Introduction ●000

Machine Learning

Lecture 10 Clustering

Felix Bießmann

Beuth University & Einstein Center for Digital Future

Clustering

Psychological Models of Categorization: Prototypes

Introduction 0000

Prototypes μ_{Λ} and μ_{o} :

$$\mu_{\Delta} = 1/N_{\Delta} \sum_{n}^{N_{\Delta}} \mathbf{x}_{\Delta,n}$$

$$\mu_o = 1/N_o \sum_{n}^{N_o} \mathbf{x}_{o,n}$$

New data points x are assigned to their closest cluster center μ^*

$$\mu^* = \underset{:}{\operatorname{argmin}}(\|\mu_i - \mathbf{x}\|_2)$$
 (1)

Clustering

Psychological Models of Categorization: Prototypes

Introduction 0000

> The only difference for clustering is: We do not have labels.

Introduction

0000

Clustering For Quantization of Analog Signals

Quantization transforms an analog signal into discretized states This is important for Audio Processing, Compression, ... The most popular Clustering Algorithm was proposed for Quantization [Lloyd, 1982]

K-means Clustering

K-Means Algorithm

Re-iterating two steps:

- 1. Assign each data point \mathbf{x}_i to their closest cluster μ_k
- 2. Update μ_{ν} to the mean of the members in that cluster

Goal: Given data $\mathbf{x}_1, \dots, \mathbf{x}_N$ find cluster centers $\mu_1, \dots \mu_K$ such that the distances of data points to their respective cluster centre are minimized

$$\mathcal{J} = \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbf{c}_{n,k} \|\mathbf{x}_n - \boldsymbol{\mu}_{\mathbf{c}_k}\|$$
 (2)

where
$$\mathbf{c}_{n,k} \begin{cases} 1 & \text{if } \mathbf{x}_n \text{ belongs to cluster } k \\ 0 & \text{otherwise} \end{cases}$$
 (3)

K-means Clustering Algorithm

Algorithm 1 K-means clustering

```
Require: data \mathbf{x}_1, \dots, \mathbf{x}_N \in \mathbb{R}^D, number of clusters k, iterations m.
 1: Choose random data points as initial cluster centres \mu_1 \leftarrow x_{i_1}, \dots, \mu_k \leftarrow x_{i_k} where
      i_i \neq i_l for all j \neq l.
 2: \mathbf{c} \leftarrow \mathbf{0}_N
 3: \mathbf{c}^{\text{old}} \leftarrow \mathbf{0}_{\text{M}}
 4: i \leftarrow 0
 5: while i < m do
 6:
           for i = 1 to N do
 7:
                 Find nearest cluster centre \mathbf{c}_i \leftarrow \operatorname{argmin}_{1 < l < k} \|\mathbf{x}_i - \boldsymbol{\mu}_l\|_2
 8:
           end for
 9:
           for j ← 1 to k do
                 Compute new cluster centre \mu_i \leftarrow \frac{1}{|\{l: \mathbf{c}_i = i\}|} \sum_{l: \mathbf{c}_i = i} \mathbf{x}_l
10:
11:
           end for
12: if c^{old} = c then
13:
                 break
14: end if
15: \mathbf{c}^{\text{old}} \leftarrow \mathbf{c}
16: i \leftarrow i + 1
17: end while
```

18: **return** cluster centres $\mu_1, \ldots, \mu_k \in \mathbb{R}^D$, assignment vector $\mathbf{c}^{\mathsf{old}} \in \mathbb{R}^n$

Application Example: Geyser Eruptions

Old Faithful Geyser Yellowstone National Park, USA

Famous data set for clustering

- Old Faithful Eruptions
- Two dimensions
 - 1. Time of Eruption [mins]
 - 2. Time until next Eruption [mins]

Application Example: Geyser Eruptions

Famous data set for clustering

- Old Faithful Eruptions
- Two dimensions
 - 1. Time of Eruption [mins]
 - 2. Time until next Eruption [mins]

K-means Clustering Step-by-Step

Clustering Instability

Number of Clusters is a critical parameter

Clusterings are instable if number of clusters is too small or too large

Clustering Instability

- Number of clusters is critical hyper parameter
- In supervised settings we use cross-validation to optimize hyper-parameters for accuracy on test data
- How can we optimize the number of clusters?
- \rightarrow Choose that k that results in most **stable** clusterings For a review see e.g. [von Luxburg, 2009]

Clustering Instability Algorithm

Algorithm 2 Clustering Instability

Require: data points $x_1, \ldots, x_n \in \mathbb{R}^d$, clustering algorithm \mathcal{A} , maximal number of clusters K. iterations i.

