1988 PHYSICS AND TECHNICS OF SEMICONDUCTORS vol. 22, N 1

УДК 621.315.592

АНТИСТРУКТУРНЫЕ ДЕФЕКТЫ В СОЕДИНЕНИЯХ А^{ПІ}В^V

Обзор

Георгобиани А. Н., Тигиняну И. М.

Систематизированы результаты по обнаружению и изучению антиструктурных дефектов (АСД) в соединениях $A^{III}B^{v}$. Обсуждены особенности образования АСД в процессе роста и при облучении кристаллов электронами, нейтронами и т. д. Установлена взаимосвязь оптических и электрофизических характеристик кристаллов с конкретными АСД. Описаны схемы уровней и электронных переходов в соединениях GaP, GaAs и InP с участием АСД.

1. Введение. В кристаллах бинарных соединений с большой долей ионной связи, например $A^{IB^{VII}}$ и $A^{II}B^{VI}$, преобладающими собственными точечными дефектами являются вакансионные и межузельные. В соединениях же $A^{III}B^{V}$, в которых разность электроотрицательностей компонентов незначительна, появляется возможность нарушения кристаллического порядка за счет образования антиструктурных дефектов A_B и B_A . Спедует ожидать, что в решетке кристаллов $A^{III}B^{V}$ дефект A_B будет акцептором с тремя возможными зарядовыми состояниями (A_B^0 , A_B^- и A_B^{-}), а $AC\Pi$ B_A — донором (B_A^0 , B_A^+ и B_A^{++}).

За последнее десятилетие было опубликовано около ста работ, имеющих отношение к проблеме идентификации АСД и изучения их влияния на свойства соединений $A^{III}B^{\P}$. Утверждается, что из-за низкой энтальпии образования [¹] антиструктурные дефекты зачастую становятся преобладающими и определяют свойства материалов. В частности, присутствуя в арсениде галлия в значительных концентрациях ($10^{16}-10^{18}~{\rm cm}^{-3}$), дефект $As_{\rm Ga}$ эффективно компенсирует акцепторные центры [²], определяет положение уровня Ферми на поверхности кристаллов [³], является причиной появления токовых неустойчивостей [⁴], уменьшения интенсивности люминесценции [³, ⁵], эффекта оптического гашения ряда свойств из-за перехода центра в метастабильное состояние [6, ⁻] и т. д.

Проблема антиструктурных дефектов многогранна. Такие дефекты могут способствовать решению определенных практических задач, однако в некоторых случаях их наличие может быть и нежелательным. Например, образование АСД благоприятствует получению специально не легированного полуизолирующего арсенида галлия [2] и в то же время приводит к ухудшению излучательных характеристик светодиодов на основе соединений типа $A^{III}B^V$ [8]. С учетом этого понятна важность выявления общих закономерностей в образовании АСД в соединениях $A^{III}B^V$ и установлении взаимосвязи между кон-

кретными дефектами и свойствами кристаллов.

Для идентификации АСД в соединениях $A^{III}B^{V}$ используются методы спиновой резонансной спектроскопии, такие как электронный парамагнитный резонанс (ЭПР) и двойной электронно-ядерный резонанс (ДЭЯР). Привлекаются также различные варианты оптического детектирования эффектов ЭПР и ДЭЯР, основанных на экспериментальном определении изменений, вызванных спиновым резонансом, в сигнале фотолюминесценции (ФЛ) или в магнитном круговом дихроизме (МКД) оптического поглощения. При регистрации изменений в сигнале ФЛ метод обычно называют оптически детектируемым магнитным резонансом (ОДМР), а в случае измерения изменений

3

в магнитном круговом дихроизме используются следующие обозначения экспериментальных методов: МКД—ЭПР и МКД—ДЭЯР. Отметим, что к настоящему времени АСД идентифицированы на микроскопическом уровне в трех соединениях $A^{\text{II}}B^{\text{V}}$, а именно в GaP, GaAs и InP.

Остановимся на вопросе терминологии. В зарубежной литературе для обозначения изолированного ACД (A_B или B_A) используется термин «antisite», а пару дефектов (A_BB_A) называют «antistructural pair». В отечественной литературе изолированные ACД называют по-разному (антиструктурные, антиузельные, антиположения). Учитывая наибольшую распространенность термина «антиструктурный», одиночные центры A_B и B_A будем в дальнейшем называть антиструктурными дефектами, а ассоциаты типа (A_BB_A) — антиструктурными парами.

Цель данного обзора состоит в рассмотрении вопроса идентификации АСД и в анализе взаимосвязи таких дефектов с оптическими и электрофизическими явлениями для трех наиболее важных с практической точки зрения соедине-

ний A^{III}B^v — GaP, GaAs и InP.

2. Расчет электронных состояний АСД. Расчет электронных состояний АСД в соединениях $A^{\text{III}}B^{\text{V}}$ проводился с помощью методов псевдопотенциала [9, 10], функций Грина [11-13], сильной связи [14-17], дефектной молекулы [18, 19] и др. Как выяснено в работах [15, 19], АСД B_4 имеют в запрещенной зоне синглетные состояния A_1 , в то время как триплетные состояния T_2 расположены в зоне проводимости. Для АСД A_B картина менее определенная. Так, по данным [18, 19], дефекты A_B имеют в запрещенной зоне состояния T_2 , а, согласно [20], никакие состояния АСД A_B в ней не расположены. Однако в ряде случаев рассчитанные уровни энергии АСД хорошо коррелируют с экспериментально установленными.

Отметим, что теория обычно определяет уровни энергии ϵ многозарядного центра для каждого заряженного состояния (например, уровни ϵ_0 , ϵ_+ и ϵ_{++} для B_A^0 , B_A^+ и B_A^{++} соответственно). В то же время экспериментально определяются энергии ионизации E. Для аналитической оценки энергий ионизации E (0|+) и E (+|++) дефекта B_A можно воспользоваться простыми соотношениями [11, 21]

$$E(0|+) = \frac{1}{2} \left(\varepsilon_0 + \varepsilon_+ \right), \tag{1}$$

$$E(+|++) = \frac{1}{2} (\varepsilon_{+} + \varepsilon_{++}) \bullet \tag{}$$

Результаты работы [19] с учетом соотношений типа (1) и (2) позволили нам оценить энергии ионизации АСД в трех соединениях $A^{111}B^v$. Эти данные приведены в табл. 1 (для дефектов B_A энергия отсчитывается от дна зоны проводимости, а для дефектов A_B — от потолка валентной зоны). Там же приведены энергии ионизации АСД P_{Ga} фосфида галлия, оцененные в [10, 12]. Как будет видно из дальнейшего, для дефектов P_{Ga} в GaP и As_{Ga} в GaAs теория довольно точно описывает схемы экспериментально определенных уровней.

Перейдем к рассмотрению экспериментальных данных по обнаружению

и исследованию АСД в соединениях GaP, GaAs и InP.

