

A System for measuring Temperature dependent Surface Photovoltage by Timo Bretten

Radboud Universiteit Nijmegen

M.Sc. Final Presentation December 10th 2015

Introduction
Theory
The Systems
Experimental: CPD
Experimental: SPV
Discussion & Conclusion

Outline

Introduction

Theory

The Systems

Experimental: CPD

Experimental: SPV

Discussion & Conclusion

Motivation

The goal of this project is to...

- Use a new experimental Kelvin Probe (KP) system
- Add illumination to 'new' KP
- Compare results from 'new' KP to established, 'old' KPs
 - → Does 'old' & 'new' Contact Potential Difference (CPD) agree?
 - → Does 'old' & 'new' Surface Photovoltage (SPV) agree?
- Ultimately measure temperature dependent Surface Photovoltage (SPV(T)) with the new system

Physical Causes of CPD

The CPD is the difference in local vacuum levels, here defined as:

$$\label{eq:cpd} \begin{split} \text{CPD} &\equiv \phi_{\text{Probe}} - \phi_{\text{Sample}}, \\ \text{where } \phi \text{ is Work function} \end{split}$$

Semiconductor-Metal:

[1]

Physical Causes of CPD

The CPD is the difference in local vacuum levels, here defined as:

$$\label{eq:cpd} \begin{split} \text{CPD} &\equiv \phi_{\text{Probe}} - \phi_{\text{Sample}}, \\ \text{where } \phi \text{ is Work function} \end{split}$$

Semiconductor-Metal:

[1

Physical Causes of CPD

The CPD is the difference in local vacuum levels, here defined as:

$$\label{eq:cpd} \begin{split} \text{CPD} &\equiv \phi_{\text{Probe}} - \phi_{\text{Sample}}, \\ \text{where } \phi \text{ is Work function} \end{split}$$

Semiconductor-Metal:

Measuring CPD: The Kelvin Probe (KP)

$$I(t) = \frac{dQ}{dt} = (CPD + V_b)\frac{dC}{dt}$$

$$I(t) = 0$$
 iff $V_b = -CPD$

Established, 'old' KP Systems

Ambient & Glovebox KPs

- Besocke KP head & controller
- Humidity controlled ambient
- Glovebox (< 5ppm O₂ & H₂O)
- Xenon lamp & VariAC (~80 W)
- Illumination is source of heat!

[2]

'New' System: Cryostat with a KP

Lakeshore Cryostat with Mc Allister KP & LED illumination

Checking against Established Systems

Behaviour at Room Temperature

'Jumps' probably due to movement of probe head Excellent agreement between systems

Temperature Dependent CPD in W:VO₂

Temperature Sweep and precise Measurement

Samples supplied by M. Nakano, RKIEN

Curious behaviour in the range 120 K to 160 K, far below T_{MI} Effect of substrate?

Intermission: Physical Causes of SPV

Checking against Established Systems

Behaviour at lower temperatures and SPV

20 nm Al on Si, oxidised by plasma

- ϕ_{Alumina} at 300 K: $(4.00 \pm 0.12) \, \text{eV}$
- ϕ_{Alumina} at 250 K: $(4.17 \pm 0.15) \, \text{eV}$

Probably no ice, even on very hydrophilic surface SPV \sim 12 % too low. Shadows on the sample?

Intermission: Choosing a Model System for SPV(T)

Metal Insulator (MI) Transition in VO₂

- metal at $T > T_{MI}$
- semiconductor at T < T_{MI}
- insulator at $T \ll T_{MI}$
- $T_{MI} \approx 270 \,\mathrm{K}$ [5] (W-doped)
- $\varphi \approx 5.15 \,\text{eV}$ [6]
- $\Delta \phi_{MI} \approx -0.15 \, \text{eV}$ [6]
- $\Delta \phi_{MI} \approx 0.45 \, \text{eV}$ [7] (W-doped)

Temperature Dependent SPV in W:VO₂

$ho(\mathsf{T})$ and $\mathsf{SPV}(\mathsf{T})$

Measurement by Nir Kedem

SPV identifies W:VO₂ as n-type material Appearance of SPV and Δ WF in accordance with resistivity and literature [5,6,7]

Discussion & Conclusion

We showed that...

- CPD is in excellent agreement with established systems
- SPV \sim 12 % too low. Shadowing?
- CPD(T) reproducible and interesting
- SPV(T) shows expected behaviour for model system
- \rightarrow Lakeshore + Mc Allister + LED is a viable system for SPV(T)

List of References

Literature and links

- [1] L. Kronik & Y. Shapira Surf. Sci. Rep., 37(1-5), 1999
- [2] Besocke Website
- [3] Lakeshore Website
- [4] LEDengin Website
- [5] C. Ko et al. ACS Appl. Mater. Interfaces, 3(9), 2011
- [6] K. Shibuya et al. Phys Rev. B, 82(20), 2010
 - 7] H. Yin et al. ACS Appl. Mater. Interfaces, 3(6), 2011
- [8] M. Nakano et al. Nature, 487(7408), 2012

Some Background...

...about my M.Sc. project

- Research carried out in 13/14 at The Weizmann Institute of Science
- Project had two parts: P(VDF) & SPV(T)
- Only part two was presented

Acknowledgements

Thanks! to...

Prof. David Cahen for his supervision

Dr. Hugo Meekes for his spontaneous support

Igal Levin for keeping me (somewhat) on track

Nir Kedem for always having an answer