

TABLE OF CONTENTS

01 Workflow **O2**Feed-forward Neural
Network MODEL

O3
LSTM MODEL

O4 COMPARISON O5 SUMMARY

WORKFLOW

DATA PREPARATION

Number of data = 500 1-100,2-101,3-102...

400 series

100 timesteps

5 variables

FNN Model

Specify Architecture

INPUTS

'sku' 'price' 'order' 'duration' 'category' HIDDEN

units=100 activation='relu' **OUTPUTS**

'quantity' units=1 activation='linear''

LSTM MODEL

Specify Architecture

INPUTS

shape=(None, nbrvariables) **LSTM**

units=nbrvariables +4 return_sequences =True **OUTPUTS**

'quantity' units=1 activation='linear''

Comparison

FNN vs LSTM Loss Plot

Validation

Model	FNN	LSTM
Loss	1631.09	2299.44

Summary

FNN performs better than LSTM because it has lower MSE in training and less loss in validation

Use more data points to train the model - Currently, 500 data points were are to train the model. We tried to used 3000 data points but it took too long.

QUESTIONS?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

