COVID19 DEATH RATE ANALYSIS USING DATA MINING **TECHNIQUES**

AKSHAY JOSEPH

BACKGROUND

- **US** among worst affected countries.
- Jan 21st first case reported.
- Mar 13th declared as national emergency.
- Lock down and other strict measures imposed.
- More than 15 million affected in US today.

Source: https://abcnews.go.com/Health/timeline-coronavirus-started/story?id=69435165

Source: https://www.worldometers.info/coronavirus/?utm_campaign=homeAdvegas1?

DATASET

FEATURES

- NCHS urbanization (Noncore, Small Metro,, Metropolitan)
- Total Population
- Confirmed cases

RESPONSE VARIABLE

• Death rate (Low, Medium and High)

MORE ABOUT DATASET

- Many missing values
- Death rate the response variable to be converted into factors
- Dataset contains many info that was not necessary for this analysis

1. CONFIRMED CASES AND POPULATION PLOT

2. BOX PLOT OF POPULATION IN ALL REGION TYPE

3. BOX PLOT OF CONFIRMED CASES IN ALL REGION TYPE

4. BOX PLOT OF COFIRMED CASES IN ALL CATEGORY OF DEATH RATE

BOX PLOT OF POPULATION RATE IN ALL REGION

BOX PLOT OF CONFIRMED CASES RATE IN ALL REGION

BOX PLOT OF CONFIRMED CASES RATE AGAINST DEATH RATE

BOX PLOT OF DEATH RATE IN ALL REGION

DATA PREPROCESSING

TAKING CARE OF MISSING VALUE

- Median imputation on missing value
- apply(data, 2, function(x) any(is.na(x)))

		(3)	95,2**2**	
state	county_name	fips_code	lat	lon
FALSE	FALSE	 FALSE 	TRUE	TRUE
NCHS_urbanization	total_population	confirmed confirm	ed_per_100000	deaths
FALSE	TRUE	FALSE	TRUE	TRUE
deathrate				
TRUE				

DATA PREPROCESSING

CATEGORIZE NUMERIC RESPONSE VARIABLE

- Using KNN cluster centroid
- Categorized into 3 clusters (Low, Medium and High)
- data\$classification = ifelse(data\$deathrate<=70,'low',

ifelse(data\$deathrate > 71&data\$deathrate < 150, 'medium', 'high')

)

RULE BASED CLASSIFIER

- · Class decision based on if .. then rule
- IF part of the rule is Rule antecedent
- THEN part of the rule is Rule consequent

• rulesFit <- data2 %>% train(data.classification ~ .,

```
method = "PART", data = .,
```

tuneLength = 5,na.action = na.pass,

trControl = trainControl(method = "cv", indexOut = train)

RULE-BASED CLASSIFIER

```
Rule-Based Classifier
3196 samples
  3 predictor
   3 classes: 'high', 'low', 'medium'
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 2877, 2876, 2877, 2877, 2875, 2877, ...
Resampling results across tuning parameters:
 threshold pruned Accuracy Kappa
 0.010
            ves
                   0.659
                             0.1023
 0.010
                   0.654
                           0.0863
            no
 0.133
                0.658
                          0.1168
            yes
 0.133
            no
                 0.654
                          0.0863
 0.255
                 0.659
                          0.1107
            yes
 0.255
                  0.654
                           0.0863
            no
 0.378
                  0.661
                           0.1159
            yes
 0.378
                  0.654
                           0.0863
            no
 0.500
                 0.661
                           0.1159
            yes
 0.500
                   0.654
                             0.0863
            no
Accuracy was used to select the optimal model using the largest value.
```

