Multiple Choice Questions

Q.1 - Q.20 Carry one mark each

1. The total number of isomers of $Co(en)_2Cl_2$ (en = ethylenediamine) is

(A) 4 (B) 3 (C) 6 (D) 5 (GATE-EE2025)

Q.2 Metal-metal quadruple bonds are well-known for the metal

(A) Ni (B) Co (C) Fe (D) Re (GATE-EE2025)

Q.3 The reaction of Al₄C₃ with water leads to the formation of

(A) methane (B) propyne (C) propene (D) propane (GATE-EE2025)

Q.4 The correct statement about C_{60} is

(A) C₆₀ is soluble in benzene

(B) C₆₀ does not react with tert-butyllithium

(C) C₆₀ is made up of 10 five-membered and 15 six-membered rings

- (D) Two adjacent five-membered rings share a common edge (GATE-EE2025)
- Q.5 The lattice parameters for a monoclinic crystal are

(A) $a \neq b \neq c$; $\alpha = \gamma = 90^{\circ}$

- (B) $a = b \neq c$; $\alpha \neq \beta \neq \gamma$
- (C) $a \neq b \neq c$; $\alpha \neq \beta \neq \gamma$

(D) a = b = c; $\alpha = \gamma = 90^{\circ}$ (GATE-EE2025)

 $\mbox{\bf Q.6}$ The magnetic moment of $[\mbox{\bf Ru}(\mbox{\bf H}_2\mbox{\bf O})_6]^{2+}$ corresponds to the presence of

(A) four unpaired electrons (B) three unpaired electrons

- (C) two unpaired electrons (D) zero unpaired electrons (GATE-EE2025)
- **Q.7** The compound that is **NOT** aromatic is

Q.8 The order of stability for the following cyclic olefins is

- (A) I < II < III < IV
- (B) I < III < IV < I
- (C) II < III < I < IV
- (D) IV < II < I < III

(**GATE-EE2025**)

Q.9 The most acidic species is

(**GATE-EE2025**)

Q.10 The major product of the following reaction is

(GATE-EE2025)

Q.11 In the carbylamine reaction, R–X is converted to R–Y *via* the intermediate Z. R–X, R–Y and Z, respectively, are

- (A) R–NH₂, R–NC, carbene
- (B) R-NH₂, R-NC, nitrene
- (C) R-NC, R-NH₂, carbene
- (D) R-OH, R-NC, nitrene (GATE-EE2025)
 - The compound that is **NOT** oxidized by KMnO₄ is Q.12

- Q.13 Cyanogen bromide (CNBr) specifically hydrolyses the peptide bond formed by the Cside of
- (A) methionine
- (B) glycine
- (C) proline
- (D) serine (GATE-EE2025)
- **Q.14** The Hammett reaction constant ρ is based on
- (A) the rates of alkaline hydrolysis of substituted ethyl benzoates
- (B) the dissociation constants of substituted acetic acids
- (C) the dissociation constants of substituted benzoic acids
- (D) the dissociation constants of substituted phenols (GATE-EE2025)
- **Q.15** The lifetime of a molecule in an excited electronic state is 10^{-10} s. The uncertainty in the energy (eV) approximately is
- (A) 2×10^5
- (B) 3×10^6
- (C) 0 (D) 10^{-14} (GATE-EE2025)
- Q.16For a one component system, the maximum number of phases that can coexist at equilibrium is
- (A) 3
- (B) 2
- (C) 1
- (D) 4 (GATE-EE2025)
- **Q.17** At T = 300 K, the thermal energy $(k_B T)$ in cm⁻¹ is approximately
- (A) 20000 (B) 8000
- (C) 5000 (D) 200 (GATE-EE2025)

