

#### Introduction

- $\min_{x \in \mathbb{R}^{d_x}} F(x) := \mathbb{E}_{\xi \sim \mathbb{P}_{\xi}}[f(x, y^*(x; \xi); \xi)]$ (upper-level) where  $y^*(x;\xi) := \operatorname{argmin} \mathbb{E}_{\eta \sim \mathbb{P}_{\eta|\xi}}[g(x,y;\eta,\xi)] \quad \forall \ \xi \ \text{(lower-level)}$
- $ullet \xi \sim \mathbb{P}_{\xi}$ : contextual information;  $\eta \sim \mathbb{P}_{\eta|\xi}$ : conditional distributions
- lower-level: contextual stochastic optimization

#### Moviation

I: Find a shared model parameter for multiple similar tasks/individuals.

$$\min_{x} \quad \frac{1}{M} \sum_{i=1}^{M} \mathbb{E}_{\eta \sim \rho_{i}} \left[ l(y_{i}^{*}(x); \eta) \right]$$



 $\bullet$  Complexity depends linearly on M (Guo and Yang 2021)



#### II: Optimal Response to Side Information.



# Contextual Stochastic Bilevel Optimization

Yifan Hu<sup>1,2</sup>, **Jie Wang**<sup>3</sup>, Yao Xie<sup>3</sup>, Andreas Krause<sup>2</sup>, Daniel Kuhn<sup>1</sup> <sup>1</sup> EPFL, <sup>2</sup> ETH Zurich, <sup>3</sup> Gatech

# Algorithm Design

$$\nabla F(x) = \mathbb{E} \left[ \nabla_1 f(x, \boldsymbol{y}^*(\boldsymbol{x}; \boldsymbol{\xi}); \eta, \boldsymbol{\xi}) - \left( \mathbb{E}_{\eta' \sim \mathbb{P}_{\eta|\boldsymbol{\xi}}} \nabla_{12}^2 g(x, \boldsymbol{y}^*(\boldsymbol{x}; \boldsymbol{\xi}); \eta', \boldsymbol{\xi}) \right) \times \left[ \mathbb{E}_{\eta \sim \mathbb{P}_{\eta|\boldsymbol{\xi}}} \nabla_{22}^2 g(x, \boldsymbol{y}^*(\boldsymbol{x}; \boldsymbol{\xi}); \eta, \boldsymbol{\xi}) \right]^{-1} \times \nabla_2 f(x, \boldsymbol{y}^*(\boldsymbol{x}; \boldsymbol{\xi}); \eta, \boldsymbol{\xi}) \right].$$

# Challenges:

- Estimate Hessian inverse
- Estimate the optimal response  $y^*(x;\xi)$

#### Matrix Inverse Estimation: Neumann Series

For random matrix A such that  $0 \prec A \prec I$ :

$$[\mathbb{E}A]^{-1} = \sum_{i=0}^{\infty} (I - \mathbb{E}A)^i = \sum_{i=0}^{\infty} \prod_{n=1}^{i} \mathbb{E}(I - A_n) \approx \sum_{i=0}^{N} \prod_{n=1}^{i} \mathbb{E}(I - A_n).$$

• Bias: exponentially decreasing in N, i.e.,  $N = \mathcal{O}(\log(\epsilon^{-1}))$ 

# Optimal Response Estimation: Epoch SGD



•Gradient estimator:  $\widehat{v}(x; y_{K+1})$ .

•Con: Need  $\mathcal{O}(\epsilon^{-2})$  operations to get  $y_{K+1}$ .





Yifan's Homepage

# Random Sampling Gradient Estimator (Hu et al. 2021)

$$\begin{split} \widehat{v}(x;y_{K+1}) &= \widehat{v}(x;y_1) + \sum_{k=1}^K [\widehat{v}(x;y_{k+1}) - \widehat{v}(x;y_k)] \\ &= \widehat{v}(x;y_1) + \sum_{k=1}^K p_k \frac{\widehat{v}(x;y_{k+1}) - \widehat{v}(x;y_k)}{p_k} = \mathbb{E}_{k \sim \mathbb{P}_k} \Big[ \widehat{v}(x;y_1) + \frac{\widehat{v}(x;y_{k+1}) - \widehat{v}(x;y_k)}{p_k} \Big]. \end{split}$$

- Sample k according to pmf  $p_k \propto 2^{-k}$ ,  $\sum_{k=1}^K p_k = 1$ . Construct estimator  $\widehat{v}(x) = \widehat{v}(x; y_1) + \frac{\widehat{v}(x; y_{k+1}) - \widehat{v}(x; y_k)}{n}$ .
- High probability: generate small k, Low probability: generate large k.
- Per-iteration cost reduction: from  $\mathcal{O}(2^K) = \mathcal{O}(\epsilon^{-2})$  to  $\mathcal{O}(K) = \widetilde{O}(1)$ .
- Variance reduction effect as  $\widehat{v}(x;y_{k+1}) \widehat{v}(x;y_k) \to 0$  for large k.

#### Takeaway

To find an  $\epsilon$ -stationary point, the sample complexity is

- ullet For vanilla SGD, it is  $\mathcal{O}(\epsilon^{-6})$ .
- For random sampling method, it is  $\mathcal{O}(\epsilon^{-4})$ .

**Remark:** No dependence on number of tasks or individuals M.

# Numerical Study: Meta-learning on Mini-ImageNet

Vanilla SGD Run Time Per Iteration Random Sampling — K=12 — K=12 ---- Baseline: MAML ---- Baseline: MAML

Random Vanilla 2.65e-2 2.73e-2 7.23e-2 3.41e-2 2.48e-1 4.93e-2 1.08e-1 9.38e-1