

Cambridge International Examinations

Cambridge Ordinary Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

152471973

MATHEMATICS (SYLLABUS D)

4024/12

Paper 1 October/November 2015

2 hours

Candidates answer on the Question Paper.

Additional Materials: Geometrical instruments

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

If working is needed for any question it must be shown in the space below that question. Omission of essential working will result in loss of marks.

ELECTRONIC CALCULATORS MUST NOT BE USED IN THIS PAPER.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

ELECTRONIC CALCULATORS MUST NOT BE USED IN THIS PAPER

1	(a)	Evaluate 0.03×0.3 .
	(b)	Evaluate $5 - 2(3 - 1.4)$.
		<i>Answer</i> [1
2	(a)	A trader buys 7 items for \$4.10 each and 5 items for \$6.40 each. He sells all of them for \$10 each.
		Calculate his profit.
		Answer \$[1
	(b)	
		<i>Answer</i> \$[1

3	y varies directly as the square root of	f(x)		
	Given that $y = 18$ when $x = 9$, find	y when $x = 4$.		
		Answ	ver y =	[2]
4				
	(2)	f(x) = 1 + 4x		
	(a) Find $f\left(-\frac{2}{5}\right)$.			
		A	Inswer	[1]
	(b) Find $f^{-1}(x)$.			
	(b) 1 ma 1 (w).			
			14.5	
		Answer f	$-1(x) = \dots$	[1]

		4
5	(a)	Write the number 0.050 462 correct to 3 significant figures.
		Answer[1]
	(b)	By writing each number correct to 1 significant figure, estimate the value of
		$\frac{8.94 \times 0.201}{28.8}$.
		Answer[1]
6	Eva	luate $3 \begin{pmatrix} 0 & 3 \\ -3 & 1 \end{pmatrix} - 2 \begin{pmatrix} 1 & 5 \\ -4 & -1 \end{pmatrix}$.

[2] Answer

7 (a) In the diagram, seven small triangles are shaded.

Shade two more small triangles, so that the diagram will then have rotational symmetry of order 3.

[1]

(b) In the diagram, ten small hexagons are shaded.

Shade one more small hexagon, so that the diagram will then have exactly one line of symmetry.

[1]

8 a, b, c, d and e are five numbers, such that

$$d < a < c$$

$$a < e < c$$

$$a < b < e$$

Arrange these numbers in order, starting with the smallest.

Day						
(a)	Write down the lower bound for the distance thrown b	y Dave.				
		Answer m [1]				
(b)	Calculate the greatest possible difference between the thrown by Ed.	distance thrown by Dave and the distance				
		<i>Answer</i> m [1]				
(a)	Express the number 0.000 004 5 in standard form.					
		<i>Answer</i> [1]				
(b)	$p = 6 \times 10^8$ $q = 4 \times 10^8$	10^{7}				
	(i) $p \times q$,					
	(ii) $p-q$.	Answer[1]				
		<i>Answer</i> [1]				
	Dav Ed (a) (b)	Dave threw 60 m, correct to the nearest 10 metres. Ed threw 61 m, correct to the nearest metre. (a) Write down the lower bound for the distance thrown by Ed. (b) Calculate the greatest possible difference between the thrown by Ed. (a) Express the number 0.000 004 5 in standard form. (b) $p = 6 \times 10^8 \qquad q = 4 \times 10^8 \qquad q = 10^8 \qquad q = 10^8 \qquad q = 10^8 \qquad q = 10^8 \qquad$				

		γ		
11	(a)	Evaluate $\left(\frac{3}{2}\right)^0$.		
	(b)	Evaluate $\left(\frac{3}{2}\right)^{-1}$.	Answer[1]
	(c)	Simplify $(9x^3)^2$.	Answer[1]
			Answer[1]
12	(a)	Express 198 as the product of its prime factor	ors.	
			Answer[1
	(b)	$M = 2^2 \times 3 \times 5^2$	$=2^3\times3^2\times7$	
	` '	(i) Find the largest number that divides exa	actly into M and N .	

Answer[1]

(ii) Find the smallest value of k, such that $M \times k$ is a cube number.

Answer $k = \dots [1]$

These two quadrilaterals are congruent. The lengths are in millimetres.

Find the values of x, y and z.

Answer	$\chi = \dots$
	<i>y</i> =
	z =

- 14 Meeraa went on a journey from *P* to *Q* to *R*. The first part of the journey, from *P* to *Q*, took 4 hours to travel 80km.
 - (a) Find the average speed for the journey from P to Q.

Answer km/h [1]

(b) In the second part of the journey, from Q to R, she travelled 45 km. Her average speed for both parts of the whole journey from P to Q to R was 25 km/h.

Find the time taken for the second part of the journey, from Q to R.

Answer hour(s) [2]

15 (a) On the Venn diagram, shade the set $B \cap (A \cup C)'$.

[1]

(b) $\mathscr{E} = \{ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 \}$ $W = \{ x : x \text{ is a multiple of 2 } \}$

 $H = \{ x : x \text{ is a multiple of 3 } \}$

(i) Find $n(W \cup H)$.

Answer[1]

(ii) List the members of $W \cap H'$.

Answer[1]

16	(a)	Factorise (i) $4p^2 - 9q^2$,	
		(ii) $2n^2 + 5n - 3$.	Answer[1]
	(b)	Express $\frac{3}{4x} + \frac{2}{3y}$ as a single fraction.	Answer[1]

In the diagram, A, B, C, D and E lie on the circle, centre O. AC is a diameter.

