17. Ruch ładunku w polu elektromagnetycznym. Prąd elektryczny

Wybór i opracowanie Marek Chmielewski

- 17.1. Z aluminiowego pręta o przekroju poprzecznym S wykonano zamknięty pierścień o promieniu r. Ten pierścień wiruje z prędkością kątową ω wokół osi przechodzącej przez jego środek prostopadle do płaszczyzny pierścienia. Ruch pierścienia został gwałtownie zatrzymany. Przyjmując, że w czasie hamowania trwającego t przyspieszenie kątowe było stałe, oblicz natężenie prądu płynącego podczas hamowania ruch. Przewodnictwo aluminium wynosi σ.
- **17.2.** Jednakowe oporniki o oporach R każdy połączono jak na rysunku. Oblicz opór zastępczy układu między punktami A i B oraz B i C.

17.3.Fragment rozgałęzionego obwodu składa się z trzech oporników połączonych w trójkąt. Znaleźć oporność R₁,R₂,R₃ elementów gwiazdy, która wmontowana w obwód na miejsce trójkąta będzie równoważna trójkątowi.

- **17.4.**Pyłek o masie m i ładunku q spada w próżni w polu płaskiego kondensatora, naładowanego do napięcia U. Okładki kondensatora są ustawione pionowo i oddalone od siebie o d. Jaka powinna być wysokość okładek, by pyłek nie uderzył o okładkę. W chwili początkowej pyłek znajdowała się tuż przy powierzchni jednej z okładek.
- 17.5. W jednorodnym polu magnetycznym o indukcji B z tego samego punktu wybiegają dwie cząstki o masie m i ładunku Q każda, z tymi samymi prędkościami, ale różnie skierowanymi. Wektor prędkość pierwszej cząstki V₁ tworzy z kierunkiem wektora B kąt α, a wektor prędkości drugiej cząstki V₂ kąt β, przy czym α>β. W jakim odstępie czasu t po pierwszej powinna wybiec druga cząstka, aby nastąpiło spotkanie. Wektory V₁, V₂ i B leżą w jednej płaszczyźnie.
- 17.6.Oblicz, jaka masę m musiałaby mieć cząstka naładowana ładunkiem elementarnym e aby w próżni okrążała kulę ziemską wzdłuż równika magnetycznego, jeżeli składowa pozioma wektora indukcji magnetycznej ma średnia wartość B_s, a prędkość cząstki wynosi V.
- 17.7. Elektron o energii kinetycznej E wlatuje w jednorodne pole magnetyczne o indukcji B. Oblicz promień okręgu, po którym będzie krążył elektron w tym polu. Ładunek elektronu wynosi q, masa m. Wektor prędkości elektronu V jest prostopadły do wektora B. Jaka będzie częstotliwość obiegu elektronu po orbicie? Zbadać, jak zależy częstotliwość obiegu elektronu po orbicie od jego energii kinetycznej.

17. Rozwiązania

17.1.R. Podczas hamowania na elektrony działają siły bezwładności

$$F = ma = m\frac{dV}{dt} = mr\frac{d\omega}{dt}$$

$$mr\frac{d\omega}{dt} = Ee$$

$$j = \sigma E = \frac{i}{S} \implies E = \frac{i}{s\sigma}$$

$$\frac{d\omega}{dt} = const \implies \frac{d\omega}{dt} = \frac{\Delta\omega}{\Delta t} = \frac{\omega}{t}$$

$$mr\frac{\omega}{t} = \frac{ie}{s\sigma} \implies i = \frac{mr\omega s\sigma}{et}$$

17.2.R.

Korzystając z praw Kirchhoffa

$$R_{z} = \frac{U}{i}$$

$$i = i_{1} + i_{2} + i_{3} \qquad i_{1} = i_{3}$$

$$U = i_{2}R = 3i_{3}R$$

$$i_{2} = \frac{U}{R} \qquad i_{3} = \frac{U}{3R} \qquad i = 2i_{3} + i_{2}$$

$$i = \frac{5U}{3R} \qquad R_{z} = \frac{U}{\frac{5U}{3R}} = \frac{3}{5}R$$

b)

$$R_{z} = \frac{U}{i}$$

$$i = i_{1} + i_{2} + i_{3}$$

$$i_{1} + i_{2} = i_{4}$$

$$i_{3} + i_{4} = i$$

$$i_{1}R + i_{1}R + i_{1}R = i_{2}R$$

$$i_{2}R + i_{4}R + i_{4}R = i_{3}R$$

$$U = i_{3}R$$

$$R_{z} = \frac{11}{15}R$$

Uwaga w obu przypadkach można wyznaczyć rezystancje zastępczą szukając oporu poszczególnych gałęzi obwodów.

17.3.R.

