EMSE 6035: Marketing of Technology

Intro to Maximum Likelihood Estimation & Optimization

John Paul Helveston, Ph.D.

Assistant Professor

Engineering Management & Systems Engineering

The George Washington University

Background: Random Utility Model

Utility can be broken into two parts:

We define v_i as a function of observable product attributes, x_i :

$$v_j = f(x_j) = \beta_1 x_{j1} + \beta_2 x_{j2} + \dots$$

Weights that denote the *relative* value of attributes x_{i1} and x_{i2}

Estimate model coefficients, β_1 , β_2 , ..., by maximizing the likelihood function

The likelihood function is a function of the parameters of a statistical model, given observed data

Probability

$$\Pr(\tilde{x} = x \mid \mathbf{\theta})$$

Example:

 \tilde{x} follows a normal distribution with two parameters (θ):

- Mean $(\mu = 0)$
- Standard deviation $(\sigma = 1)$

$$Pr(\tilde{x} = 0 | \mathbf{\theta})$$

$$= f_{\tilde{x}}(0)$$

$$\approx 0.4$$

Likelihood

$$\mathcal{L}(\boldsymbol{\theta}|\mathbf{x})$$

Example:

We assume \tilde{x} follows a normal distribution We have the following observations

0.2	-0.5	-1	0.2	0.1	1.6	0.6	0.5	-1.9	-0.4
-----	------	----	-----	-----	-----	-----	-----	------	------

What is the likelihood that the parameters are:

- Mean $(\mu = 0)$
- Standard deviation ($\sigma = 1$)

$$f_{\tilde{x}}(\mathbf{x}) =$$

$$\mathcal{L}(\boldsymbol{\theta}|\mathbf{x}) = f_{\tilde{x}}(x_1) f_{\tilde{x}}(x_2) ... f_{\tilde{x}}(x_n) = 1.63e-6$$

Maximum likelihood estimation is about finding the parameters that produce the highest likelihood

Observations

0.	2 -0.	5	-1	0.2	0.1	1.6	0.6	0.5	-1.9	-0.4

μ	σ		Probability of $\tilde{x} = x$									$\mathcal{L}(\mathbf{\theta} \mathbf{x})$
-1	1	0.19	0.35	0.40	0.19	0.22	0.01	0.11	0.13	0.27	0.33	2.00e-8
0	1	0.39	0.35	0.24	0.39	0.40	0.11	0.33	0.35	0.07	0.37	1.63e-6
1	2	0.18	0.15	0.12	0.18	0.18	0.19	0.20	0.19	0.07	0.16	8.74e-9

Practice Question 1

<u>Observations</u>: Height of students (inches)

	65	69	66	67	68	72	68	69	63	70
1										

a. Let's say we know that the height of students, \tilde{x} , in a classroom follows a normal distribution. A professor obtains the above height measurements students in her classroom. What is the likelihood that $\tilde{x} \sim N(68, 4)$? In other words, compute $\mathcal{L}(\mu = 68, \sigma = 4|\mathbf{x})$.

Hints:

- 1. The likelihood is computed by: $\mathcal{L}(\boldsymbol{\theta}|\mathbf{x}) = f_{\tilde{x}}(x_1) f_{\tilde{x}}(x_2)...f_{\tilde{x}}(x_n)$
- 2. The dnorm(x, mean, sd) function in R returns the value of $f_{\tilde{x}}(x)$ for a normal distribution with a given mean (mean) and standard deviation (sd).
- 3. The *prod()* function returns the product of a set of values in *R*.
- b. Compute the likelihood function using the same standard deviation ($\sigma = 4$) but with the following different values for the mean, μ : 66, 67, 68, 69, 70. How do the results compare? Which value for μ produces the highest likelihood?

Use the data we observe, \mathbf{x} , to estimate the parameters, $\mathbf{\theta}$, of an assumed model

maximize
$$\mathcal{L}(\mathbf{\theta}|\mathbf{x}) = f_{\tilde{x}}(x_1) f_{\tilde{x}}(x_2) ... f_{\tilde{x}}(x_n) = \prod_{i=1}^n f_{\tilde{x}}(x_i|\mathbf{\theta})$$

with respect to θ

Solving this is known as "Maximum Likelihood Estimation"

This is an optimization problem!

Optimization:

Find the value, x, that maximizes the function f(x)

Example: Find what price, p, will maximize profit, π , for the following model:

Profit: $\pi(p) = q(p - c)$

Demand: q = 10 - p

Cost: *c*

maximize $\pi(p)$ with respect to p subject to $p \ge 0$

Profit if c = 1:

$$\pi(p) = q(p - c)$$

$$= (10 - p)(p - c)$$

$$= -p^2 + (10 + c)p - 10c$$

$$\frac{\partial \pi}{\partial p} = -2p + 10 + c = 0$$

Solve for p:

$$p^* = \frac{10 + c}{2}$$

If
$$c = 1$$
, $p^* = \frac{11}{2} = 5.5$

Optimality Conditions

Optimality conditions

First order necessary condition x^* is a "stationary point" when

$$\frac{df(x^*)}{dx} = 0$$

Second order sufficiency condition x^* is a local *maximum* when

$$\frac{d^2f(x^*)}{dx^2} < 0$$

 x^* is a local *minimum* when

$$\frac{d^2f(x^*)}{dx^2} > 0$$

Optimality conditions

First order necessary condition

 x^* is a "stationary point" when

$$\frac{df(x^*)}{dx} = 0$$

Second order sufficiency condition x^* is an *inflection point* when

$$\frac{d^2f(x^*)}{dx^2} = 0$$

f(x)

