# Машинное обучение в экономике Эффекты воздействия

#### Потанин Богдан Станиславович

доцент, научный сотрудник, кандидат экономических наук

2023-2024

## Эффект воздействия

#### Определение

• Предположим, что одновременно существуют два гипотетически **режима** (counterfactual states) целевой переменной, обозначаемых  $Y_{0i}$  и  $Y_{1i}$ . Но в данных мы наблюдаем только один из них, в зависимости от значения бинарной переменной воздействия (treatment)  $T_i$ .

$$Y_i = egin{cases} Y_{1i}, ext{ если } T_i = 1 \ Y_{0i}, ext{ если } T_i = 0 \end{cases} = T_i Y_{1i} + (1-T_i) \ Y_{0i}$$

• Эффект воздействия (treatment effect)  $T_i$  на  $Y_i$  определяется как:

$$\mathsf{TE}_i = Y_{1i} - Y_{0i}$$

- Например,  $Y_i$  может отражать факт соверешения покупки клиентом, а  $T_i$  факт наличия персонального предложения по бесплатной доставке товара на дом.
- На практике мы не можем одновременно наблюдать, как клиент мог бы повести себя и в случае наличия  $Y_{1i}$  и в случае отсутствия  $Y_{i0}$  предложения о доставке  $T_i$ , поскольку он либо получает это предложение (воздейсвтие)  $T_i = 1$ , либо нет  $T_i = 0$ .

## Средний эффект воздействия Определение

• На практике часто рассматривается средний эффект воздействия:

$$ATE = E(TE_i) = E(Y_{1i} - Y_{0i}) = E(Y_{1i}) - E(Y_{0i})$$

- Предположим, что  $Y_{1i}$  и  $Y_{0i}$  являются бинарными переменными, то есть  $Y_{1i} \sim Ber(p_1)$  и  $Y_{0i} \sim Ber(p_0)$ .
- Обратим внимание, что:

$$E(Y_{1i}) = p_1 = P(Y_{1i} = 1)$$
  $E(Y_{0i}) = p_0 = P(Y_{0i} = 1)$ 

- Следовательно, в случае с бинарными целевыми переменными средний эффект воздействия можно интерпретировать как среднюю разность в вероятностях единицы в режимах, соответствующих наличию  $T_i=1$  и отсутствию  $T_i=0$  эффекта воздействия.
- Для простоты дальнейшего изложения будем придерживаться допущения о том, что  $Y_{ji}$  и  $Y_{jt}$  независимы при любых  $i \neq t$ .

#### Допущение о независимости

- Предположим, что в данных  $n_1$  наблюдений попали в группу воздействия  $T_i=1$ , а  $n_0$  наблюдений оказались в контрольной группе  $T_i=0$ .
- Введем допущение о независимости, согласно которому  $E(Y_{1i}|T_i=1)=E(Y_{1i})$  и  $E(Y_{0i}|T_i=0)=E(Y_{0i})$ .
- Это допущение обычно соблюдается в рамках контролируемых случайных экспериментов.
- Например, для измеренеия среднего эффекта воздействия вакцины на излечение от болезни, пациентов случайным образом распределеняют между группой воздействия, получающей лекарство, и контрольной группой, принимающей плацебо.
- При соблюдении допущения о независимости вследствие закона больших чисел получаем состоятельные оценки:

$$\hat{E}(Y_{1i}) = \frac{1}{n_1} \sum_{i:T_i=1} Y_{1i} \qquad \qquad \hat{E}(Y_{0i}) = \frac{1}{n_0} \sum_{i:T_i=0} Y_{0i}$$

• Тогда по теореме Слуцкого состоятельная оценка среднего эффекта воздействия может быть получена как:

$$\widehat{\mathsf{ATE}} = \hat{\mathcal{E}}(Y_{1i}) - \hat{\mathcal{E}}(Y_{0i}) = \frac{1}{n_1} \sum_{i:T_i=1} Y_{1i} - \frac{1}{n_0} \sum_{i:T_i=0} Y_{0i}$$

