maintaining the data needed, and c including suggestions for reducing	ompleting and reviewing the collecti this burden, to Washington Headqualld be aware that notwithstanding an	o average 1 hour per response, include ion of information. Send comments that the services, Directorate for Information by other provision of law, no person services.	egarding this burden estimate of mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis I	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 2013	2. REPORT TYPE			3. DATES COVERED 00-00-2013 to 00-00-2013		
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER			
	nductors for Low-Po	ower	5b. GRANT NUMBER			
Electronics				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
			5e. TASK NUMBER			
			5f. WORK UNIT NUMBER			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Research Laboratory, Electronic Science and Technology Division, Washington, DC, 20375				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited						
13. SUPPLEMENTARY NOTES						
14. ABSTRACT						
field-effect transist strain enhances ho	ors (FETs) operatin le mobilities making	de-based compound g at high speeds wit g these materials stro focuses on incorpora	h ultra-low powe ong candidates fo	er consumption or p-channel l	on. Compressive FETs and	
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	2		

Report Documentation Page

Form Approved OMB No. 0704-0188

Antimonide-Based Compound Semiconductors for Low-Power Electronics

Brian R. Bennett and J. Brad Boos
Electronic Science and Technology Division
Naval Research Laboratory
Washington, DC, USA
brian.bennett@nrl.navy.mil

Abstract—Quantum wells formed from antimonide-based compound semiconductors are exploited in n-channel field-effect transistors (FETs) operating at high speeds with ultra-low power consumption. Compressive strain enhances hole mobilities, making these materials strong candidates for p-channel FETs and complementary circuits. Recent work focuses on incorporation of gate oxides and integration of n- and p-channel FETs.

Keywords—FET, antimonide, CMOS, low-power

High-speed. low power high-electron transistors (HEMTs) can be fabricated from InAs quantum wells clad by Al(Ga)Sb barriers [1]. Advantages of this material system include the high electron mobility (30,000 cm²/V-s at 300K) and velocity (4 x 10⁷ cm/s) of InAs, and a large conduction band offset between InAs and Al(Ga)Sb. The large offset results in good carrier confinement and enhanced radiation tolerance. InAs HEMTs with 100-nm gate-length have exhibited unity-current-gain cutoff frequency, f_T, and unity-power-gain cutoff frequency, f_{max}, values of 200-300 GHz. Compared to state-of-the-art InP-based HEMTs with the same gate length, the InAs HEMTs provide equivalent highspeed performance at 5-10 times lower power dissipation. These transistors exhibit low microwave noise, with noise figures of 0.6-0.8 dB at 10 GHz [1]. Circuits based upon InAs HEMTs have been reported in the X-band, Ka-band, and Wband. For example, a three-stage W-band low-noise amplifier (LNA) was demonstrated with 11 dB gain at a total chip dissipation of only 1.8 mW at 94 GHz [2]. This is a factor of 3 lower power than comparable InP-based LNAs at the same frequency. In addition, antimonide-based semiconductors have been used to fabricate low-power heterojunction bipolar transistors [3], heterostructure barrier varactors for use as frequency multipliers [4], and p-n diodes for THz mixer applications [5].

Recently, there has been interest in the potential of III-V FETs for advanced logic applications which could enhance digital circuit functionality and extend Moore's law [6,7]. For these applications, a key to low power operation is the ability to make complementary circuits. In III-V materials, one challenge centers on maximizing the hole mobility in p-channel FETs. Strain and confinement can split the heavy- and light-hole valence bands, resulting in a predicted lower effective mass and higher mobility. We have demonstrated

This work was partially supported by the Office of Naval Research.

this with compressively-strained $In_xGa_{1-x}Sb$ quantum wells clad by $Al_{0.8}Ga_{0.2}Sb$, and GaSb clad by $AlAs_ySb_{1-y}$ (see Fig. 1). In both systems, hole mobilities as high as 1500 cm²/V s were achieved at room temperature (a world record for any III-V compound), and p-channel FETs were demonstrated [8-10]. GaSb QWs on InP substrates reached record-low sheet resistivities of 1500 Ω / \Box [11]. An Intel/QinetiQ collaboration investigated p-FETs with InSb QWs and achieved an f_T of 140 GHz for a 40 nm gate length [12]. Modeling suggests that InGaSb p-FETs will have higher I_{ON}/I_{OFF} ratios than InSb p-FETs because of the smaller valence band offset for InSb QWs [13]. Application of uniaxial strain has also enhanced the performance of InGaSb-channel p-FETs [14].

