$$\eta_c(1S)$$

$$I^{G}(J^{PC}) = 0^{+}(0^{-+})$$

$\eta_c(1S)$ MASS

<i>VALUE</i> (Me\	/)			<u>EVTS</u>		DOCUMENT ID		TECN	COMMENT
2983.4 ±	0.5	0	UR AV	ERAGE	Е	rror includes sca	ale fac	ctor of 1	.2.
$2982.2\ \pm$	1.5	\pm	0.1	2.0k	1	AAIJ	15 BI	LHCB	$pp \rightarrow \eta_C(1S)X$
$2983.5~\pm$	1.4	+	1.6 3.6		2	ANASHIN	14	KEDR	$J/\psi \rightarrow \gamma \eta_{\it c}$
2979.8 \pm	8.0	\pm	3.5	4.5k			14E	BABR	$\gamma \gamma \rightarrow K^+ K^- \pi^0$
2984.1 \pm	1.1	\pm	2.1	900 3,	4,5	LEES	14E	BABR	$\gamma \gamma \rightarrow K^+ K^- \eta$
2984.3 \pm	0.6	\pm	0.6		6,7	ABLIKIM	12F	BES3	$\psi(2S) \rightarrow \gamma \eta_{C}$
$2984.49\pm$	1.16	\pm	0.52	832	3	ABLIKIM	12N		$\psi(2S) \rightarrow \pi^0 \gamma$ hadrons
$2982.7 \ \pm$				486		ZHANG	12A		$e^{+}e^{-} \rightarrow e^{+}e^{-} \eta' \pi^{+}\pi^{-}$
2984.5 ±	8.0	±	3.1	11k		DEL-AMO-SA	11 M	BABR	$ \gamma \gamma \to K + K - \pi + \pi - \pi^0 $
2985.4 ±	1.5	+	0.5 2.0	920	7	VINOKUROVA	11	BELL	$B^{\pm} \xrightarrow{\kappa^{\pm} (\kappa_S^0 \kappa^{\pm} \pi^{\mp})}$
2982.2 ±	0.4	±	1.6	14k	8	LEES	10	BABR	$10.6 e^{+}e^{-} \xrightarrow{\sigma}_{e^{+}e^{-}K_{S}^{0}K^{\pm}\pi^{\mp}}$
2985.8 ±	1.5	\pm	3.1	0.9k		AUBERT	08 AB	BABR	$B \rightarrow \eta_{c}(1S)K^{(*)} \rightarrow$
2986.1 ±	1 0		2.5	7.5k		UEHARA	08	BELL	$K\overline{K}\pi K^{(*)}$
					9	ABE			$\gamma \gamma \rightarrow \eta_{\it C} \rightarrow {\sf hadrons}$ $e^+ e^- \rightarrow J/\psi(c\overline{c})$
		±		501			07		, , ,
2971 ±			-	195		WU	06	BELL	$B^+ \rightarrow p \overline{p} K^+$
2974 ±	7	+	2 1	20		WU	06	BELL	$B^+ \rightarrow \Lambda \overline{\Lambda} K^+$
2981.8 ±	1.3	\pm	1.5	592		ASNER	04	CLEO	$\begin{array}{ccc} \gamma \gamma \rightarrow & \eta_{c} \rightarrow \\ \kappa_{S}^{0} \kappa^{\pm} \pi^{\mp} \end{array}$
2984.1 \pm	2.1	\pm	1.0	190	10	AMBROGIANI	03	E835	$\overline{p}p \rightarrow \eta_C \rightarrow \gamma \gamma$
• • • We	do n	ot ı	use the	followir		data for averages			
2982.5 \pm	0.4	\pm	1.4	12k	11	DEL-AMO-SA	.11M	BABR	$\gamma \gamma \rightarrow K_S^0 K^{\pm} \pi^{\mp}$
2982.2 ±	0.6						09		$e^+e^- \rightarrow \gamma X$
	5			270					$B^{\pm} \rightarrow K^{\pm} X_{c} \overline{c}$
2982.5 ±		+	0.9	2.5k		AUBERT			$\gamma \gamma \rightarrow \eta_{c}(1S) \rightarrow$
									$K\overline{K}\pi$
2977.5 \pm						BAI	03		$J/\psi \rightarrow \gamma \eta_{c}$
2979.6 \pm	2.3	\pm	1.6	180	16	FANG	03	BELL	$B \rightarrow \eta_{c} K$
2976.3 \pm	2.3	\pm	1.2			BAI	00F	BES	J/ψ , $\psi(2S) \rightarrow \gamma \eta_C$
2976.6 \pm	2.9	\pm	1.3	140 ¹²					$J/\psi \rightarrow \gamma \eta_{c}$
2980.4 ±	2.3	±	0.6		19	BRANDENB	00 B	CLE2	$\gamma \gamma \rightarrow \eta_c \rightarrow K^{\pm} K_S^0 \pi^{\mp}$
2975.8 ±	3.9	\pm	1.2		18	BAI	99 B	BES	Sup. by BAI 00F
	8	_		25		ABREU		DLPH	$e^+e^- \rightarrow e^+e^-$
									+hadrons

```
2988.3 \ \ \begin{array}{c} + \ \ 3.3 \\ - \ \ 3.1 \end{array}
                                                    ARMSTRONG 95F
                                                                                  E760
                                            <sup>12,20</sup> BISELLO
2974.4 \pm 1.9
                                                                                   DM2
                                                                                               J/\psi \rightarrow \eta_{c} \gamma
                                                ^{12} BAI
2969
                                                                           90B MRK3 J/\psi 
ightarrow
           \pm 4
                      \pm 4
                                                                                                   \gamma K^+ K^- K^+ K^-
                                                                                  MRK3 J/\psi \rightarrow
                                                12_{BAI}
2956
           \pm 12
                      \pm 12
                                                                                                   \gamma K^+ K^- K^0_S K^0_I
2982.6 + 2.7 \\ - 2.3
                                        12
                                                    BAGLIN
                                                                           87B SPEC \overline{p}p \rightarrow \gamma \gamma
                                            12,20 BALTRUSAIT...86
                                                                                   MRK3 J/\psi \rightarrow \eta_{\it c} \gamma
2980.2 \pm 1.6
                                                                                   CBAL J/\psi 
ightarrow \gamma X, \psi(2S) 
ightarrow
           \pm 2.3 \pm 4.0
                                                <sup>12</sup> GAISER
2984
                                                                                   MRK3 J/\psi \rightarrow 2\phi\gamma
                                            <sup>12,21</sup> BALTRUSAIT...84
2976
                                                <sup>22</sup> HIMEL
                                                                           80B MRK2 e^{+}e^{-}
2982
           ± 8
                                                <sup>22</sup> PARTRIDGE 80B CBAL e<sup>+</sup>e<sup>-</sup>
           \pm 9
2980
```

$\eta_c(1S)$ WIDTH

<i>VALUE</i> (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
31.8± 0.8 OUR FIT		·			
31.9± 1.0 OUR AV	ERAGE I	Error includes scale	facto	or of 1.2	
$27.2 \pm 3.1^{+5.4}_{-2.6}$		¹ ANASHIN	14	KEDR	$J/\psi \rightarrow \gamma \eta_{\it C}$
$25.2 \pm \ 2.6 \pm 2.4$	4.5k ²	^{2,3} LEES			$\gamma \gamma \rightarrow K^+ K^- \pi^0$
$34.8 \pm 3.1 \pm 4.0$		^{3,4} LEES	14E	BABR	$\gamma \gamma \rightarrow K^+ K^- \eta$
$32.0 \pm 1.2 \pm 1.0$	5	^{5,6} ABLIKIM	12F	BES3	$\psi(2S) \rightarrow \gamma \eta_{C}$
HTTP://PDG.LE	BL.GOV	Page 2		Cr	eated: 5/30/2017 17:20

 $^{^{1}}$ AAIJ 15BI reports $m_{J/\psi}$ - $m_{\eta_{c}(1S)}$ = 114.7 \pm 1.5 \pm 0.1 MeV from a sample of $\eta_{\rm c}(1S)$ and J/ψ produced in b-hadron decays. We have used current value of $m_{J/\psi}=$ 3096.900 \pm 0.006 MeV to arrive at the quoted $m_{\eta_{\mathcal{C}}(1S)}$ result.

² Taking into account an asymmetric photon lineshape.

³With floating width.

 $^{^4}$ Ignoring possible interference with the non-resonant 0^- amplitude.

⁵ Using both, $\eta \to \gamma \gamma$ and $\eta \to \pi^+ \pi^- \pi^0$ decays.

⁶ From a simultaneous fit to six decay modes of the η_c .

Accounts for interference with non-resonant continuum. Taking into account interference with the non-resonant $J^P=0^-$ amplitude.

 $^{^9}$ From a fit of the J/ψ recoil mass spectrum. Supersedes ABE,K 02 and ABE 04G.

¹⁰ Using mass of $\psi(2S) = 3686.00$ MeV.

 $^{^{11}\,\}mathrm{Not}$ independent from the measurements reported by LEES 10.

 $^{^{12}}$ MITCHELL 09 observes a significant asymmetry in the lineshapes of $\psi(2S)
ightarrow \gamma \eta_{\mathcal{C}}$ and $J/\psi \to \gamma \eta_{\rm C}$ transitions. If ignored, this asymmetry could lead to significant bias whenever the mass and width are measured in $\psi(2S)$ or J/ψ radiative decays.

 $^{^{13}\,\}mathrm{From}$ the fit of the kaon momentum spectrum. Systematic errors not evaluated.

¹⁴ Superseded by LEES 10.

 $^{^{15}}$ From a simultaneous fit of five decay modes of the η_{c} .

¹⁶ Superseded by VINOKUROVA 11.

 $^{^{17}}$ Weighted average of the $\psi(2S)$ and $J/\psi(1S)$ samples. Using an $\eta_{\it C}$ width of 13.2 MeV.

 $^{^{18}\,\}mathrm{Average}$ of several decay modes. Using an η_{C} width of 13.2 MeV.

¹⁹ Superseded by ASNER 04.

²⁰ Average of several decay modes.

 $^{^{22}}$ Mass adjusted by us to correspond to $J/\psi(1S)$ mass =3097 MeV.

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ Taking into account an asymmetric photon lineshape.

²With floating mass.

 $^{^3}$ Ignoring possible interference with the non-resonant 0^- amplitude.

⁴ Using both, $\eta \to \gamma \gamma$ and $\eta \to \pi^+ \pi^- \pi^0$ decays.

⁵ From a simultaneous fit to six decay modes of the η_{c} .

 $[\]overset{6}{7}$ Accounts for interference with non-resonant continuum. $\overset{7}{7}$ Taking into account interference with the non-resonant $J^P=0^-$ amplitude.

⁸ Not independent from the measurements reported by LEES 10.

⁹Superseded by LEES 10.

 $^{^{10}}$ From a simultaneous fit of five decay modes of the η_{c} .

 $^{^{11}}$ Superseded by VINOKUROVA 11.

 $^{^{12}}$ From a fit to the 4-prong invariant mass in $\psi(2S) o \gamma \eta_C$ and $J/\psi(1S) o \gamma \eta_C$ decays.

¹³ Superseded by ASNER 04.

¹⁴ Positive and negative errors correspond to 90% confidence level.

$\eta_c(1S)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
	Decays involving hadro	nic resonances	
Γ ₁	$\eta^{\prime}(958)\pi\pi$	$(4.1 \pm 1.7)\%$	
	$\rho\rho$	$(1.8 \pm 0.5)\%$	
Γ_3	$K^*(892)^0 K^- \pi^+ + \text{c.c.}$	$(2.0 \pm 0.7)\%$	
	$K^*(892)\overline{K}^*(892)$	$(7.0 \pm 1.3) \times 1$	0-3
Γ_5	$K^*(892)^0 \overline{K}^*(892)^0 \pi^+ \pi^-$	$(1.1 \pm 0.5)\%$	
Γ_6	$\phi K^+ K^-$	$(2.9 \pm 1.4) \times 1$	0-3
Γ ₇		$(1.75\pm0.20)\times1$	
	$\phi^{2}(\pi^{+}\pi^{-})$		0^{-3} 90%
	$a_0(980)\pi$	< 2 %	90%
	$a_2(1320)\pi$	< 2 %	90%
	$K^*(892)\overline{K}$ + c.c.	< 1.28 %	90%
	$f_2(1270)\eta$	< 1.1 %	90%
_	$\omega\omega$	< 3.1 × 1	0^{-3} 90%
	$\omega\phi$	< 1.7 × 1	0^{-3} 90%
	$f_2(1270) f_2(1270)$	(9.8 \pm 2.5) $ imes$ 1	0-3
	$f_2(1270) f_2'(1525)$	$(9.7 \pm 3.2) \times 1$	
	$f_0(980)\eta$	seen	
	$f_0(1500)\eta$	seen	
	$f_0(2200)\eta$	seen	
	$a_0(980)\pi$	seen	
	$a_0(1320)\pi$	seen	
	$a_0(1450)\pi$	seen	
	$a_0(1950)\pi$	seen	
	$a_2(1950)\pi$	not seen	
	$K_0^*(1430)\overline{K}$	seen	
	$K_{2}^{*}(1430)\overline{K}$	seen	
	$K_0^{\stackrel{?}{\sim}}(1950)\overline{K}$	seen	
		hadrone	
г	Decays into stable $K\overline{K}\pi$		
' 28 Г	$K\overline{K}\eta$	$(7.3 \pm 0.5)\%$ $(1.35\pm 0.16)\%$	
	$\eta \pi^+ \pi^-$	$(1.35\pm0.10)\%$	
	$\eta^{\prime\prime}$ $\eta^{\prime\prime}$ $\eta^{\prime\prime}$ $\eta^{\prime\prime}$ $\eta^{\prime\prime}$ $\eta^{\prime\prime}$	$(1.7 \pm 0.3)\%$	
Γ ₂₂	$K^{+}K^{-}\pi^{+}\pi^{-}$	$(4.4 \pm 1.3) / 6$ $(6.9 \pm 1.1) \times 1$	₀ -3
· 32 Гээ	$K + K - \pi + \pi - \pi^0$	$(0.9 \pm 1.1) \times 1$ $(3.5 \pm 0.6) \%$	·
' 33 Гал	$K^{0}K^{-}\pi^{+}\pi^{-}\pi^{+}+c.c.$	$(5.6 \pm 1.5)\%$	
' 34 Гаг	$K + K - 2(\pi^{+}\pi^{-})$	$(5.0 \pm 1.5) \%$ $(7.5 \pm 2.4) \times 1$	₀ –3
' 35 Fac	$2(K^+K^-)$	$(7.3 \pm 2.4) \times 1$ $(1.46 \pm 0.30) \times 1$	
' 36 Г⊶	$\pi^+\pi^-\pi^0\pi^0$	$(4.7 \pm 1.0)\%$	J
' 3/	// // // // // // // // // // // // //	(-1.1 1.0) /0	

