Olimpiada Básica de Matemáticas en Guanajuato

@OBMGuanajuato | 4 de septiembre del 2022

Divisibilidad

Emilio Toscano Oneto

1 Definiciones y Resultados

La divisibilidad es una de las propiedades más fundamentales de la Teoría de Números y es un área que tiene enfoque en el conjunto de los enteros. A lo largo de las notas al mencionar un número entero, nos referiremos a aquellos números de la colección $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ y cuando se mencionen a los números naturales, hacemos referencia a la colección de números $\mathbb{N} = \{1, 2, 3, ...\}$.

Definición 1.1. Si a y b son enteros, decimos que a divide a b (escrito también como a | b), si es posible encontrar un entero x tal que ax = b.

Escribiremos $a \nmid b$ para decir que a no divide a b. Podemos además notar que la definición también se vale para números enteros negativos, como por ejemplo, el 2 divide al -4, pues 2(-2) = -4. Será de gran importancia reconocer que las aclaraciones

a divide a b
a es divisor de b
a es factor de b
b es múltiplo de a y
b es divisible entre a,

son todas equivalentes entre sí.

Nota 1.2. Diremos que un entero a es un número par si $2 \mid a$. Con está definición, vemos que el 0 es un número par, pues 2(0) = 0 y más aún, podremos decir que el 0 divide al 0, pues existen enteros x de tal manera que 0x = 0. En base a lo anterior, diremos que a es un entero impar si $2 \nmid a$.

Proposición 1.3. Algunas propiedades básicas de la división son:

- (i) Para todo entero a, se cumple que a | a.
- (ii) $Si \ a \mid b \ y \ b \mid c$, entonces $a \mid c$.
- (iii) Es posible que $a \mid b$, pero $b \nmid a$.
- (iv) Para a y b enteros, a | b y b | a si y solo <math>si a = b o a = -b.
- (v) Si $a \mid b$ pero $a \nmid c$, entonces $a \nmid b + c$.
- (vi) $Si\ a \mid b$, entonces $-a \mid b$.

Demostración de Proposición 1.3 : (i) En efecto, tomando a x=1, siempre se cumple que ax=a y por lo tanto $a \mid a$.

- (ii) Si $a \mid b \ y \ b \mid c$, entonces existen enteros $x \ y \ y$ tales que $ax = b \ y \ by = c$, entonces axy = by = c, por lo tanto $a \mid c$.
 - (iii) Como ejemplo podemos tomar a a = 1 y b = 2.

- (iv) Si $a \mid b \ y \ b \mid a$, existen enteros $x \ y \ y$ tales que $ax = b \ y \ by = a$, por lo tanto axy = by = a, de donde xy = 1 por ser entero y así x = y = 1 o bien x = y = -1 y de ambos casos se sigue que a = b ó a = -b. Si a = b ó a = -b, se tiene que a(1) = b, por lo que $a \mid b$ y a su vez b(-1) = a, de donde $b \mid a$.
- (v) Si $a \mid b$ pero $a \nmid c$, entonces existe un entero d tal que ad = b y para cualquier entero n se tiene que $an \neq c$. En particular tomando al número n = m d con m algún entero arbitrario, se sigue que $a(m-d) \neq c$, es decir, $am \neq ad + c = b + c$ y así $a \nmid b + c$.
- (vi) Si $a \mid b$, entonces existe k entero tal que ak = b y así tomando a n = -k, se tiene que n es entero y además ak = a(-n) = (-a)n = b, por lo tanto $-a \mid b$.
- **Ejemplo 1.4.** Para a y b, enteros positivos, si a | b, entonces $a \le b$. Para ello, puesto que son positivos, se tiene que a, b > 0 y además existe un entero k tal que ak = b, entonces por lo anterior, k > 0 y por ser entero, $k \ge 1$, entonces $a \le ak = b$.
- Ejemplo 1.5. Para c un entero distinto de 0, entonces a | b si y sólo si ac | bc.

Si a | b, entonces hay algún entero n tal que an = b. Está ecuación es equivalente a c(an) = c(b), pues $c \neq 0$, y así (ac)n = bc, lo cual por definición implica que ac | bc y se obtiene la equivalencia.

