

درس «مبانی کامپیوتر و برنامهسازی»

نمایش اعداد

سرفصل مطالب

- اعداد در مبناهای مختلف
 - مبنای ۱۰، ۲ ، ۸ و ۱۶
 - نمایش باینری اعداد
 - نمایش اعداد علامتدار
 - نمایش اعداد اعشاری

نحوه ذخیره اطلاعات در کامپیوتر

- اطلاعات در کامپیوتر به شکلهای مختلفی ذخیره میشود. مثل؟
 - عدد ساده، اعداد اعشاری و علامتدار، کاراکتر
 - متن، تصویر، ویدیو، صدا (موسیقی، صوت) و ..
 - دادههای کامپیوتری در نهایت به شکل عدد ذخیره میشوند
 - حتى دادههاى غيرعددى مثل تصوير يا متن

- اما نحوه ذخیره اعداد در کامپیوتر چگونه است؟
 - مثلاً در حافظه اصلی یا حافظه جانبی

مبنای ۱۰

Base 10 Decimal Radix-10

• مبنای مورد استفاده انسانها در ریاضیات: مبنای ۱۰

هر عدد N در مبنای ۱۰ به صورت زیر تفسیر میشود

$$N = (a_{n-1} a_{n-2} ... a_2 a_1 a_0)_{10} =$$

$$a_0 \times 10^0 + a_1 \times 10^1 + a_2 \times 10^2 + ... a_{n-1} \times 10^{n-1}$$

• مثال: عدد ۳۴۸۲ بصورت زیر تفسیر می گردد:

$$(3482)_{10} = 2 \times 10^0 + 8 \times 10^1 + 4 \times 10^2 + 3 \times 10^3$$

• در مبنای ۱۰ (سیستم دهدهی) نیاز به ۱۰ رقم (از ۰ تا ۹) داریم

مبانی کامپیوتر و برنامهسازی

مبناي دلخواه

- •اعداد را در هر مبنای دلخواه دیگری می توانیم نشان دهیم
 - عدد N در مبنای b به صورت زیر تفسیر می شود:

$$N = (a_{n-1} a_{n-2} ... a_2 a_1 a_0)_b =$$

$$a_0 \times b^0 + a_1 \times b^1 + a_2 \times b^2 + ... a_{n-1} \times b^{n-1}$$

- در مبنای b نیاز به b رقم (از \cdot تا b-1) داریم
- •مثلاً یک عدد در مبنای ۶ از ارقام ۵..۰ تشکیل میشود
 - یک عدد معتبر است (341) $_6$
 - اما $(592)_6$ نامعتبر است

تبديل مبنا

- برای تبدیل یک عدد از مبنای ۱۰ به هر مبنای دلخواه b:
 - از روش تقسیمات متوالی استفاده می گردد

$$(941)_{10} = (?)_6$$

$$(941)_{10} = (4205)_6$$

تبديل مبناها

- برای تبدیل از مبنای b به مبنای ۱۰ :
- ارقام عدد مورد نظر را در ارزش مکانی آنها ضرب و سپس با یکدیگر جمع می کنیم

$$(4205)_6 = (?)_{10}$$

$$(4205)_6 = 5 \times 6^0 + 0 \times 6^1 + 2 \times 6^2 + 4 \times 6^3 = 5 + 0 + 72 + 864 = (941)_{10}$$

اهمیت مبنای ۲

- مبنای ۲ اهمیت بسیار زیادی در کامپیوترهای دیجیتال دارد
 - در مبنای ۲ تنها به ۲ رقم نیاز داریم: صفر و یک
- کامپیوترهای دیجیتال هم اطلاعات را به صورت باینری نگهداری میکنند
 - واحد حافظه: بایت
 - هر بایت = ۸ بیت
 - هر بیت: یک خانه حافظه که یک «صفر یا یک» را نگهداری می کند
 - بنابراین مبنای ۲ اهمیت خاصی دارد

