GUATAÇARA DOS SANTOS JUNIOR

REDE GRAVIMÉTRICA: NOVAS PERSPECTIVAS DE AJUSTAMENTO, ANÁLISE DE QUALIDADE E INTEGRAÇÃO DE DADOS GRAVIMÉTRICOS

Tese apresentada como requisito parcial para obtenção do título de Doutor em Ciências Geodésicas, no Programa de Pós-Graduação em Ciências Geodésicas da Universidade Federal do Paraná.

Orientador:

Prof. Dr. Sílvio Rogério Correia de Freitas

Co-Orientadores:

Prof. Dr. Camil Gemael

Prof. Dr. Pedro Luis Faggion

CURITIBA

2005

Dedica-se este trabalho a minha mãe Edina Mara dos Santos, esposa Ariane Nalevaiko dos Santos e filha Letícia Nalevaiko dos Santos.

AGRADECIMENTOS

Ao Dr. Sílvio Rogério Correira de Freitas, Prof. do Curso de Pós-Graduação em Ciências Geodésicas da Universidade Federal do Paraná, a orientação prestada.

Ao Dr. Camil Gemael, Prof. do Curso de Pós-Graduação em Ciências Geodésicas da Universidade Federal do Paraná, a co-orientação prestada.

Ao Dr. Pedro Luís Faggion, Prof. do Curso de Pós-Graduação em Ciências Geodésicas da Universidade Federal do Paraná, a co-orientação prestada.

À Dr^a.Claúdia Pereira Krueger, Prof^a. e Coordenadora do Curso de Pós-Graduação em Ciências Geodésicas da Universidade Federal do Paraná.

À colega e Prof^a Dr^a. Selma Regina Aranha Ribeiro, da Universidade Federal do Paraná, pela valiosa contribuição a este trabalho.

A todos os professores do Curso de Pós-Graduação em Ciências Geodésicas.

À Verali Mônica Kleuser Reguilin, Secretária do Curso de Pós-Graduação em Ciências Geodésicas da Universidade Federal do Paraná.

Aos alunos e Colegas do Curso de Pós-Graduação em Ciências Geodésicas, com os quais no período de elaboração da dissertação foram refletidas a aplicabilidade e interdisciplinaridade do tema pesquisado.

Aos Profissionais da Biblioteca de Ciências e Tecnologia da Universidade Federal do Paraná.

Aos Profissionais do CEFET/PR – PG.

BIOGRAFIA

Guataçara dos Santos Junior, filho de Guataçara dos Santos e Edina Mara dos Santos, nasceu em 03 de outubro de 1971, no município de Ponta Grossa, PR.

Concluiu o Ensino Fundamental no Colégio São Luiz, em Ponta Grossa, PR, no ano de 1985 e o Ensino Médio neste mesmo estabelecimento de ensino, no ano de 1988.

Em 1990, ingressou no Curso de Licenciatura em Matemática da Universidade Estadual de Ponta Grossa, concluindo-o em dezembro de 1993.

Em 1993 foi professor de Ciências no Colégio Estadual Vespasiano da cidade de Castro, PR e professor de Desenho Geométrico, Ensino Médio, no Instituto de Educação Professor César Prieto Martinez da cidade de Ponta Grossa, PR.

Em 1994 foi professor de Matemática, Ensino Médio, no Colégio Estadual Elzira Correia de Sá da cidade de Ponta Grossa, PR.

Em 1994 e 1995 foi professor colaborador do Departamento de Matemática da Universidade Estadual de Ponta Grossa.

Em 1995 ingressou como professor de Matemática no Centro Federal de Educação Tecnológica do Paraná - CEFET/PR-PG, unidade de Ponta Grossa, hoje, Universidade Tecnológica Federal do Paraná – UTFPR, campus de Ponta Grossa, onde atualmente é professor de Cálculo Diferencial e Integral, Estatística e Coordenador do Curso Superior de Tecnologia em Alimentos.

Em 1998 obteve o título de Especialista em Matemática pela Universidade Estadual de Ponta Grossa.

Em dezembro de 2001 obteve o título de Mestre, no Curso de Pós-Graduação em Ciências Geodésicas, área de concentração em Geodésia.

