MATH 110 WORKSHEET, JULY 9TH

JAMES MCIVOR

(1)	Consider the operator $T\colon P(\mathbb{F})\to P_{\mathbb{F}}$ given by $Tp(x)=xp'(x)$. (a) Is T an isomorphism? (b) Let n be any natural number. Prove that $P_n(\mathbb{F})$ is an invariant subspace for T (you don't need to check it's a subspace - just that it's invariant).
(2)	Which of the following are invariant subspaces for the operator $T \colon \mathbb{F}^{\infty} \to \mathbb{F}^{\infty}$ given by $T(a_1, a_2, a_3, \ldots) = (a_2, a_3, a_4, \ldots)$ (a) $W = \{(a, a, a, \ldots) \mid a \in \mathbb{F}\}$
	(b) $U = \{(a_1, a_2, a_3, \ldots) \mid a_{2k} = a_{2k-1} \text{ for all } k \in \mathbb{N}\}$
(3)	Consider the linear operator $T: P_2(\mathbb{F}) \to P_2(\mathbb{F})$ given by $Tp(x) = x^2p(1)$. (a) Find all eigenvalues and eigenvectors for T .
	(b) Compute the matrix of T with respect to the basis $(1, 1 - x, 1 - x^2)$.
(4)	Let T be an operator on V . Prove that the set of eigenvectors with eigenvalue zero is equal to the null space of T .