Active dendrites generate and transmit theta oscillations in model

neurons. Alan Schoen¹, Ali Salehiomran², and Erik Cook¹ Department of Physiology, McGill University and ²Department of Electrical and Computer Engineering, McGill University

Dendrites connect the different parts of a neuron and carry signals between them. The electrical response of dendrites determines what kinds of information are carried from one part of a cell to another. We used linear systems analysis to characterize the way dendrites respond to current injection.

1) Experimental Basis

Experiments show that a linear model accounts for the somatic response to a noisy current injection in the apical trunk

2) Model Structure

The model consists of cylindrical compartments with a linear surface impedance (Zm)

The resonant peak indicates that theta oscillations are transmitted more effectively than other signals

3) Model Results

The full compartmental model perfectly reproduced the 2-port results. However, the model is compatible with many impedance profiles. We show two, which support different predictions about the transmission of theta oscillations.

Uniform Membrane Profile

 Z_T (150 um)

 $\overline{Z_T}$ (650 um)

High Resonance Profile

With a large conductance in the soma, the

The resulting model is accurate and computationally efficient. Both impedance support the notion that dendritic membrane plays a role in generating and transmitting theta oscillations.

