#### INTRODUCTION

Taxes often have a negative connotation to people, but despite the frustration taxation is one of the essential aspects of a developed society. Tax revenues allow governments to function, funding social programs and public investments. Taxes are the price we pay for a stable, more equitable society. With this project we analyze in detail one of the largest tax costs for businesses, the corporate income tax cost (or Total Tax Rate), on a global level. The data were obtained from the World Bank's Doing Business 2015 report¹. Our aim is to come to an understanding of what explains this cost best and to what extent the tax cost is related to the Statutory Tax Rate, geographical region, and other features of the country. In doing so, we have chosen to approach the research question from two separate angles: multiple regression analysis and ANOVA. In both analyses the response variable is Total Tax Rate, with ANOVA doing additional testing for response variable Statutory Tax Rate. The cross-sectional observational design of this study does not allow us to make generalizations to either past or future tax rates, or to other taxes. The continuous variables of interest in this project are:

- Statutory Tax Rate (STR): is the rate of corporate income tax as envisaged in the legislation of a given country. This is the rate that is applied to the tax base, which is the taxable profit of a company. A company's tax liability, in turn, is its tax base multiplied by the statutory tax rate.
- Total Tax Rate (TTR): is the effective rate of the paid corporate income tax, which is calculated for each company individually through dividing the tax liability by the commercial profit. It is important to remember that the Total Tax Rate is by definition not equal to the Statutory Tax Rate due to the amount of non-taxable income and non-deductible expenses, as well as limitations on tax depreciation of assets.
- **Time:** is estimation of hours required for a company to prepare, file, and pay its corporate income taxes in one year.
- Number\_Taxes: Number\_Taxes is the number of all taxes (including corporate income tax) that the case study company is liable for paying. This is different from Tax Payments which are described here.
- **Population**<sup>2</sup>: is a country's population expressed in millions of people.

Apart from the aforementioned variables, we have constructed the following categorical variables:

- **Single rate:** equals 1 if statutory tax rate does not depend on the amount of taxable profit; equals 0 if the country uses progressive corporate income tax rates. This is a categorical indicator variable.
- Population Category (PopCat): Population: grouped in three categories (low, medium, high)
- Time: grouped in three categories (low, medium, high).
- **Region:** grouped in 7 categories based on geographical region (OECD, East Asia and Pacific, Europe and Central Asia, Latin America and Caribbean, Middle East and North Africa, South Asia, Sub-Saharan Africa).

#### **REGRESSION**

This part of the project covers the results of a regression analysis performed on the dataset. It will concisely explain the important steps taken leading up to the model(s) that we consider to be effective and functional in explaining the variance in the response variable - Total Tax Rate (TTR). Our analysis starts out with all 173 observational units (that is, countries). Considering the fact that our sample closely overlaps with the population (that is, all countries in the world that impose corporate income tax), the proposed models will not be used for making predictions. Instead, we are merely interested in analyzing potential relationships between the variables. We took the following model (Model 1), incorporating most of the variables detailed in the World Bank's Doing Business dataset, as our starting point:

TTR =  $\beta_0$  +  $\beta_1$  \* STR +  $\beta_2$  \* SingleRate +  $\beta_3$  \* STR \* SingleRate +  $\beta_4$  \* Population +  $\beta_5$  \* Time\_Medium +  $\beta_6$  \* Time\_High +  $\beta_7$  \* EAAP +  $\beta_8$  \* EACA +  $\beta_9$  \* LAAC +  $\beta_{10}$  \* MENA +  $\beta_{11}$  \* SOAS +  $\beta_{12}$  \* SSAF +  $\beta_{13}$  \* Number\_Taxes +  $\varepsilon$ .

### Model specifications:

For the predictor *Time*:

*Time\_Low* is 1 if time is < 30 hrs., 0 otherwise. This is the base category in the model. *Time\_Medium* is 1 if time is between 30 and 83.5 hrs., 0 otherwise;

Time\_High is 1 if time is > 83.5 hrs., 0 otherwise.

The countries are grouped in 7 regions, in line with the World Bank's clustering of the data:

EAAP is 1 for countries from East Asia & Pacific, 0 otherwise;

EACA is 1 for countries from Europe & Central Asia, 0 otherwise;

LAAC is 1 for countries from Latin American & Caribbean, 0 otherwise;

MENA is 1 for countries from Middle East & North Africa, 0 otherwise;

SOAS is 1 for countries from South Asia, 0 otherwise;

SSAF is 1 for countries from Sub-Saharan Africa, 0 otherwise;

OECD is 1 for countries from OECD (High Income), 0 otherwise. (Model Base Category)

<sup>&</sup>lt;sup>1</sup> http://www.doingbusiness.org/data/exploretopics/paying-taxes

<sup>&</sup>lt;sup>2</sup> http://www.econstats.com/wdi/wdiv1072.htm

Looking at the data. Before fitting the regression model, we looked at univariate plots of each of the quantitative predictors (STR, Population, and Number of Taxes) and the response variable, TTR. The histogram of the Total Tax Rate (TTR) showed several outliers for which the TTR was either 0, or very close to 0 (see below). These data points were related to countries where the case study company would have to pay no or a very low (given the statutory tax rate) corporate income tax. We have identified two major reasons for these outliers: first, in some countries the main tax cost for the companies would be represented by a tax different from the corporate profit tax (for example, the sales tax); secondly, in some countries tax policy on deductibility of expenses could result in a case study company having nil or very low taxable profit. For the time being, we decided not to remove these 11 extreme points before we gained a better understanding of their impact. In addition, a histogram of the predictor Statutory Tax Rate (STR) demonstrated that most of the economies legally impose a tax rate greater than 20% on companies (with the peak at 30%). Interestingly, however, the effective tax rate (TTR; see histogram) is mostly between 5% and 25%. Furthermore, we include the scatterplot showing a clear linear relationship between TTR and STR, with few influential points and outliers (marked in red).

