Notes for James R. Munkres' Topology (2E)

Shou

January 22, 2016

# Contents

| 0 | Structure and reading plans | 2 |
|---|-----------------------------|---|
| 1 | Set theory and logic        | • |

## Chapter 0

## Structure and reading plans

Ch 1-8 is the part I, mainly for common topology. The part II includes ch 9-14, that depends on ch 1-4, is about algebraic topology.

My plan is to read through ch 1-4 very quickly, within a weekend, and then I will start reading ch 9+ simultaneously with W.S.Massey's Agelbraic topology: An induction

Finally I wish I could finish all ch 1-8 and also some parts after ch 9.

### Chapter 1

### Set theory and logic

**Definition 1.1. Order relation** rel C on set A is called *order relation* if

- 1. comparability, i.e.  $\forall x, y \in A, x \neq y \Rightarrow xCy \vee yCx$
- 2. non-refl, i.e.  $\forall x, \neg(xCx)$
- 3. trans, i.e.  $\forall xCy \land yCz, xCz$

(a.k.a. linear order)

**Definition 1.2. Open interval** if X is a set and < is an order rel, and if a < b we use notation (a, b) to denote  $\{x \in X \mid a < x < b\}$ , called *open interval*.

If  $(a, b) = \emptyset$ , then a is called *immediate precessor* of b and b called *immediate successor* of a.

**Remark.** It makes more sense on X is a discrete set. Since if (a,b) is an open interval in  $\mathbb{R}$ ,  $(a,b) = \emptyset \Rightarrow a = b$  which makes no sense on a as an immediate precessor of b.

**Definition 1.3. Order Type** if A and B are two sets with A and B are two sets with A and B have same order type if  $\exists f : A \to B$  that preserves order, i.e.

$$a_1 <_A b_1 \Rightarrow f(a_1) <_B f(b_1)$$

Remark. It's just a generalization of monotone function.

**Definition 1.4. Dictionary order relation** if A,B are two sets with  $(<_A,<_B)$ , defin an order for  $A \times B$  by defining

$$a_1 \times b_1 < a_2 \times b_2$$

if  $a_1 <_A a_2$ , or if  $a_1 = a_2 \land b_1 <_B b_2$ .

**Definition 1.5. LUB property/GLB property** For A and  $<_A$ , we say A has LUB property if

$$\forall A_0 \subset A, A \neq \emptyset \land \exists upper bound for A_0 \Rightarrow \exists lub\{A_0\} \in A$$

**Example 1.6.** A = (-1, 1). *e.g.*  $X = \{1 - \frac{1}{n} \mid n \in \mathbb{Z}^+\}$  does not have an upper bound, thus vacuously true.  $\{-\frac{1}{n} \mid n \in \mathbb{Z}^+\}$  has upper bound of any number in  $[0, 1) \subset A$ , and  $\text{lub}(X) = 0 \in (-1, 1)$ .

**Example 1.7.** Counterexample.  $A = (-1,0) \cup (0,1)$ .  $\{-\frac{1}{n} \mid n \in \mathbb{Z}^+\}$  has upper bound of any  $(0,1) \subset A$ , while  $lub(X) = 0 \notin A$ .

**Remark.** The completeness property of  $\mathbb{R}$  as an axiom derives this property.

#### Property 1.8. $\mathbb{R}$ field

#### Algebraic properties

- 1. assoc: (x + y) + z = x + (y + z); (xy)z = x(yz)
- 2. comm: x + y = y + x; xy = yx
- 3. id:  $\exists !0, x + 0 = x; \exists !1, x \neq 0 \Rightarrow x1 = x$
- 4. inv:  $\forall x, \exists ! y, x + y = 0; \forall x \neq 0, \exists ! y, xy = 1$
- 5. distr: x(y+z) = xy + xz

#### Mixed algebraic and order property

6. 
$$x > y \Rightarrow x + z > y + z$$
;  $x > y \land z > 0 \Rightarrow xz > yz$ 

#### Order properties

- 7. < has LUB property
- 8.  $\forall x < y, \exists z, x < z \land z < y$

1-6 make  $\mathbb{R}$  a field. 1-6 + 7 make  $\mathbb{R}$  an ordered field. 7-8 makes  $\mathbb{R}$ , called by topologists, a **linear continuum**.

**Theorem 1.9.** Well ordering property  $\mathbb{Z}^+$  has Well-ordering property. i.e. Every nonempty subset of  $\mathbb{Z}^+$  has a smallest element.

*Proof.* We first prove that for each  $n \in \mathbb{Z}^+$ , the following statement holds: Every nonempty subset of  $\{1, \ldots, n\}$  has a smallest element.

Let A be the set of all postive integers n for which this theorem holds. Then A contains 1, since if n=1, the only possible subset is  $\{1\}$  itself. Then suppose A contains n, we show that it contains n+1. So let C be a nonempty subset of the set  $\{1,\ldots,n+1\}$ . If C consists of the single element n+1, then that element is the smallest element of C. Otherwise, consider the set  $C \cap \{1,\ldots,n\}$ , which is nonempty. Because  $n \in A$ , this set has a smallest element, which will automatically be the smallest element of C also. Thus A is inductive, so we conclude that  $A = \mathbb{Z}^+$ ; hence the statement is true for all  $n \in \mathbb{Z}^+$ .