Γ ₃₈	$2(\pi^{+}\pi^{-})$	$(9.7 \pm 1.2) \times 10^{-3}$
Γ ₃₉	$2(\pi^{+}\pi^{-}\pi^{0})$	$(17.4 \pm 3.3)\%$
Γ_{40}	$3(\pi^+\pi^-)$	(1.8 \pm 0.4)%
71	$p\overline{p}$	$(1.50\pm0.16)\times10^{-3}$
Γ_{42}	$p\overline{p}\pi^0$	$(3.6 \pm 1.3) \times 10^{-3}$
Γ_{43}		$(1.09\pm0.24)\times10^{-3}$
	$\Sigma^{+}\overline{\Sigma}^{-}$	$(2.1 \pm 0.6) \times 10^{-3}$
	<u>=-</u> =+	$(8.9 \pm 2.7) \times 10^{-4}$
Γ ₄₆	$\pi^+\pi^-\rho\overline{\rho}$	$(5.3 \pm 1.8) \times 10^{-3}$

Radiative decays

Γ_{47}	$\gamma \gamma$	$(1.59\pm0.13)\times10^{-4}$

Charge conjugation (C), Parity (P), Lepton family number (LF) violating modes

Γ ₄₈	$\pi^+\pi^-$	P,CP < 1.1	\times 10 ⁻⁴	90%
Γ_{49}	$\pi^0\pi^0$	P,CP < 4	\times 10 ⁻⁵	90%
Γ_{50}	K^+K^-	P,CP < 6	\times 10 ⁻⁴	90%
Γ ₅₁	$K_S^0 K_S^0$	P,CP < 3.1	× 10 ⁻⁴	90%

CONSTRAINED FIT INFORMATION

An overall fit to the total width, 8 combinations of partial widths obtained from integrated cross section, and 19 branching ratios uses 85 measurements and one constraint to determine 13 parameters. The overall fit has a $\chi^2=118.3$ for 73 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta p_i \delta p_j \right\rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

<i>x</i> ₇	18									
<i>X</i> 15	3	6								
<i>x</i> ₂₈	22	41	7							
<i>x</i> ₂₉	12	22	4	54						
<i>x</i> ₃₂	11	21	4	25	13					
<i>x</i> 36	9	16	3	25	14	10				
<i>x</i> 38	14	25	5	30	16	16	12			
<i>x</i> ₄₁	14	26	5	36	19	16	13	20		
<i>x</i> ₄₃	3	6	1	9	5	4	3	5	25	
×47	-29	-54	-10	-66	-35	-34	-27	-41	-46	-11
Γ	-2	-3	-1	-4	-2	-2	-1	-2	7	2
	<i>x</i> ₄	<i>x</i> ₇	<i>×</i> 15	<i>x</i> ₂₈	<i>x</i> ₂₉	<i>x</i> ₃₂	<i>x</i> 36	<i>x</i> 38	<i>x</i> ₄₁	<i>×</i> 43

	Mode	Rate (MeV)
Γ ₄	$K^*(892)\overline{K}^*(892)$	0.22 ±0.04
Γ_7	$\phi\phi$	$0.056\ \pm0.007$
Γ_{15}	$f_2(1270) f_2(1270)$	0.31 ± 0.08
Γ ₂₈	$K\overline{K}\pi$	2.31 ± 0.16
Γ ₂₉	$K\overline{K}\eta$	0.43 ± 0.05
Γ_{32}	$K^+K^-\pi^+\pi^-$	0.219 ± 0.034
Γ ₃₆	$2(K^+K^-)$	0.046 ± 0.010
Γ ₃₈	$2(\pi^+\pi^-)$	0.31 ± 0.04
Γ_{41}	$p\overline{p}$	$0.048\ \pm0.005$
Γ_{43}	$A\overline{A}$	0.034 ± 0.008
Γ ₄₇	$\gamma\gamma$	0.0051 ± 0.0004

$\eta_c(1S)$ PARTIAL WIDTHS

 $\Gamma(\gamma\gamma)$ Γ₄₇ VALUE (keV) **EVTS** DOCUMENT ID TECN COMMENT

$5.1\pm~0.4~OUR~FIT$

• • • We do not i	use the follo	wing data for average	es, fits, limits	s, etc. • • •
5.8± 1.1	486	¹ ZHANG	12A BELL	$e^+e^{e^+e^-\eta'\pi^+\pi^-}$
$5.2\pm~1.2$	273 ± 43	^{2,3} AUBERT	06E BABR	$e^+e^-\eta'\pi^+\pi^-$ $B^{\pm} \rightarrow \kappa^{\pm} X_{c}\overline{c}$
$5.5\pm$ $1.2\pm$ 1.8	157 ± 33	⁴ KUO	05 BELL	$\gamma \gamma \rightarrow p \overline{p}$
$7.4 \pm 0.4 \pm 2.3$		⁵ ASNER	04 CLEO	$\gamma \gamma \rightarrow \eta_c \rightarrow K_S^0 K^{\pm} \pi^{\mp}$
$13.9 \pm \ 2.0 \pm \ 3.0$	41	⁶ ABDALLAH		
$3.8 + 1.1 + 1.9 \\ - 1.0 - 1.0$	190	⁷ AMBROGIANI	03 E835	$\overline{p} p \rightarrow \eta_{C} \rightarrow \gamma \gamma$
$7.6 \pm \hspace{0.1cm} 0.8 \pm \hspace{0.1cm} 2.3$		^{5,8} BRANDENB	00B CLE2	$\gamma \gamma \rightarrow \eta_c \rightarrow \kappa^{\pm} \kappa_S^0 \pi^{\mp}$
$6.9 \pm 1.7 \pm 2.1$	76	⁹ ACCIARRI	99T L3	$e^+e^- \rightarrow e^+e^-\eta_C$
$27\pm 16\pm 10$	5	⁵ SHIRAI	98 AMY	58 e ⁺ e ⁻
6.7^{+}_{-} $\begin{array}{c} 2.4 \\ 1.7 \\ \end{array}$ 2.3		⁴ ARMSTRONG		$\overline{p}p \rightarrow \gamma \gamma$
$11.3\pm~4.2$		¹⁰ ALBRECHT	94H ARG	$e^+e^- \rightarrow e^+e^-\eta_C$
$8.0 \pm \ 2.3 \pm \ 2.4$	17	¹¹ ADRIANI	93N L3	$e^+e^- ightarrow e^+e^-\eta_C$
5.9^{+}_{-} $\begin{array}{c} 2.1 \\ 1.8 \end{array} \pm \ 1.9$		⁷ CHEN	90B CLEO	$e^+e^- ightarrow e^+e^-\eta_C$
$6.4^{+}_{-} \begin{array}{c} 5.0 \\ 3.4 \end{array}$		¹² AIHARA	88D TPC	$e^+e^- ightarrow e^+e^-X$
$4.3^{+}_{-} \begin{array}{l} 3.4 \\ 3.7 \pm \end{array} 2.4$		⁴ BAGLIN	87B SPEC	$\overline{p}p \rightarrow \gamma \gamma$
28 ± 15		^{5,13} BERGER	86 PLUT	$\gamma \gamma \to K \overline{K} \pi$

```
Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update
       <sup>1</sup> Assuming there is no interference with the non-resonant background.
       <sup>2</sup> Calculated by us using \Gamma(\eta_c \to K\overline{K}\pi) \times \Gamma(\eta_c \to \gamma\gamma) / \Gamma = 0.44 \pm 0.05 keV from
           PDG 06 and B(\eta_{c} \rightarrow K\overline{K}\pi) = (8.5 \pm 1.8)% from AUBERT 06E.
       <sup>3</sup> Systematic errors not evaluated.
      ^4 Normalized to B( \eta_c \to p \overline{p}) = (1.3 \pm 0.4) \times 10^{-3} . ^5 Normalized to B( \eta_c \to \kappa^\pm \kappa_S^0 \, \pi^\mp) .
       <sup>6</sup> Average of K_S^0 K^{\pm} \pi^{\mp}, \pi^+ \pi^- K^+ K^-, and 2(K^+ K^-) decay modes.
       <sup>7</sup> Normalized to the sum of B(\eta_c \to K^{\pm} K_c^0 \pi^{\mp}), B(\eta_c \to K^+ K^- \pi^+ \pi^-), and B(\eta_c \to K^+ K_c^- \pi^+ \pi^-), and B(\eta_c \to K^+ K_c^- \pi^+ \pi^-), and B(\eta_c \to K^+ K_c^- \pi^+ \pi^-).
       <sup>8</sup> Superseded by ASNER 04.
       <sup>9</sup> Normalized to the sum of 9 branching ratios.
    Normalized to the sum of B(\eta_c \to K^{\pm} K_S^0 \pi^{\mp}), B(\eta_c \to \phi \phi), B(\eta_c \to \phi \phi)
           K^+K^-\pi^+\pi^-), and B(\eta_C \rightarrow 2\pi^+2\pi^-).
    <sup>11</sup> Superseded by ACCIARRI 99T.
    12 Normalized to the sum of B(\eta_c \to \kappa^{\pm} \kappa_S^0 \pi^{\mp}), B(\eta_c \to 2\kappa^{+} 2\kappa^{-}), B(\eta_c \to \kappa^{\pm} \kappa_S^0 \pi^{\mp}), B(\eta_c \to \kappa^{\pm} \kappa_S^0 \pi^{\mp})
           K^{+}K^{-}\pi^{+}\pi^{-}), and B(\eta_{C} \rightarrow 2\pi^{+}2\pi^{-}).
    <sup>13</sup> Re-evaluated by AIHARA 88D.
                                                                                       \eta_c(1S) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)
\Gamma(\eta'(958)\pi\pi) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                                                                                                                                                             \Gamma_1\Gamma_{47}/\Gamma
                                                                                                  DOCUMENT ID TECN COMMENT
 VALUE (keV)
                                            EVTS
                                                                                                                                               12A BELL e^+e^- 
ightarrow e^+e^-\eta'\pi^+\pi^-
75.8^{+6.3}_{-6.2}\pm 8.4
                                                                                             <sup>1</sup> ZHANG
                                                                   486
       <sup>1</sup> Assuming there is no interference with the non-resonant background.
\Gamma(\rho\rho) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                                                                                                                                                             \Gamma_2\Gamma_{47}/\Gamma
                                                                                                                     DOCUMENT ID
 VALUE (eV) CL% EVTS
 ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet
                                                                                                                                                                   08 BELL \gamma \gamma \rightarrow 2(\pi^+\pi^-)
  <39
                                                        90
                                                                           < 1556
                                                                                                                     UEHARA
\Gamma(K^*(892)\overline{K}^*(892)) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                                                                                                                                                             \Gamma_4\Gamma_{47}/\Gamma
                                                                                                                  DOCUMENT ID TECN COMMENT
 VALUE (eV)
 35 \pm 6 OUR FIT
                                                                                                                                                                08 BELL \gamma \gamma \rightarrow \pi^+ \pi^- K^+ K^-
 32.4±4.2±5.8
                                                                 882\,\pm\,115
                                                                                                                  UEHARA
\Gamma(\phi\phi) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                                                                                                                                                             \Gamma_7\Gamma_{47}/\Gamma
 VALUE (eV)
                                                                                                                                                                                   TECN COMMENT
8.9 \pm0.8 OUR FIT
                                                                                                                                                                     12B BELL \gamma\gamma \rightarrow 2(K^+K^-)
                                                                                                                  <sup>1</sup> LIU
 7.75\pm0.66\pm0.62
                                                                          386 \pm 31
 • • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                        132 \pm 23
                                                                                                                       UEHARA
                                                                                                                                                                     08 BELL \gamma \gamma \rightarrow 2(K^+K^-)
       <sup>1</sup> Supersedes UEHARA 08. Using B(\phi \rightarrow K^+K^-) = (48.9 \pm 0.5)%.
```

¹ Supersedes UEHARA 08. Using B($\phi \rightarrow K^+K^-$) = (48.9 \pm 0.5)%.

