<u>Architectures et</u> Algorithmique Parallèles

Architectures Parallèles

Cours pour Ingénieur

Préparé par

Dr. Olfa Hamdi-Larbi

ola ola79@yahoo.fr

Architecture Séquentielle Classique

Architectures Parallèles:

Différents arrangements de ces trois composants

Architectures Parallèles

Taxonomie de Flynn

		Flot de Données	
		Simple	Multiple
Flot d'Instructions	S imple	SISD	SIMD
		(Von Neumann)	(Vectorielle et cellulaire)
	Multiple	MISD	MIMD
		(pipeline)	(Multiprocesseur et
Flo			Passage de Message)

Taxonomie de haut niveau

Prend en compte la disposition de la mémoire

Machines SIMD

 les processeurs sont synchronisés (pas de liberté temporelle) et ils exécutent la même instruction (pas de liberté spatiale) mais sur des données multiples.

Machines SIMD

Machines SIMD: Mémoire Distribuée

- le contrôleur pilote tout un tableau d'unités processeur/mémoire au lieu d'un processeur unique
- Instruction diffusée par le contrôleur : tous les processeurs l'exécutent de manière parfaitement synchrone

Exemples : Machines Systoliques et Cellulaires

Machine (Automate) Cellulaire

- Un automate cellulaire consiste en une grille régulière de « cellules » contenant chacune un « état »
- À chaque nouvelle unité de temps, les mêmes règles sont appliquées simultanément à toutes les cellules de la grille, produisant une nouvelle « génération » de cellules dépendant entièrement de la génération précédente.

Automate Cellulaire bidimentionnel

Machines SIMD: exemple

Les « Connection Machines »

CM-2 General Specifications

Processors 65536 (64K)

Memory 512 MB

Memory Bw 300Gbits/Sec

I/O Channels 8

Capacity per Channel 40 MB/Sec

Max. Transfer Rate 320 MB/Sec

Ont été très efficaces dans des problèmes de traitement d'image

Machines SIMD : Mémoire partagée

5: Stockage

C: Contrôleur

P: Processeur

Exemples : Machines Vectorielles

Définitions :

- machine multiprocesseurs
- ► Entre dans le cadre d'une architecture SIMD
- Utilisation des unités fonctionnelles pipelines

Comment fonctionne une machine vectorielle?

Principe du pipeline :

- les unités de traitement et de contrôle sont découpées en étages chargés d'une partie de l'opération à effectuer.
- des données peuvent être traitées à l'étage 2 pendant que d'autres sont traitées à l'étage 3.
- Le flot de données est continu.
- Dans la classification de Flynn, ces machines sont de type MISD, mais on peut considérer que l'effet pipeline est semblable à un effet « Multiple Donnés »
- en pratique, on classe les machines pipe-line avec les machines SIMD.

Exécution sur une machine scalaire :

Exécution sur une machine vectorielle :

$$A(1)=B(1)*C(1)$$
 $A(2)=B(2)*C(2)$ $A(3)=B(3)*C(3)$ $A(4)=B(4)*C(4)$ $A(5)=B(5)*C(5)$

Le nombre d'unités de temps Machine Scalaire :n*k Machine Vectorielle :n+k-1

Anciennes gamme Cray

Machines MIMD

- Chaque Processeur dispose de son propre contrôleur.
- Les Processeurs exécutent des programmes différents de manière *asynchrone*.

Machines MIMD

<u>Machines MIMD: Mémoire</u> distribuée (Multi-ordinateur)

- les processeurs, les stockages et les contrôleurs sont multiples.
- Chaque nœud de traitement est capable de stocker et exécuter son propre programme sur ses propres données, de manière complètement indépendante et asynchrone avec tous les autres nœuds de traitement
- On a besoin d'un réseau externe d'intercommunication entre les processeurs pour qu'ils puissent échanger des informations

Multi-ordinateur: Exemple

1993-2000 : Cray-T3D & T3E

En 1993 : le Cray-T3D est la première machine MIMD à mémoire distribuée avec un réseau d'interconnexion réellement performant

Cray-T3D:

Processeurs: 1 à 1024 Alpha

• Réseau de comm. : tore 3D

600Mo/s lien crête

100-480Mo/s réel

Mémoire : distribuée et partageable

mais **NUMA**: <n° proc,ptr loc>

Machines MIMD: Mémoire Partagée (SMP: Symmetric MultiProcessor)

 Plusieurs copies du contrôleur/processeur avec une instance unique de la mémoire

SMP: Exemple

- SUN Fire [tm] 15K server
- SUN propose des serveurs équipés de 1 à 106 processeurs
- Prix de 4-5 million d'euro

Mémoire partagée/ Mémoire distribuée

Avantages / Inconvénients ?

Machines MIMD: Mémoire

5: Stockage

C: Contrôleur

P: Processeur

Combinaison de :

- l'avantage de la rapidité de communication inter-processeurs dans une machine à mémoire partagée,
- l'avantage du nombre élevé de processeurs de l'architecture à mémoire distribuée plusieurs processeurs partageant une mémoire commune : nœud (grappe)
- l'architecture à mémoire partagée en intra-nœud et l'architecture à mémoire distribuée en inter-nœuds sont assemblées 22

MIMD Mémoire Hybride : Exemple

1997-2002 : SGI-Origin2000

Première architecture DSM commercialisée : Offre une mémoire partagée et plusieurs centaines de processeurs

SGI-Origin2000:

- Processeurs: 4 à 512 Mips-R12000 (RISC)
- Réseau hyper-cubique

- Mémoire hybride : distribuée et partagée
 - Implantation Hardware « CC-NUMA »
 - · Espace d'@ unique
- Architecture plus extensible que les SMP (limitées en 1996 à 20 procs.)

