Théo Guyard CIRRELT, Montréal, Canada - March 6th, 2025

Optimization methods for ℓ_0 -problems

Sparse optimization

Minimize a function using a sparse vector

Sparse optimization

Minimize a function using a sparse vector

Sparse optimization

Minimize a function using a sparse vector cost

 $f(\mathbf{x})$

loss function

Constrained problem $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x})$

subject to $\|\mathbf{x}\|_0 \leq s$

Constrained problem $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x})$ subject to $\|\mathbf{x}\|_0 \le s$

$\begin{aligned} & \text{Minimized problem} \\ & \min_{\mathbf{x} \in \mathbf{R}^n} & \|\mathbf{x}\|_0 \\ & \text{subject to} & f(\mathbf{x}) \leq \epsilon \end{aligned}$

Constrained problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x})$$
subject to $\|\mathbf{x}\|_0 \le s$

Minimized problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} \|\mathbf{x}\|_0$$
 subject to $f(\mathbf{x}) \le \epsilon$

Regularized problem

$$\min_{\mathbf{x}\in\mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0$$

Constrained problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + h(\mathbf{x})$$

subject to $\|\mathbf{x}\|_0 \le s$

Minimized problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} \|\mathbf{x}\|_0 + h(\mathbf{x})$$

subject to $f(\mathbf{x}) \le \epsilon$

Regularized problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Problem $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$ NP-hard to solve $0 \longrightarrow x$ non-convex, non-smooth,

non-continuous, ...

 ℓ_0 -norm in 1d

1) MIP-based methods Based on off-the-shelf solvers Poor numerical performances

1) MIP-based methods

Based on off-the-shelf solvers Poor numerical performances

2) BnB-based methods

Tailored solution method
Better numerical performances

Mixed-Integer Programming

Application

ML, Stats, Signal, Operation Research, ...

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Application

ML, Stats, Signal, Operation Research, ...

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

MIP formulation

Standardized expressions

ML, Stats, Signal, Operation Research, ...

Modelling framework

 $\begin{array}{c} \mathsf{Python} \to \mathsf{cvxpy} \\ \mathsf{Julia} \to \mathsf{JuMP} \\ \mathsf{C}{++} \to \mathsf{CMPL} \\ \mathsf{Matlab} \to \mathsf{YALMIP} \\ & \cdots \end{array}$

ML, Stats, Signal, Operation Research, ...

Standardized expressions

Problem solutions

Modelling framework

 $\begin{array}{c} \mathsf{Python} \to \mathsf{cvxpy} \\ \mathsf{Julia} \to \mathsf{JuMP} \\ \mathsf{C}{+}{+} \to \mathsf{CMPL} \end{array}$

 $\mathsf{Matlab} o \mathtt{YALMIP}$

...

MIP – Formulation

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

MIP formulation

Use standardized expressions linear, quadratic, conic, ...

MIP - Formulation

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

MIP formulation

Use standardized expressions linear, quadratic, conic, ...

Linearize the ℓ_0 -norm

We have $\|\mathbf{x}\|_0 = \mathbf{1}^{\mathrm{T}}\mathbf{z}$ whenever $z_i = 0 \iff x_i = 0, \ \forall i$ $z_i = 1 \iff x_i \neq 0, \ \forall i$ for all $\mathbf{x} \in \mathbf{R}^n$ and $\mathbf{z} \in \{0,1\}^n$

MIP - Formulation

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Linearized formulation

$$\begin{cases} \min \ f(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + h(\mathbf{x}) \\ \text{s.t.} \ z_{i} = 0 \implies x_{i} = 0, \ \forall i \\ \mathbf{x} \in \mathbf{R}^{n}, \ \mathbf{z} \in \{0, 1\}^{n} \end{cases}$$

MIP formulation

Use standardized expressions linear, quadratic, conic, ...

Linearize the ℓ_0 -norm

We have
$$\|\mathbf{x}\|_0 = \mathbf{1}^T \mathbf{z}$$
 whenever $z_i = 0 \iff x_i = 0, \ \forall i$ $z_i = 1 \iff x_i \neq 0, \ \forall i$ for all $\mathbf{x} \in \mathbf{R}^n$ and $\mathbf{z} \in \{0,1\}^n$

MIP - Formulation

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

Linearized formulation

$$\begin{cases} \min \ f(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + h(\mathbf{x}) \\ \text{s.t.} \ z_i = 0 \implies x_i = 0, \ \forall i \\ \mathbf{x} \in \mathbf{R}^n, \ \mathbf{z} \in \{0, 1\}^n \end{cases}$$

MIP formulation

Use standardized expressions linear, quadratic, conic, ...

