On répartira les copies comme suit :

- Exercices 1 et 2
- Exercice 3
- Exercice 4

Exercice 1

La fonction f est définie sur]-1; $+\infty[$ par :

$$f(x) = \frac{(x-1)^2}{x+1}$$

On note \mathcal{C} sa courbe représentative dans un repère.

- 1. Montrer que $f'(x) = \frac{(x+3)(x-1)}{(x+1)^2}$.
- **2.** Dresser le tableau de variations de f.
- 3. Donner le meilleur encadrement de f(x) lorsque x décrit l'intervalle [0; 4].
- **4.** On considère la droite (d) d'équation $y = \frac{3x-5}{4}$.
 - **a.** Montrer que la courbe \mathcal{C} possède une tangente parallèle à (d).
 - **b.** La droite (d) est-elle tangente à C? Justifier.

Exercice 2

Sur la figure, les points A, B, C, A', B', C' ont des coordonnées entières. Les orthogonalités sont marquées.

- 1. Ecrire une équation de d_1 . On admet que d_2 a pour équation x + y = 5.
- 2. Déterminer les coordonnées de leur point d'intersection I.
- 3. Montrer que I appartient à la droite passant par B' et perpendiculaire à (AC).

Exercice 3

Le club de basket de la ville de Lorgues a organisé un jeu d'argent durant la fête des associations.

Une urne contenant 2 boules blanches et 8 boules noires est placée sur le stand du club.

Il faut payer 10 euros pour participer à ce jeu. Une partie consiste en un tirage de quatre boules avec remise. Le joueur gagne 10 euros par boule blanche tirée.

Soit N la variable aléatoire égale le nombre de boules blanches tirées lors d'une partie.

On appelle G la variable aléatoire égale au gain algébrique d'un joueur lors d'une partie, égale au gain brut, moins la mise de 10 euros.

Partie A

1. Justifier que la variable aléatoire N suit une loi binomiale dont vous donnerez les paramètres.

- 2. Exprimer G en fonction de N.
- 3. Quelle est la probabilité qu'un joueur gagne 10 euros lors d'une partie?
- 4. Quelle est l'espérance de gain d'un joueur lors d'une partie?

Partie B

Les organisateurs comptent attirer 500 participants à ce jeu durant toute la journée. Quel bénéfice peuvent-ils espérer faire à l'issue de la journée?

Exercice 4

On considère la suite (u_n) définie par : $\begin{cases} u_0 = 5 \\ u_{n+1} = \frac{u_n}{5} + 2 \end{cases}$

- **1.** Calculer u_1, u_2, u_3 .
- 2. Soit l'algorithme ci-contre:

Reproduire et compléter le tableau ci-dessous

1 1		
N	U	U - 2,5

En déduire les nombres affichés par l'algorithme.

Entrée	${\tt Variables}\; N, U$	
	N prend la valeur 0	
	U prend la valeur 5	
Traitement	Tant que $U - 2.5 > 10^{-2}$	
	N prend la valeur $N+1$	
	N prend la valeur $N+1$ U prend la valeur $U/5+2$	
Sortie	Afficher N	
	Afficher ${\cal U}$	

- 3. On considère la suite (v_n) définie pour tout entier naturel n par $v_n = u_n \frac{5}{2}$
 - **a.** Calculer v_0 .
 - **b.** Démontrer que (v_n) est géométrique de raison $\frac{1}{5}$.
 - **c.** Exprimer v_n puis u_n en fonction de n.
- **4.** Étudier le sens de variation de la suite (u_n) .
- **5.** En ce qui concerne la suite (u_n) , que produit l'algorithme du **2.**?