SUMÁRIO

LISTA DE SIGLAS	i۷
LISTA DE FIGURAS	i۷
LISTA DE TABELAS	V
LISTA DE QUADROS	٧
LISTA DE SÍMBOLOS	İΧ
RESUMO	ίX
ABSTRACT	X
1 INTRODUÇÃO	1
1.1 HISTÓRICO DAS REDES GRAVIMÉTRICAS	1
1.1.1 Redes Mundiais	1
1.1.2 Redes Nacionais	2
1.2 COOPERAÇÃO E SUPORTE PARA A SUA REALIZAÇÃO	4
1.3 OBJETIVOS	5
1.3.1 Objetivo Geral	5
1.3.2 Objetivos Específicos	5
1.4 CONTRIBUIÇÃO E ESTRUTURAÇÃO DA PESQUISA	6
2 FUNDAMENTAÇÃO TEÓRICA	Ć
2.1 NOCÕES DE PRÉ-ANÁLISE DE REDES GEODÉSICAS	Ĝ
2.2 AJUSTAMENTO DE OBSERVAÇÕES PELO MÉTODO DOS MÍNIMOS	
QUADRADOS NA FORMA PARAMÉTRICA	11
2.3 CRITÉRIOS PARA ANÁLISE DE QUALIDADE DE REDES GEODÉSICAS	13
2.3.1 Critérios de Precisão para Redes Geodésicas	13
2.3.1.1 Teste para igualdade de valores próprios	15
2.3.2 Critério de Confiabilidade para Redes Geodésicas	17
2.3.2.1 Teste global	17 18
2.3.2.2 Redundância Parcial	19
2.3.2.4 Medida de confiabilidade interna	21
2.3.2.5 Teste data snooping	23
2.4 MATRIZ INVERSA GENERALIZADA	24
2.5 CONCEITOS BÁSICOS SOBRE REDES NEURAIS	25
2.5.1 Neurônio Biológico	26
2.5.2 Rede Neural Artificial	27
2.5.3 Modelo de um Neurônio Artificial	28
2.5.4 Rede Neural de Funções de Base Radial.	29
3 REDE GRAVIMÉTRICA CIENTÍFICA DO ESTADO DO PARANÁ	31
3.1 PROJETO DA REDE GRAVIMÉTRICA	31
3.2 CARACTERÍSTICAS DA REDE	32
3.3 METODOLOGIA APLICADA NO ESTABELECIMENTO DA REDE	35
3.4 CÁLCULO DOS DESNÍVEIS GRAVIMÉTRICOS	37
4 ESTRATÉGIAS APLICADAS NO AJUSTAMENTO DA REDE	
GRAVIMÉTRICA E ANÁLISE DE PRECISÃO E CONFIABILIDADE DAS	
SOLUÇÕES OBTIDAS	39
4.1 AJUSTAMENTO INDIVIDUAL	40
4.1.1 Ajustamento da Rede Utilizando a Tabela de Calibração Corrigida	41
4.1.1.1 Aplicação dos critérios de precisão para redes geodésicas e do teste	
nara igualdade de valores próprios	41

4.1.1.2.1 Aplicação do teste global	4.1.1.2 Aplicação do critério de confiabilidade	45
4.1.1.2.2 Análise da confiabilidade interna		45
4.1.2 Ajustamento da Rede Utilizando a Tabela de Calibração Original e com Injunção de Estações Absolutas Gravimétricas	4.1.1.2.2 Análise da confiabilidade interna	46
Injunção de Estações Absolutas Gravimétricas	4.1.1.2.3 Análise da confiabilidade externa	52
4.1.2.1 Áplicação dos critérios de precisão para redes geodésicas e do teste para igualdade de valores próprios	4.1.2 Ajustamento da Rede Utilizando a Tabela de Calibração Original e com	
para igualdade de valores próprios	Injunção de Estações Absolutas Gravimétricas	61
para igualdade de valores próprios	4.1.2.1 Aplicação dos critérios de precisão para redes geodésicas e do teste	
4.1.2.2.1 Aplicação do teste global		62
4.1.2.2.2 Análise da confiabilidade interna		64
4.1.2.2.3 Análise da confiabilidade externa		64
4.2 AJUSTAMENTO UTILIZANDO OBSERVAÇÕES MÉDIAS	4.1.2.2.2 Análise da confiabilidade interna	65
4.2.1 Ajustamento da Rede Utilizando a Tabela de Calibração Corrigida		71
4.2.1.1 Aplicação dos critérios de precisão para redes geodésicas e do teste para igualdade de valores próprios	4.2 AJUSTAMENTO UTILIZANDO OBSERVAÇÕES MÉDIAS	78
para igualdade de valores próprios	4.2.1 Ajustamento da Rede Utilizando a Tabela de Calibração Corrigida	80
4.2.1.2 Aplicação do critério de confiabilidade		
4.2.2 Ajustamento da Rede Utilizando a Tabela de Calibração Original		80
4.2.2.1 Aplicação dos critérios de precisão para redes geodésicas e do teste para igualdade de valores próprios		81
para igualdade de valores próprios	•	86
4.2.2.2 Aplicação do critério de confiabilidade	, ,	
4.3 AJUSTAMENTO UTILIZANDO OBSERVAÇÕES INDEPENDENTES	· · ·	86
4.4 INFLUÊNCIA EM UMA REDE AJUSTADA COM OBSERVAÇÕES LACOSTE & ROMBERG DA INJUNÇÃO DE OBSERVAÇÕES SCINTREX CLASSIFICADAS POR UMA REDE NEURAL ARTIFICIAL PROBABILÍSTICA . 11 5 CONCLUSÃO		87
LACOSTE & ROMBERG DA INJUNÇÃO DE OBSERVAÇÕES SCINTREX CLASSIFICADAS POR UMA REDE NEURAL ARTIFICIAL PROBABILÍSTICA . 11 5 CONCLUSÃO		92
CLASSIFICADAS POR UMA REDE NEURAL ARTIFICIAL PROBABILÍSTICA . 11 5 CONCLUSÃO		
5 CONCLUSÃO		
REFERÊNCIAS		114
DOCUMENTOS CONSULTADOS 12		124
		126
APENDICES 13		129
	APENDICES	130