Linearize the ℓ_0 -norm

We have $\|\mathbf{x}\|_0 = \mathbf{1}^T \mathbf{z}$ whenever $z_i = 0 \iff x_i = 0, \ \forall i$ $z_i = 1 \iff x_i \neq 0, \ \forall i$ for all $\mathbf{x} \in \mathbf{R}^n$ and $\mathbf{z} \in \{0,1\}^n$

Avoid logical constraint

$$ilde{h}(\mathbf{x},\mathbf{z}) = egin{cases} h(\mathbf{x}) & ext{if } z_i = x_i = 0 ext{ or } z_i = 1, orall i \ +\infty & ext{otherwise} \end{cases}$$

MIP - Formulation

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Linearized formulation

$$\begin{cases} \min \ f(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + h(\mathbf{x}) \\ \text{s.t. } z_i = 0 \implies x_i = 0, \ \forall i \\ \mathbf{x} \in \mathbf{R}^n, \ \mathbf{z} \in \{0, 1\}^n \end{cases}$$

MIP formulation

$$\begin{cases} \min \ f(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + \tilde{h}(\mathbf{x}, \mathbf{z}) \\ \text{s.t. } \mathbf{x} \in \mathbf{R}^{n}, \ \mathbf{z} \in \{0, 1\}^{n} \end{cases}$$

MIP formulation

Use standardized expressions linear, quadratic, conic, ...

Linearize the ℓ_0 -norm

We have $\|\mathbf{x}\|_0 = \mathbf{1}^{\mathrm{T}}\mathbf{z}$ whenever $z_i = 0 \iff x_i = 0, \ \forall i$ $z_i = 1 \iff x_i \neq 0, \ \forall i$ for all $\mathbf{x} \in \mathbf{R}^n$ and $\mathbf{z} \in \{0,1\}^n$

Avoid logical constraint

$$\tilde{h}(\mathbf{x}, \mathbf{z}) = \begin{cases} h(\mathbf{x}) & \text{if } z_i = x_i = 0 \text{ or } z_i = 1, \forall i \\ +\infty & \text{otherwise} \end{cases}$$

Two existing strategies to design $\tilde{h}(x,z)$

$$\tilde{h}(\mathbf{x}, \mathbf{z}) = \begin{cases} h(\mathbf{x}) & \text{if } z_i = x_i = 0 \text{ or } z_i = 1, \forall i \\ +\infty & \text{otherwise} \end{cases}$$

Two existing strategies to design $\tilde{h}(\mathbf{x},\mathbf{z})$

$$\tilde{h}(\mathbf{x}, \mathbf{z}) = \begin{cases} h(\mathbf{x}) & \text{if } z_i = x_i = 0 \text{ or } z_i = 1, \forall i \\ +\infty & \text{otherwise} \end{cases}$$

Big-M strategy

$$h(\mathbf{x}) = \sum_{i=1}^{n} \operatorname{Ind}(|x_i| \le M)$$
with $M > 0$

Two existing strategies to design $\tilde{h}(x,z)$

$$\tilde{h}(\mathbf{x}, \mathbf{z}) = \begin{cases} h(\mathbf{x}) & \text{if } z_i = x_i = 0 \text{ or } z_i = 1, \forall i \\ +\infty & \text{otherwise} \end{cases}$$

Big-M strategy

$$h(\mathbf{x}) = \sum_{i=1}^{n} \operatorname{Ind}(|x_i| \leq M)$$
with $M > 0$

$$\tilde{h}(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^{n} \operatorname{Ind}(|x_i| \leq M \mathbf{z}_i)$$

Two existing strategies to design $\tilde{h}(x,z)$

$$\tilde{h}(\mathbf{x}, \mathbf{z}) = \begin{cases} h(\mathbf{x}) & \text{if } z_i = x_i = 0 \text{ or } z_i = 1, \forall i \\ +\infty & \text{otherwise} \end{cases}$$

Big-M strategy

$$h(\mathbf{x}) = \sum_{i=1}^{n} \operatorname{Ind}(|x_i| \le M)$$
with $M > 0$

$$\downarrow$$

$$\tilde{h}(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^{n} \operatorname{Ind}(|x_i| \le M\mathbf{z}_i)$$

$$\ell_2$$
-norm strategy

$$h(\mathbf{x}) = \sum_{i=1}^{n} \gamma x_i^2$$
 with $\gamma > 0$

Two existing strategies to design $\tilde{h}(x,z)$

$$\tilde{h}(\mathbf{x}, \mathbf{z}) = \begin{cases} h(\mathbf{x}) & \text{if } z_i = x_i = 0 \text{ or } z_i = 1, \forall i \\ +\infty & \text{otherwise} \end{cases}$$

