EE735 Computer Vision Programming Assignment #3

Semi-supervised Image Classification with Deep Neural Networks

TA. Dong-Jin Kim

- [1] Semi-Supervised Learning with Ladder Networks. NIPS 2015.
- [2] TEMPORAL ENSEMBLING FOR SEMI-SUPERVISED LEARNING.ICLR 2017.
- [3] MEAN TEACHERS ARE BETTER ROLE MODELS: Weight-averaged consistency targets improve semi-supervised deep learning results. NIPS 2017.
- [4] Smooth Neighbors on Teacher Graphs for Semi-supervised Learning. CVPR 2018.

Supervised Learning VS Unsupervised Learning

Supervised Learning: when all the data points are labeled

Unsupervised Learning: non of the data points are labeled

Supervised Learning VS Unsupervised Learning

Supervised Learning: when all the data points are labeled

Unsupervised Learning: non of the data points are labeled

Semi-supervised = supervised + unsupervised

SOTA Semi-supervised Learning Methods

Ladder Network (Γ Model) (Valpola et al., NIPS 2015)

Π model & Temporal Ensembling (Laine et al., ICLR 2017)

Mean Teacher (Tarvainen et al., NIPS 2017)

Virtual Adversarial Training (VAT) (Tarvainen et al., TPAMI 2018)

etc.

Unlabeled data can increase generalization

Generalization == to prevent **overfitting** on training data

If the number (N_x) of dataset $\{x_i\}_{i=1}^{N_x}$ is **too few** to model the real data distribution p(x), The **overfitting** occurs.

By adding dense enough data, we can prevent overfitting.

but labeling all the data might be cumbersome.

Semi-supervised learning is to leverage dense data samples without labels.

labeled image for class 1 labeled image for class 2 distribution of class 1/2

adding noise (dropout or data augmentation) and apply **consistency** constraint under different perturbation.

labeled image for class 1 labeled image for class 2 distribution of class 1/2

adding noise (dropout or data augmentation) and apply **consistency** constraint under different perturbation.

labeled image for class 1 labeled image for class 2 distribution of class 1/2

adding noise (dropout or data augmentation) and apply **consistency** constraint under different perturbation.

Π model (Laine et al., ICLR 2017)

• Self-ensembling (exploiting drpout)

• Feed forward the **same model** under different (iid) perturbation (student, teacher)

Distance btw pred w/ different perturbations.

- Consistency cost (L2 distance)
- To alleviate the **bias** of the teacher, add noise also to the teacher.
- Effect of the loss function: Minimizing variance of the prediction.
- Weakness: have to evaluate model twice.

[1] TEMPORAL ENSEMBLING FOR SEMI-SUPERVISED LEARNING.ICLR 2017.

Π model (Laine et al., ICLR 2017)

Temporal Ensembling

- Problem of Π model: teacher can be unstable.
- To reduce variance of targets, add momentum for teacher activation -> better (stable) teacher
- Aggregate all the previous activations with Exponential Moving Average (EMA)

$$\tilde{F}^{(t)}(x_i) = \alpha \tilde{F}^{(t-1)}(x_i) + (1-\alpha)f^{(t)}(x_i; \theta, \xi)$$

• As a target (**teacher**), we need debias correction.

$$\widetilde{f}^{(t)}(x_i) = \widetilde{F}^{(t)}(x_i)/(1-\alpha^t).$$

П-model

- The EMA prediction (teacher) is an ensemble of the current and the earlier feats. (Temporal Ensemble)
- Weak : updating teacher only every **epoch**.

[1] TEMPORAL ENSEMBLING FOR SEMI-SUPERVISED LEARNING.ICLR 2017.

- Any features can be a teacher, or student.
- The supervision might be **noisy**.

- Utilize and update stable teacher.
- The supervision might becomes **stable**.

Mean Teacher (Tarvainen et al., NIPS 2017)

Improved version of temporal ensembling

Problem of Temporal Ensembling: teacher is updated every epoch -> **slow**, huge computation.

Instead of output activation, apply EMA for teacher model's parameter.

$$\theta_t' = \alpha \theta_{t-1}' + (1-\alpha)\theta_t$$

Updates teacher more frequently (every batch) -> better teacher.

The computation is independent to the number of samples.

More accurate target + enables learning large dataset

Further improvements with SNTG

Smooth Neighbors on Teacher Graph (SNTG) consider "connections between data points" to induce smoothness.

Construct a similarity graph (W) and use it as an additional supervision with SNTG loss.

