| Wydział                           | Dzień                 | poniedziałek $17^{15} - 19^{30}$ | Nr zespołu    |
|-----------------------------------|-----------------------|----------------------------------|---------------|
| Matematyki i Nauk Informatycznych | Data                  |                                  | 18            |
| Nazwisko i Imię:                  | Ocena z przygotowania | Ocena ze sprawozdania            | Ocena Końcowa |
| 1. Jasiński Bartosz               |                       |                                  |               |
| 2. Sadłocha Adrian                |                       |                                  |               |
| 3. Wódkiewicz Andrzej             |                       |                                  |               |
| Prowadzący                        |                       | Podpis prowadzącego              |               |
|                                   |                       |                                  |               |
| dr hab. Katarzyna Grebieszkow     |                       |                                  |               |

# Sprawozdanie nr 7

## 1. Opis ćwiczenia

Celem ćwiczenia jest weryfikacja hipotezy de Broglie'a. Hipoteza ta głosi, że wszelka materia ma dwojaka naturę: cząsteczkową oraz falową.

#### 1.1. Wstęp teoretyczny

#### Fale de Broglie'a

Zgodnie z hipotezą przedstawioną przez de Brogile'a, każdej cząstce można przypisać falę o pewnej długości. Jeśli przez h oznaczmy stałą Plancka, zaś przez p pęd cząstki, to długość fali de Broglie'a (ozn.  $\lambda$ ) jest definiowana jako:

$$\lambda = \frac{h}{p}$$

Aby potwierdzić eksperymentalnie naturę falową materii, dążyliśmy w ćwiczeniu do zaobserwowania zjawiska interferencji dla cząstek materii. Ponieważ wytworzenie siatki dyfrakcyjnej o odpowiednio małej odległości między szczelinami (rzędu długości szukanej fali) jest praktycznie niemożliwe, dlatego do dyfrakcji hipotetycznej fali wykorzystana została struktura krystaliczna grafitu.

#### Dyfrakcja na sieci krystalicznej, prawo Bragga i doświadczenie Thomsona

Fala padająca na sieć krystaliczną zderza się z atomami tworzącymi tę sieć. Pobudzone atomy są (zgodnie z zasadą Huygensa) nowymi źródłami fali kulistej, a w szczególności wiele takich źródeł tworzy czoło nowej fali płaskiej. W rezultacie uzyskujemy efekt odbicia fali od sieci krystalicznej. Ponieważ sieć składa się z atomów ułożonych warstwami, promienie fali mogą pokonywać różne odległości, jeśli zostaną odbite od dwu różnych warstw. W zależności od tej odległości



Rysunek 1: Prawo Bragga

jesteśmy w stanie uzyskać interferencję konstruktywną oraz destruktywną. Zgodnie ze wzorem na siatkę dyfrakcyjną, największe wzmocnienia fali występują dla:

$$d\sin(\theta) = n\lambda$$

gdzie  $\theta$  to kat padania fali o długości  $\lambda$ , n to rząd widma, a d to stała siatki dyfrakcyjnej.

Dla naszego układu stałą siatki dyfrakcyjnej jest odległość między warstwami w sieci krystalicznej, natomiast  $\theta$  jest kątem poślizgu (lub odbłysku), definiowanym jako kąt między wiązką padającą a płaszczyzną kryształu.

Dalej, należy zauważyć, że  $d\sin(\theta)$  (w ujęciu ogólnym dla siatki dyfrakcyjnej ze szczelinami) to różnica pokonywanych odległości przez promienie przechodzące przez kolejne szczeliny siatki dyfrakcyjnej. Dla układu w naszym ćwiczeniu różnica ta jest 2 razy większa, ponieważ fala pokonuję tę powiększoną odległość dwukrotnie – raz przed ugięciem i drugi raz po ugięciu. Odcinki te zostały przedstawione na rysunku 1 pogrubioną linią.

Po przeprowadzeniu rozważań, otrzymujemy wzór Bragga na maksymalne wzmocnienie fali ugiętej przez przepuszczenie jej przez kryształ:

$$2d\sin(\theta) = n\lambda$$

gdzie d to odległość między płaszczyznami atomów,  $\theta$  to kąt poślizgu, a n i  $\lambda$  to odpowiednio rząd ugięcia i długość fali (jak w przypadku wzoru na siatkę dyfrakcyjną).