Big-M strategy

$$h(\mathbf{x}) = \sum_{i=1}^{n} \operatorname{Ind}(|x_{i}| \leq M)$$
with $M > 0$

$$\downarrow$$

$$h(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^{n} \operatorname{Ind}(|x_{i}| \leq Mz)$$

$$\tilde{h}(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^{n} \operatorname{Ind}(|x_i| \leq M_{\mathbf{Z}_i})$$

ℓ_2 -norm strategy

$$h(\mathbf{x}) = \sum_{i=1}^{n} \gamma x_i^2$$
 with $\gamma > 0$

$$\oint_{\tilde{h}(\mathbf{x},\mathbf{z}) = \sum_{i=1}^{n} \gamma \frac{x_i^2}{z_i}}$$

Two existing strategies to design $\tilde{h}(x,z)$

$$ilde{h}(\mathbf{x},\mathbf{z}) = egin{cases} h(\mathbf{x}) & ext{if } z_i = x_i = 0 \text{ or } z_i = 1, orall i \ +\infty & ext{otherwise} \end{cases}$$

MIP – Let's sum up

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pipeline

- 1) Introduce binary variable $\mathbf{z} \in \{0,1\}^n$
- 2) Linearize ℓ_0 -norm as $\|\mathbf{x}\|_0 = \mathbf{1}^{\mathrm{T}}\mathbf{z}$
- 3) Transform h(x) into $\tilde{h}(x,z)$
- 4) Use generic MIP solvers

MIP – Let's sum up

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pipeline

- 1) Introduce binary variable $\mathbf{z} \in \{0,1\}^n$
- 2) Linearize ℓ_0 -norm as $\|\mathbf{x}\|_0 = \mathbf{1}^{\mathrm{T}}\mathbf{z}$
- 3) Transform h(x) into $\tilde{h}(x,z)$
- 4) Use generic MIP solvers

Pros

- ✓ Rich MIP literature
- ✓ Black-box solvers
- ✓ Straightforward pipeline

MIP – Let's sum up

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pipeline

- 1) Introduce binary variable $\mathbf{z} \in \{0,1\}^n$
- 2) Linearize ℓ_0 -norm as $\|\mathbf{x}\|_0 = \mathbf{1}^{\mathrm{T}}\mathbf{z}$
- 3) Transform h(x) into $\tilde{h}(x,z)$
- 4) Use generic MIP solvers

Pros

- ✓ Rich MIP literature
- ✓ Black-box solvers
- ✓ Straightforward pipeline

Cons

- X Mostly commercial solvers
- **X** Only for $h = \text{big-M}/\ell_2$ -norm
- X Performance issues

Branch-and-Bound Algorithms

Application

ML, Stats, Signal, Operation Research, ...

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Application

ML, Stats, Signal, Operation Research, ...

Problem

 $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$

Implement BnB solver

Specialized mechanisms

Application

ML, Stats, Signal, Operation Research, ...

Problem

 $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$

Implement BnB solver

Specialized mechanisms

Problem solutions

ML, Stats, Signal, Operation Research, ...

Existing BnB solver

 $\mathtt{sbnb} \to \mathsf{G.}$ Samain et al. (2020) 10bnb $\to \mathsf{H.}$ Hazimeh et al. (2021) el0ps $\to \mathsf{T.}$ Guyard et al. (2024)

Why using elops?
Is is free, fast and flexible!

Explore regions in the feasible space and prune those that cannot contain any optimal solution.

Branching step – Region design and exploration **Bounding step** – Pruning test evaluation

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Observation

Solutions are expected to be sparse

Problem

 $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$

Observation

Solutions are expected to be sparse

Method

Drive the sparsity of the optimization variable

Problem
$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

Observation

Solutions are expected to be sparse

Method

Drive the sparsity of the optimization variable

11/19

BnB – **Bounding** step

Does region $\boldsymbol{\nu}$ contains optimal solutions ?

Does region $\boldsymbol{\nu}$ contains optimal solutions ?

Problem

$$p^{\star} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Does region ν contains optimal solutions ?

Problem

$$p^{\star} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \boldsymbol{\nu}} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Does region ν contains optimal solutions ?

Problem

$$p^{\star} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pruning test

$$p^{\nu} > p^{\star}$$

Does region ν contains optimal solutions ?

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \boldsymbol{\nu}} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pruning test

$$p^{\nu} > p^{\star}$$

 \rightarrow prune ν

Does region ν contains optimal solutions ?

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \boldsymbol{\nu}} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + h(\mathbf{x})$$

Pruning test

$$p_{
m lb}^{
u}>p_{
m ub}^{\star}$$

Does region ν contains optimal solutions ?