Can be used for **boosting** the performance of Mean Teacher, Temporal Ensembling, etc.

cat

better predictions.

horse

The student and the teacher im prove each other in a virtuous cycle.

horse

The student and the teacher im prove each other in a virtuous cycle.

horse

Take a supervised model.

Make a copy of it.

Update teacher weights after each training step.

Add a cost between the two predictions.

Maybe add some noise.

Comparison to other methods on SVHN and CIFAR-10

	250 labels	500 labels	1000 labels	73257 labels
	73257 images	73257 images	73257 images	73257 images
GAN [24] II model [13] Temporal Ensembli VAT+EntMin [15]	mg[13]	18.44 ± 4.8 6.65 ± 0.53 5.12 ± 0.13	8.11 ± 1.3 4.82 ± 0.17 4.42 ± 0.16 3.86	2.54 ± 0.04 2.74 ± 0.06
Supervised-only	27.77 ± 3.18	16.88 ± 1.30	12.32 ± 0.95	2.75 ± 0.10
II model	9.69 ± 0.92	6.83 ± 0.66	4.95 ± 0.26	2.50 ± 0.07
Mean Teacher	4.35 ± 0.50	$\mathbf{4.18 \pm 0.27}$	3.95 ± 0.19	2.50 ± 0.05

SVHN

	1000 labels	2000 labels	4000 labels	50000 labels
	50000 images	50000 images	50000 images	50000 images
GAN [24] II model [13] Temporal Ensembli VAT+EntMin [15]	ing [13]		18.63 ± 2.32 12.36 ± 0.31 12.16 ± 0.31 10.55	5.56 ± 0.10 5.60 ± 0.10
Supervised-only	46.43 ± 1.21	33.94 ± 0.73	20.66 ± 0.57	5.82 ± 0.15
II model	27.36 ± 1.20	18.02 ± 0.60	13.20 ± 0.27	6.06 ± 0.11
Mean Teacher	21.55 ± 1.48	15.73 ± 0.31	12.31 ± 0.28	5.94 ± 0.15

CIFAR10

Instruction for PA#3

0. Environment setting

Go to the link (https://pytorch.org/) and install **Pytorch**.

Regarding your machine configuration (e.g. CUDA version), choose the appropriate command to install the latest Pytorch version.

1. Data Setup

Target dataset : **CIFAR10** data

Randomly select **4000** samples among the training set as labeled, and make the rest as unlabeled.

Refer Pytorch image classification tutorial for settings. (https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html).

For semi-supervised learning setup, please refer to the recent works [1,2]

^[1] TEMPORAL ENSEMBLING FOR SEMI-SUPERVISED LEARNING.ICLR 2017.

^[2] MEAN TEACHERS ARE BETTER ROLE MODELS: Weight-averaged consistency targets improve semi-supervised deep learning results. NIPS 2017.

2. Network Implementation.

Build ConvLarge architecture [1] which is the benchmark architecture proposed for semi-supervised learning.

Construct your base network given **this description**.—>

Required Library: torch.nn & torch.nn.functional

Refer [1] for more detailed design choices.

"The ones who use different architecture will be penalized."

NAME	DESCRIPTION
input	32×32 RGB image
noise	Additive Gaussian noise $\sigma = 0.15$
conv1a	128 filters, 3×3 , pad = 'same', LReLU ($\alpha = 0.1$)
conv1b	128 filters, 3×3 , pad = 'same', LReLU ($\alpha = 0.1$)
conv1c	128 filters, 3×3 , pad = 'same', LReLU ($\alpha = 0.1$)
pool1	Maxpool 2×2 pixels
drop1	Dropout, $p = 0.5$
conv2a	256 filters, 3×3 , pad = 'same', LReLU ($\alpha = 0.1$)
conv2b	256 filters, 3×3 , pad = 'same', LReLU ($\alpha = 0.1$)
conv2c	256 filters, 3×3 , pad = 'same', LReLU ($\alpha = 0.1$)
pool2	Maxpool 2×2 pixels
drop2	Dropout, $p = 0.5$
conv3a	512 filters, 3×3 , pad = 'valid', LReLU ($\alpha = 0.1$)
conv3b	256 filters, 1×1 , LReLU ($\alpha = 0.1$)
conv3c	128 filters, 1×1 , LReLU ($\alpha = 0.1$)
pool3	Global average pool ($6 \times 6 \rightarrow 1 \times 1$ pixels)
dense	Fully connected $128 \rightarrow 10$
output	Softmax

[1] TEMPORAL ENSEMBLING FOR SEMI-SUPERVISED LEARNING.ICLR 2017.

