101 2013 BRISBANE AUSTRALIA

International Olympiad in Informatics 2013

6-13 July 2013 Brisbane, Australia

dreaming

Armenian — 1.0

Այս պատմությունը եղել է վաղուց, երբ աշխարհը նոր էր, և IOI-ի մասին անգամ հնարավոր չէր երազել։

Օձն ապրում է մի երկրում, որտեղ կան "N" ջրափոսեր՝ համարակալված 0-ից N-1 թվերով։ Կան M երկկողմանի արահետներ, որոնք իրար են կապում ջրափոսերի զույգեր, և օձը կարող է շրջել դրանցով։ Ջրափոսերի յուրաքանչյուր զույգ կապակցված է (ուղղակիորեն կամ անուղղակիորեն) արահետների առավելագույնը մեկ հաջորդականությամբ, այսինքն ջրափոսերի որոշ զույգեր կարող են կապված չլինել (հետևաբար, $M \le N-1$)։ Յուրաքանչյուր արահետով անցնելու համար օձին անհրաժեշտ են որոշակի քանակությամբ օրեր և այդ թիվը տարբեր արահետների համար կարող է տարբեր լինել։

Օձի ընկեր Կենգուրուն ցանկանում է N-M-1 նոր արահետներ կառուցել, այնպես, որ Օձը կարողանա ցանկացած ջրափոսից ցանկացած ջրափոս գնալ։ Կենգուրուն կարող է արահետ կառուցել ցանկացած երկու ջրափոսերի միջև, և Կենգուրուի պատրաստած յուրաքանչյուր արահետով անցնելու համար Օձին պետք է L օր։

Բացի այդ, Կենգուրուն ցանկանում է Օձի Ճամփորդություները, որքան հնարավոր է, արագ դարձնել։ Կենգուրուն պետք է նոր արահետներ կառուցի այնպես, որ ցանկացած երկու ջրափոսերի միջև Ճամփորդելու ամենաերկար ժամանակը լինի փոքր որքան հնարավոր է։ Օգնեք Կենգուրույին և Օձին. գտեք մի ջրափոսից մյուսը հասնելու ամենաերկար ժամանակը, երբ Կենգուրուն նոր արահետները այս կերպ կառուցած կլինի։

Օրինակներ

Վերևի նկարում կա N=12 ջրափոս և M=8 արահետ։ Դիցուք L=2, այսինքն Օձը նոր արահետներից յուրաքանչյուրով կանցնի 2 օրում։ Այդ դեպքում Կենգուրուն կարող է կառուցել երեք նոր արահետ.

- 1 և 2 ջրափոսերի միջև;
- 1 և 6 ջրափոսերի միջև;
- 4 և 10 ջրափոսերի միջև:

Վերևի նկարում պատկերված է արահետների վերջնական տեսքը։ Ճամփորդելու ամենաերկար ժամանակը 18 օր է՝ 0 և 11 ջրափոսերի միջև։ Դա հնարավոր ամենափոքր արդյունքն է։ Կենգուրուն ինչպես էլ արահետներ կառուցի, կգտնվի ջրափոսերի որևէ զույգ, որոնցից մեկից մյուսը գնալու համար Օձին պետք է 18 օր կամ ավել ժամանակ։

Իրականացումը

Դուք պետք է ուղարկեք ֆայլ, որտեղ իրականացված է <code>travelTime()</code> ֆունկցիան, as follows:

Your Function: travelTime()

```
C/C++ int travelTime(int N, int M, int L, int A[], int B[], int T[]);

Pascal function travelTime(N, M, L : LongInt; var A, B, T : array of LongInt) : LongInt;
```

Նկարագրությունը

Այս ֆունկցիան պետք է հաշվի ցանկացած երկու ջրափոսերի միջև Ճամփորդելու ամենաերկար ժամանակը (արտահայտված օրերով) այն ենթադրությամբ, որ Օձն ավելացրել է N-M-1 արահետ այնպես, որ բոլոր ջրափոսերը կապակցված են և Ճամփորդելու ամենաերկար ժամանակը, որքան հնարավոր է, փոքր է։

Պարամետրերը

- N : Ջրափոսերի քանակը։
- M: Արդեն գոլություն ունեցող ջրափոսերի քանակը։
- L: Oàp նոր արահետր քանի օրում է անցնում։
- A, B և T: Arrays of length M երկարության զանգվածներ, որոնք նկարագրում են նախապես գոյություն ունեցող արահետներից յուրաքանչյուրի ծայրակետերը և Ճամփորդելու ժամանակը այնպես, որ i րդ արահետը միացնում է A[i-1] և B[i-1] ջրափոսերը, և այդ արահետով անցնելու համար պետք է T[i-1] օր։
- Returns: Որևէ երկու ջրափոսերի միջև Ճանապարհորդելու ամենաերկար ժամանակը, ինչպես նկարագրված է վերևում։

Sample Session

The following session describes the example above:

Parameter	Value
N	12
М	8
L	2
A	[0, 8, 2, 5, 5, 1, 1, 10]
В	[8, 2, 7, 11, 1, 3, 9, 6]
T	[4, 2, 4, 3, 7, 1, 5, 3]
Returns	18

Constraints

■ Time limit: 1 second

Memory limit: 64 MiB

■ $1 \le N \le 100,000$

■ 0 ≤ M ≤ N - 1

■ 0 ≤ A[i], B[i] ≤ N - 1

■ 1 ≤ T[i] ≤ 10,000

■ 1 ≤ L ≤ 10,000

ենթախնդիրներ

Subtask	Points	Լրացուցիչ մուտքային սահմանափակումներ
1	14	M = N - 2 , և յուրաքանչյուր ջրափոսից դուրս է գալիս ձիշտ մեկ կամ երկու արահետ։ Այլ կերպ ասած, կա իրար հետ կապված ջրափոսերի երկու հավաքածու, որոնցից յուրաքանչյուրում նախապես տրված արահետները չձյուղավորվող ձանապարհ են կազմում։
2	10	$M = N - 2$ and $N \le 100$
3	23	M = N - 2
5	12	N ≤ 3,000

Էքսպերիմենտ

Ձեր համակարգչում գրեյդերը կարդում է մուտքային տվյալները dreaming.in ֆայլից որը պետք է լինի հետևյալ ֆորմատով.

```
    unn 1: N M L
    unn 2, ..., M + 1: A[i] B[i] T[i]
```

Օրինակ, վերևում նկարագրված դեպքր պետք է տրված լինի հետևյալ կերպ.

```
12 8 2

0 8 4

8 2 2

2 7 4

5 11 3

5 1 7

1 3 1

1 9 5

10 6 3
```

Դիտողություններ լեզուների վերաբերյալ

```
C/C++ You must #include "dreaming.h".

Pascal You must define the unit Dreaming. All arrays are numbered beginning at 0 (not 1).
```

See the solution templates on your machine for examples.