LISTA DE SIGLAS

LAIG : Laboratório de Instrumentação Geodésica

UFPR : Universidade Federal do Paraná

IBGE : Instituto Brasileiro de Geografia e Estatística

CNPq : Conselho Nacional de Desenvolvimento Científico e Tecnológico

GPS : Global Positioning System

IGSN71 : International Gravity Standardization Net 1971

RENEGA : Rede Nacional de Estações Gravimétricas Absolutas

COMUT : Serviço de Comutação Bibliográfica

FOWGN : First Order World Gravity Net

ON : Observatório Nacional

MVC : matriz de variância-covariância

LISTA DE FIGURAS

FIGURA – 2.1	: REDE HOMOGENEA E ISOTROPICA	15
FIGURA – 2.2	: NEURÔNIO BIOLÓGICO	26
FIGURA – 2.3	: MODELO DE UM NEURÔNIO ARTIFICIAL	28
FIGURA – 3.1	: DISTRIBUIÇÃO DAS ESTAÇÕES GRAVIMÉTRICAS	32
FIGURA – 3.2	: LEITURA EFETUADA NA BASE INFERIOR DO PILAR	34
FIGURA – 3.3	: LEITURA EFETUADA NA BASE SUPERIOR DO PILAR	35
FIGURA – 3.4	: CIRCUITOS GRAVIMÉTRICOS E METODOLOGIA APLICADA	36
FIGURA – 4.1	: CONTROLABILIDADE DAS OBSERVAÇÕES REFERENTE ÀS	
	SOLUÇÕES AJUSTAMENTOTOTAL 1 E AJUSTAMENTOTOTAL10	99
FIGURA – 4.2	: ESTIMATIVA DO ERRO MÍNIMO QUE PODE SER LOCALIZADO COM	
	$lpha_0=$ 0,1% , $\left(1-eta_0 ight)=$ 80% E $\delta_0=$ 4,10 PARA A SOLUÇÃO	
	AJUSTAMENTOTOTAL1	101
FIGURA – 4.3	: ESTIMATIVA DO ERRO MÍNIMO QUE PODE SER LOCALIZADO COM	
1100101 1.0	$\alpha_0 = 0.1\%$, $(1 - \beta_0) = 80\%$ E $\delta_0 = 4.10$ PARA A SOLUÇÃO	
	AJUSTAMENTOTOTAL10	101
FIGURA – 4.4	: ESTIMATIVA DO ERRO GROSSEIRO PRESENTE EM CADA	101
FIGURA - 4.4	OBSERVAÇÃO REFERENTE À SOLUÇÃO AJUSTAMENTOTOTAL1	102
FIGURA – 4.5	: ESTIMATIVA DO ERRO GROSSEIRO PRESENTE EM CADA	102
1100117 - 4.5	OBSERVAÇÃO REFERENTE À SOLUÇÃO AJUSTAMENTOTOTAL10	103
FIGURA – 4.6	: CONTROLABILIDADE DAS OBSERVAÇÕES REFERENTE ÀS	100
1100104 - 4.0	SOLUÇÕES AJUSTAMENTOTOTAL6 E AJUSTAMENTOTOTAL6O	109
FIGURA – 4.7	: ESTIMATIVA DO ERRO MÍNIMO QUE PODE SER LOCALIZADO COM	.00
1100101 1.7	$\alpha_0 = 0.1\%$, $(1 - \beta_0) = 80\%$ E $\delta_0 = 4.10$ PARA A SOLUÇÃO	
		110
FIGURA – 4.8	AJUSTAMENTOTOTAL6: : ESTIMATIVA DO ERRO MÍNIMO QUE PODE SER LOCALIZADO COM	110
FIGURA - 4.0		
	$\alpha_0 = 0.1\%$, $(1-\beta_0) = 80\%$ E $\delta_0 = 4.10$ PARA A SOLUÇÃO	
	AJUSTAMENTOTOTAL6O	110
FIGURA – 4.9	: ESTIMATIVA DO ERRO GROSSEIRO PRESENTE EM CADA	
	OBSERVAÇÃO REFERENTE À SOLUÇÃO AJUSTAMENTOTOTAL6	112
FIGURA – 4.10	: ESTIMATIVA DO ERRO GROSSEIRO PRESENTE EM CADA	
	OBSERVAÇÃO REFERENTE À SOLUÇÃO AJUSTAMENTOTOTAL6O	112
FIGURA – 4.11	: CONTROLABILIDADE DAS OBSERVAÇÕES REFERENTE ÀS	440
FIGURA 440	SOLUÇÕES AJUSTAMENTOTOTAL6 E AJUSTAMENTOINTEGRADO	119
FIGURA – 4.12	: ESTIMATIVA DO ERRO MÍNIMO QUE PODE SER LOCALIZADO PARA	400
	A SOLUÇÃO AJUSTAMENTOINTEGRADO	120

