

Genetic algorithm based Engineering problems in wafer fabrication testing

Members: Junjie He, Xin Liu, Liling Zuo April 29 2018

1	Problem analysis			
2	Problem solving			
3	Detailed explanation			
4	Comparison and analysis			
5	Summary and outlook			

Problem analysis

- Problem object
- Dataset source :
- Data measured by various sensors in the wafer fabrication test process

Data Set Characteristics:	Multivariate	Number of Instances:	1567	Area:	Computer
Attribute Characteristics:	Real	Number of Attributes:	591	Date Donated	2008-11-19
Associated Tasks:	Classification, Causal-Discovery	Missing Values?	Yes	Number of Web Hits:	69656

- Engineering problems
- According to the wafer test data, accurately determine whether the wafer is qualified or not, and reduce the false positive rate.

Problem analysis

data analysis

Problem characteristics Too high feature dimension :

Sample data imbalance

2270.256	1258.456	1.395	100
2207.389	962.5317	1.2043	100
2208.856	1157.722	1.5509	100
NaN	NaN	NaN	NaN
2207.389	962.5317	1.2043	100
2207.389	962.5317	1.2043	100
2160.367	899.9488	1.4022	100
2203.9	1116.413	1.2639	100
2257.167	1437.957	1.4918	100

Inconsistent distribution of each feature *

Null value exists in the data set

 $\langle 1 \rangle$

Problem analysis

2

- 3
- **Detailed explanation of key parts**
- 4
- **Comparison and analysis**
- 5
- **Summary and outlook**

- Data cleaning for data loss issues
- To reduce irrelevant features and redundant features, mutual information calculation and feature pre-screening
- Data collection into data imbalance issues
- The genetic algorithm is used to further optimize the features of the pre-screening, and a certain feature subset combination is selected, so that the detection accuracy of the non-conforming product is the highest.

 $\langle 1 \rangle$

Problem analysis

2

- 3
- **Detailed explanation of key parts**
- 4
- **Comparison and analysis**
- 5
- **Summary and outlook**

Data cleaning

- Eliminate duplicate data
- Fill in missing values

2270.256	1258.456	1.395	100
2207.389	962.5317	1.2043	100
2208.856	1157.722	1.5509	100
NaN	NaN	NaN	NaN
2207.389	962.5317	1.2043	100
2207.389	962.5317	1.2043	100
2160.367	899.9488	1.4022	100
2203.9	1116.413	1.2639	100
2257.167	1437.957	1.4918	100

Mean fill

1258.456	1.395	100
962.5317	1.2043	100
1157.722	1.5509	100
1396.377	4.197013	100
962.5317	1.2043	100
962.5317	1.2043	100
899.9488	1.4022	100
1116.413	1.2639	100
1437.957	1.4918	100
	962.5317 1157.722 1396.377 962.5317 962.5317 899.9488 1116.413	962.5317 1.2043 1157.722 1.5509 1396.377 4.197013 962.5317 1.2043 962.5317 1.2043 899.9488 1.4022 1116.413 1.2639

Normalized

- Pre-screening
- > Screening basis: mutual information
- Calculate the correlation between 590 features and labels, and use greedy algorithm to select the top 100 features with large mutual information.

Balanced

- Synthetic Minority Oversampling Technique (SMOTE)
- Oversampling balance data

- Edited Nearest Neighbor (ENN)
- Undersampling enhanced data separability

Balanced

Generated GAN

GAN frame

Simulation data and real data Discriminator probability result output

Feature selection based on genetic algorithm

The features are selected by 0-1 coding, the selected features are learned by the AdaBoost classifier, and the recall rate of the test set is returned as the fitness value, and the population is iterated continuously.

GA Classifier

Feature selection algorithm framework based on genetic algorithm

➤ Integrated learning algorithm AdaBoost for data classification

The AdaBoosting algorithm iterates on a base learner, and each adjustment focuses on weight updates for the current misclassified sample.

AdaBoosting integrated learning principle

 $\langle 1 \rangle$

Problem analysis

2

- (3)
- **Detailed explanation of key parts**
- 4
- **Comparison and analysis**
- 5
- **Summary and outlook**

Different classifiers (uncharacterized screening)

The type of classifier	Recall	Processing time (s)
naive_bayes_classifier	0.80	0.005
knn_classifier	0.75	0.007
logistic_regression_classifier	0.75	0.03
decision_tree_classifier	0.86	0.03
svm_classifier	0.94	0.7
Adaboosting	0.87	0.4

Different crossover operators

crossover	mutate	selection	Recall
cxOnePoint	mutFlipBit	selTournament	0.857
cxTwoPoint	mutFlipBit	selTournament	0.75
cxUniform	mutFlipBit	selTournament	0.8125
cxPartialyMatche d	mutFlipBit	selTournament	0.85
cxOrdered	mutFlipBit	selTournament	0.83

Different ways of variation

crossover	mutate	selection	Recall
cxOnePoint	mutFlipBit	selTournament	0.857
cxOnePoint	mutShuffleInd exes	selTournament	0.7
cxOnePoint	mutGaussian	selTournament	0.714
cxOnePoint	mutFlipBit	selTournament	0.857
cxOnePoint	mutFlipBit	selRoulette	0.625
cxOnePoint	mutFlipBit	selStochasticUni versalSampling	0.73

> Different data balancing methods

The result of Gan

The result of Smote&Enn

Experimental result

Normalized confusion matrix 0.74 -1 **⊦** 0.6 True label l- 0.5 - 0.4 0.13 0.87 1 - 0.3 0.2 Į Predicted label

ROC curve

Confusion matrix

Experimental result

Best individual is

```
[1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1]
```

■ The best recall is:

0.7561538461538461

■ The last features that we choose is

[15, 18, 46, 50, 51, 59, 60, 65, 71, 90, 115, 117, 148, 154, 203, 208, 252, 271, 283, 285, 289, 318, 319, 321, 324, 333, 339, 341, 388, 410, 417, 421, 423, 424, 430, 439, 440, 452, 456, 457, 460, 469, 472, 474, 477, 490, 496, 510, 520, 522, 527]

- 1
- **Problem analysis**

2

- 3
- **Detailed explanation of key parts**
- 4
- **Comparison and analysis**

- 5
- **Summary and outlook**

Summary and outlook

Summary

- Familiar with a variety of data imbalance processing methods:
 Gan, Smote
- Skilled in using genetic algorithms for feature selection
- Skilled in using a variety of libraries, toolboxes for algorithm implementation, visualization, etc.
- The team has both division of labor and collaboration, and progress is faster.

Outlook

- Exploring the quality evaluation criteria of a Gan method to generate one-dimensional data
- The preliminary data analysis work needs to be further

THAWKS