实验五 触发器的应用

姓名 侯少森 学号 18340055

一、J-K 触发器的动态功能测试

1. 实验内容

(1) 将 74LS197 接成八进制计数器,即 10KHz 连续脉冲接反相器后与 CP_1 相连(避免连续脉冲的下降沿使 74LS197 和 74LS73 同时翻转),将 \overline{MR} 、 \overline{PL} 接 HIGH, Q_1 、 Q_2 、 Q_3 作为输出. 并将 74LS197 的输出 Q_1 接 74LS73 的 \overline{I} 以 接 \overline{I} 以 \overline{I} 的 \overline{I} 以 \overline

(2)74LS73(J-K 触发器)的功能表如下:

СР	J	K	Q	Q'	功能
\	0	0	0	0	保 持
\downarrow	0	0	1	1	
\	0	1	0	0	清 零
\	0	1	1	0	
\downarrow	1	0	0	1	置位
\downarrow	1	0	1	1	
<u> </u>	1	1	0	1	翻转
<u> </u>	1	1	1	0	

2. 仿真电路与结果

(1)在 proteus 上设计出仿真电路图:

(2)点击运行,开始运行仿真电路图,得到的结果如下:

与功能表相对照, 发现完全符合, 故 J-K 触发器的动态功能测试成功!

二、D触发器动态功能测试

1. 实验内容

(1)将 74LS197 接成二进制计数器,并将 74LS197 的输出 Q_0 接 74LS74 的 D_1 , 10KHz 连续脉冲接 74LS74 的 CP_1 ,将 74LS74 的 $\overline{S}D_1$ 接高电平, $\overline{R}D_1$ 接手动负脉冲,使用示波器数字通道观察并记录 74LS74 的 CP_1 、 D_1 、 Q_1 波形,检查其是否符合 D 触发器功能表.

(2)74LS74(D 触发器)的功能表如下:

СР	D	Q	功能
\uparrow	0	0	清零
↑	1	1	置位

2. 仿真电路与结果

(1)在 proteus 上设计出仿真电路图:

(2)点击运行,开始运行仿真电路图,得到的结果如下:

与功能表相对照, 发现完全符合, 故 D 触发器的动态功能测试成功!

- 3. 实验结果与分析
 - (1)按照仿真电路图连接实验电路.
 - (2)实验结果图(即示波器上的波形图)如下:

(3)分析实验结果图:

示波器显示的波形图,和仿真电路结果一样,与 D 触发器的功能表相对应,所以 D 触发器的动态功能测试成功!

三、利用 J-K 触发器实现 D 触发器

1. 实验内容

(1)通过以上两个测试中的 J-K 触发器和 D 触发器的功能表,我们可以知道,要想用 J-K 触发器实现 D 触发器,则需要实现清零和置位功能,即 K 应始终与 J 电平相反,与此同时,74LS74(D 触发器)是上升沿触发,而74LS73(J-K 触发器)是下降沿触发,所以应将连续脉冲取反后再接入 J-K 触发器的 CP₁.

2. 仿真电路与结果

(1)按照上面的分析,在 proteus 上设计出仿真电路图:

(2)点击运行,开始运行仿真电路图,得到的结果如下:

与前面的 D 触发器的仿真结果对比,发现一模一样!所以 J-K 触发器实现 D 触发器功能的设计成功!

- 3. 实验结果与分析
 - (1)按照仿真电路图连接实验电路.
 - (2)实验结果图(即示波器上的波形图)如下:

(3)分析实验结果图:

示波器显示的波形图,和仿真电路结果一样,与 D 触发器的功能表相对应,所以 J-K 触发器实现 D 触发器功能的设计成功!

四、利用 J-K 触发器实现 T 触发器

1. 实验内容

(1)T 触发器的功能表如下:

СР	Т	Q	Q'	功能
\	0	0	0	保 持
\	0	1	1	
\	1	0	1	翻转
\	1	1	0	

(2) 通过以上的 J-K 触发器和 T 触发器的功能表, 我们可以知道, 要想用 J-K 触发器实现 T 触发器,则需要实现保持和翻转功能,即 J 和 K 的电平 保持一致.

2. 仿真电路与结果

(1)按照上面的分析,在 proteus 上设计出仿真电路图.

(2)点击运行,开始运行仿真电路图,得到的结果如下:

与功能表相对照,发现完全符合,故 J-K 触发器实现 T 触发器的设计成功!

3. 实验结果与分析

- (1)按照仿真电路图连接实验电路.
- (2)实验结果图(即示波器上的波形图)如下:

(3)分析实验结果图:

示波器显示的波形图,和仿真电路结果一样,T 触发器的功能表相对应,所以 J-K 触发器实现 T 触发器功能的设计成功!

五、实验总结

- 1.74LS73(J-K 触发器)是下降沿触发的,而 74LS74(D 触发器)是上升沿触发,所以用 J-K 触发器实现 D 触发器时,要将连续脉冲取反.
- 2. 本次实验深入了解了 J-K 触发器和 D 触发器的逻辑功能, 掌握了 J-K 触发器实现其他触发器的方法.