IIC1253 Matemáticas Discretas

Sasha Kozachinskiy

DCC UC

22.10.2025

Hoy...

Enumerabilidad: conjuntos equinumerosos, menor o igual cardinalidad.

Equinumerabilidad

Definición

Dos conjuntos A, B son equinumerosos (o tienen la misma cardinalidad) si existe una función $f: A \rightarrow B$ biyectiva.

Equinumerabilidad

Definición

Dos conjuntos A, B son equinumerosos (o tienen la misma cardinalidad) si existe una función $f: A \to B$ biyectiva.

Notación: $A \approx B$

Equinumerabilidad

Definición

Dos conjuntos A, B son equinumerosos (o tienen la misma cardinalidad) si existe una función $f: A \to B$ biyectiva.

Notación: $A \approx B$

Proposición

Sean A, B, C 3 conjuntos.

- a) si $A \approx B$, entonces $B \approx A$;
- b) si $A \approx B, B \approx C$, entonces $A \approx C$

Conjuntos finitos

Definición

Un conjunto A es finito si existe $n \in \mathbb{N}$ tal que $A \approx \{0, 1, \dots, n-1\}.$

Conjuntos finitos

Definición

Un conjunto A es finito si existe $n \in \mathbb{N}$ tal que $A \approx \{0, 1, \dots, n-1\}$.

Proposición

Si un conjunto A es finito y $a \in A$, entonces, $A \setminus \{a\} \not\approx A$.

Conjuntos finitos

Definición

Un conjunto A es finito si existe $n \in \mathbb{N}$ tal que $A \approx \{0, 1, \dots, n-1\}$.

Proposición

Si un conjunto A es finito y $a \in A$, entonces, $A \setminus \{a\} \not\approx A$.

Demostración.

Por el principio de palomar.

"Paradoja" de infinitud

Un conjunto infinito puede tener la misma cardinalidad como su propio subconjunto (Galileo).

"Paradoja" de infinitud

Un conjunto infinito puede tener la misma cardinalidad como su propio subconjunto (Galileo).

Ejercicio

 $\mathbb{N}\approx\mathbb{N}\setminus\{0\}$

Ejercicio

$$\mathbb{N} \approx \{ m \in \mathbb{N} \mid \exists n \in \mathbb{N} \ m = n^2 \}$$

Intervalo sin un punto

Ejercicio $[0,1] \approx (0,1] \approx (0,1)$

Un lema útil

Lema

Supongamos que para cada $n \in \mathbb{N}$ tenemos dos conjuntos A_n, B_n tal que:

- 1. $A_n \approx B_n$ para todo $n \in \mathbb{N}$;
- 2. $A_n \cap A_m = \emptyset$, $B_n \cap B_m = \emptyset$ para todo $n, m \in \mathbb{N}, n \neq m$.

Entonces,

$$\bigcup_n A_n \approx \bigcup_n B_n.$$

Naturales y enteros

Proposición

 $\mathbb{N}\approx\mathbb{Z}$

Naturales y enteros

Proposición

 $\mathbb{N}\approx\mathbb{Z}$

Demostración.

	\mathbb{N}	0	1	2	3	4	
Ī	\mathbb{Z}	0	-1	1	-2	2	

Intervalos y reales

Ejercicio

- a) $(0,1) \approx (1,+\infty)$;
- b) $(1,+\infty)\approx (0,+\infty)$;
- c) $(0,1) \approx \mathbb{R}$.

$\mathbb{N} \ y \ \mathbb{N} \times \mathbb{N}$

Theorem $\mathbb{N} \approx \mathbb{N} \times \mathbb{N}$.

$$\approx$$
 y \times

Lemma

Sean $A \approx B, X \approx Y$. Entonces, $A \times X \approx B \times Y$.

$$\approx$$
 y \times

Lemma

Sean $A \approx B, X \approx Y$. Entonces, $A \times X \approx B \times Y$.

Demostración.

Si $f: A \rightarrow B, g: X \rightarrow Y$ son biyectivas, verifique que:

$$(f \times g) \colon A \times X \to B \times Y, \qquad (f \times g)(a, x) = (f(a), g(x)) \ a \in A, x \in X,$$

es biyectiva...

$$\approx$$
 y \times

Lemma

Sean $A \approx B, X \approx Y$. Entonces, $A \times X \approx B \times Y$.

Demostración.

