Jointly Distributed Random Variables

Joint Distribution of Functions of Random Variables [Ross S6.7]

Let X and Y have joint pdf $f_{XY}(x, y)$.

In some examples we computed the distribution of Z = g(X, Y), e.g.

- in Example 23.2 we computed the cdf of $D = \sqrt{X^2 + Y^2}$ • in Example 23.3 we computed the pdf of Z = X/Y.

Now, consider

$$Y_2 = g_2(X_1, X_2) \label{eq:Y2}$$
 and we want the joint pdf of Y_1 and Y_2 .

 $Y_1 = g_1(X_1, X_2)$

We make the following assumptions on g_1 and g_2 :

• The system of equations

can be uniquely solved for
$$x_1$$
 and x_2 in terms of y_1 and y_2 :
$$x_1 = h_1(y_1,y_2)$$

 $x_2 = h_2(y_1, y_2).$

 $y_1 = g_1(x_1, x_2)$ $y_2 = g_2(x_1, x_2)$

ullet g_1 and g_2 have continuous partial derivates such that the determinant

$$J(x_1,x_2) = \left| \begin{array}{cc} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} \\ \frac{\partial g_2}{\partial x_1} & \frac{\partial g_2}{\partial x_2} \end{array} \right| = \frac{\partial g_1}{\partial x_1} \frac{\partial g_2}{\partial x_2} - \frac{\partial g_1}{\partial x_2} \frac{\partial g_2}{\partial x_1} \neq 0$$
 Under these conditions, the pdf of Y_1 and Y_2 can be shown to be:

 $f_{Y_1Y_2}(y_1, y_2) = f_{X_1X_2}(x_1, x_2) |J(x_1, x_2)|^{-1}$

where

$$x_1 = h_1(y_1, y_2)$$

 $x_2 = h_2(y_1, y_2).$

(29.1)

Example 29.1: Let

Find the joint pdf
$$f_{Y_1Y_2}(y_1, y_2)$$
 in terms of $f_{X_1X_2}(x_1, x_2)$. Solution:

 $Y_1 = X_1 + X_2$ $Y_2 = X_1 - X_2$

Consider the change of variables

tedious approach.

Find $f_{R\Theta}(r,\theta)$ in terms of $f_{XY}(x,y)$. [Hard]

Solution:

Solution:

Note: This is Problem T9.1; see also textbook Example 6.7b for a different

Example 29.2: Let R and Θ be two random variables with joint pdf $f_{R\Theta}(r,\theta)$.

 $X = R\cos\Theta$ $Y = R \sin \Theta$.