## Response Variable, Total Tax Rate in % (TTR)



# Scatterplot of TTR and STR



<u>Checking for multicollinearity</u>. The Variance Inflation Factor (VIF) is a statistic to capture multicollinearity. VIF > 5 can be an indicator of an issue; > 10 is very concerning. After fitting the full regression model, we found that there were three variables that showed multicollinearity and had a VIF above 18: the <u>Statutory Tax Rate (STR)</u>, <u>Single\_Rate</u>, and interaction of these two variables. Our assumption was that the multicollinearity was caused by the (higher-order) interaction term. We confirmed that after removing the interaction term all variables had a VIF below 2.1, and there was no concern regarding multicollinearity in lower-term variables. For the purposes of the further analysis the interaction term was included back to the model.

# The assumptions.

- The residuals should have a <u>mean of zero</u>. This assumption is being met, since we are using the least squares method in our analysis.
- The assumption of <u>constant variance</u> of the error terms, or homoscedasticity. There is a clear wedge-shape in the residuals, which indicates a violation of homoscedasticity (see residual plot below, left). In an attempt to even out the spread of the errors, several transformations were tested, including log(TTR), STR<sup>2</sup>, \( \frac{1}{5}TR, \) and \( \frac{1}{5}TR. \) None of these transformations changed the shape of the residual plot considerably. Therefore, we chose to proceed without transforming any of the variables. We decided to remove 11 economies from our dataset that were (a) identified as extreme points in the univariate plot of the response variable (\( \frac{TTR}{T}; \) see above), and (b) were more than 3 standard deviations away from the fitted residuals line (see residual plot below, left). The removed economies (also highlighted in red on the scatterplot of TTR and STR) are: Afghanistan, Argentina, Croatia, The Gambia, Guinea, Luxembourg, Zambia, Bolivia, France, Belgium and Venezuela. This reduced our sample from 173 observations to 162. This improved the shape of the residual plot a lot; the wedge-shape is far less obvious (see residual plot below, right). While it continued to show some sign of heteroscedosticity, we considered this assumption to be met for the purposes of our regression analysis. Considering the fact that our sample closely overlaps with the population (that is, all countries in the world that impose corporate profit tax), this model will not be used for making predictions. Instead, we are merely interested in analyzing potential relationships between the variables.





- The assumption of <u>independent errors</u> has been met, since there is no reason to expect that in different countries the tax regulations of interest will be dependent on each other. While one can argue that tax regulations can be to some extent driven by global and regional trends, each country would still establish internal rules at its own discretion.
- The assumption of <u>normality</u> of the error terms has been met. The NPP-plot below shows that the data points follow
  the normal line fairly accurately. This is further confirmed by the histogram of residuals, which shows a bell-shaped
  distribution centered around zero.





As a bottom-line, we consider the assumptions of a <u>mean of zero, independence</u> and <u>normality</u> of the error terms to be fully satisfied. The assumption of <u>equal variance</u> is partially satisfied after removing the outliers. While the plot still slightly thickens, we have decided against taking the log of our response variable for interpretation purposes. Despite the fact that inferences may thus be less accurate for high values of our predictors, we consider this assumption to be met for the purposes of our analysis.

<u>Fitting the regression model</u>. We started with fitting the full regression model (Model 1; see above).

1) Fitting Model 1:

TTR^ = 4.774 . 0.766 \* STR - 1.82 \* SingleRate - 0.035 \* STR \* SingleRate - 0.0000000054 \* Population - 0.777 \* Time\_Medium - 0.876 \* Time\_High + 0.465 \* EAAP + 0.077 \* EACA + 2.575 \* LAAC + 0.433 \* MENA + 4.171 \* SOAS - 0.893 \* SSAF - 0.331 \* Number\_Taxes.

The Overall F-test (testing overall usefulness of the model):  $H_0$ :  $B_1 = B_2 = ... = B_{13} = 0$ ;  $H_a$ : at least one beta is not zero.

#### ANOVA

| Model |            | Sum of Squares | df  | Mean Square | F      | Sig.              |
|-------|------------|----------------|-----|-------------|--------|-------------------|
| 1     | Regression | 5051.847       | 13  | 388.604     | 16.698 | .000 <sup>b</sup> |
|       | Residual   | 3444.325       | 148 | 23.272      |        |                   |
|       | Total      | 8496.172       | 161 |             |        |                   |

Since F = 16.7 and p is close to zero, we reject  $H_0$ . This suggests that at least one variable in the model is useful in predicting the average tax cost (Total Tax Rate or TTR). This model explains 55.9% of variability in TTR, after correcting for the sample size and number of predictors (i.e.,  $R^2_{adj} = 0.559$ ), and has a standard error of estimate (SSE) of 4.82.

2) Through removing non-significant predictors from our model, one at a time, we tried to increase the accuracy of our model.

