exercices: PRODUIT SCALAIRE

avec solutions

2BAC série science expérimental filière : svt+pc

PRODUIT SCALAIRE de l'espace

Exercice1 : Soit ABCDEFGH un cube de côté a Calculer les produits scalaires suivants :

 $\overrightarrow{AF}.\overrightarrow{GC}$; $\overrightarrow{AF}.\overrightarrow{CD}$ et $\overrightarrow{DH}.\overrightarrow{DC}$ et $\overrightarrow{EH}.\overrightarrow{GC}$ et

 $\overrightarrow{AE}.\overrightarrow{DB}$

solution :1)calcul de $\overrightarrow{AF}.\overrightarrow{GC}$:on a : $\overrightarrow{GC} = \overline{EA}$ car ABCDEFG cube

$$\overrightarrow{AF}.\overrightarrow{GC} = \overrightarrow{AF}.\overrightarrow{EA} = -\overrightarrow{AF}.\overrightarrow{AE} = -AE \times AE = -a^2$$

(car E est le projeté

orthogonales de F sur (AE)

Puisque ABCD est un carré

donc:
$$\overrightarrow{AF}.\overrightarrow{CD} = \overrightarrow{AF}.\overrightarrow{BA} = -AB \times AB = -a^2$$

(car B est le projeté orthogonales de F sur (AB)

3)calcul de $\overrightarrow{DH}.\overrightarrow{DC}$: Puisque DCGH est un carré

on a :
$$\overrightarrow{DH}.\overrightarrow{DC} = 0 (\overrightarrow{DH} \perp \overrightarrow{DC})$$

4) calcul de $\overrightarrow{EH}.\overrightarrow{GC}$:

$$\overrightarrow{EH}.\overrightarrow{GC} = \overrightarrow{EH}.\overrightarrow{HD} = 0 \ (\overrightarrow{DH} \perp \overrightarrow{EH})$$

donc : $\overline{EH} \perp \overrightarrow{GC}$

5) calcul de $\overrightarrow{AE}.\overrightarrow{DB}$:

On a : $(AE) \perp (ABC)$ donc $(AE) \perp (DB)$ car

 $(DB) \subset (ABC)$ donc: $\overrightarrow{AE}.\overrightarrow{DB} = 0$

Exercice2: 1)Soit A, B et C des points de

l'espace tel que $AB = \sqrt{5}$ et $\overrightarrow{AB}.\overrightarrow{AC} = 3$

Calculer $\left(-2\overrightarrow{AB}\right).\overrightarrow{BC}$:

2) sachant que $\|\vec{u}\| = 2$ et $\|\vec{v}\| = 3$ et $\|\vec{u} + \vec{v}\| = 5$

Calculer : $\vec{u}.\vec{v}$

solution :1)

$$(-2\overrightarrow{AB}).\overrightarrow{BC} = -2\overrightarrow{AB}.(\overrightarrow{BA} + \overrightarrow{AC}) = -2\overrightarrow{AB}.\overrightarrow{BA} - 2\overrightarrow{AB}.\overrightarrow{AC}$$

$$=2\overrightarrow{AB}.\overrightarrow{AB}-2\overrightarrow{AB}.\overrightarrow{AC}=2\overrightarrow{AB}^2-2\times 3$$

$$=2AB^2-2\times3=2\times5-6=4$$

2) On a:
$$\vec{u}.\vec{v} = \frac{1}{2} (||\vec{u} + \vec{v}||^2 - ||\vec{u}||^2 - ||\vec{v}||^2) = \frac{1}{2} (5^2 - 4 - 9^2) = 6$$

Exercice3: Déterminer les coordonnées d'un vecteur \vec{n} normal à un plan dirigé par $\vec{u}(2,-1,3)$ et $\vec{v}(4,0,2)$.

PROF: ATMANI NAJIB

solution :Ces deux vecteurs ne sont clairement pas colinéaires : une coordonnée est nulle pour l'un mais pas pour l'autre.

On note $\vec{n}(x, y, z)$.

Puisque \vec{n} est normal au plan dirigé par \vec{u} et \vec{v} alors $\vec{u} \cdot \vec{n} = 0$ et $\vec{u} \cdot \vec{n} = 0$.

On obtient ainsi les deux équations

$$2x - y + 3z = 0$$
et $4x + 2z = 0$

A l'aide de la deuxième équation, on obtient z=-2x. On remplace dans la première :

 $2x - y - 6x = 0 \Leftrightarrow -4x - y = 0 \Leftrightarrow y = -4x$. On choisit, par exemple x = 1et on trouve ainsi .

 $\vec{v}(1;-4;-2)$

On vérifie : $\vec{u}.\vec{n}=2+4-6=0$ et

 $\vec{v} \cdot \vec{n} = 4 + 0 - 4 = 0 \checkmark$.

Un vecteur normal au plan dirigé par les vecteurs \vec{u} et \vec{v} est $\vec{n}(1;-4;-2)$

Exercice4: Deux cubes d'arête 1, sont disposés comme indiqué sur la figure.

M est le milieu du segment [GK].

La droite (DL) est-elle perpendiculaire au plan (FMI)?

