Dimension reduction

Emma Yu

Feb 8, 2017

Austin ACM SIGKDD

Advanced Machine Learning with Python (Session 13)

Today's slides and the notebook:

https://github.com/ExLupi/
ACM_SIGKDD_dimension_reduction

Outline

- Why dimension reduction?
- Principal Component Analysis (PCA)
- PCA demo with the MNIST dataset
- Other techniques Probabilistic PCA, LDA, Kernel PCA and Autoencoders

What are the problems we face dealing with high-dimensional data?

Problems dealing with highdimensional data

- Expensive to store and expensive to compute (e.g. larger matrixes to inverse)
- Easier to overfit the data (too many degrees of freedom)
- Hard to visualize (we live in a 3D world)
- The curse of dimensionality it's hard to find structures in high-dimensional data

The Curse of Dimensionality

Image credit: Dana Ballard, lecture notes

The Curse of Dimensionality

Distance-based algorithms (e.g. KNN) do not work well in high dimensional space

Image credit: Bishop 2006

The actual data usually lies near a low-dimension manifold

 We moved and rotated a 100*100 pixel image of 3 to make this dataset. Each image is represented by a point in the 10,000-dimensional data space. What is the actual dimension of data?

Image credit: Bishop 2006

The actual data usually lies near a low-dimension manifold

 We moved and rotated a 100*100 pixel image of 3 to make this dataset. Each image is represented by a point in the 10,000-dimensional data space. What is the actual dimension of data?

3 - x, y and rotation

Image credit: Bishop 2006

Dimension reduction:

Deriving a set of degrees of freedom which can be used to best re-express the dataset

Is there another basis, which is a linear combination of the original basis, that preserves the variance of our dataset?

Is there another basis, which is a linear combination of the original basis, that preserves the variance of our dataset?

Yes! It's made of principal components!

Principal Component Analysis

- maximizes the variance of projected data
- minimizes the average projection cost (mean squared reconstruction error)

 Also known as KLT transform, empirical orthogonal functions, quasi harmonic modes (Wikipedia)

How to find the principal components?

- Define a unit vector in the D-dimensional space \mathbf{u}_1
- Projected value of a data point onto this direction is $\mathbf{u}_1^T \mathbf{x}_n$. Variance of projected data is $\mathbf{u}_1^T \mathbf{S} \mathbf{u}_1$, where S is the covariance matrix $\mathbf{s} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n \overline{\mathbf{x}})(\mathbf{x}_n \overline{\mathbf{x}})^T$.
- Goal: to maximize $\mathbf{u}_1^T \mathbf{S} \mathbf{u}_1$ under the constraint $\mathbf{u}_1^T \mathbf{u}_1 = 1$
- Solve the optimization problem, and we get:

$$\mathbf{S}\mathbf{u}_1 = \lambda_1 \mathbf{u}_1$$

Eigenvalues and Eigenvectors

$$A = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \quad \mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$A\mathbf{x}_1 = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 2\mathbf{x}_1$$
Eigenvector

Image credit: datinker.com

- Principal components are the largest eigenvectors of the covariance matrix
- Value of distortion = sum of all the other eigenvalues
- Cost of full eigenvector decomposition O(D³)

- PCA assumes the data is centered at zero and is sensitive to relative scaling - one wants to standardize the data first!
- PCA prefers multiple medium sized errors than one large error => sensitive to outliers
- It works great for unlabeled data. For labeled data
 LDA sometimes works better
- The projection to the two/three largest principal components is commonly used for visualization

Demo time!

PCA and SVD

- Singular value decomposition (SVD) calculates the singular vectors of the data matrix
- PCA finds the principal components by solving for the eigenvectors of the covariance matrix
- The covariance matrix is simply $\mathbf{X}^{\mathsf{T}}\mathbf{X}/(n-1)$
- PCA is usually solved by SVD to avoid calculating the covariance matrix

PCA and SVD

- SVD factors a matrix into $\mathbf{M} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$
- U and V^* are two unitary matrixes and Σ is a diagonal matrix
- The right singular vectors V are simply the principal directions (eigenvectors of the covariance matrix)
- The diagonal terms in Σ are related to the eigenvalues of the covariance matrix via

$$\lambda_i = s_i^2 / (n-1)$$

Probabilistic PCA

 PCA is also the maximum likelihood solution of a probabilistic latent variable model

 Combined with EM algorithm, probabilistic PCA allows us to deal with missing data

Linear Discriminant Analysis (LDA, or Fisher's linear discriminant)

- Basic idea: find a basis that maximizes (between class variance)/(within class variance)
- Similar to PCA: LDA uses a linear combination of features. All classes are assumed to be normally distributed and have equal class covariance.
- Unlike PCA: LDA models the differences between classes of data

PCA vs LDA

What if the data is not linearly separable?

Kernel PCA

- Use the Kernel trick to construct nonlinear mappings that maximize the variance in the data
- Instead of calculating the covariance matrix $\frac{1}{m}\sum_{i=1}^{m}\mathbf{x}_{i}\mathbf{x}_{i}^{\mathsf{T}}$ Calculate the covariance of the transformed data

$$rac{1}{m}\sum_{i=1}^m \Phi(\mathbf{x}_i)\Phi(\mathbf{x}_i)^\mathsf{T}$$

 After some algebra, it turns out one only needs to solve the eigenvalue problem for the kernel function

$$\mathbf{K}\mathbf{a}_i = \lambda_i N \mathbf{a}_i$$
 $k(\mathbf{x}_n, \mathbf{x}_m) = \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_m)$

The projection onto the eigenvector is simply

$$y_i(\mathbf{x}) = \sum_{n=1}^{N} a_{in} k(\mathbf{x}, \mathbf{x}_n)$$

Image credit: sas-programming.com

Decoder W_1^T 2000 W_2^T 1000 W_3^T 500 W_4^T 30 Code layer W_4 500 W_3 1000 W_2 2000 W₁ Encoder

Autoencoders

- Non-linear activation function and multiple layers!
- Train to minimize reconstruction errors
- Pre-training layerby-layer seems to be the key

Image credit: Hinton and Salakhutdinov, Science, 2006

Top to bottom: original data, reconstructions from a 30-D auto encoder, 30-D logistic PCA, and 30-D standard PCA

Reference

- Bishop 2006, Pattern recognition and machine leaning
- Hinton and Salakhutdinov, Science, 2006,
 Reducing the dimensionality of data with neural networks
- Wikipedia, Quora and Stackexchange

Contact me at: emmayuastro@gmail.com emmayu.com