بسم الله الرحمن الرحيم

تصميم الدوائر الرقمية مثيل البيانات LEC (2)

الأعداد الحقيقية:

العدد الحقيقي هو عدد يحتوي على كسر مثل 5.52 ويتكون العدد الحقيقي من جزئين :عدد صحيح وكسر تفصل بينهما الفاصلة وللعدد الحقيقي إشارة .

الفاصلة 13.375 - الإشارة الكسر الجزء الصحيح

تمثيل الأعداد الحقيقية: لتمثيل العدد الحقيقي في الحاسوب أو الأنظمة العددية يجب أن يتم تحويله أولا من الصورة العشرية إلى الصورة الثنائية وهنا يتم تحويل كل من جزئي العدد الحقيقي على حدة.

حيث نبدأ بتحويل الجزء الصحيح إلى الصورة الثنائية وذلك بنفس طريقة تحويل الأعداد الصحيحة .

بعد ذلك نقوم بتحويل الكسر من الصورة العشرية إلى الصورة الثنائية وذلك بالضرب المتكرر في □ والإحتفاظ بالجزء الصحيح من النتيجة.

مثال: إذا اردنا تحويل الكسر في العدد الحقيقي 13.375- إلى الصورة الثنائية يتم ذلك كالأتي:

$$0.375 * 2 = 0.75 \longrightarrow 0$$

$$0.75 * 2 = 1.5 \longrightarrow 1$$

$$0.5 * 2 = 1.0 \longrightarrow 1$$

لتكوين الكسر في الصورة الثنائية نأخذ الأجزاء الصحيحة التي احتفظنا بها ونضعها بالترتيب (من أعلى إلى أسفل) على يمين الفاصلة ونضع 0 يسار الفاصلة .

0.011

وعليه فإن الكسر العشري 0.375 يساوي 0.011 في الصورة الثنائية ويكتب كالتالي:₂(0.011)=0.375

تمرین:

- حول العدد العشري 9.625 إلى الصورة الثنائية ؟

الخطوة التالية هي وضع العدد الحقيقي في صورته الثنائية في المساحة التخزينية المتاحة له.

المشكلة: أن العدد الحقيقي مكون من جزئين جزء صحيح وكسر فإذا كانت المساحة التخزينية المتاحة عبارة عن 16 خانة ثنائية فأين نضع الجزء الصحيح وأين نضع الكسر.

أسلوب الفاصلة الثابتة:

في هذا الأسلوب يتم تقسيم المساحة المتاحة ما بين الجزء الصحيح والكسر.

لاحظ أننا قمنا بمحاذاة الجزء الصحيح إلى يمين الجزء المخصص له ومحاذاة الكسر إلى يسار الجزء المخصص له ثم نقوم بملء الخانات الفائضة بأصفار.

لاحظ أن موقع الفصلة ثابت لذلك يسمى هذا الأسلوب في تمثيل الأعداد الحقيقية بأسلوب الفاصلة الثابتة.

أما عن إشارة العدد فيتم تخصيص خانة لها ولتكن الخانة العليا ونضع في هذه الخانة العدد 0 إذا كان العدد الحقيقي موجباً والقيمة 1إذا كان العدد الحقيقي سالباً. موقع الفاصلة خانة الإشارة للمارة للمارة للمارة للمارة للمارة المارة المارة المارة المارة المارة المارة المارة الكسر الجزء الصحيح الكسر الجزء الصحيح المارة المارة

يعيب هذا الأسلوب في تمثيل الأعداد الحقيقية عدم الإستغلال الأمثل للمساحة التخزينية المتاحة .

فكثيراً مايكون العدد الصحيح من العدد الحقيقي مساوياً للصفر أي أن العدد الحقيقي عبارة عن كسر فقط .

وبالتالي يكون الجزء من المساحة التخزينية المخصصة للعدد الصحيح غير مستغلة.

أسلوب الفاصلة المتحركة:

لإستغلال المساحة التخزينية المتاحة للعدد الحقيقي بصورة أكثر كفاءة يستخدم أسلوب الفاصلة المتحركة.

يقوم هذا الأسلوب في تمثيل الأعداد الحقيقية على التخلص من الجزء الصحيح من العدد الحقيقي بحيث يصبح العدد بأكمله عبارة عن كسر.

ويتم ذلك بتحريك أو إزاحة الفاصلة وعندما يتم تحريك الفاصلة من موقعها الأصلي يميناً أو يساراً يتم الحفاظ على قيمة العدد بالضرب في الأساس 2 مرفوعا لأس يساوي عدد خانات الإزاحة ويكون الأس موجباً عندما تكون الإزاحة لليسار وسالباً عندما تكون الإزاحة إلى اليمين.

لتمثيل العدد الحقيقي تستخدم عملية تحريك الفاصلة للتخلص من الجزء الصحيح من العدد الحقيقي وتحويل العدد بأكمله إلى كسر وتسمى هذه العملية بالتطبيع .

