Lecture 9

Machine Learning Fall 2015

What is boosting?

AdaBoost

Ensemble methods

What is boosting?

AdaBoost

Ensemble methods

Boosting

 A general learning approach for constructing a strong learner, given a collection of (possibly infinite) weak learners

 Historically: An answer to a theoretical question in PAC learning

The Strength of Weak Learnability

ROBERT E. SCHAPIRE

1989-90

Practically useful

 Boosting is a way to create a strong learner using only weak learners (also known as "rules of thumb")

An Ensemble method

- A class of learning algorithms that composes classifiers using other classifiers as building blocks
- Boosting has stronger theoretical guarantees than other ensemble methods

Example: How may I help you?

Goal: Automatically categorize type of phone call requested by a phone customer

- "yes I'd like to place a collect call please" → Collect
- "Operator I need to make a call but need to bill it to my office" \rightarrow ThirdNumber
- "I'd like to place my call on my master card please" \rightarrow CallingCard

Important observation

"Rules of thumb" are often correct

Eg: If card occurs in the utterance, then predit CallingCard
But hard to find a single prediction rule

One boosting approach

- Select a small subset of examples
- Derive a rough rule of thumb
- Example a second set of examples
- Derive a second rule of thumb
- Repeat T times...
- Combine rules of thumb into a single prediction rule

of thumb into accurate prediction classifiers

Boosting: A general method for converting rough rules

Need to specify: How to select these subsets?

Need to specify: How to combine these rules of thumb?

Boosting: The formal problem setup

- Strong PAC algorithm
 - For any distribution over examples,
 - For every $\epsilon > 0$, $\delta > 0$,
 - Given a polynomially many random examples
 - Finds a hypothesis with error $\leq \epsilon$ with probability \geq 1 δ
- Weak PAC algorithm
 - Same, but only for $\epsilon \geq 1/2$ γ
- Question [Kearns and Valiant '88]:
 - Does weak learnability imply strong learnability?

History: Early boosting algorithms

- [Schapire '89]
 - First provable boosting algorithm
 - Call weak learner three times on three modified distributions
 - Get slight boost in accuracy
 - Apply recursively
- [Freund '90]
 - "Optimal" algorithm that "boosts by majority"
- [Drucker, Schapire & Simard '92]
 - First experiments using boosting
 - Limited by practical drawbacks
- [Freund & Schapire '95]
 - Introduced AdaBoost algorithm
 - Strong practical advantages over previous boosting algorithms
- AdaBoost was followed by a huge number of papers and practical applications
 - And a Gödel prize for Freund and Schapire

What is boosting?

- AdaBoost
 - Intuition
 - The algorithm
 - Why does it work

Ensemble methods

Initially all examples are equally important

Our weak learner: An axis parallel line

Or

Initially all examples are equally important

 h_1 = The best classifier on this data

Our weak learner: An axis parallel line

Or

Initially all examples are equally important

 ${\rm h_1}$ = The best classifier on this data Clearly there are mistakes. Error $\epsilon_{\rm 1}$ = 0.3

Initially all examples are equally important

 ${\rm h_1}$ = The best classifier on this data Clearly there are mistakes. Error $\epsilon_{\rm 1}$ = 0.3

For the next round, increase the importance of the examples with mistakes and down-weight the examples that h₁ got correctly

D_t = Set of weights at round t, one for each example. Think "How much should the weak learner care about this example in its choice of the classifier?"

D_t = Set of weights at round t, one for each example. Think "How much should the weak learner care about this example in its choice of the classifier?"

$$\epsilon_t = \frac{1}{2} - \frac{1}{2} \left(\sum_{i=1}^m D_t(i) \ y_i h(x_i) \right)$$

Why is this a reasonable definition?

D_t = Set of weights at round t, one for each example. Think "How much should the weak learner care about this example in its choice of the classifier?"

 h_2 = A classifier learned on this data. Has an error ϵ_2 = 0.21

Why not 0.3? Because while computing error, we will weight each example x_i by its $D_t(i)$

$$\epsilon_t = \frac{1}{2} - \frac{1}{2} \left(\sum_{i=1}^m D_t(i) \ y_i h(x_i) \right)$$

Why is this a reasonable definition?

