीत जास्त ९० अंशापर्यंतच फिरवू शकतो. आपल्या मागे काय चालले आहे, हे पाहण्यासाठी आपल्याला शरीर वळवावं लागतं. आणि जर मान जास्त वळवण्याचा प्रयत्न केला, तर मानेजवळच्या मेंदूकडे जाणाऱ्या नसा बंद होऊन रक्त पुरवठा बंद होतो आणि माणूस बेशुद्ध पडतो. घुबड मात्र २७० अंशात कसं काय मान फिरवतं? कोणत्याही प्राण्याचं डोकं २७० अंशात

फिरवण्यासाठी दोन गोष्टी लागतील. पहिलं म्हणजे मानेतील हाडं लवचीक असावी लागतील आणि दुसरं – मेंदूकडे जाणारा रक्त पुरवठा चालू रहायला हवा.

घुबडाच्या मानेची रचना सायकलच्या चेनची रचना पाहन समजून घेता येईल. समजा सायकलची साखळी ९० कड्यांची आहे. जर आपण तितक्याच लांबीची साखळी १० कड्यांची बनवली तर काय होईल? सायकल तितक्याच सहजपणे चालेल का? नाही. तेवह्याच लांबीमधे जितक्या जास्तीतजास्त कड्या असतील तितकी ती जास्त सुरळीत फिरेल. मणका असलेल्या सर्व प्राण्यांची मान मणक्याच्या साखळीने बनलेली असते. सस्तन प्राण्याच्या मानेमधील मणक्याच्या सात हाडांऐवजी घुबडाच्या मानेमधे १४ हाडे असतात. म्हणजेच कमीतकमी लांबीत जास्त मणके व जास्त सांधे असल्याने घुबडाची मान माणसापेक्षा सहजपणे आणि बरीच जास्त वळू शकतं.

तसंही पक्ष्यांच्या बाबतीत हे काही फारसं वेगळं नाही. त्यांच्या मानेमधे ११ ते २५ मणके असतात. हंसासारख्या लांब मानेच्या पक्ष्यामधे २२-२५ मणके असतात. म्हणून त्यांची मान जास्तच लवचीक असते.

आता दुसरी समस्या – मेंदूला होणारा रक्तपुरवठा न थांबवता मान कशी वळवता येईल? घुबडाच्या रक्तवाहिन्यांमधील काही विशेष रचनेमुळे घुबड विनाअडथळा मान फिरवू शकतं.

पृष्ठवंशीय प्राण्यात मेंदूला रक्तपुरवठा करणाऱ्या दोन धमन्या, मानेच्या डाव्या आणि उजव्या बाजूला असतात. पण घुबडामधे त्या मणक्याच्या समोरच्या बाजूला म्हणजे मानेच्या मधोमध असतात. जेव्हा आपण मान वळवतो तेव्हा आपल्या धमन्या घुबडाच्या धमन्यांपेक्षा जास्त वळतात. पण घुबडाच्या धमन्या मानेबरोबर जास्त वळत नाहीत. सायकलच्या चाकाचंच उदाहरण घ्या. चाकाच्या बाहेरच्या बाजूवरील एखादा

बिंदू आतल्या भागातील बिंदू पेक्षा जास्त फिरतो.

मनुष्याच्या मानेतील हाडांमधील छिद्रे जेमतेम रक्तवाहिन्या जातील इतकीच असतात. तेच घुबडाच्या रक्तवाहिनीसाठी दहापट जास्त जागा असते. त्यामुळे मान वळवताना त्या वाहिन्यांवर दाब पडत नाही आणि मान सहज वळू शकते. शिवाय मान वळवताना एखादी वाहिनी दाबली गेली तरी दुसऱ्या वाहिनीतून रक्त पुढे जाऊ शकते.

आणखी एक नाविन्यपूर्ण गोष्ट म्हणजे घुबडाच्या वाहिन्यांमधे मधूनच फुग्यासारखे लवचीक भाग असतात. त्यामधे रक्त साठू शकते.

अशी रचना आणखी कोणत्याही प्राण्यांमधे नसते. शास्त्रज्ञाच्या मते जेव्हा कधी मेंदूचा रक्त पुरवठा खंडित होतो, तेव्हा त्या फुग्यातील रक्त मेंदूकडे पोहोचते म्हणूनच घुबडे जेव्हा आपल्याला पाठमोरं दिसतं, तेव्हाही ते आपल्याकडे पाहात असतं.

संख्या कमी होत चालली आहे

भारतामधे घुबडाच्या ३० प्रजाती आढळतात. शास्त्रज्ञांच्या मते घुबडांची संख्या कमी झाली आहे. जंगलतोड हे एक कारण असू शकेल. शिवाय जादूटोणा करण्यासाठी किंवा ताईत मंत्रून देण्यासाठी देखील यांची शिकार केली जाते. काही घुबडांच्या डोक्यावर तुऱ्यासारखी पिसे असतात, ती जादूटोण्यासाठी जास्त प्रमाणात वापरली जातात. त्यामुळे जिवंत घुबडे पकडलीही जातात आणि घुबडे मारलीही जातात. घुबडांचा व्यापार राष्ट्रीय व आंतरराष्ट्रीय स्तरावर होतो. नेपाळ, थायलंड, चीन, ब्रह्मदेश येथील वन्यजीवांच्या व्यापारात घुबडांची संख्या जास्त आहे.

एवढं असूनही शिकार करण्यासाठी ते दृष्टीपेक्षा त्याच्या ऐकण्याच्या क्षमतेवर जास्त विसंबून असतं. घुबडाचे कानही डोळ्यासारखेच चेहऱ्याच्या पुढील भागावरच असतात आणि काही प्रजातींमधे एक कान दुसऱ्या कानापेक्षा वरती असतो. घुबडाचे कान इतके तीक्ष्ण असतात की गृड्प अंधारात

सुद्धा उंदीर किंवा चिचुंद्रीच्या आवाजावरून ते त्यांना पकडू शकते.

अजून एक गोष्ट आहे, ते आवाज न करता चुपचाप उडते. त्यांच्या पंखाचा आकार असा काही वैशिष्ट्यपूर्ण असतो की उडताना कमीतकमी आवाज होईल. त्याचबरोबर घुबडाच्या शरीरावर इतर पक्ष्यांपेक्षा खूप जास्त पिसे असतात. त्यामुळे उडताना होणारा पंखांचा आवाज शोषला जातो. रात्रीच्या वेळी आवाज न करता उडणारे आणि मोठाले डोळे असलेले हे पक्षी भीतीदायकच आहेत. पण तरीही मला ते भावतात.

हिंदी संदर्भ - अंक ९७ मधून साभार

लेखक : विनता विश्वनाथन. हिंदी संदर्भमध्ये कार्यरत

अनुवाद : ज्योती देशपांडे, संदर्भ गटात सहभागी

अरेच्चा ! हे असं आहे तर !

भाग - १४

लेखक: या. इ. पेरेलमन • रूपांतर: शशी बेडेकर

मित्रांनो तुम्ही दिवसातून चार - पाच (खरं तर २०-२५) वेळा तरी जगातल्या महत्त्वाच्या प्रयोगशाळेत जाता आणि रोज शास्त्रज्ञांबरोबर तुमची बातचीत होते हे सांगितलं तर तुमचा विश्वास बसणार नाही, काहींना पटणार नाही तर काही विचारात पडतील. काळजी करू नका मी सांगतो तुमच्या घरातले स्वयंपाकघर प्रयोगशाळा आणि शास्त्रज्ञ म्हणजे आई. हे वाचल्यावर तुम्हाला हसू येईल, गंमत वाटेल. पण एकदा आई स्वयंपाकघरात कोणकोणत्या क्रिया करते ते आठवून पहा. ते सर्व प्रयोग आहेत - प्रयोग महटला की त्यात साहित्य, कृती, निरीक्षण आणि निष्कर्ष आलेच. आई देखील हे करत असते असे तुम्हाला दिसेल.

आई करत असलेल्या काही कृती मी देत आहे (तुम्हीही आठवडाभर कृतींची यादी करा.) दूध पातेल्यात ओतण्यापूर्वी पातेल्यात थोडे पाणी घेतले, अळूच्या भाजीत चिंचेचे पाणी टाकते. भात शिजवताना त्यातील एक शित चिमटीत घेऊन तपासते. फोडणीत मिरचीचे तुकडे टाकल्यावर थोडी मागे होते, इडलीचे पीठ एक रात्र झाकून ठेवते, बासुंदी करताना पातेल्यात काचेची एक बशी ठेवते. वर्षाचे लोणचे करताना त्यात ती खूप तेल, मीठ टाकते. मोरंबा करताना भरपूर साखर घालते, काही पालेभाज्या मुद्दामहून लोखंडी कढईत करते, घट्ट तुपाची बरणी गॅसवर न ठेवता गॅसच्या शेजारी ठेवते, दही लावताना द्ध कोमट करून त्यात अर्धा चमचा दही ढवळून टाकते, उकळत्या भाजी, आमटीतला डाव फडक्याने धरून ढवळते, पापड तळण्यापूर्वी पापडाचा छोटा तुकडा आधी तेलात टाकते. तुम्ही या यादीत आणखी बरीच भर घालू शकता. कामात असताना आईच्या प्रत्येक कृतीला हे असं का? तसं का? असे प्रश्न विचारलेत तर आईची प्रयोग करायची लय बिघडेल आणि ती तुम्हाला

वैतागून ताबडतोब बाहेर काढेल. त्यामुळे स्वयंपाक झाल्यावर दमून आई जेव्हा फॅनखाली थोड्यावेळ शांत बसलेली असेल (अर्थात हे अशक्यच आहे कारण आईची कामातून सुटका कधीच नाही, ती सतत कामच करत असते.) तेव्हा तिला विचारा. आज आपण आई करत असलेल्या एका कृतीमांगे असलेलं विज्ञान पहाणार आहोत.

बहुतेकांनी बिघतलं असेल किवा अनुभवलं असेल की उकळतं गरम पाणी, किंवा सर्दीचा काढा, ग्लासात ओतण्यापूर्वी आई ग्लासात चमचा ठेवते आणि नंतर गरम पाणी ओतते त्यामुळे ग्लासला तडा जात नाही अर्थात हे ज्ञान आईला आईच्या आईकडून किंवा सासू (तुमची आजी) कडून मिळालेलं असेल. गरम पाण्याने ग्लास का तडकतो? आणि एक चमचा ठेवल्यावर ग्लास का तडकत नाही? ह्या मागचं शास्त्रीय तत्त्व कोणतं?

ग्लास पातळ काचेचा असल्याने ग्लासला उष्णता सहन होत नाही आणि त्यामुळे त्याला तडा जातो म्हणून जाड काचेचा ग्लास घ्यावा. अगदी नेम धरून हे चुकीचे उत्तर आहे.

काचेला उष्णता दिल्यास तिचे प्रसरण समान न होता असमान होतं. आपण गरम पाणी ग्लासात ओततो तेव्हा आतला थर गरम होतो त्याचे प्रसरण होते पण बाहेरचे थर तुलनेने थंडच असतात. (काच उष्णतेची दुर्वाहक आहे.) त्यामुळे त्या थरांत दाब निर्माण होतो आणि त्याचा एकत्रित परिणाम म्हणजे ग्लास, काच तडकते.

जर ग्लास जाड काचेचा असेल तर त्या काचेला जास्त थर असतात त्यामुळे पातळ काचेच्या ग्लासपेक्षा जाड ग्लास तडकण्याची शक्यता जास्त असते. इथे हे लक्षात घ्यायला हवे की आपल्याला जरी काच एकसंध दिसत असली, त्यात आपण थर निर्माण केलेले नसले, तरी आतल्या भागात असलेला पदार्थ उष्णतेच्या संदर्भात एखाद्या थराप्रमाणे वागतो. तेवढाच झटकन प्रसरण पावतो. जेव्हा तिथे धातूचा चमचा असतो, तेव्हा मात्र काचेच्या आधीच तो धातू उष्णता झटकन वाहून नेतो, काचेवर परिणाम होऊ देत नाही.

जे भांडं (उपकरण) वापरल्यावर कमी प्रसरण पावतं (किंवा प्रसरण पावत नाही)

ते आदर्श उपकरण असं शास्त्रज्ञ मानतात. कार्टझ् हा पदार्थ काचेपेक्षा १५/२० टक्के कमी प्रसरण पावत असल्याने कार्टझ् पासून बनवलेले भांडे (जाड, पारदर्शक) बर्नरवर तापवून एकदम थंड बर्फाच्या पाण्यात बुडविल्यासही तडकत नाही. (बोरोसिल कंपनीची भांडी तुम्हाला माहीत असतील.) ह्या मागे दोन कारणे लपलेली आहेत. एक म्हणजे कार्टझ् १७००° ला वितळते कार्टझ काचेपेक्षा जास्त चांगली उष्णतेची सुवाहक आहे.

साधा काचेचा ग्लास गरम केल्यावरच तडकतो, असं नाही तर तो एकदम थंड केला तरीही तडकतो कारण पुन्हा काचेचे असमान आकुंचन, प्रसरण हेच आहे.

बऱ्याच कारखान्यात उकळतं पाणी लागतं ते तयार करण्यासाठी मोठमोठे बॉयलर लागतात. बॉयलरच्या आतील पाण्याची पातळी, तापमान पाहण्यासाठी काचेचे दर्शक. तापमापी असतात. ह्या दर्शकाची, तापमानाची देखभाल करायला पूर्वी खूप त्रास व्हायचा कारण बॉयलरमधील तापमान, पाण्याची पातळी, त्यात तयार होणारी वाफ आणि ह्या सगळ्यात काचेचे उष्णतेमुळे होणारे असमान प्रसरण ह्यामुळे काचेचे दर्शक तुटायचे / फुटायचे. ह्यावर उपाय म्हणून हल्ली हे दर्शक दोन वेगळ्या काचेपासून बनवले जातात. ती प्रसरण

न पावणारी असते.

उष्णतेचा विषय निघालाच आहे तर आपण उष्णतेचे सुवाहक आणि दुर्वाहक ह्याची थोडी माहिती घेऊ. सर्व धातू हे उष्णतेचे सुवाहक आहेत आणि त्यामुळेच आईचा स्वयंपाक लवकर व्हावा, वेळ वाचावा ह्यासाठी स्वयंपाकाची भांडी धातूंची आहेत. प्रत्येक धातूची उष्णता वाहून नेण्याची ताकद, शक्ती वेगवेगळी असते आणि बहुतेक सर्व अधातू उष्णतेचे दुर्वाहक आहेत. (धातू: सोने, चांदी, लोखंड, ॲल्युमिनीअम, तांबे, इ. अधातू: प्लॅस्टिक, लाकूड, एबोनाईट, कार्बन, इत्यादी).

आईच्या स्वयंपाक घरातील चहाचे भांडे, निर्लेपच्या वेगवेगळ्या आकाराच्या कढया, तवे ह्या सगळ्यांना गॅसवरून उतरवून ठेवण्यासाठी प्लॅस्टिक किंवा एबोनाईटचे दांडे बसवलेले असतात हे तुम्हाला आता कळलेलं असेलच. गावातली घरं पूर्वी मातीने लिंपलेली असायची. भर उन्हाळ्यात तुम्ही त्या घरात गेलात तर एकदम शहरातील एसी सारखं थंड असं का वाटतं? ह्याचं कारण तुम्ही सांगू शकाल की माती ही उष्णतेची दुर्वाहक असल्याने बाहेरची तापलेली हवा – उष्णता आत येत नाही आणि आतली थंड हवा बाहेर जात नाही.

शास्त्रज्ञांना कोणते प्रश्न पडतील, कशाच कौत्क वाटेल ह्याची कोणीच खात्री देऊ शकत नाही. असाचं एक प्रश्न रशियातील शास्त्रज्ञांना पडला. तो म्हणजे उन्हाळ्यात जिमनीच्या खाली तीन चार मीटरवर कोणता ऋतू असेल? बाहेरचं तापमान आणि खालचं तापमान सारखं असेल की वेगवेगळं असेल. तसंच हिवाळा किंवा बर्फ पडलेला असेल तेव्हा जिमनीखालचे तापमान किती असेल? आणि हा प्रश्न पडायचं कारण म्हणजे पाण्याचे पाईप. नाही समजत ना... रशियात पूर्वी पाण्याचे पाईप जिमनीवर टाकले जात. थंडीत बर्फ पडल्यावर पाईपातल्या पाण्याचे बर्फ होताना त्याचे आकारमान वाढून पाईप प्रत्येक वेळा फुटायचे. हिवाळ्यात पाईप फुटू नयेत ह्यासाठी काय करता येईल ह्याचा विचार करताना रशियातील शास्त्रज्ञांना वरचे प्रश्न पडले.