Ensure: optimal number of clusters k^*

- 1: for k=2 to K do
- 2: Resample data set (e.g. random draws with replacement)
- 3: for it = 1 to i do
- 4: Cluster data using algorithm A into k clusters
- 5: end for
- 6: Compute minimal (across all label permutations) distance between clusterings
- 7: end for
- 8: Chose that k that has the minimal instability over resamplings

Application: Clustering 'Mentality' of German Population

- Until 1989 Germany was divided into
 - a free capitalistic western part
 - a communist eastern part
- Political systems influence mentality of people
- The survey "Perspektive Deutschland" investigated this Survey asked questions about:
 - what people desire
 - what people are afraid of

German Regions clustered by 'Mentality' of Population

...based on questionnaires, 'Perspektive Deutschland' poll 2005.

German Regions clustered by 'Mentality' of Population

People in cluster 1 say: Helping others is important

I am afraid of loosing my job

People in cluster 2 say:

Reaching my own goals is important I am afraid of loosing my health

$$\mathcal{E}(\boldsymbol{\mu}_k) = \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^2$$

$$= \frac{1}{2} \mathbf{x}^\top \mathbf{x} - \frac{1}{2} 2 \mathbf{x}^\top \boldsymbol{\mu}_k - \frac{1}{2} \boldsymbol{\mu}_k^\top \boldsymbol{\mu}_k$$

$$\frac{\partial \mathcal{E}(\boldsymbol{\mu}_k)}{\partial \boldsymbol{\mu}_k} = \boldsymbol{\mu}_k - \mathbf{x}$$
(4)

Learning rate $\eta = \frac{1}{n_k} (n_k = \text{number of samples in cluster } k)$

Gradient Step
$$\mu_k \leftarrow \mu_k - \eta \frac{\partial \mathcal{E}(\mu_k)}{\partial \mu_k} = \mu_k - \frac{1}{n_k} (\mathbf{x} - \mu_k)$$

Online K-Means Algorithm

Algorithm 3 Online K-means clustering

Require: data points $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$, number of clusters k, iterations m.

Ensure: cluster centres $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$

- 1: Choose random data points as initial cluster centres
 - $\mu_k \leftarrow \mathbf{x}_i, \dots, \mu_k \leftarrow \mathbf{x}_{i_k}$ where $i_j \neq i_l$ for all $j \neq l$.
- 2: Initialize cluster assignment counts $n_1, \ldots, n_k \leftarrow 0$
- 3: **for** i = 1, ..., m **do**
- 4: Draw a new data point randomly x_i
- 5: Find nearest cluster centre $k^* \leftarrow \operatorname{argmin}_k \|\mathbf{x}_i - \boldsymbol{\mu}_k\|_2$
- 6: Update cluster counts $n_{k^*} \leftarrow n_{k^*} + 1$
- 7: Update cluster centers $\mu_{k^*} \leftarrow \mu_{k^*} + \frac{1}{n_{i^*}} (\mathbf{x}_i - \mu_{k^*})$
- 8: end for

Online K-Means Algorithm - Example

Online K-Means Algorithm - Example

Online K-Means Algorithm - Example

Distance Measures for Real-Valued Data $\mathbf{x} \in \mathbb{R}^D$

Clustering Algorithms need a distance function $d(x_i, x_j)$

ullet For real valued data $\mathbf{x} \in \mathbb{R}^D$ we can use the Euclidean distance

$$d(\mathbf{x}_i, \mathbf{x}_j) = \|\mathbf{x}_i - \mathbf{x}_j\|_2^2 \tag{5}$$

ullet More robust (less sensitive to outliers) is the **city block distance** or \mathcal{L}_1 norm

$$d(\mathbf{x}_i, \mathbf{x}_j) = \|\mathbf{x}_i - \mathbf{x}_j\|_1 \tag{6}$$

Another alternative is the correlation coefficient (also called cosine similarity)

$$d(\mathbf{x}_i, \mathbf{x}_j) = \frac{\mathbf{x}_1^{\top} \mathbf{x}_2}{\|\mathbf{x}_1\|_2 \|\mathbf{x}_2\|_2}$$
 (7)

For standardized data $\sum_i \mathbf{x}_i = 0$, $\sum_i \mathbf{x}_i^2 = 1$ maximizing correlation is the same as minimizing euclidean distance.

