Case Study 4 - Global Fishing

Loading Libraries & Data

```
library(tidyverse)
## -- Attaching packages -----
                                               ----- tidyverse 1.3.1 --
                   v purrr
## v ggplot2 3.3.5
                               0.3.4
## v tibble 3.1.3 v dplyr 1.0.7
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 2.0.1 v forcats 0.5.1
## -- Conflicts -----
                                               ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
library(readr)
library(skimr)
library(lubridate)
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
      date, intersect, setdiff, union
library(SimDesign)
library(janitor)
## Attaching package: 'janitor'
## The following objects are masked from 'package:stats':
##
##
      chisq.test, fisher.test
library(RSQLite)
library(knitr)
library(scales)
## Attaching package: 'scales'
```

```
## The following object is masked from 'package:purrr':
##
##
      discard
## The following object is masked from 'package:readr':
##
      col_factor
library(corrplot)
## corrplot 0.90 loaded
library(RColorBrewer)
library(treemap)
library(readxl)
library(gridExtra)
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
      combine
farmed <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/20
## Rows: 11657 Columns: 4
## -- Column specification --------
## Delimiter: ","
## chr (2): Entity, Code
## dbl (2): Year, Aquaculture production (metric tons)
##
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
captured_vs_farmed <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/ma
## Rows: 14674 Columns: 5
## -- Column specification -------
## Delimiter: ","
## chr (2): Entity, Code
## dbl (3): Year, Aquaculture production (metric tons), Capture fisheries produ...
##
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
```

```
captured <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/</pre>
## Rows: 14516 Columns: 4
## Delimiter: ","
## chr (2): Entity, Code
## dbl (2): Year, Capture fisheries production (metric tons)
##
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
consumption <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/da</pre>
## Rows: 11028 Columns: 4
## Delimiter: ","
## chr (2): Entity, Code
## dbl (2): Year, Fish, Seafood- Food supply quantity (kg/capita/yr) (FAO, 2020)
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
stock <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/202</pre>
## Rows: 51 Columns: 5
## -- Column specification ------
## Delimiter: ","
## chr (2): Entity, Code
## dbl (3): Year, Share of fish stocks within biologically sustainable levels (...
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
fishery <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2
## Rows: 61 Columns: 8
## -- Column specification --------
## Delimiter: ","
## chr (2): Entity, Code
## dbl (6): Year, Artisanal (small-scale commercial), Discards, Industrial (lar...
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
```

```
## Rows: 10326 Columns: 10
## -- Column specification -----
## Delimiter: ","
## chr (2): Entity, Code
## dbl (8): Year, Commodity Balances - Livestock and Fish Primary Equivalent - ...
##
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
Cross checking the "captured" and the "farmed" tables with the "captured_vs_farmed" table
#Checking if all "captured" data is found in the captured_vs_farmed table
captured_vs_farmed_filtered <- captured_vs_farmed%>%
 filter(`Capture fisheries production (metric tons)` != "NA")
sum(captured$`Capture fisheries production (metric tons)`)
## [1] 41264851330
sum(captured_vs_farmed_filtered$`Capture fisheries production (metric tons)`)
## [1] 41264851330
#Checking if all "farmed" data is found in the captured_vs_farmed table
captured_vs_farmed_filtered2 <- captured_vs_farmed%>%
 filter(`Aquaculture production (metric tons)` != "NA")
sum(farmed$`Aquaculture production (metric tons)`)
## [1] 19842737675
sum(captured_vs_farmed_filtered2$`Aquaculture production (metric tons)`)
## [1] 19842737675
Removing the regions that are groups from the captured_vs_farmed and from consumption
```

production <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/dat

ToExclude <- c("Americas", "Africa Eastern and Southern", "Africa Western and Central", "Arab World", "

#Gather and exclude all the entities that are regions and not countries

captured_vs_farmed <- captured_vs_farmed%>%

filter(!Entity %in% ToExclude)

consumption <- consumption%>%
 filter(!Entity %in% ToExclude)

