The formal group ring and real finite reflection groups

Raj Gandhi

University of Ottawa

June 3, 2021

Root systems

Let $V=\mathbb{R}^n$, and let (\cdot,\cdot) be the standard inner product on V. For any $\alpha\in V$, the *reflection* across α is the linear operator s_α defined by the formula

$$s_{\alpha}(v) = v - 2 \frac{(\alpha, v)}{(\alpha, \alpha)} \alpha, \quad v \in V.$$

Root systems

Let $V=\mathbb{R}^n$, and let (\cdot,\cdot) be the standard inner product on V. For any $\alpha\in V$, the *reflection* across α is the linear operator s_α defined by the formula

$$s_{\alpha}(v) = v - 2 \frac{(\alpha, v)}{(\alpha, \alpha)} \alpha, \quad v \in V.$$

Definition

A *root system* Σ in V is a finite set of nonzero vectors in V satisfying the conditions:

- **1** $\Sigma \cap \mathbb{R}\alpha = \{\alpha, -\alpha\}$ for all $\alpha \in \Sigma$;
- **3** The roots $\alpha \in \Sigma$ generate V.

Note: given α , $\beta \in \Sigma$, we do not require that $s_{\alpha}(\beta) = \beta - n\alpha$ for some $n \in \mathbb{Z}$.

Root systems

Let $V = \mathbb{R}^n$, and let (\cdot, \cdot) be the standard inner product on V. For any $\alpha \in V$, the *reflection* across α is the linear operator s_{α} defined by the formula

$$s_{\alpha}(v) = v - 2 \frac{(\alpha, v)}{(\alpha, \alpha)} \alpha, \quad v \in V.$$

Definition

A *root system* Σ in V is a finite set of nonzero vectors in V satisfying the conditions:

- **1** $\Sigma \cap \mathbb{R}\alpha = \{\alpha, -\alpha\}$ for all $\alpha \in \Sigma$;
- $s_{\alpha}(\Sigma) = \Sigma$ for all $\alpha \in \Sigma$;
- **1** The roots $\alpha \in \Sigma$ generate V.

Note: given α , $\beta \in \Sigma$, we do not require that $s_{\alpha}(\beta) = \beta - n\alpha$ for some $n \in \mathbb{Z}$. The group W generated by the reflections s_{α} , $\alpha \in \Sigma$, is the *real finite reflection group* of Σ .

A subset $\Delta = \{\alpha_1, \ldots, \alpha_n\}$ of Σ is a *simple system* of Σ if it is an \mathbb{R} -basis of V, and if every root $\alpha \in \Sigma$ can be written as an \mathbb{R} -linear combination of elements in Δ with all coefficients nonnpositive or all coefficients nonnegative. We call s_{α_i} a *simple reflection*.

A subset $\Delta = \{\alpha_1, \ldots, \alpha_n\}$ of Σ is a *simple system* of Σ if it is an \mathbb{R} -basis of V, and if every root $\alpha \in \Sigma$ can be written as an \mathbb{R} -linear combination of elements in Δ with all coefficients nonnpositive or all coefficients nonnegative. We call s_{α_i} a *simple reflection*.

Let *W* be a real finite reflection group.

Question

Can we find a root system Σ in V whose real finite reflection group is W, and a simple system Δ of Σ , such the following property holds?

A subset $\Delta = \{\alpha_1, \ldots, \alpha_n\}$ of Σ is a *simple system* of Σ if it is an \mathbb{R} -basis of V, and if every root $\alpha \in \Sigma$ can be written as an \mathbb{R} -linear combination of elements in Δ with all coefficients nonnpositive or all coefficients nonnegative. We call s_{α_i} a *simple reflection*.

Let *W* be a real finite reflection group.

Question

Can we find a root system Σ in V whose real finite reflection group is W, and a simple system Δ of Σ , such the following property holds?

