micro Hayekian Market

Matteo Morini 1 and Pietro Terna 2 July 28, 2018

 ¹University of Torino, Italia
 ²University of Torino, Italia

Contents

Introduction to a micro Hayekian Market					
1	The technical setup				
2	The structure of the model and the warming up phase				
3	The hayekian version				
4	The unstructured version				
Appen	dices			16	
1	Two cases of not balancing numbers of buyers and sellers				
	1.1	Case n	$Buyers \gg nSellers \dots \dots \dots \dots$	17	
		1.1.1	Case $nBuyers \gg nSellers$, with different rates of		
			per-capita correction	17	
		1.1.2	Case $nBuyers \gg nSellers$, with equal rates of per-		
			capita correction	20	
	1.2	Case $nBuyers \ll nSellers \dots \dots \dots$			
		1.2.1	Case $nBuyers \ll nSellers$, with different rates of		
			per-capita correction	20	
		1.2.2	Case $nBuyers \ll nSellers$, with equal rates of per-		
			capita correction	23	
Bibliog	raphy			24	
Index				25	

List of Figures

1 2	An example of initial not overlapping demand curve and offer curve Hayekian case: (i) an example of final demand and offer curves,	5
_	(ii) the history of mean prices tick-by-tick, (iii) their coeffcients of	
	variation within each tick (cycle)	7
3	Hayekian case: (i) the distribution of mean prices of each cycle (i.e., tick-by-tick) and (ii) that of their standard deviations within each	
	tick (cycle)	8
4	Unstructured case: ((i) an example of final demand and offer curves, (ii) the history of mean prices tick-by-tick, (iii) their coeffcients of	Ü
	variation within each tick (cycle)	12
5	Unstructured case: (i) the distribution of mean prices of each cycle	12
	(i.e., tick-by-tick) and (ii) that of their standard deviations within	
	each tick (cycle)	13
6	An example of initial not overlapping demand curve and offer curve,	
	case $nBuyers \gg nSellers$	17
7	Hayekian case, with $nBuyers \gg nSellers$: (i) an example of final	
	demand and offer curves, (ii) the history of mean prices tick-by-tick,	
	(iii) their coeffcients of variation within each tick (cycle)	18
8	Hayekian case, with $nBuyers \gg nSellers$: (i) the distribution of	
	mean prices of each cycle (i.e., tick-by-tick) and (ii) that of their	
0	standard deviations within each tick (cycle)	19
9	An example of initial not overlapping demand curve and offer curve,	20
10	case $nBuyers \ll nSellers$	20
10	Hayekian case, with $nBuyers \ll nSellers$: (i) an example of final	
	demand and offer curves, (ii) the history of mean prices tick-by-tick,	01
11	(iii) their coefficients of variation within each tick (cycle)	21
11	Hayekian case, with $nBuyers \ll nSellers$: (i) the distribution of	
	mean prices of each cycle (i.e., tick-by-tick) and (ii) that of their standard deviations within each tick (cycle)	22
	Standard deviations within each tick (cycle)	44

Introduction to a micro Hayekian Market

The purpose of the note is that of introducing a very simple agent-based model of a market, with emergent (quite interesting) price dynamics.

A counter example is also introduced, showing how with tiny modification we generate implausible price dynamics.

The code uses the IPython¹ language (interaction with Python²) and can be dowloaded from https://github.com/terna/microHayekianMarket using the Clone or download button; it is also possible to run it directly on line at https://mybinder.org/v2/gh/terna/microHayekianMarket/master?filepath=microHayekianMarket.ipynb.

A suggested reading about Hayek is a quite recent paper of Bowles et al. (2017).

1 The technical setup

The IPython (or Python 3.x) code requires the following starting setup:

Listing 1: Setup of the program

```
%pylab inline
import statistics as s
import numpy as np
import pylab as plt
from IPython.display import clear_output
import time
import math
```

%pylab inline is a magic command of Jupyter.³

¹https://ipython.org.

²https://www.python.org.

³http://jupyter.org.

2 The structure of the model and the warming up phase

Our agents are simply prices, to be interpreted as reservation prices.⁴

We have two price vectors: pL^b with item pL_i^b for the buyers, and pL^s with item pL_j^s for the sellers. The i^{th} or the j^{th} elements of the vectors are prices, but we can use them also as agents.

