goal: determine dynamics of finite MP/SDE

Neuro-Dynamic Programming

Dimitri P. Bertsekas and John N. Tsitsiklis

chapter 2

Reinforcement Learning

An Introduction

Richard S. Sutton and Andrew G. Barto

Chapter 3

o consider a finite MP/SDE (X,U,P), i.e. IXI, $IUI < \infty$ $x^+ \sim P(x,u)$, $P: X \times U \to \Delta(X)$ $\to \Delta(X)$ $\to \Delta$ starting from state $P \in \Delta(X)$ and applying policy $T: X \to \Delta(U)$ determine next state $P^+ \in \Delta(X)$ (it can help to regard $P: X \to [0,1]$ — determine $P^+(x^+)$, all $X^+ \in X$) — we can compte $P^+(x^+)$ for each $X^+ \in X$ using rules of probability: $P^+(x^+) = \sum_{X \in X} (P(X) \left[\sum_{U \in U} T(u \mid X) P(X^+ \mid X, u) \right] \right)$ $\sum_{X \in X} (P(X) \left[\sum_{U \in U} T(u \mid X) P(X^+ \mid X, u) \right] \right)$ $\sum_{X \in X} (P(X) \left[\sum_{U \in U} T(u \mid X) P(X^+ \mid X, u) \right]$ $\sum_{X \in X} (P(X) \left[\sum_{U \in U} T(u \mid X) P(X^+ \mid X, u) \right]$ $\sum_{X \in X} (P(X) \left[\sum_{U \in U} T(u \mid X) P(X^+ \mid X, u) \right]$

* this determines a deterministic (?) difference equation: $P^{+}=F(P)$, $(P:X \rightarrow [0,1]) \in \Delta(X) \subset [0,1]^{X} \subset \mathbb{R}^{X}=\mathbb{R}^{N}$ PE [0,1]X - more generally we let $\Rightarrow p \in \mathbb{R}^{X} = \mathbb{R}^{N} \quad \mathbb{R}^{A} = \{ f : A \Rightarrow B \}$ e.g. $IR^{N} = \{ V : \{ 1, \dots, N \} \rightarrow R \}$ -> show that F is linear (?) (i.e. find $\Gamma \in \mathbb{R}^{N \times N}$, N = |X|, s.t. $F(p) = \Gamma p = p^{+}$) - $[\Gamma]_{x+,x} = \sum_{n \in \mathbb{N}} \tau(u|x) P(x+|x,u)$ yields $p^+ = \Gamma p$ * we can use linear systems throug to characterize "solutions" / trajectories including their asymptotic properties ? -> were studying discrete-time linear time-invariant DE Pt= TP o first of all, we know trajectories $P_t = \Gamma^t P_0$, any $t \in \mathbb{N}$ C t-fold makrix moltiplication . furthermore, Γ has special properties: $1\Gamma\Gamma = 1\Gamma \implies 1 \in \text{spec}\Gamma$ $\uparrow 1\Gamma = (1, \dots, 1) \in \mathbb{R}^N$ i.e. Γ is "left-stochastic" \Rightarrow $\forall \lambda \in \operatorname{spec} \Gamma : |\lambda| \leq 1$

* if $\Gamma = \overline{p} = \overline{p}$ is unique $\Gamma = \overline{p} = \overline{p}$ is unique.

so all trajectories asymptotically converge to unique P o