Machine Learning II

Learning theory

Souhaib Ben Taieb

March 2, 2022

University of Mons

Table of contents

The VC dimension

VC dimension of perceptrons

Interpreting the VC dimension

Table of contents

The VC dimension

VC dimension of perceptrons

Interpreting the VC dimension

The VC dimension

The VC dimension of a hypothesis set \mathcal{H} , denoted by $d_{VC}(\mathcal{H})$ or d_{VC} , is the largest value of N for which $m_{\mathcal{H}}(N) = 2^N$, i.e. **the** most points \mathcal{H} can shatter. If $m_{\mathcal{H}}(N) = 2^N$ for all N, then $d_{VC} = \infty$.

The VC dimension

The VC dimension of a hypothesis set \mathcal{H} , denoted by $d_{VC}(\mathcal{H})$ or d_{VC} , is the largest value of N for which $m_{\mathcal{H}}(N) = 2^N$, i.e. **the** most points \mathcal{H} can shatter. If $m_{\mathcal{H}}(N) = 2^N$ for all N, then $d_{VC} = \infty$.

- $d_{VC}(\mathcal{H}) < N^{'} \implies N^{'}$ is a break point for \mathcal{H}
- $d_{VC}(\mathcal{H}) \ge N' \implies \mathcal{H}$ can shatter at least N' points $(d_{VC}(\mathcal{H}) \ge k \implies k$ is not a break point for $\mathcal{H})$

In other words, $d_{VC}(\mathcal{H}) = k^* - 1$ where k^* is the smallest break point for \mathcal{H} .

3

The growth function

The growth function

In terms of a break point k:

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1} \binom{N}{i}$$

In terms of the VC dimension d_{VC} :

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{d_{\text{VC}}} \binom{N}{i}$$
 maximum power is $N^{d_{\text{VC}}}$

© @ Greator: Yasar Abu-Mostafa - LFD Lecture 7

4/24

We can prove by induction that

$$m_{\mathcal{H}}(N) \leq N^{d_{VC}} + 1$$
,

i.e d_{VC} is the order of the polynomial bound on $m_{\mathcal{H}}(N)$.

Examples

What is $d_{VC}(\mathcal{H})$ for the following examples?

- ullet $\mathcal H$ is positive rays
- \mathcal{H} is 2D perceptrons
- ullet $\mathcal H$ is convex sets

Examples

Examples

 \bullet \mathcal{H} is positive rays:

$$d_{
m VC}=1$$

• \mathcal{H} is 2D perceptrons:

$$d_{
m VC}=3$$

• \mathcal{H} is convex sets:

$$d_{\rm VC} = \infty$$

© @ Creator: Yaser Abu-Mostafa - LFD Lecture 7

The VC inequality states that

$$\mathbb{P}[|E_{\mathsf{in}} - E_{\mathsf{out}}| > \epsilon] \le 4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\epsilon^2N}.$$

Equivalently, with probability at least $1 - \delta$, we have

$$|E_{\text{out}} - E_{\text{in}}| \leq \sqrt{\frac{8}{N}} \ln \frac{4m_{\mathcal{H}}(2N)}{\delta} = \Omega(N, \mathcal{H}, \delta).$$

The VC generalization bound is given by:

$$E_{\text{out}} \leq E_{\text{in}} + \Omega(N, \mathcal{H}, \delta).$$

7

- $d_{VC}(\mathcal{H}) < \infty$ (finite)
 - $\rightarrow m_{\mathcal{H}}(N)$ is bounded by a polynomial in N
 - \rightarrow In $m_{\mathcal{H}}(2N)$ grows logarithmically in N regarless of the order of the polynomial, and so, it will be crushed by the $\frac{1}{N}$ factor
- $d_{VC}(\mathcal{H}) = \infty$ (infinite)
 - ightarrow $m_{\mathcal{H}}(N)$ is exponential in N

 $d_{VC}(\mathcal{H})$ finite $\implies g \in \mathcal{H}$ will generalize

On which components does this statement depend?

Table of contents

The VC dimension

VC dimension of perceptrons

Interpreting the VC dimension

VC dimension of perceptrons

VC dimension of perceptrons

For
$$d=2$$
, $\frac{d_{VC}}{d_{VC}}=3$

In general,
$$\mathbf{d}_{\mathrm{VC}} = d+1$$

We will prove two directions:

$$d_{\text{VC}} \leq d+1$$

$$d_{\text{VC}} \ge d+1$$

(c) (E) Greator: Yaser Abu-Mostafa - LFD Lecture 7

Let us construct a set of N = d + 1 points in \mathbb{R}^d shattered by the perceptron.

$$\mathbf{X} = \begin{bmatrix} & -\mathbf{x}_{1}^{\mathsf{T}} - \\ & -\mathbf{x}_{2}^{\mathsf{T}} - \\ & -\mathbf{x}_{3}^{\mathsf{T}} - \\ & \vdots \\ & -\mathbf{x}_{d+1}^{\mathsf{T}} - \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & & 0 \\ & \vdots & & \ddots & 0 \\ 1 & 0 & \dots & 0 & 1 \end{bmatrix}$$

X is invertible

Can we shatter this data set?