Solution: on se place dans le repère

 $(A; \overrightarrow{AB}; \overrightarrow{AD}; \overrightarrow{AE})$ orthonormé

Voyons si \overrightarrow{DL} est un vecteur normal au plan (FMI)

Il suffit de calculer: $\overrightarrow{DL} \cdot \overrightarrow{FM}$ et $\overrightarrow{DL} \cdot \overrightarrow{FI}$

On a: $\overrightarrow{DL} = -\overrightarrow{AD} + 2\overrightarrow{AB} + \overrightarrow{AE}$ donc: $\overrightarrow{DL}(2;-1;1)$

On a: $\overrightarrow{FM} = \overrightarrow{FG} + \overrightarrow{GM} = \overrightarrow{AD} + \frac{1}{2}\overrightarrow{AB}$ donc: $\overrightarrow{FM} \left(\frac{1}{2}; 1; 0 \right)$

On a: $\overrightarrow{FI} = \overrightarrow{FB} + \overrightarrow{BI} = -\overrightarrow{AE} + \overrightarrow{AB}$ donc: $\overrightarrow{FI}(1;0;-1)$

 $\overrightarrow{DL} \cdot \overrightarrow{FM} = 0$ et $\overrightarrow{DL} \cdot \overrightarrow{FI} = 1 \neq 0$

Donc : (DL) n'est pas perpendiculaire au plan (FMI)

Exercice5: ABCDEFGH un cube tel que : AB = 1 avec I le milieu du segment [EH] et J le milieu de [EF]

- 1)Montrer que $\overline{AG} \cdot \overline{EB} = 0$ et que $\overline{AG} \cdot \overline{ED} = 0$
- 2) En déduire que le vecteur \overrightarrow{EG} est normal au plan (BDE)
- 3) Montrer que les vecteurs \overrightarrow{FI} et \overrightarrow{CJ} sont orthogonaux
- 4) l'espace étant rapporté au repère $(A; \overline{AB}; \overline{AD}; \overline{AE})$
- a) déterminer les coordonnées des points F; C; I et J
- B)Montrer que $\overrightarrow{FI} \cdot \overrightarrow{CJ} = 0$

et en déduire que \overrightarrow{FI} et \overrightarrow{CJ} sont orthogonaux

Exercice6: Déterminer une équation du plan \mathscr{P} passant par A(4;2;-3) dont un vecteur normal est $\vec{n}(1;-2;-1)$

Solution : Une équation du plan \mathscr{P} est de la forme x-2y-z+d=0

Le point A appartient au plan. Ses coordonnées vérifient donc l'équation :

 $4-2 \times 2 - (-3) + d = 0 \Leftrightarrow 3+d = 0 \Leftrightarrow d = -3$ Une équation de \mathscr{P} est donc x-2y-z-3=0

Exercice7: ABCDEFGH un cube tel que : AB = 1 avec I le milieu du segment AE

On se place dans le repère $\left(A;\overrightarrow{AB};\overrightarrow{AD};\overrightarrow{AE}\right)$

- 1) déterminer un vecteur normal au plan (CHI)
- 2) En déduire une équation cartésienne du plan (*CHI*)

Solution :1)soit un $\vec{n}(x; y; z)$ un vecteur normal au

$$plan \ \left(CHI \right) donc \ \begin{cases} \overrightarrow{n}.\overrightarrow{CH} = 0 \\ \overrightarrow{n}.\overrightarrow{CI} = 0 \end{cases}$$

On a :
$$\overrightarrow{CH}\left(-1;0;1\right)$$
 et $\overrightarrow{CI}\left(-1;-1;\frac{1}{2}\right)$

Donc:
$$\begin{cases} -x + z = 0 \\ -x - y + \frac{1}{2}z = 0 \end{cases} \Leftrightarrow \begin{cases} z = x \\ -x - y + \frac{1}{2}x = 0 \end{cases}$$

$$\begin{cases} z = x \\ y = -\frac{1}{2}x \end{cases}$$
 Puisque on veut un seul vecteur normal

Alors on donne par exemple :
$$x = 2$$
 on trouve
$$\begin{cases} z = 2 \\ v = 1 \end{cases}$$
 donc un vecteur normal est $\vec{n}(2;-1;2)$

2)l'équation du plan s'écrit sous forme :

$$ax + by + cz + d = 0$$

Donc:
$$2x - y + 2z + d = 0$$

Et puisque : $C(1;1;0) \in (CIH)$ donc :

$$2-1+0+d=0 \iff d=-1$$

Donc:
$$(CIH)$$
: $2x - y + 2z - 1 = 0$

Exercice8 : On considère les plans d'équations :

$$(P)$$
 2x-4y+z+1=0 et (P') x+y+2z-3=0

- 1)Monter que : $(P) \perp (P')$
- 2)Déterminer l'équation cartésienne du plan (Q) parallèle au plan (P) passant par le point A(1;-1;1)

Solutions :1)
$$\vec{n}(2;-4;1)$$
 et $\vec{n}'(1;1;2)$ les deux

vecteurs normaux respectivement de (P) et $(P)^{'}$

On a:
$$\vec{n}.\vec{n'} = 2 - 4 + 2 = 0$$

Donc
$$\vec{n} \perp \vec{n'}$$
 par suite : $(P) \perp (P')$

2) $(P) \parallel (Q)$ et \vec{n} est normal $\mathbf{a}(P)$ donc est un vecteur normal $\mathbf{a}(Q)$

Donc une équation cartésienne du plan (Q) est :

$$2x - 4y + z + d = 0$$

Et puisque : $A(1;-1;1) \in (Q)$ donc :

$$2+4+1+d=0 \Leftrightarrow d=-7$$

Donc:
$$(Q)$$
: $2x-4y+z-7=0$

Exercice9: L'espace est muni d'un repère orthonormé $(\vec{i}; \vec{j}; \vec{k})$. On considère le plan (P)

d'équation
$$x + 2y - z - 1 = 0$$

- 1)Les points A(1;1;2) et B(2;1;1) appartiennent-ils au plan (P)?
- 2)Calculer la distance AB puis les distances de ces deux points A et B au plan (P).

3)Le point A est-il le projeté orthogonal de B sur le plan (P)?

Solution: $1+2\times 1-2-1=0$ donc les coordonnées du point A vérifient l'équation de. On en déduit que A appartient au plan (P) et donc que $:2+2\times 1-1-1=2\neq 0$

donc les coordonnées du point B ne vérifient pas l'équation de (P) On en déduit que B n'est pas un point de (P).

2)
$$AB = \sqrt{(2-1)^2 + 1(2-1)^2 + (1-2)^2} = \sqrt{2}$$

Calculons $d(A;(P)) \text{ et } d(B;(P))$.

