Project implementation & Results

Team 4: COVID-19 Health Informatics

Cheng Ding, David Lin, Jayden Myers, Zewei Lei

Contributions

Cheng Ding

- LSTM model
- Data preprocessing

David Lin

- LSTM model
- Pattern Classifier

Zewei Lei

- Data preprocessing
- Mock-up GUI
- Presentation

Jayden Myers

- LSTM model
- Pattern Classifier

Problem Statement - Part I

Utilizing heart rate, steps, and sleep data to discover patterns suggestive of COVID-19 and develop an interpretable model for COVID-19 detection on a smartwatch

Current Challenges - Part (1)

Downsides of current diagnostic methods:

- PCR test:
- Accurate, but results may take hours to days
- 2. Rapid antigen test:
- Limited accuracy, may produce false negatives
- 3. Antibody Tests:
- Not useful for early detection or active infection

The need for a new solution:

- Harnessing physiological data for accessible, trustable diagnosis
- Addressing limitations of existing testing methods (i.e., limited accuracy, high time consumption...)
- Developing a cost-effective and widely available model

Literature Critique (1) - Part I

Survey of COVID-19 Management + Detection [3, 4, 7]:

- The use of BioMets System utilizing sensor data (Fitbit) to detect viral disease
- Current implementations include non-DL models
 - KNN, Decision Trees, Random Forest
 - Future focus on Neural Networks

The needs (interpretable model):

- Explains previous model choices
- Trust + Reliability are key factors to model success
- The largest pitfall is poor data quality

Literature Critique (2) - Part I

BioMet/Algorithm Implementations[1, 5, 6, 9, 10, 11]:

- Utilize features including RHR, Respiration, RMSSD (HR Var), and Symptom data
 - Day of Detection, utilizing a CNN: 0.77 AUC
 - 12% of the dataset was asymptomatic
 - These features show visible shifts around day of diagnosis
- Utilizing smartphone capabilities Temperature, Breathing
- Inclusion of IMU data
 - Random Forest, 79% Accuracy at H1N1 detection
- Similar data used in Influenza Like Illness (ILI) detection
 - Increased RHR and abnormal Sleep found to be the most contributing factors

Literature Critique (3) - Part

Literature Review - Long Short Term Memory (LSTM) [8, 12, 13, 14]:

- Has been used to predict case and death numbers from real time data (r > 0.98)
 - O Pattern Matching to determine risk states
- Anomaly Detection
 - Trained on baseline (control) cases, RHR data
 - O Able to detect >50% prior to diagnosis time, Acc = .91
 - O Later improved to 80% by utilizing a variational auto-encoder
 - Individualized Model
 - Linear and Sequential model layouts found to perform best
- Global Model
 - Contrastive Convolutional Auto-encoder
 - O Converts 2 Weeks of time series data into an image
 - Able to achieve roughly 0.9 AUC with 100% Sensitivity on RHR data

Method Summary - Part II

Random Forest:

- Global model rather than individualized
- Lowest performance

Convolutional Neural Network:

- Better performance
- Tuned hyperparameters/layers, worse performance

Long Short Term Memory (LSTM):

- Higher interpretability, previously used for COVID detection
- High computational complexity, overfit
- Very strong performance in anomaly detection

Contrastive Auto-Encoder (CAE):

- Best classification performance
- Limited replication, less representative
- Data used may not be representative of our data

Data Methodology - Part II - Data Source:

Mishra et al., 2020

Patient Level Information

	Number of Patients	Average Timeseries Duration [days]
Covid patients	32	82
Healthy patients	74	81

Sensor Data Information

	Sampling Rate [s]	Available Data [%]
Steps Data	60	100
HR Data	5	100
Sleep Data	N/A	27

Example Timeseries for 1 Subject

Informatics System Workflow -

Data Preprocessing (Pattern Freation) - Part Il COVID Symptom Onset Recovery

Complete Patient Sensor Data

Complete Patient Pattern Data

Segmented Patient Pattern Data

COVID- Pattern Sequence

COVID+ Pattern Sequence

Split Data - Part II

Classification/Modelling (Apriori)-

Frequent Itemset Mining (Apriori)