Consider two cases

Case 1: When
$$y = +1$$
, $h(x) = -1$ OR $y = -1$, $h(x) = +1$

Case 2: When y = h(x)

D_t = Set of weights at round t, one for each example. Think "How much should the weak learner care about this example in its choice of the classifier?"

 h_2 = A classifier learned on this data. Has an error ϵ_2 = 0.21

For the next round, increase the importance of the mistakes and down-weight the examples that h₂ got correctly

D_t = Set of weights at round t, one for each example. Think "How much should the weak learner care about this example in its choice of the classifier?"

$$\epsilon_t = \frac{1}{2} - \frac{1}{2} \left(\sum_{i=1}^m D_t(i) \ \mathbf{y_i h}(\mathbf{x_i}) \right)$$

D_t = Set of weights at round t, one for each example. Think "How much should the weak learner care about this example in its choice of the classifier?"

 h_3 = A classifier learned on this data. Has an error ϵ_3 = 0.14

Why not 0.3? Because while computing error, we will weight each example x_i by its $D_t(i)$

The final hypothesis is a combination of all the h_i's we have seen so far

The final hypothesis is a combination of all the h_i's we have seen so far

Think of the α values as the vote for each weak classifier and the boosting algorithm has to somehow specify them

An outline of Boosting

Given a training set $(x_1, y_1), \dots, (x_m, y_m)$

- Instances $x_i \in X$ labeled with $y_i \in \{-1, +1\}$

- For $t = 1, 2, \dots, T$:
 - Construct a distribution D_t on $\{1, 2, \dots, m\}$
 - Find a weak hypothesis (rule of thumb) $\mathbf{h_t}$ such that it has a small weighted error ϵ_t
- Construct a final output H_{final}

An outline of Boosting

Given a training set $(x_1, y_1), \dots, (x_m, y_m)$

- Instances $x_i \in X$ labeled with $y_i \in \{-1, +1\}$

- For $t = 1, 2, \dots, T$:
 - Construct a distribution D_t on $\{1, 2, \dots, m\}$
 - Find a weak hypothesis (rule of thumb) h_t such that it has a small weighted error ϵ_t
- Construct a final output H_{final}

Need to specify these two to get a complete algorithm

We have m examples

D_t is a set of weights over the examples

$$D_t(1), D_t(2), \cdots D_t(m)$$

At every round, the weak learner looks for hypotheses h_t that emphasizes examples that have a higher D_t

Initially (t = 1), use the uniform distribution over all examples

$$D_1(i) = \frac{1}{m}$$

Initially (t = 1), use the uniform distribution over all examples

$$D_1(i) = \frac{1}{m}$$

After t rounds

- What we have
 - D_t and the hypothesis h_t that was learned
 - The error ϵ_t of that hypothesis on the training data
- What we want from the (t+1)th round
 - Find a hypothesis so that examples that were incorrect in the previous round are correctly predicted by the new one
 - That is, increase the importance of misclassified examples and decrease the importance of correctly predicted ones

Initially (t = 1), use the uniform distribution over all examples

$$D_1(i) = \frac{1}{m}$$

After t rounds, we have some D_t and a hypothesis h_t that the weak learner produced

Create D_{t+1} as follows:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$

Initially (t = 1), use the uniform distribution over all examples

$$D_1(i) = \frac{1}{m}$$

After t rounds, we have some D_t and a hypothesis h_t that the weak learner produced

Create D_{t+1} as follows:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$
$$= \frac{D_t(i)}{Z_t} \cdot \exp\left(-\alpha_t \cdot y_i h_t(x_i)\right)$$

Demote correctly predicted examples

Promote incorrectly predicted examples

After t rounds, we have some D_t and a hypothesis h_t that the weak learner produced

Create D_{t+1} as follows:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$
$$= \frac{D_t(i)}{Z_t} \cdot \exp\left(-\alpha_t \cdot y_i h_t(x_i)\right)$$

 Z_t : A normalization constant. Ensures that the weights $\mathbf{D_{t+1}}$ add up to 1

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$
 The classifier $\mathbf{h_t}$ gets a vote of α_t in the final classifier

An outline of Boosting

Given a training set $(x_1, y_1), \dots, (x_m, y_m)$

- Instances $x_i \in X$ labeled with $y_i \in \{-1, +1\}$

- For $t = 1, 2, \dots, T$:
 - Construct a distribution D_t on $\{1, 2, \dots, m\}$
 - Find a weak hypothesis (rule of thumb) h_t such that it has a small weighted error ϵ_t
- Construct a final output H_{final}

Need to specify these two to get a complete algorithm

The final hypothesis

- After T rounds, we have
 - T weak classifiers $h_1, h_2, \cdots h_T$
 - T values of α_t
- Recall that each weak classifier is takes an example \boldsymbol{x} and produces a -1 or a +1
- ullet Define the final hypothesis $H_{\it final}$ as

$$H_{final}(x) = \operatorname{sgn}\left(\sum_{t} \alpha_{t} h_{t}(x)\right)$$

AdaBoost: The full algorithm

Given a training set $(x_1, y_1), \dots, (x_m, y_m)$ Instances $x_i \in X$ labeled with $y_i \in \{-1, +1\}$

T: a parameter to the learner

- 1. Initialize $D_1(i) = 1/m$ for all $i = 1, 2, \dots, m$
- 2. For $t = 1, 2, \dots T$:
 - 1. Find a classifier h_t whose weighted classification error is better than chance
 - 2. Compute its vote

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

3. Update the values of the weights for the training examples

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \cdot \exp\left(-\alpha_t \cdot y_i h_t(x_i)\right)$$

3. Return the final hypothesis $H_{final}(x) = \operatorname{sgn}\left(\sum_t \alpha_t h_t(x)\right)$

Back to the toy example

Analyzing the training error

Theorem:

Run AdaBoost for T rounds

We have a weak learner

• Let
$$\epsilon_t$$
 = ½ - γ_t <

- Let $0 < \gamma \le \gamma_t$ for all t
- Then,

As T increases, the training error drops exponentially

Training error(H_{final}) $\leq e^{-2\gamma^2 T}$

Is it sufficient to upper bound the training error?

