

RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÈTÉ INDUSTRIELLE

PARIS

(11) N° de publication :

(à n'utiliser que pour les commandes de reproduction)

(21) N° d'enregistrement national :

2 692 592

92 07493

Int CIS: C 12 N 15/31, 1/21, C 12 P 21/02(C 12 N 15/31, C 12 R 1:36)

(12)

DEMANDE DE BREVET D'INVENTION

A1

- Date de dépôt : 19.06.92.
- Priorité:

K

- 71) Demandeur(s): PASTEUR MERIEUX Sérums et Vaccins société anonyme FR et TRANSGENE (S.A.) société anonyme — FR.
- Date de la mise à disposition du public de la demande: 24.12.93 Bulletin 93/51.
- Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule.
- (60) Références à d'autres documents nationaux apparentés:
- Inventeur(s): Jacobs Eric, Legrain Michèle, Mazarin Veronique, Bouchon-Theisen Bernadette, Shryvers Anthony B. et Bloch Marie-Aline.
- (73) Titulaire(s):
- (74) Mandataire : Cabinet Lemoine et Bernasconi.
- 54 Fragments d'ADN codant pour les sous-unités du récepteur de la transferrine de Neisseria meningitidis et procédés les exprimant
- (57) La présente invention a pour objet un fragment d'ADN codant pour une proteine capable d'être reconnue par un antisérum anti-récepteur de la transfernne de la souche de N. meningitidis IM2394 ou IM2169 ainsi d'un procédé d'obtention de ladite protéine par voie recombinante. A titre d'exemple, un tel fragment d'ADN code pour la sous-unité tbp1 de la souche IM2394 ou IM2169 ou pour la sous-unité tbp1 de la souche IM2394. tbp2 de la souche IM2394 ou IM2169.

3 4 .**				, .
		·		
			·	
	<u> </u>			

La présente invention a pour objet des fragments d'ADN de Neisseria meningitidis codant pour les sous-unités du récepteur de la transferrine ainsi qu'un procédé de fabrication de chacune des sous-unités par voie recombinante.

5

D'une manière générale, les méningites sont soit d'origine virale, soit d'origine bactérienne. Les bactéries principalement responsables sont : N. meningitidis et Haemophilus influenzae, respectivement impliquées dans environ 40 et 50 % des cas de méningites bactériennes.

10

On dénombre en France, environ 600 à 800 cas par an de méningites à N. meningitidis. Aux Etats-Unis, le nombre de cas s'élève à environ 2 500 à 3 000 par an.

15

L'espèce N. meningitidis est subdivisée en sérogroupes selon la nature des polysaccharides capsulaires. Bien qu'il existe une douzaine de sérogroupes, 90 % des cas de méningites sont attribuables à 3 sérogroupes : A, B et C.

20

Il existe des vaccins efficaces à base de polysaccharides capsulaires pour prévenir les méningites à N. meningitidis sérogroupes A et C. Ces polysaccharides tels quels ne sont que peu ou pas immunogéniques chez les enfants de moins de 2 ans et n'induisent pas de mémoire immunitaire. Toutefois, ces inconvénients peuvent être surmontés en conjuguant ces polysaccharides à une protéine porteuse.

25

Par contre, le polysaccharide de N. meningitidis groupe B n'est pas ou peu immunogène chez l'homme, qu'il soit sous forme conjuguée ou non. Ainsi, il apparait hautement souhaitable de rechercher un vaccin à l'encontre des méningites induites par N. meningitidis notamment du sérogroupe B autre qu'un vaccin à base de polysaccharide.

30

35

A cette fin, différentes protéines de la membrane externe de N. meningitidis ont déjà été proposées. Il s'agit en particulier du récepteur membranaire de la transferrine humaine.

10

15

20

25

D'une manière générale, la grande majorité des bactéries ont besoin de fer pour leur croissance et elles ont développé des systèmes spécifiques d'acquisition de ce métal. En ce qui concerne notamment N. meningitidis qui est un pathogène strict de l'homme, le fer ne peut être prélevé qu'à partir de protéines humaines de transport du fer telles que la transferrine et la lactoferrine puisque la quantité de fer sous forme libre est négligeable chez l'homme (de l'ordre de 10⁻¹⁸ M), en tout cas insuffisante pour permettre la croissance bactérienne.

Ainsi, N. meningitidis possède un récepteur de la transferrine humaine et un récepteur de la lactoferrine humaine qui lui permettent de fixer ces protéines chélatrices du fer et de capter par la suite le fer nécessaire à sa croissance.

Le récepteur de la transferrine de la souche N. meningitidis B16B6 a été purifié par Schryvers et al (WO 90/12591) à partir d'un extrait membranaire. Cette protéine telle que purifiée apparait essentiellement constituée de 2 types de polypeptides : un polypeptide d'un poids moléculaire apparent élevé de 100 kD et un polypeptide d'un poids moléculaire apparent moindre d'environ 70 kD, telles que révélés après électrophorèse sur gel de de polyacrylamide en présence de SDS.

Le produit de la purification notamment mise en oeuvre par Schryvers est par définition arbitraire et pour les besoins de la présente demande de brevet, appelé récepteur de la transferrine et les polypeptides le constituant, des sous-unités. Dans la suite du texte, les sous-unités de poids moléculaire élevé et de poids moléculaire moindre sont respectivement appelées Top1 et Tbp2.

Toutefois, le procédé de purification décrit par Schryvers et al ne peut pas être utilisé pour la production à grande échelle du récepteur de la transferrine. La préparation industrielle de ce récepteur sous forme purifiée passe nécessairement par une étape de production à l'aide d'un système d'expression hétérologue.

" -= ".<u>=</u> -. -

10

15

2`5

30

A cette fin, l'invention se propose de fournir les fragments d'ADN codant pour les sous-unités du récepteur de la transferrine de N. meningitidis.

D'autre part, depuis les travaux pionniers de Schryvers et al, on a découvert qu'il existait en fait au moins 2 types de souches qui diffèrent par la constitution de leurs récepteurs de la transferrine respectifs. Ceci a été mis en évidence en étudiant des extraits membranaires de plusieurs dizaines de souches de N. meningitidis d'origines variées. Ces extraits membranaires ont tout d'abord été soumis à une électrophorèse sur gel de polyacrylamide en présence de SDS, puis électrotransférés sur feuilles de nitrocellulose. Ces feuilles de nitrocellulose ont été incubées :

- a) en présence d'un antisérum de lapin dirigé contre le récepteur de la transferrine purifié à partir de la souche N. meningitidis B16B6, aussi appelée IM2394;
- b) en présence d'un antisérum de lapin dirigé contre le récepteur de la transferrine purifié à partir de la souche N. meningitidis IM2169; ou
- c) en présence de la transferrine humaine conjuguée à la peroxydase.

En ce qui concerne a) et b), la reconnaissance des sous-unités du récepteur de la transferrine est révélée par addition d'un anticorps antiimmunoglobulines de lapin couplé à la peroxydase, puis par addition du substrat de cette enzyme.

Les tableaux I et II ci-dessous indiquent le profil de certaines souches représentatives tel qu'il apparait sur gel de polyacrylamide à 7,5 % après électrophorèse en présence de SDS; les bandes sont caractérisées par leur poids moléculaires apparents exprimés en kilodaltons (kD):

		Souches	
Tableau I	2394 (B; 2a;P1.2:L2,3) 2228 (B; nd) 2170 (B; 2a:P1.2:L3)	2234 (Y;nd) 2154 (C; nd) 2448 (B; nd)	550 (C; 2a:) 179 (C; 2a:P1.2)
Détection avec	93	93	66
l'antisérum anti-récepteur 2394	89	69	69
Détection avec l'antisérum anti-récepteur 2169	63	93	66
Détection avec la transferrine peroxydase		69	69

N.B.; Entre parenthèse sont indiqués dans l'ordre le sérogroupe, le sérotype, le sous-type et l'immunotype.

n. <u>-</u> -				SOI	Souches			-	
Tableau II	2169 (B:9:P1.9)	1000 (8:nd)	1604 (B:nd)	132 1001 076 (C:15:P1.16) (A:4:P1.9) (B:19:P1.6)	1001 (A:4:P1.9)	876 (8:19:P1.6)	1951 (A:nd)	2449 (B:nd)	867 (8:2b:P1.2)
Détection avec l'antisérum anti-récepteur 2394	96	86		86	86	96	94	94	93
Détection avec l'antisérum anti-récepteur 2169	96 87	88 85	 83 83	98	98 79	96 88	94	85	93 85
Détection avec la transferrine- peroxydase	87	82	8	84	62	88	87	82	. 85

N.B.; Entre parenthèse sont indiqués dans l'ordre le sérogroupe, le sérotype, le sous-type et l'inmunotype.

i

Les résultats répertoriés dans les 2 premières lignes des tableaux montrent qu'il existe 2 types de souches :

Le premier type (Tableau I) correspond à des souches qui possèdent un récepteur dont les 2 sous-unités dans les conditions expérimentales utilisées, sont reconnues par l'antisérum anti-récepteur IM2394 tandis que seule la sous-unité de haut poids moléculaire est reconnue par l'antisérum anti-récepteur IM2169.

Le second type (Tableau II) correspond à des souches qui possèdent un récepteur dont les 2 sous-unités dans les conditions expérimentales utilisées, sont reconnues par l'antisérum anti-récepteur IM2169 tandis que seule la sous-unité de haut poids moléculaire est reconnue par l'antisérum anti-récepteur IM2394.

En conséquence, il existe une diversité antigénique au niveau de la sous-unité de moindre poids moléculaire. Cette diversité est toutefois restreinte puisqu'elle se résout en 2 grands types, contrairement à ce qui est | suggéré par Griffiths et al, FEMS Microbiol. Lett. (1990) 69:31.

En verm de ces constatations, on pouvait supposer qu'un vaccin efficace à l'encontre de toutes les infections à N. meningitidis pourrait être constitué de manière suffisante, de la sous-unité de haut poids moléculaire, quelle que soit la souche d'origine du récepteur, puisque cette dernière est reconnue par les 2 types d'antisérums. Toutefois, il semble que cela ne puisse être le cas dans la mesure où la sous-unité de haut poids moléculaire ne serait pas capable d'induire la production d'anticorps de type neutralisant. Seule la plus petite des 2 sous-unités du récepteur serait capable de remplir cette fonction. Puisque cette sous-unité de moindre poids moléculaire se caractérise par une variation antigénique significative du premier type au deuxième type de souche, un seul type de récepteur de la transferrine ne devrait pas être suffisant pour vacciner contre toutes les infections à N. meningitidis. Par conséquent, un vaccin devra contenir au moins la sous-unité de moindre poids moléculaire de chacune des souches IM2394 et IM2169 ou de leurs équivalents respectifs et, de manière optionnelle, la sous-unité de haut poids moléculaire d'au moins une souche de N. meningitidis.

35

30

5

10

15

20

25

C'est pourquoi l'invention fournit un fragment d'ADN isolé codant pour une protéine capable d'être reconnue par un antisérum anti-récepteur de la soucne de N. meningitidis IM2394 ou IM2169.

5

25

35

Un tel fragment d'ADN peut notamment comprendre une séquence nucléotidique codant pour une séquence d'acides aminés homologue à celle telle que montrée:

- dans l'identificateur de séquence (SEQ ID NO: 1) n° 1, commençant avec le résidu cystéine en position 1 et finissant avec le résidu glutamine en position 579;
- dans le SEQ ID NO: 2, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 884;
 - dans le SEQ ID NO: 3, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 887; ou
- dans le SEQ ID NO: 4, commençant avec le résidu cystéine en position 1
 et finissant avec le résidu glutamine en position 691.

A titre indicatif, on précise qu'un fragment d'ADN selon l'invention peut en outre comprendre une séquence nucléotidique additionnelle codant pour n'importe quelle autre séquence d'acides aminés; les deux séquences nucléotidiques considérées, formant un cadre ouvert de lecture de manière à coder pour une protéine hybride ou un précurseur.

De manière avantageuse, un fragment d'ADN selon l'invention peut 30 être sélectionné parmi :

i) Un premier fragment d'ADN isolé, ayant une séquence nucléotidique codant pour une protéine ayant une séquence d'acides aminés homologue à celle tele que montrée dans le SEQ ID NO: 1, commençant avec le résidu cystéine en position 1 et finissant avec le résidu glutamine en position 579.

10

15

25

- ii) Un deuxième fragment d'ADN isolé ayant une séquence nucléotidique codant pour une protéine ayant une séquence d'acides aminés à celle telle que montrée dans le SEQ ID NO: 2, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 884.
- iii) Un troisième fragment d'ADN isolé ayant une séquence nucléotidique codant pour une protéine ayant une séquence d'acides aminés à celle telle que montrée dans le SEQ ID NO: 3, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 887.
- iv) Un quatrième fragment d'ADN isolé ayant une séquence nucléotidique codant pour une protéine ayant une séquence d'acides aminés à celle telle que montrée dans le SEQ ID NO: 4, commençant avec le résidu cystéine en position 1 et finissant avec le résidu glutamine en position 691.

Par "séquence d'acides aminés homologue", on entend une séquence présentant un degré d'homologie d'au moins 75 %, de manière avantageuse d'au moins 80 %, de manière préférée d'au moins 90 %, de manière tout à fait préférée de 100 %, avec la séquence d'acides aminés que l'on cite en référence. On notera que le terme "homologue" tel que défini inclut le cas particulier de l'identité.

Le degré d'homologie peut être aisément calculé en alignant les séquences de manière à obtenir le degré maximal d'homologie; pour ce faire, il peut être nécessaire d'introduire artificiellement des emplacements vacants, comme cela est illustré dans la figure 7. Une fois que l'alignement optimal est réalisé, le degré d'homologie est établi en comptabilisant toutes

les positions dans lesquelles les acides aminés des deux séquences se retrouvent à l'identique, par rapport au nombre total de positions.