3. Идентификация и свойства АСД в GaP. Существование АСД в GaP (и в соединениях $A^{\rm III}B^{\rm V}$ вообще) было впервые экспериментально доказано

Таблица 1 Энергиц ионизации АСД (в эВ) для GaP. GaAs и InP

Соединение	E_g , ∂B $(T = 4.2 \text{ K})$	<i>B</i> A		$oldsymbol{A}_{B}$		
		E (0 +)	E (+ + +)	E (0 -)	E (-)	Литература
GaP	2.35	1.03 0.6	1.29 1.1	0.92	1.22	[19] [10, 12]
GaAs InP	1.52 1.42	$0.76 \\ 0.46$	0.99 0.71	$0.40 \\ 1.03$	0.70 1.28	} [19]

в 1976 г. Изучая ЭПР полуизолирующих монокристаллов GaP: Сг, выращенных методом Чохральского с жидкостной герметизацией расплава (ЖГЧ), Кауфман с сотр. $[^{22}]$ зарегистрировали спектр $\widehat{\Im}\Pi P$ P_{Ga}^{+} из 2×5 линий. Идентификация базировалась на сверхтонком взаимодействии неспаренного электрона с центральным ионом фосфора и на суперсверхтонком взаимодействии того же электрона с четырьмя соседями фосфора (31 P, спин I=1/2). Величины g-фактора и параметра сверхтонкого взаимодействия A составили 2.007 ± 0.003 и 0.0966 ± 0.0013 см⁻¹ соответственно. Впоследствии было выяснено [24, 25], что 26 % плотности неспаренного электрона сосредоточено на центральном ионе, а 66 % — на четырех его ближайших соседях. Спектр ЭПР $\mathbf{P}_{\mathsf{Ga}}^{\mathsf{+}}$ приведен на рис. 1.

 ${
m B}$ работе ${
m [^{26}]}$ был исследован ${
m Э\Pi P}$ различных образцов ${
m Ga P}:{
m Cr}$ и ${
m Ga P}:{
m Zn}$. Согласно полученным данным, концентрация АСД Р_{Gа} в полуизолирующих кристаллах GaP: Cr достигает 6·10¹⁵ см⁻³, а в кристаллах GaP: Zn *p*-типа — 4.1016 см⁻³. Отмечено, что по крайней мере в кристаллах GaP: Zn концентра-

ция АСД Р_{Gа} превышает плотность дефектов V_{Ga} . Получены сведения о частичном отжиге дефектов Р_{Ga} при термообработке образцов в парах фосфора при 1000 °C [26, 27].

H $||\langle 100\rangle$, T=20 K. На нижней части схематично показаны линии суперсверхтонкого взаимодействия (см. [25]).

Интересно отметить, что спектр ЭПР P_{Ga}^{t} в полуизолирующих образцах ${
m GaP:Cr}$ наблюдается без подсветки, в то время как в ${
m GaP:Zn}$ ($p=1.3\cdot10^{17}{
m cm^{-3}}$ при $300~{\rm K})$ — только при возбуждении светом с $\hbar\,\omega \geqslant 1.25~{\rm pB}$ [28]. Следовательно, исходные кристаллы GaP:Zn содержат ACД в непарамагнитном состоянии, т. е. дефекты P_{Ga}^{++} . Анализ полученных данных позволил авторам [28] установить, что энергия $E \ (+|++)$ отрыва второго электрона (переход ${
m P}_{
m da}^{+}
ightarrow {
m P}_{
m da}^{++} + e)$ от АСД составляет 1.10 ± 0.10 эВ, а первого электрона — $E\left(0|+\right) < 0.8$ эВ. Близкие значения для $E\left(+|++\right)$ и $E\left(0|+\right)\left(1.18$ и 0.71 эВ соответственно) получены методом нестационарной спектроскопии глубоких уровней (НСГУ) в работе [29] в результате исследования p-n-структур на GaP, подвергнутых механическим напряжениям. Следует отметить, что экспериментальные значения E(+|++) и E(0|+) АСД P_{Ga} хорошо согласуются с теоретическими (табл. 1).

В кристаллах n-GaP, облученных электронами, обнаружен более сложный АСД, а именно PP_3 [30-32]. Природа четвертого соседа до сих пор не выяснена, хотя в качестве вероятных кандидатов предлагаются углерод, кремний, азот, кислород, сера [30] или вакансия фосфора [32]. Имеются также сообщения об

обнаружении дефекта PP_1 [31, 33].

Рассмотрим результаты исследования излучательных свойств GaP, об-

условленных АСД.

Применяя методики ФЛ и ОДМР, авторы [25, 34-36] обнаружили две полосы люминесценции в ближней инфракрасной области, связанные с АСД. Согласно [25], одна полоса Φ Л имеет максимум при $0.95~{\rm sB}~(T=1.5~{
m K})$ и соответствует рекомбинации носителей через DA-пары, причем в качестве донора выступает дефект PP_4 в дублетном спиновом состоянии ($P_{\rm Ga}^+$). Другая полоса, также связанная с DA-парами, расположена при энергии 1.2 эВ. В данном случае донор идентифицирован как комплекс [Р_{Ga}V_P] в триплетном спиновом состоя-

 $^{^{1}}$ В ряде случаев дефект $P_{\sf Ga}$ будет обозначен как $PP_{\sf 4}$, а, например, комплекс $[P_{Ga}V_{P}]$, включающий соседние узлы решетки, — как PP_{3} или $PP_{3}V_{P}$ (см. [23]). где $\overline{V}_{
m p}$ — вакансия фосфора либо дефект его замещения.

нии, а акцептор — как примесь железа в междоузлии. Расстояние между дефектами $[P_{Ga}V_P]$ и Fe_i , по-видимому, фиксировано. Кроме того, в качестве V_P авторы $[^{25}]$ рассматривают Ga_P , т. е. предполагается существование в GaP антиструктурных пар $[P_{Ga}Ga_P]$, предсказанных ранее Bah-Bexтеном $[^1]$.

антиструктурных пар [P_{Ga}Gap], предсказанных ранее Бан-Бехтеном []. На рис. 2 представлена схема уровней АСД и электронных переходов в GaP, составленная по данным рассмотренных выше работ. Отметим, что к настоя-

щему времени дефект Сар экспериментально не идентифицирован.

4. Идентификация и свойства АСД в GaAs. Необходимость привлечения антиструктурных дефектов для объяснения свойств соединений $A^{111}B^{\nabla}$ наиболее наглядно прослеживается в случае арсенида галлия. Для примера проанализируем зависимость (рис. 3) концентрации свободных носителей от степени отклонения от стехиометрии состава монокристаллов GaAs, выращенных методом ЖГЧ [37 , 38]. Из рис. 3 видно, что при содержании мышьяка в расплаве арсенида галлия $x_{As} > 47.5$ ат% получается полуизолирующий ма-

териал. В случае же $x_{\rm As} < 47.5$ ат% специально не легированные кристаллы имеют p-тип проводимости, причем концентрация дырок достигает $(1 \div 3) \times$

Рис. 2. Схема уровней АСД и электронных переходов в монокристаллах GaP $(T=10~{
m K}).$

Рис. 3. Зависимость концентрации свободных носителей в GaAs от содержания мышьяка в расплаве.

Точки — эксперимент [37], сплошная кривая — расчет [38].

 $\times 10^{16}$ см $^{-3}$. Как показано в работе [38], такую зависимость можно объяснить с учетом наличия в кристаллах антиструктурных дефектов $\mathrm{As_{Ga}}$ и $\mathrm{Ga_{As}}$. Глубокий донор $\mathrm{As_{Ga}}$, участвуя в компенсации фоновых акцепторных центров [2], способствует получению полуизолирующего материала. Что касается дефекта $\mathrm{Ga_{As}}$, то он. если судить по [39 , 40], является мелким акцептором (подробнее см. п. 4.3). Преобладание АСД $\mathrm{Ga_{As}}$ в кристаллах при $x_{As} < 47.5$ ат% и приводит к наблюдаемой дырочной проводимости.

