

MATEMÁTICA ANALÍTICA 3 Taller para el Control 2021-1

1. Si C es el arco de una curva que resulta de intersectar las superficies de ecuaciones S_1 : x = z y S_2 : $y^2 + x = 4$ desde el punto (0; -2; 0) hasta el punto (0; 2; 0).

Marque las respuestas correctas.

- a. El valor de la integral $\int_C (xy^2 0.25) ds$. Es aproximadamente 28,4209
- b. La longitud de la curva C es aproximadamente 13,85 unidades.
- c. Si la curva C representa un alambre delgado con densidad de masa $\sigma(x;y;z)=x+y$, entonces la masa del alambre está dado por la integral $m=\int_{-2}^2 (4-t^2+t) \ dt$
- d. La longitud de la curva C es aproximadamente -13,85 unidades.
- 2. Calcular la integral de línea del campo $F(x,y)=\langle x^2;\,y^2\rangle$ sobre la parábola $C:y=x^2$ desde A=(0;0) hasta B=(2;4).
- 3. Calcule el trabajo realizado por la fuerza de campo $\mathbf{F}(x;y;z) = \langle x-y^2;y-z^2;z-x^2\rangle$ para desplazar una partícula que se mueve en línea recta desde (0;-2;1) hasta (2;1;0).
- 4. Un alambre tiene la forma de la curva $r(t)=\langle sent; cost; 1 \rangle$ donde $t \in [0;\pi]$. Halle la masa del alambre si la densidad en cualquier punto está dada por $\sigma(x;y;z)=\sqrt{x^2+y^2}$
- 5. Un alambre tiene la forma de la intersección del cilindro $z=4-y^2,\ z\geq 0$ con el plano x=2-y. Determine la masa del alambre si la densidad en cada punto es $\delta(x;y;z)=x$.
- 6. Evalúe $\int_C 2x \, ds$, si C está formada por el arco C_1 de la parábola $y=x^2$ de (0;0) a (1;1) seguido por el segmento vertical de recta C_2 de (1;1) a (1;2).

2021 - 1 Página 1

7. El sólido W definido por la región del primer octante interior a la esfera de ecuación: $x^2+y^2+z^2=16$ y encima del cono $z=\frac{1}{2}\sqrt{x^2+y^2}$. La densidad en kg/cm^3 de W está dada por: $\sigma(x;y;z)=\sqrt{2x^2+2y^2+2z^2}$. Calcule la masa del sólido W.El sólido W se observa en la figura adjunta,

- 8. La empresa SAJITA. S.A fabrica piezas metálicas, cada una de ellas se puede representar como un sólido limitado por las superficies z = 0, z = x² + y², x² + y² = x y x² + y² = 2x. El metal que se usará en su fabricación tiene un costo de \$3,5 por centímetro cúbico.
 - a. Grafique y exprese el sólido en coordenadas cilíndricas.
 - b. Calcule la masa de la pieza metálica, si la densidad en kg/cm^3 en cada punto P(x;y;z) de la pieza metálica es igual a la distancia del punto P al plano xy.
 - c. La empresa desea enviar un pedido de 60 de estas piezas metálicas, calcule el costo total del metal necesario.

2021 - 1 Página 2