

DSL for JSON

- Concepts
 - · Load, Store JSON files
 - Select subset of objects, Projection (slice of objet)
 - Aka core relational algebra operators
 - Compute basic \sum , \prod over fields
 - Print field value, #objects, #fields, depth, expressions...
 - Insert/modify/remove object/fields
- Services
 - Export to CSV
 - Interpreter
 - Compilers to (Java | Python | Julia) + JQ (for relevant subset)
 - https://stedolan.github.io/jq/

DSL for CSV

- Concepts
 - · Load, Store CSV files
 - Select subset of lines/column (cut)
 - · Aka core relational algebra operators
 - Compute basic \sum , \prod over fields
 - Print field value, #objects, #fields, expressions...
 - Insert/modify/remove lines/fields
- Services
 - Export to JSON
 - Interpreter
 - Compilers to (Java|Python|Julia) + bash (grep/cut/awk...)

DSL for ML Classification

- Concepts
 - https://en.wikipedia.org/wiki/Statistical classification
 - Typically uses CSV file as input eg https://en.wikipedia.org/wiki/Iris_flower_data_set
 - Evaluation strategy either:
 - dataset is split in two (training/test), with user defined % training
 - cross-validation (provide means to parameterize it)
 - Predictive variables and target variable can be specified
 - By default, all variables are predictive except last column of the CSV (target)
 - Specify what to calculate: accuracy and/or recall and/or f1
 - Which algorithm(s) to use
 - e.g., classification tree or SVM for scikit-learn
- Services
 - Interpreter (ie classification using « random » algorithm)
 - Useful to provide baselines
 - Compilers to Python/scikit-learn + (R | Julia)

DSL for ML Regression

- Concepts
 - Evaluation strategy either:
 - dataset is split in two (training/test), with user defined % training
 - cross-validation (provide means to parameterize it)
 - Predictive variables and target variable can be specified
 - By default, all variables are predictive except last column of the CSV (target)
 - Specify what to calculate: mean relative error...
 - Which algorithm(s) to use
 - e.g., regression tree or SVM for scikit-learn
- Services
 - Interpreter (ie regression using « random » algorithm)
 - · Useful to provide baselines
 - Compilers to Python/scikit-learn + (R | Julia)

Tasks

- Choose a sub project among JSON/CSV/ML-classif/ML-reg (Now)
 - Work in groups of up to 2 -> each subproject should be taken at least once
 - Working alone is still possible
 - Insert group composition into spreadsheet by Sept. 24th
 - https://docs.google.com/spreadsheets/d/1xGhwm5c-4QWzcSAxStwg7hcHPbWRgZhzLiSgcqNZXSs/edit?usp=sharing
- Build a first version of your metamodel
 - scan of hand written diagram or pdf is good enough at that stage
 - Be ready to present it on Sept. 28th
- Build concrete syntax + parser
 - Be ready to present it on Oct. 5th
- Build interpreter
- · Build compiler #1
- Build compiler #2
- Make sure to interoperate with 2 complementary sub-projects
 - Show test case, if ok bonus for all 3 teams.