1-1 Riesz の表現定理の証明で、線型汎函数 ϕ の連続性がないと、証明のどこが破綻するのか説明せよ。

Theorem 1 (Riesz の表現定理). $(H, \langle \cdot, \cdot \rangle)$ を Hilbert 空間とし, ϕ をその上の連続線型汎関数とすると, ただ一つ $h_{\phi} \in H$ が存在して $\phi(x) = \langle x, h_{\phi} \rangle$ と表現できる.

Proof. 1. $H = \operatorname{Ker}(\phi) \oplus \operatorname{Ker}(\phi)^{\perp}$

- 2. $x \in H$ に対して、 $x = x_1 + x_2$ $(x_1 \in \text{Ker}(\phi), x_2 \in \text{Ker}(\phi)^{\perp})$
- 3. $\phi(x) = \phi(x_2)$
- 4. $H/\operatorname{Ker}(\phi) \simeq \operatorname{Ran}(\phi)$
- 5. $\dim_{\mathbb{C}} \operatorname{Ker}(\phi)^{\perp} = 1$
- 6. $\exists h \in \operatorname{Ker}(\phi)^{\perp} \text{ s.t. } x_2 = \langle x, h \rangle h$
- 7. $\phi(x_2) = \langle x, h \rangle \phi(h) = \langle x, \overline{\phi(h)}h \rangle$
- 8. $h_{\phi} = \overline{\phi(h)}h$ として存在する。

 $\langle x, h_1 \rangle = \langle x, h_2 \rangle$ とする. $\langle x, h_1 \rangle - \langle x, h_2 \rangle = \langle x, h_1 - h_2 \rangle = 0$ とである. $\forall x \in H$ に対して $\langle x, h_1 - h_2 \rangle = 0$ であるので, $h_1 - h_2 = 0$ である.

.....