An Sb-based CMOS requires deposition of high- κ dielectric layers on semiconductors with low interface state densities. This has been demonstrated for n- and p-GaSb using HCl etching followed by atomic layer deposition (ALD) of Al₂O₃ [15,16]. Recently, *in situ* hydrogen plasma cleaning was applied to GaSb prior to Al₂O₃ deposition by ALD [17]. As shown in Fig. 2, the 100W plasma resulted in excellent Fermi level modulation, eliminating the need for chemical etching.

One strong candidate for the n-channel material in CMOS is InAsSb. MOSFETs with 150 nm gate length have an effective electron mobility of $6000 \text{ cm}^2/\text{V}$ s, an f_T of 120 GHz, and a source-side injection velocity of $2.7 \times 10^7 \text{ cm/s}$ [18]. These devices could be combined with p-InGaSb channel MOSFETs [19], with the advantage of similar lattice constants.

An alternative is to integrate Sb-based p-FETs and InPbased n-FETs, taking advantage of the maturity of InP n-FETs for analog applications. The 4% lattice mismatch between GaSb and InP could be tolerated if a buffer layer of AlGaAsSb $(a_0 \sim 6.0 \text{ Å})$ could be used with (In)GaSb p-channels in 2% compressive strain and InGaAs n-channels in 2% tensile strain (Fig. 1). The p-FETs were previously demonstrated [10,16]. As a step toward integration of the (In)GaSb-channel p-FETs with the InGaAs-channel n-FETs using the same buffer layer, we have demonstrated $In_xGa_{1-x}As/In_{0.52}Al_{0.48}As$ QWs (x = 0.64, 0.80 and 1.0) on AlGaAsSb buffer layers (Fig. 3) with mobilities as high as 9000-11,000 cm²/V s for tensile strains up to 2%. The FET I-V characteristics for In_{0.64}Ga_{0.36}As are shown in Fig. 4. The best devices have a DC transconductance of 300 mS/mm, an f_T of 160 GHz, and an f_{max} of 150 GHz for a 90 nm gate length.

Figure 1: Energy gap vs. lattice constant indicating the typical parameters for n- and p-channel FETs.

ACKNOWLEDGMENT

We thank our colleagues at NRL, Northrop Grumman Corporation, Penn State University, Stanford University, and MIT.

REFERENCES

- [1] Bennett BR, Magno R, Boos JB, Kruppa W, Ancona MG. Antimonide-based compound semiconductors for electronic devices: A review. Solid-State Electronics 2005:49: 1875-95
- [2] Deal WR, Tsai R, Lange MD, Boos JB, Bennett BR, Gutierrez A. A Wband InAs/AlSb low-noise/low-power amplifier. IEEE Microwave and Wireless Components Letters. 2005;15: 208-10.
- [3] Champlain JG, Magno R, Bass R, Park D, Boos JB. $In_{0.69}Al_{0.31}As_{0.41}Sb_{0.59}/In_{0.27}Ga_{0.73}Sb$ double-heterojunction bipolar transistors with $InAs_{0.66}Sb_{0.34}$ contact layers. Electron Lett. 2010;46: 1333-5.
- [4] Champlain JG, Magno R, Ancona M, Newman HS, Boos JB. InAs-based heterostructure barrier varactor diodes with $In_{0.3}Al_{0.7}As_{0.4}Sb_{0.6}$ as the barrier material. Solid-State Electron. 2008;52: 1829-32.
- [5] Magno R, Champlain JG, Newman HS, Park D. Antimonide-based pN terahertz mixer diodes. J Vac Sci Technol B. 2011;29: 03C109.
- [6] Chau R, Datta S, Doczy M, Doyle B, Jin J, Kavalieros J, et al. Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE T Nanotechnol. 2005;4: 153-8.
- [7] del Alamo JA. Nanometre-scale electronics with III-V compound semiconductors. Nature. 2011;479: 317-23.

