UUB Charge and Peak histograms

Mauricio Suárez Durán and Ioana C. Mariș

IIHE-ULB

June 21, 2021

UUB Charge and Peak histograms

- ➤ Station studied: 863 1222 1219 1211 1740 1743 1221 1223 1217 1747 1741 1745 1818 1851 1729 1735 1746 1819 1791
- Data from CDAS.
- ► Software CDAS, pre-production version.

2

UUB Peak: Derivating histogram

The algorithm: 1. Smooth/FFT Histogram

- 2. Derivating of smooth/FFT Histogram
- 3. Identifing Fit range (Slope changes)
- 4. Fitting

Two function checked:

- Exp. + Log-normal
- 2nd order polinomium

UUB Peak: Fit and Residuals

The Exp.+Log-normal fit better than second order polinomium.

4

UUB Peak: Residuals distribution

Ę

UUB Peak: applying all histograms St. 863, Chi and Prob. distributions

UUB Charge: Derivating histogram

7

UUB Charge: Fit and Residuals

The Exp.+Log-normal fit better than second order polinomium.

8

UUB Charge: Residuals distribution

UUB Charge: applying all histograms St. 863, Chi and Prob. distributions

UUB AoP Station 863: Peak, Charge and AoP

UUB Peak Station 1740: Chi and Prob. distributions all histograms

For χ^2/ndf plot, all histograms with χ^2/ndf bigger than 6 are counted as 6.

UUB Charge Station 1740: Chi and Prob. distributions all histograms

For χ^2/ndf plot, all histograms with χ^2/ndf bigger than 6 are counted as 6.

UUB Station 1740: Failed fit

UUB AoP Station 1740: Peak, Charge and AoP

UB Peak: Derivating histogram

The algorithm: 1. Smooth/FFT Histogram

- 2. Derivating of smooth/FFT Histogram
- 3. Identifing Fit range (Slope changes)
- 4. Fitting

Two function checked:

- Exp. + Log-normal
- 2nd order polinomium

UB Peak: Fit and Residuals

The Exp.+Log-normal fit better than second order polinomium.

UB Peak: Residuals distribution

UB Peak: applying all histograms St. 863, Chi and Prob. distributions

UB Peak Station 863: Failed fit for PMT2

UB Charge: Derivating histogram

UB Charge: Fit and Residuals

The Exp.+Log-normal fit better than second order polinomium.

UB Charge: Residuals distribution

UB Charge: applying all histograms St. 863, Chi and Prob. distributions

