

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior listings of claims in the application:

1. (CURRENTLY AMENDED) A composition comprising a pharmaceutically acceptable formulation of formula 1

Formula 1

wherein

R₃ is C₁-C₁₀ alkyl;

R₄ to R₇ are independently selected from the group consisting of -H, C1-C10 alkoxy, C1-C10 polyalkoxyalkyl, C1-C20 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, saccharides, amino, cyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C1-C10 alkyl, C1-C10 aryl, -SO₃T, -CO₂T, -OH, -(CH₂)_aSO₃T, -(CH₂)_aOSO₃T, -(CH₂)_aNHSO₃T, -(CH₂)_aCO₂(CH₂)_bSO₃T, -(CH₂)_aOCO(CH₂)_bSO₃T, -(CH₂)_aCONH(CH₂)_bSO₃T, -(CH₂)_aNHCO(CH₂)_bSO₃T, -(CH₂)_aNHCONH(CH₂)_bSO₃T, -(CH₂)_aNHCSNH(CH₂)_bSO₃T, -(CH₂)_aOCONH(CH₂)_bSO₃T, -(CH₂)_aPO₃HT, -(CH₂)_aPO₃T₂, -(CH₂)_aOPO₃HT, -(CH₂)_aOPO₃T₂, -(CH₂)_aNHPO₃HT, -(CH₂)_aNHPO₃T₂, -(CH₂)_aCO₂(CH₂)_bPO₃HT, -(CH₂)_aCO₂(CH₂)_bPO₃T₂, -(CH₂)_aOCO(CH₂)_bPO₃HT, -(CH₂)_aOCO(CH₂)_bPO₃T₂, -(CH₂)_aCONH(CH₂)_bPO₃HT, -(CH₂)_aCONH(CH₂)_bPO₃T₂, -(CH₂)_aNHCO(CH₂)_bPO₃HT, -(CH₂)_aNHCO(CH₂)_bPO₃T₂, -(CH₂)_aNHCONH(CH₂)_bPO₃HT, -(CH₂)_aNHCONH(CH₂)_bPO₃T₂, -(CH₂)_aNHCSNH(CH₂)_bPO₃HT, -(CH₂)_aNHCSNH(CH₂)_bPO₃T₂, -(CH₂)_aOCONH(CH₂)_bPO₃HT, -(CH₂)_aOCONH(CH₂)_bPO₃T₂, -CH₂(CH₂-O-CH₂)_c-CH₂-OH, -(CH₂)_d-CO₂T, -CH₂-(CH₂-O-CH₂)_e-CH₂-CO₂T, -(CH₂)_f-NH₂, -CH₂-(CH₂-O-CH₂)_g-CH₂-NH₂, -(CH₂)_h-N(R_a)-(CH₂)_i-CO₂T, and -(CH₂)_j-N(R_b)-CH₂-(CH₂-O-CH₂)_k-CH₂-CO₂T;

Y₁ is selected from the group consisting of C5-C20 polyhydroxyaryl, hydrophilic peptides, arylpolysulfonates, -(CH₂)_aOSO₃T, -(CH₂)_aNHSO₃T, -(CH₂)_aCO₂(CH₂)_bSO₃T, -(CH₂)_aOCO(CH₂)_bSO₃T, -(CH₂)_aCONH(CH₂)_bSO₃T, -(CH₂)_aNHCO(CH₂)_bSO₃T, -(CH₂)_aNHCONH(CH₂)_bSO₃T, -(CH₂)_aNHCSNH(CH₂)_bSO₃T, -(CH₂)_aOCONH(CH₂)_bSO₃T, -(CH₂)_aPO₃HT, -(CH₂)_aPO₃T₂, -(CH₂)_aOPO₃HT, -(CH₂)_aOPO₃T₂, -(CH₂)_aNHPO₃HT, -(CH₂)_aNHPO₃T₂, -(CH₂)_aCO₂(CH₂)_bPO₃HT, -(CH₂)_aCO₂(CH₂)_bPO₃T₂, -(CH₂)_aOCO(CH₂)_bPO₃HT,

$-(CH_2)_aOCO(CH_2)_bPO_3T_2$, $-(CH_2)_aCONH(CH_2)_bPO_3HT$, $-(CH_2)_aCONH(CH_2)_bPO_3T_2$,
 $-(CH_2)_aNHCO(CH_2)_bPO_3HT$, $-(CH_2)_aNHCO(CH_2)_bPO_3T_2$, $-(CH_2)_aNHCONH(CH_2)_bPO_3HT$,
 $-(CH_2)_aNHCONH(CH_2)_bPO_3T_2$, $-(CH_2)_aNHCSNH(CH_2)_bPO_3HT$, $-(CH_2)_aNHCSNH(CH_2)_bPO_3T_2$,
 $-(CH_2)_aOCONH(CH_2)_bPO_3HT$, $-(CH_2)_aOCONH(CH_2)_bPO_3T_2$;

W_1 is $-CR_cR_d$;

a, b, d, f, h, i, and j independently vary from 1-10;

c, e, g, and k independently vary from 1-100;

R_a , R_b , R_c , and R_d are defined in the same manner as Y_1 ; and

T is either H or a negative charge.

