

Fig. 3: **Probabilistic line fitting.** Given a set of training points we can fit a line model to them. For instance, in this example $\mathbf{l} \in \mathbb{R}^2$. Matrix perturbation theory enables us to compute the entire conditional density $p(\mathbf{l}|x)$ from where we can derive p(y|x). Training a regression tree involves minimizing the uncertainty of the prediction p(y|x). Therefore, the training objective is a function of σ_y^2 .

Finally the 3×3 line covariance matrix is

$$\Lambda_{\mathbf{l}} = \mathbf{J} \, \mathbf{S} \, \mathbf{J} \tag{1}$$

with the 3×3 Jacobian matrix

$$\mathbf{J} = -\sum_{k=2}^{3} \frac{\mathbf{u}_k \mathbf{u}_k^{\top}}{\lambda_k}$$

where λ_k denotes the k^{th} eigenvalues of the matrix M and \mathbf{u}_k its corresponding eigenvector. The 3×3 matrix S in (1) is

$$\mathtt{S} = \sum_{i=1}^n \left(\mathbf{a}_i^{ op} \mathbf{a}_i \mathbf{l}^{ op} \mathbf{\Lambda}_i \mathbf{l}
ight).$$

Therefore the distribution over \mathbf{l} remains completely defined. Now, given a set of (x, y) pairs we have found the maximum-likelihood line model $\mathcal{N}(\bar{\mathbf{l}}, \Lambda_l)$. However, what we want is the conditional distribution p(y|x) (see fig. 3) this is discussed next.