Bernsteinovi polinomi treh spremenljivk

Petja Murnik in Nejc Jenko

17. januar 2025

Uvod

Pri predavanjih predmeta RPGO smo obravnavali Bernsteinove bazne polinome ene ter dveh spremenljivk, ki smo jih uporabili pri različnih aplikacijah pri numerični matematiki.

V tem delu bomo predstavili Bernsteinove bazne polinome treh spremenljivk, ki so razširitev prej omenjenih.

Definicija prostora polinomov treh spremenljivk

Prostor polinomov stopnje d treh spremenljivk je definiran kot:

$$\mathcal{P}_d(x,y,z) = \left\{ \sum_{i+j+k \leq n} c_{i,j,k} x^i y^j z^k : c_{i,j,k} \in \mathbb{R} \right\}.$$

Ta prostor ima dimenzijo:

$$\mathcal{P}_d = \binom{d+3}{3}.$$

Lema 1

Lema

Naj bo \mathcal{P}_d definiran kot v prej. Potem velja, da je $\dim \mathcal{P}_d = \binom{d+3}{3}$. Nadalje monomi $\left\{x^i y^j z^k\right\}_{0 \le i+j+k \le d}$ tvorijo njegovo bazo.

Dokaz leme 1 (skrajšan)

- Monomi oblike $\{x^i y^j z^k\}_{0 \le i+j+k \le d}$ razpenjajo \mathcal{P}_d .
- Velja $|\{(i,j,k): 0 \le i+j+k \le d, i,j,k \in \mathbb{N}_0\}| = \binom{d+3}{3} = \dim \mathcal{P}_d.$
- Predpostavimo, da je polinom $p(x, y, z) = \sum_{0 \le i+j+k \le d} a_{ijk} x^i y^j z^k$ identično enak 0.
- Vsi mešani odvodi polinoma so enaki 0.
- Direktno odvajanje: $D_x^i D_y^j D_z^k p(x,y,z)|_{x=0,y=0,z=0} = a_{ijk}$ za vsak $0 \le i+j+k \le d$.
- Linearna neodvisnost monomov je dokazana.

Lema 2

Lema

Naj bo T tetraeder z volumnom V_T , potem obstaja konstanta K odvisna le od d, da za vsak $p \in \mathcal{P}_d$ ter $1 \leq q < \infty$

$$V_T^{-1/q} \|p\|_{q,T} \le \|p\|_{\infty l,T} \le KV_T^{-1/q} \|p\|_{q,T},$$
 (1)

kjer je $\|\cdot\|_{a,T}$ standardna L_q norma glede na tetraeder T.

Dokaz leme 2

Za prvo neenakost računamo

$$\int_{T} |p(t)|^{q} dt \leq \int_{T} \left(\sup_{t \in T} |p(t)| \right)^{q} dt = \left(\sup_{t \in T} |p(t)| \right)^{q} \int_{T} 1 dt = \|p\|_{\infty, T}^{q} V_{T}$$

ter če začetek in konec q-korenimo, dobimo željeno.

Druga neenakost izhaja iz ekvivalentnosti norm v končno dimenzionalnem prostoru \mathcal{P}_d :

$$||p||_{\infty,T} \leq K ||p||_{q,T}.$$

Združitev obeh neenakosti:

$$|V_T^{-1/q} \| p \|_{q,T} \le K \| p \|_{\infty,T} \le K V_T^{-1/q} \| p \|_{q,T}.$$

S tem je lema dokazana.

Definicija nedegeneriranega tetraedra

Definicija

Rečemo, da je tetraeder $T=\langle V_1,V_2,V_3,V_4\rangle$ nedegeneriran, če ima neničelen volumen. Rečemo, da so vozlišča V_1,V_2,V_3,V_4 tetraedra T v kanoničnem redu, če lahko T rotiramo in transliramo tako, da ploskev $\langle V_1,V_2,V_3\rangle$ leži v ravnini z=0 in je pozitivno orientirana ter je z koordinata vozlišča V_4 pozitivna.

