第五章 无约束优化算法

修贤超

https://xianchaoxiu.github.io

目录

- 5.1 线搜索方法
- 5.2 梯度类算法
- 5.3 次梯度算法
- 5.4 牛顿类算法
- 5.5 拟牛顿类算法
- 5.6 信赖域算法
- 5.7 非线性最小二乘问题算法

梯度法的困难

■ 考虑无约束优化问题

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$

■梯度下降法

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k)$$

- \blacksquare 当 $\nabla^2 f(x)$ 的条件数较大时, 收敛速度比较缓慢
- 如果 f(x) 足够光滑,可以利用 f(x) 的二阶信息改进下降方向以加速迭代

经典牛顿法

■ 对于可微二次函数 f(x), 考虑目标函数 f 在点 x^k 的二阶泰勒近似

$$f(x^k + d^k) = f(x^k) + \nabla f(x^k)^{\top} d^k + \frac{1}{2} (d^k)^{\top} \nabla^2 f(x^k) d^k + o(\|d^k\|^2)$$

■ 将等式右边视作 d^k 的函数并极小化, 得牛顿方程

$$\nabla^2 f(x^k) d^k = -\nabla f(x^k)$$

■ 若 $\nabla^2 f(x^k)$ 非奇异, 可构造迭代格式

$$x^{k+1} = x^k - \alpha_k \nabla^2 f(x^k)^{-1} \nabla f(x^k)$$

当步长 $\alpha_k = 1$ 时, 称为经典牛顿法

经典牛顿法的收敛性

■ 定理 5.6 假设目标函数 f 是二阶连续可微函数, 且海森矩阵在最优值点 x^* 的一个邻域 $N_\delta(x^*)$ 内是利普希茨连续的, 即存在常数 L>0 使得

$$\|\nabla^2 f(x) - \nabla^2 f(y)\| \leqslant L\|x - y\|, \quad \forall x, y \in N_\delta(x^*)$$

如果 f(x) 在点 x^* 处满足 $\nabla f(x^*) = 0, \nabla^2 f(x^*) \succ 0$, 则对于经典牛顿法有

- lue 如果初始点离 x^* 足够近, 则迭代点列 $\{x^k\}$ 收敛到 x^*
- □ {x^k} Q-二次收敛到 x*

收敛速度分析

- 初始点x⁰ 需要距离最优解充分近
- 常以梯度类算法先求得较低精度的解, 后用牛顿法加速
- $\nabla^2 f(x^*)$ 需正定, 半正定条件下可能退化到 Q-线性收敛
- $lacktriangledown
 abla^2 f$ 的条件数较高时,将对初值的选择作出较严苛的要求

修正牛顿法

■ 经典牛顿法的基本格式如下

$$x^{k+1} = x^k - \nabla^2 f(x^k)^{-1} \nabla f(x^k)$$

- □ 海瑟矩阵可能非正定, 导致牛顿方向其实并非下降方向;
- □ 初始点离最优值点较远时候迭代不稳定, 算法可能不收敛
- 为提高算法的稳定性, 应该
 - \Box 对 $\nabla^2 f(x)$ 进行修正, 使其正定
 - □ 用线搜索确定步长来增加算法的稳定性 (Wolfe, Goldstein, Armijo)

带线搜索的修正牛顿法

- 1 给定初始点 x^0
- 2 for $k = 0, 1, 2, \cdots$ do
- 3 确定矩阵 E^k 使得矩阵 $B^k = \nabla^2 f(x^k) + E^k$ 正定且条件数较小
- 4 求解修正的牛顿方程 $B^k d^k = -\nabla f(x^k)$ 得方向 d^k
- 5 使用任意一种线搜索准则确定步长 α_k
- 6 更新 $x^{k+1} = x^k + \alpha_k d^k$
- 7 end for

5/10 十七年44

- \blacksquare B^k 应具有较低的条件数
- 对 $\nabla^2 f(x)$ 的改动较小, 以保存二阶信息
- \blacksquare B^k 本身的计算代价不应太高