Optimality conditions for local maximum

Number of dimensions	First order condition	Second order condition	Example
One	$\frac{df(x^*)}{dx} = 0$	$\frac{d^2f(x^*)}{dx^2} < 0$	
Multiple	"Gradient" $\nabla f(x_1, x_2, x_n)$ $= \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2},, \frac{\partial f}{\partial x_n}\right]$ $= [0,0,,0]$	"Hessian" $\nabla^2 f(x_1, x_2, x_n)$ $= \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & & \frac{\partial^2 f}{\partial x_n \partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n} & & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$ Must be "negative definite"	

Optimality conditions for local minimum

Number of dimensions	First order condition	Second order condition	Example
One	$\frac{df(x^*)}{dx} = 0$	$\frac{d^2f(x^*)}{dx^2} > 0$	
Multiple	"Gradient" $\nabla f(x_1, x_2, x_n)$ $= \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2},, \frac{\partial f}{\partial x_n}\right]$ $= [0,0,,0]$	"Hessian" $\nabla^2 f(x_1, x_2, x_n)$ $= \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & & \frac{\partial^2 f}{\partial x_n \partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n} & & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$ Must be "positive definite"	

Optimization Convention: "Negative Null Form"

maximize f(x)with respect to xsubject to...

minimize -f(x)with respect to xsubject to...

Optimization Approaches:

- 1. Analytic
- 2. Algorithmic

Analytical Optimization

Ex: Find what value for x will maximize the function $f(x) = -x^2 + 6x$

minimize $f(x) = x^2 - 6x$ with respect to x

First order necessary condition

 x^* is a "stationary point" when

$$\frac{df(x^*)}{dx} = 0$$

$$\frac{df}{dx} = 2x - 6 = 0 \longrightarrow x^* = 3$$

Second order sufficiency condition x^* is a local maximum / minimum when

$$\frac{d^2f(x^*)}{dx^2} < 0 \qquad \frac{d^2f(x^*)}{dx^2} > 0$$

$$\frac{d^2f}{dx^2} = 2 \longrightarrow x^* \text{is a local } \underline{\text{minimum}}$$

Optimization Algorithms

Gradient Descent Method:

- 1. Choose a starting point, x_0
- 2. At that point, compute the gradient, $\nabla f(x_0)$
- 3. Compute the next point, with a step size γ :

$$x_{n+1} = x_n - \gamma \nabla f(x_n)$$

Very small

*Stop when
$$\nabla f(x_n) < \delta$$
 number or

*Stop when $(x_{n+1} - x_n) < \delta$

Convex & Concave Functions

Convex

Concave

When minimizing a <u>convex</u> function, any *local* minimum is a *global* minimum

When maximizing a <u>concave</u> function, any *local* maximum is a *global* maximum

Practice Question 2

Consider the following function:

$$f(x) = x^2 - 6x$$

The gradient is:

$$\nabla f(x) = 2x - 6$$

Using the starting point x = 1 and the step size $\gamma = 0.3$, apply the gradient descent method to compute the next **three** points in the search algorithm.

<u>Hints</u>:

1. Remember the gradient descent method:

$$x_{n+1} = x_n - \gamma \nabla f(x_n)$$

Practice Question 3

Consider the following function:

$$f(\underline{\mathbf{x}}) = x_1^2 + 4x_2^2$$

The gradient is:

$$\nabla f(\underline{\mathbf{x}}) = \begin{bmatrix} 2x_1 \\ 8x_2 \end{bmatrix}$$

Using the starting point $\underline{x}_0 = [1, 1]$ and the step size $\gamma = 0.15$, apply the gradient descent method to compute the next **three** points in the search algorithm.

Hints:

1. Remember the gradient descent method:

$$x_{n+1} = x_n - \gamma \nabla f(x_n)$$

2. In *R*, use the c() function to create a vector.

Estimating Utility Model Coefficients Using Maximum Likelihood Estimation

$$\tilde{u}_{j} = v_{j} + \tilde{\varepsilon}_{j}$$

$$= \beta_{1}x_{j1} + \beta_{2}x_{j2} + \dots + \tilde{\varepsilon}_{j}$$

$$= \beta' \mathbf{x}_{j} + \tilde{\varepsilon}_{j}$$

Estimate $\beta = [\beta_1, \beta_2, ..., \beta_n]$ by maximizing the likelihood function

minimize
$$-\mathcal{L} = -\prod_{j=1}^J P_j(\boldsymbol{\beta}|\mathbf{x})^{y_j}$$
 with respect to $\boldsymbol{\beta}$

 $y_j = 1$ if alternative j was chosen $y_j = 0$ if alternative j was not chosen

For logit model:

$$P_{j} = \frac{e^{v_{j}}}{\sum_{k=1}^{J} e^{v_{k}}} = \frac{e^{\beta' x_{j}}}{\sum_{k=1}^{J} e^{\beta' x_{k}}}$$