数理逻辑思考题

2020.8.20

第0章导论

0.1

什么是"证明"?

形式化证明,在数理逻辑中,形式化证明并不是以自然语言书写,而是以形式化的语言书写:这种语言包含了由一个给定的字母表中的字符所构成的字符串。而证明则是一种由该些字符串组成的有限长度的序列。这种定义使得人们可以谈论严格意义上的"证明",而不涉及任何逻辑上的模糊之处。研究证明的形式化和公理化的理论称为证明论。尽管理论上来说,每个非形式化的证明都可以转化为形式化证明,但实际中很少会这样做。对形式化证明的研究主要应用在探讨关于可证明性的一般性质,或说明某些命题的不可证明性等等,维基百科-数学证明

0.2

什么是"计算"?

计算理论的"计算"并非指纯粹的算术运算 (Calculation), 而是指从已知的输入透过算法来获取一个问题的答案 (Computation), 参见维基百科-计算理论

0.3

"计算"与"证明"是什么关系?

参见维基百科-数理逻辑

0.4

例 5: 相对论与经典力学爱因斯坦提出狭义相对论之后,几乎无人理解关注,因为牛顿经典力学已被普遍接受和广泛应用。怎么办?

爱因斯坦的解法:令 Γ_+ 为经典力学, $\Gamma_{\mathcal{G}}$ 为狭义相对论, \vdash 代表演绎推理(具有保真性)。找出一个命题 p 使得

 $\Gamma_{+} \rightarrow p$, $\Gamma_{\mathcal{B}} \vdash \neg p \ (\neg p \neq p \)$ 的否定命题)

$\neg p$ 和 p 只有一个为真,而科学实验(天文观察)结果: $\neg p$ 为真!
例 5 中的天文观察结果是否证明了经典力学是假的,狭义相对论是真的?
0.5
如果在例 5 的基础上,还存在另一个命题 q ,使得 $\Gamma_+ \vdash q$, $\Gamma_{\overline{Z}} \vdash \neg q$ 都成立,而科学实验的结果为: q 是真的。这说明什么?
0.6
能否证明经典力学和狭义相对论的真假?其中,所谓的"证明"和"真假"是什么意思?
0.7
暴力法和训练法有没有"真假"?应该根据什么来评价它们?如何比较它们的优劣?
0.8
什么是常识?常识有什么应用?机器能具备并应用常识吗?

第1章 命题逻辑

1.1

试用复合命题表达自然语言条件句"如果…则…"。

用蕴涵词 → 连接即可

1.2

同一律的证明是否必须使用 (L1)? 证明你的结论。

是。证明如下,假设 S 是由 L2 、L3 与 MP 规则但不使用 L1 可得的公式,在 $\mathcal{Z}_3=\{0,1,2\}$ 上构造如下的赋值函数

$f_{ ightarrow}$	0	1	2
0	2	2	2
1	0	0	2
2	0	0	2

	0	1	2
f_{\neg}	2	1	0

并有

$$v(p \to q) = f_{\to}(v(p), v(q))$$
$$v(\neg p) = f_{\neg}(v(p))$$

这样的赋值可以保证由 L2 或 L3 得到的公式,赋值一定为 2:

数理逻辑 思考题

((\\ \ \ \ \		((` .	(\\
	$\frac{p}{0}$	\rightarrow	($\frac{q}{q}$	\rightarrow	r))	\rightarrow	(($\frac{p}{0}$	\rightarrow	$\frac{q}{q}$	\rightarrow	($\frac{q}{q}$	\rightarrow	r))
	0	2		0	2	0		2		0	2	0	2		0	$\frac{2}{2}$	0
	0	$\frac{2}{2}$		0	$\frac{2}{2}$	1 2		2		0	$\frac{2}{2}$	0	2 2		0	2	1 2
	0	2		1	0	0		2		0	2	1	2		0	2	0
	0	2		1	0	1		2		0	2	1	2		0	2	1
	0	2		1	2	2		2		0	2	1	2		0	2	2
	0	2		2	0	0		2		0	2	2	2		0	2	0
	0	2		2	0	1		2		0	2	2	2		0	2	1
	0	2		2	2	2		2		0	2	2	2		0	2	2
	1	2		0	2	0		2		1	0	0	2		1	0	0
	1	2		0	2	1		2		1	0	0	2		1	0	1
	1	2		0	2	2		2		1	0	0	2		1	2	2
	1	0		1	0	0		2		1	0	1	2		1	0	0
	1	0		1	0	1		2		1	0	1	2		1	0	1
	1	2		1	2	2		2		1	0	1	2		1	2	2
	1	0		2	0	0		2		1	2	2	0		1	0	0
	1	0		2	0	1		2		1	2	2	0		1	0	1
	1	2		2	2	2		2		1	2	2	2		1	2	2
	2	2		0	2	0		2		2	0	0	2		2	0	0
	2	2		0	2	1		2		2	0	0	2		2	0	1
	2	2		0	2	2		2		2	0	0	2		2	2	2
	2	0		1	0	0		2		2	0	1	2		2	0	0
	2	0		1	0	1		2		2	0	1	2		2	0	1
	2	2		1	2	2		2		2	0	1	2		2	2	2
	2	0		2	0	0		2		2	2	2	0		2	0	0
	2	0		2	0	1		2		2	2	2	0		2	0	1
	2	2		2	2	2		2		2	2	2	2		2	2	2