Proof is simple, see pointer on website

Adaboost: Training error

The training error of the combined classifier decreases exponentially fast if the errors of the weak classifiers (the ϵ_t) are strictly better than chance

What about the test error?

What the theory tells us:

Training error will keep decreasing or reach zero (the AdaBoost theorem)

Test error will increase after the H_{final} becomes too "complex"

Think about Occam's razor and overfitting

In practice

Strange observation: Test error may decrease even after training error has hit zero! Why? (One possible explanation in [Schapire, Freund, Bartlett, Lee, 1997])

AdaBoost: Summary

What is good about it

- Simple, fast and only one additional parameter to tune (T)
- Use it with any weak learning algorithm
 - Which means that we only need to look for classifiers that are slightly better than chance

Caveats

- Performance often depends on dataset and the weak learners
- Can fail if the weak learners are too complex (overfitting)
- Can fail if the weak learners are too weak (underfitting)
- Empirical evidence [Caruana and Niculescu-Mizil, 2006] that boosted decision stumps are the best approach to try if you have a small number of features (no more than hundreds)

Boosting and Ensembles

What is boosting?

AdaBoost

- Ensemble methods
 - Boosting, Bagging and Random Forests

Ensemble methods

 In general, meta algorithms that combine the output of multiple classifiers

Often tend to be empirically robust

• Eg: The winner of the Netflix challenge was a giant ensemble

Boosting

- Initialization:
 - Weigh all training samples equally
- Iteration Step:
 - Train model on (weighted) train set
 - Compute error of model on train set
 - Increase weights on training cases model gets wrong!!!
- Typically requires 100's to 1000's of iterations
- Return final model:
 - Carefully weighted prediction of each model

Boosting: Different Perspectives

- Boosting is a maximum-margin method (Schapire et al. 1998, Rosset et al. 2004)
 - Trades lower margin on easy cases for higher margin on harder cases
- Boosting is an additive logistic regression model (Friedman, Hastie and Tibshirani 2000)
 - Tries to fit the logit of the true conditional probabilities
- Boosting is an equalizer (Breiman 1998) (Friedman, Hastie, Tibshirani 2000)
 - Weighted proportion of the number of times an example is misclassified by base learners tends to be the same for all training cases
- Boosting is a linear classifier, but does not give well calibrated probability estimate.

Bagging

Also known as Bootstrap aggregating [Breiman, 1994]

- Given a training set with m examples
- Repeat $t = 1, 2, \dots, m$:
 - Draw m' (< m) samples with replacement from the training set
 - Train a classifier (any classifier) C_i
- Construct final classifier by taking votes from each C_i

Bagging

Also known as **B**ootstrap **agg**regating

- A method for generating multiple versions of a predictor and using these to get an aggregated predictor.
 - Averages over the versions when predicting a numerical outcome (regression)
 - Does a plurality vote when predicting a class (classification)
- The multiple versions are constructed by making bootstrap replicates of the learning set and using these as training sets
 - That is, use samples of the data, with repetition
- Tests on real and simulated data sets using classification and regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy
- Instability of the prediction method: If perturbing the training set can cause significant changes in the learned classifier *then* bagging can improve accuracy

Example: Bagged Decision Trees

- Draw T bootstrap samples of data
- Train trees on each sample \rightarrow T trees
- Average prediction of trees on out-of-bag samples

Average prediction
$$(0.23 + 0.19 + 0.34 + 0.22 + 0.26 + ... + 0.31) / \# Trees = 0.24$$

Random Forests (Bagged Trees++)

- Draw T (possibly 1000s) bootstrap samples of data
- Draw sample of available attributes at each split
- Train trees on each sample/attribute set \rightarrow T trees
- Average prediction of trees on out-of-bag samples

Average prediction
$$(0.23 + 0.19 + 0.34 + 0.22 + 0.26 + ... + 0.31) / \# Trees = 0.24$$

Boosting and Ensembles: What have we seen?

- What is boosting?
 - Does weak learnability imply strong learnability?
- AdaBoost
 - Intuition
 - The algorithm
 - Why does it work
- Ensemble methods
 - Boosting, Bagging and Random Forests