Reporte de Teoría Computacional

Carlos Tonatihu Barrera Pérez Profesor: Genaro Juárez Martínez Teoría Computacional Grupo: 2CM4

4 de diciembre de 2016

${\bf \acute{I}ndice}$

1.	AFD Palabras que contienen 'web' y/o 'ebay'	2
	1.1. Descripción del problema	2
	1.2. Código	3
	1.3. Pruebas	11
2.	Planetas	14
	2.1. Descripción del problema	14
	2.2. Código	14
	2.3. Pruebas	21
3.	Palindromo usando gramática libre de contexto	24
	3.1. Descripción del problema	24
	3.2. Código	24
	3.3. Pruebas	27
4.	Gramática libre de contexto no ambigua	29
	4.1. Descripción del problema	29
	4.2. Código	29
	4.3. Pruebas	32
5.	Autómata de Pila	34
	5.1. Descripción del problema	34
	5.2. Código	35
	5.3. Pruebas	39
6.	Maquina de Turing	45
	6.1. Descripción del problema	45
	6.2. Código	46
	6.3. Pruebas	50

1. AFD Palabras que contienen 'web' y/o 'ebay'

1.1. Descripción del problema

La elaboración de este programa consistió en convertir un autómata finito no determinista como el de la figura 1 , que reconoce las palabras 'web' y 'ebay', a un autómata finito determinista como el de la figura 2.

Figura 1: Diagrama de un AFN que busca las palabras 'web' y 'ebay.[1]

Además, el programa contara con modo manual y automático, en el modo manual el usuario ingresara una cadena y se le mostrara las palabras encontradas, su posición y cuantas fueron encontradas.

Figura 2: Conversion del AFN a un AFD. [1]

En el modo automático se hará lo mismo pero con el agregado de que el texto se obtendrá de un archivo con extensión '.txt' y se mostrara la linea de texto en la que fue encontrada la palabra. Es importante señalar que todo aquello que no es un símbolo del alfabeto español, $\sum = \{a, b, ..., z, A, B, ..., Z\}$, es tomado como un espacio. Además, debe tener una opción para visualizar el diagrama de la figura 2.

1.2. Código

El código fue realizado en Python 3.5. Archivo: main_webay.py

```
# main_webay.py
# -*- coding: utf-8 -*-
from __future__ import print_function
from diagrama import Diagrama
from automata import automata
separador = '='*50
def main():
continuar = True
while continuar:
  opcion = imprimir_menu()
  if opcion == 1:
    entrada_consola()
  elif opcion == 2:
    entrada_archivo()
  elif opcion == 3:
    ver_diagrama()
  else:
    break
  print('*' * 100)
  opcion = input("Reintentar [s/n]: ")
  if opcion.lower() != 's':
    continuar = False
print('Saliendo del programa...')
def imprimir_menu():
print('\n\n%sMenu%s' % (separador, separador))
print("""
    1.- Entrada en consola
    2.- Ingresar nombre del archivo
    3.- Ver diagrama de estados
    4.- Salir
 """)
try:
  opcion = int(input("Selecciona una opcion valida: "))
```

```
return opcion
except Exception as e:
  print('Error ', e)
return 0
def entrada_consola():
texto = input("Escribe el texto: ")
texto += ' '
diccionario = {}
diccionario = automata(texto)
 imprimir_diccionario(diccionario)
def entrada_archivo():
texto = input('Escribe el nombre del archivo: ')
try:
  archivo = open(texto, 'r')
except Exception as e:
  print('Error al abrir archivo: ', e)
  return 0
diccionario = []
num_linea = 1
for linea in archivo:
  diccionario.append(automata(linea))
  num_linea += 1
while i<num_linea:</pre>
  print('\nEn la linea: ', i)
  imprimir_diccionario(diccionario[i-1])
  i +=1
 archivo.close()
def imprimir_diccionario(diccionario):
print('\nSe encontraron %s web y %s ebays' %(diccionario['num_web'],
    diccionario['num_ebay']))
print('En las posiciones:')
print('%s para web' %diccionario['web_pos'])
print('%s para ebay' %diccionario['ebay_pos'])
print('Las palabras encontradas fueron: %s' %diccionario['palabras'])
def ver_diagrama():
print('Mostrando diagrama del automata. Cierre la ventana para continuar')
try:
  diagrama = Diagrama()
  diagrama.master.title('Diagrama del automata webay')
  diagrama.mainloop()
 except Exception as e:
     print("Error", e)
```

Archivo: automata_webay.py

```
# automata_webay.py
# -*- coding: utf-8 -*-
from __future__ import print_function
def automata(texto):
  estado = 'B'
  palabra_aux = ''
  num_palabra = 1
  cumple = False
  ebay = 0
  palabra_posicion = 0
  ebay_pos = []
  web_pos = []
  web = 0
  palabras = []
  diccionario = {}
  for simbolo in texto:
     palabra_posicion += 1
     simbolo_aux = simbolo.lower()
     if simbolo == '\n':
        simbolo = ' \setminus n'
     print('-> delta(%s, %s)' % (estado, simbolo), end="\t")
     estado = estados(estado, simbolo_aux)
     if estado == 'G' or estado == 'I':
        cumple = True
     if estado == 'G':
        web_pos.append([palabra_posicion-2, palabra_posicion])
     elif estado == 'I':
        ebay += 1
        ebay_pos.append([palabra_posicion-3, palabra_posicion])
     if ((ord(simbolo_aux) < 123 and ord(simbolo_aux) > 96) or
         ord(simbolo_aux) == 241):
        palabra_aux += simbolo
     else:
        if cumple:
           palabras.append(palabra_aux)
           cumple = False
        palabra_aux = ''
  diccionario = {'num_web': web, 'num_ebay':ebay, 'web_pos':web_pos,
      'ebay_pos':ebay_pos, 'palabras':palabras}
  return diccionario
```

```
def estados(estado, simbolo):
  if estado == 'B':
     estado = estado_B(simbolo)
  elif estado == 'C':
     estado = estado_C(simbolo)
  elif estado == 'D':
     estado = estado_D(simbolo)
  elif estado == 'E':
     estado = estado_E(simbolo)
  elif estado == 'F':
     estado = estado_F(simbolo)
  elif estado == 'G':
     estado = estado_G(simbolo)
  elif estado == 'H':
     estado = estado_H(simbolo)
  elif estado == 'I':
     estado = estado_I(simbolo)
  else:
     estado = 'A'
  return estado
def estado_B(simbolo):
  if simbolo == 'w':
     return 'C'
  elif simbolo == 'e':
     return 'D'
  return 'B'
def estado_C(simbolo):
  if simbolo == 'w':
     return 'C'
  elif simbolo == 'e':
     return 'E'
  return 'B'
def estado_D(simbolo):
  if simbolo == 'b':
     return 'F'
  elif simbolo == 'e':
     return 'D'
  elif simbolo == 'w':
     return 'C'
  return 'B'
def estado_E(simbolo):
  if simbolo == 'b':
     return 'G'
```

```
elif simbolo == 'e':
     return 'D'
  elif simbolo == 'w':
     return 'C'
  return 'B'
def estado_F(simbolo):
  if simbolo == 'a':
     return 'H'
  elif simbolo == 'e':
     return 'D'
  elif simbolo == 'w':
     return 'C'
  return 'B'
def estado_G(simbolo):
  if simbolo == 'a':
     return 'H'
  elif simbolo == 'e':
     return 'D'
  elif simbolo == 'w':
     return 'C'
  return 'B'
def estado_H(simbolo):
  if simbolo == 'y':
     return 'I'
  elif simbolo == 'e':
     return 'D'
  elif simbolo == 'w':
     return 'C'
  return 'B'
def estado_I(simbolo):
  if simbolo == 'e':
     return 'D'
  elif simbolo == 'w':
     return 'C'
  return 'B'
```

