Quiz, 10 questions

Congratulations! You passed!	Next Item
1/1 points	
 Which notation would you use to denote the 3rd the input is the 7th example from the 8th minit 	_
$\bigcirc a^{[3]\{8\}(7)}$	
Correct	
$\bigcirc a^{[8]\{7\}(3)}$	
$\bigcirc a^{[3]\{7\}(8)}$	
$igcap a^{[8]\{3\}(7)}$	
0/1 points	
2. Which of these statements about mini-batch gr agree with?	adient descent do you

One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient

Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch

descent.

using batch gradient descent.

This should not be selected

Optimization algorithms

9/10 points (90%)

Quiz, 10 questions	You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).
	 1/1 points 3. Why is the best mini-batch size usually not 1 and not m, but instead something in-between? If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress. Correct
	 If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent. Un-selected is correct
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch. Correct
	 If the mini-batch size is 1, you end up having to process the entire training set before making any progress. Un-selected is correct

Quiz, 10 questions

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

Correct

- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
- Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.

9/10 points (90%)

Quiz, 10 questions

5.

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd:
$$heta_2 10^o C$$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=10$$
 , $v_2^{corrected}=7.5$

$$igcup_2=7.5$$
 , $v_2^{corrected}=10$

Correct

$$v_2=10$$
 , $v_2^{corrected}=10$

$$v_2=7.5$$
, $v_2^{corrected}=7.5$

1/1 points

6

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$lpha = rac{1}{\sqrt{t}} \, lpha_0$$

$$\alpha = 0.95^t \alpha_0$$

$$\alpha = e^t \alpha_0$$

Optimization algorithms

9/10 points (90%)

Quiz, 10 questions

$$lpha = rac{1}{1+2*t} \, lpha_0$$

1/1 points

7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. The red line below was computed using $\beta=0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Decreasing β will shift the red line slightly to the right.

Un-selected is correct

Increasing eta will shift the red line slightly to the right.

Correct

Optimization algorithms

9/10 points (90%)

Quiz, 10 questions

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Un-selected is correct

1/1 points

8. Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)

(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β) Optimization algorithms

Quiz,

9/10 points (90%)

10 questions	Correct
	(1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)
	1/1 points
	9. Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)
	Try initializing all the weights to zero
	Un-selected is correct
	lacksquare Try tuning the learning rate $lpha$
	Correct
	Try better random initialization for the weights
	Correct
	Try using Adam
	Correct
	Try mini-hatch gradient descent

Correct

Optimization algorithms

9/10 points (90%)

Quiz, 10 questions

	1/1	
	points	
10.		
Which	of the following statements about Adam is False?	
	Adam combines the advantages of RMSProp and momentum	
	We usually use "default" values for the hyperparameters eta_1,eta_2 and $arepsilon$ in Adam ($eta_1=0.9$, $eta_2=0.999$, $arepsilon=10^{-8}$)	
0	Adam should be used with batch gradient computations, not with mini-batches.	
Correct		
	The learning rate hyperparameter α in Adam usually needs to be tuned.	