Base 2 Binary

مبنای ۲ = سیستم **دودویی** = سیستم **باینری**

تبدیل از مبنای ۲

• تبدیل از مبنای ۲ به ۱۰

$$(11001001)_2 = (?)_{10}$$

$$(11001001)_2 = 1 \times 2^0 + 0 \times 2^1 + 0 \times 2^2 + 1 \times 2^3 + 0 \times 2^4 + 0 \times 2^5 + 1 \times 2^6 + 1 \times 2^7$$

$$= 1 + 0 + 0 + 8 + 0 + 0 + 64 + 128 = (201)_{10}$$

تبديل اعداد باينري

• تبدیل از مبنای ۱۰ به مبنای ۲

$$(486)_{10} = (?)_2$$

 $(486)_{10} = (111100110)_2$

اعداد باینری

- هر رقم دودویی یک بیت(bit) نامیده می شود
 - در سیستم اعداد دودویی:
- به کمارزشترین بیت Least Significant Bit) LSB) گفته می شود
 - پرارزشترین بیت: Most Significant Bit) MSB

$$(486)_{10} = (111100110)_{2}$$
MSB LSB

مبناهای ۸ و ۱۶ و کاربرد آنها

- مشکل اصلی مبنای ۲: اندازه بزرگ اعداد است
 - مثلاً عدد ۴۸۶
- در مبنای ۱۰ تنها ۳ رقم دارد، ولی تبدیل به یک عدد ۹ رقمی در مبنای ۲ میشود
 - مشاهده و محاسبه در مبنای ۲ برای انسانها مشکل میشود
 - مبنای ۸ و مبنای ۱۶، مورد توجه هستند
 - تعداد ارقام اعداد در این مبناها کمتر است
 - تبدیل اعداد باینری به این دو مبنا و برعکس بسیار ساده است
 - هر سه رقم در مبنای ۲، برابر است با یک رقم در مبنای ۸ و بالعکس
 - هر چهار رقم در مبنای ۲، برابر است با یک رقم در مبنای ۱۶ و بالعکس

Base 8 Octal Oct

Base 16 Hexadecimal Hex

تبدیل باینری به اکتال و برعکس

• تبدیل از مبنای ۲ به ۸

$$\underbrace{10101}_{2}\underbrace{110}_{5} = (256)_{8}$$

$$(271)_8 = (10111001)_2$$

● تبدیل از مبنای ۸ به ۲

تبدیل مبنای ۱۶ (هگزادسیمال)

• در این مبنا به ۱۶ رقم داریم (حروف A تا ۴ : ارقام ۱۰ تا ۱۵) 0 1 2 3 4 5 6 7 8 9 A B C D E F

• تبدیل از مبنای ۲ به ۱۶
$$\frac{11010110111001}{6B9} = (6B9)_{16}$$

$$(A3E)_{16} = (101000111110)_2$$

↑ Y is a series of the series of the

خلاصه كاربرد مبناها

- مبنای ۱۰ : به صورت عادی توسط انسانها استفاده میشود
 - مبنای ۲: برای ذخیرهسازی اعداد در کامپیوتر
 - مبنای ۸ و ۱۶: نمایش سادهتر اعداد باینری برای انسانها
 - مبنای ۸ و ۱۶ برای ذخیره اعداد در کامپیوتر استفاده نمیشود
 - مبنای ۱۶ از مبنای ۸ پرکاربردتر است
 - هر بایت با دو عدد هگزادسیمال نمایش داده میشود
 - هر چهار بیت (نیم بایت) یک نیبل (nibble) خوانده می شود

اعداد علامتدار

استفاده از بیت علامت

• در این روش:

سمت چپ ترین بیت برای علامت عدد درنظر گرفته می شود سایر بیتها مقدار عدد رانشان می دهند

• صفر بودن بیت علامت به معنای مثبت بودن و یک بودن آن به معنای منفی بودن عدد است

● با داشتن ۸ بیت می توان چه اعدادی را نمایش داد؟

اعداد بین $127 \dots +127$ را نمایش داد ullet

 0
 1010011

 +83
 -83

نمایش اعداد

• این روش دو مشکل اصلی دارد:

مبانی کامپیوتر و برنامهسازی

- دو مقدار متفاوت 0+ و وجود دارد \bullet
- عمل جمع روی اعداد منفی نیاز به مدار (روش) جداگانه دارد

سیستم علامت و مقدار (استفاده از بیت علامت)

مبانی کامپیوتر و برنامهسازی

سیستم مکمل ۱

- اعداد مثبت به صورت معمولی نمایش داده میشوند
- نمایش اعداد منفی: قدر مطلق آن را در نظر بگیرید و سپس همه بیتها را برعکس کنید
 - (کلیه صفرها را به یک و یکها را به صفر تبدیل کنید)