On a:
$$A \in (P)$$
 donc: $d(A;(P)) = 0$
$$d(B;(P)) = \frac{|2 + 2 \times 1 - 1 - 1|}{\sqrt{1^2 + 2^2 + (-1)^2}} = \frac{|2|}{\sqrt{6}} = \frac{\sqrt{6}}{3}$$

on a: $\overrightarrow{AB}(1;0;-1)$

3)Un vecteur normal au plan (P) est $\vec{n}(1;2;-1)$

Ces deux vecteurs ne sont pas colinéaires, donc \overrightarrow{AB} n'est pas orthogonal au plan (P).

Le point A n'est donc pas le projeté orthogonal de $B \operatorname{sur}(P)$.

Exercice10:1)Déterminer l'équation cartésienne de la sphère de centre $\Omega(1, -1,2)$ et de rayon R=3

2)Déterminer l'équation cartésienne de la sphère de centre $\Omega(0, -3,0)$ et qui passe par A(2,1, -1).

Solution : 1) l'équation cartésienne de la sphère

est:
$$(x-1)^2 + (y-(-1))^2 + (z-2)^2 = 3^2 \Leftrightarrow$$

$$(x-1)^2 + (y+1)^2 + (z-2)^2 = 9 \Leftrightarrow$$

$$\Leftrightarrow x^2 + y^2 + z^2 - 2x + 2y - 4z - 3 = 0$$

2) $S(\Omega, R)$ la sphère de centre $\Omega(1, -2,0)$ et qui passe par A(2,1,-1).

Donc: $\Omega A = R$

$$= \sqrt{(x_A - x_{\Omega})^2 + (y_A - y_{\Omega})^2 + (z_A - z_{\Omega})^2}$$

$$\Omega A = R = \sqrt{2^2 + 4^2 + (-1)^2} = \sqrt{21}$$

Donc l'équation cartésienne de la sphère est :

$$(x-0)^2 + (y-(-3))^2 + (z-0)^2 = \sqrt{21^2} \Leftrightarrow$$

$$x^{2} + (y+3)^{2} + z^{2} = 21 \Leftrightarrow x^{2} + y^{2} + z^{2} + 6y - 12 = 0$$

Prof/ATMANI NAJIB

Exercice11: Déterminer une représentation paramétrique de la sphère de centre $\Omega(-1, 0,2)$ et de rayon R=3

Solution : Le système
$$\begin{cases} x = -1 + 3\sin\varphi\cos\theta \\ y = 3\sin\varphi\sin\theta \\ z = 2 + 3\cos\varphi \end{cases}$$

 $\left(arphi; heta
ight) \! \in \! \mathbb{R}^2$ une représentation paramétrique de la sphère

Exercice12: Déterminer (S) L'ensemble des points M(x; y; z) tels que

$$\begin{cases} x = \frac{1}{2} + 2\sin\varphi\cos\theta \\ y = -1 + 2\sin\varphi\sin\theta \ (\varphi;\theta) \in \mathbb{R}^2 \\ z = 1 + 2\cos\varphi \end{cases}$$

Solution: soit $M(x; y; z) \in (S)$

Donc:
$$\left(x - \frac{1}{2}\right)^2 + \left(y - (-1)\right)^2 + \left(z - 1\right)^2 =$$

$$= (2\sin\varphi\cos\theta)^2 + (2\sin\varphi\sin\theta)^2 + (2\cos\varphi)^2$$

$$= 4\sin\varphi^2(\cos\theta^2 + \sin\theta^2) + 4\cos\varphi^2$$

Donc:
$$\left(x - \frac{1}{2}\right)^2 + \left(y - \left(-1\right)\right)^2 + \left(z - 1\right)^2 = 2^2$$

(S) L'ensemble des points M(x; y; z) est donc la sphère de centre

 $\Omega(1/2, -1,1)$ et de rayon R = 2

Exercice13: Déterminer(S) L'ensemble des points M(x; y; z) dans les cas suivants :

1)
$$(S_1): x^2 + y^2 + z^2 - 2x - 6y - 4z = 0$$

2)
$$(S_2)$$
: $x^2 + y^2 + z^2 - 6x + 4y + 6z + 22 = 0$

3)
$$(S_3)$$
: $x^2 + y^2 + z^2 - 2x + 3y + z + 7 = 0$

Solution : 1)soit a=1 et b=3 et c=2 et d=0 $a^2+b^2+c^2-d=1+9+4=14$

Puisque
$$a^2+b^2+c^2-d=14>0$$

Donc : L'ensemble des points M(x; y; z) est donc

la sphère (S_1) de centre

$$\Omega(1, 3,2)$$
 et de rayon $R = \sqrt{14}$

2)
$$(S_2)$$
: $x^2 + y^2 + z^2 - 6x + 4y + 6z + 22 = 0$

$$M(x; y; z) \in (S_2)$$

$$\Leftrightarrow (x^{2}-6x)+(y^{2}+4y)+(z^{2}+6z)+22=0 \Leftrightarrow (x-3)^{2}+(y+2)^{2}+(z+3)^{2}=0 \Leftrightarrow x-3=0 \text{ et } y+2=0 \text{ et } z+3=0 \Leftrightarrow x=3 \text{ et } y=-2 \text{ et } z=-3 \text{ alors } S_{2}=\left\{\Omega(3;-2;-3)\right\}$$
3) $(S_{3}): x^{2}+y^{2}+z^{2}-2x+3y+z+7=0$

$$M(x;y;z)\in (S_{3}) \Leftrightarrow (x^{2}-2x)+(y^{2}+3y)+(z^{2}+z)+7=0 \Leftrightarrow (x-1)^{2}+\left(y+\frac{3}{2}\right)^{2}+\left(z+\frac{1}{2}\right)^{2}=-\frac{7}{2} \text{ alors } S_{3}=\emptyset$$