Il serait fastidieux de décrire des séquences homologues autrement que de manière générique, en raison du trop grand nombre de combinaisons. L'homme du métier connait toutefois les règles générales qui permettent de remplacer un acide aminé par un autre sans abolir la fonction biologique ou immunologique d'une protéine.

Un fragment d'ADN isolé et tout à fait préféré a une séquence nucléotidique codant pour :

- i) La sous-unité Top1 de la souche IM2394 dont la séquence en acides aminés est telle que montrée dans le SEQ ID NO: 2, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 884;
- 15 ii) La sous-unité Tbp2 de la souche IM2394 dont la séquence en acides aminés est montrée dans le SEQ ID NO: 1, commençant avec le résidu cystéine en position 1 et finissant avec le résidu glutamine en position 579;
- 20 iii) La sous-unité Tbp1 de la souche IM2169 dont la séquence en acides aminés est montrée dans le SEQ ID NO: 3, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 887; ou
- iv) La sous-unité Top2 de la souche IM2169 dont la séquence en acides aminés est montrée dans le SEQ ID NO: 4, commençant avec le résidu cystéine en position 1 et finissant avec le résidu glutamine en position 691.
- Le récepteur de la transferrine étant une protéine membranaire, chacune de ses sous-unités est initialement produite sous forme d'un précurseur constitué d'un peptide signal associé en position N-terminale, à la forme mature.

C'est pourquoi l'invention a aussi pour objet un bloc d'ADN isolé codant pour un peptide signal dont la séquence d'acides aminés présente un degré d'homologie d'au moins 80 %, de manière préférée de 100 %, avec la séquence montrée dans :

5

- i) le SEQ ID NO: 2, commençant avec le résidu méthionine en position 24 et finissant avec le résidu alanine en position 1;
- ii) le SEQ ID NO: 3, commençant avec le résidu méthionine en position
 24 et finissant avec le résidu alanine en position 1; ou
 - iii) le SEQ ID NO : 4, commençant avec le résidu méthionine en position 20 et finissant avec le résidu alanine en position 1.

Un fragment d'ADN selon l'invention peut être aussi sélectionné parmi un cinquième, sixième, septième et huitième fragments d'ADN codant respectivement pour un précurseur dont la séquence d'acides aminés est homologue à la séquence présentée dans le SEQ ID NO: 1, 2, 3 ou 4.

20

Par "fragment ou bloc d'ADN isolé" on entend un fragment ou bloc d'ADN d'origine génomique qui est i) inséré dans un vecteur viral ou plasmidique ou ii) placé sous le contrôle d'un promoteur qui lui est hétérologue.

25

De plus, le bloc d'ADN codant pour le peptide signal selon l'invention est, en outre, considéré comme isolé lorsque ce bloc d'ADN est associé à un fragment d'ADN codant pour une protéine hétérologue au peptide signal; de manière à former un cadre de lecture ouvert codant pour un précurseur hybride.

30

L'invention concerne aussi une cassette d'expression qui comprend au moins un fragment d'ADN selon l'invention, placé sous le contrôle d'éléments capables d'assurer son expression dans une cellule-hôte appropriée.

10

15

20

25

30

Dans la cassette d'expression, le premier, deuxième, troisième ou quatrième fragment d'ADN selon l'invention peut être ou non associé à un bloc d'ADN codant pour un peptide signal hétérologue à la protéine codée par ledit fragment d'ADN, selon que l'on recherche ou non la sécrétion de la protéine. De préférence, cette sécrétion sera recherchée.

Les éléments indispensables à l'expression d'un fragment d'ADN selon l'invention sont un promoteur de transcription, des codons de début et de fin de traduction et, de manière optionnelle, un terminateur de transcription. Le promoteur peut être constitutif ou inductible. On indique que le fragment d'ADN codant pour la sous-unité Tbp2 de la souche IM2394 semble être toxique pour une cellule hétérologue, notamment pour E. coli. Dans ce cas là, il pourrait être préférable d'utiliser un promoteur inductible.

Des éléments tels qu'un bloc d'ADN codant pour un peptide signal hétérologue (région signal) ou un promoteur existent déjà en assez grand nombre et sont connus de l'homme du métier. Ses compétences générales lui permettront de choisir une région signal ou un promoteur particulier qui seront adaptés à la cellule-hôte dans laquelle il envisage l'expression.

Enfin, l'invention fournit un procédé de fabrication d'un peptide, d'un polypeptide ou d'une protéine capables d'être reconnus par un antisérum anti-récepteur de la souche de N. meningitidis IM2394 ou IM2169 qui comprend l'acte de cultiver une cellule-hôte comportant une cassette d'expression selon l'invention; ainsi que le peptide, le polypeptide ou la protéine produit par ce procédé et les compositions vaccinales les contenant.

Aux fins du procédé selon l'invention, la cellule-hôte peut être une cellule de mammifère, une bactérie ou une levure; ces deux dernières étant préférées. Là aussi, le choix d'une lignée particulière est à la portée de l'homme du métier.

Afin de déterminer l'objet de la présente invention, on précise que les souches de N. meningitidis IM2394 et IM2169 sont publiquement disponibles auprès de la Collection Nationale de Culture des Microorganismes (CNCM), Institut Pasteur, 25 rue du Dr Roux 75015 Paris sous les numéros d'enregistrement respectifs LNP N 1511 et LNP N 1520.

Un antisérum spécifique du récepteur de la transferrine de la souche de N. meningitidis IM2394 ou IM2169 peut être obtenu tel que décrit dans les exemples ci-après.

10

15

25

30

35

5

L'invention est décrite plus en détails dans les exemples ci-après et par référence aux Figures 1 à 8.

La Figure 1 représente la structure du phage lambda ZAP II et schématise la méthodologie de clonage y afférent. Lambda ZAP II est un vecteur d'insertion équipé de sites de clonage multiples localisés dans la partie plasmidique (pBluescript SK). Cette partie plasmidique peut être excisée in vivo par co-infection avec un phage-helper et convertie en vecteur plasmidique. Si une séquence codante est fusionnée en phase à lacZ ou si un fragment d'ADN cloné comporte un promoteur fonctionnel dans E. coli, il peut y avoir production d'une protéine d'intérêt qui pourra être détectée à l'aide d'anticorps spécifiques.

La Figure 2 présente la structure du plasmide pTG1265. pTG1265 dérive du plasmide pGB2 (Churchward et al, Gene (1984) 31: 165) comme suit : pGB2 est digéré par EcoRI et HindIII, traité à la polymérase Klenow puis ligué au fragment SspI - PvuII de 1 kb issu de pTTT3 184 (Mead et al, Protein Engineering (1986) 1: 67; Pharmacia) qui comporte f1-ori, la séquence lacZ, les promoteurs T3 et T7 ainsi que des sites multiples de clonage.

La Figure 3 présente la carte génomique de la région d'ADN de la souche IM2394 comportant les séquences codant pour Tbp1 et Tbp2 ainsi que les différents fragments qui ont été clonés. B = BamH1; E = EcoRI; H = HincII; R = EcoRV; X = XbaI; C = ClaI.

La Figure 4 présente la carte génomique de la région d'ADN de la souche IM2169 comportant les séquences codant pour Tbp1 et Tbp2 ainsi que les différents fragments qui ont été clonés. C = ClaI; H = HincII; M = MluI; X = XbaI; P = Position imprécise.

5

La Figure 5 présente la structure du plasmide para13. para13 est un plasmide capable de se répliquer dans *E. coli* qui comporte le promoteur de l'opéron arabinose BAD (ParaB) de Salmonella typhimurium (modifié au niveau de la TATA box), ainsi que le gène AraC. En aval du promoteur ParaB se trouve des sites multiples d'insertion. La série des plasmides para est décrite par Cagnon et al, Prot. Eng. (1991) 4:843.

La Figure 6 représente la méthodologie qui a été mise en oeuvre pour construire le vecteur d'expression pTG3786.

15

10

La Figure 7 compare les séquences d'acides aminés prédites des sousunités Top1 des souches IM2394 et IM2169. Le degré d'homologie peut être estirné à environ 76 %.

20-

La Figure 8 compare les séquences d'acides aminés prédites des sousunités Tbp2 des souches IM2394 et IM2169. Le degré d'homologie peut être estimé à environ 47 %.

La Figure 9 représente la méthodologie qui a été mise en oeuvre pour contruire le vecteur d'expression pTG3779.

EXEMPLE 1: Clonage des fragments d'ADN codant pour les sous-unités
Tbp1 et Tbp2 du récepteur de la transferrine de la souche
IM2394

lA - Culture de la souche et purification du récepteur de la transferrine

5

10

15

20 "

25

30

35

Un lyophilisat de la souche N. meningitidis IM2394 est repris dans environ 1 ml de bouillon Muller-Hinton (BMH, Difco). La suspension bactérienne est ensuite étalée sur le milieu solide Muller-Hinton contenant du sang cuit (5 %).

Après 24 hr d'incubation à 37°C dans une atmosphère contenant 10 % de CO₂, la nappe bactérienne est recueillie pour ensemencer 150 ml de BMH pH 7.2, répartis en 3 erlens de 250 ml. L'incubation est poursuivie pendant 3 hr à 37°C sous agitation. Chacune des 3 cultures ainsi réalisées permet d'ensemencer 400 ml de BMH pH 7,2 supplémenté avec 30 μ m de Ethylènediamine - Di (O-Hydroxyphenyl - acetic acid (EDDA, Sigma), qui est un agent chélatant du fer sous forme libre.

- Après 16 hr de culture à 37°C sous agitation, les cultures sont contrôlées pour leur pureté par observation au microscope après une coloration de Gram. La suspension est centrifugée, le culot contenant les germes est pesé et conservé à -20°C.
- La purification est mise en oeuvre essentiellement selon la méthode décrite par Schryvers et al (supra), comme suit :

Le culot bactérien est décongelé, puis remis en suspension dans 200 ml de tampon Tris HCl 50 mM, pH 8.0 (tampon A). La suspension est centrifugée pendant 20 min à 15 000 xg à 4°C. Le culot est récupéré, puis remis en suspension dans du tampon A à la concentration finale de 150 g/l. Des fractions de 150 ml sont traitées pendant 8 min à 800 bars dans un lyseur de cellules travaillant sous haute pression (Rannie, modèle 8.30H). Le lysat cellulaire ainsi obtenu est centrifugé pendant 15 min à 4°C à 15 000 xg. Le surnageant est récupéré, puis centrifugé pendant 75 min à 4°C à 200 000 xg. Après élimination du surnageant, le culot est repris dans du tampon A et

après dosage de protéines selon Lowry, la concentration de la suspension est ajustée à 5 mg/ml.

A 1,4 ml de la suspension de membranes on ajoute 1,75 mg de transferrine humaine biotinylée selon le procédé décrit par Schryvers. La concentration finale de la fraction membranaire est de 4 mg/ml. Le mélange est incubé 1 heure à 37°C puis centrifugé à 100 000 xg pendant 75 minutes à 4°C. Le culot de membranes est repris par le tampon A contenant du NaCl 0,1M et incubé pendant 60 minutes à température ambiante.

10

5

Après solubilisation, on ajoute à cette suspension un certain volume de N-Lauroyl Sarkosine à 30 % (p/v) et d'EDTA 500 mM de façon que les concentrations finales en Sarkosyl et EDTA soient de 0,5 % et 5 mM respectivement. Après une incubation de 15 minutes à 37°C sous agitation, on ajoute 1 ml de résine strepavidine-agarose (Pierce) préalablement lavée en tampon A. La suspension est incubée 15 minutes à température ambiante puis centrifugée à 1 000 xg pendant 10 minutes. La résine est ensuite conditionnée dans une colonne et l'éluat direct est éliminé.

20

25

15

La résine est lavée par 3 volumes de colonne de-tampon Tris-HCl 50 mM pH 8.0 contenant NaCl 1M, EDTA 10 mM Sarkosyl 0,5 % (tampon B) puis par un volume de colonne de tampon B contenant de la guanidine-HCl 750 mM. Le récepteur de la transferrine est ensuite élué par le tampon B contenant de la guanidine-HCl 2M. L'éluat est collecté en fractions, dans des tubes contenant un volume identique de Tris HCl 50 mM, pH 8.0, NaCl 1M. La densité optique à 280 nm de l'éluat est mesurée en sortie de colonne à l'aide d'un détecteur UV.

30

Les fractions correspondant au pic d'élution sont recueillies, dialysées contre du tampon phosphate 10 mM, pH 8,0 contenant du Sarkosyl 0,05 % et lyophilisées Le lyophilisat est repris dans de l'eau à une concentration 10 fois supérieure. La solution est dialysée une seconde fois contre du tampon phosphate 50 mM pH 8,0 contenant du Sarkosyl 0,05 -% (tampon C) puis la solution est filtrée sur une membrane de porosité 0,22 µm.

35

Le contenu en protéines est déterminé et ajusté à 1 mg/ml par

(EI

5

10

15

20

25

addition de tempon C, sous conditions eseptiques. Cette préparation est conservée à -76°C.

1B - Préparation d'un antisérum spécifique du récepteur de la transferrine

Des lapins néo-zélandais albinos reçoivent par voie sous-cutanée et intramusculzire 100 μg du récepteur IM2394 en présence d'adjuvant complet de Freund. 21 jours et 42 jours après la première injection, les lapins reçoivent à noziveau 100 μg du récepteur purifié mais ces fois-ci en présence d'adjuvant incomplet de Freund. 15 jours après la dernière injection, le sérum des animaux est prélevé, puis décomplémenté et filtré sur une membrane de porosité 0,45 μm. Le filtrat est par la suite épuisé par contact avec la souche IM2394 qui pour se faire, a été cultivée au préalable en présence de fer sous forme libre (dans ces conditions, la synthèse du récepteur de la transferrine est réprimée). Les modalités de contact sont comme suit : 10 ml du filtrat sont ajoutés à 10¹⁰ cfu (unités formant des colonies) d'une culture de la souche IM2394. L'adsorption est poursuivie une nuit à 4°C, sous agitation. Les bactéries sont ensuite éliminées par centrifugation. Le surnageant est récupéré puis soumis à nouveau à 2 opérations d'azisorption successives comme précédemment décrit.

