一、填空题(共 6 题, 每题 3 分, 共 18 分)

1. 计算行列式
$$\begin{vmatrix} x & 2 & 3 \\ 1 & 2x & 0 \\ 0 & 1 & 2 \end{vmatrix} = ().$$

- 2. 设 3 阶方阵 $A = \alpha \beta^T$, 其中 $\alpha = (1,2,3)^T$, $\beta = (0,1,-1)^T$,则 $A^{2019} = ($).
- 3. $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 均为 4 维列向量,A = $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$,且 $\alpha_2, \alpha_3, \alpha_4$ 线性无关, $\alpha_1 = 2\alpha_2 \alpha_3$;如果 $\beta = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$,则 $Ax = \beta$ 的一般解为().
- 4. 设 A 为 3 阶方阵,|A| = 3, A^* 为 A 的伴随矩阵,若交换 A 的第二行与第三行得 B,则 $|BA^*| = ($).
- 5. 设 2 阶实对称矩阵 A 有对应不同特征值的特征向量 α_1 和 α_2 ,满足 $A^3(\alpha_1 + \alpha_2) = \alpha_1 + 8\alpha_2$,则 |A| = ().
- 6. 二次型 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + 4x_3^2 + 4x_2x_3$, 其规范型为().
- 二、选择题(共 6 题, 每题 3 分, 共 18 分)

1. 设
$$4 \times 3$$
 矩阵 $A = \begin{pmatrix} 1 & 2 & 3 \\ -2 & -1 & -1 \\ -1 & 1 & s+t \\ 0 & 3 & 5 \end{pmatrix}$,向量 $b = \begin{pmatrix} 4 \\ t-5 \\ -3 \\ 1 \end{pmatrix}$,则方程组

Ax = b 有唯一解的充要条件是().

A.
$$s = 4, t = -2$$
; B. $s \neq 4, t = -2$; C. $s = 4, t \neq -2$; D. $s \neq 4, t \neq -2$

2. 已知向量组 α_1 , α_2 , α_3 , α_4 线性无关,则下列向量组线性无关的是().

A.
$$\alpha_1 - \alpha_2$$
, $\alpha_2 - \alpha_3$, $\alpha_3 - \alpha_4$, $\alpha_4 - \alpha_1$

B.
$$\alpha_1 - \alpha_2$$
, $\alpha_2 + \alpha_3$, $\alpha_3 - \alpha_4$, $\alpha_4 + \alpha_1$

C.
$$\alpha_1 + \alpha_2 + \alpha_3$$
, $\alpha_2 + \alpha_3 + \alpha_4$, $\alpha_1 + \alpha_3 + \alpha_4$, $\alpha_1 + \alpha_2 + \alpha_4$

D.
$$\alpha_1 - \alpha_2 + \alpha_3, \alpha_2 - \alpha_3 + \alpha_4, -\alpha_1 + \alpha_3 - \alpha_4, -\alpha_1 + \alpha_2 + \alpha_3$$

3. 已知
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{pmatrix}$$
 与 $B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & -1 \end{pmatrix}$ 相似,则().

A.
$$x = 0$$
, $y = 1$; C. $x = 0$, $y = 0$;

B.
$$x = -1$$
, $y = 0$; D. $x = 1$, $y = 1$;

4. 设 A 为 3 阶方阵,A 的第三行加到第一行得 B,再将 B 的第三列的 (-1)倍加

到第一列得
$$C$$
,记 $P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,则 $A = ()$.

A.
$$P^{-1}CP^{T}$$
; B. $PC(P^{-1})^{T}$; C. $(P^{-1})^{T}CP$; D. $(P^{-1})^{T}CP^{-1}$

- 5. 设 A, B 均为 n 阶方阵, $n \ge 3$,且 A 的秩 r(A) = n,B 的秩 r(B) = n 1, 则 AB 的伴随矩阵的秩为().
 - B. 1 C. n-1 D. nA. 0
- 6. 设 A 为 3 阶方阵, α_1 , α_2 , α_3 是线性无关的 3 维列向量组,P 是 3 阶可逆阵,

则 *P* 可取为().