Γ(ωω) × Γ(γγ)/Γ_{total}

Γ₁₃Γ₄₇/Γ

VALUE (eV)

8.67 ± 2.86 ± 0.96

85 ± 29

1 LIU

128 BELL

γγ → 2(π⁺π⁻π⁰)

1 Using B(ω → π⁺π⁻π⁰) = (89.2 ± 0.7)%.

HTTP://PDG.LBL.GOV

Page 7

$\Gamma(\omega\phi) \times \Gamma(\gamma\gamma)/$		DOCUMENT ID	TE	CN CC		$\Gamma_{14}\Gamma_{47}/\Gamma$
VALUE (eV)• • We do not use						
<0.49						$K^{-}\pi^{+}\pi^{-}\pi^{0}$
		$.9\pm0.5)\%$ and B(ω		, ,		
					, ,	
$\Gamma(f_2(1270)f_2(1270))$	ען (γη EVTS	/// total DOCUMENT ID		TECN	COMMEN	$\Gamma_{15\Gamma_{47}/\Gamma}$
50±13 OUR FIT	LVIS	DOCOMENTID		TLCN	COMMEN	1
69±17±12	3182 ± 766	UEHARA	80	BELL	$\gamma\gamma \rightarrow 2$	$2(\pi^{+}\pi^{-})$
$\Gamma(f_2(1270)f_2'(152)$	5)) $\times \Gamma(\gamma)$	$\gamma)/\Gamma_{\rm total}$				$\Gamma_{16}\Gamma_{47}/\Gamma$
· —	<u>EVTS</u>	DOCUMENT ID		TECN	COMMEN	
49±9±13	1128 ± 206	UEHARA	80	BELL	$\gamma\gamma \rightarrow \tau$	$\pi^+\pi^-K^+K^-$
$\Gamma(K\overline{K}\pi) \times \Gamma(\gamma\gamma)$	$()/\Gamma_{\text{total}}$					Γ ₂₈ Γ ₄₇ /Γ
VALUE (keV)	CL% EVTS	DOCUMENT ID		TECN	COMMEN	VT
0.368 ± 0.021 OUR F				(10		
0.407 ± 0.027 OUR A $0.374 \pm 0.009 \pm 0.031$	VERAGE Er 14k	Tror includes scale factor 1 LEES	ctor (of 1.2. BABR	10.6 a [±]	\
0.574±0.009±0.051	141		10	DADIN	e^+e	$\stackrel{e^-}{-}\stackrel{\rightarrow}{\kappa_S^0}\stackrel{\pm}{\kappa^\pm}_{\pi^\mp}$
$0.407 \pm 0.022 \pm 0.028$		^{2,3} ASNER	04	CLEO	$\gamma \gamma \rightarrow \kappa_{c}^{0} R$	$ \eta_c \rightarrow \atop \kappa^{\pm}_{\pi} \mp \atop \kappa^{0}_{S} \kappa^{\pm}_{\pi} \mp $
$0.60 \pm 0.12 \pm 0.09$	41	^{3,4} ABDALLAH	03J	DLPH	$\gamma\gamma ightarrow$	$\kappa_{SK}^{0} \kappa^{\pm} \pi^{\mp}$
$1.47\ \pm0.87\ \pm0.27$		³ SHIRAI	98	AMY	$\gamma\gamma \rightarrow \kappa^{\pm}$	$\eta_{c}^{\sigma} \rightarrow$
		2				
0.84 ± 0.21		³ ALBRECHT	94H	ARG		$\kappa^{\pm} \kappa_{S}^{0} \pi^{\mp}$
$0.60 \begin{array}{l} +0.23 \\ -0.20 \end{array}$		³ CHEN		CLEO	$\gamma\gamma\to$	$\eta_c K^{\pm} K_S^0 \pi^{\mp}$
$1.06 \pm 0.41 \pm 0.27$	11	³ BRAUNSCH	89	TASS	$\gamma\gamma\to$	$K\overline{K}\pi$
$1.5 \begin{array}{c} +0.60 \\ -0.45 \end{array} \pm 0.3$	7	³ BERGER	86	PLUT	$\gamma\gamma\to$	$K\overline{K}\pi$
ullet $ullet$ We do not use	the following	data for averages, f	its, li	mits, et	.c. • • •	
$0.386 \pm 0.008 \pm 0.021$	12k	⁵ DEL-AMO-SA.	.11M	BABR	$\gamma\gamma\to$	$\kappa_S^0 \kappa^{\pm} \pi^{\mp}$
$0.418 \pm 0.044 \pm 0.022$		3,6 BRANDENB 3 BEHREND	00 B	CLE2	$\gamma \gamma \rightarrow \kappa^{\pm} \kappa$	$\eta_c^{} ightarrow \ \kappa_c^0 \pi^{\mp}$
< 0.63	95	³ BEHREND	89	CELL	$\gamma \gamma ightarrow$	$\kappa_{S}^{0} \kappa^{\pm} \pi^{\mp}$
<4.4	95	ALTHOFF	85 B	TASS	$\gamma\gamma\to$	$K\overline{K}\pi$
$= 5.5 \pm 1.7\%$ 3 We have multiplie 4 Calculated by us	from the valued $K^\pmK^0_S\pi^\mp$ from the va	ed mass spectrum. The reported in ASNE The measurement by 3 and the reported in AB	to o	btain <i>K</i>	$\overline{K}\pi$.	
$K_S^0 K^{\pm} \pi^{\mp}) = (1$	1.5 ± 0.4)%.		L []	TEC 10		

 $^{^{5}}$ Not independent from the measurements reported by LEES 10. 6 Superseded by ASNER 04.

```
\Gamma(K^+K^-\pi^+\pi^-) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                             \Gamma_{32}\Gamma_{47}/\Gamma
                                                     DOCUMENT ID
 35 ±
           6
                  OUR AVERAGE
                                                                           08 BELL \gamma \gamma \rightarrow \pi^+ \pi^- K^+ K^-
 25.7 \pm \phantom{0}3.2 \pm \phantom{0}4.9 \phantom{0}2019 \pm 248
                                                     UEHARA
                                                                           03J DLPH \gamma\gamma \rightarrow \pi^{+}\pi^{-}K^{+}K^{-}
280 \pm 100 \pm 60
                                                   <sup>1</sup> ABDALLAH
                                                                           94H ARG \gamma \gamma \rightarrow \pi^+ \pi^- K^+ K^-
                                                     ALBRECHT
170~\pm~80~\pm20
                              13.9\,\pm\,6.6
   ^1Calculated by us from the value reported in ABDALLAH 03J, which uses B(\eta_{
m c} 
ightarrow
     \pi^{+}\pi^{-}K^{+}K^{-}) = (2.0 ± 0.7)%.
\Gamma(K^+K^-\pi^+\pi^-\pi^0) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                             \Gamma_{33}\Gamma_{47}/\Gamma
                                               DOCUMENT ID
                                                                            TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                            <sup>1</sup> DEL-AMO-SA..11M BABR \gamma \gamma \rightarrow \kappa^+ \kappa^- \pi^+ \pi^- \pi^0
0.190 \pm 0.006 \pm 0.028 11k
   <sup>1</sup> Not independent from other measurements reported in DEL-AMO-SANCHEZ 11M.
\Gamma(2(K^+K^-)) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                             \Gamma_{36}\Gamma_{47}/\Gamma
   7.4 ± 1.5 OUR FIT
   5.8± 1.9 OUR AVERAGE
                                                                              08 BELL \gamma\gamma \rightarrow 2(K^+K^-)
   5.6 \pm 1.1 \pm 1.6
                                  216\,\pm\,42
                                                         UEHARA
                                                                              03J DLPH \gamma\gamma \rightarrow 2(K^+K^-)
                                                       <sup>1</sup> ABDALLAH
350 \pm 90 \pm 60
                                            46
                                                                              94H ARG \gamma \gamma \rightarrow 2(K^+K^-)
                                                      <sup>2</sup> ALBRECHT
231 \pm 90 \pm 23
                                  9.1\,\pm\,3.3
   ^1Calculated by us from the value reported in ABDALLAH 03J, which uses B(\eta_{_{m C}} 
ightarrow )
     2(K^+K^-) = (2.1 \pm 1.2)\%.
   ^2 Includes all topological modes except \eta_{\it C} \rightarrow ~\phi \phi.
\Gamma(2(\pi^+\pi^-)) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                             \Gamma_{38}\Gamma_{47}/\Gamma
VALUE (eV)
                                                          DOCUMENT ID
                                                                                      TECN COMMENT
                 OUR FIT
 49 \pm 6
 42 \pm 6 OUR AVERAGE
                                                                                08 BELL \gamma\gamma \rightarrow 2(\pi^+\pi^-)
 40.7 \pm \ 3.7 \pm \ 5.3
                                 5381 \pm 492
                                                          UEHARA
                                                                                94H ARG \gamma \gamma \rightarrow 2(\pi^+\pi^-)
180 \pm 70 \pm 20
                                  21.4\,\pm\,8.6
                                                          ALBRECHT
\Gamma(p\overline{p}) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                             \Gamma_{41}\Gamma_{47}/\Gamma
VALUE (eV)
                                                                                     TECN COMMENT
7.6 \pm0.7 OUR FIT
7.20\pm1.53^{+0.67}_{-0.75}
                                                      ^{1} KUO
                                  157\,\pm\,33
                                                                              05 BELL \gamma \gamma \rightarrow p \overline{p}
• • • We do not use the following data for averages, fits, limits, etc. • • •
4.6 \begin{array}{c} +1.3 \\ -1.1 \end{array} \pm 0.4
                                                       <sup>1</sup> AMBROGIANI 03 E835 \overline{p}p \rightarrow \gamma \gamma
                                          190
8.1 \begin{array}{c} +2.9 \\ -2.0 \end{array}
                                                      <sup>1</sup> ARMSTRONG 95F E760 \overline{p}p \rightarrow \gamma \gamma
```

 $^{^{1}\,\}mathrm{Not}$ independent from the $\Gamma_{\gamma\,\gamma}$ reported by the same experiment.

 $\Gamma(K_S^0 K_S^0) \times \Gamma(\gamma \gamma)/\Gamma_{\text{total}}$ <1.6 • • • We do not use the following data for averages, fits, limits, etc. • • 13 BELL $\gamma \gamma \rightarrow \kappa_{S}^{0} \kappa_{S}^{0}$ ² UEHARA

$\eta_c(1S)$ BRANCHING RATIOS

HADRONIC DECAYS

$\Gamma(\eta'(958)\pi\pi)/\Gamma_{tota}$	ı				Γ_1/Γ
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
0.041 ± 0.017	14	¹ BALTRUSAIT86	MRK3	$J/\psi \rightarrow \eta_C \gamma$	
1		5(1/1/30)	(4.6))		

¹ The quoted branching ratios use B($J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)$) = 0.0127 \pm 0.0036.

$\Gamma(ho ho)/\Gamma_{total}$					Γ ₂ /Γ
$VALUE$ (units 10^{-3})	CL% EVTS	DOCUMENT ID)	TECN	COMMENT
18 ± 5 OUR	AVERAGE				
$12.6 \pm \ 3.8 \pm 5.1$	72	¹ ABLIKIM	05L	BES2	$J/\psi \rightarrow \pi^+\pi^-\pi^+\pi^-\gamma$
$26.0 \pm 2.4 \pm 8.8$	113		91	DM2	$J/\psi \rightarrow \gamma \rho^0 \rho^0$
$23.6\!\pm\!10.6\!\pm\!8.2$	32	¹ BISELLO	91	DM2	$J/\psi \rightarrow \gamma \rho^+ \rho^-$
\bullet \bullet We do not	use the followir	ng data for avera	ges, fits	, limits,	etc. • • •
<14	90	¹ BALTRUSAI	T86	MRK3	$J/\psi ightarrow \eta_{c} \gamma$

¹ The quoted branching ratios use B $(J/\psi(1S) \to \gamma \eta_{c}(1S)) = 0.0127 \pm 0.0036$. Where relevant, the error in this branching ratio is treated as a common systematic in computing averages.

$$\Gamma(K^*(892)^0K^-\pi^+ + c.c.)/\Gamma_{total}$$
 Γ_3/Γ_{total}
 $\Gamma_{0.02\pm0.007}$
 $\Gamma_{0.02\pm0.007}$

$\Gamma(K^*(892)\overline{K}^*(892))/\Gamma_{\text{total}}$

 Γ_4/Γ

VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
70±13 OUR FIT					
91±26 OUR AVE	RAGE				
$108 \pm 25 \pm 44$	60	$^{ m 1}$ ABLIKIM	05L	BES2	$J/\psi \rightarrow K^+K^-\pi^+\pi^-\gamma$
$82 \pm 28 \pm 27$	14	¹ BISELLO	91	DM2	$e^+e^- \rightarrow \gamma K^+K^-\pi^+\pi^-$
90 ± 50	9	¹ BALTRUSAIT	86	MRK3	$J/\psi \rightarrow \eta_{c} \gamma$

¹ Taking into account interference with the non-resonant continuum.

