Somatic Mutation Calling

BFX Workshop Week 08

Chris Miller

Cancer is a disease of the genome

- Cancer is caused by somatic mutations
- These mutations are introduced into the genome of a cell (errors in DNA copying, UV light, chemicals)
- Most cancers require around3 driver mutations

Germline Predisposition

Cancer Sequencing

- In cancer, we have to (at least) double sequencing costs
- Uses both a tumor sample and a matched normal
- We compare them to find somatic mutations

What do somatic variants look like?

Indels

Germline vs Somatic

Tumors are often impure, heterogeneous, and aneuploid

Tumors are often impure (contain normal cells)

Tumors are often genetically diverse collections of cells

Tumors may be aneuploid

How does purity influence VAF?

VAF = Variant reads / Total reads

How does purity influence VAF?

VAF = Variant reads / Total reads

KRAS amplification in a metastatic breast cancer

How does copy number influence VAF?

How does clonality influence VAF?

- Subclones contain genetically diverse populations of cells
- Evolution occurs at the molecular and cellular levels
- The growth rates for subclones are often different

Clonal evolution in relapsed AML

Dominant clone vs. sub-clonal (and driver vs. passenger)

Somatic variant calling is harder

• There are more factors to consider, a wider range of possibilities, and often, more sketchy samples

One class of callers tries to address this problem with Bayesian statistics

Use of multiple variant callers can improve sensitivity and accuracy

Performance of caller Intersections

- Step 1 run the callers
 - Mutect, Strelka, Varscan, Pindel

Varscan

• java -jar VarScan.v2.3.6.jar somatic < (samtools mpileup ... normal.bam) < (samtools mpileup ... tumor.bam)

Mutect

•/gatk/gatk Mutect2 -0 output.vcf -R ref.fa -I tumor.bam -tumor TUMORNAME -I nomal.bam -normal NORMALNAME -L interval.list

- Step 1 run the callers
 - Mutect, Strelka, Varscan, Pindel

- Step 2 Merge the VCFs
 - GATK CombineVariants

Combine Variants

```
/usr/bin/java -jar /opt/GenomeAnalysisTK.jar -T
CombineVariants -genotypeMergeOptions PRIORITIZE
--rod_priority_list mutect, varscan -o combined.vcf.gz
--variant:mutect mutect_output.vcf --variant:varscan
varscan_output.vcf
```

- Step 1 run the callers
 - Mutect, Strelka, Varscan, Pindel

- Step 2 Merge the VCFs
 - GATK CombineVariants

Step 3: Annotate and filter

Homework

- Take a tumor and normal bam file and identify somatic variants using multiple callers
- Produce a merged VCF with your results