Contents

Lecture 1: Introductions

Instructor: Dmitriy Panchenko Scribe: Lily Li

Definition 1. A probability space is a triple $(\Omega, \mathcal{A}, \mathbb{P})$ where Ω is the sample space, \mathcal{A} is an algebra, defined below, and $\mathbb{P} : \mathcal{A} \to [0,1]$ is a probability measure, or measure. We call a subset of Ω , an event.

A collection of events of Ω , \mathcal{A} , is an algebra if

- 1. $\Omega \in \mathcal{A}$: we can talk about the probability of the entire sample space.
- 2. if $C, B \in A$, then $C \cup B, C \cap B \in A$: we can talk about the union and intersection of events.
- 3. if $C \in A$, then $\Omega \setminus C = C^c \in A$: we can talk about the complement of an event.

A σ -algebra is an algebra which further satisfies: $C_i \in \mathcal{A}$ for countably many C_i , then $\bigcup_{i=1}^{\infty} C_i \in \mathcal{A}$. This means that we are allowed to take the union of countably many events.

By themselves, the pair (Ω, \mathcal{A}) is a measurable space if \mathcal{A} is a σ -algebra of subsets of Ω .

Measure means something... he went too fast and I couldn't follow.

The probability measure \mathbb{P} satisfies:

- 1. $\mathbb{P}(\Omega) = 1$,
- $2. \mathbb{P}(A) \geq 0,$
- 3. \mathbb{P} is countably additive i.e. $A_i \in \mathcal{A}$, $A_i \cap A_j \neq \emptyset$ if $i \neq j$, then $\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$; or alternatively,
- 4. \mathbb{P} is finitely additive and continuous i.e. for any decreasing sequence $B_n \supseteq B_{n+1} \in \mathcal{A}$, if $B = \bigcap_{i=1}^{\infty} B_n$ then $\mathbb{P}(B) = \lim_{n \to \infty} \mathbb{P}(B_n)$.

Claim 2. A measure \mathbb{P} is countably additive if and only if it is finitely additive and continuous.

Proof. Suppose that \mathbb{P} satisfies (3) above, then we show that it satisfies (4). Let C_i be the following sequence of disjoint sets: $C_i = B_i \setminus B_{i+1}$. Then $\mathbb{P}(B_n) = \mathbb{P}(B \cup (\cup_{i \geq n} C_i))$. Since the C_i s and B are clearly disjoint, we have $\mathbb{P}(B_n) = \mathbb{P}(B) + \sum_{i \geq n} \mathbb{P}(C_i)$. Taking the limit of both sides,

$$\lim_{n \to \infty} \mathbb{P}(B_n) = \lim_{n \to \infty} \left(\mathbb{P}(B) + \sum_{i \ge n} \mathbb{P}(C_i) \right) = \lim_{n \to \infty} \mathbb{P}(B) = \mathbb{P}(B)$$

since the tail of a convergent series, $\{C_i\}$, approaches zero in the limit.

Conversely if \mathbb{P} satisfies (4) above, then it must satisfy (3). Let $B = \bigcap_{i=1}^{\infty} A_i$ and $B_n = \bigcup_{i \geq n+1} A_i$. Then

$$\mathbb{P}\left(\cup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{n} \mathbb{P}(A_i) + \mathbb{P}(B_n).$$

Taking the limit of both sides

$$\mathbb{P}\left(\cup_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} \left(\sum_{i=1}^{n} \mathbb{P}(A_i) + \mathbb{P}(B_n)\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$$

since $\lim_{n\to\infty} \mathbb{P}(B_n) = 0$.

Example 3. Consider the following probability space: $([0,1], \mathbb{B}[0,1], \lambda)$ where $\mathbb{B}[0,1]$ denotes the Borel σ -algebra over [0,1] and λ is the Lebesgue measure. Here the Borel σ -algebra, also Borel Set, is the smallest σ -algebra containing all open sets.

Think about why the power set of [0,1] is not an algebra.