(Effective from the academic year 2018 -2019) SEMESTER – V				
Course Code	18CS53	CIE Marks	40	
Number of Contact Hours/Week	3:2:0	SEE Marks	60	
Total Number of Contact Hours	50	Exam Hours	03	
CREDITS-4				
Course Learning Objectives: This course (18CS53) will enable students to:				
 Provide a strong foundation in database concepts, technology, and practice. 				
 Practice SQL programming thro 	ugh a variety o	f database problems.		
Demonstrate the use of concurre	ency and transac	ctions in database		
 Design and build database appli 	cations for real	world problems.		
Module 1		1 2		Contact
				Hours
Introduction to Databases: Introduction of using the DBMS approach, History Languages and Architectures: Data architecture and data independence, data environment. Conceptual Data Modellir Entity sets, attributes, roles, and structue examples, Specialization and Generalizati Textbook 1:Ch 1.1 to 1.8, 2.1 to 2.6, 3.1 RBT: L1, L2, L3	of database ap Models, Schen ase languages, a ag using Entiti ral constraints, on.	pplications. Overview of Dat nas, and Instances. Three s and interfaces, The Database S es and Relationships: Entity	tabase schema System types,	10
Module 2				
Relational Model: Relational Model Cordatabase schemas, Update operations, tr Relational Algebra: Unary and Binary re (aggregate, grouping, etc.) Examples of C Design into a Logical Design: Relational SQL: SQL data definition and data types SQL, INSERT, DELETE, and UPDATE s Textbook 1: Ch4.1 to 4.5, 5.1 to 5.3, 6.1 RBT: L1, L2, L3	ansactions, and elational operat Queries in relati Database Desi , specifying contatements in SO	dealing with constraint viol- ions, additional relational oper onal algebra. Mapping Conc gn using ER-to-Relational ma nstraints in SQL, retrieval que QL, Additional features of SQI	ations. rations eptual apping. eries in	10
Module 3				
SQL: Advances Queries: More comple assertions and action triggers, Views in S Application Development: Accessing JDBC, JDBC classes and interfaces, SC Bookshop. Internet Applications: The tl layer, The Middle Tier Textbook 1: Ch7.1 to 7.4; Textbook 2: 6 RBT: L1, L2, L3	QL, Schema cl databases from QLJ, Stored pr hree-Tier applic	hange statements in SQL. Dan applications, An introduct occdures, Case study: The in- cation architecture, The presen-	tabase ion to nternet	10
Normalization: Database Design Theor	v Introductio	n to Normalization using Euro	otional	10
and Multivalued Dependencies: Informal Dependencies, Normal Forms based on Boyce-Codd Normal Form, Multivalue Dependencies and Fifth Normal Form Equivalence, and Minimal Cover, Proper Relational Database Schema Design, 1	design guideli Primary Keys, d Dependency a. Normalizati ties of Relation	nes for relation schema, Fund Second and Third Normal I and Fourth Normal Form on Algorithms: Inference and Decompositions, Algorithm	Forms, , Join Rules, ms for	10

DATABASE MANAGEMENT SYSTEM

Designs, Further discussion of Multivalued dependencies and 4NF, Other dependencies and	
Normal Forms	1
Textbook 1: Ch14.1 to 14.7, 15.1 to 15.6	1
RBT: L1, L2, L3	l
Module 5	.,,,
Transaction Processing: Introduction to Transaction Processing, Transaction and System	10
concepts, Desirable properties of Transactions, Characterizing schedules based on	
recoverability, Characterizing schedules based on Serializability, Transaction support in	1
SQL. Concurrency Control in Databases: Two-phase locking techniques for Concurrency	1
control, Concurrency control based on Timestamp ordering, Multiversion Concurrency	1
control techniques, Validation Concurrency control techniques, Granularity of Data items and	1
Multiple Granularity Locking. Introduction to Database Recovery Protocols: Recovery	1
Concepts, NO-UNDO/REDO recovery based on Deferred update, Recovery techniques based	1
on immediate update, Shadow paging, Database backup and recovery from catastrophic	1
failures	1
Textbook 1: 20.1 to 20.6, 21.1 to 21.7, 22.1 to 22.4, 22.7.	1
RBT: L1, L2, L3	
Course Outcomes: The student will be able to:	

- Identify, analyse and define database objects, enforce integrity constraints on a database using RDBMS.
- Use Structured Query Language (SQL) for database manipulation.
- Design and build simple database systems
- Develop application to interact with databases

 Question Paper Pattern:

- The question paper will have ten questions.
 Each full Question consisting of 20 marks
 There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module. Textbooks:

- Fundamentals of Database Systems, Ramez Elmasri and Shamkant B. Navathe, 7th Edition, 2017, Pearson.
- 2. Database management systems, Ramakrishnan, and Gehrke, 3rd Edition, 2014, McGraw Hill

- Reference Books:

 1. Silberschatz Korth and Sudharshan, Database System Concepts, 6th Edition, Mc-GrawHill, 2013.

 2. Coronel, Morris, and Rob, Database Principles Fundamentals of Design, Implementation and Management, Cengage Learning 2012.