

#### CS3120





# Chapter 2 Logic Design With MOSFET

Andy, Yu-Guang Chen

Associate Professor, Department of EE, National Central University

Adjunct Assistant Professor, Department of CS, National Tsing Hua University

andyygchen@ee.ncu.edu.tw

Andy Yu-Guang Chen

1



#### Outline



- ◆Ideal Switches and Boolean Operations
- ◆MOSFETs as Switches
- ◆Basic Logic Gates in CMOS
- ◆ Complex Logic Gates in CMOS
- **◆Transmission Gate Circuits**
- **♦** Clocking and Dataflow Control



Andy Yu-Guang Chen





- ◆ CMOS integrated circuits use bi-directional devices called MOSFETs as logic switches
- ◆ This chapter examines the logical characteristics of MOSFETs and develops techniques for building digital networks
- ◆ All digital designs are based on primitive logic operations
- ◆ The first task in our study of VLSI will be to create electronic logic gates that can be used as building blocks in complex switching networks



Andy Yu-Guang Chen

.



## 2.1 Ideal Switches and Boolean Operation



- ◆ Logic gates are created by sets of controlled switches
- ◆ In this idealized situation, (open or close) of the switch is controlled by the value of A
- Assert-high controlled switch

$$\triangleright y = x \cdot A \text{ iff } A = 1$$

➤ The relationship between x and y is undefined if A=0





Andy Yu-Guang Chen



## 2.1 Ideal Switches and Boolean Operation

- ◆ We can create a logic network by combining the concept of an ideal switch with a voltage source
- ◆ The two switches are in series with each other

$$\triangleright g = (a \cdot 1) \cdot b = a \cdot b$$

 $\Rightarrow$  a = 1 AND b = 1  $\Rightarrow$  output = 1

◆ AND2 operation (2-input AND operation)



Figure 2.2 Series-connected switches



Andy Yu-Guang Chen

. .

# 2.1 Ideal Switches and Boolean Operation



- ◆ We can create a logic network by combining the concept of an ideal switch with a voltage source
- ◆ The two switches are in parallel with each other

$$\triangleright g = (a \cdot 1) + (b \cdot 1) = a + b$$

$$\triangleright$$
 a = 1 OR b = 1  $\rightarrow$  output = 1

◆ OR2 operation (2-input OR operation)



Figure 2.4 Parallel-connected switches

Andy Yu-Guang Chen



## 21 Ideal Switches and Boolean Operation



- ◆ The switch drawings will be called schematic diagram
- ◆ Wire 1 and Wire 2 are assumed to be totally separate
  - The signal a on Wire 1 has no relationship to the signal b on Wire 2
- If we wish to create a connection, we will use a "dot"
  - The two wires are connected so that placing a signal a on one of the lines results in the same value on all points of both lines





Andy Yu-Guang Chen



## 2.1 Ideal Switches and Boolean Operation &



Assert-low controlled switch

$$\Rightarrow y = x \cdot \bar{A} \text{ iff } A = 0$$

The relationship between x and y is undefined if A=1

◆The assert-high and assert-low switch behave in a complementary manner





Andy Yu-Guang Chen



◆ The two switches are in series with each other

$$\triangleright g = (\overline{a} \cdot 1) \cdot \overline{b} = \overline{a} \cdot \overline{b} = \overline{a+b}$$

- $\Rightarrow$  a = 0 AND b = 0  $\Rightarrow$  output = 1
- If either a or b is a 1, then g is undefined
- ◆ NOR2 operation



Figure 2.6 Series-connected complementary switches

Andy Yu-Guang Chen

9

## 2.1 Ideal Switches and Boolean Operation

- Progress to the idea of using both types of switches in a single network
- ◆ Provide both logic 1 and logic 0 inputs in an effort to produce an output that is defined for all possible input combinations
- $\Rightarrow y = \bar{a} \Rightarrow NOT operation$



Andy Yu-Guang Chen





- MOSFET stands for Metal Oxide-Semiconductor Field Effect Transistor
  - > Behave like the idealized switches
  - > Obey circuit equations
  - Performance limited by the law of physics
- We concentrate on creating switching models for the devices in this chapter
- Complementary MOS
  - N channel MOSFET (nFET) behaves as an assert-high switch
  - > P channel MOSFET (pFET) behaves as an assert-low switch