#### Технический комментарий о числе наблюдений в группе воздействия и контрольной группе

- При оценивании  $E(Y_{1i})$  и  $E(Y_{0i})$  для простоты изложения ранее и далее предполагается, что  $n_1$  и  $n_0$  являются константами.
- Однако, за пределами контролируемых экспериментов размеры группы воздействия и контрольной группы, как правило, являются случайными величинами:

$$n_1 = \sum_{i=1}^n T_i$$
  $n_0 = \sum_{i=1}^n 1 - T_i$ 

• При введеном ранее допущении о независимости для доказательства состоятельности необходимо воспользоваться законом больших чисел (в числителе и знаменателе) и теоремой Слуцкого:

$$\hat{E}(Y_{1i}) = \frac{1}{n_1} \sum_{i:T_i=1} Y_{1i} = \frac{\frac{1}{n} \sum_{i=1}^{n} T_i Y_{1i}}{\frac{1}{n} \sum_{i=1}^{n} T_i} \xrightarrow{P} \frac{E(T_i Y_{1i})}{E(T_i)} =$$

$$= \frac{E(Y_{1i}|T_i=1)P(T_i=1) + 0 \times P(T_i=0)}{P(T_i=1)} = E(Y_{1i}|T_i=1) = E(Y_{1i})$$

• По аналогии нетрудно показать, что  $\hat{\mathbb{E}}(Y_{0i}) \xrightarrow{p} E(Y_{0i})$ .

#### АВ-тестирование

- Как правило под **AB-тестированием** понимается проверка гипотезы  $H_0$ : ATE = 0 при допущении о независимости  $E(Y_{ji}|T_i=j)=E(Y_{ji})$ .
- Например, представим, что клиентская база продавца составляет 1000 человек. Из них он случайным образом отобрал 100 и предоставил им специальное предложение, согласно которому при покупке телефона они получат в подарок наушники.
- Из 100 человек, получивших предложение, покупку совершили 50, а из оставшихся 900 покупку осуществили 360 человек.
- Оценим средний эффект воздействия, то есть насколько, всреднем, возросла вероятность покупки благодаря предоставлению предложения:

$$\widehat{ATE} = 50/100 - 360/900 = 0.1$$

• Протестируем гипотезу  $H_0$ : ATE = 0 против альтернативы  $H_1$ : ATE > 0 с помощью теста о разнице долей, тестовая статистика которого, при верной нулевой гипотезе, в асимптотике (при стремящемся к бесконечности числе наблюдений) имеет стандартное нормальное распределение:

$$T = \frac{0.1}{\sqrt{0.410 \times (1 - 0.410)(1/100 + 1/900)}} \approx 1.93$$
 p-value =  $1 - \Phi(T) \approx 0.03$ 

Последствия нарушения допущения о независимости

- Если допущение о независимости не соблюдается, то  $E(Y_{ji}) \neq E(Y_{ji} | T_i = j)$ .
- Обычно оно нарушается в неконтролируемых экспериментах, например, когда имеется самоотбор в число тех, кто решил принять участие в новой программе лояльности магазина.
- Нарушение предпосылки о независимости приводит к смещению введенной ранее оценки среднего эффекта воздействия, что, в частности, не позволяет применять AB-тестирование (для простоты предположим  $n_1$  и  $n_0$  экзогенными):

$$E\left(\widehat{\mathsf{ATE}}\right) = E\left(\frac{1}{n_1} \sum_{i:T_i=1} (Y_{1i}|T_i=1) - \frac{1}{n_0} \sum_{i:T_i=0} (Y_{0i}|T_i=0)\right) =$$

$$= \frac{1}{n_1} \sum_{i:T_i=1} E(Y_{1i}|T_i=1) - \frac{1}{n_0} \sum_{i:T_i=0} E(Y_{0i}|T_i=0) =$$

$$= E(Y_{1i}|T_i=1) - E(Y_{0i}|T_i=0) \neq E(Y_{1i}) - E(Y_{0i})$$

Оценивание при нарушении допущения о независимости

• Рассмотрим альтернативную оценку эффекта воздействия:

$$\widehat{ATE} = \frac{1}{n} \sum_{i=1}^{n} E(Y_{1i}|X_i) - E(Y_{0i}|X_i)$$

• Несмещенность этой оценки следует из закона чередующихся математических ожиданий.

$$E\left(\widehat{\mathsf{ATE}}\right) = E\left(E(Y_{1i}|X_i)\right) - E\left(E(Y_{0i}|X_i)\right) = E(Y_{1i}) - E(Y_{0i})$$

