Simulation Result For Three-Level Intercept Model With High Prevalence

The mean prevalence for this simulation is 31 %

Shafayet Khan Shafee

 $05 \ {\rm September} \ 2023$

Histograms for $log(\widehat{MOR})$

Figure 1: Hospitals = 20, Doctors = 10, Patients = 5

Figure 2: Hospitals = 40, Doctors = 20, Patients = 5

Simulation Result Table

								MOR_1							MOR_2					
L^1	M^2	N^3	$\widehat{eta_0}$	$\widehat{eta_1}$	$\widehat{eta_2}$	$\widehat{\sigma_{u_{jk}}^2}$	$\widehat{\sigma_{v_k}^2}$	\widehat{MOR}_1	$\begin{aligned} & \text{Rel.} \\ & Bias_1 \\ & (\%) \end{aligned}$	$\widehat{SE_1}_{MO}$	$\widehat{Sim}.$ $R \widehat{\widehat{SE}_1}_{MO}$	$_{R}^{Ratio_{1}^{\ 4}}$	CI- $coverage$ $(95%)$	$e_1 \widehat{MOR}_2$	$\begin{aligned} & \text{Rel.} \\ & Bias_2 \\ & (\%) \end{aligned}$	$\widehat{SE_2}_{MO}$	Sim. \widehat{SE}_{2MC}	$Ratio_2^{\ 4}$	CI- $coverage$ $(95%)$	Model Con- ver- gence
20	10	5	-1.84	1.75	0.67	1.82	2.34	3.64	-5.66	1.21	1.21	1	0.90	7.13	-5.73	1.29	1.32	0.98	0.88	1
40	20	5	-1.83	1.74	0.67	1.79	2.33	3.59	-6.82	1.09	1.09	1	0.86	6.99	-7.60	1.16	1.18	0.99	0.84	1

Note:

$$^{4} \text{ Ratio} = \frac{\widehat{SE}_{MOR}}{Simulation \ \widehat{SE}_{MOR}}$$
 * The mean prevalence for this simulation is 31%

 $^{^{1}}$ Number of Hospital

² Number of Doctors

³ Number of patients

 $^{^\}dagger$ True MOR_1 is 3.85

[†] True MOR_2 is 7.56 § True $\sigma^2_{u_{jk}}$ is 2 ¶ True $\sigma^2_{v_k}$ is 2.5 ** True Values of $\beta_0=-1.85,\,\beta_1=1.75,\,\beta_2=0.67$