² Neglecting interference with the non-resonant continuum.

 $^{^1}$ BALTRUSAITIS 86 has an error according to Partridge. 2 The quoted branching ratios use B(J/\psi(1S) \rightarrow \gamma \eta_c(1S)) = 0.0127 \pm 0.0036.

¹ The quoted branching ratios use B($J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)$) = 0.0127 \pm 0.0036. Where relevant, the error in this branching ratio is treated as a common systematic in computing averages.

$\Gamma(K^*(892)^0\overline{K}^*(892)^0\pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_5/Γ

113±47±25		45	$^{ m 1}$ ABLIKIM	06A	BES2	J/ψ \rightarrow	$K^{*0}\overline{K}^{*0}\pi^{+}$	$\pi^-\gamma$
			$[\Gamma(\eta_{c}(1S) \rightarrow$					
)] = (1.91 ± 0.6)					
best value	B(J/r)	ψ (1S) \rightarrow	$\gamma \eta_{\mathcal{C}}(1S)) = ($	1.7 ± 0	$.4) \times 10$	0^{-2} . Ou	r first error i	is their
experiment	's erro	or and our	second error is the	he syster	matic er	ror from ι	ısing our best	: value.

$\Gamma(\phi K^+ K^-)/\Gamma_{\text{total}}$

VALUE (units 10^{-4})

 Γ_6/Γ

VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
$2.9^{+0.9}_{-0.8}\pm1.1$	$14.1^{+4.4}_{-3.7}$	$^{ m 1}$ HUANG	03	BELL	$B^+ \rightarrow (\phi K^+ K^-) K^+$

 $^1\, {\rm Using~B}(B^+ \rightarrow~\eta_c\, K^+) = (1.25 \pm 0.12 ^{+0.10}_{-0.12}) \times 10^{-3}~{\rm from~FANG~03~and~B}(\eta_c \rightarrow 0.12 ^{+0.10}_{-0.12}) \times 10^{-3}$ $K\overline{K}\pi$) = $(5.5 \pm 1.7) \times 10^{-2}$.

 $\Gamma(\phi\phi)/\Gamma_{\text{total}}$ Γ_7/Γ

$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
17.5± 2.0 OUR F	=IT				
30 \pm 5 OUR A	WERAGE				
$25.3 \pm 5.1 \pm 9.1$	72	$^{ m 1}$ ABLIKIM	05L	BES2	$J/\psi \rightarrow K^+K^-K^+K^-\gamma$
26 ± 9	357 ± 64	1 BAI			$J/\psi \rightarrow \gamma K^+ K^- K^+ K^-$
$31~\pm~7~\pm10$	19	¹ BISELLO	91	DM2	$J/\psi \rightarrow \gamma K^+ K^- K^+ K^-$
$30 \begin{array}{cc} +18 \\ -12 \end{array} \pm 10$	5	¹ BISELLO	91	DM2	$J/\psi \rightarrow \gamma K^+ K^- K^0_S K^0_L$
$74 \pm 18 \pm 24$	80	¹ BAI	90 B	MRK3	$J/\psi \rightarrow \gamma K^+ K^- K^+ K^-$
67 ± 21 ± 24		¹ BAI			$J/\psi \rightarrow \gamma K^+ K^- K_S^0 K_I^0$

• • • We do not use the following data for averages, fits, limits, etc. • • •

18
$$^{+}_{-}^{~8}_{~6}$$
 \pm 7 $7.0^{+3.0}_{-2.3}$ 2 HUANG 03 BELL $B^{+}_{~} \rightarrow (\phi \phi)~K^{+}_{~}$

$\Gamma(\phi\phi)/\Gamma(K\overline{K}\pi)$

 Γ_7/Γ_{28}

Created: 5/30/2017 17:20

0.044 $^{+0.012}_{-0.010}$ OUR AVERAGE

0.055
$$\pm$$
0.014 \pm 0.005 AUBERT,B 04B BABR $B^{\pm} \rightarrow K^{\pm} \eta_{c}$ 0.032 $^{+0.014}_{-0.010}$ \pm 0.009 7 ¹ HUANG 03 BELL $B^{\pm} \rightarrow K^{\pm} \phi \phi$

 $^1\, {\rm Using~B}(B^+ \to~\eta_c\, K^+) = (1.25 \pm 0.12 ^{+0.10}_{-0.12}) \times 10^{-3}~{\rm from~FANG~03~and~B}(\eta_c \to 0.12 ^{+0.10}_{-0.12}) \times 10^{-3}$ $K\overline{K}\pi$) = $(5.5 \pm 1.7) \times 10^{-2}$.

¹ The quoted branching ratios use B($J/\psi(1S) \rightarrow \gamma \eta_{\mathcal{C}}(1S)$) = 0.0127 \pm 0.0036. Where relevant, the error in this branching ratio is treated as a common systematic in computing

 $^{^2\, {\}rm Using~B}(B^+ \to~\eta_c\, K^+) = (1.25 \pm 0.12^{+0.10}_{-0.12}) \times 10^{-3}$ from FANG 03 and B($\eta_c \to 0.12^{+0.10}_{-0.12}$ $K\overline{K}\pi$) = $(5.5 \pm 1.7) \times 10^{-2}$.

$\Gamma(\phi 2(\pi^+\pi^-))$					Γ ₈ /Γ
<i>VALUE</i> (units 10 ⁻⁴) <40	90	DOCUMENT ID ABLIKIM			+ ->.
¹ ABLIKIM 06A	reports $[\Gamma(\eta_c($	$1S) ightarrow \phi 2(\pi^+\pi^-))$ /livide by our best value	$/\Gamma_{total}] \times$	$[B(J/\psi(1S) ightarrow c$	$\gamma \eta_c(1S))$
$\Gamma(a_0(980)\pi)/\Gamma$	total				Г9/Г
	<u>CL%</u>	DOCUMENT ID	TECN	_ <u>COMMENT</u>	
<0.02		1,2 BALTRUSAIT			_
¹ The quoted br ² We are assumi		use B($J/\psi(1S) \rightarrow \gamma$ $\rightarrow \eta \pi$) >0.5.	$\gamma \eta_{\mathcal{C}}(1S)) =$	= 0.0127 ± 0.003	6.
$\Gamma(a_2(1320)\pi)/$	Γ _{total}				Γ ₁₀ /Γ
		DOCUMENT ID			
<0.02	90	¹ BALTRUSAIT8		-	
$^{ m 1}$ The quoted br	ranching ratios	use B $(J/\psi(1S) ightarrow \gamma$	$\gamma \eta_{c}(1S)) =$	= 0.0127 ± 0.003	6.
$\Gamma(K^*(892)\overline{K} +$	c.c.)/ Γ_{total}				Γ_{11}/Γ
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	
<0.0128	90	BISELLO	91 DM2	$J/\psi \rightarrow \gamma K_S^0$	$K^{\pm}\pi^{\mp}$
< 0.0132	90	¹ BISELLO	91 DM2	$J/\psi \rightarrow \gamma K^+$	$K^-\pi^0$
$^{ m 1}$ The quoted br	ranching ratios	use B $(J/\psi(1S) ightarrow \gamma$	$\gamma \eta_{C}(1S)) =$	= 0.0127 ± 0.003	6.
$\Gamma(f_2(1270)\eta)/\Gamma$	- total				Γ_{12}/Γ
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	,
<0.011	90	¹ BALTRUSAIT&	86 MRK3	$3 J/\psi \rightarrow \eta_c \gamma$	
$^{ m 1}$ The quoted br	ranching ratios	use B $(J/\psi(1S) ightarrow \gamma$	$\gamma \eta_c(1S)) =$	= 0.0127 ± 0.003	6.
$\Gamma(\omega\omega)/\Gamma_{ m total}$					Γ ₁₃ /Γ
			CN COMM		
•		LTRUSAIT86 MF			
	90 ¹ AB	LIKIM 05L BE SELLO 91 DN	ES2 J/ψ -	$\rightarrow \pi^{+}\pi^{-}\pi^{0}\pi^{+}$	$\pi^-\pi^0\gamma$
¹ The quoted br relevant, the e averages.	ranching ratios rror in this brar	use $B(J/\psi(1S) o \gamma)$ aching ratio is treated	$\gamma \eta_{c}(1S)) =$ as a commo	= 0.0127 ± 0.003 on systematic in c	66. Where computing
$\Gamma(\omega\phi)/\Gamma_{\text{total}}$	CL IV	DOCUMENT ID	TECN CO	A A A CALE	Γ ₁₄ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID	IECN CO	MMEN I	

<0.0017 90 ¹ ABLIKIM 05L BES2 $J/\psi \rightarrow \pi^+\pi^-\pi^0K^+K^-\gamma$ The quoted branching ratios use B($J/\psi(1S) \rightarrow \gamma \eta_c(1S)$) = 0.0127 ± 0.0036.

$\Gamma(f_2(1270)f_2(1270))$)))/Γ _{total}					Γ ₁₅ /Γ
VALUE (units 10 ⁻²)	EVTS	DOCUM	ENT ID	TECN	COMMENT	
0.98 ± 0.25 OUR FIT $0.77 {+} 0.25 {\pm} 0.17$	91.2 ± 19.8	¹ ABLIKI	М	04м BES	$J/\psi ightarrow \gamma 2$	$_{\pi}^{+}2\pi^{-}$
1 ABLIKIM 04M re $\gamma\eta_{\mathcal{C}}(1S))]=(1.3$ $\gamma\eta_{\mathcal{C}}(1S))=(1.7$ second error is the	$\pm 0.3^{+0.3}_{-0.4}) \times 10^{-2}$ $\pm 0.4) \times 10^{-2}$	10^{-4} which 2 . Our firs	we divi t error i	de by our b is their exp	best value $B(J/$	ψ (15) $ ightarrow$
$\Gamma(f_0(980)\eta)/\Gamma_{\text{tota}}$	ı	NT ID			Τ	Γ ₁₇ /Γ
seen	LEES				nal. of $\eta_{m{c}} ightarrow I$	$\kappa^+ \kappa^- \eta$
$\Gamma(f_0(1500)\eta)/\Gamma_{\text{tot}}$ VALUE seen		NT ID	<u>TECN</u>	<u>COMMEN</u>		Γ ₁₈ /Γ
$\Gamma(f_0(2200)\eta)/\Gamma_{\text{tot}}$ VALUE seen		NT ID	<u>TECN</u>	<u>COMMEN</u>		Γ ₁₉ /Γ
$\Gamma(a_0(980)\pi)/\Gamma_{\text{tota}}$	al <u>DOCUMENT</u>			COMMENT		Γ ₂₀ /Γ
seen $\Gamma(a_0(1320)\pi)/\Gamma_{to}$		14E			I. of $\eta_{ extsf{C}} ightarrow extsf{K}^{-1}$	+ _Κ - _π 0 Γ ₂₁ /Γ
seen	LEES				I. of $\eta_{\it c} ightarrow {\it K}^{-}$	$+ \kappa - \pi^{0}$
$\Gamma(a_0(1450)\pi)/\Gamma_{to}$				COMMENT		Γ ₂₂ /Γ
seen	LEES				I. of $\eta_{\it c} ightarrow {\it K}^{2}$	$+\kappa^-\pi^0$
$\Gamma(a_0(1950)\pi)/\Gamma_{to}$		<i>OCUMENT IL</i> EES				Γ ₂₃ /Γ
seen				BABR γ	$\gamma ightarrow \eta_{C}(1S)$ -	$\rightarrow K\overline{K}\pi$
1 From a model-ind $\Gamma(a_2(1950)\pi)/\Gamma_{to}$ VALUE	tal		ysis.			Γ ₂₄ /Γ
not seen	12k ¹ L	EES	16A	BABR γ	$\gamma ightarrow \eta_{c}(1S) - \eta_{c}(1S)$	$\rightarrow K\overline{K}\pi$
¹ From a model-ind						

¹ From a model-independent partial wave analysis assuming the existence of a hypothetical tensor isovector $a_2(1950)$.

$\Gamma(K_0^*(1430))$	$\overline{K})/\Gamma_{total}$				Γ ₂₅ /Γ
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
seen	12k	¹ LEES	16A	BABR	$\gamma \gamma \rightarrow \ \eta_{C}(1S) \rightarrow \ K \overline{K} \pi$
seen		LEES	14E	BABR	Dalitz anal. of $\eta_{\mathcal{C}} ightarrow$
					$\kappa^{+} \kappa^{-} n/\pi^{0}$

¹ From a model-independant partial wave analysis.

$\Gamma(K_2^*(1430)\overline{K})$	$/\Gamma_{total}$					Γ ₂₆ /Γ
VALUE	_	DOCUMENT ID		TEC	N <u>CON</u>	1MENT
seen		LEES	14E	BAE	3R Dali	itz anal. of $\eta_{c} ightarrow \ \mathit{K}^{+} \mathit{K}^{-} \pi^{0}$
$\Gamma(K_0^*(1950)\overline{K})$	/Γ _{total}					Γ ₂₇ /Γ
VALUE	EVTS	<u>DOCUMEN</u>	T ID		TECN	COMMENT
seen	12K	$^{ m 1}$ LEES		16A	BABR	$\gamma \gamma \rightarrow \ \eta_{C}(1S) \rightarrow \ K \overline{K} \pi$
seen		LEES		14E	BABR	Dalitz anal. of $\eta_{\it C}$ $ ightarrow$
						$\kappa + \kappa - n/\pi 0$

¹ From a Dalitz plot analysis using an isobar model.