3. Training a Supervised Model.

- Define cross-entropy loss as supervised loss.
- compute the supervised loss and update the network with Adam optimizer.
- **Report** performance of the model trained "only on supervised data". (1)
- This will be your baseline performance.
- Required library: torchvision, torch.optim

4. Implement Mean teacher

- 1. Make copy of the student model as a **teacher** model.
- 2. Given a training batch, compute the consistency loss between teacher and student model.

$$J(\theta) = \mathbb{E}_{x,\eta',\eta} \left[\left\| f(x,\theta',\eta') - f(x,\theta,\eta) \right\|^2 \right]$$

- Train the student with supervised loss and consistency loss via gradient descent.
- 4. Update the **teacher** with exponential moving average (EMA).

$$\theta_t' = \alpha \theta_{t-1}' + (1 - \alpha)\theta_t$$

5. Repeat 2-4.

Report performance of the "Mean Teacher (MT) model". (2)

Refer the paper [1] for more details.

5. Implement SNTG

1. Construct Teacher Graph between the data points.

$$W_{ij} = \begin{cases} 1 & \text{if } \tilde{y}_i = \tilde{y}_j \\ 0 & \text{if } \tilde{y}_i \neq \tilde{y}_j \end{cases}$$

2. Compute SNTG loss between the latent features.

$$\ell_G = \begin{cases} ||h(x_i) - h(x_j)||^2 & \text{if } W_{ij} = 1\\ \max(0, m - ||h(x_i) - h(x_j)||)^2 & \text{if } W_{ij} = 0 \end{cases}$$

3. Update SNTG loss along with mean teacher loss.

Report performance of "MT+SNTG model". (3)

Refer the paper [1] for more details.

Algorithm 1 Mini-batch training of SNTG for SSL

Require: x_i = training inputs, y_i for labeled inputs in \mathcal{L} **Require:** w(t) = unsupervised weight ramp-up function**Require:** $f_{\theta}(x) = \text{neural network with parameters } \theta$ 1: **for** t in [1, numepochs] **do** for each minibatch B do $f_i \leftarrow f_\theta(x_{i \in B})$ evaluate network outputs $f_i \leftarrow f(x_{i \in B})$ given by the teacher model for (x_i, x_j) in a minibatch pairs S from B do Compute W_{ij} according to Eq. (6) end for 7: $loss \leftarrow -\frac{1}{|B|} \sum_{i \in (B \cap \mathcal{L})} log[f_i]_{y_i}$ $+w(t) \left| \lambda_1 \frac{1}{|B|} \sum_{i \in B} d(\tilde{f}_i, f_i) \right|$ $+\lambda_2 \frac{1}{|S|} \sum_{i,j \in S} \ell_G(h(x_i), h(x_j), W_{ij})$

update θ using optimizers, e.g., Adam [23]

- 10: end for
- 11: end for

9:

12: return θ

6. Extra Credit (Implement the Latest Approaches)

Implement one of the recent works.

- Deep Co-Training for Semi-Supervised Image Recognition (ECCV 18)
- Transductive Semi-Supervised Deep Learning using Min-Max Features (ECCV 18)
- Semi-Supervised Deep Learning with Memory (ECCV 18)
- SaaS: Speed as a Supervisor for Semi-supervised Learning (ECCV 18)
- HybridNet: Classification and Reconstruction Cooperation for Semi-Supervised Learning (ECCV 18)
-

Report performance of "your final model ". (4)

For final performance, try any tricks to improve the performance. (e.g. hyper-parameter tuning, different data augmentation, different noise)

but don't change the architecture (e.g. to ResNet)

"If you apply your own idea, you will receive higher score"

Criteria

- Implement a baseline model [1.0]
- Implement and reproduce Mean Teacher method [0.5]
- Implement Smooth Neighbor Teacher Graph [0.5]
- Improving Performance [1.0 (+1.0 for novelty)]
- Total 3.0+1.0 points.

"Performance is the most important criterion!

Try your best to improve the scores."

Submission

Due: December 7th (23:59 PM)

Use Pytorch library

Running code + report (description + performance)

Submit zip file to TA (djnjusa@kaist.ac.kr).

Zip file format: PA3_studentID_yourNAME.zip

"The submission after deadline will not be accepted.

Just submit what you have done."