

Escuela Rafael Díaz Serdán

Matemáticas 2 JC Melchor Pinto

Última revisión del documento: 3 de julio de 2023

2° de Secundaria Unidad 3

Volumen de cilindros rectos

Nombre del alumno: Aprendizajes: ______ 🛂 Calcula el volumen de prismas y cilindros rectos.

	Puntuación:										
Pregunta	1	2	3	4	5	6	7	8	9	10	Total
Puntos	10	10	10	10	10	10	10	10	10	10	100
Obtenidos											

Fecha:

Vocabulario

 $Volumen \rightarrow cantidad de espacio tridimensional que$ ocupa un objeto.

 $\mathbf{Area} \to \text{medida de superficie.}$

 $Poliedro \rightarrow cuerpo geométrico de muchas caras$ planas y volumen finito.

Pirámide → poliedro, constituido por un polígono simple (llamado base) y cuyas caras laterales son triángulos que se juntan en un vértice común, también llamado ápice o cúspide.

 $\mathbf{Prisma} \to \mathbf{poliedro}$ que consta de dos caras iguales y paralelas llamadas bases, y de caras laterales que son paralelogramos.

 $Apotema \rightarrow l$ ínea perpendicular que va desde el centro del polígono hasta cualesquiera de sus lados.

Volumen de un cilindro recto

El volumen de un cilindro recto cuva base tiene un área de $A = \pi r^2$, se obtiene mediante la expresión

$$V = \pi r^2 h$$

donde r es el radio del círculo y h la altura del cilindro.

Volumen de un prisma recto

El volumen de un prisma recto de altura h, y cuyo polígono base tiene un área A_b , es:

$$V = A_b h$$

Si el polígono base es un polígono regular, entonces:

$$V = \frac{nLah}{2}$$

donde P es el perímetro; a, la apotema; n, el número de lados y l, la medida del lado. Ejercicio 1 10 puntos

Consideren los cilindros de la Figura 1:

Figura 1

O Numera los cilindros en orden ascendente según su volumen.

Solución:

f, c, i, e, d, h, b, g, a.

b Si el volumen del cilindro e es de 750 cm³, estima qué cilindro tiene volumen de 1000 cm³.

Solución:

Se busca que el alumno seleccione los cilindros con una capacidad ligeramente mayor al e, tales como d,

c Estima cuál es el volumen del cilindro más grande. Explica.

Solución:

El cilindro a, se estima que su volumen es 4 veces el de e, es decir, de 3000 cm³.

d Estima qué volumen tiene el cilindro más chico.

Solución:

Es el cilindro f, se estima que su volumen es la décima parte de e, es decir, de 75 cm³.

Ejercicio 2 10 puntos

Encierra en un círculo aquellos que tengan bases circulares paralelas unidas por una pared curva.

Figura 2

Ejemplo 1

Determina el volumen del cilindro de la figura 3.

Ingresa una respuesta exacta en términos de π , o usa 3.14.

Figura 3

Solución:

El volumen de un cilindro de radio r y altura h es:

$$V=\pi r^2 h$$

De la figura 3 se sabe que r=2 y h=5, entonces

$$V = \pi r^2 h$$
$$= \pi (2)^2 (5)$$
$$= \pi (4)(5)$$
$$= 20\pi$$

Ejercicio 3 10 puntos

Determina el volumen del cilindro de la figura 4.

Ingresa una respuesta exacta en términos de π , o usa 3.14.

Figura 4

Solución:

El volumen de un cilindro de radio r y altura h es:

$$V=\pi r^2 h$$

De la figura 4 se sabe que r = 4 y h =, entonces

$$V = \pi r^2 h$$
$$= \pi (4)^2 (3)$$
$$= \pi (16)(3)$$
$$= 48\pi$$

Ejercicio 4 10 puntos

Determina el volumen del cilindro de la figura 5.

Ingresa una respuesta exacta en términos de π , o usa 3.14.

Figura 5

Solución:

El volumen de un cilindro de radio r y altura h es:

$$V=\pi r^2 h$$

De la figura 5 se sabe que r = 4 y h = 10, entonces

$$V = \pi r^{2} h$$

$$= \pi (4)^{2} (10)$$

$$= \pi (16) (10)$$

$$= 160 \pi$$

Ejemplo 2

Determina el volumen del cilindro de la figura 6.

