

ThrMetGlyLys LeuLeuLeu IleLeuGly SerAlaIleAla LeuProSer.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGCTATTG CACTCCATC
 • PheAlaAla AlaGlyGlyAsp LeuAspIle SerAspThr ValGlyValSer.
 51 ATTTGCTGCT GCTGGTGGCG ATCTAGATAT AAGTGATACT GTTGGTGT
 • PheTrpLeu ValThrAla GlyMetLeuAla AlaThrVal PhePhePhe
 101 CATTCTGGCT GGTTACAGCT GGTATGTTAG CGGCAACTGT GTTCTTTTT
 ValGluArgAsp GlnValSer AlaLysTrp LysThrSerLeu AlaValSer.
 151 GTAGAAAGAG ACCAAGTCAG CGCTAACGTGG AAAACTTCAC TTGCTGT
 • GlyLeuIle ThrGlyIleAla PheTrpHis TyrLeuTyr MetArgGlyVal.
 201 TGGTTTAATT ACTGGTATAG CTTTTGGCA TTATCTCTAT ATGAGAGGTG
 • TrpIleAsp ThrGlyAsp ThrProThrVal PheArgTyr IleAspTrp
 251 TTTGGATAGA CACTGGTGAT ACCCCAACAG TATTCAAGATA TATTGATTGG
 LeuLeuThrVal ProLeuGln MetValGlu PheTyrLeuIle LeuAlaAla.
 301 TTATTAAC TG TTCCATTACA AATGGTTGAG TTCTATCTAA TTCTTGCTGC
 • CysThrSer ValAlaAlaSer LeuPheLys LysLeuLeu AlaGlySerLeu.
 351 TTGTACAAGT GTTGCTGCCT CATTATTAA GAAGCTTCTA GCTGGTTCAT
 • ValMetLeu GlyAlaGly PheAlaGlyGlu AlaGlyLeu AlaProVal
 401 TAGTAATGTT AGGTGCTGGA TTTGCAGGCG AAGCTGGATT AGCTCCTGTA
 LeuProAlaPhe IleIleGly MetAlaGly TrpLeuTyrMet IleTyrGlu.
 451 TTACCTGCTT TCATTATTGG TATGGCTGGA TGTTTATACA TGATTTATGA
 • LeuTyrMet GlyGluGlyLys AlaAlaVal SerThrAla SerProAlaVal.
 501 GCTATATATG GGTGAAGGTA AGGCTGCTGT AAGTACTGCA AGTCCTGCTG
 • AsnSerAla TyrAsnAla MetMetMetIle IleValVal GlyTrpAla
 551 TTAACCTCTGC ATACAACGCA ATGATGATGA TTATTGTTGT TGGATGGGCA
 IleTyrProAla GlyTyrAla AlaGlyTyr LeuMetGlyGly GluGlyVal.
 601 ATTTATCCTG CTGGATATGC TGCTGGTTAC CTAATGGGTG GCGAAGGTGT
 • TyrAlaSer AsnLeuAsnLeu IleTyrAsn LeuAlaAsp LeuValAsnLys.
 651 ATACGCTTCA AACCTAAACC TTATATATAA CCTTGCCGAC CTTGTTAAC
 • IleLeuPhe GlyLeuIle IleTrpAsnVal AlaValLys GluSerSer
 701 AGATTCTATT TGGTTTGATC ATTTGGAATG TTGCTGTTAA AGAATCTTCT
 AsnAla
 751 AATGCT

Figure 1-1

MetLysLeuLeu LeuIleLeu GlySerVal IleAlaLeuPro ThrPheAla.
 1 ATGAAATTAT TACTGATATT AGGTAGTGGT ATTGCACCTC CTACATTTGC
 • AlaGlyGly GlyAspLeuAsp AlaSerAsp TyrThrGly ValSerPheTrp.
 51 TGCAGGTGGT GGTGACCTTG ATGCTAGTGA TTACACTGGT GTTTCTTTTT
 • LeuValThr AlaAlaLeu LeuAlaSerThr ValPhePhe PheValGlu
 101 GGTTAGTTAC TGCTGCTTTA TTAGCATCTA CTGTATTTTT CTTTGTGAA
 ArgAspArgVal SerAlaLys TrpLysThr SerLeuThrVal SerGlyLeu.
 151 AGAGATAGAG TTTCTGCAAATGGAAAACA TCATTAAC TG TATCTGGTCT
 • ValThrGly IleAlaPheTrp HisTyrMet TyrMetArg GlyValTrpIle.
 201 TGTTACTGGT ATTGCTTTCT GGCATTACAT GTACATGAGA GGGGTATGGA
 • GluThrGly AspSerPro ThrValPheArg TyrIleAsp TrpLeuLeu
 251 TTGAAACTGG TGATTGCCA ACTGTATTTA GATACTTGA TTGGTTACTA
 ThrValProLeu LeuIleCys GluPheTyr LeuIleLeuAla AlaAlaThr.
 301 ACAGTTCCCTC TATTAATATG TGAATTCTAC TTAATTCTTG CTGCTGCAAC
 • AsnValAla GlySerLeuPhe LysLysLeu LeuValGly SerLeuValMet.
 351 TAATGTTGCT GGATCATTAT TTAAGAAATT ACTAGTTGGT TCTCTTGTAA
 • LeuValPhe GlyTyrMet GlyGluAlaGly IleMetAla AlaTrpPro
 401 TGCTTGTT TGGTTACATG GGTGAAGCAG GAATCATGGC TGCATGGCCT
 AlaPheIleIle GlyCysLeu AlaTrpVal TyrMetIleTyr GluLeuTrp.
 451 GCATTCATTA TTGGGTGTT AGCTTGGGT A TACATGATT ATGAATTATG
 • AlaGlyGlu GlyLysSerAla CysAsnThr AlaSerPro AlaValGlnSer.
 501 GGCTGGAGAA GGAAAATCTG CATGTAATAC TGCAAGTCCT GCTGTGCAAT
 • AlaTyrAsn ThrMetMet TyrIleIleIle PheGlyTrp AlaIleTyr
 551 CAGCTTACAA CACAATGATG TATATTATCA TCTTTGGTTG GGCGATTTAT
 ProValGlyTyr PheThrGly TyrLeuMet GlyAspGlyGly SerAlaLeu.
 601 CCTGTAGGTT ATTTCACAGG TTACCTGATG GGTGACGGTG GATCAGCTCT
 • AsnLeuAsn LeuIleTyrAsn LeuAlaAsp PheValAsn LysIleLeuPhe.
 651 TAACTTAAAC CTTATCTATA ACCTTGCTGA CTTTGTAAAC AAGATTCTAT
 • GlyLeuIle IleTrpAsn ValAlaValLys GluSerSer AsnAla***
 701 TTGGTTAAC TATATGGAAT GTTGCTGTTA AAGAATCTTC TAATGCTTAA

Figure 1-2

ThrMetGlyLys LeuLeuLeu IleLeuGly SerValIleAla LeuProThr.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGTATTG CACTCCTAC
 · PheAlaAla GlyGlyGlyAsp LeuAspAla SerAspTyr ThrGlyValSer.
 51 ATTTGCTGCA GGTGGTGGTG ACCTTGATGC TAGTGATTAC ACTGGTGT
 · PheTrpLeu ValThrAla AlaLeuLeuAla SerThrVal PhePhePhe
 101 CTTTTGGTT AGTTACTGCT GCTCTATTAG CATCTACTGT ATTTTCTTT
 ValGluArgAsp ArgValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTTGAAAGAG ATAGAGTTTC TGCAAAATGG AAAACATCAT TAACTGTATC
 · GlyLeuVal ThrGlyIleAla PheTrpHis TyrMetTyr MetArgGlyVal.
 201 GGGTCTTGGTT ACTGGTATTG CTTCTGGCA TTACATGTAC ATGAGAGGGG
 · TrpIleGlu ThrGlyAsp SerProThrVal PheArgTyr IleAspTrp
 251 TATGGATTGA GACTGGTGAT TCGCCAATG TATTTAGATA CATTGATTGG
 LeuLeuThrVal ProLeuLeu IleCysGlu PheTyrLeuIle LeuAlaAla.
 301 TTACTAACAG TTCCTCTATT GATATGTGAA TTCTACTTAA TTCTTGCTGC
 · AlaThrAsn ValAlaAlaGly LeuPheLys LysLeuLeu ValGlySerLeu.
 351 TGCAACAAAT GTTGCTGCTG GCCTGTTAA GAAATTATTG GTTGGTTCTC
 · ValMetLeu ValPheGly TyrMetGlyGlu AlaGlyIle MetAsnAla
 401 TTGTTATGCT TGTGTTGGT TACATGGGTG AGGCAGGAAT TATGAACGCT
 TrpGlyAlaPhe ValIleGly CysLeuAla TrpValTyrMet IleTyrGlu.
 451 TGGGGTGCAT TCGTTATTGG GTGTTTAGCT TGGGTATACA TGATTTATGA
 · LeuTrpAla GlyGluGlyLys AlaAlaCys AsnThrAla SerProAlaVal.
 501 ACTATGGGCT GGAGAAGGCA AGGCTGCATG TAATACTGCA AGTCCTGCTG
 · GlnSerAla TyrAsnThr MetMetTyrIle IleIlePhe GlyTrpAla
 551 TGCAATCAGC TTACAACACA ATGATGTATA TAATCATCTT TGGTTGGGCA
 IleTyrProVal GlyTyrPhe ThrGlyTyr LeuMetGlyAsp GlyGlySer.
 601 ATTTATCCTG TAGGTTATT CACAGGTTAC CTAATGGGTG ACGGTGGATC
 · AlaLeuAsn LeuAsnLeuIle TyrAspLeu AlaAspPhe ValAsnLysIle.
 651 AGCTCTAAC TTAAACCTTA TCTATGACCT TGCTGACTTT GTTAACAAGA
 · LeuPheGly LeuIleIle TrpAsnValAla ValLysGlu SerSerAsn
 701 TTCTATTGG TTTAATTATA TGGAAATGTTG CTGTTAAAGA ATCTTCTAAT
 AlaLys
 751 GCTAAGG

Figure 1-3

ThrMetGlyLys LeuLeuLeu IleLeuGly SerValIleAla LeuProThr.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGTATTG CACTCCTAC
 • PheAlaAla GlyGlyGlyAsp LeuAspAla SerAspTyr ThrGlyValSer.
 51 ATTTGCTGCA GGTGGCGGTG ACCTTGATGC TAGTGATTAC ACTGGTGT
 • PheTrpLeu ValThrAla AlaLeuLeuAla SerThrVal PhePhePhe
 101 CTTTTGGTT AGTTACAGCT GCTCTATTAG CATCTACTGT ATTTTCTTT
 ValGluArgAsp ArgValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTTGAAAGAG ATAGAGTTTC TGCAAAATGG AAAACATCAT TAACTGTATC
 • GlyLeuVal ThrGlyIleAla PheTrpHis TyrMetTyr MetArgGlyVal.
 201 TGGTCTTGT ACTGGTATTG CTTCTGGCA TTACATGTAC ATGAGAGGAG
 • TrpIleGlu ThrGlyAsp SerProThrVal PheArgTyr IleAspTrp
 251 TATGGATTGA AACTGGTGAT TCGCCTACTG TATTTAGATA CATTGATTGG
 LeuLeuThrVal ProLeuLeu IleCysGlu PheTyrLeuIle LeuAlaAla.
 301 TTACTAACAG TTCCCTTATT AATATGTGAA TTCTACTTAA TTCTTGCTGC
 • AlaThrAsn ValAlaGlySer LeuPheLys LysLeuLeu ValGlySerLeu.
 351 TGCAACTAAT GTGCCGGCT CATTATTAA GAAACTTCTA GTTGGTTCTC
 • ValMetLeu ValPheGly TyrMetGlyGlu AlaGlyIle MetAlaAla
 401 TTGTTATGCT TGTGTTGGT TACATGGGTG AAGCAGGAAT TATGGCAGCT
 TrpProAlaPhe IleIleGly CysLeuAla TrpValTyrMet IleTyrGlu.
 451 TGGCCTGCAT TCATTATTGG GTGTTTAGCT TGGGTATACA TGATTTATGA
 • LeuTyrAla GlyGluGlyLys SerAlaCys AsnThrAla SerProSerVal.
 501 ACTATATGCT GGAGAAGGAA AATCTGCATG TAATACTGCA AGTCCTTCGG
 • GlnSerAla TyrAsnThr MetMetAlaIle IleValPhe GlyTrpAla
 551 TTCAATCAGC TTACAACACA ATGATGGCTA TCATAGTCTT CGGTTGGGCA
 IleTyrProIle GlyTyrPhe ThrGlyTyr LeuMetGlyAsp GlyGlySer.
 601 ATTTATCCTA TAGGTTATT CACAGGTTAC CTAATGGGTG ACGGTGGATC
 • AlaLeuAsn LeuAsnLeuIle TyrAsnLeu AlaAspPhe ValAsnLysIle.
 651 AGCTCTAAC TTAAACCTTA TTTATAACCT TGCTGACTTT GTTAACAAGA
 • LeuPheGly LeuIleIle TrpAsnValAla ValLysGlu SerSerAsn
 701 TTCTATTGTT TTTAATTATA TGGAAATGTTG CTGTTAAAGA ATCTTCTAAT
 AlaLys
 751 GCTAAGG

Figure 1-4

ThrMetGlyLys LeuLeuLeu IleLeuGly SerValIleAla LeuProThr.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGTATTG CACTCCTAC
 • PheAlaAla GlyGlyGlyAsp LeuAspAla SerAspTyr ThrGlyValSer.
 51 ATTTGCTGCA GGTGGTGGTG ACCTTGATGC TAGTGATTAC ACTGGTGT
 • PheTrpLeu ValThrAla AlaLeuLeuAla SerThrVal PhePhePhe
 101 CTTTTGGTT AGTTACTGCT GCTCTATTAG CATCTACTGT ATTTTCCTT
 ValGluArgAsp ArgValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTTGAAAGAG ATAGAGTTTC TGCAAAATGG AAAACATCAT TAACTGTATC
 • GlyLeuVal ThrGlyIleAla PheTrpHis TyrMetTyr MetArgGlyVal.
 201 GGGTCTTGT ACTGGTATTG CTTTCTGGCA TTACATGTAC ATGAGAGGGG
 • TrpIleGlu ThrGlyAsp SerProThrVal PheArgTyr IleAspTrp
 251 TATGGATTGA GACC GG TGAT TCGCCA ACTG TATTAGATA CATTGATTGG
 LeuLeuThrVal ProLeuLeu IleCysGlu PheTyrLeuIle LeuAlaAla.
 301 TTACTAACAG TTCCCTCTATT GATATGTGAA TTCTACTTAA TTCTTGCTGC
 • AlaThrAsn ValAlaAlaGly LeuPheLys LysLeuLeu ValGlySerLeu.
 351 TGCAACAAAT GTTGCTGCTG GCCTGTTAA GAAATTATTG GTTGGTTCTC
 • ValMetLeu ValPheGly TyrMetGlyGlu AlaGlyIle MetAsnAla
 401 TTGTTATGCT TGTGTTGGT TACATGGGTG AGGCAGGAAT TATGAACGCT
 TrpGlyAlaPhe ValIleGly CysLeuAla TrpValTyrMet IleTyrGlu.
 451 TGGGGTGCAT TCGTTATTGG GTGTTTAGCT TGGGTATACA TGATTTATGA
 • LeuTrpAla GlyGluGlyLys AlaAlaCys AsnThrAla SerProAlaVal.
 501 ACTATGGGCT GGAGAAGGCA AGGCTGCATG TAATACTGCA AGTCCTGCTG
 • GlnSerAla TyrAsnThr MetMetTyrIle IleIlePhe GlyTrpAla
 551 TGCAATCAGC TTACAACACA ATGATGTATA TAATCATCTT TGGTTGGCA
 IleTyrProVal GlyTyrPhe ThrGlyTyr LeuMetGlyAsp GlyGlySer.
 601 ATTTATCCTG TAGGTTATT CACAGGTTAC CTAATGGGTG ACGGTGGATC
 • AlaLeuAsn LeuAsnLeuIle TyrAsnLeu AlaAspPhe ValAsnLysIle.
 651 AGCTCTAAC TTAAACCTTA TCTATAACCT TGCTGACTTT GTTAACAAGA
 • LeuPheGly LeuIleIle TrpAsnValAla ValLysGlu SerSerAsn
 701 TTCTATTGG TTTAATTATA TGGAATGTTG CTGTTAAAGA ATCTTCTAAT
 Ala
 751 GCT

Figure 1-5

ThrMetGlyLys LeuLeuLeu IleLeuGly SerAlaIleAla LeuProSer.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGCTATTG CACTCCATC
 • PheAlaAla AlaGlyGlyAsp LeuAspIle SerAspThr ValGlyValSer.
 51 ATTTGCTGCT GCTGGTGGCG ATCTAGATAT AAGTGATACT GTTGGTGT
 • PheTrpLeu ValThrAla GlyMetLeuAla AlaThrVal PhePhePhe
 101 CATTCTGGCT GGTACAGCT GGTATGTTAG CGGCAACTGT ATTCTTTTT
 ValGluArgAsp GlnValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTAGAAAGAG ACCAAGTCAG CGCTAACGTGG AAAACTTCAC TTACTGTATC
 • GlyLeuIle ThrGlyIleAla PheTrpHis TyrLeuTyr MetArgGlyVal.
 201 TGGTTTAATT ACTGGTATAG CTTTTGGCA TTATCTCTAC ATGAGAGGTG
 • TrpIleAsp ThrGlyAsp ThrProThrVal PheArgTyr IleAspTrp
 251 TTTGGATAGA TACTGGTGAT ACACCAACAG TATTAGATA TATTGATTGG
 LeuLeuThrVal ProLeuGln MetValGlu PheTyrLeuIle LeuAlaAla.
 301 TTATTAAC TG TTCCATTACA AATGGTTGAG TTCTATCTAA TTCTTGCTGC
 • CysThrSer ValAlaAlaSer LeuPheLys LysLeuLeu AlaGlySerLeu.
 351 TTGTACAAGT GTTGCTGCTT CATTATTAA GAAGCTTCTA GCTGGTTCAT
 • ValMetLeu GlyAlaGly PheAlaGlyGlu AlaGlyLeu AlaProVal
 401 TAGTAATGTT AGGTGCTGGA TTTGCAGGCG AAGCTGGTT AGCTCCTGTA
 LeuProAlaPhe IleIleGly MetAlaGly TrpLeuTyrMet IleTyrGlu.
 451 TTACCTGCTT TCATTATTGG TATGGCTGGA TGTTTATACA TGATTATGA
 • LeuHisMet GlyGluGlyLys AlaAlaVal SerThrAla SerProAlaVal.
 501 GCTACATATG GGTGAAGGTA AGGCTGCTGT AAGTACTGCA AGTCCTGCTG
 • AsnSerAla TyrAsnAla MetMetLysIle IleValIle GlyTrpAla
 551 TTAACCTCTGC ATACAACGCA ATGATGAAGA TTATTGTTAT TGGATGGGCA
 IleTyrProAla GlyTyrAla AlaGlyTyr LeuMetSerGly AspGlyVal.
 601 ATTTATCCTG CTGGATATGC TGCTGGTTAC CTAATGAGTG GTGACGGTGT
 • TyrAlaSer AsnLeuAsnLeu IleTyrAsn LeuAlaAsp PheValAsnLys.
 651 ATACGCTTCA AACTAAACC TTATATATAA CCTTGCTGAC TTTGTTAACAA
 • IleLeuPhe GlyLeuIle IleTrpAsnVal AlaValLys GluSerSer
 701 AGATTCTATT TGGTTTGATC ATTTGGAATG TTGCTGTTAA AGAATCTTCT
 AsnAla
 751 AATGCTA

Figure 1-6

ThrMetGlyLys LeuLeuLeu IleLeuGly SerAlaIleAla LeuProSer.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGCTATTG CACTTCCATC
 · PheAlaAla AlaGlyGlyAsp LeuAspIle SerAspThr ValGlyValSer.
 51 ATTTGCTGCT GCTGGTGGCG ATCTAGATAT AAGTGATACT GTTGGTGT
 · PheTrpLeu ValThrAla GlyMetLeuAla AlaThrVal PhePhePhe
 101 CATTCTGGCT GGTACAGCT GGTATGTTAG CGGCAACTGT GTTCTTTTT
 ValGluArgAsp GlnValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTAGAAAGAG ACCAAGTCAG CGCTAACGTGG AAAACTTCAC TTACTGTATC
 · GlyLeuIle ThrGlyIleAla PheTrpHis TyrLeuTyr MetArgGlyVal.
 201 TGGTTTAATT ACTGGTATAG CTTTTGGCA TTATCTCTAT ATGAGAGGTG
 · TrpIleAsp ThrGlyAsp ThrProThrVal PheArgTyr IleAspTrp
 251 TTTGGATAGA CACTGGTGAT ACCCCAACAG TATTCAAGATA TATTGATTGG
 LeuLeuThrVal ProLeuGln ValValGlu PheTyrLeuIle LeuAlaAla.
 301 TTATTAAC TG TTCCATTACA AGTGGTTGAG TTCTATCTAA TTCTTGCTGC
 · CysThrSer ValAlaAlaSer LeuPheLys LysLeuLeu AlaGlySerLeu.
 351 TTGTACAAGT GTTGCTGCTT CATTATTTAA GAAGCTTCTA GCTGGTTCAT
 · ValMetLeu GlyAlaGly PheAlaGlyGlu AlaGlyLeu AlaProVal
 401 TAGTAATGTT AGGTGCTGGA TTTGCAGGCG AAGCTGGATT AGCTCCTGTA
 LeuProAlaPhe IleIleGly MetAlaGly TrpLeuTyrMet IleTyrGlu.
 451 TTACCTGCTT TCATTATTGG TATGGCTGGA TGTTTATACA TGATTTATGA
 · LeuTyrMet GlyGluGlyLys AlaAlaVal SerThrAla SerProAlaVal.
 501 GCTATATATG GGTGAAGGTA AGGCTGCTGT AAGTACTGCA AGTCCTGCTG
 · AsnSerAla TyrAsnAla MetMetMetIle IleValVal GlyTrpAla
 551 TAACTCTGC ATACAACGCA ATGATGATGA TTATTGTTGT TGGATGGGCA
 IleTyrProAla GlyTyrAla AlaGlyTyr LeuMetGlyGly GluGlyVal.
 601 ATTTATCCTG CTGGATATGC TGCTGGTTAC CTAATGGGTG GCGAAGGTGT
 · TyrAlaSer AsnLeuAsnLeu IleTyrAsn LeuAlaAsp PheValAsnLys.
 651 ATACGCTTCA AACCTAAACC TTATATATAA CCTTGCTGAC TTTGTTAACAA
 · IleLeuPhe GlyLeuIle IleTrpAsnVal AlaValLys GluSerSer
 701 AGATTCTATT TGGTTTGATC ATTGGAATG TTGCTGTTAA AGAATCTTCT
 AsnAla
 751 AATGCT

Figure 1-7

ThrMetGlyLys LeuLeuLeu IleLeuGly SerAlaIleAla LeuProSer.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGCTATTG CACTTCCATC
 · PheAlaAla AlaGlyGlyAsp LeuAspIle SerAspThr ValGlyValSer.
 51 ATTTGCTGCT GCTGGTGGCG ATCTAGATAT AAGTGATACT GTTGGTGT
 · PheTrpLeu ValThrAla GlyMetLeuAla AlaThrVal PhePhePhe
 101 CATTCTGGCT GGTACAGCT GGTATGTTAG CGGCAACTGT GTTCTTTTT
 ValGluArgAsp GlnValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTAGAAAGAG ACCAACGTCAG CGCTAAGTGG AAAACTTCAC TTACTGTATC
 · GlyLeuIle ThrGlyIleAla PheTrpHis TyrLeuTyr MetArgGlyVal.
 201 TGGTTTAATT ACTGGTATAG CTTTTGGCA TTATCTCTAT ATGAGAGGTG
 · TrpIleAsp ThrGlyAsp ThrProThrVal PheArgTyr IleAspTrp
 251 TTTGGATAGA CACTGGTGAT ACCCCAACAG TATTCAAGATA TATTGATTGG
 LeuLeuThrVal ProLeuGln MetValGlu PheTyrLeuIle LeuAlaAla.
 301 TTATTAACATG TTCCATTACA AATGGTTGAG TTCTATCTAA TTCTTGCTGC
 · CysThrAsn ValAlaAlaSer LeuPheLys LysLeuLeu AlaGlySerLeu.
 351 TTGTACAAAT GTTGCTGCTT CATTATTTAA GAAGCTTCTA GCTGGTTCAT
 · ValMetLeu GlyAlaGly PheAlaGlyGlu AlaGlyLeu AlaProVal
 401 TAGTAATGTT AGGTGCTGGA TTTGCAGGCG AAGCTGGATT GGCTCCTGTA
 TrpProAlaPhe IleIleGly MetAlaGly TrpLeuTyrMet IleTyrGlu.
 451 TGGCCTGCTT TCATTATTGG TATGGCTGGA TGTTTATACA TGATTTATGA
 · LeuTyrMet GlyGluGlyLys AlaAlaVal SerThrAla SerProAlaVal.
 501 GCTATATATG GGTGAAGGTA AGGCTGCTGT AAGTACTGCA AGTCCTGCTG
 · AsnSerAla TyrAsnAla MetMetValIle IleValVal GlyTrpAla
 551 TTAACCTCTGC ATACAACGCA ATGATGGTGA TTATTGTTGT TGGATGGGCA
 IleTyrProAla GlyTyrAla AlaGlyTyr LeuMetGlyGly GluGlyVal.
 601 ATTTATCCTG CTGGATATGC TGCTGGTTAC CTAATGGGTG GCGAAGGTGT
 · TyrAlaSer AsnLeuAsnLeu IleTyrAsn LeuAlaAsp LeuValAsnLys.
 651 ATACGCTTCA AACTTAAACC TTATATATAA CCTTGCCGAC CTTGTTAACAA
 · IleLeuPhe GlyLeuIle IleTrpAsnVal AlaValLys GluSerSer
 701 AGATTCTATT TGGTTTGATC ATTTGGAATG TTGCTGTTAA AGAATCTTCT
 AsnAla
 751 AATGCT

Figure 1-8

ThrMetGlyLys LeuLeuLeu IleLeuGly SerValIleAla LeuProThr.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGTATTG CACTCCTAC
 • PheAlaAla GlyGlyGlyAsp LeuAspAla SerAspTyr ThrGlyValSer.
 51 ATTTGCTGCA GGTGGTGGTG ACCTTGATGC TAGTGATTAC ACTGGTGT
 • PheTrpLeu ValThrAla AlaLeuLeuAla SerThrVal PhePhePhe
 101 CTTTTGGTT AGTTACTGCT GCTCTATTAG CATCTACTGT ATTTTCTTT
 ValGluArgAsp ArgValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTTGAAAGAG ATAGAGTTTC TGCAAAATGG AAAACATCAT TAACTGTATC
 • GlyLeuVal ThrGlyIleAla PheTrpHis TyrMetTyr MetArgGlyVal.
 201 TGGTCTTGTGTT ACTGGTATTG CTTTCTGGCA TTACATGTAC ATGAGAGGGG
 • TrpIleGlu ThrGlyAsp SerProThrVal PheArgTyr IleAspTrp
 251 TATGGATTGA GACTGGTGAT TCGCCAAGT TATTAGATA CATTGATTGG
 LeuLeuThrVal ProLeuLeu IleCysGlu PheTyrLeuIle LeuAlaAla.
 301 TTACTAACAG TTCCCTCTATT GATATGTGAA TTCTACTTAA TTCTTGCTGC
 • AlaThrAsn ValAlaAlaGly LeuPheLys LysLeuLeu ValGlySerLeu.
 351 TGCAACAAAT GTTGCTGCTG GCCTGTTAA GAAATTATTG GTTGGTTCTC
 • ValMetLeu ValPheGly TyrMetGlyGlu AlaGlyIle MetAsnAla
 401 TTGTTATGCT TGTGTTGGT TACATGGGTG AGGCAGGAAT TATGAACGCT
 TrpProAlaPhe IleIleGly CysLeuAla TrpValTyrMet IleTyrGlu.
 451 TGGCCTGCAT TCATTATTGG GTGTTAGCT TGGGTATACA TGATTATGA
 • LeuTyrAla GlyGluGlyLys SerAlaCys AsnThrAla SerProSerVal.
 501 ACTATATGCT GGAGAAGGAA AATCTGCATG TAATACTGCA AGTCCTTCGG
 • GlnSerAla TyrAsnThr MetMetAlaIle IleValPhe GlyTrpAla
 551 TTCAATCAGC TTACAACACA ATGATGGCTA TCATAGTCTT CGGTTGGGCA
 IleTyrProVal GlyTyrPhe ThrGlyTyr LeuMetGlyAsp GlyGlySer.
 601 ATTTATCCTG TAGGTTATT CACAGGTTAC CTAATGGGTG ACGGTGGATC
 • AlaLeuAsn LeuAsnLeuIle TyrAsnLeu AlaAspPhe ValAsnLysIle.
 651 AGCTCTAAC TTAAACCTA TTTATAACCT TGCTGACTTT GTTAACAAGA
 • LeuPheGly LeuIleIle TrpAsnValAla ValLysGlu SerSerAsn
 701 TTCTATTGG TTTAATTATA TGGAATGTTG CTGTTAAAGA ATCTTCTAAT
 Ala
 751 GCT

Figure 1-9

ThrMetGlyLys LeuLeuLeu IleLeuGly SerValIleAla LeuProThr.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGTATTG CACTCCTAC
 • PheAlaAla GlyGlyGlyAsp LeuAspAla SerAspTyr ThrGlyValSer.
 51 ATTTGCTGCA GGTGGTGGTG ACCTTGATGC TAGTGATTAC ACTGGTGT
 • PheTrpLeu ValThrAla AlaLeuLeuAla SerThrVal PhePhePhe
 101 CTTTTGGTT AGTTACTGCT GCTTTATTAG CATCTACTGT ATTTTCTTT
 ValGluArgAsp ArgValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTTGAAAGAG ATAGAGTTTC TGCAAAATGG AAAACATCAT TAACTGTATC
 • GlyLeuVal ThrGlyIleAla PheTrpHis TyrMetTyr MetArgGlyVal.
 201 TGGTCTTGT ACTGGTATTG CTTTCTGGCA TTACATGTAC ATGAGAGGGG
 • TrpIleGlu ThrGlyAsp SerProThrVal PheArgTyr IleAspTrp
 251 TATGGATTGA AACTGGTGAT TCGCCAAGT TATTAGATA CATTGATTGG
 LeuLeuThrVal ProLeuLeu IleCysGlu PheTyrLeuIle LeuAlaAla.
 301 TTACTAACAG TTCCCTCTATT AATATGTGAA TTCTACTTAA TTCTTGCTGC
 • AlaThrAsn ValAlaAlaGly LeuPheLys LysLeuLeu ValGlySerLeu.
 351 TGCTACTAAT GTTGCTGCTG GCCTGTTAA GAAATTATTG GTTGGTTCTC
 • ValMetLeu ValPheGly TyrMetGlyGlu AlaGlyIle MetAsnAla
 401 TTGTTATGCT TGTGTTGGT TACATGGGTG AAGCAGGAAT TATGAACGCT
 TrpGlyAlaPhe ValIleGly CysLeuAla TrpValTyrMet IleTyrGlu.
 451 TGGGGTGCAT TCGTTATTGG GTGTTAGCT TGGGTATACA TGATTATGA
 • LeuTrpLeu GlyGluGlyLys AlaAlaCys AsnThrAla SerProAlaVal.
 501 GCTTTGGCTT GGAGAAGGAA AAGCTGCGTG TAATACAGCA AGTCCTGCTG
 • GlnSerAla TyrAsnThr MetMetMetIle IleIlePhe GlyTrpAla
 551 TTCAGTCAGC TTACAACACA ATGATGATGA TCATCATCTT TGGTTGGGCA
 IleTyrProVal GlyTyrPhe ThrGlyTyr LeuMetGlyAsp GlyGlySer.
 601 ATTTATCCTG TAGGTTATT CACAGGTTAC CTAATGGGTG ACGGTGGATC
 • AlaLeuAsn LeuAsnLeuIle TyrAsnLeu AlaAspPhe ValAsnLysIle.
 651 AGCACTTAAC TTAAACCTTA TCTATAACCT TGCTGACTTT GTTAACAAGA
 • LeuPheGly LeuIleIle TrpAsnValAla ValLysGlu SerSerAsn
 701 TTCTATTG TTTAATTATA TGGAAATGTTG CTGTTAAAGA ATCTTCTAAT
 Ala
 751 GCT

Figure 1-10

ThrMetGlyLys LeuLeuLeu IleLeuGly SerValIleAla LeuProThr.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGTATTG CACTCCTAC
 • PheAlaAla GlyGlyGlyAsp LeuAspAla SerAspTyr ThrGlyValSer.
 51 ATTTGCTGCA GGTGGTGGTG ACCTTGATGC TAGTGATTAC ACTGGTGT
 • PheTrpLeu ValThrAla AlaLeuLeuAla SerThrVal PhePhePhe
 101 CTTTTGGTT AGTTACTGCT GCTTTATTAG CATCTACTGT ATTTTC
 ValGluArgAsp ArgValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTTGAAAGAG ATAGAGTTTC TGCAAAATGG AAAACATCAT TAACTGTATC
 • GlyLeuVal ThrGlyIleAla PheTrpHis TyrMetTyr MetArgGlyVal.
 201 TGGTCTTGT ACTGGTATTG CTTTCTGGCA TTACATGTAC ATGAGAGGGG
 • TrpIleGlu ThrGlyAsp SerProThrVal PheArgTyr IleAspTrp
 251 TATGGATTGA AACTGGTGAT TCGCCAAGTG TATTAGATA CATTGATTGG
 LeuLeuThrVal ProLeuLeu IleCysGlu PheTyrLeuIle LeuAlaAla.
 301 TTACTAACAG TTCCCTCTATT AATATGTGAA TTCTACTTAA TTCTTGCTGC
 • AlaThrAsn ValAlaAlaGly LeuPheLys LysLeuLeu ValGlySerLeu.
 351 TGCAACTAAT GTTGCTGCTG GCCTGTTAA GAAATTATTG GTTGGTTCTC
 • ValMetLeu ValPheGly TyrMetGlyGlu AlaGlyIle MetAsnAla
 401 TTGTTATGCT TGTGTTGGT TACATGGGTG AGGCAGGAAT TATGAACGCT
 TrpGlyAlaPhe ValIleGly CysLeuAla TrpValTyrMet IleTyrGlu.
 451 TGGGGTGCAT TCGTTATTGG GTGTTAGCT TGGGTATACA TGATTATGA
 • LeuTrpAla GlyGluGlyLys AlaAlaCys AsnThrAla SerProAlaVal.
 501 ACTATGGGCT GGAGAAGGCA AGGCTGCATG TAATACTGCA AGTCCTGCTG
 • GlnSerAla TyrAsnThr MetMetTyrIle IleIlePhe GlyTrpAla
 551 TGCAATCAGC TTACAACACA ATGATGTATA TAATCATCTT TGGTTGGCA
 IleTyrProVal GlyTyrPhe ThrGlyTyr LeuMetGlyAsp GlyGlySer.
 601 ATTTATCCTG TAGGTTATT CACAGGTTAC CTAATGGGTG ACGGTGGATC
 • AlaLeuAsn LeuAsnLeuIle TyrAsnLeu AlaAspPhe ValAsnLysIle.
 651 AGCTCTAAC TTAAACCTTA TCTATAACCT TGCTGACTTT GTAAACAAGA
 • LeuPheGly LeuIleIle TrpAsnValAla ValLysGlu SerSerAsn
 701 TTCTATTGG TTTAATTATA TGGAAATGTTG CTGTTAAAGA ATCTTCTAAT
 Ala
 751 GCT

Figure 1-11

ThrMetGlyLys LeuLeuLeu IleLeuGly SerValIleAla LeuProThr.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGTATTG CACTCCTAC
 · PheAlaAla GlyGlyGlyAsp LeuAspAla SerAspTyr ThrGlyValSer.
 51 ATTTGCTGCA GGTGGCGGTG ACCTTGATGC TAGTGATTAC ACTGGTGT
 · PheTrpLeu ValThrAla AlaLeuLeuAla SerThrVal PhePhePhe
 101 CTTTTGGTT AGTTACAGCT GCTCTATTAG CATCTACTGT ATTTTCCTT
 ValGluArgAsp ArgValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTTGAAAGAG ATAGAGTTTC TGCAAAATGG AAAACATCAT TAACTGTATC
 · GlyLeuVal ThrGlyIleAla PheTrpHis TyrMetTyr MetArgGlyVal.
 201 TGGTCTTGTGTT ACTGGTATTG CTTTCTGGCA TTACATGTAC ATGAGAGGGG
 · TrpIleGlu ThrGlyAsp SerProThrVal PheArgTyr IleAspTrp
 251 TATGGATTGA AACTGGTGAT TCGCCAAGT TATTAGATA CATTGATTGG
 LeuLeuThrVal ProLeuLeu IleCysGlu PheTyrLeuIle LeuAlaAla.
 301 TTACTAACAG TTCCTCTATT AATATGTGAA TTCTACTTAA TTCTTGCTGC
 · AlaThrAsn ValAlaGlySer LeuPheLys LysLeuLeu ValGlySerLeu.
 351 TGCTACTAAT GTTGCTGGAT CATTATTTAA GAAATTACTA GTTGGTTCTC
 · ValMetLeu ValPheGly TyrMetGlyGlu AlaGlnIle MetAlaAla
 401 TTGTTATGCT TGTGTTGGT TACATGGGTG AAGCACAAAT TATGGCTGCA
 TrpProAlaPhe IleIleGly CysLeuAla TrpValTyrMet IleTyrGlu.
 451 TGGCCTGCAT TCATTATTGG GTGTTTAGCT TGGGTATACA TGATTTATGA
 · LeuTyrAla GlyGluGlyLys SerAlaCys AsnThrAla SerProSerVal.
 501 ACTATATGCT GGAGAAGGAA AATCTGCATG TAATACTGCA AGTCCTTCGG
 · GlnSerAla TyrAsnThr MetMetAlaIle IleValPhe GlyTrpAla
 551 TTCAATCAGC TTACAACACA ATGATGGCTA TCATAGTCTT CGGTTGGCA
 IleTyrProVal GlyTyrPhe ThrGlyTyr LeuMetGlyAsp GlyGlySer.
 601 ATTTATCCTG TAGGTTATT CACAGGTTAC CTAATGGGTG ACGGTGGGTC
 · AlaLeuAsn LeuAsnLeuIle TyrAsnLeu AlaAspPhe ValAsnLysIle.
 651 AGCTCTAAC TTAAACCTA TTTATAACCT TGCTGACTTT GTTAACAAGA
 · LeuLeuGly LeuIleIle TrpAsnValAla ValLysGlu SerSerAsn
 701 TTCTACTTGG TTTAATTATA TGGAATGTTG CTGTTAAAGA ATCTTCTAAT
 Ala
 751 GCT