. 1C - Détermination des séquences peptidiques permettant l'identification des fragments d'ADN.

Des fractions aliquotes du matériel obtenu en 1A sont séchées puis resolubilisées dans le tampon de Laemmli deux fois concentré (Tris 65mM, SDS 3 %, glycérol 10 %, 2-mercaptoéthanol 5 %). On ajoute un volume d'eau équivalent

Après sonication, le matériel est chauffé à 90°C pendant 2 minutes, puis soumis à une électrophorèse sur gel de polyacrylamide. Les sous-unités ainsi séparées sont transférées sur membrane PVDF (Immobilon, Millipore) pendant 16 heures à 400 mA en tampon Tris borate 50 mM, pH 8,3. Les sous-unités électrotransférées sont colorées à l'amido black et les bandes correspondant à Tbp1 et Tbp2 sont récupérées et soumises au microséquençage de l'extrémité N-terminale.

35

30

Ceci est répété plusieurs fois pour établir les séquences consensus Nterminales suivantes :

Tbp1 IM2394: EXVQAEQAQEKQLDTIQV

Tbp2 IM2394: XLXXXXSFDLDSVEXVQXMX

(X = acide aminé non-déterminé).

Afin de séquencer des régions internes de Tbp2, la protéine sur membrane PVDF est soumise à digestion par la trypsine en tampon Tris 0,1 M pH 8,2. Après 4 heures de réaction à 37°C, les peptides sont extraits par de l'acide formique 70 % puis par de l'acide trifluoroacétique (TFA) 0,1 %. Ces peptides sont ensuite séparés par HPLC.

Pour Tbp2 IM2394, les séquences internes qui ont été établies sont les suivantes:

S1122: NNIVLFGPDGYLYYK

S1125: YTIQA

S"770: DGENAAGPATEXVIDAYR

S"766: XQIDSFGDVK

5

S1126: AAFXXXI

S"769: XNXXXMFLQGVR

S"771: TPVSDVAAR

S"767: XSPAFT

25 S"762: NAIEMGGSFXFPGNAPEG(K)

S1128: XQPESQQDVSENX

1D - Préparation de l'ADN génomique.

Le culot bactérien obtenu en 1A est resuspendu dans environ 25 ml de solution A (Tris HCl 25 mM, pH 8 contenant 50 mM de glucose et 10 mM d'EDTA) additionnée de 10 mg de protéinase K. Le mélange est laissé 10 minutes à température ambiante.

Puis on ajoute 12,5 ml de solution A contenant 10 mg de lysosyme. Une nouvelle fois, le mélange est laissé 10 minutes à température ambiante. On complète alors par 0,5 ml de sarkosyl 10 %. Le mélange est incubé 10 minutes à +4°C.

5

10

15

On ajoute ensuite 2 mg de RNAse et on laisse l'incubation se poursuivre 90 minutes à 37°C. L'ADN est purifié par quatre extractions phénoliques successives. L'ADN présent dans la dernière phase aqueuse est précipité par l'éthanol. L'ADN de haut poids moléculaire est obtenu par séparation sur gradient de CsCl.

1E - Clonage.

Une première banque d'ADN a été réalisée dans le vecteur lambda ZAP (Figure 1), comme suit :

Une préparation d'ADN génomique a été fragmentée aux ultrasons. Les extrémités des fragments ainsi obtenus ont été rendues franches par traitement à la T₄ polymérase. Les fragments ont été méthylés. Après méthylation, les fragments ont été liés à des adaptateurs *EcoRI*, traités par *EcoRI* puis insérés dans le site *EcoRI* du phage lambda ZAP II (Stratagène).

20

La souche E. coli XL1-Blue (Stratagène) a été infectée avec la banque d'ADN ainsi préparée. Les plages de lyse blanches (présence de phages recombinants) ont été testées à l'aide d'un antisérum spécifique du récepteur de la transferrine de la souche IM2394 préparé tel que décrit en 1B. Ceci a permis d'identifier deux clones lambda ZAP II. Les plasmides pBluescript contenus dans ces clones ont été excisés par co-infection avec le phage-"helper" et ont été appelés pBMT1 et pBMT2.

30

25

Les plasmides pBMT1 et pBMT2 contiennent chacun un fragment EcoRI - EcoRI respectivement de 3,8 kb et 1,3 kb. Ils sont présentés dans la Figure 3.

35

Le séquençage de l'insert EcoRI - EcoRI de pBMT1 a été mis en oeuvre selon la méthode de shotgun (Bankier et Barrell, Biochemistry (1983)

B5: 508), comme suit:

L'insert EcoRI - EcoRI de pBMT1 a été purifié puis fragmenté aux ultra-sons. Les extrémités des fragments ainsi obtenus ont été rendues franches par traitement à la T₄ polymérase. Les fragments ainsi traités ont été introduits dans un site du phage M13TG131 (décrit dans Kieny et al, Gene (1983) 26: 91). Environ 200 clones issus de cette préparation ont été séquencés. L'analyse de ces séquences par ordinateur a permis de reconstituer la séquence complète de l'insert EcoRI - EcoRI de pBMT1.

10

15

20

25

30

35

5

La séquence codant pour l'extrémité N-terminale de Tbp1 a été localisée comme le montre la Figure 3. Compte tenu de la masse moléculaire de Tbp1, il était clair que cet insert ne comportait pas le fragment d'ADN complet codant pour Tbp1. En amont de l'extrémité 5' du gène tbp1, on a mis en évidence un cadre de lecture ouvert mais il n'a pas été possible d'identifier clairement une région codant pour l'extrémité N-terminale du gène tbp2.

Le microséquençage de régions internes de Tbp2 a donc été entrepris comme reporté précédemment en 1C. Les séquences internes qui étaient localisées vers l'extrémité C-terminale, correspondaient bien à la partie 3' du cadre de lecture ouvert en amont de tbp1.

D'autre part, l'ADN génomique de la souche IM2394, préalablement digéré par HincII a été analysé par Southern blot à l'aide d'une sonde d'ADN radioactive correspondant à la zone HincII - HincII de 1,5 kb de l'insert de 3,8 kb de pBMT1; deux bandes ont été ainsi révélées. Ceci a permis de démontrer que l'insert porté par pBMT1 résultait d'un assemblage artéfactuel de séquences issues de deux loci distincts. La séquence 5' de tbp2 était donc absente.

La banque d'ADN génomique en lambda ZAP précédemment décrite a été criblée de nouveau ; cette fois-ci en utilisant l'insert *EcoRI* - *EcoRI* de pBMT2 comme sonde. 29 candidats ont été retenus parmi environ 200 000 plages testées. Seul le plasmide dérivé pTG2749 semblait posséder un insert nouveau par rapport à pBMT1 et pBMT2. L'insert de pTG2749 est

tel que représenté dans la Figure 3. La région de l'insert en amont du site EcoRV (région EcoRV - EcoRI) a été sous-clonée dans M13TG131 et séquencée par la méthode de Sanger et al, PNAS (1977) 74: 5463 à l'aide de primers synthétiques. La séquence correspondant à l'extrémité N-terminale de Tbp2 a été ainsi retrouvée.

La séquence du fragment d'ADN codant pour Tbp2 de la souche IM2394 est présentée dans le SEQ ID NO : 1 ainsi que la séquence d'acides aminés correspondante.

10

5

Juste en amont de la séquence codant pour Tbp2 mature, l'insert de pTG2749 comporte une région génomique distincte issue d'un autre locus. La aussi, il s'agit d'une artéfact de clonage analogue à celui mis en évidence dans le cas de pBMT1.

15

Compte tenu des réarrangements observés et de l'absence de séquences 3' de tbp1 et 5' de tbp2, la banque d'ADN génomique construite en lambda ZAP a été jugée inadaptée pour la poursuite du clonage.

20

Une deuxième banque d'ADN génomique a donc été construite dans un plasmide à faible nombre de copies, comme suit : une préparation d'ADN génomique a été partiellement digérée par Sau3A. Des fragments d'ADN d'environ 4 à 6 kb ont été purifiés après fractionnement en gradient de sucrose et insérés dans le site BamHI du plasmide pTG1265. Cette préparation plasmidique a servi à transformer la souche d'E. coli 5K. On a estimé que cette banque contenait environ 18 000 clones indépendants.

30

25

Environ 50 000 clones de la deuxième banque ont été testés à l'aide d'une sonde radioactive correspondant à l'insert *EcoRI - EcoRI* de pBMT2. Un seul clone a été révélé; soit le plasmide pTG2759 qui possède un insert de 1,8 kb. La taille de cette insert a été jugée insuffisante pour contenir le gène complet codant pour Tbp1.

35

Une troisième banque d'ADN a été construite selon la méthode décrite au paragraphe précédent à l'exception de la souche d'E. coli 5K qui a-été remplacée par la souche d'E. coli SURE (Stratagène). On a estimé que

cette banque contenait environ 60 000 clones indépendants.

5

10

15:

20

25

30

Environ 70 000 ciones de la troisième banque d'ADN ont été testés à l'aide d'une sonde radioactive correspondant au fragment MluI - HincII de 2,4 kb issu de l'insert de pTG2754 décrit dans l'Exemple 2 ci-après et représenté dans la Figure 4. Deux clones ont été révélés, soient les plasmides pTG2780 et pTG2781, représentés dans la Figure 3.

La séquence des inserts de pTG2780 et pTG2781 a été établie selon la méthode de Sanger. Elle est présentée dans le SEQ ID NO : 2 ainsi que la séquence d'acides aminés correspondante.

Une quatrième banque a été construite. Le DNA génomique a été digéré par Sau3A et une fraction contenant des fragments d'environ 7 kb a été purifiée sur gradient de sucrose. Cette fraction contenait un fragment correspondant au locus tbp1,2 car elle était reconnue par une sonde d'ADN spécifique de tbp2. Après digestion par EcoRV et XbaI et ligation à pTG1265 digéré par SmaI et XbaI, E coli 5K a été transformée. Un criblage des clones à l'aide d'une sonde spécifique de tbp2 a été réalisé. Parmi une série de clones positifs, le plasmide pTG3791 a été étudié en particulier et s'est avéré contenir des séquences 5' tbp2 incluant la séquence codant pour le peptide signal putatif de Tbp2.

EXEMPLE 2: Clonage des fragments d'ADN codant pour les sous-unités Tbp1 et Tbp2 du récepteur de la transferrine de la souche IM2169.

2A - La culture de la souche IM2169 et la purification du récepteur de la transferrine ont été effectuées dans des conditions identiques à celles décrites dans l'Exemple 1A.

2B - La préparation d'un antisérum anti-récepteur de la souche IM2169 a été réalisée selon le protocole décrit dans l'Exemple 1B.

2C - Les séquences peptidiques permettant l'identification des fragments 35 d'ADN ont été déterminées selon la méthode reportée dans l'Exemple 1C. Les microséquences qui ont été établies sont les suivantes.

Séquence consensus de l'extrémité N-terminale de Tbp1: ENVQAGQAQEKQLXXIQVX

5

Séquences des peptides internes de Tbp1:

S1031:

XLS(E,W)NAGXVLXPADX

S1032:

OLDTIQVK

S1033:

TAGSSGAINEIEYENXX

YVTWENVDXXXXXX S1034:

Séquence consensus de l'extrémité N-terminale de Tbp2 : SLVXAXSFDLXSV

Séquences des peptides internes de Tbp2:

S1037:

XXDNLSNAX

S1035:

XGDDGYIFYXGEKPX

S1036:

XQGXYGFAMX

XQATGHENFQYVYSGXFYK S1040:

20

(--

2D - La préparation de l'ADN génomique de la souche IM2169 a été réalisée selon le protocole décrit dans l'Exemple 1D.

2E - Clonage

25

Une première banque d'ADN génomique (fragments d'ADN Sau3A partiel; pTG1265; E. coli 5K) a été construite comme précédemment décrit dans l'Exemple 1. On a estimé que cette banque contenait environ 40 000 clones indépendants, dont environ 70 % possédaient un insert de 4-6 kb.

30

130 000 clones de cette banque ont été testés à l'aide d'une sonde radioactive correspondant à l'insert EcoRI - EcoRI de pBMT2. 42 clones ont été analysés, parmi lesquels 2 ont été retenus : les plasmides pTG2753 et pTG2754 qui sont tels que montrés dans la Figure 4. Les analyses en Southern blot ont montré que les cartes de restriction des inserts de pTG2753 et pTG2754 correspondaient à la carte de restriction de l'ADN

35

génomique.

5

15

20

2.5

30

35

La détermination des séquences nucléotidiques et la recherche des régions codant pour les extrémités N-terminales et les régions internes ont démontré que:

- l'insert de 1,9 kb de pTG2753 contient la partie 3' du gène tbp2 et la partie 5' du gène tbp1; et
- l'insert de pTG2754 contient la partie 3' du gène tbp2 et les parties 5' et 3' du gène tbp1, en rupture de phase.

Cette première banque n'a donc pas permis de cloner des fragments d'ADN complets codant pour Tbp1 ou Tbp2.

