MATH 20510 Lecture 15

April 28, 2025

Definition 0.1. (Informal) A differential 1-form on \mathbb{R}^n is

- (i) An object which can be integrated on any curve in \mathbb{R}^n .
- (ii) A rule assigning a real number to every oriented line segment in \mathbb{R}^n in a "suitable" way.

Definition 0.2. Let $p \in \mathbb{R}^n$. The tangent space to \mathbb{R}^n at p is $T_p\mathbb{R}^n = \{(p, v) : v \in \mathbb{R}^n\}$.

Notation. If α is a 1-form, $p \in \mathbb{R}^n$, write α_p to denote the restriction of α to $T_p\mathbb{R}^n$.- $\alpha_p(v)$ is the value α assigns to the (oriented) line segment from p to p + v.

We require that α_p is a linear functional $\forall p \in \mathbb{R}^n$, that is

- (i) $\alpha_p(tv) = t \cdot \alpha_p(v), \forall t \in \mathbb{R}, \forall p, v \in \mathbb{R}^n$.
- (ii) $\alpha_p(v+w) = \alpha_p(v) + \alpha_p(w), \forall p, v, w \in \mathbb{R}^n$.

We denote the projection maps in \mathbb{R}^n by dx_1, \ldots, dx_n , where

$$dx_i(v) = dx_i(v_1, \dots, v_n) = v_i, \quad \forall i = 1, \dots, n$$

These form a basis for the set of linear functionals. Therefore, for any 1-form α , its restriction α_p can be written as

$$\alpha_p = A_1 dx_1 + A_2 dx_2 + \dots + A_n dx_n$$
$$= A_1(p) dx_1 + \dots + A_n(p) dx_n$$

Last requirement: $A_i(p)$ must be sufficiently continuous with respect to p.

Definition 0.3. A differential 1-form α on \mathbb{R}^n is a map from every tangent vector (p, v) in \mathbb{R}^n which can be expressed in the form

$$\alpha = f_1 dx_1 + \cdots + f_n dx_n$$

where $f_i: \mathbb{R}^n \to \mathbb{R}$ is C^2 .

Example 0.4.
$$\alpha = ydx + dz$$
 on \mathbb{R}^3 . Let $p = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and $v = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$. Then

$$\alpha((p,v)) = \alpha_p(v)$$

$$= f_1(p)dx_1(v) + f_2(p)dx_2(v) + f_3(p)dx_3(v)$$

$$= 2 \cdot 4 + 0 + 1 \cdot 6$$

$$= 14$$

Definition 0.5. A curve (1-surface) in \mathbb{R}^n is a C^1 -mapping $\gamma:[a,b]\to\mathbb{R}^n$.

Definition 0.6. Let $\alpha = f_1 dx_1 + \dots + f_n dx_n$ be a 1-form in \mathbb{R}^n and let $\gamma : [a, b] \to \mathbb{R}^n$ be C^1 .

$$\int_{\gamma} \alpha = \int_{a}^{b} (f_1(\gamma(t))\gamma_1'(t) + \dots + f_n(\gamma(t))\gamma_n'(t))dt$$

Example 0.7. $\alpha = x^2 dx_1 + dx_2$ on \mathbb{R}^2 . $\gamma(t) = (t, t^2), t \in [0, 1]$. Then $\gamma'_1(t) = 1, \gamma'_2(t) = 2t$.

$$\int_{\gamma} \alpha = \int_{0}^{1} (f_1(\gamma(t))\gamma_1'(t) + f_2(\gamma(t))\gamma_2'(t))$$
$$= \int_{a}^{b} (t^2 \cdot 1 + 1 \cdot 2t)dt$$
$$= \frac{4}{3}$$