 $\Gamma(K\overline{K}\pi)/\Gamma_{\text{total}}$

 Γ_{28}/Γ

•	// 1014.					
<i>VALUE</i> (ι	inits 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
7.3 ±	0.5 OUR FI	Т				
6.5 ±	0.6 OUR AV	/ERAGE				
6.3 ±	1.3 ± 0.6	55	^{1,2} ABLIKIM	12N	BES3	$\psi(2S) \rightarrow \pi^0 \gamma K^+ K^- \pi^0$
$7.9~\pm$	1.4 ± 0.7	107	^{3,4} ABLIKIM	12N	BES3	$\psi(2S) \rightarrow \pi^0 \gamma K_S^0 K^{\mp} \pi^{\pm}$
8.5 ±	1.8		⁵ AUBERT	06E	BABR	$B^{\pm} \rightarrow K^{\pm} X_{c} \overline{c}$
$5.1~\pm$	2.1	0.6k	⁶ BAI	04	BES	$J/\psi \rightarrow \gamma K^{\pm} \pi^{\mp} K_{S}^{0}$
$6.90\pm$	1.42 ± 1.32	33	⁶ BISELLO	91	DM2	$J/\psi \rightarrow \gamma K^{\pm} \pi^{\mp} K_{5}^{0}$ $J/\psi \rightarrow \gamma K^{+} K^{-} \pi^{0}$
$5.43\pm$	0.94 ± 0.94	68	⁶ BISELLO	91	DM2	$J/\psi \rightarrow \gamma K^{\pm} \pi^{\mp} K_{S}^{0}$
4.8 ±	1.7	95	^{6,7} BALTRUSAIT.	86	MRK3	$J/\psi \rightarrow \eta_{c} \gamma$
16.1 +	9.2 7.3		^{8,9} HIMEL	80 B	MRK2	$\psi(2S) \rightarrow \eta_C \gamma$

• • • We do not use the following data for averages, fits, limits, etc. • •

< 10.7 90% CL 6,10 PARTRIDGE 80B CBAL $J/\psi
ightarrow \eta_{
m C} \gamma$

¹ ABLIKIM 12N quotes $B(\psi(2S) \rightarrow \pi^0 h_c) \cdot B(h_c \rightarrow \gamma \eta_c) \cdot B(\eta_c \rightarrow K^+ K^- \pi^0) = (4.54 \pm 0.76 \pm 0.48) \times 10^{-6}$ which we multiply by 6 to account for isospin symmetry.

- ² ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \to K\overline{K}\pi)/\Gamma_{\text{total}}] \times [\Gamma(h_c(1P) \to \gamma\eta_c(1S))/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \pi^0 h_c(1P))/\Gamma_{\text{total}}] = (27.24 \pm 4.56 \pm 2.88) \times 10^{-6}$ which we divide by our best value $\Gamma(h_c(1P) \to \gamma\eta_c(1S))/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \pi^0 h_c(1P))/\Gamma_{\text{total}} = (4.3 \pm 0.4) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ³ ABLIKIM 12N quotes $B(\psi(2S) \to \pi^0 h_c) \cdot B(h_c \to \gamma\eta_c) \cdot B(\eta_c \to K_S^0 K^{\pm} \pi^{\mp}) = \frac{1}{2} (1.5) \times \frac{1}{2} (1.$
- ³ ABLIKIM 12N quotes $B(\psi(2S) \to \pi^0 h_c) \cdot B(h_c \to \gamma \eta_c) \cdot B(\eta_c \to K_S^0 K^{\pm} \pi^+) = (11.35 \pm 1.25 \pm 1.50) \times 10^{-6}$ which we multiply by 3 to account for isospin symmetry. ⁴ ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \to K\overline{K}\pi)/\Gamma_{total}] \times [\Gamma(h_c(1P) \to \gamma \eta_c(1S))/\Gamma_{total} \times \Gamma(\psi(2S) \to \pi^0 h_c(1P))/\Gamma_{total}] = (34.05 \pm 3.75 \pm 4.50) \times 10^{-6}$ which we divide by our best value $\Gamma(h_c(1P) \to \gamma \eta_c(1S))/\Gamma_{total} \times \Gamma(\psi(2S) \to \pi^0 h_c(1P))/\Gamma_{total} = (4.3 \pm 0.4) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

```
<sup>5</sup> Determined from the ratio of B(B^\pm\to K^\pm\eta_c) B(\eta_c\to K\overline{K}\pi) = (7.4 \pm 0.5 \pm 0.7) \times 10<sup>-5</sup> reported in AUBERT,B 04B and B(B^\pm\to K^\pm\eta_c) = (8.7 \pm 1.5) \times 10<sup>-3</sup> reported in AUBERT 06E.
```

$\Gamma(\phi K^+ K^-)/\Gamma(K \overline{K} \pi)$

 Γ_6/Γ_{28}

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
$0.052^{+0.016}_{-0.014}\pm0.014$	7	¹ HUANG	03	BELL	$B^{\pm} \rightarrow K^{\pm} \phi \phi$

 $^{^{1}}$ Using B($B^{+}\to \eta_{c}\,K^{+})=(1.25\pm0.12^{+0.10}_{-0.12})\times10^{-3}$ from FANG 03 and B($\eta_{c}\to K\overline{K}\pi)=(5.5\pm1.7)\times10^{-2}$.

$\Gamma(K\overline{K}\eta)/\Gamma_{\text{total}}$

 Γ_{29}/Γ

 \underline{VALUE} (units 10^{-2}) $\underline{CL\%}$ \underline{EVTS} $\underline{DOCUMENT\ ID}$ \underline{TECN} $\underline{COMMENT}$

1.35±0.16 OUR FIT

1.0 \pm **0.5** \pm **0.2** 7 1,2 ABLIKIM

12N BES3 $\psi(2S) \rightarrow \pi^0 \gamma \eta K^+ K^-$

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

<3.1 90 BALTRUSAIT...86 MRK3 $J/\psi \rightarrow \eta_{c} \gamma$

$\Gamma(K\overline{K}\eta)/\Gamma(K\overline{K}\pi)$

 Γ_{29}/Γ_{28}

VALUE DOCUMENT ID TECN COMMENT

0.186 \pm 0.018 OUR FIT

0.190 \pm 0.008 \pm 0.017

5.4k

1 LEES

14E BABR $\gamma\gamma \rightarrow K^+K^-\eta/\pi^0$

$\Gamma(\eta\pi^+\pi^-)/\Gamma_{\rm total}$

 Γ_{30}/Γ

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID	TECN	COMMENT
$1.7 \pm 0.4 \pm 0.1$	33	¹ ABLIKIM 12N	BES3	$\psi(2S) \rightarrow \pi^0 \gamma \eta \pi^+ \pi^-$
\bullet \bullet We do not use the	ne followi	ng data for averages, fit	s, limits,	etc. • • •
5.4 ± 2.0	75	² BALTRUSAIT86		
$3.7 \pm 1.3 \pm 2.0$	18	² PARTRIDGE 80E	CBAL	$J/\psi \rightarrow \eta \pi^+ \pi^- \gamma$

⁶ The quoted branching ratios use B($J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)$) = 0.0127 \pm 0.0036. Where relevant, the error in this branching ratio is treated as a common systematic in computing averages.

⁷ Average from $K^+K^-\pi^0$ and $K^\pm K^0_S\pi^\mp$ decay channels.

 $^{{}^{8}}K^{\pm}K^{0}_{S}\pi^{\mp}$ corrected to $K\overline{K}\pi$ by factor 3. KS, MR.

⁹ Estimated using B($\psi(2S) \rightarrow \gamma \eta_{\mathcal{C}}(1S)$) = 0.0028 \pm 0.0006.

 $^{^{10}\,\}mathrm{K}^{+}\,\mathrm{K}^{-}\,\pi^{0}$ corrected to $^{K}\,\overline{\mathrm{K}}\,\pi$ by factor 6. KS, MR

 $^{^1}$ ABLIKIM 12N quotes B($\psi(2S)\to \pi^0\,h_c)\cdot {\rm B}(h_c\to \gamma\eta_c)\cdot {\rm B}(\eta_c\to K^+K^-\eta)=(2.11\pm 1.01\pm 0.32)\times 10^{-6}$ which we multiply by 2 to account for isospin symmetry.

² ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \to K\overline{K}\eta)/\Gamma_{\text{total}}] \times [B(\psi(2S) \to \pi^0 h_c(1P))] \times [B(h_c(1P) \to \gamma \eta_c(1S))] = (4.22 \pm 2.02 \pm 0.64) \times 10^{-6}$ which we divide by our best values $B(\psi(2S) \to \pi^0 h_c(1P)) = (8.6 \pm 1.3) \times 10^{-4}$, $B(h_c(1P) \to \gamma \eta_c(1S)) = (51 \pm 6) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

³ The quoted branching ratios use B($J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)$) = 0.0127 \pm 0.0036.

 $^{^1}$ LEES 14E reports B($\eta_{\it C}(1S)\to K^+K^-\eta)/{\rm B}(\eta_{\it C}(1S)\to K^+K^-\pi^0)=0.571\pm0.025\pm0.051,$ which we divide by 3 to account for isospin symmetry. It uses both $\eta\to\gamma\gamma$ and $\eta\to\pi^+\pi^-\pi^0$ decays.

 1 ABLIKIM 12N reports $[\Gamma(\eta_{c}(1S) \rightarrow \eta \pi^{+} \pi^{-})/\Gamma_{\rm total}] \times [\Gamma(h_{c}(1P) \rightarrow \gamma \eta_{c}(1S))/\Gamma_{\rm total} \times \Gamma(\psi(2S) \rightarrow \pi^{0} \, h_{c}(1P))/\Gamma_{\rm total}] = (7.22 \pm 1.47 \pm 1.11) \times 10^{-6}$ which we divide by our best value $\Gamma(h_{c}(1P) \rightarrow \gamma \eta_{c}(1S))/\Gamma_{\rm total} \times \Gamma(\psi(2S) \rightarrow \pi^{0} \, h_{c}(1P))/\Gamma_{\rm total} = (4.3 \pm 0.4) \times 10^{-4}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

² The quoted branching ratios use B($J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)$) = 0.0127 \pm 0.0036. Where relevant, the error in this branching ratio is treated as a common systematic in computing averages.

$$\Gamma(\eta 2(\pi^+\pi^-))/\Gamma_{\text{total}}$$

 Γ_{31}/Γ

VALUE (units 10^{-2})EVTSDOCUMENT IDTECNCOMMENT4.4±1.2±0.439 1 ABLIKIM12NBES3 $\psi(2S) \rightarrow \pi^{0} \gamma \eta 2(\pi^{+}\pi^{-})$

 1 ABLIKIM 12N reports $[\Gamma(\eta_{\mathcal{C}}(1S)\to \eta 2(\pi^+\pi^-))/\Gamma_{\text{total}}]\times [\Gamma(h_{\mathcal{C}}(1P)\to \gamma\eta_{\mathcal{C}}(1S))/\Gamma_{\text{total}}\times \Gamma(\psi(2S)\to \pi^0\,h_{\mathcal{C}}(1P))/\Gamma_{\text{total}}]=(19.17\pm3.77\pm3.72)\times 10^{-6}$ which we divide by our best value $\Gamma(h_{\mathcal{C}}(1P)\to \gamma\eta_{\mathcal{C}}(1S))/\Gamma_{\text{total}}\times \Gamma(\psi(2S)\to \pi^0\,h_{\mathcal{C}}(1P))/\Gamma_{\text{total}}=(4.3\pm0.4)\times 10^{-4}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(K^+K^-\pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{32}/Γ

VALUE (units 10⁻³) EVTS DOCUMENT ID TECN COMMENT

6.9± 1.1 OUR FIT 11.2± 1.9 OUR AVERAGE

9.7 \pm 2.2 \pm 0.9 38 1 ABLIKIM 12N BES3 $\psi(2S) \rightarrow \pi^{0} \gamma K^{+} K^{-} \pi^{+} \pi^{-}$ 12 \pm 4 0.4k 2 BAI 04 BES $J/\psi \rightarrow \gamma K^{+} K^{-} \pi^{+} \pi^{-}$ 21 \pm 7 110 2 BALTRUSAIT...86 MRK3 $J/\psi \rightarrow \eta_{c} \gamma$

14 $^{+22}_{-9}$ 3 HIMEL 80B MRK2 $\psi(2S) \rightarrow \eta_c \gamma$

¹ ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \to K^+K^-\pi^+\pi^-)/\Gamma_{\rm total}] \times [\Gamma(h_c(1P) \to \gamma\eta_c(1S))/\Gamma_{\rm total} \times \Gamma(\psi(2S) \to \pi^0h_c(1P))/\Gamma_{\rm total}] = (4.16 \pm 0.76 \pm 0.59) \times 10^{-6}$ which we divide by our best value $\Gamma(h_c(1P) \to \gamma\eta_c(1S))/\Gamma_{\rm total} \times \Gamma(\psi(2S) \to \pi^0h_c(1P))/\Gamma_{\rm total} = (4.3 \pm 0.4) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² The quoted branching ratios use B($J/\psi(1S) \rightarrow \gamma \eta_c(1S)$) = 0.0127 \pm 0.0036. Where relevant, the error in this branching ratio is treated as a common systematic in computing averages.