Une deuxième banque génomique a été construite comme précédemment mais à partir d'ADN génomique digéré par Xbal. Les fragments d'ADN ont été purifiés après fractionnement en gradient de sucrose. Chaque fraction (d'environ 500 µl) a été testée par Southern blot avec une sonde radioactive correspondant à l'extrémité 3' de tbpl (fragment de l'insert de pTG2754). La fraction présentant une réaction d'hybridation et contenant des fragments d'environ 6 kb a été clonée dans pTG1265. La souche E. coli SK a été transformée.

Environ 2 400 clones de cette banque ont été testés à l'aide d'une sonde radioactive correspondant au fragment *HincII - MluI* de 0,6 kb issu de pTG2754. Cinq clones ont été caractérisés, parmi lesquels 2 ont été retenus : soient pTG3720 et pTG3721, tels que montrés dans la Figure 4, qui contiennent tous deux les gènes *tbp1* et *tbp2*.

Afin de compléter la séquence nucléotidique codant pour Tbp1, l'insert de pTG3720 a été séquencé dans la région où se situait la rupture de phase découverte dans l'insert de pTG2754. Ce séquençage a permis de mettre en évidence que la rupture de phase de l'insert de pTG2754 était due à une délétion de 22 bp. La séquence complète du fragment d'ADN est telle que montrée dans le SEQ ID NO: 3.

()

10

15

30

Le séquençage de l'insert de pTG3720 a été poursuivi pour établir la séquence de tbp2. Celle-ci a bien été identifiée; mais là aussi une rupture de phase a été constatée.

Finalement la séquence de tbp2 a été déterminée à partir du plasmide pTG3721. Elle est telle que montrée dans le SEQ ID NO : 4.

EXEMPLE 3: Expression du fragment d'ADN codant pour la sous-unité
Tbp2 de la souche IM2394.

3A. Construction du vecteur d'expression pTG3786.

Le site SphI du plasmide para 13 (Figure 5; Cagnon et al, Prot. Eng. (1991) 4:843) a été détruit par traitement à la polymérase Klenow, pour donner le plasmide pTG3704. pTG3704 a été linéarisé par coupure NcoI, traité à la polymérase Klenow pour rendre les extrémités franches, puis digéré par HindIII.

D'autre part, on a synthétisé les oligonucléotides OTG4015 et ! 20 OTG4016 que l'on a appariés.

OTG4015:5' AAATACCTATTGCCTACGGCAGCCGCTGGACTGTTATTACT
CGCTGCCCAACCAGCGATGGCATGCTTTCCCACGCGTTTTCCCA 3'

OTG4016:5'AGCTTGGGAAAACGCGTGGGAAAGCATGCCATCGCTGGTTGGGCA

CCGAGTAATAACAGTCCAGCGGCTGCCGTAGGCAATAGGTATTT 3'

Le fragment d'ADN double brin OTG4015/OTG4016 a été inséré dans para13 traité comme précédemment décrit, pour donner le plasmide pTG3717 dans lequel on avait reconstitué la séquence codant pour la partie N-terminale du précurseur de la protéine PelB d'Erwinia carotovora (Lei et al, J. Bact. (1987) 169: 4379); Soit:

..... ATG AAA TAC CTA TTG CCT ACG GCA GCC GCT GGA CTG

Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu

SphI

TTA TTA CTC GCT GCC CAA CCA GCG ATG GCA TGCTTT Leu Leu Leu Ala Ala Gln Pro Ala Met Ala

5 MluI HindIII
CCCACGCGTTTTCCCA AGCTT....

(en souligné, aparaissent les extrémités de pTG3704)

A partir du plasmide pTG2749, on a généré par PCR à l'aide des amorces OTG4011 et OTG 4012, un fragment incluant la région codant pour la partie N-terminale de Tbp2, jusqu'au site MluI interne, tel que montré dans la Figure 6.

15 OTG4011 :

BamHI SphI

5' AAAAAGGATCC/GCA TGC CTG GGT GGC GGC AGT TTC 3'
Cys Leu Gly

20 OTG4012:

30

35

BamHI

MluI

5' AAAAGGATCCG AAT GGT GTA ACG CGT AGT TTT TAT 3'

Le fragment généré par PCR a été digéré par BamHI, puis inséré dans le site BamHI du phage M13TG131, pour donner M13TG3724. La séquence de ce fragment a été vérifiée par séquençage.

A partir de M13TG3724, on a récupéré la région codant pour la partie N-terminale de Tbp2 sous forme d'un fragment SphI - MluI que l'on insert dans pTG3717 préalablement digéré par SphI et MluI, pour donner le plasmide pTG3743.

A partir du plasmide pBMT1, on a récupéré la région codant pour la partie C-terminale de Tbp2 sous forme d'un fragment MluI - BanI dont l'extrémité cohésive BanI avait été rendue franche par traitement à la polymérase Klenow. On a inséré ce fragment dans pTG3743 préalablement

digéré par HindIII, traité à la polymérase Klenow et finalement digéré par MluI. On obtient ainsi le plasmide pTG3786.

3B. Production de la sous-unité Tbp2.

E. coli MC1061 (Casadaban & Cohen, J. Mol. Biol. (1980) 138: 179) est transformée par pTG3786 puis mise en culture à 37°C, en milieu LB supplémenté avec 2 g/l de glycérol. A la culture est en phase exponentielle, on ajoute 0,2 g/l d'arabinose. L'incubation a été poursuivie durant 6 hr supplémentaires. L'expression a été observée moins d'une heure après l'addition d'arabinose.

L'électrophorèse sur gel d'acrylamide d'un échantillon du lysat cellulaire total a mis en évidence la présence d'une protéine d'environ 70 kD oui est capable de fixer la transferrine humaine marquée à la peroxydase.

EXEMPLE 4: Expression du fragment d'ADN codant pour la sous-unité tbp1 de la souche IM2169.

20 4A. Construction du vecteur d'expression pTG37796.

Un fragment synthétique constitué des oligonucléotides OTG4038 et OTG4039 préalablement appariés, a été inséré dans le plasmide pTG3704 digéré par *NcoI* et *HindIII*, générant ainsi le plasmide pTG3756.

OTG4038 :

5

10

25

30

5' CATGGCTGCAGGRACCACGCGTGAATTCCCCGGGTCTAGA 3'

OTG4039:

5' AGCTTCTAGACCCGGGGAATTCACGCGTGGTACCTGCAGC 3'

A partir du plasmide pTG2754, on a généré par PCR à l'aide des amorces OTG4037 et OTG4014 un fragment incluant la région codant pour l'extrémité N-terminale du précurseur de Tbp1 jusqu'au site MluI.

OTG4037 :

5' TTTCCCGGATCCGC ATG CAA CAG CAA CAT TTG TTC CGA TTA 3 SphIBamHI

Met Gln Gln Gln...

5

15

25

OTG4014:

5' AAAAGGATCCGGGGTCGTAACGCGTCAGGTCGCGG 3'

BamHI

MluI

Ce fragment PCR a été digéré par BamHI et cloné dans le site BamHI 10 de M13TG131 pour générer M13TG3738. La séquence de ce fragment a été vérifiée.

M13TG3738 a ensuite été linéarisé par SphI, traité à la T4 DNA polymérase pour rendre les extrémités franches, puis digéré par MluI afin d'isoler le fragment porteur de la région codant pour l'extrémité N-terminale du précurseur de Tbp1.

Ce fragment a été inséré dans pTG3756 digéré par NcoI, traité à la T4 DNA polymérase puis digéré par MluI, pour générer le plasmide pTG3778. 20 La séquence de la jonction Ncol / Sphl a été vérifiée.

Le fragment MuI - XbaI de pTG3720 codant pour la majeure partie de Top1 (3'tbp1) a été inséré dans le plasmide pTG3778. Le plasmide final ainsi obtenu est le plasmide pTG3779.

Production de la sous-unité Tbp1.

E. coli MC1061 a été transformé par pTG3779 puis mise en culture à 37°C en milieu LB. A la culture en phase exponentielle, on a ajouté 0,2 g/l d'arabinose. L'incubation a été poursuivie durant 4 heures.

L'électrophorèse sur gel d'acrylamide d'un échantillon du lysat cellulaire total a mis en évidence la présence d'une protéine d'environ 100 Kd qui est capable de fixer la transferrine humaine marquée à la peroxydase.

SEQ ID NO: 1

Objet:

Séquence de l'ADN génomique de la souche de N. meningitidis IM2394 codant pour la sous unité Top2 et séquence protéique déduite. En gras sont indiqués le peptide signal et le site MluI

							٠.				Asn	TAA : nàA :				15
GTZ Val -15	LASI	CAG Glm	GCT	GCT Ala	ATG Met -10	Val	CTG Leu	CCT	GTG Val	TTT Phe -5	TTG Leu	TTC	AGT Ser	GCT Ala -1		60
TGT Cys	, rec	Gly	GLY	GGC Gly 5	ejă eec	AGT Ser	TTC Phe	GAT Asp	TTG Leu 10	GAC Asp	AGC Ser	GTG Val	GAA Glu	ACC Thr 15	٠.	105
GTG Val	-CAA Gln	GAT Asp	ATG Met	CAC His 20	TCC Ser	AAA Lys	CCT Pro	AAG Lys	TAT Tyr 25	GAG Glu	GAT Asp	GAA Glu	AAA Lys	AGC Ser 30	٠	130
CAG Gln	Pro	GAA Glu	AGC Ser	CAA Gln 35	CAG Gln	GAT Asp	GTA Val	TCG Ser	GAA Glu 40	AAC Asn	AGC Ser	GLY	GCG Ala	GCT Ala 45		195
TAT Tyr	GCC	TTT Phe	GCA Ala	GTA Val	AAA Lys	CTA Leu	CCT Pro	CGC	CGG -Arg-	AAT Asn	GCA Ala	CAT His	TTT Phe	AAT Asn		240
				50					55					60		
Pro	AAA Lys	TAT Tyr	AAG Lys	GAA Glu 65	AAG Lys	CAC His	AAA Lys	CCA Pro	TTG Leu 70	GGT Gly	TCA Ser	ATG Met	GAT Asp	TGG Trp 75		285
AAA Lys	AAA Lys	Leu	CAA Gln	AEA AEA	GGA Gly	GAA Glu	CCA Pro	AAT AAT	AGT Ser 85	TTT Phe	AGT Ser	GAG Glu	AGG Arg	GAT Asp 90		330
GAA Glu	TTG Leu	GAA Glu	AAA Lys	AAA Lys 95	CGG Arg	GGT Gly	AGT Ser	TCT Ser	GAA Glu 100	CTT Leu	ATT	GAA Glu	TCA Ser	AAA Lys 105		375
TGG Trp	GAA Glu	GAT Asp	GJA GGG	CAA Gln 110	AGT Ser	CGT Arg	GTA Val	GTT Val	GGT Gly 115	TAT Tyr	ACA Thr	AAT Asn	TTC Phe	ACT Thr 120		420
TAT Tyr	GTC Val	CGT Arg	TCG Ser	GGA Gly 125	TAT Tyr	GTT Val	TAC Tyr	CTT Leu	AAT Asn 130	AAA Lys	TAA neA	TAA Asn	ATT Ile	GAT Asp 135	-	465
ATT Ile	AAG Lys	AAT Asn	TAA nzA	ATA Ile 140	GTT Val	CTT Leu	TTT Phe	GGA	CCT Pro 145	GAC Asp	GGA Gly	TAT Tyr	CTT Leu	TAC Tyr 150	_	510
														_		

TAT AAA GGG AAA GAA CCT TCC AAG GAG CTG CCA TCG GAA AAG ATA Tyr Lys Gly Lys Glu Pro Ser Lys Glu Leu Pro Ser Glu Lys Ile 160	555
ACT TAT AAA GGT ACT TGG GAT TAT GTT ACT GAT GCT ATG GAA AAA Thr Tyr Lys Gly Thr Trp Asp Tyr Val Thr Asp Ala Het Glu Lys 180	600
CAA AGG TTT GAA GGA TTG GGT AGT GCA GGA GGA GAT AAA TCG Gln Arg Phe Glu Gly Leu Gly Ser Ala Ala Gly Gly Asp Lys Ser 195	645
GGG GCG TTG TCT GCA TTA GAA GAA GGG GTA TTG CGT AAT CAG GCA Gly Ala Leu Ser Ala Leu Glu Glu Gly Val Leu Arg Asn Gln Ala 200 205 210	690
GAG GCA TCA TCC GGT CAT ACC GAT TTT GGT ATG ACT AGT GAG TTT Glu Ala Ser Ser Gly His Thr Asp Phe Gly Met Thr Ser Glu Phe 225	735
GAG GTT GAT TTT TCT GAT AAA ACA ATA AAG GGC ACA CTT TAT CGT Glu Val Asp Phe Ser Asp Lys Thr Ile Lys Gly Thr Leu Tyr Arg 230 235	780
AAC AAC CGT ATT ACT CAA AAT AAT AGT GAA AAC AAA CAA ATA AAA AAN AAN AAN AAN AAN AAN AAN AAN AA	825
ACT ACG CGT TAC ACC ATT CAA GCA ACT CTT CAC GGC AAC CGT TTC Thr Thr Arg Tyr Thr Ile Gln Ala Thr Leu His Gly Asn Arg Phe 260 270	870
AAA GGT AAG GCG TTG GCG GCA GAT AAA GGT GCA ACA AAT GGA AGT Lys Gly Lys Ala Leu Ala Ala Asp Lys Gly Ala Thr Asn Gly Ser 285	915
THE CAR CCC GGA TIT TAC	960
His Pro Phe He Ser Asp Ser Asp 295	
GGG CCG AAA GGC GAG GAA CTT GCC GGT AAA TTC TTG AGC AAC GAC Gly Pro Lys Gly Glu Glu Leu Ala Gly Lys Phe Leu Ser Asn Asp 315	1005
AAC AAA GTT GCA GCG GTG TTT GGT GCG AAG CAG AAA GAT AAG AAG Asn Lys Val Ala Val Phe Gly Ala Lys Gln Lys Asp Lys Lys 320 325	1050
GAT GGG GAA AAC GCG GCA GGG CCT GCA ACG GAA ACC GTG ATA GAT Asp Gly Glu Asn Ala Ala Gly Pro Ala Thr Glu Thr Val Ile Asp 335	1095
GCA TAC CGT ATT ACC GGC GAG GAG TTT AAG AAA GAG CAA ATA GAC Ala Tyr Arg Ile Thr Gly Glu Glu Phe Lys Lys Glu Gln Ile Asp 350 360	1140
AGT TTT GGA GAT GTG AAA AAG CTG CTG GTT GAC GGA GTG GAG CTT Ser Phe Gly Asp Val Lys Lys Leu Leu Val Asp Gly Val Glu Leu 375	1185
TCA CTG CTG CCG TCT GAG GGC AAT AAG GCG GCA TTT CAG CAC GAG Ser Leu Leu Pro Ser Glu Gly Asn Lys Ala Ala Phe Gln His Glu 390	1230

			AAG Lys								1275
			AAG Lys								1320
			CGC Arg								1365
			AAA Arg								1410
			TGĠ Trp								1455
			TTT Phe								1500
			GCA Ala								1545
			AAG Lys						_		1590
			TTT Phe							٠	1635
			ATT Ile								1680
			GAG Glu								1725
			AAA Lys						_		1770
			CTT Leu		<u>TAA</u>	GCA	CGGC'	r			1808

į

SEO ID NO: 2

Objet:

Séquence de l'ADN génomique de la souche de N. meningitidis IM2394 codant pour le précurseur de la sous-unité Tbpl du récepteur de la transferrine et séquence protéique déduite. Le peptide signal est indiqué en caractères gras.