Let $\alpha \in \Sigma$ be any root. By definition of Δ , there exist unique elements $c_i^{\alpha} \in \mathbb{R}$ such that $\alpha = c_1^{\alpha} \alpha_1 + \dots + c_n^{\alpha} \alpha_n$. Let \mathcal{R} be the subring of \mathbb{R} generated by the elements c_i^{α} over all $i=1,\dots,n$ and $\alpha \in \Sigma$

Property

The subring \Re a free finitely-generated \mathbb{Z} -module with a power basis (i.e., a basis of the form $\{1, \beta, \beta^2, \dots, \beta^{l-1}\}$, $l \geqslant 1$, where $\beta \in \Re$).

One can show that \mathcal{R} is the unital subring of \mathbb{R} generated by the elements $\alpha_i^{\vee}(\alpha_i) := 2 \frac{(\alpha_i, \alpha_j)}{(\alpha_i, \alpha_i)}$ over all pairs of simple roots $\alpha_i, \alpha_j \in \Delta$.

One can show that \mathcal{R} is the unital subring of \mathbb{R} generated by the elements $\alpha_i^{\vee}(\alpha_j) := 2\frac{(\alpha_i,\alpha_j)}{(\alpha_i,\alpha_i)}$ over all pairs of simple roots α_i , $\alpha_j \in \Delta$.

Example

If W is a Weyl group, we can choose (Σ, Δ) so that $\alpha_i^{\vee}(\alpha_j) \in \mathbb{Z}$. Thus, $\mathcal{R} = \mathbb{Z}$.

One can show that \mathcal{R} is the unital subring of \mathbb{R} generated by the elements $\alpha_i^{\vee}(\alpha_j) := 2 \frac{(\alpha_i, \alpha_j)}{(\alpha_i, \alpha_i)}$ over all pairs of simple roots α_i , $\alpha_j \in \Delta$.

Example

If W is a Weyl group, we can choose (Σ, Δ) so that $\alpha_i^{\vee}(\alpha_j) \in \mathbb{Z}$. Thus, $\mathbb{R} = \mathbb{Z}$.

Example

If $W = I_2(m)$ is a dihedral group of order 2m, $m \geqslant 3$, then we can choose (Σ, Δ) such that $\Re = \mathbb{Z}[2\cos\left(\frac{\pi}{m}\right)]$.

One can show that $\mathcal R$ is the unital subring of $\mathbb R$ generated by the elements $\alpha_i^{\vee}(\alpha_j):=2\frac{(\alpha_i,\alpha_j)}{(\alpha_i,\alpha_i)}$ over all pairs of simple roots α_i , $\alpha_j\in\Delta$.

Example

If W is a Weyl group, we can choose (Σ, Δ) so that $\alpha_i^{\vee}(\alpha_j) \in \mathbb{Z}$. Thus, $\mathbb{R} = \mathbb{Z}$.

Example

If $W = I_2(m)$ is a dihedral group of order 2m, $m \geqslant 3$, then we can choose (Σ, Δ) such that $\mathcal{R} = \mathbb{Z}[2\cos\left(\frac{\pi}{m}\right)]$.

Example

If $W=H_3$ or $W=H_4$, then we can choose (Σ,Δ) such that $\Re = \mathbb{Z}[\tau]$, where $\tau = \frac{1+\sqrt{5}}{2}$ is the golden section. It is a root of x^2-x-1 .

One can show that $\mathcal R$ is the unital subring of $\mathbb R$ generated by the elements $\alpha_i^{\vee}(\alpha_j):=2\frac{(\alpha_i,\alpha_j)}{(\alpha_i,\alpha_j)}$ over all pairs of simple roots $\alpha_i,\alpha_j\in\Delta$.

Example

If W is a Weyl group, we can choose (Σ, Δ) so that $\alpha_i^{\vee}(\alpha_j) \in \mathbb{Z}$. Thus, $\mathbb{R} = \mathbb{Z}$.

