Solutions: Homework 10

J. Scott

April 21, 2019

(7.5.4) Let $F(x) = \int_a^x f(t)dt$. By the secondpart of the Fundamental Theorem of Calculus, F'(x) = f(x) for all $x \in [a,b]$. Since F(x) = 0 for all $x \in [a,b]$, f(x) = 0 for all $x \in [a,b]$.

If f is not continuous, we could have something like f(x) = 0 everywhere on [0, 2], except at x = 1 where f(1) = 1.

- (7.5.8) (a) $L(1) = \int_1^1 \frac{1}{t} = 0$. Since $\frac{1}{t}$ is continuous for t > 0, the FTC tells us that L(x) is differentiable and $L'(x) = \frac{1}{x}$.
 - (b) Consider y to be constant and set g(x) = L(xy). By the Chain Rule, g'(x) = (1/xy)(y) = 1/x = L'(x). Thus, L(xy) L(x) = C for some constant (with respect to x), C. To find C we plug in x = 1 to get L(y) L(1) = C. Since L(1) = 0, C = L(y). Thus, L(xy) L(x) = L(y), or L(xy) = L(x) + L(y).
 - (c) Using the previous part, L(x) = L((x/y)y) = L(x/y) + L(y), so L(x/y) = L(x) L(y).
 - (d) For this question, it helps to draw a picture. Interpret the sum $1 + \frac{1}{2} + \cdots + \frac{1}{n}$ as the total area of n rectangles, drawn over the intervals [1,2], [2,3], up to [n,n+1], of height 1, 1/2, and so on up to height 1/n. Meanwhile, L(n) is the area under the curve y = 1/x on [1,n]. So, γ_n is the area of the rectangle $[n,n+1] \times [0,1/n]$, plus the bits of the other rectangles sticking above the curve y = 1/x on [1,n]. It follows that each γ_n , being an area, is ≥ 0 .

Furthermore, $\gamma_{n+1} - \gamma_n$ is the area of $[n+1, n+2] \times [0, \frac{1}{n+1}]$ less the area under the the curve y = 1/x over [n, n+1]. Since $\frac{1}{x}$ is decreasing, $\frac{1}{x} \ge \frac{1}{n+1}$ on this interval, so this second area is $> \frac{1}{n+1}$. Thus, $\gamma_{n+1} - \gamma_n < 0$, so (γ_n) is decreasing. By Monotone Convergence, the sequence converges.

(e) This one is a little tricky. Since (γ_n) converges, the subsequence (γ_{2n}) converges to the same limit, so $\lim(\gamma_{2n} - \gamma_n) = 0$. Write

$$\gamma_n = 2\left(\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \dots + \frac{1}{2n}\right) - L(n).$$

Then, using part (c),

$$\gamma_{2n} - \gamma_n = \left(1 - \frac{1}{2} + \frac{1}{3} - \dots - \frac{1}{2n}\right) - L(2n) + L(n)$$
$$= \left(1 - \frac{1}{2} + \frac{1}{3} - \dots - \frac{1}{2n}\right) - L(2).$$

Now take the limit as $n \to \infty$.