Exercice14 :Soit : A(-1;2;1) et B(1;-1;0) deux points de l'espace

Déterminer l'ensemble (S) des points M(x; y; z)

de l'espace tel que : $\overrightarrow{MA}.\overrightarrow{MB} = 0$

Solution:
$$(x+1)(x-1)+(y-2)(y+1)+(z-1)z=0$$

 $\Leftrightarrow x^2-1+y^2-y-2+z^2-z=0$
 $\Leftrightarrow x^2+y^2+z^2-y-z-3=0$

$$\Leftrightarrow x^2 + \left(y - \frac{1}{2}\right)^2 + \left(z - \frac{1}{2}\right)^2 = \frac{7}{2}$$

Donc (S) est la sphère de centre $\Omega\left(0; \frac{1}{2}; \frac{1}{2}\right)$ et de

rayon
$$R = \sqrt{\frac{7}{2}}$$

Exercice15: Soient(S) une sphère:

(S):
$$(x-1)^2 + (y-1)^2 + (z-2)^2 = 9$$

et (D) une droite :
$$\begin{cases} x = 1 - t \\ y = 1 + t \end{cases} (t \in \mathbb{R})$$

Étudier la position relative de la sphère et la droite

Solution:

$$M(x; y; z) \in (S) \cap (D) \Leftrightarrow \exists t \in \mathbb{R} / \begin{cases} x = 1 - t \\ y = 1 + t \\ z = 1 + t \\ (x - 1)^2 + (y - 1)^2 + (z - 2)^2 = 9 \end{cases}$$

Donc: $t^2+t^2+(t-1)^2=9 \Leftrightarrow 2t^2-2t-8=0$

$$\Leftrightarrow t = 2 \text{ ou } t = \frac{-4}{3}$$

 $x = \frac{7}{3}; y = \frac{-1}{3}; z = \frac{-1}{3} \text{ ou } x = -1; y = 3; z = 3$

la droite(D) coupe la sphère(S)en deux points

$$A\left(\frac{7}{3}; \frac{-1}{3}; \frac{-1}{3}\right)$$
 et $B\left(-1; 3; 3\right)$

Exercice16: Soient(S) une sphère:

$$x^2 + y^2 + z^2 - 2x - 4y + 2z = 0$$

et
$$(D)$$
 une droite :
$$\begin{cases} x = 2 + 3t \\ y = 4 + t \\ z = -2 + 5t \end{cases} (t \in \mathbb{R})$$

Étudier la position relative de la sphère et la droite

Solution:

$$M(x; y; z) \in (S) \cap (D) \Leftrightarrow \exists t \in \mathbb{R} / \begin{cases} x = 2 + 3t \\ y = 4 + t \\ z = -2 + 5t \\ x^2 + y^2 + z^2 - 2x - 4y + 2z = 0 \end{cases}$$

Donc:

$$(2+3t)^2 + (4+t)^2 + (-2+5t)^2 - 2(2+3t) - 4(4+t) + 2(-2+5t)t - 8 = 0$$

$$\Leftrightarrow 25t^2 = 0 \iff t = 0 \text{ Donc} : x = -2; y = 4; z = -2$$

la droite (D) coupe la sphère (S) en un seul point A(2;4;-2) on dit que la droite (D) est tangente à (S) en A(2;4;-2)

Exercice17 : Soient (S) une sphère :

$$x^{2} + y^{2} + z^{2} + 2x - 2y - 1 = 0$$
et (D) une droite :
$$\begin{cases} x = -1 + t \\ y = 1 + 2t \end{cases} (t \in \mathbb{R})$$

Étudier la position relative de la sphère et la droite

Solution:

$$M(x; y; z) \in (S) \cap (D) \Leftrightarrow \exists t \in \mathbb{R} / \begin{cases} x = -1 + t \\ y = 1 + 2t \\ z = 2 \\ x^2 + y^2 + z^2 + 2x - 2y - 1 = 0 \end{cases}$$

Donc: $(-1+t)^2 + (1+2t)^2 + 2^2 + 2(-1+t) - 2(1+2t) - 1 = 0$ $\Leftrightarrow 5t^2 + 1 = 0$ Pas de solutions Donc la droite(D) et la sphère (S) n'ont pas de points en commun, l'intersection est vide.

Exercice18: Soient(S) une sphère:

$$x^2 + y^2 + z^2 - 2x - 2y - 14 = 0$$

Et le plan d'équation (P): 2x - y - z + 5 = 0

Étudier la position relative de la sphère (S) et le plan(P)

Solution: Déterminons le centre et le rayon de la sphère :On a : $x^2 + y^2 + z^2 - 2x - 2y - 14 = 0$ donc

$$(S):(x-1)^2+(y-1)^2+z^2=\sqrt{6}^2$$

(S) est donc une sphère de centre $\Omega(1;1;0)$ et de rayon $R=\sqrt{6}$

Et puisque : $d(\Omega;(P)) = R = \sqrt{6}$

Alors le plan (P) et la sphère (S) ont un unique point en commun donc le plan (P) est tangent en H à (S)

Déterminons le point de tangence H qui est la projection de Ω sur le plan (P)

Soit $\vec{n}(2;-1;-1)$ Un vecteur normal à ce plan(P)

$$\exists k \in \mathbb{R} / \begin{cases} \overrightarrow{\Omega H} = k \overrightarrow{n} \\ H \in (P) \end{cases} \Leftrightarrow \begin{cases} x = 1 + 2k \\ y = 1 - k \\ z = -k \\ 2x - y - z + 5 = 0 \end{cases}$$

Donc: $2(1+2k)-(1-k)-(-k)+5=0 \iff k=-1$ Donc: x=-1; y=2; z=1 Donc H(-1;2;1)

Exercice19 : Soient (S) une sphère :

$$x^2 + y^2 + z^2 - 2x + 2z + 1 = 0$$

Et le plan d'équation (P): x-y+z-3=0

Étudier la position relative de la sphère (S) et le plan(P)

Solution : Déterminons le centre et le rayon de la sphère :On a : $x^2 + y^2 + z^2 - 2x + 2z + 1 = 0$ donc

$$(S):(x-1)^2+y^2+(z+1)^2=1^2$$

(S) est donc une sphère de centre $\Omega(1;0;-1)$ et de rayon R=1

Et puisque :
$$d(\Omega; (P)) = \frac{|1 - 0 - 1 - 3|}{\sqrt{1 + 1 + 1}} = \sqrt{3} > R$$

Alors le plan (P) et la sphère (S) n'ont pas de points en commun, l'intersection est vide.

