Chapter 4. Binary Floating-Point Numbers

Machine representation of real numbers:

- Fixed-point (discussed in Chapter 1)
- Floating-point

Compared to fixed point numbers, floating-point numbers are efficient in representing both very large and very small numbers.

§1. IEEE 754-2008 Standard

The IEEE 754-2008 standards are probably the most prevailing use of floating point numbers, which include four formats:

- 1. Single-precision format (32-bit)
- 2. Double-precision format (64-bit)
- 3. Single extended format (\geq 44-bit)
- 4. Double extended format (≥ 80 -bit)

In this course we will introduce only the first two formats, IEEE single-precision format and IEEE double-precision format.

§1.1. IEEE single-precision (32 bits)

An IEEE single-precision floating-point number F has three parts, s, e and f, as shown below.

IEEE floating-point number F can be evaluated by

$$F = (-1)^s \times 1.f \times 2^{e-127}. (1)$$

Note in (1) that there is a hidden 1 that is not shown in the representation of F. The maximal and minimal values of F can be decided by

$$\begin{split} F_{\text{max}} &= (2-2^{-23}) \times 2^{254-127} = (1-2^{-24}) \times 2^{128}, \\ F_{\text{min}} &= 1 \times 2^{1-127} = 2^{-126}. \end{split}$$

How to represent zero? Use the reserved formats as shown in the table below.

Value or meaning of an IEEE single-precision floating-point representation			
e = 0	f = 0	$F = \pm 0$	
	$f \neq 0$	F are subnormal numbers (= $\pm 0.f \times 2^{-126}$)	
e = 255	f = 0	$F = \pm \infty$	
	$f \neq 0$	F is NAN (Not a Number)	
$1 \leqslant e \leqslant 254$	_	F is an ordinary number and $F = (-1)^s \times 1.f \times 2^{e-127}$	

Example 1 Convert 46.5_{10} into IEEE single-precision standard.

Solution: First we convert the given number 46.5_{10} into binary of the form of (1):

$$46.5_{10} = 101110.1_2 = 1.0111 \times 2^5 = (-1)^0 \times 1.0111 \times 2^{132-127}$$
.

Then it is easy to obtain

$$\begin{cases} s = 0 \\ e = 1000\ 0100 \\ f = 0111\ 0000\ 0000\ 0000\ 0000\ 000 \end{cases}$$

§1.2. IEEE double-precision (64 bits)

An IEEE double-precision floating-point number F has also three parts, s, e and f, as shown below.

IEEE floating-point number F can be evaluated by

$$F = (-1)^s \times 1.f \times 2^{e-1023}. (2)$$

Note a hidden 1 also exists for double-precision case that is not shown in the representation of F. The maximal and minimal values of F can be decided by

$$F_{\text{max}} = (2 - 2^{-52}) \times 2^{2046 - 1023} = (1 - 2^{-53}) \times 2^{1024},$$

 $F_{\text{min}} = 1 \times 2^{1 - 1023} = 2^{-1022}.$

The value or meaning of an IEEE double-precision number F is given in the following table:

Value or meaning of an IEEE double-precision floating-point representation			
e = 0	f = 0	$F = \pm 0$	
e = 0	$f \neq 0$	F are subnormal numbers (= $\pm 0.f \times 2^{-1022}$)	
e = 1023	f = 0	$F = \pm \infty$	
	$f \neq 0$	F is NAN (Not a Number)	
$1 \leqslant e \leqslant 1022$	_	F is an ordinary number and $F = (-1)^s \times 1.f \times 2^{e-1023}$	

Example 2 Convert 46.5_{10} into IEEE double-precision standard.

Solution: First we convert the given number 46.5_{10} into binary of the form of (2):

$$46.5_{10} = 101110.1_2 = 1.0111 \times 2^5 = (-1)^0 \times 1.0111 \times 2^{1028-1023}$$
.

Then it is easy to obtain

$$\begin{cases} s = 0 \\ e = 1000\ 0000\ 100 \\ f = 0111\ 0000\ \underbrace{00\cdots00}_{44\ zeros} \end{cases}$$

§2. A Summary of Floating-Point Representations

A floating-point representation F has three parts:

- The sign, S;
- The significand (or mantissa), f (or M);
- \bullet The exponent, E.

The bits of the floating-point number F are stored in a register or a memory unit shown as follows

$$F = S$$
: sign E : exponent f or M : significand

and the value of such a floating-point number F is given by

$$F = (-1)^S \times M \times \beta^{E-\text{bias}}.$$

where β is the base of E which is implied in a system. Usually, β is often chosen as a power of 2.