أي أنه في عملية التطبيع نقوم بإزاحة الفاصلة عدداً من الخانات يميناً أو يساراً بحيث:

1. يصبح الجزء الصحيح مساوياً 0.

2. تكون أول خانة ثنائية على يمين الفاصلة حاوية على 1.

بعد إجراء عملية التطبيع يصبح العدد مكون من كسر وأس.

مثلا: إذا أردنا إجراء عملية تطبيع للعدد الحقيقي الثنائي 1101.011 يتم ذلك كالتالي:

1101.011= 0.1101011 * 24

لاحظ أننا قمنا بإزاحة الفاصلة 4خانات إلى اليسار حتى أصبح الجزء الصحيح من العدد الحقيقي مساويا 0.

تمثيل الأعداد الحقيقية:

بعد الإنتهاء من تحويل العدد الحقيقي من الصورة العشرية إلى الصورة الثنائية ثم تطبيعه مطلوب الأن وضع العدد في المساحة التخزينية المتاحة له والمعلومات المطلوب وضعها في المساحة المتاحة هي :

- الأس ـ الأس ـ الإشارة ـ

المواصفات القياسية لتخزين الأعداد الحقيقية:

- 1. العدد الحقيقي ذو الدقة العادية.
- 2 العدد الحقيقي ذو الدقة المضاعفة .

العدد الحقيقي ذو الدقة العادية:

طوله هو 4 بايت = 32 بت مقسمة على النحو التالي: خانة الإشارة

العدد الحقيقي ذو الدقة المضاعفة:

طوله هو 8 بايت = 64 بت مقسمة على النحو التالي:

خانة الإشارة

عند وضع الكسر في الجزء المخصص له تتم محاذاته إلى اليسار مع ملء الخانات الفائضة على يمينه بأصفار .

أما الأس فيتم وضعه في الجزء المخصص له وتتم محاذاته إلى اليمين مع ملء الخانات الفائضة على يساره بأصفار

مثال : مثل العدد الحقيقي 2^4 * 0.1101011 في صورة عدد حقيقي ذو دقة عادية .

نقوم أولا بتحويل الأس من الصورة العشرية للصورة الثنائية فنحصل على 2(100) على 4(100)

نضع كل من الكسر والأس في الجزء المخصص له .

10000010011011010000000000000000

الأس خانة الإشارة

الكسر

تمثيل الرموز:

المقصود بالرموز هو:

وأقل عدد من الخانات يلزم لتمثيل جميع الرموز هو 7 خانات حيث أن $2^7 = 128$.

شفرات تمثيل البيانات:

توجد طرق عديدة يمكن بها أن يتم تخصيص الشفرات الثنائية المتاحة للرموز المختلفة مما قد يؤدي إلى اختلافات كبيرة في تمثيل البيانات وتم توثيق هذه الطرق في المؤسسات المعنية ويتم مراجعتها وتطويرها ونشرها بانتظام لكي يلتزم بها الجميع الأمر الذي جعل تبادل البيانات على نطاق واسع أمر سهل خاصة في عصر الإنترنت.

الشفرات القياسية المستخدمة حالياً لتمثيل البيانات:

- ASCII
- BCD
- EDCDIC
- Gray Code

الشفرات القياسية المستخدمة حالياً لتمثيل البيانات: ففرة ASCII

كلمة ASCII اختصار للعبارة (American Standard Code for Information Interchange). و شفرة كلمة ASCII عبارة عن شفرة ثنائية مكونة من سبعة خانات تستخدم في تمثيل الرموز. و تعتبر الشفرة الأكثر استخداماً لهذا الغرض و الأوسع انتشاراً حالياً. تم ابتكار شفرة ASCII في الأساس لتمثيل الرموز في آلات تسمى التيلي تايب الغرض و الأوسع انتشاراً حالياً. تم عبارة عن وسيلة اتصال استخدمت في السابق لنقل البيانات، و تتكون مما يشبه الآلتين (Teletype Machines) وهي عبارة عن وسيلة و الأخرى مستقبلة. عند طباعة أي نص على لوحة مفاتيح الآلة المرسلة الكاتبتين (Typewriters)، إحداهما مرسلة و الأخرى مستقبلة. و يعتبر جهاز التلكس (Telex) مثالاً لهذا النوع من الآلات.

