| Name: |
|-------|
|-------|

### Chemistry 129.03 Spring 2011

# **General Chemistry**

#### Examination #2:

Equations, constants and periodic table are provided.

You may use a calculator.

# Show all your work!

| page 1:/13 |
|------------|
| page 2:/12 |
| page 3:/12 |
| page 4:/16 |
| page 5:/15 |
| page 6:/12 |
| page 7:/12 |
| page 8:/8  |
| Bonus:/2   |
|            |
| Total:/100 |

1. (10 pts.) Determine the oxidation numbers of each element in each reactant and product the following reaction:

$$PbS_{(s)} + 4 H2O2 (aq) \rightarrow PbSO4 (s) + 4 H2O_{(l)}$$

| Reactants |                  | Products                  |                  |  |
|-----------|------------------|---------------------------|------------------|--|
| Element   | Oxidation Number | Element                   | Oxidation Number |  |
| Pb        |                  | Pb                        |                  |  |
| S         |                  | S                         |                  |  |
| Н         |                  | Н                         |                  |  |
| О         |                  | O (in PbSO <sub>4</sub> ) |                  |  |
|           |                  | O (H <sub>2</sub> O)      |                  |  |

Identify the elements being reduced and oxidized.

| Oxidized |  |
|----------|--|
|          |  |
|          |  |

Reduced

2. (i) (3 pts) Make a sketch of the shape and orientation of the  $dz^2$  ,  $p_x$  and s orbitals.

(ii) (3 pts.) Give the n, and l values and the number of orbitals for the **3d** subshell

(iii) (2 pts) How many electrons can have each of the following quantum numbers?

$$n = 2, l = 1, m_1 = 0$$

$$n = 5, 1 = 2, m_s = \frac{1}{2}$$

- 3. (7 pts) (i) Write the **full** electron configuration for **Se**.
  - (ii) Draw the orbital diagram showing number of valence electrons and unpaired electrons for Al.

- (iii) Identify the element with the following condensed electron configuration: [Ne]  $3s^2 3p^3$
- (iv) Arrange the following elements in order of increasing atomic radius: Cs, Ga, O, Tl, P, Ba.

(v) Arrange the following elements in order of increasing ionization energy: As, Sn, Sr, F, Ne.

4. (i) (10 pts) Consider the structure shown below. How many pi bonds are present? How many sigma bonds? What is the hybridization of **numbered** C, N, O and S atoms?



| pi bonds    | N <sub>1</sub> : | C <sub>1:</sub> | O <sub>1</sub> : |
|-------------|------------------|-----------------|------------------|
| sigma bonds | N <sub>2</sub> : | C <sub>2:</sub> | S <sub>1</sub> : |
|             |                  | C <sub>3:</sub> |                  |
|             |                  | C.:             |                  |

(ii) (2 pts.) Draw the Lewis structure of SF<sub>4</sub> and determine the hybridization of the central atom.

- 5. (12 pts.) Consider the Be<sub>2</sub><sup>+</sup> ion.
  - a. (9 pts) Draw its molecular orbital energy-level diagram. What is the electron configuration of Be<sub>2</sub>+?

b. (3 pts) Determine its bond order. Is Be<sub>2</sub><sup>+</sup> paramagnetic or diamagnetic? Will Be<sub>2</sub><sup>+</sup> be stable?

6. (4 pts.) Choose the correct expression for  $K_C$  for the following reaction. Is the equilibrium heterogeneous or homogeneous?

$$4 \text{ CuO}_{(s)} + \text{CH}_{4 (g)} \quad \leftrightarrow \quad \text{CO}_{2 (g)} + 4 \text{ Cu}_{(s)} + 2 \text{ H}_2 \text{O}_{(g)}$$

a. 
$$K_C = \frac{\left[CH_4\right]}{\left[CO_2\right]\left[H_2O\right]^2}$$
, hom ogeneous

d. 
$$K_C = \frac{[CO_2][H_2O]^2}{[CH_4]}$$
, heterogeneous

b. 
$$K_C = \frac{[CO_2][Cu][H_2O]^2}{[CuO]^4[CH_4]}$$
, heterogeneous

e. 
$$K_C = \frac{\left[CO_2\right]\left[H_2O\right]^2}{\left[CuO\right]^4\left[CH_4\right]}$$
, heterogeneous

c. 
$$K_C = \frac{\left[CuO\right]^4 \left[CH_4\right]}{\left[CO_2\right] \left[Cu\right] \left[H_2O\right]^2}$$
, hom ogeneous

7. (15 pts.) Consider the following reaction.

$$CO_{(g)} + H_2O_{(g)} \leftrightarrow CO_{2(g)} + H_{2(g)}$$
  $K_C = 1.56$ 

a. (8 pts.)A reaction mixture at 900 K initially contains [CO] = 2.00 M and [ $H_2O$ ] = 2.00 M. Determine the equilibrium concentrations of CO,  $H_2O$ ,  $CO_2$ , and  $H_2$ .