Archivo: diagrama_webay.py

```
# diagrama_webay.py
# -*- coding: utf-8 -*-
from __future__ import print_function
import tkinter as tk

class Diagrama(tk.Frame):
```

```
def __init__(self, master=None):
   super().__init__(master, background='white')
   self.pack(fill=tk.BOTH, expand=tk.YES)
   self.canvas = tk.Canvas(self, bg='white')
   self.canvas.pack(fill=tk.BOTH, expand=1)
   self.dibujarDiagrama()
   self.centrarVentana()
def dibujarDiagrama(self):
   coord_circulo = [100, 205, 150, 255]
   self.dibujarLinea([25, 275, 100, 275])
   self.dibujarCirculo([100, 255, 150, 305])
   self.dibujar_bases()
   self.reflexiva()
   self.normal()
   self.reves()
   self.masflechas()
   self.puntos()
   self.letras()
   self.etiquetas()
def etiquetas(self):
   self.canvas.create_text(75, 245, text='S-e-w')
   self.canvas.create_text(150, 180, text='S-e-w')
   self.canvas.create_text(405, 565, text='S-e-w')
   self.canvas.create_text(260, 465, text='S-a-e-w')
   self.canvas.create_text(515, 90, text='S-a-e-w')
   self.canvas.create_text(180, 400, text='S-b-e-w')
   self.canvas.create_text(300, 90, text='S-b-e-w')
   self.canvas.create_text(380, 530, text='S-e-w-y')
   self.canvas.create_text(500, 510, text='e')
   self.canvas.create_text(400, 460, text='e')
   self.canvas.create_text(300, 420, text='e')
   self.canvas.create_text(210, 325, text='e')
   self.canvas.create_text(180, 335, text='e')
   self.canvas.create_text(300, 170, text='e')
   self.canvas.create_text(355, 215, text='e')
   self.canvas.create_text(480, 230, text='e')
   self.canvas.create_text(600, 310, text='w')
   self.canvas.create_text(500, 320, text='w')
   self.canvas.create_text(450, 100, text='w')
   self.canvas.create_text(310, 140, text='w')
   self.canvas.create_text(220, 130, text='w')
   self.canvas.create_text(165, 215, text='w')
   self.canvas.create_text(220, 235, text='w')
   self.canvas.create_text(280, 255, text='w')
   self.canvas.create_text(470, 170, text='b')
   self.canvas.create_text(305, 370, text='b')
```

```
self.canvas.create_text(605, 370, text='y')
   self.canvas.create_text(455, 370, text='a')
   self.canvas.create_text(555, 250, text='a')
def letras(self):
   self.canvas.create_text(50, 265, text='Inicio')
   self.canvas.create_text(125, 150+130, text='B')
   self.canvas.create_text(225, 100+80, text='C')
   self.canvas.create_text(385, 100+80, text='E')
   self.canvas.create_text(545, 100+80, text='G')
   self.canvas.create_text(225, 250+130, text='D')
   self.canvas.create_text(385, 250+130, text='F')
   self.canvas.create_text(545, 250+130, text='H')
   self.canvas.create_text(705, 250+130, text='I')
def dibujarCirculo(self, coordenadas):
   self.canvas.create_oval(coordenadas)
def dibujarLinea(self, coord):
   self.canvas.create_line(coord)
   self.canvas.create_oval(coord[2]-3, coord[3]-3, coord[2]+3, coord[3]+3,
       fill='black')
def dibujar_bases(self):
   x, y = 100, 100
   for num in range(3):
       self.dibujarLinea([140, 260, 200, 185])
       self.dibujarCirculo([100+x, 255-y, 150+x, 305-y])
       self.dibujarLinea([250, 180, 360, 180])
       self.dibujarLinea([410, 180, 520, 180])
       self.dibujarLinea([140, 300, 200, 380])
       self.dibujarCirculo([100+x, 255+y, 150+x, 305+y])
       self.dibujarLinea([150+x, 380, 260+x, 380])
       x = x + 160
       if num == 2:
           self.dibujarCirculo([100+x, 255+y, 150+x, 305+y])
           self.dibujarCirculo([105+x, 260+y, 145+x, 300+y])
           self.dibujarCirculo([105+x-160, 260-y, 145+x-160, 300-y])
def reflexiva(self):
   extra = {'start': 20, 'extend': 255}
   self.crear_arco([85, 245, 120, 275], extra)
   extra = {'start': -20, 'extend': 275}
   self.crear_arco([195, 135, 225, 165], extra)
   extra = {'start': -20, 'extend': 275}
   self.crear_arco([195, 335, 225, 365], extra)
```

```
def normal(self):
   extra = {'start': 87, 'extend': 105}
   self.crear_arco([125, 175, 270, 310], extra)
   extra = {'start': 45, 'extend': 95}
   self.crear_arco([225, 150, 390, 250], extra)
   extra = {'start': 25, 'extend': 135}
   self.crear_arco([235, 105, 545, 300], extra)
   extra = {'start': 30, 'extend': 165}
   self.crear_arco([120, 100, 385, 350], extra)
   extra = {'start': 20, 'extend': 150}
   self.crear_arco([120, 25, 545, 450], extra)
def reves(self):
   extra = {'start': -87, 'extend': -105}
   self.crear_arco([125, 250, 270, 390], extra)
   extra = {'start': -45, 'extend': -95}
   self.crear_arco([225, 310, 390, 410], extra)
   extra = {'start': -25, 'extend': -135}
   self.crear_arco([235, 260, 545, 455], extra)
   extra = {'start': -30, 'extend': -160}
   self.crear_arco([125, 205, 385, 455], extra)
   extra = {'start': -24, 'extend': -150}
   self.crear_arco([123, 115, 550, 520], extra)
   extra = {'start': -20, 'extend': -150}
   self.crear_arco([123, 50, 730, 580], extra)
   extra = {'start': -20, 'extend': -145}
   self.crear_arco([235, 200, 730, 500], extra)
def masflechas(self):
   self.dibujarLinea([545, 205, 555, 355])
   self.dibujarLinea([545, 355, 235, 200])
   self.dibujarLinea([700, 355, 235, 200])
   self.dibujarLinea([385, 355, 235, 200])
   self.dibujarLinea([545, 205, 240, 360])
   self.dibujarLinea([385, 205, 240, 360])
   self.dibujarLinea([230, 355,235, 200])
def crear_arco(self, coord, extra=None):
   self.canvas.create_arc(coord, start=extra['start'],
       extent=extra['extend'], style='arc')
def puntos(self):
   self.canvas.create_oval(123, 250, 129, 257, fill='black')
   self.canvas.create_oval(124, 301, 131, 308, fill='black')
   self.canvas.create_oval(204, 361, 211, 368, fill='black')
   self.canvas.create_oval(242, 389, 249, 396, fill='black')
   self.canvas.create_oval(204, 161, 211, 168, fill='black')
```

```
self.canvas.create_oval(242, 163, 249, 170, fill='black')

def centrarVentana(self):
   ancho, altura = 850, 605
   ancho_pantalla = self.winfo_screenwidth()
   altura_pantalla = self.winfo_screenheight()
   posicion_x = (ancho_pantalla - ancho)/2
   posicion_y = (altura_pantalla - altura)/2
   self.master.geometry('%dx%d+%d+%d' % (ancho, altura, posicion_x, posicion_y))
```

