2. Voltagem e corrente

Uma forma simples de sentir o efeito da corrente elétrica consiste em colocar uma colher metálica e um pedaço de folha de alumínio em duas partes da língua. Estabelecendo contacto entre a colher e a folha de alumínio, enquanto estão também em contacto com a língua, sente-se um sabor azedo, produzido pela transferência de cargas elétricas entre os metais e a língua. Este fenómeno, descoberto no fim do século XVIII, foi aproveitado por Alessandro Volta, para construír as primeiras pilhas químicas, dando origem ao rápido desenvolvimento da tecnologia elétrica. É importante que o metal da folha seja diferente do metal da colher, que é geralmente de aço ou alguma liga metálica. Na língua existem iões positivos e negativos e um dos metais tem maior tendência para atrair os iões negativos e o outro os iões positivos, criando-se fluxo de cargas através dos dois metais.

2.1. Potencial eletrostático

As variáveis (vetoriais) que determinam o estado de uma partícula, são a sua posição \vec{r} e velocidade \vec{v} . As componentes destes dois vetores definem um espaço com seis dimensões, chamado **espaço de fase**. Uma partícula com massa m e carga q, numa região onde existe um campo gravítico \vec{g} e um campo elétrico \vec{E} está sujeita a uma força resultante $m \vec{g} + q \vec{E}$. A equação de movimento é:

$$\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \vec{g} + \frac{q}{m}\vec{E} \tag{2.1}$$

em que os campos \vec{g} e \vec{E} são funções que dependem da posição \vec{r} e, portanto, a velocidade também será uma função que depende da posição. Multiplicando, escalarmente, os dois lados da equação de movimento pelo vetor d \vec{r} e lembrando que a derivada de \vec{r} em ordem ao tempo é o vetor velocidade \vec{v} , obtém-se a seguinte equação:

$$\vec{v} \cdot d\vec{v} = \left(\vec{g} + \frac{q}{m} \vec{E} \right) \cdot d\vec{r}$$
 (2.2)

Esta equação permite encontrar a expressão para \vec{v} em função de \vec{r} a través do procedimento seguinte: integram-se ambos membros da equação, desde os valores iniciais (\vec{r}_0, \vec{v}_0) até os valores finais (\vec{r}, \vec{v}) , obtendo-se,

$$\frac{1}{2}mv^2 - \frac{1}{2}mv_0^2 = m\int_{\vec{r}_0}^{\vec{r}} \vec{g} \cdot d\vec{r} + q\int_{\vec{r}_0}^{\vec{r}} \vec{E} \cdot d\vec{r}$$
 (2.3)

A expressão no primeiro membro da equação é o aumento da **energia cinética** da partícula; no segundo membro, para calcular os dois integrais de linha é necessário conhecer as expressões para os campos em função da posição. Se os campos fossem quaisquer campos vetoriais arbitrários, seria necessário também conhecer de antemão a trajetória da partícula, já que os integrais de linha no segundo membro podem produzir diferentes resultados para diferentes percursos de integração. No entanto, neste caso não é necessário conhecer a trajetória, porque os campos gravítico e elétrico são ambos **campos conservativos**, isto é, o integral de linha de um desses campos entre dois pontos conduz sempre ao mesmo resultado, independentemente do percurso de integração.

Por exemplo, a expressão dum campo gravítico uniforme, segundo o eixo dos z, é $\vec{g}=-g\,\hat{k}$ e o integral de linha desse campo, ao longo de qualquer

percurso desde um ponto com coordenada z_0 até outro ponto qualquer com coordenada z, é igual a:

$$\int_{\vec{r}_0}^{\vec{r}} -g \, \hat{k} \cdot d\vec{r} = -g \int_{z_0}^{z} dz = g (z_0 - z)$$
 (2.4)

Ou seja, o integral dá o mesmo resultado para qualquer percurso entre esses pontos e, assim sendo, trata-se de um campo conservativo e a energia potencial gravítica de uma partícula de massa m nesse campo é a função $U_g=m\,g\,z$. O campo gravítico produzido por várias partículas não é constante, mas também é conservativo, conduzindo a um integral de linha que não depende do percurso seguido e que pode ser escrito como a diferença entre os valores de uma função U_g (energia potencial gravítica) no ponto inicial e final.

No caso do campo elétrico a situação é análoga; os campos eletrostáticos (campos elétricos que não variam com o tempo) são sempre conservativos e, portanto, para cada campo eletrostático existe uma função da posição, V(x, y, z), que permite calcular o integral de linha do campo, sem necessidade de conhecer o percurso de integração:

$$\int_{\vec{r}_0}^{\vec{r}} \vec{E} \cdot d\vec{r} = V(x_0, y_0, z_0) - V(x, y, z)$$
(2.5)

A função V chama-se potencial eletrostático e a energia potencial eletrostática é a expressão:

$$U_{\rm e} = q V \tag{2.6}$$

Em função das energias potenciais gravítica e eletrostática, a equação 2.2 é a lei da conservação da energia mecânica da partícula:

$$\frac{1}{2}mv^2 + U_e + U_g = \frac{1}{2}mv_0^2 + U_{e0} + U_{g0}$$
 (2.7)

A unidade SI de potencial elétrico é o joule por coulomb, chamado **volt** e identificado pela letra V.

$$1 V = 1 J/C$$
 (2.8)

No capítulo sobre carga e força elétrica viu-se que a unidade SI do campo elétrico é o N/C, que pode ser escrito como $J/(m\cdot C)$, pelo que o N/C é

equivalente ao V/m. O campo elétrico pode então ser interpretado como a diferença de potencial por unidade de comprimento.