2-16 (CANCELED)

17. (PREVIOUSLY PRESENTED) The composition of claim 1 wherein R_3 is C_1 alkyl.

18. (CANCELED)

19. (PREVIOUSLY PRESENTED) The composition of claim 17 wherein each of R_4 to R_7 is independently -H or $-SO_3T$.

20-22. (CANCELED)

23. (PREVIOUSLY PRESENTED) The composition of claim 1 wherein each of R_4 to R_7 is independently -H or $-SO_3T$.

24-26. (CANCELED)

27. (WITHDRAWN - CURRENTLY AMENDED) A method for performing a diagnostic or therapeutic procedure which comprises

administering to an individual an effective amount of a composition comprising at least one biocompatible excipient and the compound of formula 1

Formula 1

wherein

R₃ is C₁-C₁₀ alkyl;

R₄ to R₇ are independently selected from the group consisting of -H, C1-C10 alkoxy, C1-C10 polyalkoxyalkyl, C1-C20 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, saccharides, amino, cyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C1-C10 alkyl, C1-C10 aryl, -SO₃T, -CO₂T, -OH, -(CH₂)_aSO₃T, -(CH₂)_aOSO₃T, -(CH₂)_aNHSO₃T, -(CH₂)_aCO₂(CH₂)_bSO₃T, -(CH₂)_aOCO(CH₂)_bSO₃T, -(CH₂)_aCONH(CH₂)_bSO₃T, -(CH₂)_aNHCO(CH₂)_bSO₃T, -(CH₂)_aNHCONH(CH₂)_bSO₃T, -(CH₂)_aNHCSNH(CH₂)_bSO₃T, -(CH₂)_aOCONH(CH₂)_bSO₃T, -(CH₂)_aPO₃HT, -(CH₂)_aPO₃T₂, -(CH₂)_aOPO₃HT, -(CH₂)_aOPO₃T₂, -(CH₂)_aNHPO₃HT, -(CH₂)_aNHPO₃T₂, -(CH₂)_aCO₂(CH₂)_bPO₃HT, -(CH₂)_aCO₂(CH₂)_bPO₃T₂, -(CH₂)_aOCO(CH₂)_bPO₃HT, -(CH₂)_aCONH(CH₂)_bPO₃HT, -(CH₂)_aCONH(CH₂)_bPO₃T₂, -(CH₂)_aNHCO(CH₂)_bPO₃HT, -(CH₂)_aNHCO(CH₂)_bPO₃T₂, -(CH₂)_aNHCONH(CH₂)_bPO₃HT, -(CH₂)_aNHCSNH(CH₂)_bPO₃HT, -(CH₂)_aNHCSNH(CH₂)_bPO₃T₂, -(CH₂)_aOCONH(CH₂)_bPO₃HT, -(CH₂)_aOCONH(CH₂)_bPO₃T₂, -CH₂(CH₂-O-CH₂)_c-CH₂-OH, -(CH₂)_a-CO₂T, -CH₂-(CH₂-O-CH₂)_e-CH₂-CO₂T, -(CH₂)_fNH₂, -CH₂-(CH₂-O-CH₂)_g-CH₂-NH₂, -(CH₂)_h-N(R_a)-(CH₂)_i-CO₂T, and -(CH₂)_j-N(R_b)-CH₂-(CH₂-O-CH₂)_k-CH₂-CO₂T;