A.
$$(\alpha_1, \alpha_2 + \alpha_3, 2\alpha_2 - \alpha_3)$$
 B. $(\alpha_1, \alpha_1 + \alpha_2, \alpha_3)$

B.
$$(\alpha_1, \alpha_1 + \alpha_2, \alpha_3)$$

C.
$$(\alpha_1 + \alpha_2, \alpha_2, \alpha_3)$$

D.
$$(\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1)$$

- 三、计算题(共 3 题, 每题 8 分, 共 24 分)
- 1. 设向量组 $\alpha_1 = (1,2,1,3)^T$, $\alpha_2 = (-1,-1,0,-1)^T$, $\alpha_3 = (1,4,3,7)^T$,

 $\alpha_4 = (-1, -2, 1, -1)^T$, $\alpha_5 = (1, 3, 6, 9)^T$;求向量组的秩及一个极大线性无关组, 并将其余向量用极大线性无关组线性表示.

2. 已知 R^3 的两组基为 $\mathbf{B_1} = \{\alpha_1, \alpha_2, \alpha_3\}$, $\mathbf{B_2} = \{\beta_1, \beta_2, \beta_3\}$,其中

$$\alpha_1 = (1,2,0)^T$$
, $\alpha_2 = (1,0,1)^T$, $\alpha_3 = (0,-3,2)^T$;

$$\beta_1 = (0,1,1)^T$$
, $\beta_2 = (1,1,0)^T$, $\beta_3 = (1,0,2)^T$;

- (1) 求基 B_1 到基 B_2 的过渡矩阵;
- (2) 若 3 维向量 γ 在基 $\mathbf{B_2}$ 下的坐标为 $(1,1,2)^T$,求 γ 在基 $\mathbf{B_1}$ 下的坐标.
- 3. 已知 $A = \begin{pmatrix} 1 & -1 & 1 \\ a & 4 & b \\ -3 & -3 & 5 \end{pmatrix}$ 是可对角化的, $\lambda = 2$ 是 A 的二重特征值,求 a, b.

4. 设
$$n$$
 阶方阵 $A = \begin{pmatrix} a_1 + \lambda_1 & a_1 & a_1 & \cdots & a_1 \\ a_2 & a_2 + \lambda_2 & a_2 & \cdots & a_2 \\ a_3 & a_3 & a_3 + \lambda_3 & \cdots & a_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n & a_n & a_n & \cdots & a_n + \lambda_n \end{pmatrix}$, 求 $|A|$.

四、证明题(共 2 题, 每题 6 分, 共 12 分)

- 1. 设 P 是一个 m 阶可逆矩阵, $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是一组 m 维向量, $n\leq m$.
- 2. 设向量组 α_1 , α_2 是线性无关的,且都与非零向量 β 正交;

证明:向量组 α_1 , α_2 , β 是线性无关的.

五、解方程组(共1题,14分)

讨论
$$a,b$$
 取何值时, 线性方程组
$$\begin{cases} x_1 + x_2 + 2x_3 - x_4 = 1 \\ x_1 - x_2 - 2x_3 - 5x_4 = 3 \\ x_2 + (a-1)x_3 + bx_4 = b - 3 \\ x_1 + x_2 + 2x_3 + (b-2)x_4 = b + 3 \end{cases}$$

无解,有无穷多解,有唯一解;并在有无穷多解时求其通解.

六、化二次型为标准型(共1题,14分)

二次型 $f(x_1, x_2, x_3) = x_1^2 + cx_2^2 + x_3^2 - 2x_1x_2 + 2x_1x_3 - 2x_2x_3$ 的秩为 1,

(1) 求 c 的值;

(2)用正交变换法,将二次型 $f(x_1,x_2,x_3)$ 化为标准型,并写出相应的正交矩阵.