and ab-1=0
$$\Leftrightarrow$$
 ab=1 \Leftrightarrow b=1/a \forall b \in \mathbb{R} .

- (a) Calcular det A.
- (b) Calcular el rango de A según valores de a, b.

3.- Se consideran subespacios F, G, H de un espacio vectorial E de dimensión finita que cumplen $F \subset G \subset H$ y $F \neq G \neq H$. Se pide:

- (a) Demostrar que se cumple $\dim H \ge \dim F + 2$.
- (b) Demostrar que cualesquiera vectores $v \in F$, $v \neq 0$, $w \in G F$ y $u \in H G$ son linealmente independientes.

4.- Sea $f:E\to E$ un endomorfismo de un espacio vectorial E de dimensión finita. Se pide:

- (a) Demostrar que $\ker(f) \subset \ker(f^2)$ y $\operatorname{Im}(f) \supset \operatorname{Im}(f^2)$.
- (b) Demostrar la equivalencia de las siguientes condiciones:
 - (i) $\ker(f) \neq \ker(f^2)$.
 - (ii) $\operatorname{rg}(f) \neq \operatorname{rg}(f^2)$.
 - (iii) $\ker(f) \cap \operatorname{Im}(f) \neq \{0\}.$