Note-se que, como a carga q poder ser positiva ou negativa, a energia eletrostática $U_{\rm e}$ de uma partícula com carga negativa é maior nos pontos onde o potencial for menor, enquanto que as partículas com carga positiva têm maior energia nos pontos onde o potencial é maior. A equação 2.7 implica então que, dentro de um campo elétrico, as partículas com carga positiva são aceleradas para regiões com menor potencial e as partículas com carga negativa são aceleradas para a regiões com maior potencial.

A lei de conservação da energia mecânica é válida unicamente quando as cargas se deslocam no vácuo. As partículas com carga que dentro de um material, por exemplo, num condutor ou num gás, estão sujeitas a forças dissipativas que fazem diminuir rapidamente a sua energia mecânica.

Exemplo 2.1

Dentro de um tubo de vácuo há duas lâminas condutoras paralelas. Uma das lâminas é feita dum material radioativo que emite radiação beta (eletrões que saem dos núcleos). Para acelerar as partículas até à outra lâmina, liga-se uma diferença de potencial de 150 V entre as lâminas. Num dado instante é emitida uma partícula beta com velocidade inicial de módulo 300 m/s que é acelerada até a outra lâmina. (*a*) Calcule o módulo da velocidade com que a partícula beta atinge a segunda lâmina. (*b*) Se a distância entre as duas lâminas for 5 cm, qual o módulo do campo elétrico médio entre elas?

Resolução. Como a carga das partículas é negativa, são aceleradas na direção do potencial mais elevado; assim sendo, a diferença de potencial deve ser ligada de forma a que a lâmina radioativa tenha menor potencial. As cargas negativas também são acelerados no sentido oposto ao campo e, como tal, as linhas de campo elétrico apontam para a lâmina radioativa. Admitindo um campo constante, as linhas de campo são paralelas entre si.

(a) O deslocamento da partícula no vácuo implica conservação da sua energia mecânica. A carga da partícula beta é a carga do eletrão, -1.602×10^{-19} C e a diferença de potencial de 150 V implica uma diferença de energia potencial eletrostática

$$\Delta U_{\rm e} = 1.602 \times 10^{-19} \times 150 = 2.40 \times 10^{-17} \,\text{J}$$
 (2.9)

Pode parecer pouca energia, mas é um valor muito elevado para um eletrão que tem massa $m=9.11\times 10^{-31}$ kg. Para gerar a mesma diferença de energia potencial gravítica, $m\,g\Delta z$, de 10^{-17} J entre dois pontos, seria necessário que o eletrão descesse uma altura da ordem de 10^{12} metros! Como tal, é possível ignorar a energia potencial gravítica e considerar que o aumento da energia cinética é igual à diminuição da energia potencial eletrostática:

$$\frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2 = 2.40 \times 10^{-17}$$

Substituindo os valores da massa e velocidade inicial, obtém-se o módulo da velocidade final:

$$v_f = \sqrt{\frac{2 \times 2.40 \times 10^{-17}}{9.11 \times 10^{-31}} + 300^2} = 7.26 \times 10^6 \frac{\text{m}}{\text{s}}$$

que é um valor elevado, aproximadamente 2.4% da velocidade da luz, mas ainda não o suficiente para que seja necessário usar equações da mecânica relativista. Note-se também que não é necessário saber em que direção foi disparada a partícula. (*b*) O campo elétrico médio calcula-se admitindo que o mesmo é uniforme. Seguindo um percurso paralelo às linhas de campo, desde a lâmina da direita até à da esquerda, a equação 2.5 permite calcular a intensidade do campo:

$$\int_{0}^{0.05} E \, ds = 0.05 E = 150 \quad \Rightarrow \quad E = 3000 \frac{V}{m}$$

2.2. Pilhas químicas

Uma das descobertas mais importantes na história da eletricidade foi a invenção das pilhas químicas, que permitem fornecer a energia necessária para manter um fluxo constante de cargas num condutor, contrariando as forças dissipativas.

O biólogo italiano Luigi Galvani (1737–1798) fez várias experiências com cargas eletrostáticas e órgãos de animais. A figura 2.1 mostra o laboratório de Galvani, com um gerador eletrostático usado para produzir descargas elétricas nas patas posteriores de uma rã. Enquanto fazia as experiências, Galvani descobriu que quando tocava com uma faca na pata da rã, esta encolhia-se bruscamente, como se a rã estivesse viva, no instante em que era produzida uma descarga elétrica num gerador eletrostático próximo dele (figura 2.1).

Figura 2.1.: Laboratório de Luigi Galvani.

Mais tarde, conseguiu o mesmo efeito sem precisar do gerador eletrostático, espetando dois fios de metais diferentes na pata da rã; quando juntava os dois fios, a pata encolhia-se. Galvani atribuiu o efeito a uma eletricidade de origem animal.

