

Course	CHE309 Computational Fluid Dynamics		Semester		Monsoon Semester 2024	
Faculty Name(s)	Arijit Ganguli	Arijit Ganguli			arijit.ganguli@ahduni.edu.in	
School	SEAS	SEAS			3	
GER Category:	Not Applicable	Not Applicable		ES	P/NP Course: Can not be taken as P/NP	
Schedule	Section 1	02:00 pm to 03:00) pm	Sat	01-08-24 to 26-11-24	
		03:00 pm to 04:00) pm	Sat	01-08-24 to 26-11-24	
		04:00 pm to 05:00) pm	Sat	01-08-24 to 26-11-24	
Prerequisite	CHE201 Fluid Mechar	CHE201 Fluid Mechanics & CHE203 Heat Transfer				
Antirequisite	Not Applicable	Not Applicable				
Corequisite	Not Applicable	Not Applicable				
Course Description	Computational Fluid Dynamics (CFD) is a very important branch in aeronautical engineering, mechanical engineering, chemical engineering etc for the design and optimization of machines and equipments. The fluid dynamics in such equipments influences the heat and/or mass transfer occurring in these equipments. Knowledge of the fundamentals/basics of CFD helps in setting up of real-life industrial problems faced by the different industries and efficiently understanding and interpretation of results rather than using the commertial software packages like a black box The course would provide in a thorough and rigorous manner the solving of partial differential equations of momentum and energy by different numerical techniques, application of boundary conditions and interpretation of results					

Course Objectives	The objectives of course are to teach, • Understanding of fundamental concepts of CFD like discretization for steady and unsteady flows • Application of discretization techinques to convection diffusion problems and obtain velocity and temperature distributions • Understanding and application of appropriate boundary conditions for steady and unsteady problems • Creating simple geometries, meshing and solving simple problems in commercial softwares like Ansys Fluent
Learning Outcomes	On successful completion of the course, students will be able to: • Discretize and solve one or two dimensional steady and unsteady problems to obtain velocity and temperature distributions for simple flow. • Set-up problems for simple geometries, apply boundary conditions and get velocity and temperature distributions.
Pedagogy	Lectures, Practical coding, Projects
Expectation From Students	Students must attend lectures, read the study material and books regularly. Solve the assignment problems and submit as per the time line.
Assessment/Evaluation	 Mid-Semester Examination: Assignment - 10% Online Exam - 15% End Semester Examination: Online Exam - 25% Project - 50%
Attendance Policy	As per Ahmedabad University Policy.
Project / Assignment Details	Small matlab codes for coding problems solved in class will be given at the end of each unit and student has to submit as per the time line given. Projects will be real problems to be solved in commertial software Ansys Fluent or open source software
Course Material	Reference Book • Numerical Heat Transfer and Fluid Flow, S V Patankar, 2nd Edition, Hemisphere Publishing Corporation, ISBN: 0891165223, Year: 1980,
Additional Information	

Session Plan

NO.	TOPIC TITLE	TOPIC & SUBTOPIC DETAILS	READINGS,CASES,ETC.	ACTIVITIES	IMPORTANT DATES
1	Introduction	What is CFD and scope of the course	Introduction to Computational Fluid Dynamics, Versteeg and Malalashekera	Lecture	
2	Conservation laws of fluid motion and boundary conditions	Governing equations of fluid flow and heat transfer	Introduction to Computational Fluid Dynamics, Versteeg and Malalashekera, Chapter 2	Lecture	
3	Conservation laws of fluid motion and boundary conditions	Differential and integral forms of general transport equations; Classification of fluid flow equations	Introduction to Computational Fluid Dynamics, Versteeg and Malalashekera, Chapter 2	Lecture	
1	Turbulence and its modeling	What is trubulence and effect of turbulence on time averaged Navier-Stokes equations	Introduction to Computational Fluid Dynamics, Versteeg and Malalashekera, Chapter 3	Lecture	
5	Turbulence and its modeling	Charasteristics of simple turbulent flows and turbulence models	Introduction to Computational Fluid Dynamics, Versteeg and Malalashekera, Chapter 3	Lecture	
5	Practical examples on commertial CFD softwares (Ansys Fluent)	Velocity distribution in pipe flow	Ansys Fluent Help	Lab session	
7	Practical examples on commertial CFD softwares (Ansys Fluent)	Turbulent flow and heat transfer in tube	Ansys Fluent Help	Lab session + Term project Defined	
3	Finite volume method for diffusion problems	Finite volume method for one-dimensional steady state equations	Introduction to Computational Fluid Dynamics, Versteeg and Malalashekera, Chapter 4	Lecture + problem	