Figure 1-12

ThrMetGlyLys LeuLeuLeu IleLeuGly SerValIleAla LeuProThr.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGTATTG CACTCCTAC
 • PheAlaAla GlyGlyGlyAsp LeuAspAla SerAspTyr ThrGlyValSer.
 51 ATTTGCTGCA GGTGGTGGTG ACCTTGATGC TAGTGATTAC ACTGGTGT
 • PheTrpLeu ValThrAla AlaLeuLeuAla SerThrVal PhePhePhe
 101 CTTTTGGTT AGTTACTGCT GCTTTATTAG CATCTACTGT ATTTTCTTT
 ValGluArgAsp ArgValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTTGAAAGAG ATAGAGTTTC TGCAAAATGG AAAACATCAT TAACTGTATC
 • GlyLeuVal ThrGlyIleAla PheTrpHis TyrMetTyr MetArgGlyVal.
 201 TGGTCTTGT ACTGGTATTG CTTTCTGGCA TTACATGTAC ATGAGAGGGG
 • TrpIleGlu ThrGlyAsp SerProThrVal PheArgTyr IleAspTrp
 251 TATGGATTGA AACTGGTGAT TCGCCAAGT TATTAGATA CATTGATTGG
 LeuLeuThrVal ProLeuLeu IleCysGlu PheTyrLeuIle LeuAlaAla.
 301 TTACTAACAG TTCCTCTATT AATATGTGAA TTCTACTTAA TTCTTGCTGC
 • AlaAlaAsn ValAlaGlySer LeuPheLys LysLeuLeu ValGlySerLeu.
 351 TGCAGCTAAT GTTGCTGGAT CATTATTAA GAAATTACTA GTTGGTTCTC
 • ValMetLeu ValPheGly TyrMetGlyGlu AlaGlyIle MetAlaAla
 401 TTGTTATGCT TGTGTTGGT TACATGGGTG AAGCAGGAAT CATGGCTGCA
 TrpProAlaPhe IleIleGly CysLeuAla TrpValTyrMet IleTyrGlu.
 451 TGGCCTGCAT TCATTATTGG GTGTTTAGCT TGGGTATACA TGATTATGA
 • LeuTrpAla GlyGluGlyLys SerAlaCys AsnThrAla SerProAlaVal.
 501 ATTATGGGCT GGAGAAGGAA AATCTGCATG TAATACTGCA AGTCCTGCTG
 • GlnSerAla TyrAsnThr MetMetTyrIle IleIlePhe GlyTrpAla
 551 TGCAATCAGC CTACAACACA ATGATGTATA TTATCATCTT TGGTTGGCG
 IleTyrProVal GlyTyrPhe ThrGlyTyr LeuMetGlyAsp GlyGlySer.
 601 ATTTATCCTG TAGGTTATT CACAGGTTAC TTGATGGGTG ACGGTGGATC
 • AlaLeuAsn LeuAsnLeuIle TyrAsnLeu AlaAspPhe ValAsnLysIle.
 651 AGCTCTAAC TTAAACCTTA TCTATAACCT TGCTGACTTT GTTAACAAGA
 • LeuPheGly LeuIleIle TrpAsnValAla ValLysGlu SerSer
 701 TTCTATTGG TTTAATTATA TGGAAATGTTG CTGTTAAAGA ATCTTCTA

Figure 1-13

ThrMetGlyLys LeuLeuLeu IleIleGly SerValIleAla LeuProThr.
 1 ACCATGGGTA AATTATTACT GATAATAGGT AGTGTATTG CACTCCTAC
 • PheAlaAla GlyGlyGlyAsp LeuAspAla SerAspTyr ThrGlyValSer.
 51 ATTTGCTGCA GGTGGCGGTG ACCTTGATGC TAGTGATTAC ACTGGTGT
 • PheTrpLeu ValThrAla AlaLeuLeuAla SerThrVal PhePhePhe
 101 CTTTTGGTT AGTTACAGCT GCTCTATTAG CATCTACTGT ATTTTTCTTT
 ValGluArgAsp ArgValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTTGAAAGAG ATAGAGTTTC TGCAAAATGG AAAACATCAT TAACTGTATC
 • GlyLeuVal ThrGlyIleAla PheTrpHis TyrMetTyr MetArgGlyVal.
 201 TGGTCTTGTGTT ACTGGTATTG CTTTCTGGCA TTACATGTAC ATGAGAGGAG
 • TrpIleGlu ThrGlyAsp SerProThrVal PheArgTyr IleAspTrp
 251 TATGGATTGA AACTGGTGAT TCGCCAAGTG TATTTAGATA CATTGATTGG
 LeuLeuThrVal ProLeuLeu IleCysGlu PheTyrLeuIle LeuAlaAla.
 301 TTACTAACAG TTCCCTTATT AATATGTGAA TTCTACTTAA TTCTTGCTGC
 • AlaThrAsn ValAlaGlySer LeuPheLys LysLeuLeu ValGlySerLeu.
 351 TGCAACTAAT GTTGCCGGCT CATTATTTAA GAAACTTCTA GTTGGTTCTC
 • ValMetLeu ValPheGly TyrMetGlyGlu AlaGlyIle MetAlaAla
 401 TTGTTATGCT TGTGTTGGT TACATGGGTG AAGCAGGAAT TATGGCAGCT
 TrpProAlaPhe IleIleGly CysLeuAla TrpValTyrMet IleTyrGlu.
 451 TGGCCTGCAT TCATTATTGG GTGTTTAGCT TGGGTATATA TGATTTATGA
 • LeuTyrAla GlyGluGlyLys SerAlaCys AsnThrAla SerProAlaVal.
 501 ACTATATGCT GGAGAAGGAA AATCTGCATG TAATACAGCA AGTCCTGCTG
 • GlnSerAla TyrAsnThr MetMetTyrIle IleValPhe GlyTrpAla
 551 TGCAATCAGC TTACAACACA ATGATGTATA TTATCGTCTT TGGTTGGGCG
 IleTyrProVal GlyTyrPhe ThrGlyTyr LeuMetGlyAsp GlyGlySer.
 601 ATTTATCCTG TAGGTTATTT CACAGGTTAC CTGATGGGTG ACGGTGGATC
 • AlaLeuAsn LeuAsnLeuIle TyrAsnLeu AlaAspPhe ValAsnLysIle.
 651 AGCTCTAAC TTAAACCTTA TCTATAACCT TGCTGACTTT GTTAACAAGA
 • LeuPheGly LeuIleIle TrpAsnValAla ValLysGlu SerSerAsn
 701 TTCTATTGTTG TTTAATTATA TGGAAATGTTG CTGTTAAAGA ATCTTCTAAT
 Ala
 751 GCT

Figure 1-14

ThrMetGlyLys LeuLeuLeu IleLeuGly SerValIleAla LeuProThr.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGTATTG CACTCCTAC
 • PheAlaAla GlyGlyGlyAsp LeuAspAla SerAspTyr ThrGlyValSer.
 51 ATTTGCTGCA GGTGGTGGTG ACCTTGATGC TAGTGATTAC ACTGGTGT
 • PheTrpLeu ValThrAla AlaLeuLeuAla SerThrVal PhePhePhe
 101 CTTTTGGTT AGTTACTGCT GCTCTATTAG CATCTACTGT ATTTTCTTT
 ValGluArgAsp ArgValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTTGAAAGAG ATAGAGTTTC TGCAAAATGG AAAACATCAT TAACTGTATC
 • GlyLeuVal ThrGlyIleAla PheTrpHis TyrMetTyr MetArgGlyVal.
 201 GGGTCTTGT ACTGGTATTG CTTTCTGGCA TTACATGTAC ATGAGAGGGG
 • TrpIleGlu ThrGlyAsp SerProThrVal PheArgTyr IleAspTrp
 251 TATGGATTGA GACTGGTGAT TCGCCAACTG TATTTAGATA CATTGATTGG
 LeuLeuThrVal ProLeuLeu IleCysGlu PheTyrLeuIle LeuAlaAla.
 301 TTACTAACAG TTCCCTCTATT GATATGTGAA TTCTACTTAA TTCTTGCTGC
 • AlaThrAsn ValAlaAlaGly LeuPheLys LysLeuLeu ValGlySerLeu.
 351 TGCAACAAAT GTTGCTGCTG GCCTGTTAA GAAATTATTG GTTGGTTCTC
 • ValMetLeu ValPheGly TyrMetGlyGlu AlaGlyIle MetAsnAla
 401 TTGTTATGCT TGTGTTGGT TACATGGGTG AGGCAGGAAT TATGAACGCT
 TrpGlyAlaPhe ValIleGly CysLeuAla TrpValTyrMet IleTyrGlu.
 451 TGGGGTGCAT TCGTTATTGG GTGTTAGCT TGGGTATACA TGATTATGA
 • LeuTrpAla GlyGluGlyLys AlaAlaCys AsnThrAla SerProAlaVal.
 501 ACTATGGGCT GGAGAAGGCA AGGCTGCATG TAATACTGCA AGTCCTGCTG
 • GlnSerAla TyrAsnThr MetMetTyrIle IleIlePhe GlyTrpAla
 551 TGCAATCAGC TTACAACACA ATGATGTATA TAATCATCTT TGGTTGGGCA
 IleTyrProVal GlyTyrPhe ThrGlyTyr LeuMetGlyAsp GlyGlySer.
 601 ATTTATCCTG TAGGTTATT CACAGGTTAC CTAATGGGTG ACGGTGGATC
 • AlaLeuAsn LeuAsnLeuIle TyrAsnLeu AlaAspPhe ValAsnLysAsn.
 651 AGCTCTAAC TTAAACCTTA TCTATAACCT TGCTGACTTT GTTAACAAGA
 • LeuPheGly LeuIleIle TrpAsnValAla ValLysGlu SerSer
 701 ATCTATTG TTTAATTATA TGGAAATGTTG CTGTTAAAGA ATCTTCTA

Figure 1-15

ThrMetGlyLys LeuLeuArg IleLeuGly SerValIleAla LeuProThr.
 1 ACCATGGGTA AATTATTACG GATATTAGGT AGTGTATTG CACTCCTAC
 • PheAlaAla GlyGlyGlyAsp LeuAspAla SerAspTyr ThrGlyValSer.
 51 ATTTGCTGCA GGTGGCGGTG ACCTTGATGC TAGTGATTAC ACTGGTGT
 • PheTrpLeu ValThrAla AlaLeuLeuAla SerThrVal PhePhePhe
 101 CTTTTGGTT AGTTACAGCT GCTCTATTAG CATCTACTGT ATTTTCCTT
 ValGluArgAsp ArgValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTTGAAAGAG ATAGAGTTTC TGCAAAATGG AAAACATCAT TAACTGTATC
 • GlyLeuVal ThrGlyIleAla PheTrpHis TyrMetTyr MetArgGlyVal.
 201 TGGTCTTGT ACTGGTATTG CTTTCTGGCA TTACATGTAT ATGAGAGGAG
 • TrpIleGlu ThrGlyAsp SerProThrVal PheArgTyr IleAspTrp
 251 TATGGATTGA AACTGGTGAT TCGCCAATG TATTAGATA CATTGATTGG
 LeuLeuThrVal ProLeuLeu IleCysGlu PheTyrLeuIle LeuAlaAla.
 301 TTACTAACAG TTCCCTTATT AATATGTGAA TTCTACTTAA TTCTTGCTGC
 • AlaThrAsn ValAlaGlySer LeuPheLys LysLeuLeu ValGlySerLeu.
 351 TGCAACTAAT GTTGCTGGAT CATTATTAA GAAATTACTA GTTGGTTCTC
 • ValMetLeu ValPheGly TyrMetGlyGlu AlaGlyIle MetAlaAla
 401 TTGTTATGCT TGTGTTGGT TACATGGGTG AAGCAGGAAT CATGGCTGCA
 TrpProAlaPhe IleIleGly CysLeuAla TrpValTyrMet IleTyrGlu.
 451 TGGCCTGCAT TCATTATTGG GTGTTTAGCT TGGGTATACA TGATTATGA
 • LeuTrpAla GlyGluGlyLys SerAlaCys AsnThrAla SerProAlaVal.
 501 ACTATGGGCT GGAGAAGGAA AATCTGCATG TAATACTGCA AGTCCTGCTG
 • GlnSerAla TyrAsnThr MetMetTyrIle IleIleVal GlyTrpAla
 551 TGCAATCAGC TTACAACACA ATGATGTATA TCATCATCGT TGGTTGGCG
 IleTyrProVal GlyTyrPhe ThrGlyTyr LeuMetGlyAsp GlyGlySer.
 601 ATTTATCCTG TAGGTTATT CACAGGTTAC CTGATGGGTG ACGGTGGATC
 • AlaLeuAsn LeuAsnLeuIle TyrAsnLeu AlaAspPhe ValAsnLysIle.
 651 AGCTCTTAAC TTAAACCTTA TCTATAACCT TGCTGACTTT GTTAACAAGA
 • LeuPheGly LeuIleIle TrpAsnValAla ValLysGlu SerSerAsn
 701 TTCTATTGG TTTAATTATA TGGAAATGTTG CTGTTAAAGA ATCTTCTAAT
 Ala
 751 GCT

Figure 1-16

ThrMetGlyLys LeuLeuLeu IleLeuGly SerValIleAla LeuProThr.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGTATTG CACTCCTAC
 • PheAlaAla GlyGlyGlyAsp LeuAspAla SerAspTyr ThrGlyValSer.
 51 ATTTGCTGCA GGTGGCGGTG ACCTTGATGC TAGTGATTAC ACTGGTGT
 • PheTrpLeu ValThrAla AlaLeuLeuAla SerThrVal PhePhePhe
 101 CTTTTGGTT AGTTACAGCT GCTCTATTAG CATCTACTGT ATTTTCCTT
 ValGluArgAsp ArgValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTTGAAAGAG ATAGAGTTTC TGCAAAATGG AAAACATCAT TAACTGTATC
 • GlyLeuVal ThrGlyIleAla PheTrpHis TyrMetTyr MetArgGlyVal.
 201 TGGTCTTGTGTT ACTGGTATTG CTTTCTGGCA TTACATGTAC ATGAGAGGAG
 • TrpIleGlu ThrGlyAsp SerProThrVal PheArgTyr IleAspTrp
 251 TATGGATTGA AACTGGTGAT TCGCCAAGTG TATTAGATA CATTGATTGG
 LeuLeuThrVal ProLeuLeu IleCysGlu PheTyrLeuIle LeuAlaAla.
 301 TTACTAACAG TTCCCTTATT AATATGTGAA TTCTACTTAA TTCTTGCTGC
 • AlaThrAsn ValAlaGlySer LeuPheLys LysLeuLeu ValGlySerLeu.
 351 TGCAACTAAT GTGCCGGCT CATTATTAA GAAACTTCTA GTTGGTTCTC
 • ValMetLeu ValPheGly TyrMetGlyGlu AlaGlyIle MetAlaAla
 401 TTGTTATGCT TGTGTTGGT TACATGGGTG AAGCAGGAAT TATGGCAGCT
 TrpProAlaPhe IleIleGly CysLeuAla TrpValTyrMet IleTyrGlu.
 451 TGGCCTGCAT TCATTATTGG GTGTTTAGCT TGGGTATACA TGATTATGA
 • LeuTyrAla GlyGluGlyLys SerAlaCys AsnThrAla SerProSerVal.
 501 ACTATATGCT GGAGAAGGAA AATCTGCATG TAATACTGCA AGTCCTTCGG
 • GlnSerAla TyrAsnThr MetMetAlaIle IleValPhe GlyTrpAla
 551 TTCAATCAGC TTACAACACA ATGATGGCTA TCATAGTCTT CGGTTGGCA
 IleTyrProVal GlyTyrPhe ThrGlyTyr LeuMetGlyAsp GlyGlySer.
 601 ATTTATCCTG TAGGTTATT CACAGGTTAC CTAATGGGTG ACGGTGGATC
 • AlaLeuAsn LeuAsnLeuIle TyrAsnLeu AlaAspPhe ValAsnLysIle.
 651 AGCTCTAAC TTAAACCTTA TTTATAACCT TGCTGACTTT GTTAACAAGA
 • LeuPheGly LeuIleIle TrpAsnValAla ValLysGlu SerSerAsn
 701 TTCTATTGTTG TTTAATTATA TGGAATGTTG CTGTTAAAGA ATCTTCTAAT
 Ala
 751 GCT

Figure 1-17

ThrMetGlyLys LeuLeuLeu IleLeuGly SerValIleAla LeuProThr.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGTATTG CACTCCTAC
 • PheAlaAla GlyGlyGlyAsp LeuAspAla SerAspTyr ThrGlyValSer.
 51 ATTTGCTGCA GGTGGTGGTG ACCTTGATGC TAGTGATTAC ACTGGTGT
 • PheTrpLeu ValThrAla AlaLeuLeuAla SerThrVal PhePhePhe
 101 CTTTTGGTT AGTTACTGCT GCTTTATTAG CATCTACTGT ATTTTCTTT
 ValGluArgAsp ArgValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTTGAAAGAG ATAGAGTTTC TGCAAAATGG AAAACATCAT TAACTGTATC
 • GlyLeuVal ThrGlyIleAla PheTrpHis TyrMetTyr MetArgGlyVal.
 201 TGGTCTTGT ACTGGTATTG CTTTCTGGCA TTACATGTAC ATGAGAGGGG
 • TrpIleGlu ThrGlyAsp SerProThrVal PheArgTyr IleAspTrp
 251 TATGGATTGA AACTGGTGAT TCGCCAAGT TATTAGATA CATTGATTGG
 LeuLeuThrVal ProLeuLeu IleCysGlu PheTyrLeuIle LeuAlaAla.
 301 TTACTAACAG TTCCCTCTATT AATATGTGAA TTCTACTTAA TTCTTGCTGC
 • AlaThrAsn ValAlaGlySer LeuPheLys LysLeuLeu ValGlySerLeu.
 351 TGCTACTAAT GTGCCGGCT CATTATTTAA GAAACTTCTA GTTGGTTCTC
 • ValMetLeu ValPheGly TyrMetGlyGlu AlaGlyIle MetAlaAla
 401 TTGTTATGCT TGTGTTGGT TACATGGGTG AAGCAGGAAT TATGGCAGCT
 TrpProAlaPhe IleIleGly CysLeuAla TrpValTyrMet IleTyrGlu.
 451 TGGCCTGCAT TCATTATTGG GTGTTAGCT TGGGTATACA TGATTATGA
 • LeuTyrAla GlyGluGlyLys SerAlaCys AsnThrAla SerProSerVal.
 501 ACTATATGCT GGAGAAGGAA AATCTGCATG TAATACTGCA AGTCCTTCGG
 • GlnSerAla TyrAsnThr MetMetAlaIle IleValPhe GlyTrpAla
 551 TTCAATCAGC TTACAACACA ATGATGGCTA TCATAGTCTT CGGTTGGGCA
 IleTyrProVal GlyTyrPhe ThrGlyTyr LeuMetGlyAsp GlyGlySer.
 601 ATTTATCCTG TAGGTTATT CACAGGTTAC CTAATGGGTG ACGGTGGATC
 • AlaLeuAsn LeuAsnLeuIle TyrAsnLeu AlaAspPhe ValAsnLysIle.
 651 AGCTCTTAAC TTAAACCTA TTTATAACCT TGCTGACTTT GTTAACAAGA
 • LeuPheGly LeuIleIle TrpAsnAlaAla ValLysGlu SerSerAsn
 701 TTCTATTGG TTTAATTATA TGGAAATGCTG CTGTTAAAGA ATCTTCTAAT
 Ala
 751 GCT

Figure 1-18

ThrMetGlyLys LeuLeuLeu IleLeuGly SerValIleAla LeuProThr.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGTATTG CACTCCTAC
 • PheAlaAla GlyGlyGlyAsp LeuAspAla SerAspTyr ThrGlyValSer.
 51 ATTTGCTGCA GGTGGTGGTG ACCTTGATGC TAGTGATTAC ACTGGTGT
 • PheTrpLeu ValThrAla AlaLeuLeuAla SerThrVal PhePhePhe
 101 CTTTTGGTT AGTTACTGCT GCTTTATTAG CATCTACTGT ATTTTCTTT
 ValGluArgAsp ArgValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTTGAAGAG ATAGAGTTTC TGCAAAATGG AAAACATCAT TAACTGTATC
 • GlyLeuVal ThrGlyIleAla PheTrpHis TyrMetTyr MetArgGlyVal.
 201 TGGTCTTGT ACTGGTATTG CTTTCTGGCA TTACATGTAT ATGAGAGGGG
 • TrpIleGlu ThrGlyAsp SerProThrVal PheArgTyr IleAspTrp
 251 TATGGATTGA AACTGGTGAT TCGCCAACTG TATTAGATA CATAGATTGG
 LeuLeuThrVal ProLeuLeu IleCysGlu PheTyrLeuIle LeuAlaAla.
 301 TTACTAACAG TTCCTTTATT AATATGTGAA TTCTACTTAA TTCTTGCCGC
 • AlaThrAsn ValAlaGlySer LeuPheLys LysLeuLeu ValGlySerLeu.
 351 TGCAACTAAT GTTGCTGGAT CATTATTAA GAAATTACTT GTTGGTTCTC
 • ValMetLeu ValPheGly TyrMetGlyGlu AlaGlyIle MetAlaAla
 401 TTGTTATGCT TGTGTTGGT TACATGGGTG AAGCAGGAAT CATGGCTGCA
 TrpProAlaPhe IleIleGly CysLeuAla TrpValTyrMet IleTyrGlu.
 451 TGGCCTGCAT TCATTATTGG GTGTTAGCT TGGGTATACA TGATTTATGA
 • LeuTrpAla GlyGluGlyLys SérAlaCys AsnThrAla SérProAlaVal.
 501 ACTATGGGCT GGAGAAGGAA AATCTGCATG TAATACTGCA AGTCCTGCTG
 • GlnSerAla TyrAsnThr MetMetTyrIle IleIlePhe GlyTrpAla
 551 TGCAATCAGC TTACAACACA ATGATGTATA TCATCATCTT TGGTTGGCG
 IleTyrProVal GlyTyrPhe ThrGlyTyr LeuMetGlyAsp GlyGlySer.
 601 ATTTATCCTG TAGGTTATT CACAGGTTAC CTTATGGGTG ACGGTGGATC
 • AlaLeuAsn LeuAsnLeuIle TyrAsnLeu AlaAspPhe ValAsnLysIle.
 651 AGCACTAAC TTAAACCTA TTTATAACCT TGCTGACTTT GTTAACAAGA
 • LeuPheGly LeuIleIle TrpAsnValAla ValLysGlu SerSerAsn
 701 TTCTATTG TTTAATTATA TGGAAATGTTG CTGTTAAAGA ATCTTCTAAT
 Ala
 751 GCT

Figure 1-19

ThrMetGlyLys LeuLeuLeu IleLeuGly SerValIleAla LeuProThr.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGTATTG CACTCCTAC
 • PheAlaAla GlyGlyGlyAsp LeuAspAla SerAspTyr ThrGlyValSer.
 51 ATTTGCTGCA GGTGGCGGTG ACCTTGATGC TAGTGATTAC ACTGGTGT
 • PheTrpLeu ValThrAla AlaLeuLeuAla SerThrVal PhePhePhe
 101 CTTTTGGTT AGTTACAGCT GCTCTATTAG CGTCTACTGT ATTTTCCTT
 ValGluArgAsp ArgValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTTGAAAGAG ATAGAGTTTC TGCAAAATGG AAAACATCAT TAACTGTATC
 • GlyLeuVal ThrGlyIleAla PheTrpHis TyrMetTyr MetArgGlyVal.
 201 TGGTCTTGTGTT ACTGGTATTG CTTTCTGGCA TTACATGTAT ATGAGAGGAG
 • TrpIleGlu ThrGlyAsp SerProThrVal PheArgTyr IleAspTrp
 251 TATGGATTGA AACTGGTGAT TCGCCAAGTG TATTAGATA CATTGATTGG
 LeuLeuThrVal ProLeuLeu IleCysGlu PheTyrLeuIle LeuAlaAla.
 301 TTACTAACAG TTCCCTTATT AATATGTGAA TTCTACTTAA TTCTTGCTGC
 • AlaThrAsn ValAlaGlySer LeuPheLys LysLeuLeu ValGlySerLeu.
 351 TGCAACTAAT GTTGCCGGCT CATTATTAA GAAACTTCTA GTTGGTTCTC
 • ValMetLeu ValPheGly TyrMetGlyGlu AlaGlyIle MetAlaAla
 401 TTGTTATGCT TGTGTTGGT TACATGGGTG AAGCAGGAAT AATGGCGGCT
 TrpProAlaPhe IleValGly CysLeuAla TrpValTyrMet IleTyrGlu.
 451 TGGCCTGCAT TCATCGTTGG ATGTTAGCA TGGGTATATA TGATTATGA
 • LeuTrpAla GlyGluGlyLys SerAlaCys AsnThrAla SerProAlaVal.
 501 ACTATGGGCT GGTGAAGGAA AATCTGCATG TAATACTGCA AGTCCTGCTG
 • GlnSerAla TyrAsnThr MetMetTyrIle IleIleVal GlyTrpAla
 551 TACAGTCAGC TTACAACACA ATGATGTATA TCATCATCGT TGGTTGGCA
 IleTyrProVal GlyTyrPhe ThrGlyTyr LeuMetGlyAsp GlyGlySer.
 601 ATTTATCCTG TAGGTTATT CACAGGTTAC CTAATGGGTG ACGGTGGATC
 • AlaLeuAsn LeuAsnLeuIle TyrAsnLeu AlaAspPhe ValAsnLysIle.
 651 AGCTCTTAAT CTAAACCTTA TTTATAACCT TGCTGACTTT GTTAACAAGA
 • LeuPheGly LeuIleIle TrpAsnValAla ValLysGlu SerSerAsn
 701 TTCTATTGG TTTAATTATA TGGAAATGTTG CTGTTAAAGA ATCTTCTAAT
 Ala
 751 GCT

Figure 1-20

ThrMetGlyLys LeuLeuLeu IleLeuGly SerAlaIleAla LeuProSer.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGCTATTG CACTCCATC
 • PheAlaAla AlaGlyGlyAsp LeuAspIle SerAspThr ValGlyValSer.
 51 ATTTGCTGCT GCTGGTGGCG ATCTAGATAT AAGTGATACT GTTGGTGT
 • PheTrpLeu ValThrAla GlyMetLeuAla AlaThrVal PhePhePhe
 101 CATTCTGGCT GGTTACAGCT GGTATGTTAG CGGCAACTGT ATTCTTTTT
 ValGluArgAsp GlnValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTAGAAAGAG ACCAACGTCAG CGCTAAGTGG AAAACTTCAC TTACTGTATC
 • GlyLeuIle ThrGlyIleAla PheTrpHis TyrLeuTyr MetArgGlyVal.
 201 TGGTTTAATT ACTGGTATAG CTTTTGGCA TTATCTCTAC ATGAGAGGTG
 • TrpIleAsp ThrGlyAsp ThrProThrVal PheArgTyr IleAspTrp
 251 TTTGGATAGA TACTGGTGAT ACACCAACAG TATTAGATA TATTGATTGG
 LeuLeuThrVal ProLeuGln MetValGlu PheTyrLeuIle LeuAlaAla.
 301 CTATTAACGT TTCCATTACA AATGGTTGAG TTCTATCTAA TTCTTGCTGC
 • CysThrSer ValAlaAlaSer LeuPheLys LysLeuLeu AlaGlySerLeu.
 351 TTGTACAAGT GTTGCTGCTT CATTATTTAA GAAGCTTCTA GCTGGTTCAT
 • ValMetLeu GlyAlaGly PheAlaGlyGlu AlaGlyLeu AlaProVal
 401 TAGTAATGTT AGGTGCTGGA TTTGCAGGCG AAGCTGGTT AGCTCCTGTA
 LeuProAlaPhe IleLeuGly MetAlaGly TrpLeuTyrMet IleTyrGlu.
 451 TTACCTGCTT TCATTCTTGG TATGGCTGGT TGTTTATACA TGATTTATGA
 • LeuHisMet GlyGluGlyLys AlaAlaVal SerThrAla SerProAlaVal.
 501 GCTACATATG GGTGAAGGTA AGGCTGCTGT AAGTACTGCA AGTCCTGCTG
 • AsnSerAla TyrAsnAla MetMetLysIle IleValIle GlyTrpAla
 551 TTAACCTCTGC TTACAATGCA ATGATGAAGA TTATTGTTAT TGGATGGGCA
 IleTyrProAla GlyTyrAla AlaGlyTyr LeuMetSerGly AspGlyVal.
 601 ATTTATCCTG CTGGATATGC TGCTGGTTAC CTAATGAGTG GTGACGGTGT
 • TyrAlaSer AsnLeuAsnLeu IleTyrAsn LeuAlaAsp PheValAsnLys.
 651 ATACGCTTCA AACTTAAACC TTATATATAA CCTTGCTGAC TTTGTTAACAA
 • IleLeuPhe GlyLeuIle IleTrpAsnVal AlaValLys GluSerSer
 701 AGATTCTATT TGGTTTGATC ATTTGGAATG TTGCTGTTAA AGAATCTTCT
 AsnAla
 751 AATGCT

Figure 1-21

ThrMetGlyLys LeuLeuLeu IleLeuGly SerAlaIleAla LeuProSer.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGCTATTG CACTTCCATC
 · PheAlaAla AlaGlyGlyAsp LeuAspIle SerAspThr ValGlyValSer.
 51 ATTTGCTGCT GCTGGTGGCG ATCTAGATAT AAGTGATACT GTTGGTGT
 · PheTrpLeu ValThrAla GlyMetLeuAla AlaThrVal PhePhePhe
 101 CATTCTGGCT GGTACAGCT GGTATGTTAG CGGCAACTGT GTTCTTTTT
 ValGluArgAsp GlnValSer AlaGluTrp LysThrSerLeu ThrValSer.
 151 GTAGAAAGAG ACCAAGTCAG CGCTGAGTGG AAAACTTCAC TTACTGTATC
 · GlyLeuIle ThrGlyIleAla PheTrpHis TyrLeuTyr MetArgGlyVal.
 201 TGGTTTAATT ACTGGTATAG CTTTTGGCA TTATCTCTAT ATGAGAGGTG
 · TrpIleAsp ThrGlyAsp ThrProThrVal PheArgTyr IleAspTrp
 251 TTTGGATAGA TACTGGTGAT ACCCAAACAG TATTCAAGATA TATTGATTGG
 LeuLeuThrVal ProLeuGln MetValGlu PheTyrLeuIle LeuAlaAla.
 301 TTATTAAC TG TTCCATTACA AATGGTTGAG TTCTATCTAA TTCTTGCTGC
 · CysThrSer ValAlaAlaSer LeuPheLys LysLeuLeu AlaGlySerLeu.
 351 TTGTACAAGT GTTGCTGCTT CATTATTTAA GAAGCTTCTA GCTGGTTCAT
 · ValMetLeu GlyAlaGly PheAlaGlyGlu AlaGlyLeu AlaProVal
 401 TAGTAATGTT AGGTGCTGGA TTTGCAGGCG AAGCTGGATT AGCTCCTGTA
 LeuProAlaPhe IleIleGly MetAlaGly TrpLeuTyrMet IleTyrGlu.
 451 TTACCTGCTT TCATTATTGG TATGGCTGGA TGTTTATACA TGATTATGA
 · LeuTyrMet GlyGluGlyLys AlaAlaVal SerThrAla SerProAlaVal.
 501 GCTATATATG GGTGAAGGTA AGGCTGCTGT AAGTACTGCA AGTCCTGCTG
 · AsnSerAla TyrAsnAla MetMetMetIle IleValVal GlyTrpAla
 551 TTAACCTCTGC ATACAACGCA ATGATGATGA TTATTGTTGT TGGATGGGCA
 IleTyrProAla GlyTyrAla AlaGlyTyr LeuMetGlyGly GluGlyVal.
 601 ATTTATCCTG CTGGATATGC TGCTGGTTAC CTAATGGGTG GCGAAGGTGT
 · TyrAlaSer AsnLeuAsnLeu IleTyrAsn LeuAlaAsp PheValAsnLys.
 651 ATACGCTTCA AACTTAAACC TTATATATAA CCTTGCTGAC TTTGTTAAC
 · IleLeuPhe GlyLeuIle IleTrpAsnVal AlaValLys GluSerSer
 701 AGATTCTATT TGGTTTGATC ATTGGAATG TTGCTGTTAA AGAATCTTCT
 AsnAla
 751 AATGCT

Figure 1-22

ThrMetGlyLys LeuLeuLeu IleLeuGly SerAlaIleAla LeuProSer.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGCTATTG CACTTCCATC
 • PheAlaAla AlaGlyGlyAsp LeuAspIle SerAspThr ValGlyValSer.
 51 ATTTGCTGCT GCTGGTGGCG ATCTAGATAT AAGTGATACT GTTGGTGT
 • PheTrpLeu ValThrAla GlyMetLeuAla AlaThrVal PhePhePhe
 101 CATTCTGGCT GGTTACAGCT GGTATGTTAG CGGCAACTGT GTTCTTTTT
 ValGluArgAsp GlnValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTAGAAAGAG ACCAAGTCAG CGCTAACGTGG AAAACTTCAC TTACTGTATC
 • GlyLeuIle ThrGlyIleAla PheTrpHis TyrLeuTyr MetArgGlyVal.
 201 TGGTTTAATT ACTGGTATAG CCTTTGGCA TTATCTCTAT ATGAGAGGTG
 • TrpIleAsp ThrGlyAsp ThrProThrVal PheArgTyr IleAspTrp
 251 TTTGGATAGA CACTGGTGAT ACCCCAACAG TATTCAAGATA TATTGATTGG
 LeuLeuThrVal ProLeuGln MetValGlu PheTyrLeuIle LeuAlaAla.
 301 TTATTAACGT TTCCATTACA AATGGTTGAG TTCTATCTAA TTCTTGCTGC
 • CysThrAsn ValAlaAlaSer LeuPheLys LysLeuLeu AlaGlySerLeu.
 351 TTGTACAAAT GTTGCTGCTT CATTATTTAA GAAGCTTCTA GCTGGTTCAT
 • ValMetLeu GlyAlaGly PheAlaGlyGlu AlaGlyLeu AlaProVal
 401 TAGTAATGTT AGGTGCTGGA TTTGCAGGCG AAGCTGGATT AGCTCCTGTA
 TrpProAlaPhe IleIleGly MetAlaGly TrpLeuTyrMet IleTyrGlu.
 451 TGGCCTGCTT TCATTATTGG TATGGCTGGA TGTTTATACA TGATTTATGA
 • LeuTyrMet GlyGluGlyLys AlaAlaVal SerThrAla SerProAlaVal.
 501 GCTATATATG GGTGAAGGTA AGGCTGCTGT AAGTACTGCA AGTCCTGCTG
 • AsnSerAla TyrAsnAla MetMetMetIle IleValVal GlyTrpAla
 551 TTAACCTCTGC ATACAACGCA ATGATGATGA TTATTGTTGT TGGATGGGCA
 IleTyrProAla GlyTyrAla AlaGlyTyr LeuMetGlyGly GluGlyVal.
 601 ATTTATCCTG CTGGATATGC TGCTGGTTAC CTAATGGGTG GCGAAGGTGT
 • TyrAlaSer AsnLeuAsnLeu IleTyrAsn LeuAlaAsp PheValAsnLys.
 651 ATACGCTTCA AACCTAAACC TTATATATAA CCTTGCTGAC TTTGTTAACAA
 • IleLeuPhe GlyLeuIle IleTrpAsnVal AlaValLys GluSerSer
 701 AGATTCTATT TGGTTTGATC ATTGGAATG TTGCTGTTAA AGAATCTTCT
 AsnAla
 751 AATGCT