- Проблема на практике мы не знаем  $E(Y_{0i}|X_i)$  и  $E(Y_{1i}|X_i)$ .
- Решение методами машинного обучения при некоторых условиях можно получить состоятельную оценку функций  $\hat{E}(Y_{0i}|X_i)$  и  $\hat{E}(Y_{1i}|X_i)$ , а затем подставить их в формулу для оценки среднего эффекта воздействия.
- ullet Отметим, что в задаче бинарной классификации  $\hat{E}(Y_{ii}|X_i) = \hat{P}(Y_{ii} = 1|X_i)$ .

Допущение об условной независимости

- Введем допущение об условной независимости, при котором  $E(Y_{ji}|X_i=x_i,T_i=j)=E(Y_{ji}|X_i=x_i)$  при любых  $x_i\in \text{supp}(X_i)$  и  $j\in\{0,1\}.$
- Обычно это допущение соблюдается, когда  $X_i$  отражает все факторы, которые могут быть статистически связаны и с  $T_i$ , и с  $Y_{ii}$ .



- Предполагается, что связь между  $T_i$  и  $Y_i$  обусловлена наблюдаемыми в данных переменными  $X_i$ , именуемыми **смешивающими** (confounders).
- Прерывистыми линиями отображены связи  $T_i$  и  $Y_i$  с агрегированными ненаблюдаемыми переменными  $u_i$  и  $\varepsilon_i$ .

Оценивание с помощью условных математических ожиданий

• При соблюдении допущения об условной независимости:

$$\begin{aligned} \mathsf{ATE} &= E(Y_{1i}) - E(Y_{0i}) = E\left(E(Y_{1i}|X_i) - E(Y_{0i}|X_i)\right) = \\ &= E\left(E(Y_{1i}|X_i, T_i = 1) - E(Y_{0i}|X_i, T_i = 0)\right) = \\ &= E\left(E(T_iY_{1i} + (1 - T_i)Y_{0i}|X_i, T_i = 1) - E(T_iY_{1i} + (1 - T_i)Y_{0i}|X_i, T_i = 0)\right) = \\ &= E\left(E(Y_i|X_i, T_i = 1) - E(Y_i|X_i, T_i = 0)\right) \end{aligned}$$

- Вывод достаточно найти состоятельную оценку функции  $E(Y_i|X_i,T_i)$ , что в большинстве случаев можно сделать методами машинного обучения, поскольку  $Y_i$  всегде наблюдается в данных.
- В итоге средний эффект воздействия оценивается как:

$$\widehat{ATE} = \frac{1}{n} \sum_{i=1}^{n} \hat{E}(Y_i | X_i, T_i = 1) - \hat{E}(Y_i | X_i, T_i = 0)$$

#### Оценивание с помощью взвешивания на обратные вероятности

• Обратим внимание, что при соблюдении допущения об условной независимости:

$$\mathsf{E}(T_{i}Y_{i}/P(T_{i}=1|X_{i})|X_{i}) = \mathsf{E}(Y_{1i}/P(T_{i}=1|X_{i})|X_{i},T_{i}=1) P(T_{i}=1|X_{i}) = \mathsf{E}(Y_{1i}|X_{i}) \implies \mathsf{E}(T_{i}Y_{i}/P(T_{i}=1|X_{i})) = \mathsf{E}(\mathsf{E}(Y_{1i}|X_{i})|X_{i}) = \mathsf{E}(\mathsf{E}(T_{i}Y_{i}/P(T_{i}=1|X_{i}))) = \mathsf{E}(Y_{1i})$$

• По аналогии можно показать, что:

$$E((1-T_i) Y_i/(1-P(T_i=1|X_i)))=E(Y_{0i})$$

В итоге получаем:

$$\mathsf{ATE} = \mathsf{E}\left(T_{i}Y_{i}/P(T_{i}=1|X_{i})\right) - \mathsf{E}\left((1-T_{i})Y_{i}/(1-P(T_{i}=1|X_{i}))\right)$$

• Из полученны результатов следует альтернативный способ оценивания ATE, именуемый оценкой с помощью взвешивания на обратные вероятности (inverse probability weighting):

$$\widehat{\mathsf{ATE}} = \frac{1}{n} \sum_{i=1}^{n} \frac{T_{i} Y_{i}}{\hat{P}(T_{i} = 1 | X_{i})} - \frac{(1 - T_{i}) Y_{i}}{1 - \hat{P}(T_{i} = 1 | X_{i})}$$

• Преимущество – достаточно с помощью методов машинного обучения оценить  $\hat{P}(T_i = 1|X_i)$ .

