Probabilités I

STEP, MINES ParisTech

5 janvier 2021 (#9ddc57e)

` -	onse multiple) Sels que $A \subset B$. On a	,	espace de probabilité
$\Box \ \ A \colon \mathbb{P}(A) \le \mathbb{P}$ $\Box \ \ B \colon \mathbb{P}(A^c) \ge \mathbb{P}$ $\Box \ \ C \colon \operatorname{Si} \mathbb{P}(A) > \mathbb{P}$		$\mathbb{P}(B)$ $\mathbb{P}(A)$	
Question 2 Soit paramètre θ . Soit l	(, (),)	$(\mathbb{R}_+), \mathbb{P})$ où \mathbb{P} est	la loi exponentielle de
	$X:\omega\in\Omega\mapsto\left\{\begin{array}{c}0\\1\end{array}\right.$	$\begin{array}{l} \text{si } \omega \in [0,1], \\ \text{si } \omega \in]1, +\infty[\end{array}$	
\square A: $\mathbb{P}(X=0)$ \square B: $\mathbb{P}(X=1)$	$0 = \frac{1}{2}$ $0 = e^{-\theta}$		

Question 3 (réponse multiple) Soit X une variable aléatoire telle que $\mathbb{P}(X \in [0,1]) = 0$. Alors

 \square A: $X(\omega) = 0$ quand $\omega \in [0,1]$

 \Box C: $\mathbb{P}(X \in \{0,1\}) = 1$

- \square B: La fonction de répartition F associée est nulle sur $[0,\,1]$
- \square C: Si X est de densité f, alors f est nulle sur [0, 1].

 ${\bf Question}~{\bf 4}~$ Soit X une variable aléatoire réelle suivant une loi normale de paramètres μ et σ^2 , quelle est la loi de 2X?

 \square A: $\mathcal{N}(\mu, \sigma^2)$ \square B: $\mathcal{N}(2\mu, (2\sigma)^2)$ $\Box \ C: \mathcal{N}(\frac{1}{2}\mu, \sigma^2)$ $\Box \ D: \mathcal{N}(\mu, (2\sigma)^2)$

Question 5 Soit U une variable aléatoire réelle de loi uniforme sur [0,1]. U^2 admet-elle une densité?

- □ A: Non □ B: Oui : $\frac{1}{2\sqrt{x}}1_{[0,1]}(x)$
- \Box C: Oui : $2x1_{[0,1]}(x)$