A Brief Journey from Device to Action ...

IoT Virtual Bootcamp

December 12 – 14, 2017

Microsoft Azure IoT Hub

Kevin Saye

Azure IoT Hub

Hyper scale IoT solution

Cloud-scale messaging

Two-way communication

Per-device authentication

Multi-protocol support

Cloud-scale gateway

Azure IoT Hub

IoT solution component

Azure IoT Hub

Azure IoT Hub with Gateway(s)

IoT Hub endpoints

Azure IoT Hub

Designed for IoT

Connect up to 10 million devices

Cloud-scale messaging

Device-to-cloud and Cloud-to-device Durable messages (at least once semantics)

Per-device authentication

Individual device identities and credentials

Multi-protocol support

Natively supports AMQP, HTTP, MQTT Designed for extensibility to custom protocols

Service assisted communications

Secure bi-directional communication Command and control

Cloud-facing telemetry ingestion

Delivery receipts, expired messages Device communication errors

Connection multiplexing

Single device-cloud connection for all communications (C2D, D2C)

Multi-platform

Device SDKs available for multiple platforms (e.g. RTOS, Linux, Windows)
Multi-platform Service SDK

Security in IoT

Per Device Authentication

No shared authentication

IP Filters

Restrict Public Cloud solutions to IP or ranges of IPs including private network peering

Time Based Authentication

Limit authentication and re-authentication to time based events

SHA 256 hash

Authentication "Token" is SHA 256 hashed (Hash-based Message Authentication Code) to verify device has needed credentials.

Device Management

Allows you to deploy updated configuration and device firmware across millions of devices using a device Twin (class of device representation)

TLS encrypted communication

MQTT/AMQP/HTTP over TSL required for all communications, allowing the device to verify, through CLR and public PKI the authenticity of the IoT Hub

Scale and Secure by Design

Includes HA and Scale to meet small to global scale – eliminating DoS and complex designs

Easily accessible libraries in GitHub

Cross platform support

Choose real time OS, platform and language

Device support

IP and access control capabilities

Connect IP, and non-IP devices

Support for direct connection devices and resource strained or non-IP devices via gateway and field protocols

Open source framework

Develop custom agents for your devices

Secure communication

Simple and secure D2C and C2D connectivity for messaging, device management and command and control

OS support

RTOS, Linux, Windows, Android, iOS etc.

SDK support

C Libraries supported

- Debian Linux (v 7.5) HTTPS, AMQP, MQTT
- Fedora Linux (v 20) HTTPS, AMQP, MQTT
- mbed OS (v 2.0) HTTPS, AMQP
- Ubuntu Linux (v 14.04) HTTPS, AMQP, MQTT
- Windows Desktop (7,8,10) HTTPS, AMQP, MQTT
- Yocto Linux (v 2.1) HTTPS, AMQP

Operating systems supported

- Debian Linux (v 7.5)
- Fedora Linux (v 20)
- mbed OS (v 2.0)
- Raspbian Linux (v 3.18)
- Ubantu Linux (v 14.04)
- Windows Desktop (7, 8, 10)
- Windows IoT Core (v 10)
- Windows Server (v 2012 R2)
- Yocto Linux (v 2.1)

Device SDK's

Linux

Windows

mbed

TI RTOS

Supported devices:

Select physical devices to connect, including using you computer, or create simulators to add to your solution

Supported OS platform:

Select the preferred platform/OS for your device(s), including: Linux, Windows, mbed, Ti RTOS

Manage IoT Hub in Azure portal

Simple navigation

Management of devices, volume and scaling made easy through the IoT Hub settings in the Azure Management Portal

Device-to-cloud messages

Interface

- AMQP and HTTPS device-side endpoint
- AMQP service-side endpoint
- Device and service SDKs

Compatible with Event Hubs

- Partitioned receiver, client check-pointing
- Integrations with Azure Stream Analytics, Storm, ...
- 100% compatible with Event Hubs receivers

IoT Hub services for D2C

- Millions of simultaneously connected devices
- Per-device authentication
- Connection-multiplexing:
- C2D and D2C traffic
- Across multiple devices for gateway scenarios

Device identity in IoT Hub

Identity registry

- Contains per-device security materials
- Individual device blocking
- No queries → keep a device registry to query by app-data

Authenticated comms

- Label incoming telemetry
- Ensure identity of devices receiving messages

Custom

- AAD integration
- "Master" key for gateway scenarios

Device provisioning orchestration

- IoT Hub (identity registry)
- Device registry (e.g. DocDB, SQL)
- Other(e.g. ERP)

Accessing IoT Hub from cloud components

Authorization policies

- Each hub allows multiple policies
- Each policy grants a set of permissions
- Primary and Secondary keys

Permissions

- DeviceConnect for any component connecting as a device (e.g. send D2C, receive C2D, ...)
- ServiceConnect for back-end components (e.g. read D2C, send C2D, receive feedback/monitoring)
- RegistryRead for provisioning components that have to read the hub's device identity registry
- RegistryWrite for provisioning components that have to modify the hub's identity registry

A sample scenario

Simulated wind turbine

- · Emits telemetry every second
- State machine (Starting→Started→Stopping→Stopped

Provision device

- Device registry to query devices and track provisioning
- Device identity and key stored in IoT hub

Device emits telemetry

Event processor receives telemetry and updates portal visualization

Send commands

- Portal sends commands to devices
- · Command lifecycle is stored in device registry

IoT Hub helps connect your devices to Azure

- ✓ Millions of simultaneously connected devices
- ✓ Per-device authentication
- High throughput D2C messaging
- Reliable C2D messaging

Consuming D2C events

Code against SB msg API

- Easy event processor implementation
- Enable deduplication on Q
- Easy routing to different subcomponents
- Create SB Q/T based on expected throughput

Use any event processor

- Easy to select only "real-time" data.
- Storm / Spark
- Custom code
- Azure Stream Analytics

Run batches from blob

- Reuse existing batch code
- Easy with Azure Data Factory

Demonstration

- Creating an IoT Hub
- Connection String
- Device Explorer

Summary:

Azure IoT Hub is the first cloud portion of an IoT Solution

Azure IoT Hub is Microsoft's at scale solution to:

- Secure Device management
- Secure Device two way messaging

Microsoft provides access to IoT Hub via:

- Client SDKs (C, .Net, Node, Java and Python)
- Standard Protocols (HTTP, MQTT, AMQP)
- REST API

Additional References

- www.InternetofYourThings.com
- https://blogs.microsoft.com/iot/
- https://azure.microsoft.com/en-us/services/iothub/
- https://docs.microsoft.com/en-us/azure/iot-hub/

www.InternetofYourThings.com

© 2017 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.