Due: April 1st

1. For each of the following, decide if the series converges or diverges, proving your answer.

a)
$$\sum_{n=2}^{\infty} \frac{1}{(n+(-1)^n)^2}$$
, b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}-\sqrt{n}}$, c) $\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$.

- 2. Prove that the Harmonic series, $\sum_{n=1}^{\infty} \frac{1}{n}$, diverges by comparing it to the series: $\frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{16} + \frac{1}{1$
- 3. Show that $\sum_{n=2}^{\infty} 1/(n(\ln n)^p)$ converges if and only if p>1. HINT: Show that $\int_3^n 1/(x(\ln x)^p)\,dx=\int_{\ln 3}^{\ln n} u^{-p}\,du$.

4. Suppose a_n and b_n are nonnegative for all n.

- (a) Show that if $\limsup_{n\to\infty} \frac{a_n}{b_n} < \infty$ and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
- (b) Show that if $\liminf_{n\to\infty} \frac{a_n}{b_n} > 0$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.

5. (a) Prove that if $x, y \ge 0$, then $\sqrt{xy} \le x + y$.

- (b) Prove that if $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent series of nonnegative numbers, then $\sum_{n=1}^{\infty} \sqrt{a_n b_n}$ converges.
- 6. Extra Credit: For both of the following, decide if the series converges or diverges, proving your answer.

a)
$$\sum_{n=1}^{\infty} \frac{1}{(\ln n)^{\ln n}}$$
, b) $\sum_{n=1}^{\infty} \frac{1}{(\ln n)^{\ln(\ln n)}}$.