- Returns the frequent individual items found within a database, in this case pattern sequences
- Hyperparameters:

Min_support: % of patterns that have to exist in the group (range: 30%-50%) Pattern Length: how much to chunk the preprocessing step (range: 8hours – 2 days)

- Frequent COVID only specific patterns were found by taking the difference in frequent covid patterns and frequent healthy patterns
- Naïve bayes was used to classify patterns by how often they occur in the frequent covid only specific pattern set

Robust Model Parameter (Pattern Learning)

- Pattern length did not change any of the files
- As minimum support increases: the length and number of pattern sequences decreases
- Frequent COVID Only Patterns

At max support (50): [['C-AA-day']] is the only pattern

At min support (30): [['D-AA-day', 'F-BB-day'], ['D-BB-day', 'E-BB-day'], ['D-AA-day', 'E-AA-day'], ['E-AA-day', 'C-AA-night'], ['D-AA-day', 'D-AA-night'], ['D-BB-day', 'D-AA-night'], ['D-BB-day', 'D-AA-night'], ['D-BB-day', 'D-AA-night'], ['D-BB-day', 'D-AA-day'], ['E-BB-day', 'D-AA-night'], ['D-BB-day', 'D-AA-day'], ['D-AA-day'], ['D-AA-night', 'C-AA-night'], ['D-BB-day', 'D-AA-night'], ['D-BB-day', 'D-AA-night', 'C-AA-night', 'D-AA-day'], ['E-BB-day', 'D-AA-night', 'D-AA-day'], ['E-BB-day', 'D-AA-night', 'D-AA-day'], ['E-BB-day', 'D-AA-night', 'D-AA-night', 'D-AA-night'], ['D-BB-day', 'D-AA-night'], ['D-BB-day', 'D-AA-night'], ['D-BB-day', 'C-AA-night'], ['D-BB-day', 'C-AA-night'], ['D-BB-day', 'C-AA-night'], ['D-BB-day', 'D-AA-day'], ['D-BB-day', 'C-AA-night'], ['D-BB-day', 'C-AA-night'], ['D-BB-day', 'D-AA-day'], ['D-BB-day', 'C-AA-night'], ['D-BB-day', 'D-AA-day'], ['D-BB-day', 'D-AA-day'], ['D-BB-day', 'D-AA-day'], ['D-BB-day', 'D-AA-day'], ['D-BB-day', 'D-AA-night'], ['D-BB-day', 'D-AA-n

Most frequent patterns have a larger first letter, and lower second:

This indicates high heart rate and low steps → High Resting Heart Rate

Performance Metrics - Part II

$$Sensitivity = \frac{True\ Positives}{True\ Positives + False\ Negatives}$$

$$Specificity = \frac{True\ Negatives}{True\ Negatives + False\ Positives}$$

True Positive: Correctly classifying a COVID+ section

Model Results - Part III

Minimum Support	Sensitivity	Specificity	Average [Sens, Spec]
30	0.653,0.365, 0.620, 0.776, 0.276	0.458,0.388,0.3 87, 0.389,0.421	[0.6, 0.467]
35	0.184, 0.428, 0.25,.443,0.411	0.702,0.650,0.6 45, 0.651,0.648	[0.366,0.704]
40	0.316,0.602,0.6 53, 0.569,0.606	0.466,0.473,0.5 14, 0.424, 0.635	[0.556,0.511]
45	0.04.0.00	0 707 0 05 0 00	FO 000 0 70 41

Data preprocessing

Resting Heart Rate

define RHR as the HR measurements recorded when there were zero steps taken during a rolling time window of the preceding 12 minutes (including the current minute).

