Online Adaptation of Terrain-Aware Dynamics for Planning in Unstructured Environments

William Ward, Sarah Etter, Tyler Ingebrand, Christian Ellis, Adam J. Thorpe, Ufuk Topcu The University of Texas at Austin, DEVCOM Army Research Laboratory

The Central Question

How can we estimate a robot's dynamics on unknown terrains and enable reliable, accurate navigation and planning?

Goal: Develop a learned model that adapts to terrain online for reliable planning and control.

The Overall Framework

Stage 1 (Offline): Learn neural ODE basis functions from data on multiple terrains.

Stage 2 (Online): On a new terrain, compute coefficients via least squares. No retraining required.

Function Encoder Dynamics Models

Stage 1 (Offline): Train neural ODE basis functions to "reorient" and span the space of terrain-induced dynamics.

Stage 2 (Online): Keep the basis fixed. Use least squares to compute terrain-specific coefficients.

Diverse Phoenix Simulation Data

- Data shows significant variation in the dynamics.
- Low friction causes high lateral velocity (drifting).

Adaptation Improves Dynamics Prediction

The function encoder achieves low error across all scenes.

Our approach:

- Reduces error on individual terrains.
- Adapts to unseen terrains.
- Maintains low error over long horizons—critical for control.

Better Models Enable Safer MPPI Control

The function encoder successfully adapts to an unknown icy terrain, while the neural ODE collides with trees and fails the task.

Baseline (no adaptation): Controller uses a mismatched model
→ inaccurate predictions → obstacle collisions → task failure.
Our Approach: Adapts to the terrain → better predictions →

Future Work: Real-time Online Adaptation

obstacle avoidance → successful goal completion.

- In realistic deployments, terrain can change rapidly.
- Use recursive least squares to update the coefficients in real time.

Contact: wwward@utexas.edu