Andy Yu-Guang Chen

11



#### 2.2 MOSFET as Switches



- ◆ The gate terminal acts as the control electrode for the device
- ◆ Applying a voltage on the gate electrode determines the current flow between drain and source terminals
- ◆ MOSFETs are intrinsically electronic devices
- ◆ To use them, we need to translate between Boolean values and electrical parameters





Andy Yu-Guang Chen





- lacktriangle Two power supply voltages  $V_{DD}$  and  $V_{SS}$  are defined
- ◆ Early generations of silicon MOS logic circuits used both positive and negative supply voltages
- igoplus Modern designs require only a single positive voltage  $V_{DD}$  and the ground connection
  - $\gt{V_{DD}}$  = 5V or 3.3V or lower
  - $>V_{SS}=0$ V





Andy Yu-Guang Chen

13



## 2.2 MOSFET as Switches



- We can now define the relationship between logic variables and voltages
  - ightharpoonup Boolean variables ightharpoonup x = 0 or x = 1
  - Represent the variable x using a voltage  $V_x$  such that  $0 \le V_x \le V_{DD}$
  - > x = 0 means that  $V_x = 0$  V
  - > x = 1 means that  $V_x = V_{DD}$
- ◆ Realistic circuits are more lenient
  - Low voltages correspond to logic 0 values
  - ➤ High voltages correspond to logic 1 values





Andy Yu-Guang Chen









- ◆ Body is commonly tied to ground (0 V)
- ◆ When the gate is at a low voltage:
  - P-type body is at low voltage
  - > Source-body and drain-body diodes are OFF
  - No current flows, transistor is OFF





17



#### 2.2 MOSFET as Switches



- ◆ When the gate is at a high voltage:
- Positive charge on gate of MOS capacitor
  - Negative charge attracted to body
  - Inverts a channel under gate to n-type
  - Now current can flow through n-type silicon from source through channel to drain, transistor is ON













- ◆ We want to define a range of voltages for both cases of A = 0 and A=1
- lacktriangle Threshold voltage  $(V_T)$ 
  - ➤ Established during the manufacturing process
  - > Is assumed to be a given value to the designer
  - > nFETs and pFET have different threshold voltages



Andy Yu-Guang Chen

2



#### 2.2 MOSFET as Switches



- lacktriangle nFET has a threshold voltage  $V_{Tn}$ , a positive number (0.5V~0.7V)
  - $\gt{V_{GS}} \le V_{Tn} \Rightarrow$  open circuit  $\Rightarrow$  transistor off
  - $\gt{V_{GS}} \ge V_{Tn} \Rightarrow$  close circuit  $\Rightarrow$  transistor on
  - $> V_A = V_{GSn}$



Andy Yu-Guang Chen







- ◆ A pFET behaves in a complementary manner
- $\blacklozenge V_{Tp}$  is a negative number (-0.5V  $\sim$  -0.8V)
- lacktriangle We use  $V_{\text{SG}p} = -V_{\text{GS}p}$ 
  - $ightharpoonup V_{\mathrm{SG}p} \leq \left|V_{Tp}\right| \Rightarrow$  open circuit  $\Rightarrow$  transistor off
  - $\gt{V}_{\mathrm{SG}p} \geq |V_{Tp}| \Rightarrow$  close circuit  $\Rightarrow$  transistor on





Andy Yu-Guang Chen

23



#### 2.2 MOSFET as Switches



- lacktriangle It is important to note that the logic 0 and logic 1 voltage ranges of  $V_A$  are different for the two types of FETs
- ◆There are regions of overlap for both A = 0 and A = 1 values
  - > It can be used if a uniform definition is needed
- $igoplus V_A = 0$  and  $V_A = V_{DD}$  valid for both devices



Andy Yu-Guang Chen





#### Pass Characteristics

- > Ideal electrical switch can pass any voltage
- MOSFETs are more limited in their capabilities and are not able to pass arbitrary voltages from source to drain or vice versa
- ➤ Complementary MOS (CMOS)
  - Use pFET to pass logic 1 voltages of  $V_{DD}$
  - Use nFETs to pass logic 0 voltages of  $V_{SS}$  = 0 V