Visualizing the Timeline graph of the captured_vs_farmed

```
cap_vs_farm_time <- select(captured_vs_farmed, c("Year", "Aquaculture production (metric tons)", "Captured_vs_farmed")</pre>
cap_vs_farm_time[is.na(cap_vs_farm_time)] <- 0</pre>
cap_vs_farm_time <- cap_vs_farm_time %>%
 pivot_longer(!Year, names_to = "Aquaculture/Captured", values_to = "Metric Tones")
cap_vs_farm_time$`Aquaculture/Captured`[cap_vs_farm_time$`Aquaculture/Captured` == "Aquaculture product
cap_vs_farm_time$`Aquaculture/Captured` [cap_vs_farm_time$`Aquaculture/Captured` == "Capture fisheries p
cap_vs_farm_time %>%
  group_by(Year, `Aquaculture/Captured`)%>%
  summarize(Metric_Sum = sum(`Metric Tones`))%>%
  ggplot(aes(x = Year, y = Metric_Sum, colour = `Aquaculture/Captured`)) +
  geom_smooth(method= lm, color = "black") +
  geom_point() +
  scale_x_discrete(limits = c(1960, 1965, 1970,1975,1980,1985,1990,1995,2000,2005,2010,2015,2020)) +
  scale_y_continuous(labels = scales::comma) +
  labs(title = "Aquaculture vs Captured Fishing Timeline") +
  ylab("Metric Tones")
## 'summarise()' has grouped output by 'Year'. You can override using the '.groups' argument.
## Warning: Continuous limits supplied to discrete scale.
## Did you mean 'limits = factor(...)' or 'scale_*_continuous()'?
## 'geom_smooth()' using formula 'y ~ x'
```


As we see here Aquaculture has evolved throughout the years. It's starting to incline more steeply arou

Consumption of seafood related data

```
#Timeline viz of the total consumption over the years
consumption%>%
  group_by(Year)%>%
  group_by(Year)%>%
  summarize(Cons_sum = sum(`Fish, Seafood- Food supply quantity (kg/capita/yr) (FAO, 2020)`))%>%
  ggplot(aes(x = Year, y = Cons_sum)) + geom_point() + geom_line(linetype = 1, color = "red") +
  scale_x_discrete(limits = c(1960, 1965, 1970,1975,1980,1985,1990,1995,2000,2005,2010,2015,2020)) +
  labs(title = "Consumption Timeline") +
  ylab("Consumption of fish-food (kg/capita/yr)")

## Warning: Continuous limits supplied to discrete scale.
## Did you mean 'limits = factor(...)' or 'scale_*_continuous()'?
```

Consumption Timeline

The consumption of seafood is increasing over time and of course this relates to the worldwide populati In 2014 though we can see a very sharp decrease in the consumption from 4000-4100 to 3300-3400 kg/capit

Consumption of seafood related data (Full TreeMap)

Warning in if (class(try(col2rgb(bg.labels), silent = TRUE)) == "try-error")

stop("Invalid bg.labels"): the condition has length > 1 and only the first
element will be used

Consumption of seafood (kg/capita/yr)

	Portugal	Samoa	Macao	Taiwar	Brun	ei Philipp		nint s and Ba	rbados	Grenada	Fiji
	Portugai	Guillou	1974.98	1022.67	1044	00 4046	Ne	vis	700 74	1733	4707.07
Maldives	3053.25	2304.69	1974.96	1932.64		62 1810).96	17	792.71	1733	1707.97
		Polynesia	Melanesia	Saint Lucia	United Arab Emirates	Denmark 1238.58	I Anna	Canada 1178.6	Malta	Zealand	Gambia 1148.62
6888.51	Norway	1 Olynesia	1680.23					1170.0			1140.02
	2623.43	2157.74		Jamaica	Israel	United Kingdom	Italy	Peru	United States	Greece	
Iceland			Finland	1400.51	1133.72	1109.05	1106.3	1085.46		1076.11 Trinida	1074.96
iceiand	Malaysia	Bermuda	1652.86		Vietnam		Ireland		uania Ch	ina and	
4823.15	2547.07	2139.49		Senegal	1073.33	957.11	922.55	03.46 901	1.29 876	5.11 Tobage	
			Sweden	1394.39	New	Cape	Oman				
Kiribati	Solomon	Spain	1622.86	Sao Tome	Caledonia	Verde 7	737.33 737.	. <mark>08</mark> 711.72	706.88	683.2 682	.85 676.25
3889.64	Islands 2532.75	2093.81	_	and Principe	Sri			Egypt		Latvia [V	lali
3009.04			France		Lanka	832.9	577.3	6 574.73			
Micronesia	Antigua and	Guyana	1592.61	Thailand		Chile L	Laos 532	2 498 2 4	39.48		Africa
	Barbuda	-		1312.57	Indonesia	815.36	630.92 Tunis			Brazil	
(region) 3584.59	Darbada	2032.87	Dominica	Bahamas	1007.21	Cypi us	Kuwait <u>526.0</u>		_		4
	South		1505.86	1291.01	Mauritius	809.67	529.98 Liber				Iran
Japan	Korea	Gabon	01		990.55		Poland 524.4		07.4		
3496.8	2436.14	1994.56	Ghana	North	2	778.03	524.12 Niger 524.3	ıa	27.4		
0 100.0			1467.15	Korea	Suriname 966.87			South			
Hong Kong	French	Vanuatu	Congo		Cote	741.58	509.97 Russ 512.4				ш
3144.6	Polynesia 2419.84	1984.66	Congo 1464.94	Myanmar 1244.3	d'Ivoire	Cuba 739.18	Belize 502.15 500.3	8			