Ingresa una respuesta exacta en términos de π , o usa 3.14.

Figura 6

Solución:

El volumen de un cilindro de radio r y altura h es:

$$V = \pi r^2 h$$

De la figura 6 se sabe que r=8 y h=6, entonces

$$V = \pi r^2 h$$
$$= \pi (8)^2 (6)$$
$$= \pi (64)(6)$$
$$= 384\pi$$

Ejercicio 5 10 puntos

Determina el volumen del cilindro de la figura 7.

Ingresa una respuesta exacta en términos de π , o usa 3.14.

Figura 7

Solución:

El volumen de un cilindro de radio r y altura h es:

$$V=\pi r^2 h$$

De la figura 7 se sabe que r=6 y h=4, entonces

$$V = \pi r^2 h$$
$$= \pi (6)^2 (4)$$
$$= \pi (36)(4)$$
$$= 144\pi$$

Ejercicio 6 10 puntos

Determina el volumen del cilindro de la figura 8.

Ingresa una respuesta exacta en términos de π , o usa 3.14.

Figura 8

Solución:

El volumen de un cilindro de radio r y altura h es:

$$V=\pi r^2 h$$

De la figura 8 se sabe que r = 3 y h = 2, entonces

$$V = \pi r^2 h$$
$$= \pi (3)^2 (2)$$
$$= \pi (9)(2)$$
$$= 18\pi$$

Ejemplo 3

Determina el volumen del cilindro de la figura 9.

Ingresa una respuesta exacta en términos de π , o usa 3.14.

Figura 9

Solución:

El volumen de un cilindro de radio r y altura h es:

$$V = \pi r^2 h$$

De la figura 9 se sabe que r = 3 y h = 6, entonces

$$V = \pi r^2 h$$
$$= \pi (3)^2 (6)$$
$$= \pi (9)(6)$$
$$= 54\pi$$

Ejercicio 7 10 puntos

Determina el volumen del cilindro de la figura 10.

Ingresa una respuesta exacta en términos de π , o usa 3.14.

Figura 10

Solución:

El volumen de un cilindro de radio r y altura h es:

$$V=\pi r^2 h$$

De la figura 10 se sabe que r = 4 y h = 8, entonces

$$V = \pi r^2 h$$
$$= \pi (4)^2 (8)$$
$$= \pi (16)(8)$$
$$= 128\pi$$

Ejercicio 8 10 puntos

Determina el volumen del cilindro de la figura 11.

Ingresa una respuesta exacta en términos de π , o usa 3.14.

Figura 11

Solución:

El volumen de un cilindro de radio r y altura h es:

$$V=\pi r^2 h$$

De la figura 11 se sabe que r=5 y h=6, entonces

$$V = \pi r^2 h$$
$$= \pi (5)^2 (6)$$
$$= \pi (25)(6)$$
$$= 150\pi$$

Ejemplo 4

Determina el volumen del cilindro de la figura 12.

Ingresa una respuesta exacta en términos de π , o usa 3.14.

Figura 12

Solución:

El volumen de un cilindro de radio r y altura h es:

$$V = \pi r^2 h$$

De la figura 12 se sabe que r = 2 y h = 8, entonces

$$V = \pi r^2 h$$
$$= \pi (2)^2 (8)$$
$$= \pi (4)(8)$$
$$= 32\pi$$

Ejercicio 9 10 puntos

Determina el volumen del cilindro de la figura 13.

Ingresa una respuesta exacta en términos de π , o usa 3.14.

Figura 13

Solución:

El volumen de un cilindro de radio r y altura h es:

$$V=\pi r^2 h$$

De la figura 13 se sabe que r = 5 y h = 3, entonces

$$V = \pi r^2 h$$
$$= \pi (5)^2 (3)$$
$$= \pi (25)(3)$$
$$= 75\pi$$

Ejercicio 10 10 puntos

Determina el volumen del cilindro de la figura 14.

Ingresa una respuesta exacta en términos de π , o usa 3.14.

Figura 14

Solución:

El volumen de un cilindro de radio r y altura h es:

$$V=\pi r^2 h$$

De la figura 14 se sabe que r=4 y h=10, entonces

$$V = \pi r^{2} h$$

$$= \pi (4)^{2} (10)$$

$$= \pi (16) (10)$$

$$= 160 \pi$$