FIGURA – 4.13	: ESTIMATIVA DO ERRO GROSSEIRO PRESENTE EM CADA OBSERVAÇÃO REFERENTE À SOLUÇÃO AJUSTAMENTOINTEGRADO	121	
LISTA DE TABELAS			
TABELA – 1.1	: ESTAÇÕES DA RENEGA	3	
	LISTA DE QUADROS		
QUADRO – 2.1	: CONTROLE DE OBSERVAÇÕES POR MEIO DE REDUNDÂNCIAS		
QUADRO – 2.2	PARCIAIS	19	
	TESTE $(1-\beta_0)$ E NÍVEL DE SIGNIFICÂNCIA (α_0)	20	
QUADRO – 3.1	: LINHAS DE DESNÍVEL GRAVIMÉTRICO REFERENTES ÀS ESTAÇÕES IMPLANTADAS NA REDE	38	
QUADRO – 4.1 QUADRO – 4.2	: TESTE PARA IGUALDADE DE VALORES PRÓPRIOS : TESTE PARA IGUALDADE DE VALORES PRÓPRIOS	42 42	
QUADRO – 4.3	: TESTE PARA IGUALDADE DE VALORES PRÓPRIOS	42	
QUADRO – 4.4	: APLICAÇÃO DOS CRITÉRIOS DE PRECISÃO	43	
QUADRO – 4.5	: APLICAÇÃO DOS CRITÉRIOS DE PRECISÃO	43	
QUADRO – 4.6	: APLICAÇÃO DOS CRITÉRIOS DE PRECISÃO	43	
QUADRO – 4.7	: RESULTADOS DO TESTE GLOBAL	45	
QUADRO – 4.8	: REDUNDÂNCIAS PARCIAIS E CONTROLABILIDADE DAS	70	
QUADITO - 4.0	OBSERVAÇÕES DOS AJUSTAMENTOS G114T, G143T, G372T E SCINTREXT	47	
QUADRO – 4.9	: REDUNDÂNCIAS PARCIAIS E CONTROLABILIDADE DAS OBSERVAÇÕES DOS AJUSTAMENTOS G114V, G143V, G372V E		
QUADRO – 4.10	SCINTREXV: : REDUNDÂNCIAS PARCIAIS E CONTROLABILIDADE DAS OBSERVAÇÕES DOS AJUSTAMENTOS G114VP, G143VP, G372VP E	47	
QUADRO – 4.11	SCINTREXVP: ESTIMATIVA DO ERRO MÍNIMO QUE PODE SER DETECTADO COM	48	
	$\alpha_0 = 0.45\%$, $(1 - \beta_0) = 80\%$ E $\delta_0 = 3.70$	49	
QUADRO – 4.12	: ESTIMATIVA DO ERRO MÍNIMO QUE PODE SER DETECTADO COM $\alpha_0=0.45\%$, $\left(1-\beta_0\right)=80\%$ E $\delta_0=3.70$	50	
QUADRO – 4.13	: ESTIMATIVA DO ERRO MÍNIMO QUE PODE SER DETECTADO COM	50	
	$\alpha_0 = 0.45\%$, $(1 - \beta_0) = 80\%$ E $\delta_0 = 3.70$	51	
QUADRO – 4.14	: ESTIMATIVA DO ERRO GROSSEIRO PRESENTE EM CADA OBSERVAÇÃO	53	
QUADRO – 4.15	OBSERVAÇÃO:: ESTIMATIVA DO ERRO GROSSEIRO PRESENTE EM CADA	53	
QUADRO – 4.16	OBSERVAÇÃO:: ESTIMATIVA DO ERRO GROSSEIRO PRESENTE EM CADA OBSERVAÇÃO	54	
QUADRO – 4.17	: INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS $\left(\nabla_{_{\mathrm{i}}} \right)$ SOBRE		
	OS PARÂMETROS DO AJUSTAMENTO G114T	54	
QUADRO – 4.18	: INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS $\left(\nabla_{_{\mathrm{I}}}\right)$ SOBRE OS PARÂMETROS DO AJUSTAMENTO G143T	55	
OLIADDO 440		55	
QUADRO – 4.19	: INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS $\left(\nabla_{_{\mathrm{I}}}\right)$ SOBRE OS PARÂMETROS DO AJUSTAMENTO G372T	55	
QUADRO – 4.20		55	
QUADINO - 4.20	: INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS (∇_i) SOBRE		
	OS PARÂMETROS DO AJUSTAMENTO SCINTREXT	56	