1.3. Pruebas

Pruebas de las opciones del menú. Modo de manual.

```
훩 MINGW32:/c/Users/USER/Documents/tona/git/teoria-computacional/segundo-parcial/weba

    Entrada en consola

        2.- Ingresar nombre del archivo
        3.- Ver diagrama de estados
        4.- Salir
Selecciona una opcion valida: 1
Escribe el texto: la web es buena porque esta ebay con mucha webwebweb la webay es mejor
 \rightarrow delta(B,l) \rightarrow delta(B,a) \rightarrow delta(B, ) \rightarrow delta(B,w) \rightarrow delta(C,e) \rightarrow delta(E,b)
                                                                                                         -> delta
       -> delta(B,e) --> delta(D,s) --> delta(B,e) --> delta(B,e) --> delta(B,u) -> delta(B,e)
> delta(D,n) -> delta(B,a) -> delta(B, ) -> delta(B,p) -> delta(B,o) -> delta(B,r) -> delta
(B,q) -> delta(B,u) -> delta(B,e) -> delta(D, ) -> delta(B,e) -> delta(D,s) -> delta(B,t)
> delta(B,a) -> delta(B, ) -> delta(B,e) -> delta(D,b) -> delta(F,a) -> delta(H,y) -> delta(I, ) -> delta(B,c) -> delta(B,o) -> delta(B,n) -> delta(B, ) -> delta(B,m) -> delta(B,u)
 delta(B,c) -> delta(B,h) -> delta(B,a) -> delta(B, ) -> delta(B,w) -> delta(C,e)
(E,b) \quad -> \; delta(G,w) \quad -> \; delta(C,e) \quad -> \; delta(E,b) \quad -> \; delta(G,w) \quad -> \; delta(C,e) \quad -> \; delta(E,b)
> delta(G,w) -> delta(C,e) -> delta(E,b) -> delta(G, ) -> delta(B,l) -> delta(B,a) -> delta(B,b) -> delta(B,w) -> delta(C,e) -> delta(E,b) -> delta(G,a) -> delta(H,y) -> delta(I, )
> delta(B,e)
              -> delta(D,s) -> delta(B, ) -> delta(B,m) -> delta(B,e) -> delta(D,j)
(B,o) -> delta(B,r) -> delta(B, )
Se encontraron 6 web y 2 ebays
En las posiciones:
[[4, 6], [44, 46], [47, 49], [50, 52], [53, 55], [60, 62]] para web [[29, 32], [61, 64]] para ebay
Las palabras encontradas fueron: ['web', 'ebay', 'webwebwebweb', 'webay']
Reintentar [s/n]:
```

Figura 3: Historia del autómata y las palabras con 'web' y/o 'ebay'.

Modo automático

```
1.- Entrada en consola
2.- Ingresar nombre del archivo
3.- Ver diagrama de estados
4.- Salir

Selecciona una opcion valida: 2

Escribe el nombre del archivo: texto.txt
-> delta(B,H) -> delta(B,C) -> delta(B,R) ->
```

Figura 4: Parte de la historia del autómata y las palabras con 'web' y/o 'ebay'.

```
-> delta(B,\n)
n la linea: 1
Se encontraron 1 web y 1 ebays
En las posiciones:
[[17, 19]] para web
[[42, 45]] para ebay
Las palabras encontradas fueron: ['Website', 'eBay']
En la linea: 2
Se encontraron 1 web y 1 ebays
En las posiciones:
[[25, 27]] para web
[[1, 4]] para ebay
Las palabras encontradas fueron: ['Ebay', 'website']
En la linea: 3
Se encontraron 1 web y 1 ebays
Enalas posiciones:
[[55, 57]] para web
[[80, 83]] para ebay
Las palabras encontradas fueron: ['website', 'eBay']
En la linea: 4
Se encontraron 1 web y 1 ebays
En las posiciones:
[[13, 15]] para web
```

Figura 5: Parte de la historia del autómata y las palabras con 'web' y/o 'ebay'.

Diagrama.

Figura 6: Diagrama de transiciones del autómata 'webay'.

2. Planetas

2.1. Descripción del problema

Se desarrollo un programa para observar en que momento falla el tener n numero de elementos en 3 grupos, se le llama fallar al punto en el que solo hay elementos en uno de los grupos. El procedimiento se realiza tomando 1 elemento de dos de los grupos y así obtener 2 nuevos elementos en el otro conjunto como en la figura 7.

Figura 7: Ejemplo de funcionamiento con 3 elementos.[2]

Se mostraran los diferentes caminos que puede tomar el proceso al introducir el numero de los elementos. El programa cuenta con modo manual y automático.

2.2. Código

El código fue realizado en C. Archivo: arbol.h

```
#ifndef __ARBOL__
#define __ARBOL__
#include <stdio.h>
#include <stdlib.h>

struct Nodos{
  int dato[3];
  struct Nodos *siguiente;
};

typedef struct Nodos Nodo;

struct Arbol{
  int elemento[3];
  struct Arbol *arbolA;
  struct Arbol *arbolB;
  struct Arbol *arbolC;
```

```
Nodo *primero;
};
int insertar(struct Arbol **, int[3], Nodo *, int);
int crear_arbol(struct Arbol **, int[3], Nodo *);
void imprimir_arbol(struct Arbol *, int);
#endif
```