त्यावेळी अभ्यास करताना त्यांच्या असं लक्षात आलं की माती ही उष्णतेची दुर्वाहक आहे. त्यामुळे जिमनीवरचा उन्हाळा किंवा हिवाळा जिमनीत खाली उतरण्यास खूप वेळ लागतो. त्यामुळे हिवाळ्यात जरी जिमनीवर बर्फ असलं तरी ती थंडी जिमनीखाली ३/४ मीटरपर्यंत न पोहोचल्याने पाणी गोठत नाही. त्यामुळे पाईप फुटण्याचा धोका नाहीसा झाला.

पाईप जिमनीखालून घालण्यापूर्वी शास्त्रज्ञांनी ह्या तापमानाची प्रत्यक्ष नोंद केली. लेनिनग्रॅडच्या वातावरणातील जिमनीवरील उन्हाळा जिमनीखाली पोहोचण्यास ७६ दिवस लागले तर वातावरणातील थंडी जिमनीखाली जाण्यासाठी तब्बल १०८ दिवस लागले.

म्हणजे समजा सर्वात उष्ण दिवस २५ जुलै असेल तर जिमनीखाली सर्वात उष्ण दिवस यायला ९ ऑक्टोबर उजाडेल आणि सर्वात थंड दिवस जानेवारीत असेल तर जिमनीखाली सर्वात थंड दिवस यायला मे उजाडेल. जिमनीत खूप खाली गेलो तर तापमानात फारसा फरक जाणवणारच नाही.

फ्रें च शास्त्रज्ञ लब्बासिए ह्याने जिमनीखाली २८ मीटरवर १५० वर्षापूर्वी एक थर्मामिटर ठेवला आहे त्याच वाचन ११.७°С असे आहे आणि इतक्या वर्षात अजूनही त्या तापमानात तसूभरही फरक झालेला नाही.

कळलं, हे सगळं असं आहे !

अनुवाद : शशी बेडेकर, निवृत्त मुख्याध्यापक.

या. इ. पेरेलमन यांच्या 'फिजिक्स कॅन बी फन' या पुस्तकातून साभार.

प्रकल्प ३:

आपोआप चालणाबी कागदी होडी

लेखक: किरण बर्वे

अिता पावसाचे दिवस आहेत, पाण्यात होड्या सोडून त्या कशा डोलतात, चालतात हे बघणे मजेचे असते. प्रयोगात आपण थोडा वेळ कोणत्याही प्रकारे हाताने न ढकलता होडी चालवता येईल का हे बघू.

साहित्य:

- १. कार्ड बोर्डचा तुकडा
- २. पाण्याने भरलेले मोठे भांडे, ट्रे
- ३. द्रव साबण
- ४. काडी

कृती:

 कार्ड बोर्डचा तुकडा बोटी सारखा कापा. साधारण पणे २ इंच लांब. त्या बोटीला मागे एक त्रिकोणी भोक पाडा.
 (आ. १)

- काडी साबणाच्या पाण्यात बुडवा.
 आणि भोकाच्या कडाना साबणाचे पाणी लावा.
- ३. हलकेच बोट पाण्यावर अलगद ठेवा.

मग गंमत बघा. बोट काही सेकंद पाण्यावर मजेत फिरते का? असे का होते? साबणाच्या पाण्याचा थर जरा जास्त जाड दिला तर काय होते? बोट जास्त वेळ फिरेल की कमी वेळ? का फिरणारच नाही? ह्याच प्रश्नांची उत्तरे आता मिळवायचा प्रयत्न करू.

साबणाच्या पाण्याऐवजी साबणाचा चुरा कडांना चिकटवा आणि पुन्हा बोट पाण्यात सोडा, निरीक्षणे नोंदवा.

भांड्यात पाण्याऐवजी दुसरा द्रव, तेल, रॉकेल, दूध इ. घ्या मग तुमच्या निरीक्षणात फरक पडेल का?

बोटीचा आकार, मागील भोकाचा आकार ह्यात फरक केला तर काय बदल होतील?

प्रयोगामागील तत्त्व:

साबण वापरून आपण हा प्रयोग केला. साबणाचा कोणता गुणधर्म बोट पुढे ढकलली जाण्यासाठी कारणीभूत आहे? हा महत्त्वाचा मुद्दा आहे. पृष्ठीय ताण समजावून घ्या. साबण पाण्यावरचा पृष्ठीय ताण खूप कमी करतो त्यामुळे बोटीला कोणताही विरोध नसतो, त्याच वेळेस त्रिकोणी कडांमुळे बोटी वरची पृष्ठीय ताण बले तिला पुढे ढकलतात.

फक्त त्रिकोणी भोकाचा विचार करू.

आता मला सांगा.

साबण कपडे धुण्यासाठी का वापरतात?

हे सर्व समजावून घेणे खूप छान आहे आणि ह्या प्रयोगाने अभ्यासाची सुरवात करा.

लेखक: किरण बर्वे, मो. - ९४२३० १२०३४

अंतुलन का अअंतुलन?

लेखक: विवेक मेहता • अनुवाद: ज्ञानदा गद्रे-फडके

रस्सीखेच हा एक खूपच मजेशीर खेळ आहे. तुम्ही सुद्धा कधीतरी खेळला असाल किंवा पाहिला तरी असेल. दोराचे एक टोक पकडून एक संघ दुसऱ्या बाजूच्या संघाला आपल्याकडे ओढण्याचा प्रयत्न करतो. अर्थातच स्पर्धा ताकद आजमावण्याची असल्यामुळे, ज्या संघाचे खेळाडू जास्त जोर लावून दोर खेचतील तोच संघ जिंकेल. पण जर दोन्ही संघांनी सारखाच जोर लावला तर काय होईल? काहीही नाही. दोर आणि दोन्ही संघ आपापल्या जागी आहे तसेच राहतील. ना कोणी जिंकेल, ना कोणी हरेल. आणि यांत्रिकीच्या (मेकॅनिक्सच्या) भाषेत आपण महणू की दोरावर लावलेल्या ह्या दोन बलांची ही व्यवस्था संतुलित आहे. ह्या संतुलित

व्यवस्थेवर आपण काही प्रयोग करू शकतो. पण त्या आधी आपण हा दोर आणि त्याला लावलेल्या बलांच्या ह्या विशेष वाटणाऱ्या व्यवस्थेला सामान्य रूपात मांडूया म्हणजे दोन बलांची अशी कुठलीही व्यवस्था आपण समजावून घेऊ शकू.

ह्या दोन बलांची व्यवस्था समजून घेण्यासाठी चित्र क्रमांक १ मध्ये दाखवल्यानुसार आपण मानूया की एका टेबलावर एक बिंदू 'O' आहे. ह्या बिंदूच्या एका बाजूला टेबलाच्या सपाट प्रतलात बल F_1 लावले आहे आणि पहिल्या बलाच्या दिशेच्या विरुद्ध F_2 रस्सीखेचेशी तुलना केली तर F_1 हे एका संघाने लावलेले बल आहे आणि F_2 हे दुसऱ्या संघाने लावलेले बल.

बिंदू 'O' हा दोरावरचा कोणताही बिंदू असू शकतो. सोपे पडण्यासाठी आपण असेही मानूया की, बल F_1 बिंदू T_1 च्या पूर्वेला लावले आहे आणि F_2 बिंदू T_2 च्या पश्चिमेला. आत्ताच आपण पाहिल्याप्रमाणे जर $F_1 = F_2$ असेल तर बिंदू 'O' ची टेबलावरची स्थिती आहे तशीच राहील. जर F_1 आणि F_2 . मधील एखादे बल दुसऱ्या बलापेक्षा जास्त झाले तर बिंदू 'O' हा , त्या बलाच्या दिशेत ओढला जाईल. जरी ह्या दोन बलांची ताकद कितीही असली तरी बिंदू 'O' हा नेहेमीच T_1 आणि T_2 ह्यांना जोडणाऱ्या रेषेवरच राहील आणि फक्त त्यावरच नजर ठेवून आपण सांगू शकतो की हे तंत्र संतुलित आहे का नाही.

आता आपण ज्या प्रयोगाबद्दल बोललो होतो, त्याच्याकडे वळूया. लक्षात ठेवा की हा प्रयोग आपण तेव्हाच करू शकतो जेव्हा ही दोन्ही बले बरोबरीची असतील म्हणजेच तंत्र संतुलित असेल. बलांच्या ह्या संतुलित व्यवस्थेत आता अजून एक बल लावूया. रस्सीखेच खेळाचा विचार केला तर जर तिसरा संघ मैदानात उतरला आणि चित्र २ मध्ये दाखवल्याप्रमाणे जर बिंदू 'O' ला आपल्याकडे ओढण्याचा प्रयत्न करू लागला तर जी स्थिती होईल तीच आहे ही. पण काही अटी आहेत ज्या नवीन बलाला लागू होतील.

हे बल सुद्धा त्याच प्रतलात
 (टेबलाचा सपाट पृष्ठभाग) असले पाहिजे,

ज्यात पहिली दोन बले आहेत. म्हणजे सगळी बले एकाच प्रतलात (coplanar) हवीत.

- २. ह्या बलाची ताकद आधीच्या दोन बलांइतकीच असेल, म्हणजेच $F_1=F_2=F_3$; आणि
- हे बल आधीच्या दोन बलांच्या दिशेत म्हणजे पूर्व िकंवा पश्चिम दिशेत नसले पाहिजे.

आता असा प्रश्न उभा राहतो की हे नवीन बल लावल्यामुळे आपल्या ह्या नव्या तंत्राचे काय होईल? लहानपणी एक म्हण आपण ऐकली होती, ''तीन तिघाडा, काम बिघाडा'' ह्या नवीन बलामुळे आपली व्यवस्था बिघडेल का? असंतुलित होईल का? का ही नवीन व्यवस्था संतुलित असेल? आणि संतुलित असेल? सस्सीखेचच्या संदर्भात आपण असा प्रश्न विचारू शकतो की जेव्हा तिन्ही संघ समान बले लावतील, तेव्हा कोणत्या परिस्थितीत एक संघ जिंकू शकेल?

तुमच्याकडे आहेत ह्या प्रश्नांची उत्तरे?

काहीतरी जुगाड करून तुम्ही हा प्रयोग करू शकता आणि हे प्रश्न पडताळून पाहू शकता आणि काही जुगाड करू शकला नाहीत तर कागद पेन घेऊन कामाला लागा.

सर्वांत आधी आपण दोन गोष्टींचा विचार करूया, ज्या कदाचित आपल्याला ह्या प्रश्नांची उत्तरे शोधण्यात मदत करू शकतील.

१. हे तर नक्की आहे की बिंदू 'O' त्याच्या आधीच्या जागेवर राहणार नाही. हे आपण कसे काय म्हणू शकतो? चित्र क्रमांक १ मध्ये दाखवलेल्या स्थितीत दोन बले एकमेकांशी संतुलित स्थितीत आहेत. एक प्रकारे आपण असे म्हणू शकतो की बिंदू 'O' वर लागलेली बले F_1 आणि F_2 एकमेकांचा परिणाम निष्प्रभ करतात. त्यात जर अजून एक बल ह्या व्यवस्थेमध्ये आपण जोडले तर ही नवीन व्यवस्था तोवर संतुलित नसेल जोवर बिंदू 'O' वर लागलेली सर्व बले एकमेकांचा परिणाम निष्प्रभ करत नाहीत. चित्र क्रमांक ३ मध्ये दाखवलेल्या स्थितीत

बले F_1 आणि F_2 तर एकमेकांचा परिणाम निष्प्रभ करतात पण बल F_3 ला निष्प्रभ करणारे कठलेही बल नाही.

आपल्या ह्या निरीक्षणामधून असे प्रश्न उभे राहतात की एका बिंदू वर लागणारी समान ताकदीची तीन बले एकमेकांचा परिणाम निष्प्रभ करू शकतात का? कुठल्या परिस्थितीमध्ये? हा प्रश्न वर विचारलेल्या प्रश्नांचेच एक रूप आहे. ह्यावर पुढे जाण्याआधी अजून एका गोष्टीचा विचार करू या.

२. आपण पाहिले की दोन बलांच्या संतुलित व्यवस्थेत लावलेल्या तिसऱ्या बलावर काही अटी लागू होतात. जर तुम्ही ह्या अटींचा बारकाईने विचार केलात तर असे लक्षात येईल की दोन तर अगदी पक्क्या आहेत. त्यामध्ये बदल करता येण्याची शक्यता नाही. पण जी शेवटची अट आहे, ती मात्र थोडी लवचीक आहे. ती पूर्ण करण्यासाठी एवढेच पुरेसे आहे की नवीन बल आधीच्या दोन बलांच्या दिशेत नसावे. म्हणजेच पूर्व किंवा पश्चिम दिशेत नसावे. ह्या दिशा जरी सोडून दिल्या तरी अशा अगणित दिशा आहेत, ज्या दिशांमध्ये आपण नवीन बल लावू शकतो. (चित्र क्रमांक ४ पहा.) ह्याशिवाय अजून एक घटक आहे, जो निवडणे आपल्या हातात आहे – हे बल त्या दिशेत, O पासून किती अंतरावर लावले जावे? म्हणजेच T_3 ची स्थिती आपण ठरवू शकतो. पहिल्या भागात विचारलेल्या प्रश्नांची उत्तरे ह्या दोन घटकांवर अवलंबून आहेत का?

आपल्यासमोर दोन प्रश्न आहेत.

१. कोणत्या परिस्थितीत एकाच बिंदूवर आणि एकाच प्रतलात लावलेली तीन समान ताकदीची बले असलेली व्यवस्था संतुलित असेल? आणि

२. बल लावण्याची दिशा आणि त्याचे स्थान ह्याचा खेळाच्या निकालावर काय परिणाम होईल?

ह्या दोन्ही प्रश्नांची आपण क्रमाक्रमाने चर्चा करूया.

कधी होणार संतुलन?

लक्षात असू द्या की इथे सर्व बले एकाच बिंदूवर काम करत आहेत आणि एकाच प्रतलात आहेत. त्यांची ताकदही समान आहे.

चित्र क्रमांक ५ मध्ये आपण काही बल व्यवस्था (systems of forces) दाखवल्या आहेत. सर्व बले समान ताकदीची असल्यामुळे बल दाखवणाऱ्या रेषांची लांबी सुद्धा समान दाखवली आहे. चित्र क्रमांक ५ मध्ये डावीकडच्या दोन आणि चार बलांच्या व्यवस्था संतुलित आहेत आणि उजवीकडच्या व्यवस्था असंतुलित आहेत. ही चित्रे पाहून तुम्ही सांगू शकता का की कोणत्या घटकांमुळे त्या संतुलित किंवा असंतुलित होतात?

आपण हे पाहू शकतो की कुठल्या व्यवस्थेत प्रत्येक बलासाठी बरोबर विरुद्ध दिशेत अजून एक बल लावलेले आहे? असे असेल तेथे बलांची व्यवस्था संतुलित असेल, उदाहरणार्थ चित्र क्रमांक ५अ, ५ब आणि ५क मध्ये दाखवलेल्या व्यवस्था. असे बल लावलेले नसेल तर व्यवस्था असंतुलित असेल. उदाहरणार्थ चित्र क्रमांक ५ड. ५इ आणि ५फ मध्ये दाखवलेल्या व्यवस्था.

पण हाच मार्ग तीन बलांची व्यवस्था पडताळण्यासाठी वापरला जाऊ शकतो का? हे तर उघडच आहे की तीन समान ताकदीच्या बलांची आपण अशी कुठलीही व्यवस्था तयार करू शकत नाही, ज्यात एका बलाच्या विरुद्ध दिशेत दुसरे बल लागलेले असेल. त्यामुळे हा मार्ग केवळ अशा व्यवस्थांसाठी वापरला जाऊ शकतो, ज्यामध्ये बलांची संख्या दोनच्या पटीत असेल म्हणजेच सम संख्या असेल.