Proposición 1.6. Para $a, b \ y \ c \ enteros$, tenemos que $a \mid b \ y \ b \mid c \ si \ y \ sólo \ si \ a \mid bx + cy \ para \ cualesquiera \ enteros \ x \ y \ y$.

Demostración de Proposición 1.6: Supongamos que $a \mid b \ y \ a \mid c$. Entonces existen enteros $d \ y \ e$ tales que $ad = b \ y \ ae = c$, por lo que si $x \ y \ y$ son enteros cualesquiera, se sigue que a(dx + ey) = adx + aey = bx + cy, por lo tanto $a \mid bx + cy$.

Supongamos ahora que $a \mid bx + cy$ para cualquier par de enteros x y y. Como cualquier pareja x y y cumplen lo anterior, podemos tomar x = 0 y y = 1 y observar que $a \mid c$, pues b(0) + c(1) = c y cuando tomamos x = 1 y y = 1 se obtiene que $a \mid b$.

Corolario 1.7. Si b, c y d son enteros que satisfacen la ecuación b + c = d y a es otro entero que divide a dos de ellos, entonces divide al tercero.

Definición 1.8. Decimos que un entero a es combinación lineal de los enteros b y c, si existen dos enteros x y y que satisfacen la ecuación bx + cy = a.

Ejemplo 1.9. Podemos escribir a 19 como combinación lineal de 3 y 5. Para ello basta con considerar a x = 3 y y = 2 para observar que 3x + 5y = 19.

Proposición 1.10. Sean a, b enteros cualesquiera y d un divisor del número natural n, entonces $a^d - b^d \mid a^n - b^n$

Demostración de Proposición 1.10 : Si d es divisor de n, entonces existe un entero k tal que dk = n y así

$$(a^{d} - b^{d})(a^{d(k-1)} + a^{d(k-2)}b^{d} + \dots + a^{d}b^{d(k-2)} + b^{d(k-1)}) = (a^{n} - b^{n}).$$

Los detalles de esta factorización queda como ejercicio moral para el lector.

Ejemplo 1.11. Considera al número $987^6 - 123^6$. Puesto que $6 = 2 \cdot 3$, entonces los números $987^2 - 123^2$ y $987^3 - 123^3$ lo dividen.

Demuestra que $13 \mid 89^{50} - 76^{50}$. Por la Proposición 1.10, se tiene que el entero 89 - 76 = 13 divide a $89^{50} - 76^{50}$, pues d = 1 es divisor de n = 50.

Definición 1.12. Decimos que p es número primo cuando los únicos números enteros que lo dividen son ± 1 $y \pm p$.

A pesar de que está definición se da de manera general para enteros positivos y negativos, aquí cada vez que se haga referencia a un número primo se supondrá que son positivos a no ser que se mencione lo contrario.

Ejemplo 1.13. Entre los números del 1 al 10, los únicos primos que hay son 2,3,5 y 7, pues en casos como 6,8,10, se tiene que 2 los divide y por tanto no cumplen la definición de número primo. El 1 no se considera primo, pues para serlo necesita tener exactamente 2 divisores (salvo el signo). Por el mismo motivo, el 0 tampoco es primo.

Ejemplo 1.14. *Demuestra que los enteros* 1573, 157573, 15757573, ... *no son primos*.

Consideremos el caso para 15757573, el caso general es analogo (puedes intentar escribirlo como ejercicio). Notemos que

$$15757573 = 15757573 + (157573 - 157573) + (1573 - 1573)$$
$$= (15757573 - 157573) + (157573 - 1573) + 1573$$
$$= 15,600,000 + 156,000 + 1573.$$

En particular $156 = 13 \cdot 12$, mientras que $1573 = 13 \cdot 11^2$, por lo tanto, 13 divide a cada sumando y luego $13 \mid 15757573$.

Definición 1.15. Decimos que un entero a es compuesto si a es producto de al menos 2 primos (no necesariamente distintos).