Archivo: arbol.c

```
#include "arbol.h"
int insertar(struct Arbol **arbol, int valor[3], Nodo *lista, int
   continuar) {
   int valor_aux[3];
   struct Arbol *arbol_nuevo = NULL;
   if(arbol == NULL) {
       return -1; //No existe
   }
   int existe_arbol_nuevo = crear_arbol(&arbol_nuevo, valor, lista);
   if(existe_arbol_nuevo==-1) {
       return -1; // No existe
   }
   if (*arbol == NULL) {
       *arbol = arbol_nuevo; //Raiz
   }
   if (continuar == 0){
       return 1;
   }
   if (valor[1] > 0 && valor[2] > 0) {
       int repetido =0;
       valor_aux[1] = valor[1] - 1;
       valor_aux[2] = valor[2] - 1;
       valor_aux[0] = valor[0] + 2;
       Nodo *mas = arbol_nuevo->primero;
       while(mas != NULL){
           if((mas->dato[0] == valor_aux[0])&&(mas->dato[1] ==
              valor_aux[1])&&(mas->dato[2] == valor_aux[2])) {
              repetido = 1;
              break;
           }
           mas = mas->siguiente;
       if (repetido == 0){
           insertar(&((*arbol)->arbolA), valor_aux, arbol_nuevo->primero,
              1);
       } else{
           insertar(&((*arbol)->arbolA), valor_aux, arbol_nuevo->primero,
              0);
```

```
}
}
if (valor[0] > 0 && valor[2] > 0) {
   int repetido =0;
   valor_aux[0] = valor[0] - 1;
   valor_aux[2] = valor[2] - 1;
   valor_aux[1] = valor[1] + 2;
   Nodo *mas = arbol_nuevo->primero;
   while(mas != NULL){
       if((mas->dato[0] == valor_aux[0])&&(mas->dato[1] ==
           valor_aux[1])&&(mas->dato[2] == valor_aux[2])) {
           repetido = 1;
           break;
       }
       mas = mas->siguiente;
   if (repetido == 0){
       insertar(&((*arbol)->arbolB), valor_aux, arbol_nuevo->primero,
           1);
   } else{
       insertar(&((*arbol)->arbolB), valor_aux, arbol_nuevo->primero,
           0);
   }
}
if (valor[0] > 0 && valor[1] > 0) {
   int repetido =0;
   valor_aux[0] = valor[0] - 1;
   valor_aux[1] = valor[1] - 1;
   valor_aux[2] = valor[2] + 2;
   Nodo *mas = arbol_nuevo->primero;
   while(mas != NULL){
       if((mas->dato[0] == valor_aux[0])&&(mas->dato[1] ==
           valor_aux[1])&&(mas->dato[2] == valor_aux[2])) {
           repetido = 1;
           break;
       } else{
       mas = mas->siguiente;
   if (repetido == 0){
       insertar(&((*arbol)->arbolC), valor_aux, arbol_nuevo->primero,
           1);
   } else{
       insertar(&((*arbol)->arbolC), valor_aux, arbol_nuevo->primero,
          0);
   }
}
```

```
return 1;
}
int crear_arbol(struct Arbol **nuevo, int valor[3], Nodo *lista) {
   struct Arbol *auxiliar = NULL;
   auxiliar = (struct Arbol*)malloc(sizeof(struct Arbol));
   if (auxiliar == NULL) {
       return -1;
   }
   auxiliar->arbolA = NULL;
   auxiliar->arbolB = NULL;
   auxiliar->arbolC = NULL;
   auxiliar->elemento[0] = valor[0];
   auxiliar->elemento[1] = valor[1];
   auxiliar->elemento[2] = valor[2];
   auxiliar->primero = NULL;
   while(lista != NULL){
       Nodo **final_lista = &(auxiliar->primero);
       while(*final_lista != NULL){
           final_lista = &((*final_lista)->siguiente);
       }
       Nodo *temporal = NULL;
       temporal = (Nodo *) malloc(sizeof(Nodo));
       if (temporal == NULL){
           printf("Temporal es null");
       temporal->dato[0] = lista->dato[0];
       temporal->dato[1] = lista->dato[1];
       temporal->dato[2] = lista->dato[2];
       temporal->siguiente = NULL;
       *final_lista = temporal;
       lista = lista->siguiente;
   }
   Nodo **final = &(auxiliar->primero);
   while(*final != NULL){
       final = &((*final)->siguiente);
   }
   Nodo *temporal = NULL;
   temporal = (Nodo *) malloc(sizeof(Nodo));
   if (temporal == NULL){
       printf("Temporal es null");
   }
   temporal->dato[0] = valor[0];
```

```
temporal->dato[1] = valor[1];
   temporal->dato[2] = valor[2];
   temporal->siguiente = NULL;
   *final = temporal;
   *nuevo = auxiliar;
   return 1;
void imprimir_arbol(struct Arbol *arbol, int n){
   int contador = 0;
   if(arbol->arbolA != NULL){
       imprimir_arbol(arbol->arbolA, n);
   } else {
       contador = contador +1;
   if(arbol->arbolB != NULL){
       imprimir_arbol(arbol->arbolB, n);
   } else {
       contador = contador +1;
   }
   if(arbol->arbolC != NULL){
       imprimir_arbol(arbol->arbolC, n);
   } else {
       contador = contador +1;
   if (contador == 3){
       FILE *archivo = NULL;
       archivo = fopen("resultado.txt", "a");
       Nodo *mi_nodo = arbol->primero;
       while(mi_nodo !=NULL){
           fprintf(archivo, "[%d,", mi_nodo->dato[0]);
           fprintf(archivo, "%d,", mi_nodo->dato[1]);
           fprintf(archivo, "%d]", mi_nodo->dato[2]);
           fputc(' ', archivo);
           if(mi_nodo->siguiente ==NULL){
              if(mi_nodo->dato[0] == n || mi_nodo->dato[1] == n ||
                  mi_nodo->dato[2] == n){
                  fputs("--Falla-- ", archivo);
              }
           }
           mi_nodo = mi_nodo->siguiente;
       fputs("\n", archivo);
       fclose(archivo);
   }
}
```

Archivo: main_planetas.c

```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "arbol.h"
int menu() {
   int opcion;
   printf("Que quieres hacer?\n1.-Manual\n2.-Automatico\n3.-Salir\n");
   scanf(" %d", &opcion);
   return opcion;
}
int menu_continuar() {
   int opcion;
   printf("Intentar otra vez?\nSi = 1 NO = 0\n");
   scanf(" %d", &opcion);
   return opcion;
}
int random_longitud() {
   int longitud = 1 + rand() % (1000 + 1 - 1);
   return longitud;
}
void iniciar(int n){
   FILE *archivo = NULL;
   archivo = fopen("resultado.txt", "w");
   fprintf(archivo, "El numero de elementos es: %d \n", n);
   fclose(archivo);
   srand(time(NULL));
   int a = 0;
   int b = 0;
   int c = 0;
   while(1){
       a = n-b;
       while(1){
           int numero[3];
           struct Arbol *arbol_prueba = NULL;
           Nodo *lista = NULL;
           archivo = fopen("resultado.txt", "a");
           numero[0] = a;
           numero[1] = b;
           numero[2] = c;
```

```
insertar(&arbol_prueba, numero, lista, 1);
           fputs("Combinacion: ", archivo);
           fprintf(archivo, "[%d,", numero[0]);
           fprintf(archivo, "%d,", numero[1]);
           fprintf(archivo, "%d]\n", numero[2]);
           fclose(archivo);
           imprimir_arbol(arbol_prueba, n);
           a = a-1;
           c = c+1;
           if (a<0){
              break;
           }
       }
       b = b+1;
       c = 0;
       if (b == n+1){
           break;
       }
   }
}
int main(int argc, char const *argv[]) {
   int continuar = 1;
   int manual = 1;
   int longitud = 0;
   while(continuar) {
       manual = menu();
       if (manual == 1) {
           printf("%s\n", "Ingresa el numero de elementos en el intervalo
              [0-1000]: ");
           scanf("%d", &longitud);
       } else if (manual == 2) {
           longitud = random_longitud();
       } else {
           break;
       printf("El numero de elementos es: %d\n", longitud);
       iniciar(longitud);
       printf("Proceso terminado, revisar archivo resultado.txt\n");
       continuar = menu_continuar();
   }
   return 0;
}
```

2.3. Pruebas

Pruebas de las opciones del menú. Modo de manual.

```
Que quieres hacer?

1.-Manual

2.-Automatico

3.-Salir

1

Ingresa el numero de elementos en el intervalo [0-1000]:

4

El numero de elementos es: 4

Proceso terminado, revisar archivo resultado.txt
Intentar otra vez?

Si = 1 NO = 0
```

Figura 8: Ejecución del programa en modo manual.

```
El numero de elementos es:4
         Combinacion: [4,0,0]
         [4,0,0] -- Falla-
        Combinacion: [3,0,1]
         [3,0,1] [2,2,0] [1,1,2] [3,0,1] [3,0,1] [2,2,0] [1,1,2] [0,3,1] [2,2,0] [3,0,1] [2,2,0] [1,1,2] [0,0,4] --Falla--
         Combinacion: [2,0,2]
         [2,0,2] [1,2,1] [3,1,0] [2,0,2] [2,0,2] [1,2,1] [0,4,0] --Falla--[2,0,2] [1,2,1] [0,1,3] [2,0,2]
         Combinacion: [1,0,3]
        [1,0,3] [0,2,2] [2,1,1] [4,0,0] --Falla---
[1,0,3] [0,2,2] [2,1,1] [1,3,0] [0,2,2]
[1,0,3] [0,2,2] [2,1,1] [1,0,3]
Combinacion: [0,0,4]
         [0,0,4] --Falla
         Combinacion: [3,1,0]
         [3,1,0] [2,0,2] [1,2,1] [3,1,0] [3,1,0] [2,0,2] [1,2,1] [0,4,0] --Falla--[3,1,0] [2,0,2] [1,2,1] [0,1,3] [2,0,2] Combination: [2,1,1]
         [2,1,1] [4,0,0] --Falla--
[2,1,1] [1,3,0] [0,2,2] [2,1,1]
[2,1,1] [1,0,3] [0,2,2] [2,1,1]
[]24
         Combinacion: [1,1,2]
          [1,1,2] [3,0,1] [2,2,0] [1,1,2] [1,1,2] [0,3,1] [2,2,0] [1,1,2]
          [1,1,2] [0,0,4] --Falla--
```

