Cryptography – Homework 2

Discussed on Tuesday, 20th November, 2018.

Exercise 2.1 Negligible Functions

- (a) Show that the following two definitions are equivalent:
 - i) $\varepsilon(n)$ is negligible if and only if $\forall a \in \mathbb{N} \exists N \in \mathbb{N} \forall n > N : \varepsilon(n) < n^{-a}$.
 - ii) $\varepsilon(n)$ is negligible if and only if $\forall \text{polynomials } q \ \exists N \in \mathbb{N} \forall n > N : \varepsilon(n) < \frac{1}{|q(n)|}$
- (b) Let $\varepsilon_1 : \mathbb{N} \to \mathbb{R}^+, \varepsilon_2 : \mathbb{N} \to \mathbb{R}^+$ be negligible functions and let $p : \mathbb{N} \to \mathbb{R}^+$ be a polynomial in \mathbb{R} . Show that $f : \mathbb{N} \to \mathbb{R}^+$ with $f(n) = \varepsilon_1(n) + \varepsilon_2(n)$ and $g : \mathbb{N} \to \mathbb{R}^+$ with $g(n) = p(n) \cdot \varepsilon_1(n)$ are also negligible functions.
- (c) Prove: If $\varepsilon_0, \varepsilon_1, \ldots$ is a family of negligible functions $\varepsilon_i \colon \mathbb{N} \to \mathbb{R}^+$ and $p \colon \mathbb{N} \to \mathbb{N}$ is a polynomial, then f with $f(n) := \sum_{i=0}^n \varepsilon_i(n)$ need not be negligible anymore.

Exercise 2.2 Pseudorandom Generators

- Let $f: \{0,1\}^* \to \{0,1\}$ be any DPT-computable function. Show that $G_f(x) = x||f(x)$ is no PRG.
- \bullet Use a similar argument to show that also the following is not a PRG:

Let $m \in \mathbb{N}$ and $a, c \in \mathbb{Z}_m$.

– For simplicity, let $m=2^n$ so that we may identify \mathbb{Z}_m with $\{0,1\}^n$.

For $x \in \{0,1\}^n$, let $f(x) = (a \cdot x + c) \mod m$, and $G(x,1^{n \cdot s}) = f(x)||f(f(x))|| \dots ||f^s(x)||$

Exercise 2.3 Pseudorandom Generators II

Let G be a PRG of stretch l(n) = 2n.

(a) Show that there exists an exponential time distinguisher \mathcal{D} with:

$$\left| \Pr_{x \in \{0,1\}^n} [\mathcal{D}(1^n, G(x)) = 1] - \Pr_{y \in \{0,1\}^{2n}} [\mathcal{D}(1^n, y) = 1] \right| \ge 1 - 2^{-n}$$

- (b) Determine the success probability of the following \mathcal{D} :
 - Input: $y \in \{0, 1\}^{l(n)}$ and 1^n .
 - Generate $x' \stackrel{u}{\in} \{0,1\}^n$.
 - Compute y' = G(x').
 - Return 1 if y = y'; else return 0.

Exercise 2.4

- (a) Show that PRFs with $l_{\text{out}}(n) \cdot 2^{l_{\text{in}}(n)} \leq n$ exist (unconditionally!).
- (b) Let G be a PRG of stretch $l_G(n) = 2n$.

Split $G(k) =: G_0(k) || G_1(k)$ into two n bit strings.

Set $F_k^{(1)}(0) := G_0(k)$ and $F_k^{(1)}(1) := G_1(k)$. Show: $F^{(1)}$ is a PRF with $l_{\text{in}}(n) = 1$ and $l_{\text{out}}(n) = n$.