Ejemplo 1.16. Los números 12, 25, 77 y 42920 son todos números compuestos, pues los podemos escribir como $12 = 2 \cdot 2 \cdot 3$, $25 = 5 \cdot 5$, $77 = 7 \cdot 11$ y $42920 = 4292 \cdot 2 \cdot 5$. Es decir, se pueden escribir como producto de 2 primos ó más.

Teorema 1.17. (Teorema Fundamental de la Aritmética) Todo entero n distinto de 0 $y \pm 1$ es producto de números primos.

Demostración de Teorema 1.17: Sea n un entero positivo, si n es primo, terminamos (pues se puede como producto de un solo primo). Si n no es primo, entonces n=ab para enteros positivos a,b menores a n, si a y b son primos, acabamos, si alguno de ellos no lo es, podemos escribirlo como producto de enteros más chicos, y así sucesivamente. Este procedimiento debe de acabar en algún punto, pues los números se vuelven más chicos y son positivos, por lo que en dicho punto se tendrá a n como producto de primos. Para el caso en el que n es un entero negativo, podemos considerar a -n (pues es positivo) y repetir el mismo procedimiento.

Este Teorema en su versión completa garantiza que dicho producto de primos es único salvo el orden de los factores y el signo, lo cual será de alta utilidad en futuros resultados. Más aún, cuando se descompone a un entero a como producto de primos, a esa descomposición la llamaremos descomposición canónica del número y usualmente al escribirla se ordenan los primos de menor a mayor.

Ejemplo 1.18. Si el producto de 3 números distintos, mayores a 1 da como resultado 100. ¿Cuáles son esos enteros?

Por el Teorema 1.17, se puede observar que $100 = 2^2 \cdot 5^2$, de donde las posibles combinaciones con 3 números con producto igual a 100 (sin incluir al 1 como factor), son

$$4 \cdot 5 \cdot 5$$
$$2 \cdot 2 \cdot 25$$
$$2 \cdot 5 \cdot 10$$

De donde la única combinación con factores distintos es la última y así los enteros que buscamos son 2,5 y 10.

Ejemplo 1.19. La descomposición canónica de los números 30,24 y 108 esta dada por

$$30 = 2 \cdot 3 \cdot 5$$
$$24 = 2^3 \cdot 3$$
$$108 = 2^2 \cdot 3^3.$$

Ejemplo 1.20. Encuentra todos los primos p tales que $p \mid 3^4 + 2^4 + 6^2$.

Notemos que

$$3^{4} + 2^{4} + 6^{2} = (3^{4} + 2(6^{2}) + 2^{4}) - 6^{2} = (3^{2} + 2^{2})^{2} - 6^{2}$$
$$= (3^{2} + 2^{2} - 6)(3^{2} + 2^{2} + 6) = 7 \cdot 19$$

Por lo tanto, si p es un primo que divide al número, entonces p=7 ó p=19.

Proposición 1.21. Si p es un primo y a, b son enteros tales que $p \mid ab$, entonces $p \mid a$ ó $p \mid b$.

Demostración de Proposición 1.21 : Supongamos que p no divide a a ni a b. Cuando esto sucede, entonces p no es parte de la descomposición canónica de a y b, por lo tanto, p no es parte de la descomposición canónica de ab, lo cual contradice que $p \mid ab$ y así p divide a alguno de los dos números.

Notemos la importancia de que p sea primo de la proposición anterior, pues si fuese compuesto, existen casos en los que el resultado anterior no se cumple.

Ejemplo 1.22. Considerando al entero 36, es claro que 6 lo divide, sin embargo, $18 = 4 \cdot 9$, pero 6 no divide ni al 4 ni al 9.

Para 12, es claro que 2 lo divide y además $12 = 2 \cdot 6 = 3 \cdot 4 = 1 \cdot 12$, vemos que en todos los casos 2 divide a alguno de los factores.

Ejemplo 1.23. Sean p y q números primos distintos mayores a 2, demuestra que si $p \mid q^2 + q$, entonces p < q.

