Homework 2

Due Oct 14 2021

- 1. Given a Cartesian basis, vectors and tensors can be completely represented by their components. State the components of the following quantities in terms of the components of u, v, A, and B.
 - (a) $\boldsymbol{u} \otimes \boldsymbol{v}$;
 - (b) $\boldsymbol{v} = \boldsymbol{A}\boldsymbol{u};$
 - (c) A^T :
 - (d) tr A;
 - (e) AB;
 - (f) A^TB :
 - (g) A : B;
- 2. Given a matrix with components A_{ij} , verify that its determinant can be represented as $\varepsilon_{ijk}A_{1i}A_{2j}A_{3k}$.
- 3. Given an orthogonal tensor Q, whose components in the Cartesian basis $\{e_i\}$ is Q_{ij} . A new set of basis $\{\hat{e}_i\}$ can be established by rotating $\{e_i\}$ using Q, that is

$$\hat{\boldsymbol{e}}_i = \boldsymbol{Q} \boldsymbol{e}_i$$
.

What are the components of Q in the coordinate frame $\{\hat{e}_i\}$?

- 4. Consider the scalar field $\varphi(\mathbf{x}) = x_1^2 x_3 + x_2 x_3^2$ and the vector field $\mathbf{v}(\mathbf{x}) = x_3 \mathbf{e}_1 + x_2 \sin(x_1) \mathbf{e}_3$. Find the component of $\nabla \varphi(\mathbf{x})$, $\nabla \mathbf{v}(\mathbf{x})$, $\nabla \mathbf{v}(\mathbf{x})$, and $\operatorname{curl} \mathbf{v}(\mathbf{x})$.
- 5. Let $\{e_i\}$ and $\{\hat{e}_i\}$ be two coordinate frames and are related by a time-evolving orthogonal tensor Q(t),

$$\hat{\boldsymbol{e}}_i = \boldsymbol{Q}(t)\boldsymbol{e}_i.$$

(a) Show that the time derivative $d\hat{e}_i/dt$, as measured by an observer in the fixed frame $\{e_i\}$, may be expressed as

$$rac{d\hat{oldsymbol{e}}_{i}}{dt}=oldsymbol{\Omega}\hat{oldsymbol{e}}_{i}=oldsymbol{\omega} imes\hat{oldsymbol{e}}_{i},$$

where $\Omega(t)$ is a skew tensor defined by

$$\frac{d\mathbf{Q}}{dt} = \mathbf{\Omega}\mathbf{Q},$$

and ω is the axial vector of Ω .

(b) For any vector $\mathbf{v} = v_i \mathbf{e}_i = \hat{v}_i \hat{\mathbf{e}}_i$, show that

$$\frac{d\hat{v}_i}{dt} = Q_{ji} \left[\frac{dv_j}{dt} - \Omega_{jk} v_k \right],$$

where Q_{ij} and Ω_{jk} are the components of Q and Ω in the fixed frame $\{e_i\}$.

(c) Consider a tensor $S = S_{ij}e_i \otimes e_j = \hat{S}_{ij}\hat{e}_i \otimes \hat{e}_j$. Show that

$$\frac{d\hat{S}_{ij}}{dt} = Q_{ki}Q_{lj} \left[\frac{dS_{kl}}{dt} - \Omega_{km}S_{ml} - \Omega_{lm}S_{km} \right],$$

where Q_{ij} and Ω_{jk} are the components of \boldsymbol{Q} and Ω in the fixed frame $\{\boldsymbol{e}_i\}$.