(_	p	\rightarrow	\neg	q)	$ $ \rightarrow	(q	\rightarrow	p)
	2	0	2	2	0		2	($\frac{q}{0}$	2	$\frac{P}{0}$	
	2	0	2	2	0		2		0	2	0	
	2	0	2	2	0		2		0	2	0	
	2	0	0	1	1		2		1	0	0	
	2	0	0	1	1		2		1	0	0	
	2	0	0	1	1		2		1	0	0	
	2	0	0	0	2		2		2	0	0	
	2	0	0	0	2		2		2	0	0	
	2	0	0	0	2		2		2	0	0	
	1	1	2	2	0		2		0	2	1	
	1	1	2	2	0		2		0	2	1	
	1	1	2	2	0		2		0	2	1	
	1	1	0	1	1		2		1	0	1	
	1	1	0	1	1		2		1	0	1	
	1	1	0	1	1		2		1	0	1	
	1	1	0	0	2		2		2	0	1	
	1	1	0	0	2		2		2	0	1	
	1	1	0	0	2		2		2	0	1	
	0	2	2	2	0		2		0	2	2	
	0	2	2	2	0		2		0	2	2	
	0	2	2	2	0		2		0	2	2	
	0	2	2	1	1		2		1	2	2	
	0	2	2	1	1		2		1	2	2	
	0	2	2	1	1		2		1	2	2	
	0	2	2	0	2		2		2	2	2	
	0	2	2	0	2		2		2	2	2	
	0	2	2	0	2		2		2	2	2	

同时由 f_{\to} 的真值表可知,当 v(p)=2 且 $v(p\to q)=2$ 时,一定有 v(q)=2,因此由 MP 规则得到的公式也一定有赋值为 2。但 L1 并不能保证:

p	\rightarrow	(q	\rightarrow	p)
0	2		0	2	0	
0	2		0	2	0	
0	2		0	2	0	
0	2		1	0	0	
0	2		1	0	0	
0	2		1	0	0	
0	2		2	0	0	
0	2		2	0	0	
0	2		2	0	0	
1	2		0	2	1	
1	2		0	2	1	
1	2		0	2	1	
1	0		1	0	1	
1	0		1	0	1	
1	0		1	0	1	
1	0		2	0	1	
1	0		2	0	1	
1	0		2	0	1	
2	2		0	2	2	
2	2		0	2	2	
2	2		0	2	2	
2	2		1	2	2	
2	2		1	2	2	
2	2		1	2	2	
2	2		2	2	2	
2	2		2	2	2	
2	2		2	2	2	

因此可以集合 S 的特征函数当且仅当 $v(p) \equiv 2$ 时取值 1

而同一律的赋值 $v(p \to p)$ 由 f_{\to} 的真值表可知并不一定为 2,因此不可由 L2,L3 和 MP 规则 推之

1.3

1.4

演绎定理说明了什么?

说明了每个有效的蕴涵语句都描述了一个正确的推理。

1.5

直接证明 $\vdash (\neg p \rightarrow p) \rightarrow p$ 最少需要多少步?

最少需要 19 步,证明如下

证明.

$$(1) \quad (\neg \neg (p \to (\neg p \to p)) \to \neg p) \to (p \to \neg (p \to (\neg p \to p))) \tag{L3}$$

(2)
$$((\neg \neg (p \to (\neg p \to p)) \to \neg p) \to (p \to \neg (p \to (\neg p \to p))))$$

 $\to (\neg p \to ((\neg \neg (p \to (\neg p \to p)) \to \neg p)$
 $\to (p \to \neg (p \to (\neg p \to p)))))$ (L1)