O físico italiano Alessandro Volta (1745–1827) demonstrou que a origem da eletricidade observada por Galvani não eram os organismos vivos. Na realidade, o contacto entre dois metais diferentes dentro de qualquer solução química produz uma transferência de cargas elétricas, chamada **corrente elétrica**, que nos seres vivos provoca efeitos como a contração muscular ou o sabor azedo na língua. De facto, o sistema nervoso produz transferências de carga (correntes) que permitem controlar os movimentos musculares e a transferência de cargas entre a língua e os alimentos estimula o sistema nervoso dando origem às sensações de sabor.

Em 1800 Volta construiu a primeira pilha, colocando alternadamente discos de zinco e de cobre, sobrepostos e separados entre si por discos de cartão molhado numa solução ácida. Repetindo a mesma sequência de discos várias vezes, conseguiu produzir fluxos de carga mais elevados e sentir os seus efeitos. Por exemplo, colocando as suas mãos dentro de dois recipientes com água salgada, ligados aos dois terminais da pilha, o choque elétrico nas suas mãos tornava-se doloroso quando a pilha era formada por mais de 20 grupos de discos de cobre e zinco. A figura 2.2 mostra uma das pilhas construídas por Volta.

Figura 2.2.: Pilha de Volta.

2.3. Força eletromotriz

Uma pilha química é constituída por duas

barras condutoras, chamadas **elétrodos**, embebidas numa substância com iões (**eletrólito**). O eletrólito pode ser líquido ou sólido, desde que tenha iões positivos e negativos; por exemplo, uma solução de água e sal de mesa (cloreto de sódio) em que existem iões de sódio, com carga elétrica positiva, e iões de cloro, com carga elétrica negativa.

No metal dos elétrodos da pilha existe uma nuvem de eletrões de condução e quando se liga outro condutor externo entre eles, os eletrões livres podem deslocar-se transportando carga através do condutor externo. O deslocamento da nuvem eletrónica da origem a acumulação de cargas de sinais opostos nos extremos dos elétrodos que estão dentro do eletrólito e os iões de cargas opostas no eletrólito deslocam-se em sentidos opostos. Os iões positivos, também chamados catiões, são atraídos pelo elétrodo para o qual a nuvem eletrónica foi deslocada, combinando-se com os eletrões acumulados nesse elétrodo. Os iões negativos, ou aniões, deslocam-se para o outro elétrodo, fornecendo os eletrões que estavam em falta devido ao deslocamento da nuvem eletrónica. O elétrodo para onde são atraídos os iões positivos chama-se **cátodo**, comumente identificado nas pilhas com um sinal positivo e o elétrodo para onde circulam os iões negativos

do eletrólito chama-se o **ânodo** e é comumente identificado com um sinal negativo.

Para manter o movimento da nuvem eletrónica é necessário que existam iões de sinais opostos no eletrólito e enquanto esse movimento perdura, mais iões desaparecem no eletrólito devido à troca de eletrões com os elétrodos. O fluxo de cargas através dos elétrodos e do condutor que os liga cessará quando a pilha estiver descarregada, isto é, quando a concentração de iões no eletrólito for inferior a um valor mínimo.

Para garantir o funcionamento de uma pilha também é necessário que num dos elétrodos seja mais fácil a passagem de eletrões dos átomos para a nuvem de condução, o que se consegue usando dois metais diferentes para os dois elétrodos. Quando dois metais diferentes são colocados em contacto um com o outro, a nuvem de eletrões de condução tem uma tendência para se deslocar do metal mais eletropositivo (o que cede com maior facilidade os seus eletrões) para o menos eletropositivo. Diferentes materiais condutores podem ser ordenados numa **série galvânica**, em que os metais mais eletropositivos aparecem no topo da lista e os menos eletropositivos na base (a ordem na série depende também do eletrólito usado). A tabela 2.1 mostra a série galvânica para alguns condutores, quando o eletrólito é água de mar.

Tabela 2.1.: Série galvânica com eletrólito de água de mar.

Magnésio Zinco Alumínio Chumbo Ferro Cobre Tungsténio Prata Ouro Platina Grafite

O uso da tabela pode ilustrar-se no caso concreto da primeira pilha construída por Volta que usava eletrólito de água salgada. Os dois metais usados para os elétrodos são zinco e cobre e como o zinco está acima do cobre na tabela, quer dizer que os eletrões de condução se deslocam do zinco para

o cobre e os iões positivos do eletrólito são atraídos pelo cobre; como tal, o elétrodo de cobre é o cátodo (+) e o elétrodo de zinco é o ânodo (-).

A corrosão dos metais no ar ou numa solução líquida também está relacionada com a transferência de eletrões de condução. Os iões negativos de oxigênio passam eletrões para o metal, combinando-se com os átomos do metal na superfície para formar um sal. O processo de galvanização consiste em colocar na superfície de um objeto metálico uma camada de zinco que garante que o movimento dos eletrões de condução será do zinco para o outro metal, servindo o zinco como ânodo que atrai os iões de oxigênio (aniões); o zinco é oxidado enquanto o outro metal (cátodo) permanece protegido da corrosão.

O lado esquerdo da figura 2.3 mostra uma pilha ligada a um circuito e o lado direito mostra o diagrama usado para representar esquematicamente esse conjunto. A pilha representa-se com duas barras paralelas, que lembram os dois discos metálicos na pilha original de Volta, separados por uma pequena região (o eletrólito). Usa-se uma barra mais comprida para representar o cátodo (elétrodo positivo). As setas na figura indicam a direção do movimento dos eletrões de condução, que se deslocam no sentido oposto ao campo elétrico estabelecido pela pilha através dos condutores.