Exercice20 : Soient(S) une sphère :

$$(S):(x-2)^2+(y-1)^2+(z+3)^2=9$$

Et le plan d'équation (P): 2x - y + 3z - 2 = 0

Étudier la position relative de la sphère (S) et le plan(P)

Solution: (S) est donc une sphère de centre $\Omega(2;1;-3)$ et de rayon R=3

Et puisque : $d(\Omega;(P)) = \frac{|4-1-9-2|}{\sqrt{4+1+9}} = \frac{8}{\sqrt{14}} < R$

Alors la sphère (S) coupe le plan(P) suivant un cercle de centre H qui est la projection orthogonal du point Ω sur le plan (P) et de rayon

$$r = \sqrt{R^2 - d^2} = \sqrt{\frac{62}{14}}$$

Déterminons le centre H(x; y; z) du cercle Soit $\vec{n}(2;-1;3)$ Un vecteur normal à ce plan(P)

$$\exists k \in \mathbb{R} / \begin{cases} \overrightarrow{\Omega H} = k \overrightarrow{n} \\ H \in (P) \end{cases} \Leftrightarrow \begin{cases} x = 2 + 2k \\ y = 1 - k \\ z = -3 + 3k \\ 2x - y + 3z - 2 = 0 \end{cases}$$

Donc:
$$2(2+2k)-(1-k)+3(-3+3k)-2=0$$

$$\Leftrightarrow k = \frac{4}{7} \text{ Donc} : x = \frac{22}{7}; y = \frac{3}{7}; z = -\frac{9}{7}$$

Donc
$$H(22/7; 3/7; -9/7)$$

Exercice21: Soie (S) une sphère :

$$(S): x^2 + y^2 + (z+2)^2 = 3$$

Et soit le point A(1;-1;-1)

Vérifier que $A \in (S)$ et Déterminer l'équations cartésienne du plan (P) tangent a la sphère (S) en A

Solution: $1^2 + (-1)^2 + (-1+2)^2 = 1+1+1=3$ donc $A \in (S)$

 $\Omega(0;0;-2)$ est le centre de la sphère (S) et de

rayon
$$R = 3$$
 Et on a : $\overrightarrow{A\Omega}(-1;1;-1)$

Donc:
$$M(x; y; z) \in (P) \Leftrightarrow \overrightarrow{AM}.\overrightarrow{A\Omega} = 0$$

$$\Leftrightarrow$$
 $-(x-1)+(y+1)-(z+1)=0$

Donc l'équation de : (P): x-y+z-1=0

Exercice22: on considère les plans d'équations respectives (P) x-y+z=0 et (Q)

$$2x + 3y + z - 6 = 0$$

et la sphère (S) de centre $\Omega(1;2;4)$ et tangente au plan (P) et soit la droite (Δ) qui passant par Ω et perpendiculaire au plan (Q)

- 1) monter que les plans (P) et (Q) sont orthogonaux
- 2)a) déterminer l'équation cartésienne de la sphère (S)
- b)déterminer le point de tangence de (P) et (S) 3)a) déterminer le point d'intersection de
- (Δ) et (Q)

b) Montrer que le plan (Q) coupe la sphère (S) suivant une cercle dont on déterminera le centre et le rayon

Solutions:1)On a: $\vec{n}(1;-1;1)$ Un vecteur normal

à (P) et $\vec{n}'(2;3;1)$ Un vecteur normal à (P)

Et on a :
$$\vec{n} \cdot \vec{n}' = 1 \times 2 + (-1) \times 3 + 1 \times 1 = 0$$

Donc $\vec{n} \perp \vec{n'}$ donc (P) et (Q) sont orthogonaux

2)a)puisque la sphère (S) est tangente

au plan
$$(P)$$
 Alors : $d(\Omega;(P)) = R$

Et on a :
$$d(\Omega; (P)) = \frac{|1-2+4|}{\sqrt{1^2+(-1)^2+1^2}} = \sqrt{3}$$

Donc:
$$R = \sqrt{3}$$

Donc l'équation cartésienne de la sphère (S)

est:
$$(S)$$
: $(x-1)^2 + (y-2)^2 + (z-4)^2 = 3$

2)b) le point de tangence H de (P) et (S) est

la projection orthogonal Ω sur le plan (P)

donc H est le point d'intersection entre la droite (D) perpendiculaires a (P) passant par Ω et

on a : $\vec{n}(1;-1;1)$ Un vecteur normal à (P) donc

c'est un vecteur directeur de la droite (D)

la représentation paramétrique de (D)est

$$(D): \begin{cases} x = 1+t \\ y = 2-t & (t \in \mathbb{R}) \\ z = 4+t \end{cases}$$

$$H \in (D) \cap (P)$$
 Donc: $(1+t)-(2-t)+4+t=0$

$$\Leftrightarrow t = -1 \text{ donc}: H(0;3;3)$$

3)a) puisque $(\Delta) \perp (Q)$ alors :

 $\vec{n}(1;-1;1)$ Un vecteur directeur de (Δ)

Et on a : $\Omega \in (\Delta)$ donc la représentation

paramétrique de
$$(\Delta)$$
 est (Δ) :
$$\begin{cases} x = 1 + 2t \\ y = 2 + 3t & (t \in \mathbb{R}) \\ z = 4 + t \end{cases}$$

$$W(x; y; z) \in (\Delta) \cap (Q)$$

donc: 2(1+2t)+3(2+3t)+4+t-6=0

$$\Leftrightarrow t = -\frac{3}{7} \text{ donc}: W\left(\frac{1}{7}; \frac{5}{7}; \frac{18}{7}\right)$$

