EA044V Planejamento e Análise de Sistemas de Produção $P2 - 2^o$ semestre de 2004

11 de dezembro de 2004

Dualidade e sensibilidade

Considere a seguinte versão simplificada do problema da dieta. Há quatro tipos de comida disponíveis: bolo de chocolate, sorvete, soda limonada e torta de abacaxi. Cada porção do bolo de chocolate custa R\$1,50, cada bola de sorvete custa R\$0,60, cada garrafa de soda limonada custa R\$0,90 e cada pedaço de torta de abacaxi custa R\$2,40. Os requisitos diários de uma dieta são 500 calorias, 180g de chocolate, 300g de açúcar e 240g de gordura. O conteúdo nutricional dos alimentos é dado pela tabela 1.

	calorias	chocolate	açúcar	gordura
bolo	400	90	60	60
sorvete	200	60	60	120
soda	150	0	120	30
torta	500	0	120	150

Tabela 1: Conteúdo nutricional dos alimentos.

Sejam as variáveis de decisão:

- $x_1 \stackrel{\triangle}{=} pedaços de bolo de chocolate$
- $x_2 \stackrel{\triangle}{=}$ bolas de sorvete de chocolate
- $x_3 \stackrel{\triangle}{=}$ garrafas de soda limonada
- $x_4 \stackrel{\triangle}{=} \text{pedaços de torta de abacaxi}$

Observe que o modelo dado por (1) pode ser utilizado para satisfazer as exigências nutricionais a um custo mínimo.

	variable	value	reduced cost
_	x_1	0.0	82.5
	x_2	3.0	0.0
	x_3	1.0	0.0
	x_4	0.0	150.0
	row	slack or surplus	dual prices
	calorias)	250.0	0.00

row	slack or surplus	dual prices
calorias)	250.0	0.00
chocolate)	0.0	-0.25
açúcar)	0.0	-0.75
gordura)	150.0	0.00

ranges in which the basis is unchanged: obj coefficient ranges

	obj cocincioni ranges		
variable	current	allowable	allowable
	\mathbf{coef}	increase	decrease
x_1	150.0 \	<i>© ©</i>	82.5
x_2	60.0	55.0	15.0
x_3	90.0	30.0	90.0
x_4	240.0 13	SQ ∞	150.0
		\	

Tabela 2: Saída do Lindo para o problema da dieta.

- a. (1,5) Formule o dual deste modelo.
 - b. (0,5) Interpetre o significado das variáveis duais e da função objetivo dual.

 \geq 180 $\sqrt{2}$ $\geq 300 \sqrt{3}$

(1)

 ≥ 500 $^{\curvearrowleft}$ c. (0,5) Verifique que o valor ótimo da função objetivo é o mesmo no modelo primal e no dual a partir da saída do solver Lindo¹ que se encontra na tabela 2.

 $\geq 240 \, \sqrt{4}$ ¹Lembre-se que o Lindo mostra as variáveis duais (dual prices) com sinal trocado.

	$Min = 150x_1 + 60x_2 + 90x_3 + 240x_4$
s.a	$400x_1 + 200x_2 + 150x_3 + 500x_4$
	$90x_1+60x_2$
	$60x_1 + 60x_2 + 120x_3 + 120x_4$
	$60x_1 + 120x_2 + 30x_3 + 150x_4$
	$x_j \otimes 0; \ j=1,\ldots,4$
	7)

- d. (0,5) Escreva as condições de folga complementares primais e duais e verifique que as soluções ótimas primal e dual satisfazem estas condições.
- e. (1,0) A partir da tabela 2, considere qual seria a mudança na solução do problema se o preço do bolo de chocolate aumentasse para R\$1,80 e o preço da torta de abacaxi caísse para R\$1,50.