QUADRO – 4.21	$^:$ INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS $\left(abla_{_{f i}} ight)$ SOBRE	
	OS PARÂMETROS DO AJUSTAMENTO G114V	57
QUADRO – 4.22	$^:$ INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS $\left(abla_{_{1}} ight)$ SOBRE	
	OS PARÂMETROS DO AJUSTAMENTO G143V	57
QUADRO - 4.23	$^:$ INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS $\left(abla_{_{\mathrm{I}}} ight)$ SOBRE	
	OS PARÂMETROS DO AJUSTAMENTO G372V	58
QUADRO - 4.24	: INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS (∇_i) SOBRE	
	OS PARÂMETROS DO AJUSTAMENTO SCINTREXV	58
QUADRO – 4.25	: INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS (∇_i) SOBRE	JC
	OS PARÂMETROS DO AJUSTAMENTO G114VP	59
QUADRO – 4.26	: INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS (∇_i) SOBRE	58
Q0/15/10 1.20	OS PARÂMETROS DO AJUSTAMENTO G143VP	59
QUADRO – 4.27		ວະ
QUADITO - 4.21	: INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS (∇_i) SOBRE	0.0
QUADRO – 4.28	OS PARÂMETROS DO AJUSTAMENTO G372VP	60
QUADRO - 4.20	: INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS (∇_i) SOBRE	
0114550 400	OS PARÂMETROS DO AJUSTAMENTO SCINTREXVP	60
QUADRO – 4.29	: TESTE PARA IGUAL DADE DE VALORES PRÓPRIOS	62
QUADRO – 4.30	: TESTE PARA IGUALDADE DE VALORES PRÓPRIOS	62
QUADRO – 4.31	: TESTE PARA IGUALDADE DE VALORES PRÓPRIOS	62
QUADRO – 4.32	: APLICAÇÃO DOS CRITÉRIOS DE PRECISÃO	62
QUADRO – 4.33	: APLICAÇÃO DOS CRITÉRIOS DE PRECISÃO	62
QUADRO – 4.34	: APLICAÇÃO DOS CRITÉRIOS DE PRECISÃO	63
QUADRO – 4.35	: RESULTADOS DO TESTE GLOBAL	64
QUADRO – 4.36	: REDUNDÂNCIAS PARCIAIS E CONTROLABILIDADE DAS	0.5
QUADRO – 4.37	OBSERVAÇÕES DOS AJUSTAMENTOS G114TO, G143TO E G372TO : REDUNDÂNCIAS PARCIAIS E CONTROLABILIDADE DAS	65
QUADRO - 4.37	OBSERVAÇÕES DOS AJUSTAMENTOS G114VO, G143VO E G372VO	66
QUADRO - 4.38	: REDUNDÂNCIAS PARCIAIS E CONTROLABILIDADE DAS	UC
Q0/15/10 1.00	OBSERVAÇÕES DOS AJUSTAMENTOS G114VPO, G143VPO E	
	G372VPO	67
QUADRO - 4.39	: ESTIMATIVA DO ERRO MÍNIMO QUE PODE SER DETECTADO COM	-
	$\alpha_0 = 0.3\%$, $(1-\beta_0) = 80\%$ E $\delta_0 = 3.87$	68
QUADRO – 4.40	: ESTIMATIVA DO ERRO MÍNIMO QUE PODE SER DETECTADO COM	OC
Q0/10/10 4.40	$\alpha_0 = 0.3\%$, $(1-\beta_0) = 80\%$ E $\delta_0 = 3.87$	
QUADRO – 4.41	: ESTIMATIVA DO ERRO MÍNIMO QUE PODE SER DETECTADO COM	69
QUADRO - 4.41		
	$\alpha_0 = 0.3\%$, $(1-\beta_0) = 80\%$ E $\delta_0 = 3.87$	70
QUADRO – 4.42	: ESTIMATIVA DO ERRO GROSSEIRO PRESENTE EM CADA	
0114550 4 40	OBSERVAÇÃO:: ESTIMATIVA DO ERRO GROSSEIRO PRESENTE EM CADA	71
QUADRO – 4.43	: ESTIMATIVA DO ERRO GROSSEIRO PRESENTE EM CADA	70
QUADRO – 4.44	OBSERVAÇÃO:: : ESTIMATIVA DO ERRO GROSSEIRO PRESENTE EM CADA	72
QUADITO - 4.44	OBSERVAÇÃOOBSERVAÇÃO	73
QUADRO - 4.45	: INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS $\left(abla_{i} ight)$ SOBRE	
	OS PARÂMETROS DO AJUSTAMENTO G114TO	73
QUADRO – 4.46	: INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS (∇_i) SOBRE	7
	(1/	7.
	OS PARÂMETROS DO AJUSTAMENTO G143TO	74
QUADRO – 4.47	: INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS $\left(abla_{_{\mathrm{I}}} ight)$ SOBRE	
	OS PARÂMETROS DO AJUSTAMENTO G372TO	74
QUADRO – 4.48	$^:$ INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS $\left(abla_{_{1}} ight)$ SOBRE	
	OS PARÂMETROS DO AJUSTAMENTO G114VO	75
	00 : / N V NVIE : 1 NOO DO / NOOO ! / NVIE N ! O O ! 17 V O	- 1 -