आता आपल्याला एक असा मार्ग शोधायला हवा जो कितीही बले असलेल्या व्यवस्थेत वापरला जाऊ शकेल.

जर बारकाईने पाहिलेत तर तुमच्या लक्षात येईल की चित्र क्रमांक ५ मधील ज्या व्यवस्था संतुलित आहेत, त्यामध्ये किमान दोन असे अक्ष किंवा रेषा आहेत, ज्यामुळे त्या व्यवस्थेचे दोन समान भाग होतात. म्हणजेच त्या रेषेच्या डाव्या आणि उजव्या बाजूची बलांची व्यवस्था एक सारखीच आहे. अशा कोणत्याही रेषेला आपण सममितीची रेषा म्हणू. (line of symmetry) चित्र क्रमांक ५अ, ५ब च्या व्यवस्थेमध्ये \mathbf{S}_1 आणि \mathbf{S}_2 हे असे दोन अक्ष आहेत तर ५क च्या व्यवस्थेमध्ये असे चार अक्ष आहेत.

असंतुलित व्यवस्थांमध्ये एकतर असा एकच अक्ष आहे (५ड, ५इ) किंवा असा

एकही अक्ष नाही. (५फ)

आता असा प्रश्न उभा राहतो की ह्या तीन बलांच्या व्यवस्थेला आपण असे बनवू शकतो का की त्यामध्ये कमीत कमी दोन सममिती रेषा असतील? आणि तीन बलांच्या किंवा विषम संख्येच्या बलांची व्यवस्था संतुलित आहे की नाही शोधण्याचा हा मार्ग असू शकतो का?

सर्वांत आधी आपण ह्या तीन बलांना अशा प्रकारे ठेवू की त्यामध्ये सममितीच्या कमीत कमी दोन रेषा असतील. जर तुम्ही असे करू शकलात तर तुम्हाला चित्र ६ मध्ये दाखवलेली व्यवस्था मिळेल, ज्यामध्ये प्रत्येक बल आपल्या जवळच्या बलाशी १२० अंशाच्या कोनात आहे, यामुळे ह्या व्यवस्थेत दोन नाही तर तीन सममिती रेषा आहेत आणि ही व्यवस्था संतुलित होईल. चला बघू या, कशी काय? पण त्या आधी हे पाह्या की 'दोन' ह्या आकड्यात असे काय विशेष आहे?

'दोन' मध्ये काय विशेष ?

आपल्याला जर कागदावरच्या एखाद्या विशिष्ट बिंदूचे स्थान सांगायचे असेल तर आपण कसे सांगतो? आपण म्हणू शकतो की खालच्या कडेपासून तो बिंदू अमुक इतक्या अंतरावर आहे. पण एवढेच सांगितले तर ते पुरेसे आहे का? नाही! कारण खालच्या कडेपासून तेवढ्या अंतरावर असंख्य बिंदू आहेत.

जर आपण खालच्या बाजूपासूनच्या अंतराबरोबरच वरच्या बाजूपासूनचे अंतर सांगितले तर आपण त्या बिंदूचे स्थान अचूक सांगू शकतो का? ह्याचे उत्तर सुद्धा 'नाही' असेच आहे. विचार करा की का बरे?

खरेतर, एका कागदावरच्या कुठल्याही बिंदूची स्पष्ट स्थिती सांगण्यासाठी आपल्याला अशा दोन बाजू घेतल्या पाहिजेत ज्या एका दिशेत नसतील आणि समांतर नसतील. (चित्र क्रमांक ७ पहा) उदाहरणार्थ: खालची आणि डावी किंवा खालची आणि उजवी किंवा वरची आणि डावी किंवा वरची आणि उजवी. ह्यातील कोणत्याही एका जोडीचा वापर करून आपण एका कागदावरच्या कोणत्याही बिंदूचे

स्थान स्पष्टपणे सांगू शकतो. जर आपल्याला एखाद्या बिंदूचे तीन बाजूंपासूनचे अंतर माहिती असेल तर आपल्याकडे गरजेपेक्षा जास्त माहिती आहे.

एक कागद किंवा समतल (उदाहरणार्थ टेबल) ह्यावर असलेल्या बिंदूला स्पष्टपणे दर्शवण्याकरता आपल्याला दोन स्वतंत्र दिशांची गरज पडते. त्यामुळेच आलेख काढताना सुद्धा सगळ्यात आधी आपण दोन अक्ष दाखवतो. सुलभतेसाठी त्या दोन्ही मधला कोन आपण ९० अंशाचा घेतो.

असेच एक बल चित्र-८ च्या आलेखामध्ये दाखवले आहे. बल ज्या बिंदूवर लागले आहे, त्या बिंदूलाच आपण संदर्भ बिंदू मानले आहे. बल एक सदिश राशी असल्यामुळे आपल्याला आलेखावर त्याची लांबी दाखवावी लागेल, जी त्याची ताकद दाखवेल आणि त्या बरोबरच बल कोणत्या दिशेत लागले आहे हे सुद्धा दाखवावे लागेल.

सदिश राशींच्या गणितीय नियमानुसार आपल्याला माहिती आहे की आपण ह्या राशींना चित्र क्रमांक ८ मध्ये दाखवल्याप्रमाणे X अक्ष आणि Y अक्षांच्या भागांमध्ये विघटित करून दाखवले तर लक्षात येईल की ह्या दोन्ही अक्षांच्या दिशेत लागलेली

बले एकमेकांना छेदत आहेत. त्यामुळे ही व्यवस्था संतुलित आहे.

चित्र क्रमांक ९ मध्ये ह्या व्यवस्थेला एका वेगळ्या प्रकारे दाखवले आहे. ह्या व्यवस्थेतील सर्व बलांना त्यांच्या X अक्ष आणि Y अक्षांच्या भागांमध्ये विघटित करून तक्ता क्रमांक १ मध्ये दाखवले आहे.

तक्त्यामध्ये आपण बघू शकतो की बिंदू 'O' वर लागणारे एकूण बल शून्य आहे, त्यामुळे ही व्यवस्था एक संतुलित बल व्यवस्था आहे.

आपण समितीच्या रेषा असलेल्या ज्या प्रकाराचा उल्लेख केला तो, ज्या व्यवस्थेमध्ये सर्व बले एकाच ताकदीची आहेत त्या व्यवस्थांनाच लागू होतो. बलांना त्यांच्या भागात विघटित करून बघण्याच्या मार्गाने तुम्ही सुद्धा एखादी व्यवस्था संतुलित आहे किंवा नाही, हे ठरवू शकता.

संतुलन होऊ शकेल का?

एकाच प्रतलात आणि एकाच बिंदूवर लागलेल्या तीन समान ताकदीच्या बलांच्या संतुलनाची स्थिती काय असेल, हे स्पष्ट

बल	θ	cos θ	sin θ	F cos θ (x भाग)	F sin θ (y भाग)
$F_I = F$	330°	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\frac{\sqrt{3}F}{2}$	$-\frac{F}{2}$
$F_2=F$	210°	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}F}{2}$	$-\frac{F}{2}$
$F_3=F$	90°	0	1	0	F
ХаY	या दिशांमध	0	0		

तक्ता १ : चित्र ९ मध्ये दाखवलेल्या व्यवस्थेतील बलाचं विघटन

झाल्यानंतर, चला आता पुन्हा रस्सीखेचेच्या खेळाकडे वळ्या. चित्र क्रमांक ३ च्या संदर्भात आपण पाहिले की तिसरे बल लागल्यावर संतुलित व्यवस्था असंतुलित होत जाईल. आता प्रश्न उभा राहतो की, ही नवीन व्यवस्था संत्रित होऊ शकेल का? तुम्ही कदाचित विचार करत असाल की तीन बलांची व्यवस्था कोणत्या परिस्थितीत संतुलित होईल, हे माहीत असताना, हा प्रश्न कशाला हवा आहे? अगदी सोपी गोष्ट वाटते की जेव्हा आपण तिसरे बल, दोन बलांच्या संतुलित व्यवस्थेमध्ये जोडू तेव्हा बिंदू 'O' आपल्या जुन्या जागेवरून हलून त्या स्थितीमध्ये जाण्याचा प्रयत्न करेल ज्या स्थितीत नवीन व्यवस्था संतुलित होईल. म्हणजेच चित्र ६ ची स्थिती. पण असे नेहेमीच होईल का? असे नेहेमीच होऊ शकत असते तर हा लेख आपण पुढे नेला नसता. मजेची गोष्ट अशी आहे की, असे नेहेमीच होणार नाही कारण नव्या व्यवस्थेचे संतुलित किंवा असंतुलित असणे हे तीनही बलांची परस्पर स्थिती कशी आहे? ह्यावर अवलंबून आहे. चला, समजून घेण्याचा प्रयत्न करू या.

चित्र क्रमांक १० मध्ये दाखवल्याप्रमाणे तीन संघांची स्थिती एक त्रिकोण बनवते ज्यामध्ये α_1 , α_2 आणि α_3 क्रमशः T_1 , T_2 आणि T_3 कोनांवर बनलेले आंतरिक कोन आहेत. आता जर ह्या त्रिकोणाच्या आत आपण एक बिंदू 'O' घेतला आणि त्याला

त्रिकोणाच्या कोनांशी जोडून कोन β_1 , β_2 आणि β_3 बनवले, तर आपण हे पाहू शकतो की त्रिकोणाच्या आत 'O' च्या कोणत्याही स्थितीसाठी $\beta_1 > \alpha_1$, $\beta_2 > \alpha_2$, $\beta_3 > \alpha_3$ असेल. त्रिकोण T_1 T_3 T_2 व T_1 OT_2 ची तुलना केली तर हे सत्य सहजपणाने बघता येईल की $\beta_3 > \alpha_3$ असेल. याचप्रमाणे T_1 T_3 T_2 ची क्रमश: T_1 O T_3 आणि T_2 O T_3 ह्या त्रिकोणांशी तुलना करून लक्षात येईल की $\beta_2 > \alpha_2$ आणि $\beta_1 > \alpha_1$ असेल. करून पहा किंवा पुढील पानावरील चौकट पहा.

तुमच्या हे सुद्धा लक्षात येईल की जसे जसे बिंदू 'O' चे एका कोनापासूनचे अंतर वाढत जाते, तसे त्या कोपऱ्याशी संबंधित कोन सुद्धा वाढत जातो. उदाहरणार्थ जर बिंदू 'O' , T_3 पासून दूर गेला तर β_3 मोठा होईल. ह्याचा अर्थ असा की β_3 सगळ्यात छोटा तेव्हा असेल जेव्हा बिंदू 'O' आणि T_3 एकाच जागेवर असतील आणि सगळ्यात मोठा तेव्हा असेल जेव्हा बिंदू 'O' रेषा T_2 T_1 वर असेल.

ह्याच प्रकारे आपण असे म्हणू शकतो की १८०° > = β_3 > = α_3 . ह्याचा अर्थ असा झाला की जर α_1 १२०° पेक्षा जास्ती झाला तर कोन β_3 > १२०° होईल. β_1 आणि β_2 साठी सुद्धा हीच गोष्ट लागू होईल.

हे कोन आणि त्यांच्यामधील संबंधांवर एवढी चर्चा केल्यावर खालील गोष्टी स्पष्ट होतात: खरेतर रेखाचित्र बघूनच हे स्पष्टच होते आहे की, $\beta_3 > \alpha_3$; पण इथे आपण भौमितीय आकृत्या आणि समीकरणांच्या साहाय्याने हे सिद्ध करण्याचा प्रयत्न करणार आहोत.

 $\beta_{3} > \alpha_{3}$ ही वस्तुस्थिती सिद्ध करण्यासाठी आपण इतर दोन विधानांची मदत घेऊ.

- १. कोणत्याही त्रिकोणाच्या सर्व आंतरिक कोनांची बेरीज १८०° असते.
- २. त्रिकोणाच्या आतील 'O' सारख्या कोणत्याही बिंदुपासून बनणारे कोन S_1 आणि S_2 क्रमश: α_1 आणि α_2 पेक्षा लहान असतील.

पहिल्या विधानाच्या मदतीने आपण

हे पाह् शकतो की त्रिकोण $T_1 T_2 T_3$ साठी:

$$\alpha_1 + \alpha_2 + \alpha_3 = 260^{\circ} \tag{2}$$

आणि त्रिकोण $T_{_1}\,O\,T_{_2}$ साठी :

$$S_1 + S_2 + \beta_3 = ?20^{\circ}$$
 (?)

समीकरण (१) आणि (२) वरून आपण म्हणू शकतो की :

$$\alpha_1 + \alpha_2 + \alpha_3 = S_1 + S_2 + \beta_3$$
 (3)

त्याचप्रमाणे दुसऱ्या विधानावरून आपल्याला कळते की

$$\alpha_{_{1}} > S_{_{1}}$$
 (४)
आणि

$$\alpha_2 > S_2 \tag{4}$$

समीकरण (४) आणि (५) वरून आपण म्हणू शकतो की :

$$\alpha_1 + \alpha_2 > S_1 + S_2 \tag{5}$$

समीकरण (३) आणि (६) ची तुलना केली तर आपण सरळ म्हणू शकतो की $\beta_2 > \alpha_2$ आहे.

- जर तीन बलांची परस्पर स्थिती अशी असेल की तीनमधील एकही आंतरिक कोन १२०° पेक्षा मोठा नसेल तर नकीच त्रिकोणाच्या आत एक असा बिंदू असेल ज्यामुळे चित्र ६ मध्ये दाखवलेली स्थिती बनेल. ह्या स्थितीमध्ये बिंदू 'O' त्या बिंद्वर जाऊन थांबेल आणि तीन समान बलांची व्यवस्था संतुलित होईल. रस्सीखेच खेळाच्या संदर्भात पाहिले तर कोणताही संघ जिंकणार नाही.
- दुसऱ्या बाजूला, जर कुठलाही कोन १२०° इतका किंवा त्यापेक्षा मोठा झाला तर त्या त्रिकोणाच्या आत असा एकाही बिंदू असणार नाही. अशा स्थितीत बिंदू 'O' त्या कोनाकडे जाईल ज्याचा आंतरिक कोन १२०° किंवा त्यापेक्षा जास्त असेल. याचा अर्थ रस्सीखेचच्या संदर्भात असा होईल ज्यांचा कोपऱ्यावर बनलेला आंतरिक कोन १२०° किंवा त्यापेक्षा मोठा

असेल, तो संघ जिंकेल.

एकूण, ह्या लेखात आपण पहिले की एका बिंदू वर लागलेल्या तीन समतल आणि बरोबरीच्या बलांची व्यवस्था संतुलित असणे किंवा नसणे त्या बलांच्या परस्पर स्थितीवर अवलंबून असते.

तेव्हा जर तुम्ही रस्सीखेचेचा असा खेळ खेळत असाल ज्यात तीन संघ असतील आणि समान ताकद लावत असतील आणि तुम्हाला तुमच्या संघाचे स्थान निवडण्याचे स्वातंत्र्य असेल तर तुम्हाला आता कळले असेल की जिंकण्यासाठी तुम्हाला काय करायला लागेल !

लेखक: विवेक मेहता, आय.आय.टी. कानपूर मधून मेकॅनिकल इंजिनिअरींग मध्ये पी. एच.डी. केली आहे. एकलव्यच्या विज्ञान शिक्षण कार्यक्रमात फेलोशिपवर आहेत.

अनुवाद : ज्ञानदा गद्रे-फडके, सॉफ्टवेअर इंजिनिअर, मुक्त भाषांतरकार.