CLASSIFICATION WITH DECISION TREE

> rulesFit\$results								
	threshold	pruned	Accuracy	Kappa	AccuracySD	KappaSD		
1	0.010	yes	0.659	0.1023	0.01565	0.0635		
2	0.010	no	0.654	0.0863	0.00861	0.0575		
3	0.133	yes	0.658	0.1168	0.00994	0.0519		
4	0.133	no	0.654	0.0863	0.00861	0.0575		
5	0.255	yes	0.659	0.1107	0.00983	0.0564		
6	0.255	no	0.654	0.0863	0.00861	0.0575		
7	0.378	yes	0.661	0.1159	0.00941	0.0518		
8	0.378	no	0.654	0.0863	0.00861	0.0575		
9	0.500	yes	0.661	0.1159	0.00941	0.0518		
10	0.500	no	0.654	0.0863	0.00861	0.0575		

CLASSIFICATION WITH DECISION TREE

- Uses binary recursive partitioning
- Splits data into partitions to create branches
- · Consists of Root Nodes, Internal Node and Leaf Node

CLASSIFICATION WITH DECISION TREE

```
C4.5-like Trees
3196 samples
   3 predictor
   3 classes: 'high', 'low', 'medium'
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 2876, 2877, 28
Resampling results across tuning parame
         M Accuracy
                     Kappa
  0.010 1 0.645
                     0.0000
  0.010 2 0.645
                     0.0000
  0.010 3 0.645
                     0.0000
  0.010 4 0.645
                     0.0000
  0.010 5 0.645
                     0.0000
  0.133 1 0.655
                     0.0599
  0.133 2 0.654
                     0.0583
  0.133
        3 0.654
                     0.0558
  0.133 4 0.652
                     0.0419
  0.133 5 0.650
                     0.0438
  0.255
        1 0.682
                     0.2126
  0.255 2 0.679
                     0.2087
  0.255 3 0.672
                     0.1722
```

> C45Fit

```
0.010 4 0.645
                  0.0000
0.010
     5
        0.645
                  0.0000
0.133 1 0.655
                  0.0599
0.133 2 0.654
                  0.0583
0.133 3 0.654
                  0.0558
0.133 4 0.652
                  0.0419
0.133 5 0.650
                  0.0438
0.255 1 0.682
                  0.2126
0.255 2 0.679
                  0.2087
0.255
     3 0.672
                  0.1722
0.255 4 0.669
                  0.1678
0.255 5 0.664
                  0.1587
0.378
     1 0.689
                  0.2456
0.378 2 0.686
                  0.2344
0.378 3 0.680
                  0.2185
0.378 4 0.677
                  0.2140
0.378 5 0.672
                  0.2010
0.500
     1 0.691
                  0.2549
0.500 2 0.684
                  0.2407
0.500 3 0.679
                  0.2239
                  0.2156
0.500
     4 0.674
0.500 5 0.672
                  0.2059
```

Accuracy was used to select the optimal model using the largest value. The final values used for the model were C = 0.5 and M = 1.

RANDOM FOREST

- Create random vectors from Training data
- Build multiple tree using random vector
- Combine the trees
- Might take more processing time

RANDOM FOREST

```
Random Forest
3196 samples
  2 predictor
  3 classes: 'high', 'low', 'medium'
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 2876, 2876, 2876, 2877, 2877, 2878, ...
Resampling results:
 Accuracy Kappa
 0.955
           0.911
Tuning parameter 'mtry' was held constant at a value of 2
```

MODEL EVALUATION

```
Call:
summary.resamples(object = resamps)
Models: C45, rules, randomForest
Number of resamples: 10
Accuracy
             Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
C45
            0.659 0.678 0.683 0.682 0.687 0.703
            0.646 0.657 0.660 0.661 0.666 0.675
rules
randomForest 0.938 0.944 0.956 0.955 0.966 0.972
Kappa
              Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
            0.1569 0.1910 0.210 0.220 0.249 0.286
C45
                                                      0
rules
            0.0367 0.0833 0.111 0.116 0.143 0.218
                                                      0
randomForest 0.8757 0.8905 0.912 0.911 0.932 0.944
                                                      0
```

THANK YOU