Problem

$$p^{\star} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pruning test

$$p^{
u}_{
m lb} > p^{\star}_{
m ub}$$

 \longrightarrow prune ν

Easy task

Compute an upper bound on p^*

Does region ν contains optimal solutions ?

Problem

$$p^* = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pruning test

$$p_{
m lb}^{
u}>p_{
m ub}^{\star}$$

Easy task

Compute an upper bound on p^*

Construct and evaluate a feasible vector in each region explored to refine p_{ub}^{\star}

Does region ν contains optimal solutions ?

Problem

$$p^* = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \boldsymbol{\nu}} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + h(\mathbf{x})$$

Pruning test

$$p_{
m lb}^{
u}>p_{
m ub}^{\star}$$

Easy task

Compute an upper bound on p^*

Construct and evaluate a feasible vector in each region explored to refine p_{ub}^*

Main challenge

Compute a lower bound on p^{ν}

Does region ν contains optimal solutions ?

Problem

$$p^{\star} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pruning test

$$p_{
m lb}^{
u}>p_{
m ub}^{\star}$$

 \rightarrow prune ν

Easy task

Compute an upper bound on p^*

Construct and evaluate a feasible vector in each region explored to refine p_{ub}^{\star}

Main challenge

Compute a lower bound on p^{ν}

Construct and solve a relaxation

BnB – Building relaxations

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

seek tight/tractable lower bound on p^{ν}

BnB – Building relaxations

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

reformulation

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \mathbf{g}^{\nu}(\mathbf{x})$$

seek tight/tractable lower bound on p^{ν}

with g^{ν} proper and closed

BnB – Building relaxations

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + h(\mathbf{x})$$

reformulation

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \mathbf{g}^{\nu}(\mathbf{x})$$

$$g_{\mathsf{lb}}^{\nu} \leq g^{\nu}, g_{\mathsf{lb}}^{\nu} \mathsf{convex}$$

Relaxation for region ν

$$p_{\mathsf{lb}}^{\nu} = \mathsf{min}_{\mathsf{x} \in \mathsf{R}^n} f(\mathsf{x}) + g_{\mathsf{lb}}^{\nu}(\mathsf{x})$$

seek tight/tractable lower bound on p^{ν}

with g^{ν} proper and closed

set $g_{\mathrm{lb}}^{\,
u}$ set as the convex envelope of $g^{\,
u}$

Convex envelope of $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$ with $\mathbf{x} \in \mathbf{R}^n$

Convex envelope of $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$ with $\mathbf{x} \in \mathbf{R}^n$ h separable and coercive

Convex envelope of $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$ with $\mathbf{x} \in \mathbf{R}^n$ h separable and coercive

Convex envelope of $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$ with $\mathbf{x} \in \mathbf{R}^n$ h separable and coercive

Convex envelope of $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$ with $\mathbf{x} \in \mathbf{R}^n$ h separable and coercive

Convex envelope of $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$ with $\mathbf{x} \in \mathbf{R}^n$ h separable and coercive

Solve time

region processing time \times number of regions processed

Solve time

region processing time \times number of regions processed

Relaxation for region ν

$$\rho_{\mathsf{lb}}^{\nu} = \mathsf{min}_{\mathsf{x} \in \mathsf{R}^n} \, f(\mathsf{x}) + g_{\mathsf{lb}}^{\nu}(\mathsf{x})$$

Solve time

region processing time \times number of regions processed

Relaxation for region ν

$$p_{\mathsf{lb}}^{\nu} = \mathsf{min}_{\mathsf{x} \in \mathsf{R}^n} f(\mathsf{x}) + g_{\mathsf{lb}}^{\nu}(\mathsf{x})$$

 $\textit{g}^{\nu}_{\text{lb}}$ is proper, closed, convex, separable, and non-smooth at x=0

Solve time

region processing time \times number of regions processed

Relaxation for region ν

$$p_{\mathsf{lb}}^{\nu} = \mathsf{min}_{\mathsf{x} \in \mathsf{R}^n} f(\mathsf{x}) + g_{\mathsf{lb}}^{\nu}(\mathsf{x})$$

 $g_{\mathrm{lb}}^{
u}$ is proper, closed, convex, separable, and non-smooth at $\mathbf{x}=\mathbf{0}$

This is a convex sparse optimization problem

Solve time

Relaxation for region ν

$$p_{\mathsf{lb}}^{\nu} = \mathsf{min}_{\mathsf{x} \in \mathsf{R}^n} \, f(\mathsf{x}) + g_{\mathsf{lb}}^{\nu}(\mathsf{x})$$

 $g_{
m lb}^{
u}$ is proper, closed, convex, separable, and non-smooth at ${f x}={f 0}$

ightarrow first-order methods proximal gradient, coordinate descent, ... ightarrow acceleration strategies working set, screening tests, ...