非精确牛顿法

- 当变量维数很大时, 牛顿法可能有如下困难
 - \square 海瑟矩阵 $\nabla^2 f(x)$ 的计算、存储存在困难
- ■非精确牛顿法
 - □ 使用迭代法求解牛顿方程,在一定的精度下<mark>提前停机</mark>,以提高求解效率
 - □ 引入向量 r^k 来表示残差, 将上述方程记为

$$\nabla^2 f(x^k) d^k = -\nabla f(x^k) + r^k$$

因此终止条件可设置为

$$||r^k|| \leqslant \eta_k ||\nabla f(x^k)||$$

 \square 不同的 $\{\eta_k\}$ 将导致不同的精度要求, 使算法有不同的收敛速度

■ 考虑二分类的逻辑回归模型

$$\min_{x} \quad \ell(x) = \frac{1}{m} \sum_{i=1}^{m} \ln(1 + \exp(-b_i a_i^{\top} x)) + \lambda ||x||_2^2$$

■ 为使用牛顿法, 需要计算目标函数的梯度与海瑟矩阵

$$\nabla \ell(x) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{1 + \exp(-b_i a_i^{\top} x)} \cdot \exp(-b_i a_i^{\top} x) \cdot (-b_i a_i) + 2\lambda x$$
$$= -\frac{1}{m} \sum_{i=1}^{m} (1 - p_i(x)) b_i a_i + 2\lambda x$$

其中
$$p_i(x) = \frac{1}{1 + \exp(-b_i a_i^\top x)}$$

■ 进一步对 $\nabla \ell(x)$ 求导, 成立

$$\nabla^{2}\ell(x) = \frac{1}{m} \sum_{i=1}^{m} b_{i} \cdot \nabla p_{i}(x) a_{i}^{\top} + 2\lambda I$$

$$= \frac{1}{m} \sum_{i=1}^{m} b_{i} \frac{-1}{(1 + \exp(-b_{i}a_{i}^{\top}x))^{2}} \cdot \exp(-b_{i}a_{i}^{\top}x) \cdot (-b_{i}a_{i}a_{i}^{\top}) + 2\lambda I$$

$$= \frac{1}{m} \sum_{i=1}^{m} (1 - p_{i}(x)) p_{i}(x) a_{i} a_{i}^{\top} + 2\lambda I \quad (b_{i}^{2} = 1)$$

■ 引入矩阵 $A = [a_1, a_2, \cdots, a_m]^{\top} \in \mathbb{R}^{m \times n}$,向量 $b = (b_1, b_2, \cdots, b_m)^{\top}$,以及

$$p(x) = (p_1(x), p_2(x), \cdots, p_m(x))^{\top},$$

■ 则可重写梯度和海瑟矩阵为

$$\nabla \ell(x) = -\frac{1}{m} A^{\top} (b - b \odot p(x)) + 2\lambda x$$
$$\nabla^2 \ell(x) = \frac{1}{m} A^{\top} W(x) A + 2\lambda I$$

其中 W(x) 为由 $\{p_i(x)(1-p_i(x))\}_{i=1}^m$ 生成的对角矩阵

■ 最终牛顿法迭代格式为

$$x^{k+1} = x^k + (\frac{1}{m}A^{\top}W(x^k)A + 2\lambda I)^{-1}(\frac{1}{m}A^{\top}(b - b \odot p(x^k)) - 2\lambda x^k)$$

■ 设置精度条件为

$$\|\nabla^2 \ell(x^k) d^k + \nabla \ell(x^k)\|_2 \le \min\{\|\nabla \ell(x^k)\|_2^2, 0.1\|\nabla \ell(x^k)\|_2\}$$

 名称	m	n
a9a	16281	122
CINA	3206	132
ijcnn1	91701	22

目录

- 5.1 线搜索方法
- 5.2 梯度类算法
- 5.3 次梯度算法
- 5.4 牛顿类算法
- 5.5 拟牛顿类算法
- 5.6 信赖域算法
- 5.7 非线性最小二乘问题算法