Si $f: A \rightarrow B, g: X \rightarrow Y$ son biyectivas, verifique que:

$$(f \times g) \colon A \times X \to B \times Y, \qquad (f \times g)(a, x) = (f(a), g(x)) \ a \in A, x \in X,$$

es biyectiva...

Corolario

 $\mathbb{N} \approx \mathbb{Z} \times \mathbb{Z} \approx (\mathbb{N} \times \mathbb{N}) \times \mathbb{N}...$

Definición

Sean A, B dos conjuntos. Entonces, la cardinalidad de A es menor o igual que la cardinalidad de B si existe $f: A \to B$ inyectiva.

Definición

Sean A, B dos conjuntos. Entonces, la cardinalidad de A es menor o igual que la cardinalidad de B si existe $f: A \to B$ inyectiva.

Notación: $A \leq B$

Proposición

Sean A, B, C 3 conjuntos. Si $A \leq B$, $B \leq C$, entonces $A \leq C$.

Definición

Sean A, B dos conjuntos. Entonces, la cardinalidad de A es menor o igual que la cardinalidad de B si existe $f: A \to B$ inyectiva.

Notación: $A \leq B$

Proposición

Sean A, B, C 3 conjuntos. Si $A \leq B, B \leq C$, entonces $A \leq C$.

Ejercicio

 $\mathbb{N} \preceq \mathbb{R}, \mathbb{Q} \preceq \mathbb{Z} \times \mathbb{Z}$

\leq y \approx

Teorema (Schröder-Bernstein)

Sean A, B dos conjuntos. Entonces, $A \approx B$ si y sólo si $A \leq B, B \leq A$.

Teorema (Schröder-Bernstein)

Sean A, B dos conjuntos. Entonces, $A \approx B$ si y sólo si $A \prec B$, $B \prec A$.

- 1887 Cantor publishes the theorem, however without proof.^{[3][2]}
- 1887 On July 11, Dedekind proves the theorem (not relying on the axiom of choice)⁽⁴⁾ but neither publishes his proof nor tells Cantor about it. Ernst Zermelo

discovered Dedekind's proof and in 1908^[5] he publishes his own proof based on the *chain theory* from Dedekind's paper *Was sind und was sollen die Zahlen?*^{[2][6]}

- 1895 Cantor states the theorem in his first paper on set theory and transfinite
 numbers. He obtains it as an easy consequence of the linear order of cardinal
 numbers. [7][8][9] However, he could not prove the latter theorem, which is shown in
 1915 to be equivalent to the axiom of choice by Friedrich Moritz Hartogs. [2][10]
- 1896 Schröder announces a proof (as a corollary of a theorem by Jevons).[11]
- 1897 Bernstein, a 19-year-old student in Cantor's Seminar, presents his proof.^{[12][13]}
- 1897 Almost simultaneously, but independently, Schröder finds a proof.[12][13]
- 1897 After a visit by Bernstein, Dedekind independently proves the theorem a second time
- 1898 Bernstein's proof (not relying on the axiom of choice) is published by Émile Borel in his book on functions.^[14] (Communicated by Cantor at the 1897 International Congress of Mathematicians in Zürich.) In the same year, the proof also appears in Bernstein's dissertation.^{[15][2]}

Aplicaciones de Schröder-Bernstein

Proposición

 $\mathbb{N}\approx\mathbb{Q}.$

Aplicaciones de Schröder-Bernstein

Proposición

 $\mathbb{N} \approx \mathbb{Q}$.

Demostración.

 $\mathbb{N} \preceq \mathbb{Q} \preceq \mathbb{Z} \times \mathbb{Z} \preceq \mathbb{N}$.

Proposición

 $\mathbb{N}\approx\mathbb{N}\times\mathbb{N}$

Aplicaciones de Schröder-Bernstein

Proposición

 $\mathbb{N} \approx \mathbb{Q}$.

Demostración.

 $\mathbb{N} \preceq \mathbb{Q} \preceq \mathbb{Z} \times \mathbb{Z} \preceq \mathbb{N}$.

Proposición

 $\mathbb{N} \approx \mathbb{N} \times \mathbb{N}$

Demostración.

 $\mathbb{N} \times \mathbb{N} \leq \mathbb{N}$ ya que la siguiente función:

$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \qquad f((a,b)) = 2^a \cdot 3^b$$

es inyectiva.

iGracias!