Algorithms for Computing Discrete Logarithms

AK Bhateja

Algorithms for solving Discrete log problem

- Exhaustive search
- Baby-step giant-step algorithm
- Pollard's rho algorithm for logarithms
- Pohlig-Hellman algorithm
- Index-calculus algorithm

Exhaustive search

- Successively compute α , α^2 , ..., α^n
- This method takes O(n) multiplications, where n is the order of α
- Inefficient if *n* is large

Baby-step giant-step algorithm

- Developed by Shanks
- Let G be a cyclic group of order n, α is a generator of G.
- $m = \lceil \sqrt{n} \rceil$
- If $\beta = \alpha^x$, then write x = qm + r, where $0 \le q, r < m$.
- Therefore $\alpha^x = \alpha^{qm} \alpha^r$ i.e. $\beta(\alpha^{-m})^q = \alpha^r$
- The algorithm
 - **Baby Step**: If for some r, $\beta \alpha^{-r} = 1$, then $\beta = \alpha^{r}$
 - Giant step: Find $\beta \alpha^{-mq}$; q = 0, 1, 2, ...

Compare this with α^r ; r = 0, 1, 2, ... till $\beta \alpha^{-mq} = \alpha^r$

Baby-step giant-step algorithm

Given: a generator α of a cyclic group of order n and an element β Set $m \leftarrow \lceil \sqrt{n} \rceil$ for r = 0 to m - 1compute $\alpha^r \pmod{n}$ and store the pair (j, α^r) in a table. easily searchable on the first coordinate compute α^{-m} $\gamma \leftarrow \beta$ for q = 0 to m - 1if $\gamma = \alpha^r$ for some r in the table return qm + relse $\gamma \leftarrow \gamma \cdot \alpha^{-m} \mod n$

Time complexity of Baby-step giant-step algorithm

- Memory (storage) requirement $O(\sqrt{n})$
- Construction of table: It requires $O(\sqrt{n})$ multiplications
- Sorting the table: Sort the table by second component, it requires $O(\sqrt{n} \lg n)$ comparisons
 - Alternatively, use hashing on the second component to store the entries in a hash table; placing an entry, and searching for an entry in the table takes constant time.
- For all q where $0 \le q < m$, it is required to sea33333rch α r, which is equal to γ . It requires $O(\sqrt{n})$ multiplications and $O(\sqrt{n})$ table look-ups
- The running time of the algorithm is $O(\sqrt{n})$ multiplications.

Example: Let p = 113, $\alpha = 3$ and $\beta = 57$

$$m = \lceil \sqrt{112} \rceil = 11$$

r	0	1	2	3	4	5	6	7	8	9	10
$3^r \mod 113$	1	3	9	27	81	17	51	40	7	21	63

Find $\alpha^{-1} = 3^{-1} \mod 113 = 38$, $\alpha^{-m} = 58$

 $\gamma = \beta \alpha^{-mq} \mod 113$ for q = 0, 1, 2, ... is computed until a value in the second row of the table is obtained.

q	0	1	2	3	4	5	6	7	8	9
$\gamma = 57.58^q \bmod 113$	57	29	100	37	112	55	26	39	2	3

Since
$$\beta \alpha^{-mq} \mod 113 = 3 = \alpha^1$$
, $qm + r = 9 \times 11 + 1 = 100$

$$\therefore \log_3 57 = 100$$

Pollard's rho algorithm for Discrete Logarithms

- Pollard proposed an elegant algorithm in 1978
- Pollard's rho algorithm for computing discrete logarithms is a randomized algorithm
- Its expected running time is same as the baby-step giant-step algorithm i.e. $O(\sqrt{p})$
- It requires a negligible amount of storage.
- Therefore, it is far preferable to baby-step giant-step algorithm for problems of practical interest.

Pollard's rho algorithm for Discrete Logarithms

- Let G be a cyclic group of order n (prime), with generator α , $\beta \in G$
- Find integers a, b, A, B s.t. $\alpha^a \beta^b = \alpha^A \beta^B$
- The solution of equation (B b) x = (A a) is $x = \log_{\alpha} \beta$
- For finding a, b, A, B, Floyd's cycle-finding algorithm can be used to find a cycle in the sequence $x_i = \alpha^{a_i} \beta^{b_i}$. i.e. to find two group elements x_i and x_{2i} such that $x_i = x_{2i}$.
- Hence $\alpha^{a_i}\beta^{b_i} = \alpha^{a_{2i}}\beta^{b_{2i}} \Rightarrow \beta^{b_i-b_{2i}} = \alpha^{a_{2i}-a_i}$
- Therefore, by taking log both sides $(b_i b_{2i}) \log_{\alpha} \beta = (a_i a_{2i}) \mod n$ provided $b_i \neq b_{2i} \mod n$. (note: $b_i \equiv b_{2i} \mod n$ occurs with probability ≈ 0
- Solution to this equation can be easily obtained using Euclidean algorithm.

