

ECE380 Digital Logic

Implementation Technology: Buffers, Tri-state gates, Transmission gates

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 12-1

Buffers

- In circuits where a logic gate has to drive a large capacitive load, buffers are often used to improved performance
- Buffers can be created with different amounts of drive capability (depending on the size of the transistors used to construct them)
 - Larger transistors => more current handling capability
 - A common use of a buffer is to control a lightemitting diode (LED)
- Buffers have greater fan-out than other (regular) logic gates

Electrical & Computer Engineering

Buffers

f = x'

f = x

A non-inverting buffer

An inverting buffer

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 12-3

Tri-state Buffers (Gates)

- A tri-state buffer (gate) has
 - One input (x)
 - One output (f)
 - One control input (e)

f=x if e=1

A tri-state buffer

Electrical & Computer Engineering

Tri-state Buffers (Gates)

- When e=1, the buffer drives the value of x onto f, causing f=x
- When e=0, the buffer is completely disconnected from the output f

Equivalent circuit

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 12-5

Tri-state Buffers (Gates)

In truth table form,

e	X	f
0	0	Z
0	1	Z
1	0	0
1	1	1

- For the rows where e=0, the output is denoted by the logic value Z
- This Z is called the highimpedance state
- The name tri-state derives from the fact that there are two normal states for a logic signal (0 and 1) and Z represents a third state that has no output

Electrical & Computer Engineering

Four type of tri-state buffers

- There are four possible configurations of tristate buffers
 - based on two types of outputs
 - Inverting and non-inverting outputs
 - and two types of control signals (e)
 - · Active high and active low enables
- Active low enables implies the output is active (f=x) when the enable is low (e=0)

Electrical & Computer Engineering

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 12-7

Four type of tri-state buffers

Tri-state buffer application

s	x1	х2	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- · Note the outputs of the tri-state gates are wired together
 - This is possible only because we know that (in this configuration) one or the other of the tri-state gates will be in the high impedance (Z) state
 - This type of wired connection is not possible with ordinary logic gates

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 12-9

Transmission gate

- A *transmission gate* acts as a switch, connecting an input (x) to an output (f)
 - Commonly used to implement XOR gate and multiplexer circuits

$$S=1$$
 $x \longrightarrow f=x$

Electrical & Computer Engineering