- برای جلوگیری از تداخل اعداد مثبت و منفی:
- فقط برای اعداد منفی باید بیت سمت چپ یک باشد
 - بازه اعداد ممکن در یک بایت: از 127- تا 127+
- ullet یکی از مشکلات این روش: دو نمایش مختلف برای 0+ و 0- وجود دارد

مكمل ١

• در سیستم مکمل ۱ در واقع عدد منفی چطور محاسبه می شود؟ (**n** تعداد بیتها)

•
$$K = (2^n - 1) - P$$

1 0 0 0		0 1 1 1	→	7
1 0 0 1		0 1 1 0	\longrightarrow	6
1 0 1 0	─ → -5	0 1 0 1	→	5
1 0 1 1	─ → -4	0 1 0 0	→	4
1 1 0 0	-3	0 0 1 1	\longrightarrow	3
1 1 0 1	2	0 0 1 0	\longrightarrow	2
1 1 1 0	→ -1	0 0 0 1	\longrightarrow	1
1 1 1 1	\longrightarrow 0	0 0 0 0	\longrightarrow	0+

عملیات جمع در سیستم مکمل ۱

$$\begin{array}{ccc}
(+5) & 0 & 1 & 0 & 1 \\
+ & (+2) & + & 0 & 0 & 1 & 0 \\
\hline
(+7) & 0 & 1 & 1 & 1
\end{array}$$

$$(-5)$$
 $+ (+2)$ $+ 0010$ $+ (-3)$ $+ 100$

• در سیستم مکمل ۱، نیازمند اِعمال End-around carry هستیم

• در مکمل دو نیازی به این کار نیست

جمع در سیستم مکمل ۱

در این سیستم تنها نیاز به یک روش برای جمع اعداد مثبت یا منفی است

• روش یا الگوریتم یا مدار یکسان

• امکان سرریز (Overflow)

سیستم مکمل ۲

- اعداد مثبت مثل قبل هستند. برای اعداد منفی:
 - نحوه محاسبه مکمل۲ برای اعداد منفی؟

•
$$K = 2^{n} - P$$

- روش اول محاسبه: مكمل ۱ را محاسبه كنيم و نتيجه را با يك جمع كنيم
 - روش دوم (سریعتر) برای محاسبه مکمل ۲:
 - از سمت راست شروع می کنیم
- بیت هایی که برابر با صفر هستند را نادیده می گیریم تا به اولین مقدار یک برسیم

صادق علىاكبرى

- (این مقدار یک را هم نادیده می گیریم تا دستنخورده باقی بماند)
 - پس از آن بیتها را برعکس میکنیم

مکمل ۲

● بازه اعداد مجاز در این روش از ۱۲۸- تا ۱۲۷+ است (به ازای یک بایت حافظه)

مكمل ٢

0	1	1	1		7
0	1	1	0		6
0	1	0	1	\longrightarrow	5
0	1	0	0	\longrightarrow	4
0	0	1	1	\longrightarrow	3
0	0	1	0		2
0	0	0	1	\longrightarrow	1

-7		1	0	0	1	
-6	\longrightarrow	0	1	0	1	
-5	\longrightarrow	1	1	0	1	
-4	→	0	0	1	1	
-3	→	1	0	1	1	
-2	\longrightarrow	0	1	1	1	
-1	\longrightarrow	1	1	1	1	

نمايش اعداد

عملیات جمع در سیستم مکمل ۲

$$(+5)$$
 0 1 0 1
+ $(+2)$ + 0 0 1 0
 $(+7)$ 0 1 1 1

$$(-5)$$
 1011
+ (+2) + 0010
 (-3) 1101

$$(+5)$$
 0101
+ (-2) + 1110
 $(+3)$ 10011
ignore

$$(-5)$$
 1011
+ (-2) + 1110
(-7) 11001
 \bigwedge ignore

سريز (Overflow)

• شرط سرريز:

رقم نقلی وارد به بیت آخر با رقم نقلی خارجشده از آن برابر نباشد

• مثلاً هر دو مثبت بودهاند، ولی حاصل جمع منفی شده، یا هر دو منفی بودهاند و حاصل جمع مثبت شده

 $(+7) & 0 & 1 & 1 & 1 \\ + & (+2) & + & 0 & 0 & 1 & 0 \\ (+9) & 1 & 0 & 0 & 1 \\ c_4 = 0 \\ c_3 = 1$