Pollard's rho algorithm for Discrete Logarithms

- Divide the group G into three pairwise disjoint subsets S_0 , S_1 and S_2 with $G = S_0 \cup S_1 \cup S_2$ roughly equal in size.
- Let $f: G \to G$ defined by

$$x_{i+1} = f(x_i) = \begin{cases} \beta \cdot x_i & \text{if } x_i \in S_0 \\ x_i^2 & \text{if } x_i \in S_1 \\ \alpha \cdot x_i & \text{if } x_i \in S_2 \end{cases}$$

The initial term is $x_0 = \alpha^{a_0} \beta^{b_0}$ for random values of $a_0 \& b_0$, $1 \notin S_2$

• This sequence of group elements in turn defines two sequences of integers a_0 , a_1 , a_2 ,... and b_0 , b_1 , b_2 ,... satisfying $x_i = \alpha^{a_i} \beta^{b_i} \mod p$ for $i \ge 0$.

• For $i \ge 0$: $a_0 = 0$, $b_0 = 0$ (both may be randomly selected elements of Z_p)
define

$$a_{i+1} = \begin{cases} a_i & \text{if } x_i \in S_0 \\ 2a_i \mod n & \text{if } x_i \in S_1 \\ a_i + 1 \mod n & \text{if } x_i \in S_2 \end{cases}$$

and
$$b_{i+1} = \begin{cases} b_i + 1 \bmod n & if \ x_i \in S_0 \\ 2b_i \bmod n & if \ x_i \in S_1 \\ b_i & if \ x_i \in S_2 \end{cases}$$

• Find two group elements x_i and x_{2i} such that $x_i = x_{2i}$

Pollard's rho algorithm for computing discrete logarithms

Given: a generator α of a cyclic group G of order n, and an element $\beta \in G$ Set $x_0 = 1$, $a_0 = 0$, $b_0 = 0$ for $i = 1, 2, \ldots$ find x_i , a_i , b_i , and x_{2i} , a_{2i} , b_{2i} if $x_i = x_{2i}$ set $r = b_i - b_{2i} \mod n$.

$$\operatorname{return} x = r^{-1} (a_{2i} - a_i) \bmod n$$

else

if r = 0 then terminate the algorithm with failure

• In rare case it terminates with failure, the procedure can be repeated by selecting random integers a_0 , b_0 in the interval [1, n-1], and $x_0 = \alpha^{a_0} \beta^{b_0}$

Pollard's rho algorithm: Example

Let $\alpha = 5$ be a generator of a cyclic group Z^*_{2017} $\beta = 1736$

Divide the set $S = \{1, 2, \dots, 2016\}$ into 3 sets

 $S_i = \{a \mid a \in S \& a = i \text{ mod } 3\} \text{ for } i = 0, 1, 2$

Initialization: Let $a_0 = 27$, $b_0 = 0$,

 $x_0 = \alpha^{a_0} \beta^{b_0} = 5^{27} \mod 2017 \equiv 710$

i	x_i	S_0	S_1	S_2	a_i	b_i
0	$x_0 = 710$			710	27	0
1	$x_1 = \alpha \cdot x_0 \bmod 2017 = 1533$	1533			28	0
2	$x_2 = \beta \cdot x_1 \mod 2017 = 865$		865		28	1
3	$x_3 = x_2^2 \mod 2017 = 1935$	1935			56	2
4	$x_4 = \beta \cdot x_3 \mod 2017 = 855$	855			56	3
5	$x_5 = \beta \cdot x_4 \mod 2017 = 1785$	1785			56	4
6	$x_6 = \beta \cdot x_5 \mod 2017 = 648$	648			56	5
7	$x_7 = \beta \cdot x_6 \mod 2017 = 1459$		1459		56	6
8	$x_8 = x_7^2 \bmod 2017 = 746$			746	112	12
9	$x_9 = \alpha \cdot x_8 \mod 2017 = 1713$	1713			113	12
10	$x_{10} = \beta \cdot x_9 \mod 2017 = 710$			710	113	13

Example Pollard Rho algorithm

• Since 710 appears twice in the 0th and 10th rows, we have

$$\alpha^{27} \beta^0 = \alpha^{113} \beta^{13} \Rightarrow \beta^{13-0} = \alpha^{27-113}$$