Далее описываются данные об идентификации и свойствах ACД As_{Ga} и Ga_{As} в арсениде галлия. С учетом важности электронной ловушки EL2 (E_c —-0.8 $_{2}B$) в определении свойств GaAs и ее возможной связи с ACД будут также описаны результаты работ, касающиеся раскрытия природы центров, ответ-

ственных за указанную ловушку.

4.1. Де фекты As_{Ga} . Первые данные об обнаружении на микроскопическом уровне ACД в арсениде галлия приведены Вагнером и сотр. в работе [41]. Исследуя ЭПР монокристаллов GaAs: Сг при T=15 K, они обнаружили изотропный спектр из четырех линий ЭПР равной интенсивности, которые обусловлены сверхтонким взаимодействием неспаренного электрона центра As_{Ga}^{\dagger} с ядром мышьяка, обладающим спином I=3/2. Величины g-фактора и параметра A оказались равными 2.04 ± 0.01 и 0.090 ± 0.01 см $^{-1}$ соответственно. В отличие от GaP [22] линии суперсверхтонкого взаимодействия неспаренного электрона с четырьмя соседями мышьяка не были разрешены. Что касается величины плотности парамагнитных центров As_{Ga}^{\dagger} в кристаллах GaAs: Cr, то она, по оценке [41], составила 8.10^{15} см $^{-3}$.

Концентрацию АСД в арсениде галлия можно резко повысить путем облучения кристаллов высокоэнергетическими частицами или пластической де-

формацией [3, 31, 42-49]. Так, после облучения образцов GaAs с различными исходными электрическими параметрами электронами [31, 42-42] и нейтронами [45-48] концентрация АСД, оцененная по данным ЭПР, достигает $10^{17}-10^{18}$ см 3. Следует учесть, однако, что при облучении происходит резкий спад проводимости низкоомных образцов (как с электронным, так и с дырочным типом проводимости). Таким образом, рост количества центров As_{da}^{\dagger} в таких кристаллах может быть обусловлен как образованием при облучении новых дефектов. Так и перезарядкой имеющихся непарамагнитных центров (As_{Ga}^{\dagger} или As_{da}^{\dagger}) в результате смещения уровня Ферми. Это следует из результатов работы [44], в которой приведены данные ЭПР различных монокристаллов GaAs, облученных при 300 K электронами с энергией 2 МэВ. Как видно из рис. 4 (кривая 1), для образца n-GaAs, легированного кремнием, концентрация парамагнитных центров N_n вначале быстро растет (до $\sim 3.10^{17}$ см 3) с увеличением дозы электронного облучения, затем после небольшого спада наблюдается линейный рост N_n вплоть до дозы $D \simeq 3.10^{19}$ см 2. Начальный рост N_n можно объяснить пере-

зарядкой имеющихся в исходном кристалле АСД, а дальнейший линейный рост — образованием новых дефектов. Для полуизолирующих образцов GaAs, в которых

Рис. 4. Зависимость плотности АСД As_{ба} в GaAs от дозы электронного облучения [⁴⁴].

1-n-GaAs: Si, выращенный методом Бриднмена; 2 и 3- полуизолирующие кристаллы, полученые методом ЖГЧ, для которых отношение G_a/As в расплаве составляло 0.99 и 1.20 соответственно.

уровень Ферми расположен в середине запрещенной зоны как до, так и после облучения, наблюдается линейная зависимость N_{π} от дозы электронов начиная с малых значений D (рис. 4, кривые 2, 3).

Отметим, что АСД, образующиеся при облучении частицами и в результате пластической деформации монокристаллов GaAs, скорее всего обладают более сложной структурой, чем центры, образующиеся при росте кристалла [50, 51]. Более того, структура преобладающих АСД может зависеть и от вида частиц (электроны, нейтроны), выбранных для облучения [52], а также от дозы облучения. Как уже отмечалось, в экспериментах по ЭПР GaAs не удалось обнаружить линии суперсверхтонкого взаимодействия неспаренного электрона As_{Ga} с четырьмя соседями. Это препятствовало идентификации деталей строения центра в каждом конкретном случае.

Однако недавно линии суперсверхтонкого взаимодействия были обнаружены Хофманом и сотр. [58] при исследовании полуизолирующих образцов GaAs: Ст методом МКД—ДЭЯР. Эксперимент проводился при температуре 1.4 К на частоте СВЧ поля 24 ГГц и длине волны света 1300 нм. Оказалось, что вклад в сигнал МКД—ДЭЯР GaAs: Ст дают как изолированные дефекты Asfa, так и более сложные центры (по-видимому, ассоциаты из двух и более дефектов). Выяснено, что для изолированного дефекта Asfa 17 и 66 % плотности неспаренного электрона сосредоточено на центральном ионе и четырех ближайших соседях мышьяка соответственно. Авторами [53] установлено также, что пластическая деформация образцов, которая усиливает сигнал ЭПР на порядок, не приводит к заметному росту величины МКД оптического поглощения. Эти результаты еще раз подтверждают мысль о том, что дефекты, которые обычно идентифицируются как Asfa по квадруплету ЭПР, могут иметь неодинаковое строение (в частности, окружение) и, следовательно, проявлять различные оптические и другие свойства.

Таким образом, возникла необходимость разделения дефектов, для которых характерен квадруплет ЭПР, на две группы. К первой группе отнесем изолированные и слабо возмущенные центры Asf_a (например, центр Asf_a может быть слабо возмущен дефектом V_{Ga} , находящимся в узле второй конфигурационной сферы). Во вторую группу можно включить сложные ассоциаты из близко расположенных центров Asg_a и других дефектов собственной и (или) примесной природы. Признаком для разделения может служить также время спин-решеточной релаксации T_1 . По оценкам работы [51], для изолированных и слабо возмущенных дефектов Asf_a время T_1 составляет при низких температурах единицы секунд, в то время как для сложных ассоциатов, образующихся при пластической деформации и облучении электронами и нейтронами, величина T_1 не превышает 10^{-5} — 10^{-6} с.

Схема уровней центра As_{Ga} составлена в [3] по зависимости сигнала фото-ЭПР от энергии кванта света (рис. 5). Исследование МКД оптического погло-

щения полуизолирующего GaAs позволило также идентифицировать два внутрицентровых электронных перехода на изолированном дефекте Asga при энергиях 1.05 и 1.29 эВ ($T=4.2~\mathrm{K}$) [54]. В работе [55] методом НСГУ обнаружены в p-GaAs две дырочные ловушки с глубинами 0.54 и 0.77 эВ ($T=77~\mathrm{K}$), которые связываются с двумя состояниями АСД Asga. Отметим, что глубины уровней Asga, полученные экспериментально (рис. 5), хорошо согласуются с теоретическими оценками (табл. 1).

Рис. 5. Зависимость сигнала фото-ЭПР дефекта $As\dot{f}_a$ в кристаллах GaAs, подвергнутых пластической деформации, от энергии падающих квантов.

a - i-GaAs, δ - p-GaAs: Cd.

Перейдем к рассмотрению результатов по излучательным свойствам GaAs, обусловленным АСД As_{Ga}.