QUADRO – 4.49	$:$ INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS $\left(abla_{_{\mathrm{I}}} ight)$ SOBRE	
	OS PARÂMETROS DO AJUSTAMENTO G143VO	76
QUADRO – 4.50	$^:$ INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS $\left(abla_{_{\mathbf{i}}} ight)$ SOBRE	
	OS PARÂMETROS DO AJUSTAMENTO G372VO	76
QUADRO – 4.51	$^{:}$ INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS $\left(abla_{_{1}} ight)$ SOBRE	
	OS PARÂMETROS DO AJUSTAMENTO G114VPO	77
QUADRO – 4.52	$^:$ INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS $\left(abla_{_{f i}} ight)$ SOBRE	
	OS PARÂMETROS DO AJUSTAMENTO G143VPO	77
QUADRO – 4.53	$^:$ INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS $\left(abla_{_{\mathbf{i}}} ight)$ SOBRE	
	OS PARÂMETROS DO AJUSTAMENTO G372VPO	78
QUADRO – 4.54	: TESTE DE IGUALDADE DE VALORES PRÓPRIOS	80
QUADRO – 4.55	: APLICAÇÃO DOS CRITÉRIOS DE PRECISÃO	80
QUADRO – 4.56	: RESULTADOS DO TESTE GLOBAL	81
QUADRO – 4.57	: REDUNDÂNCIAS PARCIAIS E CONTROLABILIDADE DAS OBSERVAÇÕES DOS AJUSTAMENTOS AGLOBAL1, AGLOBAL2 E	
	AGLOBAL3	82
QUADRO – 4.58	: ESTIMATIVA DO ERRO MÍNIMO QUE PODE SER DETECTADO COM	-
	$\alpha_0 = 0.45\%$, $(1-\beta_0) = 80\%$ E $\delta_0 = 3.70$	83
QUADRO – 4.59	: ESTIMATIVA DO ERRO GROSSEIRO PRESENTE EM CADA	00
	OBSERVAÇÃO	84
QUADRO – 4.60	$:$ INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS $\left(abla_{_{\mathrm{i}}} ight)$ SOBRE	
	OS PARÂMETROS DO AJUSTAMENTO AGLOBAL1	84
QUADRO – 4.61	$:$ INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS $\left(abla_{_{\mathbf{i}}} ight)$ SOBRE	
	OS PARÂMETROS DO AJUSTAMENTO AGLOBAL2	85
QUADRO – 4.62	$^:$ INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS $\left(abla_{_{f i}} ight)$ SOBRE	
	OS PARÂMETROS DO AJUSTAMENTO AGLOBAL3	85
QUADRO – 4.63	: TESTE DE IGUALDADE DE VALORES PRÓPRIOS	87
QUADRO – 4.64	: APLICAÇÃO DOS CRITÉRIOS DE PRECISÃO	87
QUADRO – 4.65	: RESULTADOS DO TESTE GLOBAL	87
QUADRO – 4.66	: REDUNDÂNCIAS PARCIAIS E CONTROLABILIDADE DAS OBSERVAÇÕES DOS AJUSTAMENTOS AGLOBAL1O, AGLOBAL2O E	
	AGLOBAL3O	88
QUADRO – 4.67	: ESTIMATIVA DO ERRO MÍNIMO QUE PODE SER DETECTADO COM	-
	$\alpha_0 = 0.3\%$, $(1 - \beta_0) = 80\%$ E $\delta_0 = 3.87$	89
QUADRO – 4.68	ESTIMATIVA DO ERRO GROSSEIRO PRESENTE EM CADA	03
	OBSERVAÇÃO	90
QUADRO – 4.69	$^:$ INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS $\left(abla_{_{\mathbf{i}}} ight)$ SOBRE	
	OS PARÂMETROS DO AJUSTAMENTO AGLOBAL1O	90
QUADRO – 4.70	$:$ INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS $\left(abla_{_{\mathbf{i}}} ight)$ SOBRE	
	OS PARÂMETROS DO AJUSTAMENTO AGLOBAL2O	91
QUADRO – 4.71	$^:$ INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS $\left(abla_{_{f i}} ight)$ SOBRE	
	OS PARÂMETROS DO AJUSTAMENTO AGLOBAL3O	91
QUADRO – 4.72	: TESTE DE IGUALDADE DE VALORES PRÓPRIOS	97
QUADRO – 4.73	: APLICAÇÃO DOS CRITÉRIOS DE PRECISÃO	98
QUADRO – 4.74	: RESULTADOS DO TESTE GLOBAL	99
QUADRO – 4.75	: INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS $(abla_i)$ SOBRE	
OLIADDO 4.70	OS PARÂMETROS DO AJUSTAMENTOTOTAL1	104
QUADRO – 4.76	: INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS $(abla_i)$ SOBRE	
0111DDC :==	OS PARÂMETROS DO AJUSTAMENTOTOTAL1O	105
QUADRO – 4.77	: RESUMO DE RESULTADOS DO TESTE GLOBAL	106

