Programming theory - problems sheet - 2

1. Let A = [1..5] be a statespace, and let $S \subseteq A \times (\bar{A} \cup \{fail\})^{**}$ denote the following relation over A:

$$S = \begin{cases} 1 \to <1, 2, 5, 1> & 1 \to <1, 4, 3, 5, 2> & 1 \to <1, 3, 2, 3, \dots > \\ 2 \to <2, 1> & 2 \to <2, 4> & 3 \to <3, 3, 3, \dots > \\ 4 \to <4, 1, 5, 4, 2> & 4 \to <4, 3, 1, 2, 5, 1> & 5 \to <5, 2, 3, 4> \\ 5 \to <5, 2, fail> & 5 \to <5, 3, 4> \end{cases}$$

Let $F \subseteq A \times A$ be a problem: $F = \{ (2,1), (2,4), (4,1), (4,2), (4,5) \}$

- Is *S* a program?
- Determine the following sets: S(2), $D_{p(S)}$, p(S)(4), p(S)(3), and p(S).
- Determine $\tilde{p}(S)$, the weak programfunction of S.
- Does S solve F?
- 2. Let A = (x : H) be a statespace, where $H = \{a \in \mathbb{Z} \mid a \geqslant -5\}$

$$\begin{array}{c}
S \\
x \neq 10 \\
x := x + sgn(x)
\end{array}$$

Determine the relation p(S).

- 3. $A = \{1, 2, 3\}$. Let $F \subseteq A \times A$ be the following problem: $F = \{(1, 1), (1, 2), (2, 3)\}$
 - Find a program S that solves F.
 - Find a program over A, such that its programfunction equals to p(S).
 - Does the latter program solve problem *F*?
- 4. Let A be any arbitrary statespace. Let $S \subseteq A \times (\bar{A} \cup \{fail\})^{**}$ be a program and let $F \subseteq A \times A$ be a problem, such that S solves F. Decide whether the following statements are true:
 - In case $S \subseteq S_2$, then program S_2 also solves F.
 - In case $F_2 \subseteq F$, then program S solves F_2 as well.
 - In case $S_2 \subseteq S$, then program S_2 also solves F.
- 5. Let A be any arbitrary statespace. Let $S \subseteq A \times (\bar{A} \cup \{fail\})^{**}$ be a program and let $F \subseteq A \times A$ be a problem, such that S solves F. Decide whether the following statements are true:
 - In case *F* is non-deterministic, then *S* is also non-deterministic.
 - In case F is deterministic, then p(S) is also deterministic.
 - In case S is non-deterministic, then p(S) is also non-deterministic.