مزایای استفاده از مکمل ۲

مبانی کامپیوتر و برنامهسازی

• تنها یک نمایش برای صفر داریم (این سیستم 0+ و 0- ندارد)

• برای عمل جمع اعداد مثبت و منفی از یک روش (مدار) یکسان استفاده میشود

$$53 - 22 = 53 + (-22) = 31$$
 $(00110101) - (00010110) = (00110101) + (11101010) = (00011111)$

$$38 - 60 = 38 + (-60) = -22$$

(00100110) - (00111100) = (00100110) + (11000100) = (11101010)

نمایش اعداد

كوييز

۱ – عملیات زیر را در سیستم مکمل ۲ انجام دهید:

(فرض کنید سیستم، ۸ بیتی است. یعنی هر عدد صحیح در یک بایت ذخیره میشود)

-39 + 92

۲- حاصل جمع را در مبنای ۱۶ نشان دهید.

پاسخ: ۹۲+۹۲- در مبنای ۱۶ = ۳۵

- ۳۹ 🛨 ۱۰۰۱۱۱ (یک عدد ۶ بیتی)
- در سیستم ۸ بیتی: دو صفر در سمت چپ (پرارزشترین بیت) قرار میدهیم: ۱۰۱۱۰۰۱۱۱
 - ۳۹− ← مکمل ۲: ۱۱۰۱۱۰۰۱
 - عدد ۹۲ ← ۹۲ عدد •
 - سیستم ۸ بیتی: ۱۰۱۱۱۰۰
 - جمع بیت به بیت: ۱۰۱۰۱۱۰۱
- رقم نقلی وارد بر پرارزشترین بیت و رقم نقلی خارج شده از آن برابر هستند (هر دو: یک) پس سرریز رخ نداده
 - تبدیل به مبنای ۱۶ : ۳۵

نمایش اعداد

نمایش اعداد حقیقی

نمایش باینری اعداد اعشاری

r وش تفسیر یک عدد اعشاری در مبنای \bullet

$$x_{k-1}x_{k-2} \dots x_1x_0 \dots x_{-1}x_{-2} \dots x_{-l} = \sum_{i=-l}^{k-1} x_i r^i$$

● مثال:

 $(1101.101)_2 = (?)_{10} \bullet$

مبانی کامپیوتر و برنامهسازی

$$1101.101_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$

$$= 1 \times 8 + 1 \times 4 + 0 \times 2 + 1 \times 1 + 1 \times 0.5 + 0 \times 0.25 + 1 \times 0.125$$

$$= 8 + 4 + 0 + 1 + 0.5 + 0 + 0.125$$

$$= 13.625_{10}$$

نحوه تبدیل بخش اعشاری به باینری

 \bullet $(0.125)_{10} = (?)_2$

	A	В	C	D	E	\mathbf{F}
--	---	---	---	---	---	--------------

• رقمهای باینری:

- \bullet 0.125 = A/2 + B/4 + C/8 + ...
- $0.25 = A + B/2 + C/4 + ... \rightarrow A=0$
- $0.5 = B + C/2 + .. \rightarrow B=0$
- $1.0 = C + ... \rightarrow C = 1$

$$(0.125)_{10} = (0.001)_2$$

مثال دیگر از نحوه تبدیل اعداد اعشاری به باینری

$$\bullet$$
 (0.83)₁₀ = (?)₂

•
$$0.83 * 2 = 1.66$$

•
$$0.66 * 2 = 1.32$$

•
$$0.32 * 2 = 0.64$$

•
$$0.64 * 2 = 1.28$$

• ...

- نمایش دقیق برای این عدد وجود ندارد
- $(0.83)_{10}$ = $(0.1101010001111010111000...)_2$

مشكل نمايش باينري اعداد اعشاري

- فرض کنید حافظه محدودی را برای ذخیره یک عدد اعشاری در نظر گرفته باشیم
 - مثلاً یک بایت، یا چهار بایت، یا هشت بایت
 - تعداد اعداد اعشاری بینهایت است

مبانی کامپیوتر و برنامهسازی

- حتى اگر بازه اعداد اعشارى را محدود كنيم
- برای ذخیره اعداد حقیقی (اعشاری) دقت کامل ممکن نیست
 - بنابراین برای ذخیره یا نمایش کامپیوتری هر عدد حقیقی:
- نزدیک ترین عدد قابل نمایش به عدد موردنظر درنظر گرفته می شود