Q.18 For the reaction $2X_3 \rightarrow 3X_2$, the rate of formation of X_2 is
(A) $3\left(-\frac{d[X_3]}{dt}\right)$ (B) $\frac{1}{2}\left(-\frac{d[X_3]}{dt}\right)$ (C) $\frac{1}{3}\left(-\frac{d[X_3]}{dt}\right)$ (D) $\frac{3}{2}\left(-\frac{d[X_3]}{dt}\right)$ (GATE-EE2025)
Q.19 The highest occupied molecular orbital of HF is
(A) bonding (B) antibonding (C) ionic (D) nonbonding (GATE-EE2025)
Q.20 The residual entropy of the asymmetric molecule N_2O in its crystalline state is 5.8 J K ⁻¹ mol ⁻¹ at absolute zero. The number of orientations that can be adopted by N_2O in its crystalline state is
(A) 4 (B) 3 (C) 2 (D) 1 (GATE-EE2025)
Q.21 to Q.75 Carry two marks each
Q.21 The spectroscopic ground state symbol and the total number of electronic transitions of $[Ti(H_2O)_6]^{3+}$ are
(A) ${}^3T_{1g}$ and 2 (B) ${}^3A_{2g}$ and 3 (C) ${}^1T_{1g}$ and 3 (D) ${}^3A_{2g}$ and 2 (GATE-EE2025)
Q.22 The structures of the complexes $[Cu(NH_3)_4](ClO_4)_2$ and $[Cu(NH_3)_4](ClO_4)$ in solution respectively are
(A) square planar and tetrahedral (B) octahedral and square pyramidal (C) octahedral and trigonal bipyramidal (D) tetrahedral and square planar (GATE-EE2025)
Q.23 In biological systems, the metal ions involved in electron transport are
(A) Na ⁺ and K ⁺ (B) Zn ²⁺ and Mg ²⁺ (C) Ca ²⁺ and Mg ²⁺ (D) Cu ²⁺ and Fe ³⁺ (GATE-EE2025)
Q.24 In a homogeneous catalytic reaction, 1.0 M of a substrate and 1.0 μ M of a catalyst yields 1.0 mM of a product in 10 seconds. The turnover frequency (TOF) of the reaction (s ⁻¹) is
(A) 10^2 (B) 10^1 (C) 10^{-3} (D) 10^3 (GATE-EE2025)
Q.25 The expected magnetic moments of the first-row transition metal complexes and those of the lanthanide metal complexes are usually calculated using
(A) μ_{so} equation (s.o. = spin only) for both lanthanide and transition metal complexes (B) μ_{so} equation for lanthanide metal complexes and μ equation for transition metal complexes
(C) μ_{so} equation for transition metal complexes and μ equation for lanthanide metal com-

plexes

(D) $\mu_{\rm eff}$ equation for transition metal complexes and $\mu_{\rm so}$ equation for lanthanide metal complexes (GATE-EE2025)

Q.26 The Brønsted acidity of boron hydrides follows the order

(A) $B_2H_6 > B_4H_{10} > B_5H_9 > B_{10}H_{14}$

- (B) $B_2H_6 = B_4H_{10} > B_5H_9 = B_{10}H_{14}$
- (C) $B_{10}H_{14} > B_5H_9 > B_4H_{10} > B_2H_6$
- (D) $B_5H_9 > B_4H_{10} > B_2H_6 > B_{10}H_{14}$

(GATE-EE2025)

Q.27 NaCl is crystallised by slow evaporation of its aqueous solution at room temperature. The correct statement is

- (A) The crystals will be non-stoichiometric
- (B) The crystals should have Frenkel defects
- (C) The percentage of defects in the crystals will depend on the concentration of the solution and its rate of evaporation
- (D) The nature of defects will depend upon the concentration of the solution and its rate of evaporation (GATE-EE2025)

Q.28 CaTiO₃ has a perovskite crystal structure. The coordination number of titanium in $CaTiO_3$ is

- (A) 9 (B) 6 (C) 3 (D) 12 (GATE-EE2025)
- **Q.29** If ClF₅ were to be stereochemically rigid, its ^{19}F NMR spectrum (I for $^{19}F = \frac{1}{2}$) would be (assume that Cl is not NMR active)
- (A) a doublet and a triplet
- (B) a singlet
- (C) a doublet and a singlet
- (D) two singlets (GATE-EE2025)

Q.30 The point group of NSF_3 is

- $(A) D_{3d} \qquad (B) C_{3h}$
- (C) D_{3h}
- (D) $C_{3\nu}$ (GATE-EE2025)
- **Q.31** When NiO is heated with a small amount of Li₂O in air at 1200°C, a non-stoichiometric compound Li_xNi_{1-x}O is formed. This compound is
- (A) an n-type semiconductor containing only Ni1+
- (B) an n-type semiconductor containing Ni¹⁺ and Ni²⁺
- (C) a p-type semiconductor containing Ni²⁺ and Ni³⁺
- (D) a p-type semiconductor containing only Ni³⁺ (GATE-EE2025)