Taxinomie des Architectures

MIMD——Coatrôle——SIMD

Donées —Mémoire Partagée

Multiprocesseurs à Mémoire Partagée

NYU - RP3
HEP
Cmmp
Cm*
Cedar
Alliant FX/8
BBN Butterfly
MaRS
Manche ster DM
ALICE

Machines Vectorielles

(RISC, VLIW, Superscalaires)

Cray 1,2, X-MP, Y-MP
CDC Cyber 205
ETA 10
IBM 3090-VF 400
Fujitsu VP 200
NEC SX-2
Hitachi S 810

RS 6000, Sparc, MIPS Weitek Intel i860

b)

d)

Machines à Passage de Messages

Cosmic Cube
Hypercube Intel iPSC/1, iPSC/2
Transputer
FPS Series T
NCube Ten
Mosaic
Mega-Lri
TouchStone-Delta/Sigma
Connection Machine 5
DaDo
Mago
NonYon

Machines Cellulaires et Systoliques

Illiac IV
Staran
MPP
GF11
Connection Machine1-2
MasPar

Gapp Warp

(c)

a)

Mémoire Distribuée —

Les clusters (grappes)

- Collection d'ordinateurs autonomes (nœuds) connectés et travaillant ensemble comme une ressource unique et intégrée de calcul
- Nœud = système unique ou multiprocesseur
- Nœuds peuvent être sis dans le même local ou géographiquement séparés et connectés via un LAN
- Composants d'un cluster :
 - Plusieurs ordinateurs haute performance
 - Systèmes d'exploitation
 - Réseaux/Switchs Haute Performance (Gigabit Ethernet et Myrinet)
 - Cartes Interface Réseau
 - Protocoles et Services de Communication rapides (Active et Fast Messages)
 - Intergiciel Cluster
 - Environnements et outils de programmation parallèle (compilateurs)
 - PVM (Parallel Virtual Machine), MPI (Message Passing Interface)
 - Applications (Séquentielles, parallèles ou distribuées)

Les clusters (grappes)

Les grilles

Environnement informatique et de collaboration sans frontière

 Utilisation des cycles CPU durant lesquels les machines sont inactives pour exécuter une application unique

 « Push model » : coordinateur est responsable du partage du travail sur les différentes ressources

 Symétrique : un nœud de la grille peut être à la fois consommateur et producteur

Les grilles (Grids)

Systèmes distribuées à grande échelle et Systèmes P2P

- SDGE, P2P, SV (Système volontaire), SCG (Système de calcul global)
- Environnements de développement et d'exécution pour les applications sur Internet
- Extension du concept de vol de cycles à l'échelle d'Internet
- Machines volontaires qui se connectent à un serveur pour recevoir des tâches à exécuter
- « Pull model » : demandes périodiques au serveur du travail
- Non symétrique (nœuds volontaires fournissant les ressources informatiques aux projets, et non pas le contraire)
- Distributed.net, SETI@home, XtremWeb

Différences SDGE/P2P/GC

• P2P:

- Communication directe entre entités d'un réseau sans passer par une autorité centrale
- Architecture décentralisée
- Nombre de ressources connectées très élevé (100 000 ressources)
- Ressources rarement parallèles
- Volatiles
- SDGE : centralisation
- GC: nombre de ressources connectées pas très élevé

Cloud computing (Informatique dans les nuages)

Cloud computing

- Dispersion par une autorité centrale d'un système d'information sur des infrastructures prises en charge par un ou plusieurs prestataires
- Localisation géographique des ressources virtuellement illimitée
- Virtualisation de plateformes conçues d'emblée pour être mutualisées au travers de vastes grilles de serveurs

Exemples de plateformes : Amazon, Google,
Microsoft,

Les architectures multi-coeurs

- « multi-cœur » est employé pour décrire un processeur composé d'au moins deux cœurs (ou unités de calcul) gravés au sein de la même puce
 - multiplier la puissance grâce à une architecture parallèle.

 augmenter la puissance de calcul sans augmenter la fréquence d'horloge
- ☐ Les systèmes multiprocesseurs consomment beaucoup **d'énergie** et dégagent beaucoup de **chaleur**;
- ☐ La technologie multicœurs (*multicore* en anglais) permet d'assembler deux cœurs de processeurs côte-à-côte sur le silicium ;
- ☐ une consommation et un dégagement de chaleur réduits

Processeurs multicoeurs existants

Types d'architectures multicoeurs

Mémoires caches des cœurs sont distinctes

Processeurs multicoeurs existants

Types d'architectures multicoeurs

Mémoire cache des cœurs est commune

Processeurs multicoeurs existants

Types d'architectures multicoeurs

FSB: Front Side Bus

Exemples de systèmes multicoeurs

□Les programmes doivent être repensés, dans le cas contraire, ils utilisent seulement un des cœurs.
□Très peu de logiciels gèrent le bi-cœurs.
Les logiciels ne sont pas conçus pour tirer le maximum de cette technologie.
□Les performances se détacheront nettement dans les

Les quadri-cœurs, formés de 4 cœurs, sont entrain de remplacer les bi-cœurs, car le passage à cette architecture ne demande quasiment pas de modification logicielle.

applications gourmandes comme les jeux vidéo.