Обычно в полуизолирующих кристаллах GaAs присутствуют две полосы Φ Л с максимумами при 0.8 и 0.63 \div 0.68 эВ [$^{56-58}$]. Для идентификации полосы, связанной с избытком мышьяка, нами исследовано влияние имплантации ионов мышьяка (E=40 кэВ) на спектральные характеристики Φ Л специально не легированных монокрысталлов i-GaAs, полученных методом ЖГЧ (рис. 6). Постимплантационный отжиг образцов проводился при температуре 550 °C под защитной пленкой Al_2O_3 в течение 15 мин. Оказалось, что ионная имплантация мышьяка приводит к относительному увеличению интенсивности полосы при 0.8 эВ, в то время как интенсивность более длинноволнового пика Φ Л (при 0.63 эВ) падает незначительно.

В работе [58] исследовано влияние отжига кристаллов GaAs на интенсивность полосы ФЛ при 0.8 эВ. Выяснено, что она существенно уменьшается после отжига при $T \geqslant 500$ °C. Примерно такое же поведение с отжигом проявляет и сигнал ЭПР дефекта As_{5a}^{2} [45 , 59 , 60]. Следовательно, связь полосы ФЛ при 0.8 эВ с дефектом As_{5a}^{2} представляется вполне вероятной.

Появились первые данные об исследовании АСД As_{a}^{c} в GaAs методом ОДМР. Так, в образцах n-GaAs, облученных электронами с энергией 2.3 МэВ, обнаружена [61] полоса ФЛ с максимумом при \sim 0.7 эВ (T=2 K), которая связывается с излучательным переходом электрона от мелкого донора к центру As_{Ga}^{c} (авторы [61] привели спектр излучения без пересчета на коэффициент

чувствительности установки). На образцах *p*-GaAs сигнал ОДМР проявился в виде отрицательного вклада в исходные полосы люминесценции [⁵], что объясняется проявлением безызлучательного электронного перехода с уровня As_{Ga} на мелкий акцепторный уровень.

О механизмах образования дефекта As_{Ga} в GaAs при облучении высокоэнергетичными частицами имеется мало сведений. Возможно, что дефект V_{Ga} превращается в ассоциат $[As_{Ga}V_{As}]$ за счет перескока атома мышьяка в соседний вакантный узел галлия $[^{62}, ^{63}]$. Впоследствии в результате захвата межузельного атома мышьяка данный ассоциат превращается в As_{Ga} $[^{63}]$. Предполагается также, что ACД As_{Ga} может образоваться за счет перестановки
между As_{Ca} и примесью, занимающей узел галлия $[^{64}]$.

между As, и примесью, занимающей узел галлия [64]. Подчеркнем, что интерес к ACД As_{Ga} отчасти обусловлен сходством его характеристик со свойствами основной электронной ловушки арсенида галлия EL2. Результаты исследования взаимосвязи EL2 с As_{Ga} описываются далее.

Рис. 6. Нормированные спектры Φ Л при 6 К кристаллов GaAs, облученных понами мышьяка при различных дозах D и отожженных при 550 °C.

D, CM^{-2} : I = 0, $2 = 10^{14}$, $3 = 10^{15}$, $4 = 10^{18}$.

4.2. О природе центров EL2 в GaAs. Уровень EL2 арсенида галлия обусловлен центром, играющим важную роль в оптических и электрофизических характеристиках материала. Этот центр, например, участвуя в компенсации мелких неконтролируемых акцепторов, способствует получению нелегированного полуизолирующего арсенида галлия [37]. Одно из основных свойств центра EL2 состоит в возможности его перехода в метастабильное состояние при T < 130 К освещением образцов светом с длиной волны около 1 мкм [65]. Именно переходом центра EL2 в метастабильное состояние объясняется целый ряд явлений, характерных для арсенида галлия, таких как эффекты оптического гашения фотоемкости [66], фотопроводимости [67], люминесценции [68, 69] и поглощения света [70].

Первоначально природа EL2 связывалась с примесью кислорода $\{^{71}\}$. Позже было установлено, однако, что кислород не входит в состав центра, ответственного за уровень EL2 $\{^{72}\}$. В настоящее время наиболее принятой является модель, согласно которой уровень EL2 связан с антиструктурным дефектом As_{Ga} . В пользу этой модели свидетельствуют следующие факты.

1) Плотность центров с уровнем EL2 растет от $5\cdot 10^{15}$ до $1.7\cdot 10^{16}$ см⁻³ при увеличении содержания мышьяка от 48 до 51 ат% в расплаве GaAs в процессе роста монокристаллов методом ЖГЧ [³⁷]. Аналогичная закономерность наблюдается и для кристаллов, полученных методом Бриджмена [⁷⁸].

2) Концентрация центров с уровнем EL2 коррелирует с плотностью акценторных центров в полуиволирующих монокристаллах GaAs [37], что имеет место и для концентрации ACД As_{Ga} [2].

3) Некоторые обработки одинаково сказываются на плотностях центров с уровнем EL2 и ACД As_{Ga} , определяемых обычно методами $HC\Gamma V$ и ЭПР соответственно. В частности, при пластической деформации кристаллов наблюдается рост концентрации как EL2 [⁷⁴], так и ACД As_{Ga} [³]. Коррелируют также температуры отжига дефектов EL2 и As_{Ga} [45, 75], хотя в данном вопросе имеются еще спорные моменты [76].

4) Эффект оптического гашения свойств $EL2\ [^{66-70}]$ выявлен и в измере-

ниях $\partial \Pi P$ [77] и МКД $-\partial \Pi P$ [6, 7] дефекта As_{Ga} .

С учетом энергетических величин (уровень EL2 расположен при E_c —0.8 эВ) ясно, что EL2 может соответствовать верхнему уровню АСД As_{Ga} (рис. 5), т. е. дефекту As_{Ga}^c . Следовательно, в определенных условиях характеристики As_{Ga}^c , определяемые методами спиновой резонансной спектроскопии, и свойства уровня EL2, соответствующего АСД As_{Ga}^c , могут вести себя по-разному. Действительно, в работе [78] установлен антикорреляционный характер изменений, вызванных подсветкой, интенсивности линии внутрицентрового поглощения при 1.039 эВ, свойственного для EL2 [79, 80], и сигнала ЭПР As_{Ga}^c .

Отметим, что выше нами предполагалось соответствие EL2 с изолированным дефектом $\mathrm{Asg}_{\mathrm{a}}$. Между тем в литературе предлагаются и другие модели, адекватно объясняющие некоторые свойства EL2. Согласно одной из них, EL2 соответствует комплексам $(\mathrm{Asg}_{\mathrm{a}}\mathrm{Asg}_{\mathrm{a}})$ [51, 82] или $(\mathrm{Asg}_{\mathrm{a}}\mathrm{As}_{\mathrm{s}})$ [83]. Предполагается также, что природа EL2 может быть связана со сложными кластерами из атомов мышьяка [84-86]. Эта модель привлекательна тем, что она объясняет наличие в арсениде галлия целого семейства близко расположенных уровней EL2 (глубина залегания колеблется обычно в пределах $0.72 \div 0.86$ эВ [87]). о чем сообщается в [88, 89].

4.3. Де фе к т Ga_{As} . В отличие от ACД As_{Ga} , который сравнительно хорошо изучен с помощью спиновой резонансной спектроскопии, дефект Ga_{As} еще не идентифицирован методом ЭПР. Тем не менее накопленный к настоящему времени экспериментальный материал по исследованию электрофизических и оптических свойств образцов GaAs, полученных различными способами, указывает на наличие в соединении двухзарядного акцептора собственно дефектной природы, представляющего собой, по-видимому, дефект Ga_{As} . Два уровня Ga_{As} расположены, согласно $\begin{bmatrix} 3^{9}, & 40 \end{bmatrix}$, соответственно на 77-78 и 200-230 мэB выше потолка валентной зоны. Важно отметить, что в специально не легированных кристаллах указанные акцепторные уровни наблюдаются в сравнительно больших концентрациях ($N \geqslant 3.10^{15}$ см⁻³) только при отклонении состава образцов от стехиометрии в сторону избытка галлия ($x_{Ga} \geqslant 53$ ат%) $\begin{bmatrix} 40, & 90 \end{bmatrix}$, что является аргументом в пользу их принадлежности акцепторному дефекту Ga_{As} .

