Question Number	Answer	Marks
9 (a)	$(1-x)^{-k} = 1 + (-k)(-x) + \frac{(-k)(-k-1)}{2!}(-x)^2 + \frac{(-k)(-k-1)(-k-2)}{3!}(-x)^3$	M1 (1 needed; 2 or 2!, 6 or 3!)
	$=1+kx+\frac{k(k+1)}{2}x^2+\frac{k(k+1)(k+2)}{6}x^3 *$	A2,1,0 (algebraic terms) (3)
(b)	$(1+kx)^{\frac{1}{2}} = 1 + \frac{1}{2}kx + \frac{\frac{1}{2}(-\frac{1}{2})}{2!}(kx)^{2} + \frac{\frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})}{3!}(kx)^{3}$	M1
	$=1+\frac{1}{2}kx-\frac{1}{8}k^2x^2+\frac{1}{16}k^3x^3$	A2,1,0 (3)
(c)	$-\frac{1}{8}k^2 = \frac{k\left(k+1\right)}{2}$	M1
	$5k^2 + 4k = 0$	M1
	$k = -\frac{4}{5} \qquad k \neq 0$	A1 (3)
(d)	$\sqrt{15} = \sqrt{\frac{3 \times 25}{5}} = 5\sqrt{\frac{3}{5}}$	M1A1 (2)
	Alt: $\sqrt{15} = \lambda \sqrt{\frac{3}{5}} \Rightarrow \sqrt{15 \times \frac{5}{3}} = \lambda \qquad \lambda = 5$	
(e)	$x = \frac{1}{2}$	B1
	$\sqrt{\frac{3}{5}} = \left(1 - \frac{1}{2} \times \frac{4}{5}\right)^{\frac{1}{2}} = 1 - \frac{2}{5} \times \frac{1}{2} - \frac{1}{8} \times \frac{16}{25} \times \frac{1}{4} - \frac{1}{16} \times \left(\frac{4}{5}\right)^{3} \times \frac{1}{8}$	M1A1
	$\sqrt{15} = 5\sqrt{\frac{3}{5}} = 3.88$	A1 (4)
		[15]

Notes

(a)

M1 for attempting a binomial expansion of $(1-x)^{-k}$. Must have the 1, 2 or 2! and 6 or 3!. It must be clear that -x has been used in at least one term. This is a "show that" question, so simplifying all the terms immediately is insufficient method and gets M0

A1 for two correct algebraic terms

A1cso for all three algebraic terms correct. This is a given answer, so check working carefully.

(b)

- M1 for attempting a binomial expansion of $(1+kx)^{\frac{1}{2}}$. Again must have the 1, 2 or 2! and 6 or 3!. It must be clear that kx has been used in at least one term.
- A1 for two correct algebraic terms **must** be simplified.

A1cso for all three algebraic terms correct **must** be simplified.

(c)

M1 for equating *their* coefficients of x^2 to form an equation. Allow if x^2 is included in both terms.

M1 for reducing their equation to a two term quadratic or linear equation.

A1cso for
$$k = -\frac{4}{5}$$
 ($k \neq 0$ need not be seen)

(d)

- M1 for manipulating either side of $\sqrt{15} = \lambda \sqrt{\frac{3}{5}}$ to obtain a value for λ
- A1 for $\lambda = 5$ need not be shown explicitly. If $\lambda = 5$ is seen w/o working, give M1A1
- (e) B1 for identifying $x = \frac{1}{2}$ needed May only be seen in the expansion
- M1 for substituting *their* values of x and k in their expansion from (b) to obtain a numerical expression for $\sqrt{\frac{3}{5}}$

A1 for an expansion which is fully correct, no need to evaluate here

A1cso for completing to
$$\sqrt{15} = 5\sqrt{\frac{3}{5}} = 3.88$$