Университет ИТМО Факультет ПИиКТ

Прикладная математика Лабораторная работа №1 «Вычисление энтропии Шеннона»

Нестеров Дали Константинович Группа Р3302

Цель работы:

Получить практические навыки решения задач на количественное измерение информационного объема текстовой информации.

Задание:

- 1. Реализовать процедуру вычисления энтропии для текстового файла. Требования к текстовому файлу:
- документ на английском языке
- размер текстового файла 20-60кБ
- документ должен быть осмысленным

В процедуре необходимо подсчитывать частоты появления символов (прописные и заглавные буквы не отличаются, знаки препинания рассматриваются как один символ, пробел является самостоятельным символом), которые можно использовать как оценки вероятностей появления символов. Затем вычислить величину энтропии. Точность вычисления -- 4 знака после запятой. Обязательно предусмотреть возможность ввода имени файла, для которого будет вычисляться энтропия.

- 2. Проверить запрограммированную процедуру на нескольких файлах и заполнить таблицу 1.1. вычисленными значениями энтропии
- 3. Вычислить значение энтропии для тех же файлов, но с использованием частот вхождений пар символов и заполнить таблицу 1.2
- 4. Проанализировать полученные результаты.

Описание входных данных:

В качестве входных данных были выбраны отрывки из трех произведений на английском языке: «Nightfall», «Infinite jest» и «Evgeny Onegin»

Решение поставленной задачи:

Index.html(body):

Script.js():

```
document.getElementById('file-input').oninput = function () {
const file = document.getElementById('file-input').files[0];
if (file != null) { // don't do anything if no file has been chosen
     document.getElementById("result").innerHTML = "\n" +
                 Symbol\n" +
                 Entropy H(x<sub>i</sub>), bit\n" +
           ";
    document.getElementById("entropy-H").innerText = "";
    document.getElementById("entropy-H-star").innerText = ""; // reset results
    const fileReader = new FileReader();
    fileReader.onload = function (e) {
        let p_i = new Map(); // keys: characters, values: their probabilities
        let h_i = new Map(); // keys: characters, values: their entropy
        let H = 0; // entropy for the whole text
        let HStar = 0; // linked entropy
        let sum = 0; // characters count
        let prevChar = " "; // used for calculating linked entropy
        let p_pairs = new Map(); // keys: pairs of characters, values: their probabilities
        // p pair stores probabilities of encountering a char if a certain other char has appeared before
        const text = e.target.result;
        for (let i = 0; i < text.length; ++i) {</pre>
            let char = text[i].toUpperCase(); // ignore case of letters
             \textbf{if (char.match("[\t\r\n\f]")) continue; // we don't include any space characters but whitespace } \\
            if (!char.match("^[A-Z0-9]$")) char = "."; // all other symbols are treated as punctuation symbol
            if (p_i.get(char) === undefined) { // Map initializes with undefined values
                p_i.set(char, 0); // but we have to convert them to 0 to increment values
            p_i.set(char, p_i.get(char) + 1); // whenever we encounter a char we increment their "probability"
            if (sum !== 0) {
                const pair = prevChar + char;
                if (p_pairs.get(pair) === undefined) {
                   p_pairs.set(pair, 0);
                p pairs.set(pair, p pairs.get(pair) + 1); // increment probability for a pair of chars
            prevChar = char;
        for (const char of Array.from(p_i.keys()).sort()) {
            p_i.set(char, p_i.get(char) / sum); // actual probability = char count / text length
            h_i.set(char, Math.log2(1 / p_i.get(char))); // entropy of a character = (log(1/p(xi)))
            \texttt{H -= p_i.get(char) * Math.log2(p_i.get(char)); //entropy = -SUM(p(xi) * log(p(xi)))}
            const newRow = document.getElementById("result").insertRow(); // add a row to the table
            newRow.innerHTML = `${char}
                                ${p_i.get(char).toFixed(4)}
                               ${h_i.get(char).toFixed(4)}
        for (const [pair, p] of p_pairs) {
            p_pairs.set(pair, p / (sum - 1)); // actual probability = pair count / (text length - 1)
            HStar -= p_pairs.get(pair) * p_i.get(pair[0]) * Math.log2(p_pairs.get(pair));
            // linked entropy = -SUM( p(xi/xj) * p(xj) * log(p(xi/xj)) )
        document.getElementById("entropy-H").innerText = `Entropy H(X) = ${H.toFixed(4)} bit';
         document.getElementById("entropy-H-star").innerText = `Entropy H*(X) = ${HStar.toFixed(4)} bit`;
    }:
    fileReader.readAsText(file);
```

Результат работы программы:

Таблица 1.2. для файла nightfall_demo.txt

Symbol	Probability P(x _i), bit	Entropy H(x _i), bit
	0.1709	2.5484
	0.0501	4.3202
0	0.0000	14.4449
1	0.0000	15.4449
2	0.0001	12.8600
4	0.0000	14.4449
5	0.0002	12.4449
6	0.0000	14.4449
7	0.0002	12.6376
Α	0.0598	4.0645
В	0.0109	6.5201
С	0.0181	5.7849
D	0.0330	4.9204
Е	0.0965	3.3738
F	0.0168	5.8980
G	0.0142	6.1343
Н	0.0473	4.4005
1	0.0515	4.2781
J	0.0012	9.6900
K	0.0060	7.3788
L	0.0329	4.9263
M	0.0174	5.8450
N	0.0530	4.2379
0	0.0626	3.9984
Р	0.0126	6.3131
Q	0.0005	10.8600
R	0.0421	4.5699
S	0.0480	4.3808
Т	0.0802	3.6404
U	0.0255	5.2952
V	0.0073	7.1051
W	0.0199	5.6521
X	0.0013	9.5380
Υ	0.0191	5.7068
Z	0.0006	10.7445

Таблица 1.2.

Файл:	nightfall_demo.txt	infinite_jest_demo.txt	evgeny_onegin_demo.txt
Энтропия Н(Х), бит	4.1837	4.2148	3.9986
Энтропия Н*(X), бит	0.5123	0.5103	0.6284

Вывод: в ходе лабораторной работы была реализована программа для расчета энтропии и были получены практические навыки решения задач на количественное измерение информационного объема текстовой информации. Энтропия везде была примерно одинаковой. Энтропия с учетом пар символов получается значительно меньше, чем без и условие 0 <= H*(X) <= H(X) соблюдается.