Caminho Mínimo entre Todos os Pares

Teoria dos Grafos

Prof. André Luiz Satoshi Kawamoto

Agenda

- Motivação
- Algoritmo de Floyd-Warshall
- Exemplo
- Referências

Motivação

- Em um emaranhado de cidades, desejo saber a distância de todas as cidades entre si
- Determinar o diâmetro de uma rede de comunicação. O diâmetro é o maior entre todos os caminhos mínimos
 - Em um grafo representando uma rede de comunicação, as conexões são arestas valoradas com o tempo para uma mensagem ser transmitida. O diâmetro daria a informação do tempo mais longo para um pacote de dados trafegar pela rede

Abordagens

- Se o grafo não possuir arestas com peso negativo, poderíamos aplicar o algoritmo de Dijkstra para todos os vértices
 - Em um grafo esparso (com poucas arestas) e usando um heap para descobrir os mínimos, poderíamos chegar a O (V²logV + V.E)
 - Em um grafo denso, com E próximo a V, teríamos O(V³)
- Se o grafo possuir arestas com peso negativo, poderíamos aplicar o algoritmo de Bellman-Ford para todos os vértices
 - Em um grafo denso, teríamos O(V²E) para cada um dos vértices, ou seja O(V⁴)

- Também conhecido como Floyd's algorithm, Roy— Warshall algorithm, Roy—Floyd algorithm, ou WFI algorithm
- Publicado em 1962 por Robert Floyd, em 1959 por Bernard Roy e por Stephen Warshall em 1962 para determinar o Fecho Transitivo de um grafo.
- O algoritmo foi descrito com 3 loops de repetição por Peter Ingerman, em 1962

- Resolve o problema em tempo
 O(V³) independente de o grafo
 ser esparso ou denso
- Permite que o grafo tenha arestas de peso negativo
 - Não permite ciclos negativos*
- Utiliza Programação Dinâmica

- Esse algoritmo de recorre a uma propriedade óbvia de caminhos mínimos:
 - Suponha que você esteja indo de carro da cidade de Curitiba até Salvador ao longo da rota mais curta
 - Essa rota passa por São Paulo e depois por Belo Horizonte antes de chegar em Salvador.
 - Dessa forma, a rota mais curta entre Curitiba e Salvador deve conter em si a rota mais curta entre São Paulo e Belo Horizonte.
- Por quê?
 - Porque, se houvesse um caminho menor entre São Paulo e Belo Horizonte, nós o teríamos usado na rota mais curta de Curitiba a Salvador!

- Considere um caminho mínimo (P) entre os vértices u e v.
- Se em P existe:
 - uma porção que vai do vértice inicial u até um vértice intermediário x, seguida por
 - uma porção que vai do vértice x a um outro vértice intermediário y, seguida por
 - uma porção que vai do vértice y até o vértice final v
- Então a porção de P compreendidal entre x e y é, em si, um caminho mínimo de x até y.
- Em outras palavras, **qualquer subcaminho** de um caminho mínimo é, em si, um caminho mínimo

- Algoritmo:
- O grafo é representado por matriz de adjacências W onde:
 - W[i, j] = 0 se i = j;
 - W[i, j] = p(i, j), se i != j e $(i, j) \in E$, onde p(i, j) é o peso da aresta (i, j);
 - W[i, j] = Infinito, se i != j e $(i, j) \notin E(G)$;
- Utiliza também uma matriz de predecessores:
 - Pred[i, j] = null se i = j ou se não existe caminho de i para j;
 - Pred[i, j]: predecessor de j em caminho mínimo a partir de i.

Idéia do Algoritmo

- Inicializamos a matriz da solução igual à matriz de adjacências do grafo de entrada.
- Iterativamente, atualizamos a matriz, considerando todos os vértices
 - Para cada vértice k, verificamos para cada par de vértice i, j
 - Se k **não é** um vértice intermediário no caminho mais curto de i até j, mantemos o valor da distância entre i e j como está.
 - Se k **é** um vértice intermediário no caminho mais curto de i até j, então atualizamos o valor da distância entre i e j como a distância entre i e k + distância entre k e j. Além disso, atualizamos a matriz de predecessores