की-बोर्ड : माहितीची गुरुकिल्ली

लेखक: मुरारी तपस्वी

सीधारण २००० च्या सुमारास जन्मलेल्या बाळांना 'गुगल बाळं' म्हणलं जातं. कारण त्यांचा 'गुगल' पूर्वी हे जग होतं आणि सुरळीत चालत होतं यावर विश्वासच बसत नाही इतकी ती गुगलशी एकरूप झालेली आहेत. अशा या पिढीला खरं तर संगणकाचा की-बोर्ड ही काही नवी चीज नाही. त्यांच्या बालपणापासूनच ते त्याचा वापर करत आले आहेत. तरी त्यातील अनेक जण सगळ्या बोटांचा (योग्य अक्षरासाठी योग्य बोट) वापर करून मजकूर टाईप करत नाहीत. यापूर्वीच्या पिढ्यांनी शहरात तरी पध्दतशीर टाईपिंग शिकवणाऱ्या संस्था पाहिल्या आहेत. त्यांच्यातील मोजके. ज्यांना टाईपरायटरवर काम करायचं आहे असे, तिथं जाऊन सगळ्या बोटांचा वापर करुन कसं टाईप करायचं याचं शिक्षण घेत. संगणक आल्यावर मात्र या संस्था लयाला गेल्या कारण

संगणकाचा की-बोर्ड आणि टाईपरायटरचा की-बोर्ड एकच असला तरी तेथे जाऊन टाईपिंग शिकणं कमीपणाचं मानलं जाऊ लागलं. मग ही गुगल-बाळं कसं टाईप करतात? तर दहापैकी फक्त दोन-तीन बोटांचा वापर करून! कुठलंही बोट कुठल्याही अक्षरासाठी! दहा बोटांनी टाईप करणाऱ्यांची दोन बोटांनी टाईप करणाऱ्यांशी शर्यत लावली तर नक्कीच दहा बोटं वापरणारे जिंकतील. अर्थात दोन-चार बोटं वापरुन टाईप करण्याची पध्दत आताच रूढ झाली असं म्हणता येणार नाही. ज्यांनी की-बोर्डचं पध्दतशीर शिक्षण घेतलं नाही असे मागच्या पिढीतले महाभागही ती वापरतात. पण त्या वेळी टाईपरायटरचा की-बोर्ड वापरायची संधी मोजक्यांनाच मिळायची. दोन-चार बोटं वापरुन टाईप करण्याच्या पध्दतीला 'कोलंबस पध्दत' म्हणतात. कोलंबस पध्दत नांव का पडलं ते मात्र माहीत नाही. कदाचित कोलंबसनं अमेरिकेचा शोध असाच तेथे पोहोचून लावला म्हणून असेल, ते असो. यात प्रत्येक अक्षराची कळ (की) शोधायची (अर्थात सवयीनं ती 'शोधावी' लागत नाही) आणि मग ती दाबायची. पण या पध्दतीनं बराच वेळ टाईप केलं तरी कामात मात्र म्हणावी तशी प्रगती झालेली नसते. म्हणून प्रत्येकाला की-बोर्डचा पध्दतशीर वापर करता येणं महत्त्वाचं आहे.

की-बोर्डचा वापर प्रथम १८६७ सालच्या लेखन यंत्रात (म्हणजेच टाईपरायटर!) केला गेला. दोन ओळीत पियानो प्रमाणे सगळ्या अक्षरांच्या कीज (कळा) अ- ते ज्ञ वर्णानुक्रमानुसार त्यात होत्या. कळ दाबली की त्याच्याशी संलग्न असा टाईपरायटरचा त्या अक्षराचा ठसा असलेला चाप (आर्म) कागदावर जाऊन ते अक्षर उमटवायचा. पण वेगानं टाईप करताना ते चाप एकमेकात अडकायचे. त्यानंतर १८७३ सालीं आज जो की-बोर्ड सर्वत्र वापरात दिसतो त्याचा वापर रेमिंग्टन टाईपरायटर्ससाठी प्रथम केला गेला. त्याला 'QWERTY' टाईप की-बोर्ड म्हणतात. हे नाव की-बोर्डवरील पहिल्या रांगेतल्या डाव्या बाजूच्या कीज अनुक्रमे ज्या अक्षरांच्या असतात त्यावरुन पडलं. OWERTY की-बोर्ड मध्ये अक्षरांची मांडणी अशा पध्दतीनं केली की सतत एका पाठोपाठ येणाऱ्या अक्षरांचे चाप शक्यतो एकमेकात अडकू नयेत (उदाहरणार्थ, इंग्रजी भाषेमध्ये 'टी' आणि 'एच' ही अक्षरं एकापाठोपाठ अनेक शब्दात येतात) आणि प्रत्येक शब्द टाईप करताना शक्यतो दोन्ही हातांच्या बोटांचा लयबध्दतेने वापर व्हावा. या मांडणीमुळे चाप एकमेकात अडकायचं प्रमाण कमी झालंच पण टाईप करण्याच्या वेगातही प्रगती झाली.

नंतर संगणक आले. आता चाप एकमेकात अडकण्याचं कारणच उरलं नव्हतं. पण तरी बऱ्याच (बहतेक सगळ्याच) संगणकांचा की-बोर्ड याच पध्दतीचा असतो. खरं म्हणजे या नंतर १९३६च्या सुमारास डेव्हॉर-झॅक (Dvorak) नांवाच्या चेकोस्लाव्हाकियन नागरिकानं आणखी कितीतरी पटीनं वेगात टाईप करता येईल अशा प्रकारचा बोर्डवरील कीजचा आराखडा तयार केला. त्यानं सतत लागणारी अक्षरं मधल्या पट्टीत, जिथं बोटं ठेवली जातात तिथं, आणि बळ असणाऱ्या बोटांखाली घेतली. सगळ्या स्वरांना डाव्या हाताच्या बोटाखाली जागा दिली तर उजव्या हाताखालच्या बोटाखाली सतत येणारी व्यंजनं. सतत येणारी सुमारे ७०% अक्षरं त्यानं मधल्या पट्टीत, २२% वरच्या पट्टीत आणि केवळ ८% जिथं बोटांना पोहोचायला अवघड असतं अशा खालच्या पट्टीत घेतली. त्याच्या आराखड्यानुसार मिनिटात १८० ते ३०० शब्द टाईप करता येतात असं म्हटलं

जातं (QWERTY की-बोर्ड वापरून ६० ते १८० शब्दांपर्यंत पोहोचता येतं). पण... अये रुढे महिमा तव किती.. असं म्हणतात ना! नवा आराखडा वेगानं टाईप करण्यासाठी उपयुक्त असला तरी 'सार्वत्रिक' झाला नाही. कदाचित कोलंबस पध्दतीनं टाईप करणाऱ्यांमध्येही QWERTY आराखड्याकडे बघण्याचा हाच दृष्टिकोन असावा. पण जर पध्दतशीररित्या टाईप करता येत असेल तर त्यामुळे कार्यक्षमतेत वाढ होतेच पण त्यातून जे समाधान मिळतं ते महत्त्वाचं. तेव्हा जर अद्याप सगळ्या बोटांचा वापर करून टंकलेखन करत नसाल तर ते नक्की शिकाच आणि तुमच्यातला फरक तुम्ही अनुभवा. हे शिकायला आता नेटवरही सोयी आहेत. http://www.wikihow.com/Type, http://www.typing-lessons.org/ सारख्या वेबसाईटस पध्दतशीर शिकायला मदत करतात तर www.keybr.com/, http://www.typeracer.com / सारख्या

वेबसाईटस वेगानं टाईप करायचं प्रशिक्षण देतात.

टेबलावरच्या संगणकाच्या की-बोर्ड वर OWERTY कीज व्यतिरिक्त आणखी काही कीज असतात. सर्वात उजव्या बाजूला अंकांच्या कळांचा समूह (न्युमरिक की-पॅड) असतो. फक्त आकडे मोड करणाऱ्यांसाठी! नाहीतर QWERTY की-बोर्ड वर आणखी एक आकड्यांची ओळ असतेच. टाईप करताना वेळ वाचवणे हाच त्यांचा उद्देश. वेळ वाचवण्यासाठी आकड्यांच्या आणि QWERTY की-पॅडच्या मध्ये cursor movement keys ची सोय असते. यात 'Insert', 'Delete', 'End', 'Home', 'PageUp', 'PageDown' तसंच खाली-वर, उजव्या आणि डाव्या बाजूला बाण असलेल्या कीज ही असतात. QWERTY की-पॅडच्या सर्वात वर उजव्या टोकाला असलेली 'Backspace' ही यांच्याच कुळातली. मॉनिटरवर कुठं टाईप

केलं जाणार आहे हे दर्शवणाऱ्या लुकलुकत्या चिन्हाला 'कर्सर' म्हणतात. हा कर्सर टाईप केलेल्या मजकूरात पुढे-मागे, वर-खाली, सुरुवातीला-शेवटी असा कुठेही हलवता येतो. मॉनिटरच्या आकारात न मावणारा दीर्घ मजकूर असेल तर कर्सर सुरुवातीला-शेवटी, किंवा आताच्या दिसत असलेल्या मजकूराच्या जरा वर किंवा खाली, असा कुठेही नेऊन हवा तो मजकूर मॉनिटरवर आणता येतो. मजकूरात विशिष्ट जागी वेगानं पोहोचून त्या ठिकाणी योग्य ते फेरफार करण्यासाठी यांचा उपयोग केला जातो.

कोलंबस पध्दतीनं टाईप करणाऱ्यांच्या कुळातले बरेचसे यातील फक्त बाणांच्या कीज वापरुन वेळ अक्षरशः वाया घालवतात. खरं तर 'Home' आणि 'End' की चा उपयोग ओळीच्या सुरुवातीला आणि शेवटी पोहोचण्यासाठी करता येतो. जर ओळीच्या मधल्याच शब्दात फेरफार करायचे असतील तर QWERTY की-पॅडच्या खालच्या ओळीतली 'Ctrl' (कंट्रोल) नांवाची कळ दाबून ठेवून उजव्या किंवा डाव्या बाजूचा बाण असलेली कळ दाबत राहिलं तर कर्सर ओळीतल्या प्रत्येक शब्दावर उड्या मारत इच्छित शब्दावर आणता येतो. मॉनिटरवरचा मजकूर वाचत पुढे सरकायचंय असेल तर खालच्या दिशेला असलेल्या बाणाची कळ वापरण्यापेक्षा एकदाच 'PageDown' दाबून पुस्तकाचं पान उलटल्यासारखं करता येतं,

पुढचा मजकूर मॉनिटरवर येतो. तसंच मागच्या पानांवरचा (मॉनिटरवरचा) मजकूर वाचायचा असेल तर 'PageUp' चा वापर करता येतो. मोठ्या मजकूराच्या मध्यभागात असताना त्याच्या अगदी सुरुवातीला किंवा शेवटी जायचं असेल तर 'Ctrl' कळ दाबून ठेवून 'Home' किंवा 'End' कळ दाबली की एका झटक्यात इच्छित स्थळीं पोहोचता येतं. 'Insert', 'Delete' आणि 'Backspace' मजकूरात फेरफार करण्यासाठी वापरतात. कर्सरच्या डाव्या बाजूचं अक्षर 'Backspace' तर उजव्या बाजूचं अक्षर 'Delete' कळ वापरुन खोडता येतं. संपूर्ण शब्दच खोडायचा असेल तर शब्दाच्या सुरुवातीला जाऊन 'Ctrl' कळ दाबून ठेवून 'Delete' कळ दाबली की तो शब्द खोडला जातो. सगळी ओळच खोडायची असेल तर 'Shift' कळ दाबून ठेवून 'End' ('Shift'+खालचा बाण असलेली कळ एकापेक्षा अधिक ओळींसाठी, 'Shift'+'PageUp' किंवा 'PageDown' कळ मॉनिटरवर दिसणारा - अनुक्रमे वरचा आणि खालचा - सगळाच मजकूर) कळ दाबली की कर्सरपासूनचा ओळीवरचा सगळा मजकूर निवडला जातो आणि मग 'Delete' कळ वापरुन एका क्षणात निवडलेला मजकूर खोडता येतो. कार्यक्षमता वाढवायची असेल तर ह्या कीजचा वापर मोठ्या प्रमाणात करायलाच हवा.

आता तुम्ही म्हणाल हे सगळं माऊस

वापरुनही करता येतं की! खरंय. आणखी नव-नवी साधनंही येत आहेतच. पण की-बोर्ड वरचा हात काढून माऊस पर्यंत न्यायला जो वेळ लागतो तो की-बोर्डवरील प्रभुत्वामुळं वाचतो आणि कार्यक्षमतेत भर पडते. शेवटी संगणक हे साधन आहे. त्याचा वापर करुन तुम्हाला तुमच्या विषयातलं ज्ञान साध्य करायचं आहे. मग साधनात का अडकून पडायचं? तेव्हा QWERTY की-बोर्डचा पध्दतशीर वापर आणि कर्सर हलवण्याच्या कीज या किमान दोन गोष्टी प्रत्येकानं आत्मसात केल्याच पाहिजेत. या बाबी शिकण्यात आणखी एक मोठा फायदा आहे. आता हाच की-बोर्ड वापरुन मराठी/देवनागरी अक्षरं टाईप करण्याच्या आज्ञावली विकसित झाल्या आहेत. त्यासाठी पूर्वीसारखं वेगळा की-बोर्ड शिकायची गरज उरली नाही. अशा आज्ञावलींना 'phonetic key-board' (उच्चारांवर आधारित रोमन अक्षरांचा वापर करुन कुठल्याही लिपीत टाईप करणारा की-बोर्ड) म्हणलं जातं. म्हणजे आपण जसं उच्चारण करु तशी अक्षरं रोमन भाषेत टाईप केली की ती देवनागरीत (किंवा इतर इच्छित लिपीतही) मॉनिटरवर उमटतात.

संगणकीय तंत्रज्ञानात मोठ्या वेगानं प्रगती होतेय. खिशात मावणारे मोबाईल फोन आता संगणकाची बरीच कामं करु शकताहेत. मोबाईल फोनवर वेगानं टाईप करता येत नाही म्हणून त्या तंत्रज्ञानात काही नव्या कल्पना रुजताहेत. त्या मात्र दहा बोटांनी टाईप करायची संकल्पना मोडीत काढ़तील असं वाटतं. त्यातील एका संकल्पनेला 'swype' तंत्रज्ञान म्हणतात. जो शब्द टाईप करायचा आहे त्या की-बोर्डवर असलेल्या शब्दाच्या अक्षरांवरुन वेगानं बोट फिरवलं की तो शब्द मॉनिटरवर दिसतो. सध्याच्या टॅब्लेट संगणकांवर (आणि इतर टच फोन्सवरही) ही कल्पना राबवली जातेय. सध्या याचा वापर करुन सुमारे ४० शब्द प्रति मिनिट टाईप करता येतात असं म्हणलं जातं. पण जर मोठ्या प्रमाणात मजकूर टाईप करायचा असेल तर टेबलावरच्या संगणकाच्या की-बोर्डला किंवा किमान लॅप-टॉपला अद्याप तरी पर्याय नाही. शिवाय एकदा का याची सवय झाली की कळा दाबून अक्षरं उमटवायचे की बोर्डस वापरता येणार नाहीत - जे सध्यातरी सर्वत्र वापरात आहेत. पण न जाणो, संगणकाच्या हार्डवेअरमध्येही मोठ्या प्रमाणात उत्क्रांती होत आहे. उद्याचे संगणक केवळ पाट्यांसारखे (प्राथमिक शिक्षणासाठी गेल्या पिढीतली मुलं वापरायची त्या -आठवतात?) हलके मॉनिटर्सच असतील. त्याच्या टच की-बोर्डवर मुलं केवळ अक्षरं स्वाईप करतील (गिरवतील?) आणि हवा तो शब्द उमटेल! तरी तो QWERTY टाईप की-बोर्डच असेल आणि म्हणून तो प्रत्येकाला शिकावाच लागेल.

