```
In [1]: import pandas as pd
    df = pd.read_csv("IHME_HEALTH_SPENDING_1995_2018_Y2021M09D22.CSV", encoding='latin-1', e
    df.head()
```

Out[1]:		location_id	location_name	iso3	level	year	the_total_mean	the_total_lower	the_total_upper	the_total_ppr
	0	160	Afghanistan	AFG	Country	1995	528409	417121	665425	2
	1	160	Afghanistan	AFG	Country	1996	516915	412035	651034	2
	2	160	Afghanistan	AFG	Country	1997	509874	413424	636436	2
	3	160	Afghanistan	AFG	Country	1998	485561	394629	605041	2
	4	160	Afghanistan	AFG	Country	1999	463720	382723	564170	1

5 rows × 84 columns

Załadowanie matplotlib

```
In [2]: import matplotlib.pyplot as plt
```

```
Podgląd danych
In [3]: df["location name"].unique()
       array(['Afghanistan', 'Albania', 'Algeria', 'American Samoa', 'Andorra',
               'Angola', 'Antigua and Barbuda', 'Argentina', 'Armenia',
               'Australia', 'Austria', 'Azerbaijan', 'Bahamas', 'Bahrain',
               'Bangladesh', 'Barbados', 'Belarus', 'Belgium', 'Belize', 'Benin',
               'Bermuda', 'Bhutan', 'Bolivia (Plurinational State of)',
               'Bosnia and Herzegovina', 'Botswana', 'Brazil',
               'Brunei Darussalam', 'Bulgaria', 'Burkina Faso', 'Burundi',
               'Cabo Verde', 'Cambodia', 'Cameroon', 'Canada',
               'Central African Republic', 'Chad', 'Chile', 'China', 'Colombia',
               'Comoros', 'Congo', 'Cook Islands', 'Costa Rica', 'Croatia',
               'Cuba', 'Cyprus', 'Czechia', "Côte d'Ivoire",
               "Democratic People's Republic of Korea",
               'Democratic Republic of the Congo', 'Denmark', 'Djibouti',
               'Dominica', 'Dominican Republic', 'Ecuador', 'Egypt',
               'El Salvador', 'Equatorial Guinea', 'Eritrea', 'Estonia',
               'Eswatini', 'Ethiopia', 'Fiji', 'Finland', 'France', 'Gabon',
               'Gambia', 'Georgia', 'Germany', 'Ghana', 'Greece', 'Greenland',
               'Grenada', 'Guam', 'Guatemala', 'Guinea', 'Guinea-Bissau',
               'Guyana', 'Haiti', 'Honduras', 'Hungary', 'Iceland', 'India',
               'Indonesia', 'Iran (Islamic Republic of)', 'Iraq', 'Ireland',
               'Israel', 'Italy', 'Jamaica', 'Japan', 'Jordan', 'Kazakhstan',
               'Kenya', 'Kiribati', 'Kuwait', 'Kyrgyzstan',
               "Lao People's Democratic Republic", 'Latvia', 'Lebanon', 'Lesotho',
               'Liberia', 'Libya', 'Lithuania', 'Luxembourg', 'Madagascar',
               'Malawi', 'Malaysia', 'Maldives', 'Mali', 'Malta',
               'Marshall Islands', 'Mauritania', 'Mauritius', 'Mexico',
               'Micronesia (Federated States of)', 'Monaco', 'Mongolia',
               'Montenegro', 'Morocco', 'Mozambique', 'Myanmar', 'Namibia',
               'Nauru', 'Nepal', 'Netherlands', 'New Zealand', 'Nicaragua',
               'Niger', 'Nigeria', 'Niue', 'North Macedonia',
               'Northern Mariana Islands', 'Norway', 'Oman', 'Pakistan', 'Palau',
               'Palestine', 'Panama', 'Papua New Guinea', 'Paraguay', 'Peru',
               'Philippines', 'Poland', 'Portugal', 'Puerto Rico', 'Qatar',
```

```
'Republic of Korea', 'Republic of Moldova', 'Romania',
'Russian Federation', 'Rwanda', 'Saint Kitts and Nevis',
'Saint Lucia', 'Saint Vincent and the Grenadines', 'Samoa',
'San Marino', 'Sao Tome and Principe', 'Saudi Arabia', 'Senegal', 'Serbia', 'Seychelles', 'Sierra Leone', 'Singapore', 'Slovakia',
'Slovenia', 'Solomon Islands', 'Somalia', 'South Africa',
'South Sudan', 'Spain', 'Sri Lanka', 'Sudan', 'Suriname', 'Sweden',
'Switzerland', 'Syrian Arab Republic',
'Taiwan (Province of China)', 'Tajikistan', 'Thailand',
'Timor-Leste', 'Togo', 'Tokelau', 'Tonga', 'Trinidad and Tobago',
'Tunisia', 'Turkey', 'Turkmenistan', 'Tuvalu', 'Uganda', 'Ukraine',
'United Arab Emirates', 'United Kingdom',
'United Republic of Tanzania', 'United States Virgin Islands',
'United States of America', 'Uruguay', 'Uzbekistan', 'Vanuatu',
'Venezuela (Bolivarian Republic of)', 'Viet Nam', 'Yemen',
'Zambia', 'Zimbabwe', 'Global', 'High income', 'Low income',
'Lower-middle income', 'Upper-middle income',
'Central Europe, Eastern Europe, and Central Asia', 'High-income',
'Latin America and Caribbean', 'North Africa and Middle East',
'South Asia', 'Southeast Asia, East Asia, and Oceania',
'Sub-Saharan Africa'], dtype=object)
```

