Definition (Upper bounds in a poset). The *upper bounds* of a subset **A** of a poset **P** are, if they exist, the elements of **P** which dominate all elements in **A**. In other words, the upper bounds of **A** are the elements of the set

$$\{y \in \mathbf{P} \mid \forall x \in \mathbf{A} : x \leq y\}.$$

A *least upper bound* of $A \subseteq P$, if it exists, is a least element among the upper bounds of A. It is denoted $\forall A$ or $\sup A$, and also called the *join* or *supremum* of A. So, given $A \subseteq P$ and $y \in P$, $y = \forall A$ if and only if

- 1. $x \leq y \ \forall x \in \mathbf{A}$, and
- 2. $x \le y' \ \forall x \in \mathbf{A} \Rightarrow y \le y'$.

If a least upper bound of a subset $A \subseteq P$ exists, it is unique (can you prove this?), so we speak of "the" least upper bound.