

Computação em Nuvem

GRADUAÇÃO EM REDES DE COMPUTADORES E ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

Prof. Guto Muniz

Contêineres, Docker

GRADUAÇÃO EM REDES DE COMPUTADORES E ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

Prof. Guto Muniz

Introdução

- Contêiner
- Docker

Introdução

Literatura

Muito tempo ocioso

- Muito tempo ocioso
- Recursos não aproveitados

- Muito tempo ocioso
- Recursos não aproveitados
- Alto preço de manutenção

Sistema Operacional (SO)

Hardware

Containers

Muito mais leve

Nascem/morrem rápido

 Sem custo de manutenção do Sistema Operacional

Containers

1. Muito mais leve

- 2. Nascem/morrem rápido
 - 2.1. Efêmero
 - 2.1.1. Que é passageiro, temporário, transitório.

3. Sem custo de manutenção do Sistema Operacional

Containers

E se não usarmos Containers?

 E se uma aplicação consumir muito recurso?

E se não usarmos Containers?

- E se uma aplicação consumir muito recurso?
- E se cada aplicação precisa de uma versão específica de uma biblioteca?
- E se mais de uma aplicação precisar utilizar a mesma porta?

Utilizando Containers?

20%	15%		×%
APP 1	APP 2		APP n
Contai ner 1	Contai ner 2		Contai ner n
Sistema Operacional (SO)			
Hardware			

- Ganhamos Isolamento;
- Controle de recursos;
- Agilidade na infraestrutura;
- Possibilidade de trabalhar com diversas versões das bibliotecas;
- Muito mais leve do que VM;
- Não requer manutenção com SO's.

Solomon Hykes

Solomon Hykes

Solomon Hykes

Solomon Hykes

Open Source

https://github.com/docker

Doker

Doker

Cliente

Onde iremos digitar os comandos

Docker_Host

O Docker possui uma
arquitetura de cliente-servidor,
e tais contêineres são
armazenados em um servidor,
chamado de Docker host ou
Docker server

Registry

 É uma espécie de repositório para imagens.

Docker daemon

- Recebe comandos
 do cliente a partir
 de Command Line
 Interfaces ou API's
 REST
- Interpreta os comandos

Registry

Caso não exista a imagem o Docker daemon irá conversar com o Registry e vai baixar a imagem

Imagens

 São arquivos que contém todo o conteúdo e estrutura de sistemas operacionais.
 Elas são a base de

construção de

Containers

 São os ambientes de execução do Docker, criados a partir de imagens. De forma simplificada, é uma sandbox para processos.

Tecnologias do Ecossistema Docker

permite aos desenvolvedores interagir com o

Docker Engine e realizar tarefas como criar,

gerenciar e executar contêineres.

Docker CLI

- Linha de comando

Install Docker Engine on Ubuntu

- Execute o sequinte comando para desinstalar todos os pacotes conflitantes:
- for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove \$pkg; done
- Instalar usando o apt repositório:
- sudo apt-get update
- sudo apt-get install ca-certificates curl
- sudo install -m 0755 -d /etc/apt/keyrings
- sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o /etc/apt/keyrings/docker.asc
- sudo chmod a+r /etc/apt/keyrings/docker.asc
- Adicionar ao repositório:
- echo \
 - "deb [arch=\$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.asc] https://download.docker.com/linux/ubuntu \
 \$(. /etc/os-release && echo "\$VERSION_CODENAME") stable" | \
- sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
- sudo apt-get update
- Para instalar a versão mais recente, execute:
- sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin
- Verifique se a instalação do Docker Engine foi bem-sucedida executando a hello-world imagem:
- sudo service docker start
- sudo docker run hello-world

Docker comandos

- sudo service docker status
- sudo service docker start
- sudo service docker stop
- Inicializar quando iniciar a máquina:
 - sudo systemctl enable docker.service
 - sudo systemctl enable containerd.service
- Parar a inicialização
 - sudo systemctl disable docker.service
 - sudo systemctl disable containerd.service
- docker version

Docker comandos

- verificar os docker ativos:
- docker ps
- docker container ls -a

Docker

- . Instalação no Windows
- https://learn.microsoft.com/pt-br/windows/wsl/install
- . Instalação Ubuntu
- https://docs.docker.com/engine/install/ubuntu/
- https://docs.docker.com/engine/install/linux-postinstall/
- Outra alternativa de usar o Docker
- https://hub.docker.com/
- https://labs.play-with-docker.com/

Virtualização - Ubuntu 22.04

Seria assim?

Container 1	Container 2	Container 3	Container 4
Ubuntu (77.8MB)	Ubuntu (77.8MB)	Ubuntu (77.8MB)	Ubuntu (77.8MB)
Container 5	Container 6	Container 7	
Ubuntu (77.8MB)	Ubuntu (77.8MB)	Ubuntu (77.8MB)	

Seria assim?

Container 1	Container 2	Container 3	Container 4
Ubuntu (77.8MB)	Ubuntu (77.8MB)	Ubuntu (77.8MB)	Ubuntu (77.8MB)
Container 5	Container 6	Container 7	Litão:
Ubuntu (77.8MB)	Ubuntu (77.8MB)	Ubuntu (77.8MB)	77.8MB x 7 = 544.3 MB 77.8MB x 30 \approx 2.3GB
			Imagina 30, a 100
			contineres!!!

Estrutura dos containers

Container Read/Write Ubuntu (77.8MB) Read Only

Estrutura dos containers

Aproveitamento de camadas

Comandos

docker create --name <container-name> <image-name> docker run -it -d --name <container-name> <image-name> bash docker pause <container-id/name> docker unpause <container-id/name> docker start <container-id/name> docker stop <container-id/name> docker restart < container-id/name> docker kill <container-id/name> docker rm <container-id/name>

Comandos

docker run hello-world

docker run ubuntu

docker run --name teste1 -i -t ubuntu

docker exec id echo "GUTO"

docker run ubuntu echo "eu gosto muito"

docker run -dit ubuntu

docker rm -f ID

docker rmi ID

docker inspect nginx:latest

docker run -p 5000:80 -d -e AUTHOR="GUTO" dockersamples/static-site

MUITO OBRIGADO!!!!!

Guto Muniz

augustomuniz@gmail.com