In [149... d1 = df[df["location_name"] == "Sierra Leone"]
 d1[["year","the_total_mean"]]

Out[149]: year the_total_mean

	year	the_total_mean
3888	1995	161382
3889	1996	148878
3890	1997	130216
3891	1998	135092
3892	1999	132452
3893	2000	163519
3894	2001	171104
3895	2002	201043
3896	2003	217092
3897	2004	227436
3898	2005	246956
3899	2006	246768
3900	2007	246467
3901	2008	288623
3902	2009	291038
3903	2010	336302
3904	2011	373600
3905	2012	397972
3906	2013	384762
3907	2014	809772
3908	2015	861612
3909	2016	594553

```
3910 2017 572442 3911 2018 583077
```

Wykres - średnia wydawanych pieniędzy na służbę zdrowia w danym roku w Sierra Leone (x, y, styl linii)

```
In [150... plt.plot(h["year"], d1["the_total_mean"], 'k-')
[<matplotlib lines Line2D at 0x16495431790>]
```

Out[150]: [<matplotlib.lines.Line2D at 0x16495431790>]

Różne style rysowania

```
In [151... plt.plot(d1["year"], d1["the_total_mean"], 'ko-', label="default")
    plt.plot(d1["year"], d1["the_total_mean"], 'k--', drawstyle='steps-post', label="steps")
    plt.legend()
```

Out[151]: <matplotlib.legend.Legend at 0x16495973e80>

Grupy wykresów

(rozmiar x, rozmiar y, identyfikator)

Legenda i etykiety osi

```
In [154... d2 = df[df["location_name"] == "El Salvador"]

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)

ax.scatter(d2["the_total_lower"], d2["the_total_upper"], color='g', label="upper")
ax.scatter(d2["the_total_lower"], d2["the_total_mean"], color='r', label="mean")
ax.set_xticks([0, 1000000, 2000000, 3000000])
ax.set_xticklabels(['zero', 'one', 'two', 'three'], rotation=45, fontsize='medium')
ax.set_title('matplotlib')
ax.set_xlabel('the_total_lower [billions]')
ax.set_ylabel('the_total_upper/mean [billions]')
ax.legend(loc='best')

plt.savefig('figure.png', dpi=400, bbox_inches='tight')
```


Zapis do pliku

(ścieżka, dpi, ucinanie białych fragmentów wokół obrazu)

Zapis musi być wykonany przed wyświetleniem, inaczej obraz będzie pusty - (wyświetlenie czyści wykres)

Wykresy pandas


```
In [161... d4 = d3[["the_total_mean", "the_total_lower", "year"]]
    figure = d4
    figure.plot(x = "year")
```

Out[161]: <AxesSubplot:xlabel='year'>

Wykresy kolumnowe

```
In [162... fig, axes = plt.subplots(2, 1)
    d5 = d4[d4["year"] > 2009]
    d5 = d5[["the_total_lower", "the_total_mean"]]
    data = d5
    data.plot.bar(ax=axes[0], color='r', alpha=0.7) #rysowanie w pionie
    data.plot.barh(ax=axes[1], color='b', alpha=0.7) #rysowanie w poziomie
```

