Лабораторная работа на тему: Термический анализ двухкомпонентных систем

Рябов Олег Шистко Степан Группа Б04-302

21 марта 2025 г.

1 Цель работы

Экспериментальное исследование двухкомпонентной системы с применением метода дифференциальное сканирующей калориметрии (ДСК).

2 Оборудование и материалы

- 1. Кристаллические соли $NaNO_3$ и KNO_3 И навески их смесей.
- 2. Алюминиевые тигли с крышками
- 3. Шпатели, аналитические весы
- 4. ДСК термоанализатор

3 Введение

3.1 Диаграммы плавкости (Т-х диаграммы)

Для исследования фазовых равновесий «твердое-жидкость» в двухкомпонентной системе обычно используют Т—х диаграмму (диаграмму плавкости). Вид диаграммы плавкости будет определяться рядом факторов, среди которых наличие аллотропных модификаций, возможность образования химических соединений, способность компонентов взаимно растворяться:

1. Системы компонентов обладающих неограниченной растворимостью как в твердой, так и в жидкой фазе характеризуются наиболее простыми по виду диаграммами плавкости (рис. 1).

Рис. 1: Диаграммы плавкости двухкомпонентных систем с неограниченной

Диаграммы плавкости таких систем по виду аналогичны Т—х диаграммам «жидкость-пар» или «с азеотропом».

2. Двухкомпонентные системы, в которых компоненты неограниченно растворимы в жидкой фазе, но не смешиваются в твёрдой фазе. Такие диаграммы характерны для большинства двухкомпонентных систем органических соединений, поскольку даже изомеры органических соединений редко образуют смешанные кристаллы.

Рис. 2: Мольная доля изомера

На рис. 2 приведены три диаграммы плавкости двухкомпонентных смесей: мета-, ортои пара-изомеров хлорнитробензола. Их отличительной особенностью является наличие характерного излома на кривой ликвидуса (точка E на рис. 2).

3.2 Уравнение Шредера

Допустим, что в двухкомпонентной двухфазной системе вещества 1 и 2 не образуют между собой твёрдого раствора, то полностью смешиваются в жидкой фазе (расплаве). Рассмотрим равновесие между одним из этих веществ, находящимся в твёрдой фазе и в расплаве, где его активность равна a_i . Из условия равновесия $\mu(fluid) = \mu(solid)$ следует

$$\mu_i^{\circ}(fluid) + RT \ln a_i^{fluid} = \mu_i^{\circ}(solid) \tag{1}$$

Выражая отсюда активность и дифференцируя обе части равенства, приходим с уравнению Шредера

$$\left(\frac{\partial lna_i^{fluid}}{\partial T}\right)_P = \frac{\Delta H_i^o}{RT^2},\tag{2}$$

которое для идеальных растворов выглядит как

$$\left(\frac{\partial lnx_i^{fluid}}{\partial T}\right)_P = \frac{\Delta H_i^o}{RT^2},$$
(3)

Здесь ΔH_i^o - стандартная энтальпия плавления i-го компонента. Если принять, что ΔH_i^o не зависит от температуры, то после интегрирования получим уравнение Шредера в интегральной форме:

$$lnx_i^{fluid} = -\frac{\Delta H_i^o}{R} \left(\frac{1}{T} - \frac{1}{T_i^o} \right),\tag{4}$$

где T_i^o - температура плавления чистого і-го компонента. Положение точки эвтектики (температуру T и состав хэвт) нетрудно вычислить из уравнения Шредера. Линии ликвидуса и солидуса делят диаграмму плавкости на ряд областей: I - жидкий расплав; II - жидкий расплав и кристаллы компонента A; III - жидкий расплав и кристаллы компонента B; IV - механическая смесь двух чистых кристаллических компонентов A и B. Часто встречаются системы, компоненты которых частично растворимы в твёрдом состоянии и из расплавов кристаллизуются не чистые компоненты, а твёрдые растворы. При этом равнение Шредера имеет вид

$$ln\frac{x_i^{fluid}}{x_i^{solid}} = -\frac{\Delta H_i^o}{R} \left(\frac{1}{T} - \frac{1}{T_i^o}\right),\tag{5}$$

Пример одной из таких диаграмм плавкости приведён на рис. 3 в упрощенной форме. Области II, III и V, где система является двухфазной, затемнены.