आणखी एक अफलातून संकल्पना

येतेय जी 'की-बोर्ड' ची सुट्टीच करेल. टाईप करण्याऐवजी केवळ शब्दांचं उच्चारण करायचं. संगणक ते समजून योग्य शब्द मॉनिटरवर टाईप करेल. या पध्दतीला 'spoken input' असं म्हणलं जातं. यात संगणकाला तुमची उच्चारण पध्दती समजेल अशा पध्दतीनं तालीम दिली जाते. ही संकल्पनाही कविकल्पना उरली नाहीये. नेट वापरणारे जे गुगलचा क्रोम ब्राउजर आज वापरत आहेत त्यांच्या ही परिचयाची असायला हवी. क्रोम ब्राउजर वापरुन वेबवर माहिती शोधायची असेल तर टाईप करण्याऐवजी बोलून प्रश्न विचारायची सोय आहे. वेबवर असलेली माहिती मग तो ब्राउजर आपल्याला ऐकवतो आणि अर्थात मॉनिटरवरही ती शब्दस्वरुपात वाचायला मिळते. याशिवाय आज काही आज्ञावलीही उपलब्ध आहेत ज्याच्या द्वारे बोललेलं अक्षररुपात साठवलं जाऊ शकतं. अर्थात त्याचा सर्रास वापर अद्याप होत नाहीये कारण सगळं शब्दब्रह्म त्यात आधी अक्षररुपात साठवावं लागतं. इंग्रजीमध्ये पत्रलिखाण वगैरेपर्यंत आज त्याची मर्यादा आहे. या आज्ञावलींचा सर्रास वापर होण्यात दोन मोठे अडथळे आहेत. एक तर एकाच भाषेतल्या शब्दांच्या उच्चारणाची लकब काही कोसांवर बदलते आणि या आज्ञावलींना ही लकब परिचयाची नसते. त्यामुळे वापरणाऱ्याला प्रत्येक शब्दाचा उच्चार करुन त्याच्या

लकबीची 'सवय' त्या आज्ञावलीला करुन द्यावी लागते. दसरं म्हणजे, अद्याप या आज्ञावलींना पारिभाषिक संज्ञांची ओळख करुन दिली गेली नाहीये. त्यामुळे ते शब्द त्यांच्या परिचयाचे नाहीत. तसंच आज संगणकांनी युनिकोड मुद्रावर्गाचा अवलंब केल्यानं प्रादेशिक भाषांना पुन्हा बहर आलेला दिसतो आहे. तऱ्हेतऱ्हेचं साहित्य प्रादेशिक भाषांत आज येत आहे. त्याचा वाचकवर्ग इंग्रजी भाषेपेक्षा नकीच मोठा आहे. वरील संकल्पना सध्यातरी फक्त इंग्रजी भाषेप्रती मर्यादित आहे. त्यामुळे ती अस्तित्वात असली तरी तिला फुलायला वेळ लागणार आहे. त्यामुळं हे मृगजळासारखं जवळ दिसलं तरी वापरासाठी दूर आहे असं वाटतं. तेव्हा अस्तित्वात असलेल्या तंत्रावर तुमची पूर्ण पकड असू द्या. पध्दतशीरपणे QWERTY टाईप की-बोर्ड वापरायला शिका, वापरा तसंच सोबत असलेल्या कर्सरच्या हालचालींच्या कळांवर तुमचं पूर्ण नियंत्रण ठेवा म्हणजे तुमच्या क्षेत्रात तुम्हाला प्रगती करायला पुरेसा वेळ मिळेल. की-बोर्डवर पूर्ण नियंत्रण म्हणजेच आजच्या जमान्यात शब्दसाक्षरता. आहात ना तुम्ही शब्दसाक्षर?

लेखक : डॉ. मुरारी तपस्वी इंडियन इन्स्टिट्यूट ऑफ ओशनोग्राफी, पणजी येथून ग्रंथपाल म्हणून निवृत्त. ग्रंथालयशास्त्रात विद्यावाचस्पती (डॉक्टरेट). tapaswimurari@gmail.com

चाकूने कापले जाणारे धातू

लेखक: माधव केळकर • अनुवाद: गो. ल. लोंढे

अमच्या शंकासुराने आज एक चमत्कारिक प्रश्न विचारला.

प्रश्न – कोणकोणते धातू आपण चाकूने कापू शकतो?

उत्तर – वरवर विचार केला तर असे वाटते की प्रश्नकर्त्याचा रोजच्या व्यवहारात ज्या धातूंशी संबंध येतो त्या धातूंबद्दलचाच हा प्रश्न असेल आणि म्हणून आपण अशाच धातूंचा विचार करून पटकन उत्तर देऊ. पण असे नाही. जे धातू स्टीलच्या चाकूने कापणे सहज शक्य आहे, त्यामध्ये लिथियम, सोडियम, पोटॅशिअम इत्यादी प्रमुख धातूंची गणना करता येणे शक्य आहे.

आपला रोजच्या व्यवहारातला अनुभव थोडा वेगळा आहे. तांब्याची बारीक (कमी त्रिज्येची) तार, अल्युमिनियमची बारीक तार, तसेच कथील, शिसे, टीन इत्यादी धातूंच्या बारीक तारा आपण चाकूने किंवा साध्या कात्रीने सहज कापू शकतो पण सोडियम, पोटॅशियमचा आपल्या जीवनात कधीतरी, एखाद्या वेळी, आलाच तर संबंध येतो. हायर सेकंडरी स्कूल (ज्युनियर कॉलेज) किंवा रेग्युलर सिनीयर कॉलेजमधील प्रयोगशाळेतील एका मोकळ्या तोंडाच्या बाटलीत रॉकेलमध्ये बुडवून ठेवलेले सोडियमचे एक दोन तुकडे असतात. ते जर चाकूने कापायचे असतील

किंवा खरडायचे असतील तर त्यांचा पाण्याशी आणि ओलाव्याशी संपर्क येण्याच्या आतच फार शिताफीने चपळाईने कापून पुन्हा बाटलीतील रॉकेलमध्ये बुडवून ठेवावे लागतात. सोडियम, पोटॅशियम, लिथियम हे धातू चाकूने कापण्याचा व्यवहारात सहसा कधी प्रसंग येत नाही हे ठीक आहे. तरीपण हे धातू सहजासहजी कापले जातात हे वास्तव उरतेच.

हे समजण्यासाठी आपल्याला असे गृहीत धरावे लागेल की जास्त कठीण पदार्थाने कमी कठीण पदार्थ कापता येऊ शकतो. एक पदार्थ दुसऱ्या पदार्थावर चरे पाडू शकतो हे काठिण्याचे सर्वात पहिले परिमाण आहे. जर दुसऱ्या पदार्थावर चरा उमटला तर त्याचा

अर्थ असा आहे की तुमच्या हातातील पदार्थ जास्त कठीण आहे. काठिण्याची हीच व्याख्या ध्यानात घेऊन आपल्याला पुढील चर्चा करावयाची आहे.

सोडियम कापणे

आता या प्रश्नाचे उत्तर शोधण्यासाठी आपल्याला मूलद्रव्यांच्या आवर्त सारणीची मदत घ्यावी लागेल या सारणीच्या 1-A या स्तंभावर दृष्टिक्षेप टाकला तर तिथे लीथियम, सोडियम, पोटॅशियम, फ्रॉसियम या मूलद्रव्यांची नावे दिसतील. या सर्व मूलद्रव्यांना 'अल्कधर्मी धातू' किंवा 'अल्कली मेटल्स' असे म्हणतात. यांना अल्कली की पाण्याच्या संयोगाने ते 'हायड्रॉक्साईड' बनवतात व ते अल्कधर्मी असतात. या सर्वधातूंच्या गुणधर्मामध्ये काही बाबतीत साम्य असते. उदाहरणार्थ हे सर्वधातू अतिशय क्रियाशील आहेत. ऑक्सिजन, पाणी या पदार्थांबरोबर त्यांची ताबडतोब रासायनिक क्रिया होते. अल्कधर्मी धातू चांदीसारखे पांढरे शुभ्र असतात आणि पुष्कळच नरम असतात. येथे हेही सांगावयास पाहिजे की या धातूच्या भौतिक गुणधर्मांचा संबंध परमाणू संरचना आणि आपसातील बंधने वगैरेशी असतो.

उदाहरणार्थ स्तंभ 1-A बद्दल बोलायचे असेल तर स्तंभात असलेले लीथियम, सोडियम, पोटॅशियम, सीजियम, फ्राँसियम या सर्वांच्या परमाणू संरचनेत एक साम्य आहे आणि ते म्हणजे प्रत्येकाच्या अगदी बाहेरच्या कक्षेत एकच इलेक्ट्रॉन आहे.

लिथियमची परमाणूसंख्या ३ आहे म्हणून त्यात इलेक्ट्रॉन्सचे कक्षांमधील वाटप २,१ असे आहे म्हणजे पहिल्या कक्षेत २ इलेक्ट्रॉन्स आहेत तर दुसऱ्या (म्हणजे अंतिम) कक्षेत एकच इलेक्ट्रॉन आहे. सोडियमची परमाणूसंख्या ११ आहे म्हणून इलेक्ट्रॉन्सचे कक्षावार वाटप २,८,१ असे आहे. तर पोटॅशियमची परमाणूसंख्या १९ आहे म्हणून इलेक्ट्रॉन्सचे वाटप २.८.८.१ असे आहे. आपल्याला माहीतच आहे की एखाद्या परमाणूला सर्वात शेवटच्या कक्षेत असलेला १ इलेक्ट्रॉन व दुसऱ्या एखाद्या परमाणूच्या शेवटच्या कक्षेत असलेला १ इलेक्ट्रॉन यामध्ये देवघेव होते. ही देवघेव सहसंयोजी बंध, आयनिक बंध, धात्विक बंध असल्यामुळे होते.

आजच्या आपल्या प्रश्नाच्या दृष्टीने धात्विक बंध उपयोगाचा आहे. उदाहरणार्थ सोडियम. सोडियम परमाणूच्या संरचनेप्रमाणे परमाणूंच्या शेवटच्या कक्षेत एकच इलेक्ट्रॉन असतो. सोडियमचे कित्येक परमाणू जर

धातू	संयोजी इलेक्ट्रॉन	वितळण बिंदू व उत्कलन बिंदू
सोडियम	8	९७ व ८८३
मॅग्नेशियम	२	६५० व १०९१
लोखंड	₹	१५३० व २८६२
हाफनियम	8	२२३३ व ४६०३
टेंटॅलम	Ę	३४२२ व ५५५५
टंगस्टन	ų	३०१७ व ५४५८

जवळजवळ आले तर भागीदारी पद्धतीने ते प्रत्येक १ इलेक्ट्रॉन देतात आणि मग इतके इलेक्ट्रॉन्स एकत्र जमतात की जणू काही इलेक्ट्रॉन्सचा सागरच तयार होतो. इलेक्ट्रॉन्सचे परस्परांमध्ये आकर्षण होते व धात्विक बंध तयार होतो.

रसायनशास्त्रात एक मतप्रवाह असा आहे की धात्विक बंधातून मिळालेले संयोगी इलेक्ट्रॉन्स संयुजेच्या संख्येप्रमाणे निरनिराळे भौतिक गुणधर्म दाखवतात जसे पदार्थांची विद्युतवाहकता, वितलन बिंदू, उत्कलन बिंदू, काठिण्य वगैरे.

जर आपल्याला धात्विक बंध जोडायचे असतील तर त्यासाठी ऊर्जेची आवश्यकता असते. त्यासाठी उष्णता ही ऊर्जा वापरली तर आपल्याला वितलन बिंदू व उत्कलन बिंदू हे दोन तापमान बिंदू मिळतात. त्या दोन्ही तापमानाला धात्विक बंध विखरू लागतात. एक मतप्रवाह असा आहे की जास्त संयोगी इलेक्ट्रॉन्समुळे तयार झालेला धात्विक बंध जास्त मजबूत असतो म्हणून अशा धातूंचे धात्विक बंध तोडण्यास जास्त ऊर्जा पुरवावी लागते. अर्थातच अशा धातुंचे वितलन बिंदू व उत्कलन बिंदू जास्तच असतात. हे खालील कोष्टकावरून लक्षात येईल.

धात्विक बंधाच्या संयुजेमुळे आपल्याला धातूचे काठिण्य कितपत आहे हे समजतेच असे नाही (ते समजायला साधी सोपी युक्ती नाही) लीथियम, सोडियम पोटॅशियम, सीजियमचे धात्विक बंध तयार होण्यास फक्त एका एका इलेक्ट्रॉनचीच गरज असते म्हणून आपल्या समजुतीप्रमाणे हे धातू कमजोर असतात. हे धातू स्टीलच्या चाकूने सहज कापता येतात परंतु मूलद्रव्यांच्या आवर्त सारणीतील वेगवेगळ्या धातूची संयोजी इलेक्ट्रॉन्सची संख्या हे प्रमाण मानून तपासणी केली तर काही अपवाद आढळतात. म्हणजे इलेक्ट्रॉन्सची संयोजी संख्या वाढली तरीसुद्धा

धातूचे काठिण्य त्या प्रमाणात वाढत नाही. उदाहरणार्थ स्तंभ २ मध्ये दिलेल्या मूलद्रव्यांमध्ये बेरेलियम हा सगळ्यात कठीण पदार्थ आहे आणि बेरियम हा सगळ्यात नरम पदार्थ आहे. पण दोन्हींमध्ये संयोजी इलेक्ट्रॉन्स सारखेच (२) असतात. म्हणजेच संयोजी इलेक्ट्रॉन्स आणि पदार्थाचे काठिण्य यांचा थेट संबंध नसतो. असेच अपवाद स्तंभ ३ मध्येही आढळतात. कदाचित धात्विक बंध बनवणाऱ्या संयोजी इलेक्ट्रॉन्सच्या संख्येवरून धातूचे काठिण्य समजणे बरोबर नसते असेच म्हणावे लागेल. या बाबतीत संयोजी इलेक्ट्रॉन्सचे एकमेकांपासून अंतर हे ही धात्विक मजबूतीचे कारण असू शकेल.

या चर्चेत आपल्याला असाही विचार करावा लागेल की संयोजी इलेक्ट्रॉन्ससुद्धा एकाच प्रकारचे नसतात. बाह्यतम कक्षकात सुद्धा वेगळ्या आकृतीचे कक्षक असतात. आणि धात्विक बंधात त्यांची भूमिका वेगवेगळी असते.

तरीसुद्धा अजूनही धात्विक बंध आणि भौतिक गुणधर्म यातील संबंध ओळखले जातात

म्हणून इलेक्ट्रॉन्समुळे धातूचे काठिण्य समजले जाते असे म्हणणे योग्य होणार नाही.

वास्तविक पाहाता चाकूने तोडणे, तासणे या यांत्रिक क्रिया आहेत म्हणून एखादा पदार्थ कापण्यास वेगवेगळे काठिण्य असलेली हत्यारे वापरावी लागतात. उदाहरणार्थ मॅग्नेशियमची बारीक तार चाकूने थोडा जोर लावून कापणे शक्य असते पण १ इंच जाडीचा मॅग्नेशियमचा तुकडा साध्या चाकूने कापता येणे शक्य नसते त्यासाठी तरफदांडा वापरून चालणारे यंत्र तयार करावे लागते.

जसाजसा मजबूत आणि उच्च तपमानात काम करणाऱ्या मिश्र धातूंचा विकास होत गेला तसतसे कठीण व मजबूत पदार्थ कापण्याचाही विकास होत गेला.

हिंदी संदर्भ, अंक ९६ मधून साभार

लेखक: माधव केळकर, हिंदी संदर्भमध्ये कार्यरत मराठी अनुवाद – गो. ल. लोंढे, निवृत्त प्राचार्य.

अपूर्णांक

लेखक: किरण बर्वे

धीवत धावत मित्र मंडळी आली. त्यांनी गोट्या आणल्या होत्या. अतुल, नेहा आणि सुहृद तिघे होते. त्यांना तिघांनाही सारख्या गोट्या वाटायच्या होत्या. त्यांनी एक गोटी अतुलला दिली, दूसरी नेहाला दिली, तिसरी सुहृदने घेतली. आता प्रत्येकाकडे एक एक गोटी आली. आईने विचारले, आता प्रत्येकाकडे १, १ गोटी आहे. म्हणजे प्रत्येकाकडे सारख्याच गोटचा आहेत, तीनातली एक गोटी प्रत्येकाकडे आहे. म्हणजेच तीनातील एक भाग प्रत्येकाकडे आहे. जर का अपण गोट्यांऐवजी तीन सफरचंदे घेतली असती, तर प्रत्येकाला एकेक सफरचंद मिळाले असते. परत तीनातले एक. 'असलेली तीन सफरचंदे सगळीच्या सगळी कोणाला मिळाली असती का', मुले म्हणाली 'नाही' सुहृद पुरपुरला 'मला मिळाली असती तर काहीच हरकत नसती.' लगेच अतुल, नेहा ओरडले, 'आमची सक्त हरकत असती. सारखे म्हणजे सारखेच.'