3°b) Montrons que le plan (Q) coupe la sphère

(S) suivant une cercle dont on déterminera le centre et le rayon

on a :
$$d(\Omega;(Q)) = \frac{|2+6+4-6|}{\sqrt{2^2+3^2+1^2}} = \frac{6}{\sqrt{13}} < \sqrt{3}$$

le plan (Q) coupe la sphère (S) suivant une cercle de centre H qui est la projection orthogonal du point Ω sur le plan (Q)

et puisque (Δ) passe par Ω est perpendiculaires

a (Q) en W alors $W\left(\frac{1}{7}, \frac{5}{7}, \frac{18}{7}\right)$ est le centre du

cercle (C) et le rayon du cercle (C) est $r = \sqrt{R^2 - d^2}$

avec
$$d = d(\Omega;(Q))$$
 Donc: $r = \sqrt{\frac{3}{13}}$

Exercice23: on considère l'ensemble (S_m) des points M(x; y; z) de l'espace qui vérifient l'équations:

$$(S_m)$$
: $mx^2 + my^2 + mz^2 - 2(m-1)x + 2y + 2z = 0$

Avec m un paramètre non nul

- 1) monter que (S_m) est une sphère pour tout $m \in \mathbb{R}^*$
- 2) monter que tous les sphères se coupent suivant un seul cercle dont on déterminera le centre et le rayon

Solution : 1) $mx^2 + my^2 + mz^2 - 2(m-1)x + 2y + 2z = 0 \Leftrightarrow$

$$\Leftrightarrow x^2 + y^2 + z^2 - 2\left(\frac{m-1}{m}\right)x + \frac{2}{m}y + \frac{2}{m}z = 0$$

$$\Leftrightarrow x^2 + y^2 + z^2 - 2\left(1 - \frac{1}{m}\right)x + \frac{2}{m}y + \frac{2}{m}z = 0$$

$$\Leftrightarrow \left(x - 1 + \frac{1}{m}\right)^2 + \left(y + \frac{1}{m}\right)^2 + \left(z + \frac{1}{m}\right)^2 - \left(1 - \frac{1}{m}\right)^2 - \frac{2}{m^2} = 0$$

$$\Leftrightarrow \left(x-1+\frac{1}{m}\right)^2 + \left(y+\frac{1}{m}\right)^2 + \left(z+\frac{1}{m}\right)^2 = \left(1-\frac{1}{m}\right)^2 + \frac{2}{m^2}$$

Et puisque :
$$\left(1 - \frac{1}{m}\right)^2 + \frac{2}{m^2} > 0$$

Alors: (S_m) est une sphère pour tout $m \in \mathbb{R}^*$

de centre $\Omega_m \left(1 - \frac{1}{m}; -\frac{1}{m}; -\frac{1}{m}\right)$ et de rayon

$$R_m = \sqrt{\left(1 - \frac{1}{m}\right)^2 + \frac{2}{m^2}}$$

2) soit $M(x; y; z) \in (S_m) \quad \forall m \in \mathbb{R}^*$

Donc: $mx^2 + my^2 + mz^2 - 2(m-1)x + 2y + 2z = 0 \Leftrightarrow$

$$m(x^2+y^2+z^2-2x)+(2x+2y+2z)=0: \forall m \in \mathbb{R}^* \Leftrightarrow$$

$$\begin{cases} x^2 + y^2 + z^2 - 2x = 0 \\ 2x + 2y + 2z = 0 \end{cases} \Leftrightarrow \begin{cases} (x - 1)^2 + y^2 + z^2 = 1 \\ 2x + 2y + 2z = 0 \end{cases}$$

Donc le cercle chercher et l'intersection entre :

la sphère (S): $(x-1)^2 + y^2 + z^2 = 1$ et le plan (P):

$$2x + 2y + 2z = 0$$

en effet le cercle existe car :

$$d\left(\Omega;\left(Q\right)\right) = \frac{\left|1+0+0\right|}{\sqrt{1^2+1^2+1^2}} = \frac{1}{\sqrt{3}} < 1$$

le centre H du cercle est l'intersection entre (P) et

la droite (Δ) qui passe par Ω est perpendiculaires

a
$$(P)$$
 et puisque $(\Delta) \perp (P)$ alors : $\vec{n}(1;1;1)$ Un

vecteur directeur de (Δ) Et on a : $\Omega \in (\Delta)$ donc la

représentation paramétrique de (Δ) est

$$\begin{cases} x = 1 + t \\ y = t \\ z = t \end{cases} \quad (t \in \mathbb{R})$$

$$H(x; y; z) \in (\Delta) \cap (P)$$

donc:
$$(1+t)+t+t=0$$

$$\Leftrightarrow t = -\frac{1}{3} \text{ donc}: H\left(\frac{2}{3}; -\frac{1}{3}; -\frac{1}{3}\right)$$

et le rayon du cercle (C) est :

$$r = \sqrt{R^2 - d^2} = \sqrt{\frac{2}{3}}$$

Donc : tous les sphères se coupent suivant le cercle(C)

Exercice24: dans l'espace (\mathcal{E}) est muni d'un repère $(0; \vec{i}; \vec{j}; \vec{k})$ orthonormé On considère les plan (P_m) d'équations x+y-z-m=0 avec m paramètre réel Et la sphère (S) de centre $\Omega(1;2;1)$ et le rayon $R=\sqrt{3}$

et le rayon $R = \sqrt{3}$ 1) Etudier et discuter suivant le paramètre m la position relative de la sphère (S) et les plan (P_m) 2) soit (E) l'ensemble des réels m tels que : (P_m) coupe la sphère (S) suivant un cercle (C_m) Déterminer l'ensemble des centres des cercles (C_m) lorsque m varie dans (E)