- b. (3 pts.) What reaction is favored? Reverse (reactants) or forward (products)? Why?
- c. (4 pts.) Find  $K_P$  for this reaction.

8. (6 pts.) Find  $K_C$  for the following reaction:

$$2 \text{ NO}_{2(g)} \leftrightarrow \text{N}_{2(g)} + 2 \text{ O}_{2(g)} \qquad \text{K}_{\text{C}} = ?$$

Use the following data to find the unknown  $K_c$ .

$$^{1}/_{2} N_{2(g)} + ^{1}/_{2} O_{2(g)} \leftrightarrow NO_{(g)} K_{C} = 4.8 \times 10^{-10}$$

$$2 \text{ NO}_{(g)} + O_{2(g)} \leftrightarrow 2 \text{ NO}_{2(g)} \text{ } K_C = 9.1 \text{ x } 10^4$$

9. (6 pts) The following reaction is endothermic.

$$C_{(s)} + H_2O_{(g)} \leftrightarrow CO_{(g)} + H_2_{(g)}$$

Predict the effect (shift right, shift left, or no effect) of the following:

- a. Adding more H<sub>2</sub> to the reaction mixture -
- b. Removing some C from the reaction mixture -
- c. Increasing the temperature of the reaction mixture -
- d. Increasing the volume of the reaction mixture -
- e. Adding a catalyst to the reaction mixture -
- f. Removing some H<sub>2</sub>O from the reaction mixture -

10. (4 pts) Consider the following reaction at 400 K:

$$Br_{2(g)} + Cl_{2(g)} \leftrightarrow 2 BrCl_{(g)} \qquad K_C = 7.0$$

A closed vessel at 400K is charged with 1.00 M of  $Br_2$ , 1.00 M of  $Cl_2$ , and 2.00 M of BrCl. Use  $Q_C$  to determine which statement is true.

- a. The equilibrium concentrations of Br<sub>2</sub>, Cl<sub>2</sub>, and BrCl will be the same as the initial values.
- b. The equilibrium partial concentration of Br<sub>2</sub> will be greater than 1.00 M.
- c. The equilibrium partial concentration of BrCl will be greater than 2.00 M.
- d. The reaction will go to completion since there are equal amounts of Br<sub>2</sub> and Cl<sub>2</sub>.

11. (8 pts) In each equation label the acids, bases, conjugate acids, and conjugate bases.

(a) 
$$NH_3^+_{(aq)} + CN_{(aq)}^- \leftrightarrow NH_{3(aq)} + HCN_{(aq)}$$

(b) 
$$H_2O_{(1)} + HS_{(aq)} \leftrightarrow OH_{(aq)} + H_2S_{(aq)}$$

12. (i) (2 pts) If Ba(OH)<sub>2</sub> is added to water, how does the [H<sub>3</sub>O<sup>+</sup>] change? How does the pH change?

(ii) (6 pts) A commonly available window-cleaning solution has  $[OH^{-}] = 1.9 \times 10^{-6} M$ . Determine the  $[H_{3}O^{+}]$ , pH and pOH of this solution stored. Is the solution basic or acidic?

#### **Bonus:**

Class Attendance on March 18<sup>th</sup>. (2 pts.)

#### **Equations and Constants**

Kelvin = °C + 273.15   

$$K_{p} = K_{C}(RT)^{\Delta_{n}}$$
   
 $K_{w} = [H_{3}O^{+}][OH^{-}] = 1.0 \times 10^{-14} \text{ (at 25 °C)}$    
 $pH = -\log[H_{3}O^{+}]$    
 $pOH = -\log[OH^{-}]$    
 $pH + POH = 14.00 \text{ (at 25 °C)}$    
 $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$    
 $R = 0.0821 \frac{L.atm}{mol.K}$