Криптография

Лекция 11. Беспроводные соединения.

Дмитрий Яхонтов

"Кочерга", 2019

Стандарты Wi-Fi

IEEE 802.11 — набор стандартов беспроводной связи

802.11	802.11 b	802.11 g	802.11 n	802.11 ac	802.11 ad	
1997	1999	2003	2009	2014	???	
2.4 ГГц 1-2 Мбит/с	2.4 ГГц 5.5-11 Мбит/с	2.4 ГГц 54 Мбит/с	2.4 / 5 ГГц 150 Мбит/с МІМО	5 ГГц 433 Мбит/с	60 ГГц 7 Гбит/с	

Протокол обеспечения безопасности WEP (Wired Equivalent Privacy)

- В основе потоковый шифр RC4
- Начальное значение (Seed) для генератора гаммы ключ + случайный вектор инициализации (IV)
- IV передаётся в открытом виде
- Контроль целостности контрольная сумма CRC-32
- **WEP-40** Seed 64 бита = Ключ 40 бит + IV 24 бита
- WEP-104 Seed 128 бит = Ключ 104 бита + IV 24 бита

Шифрование в WEP

Дешифровка в WEP

Шифр RC4

Аутентификация в WEP

Точка доступа

Уязвимости WEP

- Алгоритм шифрования RC4 недостаточно стойкий
- Малая длина ключа 40 / 104 бита
- Ключ задаётся в виде строки ASCII-символов, использование только буквенно-цифровых символов сокращает пространство ключей
- Один ключ для всех участников сети
- Односторонняя аутентификация
- Некриптостойкая функция контроля целостности (CRC-32)
- Атака FMS (Fluhrer-Mantin-Shamir), корреляционная атака по слабым векторам инициализации, требует ~500 000 кадров
- Атака Кляйна, улучшенная версия FMS, требует ~100 000 кадров

Система стандартов WPA (Wi-Fi Protected Access)

Протокол аутентификации EAP (Extensible Authentication Protocol)

EAP используется для выбора метода аутентификации и передачи ключей. В стандарте WPA описано более 100 возможных методов аутентификации.

- LEAP (Lightweight EAP) облегченный протокол "запрос—отклик", односторонняя аутентификация по паролю
- EAP-TLS (Transport Layer Security) по сертификатам
- EAP-POTP (One-Time Password) по одноразовому паролю
- EAP-SIM (Subscriber Identity Module) по SIM-карте
- EAP-GTC (Generic Token Card) по аппаратному токену
- EAP-PSK (*Pre-Shared Key*) по статическому секретному ключу

Используется сервер аутентификации, который может быть тем же устройством, что и точка доступа, либо отдельным.

Управление ключами и шифрование ТКІР (Temporal Key Integrity Protocol)

Функция контроля целостности MIC (Message Integrity Check)

- Хеш-функция с длиной вектора 64 бита
- Начальное состояние задаётся ключом
- В каждом раунде замешивается 32 бита
- Последние 2 раунда финализация

Уязвимости WPA

- Алгоритм шифрования всё ещё RC4
- Доступ к мастер-ключу дает возможность расшифровать все данные этой сети в прошлом и будущем
- Функция контроля целостности МІС подвержена коллизиям
- Возможность инъекции пакетов (ошибка реализации QoS)
- Атака с предсказанием групповых ключей для некоторых моделей оборудования (слабый генератор псевдослучайных чисел)

WPA2 и его отличия от WPA

- Вместо RC4 используется алгоритм AES-128 в режиме CTR
- Вместо МІС используется МАС-функция на основе AES
- Нет необходимости генерировать новые ключи для каждого пакета

- WPA2 не совместим с WPA на уровне аппаратуры
- WPA2 требует большей вычислительной мощности и энергопотребления

Рукопожатие в WPA2

Атака с переустановкой ключа (KRACK — Key Reinstallation Attack)

Установка ключей

WPA3

- Использование 192-битного шифрования вместо 128-битного
- Новая процедура рукопожатия "Dragonfly"
- Одновременная аутентификация равных (Simultaneous Authentication of Equals) протокол обмена ключами, основанный на ECDH с использованием для аутентификации предустановленных ключей (PSK) и MAC-адресов устройств
- Совершенная прямая секретность (Perfect Forward Secrecy)
- Индивидуальные ключи для клиентов в открытых сетях
- Протокол настройки IoT-устройств "Easy Connect"

Уязвимости WPA3

Семейство атак DragonBlood (CVE-2019-9494)

- Атака по побочному каналу на основе кеша. Алгоритм кодирования пароля содержит условные переходы, зависящие от пароля. Код, запущенный на устройстве, которое авторизуется в сети, может определить, какие из переходов выполнялись, определяя промахи и попадания кеша.
- Тайминг-атака Время выполнения рукопожатия зависит от пароля и МАС-адресов устройств. Возможна удалённая атака: точные измерения временых задержек позволяют сократить пространство возможных паролей.

Downgrade-атака

• WPA3 поддерживает режим совместимости с WPA2 Атакующий может инициировать переход в режим совместимости, а затем воспользоваться уязвимостями WPA2.

Дополнительные материалы

- Key Reinstallation Attacks
 https://www.krackattacks.com
 KRACK описание, демо, FAQ
- Key Reinstallation Attacks:
 Forcing Nonce Reuse in WPA2
 https://papers.mathyvanhoef.com/ccs2017.pdf
 Статья с подробным описанием атаки
- Dragonblood: A Security Analysis
 of WPA3's SAE Handshake
 https://papers.mathyvanhoef.com/dragonblood.pdf
 Статья с подробным описанием Dragonblood

Wi-Fi Protected Setup (WPS) и его дыры

Автоматическая настройка Wi-Fi-соединения без необходимости задавать параметры руками

- по кнопке (нажать на обоих устройствах)
- по PIN-коду (8 цифр, ввести на клиенте)

Стойкость PIN-кода — 10⁷ (восьмая цифра — контрольная сумма).

Точка доступа проверяет PIN-код блоками по 4 цифры, то есть код можно подобрать всего за 11 000 попыток.

Слабые алгоритмы генерации случайных чисел для функции проверки PIN позволяют провести оффлайн-атаку (WPS Pixie Dust)

Ссылки

- Обратная связь:
 - android.ruberoid@gmail.com
 - @androidruberoid
- Анонсы:
 - facebook.com/kocherga.club
 - w vk.com/kocherga club
 - w vk.com/kocherga_prog
- Материалы лекций:
 - github.com/notOcelot/Kocherga_crypto
- Видео:
 - youtube.com/channel/UCeLSDFOndl4eKFutg3oowHg

