高度な整列処理1(クイックソート)

・より効果的な整列処理のため!!!

クイックソート

- 考案者 Charles A.R. Hoare 1960年提案
- 最も高速なソートアルゴリズムの一つ
- 分割統治法を応用:平均的には最も速いソート
- 再帰処理を使用することによって効率的で短いソースコ ードを実現可能

37

アルゴリズム論 ソート

分割のアルゴリズム

まずは、配列を二つのグループに分割する手順を考えます。

ここでは、下の図に示している配列 a から枢軸として 6 を選んで分割を行って いきましょう。なお、枢軸をxとし、配列両端の要素の添字であるplを左カー ソル、prを右カーソルと呼ぶことにします。

枢軸以上の要素は配列の右側に、枢軸以下の要素は配列の左側に移動させなけ ればなりません。そこで、次のことを行います。

- a[pl] >= xが成立する要素が見つかるまで右方向へ走査する。
- $a[pr] \leftarrow x$ が成立する要素が見つかるまで左方向へ走査する。
- そうすると、plとprは下図のように位置します。

アルゴリズム論 9

整列処理(ソート)

- ■バブルソート
- ■単純選択ソート
- ■挿入法
- クイックソート
- ■ヒープソート

アルゴリズム論 ソート

クイックソート(原理)

以下のテストの点数を昇順に並べなさい

手順1 75 70 56 52 60

配列要素の中から任意に1 つを選び枢軸(pivot)とする

小さい

56

75

枢軸より小さいグループと 大きいグループに分ける

手順3

手順2

52 56

60

小さい

60

52

大きい

70

75

分割されたグループで手 順1および2を繰り返す

分割統治

38

分割のアルゴリズム(つづき)

ここで、左右のカーソルが指す要素 a[pl]と a[pr]の値を交換します。

5 3 1 4 6 2 7 9 8

再び走査を続けると、左右のカーソルは、下図の位置でストップします。

ここで、これら二つの要素 a[pl] と a[pr] の値を交換します。

5 3 1 4 2 6 7 9 8

再び走査を続けようとしますが、下図のようにカーソルが交差します。

40

42

アルゴリズム論 ソート

分割プログラム1(メイン)

```
#include <stdio.h>
#define swap(type,x,y) do {type t=x; x=y; y=t;} while(0)
#define NUM 9
void partition(int a[],int n);
int main(void)
{
    int    i;    int    ix    ix
```

アルゴリズム論 ソート

分割のアルゴリズム(つづき)

このとき、配列は次のように分割されています。

```
枢軸以下のグループ a[0], \cdots, a[pl-1] 枢軸以上のグループ a[pr+1], \cdots, a[n-1]
```

なお、pl > pr + 1 のときに限りますが、次のようになります。

```
枢軸と等しいグループ a[pr + 1], … , a[pl - 1]
```

41

アルゴリズム論 ソート

分割プログラム1(関数)

```
void partition(int a[],int n)
      int
             i;
      int
             pl=0;
             pr=n-1;
      int
             x=a[n/2];
                           /* ピボット */
      do {
             while (a[pl]<x) pl++;/* 左カーソル移動 */
             while (a[pr]>x) pr--;/* 右カーソル移動 */
             if (pl<=pr) {
                    swap(int, a[pl],a[pr]); /* 交換 */
                    pl++;
                    pr--;
      } while (pl<=pr); /* 左カーソル≦右カーソル */
```

分割プログラム2(関数)

44

アルゴリズム論 ソート

分割からソートへ

右カーソル pr が先頭要素の添字より大きければ、左グループを再分割。 左カーソル pl が末尾要素の添字より小さければ、右グループを再分割。 アルゴリズム論 ソート

分割プログラム実行結果

```
Input integer number 9 times
x[0]:5
x[1]:7
x[2]:1
x[3]:4
x[4]:6
x[5]:2
x[6]:3
x[7]:9
8:181x
Value at pivot=6
Group under pivot
5 3 1 4 2
Group over pivot
6 7 9 8
Partition is finished
```

アルゴリズム論 ソート

45

クイックソートプログラム1(メイン)

```
#include <stdio.h>
#define swap(type,x,v) do {type t=x; x=v; v=t;} while(0)
void quick(int a[],int left, int right); /* 関数プロトタイプ */
int count0=0, count1=0; /* count0:比較回数, count1:交換回数 */
int main (void)
                          x[NUM];
        printf("Input integer number %d times \u00e4n", NUM);
        for (i=0;i<NUM;i++)
                 printf("x[%d]:",i);
                 scanf("%d", &x[i]);
        quick(x, 0, NUM-1);
        printf("Sorting is finished \u00e4n");
        for (i=0;i<NUM;i++)
                 printf("x[%d] =%d\formalfontarrow,i,x[i]);
        printf("Number of comparison=%d\u00e4n",count0);
        printf("Number of swap=%d\fomatsn", count1);
        return(0);
                                                                            47
```