#### Двойная устойчивость

- Мы рассмотрели два способа оценивания АТЕ при допущении об условной независимости, первый из которых опирается на оценки  $E(Y_i|X_i,T_i)$ , а второй на оценки  $P(T_i=1|X_i)$ .
- Проблема точность оценок каждого из этих способов зависит от точности оценок соответствующих условных математических ожиданий или вероятностей. Если они оценены неточно, то и итоговая оценка ATE также будет неточной.
- Решение обеспечить двойную устойчивость, то есть совместить оба способа, чтобы оценка АТЕ
  оказывалась состоятельной, если по крайней мере один из них дает состоятельную оценку.

$$\widehat{\mathsf{ATE}} = \underbrace{\frac{1}{n} \sum_{i=1}^{n} \hat{g}_{1i} - \hat{g}_{0i}}_{i=1} + \underbrace{\frac{1}{n} \sum_{i=1}^{n} \frac{T_i(Y_i - \hat{g}_{1i})}{\hat{g}_{Ti}} - \frac{(1 - T_i)(Y_i - \hat{g}_{0i})}{1 - \hat{g}_{Ti}}}_{\mathsf{CTPEMUTCS} \ \mathsf{K}} = \underbrace{\frac{1}{n} \sum_{i=1}^{n} \frac{T_i Y_i}{\hat{g}_{Ti}} - \frac{(1 - T_i)Y_i}{1 - \hat{g}_{Ti}}}_{\mathsf{CTPEMUTCS}}_{\mathsf{CTPEMUTCS}} + \underbrace{\frac{1}{n} \sum_{i=1}^{n} \frac{(T_i - \hat{g}_{Ti}) \hat{g}_{0i}}{1 - \hat{g}_{Ti}}}_{\mathsf{CTPEMUTCS}} - \underbrace{\frac{(T_i - \hat{g}_{Ti}) \hat{g}_{0i}}{\hat{g}_{Ti}}}_{\mathsf{CTPEMUTCS}}_{\mathsf{CTPEMUTCS}} + \underbrace{\frac{1}{n} \sum_{i=1}^{n} \frac{(T_i - \hat{g}_{Ti}) \hat{g}_{0i}}{1 - \hat{g}_{Ti}}}_{\mathsf{CTPEMUTCS}}_{\mathsf{CTPEMUTCS}} - \underbrace{\frac{(T_i - \hat{g}_{Ti}) \hat{g}_{0i}}{\hat{g}_{Ti}}}_{\mathsf{CTPEMUTCS}}_{\mathsf{CTPEMUTCS}}$$

#### Двойное машинное обучение

• Средний эффект воздействия можно также оценить с помощью DML метода, рассмотрев уравнение:

$$Y_i = g(T_i, X_i) + \varepsilon_i$$
 ATE = E  $(g(1, X_i) - g(0, X_i))$ 

- ullet Допущение об условной независимости можно сформулировать как  $E(arepsilon_i|X_i,T_i)=0.$
- Рассмотрим вклад, удовлетворяющий условию ортогональности по Нейману:

$$\psi = \frac{T_i(Y_i - g_1(X_i))}{g_{\mathcal{T}}(X_i)} - \frac{(1 - T_i)(Y_i - g_0(X_i))}{1 - g_{\mathcal{T}}(X_i)} + g_1(X_i) - g_0(X_i) - \mathsf{ATE}$$

$$g_1(X_i) = E(Y_i | X = x_i, T_i = 1), \quad g_0(X_i) = E(Y_i | X = x_i, T_i = 0), \quad g_{\mathcal{T}}(X_i) = P(T_i = 1 | X_i)$$