Example

If $W = I_2(m)$ is a dihedral group of order 2m, $m \geqslant 3$, then we can choose (Σ, Δ) such that $\mathcal{R} = \mathbb{Z}[2\cos\left(\frac{\pi}{m}\right)]$.

Example

If $W=H_3$ or $W=H_4$, then we can choose (Σ,Δ) such that $\mathcal{R}=\mathbb{Z}[\tau]$, where $\tau=\frac{1+\sqrt{5}}{2}$ is the golden section. It is a root of x^2-x-1 .

Definition

Fix a power basis $\{e_i\}$ of \Re . Let Λ be the \Re -module generated Σ . Then Λ is a free finitely-generated \mathbb{Z} -module with basis $\{e_i\alpha_i\}$.

Formal group laws

Definition

A one-dimensional commutative formal group law (FGL) (R, F) over a commutative unital ring R is a power series $F(u, v) \in R[\![u, v]\!]$ satisfying the following axioms:

A morphism $f:(R,F)\to (R,F')$ of FGLs over R is a power series $f(u)\in R[\![u]\!]$ such that f(F(u,v))=F'(f(u),f(v)) and f(0)=0.

Formal group laws

Definition

A one-dimensional commutative formal group law (FGL) (R, F) over a commutative unital ring R is a power series $F(u, v) \in R[u, v]$ satisfying the following axioms:

- \bullet $F(u, 0) = F(0, u) = u \in R[[u]];$
- **2** F(u, v) = F(v, u);
- **3** $F(u, F(v, w)) = F(F(u, v), w) \in R[u, v, w].$

A morphism $f:(R,F)\to(R,F')$ of FGLs over R is a power series $f(u) \in R[u]$ such that f(F(u, v)) = F'(f(u), f(v)) and f(0) = 0.

Let (\mathbb{C}, F) be an FGL. Suppose (\mathbb{C}, F_a) is the additive formal group law over \mathbb{C} , i.e., $F_a(u, v) = u + v$. There are isomorphisms of FGLs $\log_{\varepsilon}: (\mathbb{C}, F) \to (\mathbb{C}, F_a)$ and $\exp_{\varepsilon}: (\mathbb{C}, F_a) \to (\mathbb{C}, F)$ called the *logarithm* and exponential of (\mathbb{C}, F) , i.e., $\exp_{\varepsilon}(\log_{\varepsilon}(u)) = \log_{\varepsilon}(\exp_{\varepsilon}(u)) = u$.

Let R be a subring of $\mathbb C$ containing the coefficients in the series F(u,v) and the coefficients in the logarithm and exponential of $(\mathbb C,F)$. We call R an *ample ring* with respect to $(\mathbb C,F)$. Thus, we can view (R,F) as a formal group law with a logarithm and exponetial.

Let R be a subring of $\mathbb C$ containing the coefficients in the series F(u,v) and the coefficients in the logarithm and exponential of $(\mathbb C,F)$. We call R an *ample ring* with respect to $(\mathbb C,F)$. Thus, we can view (R,F) as a formal group law with a logarithm and exponetial.

Example

The additive FGL (R, F_a) over R is $F_a(x, y) = x + y$.

If R is an ample ring with respect to (\mathbb{C}, F_a) , then the logarithm of (R, F_a) is $\log_{F_a}(x) = x$, and the exponential of (R, F_a) is $\exp_{F_a}(x) = x$.

Let R be a subring of $\mathbb C$ containing the coefficients in the series F(u,v) and the coefficients in the logarithm and exponential of $(\mathbb C,F)$. We call R an *ample ring* with respect to $(\mathbb C,F)$. Thus, we can view (R,F) as a formal group law with a logarithm and exponetial.

Example

The additive FGL (R, F_a) over R is $F_a(x, y) = x + y$. If R is an ample ring with respect to (\mathbb{C}, F_a) , then the logarithm of (R, F_a) is $\log_{F_a}(x) = x$, and the exponential of (R, F_a) is $\exp_{F_a}(x) = x$.

