ROBEM I Assume $(N_t: t \geq 0)$ is a Possion process with parameter α . Let $P(t) := \mathbb{P}(2 \mid N_t), Q(t) := \mathbb{P}(2 \mid N_t)$. Prove that $P(t) = e^{-\alpha t} \sinh(\alpha t), Q(t) = e^{-\alpha t} \cosh(\alpha t)$.

SOUTION.

ROBEM II Assume $(N_t: t \geq 0)$ is a Possion process with parameter α . Prove that $\lim_{t\to\infty} \frac{N_t}{t} = \alpha, a.s.$.

ROBEM III Assume $(N_t: t \ge 0)$ is a Possion process with parameter $\alpha > 0$. Prove that $\frac{N_t - \alpha t}{\sqrt{\alpha t}} \xrightarrow{d} N(0,1)$.

ROBEM IV Assume $(X_t:t\geq 0), (Y_t:t\geq 0)$ are two independent Possion processes with parameter α, β respectively. Prove that $(X_t+Y_t:t\geq 0)$ is Possion process with parameter $\alpha+\beta$. ROBEM V Assume $(\xi_n:n\in\mathbb{N}^+)$ is a sequence of i.i.d. random variable ranging in \mathbb{Z}^d . Let $X_n=X_0+\sum_{k=1}^n\xi_k$, and $X_0\perp(\xi_n:n\in\mathbb{N}^+)$ ranging in \mathbb{Z}^d , too. Assume $(N_t:t\geq 0)$ is a Possion process with parameter $\alpha>0$. Discuss $\frac{X_{N_t}}{t}$ when $t\to\infty$.