(3)
$$\neg p \to \left((\neg \neg (p \to (\neg p \to p)) \to \neg p) \right)$$

 $\to (p \to \neg (p \to (\neg p \to p)))$ (1), (2), MP

$$(4) \quad \left(\neg p\right) \\ \rightarrow \left(\left(\neg \neg (p \to (\neg p \to p)) \to \neg p\right) \to (p \to \neg (p \to (\neg p \to p)))\right) \\ \rightarrow \left(\left(\neg p \to (\neg \neg (p \to (\neg p \to p)) \to \neg p)\right) \\ \rightarrow \left(\neg p \to (p \to \neg (p \to (\neg p \to p)))\right)\right)$$

$$(L2)$$

(5)
$$(\neg p \to (\neg \neg (p \to (\neg p \to p)) \to \neg p))$$

 $\to (\neg p \to (p \to \neg (p \to (\neg p \to p))))$ (3), (4), MP

(6)
$$\neg p \to (\neg \neg (p \to (\neg p \to p)) \to \neg p)$$
 (L1)

(7)
$$\neg p \rightarrow (p \rightarrow \neg (p \rightarrow (\neg p \rightarrow p)))$$
 (5), (6), MP

(8)
$$(\neg p \to (p \to \neg (p \to (\neg p \to p))))$$

 $\to ((\neg p \to p) \to (\neg p \to \neg (p \to (\neg p \to p))))$ (L2)

$$(9) \quad (\neg p \to p) \to (\neg p \to \neg (p \to (\neg p \to p))) \tag{7}, (8), MP$$

$$(10) (\neg p \to \neg (p \to (\neg p \to p))) \to ((p \to (\neg p \to p)) \to p)$$
 (L3)

(11)
$$((\neg p \rightarrow \neg (p \rightarrow (\neg p \rightarrow p))) \rightarrow ((p \rightarrow (\neg p \rightarrow p)) \rightarrow p))$$

 $\rightarrow ((\neg p \rightarrow p)$

1.6

编程实现一个命题演算中形式推理 $\Gamma \vdash p$ 的程序。

1.7

语义后承与重言式有何关系?下述论断是否成立?

任给 L(X) 公式 p 和公式集 Γ , 存在公式 q, 使得 $\Gamma \models p$ 当且仅当 $\models q$ 。

重言式是空集 Ø 的语义推论。

若 Γ 是有限集,设 $\Gamma = \{p_1, p_2, \cdots, p_n\}$,令

$$q = p_1 \to (p_2 \to \underbrace{(\cdots (p_n \to p))}_{n-2\uparrow (})$$

使用 n 次语义演绎定理即可得 $\Gamma \models p \Leftrightarrow \models q$ 。

若 Γ 是无限集,参考 1.9 及维基百科-递归可枚举集合

1.8

是否存在 L 公式 p 和公式集 Γ , 使得 $\Gamma \vdash p$ 并且 $\Gamma \vdash \neg p$?

存在, $\Gamma = \{p, \neg p\}$

1.9

问题 " $\Gamma \vdash p$ " 是不是可判定的?

问题 " $\Gamma \vdash p$ " 是半可判定的。

若 Γ 是有限集,设 $\Gamma = \{p_1, p_2, \dots, p_n\}$,令

$$q = p_1 \to (p_2 \to \underbrace{(\cdots (p_n \to p))}_{n-2\uparrow (} \xrightarrow{p_n \to p)})$$

使用 n 次语义演绎定理即可得 $\Gamma \vdash p \Leftrightarrow \vdash q$ 。通过真值表可对 q 是否为重言式做判定,由命题逻辑的一致性,即可判定 $\Gamma \vdash p$ 。

若 Γ 是无限集,由紧致性定理,若 $\Gamma \vdash p$ 成立,则有有限子集 $\Delta \subset \Gamma$,使得 $\Delta \vdash p$,则由上可知可以判定 $\Gamma \vdash p$ 确实成立。但若 $\Gamma \vdash p$ 不成立,则无法给出有限的判断算法。

第2章一阶逻辑

2.1

- $\forall x p(x) \rightarrow p(t)$, 其中项 t 对 p(x) 中的 x 是自由的
- $\forall x (p \to q) \to (p \to \forall x q)$, 其中 x 不在 q 中自由出现

(K4)和(K5)中的约束条件有何意义?举例说明。

对公理的限制保证了其在谓词逻辑的任何解释域中都是有效式。

对(K4)而言,直观上这是一个弱化结论的过程,从一个公式对任意 x 均成立得到其对某个具体的项 t 成立,在这个过程中,由于公式 p(x) 是抽象的,所以必须要考虑到其内部可能存在的约束条件。举例说明,对于解释域 \mathbb{Z} , \mathbb{Z} 上一元关系 $\overline{R_1^2}$ 为 >,则使用没有限制条件的 K4 公理得到