In _x Ga _{1-x} As 2 nm				
In _{0.52} AI _{0.48} As 4 nm				
In _{0.52} AI _{0.48} As 5 nm Te δ Doping↑				
In _{0.64} Ga _{0.36} As 15 nm				
In _{0.52} AI _{0.48} As 6 nm				
Al _{0.8} Ga _{0.2} Sb/Al _{0.8} Ga _{0.2} As digital superlattice (~1.5 μm)				
In _{0.52} AI _{0.48} As 0.16 μm				
InP substrate, S.I. (001)				

Figure 3: Cross-section of InGaAs/InAlAs HEMT in tension. The sample was not rotated during the AlGaAsSb buffer layer, resulting in the lattice constant varying from 5.97 to 6.01 Å across the substrate.

Figure 2: Normalized capacitance vs. gate voltage for GaSb MOS capacitors with different H plasma cleaning powers prior to ALD of Al_2O_3 [17].

- [8] Bennett BR, Ancona MG, Boos JB, Shanabrook BV. Mobility enhancement in strained p-InGaSb quantum wells. Appl Phys Lett. 2007;91: 042104.
- [9] Boos JB, Bennett BR, Papanicolaou NA, Ancona MG, Champlain JG, Bass R, et al. High mobility p-channel HFETs using strained Sb-based materials. Electron Lett. 2007;43:834-5.
- [10] Bennett BR, Ancona MG, Boos JB, Canedy CB, Khan SA. Strained GaSb/AlAsSb quantum wells for p-channel field-effect transistors. J Cryst Growth. 2008;311:47-53.
- [11] Bennett BR, Chick TF, Ancona MG, Boos JB. Enhanced hole mobility and density in GaSb quantum wells. Solid-State Electron. 2013;79:274-80.
- [12] Radosavljevic M, Ashley T, Andreev A, Coomber SD, Dewey G, Emeny MT, et al. High-Performance 40nm Gate Length InSb p-Channel Compressively Strained Quantum Well Field Effect Transistors for Low-Power (V_{CC}=0.5V) Logic Applications. IEEE International Electron Devices Meeting 2008, Technical Digest, 727-30.
- [13] Ancona MG, Bennett BR, Boos JB. Scaling projections for Sb-based p-channel FETs. Solid-State Electron. 2010;54:1349-58.
- [14] Xia L, Boos JB, Bennett BR, Ancona MG, del Alamo JA. Hole mobility enhancement in In_{0.41}Ga_{0.59}Sb quantum-well field-effect transistors. Appl Phys Lett. 2011:98: 053505
- [15] Ali A, Madan HS, Kirk AP, Zhao DA, Mourey DA, Hudait MK, et al. Fermi level unpinning of GaSb (100) using plasma enhanced atomic layer deposition of Al_2O_3 . Appl Phys Lett. 2010;97: 143502.
- [16] Nainani A, Irisawa T, Yuan Z, Bennett BR, Boos JB, Nishi Y, et al. Optimization of the Al₂O₃/GaSb Interface and a High-Mobility GaSb pMOSFET. IEEE T Electron Dev. 2011:58:3407-15.
- [17] Ruppalt LB, Cleveland ER, Champlain JG, Prokes SM, Boos JB, Park D, et al. Atomic layer deposition of Al₂O₃ on GaSb using in situ hydrogen plasma exposure. Appl Phys Lett. 2012;101: 231601.
- [18] Ali A, Madan H, Barth MJ, Boos JB, Bennett BR, Datta S. Effect of interface states on the performance of antimonide nMOSFETs. IEEE Electr Device L. 2013;34:360-362.
- [19] Nainani A, Yuan Z, Krishnamohan T, Bennett BR, Boos JB, Reason M, et al. In_xGa_{1-x}Sb channel p-metal-oxide-semiconductor field effect transistors: Effect of strain and heterostructure design. J Appl Phys. 2011;110: 014503.

Figure 4: Drain characteristics for InGaAs-channel HEMT in tension with $L_G=100$ nm and $W_G=31~\mu m$.