ong Short-Term Memory networks (LSTM) - Part II

- LSTMs learn temporal dependencies in timeseries data very well over long and short periods of time
- Used in prior works for COVID-19 anomaly detection with strong results (Bogu et. al, Abir et. al)
- LSTM is made up of cells that selectively retain and reject information that represents the whole sequence being fed in.
- Hyperparameters:

LSTM hidden state units: 16-128

Number of layers: 3-8 Batch Size: 16-128

Learning rate: 1e-4 - 0.05

Data preprocessing (1))

Data augmentation <

Scaling

- Rotation
- Permutation
- Magnitude_warp
- Time_warp
- window_slice
- window_warp

	#patients	#strips
Covid patients	32	5716/45728(after DA)
Healthy patients	74	54571

AutoML does not w

Autokeras is difficult to deal with imbalance dataset. We have to tune the parameters manually.

Batch size

Final model

Layer (type)	Output Shape	Param #
lstm_40 (LSTM)	(None, 8, 64)	16896
lstm_41 (LSTM)	(None, 8, 32)	12416
lstm_42 (LSTM)	(None, 8, 32)	8320
lstm_43 (LSTM)	(None, 8, 32)	8320
lstm_44 (LSTM)	(None, 8, 32)	8320
lstm_45 (LSTM)	(None, 8, 32)	8320
lstm_46 (LSTM)	(None, 8, 32)	8320
lstm_47 (LSTM)	(None, 16)	3136
dropout_12 (Dropout)	(None, 16)	0
dense_12 (Dense)	(None, 1)	17

EPOCHS = 20

BATCH_SIZE = 128

validation set

LEARNING_RATE = 5e-4

model.compile(optimizer='adam',

Best epoch is selected based on least loss on

loss='binary crossentropy')

_ . . 1

Total params: 74,065 Trainable params: 74,065 Non-trainable params: 0

Parameter Sensitivally Plot

Quantitative Data Analysis - Pan

||| Strip level

	Sensitivity	Specificity
Fold 1	0.600804	0.568869
Fold 2	0.535325	0.623907
Fold 3	0.807007	0.405905
Fold 4	0.587593	0.602265
Fold 5	0.599655	0.611008
Mean	0.626077	0.562391
STD	0.10463	0.089816

Predictability of Mod

Result Discussion/Interpretation – Covid patients

Average RHR in first day: 65.5

Symptom date	Diagnosis date	Recovery date
2023-12-26	2023-12-31	2024-01-08

A36HR6Y | First Pred COVID Pred: 3.125 Days after Symptom Onset

Average RHR in first day: 81.3

Symptom date	Diagnosis date	Recovery date
2023-04-06	2023-04-16	2023-06-10

Result Discussion/Interpretation – Covid patients

Average RHR in first day: 67.1

Symptom date	Diagnosis date	Recovery date
2023-08-29 2022-11-14 2023-07-04 2023-10-24	2023-09-18	2023-09-19

Result Discussion/Interpretation – Covid patients

Result Discussion/Interpretation – Healthy patients

Davs

Result Discussion/Interpretation (1)) Part III

Pattern Classifier

- We found that most of the Covid specific patterns included a high resting heart rate
- As support increases, pattern length and quantity decreases
- With more patterns, sensitivity increases
- With fewer patterns specificity increases

LSTM Strip Classification

- Able to achieve sensitivity greater than pattern classifier
- Captured the 5 day period of physiological change prior to symptom onset in some patients
- The model would greatly benefit from additional data
- Lower learning rate and an increased number of LSTM layers lead to higher sensitivity
- Batch size and hidden layers had much less of an impact on performance

Comparison vs. Previous works

Bogu, Snyder

- Using RHR data with LSTM for anomaly detection (trained on healthy patients)
- Sensitivity = 0.36, Precision = 0.91
- Our model is much less precise, but more often predicts covid patients as positive

Abir, et.al

- Utilizes Variational-AutoEncoder with LSTM, RHR data for anomaly detection
- Sensitivity = 0.534, Precision = 0.993
- Trained on a much larger dataset
- Able to achieve almost 50% pre-symptomatic detection
- Much more precise than our model, with similar sensitivity

Mishra, et.al - Dataset source

- Anomaly detection using HROS
- 63% pre-symptomatic detection

Our model works to classify strips of time rather than perform anomaly detection, so the results are difficult to compare directly.