Figure 1-23

ThrMetGlyLys LeuLeuLeu IleLeuGly SerAlaIleAla LeuProSer.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGCTATTG CGCTTCCATC
 • PheAlaAla AlaGlyGlyAsp LeuAspIle SerAspThr ValGlyValSer.
 51 ATTTGCTGCT GCTGGTGGCG ATCTAGATAT AAGTGATACT GTTGGTGT
 • PheTrpLeu ValThrAla GlyMetLeuAla AlaThrVal PhePhePhe
 101 CATTCTGGCT GGTTACGGCT GGTATGTTAG CGGCAACTGT ATTCTTTTT
 ValGluArgAsp GlnValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTAGAAAGAG ACCAAGTCAG CGCTAACGTGG AAAACTTCAC TTACTGTATC
 • GlyLeuIle ThrGlyIleAla PheTrpHis TyrLeuTyr MetArgGlyVal.
 201 TGGTTTAATT ACTGGTATAG CTTTTGGCA TTATCTCTAC ATGAGAGGTG
 • TrpIleAsp ThrGlyAsp ThrProThrVal PheArgTyr IleAspTrp
 251 TTTGGATAGA TACTGGTGAT ACACCAACAG TATTAGATA TATTGATTGG
 LeuLeuThrVal ProLeuGln MetValGlu PheTyrLeuIle LeuAlaAla.
 301 TTATTAAC TG TTCCATTACA AATGGTTGAG TTCTATCTAA TTCTTGCCGC
 • CysThrSer ValAlaAlaSer LeuPheLys LysLeuLeu AlaGlySerLeu.
 351 TTGTACAAGT GTTGCTGCTT CATTATTTAA GAAGCTTCTA GCTGGTTCAT
 • ValMetLeu GlyAlaGly SerAlaGlyGlu AlaGlyLeu AlaProVal
 401 TGGTAATGTT AGGTGCTGGA TCTGCAGGCG AAGCTGGATT AGCTCCTGTA
 LeuProAlaPhe IleIleGly MetAlaGly TrpLeuTyrMet IleTyrGlu.
 451 TTACCTGCTT TCATTATTGG TATGGCTGGA TGTTTATACA TGATTATGA
 • LeuTyrMet GlyGluGlyLys AlaAlaVal SerThrAla SerProAlaVal.
 501 GCTATATATG GGTGAAGGTA AGGCTGCTGT AAGTACTGCA AGTCCTGCTG
 • AsnSerAla TyrAsnAla MetMetMetIle IleValVal GlyTrpAla
 551 TTAACCTCTGC ATACAACGCA ATGATGATGA TTATTGTTGT TGGATGGGCA
 IleTyrProAla GlyTyrAla AlaGlyTyr LeuMetGlyGly GluGlyVal.
 601 ATTTATCCTG CTGGATATGC TGCTGGTTAC CTAATGGGTG GCGAAGGTGT
 • TyrAlaSer AsnLeuAsnLeu IleTyrAsn LeuAlaAsp PheValAsnLys.
 651 ATACGCTTCA AACTTAAACC TCATATATAA CCTTGCTGAC TTTGTTAAC
 • IleLeuPhe GlyLeuIle IleTrpAsnVal AlaValLys GluSerSer
 701 AGATTCTATT TGGTTTGATC ATTTGGAATG TTGCTGTTAA AGAATCTTCT
 AsnAla
 751 AATGCT

Figure 1-24

ThrMetGlyLys LeuLeuLeu IleLeuGly SerAlaIleAla LeuProSer.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGCTATTG CACTTCCATC
 • PheAlaAla AlaGlyGlyAsp LeuAspIle SerAspThr ValGlyValSer.
 51 ATTTGCTGCT GCTGGTGGCG ATCTAGATAT AAGTGATACT GTTGGTGT
 • PheTrpLeu ValThrAla GlyMetLeuAla AlaThrVal PhePhePhe
 101 CATTCTGGCT GGTTACAGCT GGTATGTTAG CGGCAACTGT GTTCTTTTT
 ValGluArgAsp GlnValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTAGAAAGAG ACCAAGTCAG CGCTAACGTGG AAAACTTCAC TTACTGTATC
 • GlyLeuIle ThrGlyIleAla PheTrpHis TyrLeuTyr MetArgGlyVal.
 201 TGGTTTAATT ACTGGTATAG CTTTTGGCA TTATCTCTAT ATGAGAGGTG
 • TrpIleAsp ThrGlyAsp ThrProThrVal PheArgTyr IleAspTrp
 251 TTTGGATAGA CACTGGTGAT ACCCCAACAG TATTCAAGATA TATTGATTGG
 LeuLeuThrVal ProLeuGln MetValGlu PheTyrLeuIle LeuAlaAla.
 301 TTATTAACCTG TTCCATTACA AATGGTTGAG TTCTATCTAA TTCTTGCTGC
 • CysThrAsn ValAlaAlaSer LeuPheLys LysLeuLeu AlaGlySerLeu.
 351 TTGTACAAAT GTTGCTGCTT CATTATTTAA GAAGCTTCTA GCTGGTTCAT
 • ValMetLeu GlyAlaGly PheAlaGlyGlu AlaGlyLeu AlaProVal
 401 TAGTAATGTT AGGTGCTGGA TTTGCAGGCG AAGCTGGATT AGCTCCTGTA
 TrpProAlaPhe IleIleGly MetAlaGly TrpLeuTyrMet IleTyrGlu.
 451 TGGCCTGCTT TCATTATTGG TATGGCTGGA TGTTTATACA TGATTTATGA
 • LeuTyrMet GlyGluGlyLys AlaAlaVal SerThrAla SerProAlaVal.
 501 GCTATATATG GGTGAAGGTA AGGCTGCTGT AAGTACTGCA AGTCCTGCTG
 • AsnSerAla TyrAsnAla MetMetValIle IleValVal GlyTrpAla
 551 TTAACCTCTGC ATACAACCGCA ATGATGGTGA TTATTGTTGT TGGATGGGCA
 IleTyrProAla GlyTyrAla AlaGlyTyr LeuMetGlyGly GluGlyVal.
 601 ATTTATCCTG CTGGATATGC TGCTGGTTAC CTAATGGGTG GCGAAGGTGT
 • TyrAlaSer AsnLeuAsnLeu IleTyrAsn LeuAlaAsp PheValAsnLys.
 651 ATACGCTTCA AACCTAAACC TTATATATAA CCTTGCTGAC TTTGTTAACAA
 • IleLeuPhe GlyLeuIle IleTrpAsnVal AlaValLys GluSerSer
 701 AGATTCTATT TGGTTTGATC ATTGGAATG TTGCTGTTAA AGAATCTTCT
 AsnAla
 751 AATGCT

Figure 1-25

ThrMetGlyLys LeuLeuLeu IleLeuGly SerAlaIleAla LeuProSer.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGCTATTG CACTTCCATC
 · PheAlaAla AlaGlyGlyAsp LeuAspIle SerAspThr ValGlyValSer.
 51 ATTTGCTGCT GCTGGTGGCG ATCTAGATAT AAGTGATACT GTTGGTGT
 · PheTrpLeu ValThrAla GlyMetLeuAla AlaThrVal PhePhePhe
 101 CATTCTGGCT GGTACAGCT GGTATGTTAG CGGCAACTGT GTTCTTTTT
 ValGluArgAsp GlnValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTAGAAAGAG ACCAAGTCAG CGCTAACGTGG AAAACTTCAC TTACTGTATC
 · GlyLeuIle ThrGlyIleAla PheTrpHis TyrLeuTyr MetArgGlyVal.
 201 TGGTTTAATT ACTGGTATAG CTTTTGGCA TTATCTCTAT ATGAGAGGTG
 · TrpIleAsp ThrGlyAsp ThrProThrVal PheArgTyr IleAspTrp
 251 TTTGGATAGA CACTGGTGAT ACCCCAACAG TATTCAAGATA TATTGATTGG
 LeuLeuThrVal ProLeuGln MetValGlu PheTyrLeuIle LeuAlaAla.
 301 TTATTAAC TG TTCCATTACA AATGGTTGAG TTCTATCTAA TTCTTGCTGC
 · CysThrSer ValAlaAlaSer LeuPheLys LysLeuLeu AlaGlySerLeu.
 351 TTGTACAAGT GTTGCTGCTT CATTATTTAA GAAGCTTCTA GCTGGTTCAT
 · ValMetLeu GlyAlaGly PheAlaGlyGlu AlaGlyLeu AlaProVal
 401 TAGTAATGTT AGGTGCTGGA TTTGCAGGCG AAGCTGGATT AGCTCCTGTA
 LeuProAlaPhe IleIleGly MetAlaGly TrpLeuTyrMet IleTyrGlu.
 451 TTACCTGCTT TCATTATTGG TATGGCTGGA TGTTTATACA TGATTATG
 · LeuTyrMet GlyGluGlyLys AlaAlaVal SerThrAla SerProAlaVal.
 501 GCTATATATG GGTGAAGGTA AGGCTGCTGT AAGTACTGCA AGTCCTGCTG
 · AsnSerAla TyrAsnAla MetMetMetIle IleValVal GlyTrpAla
 551 TAACTCTGC ATACAACGCA ATGATGATGA TTATTGTTGT TGGATGGGCA
 IleTyrProAla GlyTyrAla AlaGlyTyr LeuMetGlyGly GluGlyVal.
 601 ATTTATCCTG CTGGATATGC TGCTGGTTAC CTAATGGGTG GCGAAGGTGT
 · TyrAlaSer AsnLeuAsnLeu IleTyrAsn LeuAlaAsp LeuValAsnLys.
 651 ATACGCTTCA AACTTAAACC TTATATATAA CCTTGCTGAC CTTGTTAAC
 · IleLeuPhe GlyLeuIle IleTrpAsnVal AlaValLys GluSerSer
 701 AGATTCTATT TGGTTTGATC ATTGGAATG TTGCTGTTAA AGAATCTTCT
 AsnAla
 751 AATGCT

Figure 1-26

ThrMetGlyLys LeuLeuLeu IleLeuGly SerAlaIleAla LeuProSer.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGCTATTG CACTTCCATC
 · PheAlaAla AlaGlyGlyAsp LeuAspIle SerAspThr ValGlyValSer.
 51 ATTTGCTGCT GCTGGTGGCG ATCTAGATAT AAGTGATACT GTTGGTGT
 · PheTrpLeu ValThrAla GlyMetLeuAla AlaThrVal PhePhePhe
 101 CATTCTGGCT GGTTACAGCT GGTATGTTAG CGGCAACTGT GTTCTTTTT
 ValGluArgAsp GlnValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTAGAAAGAG ACCAAGTCAG CGCTAACGTGG AAAACTTCAC TTACTGTATC
 · GlyLeuIle ThrGlyIleAla PheTrpHis TyrLeuTyr MetArgGlyVal.
 201 TGGTTTAATT ACTGGTATAG CTTTTGGCA TTATCTCTAT ATGAGAGGTG
 · TrpIleAsp ThrGlyAsp ThrProThrVal PheArgTyr IleAspTrp
 251 TTTGGATAGA CACTGGTGAT ACCCCAACAG TATTCAAGATA TATTGATTGG
 LeuLeuThrVal ProLeuGln ValValGlu PheTyrLeuIle LeuAlaAla.
 301 TTATTAAC TG TTCCATTACA AGTGGTTGAG TTCTATCTAA TTCTTGCTGC
 · CysThrSer ValAlaAlaSer LeuPheLys LysLeuLeu AlaGlySerLeu.
 351 TTGTACAAGT GTTGCTGCTT CATTATTTAA GAAGCTTCTA GCTGGTTCAT
 · ValMetLeu GlyAlaGly PheAlaGlyGlu AlaGlyLeu AlaProVal
 401 TAGTAATGTT AGGTGCTGGA TTTGCAGGCG AAGCTGGATT AGCTCCTGTA
 LeuProAlaPhe IleIleGly MetAlaGly TrpLeuTyrMet IleTyrGlu.
 451 TTACCTGCTT TCATTATTGG TATGGCTGGA TGGTTATACA TGATTATGA
 · LeuTyrMet GlyGluGlyLys AlaAlaVal SerThrAla SerProAlaVal.
 501 GCTATATATG GGTGAAGGCA AGGCTGCTGT AAGTACTGCA AGTCCTGCTG
 · AsnProAla TyrAsnAla MetMetMetIle IleValVal GlyTrpAla
 551 TTAACCCTGC ATACAACGCA ATGATGATGA TTATTGTTGT TGGATGGGCA
 IleTyrProAla GlyTyrAla AlaGlyTyr LeuMetGlyGly GluGlyVal.
 601 ATTTATCCTG CTGGATATGC TGCTGGTTAC CTAATGGGTG GCGAAGGTGT
 · TyrAlaSer AsnLeuAsnLeu IleTyrAsn LeuAlaAsp PheValAsnLys.
 651 ATACGCTTCA AACTTAAACC TTATATATAA CCTTGCTGAC TTTGTTAAC
 · IleLeuPhe GlyLeuIle IleTrpAsnVal AlaValLys GluSerSer
 701 AGATTCTATT TGGTTTGATC ATTTGGAATG TTGCTGTTAA AGAATCTTCT
 AsnAla
 751 AATGCT

Figure 1-27

ThrMetGlyLys LeuLeuLeu IleLeuGly SerAlaIleAla LeuProSer.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGCTATTG CACTTCCATC
 • PheAlaAla AlaGlyGlyAsp LeuAspIle SerAspThr ValGlyValSer.
 51 ATTTGCTGCT GCTGGTGGCG ATCTAGATAT AAGTGATACT GTTGGTGT
 • PheTrpLeu ValThrAla GlyMetLeuAla AlaThrVal PhePhePhe
 101 CATTCTGGCT GGTTACAGCT GGTATGTTAG CGGCAACTGT ATTCTTTTT
 ValGluArgAsp GlnValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTAGAAAGAG ACCAAGTCAG CGCTAAGTGG AAAACTTCAC TTACTGTATC
 • GlyLeuIle ThrGlyIleAla PheTrpHis TyrLeuTyr MetArgGlyVal.
 201 TGGTTTAATT ACTGGTATAG CTTTTGGCA TTATCTCTAC ATGAGAGGTG
 • TrpIleAsp ThrGlyAsp ThrProThrVal PheArgTyr IleAspTrp
 251 TTTGGATAGA TACTGGTGAT ACACCAACAG TATTAGATA TATTGATTGG
 LeuLeuThrVal ProLeuGln MetValGlu PheTyrLeuIle LeuAlaAla.
 301 TTATTAAC TG TTCCATTACA AATGGTTGAG TTCTATCTAA TTCTTGCTGC
 • CysThrSer ValAlaAlaSer LeuPheLys LysLeuLeu AlaGlySerLeu.
 351 TTGTACAAGT GTTGCTGCTT CATTATTTAA GAAGCTTCTA GCTGGTTCAT
 • ValMetLeu GlyAlaGly PheAlaGlyGlu AlaGlyLeu AlaProVal
 401 TAGTAATGTT AGGTGCTGGA TTTGCAGGCG AAGCTGGTT AGCTCCTGTA
 LeuProAlaPhe IleIleGly MetAlaGly TrpLeuTyrMet IleTyrGlu.
 451 TTACCTGCTT TCATTATTGG TATGGCTGGA TGGTTATACA TGATTTATGA
 • LeuHisMet GlyGluGlyLys AlaAlaVal SerThrAla SerProAlaVal.
 501 GCTACATATG GGTGAAGGTA AGGCTGCTGT AAGTACTGCA AGTCCTGCTG
 • AsnSerAla TyrAsnAla MetMetLysIle IleValIle GlyTrpAla
 551 TTAACCTCTGC ATACAACGCA ATGATGAAGA TTATTGTTAT TGGATGGGCA
 IleTyrProAla GlyTyrAla AlaGlyTyr LeuMetSerGly AspGlyVal.
 601 ATTTATCCTG CTGGATATGC TGCTGGTTAC CTAATGAGTG GTGACGGTGT
 • TyrAlaSer AsnLeuAsnLeu IleTyrAsn LeuAlaAsp PheValAsnLys.
 651 ATACGCTTCA AACTTAAACC TTATATATAA CCTTGCTGAC TTTGTTAAC
 • IleLeuPhe GlyLeuIle IleTrpAsnVal AlaValLys GluSerSer
 701 AGATTCTATT TGGTTTGATC ATTTGGAATG TTGCTGTTAA AGAATCTTCT
 AsnAla
 751 AATGCT

Figure 1-28

ThrMetGlyLys LeuLeuLeu IleLeuGly SerAlaIleAla LeuProSer.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGCTATTG CACTTCCATC
 • PheAlaAla AlaGlyGlyAsp LeuAspIle SerAspThr ValGlyValSer.
 51 ATTTGCTGCT GCTGGTGGCG ATCTAGATAT AAGTGATACT GTTGGTGT
 • PheTrpLeu ValThrAla GlyMetLeuAla AlaThrVal PhePhePhe
 101 CATTCTGGCT GGTTACAGCT GGTATGTTAG CGGCAACTGTG GTTCTTTTT
 ValGluArgAsp GlnValSer AlaLysTrp LysThrSerLeu ThrValSer.
 151 GTAGAAAGAG ACCAAGTCAG CGCTAACGTGG AAAACTTCAC TTACTGTATC
 • GlyLeuIle ThrGlyIleAla PheTrpHis TyrLeuTyr MetArgGlyVal.
 201 TGGTTTAATT ACTGGTATAG CTTTTGGCA TTATCTCTAT ATGAGAGGTG
 • TrpIleAsp ThrGlyAsp ThrProThrVal PheArgTyr IleAspTrp
 251 TTTGGATAGA TACTGGTGAT ACCCCAACAG TATTCAAGATA TATTGATTGG
 LeuLeuThrVal ProLeuGln MetValGlu PheTyrLeuIle LeuAlaAla.
 301 TTATTAACGT TTCCATTACA AATGGTTGAG TTCTATCTAA TTCTTGCTGC
 • CysThrSer ValAlaAlaSer LeuPheLys LysLeuLeu AlaGlySerLeu.
 351 TTGTACAAGT GTTGCTGCTT CATTATTTAA GAAGCTTCTA GCTGGTTCAT
 • ValMetLeu GlyAlaGly PheAlaGlyGlu AlaGlyLeu AlaProVal
 401 TAGTAATGTT AGGTGCTGGA TTTGCAGGCG AAGCTGGATT AGCTCCCTGTA
 LeuProAlaPhe IleIleGly MetAlaGly TrpLeuTyrMet IleTyrGlu.
 451 TTACCTGCTT TCATTATTGG TATGGCTGGA TGGCTATACA TGATTATGGA
 • LeuTyrMet GlyGluGlyLys AlaAlaVal SerThrAla SerProAlaVal.
 501 GCTATATATG GGTGAAGGTA AGGCTGCTGT AAGTACTGCA AGTCCTGCTG
 • AsnSerAla TyrAsnAla MetMetMetIle IleValVal GlyTrpAla
 551 TTAACCTCTGC ATACAACGCA ATGATGATGA TTATTGTTGT TGGATGGGCA
 IleTyrProAla GlyTyrAla AlaGlyTyr LeuMetGlyGly GluGlyVal.
 601 ATTTATCCTG CTGGATATGC TGCTGGTTAC CTAATGGGTG GCGAAGGCGT
 • TyrAlaSer AsnLeuAsnLeu IleTyrAsn LeuAlaAsp PheValAsnLys.
 651 ATACGCTTCA AACTTAAACC TTATATATAA CCTTGCTGAC TTTGTTAACAA
 • IleLeuPhe GlyLeuIle IleTrpAsnVal AlaValLys GluSerSer
 701 AGATTCTATT TGGTTTGATC ATTGGAATG TTGCTGTTAA AGAACCTTCT
 AsnAla
 751 AATGCT

Figure 1-29

MetGlyLysLeu LeuLeuIle LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAT ATTAGGTAGT GTTATCGCGC TTCCAACATT
 · AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCTGCTGGC GGTGGCGATC TTGATGCTAG TGACTACACT GGTGTTCAT
 · TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TCTGGTTAGT TACTGCTGCT CTATTAGCGT CTACTGTATT CTTCTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGATA GAGTGTCTGC AAAATGGAAA ACTTCATTAA CAGTATCTGG
 · LeuValThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCTT TTTGGCATTA TATGTACATG AGAGGTGTAT
 · IleGluThr GlyAspSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATAGAAAC TGGTGATTCTG CCTACTGTCT TTAGATACAT CGACTGGTTA
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 TTAACTGTGC CTTTACTAAT ATGTGAGTTC TATCTGATAC TTGCTGCAGC
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 TACTAATGTT GCTGGTTCAT TATTTAAGAA ATTGCTAGTT GGTTCTCTTG
 · MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TGATGCTTGT GTTTGGTTAC ATGGGTGAAG CAGGAATAAT GGCAGCTTGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TCATTGGATG TTTAGCATGG GTATATATGA TTTATGAACT
 · TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGT GAAGGAAAAT CTGCATGCAA TACTGCAAGT CCTGCTGTAC
 · SerAlaTyr AsnThrMet MetTyrIleIle IleValGly TrpAlaIle
 551 AGTCAGCTTA CAACACAATG ATGTATATCA TCATCGTTGG TTGGGCAATT
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TATCCTGTAG GTTATTTCAC AGGTTACCTA ATGGGTGACG GTGGATCAGC
 · LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAATCTA AACCTTATTT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 · PheGlyLeu IleIleTrp AsnValAlaVal LysLysSer SerAsnAla
 701 TATTGGTTT AATTATATGG AATGTTGCTG TTAAAAAATC TTCTAATGCT
 751 A

Figure 1-30

MetGlyLysLeu LeuLeuIle LeuGlyAsn ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAT ATTAGGTAAT GTTATCGCGC TTCCAACATT
 • AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCTGCTGGC GGTGGCGATC TTGATGCTAG TGACTACACT GGTGTTCAT
 • TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TCTGGTTAGT TACTGCTGCT CTATTAGCGT CTACTGTATT CTTCTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGATA GAGTGTCTGC AAAATGGAAA ACTTCATTAA CAGTATCTGG
 • LeuValThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCTT TTTGGCATTA TATGTACATG AGAGGTGTAT
 • IleGluThr GlyAspSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATAGAACAC TGGTGATTG CCTACTGTCT TTAGATACAT CGACTGGTTA
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 TTAACTGTGC CTTTACTAAT ATGTGAGTTC TATCTGATAC TTGCTGCAGC
 • ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 TACTAATGTT GCTGGTTCAT TATTTAAGAA ATTGCTAGTT GGTTCTCTTG
 • MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TGATGCTGTG GTTCGGTTAC ATGGGTGAAG CAGGAATAAT GGCAGCTTGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TCATTGGGTG TTTAGCATGG GTATATATGA TTTATGAGCT
 • TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGT GAAGGAAAAT CTGCATGTAA TACTGCAAGT CCTGCTGTAC
 • SerAlaTyr AsnThrMet MetTyrIleIle IleValGly TrpAlaIle
 551 AGTCAGCTTA CAAACACTATG ATGTATATTA TCATTGTTGG TTGGGCGATT
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TATCCTGTAG GCTATTCAC TGGTTACCTC ATGGGTGACG GTGGATCAGC
 • LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAATTTA AACCTTATTT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 • PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT AATTATATGG AATGTTGCTG TTAAAGAATC TTCTAATGCT
 751 A

Figure 1-31

MetGlyLysLeu LeuLeuIle LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAT ATTAGGTAGT GTTATTGCAGC TTCCAACATT
 · AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCCGCTGGC GGTGGCGATC TTGATGCTAG TGACTACACT GGTGTTCTT
 · TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TCTGGTTAGT TACTGCTGCT CTATTAGCAT CTACTGTATT CTTCTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGGGATA GAGTATCTGC AAAATGGAAA ACTTCATTAA CAGTATCTGG
 · LeuValThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCTT TTTGGCATTA TATGTACATG AGAGGTGTAT
 · IleGluThr GlySerSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATAGAACAC TGGTAGTTCA CCTACTGTCT TTAGATACAT TGACTGGCTA
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 TTAACAGTGC CTTTACTAAT ATGTGAGTTC TATTAAATAC TTGCCGCAGC
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 TACTAATGTT GCTGGTTCAT TATTAAAGAA ATTGCTAGTT GGTTCTCTTG
 · MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TGATGCTGTG GTTTGGTTAC ATGGGTGAAG CAGGAATAAT GGCAGCTTGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TCATTGGATG TTTAGCATGG GTATATATGA TTTATGAGCT
 · TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGT GAAGGAAAAT CTGCATGTAA TACTGCAAGT CCTGCTGTAC
 · SerAlaTyr AsnThrMet MetTyrIleIle IleAlaGly TrpAlaIle
 551 AGTCAGCTTA CAAACACAATG ATGTATATCA TCATCGCTGG TTGGGCAATT
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TATCCTGTAG GTTATTTCAC AGGTTACCTA ATGGGTGACG GTGGATCAGC
 · LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAATCTA AACCTTATTT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 · PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT AATTATATGG AATGTTGCTG TTAAAGAACATC TTCTAATGCT
 751 A

Figure 1-32

MetGlyLysLeu LeuLeuIle LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAT ATTAGGTAGT GTTATCGCGC TTCCAACATT
 · AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCTGCTGGC GGTGGCGATC TTGATGCTAG TGACTACACT GGTGTTCAT
 · TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TCTGGTTAGT TACTGCTGCT CTATTAGCGT CTACTGTATT CTTCTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGATA GAGTGTCTGC AAAATGGAAA ACTTCATTAA CAGTATCTGG
 · LeuValThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCTT TTTGGCATTAA TATGTACATG AGAGGTGTAT
 · IleGluThr GlyAspSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATAGAACAC TGGTGATTCTG CCTACTGTCT TTAGATACAT CGACTGGTTA
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 TTAACTGTGC CTTTACTAAAT ATGTGAGTTC TATCTGATAC TTGCTGCAGC
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 TACTAATGTT GCTGGTTCAT TATTTAAGAA ATTGCTAGTT GGTTCTCTTG
 · MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TGATGCTGTGTTGTTAC ATGGGTGAAG CAGGAATAAT GGCAGCTTGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TCATTGGATG TTTAGCATGG GTATATATGA TTTATGA
 · TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGT GAAGGAAAAT CTGCATGCAA TACTGCAAGT CCTGCTGTAC
 · SerAlaTyr AsnThrMet MetTyrIleIle IleValGly TrpAlaIle
 551 AGTCAGCTTA CAAACACAATG ATGTATATCA TCATCGTTGG TTGGGCAATT
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TATCCTGTAG GTTATTTCAC AGGTTACCTA ATGGGTGACG GTGGATCAGC
 · LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAATCTA AACCTTATTT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 · PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT AATTATATGG AATGTTGCTG TTAAAGAATC TTCTAATGCT
 751 A

Figure 1-33

MetGlyLysLeu LeuLeuIle LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAT ATTAGGTAGT GTTATCGCGC TTCCAACATT
 • AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCTGCTGGC GGTGGCGATC TTGATGCTAG TGACTACACT GGTGTTTCAT
 • TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TCTGGTTAGT TACTGCTGCT CTATTAGCGT CTACTGTATT CTTCTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGATA GAGTGTCTGC AAAATGGAAA ACTTCATTAA CAGTATCTGG
 • LeuValThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCTT TTTGGCATTA TATGTACATG AGAGGGTGTAT
 • IleGluThr GlySerSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATAGAAC TGGTAGTTCA CCTACTGTCT TTAGATACAT TGACTGGCTA
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 TTAACAGTGC CTTTACTAAT ATGTGAGTTC TATTAAATAC TTGCCGCAGC
 • ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 TACTAATGTT GCTGGTTCAT TATTAAAGAA ATTGCTAGTT GGTTCTCTTG
 • MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TTATGCTTGT GTTCGGTTAC ATGGGTGAAG CAGGAATAAT GGCAGCTTGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TCATTGGGTG TTTAGCATGG GTATATATGA TTTATGAGCT
 • TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGT GAAGGAAAAT CTGCATGTAA TACTGCAAGT CCTGCTGTAC
 • SerAlaTyr AsnThrMet MetTyrIleIle IleAlaGly TrpAlaIle
 551 AGTCAGCTTA CAACACAATG ATGTATATCA TCATCGCTGG TTGGGCAATT
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TATCCTGTAG GTTATTTCAC AGGTTACCTA ATGGGTGACG GTGGATCAGC
 • LeuAsnLeu AsnLeuAsnTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAATCTA AACCTTAATT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 • PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT AATTATATGG AATGTTGCTG TTAAAGAAC TTCTAATGCT
 751 A

Figure 1-34

MetGlyLysLeu LeuLeuIle LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAT ATTAGGTAGT GTTATCGCGC TTCCAACATT
 • AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCTGCTGGC GGTGGCGATC TTGATGCTAG TGACTATACT GGTGTTTCAT
 • TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TCTGGTTAGT TACTGCTGCT CTATTAGCGT CTACTGTATT CTTCTTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGATA GAGTGTCTGC AAAATGGAAA ACTTCATTAA CAGTATCTGG
 • LeuValThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCTT TTTGGCATTA TATGTACATG AGAGGTGTAT
 • IleGluThr GlyAspSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATAGAACAC TGGTGATTG CCTACTGTCT TTAGATAACAT AGACTGGTTA
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 TTAACTGTGC CTTTACTAAT ATGTGAGTTC TATCTGATAC TTGCTGCAGC
 • ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 TACTAATGTT GCTGGTTCAT TATTTAAGAA ATTGCTAGTT GGTTCTCTTG
 • MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TGATGCTTGT GTTTGGTTAC ATGGGTGAAG CAGGAATAAT GGCAGCTTGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TCATTGGATG TTTAGCATGG GTATATATGA TTTATGAAC
 • TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGT GAAGGAAAAT CTGCATGCAA TACTGCAAGT CCTGCTGTAC
 • SerAlaTyr AsnThrMet MetTyrIleIle IleValGly TrpAlaIle
 551 AATCAGCTTA CAACACAATG ATGTATATCA TCATCGTTGG TTGGGCAATT
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TATCCTGTAG GTTATTTCAC AGGTTACCTA ATGGGTGACCG GTGGATCAGC
 • LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAATCTA AACCTTATTT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 • PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT AATTATATGG AATGTTGCTG TTAAAGAACATC TTCTAATGCT
 751 A

Figure 1-35

MetGlyLysLeu LeuLeuIle LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAT ATTAGGTAGT GTTATTGCGC TTCCAACATT
 · AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCCGCTGGC GGTGGCGATC TTGATGCTAG TGACTACACT GGTGTTCTT
 · TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TCTGGTTAGT TACTGCTGCT CTATTAGCAT CTACTGTATT CTTCTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGGGATA GAGTATCTGC AAAATGGAAA ACTTCATTAA CAGTATCTGG
 · LeuValThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCTT TTTGGCATT A TATGTACATG AGAGGTGTAT
 · IleGluThr GlySerSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATAGAAC TGGTAGTTCA CCTACTGTCT TTAGATACAT TGACTGGCTA
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 TTAACAGTGC CTTTACTAAT ATGTGAGTTC TATTAAATAC TTGCCGAGC
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 TACTAATGTT GCTGGTTCAT TATTAAAGAA ATTGCTAGTT GGTTCTCTTG
 · MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TTATGCTTGT GTTCGGTTAC ATGGGTGAAG CAGGAATAAT GGCAGCTTGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TCATTGGATG TTTAGCATGG GTATATATGA TTTATGA ACT
 · TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGT GAAGGAAAAT CTGCATGCAA TACTGCAAGT CCTGCTGTAC
 · SerAlaTyr AsnThrMet MetTyrIleIle IleValGly TrpAlaIle
 551 AGTCAGCTTA CAACACAATG ATGTATATCA TCATCGTTGG TTGGGCAATT
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TATCCTGTAG GTTATTTCAC AGGTTACCTA ATGGGTGACG GTGGATCAGC
 · LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAATCTA AACCTTATT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 · PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT AATTATATGG AATGTTGCTG TTAAAGAATC TTCTAATGCT
 751 A

Figure 1-36

MetGlyLysLeu LeuLeuIle~LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAT ATTAGGTAGT GTTATTGCGC TTCCAACATT
 · AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCCGCTGGT GGTGGTGACC TGGATGCTAG TGACTACACT GGTGTATCTT
 · TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TCTGGTTAGT TACTGCTGCT CTATTAGCAT CTACTGTATT TTTCTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGACA GAGTTTCTGC TAAATGGAAA ACATCATTAA CAGTATCTGG
 · LeuValThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCTT TTTGGCATTA CATGTACATG AGAGGTGTAT
 · IleGluThr GlyAspSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATTGAAAC TGGTGATTCA CCAACTGTTT TTAGATACAT CGACTGGTTG
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 CTAACTGTGC CTTTACTAAT TTGTGAGTTC TACTTAATAC TAGCAGCAGC
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 TACTAACGTT GCTGGTTCTT TATTCAAGAA ATTACTAGTT GGTTCTCTTG
 · MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TTATGCTTGT GTTTGGTTAC ATGGGTGAAG CAGGAATTAT GGCAGCCTGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TTATAGGATG TTTAGCATGG GTATACATGA TTTATGAATT
 · TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGA GAAGGAAAGT CTGCATGTAA CACTGCAAGT CCTGCAGTTC
 · SerAlaTyr AsnThrMet MetTyrIleIle IlePheGly TrpAlaIle
 551 AGTCAGCTTA CAACACAATG ATGTATATCA TCATCTTGG TTGGGCTATT
 TyrLeuValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TACCTTGTAG GTTATTCAC TGGTTACCTA ATGGGTGACG GTGGATCAGC
 · LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAACCTTA AACCTTATCT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 · PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT AATTATATGG AATGTTGCTG TTAAAGAATC TTCTAATGCT
 751 A

Figure 1-37

MetGlyLysLeu LeuLeuIle LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAT ATTAGGTAGT GTTATTGCAG TTCCAACATT
 • AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCCGCTGGC GGTGGCGATC TTGATGCTAG TGACTACACT GGTGTTCTT
 • TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TCTGGTTAGT TACTGCTGCT CTATTAGCAT CTACTGTATT CTTCTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGGGATA GAGTATCTGC AAAATGGAAA ACTTCATTAA CAGTATCTGG
 • LeuValThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCTT TTTGGCATTA TATGTACATG AGAGGTGTAT
 • IleGluThr GlySerSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATAGAAAC TGGTAGTTCA CCTACTGTCT TTAGATACAT TGACTGGCTA
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 TTAACAGTGC CTTTACTAAT ATGTGAGTTC TATTAAATAC TTGCCGCAGC
 • ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 TACTAATGTT GCTGGTTCAT TATTAAAGAA ATTGCTAGTT GGTTCTCTTG
 • MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TTATGCTGTG GTTCGGTTAC ATGGGTGAAG CAGGAATAAT GGCAGCTTGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TCATTGGGTG TTTAGCATGG GTATATATGA TTTATGAGCT
 • TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGT GAAGGAAAAT CTGCATGTAA TACTGCAAGT CCTGCTGTAC
 • SerAlaTyr AsnThrMet MetTyrIleIle IleAlaGly TrpAlaIle
 551 AGTCAGCTTA CAACACAATG ATGTATATCA TCATCGCTGG TTGGGCAATT
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TATCCTGTAG GTTATTTCAC AGGTTACCTA ATGGGTGACCG GTGGATCAGC
 • LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAATCTA AACCTTATTG ATAACCTTGC TGACTTTGTT AACAAAGATTC
 • PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT AATTATATGG AATGTTGCTG TTAAAGAATC TTCTAATGCT
 751 A

Figure 1-38

MetGlyLysLeu LeuLeuIle LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAT ATTAGGTAGT GTTATCGCGC TTCCAACATT
 • AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCTGCTGGC GGTGGCGATC TTGATGCTAG TGACTACACT GGTGTTCAT
 • TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TCTGGTTAGT TACTGCTGCT CTATTAGCGT CTACTGTATT CTTCTTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGATA GAGTGTCTGC AAAATGGAAA ACTTCATTAA CAGTATCTGG
 • LeuValThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCTT TTTGGCATTA TATGTACATG AGAGGGTGTAT
 • IleGluThr GlyAspSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATAGAAC TGGTGATTCTG CCTACTGTCT TTAGATACAT CGACTGGTTA
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 TTAACTGTGC CTTTACTAAT ATGTGAGTTC TATCTGATAC TTGCTGCAGC
 • ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 TACTAATGTT GCTGGTTCAT TATTAAAGAA ATTGCTAGTT GGTTCTCTTG
 • MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TGATGCTTGT GTTTGGTTAC ATGGGTGAAG CAGGAATAAT GGCAGCTTGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TCATTGGATG TTTAGCATGG GTATATATGA TTTATGAACT
 • TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGT GAAGGAAAAT CTGCATGCAA TACTGCAAGT CCTGCTGTAC
 • SerAlaTyr AsnThrMet MetTyrIleIle IleValGly TrpAlaIle
 551 AGTCAGCTTA CAACACAAATG ATGTATATCA TCATCGTTGG TTGGGCAATT
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TATCCTGTAG GTTATTTCAC AGGTTACCTA ATGGGTGACCG GTGGATCAGC
 • LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAATCTA AACCTTATTT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 • PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT AATTATATGG AATGTTGCTG TTAAAGAATC TTCTAATGCT
 751 A

Figure 1-39

MetGlyLysLeu LeuLeuIle LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAT ATTAGGTAGT GTTATTGCAC TTCCTACATT
 · AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCTGCAGGT GGTGGTGACC TTGATGCTAG TGATTACACT GGTGTTCTT
 · TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TTTGGTTAGT TACTGCTGCT TTATTAGCAT CTACTGTATT TTTCTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuAla ValSerGly.
 151 GAAAGAGATA GAGTTTCTGC AAAATGGAAA ACATCATTAG CTGTATCTGG
 · LeuIleThr GlyIleAlaPhe TrpHisCys MetTyrMet ArgGlyValTrp.
 201 TCTTATTACT GGTATTGCGT TCTGGCATTG CATGTACATG AGAGGGGTAT
 · IleGluThr GlyAspSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATTGAAAC TGGTGATTG CCAACTGTAT TTAGATACAT TGATTGGTTA
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 CTAACAGTTC CTCTATTAAT ATGTGAATTCTACTTAATTC TTGCTGCTGC
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 AACTAATGTT GCTGGATCAT TATTAAAGAA ATTACTAGTT GGTTCTCTTG
 · MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TTATGCTTGT GTTTGGTTAC ATGGGTGAAG CAGGAATCAT GGCTGCATGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TTATTGGGTG TTTAGCTTGG GTATACATGA TTTATGAATT
 · TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGA GAAGGAAAAT CTGCATGTAA TACTGCAAGT CCTGCTGTGC
 · SerAlaTyr AsnThrMet MetTyrIleIle ValPheGly TrpAlaIle
 551 AATCAGCTTA CAACACAATG ATGTATATTA TCGTCTTGG TTGGGCGATT
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TATCCTGTAG GTTATTTCAC AGGTTACCTG ATGGGTGACG GTGGATCAGC
 · LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAACCTTA AACCTTATCT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 · PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT AATTATATGG AATGTTGCTG TTAAAGAAC TTCTAATGCT

