## Corso di Laurea in Informatica - A.A. 2012 - 2013 Scritto di Fisica - 27/01/2014

## Esercizio 1

Siamo dati i vettori  $\vec{a} = 4\vec{i} + 2\vec{j}$  e  $\vec{b} = 4\vec{i} + 6\vec{j}$ . Calcolare il vettore differenza  $\vec{d} = \vec{a} - \vec{b}$ , il modulo di  $\vec{a}$  e il prodotto scalare  $\vec{a} \cdot \vec{b}$ .

## Esercizio 2

Un corpo puntiforme con carica elettrica q e massa m è lanciato con velocità  $\vec{v_i}$  tra le armature di un condensatore piano, nel piano mediano. Le armature sono di forma quadrata di lato L e distano tra loro d. Il campo elettrico presente tra le armature vale  $\vec{E}$ .

a) Avendo scomposto il moto del corpo lungo gli assi cartesiani, si determinino, in funzione delle grandezze precedenti, i coefficienti delle leggi orarie che descrivono il moto del corpo all'interno del condensatore:  $x(t) = \frac{1}{2}a_xt^2 + v_{x,0}t$  e  $y(t) = \frac{1}{2}a_yt^2 + v_{y,0}t$ .

Sapendo che q=+1 nC, m=0.005 kg,  $v_i=0.5$  m/s, L=1 m, d=0.08 m e che all'uscita dal condensatore il corpo si è spostato rispetto al piano mediano di h=0.03 m, calcolare:

- b) il campo elettrico  $\vec{E}$  presente tra le armature;
- c) la carica elettrica Q (ed il suo segno) presente sull'armatura superiore;
- d) quanto varia il modulo della velocità del corpo tra ingresso ed uscita del condensatore.

Si supponga di operare nel vuoto.



## Esercizio 3

Il circuito mostrato in figura ( $\varepsilon_1 = 10 \text{ V}$ ,  $\varepsilon_2 = 20 \text{ V}$ ) è percorso da una corrente i=0.5 A

a) Determinare il valore della resistenza R.

Determinare la differenza di potenziale  $V_A - V_C$  quando

- b) si collegano i punti A e C con una resistenza di valore R;
- c) si collegano i punti B e D con una resistenza di valore R;
- d) si collegano i punti B e D con un cortocircuito.