Figura 2.3.: Pilha ligada a um dispositivo e representação diagramática do sistema.

Se os eletrões de condução fossem completamente livres, seriam acelerados pela força elétrica no condutor. No entanto, no circuito e nos elétrodos existem forças dissipativas que contrariam o movimento dos eletrões de condução. O trabalho realizado pelas forças dissipativas é igual à energia fornecida pela pilha, através do campo elétrico. Isto é, durante o percurso de cada eletrão de condução desde o ânodo até o cátodo, o campo elétrico realiza um trabalho igual à diminuição da energia potencial eletrostática ($\Delta U_{\rm e}$) desse eletrão entre o ânodo e o cátodo. Como a carga dos eletrões é negativa, conclui-se que o potencial no cátodo é maior do que no ânodo, e

a diferença de potencial entre eles é igual a:

$$\varepsilon = \frac{\Delta U_{\rm e}}{e} \tag{2.10}$$

onde e é a carga elementar (valor absoluto da carga do eletrão). A energia $\Delta U_{\rm e}$ fornecida a cada eletrão de condução é igual à diferença entre a energia necessária para que um anião no eletrólito transfira um eletrão ao ânodo e a energia necessária para que o cátodo transfira um eletrão a um catião do eletrólito.

Essa diferença de energia tem um valor específico para cada par de condutores usados para os elétrodos e para cada eletrólito. Assim sendo, a constante ε , com unidades de volt, tem um valor típico para cada tipo de pilha, que depende apenas dos metais e do eletrólito usado, e chama-se **força eletromotriz** da pilha, ou de forma abreviada, f.e.m. O valor da f.e.m. para a maioria das pilhas é entre 1 volt e 4 volt. Na pilha da figura 2.3, o valor da f.e.m. é de 9 V e é obtido colocando no interior da pilha seis pilhas pequenas de 1.5 V, uma a seguir à outra, tal como Volta colocou alternadamente vários discos de zinco, cartão e cobre para obter maior energia; a figura 2.4 mostra um diagrama que ilustra melhor essas seis pilhas em série.

Figura 2.4.: Pilhas ligadas em série.

A tabela 2.2 mostra os materiais usados para os elétrodos e o eletrólito em vários tipos de pilhas usadas atualmente e os valores da f.e.m. obtida em cada caso.

Os tipos de pilhas nas três últimas linhas da tabela 2.2 são recarregáveis; ou seja, as reações químicas nos elétrodos são reversíveis. Utilizando uma fonte externa para contrariar o sentido normal do fluxo das cargas, consegue-se diminuir a quantidade dos sais acumulados nos elétrodos, separando-os nos metais originais e os iões do eletrólito e aumentando assim a carga total dos iões do eletrólito e ficando a pilha num estado semelhante ao inicial. Apoś vários ciclos de carga e descarga, parte dos sais saem separam-se dos elétrodos e passam para o eletrólito torna-se cada vez mais difícil recuperar todo o metal e o eletrólito original, ficando a pilha "viciada". No caso das pilhas de iões de lítio, o cátodo não é um único

Tipo	cátodo	ânodo	eletrólito	f.e.m.
seca	С	Zn	MnO ₂ / NH ₄ Cl	1.5 V
alcalina	С	MnO_2	КОН	1.5 V
mercúrio	HgO	Zn	NaOH	1.35 V
óxido de prata	Ag_2O	Zn	NaOH	1.35 V
NiCd	NiO	Cd	КОН	1.2 V
NiMH	NiO	liga metálica	КОН	1.2 V
iões de lítio	Li ₂ O / Co	С	Li	3.7 V

Tabela 2.2.: Alguns tipos de pilhas usados atualmente.

bloco sólido, mas são várias partículas em suspensão dentro do próprio eletrólito, evitando-se assim que a pilha fique viciada e permitindo muitos mais ciclos de carga e descarga. Numa pilha não recarregável, a inversão da corrente apenas aquece a pilha, com o perigo de queimá-la ou até fazê-la explodir sem ser recarregada.

Outra caraterística importante de cada pilha, para além da sua f.e.m., é a sua carga máxima, $Q_{\text{máx}}$, que indica a carga total dos iões positivos (igual ao valor absoluto da carga dos iões negativos) no eletrólito, no seu estado inicial, com os elétrodos completamente limpos de sais. A energia máxima que a pilha poderia fornecer, se fosse possível manter o fluxo de cargas nos elétrodos até o eletrólito ficar completamente livre de iões, é

$$U_{\text{máx}} = \varepsilon \, Q_{\text{máx}} \tag{2.11}$$

2.4. Condutores e semicondutores

Num condutor sólido existe uma nuvem muito densa de eletrões de condução que não estão ligados a nenhum átomo em particular, conforme referido no capítulo sobre carga e força elétrica. Os átomos de cobre, por exemplo, têm 29 eletrões à volta do núcleo no seu estado neutro; 28 desses eletrões estão fortemente ligados ao átomo, enquanto que o último eletrão

se encontra numa órbita mais distante do núcleo e sai com facilidade para a nuvem de eletrões de condução.

