	Sliding	window	lo Contr	ibution Te	Chnique
	J				
Content					
	— Prir	it Sum o	L all p	onible su	ibavays.
_		l sum of	_		· ·
		subavia		•	
			J	·	

possible subarray frontinuous part of array?

A = [123]	sulavrays	output.
	1>	1
	12	3
# subarrays -	1 2 3>	6
0*(0+1) = 3*4	2	2
2	2 3	5
<u> </u>	3	3

Brutcforce

To represent a subarray 9 need (start, end)

for
$$i \longrightarrow 0$$
 to $N-1$ {

for $j \longrightarrow i \longrightarrow N-i$ {

total = 0

for $k \longrightarrow i$ to j {

total $f = ATk$]

print (total)

3

 $f = \frac{1}{3} + \frac{1}{3$

```
Prefix sum
```

```
P\Gamma iJ = A\Gamma oJ + A\Gamma iJ \dots + A\Gamma iJ
       P \Gamma i J = P \Gamma i - 1 J + A \Gamma i J.
 Sum over (i,j) \longrightarrow if(i==0) P[j]
                            eue PCj7 - PCi-1]
  11 Create PTJ sum averay.
 for i \longrightarrow 0 to N-1 &
                                         \rho = 1
       for j \longrightarrow i \longrightarrow N-i
              total = 0
             if (i==0) (total = Pt/)}
              else ( total = PCj) - PCi-1]
                                           TC: O(N^2)
              print (total)
                                            SC: O(N)
                      12 -
                                                 0(1)
                      1 2 3 -
                                              By wing ACT
                                               as prum.
                       2 3 —
PHELIX SUM - left to right
suffix sum - might to left.
```

```
Carry Forward (calculate + we)
A= T1 2 37
                               total = Aro)
                             1
                             3 total + ATI7 = 3
             12
                             6 total + A [2] = 6
                  3
                                 total = A(17 = 2
                              5 total + A(2) = 5
                             3 total = AT27=3
2
    2
                                                 total
  for i \longrightarrow 0 to N-1 &
                                             0
        total = 0
                                                  3
                                        0
        for j \longrightarrow i \longrightarrow N-i (.
                                            2
                                                  6
              total += A[j] ? calculate
                                                  \mathcal{Z}
               print (total)) use
                                            2
        <u>اع</u>
                                                  3
                                        2
                                            2
   13
               A = 1
                           2
TC: O(N^2)
 20:001)
NOTE: TC cannot be improved better man O(N2) since
there are N*(N+1) subarray sum to be printed.
```

```
Q> Find the total sum of all subovialy sum.
 Input
   A = 1 2 3
                                      1
                     1
                     12
                                      3
                           3
                     2
                     2 3
                                      5
                                      3
                     .3
                              Output 20
     and = 0
    for i \longrightarrow 0 to N-1 (
           total = 0
          foz_j \longrightarrow i \longrightarrow N-i
                 total += A[j]
                 any += total
                                       TC: O(N^2)
     print ( ary )
                                       SC: 0(1)
                   1
                         contribution of
                                         1
                                             = 3 * 1 = 3
                   3
                         contribution of 2 = 4 \times 2 = 8
                         contribution of
                   6
                                         3
                                             = 3 * 3 = 9
  2
                   2
                                                      20
                   5
                   3
          Output 20
```

contribution Technique

ATI] * # subarrays containing ATI]

How to calculate the no of subarrays containing ACIT?

sularray containing A[2]

if for any index as start, I can choose any of the end index.

No. of subaverays that will contain A[i] = (i+1)*(n-i)

```
Pseudocode
                                                  TC: O(N)
                                                  SC: 0(1)
    ay = 0
    for (i \longrightarrow 0 \text{ to } N-1) {
any += A[i] * (i+1) * (n-i)
     print (ans)
                                            21:36
```

a> Total # subarrays of length K (<= N) ? $A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 3 & -2 & 4 & -1 & 2 & 6 \end{bmatrix}$ K = 3Output -> 4 $A = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$ 2 3 4 5 J 4 -1 2 6 J k = U(0-2) = 3# subarrays. K 6 N 5 N-L 2 4 N-2 N-3 3 5 N- Y 2. 1 no. of subarrays of length == E Total N-K+1K A1 A2 A3 (AN-2) Ao A N-r+1 [0-(N-X]] possibilities of my souting point N-K+1 $N = 7 \quad K = U \qquad N - K + 1 = 7 - U + 1 = U$

Given ACT, print start and end indices of subarrays of length K.

N = 8		k = 3 .		
	O l	1 2 3 U 5 6 7 8 2 3 U 5 6 7 8		
output				
Stovet	end	k = 3		
0	2			
1	3	andices of starting subarray.		
2	y	€0, k-1}		
3	5			
Y	6			
7	7	$[0-x] = \kappa$		

Pseudocode

$$Stort = 0$$
 $TC: O(N)$
end = K-1 $SC: O(1)$

2 - 0 + 1 = 10

R = K - 1

Q> Given an integer away. Find max subaway sum of subarray of length = K

Breuteforce

```
start = 0 TC: O(N^2)

end = K-1 SC: O(1)

mtotal = -\infty

while (end < N) {

total = 0

for ( i \rightarrow start to end) {

total + = ACi]

start + t

end t + t
```

```
Prefix Sum
```

```
Start = 0

end = K-1

m_{total} = -00

if (start ==0) { total = PTend] }

else { total = PTend] - PTstart-1] }

m_{total} = max (m_{total}, total)

start + t

end + +

m_{total} = m_{total} = m_{total}
```

```
Observation of sliding window?

A = \begin{bmatrix} 3 & -2 & 4 & -1 & 2 & 6 \end{bmatrix} \quad k = 3
total = 5
A = \begin{bmatrix} x & -2 & 4 & -1 & 2 & 6 \end{bmatrix}
total = 5 - 3 + (-1)
= 2 - 1
= 1
A technique to stip recalculation of values
over a window of fixed, dynamic?
```

```
Staps
          → calculate total for 0 to k-1 first subj
           \rightarrow Add A[i] and remove A[i-K].
           -> keep maintaining the max total
Pseudocode
   // Step 1 calculate total for i \rightarrow 0 to k-1
   total = 0
 for (i \longrightarrow 0 \text{ to } k-i)
        total += A[i]
                                         TC: O(N)
                                         Sc: O(1)
    mtotal = total
   for ( i = k ; i < n ; i++) of
                                                101at =
       nemove = Ali-k]
         add = ATiJ
                                               total - Ali - I]
                                                    + ATIT
         total = total - remove + add
         mtotal = max (mtotal, total)
  print (mtotal)
```

Doubt senion					
$mod = 10^9 + 7$					
ans					
any % = mod.					