				CIT	CCGA	TG C	CGTC	TGAA	A GC	GAAG	ATTA	GGG	AAAC	ACT	40
ATG Met -24	CAA Gln	CAG Gln	CAA Gln	CAT His -20	TTG Leu	TTC Phe	CGA Arg	Leu	AAT Asn -15	ATT Ile	TTA Leu	TGC Cys	CTG Leu	TCT Ser -10	85 · .
TTA Leu	ATG Met	ACC Thr	GCG Ala	CTG Leu -5	CCC Pro	GTT Val	TAT Tyr	GCA Ala -1	GAA Glu l	AAT Asn	GTG Val	CAA Gln	GCC Ala 5	GAA Glu	130
CAA Gln	GCA Ala	CAG Gln	GAA Glu 10	AAA Lys	CAG Gln	TTG Leu	GAT Asp	TUL	ATA Ile	CAG Gln	GTA Val	AAA Lys	GCC Ala 20	AAA Lys	175
AAA Lys	CAG Gln	AAA Lys	ACC Thr 25	Arg	CGC Arg	GAT Asp	AAC Asn	GAA Glu 30	GTA Val	ACC Thr	GGG GLY	CTG Leu	GGC Gly 35	AAG Lys	220
TTG Leu	GTC Val	AAG Lys	TCT Ser 40	TCC Ser	GAT Asp	ACG Thr	CTA Leu	AGT Ser 45	AAA Lys	GAA Glu	CAG Gln	GTT Val	TTG Leu 50	AAT Asn	265
Ile	Ara	Asp	Leu	ACC Thr	Arq	Tyr	Asp	Pro	GTA	ATT	GCC	GTG Val	GTC Val 65	GIU	310
CNC	ССТ	CGG	GGC	GCA Ala	AGT	TCC	GGC	TAT	TCA Ser	ATA Ile	CGC Arg	GLY	ATG Met 80	Wan	355
AAA Lys	AAC Asn	CGC	GTT Val 85	Ser	TTA Leu	ACG Thr	GTA Val	GAC Asp 90	GTĀ	GTT Val	TCG Ser	CAA Gln	ATA Ile 95	CAG	400
TCC Ser	TAC	ACC Thr	GCG Ala 100	Gln	GCG Ala	GCA Ala	TTG	GGT Gly 105	Glā	ACC Th	AGG Arg	ACG Thr	GCG Ala 110	Gly	445
AGC Ser	AGC Ser	GCC	GCA Ala 115	Ile	AAT Asn	GAA Glu	ATC	GAG Glu 120	TY	GA?	AAC AST	GTC Val	Lys 125	GCC Ala	490
GTT Val	GAA Glu	ATC	AGC Ser 130	· Lys	GGT	TCG Ser	TAA :	TCA Ser 135	: Se:	GAI	A TAC	GGA Gly	AAC Asi 140	GGC Gly	535
GCA Ala	TTC Leu	GCA Ala	GGT Gly 145	r Ser	GTC Val	GCF Ala	TTI Phe	CAP Glr 150	ı Tnı	Ly:	A ACC	C GCA r Ala	A GCC A Ala 15	C GAC a Asp	580

	•							-	32 -						
ATT Ile	ATC Ile	GJY GGA	GAG Glu 160	GGA	AAA Lys	Gju CAG	TGG Trp	GGC Gly 165	ATT īle	CAG Gln	AGT Ser	AAA Lys	ACT Thr 170	GCC Ala	625
TAT Tyr	TCG Ser	GGA	AAA Lys 175	GAC. Asp	CAT His	GCC Ala	CTG Leu	ACG Thr 180	CAA Gln	TCC Ser	CTT Leu	GCG Ala	CTT Leu 185	GCC Ala	670
GGA Gly	CGC Arg	AGC Ser	GGC Gly 190	GLY	GCG Ala	GAA Glu	GCC Ala	CTC Leu 195	CTT Leu	ATT Ile	TAT [.]	ACT Thr	AAA Lys 200	CGG Arg	715
CGG Arg	GGT Gly	CGG	GAA Glu 205	ATC Ile	CAT His	GCG Ala	CAT His	AAA Lys 210	Asp Asp	GCC Ala	GGC Gly	AAG Lys	GGT Gly 215	GTG Val	760
CAG Gln	AGC Ser	TTC Phe	AAC Asn 220	CGG	CTG Leu	GTG Val	TTG Leu	GAC Asp 225	GAG Glu	GAC Asp	AAG Lys	AAG Lys	GAG Glu 230	GGT Gly	805
CCC	AGT Ser	CAG Gln	TAC Tyr 235	AGA Arg	TAT Tyr	TTC Phe	ATT Ile	GTC Val 240	GAA Glu	GAA Glu	GAA Glü	TGC	CAC His 245	AAT Asn	850
GCA	TAT Tyr	Ala	GCC Ala 250	TGT Cys	AAA Lys	AAC Asn	AAG Lys	CTG Leu 255	LYs	GAA Glu	GAT Asp	Ala	TCG Ser 260	GTC Val	895
AAA Lys	GAT Asp	GAG Glu	CGC Arg 265	AAA Lys	ACC Thr	GTC Val	AGC Ser	ACG Thr 270	CAG Gln	GAT Asp	TAT Tyr	ACC	GGC Gly 275	261	940
AAC Asn	CGC Arg	TTA Leu	CTT Leu 280	GCG	AAC Asn	CCG Pro	CTT Leu	GAG Glu 285	TAT Tyr	GJA	AGC Ser	CAA Gln	Ser 290	TTP	985
 CTG Leu	TTC	CGA Arg	CCG Pro 295	CJA	TGG	CAT	TTG Leu	Asp	Asn	CGC	CAT His	TAT Tyr	GTC Val 305	GGA	 1030
GCC	GTT Val	CTC Leu	GAA Glu 310	Arg	ACG Thr	CAG Gln	CAG Gln	ACC Thr 315	Phe	GAT Asp	ACA Thr	CGC Arg	GAT J Asi 320	ATG Met	1075
ACT	GTT Val	CCT	GCC Ala 325	Tyr	TTT Phe	ACC Thr	AGT Ser	GAA Glu 330	Asp	TAT TYT	GTA Val	CCC Pro	GG: G1: 33!	r TCG y Ser	1120
CTG Leu	AAA Lys	GGT	CTT Leu 340	Glā	AAA Lys	TAT	TCG Ser	GGC Gly 345	Asp	AA ? aak c	T AAC 1 Lys	G GC	A GA a G1 350	A AGG u Arg	1165
CTG Leu	TTT Phe	GTT Val	CAG Gln 355	Gly	GAG Glu	GGC	AGT Ser	Thi 360	Leu	G CAC	G GG:	r at y Il	c GG e Gl 36	T TAC y Tyr 5	1210
GGT	ACC	GLY	GTG Val	Phe	TAI	GAT Asp	GA Glu	A CGC	; His	r ac	T AAI	A AA B AS	C CG n-Ar 38	C TAC g Tyr O	1255

GGG GTC GAA TAT GTT TAC CAT AAT GCT GAT AAG GAT ACC TGG GCC Gly Val Glu Tyr Val Tyr His Asn Ala Asp Lys Asp Thr Trp Ala 385

£ 1

!

()

GAT Asp	TAC Tyr	GCC Ala	CGA Arg 400	CTT Leu	TCT Ser	TAT :	GAC Asp	CGG Arg 405	CAA Gln	GGT Gly	ATA Ile	GAT Asp	TTG Leu 410	Asp GAC		1345
AAC Asn	CGT Arg	TTG Leu	CAG Gln 415	CAG Gln	ACG Thr	CAT His	TGC Cys	TCT Ser 420	CAC His	Asp GAC	GJY GGT	TCG Ser	GAT Asp 425	AAA Lys		1390
AAT Asn	TGC Cys	CGT Arg	CCC Pro 430	yeb GyC	GCC	TAA neA	AAA Lys	CCG Pro 435	TAT Tyr	TCT Ser	TTC Phe	TAT Tyr	ААА Lув 440	TCC Ser	•	1435
GAC Asp	CGG Arg	ATG Met	ATT Ile 445	TAT Tyr	GAA Glu	GAA · Glu	AGC Ser	CGA Arg 450	DAA neA	CTG Leu	TTC Phe	CAA Gln	GCA Ala 455	GTA Val		1480
TTT Phe	ГĀ2 УУУ	AAG Lys	GCA Ala 460	TTT Phe	GAT Asp	ACG Thr	GCC Ala	AAA Lys 465	ATC Ile	CGT Arg	CAC His	AAT Asn	TTG Leu 470	AGT Ser		1525
ATC Ile	AAT Asn	Leu	GGG Gly 475	Tyr	GAC Asp	CGC Arg	TTT Phe	AAC Lys 4800	Ser	CAA Gln	TTG Leu	TCC Ser	CAC His 485	AGC Ser		1570
GAT	TAT Tyr	TAT Tyr	CTT Leu 490	CAA Gln	AAC Asn	GCA Ala	GTT Val	CAG Gln 495	GCA Ala	TAT Tyr	GAT Asp	TTG	ATA Ile 500	ACC Thr		1615
CCG Pro	AAA Lys	AAG Lys	CCT Pro 505	CCG Pro	TTT Phe	CCC Pro	AAC Asn	GGA Gly 510	AGC Ser	AAA Lys	GAC Asp	AAC	CCG Pro 515	TAT Tyr		1660
AGG Arg	GTG Val	TCT Ser	ATC Ile 520	Gly	AAG Lys	ACC Thr	ACG Thr	GTC Val 525	AAT Asn	ACA	TCG Ser	CCG	ATA Ile 530	Cy 5		1705
egt	TTC	GGG	-AAT	AAC	ACC	TAT	ACA	GAC	TGC	_ACA	CCG	AGC	PAA	ATC		1750
Arg	Phe	Gly	Asn 535		Thr	Tyr	Thr	540	Cys	TNE	Pro	ALC	545	Ile		
GJA GGC	GCC	AAC Asn	GGT Gly 550	Tyr	TAT	GCA Ala	GCC	GTT Val 555	GID	GAC Asp	AAT Asn	GTC Val	CGT L Arg 560	TIG Leu		1795
GLY	AGG Arg	TGG Tr	GCG Ala 565	Asp	GTC Val	GGA	GCA Ala	GGC Gly 570	_ 116	CGI	TAC	GA.	TAC 57:	r Arg		1840
AGC Ser	ACG Thr	CAT	TCG Ser 580	Gl.	GAT Asp	AAG	AG1 Ser	GTC Val 585	Sex	ACC Thi	GGC Gly	C AC	r CA	c cgc s Arg O		1885
AAC raƙ	CTI	TCI 1 Sei	TGC Try 59!) Ası	C GCG	GLY	GT! Val	4 GT0 L Val 600	rre	AAI 1 Ly:	A CC	r TT o Ph	C AC e Th 60	c TGG r Trp 5		1930
ATO Met	GA:	r TTO p Lev	G ACT	c Ty	CGC Arg	GCI J Ala	TC:	r ACC r Th	r GT	y Ph	c cc e Ar	T CT g Le	G CC u Pr 62	G TCG o Ser O		1975
TTT	r GC0 ≥ Ala	C GAN	A ATO	t Ty	r GGC r Gly	TG(G AG	A GC g Al 63	a GT	A et	G TC u Şe	T TI	G AF su Ly 63	A ACG	;	2020

.

AND THE RESIDENCE AND ASSESSMENT OF THE SECOND PARTY OF THE SECOND

2470 _ -..

