

National University

Of Computer & Emerging Sciences Karachi-Campus

Course Outlines of BS (CS) Degree Program

Course Instructor	Dr. Nazish Kanwal, Ms. Javeria Iftikhar, Ms. Asma Masood	Semester	Spring
Batch/Section(s)	Batches 2022 & 2021	Year	2023
Course Title	MT 1004-Linear Algebra	Credit Hours	3
Prerequisite(s)	No	Course TA	

Text Book(s)	
Title of book	Elementary Linear Algebra, 12 th edition
Author(s)	Howard Anton and Anton Kaul

Reference Book(s)		
Title of book	Linear Algebra and its Application	
Author(s)	Gilbert Strang	
Title of book	Linear Algebra and its Application	
Author(s)	David C. Lay, Steven R. Lay, Judi J. McDonald	
Title of book	Coding the Matrix: Linear Algebra through Applications to Computer Science	
Author(s)	Philip N Klein	

Course Description:

Elementary operations on matrices, Gaussian and Gauss Jordan elimination, Elementary matrices and matrix factorization, determinants and their properties, vector spaces, subspaces and spanning sets, Linear Independence, Dimensions, Rank of a matrix, Linear transformation, Eigenvalues and Eigenvectors, Inner Product and Orthogonal basis, Diagonalization and Orthogonal Diagonalization, Application of linear algebra

S. No.	Course Learning Outcomes (CLO)	Domain	Taxonomy Level	PLO
1.	Interpreting and finding the solutions of linear equations in detail.	Cognitive	2	
2.	Understanding the core concepts of Euclidean vector spaces and matrix transformations.	Cognitive	2	2
3.	Applying the basic linear algebra concepts in computer science.	Cognitive	3	

I = Introduction, R = Reinforcement, E = Evaluation. A = Assignment, Q = Quiz, M = Midterm, F=Final.

Tentative Weekly Lectures Schedule:

Weeks	Contents/Topics	Remarks	Exercises	CLO's	Tools
Week 1	Introduction, System of Linear equations, Elementary row operation		1.1 (1-20)	1	Q1, A1, M1, F

	Solving system of Linear equations: Gaussian Elimination and Gauss Jordan methods		1.2 (1-30) 1.5 (1-6, 11-18)		
Week 2	Matrix Operations Elementary Matrices, Methods for finding Inverse, Invertible Matrices,	Assignment 1	1.6 (1-20)		
Week 3	Diagonal, triangular, and symmetric matrices, Matrix Transformations		1.7 (1-10, 19-28) 1.8 (1-24, 27-41) (CLO 2)		
Week 4	Application no 1: Network Analysis Determinants and their properties, Minors, Cofactors, Inverse using cofactors, Cramer's Rule	Quiz 1	1.10 (1-4) (CLO 3) 2.1 (1-32) 2.2 (1-23) 2.3(1-29,31,32)		
Week 5	General Vector Space Subspaces		4.1 (1,2,9,11, 12) Example: 1-5,7 4.2 (1-5, 19) Example: 1-6,13		
Week 6	1st Mid Term Exam (25)	h February 2023	to 1st March 2023)		
Week 7	Spanning Sets Linear Independence		4.3 (1-22) 4.4 (1-15)		
Week 8	Coordinates and Bases Dimensions Change of basis	Quiz 2	4.5 (1-22) 4.6 (1-8,10,12-13,15-20) 4.7 (1-19)	2	Q2, A2, M2, F
Week 9	Bases for row, column, and null spaces, Rank and Nullity	Assignment 2	4.8 (1-19,21-30) 4.9 (1-14,19-36)		,
Week 10	Eigenvalues and Eigenvectors Diagonalization		5.1 (1-16) 5.2 (1-21)		
Week 11	2 nd N	Aid Term Exam			
Week 12	Inner product spaces, Orthogonal and orthonormal bases, Gram-Schmidt Process;	Assignment 3	6.1 (1-28) 6.2 (1-12, 17-19)		
Week 13	QR-Decomposition. Orthogonal Matrices		6.3 (1-14, 27-31, 44-49) 7.1 (1-6) (CLO 1)	2	Q3, A3,
Week 14	Orthogonal Diagonalization, Quadratic Forms	Quiz 3	7.2 (1-18) (CLO 1) 7.3 (1-8(CLO 1)		P, F
Week 15	Application no 2: Single Value Decomposition Markov Chains	Presentation	9.4 5.5 (1-10, 13-15) Example:4	3	
Week 16	Revision				

Marks Distribution:

Particulars	% Marks
1. Quizzes (at least 3)	10
2. Assignments (at least 2)	10
4. First Mid Exam	15
5. Second Mid Exam	15
6. Final Exam	50
Total:-	100

Important Instructions to be followed for this Course

- Be in the classroom on time. Any student who arrives more than 5 min late in the class would be marked LATE. Anybody coming to class more than 15 minutes late will be marked ABSENT.
- Turn off your cell phones or any other electronic devices before entering the class.
- Maintain the decorum of the classroom all the time.
- Avoid a conversation with your classmates while the lecture is in progress.
- Use parliamentary language in the classroom as well as in assignments. Refrain from using impolite, vulgar or abusive language in the classroom as well as in class presentations and assignments.
- Submit your assignments on time, no assignment will be accepted after the deadline.
- There would be no re- take of any quiz.

Instructions / Suggestions for satisfactory progress in this course:

- On average, most students find at least three hours outside of class for each class hour necessary for satisfactory learning.
- Chapters should be read and homework should be attempted before class.
- Do not get behind. You are encouraged to work with other students. Plus, I am always available during office hours to help you.
- The homework assigned is a minimum. You may always work extra hours on your own.
- Use the few minutes you usually have before the start of each class to review the prior meetings' notes and homework. This will save us valuable in-class time to work on new material.
- Develop a learning habit rather than memorizing.
- Work in groups, whenever appropriate.
- Apply the learned principles and gain knowledge.
- Be creative in thinking, but stick to the topic assigned for discussions, assignments and presentations.
- Always bring your textbooks with you in the class.

Note: Students are welcome all the time to get help from the Teacher.

 Date:17-01-2023