Solve time

 $\frac{\text{region processing time}}{\checkmark} \times \underline{\text{number of regions processed}}$

Relaxation for region ν

$$p_{\mathsf{lb}}^{\nu} = \mathsf{min}_{\mathsf{x} \in \mathsf{R}^n} f(\mathsf{x}) + g_{\mathsf{lb}}^{\nu}(\mathsf{x})$$

 g_{lb}^{ν} is proper, closed, convex, separable, and non-smooth at x=0

This is a **convex** sparse optimization problem

→ first-order methods
 proximal gradient, coordinate descent, ...
 → acceleration strategies
 working set, screening tests, ...

Simultaneous pruning

Solve time

region processing time \times number of regions processed

Relaxation for region ν

$$p_{\mathsf{lb}}^{\nu} = \mathsf{min}_{\mathsf{x} \in \mathsf{R}^n} f(\mathsf{x}) + g_{\mathsf{lb}}^{\nu}(\mathsf{x})$$

 $g^{
u}_{
m lb}$ is proper, closed, convex, separable, and non-smooth at ${f x}={f 0}$

→ first-order methods
 proximal gradient, coordinate descent, ...
 → acceleration strategies
 working set, screening tests, ...

Simultaneous pruning

processing region ...

Solve time

 $\frac{\text{region processing time}}{\checkmark} \times \frac{\text{number of regions processed}}{\checkmark}$

Relaxation for region ν

$$p_{\mathsf{lb}}^{\nu} = \min_{\mathbf{x} \in \mathsf{R}^n} f(\mathbf{x}) + g_{\mathsf{lb}}^{\nu}(\mathbf{x})$$

 $g_{\text{lb}}^{
u}$ is proper, closed, convex, separable, and non-smooth at $\mathbf{x}=\mathbf{0}$

This is a convex sparse optimization problem

ightarrow first-order methods proximal gradient, coordinate descent, ... ightarrow acceleration strategies working set, screening tests, ...

Simultaneous pruning

processing region ...

Solve time

 $\frac{\text{region processing time}}{\checkmark} \times \frac{\text{number of regions processed}}{\checkmark}$

Relaxation for region ν

$$p_{\mathsf{lb}}^{\nu} = \mathsf{min}_{\mathsf{x} \in \mathsf{R}^n} \, f(\mathsf{x}) + g_{\mathsf{lb}}^{\nu}(\mathsf{x})$$

 $g_{\text{lb}}^{\,
u}$ is proper, closed, convex, separable, and non-smooth at $\mathbf{x}=\mathbf{0}$

This is a convex sparse optimization problem

ightarrow first-order methods proximal gradient, coordinate descent, ... ightarrow acceleration strategies working set, screening tests, ...

Simultaneous pruning

processing region ...

Solve time

region processing time \times number of regions processed

Relaxation for region ν

$$p_{\mathsf{lb}}^{\nu} = \min_{\mathbf{x} \in \mathsf{R}^n} f(\mathbf{x}) + g_{\mathsf{lb}}^{\nu}(\mathbf{x})$$

 $g_{\text{lb}}^{\,
u}$ is proper, closed, convex, separable, and non-smooth at $\mathbf{x}=\mathbf{0}$

This is a convex sparse optimization problem

→ first-order methods

proximal gradient, coordinate descent, ...

 \rightarrow acceleration strategies working set, screening tests, ...

Simultaneous pruning

processing region ...

continue processing

Solve time

region processing time \times number of regions processed

Relaxation for region ν

$$p_{\mathsf{lb}}^{\nu} = \min_{\mathbf{x} \in \mathsf{R}^n} f(\mathbf{x}) + g_{\mathsf{lb}}^{\nu}(\mathbf{x})$$

 $g^{
u}_{\text{lb}}$ is proper, closed, convex, separable, and non-smooth at $\mathbf{x}=\mathbf{0}$

This is a convex sparse optimization problem

- \rightarrow first-order methods proximal gradient, coordinate descent, ...
 - \rightarrow acceleration strategies working set, screening tests, ...

