Bernd Gruber Institute for Applied Ecology University of Canberra Australia	
<pre>0verview</pre>	
 Isolation by distance What is a landscape genetic analysis based on resistance layers and how does it work? 	
Cost distancesPartial mantel tests	
 The simulator A "good" differentiation measure Tutorial 	
I Isolation by distance	
 Pairwise genetic distances against pairwise geographic distances Based on individuals or subpopulations 	

Isolation by distance Pairwise genetic distances against pairwise geographic distances Based on individuals or subpopulations

Landscape genetic approach based on resistance values Pairwise genetic distances against pairwise geographic distances Based on individuals or subpopulations

How does a landscape genetic approach work? • Three pairwise distance matrices • G: Genetic Distance matrix • E: Euklidean Distance matrix • C: Least-Cost Path Distance Matrix • Is there a correlation between resid(G~E) ~ resid(C~E)? Partial Mantel Test

How does a landscape genetic approach work? Three pairwise distance matrices G. Genetic Distance matrix E. Euklidean Distance matrix C. Least-Cost Path Distance Matrix Is there a correlation between resid(G~E) ~ resid(C~E)? Partial Mantel Test Good for two reasons: we treat non independence using a bootstrap approach we correct for E

Cost distance algorithms

- Algorithm
 - Least-cost
 - Circuitscape [http://maps.tnc.org/migrations-in-motion/#3/19.00/-78.00]
 - rSPDistance ???

Cost distance algorithms

- Algorithm
 - Least-cost [a single path]
 - Circuitscape [summarises over all possible= commute] [http://maps.tnc.org/migrations-in-motion/#3/19.00/-78.00]

Cost distance algorithms

- Algorithm:
 - least-cost vs circuitscape vs SPDistance
- Next Neighbours, NN=4 vs NN=8
- Resistance values

Cost distance algorithms

- Algorithm: least cost vs circuitscape vs SPDistance
- Next Neighbours, NN=4 vs NN=8
- Resistance values
 - Additional data [telemetry]
 - Advocate strongly initial, simple hypothesis of strongly different non-correlating layers
 - though often "fishing for correlation" is done

Tutorial

Example [possums.gl]

```
> possums.gl
/// GENLIGHT OBJECT ///////
// 300 genotypes, 200 binary SNPs, size: 499 Kb 0 (0 %) missing data
// Basic content
@gen: list of 300 SNPbin
@ploidy: ploidy of each individual (range: 2-2)
// Optional content
@ind.names: 300 individual labels
@loc.names: 200 locus labels
@pop: population of each individual (group size range: 30-30)
@other: a list containing: xy latlong
```


Tutorial – Use your own data • Create a resistance layer • Download a map • "Draw" with R

Tutorial – Use your own data Create a resistance layer Download a map "Draw" with R Use image editor Run a landscape genetics analysis based on resistance layers.

A suitable genetic distance measure • Fst or other (D, Gst, G'st, Gst Hedrick and lots of others • SNPs are special markers • biallelic • How do we measure "being" different • Basically we have number of alleles and allele frequency per loci

A suitable genetic distance measure

- Diversity using q values
 - S (number of alleleles)
 - p (allele frequency)
 - ° q (o, 1, 2,....)

$${}^{q}H = \left(1 - \sum_{i=1}^{S} p_{i}^{q}\right) / (q-1).$$

A suitable genetic distance measure Diversity using q values q Halpha (between) o #alleles Soerensen, Jaccard # of possible arrangements (=Shannon) (=mutual information) heterozygosity (chance of choosing two different alleles) Jost-D (Fst, Gst)

A suitab	le genetic di	istance	
measure		${}^{q}H = \left(1 - \sum_{i=1}^{S} p_i^{q}\right) / \epsilon$	(q-1).
(the	rsity using q values higer the more influe mon alleles!!)	nced by more	
q	H alpha (within)	H beta (between)	Common alleles
О	# alleles	Soerensen, Jaccard	on
1	# of possible arrangements (=Shannon)	l (=mutual information)	alle
2	heterozygosity (chance of choosing two different alleles)	Jost-D (Fst, Gst)	les

A suitable genetic distance measure

- Change of diversity
- As before run a simulation over several generations on a resi
- Check efficiency of measures of diversity (partial mantel test) o

A suitable genetic distance measure

A suitable genetic distance measure

Tutorial:
https://github.com/green-striped-gecko/dartRworkshop
Dart_CBA_Tutorial_LandscapeGenetics.pdf