Figura 9: Resultado del proceso parte 1.

```
Combinacion: [0,1,3]
[0,1,3] [2,0,2] [1,2,1] [3,1,0] [2,0,2] [0,1,3] [2,0,2] [1,2,1] [0,4,0] --Falla--
[0,1,3] [2,0,2] [1,2,1] [0,1,3]
Combinacion: [2,2,0]
[2,2,0] [1,1,2] [3,0,1] [2,2,0]
[2,2,0] [1,1,2] [0,3,1] [2,2,0]
[2,2,0] [1,1,2] [0,0,4] --Falla--
Combinacion: [1,2,1]
[1,2,1] [3,1,0] [2,0,2] [1,2,1]
[1,2,1] [0,4,0] --Falla--
[1,2,1] [0,1,3] [2,0,2] [1,2,1]
Combinacion: [0,2,2]
[0,2,2] [2,1,1] [4,0,0] --Falla--
[0,2,2] [2,1,1] [1,3,0] [0,2,2]
[0,2,2] [2,1,1] [1,0,3] [0,2,2]
Combinacion: [1,3,0]
[1,3,0] [0,2,2] [2,1,1] [4,0,0] --Falla--
[1,3,0] [0,2,2] [2,1,1] [1,3,0]
[1,3,0] [0,2,2] [2,1,1] [1,0,3] [0,2,2]
Combinacion: [0,3,1]
[0,3,1] [2,2,0] [1,1,2] [3,0,1] [2,2,0]
[0,3,1] [2,2,0] [1,1,2] [0,3,1]
[0,3,1] [2,2,0] [1,1,2] [0,0,4] --Falla--
Combinacion: [0,4,0]
[0,4,0] -- Falla--
```

Figura 10: Resultado del proceso parte 2.

Figura 11: Probando el modo automático

```
El numero de elementos es:2
    Combinacion: [2,0,0]
    [2,0,0] -- Falla--
    Combinacion: [1,0,1]
    [1,0,1] [0,2,0] --Falla--
    Combinacion: [0,0,2]
    [0,0,2] --- Falla---
    Combinacion: [1,1,0]
    [1,1,0] [0,0,2] --Falla--
    Combinacion: [0,1,1]
    [0,1,1] [2,0,0] --Falla--
11
    Combinacion: [0,2,0]
12
    [0,2,0] -- Falla--
13
```

Figura 12: Resultado de la prueba

3. Palindromo usando gramática libre de contexto

3.1. Descripción del problema

Este problema fue parte de la introducción a las gramáticas libres de contexto o Context Free Grammars con el objetivo de generar cadenas que fueran parte del lenguaje de los palíndromos formados por ceros y unos como por ejemplo las cadenas 0011, 1111, 11011 entre otras. Dicho de otra forma, una cadena w forma parte del L_{pal} si y sólo si $w = w^R$. Para generar el palíndromo se utilizo la siguiente GIC.[1]

$$G_{pal} = (P, 0, 1, A, P)$$

Donde A representa el conjunto de las siguientes 5 producciones.

$$1.P \rightarrow \epsilon$$

$$2.P \rightarrow 0$$

$$3.P \rightarrow 1$$

$$4.P \rightarrow 0P0$$

$$5.P \rightarrow 1P1$$

El programa cuenta con modo manual y automático en los cuales se introduce la longitud $0 \le n \le 1000$ de la cadena que se desea obtener. Y se muestra el proceso de producción en pantalla y un archivo de texto.

3.2. Código

El código fue realizado en Python 3.5. Archivo: main_palindromo.py

```
# main_palindromo.py#
# -*- coding: utf-8 -*-
from __future__ import print_function
from palindromo import palindromo
import random
separador = '='*50
def main():
   continuar = True
   while continuar:
       opcion = imprimir_menu()
       if opcion == 1:
           entrada_consola()
       elif opcion == 2:
           entrada_automatico()
       else:
           break
```

```
print('=' * 100)
       opcion = input("Reintentar [s/n]: ")
       if opcion.lower() != 's':
           continuar = False
   print('Saliendo del programa...')
def imprimir_menu():
   print("""\n\nGramatica libre de contexto Gpal = ({P},{0,1},A,P)
   Donde A es:
   1. P -> e
   2. P -> 0
   3. P -> 1
   4. P -> OPO
   5. P -> 1P1
   """)
   print('\n%sMenu%s' % (separador, separador))
   print("""
       1.- Modo manual
       2.- Modo automatico
       4.- Salir
   """)
   try:
       opcion = int(input("Selecciona una opcion valida: "))
       return opcion
   except Exception as e:
       print('Error ', e)
       return 0
def entrada_automatico():
   longitud = random.randint(0, 1000)
   print("Generando palindromo con longitud = %s" % longitud)
   palindromo(longitud)
def entrada_consola():
   longitud = int(input('Introduce un numero entre 0 y 1000: '))
   if longitud>1000 or longitud<0:</pre>
       print('Algo salio mal =(')
       return 0
   print("Generando palindromo con longitud = %s" % longitud)
   palindromo(longitud)
main()
```

Archivo: palindromo.py

```
# palindromo.py
# -*- coding: utf-8 -*-
from __future__ import print_function
```

```
import random
def palindromo(repeticiones):
   archivo = open('palindromo-historia.txt', 'w')
   cadena = 'P'
   base_random = ''
   archivo.write('Longitud = %s\n' %repeticiones)
   archivo.write(cadena + '\n')
   print(cadena)
   if repeticiones % 2 == 1:
       cadena = generar_cadena(cadena, (repeticiones-1)/2, archivo)
       base_random = random.choice(['0', '1'])
   else:
       cadena = generar_cadena(cadena, repeticiones/2, archivo)
   cadena = cadena.replace('P', base_random)
   if base_random == '':
       base_random = 'e'
   archivo.write('Cadena final con base P=%s -> %s\n' %(base_random, cadena))
   print('Cadena final con base P=%s -> %s' %(base_random, cadena))
   archivo.close()
def generar_cadena(cadena, repeticiones, archivo):
   if repeticiones > 0:
       regla = random.choice(['0', '1'])
       cadena = cadena.replace('P', regla+'P'+regla)
       print('%s Regla usada: %sP%s ' %(cadena, regla, regla))
       archivo.write('%s Regla usada: %sP%s \n' %(cadena, regla, regla))
       repeticiones = repeticiones - 1
       cadena = generar_cadena(cadena, repeticiones, archivo)
   return cadena
```

3.3. Pruebas

Pruebas de las opciones del menú. Modo de manual

```
$ python main.py
Gramatica libre de contexto Gpal = ({P},{0,1},A,P)
   Donde A es:
   1. P -> e
   2. P -> 0
   3. P -> 1
4. P -> 0P0
   5. P -> 1P1
______
       1.- Modo manual
       2.- Modo automatico
4.- Salir
Selecciona una opcion valida: 1
Introduce un numero entre 0 y 1000: 2
Generando palindromo con longitud = 2
οΡο
     Regla usada: 0P0
Cadena final con base P=e -> 00
Reintentar [s/n]: s
```

Figura 13: Historia de la generación del palíndromo en consola.

```
Longitud = 2 A-

PA-

OPO Regla usada: OPO A-

Cadena final con base P=e -> 00 A-

5
```

Figura 14: Historia de la generación del palíndromo en archivo.

