Aufgabe 1: Tiefensuche

- $\bullet \ \to D \to G \to C \to B \to A \to F$
- $\bullet \ B \to A \to F \to G \to C \to E \to D$

Aufgabe 2: Topologisches Sortieren

- (a) Die topologische Sortierung gibt eine der möglichen zulässigen Sortierungen eines gerichteten Graphen G zur Abarbeitung der Knoten an. Beispielsweise eine Sortierung von zu erledigenden Aufgaben in Reihenfolge.
- (b) Nein, die Gewichtung einer Kante spielt bei der Sortierung nur die Richtung einer Kante spielt eine Rolle für die Topologische Sortierung.
- (c) Nein, denn es kann mehrere gültige Sortierungen geben. Das liegt daran, dass freie Kanten zufällig gewählt werden.

- (d)
 - – Ausgangsknoten A
 - Besuch von A
 - Schritt zu E
 - Besuch von E
 - Schritt zu D
 - Besuch von D
 - Schritt zu G
 - Besuch von G
 - Schritt zu C
 - Besuch von C
 - Einfärben von C
 - Einfärben von G
 - Einfärben von D
 - Schritt (von E) zu F

- Besuch von F
- Schritt zu C
- Schritt (von F) zu G
- Einfärben von F
- Einfärben von E
- Einfärben von A
- Besuch von B
- Schritt (von B) zu A
- Schritt zu E
- Schritt zu G
- Einfärben von B

Es ergibt sich eine mögliche Priority-Queue von G_s : [B, A, E, F, D, G, C]

(e) Ja, solche Graphen existieren. Eine topologische Sortierung funktioniert nicht bei zyklischen Graphen.

Aufgabe 3:	Impl	in	Java	
------------	------	----	------	--

Aufgabe 4: Euler, Hamilton und kürzeste Wege

- (a) Ja. Ein Pfad heißt Euler'scher Weg, wenn jede Kante des Graphen genau einmal in seinem Pfad vorkommt: C, B, A, C, D, F, E, D, G, A, C
 - Nein, da in einem Euler'schen Kreis alle Knoten einen geraden Grad haben. Dieser Graph besitzt jedoch zwei Knoten die einen ungeraden Grad haben: E und C.
 - Ja. Ein Pfad heißt Hamilton'scher Weg, wenn er alle Knoten eines Graphen genau einmal durchläuft: C, B, A, G, D, F, E
- (b) Der Bellman-Ford-Algorithmus. Begründung: Da er als einziger Algorithmus Wege mit negativen Kantengewichten erkennt. Hier vorhanden von e nach c (-1).