Lema 3

Lema

Naj bo $T=\langle V_1,V_2,V_3,V_4\rangle$ tetraeder v kanoničnem redu. Potem za vsako točko $V=(x,y,z)\in\mathbb{R}^3$ obstajajo enolično določene $\phi_1,\phi_2,\phi_3,\phi_4\in\mathbb{R}$, da velja

$$V = \phi_1 V_1 + \phi_2 V_2 + \phi_3 V_3 + \phi_4 V_4 \tag{2}$$

ter

$$\phi_1 + \phi_2 + \phi_3 + \phi_4 = 1. \tag{3}$$

Vrednostim $\phi_1, \phi_2, \phi_3, \phi_4$ rečemo **baricentrične koordinate** točke V glede na tetraeder T.

Dokaz leme 3

Željeno je rešitev nesingularnega sistema

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \\ z_1 & z_2 & z_3 & z_4 \end{bmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \end{bmatrix} = \begin{bmatrix} 1 \\ x \\ y \\ z \end{bmatrix}. \quad \Box$$

$$\phi_1 = rac{1}{\det(M)} egin{bmatrix} 1 & 1 & 1 & 1 \ x & x_2 & x_3 & x_4 \ y & y_2 & y_3 & y_4 \ z & z_2 & z_3 & z_4 \ \end{bmatrix} = rac{V_{\widetilde{T}_1}}{V_T},$$

kjer je $V_{\widetilde{T}_i}$ prostornina tetraedra, ki ga dobimo, če zamenjamo i-to vozlišče s točko V

Baricentrične koordinate glede na tetraeder

Definicija Bernsteinovih baznih polinomov

Definition

Naj bo $T=\langle V_1,V_2,V_3,V_4\rangle$ tetraeder v kanoničnem redu. **Bernsteinov** bazni polinom stopnje d glede na tetraeder T je definiran kot

$$B_{ijkl}^{d} := \frac{d!}{i!j!k!l!} \phi_1^i \phi_2^j \phi_3^k \phi_4^l, \quad i+j+k+l=d,$$
 (4)

kjer je $\phi_1, \phi_2, \phi_3, \phi_4$ baricentrične koordinate funkcije glede na tetraeder T. V primeru, ko je kateri izmed indeksov i, j, k, l negativen, nastavimo $B^d_{ijkl} = 0$.

Ključne lastnosti: pozitivnost, particija enote.

Izrek 2

Theorem

Bernsteinovi bazni polinomi B^d_{ijkl} tvorijo bazo prostora \mathcal{P}_d . Prav tako velja

$$\sum_{i+i+l+d-d} B_{ijkl}^d(V) = 1, \quad \forall V \in \mathbb{R}^3$$
 (5)

ter

$$0 \le B_{ijkl}^d(V) \le 1, \quad \forall V \in T. \tag{6}$$

Dokaz (1. del)

Izrek trdi, da Bernsteinovi bazni polinomi B_{ijkl}^d tvorijo bazo prostora \mathcal{P}_d . Prav tako veljata naslednji lastnosti:

Particija enote:

$$\sum_{i+j+k+l=d} B^d_{ijkl}(V) = 1, \quad \forall V \in \mathbb{R}^3$$

Pozitivnost:

$$0 \leq B_{ijkl}^d(V) \leq 1, \quad \forall V \in T$$

Dokaz začnemo s trinomskim izrazom:

$$1 = (\phi_1 + \phi_2 + \phi_3 + \phi_4)^d = \sum_{i+j+k+l=d} \frac{d!}{i!j!k!l!} \phi_1^i \phi_2^j \phi_3^k \phi_4^l$$

To neposredno pokaže particijo enote. Pomeni tudi, da 1 pade v linearno ovojnico \mathcal{B}^d .

Dokaz (2. del)

Sedaj pomnožimo $x=\phi_1x_1+\phi_2x_2+\phi_3x_3+\phi_4x_4$ z $1=\sum_{i+j+k+l=d}B_{ijk}^{d-1}$, zberemo člene in dobimo:

$$x = \sum_{i+j+k+l=d} \frac{(ix_1 + jx_2 + kx_3 + lx_4)}{d} B_{ijkl}^d(x, y, z)$$

Torej je tudi x v linearni ovojnici \mathcal{B}^d . Podobno za y in z:

$$y = \sum_{i+j+k+l=d} \frac{(iy_1 + jy_2 + ky_3 + ly_4)}{d} B_{ijkl}^d(x, y, z)$$

$$z = \sum_{i+j+k+l=d} \frac{(iz_1 + jz_2 + kz_3 + lz_4)}{d} B_{ijkl}^d(x, y, z)$$

Dokaz (3. del)

Z indukcijo lahko pokažemo, da vsi monomi $\{x^{\nu}, y^{\mu}, z^{\kappa}\}_{0 \leq \nu + \mu + \kappa \leq d}$ padejo v linearno ovojnico \mathcal{B}^d .

