1: Probability and inference

August 28, 2019

Introduction

First, some notation:

- 1 y: observed data (could be vector- or matrix-valued)
- 2 θ : parameter (usually a greek letter)
- \tilde{y} : unknown, potentially observable (future?) data
- **1** $X = (x_1, \dots, x_n)$, random or nonrandom covariate or predictor

Introduction

First, some notation:

- 1 y: observed data (could be vector- or matrix-valued)
- 2 θ : parameter (usually a greek letter)
- \mathfrak{F} : unknown, potentially observable (future?) data
- **4** $X = (x_1, \dots, x_n)$, random or nonrandom covariate or predictor

Distributions

- **1** $p(\theta)$: prior distribution
- 2 $p(y \mid \theta)$ sampling/data distribution

Introduction

Goal of statistical inference: estimate unobservable quantities!

1 potentially observables: $p(\tilde{y} \mid y)$: (e.g. forecasting, prediction, etc.)

2 unobservable quantities: $p(\theta \mid y)$

Bayes' rule

Bayes' rule:

$$p(\theta \mid y) = \frac{p(y \mid \theta)p(\theta)}{p(y)}$$
$$\propto p(y \mid \theta)p(\theta)$$

Bayes' rule

Bayes' rule:

$$p(\theta \mid y) = \frac{p(y \mid \theta)p(\theta)}{p(y)}$$
$$\propto p(y \mid \theta)p(\theta)$$

or perhaps

$$p(\theta \mid y, x) = \frac{p(y \mid x, \theta)p(\theta \mid x)}{p(y \mid x)}$$
$$\propto p(y \mid x, \theta)p(\theta \mid x)$$

- " 1

Bayes' rule

Bayes' rule:

$$p(\theta \mid y) = \frac{p(y \mid \theta)p(\theta)}{p(y)}$$
$$\propto p(y \mid \theta)p(\theta)$$

or perhaps

$$p(\theta \mid y, x) = \frac{p(y \mid x, \theta)p(\theta \mid x)}{p(y \mid x)}$$
$$\propto p(y \mid x, \theta)p(\theta \mid x)$$

- switch/invert order of conditioning!
- ② think of $p(y \mid \theta)$, $p(y \mid x, \theta)$ as a function of θ
- 3 in practice, the normalizing constant is often the most problematic

Bayes' Rule

google's best image:

Prediction

The **prior predictive distribution**: when you haven't seen any data yet:

$$p(y) = \int p(y \mid \theta) p(\theta) d\theta$$

71

6 / 17

Prediction

The **prior predictive distribution**: when you haven't seen any data yet:

$$p(y) = \int p(y \mid \theta) p(\theta) d\theta$$

The **posterior predictive distribution**: when you've seen data

$$p(\tilde{y} \mid y) = \int p(\tilde{y}, \theta \mid y) d\theta$$

$$= \int p(\tilde{y} \mid \theta, y) p(\theta \mid y) d\theta$$

$$= \int p(\tilde{y} \mid \theta) p(\theta \mid y) d\theta \qquad \text{(cond. indep.)}$$

Both are averages but with different distributions for θ

71

Likelihood and odds ratio

Posterior odds: $p(\theta_1|y)/p(\theta_2|y)$

Bayes' Rule in terms of posterior odds:

$$\frac{p(\theta_1|y)}{p(\theta_2|y)} = \frac{p(\theta_1)p(y|\theta_1)/p(y)}{p(\theta_2)p(y|\theta_2)/p(y)} = \frac{p(\theta_1)}{p(\theta_2)}\frac{p(y|\theta_1)}{p(y|\theta_2)}$$

August 28, 2019

Often $y = (y_1, \dots, y_n)$ are assumed to be **exchangeable**, or

$$p_{Y_1,...,Y_n}(y_1,...,y_n) = p_{Y_{\sigma(1)},...,Y_{\sigma(n)}}(y_1,...,y_n)$$

where $\boldsymbol{\sigma}$ is any permutation of the indexes.

- 1

8 / 17

Often $y = (y_1, \dots, y_n)$ are assumed to be **exchangeable**, or

$$p_{Y_1,...,Y_n}(y_1,...,y_n) = p_{Y_{\sigma(1)},...,Y_{\sigma(n)}}(y_1,...,y_n)$$

where σ is any permutation of the indexes.

For example, assume Y_1 , Y_2 are discrete. Then $p(Y_1 = a, Y_2 = b) = p(Y_2 = a, Y_1 = b)$.

