Ciência de dados - Dados abertos da UFRN: ITP pré e pós pandemia

Abmael Dantas Gomes, Addan Felipe Neri Andrade e Jeová Henrique Linhares

recap?

O tema proposto escolhido por nós foi a análise pré e pós pandemia da disciplina de ITP do curso BTI da UFRN.

153.680.202

linhas na base antes de qualquer modificação

Relembrando a limpeza e filtragem dos dados

```
notas_imd_2018_02_merge[notas_imd_2018_02_merge["nivel_ensino"] == "GRADUAÇÃO"]
notas_imd_2018_01_merge[notas_imd_2018_01_merge["nivel_ensino"] == "GRADUAÇÃO"]
notas_imd_2020_01_merge[notas_imd_2020_01_merge["nivel_ensino"] == "GRADUAÇÃO"]
notas_imd_2019_02_merge[notas_imd_2019_02_merge["nivel_ensino"] == "GRADUAÇÃO"]
notas_imd_2019_01_merge[notas_imd_2019_01_merge["nivel_ensino"] == "GRADUAÇÃO"]

.loc[graduacao_imd_2018_02['nome_x'] == 'INTRODUÇÃO ÀS TÉCNICAS DE PROGRAMAÇÃO']
.loc[graduacao_imd_2018_01['nome_x'] == 'INTRODUÇÃO ÀS TÉCNICAS DE PROGRAMAÇÃO']
.loc[graduacao_imd_2020_01['nome_x'] == 'INTRODUÇÃO ÀS TÉCNICAS DE PROGRAMAÇÃO']
.loc[graduacao_imd_2019_02['nome_x'] == 'INTRODUÇÃO ÀS TÉCNICAS DE PROGRAMAÇÃO']
.loc[graduacao_imd_2019_01['nome_x'] == 'INTRODUÇÃO ÀS TÉCNICAS DE PROGRAMAÇÃO']
.loc[graduacao_imd_2019_01['nome_x'] == 'INTRODUÇÃO ÀS TÉCNICAS DE PROGRAMAÇÃO']
```

De 2019.1 até o atual: DIM0133 e IMD1012 Em 2018 : DIM0118.0 e IMD0012.0 Antes de 2018: IMD0012.0

Um pouco mais do tratamento dos dados (mudança de tipo e ajustes)

```
graduacao imd 2018 02 = graduacao imd 2018 02.replace({',': '.'}, regex=True)
graduacao imd 2018 01 = graduacao imd 2018 01.replace({',': '.'}, regex=True)
graduacao imd 2020 01 = graduacao imd 2020 01.replace({',': '.'}, regex=True)
graduacao imd 2019 02 = graduacao imd 2019 02.replace({',': '.'}, regex=True)
graduacao imd 2019 01 = graduacao imd 2019 01.replace({', ': '.'}, regex=True)
graduacao imd 2018 02.nota = graduacao imd 2018 02.nota.astype(np.float64)
graduacao imd 2018 01.nota = graduacao imd 2018 01.nota.astype(np.float64)
graduacao imd 2020 01.nota = graduacao imd 2020 01.nota.astype(np.float64)
graduacao imd 2019 02.nota = graduacao imd 2019 02.nota.astype(np.float64)
graduacao imd 2019 01.nota = graduacao imd 2019 01.nota.astype(np.float64)
graduacao imd 2018 02.media final = graduacao imd 2018 02.media final.astype(np.float64)
graduacao imd 2018 01.media final = graduacao imd 2018 01.media final.astype(np.float64)
graduacao imd 2020 01.media final = graduacao imd 2020 01.media final.astype(np.float64)
graduacao imd 2019 02.media final = graduacao imd 2019 02.media final.astype(np.float64)
graduacao imd 2019 01.media final = graduacao imd 2019 01.media final.astype(np.float64)
```

Análise exploratória (já apresentada)

2018.1

2019.2

2020.1

Análise exploratória (já apresentada)

Seleção de características

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8537789 entries, 0 to 8537788
Data columns (total 18 columns):
# Column
                       Dtype
0 id turma
                       int64
    discente
                       object
2 id curso
                       float64
                  float64
3 unidade
                     object
4 nota
5 reposicao
                       object
6 faltas unidade
                       float64
7 media final
                       object
8 numero total faltas float64
                       object
9 descrição
10 nome v
                       object
11 codigo
                       object
12 nivel ensino
                       object
13 nome x
                       object
14 capacidade aluno
                       int64
15 descricao horario
                       object
16 aprovado
                       int64
                       object
17 semestre
dtypes: float64(4), int64(3), object(11)
memory usage: 1.1+ GB
```