Both in the hayekian perspective (Section 3) and in the unstructured one (Section 4) we have to pre-run the $warning\ up$ action.

In this phase, we define:

- d_0 the lower bound of the random uniform numbers, both for the buyers and the sellers, in the warming up phase;
 - in the running phase, the lower bound is 0;
- d_1 the upper bound of the random uniform numbers for the buyers;
- d_2 the upper bound of the random uniform numbers for the sellers;
- *nCycles* number of simulation cycles;
- *nBuyers* number of the buyers;
- *nSellers* number of the sellers;
- seed the seed of the random numbers;
- the initial buyer *i* reservation price, different for each buyer: $p_{b,i} = \frac{1}{1+u_i}$ with $u_i \sim \mathcal{U}(d_0, d_1)$;
- the initial seller j reservation price, different for each seller: $p_{s,j} = 1 + u_j$ with $u_j \sim \mathcal{U}(d_0, d_2)$.

With $d_0 = 0.1$, $d_1 = 0.2$, $d_2 = 0.2$, sorting in decreasing order the vector pL^b and in increasing order the vector pL^s we obtain two not overlapping price sequences that we can interpret as a demand curve and an offer one (Fig. 1).

This is the warming up, or starting situation, of the model. To generate new examples related to Section 3 and to Section 4, it is necessary to repeat this phase.

The IPython (or Python 3.x) code is:

⁴The max price a buyer could pay and the min one a seller could accept.

Figure 1: An example of initial not overlapping demand curve and offer curve

Listing 2: Warming up of the model

```
warming up
  run it before executing both - the hayekian perspective or
                                 - the unstructured case
nCycles=10000
nBuyers= 100
nSellers=100
seed = 111
np.random.seed(seed)
d0 = 0.1
d1 = 0.2
d2 = 0.2
buyerPriceList=[]
sellerPriceList=[]
for i in range(nBuyers):
    buyerPriceList.append(1/(1+np.random.uniform(d0,d1)))
for j in range(nSellers):
    sellerPriceList.append(1+np.random.uniform(d0,d2))
plt.plot(sorted(buyerPriceList,reverse=True),"r");
plt.plot(sorted(sellerPriceList),"b");
xlabel("the_agents");
ylabel("agents'ureservationuprices");
```

3 The hayekian version

The buyers and the sellers meet randomly. Buyer i and seller j exchange if $pL_i^b \ge pL_i^s$; the deal is recorded at the price of the seller pL_i^s .

In this version, representing the key point in this note, the running prices are changing being multiplied in each cycle by following the correction coefficients:

- for the buyer: (i) $c_b = \frac{1}{1+u_b}$ if the deal succeeds (trying to pay less next time) or (ii) $c_b = 1 + u_b$ if the deal fails (preparing to pay more next time); in (i) and (ii) we have $u_b \sim \mathcal{U}(0, d_1)$
- for the seller: (iii) $c_s = 1 + u_s$ if the deal succeeds (preparing to obtain a higher revenue next time) or (iv) $c_s = \frac{1}{1+u_s}$ if the deal fails (preparing to obtain a lower revenue next time); in (iii) and (iv) we have $u_s \sim \mathcal{U}(0, d_2)$.

With seed = 111, $d_1 = 0.2$, $d_2 = 0.2$ and nCycles set to 10,000 we obtain sequences of mean prices (mean within each cycle) quite realistic, with a very low variance within each cycle (see Fig. 2 and 3).

The coefficient of variation at time t is calculated as:

$$\frac{standard\ deviation_t}{mean_t}$$

A comment: we have a plausible series of mean prices, with a complicated behavior, and with a high stability of the dispersion of the values within each cycle.

The right side of the buyer and seller curves shows another plausible situation: that of the presence of agents not exchanging. A note for Matteo and Pietro: this is a very important effect for the *Oligopoly* model.

Have a look to the Appendix 1 for the cases of not balancing number of buyers and sellers.

The IPython (or Python 3.x) code is:

Listing 3: The model in the hayekian perspective

hayekian perspective
meanPrice_ts=[]
meanPriceStDev_ts=[]
meanPriceVar_ts=[]

⁵In the *mall*, sell prices are public.

