Region Proposal by Guided Anchoring

Jiaqi Wang^{1*} Kai Chen^{1*} Shuo Yang² Chen Change Loy³ Dahua Lin¹ CUHK - SenseTime Joint Lab, The Chinese University of Hong Kong ²Amazon Rekognition ³Nanyang Technological University

{ck015,wj017,dhlin}@ie.cuhk.edu.hk shuoy@amazon.com ccloy@ntu.edu.sg

https://zhuanlan.zhihu.com/p/55854246

根据图像特征生成 anchor

Anchor 概率分布:

$$p(x, y, w, h|I) = p(x, y|I)p(w, h|x, y, I).$$

Anchor Location Prediction

特征图 FI 经过 1×1 卷积和 sigmoid 函数转换为概率 p(i,j|FI), 设定阈值过滤 90%

Anchor Shape Prediction

anchor 的 w 和 h 是不确定的,是一个需要预测的变量。我们将这个 anchor 和某个 gt 的 IoU 表示为

$$vIoU(a_{wh}, gt) = \max_{w>0, h>0} IoU_{normal}(a_{wh}, gt)$$

特征图 FI 经过 1×1 卷积生成两通道的图,一个是 dw 和 dh,另一个是通过公式:

$$w = \sigma \cdot s \cdot e^{dw}, \quad h = \sigma \cdot s \cdot e^{dh}.$$

(where s is the stride and # is an

empirical scale factor (# = 8 in our experiments).) 得出 w,h。

Feature Adaptation

在 RPN 中,anchor 形状相同,但此处 anchor 形状大小不同。对原本的特征图来说,它并不知道形状预测分支预测的 anchor 形状,但是接下来的分类和回归却是基于预测出的 anchor 来做的。

思路:把 anchor 的形状信息直接融入到特征图中,这样新得到的特征图就可以去适应每个位置 anchor 的形状。

利用一个 3x3 的 deformable convolution 来修正原始的特征图,而 deformable convolution 的 offset 是通过 anchor 的 w 和 h 经过一个 1x1 conv 得到的。可变形卷积:

是基于通过学习一个额外的偏移(offset),使卷积核对输入 feature map 的采样的产生偏移,集中于感兴趣的目标区域。

Table 4: The effects of each module in our design. L., S., and F.A. denote location, shape, and feature adaptation, respectively.

L.	S.	F.A.	AR ₁₀₀	AR ₃₀₀	AR ₁₀₀₀	AR_S	AR_M	AR_L
			47.5	54.7	59.4	31.7	55.1	64.6
\checkmark			48.0	54.8	59.5	32.3	55.6	64.8
	\checkmark		53.8	59.9	63.6	36.4	62.9	71.7
\checkmark	\checkmark		54.0	60.1	63.8	36.7	63.1	71.5
\checkmark	\checkmark	\checkmark	59.2	65.2	68.5	40.9	67.8	79.0