```
dfc = df[['unidade', 'nota',
reposicao', 'faltas unidade'
 'media final', 'numero total
'descricao', 'nome x', 'aprova
aprovado', 'semestre']]
```

essas foram as características principais escolhidas para a versão final da base de dados para as análises desse projeto

Recortes:

<pre>1 dfc = df[['discente', 'unidade', 'nota', 'reposicao', 'faltas_unidade', 2</pre>											
	discente	unidade	nota	reposicao	faltas_unidade	media_final	numero_total_faltas	descricao	nome_x	aprovado	semestre
0	fdfbc41af495cd2ed1ebfc0edac0a8b9	1.0	7,0	False	0.0	8,3	18.0	APROVADO	HISTORIA MODERNA II	1	2018.2
1	fdfbc41af495cd2ed1ebfc0edac0a8b9	2.0	9,0	False	0.0	8,3	18.0	APROVADO	HISTORIA MODERNA II	1	2018.2
2	fdfbc41af495cd2ed1ebfc0edac0a8b9	3.0	9,0	False	0.0	8,3	18.0	APROVADO	HISTORIA MODERNA II	1	2018.2
3	9fa6e0da8cb50d663b767a23a72ffb31	1.0	3,4	False	0.0	6,5	0.0	APROVADO POR NOTA	HISTORIA MODERNA II	1	2018.2
4	9fa6e0da8cb50d663b767a23a72ffb31	2.0	8,0	False	0.0	6,5	0.0	APROVADO POR NOTA	HISTORIA MODERNA II		2018.2

aparecem registros das disciplinas de todos os cursos, pois os recortes por curso, disciplina, nível de ensino são feitos depois (para termos o potencial de explorar e analisar outros cursos e/ou disciplinas)

Agrupamento e flags:

Algumas estratégias foram adotadas para fazer o agrupamento ("clusterizar" de certa forma) os alunos. Primeiramente era indispensável a noção de aprovação de uma forma mais direta, já que a nos dados abertos o status da matrícula é um objeto (string). Definimos uma forma de ter essa informação como dado booleano:

```
def aprovado(row):
    if row["descricao"] == "APROVADO" or row["descricao"] == "APROVADO POR NOTA":
        return 1
    else:
        return 0
```

Refinamento e melhora da base:

Outro desafio encontrado durante o desenvolvimento do projeto foi o de tornar a base mais fiel à realidade do curso/disciplina fazendo a remoção exclusivamente de alunos matematicamente incapazes de serem APRN na disciplina de acordo com o regulamento.

Art. 108. O estudante que realiza avaliação de reposição é considerado aprovado, quanto à avaliação de aprendizagem, se satisfaz um dos seguintes critérios:

I - tem média final igual ou superior a 7,0 (sete); ou

II – tem média final igual ou superior a 5,0 (cinco), com rendimento acadêmico igual ou superior a 3,0 (três) na avaliação de reposição.

Parágrafo único. O estudante que realiza avaliação de reposição e não atinge os critérios de aprovação definidos neste artigo é considerado reprovado.

Refinamento e melhora da base:

```
11 def matematicamentereprovado(row):
     if row["aprovado"] == 0:
12
13
       if row["media final"] < 5:
14
         if row["reposicao"] == True:
15
           return 1;
16
           # ele tem que sair
17
         else:
18
           return 0;
19
       else:
20
         return 1;
21
         # ele tem que sair
22
     else:
23
       return 0;
```

Após os rotular as entradas na base com a coluna 'reprovadomatematicamente' foi feita e exclusão de 168 linhas:

```
1 filtrados.loc[filtrados['reprovadomatematic
168
```

Esses seriam estudantes que, matematicamente, não conseguiriam alcançar APRN. Como não existe a coluna "nota_reposição" fiz a verificação se:

- Reprovado
- Média < 5
- Se fez reposição e foi reprovado, não obteve 3
- Então matematicamente não conseguiria APRŊ

153.680.202

linhas na base antes de qualquer modificação

2148

linhas na base depois de filtros e limpezas

1 print(base_final.size)
2148

K-means:

O K-means é um algoritmo do tipo não supervisionado, ou seja, que não trabalha com dados rotulados O objetivo desse algoritmo é encontrar similaridades entre os dados e agrupá-los conforme o número de cluster passado pelo argumento K.

Número de faltas x média final

Aprovado x média final

Aprovado x fez reposição

Professor x média final

Professor x Aprovado

Professor x Matrícula

Obrigado pela atenção

<u>abmaeld/data-science-itp-analisys: Projeto de ciência de dados: Análise de dados abertos da</u>
UFRN usando aprendizado não supervisionado (github.com)