Estimação de parâmetros

Volatilidade Estocástica

Sumário

		Introdução					
	1.1 svsar	e					
	1.1.1	argumentos					
	1.1.2	Valores					
	1.2 Pacot	s Artigo					
2	Aplicação						
		io					
	2.2 Estim	ão					
	2.3 Predi						
	2.3.1	Exemplo					

1 Introdução

library(stochvol)

O pacote stochvol conta com 4 funções principais para estimarmos os parâmetros do modelo de volatilidade estocástica com uma abordagem bayesiana.

As 4 funções utilizam do algoritmo MCMC para funcionar, e na prática, são apenas variações convenientes umas das outras. São elas: svsample, svtsample, svtsample e svtlsample. Onde, a 3 últimas são equivalentes a primeira com algumas alterações (erros t, leverage e erros t + leverage, respectivamente).

1.1 sysample

1.1.1 Argumentos

A função sysample conta com os seguintes argumentos:

- y: dados.
- draws: tamanho das cadeias.
- burnin: números de draws a serem desconsiderados.
- designmatrix: matrix de design para modelar a média.
- prior+: onde + é o parâmetro cuja priori queremos especificar (pode ser mu, sigma, nu, rho, beta).
- priorlatente0: ou "Stationary" para usar como piori para h_0 a distribuição estacionária do processo latente AR(1), ou numeric B para considerar como priori $h_0 \sim N(\mu, B\sigma^2)$.
- priorspec: para utilizar outras prioris além das padrões.
- n_chains: número de cadeias independentes.

Além de alguns outros argumentos opcionais (como argumentos para controlar o número de CPU's para computar as cadeias).

1.1.2 Valores

Os resultados da função são:

- para: parâmetros
- latent: log-volatilidade latente instantânea
- latent0: log-volatilidade latente inicial
- tau: fator de inflação da variância latente
- beta: coeficientes da regressão (opcional)
- y: dados
- runtime: run time
- priors: parâmetros das prioris consideradas para os parâmetros dos modelos
- summary: estatísticas sumárias a posteriori
- meanmodel: informações sobre a matriz de design

1.2 Pacote vs Artigo

O modelo de volatilidade estocástica que o pacote utiliza é descrito de outra forma do que no artigo "A note on stochastic volatility model estimation". No artigo, os únicos parâmetros a serem estimados são β e ϕ , já no pacote os parâmetros são μ e ϕ .

Os modelos são definidos da seguinte forma:

Artigo,

$$\begin{array}{rcl} r_t & = & \beta e^{h_t/2} \epsilon_t \\ h_t & = & \phi h_{t-1} + \omega_t \end{array}$$

Pacote,

$$\begin{array}{rcl} r_t & = & e^{h_t/2} \epsilon_t \\ h_t & = & \mu + \phi(h_{t-1} - \mu) + \omega_t \end{array} \label{eq:tauto}$$

Podemos escrever β em função de μ (level do processo AR(1)) e ϕ (persistence do processo AR(1)), da seguinte forma:

$$\beta = e^{\mu(1-\phi)/2} \implies \mu = \frac{2\ln\beta}{1-\phi}$$

2 Aplicação

2.1 Simulação

Vamos simular dados de um modelo de volatilidade estocástica através da função pronta do modelo e da função que eu criei, para comparar os resultados.

Vou simular 4 modelos com as seguintes especificações:

- Modelo 1: $\mu = -10$, $\phi = 0.99$, sigma = 0.2
- Modelo 2: $\mu = -15$, $\phi = 0.98$, sigma = 0.6
- Modelo 3: $\mu = -10$, $\phi = 0.98$, sigma = 0.5
- Modelo 4: $\mu = -15$, $\phi = 0.99$, sigma = 0.6

obs: os parâmetros $\nu = \infty$ (graus de liberdade correspondendo uma normal padrão), e rho = 0 correspondem ao modelo SV básico.

obs2: A função que transforma β em μ e vice-versa é:

```
beta_mu <- function(x, phi, to_mu=TRUE) {
    # Caso to_mu=TRUE a função transforma um valor beta em mu
    # Caso FALSE a função transforma um valor mu em beta
    if (to_mu) {
        mu <- (2*log(x)) / (1 - phi)
        return(mu)
    }
    beta <- exp((x * (1 - phi))/2)
    return(beta)
}</pre>
```

A simulação das séries se encontra abaixo:

```
set.seed(236106)
amostra1 <- svsim(1000, mu = -10, phi = .99, sigma = 0.2)
amostra2 <- svsim(1000, mu = -15, phi = .98, sigma = 0.6)
amostra3 <- svsim(1000, mu = -10, phi = .98, sigma = 0.5)
amostra4 <- svsim(1000, mu = -15, phi = .99, sigma = 0.6)</pre>
```

Os gráficos dos valores simulados e suas volatilidades estão apresentados abaixo:

Retornos simulados para um SV

Volatilidades simulados para um SV

As funções de autocorrelações e seus quadrados são mostradas abaixo:

Defasagem

2.2 Estimação

Para fazer estimação, irei considerar as prioris padrões.