Andy Yu-Guang Chen

2



#### 2.2 MOSFET as Switches



- ◆ The pass characteristics of nFET
- If a logic 0 is connected from left to the right
  - $\triangleright$  This results in an output voltage of  $V_y = 0 V$  as desired
  - If a  $V_{DD}$  is applied in the left, the output voltage is reduced to a value  $V_{V} = V_{DD} V_{Tn}$   $\rightarrow$  Threshold voltage loss
  - > nFET can only pass a weak logic 1 but strong logic 0
  - ightharpoonup minimum value of the gate-source voltage need to maintain an on state is  $V_{GSn}-V_{Tn}$





Andy Yu-Guang Chen





- ◆ The pass characteristics of pFET
  - > If a logic 1 is connected from left to the right
  - $\triangleright$  This results in an output voltage of  $V_v = V_{DD}$  as desired
  - If a  $V_{ss}$  is applied in the left, the output voltage can only drop to a value  $|V_{Tp}|$  Threshold effect
  - pFET can pass a strong logic 1 but only weak logic 0
  - In order to keep the pFET on requires a minimum source-gate voltage of  $V_{\text{SG}p} = \left| V_{Tp} \right|$





Figure 2.17 pFET pass characteristics

Andy Yu-Guang Chen

27



## 2.3 Basic Logic Gates in CMOS



- ◆ The concept of a general CMOS digital logic gate is in Fig. 2.18
- lacktriangle Use transistors to divert one of the supply voltages  $V_{dd}$  or OV to output
- ◆ The upper and lower switch will not close/open at the same time
- They are complementary pairs
- ◆ The important of this behavior is that the nFET and pFET are electrical opposite → translates directly into a coherent switching scheme



Figure 2.18 General CMOS logic gate

Andy Yu-Guang Chen



## 2.3 Basic Logic Gates in CMOS



- ◆ The operation of the general logic gate is shown in Figure 2.19
- ◆ The only missing feature in this model is the method used to control the output switches





Figure 2.19 Operation of a CMOS logic gate

Andy Yu-Guang Chen

29



# **CMOS Power Consumption Problem**



- ◆ Ideal CMOS gate does not consume power in the steady state (No current flow)
- ◆ But there is power consumption in the transition
  - The transitions are caused by changing values of input and output
  - ➤ If there is no change of input values, CMOS does not consume power (except leakage power)
- ◆ In reality, leakage current becomes an important issue
- lacktriangle When  $V_T$  goes down
  - Speed goes up
  - Leakage current goes up





Andy Yu-Guang Chen







- ◆The NOT gate
  - The NOT or INVERT function:  $f(x) = NOT(x) = \bar{x}$
  - > Only one transistor is on
  - ➤ Avoid both transistors are on or off → ill-defined output





Andy Yu-Guang Chen

31



## 2.3 Basic Logic Gates in CMOS



- ◆ The CMOS NOR Gate
  - Create 2-input NOR gate using the same principles
  - Use a complementary nFET/pFET pair for each input
  - $\triangleright$  Connect the output node to the power supply  $V_{DD}$  through pFETs
  - Connect the output node to ground through nFETs
  - Insure that the output is always a well-defined high or low voltage





Andy Yu-Guang Chen











## 2.3 Basic Logic Gates in CMOS



#### **◆**CMOS NAND3 circuit





Andy Yu-Guang Chen

37



# 2.4 Complex Logic Gates in CMOS



- ◆ CMOS is able to create a single circuit that provide several primitive operations (NOT, AND, OR) in an integrated manner
- **♦ Complex** or **combinational** logic gates
- lacktriangle Consider Boolean expression  $F(a,b,c) = \overline{a \cdot (b+c)}$



Figure 2.37 Logic function example



Andy Yu-Guang Chen





◆ For pFET design

$$F(a,b,c) = \overline{a \cdot (b+c)} = \overline{a} + \overline{(b+c)} = \left[\overline{a} + \left(\overline{b} \cdot \overline{c}\right)\right] \cdot 1$$
$$= \overline{a} \cdot 1 + \left(\overline{b} \cdot \overline{c}\right) \cdot 1$$

◆ For nFET design

$$F(a,b,c) = 0 \Rightarrow a = 1 \text{ AND } (b+c) = 1 \Rightarrow 0 \cdot [a \cdot (b+c)]$$





Andy Yu-Guang Chen

30



# 2.4 Complex Logic Gates in CMOS



◆Put nFET and pFET together



Figure 2.41 Finished complex CMOS logic gate circuit

Andy Yu-Guang Chen





- ◆Structured Logic Design
  - CMOS logic gates are intrinsic called inverting
  - Outputs always produces a NOT operation