$\Gamma(K^+K^-\pi^+\pi^-\pi^0)/\Gamma(K\overline{K}\pi)$

 Γ_{33}/Γ_{28}

VALUE EVTS DOCUMENT ID TECN COMMENT

0.477 \pm 0.017 \pm 0.070 11k 1 DEL-AMO-SA...11M BABR $\gamma \gamma \rightarrow K^+ K^- \pi^+ \pi^- \pi^0$

 1 We have multiplied the value of $\Gamma(K^+K^-\pi^+\pi^-\pi^0)/\Gamma(K^0_SK^\pm\pi^\mp)$ reported in DEL-AMO-SANCHEZ 11M by a factor 1/3 to obtain $\Gamma(K^+K^-\pi^+\pi^-\pi^0)/\Gamma(K\overline{K}\pi)$. Not independent from other measurements reported in DEL-AMO-SANCHEZ 11M.

$$\Gamma(K^0K^-\pi^+\pi^-\pi^++c.c.)/\Gamma_{\text{total}}$$

Г2л /Г

Created: 5/30/2017 17:20

VALUE (units 10^{-2})EVTSDOCUMENT IDTECNCOMMENT**5.6±1.4±0.5**43 1,2 ABLIKIM12NBES3 $\psi(2S) \rightarrow \pi^0 \gamma K_S^0 K^{\mp} \pi^{\mp} 2\pi^{\pm}$

³ Estimated using B($\psi(2S) \rightarrow \gamma \eta_{C}(1S)$) = 0.0028 \pm 0.0006.

```
^{1} ABLIKIM 12N quotes B(\psi(2S) 
ightarrow ~\pi^{0}~h_{c}) \cdot B(h_{c} 
ightarrow ~\gamma \eta_{c}) \cdot B(\eta_{c} 
ightarrow ~K_{S}^{0}~K^{-}~\pi^{-}~2\pi^{+})
  = (12.01 \pm 2.22 \pm 2.04) \times 10^{-6} which we multiply by 2 to take c.c. into account.
```

 2 ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow \ K^0 \ K^- \ \pi^+ \ \pi^- \ \pi^+ + \text{c.c.})/\Gamma_{ ext{total}}] \times [\Gamma(h_c(1P) \rightarrow \ K^0 \ K^- \ \pi^+ \ \pi^- \ \pi^+ + \text{c.c.})/\Gamma_{ ext{total}}]$ $\gamma \eta_c(1S))/\Gamma_{\sf total} \, imes \, \Gamma(\psi(2S)
ightarrow \, \pi^0 \, h_c(1P))/\Gamma_{\sf total}] = (24.02 \pm 4.44 \pm 4.08) imes 10^{-6}$ which we divide by our best value $\Gamma(h_c(1P) \to \gamma \eta_c(1S))/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma \eta_c(1S))$ $\pi^0\,h_c(1P))/\Gamma_{\rm total}=(4.3\pm0.4)\times10^{-4}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(K^+K^-2(\pi^+\pi^-))/\Gamma_{\text{total}}$

VALUE (units 10^{-3}) EVTS

 Γ_{35}/Γ

7.5 ± 2.4 OUR AVERAGE ¹ ABLIKIM $8 \pm 4 \pm 1$

DOCUMENT ID

12N BES3 $\psi(2S) \to \pi^0 \gamma K^+ K^- 2(\pi^+ \pi^-)$ 06A BES2 $J/\psi \to K^+ K^- 2(\pi^+ \pi^-) \gamma$ ² ABLIKIM $7.2 \pm 2.4 \pm 1.6$ 100

 $^{1}\text{ABLIKIM 12N reports } [\Gamma(\eta_{\mathcal{C}}(1S) \ \rightarrow \ K^{+} \ K^{-} \ 2(\pi^{+} \pi^{-}))/\Gamma_{\text{total}}] \ \times \ [\Gamma(h_{\mathcal{C}}(1P) \ \rightarrow \ K^{+} \ K^{-} \ 2(\pi^{+} \pi^{-}))/\Gamma_{\text{total}}]$ $\gamma \eta_{c}(1S))/\Gamma_{\mathsf{total}} \ \times \ \Gamma(\psi(2S) \to \ \pi^{0} \, h_{c}(1P))/\Gamma_{\mathsf{total}}] = (3.60 \pm 1.71 \pm 0.64) \times 10^{-6}$ which we divide by our best value $\Gamma(h_c(1P) \to \gamma \eta_c(1S))/\Gamma_{ ext{total}} \times \Gamma(\psi(2S) \to \eta_c(1S))$ $\pi^0\,h_c(1P))/\Gamma_{\rm total}=(4.3\pm0.4)\times10^{-4}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

 2 ABLIKIM 06A reports $[\Gamma(\eta_c(1S) \rightarrow K^+K^-2(\pi^+\pi^-))/\Gamma_{ ext{total}}] \times [B(J/\psi(1S) \rightarrow K^+K^-2(\pi^+\pi^-))/\Gamma_{ ext{total}}]$ $\gamma \eta_c(1S))] = (1.21 \pm 0.32 \pm 0.24) \times 10^{-4}$ which we divide by our best value B($J/\psi(1S) \rightarrow$ $\gamma \eta_c(1S) = (1.7 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(2(K^+K^-))/\Gamma_{\text{total}}$

 Γ_{36}/Γ

VALUE (units 10^{-3}) TECN COMMENT

1.46± 0.30 OUR FIT

12N BES3 $\psi(2S) \rightarrow \pi^0 \gamma 2(K^+ K^-)$ ¹ ABLIKIM $2.2 \pm 0.9 \pm 0.2$

• • • We do not use the following data for averages, fits, limits, etc. • •

$$1.4 \ ^{+}_{-} \ ^{0.5}_{0.4} \ \pm 0.6 \ 14.5 \ ^{+4.6}_{-3.0}$$
 $^{2}_{-3.0}$ HUANG 03 BELL $B^{+}_{-} \rightarrow 2(K^{+}K^{-}) \ K^{+}_{-}$ $^{2}_{-3.0} \ ^{3}_{-3.0}$ ALBRECHT 94H ARG $\gamma\gamma \rightarrow K^{+}K^{-}K^{+}K^{-}_{-1}$

¹ ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow 2(K^+K^-))/\Gamma_{\text{total}}] \times [\Gamma(h_c(1P) \rightarrow \gamma \eta_c(1S))/\Gamma_{\text{total}}]$ Γ_{total} \times $\Gamma(\psi(2S) \rightarrow \pi^0 h_c(1P))/\Gamma_{\mathrm{total}}] = (0.94 \pm 0.37 \pm 0.14) \times 10^{-6}$ which we divide by our best value $\Gamma(h_c(1P) \to \gamma \eta_c(1S))/\Gamma_{\mathsf{total}} \times \Gamma(\psi(2S) \to \pi^0 h_c(1P))/\Gamma_{\mathsf{total}}$ $\Gamma_{\text{total}} = (4.3 \pm 0.4) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 2 Using B($B^+ \rightarrow ~\eta_c \, K^+) = (1.25 \pm 0.12 ^{+0.10}_{-0.12}) \times 10^{-3}$ from FANG 03 and B($\eta_c \rightarrow$ $K\overline{K}\pi$) = $(5.5 \pm 1.7) \times 10^{-2}$.

 3 Normalized to the sum of B($\eta_{\it c}$ $~\rightarrow~$ ${\it K}^{\pm}\,{\it K}^0_{\it S}\,\pi^{\mp}$), B($\eta_{\it c}$ $~\rightarrow~$ $\phi\phi$), B($\eta_{\it c}$ $~\rightarrow~$ $K^+K^-\pi^+\pi^-$), and B($\eta_C \rightarrow 2\pi^+2\pi^-$).

 Γ_{36}/Γ_{28}

DOCUMENT ID TECN COMMENT 0.024 ± 0.007 OUR AVERAGE

04B BABR $B^{\pm} \rightarrow K^{\pm} \eta_{c}$ AUBERT,B $0.023 \pm 0.007 \pm 0.006$ $0.026^{\,+\,0.009}_{\,-\,0.007}\,{\pm}\,0.007$ BELL $B^{\pm} \rightarrow K^{\pm}(2K^{+}2K^{-})$ ¹ HUANG 15

HTTP://PDG.LBL.GOV

Page 17

 1 Using B($B^{+}\to ~\eta_{c}~K^{+})=(1.25\pm0.12^{+0.10}_{-0.12})\times10^{-3}$ from FANG 03 and B($\eta_{c}\to K\overline{K}\pi)=(5.5\pm1.7)\times10^{-2}.$

$\Gamma(\pi^+\pi^-\pi^0\pi^0)/\Gamma_{\rm total}$

 Γ_{37}/Γ

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT I	D	TECN	COMMENT
4.7±0.9±0.4	118	¹ ABLIKIM	12N	BES3	$\overline{\psi(2S)} \rightarrow \pi^0 \gamma \pi^+ \pi^- 2\pi^0$
1 4 DU UZUM 100	. [-/	(10) +	- 0 0/	/⊏	1[[(1.(1.0) (1.0))/

 1 ABLIKIM 12N reports $[\Gamma(\eta_{c}(1S)\to\pi^{+}\pi^{-}\pi^{0}\pi^{0})/\Gamma_{\rm total}]\times[\Gamma(h_{c}(1P)\to\gamma\eta_{c}(1S))/\Gamma_{\rm total}\times\Gamma(\psi(2S)\to\pi^{0}h_{c}(1P))/\Gamma_{\rm total}]=(20.31\pm2.20\pm3.33)\times10^{-6}$ which we divide by our best value $\Gamma(h_{c}(1P)\to\gamma\eta_{c}(1S))/\Gamma_{\rm total}\times\Gamma(\psi(2S)\to\pi^{0}h_{c}(1P))/\Gamma_{\rm total}=(4.3\pm0.4)\times10^{-4}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

TECN

$\Gamma(2(\pi^+\pi^-))/\Gamma_{\text{total}}$

0.97±0.12 OUR FIT

VALUE (units 10^{-2})

 Γ_{38}/Γ

1.35 ± 0.21 OUR A	VERAGE				
$1.74 \pm 0.32 \pm 0.15$	100	$^{ m 1}$ ABLIKIM			$\psi(2S) \to \pi^0 \gamma 2(\pi^+\pi^-)$
$1.0\ \pm0.5$	· · ·		04	BES	$J/\psi \rightarrow \gamma \ 2(\pi^+\pi^-)$
$1.05\!\pm\!0.17\!\pm\!0.34$					$J/\psi \rightarrow \gamma 2\pi^+ 2\pi^-$
1.3 ± 0.6	25	² BALTRUSAIT.	86	MRK3	$J/\psi \rightarrow \eta_{c} \gamma$
$2.0 \begin{array}{c} +1.5 \\ -1.0 \end{array}$		³ HIMEL	80 B	MRK2	$\psi(2S) \rightarrow \eta_{C} \gamma$

 1 ABLIKIM 12N reports $[\Gamma(\eta_{c}(1S)\rightarrow~2(\pi^{+}\pi^{-}))/\Gamma_{\rm total}]\times[\Gamma(h_{c}(1P)\rightarrow~\gamma\eta_{c}(1S))/\Gamma_{\rm total}~\times~\Gamma(\psi(2S)\rightarrow~\pi^{0}~h_{c}(1P))/\Gamma_{\rm total}]=(7.51\pm0.85\pm1.11)\times10^{-6}$ which we divide by our best value $\Gamma(h_{c}(1P)\rightarrow~\gamma\eta_{c}(1S))/\Gamma_{\rm total}~\times~\Gamma(\psi(2S)\rightarrow~\pi^{0}~h_{c}(1P))/\Gamma_{\rm total}=(4.3\pm0.4)\times10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(2(\pi^+\pi^-\pi^0))/\Gamma_{\text{total}}$

 Γ_{39}/Γ

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
17.4±2.9±1.5	175	¹ ABLIKIM	12N	BES3	$\overline{\psi(2S) \rightarrow \pi^0 \gamma 2(\pi^+\pi^-2\pi^0)}$

 $^{^1}$ ABLIKIM 12N reports $[\Gamma(\eta_c(1S)\to 2(\pi^+\pi^-\pi^0))/\Gamma_{\rm total}]\times [\Gamma(h_c(1P)\to\gamma\eta_c(1S))/\Gamma_{\rm total}\times\Gamma(\psi(2S)\to\pi^0\,h_c(1P))/\Gamma_{\rm total}]=(75.13\pm7.42\pm9.99)\times10^{-6}$ which we divide by our best value $\Gamma(h_c(1P)\to\gamma\eta_c(1S))/\Gamma_{\rm total}\times\Gamma(\psi(2S)\to\pi^0\,h_c(1P))/\Gamma_{\rm total}=(4.3\pm0.4)\times10^{-4}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(3(\pi^+\pi^-))/\Gamma_{\text{total}}$

 Γ_{40}/Γ

VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
18 ±4 OUR AVER	AGE				
20 ± 5 ± 2	51	$^{ m 1}$ ABLIKIM	12N	BES3	$\psi(2S) \rightarrow \pi^0 \gamma 3(\pi^+\pi^-)$
$15.3 \pm 3.4 \pm 3.3$	479	² ABLIKIM	06A	BES2	$J/\psi \rightarrow 3(\pi^+\pi^-)\gamma$

² The quoted branching ratios use B($J/\psi(1S) \rightarrow \gamma \eta_{C}(1S)$) = 0.0127 \pm 0.0036. Where relevant, the error in this branching ratio is treated as a common systematic in computing averages.