Um pequeno deslocamento da nuvem de eletrões de condução faz acumular um excesso de cargas negativas numa região e cargas positivas na região oposta. As cargas positivas são átomos com um eletrão a menos em relação ao número de protões. Quando se liga um fio condutor aos elétrodos de uma pilha, a nuvem eletrónica é atraída pelo elétrodo positivo e repelida pelo elétrodo negativo; estabelece-se no condutor um fluxo contínuo de eletrões do elétrodo negativo para o positivo.

Os semicondutores são materiais que não têm cargas de condução, como os isoladores, mas que podem adquirir cargas de condução (passando então a ser condutores) através de diversos mecanismos: aumento da temperatura, incidência de luz, presença de cargas elétricas externas ou existência de impurezas dentro do próprio material.

Atualmente os semicondutores são construídos a partir de silício ou germânio. Os átomos de silício e de germânio têm 4 eletrões de valência. Num cristal de silício ou germânio, os átomos estão colocados numa rede uniforme, como na figura 2.5 e os 4 eletrões de valência ligam cada átomo aos átomos na sua vizinhança.

Figura 2.5.: Cristal FCC.

Já os átomos de arsénio têm 5 eletrões de valência. Se dentro dum cristal de silício

forem colocados alguns átomos de arsénio, cada um deles fica ligado aos átomos de silício na rede, por meio de 4 dos seus eletrões de valência e o quinto eletrão de valência fica livre e contribui para uma nuvem de eletrões de condução. Obtém-se assim um **semicondutor tipo N**, capaz de conduzir cargas através do material, pelo mesmo mecanismo que nos condutores (nuvem de eletrões de condução).

Os átomos de gálio têm três eletrões de valência. Nos **semicondutores tipo P** existem alguns átomos de gálio dentro de um cristal de silício (ou germânio); os 3 eletrões de valência de cada átomo de gálio ligam-no à rede, ficando um **buraco** no átomo de silício que tem um eletrão de valência que não está ligado a um eletrão de um átomo vizinho.

Os buracos podem ser utilizados também para transportar carga; os eletrões de condução podem deslocar-se para um átomo de gálio na vizinhança, onde exista um desses buracos. Se dois extremos de um semicondutor do tipo P forem ligados aos elétrodos de uma pilha, os buracos na vizinhança do elétrodo negativo são preenchidos com eletrões fornecidos por esse elétrodo, e a seguir podem passar sucessivamente para outros buracos no cristal. Os eletrões deslocam-se no sentido do elétrodo negativo para o positivo, mas deslocam-se apenas entre dois buracos vizinhos. Já os buracos percorrem todo o percurso desde o elétrodo positivo até ao negativo. É um pouco como a circulação de automóveis em hora de ponta, quando há filas compactas; cada automóvel consegue apenas deslocar-se uma pequena distância no sentido do avanço, mas aparecem buracos na fila, que se deslocam rapidamente no sentido oposto.

A figura 2.6 mostra uma forma habitual de representar os dois tipos de semicondutores, N e P, de forma esquemática. Os círculos representam cargas fixas no cristal, que não se podem deslocar e as cargas sem um círculo à volta representam as carga de condução. No semicondutor do tipo N as cargas positivas fixas são os átomos de arsénio, ou de outro elemento com 5 eletrões de valência, colocados dentro do cristal de silício ou outro elemento com 4 eletrões de valência e as cargas de condução são os eletrões cedidos por esse átomos de arsénio. No semicondutor do tipo P, as cargas fixas são átomos de um elemento com 3 eletrões de valência e as cargas livres são os buracos que ficam na ligação covalente desses átomos com um dos átomos vizinhos, com 4 eletrões de valência.

Semicondutor tipo N

Semicondutor tipo P

Figura 2.6.: Os dois tipos de semicondutores.

Na figura 2.7 estão representadas 3 barras de materiais diferentes, ligadas entre dois pontos A e B entre os que existe diferença de potencial (V_A maior que V_B). No primeiro caso, trata-se de um semicondutor de tipo P, em que as cargas de condução positiva deslocam-se do ponto A para o ponto B, já que o campo elétrico aponta do ponto com maior potencial (A) para o ponto com menor potencial (B). No segundo caso, um semicondutor de tipo N ou um metal, as cargas de condução negativas deslocam-se de B para A, no sentido oposto ao campo elétrico. Finalmente, existem condutores

com cargas de condução positivas e negativas como, por exemplo, o gás ionizado dentro de uma lâmpada fluorescente.

Figura 2.7.: Três condutores diferentes com diferentes tipos de cargas de condução.

Nos três casos ilustrados na figura, a mesma quantidade de energia $(6\,e\,V_{\rm A})$ é retirada da região A e a mesma quantidade de energia $(6\,e\,V_{\rm B})$ passa para a região B. No caso do semicondutor do tipo P, a saída de 6 cargas elementares de A retira energia em A e a entrada dessas cargas em B aumenta a energia em B. No caso da barra semicondutora do tipo N, a energia das cargas que saem de B tem o sinal oposto de $V_{\rm B}$ e, por isso, faz aumentar a energia disponível em B; da mesma forma, a entrada das cargas de condução negativas em A faz diminuir a energia disponível em A. No terceiro caso da figura, metade da energia é transferida de A para B pelas cargas de condução positivas e a outra metade é transferida no mesmo sentido pelas cargas de condução negativas.