Далее рассмотрим результаты ряда работ, посвященных выявлению де-

фектов GaAs в отожженных монокристаллах GaAs.

Данефаером и сотр. [91] методом аннигиляции позитронов установлено образование АСД GaAs при отжиге образцов арсенида галлия, выращенных методом ЖГЧ, в интервале температур 500—750 °C. Энергия активации дефекта, найденная авторами [91], составляет 200 мэВ, что соответствует более

глубокому уровню акцепторного центра Gaas.

В работах [92 , 93] исследовано влияние отжига на электрофизические характеристики GaAs. Выяснено, что отжиг полуизолирующих кристаллов GaAs в атмосфере H_2 при $T \geqslant 750$ °C, способствующий интенсивному улетучиванию атомов мышьяка с поверхности образцов, приводит к формированию поверхностного слоя p-типа с концентрацией дырок $p \geqslant 10^{16}$ см $^{-3}$. Дырочная проводимость появляется вследствие образования при отжиге акцепторных центров с энергией ионизации ~ 0.1 эВ, которая коррелирует с глубиной мелкого уровня АСД Ga_{As} . Как и следовало ожидать, эффективность инверсии зависит не только от температуры, но и от атмосферы отжига. Она существенно подавляется, в частности, если отжиг проводится не в чистом H_2 , а в смеси H_2/AsH_3 [92].

Важным представляется то, что дефекты Ga_{As} , образующиеся при термообработках, могут влиять на процесс активации ионно-внедренной примеси. Например, при постимплантационном отжиге образцов GaAs, ионно-легиро-

ванных кремнием, наблюдается рост эффективности активации примеси с температурой отжига вплоть до $850\,^{\circ}\mathrm{C}$ ($t_{\text{отк}}{=}20\,$ мин), однако при дальнейшем повышении температуры, способствующем интенсивному образованию дефектов $\mathrm{Ga_{As}}$, она начинает падать [94]. Более того, как отмечено в [95], эффективность активации внедренной примеси зависит и от состава образцов GaAs, причем в случае примеси кремния эффективность активации падает при отклонении состава соединения в сторону недостатка мышьяка, что также может быть объяснено влиянием $\mathrm{ACД}$ $\mathrm{Ga_{As}}$.

Перейдем к рассмотрению излучательных свойств арсенида галлия, обусловленных дефектом Ga_{As}.

В результате исследования спектров ФЛ специально не легированных монокристаллов GaAs p-типа, выращенных методом ЖГЧ, в работе [39] обнаружены две полосы ФЛ при 1.441 и 1.284 эВ (T=4.2 K). Они соответствуют, по мнению авторов, рекомбинации свободных электронов (или электронов, захваченных

Рис. 7. Спектры Φ Л p-InP при 6 K до (1) и после (2) облучения электронами при дозе $10^{17}~{\rm cm}^{-2}$.

вставке показана температурная ость интенсивности полосы ФЛ

симость интенсивности п

зави-

Рис. 8. Кривые НСГУ барьера Шоттки Ni-p-In Р до (1) и после (2) облучения гамма-квантами (e= 200 c⁻¹).

мелкими донорами) с дырками, локализованными на центрах Ga_{As}^{0} и Ga_{As}^{-} и Ga_{As}^{-} в Впоследствии, однако, эта гипотеза не получила подтверждения. Согласно работам [96 , 97], обе полосы ФЛ при 1.441 и 1.283 эВ связаны с излучательным захватом электрона одним и тем же АСД в нейтральном состоянии. Обнаружение двух полос ФЛ связывается авторами [96 , 97] с наличием двух водородоподобных состояний $1S_{91}$ и $2S_{21}$ у дырки, локализованной на однократно отрицательно заряженном АСД. Методом комбинационного рассеяния установлено, что внутрицентровый переход дырки $1S_{21}$ — $2S_{31}$ происходит при энергии 159 мэВ [9], что хорошо коррелирует с энергетическим интервалом между полосами при 1.441 и 1.283 эВ. Что касается полосы ФЛ, связанной с рекомбинацией носителей на центре Ga_{As} , то она расположена, по-видимому, при энергии $1.315 \div 1.316$ эВ [40 , 98 , 99].

Отметим, что технологические особенности получения монокристаллов GaAs методом ЖГЧ предполагают загрязнение образцов бором. Следовательно, наряду с Ga_{As} возможно также образование в таких кристаллах двухзарядного акцентора B_{As} . Хотя вопрос разделения свойств GaAs, связанных с дефектами Ga_{As} и B_{As} , частично рассматривался в ряде работ (см., например, [99-103]), для окончательной идентификации некоторых параметров АСД Ga_{As} требуются дальнейшие исследования. Особенно ценным в этом плане является, на наш взгляд, изучение образдов GaAs, выращенных методом Eриджмена и, следовательно, специально не загрязненных бором [104].

5. Идентификация и свойства ACД в InP. Фосфид индия оказался третьим материалом из соединений $A^{III}B^{\triangledown}$, в котором были обнаружены ACД на микро-

скопическом уровне. Исследуя на частоте 35 ГГц спектры ЭПР образцов n-InP и p-InP, полученных методом ЖГЧ и облученных электронами с энергией 2 МэВ, авторы работы [105] выявили две линии сверхтонкого взаимодействия неспаренного электрона центра P_{In}^{+} с центральным ионом фосфора. Для параметров g и A получены значения 1.992 ± 0.008 и $(920\pm50)\cdot10^{-4}$ см $^{-1}$ соответственно. Точная идентификация ближайших соседей центра P_{In}^{+} затруднена из-за отсутствия в спектре ЭПР линий суперсверхтонкого взаимодействия.

Рис. 9. Температурная зависимость скорости эмиссии носителей для ловупек H_1 (1), H_2 (2) и H_3 (3) монокристаллов p-InP.

Рис. 10. Схема уровней и электронных переходов в InP с участием АСД P_{In} . Звездочкой отмечены энергии термической активации, остальные величины соответствуют оптическим измерениям при низких температурах [100-10], 112].

Новые сведения об АСД P_{ln} получены при исследовании монокристаллов InP, облученых электронами, методом $MKJ — \Im IP [^{106, 107}]$. Выяснено, что оптическая ионизация центра P_{ln}^{\dagger} (процесс $P_{ln}^{\dagger} \to P_{ln}^{\dagger \dagger} + e$) осуществляется поглощением света с энергией 1.3 эВ $[^{106}]$, что подтверждается и данными по исследованию фотопроводимости InP, обогащенного фосфором путем ионного внедрения $[^{108}]$. Кроме того, авторами $[^{107}]$ установлено, что кривые $MKJ — \Im IP$ образдов InP: Zn и InP: Sn немного различаются. Это может быть вы-

 ${f T}$ аблида 2 Параметры дырочных ловушек в $p ext{-InP}$

77	Параметр				
Ловушка	E_t , эВ	σ, CM ²	N_t , cm ⁻³		
H_1 H_2 H_3	0.09 0.29 0.51	1.5·10 ⁻¹⁸ 2.0·10 ⁻¹⁷ 1.6·10 ⁻¹⁶	$ \begin{array}{c} 1.1 \cdot 10^{13} \\ 3.4 \cdot 10^{13} \\ 0.5 \cdot 10^{13} \end{array} $		

звано разным окружением у центров

P_{ln} в указанных кристаллах.