9	Finite volume method for diffusion problems	Finite volume method for two and three dimensional steady state equations	Introduction to Computational Fluid Dynamics, Versteeg and Malalashekera, Chapter 4	Lecture + problem
10	Discretization methods	Discretization concept and structure of discretization technique	Numerical Heat transfer and Fluid Flow, Patankar, Chapter 3	Lecture
11	Discretization methods	Illustrative example of discretization technique	Numerical Heat transfer and Fluid Flow, Patankar, Chapter 3	Problem solving
12	Finite volume method for convection-diffusion problems	Steady one dimensional convection-diffusion problem: central difference scheme and its properties	Introduction to Computational Fluid Dynamics, Versteeg and Malalashekera, Chapter 5	Lecture + Assignment 1 due
13	Finite volume method for convection-diffusion problems	Steady one dimensional convection-diffusion problem: central difference scheme	Introduction to Computational Fluid Dynamics, Versteeg and Malalashekera, Chapter 5	Problem solving
14	Finite volume method for convection-diffusion problems	Steady one dimensional convection-diffusion problem: upwind, hybrid and power-law schemes	Introduction to Computational Fluid Dynamics, Versteeg and Malalashekera, Chapter 5	Lecture + Quiz
15	Pressure-velocity concept in steady flows	The staggered grid applied to momentum equations	Introduction to Computational Fluid Dynamics, Versteeg and Malalashekera, Chapter 6	Lecture
16	Pressure-velocity concept in steady flows, The SIMPLE method	SIMPLE method for Navier-Stokes equations, Concepts of different variations of SIMPLE methods	Introduction to Computational Fluid Dynamics, Versteeg and Malalashekera, Chapter 6	Lecture
17	Solution of discretized equations	Tri-diagonal Matrix Algorithm (TDMA) Illustration of TDMA in one dimension	Introduction to Computational Fluid Dynamics, Versteeg and Malalashekera, Chapter 6	Lecture Assignment 2 due

18	Solution of discretized equations	Illustration of TDMA in two dimension	Introduction to Computational Fluid Dynamics, Versteeg and Malalashekera, Chapter 6	Lecture
19	Finite volume methods for unsteady flows	One dimensional Unsteady heat conduction	Introduction to Computational Fluid Dynamics, Versteeg and Malalashekera, Chapter 8	Lecture + Assignment 3 due
20	Finite volume methods for unsteady flows	Explicit scheme, Implicit and Crank Nicholson Scheme	Introduction to Computational Fluid Dynamics, Versteeg and Malalashekera, Chapter 8	Lecture
21	Finite volume methods for unsteady flows	One dimensional Unsteady heat conduction: Illustrative example with Implicit and explicit methods	Introduction to Computational Fluid Dynamics, Versteeg and Malalashekera, Chapter 8	Problem solving
22	Finite volume methods for unsteady flows	One dimensional Unsteady heat conduction: Illustrative example with fully implicit methods	Introduction to Computational Fluid Dynamics, Versteeg and Malalashekera, Chapter 8	problem solving
23		Project		
24		Project		
25		Project		
26		Project		
27		Project		
28		Reflections and review		
29		Quiet reading		
30		End Semester Exam		