• Решая  $E(\psi)=0$  для АТЕ, а также подставляя оценки (полученные с помощью машинного обучения) неизвестных функций и применяя кросс-фиттинг, получаем оценку, обладающую свойством двойной устойчивости:

$$\widehat{ATE} = \frac{1}{n} \sum_{i=1}^{n} \frac{T_i(Y_i - \hat{g}_1^{(q_i)}(X_i))}{\hat{g}_T^{(q_i)}(X_i)} - \frac{(1 - T_i)(Y_i - \hat{g}_0^{(q_i)}(X_i))}{1 - \hat{g}_T^{(q_i)}(X_i)} + \hat{g}_1^{(q_i)}(X_i) - \hat{g}_0^{(q_i)}(X_i)$$

• Функции  $\hat{g}_1^{(k)}$ ,  $\hat{g}_0^{(k)}$  и  $\hat{g}_T^{(k)}$  оцениваются с помощью машинного обучения на данных, **не** вошедших в k-ю из K выборок. Также,  $q_i = k$ , если наблюдение i **не** вошло в k-ю выборку.

Классические подходы к оцениванию

• Средний эффект воздействия не всегда достаточно информативен для принятия конкретных решений. Поэтому в качестве альтернативы часто оценивают условный средний эффект воздействия, что в маркетинге именуется uplift моделированием.

$$CATE_i = E(Y_{1i}|X_i) - E(Y_{0i}|X_i) = E(Y_i|X_i, T_i = 1) - E(Y_i|X_i, T_i = 0)$$

• При допущении об условной независимости нетрудно получить оценку условного среднего эффекта воздействия:

$$\widehat{\mathsf{CATE}}_i = \hat{E}(Y_i|X_i,\,T_i=1) - \hat{E}(Y_i|X_i,\,T_i=0)$$

- Можно либо оценить  $\hat{E}(Y_i|X_i,T_i)$  по всей выборке (Single-learner/S-learner), либо отдельно  $\hat{E}(Y_i|X_i,T_i=1)$  и  $\hat{E}(Y_i|X_i,T_i=0)$  по группе воздействия и контрольной группе соответственно (Two-learner/T-learner).
- Однако существуют и иные, менее очевидные подходы к оцениванию САТЕ;

#### Интуиция X-learner

- Проблема иногда группа воздействия может включать малое число наблюдений, что осложняет оценивание  $\hat{E}(Y_i|X_i,T_i=1)$  по данным группы воздействия.
- Решение рассмотрим вспомогательную переменную:

$$D_{1i} = Y_{1i} - E(Y_i|X_i, T_i = 0)$$

• Обратим внимание, что:

$$E(D_{1i}|X_i) = E(Y_{1i}|X_i) - E(Y_i|X_i, T_i = 0) = CATE_i$$

- Следовательно,  $\hat{E}(D_{1i}|X)$  можно рассматривать как оценку CATE<sub>i</sub>, полученную с помощью  $Y_{1i}$  и  $\hat{E}(Y_i|X_i,T_i=0)$ , то есть без использования неэффективно оцениваемого по малому числу наблюдений группы воздействия  $E(Y_i|X_i,T_i=1)$ .
- Проблема в данных отсутствуют наблюдения по  $D_{1i}$ .
- ullet Решение рассмотреть  $\hat{D}_{1i}=Y_{1i}-\hat{E}(Y_i|X_i,T_i=0)$  и оценить  $\widehat{\mathsf{CATE}}_i=\hat{E}\left(\hat{D}_{1i}|X_i
  ight)$ .

#### Алгоритм X-learner

- Первый шаг по аналогии с T-learner оцениваются условные математические ожидания  $E(Y_i|X_i,T_i=1)$  и  $E(Y_i|X_i,T_i=0)$ .
- Второгой шаг рассчитываются вспомогательные переменные:

$$\hat{D}_{1i} = Y_{1i} - \hat{E}(Y_i|X_i, T_i = 0)$$
  $\hat{D}_{0i} = \hat{E}(Y_i|X_i, T_i = 1) - Y_{0i}$ 

- ullet Третий шаг оцениваются  $E\left(\hat{D}_{1i}|X_i
  ight)$  и  $E\left(\hat{D}_{0i}|X_i
  ight)$ .
- Четвертый шаг оцениваются условные вероятности попадания в группу воздействия  $P(T_i = 1|X_i)$ .
- Пятый шаг с помощью взвешивания оценивается условный эффект воздействия:

$$\widehat{\mathsf{CATE}}_i = \left(1 - \hat{P}(T_i = 1|X_i)\right) \hat{E}\left(\hat{D}_{1i}|X_i\right) + \hat{P}(T_i = 1|X_i)\hat{E}\left(\hat{D}_{0i}|X_i\right)$$

• Интуиция взвешивания – чем меньше наблюдений в группе воздействия, тем больший вес присваивается  $\hat{E}\left(\hat{D}_{1i}|X_i\right)$ , который не зависит от  $\hat{E}\left(Y_i|X_i,T_i=1\right)$ .