Ponieważ kąt między wiązką ugiętą a wiązką przepuszczoną przez sieć krystaliczną wynosi  $2\theta$ , dlatego podczas obrotu kryształu względem osi utworzonej przez wiązkę padającą (i tym samym przepuszczoną), zakreślane będą stożki o kącie rozwarcia  $4\pi$ .

Przechodząc do wykonania ćwiczenia, wzorowanego na doświadczeniu Thomsona, przed lampą oscyloskopową, na drodze wiązki elektronowej umieszczono cienką folię z materiału o budowie polikrystalicznej. W pewnej odległości r od folii umieszczony został ekran, na którym dokonywane zostały pomiary średnicy D utworzonych prążków. Zakładając, że kąt  $\theta$  jest bardzo mały (gdyż średnice okręgów interferencyjnych są o wiele mniejsze niż odległość od ekranu), otrzymujemy przybliżenie:

$$\sin(4\theta) \approx 4\theta \approx \frac{D}{r}$$
 i dalej 
$$\sin(\theta) \approx \theta \approx \frac{D}{4r}$$

Podstawiając to przybliżenie do wzoru Bragga, otrzymujemy:

$$\frac{dD}{2r} = n\lambda$$

Korzystając z hipotezy de Broglie'a:

$$\frac{dD}{2r} = n\frac{h}{p}$$

Korzystając ze związku między energią elektronu a jego pędem (i zaniedbując efekty relatywistyczne):

$$\frac{dD}{2r} = n \frac{h}{\sqrt{2meU}}$$

Ostatecznie, rozpatrując tylko prążki rzędu 1. (n=1) otrzymujemy wzór na średnicę okręgu interferencyjnego:

$$D = \frac{2rh}{d\sqrt{2meU}}$$

gdzie:

- $\bullet$  r odległość między folią a ekranem
- h stała Plancka
- $\bullet \,\,d$  odległość między płaszczyznami atomowymi wewnątrz folii
- $\bullet$  m masa elektronu
- e ładunek elementarny
- $\bullet$  U napięcie przyspieszające elektrony

Przy wykonywaniu doświadczenia szukano zależności liniowej między Da  $\frac{1}{\sqrt{U}}$ 

### 1.2. Układ pomiarowy

Do weryfikacji hipotezy de Broglie'a użyta została lampa oscyloskopowa oraz cienka folia grafitowa. W celu przyspieszania elektronów przykładane było regulowane napięcie. Do odczytu napięcia służył cyfrowy wyświetlacz o rozdzielczości wynoszącej 0.01 kV.

Odległość pomiędzy folią grafitową a ekranem wynosiła – zgodnie z instrukcją – 127 (3) mm.

## 2. Pomiary i wstępne obliczenia

Dokonaliśmy dwóch serii pomiarów, kolejno A oraz B. W obu seriach napięcie (ozn. U) ustalane było między ok. 3.50 kV a ok. 11.10 kV, z różnicą ok. 0.40 kV pomiędzy pomiarami. Podczas serii A napięcie rosło wraz z każdym pomiarem, podczas serii B – malało.

Ponieważ stan podczas odczytu napięcia nie był stabilny (największy zauważony przez nas skok wartości wyniósł 0.09 kV), za niepewność całkowitą pomiaru U przyjęliśmy:

$$u(U) = \frac{0.09 \,\mathrm{kV}}{\sqrt{3}}$$

W dalszej części będziemy sprawdzać zależność liniową pomiędzy średnicą pierścieni a odwrotnością pierwiastka napięcia. Wprowadźmy oznaczenie  $X=\frac{1}{\sqrt{U}}$  oraz wyliczmy – korzystając z prawa propagacji niepewności – niepewność całkowitą:

$$u(X) = \sqrt{\left(\frac{\partial X}{\partial U}\right)^2 \cdot u^2(U)} = \left| -\frac{1}{2\sqrt{U^3}} \cdot u(U) \right| = \frac{0.09 \,\mathrm{kV}}{2\sqrt{3}\sqrt{U^3}}$$

Dla ustalonego napięcia interesowała nas średnica najbardziej wewnętrznego pierścienia, ozn. D. W celu wyznaczenia tej wartości, mierzona była średnica wewnętrzna oraz zewnętrzna pierścienia, oznaczane kolejno  $D_w$  oraz  $D_z$ . Za średnicę właściwą przyjęliśmy średnią arytmetyczną z powyższych wartości, tj.  $D = \frac{D_w + D_z}{2}$ .