Modo de automático

```
Gramatica libre de contexto Gpal = (\{P\}, \{0,1\}, A, P)
   Donde A es:
   1. P -> e
   2. P -> 0
   3. P -> 1
   4. P -> 0P0
   5. P -> 1P1
______Menu______Menu______Menu___
      1.- Modo manual
      2.- Modo automatico
      4.- Salir
Selecciona una opcion valida: 2
Generando palindromo con longitud = 12
0P0
     Regla usada: 0P0
      Regla usada: 0P0
000P000
       Regla usada: 0P0
0001P1000 Regla usada: 1P1
00011P11000 Regla usada: 1P1
000110P011000 Regla usada: 0P0
Cadena final con base P=e -> 000110011000
```

Figura 15: Historia de la generación del palíndromo en consola.

```
Longitud = 12X-
1
2
     P = 
            Regla usada: 0P0 ¤⊸
3
     0P0
               Regla usada: 0P0 🖂
4
     00P00
                 Regla usada: 0P0 🗓-
5
     000P000
     0001P1000
                   Regla usada: 1P1-X-
6
                     Regla usada: 1P1 🖳
     00011P11000
     000110P011000
                       Regla usada: 0P0 ¤¬
     Cadena final con base P=e -> 000110011000
```

Figura 16: Historia de la generación del palindromo en archivo.

4. Gramática libre de contexto no ambigua

4.1. Descripción del problema

En este problema se debe de construir una única derivación por la izquierda para una cadena de paréntesis balanceada. Usando las siguiente GIC.

$$B \to (RB|\epsilon$$

 $R \to)|(RR$

En donde B es el símbolo inicial y R genera cadenas que tienen un paréntesis derecho más que uno izquierdo.

Si necesitamos expandir B entonces usamos $B \to (RB \text{ si el siguiente símbolo es "(" y <math>\epsilon$ al final.

Si necesitamos expandir R, usamos $R \to$) si el siguiente símbolo es ")" y (RR si es "(" [2] El debe contener un modo manual y automático, en el modo manual el usuario ingresara una cadena de paréntesis y sera procesada hasta llegar a una cadena final que nos indicara si la cadena esta balanceada o no.

Por otro lado, en el modo automático se genera una cadena aleatoria de paréntesis con longitud $0 \le n \le 1000$ que recibirá el mismo tratamiento que en el modo manual.

4.2. Código

El código fue realizado en Python 3.5. Archivo: main_webay.py

```
# main_parseo.py
# -*- coding: utf-8 -*-
from __future__ import print_function
from parseo import proceso
import random
separador = '='*50
def iniciar():
   continuar = True
   while continuar:
       opcion = imprimir_menu()
       if opcion == 1:
           entrada_consola()
       elif opcion == 2:
           ejecutar_random()
       else:
           break
       print('=' * 100)
       opcion = input("Reintentar [s/n]: ")
       if opcion.lower() != 's':
```

```
continuar = False
      print('Saliendo del programa...')
  def imprimir_menu():
      print('\n\n%sMenu%s' % (separador, separador))
      print("""
          1.- Entrada en consola (Manual)
          2.- Aleatorio (Automatico)
          3.- Salir
      """)
      try:
          opcion = int(input("Selecciona una opcion valida: "))
          return opcion
      except Exception as e:
          print('Error ', e)
          return 0
  def entrada_consola():
      texto = input("Escribe la cadena de parentesis: ")
      proceso(texto)
  def ejecutar_random():
      longitud_random = random.randint(1, 20)
      cadena = ''
      while i < longitud_random:</pre>
          cadena += random.choice(['(', ')'])
          i += 1
      print("La cadena es: ", cadena)
      proceso(cadena)
  iniciar()
Archivo: parseo.py
  # parseo.py
  # -*- coding: utf-8 -*-
  from __future__ import print_function
  def proceso(cadena):
      derivacion = 'B'
      archivo = open('historia-parentesis.txt', 'w')
      cadena += ' '
      print('Cadena: ', cadena)
      archivo.write('Cadena: %s' %cadena)
      continuar = True
```

```
for simbolo in cadena:
   if not continuar:
       break
   print(derivacion, end = '\t')
   archivo.write('\n%s' %derivacion)
   for paso in derivacion:
       if paso == 'B':
           if simbolo == '(':
              derivacion = derivacion.replace('B', '(RB', 1)
              print('Regla usada: B->(RB')
              archivo.write('Regla usada: B->(RB')
              break
           elif simbolo == ' ':
              derivacion = derivacion.replace('B', '', 1)
              print('Regla usada: B->e')
              archivo.write('Regla usada: B->e')
              break
           elif simbolo == ')':
              continuar = False
              break
       elif paso == 'R':
           if simbolo == ')':
              derivacion = derivacion.replace('R', ')', 1)
              print('Regla usada: R->)')
              archivo.write('Regla usada: R->)')
              break
           elif simbolo == '(':
              derivacion = derivacion.replace('R', '(RR', 1)
              print('Regla usada: R->(RR')
              archivo.write('Regla usada: R->(RR')
              break
           elif simbolo == ' ':
              continuar = False
              break
archivo.write('\nFinal: %s' %derivacion)
print('\nFinal: ', derivacion)
  if paso == 'B' and simbolo == '':
      print('\nCadena balanceada')
      archivo.write('\nCadena balanceada')
  else:
      print('\nCandena no balanceada')
      archivo.write('\nCadena no balanceada')
archivo.close()
```

4.3. Pruebas

Pruebas de las opciones del menú. Modo de consola.

```
1.- Entrada en consola (Manual)
        2.- Aleatorio (Automatico)
        3.- Salir
Selecciona una opcion valida: 1
Escribe la cadena de parentesis: ()()()(())((())())
Cadena: ()()(())(())(())
        Regla usada: B->(RB
(RB
        Regla usada: R->)
()B
        Regla usada: B->(RB
        Regla usada: R->)
Regla usada: B->(RB
() (RB
()()B
()()(RB Regla usada: R->)
()()()B Regla usada: B->(RB
()()()(RB
                Regla usada: R->(RR
()()()((RRB
()()()()RB
                Regla usada: R->)
                Regla usada: R->)
()()()(())B
                Regla usada: B->(RB
Regla usada: R->)
                        Regla usada: R->)
()()()(())((())RB
                        Regla usada: R->(RR
()()()(())((())(RRB
()()()(())((())()RB
                        Regla usada: R->)
                        Regla usada: R->)
()()()(())((())())B
                        Regla usada: B->e
Final: ()()()(())((())())
Cadena balanceada
```

Figura 17: Historia de las derivaciones en consola.

```
Cadena: ()()()(())((())())
         Regla usada: B->(RB
      (RB
            Regla usada: R->)
            Regla usada: B->(RB
      ()B
      ()(RB
              Regla usada: R->)
      ()()B
              Regla usada: B->(RB
      ()()(RB
                Regla usada: R->)
      ()()()B
                Regla usada: B->(RB)
      ()()()(RB
                 Regla usada: R->(RR
10
      ()()((RRB
                   Regla usada: R->)
                    Regla usada: R->)
      ()()()(RB
                   Regla usada: B->(RB
      ()()(())B
      ()()(())(RB
                     Regla usada: R->(RR
14
      ()()(())((RRB
                      Regla usada: R->(RR
      ()()(())(((RRRB
                          Regla usada: R->)
      ()()(())((()RRB
                          Regla usada: R->)
                          Regla usada: R->(RR
17
      ()()(())((())RB
      ()()(())((())(RRB
                           Regla usada: R->)
      ()()((())((())()RB
                           Regla usada: R->)
20
      ()()(())((())())B
                           Regla usada: B->e
      Final: ()()()(())((())())
      Cadena balanceada
```

Figura 18: Parte de la historia de las derivaciones en archivo.

Modo automático

Figura 19: Modo automático desde consola.

Figura 20: Historia del modo automático en archivo.