The significance of each variable was tested using the following hypotheses:  $H_0$ :  $\beta_i = 0$ ;  $H_a$ :  $\beta_i \neq 0$ .

The decision to reject or fail to reject the null-hypothesis was based on the t-statistic and the respective p-value of beta of the predictor in question, with 5% level of significance ( $\alpha = 0.05$ ). The predictors for which the probability of obtaining a given t-value was higher than 5% were thus considered as non-significant. For categorical variables, we removed the complete set of predictors when one or more of its levels yielded very high p-value.

First, we removed the interaction term STR \* SingleRate as it had the highest p-value amongst the predictors. This increased  $R^2_{adi}$  to 56.2%, and reduced the standard error of estimate to 4.81.

After refitting the regression model, we continued the process of identifying and removing other non-significant predictors, using the same approach. Second, we removed the time categories ( $Time\_Medium$  and  $Time\_High$ ). This increased  $R^2_{adi}$  to 56.5%, and reduced the standard error of estimate to 4.79.

After refitting the model, once again we used the same approach for identifying the most non-significant predictors in the model. However, this time, whereas the predictors SingleRate, Population, and the region categories were rendered non-significant, removing any of them was resulting in a model with a lower  $R^2_{adj}$  and a higher standard error of the estimate. That being the case, we concluded that despite the fact that these variables are non-significant on their own, after accounting for other variables, their combination increases the accuracy of the model. Therefore, we decided to keep these three predictors in the model. Below is a table summarizing change in  $R^2_{adj}$  and the standard error of estimate (SSE) after removing each of the non-significant predictors. (Note that this is not a cumulative change.)

| Predictor removed             | None  | SingleRate | Population | Region (6 categories) |  |
|-------------------------------|-------|------------|------------|-----------------------|--|
| R <sup>2</sup> <sub>adj</sub> | 56.5% | 56.2%      | 55.7%      | 54.6%                 |  |
| SSE                           | 4.79  | 4.81       | 4.83       | 4.89                  |  |

Accordingly, we found that the following fitted model provides the most accurate estimation of the average tax cost:

#### Model 2:

TTR<sup>^</sup> = 4.794 + 0.733 \* STR - 2.499 \* SingleRate - 0.0000000057 \* Population + 0.457 \* EAAP + 0.108 \* EACA + 2.584 \* LAAC + 0.464 \* MENA + 4.11 \* SOAS - 0.958 \* SSAF - 0.33 \* Number\_Taxes.

The Overall F-test (testing overall usefulness of the model):

 $H_0$ :  $\beta_1 = \beta_2 = ... = \beta_{10} = 0$ ;  $H_a$ : at least one beta is not zero.

#### ANOVA<sup>a</sup>

| Mo | odel       | Sum of Squares | ₫£  | Mean Square | F      | Sig.  |
|----|------------|----------------|-----|-------------|--------|-------|
| 1  | Regression | 5033.831       | 10  | 503.383     | 21.954 | .000b |
|    | Residual   | 3462.341       | 151 | 22.292      |        |       |
|    | Total      | 8496.172       | 161 |             |        |       |

Since F = 21.95 and p is close to zero, we reject  $H_0$ . This suggests that at least one variable in the model is useful in predicting the average tax cost (Total Tax Rate or TTR). This model explains 56.5% of variability in TTR after correcting for the sample size and number of predictors (i.e.,  $R^2_{adj} = 0.565$ ), and has a standard error of estimate (SSE) of 4.79.

Model Summary<sup>b</sup>

| Model | R     | R<br>Square | Adjusted R<br>Square | Std. Error of the Estimate |
|-------|-------|-------------|----------------------|----------------------------|
| 1     | .770ª | .592        | .565                 | 4.78847                    |

#### The nested model

Given that the total tax cost (or Total Tax Rate) is often associated with the statutory tax rate only, we decided to use the Nested F-test to further investigate relationship between *TTR* and *STR* as well as the testing the usefulness of adding the other predictors to the final model (Model 2; see above).

Full model (Model 2):  $TTR = \beta_0 + \beta_1 * STR + \beta_2 * SingleRate + \beta_3 * Population + \beta_4 * EAAP + \beta_5 * EACA + \beta_6 * LAAC + \beta_7 * MENA + \beta_8 * SOAS + \beta_9 * SSAF + \beta_{10} * Number_Taxes + \varepsilon$ .

Nested model:  $TTR = \beta_0 + \beta_1 * STR + \varepsilon$ .

The table below shows the sum of squares, the number of predictors, and  $R^2_{adj}$  both for the full and nested models.

|              | Sum of Squares (Regression) | Sum of Squares (Errors) | Number of predictors | R <sup>2</sup> adj |
|--------------|-----------------------------|-------------------------|----------------------|--------------------|
| Full model   | 5033.831                    | 3462.341                | 10                   | 56.5%              |
| Nested model | 4442.680                    | 4053.492                | 1                    | 52.0%              |

 $H_0$ :  $B_i$ =0 for all predictors in the nested model;

 $H_a$ :  $B_i \ne 0$  for at least one predictor in the nested model.

 $F = ((SSM_{full}-SSM_{nested})/\# \text{ of new predictors})/(SSE_{full}/(n-k-1))$ 

where n is the number of observations = 162; k is the number of predictors in the full model = 10.

F = ((5033.8-4442.7)/9)/(3462.3/(162-10-1)) = 2.86

Critical value of F for  $\alpha = 0.05$ , based on numerator = 9 and denominator (162-10-1) = 151, is 1.94.