The Maldives hold the most consumpton of seafood by 6,888.51 kg/capita/yr followed by Iceland and Kriba

Consumption of seafood related data (Top 20 Countries TreeMap)

```
## Selecting by Cons_sum
## Warning in if (class(try(col2rgb(bg.labels), silent = TRUE)) == "try-error")
## stop("Invalid bg.labels"): the condition has length > 1 and only the first
## element will be used
```

Consumption of seafood Top 20 Countries (kg/capita/yr)

		(3 1) /						
Maldives	Micronesia (region) 3584.59	Norway 2623.43	Malaysia 2547.07	Solomon Islands 2532.75				
6888.51	Japan	Antigua and Barbuda	Samoa	Polynesia				
	3496.8	2450.43	2304.69	2157.74				
Iceland	Hong Kong	South Korea	Bermuda	Guyana 2032.87				
4823.15	3144.6	2436.14	2139.49	Gabon				
Kiribati	Portugal	French Polynesia	Spain	1994.56 Vanuatu				
3889.64	3053.25	2419.84	2093.81	1984.66				

Consumption of seafood related data (BarChart)

```
consumption_per_country_top20Bar <- consumption%>%
  group_by(Entity)%>%
  summarise(Conss_Sum = sum(`Fish, Seafood- Food supply quantity (kg/capita/yr) (FAO, 2020)`))%>%
  top_n(20)%>%
  ggplot(aes(x = Conss_Sum,y = reorder(factor(Entity),Conss_Sum), fill = Conss_Sum)) +
  geom_bar(stat = "identity") +
  scale_fill_gradientn(name = '',colours = rev(brewer.pal(5,'Spectral'))) +
  geom_text(aes(label = Conss_Sum), hjust = -0.1, size = 2) +
  labs(title = "Consumption of seafood Top 20 Countries (kg/capita/yr)") +
  xlab("kg/capita/yr") +
  ylab("")
```

Selecting by Conss_Sum

Consumption of seafood Top 20 Countries (kg/capita/yr)

Checking the Percentage of the top 20 countries over the total number of consumption

Percentage_Total <- Total_top20_consumption/Total_consumption*100</pre>

```
Total_consumption <- sum(consumption$`Fish, Seafood- Food supply quantity (kg/capita/yr) (FAO, 2020)`)

consumption_per_country_top20 <- consumption%>%
    group_by(Entity)%>%
    summarise(Conss_Sum = sum(`Fish, Seafood- Food supply quantity (kg/capita/yr) (FAO, 2020)`))%>%
    top_n(20)

## Selecting by Conss_Sum

Total_top20_consumption <- sum(consumption_per_country_top20$Conss_Sum)
```

