Automatic Differentiation as a Tool for Computational Science

Laurent Hascoët Paul Hovland Jan Hückelheim Sri Hari Krishna Narayanan

SIAM CSE 2021

Welcome

Paul Hovland

Jan Hückelheim

Krishna Narayanan

- ► First time we are giving a virtual tutorial
- Special thanks to those who are up late or early!

What do we have in store

- ► Session 1:
 - ► Introduction
 - Seed matrices
 - ▶ Demo & Hands on: AD basics
- ► Session 2:
 - ► Memory requirements
 - ► AD for parallel programs
 - Know what you are differentiating
 - ► Adding AD to existing code
 - ▶ Demo & Hands on: Using AD for optimization

Resources: https://tinyurl.com/siamcse21ad

Our goals for this tutorial

Participants will . . .

- situate AD in contrast to other approaches to derivatives,
- be able to use AD tools effectively,
- imagine what ML frameworks do "behind the scenes",
- understand enough about AD concepts that they can diagnose problems,
- ... and, why not, at least one participant might be inspired to contribute to AD research?

What we assume about you

Computational scientists facing challenging problems, through advanced modeling and simulation, using the most capable computers.

- ▶ large complex codes
- continuously developed
- including sophisticated math/physics
- using multiple libraries
- performance is essential
- parallelism involved

Why derivatives?

Sensitivity Analysis:

Find sensitivity of the computed field wrt one input parameter

Why derivatives?

Why derivatives?

Inverse problems:

from measurements and model, estimate hidden parameters

Other uses: Reduced models, Error estimation, Mesh adaption, Uncertainty Quantification, Backpropagation for ML training...

What is AD?

The chain rule applied to algorithms

See any algorithm/program $P:\{I_1; I_2; ... I_p;\}$ as:

$$F: \mathbb{R}^n \to \mathbb{R}^m$$
 $F = f_p \circ f_{p-1} \circ \cdots \circ f_1$

Define for short:

$$V_0 =$$
input and $V_k = f_k(V_{k-1})$

Apply the chain rule:

$$F'(V_0) = f'_p(V_{p-1}) \times f'_{p-1}(V_{p-2}) \times \cdots \times f'_1(V_0)$$

...and transform P to make it compute that.

Cost considerations

$$F'(V_0) = f'_p(V_{p-1}) \times f'_{p-1}(V_{p-2}) \times \cdots \times f'_1(V_0)$$

is often expensive:

- ▶ in computation time
- ▶ in storage space

What can save us:

- ▶ The shapes of the f'_k matter
- ► The final usage may not require the full F' but only a projection

Classical projections of F'

- $ightharpoonup F' imes \dot{V}_0$, "forward" or "tangent" mode
- $ightharpoonup \overline{V_p} imes F'$ "reverse" or "adjoint" mode

When full F' needed, use multi-directional AD

- \rightarrow $F' \times Id$ (or $Id \times F'$),
- \rightarrow possibly compressed as $F' \times S$ (or $S \times F'$)

For higher-order derivatives, differentiate F' If directional, differentiate $F' \times \dot{V}_0$

Demo (with Tapenade)

<u>rosenbrock.f90 :</u>

```
REAL*8 FUNCTION ROSENBROCK(x,n) RESULT(y)

INTEGER :: n

REAL*8 :: x(0:n)

y = SUM(100.d0*(x(1:n) - x(0:n-1)**2)**2

+ (1-x(0:n-1))**2)

END FUNCTION ROSENBROCK
```

- ▶ n + 1 inputs x, scalar output y
- ► Looking for $\frac{dy}{dx}$

Demo with Tapenade: tangent

```
$ tapenade rosenbrock.f90
$> -head "rosenbrock(y)/(x)" -d
```

rosenbrock_d.f90:

driverTgt.f90 initializes xd to 0,0,0,0,1,0,0,0,0,0 (n=9)

```
$ gfortran rosenbrock_d.f90 driverTgt.f90 -o tangent.exe
$ ./tangent.exe
Rosenbrock tangent: -260.4622
```

Demo with Tapenade: gradient

```
$ tapenade rosenbrock.f90
$> -head "rosenbrock(y)/(x)" -b
```

rosenbrock_b.f90:

```
xb = 0.0_8

tempb = 2*(x(1:n)-x(0:n-1)**2)*100.d0*yb

xb(0:n-1) = xb(0:n-1) - 2*(1-x(0:n-1))*yb

xb(1:n) = xb(1:n) + tempb

xb(0:n-1) = xb(0:n-1) - 2*x(0:n-1)*tempb
```

```
$ gfortran rosenbrock_b.f90 driverGrad.f90 -o gradient.exe
$ ./gradient.exe
Rosenbrock gradient: 15.9751 50.3524
-109.0627 -447.2795 -260.4622 -113.7724
-421.9504 -121.0793 66.6307 6.3868
```

Focus on forward mode: $F' \times V_0$

$$F' imes \dot{V_0} = f_p'(V_{p-1}) imes f_{p-1}'(V_{p-2}) imes \cdots imes f_1'(V_0) imes \dot{V_0}$$

 V_0 is a vector \Rightarrow compute from right to left! This corresponds to P's original order ⇒ interleave derivative and primal computation. Easy!

$$\stackrel{I_{p-2}}{\longrightarrow} \stackrel{I_{p-2}}{\longrightarrow} \stackrel{I_{p-1}}{\longrightarrow} \stackrel{I_p}{\longrightarrow} \stackrel{$$

Focus on reverse mode: $\overline{V_p} \times F'$

$$\overline{V_p} \times F' = \overline{V_p} \times f_p'(V_{p-1}) \times f_{p-1}'(V_{p-2}) \times \cdots \times f_1'(V_0)$$

Vector now on the left \Rightarrow compute from left to right Not so easy, but worth the effort!

A forward sweep, and then a backward sweep The derivative instructions form the backward sweep "Data-flow reversal" to get V_k 's in reverse order

Cost model

$$F: \mathbf{in} \in \mathbb{R}^n \to \mathbf{out} \in \mathbb{R}^m$$

- ▶ full F' cost grows like n using the forward mode Good if $n \le m$
- ▶ full F' cost grows like m using the reverse mode Good if n >> m (e.g. m = 1 for a gradient)

Alternatives to AD

- Symbolic differentiation, Continuous adjoint...
 Uses equations, not code;
 Duplicates discretization & coding work
- ► Finite Differences
 Robust wrt coding style & non-differentiable code;
 inaccurate (2nd order contributions); only forward mode
- Complex-step Astute use of Complex arithmetics; similar to AD; only forward mode

Tool landscape

- Various AD models ⇒ various AD tools: Store derivatives stuck to primals or in separate variables; Tape all forward computation or only chosen values; Preaccumulate partials; Prefer recomputation to storage
- Various languages ⇒ Various tool interfaces: AD by separate tool or embedded in application language; AD in the compiler; Differentiated code visible or not; AD on restricted language or DSL

End of basics

Let's look in detail!