SEGUNDO TESTE

Universidade Federal de Goiás (UFG) - Câmpus Jataí Bacharelado em Ciência da Computação Lógica para Ciência da Computação Esdras Lins Bispo Jr.

10 de Junho de 2014

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 05 (cinco) componentes que formarão a média final da disciplina: dois testes, duas provas e exercícios;
- A média final será calculada pela média ponderada das cinco supraditas notas [em que o primeiro teste tem peso 20 (vinte), o segundo teste tem peso 10 (dez), a primeira prova tem peso 35 (trinta e cinco), a segunda prova tem peso 25 (vinte e cinco) e os exercícios têm peso 10 (dez)];
- O conteúdo exigido compreende os seguintes pontos apresentados no Plano de Ensino da disciplina: (4) Implicação Lógica e Argumento, (5) Demonstração e Dedução, e (6) Satisfazibilidade.

Nome:		
Assinatura:	 	

- 1. (2,0 pt) [ESAF 2012] Conclua o argumento a seguir, marque a alternativa correta e **justifique a sua resposta**. Se Marta é estudante, então Pedro não é professor. Se Pedro não é professor, então Murilo trabalha. Se Murilo trabalha, então hoje não é domingo. Ora, hoje é domingo. Logo,
 - (a) Marta não é estudante e Murilo trabalha.
 - (b) Marta não é estudante e Murilo não trabalha.
 - (c) Marta é estudante ou Murilo trabalha.
 - (d) Marta é estudante e Pedro é professor.
 - (e) Murilo trabalha e Pedro é professor.
- 2. (1,0 pt) Justifique cada passo na sequência de demonstração de $(q \rightarrow r) \land (s \lor \neg r) \land q \models s$:
 - (1) $q \rightarrow r$
 - (2) $s \vee \neg r$
 - (3) q
 - (4) r
 - (5) s
- 3. (1,0 pt) Justifique cada passo na sequência de demonstração de $(p \to s) \land (p \to r) \models p \to (s \land r)$:
 - (1) $p \rightarrow s$
 - (2) $p \rightarrow r$
 - (3) p
 - (4) s
 - (5) r
 - (6) $s \wedge r$
- 4. (6,0 pt) Prove que os argumentos abaixo são válidos através do uso de regras de inferência:
 - (a) $(2.0 \text{ pt}) (p \rightarrow (q \lor r)) \land \neg q \land \neg r \models \neg p$
 - (b) (2,0 pt) $(p \to (q \to r)) \land (p \lor \neg s) \land q \models s \to r$
 - (c) (2,0 pt) $(p \lor (q \to p)) \land q \models p$

Material de Consulta

REGRAS DE INFERÊNCIA

- Silogismo Disjuntivo (SD)
 - (1) $p \vee q$
 - (2) $\neg p$
 - (3) q
- SD(1), (2)
- De Morgan (DM_{\wedge})
 - (1) $\neg p \land \neg q$
 - $(2) \quad \neg (p \lor q)$
- DM_{\wedge} (1)
- De Morgan (DM_{\lor})
 - $(1) \neg p \lor \neg q$
 - (2) $\neg (p \land q)$
- DM_{\vee} (1)

- Modus Ponens (MP)
 - (1) $p \rightarrow q$
 - (2) p
 - (3) q MP(1), (2)
 - Modus Tollens (MT)
 - (1) $p \rightarrow q$
 - $(2) \neg q$
 - $(3) \neg p$
- MT(1), (2)
- Contradição $(\neg e)$
 - (1) p
 - $(2) \neg p$
 - (3) <u></u>
- $\neg e (1), (2)$

- ullet Introdução da Conjunção $(\wedge i)$
 - (1) p
 - (2) q
 - (3) $p \wedge q$
- $\wedge i \ (1), (2)$