The tangent to the circle at C meets the line AB produced at T.

 $A\hat{C}B = 62^{\circ}$ and $A\hat{C}D = 70^{\circ}$.

(a) Find x.

 $Answer x = \dots [1]$

(b) Find *y*.

Answer $y = \dots [1]$

(c) Find z.

$$Answer z = \dots [1]$$

The sides of the triangle ABC are formed by the straight lines with equations

$$x = 3$$
, $y = 6$, $y = x + \frac{1}{2}$.

(a) The region **inside** the triangle is defined by three inequalities.

Write down these three inequalities.

Answer	 	 	
			[2

(b) The point (4, k), where k is an integer, lies inside the triangle.

Find the value of k.

Answer
$$k = \dots [1]$$

19	19 All the angles of a polygon are either 155° or 140°. There are twice as many angles of 155° as 140°.	
	Find the number of sides of the polygon.	
	Answer	[2]
	Answer	

20 The masses of 400 goats were measured. The results are shown in the cumulative frequency graph.

((\mathbf{a})) Use	the	graph	to	find

	/ · >		1.
1	(i)	1 the	median,
٨	ш	, uic	mcuian,

Answer	kg	Г1	

(ii) the 30th percentile,

(iii) the number of goats whose mass is more than 66kg.

Answer[1]

(b) It was noticed later that the scales used were faulty and that the true readings should all be 2 kg more.

On the grid above, draw the true cumulative frequency graph.

[1]

- 21 The diagram shows the positions of three ships A, B and C. It is drawn to a scale of 1 cm to 20 km.
 - (a) Find, by measurement, the bearing of C from A.

Answer	 Г1	1
$\Delta HSWEI$	 11	1

- **(b)** On the diagram construct the locus of points, inside triangle ABC, that are
 - (i) equidistant from B and C, [1]
 - (ii) equidistant from AB and BC. [1]
- (c) A ship D is
 - equidistant from *B* and *C*,

and

• equidistant from AB and BC.

Label the position of D on the diagram and find the actual distance of D from A.

Scale: 1 cm to 20 km

 $Answer DA = \dots km [1]$

22	P is	s the point $(1, -3)$ and Q is the point $(7, 2)$.	
	(a)	Find the coordinates of the midpoint of PQ .	
			Answer () [1]
	(b)	Find the gradient of the line PQ .	
			<i>Answer</i> [1]
	(c)	The line, L, with equation $2x - 5y = k$, passes through	
	(-)	(i) Find the value of k .	
			4 1
			Answer $k = \dots [1]$
		(ii) The line $x + Ay = 3$ is parallel to L . Find the value of A .	
		Tind the value of A.	
		A	lnswer A = [1]

- 23 A fair 4-sided spinner is numbered 1, 2, 3 and 4.
 - (a) Anil spins it once.

He gets his score by doubling the number obtained.

Complete the table to show the probabilities of his scores.

Score	2	4	6	8
Probability				

[1]

- **(b)** Billie spins it twice. She gets her score by adding the numbers obtained.
 - (i) Complete the possibility diagram.

First spin

Second spin

+	1	2	3	4
1	2	3	4	5
2	3	4	5	6
3	4	5	6	7
4				

[1]

(ii) Complete the table showing the probabilities for some of Billie's scores.

Score	> 2	> 4	> 6	> 8
Probability	15 16			

[1]

(c) Find the probability that Billie scores more than Anil.

24	The	first term of a seque following terms are first six terms are		ternate	ely add	ling 4	and 6	to the prev	ious term.		
			13	17	23	27	33	37			
	(a)	Write down the nex	kt two terms	of the	seque	nce.					
							1	Answer		•••••	[1]
	(b)	Write down the val	ue of the ter	m that	t is clo	sest to	999.				
							1	Answer			[1]
	(c)	Write down the diff	ference betw	een th	e valu	es of t	he 91s	t and 93rd	terms.		
							1	Answer			[1]
	(d)	Find the 80th term.									
							1	Answer			[1]
	(e)	The <i>n</i> th term is 203	3.								
		Find <i>n</i> .									
							Answ	$ver n = \dots$			[1]

The diagram shows the speed-time graph of $\operatorname{car} A$.

(a) Find the acceleration of car A when t = 7.

Answer	m/s^2	Г1 ⁻
Answei	 111/5	1

(b) Find an expression, in terms of k, for the distance moved by car A between t = 0 and t = k, where k > 10. Give your answer in its simplest form.

Answer m [2]

[1]

- (c) Car B travels at a constant speed of 12 m/s in the same direction as car A.
 - (i) On the diagram, sketch the speed-time graph of car *B*.
 - (ii) When t = 0, car B passes car A. When t = k, car A overtakes car B.

Find the value of k.

 $Answer k = \dots [1]$

26 A, B and C are three triangles. T_1 , T_2 and T_3 are three transformations such that $T_1(A) = B$, $T_2(A) = C$ and $T_3(C) = B$. The vertices of triangle A are (1, 0), (0, 1) and (1, 3).

The matrix that represents T_1 is $\begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix}$.

(a) Find $\begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \end{pmatrix}$.

Answer [2]

- **(b)** The matrix that represents T_2 is $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$.
 - (i) Find the inverse of $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$.

Answer [1]

The matrix that represents T_3 is M.

Find M.

Answer [2]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.