F = 2.86 > critical value = 1.94 => Therefore, p < 0.05

Given the p-value is below  $\alpha = 0.05$  and the F-value (2.86) is high, we have enough evidence to reject H<sub>0</sub>. Therefore, the data suggest that one of the tested betas, or some combination of them, is useful in predicting average tax cost, after accounting for the statutory tax rate. Therefore, while STR only explains most of the variability in TTR, adding the combination of SingleRate, Population, Number\_Taxes and regional categories have been found to improve the model by increasing its accuracy.

## **ANOVA**

In addition to regression, we used two-way ANOVA to explore the potential for different average statutory tax rate (STR) and total tax rate (TTR) for the various regions and population sizes throughout the world. For this analysis we returned to the original data set before any observations were removed, however a few adjustments were necessary to accommodate the ANOVA modeling. Due to the low overall size of the dataset some groups had few observations. This became problematic when crossing the factors for two way ANOVA because it yielded even smaller block sizes. For this reason we merged the South Asia region, which had the lowest number of total observations (n=8), with the East Asia & Pacific region (new region: SEAP). This gave a better opportunity to explore a possible interaction between region and population. Next we had to categorize the populations into groups for the ANOVA model. The following categories were defined to give the best overall balance of group sizes: Low = less than 5 million (n=65), Medium = 5 million to less than 20 million (n=53), High = more than 20 million (n=55). Throughout the ANOVA portion of this report we will show output for Statutory Tax Rate on the left and Total Tax Rate as a percentage of corporate profit on the right. This will allow us to look at both of these response variables together and efficiently. We begin with boxplots of each response variable against the two factors of Region & Categorized Population to check for any apparent relationships.



The box plots show some obvious relationships between the response variable and the levels of the predictor Region, while PopCat shows only slight deviations among the levels. We also see a few outliers in the dataset that may need further investigation for possible errors at a later stage. Keeping this in mind, we look for our data meeting assumptions of two-way ANOVA.

- Residuals should have a mean of zero: This is a given of the ANOVA modeling process, which forces the residuals'
  mean to be zero.
- 2. **Data should be obtained via a random process:** This is usually achieved by randomization, but in our case we accept this assumption because our sample is more or less equivalent to the population of interest.
- 3. **Independence:** Countries are certainly influenced to some degree by the decisions of other governments, however each is free to impose their own tax laws. Each country has their own local concerns and traditions that go into the mix of what becomes their unique taxing strategies and laws.
- 4. **Normality of errors:** The errors should follow a normal distribution which is verified by the close alignment of data points to the normal line on an NPP-Plot. This is seen in the two plots below for both the Statutory Tax Rate and the Total Tax Rate satisfying the condition of normality. Also, the histogram of standardized residuals shows to be approximately normal.





- 5. **Tests for equal variance among groups:** Three tests for equal variance were performed and these results are included below. For both response variables, two of these tests agree that there is equal variance. The one test that fails is the standard deviation max/min rule of thumb. Since this dataset has a low number of observations for each group, we accept this discrepancy with the rule of thumb and conclude the dataset does pass the condition of equal variances among groups. Also, to investigate this concern, nonparametric Kruskal-Wallis pairwise comparisons were ran on both STR and TTR for the Region factor. Due to space constraints in this report, full details of the nonparametric analysis is kept to a minimum, however these tests overall agreed with Tukey's posthoc analysis of Region and distributions were checked for a continuous, similar shape.
- a) **Residual plots**: Boxplots were provided above, and although in the statutory vs region boxplot Europe & Central Asia shows a slightly lower variance than others, overall both plots show that equal variance is not grossly violated. Residual to fitted value plots reflect similar measures of spread to the boxplots. There are some outliers across the entire sample space, however since the number of observations is small. Since nonparametric analysis agreed with the findings, we chose to leave these in the final ANOVA analysis.





b) Levene's Test of Equality of Error Variances. Design: Intercept + Region + PopCat + Region\*PopCat Hypothesis for both response variables:  $H_0: \sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_4^2 = \sigma_5^2 = \dots = \sigma_{18}^2$   $H_a:$  not all variances are equal

Dependent Variable: STR

| F     | df1 | df2 | Sig. |  |
|-------|-----|-----|------|--|
| 1.018 | 17  | 155 | .441 |  |

<u>Decision</u>: Pvalue =  $0.441 > 0.05 \rightarrow$  do not reject H<sub>0</sub> <u>Conclusion</u>: There is equal variance among the groups. Dependent Variable: TTR

|   | F     | df1 | df2 | Sig. |
|---|-------|-----|-----|------|
| ı | 1.380 | 17  | 155 | .153 |

<u>Decision</u>: Pvalue =  $0.153 > 0.05 \rightarrow$  do not reject H<sub>0</sub> <u>Conclusion</u>: There is equal variance among the groups.