 $\Rightarrow (\alpha^x)^{13} = \alpha^{27-113}$
 $\Rightarrow \alpha^{13x} = \alpha^{27-113}$
 $\Rightarrow 13x = (27-113) \mod 2016$
 $\Rightarrow x = 13^{-1} \times 1930 \mod 2016$
 $= 1861 \times 1930 \mod 2016$
 $= 1234$

Pohlig-Hellman (Silver Pohling-Hellman) algorithm

- Discovered by Roland Silver, but first published by Stephen Pohlig and Martin Hellman.
- It applies to groups whose order is a primes power
- Consider a finite cyclic abelian group Z_p^* , with order p-1.

$$p - 1 = p_1^{e_1} \cdot p_2^{e_2} \cdots p_k^{e_k}$$

• Idea: compute $x \mod p_i^{e_i}$ for each $i, 1 \le i \le k$ then compute $x \mod (p-1)$ using Chinese remainder theorem

The Pohlig-Hellman Algorithm

Consider prime p, α is a generator of Z_p^* and $\beta \in Z_p^*$.

Goal: to determine $x = \log_{\alpha} \beta \mod (p-1)$

Let $p-1=p_1^{e_1}\cdot p_2^{e_2}\cdots p_k^{e_k}$ where the p_i 's are distinct primes

Idea: compute $x \mod p_i^{e_i}$ for each $i, 1 \le i \le k$ then compute $x \mod (p-1)$ using Chinese remainder theorem

Suppose that $q = p_i$ and $e = e_i$,

How to compute the value $a = x \pmod{q^e}$?

Express a in radix q representation as

$$a = x_0 + x_1 q + ... + x_{e-1} q^{e-1}$$
; $0 \le x_i \le q^e$
 $a = x \pmod{q^e} \implies x = a + q^e s$ for some integer s .
 $\therefore x = x_0 + x_1 q + ... + x_{e-1} q^{e-1} + s q^e$

Step 1: to find x_0 . x_0 can be computed using the fact

Fact:
$$\beta^{\frac{p-1}{q}} \equiv \alpha^{\frac{x_0(p-1)}{q}} \mod p$$
 ... (1)

Proof:
$$\beta^{\frac{p-1}{q}} \equiv (\alpha^x)^{\frac{(p-1)}{q}} \mod p$$

$$\equiv \left(\alpha^{x_0 + x_1 q + \dots + x_{e-1} + sq^e}\right)^{\frac{(p-1)}{q}} \bmod p$$

$$\equiv (\alpha^{x_0+Kq})^{\frac{(p-1)}{q}} \mod p$$
 where K is an integer

$$\equiv \alpha^{x_0 \left(\frac{p-1}{q}\right)} \alpha^{K(p-1)} \bmod p$$

$$\equiv \alpha^{x_0\left(\frac{p-1}{q}\right)} \bmod p \quad \text{because } \alpha^{p-1} \equiv 1 \bmod p$$

Algorithm to compute x_0

Compute
$$\beta^{\frac{p-1}{q}}$$

If
$$\beta^{\frac{p-1}{q}} \equiv 1 \mod p$$
 then $x_0 = 0$

Otherwise successively compute

$$\gamma = \alpha^{\frac{p-1}{q}} \mod p, \ \gamma^2 \mod p, \dots$$
until $\gamma^i \equiv \beta^{\frac{p-1}{q}} \mod p$

return
$$(x_0 = i)$$

step 2: to compute $x_1, x_2, ..., x_{e-1}$ if e > 1Define $\beta_0 = \beta$, and

 $\beta_j = \beta \alpha^{-(x_0 + x_1 q + \dots + x_{j-1} q^{j-1})} \mod p$, for $0 \le j \le e - 1$ Consider the generalization of equation (1)

$$(\beta_j)^{\frac{p-1}{q^{j+1}}} \equiv \alpha^{\frac{x_j(p-1)}{q}} \mod p \qquad \dots (2)$$

