One very important class of objects in SH are the *cellular* objects. Intuitively, these are the objects that can be built out of the  $S^a$ 's via taking coproducts and (co)fibers.

**Definition 0.1.** Define the class of *cellular* objects in  $S\mathcal{H}$  to be the smallest class of objects such that:

- (1) For all  $a \in A$ , the a-sphere  $S^a$  is cellular.
- (2) If we have a distinguished triangle

$$X \to Y \to Z \to \Sigma X$$

such that two of the three objects X, Y, and Z are cellular, than the third object is also cellular.

(3) Given a collection of cellular objects  $X_i$  indexed by some (small) set I, the object  $\bigoplus_{i \in I} X_i$  is cellular (recall we have chosen  $S\mathcal{H}$  to have arbitrary coproducts).

We write SH-Cell to denote the full subcategory of SH on the cellular objects.

**Lemma 0.2.** Let X and Y be two isomorphic objects in SH. Then X is cellular iff Y is cellular.

*Proof.* Assume we have an isomorphism  $f: X \xrightarrow{\cong} Y$  and that X is cellular. Then consider the following commutative diagram

$$X \xrightarrow{f} Y \longrightarrow 0 \longrightarrow \Sigma X$$

$$\parallel \qquad \downarrow_{f^{-1}} \qquad \parallel \qquad \parallel$$

$$X = \longrightarrow X \longrightarrow 0 \longrightarrow \Sigma X$$

The bottom row is distinguished by axiom TR1 for a triangulated category. Hence since X is cellular, 0 is also cellular, since the class of cellular objects satisfies two-of-three for distinguished triangles. Furthermore, since the vertical arrows are all isomorphisms, the top row is distinguished as well, by axiom TR0. Thus again by two-of-three, since X and 0 are cellular, so is Y, as desired.

**Lemma 0.3.** Let X and Y be cellular objects in SH. Then  $X \otimes Y$  is cellular.

*Proof.* Let E be a cellular object in  $S\mathcal{H}$ , and let  $\mathcal{E}$  be the collection of objects X in  $S\mathcal{H}$  such that  $E \otimes X$  is cellular. First of all, suppose we have a distinguished triangle

$$X \to Y \to Z \to \Sigma X$$

such that two of three of X, Y, and Z belong to  $\mathcal{E}$ . Then since  $\mathcal{SH}$  is tensor triangulated, we have a distinguished triangle

$$E \otimes X \to E \otimes Y \to E \otimes Z \to \Sigma(E \otimes X).$$

Per our assumptions, two of three of  $E \otimes X$ ,  $E \otimes Y$ , and  $E \otimes Z$  are cellular, so that the third is by definition. Thus, all three of X, Y, and Z belong to  $\mathcal{E}$  if two of them do.

Second of all, suppose we have a family  $X_i$  of objects in  $\mathcal{E}$  indexed by some (small) set I, and set  $X := \bigoplus_i X_i$ . Then we'd like to show X belongs to  $\mathcal{E}$ , i.e., that  $E \otimes X$  is cellular. Indeed,

$$E \otimes X = E \otimes \left(\bigoplus_{i} X_{i}\right) \cong \bigoplus_{i} (E \otimes X_{i}),$$

where the isomorphism is given by the fact that SH is monoidal closed, so  $E \otimes -$  preserves arbitrary colimits as it is a left adjoint. Per our assumption, since each  $E \otimes X_i$  is cellular, the

rightmost object is cellular, since the class of cellular objects is closed under taking arbitrary coproducts, by definition. Hence  $E \otimes X$  is cellular by Lemma 0.2.

Finally, we would like to show that each  $S^a$  belongs to  $\mathcal{E}$ , i.e., that  $S^a \otimes E$  is cellular for all  $a \in A$ . When  $E = S^b$  for some  $b \in A$ , this is clearly true, since  $S^b \otimes S^a \cong S^{a+b}$ , which is cellular by definition, so that  $S^b \otimes S^a$  is cellular by Lemma 0.2. Thus by what we have shown, the class of objects X for which  $S^a \otimes X$  is cellular contains every cellular object. Hence in particular  $E \otimes S^a \cong S^a \otimes E$  is cellular for all  $a \in A$ , as desired.

**Lemma 0.4.** Let W be a cellular object in SH such that  $\pi_*(W) = 0$ . Then  $W \cong 0$ .

*Proof.* Let  $\mathcal{E}$  be the collection of all X in  $\mathcal{SH}$  such that and  $[\Sigma^n X, W] = 0$  for all  $n \in \mathbb{Z}$  (where for n < 0 we define  $\Sigma^n := \Omega^{-n} = (S^{-1} \otimes -)^n$ ). We claim  $\mathcal{E}$  contains every cellular object in  $\mathcal{SH}$ . First of all, each  $S^a$  belongs to  $\mathcal{E}$ , as

$$[\Sigma^n S^a, W] \cong [S^{\mathbf{n}} \otimes S^a, W] \cong [S^{a+\mathbf{n}}, W] \leq \pi_*(W) = 0.$$