В работе [107] для кристаллов InP: Zn $(p=5.6\cdot10^{17}~{\rm cm^{-3}})$ исследована зависимость концентрации $P_{\rm In}$ от дозы электронного облучения D. Установлено, что сигнал ЭПР $P_{\rm In}^{\dagger}$ регистрируется только при $D \geqslant 3\cdot10^{16}~{\rm cm^{-2}}$, что обусловлено, по-видимому, компенсацией проводимости образцов при таких дозах. С ростом D плотность $P_{\rm In}$ выходит на насыщение при $N_{\rm II} \simeq 6\cdot10^{16}~{\rm cm^{-3}}$.

Исследование $\Phi\Pi$ и ОДМР образцов InP: Zn после электронного облуче-

ния [109] позволило выявить полосу люминесценции при 0.89 эВ (T=3 K), связанной с излучательным переходом электрона на центр $P_{\rm In}^z$. Отметим, что авторами [109] приводится спектр ФЛ InP: Zn без учета спектральной чувствительности установки. Аналогичная полоса обнаружена нами в объемных кристаллах и эпитаксиальных слоях InP: Zn с максимумом при 0.86 эВ (T=6 K). Оказалось (рис. 7), что интенсивность этой полосы может быть увеличена облучением образцов при 80 K электронами подпороговой энергии (E=50 кэВ). Величина энергии активации термического тушения данной полосы ($E_{\tau}=0.030$ эВ), определяемая в результате анализа зависимости $\ln I=f(10^3/T)$, указывает на участие в процессе рекомбинации мелкого донора. Заметим, что

с увеличением температуры полоса при 0.86 эВ не деформируется и ее максимум не смещается. В кристаллах n-InP она не наблюдается [110 , 111].

Данные об энергетическом положении уровней многозарядного центра P_{In} относительно валентной зоны были получены нами путем исследования методом НСГУ влияния облучения гамма-квантами на параметры дырочных ловушек кристаллов p-InP [112]. Кривые НСГУ барьеров Шоттки Ni—p-InP до и после облучения гамма-квантами при дозе $3 \cdot 10^{17}$ см⁻³ приведены на рис. 8. Параметры (глубина E_t , сечение захвата σ и концентрация N_t) (табл. 2) найденных после облучения ловушек определялись из анализа зависимостей $\ln{(T^2/e)} = f(10^3/T)$, где e — скорость эмиссии носителей (рис. 9). Выяснено, что дырочные ловушки H_1 и H_3 соответствуют двум зарядовым состояниям АСД P_{in} , а именно P_{in}^{\dagger} и P_{in}^{0} соответственно. Что касается ловушки H_{2} , концентрация которой не растет при облучении гамма-квантами (рис. 8), то она обусловлена, вероятно, неконтролируемой примесью.

Рассмотренные выше экспериментальные данные позволили нам составить схему уровней и электронных переходов в фосфиде индия с участием АСД P_{In} (рис. 10). Как справедливо отмечено в [109], уровень дефекта P_{In}^0 , расположенный вблизи середины запрещенной зоны, может аналогично уровню EL2в арсениде галлия способствовать получению нелегированного полуизолирующего фосфида индия. Большие плотности P_{In} могут быть достигнуты, по-видимому, путем отклонения состава образцов InP от стехиометрии в сторону избытка металлоида. Хочется верить, что ввиду важности полуизолирующего InP для электроники СВЧ проблема получения нелегированных монокристал-

лов i-InP будет в ближайшее время успешно решена.

Следует отметить, что экспериментальные сведения относительно возможности существования дефекта Іпр в фосфиде индия еще не получены.

6. Заключение. Имеющиеся данные указывают на важную роль антиструктурных дефектов в формировании оптических и электрофизических свойств соединений $A^{III}B^{v}$. \hat{K} настоящему времени хорошо идентифицированы ACДтипа B_A в GaAs, GaP и InP. Что же касается дефектов A_B и ассоциатов (A_BB_A) , то их идентификация требует дополнительного обоснования на микроскопическом уровне. Для получения новой информации относительно АСД важным представляется изучение состава дефектов в кристаллах соединений АптВу с контролируемым отклонением от стехиометрии, поскольку этот вопрос исследован частично только для GaAs.

Литература

[1] Van Vechten J. A. — J. Electrochem. Soc., 1975, v. 122, N 3, p. 423—429. [2] Elliott K., Chen R. T., Greenbaum S. G., Wagner R. J. — Appl. Phys. Lett., 1984,

- v. 44, N 9, p. 907—909.
 [3] Weber E. R., Ennen H., Kaufmann U., Windscheif J., Schneider J., Wosinski T.—
 J. Appl. Phys., 1982, v. 53, N 9, p. 6140—6143.
 [4] Kaminska M., Lagowski J., Parsey J. M., Gatos H. C. Lect. Not. Phys., 1983, v. 175,
 N 1-6, p. 198—202.
 [5] Gislason H. P., Watkins G. D. Phys. Rev. B, 1986, v. 33, N 4, p. 2957—2960.
 [6] Deiri M., Homewood K. P., Cavenett B. C. J. Phys. C: Sol. St. Phys., 1984, v. 17,
 N 23, p. L627—L632.
 [7] Goltzene A. Mayor B. Schob C. T. Appl. Bl. 1986.

- [7] Goltzene A., Meyer B., Schab C. J. Appl. Phys., 1986, v. 59, N 8, p. 2812—2816.
 [8] Van Vechten J. J. Electron. Mater., 1975, v. 4, N 5, p. 1159—1169.
 [9] Jaros M. J. Phys. C: Sol. St. Phys., 1978, v. 11, N 6, p. L213—L217.
 [10] Scheffler M., Pantelides S. T., Lipari N. O., Bernholc J. Phys. Rev. Lett., 1981, v. 47, N 6, p. 413-416.
- [11] Bachelet G. B., Schlüter M., Baraff G. A. Phys. Rev. B, 1983, v. 27, N 4, p. 2545— 2547.
- [12] Scheffler M., Bernholc J., Lipari N. O., Pantelides S. T. Phys. Rev. B, 1984, v. 29, N 6, p. 3269-3282.
- [13] Махмудов А. Ш., Адилов М. К., Левин А. А. К вопросу о природе некоторых локаль-13] Махмудов А. Ш., Адилов М. К., Левин А. А. К вопросу о природе некоторых локальных центров в арсениде галлия. — ФТП, 1985, т. 19, в. 11, с. 2077—2080.

 [14] Buisson J. P., Allen R. E., Dow J. D. — Sol. St. Commun., 1982, v. 43, N 11, p. 833—836.

 [15] Van Der Rest J., Pecheur P. — Physica, 1983, v. 116B, p. 121—126.

 [16] Ho E. S., Dow J. D. — Phys. Rev. B, 1983, v. 27, N 2, p. 1115—1118.

 [17] Lin-Chung P. J., Reinecke T. L. — Phys. Rev. B, 1983, v. 27, N 2, p. 1101—1113.

 [18] Pötz W., Ferry D. K. — Phys. Rev. B, 1985, v. 31, N 2, p. 968—973.