[1] 36.10231

Percentage_Total

Tracking the difference of the total production and total consumption

#Removing the NA values and Adding a total production column

```
captured_vs_farmed$`Aquaculture production (metric tons)`[is.na(captured_vs_farmed$`Aquaculture product
captured_vs_farmed$`Capture fisheries production (metric tons)`[is.na(captured_vs_farmed$`Capture fishe
captured_vs_farmed$Total_Production <- captured_vs_farmed$`Aquaculture production (metric tons)`+capture</pre>
#Grouping the captured/farmed table by entity
captured_vs_farmed_group <- captured_vs_farmed%>%
  group_by(Entity)%>%
  summarise(Total_Production = sum(Total_Production))
#Grouping the consumption table by entity
consumption_group <- consumption%>%
  group_by(Entity)%>%
  summarise(Total_Consumption = sum(`Fish, Seafood- Food supply quantity (kg/capita/yr) (FAO, 2020)`))
##Converting the Kg to Metric Tonnes
consumption_group$Total_Consumption <- consumption_group$Total_Consumption/1000
##In order to be able to get and analyze the difference between the production and the consumption we n
#Importing the Population data
population_data <- read_excel("~/Desktop/Data Analysis Case Studies/Case Study 4/API_SP.POP.TOTL_DS2_en
TOTALS WITH NO TIMLINE
## New names:
## * ' ' -> ...3
## * '' -> ...4
## * '' -> ...5
## * '' -> ...6
## * ' ' -> ...7
## * ...
#Manipulation of the population data
population_data <- population_data[-c(1,2),]</pre>
names(population_data) <- population_data[1,]</pre>
## Warning: The 'value' argument of 'names<-' must be a character vector as of
## tibble 3.0.0.
population_data <- population_data[-c(1),]</pre>
population_data <- population_data[-c(3,4)]</pre>
population_data <- population_data%>%
  pivot_longer(!`Country Name` & !`Country Code`,names_to = "Year", values_to = "Population_count")
```

```
population_data$Population_count <- as.numeric(population_data$Population_count)</pre>
#Group the population table by Country Name
population data <- population data %>%
 rename(Entity = `Country Name`)
population_data_Group <- population_data%>%
  group by(Entity)%>%
  summarise(Average_Population = mean(Population_count))
#Merging the Population_data with the Consumption_group
Consumption_population_data <- merge(x = population_data_Group, y = consumption_group, by = "Entity")
Consumption_population_data$Total_Consumption_MetricTonnes <- Consumption_population_data$Total_Consump
Consumption_population_data <-Consumption_population_data[-c(2,3)]
#Merging the Consumption data with the captured/Farmed data ("Production" data)
Cons_Prod_Diff <- merge(x = Consumption_population_data, y = captured_vs_farmed_group, by = "Entity")
Cons_Prod_Diff$Total_Production <- round(Cons_Prod_Diff$Total_Production, digits = 0)</pre>
#Creating a difference column which measures the difference between the production and the consumption
Cons Prod Diff$Difference <- Cons Prod Diff$Total Production-Cons Prod Diff$Total Consumption MetricTon
#Visualizing and Analyzing the Difference to see if there is a surplus or a deficit in the seafood prod
Cons_Prod_Diff <- Cons_Prod_Diff%>%
  pivot_longer(!Entity, names_to = "Measure(MetricTonnes)", values_to = "Value")
Cons_Prod_Diff %>%
  filter(Cons_Prod_Diff$`Measure(MetricTonnes)` != "Difference")%>%
  ggplot(aes(x = "", y = Value, fill = `Measure(MetricTonnes)`, fill = `Measure(MetricTonnes)`)) +
  geom_bar(stat = "identity", width = 6) +
  coord_polar("y", start = 0) +
  labs(title = "Consumption vs Production")
## Warning: Duplicated aesthetics after name standardisation: fill
```

^{##} Warning: Removed 1 rows containing missing values (position stack).

Consumption vs Production

This shows clearly that there is a good amount of surpluss between what is produced vs what is consumed

```
#Grouping the captured/farmed table by entity and year
captured_vs_farmed_TimeGroup <- captured_vs_farmed%>%
  group_by(Entity, Year)%>%
  summarise(Total_Production = sum(Total_Production))
```

TIMELINE DIFFERENCE OVER THE YEARS

'summarise()' has grouped output by 'Entity'. You can override using the '.groups' argument.

```
#Grouping the consumption table by entity and year
consumption_TimeGroup <- consumption%>%
  group_by(Entity, Year)%>%
  summarise(Total_Consumption = sum(`Fish, Seafood- Food supply quantity (kg/capita/yr) (FAO, 2020)`))
```

'summarise()' has grouped output by 'Entity'. You can override using the '.groups' argument.