Proof: When j = 0, this equation reduces to equation (1)

$$(\beta_{j})^{\frac{p-1}{q^{j+1}}} \equiv \left(\beta \alpha^{-(x_{0}+x_{1}q+\cdots+x_{j-1}q^{j-1})}\right)^{\frac{p-1}{q^{j+1}}} \mod p$$

$$\equiv \left(\alpha^{x-(x_{0}+x_{1}q+\cdots+x_{j-1}q^{j-1})}\right)^{\frac{p-1}{q^{j+1}}} \mod p$$

$$\equiv \left(\alpha^{x_{j}q^{j}+\cdots+x_{e-1}q^{e-1}+sq^{e}}\right)^{\frac{p-1}{q^{j+1}}} \mod p$$

$$\equiv \left(\alpha^{x_{j}q^{j}+\cdots+x_{e-1}q^{e-1}+sq^{e}}\right)^{\frac{p-1}{q^{j+1}}} \mod p$$

$$\equiv \left(\alpha^{x_{j}q^{j}+Kq^{j+1}}\right)^{\frac{p-1}{q^{j+1}}} \mod p \text{ where } K \text{ is an integer}$$

$$\equiv \alpha^{\frac{x_{j}(p-1)}{q}} (\alpha^{p-1})^{K} \mod p$$

$$\equiv \alpha^{\frac{x_{j}(p-1)}{q}} \mod p$$

Hence we can compute x_i using this equation

Computation of $log_{\alpha}\beta \mod p_i^{e_i}$

Since
$$\beta_j = \beta \alpha^{-(x_0 + x_1 q + \dots + x_{j-1} q^{j-1})} \mod p$$
,
for $0 \le j \le e - 1$

$$\therefore \beta_{j+1} = \beta_j \alpha^{-x_j q^j} \mod p \qquad \dots (3)$$

Now compute x_0 , β_1 , x_1 , β_2 , ..., β_{e-1} , x_{e-1} by alternatively applying equation (2) and (3).

$$log_{\alpha}\beta \bmod p_i^{e_i} = \sum_{i=0}^{e-1} x_i q^i$$

Algorithm: Pohlig-Hellman to compute $\log_{\alpha} \beta \pmod{q^e}$

- Compute $\gamma_i = \alpha^{(p-1)i/q} \mod p$ for $0 \le i \le q-1$
- set j = 0 and $\beta_i = \beta$
- while $j \le e 1$

```
compute \delta = (\beta_j)^{\frac{(p-1)}{q^{j+1}}} \mod p
find i such that \delta = \gamma_i
x_j = i
\beta_j = \beta \alpha^{-x_j q^j} \mod p
j = j + 1
```

Example: $p = 29, \ \alpha = 2, \ \beta = 18$

$$p-1=28=2^2 \cdot 7$$

$$q = 2, e = 2;$$

$$\gamma_0 = 1$$

$$\gamma_1 = \alpha^{(p-1)/q} \mod p = 2^{14} \mod 29 \equiv 28$$

$$\delta = \beta^{28/2} \mod 29 = 18^{14} \mod 29 = 28$$

Hence $x_0 = 1$.

Compute $\beta_1 = \beta_0 \alpha^{-1} \mod 29 = 9$

And
$$(\beta_1)^{28/4} = 9^7 \mod 29 = 28$$
; since $\gamma_1 = 28$

Therefore $x_1 = 1$; Hence $x = 3 \mod 4$

Similarly for
$$q = 7$$
, $x = 4 \mod 7$

Using CRT $x = 11 \mod 28$. i.e. $\log_2 18$ in \mathbb{Z}_{29} is 11.

References

- Cryptography: Theory and Practice by Douglas R. Stinson
- The PohligHellman Algorithm by D.R. Stinson http://anh.cs.luc.edu/331/notes/PohligHellmanp_k2p.pdf

Index-calculus algorithm

- The index-calculus algorithm is the most powerful method for computing discrete logarithms.
- This is a subexponential-time algorithm.
- The index-calculus algorithm requires the selection of a relatively small subset *S* of elements of *G*, called the factor base, in such a way that a significant fraction of elements of *G* can be efficiently expressed as products of elements from *S*.

Computing Discrete Logarithms modulo p

- Initial processing stage
 - Computes the discrete logarithms of a set S of elements of Z_p^*
 - i.e. find a number of equations in the logarithms of S and solve over modulo p-1.
- Final processing stage
 - Logarithm of any other may be found relatively quickly utilizing the logarithms of the elements of *S*.

Index Calculus Algorithm for DL in Cyclic Group

- Given: α generator of cyclic group Z_p , $\beta \in Z_p$.
- 1. Select factor base *S*: Consider a set of first *t* primes $S = \{p_1, p_2, \dots, p_t\}$
- 2. Collect linear relations involving logarithms of elements in S
 - 2.1 Select a random integer $k \in [0, p-1]$, and compute α^k
 - 2.2 factorize α^k as a product of elements in S:

$$\alpha^k = \prod_{i=1}^t p_i^{e_i}$$

If successful, take logarithms of both sides of equation to obtain a linear relation