c) Rule of Thumb:  $S_{max} / S_{min} = .1059 / .0382 = 2.765$ 

**Rule of Thumb:**  $S_{max} / S_{min} = 10.986/2.086 = 5.267$ 

Sia

.001158 .000000

.000690

.995527

.247454

#### Fitting the models: Statutory Tax Rate (STR)

| Source          | Type III Sum<br>of Squares | df  | Mean Square | F        | Sig.    | Source        |        |
|-----------------|----------------------------|-----|-------------|----------|---------|---------------|--------|
| Corrected Model | 4055.800 <sup>a</sup>      | 17  | 238.576     | 6.405    | .000000 | Corrected N   | /lodel |
| Intercept       | 69393.565                  | 1   | 69393.565   | 1863.135 | .000000 | Intercept     |        |
| Region          | 3222.326                   | 5   | 644.465     | 17.303   | .000000 | Region        |        |
| PopCat          | 99.573                     | 2   | 49.787      | 1.337    | .265719 | PopCat        |        |
| Region * PopCat | 140.565                    | 10  | 14.057      | .377     | .954928 | Region * Po   | opCat  |
| Error           | 5773.066                   | 155 | 37.246      |          |         | Error         |        |
| Total           | 106803.679                 | 173 |             |          |         | Total         |        |
| Corrected Total | 222 222                    | 470 | I           |          |         | L Corropted T | Cotol  |

|                    |                |               | _  |
|--------------------|----------------|---------------|----|
| a. R Squared = .23 | 20 (Adjusted R | Squared = .13 | 5) |

Type III Sum

of Squares

2372.182ª

32781.725

1229.883

692.858

8404.856

55160.633

10777.038

.486

|  | а | R Squared = | 413 | (Adjusted | R | Squared | = | 348 |
|--|---|-------------|-----|-----------|---|---------|---|-----|
|--|---|-------------|-----|-----------|---|---------|---|-----|

Region main effect analysis:  $H_0$ :  $\mu_{0ECD}$  =  $\mu_{SEAP}$  =  $\mu_{EACA}$  =  $\mu_{LAAC}$  =  $\mu_{MENA}$  =  $\mu_{SSAF}$  $H_a$ : the  $\mu$  are not all equal

Decision: Pvalue = 1.3778 x  $10^{-13}$  < 0.001  $\rightarrow$  reject H<sub>0</sub> Conclusion: Average STR differs among at least one of the regions.

PopCat main effect analysis:  $H_0$ :  $\mu_{LOW} = \mu_{MED} = \mu_{HIGH}$ 

Decision: Pvalue =  $0.265719 > 0.05 \rightarrow do not reject H_0$ Conclusion: Average STR is similar among population levels.

Decision: Pvalue =  $0.000690 < 0.001 \rightarrow \text{reject H}_0$ Conclusion: Average TTR differs among at least one of the regions.

Total Tax Rate (TTR)

df

17

1

5

2

10

155

173

172

Mean Square

139.540

245.977

.243

69.286

54.225

32781.725

F

2.57

605

4.54

.004

1.28

 $H_a$ : the  $\mu$  are not all equal

Decision: Pvalue =  $0.995527 > 0.05 \rightarrow do not reject H_0$ Conclusion: Average TTR is similar among population levels.

Interaction main effect analysis: Ho: the main effect of each factor is the same for each level of the other factor H<sub>a</sub>: region & population interact

Decision: Pvalue =  $0.954928 > 0.05 \rightarrow$  do not reject H<sub>0</sub> Conclusion: The main effect of Region is the same for the different levels of population.

Decision: Pvalue =  $0.247454 > 0.05 \rightarrow do not reject H_0$ Conclusion: The main effect of Region is the same for the different levels of population.

Main effect analysis results indicate that no interaction is present and only the main effect of region is significant. With this in mind we followed up with post-hoc analysis using Tukey's honest significant difference to interpret the results of region on average tax rates while mitigating the potential for errors from multiple comparisons. Due to the potential for outlier influence, one-way nonparametric Kruskal-Wallis pairwise comparisons were also ran against Regional medians. The output from these tests is included on the following page, but overall the nonparametric analysis of the medians agreed with Tukey's post-hoc analysis of the means using an adjusted-significance PValue at  $\alpha = 0.05$ . What follows is an overview of these differences emphasizing the regions with the lowest average tax rates and moving up, using a significance level for these differences of  $\alpha = 0.05$ 

Pairwise comparison hypothesis: Reject  $H_0$  if PValue is < 0.05  $H_0: \mu_i = \mu_i$  $H_a: \mu_i \neq \mu_i$ Nonparametric Pairwise Comparisons:  $H_0: \Theta_i = \Theta_i$  $H_a: \Theta_i \neq \Theta_i$ Reject H<sub>0</sub> if Adjusted Significance is < 0.05

- - Europe & Central Asia: Lowest overall average tax rates, with a significantly lower average Statutory Tax Rate than all other regions except the Middle East & North Africa. Also, a significantly lower average Total Tax Rate than all other regions except High Income OECD, & the Middle East & North Africa.
  - The Middle East & North Africa: Significantly lower average Statutory Tax Rate than the Latin America & Caribbean, and the Sub-Saharan Africa. However, The Total Tax Rate is similar to all other regions.
  - High Income OECD: Significantly lower average Statutory Tax Rate than Sub-Saharan Africa. Similar average Total Tax Rates to all other regions.
  - South & East Asia, & Pacific: Significantly lower average Statutory Tax Rate than Latin America & Caribbean, and Sub-Saharan Africa. Does not have a significantly lower average Total Tax rate from other regions.
  - Sub-Saharan Africa: Not significantly lower than any other region in either average Tax rate.
  - Latin America & Caribbean: Not significantly lower than any other region in either average Tax rate.