Figure 1-40

MetGlyLysLeu LeuLeuIle LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAT ATTAGGTAGT GTTATTGCAC TTCCTACATT
 · AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCTGCAGGT GGTGGTGACC TTGATGCTAG TGATTACACT GGTGTTCTT
 · TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe SerPheVal
 101 TTTGGTTAGT TACTGCTGCT TTATTAGCAT CTACTGTATT TTCCTTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGATA GAGTTCTGC AAAATGGAAA ACATCATTAA CTGTATCTGG
 · LeuIleThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TCTTATTACT GGTATTGCTT TCTGGCATTA CATGTACATG AGAGGGGTAT
 · IleGluThr GlyAspSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATTGAAAC TGGTGATTCTG CCAACTGTAT TTAGATACAT TGATTGGTTA
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 CTAACAGTTC CTCTATTAAT ATGTGAATTCTACTTAATTC TTGCTGCTGC
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 AACTAATGTT GCTGGATCAT TATTAAAGAA ATTACTAGTT GGTTCTCTTG
 · MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TTATGCTGTGTTTGTTAC ATGGGTGAAG CAGGAATCAT GGCTGCATGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TTATTGGGTG TTTAGCTTGG GTATACATGA TTTATGAATT
 · TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGA GAAGGAAAAT CTGCATGTAA TACTGCAAGT CCTGCTGTGC
 · SerAlaTyr AsnThrMet MetTyrIleIle IlePheGly TrpAlaIle
 551 AATCAGCTTA CAACACAATG ATGTATATTA TCATCTTGG TTGGGCGATT
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TATCCTGTAG GTTATTTCAC AGGTTACCTG ATGGGTGACG GTGGATCAGC
 · LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAACCTTA AACCTTATCT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 · PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT AATTATATGG AATGTTGCTG TTAAAGAACATC TTCTAATGCT

Figure 1-41

MetGlyLysLeu LeuLeuIle LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAT ATTAGGTAGT GTTATTGCAC TTCCTACATT
 · AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCTGCAGGT GGTGGTGACC TTGATGCTAG TGATTACACT GGTGTTCTT
 · TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TTTGGTTAGT TACTGCTGCT TTATTAGCAT CTACTGTATT TTTCTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGATA GAGTTCTGC AAAATGGAAA ACATCATTAA CTGTATCTGG
 · LeuIleThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TCTTATTACT GGTATTGCTT TCTGGCATTA CATGTACATG AGAGGGGTAT
 · IleGluThr GlyAspSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATTGAAAC TGGTGATTCTG CCAACCGTAT TTAGATACAT TGATTGGTTA
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 CTAACAGTTC CTCTATTAAT ATGTGAATTCTACTTAATTC TTGCTGCTGC
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 AACTAATGTT GCTGGATCAT TATTTAACGAA ATTACTAGTT GGTTCTCTTG
 · MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TTATGCTGTG GTTTGGTTAC ATGGGTGAAG CAGGAATCAT GGCTGCATGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TTATTGGGTG TTTAGCTTGG GTATACATGA TTTATGAATT
 · TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGA GAAGGAAAAT CTGCATGTAA TACTGCAAGT CCTGCTGTGC
 · SerAlaTyr AsnThrMet MetTyrIleIle IlePheGly TrpAlaIle
 551 AATCAGCTTA CAACACAATG ATGTATATTA TCATCTTGG TTGGGCGATT
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TATCCTGTAG GTTATTTCAC AGGTTACCTG ATGGGTGACG GTGGATCAGC
 · LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 ACTTAACCTTA AACCTTATCT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 · PheGlySer IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTC AATTATATGG AATGTTGCTG TTAAAGAACATC TTCTAATGCT

Figure 1-42

MetGlyLysLeu LeuLeuIle LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAT ATTAGGTAGT GTTATTGCAC TTCCTACATT
 • AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCTGCAGGT GGTGGTGACC TTGATGCTAG TGATTACACT GGTGTTCTT
 • TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TTTGGTTAGT TACTGCTGCT TTATTAGCGT CTACTGTATT CTTCTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGATA GAGTGTCTGC AAAATGGAAA ACTTCATTAA CAGTATCTGG
 • LeuValThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCTT TTTGGCATTAA TATGTACATG AGAGGTGTAT
 • IleGluThr GlyAspSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATAGAACAC TGGTGATTCTG CCTACTGTCT TTAGATACAT CGACTGGTTA
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 TTAACTGTGC CTTTACTAAAT ATGTGAGTTC TATCTGATAC TTGCTGCAGC
 • ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 TACTAATGTT GCTGGTTCAT TATTTAAGAA ATTGCTAGTT GGTTCTCTTG
 • MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TGATGCTGTG GTTTGGTTAC ATGGGTGAAG CAGGAATAAT GGCAGCTTGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TCATTGGGTG TTTAGCATGG GTATATATGA TTTATGAACT
 • TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGT GAAGGAAAAT CTGCATGCAA TACTGCAAGT CCTGCTGTAC
 • SerAlaTyr AsnThrMet MetTyrIleIle IleValGly TrpAlaIle
 551 AGTCAGCTTA CAACACAATG ATGTATATCA TCATCGTTGG TTGGGCAATA
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TATCCTGTAG GTTATTTCAC AGGTTACCTA ATGGGTGACCG GTGGATCAGC
 • LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAATCTA AACCTTATCT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 • PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT AATTATATGG AATGTTGCTG TTAAAGAATC TTCTAATGCT
 751 A

Figure 1-43

MetGlyLysLeu LeuLeuIle LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAT ATTAGGTAGT GTTATCGCGC TTCCAACATT
 · AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCTGCTGGC GGTGGCGATC TTGATGCTAG TGACTATACT GGTGTTCAT
 · TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TCTGGTTAGT TACTGCTGCT CTATTAGCGT CTACTGTATT CTTCTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGATA GAGTGTCTGC AAAATGGAAA ACTTCATTAA CAGTATCTGG
 · LeuValThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCTT TTTGGCATTA TATGTACATG AGAGGTGTAT
 · IleGluThr GlyAspSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATAGAAC TGGTGATTCTG CCTACTGTCT TTAGATACAT CGACTGGTTA
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 TTAACTGTGC CTTTACTAAT ATGTGAGTTC TATCTGATAC TTGCTGCAGC
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 TACTAATGTT GCTGGTTCAT TATTAAAGAA ATTGCTAGTT GGTTCTCTTG
 · MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TGATGCTTGT GTTTGGTTAC ATGGGTGAAG CAGGAATAAT GGCAGCTTGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TCATTGGATG TTTAGCATGG GTATATATGA TTTATGAACT
 · TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGT GAAGGAAAAT CTGCATGCAA TACTGCAAGT CCTGCTGTAC
 · SerAlaTyr AsnThrMet MetTyrIleIle IleValGly TrpAlaIle
 551 AGTCAGCTTA CAACACAATG ATGTATATCA TCATCGTTGG TTGGGCAATT
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TATCCTGTAG GCTATTTCAC AGGTTACCTA ATGGGTGACG GTGGATCAGC
 · LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAATCTA AACCTTATT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 · PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT AATTATATGG AATGTTGCTG TTAAAGAAC TTCTAATGCT
 751 A

Figure 1-44

MetGlyLysLeu LeuLeuIle LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAT ATTAGGTAGT GTTATTGCAC TTCCTACATT
 • AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCTGCAGGT GGTGGTGACC TTGATGCTAG TGATTACACT GGTGTTCTT
 • TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TTTGGTTAGT TACTGCTGCT TTATTAGCAT CTACTGTATT TTTCTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGATA GAGTTCTGC AAAATGGAAA ACATCATTAA CTGTATCTGG
 • LeuValThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TCTTGTTACT GGTATTGCTT TCTGGCATTA CATGTACATG AGAGGGGTAT
 • IleGluThr GlyAspSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATTGAAAC TGGTGATTCTG CCAACTGTAT TTAGATACAT TGATTGGTTA
 LeuProValPro LeuAlaIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 CTACCAGTTC CTCTAGCAAAT ATGTGAATTCTACTTAATTC TTGCTGCTGC
 • ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 AACTAATGTT GCTGGATCAT TATTAAAGAA ATTACTAGTT GGTTCTCTTG
 • MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TTATGCTGTGTTAC ATGGGTGAAG CAGGAATCAT GGCTGCATGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TTATTGGGTG TTTAGCTTGG GTATACATGA TTTATGAATT
 • TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGA GAAGGAAAAT CTGCATGTAA TACTGCAAGT CCTGCTGTGC
 • SerAlaTyr AsnThrMet MetTyrIleIle IlePheGly TrpAlaIle
 551 AATCAGCTTA CAAACACAATG ATGTATATTCA TCATCTTG TTGGGCGATT
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TATCCTGTAG GTTATTTCAC AGGTTACCTG ATGGGTGACG GTGGATCAGC
 • LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAACCTTA AACCTTATCT ATAACCTTGCG TGACTTTGTT AACAAAGATTC
 • PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT AATTATATGG AATGTTGCTG TTAAAGAAC TTCTAATGCT
 751 A

Figure 1-45

MetGlyLysLeu LeuLeuIle LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAT ATTAGGTAGT GTTATTGCGC TTCCAACATT
 · AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCCGCTGGT GGTGGTGACC TGGATGCTAG TGACTACACT GGTGTATCTT
 · TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TCTGGTTAGT TACTGCTGCT CTATTAGCAT CTACTGTATT TTTCTTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGACA GAGTTCTGC TAAATGGAAA ACATCATTAA CAGTATCTGG
 · LeuValThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCTT TTTGGCATT CATGTACATG AGAGGTGTAT
 · IleGluThr GlyAspSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATTGAAAC TGGTGATTCA CCAACTGTT TTAGATACAT CGACTGGTTG
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 CTAACTGTGC CTTTACTAAT TTGTGAGTTC TACTTAATAAC TAGCAGCAGC
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 TACTAACGTT GCTGGTTCTT TATTCAAGAA ATTACTAGTT GGTTCTCTTG
 · MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TTATGCTTGT GTTTGGTTAC ATGGGTGAAG CAGGAATTAT GGCAGCCTGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TTATAGGATG TTTAGCATGG GTATACATGA TTTATGAATT
 · TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGA GAAGGAAAGT CTGCATGTAA CACTGCAAGT CCTGCAGTTC
 · SerAlaTyr AsnThrMet MetTyrIleIle IlePheGly TrpAlaIle
 551 AGTCAGCTTA CAACACAAATG ATGTATATCA TCATCTTGG TTGGGCTATT
 TyrLeuValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TACCTTGTAG GTTATTCAC TGGTTACCTA ATGGGTGACG GTGGATCAGC
 · LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAACCTTA AACCTTATCT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 · PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT AATTATATGG AATGTTGCTG TTAAAGAATC TTCTAATGCT
 751 A

Figure 1-46

MetGlyLysLeu LeuLeuIle LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAT ATTAGGTAGT GTTATTGCGC TTCCAACATT
 · AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCCGCTGGC GGTGGCGATC TTGATGCTAG TGACTACACT GGTGTTCTT
 · TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TCTGGTTAGT TACTGCTGCT CTATTAGCAT CTACTGTATT CTTCTTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGGGATA GAGTATCTGC AAAATGGAAA ACTTCATTAA CAGTATCTGG
 · LeuValThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCTT TTTGGCATT A TATGTACATG AGAGGTGTAT
 · IleGluThr GlySerSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATAGAAAC TGGTAGTTCA CCTACTGTCT TTAGATACAT TGACTGGCTA
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 TTAACAGTGC CTTTACTAAT ATGTGAGTTC TATTTAATAC TTGCCGCAGC
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 TACTAATGTT GCTGGTTCAT TATTTAAGAA ATTGCTAGTT GGTTCTCTTG
 · MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TTATGCTGTG GTTTGGTTAC ATGGGTGAAG CAGGAATTAT GGCAGCCTGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TTATAGGATG TTTAGCATGG GTATACATGA TTTATGAATT
 · TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGA GAAGGAAAGT CTGCATGTAA CACTGCAAGT CCTGCAGTTC
 · SerAlaTyr AsnThrMet MetTyrIleIle IlePheGly TrpAlaIle
 551 AGTCAGCTTA CAACACAATG ATGTATATCA TCATCTTG TTGGGCTATT
 TyrLeuValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TACCTTGAG GTTATTCAC TGGTTACCTA ATGGGTGACG GTGGATCAGC
 · LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAACCTTA AACCTTATCT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 · PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTTGGTTT AATTATATGG AATGTTGCTG TTAAAGAATC TTCTAATGCT
 751 A

Figure 1-47

MetGlyLysLeu LeuLeuArg LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAG ATTAGGTAGT GTTATCGCGC TTCCAACATT
 • AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCTGCTGGC GGTGGCGATC TTGATGCTAG TGACTATACT GGTGTTCAT
 • TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TCTGGTTAGT TACTGCTGCT CTATTAGCGT CTACTGTATT CTTCTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGATA GAGTGTCTGC AAAATGGAAA ACTTCATTAA CAGTATCTGG
 • LeuValThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCTT TTTGGCATT A TATGTACATG AGAGGTGTAT
 • IleGluThr GlyAspSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATAGAAC TGGTGATTCTG CCTACTGTCT TTAGATACAT CGACTGGTTA
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 TTAACTGTGC CTTTACTAAT ATGTGAGTTC TATCTGATAC TTGCTGCAGC
 • ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 TACTAATGTT GCTGGTTCAT TATTTAAGAA ATTGCTAGTT GGTTCTCTTG
 • MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TGATGCTTGT GTTTGGTTAC ATGGGTGAAG CAGGAATAAT GGCAGCTTGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TCATTGGATG TTTAGCATGG GTATATATGA TTTATGAACT
 • TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGT GAAAGGAAAT CTGCATGCAA TACTGCAAGT CCTGCTGTAC
 • SerAlaTyr AsnThrMet MetTyrIleIle IleValGly TrpAlaIle
 551 AGTCAGCTTA CAACACAATG ATGTATATCA TCATCGTTGG TTGGGCAATT
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TATCCTGTAG GTTATTTCAC AGGTTACCTA ATGGGTGACG GTGGATCAGC
 • LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAATCTA AACCTTATTT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 • PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT AATTATATGG AATGTTGCTG TTAAAGAATC TTCTAATGCT
 751 A

Figure 1-48

MetGlyLysLeu LeuLeuIle LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAT ATTAGGTAGT GTTATTGCAC TTCCTACATT
 • AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCTGCAGGT GGTGGTGACC TTGATGCTAG TGATTACACT GGTGTTCTT
 • TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TTTGGTTAGT TACTGCTGCT TTATTAGCAT CTACTGTATT TTTCTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuAla ValSerGly.
 151 GAAAGAGATA GAGTTTCTGC AAAATGGAAA ACATCATTAG CTGTATCTGG
 • LeuIleThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TCTTATTACT GGTATTGCGT TCTGGCATT CATGTACATG AGAGGGGTAT
 • IleGluThr GlyAspSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATTGAAAC TGGTGATTCTG CCAACTGTAT TTAGATACAT TGATTGGTTA
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 CTAACAGTTC CTCTATTAAAT ATGTGAATTCTACTTAATTC TTGCTGCTGC
 • ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 AACTAATGTT GCTGGATCAT TATTTAACGAA ATTACTAGTT GGTTCTCTTG
 • MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TTATGCTTGT GTTTGGTTAC ATGGGTGAAG CAGGAATCAT GGCTGCATGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TTATTGGGTG TTTAGCTTGG GTATACATGA TTTATGAATT
 • TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGA GAAAGGAAAT CTGCATGTAA TACTGCAAGT CCTGCTGTGC
 • SerAlaTyr AsnThrMet MetTyrIleIle IleValGly TrpAlaIle
 551 AGTCAGCTTA CAACACAATG ATGTATATCA TCATCGTTGG TTGGGCAATA
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TATCCTGTAG GTTATTTCAC AGGTTACCTA ATGGGTGACG GTGGATCAGC
 • LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAATCTA AACCTTATTT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 • PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT AATTATATGG AATGTTGCTG TTAAAGAATC TTCTAATGCT
 751 A

Figure 1-49

MetGlyLysLeu LeuLeuIle LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAT CTTAGGTAGT GTTATTGCAC TTCCTACATT
 · AlaAlaGly GlyGlyAspPro AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCTGCAGGT GGTGGTGACC CTGATGCTAG TGATTACACT GGTGTTCTT
 · TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TTTGGTTAGT TACTGCTGCT TTATTAGCAT CTACTGTATT TTTCTTTGTT
 GluArgAspArg ValSerAla GluTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGATA GAGTTCTGC AGAATGGAAA ACATCATTAA CTGTATCTGG
 · LeuValThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TCTTGTTACT GGTATTGCTT TCTGGCATTAA CATGTACATG AGAGGGGTAT
 · IleGluThr GlyAspSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATTGAAAC TGGTGATTCTG CCAACTGTAT TTAGATACAT TGATTGGTTA
 LeuThrValPro LeuGluIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 CTAACAGTTC CTCTAGAAAT ATGTGAATTCTACTTAATTC TTGCTGCTGC
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 AACTAATGTT GCTGGATCAT TATTAAAGAA ATTACTAGTT GGTTCTCTTG
 · MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TTATGCTGTGTTAGGTTAC ATGGGTGAAG CAGGAATCAT GGCTGCATGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TTATTGGGTG TTTAGCTTGG GTATACATGA TTTATGAATT
 · TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGA GAAGGAAAAT CTGCATGTAA TACTGCAAGT CCTGCTGTGC
 · SerAlaTyr AsnThrMet MetTyrIleIle IlePheGly TrpAlaIle
 551 AATCAGCTTA CAACACAATG ATGTATATTAA TCATCTTGG TTGGGCGATT
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TATCCTGTAG GTTATTTCAC AGGTTACCTG ATGGGTGACCG GTGGATCAGC
 · LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAACCTTA AACCTTATCT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 · IleGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TAATTGGTTT AATTATATGG AATGTTGCTG TTAAAGAACATC TTCTAATGCT
 751 A

Figure 1-50

MetGlyLysLeu LeuLeuIle LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAT CTTAGGTAGT GTTATTGCAC TTCCTACATT
 • AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCTGCAGGT GGTGGTGACC TTGATGCTAG TGATTACACT GGTGTTCTT
 • TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TTTGGTTAGT TACTGCTGCT TTATTAGCAT CTACTGTATT TTTCTTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGATA GAGTTCTGC AAAATGGAAA ACATCATTAA CTGTATCTGG
 • LeuValThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TCTTGTTACT GGTATTGCTT TCTGGCATTAA CATGTACATG AGAGGGGTAT
 • IleGluThr GlyAspSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATTGAAAC TGGTGATTCTG CCAACTGTAT TTAGATACAT TGATTGGTTA
 LeuThrValPro LeuValIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 CTAACAGTTC CTCTAGTAAT ATGTGAATTCTACTTAATTC TTGCTGCTGC
 • ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 AACTAATGTT GCTGGATCAT TATTAAAGAA ATTACTAGTT GGTTCTCTTG
 • MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TTATGCTTGT GTTTGGTTAC ATGGGTGAAG CAGGAATCAT GGCTGCATGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TTATTGGGTG TTTAGCTTGG GTATACATGA TTTATGAATT
 • TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGA GAAGGAAAAT CTGCATGTAA TACTGCAAGT CCTGCTGTGC
 • SerAlaTyr AsnThrMet MetTyrIleIle IlePheGly TrpAlaIle
 551 AATCAGCTTA CAACACGATG ATGTATATTA TCATCTTGG TTGGGCGATT
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TATCCTGTAG GTTATTTCAC AGGTTACCTG ATGGGTGACG GTGGATCAGC
 • LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAACCTTA AACCTTATCT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 • PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT AATTATATGG AATGTTGCTG TTAAAGAACATC TTCTAATGCT
 751 A

Figure 1-51

MetGlyLysLeu LeuLeuIle LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAT ATTAGGTAGT GTTATTGCAC TTCCTACATT
 · AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCTGCAGGT GGTGGTGACC TTGATGCTAG TGATTACACT GGTGTTCTT
 · TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TTTGGTTAGT TACTGCTGCT TTATTAGCAT CTACTGTATT TTTCTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValProGly.
 151 GAAAGAGATA GAGTTCTGC AAAATGGAAA ACATCATTAA CTGTACCTGG
 · LeuIleThr AspIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TCTTATTACT GATATTGCTT TCTGGCATT CATGTACATG AGAGGGGTAT
 · IleGluThr GlyAspSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATTGAAAC TGGTGATTG CCAACTGTAT TTAGATACAT TGATTGGTTA
 LeuThrValPro LeuGlnIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 CTAACAGTTC CTCTACAAAT ATGTGAATT TACTTAATTC TTGCTGCTGC
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 AACTAATGTT GCTGGATCAT TATTAAAGAA ATTACTAGTT GGTTCTCTTG
 · MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TTATGCTTGT GTTTGGTTAC ATGGGTGAAG CAGGAATCAT GGCTGCATGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TTATTGGGTG TTTAGCTTGG GTATACATGA TTTATGAATT
 · TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGA GAAGGAAAAT CTGCATGTAA TACTGCGAGT CCTGCTGTGC
 · SerAlaTyr AsnThrMet MetTyrIleIle IlePheGly TrpAlaIle
 551 AATCAGCTTA CAACACAATG ATGTATATTA TCATCTTG TTGGCGATT
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TATCCTGTAG GTTATTCAC AGGTTACCTG ATGGGTGACG GTGGATCAGC
 · LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAACCTTA AACCTTATCT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 · PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT AATTATATGG AATGTTGCTG TTAAAGAAC TCTAAATGCT
 751 A

Figure 1-52

MetGlyLysLeu LeuLeuIle LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAT ATTAGGTAGT GTTATTGCAC TTCCTACATT
 · AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCTGCAGGT GGTGGTGACC TTGATGCTAG TGATTACACT GGTGTTCTT
 · TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TTTGGTTAGT TACTGCTGCT TTATTAGCAT CTACTGTATT TTTCTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValProGly.
 151 GAAAGAGATA GAGTTCTGC AAAATGGAAA ACATCATTAA CTGTACCTGG
 · LeuIleThr AspIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TCTTATTACT GATATTGCTT TCTGGCATTAA CATGTACATG AGAGGGGTAT
 · IleGluThr GlyAspSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATTGAAAC TGGTGATTG CCAACTGTAT TTAGATACAT TGATTGGTTA
 LeuThrValPro LeuGlnIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 CTAACAGTTC CTCTACAAAT ATGTGAATT TACTTAATT TCGCTGCTGC
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 AACTAATGTT GCTGGATCAT TATTAAAGAA ATTACTAGTT GGTTCTCTTG
 · MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TTATGCTTGT GTTTGGTTAC ATGGGTGAAG CAGGAATCAT GGCTGCATGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTC A TATTGGGTG TTAGCTTGG GTATACATGA TTTATGAATT
 · TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGA GAAGGAAAAT CTGCATGTAA TACTGCGAGT CCTGCTGTGC
 · SerAlaTyr AsnThrMet MetTyrIleIle IlePheGly TrpAlaIle
 551 AACACACAATG ATGTATATTA TCATCTTGG TTGGGCGATT
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TATCCTGTAG GTTATTCAC AGGTTACCTG ATGGGTGACG GTGGATCAGC
 · LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAACCTTA AACCTTATCT ATAACCTTGC TGACTTTGTT AACAAAGATT
 · PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsn
 701 TATTGGTTT AATTATATGG AATGTTGCTG TTAAAGAACATC TTCTAATT

Figure 1-53

MetGlyLysLeu LeuLeuIle LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAT ATTAGGTAGT GTTATTGCAC TTCCCTACATT
 · AlaAlaGly GlyGlyAspLeu AspAlaSer GlyTyrThr GlyValSerPhe.
 51 TGCTGCAGGT GGTGGTGACC TTGATGCTAG TGGTTACACT GGTGTTCTT
 · TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TTTGGTTAGT TACTGCTGCT TTATTAGCAT CTACTGTATT TTTCTTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValProGly.
 151 GAAAGAGATA GAGTTCTGC AAAATGGAAA ACATCATTAA CTGTACCTGG
 · LeuIleThr AspIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TCTTATTACT GATATTGCTT TCTGGCATTAA CATGTACATG AGAGGGGTAT
 · IleGluThr GlyAspSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATTGAAAC TGGTGATTG CCAACTGTAT TTAGATACAT TGATTGGTTA
 LeuThrValSer LeuGlnIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 CTAACAGTTT CTCTACAAAT ATGTGAATTCT TACTTAATTC TTGCTGCTGC
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 AACTAATGTT GCTGGATCAT TATTAAAGAA ATTACTAGTT GGTTCTCTTG
 · MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TTATGCTTGT GTTTGGTTAC ATGGGTGAAG CAGGAATCAT GGCTGCATGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TTATTGGGTG TTTAGCTTGG GTATACATGA TTTATGAATT
 · TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGA GAAGGAAAAT CTGCATGTAA TACTGCGAGT CCTGCTGTGC
 · SerAlaTyr AsnThrMet MetTyrIleIle IlePheGly TrpAlaIle
 551 AATCAGCTTA CAACACAATG ATGTATATTAA TCATCTTGG TTGGGCGATT
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TATCCTGTAG GTTATTCAC AGGTTACCTG ATGGGTGACG GTGGATCAGC
 · LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAACCTTA AACCTTATCT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 · PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT AATTATATGG AATGTTGCTG TTAAAGAAC TTCTAATGCT
 751 A

Figure 1-54

MetGlyLysLeu LeuLeuIle LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTACTGAT ATTAGGTAGT GTTATTGCAC TTCCTACATT
 · AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCTGCAGGT GGTGGTGACC TTGATGCTAG TGATTACACT GGTGTTCTT
 · TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TTTGGTTAGT TACTGCTGCT TTATTAGCAT CTACTGTATT TTTCTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValProGly.
 151 GAAAGAGATA GAGTTTCTGC AAAATGGAAA ACATCATTAA CTGTACCTGG
 · LeuValThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TCTTGTTACT GGTATTGCTT TCTGGCATTA CATGTACATG AGAGGGGTAT
 · IleGluThr GlyAspSer ProAlaValPhe ArgTyrIle AspTrpLeu
 251 GGATTGAAAC TGGTGATTCTG CCAGCTGTAT TTAGATACAT TGATTGGTTA
 LeuThrValPro LeuGluIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 CTAACAGTTC CTCTAGAGAT ATGTGAATTCA TACTTGATTC TTGCTGCTGC
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 AACTAATGTT GCTGGATCAT TATTAAAGAA ATTACTAGTT GGTTCTCTTG
 · MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TTATGCTTGT GTTTGGTTAC ATGGGTGAAG CAGGAATCAT GGCTGCATGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TTATTGGGTG TTTAGCTTGG GTATACATGA TTTATGAATT
 · TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGA GAAGGAAAAT CTGCATGTAA TACTGCAAGT CCTGCTGTGC
 · SerAlaTyr AsnThrMet MetTyrIleIle IlePheGly TrpAlaIle
 551 AACACACAATG ATGTATATTAA TCATCTTGG TTGGGCGATT
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TATCCTGTAG GTTATTTCAC AGGTTACCTG ATGGGTGACCG GTGGATCAGC
 · LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAACCTTA AACCTTATCT ATAACCTTGC TGACTTTGTT AACAAAGATT
 · PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT AATTATATGG AATGTTGCTG TTAAAGAACATC TTCTAATGCT
 751 A

Figure 1-55

MetGlyLysLeu LeuValMet LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAT TATTAGTGAT GTTAGGTAGT GTTATTGCGC TTCCAACATT
 · AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCCGCTGGT GGTGGTGACC TGGATGCTAG TGACTACACT GGTGTATCTT
 · TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TCTGGTTAGT TACTGCTGCT CTATTAGCAT CTACTGTATT TTTCTTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGACA GAGTTTCTGC TAAATGGAAA ACATCATTAA CAGTATCTGG
 · LeuValThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCTT TTTGGCATTAA CATGTACATG AGAGGTGTAT
 · IleGluThr GlyAspSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATTGAAAC TGGTGATTCA CCAACTGTTT TTAGATACAT CGACTGGTTG
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 CTAACTGTGC CTTTACTAAT TTGTGAGTTC TACTTAATAC TAGCAGCAGC
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 TACTAACGTT GCTGGTTCTT TATTCAAGAA ATTACTAGTT GGTTCTCTTG
 · MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TTATGCTTGT GTTTGGTTAC ATGGGTGAAG CAGGAATTAT GGCAGCCTGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TTATAGGATG TTTAGCATGG GTATACATGA TTTATGAATT
 · TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGA GAAGGAAAGT CTGCATGTAA CACTGCAAGT CCTGCAGTTC
 · SerAlaTyr AsnThrMet MetTyrIleIle IlePheGly TrpAlaIle
 551 AGTCAGCTTA CAACACAAATG ATGTATATCA TCATCTTGG TTGGGCTATT
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TACCCCTGTAG GTTATTTCAC TGGTTACCTA ATGGGTGACG GTGGATCAGC
 · LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAACCTTA AACCTTATCT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 · PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT AATTATATGG AATGTTGCTG TTAAAGAATC TTCTAATGCT
 751 A

Figure 1-56

MetGlyLysArg LeuValIle LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAA GATTAGTGAT ATTAGGTAGT GTTATTGCGC TTCCAAACATT
 · AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCCGCTGGT GGTGGTGACC TGGATGCTAG TGACTACACT GGTGTATCTT
 · TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TCTGGTTAGT TACTGCTGCT CTATTAGCAT CTACTGTATT TTTCTTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGACA GAGTTTCTGC TAAATGGAAA ACATCATTAA CAGTATCTGG
 · LeuValThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCTT TTTGGCATTAA CATGTACATG AGAGGTGTAT
 · IleGluThr GlyAspSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATTGAAAC TGGTGATTCA CCAACTGTTT TTAGATACAT CGACTGGTTG
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 CTAACTGTGC CTTTACTAAT TTGTGAGTTC TACTTAATAAC TAGCAGCAGC
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 TACTAACGTT GCTGGTTCTT TATTCAAGAA ATTACTAGTT GGTTCTCTTG
 · MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TTATGCTTGT GTTTGGTTAC ATGGGTGAAG CAGGAATTAT GGCAGCCTGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TTATAGGATG TTTAGCATGG GTATACATGA TTTATGAATT
 · TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGA GAAGGAAAGT CTGCATGTAA CACTGCAAGT CCTGCAGTTC
 · SerAlaTyr AsnThrMet MetTyrIleIle IlePheGly TrpAlaIle
 551 AGTCAGCTTA CAACACAAATG ATGTATATCA TCATCTTG TTGGGCTATT
 TyrLeuValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TACCTTGTTAG GTTATTTCAC TGGTTACCTA ATGGGTGACG GTGGATCAGC
 · LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAACCTTA AACCTTATCT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 · PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT AATTATATGG AATGTTGCTG TTAAAGAATC TTCTAATGCT
 751 A

Figure 1-57

MetGlyLysAla LeuLeuMet LeuGlySer ValIleAlaLeu ProThrPhe.
 1 ATGGGTAAAG CATTACTGAT GTTAGGTAGT GTTATTGCGC TTCCAACATT
 • AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCCGCTGGT GGTGGTGACC TGGATGCTAG TGACTACACT GGTGTATCTT
 • TrpLeuVal ThrAlaAla ProLeuAlaSer ThrValPhe PhePheVal
 101 TCTGGTTAGT TACTGCTGCT CCATTAGCAT CTACTGTATT TTTCTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGACA GAGTTCTGC TAAATGGAAA ACATCATTAA CAGTATCTGG
 • LeuValThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCTT TTTGGCATTA CATGTACATG AGAGGTGTAT
 • IleGluThr GlyAspSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATTGAAAC TGGTGATTCA CCAACTGTTT TTAGATACAT CGACTGGTTG
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 CTAACTGTGC CTTTACTAAT TTGTGAGTTC TACTTAATAAC TAGCAGCAGC
 • ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 TACTAACGTT GCTGGTTCTT TATTCAAGAA ATTACTAGTT GGTTCTCTTG
 • MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TTATGCTTGT GTTTGGTTAC ATGGGTGAAG CAGGAATTAT GGCAGCCTGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TTATAGGATG TTTAGCATGG GTATACATGA TTTATGAATT
 • TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGA GAAGGAAAGT CTGCATGTAA CACTGCAAGT CCTGCAGTTC
 • SerAlaTyr AsnThrMet MetTyrIleIle IlePheGly TrpAlaIle
 551 AGTCAGCTTA CAACACAAATG ATGTATATCA TCATCTTG TTGGGCTATT
 TyrLeuValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TACCTTGAG GTTATTCAC TGGTTACCTA ATGGGTGACG GTGGATCAGC
 • LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TCTTAACCTTA AACCTTATCT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 • PheGlyLeu IleIleArg AsnValAlaVal LysGluSer SerAsnAla
 701 TATTTGGTTT AATTATAAGG AATGTTGCTG TTAAAGAATC TTCTAATGCT
 751 A

Figure 1-58

MetGlyLysGly LeuLeuMet LeuGlySer ValIleAlaLeu ProSerPhe.
 1 ATGGGTAAAG GATTACTGAT GTTAGGTAGT GTTATTGCGC TTCCATCTT
 · AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCTGCTGGC GGTGGCGATC TTGATGCTAG TGACTATACA GGTGTTCAT
 · TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TCTGGTTGGT TACTGCTGCA TTATTAGCCT CAACTGTTT CTTCTTGTT
 GluArgAspArg ValAlaAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGACA GAGTTGCTGC AAAATGGAAA ACATCGTTAA CAGTATCTGG
 · LeuValThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TCTTGTACT GGTATTGCTT TTTGGCATTA CATGTACATG AGAGGGGTTT
 · ValGluThr GlyGluSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGGTAGAGAC TGGTGAATCA CCAACTGTAT TCAGATATAT TGACTGGCTA
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 CTAACAGTAC CATTATTAAT ATGTGAGTTC TACTTAATAC TTGCAGCTGC
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuIle GlySerLeuVal.
 351 AACTAATGTT GCTGGTTCTT TATTAAAAAA GCTATTAATT GGTTCTCTTG
 · MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TTATGCTTGT GTTTGGTTAC ATGGGTGAAG CAGGAATCAT GGCAGCTTGG
 ProAlaPheIle IleGlyCys LeuAlaTrp PheTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TTATTGGGTG CTTAGCTTGG TTCTACATGA TTTATGAACT
 · TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGT GAAGGAAAGT CTGCTTGTAA TACTGCAAGT CCAGCTGTT
 · SerAlaTyr AsnThrMet MetTyrIleIle IleIleGly TrpAlaIle
 551 AACACGATA CAACACGATG ATGTATATTA TTATCATTGG TTGGGCTATT
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TACCCCTGTAG GTTACTTTAC TGGTTACCTA ATGGGTGACG GCGGATCTGC
 · LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 CTTAAACTTA AACCTAATTT ATAACCTTGC TGACTTCGTT AACAAAGATTC
 · PheGlyLeu IleIleTrp HisValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT AATTATCTGG CATGTTGCTG TTAAAGAACATC TTCTAATGCT
 751 A

Figure 1-59

MetGlyLysLeu LeuLeuIle LeuGlySer ValIleAlaLeu ProSerPhe.
 1 ATGGGTAAAT TATTATTGAT CTTAGGTAGT GTTATTGCGC TTCCTTCATT
 · AlaAlaGly GlyGlyAspLeu AspAlaGly AspTyrThr GlyValSerPhe.
 51 TGCAGCTGGT GGCGGCGACC TTGATGCTGG TGATTACACT GGTGTTAGTT
 · TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheIle
 101 TTTGGTTAGT GACTGCAGCT CTTTGCGCTT CAACTGTATT TTTCTTTATT
 GluArgAspArg ValAlaAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGATA GAGTTGCTGC TAAATGGAAG ACATCTTAA CAGTATCTGG
 · LeuValThr GlyIleAlaPhe TrpHisTyr MetTyrMet ArgGlyValTrp.
 201 TCTAGTTACT GGTATTGCTT TCTGGCATTA CATGTACATG AGAGGTGTTT
 · ValGluThr GlyGluSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGGTCGAAAC TGGTGAATCA CCAACTGTAT TCAGATATAT TGACTGGCTA
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 CTTACAGTGC CTTTATTAAT ATGTGAGTTT TATCTGATTC TTGCAGCTGC
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 AACTAATGTT GCTGGTTCTT TATTAAAGAA GCTTTAGTT GGTTCTCTTG
 · MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TAATGCTTGT ATTGGTTAT ATGGGCGAAG CAGGAATTAT GGCAGCTTGG
 ProAlaPheIle ValGlyCys LeuAlaTrp PheTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TTGTTGGATG TTAGCTTGG TTCTATATGA TTTATGAGCT
 · TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGA GAAGGAAAAT CTGCATGCAA TACTGCAAGT CCAGCTGTT
 · SerAlaTyr AsnThrMet MetTyrIleIle IleIleGly TrpAlaIle
 551 AACACACAATG ATGTATATTA TTATCATTGG TTGGGCTATT
 TyrProLeuGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TATCCTCTTG GGTACTTTAC TGGTTACCTA ATGGGTGACG GCAGATCAGC
 · LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 CTTAAACTTA AACCTAATTT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 · PheGlyLeu IleIleTrp HisValAlaVal LysGluSer SerAsnAla
 701 TATTTGGTTT AATCATATGG CATGTCGCTG TTAAAGAACATC TTCTAATGCT
 751 A

