

VERY LOW DROP 1.5A REGULATORS

- PRECISE 5, 8.5, 10, 12V OUTPUTS
- LOW DROPOUT VOLTAGE (500mV Typ. at 1.5A)
- VERY LOW QUIESCENT CURRENT
- THERMAL SHUTDOWN
- SHORT CIRCUIT PROTECTION
- REVERSE POLARITY PROTECTION

DESCRIPTION

The L4940 series of three terminal positive regulators is available in TO-220, TO-220FP and D²PAK packages and with several fixed output voltages, making it useful in a wide range of industrial and consumer applications. Thanks to its very low input/output voltage drop, these devices are particularly suitable for batteries powered equipment, reducing consumption and prolonging battery life. Each type employs internal current limiting, antisaturation circuit, thermal shut-down and safe area protection.

Figure 1: Block Diagram

February 2005 1/18

Table 1: Absolute Maximum Ratings

Symbol	Parameter			Value	Unit
V _I	Forward Input Voltage			30	V
	Reverse Input Voltage	V _O =5V	R _O =100Ω	-15	V
V		V _O =8.5V	R _O =180Ω	-15	V
V_{IR}		V _O =10V	R _O =200Ω	-15	V
		V _O =12V	R _O =240Ω	-15	V
I _O	Output Current			Internally Limited	mA
P_{D}	Power Dissipation			Internally Limited	mW
T _{stg}	Storage Temperature Range			-40 to +150	°C
T _{op}	Operating Junction Temperature Range			-40 to +150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 2: Thermal Data

Symbol	Parameter	TO-220	TO-220FP	D ² PAK	Unit
R _{thj-case}	Thermal Resistance Junction-case	3	5	3	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	50	60	62.5	°C/W

Figure 2: Connection Diagram (top view)

Table 3: Order Codes

TO-220	TO-220FP	D ² PAK (*)	D ² PAK/A (**)	OUTPUT VOLTAGE
L4940V5	L4940P5	L4940D2T5	L4940D2M5	5 V
L4940V85	L4940P85	L4940D2T85	L4940D2M85	8.5 V
L4940V10	L4940P10	L4940D2T10	L4940D2M10	10 V
L4940V12	L4940P12	L4940D2T12	L4940D2M12	12 V

^(*) Available in Tape & Reel with the suffix "-TR".

^(**) Available on Request.

TEST CIRCUITS

Figure 3: DC Parameter

Figure 4: Load Rejection

Figure 5: Ripple Rejection

Table 4: Electrical Characteristics Of L4940V5 (Refer to test circuit, V_I =7V, C_I = 0.1 μ F, C_O = 22 μ F, T_J = 25°C, unless otherwise specified.)

Symbol	Parameter	Test C	onditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	I _O = 500 mA		4.9	5	5.1	V
Vo	Output Voltage	$I_O = 5$ mA to 1.5A	V _I = 6.5 to 15V	4.8	5	5.2	V
VI	Input Voltage	I _O = 5 mA				17	V
ΔV_{O}	Line Regulation	V _I = 6 to 17V	$I_O = 5 \text{ mA}$		4	10	mV
ΔV_{O}	Load Regulation	$I_O = 5$ mA to 1.5A			8	25	mV
		I _O = 0.5A to 1A			5	15	mV
Iq	Quiescent Current	I _O = 5 mA			5	8	mA
		I _O = 1.5A	V _I = 6.5V		30	50	mA
Δl_q	Quiescent Current Change	I _O = 5 mA				3	mA
		I _O = 1.5A	V _I = 6.5 to 16V			15	mA
$\Delta V_{O}/\Delta T$	Output Voltage Drift				0.5		mv/°C
SVR	Supply Voltage Rejection	f = 120Hz	I _O = 1A	58	68		dB
V _d	Dropout Voltage	I _O = 0.5A			200	400	mV
		I _O = 1.5A			500	900	mV
I _{sc}	Short Circuit Current	V _I = 14V			2	2.7	Α
		V _I = 6.5V			2.2	2.9	

Table 5: Electrical Characteristics Of L4940V85 (Refer to test circuit, V_I =10.5V, C_I = 0.1 μ F, C_O = 22 μ F, T_J = 25 $^{\circ}$ C, unless otherwise specified.)