# Tukey's Post-Hoc Analysis:

# Statutory Tax Rate (STR)

# Total Tax Rate (TTR)

|                            |                                 | Mean<br>Difference (I- |            |       | 95% Confide | ence Interval | Mean<br>Difference (I- |            |       | 95% Confid  | ence Interval |
|----------------------------|---------------------------------|------------------------|------------|-------|-------------|---------------|------------------------|------------|-------|-------------|---------------|
| (I) Region                 | (J) Region                      | J)                     | Std. Error | Sig.  | Lower Bound | Upper Bound   | J)                     | Std. Error | Sig.  | Lower Bound | Upper Bound   |
| Europe & Central Asia      | High income: OECD               | -8.9927                | 1.65268    | .000  | -13.7618    | -4.2235       | -5.2466                | 1.99411    | .096  | -11.0011    | .5078         |
|                            | Latin America &<br>Caribbean    | -13.3103*              | 1.66558    | .000  | -18.1167    | -8.5040       | -10.4897               | 2.00968    | .000  | -16.2890    | -4.6903       |
|                            | Middle East & North Africa      | -5.2933                | 1.99320    | .090  | -11.0451    | .4585         | -5.5351                | 2.40499    | .200  | -12.4752    | 1.4050        |
|                            | South & East Asia, &<br>Pacific | -8.0086 <sup>*</sup>   | 1.66558    | .000  | -12.8150    | -3.2023       | -7.0212 <sup>*</sup>   | 2.00968    | .008  | -12.8205    | -1.2218       |
|                            | Sub-Saharan Africa              | -13.7778               | 1.52233    | .000  | -18.1708    | -9.3848       | -7.8034                | 1.83684    | .001  | -13.1040    | -2.5028       |
| High income: OECD          | Europe & Central Asia           | 8.9927                 | 1.65268    | .000  | 4.2235      | 13.7618       | 5.2466                 | 1.99411    | .096  | 5078        | 11.0011       |
|                            | Latin America &<br>Caribbean    | -4.3177                | 1.58929    | .078  | -8.9039     | .2685         | -5.2430                | 1.91763    | .074  | -10.7767    | .2907         |
|                            | Middle East & North Africa      | 3.6993                 | 1.92991    | .396  | -1.8698     | 9.2685        | 2884                   | 2.32862    | 1.000 | -7.0082     | 6.4313        |
|                            | South & East Asia, &<br>Pacific | .9840                  | 1.58929    | .989  | -3.6022     | 5.5703        | -1.7745                | 1.91763    | .939  | -7.3082     | 3.7592        |
|                            | Sub-Saharan Africa              | -4.7851                | 1.43847    | .014  | -8.9361     | 6341          | -2.5568                | 1.73565    | .682  | -7.5654     | 2.4518        |
| Latin America &            | Europe & Central Asia           | 13.3103                | 1.66558    | .000  | 8.5040      | 18.1167       | 10.4897                | 2.00968    | .000  | 4.6903      | 16.2890       |
| Caribbean                  | High income: OECD               | 4.3177                 | 1.58929    | .078  | 2685        | 8.9039        | 5.2430                 | 1.91763    | .074  | 2907        | 10.7767       |
|                            | Middle East & North Africa      | 8.0170                 | 1.94097    | .001  | 2.4160      | 13.6181       | 4.9546                 | 2.34197    | .285  | -1.8036     | 11.7128       |
|                            | South & East Asia, &<br>Pacific | 5.3017                 | 1.60270    | .015  | .6768       | 9.9266        | 3.4685                 | 1.93382    | .473  | -2.1119     | 9.0489        |
|                            | Sub-Saharan Africa              | 4674                   | 1.45328    | 1.000 | -4.6612     | 3.7263        | 2.6862                 | 1.75352    | .644  | -2.3739     | 7.7464        |
| Middle East & North Africa | Europe & Central Asia           | 5.2933                 | 1.99320    | .090  | 4585        | 11.0451       | 5.5351                 | 2.40499    | .200  | -1.4050     | 12.4752       |
|                            | High income: OECD               | -3.6993                | 1.92991    | .396  | -9.2685     | 1.8698        | .2884                  | 2.32862    | 1.000 | -6.4313     | 7.0082        |
|                            | Latin America &<br>Caribbean    | -8.0170                | 1.94097    | .001  | -13.6181    | -2.4160       | -4.9546                | 2.34197    | .285  | -11.7128    | 1.8036        |
|                            | South & East Asia, &<br>Pacific | -2.7153                | 1.94097    | .728  | -8.3163     | 2.8858        | -1.4861                | 2.34197    | .988  | -8.2443     | 5.2721        |
|                            | Sub-Saharan Africa              | -8.4844                | 1.81954    | .000  | -13.7351    | -3.2338       | -2.2683                | 2.19545    | .906  | -8.6037     | 4.0671        |
| South & East Asia, &       | Europe & Central Asia           | 8.0086                 | 1.66558    | .000  | 3.2023      | 12.8150       | 7.0212                 | 2.00968    | .008  | 1.2218      | 12.8205       |
| Pacific                    | High income: OECD               | 9840                   | 1.58929    | .989  | -5.5703     | 3.6022        | 1.7745                 | 1.91763    | .939  | -3.7592     | 7.3082        |
|                            | Latin America &<br>Caribbean    | -5.3017                | 1.60270    | .015  | -9.9266     | 6768          | -3.4685                | 1.93382    | .473  | -9.0489     | 2.1119        |
|                            | Middle East & North Africa      | 2.7153                 | 1.94097    | .728  | -2.8858     | 8.3163        | 1.4861                 | 2.34197    | .988  | -5.2721     | 8.2443        |
|                            | Sub-Saharan Africa              | -5.7692 <sup>*</sup>   | 1.45328    | .002  | -9.9629     | -1.5754       | 7823                   | 1.75352    | .998  | -5.8424     | 4.2779        |
| Sub-Saharan Africa         | Europe & Central Asia           | 13.7778                | 1.52233    | .000  | 9.3848      | 18.1708       | 7.8034                 | 1.83684    | .001  | 2.5028      | 13.1040       |
|                            | High income: OECD               | 4.7851                 | 1.43847    | .014  | .6341       | 8.9361        | 2.5568                 | 1.73565    | .682  | -2.4518     | 7.5654        |
|                            | Latin America &<br>Caribbean    | .4674                  | 1.45328    | 1.000 | -3.7263     | 4.6612        | -2.6862                | 1.75352    | .644  | -7.7464     | 2.3739        |
|                            | Middle East & North Africa      | 8.4844                 | 1.81954    | .000  | 3.2338      | 13.7351       | 2.2683                 | 2.19545    | .906  | -4.0671     | 8.6037        |
|                            | South & East Asia, &<br>Pacific | 5.7692*                | 1.45328    | .002  | 1.5754      | 9.9629        | .7823                  | 1.75352    | .998  | -4.2779     | 5.8424        |