Solution: 1)
$$(P_m)$$
: $x+y-z-m=0$

$$d_m = d(\Omega; (P_m)) = \frac{|1+2-1-m|}{\sqrt{1^2+1^2+1^2}} = \frac{|2-m|}{\sqrt{3}}$$

$$\Leftrightarrow |2-m| < 3 \Leftrightarrow -3 < 2-m < 3 \Leftrightarrow -5 < -m < 1$$

$$\Leftrightarrow -1 < m < 5$$

le plan (P_m) coupe la sphère (S) suivant des cercles de centre C_m qui est la projection orthogonal du point Ω sur le plan (P_m) soit (Δ) la doite qui passe par Ω est perpendiculaires a (P_m) et puisque $(\Delta) \perp (P_m)$ alors : $\vec{n}(1;1;-1)$ Un vecteur directeur de (Δ) Et on a : $\Omega \in (\Delta)$ donc la représentation

paramétrique de
$$(\Delta)$$
 est
$$\begin{cases} x = 1 + t \\ y = 2 + t \\ z = 1 - t \end{cases}$$

le centre $C_{\scriptscriptstyle m}$ est le point d'intersection de $\left(\Delta\right)$ et $\left(P_{\scriptscriptstyle m}\right)$

on va donc résoudre le system
$$\begin{cases} x = 1 + t \\ y = 2 + t \\ z = 1 - t \\ x + y - z - m = 0 \end{cases}$$

$$1+t+2+t-(-t+1)-m=0 \Leftrightarrow 3t+2-m=0$$

 $\Leftrightarrow t=\frac{m-2}{3}$ donc les coordonnées du centre du cercle

d'intersection est $\begin{cases} x = 1 + \frac{m-2}{3} = \frac{m+1}{3} \\ y = 2 + \frac{m-2}{3} = \frac{m+4}{3} \\ z = 1 - \frac{m-2}{3} = \frac{-m+5}{3} \end{cases}$

$$C_m\left(\frac{m+1}{3};\frac{m+4}{3};\frac{-m+5}{3}\right)$$
 et le rayon est :

et le rayon du cercle (C) est :

$$r = \sqrt{R^2 - d_m^2} \quad \text{avec} \quad d_m = \frac{|2 - m|}{\sqrt{3}} \quad \text{et} \quad R = \sqrt{3}$$

$$r_m = \sqrt{3 - \left(\frac{|2 - m|}{\sqrt{3}}\right)^2} \iff r_m = \sqrt{3 - \left(\frac{|2 - m|}{\sqrt{3}}\right)^2}$$

$$r_m - \sqrt{3} - \left(\frac{\sqrt{3}}{\sqrt{3}}\right)^2 \Leftrightarrow r_m - \sqrt{3} - \left(\frac{\sqrt{3}}{\sqrt{3}}\right)^2$$

$$\Leftrightarrow r_m = \sqrt{\frac{9 - (2 - m)^2}{3}} = \sqrt{\frac{9 - (m^2 - 4m + 4)}{3}} = \sqrt{\frac{-m^2 + 4m + 5}{3}}$$

2cas :Si
$$d(\Omega; (P_m)) = \sqrt{3} \Leftrightarrow \frac{|2-m|}{\sqrt{3}} = \sqrt{3}$$

$$\Leftrightarrow |2-m| = 3 \Leftrightarrow 2-m = 3 \text{ ou } 2-m = -3$$

$$\Leftrightarrow m = -1$$
 ou $m = 5$

la sphère (S) de centre $\Omega(1;2;4)$ et tangente au plan $(P_{\scriptscriptstyle m})$

si $m\!=\!-1$: le point de tangence $T_{\!_1}$ est est le point d'intersection de $\left(\Delta\right)$ et $\left(P_{\!_{-1}}\right)$

on va donc résoudre le system $\begin{cases} x = 1 + t \\ y = 2 + t \\ z = 1 - t \\ x + y - z + 1 = 0 \end{cases}$

$$1+t+2+t-(-t+1)+1=0 \Leftrightarrow 3t+2+1=0$$

 $\Leftrightarrow t = -1$ donc les coordonnées du point de

tangence est
$$\begin{cases} x = 0 \\ y = 1 \text{ donc } T_1(0;1;2) \\ z = 2 \end{cases}$$

si $m\!=\!5$: le point de tangence T_2 est est le point d'intersection de $\left(\Delta\right)$ et $\left(P_5\right)$

on va donc résoudre le system $\begin{cases} x = 1 + t \\ y = 2 + t \\ z = 1 - t \\ x + y - z - 5 = 0 \end{cases}$

$$1+t+2+t-(-t+1)-5=0 \Leftrightarrow 3t+2-5=0$$

 $\Leftrightarrow t=1$ donc les coordonnées du point de

tangence est
$$\begin{cases} x = 2 \\ y = 3 \text{ donc } T_2(2;3;0) \\ z = 0 \end{cases}$$

3cas :Si
$$d(\Omega;(P_m)) \succ \sqrt{3} \Leftrightarrow \frac{|2-m|}{\sqrt{3}} \succ \sqrt{3}$$

$$\Leftrightarrow |2-m| \succ 3 \Leftrightarrow 2-m \succ 3 \text{ ou } 2-m \prec -3$$

$$\Leftrightarrow m \prec -1 \text{ ou } m \succ 5$$

$$(P_m) \cap (S) = \emptyset$$

2) les coordonnées des centres des cercles

d'intersections sont
$$\begin{cases} x = \frac{m+1}{3} \\ y = \frac{m+4}{3} \end{cases}$$
 et $-1 < m < 5$
$$z = \frac{-m+5}{3}$$

c'est une portion de droite

Exercice25 : dans l'espace (\mathcal{E}) est muni d'un repère $\left(0; \vec{i}; \vec{j}; \vec{k}\right)$ orthonormé on considère

l'ensemble (S_m) des points M(x; y; z) tq : (S_m) :

$$x^{2} + y^{2} + z^{2} + mx + 2(m-1)y + (m+4)z + 1 = 0$$

avec m paramètre réel

- 1)Montrer que (S_m) est une sphère $\forall m \in \mathbb{R}$
- 2)Déterminer l'ensemble des centres des (S_m) lorsque m varie dans $\mathbb R$
- 3)Montrer qu'il existe un cercle (C) incluse dans tous les sphères $(S_m) \ \forall m \in \mathbb{R}$ et Déterminer le plan (P) qui contient ce cercle (C)
- 4)Soit un point $M_0(x_0; y_0; z_0)$ dans l'espace tq $M_0 \notin (P)$