و يوضح الجدول التالي الشفرات الثنائية المستخدمة لتمثيل الرموز في شفرة ASCII:

Code		Char
Binary	Hex	1
0000000	00	nul
0000001	01	soh
0000010	02	stx
0000011	03	etx
0000100	04	eot
0000101	05	enq
0000110	06	ack
0000111	07	bel
0001000	08	bs
0001001	09	ht
0001010	0A	nl
0001011	0B	vt
0001100	0C	ff
0001101	0D	cr
0001110	0E	so
0001111	0F	si
0010000	10	dle
0010001	11	dc1
0010010	12	dc2
0010011	13	dc3
0010100	14	dc4
0010101	15	nak
0010110	16	syn
0010111	17	etb
0011000	18	can
0011001	19	em
0011010	1A	sub
0011011	1B	esc
0011100	1C	fs
0011101	1D	gs
0011110	1E	rs
0011111	1F	us

Code		Char
Binary	Hex	1
0100000	20	sp
0100001	21	!
0100010	22	
0100011	23	#
0100100	24	\$
0100101	25	%
0100110	26	&
0100111	27	•
0101000	28	(
0101001	29)
0101010	2A	*
0101011	2B	+
0101100	2C	,
0101101	2D	-
0101110	2E	
0101111	2F	/
0110000	30	0
0110001	31	1
0110010	32	2
0110011	33	3
0110100	34	4
0110101	35	5
0110110	36	6
0110111	37	7
0111000	38	8
0111001	39	9
0111010	3A	:
0111011	3B	;
0111100	3C	<
0111101	3D	=
0111110	3E	>
0111111	3F	?

Code		Char
Binary	Hex	1
1000000	40	(a)
1000001	41	A
1000010	42	В
1000011	43	С
1000100	44	D
1000101	45	Е
1000110	46	F
1000111	47	G
1001000	48	Н
1001001	49	I
1001010	4A	J
1001011	4B	K
1001100	4C	L
1001101	4D	M
1001110	4E	N
1001111	4F	О
1010000	50	P
1010001	51	Q
1010010	52	R
1010011	53	S
1010100	54	T
1010101	55	U
1010110	56	V
1010111	57	W
1011000	58	X
1011001	59	Y
1011010	5A	Z
1011011	4B	1
1011100	5C	١ ١
1011101	5D	1
1011110	5E	^
1011111	5F	

Code		Char
Binary	Hex	
1100000	60	,
1100001	61	A
1100010	62	В
1100011	63	C
1100100	64	D
1100101	65	E
1100110	66	F
1100111	67	G
1101000	68	Н
1101001	69	I
1101010	6A	J
1101011	6B	K
1101100	6C	L
1101101	6D	M
1101110	6E	N
1101111	6F	О
1110000	70	P
1110001	71	Q
1110010	72	R
1110011	73	S
1110100	74	T
1110101	75	U
1110110	76	V
1110111	77	W
1111000	78	X
1111001	79	Y
1111010	7A	Z
1111011	7B	{
1111100	7C	
1111101	7D	}
1111110	7E	~
1111111	7F	Del

شفرة (Binary Coded Decimal) BCD

استخدمت هذه الشفرة في الماضي لتمثيل الأعداد الصحيحة (Integers) في الحواسيب الكبيرة (Main Frames) المستخدمت هذه الشفرة يتم تمثيل كل رقم من الأرقام من 9-0 باستخدام شفرة ثنائية مكونة من أربعة خانات (4-bits Binary Code)، و ذلك كالتالي:

الرقم	الشفرة
(Digit)	(Code)
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

لاحظ أن الخانات الأربعة المستخدمة في التمثيل هنا تعطينا 16 شفرة (Code) مختلفة، استخدمنا منها فقط العشرة الأولى و تبقت 6 شفرات غير مستخدمة هي: 1010، 1011، 1110، 1101، 1101، 1110.

لتمثيل أي عدد صحيح باستخدام شفرة BCD نأخذ أرقام العدد في الصورة العشرية و نستبدل كل رقم بشفرة BCD الخاصة به. مثلاً:

BCD بتجميع شفرات BCD للأرقام فنحصل على BCD للأرقام

شفرة Extended Binary Coded Decimal Information Code) EBCDIC

هذه الشفرة هي عبارة عن تطوير لشفرة BCD بحيث تتمكن من تمثيل الرموز. و هي تشبه إلى حد كبير شفرة ASCII الموز في ASCII الموز في EBCDIC مكونة من 8 خانات (8 bits). استخدمت شفرة EBCDIC لتمثيل الرموز في الحواسيب الكبيرة (Main Frames) التي تنتجها شركة IBM. و ما زالت إمكانية التعامل مع البيانات الممثلة باستخدام شفرة EBCDIC موجودة حتى الآن في الحواسيب التي تقوم بإنتاجها شركة IBM وذلك لتمكين مستخدمي هذه الأجهزة من الرجوع لبياناتهم القديمة.

الشفرة الرمادية (Gray Code)

يطلق على هذه الشفرة أيضاً تسمية الشفرة المعكوسة (Reflected Code)، و ذلك بسبب الأسلوب المستخدم في توليدها. تمتاز هذه الشفرة بأن كل رمزين متتاليين فيها يختلفان عن بعضهما البعض في bit واحد فقط.