| Sample1-Sample2                                            | Test<br>Statistic | Std. ⊜<br>Error | Std. Test⊜<br>Statistic | Sig. ⊜ | Adj.Sig.⊜ |
|------------------------------------------------------------|-------------------|-----------------|-------------------------|--------|-----------|
| Europe & Central Asia-Middle<br>East & North Africa        | -33.867           | 16.233          | -2.086                  | .037   | .554      |
| Europe & Central Asia-South &<br>East Asia, & Pacific      | -48.462           | 13.565          | -3.573                  | .000   | .005      |
| Europe & Central Asia-High income: OECD                    | -52.700           | 13.460          | -3.915                  | .000   | .001      |
| Europe & Central Asia-Latin<br>America & Caribbean         | -86.893           | 13.565          | -6.406                  | .000   | .000      |
| Europe & Central Asia-Sub-<br>Saharan Africa               | -89.711           | 12.398          | -7.236                  | .000   | .000      |
| Middle East & North Africa-South<br>& East Asia, & Pacific | -14.595           | 15.808          | 923                     | .356   | 1.000     |
| Middle East & North Africa-High income: OECD               | 18.833            | 15.717          | 1.198                   | .231   | 1.000     |
| Middle East & North Africa-Latin<br>America & Caribbean    | 53.026            | 15.808          | 3.354                   | .001   | .012      |
| Middle East & North Africa-Sub-<br>Saharan Africa          | -55.844           | 14.819          | -3.769                  | .000   | .002      |
| South & East Asia, & Pacific-High income: OECD             | 4.238             | 12.943          | .327                    | .743   | 1.000     |
| South & East Asia, & Pacific-Latin<br>America & Caribbean  | 38.431            | 13.053          | 2.944                   | .003   | .049      |
| South & East Asia, & Pacific-Sub-<br>Saharan Africa        | -41.249           | 11.836          | -3.485                  | .000   | .007      |
| High income: OECD-Latin<br>America & Caribbean             | -34.193           | 12.943          | -2.642                  | .008   | .124      |
| High income: OECD-Sub-Saharan<br>Africa                    | -37.011           | 11.715          | -3.159                  | .002   | .024      |
| Latin America & Caribbean-Sub-<br>Saharan Africa           | -2.818            | 11.836          | 238                     | .812   | 1.000     |

| Sample1-Sample2                                            | Test<br>Statistic | Std. ⊜<br>Error | Std. Test<br>Statistic | Sig. ⊜ | Adj.Sig.⊜ |
|------------------------------------------------------------|-------------------|-----------------|------------------------|--------|-----------|
| Europe & Central Asia-High<br>income: OECD                 | -36.823           | 13.563          | -2.715                 | .007   | .099      |
| Europe & Central Asia-Middle<br>East & North Africa        | -37.540           | 16.357          | -2.295                 | .022   | .326      |
| Europe & Central Asia-South &<br>East Asia, & Pacific      | -47.971           | 13.669          | -3.510                 | .000   | .007      |
| Europe & Central Asia-Sub-<br>Saharan Africa               | -52.673           | 12.493          | -4.216                 | .000   | .000      |
| Europe & Central Asia-Latin<br>America & Caribbean         | -72.523           | 13.669          | -5.306                 | .000   | .000      |
| High income: OECD-Middle East<br>& North Africa            | 717               | 15.838          | 045                    | .964   | 1.000     |
| High income: OECD-South & East<br>Asia, & Pacific          | -11.148           | 13.043          | 855                    | .393   | 1.000     |
| High income: OECD-Sub-Saharan<br>Africa                    | -15.850           | 11.805          | -1.343                 | .179   | 1.000     |
| High income: OECD-Latin<br>America & Caribbean             | -35.699           | 13.043          | -2.737                 | .006   | .093      |
| Middle East & North Africa-South<br>& East Asia, & Pacific | -10.431           | 15.929          | 655                    | .513   | 1.000     |
| Middle East & North Africa-Sub-<br>Saharan Africa          | -15.133           | 14.932          | -1.013                 | .311   | 1.000     |
| Middle East & North Africa-Latin<br>America & Caribbean    | 34.983            | 15.929          | 2.196                  | .028   | .421      |
| South & East Asia, & Pacific-Sub-<br>Saharan Africa        | -4.702            | 11.926          | 394                    | .693   | 1.000     |
| South & East Asia, & Pacific-Latin<br>America & Caribbean  | 24.552            | 13.153          | 1.867                  | .062   | .929      |
| Sub-Saharan Africa-Latin<br>America & Caribbean            | 19.849            | 11.926          | 1.664                  | .096   | 1.000     |