Observe-se que, na figura 2.7, a energia potencial eletrostática que é retirada do ponto A é maior que a energia que passa para o ponto B, porque $V_{\rm A} > V_{\rm B}$. A diferença entre essas energias é igual à energia dissipada no condutor; nos dois primeiros casos na figura, essa energia é transferida para o condutor na forma de calor, aquecendo-o, e no terceiro caso, se o condutor for uma lâmpada fluorescente, a parte dessa energia é convertida em luz, e a restante é calor que aquece a lâmpada.

Existem outros mecanismos de condução de cargas elétricas, como em certos detetores de incêndio (figura 2.8). No interior do detetor existe uma câmara de ionização (cilindro preto na figura) onde a passagem de cargas é devida à produção de partículas alfa emitidas por uma substância radioativa. As partículas alfa são núcleos de hélio, com carga igual a duas unidades elementares de carga. As partículas são disparadas para fora da substância radioativa, passando pelo ar à volta da substância, antes de serem recolhidas num elétrodo no detetor. A presença de fumo introduz partículas sólidas no ar, que travam as partículas alfa, produzindo uma redução do número de partículas recolhidas no elétrodo, e essa redução do fluxo de cargas faz disparar um sinal de alarme.

Figura 2.8.: Detetor de incêndios.

2.5. Corrente elétrica

A corrente elétrica, representada pela letra I, é o fluxo das cargas de condução dentro de um material. A intensidade da corrente I é a taxa de transferência da carga, através de uma secção, por unidade de tempo

$$I = \frac{\mathrm{d}Q}{\mathrm{d}t} \tag{2.12}$$

onde dQ é o valor absoluto da carga total que passa pela secção durante um intervalo de tempo dt. De forma inversa, a carga total que passa através de uma secção de um condutor, desde um instante t_1 até outro instante t_2 ,

 \acute{e} o integral da corrente I,

$$Q = \int_{t_1}^{t_2} I \, \mathrm{d}t \tag{2.13}$$

No sistema internacional de unidades a unidade usada para medir a corrente elétrica é o ampere, designado pela letra A, que equivale à transferência de uma carga de um coulomb cada segundo:

$$1 A = 1 C/s$$
 (2.14)

A corrente costuma ser representada vetorialmente por \vec{I} , com módulo igual á intensidade da corrente, direção igual à direção do movimento das cargas de condução e com o mesmo sentido em que é transferida energia. Tal como foi referido, nas três barras condutoras da figura 2.7 há transferência de energia do ponto A para o ponto B e, portanto, a corrente nos três casos é no sentido de A para B, como indica o diagrama da figura 2.9. A corrente em qualquer condutor ou semicondutor de qualquer tipo segue sempre o sentido do campo elétrico, isto é, do ponto com maior potencial para o ponto com menor potencial.

Figura 2.9.: Corrente *I* numa barra condutora.

Se o condutor não for retilíneo (figura 2.10), as linhas de campo elétrico seguem a direção do condutor, desde o ponto onde o potencial é maior até onde o potencial é menor. A relação entre o campo elétrico no condutor e a diferença de potencial entre os extremos é,

$$\int_{A}^{B} E \, \mathrm{d}s = V_{\mathrm{A}} - V_{\mathrm{B}} \tag{2.15}$$

O módulo do campo campo elétrico poderá ser diferente em diferentes partes do percurso no integral de linha do primeiro membro da equação,

Figura 2.10.: Campo elétrico num condutor ligado a uma voltagem ΔV $(V_A > V_B)$.

mas usando o teorema do valor médio obtém-se a seguinte relação para o valor médio do campo no condutor:

$$\bar{E} = \frac{\Delta V}{\Delta s} \tag{2.16}$$

onde Δs é o comprimento do condutor e ΔV a voltagem (diferença de potencial entre os extremos).

Como tal, quanto mais comprido for o fio condutor que liga os pontos A e B, com potenciais fixos V_A e V_B , menor será o campo elétrico médio. A intensidade da corrente depende do módulo do campo elétrico e da área da secção transversal do fio; quanto maior for o módulo do campo, mais rápido é o movimento da nuvem de cargas de condução e maior é a corrente; quanto maior for a área da secção transversal, mais grosso é o fio e o movimento da nuvem de cargas de condução produz então uma corrente maior.

2.6. Potência elétrica

Como já foi referido, o transporte de cargas de condução num condutor acarreta dissipação de energia, geralmente na forma de calor, fenómeno esse designado de **efeito Joule**. Se num condutor circula corrente estacionária I, durante um intervalo de tempo dt entra uma carga dQ por um extremo do condutor e sai a mesma carga pelo extremo oposto. No condutor da figura 2.11, o sentido da corrente indica que V_A é maior que V_B ; se as cargas de condução são positivas, deslocam-se no sentido da corrente, ou seja, entra carga dQ pelo extremo A e sai carga dQ pelo extremo B. A energia elétrica da carga que entra é V_A dQ e a energia da carga que sai é V_B dQ. Ou seja, as cargas perdem energia elétrica na passagem pelo condutor.

Figura 2.11.: Cargas que entram e saem num condutor com corrente, durante um intervalo d*t*.