Figure 1-60

MetGlyLysGln LeuLeuIle LeuGlySer ValIleAlaLeu ProSerPhe.
 1 ATGGGTAAAC AATTACTGAT CTTAGGTAGT GTTATTGCGC TTCCCATCTT
 · AlaAlaGly GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGCTGCTGGC GGTGGCGATC TTGATGCTAG TGACTATACA GGTGTTTCAT
 · TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheIle
 101 TCTGGTTAGT TACTGCTGCA TTATTAGCCT CAACTGTTT CTTTTTTATT
 GluArgAspArg ValAlaAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGACA GAGTTGCTGC AAAATGGAAA ACGTCGTTAA CAGTATCTGG
 · LeuValThr GlyIleAlaPhe TrpHisTyr LeuTyrMet ArgGlyValTrp.
 201 CCTTGTTACT GGTATTGCTT TTTGGCACTA CTTGTATATG AGAGGAGTTT
 · ValGluThr GlyGluSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGGTAGAGAC TGGTGAATCA CCAACTGTAT TCAGATATAT TGACTGGTTA
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 CTAACAGTAC CATTATTAAT ATGTGAGTTT TACTTAATAC TTGCAGCTGC
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuIle GlySerLeuVal.
 351 AACTAATGTT GCTGGTTCTT TATTAAAAAA GCTATTAATT GGTTCTCTTG
 · MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaTrp
 401 TGATGCTTGT GTTTGGTTAC ATGGGTGAAG CAGGAATCAT GGCGGCTTGG
 ProAlaPheIle IleGlyCys LeuAlaTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TTATTGGGTG CTTAGCTTGG GTCTATATGA TATATGAGCT
 · TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 ATGGGCTGGT GAAGGAAAAT CTGCATGTAA TACTGCAAGT CCAGCTGTT
 · SerAlaTyr AsnThrMet MetTyrIleIle IlePheGly TrpAlaIle
 551 AATCAGCATA CAACACAAATG ATGTATATTA TTATCTTGG TTGGGCTATT
 TyrProValGly TyrPheThr GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TACCCTGTAG GTTACTTTAC TGGTTACCTA ATGGGTGACG GCGGATCTGC
 · LeuAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 CTTAAACTTA AACCTTATCT ATAACCTTGC TGACTTCGTT AACAAAGATTC
 · PheGlyLeu IleIleTrp HisValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT AATTATCTGG CATGTTGCTG TTAAAGAAC TTCTAATGCT
 751 A

Figure 1-61

MetGlyLysLeu LeuMetMet LeuGlySer ValIleAlaLeu ProSerPhe.
 1 ATGGGTAAAT TATTAATGAT GTTAGGTAGT GTTATTGCGC TTCCTTCATT
 · AlaAlaSer GlyGlyAspLeu AspAlaSer AspTyrThr GlyValSerPhe.
 51 TGC GGCAAGT GGTGGCGATT TGGATGCTAG TGATTACACT GGTGTTCAT
 · GlyLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheVal
 101 TTGGGTTGGT GACTGCAGCT TTATTAGCTT CAACTGTATT TTTCTTGTT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGATA GAGTTTCTGC TAAATGGAAG ACATCTTGA CAGTATCAGG
 · LeuValThr GlyIleAlaPhe TrpHisTyr LeuTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCTT TTTGGCATT A CTTATATATG AGAGGTGTAT
 · ValGluThr GlyGluThr ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGGTTGAAAC TGGTGAAACT CCAACAGTAT TTAGATATAT TGATTGGTTA
 LeuThrValPro LeuLeuIle CysGluPhe TyrLeuIleLeu AlaAlaAla.
 301 TTA ACTGTTTC CATTACTAAT CTGCGAGTT TATTTAACCC TAGCTGCTGC
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 AACTAACGTA GCTGGTTCAT TATTTAAGAA ACTACTTGT GGTCACCTTG
 · MetLeuVal PheGlyTyr MetGlyGluAla GlyIleMet AlaAlaLeu
 401 TAATGCTTGT GTTTGGATAC ATGGGTGAAG CAGGAATCAT GGCAGCTTTG
 ProAlaPheIle IleGlyCys LeuAlaTrp IleTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TTATTGGGTG TTTGGCATGG ATATATATGA TTTATGAGCT
 · TrpAlaGly GluGlyLysSer AlaCysAsn ThrAlaSer ProAlaValGln.
 501 TTGGGCTGGA GAAGGGAAAT CTGCATGCAA TACTGCAAGT CCTGCCGTTC
 · SerAlaTyr AsnThrMet MetTyrIleIle IlePheGly TrpLeuIle
 551 AATCAGCTTA CAACACCAGT ATGTACATCA TCATTTTGG TTGGTTAAC
 TyrProValGly TyrAlaSer GlyTyrLeu MetGlyAspGly GlySerAla.
 601 TATCCAGTTG GTTATGCATC AGGCTATCTA ATGGGCGATG GC GGATCAGC
 · MetAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TATGAACTTA AACTTAATAT ATAACCTTGC TGACTTTGTT AACAAAGATT
 · PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTTGGTTT AATTATCTGG AATGTTGCTG TTAAAGAATC TTCTAAATGCT
 751 A

Figure 1-62

MetGlyLysGly LeuLeuMet LeuGlySer ValIleAlaLeu ProSerPhe.
 1 ATGGGTAAAG GATTACTGAT GTTAGGTAGT GTTATTGCAC TTCCATCCTT
 · AlaAlaGly GlyGlyAsnLeu AsnAlaAla AspValThr GlyValSerPhe.
 51 TGCAGCTGGT GGAGGCAACT TAAATGCAGC TGATGTAACG GGTGTATCTT
 · TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheIle
 101 TTTGGCTAGT TACTGCCGCT TTACTTGCTT CAACAGTATT CTTTTTTATT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGATA GAGTTTCTGC AAAATGGAAG ACATCACTAA CAGTATCTGG
 · LeuValThr GlyIleAlaPhe TrpHisTyr LeuTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCTT TTTGGCATTAA CCTTTACATG AGAGGTGTTT
 · ValAspSer TrpAsnPro GluThrGlyMet GlyGluSer ProThrGlu
 251 GGGTTGATTC TTGGAATCCT GAAACAGGAA TGGGAGAATC TCCAACGTGAA
 PheArgTyrIle AspTrpLeu LeuThrVal ProLeuLeuIle CysGluPhe.
 301 TTTAGATATA TTGATTGGTT ACTAACAGTA CCTTTATTAA TTTGTGAGTT
 · TyrLeuIle LeuAlaAlaAla ThrAsnVal AlaGlySer LeuPheLysLys.
 351 TTATCTAATA TTAGCTGCTG CAACAAATGT TGCTGGTTCA TTATTCAAAA
 · LeuLeuVal GlySerLeu ValMetLeuIle AlaGlyTyr MetGlyGlu
 401 AATTATTAGT TGGTTCATCG GTCATGCTTA TTGCAGGATA CATGGGTGAA
 SerGlyAsnAla AsnValMet IleAlaPhe ValValGlyCys LeuAlaTrp.
 451 TCTGGTAATG CCAATGTGAT GATTGCATTG GTAGTTGGAT GCTTAGCATG
 · LeuTyrMet IleTyrGluLeu TrpAlaGly GluGlyLys AlaAlaCysAsn.
 501 GTTGTATATG ATATATGAAT TGTGGGCTGG TGAAGGTAAA GCAGCTTGCA
 · ThrAlaSer ProAlaVal GlnSerAlaTyr AsnThrMet MetTrpIle
 551 ATACAGCAAG CCCTGCTGTT CAATCAGCAT ACAATAACAAT GATGTGGATC
 IleIleValGly TrpAlaIle TyrProAla GlyTyrAlaAla GlyTyrLeu.
 601 ATTATTGTAG GTTGGGCTAT ATATCCTGCT GGATATGCTG CTGGCTATT
 · MetGlyGly GluSerValTyr AlaSerAsn LeuAsnLeu IleTyrAsnLeu.
 651 GATGGGTGGA GAAAGCGTTT ATGCTTCTAA CCTTAACCTG ATATATAACC
 · AlaAspPhe ValAsnLys IleLeuPheGly LeuIleIle TrpHisVal
 701 TTGCTGACTT TGTTAACAAAG ATTTTATTG GTTTAACAT TTGGCATGTT
 AlaValLysGlu SerSerAsn Ala
 751 GCTGTTAAAG AATCTTCTAA TGCTA

Figure 1-63

MetGlyLysLeu LeuValMet LeuGlySer ValIleAlaLeu ProSerPhe.
 1 ATGGGTAAAT TATTAGTGAT GTTAGGTAGT GTTATTGCAC TTCCATCCTT
 · AlaAlaGly GlyGlyAsnLeu AspAlaAla AspValThr GlyValSerPhe.
 51 TGCAGCTGGT GGAGGTAACT TAGATGCAGC TGATGTAACT GGTGTATCTT
 · TrpLeuVal ThrAlaAla LeuLeuAlaSer ThrValPhe PhePheIle
 101 TTTGGCTAGT TACTGCGGCT TTACTTGCTT CAACAGTATT CTTTTTTATT
 GluArgAspArg ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGATA GAGTTTCTGC AAAATGGAAG ACATCACTAA CAGTATCTGG
 · LeuValThr GlyIleAlaPhe TrpHisTyr LeuTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCAT TTTGGCATTA CCTTTATATG AGAGGCGTTT
 · ValAspSer TrpThrGly ProGlyThrGly GluSerPro ThrGluPhe
 251 GGGTTGATTC TTGGACTGGT CCAGGAACCG GAGAATCTCC AACTGAATTT
 ArgTyrIleAsp TrpLeuLeu ThrValPro LeuLeuIleCys GluPheTyr.
 301 AGATATATTG ATTGGTTACT AACAGTACCT TTATTAATTG GTGAGTTTA
 · LeuIleLeu AlaAlaAlaThr AsnValAla GlySerLeu PheLysLysLeu.
 351 TCTAATATTA GCTGCTGCAA CAAATGTTGC TGTTTCATTA TTCAAAAAAT
 · LeuValGly SerLeuVal MetLeuIleAla GlyTyrMet GlyGluSer
 401 TATTAGTTGG TTCATTGGTC ATGCTTATTG CAGGATACAT GGGTGAATCT
 GlyAsnAlaAsn ValMetIle AlaPheVal ValGlyCysLeu AlaTrpLeu.
 451 GGTAATGCCA ATGTGATGAT TGCATTGTA GTTGGATGCT TAGCATGGTT
 · TyrMetIle TyrGluLeuTrp AlaGlyGlu GlyLysAla AlaCysAsnThr.
 501 GTATATGATA TATGAATTGT GGGCTGGTGA AGGTAAAGCA GCTTGCAATA
 · AlaSerPro AlaValGln SerAlaTyrAsn ThrMetMet TrpIleIle
 551 CAGCAAGCCC TGCTGTTCAA TCAGCATACA ATACAATGAT GTGGATCATT
 IleValGlyTrp AlaIleTyr ProAlaGly TyrAlaAlaGly TyrLeuMet.
 601 ATTGTAGGTT GGGCTATATA TCCTGCTGGA TATGCTGCTG GCTATTTGAT
 · GlyGlyGlu SerValTyrAla SerAsnLeu AsnLeuIle TyrAsnLeuAla.
 651 GGGTGGAGAA AGCGTTTATG CTTCTAACCT TAACCTGATA TATAACCTTG
 · AspPheVal AsnLysIle LeuPheGlyLeu IleIleTrp HisValAla
 701 CTGACTTTGT TAACAAGATT TTATTTGGTT TAATCATTG GCATGTTGCT
 ValLysGluSer SerAsnAla
 751 GTTAAAGAAT CTTCTAACAT GC TA

Figure 1-64

MetGlyLysLeu LeuValMet LeuGlyGly ValIleAlaLeu ProSerPhe.
 1 ATGGGTAAAT TATTAGTGAT GTTAGGTGGT GTTATTGCAC TTCCTTCTTT
 · AlaAlaGly GlyGlyAspLeu AspIleGly AspSerVal GlyValSerPhe.
 51 TGCTGCTGGT GGTGGTGATC TAGATATAGG AGACTCCGTT GGAGTTTCAT
 · TrpLeuVal ThrAlaAla MetLeuAlaAla ThrValPhe PhePheVal
 101 TCTGGCTTGT TACTGCTGCT ATGTTAGCTG CTACTGTTTT CTTTTTGTT
 GluArgAspGln ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGACC AAGTAAGCGC AAAGTGGAAA ACATCATTAA CAGTATCAGG
 · LeuIleThr GlyIleAlaPhe TrpHisTyr LeuTyrMet ArgGlyValTrp.
 201 TTTAATTACT GGTATTGCTT TTTGGCATTA TCTTTACATG AGAGGTGTAT
 · IleAspThr GlyGlySer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATAGATAC AGGTGGAAGC CCAACAGTAT TTAGATATAT TGATTGGTTG
 LeuThrValPro LeuGlnMet ValGluPhe TyrLeuIleLeu AlaAlaCys.
 301 CTAACTGTTTC CATTACAAAT GGTTGAGTTT TATTAAATTC TTGCAGCTTG
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 TACTAATGTA GCTGGTTCAT TATTAAAGAA ACTGCTTGTT GGTCATTAG
 · MetLeuGly AlaGlyPhe AlaGlyGluAla GlyLeuAla ProAlaLeu
 401 TAATGTTAGG TGCTGGATTG GCTGGTGAAG CTGGACTAGC TCCTGCATTG
 ProAlaPheIle LeuGlyMet AlaGlyTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCTTCA TACTTGGTAT GGCTGGATGG GTATACATGA TATATGAGCT
 · TyrMetGly GluGlyLysAla AlaValSer ThrAlaSer ProAlaValAsn.
 501 GTATATGGGT GAAGGTAAAG CTGCGGTGAG TACTGCTAGT CCTGCCGTAA
 · SerAlaTyr AsnAlaMet MetMetIleIle ValPheGly TrpSerIle
 551 ATTCTGCTTA CAATGCAATG ATGATGATTA TAGTTTTGG TTGGTCTATT
 TyrProLeuGly TyrValAla GlyTyrLeu MetGlyAlaVal AspProSer.
 601 TATCCACTGG GATATGTTGC TGGCTATTAA ATGGGTGCAG TAGATCCAAG
 · ThrLeuAsn LeuIleTyrAsn LeuAlaAsp PheIleAsn LysIleLeuPhe.
 651 TACATTAAAT CTAATATACA ACCTTGCTGA TTTTATTAAAT AAGATTATAT
 · GlyLeuIle IleTrpHis ValAlaValLys GluSerSer AsnAla
 701 TCGGTTTAAT AATCTGGCAT GTTGCTGTTA AAGAACCTTC TAATGCTA

Figure 1-65

MetGlyLysLeu LeuMetIle LeuGlyGly ValIleAlaLeu ProSerPhe.
 1 ATGGGTAAAT TATTAATGAT CTTAGGTGGT GTTATTGCAC TTCCTTCTTT
 · AlaAlaGly GlyGlyAspLeu AspIleGly AspSerVal GlyValSerPhe.
 51 TGCTGCTGGT GGTGGTGATC TAGATATAGG AGACTCTGTT GGAGTTTCAT
 · TrpLeuVal ThrAlaAla MetLeuAlaAla ThrValPhe PhePheVal
 101 TCTGGCTTGT TACTGCTGCT ATGTTAGCTG CTACTGTTT CTTTTTGTT
 GluArgAspGln ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGACC AAGTAAGCGC AAAGTGGAAA ACATCATTAA CAGTATCAGG
 · LeuIleThr GlyIleAlaPhe TrpHisTyr LeuTyrMet ArgGlyValTrp.
 201 TTTAATTACT GGTATTGCTT TTTGGCATTAA TCTTTACATG AGAGGTGTAT
 · IleAspThr GlyGlySer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATAGATAC AGGTGGAAGC CCAACAGTAT TTAGATATAT TGATTGGTTG
 LeuThrValPro LeuGlnMet ValGluPhe TyrLeuIleLeu AlaAlaCys.
 301 CTAACTGTTTC CATTACAAAT GGTTGAGTTT TATTTAACATC TTGCAGCTTG
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuVal GlySerLeuVal.
 351 TACTAATGTA GCTGGTTCAT TATTTAAGAA ACTGCTTGTGTT GGTCATTAG
 · MetLeuGly AlaGlyPhe AlaGlyGluAla GlyLeuAla ProAlaLeu
 401 TAATGTTAGG TGCTGGATTG GCTGGTGAAG CTGGATTAGC TCCTGCATTG
 ProAlaPheIle LeuGlyMet AlaGlyTrp ValTyrMetIle TyrGluLeu.
 451 CCTGCTTCA TACTTGGTAT GGCTGGATGG GTATACATGA TATATGAGCT
 · TyrMetGly GluGlyLysAla AlaValSer ThrAlaSer ProAlaValAsn.
 501 GTATATGGGT GAAGGTAAAG CTGCGGTGAG TACTGCTAGT CCTGCCGTAA
 · SerAlaTyr AsnAlaMet MetMetIleIle ValPheGly TrpSerIle
 551 ATTCTGCTTA CAATGCAATG ATGATGATTA TAGTTTTGG TTGGTCTATT
 TyrProLeuGly TyrValAla GlyTyrLeu MetGlyAlaVal AspProSer.
 601 TATCCACTGG GATATGTTGC TGGCTATTAA ATGGGTGCAG TAGATCCAAG
 · ThrLeuAsn LeuIleTyrAsn LeuAlaAsp PheIleAsn LysIleLeuPhe.
 651 TACATTAAAT CTAATATACA ACCTTGCTGA TTTTATTAAT AAGATTTAT
 · GlyLeuIle IleTrpHis ValAlaValLys GluSerSer AsnAla
 701 TCGGTTTAAT AATCTGGCAT GTTGCTGTTA AAGAATCTTC TAATGCTA

Figure 1-66

MetGlyLysLeu LeuMetIle LeuGlyGly ValIleAlaLeu ProSerPhe.
 1 ATGGGTAAAT TATTAATGAT ATTAGGTGGT GTTATTGCAC TTCCCTTCTTT
 · AlaAlaGly GlyGlyAspLeu AspIleGly AspSerVal GlyValSerPhe.
 51 TGCTGCTGGT GGTGGTGATC TAGATATAGG AGACTCTGTT GGAGTTTCAT
 · TrpLeuVal ThrAlaAla MetLeuAlaAla ThrValPhe PhePheVal
 101 TCTGGCTTGT TACTGCTGCT ATGTTAGCTG CTACTGTTTT CTTTTTGTT
 GluArgAspGln ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGACC AAGTAAGCGC AAAATGGAAA ACATCATTAA CAGTATCAGG
 · LeuIleThr GlyIleAlaPhe TrpHisTyr LeuTyrMet ArgGlyValTrp.
 201 TTTAATAACA GGTATTGCTT TCTGGCACTA CTTGTATATG AGAGGGGTTT
 · ValGluThr GlyAspSer ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGGTAGAAC AACAGCGATTCA CCAACTGTAT TTAGATATAT AGATTGGCTT
 LeuThrValPro LeuGlnMet ValGluPhe TyrLeuIleLeu AlaAlaCys.
 301 TTAACTGTAC CACTACAAAT GGTAGAGTTT TATCTGATAT TAGCTGCATG
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuIle GlySerLeuVal.
 351 TACCAAATGTT GCTGGATCTT TATTAAAAAA GCTACTAATC GGTCATTGG
 · MetLeuIle GlyGlyPhe LeuGlyGluAla GlyMetIle AspValThr
 401 TGATGTTGAT AGGAGGTTTC CTAGGTGAAG CTGGTATGAT AGATGTAACA
 LeuAlaPheVal IleGlyMet AlaGlyTrp LeuTyrMetIle TyrGluLeu.
 451 CTAGCTTTG TAATTGGAAT GGCTGGATGG CTATATATGA TCTATGAGCT
 · TyrMetGly GluGlyLysAla AlaValSer ThrAlaSer ProAlaValAsn.
 501 ATACATGGGT GAAGGTAAAG CTGCGGTGAG TACTGCTAGT CCTGCCGTAA
 · SerAlaTyr AsnAlaMet MetLeuIleIle ValValGly TrpSerIle
 551 ATTCTGCTTA CAATGCAATG ATGCTTATTAA TTGTTGTTGG TTGGTCAATC
 TyrProAlaGly TyrValAla GlyTyrLeu MetGlyGlyGlu GlyValTyr.
 601 TATCCTGCTG GATATGTTGC TGGCTATCTT ATGGGCGGTG AAGGAGTATA
 · AlaSerAsn LeuAsnLeuIle TyrAsnLeu AlaAspPhe IleAsnLysIle.
 651 TGCCTCAAAT CTAAACTAA TATATAACCT TGCTGATTTT ATCAACAAGA
 · LeuPheGly LeuIleIle TrpHisValAla ValLysGlu SerSerAsn
 701 TTCTATTGG TTTAATTATA TGGCATGTTG CTGTTAAAGA ATCTTCTAAT
 Ala
 751 GCTA

Figure 1-67

MetGlyLysGln LeuLeuIle LeuGlyGly ValIleAlaLeu ProSerPhe.
 1 ATGGGTAAAC AATTACTGAT TTTAGGTGGT GTTATTGCAC TTCCTTCGTT
 · AlaAlaSer GlyGlyAspLeu AspSerSer AspLeuThr GlyValSerPhe.
 51 TGCTGCAAGT GGGGGCGATC TTGATTCTAG TGATCTTACT GGAGTTCTT
 · TrpLeuVal ThrAlaAla LeuLeuAlaAla ThrValPhe PhePheVal
 101 TTTGGCTTGT TACTGCTGCT CTCTTAGCTG CTACTGTTTT CTTTTTGTT
 GluArgAspGln ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGATC AAGTAAGTGC TAAATGGAAA ACATCACTTA CAGTTCTGG
 · LeuValThr GlyIleAlaPhe TrpHisTyr LeuTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCAT TCTGGCATTA TCTTTATATG AGAGGTGTGT
 · IleGluThr GlyGluThr ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATCGAAAC TGGTGAAACG CCAACAGTAT TTAGATATAT TGATTGGTTG
 LeuThrValPro LeuLeuMet ValGluPhe TyrLeuIleLeu AlaAlaCys.
 301 CTAACTGTTTC CTTTGCTAAT GGTTGAGTTC TACTTAATCC TTGCAGCGTG
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuGly GlySerLeuVal.
 351 CACAAATGTT GCGGGTTCAT TATTAAAGAA ACTACTGGT GGTCGCTTG
 · MetLeuIle AlaGlyTyr MetGlyGluSer GlySerLeu ProValLeu
 401 TAATGCTTAT TGCAGGATAT ATGGGTGAGT CTGGAAGTCT TCCAGTATTG
 ProAlaPheIle ValGlyCys LeuAlaTrp PheTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TTGTTGGGTG CTTAGCATGG TTCTACATGA TTTATGAACT
 · TyrAlaGly GluGlyLysAla AlaValThr ThrAlaSer ProAlaValMet.
 501 ATATGCTGGT GAAGGTAAGG CTGCAGTTAC TACTGCTAGT CCTGCTGTTA
 · SerAlaTyr AsnThrMet MetLeuIleIle ValValGly TrpAlaIle
 551 TGTCTGCATA CAATACTATG ATGTTGATTA TCGTAGTAGG TTGGGCAATT
 TyrProAlaGly TyrAlaAla GlyTyrLeu MetGlyGlyAsp GlyValTyr.
 601 TACCCAGCTG GATATGCTGC TGGTTACCTA ATGGGTGGTG ATGGCGTATA
 · AlaGlnAsn LeuAsnValIle TyrAsnLeu AlaAspPhe ValAsnLysIle.
 651 TGCTCAGAAT TTAAACGTTA TATATAACCT TGCTGACTTT GTTAACAAGA
 · LeuPheGly LeuValIle TrpHisValAla ValLysGlu SerSerAsn
 701 TTTTATTGTTGG TTTAGTTATC TGGCATGTTG CTGTTAAAGA ATCTTCTAAT
 Ala
 751 GCTA

Figure 1-68

MetGlyLysLeu LeuMetIle LeuGlyGly ValIleAlaLeu ProSerPhe.
 1 ATGGGTAAAT TATTAATGAT CTTAGGTGGT GTCATTGCGC TTCCTTCGTT
 · AlaAlaSer GlyGlyAspLeu AspSerSer ÁspLeuThr GlyValSerPhe.
 51 TGCTGCAAGT GGTGGCGATC TTGATTCTAG TGATCTTACT GGAGTATCTT
 · TrpLeuVal ThrAlaAla LeuLeuAlaAla ThrValPhe PhePheVal
 101 TTTGGCTTGT TACTGCTGCT CTCTTAGCTG CTACTGTTT CTTTTTGTT
 GluArgAspGln ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGATC AAGTAAGTGC TAAATGGAAA ACATCACTTA CAGTTTCTGG
 · LeuValThr GlyIleAlaPhe TrpHisTyr LeuTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCAT TCTGGCATTA TCTCTATATG AGAGGTGTGT
 · IleGluThr GlyGluThr ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATCGAAAC TGGTGAAACG CCAACAGTAT TTAGATATAT TGATTGGTTG
 LeuThrValPro LeuLeuMet ValGluPhe TyrLeuIleLeu AlaAlaCys.
 301 CTAACTGTT CGTTACTAAT GGTTGAGTTC TACTTAATTC TTGCGGCTTG
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuGly GlySerLeuVal.
 351 CACAAATGTT GCAGGGCTCAT TATTAAAGAA ACTACTAGGT GGTCGCTTG
 · MetLeuIle AlaGlyTyr MetGlyGluSer GlySerLeu ProValLeu
 401 TAATGCTTAT TGCAGGATAT ATGGGTGAGT CTGGAAGTCT TCCAGTATTG
 ProAlaPheIle ValGlyCys LeuAlaTrp PheTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TTGTTGGATG CCTAGCATGG TTCTACATGA TTTATGAACT
 · TyrAlaGly GluGlyLysAla AlaValThr ThrAlaSer ProAlaValMet.
 501 ATATGCTGGT GAAGGTAAGG CTGCAGTTAC TACTGCTAGT CCTGCTGTTA
 · SerAlaTyr AsnThrMet MetLeuIleIle ValValGly TrpAlaIle
 551 TGTCTGCATA CAATACTATG ATGTTGATTA TCGTAGTAGG TTGGGCAATT
 TyrProAlaGly TyrAlaAla GlyTyrLeu MetGlyGlyAsp GlyValTyr.
 601 TACCCGGCTG GATATGCTGC TGGATACCTA ATGGGTGGTG ATGGCGTATA
 · AlaGlnAsn LeuAsnValIle TyrAsnLeu AlaAspPhe ValAsnLysIle.
 651 TGCTCAGAAT TTAAACGTTA TATATAATCT TGCTGACTTT GTTAACAAGA
 · LeuPheGly LeuValIle TrpHisValAla ValLysGlu SerSerAsn
 701 TTTTATTGTTGG TTTAGTTATC TGGCATGTCG CTGTTAAAGA ATCTTCTAAT
 Ala
 751 GCTA

Figure 1-69

MetGlyLysLeu LeuValIle LeuGlyGly ValIleAlaLeu ProProPhe.
 1 ATGGGTAAAC TATTAGTGAT ATTAGGTGGT GTCATTGCGC TTCCTCCGTT
 · AlaAlaSer GlyGlyAspLeu AspSerSer AspLeuThr GlyValSerPhe.
 51 TGCTGCAAGT GGTGGCGATC TTGATTCTAG TGATCTTACT GGAGTATCTT
 · TrpLeuVal ThrAlaAla LeuLeuAlaAla ThrValPhe PhePheVal
 101 TTTGGCTTGT TACTGCTGCT CTCTTAGCTG CTACTGTTT CTTTTTGTT
 GluArgAspGln ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGATC AAGTAAGTGC TAAATGGAAA ACATCACTTA CAGTTTCTGG
 · LeuValThr GlyIleAlaPhe TrpHisTyr LeuTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCAT TCTGGCATTA TCTCTATATG AGAGGTGTGT
 · IleGluThr GlyGluThr ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATCGAAAC TGGTGAAACG CCAACAGTAT TTAGATATAT TGATTGGTTG
 LeuThrValPro LeuLeuMet ValGluPhe TyrLeuIleLeu AlaAlaCys.
 301 CTAACTGTTTC CGTTACTAAT GGTTGAGTTC TACTTAATTC TTGCAGCTTG
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuGly GlySerLeuVal.
 351 CACAAATGTT GCAGGGCTCAT TATTAAAGAA ACTACTAGGT GGTCGCTTG
 · MetLeuIle AlaGlyTyr MetGlyGluSer GlySerLeu ProValLeu
 401 TAATGCTTAT TGCAGGATAT ATGGGTGAGT CTGGAAGTCT TCCAGTATTG
 ProAlaPheIle ValGlyCys LeuAlaTrp PheTyrMetIle TyrGluLeu.
 451 CCTGCATTCA TTGTTGGATG CCTAGCATGG TTCTACATGA TTTATGAAC
 · TyrAlaGly GluGlyLysAla AlaValThr ThrAlaSer ProAlaValMet.
 501 ATATGCTGGT GAAGGTAAGG CTGCAGTTAC TACTGCTAGT CCTGCTGTTA
 · SerAlaTyr AsnThrMet MetLeuIleIle ValValGly TrpAlaIle
 551 TGTCTGCATA CAATACTATG ATGTTGATTA TCGTAGTAGGG TTGGGCAATT
 TyrProAlaGly TyrAlaAla GlyTyrLeu MetGlyGlyAsp GlyValTyr.
 601 TACCCGGCTG GATATGCTGC TGGATACCTA ATGGGTGGTG ATGGCGTATA
 · AlaGlnAsn LeuAsnValIle TyrAsnLeu AlaAspPhe ValAsnLysIle.
 651 TGCTCAGAACAT TTAAACGTTA TATATAATCT TGCTGACTTT GTTAACAAGA
 · LeuPheGly LeuValIle TrpHisValAla ValLysGlu SerSerAsn
 701 TTTTATTGTTGG TTTAGTTATC TGGCATGTCG CTGTTAAAGA ATCTTCTAAT
 Ala
 751 GCTA

Figure 1-70

LeuLeuIleLeu GlyGlyVal IleAlaLeu ProSerPheAla AlaSerGly.
 1 TTATTGATAT TAGGTGGTGT TATTGCACTT CCTTCGTTG CTGCAAGTGG
 · GlyAspLeu AspSerSerAsp LeuThrGly ValSerPhe TrpLeuValThr.
 51 GGGCGATCTT GATTCTAGTG ATCTTACTGG AGTTTCTTTT TGGCTTGTAA
 · AlaAlaLeu LeuAlaAla ThrValPhePhe PheValGlu ArgAspGln
 101 CTGCTGCTCT CTTAGCTGCT ACTGTTTCTT TTTTGTTGA AAGAGATCAA
 ValSerAlaLys TrpLysThr SerLeuThr ValSerGlyLeu ValThrGly.
 151 GTAAAGTGCTA AATGGAAAAC ATCACTTACA GTTTCTGGTT TAGTTACTGG
 · IleAlaPhe TrpHisTyrLeu TyrMetArg GlyValTrp IleGluThrGly.
 201 TATTGCATTC TGGCATTATC TTTATATGAG AGGTGTGTGG ATCGAAACTG
 · GluThrPro ThrValPhe ArgTyrIleAsp TrpLeuLeu ThrValPro
 251 GTGAAACGCC AACAGTATTAGATATATTG ATTGGTTGCT AACTGTTCC
 LeuLeuMetVal GluPheTyr LeuIleLeu AlaAlaCysThr AsnValAla.
 301 TTGCTAATGG TTGAGTTCTA CTTAACCTT GCAGCGTGCA CAAATGTTGC
 · GlySerLeu PheLysLysLeu LeuGlyGly SerLeuVal MetLeuIleAla.
 351 GGGTTCATTA TTTAAGAAAC TACTTGGTGG TTCGCTTGTA ATGCTTATTG
 · GlyTyrMet GlyGluSer GlySerLeuPro ValLeuPro AlaPheIle
 401 CAGGATATAT GGGTGAGTCT GGAAGTCTTC CAGTATTGCC TGCATTCA
 ValGlyCysLeu AlaTrpPhe TyrMetIle TyrGluLeuTyr AlaGlyGlu.
 451 GTTGGGTGCT TAGCATGGTT CTACATGATT TATGAACATAT ATGCTGGTGA
 · GlyLysAla AlaValThrThr AlaSerPro AlaValMet SerAlaTyrAsn.
 501 AGGTAAAGGCT GCAGTTACTA CTGCTAGTCC TGCTGTTATG TCTGCATACA
 · ThrMetMet LeuIleIle ValValGlyTrp AlaIleTyr ProAlaGly
 551 ATACTATGAT GTTGATTATC GTAGTAGGTT GGGCAATTAA CCCAGCTGGA
 TyrAlaAlaGly TyrLeuMet GlyGlyAsp GlyValTyrAla GlnAsnLeu.
 601 TATGCTGCTG GTTACCTAAT GGGTGGTGAT GGCGTATATG CTCAGAATTT
 · AsnValIle TyrAsnLeuAla AspPheVal AsnLysIle LeuPheGlyLeu.
 651 AAACGTTATA TATAACCTTG CTGACTTTGT TAACAAGATT TTATTTGGTT
 · ValIleTrp HisValAla ValLysGluSer SerAsnAla
 701 TAGTTATCTG GCATGTTGCT GTTAAAGAAT CTTCTAATGC TA

Figure 1-71

MetGlyLysLeu LeuLeuIle LeuGlyGly ValIleAlaLeu ProSerPhe.
 1 ATGGGTAAAT TATTACTGAT TTTAGGCGGT GTTATTGCGC TTCCTTCGTT
 · AlaAlaSer GlyGlyAspLeu AspSerSer AspLeuThr GlyValSerPhe.
 51 TGCTGCAAGT GGAGGCGATC TTGATTCTAG TGATCTTACT GGAGTATCTT
 · TrpLeuVal ThrAlaAla LeuLeuAlaAla ThrValPhe PhePheVal
 101 TTTGGCTTGT TACTGCTGCT CTCTTAGCTG CTACTGTTT CTTTTTGTT
 GluArgAspGln ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGATC AAGTAAGCGC TAAATGGAAA ACATCACTTA CAGTTCTGG
 · LeuValThr GlyIleAlaPhe TrpHisTyr LeuTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCAT TCTGGCATTA TCTCTATATG AGAGGTGTGT
 · IleGluThr GlyGluThr ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATCGAAAC CGGTGAAACA CCAACAGTAT TTAGATATAT TGATTGGTTG
 LeuThrValPro LeuLeuMet ValGluPhe TyrLeuIleLeu AlaAlaCys.
 301 CTAACTGTTA CGTTACTAAT GGTTGAGTTC TACTTAATCC TCGCAGCTTG
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuIle GlySerLeuVal.
 351 CACTAATGTT GCAGGTTCAT TATTAAAGAA ACTACTAATT GGTCGCTTG
 · MetLeuIle AlaGlyTyr MetGlyGluSer GlySerLeu ProValLeu
 401 TAATGCTTAT TGCAGGATAT ATGGGTGAGT CTGGAAGTCT TCCAGTATTG
 ProAlaPheLeu ValGlyCys AlaAlaTrp LeuTyrMetIle TyrGluLeu.
 451 CCTGCATTCC TTGTTGGGTG CGCAGCATGG TTATACATGA TTTATGAACT
 · TyrAlaGly GluGlyLysAla AlaValThr ThrAlaSer ProAlaValMet.
 501 ATATGCTGGT GAAGGTAAGG CTGCAGTTAC TACTGCTAGT CCTGCTGTTA
 · SerAlaTyr AsnThrMet MetLeuIleIle ValValGly TrpAlaIle
 551 TGTCTGCATA CAATACTATG ATGTTGATTA TCGTAGTAGG TTGGGCAATA
 TyrProAlaGly TyrAlaAla GlyTyrLeu MetGlyGlyAsp GlyValTyr.
 601 TACCCAGCTG GATATGCTGC TGGTTACTTA ATGGGTGGAG ATGGCGTATA
 · AlaGlnAsn LeuAsnValIle TyrAsnLeu AlaAspPhe ValAsnLysIle.
 651 TGCTCAGAACAT TTAAACGTTA TATATAACCT TGCTGACTTT GTAAACAAGA
 · LeuPheGly LeuValIle TrpHisValAla ValLysGlu SerSerAsn
 701 TTTTATTGTTGG TTTAGTTATC TGGCATGTTG CTGTTAAAGA ATCTTCTAAT
 Ala
 751 GCTA

Figure 1-72

MetGlyLysLeu LeuLeuIle LeuGlyGly ValIleAlaLeu ProSerPhe.
 1 ATGGGTAAAT TATTATTGAT CTTAGGCGGT GTTATTGCGC TTCCCTTCGTT
 · AlaAlaSer GlyGlyAspLeu AspSerSer AspLeuThr GlyValSerPhe.
 51 TGCTGCAAGT GGAGGCGATC TTGATTCTAG TGATCTTACT GGAGTATCTT
 · TrpLeuVal ThrAlaAla LeuLeuAlaAla ThrValPhe PhePheVal
 101 TTTGGCTTGT TACTGCTGCT CTCTTAGCTG CTACTGTTTT CTTTTTGTT
 GluArgAspGln ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGATC AAGTAAGCGC TAAATGGAAA ACATCACTTA CAGTTCTGG
 · LeuValThr GlyIleAlaPhe TrpHisTyr LeuTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCAT TCTGGCATTA TCTCTATATG AGAGGTGTGT
 · IleGluThr GlyGluThr ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATCGAAAC CGGTGAAACA CCAACAGTAT TTAGGTATAT TGATTGGTTG
 LeuThrValPro LeuLeuMet ValGluPhe TyrLeuIleLeu AlaAlaCys.
 301 CTAACTGTTA CGTTACTAAT GGTTGAGTTC TACTTAATCC TCGCAGCTTG
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuIle GlySerLeuVal.
 351 CACTAATGTT GCAGGTTCAT TATTAAAGAA ACTACTAATT GGTCGCTTG
 · MetLeuIle AlaGlyTyr MetGlyGluSer GlySerLeu ProValLeu
 401 TAATGCTTAT TGCAGGATAT ATGGGTGAGT CTGGAAAGTCT TCCAGTATTG
 ProAlaPheLeu ValGlyCys AlaAlaTrp LeuTyrMetIle TyrGluLeu.
 451 CCTGCATTCC TTGTTGGGTG CGCAGCATGG TTATACATGA TTTATGAACT
 · TyrAlaGly GluGlyLysAla AlaValThr ThrAlaSer ProAlaValMet.
 501 ATATGCTGGT GAAGGTAAGG CTGCAGTTAC TACTGCTAGT CCTGCTGTTA
 · SerAlaTyr AsnThrMet MetLeuIleIle ValValGly TrpAlaIle
 551 TGTCTGCATA CAATACTATG ATGTTGATTA TCGTAGTAGG TTGGGCAATA
 TyrProAlaGly TyrAlaAla GlyTyrLeu MetGlyGlyAsp GlyValTyr.
 601 TACCCAGCTG GATATGCTGC TGGTTACTTA ATGGGTGGAG ATGGCGTATA
 · AlaGlnAsn LeuAsnValIle TyrAsnLeu AlaAspPhe ValAsnLysIle.
 651 TGCTCAGAACAT TTAAACGTTA TATATAACCT TGCTGACTTT GTAAACAAGA
 · LeuPheGly LeuValIle TrpHisValAla ValLysGlu SerSerAsn
 701 TTTTATTGTTGG TTTAGTTATC TGGCATGTTG CTGTTAAAGA ATCTTCTAAT
 751 C