Метод трансформации класса

• Скронструируем псевдоисход:

$$Y_i^* = Y_i \left( \frac{T_i}{P(T_i = 1|X_i)} + \frac{1 - T_i}{1 - P(T_i = 1|X_i)} \right)$$

- Обозначим через  $\hat{Y}_i$  величину  $Y_i$ , посчитанную с использованием  $\hat{P}(T_i=1|X_i)$  вместо  $P(T_i=1|X_i)$ .
- При соблюдении допущения об условной независимости можно показать, по аналогии с тем, как это было сделано с оцениванием АТЕ с помощью взвешивания на обратные вероятности, что:

$$E(Y_i^*|X_i) = \mathsf{CATE}_i$$

- Следовательно, для оценивания САТЕ; можно воспользоваться двухшаговой процедурой, часто именуемой **методом трансформации классов**.
- ullet Первый шаг вычислить  $\hat{P}(T_i = 1|X_i)$  и  $\hat{Y}_i^*$ .
- ullet Второй шаг оценить  $E(\hat{Y}_i^*|X_i)$  и получить  $\widehat{\mathsf{CATE}}_i = \hat{E}(\hat{Y}_i^*|X_i)$ .

## Качество оценивания условных средних эффектов воздействия

• Для измерения качества прогнозирования условных эффектов воздействия хотелось бы использовать метрику:

$$MSE_0 = \frac{1}{n} \sum_{i=1}^{n} \left( CATE_i - \widehat{CATE}_i \right)^2$$

- Проблема на практике САТЕ; неизвестно.
- Решение в качестве косвенной метрики качества прогнорзов условных эффектов воздействия использовать метрику качества точности прогнозов исхода:

MSE = 
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{E}(Y_i | X_i, T_i))^2$$

• Проблема – модель, точнее оценивающая  $Y_i$ , не обязательно будет точнее оценивать САТЕ $_i$ . Например, даже если оценки  $\hat{E}\left(Y_i|X_i,T_i=1\right)$  и  $\hat{E}\left(Y_i|X_i,T_i=0\right)$  обладают очень большим, но примерно одинаковым смещением, то их разница, то есть  $\widehat{\text{CATE}}_i$ , может оказаться весьма точной оценкой, поскольку смещения сократятся.

## Качество оценивания условных средних эффектов воздействия

Использование псевдоисходов

• Рассмотрим псевдоисход  $Y_i^*$ , такой, что  $E(Y_i^*|X_i) = \mathsf{CATE}_i$  и соблюдены некоторые дополнительные, технические условия. Например, можно использовать псевдоисход метода трансформации классов:

$$Y_i^* = Y_i \left( \frac{T_i}{P(T_i = 1|X_i)} + \frac{1 - T_i}{1 - P(T_i = 1|X_i)} \right)$$

• Рассмотрим следующую метрику качества:

$$\mathsf{MSE}^* = \frac{1}{n} \sum_{i=1}^n \left( \hat{Y}_i^* - \widehat{\mathsf{CATE}}_i \right)^2$$

- Можно показать, что при определенных условиях, в частности, больших объемах выборки, MSE\* является достаточно точной аппроксимацией MSE<sub>0</sub>.
- Существует множество иных подходов к аппроксимации MSE<sub>0</sub> с помощью метрик, зависящх от различных псевдоисходов.

#### Эндогенность

• Проблема – на практике допущение об условной независимости  $E(Y_{ji}|X_i,T_i)=E(Y_{ji}|X_i)$  часто нарушается вследствие эндогенности, из-за чего описанные ранее методы обычно дают несостоятельные оценки эффектов воздействия.





