Марина Б04-005, Лабораторная работа №.3.2.3

Цель работы: Исследование резонанса токов в параллельном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных и фазовочастотных характеристик, а также определение основных параметров контура.

Оборудование:

- 1. генератор сигналов
- 2. источник тока, нагруженный на параллельный колебательный контур с переменной ёмкостью
- 3. двухлучевой осциллограф
- 4. цифровые вольтметры

Теоретическая справка:

Напряжение $\mathcal{E} = \mathcal{E}_0 \cos(\omega t + \varphi_0)$ от генератора поступает на вход источника тока. Переменное напряжение на сопротивлении R_1 в используемой схеме равно напряжению на выходе генератора и совпадает с ним по фазе, то есть:

$$I = \frac{\mathcal{E}}{R_1} = I_0 \cos(\omega t + \varphi_0), \quad I_0 = \frac{\mathcal{E}_0}{R_1}.$$
 (1)

Выражения для импеданса ёмкостной и индуктивной ветви параллельного контура:

$$Z_c = R_s - \frac{i}{\omega C}, \quad Z_L = R + R_L + i\omega L. \tag{2}$$

Комплексные амплитуды токов в ёмкостной и индуктивной ветвях контура, а также напряжения на контуре при нулевой начальной фазе внешнего тока удобно представить в виде:

Рис. 1: Блок-схема экспериментального стенда

Рис. 2: Последовательная эквивалентная схема конденсатора с потерями

$$\hat{I}_{C} = QI_{0} \frac{\omega}{\omega_{0}} \frac{e^{i\varphi_{C}}}{\sqrt{1+(\tau\Delta\omega)^{2}}} , \quad \varphi_{C} = \frac{\pi}{2} - \frac{R+R_{L}}{\rho} - \arctan(\tau\Delta\omega) ,
\hat{I}_{L} = QI_{0} \frac{\omega}{\omega_{0}} \frac{e^{i\varphi_{L}}}{\sqrt{1+(\tau\Delta\omega)^{2}}} , \quad \varphi_{L} = -\frac{\pi}{2} + \delta - \arctan(\tau\Delta\omega) ,
\hat{U} = Q\rho I_{0} \frac{e^{i\varphi_{U}}}{\sqrt{1+(\tau\Delta\omega)^{2}}} , \quad \varphi_{U} = -\frac{\omega_{0}}{\omega} \frac{R+R_{L}}{\rho} + \delta - \arctan(\tau\Delta\omega) .$$
(3)

При резонансе модули комплексных амплитуд, их фазы и производные фаз по циклической частоте принимают вид:

$$I_{C}(\omega_{0}) = QI_{0} \qquad , \quad \varphi_{C}(\omega_{0}) = \frac{\pi}{2} - \frac{R + R_{L}}{\rho} ,$$

$$I_{L}(\omega_{0}) = QI_{0} \qquad , \quad \varphi_{L}(\omega_{0}) = -\frac{\pi}{2} + \delta ,$$

$$U(\omega_{0}) = Q\rho I_{0} = Q^{2}R_{\Sigma}I_{0} \qquad , \quad \varphi_{U}(\omega_{0}) = -\frac{R + R_{L}}{\rho} + \delta ,$$

$$\varphi'_{C}(\omega_{0}) = \varphi'_{L}(\omega_{0}) = \varphi'_{U}(\omega_{0}) = -\tau.$$

$$(4)$$

Параметры установки: $R = 3.5 \text{ Om}, R_1 = 1008 \text{ Om}.$

Ход работы:

1. Проведём измерения для контуров с различными ёмкостями (таблица 1)

$C_n, {}_{H}\Phi$	$f_{0n},$ к Γ ц	U,B	E,B	L , мк Γ н	ρ ,OM	$Z_{ m pes}, { m O}$ м	Q	R_{Σ}, Om	$R_{S\mathrm{max}},\mathrm{Om}$	R_L, O_{M}
25.10	32.00	1.23	0.25	986.52	198.25	4959.36	25.02	7.93	0.20	4.23
33.20	27.70	1.15	0.25	995.37	173.15	4636.80	26.78	6.47	0.17	2.79
47.30	23.20	0.83	0.25	995.96	145.11	3346.56	23.06	6.29	0.15	2.65
57.40	21.30	0.72	0.25	973.67	130.24	2903.04	22.29	5.84	0.13	2.21
67.50	19.50	0.59	0.25	987.89	120.98	2378.88	19.66	6.15	0.12	2.53
82.70	17.70	0.50	0.25	978.65	108.78	2016.00	18.53	5.87	0.11	2.26
101.60	15.90	0.42	0.25	897.17	98.57	1693.44	17.18	5.74	0.10	2.14
Среднее значение				986.46						2.69
Среднеквадратичная погрешность				3.07						0.27

Таблица 1: Результаты измерений

$$\rho = \sqrt{\frac{L}{C}} , \quad Z_{\text{pes}} = \frac{U}{I_0} = \frac{UR_1}{E} , \quad Q = \frac{Z_{\text{pes}}}{\rho} ,
R_{\Sigma} = \frac{Z_{\text{pes}}}{Q^2} , \quad R_{S \text{ max}} = \text{tg} \frac{\delta}{\omega C} , \quad R_L = R_{\Sigma} - R - R_s .$$
(5)

2. Снимем АЧХ для двух контуров 3 и 7 в размерных и безразмерных координатах (рис. 3.)

Резонанс для контура 7 достигается на меньших частотах, чем у контура 3. Однако, в безразмерных координатах пики АЧХ двух контуров совпадают.

а) в размерных величинах

б) в безразмерных величинах

Рис. 3: АЧХ 3 и 7 контуров

Графически определяем добротность: $Q_3=25\; ; \; Q_7=15.6\; .$ Полученные значения сходятся с значениями в таблице 1.

3. Построим ФЧХ контуров (рис. 4).

Рис. 4: ФЧХ контуров

По формуле $Q = \frac{1}{2} \frac{d\varphi_U(x)}{dx}$ определим добротность по ФЧХ: $Q_3 = 7.4, \ Q_7 = 4.25.$

4. По данным из таблицы 1 Построим график зависимости RL(f0). (рис. 5)

Рис. 5: Зависимость активного сопротивления от резонансной частоты

Выводы:

- 1. В ходе лабораторной работы мы исследовали резонанс токов в параллельном колебательном контуре с изменяемой ёмкостью, в ходе изучения получили амплитудно-частотные и фазово-частотные характеристики, а также определили основные параметры контура.
- 2. Мы вычислили значение добротности контура тремя различными способами, получили значения:

Для контура 3 ближе к теоретическому значению оказалась добротность, полученная графически при помощи АЧХ, а для контура 7 — при помощи ФЧХ.

3. Также была изучена зависимость активного сопротивления катушки индуктивности. Можно заметить, что активное сопротивление увеличивается при увеличении частоты, это может быть связано с потерями на катушке при перемагничивании сердечника, и с потерями, обусловленными возникновением вихревых токов.