consumption_TimeGroup\$Total_Consumption <- consumption_TimeGroup\$Total_Consumption/1000
#Group the population table by Country Name</pre>

```
population_data_TimeGroup <- population_data[-c(2)]</pre>
#Merging the Population_data with the Consumption_group
Consumption_population_TimeData <- merge(x = population_data_TimeGroup, y = consumption_TimeGroup, by =
Consumption_population_TimeData <- Consumption_population_TimeData%>%
  filter(Total_Consumption != 0)
Consumption_population_TimeData$Total_Consumption_MetricTonnes <- Consumption_population_TimeData$Total
Consumption_population_TimeData <- Consumption_population_TimeData[-c(4)]
#Merging the Consumption data with the captured/Farmed data ("Production" data)
Cons_Prod_TimeDiff <- merge(x = Consumption_population_TimeData, y = captured_vs_farmed_TimeGroup, by =
Cons_Prod_TimeDiff$Total_Production <- round(Cons_Prod_TimeDiff$Total_Production, digits = 0)</pre>
Cons_Prod_TimeDiff$Total_Consumption_MetricTonnes <- round(Cons_Prod_TimeDiff$Total_Consumption_MetricT
#Creating a difference column which measures the difference between the production and the consumption
Cons_Prod_TimeDiff$Difference <- Cons_Prod_TimeDiff$Total_Production-Cons_Prod_TimeDiff$Total_Consumpti
#Converting the table into a long structure
Cons_Prod_TimeDiff <- Cons_Prod_TimeDiff%>%
  pivot_longer(!Entity & !Year, names_to = "Description", values_to = "Value")
#Visualizing and Analyzing the Difference to see if there is a surplus or a deficit in the seafood prod
Cons_Prod_TimeDiff$Description[Cons_Prod_TimeDiff$Description == "Total_Consumption_MetricTonnes"] <- "
Cons_Prod_TimeDiff$Year <- as.character(Cons_Prod_TimeDiff$Year)</pre>
p1 <- Cons_Prod_TimeDiff %>%
  filter(Description != "Population_count")%>%
  group_by(Year, Description)%>%
  summarise(Metric_Tonnes = sum(Value))%>%
  ggplot(aes(x = Year, y = Metric_Tonnes, color = Description, group = Description)) +
  geom_line() +
  geom_point() +
  scale_y_discrete(limits = c(25000000, 50000000, 75000000, 100000000, 125000000, 150000000, 175000000))
  scale_x_discrete(limits = c("1961", "1965", "1970", "1975", "1980", "1985", "1990", "1995", "2000", "
  scale_y_discrete(limits = c(25000000, 50000000, 75000000, 100000000, 125000000, 150000000, 175000000),
  labs(title = "Difference Between Consumption & Production") +
  ylab("Metric Tones")
## 'summarise()' has grouped output by 'Year'. You can override using the '.groups' argument.
## Warning: Continuous limits supplied to discrete scale.
## Did you mean 'limits = factor(...)' or 'scale_*_continuous()'?
## Warning: Continuous limits supplied to discrete scale.
## Did you mean 'limits = factor(...)' or 'scale_*_continuous()'?
## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.
p2 <- Cons Prod TimeDiff %>%
  filter(Description == "Population_count")%>%
```

```
group_by(Year, Description)%>%
  summarise(Count = sum(Value))%>%
  ggplot(aes(x = Year, y = Count, color = Description, group = Description)) +
  geom_line() +
  geom_point() +
  scale_x_discrete(limits = c("1961", "1965", "1970", "1975", "1980", "1985", "1990", "1995", "2000", "
  labs(title = "Population Timeline") +
  scale_y_continuous(labels = scales::comma)
## 'summarise()' has grouped output by 'Year'. You can override using the '.groups' argument.
grid.arrange(p1,p2, nrow = 2, ncol = 1)
## Warning: Removed 132 row(s) containing missing values (geom_path).
## Warning: Removed 132 rows containing missing values (geom_point).
## Warning: Removed 44 row(s) containing missing values (geom_path).
## Warning: Removed 44 rows containing missing values (geom_point).
              Difference Between Consumption & Production
   175,000,000 -
   150,000,000 -
                                                                       Description
   125,000,000 -
                                                                            Difference
   100,000,000 -
                                                                            Total_Consumption
    75,000,000 -
                                                                            Total_Production
    50,000,000 -
    25,000,000 -
               1961196519701975198019851990199520002005201020152017
                                       Year
                Population Timeline
   7,000,000,000
   6,000,000,000 -
5,000,000,000 -
                                                                         Description
                                                                              Population_count
   4.000.000.000 -
   3,000,000,000 -
                1961196519701975198019851990199520002005201020152017
```