#### CONCLUSION

In our regression analyses, we have come to two models explaining the Total Tax Rate (TTR). The first model explains the most of the variation (54.6%) in the TTR: TTR^ = 4.794 + 0.733 \* STR - 2.499 \* SingleRate - 0.0000000057 \* Population + 0.457 \* EAAP + 0.108 \* EACA + 2.584 \* LAAC + 0.464 \* MENA + 4.11 \* SOAS - 0.958 \* SSAF - 0.33 \* Number\_Taxes. The second (nested) model, whilst shorter, explains only 52% of the variation in TTR: TTR^ = 0.599 + 0.702 \* STR. We concluded with a Nested F-test showing the usefulness of adding another 9 variables to the subset model. While the subset model with only one predictor, in this case STR, would be easier to interpret and more convenient for practical use, the full model did turn out to explain another 4.5% of the variation in the response variable, TTR. In other words, this is a choice between accuracy and ease of use that really is up to the user of the model and the context in which it will be applied. In building these models, we were surprised not to find a significant interaction between the Statutory Tax Rate (STR) and whether or not the economy upholds a single or progressive rate system. In our preliminary discussions we did expect to find some indication that the two would be significantly related.

The fitted two-way ANOVA models for STR and TTR returned similar results. There was a significant main effect for the regions, a non-significant main effect for population categories and a non-significant interaction between regions and population categories. The main effects are interpreted as different average STR and TTR among regions and similar mean tax rates amongst population levels. This is particularly interesting because one would have thought population categories is analogous to regions in that if a region pays more taxes, then population categories from it should reflect a similar significant tax amount. We also initially predicted there would be an interaction between region and population such that tax rates in different regions would adjust to reflect the various population levels within each region.

The largest issue of concern in analysis of this dataset was the outliers in the data, shown in the scatterplot for both regression and ANOVA. Outlier mediation & nonparametrics were used to mitigate this concern. Overall, we felt that this comes down to the fact that this dataset was relatively small for the number of predictors and levels. Future analysis could incorporate multiple years' worth of data to validate the significance of these findings.

## Dataset snapshot:

|    | Economy             | TTR   | STR   | SingleRate | Number_Taxes | TimeHours | Region                       | Population | PopCat | SOAS | EAAP | MENA | EACA | LAAC | SSAF | OECD | Time_Low | Time_Medium | Time_High |
|----|---------------------|-------|-------|------------|--------------|-----------|------------------------------|------------|--------|------|------|------|------|------|------|------|----------|-------------|-----------|
| 1  | Afghanistan         | .00   | 20.00 | 1          | 4            | 77        | South & East Asia, & Pacific | 27208325   | High   | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 1           | 0         |
| 2  | Albania             | 9.48  | 10.00 | 1          | 8            | 119       | Europe & Central Asia        | 3143291    | Low    | 0    | 0    | 0    | 1    | 0    | 0    | 0    | 0        | 0           | 1         |
| 3  | Algeria             | 6.59  | 19.00 | 1          | 11           | 152       | Middle East & North Africa   | 34361756   | High   | 0    | 0    | 1    | 0    | 0    | 0    | 0    | 0        | 0           | 1         |
| 4  | Angola              | 25.26 | 35.00 | 1          | 7            | 75        | Sub-Saharan Africa           | 18020668   | Med    | 0    | 0    | 0    | 0    | 0    | 1    | 0    | 0        | 1           | 0         |
| 5  | Antigua and Barbuda | 26.00 | 25.00 | 1          | 11           | 23        | Latin America & Caribbean    | 85536      | Low    | 0    | 0    | 0    | 0    | 1    | 0    | 0    | 1        | 0           | 0         |
| 6  | Argentina           | .00   | 35.00 | 1          | 10           | 105       | Latin America & Caribbean    | 39876118   | High   | 0    | 0    | 0    | 0    | 1    | 0    | 0    | 0        | 0           | 1         |
| 7  | Armenia             | 19.55 | 20.00 | 1          | 5            | 121       | Europe & Central Asia        | 3077087    | Low    | 0    | 0    | 0    | 1    | 0    | 0    | 0    | 0        | 0           | 1         |
| 8  | Australia           | 26.10 | 30.00 | 1          | 10           | 37        | High income: OECD            | 21374000   | High   | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 0        | 1           | 0         |
| 9  | Austria             | 15.40 | 25.00 | 1          | 13           | 47        | High income: OECD            | 8344319    | Med    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 0        | 1           | 0         |
| 10 | Azerbaijan          | 12.94 | 20.00 | 1          | 7            | 60        | Europe & Central Asia        | 8678851    | Med    | 0    | 0    | 0    | 1    | 0    | 0    | 0    | 0        | 1           | 0         |