クイックソートプログラム2(関数)

```
void quick(int a[],int left, int right)
             pl=left;
      int
             pr=right;
                               /* ピボット */
             x=a[(pl+pr)/2];
      do {
             while (a[pl]<x) { pl++; count0++; } /*左カーソル移動*/
             count0++;
             while (a[pr]>x) { pr--; count0++; } /*右カーソル移動*/
             if (pl<=pr) {
                    swap(int, a[pl],a[pr]); /* 交換 */
                    pr--;
                    count1++;
      } while (pl<=pr); /* 左カーソル≦右カーソル */
      if (left<pr) quick(a,left,pr); /* 再帰呼び出し */
      if (pl<right) quick(a,pl,right); /* 再帰呼び出し */
                                                            48
```

アルゴリズム論 ソート

枢軸(Pivot)の選択方法

- ■理想的な枢軸:ソート後にメジアンになる値
 - 中央値を求める操作が必要になる: 余分な計算
- ■中央値に近い値になる可能性の高い値を使用
 - 例1: データ列の中央の値(ソースコードの例)
 - 例2: データ列の先頭、中央、末尾の値の中央値

アルゴリズム論 ソート

ソートプログラム実行結果

Input integer number 5 times
x[0]:60
x[1]:75
x[2]:70
x[3]:56
x[4]:52
Sorting is finished
x[0] =52
x[1] =56
x[2] =60
x[3] =70
x[4] =75
Number of comparison=13
Number of swap=5

49

アルゴリズム論 ソート

枢軸による効率の違い

・ 入力データ:9 8 7 6 5 4 3 2 1

枢軸	中央	先頭	末尾
比較	26	56	56
交換	9	8	8

クイックソートでは枢軸の取り方によって比較の回数が大きく異なる

演習問題8-2(講義時間内で実施)

- ✓ クイックソートを行うプログラムのソースコードを入力し実行する
 - ☑ メイン
 - ☑ クイックソート関数
- ☑データを入力し、実行結果を確認する
- ✓枢軸の値を決定する方法を変え、対応する計算量を検討する

52

アルゴリズム論 ソート

クイックソート の計算量2

データn個のソート比較回数

- 最悪の場合
 - 分割した場合一方にn-1個の要素が残る場合
 - 枢軸として最小または最大の値をとる場合
 - 比較の回数

$$(n-1)+(n-2)+ \cdot \cdot \cdot +2+1$$

アルゴリズム論 ソート

クイックソート の計算量1

step 1		
step 2		
step 3		
step 4	0000000	
000000		
 (a)効率が悪い場合	(b)効率が良い場合	

アルゴリズム論 ソート

クイックソートの計算量3

データn個のソート比較回数

- 効率が良い場合
 - 分割した場合に枢軸の上下に(n-1)/2個の要素が 残る場合
 - 枢軸として中央値をとる場合
 - 比較の回数

(1)枢軸より大きいか小さいかを分ける

(2)大きい部分のソート、小さい部分のソート

クイックソートの計算量5

データn個のソート比較回数

(1)の計算量:g(n)

•(1)と(2)の合計

g(n)=r+(n-r)+1=n+1 (2)の計算量:f(n)

nが小さい場合の比較回数

f(1)=0

f(3)=4 ...

 $\begin{array}{l} f(63) = g(63) + f(31) + f(31) = 64 + 128 + 128 = 320 \\ f(2^{k} - 1) = g(2^{k} - 1) + 2f(2^{k} - 1) & \rightarrow f(2^{k} - 1)/2^{k} = g(2^{k} - 1)/2^{k} + 2f(2^{k} - 1 - 1)/2^{k} \\ & f(2^{k} - 1)/2^{k} = 1 + 2f(2^{k} - 1 - 1)/2^{k} \\ & f(2^{k} - 1)/2^{k} = 1 + f(2^{k} - 1 - 1)/2^{k} - 1 \end{array}$

•F(k)= $f(2^k-1)/2^k$ → F(k)=1+F(k-1)F(1)=0 ... = $f(2^1-1)/2^1=f(1)/2=0$ F(2)=1 F(3)=2 F(k)=k-1

• f(2^k-1)=2^k(k-1) →近似→ f(2^k)=2^k(k-1) n=2^kとする k=log₂(n)

• $f(n)=n (log_2(n)-1)=n log_2(n)-n$

 $O(nlog_2n)$

56

アルゴリズム論 ソート

クイックソートの計算量6

データn個のソート比較回数

- ・まとめ
 - 最悪の場合

$O(n^2)$

- 最良および平均的な場合

 $O(nlog_2n)$

58

アルゴリズム論 ソート

クイックソートの計算量4

簡単に考えると	
	データ数がn個の場合、分割のステップ数は k=log₂n 回必要
	各ステップにおいて必要な比較の回数はn+1回
	従って比較の回数の合計は (n+1)×k= (n+1)×log₂n= n log₂n+log₂n