Oasis Infobyte - OIBSIP - Data Science

Task 1: Iris Flower Classification

Intern - Shravani Mahesuni

Problem Statement: Measurements of Iris flower is given according to their species, and the moto is to train a machine learning model that can learn from the

```
measurements of the iris species and their classification.
In [16]: #importing libraries
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.linear_model import LogisticRegression
         from sklearn.metrics import classification_report,confusion_matrix
         Loading dataset
In [2]: #load dataset/read dataset
         df = pd.read_csv('Iris.csv')
         df.head()
```

```
Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
```

[-]:		101	ocpailengthom	осраннатот	r ctailengthom	i ctairriatiioiii	Opcoics
	0	1	5.1	3.5	1.4	0.2	Iris-setosa
	1	2	4.9	3.0	1.4	0.2	Iris-setosa
	2	3	4.7	3.2	1.3	0.2	Iris-setosa
	3	4	4.6	3.1	1.5	0.2	Iris-setosa
	4	5	5.0	3.6	1 /	0.2	Iris-setosa

In [3]: #calculating numeric & object series df.describe()

Out[3]:	Id		${\sf SepalLengthCm}$	SepalWidthCm	PetalLengthCm	PetalWidthCm		
	count	150.000000	150.000000	150.000000	150.000000	150.000000		
	mean	75.500000	5.843333	3.054000	3.758667	1.198667		
	std	43.445368	0.828066	0.433594	1.764420	0.763161		
	min	1.000000	4.300000	2.000000	1.000000	0.100000		
	25%	38.250000	5.100000	2.800000	1.600000	0.300000		
	50%	75.500000	5.800000	3.000000	4.350000	1.300000		
	75%	112.750000	6.400000	3.300000	5.100000	1.800000		
	max	150.000000	7.900000	4.400000	6.900000	2.500000		

```
In [4]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):
# Column
              Non-Null Count Dtype
                 -----
                 150 non-null int64
  Id
    SepalLengthCm 150 non-null float64
    SepalWidthCm 150 non-null float64
    PetalLengthCm 150 non-null
                               float64
    PetalWidthCm 150 non-null
                               float64
5 Species
                 150 non-null
                                object
dtypes: float64(4), int64(1), object(1)
memory usage: 7.2+ KB
```

In [5]: df["Species"].value_counts() #count sequences

```
50
Iris-setosa
Iris-versicolor
                   50
Iris-virginica
                   50
Name: Species, dtype: int64
```

Splitting the data up by categories or different groups

```
sns. Facet Grid (df, hue="Species", height=5). map (plt. scatter, "SepalLength Cm", "PetalLength Cm"). add\_legend () \# data \ visualization () \# d
In [6]:
```

```
<seaborn.axisgrid.FacetGrid at 0x24a1390f880>
Out[6]:
```



```
In [7]: x = df[["SepalLengthCm", "SepalWidthCm", "PetalLengthCm", "PetalWidthCm"]].values
        y = df[["Species"]].values
```

creating a logistic regression classifier object which can fit model using fit function

```
Model = LogisticRegression()
In [9]:
        Model.fit(x,y)
        C:\Users\DELL\anaconda3\lib\site-packages\sklearn\utils\validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d array was expected.
        Please change the shape of y to (n_samples, ), for example using ravel().
          y = column_or_1d(y, warn=True)
Out[9]:
        ▼ LogisticRegression
        LogisticRegression()
```

```
Model.score(x,y).round(2) #accuracy
In [10]:
         0.97
Out[10]:
```

```
#Prediction
         predicted = Model.predict(x)
In [14]:
```

	ation report ana fication_report(edicted)	
	precision	recall	f1-score	support
Iris-set	osa 1.00	1.00	1.00	50

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	50
Iris-versicolor	0.98	0.94	0.96	50
Iris-virginica	0.94	0.98	0.96	50
accuracy			0.97	150
macro avg	0.97	0.97	0.97	150
weighted avg	0.97	0.97	0.97	150

```
In [17]: cf = confusion_matrix(Actual, predicted)
```

```
In [18]: print(cf) # printing confusion matrix
         [[50 0 0]
```

```
[ 0 1 49]]
In [19]: predicted = Model.predict([[5.1,3.5,1.4,0.2]])
         predicted
```

array(['Iris-setosa'], dtype=object) Out[19]:

[0 47 3]