									-	- 34 -								
	GGC Gly	GGC	AAC Asn	GGT Gly 550	TAT Tyr	TAT Tyr	GCA Ala	GCC Ala	GTT Val 555	CAA Gln	GAC Asp	AAT Asn	Val	CGT Arg 560	TTG Leu		1795	
	GGC Gly	λGG	TGG Trp	GCG Ala 565	GAT Asp	GTC Val	GGA Gly	GCA Ala	GGC Gly 570	ATA Ile	Arg	TAC Tyr	Asp	TAC Tyr 575	CGC Arg		1840	
	AGC Ser	ACG Thr	CAT His	TCG Ser 580	GAA Glu	yab	AAG Lys	AGT Ser	GTC Val 585	TCT Ser	ACC Thr	ejà eec	Thr	CAC His 590	CGC Arg		1885	
	AAC Asn	CTT Leu	TCT Ser	TGG Trp 595	AAC Asn	GCG Ala	GLY	GTA Val	GTC Val 600	CTC Leu	AAA Lys	CCT Pro	TTC Phe	ACC Thr 605	TGG Trp	•	1930	
	ATG Het	GAT Asp	TTG Leu	ACT Thr 610	TAT Tyr	CGC Arg	GCT Ala	TCT Ser	ACG Thr 615	GLY	TTC Phe	CGT Arg	CTG Leu	CCG Pro 620	TCG Ser		1975	
÷	TTT Phe	GCC Ala	Glu	ATG Met 625	TAT Tyr	eja eec	TGG	AGA Arg	GCC Ala 630	GJY GGG	G) G) G)	TCT	TTG Leu	AAA Lys 635	ACG Thr		2020	
se.	TTG Leu	GAT Asp	CTG Leu	AAA Lys 640	CCG Pro	GAA Glu	AAA Lys	TCC Ser	TTT Phe 645	TAA neA	AGA Arg	GAG Glu	GCA Ala	GGT Gly 650	ATT		2065	
	GTA Val	TTT Phe	AAA Lys	GGG Gly 655	ysb GyC	TTC Phe	ely ecc	AAT Asn	TTG Leu 660	GAA Glu	GCC	AGC Ser	TAT Tyr	TTC Phe 665	AAC naA		2110	
	Asn	Ala	TVI	Arc	Asp	Leu	ATT	Ala	Phe	Gly	Tyr	Glu	Thr	Arg	Thr		2155	!
	CAA Gln	AAC Asn	GJY GGG	CAA Gln 685	ACT Thr	TCG Ser	GCT Ala	TCT Ser	GGC Gly 690	GAC Asp	CCC Pro	GGA Gly	TAC Tyr	CGA Arg 695	TAA naA		2200	
	GCC Ala	CAA Gln	TAA Asn	GCA Ala 700	CGG Arg	ATA Ile	GCC Ala	GGT Gly	ATC Ile 705	AAT Asn	ATT Ile	TTG Leu	GGT Gly	AAA Lys 710	ATC Ile		2245	•
	GAT Asp	TGG Trp	CAC His	GGC Gly 715	GTA Val	TGG Trp	GGC	GGG. Gly	TTG Leu 720	Pro	yab GYC	CJA	TTG Leu	TAT Tyr 725	TCC Ser	·	2290	
	ACG Thr	CTT Leu	GCC Ala	TAT Tyr 730	AAC Asn	CGT Arg	ATC	AAG Lys	GTC Val 735	AAA Lys	GAT Asp	Als	GAT Asp	ATA Ile 740	CGC Arg		2335	
	GCC Ala	GAC Asp	AGG Arg	ACG Thr 745	TTT Phe	GTA Val	ACT Thr	TCA Ser	TAT Tyr 750	Leu	TTT Phe	GAT Asp	GCC Ala	GTC Val 755	CAA Gln		·2380	
	CCT Pro	TCA Ser	CGA Arg	TAT Tyr 760	GTA Val	TTG Leu	GGT Gly	TTG Leu	GGT Gly 765	Tyr	Asp	CAT His	CCT Pro	GAC Asp 770	Gly		2425	

ATA TGG GGC ATC AAT ACG ATG TTT ACT TAT TCC AAG GCA AAA TCT Ile Trp Gly Ile Asn Thr Met Phe Thr Tyr Ser Lys Ala Lys Ser 775 780 785

ACA TTT AGC TTG GAR ATG AAG TTT TAA ACGTCCAAAC GCCGCAAATG Thr Phe Ser Leu Glu Het Lys Phe 880

2787

CCGTCTGAAA GGCT

2801

SEO ID NO: 3

Objet:

Séquence de l'ADN génomique de la souche de N. meningitidis IM2169 codant pour le précurseur de la sous-unité Tbpl et séquence protéique déduite. Le peptide signal est indiqué en caractères gras.

ATCAAGAATA AGGCTTCAGA	20
CGGCATCGCT CCTTCCGATA CCGTCTGAAA GCGAAGATTA GGGAAACATT	70
ATG CAA CAG CAA CAT TTG TTC CGA TTA AAT ATT TTA TGC CTG TCG Met Gln Gln His Leu Phe Arg Leu Asn Ile Leu Cys Leu Ser -24 -20 -15	115
CTG ATG ACT GCG CTG CCT GCT TAT GCA GAA AAT GTG CAA GCC GGA Leu Met Thr Ala Leu Pro Ala Tyr Ala Glu Asn Val Gln Ala Gly -5 -1 l 5	160
CAA GCA CAG GAA AAA CAG TTG GAT ACC ATA CAG GTA AAA GCC AAA Gln Ala Gln Glu Lys Gln Leu Asp Thr Ile Gln Val Lys Ala Lys 10 15 20	205
AAA CAG AAA ACC CGC CGC GAT AAC GAA GTA ACC GGT CTG GGC AAA Lys Gln Lys Thr Arg Arg Asp Asn Glu Val Thr Gly Leu Gly Lys 25 30 35	250
TTG GTC AAA ACC GCC GAC ACC CTC AGC AAG GAA CAG GTA CTC GAT Leu Val Lys Thr Ala Asp Thr Leu Ser Lys Glu Gln Val Leu Asp 40 50	295
ATC CGC GAC CTG ACG CGT TAC GAC CCC GGC ATC GCC GTG GTC GAA	340
ATC CGC GAC CTG ACG CGT TAC GAC CCC GGC ATC ALL Val Glu Ile Arg Asp Leu Thr Arg Tyr Asp Pro Gly Ile Ala Val Val Glu 55 60 65	
CAG GGG CGC GGC AGT TCG GGC TAC TCG ATA CGC GGT ATG GAC Gln Gly Arg Gly Ala Ser Ser Gly Tyr Ser Ile Arg Gly Het Asp 70 75	385
AAA AAC CGC GTT TCC TTG ACG GTG GAC GGC TTG GCG CAA ATA CAG Lys Asn Arg Val Ser Leu Thr Val Asp Gly Leu Ala Gln Ile Gln 85 90 95	430
TCC TAC ACC GCG CAG GCG GCA TTG GGC GGG ACG ACG ACG GCG GGC Ser Tyr Thr Ala Gln Ala Ala Leu Gly Gly Thr Arg Thr Ala Gly 100 105	475
AGC AGC GGC GCA ATC AAT GAA ATC GAG TAT GAA AAC GTC AAA GCT Ser Ser Gly Ala Ile Asn Glu Ile Glu Tyr Glu Asn Val Lye Ala 115 120	520
GTC GAA ATC AGC AAA GGC TCA AAC TCG GTC GAA CAA GGC AGC GGC Val-Glu Ile Ser Lys Gly Ser Asn Ser Val Glu Gln Gly Ser Gly 130 135	565

GCA TTG GCG GGT TCG GTC GCA TTT CAA ACC AAA ACC GCC GAC GAT Ala Leu Ala Gly Ser Val Ala Phe Gln Tyr Lys Thr Ala Asp Asp 145 150	600
GTT ATC GGG GAA GGC AGG CAG TGG GGC ATT CAG AGT AAA ACC GCC Val Ile Gly Glu Gly Arg Gln Trp Gly Ile Gln Ser Lys Thr Ala 160 165	645
TAT TCC GGC AAA AAC CGG GGG CTT ACC CAA TCC ATC GCG CTG GCG Tyr Ser Gly Lys Asn Arg Gly Leu Thr Gln Ser Ile Ala Leu Ala 175 185	690
GGG CGC ATC GGC GGT GCG GAG GCT TTG CTG ATC CAC ACC GGG CGG Gly Arg Ile Gly Gly Ala Glu Ala Leu Leu Ile His Thr Gly Arg 190 195 200	735
CGC GCG GGG GAA ATC CGC GCA CAC GAA GAT GCC GGA CGC GGC GTT Arg Ala Gly Glu Ile Arg Ala His Glu Asp Ala Gly Arg Gly Val 205 210	780
CAG AGC TIT AAC AGG CTG GTG CCG GTT GAA GAC AGC AGC GAA TAC Gln Ser Phe Asn Arg Leu Val Pro Val Glu Asp Ser Ser Glu Tyr 220 225	825
GCC TAT TTC ATC GTT GAA GAT GAA TGC GAA GGC AAA AAT TAC GAA Ala Tyr Phe Ile Val Glu Asp Glu Cys Glu Gly Lys Asn Tyr Glu 245	870
ACG TGT AAA AGC AAA CCG AAA AAA GAT GTT GTC GGC AAA GAC GAA Thr Cys Lys Ser Lys Pro Lys Lys ASP Val Val Gly Lys ASP Glu 250 255	915
CGT CAA ACG GTT TCC ACC CGA GAC TAC ACG GGC CCC AAC CGC TTC Arg Gln Thr Val Ser Thr Arg Asp Tyr Thr Gly Pro Asn Arg Phe 275 276	960
CTC GCC GAT CCG CTT TCA TAC GAA AGC CGA TCG TGG CTG TTC CGC Leu Ala Asp Pro Leu Ser Tyr Glu Ser Arg Ser Trp Leu Phe Arg 290 280	1005
CCG GGT TTT CGT TTT GAA AAC AAA CGG CAC TAC ATC GGC GGC ATA Pro Gly Phe Arg Phe Glu Asn Lys Arg His Tyr Ile Gly Gly Ile 305	1050
CTC GAA CAC ACG CAA CAA ACT TTC GAC ACG CGC GAT ATG ACG GTT Leu Glu His Thr Gln Gln Thr Phe Asp Thr Arg Asp Het Thr Val 310 315	1095
CCG GCA TTC CTG ACC AAG GCG GTT TTT GAT GCA AAT TCA AAA CAG Pro Ala Phe Leu Thr Lys Ala Val Phe Asp Ala Asn Ser Lys Gln 325 330 335	1140
GCG GGT TCT TTG CCC GGC AAC GGC AAA TAC GCG GGC AAC CAC AAA Ala Gly Ser Leu Pro Gly Asn Gly Lys Tyr Ala Gly Asn His Lys 340 345	1185
TAC GGC GGA CTG TTT ACC AAC GGC GAA AAC GGT GCG CTG GTG GGC Tyr Gly Gly Leu Phe Thr Asn Gly Glu Asn Gly Ala Leu Val Gly 365	1230
GCG GAA TAC GGT ACG GGC GTG TTT TAC GAC GAG ACG CAC ACA AAA ALA Glu Tyr Gly Thr Gly Val Phe Tyr Asp Glu Thr His Thr Lys 370	1275

	CGC Arg														1320
ACT Thr	TGG Trp	GCG	GAT Asp 400	TAT-	GCC	CGC Arg	CTC Leu	TCT Ser 405	TAC Tyr	GAC Asp	CGG Arg	CAG Gln	GGC Gly 410	ATC Ile	1365
	TTG Leu														1410
	yab						Ser								1455
	AAA Lys														1500
	GCG Ala						Phe							His	1545
	CTG Leu														1590
	CAT His						Gln								1635
TCG	AAA	ACG	ccc	CCT	AAA	ACC	GCC	AAC	CCC	286	GGC	GAC	AAG	AGC	1680
	ГЛа	Thr	Pro	Pro	Lys	Thr	Āla	Asn	Pro	Asn	Gly	Asp	Lys		
 AAA	Lys	Thr	Pro 505 TGG	Pro	Lys AGC	Thr	Āla GGC	Asn 510 GGG	Pro GGA	Asn AAT	GTG	Asp	Lys 515 ACG	Ser	 1725
 AAA Lys CAA	CCC	Thr TAT Tyr	Pro 505 TGG Trp 520 CTC	Pro GTC Val	AGC Ser	Thr ATA Ile AAC	GGC Gly AAT	Asn 510 GGG Gly 525 ACT	GGA GLY	AAT AAT AGG	GTG Val	GTT Val	Lys 515 ACG Thr 530 ACG	GGG Gly CCG	
AAA Lys CAA Gln	ATC Ile	Thr TAT Tyr TGC Cys	Pro 505 TGG Trp 520 CTC Leu 535	GTC Val	AGC Ser GGC Gly	Thr ATA Ile AAC Asn	GGC Gly AAT ABN	Asn 510 GGG Gly 525 ACT Thr 540	GGA Gly TAT Tyr	AAT AAT ACG Thr	GTG Val GAC ABP	GTT Val TGC Cys	Lys 515 ACG Thr 530 ACG Thr 545	GGG Gly CCG Pro	1725
AAA Lys CAA Gln CGC Arg	ATC Ile	Thr TAT TYr TGC Cys ATC Ile	Pro 505 TGG Trp 520 CTC Leu 535 AAC Asn 550 GGC	GTC Val TTT Phe GGC Gly	AGC Ser GGC Gly AAA Lys	Thr ATA Ile AAC Asn AGC Ser	GGC Gly AAT ABN TAT TYT	Asn 510 GGG Gly 525 ACT Thr 540 TAC Tyr 555	GGA Gly TAT Tyr GCG Ala	AAT ASD ACG Thr GCA Ala	GTG Val GAC Asp GTT Val	Asp GTT Val TGC Cys CGG Arg	Lys 515 ACG Thr 530 ACG Thr 545 GAC Asp 560	GGG Gly CCG Pro AAT A8n	1725 1770
AAA Lys CAA Gln CGC Arg GTC Val	CCC Pro ATC 11e AGC Ser	Thr TAT TYr TGC Cys ATC Ile TTG Leu CGC	Pro 505 TGG Trp 520 CTC Leu 535 AAC Asn 550 GGC GGLy 565 AGC	TTT Phe GGC Gly	AGC Ser GGC Gly AAA Lys TGG Trp	Thr ATA Ile AAC Asn AGC Ser GCG Ala	GGC Gly AAT ABN TAT TYT GAT ASP	Asn 510 GGG Gly 525 ACT Thr 540 TAC Tyr 555 GTC Val 570 GAC	GGA Gly TAT Tyr GCG Ala GGC Gly	AAT AAT ACG Thr GCA Ala GCG Ala	GTG Val GAC ABP GTT Val GGG Gly	Asp GTT Val TGC Cys CGG Arg TTG Leu	Lys 515 ACG Thr 530 ACG Thr 545 GAC Asp 560 CGC Arg 575	GGG Gly CCG Pro AAT ABN TAC TYT	1725 1770 1815
AAA Lys CAA Gln CGC Arg GTC Val GAC Asp	CCC Pro ATC Ile AGC Ser CGT Arg	Thr TAT TYr TGC Cys ATC Ile TTG Leu CGC Arg	Pro 505 TGG Trp 520 CTC Leu 535 AAC Asn 550 GGC GGC 565 AGC Ser 580 ACC	TTT Phe GGC Gly AGG Arg	AGC Ser GGC Gly AAA Lys TGG Trp CAT His	Thr ATA Ile AAC Asn AGC Ser GCG Ala TCG Ser	GGC Gly AAT ABN TAT TYT GAT ASP GAC ASP	Asn 510 GGG Gly 525 ACT Thr 540 TAC Tyr 555 GTC Val 570 GAC Asp 585	GGA GLY TAT TYT GCG Ala GGC GLY GGC GLY	AAT AAT ACG Thr GCA Ala GCG Ala AGC Ser	GTG Val GAC ABP GTT Val GGG Gly GTT Val	Asp GTT Val TGC Cys CGG Arg TTG Leu TCC Ser	Lys 515 ACG Thr 530 ACG Thr 545 GAC Asp 560 CGC Arg 575 ACC Thr 590	GGG Gly CCG Pro AAT Asn TAC Tyr GGC Gly CCT	1725 1770 1815 1860