割线方程的推导

■ 设f(x) 是二阶连续可微函数. 对 $\nabla f(x)$ 在点 x^{k+1} 处一阶泰勒近似, 得

$$\nabla f(x) = \nabla f(x^{k+1}) + \nabla^2 f(x^{k+1})(x - x^{k+1}) + \mathcal{O}(\|x - x^{k+1}\|^2)$$

ullet 令 $x=x^k$, 且 $s^k=x^{k+1}-x^k$ 为点差, $y^k=\nabla f(x^{k+1})-\nabla f(x^k)$ 为梯度差, 得

$$\nabla^2 f(x^{k+1}) s^k + \mathcal{O}(\|s^k\|^2) = y^k$$

 $lacksymbol{\blacksquare}$ 现忽略高阶项 $\|s^k\|^2$,只希望近似海瑟矩阵的矩阵 B^{k+1} 满足方程

$$B^{k+1}s^k = y^k$$

或其逆矩阵 H^{k+1} 满足

$$H^{k+1}y^k = s^k$$

■ 上述两个方程称为割线方程

曲率条件

■ 由于近似矩阵必须保证迭代收敛, 正如牛顿法要求海瑟矩阵正定, B^k 正定也是必须的, 即有必要条件

$$(s^k)^\top B^{k+1} s^k > 0 \Longrightarrow (s^k)^\top y^k > 0,$$

- 在迭代过程中满足 $(s^k)^\top y^k > 0, \forall k \in \mathbb{N}^+$
- 如果线搜索使用 Wolfe 准则

$$\nabla f(x^k + \alpha d^k)^{\top} d^k \geqslant c_2 \nabla f(x^k)^{\top} d^k$$

其中 $c_2 \in (0,1)$. 上式即 $\nabla f(x^{k+1})^{\top} s^k \geqslant c_2 \nabla f(x^k)^{\top} s^k$. 在不等式两边同时减去 $\nabla f(x^k)^{\top} s^k$,由于 $c_2-1<0$ 且 s^k 是下降方向,因此最终有

$$(y^k)^{\top} s^k \geqslant (c_2 - 1) \nabla f(x^k)^{\top} s^k > 0$$

拟牛顿算法的基本框架

- 1 给定初始坐标 $x^0 \in \mathbb{R}^n$, 初始矩阵 $B^0 \in \mathbb{R}^{n \times n}$ (或 H^0), k=0
- 2 while 未达到停机准则 do
- 3 计算方向 $d^k = -(B^k)^{-1}\nabla f(x^k)$ 或 $d^k = -H^k\nabla f(x^k)$
- 4 通过线搜索 (Wolfe) 产生步长 $\alpha_k > 0$, 令 $x^{k+1} = x^k + \alpha_k d^k$
- 5 更新海瑟矩阵的近似矩阵 B^{k+1} 或其逆矩阵 H^{k+1}
- 6 $k \leftarrow k+1$
- 7 end while

秩一更新 (SR1)

■ 对于拟牛顿矩阵 $B^k \in \mathbb{R}^{n \times n}$, 设 $0 \neq u \in \mathbb{R}^n$ 且 $a \in \mathbb{R}$ 待定, 则 uu^\top 是秩一矩 阵, 且有秩一更新

$$B^{k+1} = B^k + auu^{\top}$$

■ 根据割线方程 $B^{k+1}s^k = y^k$, 代入秩一更新的结果, 得到

$$(B^k + auu^\top)s^k = y^k$$

整理得

$$auu^{\top}s^k = (a \cdot u^{\top}s^k)u = y^k - B^ks^k$$

■ 由于 $a \cdot u^{\mathrm{T}} s^k$ 是标量, 因此上式表明 u 和 $y^k - B^k s^k$ 同向. 令 u 和 $y^k - B^k s^k$ 相等, 即 $u = y^k - B^k s^k$. 代入上式得