- Devido à complexidade desse algoritmo, nesse exemplo serão mostrados apenas as iterações em que ocorre alteração na matriz de distância.
- Lembre-se que são 3 laços:
 - O mais externo, com iterador k
 - Um laço com iterador i
 - Um laço mais interno, com iterador = j
- Ou seja, para cada K, vamos percorrer a matriz utilizando i e j como iteradores

Inicialização

	1	2	3	4	5
1	0	3	8	∞	-4
2	∞	0	∞	1	7
3	∞	4	0	∞	∞
4	2	∞	-5	0	∞
5	∞	∞	∞	6	0

Distâncias =

Pred =

	1	2	3	4	5
1	null	1	1	null	1
2	null	null	null	2	2
3	null	3	null	null	null
4	4	null	4	null	null
5	null	null	null	5	null

K=1

	1	2	3	4	5
1	0	3	8	∞	-4
2	∞	0	∞	1	7
3	∞	4	0	∞	∞
4	2	<mark>5</mark>	-5	0	<mark>-2</mark>
5	∞	∞	∞	6	0

Distâncias =

Pred =

A passagem pelo 1 melhora o caminho quando i = 4 e j =2;

= 4	4 e j =	= 5

	1	2	3	4	5
1	null	1	1	null	1
2	null	null	null	2	2
3	null	3	null	null	null
4	4	1	4	null	1
5	null	null	null	5	null

A passagem pelo 2 melhora o
caminho quando:
i = 1 e j = 4;
i = 3 e j = 4;
i - 3 o i -5

	1	2	3	4	5
1	null	1	1	<mark>2</mark>	1
2	null	null	null	2	2
3	null	3	null	<mark>2</mark>	<mark>2</mark>
4	4	1	4	null	1
5	null	null	null	5	null

K=3

	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞	1	7
3	∞	4	0	5	11
4	2	-1	-5	0	-2
5	∞	∞	∞	6	0

Distâncias =

		1	2	3	4	5
	1	null	1	1	2	1
	2	null	null	null	2	2
	3	null	3	null	2	2
=	4	4	3	4	null	1
	5	null	null	null	5	null

A passagem pelo 3

melhora o caminho

quando:

i = 4 e j = 2

Pred =

K=4

A passagem pelo 4 melhora o caminho quando:

	1	2	3	4	5
1	0	3	<mark>-1</mark>	4	-4
2	<mark>3</mark>	0	<mark>-4</mark>	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	8	∞	<u>1</u>	6	0

Pred

Distâncias =

		Hall		_		
	2	<mark>4</mark>	null	<mark>4</mark>	2	<mark>1</mark>
	3	<mark>4</mark>	3	null	2	1
=	4	4	3	4	null	1
	5	<mark>4</mark>	null	<mark>4</mark>	5	null

3

5

A passagem pelo 5 melhora o caminho quando:

K=5

	1	2	3	4	5
1	0	1	<mark>-3</mark>	<mark>2</mark>	-4
2	3	0	-4	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	8	<mark>5</mark>	1	6	0

Distâncias =

Pred =	

	1	2	3	4	5
1	null	<mark>3</mark>	<mark>4</mark>	<mark>5</mark>	1
2	4	null	4	2	1
3	4	3	null	2	1
4	4	3	4	null	1
5	4	3	4	5	null

Por exemplo, sabemos que os menores caminhos a partir de 1 valem:

- 1 para o vértice 2;
- -3 para o vértice 3
- 2 para o vértice 4
- -4 para o vértice 5

Para ir do 1 até o 5, passamos pelo 1 Para ir do 1 até o 4, passamos pelo 5 Para ir do 1 até o 3 passamos pelo 4 Para ir do 1 até o 2 passamos pelo 3

	1	2	3	4	5
1	0	1	-3	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	8	5	1	6	0

Pred =

FIM

Distâncias =

	1	2	3	4	5
1	null	3	4	5	1
2	4	null	4	2	1
3	4	3	null	2	1
4	4	3	4	null	1
5	4	3	4	5	null

Link para Simulador online

https://www-m9.ma.tum.de/graph-algorithms/spp-floyd-warshall/index en.html

Referências usadas nesse material

- Floyd–Warshall Algorithm. Disponível em: https://www.geeksforgeeks.org/floyd-warshall-algorithm-dp-16/. Acesso em: 2 jul. 2020
- CORMEN, Thomas. Desmistificando algoritmos. Elsevier Brasil, 2017.