All the numbers in the above graphs show a significant increase from the 1960s till 2017, by all we are It seems that as the population increases along with the consumption, naturally, of seafood related pro-

Year

Visualizing the Sustainable vs Overexploited fish throughout the years

```
stock_Pivoted <- select(stock,c(!"Code"))</pre>
stock_Pivoted <- stock_Pivoted%>%
  rename(Sustainable = `Share of fish stocks within biologically sustainable levels (FAO, 2020)`) %%
  rename(Overexploited = `Share of fish stocks that are overexploited`)
stock_Pivoted <- pivot_longer(stock_Pivoted, !`Year` & !`Entity`, names_to = 'Description', values_to =
p3 <- stock_Pivoted %>%
 filter(Entity == "World")%>%
  group_by(Year, Description)%>%
  summarize(`Value(%)` = sum(Value))%>%
  ggplot(aes(x = Year, y = Value(%)), color = Description)) +
  geom line(linetype = 1) +
  \#geom\_smooth(method=lm, color="black") +
  geom_point() +
  stat_summary(fun.y = sum, na.rm = TRUE, group = 3, color = 'green', geom = 'line') +
  scale_x_discrete(limits = c(1975,1980,1985,1990,1995,2000,2005,2010,2015,2017)) +
  scale_y_discrete(limits = c(0,10,20,30,40,50,60,70,80,90,100)) +
  theme(legend.position = "right",legend.direction = "vertical") +
  labs(title = "Sustainable vs Overexploited fish")
## 'summarise()' has grouped output by 'Year'. You can override using the '.groups' argument.
## Warning: 'fun.y' is deprecated. Use 'fun' instead.
## Warning: Continuous limits supplied to discrete scale.
## Did you mean 'limits = factor(...)' or 'scale_*_continuous()'?
## Warning: Continuous limits supplied to discrete scale.
## Did you mean 'limits = factor(...)' or 'scale_*_continuous()'?
рЗ
```

Sustainable vs Overexploited fish

Starting from 1978 the sustainable Fish % is on almost a constant decrease starting from %91.46 till it

Visualizing the type of fisheries throughout the years

```
fishery <- fishery %>%
  rename(`Artisanal (small-scale)` = "Artisanal (small-scale commercial)") %>%
  rename(`Industrial (large-scale)` = "Industrial (large-scale commercial)")
p5 <- fishery%>%
  ggplot(aes(x = Year)) +
  geom_line(aes(y = fishery$`Artisanal (small-scale)`, color = "Artisanal (small-scale)"), linetype = "
  geom_line(aes(y = fishery$Discards, color = "Discards"), linetype = "solid") +
  geom_line(aes(y = fishery$`Industrial (large-scale)`, color = "Industrial (large-scale)"), linetype =
  geom_line(aes(y = fishery$Recreational, color = "Recreational"), linetype = "dashed") +
  geom_line(aes(y = fishery$Subsistence, color = "Subsistence"), linetype = "dotted") +
  scale_color_manual(values = c(
    "Artisanal (small-scale)" = 'darkred',
    "Discards" = "darkblue",
    "Industrial (large-scale)" = "orange",
    "Recreational" = "black",
    "Subsistence" = "green"
  )) +
  scale_x_discrete(limits = c(1950, 1955, 1960, 1965, 1970, 1975, 1980, 1985, 1990, 1995, 2000, 2005, 2
```

```
scale_y_discrete(limits = c(0, 5000000, 10000000,15000000,20000000,30000000,40000000,4500000
#theme(legend.title = element_blank(),legend.position = "bottom",legend.direction = "horizontal") +
theme(legend.title = element_blank(),legend.position = "right",legend.direction = "vertical") +
labs(title = "Fishery Types",x = "Year", y = "Metric Tones")
```

```
## Warning: Continuous limits supplied to discrete scale.
## Did you mean 'limits = factor(...)' or 'scale_*_continuous()'?
## Warning: Continuous limits supplied to discrete scale.
## Did you mean 'limits = factor(...)' or 'scale_*_continuous()'?
```


The graph is showing us here that the industrial (large scale) fisheries, even though are the largest,