

4 circulating the cooling fluid past the tissue sample at a substantially
5 constant predetermined velocity and temperature to freeze the biological material
6 and thawing the biological material for subsequent use.

1 41. The method as in Claim 40, wherein more than about 55 percent of the biological material
2 exhibits no damage to cellular anatomical structure and remains biochemically active after
3 thaw.

1 42. The method as in Claim 40, wherein more than about 45 percent of the biological material
2 exhibits no damage to cellular anatomical structure and remains biochemically active after
3 thaw.

1 43. The method as in Claim 40, wherein more than about 85 percent of the biological material
2 maintains its anatomical structure and remains undamaged after thaw.

1 44. The method as in Claim 40, wherein the cooling fluid is maintained at a temperature of
2 between about -20 degrees centigrade and about -30 degrees centigrade.

1 45. The method as in Claim 40, wherein the velocity of the cooling fluid past the biological
2 material is about 35 liters per minute per foot of cooling fluid through an area not greater
3 than about 24 inches wide and 48 inches deep.

- 1 46. A method for preparing a biological material for subsequent use, the method
2 comprising:
3 immersing the biological material in cooling fluid; and
4 freezing the biological material by circulating the cooling fluid past the biological material
5 at a substantially constant predetermined velocity and temperature.
- 1 47. The method as in Claim 46, wherein more than about 40 percent of the biological material
2 maintains its anatomical structure and remains biochemically active after thaw.
- 1 48. The method as in Claim 46, wherein more than about 80 percent of the biological material
2 maintains its anatomical structure and remains biochemically active after thaw.
- 1 49. The method as in Claim 46, wherein more than about 85 percent of the biological material
2 maintains its anatomical structure and remains undamaged after thaw.
- 1 50. The method as in Claim 46, wherein the cooling fluid is maintained at a temperature of
2 between about -20 degrees centigrade and about -30 degrees centigrade.
- 1 51. The method as in Claim 46, wherein the velocity of the cooling fluid past the biological
2 material is about 35 liters per minute per foot of cooling fluid through an area not greater
3 than about 24 inches wide and 48 inches deep.

1 52. A system for use in preparing a biological material for subsequent use, the system
2 comprising:

3 a cooling fluid reservoir configured to receive a biochemically active biological material for
4 immersion in cooling fluid;
5 one or more cooling fluid circulators configured to circulate said cooling fluid;
6 a heat exchanging coil for removing heat from said cooling fluid;
7 a refrigeration unit configured to remove heat from said heat exchanging coil; and wherein
8 said cooling fluid reservoir, said one or more circulators, and said refrigeration
9 unit cooperate to freeze the biological material by circulating the cooling fluid past the
10 tissue sample at a substantially constant predetermined velocity and temperature.

1 53. The system as in Claim 52, wherein more than about 40 percent of the biological material
2 its anatomical structure and remains biochemically active after thaw.

1 54. The system as in Claim 52, wherein more than about 80 percent of the biological material
2 maintains its anatomical structure and remains biochemically active after thaw.

1 55. The system as in Claim 52, wherein more than about 85 percent of the biological material
2 maintains its anatomical structure and remains undamaged.

1 56. The system as in Claim 52, wherein the cooling fluid is maintained at a temperature of
2 between about -20 degrees centigrade and about -30 degrees centigrade.

1 57. The system as in Claim 52, wherein the velocity of the cooling fluid past the tissue sample
2 is about 35 liters per minute per foot of cooling fluid through an area not greater than about
3 24 inches wide and 48 inches deep.

1 58. The system as in Claim 52, wherein, the circulator is a motor/impeller assembly immersed
2 in the cooling fluid.

1 59. The system as in Claim 52, wherein the cooling fluid is circulated past a multi-path heat
2 exchanging coil submersed in the cooling fluid, and wherein the heat exchanging coil is