Probability and Statistics for Economics Cheat Sheet

Author: Sai Zhang (email me or check my Github page)

Random experiments

The outcome in a random experiment is **unpredictable**:

- outcome is too complicates or poorly understood
- outcome is designed to be unpredictable
- coincidences, or independent chains of events

Two examples

Random card shuffle experiment: take top card from a deck and insert randomly, to complete the shuffle of *n* cards, we need

$$T = n + \frac{n}{2} + \dots + \frac{n}{n-1} + 1 = n \log n$$

shuffles.

Random number generator:

$$x_{n+1} = \frac{ax_n + b}{c} - \left[\frac{ax_n + b}{c} \right]$$

the remainder after dividing by c, hence $x_{n+1} \in [0,c-1]$, let $u_{n+1} = \frac{x_{n+1}}{c}$, x_0,a,b,c all be integers. For very large a and good choice of b,c, the sequence u_1,u_2,\cdots is like a sequence of numbers randomly picked from [0,1]

Probabilities

Probability is a number in [0,1] that measures the likelihood of an outcome or a set of outcomes.

Ways of assigning probabilities:

- **symmetry**: assume all outcomes are equally likely
- experimental method: relative frequency in repeated random experiment
- subjective method: assign probabilities using knowledge of random experiment
- market method

Elements of probability space

- **outcome space** Ω and outcomes $\omega \in \Omega$
- event E, $E \subset \Omega$
- **probability function/measure** $P: \mathcal{A} \to [0,1]$: a function from **a collection** \mathcal{A} of subsets of Ω to the interval [0,1].

Classes of events

Events E_1, E_2, \cdots are just sets. They also follow the algebras of sets.

Some set algebras

```
\begin{split} A \cup (B \cap C) &= (A \cup B) \cap (A \cup C) \\ A \cap (B \cup C) &= (A \cap B) \cup (A \cap C) \\ A \cup A^C &= U, A \setminus B = A \cap B^C \\ (\bigcup_{i=1}^{\infty} A_i)^C &= \bigcap_{i=1}^{\infty} A_i^C \\ (\bigcap_{i=1}^{\infty} A_i)^C &= \bigcup_{i=1}^{\infty} A_i^C \\ A \cup B &= U, A \cap B = \emptyset \Leftrightarrow B = A^C \\ (A^C)^C &= A \\ A \subseteq B \Leftrightarrow A \cap B = A \Leftrightarrow A \cup B = B \Leftrightarrow A \setminus B = \emptyset \Leftrightarrow B^C \subseteq A^C \end{split}
```

Two special relations:

- **disjoint**: $E_1 \cap E_2 = \emptyset$
- **partition**: $\bigcup_{i=1}^{\infty} E_i = \Omega$, $\{E_i\}$ are pairwise disjoint

σ -field and Borel σ -field

Definition of σ -field

 \mathcal{A} (a collection of subsets of Ω) is a σ -field if:

- 1 $\varnothing \in \mathcal{A}$
- 2 $E \in \mathcal{A} \Rightarrow E^C \in \mathcal{A}$
- 3 $E_1, E_2, \dots \in \mathcal{A} \Rightarrow \bigcup_{i=1}^{\infty} E_i \in \mathcal{A}$

It is easy to see that $\bigcap E_i^C \in A$, $\bigcup E_i^C \in A$, $\bigcap E_i \in A$ as well

Two important σ -field:

- Trivial σ -field: $\mathcal{A} = \{\emptyset, \Omega\}$
- Largest σ -field: **powerset** of Ω , $\mathcal{P}(\Omega)$