Montrer qu'il existe une sphère unique qui passe par \boldsymbol{M}_0

5) Montrer qu'il existe deux sphères (S_m)

tangentes au plan (O; x; y)

Solution: 1)

$$x^{2} + y^{2} + z^{2} + mx + 2(m-1)y + (m+4)z + 1 = 0$$

Et puisque : $\frac{6m^2+16}{4} > 0$

Alors: (S_m) est une sphère pour tout $m \in \mathbb{R}$ de centre $\Omega_m \left(-\frac{m}{2};1-m;-\frac{m+4}{2}\right)$ et de rayon $R_m = \sqrt{\frac{6m^2+16}{4}} = \frac{1}{2}\sqrt{6m^2+16}$

2)Déterminons l'ensemble des centres $\mathrm{des}(S_m)$ lorsque m varie dans $\mathbb R$ les coordonnées des centres des cercles

d'intersections sont $\begin{cases} x = -\frac{1}{2}m \\ y = -m+1 \quad (m \in \mathbb{R}) \end{cases}$ $z = -\frac{1}{2}m-2$

c'est une droite de vecteur directeur $\vec{u}\left(-\frac{1}{2};-1;-\frac{1}{2}\right)$ et qui passe par A(0;1;-2)

3)Montrons qu'il existe un cercle (C) incluse dans tous les sphères $(S_{\scriptscriptstyle m})$ $\forall m\!\in\!\mathbb{R}$:

$$x^{2} + y^{2} + z^{2} + mx + 2(m-1)y + (m+4)z + 1 = 0$$

$$\Leftrightarrow x^{2} + y^{2} + z^{2} + mx + 2my - 2y + mz + 4z + 1 = 0$$

$$\Leftrightarrow x^{2} + y^{2} + z^{2} - 2y + 4z + 1 + m(x + 2y + z) = 0 \quad \forall m \in \mathbb{R}$$

$$\Leftrightarrow \begin{cases} (S): x^{2} + y^{2} + z^{2} - 2y + 4z + 1 = 0 \\ (P): x + 2y + z = 0 \end{cases}$$

Donc le cercle chercher et l'intersection entre : la sphère (S): $x^2 + (y-1)^2 + (z+2)^2 = 2^2$ et le plan (P): x+2y+z=0

en effet le cercle existe car : $\Omega(0;1;-2)$

$$d(\Omega;(P)) = \frac{|0+2-2|}{\sqrt{1^2+1^2+1^2}} = 0 < 2 \text{ donc } \Omega \in (P)$$

donc le centre du cercle (C) est : $\Omega(0;1;-2)$

et le rayon est : R = 2

et tous les sphères se coupent suivant le cercle(C)

et le plan (P) qui contient ce cercle (C) est :

$$(P): x + 2y + z = 0$$

4) soit $M_0 \left(x_0; y_0; z_0 \right)$ dans l'espace tq $M_0 \not\in \left(P \right)$:

$$x+2y+z=0$$
 donc $x_0+2y_0+z_0\neq 0$

Montrons qu'il existe une sphère unique qui passe par M_0 :c d a l'existence d'un unique m ?

$$M_0 \in (S) \Leftrightarrow x_0^2 + y_0^2 + z_0^2 + mx_0 + 2(m-1)y_0 + (m+4)z_0 + 1 = 0$$

$$M_0 \in (S) \Leftrightarrow x_0^2 + y_0^2 + z_0^2 + mx_0 + 2(m-1)y_0 + (m+4)z_0 + 1 = 0$$

$$\Leftrightarrow x_0^2 + y_0^2 + z_0^2 - 2y_0 + 4z_0 + 1 + m(x_0 + 2y_0 + z_0) = 0$$

$$\Leftrightarrow m(x_0 + 2y_0 + z_0) = -(x_0^2 + y_0^2 + z_0^2 - 2y_0 + 4z_0 + 1)$$

$$\Leftrightarrow m = \frac{-\left(x_0^2 + y_0^2 + z_0^2 - 2y_0 + 4z_0 + 1\right)}{x_0 + 2y_0 + z_0}$$

6)Montrons qu'il existe deux sphères (S_m)

tangentes au plan(O; x; y):

L'équation du plan : (O; x; y) est : z = 0 donc

$$d\left(\Omega_{m};(O;x;y)\right) = \frac{1}{2}\sqrt{6m^{2}+16} \Leftrightarrow \frac{\left|-\frac{m+4}{2}\right|}{\sqrt{1}} = \frac{1}{2}\sqrt{6m^{2}+16}$$

$$\Leftrightarrow |m+4| = \sqrt{6m^2 + 16} \Leftrightarrow (m+4)^2 = 6m^2 + 16$$

$$\Leftrightarrow m^2 + 8m + 16 = 6m^2 + 16$$

$$\Leftrightarrow 5m^2 - 8m = 0 \Leftrightarrow m(5m - 8) = 0$$

 $\Leftrightarrow m = 0$ ou $m = \frac{8}{5}$ donc il existe deux sphères

 (S_m) tangentes au plan(O; x; y):

$$(S_0)$$
: $x^2 + y^2 + z^2 - 2y + 4z + 1 = 0$

$$\left(S_{\frac{8}{5}}\right): x^2 + y^2 + z^2 + \frac{8}{5}x + 2\left(\frac{8}{5} - 1\right)y + \left(\frac{8}{5} + 4\right)z + 1 = 0$$

Cad:
$$x^2 + y^2 + z^2 + \frac{8}{5}x + \frac{6}{5}y + \frac{28}{5}z + 1 = 0$$

http://abcmaths.e-monsite.com

« C'est en forgeant que l'on devient forgeron »

Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices

Que l'on devient un mathématicien

Prof: Atmani najib