१ गोटी	१ गोटी	१ गोटी
। । १ सफरचंद १ टोपी	१ सफरचंद १ टोपी	१ सफरचंद १ टोपी
१ टापा १ चेंडू	१ टापा १ चेंडू	१ टापा १ चेंडू

तीन गोट्या मधील प्रत्येकाला एक, तीन सफरचंदे तिघांना सारखी म्हणजेच १, १ वाटली, तीन टोप्या तिघा जणांच्यात सारख्याच वाटल्या आणि तीन चेंडू एक एक करून तिघाजणात सारखे वाटले. याचा अर्थ काय, अतुल म्हणाला, 'आम्हाला सर्व गोष्टी मिळाल्या नाहीत, मला असलेली गोष्ट संपूर्ण मिळाली नाही'. 'हो, असे झाले खरे' प्रत्येकाला सारखेच मिळाले म्हणून मग तक्रार नाही. तीन गोष्टीतील एक सगळ्यानाच मिळाली. 'सुहृद जरा अजून विचार करत होता, 'या सगळ्या खेळात एक सारखेपण आहे, की तीनातील एक भाग मिळाला आणि

हे सुटे सुटे भाग मिळून वस्तूंची एकूण संख्या मिळाली. पूर्ण संख्या मिळाली.' आई आनंदली. 'हुशार आहात तुम्ही. कोणतीही गोष्ट समजावून घेतली तर सोपी आहे, पण कधी जरा विचार केला, डोके चालवले तर.'

'आता हे जे झाले तसेच कोणत्याही तीन गोष्टी तिघात सारख्या वाटायच्या असतील तर होईल, म्हणजेच एकूण वस्तूंचा तिसरा भाग प्रत्येकाला मिळेल, पूर्ण मिळणार नाही, मात्र सारखा मिळेल. बरोबर?' सगळ्यांनी मान डोलावल्या. सुहृद हळूच म्हणाला, 'आता खरी बोलिंग सुरू झाली'.

ही कल्पना की 'तीनातील एक' म्हणजे काहीतरी हे गोट्या, सफरचंद, टोप्या इ. गोष्टींवर अवलंबून नाही, तर ही आपल्या एक, दोन, सात, नऊ अशा आकड्यांसारखी कल्पना आहे. ती वस्तू व परिस्थितीवर ठरत नाही, ज्या ज्या वेळेला कोणतीही गोष्ट तीनातील एक अशी आपण म्हणतो, ती एक आकडा दर्शवते. मोजण्याच्या गोष्टीत सुद्धा आपण हेच केले. अगोदर कल्पना मग व्यवहारात, रोजच्या जीवनात वापरण्यासाठी नावं आणि चिन्हं ठरली. वेगवेगळ्या भाषेत, देशात, अगदी त्याच भाषेतही जराशी वेगळी नावे असतातच. मात्र अशी चिन्हे आणि ते म्हणायचे शब्द अगोदर ठरवून घेतले की बोलायला, समजून घ्यायला आणि पृढे त्यांच्या सोबत अजून गंमती करायला सोयीचे जाते. अतुलने घाई केली, हे माझ्या डोक्यावरनं जातंय. पटकन चिन्ह आणि नाव सांग, मला वर्गातल्या मुलांची गंमत करायची आहे.'

'भावखाऊ नुसता'. अतुल लगेच म्हटला, 'आईनं समजेल असे सांगावे'. 'फजिती व्हावी म्हणून नको, पण तू गंमत म्हणालास हे चांगलेच. आता तुला माहीत असलेली आणि कदाचित इतरांना माहीत नसलेली गणितं तू मिरवणार, म्हणजे ही स्वारी पण भावखाऊच झाली.' अत्लने तोंड कसन्से केले, 'अग चिन्ह आणि शब्द महत्त्वाचे ते अगोदर सांग.' सगळे हसले. 'तीनातले एक घ्यायचे ते तीन एका आडव्या रेघेखाली लिहायचे आणि त्यातून घेतलेला भाग वरती लिहायचा. १/३ असा. मग अतुल शेठ तुम्हाला समजा, समजा बर का दोन भाग दिले तर कसे लिहाल?' 'सोपे आहे एक रेघ तिच्या खाली ३ आणि वर २. २/३, खल्लास.' सगळीच खुश होऊन ओरडली. 'खल्लास, खल्लास'. 'ह्याला काय म्हणायचे'. नेहा, 'काहीतरी असे नाव पाहिजे की त्यातून अर्थ जाणवेल. नेहा नावे अशीच ठेवावीत. तीनातील २ भाग. आपण बिघतलेच आहे की हा आकडा पूर्ण नाही. तर पूर्ण संख्यातील, १ मधील भाग, अंश आहे. 'तीनचे दोन अंश' असे म्हणायचे, हळू हळू वेगात 'दोन तृतीयांश' असे म्हणायला सुरवात करायची. एकंदरीत ३ मधील २ अंश, म्हणजेच दोन तृतीयांश.

अगोदरचे १/३ झाले एक तृतीयांश. मला जरा सांगता का समजा ५ पेरू आहेत, पाहणे यायचे आहेत त्यांना थोडे ठेवायचे आहेत. तुम्हाला त्यातील एक एक पेरू दिला तर किती अंश पेरू दिले, तो अपूर्णांक कोणता? थोडा वेळ विचार केला आणि अतुलने सुरवात केली, 'पहिल्यांदा एक रेघ काढायची. पढ़े, नेहा सांगतच होती पण अतुलनेच सांगायचे असे ठरल्यामुळे त्याला अशी रेघ मारा सांगून शांत रहायचे आणि दुसरा कोणी सांगताच बरोबर म्हणायचे ही युक्ती करता आली नाही. डॅम्बीस असला तरी अतुललाही शिकण्यात रस आहेच. त्याने परत स्टार्ट घेतला, 'पहिल्यांदा आडवी रेघ काढायची, त्याखाली एकूण संख्या म्हणजे ५ लिहायचे, आणि जितका भाग मिळाला ती संख्या वर मांडायची. १/५, 'खल्लास खल्लास', 'ह्याचा शब्द पाच अंशातील एक, एक पंचमांश' जा आता जरा बाहेर पळा. गृहपाठ करा. अतुल म्हणाला, 'गृहपाठ तर झाला.' नेहा विचारातच पडली, 'तू कधी केलास'. अतुलने ऐटीत सांगितले, 'हा काय घरीच अभ्यास केला, गृहपाठ झाला.' सगळे हसले.

दुसऱ्या दिवशी मित्र मंडळी जमली तर अतुल म्हणाला, 'बर का काका, आईने मला दोन चतकोर पोळी वाढली, मला समजले एक चतकोर म्हणजे १/४ पोळी, पण आई म्हणाली कि तुला एकूण अधीं पोळी वाढली. पण अधीं = १/२ पोळी. आता १/४ आणि १/४ वाढली, खाल्ली पण मग ती अधीं म्हणजे १/२ झाली. मला हे बरोबर आहे कळतंय पण' काकांनी सांगितले, 'अतुलने चांगले केले आहे. एक म्हणजे जे गणित म्हणून शिकला ते व्यवहारात वापरले. आणि त्याला प्रश्न पडला हे तर फारच महत्त्वाचे.' अतुलने लगेच विचारले, 'काका, मग बक्षीस?' काकांसह सगळे हसले.

एक पोळी खाली ठेवा. चतकोर पोळी आणि अजून चतकोर पोळी त्या पोळीवर जोडून ठेवा. आता एकूण खाल्लेली पोळी अधीं झाली. कारण चतकोर आणि चतकोर असे भाग घेतले तर ४ भाग मिळून एक पोळी होते. आत्ता आपण दोन भाग घेतले. एकंदरीत चारातील दोन आणि म्हणजे एकूण चार वस्तूंतील (चार चतकोर) दोन घेतले. १/२ हा अपूर्णांक. 'बरोबर, पण गंमत पुढेच आहे. मला अजून भूक होती म्हणून आईने अजून अधीं पोळी वाढली. मला कळले ही पूर्ण पोळी.'

समजा आईने अगोदर अर्ध चॉकलेट आणि नंतर पूर्ण चॉकलेटचे तीन भाग करून त्यातील एक दिला तर एकूण किती चॉकलेट मिळाले? हे समजण्यासाठी आपण खालील आकृती बघू. पहिल्या चित्रात एका चॉकलेटचे दोन भाग केले आहेत. दुसऱ्यात तीन भाग केले आहेत. पहिला अपूर्णांक १/२ आणि दुसरा १/३. आपल्याला १/२ + १/३

काढायचे आहे. आपण जर छेद सारखा असेल तर बेरीज करायला शिकलो आहेत. मग काय करू या? नेहाने लगेच सांगितले 'काहीतरी करून दोघांचे छेद सारखे करू'. सुहृदने सुचवले की 'अपूर्णांक न बदलता'. 'बरोबर' काकांनी त्यांना शाबासकी देऊन म्हटले 'एकात दोन आणि दुसऱ्यात तीन भाग केले आहेत, मग जर १/२ ह्या भागाचे तीन सारखे भाग केले तर हे भाग बरोबर जुळतील. बघा बरे. कारण एकूण ६ सारखे भाग होतील. त्यातील तीन घेतले तर १/२ आणि २ घेतले तर १/३, १/२ = ३/६ आणि

१/३ = २/६.
मग १/२ + १/३ =
$$3/\xi + 2/\xi = (3+2)/\xi = 4/\xi.$$

वरील आकृतीत १/२ एका रंगाने तर १/३ दुसऱ्या रंगाने रंगवला आहे. एकूण ६ तील ५ भाग रंगवले आहेत. अशा प्रकारे बेरीज करता येते. जर बेरीज एक पेक्षा जास्त तेव्हा उत्तर १ पूर्ण आणि ४/१५. = १४ १५ . सगळे खुश झाले.

अवघड अवघड असा म्हटला जाणारा हा विषय किती सोपा आहे हे समजले आणि आरडाओरडा करत मुले बाहेर पळाली.

लेखक : **किरण बर्वे,** मो. - ९४२३० १२०३४

वाट चुकलेलं कोकरू

भाग - २

लेखक: ओमा शर्मा स्वैर रूपांतर: प्रीती केतकर

मिनोचिकित्सक डॉक्टर अशोक बँकर यांच्या केबिनच्याबाहेर आम्ही दोघं वाट बघत बसलोय. समीरा केबिनमध्ये आहे. मगाशी आम्हाला तिघांनाही एकत्र आत आलेलं बघून त्यांना कदाचित परिस्थितीचा अंदाज आला असावा.

समीरा----वा ऽ,तुझं नाव तुझ्यासारखंच गोड आहे ग!----कोणी ठेवलं? ते हसतहसत बोलले. मम्मानं---समीरा संकोचानं पुटपुटली. फक्त मम्मानं? पापांनी नाही? त्यांनी विचारलं. त्यांच्या त्या नेमक्या प्रश्नामुळे अपॉईंटमेंट घेऊनही वाट बघत थांबावं लागल्यामुळे आलेला आमचा कंटाळा पळून गेला. ऐन उन्हात वाऱ्याची थंडगार झुळूक यावी तसं वाटलं. समीराच्या जन्मानंतर आम्ही दोघांनी मिळून आमची सत्या आणि मीरा ही नावं एकत्र करून समीरा हे नाव तिच्यासाठी बनवलं तो सगळा प्रसंग क्षणभर डोळ्यांसमोर तरळून गेला. मग दुसऱ्या मुलाचं नाव काय ठेवायचं? मी गमतीनं

मीराला छेडलं. नको रे बाबा! एक मूलच प्रेसं आहे! कदाचित सिझेरियनचे टाके अजून ओले होते. पण समीरा तीन वर्षाची झाली तोपर्यंत आमचा एकच मूल पुरे हा निर्णय झाला होता. एक मुलगी आहे तिचंच सगळं व्यवस्थित करायचं असं आम्ही ठरवलं. त्या निर्णयाचा कधी फेरविचार केला नाही. आता मात्र कधीकधी असं वाटतं की मुलंच एकमेकांना जास्त चांगलं समजून घेत असतील. चांगली हसतीखेळती मुलगी एकदम घुमी होऊन जाते, अभ्यासाकडे लक्ष देण्याऐवजी सोशल नेटवर्किंगच्या विळख्यात अडकते. आणि आईवडील बोलले तर तडक आत्महत्येचा मार्ग चोखाळते, कम्युनिकेशन गॅपचा याह्न मोठा कोणता पुरावा असू शकतो!

असो. झालं ते झालं. ते सुधारता कसं येईल याचा आता विचार करायचाय.

डॉक्टरांच्या हसतमुख, प्रसन्न व्यक्तिमत्त्वामुळे त्यांच्याबद्दल विश्वास निर्माण होतो. ओके समीरा, आता तुझ्या मम्मी-पापांना शूट करण्याजोगी तीन कारणं मला सांग. हाताची तीन बोटं आमच्यावर रोखून पिस्तुल चालवण्याचा अभिनय करत डॉक्टर गंभीरपणाचा आव आणून म्हणाले. त्याबरोबर समीरासकट आमच्या सगळ्यांच्याच चेहऱ्यावर हसू फुटलं. तीन कारणं - एक, दोन आणि तीन ! सांग लवकर ! आधी समीरानं उत्तर न देता त्यांचा प्रश्न हसण्यावारी नेला म्हणून त्यांना खरोखरच तिच्याकडून उत्तराची अपेक्षा आहे हे ठसवण्यासाठी ते बोलले. माझा मोबाईल घेतला. तिनं गंभीरपणे पहिलं कारण सांगितलं. हां, हे एक कारण आहे खरं! जोशीसाहेब, तुम्ही असं करायला नको होतंत. अहो, मोबाईल ही आजकालची गरजेची वस्तू आहे! त्यांच्या डॉक्टरी रणनीतीनुसार त्यांनी आम्हाला लक्ष्य बनवलं. घेतला नाही डॉक्टर, फक्त रात्री झोपताना बाजूला ठेवायला सांगितलं. फॅमिली कोर्टात सफाई देत असल्यासारखा मी तावातावानं बोललो, पण का? समीराची तरफदारी करत असल्याच्या सुरात ते ठासून बोलले. त्याबरोबर समीराच्या चेहऱ्यावर विजयाचं हलकंसं गोड हसू फुटलं. कारण ती रात्री उशीरापर्यंत बीबीएमवर असते. हिच्याकडे ब्लॅकबेरी आहे? त्यांनी चमकून विचारलं. त्याक्षणी मला इट्स नॉट अ फोन, इट्स व्हॉट यू आर या जाहिरातीचा परिणाम त्यांच्या चेहऱ्यावर साकार झालेला दिसला. काय करणार, सगळ्या फ्रेंड्सकडे आहे म्हणून तिनं हट्टच केला. माझ्या असहायतेकडे दुर्लक्ष करून ते पुन्हा समीराकडे वळले. अरे वा! हे तर छानच झालं. मीपण बीबीएमवर आहे. खूप छान सोय आहे ही. समीरा मी तुला माझा पिन देईन. तू मला बीबीएम करशील? डॉक्टरांबद्दल समीराच्या मनात मित्रत्वाची भावना निर्माण झाल्यामुळे त्यांच्या

बोलण्याला तिनं मनापासून हो ऽऽ अशी मान हलवून प्रतिसाद दिला. बरं! हे झालं एक कारण. आता त्यांना शूट करण्याची अजून दोन कारणं सांग. ह्यावर काहीशा संकोचानं आमच्याकडे ओझरता कटाक्ष टाकून समीरानं नजर दुसरीकडे वळवली. डॉक्टर बँकरनी तिच्यातला हा बदल अचूक टिपला. तुमची हरकत नसेल तर मला समीराशी एकटीशी बोलायचंय. त्यांनी आम्हाला बाहेर जायची खूण केली. जरूर--जरूर! मीरा आणि मी बाहेर आलो.

बाहेर डॉ. बँकरना भेटण्यासाठी बरेचजण बसले होते. रूप-रस-गंध सगळ्याच बाबतीत सायकिॲट्रिक वॉर्ड इतरांपेक्षा खूप वेगळा असतो. आमच्यानंतर आणखी नऊदहाजण तरी असतील. संध्याकाळचे सात वाजलेत. आमच्याआधी जी बरोबरच्या पुरुषाशी वाद घालणारी मध्यमवयीन स्त्री केबिनमध्ये गेली होती, ती तब्बल पाऊण तासानं बाहेर आली होती. ह्या हिशोबानं डॉक्टरांना घरी जायला अकरा वाजतील! हे क्षेत्र असं आहे की इथे घाईगडबड करून चालत नाही. एक ग्लॉसी लिपस्टिकवाली, स्लीव्हलेस घातलेली जरा स्थूलशी चाळिशीची गृहिणी आहे, ठिकठिकाणी कान टोचलेली, गोरी, भावरहित चेहऱ्याची आधुनिक तरुणी आहे, एक निम्न मध्यमवर्गीय जोडपं आहे.... त्यांनाही इथे येणं भाग पडावं? त्या सगळयांमध्ये मूल

असं आणखी एकच आहे- विडलांबरोबर आलेला एक मुलगा. असेल काहीतरी भानगड. काही दिवसांपूर्वीपर्यंत फक्त वेड लागलेल्या माणसालाच सायकीॲट्रिस्टकडे नेलं जात असे. आता परिस्थिती बदलली असली तरी अजूनही त्याबद्दल गुप्तता पाळण्याकडेच कल असतो. हल्ली म्हणे मेडिसिनमध्ये सायिक ॲट्री आणि न्यूरॉलॉजीला सर्वोच्च प्राधान्य आहे.