Furthermore, suppose we are given a distinguished triangle

$$X \to Y \to Z \to \Sigma X$$

such that two of three of X, Y, and Z belong to  $\mathcal{E}$ . By  $\ref{eq:2}$ , for all  $n \in \mathbb{Z}$  we get an exact sequence of abelian groups

$$[\Sigma^{n+1}X, W] \to [\Sigma^n Z, W] \to [\Sigma^n Y, W] \to [\Sigma^n X, W] \to [\Sigma^{n-1}Z, W].$$

Clearly if any two of three of X, Y, and Z belong to  $\mathcal{E}$ , then by exactness of the above sequence all three of the middle terms will be zero, so that the third object will belong to  $\mathcal{E}$  as well. Finally, suppose we have a collection of objects  $X_i$  in  $\mathcal{E}$  indexed by some small set I. Then

$$\left[\Sigma^n \bigoplus_i X_i, W\right] \cong \left[\bigoplus_i \Sigma^n X_i, W\right] \cong \prod_i [\Sigma^n X_i, W] = \prod_i 0 = 0,$$

where the first isomorphism follows by the fact that  $\Sigma^n$  is apart of an adjoint equivalence (??), so it preserves arbitrary colimits.

Thus, by definition of cellularity,  $\mathcal{E}$  contains every cellular object. In particular,  $\mathcal{E}$  contains W, so that [W, W] = 0, meaning in particular that  $\mathrm{id}_W = 0$ , so we have a commutative diagram



Hence the diagonals exhibit isomorphisms between 0 and W, as desired.

**Theorem 0.5.** Let X and Y be cellular objects in SH, and suppose  $f: X \to Y$  is a morphism such that  $f_*: \pi_*(X) \to \pi_*(Y)$  is an isomorphism. Then f is an isomorphism.

Proof. By axiom TR2 for a triangulated category, we have a distinguished triangle

$$X \xrightarrow{f} Y \xrightarrow{g} C_f \xrightarrow{h} \Sigma X.$$

First of all, note that by definition since X and Y are cellular, so is  $C_f$ . We claim  $\pi_*(C_f) = 0$ . Indeed, given  $a \in A$ , by axiom TR4 for a triangulated category and the fact that distinguished triangles are exact, the following sequence of abelian groups is exact:

$$[S^a, X] \xrightarrow{f_*} [S^a, Y] \xrightarrow{g_*} [S^a, C_f] \xrightarrow{h_*} [S^a, \Sigma X] \xrightarrow{\Sigma f_*} [S^a, \Sigma Y].$$

where the first arrow is and last arrows are isomorphisms, per our assumption that f is an isomorphism. Then by exactness we have  $\operatorname{im} h_* = \ker(\Sigma f_*) = 0$ . Yet we also have  $\ker g_* = \operatorname{im} f_* = [S^a, Y]$ , so that  $\ker h_* = \operatorname{im} g_* = 0$ . It is only possible that  $\ker h_* = \operatorname{im} h_* = 0$  if  $[S^a, C_f] = 0$ . Thus, we have shown  $\pi_*(C_f) = 0$ , and  $C_f$  is cellular, so by Lemma 0.4 there is an isomorphism  $C_f \cong 0$ . Now consider the following diagram:

$$\begin{array}{cccc}
X & \xrightarrow{f} & Y & \longrightarrow & C_f & \longrightarrow & \Sigma X \\
\downarrow^f & & & \downarrow & \cong & & \downarrow^{\Sigma f} \\
Y & & \longrightarrow & Y & \longrightarrow & 0 & \longrightarrow & \Sigma Y
\end{array}$$

The middle square commutes since 0 is terminal, while the right square commutes since  $C_f \cong 0$  is initial. The top row is distinguished by assumption. The bottom row is distinguished by axiom TR2. Then since the middle two vertical arrows are isomorphisms, by ??, f is an isomorphism as well, as desired.

**Lemma 0.6.** Let  $e: X \to X$  be an idempotent morphism in SH, so  $e \circ e = e$ . Then since SH is a triangulated category with arbitrary coproducts, this idempotent splits (??), meaning e factors as

$$X \xrightarrow{r} Y \xrightarrow{\iota} X$$

for some object Y and morphisms r and  $\iota$  with  $r \circ \iota = id_Y$ . Then Y is cellular if X is.

*Proof.* It is a general categorical fact that the splitting of an idempotent, if it exists, is unique up to unique isomorphism, so by Lemma 0.2, it suffices to show that e has some cellular splitting. In ??, it is shown that we may take Y to be the homotopy colimit (??) of the sequence

$$X \xrightarrow{e} X \xrightarrow{e} X \xrightarrow{e} X \xrightarrow{e} \cdots$$

so there is a distinguished triangle

$$\bigoplus_{i=0}^{\infty} X \to \bigoplus_{i=0}^{\infty} X \to Y \to \Sigma \left( \bigoplus_{i=0}^{\infty} X \right).$$

Since X is cellular, by definition  $\bigoplus_{i=0}^{\infty} X$  is as well. Thus by 2-of-3 for distinguished triangles for cellular objects, Y is cellular as desired.

<sup>&</sup>lt;sup>1</sup>In particular, given an idempotent  $e: X \to X$  which splits as  $X \xrightarrow{r} Y \xrightarrow{\iota} X$ , r and  $\iota$  are the coequalizer and equalizer, respectively, of e and  $\mathrm{id}_X$ .