The representation range is $[-F_{\max}, -F_{\min}]$ and $[F_{\min}, F_{\max}]$, where F_{\max} and F_{\min} are given by

$$F_{\text{max}} = f_{\text{max}} \times \beta^{e_{\text{max}} - \text{bias}},$$

$$F_{\min} = f_{\min} \times \beta^{e_{\min}-bias}$$
.

The computer system is overflow if a result is larger than F_{max} or smaller than $-F_{\text{max}}$. The system is called underflow if a result is nonzero and belongs to the interval $(-F_{\text{min}}, F_{\text{min}})$.

§3. Floating-Point Operations

The following discussions are using the generic floating point representation,

$$F = (-1)^S \times M \times \beta^{E-Bias}.$$

§3.1. Multiplication

Given two numbers

$$F_1 = (-1)^{S_1} \cdot M_1 \cdot \beta^{E_1 - \text{bias}}$$
 and $F_2 = (-1)^{S_2} \cdot M_2 \cdot \beta^{E_2 - \text{bias}}$

and assume that they both are in normalized forms. Then the product $F_3 = F_1 \times F_2$ and

$$F_3 = (-1)^{S_3} \cdot M_3 \cdot \beta^{E_3 - \text{bias}}$$

can be obtained as follows.

- 1. Calculate $E_3 = E_1 + E_2$ bias. IF $(E_3 > E_{\rm max})$ THEN overflow ELSE IF $(E_3 < E_{\rm min})$ THEN underflow.
- 2. Calculate $M_3=M_1\times M_2$. IF $(M_3<(1/\beta))$ THEN $M_3=M_3\times \beta$ and $E_3=E_3-1$.
- 3. IF $(E_3 < E_{\min})$ THEN underflow.

The second step above is called post-normalization.

§3.2. Addition/Subtraction

Let two float-point numbers be given by

$$F_1 = (-1)^{S_1} \times M_1 \times \beta^{E_1 - bias}$$

 $F_2 = (-1)^{S_2} \times M_2 \times \beta^{E_2 - bias}$

 $F_2 = (-1)^{32} \times M_2 \times \beta^{22} \text{ state}$

then addition/subtraction operation can be performed as follows.

1. Assume that $E_1 \geqslant E_2$ and compute

$$F_3 = F_1 \pm F_2 = [(-1)^{S_1} \times M_1 \pm (-1)^{S_2} \times M_2 \times \beta^{-(E_1 - E_2)}] \times \beta^{E_1 - bias}$$

2. Let $(-1)^{S_1} \times M_1 \pm (-1)^{S_2} \times M_2 \times \beta^{-(E_1-E_2)}$ be denoted as M_3 . If $M_3 < (1/\beta)$ or $M_3 \geqslant 1$ then post-normalization is needed.

3. If there is post-normalization then we need to check whether or not the final exponent E_3 is overflow or underflow.

Example 3 Convert $F_1 = 4$ and $F_2 = 3$ into IEEE floating point single precision format. Then perform floating point operations $F_1 \times F_2$ and $F_1 + F_2$.

Solution:

$$F_1 = 4 = (-1)^{S_1} \times 1. f_1 \times 2^{E_1 - 127} = (-1)^0 \times 1.0 \times 2^{129 - 127},$$

 $F_2 = 3 = (-1)^{S_2} \times 1. f_2 \times 2^{E_2 - 127} = (-1)^0 \times 1.1 \times 2^{128 - 127}.$

Then for floating point multiplication we have

$$F_3 = F_1 \times F_2 = (-1)^0 \times (1.0 \times 1.1) \times 2^{(129-127+128)-127} = (-1)^0 \times 1.1 \times 2^{130-127}$$

For floating point addition, since $F_1 > F_2$ we first rewrite F_2 such that its 2's power part is the same as that of F_1 .

$$F_2 = (-1)^0 \times 1.1 \times 2^{128-127} = (-1)^0 \times 0.11 \times 2^{129-127}.$$

Then it follows

$$F_4 = F_1 + F_2 = (-1)^0 \times (1.0 + 0.11) \times 2^{129 - 127} = (-1)^0 \times 1.11 \times 2^{129 - 127}.$$

§4. Rounding Schemes

Rounding is a technique to obtain low-precision representation from given high-precision representation:

High-precision
$$\rightarrow$$
 Rounding \rightarrow Low-precision

We assume that the input to a rounding scheme has m integer bits and d fractional bits,

$$x_{m-1}\ldots x_0.x_{-1}\ldots x_{-d},$$

and the output contains only integer bits, $y_{m'-1} \dots y_0$. This can be shown as

$$x_{m-1} \dots x_0.x_{-1} \dots x_{-d} \rightarrow Rounding \rightarrow y_{m'-1} \dots y_0.$$

Let X and Y(X) denote the input and the output of a rounding scheme, respectively. Rounding error is defined as R(X) = Y(X) - X. We measure the accuracy of the rounding results by computing the maximum errors and the bias of the scheme, where bias is defined as the average error for a block of 2^d numbers including all the possible inputs to the rounding scheme.