QUADRO – 4.78	: OBSERVAÇÕES LOCALIZADAS COM A PRESENÇA DE ERRO GROSSFIRO	107
QUADRO - 4.79	: TESTE DE IGUALDADE DE VALORES PRÓPRIOS	108
QUADRO – 4.80	: APLICAÇÃO DOS CRITÉRIOS DE PRECISÃO	108
QUADRO - 4.81	: RESULTADOS DO TESTE GLOBAL	108
QUADRO – 4.82	: INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS $\left(abla_{_{\mathrm{I}}} ight)$ SOBRE	
	OS PARÂMETROS DO AJUSTAMENTOTOTAL6	113
QUADRO – 4.83	: INFLUÊNCIA DOS ERROS GROSSEIROS ESTIMADOS $\left(\nabla_{_{\mathrm{i}}} \right)$ SOBRE	
	OS PARÂMETROS DO AJUSTAMENTOTOTAL6O	113
QUADRO - 4.84	: CLASSIFICAÇÃO DAS OBSERVAÇÕES SCINTREX	117
QUADRO – 4.85	: TESTE DE IGUALDADE DE VALORES PRÓPRIOS	118
QUADRO – 4.86	: APLICAÇÃO DOS CRITÉRIOS DE PRECISÃO	118
QUADRO – 4.87	: RESULTADOS DO TESTE GLOBAL	119
QUADRO – 4.88	: COMPARAÇÃO DA INFLUÊNCIA DOS ERROS GROSSEIROS	
	ESTIMADOS SOBRE OS PARÂMETROS COM AS RESPECTIVAS	
	PRECISÕES OBTIDAS	122
	TREGISOES OBTIDAS	122

LISTA DE SÍMBOLOS

 $\sum_{\mathbf{l_a}}$: Matriz de variância-covariância do vetor das observações ajustadas

 $\sum_{\mathbf{X_a}}$: Matriz de variância-covariância dos parâmetros ajustados

â2 : Variância da unidade de peso a posteriori

 $^{2}_{\sigma n}$: Variância da unidade de peso a priori

 Λ : Matriz diagonal formada pelos valores próprios de Σ_{x_a}

! : Deve ser

=

 $\lambda_{\text{máx}}~$: Valor próprio máximo obtido da matriz MVC

 λ_{min} : Valor próprio mínimo obtido da MVC

 $_{\gamma}^{\,\,2}$: Distribuição qui-quadrado

 Σv : Matriz de variância-covariância dos resíduos

 α : Nível de significância

 δ_0 : Parâmetro de não centralidade

 $\sigma_{\text{l}:}$: Desvio padrão da i-ésima observação não ajustada

 $\nabla I_{0_i} \quad \ \ \, : \ \ \mbox{Valor mínimo do erro detectável na observação } I_i$

 $(1-\beta)$: Poder do teste

 \bar{r}_i : Redundância parcial média

∇|_i : Erro grosseiro presente em uma observação

 ∇_{i} : Estimativa para o erro grosseiro

 ∇x : Efeito do erro grosseiro sobre o vetor solução dos parâmetros ajustados

x : Média aritmética de uma amostra

λ : Longitude geodésica ou valores próprios

φ : Latitude geodésica

+ : Indicação de pseudo-inversa ou inversa generalizada de Moore Penrose quando

sobrescrito no símbolo de uma matriz

-1 : Indicação de inversa ordinária quando sobrescrito no símbolo de uma matriz

A : Matriz dos coeficientes

b : Número de valores próprios associados a MVC

det(.) : Determinante de uma matriz

e : Número de neper (2,71828182846...)