A energia elétrica que as cargas de condução perdem na passagem pelo condutor, durante o intervalo de tempo dt é

$$dU_e = V_A dQ - V_B dQ = \Delta V dQ \qquad (2.17)$$

onde $\Delta V = V_{\rm A} - V_{\rm B}$ é a voltagem no condutor. O valor instantâneo da potência elétrica, P, dissipada no condutor, obtém-se dividindo d $U_{\rm e}$ pelo intervalo de tempo dt. O resultado obtido é

$$P = I \Delta V \tag{2.18}$$

Essa é a potência dissipada em calor num condutor com voltagem ΔV e corrente I. O resultado foi obtido no caso de um condutor com portadores de cargas positivas, mas é o mesmo resultado que se obtém para qualquer outro condutor com cargas de condução negativas ou cargas de ambos sinais. A partir das definições de volt e ampere, pode-se verificar que o produto dessas duas unidades é igual a joule sobre segundo, que é a unidade SI de potência, o watt (W), igual a um joule sobre segundo.

Para manter a corrente no condutor, é necessário que a mesma potência P, dissipada no condutor, seja fornecida pela bateria que estabelece a diferença de potencial ΔV . Assim, a potência fornecida pela bateria é também $I\Delta V$, em que ΔV é a diferença de potencial entre os terminais da bateria. Numa bateria "ideal" essa diferença de potencial é igual ao valor da f.e.m. (ε) e, como tal, a potência fornecida por uma bateria ideal é:

$$P_{\varepsilon} = I \varepsilon \tag{2.19}$$

39

No próximo capítulo mostra-se que, numa bateria real, ΔV é realmente menor que o valor da f.e.m., e diminui em função da corrente.

Exemplo 2.2

Num condutor, ligado a uma pilha ideal com f.e.m. de 1.5 V, circulam 10^{16} eletrões de condução durante 2 segundos. Calcule: (a) A corrente média; (b) A energia fornecida pela pilha durante esse intervalo; (c) A potência média fornecida pela pilha; (d) Se a carga máxima da pilha for 3 A·h e se fosse possível manter a mesma corrente média até a pilha descarregar totalmente, quanto tempo demoraria a pilha a descarregar?

Resolução. (*a*) A carga transferida é o valor absoluto da carga dos 10¹⁶ eletrões:

$$\Delta Q = 10^{16} \times 1.602 \times 10^{-19} = 1.602 \times 10^{-3} \text{ C}$$

e a corrente média é:

$$\bar{I} = \frac{\Delta Q}{\Delta t} = \frac{1.602 \times 10^{-3}}{2} = 0.80 \text{ mA}$$

(b) A energia fornecida pela pilha é igual à energia elétrica dissipada no condutor:

$$\Delta U_{\rm e} = \Delta Q \Delta V = 1.602 \times 10^{-3} \times 1.5 = 2.40 \text{ mJ}$$

(c) A potência média fornecida é igual a essa energia, dividida pelo intervalo de tempo:

$$\bar{P} = \frac{\Delta U_{\rm e}}{\Delta t} = \frac{2.40 \times 10^{-3}}{2} = 1.20 \text{ mW}$$

(*d*) O tempo obtém-se dividindo a carga máxima que pode ser transferida, pela corrente média:

$$\Delta t = \frac{\Delta Q_{\text{máx}}}{\bar{I}}$$

substituindo, obtém-se:

$$\Delta t = \frac{3 \text{ A} \cdot \text{h}}{0.80 \times 10^{-3} \text{ A}} = 3750 \text{ h} \approx 156 \text{ dias}$$

2.7. Voltímetros e amperímetros

Para medir a diferença de potencial entre dois pontos num dispositivo, basta tocar nesses pontos com os terminais de um **voltímetro**. Se a diferença de potencial não ultrapassa o valor máximo aceite pelo voltímetro, essa operação é bastante segura e muito útil para diagnosticar problemas nos dispositivos.

Para medir a corrente elétrica usa-se um **amperímetro**. Igual que no caso do voltímetro, a corrente a ser medida não deverá ultrapassar o valor máximo aceite pelo amperímetro. O problema neste caso é que um bom amperímetro deverá facilitar a passagem das cargas, para não interferir com o dispositivo onde vai medir-se a corrente. Ou seja, ligando o amperímetro entre dois pontos de um dispositivo, a maioria das cargas passam pelo amperímetro e não pelo dispositivo, já que encontram um percurso mais livre através do amperímetro. Assim sendo, a corrente através do amperímetro pode ser muito elevada, correndo-se o risco de queimá-lo.

Como tal, há que ter maior cuidado no uso de um amperímetro do que um voltímetro. Antes de tocar num dispositivo com os terminais de um amperímetro, é necessário "cortar"o fluxo de carga no ponto onde vai medir-se a corrente e fazer uma ponte com os terminais do amperímetro, entre os dois pontos onde foi aberto o circuito, para garantir que todas as cargas que passem pelo amperímetro têm que passar pelo dispositivo, que foi concebido para limitar o fluxo das cargas. Um **multimetro** combina as funções de voltímetro e amperímetro num único aparelho de medição.

