

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Methodologies used for data analysis:
 - Collection through SpaceX API
 - EDA, data wrangling, data visualization, interactive dashboard analytics
 - Machine Learning predictive analytics (supervised learning)
- Result Summary:
 - Machine learning prediction model had an accuracy of above 83%
 - EDA showed the right features for prediction of successful launches

Introduction

- The objective of this data science applied capstone is to see how good another company named Space Y is in terms of launch successes vs SpaceX
- Answers I looked for:
 - A reason why SpaceX does so well at a lower budget is because of successful landings, I want to estimate cost for launches through the success of rocket landings as an independent variable.
 - What geo-location ensures highest rate of launch landing success

Methodology

Executive Summary

- Data collection methodology:
 - Obtained through SpaceX API
 - WebScraping Wikipedia
- Perform data wrangling
 - Cleaned a few columns and finalized some datatype changes for certain columns.
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Normalized Data divided into training + test sets, evaluating with 4 different classification models, and finding the best one with > 87% accurate prediction.

Data Collection

- Data was collected through SpaceX API (https://api.spacexdata.com/v4/)
- Data was collected through Wikipedia WebScraping
 (https://en.Wikipedia.org/wiki/List of falcon/ and Falcon Heavy Launches).

Data Collection - SpaceX API

 Please Refer to flowchart on right for data Collection process:

Source: <a href="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="https://github.com/rohit/fin-alcapstone/blob/main/dataccollection-name="

Data Collection - Scraping

 Please Refer to flowchart on right for data Collection process:

• Source:

https://github.com/rohit 23/finalcapstone/blob/main/ WebScraping.ipynb

Data Wrangling

- EDA(Exploratory Data Analysis) was performed
- Please refer to the following flowchart

Source: https://github.com/roht/finalcapstone/blob/main/dataWrangling.ipynb

EDA with Data Visualization

• Scatterplots and Bar charts as well as Bar plots were the most used visuals for this lab as I had decided that they did their best job respectively to display the necessary insights on what data was being assessed.

Source: https://github.com/rohit/finalcapstone/blob/main/EDAwithvisualization
.ipynb

EDA with SQL

• What I did SQL Query Wise:

- Names of unique launch sites
- Top 5 launch sites beginning with 'CCA'
- Total payload mass on boosters launched by NASA CRS
- Average payload mass carried by booster F9 1.1
- · Date of first successful landing
- Names of boosters with success in droning AND payload mass = Between 4000-6000kg
- Total # of successful missions
- Total # of failure missions
- Booster names with highest payload mass
- Failed landing outcomes for 2015
- Rank of landing outcomes between 2010-2017

Build an Interactive Map with Folium

- Markers/Circles/Lines/Marker Clusters used in Folium Maps:
 - Used because:
 - Markers: Good for launch site indication
 - Circles: Good for displaying NASA Johnson Space Center
 - Lines: Calculating distance between coordinates on a map
 - Marker Clusters: Groups of events occurring in each coordinate found.

Source: https://github.com/roht/finalcapstone/blob/main/folium.ipynb

Build a Dashboard with Plotly Dash

- Graphs/Plots used in my dashboard:
 - Payload Range
 - Launches by site
- These were the best pair of variables to use to find best places for launches to occur
- Source: https://github.com/roht/finalcapstone/blob/main/spacexdashapp.py

Predictive Analysis (Classification)

- Classification is a supervised machine learning method:
 - I used the four methods of classifications taught: Regression, SVM, Decision Tree, KNN
 - Please refer to the flow chart below:

Source:

https://github.com/rohit/finalcapstone/blob/main/Machine%25Learning.ipynb

Results

- Data analysis results:
 - 4 different launch sites located
 - First launch was done to spaceX and NASA
 - First success landing occurred in 2015, 5 years after first launch
 - Falcon 9 booster versions still had good landing when above average payload having
 - Near 100% missions' outcomes were classified as successful
 - Two booster versions failed landing n 2015, f9 B1012 and f9 B1015
 - Linear increase in successful landing outcomes overtime

Results

 According to interactive analytics, most launches occurred on east coast launch sites as shown below:

Results

 Decision tree classification was best for prediction of successful landings:

Flight Number vs. Launch Site

- As shown below on my scatter plot: safe conclusion is that best launch site is CCAF5 SLC40
- Overtime improvement in success rate is also displayed

Payload vs. Launch Site

• Good success rate = payloads > 9000 kg

Success Rate vs. Orbit Type

- Best success rate: ES-L1
- Worst success rate: GTO

Flight Number vs. Orbit Type

- Linear increase overtime in success rates across all orbit variables

Payload vs. Orbit Type

 Hard to find connection between two axis, however ISS seems promising

Launch Success Yearly Trend

 Huge increase in success rate from 2013 to 2017.

All Launch Site Names

- All launch site names:
 - CCAFS LC-40
 - CCAFS SLC-40
 - KSC LC-39A
 - VAFB SLC-4E

Obtained through querying unique rows with launch site values from dataset

Launch Site Names Begin with 'CCA'

• As shown below, we see the CCA tag in bold in the dataset.

2010-06-04	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010-12-08	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012-05-22	07:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012-10-08	00:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013-03-01	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attemp

Total Payload Mass

- Total payload carried by boosters from NASA:
 - 111,268kg
 - Calculated using simple mathematics summing all payloads with CRS in their code respectively.

Average Payload Mass by F9 v1.1

- Avg payload mass carried by booster F9 v1.1:
 - 2,928kg

 Data acquired through the filtering of booster versions and using math to calculate the average.

First Successful Ground Landing Date

- First successful landing outcome:
 - December 22nd, 2015
 - To get this data I filtered the data set by successful landing and queried the minimum possible value on the date column

Successful Drone Ship Landing with Payload between 4000 and 6000

- Boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000
 - F9 BT B1021.2
 - F9 FT B1031.2
 - F9 FT B1022
 - F9 FT B1026

 Selecting distinct booster versions and using a between statement was used to query this information

Total Number of Successful and Failure Mission Outcomes

- Ratio of successful missions to failed missions:
 - 99 occurrences to 1 occurrence

• Groupby statement used on mission outcomes lead to the obtainability of this dataset

Boosters Carried Maximum Payload

- Boosters that carried max payload mass:
 - F9 B5 B1048.4 AND .5
 - F9 B5 B1049.4 AND .5 AND .7
 - F9 B5 B1051.3 AND .4 AND .6
 - F9 B5 B1056.4
 - F9 B5 B1058.3
 - F9 B5 B1060.2 AND .3

2015 Launch Records

 Failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

- F9 v1.1 B1012 on CCAFS LC-40
- F9 v1.1 b1015 on CCAFS LC-40

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

• Please examine the table on the right hand side for this information.

Landing Outcome	Occurrences			
No attempt	10			
Failure (drone ship)	5			
Success (drone ship)	5			
Controlled (ocean)	3			
Success (ground pad)	3			
Failure (parachute)	2			
Uncontrolled (ocean)	2			
Precluded (drone ship)	1			

All Launch Site Locations

 Most launch sites were located on east coast

Launch Outcomes by Site

 Green markers label successful attempts, and red markers label failed attempts.

Safety of launch sites by GeoLocation

 As shown on the right, launch site KSC LC-39A being 5.52 km from pathway.

Successful launch count per site

 As shown on pie chart: 41.7% of successful launches occurred on KSC LC-39A

Diving deeper into KSC LC-39A's success

 KSC LC-39A represents a 76.9% success rate

Payload vs Launch Outcome for all sites

- Highest success combination:
 - Payloads < 6000kg
 - Booster version set to: FT

Classification Accuracy

 As seen by the orange bars on the right, the highest reaching one was the decision tree model, reaching above 83%.

Confusion Matrix

 Confusion matrix performed for decision tree model showed high levels of true positives and true negatives.

Conclusions

- The best launch site was found to be KSC LC-39A
- Launches above 6000-7000kg are safer
- Decision Tree classifier is a safe classification method to use for this analysis

Appendix

• Had some issues on github for some reason, so everything that I was not able to upload there, I have uploaded here as screenshots []