5. Autómata de Pila

5.1. Descripción del problema

En este programa se desarrollo un autómata de pila (vease figura 21) que aceptara el lenguaje de $\{0^n1^n \mid n \geq 1\}$. El programa tiene un modo manual y automático en ambos modos se evalúa una cadena de ceros y unos de longitud $1 \leq n \leq 1000$ y se muestra si la cadena es valida o no junto con los pasos para llegar a este resultado que se mostraran en archivo y consola. Además, se puede observar la animación de este proceso como el de la figura ?? si así se desea, esta acción remplaza a la historia del autómata en consola pero no en archivo.

Figura 21: Representación de un autómata de Pila.

Figura 22: Representación de un autómata de Pila.

5.2. Código

El código fue realizado en Python 3.5. Archivo: main_pila.py

```
#main_pila.py
# -*- coding: utf-8 -*-
from __future__ import print_function
from pila import automata
import random
separador = '='*50
def iniciar():
   continuar = True
   while continuar:
       opcion = imprimir_menu()
       if opcion == 1:
           entrada_consola()
       elif opcion == 2:
           ejecutar_random()
       else:
           break # Sal del programa
       print('=' * 100)
       opcion = input("Reintentar [s/n]: ")
       if opcion.lower() != 's':
           continuar = False
   print('Saliendo del programa...')
def imprimir_menu():
   print('\n\n%sMenu%s' % (separador, separador))
   print("""
       1.- Entrada en consola (Manual)
       2.- Aleatorio (Automatico)
       3.- Salir
   """)
   try:
       opcion = int(input("Selecciona una opcion valida: "))
       return opcion
   except Exception as e:
       print('Error ', e)
       return 0
def entrada_consola():
   texto = input("Escribe el numero binario: ")
   animacion = ver_animacion()
   automata(texto, animacion)
```

```
def ver_animacion():
   opcion = input("Ver animacion [s/n]: ")
   if opcion == 's':
       return True
   else:
       return False
def ejecutar_random():
   i = 0
   longitud_random = random.randint(1, 10)
   numero_binario = ''
   while i < longitud_random:</pre>
       numero_binario += random.choice(['0', '1'])
       i += 1
   print("El numero aleatorio es: ", numero_binario)
   animacion = ver_animacion()
   automata(numero_binario, animacion)
iniciar()
```

Archivo: automata_pila.py

```
#automata_pila.py
# -*- coding: utf-8 -*-
from __future__ import print_function
import time
class Pila(object):
   def __init__(self):
       self.altura = -1
       self.elementos = []
   def vacio(self):
       if self.altura == -1:
           return True
       else:
           return False
   def sacar(self):
       if self.vacio():
          return 'e'
       else:
           valor = self.elementos[self.altura]
           self.altura -= 1
           return valor
   def meter(self, elemento):
```

```
self.altura += 1
       self.elementos[self.altura:] = [elemento]
   def mostrar(self):
       i = self.altura
       cadena = ''
       while(i>-1):
           cadena += self.elementos[i]
           i -= 1
       return cadena
def automata(cadena, ver_animacion):
   pila = Pila()
   archivo = open('historia-pila.txt', 'w')
   pila.meter('Zo')
   estado = 'q'
   cadena_aux = cadena
   cadena = cadena + ' '
   archivo.write('La cadena es: ' + cadena_aux + '\n')
   for simbolo in cadena:
       if cadena_aux == '':
           cadena_aux = 'e'
       if ver_animacion:
           time.sleep(1)
           pintar(estado, cadena_aux, pila)
       else:
           print('(%s, %s, %s)' %(estado, cadena_aux, pila.mostrar()), end='
              |- ')
       archivo.write('(%s, %s, %s) |- ' %(estado, cadena_aux,
          pila.mostrar()))
       if estado == 'q':
           if simbolo == '0':
              pila.meter('X')
           elif simbolo == '1':
              if pila.sacar() == 'Zo':
                  pila.meter('Zo')
                  break
              estado = 'p'
           else:
              estado = 'f'
              break
       elif estado == 'p':
           if simbolo == '1':
              if pila.sacar() == 'Zo':
                  estado = 'f'
                  pila.meter('Zo')
                  break
           elif simbolo == '0':
```

```
pila.meter('X')
             cadena_aux = cadena_aux[1:]
             break
          elif simbolo == ' ':
             estado = 'f'
             if pila.mostrar() == 'Zo':
      cadena_aux = cadena_aux[1:]
   if cadena_aux == '':
      cadena_aux = 'e'
   if ver_animacion:
      time.sleep(1)
      pintar(estado, cadena_aux, pila)
      print('(%s, %s, %s)' %(estado, cadena_aux, pila.mostrar()))
      print('\n')
   archivo.write('(%s, %s, %s)' %(estado, cadena_aux, pila.mostrar()))
   if (pila.mostrar() == 'Zo') and cadena_aux == 'e':
      print('\nCadena valida')
      archivo.write('\nCadena valida')
   else:
      print('\nCadena invalida')
      archivo.write('\nCadena invalida')
   archivo.close()
def pintar(estado, cadena_aux, stack):
   pila = 'Zo'
   if stack.mostrar() != '':
      pila = stack.mostrar()
   print('\n')
   print('\n')
   print('\n')
   print('\n')
   print('\n')
   print(' %s' %cadena_aux)
   print(' ^')
   print(' |')
   print(' |')
   print(' |')
   print('----')
   print('| %s |' %estado)
   print('----')
   print(' |')
   print(' |')
```

```
print(' |')
print(' v')
print(' %s' %pila)
print('\n')
print('\n')
print('\n')
print('\n')
print('\n')
```

5.3. Pruebas

Pruebas de las opciones del menú. Modo de manual.

Figura 23: Historia del Autómata de Pila en animación 1

Figura 24: Historia del Autómata de Pila en animación $2\,$

Figura 25: Historia del Autómata de Pila en animación $3\,$

Figura 26: Historia del Autómata de Pila en animación 4

Figura 27: Historia del Autómata de Pila.

Modo automático

Figura 28: Historia del Autómata de Pila en animación 1

Figura 29: Historia del Autómata de Pila en animación $2\,$

Figura 30: Historia del Autómata de Pila en animación 3

Figura 31: Historia del Autómata de Pila en animación 4

```
La cadena es: 0000 |- (q, 0000, XZo) |- (q, 00, XXZo) |- (q, 0, XXXZo) |- (q, e, XXXXZo) |- (f, e, XXXXZo) |- (d, e, XXXXZo) |- (f, e, XXXXXZo) |- (f, e, XXXXZo) |- (f, e, XXXXZo) |- (f,
```

Figura 32: Historia del Autómata de Pila en archivo.

6. Maquina de Turing

6.1. Descripción del problema

Para este programa se desarrollo una maquina de Turing que acepte el lenguaje $\{0^n1^n \mid n \geq 1\}$. Que de manera formal se define como lo siguiente:

$$M = (q_0, q_1, q_2, q_3, q_4, 0, 1, 0, 1, X, Y, B, \delta, q_0, B, q_4)$$

donde δ se especifica como en la siguiente tabla:

Símbolo					
Estado	0	1	X	Y	В
q_0	(q_0, X, R)	-	-	(q_0, X, R)	-
q_1	(q_0, X, R)	(q_0, X, R)	-	(q_0, X, R)	-
q_2	(q_0, X, R)	-	(q_0, X, R)	(q_0, X, R)	-
q_3	-	-	-	(q_0, X, R)	(q_0, X, R)
q_4	_	_	-	-	-

El funcionamiento de esta maquina se puede entender mejor con el diagrama de la figura 33.

Figura 33: Diagrama de transiciones de una Maquina de Turing que acepta las cadenas 0^n1^n . [1]

El programa debe de contar con un modo manual y automático, en ambos modos se ingresara una cadena de ceros y unos que sera trabajada por la maquina de Turing a través de una unidad de control y una banda (véase la figura 34) la cual sera la cadena que se ingrese y se mostrara si es una cadena valida junto al proceso que se realizo para llegar a dicho resultado.

