Sprawozdanie z zadania numerycznego 6

1. Instrukcja uruchomienia

- Aby uruchomić program z funkcją wyświetlania jednego wykresu na którym znajdują się cztery mniejsze należy użyć make show
- Aby uruchomić program z funkcją zapisania czterech poszczególnych wykresów do plików: wykres1.svg, wykres2.svg, wykres3.svg, wykres4.svg należy użyć make save

2. Cel ćwiczenia

Znalezienie i wykreślenie wielomianu interpolacyjnego dla dwóch funkcji i dwóch sposobów wyboru węzłów interpolacji.

3. Opis ćwiczenia

- 1) Analiza problemu
- 2) Zaimplementowanie algorytmu interpolacji
- 3) Przedstawienie na wykresach interpolacji wielomianów dla kilku różnych n.

4. Wstęp teoretyczny

Zacznijmy od przedstawienia czym jest interpolacja. Jest to taka metoda numeryczna, która pozwala nam na budowanie funkcji interpolacyjnej. Wśród wartości funkcji interpolacyjnej znajdują się z góry zadane wartości w ustalonych punktach, czyli w węzłach interpolacji. W zadaniu będziemy przeprowadzać interpolację wielomianową, czyli przybliżanie funkcji przy pomocy wielomianów. Z twierdzenia Weierstrassa wiemy bowiem że dowolną funkcję możemy przybliżyć za pomocą wielomianu odpowiednio wysokiego stopnia.

Wiemy że wielomian interpolacyjny $W_n(x_i) = y_i$, czyli otrzymujemy

$$\begin{cases} W_n(a_0) = a_0 + a_1 x_0 + \dots + a_n x_0^n = y_0 \\ \vdots \\ W_n(x_n) = a_0 + a_1 x_n + \dots + a_n x_n^n = y_n \end{cases}$$

Układ taki możemy zapisać w postaci macierzowej:

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_0 \\ \vdots \\ y_n \end{bmatrix}$$

Rozwiązaniem tego układu są współczynniki wielomianu. Macierz ta jest macierzą Vandermonde'a i jeśli punkty x_0, x_1, \cdots, x_n nie pokrywają się to wyznacznik tej macierzy jest różny od zera i wynosi:

$$\prod_{0 < i < j < n} (x_j - x_i)$$

A z tego wynika że istnieje jeden wielomian interpolacyjny stopnia nie większego niż n.

Podczas wyliczania wartości wielomianu interpolacyjnego będziemy stosować wzór interpolacyjny Lagrange'a. Ma on postać:

$$W_n(\mathbf{x}) = \sum_j y_j \, \phi_j(\mathbf{x})$$

 $\phi_j(x)$ to wielomiany stopnia nie większego niż n, y_j to wartości w węzłach interpolacyjnych.

$$\phi_j(x) = \prod_{k \neq j} \frac{(x - x_k)}{(x_j - x_k)}$$

Podczas obliczeń stosowane są dwa różne sposoby na wybór węzłów interpolacyjnych:

- Jednorodne $x_i = -1 + 2\frac{i}{n}$ (i=0, ..., n)
- Niejednorodne będące będące miejscami zerowymi wielomianu Czebyszewa $x_i=\cos(\frac{2i+1}{2(n+1)}\pi)$ (i=0, ..., n)

5. Wyniki

6. Wnioski

Dla uproszczenia przyjmijmy oznaczenia:

•
$$z(x) = \frac{1}{1+x^2}$$

Dla funkcji y i jednorodnego rozkładu możemy zaobserwować że wraz ze zwiększaniem stopnia n polepsza przybliżenie, lecz znów jeśli to n będzie za duże to na krańcach przedziału amplituda oscylacji wielomianu interpolacyjnego powiększa się. Taki efekt nazywamy efektem Rungego i aby go uniknąć musimy używać nierównomiernie rozłożonych węzłów interpolacji. Powinniśmy więcej punktów upychać na krańcach naszych przedziałów. Tak też robimy i widać że im większe n to aproksymacja oscylacji jest coraz mniejsza.

Dla funkcji z i jednorodnego rozkładu na naszym przedziale [-1, 1] nie obserwujemy pogarszania się wyniku na krańcach przedziału. Tak samo dla rozkładu niejednorodnego nie ma pogarszania się wyniku wraz ze wzrostem n. Dla funkcji z przedziału [-1, 1] wynik interpolacji nie zależy od wyboru sposobu rozkładu punktów.