Puesto que $q^2 + q = (q+1)q$, entonces si $p \mid (q+1)q$, se sigue que $p \mid q$ ó $p \mid q+1$. El primer caso es imposible por definición de número primo y necesariamente $p \mid q+1$. De lo anterior, se tiene que $p \leq q+1$, si p = q+1, entonces como q>2, se sigue que q+1 debe de ser par lo cual contradice que p es un primo mayor que $p \in q+1$. El entero más grande que es menor a $p \in q+1$ es precisamente $p \in q+1$ y así $p \in q$ como se quería demostrar.

Teorema 1.24. Existen infinitos números primos.

Demostración de Teorema 1.24 : Supongamos que no es así y que existen exactamente k primos distintos a los cuales denotaremos por $p_1, p_2, ..., p_k$. Al considerar al entero $p_1 \cdot p_2 \cdot ... \cdot p_k + 1$, por el inciso (v) de la Proposición 1.3, este número no es múltiplo de ninguno de los primos $p_1, ..., p_k$ y además tampoco es primo (de lo contrario contradice que solo hay k primos), por lo que existe un entero a menor a $p_1 \cdot ... \cdot p_k + 1$ que lo divide y más aún, a no es ninguno de los primos $p_1, ..., p_k$, por lo que la descomposición canónica de a no incluye a ningún primo, lo cual implica que a = 1 y así los únicos divisores de $p_1 \cdot ... \cdot p_k + 1$ menores a él es el 1, lo cual implica que es primo y se llega a una contradicción. Por lo tanto, existen infinitos primos.

Proposición 1.25. Sea a un entero y $a = p_1^{q_1} \cdot p_2^{q_2} \cdot \ldots \cdot p_k^{q_k}$ su descomposición canónica, entonces si $b \mid a$, el entero b es de la forma $b = p_1^{r_1} \cdot \ldots \cdot p_k^{r_k}$ con $0 \le r_j \le q_j$ para j = 1, 2, ..., k.

La demostración queda como ejercicio moral para el lector. Hint: La validez del resultado se da gracias al inciso (ii) de la Proposición 1.3.

Ejemplo 1.26. Sea a = 540, y b = 18, se verifica que

$$a = 540 = 2^2 \cdot 3^3 \cdot 5$$
, y además $b \mid a \text{ donde } b = 2 \cdot 3^3 \cdot 5^0$

Para ello, recordar que para x un número distinto de 0, se cumple que $x^0 = 1$.

2 Criterios de Divisibilidad

En este siguiente apartado se mostrarán ciertas condiciones que un número entero necesita para garantizar que es múltiplo de algún otro entero a los cuales llamaremos criterios de divisibilidad y se presentará la demostración de un solo criterio, ya que la demostración de las demás son muy similares.

- Lema 2.1. Un entero a es divisible entre 2 si y sólo si, la última cifra de a es múltiplo de 2.
- Lema 2.2. El entero a es múltiplo de 3 si y sólo si la suma de las cifras de a es múltiplo de 3.
- Lema 2.3. El entero a es divisible entre 4 si y sólo si las últimas dos cifras de a es un múltiplo de 4.
- **Lema 2.4.** Un entero a es múltiplo de 5 si y sólo si a termina en 0 ó 5.
- Lema 2.5. Un entero a es múltiplo de 6 si y sólo si a es múltiplo de 2 y de 3.
- Lema 2.6. El entero a es divisible entre 8 si y sólo si las últimas tres cifras de a son múltiplo de 8.
- Lema 2.7. El entero a es múltiplo de 9 si y sólo si la suma de las cifras de a es múltiplo de 9.
- Lema 2.8. Un entero a es múltiplo de 10 si y sólo si a termina en 0.
- **Lema 2.9.** Un entero a es múltiplo de 11 si y sólo si la diferencia de la suma de las cifras en posición impar de a menos la suma de las cifras en posición par de a es divisible por 11.