$$(a \cdot (y^k - B^k s^k)^{\top} s^k)(y^k - B^k s^k) = y^k - B^k s^k$$

秩一更新公式

■ 再令 $(a \cdot (y^k - B^k s^k)^{\top} s^k) \neq 0$, 则可以确定 a 为

$$a = \frac{1}{(y^k - B^k s^k)^\top s^k}$$

■ 拟牛顿矩阵 B^k 的秩一更新公式为

$$B^{k+1} = B^k + \frac{uu^\top}{u^\top s^k}, \quad u = y^k - B^k s^k$$

拟牛顿矩阵 H^k 的秩一更新公式为

$$H^{k+1} = H^k + \frac{vv^{\top}}{v^{\top}v^k}, \quad v = s^k - H^k y^k$$

 \blacksquare B^k 和 H^k 的公式在形式上互为对偶

BFGS 公式

■ 对于拟牛顿矩阵 $B^k \in \mathbb{R}^{n \times n}$, 设 $0 \neq u, v \in \mathbb{R}^n$ 且 $a, b \in \mathbb{R}$ 待定, 则有秩二更新形式

$$B^{k+1} = B^k + auu^\top + bvv^\top$$

■ 根据割线方程, 将秩二更新的待定参量式代入, 得

$$B^{k+1}s^k = (B^k + auu^\top + bvv^\top)s^k = y^k,$$

整理可得

$$(a \cdot u^{\mathsf{T}} s^k) u + (b \cdot v^{\mathsf{T}} s^k) v = y^k - B^k s^k.$$

ullet 令 $(a \cdot u^{\top} s^k) u$ 对应 y^k 相等, $(b \cdot v^{\top} s^k) v$ 对应 $-B^k s^k$ 相等, 即有

$$a \cdot u^{\mathsf{T}} s^k = 1$$
, $u = y^k$, $b \cdot v^{\mathsf{T}} s^k = -1$, $v = B^k s^k$

BFGS 公式

■ 将上述参量代入割线方程, 即得 BFGS 更新公式

$$B^{k+1} = B^k + \frac{uu^\top}{(s^k)^\top u} - \frac{vv^\top}{(s^k)^\top v}$$

利用 SMW 公式以及 $H^k = (B^k)^{-1}$, 可以推出关于 H^k 的 BFGS 公式

■ 在拟牛顿类算法中, 基于 B^k 的 BFGS 公式为

$$B^{k+1} = B^k + \frac{y^k (y^k)^\top}{(s^k)^\top y^k} - \frac{B^k s^k (B^k s^k)^\top}{(s^k)^\top B^k s^k}$$

基于 H^k 的 BFGS 公式为

$$H^{k+1} = (I - \frac{s^k (y^k)^\top}{(s^k)^\top y^k})^\top H^k (I - \frac{s^k (y^k)^\top}{(s^k)^\top y^k}) + \frac{s^k (s^k)^\top}{(s^k)^\top y^k}$$

DFP 公式

- DFP 公式利用与 BFGS 公式类似的推导方法, 不同的是其以割线方程 $H^{k+1}y^k = s^k$ 为基础进行对 H^k 的秩二更新
- 基于 H^k 满足的 DFP 公式, 利用 SMW 公式以及 $B^k = (H^k)^{-1}$, 可以推出关于 B^k 的 DFP 公式
- 基于 *H^k* 的 DFP 更新公式为

$$H^{k+1} = H^k - \frac{H^k y^k (H^k y^k)^\top}{(y^k)^\top H^k y^k} + \frac{s^k (s^k)^\top}{(y^k)^\top s^k}$$

基于 B^k 的 DFP 更新公式为

$$B^{k+1} = (I - \frac{y^k(s^k)^\top}{(s^k)^\top y^k})^\top B^k (I - \frac{y^k(s^k)^\top}{(s^k)^\top y^k}) + \frac{y^k(y^k)^\top}{(s^k)^\top y^k}$$

例子

■ 考虑极小化问题

$$\min_{x \in \mathbb{R}^{100}} \quad c^{\top} x - \sum_{i=1}^{500} \ln(b_i - a_i^{\top} x)$$

■ 牛顿法每次迭代的计算代价为 $\mathcal{O}(n^3)$ 加上计算海瑟矩阵的代价, 而 BFGS 方法的每步计算代价仅为 $\mathcal{O}(n^2)$, 因此 BFGS 算法可能更快取得最优解

Q&A

Thank you!

感谢您的聆听和反馈