نمایش اعداد

مشكل سيستم مميز ثابت

- تعداد ارقام اصلی و ارقام اعشاری ثابت است
- دقت اعشاری و همچنین اندازه عدد موردنظر، محدود و مشخص خواهند بود

- پیشنهاد: استفاده از سیستم ممیز شناور (floating point)
 - سیستم کارآمدتری است
 - هم می تواند اعداد بسیار بزرگ را نشان دهد
 - و هم اعداد بسیار کوچک اعشاری (با دقت فراوان)

سيستم مميز شناور

• اعداد به شکل «نماد علمی نرمال» به نمایش داده میشوند

 $\pm 1.F \times 2^E$

• در مبنای دو، نماد علمی نرمال عددی به این شکل است:

• مثال:

 \bullet +1.0011 * 2⁵

- در این شیوه، باید این اطلاعات را به نحوی نگهداری کنیم: علامت (sign)، ضریب (coefficient) و توان (exponent)
 - شیوههای مختلفی برای نگهداری این مقادیر ارائه شده است
- استاندارد 1EEE 754 برای یکسانسازی این فرایند، یک شیوه ارائه کرد
 - این استاندارد، برای نمایش اعداد حقیقی رایج شده است

استاندارد IEEE 754 براي اعداد مميز شناور

- IEEE Standard 754 (Floating Point Numbers)
 - قالب نگهداری اعداد حقیقی را مشخص کرده است
 - دو شیوهی زیر در این استاندارد ارائه شده است:
 - دقت معمولی (single-precision)
 - در این شیوه از ۳۲ بیت (چهار بایت) برای نگهداری عدد حقیقی استفاده میشود
 - دقت مضاعف (double precision)

مبانی کامپیوتر و برنامهسازی

• در این شیوه از ۶۴ بیت (هشت بایت) استفاده میشود

روش 754 IEEE

- نمایش **توان** (exponent) : از شیوه ی پیش قدردار استفاده می کند
- برای علامت (sign) : یک بیت در نظر گرفته می شود (شیوه بیت علامت)
- برای ضریب (coefficient یا mantissa): فقط بخش اعشاری نگهداری می شود
 - بخش صحیح (عدد ۱) اصلاً نگهداری نمی شود: «یکِ پنهان» (hidden one)
 - روش باینری معمولی برای نمایش این بخش استفاده میشود

$$X = (-1)^{s} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

مرور دو شیوهی استاندارد 754 IEEE

single: 8 bits

double: 11 bits

single: 23 bits

double: 52 bits

S | Exponent

Fraction

 $X = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$

Single: Bias = 127; Double: Bias = 1023

دقت معمولی (single precision)

IEEE 754 Floating Point Standard

s e=exponent

m=mantissa

1 bit 8 bits

23 bits

number = $(-1)^{s}$ * (1.m) * 2^{e-127}

مثال (single precision)

- عدد ۴۸۶ را بصورت دودویی اعشاری نشان دهید
 - ابتدا آن را به مبنای ۲ تبدیل می کنیم:

$$(486)_{10} = (111100110)_2$$

● اکنون داریم:

 $111100110 = 1.11100110 \times 2^8$

s:0

e: 8+127 = 135 = 10000111

m: 11100110

این عدد به صورت دقیق ذخیره میشود

• جواب نهایی:

0 10000111

111001100000000000000000

مثال بعدى (single precision)

•عدد 121.640625- را به صورت دودویی اعشاری نشان دهید

ابتدا عدد را به مبنای ۲ می بریم:

$$(121.640625)_{10} = (1111001.101001)_2 = (1.111001101001 \times 2^6)_2$$

$$s:1$$
 $e:6+127=133=10000011$ $m:111001101001$

این عدد به صورت دقیق ذخیره میشود

• پاسخ نهایی:

1 10000011 1110011010010000000000

مثال بعدى (single precision)

•عدد 1.1+

$$(1.1)_{10} = (1.\ 00011001100110011001101...)_2$$

= $(1.\ 00011001100110011001101... \times 2^0)_2$

s:0 e:0+127=127=011111111 m:00011001100110011001101...