³ Estimated using B($\psi(2S) \rightarrow \gamma \eta_c(1S)$) = 0.0028 \pm 0.0006.

```
<sup>1</sup> ABLIKIM 12N reports [\Gamma(\eta_c(1S) \to 3(\pi^+\pi^-))/\Gamma_{total}] \times [\Gamma(h_c(1P) \to \gamma\eta_c(1S))/\Gamma_{total} \times \Gamma(\psi(2S) \to \pi^0 h_c(1P))/\Gamma_{total}] = (8.82 \pm 1.57 \pm 1.59) \times 10^{-6} which we divide by our best value \Gamma(h_c(1P) \to \gamma\eta_c(1S))/\Gamma_{total} \times \Gamma(\psi(2S) \to \pi^0 h_c(1P))/\Gamma_{total} = (4.3 \pm 0.4) \times 10^{-4}. Our first error is their experiment's error and our second error is the systematic error (4.8)
```

² ABLIKIM 06A reports $[\Gamma(\eta_{c}(1S) \rightarrow 3(\pi^{+}\pi^{-}))/\Gamma_{\text{total}}] \times [B(J/\psi(1S) \rightarrow \gamma\eta_{c}(1S))] = (2.59 \pm 0.32 \pm 0.47) \times 10^{-4}$ which we divide by our best value $B(J/\psi(1S) \rightarrow \gamma\eta_{c}(1S)) = (1.7 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(p\overline{p})/\Gamma_{\text{total}}$ Γ_{41}/Γ

VAL	<i>UE</i> (unit	s 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT
15.0	0± 1.0	6 OUR FI	Т				
13.2	2± 2.	7 OUR AV					
15	\pm 5	± 1	15	¹ ABLIKIM			$\psi(2S) \rightarrow \pi^0 \gamma p \overline{p}$
15	\pm 6		213 ± 33	² BAI	04	BES	$J/\psi ightarrow \gamma p \overline{p}$
10	\pm 3	± 4	18	² BISELLO	91	DM2	$J/\psi ightarrow \gamma \rho \overline{ ho}$
11	\pm 6		23	² BALTRUSAIT	.86	MRK3	$J/\psi \rightarrow \eta_{c} \gamma$
29	$^{+29}_{-15}$			³ HIMEL	80 B	MRK2	$\psi(2S) \rightarrow \eta_C \gamma$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$14.8 + 2.0 + 1.7 \\ -2.4 - 1.8$$
 195 ⁴ WU 06 BELL $B^+ \rightarrow p \overline{p} K^+$

 $\Gamma(p\overline{p})/\Gamma(K\overline{K}\pi)$ Γ_{41}/Γ_{28}

0.0207±0.0021 OUR FIT

0.021
$$\pm$$
0.002 $\stackrel{+0.004}{-0.006}$ 195 1 WU 06 BELL $^{\pm} \rightarrow K^{\pm} p \overline{p}$

$\Gamma(p\overline{p})/\Gamma_{\text{total}} \times \Gamma(\phi\phi)/\Gamma_{\text{total}}$

 $\Gamma_{41}/\Gamma \times \Gamma_{7}/\Gamma$

VALUE (units 10 ⁻⁵)	DOCUMENT II	NT ID TI		COMMENT	
0.26±0.05 OUR FIT					
$4.0 \begin{array}{c} +3.5 \\ -3.2 \end{array}$	BAGLIN	89	SPEC	$\overline{p}p \rightarrow K^+K^-K^+K^-$	

HTTP://PDG.LBL.GOV

Page 19

¹ ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \to p\overline{p})/\Gamma_{\text{total}}] \times [\Gamma(h_c(1P) \to \gamma\eta_c(1S))/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \pi^0 h_c(1P))/\Gamma_{\text{total}}] = (0.65 \pm 0.19 \pm 0.10) \times 10^{-6}$ which we divide by our best value $\Gamma(h_c(1P) \to \gamma\eta_c(1S))/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \pi^0 h_c(1P))/\Gamma_{\text{total}} = (4.3 \pm 0.4) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² The quoted branching ratios use B($J/\psi(1S) \rightarrow \gamma \eta_{C}(1S)$) = 0.0127 \pm 0.0036. Where relevant, the error in this branching ratio is treated as a common systematic in computing averages.

³ Estimated using B($\psi(2S) \rightarrow \gamma \eta_c(1S)$) = 0.0028 \pm 0.0006.

 $^{^4}$ WU 06 reports $[\Gamma(\eta_c(1S)\to\rho\overline{p})/\Gamma_{\text{total}}]\times[B(B^+\to\eta_c\,K^+)]=(1.42\pm0.11^{+0.16}_{-0.20})\times10^{-6}$ which we divide by our best value $B(B^+\to\eta_c\,K^+)=(9.6\pm1.1)\times10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^{1}}$ Using B($B^{+}\to \eta_{c}\,K^{+})=(1.25\pm0.12^{+0.10}_{-0.12})\times10^{-3}$ from FANG 03 and B($\eta_{c}\to K\overline{K}\pi)=(5.5\pm1.7)\times10^{-2}.$

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update $\Gamma(p\overline{p}\pi^0)/\Gamma_{\text{total}}$ VALUE (units 10^{-2}) DOCUMENT IDTECNCOMMENTABLIKIM12NBES3 $\psi(2S) \rightarrow \pi^0 \gamma p \overline{p} \pi^0$ $^{
m 1}$ ABLIKIM $0.36 \pm 0.13 \pm 0.03$ ¹ ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow p\overline{p}\pi^0)/\Gamma_{\text{total}}] \times [\Gamma(h_c(1P) \rightarrow \gamma\eta_c(1S))/\Gamma_{\text{total}}]$ $\Gamma_{\rm total} \times \Gamma(\psi(2S) \to \pi^0 h_c(1P))/\Gamma_{\rm total}] = (1.53 \pm 0.49 \pm 0.23) \times 10^{-6}$ which we divide by our best value $\Gamma(h_c(1P) \to \gamma \eta_c(1S))/\Gamma_{\mathsf{total}} \times \Gamma(\psi(2S) \to \pi^0 h_c(1P))/\Gamma_{\mathsf{total}}$ $\Gamma_{total} = (4.3 \pm 0.4) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(\Lambda\overline{\Lambda})/\Gamma_{\text{total}}$ Γ_{43}/Γ VALUE (units 10^{-4}) CL% EVTSTECN COMMENT 10.9 ± 2.4 OUR FIT ¹ ABLIKIM 12B BES3 $11.7 \pm 2.3 \pm 2.6$ • • We do not use the following data for averages, fits, limits, etc. $9.9^{+2.7}_{-2.6}\pm 1.2$ 06 BELL $B^+ \rightarrow \Lambda \overline{\Lambda} K^+$ 2 WU 91 DM2 $e^+e^- \rightarrow \gamma \Lambda \overline{\Lambda}$ ³ BISELLO <20 ¹ ABLIKIM 12B reports $[\Gamma(\eta_c(1S) \rightarrow \Lambda \overline{\Lambda})/\Gamma_{\text{total}}] \times [B(J/\psi(1S) \rightarrow \gamma \eta_c(1S))] =$ $(0.198\pm0.021\pm0.032) imes10^{-4}$ which we divide by our best value B $(J/\psi(1S)$ ightarrow

 $\gamma \eta_{\rm C}(1S)) = (1.7 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 2 WU 06 reports $[\Gamma(\eta_c(1S) \rightarrow \Lambda \overline{\Lambda})/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(B^+ \rightarrow \eta_c K^+)] =$ $(0.95^{+0.25}_{-0.22}^{+0.08}) imes 10^{-6}$ which we divide by our best value B($B^+ o \eta_c K^+$) = $(9.6 \pm 1.1) imes 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 3 The quoted branching ratios use B $(J/\psi(1S)
ightarrow \gamma \eta_{c}(1S)) = 0.0127 \pm 0.0036$

 $\Gamma(\Lambda\overline{\Lambda})/\Gamma(p\overline{p})$ Γ_{43}/Γ_{41} TECN COMMENT $0.67^{+0.19}_{-0.16}\pm0.12$ 1_{WU} 06 BELL $B^+ \rightarrow p \overline{p} K^+$, $\Lambda \overline{\Lambda} K^+$

 $\Gamma(\Sigma^{+}\overline{\Sigma}^{-})/\Gamma_{\text{total}}$

VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT

2.1±0.3±0.5 112 1 ABLIKIM 13C BES3 $J/\psi \rightarrow \gamma p \overline{p} \pi^0 \pi^0$

 1 ABLIKIM 13C reports $[\Gamma\big(\eta_{\rm C}(1S)\to\ \Sigma^{+}\,\overline{\Sigma}^{-}\big)/\Gamma_{\rm total}]\times [{\rm B}(J/\psi(1S)\to\ \gamma\eta_{\rm C}(1S))]=(3.60\pm0.48\pm0.31)\times10^{-5}$ which we divide by our best value ${\rm B}(J/\psi(1S)\to\ \gamma\eta_{\rm C}(1S))$ $=(1.7\pm0.4)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\Xi^{-}\overline{\Xi}^{+})/\Gamma_{\text{total}}$

 $rac{DOCUMENT~ID}{1}$ ABLIKIM 13C BES3 $J/\psi
ightarrow \gamma \Lambda \overline{\Lambda} \pi^+ \pi^-$ VALUE (units 10^{-3})

 1 ABLIKIM 13C reports [$\Gamma(\eta_{\it C}(1S)\to \Xi^-\overline{\Xi}^+)/\Gamma_{\sf total}]\times [{\sf B}(J/\psi(1S)\to \gamma\eta_{\it C}(1S))]=(1.51\pm0.27\pm0.14)\times 10^{-5}$ which we divide by our best value ${\sf B}(J/\psi(1S)\to \gamma\eta_{\it C}(1S))$ $=(1.7\pm0.4)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

HTTP://PDG.LBL.GOV

Page 20

¹ Not independent from other $\eta_C \to \Lambda \overline{\Lambda}$, $p\overline{p}$ branching ratios reported by WU 06.

 $\Gamma(\pi^+\pi^-p\overline{p})/\Gamma_{\text{total}}$

 Γ_{46}/Γ

• • • We do not use the following data for averages, fits, limits, etc. • • •

<12 90

HIMEL

80B MRK2 ψ (2S) ightarrow $\eta_{C}\gamma$

 1 ABLIKIM 12N reports $[\Gamma(\eta_c(1S)\to \pi^+\pi^-p\overline{p})/\Gamma_{\rm total}]\times [\Gamma(h_c(1P)\to \gamma\eta_c(1S))/\Gamma_{\rm total}\times \Gamma(\psi(2S)\to \pi^0\,h_c(1P))/\Gamma_{\rm total}]=(2.30\pm0.65\pm0.36)\times 10^{-6}$ which we divide by our best value $\Gamma(h_c(1P)\to \gamma\eta_c(1S))/\Gamma_{\rm total}\times \Gamma(\psi(2S)\to \pi^0\,h_c(1P))/\Gamma_{\rm total}=(4.3\pm0.4)\times 10^{-4}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

- RADIATIVE DECAYS -

 $\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$

 Γ_{47}/Γ

VALUE (units 10^{-4}) CL% EVTS

DOCUMENT ID TECN COMMENT

1.59±0.13 OUR FIT

1.9 $^{+0.7}_{-0.6}$ OUR AVERAGE

 $2.7 \ \pm 0.8 \ \pm 0.6$

¹ ABLIKIM

13I BES3

 $1.4 \ ^{+0.7}_{-0.5} \ \pm 0.3$

 $1.2^{+2.8}_{-1.1}$

² ADAMS

08 CLEO $\psi(2S) \rightarrow \pi^+\pi^-J/\psi$

• • • We do not use the following data for averages, fits, limits, etc. • •

 $2.3 \begin{array}{c} +1.0 \\ -0.8 \end{array} \pm 0.3$

3 ³ WICHT

08 BELL $B^{\pm} \rightarrow \kappa^{\pm} \gamma \gamma$

 $2.80^{+0.67}_{-0.58}\pm1.0$

⁴ ARMSTRONG 95F E760 $\overline{p}p \rightarrow \gamma \gamma$

⁵ BISELLO

. DM2 $J/\psi
ightarrow \gamma \gamma \gamma$

< 9

⁴ BAGLIN

87B SPEC $\overline{p}p \rightarrow \gamma \gamma$

< 18

⁶ BLOOM

83 CBAL $J/\psi \rightarrow \eta_C \gamma$

Created: 5/30/2017 17:20

¹ ABLIKIM 13I reports $[\Gamma(\eta_c(1S) \to \gamma\gamma)/\Gamma_{\text{total}}] \times [B(J/\psi(1S) \to \gamma\eta_c(1S))] = (4.5 \pm 1.2 \pm 0.6) \times 10^{-6}$ which we divide by our best value $B(J/\psi(1S) \to \gamma\eta_c(1S)) = (1.7 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² ADAMS 08 reports $[\Gamma(\eta_c(1S) \rightarrow \gamma\gamma)/\Gamma_{total}] \times [B(J/\psi(1S) \rightarrow \gamma\eta_c(1S))] = (2.4^{+1.1}_{-0.8} \pm 0.3) \times 10^{-6}$ which we divide by our best value $B(J/\psi(1S) \rightarrow \gamma\eta_c(1S)) = (1.7 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³WICHT 08 reports $[\Gamma(\eta_c(1S) \rightarrow \gamma\gamma)/\Gamma_{\text{total}}] \times [B(B^+ \rightarrow \eta_c K^+)] = (2.2^{+0.9}_{-0.7}^{+0.4}) \times 10^{-7}$ which we divide by our best value $B(B^+ \rightarrow \eta_c K^+) = (9.6 \pm 1.1) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁴ Not independent from the values of the total and two-photon width quoted by the same experiment.