Out[162]: <AxesSubplot:>


```
In [165... d6 = df[df["year"] > 2015]
    d6 = d6[["the_total_upper", "the_total_ppp_lower"]]
    d6 = d6.head(10)
    d6
```

Out[165]: the_total_upper the_total_ppp_lower

21	2028013	7253099
22	2142606	7709396
23	2207902	7779658
45	738868	1795580
46	779525	1872224
47	838110	1990826
69	10365602	30006433
70	10242469	29389584
71	10379786	28755496
93	36712	27535

```
In [166... d6.plot.bar()
```

Out[166]: <AxesSubplot:>

In [167... d6.plot.barh(stacked=True, alpha=0.9)

Out[167]: <AxesSubplot:>

Seaborn

```
In [178... d7 = df d7 = d7[d7["year"]> 2006] d7
```

Out[178]:		location_id	location_name	iso3	level	year	the_total_mean	the_total_lower	the_total_upper	the_total _.
	12	160	Afghanistan	AFG	Country	2007	1040372	956086	1141413	
	13	160	Afghanistan	AFG	Country	2008	1066858	982415	1161963	
	14	160	Afghanistan	AFG	Country	2009	1236730	1149054	1337448	
	15	160	Afghanistan	AFG	Country	2010	1262196	1166456	1364153	
	16	160	Afghanistan	AFG	Country	2011	1373092	1273961	1482720	
	•••									
	5227	166	Sub-Saharan Africa	S3	GBD Super Regions	2014	71349683	69713253	73018691	
	5228	166	Sub-Saharan Africa	S 3	GBD Super Regions	2015	73465621	71828527	75186691	
	5229	166	Sub-Saharan Africa	S3	GBD Super Regions	2016	73972108	72267558	75733371	
	5230	166	Sub-Saharan Africa	S 3	GBD Super Regions	2017	77406545	75367505	79506397	
	5231	166	Sub-Saharan Africa	S 3	GBD Super Regions	2018	78994327	76466329	81632889	

2616 rows × 84 columns

```
In [179... sbn.barplot(x='the_total_mean', y='year', data=d7, orient='h')
#automatycznie wyświetla przedział ufności
```

Out[179]: <AxesSubplot:xlabel='the_total_mean', ylabel='year'>


```
In [180... sbn.barplot(x='the_total_mean', y='year', data=d7, orient='h', ci='sd')
#wersja z std dev
```

Out[180]: <AxesSubplot:xlabel='the_total_mean', ylabel='year'>

Dodanie nowej wartości kategorycznej hue

```
In [182... d7 = d7[d7["year"] > 2016]
sbn.barplot(x='the_total_mean', y='year', hue='level', data=d7, orient='h')
```

<AxesSubplot:xlabel='the_total_mean', ylabel='year'> Out[182]:

Histogram

Out[184]:

```
d8 = df[df["year"] > 2017]
In [183...
          d8 = d8["dah per gdp mean"]
          d8
                  0.013
          23
Out[183]:
          47
                  0.001
                  0.000
          71
          95
                  0.000
          119
                  0.000
          5135
                  0.000
          5182
                  0.001
          5183
                  0.001
                  0.000
          5207
          5231
                  0.006
          Name: dah per gdp mean, Length: 218, dtype: float64
          d8.plot.hist(bins=50)
In [184...
          <AxesSubplot:ylabel='Frequency'>
```


Wykres gęstości - wykres prawdopodbieństwa obserwowanych danych

```
In [185... d8.plot.kde()
```

Out[185]: <AxesSubplot:ylabel='Density'>


```
In [186... d8.plot.density()
```

Out[186]: <AxesSubplot:ylabel='Density'>

In [187... sbn.displot(d8, bins=100, color='k')

Out[187]: <seaborn.axisgrid.FacetGrid at 0x16498f7d820>

In [188... sbn.histplot(d8, bins=100, color='k')

Out[188]: <AxesSubplot:xlabel='dah_per_gdp_mean', ylabel='Count'>

Wykresy punktowe i bitowe

```
In [189... d9 = df
    d9 = d9[d9["year"] > 2012]
    d9
```