Example

The multiplicative FGL (R, F_m) over R is $F_m(x, y) = x + y + xy$. If R is an ample ring with respect to (\mathbb{C}, F_m) , then the logarithm and exponential series of (R, F_m) are given by the formulas

$$\log_{F_m}(x) = \log(1+x) = \sum_{i \geq 1} (-1)^{i-1} \frac{x^i}{i}; \quad \exp_{F_m}(x) = \exp(x) - 1 = \sum_{i \geq 1} \frac{x^i}{i!}.$$

Formal group ring

Assumption

If Σ is *noncrystallographic*, then R is an ample ring with respect to an FGL (\mathbb{C}, F) , such that R contains \Re . If Σ is *crystallographic*, then R is a subring of \mathbb{C} , and (R, F) is an FGL.

Formal group ring

Assumption

If Σ is *noncrystallographic*, then R is an ample ring with respect to an FGL (\mathbb{C}, F) , such that R contains \Re . If Σ is *crystallographic*, then R is a subring of \mathbb{C} , and (R, F) is an FGL.

Definition

Set $R[x_{\Lambda}] := R[x_{\lambda}]_{\lambda \in \Lambda}$, and let

$$f_{i,j} = \begin{cases} e_i log_F(x_{\alpha_j}) - log_F(x_{e_i\alpha_j}), & \Sigma \text{ noncrystallographic;} \\ 0, & \Sigma \text{ crystallographic.} \end{cases}$$

Let \mathcal{J}_F be the closure of the ideal in $R[x_{\Lambda}]$ generated by

$$x_0 \quad \text{and} \quad x_{\lambda_1+\lambda_2} - (x_{\lambda_1} +_F x_{\lambda_2}) \quad \text{and} \quad f_{i,j}; \quad \lambda_1, \lambda_2 \in \Lambda; \, e_i \in \textit{B}; \, \alpha_j \in \Delta.$$

The quotient $R[\![\Lambda]\!]_F := R[\![x_{\Lambda}]\!]_F/\mathcal{J}_F$ is the formal group ring.

Example

Let $S_R^i(\Lambda)$ be the *i*-th symmetric power of the *R*-module $R \otimes_{\mathcal{R}} \Lambda$, and set

$$(S_R^*(\Lambda))^{\wedge} := \prod_{i=0}^{\infty} S_R^i(\Lambda)$$
. There is an R -algebra isomorphism

$$R[\![\Lambda]\!]_{F_a} \simeq (S_R^*(\Lambda))^{\wedge}.$$

Example

Let $S_R^i(\Lambda)$ be the *i*-th symmetric power of the *R*-module $R \otimes_{\mathcal{R}} \Lambda$, and set $(S_R^*(\Lambda))^{\wedge} := \prod_{i=0}^{\infty} S_R^i(\Lambda)$. There is an *R*-algebra isomorphism

$$R[\![\Lambda]\!]_{F_a} \simeq (S_R^*(\Lambda))^{\wedge}.$$

Proposition

The following properties hold in $R[\Lambda]_F$:

- There is a well-defined W-action on $R[\![\Lambda]\!]_F$ given by $w(x_\lambda) = x_{w(\lambda)}$.
- ② $R[\Lambda]_F$ is an integral domain.

Example

Let $S_R^i(\Lambda)$ be the *i*-th symmetric power of the *R*-module $R \otimes_{\mathcal{R}} \Lambda$, and set $(S_R^*(\Lambda))^{\wedge} := \prod_{i=0}^{\infty} S_R^i(\Lambda)$. There is an *R*-algebra isomorphism

$$R[\![\Lambda]\!]_{F_a} \simeq (S_R^*(\Lambda))^{\wedge}.$$

Proposition

The following properties hold in $R[\![\Lambda]\!]_F$:

- **1** There is a well-defined W-action on $R[\![\Lambda]\!]_F$ given by $w(x_\lambda) = x_{w(\lambda)}$.
- ② $R[\![\Lambda]\!]_F$ is an integral domain.
- **3** x_{α_i} divides $x_{e_i\alpha_j}$ in $R[\![\Lambda]\!]_F$ for all $e_i \in B$ and $\alpha_j \in \Delta$.