For any
$$\mathbf{y}=\begin{bmatrix}y_1\\y_2\\\vdots\\y_{d+1}\end{bmatrix}=\begin{bmatrix}\pm1\\\pm1\\\vdots\\\pm1\end{bmatrix}$$
, can we find a vector \mathbf{w} satisfying

$$sign(X\mathbf{w}) = \mathbf{y}$$

Easy! Just make
$$X\mathbf{w} = \mathbf{y}$$

which means
$$\mathbf{w} = X^{-1}\mathbf{y}$$

© M Creator: Yaser Abu-Mostafa - LFD Lecture 7

We can shatter these d+1 points

This implies what?

[a]
$$d_{\text{VC}} = d + 1$$

[b]
$$d_{\text{VC}} \ge d + 1$$

[c]
$$d_{\text{VC}} \leq d+1$$

[d] No conclusion

We can shatter these d+1 points

This implies what?

$$[a] \frac{\mathbf{d}_{VC}}{\mathbf{d}} = d + 1$$

[b]
$$d_{\text{VC}} \ge d + 1$$

[c]
$$d_{\text{VC}} \leq d+1$$

[d] No conclusion

(c) FIII Creator: Yaser Abu-Mostafa - LFD Lecture 7

Now, to show that $d_{vc} \leq d+1$

We need to show that:

- [a] There are d+1 points we cannot shatter
- [b] There are d+2 points we cannot shatter
- [c] We cannot shatter any set of d+1 points
- [d] We cannot shatter any set of d+2 points

Now, to show that $d_{VC} \leq d+1$

We need to show that:

- [a] There are d+1 points we cannot shatter
- $[\mathbf{b}]$ There are d+2 points we cannot shatter
- [c] We cannot shatter any set of d+1 points
- [d] We cannot shatter any set of d+2 points \checkmark

© M. Creator: Yaser Abu-Mostafa - LFD Lecture 7

Take any d+2 points. For any d+2 points, $\mathbf{x}_1,\ldots,\mathbf{x}_{d+1},\mathbf{x}_{d+2}$, we have more points than dimensions (since each $\mathbf{x}_j \in \mathbb{R}^{d+1}$, $j=1,\ldots,d+2$).

When we have more vectors than dimensions, these vectors must be linearly dependent. In other words, we must have

$$\mathbf{x}_j = \sum_{i \neq j} a_i \mathbf{x}_i,$$

where $a_i \in \mathbb{R}$.

Furthermore, since the first coordinate of x_j is always one, we must have

$$\mathbf{x}_j = \sum_{i \neq j} a_i \mathbf{x}_i,$$

where not all the a_i 's are zeros.

Recall that we have

$$\mathbf{x}_j = \sum_{i \neq j} a_i \mathbf{x}_i,$$

where not all the a_i 's are zeros, and $j = 1, \dots, d + 2$.

Let us construct a dichotomy that the perceptron cannot implement:

- $y_i = sign(a_i)$ if x_i has non-zero a_i (for zero a_i , you can choose +1 or -1 for y_i)
- $y_j = -1$ for x_j
- . Why?

$$y_j = \operatorname{sign}(\mathbf{w}^T \mathbf{x}_j) \tag{1}$$

$$\mathbf{x}_j = \sum_{i \neq j} a_i \mathbf{x}_i, \implies \mathbf{w}^T \mathbf{x}_j = \sum_{i \neq j} a_i \mathbf{w}^T \mathbf{x}_i$$
 (2)

For x_i , we have $y_i = \text{sign}(\mathbf{w}^T \mathbf{x}_i)$, and if $a_i \neq 0$, we forced $y_i = \text{sign}(a_i)$. In other words, we have

$$y_i = \operatorname{sign}(\mathbf{w}^T \mathbf{x}_i) = \operatorname{sign}(a_i) \implies a_i \mathbf{w}^T \mathbf{x}_i > 0 \quad (a_i \neq 0)$$
 (3)

which implies

$$\sum_{i\neq j} a_i \mathbf{w}^T \mathbf{x}_i = \sum_{i\neq j, a_i = 0} a_i \mathbf{w}^T \mathbf{x}_i + \sum_{i\neq j, a_i \neq 0} a_i \mathbf{w}^T \mathbf{x}_i > 0$$

However, $\sum_{i\neq j} a_i \boldsymbol{w}^T \boldsymbol{x}_i = \boldsymbol{w}^T \boldsymbol{x}_j$. Therefore, we must have $y_j = \text{sign}(\boldsymbol{w}^T \boldsymbol{x}_j) = +1$. It is impossible to obtain $y_j = -1$. We found a data set that cannot be shattered by the perceptron.

