

JEONGHWAN LEE

PROFESSIONAL SUMMARY

- Highly driven engineer and researcher with 5+ years of experience in human subject research that requires deep knowledge of following:
 - Experimental design
 - Biomechanical signal processing
 - Motion analysis

- Statistical modeling using a mixed-effects model
- Cluster analysis
- Design principle for wearable devices
- Excellent collaboration skills in inter- and multidisciplinary projects, as evidenced by authored and co-authored 5+ peer-reviewed publications from research projects consisting of engineers and clinical team
- · Competence in hands-on prototyping and its verification, validation, reliability testing, and documentation

EDUCATION

PhD in Mechanical Engineering, University of Texas at Austin, Austin, TXExpected 2022MS in Mechanical Engineering, Seoul National University, Seoul, KR2017BS in Mechanical Engineering, Hanyang University, Seoul, KR2013

TECHNICAL SKILLS

Programming C/C++, Python, MATLAB, R
Design Tools Solidworks, EAGLE

Engineering Tools OpenSim, Simulink (real-time), Labview, Multisim

Experimental Force sensors, IMU, EMG, Motion capture, Wearable metabolic system

PROFESSIONAL & RESERACH EXPERIENCE

University of Texas at Austin, Austin, TX

Sept 2017 — Present

Graduate Research Assistant

- Characterize post-stroke stiff-knee gait by time-series clustering and latent profile analysis to reveal gait phenotypes with different motor control deficits and to contribute phenotype-specific intervention
- Delineate effects of robotic exoskeletal gait assistance on quadriceps muscle to develop an optimal assistance strategy to suppress quadriceps muscle overactivation resulting in spasticity
- Research biomechanical effects of lower-limb exoskeletons' weight to design the most transparent hip-knee rigid exoskeleton robot for post-stroke gait rehabilitation via 20+ human subjects experiment
- Evaluated planar linkage designs for a single motor-driven robotic gait trainer in terms of human-like end-effector motion trajectory accuracy by an unbiased, generalized comparison to 100+ healthy individuals gait data using cross-validation
- Examined the sensitivity of inertial motion capture system to small changes in gait compared to the optical motion capture system based on a linear mixed-effects model

Harmonic Bionics, Inc., Austin, TX

May 2019 — Aug 2019

System Validation Engineer - Internship

 Managed system quality of mechatronics and software solutions for EtherCAT motion controller and sensor interface to ensure quality and effectiveness of products; devised hardware debugging tools and quality control frameworks to minimize failure rates

Harmonic Bionics, Inc., Austin, TX

May 2018 — Aug 2018

System Validation Engineer - Internship

- Built a source code library for EtherCAT motion controller and sensor interface to allow users to create their own application solutions
- Designed demonstration kits (e.g., haptics interface) of Esmacat products to exhibit at a tech conference

Korea Institute of Science and Technology (KIST), Seoul, KR

Research Assistant

• Researched a non-invasive, patient-specific surgical navigation method for an orbital reconstructive surgery, improving registration and tool tracking accuracy by up to 50%

Seoul National University, Seoul, KR

Mar 2016 — Feb 2017

Graduate Research Assistant

- Devised a needle steering scheme with a pivoted super-elastic needle made of Nitinol for MR image-guided breast needle intervention robot, improving needle insertion angle and tip movement with zero actuator addition in robot
- Designed a low-cost (< \$1K) vehicle mockup with four adjustable parameters for the research to predict human motion in ingress/egress movement using an artificial neural network
- Recruited ten healthy subjects, and collected human subject data including kinematic and kinetic data during vehicle ingress/egress trials

The University of Texas Health Science Center, Houston, TX

Sept 2014 — Feb 2016

Research Assistant

- Designed surgical grasper with an outer diameter of less than 3mm using an elastic element
- Designed and prototyped a cable-driven continuum robotic manipulator for a minimally invasive single-port surgery

Seoul National University, Seoul, KR

Sept 2013 — Aug 2014

Graduate Research Assistant

 Researched a calibration method of C-arm X-ray machine to develop 2D/3D medical image registration method for a robot-assisted total knee arthroplasty surgery

TEACHING EXPERIENCE

University of Texas at AustinGraduate Teaching Assistant

Feb 2018 — May 2021

Austin, TX

- Introduction to robot modeling and control
- Mechatronics
- Mechatronics laboratory
- Freshman introduction to research in engineering (FIRE) program

SELECTED PUBLICATIONS (3 OF 7)

- [1] J. Lee, L. Li, S. Y. Shin, A. D. Deshpande, and J. Sulzer, "Kinematic comparison of single degree-of-freedom robotic gait trainers," *Mechanism and Machine Theory*, vol. 159, p. 104 258, 2021.
- [2] **J. Lee**, S. Y. Shin, G. Ghorpade, T. Akbas, and J. Sulzer, "Sensitivity comparison of inertial to optical motion capture during gait: Implications for tracking recovery," in *2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)*, 2019, pp. 139–144.
- [3] **J. Lee**, K. Mekuria, T. G. Son, W. S. Jeong, J. W. Choi, and Y. Kim, "A novel noninvasive patient-specific navigation method for orbital reconstructive surgery: A phantom study using patient data," *Plastic and reconstructive surgery*, vol. 143, no. 3, 602e–612e, Mar. 2019.

Mar 2017 — July 2017