आधी ती तुझ्याशी बऱ्यापैकी बोलत असे. आता नाही का बोलत? मी थोडं चाचरतच मीराला विचारलं. असल्या गैरवाजवी प्रश्नाला काय उत्तर देणार अशा अविर्भावात ती तोंडातल्या तोंडात हं! असं काहीतरी बोलली. कदाचित तिथलं वातावरण बघून तिच्या मनात काहीतरी उलथापालथ सुरू झाली असावी. टीचर्सनी आम्हाला आधीच सांगायला हवं होतं. मला वाटतं हा पेज-थ्रीवाल्या कुटुंबातल्या मुलांच्या संगतीचा परिणाम आहे. आपल्या आईवडिलांसारखीच तीही बिघडलेलीच असतात. बघू नयेत अशा गोष्टी रोजच अगदी जवळून बघत असतात ना! मित्रांमध्ये आईवडिलांचा उल्लेख दॅट मॅन---दॅट वूमन या शब्दात करायला त्यांना काहीच वाटत नाही. ती पुन्हा गप्प झाली. पण आत्ताच असं काय झालंय? मी समोरच्या टीव्हीकडे बघत बोललो.

तिथे सत्तरच्या दशकातली कोणती तरी

फिल्म चालू होती लॉकेट, कार-रेस, बेलबॉटम आणि मल्टीस्टारर! ते बघताना त्याकाळी अद्भुत वाटणाऱ्या त्या सगळ्या गोष्टींबद्दल तेव्हा वाटलेलं भारून टाकणारं आकर्षण मनात जागं झालं. ह्यालाच वास्तव विसरायला लावणारं अद्भुतरम्यतेचं वेड, स्वप्नरंजन म्हणायचं का? असं स्वप्नरंजन ज्यात आपल्या गुडघ्याएवढया मुलीशी आपला संवादच होऊ शकत नाहीय... ह्या जाणीवेनं आपण ग्रासलेले आहोत. त्रस्त आहोत. त्यावर उपाय शोधायचा प्रयत्न करतोय पण काहीच करता येत नाहीय. तिची प्रत्येक असहनीय कृती सहन करतोय... आपल्या माणसाशी असलेल्या आपल्या नात्यात... निर्वात पोकळी, अंतराय निर्माण झाल्यामुळे आपली कोंडी झाल्येय आणि त्यात आपला जीव गुदमरतोय.... हे दुर्बोध, बिकट वास्तव लुप्त होतं!

थोड्यावेळानं समीरा हसतहसत बाहेर आली आणि तिनं आम्हाला आत जायची खूण केली. आम्ही आत गेलो. आता काय ऐकावं लागणारय अशी भीती, पण त्याचबरोबर वस्तुस्थिती जाणून घेण्याची अधीरता-अशा संमिश्र भावनेनं डॉक्टरांसमोर बसलो. इट्स प्रीटी बॅड! त्यांच्या रुक्ष स्वरामुळे आम्हाला तोंडात मारल्यासारखं झालं. काही कळत नाहीय डॉक्टर. दोन वर्षापूर्वीपर्यंत सगळं काही ठीक होतं. त्यानंतर तिच्या वागण्यात फरक पड़त गेला... मी तुम्हाला काय विचारतोय आणि तुम्ही तिसरंच काहीतरी सांगताय! त्यांनी आम्हाला हटकलं. मला 'तारे जमीनपर'मधल्या ईशान अवस्थीच्या वडिलांसारखा मी निकम सरांसमोर बसलोय असं वाटलं. ती जे काही करण्याची धमकी देत्येय ते करायला तिला भाग पडावं असं काहीच झालेलं नाही. मीरा नरमाईच्या सुरात बोलली. हे बघा मिसेस जोशी, प्रत्येकाची त्याची त्याची अशी विचार करण्याची एक पद्धत असते. जेव्हा मुलाचं अनपेक्षित, अनाकलनीय वर्तन समोर येतं तेव्हा पालक गोंधळून जातात. त्यांच्या दृष्टीनं मुलानं असं काही पाऊल उचलावं असं त्यांनी काहीच केलेलं किंवा बोललेलं नसतं. मग का..... त्यांचं बोलणं पटल्यामुळे आम्ही

गप्प बसलो. याच्याआधीही तीनवेळा तिनं असा प्रयत्न केला होता. तीन? आम्हाला आश्चर्याचा धक्काच बसला. त्या घटनेच्या भयानकतेपेक्षा तिच्या आयुष्यात आपल्याला काही स्थान उरलेलं नाहीय ह्या शोकांतिकेमुळे आमचा जास्त थरकाप उडाला. रात्रंदिवस तिच्या आनंदासाठी धडपडणारे आम्ही तिच्या लेखी कोणीच नाही आहोत! एका अनोळखी डॉक्टरबद्दल तिला जास्त विश्वास वाटला.... ठीऽऽक आहे....!

हो, तीनदा. पण तिचं भलं व्हावं असं वाटत असेल तर तुम्ही तिच्याशी याबाबतीत काही बोलू नका. त्यांच्या स्वरात स्पष्ट ताकीद होती. नाही बोलणार. पण मग डॉक्टर, आम्ही करायचं तरी काय? तिला पूर्ण मोकळीक दिली होती. थोडी कमी मोकळीक दिली असती तर ही वेळ आली नसती. ती इंग्लिश म्युझिक, रोडिज आणि फेसबुकची इतकी ॲडिक्ट झाल्येय की अभ्यास तर सोडाच खाण्यापिण्याचीही शुद्ध नसते. सांगितलेली एकही गोष्ट ऐकत नाही. ह्यात आश्चर्य करण्यासारखं काहीच नाहीय. एखाद्या परमज्ञानी माणसासारखी माझ्या मनातली गोष्ट ओळखून त्यांनी मला अडवलं आणि म्हणाले, टेक्नॉलॉजीनं आजच्या समाजात धुमाकूळ घातलाय. ही टेक्नॉलॉजी आत्मसात करायला आपण असमर्थ असल्यामुळेच केवळ या साथीच्या रोगापासून आपण बचावलोय. ही आजची पिढी ज्यांना

आपण यंग ॲडल्टस म्हणतो, ती अतिशय सक्षम आहे. टेक्नॉलॉजीतील हरेक शक्यता, पर्याय त्यांना पडताळून बघायचा असतो. त्याच्या परिणामांचा विचार करण्याची त्यांना गरज वाटत नाही. तुमची मुलगीही काही वेगळी नाहीय. माझ्याकडे येणाऱ्या दहा टीनेज पेशंटसपैकी आठ पेशंटस ह्याच तप्हेचे असतात....

काय करणार डॉक्टर, आम्ही मध्यमवर्गीय आहोत. आमच्या दृष्टीनं मुलीनं आपल्या पायावर उभं राहणं किती गरजेचं आहे.... अव्यक्त चिंतेच्या ओझ्याखाली दमछाक झालेला मी, माझं ओझं डॉक्टरांकडे सोपवण्याचा प्रयत्न करतो. मि.जोशी, काळजी करू नका. ती लवकरच पूर्णपणे बरी होईल. आम्हाला धीर देत त्यांनी लेटरहेडवर फ्लूडॅक (फ्लॅक्सोटीन) नावाचं औषध लिह्न दिलं. ते दुपारी जेवल्यावर घ्यायचं होतं. थायरॉईड आणि आणखी दोनचार तपासण्या करायला सांगितल्या. आणि तनाज पार्डीवाला नावाच्या कौन्सेलरचा मोबाईल नंबर लिहन दिला. आमच्या मनात उद्भवू शकणाऱ्या शंका ओळखून ते म्हणाले, हे सिरप म्हणजे मूड एलीव्हेटर आहे. सतत टीव्ही, कॉम्प्युटरवर असल्यामुळे हल्ली ह्या वयाच्या मुलांमध्ये डी-थ्री व्हिटामिनची कमतरता निर्माण होते. ती दुर करण्यासाठी... आणि पार्डीवाला ह्या खूप चांगल्या सायकोथेरपीस्ट आहेत. ते

म्हणाले की तिच्या मनात नेमकं काय चाललंय हे जाणून घेता यावं म्हणून ते तिचे फेसबुक-फ्रेंड होणार आहेत. शिवाय बीबीएम आहेच! ह्या त्यांच्या युक्तीमुळे आम्हाला अचानक आश्वस्त वाटायला लागलं. तेवह्यात त्यांनी समीराला आत बोलावलं आणि संभाषणाचा संदर्भ आणि ढंग बदलत खरं म्हणजे समीरा अतिशय टॅलेंटेड मुलगी आहे आणि तितकीच गोडही आहे! असं जाहीर केलं! ते अशा तऱ्हेनं बोलले की आत्तापर्यंत आम्ही केवळ समीरा आणि समीराबद्दलच बोलत होतो असा तिचा समज व्हावा. त्यांच्या जाद्भरल्या प्रोत्साहनाचा परिणाम मला दिसत होता. खरोखर माझी समीरा म्हणजे हिरा आहे डॉक्टर, पण.... डॉक्टरांच्या बोलण्याला दुजोरा देत मीरा म्हणाली. पण बोलताबोलता तिचा गळा भरून आला आणि तिला रडू फुटलं. मी गोंधळून गेलो पण समीरानं आवेगानं तिला मिठी मारली आणि निरागसपणे कातर स्वरात हळूच म्हणाली, काय झालं मम्मा? नशीब मीरानं स्वतःला सावरलं.

आपण समजतो तितकं हे जग वाईट नाहीय. पार्डीवाला आणि डॉ.बॅंकर दोघंही समीराच्या फेसबुकवर असल्याचं समजलं. आपसात बीबीएम करत असतात. म्हणजे ज्या गोष्टींनी तिला आजारासारखं घेरलं होतं त्याच गोष्टी तिच्या मनाच्या कानाकोपऱ्यापर्यंत पोचण्याच्या पायवाटा बनल्या आहेत.

कोणत्याही अविवाहित पारशी व्यक्तीसारखीच पार्डीवाला थोडी सनकी वाटते खरी. पण कामाच्या बाबतीत एकदम चोख आहे. पहिल्यांदा मीराकडून एकामागून एक

> ई-मेल करवून घेतल्या. काही मुद्दे स्पष्ट करून घेतले. त्यांना समीराची संपूर्ण कुंडलीच हवी होती....म्हणजे तिचा जन्म केव्हा, कुठे, कसा झाला, नॉर्मल की सिझेरियन, गरोदरपणाचा काळ कसा होता, समीराच्या आवडी-निवडी, कुटुंबात कोणाला कधी डिप्रेशन आलं होतं का, कुटुंबातील कोणाशी जास्त जवळीक आहे, दोन्हीकडचे आजी-आजोबा, आत्या, मावशी यांच्याशी किती घसट आहे, तिच्याशी कधी कोणी गैरवर्तन (abuse) केल्याचं

माहिती आहे का, मित्र कोण आहेत, त्यांचे आईवडील, कुटुं बीय यांच्याबद्दलची थोडक्यात माहिती, आमचे परिचित लोक कोण आहेत, विडलांच्या व्यवसायाची स्थिती, त्यातले चढ उतार... आमच्या दृष्टीनं आवश्यक – अनावश्यक अशा प्रत्येक गोष्टीचा तपशील त्यांना जाणून घ्यायचा होता. कधीकधी तर असं वाटलं की ह्या तपशिलाच्या जंजाळाचा काही वापर केला जाणार आहे की नुसताच वेळकाढूपणा आहे. मी कुठेतरी वाचलं होतं की समस्येबद्दल बोलून-सांगूनच अर्ध्याअधिक समस्येचं निराकरण होतं. पण ह्या बाईंचं काय चाललंय काही कळत नव्हतं. असो. आपण त्यात करूही काही शकत नाही ना!

पार्डीवालाबरोबर समीराची सहासात सेशन्स झाली आहेत. त्यांच्यात नेमकं काय घडतं हे ना समीरा सांगते ना पार्डीवाला. पण त्यांच्याकडून आली की समीरा खुशीत दिसते. बीबीएमवरूनच अपॉईंटमेंट ठरते. मग त्यावेळी आम्ही समीराला त्यांच्याकडे सोडून येतो. होमवर्क म्हणून समीराला ई-मेल्स पाठवायच्या असतात. कशासंबंधी, का वगैरेशी आम्ही काही संबंध ठेवायचा नाहीय. इथपर्यंत ठीक आहे. पण तीच गोष्ट आता मीरा आणि पार्डीवालामध्ये जे संभाषण होतं त्यालाही लागू आहे. डॉ. बँकर आणि पार्डीवाला यांच्यामध्ये समीरासंबंधीच्या गोष्टींची चर्चा होत असते. शेवटी आमचं

सगळ्यांचं उद्दिष्ट तर एकच आहे. समीराची अवस्था जाणवण्याइतकी सुधारत्येय. पण तरीही सवयीनं मी रात्री उठून समीराच्या खोलीत डोकावून ती नीट झोपल्येय की काही... याची खात्री करून घेतो. मी तिच्याशी जास्तच काय अजिबातच बोलायचं नाही ह्याचा अर्थ मी काय समजायचा? मग काय तिला बिघडू देऊ का? असं स्पष्टपणे विचारलं तर त्यावरही थंडपणे हो! असं उत्तर मिळालं. गोष्ट नाजूक आहे. जरा धीरानंच घ्यायला हवं.

एका कलत्या दुपारी काही लोकांबरोबर कंपनीच्या विस्तारयोजनांबाबत सल्लामसलत करत असताना डॉ. बँकरचा फोन आलेला बघून मी दचकलो. गेल्या दोन महिन्यांपासून आज प्रथमच त्यांनी मला फोन केला होता. सत्यपालसाहेब, संध्याकाळी सहा वाजता माझ्याकडे येऊ शकाल का? आहेवेहे न घेता त्यांनी सरळ मुद्द्याचाच प्रश्न विचारला. जरूर..जरूर डॉक्टरसाहेब. पण आज सहा वाजता तर समीराचा डान्स क्लास आहे. माहित्येय मला. पण तुम्ही एकट्यानंच यायचंय. मीराताईंनीही यायची गरज नाही. ठीक आहे? मला डॉक्टरलोकांची व्यावसायिक पण सौजन्यानं वागण्याची पद्भत आवडते. क्रचित ते वागणं कोरडं वाटू शकतं. पण तुमच्या समस्येबद्दल ते नक्कीच पूर्णपणे गंभीर असतात. जाताजाता नुसती वरवर सहानुभूती दाखवायची, करायचं मात्र काहीच नाही असा दिखाऊपणा त्यात नसतो. मला डॉ.बॅकर यांचं वागणं खूप आवडतं. समीराचंही त्यांच्याशी खूपच जमलंय. इतकं की सायिक ऑट्रिस्ट बनण्यासाठी काय करायला लागतं याची चौकशी ती मम्मीजवळ करत होती. तिनं काय ते सांगितलं तेव्हा म्हणाली की मग त्यापेक्षा कौन्सेलर होणं चांगलं. म्हणजे काम तेच आणि मेहनत कमी. काही का असेना, ती निदान काहीतरी केलं पाहिजे... काय करावं वगैरे विचार तरी करायला लागल्येय. नाहीतर आम्ही तिच्याबद्दल विचार करणं हासुद्धा गुन्हा होता. आम्ही काही सांगायला गेलो तर 'चिल' असं म्हणून आम्हाला उडवून लावत होती.