	x_1	x_2	x_3	$ ilde{ ilde{x}}$	$ ilde{v}$
-	#	#	#	(0.875, 0, 0.5, 1.25)	6.3125
	#	#	0	(1,0,0,2)	7.5
	#	#	1	(0.667, 0.333, 1, 0.667)	6.667
	#	0	#	(0.875, 0, 0.5, 1.25)	6.3125
	#	0	0	(1,0,0,2)	7.5
	#	0	1	(1, 0, 1, 1)	7.0
	#	1	#	(1, 1, 0, 2)	11.0
	#	1	0	$(\widehat{1,1,0},2)$	11.0
	#	1	1	(0,1,1,2)	12.0
-	$\frac{0}{0}$	#	#	(0, 0.333, 1, 2)	9.667
	0	#	0	(0,0,0,4)	12.0
	0	#	1	$(0, \overline{0.333}, 1, 2)$	9.667
•	-0	0	#	(0,0,0.5,3)	10.25
	0	0	0	$\overline{(0,0,0,4)}$	- 12.0
	0	0	1	$(\widetilde{0},0,1,3)$	11.5
)	0	1	#	$(\underline{0,1,1},2)$	12 -
	0	1	0	(0, 1, 0, 4)	15.5
\	0	1	1	(0,1,1,2)	12.0
)	b 1	#	#	(1,0,0.333,1.333)	6.333
Š	D 1	#	0 🛥	(1,0,0,2)	7.5°
<u>.</u>	s)1	#	1	(1, 0, 1, 1)	7.0
•	1	0	#	$(1,0,\overline{0.333},1.333)$	6.333
	1	0	0	(1,0,0,2)	7.5
	1	0	1	$(\overline{1,0,1,1})$	7.0
	1	1	#	(1, 1, 0, 2)	11.0
	1	1	0	(1,1,0,2)	11.0
	1	1	1	infactível	_

Tabela 3: Soluções do PL relaxado.

Otimização discreta

Considere o seguinte ILP:

s.a

$$Min \quad 1.5x_{1} + 3.5x_{2} + 2.5x_{3} + 3x_{4}$$

$$2x_{1} + 3x_{2} + x_{4} \qquad \geq 3$$

$$2x_{1} + 2x_{3} + x_{4} \qquad \geq 4$$

$$2x_{2} + x_{3} + 2x_{4} \qquad \geq 3$$

$$x_{1} + x_{2} + x_{3} \qquad \leq 2$$

$$x_{1}, x_{2}, x_{3} \in \{0, 1\}, x_{4} \geq 0$$

As soluções relaxadas de todas as possíveis combinações de variáveis livres e fixas do problema encontram-se na tabela 3.

- à (0,5) Formule o problema de PL correspondente à entrada (#,#,#) da tabela.
- b. (0,5) O valor 6.3125 correspondente à entrada (#,#,#) é um limitante (bound) para o problema original. Limitante inferior ou superior?
 O que isto significa?
- c. (2,0) Utilize o algoritmo branch-bound para encontrar o ótimo do problema a partir da tabela 3. Apresentar a árvore correspondente assinalando em cada nó terminal o tipo de finalização (limite, solução, infactível). Assinale para todos os nós o \tilde{x} e \tilde{v} correspondentes bem como a entrada da tabela que corresponde ao nó. Nos ramos assinale a variável que foi restrita em 0 ou 1. Utilize a busca por profundidade adotando os seguintes critérios: ramifique (branch) a variável cuja relaxação racional mais se aproxima do inteiro; escolha o nó (fixando a variável em 0 ou 1) que mais se aproxima da relaxação correspondente quando os nós têm a mesma profundidade.

Programação não linear

Considere a função de Rosenbrock dada por

$$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2 \mid x_1, x_2 \in \Re$$

- a. (1,0) Mostre que o ponto $\bar{x} = (1,1)$ é um ponto estacionário da função.
- b. (1,0) Calcule a Hessiana da função no ponto $\bar{x}=(1,1)$ e se possível conclua a respeito do sinal da matriz, ou seja, se a Hessiana $H(\bar{x})$ é (semi-)definida positiva ou negativa.
- c. (1,0) A partir do sinal da Hessiana conclua se o ponto $\bar{x}=(1,1)$ é ponto de mínimo ou de máximo.

100(x/2-2x2x2-2xx)+(1-2x1+x)