General Properties of Sk.

$$S_k = S_3 - \mathcal{N}(k)$$

$$\Im S_{k} = S_{\lambda}' \times S_{\mu}'$$

$$S'_{\lambda} \times \mathbb{R} = \mathfrak{I}S'_{k} \longrightarrow S'_{k}$$

$$S'_{\lambda} \times S'_{\mu} = \mathfrak{I}S_{k} \longrightarrow S_{k}$$

$$\Pi_{1}(S'_{\lambda} \times S'_{\mu}) \longrightarrow \Pi_{1}(S_{k}) \longrightarrow H_{1}(S_{k})$$

$$Z_{\lambda} \oplus Z_{\mu} \longmapsto Z$$

$$K = K_1 \# K_2$$

ifts to ribbon

which splits
$$\tilde{S}_k = \tilde{S}_k$$
, \tilde{S}_{k_2}

$$S_0$$
 $H_1(\widetilde{S}_{\kappa}) = H_1(\widetilde{S}_{\kappa_1}) \oplus H_1(\widetilde{S}_{\kappa_2})$

So
Lemma:
$$\triangle_{k} \stackrel{\text{up to a unit}}{=} \triangle_{k}$$
; $\triangle_{k_{2}}$

Note:
$$\Delta_{8_{18}} = \Delta_{3_1}^2 \Delta_{4_1}$$

Also, the lama does n't help find pome knots since there are Knots by $\Delta = 1$.

Can we obtain more invariants via higher Homology/Homotopy?

No: * Sk is a homology circle

$$\begin{array}{lll} \text{\mathbb{K}} & \mathbb{T}_2\left(\mathsf{S}_{\mathsf{K}}\right) = 1 & \text{by} & \mathsf{Papakyriakoponlos} & \mathsf{Thm} & (\mathsf{Sphere} \; \mathsf{Thm}) \\ & \vdots & \\ \mathbb{T}_{\mathsf{j}}\left(\mathsf{S}_{\mathsf{K}}\right) = 1 & (\mathsf{j} \! > \! 1) & \left(\mathsf{S}_{\mathsf{K}} = \mathsf{aspherical}\right) \end{array}$$

Seifert Matrices

$$k \longrightarrow S^3$$
 knot, and

Recall
$$C \hookrightarrow S_k$$
 [$C \ni E \mapsto H_1(S_k)$]

4 intersection # $I(\Sigma, C)$

$$M^{\circ} = S_k - \Sigma$$
, $C \hookrightarrow M^{\circ}$ will not intersect Σ , so $\{C\} = 0$

So
$$\Pi_{i}(M^{\circ}) \hookrightarrow P_{*}(\Pi_{i}(\widetilde{S}_{k}))$$

Similarly,
$$V=\sum \times (-1,1)$$

Infts to $\widetilde{V}=\bigcup_{i\in I}V_i$

So
$$\widetilde{S}_{k} = \widetilde{M}' \sqcup \widetilde{V}$$
. Let $V^{\dagger} = \sum \times (o_{1}1)$, $V = \sum \times (-1, 0)$
 $V_{i}^{\pm} \hookrightarrow M_{i}^{\circ}$ so give \widetilde{M}' along \sum to form \widetilde{S}_{k} .