89]:		location_id	location_name	iso3	level	year	the_total_mean	the_total_lower	the_total_upper	the_total
	18	160	Afghanistan	AFG	Country	2013	1554494	1435933	1674751	
	19	160	Afghanistan	AFG	Country	2014	1664981	1541417	1800126	
522 522 522 523	20	160	Afghanistan	AFG	Country	2015	1822293	1693212	1960564	
	21	160	Afghanistan	AFG	Country	2016	1882415	1747511	2028013	
	22	160	Afghanistan	AFG	Country	2017	1992736	1857448	2142606	
	•••									
	5227	166	Sub-Saharan Africa	S3	GBD Super Regions	2014	71349683	69713253	73018691	
	5228	166	Sub-Saharan Africa	S 3	GBD Super Regions	2015	73465621	71828527	75186691	
	5229	166	Sub-Saharan Africa	S 3	GBD Super Regions	2016	73972108	72267558	75733371	
	5230	166	Sub-Saharan Africa	S 3	GBD Super Regions	2017	77406545	75367505	79506397	
	5231	166	Sub-Saharan Africa	S3	GBD Super Regions	2018	78994327	76466329	81632889	

```
In [190... sbn.regplot(x='oop_per_gdp_mean', y='dah_per_gdp_mean', data=d9)
plt.title('oop per gdp mean od dah per gdp mean'.format('oop_per_gdp_mean', 'dah_per_gdp_mean', 'dah_per_gdp_mean')
```

Out[190]: Text(0.5, 1.0, 'oop per gdp mean od dah per gdp mean')

Macierz wykresów

Out[191]:		the_total_mean	the_total_ppp_mean	dah_per_gdp_mean	oop_per_gdp_mean
	16	1373092	5699060	0.025	0.066
	17	1410474	5854216	0.019	0.065
	18	1554494	6451977	0.019	0.068
	19	1664981	6910557	0.017	0.074
	20	1822293	7563486	0.017	0.083
	21	1882415	7813023	0.010	0.091
	22	1992736	8270915	0.009	0.094
	23	2037487	8456655	0.013	0.090
	40	639655	1782716	0.003	0.025
	41	641496	1787846	0.001	0.026
	42	659893	1839119	0.000	0.027

43	707623	1972142	0.001	0.027
44	689829	1922550	0.001	0.025
45	690713	1925014	0.000	0.024
46	724906	2020310	0.000	0.024
47	773638	2156125	0.001	0.024
64	7035126	23317461	0.000	0.015
65	8003953	26528574	0.000	0.016
66	7880135	26118187	0.000	0.016
67	8926232	29585404	0.000	0.018
68	9866905	32703203	0.000	0.019
69	9690605	32118869	0.000	0.020
70	9528786	31582532	0.000	0.020
71	9502698	31496063	0.000	0.020
88	33761	33761	0.000	0.009
89	32557	32557	0.000	0.009
90	31775	31775	0.000	0.009
91	31895	31895	0.000	0.009
92	32106	32106	0.000	0.009
93	31926	31926	0.000	0.009
94	31253	31253	0.000	0.010
95	32291	32291	0.000	0.009
112	204699	218073	0.000	0.009
113	197328	210220	0.000	0.010
114	196817	209676	0.000	0.010
115	197054	209929	0.000	0.009
116	201031	214165	0.000	0.009
117	216149	230271	0.000	0.009
118	225647	240390	0.000	0.009
119	234628	249957	0.000	0.009
136	1642328	5670017	0.001	0.006
137	1705780	5889079	0.001	0.006
138	1823689	6296151	0.002	0.007
139	1854933	6404019	0.001	0.007
140	1761334	6080878	0.001	0.008
141	1740257	6008108	0.002	0.009
142	1857264	6412066	0.002	0.009
143	1707322	5894405	0.001	0.009
160	69838	92019	0.000	0.015

```
161 69674 91803 0.000 0.015
```

```
In [192... sbn.pairplot(d10, diag_kind='kde', plot_kws={'alpha': 0.2})
```

Out[192]: <seaborn.axisgrid.PairGrid at 0x1649a43d160>

Dane kategoryczne

```
In [193... d11 = df
d11 = d11[(d11["iso3"] == "S3") | (d11["iso3"] == "USA") | (d11["iso3"] == "CHN")]
d11 = d11[d11["year"] > 2010]
d11
```

