Análisis Tarea 5

Sergio Montoya Ramírez

Contents

Chapter 1	Problema I	Page 2
1.1	Enunciado	2
1.2	Solución	2
Chapter 2	Problema 2	Page 3
2.1	Enunciado	3
2.2	Solución	3
Chapter 3	Problema 3	Page 4
3.1	Enunciado	4
3.9	Solución	Λ

Chapter 1

Problema 1

1.1 Enunciado

Pruebe que la serie

$$\sum_{n=1}^{\infty} (-1)^n \frac{x^2 + n}{n^2}.$$

converge uniformemente en cada intervalo acotado, pero no converge de manera absoluta para cualquier valor de x.

1.2 Solución

En este caso iniciemos por mostrar que esta serie no converge absolutamente.

$$\sum_{n=1}^{\infty} \left| (-1)^n \frac{x^2 + n}{n^2} \right| = \sum_{n=1}^{\infty} \left| \frac{x^2 + n}{n} \right|$$
$$= \sum_{n=1}^{\infty} \left| \frac{x^2}{n} + \frac{1}{n} \right|$$
$$> \sum_{n=1}^{\infty} \left| \frac{1}{n} \right|.$$

Esta función sabemos que diverge. Por lo tanto, esta función también debe divergir. Ahora, note que esta serie puede ser acomodada de la siguiente manera:

$$\sum_{n=1}^{\infty} (-1) \frac{x^2 + n}{n^2} = x^2 \sum_{n=1}^{\infty} \frac{(-1)}{n^2} + \sum_{n=1}^{\infty} \frac{(-1)}{n}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \to A$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \to B$$

$$\sum_{n=1}^{\infty} (-1) \frac{x^2 + n}{n^2} \to x^2 A + B.$$

Ahora, sea $\varepsilon > 0$ y tome N lo suficientemente grande para que $|A - A_n| < \varepsilon$ y $|B - B_n| < \varepsilon$ para todo $n \ge N$. Ahora, sea [a,b] un intervalo cerrado. Ahora, nos interesa encontrar el mayor x^2 por lo que nos interesa tener c el mayor entre |a| y |b| (Tome en cuenta que $(|x|)^2 = (x)^2$. Por lo tanto, sabemos que para un n > N se cumple:

$$|f(x) - f_n(x)| < c^2 \epsilon + \epsilon.$$

por lo tanto esta función converge uniformemente.

Chapter 2

Problema 2

2.1 Enunciado

Sea $\{f_n\}$ una secuencia de funciones acotada uniformemente las cuales son Riemann Integrable en [a,b], y sea

$$F_n(x) = \int_a^x f_n(t) dt (a \le x \le b).$$

pruebe que existe una subsecuencia $\left\{F_{n_k}\right\}$ que converge uniformemente en [a,b].

2.2 Solución

Theorem 2.2.1 Teorema 7.25

Si k es compacto, si $f_n \in \mathcal{E}(K)$ para $n = 1, 2, 3, \dots$ y si $\{f_n\}$ es acotado puntualmente y equicontinuo en K, entonces

- 1. $\left\{ f_{n}\right\}$ es acotado uniformemente en K
- 2. $\{f_n\}$ contiene una subserie uniformemente convergente.

Sea $\left|f_{n}\right|\leq K$ en [a,b]. Entonces, para todo n

$$|F_n(x)| \le \int_a^x |f_n(t)| dt \le K(x-a).$$

Por lo tanto $\{F_n\}$ esta acotado puntualmente en [a,b]. Ahora tome $\varepsilon > 0$ y dos puntos x < y en [a,b] tal que se cumpla que $y - x < \frac{\varepsilon}{K}$. Con lo cual podemos saber:

$$|F_n(x) - F_n(y)| \le \int_x^y |f_n(t)| dt \le K(y - x) \le \varepsilon.$$

con lo cual mostramos que esta familia de funciones es equicontinua y por el teorema 7.25 se tiene el resultado solicitado.

Chapter 3

Problema 3

3.1 Enunciado

Sea X un espacio métrico, con métrica d. Fije un punto $a \in X$. Asigne a cada $p \in X$ la función f_p definida por

$$f_p(x) = d(x,p) - d(x,a) (x \in X).$$

Pruebe que $\left|f_{p}\left(x\right)\right|\leq d\left(a,p\right)$ para todo $x\in X,$ y por lo tanto $f_{p}\in C\left(X\right)$ pruebe que

$$||f_p - f_q|| = d(p,q).$$

para todo $p, q \in X$

Si $\Phi(p) = f_p$, se sigue que Φ es una isometria (un mapa que preserva la distancia) de X en $\Phi(X) \subset C(X)$. Sea Y la cerradura de $\Phi(X)$ en C(X). Muestre que Y es completo.

Conclusión: X es isometrico a un subconjunto denso de un espacio métrico completo Y.

3.2 Solución

Note que la desigualdad triangular nos da:

$$d(x,z) - d(x,y) \le d(y,z)$$
$$d(x,y) - d(x,z) \le d(z,y) = d(y,z)$$
$$\implies |d(x,z) - d(x,y)| \le d(y,z).$$

Para todo $x, y, z \in X$.

Por lo tanto, para todo $x \in X$

$$|f_p(x)| = |d(x,p) - d(x,a)| \le d(a,p).$$

Ahora, para mostrar que es continua tome $\varepsilon>0$ y escoja $x,y\in X$ tal que $d\left(x,y\right)<\delta=\frac{\varepsilon}{2}$ con esto entonces:

$$\begin{aligned} \left| f_{p}\left(x\right) - f_{p}\left(y\right) \right| &= \left| d\left(x, p\right) - d\left(x, a\right) - d\left(y, p\right) + d\left(y, a\right) \right| \\ &\leq \left| d\left(x, p\right) - d\left(y, p\right) \right| + \left| d\left(y, a\right) - d\left(x, a\right) \right| \\ &\leq d\left(x, y\right) + d\left(x, y\right) \\ &\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

Ahora, sean $p, q \in X$ entonces para todo $x \in X$

$$f_p\left(x\right) - f_q\left(x\right) = d\left(x,p\right) - d\left(x,q\right) - d\left(x,q\right) + d\left(x,q\right) = d\left(x,p\right) - d\left(x,q\right) \leq d\left(p,q\right).$$

por lo tanto

$$\left|\left|f_{p}-f_{q}\right|\right|=\sup_{x\in X}\left|f_{p}\left(x\right)-f_{q}\left(x\right)\right|\leq d\left(p,q\right)$$

Ahora, ademas note

$$f_{p}(q) - f_{q}(q) = d(q, p) - d(q, q)$$
$$= d(q, p) = d(p, q).$$

Entonces sabemos que si existe al menos un elemento con el valor máximo por lo que

$$||f_p - f_q|| = d(p,q).$$