Ejemplo 2.10. Sea el entero 1386 usando solo los criterios de divisibilidad se pueden hacer las siguientes observaciones:

- 1. 1386 es múltiplo de 2, pues el número termina en 6.
- 2. 1386 es múltiplo de 9, pues 1+3+8+6=18 y 18 es múltiplo de 9 (y también de 3, por lo que 3 también lo divide).
- 3. De las dos observaciones anteriores, 1386 es múltiplo de 6.
- 4. 1386 no es múltiplo de 4, pues 4(21) < 86 < 4(22), es decir, 4 no divide a 86 y por tanto tampoco a 1386.
- 5. 1386 no es divisible entre 5, pues el número en cuestión no termina en 0 ni en 5.
- 6. 1386 es múltiplo de 11, pues (1+8) (3+6) = 9 9 = 0 el cual es múltiplo de 11.

Demostración de Lema 2.7 : Sea *a* algún entero positivo, podemos escribir a *a* en su representación decimal y así

$$a = 10^n a_n + 10^{n-1} a_{n-1} + \dots + 10a_1 + a_0.$$

Donde n es un entero no negativo y los números $a_0, a_1, ..., a_{n-1}$ son enteros entre el 0 y el 9, mientras que a_n está entre 1 y 9. Puesto que 10 = 1 + 9, se observa que

$$a = (9+1)10^{n-1}a_n + (9+1)10^{n-2}a_{n-1} + \dots + (9+1)a_1 + a_0$$

$$= (9 \cdot 10^{n-1}a_n + 10^{n-1}a_n) + \dots + (9a_1 + a_1) + a_0$$

$$= 9(10^{n-1}a_n + \dots + a_1) + (10^{n-1}a_n + \dots + 10a_2) + a_1 + a_0$$

$$= \dots = 9(10^{n-1}a_n + \dots + a_1 + 10^{n-2}a_n + \dots + a_n) + (a_n + a_{n-1} + \dots + a_1 + a_0).$$

Es decir, al repetir el truco de la primera igualdad n veces, entonces se tiene un múltiplo de 9 junto la suma de las cifras de 9 y así a es múltiplo de 9 solo cuando $a_n + ... + a_0$ es divisible entre 9. En el caso de a un entero negativo, basta con considerar a -a y luego cambiar el signo.

El Lema 2.5 se puede pensar incluso como resultado inmediato de los criterios del 2 y del 3. De hecho, a partir de estos criterios se pueden deducir criterios para números más grandes y a continuación se presentán a algunos de ellos.

Corolario 2.11. Un entero n es múltiplo de 12 si y sólo si n es múltiplo de 3 y 4.

Corolario 2.12. Un entero n es múltiplo de 10^m para m entero positivo, si y sólo si las últimas m cifras de n son todas 0.

Corolario 2.13. El entero n es múltiplo de 36 si y sólo si n es múltiplo de 4 y de 9.

Nota 2.14. Es importante tener cuidado al combinar criterios para crear otro, pues no siempre es verdadero. Por ejemplo, uno podría deducir que un número n es múltiplo de 8 si y sólo si n es múltiplo de 2 y de 4, lo cual no es cierto, pues 36 es múltiplo de 2 y de 4, pero 8 no lo divide. ¿Puedes deducir que condiciones se necesitan para crear otro criterio?

3 Ejercicios

La siguiente lista de ejercicios propuestos no siguen ningún orden de dificultad particular.

Ejercicio 3.1. Demuestra los siguientes enunciados:

- (i) La suma de dos números pares es también un número par.
- (ii) La suma de un número impar con un par, es un número impar.
- (iii) La suma de dos números impares es un número par.
- (iv) El producto de un número par con cualquier otro entero es otro número par.

Ejercicio 3.2. Demuestra que no se puede escribir a ningún número impar como combinación lineal de 6 y 8.

Ejercicio 3.3. Determina si 7 divide a $371^4 - 41^4$. Justifica tu respuesta.

Ejercicio 3.4. Sea n un entero. Demuestra que $24 \mid n(n+1)(n+3)(n+4)$.

Ejercicio 3.5. Encuentra todos los primos p > q tales que p + q y p - q son números primos también.

Ejercicio 3.6. ¿Será posible escribir al 100 como combinación lineal de 12 y 18? Justifica tu respuesta.