$$\forall x \,\exists y \, R_1^2(x,y) \to \exists y \, R_1^2(y,y)$$

前件的解释为"对任意的 $x \in \mathbb{Z}$ 均存在 $y \in \mathbb{Z}$ 使得 x > y",这是恒真的;后件的解释为"存在 $y \in \mathbb{Z}$ 使得 y > y",这是恒假的,公式在解释域 \mathbb{Z} 上并不恒真。对于(K5)而言,这是一个具体 化约束条件的过程,将对 x 的量词约束范围从整个蕴涵式 $p \to q$ 具体到后件 q 上。那么约束条件存在的意义是保证前件实际上并不受量词约束,即保证没有变元 x 逸出了约束范围。举例说 明,对于解释域 \mathbb{Z} , \mathbb{Z} 上一元关系 $\overline{R_1^1}$ 为 $x \in \mathbb{Z}$ 为 $x \in \mathbb{Z}$ 的,则使用没有限制条件的 K5 公理得到

$$\forall x \, ((R_1^1(x) \rightarrow R_2^1(x))) \rightarrow ((R_1^1(x) \rightarrow \forall x \, R_2^1(x)))$$

前件的解释为"对任意的 $x \in \mathbb{Z}$,若 x > 1,则 x > 0",这是恒真的;后件的解释为"若 x > 1,则对任意的 $x \in \mathbb{Z}$ 有 x > 0",注意这里后件里的 x 既有自由出现也有约束出现,可以改写变元为"若 x > 1,则对任意的 $y \in \mathbb{Z}$ 有 y > 0",这是恒假的,公式在解释域 \mathbb{Z} 上并不恒真。

2.2

下列判断是否成立? 若 $\Gamma \vDash p$,则对一切解释 I,如果对所有 $q \in \Gamma$ 有 I(q) = t,则 I(p) = t。

数理逻辑 思考题

不成立,由语义推论的定义,公式 p 是公式集 Γ 的语义推论,记作 $\Gamma \vDash p$,指 p 在 Γ 的所有模型中都恒真。但在不是公式集 Γ 模型的解释域中, Γ 的公式的真值是不确定的,因此判断并不成立。

2.3

"真"在一阶逻辑中有哪几个层次?

三个层次,分别为

- 解释域中的可满足公式,公式 p 是在某个解释域 M 中的非恒假, $\exists \varphi \in \Phi_M, |p|(\varphi) = 1$
- 解释域中的恒真公式,公式 p 在某个解释域 M 中恒真, $\forall \varphi \in \Phi_M, \ |p|(\varphi)=1$,记为 $|p|_M=1$
- 。 语义推论, 公式 p 在任意一个公式集 Γ 的模型 M 中 p 恒真, 记为 $\Gamma \vdash p$
- 有效式,公式 p 在 K 的所有解释域中恒真,记作 $\models p$

其中注意到语义推论是对某个公式集而言的,有效式也可以看做是空集的语义推论,因此对谓词逻辑整体而言可以认为是一个层次。

第3章一阶理论

3.1

Peano 自然数公理:

(公理 1) $0 \in \mathbf{N}$

(公理 2)若 $x \in \mathbb{N}$,则 x 有且只有一个后继 $x' \in \mathbb{N}$

(公理 3)对任意 $x \in \mathbb{N}$, $x' \neq 0$

(公理 4)对任意 $x_1, x_2 \in \mathbf{N}$, 若 $x_1 \neq x_2$, 则 $x_1' \neq x_2'$

(公理 5)设 $M \subseteq \mathbb{N}$,若 $0 \in M$,且当 $x \in M$ 时也有 $x' \in M$,则 $M = \mathbb{N}$

形式化理论(尝试):

- (P1) N(0)
- (P2) $\forall x (\mathbf{N}(x) \to \exists y! (y = x' \land \mathbf{N}(y)))$
- (P3) $\forall x ((\mathbf{N}(x) \to (0=x')))$
- (P4) $\forall x \, \forall y \, ((x'=y' \rightarrow x=y))$
- (P5) $p(0) \land \forall x (p(x) \rightarrow p(x')) \rightarrow \forall x p(x), 其中 p 是任意一阶公式$

本节尝试给出的 $\Gamma = \{(P1), (P2), (P3), (P4), (P5)\}$ 是否完全表达了自然数的 Peano 定义?

3.2

L 是否"强迫" → 解释为实质蕴涵?

是的,由于 MP 规则与(语义)演绎定理的存在,蕴涵词 \rightarrow 必须解释为实质蕴涵,可以尝试参考前文 1.2 的方法,以 L1、L2 与 MP 规则确定蕴涵词的真值表。

3.3

Frege **原则**:整体的语义由部件的语义复合而成。

Frege 组合原则在一阶语义中的具体表现是什么?并举例说明你的看法。