TO PASS 75% or higher

Practice quiz on the Cartesian Plane

TOTAL POINTS 5

1. Which of the following points in the Cartesian Plane is on the y-axis?

1 / 1 point

- $\bigcirc (-5,0)$
- \bigcirc (1,1)
- \bigcirc (5,0)
- \bigcirc (0,-5)

✓ Correct

The y-axis is defined to be all points in the Cartesian plane with zero as x-coordinate. The point (0,-5) meets that requirement.

2. Find the distance between the points A=(2,2) and C=(3,3):

1/1 point

- \bigcirc 2
- \bigcirc $\sqrt{2}$
- O 1
- 0

Recall that the distance between points (a,b) and (c,d) is $\sqrt{(c-a)^2+(d-b)^2}$.

In this case (a,b)=(2,2) and (c,d)=(3,3), so the distance is $\sqrt{(3-2)^2+(3-2)^2}=\sqrt{2}$

3. Find the point-slope form of the equation of the line that goes between A=(1,1) and B=(5,3):

1 / 1 point

- 0 $y-3=\frac{1}{2}(x-1)$
- $O_y = \frac{1}{2}x$
- 0 $y-1=\frac{1}{2}(x-5)$

The point-slope form for the equation of a line with slope m that goes through the point (x_0,y_0) is $y-y_0=m(x-x_0)$

In this case, the slope $m = \frac{3-1}{5-1} = \frac{1}{2}$

We can choose either \boldsymbol{A} or \boldsymbol{B} for the point on the line, but in neither case do we get this chosen

4. Which of the following points is on the line with equation:

1/1 point

$$y-1=2(x-2)$$
?

- (2,1)
- \bigcirc (2,3)
- \bigcirc (3, 2)
- \bigcirc (0,0)

✓ Correct

If we plug in 1 for y and 2 for x in the equation of the line, we make a true statement, 0 = 0, so this point lies on the line.

5.	Suppose that a line ℓ has slope 2 and goes through the point $(-1,0)$. What is the y -intercept of ℓ ?	pint
	② 2	
	O 0	
	O -1	
	O 1	
	Correct Recall that the y -intercept of ℓ is the y -coordinate of where ℓ hits the y -axis. Since $(-1,0)\in \ell$, the point on ℓ with $x=0$ is obtained by running one unit from $(-1,0)$ while rising two units. This gives $y=2$ as the y -intercept.	