Zamiennik musi działać tak aby prądy jak i spadki napięć w jednym jak i drugim układzie były takie same więc:

Dla układu trójkata

$$\begin{split} I_{A} &= \frac{U_{AB}}{r_{1}} + \frac{U_{AC}}{r_{3}} & I_{C} &= \frac{U_{BC}}{r_{2}} + \frac{U_{AC}}{r_{3}} \\ U_{AC} &= U_{AB} + U_{BC} \\ I_{A} &= U_{AB} \left(\frac{1}{r_{1}} + \frac{1}{r_{3}}\right) + \frac{U_{BC}}{r_{3}} & I_{C} &= \frac{U_{AB}}{r_{3}} + U_{BC} \left(\frac{1}{r_{2}} + \frac{1}{r_{3}}\right) \end{split}$$

Dla układu gwiazdy

$$\begin{split} U_{AB} &= I_A R_2 + I_B R_3 & U_{BC} &= -I_B R_3 + I_C R_1 \\ I_B &= I_A - I_C & \\ U_{AB} &= I_A (R_2 + R_3) - I_{C1} R_3 & U_{BC} &= -I_A R_3 + I_C (R_1 + R_3) \end{split}$$

Układy te należy rozwiązać ze względu na I_A oraz I_C

$$\begin{split} I_A &= \frac{(R_1 + R_3)U_{AB}}{R_1R_2 + R_1R_3 + R_2R_3} + \frac{R_3U_{BC}}{R_1R_2 + R_1R_3 + R_2R_3} \\ I_C &= \frac{R_3U_{AB}}{R_1R_2 + R_1R_3 + R_2R_3} + \frac{(R_2 + R_3)U_{BC}}{R_1R_2 + R_1R_3 + R_2R_3} \end{split}$$

Porównując wyrażenia na prąd dla trójkąta i gwiazdy można wyznaczyć szukane zależności przez przyrównanie wyrażeń przy U_{AB} i U_{BC}.

$$r_3 = \frac{R_1 R_2 + R_1 R_3 + R_2 R_3}{R_3}$$

W analogiczny sposób obliczamy kolejne zależności. Łatwo zauważyć regularność w uzyskiwaniu tych wyrażeń.

$$r_1 = \frac{R_1 R_2 + R_1 R_3 + R_2 R_3}{R_1} \qquad r_2 = \frac{R_1 R_2 + R_1 R_3 + R_2 R_3}{R_2}$$

$$r_2 = \frac{R_1 R_2 + R_1 R_3 + R_2 R_3}{R_2}$$

17.4.R.

Rozpatrujemy układ równań

$$x(t) = \frac{a_x t^2}{2} + V_{0x}t + x_0$$
$$y(t) = \frac{a_y t^2}{2} + V_{0y}t + y_0$$

Z warunków zadania otrzymujemy:

$$V_{0x}\!\!=\!\!V_{0y}\!\!=\!\!x_0\!\!=\!\!y_0\!\!=\!\!0$$

$$F_e = Eq = \frac{U}{d}q \qquad ma_x = \frac{U}{d}q \Rightarrow a_x = \frac{Uq}{md}$$

$$a_y = g$$

$$x(t_k) = d = \frac{Uqt_k^2}{2md} \Rightarrow t_k = \sqrt{\frac{2md^2}{Uq}}$$

17.5.R.

 $y(t_k) = l_{\text{max}} = \frac{gt_k^2}{2} = \frac{gmd^2}{Ua} \Rightarrow l < \frac{gmd^2}{Ua}$

Obie cząstki będą się poruszały po liniach śrubowych

Jest to ruch złożony z ruchu jednostajnego z prędkościami

$$V_{1t} = V\cos\alpha$$
 $V_{2t} = V\cos\beta$

i z ruchu po okręgu przy czym:

$$\frac{mV_B^2}{R} = QV_B B \qquad R = \frac{mV_B}{QB}$$

$$T = \frac{2\pi R}{V_B} \Rightarrow T = \frac{2\pi m}{QB}$$

$$s = V_1 t_0$$

Okres obiegu nie zależy od prędkości Czas potrzebny na to by cząstka 2 dogoniła cząstkę 1 można zapisać w następujący sposób

$$x_1 = x_0 + V_{1t}t_0$$
 $x_2 = V_{2t}t$ $x_1 = x_2 \Rightarrow t = t_k$

$$t_k = \frac{V_{1t}t_0}{V_{2t} - V_{1t}} = \frac{t_0 V \cos \alpha}{V \cos \beta - V \cos \alpha}$$

Aby cząstki się spotkały całkowita różnica czasu musi być równa minimum jednemu całkowitemu okresowi

$$t_k = T \Rightarrow \qquad t_0 = \frac{2\pi m}{QB} \frac{\cos \beta - \cos \alpha}{\cos \alpha}$$

17.6.R.

Przy założeniu, że siła ciężkości jest pomijalnie mała

$$mg\langle\langle \frac{mV^2}{R}$$

Zadanie to można rozwiązać rozpatrując działanie tylko siły pochodzącej od pola magnetycznego F₁.

$$\vec{V} \perp \vec{B} \Rightarrow F_{l} = qVB$$

$$\frac{mV^{2}}{R} = qVB \Rightarrow m = \frac{RqB}{V}$$

$$\frac{mV^2}{R} + mg = qVB \qquad \Rightarrow \qquad m = \frac{qVB}{\frac{V^2}{R} + g}$$

$$E = \frac{mV^2}{2} \Rightarrow V = \sqrt{\frac{2E}{m}} \qquad \frac{mV^2}{R} = qVB \Rightarrow R = \frac{mV}{qB} = \frac{\sqrt{2mE}}{qB}$$

$$f = \frac{1}{T} \qquad T = \frac{2\pi R}{V} = \frac{2\pi mV}{qBV} = \frac{2\pi m}{qB} \Rightarrow \qquad f = \frac{qB}{2\pi m}$$

W przypadku gdy V<<C (mechanika klasyczna) częstotliwość obiegu ładunku po okręgu nie zależy od prędkości, a więc nie zależy od energii kinetycznej. Jeżeli prędkości są duże (mechanika relatywistyczna) masa cząstki zależy od energii kinetycznej, dlatego energia ta ma wpływ na częstotliwość obiegu ładunku.