Lecture 2 — Atomic Structure

Michael Brodskiy

Professor: J. Adams

January 9, 2025

- Dalton's Atomic Theory (1803)
 - Key Postulates:
 - * All matter is made up of tiny, indivisible particles called atoms
 - * Atoms of a given element are identical in size, mass, and properties
 - * Atoms of different elements differ in these properties
- Thomson's Plum Pudding Model
 - Cathode Ray Experiment (1897)
 - * Observed that cathode rays are streams of negatively charged particles
 - * Discovery of the electron, the first subatomic particle
 - Plum Pudding Model
 - * Proposed by J.J. Thomson
 - * Atoms consist of a positively charged "pudding" with negatively charged electrons embedded within, like plums in a pudding
 - Significance:
 - * Challenged Dalton's idea of indivisible atoms
 - * Demonstrated that atoms have internal structure
 - Limitations:
 - * Could not explain the distribution of charge or atomic structure
- Rutherford's Gold Foil Experiment (1911)
- Bohr's Model (1913)
 - Key Features:
 - * Electrons orbit the nucleus in fixed, quantized energy levels

- * Electrons can move between energy levels by absorbing or emitting energy (photons)
- * Orbits correspond to specific allowed energy states, preventing electron collapse into the nucleus

- Supporting Evidence:

- * Successfully explained the hydrogen emission spectrum
- * Discrete spectral lines correspond to energy transition between levels
- Modern Quantum Mechanical Model (Wave-Particle Duality, de Broglie, Schrödinger)
 - Key Concepts:
 - * Electrons exhibit wave-particle duality (de Broglie hypothesis)
 - * Electrons exist in orbitals, regions of space with a high probability of finding an electron
 - * Atomic behavior described using Schrödinger's equation, which defines the wave function (ψ)

- Quantum Numbers

- * Describe the unique quantum state of an electron in an atom
- * Define energy, shape, orientation, and spin of electron orbitals
- * Four Numbers:
 - 1. The Principal Quantum Number (n)
 - 2. Angular Momentum Quantum Number (l)
 - 3. Magnetic Quantum Number (m_l)
 - 4. Spin Quantum Number (m_s)

• Atomic Principles

- Aufbau Principle:

- * Electrons fill orbitals starting with the lowest energy level first
- * Order of orbital filling: $1s \to 2s \to 2p \to 3s \to 3p \to 4s \to 3d \to 4p$, etc.
- * Visualize the filling sequence with the diagonal rule or energy diagram

- Pauli Exclusion Principle:

- * No two electrons in an atom can have the same set of all four quantum numbers (n, l, m_l, m_s)
- * Each orbital can hold a maximum of two electrons with opposite spins

- Hund's Rule:

- * When electrons fill degenerate orbitals (orbitals with the same energy, e.g. p,d,f) they maximize unpaired spins before pairing
- * Ensures the lowest-energy arrangement by minimizing electron repulsion

- Significance:
 - * Explains electron configurations of elements
 - * Influences magnetic and electrical properties (like ferromagnetism)
- Impacts of Atomic Structure
 - Bonding: Determines whether a material is metallic, covalent, or ionic
 - Electron Configuration: Influences conductivity, magnetism, and optical properties
 - Semiconductors: Silicon (Si) covalent bonding and band gap make it ideal for transistors
 - Insulators: Aluminum Oxide (Al_2O_3) strong ionic bonds and high band gap prevent conductivity
- Periodic Table Organization
 - Structure:
 - * Rows (Periods):
 - · Indicate the principal quantum number (n) of the outermost electron shell
 - * Columns (Groups):
 - · Elements in the same group have similar valence electron configurations, leading to similar chemical properties
- Avogadro's Number
 - Represents the amount of atoms in a mole:

$$6.022 \cdot 10^{23} \left[\frac{\text{atom}}{\text{mol}} \right]$$

- Excited States and Emission Spectra
 - Excited States
 - * When an electron absorbs energy, it can transition to a higher energy level (excited state)
 - * Excitation occurs due to heat, light, or electrical energy
 - * Excited states are unstable, and the electron eventually returns to a lower energy level (ground state), releasing energy
 - Emission Spectra
 - * When an electron transitions back to a lower energy level it emits light at a certain wavelength