Distance Measures for Non-Real-Valued Data

- For ordinal variables $\mathbf{x} \in \{\text{low}, \text{medium}, \text{high}\}^D$ we can transform the values into real-valued numbers (for three possible values e.g. 1/3, 2/3, 3/3) and then apply distance functions for real-valued data
- For categorial variables $\mathbf{x} \in \{\text{red}, \text{green}, \text{blue}\}^D$ we can use a binary coding for the differences

$$d(\mathbf{x}_i, \mathbf{x}_j) = \sum_{d}^{D} \mathbf{x}_{id} \neq \mathbf{x}_{jd}$$
 (8)

This metric is called **Hamming Distance**

For the sake of simplicity we only consider the euclidean distance

Hierarchical Clustering

- K-Means produces **flat** clusterings
- Often we are interested in a **hierarchy** of clusterings
- Examples:
 - Biological Species
 - Topics in Text Documents

Hierarchical Clustering

- K-Means produces flat clusterings
- Often we are interested in a **hierarchy** of clusterings
- Examples:
 - Biological Species
 - Topics in Text Documents

Hierarchical Clustering

- A popular approach to hierarchical clustering is
 - 1. Start with each data point as one cluster
 - 2. Successively merge (agglomerate) similar clusters

→ Agglomerative Clustering

As most clustering algorithms, these procedures are not defined via objective functions but via algorithms

→ Difficult to establish convergence criteria

Agglomerative Clustering

Merging requires distance function $d(C_i, C_i)$ for clusters C_i , C_i

Agglomerative Clustering

Merging requires distance function $d(C_i, C_j)$ for clusters C_i, C_j

Single Linkage Distance between two closest points in C_i , C_j

$$d(C_i, C_j) = \min_{\mathbf{x}_i \in C_i, \mathbf{x}_j \in C_j} d(\mathbf{x}_i, \mathbf{x}_j)$$

Merging requires distance function $d(C_i, C_i)$ for clusters C_i , C_i

Single Linkage Distance between two closest points in C_i , C_i

$$d(C_i, C_j) = \min_{\mathbf{x}_i \in C_i, \mathbf{x}_j \in C_j} d(\mathbf{x}_i, \mathbf{x}_j)$$

Complete Linkage Distance between two most distant points

$$d(C_i, C_j) = \max_{\mathbf{x}_i \in C_i, \mathbf{x}_j \in C_j} d(\mathbf{x}_i, \mathbf{x}_j)$$

Agglomerative Clustering

Merging requires distance function $d(C_i, C_i)$ for clusters C_i , C_i

Single Linkage Distance between two closest points in C_i , C_i

$$d(C_i, C_j) = \min_{\mathbf{x}_i \in C_i, \mathbf{x}_j \in C_j} d(\mathbf{x}_i, \mathbf{x}_j)$$

Complete Linkage Distance between two most distant points

$$d(C_i, C_j) = \max_{\mathbf{x}_i \in C_i, \mathbf{x}_j \in C_j} d(\mathbf{x}_i, \mathbf{x}_j)$$

Average Linkage Average distance between all $N_i N_i$ pairs

$$d(C_i, C_j) = \frac{1}{N_i N_j} \sum_{\mathbf{x}_i \in C_i, \mathbf{x}_j \in C_j} d(\mathbf{x}_i, \mathbf{x}_j)$$

Algorithm 4 Agglomerative Clustering

Require: Data points $x_1, \ldots, x_N \in \mathbb{R}^D$, number of clusters k, distance function d(.,.)Ensure: Binary tree of clusters 1: Initialize each data point as cluster 2: **for** i = 1 to *N* **do** $C_i \leftarrow i$ 4: end for 5: Initialize each cluster as available for merging 6: $S \leftarrow \{1, \ldots, N\}$ 7: while There are clusters to merge do 8: Pick 2 most similar clusters to merge 9: $j, k \leftarrow \operatorname{argmin}_{i,k} d(j, k)$ 10: Merge clusters to new cluster $C_l \leftarrow C_i \cup C_k$ 11: Mark i, k as unavailable for merging 12: $S \leftarrow S \setminus \{j, k\}$ 13: if $C_l \notin \mathcal{S}$ then 14: $\mathcal{S} \leftarrow \mathcal{S} \cup \{I\}$ 15: end if 16: end while

Dendrograms (binary clustering trees) of yeast gene expression data

Taken from [Murphy, 2012]

Summary

- Clustering Algorithms find clusters in data
- Clustering Performance depends on distance function used
- K-Means is one of the most popular clustering algorithms
- For large data sets use Online K-Means
- Wrong number of clusters leads to unstable results
- Hierarchical clustering

References

- C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer US, 2007.
- S. Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transactions on, 28(2):129-137, Mar. 1982. ISSN 0018-9448.
- K. P. Murphy. Machine Learning: A Probabilistic Perspective. Adaptive Computation and Machine Learning. The MIT Press, 1 edition, 2012. ISBN 0262018020,9780262018029.

U. von Luxburg. Clustering stability: An overview. Foundations and Trends in Machine Learning. 2(3):235-274, 2009.