Perguntas 41

Perguntas

- 1. A força eletromotriz de uma pilha química:
 - A. É independente das reações químicas no seu interior.
 - B. Depende do tamanho da pilha.
 - C. Depende da sua carga máxima.
 - D. É independente do tamanho dos elétrodos.
 - E. Nenhuma das outras respostas.
- **2.** Se o custo da energia elétrica fosse de 10 cêntimos por kilowatt-hora, quanto custaria manter uma torradeira de 660 W a funcionar durante meia hora?
 - A. 15 cêntimos.
 - B. 12 cêntimos.
 - C. 6.9 cêntimos.
 - D. 3.3 cêntimos.
 - E. 1.7 cêntimos.
- **3.** A corrente num condutor aumenta linearmente desde um valor inicial de 3 A, em t = 0, até o valor final 6 A, em t = 3 h. Determine a carga total transportada pelo condutor durante esse intervalo.
 - A. 48.6 kC

D. 97.2 kC

B. 32.4 kC

E. 16.2 kC

- C. 64.8 kC
- **4.** Uma pilha AA tem uma carga total de 8 A·h. Se for ligada a um dispositivo, produzindo uma corrente média de 50 mA durante 50 horas, com que percentagem da sua carga ficará após as 50 horas?

A. 31%

D. 69%

B. 50%

E. 131%

C. 21%

5. Se cada segundo 4.0×10^{18} eletrões e 1.5×10^{18} protões atravessam a secção transversal de um tubo de descarga de hidrogénio, a corrente média no tubo é:

A. 0.40 A

D. 1.5 A

B. 0.56 A

E. 4.0 A

C. 0.88 A

Problemas

- Um eletrão é acelerado no vácuo, a partir do repouso, através de uma diferença de potencial de 220 V. Determine a velocidade final do eletrão (a massa do eletrão encontra-se no apêndice A).
- 2. Num tubo de raios X são libertados eletrões, inicialmente em repouso, que são logo acelerados no vácuo do tubo por meio de um campo elétrico, atravessando uma região em que a diferença de potencial é de 4 kV. Os eletrões logo colidem com um alvo metálico produzindo radiação X. (a) Determine a energia cinética e a velocidade com que os eletrões colidem com o alvo. (b) Se a variação de potencial se estender por uma distância de 8 dm, determine a intensidade do campo elétrico médio.
- **3.** Uma certa bateria de automóvel tem carga máxima de 250 Ah, que corresponde à carga disponível quando está carregada a 100%. (*a*) Depois de algum uso, a bateria descarrega até 60% da sua carga máxima. Qual é a carga, em coulombs, com que fica a bateria? (*b*) A seguir, a bateria liga-se a um carregador de 12 V para a recarregar e observa-se que inicialmente a corrente do carregador tem intensidade de 7 A, mas 6 horas depois diminui a 3 A. Admitindo diminuição linear da corrente em ordem ao tempo, com que percentagem da sua carga máxima fica a bateria no fim das 6 horas?

Problemas 43

4. Uma pilha recarregável de Ni-MH tem f.e.m. de 1.2 V e carga máxima 2300 mA·h. Determine a energia potencial elétrica máxima que essa pilha pode armazenar.

- **5.** Uma calculadora pode funcionar com um adaptador que fornece 40 mA, a 3 V, ou com duas pilhas AA cada uma com 1.5 V e carga máxima de 8 Ah, ligadas em série. Admitindo que a calculadora utiliza a mesma potência quando funciona a pilhas ou com o adaptador, por quanto tempo pode funcionar a pilhas?
- **6.** Numa casa, o fusível do fogão elétrico na caixa de fusíveis é de 30 A. Qual é a potência máxima que pode ter o fogão? (admita diferença de potencial de 230 V).
- 7. A corrente num cabo varia de acordo com a função $I = 20 + 3 t^2$, onde I mede-se em miliampere e t em segundos. (a) Que carga transporta o cabo desde t = 0 até t = 10 s? (b) Qual o valor da corrente constante que transporta a mesma quantidade de carga no mesmo intervalo de tempo?
- **8.** Num condutor ligado a uma pilha com f.e.m. de 1.5 V, circulam 9.6×10^{21} eletrões de condução durante 2 horas. Determine:
 - (a) A intensidade da corrente média.
 - (b) A energia fornecida pela pilha durante esse intervalo.
 - (c) A potência média fornecida pela pilha.
 - (d) Se a carga inical da pilha era de 3 A·h, com que carga fica após as 2 horas?
- **9.** Para manter a temperatura a 20 °C num quarto, durante um dia de inverno, estima-se ser necessária energia de 132 kJ cada minuto. Se essa energia for fornecida por um aquecedor elétrico, ligado à tensão de 220 V disponível na casa:
 - (a) Determine a intensidade da corrente no aquecedor.
 - (b) Se o custo da energia elétrica for de 12 cêntimos por kw·h, qual o custo de manter ligado o aquecedor durante 10 minutos?

Respostas

Perguntas: 1. D. 2. D. 3. A. 4. D. 5. C.

Problemas

- 1. 8.80 Mm/s.
- **2.** (a) $E = 6.4 \times 10^{-16}$ J, v = 37.5 Mm/s. (b) 5 kV/m.
- **3.** (a) 5.4×10^5 C. (b) 72%.
- **4.** 9.936 kJ.
- **5.** 200 horas.
- **6.** 6.9 kW.
- **7.** (*a*) 1.2 C. (*b*) 120 mA.
- **8.** (a) 214 mA. (b) 2.307 kJ. (c) 320 mW. (d) 2.57 A·h.
- **9.** (a) 10 A. (b) 4.4 cêntimos.