Użyty przyrząd pomiarowy miał podziałkę wynoszącą  $\Delta D_w=1$  mm. Ze względu na rozmycie pierścieni, za niepewność eksperymentatora przyjęliśmy dwukrotność podziałki:  $\Delta D_{w_E}=2\cdot\Delta D_w=2$  mm. Zatem niepewność całkowita pomiaru średnicy wewnętrznej (a także zewnętrznej, którą oznaczymy przez  $u(D_z)$ ) wynosi:

$$u(D_w) = \sqrt{\frac{\Delta D_w^2}{3} + \frac{\Delta D_{w_E}^2}{3}} = \sqrt{\frac{5}{3}} \Delta D_w = \sqrt{\frac{5}{3}} \, \mathrm{mm}$$

Nas jednak interesuje niepewność średnicy właściwej. Skoro  $D = \frac{D_w + D_z}{2}$ , to – ponownie korzystając z prawa propagacji niepewności – niepewność całkowita pomiaru średnicy wynosi:

$$u(D) = \sqrt{\left(\frac{\partial D}{\partial D_w}\right)^2 \cdot u^2(D_w) + \left(\frac{\partial D}{\partial D_w}\right)^2 \cdot u^2(D_z)} = \sqrt{\frac{1}{4}u^2(D_w) + \frac{1}{4}u^2(D_z)} = \frac{u(D_w)}{\sqrt{2}}$$

Po podstawieniu wyliczonej wcześniej niepewności otrzymujemy:

$$u(D) = \sqrt{\frac{5}{6}} \,\mathrm{mm} \approx 0.912870929175 \,\mathrm{mm} \approx 1 \,\mathrm{mm}$$

Wyniki pomiarów oraz wstępnych obliczeń zostały przedstawione w Tablicy 1 oraz w Tablicy 2. Dla X prezentujemy odpowiednio zaokrąglone wartości z dokładnością do pięciu miejsc po przecinku, zaś obliczenia przeprowadzamy z pełną dostępną precyzją.

# 3. Opracowanie wyników

Korzystając z pythonowej biblioteki SciPy<sup>1</sup> wyliczyliśmy prostą regresji liniowej postaci D = aX + b. Użyta metoda uwzględniała niepewności pomiarowe zarówno zmiennych D, jak i X. Dla serii A otrzymaliśmy następujące współczynniki (przez  $\sigma$  oznaczamy błąd standardowy):

<sup>1</sup>https://www.scipy.org/

| L.p. $D_i$ | w (mm) | $D_z \text{ (mm)}$ | U (kV) | D  (mm) | $X\left(\frac{1}{\sqrt{kV}}\right)$ |
|------------|--------|--------------------|--------|---------|-------------------------------------|
| 1          | 22     | 28                 | 3.51   | 25.0    | 0.53376                             |
| 2          | 20     | 28                 | 3.90   | 24.0    | 0.50637                             |
| 3          | 17     | 27                 | 4.30   | 22.0    | 0.48224                             |
| 4          | 19     | 25                 | 4.71   | 22.0    | 0.46078                             |
| 5          | 17     | 20                 | 5.09   | 18.5    | 0.44324                             |
| 6          | 17     | 23                 | 5.50   | 20.0    | 0.42640                             |
| 7          | 16     | 22                 | 5.94   | 19.0    | 0.41031                             |
| 8          | 16     | 21                 | 6.30   | 18.5    | 0.39841                             |
| 9          | 14     | 20                 | 6.70   | 17.0    | 0.38633                             |
| 10         | 13     | 19                 | 7.11   | 16.0    | 0.37503                             |
| 11         | 14     | 18                 | 7.50   | 16.0    | 0.36515                             |
| 12         | 13     | 18                 | 7.92   | 15.5    | 0.35534                             |
| 13         | 14     | 18                 | 8.29   | 16.0    | 0.34731                             |
| 14         | 13     | 18                 | 8.69   | 15.5    | 0.33923                             |
| 15         | 14     | 18                 | 9.10   | 16.0    | 0.33150                             |
| 16         | 13     | 18                 | 9.50   | 15.5    | 0.32444                             |
| 17         | 13     | 17                 | 9.90   | 15.0    | 0.31782                             |
| 18         | 12     | 17                 | 10.30  | 14.5    | 0.31159                             |
| 19         | 12     | 17                 | 10.69  | 14.5    | 0.30585                             |
| 20         | 12     | 17                 | 11.10  | 14.5    | 0.30015                             |