Out[193]:		location_id	location_name	iso3	level	year	the_total_mean	the_total_lower	the_total_upper	the_total
	904	6	China	CHN	Country	2011	394499221	363955067	425030458	
	905	6	China	CHN	Country	2012	438607436	408300708	470912636	
	906	6	China	CHN	Country	2013	481628318	451394063	515950870	

907	6	China	CHN	Country	2014	525586094	494048109	558205692	
908	6	China	CHN	Country	2015	584192485	551263247	618708603	
909	6	China	CHN	Country	2016	632511907	600721292	665591927	
910	6	China	CHN	Country	2017	677343796	644644563	710047114	
911	6	China	CHN	Country	2018	738123387	699261899	777328486	
4696	102	United States of America	USA	Country	2011	2944162745	2890250905	2997085936	
4697	102	United States of America	USA	Country	2012	2997075946	2948522176	3051844586	
4698	102	United States of America	USA	Country	2013	3006573573	2953445463	3058500115	
4699	102	United States of America	USA	Country	2014	3209771501	3159094694	3265764647	
4700	102	United States of America	USA	Country	2015	3303976697	3250922048	3357576999	
4701	102	United States of America	USA	Country	2016	3423031116	3370628273	3471875028	
4702	102	United States of America	USA	Country	2017	3502754273	3448933896	3556604395	
4703	102	United States of America	USA	Country	2018	3598369743	3529855473	3668158130	
5224	166	Sub-Saharan Africa	S3	GBD Super Regions	2011	62011236	60507521	63569807	
5225	166	Sub-Saharan Africa	S 3	GBD Super Regions	2012	65111564	63505530	66755373	
5226	166	Sub-Saharan Africa	S 3	GBD Super Regions	2013	68804826	67166034	70485588	
5227	166	Sub-Saharan Africa	S 3	GBD Super Regions	2014	71349683	69713253	73018691	
5228	166	Sub-Saharan Africa	S3	GBD Super Regions	2015	73465621	71828527	75186691	
5229	166	Sub-Saharan Africa	S3	GBD Super Regions	2016	73972108	72267558	75733371	
5230	166	Sub-Saharan Africa	S3	GBD Super Regions	2017	77406545	75367505	79506397	
5231	166	Sub-Saharan Africa	S3	GBD Super Regions	2018	78994327	76466329	81632889	

24 rows × 84 columns

#danymi kategoryzującymi jest level

Out[194]: <seaborn.axisgrid.FacetGrid at 0x1649a2a6460>

Siatka aspektów

In [207... sbn.catplot(x='year', y='the_total_mean', row='iso3', col='level', kind='bar', data=d11)

Out[207]: <seaborn.axisgrid.FacetGrid at 0x1649b76e640>

Wykresy blokowe

[249]:		location_id	location_name	iso3	level	year	the_total_mean	the_total_lower	the_total_upper	the_total
	44	43	Albania	ALB	Country	2015	689829	646378	738745	
	45	43	Albania	ALB	Country	2016	690713	644271	738868	
	46	43	Albania	ALB	Country	2017	724906	671771	779525	
	47	43	Albania	ALB	Country	2018	773638	714327	838110	
	1340	141	Egypt	EGY	Country	2015	15071072	14381859	15742578	
	1341	141	Egypt	EGY	Country	2016	16078051	15343614	16813419	
	1342	141	Egypt	EGY	Country	2017	16881770	16125703	17698948	
	1343	141	Egypt	EGY	Country	2018	16764374	15786043	17787561	
	2372	59	Latvia	LVA	Country	2015	1801007	1753510	1853748	
	2373	59	Latvia	LVA	Country	2016	1897400	1847688	1946688	
	2374	59	Latvia	LVA	Country	2017	2009249	1960480	2060583	
	2375	59	Latvia	LVA	Country	2018	2131696	2066178	2198799	
	3020	89	Netherlands	NLD	Country	2015	88930899	87386562	90536069	
	3021	89	Netherlands	NLD	Country	2016	89554408	87964857	91154289	
	3022	89	Netherlands	NLD	Country	2017	90480130	88820947	92135207	
	3023	89	Netherlands	NLD	Country	2018	92143985	90088095	94254403	

16 rows × 84 columns

```
In [250... sbn.catplot(x='year', y='oop_per_gdp_mean', kind='box', data=d12)
#mediana, kwartyle, wartości odstające
```

Out[250]: <seaborn.axisgrid.FacetGrid at 0x164a5988cd0>