VC dimension of perceptrons - summary

Putting it together

We proved
$$d_{\text{VC}} \leq d+1$$
 and $d_{\text{VC}} \geq d+1$

$$d_{\text{VC}} = d + 1$$

What is d+1 in the perceptron?

It is the <code>number</code> of parameters w_0, w_1, \cdots, w_d

© 🕾 Creator: Yaser Abu-Mostafa - LFD Lecture 7

Table of contents

The VC dimension

VC dimension of perceptrons

Interpreting the VC dimension

Degrees of freedom

1. Degrees of freedom

Parameters create degrees of freedom

of parameters: analog degrees of freedom

 $d_{
m VC}$: equivalent 'binary' degrees of freedom

© deator: Yaser Abu-Mostafa - LFD Lecture 7

Examples

The usual suspects

Positive rays ($d_{VC} = 1$):

$$h(x) = -1 \qquad \qquad a \qquad h(x) = +1$$

Positive intervals ($d_{VC} = 2$):

$$h(x) = -1 \qquad h(x) = +1 \qquad h(x) = -1$$

© 🕾 Creator: Yaser Abu-Mostafa - LFD Lecture 7

Not just parameters

Not just parameters

Parameters may not contribute degrees of freedom:

 $d_{
m VC}$ measures the ${f effective}$ number of parameters

(C) FIN Greator: Yaser Abu-Mostafa - LFD Lecture 7

- d = 1
- w_0, w_1 (four times) \rightarrow eight parameters
- Not eight degrees of freedom

The VC inequality gives

$$\mathbb{P}[|E_{\mathsf{out}} - E_{\mathsf{in}}| > \epsilon] \le 4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\epsilon^2N}.$$

This can be rephrased as follows. Pick a **tolerance level** δ , for example $\delta=0.01$, and assert with probability at least $1-\delta$ that

$$|E_{\text{out}} - E_{\text{in}}| \leq \sqrt{\frac{8}{N}} \ln\left(\frac{4m_{\mathcal{H}}(2N)}{\delta}\right).$$

If we want the generalization to be at most ε , it suffices to make

$$\sqrt{\frac{8}{N}} \ln \left(\frac{4m_{\mathcal{H}}(2N)}{\delta} \right) \le \varepsilon$$

It folllows that

$$N \geq \frac{8}{\varepsilon^2} ln \left(\frac{4m_{\mathcal{H}}(2N)}{\delta} \right)$$

suffices to obtain generalization error at most ε (with probability at least $1-\delta$).

Using the VC dimension, we can write

$$N \geq \frac{8}{\varepsilon^2} ln \left(\frac{4((2N)^{d_{VC}} + 1)}{\delta} \right).$$

- The sample complexity denotes how many training examples
 N are needed to achieve a certain generalization performance,
 specified by two parameters ε and δ.
- The error tolerance ε determines the allowed generalization error.
- The *confidence parameter* δ determines how often the error tolerance ε is violated.
- How fast N grows as ε and δ become smaller indicates how much data is needed to get good generalization.

Suppose we have $d_{VC}=3$ and want the generalization error to be at most 0.1 with confidence 90%. How big a dataset do we need?

$$N \ge \frac{8}{0.1^2} ln \left(\frac{4((2N)^3 + 1)}{0.1} \right)$$

Using an iterative process, we converge to $N \approx 30,000$.

- $d_{VC} = 3 \implies N \approx 30,000$
- $d_{VC} = 4 \implies N \approx 40,000$
- $d_{VC} = 5 \implies N \approx 50,000$
- ...

The inegality suggests that N is approximately proportional to d_{VC} , as has been observed in practice. The constant of proportionality it suggests is 10,000, which is a gross overestimate; a more practical constant of proportionality is closer to 10.

2. Number of data points needed

Two small quantities in the VC inequality:

$$\mathbb{P}[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \le \underbrace{4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\epsilon^2N}}_{\bullet}$$

If we want certain ϵ and δ , how does N depend on $d_{\rm VC}$?

Let us look at

$$N^{\operatorname{d}}e^{-N}$$

© M Greator: Yaser Abu-Mostafa - LFD Lecture 7

(log scale)

Fix $N^{d}e^{-N}$ to a small value. How does N change with d?

- The previous observation is in terms of the bound which is based on theoretical derivations.
- The problem is that we can have $P_1 \leq A$ and $P_2 \leq B$ with $A \leq B$, while $P_1 \geq P_2$.
- We would like to make a statement about the actual quantity (not the bounds).
- How many observations N do I need to arrive in the comfort zone (bound less than one)?
 - It depends on many parameters (ϵ , δ , etc).
 - Practical observation: the actual quantity we are trying to bound follows the same monotonicity as the bound.
 - Rule of thumb: $N \ge 10 \ d_{VC}$