Symbol	Parameter	Test C	onditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	I _O = 500 mA		8.3	8.5	8.7	V
Vo	Output Voltage	$I_O = 5$ mA to 1.5A	V _I = 10.2 to 16V	8.15	8.5	8.85	V
VI	Input Voltage	I _O = 5 mA				17	V
ΔV_{O}	Line Regulation	V _I = 9.5 to 17V	$I_O = 5 \text{ mA}$		4	9	mV
ΔV_{O}	Load Regulation	$I_O = 5mA \text{ to } 1.5A$			12	30	mV
		I _O = 0.5A to 1A			8	16	mV
Iq	Quiescent Current	I _O = 5 mA			4	8	mA
		I _O = 1.5A	V _I = 10.2V		30	50	mA
Δl_q	Quiescent Current Change	I _O = 5 mA				2.5	mA
		I _O = 1.5A	V _I = 10.2 to 16V			15	mA
$\Delta V_{O}/\Delta T$	Output Voltage Drift				0.8		mv/°C
SVR	Supply Voltage Rejection	f = 120Hz	I _O = 1A	58	66		dB
V_d	Dropout Voltage	I _O = 0.5A			200	400	mV
		I _O = 1.5A			500	900	mV
I _{sc}	Short Circuit Current	V _I = 14V			2	2.7	Α
		V _I = 10.2V			2.2	2.9	

Table 6: Electrical Characteristics Of L4940V10 (Refer to test circuit, V_I =12V, C_I = 0.1 μ F, C_O = 22 μ F, T_J = 25°C, unless otherwise specified.)

Symbol	Parameter	Test Co	onditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	I _O = 500 mA		9.8	10	10.2	V
Vo	Output Voltage	$I_O = 5$ mA to 1.5A	V _I = 11.7 to 15V	9.6	10	10.4	V
VI	Input Voltage	$I_O = 5 \text{ mA}$				17	V
ΔV_{O}	Line Regulation	V _I = 11 to 17V	I _O = 5 mA		3	8	mV
ΔV_{O}	Load Regulation	$I_O = 5$ mA to 1.5A			15	35	mV
		$I_{O} = 0.5A \text{ to } 1A$			10	20	mV
Iq	Quiescent Current	$I_O = 5 \text{ mA}$			5	8	mA
		I _O = 1.5A	V _I = 11.7V		30	50	mA
ΔI_q	Quiescent Current Change	I _O = 5 mA				2	mA
		I _O = 1.5A	V _I = 11.7 to 16V			13	mA
$\Delta V_{O}/\Delta T$	Output Voltage Drift				1		mv/°C
SVR	Supply Voltage Rejection	f = 120Hz	I _O = 1A	56	62		dB
V _d	Dropout Voltage	I _O = 0.5A			200	400	mV
		I _O = 1.5A			500	900	mV
I _{sc}	Short Circuit Current	V _I = 14V			2	2.7	Α
		V _I = 11.7V			2.2	2.9	

Table 7: Electrical Characteristics Of L4940V12 (Refer to test circuit, V_I =14V, C_I = 0.1 μ F, C_O = 22 μ F, T_J = 25°C, unless otherwise specified.)

Symbol	Parameter	Test Co	onditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	I _O = 500 mA		11.75	12	12.25	V
Vo	Output Voltage	$I_O = 5$ mA to 1.5A	V _I = 13.8 to 15V	11.5	12	12.5	V
V _I	Input Voltage	I _O = 5 mA				17	V
ΔV_{O}	Line Regulation	V _I = 13 to 17V	I _O = 5 mA		3	7	mV
ΔV_{O}	Load Regulation	$I_{O} = 5 \text{mA to } 1.5 \text{A}$			15	35	mV
		I _O = 0.5A to 1A			10	25	mV
Iq	Quiescent Current	I _O = 5 mA			4	8	mA
		I _O = 1.5A	V _I = 13.8V		30	50	mA
Δl_q	Quiescent Current Change	I _O = 5 mA				1.5	mA
		I _O = 1.5A	V _I = 13.8 to 16V			10	mA
$\Delta V_O/\Delta T$	Output Voltage Drift				1.2		mv/°C
SVR	Supply Voltage Rejection	f = 120Hz	I _O = 1A	55	61		dB
V _d	Dropout Voltage	I _O = 0.5A			200	400	mV
		I _O = 1.5A			500	900	mV
I _{sc}	Short Circuit Current	V _I = 14V			2	2.7	Α
Z _O	Output Impedance	f = 120Hz	I _O = 0.5A		40		mΩ

TYPICAL CHARACTERISTICS

Figure 6: Dropout Voltage vs Output Current

Figure 7: Dropout Voltage vs Temperature

Figure 8: Output Voltage vs Temperature (L4940V5)

Figure 9: Output Voltage vs Temperature (L4940V85)

Figure 10: Output Voltage vs Temperature (L4940V10)

Figure 11: Output Voltage vs Temperature (L4940V12)

47/

Figure 12: Quiescent Current vs Temperature (L4940V5)

Figure 13: Quiescent Current vs Input Voltage (L4940V5)

Figure 14: Quiescent Current vs Output Current (L4940V5)

Figure 15: Short Circuit Current vs Temperature (L4940V5)

Figure 16: Peak Output Current vs Input/Output Differential Voltage (L4940V5)

Figure 17: Low Voltage Behavior (L4940V5)

Figure 18: Low Voltage Behavior (L4940V85)

Figure 19: Low Voltage Behavior (L4940V10)

Figure 20: Low Voltage Behavior (L4940V12)

Figure 21: Supply Voltage Rejection vs Frequency (L4940V5)

Figure 22: Supply Voltage Rejection vs Output Current (L4940V5)

Figure 23: Lad Dump Characteristics (L4940V5)

Figure 24: Line Transient Response (L4940V5)

Figure 25: Total Power Dissipation

t (µs)

20 40 60

Figure 26: Load Transient Response

Figure 27: Distributed Supply with On-card L4940 and L4941 low drop regulator

Figure 28: Distributed Supply with On-card L4940 and L4941 low drop regulator

ADVANTAGES OTF THESE APPLICATION ARE:

On card regulation with short-circuit and thermal protection on each output.