e_i: i-ésima coluna da matriz identidade

g : Aceleração da gravidade

μGal : microgal

h : Altitude ortométrica

H₀ : Hipótese nula

 $\begin{array}{lll} H_1 & : & \mbox{Hipótese alternativa} \\ I_i & : & \mbox{i-ésima observação} \\ \mbox{In} & : & \mbox{Logaritmo neperiano} \end{array}$

m : Vetores próprios

M : Matriz ortogonal cujas colunas são vetores próprios de \sum_{X_a}

mGal: miligal

P : Matriz dos pesos

r : Redundância do sistema ou graus de liberdade

r_i : Redundância parcial

s : Desvio padrão de uma amostra

t : Indicação da transposta de uma matriz, quando sobrescrito no símbolo de matriz

tr(.) : Traço de uma matriz

u : Número de parâmetros

 $\begin{array}{lll} v & : & \text{Vetor dos resíduos} \\ v_k & : & \text{Combinação linear} \end{array}$

 w_{kj} : Peso sináptico

x₀ : Vetor dos parâmetros aproximadosx_a : Vetor dos parâmetros ajustados

x_j : Sinal de entrada da sinapse j conectada ao neurônio

RESUMO

A International Gravity Standardization Net 1971 (IGSN71) é na atualidade a rede gravimétrica de referência mundial. As redes gravimétricas fundamentais nacionais e derivadas são usualmente estabelecidas via levantamentos relativos a IGSN-71. Devido à extensão territorial brasileira onde existem apenas 20 localidades com estações IGSN71 e as dificuldades de acesso a regiões remotas, a precisão das redes derivadas usualmente apresenta-se no intervalo de 50 a 100 microgal. Esta concepção de levantamento gravimétrico passou a ser modificada, com injunção de observações de desnível gravimétrico nas redes existentes para controle e reajustamento, com a calibração de gravímetros em campo e o controle do fator de escala instrumental. Com base nessas idéias iniciais, foi concebida uma Rede Gravimétrica Científica para o Estado do Paraná. No presente trabalho são apresentadas as concepções, estratégias e atividades experimentais associadas à metodologia de implantação de redes gravimétricas de alta precisão no Brasil. Para tanto, foi implantada uma rede com estações em 21 localidades do Estado do Paraná e uma no Estado de São Paulo. O levantamento das observações foi efetuado com quatro gravímetros, três do tipo LaCoste & Romberg, modelos G-114, G-143, G-372 realizadas e um gravímetro digital Scintrex, modelo CG3. Combinando as observações com quatro gravímetros com as estratégias de ajustamento pelo método dos mínimos quadrados empregadas para rede, foram obtidas diversas soluções para a rede. É apresentado também um critério para integração de observações LaCoste & Romberg com observações oriundas do gravímetro Scintrex. Para análise de todas as soluções obtidas, bem como a decisão pela solução ótima, foram utilizados os critérios de precisão e confiabilidade para redes geodésicas.

Palavras-chave: Rede gravimétrica, Critério de precisão, Critério de confiabilidade.

ABSTRACT

International Gravity Standardization Net 1971 (IGSN71) it is at the present time the world gravity network of reference. The national fundamental gravity network and flowed they are usually established saw relative survey this world network. Due to the brazilian territorial extension where only 20 places exist with stations IGSN71 and the access difficulties to remote areas, the precision of the networks flowed usually comes in the interval from 50 to 100 microgal. This conception of gravity survey became modified, with constraining of observations of differences gravity in the existent networks for control and readjustment, with the calibration of gravimeters in field and the control of the factor of instrumental scale. With base in those ideas initials, it was conceived a Scientific Gravity Network for the State of Paraná. In the present work the conceptions, strategies and experimental activities associated to the methodology of implantation of gravity networks of high precision in Brazil are presented. For so much, a network was implanted with stations in 21 places of the State of Paraná and one in the State of São Paulo. The survey of the observations was made with four gravimeters, three of the type LaCoste & Romberg, models G-114, G-143, G-372 and a digital gravimeter Scintrex, model CG3. Combining the observations with four gravimeters with the adjustment strategies for the method of least square employed for network, were obtained several solutions for the network. It is also presented a criterion for integration of observations LaCoste & Romberg with observations originating from of the gravimeter Scintrex. For analysis of all the obtained solutions, as well as the decision for the great solution, the criteria of precision and reliability were used for geodetic networks.

Keywords: Gravity network; Precision criterion; Reliability criterion.