$$k = \sum_{i=1}^{t} e_i \log_{\alpha}(p_i) \mod (p-1)$$

2.3 Repeat until t + c relations of the form are obtained

Index Calculus Algorithm for DL in Cyclic Group

- 3. Find the logarithms of elements in S: Solve the linear congruent system of t + c equations (in t unknowns) collected in step 2 to obtain the values of $\log_{\alpha} p_i$; $1 \le i \le t$.
- 4. Compute $\log_{\alpha} \beta$
 - 4.1 Select a random integer k, $0 \le k \le n 1$, & compute $\beta \cdot \alpha^k \mod p$
 - 4.2 factorize $\beta \cdot \alpha^k \mod p$ in S

$$\beta \alpha^k = \prod_{i=1}^t p_i^{f_i}$$

If the attempt is unsuccessful then repeat step 4.1.

Otherwise, taking logarithms of both sides & compute $\log_{\alpha} \beta$

$$log_{\alpha}(\beta) \equiv \sum_{i=1}^{t} f_i \ log_{\alpha}(p_i) \ mod \ (p-1) - k$$

• Example: Index calculus for DL

Let p = 229 and its generator is $\alpha = 6$, $\beta = 13$

Factor base $S = \{2, 3, 5, 7, 11\}$

Generation of relations: Pick random numbers

$$k = 100$$
 $6^{100} \mod 229 \equiv 180 = 2^2 \times 3^2 \times 5$
 $k = 18$ $6^{18} \mod 229 \equiv 176 = 2^4 \times 11$
 $k = 12$ $6^{12} \mod 229 \equiv 165 = 3 \times 5 \times 11$
 $k = 62$ $6^{62} \mod 229 \equiv 154 = 2 \times 7 \times 11$
 $k = 143$ $6^{143} \mod 229 \equiv 198 = 2 \times 3^2 \times 11$
 $k = 206$ $6^{206} \mod 229 \equiv 210 = 2 \times 3 \times 5 \times 7$

Taking log with base α , both sides

Taking log with base α , both sides

$$100 = 2 \log_6 2 + 2 \log_6 3 + \log_6 5 \pmod{228}$$

$$18 = 41 \log_6 2 + \log_6 11 \pmod{228}$$

$$12 = \log_6 3 + \log_6 5 + \log_6 11 \pmod{228}$$

$$62 = \log_6 2 + \log_6 7 + \log_6 11 \pmod{228}$$

$$143 = \log_6 2 + 2 \log_6 3 + \log_6 11 \pmod{228}$$

$$206 = \log_6 2 + \log_6 3 + \log_6 5 + \log_6 7 \pmod{228}$$
.

• Solving the linear system equations:

$$\log_6 2 = 21$$
, $\log_6 3 = 208$, $\log_6 5 = 98$, $\log_6 7 = 107$, $\log_6 11 = 162$.

• Computing the value:

Let
$$k = 77$$
 is selected.

$$\beta \cdot \alpha^k = 13 \cdot 6^{77} \mod 229 = 147 = 3 \cdot 7^2$$

$$\log_6 13 = (\log_6 3 + 2 \log_6 7 - 77) \mod 228 = 117.$$

Running time of Index Calculus Algorithm

- Computing discrete logarithms modulo a prime is only a little harder than factoring integers of the same size.
- With an optimal choice of t, the index-calculus algorithm for \mathbb{Z}_p^* has an expected running time \mathbb{L}_p [1/2, c] where c > 0 is a constant.

$$L_n [\alpha, c] = O(\exp((c (\ln n)^{\alpha} (\ln \ln n)^{1-\alpha})))$$

$$L_n [1/2, c] = O(\exp(c \sqrt{(\ln n \ln \ln n))})$$

• The best algorithm known for computing logarithms in \mathbb{Z}_p^* is index-calculus algorithm using number field sieve, with an expected running time of \mathbb{L}_p [1/3, 1.923].

L-notation

- L-notation is an asymptotic notation
- It is analogous to big-O notation
- Denoted as $L_n[\alpha, c]$ for a bound variable $n \to \infty$.

$$L_n [\alpha, c] = O(\exp((c (\ln n)^{\alpha} (\ln \ln n)^{1-\alpha}))$$

where c is a positive constant, and α is a constant satisfying $0 < \alpha < 1$.

- L-notation is used mostly in computational number theory, to express the complexity of algorithms
- If $\alpha = 0$, then $L_n[0, c] = (\ln n)^c$ is a polynomial of $\ln n$.
- If $\alpha = 1$, then $L_n[1, c] = n^c$ is a polynomial in n.
- When $0 < \alpha < 1$, then the function is subexponential and the algorithm is subexponential time algorithm.