Y₁ is selected from the group consisting of C5-C20 polyhydroxyaryl, saccharides, hydrophilic peptides, arylpolysulfonates, -(CH₂)_aOSO₃T, -(CH₂)_aNHSO₃T, -(CH₂)_aCO₂(CH₂)_bSO₃T, -(CH₂)_aOCO(CH₂)_bSO₃T, -(CH₂)_aCONH(CH₂)_bSO₃T, -(CH₂)_aNHCO(CH₂)_bSO₃T, -(CH₂)_aNHCONH(CH₂)_bSO₃T, -(CH₂)_aNHCSNH(CH₂)_bSO₃T, -(CH₂)_aOCONH(CH₂)_bSO₃T, -(CH₂)_aPO₃HT, -(CH₂)_aPO₃T₂, -(CH₂)_aOPO₃HT, -(CH₂)_aOPO₃T₂, -(CH₂)_aNHPO₃HT, -(CH₂)_aNHPO₃T₂, -(CH₂)_aCO₂(CH₂)_bPO₃HT, -(CH₂)_aCO₂(CH₂)_bPO₃T₂, -(CH₂)_aOCO(CH₂)_bPO₃HT, -(CH₂)_aCONH(CH₂)_bPO₃HT, -(CH₂)_aCONH(CH₂)_bPO₃T₂, -(CH₂)_aNHCO(CH₂)_bPO₃HT, -(CH₂)_aNHCO(CH₂)_bPO₃T₂, -(CH₂)_aNHCONH(CH₂)_bPO₃HT, -(CH₂)_aNHCSNH(CH₂)_bPO₃HT, -(CH₂)_aNHCSNH(CH₂)_bPO₃T₂, -(CH₂)_aOCONH(CH₂)_bPO₃HT, -(CH₂)_aOCONH(CH₂)_bPO₃T₂;

W₁ is -CR_cR_d;

a, b, d, f, h, i, and j independently vary from 1-10;
c, e, g, and k independently vary from 1-100;
 R_a , R_b , R_c , and R_d are defined in the same manner as Y_1 ; and
 T is either H or a negative charge; and
performing the diagnostic or therapeutic procedure.

28. (WITHDRAWN - CURRENTLY AMENDED) The method of claim 27 wherein

R_3 is C_1-C_{10} alkyl;
 R_4 to R_7 are independently selected from the group consisting of $C1-C5$ alkoxy, $C1-C5$ polyalkoxyalkyl, $C1-C10$ polyhydroxyalkyl, $C5-C20$ polyhydroxyaryl, mono- and disaccharides, amino, nitro, hydrophilic peptides, arylpolysulfonates, $C1-C10$ aryl, $-SO_3T$, $-CO_2T$, $-OH$, $-(CH_2)_aSO_3T$, $-(CH_2)_aOSO_3T$, $-(CH_2)_aNSO_3T$, $-(CH_2)_aCO_2(CH_2)_bSO_3T$, $-(CH_2)_aOCO(CH_2)_bSO_3T$, $-CH_2(CH_2-O-CH_2)_c-CH_2-OH$, $-(CH_2)_dCO_2T$, $-CH_2-(CH_2-O-CH_2)_e-CH_2-CO_2T$, $-(CH_2)_fNH_2$, $-CH_2-(CH_2-O-CH_2)_g-CH_2-NH_2$, $-(CH_2)_h-N(R_a)-(CH_2)_i-CO_2T$, and $-(CH_2)_j-N(R_b)-CH_2-(CH_2-O-CH_2)_k-CH_2-CO_2T$;

Y_1 is selected from the group consisting of $C5-C20$ polyhydroxyaryl, mono- and disaccharides, hydrophilic peptides, arylpolysulfonates, $-(CH_2)_aOSO_3T$, $-(CH_2)_aNSO_3T$, $-(CH_2)_aCO_2(CH_2)_bSO_3T$, $-(CH_2)_aOCO(CH_2)_bSO_3T$;

W_1 is $-CR_cR_d$;

a, b, d, f, h, i, and j independently vary from 1-5;

c, e, g, and k independently vary from 1-20;

R_a , R_b , R_c , and R_d are defined in the same manner as Y_1 ; and

T is a negative charge.

29. (WITHDRAWN) The method of claim 27 wherein each R_4 , R_6 and R_7 is H, R_5 is SO_3T , Y_1 is $-(CH_2)_3SO_3T$; W_1 is $-C(CH_3)_2$; and T is a negative charge.

30. (WITHDRAWN) The method of claim 27 wherein the procedure uses light of wavelength in the region of 350 nm -1300 nm.

31. (WITHDRAWN) The method of claim 27 wherein the procedure comprises monitoring a blood clearance profile by fluorescence using light of wavelength in the region of 350 nm to 1300 nm.

32. (WITHDRAWN) The method of claim 27 wherein the procedure comprises monitoring a blood clearance profile by absorption using light of wavelength in the region of 350 nm to 1300 nm.

33. (WITHDRAWN) The method of claim 27 wherein the procedure is for physiological function monitoring.

34. (WITHDRAWN) The method of claim 33 wherein the procedure is for renal function monitoring.

35. (WITHDRAWN) The method of claim 33 wherein the procedure is for cardiac function monitoring.

36. (WITHDRAWN) The method of claim 33 wherein the procedure is for determining organ perfusion in vivo.