Tablica 1: Wyniki pomiarów seri<br/>iAwraz z wyliczonymi wartościami Dora<br/>z ${\cal X}.$ 

| L.p. $D_w$ | (mm) | $D_z$ (mm) | U (kV) | D  (mm) | $X\left(\frac{1}{\sqrt{kV}}\right)$ |
|------------|------|------------|--------|---------|-------------------------------------|
| 1          | 14   | 16         | 11.10  | 15.0    | 0.30015                             |
| 2          | 14   | 17         | 10.69  | 15.5    | 0.30585                             |
| 3          | 14   | 16         | 10.30  | 15.0    | 0.31159                             |
| 4          | 14   | 18         | 9.89   | 16.0    | 0.31798                             |
| 5          | 14   | 18         | 9.50   | 16.0    | 0.32444                             |
| 6          | 15   | 18         | 9.10   | 16.5    | 0.33150                             |
| 7          | 14   | 18         | 8.70   | 16.0    | 0.33903                             |
| 8          | 15   | 18         | 8.30   | 16.5    | 0.34711                             |
| 9          | 15   | 19         | 7.89   | 17.0    | 0.35601                             |
| 10         | 15   | 19         | 7.50   | 17.0    | 0.36515                             |
| 11         | 16   | 19         | 7.10   | 17.5    | 0.37529                             |
| 12         | 16   | 19         | 6.71   | 17.5    | 0.38605                             |
| 13         | 17   | 20         | 6.33   | 18.5    | 0.39746                             |
| 14         | 18   | 23         | 5.90   | 20.5    | 0.41169                             |
| 15         | 20   | 24         | 5.50   | 22.0    | 0.42640                             |
| 16         | 19   | 25         | 5.12   | 22.0    | 0.44194                             |
| 17         | 19   | 25         | 4.71   | 22.0    | 0.46078                             |
| 18         | 21   | 27         | 4.31   | 24.0    | 0.48168                             |
| 19         | 20   | 27         | 3.89   | 23.5    | 0.50702                             |
| 20         | 22   | 29         | 3.49   | 25.5    | 0.53529                             |

Tablica 2: Wyniki pomiarów seri<br/>i ${\cal B}$ wraz z wyliczonymi wartościami  ${\cal D}$ ora<br/>z ${\cal X}.$ 

$$a^{(A)} = 45.5$$
  $\sigma_a^{(A)} = 2.5$   $b^{(A)} = 0.18$   $\sigma_b^{(A)} = 0.98$ 

Dla serii B:

$$a^{(B)} = 46.7$$
  $\sigma_a^{(B)} = 2.3$   
 $b^{(B)} = 0.66$   $\sigma_b^{(B)} = 0.90$ 

Pomiary wraz z wyżej pokazanymi współczynnikami prostej regresji liniowej przedstawione zostały na Rysunku 2 oraz na Rysunku 3.

Ponieważ:

$$\frac{\left|a^{(A)} - a^{(B)}\right|}{\sqrt{\left(\sigma_a^{(A)}\right)^2 + \left(\sigma_a^{(B)}\right)^2}} \approx 0.34 < 3$$

oraz

$$\frac{\left|b^{(A)} - b^{(B)}\right|}{\sqrt{\left(\sigma_b^{(A)}\right)^2 + \left(\sigma_b^{(B)}\right)^2}} \approx 0.37 < 3$$

to nie mamy podstaw do odrzucenia hipotezy, że w obu seriach mierzona była ta sama wielkość.