Figure 1-73

MetGlyLysLeu LeuLeuIle LeuGlyGly ValIleAlaLeu ProSerPhe.
 1 ATGGGTAAAT TATTACTGAT CTTAGGCGGT GTTATTGCGC TTCCTTCGTT
 · AlaAlaSer GlyGlyAspLeu AspSerSer AspLeuThr GlyValSerPhe.
 51 TGCTGCAAGT GGAGGCGATC TTGATTCTAG TGATCTTACT GGAGTATCTT
 · TrpLeuVal ThrAlaAla LeuLeuAlaAla ThrValPhe PhePheVal
 101 TTTGGCTTGT TACTGCTGCT CTCTTAGCTG CTACTGTTT CTTTTTGTT
 GluArgAspGln ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGATC AAGTAAGCGC TAAATGGAAA ACATCACTTA CAGTTCTGG
 · LeuValThr GlyIleAlaPhe TrpHisTyr LeuTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCAT TCTGGCATTA TCTCTATATG AGAGGTGTGT
 · IleGluThr GlyGluThr ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATCGAAAC CGGTGAAACA CCAACAGTAT TTAGATATAT TGATTGGTTG
 LeuThrValPro LeuLeuMet ValGluPhe TyrLeuIleLeu AlaAlaCys.
 301 CTAACTGTTA CGTTACTAAT GGTTGAGTTC TACTTAATCC TCGCAGCTTG
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuIle GlySerLeuVal.
 351 CACTAATGTT GCAGGTTCAT TATTAAAGAA ACTACTAATT GGTCGCTTG
 · MetLeuIle AlaGlyTyr MetGlyGluSer GlySerLeu ProValLeu
 401 TAATGCTTAT TGCAGGATAT ATGGGTGAGT CTGGAAGTCT TCCAGTATTG
 ProAlaPheLeu ValGlyCys AlaAlaTrp LeuTyrMetIle TyrGluLeu.
 451 CCTGCATTCC TTGTTGGGTG CGCAGCATGG TTATACATGA TTTATGAACT
 · TyrAlaGly GluGlyLysAla AlaValThr ThrAlaSer ProAlaValMet.
 501 ATATGCTGGT GAAGGTAAGG CTGCAGTTAC TACTGCTAGT CCTGCTGTTA
 · SerAlaTyr AsnThrMet MetLeuIleIle ValValGly TrpAlaIle
 551 TGTCTGCATA CAATACTATG ATGTTGATTA TCGTAGTAGG TTGGGCAATA
 TyrProAlaGly TyrAlaAla GlyTyrLeu MetGlyGlyAsp GlyValTyr.
 601 TACCCAGCTG GATATGCTGC TGGTTACTTA ATGGGTGGAG ATGGCGTATA
 · AlaGlnAsn LeuAsnValIle TyrAsnLeu AlaAspPhe ValAsnLysIle.
 651 TGCTCAGAAC TTAAACGTTA TATATAACCT TGCTGACTTC GTTAACAAGA
 · LeuPheGly LeuValIle TrpHisValAla ValLysGlu SerSerAsn
 701 TTTTATTGTTGG TTTAGTTATC TGGCATGTTG CTGTTAAAGA ATCTTCTAAT
 Ala
 751 GCTA

Figure 1-74

MetGlyLysArg LeuValIle LeuGlyGly ValIleAlaLeu ProSerPhe.
 1 ATGGGTAAAA GATTAGTGAT CTTAGGCGGT GTTATTGCGC TTCCTTCGTT
 · AlaAlaSer GlyGlyAspLeu AspSerSer AspLeuThr GlyValSerPhe.
 51 TGCTGCAAGT GGAGGCGATC TTGATTCTAG TGATCTTACT GGAGTATCTT
 · TrpLeuVal ThrAlaAla LeuLeuAlaAla ThrValPhe PhePheVal
 101 TTTGGCTTGT TACTGCTGCT CTCTTAGCTG CTACTGTTT CTTTTTGTT
 GluArgAspGln ValSerAla LysTrpLys ThrSerLeuThr ValSerGly.
 151 GAAAGAGATC AAGTAAGCGC TAAATGGAAA ACATCACTTA CAGTTCTGG
 · LeuValThr GlyIleAlaPhe TrpHisTyr LeuTyrMet ArgGlyValTrp.
 201 TTTAGTTACT GGTATTGCAT TCTGGCATTA TCTCTATATG AGAGGTGTGT
 · IleGluThr GlyGluThr ProThrValPhe ArgTyrIle AspTrpLeu
 251 GGATCGAAAC CGGTGAAACA CCAACAGTAT TTAGATATAT TGATTGGTTG
 LeuThrValPro LeuLeuMet ValGluPhe TyrLeuIleLeu AlaAlaCys.
 301 CTAACTGTTA CGTTACTAAT GGTTGAGTTC TACTTAATCC TCGCAGCTTG
 · ThrAsnVal AlaGlySerLeu PheLysLys LeuLeuIle GlySerLeuVal.
 351 CACTAATGTT GCAGGTTCAT TATTAAAGAA ACTACTAATT GGTCGCTTG
 · MetLeuIle AlaGlyTyr MetGlyGluSer GlyAsnLeu ProValLeu
 401 TAATGCTTAT TGCAGGATAT ATGGGTGAGT CTGGAAATCT TCCAGTATTG
 ProAlaPheLeu IleGlyCys AlaAlaTrp LeuTyrMetIle TyrGluLeu.
 451 CCTGCATTCC TTATTGGGTG CGCAGCATGG TTATACATGA TTTATGAACT
 · TyrAlaGly GluGlyLysAla AlaValThr ThrAlaSer ProAlaValMet.
 501 ATATGCTGGT GAAGGTAAGG CTGCAGTTAC TACTGCTAGT CCTGCTGTTA
 · SerAlaTyr AsnThrMet MetLeuIleIle ValValGly TrpAlaIle
 551 TGTCTGCATA CAATACTATG ATGTTGATTA TCGTAGTAGG TTGGGCAATA
 TyrProAlaGly TyrAlaAla GlyTyrLeu MetGlyGlyAsp GlyValTyr.
 601 TACCCAGCTG GATATGCTGC TGGTTACTTA ATGGGTGGAG ATGGCGTATA
 · AlaGlnAsn LeuAsnValIle TyrAsnLeu AlaAspPhe ValAsnLysIle.
 651 TGCTCAGAACAT TTAAACGTTA TATATAACCT TGCTGACTTT GTTAACAAGA
 · LeuPheGly LeuValIle TrpHisValAla ValLysGlu SerSerAsn
 701 TTTTATTGTTGG TTTAGTTATC TGGCATGTTG CTGTTAAAGA ATCTTCTAAT
 Ala
 751 GCTA

Figure 1-75

SerLysLysLeu LeuAlaThr PheLeuVal ValThrSerIle ProAlaIle.
 1 AGCAAGAAC TTCTTGCAC ATTCTAGTA GTAACATCAA TACCAGCAAT
 · AlaLeuAla GlyGlyHisSer SerGlyGly LeuAlaGly AspAspCysVal.
 51 AGCATTAGCT GGTGGGCATT CATCTGGTGG TTTAGCAGGA GATGACTGCG
 · GlyValThr PheTrpIle IleSerMetAla MetValAla SerThrVal
 101 TAGGTGTTAC TTTCTGGATT ATTCTATGG CTATGGTTGC TTCAACAGTA
 PhePheIleVal GluArgAsp ArgValSer AlaLysTrpLys ThrSerLeu.
 151 TTCTTATTG TTGAGCGTGA CAGAGTTAGT GCGAAATGGA AAACATCATT
 · ThrValSer AlaLeuMetThr LeuIleAla AlaValHis TyrPheTyrMet.
 201 AACAGTATCA GCGCTTATGA CTTAACATCGC AGCTGTTCAC TATTCTACA
 · ArgAspVal TrpValAla ThrGlyGluSer ProThrVal PheArgTyr
 251 TGAGAGATGT TTGGGTAGCA ACTGGCGAAT CACCAACAGT CTTTAGATAT
 IleAspTrpLeu LeuThrVal ProLeuLeu MetIleGluPhe TyrPheIle.
 301 ATAGATTGGT TGTTAACAGT TCCACTTCTA ATGATTGAGT TCTACTTTAT
 · LeuAlaAla ValThrThrVal SerSerGly IlePheTrp ArgLeuLeuVal.
 351 CTTAGCAGCG GTTACAAC TG TATCTTCAGG AATTTCTGG AGATTACTAG
 · GlyThrVal IleMetLeu ValGlyGlyTyr LeuGlyGlu AlaGlyMet
 401 TAGGTACTGT AATAATGCTA GTAGGTGGAT ACTTAGGTGA AGCTGGAATG
 IleSerValMet ThrGlyPhe IleIleGly MetIleGlyTrp LeuTyrIle.
 451 ATTTCGGTAA TGACAGGTTT CATTATAGGG ATGATAGGTT GGCTATACAT
 · LeuTyrGlu IlePheAlaGly GluAlaSer LysAlaAsn AlaSerSerGly.
 501 TCTTTATGAA ATCTTGCGAG GTGAAGCTAG CAAAGCAAAT GCTTCTAGTG
 · SerAlaAla CysGlnThr AlaPheGlyAla LeuArgLeu IleValThr
 551 GAAGTGCAGC TTGTCAAACA GCCTTGGAG CTTTACGTTT AATCGTAACC
 IleGlyTrpAla IleTyrPro LeuGlyTyr PheLeuGlyTyr LeuGlyGly.
 601 ATTGGTTGGG CAATTATCC GCTAGGATAT TTCTTAGGTT ATCTAGGCAG
 · GlyAlaAsp ProAlaThrLeu AsnIleVal TyrAsnLeu AlaAspPheVal.
 651 TGGGGCAGAC CCAGCTACAT TAAACATTGT TTACAACCTTA GCTGACTTTG
 · AsnLysIle AlaPheGly LeuIleIleTrp AlaAlaAla ValLysGlu
 701 TAAACAAAAT TGCTTTGGT TTAATTATAT GGGCAGCAGC TGTTAAAGAA
 SerSerAsnAla
 751 TCTTCTAATG CTA

Figure 1-76

SerLysLysLeu LeuAlaThr PheLeuVal ValThrSerIle ProAlaIle.
 1 AGCAAGAAC TTCTTGCAC ATTCTAGTA GTAACATCAA TACCAGCAAT
 · AlaLeuAla GlyGlyHisSer SerGlyGly LeuAlaGly AspAspTyrVal.
 51 AGCATTAGCT GGTGGGCATT CATCTGGTGG TTTAGCAGGA GATGACTACG
 · GlyValThr PheTrpIle IleSerMetAla MetValAla SerThrVal
 101 TAGGTGTTAC TTTCTGGATT ATTCTATGG CTATGGTTGC TTCAACAGTA
 PhePheIleVal GluArgAsp ArgValSer AlaLysTrpLys ThrSerLeu.
 151 TTCTTATTG TTGAGCGTGA CAGAGTTAGT GCGAAATGGA AAACATCATT
 · ThrValSer AlaLeuValThr LeuIleAla AlaValHis TyrPheTyrMet.
 201 AACAGTATCA GCGCTTGTGA CTTAACATCGC AGCTGTTCAC TATTCTACA
 · ArgAspVal TrpValAla ThrGlyGluSer ProThrVal PheArgTyr
 251 TGAGAGATGT TTGGGTAGCA ACTGGCGAAT CACCAACAGT CTTTAGATAT
 IleAspTrpLeu LeuThrVal ProLeuLeu MetIleGluPhe TyrPheIle.
 301 ATAGATTGGT TGTAAACAGT TCCACTTCTA ATGATTGAGT TCTACTTTAT
 · LeuAlaAla ValThrThrVal SerSerGly IlePheTrp ArgLeuLeuVal.
 351 CTTAGCAGCG GTTACAAC TG TATCTTCAGG AATTTCTGG AGATTACTAG
 · GlyThrVal IleMetLeu ValGlyGlyTyr LeuGlyGlu AlaGlyMet
 401 TAGGTACTGT AATAATGCTA GTAGGTGGAT ACTTAGGTGA AGCTGGAATG.
 IleSerValMet ThrGlyPhe IleIleGly MetIleGlyTrp LeuTyrIle.
 451 ATTTCGGTAA TGACAGGTTT CATTATAGGG ATGATAGGTT GGCTATACAT
 · LeuTyrGlu IlePheAlaGly GluAlaSer LysAlaAsn AlaSerSerGly.
 501 TCTTTATGAA ATCTTTGCAG GTGAAGCTAG CAAAGCAAAT GCTTCTAGTG
 · SerAlaAla CysGlnThr AlaPheGlyAla LeuArgLeu IleValThr
 551 GAAAGTGCAGC TTGTCAAACA GCCTTGGAG CTTTACGTTT AATCGTAACC
 IleGlyTrpAla IleTyrPro LeuGlyTyr PheLeuGlyTyr LeuGlyGly.
 601 ATTGGTTGGG CAATTATCC GCTAGGATAT TTCTTAGGTT ATCTAGGCGG
 · GlyAlaAsp ProAlaThrLeu AsnIleVal TyrAsnLeu AlaAspPheVal.
 651 TGGGGCAGAC CCAGCTACAT TAAACATTGT TTACAACCTA GCTGACTTTG
 · AsnLysIle AlaPheGly LeuIleIleTrp AlaAlaAla ValLysGlu
 701 TAAACAAAAT TGCTTTGGT TTAATTATAT GGGCAGCAGC TGTTAAAGAA
 SerSerAsnAla
 751 TCTTCTAACATG CTA

Figure 1-77

SerLysLysPhe PheSerThr LeuLeuLeu ValThrSerLeu ProThrLeu.
 1 AGCAAAAGT TTTTTTCGAC GCTTCTATT A GTAACATCCT TGCCAACTTT
 · AlaLeuAla GlyGlyHisSer SerGlyLeu AlaGlyAsp AspTyrValGly.
 51 AGCTTTAGCA GGTGGGCATT CATCTGGTCT TGCTGGAGAT GACTATGTAG
 · ValThrPhe TrpIleIle SerMetAlaMet ValAlaSer ThrValPhe
 101 GTGTTACTTT CTGGATTATT TCCATGGCTA TGGTTGCGTC AACAGTATT
 PheIleValGlu ArgAspArg ValSerSer LysTrpLysThr SerLeuThr.
 151 TTCATTGTGG AGCGTGACAG AGTTAGCTCA AAATGGAAAA CATCATTAAC
 · ValSerAla LeuValThrLeu IleAlaAla ValHisTyr PheTyrMetArg.
 201 AGTATCAGCT TTGGTTACAT TAATTGCTGC AGTGCATTAT TTTTATATGA
 · AspValTrp ValAlaThr GlyGluSerPro ThrValPhe ArgTyrIle
 251 GAGATGTATG GGTAGCAACT GGTGAATCAC CAACAGTATT TAGATATATA
 AspTrpLeuLeu ThrValPro LeuLeuMet IleGluPheTyr PheIleLeu.
 301 GATTGGTTAT TAACAGTGCC ACTATTAAATG ATTGAGTTCT ACTTTATTTT
 · AlaAlaVal ThrThrValSer SerGlyIle PheTrpArg LeuLeuIleGly.
 351 AGCAGCGGTA ACTACAGTTT CTTCAGGAAT ATTCTGGAGA CTATTAATTG
 · ThrValVal MetLeuVal GlyGlyTyrMet GlyGluAla GlyMetIle
 401 GTACAGTTGT AATGCTAGTA GGTGGGTATA TGGGTGAAGC TGGAATGATC
 SerValMetThr GlyPheIle IleGlyMet IleGlyTrpLeu TyrIleLeu.
 451 TCAGTGATGA CAGGTTTCAT TATCGGGATG ATCGGTTGGC TATATATTCT
 · TyrGluIle PheAlaGlyGlu AlaSerLys AlaAsnAla SerSerGlySer.
 501 TTACGAAATC TTTGCTGGTG AAGCTAGTAA AGCAAACGCT TCTAGTGGAA
 · AlaAlaCys GlnThrAla PheGlyAlaLeu ArgLeuIle ValThrVal
 551 GCGCAGCATG CCAAACAGCA TTTGGTGCCT TACGTTAAAT CGTTACAGTT
 GlyTrpAlaIle TyrProIle GlyTyrPhe ValGlyTyrLeu ThrGlyGly.
 601 GGTTGGCGA TCTATCCAAT AGGATACTTC GTAGGCTATC TAACTGGTGG
 · GlyAlaAsp AlaAlaThrLeu AsnIleVal TyrAsnLeu AlaAspPheVal.
 651 TGGTGCAGAC GCAGCTACAC TAAACATAGT TTACAACCTTA GCTGATTTG
 · AsnLysIle AlaPheGly LeuIleIleTrp AlaAlaAla ValLysGlu
 701 TAAACAAAAT TGCCTTTGGT TTAATCATAT GGGCAGCAGC TGTAAAGAA
 SerSerAsnAla
 751 TCTTCTAAATG CTA

Figure 1-78

SerLysLysPhe PheSerThr LeuLeuLeu ValThrSerLeu ProThrLeu.
 1 AGCAAAAGT TTTTCGAC GCTTCTATTA GTAACATCCT TGCCAACTTT
 · AlaLeuAla GlyGlyHisSer SerGlyLeu AlaGlyAsp AspTyrValGly.
 51 AGCTTAGCA GGTGGGCATT CATCTGGTCT TGCTGGAGAT GACTATGTAG
 · ValThrPhe TrpIleIle SerMetAlaMet ValAlaSer ThrValPhe
 101 GTGTTACTTT CTGGATTATT TCCATGGCTA TGGTTGCGTC AACAGTATTT
 PheIleValGlu ArgAspArg ValSerSer LysTrpLysThr SerLeuThr.
 151 TTCATTGTGG AGCGTGACAG AGTTAGCTCA AAATGGAAAA CATCATTAAC
 · ValSerAla LeuValThrLeu IleAlaAla ValHisTyr PheTyrMetArg.
 201 AGTATCAGCT TTGGTTACAT TAATTGCTGC AGTGCATTAT TTTTATATGA
 · AspValTrp ValAlaThr GlyGluSerPro ThrValPhe ArgTyrIle
 251 GAGATGTATG GGTAGCAACT GGTGAATCAC CAACAGTATT TAGATATATA
 AspTrpLeuLeu ThrValPro LeuLeuMet IleGluPheTyr PheIleLeu.
 301 GATTGGTTAT TAACAGTGCC ACTATTAAATG ATTGAGTTCT ACTTTATTTT
 · AlaAlaVal ThrThrValSer SerGlyIle PheTrpArg LeuLeuIleGly.
 351 AGCAGCGGTA ACTACAGTTT CTTCAGGAAT ATTCTGGAGA CTATTAATTG
 · ThrValVal MetLeuVal GlyGlyTyrMet GlyGluAla GlyMetIle
 401 GTACAGTTGT AATGCTAGTA GGTGGGTATA TGGGTGAAGC TGGAATGATC
 SerValMetThr GlyPheIle IleGlyMet IleGlyTrpLeu TyrIleLeu.
 451 TCAGTGATGA CAGGTTTCAT TATCGGGATG ATCGGTTGGC TATATATTCT
 · TyrGluIle PheAlaGlyGlu AlaSerLys AlaAsnAla SerSerGlySer.
 501 TTACGAAATC TTTGCTGGTG AAGCTAGTAA AGCAAACGCT TCTAGTGGAA
 · AlaAlaCys GlnThrAla PheGlyAlaLeu ArgLeuIle ValThrVal
 551 GCGCAGCATG CCAAACAGCA TTTGGTGCCT TACGTTTAAT CGTTACAGTT
 GlyTrpAlaIle TyrProIle GlyTyrPhe ValGlyTyrLeu ThrGlyGly.
 601 GGTTGGCGA TCTATCCAAT AGGATACTTC GTAGGCTATC TAACTGGTGG
 · GlyAlaAsp AlaAlaThrLeu AsnIleVal TyrAsnLeu AlaAspPheVal.
 651 TGGTGCAGAC GCAGCTACAC TAAACATAGT TTACAACCTTA GCTGATTGG
 · AsnLysIle AlaPheGly LeuIleIleTrp AlaAlaAla ValLysGlu
 701 TAAACAAAAT TGCCTTGTT TTAATCATAT GGGCAGCAGC TGTAAAGAA
 SerSerAsnAla
 751 TCTTCTAATG CTA

Figure 1-79

MetLysLeuLeu LeuIleLeu GlySerAla IleAlaLeuPro SerPheAla.
 1 ATGAAATTAT TATTGATCTT AGGTAGTGCT ATTGCACCTTC CATCATTG
 · AlaAlaGly GlyAspLeuAsp IleSerAsp ThrValGly ValSerPheTrp.
 51 TGCTGCTGGT GGCGATCTAG ATATAAGTGA TACTGTTGGT GTTCATTCT
 · LeuValThr AlaGlyMet LeuAlaAlaThr ValPhePhe PheValGlu
 101 GGCTGGTTAC AGCTGGTATG TTAGCGGCAA CTGTGTTCTT TTTTAGAA
 ArgAspGlnVal SerAlaLys TrpLysThr SerLeuThrVal SerGlyLeu.
 151 AGAGACCAAG TCAGCGCTAA GTGGAAAAGT TCACTTACTG TATCTGGTTT
 · IleThrGly IleAlaPheTrp HisTyrLeu TyrMetArg GlyValTrpIle.
 201 AATTACTGGT ATAGCTTTT GGCATTATCT CTATATGAGA GGTGTTGGAA
 · AspThrGly AspThrPro ThrValPheArg TyrIleAsp TrpLeuLeu
 251 TAGACACTGG TGATACCCCA ACAGTATTCA GATATATTGA TTGGTTATTA
 ThrValProLeu GlnMetVal GluPheTyr LeuIleLeuAla AlaCysThr.
 301 ACTGTTCCAT TACAAATGGT TGAGTTCTAT CTAATTCTTG CTGCTTGTAC
 · SerValAla AlaSerLeuPhe LysLysLeu LeuAlaGly SerLeuValMet.
 351 AAGTGGTGC GCTTCATTAT TTAAGAAGCT TCTAGCTGGT TCATTAGTAA
 · LeuGlyAla GlyPheAla GlyGluAlaGly LeuAlaPro ValLeuPro
 401 TGTTAGGTGC TGGATTTGCA GGCAGAGCTG GATTAGCTCC TGTATTACCT
 AlaPheIleIle GlyMetAla GlyTrpLeu TyrMetIleTyr GluLeuTyr.
 451 GCTTCATTA TTGGTATGGC TGGATGGTTA TACATGATT ATGAGCTATA
 · MetGlyGlu GlyLysAlaAla ValSerThr AlaSerPro AlaValAsnSer.
 501 TATGGGTGAA GGTAAAGGCTG CTGTAAGTAC TGCAAGTCCT GCTGTTAACT
 · AlaTyrAsn AlaMetMet MetIleIleVal ValGlyTrp AlailleTyr
 551 CTGCATACAA CGCAATGATG ATGATTATTG TTGGTGGATG GGCAATTAT
 ProAlaGlyTyr AlaAlaGly TyrLeuMet GlyGlyGlugly ValTyrAla.
 601 CCTGCTGGAT ATGCTGCTGG TTACCTAATG GGTGGCGAAG GTGTATACGC
 · SerAsnLeu AsnLeuIleTyr AsnLeuAla AspPheVal AsnLysIleLeu.
 651 TTCAAACCTTA AACCTTATAT ATAACCTTGC TGACTTTGTT AACAAAGATTC
 · PheGlyLeu IleIleTrp AsnValAlaVal LysGluSer SerAsnAla
 701 TATTGGTTT GATCATTGG AATGTTGCAG TTAAAGAACATC TAGTAATGCT

Figure 1-80

MetLysValLeu MetLeuAsn ProGlyAsp HisValAlaIle SerPheTrp.
 1 ATGAAAGTAT TAATGCTAAA TCCCGGAGAT CACGTTGCGA TTTCGTTTG
 · LeuIleSer MetAlaMetVal AlaAlaThr AlaPhePhe PheLeuGluArg.
 51 GTTGATCTCT ATGGCCATGG TTGCCGCTAC TGCTTTCTTC TTTCTTGAAA
 · AspArgVal AlaAlaLys TrpLysThrSer LeuThrVal AlaGlyLeu
 101 GAGATCGTGT AGCAGCTAAA TGGAAAACGT CCCTTACAGT AGCTGGTTTA
 ValThrGlyIle AlaAlaTrp HisTyrPhe TyrMetArgGly ValTrpVal.
 151 GTTACTGGTA TTGC GGCGTG GCACTACTTC TACATGAGAG GCGTATGGGT
 · AlaThrGly AspSerProThr ValLeuArg TyrIleAsp TrpLeuIleThr.
 201 TGCTACTGGT GACTCACCAA CTGTCCTTCG TTACATTGAC TGGTTGATTA
 · ValProLeu GlnIleVal GluPheTyrVal IleLeuAla AlaMetThr
 251 CTGTGCCTCT ACAAAATCGTA GAATTCTACG TAATTCTTGC AGCGATGACT
 AlaValAlaSer SerLeuPhe TrpArgLeu LeuIleAlaSer IleIleMet.
 301 GCTGTTGCTT CAAGCCTTT CTGGAGACTA TTAATTGCAT CAATTATTAT
 · LeuValPhe GlyTyrMetGly GluThrGly AlaMetAsn ValThrLeuAla.
 351 GCTTGTCTTT GGTTACATGG GTGAAA ACTGG AGCGATGAAT GTA ACTCTAG
 · PheValIle GlyMetAla GlyTrpLeuTyr IleIleTyr GluValPhe
 401 CCTTCGTAAT AGGTATGGCT GGATGGTTAT ACATCATCTA CGAGGTTTTT
 AlaGlyGluAla SerLysAla SerAlaGly SerGlyAsnAla AlaGlyGln.
 451 GCAGGTGAAG CAAGCAAGGC AAGTGCTGGT AGTGGAAACG CTGCTGGTCA
 · ThrAlaPhe AsnAlaLeuArg LeuIleVal ThrValGly TrpAlaIleTyr.
 501 GACTGCATT AACGCATTGA GATTAATTGT TACAGTAGGA TGGGCAATT
 · ProIleGly TyrAlaVal GlyTyrPheGly GlyGlyVal AspAlaGly
 551 ATCCAATTGG TTATGCTGTA GGTTACTTCG GTGGTGGCGT AGACGCCGGT
 SerLeuAsnLeu IleTyrAsn LeuAlaAsp PheValAsnLys IleAlaPhe.
 601 TCATTGAACT TAATCTATAA CCTTGCAGAC TTTGTTAATA AAATTGCATT
 · GlyMetAla IleTyrValAla AlaValSer AspSerAsn
 651 TGGTATGGCT ATTTATGTAG CTGCAGTATC AGACAGCAAC

Figure 1-81

MetLysLeuLeu LeuIleLeu GlySerVal IleAlaLeuPro ThrPheAla.
 1 ATGAAATTAT TACTGATATT AGGTAGTGGT ATTGCACCTTC CTACATTTGC
 · AlaGlyGly GlyAspLeuAsp AlaSerAsp TyrThrGly ValSerPheTrp.
 51 TGCAGGTGGT GGTGACCTTG ATGCTAGTGA TTACACTGGT GTTTCTTTT
 · LeuValThr AlaAlaLeu LeuAlaSerThr ValPhePhe PheValGlu
 101 GGTTAGTTAC TGCTGCTTTA TTAGCATCTA CTGTATTTT CTTTGTGAA
 ArgAspArgVal SerAlaLys TrpLysThr SerLeuThrVal SerGlyLeu.
 151 AGAGATAGAG TTTCTGCAAA ATGGAAAACA TCATTAAC TG TATCTGGTCT
 · ValThrGly IleAlaPheTrp LysTyrMet TyrMetArg GlyValTrpIle.
 201 TGTTACTGGT ATTGCTTTCT GGAAATACAT GTACATGAGA GGGGTATGGA
 · GluThrGly AspSerPro ThrValPheArg TyrIleAsp TrpLeuLeu
 251 TTGAAACTGG TGATTGCGCA ACTGTATTTA GATACATTGA TTGGTTACTA
 ThrValProLeu LeuIleCys GluPheTyr LeuIleLeuAla AlaAlaThr.
 301 ACAGTTCCCTC TATTAATATG TGAATTCTAC TTAATTCTG CTGCTGCAAC
 · AsnValAla GlySerLeuPhe LysLysLeu LeuValGly SerLeuValMet.
 351 TAATGTTGCT GGATCATTAT TTAAGAAATT ACTAGTTGGT TCTCTTGTAA
 · LeuValPhe GlyTyrMet GlyGluAlaGly IleMetAla AlaTrpPro
 401 TGCTTGTGTT TGTTTACATG GGTGAAGCAG GAATCATGGC TGCATGGCCT
 AlaPheIleIle GlyCysLeu AlaTrpVal TyrMetIleTyr GluLeuTrp.
 451 GCATTCACTTA TTGGGTGTTT AGCTTGGGTA TACATGATT ATGAATTATG
 · AlaGlyGlu GlyLysSerAla CysAsnThr AlaSerPro AlaValGlnSer.
 501 GGCTGGAGAA GGAAAATCTG CATGTAATAC TGCAAGTCCT GCTGTGCAAT
 · AlaTyrAsn ThrMetMet TyrIleIleIle PheGlyTrp AlaIleTyr
 551 CAGCTTACAA CACAATGATG TATATTATCA TCTTGGTTG GGCGATTAT
 ProValGlyTyr PheThrGly TyrLeuMet GlyAspGlyGly SerAlaLeu.
 601 CCTGTAGGTT ATTTCACAGG TTACCTGATG GGTGACGGTG GATCAGCTCT
 · AsnLeuAsn LeuIleTyrAsn LeuAlaAsp PheValAsn LysIleLeuPhe.
 651 TAACTTAAAC CTTATCTATA ACCTTGCTGA CTTTGTAAAC AAGATTCTAT
 · GlyLeuIle IleTrpAsn ValAlaValLys GluSerSer AsnAla***
 701 TTGGTTTAAT TATATGGAAT GTTGCTGTTA AAGAATCTTC TAATGCTTAA

Figure 2-1

MetLysLeuLeu LeuIleLeu GlySerVal IleAlaLeuPro ThrPheAla.
 1 ATGAAATTAT TACTGATATT AGGTAGTGGT ATTGCACCTTC CTACATTTGC
 · AlaGlyGly GlyAspLeuAsp AlaSerAsp TyrThrGly ValSerPheTrp.
 51 TGCAGGTGGT GGTGACCTTG ATGCTAGTGA TTACACTGGT GTTTCTTTT
 · LeuValThr AlaAlaLeu LeuAlaSerThr ValPhePhe PheValGlu
 101 GGTTAGTTAC TGCTGCTTTA TTAGCATCTA CTGTATTTT CTTTGTGAA
 ArgAspArgVal SerAlaLys TrpLysThr SerLeuThrVal SerGlyLeu.
 151 AGAGATAGAG TTTCTGCAAA ATGGAAAACA TCATTAAC TG TATCTGGTCT
 · ValThrGly IleAlaPheTrp AsnTyrMet TyrMetArg GlyValTrpIle.
 201 TGTTACTGGT ATTGCTTTCT GGAATTACAT GTACATGAGA GGGGTATGGA
 · GluThrGly AspSerPro ThrValPheArg TyrIleAsp TrpLeuLeu
 251 TTGAAACTGG TGATTCGCCA ACTGTATTTA GATACATTGA TTGGTTACTA
 ThrValProLeu LeuIleCys GluPheTyr LeuIleLeuAla AlaAlaThr.
 301 ACAGTTCCCTC TATTAATATG TGAATTCTAC TTAATTCTTG CTGCTGCAAC
 · AsnValAla GlySerLeuPhe LysLysLeu LeuValGly SerLeuValMet.
 351 TAATGTTGCT GGATCATTAT TTAAGAAATT ACTAGTTGGT TCTCTTGTAA
 · LeuValPhe GlyTyrMet GlyGluAlaGly IleMetAla AlaTrpPro
 401 TGCTTGTGTT TGTTTACATG GGTGAAGCAG GAATCATGGC TGCATGGCCT
 AlaPheIleIle GlyCysLeu AlaTrpVal TyrMetIleTyr GluLeuTrp.
 451 GCATTCATTA TTGGGTGTT AGCTTGGGTA TACATGATT ATGAATTATG
 · AlaGlyGlu GlyLysSerAla CysAsnThr AlaSerPro AlaValGlnSer.
 501 GGCTGGAGAA GGAAAATCTG CATGTAATAC TGCAAGTCCT GCTGTGCAAT
 · AlaTyrAsn ThrMetMet TyrIleIleIle PheGlyTrp AlaIleTyr
 551 CAGCTTACAA CACAATGATG TATATTATCA TCTTTGGTTG GGCGATTAT
 ProValGlyTyr PheThrGly TyrLeuMet GlyAspGlyGly SerAlaLeu.
 601 CCTGTAGGTT ATTTCACAGG TTACCTGATG GGTGACGGTG GATCAGCTCT
 · AsnLeuAsn LeuIleTyrAsn LeuAlaAsp PheValAsn LysIleLeuPhe.
 651 TAACTTAAAC CTTATCTATA ACCTTGCTGA CTTTGTAAAC AAGATTCTAT
 · GlyLeuIle IleTrpAsn ValAlaValLys GluSerSer AsnAla***
 701 TTGGTTAAC TATATGGAAT GTTGCTGTTA AAGAATCTTC TAATGCTTAA

Figure 2-2

MetLysLeuLeu LeuIleLeu GlySerVal IleAlaLeuPro ThrPheAla.
 1 ATGAAATTAT TACTGATATT AGGTAGTGGT ATTGCACCTTC CTACATTTGC
 · AlaGlyGly GlyAspLeuAsp AlaSerAsp TyrThrGly ValSerPheTrp.
 51 TGCAGGTGGT GGTGACCTTG ATGCTAGTGA TTACACTGGT GTTTCTTTTT
 · LeuValThr AlaAlaLeu LeuAlaSerThr ValPhePhe PheValGlu
 101 GGTTAGTTAC TGCTGCTTTA TTAGCATCTA CTGTATTTT CTTTGTGAA
 ArgAspArgVal SerAlaLys TrpLysThr SerLeuThrVal SerGlyLeu.
 151 AGAGATAGAG TTTCTGCAAATGGAAAACA TCATTAAC TG TATCTGGTCT
 · ValThrGly IleAlaPheTrp GlnTyrMet TyrMetArg GlyValTrpIle.
 201 TGTTACTGGT ATTGCTTCT GGCAGTACAT GTACATGAGA GGGGTATGGA
 · GluThrGly AspSerPro ThrValPheArg TyrIleAsp TrpLeuLeu
 251 TTGAAACTGG TGATTGCCA ACTGTATTTA GATACATTGA TTGGTTACTA
 ThrValProLeu LeuIleCys GluPheTyr LeuIleLeuAla AlaAlaThr.
 301 ACAGTTCCCTC TATTAATATG TGAATTCTAC TTAATTCTTG CTGCTGCAAC
 · AsnValAla GlySerLeuPhe LysLysLeu LeuValGly SerLeuValMet.
 351 TAATGTTGCT GGATCATTAT TTAAGAAATT ACTAGTTGGT TCTCTTGTAA
 · LeuValPhe GlyTyrMet GlyGluAlaGly IleMetAla AlaTrpPro
 401 TGCTTGTGTT TGTTTACATG GGTGAAGCAG GAATCATGGC TGCATGGCCT
 AlaPheIleIle GlyCysLeu AlaTrpVal TyrMetIleTyr GluLeuTrp.
 451 GCATTCATTA TTGGGTGTT AGCTTGGGTA TACATGATTAT ATGAATTATG
 · AlaGlyGlu GlyLysSerAla CysAsnThr AlaSerPro AlaValGlnSer.
 501 GGCTGGAGAA GGAAAATCTG CATGTAATAC TGCAAGTCCT GCTGTGCAAT
 · AlaTyrAsn ThrMetMet TyrIleIleIle PheGlyTrp AlaIleTyr
 551 CAGCTTACAA CACAATGATG TATATTATCA TCTTTGGTTG GGCGATTAT
 ProValGlyTyr PheThrGly TyrLeuMet GlyAspGlyGly SerAlaLeu.
 601 CCTGTAGGTT ATTTCACAGG TTACCTGATG GGTGACGGTG GATCAGCTCT
 · AsnLeuAsn LeuIleTyrAsn LeuAlaAsp PheValAsn LysIleLeuPhe.
 651 TAACTTAAAC CTTATCTATA ACCTTGCTGA CTTTGTAAAC AAGATTCTAT
 · GlyLeuIle IleTrpAsn ValAlaValLys GluSerSer AsnAla***
 701 TTGGTTAAC TATATGGAAT GTTGCTGTTA AAGAATCTTC TAATGCTTAA