SEO !D NO : 4

Objet:

Sequence de l'ADN génomique de la souche de N. meningitidis IM2169 codant pour le précurseur de la sous-unité Tbp2 et séquence protéique déduite. Le peptide signal est indiqué en caractère gras.

ATTTGTTAA AAATAARTAA AATAATAATC CTTATCATTC TTTAATTGAA TTGGGTTTAT	59
ATT AND AND COA TTG GTA AAT CAG GCT GCT ATG GTG CCT GTG ATG AAC AAT CCA TTG GTA AAT CAG GCT ATG GTG CTG CCT GTG Met Asn Asn Pro Leu Val Asn Gln Ala Ala Met Val Leu Pro Val -20 -15	104
TIT TIG TIG AGT GCC TGT CIG GGC GGC GGC AGT TIC GAT CIT Phe Leu Leu Ser Ala Cys Leu Gly Gly Gly Ser Phe Asp Leu -5 -1 1 5 10	149
GAT TCT GTC GAT ACC GAA GCC CCG CGT CCC GCG CCA AAG TAT CAA Asp Ser Val Asp Thr Glu Ala Pro Arg Pro Ala Pro Lys Tyr Gln Asp Ser Val Asp Thr Glu Ala Pro Arg Pro Ala Pro Lys Tyr Gln 25	194
GAT GTT TCT TCC GAA AAA CCG CAA GCC CAA AAA GAC CAA GGC GGA Asp Val Ser Ser Glu Lys Pro Gln Ala Gln Lys Asp Gln Gly Gly 30 35	239
TAC GGT TTT GCG ATG AGG TTG AAA CGG AGG AAT TGG TAT CCG GGG Tyr Gly Phe Ala Het Arg Leu Lys Arg Arg Asn Trp Tyr Pro Gly 55 50 55	284
GCA GAA GAA AGC GAG GTT AAA CTG AAC GAG AGT GAT TGG GAG GCG Ala Glu-Glu Ser Glu Val Lys Leu Asn Glu Ser Asp Trp Glu Ala 60 65	329
ACG GGA TTG CCG ACA AAA CCC AAG GAA CTT CCT AAA CGG CAA AAA Thr Gly Leu Pro Thr Lys Pro Lys Glu Leu Pro Lys Arg Gln Lys 75 80 85	374
TCG GTT ATT GAA AAA GTA GAA ACA GAC GGC GAC AGC GAT ATT TAT Ser Val Ile Glu Lys Val Glu Thr Asp Gly Asp Ser Asp Ile Tyr 90 95	419
TCT TCC CCC TAT CTC ACA CCA TCA AAC CAT CAA AAC GGC AGC GCT Ser Ser Pro Tyr Leu Thr Pro Ser Asn His Gln Asn Gly Ser Ala 105	464
GGC AAC GGT GTA AAT CAA CCT AAA AAT CAG GCA ACA GGT CAC GAA Gly Asn Gly Val Asn Gln Pro Lys Asn Gln Ala Thr Gly His Glu 120 125	509
AAT TTC CAA TAT GTT TAT TCC GGT TGG TTT TAT AAA CAT GCA GCG Asn Phe Gln Tyr Val Tyr Ser Gly Trp Phe Tyr Lys His Ala Ala 135	554
AGT GAA AAA GAT TTC AGT AAC AAA AAA ATT AAG TCA GGC GAC GAT Ser Glu Lys Asp Phe Ser Asn Lys Lys Ile Lys Ser Gly Asp Asp 150	599

			•											_	_		644
GCT	TAT Tyr	ATC Ile	TTC Phe	TAT Tyr 165	CAC His	Gly GGT	GAA I Glu I	Lyb.	Pro :	ICC Ser	CGA Arg	CAA Gln	CTI	Pr 17	T 0 5		044
GCT Ala	TCT Ser	GGA Gly	AAA Lys	GTT Val 180) Ile	TAC Tyr	AAA (Lys (CTA	GTG ' Val ' 185	TGG Trp	CAT His	TTT Phe	GT? Va.	A AC 1 Th	ec er eo		689
GAT Asp	ACA Thr	AAA Lys	AAG Lys	GGT Gly 195	CAA Gln	GAT Asp	TTT Phe	nra .	GAA Glu 200	ATT	ATC Ile	CAG Gln	CC:	T T0	CA er O5		734
AAA Lys	ддд Lүв	CAA Gln	GCC		AGG Arg	TAT Tyr	AGC Ser	GGA Gly	TTT Phe 215	TCT Ser	GGT Gly	GAT	e7 ec	C A y S	GC er 20		779
GAA Glu	GAA Glu	TAT Tyr	TCC Ser		AAA Lys	AAC Asn	GAA Glu	TCC Ser	ACG Thr 230		AAA Lys	yai	GA As	т С р н 2	AC 1s 35		824
GAG Glu	GGT Gly	TAT Ţyr	GGT Gly		ACC	TCG Ser	TAA Asn	TTA Leu	GAA Glu 245	GTG Val	GAT GAT	TT(c cc	С А .у А 2	AT .sn .50		869
AAG Lys	AAA Lys	TTG Lev	ACG Thr		гуз	TTA Leu	ATA Ile	CGC	AAT Asn 260	AAT Asn	GCG Ala	AG(C CI	A A ≥u A	LAT LSN 265		914
AAT Asn	AAT Asn	ACI Thi	CAA 1 12A :		GAC Asp	AAA Lys	CAT	ACC Thr	ACC Thr 275	CAA Gln	TAC	TA Ty	C AG	SC C	CTT Leu 280		959
GAT Ast	GCA	CAJ	A ATZ		GC	C AAC	CGC Arg	TTC Phe	AAC Asn 290	9-3	ACC Th	G GC	A A	br :	GCA Ala 295		1004
 ACI Thi	yal Gy(AAI D Ly	A AAI		AAT	GAA Glu	ACC Thr	AAA Lys	CTA Leu 305		C CC	C TI o Ph	T G	TT al	TCC Ser 310		1049
GA(As)	C TCC	G-TC Se	T TC r Se		G AGG	c GGC	GGC Gly	TTI Phe	TTC Phe 320	·	y Pr	G C7	AG G Ln G	ETY GT	GAG Glu 325		1094
GAI Gl:	A TT	G GG u Gl	T TT y Ph		C TT	r rro e Leo	AGC 1 Sex	GAC	GAT 33!		A AA n Ly	A G	TT C	CC	GTT Val 340	٠	1139
GT Va	c GG l Gl	C AG y Se	C GC		A AC s Th	C AAI r Ly	A GAC B As <u>i</u>	AAI o Lyi	CTC Lev		A AA u Ae	AT G	GC (GCG Ala	GCG Ala 355		1184
GC Al	T TC a Se	A GG r Gl	C AG		A GG r Gl	T GC	G GCI a Ala	A GC	A TC a Se 36		C G Y G	ST G ly A	CG (GCA Ala	GGC Gly 370		1229
AC Th	G TC	G TO	CT GA ≥r Gl		C AG	T AA	G CT	G AC u Th	C AC r Th 38		T T	TG G eu A	TAS	GCG Ala	GTT Val 385		1274
GA G1	A TI u Le	G AG	CA Ci hr-Le		AC GA	AC AA ap Ly	G AA	A AT	C AA e Ly 39	•	AT C	TC (SÁC Asp	AAC naa	TTC Phe 400		1319

(E)

ź	٤	١
2		-4

	3364
AGC AAT GCC GCC CAA CTG GTT GTC GAC GGC ATT ATG ATT CCG CTC Ser Asn Ala Ala Gln Leu Val Val Asp Gly Ile Het Ile Pro Leu 415	1364
CTG CCC AAG GAT TCC GAA AGC GGG AAC ACT CAG GCA GAT AAA GGT Leu Pro Lys Asp Ser Glu Ser Gly Asn Thr Gln Ala Asp Lys Gly 420 425	1409
AAA AAC GGC GGA ACA GAA TTT ACC CGC AAA TTT GAA CAC ACG CCG Lys Asn Gly Gly Thr Glu Phe Thr Arg Lys Phe Glu His Thr Pro 445	1454
GAA AGT GAT AAA AAA GAC GCC CAA GCA GGT ACG CAG ACG AAT GGG Glu Ser Asp Lys Asp Ala Gln Ala Gly Thr Gln Thr Asn Gly 460	1499
GCG CAA ACC GCT TCA AAT ACG GCA GGT GAT ACC AAT GGC AAA ACA Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr Asn Gly Lys Thr A70 475	1544
AAA ACC TAT GAA GTC GAA GTC TGC TGT TCC AAC CTC AAT TAT CTG AAA ACC TAT GAA GTC GAA GTC TGC TGT TCC AAC CTC AAT TAT CTG Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr Leu A85 490	1589
AAA TAC GGA ATG TTG ACG CGC AAA AAC AGC AAG TCC GCG ATG CAG Lys Tyr Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln 505	1634
GCA GGA GGA AAC AGT AGT CAA GCT GAT GCT AAA ACG GAA CAA GTT Ala Gly Gly Asn Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val	1679
GAA CAA AGT ATG TTC CTC CAA GGC GAG CGT ACC GAT GAA AAA GAG Glu Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu	1724
DATE OF THE OCCUPANT TO THE TAC GGG	1769
ATT CCA ACC GAC CAA AAC GTC GTT TAT CGG GGG TOT TYP GTY GTY ITE Pro Thr Asp Gln Asn Val Val Tyr Arg Gly Ser Trp Tyr GTY 550	
CAT ATT GCC AAC GGC ACA AGC TGG AGC GGC AAT GCT TCT GAT AAA His Ile Ala Asn Gly Thr Ser Trp Ser Gly Asn Ala Ser Asp Lys 565	1814
GAG GGC GGC AAC AGG GCG GAA TTT ACT GTG AAT TTT GCC GAT AAA Glu Gly Gly Asn Arg Ala Glu Phe Thr Val Asn Phe Ala Asp Lys 570 575	1859
AAA ATT ACC GGC AAG TTA ACC GCT GAA AAC AGG CAG GCG CAA ACC Lys Ile Thr Gly Lys Leu Thr Ala Glu Asn Arg Gln Ala Gln Thr 585 590	1904
TTT ACC ATT GAG GGA ATG ATT CAG GGC AAC GGC TTT GAA GGT ACG Phe Thr Ile Glu Gly Met Ile Gln Gly Asn Gly Phe Glu Gly Thr	1949
GCG AAA ACT GCT GAG TCA GGT TTT GAT CTC GAT CAA AAA AAT ACC Ala Lys Thr Ala Glu Ser Gly Phe Asp Leu Asp Gln Lys Asn Thr	1994
ACC CGC ACG CCT AAG GCA TAT ATC ACA GAT GCC AAG GTA AAG GGC Thr Arg Thr Pro Lys Ala Tyr Ile Thr Asp Ala Lys Val Lys Gly 630 635 640	2039

GGT	TTT Phe	TAC Tyr	GJÀ GGG	CCT Pro 645	AAA Lys	GCC Ala	GAA Glu	GAG Glu	TTG Leu 650	GGC Gly	GGA Gly	TGG Trp	TTT	GCC Ala 655	2084
				AAA Lys 660											2129
				GCA Ala 675											2174
				GTG Val 690		<u>TAA</u>	GCAC	CGGT	rgc (CGAAC	CAAT	CA AC	TAAT	AAGGC	2225
TTC	∆G										*				2230