Figure 2: Hayekian case: (i) an example of final demand and offer curves, (ii) the history of mean prices tick-by-tick, (iii) their coeffcients of variation within each tick (cycle)

Figure 3: Hayekian case: (i) the distribution of mean prices of each cycle (i.e., tick-by-tick) and (ii) that of their standard deviations within each tick (cycle)

```
for t in range(1,nCycles+1):
    dealPrices = []
    agNum=max(nBuyers, nSellers)
    for n in range(agNum):
        i = np.random.randint(0,nBuyers)
        j = np.random.randint(0,nSellers)
        if buyerPriceList[i]>=sellerPriceList[j]:
            dealPrices.append(sellerPriceList[j])
            buyerPriceList[i] *=1/(1+np.random.uniform(d1))
            sellerPriceList[j]*=1+np.random.uniform(d2)
        else:
            buyerPriceList[i] *=1+np.random.uniform(d1)
            sellerPriceList[j]*=1/(1+np.random.uniform(d2))
    if len(dealPrices) > 2:
        meanPrice_ts.append(s.mean(dealPrices))
        meanPriceVar_ts.append(s.variance(dealPrices))
        meanPriceStDev_ts.append(s.stdev(dealPrices))
    else:
        meanPrice_ts.append(np.nan)
        meanPriceStDev_ts.append(np.nan)
    if t % 1000 == 0:
        clear_output()
        print('time', t, 'and_n._of_exchanges_in_the_last_cycle', \
              len(dealPrices))
        print(\
        'meanuanduvaruofuexchangeupricesuinutheulastucycle:u%.3f,u%.3f' %\
              (meanPrice_ts[-1], meanPriceVar_ts[-1]))
        plt.figure(1,figsize=(7,15),clear=True)
        plt.subplot(311)
        plt.plot(sorted(buyerPriceList,reverse=True),"r")
        plt.plot(sorted(sellerPriceList), "b")
        plt.title(\
            "buyers' prices (red) and sellers' prices (blue)")
        xlabel("the agents")
        ylabel("agents'∟reservation prices")
        plt.subplot(312)
        plt.title("mean_price_of_each_cycle")
        xlabel("t")
        ylabel("mean_price_of_each_cycle")
        plt.plot(meanPrice_ts, "g")
```

```
plt.subplot(313)
        plt.title("price_coef._of_variation_within_each_cycle")
        coefOfVariation = []
        for m in range(len(meanPriceStDev_ts)):
            coefOfVariation.append(meanPriceStDev_ts[m]/
                                    meanPrice_ts[m])
        plt.plot(coefOfVariation,".",markersize=0.1)
        xlabel("t")
        ylabel("price_coef._of_variation_within_each_cycle")
        show()
        #time.sleep(0.1)
# hist crashes with NaN
meanPrice_ts_hist = []
for k in range(len(meanPrice_ts)):
    if not math.isnan(meanPrice_ts[k]):
        meanPrice_ts_hist.append(meanPrice_ts[k])
meanPriceStDev_ts_hist = []
for k in range(len(meanPriceStDev_ts)):
    if not math.isnan(meanPriceStDev_ts[k]):
        meanPriceStDev_ts_hist.append(meanPriceStDev_ts[k])
plt.figure(2,figsize=(7,9))
plt.subplot(211)
if meanPrice_ts_hist != []:
    plt.title("mean_price_histogram")
    plt.hist(meanPrice_ts_hist,100,color="g");
plt.subplot(212)
if meanPriceStDev_ts_hist != []:
   plt.title("priceustandardudeviationu(withinueachucycle)uhistogram")
    plt.hist(meanPriceStDev_ts_hist,100);
```

4 The unstructured version

The buyers and the sellers meet randomly as in Section 3. Buyer i and seller j exchange in any case; the deal is recorded at the mean of the price of the seller pL_i^s and of the price pL_i^b of the buyer.

In this version the running prices are changing being multiplied in each cycle by following the correction coefficients:

- with the same probability for the buyer: (i) $c_b = \frac{1}{1+u_b}$ or (ii) $c_b = 1+u_b$); in (i) and (ii) we have $u_b \sim \mathcal{U}(0, d_1)$
- with the same probability for the seller: (iii) $c_s = 1 + u_s$ or (iv) $c_s = \frac{1}{1+u_s}$; in (iii) and (iv) we have $u_s \sim \mathcal{U}(0, d_2)$.