Corollary

For any $u \in R[\![\Lambda]\!]_F$ and root $\alpha \in \Sigma$, the element $u - s_{\alpha}(u)$ is divisible by x_{α} in $R[\![\Lambda]\!]_F$.

Formal Demazure operators

Definition

For each root $\alpha \in \Sigma$, we define a *formal Demazure operator* Δ_{α} on $R[\![\Lambda]\!]_F$ by the formula

$$\Delta_{\alpha}(u) = \frac{u - s_{\alpha}(u)}{x_{\alpha}}, \quad u \in R[\![\Lambda]\!]_{F}.$$

We set $\Delta_i := \Delta_{\alpha_i}$ for $\alpha_i \in \Delta$.

Formal Demazure operators

Definition

For each root $\alpha \in \Sigma$, we define a *formal Demazure operator* Δ_{α} on $R[\![\Lambda]\!]_F$ by the formula

$$\Delta_{\alpha}(u) = \frac{u - s_{\alpha}(u)}{x_{\alpha}}, \quad u \in R[\![\Lambda]\!]_{F}.$$

We set $\Delta_i := \Delta_{\alpha_i}$ for $\alpha_i \in \Delta$.

Definition

Let $\mathcal{D}_{(R,F)}(\Lambda)$ be the subalgebra of R-linear endomorphisms of $R[\![\Lambda]\!]_F$ generated by the formal Demazure operators Δ_{α} for all roots α , and by multiplication by elements of $R[\![\Lambda]\!]_F$.

Given $q \in R[\![\Lambda]\!]_F$, let q^* be the corresponding multiplication operator in \mathcal{D}_F . Given $w \in W$, let $w = s_{i_1} \cdots s_{i_r}$ be a reduce decomposition of w. We call $I_w := (\alpha_{i_1}, \ldots, \alpha_{i_r})$ a reduced sequence of w. Fix reduced sequences $\{I_w\}_{w \in W}$, and set $\Delta_{I_w} := \Delta_{i_1} \circ \cdots \circ \Delta_{i_r}$, if $I_w := (\alpha_{i_1}, \ldots, \alpha_{i_r})$.

Given $q \in R[\![\Lambda]\!]_F$, let q^* be the corresponding multiplication operator in \mathcal{D}_F . Given $w \in W$, let $w = s_{i_1} \cdots s_{i_r}$ be a reduce decomposition of w. We call $I_W := (\alpha_{i_1}, \ldots, \alpha_{i_r})$ a reduced sequence of w. Fix reduced sequences $\{I_W\}_{W \in W}$, and set $\Delta_{I_W} := \Delta_{i_1} \circ \cdots \circ \Delta_{i_r}$, if $I_W := (\alpha_{i_1}, \ldots, \alpha_{i_r})$.

Theorem

The elements $q^* \in R[\![\Lambda]\!]_F$ and the formal Demazure operators $\Delta_i = \Delta_{\alpha_i}$, where $\alpha_i \in \Delta$, satisfy the following relations:

- ② $\Delta_i^2 = \kappa_i^* \circ \Delta_i$, where $\kappa_i := \frac{1}{x_{\alpha_i}} + \frac{1}{x_{-\alpha_i}} \in R[\![\Lambda]\!]_F$;
- $\underbrace{\Delta_i \circ \Delta_j \circ \Delta_i \cdots}_{\textit{m_{i,j}\text{-times}}} \underbrace{\Delta_j \circ \Delta_i \circ \Delta_j \cdots}_{\textit{m_{i,j}\text{-times}}} = \sum_{\textit{W} < \textit{W}_0^{i,j}} \left(\kappa_{i,j}^{\textit{W}} \right)^* \circ \Delta_{\textit{I}_{\textit{W}}}, \quad \kappa_{i,j}^{\textit{W}} \in \textit{R} [\![\Lambda]\!]_{\textit{F}}.$