Схема установки :

Рис. 6. a) — схема измерительной ячейки в ДСК, б) изменение теплового потока в ходе исследуемого процесса

Рис. 3: Диаграмма плавкости двухкомпонентной смеси $NaNO_3$ и KNO_3

4 Методика

- 1. Измерение T охлаждаемой или нагреваемой смеси
- 2. При изменении фазы появляются изломы
- 3. Пологие линии говорят о кристализации расвтора, выделяется теплота
- 4. Начало ликвидус, конец солидус.

5 Тепловой поток

$$-\Delta Q = \frac{\Delta T}{R},\tag{6}$$

где ΔT разность температур между исследуемым образцом и эталоном, R - тепловое сопротивление диска в ячейке. ДСК - метод, при котором измеряется разность тепловых потоков к исследуемому образцу и к инертному эталону.

6 Ход работы

- 1. Взвесим навеску на аналитических весах.
 - $m_{pot} = 51.6 (mg)$ масса тигеля
 - ullet $m_{full} = m_{pot} + m_{mix} = 79.7 (mg)$ масса полная
 - $m_{mix} = 28.1(mg)$ масса смеси
- 2. Поместим тигель с образцом и эталон.
- 3. Проводим эксперимент по нагреву образца Были получены следующие результаты:

Рис. 8. Экспериментальная диаграмма плавкости для системы $NaNO_3 - KNO_3$ из базы данных FTsalt — FACT salt dstabase.

Компоненты системы ограничено растворимы в твердом состоянии и имеются области сосуществования твердых растворов.

1: $T_1 = 221.65$ °С - начало плавления эвтектики;

2: $T_2 = 223.32$ °С - начало кристаллизации при охлаждении;

3: Начало плавления $T_3 = 221.59$ °C; - сомнительно но окэй

4: Начало плавления $T_4 = 221.34$ °C;

5: Начало кристаллизации $T_5 = 223.63$ °C;

Также были посчитаны тепловые эффекты (интегралы):

 $\Delta_{crystallization_1} H = 388.9 \text{ MKBc/MT};$

 $\Delta_{melting_1} H = -543.1 \text{ MKBc/MF};$

 $\Delta_{melting_2}$ H = -417.6 мкВс/мг.

 $\Delta_{melting_3}$ H = -390.7 мкВс/мг.

Возьмем для расчетов $\Delta_{melting_3}H$ (Ближе $\Delta_{crystallization_1}$).

По графику определим содержание солей

Итого:

$$w_{mol} (NaNO_3) = 0.5 = 50 \%$$

 $w_{mol} (KNO_3) = 0.5 = 50 \%$

Вещество	$T_{melting}$, °C	$\Delta_{melting}$ H, kJ/mol
$NaNO_3$	308	15.09
KNO_2	335	9.80

Таблица 1: Табличные значения

$$\ln x = -\frac{\Delta_{melt} H_i^{\,o}}{R} \left(\frac{1}{T} - \frac{1}{T_i^{\,o}}\right) \tag{7}$$

где $T_i^{\ o} = T_{melt}$; Т - температура фазового равновесия

 $NaNO_3$:

$$\ln 0.5 = -\frac{\Delta_{melti} H_i^o}{8.31} \left(\frac{1}{273 + 221} - \frac{1}{273 + 308} \right) = > 19002(J/mol)$$
 (8)

 KNO_3 :

$$\ln 0.5 = -\frac{\Delta_{melti} H_i^{\ o}}{8.31} \left(\frac{1}{273 + 221} - \frac{1}{273 + 335} \right) = > 15175 (J/mol) \tag{9}$$

Сравнение энтальпий:

Энтальпия плавления для смеси: -186.8 Дж/г (Из верхних формул), из графика: - Дж/г.

7 Вывод

В ходе лабораторной работы были получены кривые охлаждения и нагревания $\Delta Q(t)$,

T(t) с помощью ДСК. По начальным температурам кристаллизации и плавления были определены фазы, в которых вещества находятся в равновесии, а также процентное соотношение веществе в смеси.

$$T_{melting} = 221.34$$
 °C; $T_{crystallization} = 223.63$ °C.

Табличные значения стандартной энтальпии образования $NaNO_3$ и KNO_3 соотвественно равны 15.09 кДж/моль и 9.8 кДж/моль.