Q.32 White phosphorus, P ₄ , belongs to the					
(A) closo syste (GATE-EE202		<i>iido</i> system	(C) arachno system	(D) hypho system	
Q.33 Among the compounds Fe ₃ O ₄ , NiFe ₂ O ₄ and Mn ₃ O ₄					
 (A) NiFe₂O₄ and Mn₃O₄ are normal spinels (B) Fe₃O₄ and Mn₃O₄ are normal spinels (C) Fe₃O₄ and Mn₃O₄ are inverse spinels (D) Fe₃O₄ and NiFe₂O₄ are inverse spinels (GATE-EE2025) 					
Q.34 The num	ber of M-M be	onds in Ir ₄ (CO) ₁₂	are		
(A) four	(B) six	(C) eight (D) zero (GATE-EE2025)		
Q.35 Schrock carbenes are					
(A) triplets and nucleophilic (C) singlets and nucleophilic (D) singlets and electrophilic (GATE-EE2025)					
Q.36 The INCORRECT statement about linear dimethylpolysiloxane, $[(CH_3)_2SiO]_n$, is					
 (A) it is extremely hydrophilic (B) it is prepared by a KOH catalysed ring-opening reaction of [Me₂SiO]₄ (C) it has a very low glass transition temperature (D) it can be reinforced to give silicon elastomers (GATE-EE2025) 					

- a s, b r, c q, d p
- a p, b s, c q, d r
- a q, b p, c s, d r
- a s, b r, c p, d q

 $\mathbf{Q.38}$ The reaction between \mathbf{X} and \mathbf{Y} to give \mathbf{Z} proceeds via

(A) 4π -conrotatory opening of X followed by *endo* Diels-Alder cycloaddition

- (B) 4π -disrotatory opening of X followed by *endo* Diels-Alder cycloaddition
- (C) 4π -conrotatory opening of X followed by *exo* Diels–Alder cycloaddition
- (D) 4π -disrotatory opening of X followed by *exo* Diels–Alder cycloaddition

Q.39 The major products P_1 and P_2 , respectively, in the following reaction sequence are

$$(A) \qquad \qquad Me \longrightarrow Me \longrightarrow Me \longrightarrow P_1 \xrightarrow{H_2/Ni} H_2O \longrightarrow P_2$$

$$(A) \qquad \qquad Me \longrightarrow Me \qquad and \qquad Me \longrightarrow Me \qquad Me \longrightarrow Me$$

$$(B) \qquad \qquad Me \longrightarrow Me \qquad and \qquad Me \longrightarrow Me \qquad Me \longrightarrow Me$$

$$(C) \qquad \qquad Me \longrightarrow Me \qquad and \qquad Me \longrightarrow Me \qquad Me \longrightarrow Me$$

$$(D) \qquad \qquad Me \longrightarrow Me \qquad and \qquad Me \longrightarrow Me \qquad Me \longrightarrow Me$$

(GATE-EE2025)

Q.40 The products Y and Z are formed, respectively, from X via

- (A) $h\nu$, conrotatory opening and Δ , disrotatory opening
- (B) $h\nu$, disrotatory opening and Δ , conrotatory opening
- (C) Δ , conrotatory opening and $h\nu$, disrotatory opening

(D) Δ , disrotatory opening and $h\nu$, conrotatory opening

(GATE-EE2025)

Q.41 *o*-Bromophenol is readily prepared from phenol using the following conditions:

- (A) i) $(CH_3CO)_2O$; ii) Br_2 ; iii) $HCl-H_2O$, Δ
- (B) i) H₂SO₄, 100°C; ii) Br₂; iii) H₃O⁺, 100°C
- (C) N-Bromosuccinimide, dibenzoyl peroxide, CCl₄, Δ
- (D) Br₂/FeBr₃ (**GATE-EE2025**)

Q.42 The major product of the following reaction is

(GATE-EE2025)

Q.43 The photochemical reaction of 2-methylpropane with F_2 gives 2-fluoro-2-methylpropane and 1-fluoro-2-methylpropane in 14:86 ratio. The corresponding ratio of the bromo products in the above reaction using Br_2 is most likely to be:

- (A) 14:86
- (B) 50:50
- (C) 1:9
- (D) 99:1 (GATE-EE2025)

Q.44 The major product *P* of the following reaction is

Q.45 The reagent **X** in the following reaction is

(A)
$$HO_2CN=NCO_2H$$
 (B) $EtO_2CHC=CH-CO_2Et$ (C) $EtO_2CN=NCO_2Et$

(GATE-EE2025)

Q.46 The major product of the following reactions is

(GATE-EE2025)

Q.47 The major product of the following reaction is

Q.48 In the following compound, the hydroxy group that is most readily methylated with CH_2N_2 is