Figure 2-3

ThrMetGlyLys LeuLeuLeu IleLeuGly SerAlaIleAla LeuProSer.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGCCTATTG CACTTCCATC
 · PheAlaAla AlaGlyGlyAsp LeuAspIle SerAspThr ValGlyValSer.
 51 ATTTGCTGCT GCTGGTGGCG ATCTAGATAT AAGTGATACT GTTGGTGT
 · PheTrpLeu ValThrAla GlyMetLeuAla AlaThrVal PhePhePhe
 101 CATTCTGGCT GGTTACAGCT GGTATGTTAG CGGCAACTGT GTTCTTTTT
 ValGluArgAsp GlnValSer AlaLysTrp LysThrSerLeu AlaValSer.
 151 GTAGAAAGAG ACCAAGTCAG CGCTAACGTGG AAAACTTCAC TTGCTGTATC
 · GlyLeuIle ThrGlyIleAla PheTrpLys TyrLeuTyr MetArgGlyVal.
 201 TGGTTTAATT ACTGGTATAG CTTTTGGAA ATATCTCTAT ATGAGAGGTG
 · TrpIleAsp ThrGlyAsp ThrProThrVal PheArgTyr IleAspTrp
 251 TTTGGATAGA CACTGGTGAT ACCCCAACAG TATTCAAGATA TATTGATTGG
 LeuLeuThrVal ProLeuGln MetValGlu PheTyrLeuIle LeuAlaAla.
 301 TTATTAACATG TTCCATTACA AATGGTTGAG TTCTATCTAA TTCTTGCTGC
 · CysThrSer ValAlaAlaSer LeuPheLys LysLeuLeu AlaGlySerLeu.
 351 TTGTACAAGT GTTGCTGCCT CATTATTAA GAAGCTTCTA GCTGGTTCAT
 · ValMetLeu GlyAlaGly PheAlaGlyGlu AlaGlyLeu AlaProVal
 401 TAGTAATGTT AGGTGCTGGA TTTGCAGGCG AAGCTGGATT AGCTCCTGTA
 LeuProAlaPhe IleIleGly MetAlaGly TrpLeuTyrMet IleTyrGlu.
 451 TTACCTGCTT TCATTATTGG TATGGCTGGA TGTTTATACA TGATTTATGA
 · LeuTyrMet GlyGluGlyLys AlaAlaVal SerThrAla SerProAlaVal.
 501 GCTATATATG GGTGAAGGTA AGGCTGCTGT AAGTACTGCA AGTCCTGCTG
 · AsnSerAla TyrAsnAla MetMetMetIle IleValVal GlyTrpAla
 551 TAACTCTGC ATACAACGCA ATGATGATGA TTATTGTTGT TGGATGGGCA
 IleTyrProAla GlyTyrAla AlaGlyTyr LeuMetGlyGly GluGlyVal.
 601 ATTTATCCTG CTGGATATGC TGCTGGTTAC CTAATGGGTG GCGAAGGTGT
 · TyrAlaSer AsnLeuAsnLeu IleTyrAsn LeuAlaAsp LeuValAsnLys.
 651 ATACGCTTCA AACTAAACC TTATATATAA CCTTGCCGAC CTTGTTAACAA
 · IleLeuPhe GlyLeuIle IleTrpAsnVal AlaValLys GluSerSer
 701 AGATTCTATT TGGTTTGATC ATTTGGAATG TTGCTGTTAA AGAATCTTCT
 AsnAla
 751 AATGCT

Figure 2-4

ThrMetGlyLys LeuLeuLeu IleLeuGly SerAlaIleAla LeuProSer.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGCTATTG CACTTCCATC
 · PheAlaAla AlaGlyGlyAsp LeuAspIle SerAspThr ValGlyValSer.
 51 ATTTGCTGCT GCTGGTGGCG ATCTAGATAT AAGTGATACT GTTGGTGT
 · PheTrpLeu ValThrAla GlyMetLeuAla AlaThrVal PhePhePhe
 101 CATTCTGGCT GGTACAGCT GGTATGTTAG CGGCAACTGT GTTCTTTTT
 ValGluArgAsp GlnValSer AlaLysTrp LysThrSerLeu AlaValSer.
 151 GTAGAAAGAG ACCAAGTCAG CGCTAAGTGG AAAACTTCAC TTGCTGTATC
 · GlyLeuIle ThrGlyIleAla PheTrpAsn TyrLeuTyr MetArgGlyVal.
 201 TGGTTTAATT ACTGGTATAG CTTTTGGAA TTATCTCTAT ATGAGAGGTG
 · TrpIleAsp ThrGlyAsp ThrProThrVal PheArgTyr IleAspTrp
 251 TTTGGATAGA CACTGGTGAT ACCCCAACAG TATTAGATA TATTGATTGG
 LeuLeuThrVal ProLeuGln MetValGlu PheTyrLeuIle LeuAlaAla.
 301 TTATTAAC TG TTCCATTACA AATGGTTGAG TTCTATCTAA TTCTTGCTGC
 · CysThrSer ValAlaAlaSer LeuPheLys LysLeuLeu AlaGlySerLeu.
 351 TTGTACAAGT GTTGCTGCCT CATTATTTAA GAAGCTTCTA GCTGGTTCAT
 · ValMetLeu GlyAlaGly PheAlaGlyGlu AlaGlyLeu AlaProVal
 401 TAGTAATGTT AGGTGCTGGA TTTGCAGGCG AAGCTGGATT AGCTCCTGTA
 LeuProAlaPhe IleIleGly MetAlaGly TrpLeuTyrMet IleTyrGlu.
 451 TTACCTGCTT TCATTATTGG TATGGCTGGA TGGTTATACA TGATTATGA
 · LeuTyrMet GlyGluGlyLys AlaAlaVal SerThrAla SerProAlaVal.
 501 GCTATATATG GGTGAAGGTA AGGCTGCTGT AAGTACTGCA AGTCCTGCTG
 · AsnSerAla TyrAsnAla MetMetMetIle IleValVal GlyTrpAla
 551 TTAACCTCTGC ATACAACGCA ATGATGATGA TTATTGTTGT TGGATGGGCA
 IleTyrProAla GlyTyrAla AlaGlyTyr LeuMetGlyGly GluGlyVal.
 601 ATTTATCCTG CTGGATATGC TGCTGGTTAC CTAATGGGTG GCGAAGGTGT
 · TyrAlaSer AsnLeuAsnLeu IleTyrAsn LeuAlaAsp LeuValAsnLys.
 651 ATACGCTTCA AACTTAAACC TTATATATAA CCTTGCCGAC CTTGTTAAC
 · IleLeuPhe GlyLeuIle IleTrpAsnVal AlaValLys GluSerSer
 701 AGATTCTATT TGGTTTGATC ATTTGGAATG TTGCTGTTAA AGAATCTTCT
 AsnAla
 751 AATGCT

Figure 2-5

ThrMetGlyLys LeuLeuLeu IleLeuGly SerAlaIleAla LeuProSer.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGCTATTG CACTTCCATC
 · PheAlaAla AlaGlyGlyAsp LeuAspIle SerAspThr ValGlyValSer.
 51 ATTTGCTGCT GCTGGTGGCG ATCTAGATAT AAGTGATACT GTTGGTGT
 · PheTrpLeu ValThrAla GlyMetLeuAla AlaThrVal PhePhePhe
 101 CATTCTGGCT GGTACAGCT GGTATGTTAG CGGCAACTGT GTTCTTTTT
 ValGluArgAsp GlnValSer AlaLysTrp LysThrSerLeu AlaValSer.
 151 GTAGAAAGAG ACCAAGTCAG CGCTAACGTGG AAAACTTCAC TTGCTGTATC
 · GlyLeuIle ThrGlyIleAla PheTrpGln TyrLeuTyr MetArgGlyVal.
 201 TGGTTTAATT ACTGGTATAG CTTTTTGGCA GTATCTCTAT ATGAGAGGTG
 · TrpIleAsp ThrGlyAsp ThrProThrVal PheArgTyr IleAspTrp
 251 TTTGGATAGA CACTGGTGAT ACCCCAACAG TATTCAAGATA TATTGATTGG
 LeuLeuThrVal ProLeuGln MetValGlu PheTyrLeuIle LeuAlaAla.
 301 TTATTAACGT TTCCATTACA AATGGTTGAG TTCTATCTAA TTCTTGCTGC
 · CysThrSer ValAlaAlaSer LeuPheLys LysLeuLeu AlaGlySerLeu.
 351 TTGTACAAGT GTTGCTGCTT CATTATTAA GAAGCTTCTA GCTGGTTCAT
 · ValMetLeu GlyAlaGly PheAlaGlyGlu AlaGlyLeu AlaProVal
 401 TAGTAATGTT AGGTGCTGGA TTTGCAGGCG AAGCTGGATT AGCTCCTGTA
 LeuProAlaPhe IleIleGly MetAlaGly TrpLeuTyrMet IleTyrGlu.
 451 TTACCTGCTT TCATTATTGG TATGGCTGGA TGGTTATACA TGATTTATGA
 · LeuTyrMet GlyGluGlyLys AlaAlaVal SerThrAla SerProAlaVal.
 501 GCTATATATG GGTGAAGGTA AGGCTGCTGT AAGTACTGCA AGTCCTGCTG
 · AsnSerAla TyrAsnAla MetMetMetIle IleValVal GlyTrpAla
 551 TTAACCTCTGC ATACAACGCA ATGATGATGA TTATTGTTGT TGGATGGGCA
 IleTyrProAla GlyTyrAla AlaGlyTyr LeuMetGlyGly GluGlyVal.
 601 ATTTATCCTG CTGGATATGC TGCTGGTTAC CTAATGGGTG GCGAAGGTGT
 · TyrAlaSer AsnLeuAsnLeu IleTyrAsn LeuAlaAsp LeuValAsnLys.
 651 ATACGCTTCA AACTTAAACC TTATATATAA CCTTGCCGAC CTTGTTAAC
 · IleLeuPhe GlyLeuIle IleTrpAsnVal AlaValLys GluSerSer
 701 AGATTCTATT TGGTTTGATC ATTTGGAATG TTGCTGTTAA AGAATCTTCT
 AsnAla
 751 AATGCT

Figure 2-6

ThrMetGlyLys LeuLeuLeu IleLeuGly SerAlaIleAla LeuProSer.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGCTATTG CACTTCCATC
 • PheAlaAla AlaGlyGlyAsp LeuAspIle SerAspThr ValGlyValSer.
 51 ATTTGCTGCT GCTGGTGGCG ATCTAGATAT AAGTGATACT GTTGGTGT
 • PheTrpLeu ValThrAla GlyMetLeuAla AlaThrVal PhePhePhe
 101 CATTCTGGCT GGTACAGCT GGTATGTTAG CGGCAACTGT GTTCTTTTT
 ValGluArgAsp GlnValSer AlaLysTrp LysThrSerLeu AlaValSer.
 151 GTAGAAAGAG ACCAAGTCAG CGCTAAGTGG AAAACTTCAC TTGCTGTATC
 • GlyLeuIle ThrGlyIleAla PheTrpGlu TyrLeuTyr MetArgGlyVal.
 201 TGGTTTAATT ACTGGTATAG CTTTTGGGA ATATCTCTAT ATGAGAGGTG
 • TrpIleAsp ThrGlyAsp ThrProThrVal PheArgTyr IleAspTrp
 251 TTTGGATAGA CACTGGTGAT ACCCCAACAG TATTAGATA TATTGATTGG
 LeuLeuThrVal ProLeuGln MetValGlu PheTyrLeuIle LeuAlaAla.
 301 TTATTAAC TG TTCCATTACA AATGGTTGAG TTCTATCTAA TTCTTGCTGC
 • CysThrSer ValAlaAlaSer LeuPheLys LysLeuLeu AlaGlySerLeu.
 351 TTGTACAAGT GTTGCTGCCT CATTATTTAA GAAGCTTCTA GCTGGTTCAT
 • ValMetLeu GlyAlaGly PheAlaGlyGlu AlaGlyLeu AlaProVal
 401 TAGTAATGTT AGGTGCTGGA TTTGCAGGCG AAGCTGGATT AGCTCCTGTA
 LeuProAlaPhe IleIleGly MetAlaGly TrpLeuTyrMet IleTyrGlu.
 451 TTACCTGCTT TCATTATTGG TATGGCTGGA TGGTTATACA TGATTATGA
 • LeuTyrMet GlyGluGlyLys AlaAlaVal SerThrAla SerProAlaVal.
 501 GCTATATATG GGTGAAGGTA AGGCTGCTGT AAGTACTGCA AGTCCTGCTG
 • AsnSerAla TyrAsnAla MetMetMetIle IleValVal GlyTrpAla
 551 TTAACCTCTGC ATACAACGCA ATGATGATGA TTATTGTTGT TGGATGGGCA
 IleTyrProAla GlyTyrAla AlaGlyTyr LeuMetGlyGly GluGlyVal.
 601 ATTTATCCTG CTGGATATGC TGCTGGTTAC CTAATGGGTG GCGAAGGTGT
 • TyrAlaSer AsnLeuAsnLeu IleTyrAsn LeuAlaAsp LeuValAsnLys.
 651 ATACGCTTCA AACTTAAACC TTATATATAA CCTTGCCGAC CTTGTTAACAA
 • IleLeuPhe GlyLeuIle IleTrpAsnVal AlaValLys GluSerSer
 701 AGATTCTATT TGGTTTGATC ATTTGGAATG TTGCTGTTAA AGAATCTTCT
 AsnAla
 751 AATGCT

Figure 2-7

ThrMetGlyLys LeuLeuLeu IleLeuGly SerAlaIleAla LeuProSer.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGCTATTG CACTTCCATC
 • PheAlaAla AlaGlyGlyAsp LeuAspIle SerAspThr ValGlyValSer.
 51 ATTTGCTGCT GCTGGTGGCG ATCTAGATAT AAGTGATACT GTTGGTGT
 • PheTrpLeu ValThrAla GlyMetLeuAla AlaThrVal PhePhePhe
 101 CATTCTGGCT GGTTACAGCT GGTATGTTAG CGGCAACTGT GTTCTTTTT
 ValGluArgAsp GlnValSer AlaLysTrp LysThrSerLeu AlaValSer.
 151 GTAGAAAGAG ACCAAGTCAG CGCTAACGTGG AAAACTTCAC TTGCTGTATC
 • GlyLeuIle ThrGlyIleAla PheTrpTrp TyrLeuTyr MetArgGlyVal.
 201 TGGTTTAATT ACTGGTATAG CTTTTGGTG GTATCTCTAT ATGAGAGGTG
 • TrpIleAsp ThrGlyAsp ThrProThrVal PheArgTyr IleAspTrp
 251 TTTGGATAGA CACTGGTGAT ACCCCAACAG TATTCAAGATA TATTGATTGG
 LeuLeuThrVal ProLeuGln MetValGlu PheTyrLeuIle LeuAlaAla.
 301 TTATTAAC TG TTCCATTACA AATGGTTGAG TTCTATCTAA TTCTTGCTGC
 • CysThrSer ValAlaAlaSer LeuPheLys LysLeuLeu AlaGlySerLeu.
 351 TTGTACAAGT GTTGCTGCCT CATTATTAA GAAGCTTCTA GCTGGTTCAT
 • ValMetLeu GlyAlaGly PheAlaGlyGlu AlaGlyLeu AlaProVal
 401 TAGTAATGTT AGGTGCTGGA TTTGCAGGCG AAGCTGGATT AGCTCCTGTA
 LeuProAlaPhe IleIleGly MetAlaGly TrpLeuTyrMet IleTyrGlu.
 451 TTACCTGCTT TCATTATTGG TATGGCTGGA TGTTTATACA TGATTTATGA
 • LeuTyrMet GlyGluGlyLys AlaAlaVal SerThrAla SerProAlaVal.
 501 GCTATATATG GGTGAAGGTA AGGCTGCTGT AAGTACTGCA AGTCCTGCTG
 • AsnSerAla TyrAsnAla MetMetMetIle IleValVal GlyTrpAla
 551 TTAACCTCTGC ATACAACGCA ATGATGATGA TTATTGTTGT TGGATGGGCA
 IleTyrProAla GlyTyrAla AlaGlyTyr LeuMetGlyGly GluGlyVal.
 601 ATTTATCCTG CTGGATATGC TGCTGGTTAC CTAATGGGTG GCGAAGGTGT
 • TyrAlaSer AsnLeuAsnLeu IleTyrAsn LeuAlaAsp LeuValAsnLys.
 651 ATACGCTTCA AACTTAAACC TTATATATAA CCTTGCCGAC CTTGTTAAC
 • IleLeuPhe GlyLeuIle IleTrpAsnVal AlaValLys GluSerSer
 701 AGATTCTATT TGGTTTGATC ATTTGGAATG TTGCTGTTAA AGAATCTTCT
 AsnAla
 751 AATGCT

Figure 2-8

ThrMetGlyLys LeuLeuLeu IleLeuGly SerAlaIleAla LeuProSer.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGCTATTG CACTTCCATC
 • PheAlaAla AlaGlyGlyAsp LeuAspIle SerAspThr ValGlyValSer.
 51 ATTTGCTGCT GCTGGTGGCG ATCTAGATAT AAGTGATACT GTTGGTGT
 • PheTrpLeu ValThrAla GlyMetLeuAla AlaThrVal PhePhePhe
 101 CATTCTGGCT GGTTACAGCT GGTATGTTAG CGGCAACTGT GTTCTTTTT
 ValGluArgAsp GlnValSer AlaLysTrp LysThrSerLeu AlaValSer.
 151 GTAGAAAGAG ACCAAGTCAG CGCTAACGTGG AAAACTTCAC TTGCTGTATC
 • GlyLeuIle ThrGlyIleAla PheTrpHis TyrLeuTyr MetArgGlyVal.
 201 TGGTTTAATT ACTGGTATAG CTTTTGGCA TTATCTCTAT ATGAGAGGTG
 • TrpIleAsp ThrGlyAsp ThrProThrVal PheAlaTyr IleAspTrp
 251 TTTGGATAGA CACTGGTGAT ACCCCAACAG TATTGCGATA TATTGATTGG
 LeuLeuThrVal ProLeuGln MetValGlu PheTyrLeuIle LeuAlaAla.
 301 TTATTAACGT TTCCATTACA AATGGTTGAG TTCTATCTAA TTCTTGCTGC
 • CysThrSer ValAlaAlaSer LeuPheLys LysLeuLeu AlaGlySerLeu.
 351 TTGTACAAGT GTTGCTGCTT CATTATTAA GAAGCTTCTA GCTGGTTCAT
 • ValMetLeu GlyAlaGly PheAlaGlyGlu AlaGlyLeu AlaProVal
 401 TAGTAATGTT AGGTGCTGGA TTTGCAGGCG AAGCTGGATT AGCTCCTGTA
 LeuProAlaPhe IleIleGly MetAlaGly TrpLeuTyrMet IleTyrGlu.
 451 TTACCTGCTT TCATTATTGG TATGGCTGGA TGTTTATACA TGATTTATGA
 • LeuTyrMet GlyGluGlyLys AlaAlaVal SerThrAla SerProAlaVal.
 501 GCTATATATG GGTGAAGGTA AGGCTGCTGT AAGTACTGCA AGTCCTGCTG
 • AsnSerAla TyrAsnAla MetMetMetIle IleValVal GlyTrpAla
 551 TAACTCTGC ATACAACGCA ATGATGATGA TTATTGTTGT TGGATGGGCA
 IleTyrProAla GlyTyrAla AlaGlyTyr LeuMetGlyGly GluGlyVal.
 601 ATTTATCCTG CTGGATATGC TGCTGGTTAC CTAATGGGTG GCGAAGGTGT
 • TyrAlaSer AsnLeuAsnLeu IleTyrAsn LeuAlaAsp LeuValAsnLys.
 651 ATACGCTTCA AACCTAAACC TTATATATAA CCTTGCCGAC CTTGTTAACAA
 • IleLeuPhe GlyLeuIle IleTrpAsnVal AlaValLys GluSerSer
 701 AGATTCTATT TGGTTTGATC ATTGGAATG TTGCTGTTAA AGAATCTTCT
 AsnAla
 751 AATGCT

Figure 2-9

ThrMetGlyLys LeuLeuLeu IleLeuGly SerAlaIleAla LeuProSer.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGCTATTG CACTTCCATC
 · PheAlaAla AlaGlyGlyAsp LeuAspIle SerAspThr ValGlyValSer.
 51 ATTTGCTGCT GCTGGTGGCG ATCTAGATAT AAGTGATACT GTTGGTGT
 · PheTrpLeu ValThrAla GlyMetLeuAla AlaThrVal PhePhePhe
 101 CATTCTGGCT GGTTACAGCT GGTATGTTAG CGGCAACTGT GTTCTTTTT
 ValGluArgAsp GlnValSer AlaLysTrp LysThrSerLeu AlaValSer.
 151 GTAGAAAGAG ACCAAGTCAG CGCTAACGTGG AAAACTTCAC TTGCTGTATC
 · GlyLeuIle ThrGlyIleAla PheTrpHis TyrLeuTyr MetArgGlyVal.
 201 TGGTTTAATT ACTGGTATAG CTTTTGGCA TTATCTCTAT ATGAGAGGTG
 · TrpIleAsp ThrGlyAsp ThrProThrVal PheGluTyr IleAspTrp
 251 TTTGGATAGA CACTGGTGAT ACCCCAACAG TATTGAAATA TATTGATTGG
 LeuLeuThrVal ProLeuGln MetValGlu PheTyrLeuIle LeuAlaAla.
 301 TTATTAAC TG TTCCATTACA AATGGTTGAG TTCTATCTAA TTCTTGCTGC
 · CysThrSer ValAlaAlaSer LeuPheLys LysLeuLeu AlaGlySerLeu.
 351 TTGTACAAGT GTTGCTGCTT CATTATTAA GAAGCTTCTA GCTGGTTCAT
 · ValMetLeu GlyAlaGly PheAlaGlyGlu AlaGlyLeu AlaProVal
 401 TAGTAATGTT AGGTGCTGGA TTTGCAGGCG AAGCTGGATT AGCTCCTGTA
 LeuProAlaPhe IleIleGly MetAlaGly TrpLeuTyrMet IleTyrGlu.
 451 TTACCTGCTT TCATTATTGG TATGGCTGGA TGGTTATACA TGATTTATGA
 · LeuTyrMet GlyGluGlyLys AlaAlaVal SerThrAla SerProAlaVal.
 501 GCTATATATG GGTGAAGGTA AGGCTGCTGT AAGTACTGCA AGTCCTGCTG
 · AsnSerAla TyrAsnAla MetMetMetIle IleValVal GlyTrpAla
 551 TTAACCTCTGC ATACAACGCA ATGATGATGA TTATTGTTGT TGGATGGGCA
 IleTyrProAla GlyTyrAla AlaGlyTyr LeuMetGlyGly GluGlyVal.
 601 ATTTATCCTG CTGGATATGC TGCTGGTTAC CTAATGGGTG GCGAAGGTGT
 · TyrAlaSer AsnLeuAsnLeu IleTyrAsn LeuAlaAsp LeuValAsnLys.
 651 ATACGCTTCA AACCTAAACC TTATATATAA CCTTGCCGAC CTTGTTAACCA
 · IleLeuPhe GlyLeuIle IleTrpAsnVal AlaValLys GluSerSer
 701 AGATTCTATT TGGTTTGATC ATTGGAATG TTGCTGTTAA AGAATCTTCT
 AsnAla
 751 AATGCT

Figure 2-10

ThrMetGlyLys LeuLeuLeu IleLeuGly SerAlaIleAla LeuProSer.
 1 ACCATGGGTA AATTATTACT GATATTAGGT AGTGCTATTG CACCCATC
 • PheAlaAla AlaGlyGlyAsp LeuAspIle SerAspThr ValGlyValSer.
 51 ATTTGCTGCT GCTGGTGGCG ATCTAGATAT AAGTGATACT GTTGGTGT
 • PheTrpLeu ValThrAla GlyMetLeuAla AlaThrVal PhePhePhe
 101 CATTCTGGCT GGTTACAGCT GGTATGTTAG CGGCAACTGT GTTCTTTTT
 ValGluArgAsp GlnValSer AlaLysTrp LysThrSerLeu AlaValSer.
 151 GTAGAAAGAG ACCAAGTCAG CGCTAACAGTGG AAAACTTCAC TTGCTGTATC
 • GlyLeuIle ThrGlyIleAla PheTrpHis TyrLeuTyr MetArgGlyVal.
 201 TGGTTTAATT ACTGGTATAG CTTTTGGCA TTATCTCTAT ATGAGAGGTG
 • TrpIleAsp ThrGlyAsp ThrProThrVal PheGlnTyr IleAspTrp
 251 TTTGGATAGA CACTGGTGAT ACCCCAACAG TATTCCAATA TATTGATTGG
 LeuLeuThrVal ProLeuGln MetValGlu PheTyrLeuIle LeuAlaAla.
 301 TTATTAACGT TTCCATTACA AATGGTTGAG TTCTATCTAA TTCTTGCTGC
 • CysThrSer ValAlaAlaSer LeuPheLys LysLeuLeu AlaGlySerLeu.
 351 TTGTACAAGT GTTGCTGCTT CATTATTTAA GAAGCTTCTA GCTGGTTCAT
 • ValMetLeu GlyAlaGly PheAlaGlyGlu AlaGlyLeu AlaProVal
 401 TAGTAATGTT AGGTGCTGGA TTTGCAGGCG AAGCTGGATT AGCTCCTGTA
 LeuProAlaPhe IleIleGly MetAlaGly TrpLeuTyrMet IleTyrGlu.
 451 TTACCTGCTT TCATTATTGG TATGGCTGGA TGGTTATACA TGATTATG
 • LeuTyrMet GlyGluGlyLys AlaAlaVal SerThrAla SerProAlaVal.
 501 GCTATATATG GGTGAAGGTA AGGCTGCTGT AAGTACTGCA AGTCCTGCTG
 • AsnSerAla TyrAsnAla MetMetMetIle IleValVal GlyTrpAla
 551 TTAACCTCTGC ATACAACGCA ATGATGATGA TTATTGTTGT TGGATGGGCA
 IleTyrProAla GlyTyrAla AlaGlyTyr LeuMetGlyGly GluGlyVal.
 601 ATTTATCCTG CTGGATATGC TGCTGGTTAC CTAATGGGTG GCGAAGGTGT
 • TyrAlaSer AsnLeuAsnLeu IleTyrAsn LeuAlaAsp LeuValAsnLys.
 651 ATACGCTTCA AACTTAAACC TTATATATAA CCTTGCCGAC CTTGTTAACAA
 • IleLeuPhe GlyLeuIle IleTrpAsnVal AlaValLys GluSerSer
 701 AGATTCTATT TGGTTTGATC ATTGGAAATG TTGCTGTTAA AGAATCTTCT
 AsnAla
 751 AATGCT

Figure 2-11

	1	50
BAC31A8	. . MKLLLILG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
BAC40E8	TMGKLLLILG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
BAC64A5	TMGKLLLILG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
HOT0m1	TMGKLLLILG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
HOT75m1	TMGKLLLILG SAIALPSFAA AGGD.... LD	ISDTVGVSFW LVTAGMLAAT
HOT75m3	TMGKLLLILG SAIALPSFAA AGGD.... LD	ISDTVGVSFW LVTAGMLAAT
HOT75m4	TMGKLLLILG SAIALPSFAA AGGD.... LD	ISDTVGVSFW LVTAGMLAAT
HOT75m8	TMGKLLLILG SAIALPSFAA AGGD.... LD	ISDTVGVSFW LVTAGMLAAT
MB0m1	TMGKLLLILG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
MB0m2	TMGKLLLILG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
MB100m10	TMGKLLLILG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
MB100m5	TMGKLLLILG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
MB100m7	TMGKLLLILG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
MB100m9	TMGKLLLILG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
MB20m12	TMGKLLLILG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
MB20m2	TMGKLLLILG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
MB20m5	TMGKLLLILG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
MB40m1	TMGKLLLILG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
MB40m12	TMGKLLRILG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
MB40m5	TMGKLLLILG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
MED101	. MGKLLLILG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
MED102	. MGKLLLILG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
MED106	. MGKLLLILG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
MED202	. MGKLLLILG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
MED204	. MGKLLLILG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
MED208	. MGKLLLILG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
MED25	. MGKLLLILG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
MED26	. MGKLLLILG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
MED27	. MGKLLLILG NVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
MED36	. MGKLLLILG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
medA15_r8_1	. MGKLLMMILG SVIALPSFAA SGGD.... LD	ASDYGVSGF LVTAALLAST
medA15_R8_3	. MGKLLMILG GVIALPSFAA SGGD.... LD	SSDLTGVSFW LVTAALLAAT
medA15_r8ex7	. MGKLLLILG GVIALPSFAA SGGD.... LD	SSDLTGVSFW LVTAALLAAT
medA15_R8ex9	. MGKLLLILG GVIALPSFAA SGGD.... LD	SSDLTGVSFW LVTAALLAAT
medA15_r9_3	. MGKRLVILG GVIALPSFAA SGGD.... LD	SSDLTGVSFW LVTAALLAAT
medA15r10b5	. MGKLLVILG GVIALPPFAA SGGD.... LD	SSDLTGVSFW LVTAALLAAT
medA15r11b3	. MGKQLLILG SVIALPSFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
medA15r11b9	. MGKALLMLG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAAPLAST
medA15r8b3	. MGKLLLILG SVIALPSFAA GGGD.... LD	AGDYTGVSFW LVTAALLAST
medA15r8b8	. SKKFFSTLL LVTSLPTLAL AGGHSSG.LA	GDDYVGVTFW IISMAMVAST
medA15r8b9	. MGKLLVMLG SVIALPSFAA GGGN.... LD	AADVTGVSFW LVTAALLAST
medA15r8ex4	. SKKFFSTLL LVTSLPTLAL AGGHSSG.LA	GDDYVGVTFW IISMAMVAST
medA15r8ex6	. MGKLLVMLG SVIALPTFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
medA15r9b5	. MGKGLLMLG SVIALPSFAA GGGD.... LD	ASDYTGVSFW LVTAALLAST
medA15r9b7	. MGKQLLILG GVIALPSFAA SGGD.... LD	SSDLTGVSFW LVTAALLAAT
medA17_r8_11	. SKKLLATFL VVTSIPAI AL AGGHSSGLA	GDDYVGVTFW IISMAMVAST
medA17_r8_15	. SKKLLATFL VVTSIPAI AL AGGHSSGLA	GDDCVGVT FW IISMAMVAST
medA17_R8_6	. MGKLLMILG GVIALPSFAA GGGD.... LD	I GDSVGVSFW LVTAAMLAAT
medA17R9_1	. MGKGLLMLG SVIALPSFAA GGGN.... LN	AADVTGVSFW LVTAALLAST
medA19_R8_16	. MGKLLVMLG GVIALPSFAA GGGD.... LD	I GDSVGVSFW LVTAAMLAAT
medA19_R8_19	. MGKLLMILG GVIALPSFAA GGGD.... LD	I GDSVGVSFW LVTAAMLAAT
medA19_R8_20	. MGKLLLILG GVIALPSFAA SGGD.... LD	SSDLTGVSFW LVTAALLAAT
medA19_r9_9	. . . LLILG GVIALPSFAA SGGD.... LD	SSDLTGVSFW LVTAALLAAT
PalB1	TMGKLLLILG SAIALPSFAA AGGD.... LD	ISDTVGVSFW LVTAGMLAAT
PalB2	TMGKLLLILG SAIALPSFAA AGGD.... LD	ISDTVGVSFW LVTAGMLAAT
PalB5	TMGKLLLILG SAIALPSFAA AGGD.... LD	ISDTVGVSFW LVTAGMLAAT
PalB6	TMGKLLLILG SAIALPSFAA AGGD.... LD	ISDTVGVSFW LVTAGMLAAT
PalB7	TMGKLLLILG SAIALPSFAA AGGD.... LD	ISDTVGVSFW LVTAGMLAAT
PalB8	TMGKLLLILG SAIALPSFAA AGGD.... LD	ISDTVGVSFW LVTAGMLAAT
Pale1	TMGKLLLILG SAIALPSFAA AGGD.... LD	ISDTVGVSFW LVTAGMLAAT
Pale6	TMGKLLLILG SAIALPSFAA AGGD.... LD	ISDTVGVSFW LVTAGMLAAT

Figure 3-1

Pale7	TMGKLLLILG	SAIALPSFAA	AGGD....LD	ISDTVGVSFW	LVTAGMLAAT
RED19	.MGKLLLILG	SVIALPTFAA	GGGD....LD	ASDYTGVSF	LVTAAALLAST
RED2	.MGKLLLILG	SVIALPTFAA	GGGD....LD	ASDYTGVSF	LVTAAALLAST
RED23	.MGKLLLILG	SVIALPTFAA	GGGD....LD	ASDYTGVSF	LVTAAALLAST
RED27	.MGKLLLILG	SVIALPTFAA	GGGD....LD	ASDYTGVSF	LVTAAALLAST
RED30	.MGKLLLILG	SVIALPTFAA	GGGD....LD	ASDYTGVSF	LVTAAALLAST
RED4	.MGKLLRLIG	SVIALPTFAA	GGGD....LD	ASDYTGVSF	LVTAAALLAST
RED5	.MGKLLLILG	SVIALPTFAA	GGGD....LD	ASDYTGVSF	LVTAAALLAST
REDA9	.MGKLLLILG	SVIALPTFAA	GGGD....LD	ASDYTGVSF	LVTAAALLAST
REDB9	.MGKLLLILG	SVIALPTFAA	GGGD....LD	ASDYTGVSF	LVTAAALLAST
REDF9	.MGKLLLILG	SVIALPTFAA	GGGD....LD	ASDYTGVSF	LVTAAALLAST
REDr6a5a14	.MGKLLLILG	SVIALPTFAA	GGGD....PD	ASDYTGVSF	LVTAAALLAST
REDr6a5a6	.MGKLLLILG	SVIALPTFAA	GGGD....LD	ASDYTGVSF	LVTAAALLAST
REDr7_1_15	.MGKLLLILG	SVIALPTFAA	GGGD....LD	ASGYTGVSF	LVTAAALLAST
REDr7_1_16	.MGKRLVILG	SVIALPTFAA	GGGD....LD	ASDYTGVSF	LVTAAALLAST
REDr7_1_4	.MGKLLLILG	SVIALPTFAA	GGGD....LD	ASDYTGVSF	LVTAAALLAST
REDS3_15	.MGKLLLILG	SVIALPTFAA	GGGD....LD	ASDYTGVSF	LVTAAALLAST
REDS3_7	.MGKLLLILG	SVIALPTFAA	GGGD....LD	ASDYTGVSF	LVTAAALLAST
ANT32C12	.MKLLLLILG	SAIALPSFAA	AGGD....LD	ISDTVGVSFW	LVTAGMLAAT
HOT2C02	MKVML	NPGD.....	HVAISFW LISMAMVAAT
 51					
BAC31A8	VFFFVERDRV	SAWKTSLS	T SGLVTGIAFW	HYMYMRCVWI	ETGDSP....
BAC40E8	VFFFVERDRV	SAWKTSLS	T SGLVTGIAFW	HYMYMRCVWI	ETGDSP....
BAC64A5	VFFFVERDRV	SAWKTSLS	T SGLVTGIAFW	HYMYMRCVWI	ETGDSP....
HOT0m1	VFFFVERDRV	SAWKTSLS	T SGLVTGIAFW	HYMYMRCVWI	ETGDSP....
HOT75m1	VFFFVERDQV	SAWKTSLS	A V SPLITGIAFW	HYLYMRCVWI	DTGDTP....
HOT75m3	VFFFVERDQV	SAWKTSLS	A V SPLITGIAFW	HYLYMRCVWI	DTGDTP....
HOT75m4	VFFFVERDQV	SAWKTSLS	A V SPLITGIAFW	HYLYMRCVWI	DTGDTP....
HOT75m8	VFFFVERDQV	SAWKTSLS	A V SPLITGIAFW	HYLYMRCVWI	DTGDTP....
MB0m1	VFFFVERDRV	SAWKTSLS	T SGLVTGIAFW	HYMYMRCVWI	ETGDSP....
MB0m2	VFFFVERDRV	SAWKTSLS	T SGLVTGIAFW	HYMYMRCVWI	ETGDSP....
MB100m10	VFFFVERDRV	SAWKTSLS	T SGLVTGIAFW	HYMYMRCVWI	ETGDSP....
MB100m5	VFFFVERDRV	SAWKTSLS	T SGLVTGIAFW	HYMYMRCVWI	ETGDSP....
MB100m7	VFFFVERDRV	SAWKTSLS	T SGLVTGIAFW	HYMYMRCVWI	ETGDSP....
MB100m9	VFFFVERDRV	SAWKTSLS	T SGLVTGIAFW	HYMYMRCVWI	ETGDSP....
MB20m12	VFFFVERDRV	SAWKTSLS	T SGLVTGIAFW	HYMYMRCVWI	ETGDSP....
MB20m2	VFFFVERDRV	SAWKTSLS	T SGLVTGIAFW	HYMYMRCVWI	ETGDSP....
MB20m5	VFFFVERDRV	SAWKTSLS	T SGLVTGIAFW	HYMYMRCVWI	ETGDSP....
MED101	VFFFVERDRV	SAWKTSLS	T SGLVTGIAFW	HYMYMRCVWI	ETGDSP....
MED102	VFFFVERDRV	SAWKTSLS	T SGLVTGIAFW	HYMYMRCVWI	ETGSSP....
MED106	VFFFVERDRV	SAWKTSLS	T SGLVTGIAFW	HYMYMRCVWI	ETGDSP....
MED202	VFFFVERDRV	SAWKTSLS	T SGLVTGIAFW	HYMYMRCVWI	ETGDSP....
MED204	VFFFVERDRV	SAWKTSLS	T SGLVTGIAFW	HYMYMRCVWI	ETGSSP....
MED208	VFFFVERDRV	SAWKTSLS	T SGLVTGIAFW	HYMYMRCVWI	ETGDSP....
MED25	VFFFVERDRV	SAWKTSLS	T SGLVTGIAFW	HYMYMRCVWI	ETGSSP....
MED26	VFFFVERDRV	SAWKTSLS	T SGLVTGIAFW	HYMYMRCVWI	ETGDSP....
MED27	VFFFVERDRV	SAWKTSLS	T SGLVTGIAFW	HYMYMRCVWI	ETGDSP....
MED36	VFFFVERDRV	SAWKTSLS	T SGLVTGIAFW	HYMYMRCVWI	ETGSSP....
medA15_r8_1	VFFFVERDRV	SAWKTSLS	T SGLVTGIAFW	HYLYMRCVW	ETGETP....
medA15_R8_3	VFFFVERDQV	SAWKTSLS	T SGLVTGIAFW	HYLYMRCVW	ETGETP....
medA15_r8ex7	VFFFVERDQV	SAWKTSLS	T SGLVTGIAFW	HYLYMRCVW	ETGETP....
medA15_R8ex9	VFFFVERDQV	SAWKTSLS	T SGLVTGIAFW	HYLYMRCVW	ETGETP....
medA15_r9_3	VFFFVERDQV	SAWKTSLS	T SGLVTGIAFW	HYLYMRCVW	ETGETP....
medA15r10b5	VFFFVERDQV	SAWKTSLS	T SGLVTGIAFW	HYLYMRCVW	ETGETP....
medA15r11b3	VFFFIERDRV	AAWKTSLS	T SGLVTGIAFW	HYLYMRCVW	ETGESP....
medA15r11b9	VFFFVERDRV	SAWKTSLS	T SGLVTGIAFW	HYMYMRCVW	ETGDSP....
medA15r8b3	VFFFIERDRV	AAWKTSLS	T SGLVTGIAFW	HYMYMRCVW	ETGESP....
medA15r8b8	VFFFIVERDRV	SSWKTSLS	A SALVTLIAAV	HYFYMRDVW	ATGESP....
medA15r8b9	VFFFIERDRV	SAWKTSLS	T SGLVTGIAFW	HYLYMRCVW	DSWTGP.GTG