However, our model is much more prone to false positives

Mock-up System Implementation (1))

- Part III

Prediction Window

User (Smartwatch)

Conclusion

- Through discretizing patient data into patterns, we were able to find out that covid patient's patterns are
 more likely to be high heart rate with low step count, indicative of high resting heart rate
- Utilizing LSTM for strip classification, we were able to achieve recall = 0.63, specificity = 0.56, which
 means the model is very likely to make a false positive, but has covid positive results that are
 comparable to other literature

Limitations

- More data is absolutely needed to improve the quality of the model
- Currently, heavy dataset augmentation was necessary to achieve adequate results
- Discretizing data into pattern bins leads to a large data loss, but made the model more explainable
- A high false positive rate compared to literature is not suitable for a real-world implementation

Summary

- Covid testing can be very costly in terms of resources and time
- Many people wear devices like Fitbits that capture physiological data that can be suggestive of Covid
- We transformed the data into sequences of patterns, such that we could find key elements that differentiated between healthy and sick
- Resting Heart Rate is a key indicator for Covid used by many previous works and was found as a key factor in our findings as well
- We were able to match classification of Covid patients, however with many more false positives than that
 of previous works
- Limitations in data is the biggest issue to tackle, as not enough or poor-quality data will drastically decrease performance

Reference

- 1. Goergen, Craig J., et al. "Detection and monitoring of viral infections via wearable devices and biometric data." Annual review of biomedical engineering vol. 24. pp. 1-27. 2022.
- 2. Tao, Yudong, et al. "A Survey on Data-Driven COVID-19 and Future Pandemic Management." ACM computing surveys 55.7. pp. 1-36. 2022.
- 3. Natarajan, Aravind, et al. "Assessment of physiological signs associated with COVID-19 measured using wearable devices." NPJ digital medicine 3.1 pp. 156. 2020.
- 4. Adams, Jamie L., et al. "A real-world study of wearable sensors in Parkinson's disease." npj Parkinson's Disease 7.1 pp. 106. 2021.
- 5. Wang, Zhiyuan, et al. "Mobile Sensing in the COVID-19 Era: A Review." Health Data Science. 2022.
- 6. Chatterjee, A., Gerdes, M. W., & Martinez, S. G. Statistical explorations and univariate timeseries analysis on COVID-19 datasets to understand the trend of disease spreading and death. Sensors, 20(11), pp. 3089. 2022
- 7. Maghded, Halgurd S., et al. "A novel Al-enabled framework to diagnose coronavirus COVID-19 using smartphone embedded sensors: design study." 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). pp. 180-187. 2020
- 8. Grzesiak, Emilia, et al. "Assessment of the feasibility of using noninvasive wearable biometric monitoring sensors to detect influenza and the common cold before symptom onset." JAMA network open 4.9. pp. E2128534-e2128534. 2021.
- 9. Radin, Jennifer M., et al. "Harnessing wearable device data to improve state-level real-time surveillance of influenza-like illness in the USA: a population-based study." The Lancet Digital Health 2.2. (2020). e85-e93.
- 10. Bogu, Gireesh K., and Michael P. Snyder. "Deep learning-based detection of COVID-19 using wearables data." MedRxiv. 2021.
- 11. Liu, Shuo, et al. "Fitbeat: COVID-19 estimation based on wristband heart rate using a contrastive convolutional auto-encoder." *Pattern recognition* 123. pp. 108403. 2022.
- 12. Abir, Farhan F, et al. PCovNet: A presymptomatic COVID-19 detection framework using deep learning model using wearables data. *Computers in Biology and Medicine*, 147, pp. 105682. 2022.