Transfert thermique par RAYONNEMENT

SIAE (Tianjin) mars 2013

Le Rayonnement thermique sur des exemples simples

Chaleur de la flamme vers la viande, à travers l'air : du rayonnement thermique

Oui, mais l'air chaud peut aussi réchauffer la viande de la convection!

Le Rayonnement sur des exemples simples

Cette énergie radiative est transférée du soleil vers la terre à travers le vide spatial

Autres exemples

Brûleur de chaudière

Four verrier

Ampoule à filament

Autres exemples

Domaine Spatial

Equilibre thermique de la terre

Rayonnement thermique d'un CPU. Lorsqu'il fonctionne sa température peut dépasser 80°C sur un microprocesseur rapide!

Electronique

PLAN du cours

Introduction

Grandeurs fondamentales

Emission, réception, absorption

Le corps noir

Planck, Wien, Stefan...

Les surfaces réelles

Facteurs d'émission, d'absorption, de réflexion

Les facteurs de forme

Les multi-réflexions

Les équations de bilan

Leçon 1

INTRODUCTION:

Nature et origine du rayonnement thermique

Les domaines de longueur d'onde

NATURE du rayonnement thermique

Aspect ondulatoire

c'est un rayonnement électromagnétique

Fréquence: v

Vitesse: dans le vide c_0

dans un milieu d'indice $n : c_0/n$

Longueur d'onde : $\lambda = c_0 / n$

Propagation rectiligne dans un milieu d'indice uniforme

NATURE du rayonnement thermique

Aspect corpusculaire

Dualité onde / particule: une onde -> un photon

1 quantum:

$$E = h v$$
 Energie
$$\left| \overrightarrow{p} \right| = \frac{E}{c}$$
 Quantité de mouvement Fréquence ν
Longueur d'onde λ

A la densité volumique n_v de particules de fréquence v est associée la densité volumique d'énergie $e_v = n_v$ h v

ORIGINE

Le Rayonnement thermique est issu d'un émetteur:

- •particules (atomes, molécules...) en équilibre thermique
- •Solide: statistique de Bose

Les domaines de longueur d'onde

Energie radiative et domaines de longueur d'onde

v: fréquence

 λ : longueur d'onde