■ 02. Motivation for Data Visualization

Summary Statistics vs. Visualizations

Summary statistics like the mean and standard deviation can be great for attempting to quickly understand aspects of a dataset, but they can also be misleading if you make too many assumptions about how the data distribution looks.

Anscombe's Quartet Example

Consider we have the following four datasets of x, y pairs. You can download the data using the button below. A link to a Google Sheet with the data is also available here.

DOWNLOAD DATA

	ı			II .		II	ı	v
×	У		X	У	×	у	х	У
10.0	8.04	10	0.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13	3.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11	1.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14	4.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	(5.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12	2.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	-	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	į	5.0	4.74	5.0	5.73	8.0	6.89

Х	Y	X	Y	Х	Y	X	Υ	
10	8.04	10	9.14	10	7.46	8	6.58	
8	6.95	8	8.14	8	6.77	8	5.76	
13	7.58	13	8.74	13	12.74	8	7.71	
9	8.81	9	8.77	9	7.11	8	8.84	
11	8.33	11	9.26	11	7.81	7.81 8		
14	9.96	14	8.1	14	8.84	8	7.04	
6	7.24	6	6.13	6	6.08	8	5.25	
4	4.26	4	3.1	4	5.39	19	12.5	
12	10.84	12	9.13	12	8.15	8	5.56	
7	4.82	7	7.26	7	6.42	8	7.91	
5	5.68	5	4.74	5	5.73	8	6.89	
Average	Average	Average	Average	Average	Average	Average	Average	
9	7.500909091	9	7.500909091	9	7.5	9	7.500909091	
			Make A copy of t	he data to calcula	te your statistics			
STD	STD	STD	STD	STD	STD	STD	STD	=STDEV.P(A2:A12)
3.16227766	1.937024215	3.16227766	1.937108691	3.16227766	1.935932944	3.16227766	3.16227766	STDEV.P(number1, [number2],

They are the same.	They are the same.	They are the same.	They are different.	They are the same.	
They are different	They are different.	They are different.			
Question					Same
What is true for the	means associated with	any of the X columns?			
What is true for the	means associated with	any of the Y columns?			Same
	Same				
What is true for the					

.

.

■ 05. Quiz: Exploratory vs. Explanatory

QUIZ QUESTION::

Match each of the statements below to whether it is true for either Exploratory or Explanatory analyses.

ANSWER CHOICES:

Explanatory	Exploratory	Exploratory	Explanatory	Explanatory
Statement				Exploratory or Explanatory
These plots ar	re used to tell st	ories.		Explanatory
This is the beg	ginning of most	data analyses p	rocesses.	Exploratory
This is the end	d of most data a	nalyses process	es.	Explanatory
When making	these plots, you	u should pay att	ention to makin	ng the plot insightful to your audience. Explanatory
Finding missir	ng values in a da	ataset is a part o	f this analysis.	Exploratory

04. Quiz: Data Types (Quantitative vs. Categorical)

Data Types

QUIZ QUESTION::

For each variable below, identify each as either quantitative or categorical.

ANSWER CHOICES:

Categorical	Quantitative	Quantitative	Categorical	Quantitative	
Variable					
Zip Code					
Age					
Income					
Marital Status	(Single, Married	l, Divorced, etc.)			
Height					

Data Types QUIZ QUESTION:: For each variable bel

For each variable below, identify each as either quantitative or categorical.

ANSWER CHOICES:

Quantitative	Categorical	Quantitative	Categorical	Quantitative	
Variable					Data Types
Letter Grades	(A+, A, A-, B+, B	, B-,)			Categorical
Travel Distance	e to Work	Quantitative			
Ratings on a S	urvey (Poor, Ok,	Great)			Categorical

Temperature	Quantitative
Average Speed	Quantitative

Next Concept

Nominal vs. Ordinal

This quiz will assure you have a clear understanding of the differences between categorical nominal vs. categorical ordinal variables. All of the variables below are categorical. Your task is to select the **check** box next to each variable that is **nominal**; do not check the ordinal categorical variables.

The plot above from Fox News claims to depict the change in the top tax rate bracket between the current level at the time, and after tax cuts were to expire. What is the lie factor for this chart? Some numbers to help: the small bar is 27 pixels tall and the large bar is 146 pixels tall.

4.5733.541.03

Which is Better?

Believe it or not, the next two plots are of the exact same data. Both of them depict information regarding flights of the USA's Space Shuttle program: whether or not a mechanical failure of O-Ring components occurred, as well as the temperature at the time of flight. A full background of the dataset can be found here.

Use these two plots to answer the quiz questions that follow.

History of O-Ring Damage in Field Joints (Cont)

Plot 1

Plot 2

Which visual best represents the underlying data?

○ Plot 1
Plot 2
Use either of the two plots above to mark all the below that are true.
☐ Temperature appears to be associated with whether an O-ring is damaged or will pass.
If the temperature is lower than 60 degrees F, no O-rings have ever passed.
The challenger had the lowest temperature of any O-ring on record.
There are 7 total damaged O-rings in the dataset.
What is the main data visualization violation for the first visual?
O Data Integrity
○ High Data-Ink Ratio
Chart Junk
O Nothing, it is okay "as is".
Next Concept

Chart Junk	
O Design Integrity	
ata-Ink Ratio	
○ This should be used for Exploratory analysis and not Explanatory analysis.	
What all could be done to improve the above visual? Check all that apply.	
Change the coloring to be less dramatic, while still relating to the different companies.	
Remove 3D aspect.	
Use a visual that uses length (bar chart) rather than area (pie chart) to demonstrate differences, as humans are better able detect differences in lengths.	of:
☐ Remove the percentages, as they are redundant to the area of the pie chart slice.	
Remove the legend, and put the names of the companies directly on the plot.	

The above pie chart violates a few rules of visual design, but which is the worst violation?

≡ 17. Good Visual

QUIZ QUESTION::

Map each solution to each question/statement.

ANSWER CHOICES:

Position	Data-Ink Ratio	Color Hue	Chart Junk	Color										
Question	/Statement											Solu	ıtion	
What is th	e most appropriate	e visual encodi	ng for adding a	categori	ical	varial	ble to	a sca	tterpl	ot?		Colo	r	
Which visu	ual encoding is mo:	st accurate for	visual percepti	on?								Posit	tion	
The least a	accurate visual enco	oding for visua	I perception?								Color Hue			
What are a	additional visuals th	hat do not add	to the messag	e of the d	data	?						Char	t Junk	
What do v	ve want to have a h	nigh value of in	our visuals?									Data-	-Ink Rati	

Color, shape, size, and other tools of data visualization are clutter that should never be used.

O True

False

Next Concept