Criteria for choosing a "good" rounding scheme (items with check mark will be discussed):

- 1. Accuracy of the output
 - small maximum errors \checkmark
 - small bias ✓
 - small variation
- 2. Low time delay or speed ✓
- 3. Low implementation cost ✓

§4.1. Truncation or chopping: chop(x)

- 1. Definition: chop(x) = |x|.
- 2. Truth table:

Chopping scheme with $d=2$				
Input:	Output:	Error:		
x	chop(x)	$ \operatorname{chop}(x) - x $		
×.00	×.	0		
×.01	×.	-1/4		
×.10	×.	-1/2		
×.11	×.	-3/4		

3. Error and bias: It can be seen from the above table that the maximal error is $e^-_{\rm max}=-3/4$ and

Bias =
$$\frac{1}{4} \left(0 - \frac{1}{4} - \frac{1}{2} - \frac{3}{4} \right) = -\frac{3}{8}$$
.

- 4. Implementation: Its implementation is cost free.
- 5. Time delay: There is no delay incurred with this rounding scheme.

$\S 4.2.$ Round to nearest integer: round(x)

1. definition: round(x) = $\lfloor x + 0.5 \rfloor$.

2. Truth table:

Round-to-nearest scheme with $d=2$				
Input:	Output:	Error:		
x	round(x)	round(x) - x		
×.00	×.	0		
×.01	×.	-1/4		
×.10	$\times . + 1$	+1/2		
×.11	$\times . + 1$	+1/4		

3. Error and bias: It can be seen from the above table that the maximal error is $e_{\rm max}^+=+1/2$ and

Bias =
$$\frac{1}{4} \left(0 - \frac{1}{4} + \frac{1}{2} + \frac{1}{4} \right) = +\frac{1}{8}$$
.

4. Implementation: An implementation requires an adder and a few logic gates.

5. Time delay: It is equal to that of an adder of the size of the output.

$\S 4.3.$ Round to nearest even integer: rtne(x)

1. definition: Round to the nearest even integer if it is a tie case.

2. Truth table:

Round-to-nearest-even scheme with $d=2$				
Input:	Output:	Error:		
x	rtne(x)	rtne(x) - x		
×0.00	×0.	0		
×0.01	$\times 0.$	-1/4		
×0.10	$\times 0.$	-1/2		
×0.11	×1.	+1/4		
×1.00	×1.	0		
×1.01	×1.	-1/4		
×1.10	$\times 1. + 1$	+1/2		
×1.11	$\times 1. + 1$	+1/4		

3. Errors and bias: It can be seen from the above table that the maximal errors are $e_{\rm max}^+=+1/2$ and $e_{\rm max}^-=-1/2$.

Bias =
$$\frac{1}{8} \left(0 - \frac{1}{4} - \frac{1}{2} + \frac{1}{4} + 0 - \frac{1}{4} + \frac{1}{2} + \frac{1}{4} \right) = 0.$$

4. Implementation and time delay: slightly higher than round(x).

§4.4. ROM Rounding: ROM(x)

1. Definition: ROM rounding is given by

$$x_{m-1} \dots x_{\ell-1} x_{\ell-2} \dots x_0 \dots x_{-1} x_{-2} \dots x_{-d} \to \text{ROM}(x) \to x_{m-1} \dots x_{\ell-1} y_{\ell-2} \dots y_0$$

Note that only ℓ bits are taken as actual input to ROM, $x_{\ell-2} \dots x_0.x_{-1}$, and then ROM generates $\ell-1$ output bits, $y_{\ell-2} \dots y_0$.

2. Truth table:

ROM scheme with $\ell = 3$ input bits			
Input:	Output:	Error:	
x	ROM(x)	ROM(x) - x	
×00.0	×00.	0	
×00.1	×01.	+1/2	
×01.0	×01.	0	
×01.1	×10.	+1/2	
×10.0	×10.	0	
×10.1	×11.	+1/2	
×11.0	×11.	0	
×11.1	×11.	-1/2	

3. Error and bias: It can be seen from the above table that the maximal errors are $e_{\rm max}^+=+1/2$ and $e_{\rm max}^-=-1/2$.

Bias =
$$\frac{1}{8} \left(0 + \frac{1}{2} + 0 + \frac{1}{2} + 0 + \frac{1}{2} + 0 - \frac{1}{2} \right) = \frac{1}{8}$$
.

- 4. Implementation cost: Size of the ROM used.
- 5. Time delay: Decided by the ROM reading speed.