Ker je število baznih funkcij za \mathcal{B}^d enako dimenziji $\binom{d+3}{2}$ prostora \mathcal{P}_d , so Bernsteinovi bazni polinomi baza prostora \mathcal{P}_d .

Nenegatinost sledi iz definicije Bernsteinovih baznih polinomov, saj so vsi členi v vsoti nenegativni. Zgornja meja pa nato sledi iz particije enote.

Definicija B-forme in B-koeficientov

Iz izreka 2 sledi, da lahko vsak polinom $p \in \mathcal{P}_d$ zapišemo na enoličen način kot

$$p = \sum_{i+j+k+l=d} c_{ijkl} B^d_{ijkl}. \tag{7}$$

Tak zapis imenujemo **B-forma** ter koeficente c_{ijkl} **B-koeficienti**. Množico domenskih točk definiramo ter označimo kot

$$\mathcal{D}_{d,T} := \left\{ \zeta_{ijkl}^T := \frac{iV_1 + jV_2 + kV_3 + IV_4}{d} \right\}_{i+j+k+l=d}.$$
 (8)

Domenske točke $\mathcal{D}_{3,T}$

$$V_1 = (0,0,0), V_2 = (0,1,0), V_3 = (1,1,0), V_4 = (0,0,1)$$

Ideja De Casteljaujevega algoritma

V tem razdelku bomo predstavili de Casteljaujev algoritem. Algoritem omogoča učinkovito in stabilno izračunavanje vrednosti polinomov v B-formi. Algoritem temelji na rekurzivni zvezi:

$$B_{ijkl}^d = \phi_1 B_{i-1,j,k,l}^{d-1} + \phi_2 B_{i,j-1,k,l}^{d-1} + \phi_3 B_{i,j,k-1,l}^{d-1} + \phi_4 B_{i,j,k,l-1}^{d-1},$$

Izrek 4

Theorem

Naj bo $p \in \mathcal{P}_d$ zapisan v obliki B-forme (7). Njegove koeficiente označimo z $c_{ijkl}^{(0)} = c_{ijkl}, i + j + l + k = d$. Naj ima točka V baricentrične koordinate $\phi_1, \phi_2, \phi_3, \phi_4$.

Potem velja:

$$p(V) = \sum_{i+j+k+l=d} c_{ijkl}^{(d)} B_{ijkl}^d(V),$$

kjer so $c_{ijkl}^{(r)}$ definirani kot:

$$c_{ijkl}^{(r)} = \phi_1 c_{i-1,j,k,l}^{(r-1)} + \phi_2 c_{i,j-1,k,l}^{(r-1)} + \phi_3 c_{i,j,k-1,l}^{(r-1)} + \phi_4 c_{i,j,k,l-1}^{(r-1)},$$

za i+j+k+l = d, r = 1, 2, ..., d.

Algoritem 1

de Casteljaujev algoritem

- Za r = 0 nastavi $c_{ijkl}^{(0)} = c_{ijkl}$ za i + j + k + l = d.
- 2 Za $r=1,2,\ldots,d$ izračunaj

$$c_{ijkl}^{(r)} = \phi_1 c_{i-1,j,k,l}^{(r-1)} + \phi_2 c_{i,j-1,k,l}^{(r-1)} + \phi_3 c_{i,j,k-1,l}^{(r-1)} + \phi_4 c_{i,j,k,l-1}^{(r-1)},$$

za
$$i + j + k + l = d$$
.

Vrednost polinoma p v točki V je enaka

$$p(V) = \sum_{i+j+k+l=d} c_{ijkl}^{(d)} B_{ijkl}^{d}(V).$$

Viri

- M. J. Lai, L. Schumaker: Spline functions on triangulations, Cambridge Uni- versity Press, 2007, strani 434-443
- Farin, G. (2001). Curves and surfaces for CAGD: a practical guide. Elsevier.