Simultaneous pruning

processing region ...

continue

BnB – Let's sum up

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pipeline

- 1a) Implement a BnB solver
- **1b)** Use an existing BnB solver
 - 2) Solve the problem

BnB – Let's sum up

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pipeline

- 1a) Implement a BnB solver
- **1b)** Use an existing BnB solver
 - **2)** Solve the problem

Pros

- ✓ Numerical efficiency
- ✓ Open-source softwares
- ✓ Any h separable and coercive

BnB – Let's sum up

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pipeline

- **1a)** Implement a BnB solver
- **1b)** Use an existing BnB solver
 - 2) Solve the problem

Pros

- ✓ Numerical efficiency
- ✓ Open-source softwares
- ✓ Any h separable and coercive

Cons

X Less standard pipeline

Numerical Illustration

Numerics – Feature Selection Problem

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

 $\mathbf{A} \in \mathbf{R}^{62 \times 2000}$ from ML dataset / f : Logistic / h : ℓ_2 -norm

Conclusion

on-exhaustive list

Non-exhaustive list

Convex-based acceleration

Non-exhaustive list

MIT D. Bertsimas, R. Mazmuder, ... Optimization tools for ℓ_0 -problems **Lund University** Google Deep Mind M. Carlsson, C. Olsson... H. Hazimeh, A. Dedieu, ... Relaxation design MIP-hased heuristics Frankfurt / Wurzburg Universities C. Kanzow, A. Tillmann, ... Optimality conditions London Business School Berkley A. Atamtürk, A. Gomès, ... J. Pauphilet, R. Cory-Wright, ... Convex-based acceleration Healthcare applications

18/19

MIT D. Bertsimas, R. Mazmuder, ... Optimization tools for ℓ_0 -problems **Lund University** Google Deep Mind M. Carlsson, C. Olsson... H. Hazimeh, A. Dedieu, ... Relaxation design MIP-based heuristics Frankfurt / Wurzburg Universities C. Kanzow, A. Tillmann, ... Optimality conditions London Business School Berkley J. Pauphilet, R. Cory-Wright, ... A. Atamtürk, A. Gomès, ... Healthcare applications Convex-based acceleration Ponts ParisTech M. De Lara, P. Chancelier, A. Parmentier, . Non-convex analysis, ML appli. Centrale Nantes / ENSTA Bretagne S. Bourguignon, J. Ninin, ... BnB with quadratic loss Inria / CentraleSupélec IRIT / I3S C. Herzet, C. Elvira, A. Arslan, ... E. Soubies, L. Blanc-Féraud, ... Generic and efficient BnB Convex-concave relaxation 18/19

Take-home messages

- Although NP-hard, ℓ_0 -problems are of practical interest
- There exists methods to tackle them exactly
 - MIP-based formulation and off-the-shelf solvers
 - BnB-based specialized algorithms
 - Structure-exploitation is key for numerical efficiency
- It's an active research area
 - Theoretical and methodological developments still missing
 - Need to reach the application world

Question time!

Sparse signal

 $x \in R^n$

n pixels

	Feature 1	Feature 2		Feature n	Target
Sample 1	a _{1,1}	a _{1,2}		$a_{1,n}$	<i>y</i> ₁
Sample 2	a _{2,1}			$a_{2,n}$	
Sample 3	<i>a</i> _{3,1}	$A \in R^{mx}$	< n	<i>a</i> _{3,n}	$y \in R^m$
Sample m	$a_{m,1}$			$a_{m,n}$	Ут

	Feature 1	Feature 2		Feature n	Target
Sample 1	a _{1,1}			$a_{1,n}$	
Sample 2	a _{2,1}			$a_{2,n}$	
Sample 3	a _{3,1}	$A \in R^{m}$	×n	a _{3,n}	$y \in R^m$
Sample m	$a_{m,1}$			$a_{m,n}$	Ут

Features
$$\mathbf{A} \in \mathbf{R}^{m \times n} \longleftrightarrow \mathbf{A} \in \mathbf{R}^m \longleftrightarrow \mathbf{A} \times \mathbf{A} \times \mathbf{A}$$
 Target $\mathbf{y} = \phi(\mathbf{A}\mathbf{x})$

	Feature 1	Feature 2		Feature n	Target
Sample 1	$a_{1,1}$			$a_{1,n}$	
Sample 2	a _{2,1}			$a_{2,n}$	
Sample 3	a _{3,1}	$A \in R^{m}$	≺ n	a _{3,n}	$y \in R^m$
Sample m	$a_{m,1}$			$a_{m,n}$	Ут

Features
$$\mathbf{A} \in \mathbf{R}^{m \times n} \longleftrightarrow \mathbf{Weights} \ \mathbf{x} \in \mathbf{R}^n \Longrightarrow \mathbf{Target} \ \mathbf{y} = \phi(\mathbf{A}\mathbf{x})$$