Here $w_0^{i,j} := \underbrace{s_i s_i s_i \cdots}_{m_{i,i}\text{-times}}$, and the ordering < is with respect to the Bruhat

order on W. These relations, together with the ring law in $R[\![\Lambda]\!]_F$ and the fact that the Δ_i are R-linear form a complete set of relations in \mathcal{D}_F .

□ ▶ ◀∰ ▶ ◀ 볼 ▶ ◀ 볼 ▶ **♡** 약

Set
$$y_i := \frac{1}{x_{\alpha_i}}$$
 and $s_{i,j,\dots}^{(k)} := \underbrace{s_i s_j s_i \dots}_{k\text{-times}}$ and $\Delta_{i,j,\dots}^{(k)} := \underbrace{\Delta_i \circ \Delta_j \circ \Delta_i \dots}_{k\text{-times}}$, for $k \geqslant 0$.

For $k_1 \leq k_2$, define the operator

$$S_{i,j}^{(k_1,k_2)}(u) := S_{i,j,\dots}^{(k_1)}(u) + S_{i,j,\dots}^{(k_1+1)}(u) + \dots + S_{i,j,\dots}^{(k_2)}(u).$$

Set $y_i := \frac{1}{x_{\alpha_i}}$ and $s_{i,j,\dots}^{(k)} := \underbrace{s_i s_j s_i \dots}_{k \text{ times}}$ and $\Delta_{i,j,\dots}^{(k)} := \underbrace{\Delta_i \circ \Delta_j \circ \Delta_i \dots}_{k \text{ times}}$, for $k \geqslant 0$.

For $k_1 \le k_2$, define the operator

$$S_{i,j}^{(k_1,k_2)}(u) := S_{i,j,\dots}^{(k_1)}(u) + S_{i,j,\dots}^{(k_1+1)}(u) + \dots + S_{i,j,\dots}^{(k_2)}(u).$$

Corollary

The difference $\Delta_{i,j,...}^{(m_{i,j})} - \Delta_{i,i,...}^{(m_{i,j})}$ can be written as a linear combination

$$\Delta_{i,j,...}^{(m_{i,j})} - \Delta_{j,i,...}^{(m_{i,j})} = \sum_{k=1}^{m_{i,j}-2} \left(\kappa_{i,j}^{(k)} \Delta_{i,j,...}^{(k)} - \kappa_{j,i}^{(k)} \Delta_{j,i,...}^{(k)} \right), \quad \kappa_{i,j}^{(k)} \in R[\![\Lambda]\!]_F.$$

For odd $m_{i,j}$:

$$\kappa_{i,i}^{(m_{i,j}-2)} = S_{i,i}^{(0,m_{i,j}-2)}(y_iy_j) - y_i S_{i,i,...}^{(m_{i,j}-2)}(y_i);$$

$$\begin{split} \kappa_{i,j}^{(m_{i,j}-3)} &= -y_{j} \{ s_{i}(y_{i}y_{j}) + \left[S_{i,j}^{(2,m_{i,j}-3)} - S_{j,i}^{(2,m_{i,j}-3)} \right] (y_{i}y_{j}) \\ &- s_{j,i,...}^{(m_{i,j}-2)} (y_{i}y_{j}) + y_{i} s_{j,i,...}^{(m_{i,j}-2)} (y_{i}) - s_{i,j,...}^{(m_{i,j}-3)} (y_{i}) s_{i,j,...}^{(m_{i,j}-2)} (y_{j}) \}. \end{split}$$