Revendications

- Un fragment d'ADN isolé codant pour un peptide, un polypeptide ou une protéine capables d'être reconnus par un antisérum anti-récepteur de la transferrine de la souche de N. meningitidis IM2394 ou IM2169.
- 2. Un fragment d'ADN selon la revendication 1, qui comprend une séquence nucléotidique codant pour une séquence d'acides aminés homologue à celle telle que montrée :
 - dans le SEQ ID NO: 1, commençant avec le résidu cystéine en position 1 et finissant avec le résidu glutamine en position 579;
 - dans le SEQ ID NO: 2, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 884;
 - dans le SEQ ID NO: 3, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalamine en position 887; ou
 - dans le SEQ ID NO: 4, commençant avec le résidu cystéine en position
 1 et finissant avec le résidu glutamine en position 691.
 - 3. Un fragment d'ADN selon la revendication 2, qui comprend une séquence nucléotidique codant pour une séquence d'acides aminés telle que montrée :
 - dans le SEQ ID NO: 1, commençant avec le résidu cystéine en position 1 et finissant avec le résidu glutamine en position 579;
 - dans le SEQ ID NO: 2, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 884;
 - dans le SEQ ID NO: 3, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 887; ou

- dans le SEQ ID NO: 4, commençant avec le résidu cystéine en position 1 et finissant avec le résidu glutamine en position 691.
- 4. Un fragment d'ADN selon la revendication 2, qui a une séquence nucléotidique codant pour une protéine ayant une séquence d'acides aminés homologue à celle telle que montrée:
 - dans le SEQ ID NO: 1, commençant avec le résidu cystéine en position 1 et finissant avec le résidu glutamine en position 579;
 - dans le SEQ ID NO: 2, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 884;
 - dans le SEQ ID NO: 3, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 887;
 ou
 - dans le SEQ ID NO: 4, commençant avec le résidu cystéine en position 1 et finissant avec le résidu glutamine en position 691.
- 5. Un fragment d'ADN selon la revendication 4, qui a une séquence nucléotidique codant pour :
 - i) la sous-unité Tbp1 de la souche IM2394 dont la séquence en acides aminés est montrée dans le SEQ ID NO: 2, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 884;
 - ii) la sous-unité Tbp2 de la souche IM2394 dont la séquence en acides aminés est montrée dans le SEQ ID NO: 1, commençant avec le résidu cystéine en position 1 et finissant avec le résidu glutamine en position 579;
 - iii) la sous-unité Top1 de la souche IM2169 dont la séquence en acides aminés est montrée dans le SEQ ID NO : 3, commençant avec le

résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 887; ou

- iv) la sous-unité Tbp2 de la souche IM2169 dont la séquence en acides aminés est montrée dans le SEQ ID NO: 4, commençant avec le résidu cystèine en position 1 et finissant avec le résidu glutamine en position 691.
- 6. Un fragment d'ADN selon la revendication 2, qui a une séquence nucléotidique codant pour un précurseur ayant une séquence d'acides aminés homologue à celle telle que montrée :
 - dans le SEQ ID NO: 1, commençant avec le résidu méthionine en position -20 et finissant avec le résidu glutamine en position 579;
 - dans le SEQ ID NO: 2, commençant avec le résidu méthionine en position -24 et finissant avec le résidu phénylalanine en position 884;
 - dans le SEQ ID NO: 3, commençant avec le résidu méthionine en position -24 et finissant avec le résidu phénylalanine en position 887;
 - dans le SEQ ID NO: 4, commençant avec le résidu méthionine en position -20 et finissant avec le résidu glutamine en position 691.
- 7. Un fragment d'ADN selon l'une des revendications 1 et 2, qui a une séquence nucléotidique codant pour :
 - i) Le précurseur de la sous-unité Tbp1 de la souche IM2394 dont la séquence en acides aminés est montrée dans le SEQ ID NO : 2, commençant avec le résidu méthionine en position -24 et finissant avec le résidu phénylalanine en position 884;
 - ii) Le précurseur de la sous-unité Tbp2 de la souche IM2394 dont la séquence en acides aminés est montrée dans le SEQ ID NO : 1, commençant avec le résidu méthionine en position -20 et finissant

- iii) Le précurseur de la sous-unité Tbp1 de la souche IM2169 dont la séquence en acides aminés est montrée dans le SEQ ID NO: 3, commençant avec le résidu méthionine en position -24 et finissant avec le résidu phénylalanine en position 887; ou
- iv) Le précurseur de la sous-unité Tbp2 de la souche IM2169 dont la séquence en acides aminés est montrée dans le SEQ ID NO : 4, commençant avec le résidu méthionine en position -20 et finissant avec le résidu glutamine en position 691.
- 8. Une cassette d'expression destinée à la production d'une protéine capable d'être reconnue par un antisérum anti-récepteur de la transferrine de la souche de N. meningitidis IM2394 ou IM2169, qui comprend un fragment d'ADN selon l'une des revendications 1 à 7, placé sous le contrôle des éléments nécessaires à son expression.
- 9. Une cellule-hôte transformée par une cassette d'expression selon la revendication 8.
- 10. Un procédé de production d'une protéine capable d'être reconnue par un antisérum anti-récepteur de la transferrine de la souche de N. meningitidis IM2394 ou IM2169, qui comprend l'acte de cultiver une cellule-hôte selon la revendication 9.
- 11. Un bloc d'ADN isolé codant pour un peptide signal ayant une séquence d'acides aminés homologue à celle telle que montrée dans :
 - le SEQ ID NO: 2, commençant avec le résidu méthionine en position 24 et finissant avec le résidu en position 1.
 - le SEQ ID NO: 3, commençant avec le résidu méthionine en position 24 et finissant avec le résidu alanine en position 1; et
 - le SEQ ID NO: 4, commençant avec le résidu méthionine en

position - 20 et finissant avec le résidu alanine en position - 1.

- 12. Un bloc d'ADN isolé codant pour un peptide signal ayant une séquence d'acides aminés telle que montrée dans :
 - le SEQ ID NO : 2, commençant avec le résidu méthionine en position 24 et finissant avec le résidu en position 1;
 - le SEQ ID NO: 3, commençant avec le résidu méthionine en position 24 et finissant avec le résidu alanine en position 1; et
 - le SEQ ID NO: 4, commençant avec le résidu méthionine en position 20 et finissant avec le résidu alanine en position 1.

FIG.2

F16.3

FIG.5

Tbp1-2394	GIRYDYRSTHSEDKSVSTGTHRNLSWNAGVVLXPFTWMDLTYRASTGFRLPSFAEYYGWR
Tbp1-2169	GLRYDYRSTHSDOGSVSTGTHRTLSWNAGIVLXPADWLDLTYRTSTGFRLPSFAEYYGWR
Tbp1-2394	AGESLKTLDLKPEKSFNREAGIVFKGDEGNLEASYENNAYRDLIAFGYETRTONGOTSAS
Tbp1-2169	SGVQSKAVKIDPEKSFNKEAGIVFKGDEGNLEASHENNAYRDLIVRGYEAQIKNGKEEAK
Tbp1-2394	GDPGYRNAQNARIAGINILGKIDWHGVWGGLPDGLYSTLAYNRIXVKDADIRADRTFVTS
Tbp1-2169	GDPAYLNAQSARITGINILGKIDWNGVWDKLPEGWYSTFAYNRVHVRDIXKRADRTDIQS
Tbp1-2394	YLEDAVQPSRYVLGLGYDHPDGIHGINTHTYSKAKSVDELLGSOALLNGNANAKKAASR
Tbp1-2169	HLFDAIOPSRYVVGLGYDQPEGKHGVNGHLTYSKAKEITELLGSRALLNGNSRNTKATAR
Tbp1-2394 Tbp1-2169	RIKDMÄNIONSCÄÄNIKKHTITSYCAÄNITNÄKÄALMENAKOLYCCYANOHKVACAÄNKÄ KIKDMÄNIONSCÄÄNIKKHTITSYCAÄNITNÄKÄALMENAKOLYCCYANOHKVACAÄNKÄ KIKDMÄNIONSCÄÄNIKKHTITSYCAÄNITNÄKÄALMENAKOLYCCYANOHKVACAÄNKÄ
Tbp1-2394	AAPGRNYTESLEKKE
Tbp1-2169	AAPGRNYTESLEKKE

- = acide aminé identique
 =changement conservatif

FIG. 7(suite)

T5p2-2394 T5p2-2169	CLGGGGFDLDSVTTVCCMHSKPKYEDEKSQ-PESQQDVSENSGAAYGFAVKLPRRNAHF CLGGGGFDLDSVDT-EAPRPAPKYQDVSSEXPQAQKDQG-GYGFAMRLKRRNW
•	
Tbp2-2394 Tbp2-2169	ABCYTERHYBIGENDAKYTÓ-BCEBNZŁZEKBÓKZAIEKAELDCOZOIAŚŻATIŚŻNHOW WEKAKEKHYBICZNOAKYTÓ-BCEBNZŁZEKBÓKZAIEKKELDCOZOIAŚŻATIŚŻNHOW
Tbp2-2394 Tbp2-2169	G29CNCANÓ5KNOTCHENŁOTATROKATRYPHANIOIKKNIKTECHOGAIŁAHČEKSZK CÓ-ZYAACAINŁIAASCAAATRYPHANIOIKKNIATŁCHOGATAKCKESZK
	7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Tbp2-2394 Tbp2-2169	ELP-SEKITYKGTHDYVIDAMEKORF-EGGSAAGGDKSGALSALEEGVLRNOAEAS QLPASGKVIYKGVHHFVIDIKKGQDFREIIQPSKKQGDRYSGFSGDGSEEYSNKNESTLK
	THE TOTAL PROPERTY OF THE PROP
Tbp2-2394	SGRTDFGMTSEFEVDFSDKTIKGTLYRNNRITQNNSENKQIKTTRYTIQATLHGNRFKGK DDHEGYGFTSNLEVDFGNKKLTGKLIRNNASLNNNTNNDKATTQYYSLDAQITGNRFNGT
Tbp2-2169	
Tbo2-2394	ALAADKGAINGS-HPFISDSDSLEGGFYGPKGZELAGKFLSNDNKVAAVFGAKOKDKKDG
Tbp2-2169	ATATOKXENETKLH2FVSDSSSLSGGFFGPGGEELGFRFLSDDOXVAVVGSAKTKDKLEN
	The state of the s
Tbo2-2394	ENAAGPATETVIDAYRITGEEKKEQIDSFGDVKKLLVDGVE
Tbp2-2169	GAAASGSTGAAASGGAAGTSSENSKLTTVLDAVELTLNDKXTKNLDNFSNAAQLVVDGTY
T502-2394	LSLLPSEGNKAAFOHEIEQNGVKAT
Tbp2-2169	EPILP KOSESGNTOADKGKNGGTEFTRKFEHTPESDKKDAQAGTOTNGAQTASNTAGDTN
Tbp2-2394	GKTKTYEVEVCCSNLNYEKYGYLTRKNSKSAHQAGGNSSQADAKTEQVEQSHFLQGERTD
T502-2169	GKINI INTERCOLUMNIA TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL
T502-2394	VSDVAARTEANAKYRGT#YGYIANGTS#SGEASNOEGGNRAEFDVDFSTKKISGTLTAKD
T5p2-2169	EXELD TDONVVYRGSHYGHIANGTSWSGNASDKEGGNAAET I VAFADAAL I GALLALI
•	* * *** *** *** *** *** *** *** *** * *
	RTSPAFTITAMIKDNGFSGVAKTGENGFALDPONTGNSHYTHI-EATVSGGFYGKNAIEN
Tbp2-2394	RTSPAFTITANIKDNOFSGVARTOLNGFALDFONTRIPKAYITDAKVKGGFYGPKAEEL RQAQTFTIEGHIQGNGFEGTAKTAESGFDLDQKNTTRIPKAYITDAKVKGGFYGPKAEEL
Tbp2-2169	KANATITIOUTAGUA TOTICITI MARANA AN AN AN AN AN AN ANAMA AN AN
Tbo2-2394	GGSFSFPGNAPEGKQEKASVVFGAKRQQLVQ
T502-2399 T502-2169	GGWEYALDERVATYZEDCUSYZEYAKKOODAO
2002-2100	* * * * * * * * * * * * * * * * * * *

⁼ acide aminé identique = changement conservatif

FIG.8

REPUBLIQUE FRANÇAISE

2692592

N° d'enregistrement national

INSTITUT NATIONAL

de la

PROPRIETE INDUSTRIELLE

RAPPORT DE RECHERCHE

établi sur la base des dernières revendications déposées avant le commencement de la recherche

FR 9207493 474262 FA

DOCL	MENTS CONSIDERES COMME PI		concernees de la demande	
atégorie	Citation du document avec indication, en cas de l des parties pertinentes	sesoin,	examinée	
(INFECTION AND IMMUNITY vol. 60, no. 6, Juin 1992, pages 2391 - 2396 Stevenson P; Williams P; Griffit 'Common antigenic domains in tra- binding protein 2 of Neisseria -Meningitidis Neisseria -Gonorho Haemophilus-Influenzae Type B.' * le document en entier *	ansferrin	1	
),X	WO-A-9 012 591 (UNIVERSITY TECHN INTERNATIONA, INC.; US) 1 Novembre 1990 * le document en entier *	NOLOGIES	1	
(WO-A-9 203 467 (THE UNIVERSITY (CAROLINA, US) 5 Mars 1992 * revendications 1-17; figure 2/		1,11,12	
				DOMAINES TECHNIQUES RECHERCHES (Int. CL5)
	**			RECHERCHES (ILL CLS)
				C07K
·				
		-		
		el de la rocherche		Exeminateur
	28 JANV	IER 1993		S.A. NAUCHE
X : par Y : par	CATEGORIE DES DO CUMENTS CITES ticulièrement pertinent à lui seul ticulièrement pertinent en combinaison avec un re document de la même catégorie tinent à l'encontre d'au moins une revendication	à la date de dés	evet bënëficiant i 101 et qui n'a été 2 une date postë nande es raisons	d'une date anterieure : publiè qu'à cette date

. 2

P : document intercalaire

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.