Model accuracy Loss $\mathcal{L}_{\phi}(\mathbf{A}\mathbf{x},\mathbf{y})$

Model explainability
Use few features

	Feature 1	Feature 2		Feature n	Target
Sample 1	$a_{1,1}$			$a_{1,n}$	
Sample 2	a _{2,1}			a _{2,n}	
Sample 3	a _{3,1}	$A \in R^{m}$	< n	a _{3,n}	$y \in R^m$
Sample m	$a_{m,1}$			$a_{m,n}$	Ут

Features
$$\mathbf{A} \in \mathbf{R}^{m \times n} \longleftrightarrow \mathbf{Weights} \ \mathbf{x} \in \mathbf{R}^n$$
 Target $\mathbf{y} = \phi(\mathbf{A}\mathbf{x})$

Which edges to build to transport products from source to sink nodes?

Which edges to build to transport products from source to sink nodes?

Which edges to build to transport products from source to sink nodes?

construct edge $i \in I$ if $x_i > 0$ pay construction cost c

Which edges to build to transport products from source to sink nodes?

construct edge $i \in I$ if $x_i > 0$ pay construction cost c

Question

How to construct the least number of edges to satisfy transportation needs?

Which edges to build to transport products from source to sink nodes?

construct edge $i \in I$ if $x_i > 0$ pay construction cost c

Question

How to construct the least number of edges to satisfy transportation needs?

Balancing solution quality and problem hardness

Riboflavin dataset - P. Bühlmann et al. (2014)

Colony	AADK	AAPA	ABFA	ABH	 ZUR	B2 prod.
#1	8.49	8.11	8.32	10.28	 7.42	-6.64 -5.43
#2	7.29	6.39	11.32	9.42	 6.99	-5.43
#71	 6.85	 8.27	7.98	8.04	 6.65	-7.58

4,088 genes

Balancing solution quality and problem hardness

Riboflavin dataset - P. Bühlmann *et al.* (2014)

Colony	AADK	AAPA	ABFA	ABH	 ZUR	B2 prod.
#1	8.49	8.11	8.32	10.28	 7.42	-6.64 -5.43
#71	6.85	8.27	7.98	8.04	 6.65	 -7.58

4,088 genes

Sparse regression

Find x sparse such that $y \simeq Ax$

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $h(\mathbf{x}) = \operatorname{Ind}(-M \le \mathbf{x} \le M)$

Sparse regression

Find x sparse such that $y \simeq Ax$

Optimization problem

$$\min_{\mathbf{x}\in\mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $h(\mathbf{x}) = \operatorname{Ind}(-M \le \mathbf{x} \le M)$

MIP formulation

$$\begin{cases} \min \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \mathbf{1}^{\mathrm{T}}\mathbf{z} \\ \text{s.t.} & -M\mathbf{z} \leq \mathbf{x} \leq M\mathbf{z} \\ \mathbf{x} \in \mathbf{R}^n, \ \mathbf{z} \in \{0,1\}^n \end{cases}$$

Sparse regression

Find \mathbf{x} sparse such that $\mathbf{y} \simeq \mathbf{A}\mathbf{x}$

Optimization problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $h(\mathbf{x}) = \operatorname{Ind}(-M \le \mathbf{x} \le M)$

MIP formulation

$$\begin{cases} \min \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \mathbf{1}^{\mathrm{T}}\mathbf{z} \\ \text{s.t.} \quad -M\mathbf{z} \leq \mathbf{x} \leq M\mathbf{z} \\ \mathbf{x} \in \mathbf{R}^n, \ \mathbf{z} \in \{0, 1\}^n \end{cases}$$

Sparse regression

Find \mathbf{x} sparse such that $\mathbf{y} \simeq \mathbf{A}\mathbf{x}$

$$\min_{\mathbf{x}\in\mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $h(\mathbf{x}) = \operatorname{Ind}(-M \le \mathbf{x} \le M)$

MIP formulation

$$\begin{cases} \min \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \mathbf{1}^{\mathrm{T}}\mathbf{z} \\ \text{s.t.} \quad -M\mathbf{z} \leq \mathbf{x} \leq M\mathbf{z} \\ \mathbf{x} \in \mathbf{R}^{n}, \ \mathbf{z} \in \{0, 1\}^{n} \end{cases}$$

\$ pip install cvxpy

import cvxpy as cp

Generate sparse regression data
A, y = make_regression()

Sparse regression

Find x sparse such that $y \simeq Ax$

Optimization problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $h(\mathbf{x}) = \operatorname{Ind}(-M \le \mathbf{x} \le M)$