Figura 34: Representación de una Maquina de Turing. [1]

6.2. Código

El código fue realizado en Python 3.5. Archivo: main_turing.py

```
# main_turing.py
# -*- coding: utf-8 -*-
from __future__ import print_function
from metodos import maquina
import random
separador = '='*50
def iniciar():
   continuar = True
   while continuar:
       opcion = imprimir_menu()
       if opcion == 1:
           entrada_consola()
       elif opcion == 2:
           ejecutar_random()
           break # Sal del programa
       print('=' * 100)
       opcion = input("Reintentar [s/n]: ")
       if opcion.lower() != 's':
           continuar = False
   print('Saliendo del programa...')
def imprimir_menu():
   print('\n\n\sMenu\s' % (separador, separador))
   print("""
       1.- Entrada en consola (Manual)
```

```
2.- Aleatorio (Automatico)
       3.- Salir
   """)
   try:
       opcion = int(input("Selecciona una opcion valida: "))
       return opcion
   except Exception as e:
       print('Error ', e)
       return 0
def entrada_consola():
   texto = input("Escribe un numero binario: ")
   print('\n Historia de la maquina de Turing')
   maquina(texto)
def ejecutar_random():
   longitud_random = random.randint(1, 1000)
   binario = ''
   while i < longitud_random:</pre>
       binario += random.choice(['0', '1'])
       i += 1
   print("La cadena es: ", binario)
   print('\n Historia de la maquina de Turing')
   maquina(binario)
iniciar()
```

Archivo: maquina_turing.py

```
# maquina de turing.py
# -*- coding: utf-8 -*-
from __future__ import print_function
def maquina(cadena):
   continuar = True
   archivo = open('turing-historia.txt', 'w')
   i = 0
   estado = 0
   cadena_aux = list(cadena)
   cadena_final = ''
   archivo.write('La cadena es: %s \n' %cadena)
   while continuar:
       try:
          simbolo = cadena_aux[i]
       except Exception as e:
          cadena_aux.append('B')
```

```
simbolo = cadena_aux[i]
       cadena_final = imprimir_secuencia(estado, cadena_aux, i)
       print(cadena_final, end = '')
       archivo.write(cadena_final)
       resultado = funcion_transicion(estado, simbolo)
       if len(resultado) == 0:
           break
       estado = resultado[0]
       cadena_aux[i] = resultado[1]
       if resultado[2] == 'R':
           i += 1
       elif resultado[2] == 'L':
           i -= 1
       print(' |- ', end='')
       archivo.write(' |- ')
   print('\n')
   if estado == 4:
       print('Cadena valida')
       archivo.write('\n\nCadena valida')
   else:
       print('Cadena invalida')
       archivo.write('\nCadena invalida')
   archivo.close()
def imprimir_secuencia(estado, cadena, indice):
   cadena_aux = ''
   i = 0
   while i<len(cadena):</pre>
       if i == indice:
           cadena_aux += '(q'+ str(estado) + ')'
       cadena_aux += cadena[i]
       i +=1
   return cadena_aux
def funcion_transicion(estado, simbolo):
   if estado == 0:
       return estado_cero(simbolo)
   elif estado == 1:
       return estado_uno(simbolo)
   elif estado == 2:
       return estado_dos(simbolo)
   elif estado == 3:
       return estado_tres(simbolo)
   elif estado == 4:
       return estado_cuatro(simbolo)
def estado_cero(simbolo):
   if simbolo == '0':
```

```
return [1, 'X', 'R']
   elif simbolo == 'Y':
       return [3, 'Y', 'R']
   return []
def estado_uno(simbolo):
   if simbolo == '0':
       return [1, '0', 'R']
   elif simbolo == '1':
       return [2, 'Y', 'L']
   elif simbolo == 'Y':
       return [1, 'Y', 'R']
   return []
def estado_dos(simbolo):
   if simbolo == '0':
       return [2, '0', 'L']
   elif simbolo == 'X':
       return [0, 'X', 'R']
   elif simbolo == 'Y':
       return [2, 'Y', 'L']
   return []
def estado_tres(simbolo):
   if simbolo == 'Y':
       return [3, 'Y', 'R']
   elif simbolo == 'B':
       return [4, 'B', 'R']
   return []
def estado_cuatro(simbolo):
   return []
```

6.3. Pruebas

Pruebas de las opciones del menú. Modo de manual.

Figura 35: Parte de la historia de la Maquina de Turing en consola.

```
La cadena es: 00001111 H=

(q0)00001111 |- X(q1)0001111 |- X0(q1)001111 |- X00(q1)01111 |- X000(q1)1111 |- X00(q2)0Y111 |-

X0(q2)00Y111 |- X(q2)000Y111 |- (q2)X000Y111 |- X(q0)000Y111 |- XX(q1)00Y111 |- XX0(q1)0Y111 |-

XX00(q1)Y111 |- XX00Y(q1)111 |- XX00(q2)YY11 |- XX0(q2)0YY11 |- XX(q2)00YY11 |- X(q2)X00YY11 |-

XX(q0)00YY11 |- XXX(q1)0YY11 |- XXX0(q1)YY11 |- XXX0Y(q1)Y11 |- XXX0YY(q1)11 |- XXX0Y(q2)YY1 |-

XXX0(q2)YYY1 |- XXX(q2)0YYY1 |- XX(q2)X0YYY1 |- XXX(q0)0YYY1 |- XXXX(q1)YYY1 |- XXXXYY(q1)YY1 |-

XXXXYY(q1)Y1 |- XXXXYYY(q1)1 |- XXXXYYY(q2)YY |- XXXXYYYY |- XXXXYYYYY |-

XXXXXYY(q0)YYYY |- XXXXYYY(q3)YY |- XXXXYYYY(q3)Y |- XXXXYYYYYY(q3)B |- XXXXYYYYYB(q4)B |-

Cadena valida
```

Figura 36: Historia de la Maquina de Turing en archivo.

Modo automático

```
1.- Entrada en consola (Manual)
2.- Aleatorio (Automatico)
3.- Salir

Selecciona una opcion valida: 2
La cadena es: 001100101111

Historia de la maquina de Turing
(q0)001100101111 |- X(q1)01100101111 |- X0(q1)1100101111 |- X(q2)0Y100101111 |- (q2)X0Y100101111 |- X(q0)0Y100101111 |
- XX(q1)Y100101111 |- XXYY(q1)100101111 |- XX(q2)YY00101111 |- X(q2)XYY00101111 |- XX(q0)YY00101111 |
- XXYYY(q3)00101111

Cadena invalida

Reintentar [s/n]:
```

Figura 37: Parte de la historia de la Maquina de Turing en consola.

```
1 La cadena es: 001100101111 H=
2 (q0)001100101111 |- X(q1)01100101111 |- X0(q1)1100101111 |- X(q2)0Y100101111 |- (q2)X0Y100101111 |-
3 X(q0)YY00101111 |- XXY(q3)Y00101111 |- XXYY(q3)00101111 |- XXYY(q3)00101111 |- XXYY(q3)V00101111 |- XXYY
```

Figura 38: Historia de la Maquina de Turing en un archivo.

Referencias

- [1] J. E. Hopcroft, R. Motwani, and J. D. Ullman, *Introducción a La Teoría De Autómatas*, Lenguajes Y Computación. Addison-Wesley, 2007.
- [2] J. D. Ullman, "Finite Automata." http://infolab.stanford.edu/~ullman/ialc/spr10/slides/fa1.pdf, 2010. [Consultado: 2016-12-3].