 [19] Pötz W., Ferry D. K. — J. Phys. Chem. Sol., 1985, v. 46, N 9, p. 1101—1108.

 [20] Reinecke T. L. — Physica, 1983, v. 117B/118B, p. 194—196.

- [21] Pötz W., Ferry D. K. Phys. Rev. B, 1984, v. 29, N 10, p. 5687—5693.
 [22] Kaufman U., Schneider J., Rauber A. Appl. Phys. Lett., 1976, v. 29, N 5, p. 312—313.
 [23] Meyer B. K., Hangleiter Th., Spaeth J.-M., Strauch G., Zell Th., Winnacker A., Bartram R. H. J. Phys. C: Sol. St. Phys., 1985, v. 18, N 7, p. 1503—1512.
 [24] Kaufman U., Schneider J. Festkörperprobleme, 1980, v. 20, p. 87—116.
 [25] Schneider J., Kaufman U. Inst. Phys. Conf. Ser., 1981, N 59, p. 55—67.
 [26] Kaufman U., Kennedy T. A. J. Electron. Mater., 1981, v. 10, N 2, p. 347—360.
 [27] Kaufman U., Schneider J. Sol. St. Commun., 1978, v. 25, N 12, p. 1113—1116.
 [28] Kaufman U., Schneider J., Wörner R., Kennedy T. A., Wilsey N. D. J. Phys. C: Sol. St. Phys., 1981, v. 14, N 31, p. L951—L955.
 [29] Ferenczi G., Dozsa L., Somogyi M. Lect. Not. Phys., 1983, v. 175, N 1-6, p. 301—307.
 [30] Kennedy T. A., Wilsey N. D. Inst. Phys. Conf. Ser., 1979, N 46, p. 375—378.
 [31] Goswami N. K., Newman R. C., Whitehouse J. E. Sol. St. Commun., 1981, v. 40, N 4, p. 473—477.

[35] Killoran N., Cavenett B. C., Godlewski M., Kennedy T. A., Wilsey N. D. — J. Phys. C: Sol. St. Phys., 1982, v. 15, N 22, p. L723—L728.
[36] Killoran N., Cavenett B. C., Godlewski M., Kennedy T. A., Wilsey N. D. — Physica,

1983, v. 116B, p. 425-430.
[37] Holmed D. E., Chen R. T., Elliott K. R., Kirkpatrick C. G. — Appl. Phys. Lett., 1982,

v. 40, N 1, p. 46-48.
[38] Figielski T. — Appl. Phys. A, 1984, v. 35, N 4, p. 255-261.
[39] Yu Ph. W., Mitchel W. C., Mier M. G., Li S. S., Wang W. L. — Appl. Phys. Lett., 1982,

v. 41, N 6, p. 532-534.
[40] Elliott K. R. — Appl. Phys. Lett., 1983, v. 42, N 3, p. 274-276.
[41] Wagner R. J., Krebs J. J., Stauss G. H., White A. M. — Sol. St. Commun., 1980, v. 36, N 1, p. 15-17. [42] Kennedy T. A., Faraday B. J., Wilsey N. D. — Bull. Am. Phys. Soc., 1981, v. 26, N 3,

[43] Beall R. B., Newman R. C., Whitehouse J. E., Woodhead J. — J. Phys. C: Sol. St. Phys.,

[44] Beall R. B., Newman R. C., Whitehouse J. E., Woodhead J. — J. Phys. C: Sol. St. Phys.,

[44] Beall R. B., Newman R. C., Whitehouse J. E., Woodnead J. — J. Flys. C. Sol. St. Flys., 1985, v. 18, N 17, p. 3273—3283.
[45] Wörner R., Kaufman U., Schneider J. — Appl. Phys. Lett., 1982, v. 40, N 2, p. 141—143.
[46] Goltzene A., Meyer B., Schwab C. — J. Appl. Phys., 1983, v. 54, N 6, p. 3117—3120.
[47] Goltzene A., Meyer B., Schwab C., Greenbaum S. G., Wagner R. J., Kennedy T. A. — J. Appl. Phys., 1984, v. 56, N 12, p. 3394—3398.
[48] Beall R. B., Newman R. C., Whitehouse J. E. — J. Phys. C: Sol. St. Phys., 1986, v. 19, N 20, p. 3745, 3752

Beall R. B., Newman R. C., Whitehouse J. E. — J. Phys. C: Sol. St. Phys., 1986, v. 19, N 20, p. 3745—3752.
 Weber E. R., Schneider J. — Physica, 1983, v. 116B, p. 398—403.
 Goltzene A., Meyer B., Schwab C. — Phys. St. Sol. (b), 1984, v. 123, N 2, p. K125—K128.
 Meyer B. K., Spaeth J.-M. — J. Phys. C: Sol. St. Phys., 1985, v. 18, N 4, p. L99—L103.
 Goltzene A., Meyer B., Schwab C., Beall R. B., Newman R. C., Whitehouse J. E., Woodhead J. — J. Appl. Phys., 1985, v. 57, N 12, p. 5196—5198.
 Hofman D. M., Meyer B. K., Lohse F., Spaeth J. M. — Phys. Rev. Lett., 1984, v. 53, N 12, p. 1187—1190.
 Meyer B. K., Spaeth J.-M., Scheffler M. — Phys. Rev. Lett., 1984, v. 52, N 10, p. 851—854.
 Lagowski J., Lin D. G., Chen T.-P., Skowronski M., Gatos H. C. — Appl. Phys. Lett.

[55] Lagowski J., Lin D. G., Chen T.-P., Skowronski M., Gatos H. C. — Appl. Phys. Lett.,

[59] Goltzene A., Meyer B., Schwab C. — J. Appl. Phys., 1985, v. 57, N 4, p. 1332—1335.
[60] Beall R. B., Newman R. C., Whitehouse J. E. — J. Phys. C: Sol. St. Phys., 1986, v. 19,

[61] Weber J., Watkins G. D. — J. Phys. C: Sol. St. Phys., 1985, v. 18, N 10, p. L269—L273. [62] Baraff G. A., Schluter M. — Phys. Rev. Lett., 1985, v. 55, N 21, p. 2340—2343. [63] Von Bardeleben H. J., Bourgoin J. C., Miret A. — Phys. Rev. B, 1986, v. 34, N 2, p. 1360—

[64] Pons D., Bourgoin J. C. — J. Phys. C: Sol. St. Phys., 1985, v. 18, N 20, p. 3839—3871.
[65] Vincent G., Bois D. — Sol. St. Commun., 1978, v. 27, N 4, p. 431—434.
[66] Vincent G., Bois D., Chantre A. — J. Appl. Phys., 1982, v. 53, N 5, p. 3643—3649.
[67] Lin A. L., Omelianovski E., Bube R. H. — J. Appl. Phys., 1976, v. 47, N 5, p. 1852—1858.
[68] Leyral P., Vincent G., Nouailhat A., Guillot G. — Sol. St. Commun., 1982, v. 42, N 1,

1985, v. 47, N 9, p. 929—931. Yu Ph. W. — Sol. St. Commun., 1982, v. 43, N 12, p. 953—956. Tajima M., Okada Y. — Physica, 1983, v. 116B, p. 404—408. Windscheif J., Ennen H., Kaufmann U., Schneider J., Kimura T. — Appl. Phys. A, 1983,

- N 4, p. 473—477.