⁵ The quoted branching ratios use B($J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)$) = 0.0127 \pm 0.0036.

⁶ Using B $(J/\psi(1S) \to \gamma \eta_c(1S)) = 0.0127 \pm 0.0036$.

```
\Gamma(\gamma\gamma)/\Gamma(K\overline{K}\pi)
                                                                                                                                                                                                       \Gamma_{47}/\Gamma_{28}
VALUE (units 10^{-3})
2.19 ± 0.29 OUR FIT
3.2 \begin{array}{c} +1.3 \\ -1.0 \end{array} \begin{array}{c} +0.8 \\ -0.6 \end{array}
                                                                                                                                 08 BELL B^{\pm} \rightarrow K^{\pm} \gamma \gamma
                                                                                       <sup>1</sup> WICHT
                                                                    13
     ^1\, {\rm Using~B}(B^+ \to~\eta_{\it C}\, K^+) = (1.25 \pm 0.12^{+0.10}_{-0.12}) \times 10^{-3} from FANG 03 and B(\eta_{\it C} \to 0.12^{+0.10}_{-0.12}
          K\overline{K}\pi) = (5.5 \pm 1.7) \times 10^{-2}.
\Gamma(p\overline{p})/\Gamma_{\text{total}} \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                                                                                                   \Gamma_{41}/\Gamma \times \Gamma_{47}/\Gamma
VALUE (units 10^{-6})
                                                                                           DOCUMENT ID
                                                                                                                                                                  COMMENT
0.240 ± 0.024 OUR FIT
0.26 \pm0.05 OUR AVERAGE Error includes scale factor of 1.4.
0.224 {+\, 0.038 \atop -\, 0.037} \pm 0.020
                                                                 190
                                                                                           AMBROGIANI 03
                                                                                                                                               E835
                                                                                                                                                                   \overline{p}p \rightarrow \eta_C \rightarrow \gamma \gamma
0.336 ^{\,+\, 0.080}_{\,-\, 0.070}
                                                                                           ARMSTRONG 95F E760
0.68 \begin{array}{l} +0.42 \\ -0.31 \end{array}
                                                                                                                                  87B SPEC \overline{p}p \rightarrow \gamma \gamma
                                                                    12
                                                                                           BAGLIN
                                                        - Charge conjugation (C), Parity (P),

    Lepton family number (LF) violating modes -

\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}
                                                                                                                                                                                                             \Gamma_{48}/\Gamma
VALUE (units 10^{-5})
                                                               CL%
                                                                                       <sup>1</sup> ABLIKIM
                                                                                                                                  11G BES3 J/\psi \rightarrow \gamma \pi^+ \pi^-
                                                               90
  <11
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                                      <sup>2</sup> ABLIKIM
                                                                                                                                 06B BES2 J/\psi \rightarrow \pi^+\pi^-\gamma
                                                               90
      <sup>1</sup>ABLIKIM 11G reports [\Gamma(\eta_c(1S) \rightarrow \pi^+\pi^-)/\Gamma_{total}] \times [B(J/\psi(1S) \rightarrow \gamma\eta_c(1S))]
           < 1.82 \times 10^{-6} which we divide by our best value B(J/\psi(1S) 	o \gamma \eta_c(1S)) = 1.7 \times 10^{-2}.
     <sup>2</sup> ABLIKIM 06B reports [\Gamma(\eta_c(1S) \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}] \times [B(J/\psi(1S) \rightarrow \gamma\eta_c(1S))]
          < 1.1 \times 10^{-5} which we divide by our best value B(J/\psi(1S) \rightarrow \gamma \eta_c(1S)) = 1.7 \times 10^{-2}.
\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}}
                                                                                                                                                                                                            \Gamma_{49}/\Gamma
VALUE (units 10^{-5})
                                                                                       <sup>1</sup> ABLIKIM
                                                                                                                                  11G BES3 J/\psi \rightarrow \gamma \pi^0 \pi^0
  < 4
                                                               90
• • • We do not use the following data for averages, fits, limits, etc. • •
                                                                                                                                 06B BES2 J/\psi \rightarrow \pi^0 \pi^0 \gamma
                                                                                      <sup>2</sup> ABLIKIM
                                                               90
  <40
     ^{1}\, {\rm ABLIKIM} \ \ 11{\rm G} \ \ {\rm reports} \ \left[ \Gamma \big( \eta_{\it C}(1S) \ \rightarrow \ \ \pi^{0} \, \pi^{0} \big) / \Gamma_{\rm total} \right] \ \times \ \left[ {\rm B}({\it J}/\psi(1S) \ \rightarrow \ \ \gamma \, \eta_{\it C}(1S)) \right] \ < \ \ \gamma \, \eta_{\it C}(1S) \ \ > \ \ \gamma \, \eta_{\it C}(1S) \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ > \ \ >
          6.0 \times 10^{-7} which we divide by our best value B(J/\psi(1S) \rightarrow \gamma \eta_c(1S)) = 1.7 \times 10^{-2}.
     <sup>2</sup> ABLIKIM 06B reports [\Gamma(\eta_c(1S) \rightarrow \pi^0 \pi^0)/\Gamma_{\text{total}}] \times [B(J/\psi(1S) \rightarrow \gamma \eta_c(1S))] < T
         0.71 \times 10^{-5} which we divide by our best value B(J/\psi(1S) \rightarrow \gamma \eta_c(1S)) = 1.7 \times 10^{-2}.
\Gamma(K^+K^-)/\Gamma_{\text{total}}
                                                                                                                                                                                                            \Gamma_{50}/\Gamma
VALUE (units 10<sup>-5</sup>)
                                                                                                                                 06B BES2 J/\psi \rightarrow K^+K^-\gamma
  <60
     <sup>1</sup> ABLIKIM 06B reports [\Gamma(\eta_c(1S) \rightarrow K^+K^-)/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(J/\psi(1S) \rightarrow \gamma\eta_c(1S))]
          < 0.96 \times 10^{-5} which we divide by our best value B(J/\psi(1S) \rightarrow \gamma \eta_c(1S)) = 1.7 \times 10^{-2}.
HTTP://PDG.LBL.GOV
                                                                                                 Page 22
                                                                                                                                                 Created: 5/30/2017 17:20
```

 $\Gamma(K_S^0 K_S^0)/\Gamma_{\text{total}}$ Γ_{51}/Γ

VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT
<31	90	¹ ABLIKIM	06 B	BES2	$J/\psi \rightarrow K_S^0 K_S^0 \gamma$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

<32 90 2 UEHARA 13 BELL $\gamma\gamma \to \kappa_S^0 \kappa_S^0$ < 5.6 90 3 UEHARA 13 BELL $\gamma\gamma \to \kappa_S^0 \kappa_S^0$

$\eta_c(1S)$ REFERENCES

1.550	164	DD D00 01000F	15.1	(DADAD C)
LEES	16A	PR D93 012005	J.P. Lees <i>et al.</i>	(BABAR Collab.)
ANIACHINI	15BI	EPJ C75 311	R. Aaij <i>et al.</i>	(LHCb Collab.)
ANASHIN LEES	14 14E	PL B738 391	V.V. Anashin <i>et al.</i> J.P. Lees <i>et al.</i>	(KEDR Collab.)
-		PR D89 112004		(BABAR Collab.)
ABLIKIM	13C	PR D87 012003	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	13I 13	PR D87 032003	M. Ablikim <i>et al.</i> S. Uehara <i>et al.</i>	(BES III Collab.)
UEHARA	13 12B	PTEP 2013 123C01	M. Ablikim <i>et al.</i>	(BELLE Collab.)
ABLIKIM	12F	PR D86 032008 PRL 108 222002	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	12F 12N		M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM LIU	12N 12B	PR D86 092009 PRL 108 232001	Z.Q. Liu <i>et al.</i>	(BES III Collab.)
ZHANG	12B 12A	PR D86 052002	C.C. Zhang et al.	(BELLE Collab.)
ABLIKIM	12A 11G	PR D84 032002	M. Ablikim <i>et al.</i>	(BELLE Collab.) (BES III Collab.)
DEL-AMO-SA		PR D84 012004	P. del Amo Sanchez <i>et al.</i>	(BABAR Collab.)
VINOKUROVA		PL B706 139	A. Vinokurova et al.	(BELLE Collab.)
LEES	10	PR D81 052010	J.P. Lees et al.	(BABAR Collab.)
MITCHELL	09	PRL 102 011801	R.E. Mitchell <i>et al.</i>	(CLEO Collab.)
ADAMS	08	PRL 102 011801 PRL 101 101801	G.S. Adams <i>et al.</i>	(CLEO Collab.)
AUBERT		PR D78 012006	B. Aubert <i>et al.</i>	(BABAR Collab.)
UEHARA	08	EPJ C53 1	S. Uehara <i>et al.</i>	(BELLE Collab.)
WICHT	08	PL B662 323	J. Wicht <i>et al.</i>	(BELLE Collab.)
ABE	07	PRL 98 082001	K. Abe <i>et al.</i>	(BELLE Collab.)
ABLIKIM	06A	PL B633 19	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	06B	EPJ C45 337	M. Ablikim <i>et al.</i>	(BES Collab.)
AUBERT	06E	PRL 96 052002	B. Aubert <i>et al.</i>	(BABAR Collab.)
PDG	06	JP G33 1	WM. Yao et al.	(PDG Collab.)
WU	06	PRL 97 162003	CH. Wu et al.	(BELLE Collab.)
ABLIKIM	05L	PR D72 072005	M. Ablikim <i>et al.</i>	(BES Collab.)
KUO	05	PL B621 41	C.C. Kuo <i>et al.</i>	(BELLE Collab.)
ABE	04G	PR D70 071102	K. Abe <i>et al.</i>	(BELLE Collab.)
ABLIKIM	04M	PR D70 112008	M. Ablikim <i>et al.</i>	(BES Collab.)
ASNER	04	PRL 92 142001	D.M. Asner et al.	(CLEO Collab.)
AUBERT	04D	PRL 92 142002	B. Aubert et al.	(BABAR Collab.)
AUBERT,B	04B	PR D70 011101	B. Aubert et al.	(BABAR Collab.)
BAI	04	PL B578 16	J.Z. Bai et al.	(BES Collab.)
ABDALLAH	03J	EPJ C31 481	J. Abdallah et al.	(DELPHI Collab.)
AMBROGIANI	03	PL B566 45	M. Ambrogiani et al.	(FNÀL E835 Collab.)
BAI	03	PL B555 174	J.Z. Bai <i>et al.</i>	` (BES Collab.)
FANG	03	PRL 90 071801	F. Fang et al.	(BÈLLE Collab.)
HUANG	03	PRL 91 241802	HC. Huang et al.	(BELLE Collab.)
ABE,K	02	PRL 89 142001	K. Abe <i>et al.</i>	(BELLE Collab.)
BAI	00F	PR D62 072001	J.Z. Bai <i>et al.</i>	(BES Collab.)
BRANDENB	00B	PRL 85 3095	G. Brandenburg et al.	(CLEO Collab.)
ACCIARRI	99T	PL B461 155	M. Acciarri et al.	(L3 Collab.)
BAI	99B	PR D60 072001	J.Z. Bai <i>et al.</i>	(BES Collab.)
ABREU	980	PL B441 479	P. Abreu <i>et al.</i>	(DELPHI Collab.)
SHIRAI	98	PL B424 405	M. Shirai <i>et al.</i>	(AMY Collab.)
ARMSTRONG		PR D52 4839	T.A. Armstrong et al.	(FNAL, FERR, GENO+)
ALBRECHT	94H	PL B338 390	H. Albrecht <i>et al.</i>	(ARGUS Collab.)

 $^{^{1}\}text{ABLIKIM 06B reports } [\Gamma(\eta_{c}(1S) \rightarrow K_{S}^{0}K_{S}^{0})/\Gamma_{\text{total}}] \times [\mathrm{B}(J/\psi(1S) \rightarrow \gamma\eta_{c}(1S))] \\ < 0.53\times10^{-5} \text{ which we divide by our best value } \mathrm{B}(J/\psi(1S) \rightarrow \gamma\eta_{c}(1S)) = 1.7\times10^{-2}.$

² Taking into account interference with the non-resonant continuum.

³ Neglecting interference with the non-resonant continuum.