این عدد به صورت تقریبی ذخیره میشود

• پاسخ نهایی:

 $0 \ 01111111 \ 00011001100110011001100$

بازه اعداد در استاندارد 754 IEEE

level	width	range at full precision
single precision	32 bits	$\pm 1.18 \times 10^{-38}$ to $\pm 3.4 \times 10^{38}$
double precision	64 bits	$\pm 2.23 \times 10^{-308}$ to $\pm 1.80 \times 10^{308}$

مبانی کامپیوتر و برنامهسازی

نمایش متن

- متن (text) رشته ای از کاراکترها است (String)
- برای ذخیره متن در کامپیوتر، هر کاراکتر را با یک عدد نشان میدهیم
 - به جای متن (رشته) ، مجموعهای از اعداد را پشتسرهم ذخیره می کنیم
- برخلاف سایر دادهها (مثل عدد صحیح یا عدد حقیقی معمولی)، حافظه لازم برای نگهداری یک متن ثابت نیست (variable-length encodings)
 - در ادامه روشهای نگهداری یک کاراکتر را میبینیم

نحوه نمایش کاراکتر: روش کد اسکی (ASCII Code)

- ASCII: American Standard Code for Information Interchange
 - این روش، یک کاراکتر را در یک بایت نمایش میدهد
 - مجموعاً ۲۵۶ کاراکتر را پشتیبانی میکند
 - در واقع ۱۲۸ کاراکتر اول در اسکی تعیین شده است (۷ بیت)
 - کاراکترهای اسکی:
 - ارقام (0 تا 9)
 - حروف کوچک و بزرگ انگلیسی
 - علائم و کاراکترهای کنترلی

	U	1	2	3	4	5	6	/
0	NUL	DLE	space	0	@	Р		р
1	SOH	DC1 XON	ļ ļ	1	Α	Q	а	q
2	STX	DC2	Ш	2	В	R	b	r
3	ETX	DC3 XOFF	#	3	С	S	С	S
4	EOT	DC4	\$	4	D	Т	d	t
5	ENQ	NAK	%	5	E	U	е	u
6	ACK	SYN	&	6	F	V	f	٧
7	BEL	ETB	I	7	G	W	g	W
8	BS	CAN	(8	Н	Х	h	×
9	HT	EM)	9	1	Υ	i	У
Α	LF	SUB	*		J	Ζ	j	Z
В	VT	ESC	+	I	K	[k	{
С	FF	FS	ı	₹	L	1	1	
D	CR	GS	_	=	M]	m	}
E	so	RS		>	N	٨	n	~
F	SI	US	1	?	0	_	0	del

نمایش اعداد

جدول اُسكى (ASCII)

ASCII			AS	SCII	
Dec	Hex	Result	Dec	Hex	Result
64	40	@	80	50	Р
65	41	A	81	51	Q
66	42	В	82	52	R
67	43	С	83	53	S
68	44	D	84	54	T
69	45	É	85	55	U
70	46	F	86	56	V
71	47	G	87	57	W
72	48	Н	88	58	X
73	49	1	89	59	Υ
74	4A	J	90	5A	Z
75	4B	K	91	5B	[
76	4C	L	92	5C	\
77	4D	M	93	5D]
78	4E	N	94	5E	^
79	4F	0	95	5F	

استاندارد یونیکد (Unicode)

- تعداد کاراکترهای بیشتری را پوشش میدهد
 - از جمله کاراکترهای فارسی، ژاپنی و ...
 - ۱۲۸ کاراکتر اول آن با ACII مطابق است
 - در یک بایت جا نمی شود
 - کاراکترها را در یک تا چهار بایت جا میدهد
- روشهای UTF-16 ، UTF-8 و UTF-32
 - بیشتر بخوانید:
 - یونیکد یک Character Set است
 - UTF-8 پک Encoding است

جمعبندي

- اعداد در مبناهای مختلف (مبنای ۱۰، ۲، ۸ و ۱۶)
 - اهمیت و جایگاه مبناهای مختلف
 - نمایش باینری اعداد
 - نمایش اعداد علامتدار
 - نمایش اعداد اعشاری
 - استاندارد 754 IEEE

مطالعه بيشتر

- مجموعه اسلایدهای کامل تر همین مبحث (اسلایدهای حاضر خلاصه شده بودند)
 - اسلایدهای خوب دکتر محمودی
- http://faculties.sbu.ac.ir/~a_mahmoudi/ITP_93_1.htm
 - صفحات ویکیپدیا
 - مثل: https://en.wikipedia.org/wiki/IEEE_floating_point
 - درباره موضوع این درس جستجو کنید. مثال:
 - Two's complement
 - Hexadecimal •

•••

پایان