- $\mu \sim N(0, 100)$ (priori não-informativa)
- $\frac{\phi+1}{2} \sim Beta(5, 1.5)$
- $\sigma^2 \sim \sigma_0 \cdot \chi_1^2$ (onde σ_0 é o sigma a priori, por default=1).

E estimei com os argumentos default:

```
# Estimações dos parâmetros
draws1 <- svsample(amostra1$y, draws = 10000)
draws2 <- svsample(amostra2$y, draws = 10000)
draws3 <- svsample(amostra3$y, draws = 10000)
draws4 <- svsample(amostra4$y, draws = 10000)</pre>
```

Os coeficientes estimados para o primeiro modelo foram:

```
draws1$summary$para[,1]
```

mu phi sigma exp(mu/2) sigma^2 -9.00075279 0.98377485 0.18850594 0.01160447 0.03618145

Podemos, também, graficar as densidades estimadas para cada parâmetro de interesse:

Os resultados obtidos estão apresentados na tabela abaixo, onde podemos compará-los com os verdadeiros valores dos parâmetros.

Table 1: Valores estimados para cada modelo.

Modelos	μ	ϕ	σ
1	-9.0008	0.9838	0.1885
${f 2}$	-16.1648	0.9778	0.6266
3	-9.7617	0.9652	0.6012
4	-15.2011	0.9930	0.5808

Table 2: Valores verdadeiros dos parâmetros, por modelo.

Modelos	μ	ϕ	σ
1	-10	0.99	0.2
2	-15	0.98	0.6
3	-10	0.98	0.5
4	-15	0.99	0.6

Podemos ainda melhorar a estimação colocando algumas informações a priori. Como feito no artigo do professor Maurício, podemos considerar como valor inicial para β a média incondicional da série simulada, e comparar a estimação com aquela feita sem essa informação prévia.

O único problema que encontrei é que, para transformarmos de β para μ , precisamos do valor de ϕ . Talvez uma alternativa seja estimar o valor de ϕ sem considerar nenhuma priori específica, e depois usar essa estimativa para encontrar μ , dado β .

2.3 Predição

A predição das observações é feita através da função predict. Caso estejamos interessados em fazer um *Rolling windows*, podemos utilizar a função svlsample_roll.

2.3.1 Exemplo

• Fazer a previsão do modelo 1 para 3 passos a frente:

```
fore <- predict(draws1, 3)
summary(predlatent(fore))</pre>
```

```
Iterations = 1:10000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000
```

1. Empirical mean and standard deviation for each variable, plus standard error of the mean:

```
Mean SD Naive SE Time-series SE h_1001 -9.912 0.5244 0.005244 0.01089 h_1002 -9.900 0.5474 0.005474 0.01039 h_1003 -9.886 0.5716 0.005716 0.01028
```

2. Quantiles for each variable:

```
2.5% 25% 50% 75% 97.5%
h_1001 -10.91 -10.26 -9.916 -9.567 -8.863
h_1002 -10.96 -10.27 -9.901 -9.541 -8.797
h_1003 -11.01 -10.28 -9.883 -9.510 -8.764
```

summary(predy(fore))

```
Iterations = 1:10000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000
```

1. Empirical mean and standard deviation for each variable, plus standard error of the mean:

```
MeanSDNaive SETime-series SEy_1001-4.831e-060.0075867.586e-057.586e-05y_1002-1.140e-050.0076457.645e-057.645e-05y_1003-6.915e-050.0076647.664e-057.664e-05
```

2. Quantiles for each variable:

```
2.5% 25% 50% 75% 97.5% y_1001 -0.01537 -0.004548 9.267e-05 0.004668 0.01506 y_1002 -0.01545 -0.004693 2.745e-05 0.004605 0.01548 y_1003 -0.01582 -0.004647 -1.162e-05 0.004546 0.01526
```

plot(fore)

Predicted volatility (5% / 25% / 50% / 75% / 95% quantiles

Predicted data (5% / 25% / 50% / 75% / 95% quantiles)

plot(draws1, forecast = fore)