With seed = 111, $d_1 = 0.2$, $d_2 = 0.2$ and nCycles set to 10,000 we obtain exploding sequences of mean prices (mean in each cycle), and exploding standard deviation within each cycle (see Fig. 4 and 5).

The coefficient of variation at time t is calculated as:

$\frac{standard\ deviation_t}{mean_t}$

.

A comment: this counter-example shows that, missing the *intelligence* in the correction of the prices (implicitly propagating among all the agents), a system of pure random price settings is absolutely far from being plausible.

The IPython (or Python 3.x) code is:

```
Listing 4: The unstructured version
```

```
# unstructured case (remember the warming up step)
meanPrice_ts = []
meanPriceStDev_ts=[]
meanPriceVar_ts=[]
for t in range(1,nCycles+1):
    dealPrices=[]
    agNum=max(nBuyers, nSellers)
    for n in range(agNum):
        i = np.random.randint(0,nBuyers)
        j = np.random.randint(0,nSellers)
        dealPrices.append((sellerPriceList[j]+buyerPriceList[i]/0.5))
        if np.random.uniform(0,1) >= 0.5:
            buyerPriceList[i] *=1/(1+np.random.uniform(d1))
            sellerPriceList[j] *=1+np.random.uniform(d2)
        else:
            buyerPriceList[i] *=1+np.random.uniform(d1)
            sellerPriceList[j]*=1/(1+np.random.uniform(d2))
    if len(dealPrices) > 2:
        meanPrice_ts.append(s.mean(dealPrices))
        meanPriceVar_ts.append(s.variance(dealPrices))
        meanPriceStDev_ts.append(s.stdev(dealPrices))
    else:
```


Figure 4: Unstructured case: ((i) an example of final demand and offer curves, (ii) the history of mean prices tick-by-tick, (iii) their coeffcients of variation within each tick (cycle)

Figure 5: Unstructured case: (i) the distribution of mean prices of each cycle (i.e., tick-by-tick) and (ii) that of their standard deviations within each tick (cycle)

```
meanPrice_ts.append(np.nan)
        meanPriceStDev_ts.append(np.nan)
    if t % 1000 == 0:
        clear_output()
        print('time', t, 'and_\squaren.\squareof\squareexchanges\squarein\squarethe\squarelast\squarecycle', \
               len(dealPrices))
        print(\
        'meanuanduvaruofuexchangeupricesuinutheulastucycle:u%.3f,u%.3f' %\
               (meanPrice_ts[-1], meanPriceVar_ts[-1]))
        plt.figure(1,figsize=(7,15),clear=True)
        plt.subplot(311)
        plt.plot(sorted(buyerPriceList,reverse=True),"r")
        plt.plot(sorted(sellerPriceList),"b")
        plt.title(\
            "buyers'_prices_(red)_and_sellers'_prices_(blue)")
        xlabel("the | agents")
        ylabel("agents'∟reservation prices")
        plt.subplot(312)
        plt.title("mean_price_of_each_cycle")
        xlabel("t")
        ylabel("mean price of each cycle")
        plt.plot(meanPrice_ts,"g")
        plt.subplot(313)
        plt.title("price_coef._of_variation_within_each_cycle")
        coefOfVariation = []
        for m in range(len(meanPriceStDev_ts)):
            coefOfVariation.append(meanPriceStDev_ts[m]/
                                     meanPrice_ts[m])
        plt.plot(coefOfVariation,".",markersize=0.1)
        xlabel("t")
        ylabel("price_ucoef._uof_uvariation_within_ueach_ucycle")
        show()
        #time.sleep(0.1)
# hist crashes with NaN
meanPrice_ts_hist=[]
for k in range(len(meanPrice_ts)):
    if not math.isnan(meanPrice_ts[k]):
        meanPrice_ts_hist.append(meanPrice_ts[k])
meanPriceStDev_ts_hist = []
for k in range(len(meanPriceStDev_ts)):
    if not math.isnan(meanPriceStDev_ts[k]):
        meanPriceStDev_ts_hist.append(meanPriceStDev_ts[k])
plt.figure(2,figsize=(7,9))
```

micro Hayekian Market

```
plt.subplot(211)
if meanPrice_ts_hist != []:
    plt.title("mean_price_histogram")
    plt.hist(meanPrice_ts_hist,100,color="g");
plt.subplot(212)
if meanPriceStDev_ts_hist != []:
    plt.title("price_standard_deviation_(within_each_cycle)_histogram")
    plt.hist(meanPriceStDev_ts_hist,100);
```

Appendices

1 Two cases of not balancing numbers of buyers and sellers

1.1 Case $nBuyers \gg nSellers$

With $nBuyers \gg nSellers$ (e.g., nBuyers = 100 and nSellers = 50, as in Fig. 6), we have two possible path of analysis.