- (A) p (B) q
- (C) r (D) s

(**GATE-EE2025**)

Q.49 The most appropriate sequence of reactions for carrying out the following transformation is

- $(A)\ i)\ O_3/H_2O_2;\quad ii)\ excess\ SOCl_2/pyridine;\quad iii)\ excess\ NH_3;\quad iv)\ LiAlH_4$
- (B) i) O₃/Me₂S; ii) excess SOCl₂/pyridine; iii) LiAlH₄; iv) excess NH₃
- (C) i) O₃/H₂O₂; ii) excess SOCl₂/pyridine; iii) LiAlH₄; iv) excess NH₃
- (D) i) O_3/Me_2S ; ii) excess $SOCl_2/pyridine$; iii) excess NH_3 ; iv) $LiAlH_4$

Q.50 The number of optically active stereoisomers possible for 1,3-cyclohexanediol in its chair conformation is

- (A) 4
- (B) 3
- (C) 2
- (D) 1 (GATE-EE2025)
 - Q.51 The major product of the following reactions is

(**GATE-EE2025**)

Q.52 In the following reaction,

- **Q.** The absolute configurations of the chiral centres in X and Y are
 - (A) 2S, 3R and 2R, 3R
 - (B) 2R, 3R and 2R, 3S
 - (C) 2S, 3S and 2R, 3R
 - (D) 2S, 3R and 2S, 3R

Q.53

The IR stretching frequencies (cm $^{-1}$) for the compound X are as follows: 3300–3500 (s, br); 3000 (m); 2225 (s); 1680 (s).

The correct assignment of the absorption bands is:

- (A) $\bar{v}_{OH} = 3300-3500$; $\bar{v}_{CH} = 3000$; $\bar{v}_{CN} = 2225$; $\bar{v}_{CO} = 1680$
- (B) $\bar{v}_{OH} = 3000$; $\bar{v}_{CH} = 3300 3500$; $\bar{v}_{CN} = 2225$; $\bar{v}_{CO} = 1680$
- (C) $\bar{v}_{OH} = 3300 3500; \bar{v}_{CH} = 3000; \bar{v}_{CN} = 1680; \bar{v}_{CO} = 2225$
- (D) $\bar{v}_{OH} = 3000$; $\bar{v}_{CH} = 3300-3500$; $\bar{v}_{CN} = 1680$; $\bar{v}_{CO} = 2225$

(GATE-EE2025)

Q.54 The T_d point group has 24 elements and 5 classes. Given that it has two 3-dimensional irreducible representations, the number of one-dimensional irreducible representations is

- (A) 1
- (B) 6
- (C) 2
- (D) 3 (GATE-EE2025)

Q.55 The total number of ways in which two nonidentical spin $\frac{1}{2}$ particles can be oriented relative to a constant magnetic field is

- (A) 1
- (B) 2

(C) 3

(D) 4 (GATE-EE2025)

Q.56 Approximately one hydrogen atom per cubic meter is present in interstellar space. Assuming that the H-atom has a diameter of 10^{-10} m, the mean free path (m) approximately is

- (A) 10^{10}
- (B) 10^{19}
- (C) 10^{24}
- (D) 10^{14}

(**GATE-EE2025**)

Q.57 The wavefunction of a diatomic molecule has the form $\psi = 0.89 \, \varphi_{\text{covalent}} + 0.45 \, \varphi_{\text{ionic}}$. The chance that both electrons of the bond will be found on the same atom in 100 inspections of the molecule approximately is

- (A) 79
- (B) 20
- (C) 45
- (D) 60

(**GATE-EE2025**)

Q.58 For the reaction given below, the relaxation time is 10^{-4} s. Given that 10% of A remains at equilibrium, the value of k_1 (s⁻¹) is

- (A) 9×10^5
- (B) 10^5

(C) 10^6
(D) 9×10^6
(GATE-EE2025)
Q.59 The minimum number of electrons needed to form a chemical bond between two atoms is
(A) 1
(B) 2
(C) 3
(D) 4
(GATE-EE2025)
Q.60 The ground state electronic energy (Hartree) of a helium atom, neglecting the interelectron repulsion, is
(A) -1.0
(B) -0.5
(C) -2.0
(D) -4.0
(GATE-EE2025)
Q.61 A particle is confined to a one-dimensional box of length 1 mm. If the length is changed by 10^{-9} m, the % change in the ground state energy is
(A) 2×10^4
(B) 2×10^7
(C) 2×10^2
(D) 0
(GATE-EE2025)
Q.62 A certain molecule can be treated as having only a doubly degenerate state lying at 360 cm ⁻¹ above the nondegenerate ground state. The approximate temperature (K) at which 15% of the molecules will be in the upper state is