 [32] Bell R. B., Newman R. C., Whitehouse J. E., Woodhead J. J. Phys. C: Sol. St. Phys., 1984, v. 17, N 36, p. L963—L968.

 [33] Kennedy T. A., Wilsey N. D. Phys. Rev. B, 1981, v. 23, N 12, p. 6585—6591.

 [34] O'Donnell K. P., Lee K. M., Watkins G. D. Sol. St. Commun., 1982, v. 44, N 7, p. 1015—

[56] [57]

р. 255.

1984, v. 17, N 15, p. 2653-2659.

v. 30, N 1, p. 47—49.

N 20, p. 3745-3752.

- [73] Lagowski J., Gatos H. C., Parsey J. M., Wada K., Kaminska M., Walukiewicz W. Appl. Phys. Lett., 1982, v. 40, N 4, p. 342—344.
 [74] Woshinski T., Morawski A., Figielski T. Appl. Phys. A, 1983, v. 30, N 4, p. 233—235. [75] Martin G. M., Esteve E., Langlade P., Makram-Ebeid S. — J. Appl. Phys., 1984, v. 56, N 10, p. 2655—2657. [76] Omling P., Weber E. R., Samuelson L. — Phys. Rev. B, 1986, v. 33, N 8, p. 5880—5883.
- [77] Tsukada N., Kikuta T., Ishida K. Japan. J. Appl. Phys., 1985, v. 24, N 9, p. L689—
- [78] Tsukada N., Kikuta T., Ishida K. Phys. Rev. B, 1986, v. 33, N 12, p. 8859—8862. [79] Kaminska M., Skowronski M., Lagowski J., Parsey J. M., Gatos H. C. — Appl. Phys. Lett., 1983, v. 43, N 3, p. 302—304.
- [80] Kaminska M., Skowronski M., Kuszko W. Phys. Rev. Lett., 1985, v. 55, N 20, p. 2204— 2207.
- [81] Figielski T., Wosinski T. Czech. J. Phys., 1984, v. B34, N 5, p. 403—408.
 [82] Figielski T., Kaczmarek E., Wosinski T. Appl. Phys. A, 1985, v. 38, N 4, p. 253—261.
 [83] Von Bardeleben H. J., Stievenard D., Bourgoin J. C. Appl. Phys. Lett., 1985, v. 47, N 9, p. 970—972.
- [84] Ikoma T., Taniguchi M., Mochizuki Y. Inst. Phys. Conf. Ser., 1984, N 74, p. 65. [85] Mochizuki Ya., Ikoma T. Japan. J. Appl. Phys., 1985, v. 24, N 11, p. L895—L898. [86] Ikoma T., Mochizuki Ya. — Japan. J. Appl. Phys., 1985, v. 24, N 11, p. L935—L937. [87] Imamura Y., Osaka Y. — Japan. J. Appl. Phys., 1983, v. 24, N 12, p. L935—L937. [88] Taniguchi M., Ikoma T. — J. Appl. Phys., 1983, v. 22, N 6, p. L333—L335. [89] Taniguchi M., Ikoma T. — Appl. Phys., 1983, v. 54, N 11, p. 6448—6449. [89] Taniguchi M., Ikoma T. — Appl. Phys. Lett., 1984, v. 45, N 1, p. 69—71.
- [90] Elliott K. R., Holmes D. E., Chen R. T., Kirkpatrick C. G. Appl. Phys. Lett., 1982, v. 40, N 10, p. 896-901. [91] Dannefaer S., Hogg B., Kerr D. — Phys. Rev. B, 1984, v. 30, N 6, p. 3355—3366.
 [92] Mircea-Roussel A., Jacob G., Hallais J. P. — In: Semi-Insul. III—V Mater. Conf. Nottingham, 1980, p. 133-137.
- [93] Look D. C., Pomrenke G. S. J. Appl. Phys., 1983, v. 54, N 6, p. 3249—3254.
 [94] Hiramoto T., Mochizuki Ya., Saito T., Ikoma T. Japan. J. Appl. Phys., 1985, v. 24,
- N. 12, p. L924—L924.

 [95] Sato T., Terashima K., Emori H., Ozawa S., Nakajima M., Fukuda T., Ishida K. Japan.
 J. Appl. Phys., 1985, v. 24, N 7, p. L488—L490.

 [96] Shanabrook B. V., Moore W. J., Bishop S. G. Phys. Rev. B, 1986, v. 33, N 8, p. 5943—
- [97] Shanabrook B. V., Moore W. J., Bishop S. G. J. Appl. Phys., 1986, v. 59, N 7, p. 2535— [98] Bishop S. G., Shanabrook B. V., Moore W. J. — J. Appl. Phys., 1984, v. 56, N 6, p. 1785—
- [99] Fischer D. W., Yu P. W. J. Appl. Phys., 1986, v. 59, N 6, p. 1952—1955.
- [100] Ta L. B., Hobgood H. M., Thomas R. N. Appl. Phys. Lett., 1982, v. 41, N 11, p. 1091—
- [101] Elliott K. R. J. Appl. Phys., 1984, v. 55, N 10, p. 3856—3858.
 [102] Dansas P. J. Appl. Phys., 1985, v. 58, N 6, p. 2212—2216.
 [103] Moore W. J., Shanabrook B. V., Kennedy T. A. Sol. St. Commun., 1985, v. 53, N 11,
 - p. 957-960.
- р. 937—900.
 [104] Pödör B. J. Appl. Phys., 1984, v. 55, N 10, p. 3603—3604.
 [105] Kennedy T. A., Wilsey N. D. Appl. Phys. Lett., 1984, v. 44, N 11, p. 1089—1091.
 [106] Deiri M., Kana-ah A., Cavenett B. C., Kennedy T. A., Wilsey N. D. J. Phys. C: Sol. St. Phys., 1984, v. 17, N 29, p. L793—L797.
 [107] Kana-ah A., Deiri M., Cavenett B. C., Wilsey N. D., Kennedy T. A. J. Phys. C: Sol. St. Phys., 1985, v. 18, N 20, p. L619—L623.
 [108] Георгобиани А. Н., Микуленок А. В., Урсаки В. В., Тигиняну И. М. Фотопроводимость фосфила инция. обусловленная антиструктурным пефектом Р. ФТП 1925 мость фосфида индия, обусловленная антиструктурным дефектом P_{1n}. — ФТІЇ, 1985,
- т. 19, в. 7, с. 1310—1312.
 [109] Cavenett B. C., Kana-ah A., Deiri M., Kennedy T. A., Wilsey N. D. J. Phys. C: Sol. St. Phys., 1985, v. 18, N 16, p. L473—L476.
 [110] Georgobiani A. N., Mikulyonok A. V., Stoyanova I. G., Tiginyanu I. M. Phys. St. Sol. (a), 1983, v. 80, N 1, p. 109—118.
 [111] Георгоблани А. Н., Микуленок А. В., Панасюк Е. И., Радауцан С. И., Тигиняну И. М.
- Глубокие центры в нелегированных и легированных железом монокристаллах фосфида индия. — ФТП, 1983, т. 17, в. 4, с. 593—598. [112] Георгобиани А. Н., Тигиняну И. М., Урсаки В. В., Урсу В. А. Исследование локализованных состояний в монокристаллах InP и GaAs методами емкостной спектроскопии
- и фотолюминесценции. Препринт ФИ АН СССР, № 56. М., 1986. 48 с. Физический институт им. П. Н. Лебедева АН СССР Получен 12.02.1987 Принят к печати 3.03.1987 Москва