

RPNG

Background on Deep Learning

Nate Merrill

University of Delaware

Popular Deep Learning Tasks

- Classification
- Classification + Bounding Box Detection
- Muti-object detection
- Pixel-wise semantic segmentation

Single objects Multiple objects

More Popular Deep Learning Tasks

- Embeddings (dimension reduction)
 - Autoencoder
 - Triplet Embedding

Autoencoder

Triplet embedding

Fully Connected Layer

- Vector input and output
- Learned weights associated with each connection
- Can be written as a linear operation

$$\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \dots & x_n & 1 \end{bmatrix}^{\mathsf{T}} \\ \mathbf{y} = \begin{bmatrix} y_1 & y_2 & \dots & y_m \end{bmatrix}^{\mathsf{T}} \\ \mathbf{W} = \begin{bmatrix} w_{11} & w_{12} & \dots & w_{1n} & b_1 \\ w_{21} & w_{22} & \dots & w_{2n} & b_2 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ w_{m1} & w_{m2} & \dots & w_{mn} & b_m \end{bmatrix}$$

$$y = Wx$$

Nonlinear Activation

- Fully connected layer cannot model nonlinear functions
- Nonlinear activations are used to provide nonlinearity

Examples:

Popular activation functions

Convolution Layer

- Matrix/Tensor input and output
- Useful for image input

X ₁₁	X ₁₂	X ₁₃	X ₁₄	X ₁₅	X ₁₆	X ₁₇
X ₂₁	X ₂₂	X ₂₃	X ₂₄	X ₂₅	X ₂₆	X ₂₇
X ₃₁	X ₃₂	X ₃₃	X ₃₄	X ₃₅	X ₃₆	X ₃₇
X ₄₁	X ₄₂	X ₄₃	X ₄₄	X ₄₅	X ₄₆	X ₄₇
X ₅₁	X ₅₂	X ₅₃	X ₅₄	X ₅₅	X ₅₆	X ₅₇
X ₆₁	X ₆₂	X ₆₃	X ₆₄	X ₆₅	X ₆₆	X ₆₇
X ₇₁	X ₇₂	X ₇₃	X ₇₄	X ₇₅	X ₇₆	X ₇₇

$$Y_{ij} = K_{33}X_{i,j} + K_{32}X_{i,j+1} + K_{31}X_{i,j+2} + K_{23}X_{i+1,j}$$

$$+ K_{22}X_{i+1,j+1} + K_{21}X_{i+1,j+2} + K_{13}X_{i+2,j}$$

$$+ K_{12}X_{i+2,j+1} + K_{11}X_{i+2,j+2}$$

Max Pooling Layer

- Useful for viewpoint invariance
- Similar operation to convolution

Single depth slice

x 1 1 2 4 5 6 7 8 3 2 1 0 1 2 3 4

max pool with 2x2 filters and stride 2