- " 1

The iid condition implies exchangeability:

$$p_{Y_1,\dots,Y_n}(y_1,\dots,y_n) = \prod_{i=1}^n p_{Y_i}(y_i)$$
 (indep.)
$$= \prod_{i=1}^n p_{Y_{\sigma(i)}}(y_i)$$
 (ident.)
$$= p_{Y_{\sigma(1)},\dots,Y_{\sigma(n)}}(y_1,\dots,y_n)$$

" I

However, it isn't the other way around. We will often take $p(y) = \int p(y \mid \theta) p(\theta) d\theta$

$$p(y) = p(y_1, ..., y_n)$$

$$= \int p(y_1, ..., y_n \mid \theta) p(\theta) d\theta$$

$$= \int p(y_{\sigma(1)}, ..., y_{\sigma(n)} \mid \theta) p(\theta) d\theta$$

$$= p(y_{\sigma(1)}, ..., y_{\sigma(n)})$$

but p(y) does not factor

____1

LTE and LTV

Apply the law of total expectation:

$$\underbrace{E[\theta]}_{\text{prior mean}} = E[\underbrace{E(\theta \mid y)}_{\text{posterior mean}}]$$

outer expectation on the rhs is taken with respect to p(y).

" I"

LTE and LTV

Apply the law of total variance:

$$\underbrace{\mathit{var}[\theta]}_{\text{prior variance}} = E[\underbrace{\mathit{var}(\theta \mid y)}_{\text{posterior var}}] + \underbrace{\mathit{var}[E(\theta \mid y)]}_{\text{dispersion of post. mean}}$$

outer expectation on the rhs is taken with respect to p(y).

12 / 17

August 28, 2019

LTE and LTV

You can also switch things around:

$$E[y] = E[E(y \mid \theta)]$$

and

$$var(y) = var[E(y \mid \theta)] + E[var(y \mid \theta)]$$

" I

Conditional Independence

Conditional independence will be used extensively. X and Y are conditionally independent given Z if

$$p(x,y \mid z) = p(x \mid z)p(y \mid z).$$

This is equivalent to a more useful form:

$$p(x \mid y, z) = p(x \mid z).$$

Knowing when you are conditioning on redundant variables will help derive a lot of things.

" I"

Inference about a genetic status

- An X-chromosome-linked recessive inheritance disease: y = 1/0 affected/unaffected
- A woman has two unaffected sons $y_1 = 0, y_2 = 0$
- $\theta = 1/0$ the woman is a carrier or not

Inference about a genetic status

- An X-chromosome-linked recessive inheritance disease: y = 1/0 affected/unaffected
- A woman has two unaffected sons $y_1 = 0, y_2 = 0$
- $oldsymbol{ heta} heta = 1/0$ the woman is a carrier or not
- Prior distribution: $p(\theta = 1) = p(\theta = 0) = 1/2$
- Data distribution: $p(y_1 = 0, y_2 = 0 | \theta = 1)$, $p(y_1 = 0, y_2 = 0 | \theta = 0)$

" 1

Inference about a genetic status

- An X-chromosome-linked recessive inheritance disease: y = 1/0 affected/unaffected
- A woman has two unaffected sons $y_1 = 0, y_2 = 0$
- $oldsymbol{ heta} heta = 1/0$ the woman is a carrier or not
- Prior distribution: $p(\theta = 1) = p(\theta = 0) = 1/2$
- Data distribution: $p(y_1 = 0, y_2 = 0 | \theta = 1)$, $p(y_1 = 0, y_2 = 0 | \theta = 0)$
- $p(\theta|y_1=0,y_2=0)$?

" 1

Inference about a genetic status

- An X-chromosome-linked recessive inheritance disease: y = 1/0 affected/unaffected
- A woman has two unaffected sons $y_1 = 0, y_2 = 0$
- $oldsymbol{ heta} heta = 1/0$ the woman is a carrier or not
- Prior distribution: $p(\theta = 1) = p(\theta = 0) = 1/2$
- Data distribution: $p(y_1 = 0, y_2 = 0 | \theta = 1)$, $p(y_1 = 0, y_2 = 0 | \theta = 0)$
- $p(\theta|y_1=0,y_2=0)$?
- If a third child exists, $p(\theta|y_1 = 0, y_2 = 0, y_3 = 0)$?

Sequential inference is easy

$$p(\theta|y_{old}, y_{new}) = \frac{p(y_{new}|\theta)p(\theta|y_{old})}{\int p(y_{new}|\theta)p(\theta|y_{old})d\theta}$$

16 / 17

Computation

We will be using R

Some bookmarks:

- 1 https://github.com/tamustatsy/STA695_19fall
- http://www.stat.columbia.edu/~gelman/book/
- 1 https://github.com/avehtari/BDA_R_demos
- http://www.stat.columbia.edu/~gelman/book/data/