Andy Yu-Guang Chen

41



## 2.4 Complex Logic Gates in CMOS



- ◆ CMOS switching characteristics provide a natural means for implementing inverting logic forms such as AOI and OAI
  - ightharpoonup AOI: and, or, inverter  $ightharpoonup X = \overline{(a \cdot b) + (c \cdot d)}$
  - ightharpoonup OAI: or, and, inverter  $ightharpoonup Y = \overline{(a+e) \land (b+f)}$



Figure 2.48 Complete CMOS AOI and OAI circuits

Andy Yu-Guang Chen





- igspace Consider the function  $X = \overline{a + b \cdot (c + d)}$
- ◆ The nFET circuit can be constructed by using the following arrangements
  - Group 1: nFETs with inputs c and d are in parallel
  - Group 2: an nFET with input b is in series with Group 1
  - Group 3: an nFET with input a is in parallel with the Group 1- Group 2 circuit
- ◆ Each group of pFETs can be associated with the nFET group that has the same inputs
  - Group 1: pFETs with inputs c and d are in series
  - Group 2: a pFET with input b is in parallel with Group 1 pFETs
  - Group 3: a pFET with input a is in series with the Group 1-Group 2 pFETs



Andy Yu-Guang Chen

43



## 2.4 Complex Logic Gates in CMOS



♦ Consider the function  $X = \overline{a + b \cdot (c + d)}$ 





Andy Yu-Guang Chen





- **◆**Bubble pushing
  - ➤ Both the nFETs and the pFETs are wired such that parallelconnected transistors give the OR operation, while seriesconnected FETs provide the AND operation





Andy Yu-Guang Chen

4



## 2.4 Complex Logic Gates in CMOS



**◆**XOR Gates

$$\triangleright a \oplus b = \bar{a} \cdot b + a \cdot \bar{b}$$

$$\triangleright \overline{a \oplus b} = a \cdot b + \overline{a} \cdot \overline{b}$$

$$a \oplus b = \overline{\overline{a \oplus b}} = \overline{a \cdot b + \overline{a} \cdot \overline{b}} \Rightarrow AOI \text{ structure}$$





Andy Yu-Guang Chen









## 2.5 Transmission Gate Circuits



◆ A CMOS transmission gate is created by connecting an nFET and pFET in parallel

$$\Rightarrow y = x \cdot s \text{ iff } s = 1$$

- ◆ The pair acts as a good electrical switch
- ◆ TG is bi-directional switch





Andy Yu-Guang Chen

4



#### 2.5 Transmission Gate Circuits



- lacktriangle Transmission gates are useful because they can transmit the entire voltage range  $[0, V_{DD}]$  from left to right (or vice versa)
- $lack ag{The main drawback of using TGs in modern VLSI is they require two FETs and an implied inverter that takes <math>s$  and produce  $\bar{s}$



Andy Yu-Guang Chen



## 2.5 Transmission Gate Circuits



#### ◆ 2:1 Multiplexors

$$F = P_0 \cdot \bar{s} + P_1 \cdot s$$



Figure 2.61 A TG-based 2-to-1 multiplexor

#### ◆ 4:1 Multiplexors

$$F = P_0 \cdot \overline{s_1} \cdot \overline{s_0} + P_1 \cdot \overline{s_1} \cdot s_0 + P_2 \cdot s_1 \cdot \overline{s_0} + P_3 \cdot s_1 \cdot s_0$$
Andy Yu-Guang Chen

51



## 2.5 Transmission Gate Circuits



#### **◆TG-based XOR and XNOR**



Figure 2.62 TG-based exclusive-OR and exclusive-NOR circuits

Andy Yu-Guang Chen















## 2.6 Clocking and Dataflow Control



- Clock control can be added to the circuit by inserting AND gates at the inputs to arrive at the modified logic diagram in Figure 2.71(a)
- ◆ This only allows changes in the inputs when Ø = 1
- Clocked SR Latch





Andy Yu-Guang Chen

59



#### **Evolution of FET Structure**



- **FinFET** 
  - Fin field-effect transistor
  - A multigate device, a MOSFET built on a substrate where the gate is placed on two, three, or four sides of the channel or wrapped around the channel, forming a double or even multi gate structure
  - The source/drain region forms fins on the silicon surface
  - > The FinFET devices have significantly faster switching times and higher current density than planar CMOS