1.1.1 Case $nBuyers \gg nSellers$, with different rates of per-capita correction

If $nBuyers \gg nSellers$, having in each cycle one call to a *seller* from each *buyer*, the number of per-capita actions of the *sellers* in each cycle is greater of the number of per-capita actions of the *buyers*.

As a consequence, the probability that a *seller* decreases her price to meet a buyer is greater than the probability that a *buyer* increases her price to meet a *seller*.

We can observe that in Figs. 7 and 8 the prices are—in the end—lower than in Figs. 2 and 3 and, must of all, the price tendence has a strong negative slope. We have always seed = 111.

This result is inconsistent with the microeconomic theory, where an excess of demand is supposed to increase the prices.

Figure 6: An example of initial not overlapping demand curve and offer curve, case $nBuyers \gg nSellers$

Figure 7: Hayekian case, with $nBuyers \gg nSellers$: (i) an example of final demand and offer curves, (ii) the history of mean prices tick-by-tick, (iii) their coefficients of variation within each tick (cycle)

Figure 8: Hayekian case, with $nBuyers \gg nSellers$: (i) the distribution of mean prices of each cycle (i.e., tick-by-tick) and (ii) that of their standard deviations within each tick (cycle)

1.1.2 Case $nBuyers \gg nSellers$, with equal rates of per-capita correction

1.2 Case $nBuyers \ll nSellers$

With $nBuyers \ll nSellers$ (e.g., nBuyers = 50 and nSellers = 100, as in Fig. 9), we have two possible path of analysis.

1.2.1 Case $nBuyers \ll nSellers$, with different rates of per-capita correction

If $nBuyers \ll nSellers$, having in each cycle one call to a buyer from each seller, the number of per-capita actions of the buyers in each cycle is greater of the number of per-capita actions of the sellers.

As a consequence, the probability that a *buyer* increases her price to meet a *seller* is greater than the probability that a *seller* decreases her price to meet a *buyer*.

We can observe that in Figs. 10 and 11 the prices are—in the end—greater than in Figs. 2 and 3 and, must of all, the price tendence has a strong positive slope. We have always seed = 111.

This result is inconsistent with the microeconomic theory, where an excess of offer is supposed to decrease the prices.

Figure 9: An example of initial not overlapping demand curve and offer curve, case $nBuyers \ll nSellers$

Figure 10: Hayekian case, with $nBuyers \ll nSellers$: (i) an example of final demand and offer curves, (ii) the history of mean prices tick-by-tick, (iii) their coefficients of variation within each tick (cycle)

Figure 11: Hayekian case, with $nBuyers \ll nSellers$: (i) the distribution of mean prices of each cycle (i.e., tick-by-tick) and (ii) that of their standard deviations within each tick (cycle)

1.2.2 Case $nBuyers \ll nSellers$, with equal rates of per-capita correction

Bibliography

Bowles, S., Kirman, A. and Sethi, R. (2017). *Retrospectives: Friedrich Hayek and the Market Algorithm*. In «Journal of Economic Perspectives», vol. 31(3), pp. 215-30.

URL http://www.aeaweb.org/articles?id=10.1257/jep.31.3.215

Index

```
hayekian version, 6
introduction to a micro Hayekian Mar-
        ket, 3
nBuyers < nSellers with different rates
        of per-capita correction, 20
nBuyers < nSellers with equal rates of
       per-capita correction, 23
nBuyers > nSellers with different rates
        of per-capita correction, 17
nBuyers > nSellers with equal rates of
        per-capita correction, 20
not balancing number of buyers and sell-
        ers, 17
structure, 4
technical setup, 3
unstructured version, 10
```