Ejercicio 3.7. Sea N un dígito, considera al número

$$M = \underbrace{2022N2022N...2022N}_{5\cdot 2022}.$$

Encuentra todos los valores de N tales que M es múltiplo de 7 y demuestra que siempre es múltiplo de 33.

Ejercicio 3.8. ¿Cuál es el factor primo más grande de $3^{12} - 1$?

Ejercicio 3.9. Usa la Proposición 1.10 para demostrar que si n es un natural impar, entonces $a+b \mid a^n+b^n$.

Ejercicio 3.10. Sea a un entero que satisface la ecuación $5^{2022} + a = 4^{1011}$, demuestra que $3 \mid a$.

Ejercicio 3.11. Encuentra una lista de 5 números primos distintos, tales que la diferencia entre cualesquiera dos términos consecutivos de la lista sea 6 y demuestra que está lista es única.

Ejercicio 3.12. Demuestra que para x y y enteros positivos, entonces $19^x - 5^y$ es múltiplo de 7 si y sólo si x - y + 1 es múltiplo de 7 ó cuando x = y.

Ejercicio 3.13. Encuentra todos los primos p tal que exista a entero que cumpla que $p \mid a^2 + 1$, $p \mid a^3 + 1$ $y \mid p \mid a^4 + 1$.

Ejercicio 3.14. Encuentra todos los primos p, q, r tales que p > q > r y que cumplen que p - q, q - r y p - r son primos.

Ejercicio 3.15. Demuestra el criterio de divisibilidad del 11.

Ejercicio 3.16. Si se forma al entero N juntando a los números del 19 al 93 de la siguiente forma

$$N = 19202123...919293.$$

Encuentra la máxima potencia de 3 que divide a N.

Ejercicio 3.17. ¿Entre qué números del 1 al 12 es divisible $\frac{10^{601}-10}{9}$?

Ejercicio 3.18. Demuestra que si $3 \nmid n$, entonces $3 \mid n^2 - 1$ para n entero.

Ejercicio 3.19. Considera al entero positivo

$$\underbrace{123123123...123123^2}_{300} - 41^2.$$

Demuestra que es múltiplo de 328.

Ejercicio 3.20. Sea p algún número primo, y d el producto de todos los primos menores o iguales a p. Determina si d+1 es primo y justifica tu respuesta.

Ejercicio 3.21. Para cualesquiera enteros n y m > 1, demuestra que existe k entre 0 y n - 1, tal que n - k es múltiplo de m.

Ejercicio 3.22. Encuentra todos los primos positivos p oara los cuales el número p^2+77 tiene exactamente p^2+77 tiene e

Ejercicio 3.23. Demuestra que un entero n es múltiplo de 2^m con m entero positivo, si y sólo si las últimas m cifras de n es múltiplo de 2^m

Ejercicio 3.24. Encuentra un criterio de divisibilidad para 1001 que sea práctico.

Ejercicio 3.25. Sean a, b, c, d y n enteros positivos y p un primo tales que $p \mid a^c - b^d$, entonces $p \mid a^{cn} - b^{dn}$.

Ejercicio 3.26. Probar que para cualquier entero positivo n, se tiene que

$$(n^3-n)(5^{8n+4}+3^{4n+2})$$

es múltiplo de 3804. (Hint: utiliza el problema anterior)

Ejercicio 3.27. ¿Existen enteros positivos n para los cuales el número n! termine en exactamente 5 ceros? (Recordar que $n! = 1 \times 2 \times 3 \times ... \times (n-1) \times n.$)

Ejercicio 3.28. En una fila para la entrada al teatro, hay 10240 personas. El vendedor decide atender uno no, uno sí, uno no, etc. A aquellos que no atiende se regresan al final de la fila (uno por uno, en orden). ¿En qué lugar estaba inicialmente formado el último cliente que atienden?

Ejercicio 3.29. Sean p y q primos tales que p < q. Demuestra que $pq \nmid p^2 + pq + 6q - 1$.

Ejercicio 3.30. ¿Para cuántos enteros n del 1 al 10 000 se tiene que $2^n - n^2$ es múltiplo de 5?