Figure 3-2

medA15r8ex4	VFFFIVERDRV	SSKWKTSLTV	SALVTLIAAV	HYFYMRDVWV	ATGESP....
medA15r8ex6	VFFFVERDRV	SAKWKTSLTV	SGLVTGIAFW	HYMYMRGVWI	ETGDSP....
medA15r9b5	VFFFVERDRV	AAKWKTSITV	SGLVTGIAFW	HYMYMRGVWV	ETGESP....
medA15r9b7	VFFFVERDQV	SAKWKTSLTV	SGLVTGIAFW	HYLYMRGVWI	ETGETP....
medA17_r8_11	VFFFIVERDRV	SAKWKTSLTV	SALVTLIAAV	HYFYMRDVWV	ATGESP....
medA17_r8_15	VFFFIVERDRV	SAKWKTSLTV	SALMTLIAAV	HYFYMRDVWV	ATGESP....
medA17_R8_6	VFFFVERDQV	SAKWKTSLTV	SGLITGIAFW	HYLYMRGVWV	ETGDSP....
medA17R9_1	VFFFIERDRV	SAKWKTSLTV	SGLVTGIAFW	HYLYMRGVWV	DSWNPETGMG
medA19_R8_16	VFFFVERDQV	SAKWKTSLTV	SGLITGIAFW	HYLYMRGVWI	DTGGSP....
medA19_R8_19	VFFFVERDQV	SAKWKTSLTV	SGLITGIAFW	HYLYMRGVWI	DTGGSP....
medA19_R8_20	VFFFVERDQV	SAKWKTSLTV	SGLVTGIAFW	HYLYMRGVWI	ETGETP....
medA19_r9_9	VFFFVERDQV	SAKWKTSLTV	SGLVTGIAFW	HYLYMRGVWI	ETGETP....
PalB1	VFFFVERDQV	SAKWKTSLTV	SGLITGIAFW	HYLYMRGVWI	DTGDTP....
PalB2	VFFFVERDQV	SAEKWKTSITV	SGLITGIAFW	HYLYMRGVWI	DTGDTP....
PalB5	VFFFVERDQV	SAKWKTSLTV	SGLITGIAFW	HYLYMRGVWI	DTGDTP....
PalB6	VFFFVERDQV	SAKWKTSLTV	SGLITGIAFW	HYLYMRGVWI	DTGDTP....
PalB7	VFFFVERDQV	SAKWKTSLTV	SGLITGIAFW	HYLYMRGVWI	DTGDTP....
PalB8	VFFFVERDQV	SAKWKTSLTV	SGLITGIAFW	HYLYMRGVWI	DTGDTP....
Pale1	VFFFVERDQV	SAKWKTSLTV	SGLITGIAFW	HYLYMRGVWI	DTGDTP....
Pale6	VFFFVERDQV	SAKWKTSLTV	SGLITGIAFW	HYLYMRGVWI	DTGDTP....
Pale7	VFFFVERDQV	SAKWKTSLTV	SGLITGIAFW	HYLYMRGVWI	DTGDTP....
RED19	VFFFVERDRV	SAKWKTSLTV	SGLVTGIAFW	HYMYMRGVWI	ETGDSP....
RED2	VFFFVERDRV	SAKWKTSLTV	SGLVTGIAFW	HYMYMRGVWI	ETGDSP....
RED23	VFFFVERDRV	SAKWKTSLTV	SGLVTGIAFW	HYMYMRGVWI	ETGDSP....
RED27	VFFFVERDRV	SAKWKTSLTV	SGLVTGIAFW	HYMYMRGVWI	ETGDSP....
RED30	VFFFVERDRV	SAKWKTSLTV	SGLVTGIAFW	HYMYMRGVWI	ETGSSP....
RED4	VFFFVERDRV	SAKWKTSLTV	SGLVTGIAFW	HYMYMRGVWI	ETGDSP....
RED5	VFFFVERDRV	SAKWKTSLAV	SGLITGIAFW	HYMYMRGVWI	ETGDSP....
REDA9	VFFFVERDRV	SAKWKTSLAV	SGLITGIAFW	HCMYMRGVWI	ETGDSP....
REDB9	VFSFVERDRV	SAKWKTSLTV	SGLITGIAFW	HYMYMRGVWI	ETGDSP....
REF9	VFFFVERDRV	SAKWKTSLTV	SGLITGIAFW	HYMYMRGVWI	ETGDSP....
REDr6a5a14	VFFFVERDRV	SAEKWKTSITV	SGLVTGIAFW	HYMYMRGVWI	ETGDSP....
REDr6a5a6	VFFFVERDRV	SAKWKTSLTV	SGLVTGIAFW	HYMYMRGVWI	ETGDSP....
REDr7_1_15	VFFFVERDRV	SAKWKTSLTV	PGLITDIAFW	HYMYMRGVWI	ETGDSP....
REDr7_1_16	VFFFVERDRV	SAKWKTSLTV	SGLVTGIAFW	HYMYMRGVWI	ETGDSP....
REDr7_1_4	VFFFVERDRV	SAKWKTSLTV	PGLITDIAFW	HYMYMRGVWI	ETGDSP....
REDs3_15	VFFFVERDRV	SAKWKTSLTV	PGLVTGIAFW	HYMYMRGVWI	ETGDSP....
REDs3_7	VFFFVERDRV	SAKWKTSLTV	PGLITDIAFW	HYMYMRGVWI	ETGDSP....
ANT32C12	VFFFVERDQV	SAKWKTSLTV	SGLITGIAFW	HYLYMRGVWI	DTGDTP....
HOT2C02	AFFFLERDRV	AAKWKTSITV	AGLVTGIAAW	HYFYMRGVWV	ATGDSP....
 101					
BAC31A8	...TVFRYID	WLLTVPLLIC	EFYLILAAAAT	NVAGSLFKKL	LVGSLVMLVF
BAC40E8	...TVFRYID	WLLTVPLLIC	EFYLILAAAAT	NVAAGLFKKL	LVGSLVMLVF
BAC64A5	...TVFRYID	WLLTVPLLIC	EFYLILAAAAT	NVAGSLFKKL	LVGSLVMLVF
HOT0m1	...TVFRYID	WLLTVPLLIC	EFYLILAAAAT	NVAAGLFKKL	LVGSLVMLVF
HOT75m1	...TVFRYID	WLLTVPLQMV	EFYLILAACT	SVAASLFKKL	LAGSLVMLGA
HOT75m3	...TVFRYID	WLLTVPLQMV	EFYLILAACT	SVAASLFKKL	LAGSLVMLGA
HOT75m4	...TVFRYID	WLLTVPLQVV	EFYLILAACT	SVAASLFKKL	LAGSLVMLGA
HOT75m8	...TVFRYID	WLLTVPLQMV	EFYLILAACT	NVAASLFKKL	LAGSLVMLGA
MB0m1	...TVFRYID	WLLTVPLLIC	EFYLILAAAAT	NVAAGLFKKL	LVGSLVMLVF
MB0m2	...TVFRYID	WLLTVPLLIC	EFYLILAAAAT	NVAAGLFKKL	LVGSLVMLVF
MB100m10	...TVFRYID	WLLTVPLLIC	EFYLILAAAAT	NVAGSLFKKL	LVGSLVMLVF
MB100m5	...TVFRYID	WLLTVPLLIC	EFYLILAAAAT	NVAGSLFKKL	LVGSLVMLVF
MB100m7	...TVFRYID	WLLTVPLLIC	EFYLILAAAAT	NVAGSLFKKL	LVGSLVMLVF
MB100m9	...TVFRYID	WLLTVPLLIC	EFYLILAAAAT	NVAGSLFKKL	LVGSLVMLVF
MB20m12	...TVFRYID	WLLTVPLLIC	EFYLILAAAAA	NVAGSLFKKL	LVGSLVMLVF
MB20m2	...TVFRYID	WLLTVPLLIC	EFYLILAAAAT	NVAAGLFKKL	LVGSLVMLVF
MB20m5	...TVFRYID	WLLTVPLLIC	EFYLILAAAAT	NVAGSLFKKL	LVGSLVMLVF
MB40m1	...TVFRYID	WLLTVPLLIC	EFYLILAAAAT	NVAGSLFKKL	LVGSLVMLVF
MB40m12	...TVFRYID	WLLTVPLLIC	EFYLILAAAAT	NVAGSLFKKL	LVGSLVMLVF
MB40m5	...TVFRYID	WLLTVPLLIC	EFYLILAAAAT	NVAAGLFKKL	LVGSLVMLVF
MED101	...TVFRYID	WLLTVPLLIC	EFYLILAAAAT	NVAGSLFKKL	LVGSLVMLVF

Figure 3-3

MED102 . . . TVFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 MED106 . . . TVFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 MED202 . . . TVFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 MED204 . . . TVFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 MED208 . . . TVFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 MED25 . . . TVFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 MED26 . . . TVFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 MED27 . . . TVFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 MED36 . . . TVFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 medA15_r8_1 . . . TVFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 medA15_R8_3 . . . TVFRYID WLLTVPLLMV EFYLILAACT NVAGSLFKKL LGGSVLMLIA
 medA15_r8ex7 . . . TVFRYID WLLTVPLLMV EFYLILAACT NVAGSLFKKL LIGSLVMLIA
 medA15_R8ex9 . . . TVFRYID WLLTVPLLMV EFYLILAACT NVAGSLFKKL LIGSLVMLIA
 medA15_r9_3 . . . TVFRYID WLLTVPLLMV EFYLILAACT NVAGSLFKKL LIGSLVMLIA
 medA15r10b5 . . . TVFRYID WLLTVPLLMV EFYLILAACT NVAGSLFKKL LGGSVLMLIA
 medA15r11b3 . . . TVFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LIGSLVMLVF
 medA15r11b9 . . . TVFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 medA15r8b3 . . . TVFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 medA15r8b8 . . . TVFRYID WLLTVPLLMV EFYFILAATT TVSSGIFWRL LIGTVVMLVG
 medA15r8b9 . . . ESPTEFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLIA
 medA15r8ex4 . . . TVFRYID WLLTVPLLMV EFYLILAAAT NVAGSLFKKL LIGSLVMLIA
 medA15r8ex6 . . . TVFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 medA15r9b5 . . . TVFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LIGSLVMLVF
 medA15r9b7 . . . TVFRYID WLLTVPLLMV EFYLILAACT NVAGSLFKKL LGGSVLMLIA
 medA17_r8_11 . . . TVFRYID WLLTVPLLMV EFYFILAATT TVSSGIFWRL LIGTVIMLVG
 medA17_r8_15 . . . TVFRYID WLLTVPLLMV EFYFILAATT TVSSGIFWRL LIGTVIMLVG
 medA17_R8_6 . . . TVFRYID WLLTVPLQMV EFYLILAACT NVAGSLFKKL LIGSLVMLIG
 medA17r9_1 . . . ESPTEFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLIA
 medA19_R8_16 . . . TVFRYID WLLTVPLQMV EFYLILAACT NVAGSLFKKL LGGSVLMLGA
 medA19_R8_19 . . . TVFRYID WLLTVPLQMV EFYLILAACT NVAGSLFKKL LVGSLVMLGA
 medA19_R8_20 . . . TVFRYID WLLTVPLLMV EFYLILAACT NVAGSLFKKL LIGSLVMLIA
 medA19_r9_9 . . . TVFRYID WLLTVPLLMV EFYLILAACT NVAGSLFKKL LGGSVLMLIA
 PalB1 . . . TVFRYID WLLTVPLQMV EFYLILAACT SVAASLFKKL LAGSLVMLGA
 PalB2 . . . TVFRYID WLLTVPLQMV EFYLILAACT SVAASLFKKL LAGSLVMLGA
 PalB5 . . . TVFRYID WLLTVPLQMV EFYLILAACT NVAASLFKKL LAGSLVMLGA
 PalB6 . . . TVFRYID WLLTVPLQMV EFYLILAACT NVAASLFKKL LAGSLVMLGA
 PalB7 . . . TVFRYID WLLTVPLQMV EFYLILAACT SVAASLFKKL LAGSLVMLGA
 PalB8 . . . TVFRYID WLLTVPLQMV EFYLILAACT SVAASLFKKL LAGSLVMLGA
 Pale1 . . . TVFRYID WLLTVPLQVV EFYLILAACT SVAASLFKKL LAGSLVMLGA
 Pale6 . . . TVFRYID WLLTVPLQMV EFYLILAACT SVAASLFKKL LAGSLVMLGA
 Pale7 . . . TVFRYID WLLTVPLQMV EFYLILAACT SVAASLFKKL LAGSLVMLGA
 RED19 . . . TVFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 RED2 . . . TVFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 RED23 . . . TVFRYID WLLPVPLAIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 RED27 . . . TVFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 RED30 . . . TVFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 RED4 . . . TVFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 RED5 . . . TVFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 REDA9 . . . TVFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 REDB9 . . . TVFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 REDF9 . . . TVFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 REDr6a5a14 . . . TVFRYID WLLTVPLEIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 REDr6a5a6 . . . TVFRYID WLLTVPLVIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 REDr7_1_15 . . . TVFRYID WLLTVSQLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 REDr7_1_16 . . . TVFRYID WLLTVPLLIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 REDr7_1_4 . . . TVFRYID WLLTVPLQIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 REDs3_15 . . . AVFRYID WLLTVPLEIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 REDs3_7 . . . TVFRYID WLLTVPLQIC EFYLILAAAT NVAGSLFKKL LVGSLVMLVF
 ANT32C12 . . . TVFRYID WLLTVPLQMV EFYLILAATT SVAASLFKKL LAGSLVMLGA
 HOT2C02 . . . TVFRYID WLITVPLQIV EFYVILAAMT AVASSLFWRL LIASIIMLVF

BAC40E8 GYMGEAGIMN AWGAFVIGCL AWVYMIYELW AGEK.KAACN TASPAVQSAY
 BAC64A5 GYMGEAGIMA AWPIFIIGCL AWVYMIYELY AGEK.KSACN TASPSVQSAY
 HOT0m1 GYMGEAGIMN AWGAFVIGCL AWVYMIYELW AGEK.KAACN TASPAVQSAY
 HOT75m1 GFAGEAGLAP VLPAFIIGMA GWLYMIYELY MGEK.KAAVS TASPAVNSAY
 HOT75m3 GFAGEAGLAP VLPAFIIGMA GWLYMIYELH MGEK.KAAVS TASPAVNSAY
 HOT75m4 GFAGEAGLAP VLPAFIIGMA GWLYMIYELY MGEK.KAAVS TASPAVNSAY
 HOT75m8 GFAGEAGLAP VWPIFIIGMA GWLYMIYELY MGEK.KAAVS TASPAVNSAY
 MB0m1 GYMGEAGIMN AWPIFIIGCL AWVYMIYELY AGEK.KSACN TASPSVQSAY
 MB0m2 GYMGEAGIMN AWGAFVIGCL AWVYMIYELW LGEK.KAACN TASPAVQSAY
 MB100m10 GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEK.KSACN TASPAVQSAY
 MB100m5 GYMGEAGIMA AWPIFIIGCL AWVYMIYELY AGEK.KSACN TASPSVQSAY
 MB100m7 GYMGEAGIMA AWPIFIIGCL AWVYMIYELY AGEK.KSACN TASPSVQSAY
 MB100m9 GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEK.KSACN TASPAVQSAY
 MB20m12 GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEK.KSACN TASPAVQSAY
 MB20m2 GYMGEAGIMN AWGAFVIGCL AWVYMIYELW AGEK.KAACN TASPAVQSAY
 MB20m5 GYMGEAQIMA AWPIFIIGCL AWVYMIYELY AGEK.KSACN TASPSVQSAY
 MB40m1 GYMGEAGIMA AWPIFIIGCL AWVYMIYELY AGEK.KSACN TASPAVQSAY
 MB40m12 GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEK.KSACN TASPAVQSAY
 MB40m5 GYMGEAGIMN AWGAFVIGCL AWVYMIYELW AGEK.KAACN TASPAVQSAY
 MED101 GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEK.KSACN TASPAVQSAY
 MED102 GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEK.KSACN TASPAVQSAY
 MED106 GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEK.KSACN TASPAVQSAY
 MED202 GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEK.KSACN TASPAVQSAY
 MED204 GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEK.KSACN TASPAVQSAY
 MED208 GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEK.KSACN TASPAVQSAY
 MED25 GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEK.KSACN TASPAVQSAY
 MED26 GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEK.KSACN TASPAVQSAY
 MED27 GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEK.KSACN TASPAVQSAY
 MED36 GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEK.KSACN TASPAVQSAY
 medA15_r8_1 GYMGEAGIMA ALPAFIIGCL AWIYMIYELW AGEK.KSACN TASPAVQSAY
 medA15_R8_3 GYMGESGSLP VLPAFIVGCL AWFYMIYELY AGEK.KAAVT TASPAVMSAY
 medA15_r8ex7 GYMGESGSLP VLPAFLVGCA AWLYMIYELY AGEK.KAAVT TASPAVMSAY
 medA15_R8ex9 GYMGESGSLP VLPAFLVGCA AWLYMIYELY AGEK.KAAVT TASPAVMSAY
 medA15_r9_3 GYMGESGNLP VLPAFLIGCA AWLYMIYELY AGEK.KAAVT TASPAVMSAY
 medA15r10b5 GYMGESGSLP VLPAFIVGCL AWFYMIYELY AGEK.KAAVT TASPAVMSAY
 medA15r11b3 GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEK.KSACN TASPAVQSAY
 medA15r11b9 GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEK.KSACN TASPAVQSAY
 medA15r8b3 GYMGEAGIMA AWPIFIIGCL AWFYMIYELW AGEK.KSACN TASPAVQSAY
 medA15r8b8 GYMGEAGMIS VMTGFIIGMI GWLYIILYEIF AGEASKANAS SGSAACQTAF
 medA15r8b9 GYMGESGNAN VMIAFVVGCL AWLYMIYELW AGEK.KAACN TASPAVQSAY
 medA15r8ex4 GYMGEAGMIS VMTGFIIGMI GWLYIILYEIF AGEASKANAS SGSAACQTAF
 medA15r8ex6 GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEK.KSACN TASPAVQSAY
 medA15r9b5 GYMGEAGIMA AWPIFIIGCL AWFYMIYELW AGEK.KSACN TASPAVQSAY
 medA15r9b7 GYMGESGSLP VLPAFIVGCL AWFYMIYELY AGEK.KAAVT TASPAVMSAY
 medA17_r8_11 GYLGEAGMIS VMTGFIIGMI GWLYIILYEIF AGEASKANAS SGSAACQTAF
 medA17_r8_15 GYLGEAGMIS VMTGFIIGMI GWLYIILYEIF AGEASKANAS SGSAACQTAF
 medA17_R8_6 GFLGEAGMID VTLAFVIGMA GWLYMIYELY MGEK.KAAVS TASPAVNSAY
 medA17R9_1 GYMGESGNAN VMIAFVVGCL AWLYMIYELW AGEK.KAACN TASPAVQSAY
 medA19_R8_16 GFAGEAGLAP ALPAFILGMA GWVYMIYELY MGEK.KAAVS TASPAVNSAY
 medA19_R8_19 GFAGEAGLAP ALPAFILGMA GWVYMIYELY MGEK.KAAVS TASPAVNSAY
 medA19_R8_20 GYMGESGSLP VLPAFLVGCA AWLYMIYELY AGEK.KAAVT TASPAVMSAY
 medA19_r9_9 GYMGESGSLP VLPAFIVGCL AWFYMIYELY AGEK.KAAVT TASPAVMSAY
 PalB1 GFAGEAGLAP VLPAFILGMA GWLYMIYELH MGEK.KAAVS TASPAVNSAY
 PalB2 GFAGEAGLAP VLPAFIIGMA GWLYMIYELY MGEK.KAAVS TASPAVNSAY
 PalB5 GFAGEAGLAP VWPIFIIGMA GWLYMIYELY MGEK.KAAVS TASPAVNSAY
 PalB6 GFAGEAGLAP VWPIFIIGMA GWLYMIYELY MGEK.KAAVS TASPAVNSAY
 PalB7 GSAGEAGLAP VLPAFIIGMA GWLYMIYELY MGEK.KAAVS TASPAVNSAY
 PalB8 GFAGEAGLAP VLPAFIIGMA GWLYMIYELY MGEK.KAAVS TASPAVNSAY
 Pale1 GFAGEAGLAP VLPAFIIGMA GWLYMIYELY MGEK.KAAVS TASPAVNPay
 Pale6 GFAGEAGLAP VLPAFIIGMA GWLYMIYELH MGEK.KAAVS TASPAVNSAY
 Pale7 GFAGEAGLAP VLPAFIIGMA GWLYMIYELY MGEK.KAAVS TASPAVNSAY
 RED19 GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEK.KSACN TASPAVQSAY
 RED2 GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEK.KSACN TASPAVQSAY

Figure 3-5

RED23	GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEGLKSACN TASPAVQSAY
RED27	GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEGLKSACN TASPAVQSAY
RED30	GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEGLKSACN TASPAVQSAY
RED4	GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEGLKSACN TASPAVQSAY
RED5	GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEGLKSACN TASPAVQSAY
REDA9	GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEGLKSACN TASPAVQSAY
REDB9	GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEGLKSACN TASPAVQSAY
REFD9	GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEGLKSACN TASPAVQSAY
REDr6a5a14	GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEGLKSACN TASPAVQSAY
REDr6a5a6	GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEGLKSACN TASPAVQSAY
REDr7_1_15	GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEGLKSACN TASPAVQSAY
REDr7_1_16	GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEGLKSACN TASPAVQSAY
REDr7_1_4	GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEGLKSACN TASPAVQSAY
REDS3_15	GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEGLKSACN TASPAVQSAY
REDS3_7	GYMGEAGIMA AWPIFIIGCL AWVYMIYELW AGEGLKSACN TASPAVQSAY
ANT32C12	GFAGEAGLAP VLPAFIIGMA GWLYMIYELY MGEGLKAAS TASPAVNSAY
HOT2C02	GYMGETGAMN VTLAFVIGMA GWLYIIYEVF AGEASKASAG SGNAAGQTA
 201	
BAC31A8	NTMMYIIIFG WAIYPVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
BAC40E8	NTMMYIIIFG WAIYPVGYFT GYLMG..DGG SALNLNLYD LADFVNKILF
BAC64A5	NTMMMAIIVFG WAIYPIGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
HOT0m1	NTMMYIIIFG WAIYPVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
HOT75m1	NAMMMIIVVG WAIYPAGYAA GYLMGG.EGV YASNLNLIYN LADLVNKILF
HOT75m3	NAMMKIIVIG WAIYPAGYAA GYLMMSG.DGV YASNLNLIYN LADFVNKILF
HOT75m4	NAMMMIIVVG WAIYPAGYAA GYLMGG.EGV YASNLNLIYN LADFVNKILF
HOT75m8	NAMMVIIIVVG WAIYPAGYAA GYLMGG.EGV YASNLNLIYN LADLVNKILF
MB0m1	NTMMMAIIVFG WAIYPVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
MB0m2	NTMMMIIFG WAIYPVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
MB100m10	NTMMYIIIVG WAIYPVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
MB100m5	NTMMMAIIVFG WAIYPVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
MB100m7	NTMMMAIIVFG WAIYPVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
MB100m9	NTMMYIIIFG WAIYPVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
MB20m12	NTMMYIIIFG WAIYPVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
MB20m2	NTMMYIIIFG WAIYPVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
MB20m5	NTMMMAIIVFG WAIYPVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILL
MB40m1	NTMMYIIIFG WAIYPVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
MB40m12	NTMMYIIIVG WAIYPVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
MB40m5	NTMMYIIIFG WAIYPVGYFT GYLMG..DGG SALNLNLIYN LADFVNKNLF
MED101	NTMMYIIIVG WAIYPVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
MED102	NTMMYIIIAIG WAIYPVGYFT GYLMG..DGG SALNLNLYN LADFVNKILF
MED106	NTMMYIIIVG WAIYPVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
MED202	NTMMYIIIFG WAIYLVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
MED204	NTMMYIIIAIG WAIYPVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
MED208	NTMMYIIIVG WAIYPVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
MED25	NTMMYIIIVG WAIYPVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
MED26	NTMMYIIIVG WAIYPVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
MED27	NTMMYIIIVG WAIYPVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
MED36	NTMMYIIIAIG WAIYPVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
medA15_r8_1	NTMMYIIIFG WLIYPVGYAS GYLMG..DGG SAMNLNLIYN LADFVNKILF
medA15_R8_3	NTMMLIIVVG WAIYPAGYAA GYLMGG.DGV YAQNLNVIYN LADFVNKILF
medA15_r8ex7	NTMMLIIVVG WAIYPAGYAA GYLMGG.DGV YAQNLNVIYN LADFVNKILF
medA15_R8ex9	NTMMLIIVVG WAIYPAGYAA GYLMGG.DGV YAQNLNVIYN LADFVNKILF
medA15_r9_3	NTMMLIIVVG WAIYPAGYAA GYLMGG.DGV YAQNLNVIYN LADFVNKILF
medA15r10b5	NTMMLIIVVG WAIYPAGYAA GYLMGG.DGV YAQNLNVIYN LADFVNKILF
medA15r11b3	NTMMYIIIFG WAIYPVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
medA15r11b9	NTMMYIIIFG WAIYLVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
medA15r8b3	NTMMYIIIAIG WAIYPLGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
medA15r8b8	GALRLIVTVG WAIYPIGYFV GYLTGGG..A DAATLNIVYN LADFVNKIAF
medA15r8b9	NTMMWIIIVG WAIYPAGYAA GYLMGG.ESV YASNLNLIYN LADFVNKILF
medA15r8ex4	GALRLIVTVG WAIYPIGYFV GYLTGGG..A DAATLNIVYN LADFVNKIAF
medA15r8ex6	NTMMYIIIFG WAIYPVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF
medA15r9b5	NTMMYIIIAIG WAIYPVGYFT GYLMG..DGG SALNLNLIYN LADFVNKILF

Figure 3-6

medA15r9b7 NTMMLIIVVG WAIYPAGYAA GYLMGG.DGV YAQNLSVLYN LADFVNKILF
 medA17_r8_11 GALRLIVTIG WAIYPLGYFL GYLGGG...A DPATLNIVYN LADFVNKIAF
 medA17_r8_15 GALRLIVTIG WAIYPLGYFL GYLGGG...A DPATLNIVYN LADFVNKIAF
 medA17_R8_6 NAMMLIIVVG WSIYPAGYVA GYLMGG.EGV YASNLSLILYNA LADFINKILF
 medA17R9_1 NTMMWIIIVG WAIYPAGYAA GYLMGG.ESV YASNLSLILYNA LADFVNKILF
 medA19_R8_16 NAMMMIIVFG WSIYPAGYVA GYLMG...AV DPSTLNLIYN LADFINKILF
 medA19_R8_19 NAMMMIIVFG WSIYPAGYVA GYLMG...AV DPSTLNLIYN LADFINKILF
 medA19_R8_20 NTMMLIIVVG WAIYPAGYAA GYLMGG.DGV YAQNLSVLYN LADFVNKILF
 medA19_r9_9 NTMMLIIVVG WAIYPAGYAA GYLMGG.DGV YAQNLSVLYN LADFVNKILF
 PalB1 NAMMMIIVIG WAIYPAGYAA GYLMGG.DGV YASNLSLILYNA LADFVNKILF
 PalB2 NAMMMIIVVG WAIYPAGYAA GYLMGG.EGV YASNLSLILYNA LADFVNKILF
 PalB5 NAMMMIIVVG WAIYPAGYAA GYLMGG.EGV YASNLSLILYNA LADFVNKILF
 PalB6 NAMMMVIIVVG WAIYPAGYAA GYLMGG.EGV YASNLSLILYNA LADFVNKILF
 PalB7 NAMMMIIVVG WAIYPAGYAA GYLMGG.EGV YASNLSLILYNA LADFVNKILF
 PalB8 NAMMMIIVVG WAIYPAGYAA GYLMGG.EGV YASNLSLILYNA LADLVNKILF
 Pale1 NAMMMIIVVG WAIYPAGYAA GYLMGG.EGV YASNLSLILYNA LADFVNKILF
 Pale6 NAMMMKIIIVG WAIYPAGYAA GYLMGG.DGV YASNLSLILYNA LADFVNKILF
 Pale7 NAMMMIIVVG WAIYPAGYAA GYLMGG.EGV YASNLSLILYNA LADFVNKILF
 RED19 NTMMYIIIVG WAIYPVGYFT GYLMG..DGG SALNLSLILYNA LADFVNKILF
 RED2 NTMMYIIIVG WAIYPVGYFT GYLMG..DGG SALNLSLILYNA LADFVNKILF
 RED23 NTMMYIIIFG WAIYPVGYFT GYLMG..DGG SALNLSLILYNA LADFVNKILF
 RED27 NTMMYIIIFG WAIYLVGYFT GYLMG..DGG SALNLSLILYNA LADFVNKILF
 RED30 NTMMYIIIFG WAIYLVGYFT GYLMG..DGG SALNLSLILYNA LADFVNKILF
 RED4 NTMMYIIIVG WAIYPVGYFT GYLMG..DGG SALNLSLILYNA LADFVNKILF
 RED5 NTMMYIIIVG WAIYPVGYFT GYLMG..DGG SALNLSLILYNA LADFVNKILF
 REDA9 NTMMYIIIVFG WAIYPVGYFT GYLMG..DGG SALNLSLILYNA LADFVNKILF
 REDB9 NTMMYIIIFG WAIYPVGYFT GYLMG..DGG SALNLSLILYNA LADFVNKILF
 REDF9 NTMMYIIIFG WAIYPVGYFT GYLMG..DGG SALNLSLILYNA LADFVNKILF
 REDr6a5a14 NTMMYIIIFG WAIYPVGYFT GYLMG..DGG SALNLSLILYNA LADFVNKILF
 REDr6a5a6 NTMMYIIIFG WAIYPVGYFT GYLMG..DGG SALNLSLILYNA LADFVNKILF
 REDr7_1_15 NTMMYIIIFG WAIYPVGYFT GYLMG..DGG SALNLSLILYNA LADFVNKILF
 REDr7_1_16 NTMMYIIIFG WAIYLVGYFT GYLMG..DGG SALNLSLILYNA LADFVNKILF
 REDr7_1_4 NTMMYIIIFG WAIYPVGYFT GYLMG..DGG SALNLSLILYNA LADFVNKILF
 REDs3_15 NTMMYIIIFG WAIYPVGYFT GYLMG..DGG SALNLSLILYNA LADFVNKILF
 REDs3_7 NTMMYIIIFG WAIYPVGYFT GYLMG..DGG SALNLSLILYNA LADFVNKILF
 ANT32C12 NAMMMIIVVG WAIYPAGYAA GYLMGG.EGV YASNLSLILYNA LADFVNKILF
 HOT2C02 NALRLIVTIG WAIYPIGYAV GYFGG...GV DAGSLNLILYNA LADFVNKIAF

251 266

BAC31A8	GLIIWNVAVK ESSNA.
BAC40E8	GLIIWNVAVK ESSNAK
BAC64A5	GLIIWNVAVK ESSNAK
HOT0m1	GLIIWNVAVK ESSNA.
HOT75m1	GLIIWNVAVK ESSNA.
HOT75m3	GLIIWNVAVK ESSNA.
HOT75m4	GLIIWNVAVK ESSNA.
HOT75m8	GLIIWNVAVK ESSNA.
MB0m1	GLIIWNVAVK ESSNA.
MB0m2	GLIIWNVAVK ESSNA.
MB100m10	GLIIWNVAVK ESSNA.
MB100m5	GLIIWNVAVK ESSNA.
MB100m7	GLIIWNAAVK ESSNA.
MB100m9	GLIIWNVAVK ESSNA.
MB20m12	GLIIWNVAVK ESS...
MB20m2	GLIIWNVAVK ESSNA.
MB20m5	GLIIWNVAVK ESSNA.
MB40m1	GLIIWNVAVK ESSNA.
MB40m12	GLIIWNVAVK ESSNA.
MB40m5	GLIIWNVAVK ESS...
MED101	GLIIWNVAVK ESSNA.
MED102	GLIIWNVAVK ESSNA.
MED106	GLIIWNVAVK ESSNA.
MED202	GLIIWNVAVK ESSNA.

Figure 3-7

MED204 GLIIWNVAVK ESSNA.
 MED208 GLIIWNVAVK ESSNA.
 MED25 GLIIWNVAVK ESSNA.
 MED26 GLIIWNVAVK KSSNA.
 MED27 GLIIWNVAVK ESSNA.
 MED36 GLIIWNVAVK ESSNA.
 medA15_r8_1 GLIIWNVAVK ESSNA.
 medA15_R8_3 GLVIWHVAVK ESSNA.
 medA15_r8ex7 GLVIWHVAVK ESSNA.
 medA15_R8ex9 GLVIWHVAVK ESSNA.
 medA15_r9_3 GLVIWHVAVK ESSNA.
 medA15r10b5 GLVIWHVAVK ESSNA.
 medA15r11b3 GLIIWHVAVK ESSNA.
 medA15r11b9 GLIIRNVAVK ESSNA.
 medA15r8b3 GLIIWHVAVK ESSNA.
 medA15r8b8 GLIIWAAAVK ESSNA.
 medA15r8b9 GLIIWHVAVK ESSNA.
 medA15r8ex4 GLIIWAAAVK ESSNA.
 medA15r8ex6 GLIIWNVAVK ESSNA.
 medA15r9b5 GLIIWHVAVK ESSNA.
 medA15r9b7 GLVIWHVAVK ESSNA.
 medA17_r8_11 GLIIWAAAVK ESSNA.
 medA17_r8_15 GLIIWAAAVK ESSNA.
 medA17_R8_6 GLIIWHVAVK ESSNA.
 medA17R9_1 GLIIWHVAVK ESSNA.
 medA19_R8_16 GLIIWHVAVK ESSNA.
 medA19_R8_19 GLIIWHVAVK ESSNA.
 medA19_R8_20 GLVIWHVAVK ESSN..
 medA19_r9_9 GLVIWHVAVK ESSNA.
 PalB1 GLIIWNVAVK ESSNA.
 PalB2 GLIIWNVAVK ESSNA.
 PalB5 GLIIWNVAVK ESSNA.
 PalB6 GLIIWNVAVK ESSNA.
 PalB7 GLIIWNVAVK ESSNA.
 PalB8 GLIIWNVAVK ESSNA.
 Pale1 GLIIWNVAVK ESSNA.
 Pale6 GLIIWNVAVK ESSNA.
 Pale7 GLIIWNVAVK ESSNA.
 RED19 GLIIWNVAVK ESSNA.
 RED2 GLIIWNVAVK ESSNA.
 RED23 GLIIWNVAVK ESSNA.
 RED27 GLIIWNVAVK ESSNA.
 RED30 GLIIWNVAVK ESSNA.
 RED4 GLIIWNVAVK ESSNA.
 RED5 GLIIWNVAVK ESSNA.
 REDA9 GLIIWNVAVK ESSNA.
 REDB9 GLIIWNVAVK ESSNA.
 REDF9 GSIIWNVAVK ESSNA.
 REDr6a5a14 GLIIWNVAVK ESSNA.
 REDr6a5a6 GLIIWNVAVK ESSNA.
 REDr7_1_15 GLIIWNVAVK ESSNA.
 REDr7_1_16 GLIIWNVAVK ESSNA.
 REDr7_1_4 GLIIWNVAVK ESSNA.
 REDs3_15 GLIIWNVAVK ESSNA.
 REDs3_7 GLIIWNVAVK ESSN..
 ANT32C12 GLIIWNVAVK ESSNA.
 HOT2C02 GMAIYVAAVS DSN...

Figure 3-8

Figure 4

Figure 5

Figure 6

104/106

Figure 7-1

105/106

Figure 7-2

106/106

Figure 7-3