(A) 500(B) 150

(C) 200
(D) 300
(GATE-EE2025)
Q.63 A box of volume V contains one mole of an ideal gas. The probability that all N particles will be found occupying one half of the volume leaving the other half empty is
(A) 1/2
(B) $2/N$
(C) $(1/2)^N$
(D) $(1/2)^{6N}$
(GATE-EE2025)
Q.64 According to the Debye-Hückel limiting law, the mean activity coefficient of 5×10^{-4} mol kg ⁻¹ aqueous solution of CaCl ₂ at 25°C is (the Debye-Hückel constant 'A' can be taken to be 0.509)
(A) 0.63
(B) 0.72
(C) 0.80
(D) 0.91
(GATE-EE2025)
Q.65 The operation of the commutator $[x, d/dx]$ on a function $f(x)$ is equal to
(A) 0
(B) $f(x)$
(C) $-f(x)$
(D) $x \frac{df}{dx}$
(GATE-EE2025)
Q.66 If a gas obeys the equation of state $P(V - nb) = nRT$, the ratio $(C_P - C_V)/(C_P - C_V)_{ideal}$ is
(A) > 1
(B) < 1

(C) 1

(D) (1 - b)

(**GATE-EE2025**)

Q.67 Physisorbed particles undergo desorption at 27°C with an activation energy of 16.628 kJ mol⁻¹. Assuming first-order process and a frequency factor of 10¹² Hz, the average residence time (in seconds) of the particles on the surface is

- (A) 8×10^{-10}
- (B) 8×10^{-11}
- (C) 2×10^{-9}
- (D) 1×10^{-12}

(**GATE-EE2025**)

Q.68 The rotational constants for CO in the ground and the first excited vibrational states are 1.9 and 1.6 cm⁻¹, respectively. The % change in the internuclear distance due to vibrational excitation is

- (A) 9
- (B) 30
- (C) 16
- (D) 0

(**GATE-EE2025**)

Q.69

The mechanism of enzyme (E) catalysed reaction of a substrate (S) to yield product (P) is:

$$E + S = \frac{k_1}{k_1} [E S] = \frac{k_2}{k_2} E + P ; -\frac{d[S]}{dt} = \frac{k_1 k_2 [S] - k_1 k_2 [P]}{k_1 [S] + k_2 [P] + k_1 + k_2} [E]_0$$

If a small amount of S is converted to P, the maximum rate for the reaction will be observed for:

- (A) $(k_1 + k_2) \gg k_1[S]_0$
- (B) $(k_1 + k_2) \ll k_1 [S]_0$
- (C) $(k_2 + k_{-1}) = (k_1 + k_1)$
- (D) $k_2 \ll k_1$

(GATE-EE2025)

Q.70 The lowest energy state of the $(1s)^2(2s)^1(3s)^1$ configuration of Be is

- (A) ${}^{1}S_{0}$
- (B) ${}^{1}D_{2}$
- (C) ${}^{3}S_{1}$
- (D) ${}^{3}P_{1}$

Common Data Questions

Common Data for Questions 71, 72 and 73:

An electron accelerated through a potential difference of φ volts impinges on a nickel surface, whose (100) planes have a spacing $d = 351.8 \times 10^{-12}$ m (351.8 pm).

- Q.71 The de-Broglie wavelength of the electron is $\lambda/\text{pm} = (a/\varphi)^{1/2}$. The value of 'a' in volts is:
 - (A) 1.5×10^{-18}
 - (B) 1.5×10^6
 - (C) 6.63×10^5
 - (D) 2.5×10^{18}

(GATE-EE2025)

- Q.72 The condition for observing diffraction from the nickel surface is:
 - (A) $\lambda \gg 2d$
 - (B) $\lambda \leq 2d$
 - (C) $\lambda \leq d$
 - (D) $\lambda \ge d$

(GATE-EE2025)

- Q.73 The minimum value of φ (V) for the electron to diffract from the (100) planes is:
 - (A) 3000
 - (B) 300
 - (C) 30
 - (D) 3

(**GATE-EE2025**)

Common Data for Questions 74 and 75:

An iron complex $[FeL_3]^{2+}$ (L = neutral monodentate ligand) catalyses the oxidation of $(CH_3)_2S$ by perbenzoic acid.

