

SIMULAREA EXAMENULUI DE EVALUARE NAȚIONALĂ PENTRU ELEVII CLASEI a VIII-a 17 ianuarie 2023

Matematică

BAREM DE EVALUARE ȘI DE NOTARE

• Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I ȘI SUBIECTUL al II-lea:

- Se punctează doar rezultatul, astfel: pentru fiecare răspuns se acordă fie cinci puncte, fie zero puncte.
- Nu se acordă punctaje intermediare.

SUBIECTUL al III-lea

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.

SUBIECTUL I (30 de puncte)

1.	a)	5p
2.	c)	5p
3.	d)	5p
4.	b)	5p
5.	c)	5p
6.	a)	5p

SUBIECTUL al II-lea (30 de puncte)

1.	b)	5p
2.	c)	5p
3.	a)	5p
4.	c)	5p
5.	a)	5p
6.	d)	5p

SUBIECTUL al III-lea (30 de puncte)

1.	 a) 161:18=8 rest 17, 17≠5, deci nu este posibil ca numărul de elevi să fie egal cu 161. 	1p 1p
	b) $n=12c_1+5, n=18c_2+5, n=24c_3+5$, unde n este numărul de elevi \Rightarrow $n-5$ este multiplu comun al numerelor 12, 18 și 24 n este cuprins între 100 și 200, deci $n-5=144 \Rightarrow n=149$	1p 1p 1p
2.	a) $E(x) = 2x^2 - 5x + x^2 + 10x + 25 - x^2 - 4x - 4 - x^2 + 9 - 30 =$ = $x^2 + x$, pentru orice număr real x	1p 1p
	b) $E(n) = n^2 + n$, pentru orice număr natural n $E(n) = n(n+1)$, unde n și $n+1$ sunt numere consecutive, deci unul dintre ele este par $\Rightarrow E(n)$ este număr par.	1p 1p 1p

	-	
3.	a) $a = \frac{2\sqrt{6}}{4\sqrt{2} - 4\sqrt{2} + 12\sqrt{2}} \cdot \sqrt{3} =$	1p
	$=\frac{2\sqrt{6}}{12\sqrt{2}}\cdot\sqrt{3}=\frac{1}{2}$	1p
	b) $b = \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \frac{1}{4} - \frac{1}{5} = \frac{4}{5} \Rightarrow 2(a+b) = \frac{13}{5}$,	2p
	$2 < \frac{13}{5} < \sqrt{7} \Leftrightarrow \sqrt{100} < \sqrt{169} < \sqrt{175}$	1p
4.	a) Teorema lui Pitagora în $\triangle ABC$: $AB^2 + AC^2 = BC^2 \Rightarrow BC = 20 \text{ cm}$.	1p
	$P_{\Delta ABC} = 16 + 12 + 20 = 48 \text{ cm}.$	1p
	b) $\frac{AE}{AC} = \frac{AF}{AB}$ şi $\angle BAC = \angle FAE \Rightarrow \triangle ABC \sim \triangle AFE \Rightarrow \angle AEF = \angle ACB$ şi	1p
	$\Rightarrow \not \prec AFE = \not \prec ABC$	1p
	$\angle PAF = \angle ABC$ şi $\angle PAE = \angle ACB$ (au acelaşi complement) ⇒ $\triangle APF$, $\triangle APE$ sunt isoscele, deci $AP = FP = PE \Rightarrow P$ mijlocul segmentului EF .	1p
5.	a) Teorema lui Pitagora în $\triangle ABD$: $AB^2 + AD^2 = BD^2 \Rightarrow BD = 4\sqrt{3}$ cm	1p
5.		1p
	$A_{ABCD} = AB \cdot AD = 16\sqrt{3} \text{ cm}^2$	-14
	b) $\angle CBE = 45^{\circ} \Rightarrow \triangle CEB$ este isoscel $\Rightarrow CE = CB$,	
		1p
	$AD = \frac{DB}{2} \Rightarrow \angle ABD = 30^{\circ} \Rightarrow \triangle CBO \text{ este echilateral } \Rightarrow CO = CB \Rightarrow CE = CB = CO \Rightarrow$	
	$\angle EOC = \frac{180^{\circ} - 30^{\circ}}{2} = 75^{\circ},$	1p
	$\angle OPE = \angle CPB = 180^{\circ} - 60^{\circ} - 45^{\circ} = 75^{\circ}$, deci triunghiul <i>POE</i> este isoscel.	
		1p
6.	a) $BC = AB = 12 \text{ cm}$, triunghiul BCD este echilateral $\Rightarrow A_{\Delta BCD} = \frac{l^2 \sqrt{3}}{4}$	1p
	$A_{\Delta BCD} = \frac{12^2 \sqrt{3}}{4} \text{ cm}^2 = 36\sqrt{3} \text{ cm}^2$	1p
		1_
	b) MN este linie mijlocie în triunghiul $ACD \Rightarrow MN \parallel AD, AD \subset (AOD) \Rightarrow MN \parallel (AOD)$ O este centrul cercului circumscris triunghiului BCD , $OD \cap BC = \{R\}$, R mijlocul lui BC	1p
	\Rightarrow <i>P</i> mijlocul lui $RC \Rightarrow MP$ este linie mijlocie în triunghiul $RCD \Rightarrow$	1p
	$\Rightarrow MP \parallel DR, DR \subset (AOD) \Rightarrow MP \parallel (AOD), \text{ deci } (AOD) \parallel (MNP).$	1p
		1