Abstract

- Covid has affected XX people
- Forecasts useful for public health resource planning, intervention planning (vaccine trials), and disease burden
- Basic Mechanistic Models unable to capture complexities of real world disease epidemics due to
 - Complexities of interventions
 - Issues with testing and reporting
- We propose a novel forecasting algorithm to overcome
 - Under-reporting of cases
 - Time-varying interventions
- Bayesian end to end estimation using both cases and deaths in numpyro

MECHANISTIC BAYESIAN FORECASTS OF COVID19

GRAHAM GIBSON

1. Introduction

- Emergence and spread of covid
- Forecasts useful for public health
 - Resource allocation
 - Intervention Planning
 - Disease burden
- Cite Flu Forecasting
- Describe COVID-HUB
 - Number of participating teams as evidence of importance
 - Soliciting forecasts for incident and cumulative deaths
- \bullet Mechanistic models have been around since K&K
- Demonstrated success in modeling infectious disease
- Since they were developed around the last pandemic their usefulness as applied forecasting models has gone untested
- Extensions to basic model needed
 - Observations on cases and deaths
 - Time-varying detection probability for varied testing
 - Non-parametric model of interventions
 - Full Bayesian fitting due to unidentifiability of parameters given only a time series of cases and deaths.
- MechBayes outperforms in two settings
 - COVID-HUB relative to baseline model
 - Ablation test relative to basic SEIR model

FIGURE 1. Deaths by state.

• We show improvements in MAE and WIS relative to baseline model in both experimental setups

2. Data

- We use cases/deaths from JHU
- Under-reporting issues
- Batch reporting issues
- Revision Issues
- Weekly cycle issues
- High variability in incident data
- Ref Figure 1

3. Compartmental Model

- Basic SEIR model description
- Definition of compartmental model (description of diff eq as flow between compartments)

Figure 2. Comparmental model parameters

- Ref Figure 2
- Interpretation of parameters in basic SEIR model
 - Sigma
 - Gamma
 - beta

3.1. Observations on cases and deaths.

- Bayesian model has observations on both cases and deaths
- We can weight likelihood of one over the other
- Explain how cases inform deaths on average 10 days later

3.2. Time-varying beta parameter.

- Non-parametrically models time-varying transmissibility through a random walk
- Makes forecasts conditional on current level of interventions
- Requires no external intervention data to make forecasts

•

3.3. Time-varying detection probability.

- Non-parametrically models time varying testing and overall detection of case issues
- Allows for "data dumps"
- Logistic random walk
- Fixed detection probability on deaths

3.4. Seeding Epidemic.

• Because of detection probability we cannot seed using initial reported data, since this is an underestimate