Q.74 The formation of the organic product in the above reaction can be monitored by:

- (A) gas chromatography
- (B) cyclic voltammetry
- (C) electron spin resonance
- (D) fluorescence spectroscopy

- Q.75 The oxidation state of the metal ion in the catalyst can be detected by:
 - (A) atomic absorption spectroscopy
 - (B) Mössbauer spectroscopy
 - (C) HPLC
 - (D) gas chromatography

(GATE-EE2025)

Linked Answer Questions: Q.76 to Q.85 carry two marks each Linked Answer Questions 76 and 77:

In the reaction,

Q.76 Compound X is

(A)
$$PPh_3$$
 PPh_3 $Ph_3P-Rh-PPh_3$ $Ph_3P-Rh-PPh_3$ $Ph_3P-Rh-PPh_3$ $Ph_3P-Rh-PPh_3$ $Ph_3P-Rh-PPh_3$ $Ph_3P-Rh-PPh_3$ $Ph_3P-Rh-PPh_3$ $Ph_3P-Rh-PPh_3$ $Ph_3P-Rh-PPh_3$ $Ph_3P-Rh-PPh_3$

(GATE-EE2025)

Q.77Rh(PPh₃)₃Cl reacts very fast with a gaseous mixture of H_2 and C_2H_4 to immediately give Z.The structure of Z is

Linked Answer Questions 78 and 79

The reaction of PCl₃ with methanol in the presence of triethylamine affords compound X. EI mass spectrum of X shows a parent ion peak at m/z = 124. Microanalysis of X shows that it contains C, H, O and P. The ¹H NMR spectrum of X shows a doublet at 4.0 ppm. The separation between the two lines of the doublet is approximately 15 Hz (J for ¹H and ³¹P = $\frac{1}{2}$).

- Q.78 Compound X is:
 - (A) (CH₃O)₂P
 - (B) $(CH_3O)_2PO$
 - (C) $(CH_3O)_2P(O)OH$
 - (D) $(CH_3O)_2PH$

(GATE-EE2025)

- Q.79 Upon heating, compound X is converted to Y, which has the same molecular formula as that of X. The ¹H NMR spectrum of Y shows two doublets centered at 3.0 ppm (separation of two lines = 20 Hz) and 4.0 ppm (separation of two lines = 15 Hz) respectively. Compound Y is:
 - (A) $(CH_3O)_2P(O)(OH)$
 - (B) $(CH_3O)_2P$
 - (C) (CH₃O)(CH₃)P(O)
 - (D) (CH₃O)(CH₃)P(OH)

(GATE-EE2025)

Linked Answer Questions 80 and 81

For butyrophenone (PhCOCH₂CH₂CH₃),

Q.80 The most probable fragmentation observed in the electron impact ionization (EI) mass spectrometry is

Q.81 Photoirradiation leads to the following set of products.

(A)
$$O$$

$$Ph \rightarrow H$$

$$+ H_2C \rightarrow CH_3$$
(B)
$$+ H \rightarrow O$$

$$+ H \rightarrow O$$

$$+ H \rightarrow O$$

$$+ H \rightarrow O$$

$$+ H \rightarrow CH_3$$

$$+ H_2C = CH_2$$

(GATE-EE2025)

Linked Answer Questions 82 and 83:

In the following reaction,

$$\bigvee_{\Theta} \stackrel{\text{th}}{\stackrel{\text{local P}}{\longrightarrow}} [I] \longrightarrow P$$

Q.82 the reactive intermediate I and the product P are

(**GATE-EE2025**)

Q.83 The product P shows 'm' and 'n' number of signals in ¹H and ¹³C NMR spectra, respectively. The values of 'm' and 'n' are

- (A) m = 3 and n = 2
- (B) m = 2 and n = 3
- (C) m = 2 and n = 2
- (D) m = 4 and n = 3 (GATE-EE2025)

Linked Answer Questions 84 and 85:

The infrared spectrum of a diatomic molecule exhibits transitions at 2144, 4262 and 6354 cm⁻¹ corresponding to excitations from the ground state to the first, second, and third vibration states respectively.

- **Q.84** The fundamental transition (cm⁻¹) of the diatomic molecule is at
 - (A) 2157 (B) 2170 (GATE-EE2025)
- (C) 2183 (D) 2196 (GATE-EE2025)
- **Q.85** The anharmonicity constant (cm^{-1}) of the diatomic molecule is
- (A) 0.018 (B) 0.012 (C) 0.006 (D) 0.003 (**GATE-EE2025**)

END OF THE QUESTION PAPER