

## Algoritmos y Estructuras de **Datos II**

## Práctico Nro 9 - Parte 2: Grafos

## **EJERCICIOS PROPUESTOS**

Indique los vértices y arcos de los siguientes grafos:



Vértices 
$$V(G) = (X, Y, Z, U, V)$$

Aristas 
$$A(G_2) = (XY, YX, XZ, XV, YZ, YU, ZV, VZ, UV, VU)$$

Escriba la matriz de adyacencia de los siguientes grafos:



4. A partir de la matriz de adyacencia, reconstruir el grafo:

| 0 | 1 | 1 | 0 |  |  |  | 0 | 1 | 1 | 1 | 0 |
|---|---|---|---|--|--|--|---|---|---|---|---|
| 1 | 0 | 1 | 1 |  |  |  | 1 | 0 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |  |  |  | 1 | 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |  |  |  | 1 | 0 | 0 | 0 | 0 |
|   |   |   |   |  |  |  | 0 | 1 | 1 | 0 | 0 |

- 5. Escriba una función para iniciar un Grafo
- 6. Escriba una función para agregar un vértice a un grafo y otro para agregar un arco al grafo.
- 7. Escriba una función para generar la matriz de adyacencia del ejercicio anterior y otro para visualizarla.
- 8. Desarrolle un TAD, "Grafo", que permita administrar un grafo ponderado o no ponderado, en donde el valor de las aristas corresponde a un valor entero que, en el caso de ser ponderado recibe el valor del peso, caso contrario 1 ó o. Considerar que el TAD debe recibir la cantidad de vértices por activar. Funciones: inicializar grado, insertar vértice, eliminar vértice, insertar arco, eliminar arco, mostrar matriz ponderada, mostrar matriz de adyacencia. Luego implemente un programa que utilice el TAD "Grafo".

## **EJERCICIOS COMPLEMENTARIOS**

- Desarrolle un TAD "ArbolEP" que defina las funciones para el manejo de un árbol binario de búsqueda de números enteros positivos. Funciones: básicas, insertar, eliminar, buscar, mostrar (en inorden).
  Luego implemente un programa que permita probar el TAD "ArbolEP".
- 2. Desarrolle un TAD, "ArbolReal", que permita administrar un árbol binario de búsqueda de números reales. Funciones: básicas, insertar, eliminar, buscar, mostrar (preorden), devolver la suma de todos los nodos del árbol (recursivo).
- 3. Sea un grafo ponderado G = (V,A), donde V es su conjunto de vértices, A el conjunto de arcos y sea L[i,j] su matriz de adyacencia. Queremos calcular el camino más corto entre un vértice vi tomado como origen y cada vértice restante vi del grafo. (Alq. Dijkstra)
- 4. En un plano con varios nodos de coordenadas (x, y). Tu trabajo es como conectar todos los nodos de forma que utilice la menor cantidad de tinta posible (Alg. Kruskal).