Vary high total system efficiency due to the switching preregulation and very low-drop postregulation

Figure 29: Distributed Supply with On-card L4940 and L4941 low drop regulator

ADVANTAGES OF THIS CONFIGURATION ARE: Very high regulation (line and load on both the output voltage 12V output short circuit and thermally protected Very high efficiency on the 12 V output due to the low drop regulator

TO-220 MECHANICAL DATA

DIM		mm.			inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А	4.40		4.60	0.173		0.181		
С	1.23		1.32	0.048		0.051		
D	2.40		2.72	0.094		0.107		
D1		1.27			0.050			
E	0.49		0.70	0.019		0.027		
F	0.61		0.88	0.024		0.034		
F1	1.14		1.70	0.044		0.067		
F2	1.14		1.70	0.044		0.067		
G	4.95		5.15	0.194		0.203		
G1	2.4		2.7	0.094		0.106		
H2	10.0		10.40	0.393		0.409		
L2		16.4			0.645			
L4	13.0		14.0	0.511		0.551		
L5	2.65		2.95	0.104		0.116		
L6	15.25		15.75	0.600		0.620		
L7	6.2		6.6	0.244		0.260		
L9	3.5		3.93	0.137		0.154		
DIA.	3.75		3.85	0.147		0.151		

TO-220FP MECHANICAL DATA

DIM		mm.			inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А	4.40		4.60	0.173		0.181		
В	2.5		2.7	0.098		0.106		
D	2.5		2.75	0.098		0.108		
Е	0.45		0.70	0.017		0.027		
F	0.75		1	0.030		0.039		
F1	1.15		1.50	0.045		0.059		
F2	1.15		1.50	0.045		0.059		
G	4.95		5.2	0.194		0.204		
G1	2.4		2.7	0.094		0.106		
Н	10.0		10.40	0.393		0.409		
L2		16			0.630			
L3	28.6		30.6	1.126		1.204		
L4	9.8		10.6	0.385		0.417		
L5	2.9		3.6	0.114		0.142		
L6	15.9		16.4	0.626		0.645		
L7	9		9.3	0.354		0.366		
DIA.	3		3.2	0.118		0.126		

D²PAK MECHANICAL DATA

DIM		mm.		inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А	4.4		4.6	0.173		0.181	
A1	2.49		2.69	0.098		0.106	
A2	0.03		0.23	0.001		0.009	
В	0.7		0.93	0.027		0.036	
B2	1.14		1.7	0.044		0.067	
С	0.45		0.6	0.017		0.023	
C2	1.23		1.36	0.048		0.053	
D	8.95		9.35	0.352		0.368	
D1		8			0.315		
Е	10		10.4	0.393		0.409	
E1		8.5			0.335		
G	4.88		5.28	0.192		0.208	
L	15		15.85	0.590		0.624	
L2	1.27		1.4	0.050		0.055	
L3	1.4		1.75	0.055		0.068	
М	2.4		3.2	0.094		0.126	
R		0.4			0.016		
V2	0°		8°	0°		8°	

D²PAK/A MECHANICAL DATA

DIM		mm.		inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
A1	2.49		2.69	0.098		0.106
A2	0.03		0.23	0.001		0.009
В	0.7		0.93	0.028		0.037
B1	0.8		1.3	0.031		0.051
B2	1.14		1.7	0.045		0.067
С	0.45		0.60	0.018		0.024
C2	1.23		1.36	0.048		0.054
D	8.95		9.35	0.352		0.368
D1		8			0.315	
Е	10		10.4	0.394		0.409
E1		8.5			0.335	
G	4.88		5.28	0.192		0.208
L	15		15.85	0.591		0.624
L2	1.27		1.4	0.050		0.055
М	2.4		3.2	0.094		0.126
R		0.4			0.016	
V2	0°		8°	0°		8°

Tape & Reel D²PAK-P²PAK-D²PAK/A-P²PAK/A MECHANICAL DATA

DIM.		mm.		inch		
DIWI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			180			7.086
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
Т			14.4			0.567
Ao	10.50	10.6	10.70	0.413	0.417	0.421
Во	15.70	15.80	15.90	0.618	0.622	0.626
Ko	4.80	4.90	5.00	0.189	0.193	0.197
Ро	3.9	4.0	4.1	0.153	0.157	0.161
Р	11.9	12.0	12.1	0.468	0.472	0.476

Table 8: Revision History

Date	Revision	Description of Changes
04-Feb-2005	6	Add new package D ² PAK/A.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