Now we prove the theorem. Suppose that D is a nonempty subset of  $\mathbb{Z}^+$ . Choose an element n of D. Then the set  $A = D \cap [n]$  is nonempty, so that A has a smallest element k. The element k is automatically the smallest element of D as well.

**Remark.** I don't really understand the second part of this proof. By https://proofwiki.org, Principle of Mathematical Induction, Well-Ordering Principle, and Principle of Complete Induction are logically equivalent. (<u>link</u>)<sup>1</sup>

**Definition 1.10. Cartesian product** Let  $\{A_1, \ldots, A_m\}$  be a faimly of sets indexed with the set  $\{1, \ldots, m\}$ . Let  $X = A_1 \cup \cdots \cup A_m$ . We define *cartesian product* of this indexed family, denoted by

$$\prod_{i=1}^{m} A_i \text{ or } A_1 \times \cdots \times A_m,$$

to be the set of all *m*-tuples  $(x_1, \ldots, x_m)$  of elements of X such that  $x_i \in A_i$  for each i.

**Remark.** Indexing function  $f: J \to A$  is surjective but not necessarily injective

**Definition 1.11.**  $\omega$ **-tuple** An  $\omega$ -tuple of elements of set X to be a function

$$x: \mathbb{Z}^+ \to X$$

a.k.a. sequence, or a infinite sequence.

**Theorem 1.12.**  $\{0,1\}^{\omega}$  is uncountable. (let  $X = \{0,1\}$  in the proof.)

*Proof.* We show that given any function  $g: \mathbb{Z}^+ \to X^\omega$ , g is not surjective. Four this purpose, let us denote g(n) as  $(x_{n1}, x_{n2}, \dots, x_{nn}, \dots, x_{n\omega})$ , where each  $x_{ij}$  is eather 0 or 1. Then we define any element  $y = (y_1, \dots, y_\omega)$  of  $X^\omega$  by letting

$$y_n = \begin{cases} 0 & \text{if } x_{nn} = 1, \\ 1 & \text{if } x_{nn} = 0. \end{cases}$$

y will differ g(n) for all n by a digit. Therefore  $y \notin \text{Im}(g)$ .

**Remark.** Note this proof is similar to the proof of uncountableness of [0,1) using the vast digit array.

**Remark.**  $\{0,1\}^{\omega} \simeq [0,1)$  by  $f(a_1,a_2,\ldots) = \sum_{i=1}^{\infty} a_i 2^{-i}$ . (i.e. binary decimals). Then we can use the conclusion of the uncountableness of [0,1) to prove this directly.

**Remark.** Think of picking a subset of  $\mathbb{Z}^+$ , for each  $i \in \mathbb{Z}^+$  present in the subset, set  $a_i = 1$ , otherwise  $a_i = 0$ . Thus  $\{0,1\}^{\omega}$  is just isomorphic to the power set  $2^{\mathbb{Z}^+}$ . By cantor's theorem, there is not surjection  $f: \mathbb{Z}^+ \to 2^{\mathbb{Z}^+}$ .

**Theorem 1.13.** There is not surjective map  $g: A \to 2^A$  for all set A. Proof:  $(\underline{\text{link}})^2$ 

 $<sup>^{1}</sup> https://proofwiki.org/wiki/Equivalence_of_Well-Ordering_Principle\_and\_Induction\#Final\_assembly$ 

<sup>&</sup>lt;sup>2</sup>https://proofwiki.org/wiki/Cantor's\_Theorem

Theorem 1.14. Principle of recursive definition Let A be a set; let  $a_0$  be an element of A. Suppose  $\rho$  is a function that assigns, to each function f mapping a nonempty section of the positive integers into A, an element of A. Then there exists a unique function

$$h: \mathbb{Z}^+ \to A$$

such that

$$h(1) = a_0,$$
  
 $h(i) = \rho(h|\{1, \dots, i-1\}) \text{ for } i > 1$ 

The formula is called a *recursion formula* for h.

**Remark.** I'm not very clear about this definition. I think the point of this definition is to indicate that there is a UNIQUE function satisfied a recursive definition.

**Theorem 1.15.** The following statements about set A are equivalent:

- 1. There exists an *injective*, not necessarily surjective (of course), function  $f: \mathbb{Z}^+ \to A$ .
- 2. There exists a bijection of A to a propert subset of A.
- 3. A is infinite.

#### Example 1.16.

- 1.  $f: \mathbb{Z}^+ \hookrightarrow \mathbb{R}$ .
- 2.  $f: \mathbb{R} \to (-1,1)$  by  $f(0) = 0, f(a) = \frac{1}{a}$ .
- 3.  $\mathbb{R}$  is infinite.

**Definition 1.17. Axiom of choice** Given a collection  $\mathcal{A}$  of disjoint nonempty sets  $(i.e. \ \forall x, y \in \mathcal{A}, x \cap y = \emptyset)$ , there exists a set C consisting of exactly one element from each element of  $\mathcal{A}$ ; that is,  $C \subset \bigcup \mathcal{A}$  and for each  $A \in \mathcal{A}$ , the set  $C \cap A$  contains a single element.

The set C can be thought of as having been obtained by choosing one element from each of the sets in A.

# **Alphabetical Index**

Axiom of choice, 6 LUB property, 3

Cartesian product, 5 Open interval, 3

Dictionary order relation, 3

GLB property, 3

Order Type, 3

linear continuum, 4 Principle of recursive definition, 6