Pattern Recognition Assignment

1.Objective

The purpose of this study is to perform a comparative analysis of multiple machine learning models on the **Wine Quality dataset** (red and white wine) to identify patterns and key predictors of wine quality. Both **classification** (quality as high/low) and **regression** (predicting exact quality score) tasks are included.

2. Dataset Description

• Source: UCI Machine Learning Repository – Wine Quality Dataset

• Size: ~6,500 records (red + white wine)

• Features: 11 physicochemical variables (alcohol, sulphates, citric acid, pH, etc.) + wine type

• Target Variables:

- Classification: Wine quality \rightarrow High (\geq 6), Low (\leq 6)
- *Regression:* Wine quality score (0–10)

```
Dataset shape: (6497, 13)
wine_type
white    4898
red    1599
Name: count, dtype: int64
```

3. Exploratory Data Analysis (EDA)

3.1 Distribution of Quality Scores

- White wine dominates dataset.
- Both red and white wines show more samples in medium quality range (5–6).

3.2 Correlation Heatmap

- **Alcohol** shows the strongest positive correlation with wine quality.
- Volatile acidity is negatively correlated.

3.3 Alcohol vs Quality

• Higher alcohol content generally corresponds to higher quality.

3.4 Alcohol Distribution

• Red and white wines show different alcohol distributions; whites tend to have higher alcohol content.

3.5 Pairplot

Alcohol and sulphates are promising features for distinguishing wine quality.

4. Classification Models

- Models trained: Logistic Regression, SVM, KNN
- Split: 70/30 (stratified), with standardization

Logistic Regression Accuracy: 0.742 Classification Report (Logistic Regression):									
	precision	recall	f1-score	support					
high	0.77	0.83	0.80	1234					
low	0.67	0.58	0.62	716					
accuracy			0.74	1950					
macro avg	0.72	0.71	0.71	1950					
weighted avg	0.74	0.74	0.74	1950					
	·		·	<u> </u>					

SVC:

SVC Accuracy: Classification):		
	precision	recall	f1-score	support
high	0.80	0.86	0.83	1234
low	0.72	0.64	0.68	716
accuracy			0.78	1950
macro avg	0.76	0.75	0.75	1950
weighted avg	0.77	0.78	0.77	1950

KNN:

KNN Accuracy: 0.750 Classification Report (KNN):								
	precision	recall	f1-score	support				
high	0.79	0.82	0.81	1234				
low	0.67	0.63	0.65	716				
accuracy			0.75	1950				
macro avg	0.73	0.72	0.73	1950				
weighted avg	0.75	0.75	0.75	1950				

5. Regression Models

• Models trained: Linear Regression, SVR

5.1 Results

```
Linear Regression -> MSE: 0.533, R2: 0.270
```

```
SVR -> MSE: 0.449, R2: 0.384
```


• Regression models capture trends but underperform due to non-linear relationships.

6. Conclusion

This study demonstrates the challenges of predicting wine quality using traditional machine learning models. While exploratory analysis confirmed that **alcohol content** and **volatile acidity** are the strongest indicators of wine quality, the predictive performance of baseline models remains modest:

- Classification models (Logistic Regression, SVM, KNN) achieved ~75% accuracy, reflecting the difficulty of distinguishing "high" vs "low" quality wines due to overlapping feature distributions and class imbalance.
- Regression models (Linear Regression, SVR) achieved $R^2 \approx 0.25-0.4$, indicating they capture only a small portion of the variance in wine quality scores.

Key Insights

- Alcohol content consistently shows a positive influence on higher quality ratings.
- **Volatile acidity** is negatively correlated with quality, reinforcing domain knowledge from winemaking.
- Simple linear models struggle because wine quality is influenced by **complex**, **nonlinear interactions** between chemical features.

Final Note

While baseline models provide useful insights, they are not sufficient for accurate quality prediction. Future improvements could include:

- Applying **ensemble methods** (Random Forest, Gradient Boosting, XGBoost) for better handling of nonlinearity.
- Feature engineering to capture interaction terms (e.g., alcohol × sulphates).
- Using **class balancing techniques** (SMOTE, weighted losses) to address label imbalance.

Overall, the study highlights that wine quality prediction is a **multifactorial**, **nonlinear problem** and that advanced machine learning methods will likely outperform the baseline models tested here.