- Эндогенность обычно возникает из-за наличия ненаблюдаемых характеристик  $V_i$ , одновремнено влияющих и на целевую переменную  $Y_i$ , и на вероятность воздействия  $T_i=1$ .
- Решение адаптировать метод инструментальных переменных.

#### Определение

- Рассмотрим случай, когда эндогенный регрессор  $T_i$  и инструментальная переменная  $Z_i$  являются бинарными переменными, отражающими, например, факт наличия высшего образования у индивида и его родителей соответственно. Кроме того, временно проигнорируем все остальные признаки  $X_i$ .
- ullet Обозначим  $Y_i=g_Y(T_i,\xi_i)$  и  $Z_i=g_Z(T_i,\xi_i)$ , где  $\xi_i$  вектор ненаблюдаемых признаков.
- Выделим четыре группы индивидов:

$$(T_i|Z_i=0)=1 \ | \ (T_i|Z_i=1)=1 \ | \ (T_i|Z_i=0)=0 \ | \ Cоблюдатели \ | \ Bсегда несогласные$$

• Без введения дополнительных строгих допущений, например, о том что эффект воздействия  $T_i$  на  $Y_i$  является одинаковым для всех индивидов, в общем случае оценить ATE не получится, но можно оценить локальный эффект воздействия LATE, отражающий средний эффект воздействия на соблюдателей.

LATE = 
$$E(Y_{1i} - Y_{0i} | \underbrace{(T_i | Z_i = 1) > (T_i | Z_i = 0)}_{\text{соблюдатели}}) = \underbrace{\frac{E(Y_i | Z_i = 1) - E(Y_i | Z_i = 0)}{P(T_i = 1 | Z_i = 1) - P(T_i = 1 | Z_i = 0)}}_{E(T_i = 1 | Z_i = 1) - E(T_i = 1 | Z_i = 0)}$$

Если нет отрицателей, есть соблюдатели и  $Z_i,\,\xi_i$  независимы

- Вывод при отсутствии отрицателей для оценивания LATE достаточно оценить  $E(Y_i|Z_i)$  и  $P(T_i|Z_i)$ , для чего достаточно посчитать соответствующие доли.
- Такая оценка LATE совпадает с оценкой метода инструментальных переменных, в которой  $Y_i$  линейным образом зависит лишь от константы и одного эндогенного регрессора  $T_i$ , инструментируемого бинарной переменной  $Z_i$ .

#### Двойное машинное обучение

- Проблема без использования дополнительных наблюдаемых признаков  $X_i$  оценка LATE может иметь достаточно большую дисперсию. Кроме того, высок риск корреляции инструмента  $Z_i$  с одним из ненаблюдаемых признаков  $\xi_i$ .
- Решение воспользоваться двойным машинным обучением, позволяющим использовать инструментальную переменую  $Z_i$  вместе с признаками  $X_i$ :

$$Y_{i} = g_{Y}(Z_{i}, X_{i}) + \varepsilon_{i}^{(Y)} \qquad T_{i} = g_{T}(Z_{i}, X_{i}) + \varepsilon_{i}^{(T)} \qquad Z_{i} = g_{Z}(X_{i}) + \varepsilon_{i}^{(Z)}$$
$$\mathsf{E}(\varepsilon_{i}^{(Y)}|Z_{i}, X_{i}) = 0 \qquad \mathsf{E}(\varepsilon_{i}^{(T)}|Z_{i}, X_{i}) = 0 \qquad \mathsf{E}(\varepsilon_{i}^{(Z)}|X_{i}) = 0$$

- При выполнении некоторых дополнительных технических условий двойное машинное обучение позволяет получить состоятельную и асимптотически нормальную оценку LATE (выражения опущены для краткости). Функции  $g_Y$ ,  $g_T$  и  $g_Z$  оцениваются с помощью машинного обучения.
- Преимущество 1 благодаря использованию инструментальных переменных решает проблему эндогенности, являющуюся серьезным препятствием к состоятельному оцениванию эффектов воздействия с использованием обсуждавшихся ранее методов машинного обучения.
- Преимущество 2 в отличие от классического линейного метода инструментальных переменных не опирается на допущения о линейной связи между переменными.

- В работе (ссылка) используется двойное машинное обучение для воспроизведения результатов исследования (ссылка).
- Изучается, как