### 3.1. Odległości między płaszczyznami atomowymi

Ustalmy  $a=\frac{a^{(A)}+a^{(B)}}{2}=46.1~\mathrm{mm}\sqrt{\mathrm{kV}}$ oraz:

$$u(a) = \sqrt{\left(\frac{\partial a}{\partial a^{(A)}}\right)^2 \cdot \left(\sigma_a^{(A)}\right)^2 + \left(\frac{\partial a}{\partial a^{(B)}}\right)^2 \cdot \left(\sigma_a^{(B)}\right)^2} \approx 1.7 \, \mathrm{mm} \sqrt{\mathrm{kV}}$$

Przekształcając wzór  $a = \frac{rh}{d} \sqrt{\frac{2}{me}}$  w celu wyliczenia d, uzyskujemy:

$$d = \frac{rh}{a} \sqrt{\frac{2}{me}}$$

W celu wyliczenia tej wartości, posłużymy się następującymi wartościami i stałymi wraz z niepewnościami $^2\colon$ 

- odległość folia–ekran<sup>3</sup>: r = 127 (3) mm;
- stała Plancka:  $h = 6.626070040 \ (0.000000081) \ 10^{-34} \ \mathrm{Js};$
- masa elektronu:  $m = 9.10938356 (0.00000011) 10^{-31} \text{ kg}$ ;

<sup>&</sup>lt;sup>2</sup>wartości – o ile nie zaznaczono inaczej – pochodzą z National Institute of Standards and Technology (https://physics.nist.gov/cuu/Constants/index.html); dostęp 2018-05-04

<sup>&</sup>lt;sup>3</sup>wartość z instrukcji do laboratorium



Rysunek 2: Wyliczona prosta regresji liniowej zestawiona wraz ze zmierzonymi wartościami dla serii A.

• ładunek elementarny:  $e = 1.6021766208 (0.0000000098) 10^{-19} \text{ C}.$ 

Ponownie skorzystamy z prawa propagacji niepewności, oznaczając przez  $u(r),\ldots,u(e)$  podane wyżej niepewności:

$$\begin{split} u(d) &= \sqrt{\left(\frac{\partial d}{\partial r}\right)^2 \cdot u^2(r) + \left(\frac{\partial d}{\partial h}\right)^2 \cdot u^2(h) + \left(\frac{\partial d}{\partial a}\right)^2 \cdot u^2(a) + \left(\frac{\partial d}{\partial m}\right)^2 \cdot u^2(m) + \left(\frac{\partial d}{\partial e}\right)^2 \cdot u^2(e)} \\ &= \sqrt{\frac{2h^2}{mea^2} \cdot u^2(r) + \frac{2r^2}{mea^2} \cdot u^2(h) + \frac{2h^2r^2}{mea^4} \cdot u^2(a) + \frac{h^2r^2}{2ea^2m^3} \cdot u^2(m) + \frac{h^2r^2}{2ma^2e^3} \cdot u^2(e)} \\ &\approx 1.3233817 \cdot 10^{-11} \, \mathrm{m} \\ &\approx 0.14 \, \mathrm{\mathring{A}} \end{split}$$

Ostatecznie odległość między płaszczyznami atomowymi wynosi:

$$d = 3.02 (0.14) \text{ Å}$$

Porównując ten wynik z dostępnymi w internecie<sup>4</sup> (3.35 Å) i w publikacjach<sup>5</sup> (3.345 Å) – oraz biorąc pod uwagę, że dokładna wartość zależy od użytego grafitu – możemy przyjąć, że wyliczona wartość jest możliwa dla grafitu użytego w laboratorium.

<sup>4</sup>https://hypertextbook.com/facts/2001/AliceWarrenGregory.shtml; dostep 2018-05-04

<sup>&</sup>lt;sup>5</sup>de Boer, J. H. (1940), Atomic distances in small graphite crystals and the nature of the bond. Recl. Trav. Chim. Pays-Bas, 59: 826-830. doi:10.1002/recl.19400590903



Rysunek 3: Wyliczona prosta regresji liniowej zestawiona wraz ze zmierzonymi wartościami dla serii B.

# 4. Wnioski

#### 4.1. Prawdziwość hipotezy de Broglie'a

Rysunek 2 oraz na Rysunek 3 wskazują na liniową zależność między odwrotnością pierwiastka napięcia a średnicą widocznych promieni. Dodatkowo, biorąc pod uwagę wyliczone niepewności prostej regresji liniowej, nie mamy podstaw do odrzucenia hipotezy de Broglie'a. Uzyskane rozbieżności niektórych pomiarów od wartości liniowej wynikają z trudności oceny średnicy okręgu, miał on niewyraźne granice i niezbyt duży kontrast z tłem. Pomimo tych trudności otrzymaliśmy w obu pomiarach podobne wyniki.