MIP formulation

$$\begin{cases} \min \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \mathbf{1}^{\mathrm{T}}\mathbf{z} \\ \text{s.t.} \quad -M\mathbf{z} \leq \mathbf{x} \leq M\mathbf{z} \\ \mathbf{x} \in \mathbf{R}^{n}, \ \mathbf{z} \in \{0, 1\}^{n} \end{cases}$$

```
import cvxpy as cp

# Generate sparse regression data
A, y = make_regression()

# Define variables
n = A.shape[1]
x = cp.Variable(n)
z = cp.Variable(n, boolean=True)
```

Sparse regression

Find x sparse such that $y \simeq Ax$

Optimization problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $h(\mathbf{x}) = \operatorname{Ind}(-M \le \mathbf{x} \le M)$

MIP formulation

 $\begin{cases} \min \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \mathbf{1}^{\mathrm{T}}\mathbf{z} \\ \text{s.t.} \quad -M\mathbf{z} \leq \mathbf{x} \leq M\mathbf{z} \\ \mathbf{x} \in \mathbf{R}^n, \ \mathbf{z} \in \{0, 1\}^n \end{cases}$

```
import cvxpy as cp
# Generate sparse regression data
A, y = make_regression()
# Define variables
n = A.shape[1]
x = cp.Variable(n)
z = cp. Variable(n, boolean=True)
# Define objective and constraints
obi = cp.Minimize(
    cp.sum_squares(A @ x - y) +
    0.01 * cp.sum(z)
cst = [-5.0 * z \le x, x \le 5.0 * z]
```

Sparse regression

Find \mathbf{x} sparse such that $\mathbf{y} \simeq \mathbf{A}\mathbf{x}$

Optimization problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $h(\mathbf{x}) = \operatorname{Ind}(-M \le \mathbf{x} \le M)$

MIP formulation

 $\begin{cases} \min \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} \\ \text{s.t.} \quad -M\mathbf{z} \leq \mathbf{x} \leq M\mathbf{z} \\ \mathbf{x} \in \mathbf{R}^n, \ \mathbf{z} \in \{0,1\}^n \end{cases}$

```
import cvxpy as cp
# Generate sparse regression data
A, y = make_regression()
# Define variables
n = A.shape[1]
x = cp.Variable(n)
z = cp. Variable(n, boolean=True)
# Define objective and constraints
obi = cp.Minimize(
    cp.sum_squares(A @ x - y) +
    0.01 * cp.sum(z)
cst = [-5.0 * z \le x, x \le 5.0 * z]
# Solve the problem using Gurobi
problem = cp.Problem(obj, cst)
problem.solve(solver=cp.GUROBI)
```

 $\label{eq:sparse regression} \begin{aligned} \text{Find } \mathbf{x} \text{ sparse such} \\ \text{that } \mathbf{y} \ \simeq \ \mathbf{A}\mathbf{x} \end{aligned}$

Sparse regression

Find x sparse such

that y \simeq Ax

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $h(\mathbf{x}) = \operatorname{Ind}(-M \le \mathbf{x} \le M)$

\$ pip install el0ps

Sparse regression

Find \mathbf{x} sparse such

that y
$$\simeq$$
 Ax

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $h(\mathbf{x}) = \operatorname{Ind}(-M \le \mathbf{x} \le M)$

\$ pip install el0ps

Sparse regression Find x sparse such that y ≃ Ax

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $h(\mathbf{x}) = \operatorname{Ind}(-M \le \mathbf{x} \le M)$

```
from el0ps.datafits import Leastsquares
from el0ps.penalties import Bigm
from el0ps.solvers import BnbSolver

# Generate sparse regression data
A, y = make_regression()
```

\$ pip install el0ps

Sparse regressionFind **x** sparse such

that
$$\mathbf{y} \simeq \mathbf{A}\mathbf{x}$$

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $h(\mathbf{x}) = \operatorname{Ind}(-M \le \mathbf{x} \le M)$

```
from elOps.datafits import Leastsquares
from elOps.penalties import Bigm
from elOps.solvers import BnbSolver

# Generate sparse regression data
A, y = make_regression()

# Instantiate the loss and penalty
f = Leastsquares(A, y)
h = Bigm(M=5.0)
```

\$ pip install el0ps

Sparse regression

Find
$$x$$
 sparse such that $y \simeq Ax$

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $h(\mathbf{x}) = \operatorname{Ind}(-M \le \mathbf{x} \le M)$

```
from el0ps.datafits import Leastsquares
from el0ps.penalties import Bigm
from el0ps.solvers import BnbSolver

# Generate sparse regression data
A, y = make_regression()

# Instantiate the loss and penalty
f = Leastsquares(A, y)
h = Bigm(M=5.0)

# Solve the problem with el0ps' solver
solver = BnbSolver()
solver.solve(f, h, lmbd=0.01)
```