Terna Engineering College Computer Engineering Department Program: Sem VIII

Course: Natural Language Processing

Experiment No. 3

A.1 Aim: Perform and analyse an n-gram modelling for corpuses using Virtual Lab.

PART B (PART B: TO BE COMPLETED BY STUDENTS)

Roll No. 50	Name: AMEY THAKUR
Class: BE COMPS B	Batch: B3
Date of Experiment: 07/02/2022	Date of Submission: 07/02/2022
Grade:	

B.1 Virtual Lab (Input & Output):

CORPUS A:

CORPUS B:

B.2 Observations & Learning:

- Text N-grams are commonly employed in text mining and natural language processing.
- They're essentially a group of co-occurring words inside a particular window, and when computing the n-grams, you usually move one word ahead (but in more complex cases, you can move X words forward).

B.3 Conclusion:

We have successfully performed and analysed an n-gram modelling for corpuses using Virtual Lab.

B.4 Questions of Curiosity:

Q1. What is N-gram? What is its purpose and need? ANS:

- Text N-grams are commonly employed in text mining and natural language processing. They're essentially a group of co-occurring words inside a particular window, and when computing the n-grams, you usually move one word ahead (but in more complex cases, you can move X words forward).
- N-grams are utilised for a wide range of purposes. When creating a language model, for example, n-grams are used to create not just unigram models but also bigram and trigram models. Google and Microsoft have created web-scale n-gram models that may be used for spelling correction, word breaking, and text summarising.
- Q2. Give an example of the application of the N-gram used in NLP from a recent research paper.

ANS:

- Text Categorization based on N-grams
- N-gram Machine Classification of Sentiment Reviews
- N-gram Method in Large-Scale Clustering of DNA Texts
- A Compromise between N-gram Length and Classifier Characteristics for Protein Classification
- N-Gram characterization of genomic islands in bacterial genomes
- Q3. Find bigram probabilities for given sentences (CORPUS).
 - 1. can one play on ground
 - 2. only work no play
 - 3. one is on ground

ANS:

	can	one	play	on	ground	only	work	no	is
can	0	1	0	0	0	0	0	0	0
one	0	0	0.5	0	0	0	0	0	0.5
play	0	0	0	1	0	0	0	0	0
on	0	0	0	0	1	0	0	0	0
ground	0	0	0	0	0	0	0	0	0
only	0	0	0	0	0	0	1	0	0
work	0	0	0	0	0	0	0	1	0
no	0	0	0	0	0	0	0	0	0
is	0	0	0	1	0	0	0	0	0