डॉ. बॅकरकडे पोचेपर्यंत हे सगळे विचार माझ्या मनात चालले होते. पोचलो तेव्हा तिथे गर्दी नाही हे बघून मला सुखद आश्चर्य वाटलं. त्यांच्या रिसेप्शनिस्टनं सांगितलं की डॉक्टरांनी आत बोलावलंय. आत गेल्यावर त्यांचा हसरा चेहरा बघून मला हुरूप आला. कसे आहात मि.जोशी? एका फाईलमध्ये पाचसात कागद ठेवत त्यांनी विचारलं. ठीक आहे डॉक्टर. समीरा कशी आहे? खूपच सुधारणा आहे... अर्थात तुम्हालाच जास्त माहीत असणार! मी संकोचून म्हणालो. आय थिंक शी इज रिस्पॉडींग वेल....बट व्हॉट अ सेन्सिटिव्ह चाईल्ड शी इज... मी थोडा चक्रावलो. मि.जोशी, दोन वर्षापूर्वी तुमच्या बिझिनेसची काय परिस्थिती होती? शंकित स्वरात, शब्दांचा काळजीपूर्वक वापर करत ते बोलले. ठीक होती. ग्लोबल मेल्टडाऊनचा फेरा आला होता ना. त्यामुळे सगळ्यांप्रमाणे मलाही मंदीची थोडी झळ बसलीच. पण देवदयेनं फार काही झालं नाही. हं ऽऽ, खूप काही नसेल झालं. पण जे झालं ते काय कमी होतं का...? त्यांच्या बोलण्याचा रोख एकदमच बदलला. त्यांच्या बोलण्यामुळे मी दुखावला जाणार नाही याची काळजी घेऊन ते बोलत होते, पण तरीही त्यांच्या बोलण्याचा रोख मात्र स्पष्ट होता. मला काही बोलताच आलं नाही. तेही जास्त खोद्न विचारत नव्हते. त्या अवघडलेल्या शांततेनं माझ्या घशाला कोरड पडली. मी पाणी प्यायलो. पण का मि.जोशी? इतकं छान कुटंब आहे तुमचं... ही इंजेक्शन देण्यापूर्वी स्पिरीट लावण्यापेक्षाही जास्त मोठी गोष्ट होती. मीरानं तुम्हाला काही सांगितलं का? त्यांच्या बोलण्यामुळे मला अपराधी ठरवलं जातंय असं वाटू न देण्याची खबरदारी त्यांनी नक्कीच घेतली. पण त्यांच्या बोलण्यामागचा त्यांचा हेत्ही स्पष्टपणे आणि थेटपणे पोचवला. माझ्या मनातील अपराधीपणाची भावना अविश्वासाच्या पडद्याआड लपायचा प्रयत्न करत होती. मुळीच नाही. त्यांनी काहीही सांगितलेलं नाहीय. आणि हां...यापुढे ती लहान आहे, तिला काय कळतंय असं समजण्याची चूक कधीही करू

नका. मोबाईल हाताळण्यात आमच्या कैकपटीनं तरबेज असलेल्या पिढीतली ती मुलगी आहे. तुमच्यावरच्या त्या प्रसंगामुळे ती मुळापासून हादरली आहे... ते थांबतथांबत बोलत होते. त्यांचं बोलणं ऐकून मी सुन्न होऊन गेलो. एखाद्या गोष्टीचा कुठे, किती खोलवर परिणाम होऊ शकतो याची कल्पनाच करता येत नाही. त्या लहानग्या निरागस जिवाची खरंच कमाल आहे. खूपच सांभाळलंय तिनं स्वतःला. तिला माझा सलाम!

बसलेल्या धक्क्यामुळे मी जडशीळ झालोय हे बघून ते माझ्याजवळ आले आणि माझ्या खांद्यावर हात ठेवून म्हणाले, तुम्ही त्यातून बाहेर आलायत हे चांगलंच आहे. पण ती अजून बाहेर येऊ शकलेली नाही! ते गेल्यावर मला माझ्यासमोर उभ्या असलेल्या वास्तवाच्या गांभीर्याची जाणीव झाली. आणि त्याचक्षणी मला छोट्याशा पिछाचं अचानक मोठं मांजर होणं म्हणजे नेमकं काय हे जाणवलं! मी शक्तिपात झाल्यासारखा गाडीत येऊन बसलोय. गाडी सुरू करण्याएवढंही त्राण नाहीय अंगात. विचार करतोय की...मोठ्या मांजराला पिछाचं गोजिरेपण कसं परत देता येईल....

लेखक : ओमा शर्मा, ॲडिशनल कमिशनर, आयकर विभाग. हिंदीतील युवा लेखक. मुंबईत वास्तव्य. वरच्या 'दुश्मन मेमना' या कथेसाठी २०१२ सालच्या रमाकांत स्मृति पुरस्कारानं सन्मानित. इंग्रजीतून हिंदीमध्ये अनुवाद करतात.

चित्रे : अनुपम रॉय. आंबेडकर युनिव्हर्सिटी दिल्ली इथे चित्रकलेत एम.ए. करत आहेत.

मराठी रूपांतर : प्रीती केतकर

१०० वर्षांपूर्वी

जुलै १९१५ च्या नॅशनल जिओग्राफिक मासिकातील एक लेख अमेरिकेच्या कॅलिफोर्निया प्रांतातील सृष्टीसौंदर्याला वाहिलेला होता. त्यातील दोन वैशिष्ट्यपूर्ण छायाचित्रे.

छायाचित्र १ मोंटेरे सायप्रस ही सायप्रस वृक्षाची प्रजाती फक्त कॅलिफोर्नियाच्या किनारपट्टीवरच आढळते, आणि आता ही प्रजाती नष्टप्राय झालेली आहे. फारच कमी संख्येने उरलेल्या या वृक्षांपैकी एकांडा सायप्रस (लोन सायप्रस) या नावाने प्रसिध्द असलेला मोंटेरे येथील हा वृक्ष. पॅसिफिक महासागराच्या किनारपट्टीवर सतत घोंघावत असलेल्या वाऱ्यामुळे

याचा आकार असा वैशिष्ट्यपूर्ण बनला आहे. सुदैवाने हा वृक्ष अजूनही उभा आहे, त्याचे अलीकडचे छायाचित्रही सोबत दिले आहे. सायप्रसचे हे वृक्ष हजारो वर्षे जगू शकतात. नॅशनल जिओग्राफिकच्या अंकात या वृक्षाचे वय २००० वर्षांच्या आसपास असावे, असा अंदाज वर्तवलेला आहे. पण आताच्या वनस्पतिशास्त्रज्ञांच्या मते आज उभ्या असलेल्या कोणत्याच मोंटेरे सायप्रसचे वय २००-२५० वर्षांपेक्षा जास्त नाही.

छायाचित्र २ कॅलिफोर्नियातील स्पोकेन नदीच्या परिसरातील बसाल्टच्या या वैशिष्ट्यपूर्ण भौगोलिक रचनेचे नाव आहे, सैतानाची चहाची किटली (डेव्हिल्स टीपॉट). फोटोत शेजारी उभ्या असलेल्या माणसाच्या आकारावरून या किटलीच्या अतिप्रचंड आकाराची कल्पना येईल.

८९ ते ९४ अंकातील लेखांची सूची

लेखाच्या पुढे अंक क्र. आणि पान क्र. दिले आहेत.

भौतिकशास्त्र		३. लढाया आणि युद्धे वनस्पतींर्च	ो ९०.५ १
१. अरेच्चा! हे असं आहे तर!	८९.३३	४. कीटकभक्षी वनस्पतींचे जग	९१.१२
२. शंकासुराचा प्रश्न	८९.४९	५. वामनवृक्ष	९४.७
३. अणू विचार	८९.५८		
४. अत्याधुनिक सूक्ष्मदर्शक	६७.१১	जीवशास्त्र	
५. अरेच्चा! हे असं आहे तर!	90.9	१. आपल्या श्वासात काय असेल	६३.१८९
६. काळ आणि अवकाश :		२. तिखट नाक	९१.५८
आईनस्टाईन व पुढे	९०.३५	३. एकावर एक दोन	९२.८१
७. अरेच्चा! हे असं आहे तर!	९२.५८	४. म्हातारपण	९३.६९
८. चूक म्हणजे किती चूक	९२.६१	५. विषसेवन कशातून	88.3
९. पुरी का फुगते?	93.29		
१०.चुंबकशक्ती कमी होत		भूगोल	
जाते का?	९४.३५	१. आश्चर्यकारक महासागर	९०.१३
११.अरेच्चा! हे असं आहे तर!	९४.५६	२. पृथ्वीबद्दलची १८ आश्चर्ये	९३.१८
रसायनशास्त्र		गणित	
रसायनशास्त्र १. मौल्यवान गवार	८९.३७	गणित १. भास्कराचार्यांचे गणित-२	८९.६५
	८९.३७ ९०.२५		८९.६५ ९०.३
१. मौल्यवान गवार		१. भास्कराचार्यांचे गणित-२	
 मौल्यवान गवार प्लॅस्टिक खाणारी बुरशी 	९०.२५	 भास्कराचार्यांचे गणित-२ शून्याचे सौंदर्य 	९०.३
 मौल्यवान गवार प्लॅस्टिक खाणारी बुरशी 	९०.२५	 भास्कराचार्यांचे गणित-२ शून्याचे सौंदर्य भास्कराचार्याचे गणित-३ 	९०.३
 मौल्यवान गवार प्लॅस्टिक खाणारी बुरशी विषसेवनकशातून? 	९०.२५	 भास्कराचार्यांचे गणित-२ शून्याचे सौंदर्य भास्कराचार्याचे गणित-३ गणिती रूपकांची 	९०.३ ९०.७३
१. मौल्यवान गवार२. प्लॅस्टिक खाणारी बुरशी३. विषसेवनकशातून?प्राणीशास्त्र	९०.२५ ९४.३	 भास्कराचार्यांचे गणित-२ शून्याचे सौंदर्य भास्कराचार्याचे गणित-३ गणिती रूपकांची अद्भूत दुनिया-१ 	९०.३ ९०.७३
 मौल्यवान गवार प्लॅस्टिक खाणारी बुरशी विषसेवनकशातून? प्राणीशास्त्र मधुमक्षिका पालन 	९०.२५ ९४.३ ९०.२३	 भास्कराचार्यांचे गणित-२ शून्याचे सौंदर्य भास्कराचार्याचे गणित-३ गणिती रूपकांची अद्भूत दुनिया-१ गणिती रूपकांची 	९०.३९०.७३९१.४३९२.२१
 मौल्यवान गवार प्लॅस्टिक खाणारी बुरशी विषसेवनकशातून? प्राणीशास्त्र मधुमिक्षका पालन वाघांची शिरगणती 	<o.24< td=""><td> भास्कराचार्यांचे गणित-२ शून्याचे सौंदर्य भास्कराचार्याचे गणित-३ गणिती रूपकांची अद्भूत दुनिया-१ गणिती रूपकांची अद्भूत दुनिया-२ अद्भूत दुनिया-२ </td><td>९०.३९०.७३९१.४३९२.२१</td></o.24<>	 भास्कराचार्यांचे गणित-२ शून्याचे सौंदर्य भास्कराचार्याचे गणित-३ गणिती रूपकांची अद्भूत दुनिया-१ गणिती रूपकांची अद्भूत दुनिया-२ अद्भूत दुनिया-२ 	९०.३९०.७३९१.४३९२.२१
 मौल्यवान गवार प्लॅस्टिक खाणारी बुरशी विषसेवनकशातून? प्राणीशास्त्र मधुमिक्षका पालन वाघांची शिरगणती 	<o.24< td=""><td> भास्कराचार्यांचे गणित-२ शून्याचे सौंदर्य भास्कराचार्याचे गणित-३ गणिती रूपकांची अद्भूत दुनिया-१ गणिती रूपकांची अद्भूत दुनिया-२ कसोट्या वापरण्याची कसोटी </td><td>९०.३९०.७३९१.४३९२.२१९२.६८</td></o.24<>	 भास्कराचार्यांचे गणित-२ शून्याचे सौंदर्य भास्कराचार्याचे गणित-३ गणिती रूपकांची अद्भूत दुनिया-१ गणिती रूपकांची अद्भूत दुनिया-२ कसोट्या वापरण्याची कसोटी 	९०.३९०.७३९१.४३९२.२१९२.६८
 मौल्यवान गवार प्लॅस्टिक खाणारी बुरशी विषसेवनकशातून? प्राणीशास्त्र मधुमक्षिका पालन वाघांची शिरगणती अनोखा मासा 	<o.24< td=""><td> भास्कराचार्यांचे गणित-२ शून्याचे सौंदर्य भास्कराचार्याचे गणित-३ गणिती रूपकांची अद्भूत दुनिया-१ गणिती रूपकांची अद्भूत दुनिया-२ कसोट्या वापरण्याची कसोटी भोपाळमध्ये कुतुबिमनार </td><td>९०.३९०.७३९१.४३९२.२१९२.६८</td></o.24<>	 भास्कराचार्यांचे गणित-२ शून्याचे सौंदर्य भास्कराचार्याचे गणित-३ गणिती रूपकांची अद्भूत दुनिया-१ गणिती रूपकांची अद्भूत दुनिया-२ कसोट्या वापरण्याची कसोटी भोपाळमध्ये कुतुबिमनार 	९०.३९०.७३९१.४३९२.२१९२.६८

पय	विरण		खगोल	
٤.	भुकेचं गणित	८९.२०	१. मानव निर्मित उपग्रह-३ ८९.२४	
٦.	गरम हवेची बेटं	९१.६७	२. उपग्रहांचे प्रकार ९०.५८	
₹.	कार्बनडायऑक्साईडचा ढग	९४.२०	३. लाखों तारे आसमानमें ९१.३	
			४. उपग्रह अवकाशात कसा फिरतो?९१.८	
पुर	तकपरिचय		५. मानवनिर्मित उपग्रहांचे अंतरंग ९२.४३	
१.	आपण हे काय केले आहे?	८९.४२	६. ग्रहमंडल दिव्य सभा ९३.३०	
٦.	प्रॉब्लेम सॉल्व्हिंग १०१	९१.३४	७. उपग्रहनिर्मितीतील आव्हाने ९३.४६	
₹.	जाणती झाडे	९२.४७	८. चंद्र सूर्य का आहेत? ९३.७३	
٧.	एन्व्हायरमेंटल हिस्टरी रीडर	९४.६१	९. अवकाशातला आवाज ९४.१२	
			१०.अग्निबाण ९४.३२	
प्रकल्प				
१.	जलचक्रप्रतिकृती	<i>९</i> ३.४३	कथा	
۶.	पानांचा वर्णाभिलेख	९४.५३	१. झरीनाचं व्हायोलेट ८९.७७	
			२. पाण्याची कहाणी ९१.६१	
अध्ययन/अध्यापन			३. जल्लोष जिंकण्याचा ९१.७१	
۶.	१. खडूपासून आपली बोटं सोडवूया८९.३		४. वाट चुकलेलं कोकरू-१ ९४.६५	
۶.	पाठ्यपुस्तक कशासाठी?	९०.६२		
₹.	पाठ्यपुस्तक कशासाठी?		माहितीपट परिचय	
	भाग-२	९१.२८	१. पूर्वनियोजित कचरा ९२.११	
٧.	द मॅजिक ऑफ यू	९२.५	२. लोकसंख्येचं गौडबंगाल ९३.२६	
५.	बोलीभाषा आणि म्हणी	९२.२८		
ξ.	एका सद्भावी प्रयोगाची		इतर	
	गोष्ट-१	99.33	१. धरणाचे प्रकार-३ ८९.५१	
७.	शिकवणे किती नियोजित		२. धरण अभिकल्प-४ ९०.६७	
	असावे ?	९२.७१	३. धरण बांधणी-५ ९१.२२	
८.	एका सद्भावी प्रयोगाची		४. धरण फुटी-६ ९२.५४	
	गोष्ट-२	९३.५१	५. विज्ञानरंजन स्पर्धाप्रश्न ९२.७७	
۶.	शिकवण्यात नाटक	९४.२३	६. विज्ञानरंजन उत्तरे ९३.७५	

शैक्षणिक संदर्भः ऑगस्ट-सप्टेंबर २०१५ RNI Regn. No. : MAHMAR/1999/3913 मालक, मुद्रक, प्रकाशक पालकनीती परिवार करिता संपादक नीलिमा सहस्रबुद्धे यांनी अमृता क्लिनिक, संभाजी पूल कोपरा, कर्वे पथ, पुणे ४ येथे प्रकाशित केले.

