ZZC 版号: B. 11 页 1 / 14

MVB主站通讯协议

文件编号: ZZC/ZZ_2016_001

编	制:			
审	核:			
批	准:			

更改记录

版本	时间	变更描述	编制	审核	批准
A.1	2016-2-3	初版			
B.1	2016-10-28	新版本			
B.2	2016-11-07	修正错误			
В.3	2016-12-31	增加设备地址配置为2字节			
B.4	2017-04-04	增加修改 IP 和端口配置			
B.5	2017-05-20	修改协议为 UDP 通信			
B.6	2017-07-01	修正一些错误			
B.7	2017-07-21	增加 32 端口			
B.8	2017-09-10	增加 30 源和 30 宿			
B.9	2017-11-26	增加从站模块			
B.10	2020-01-02	修正附录例子			
B.11	2020-02-21	增加周期上传时间可调			

— 、	接口定义及技术指标	4
	1.1 接口定义	4
	1.2 基本技术指标	4
Ξ,	接口配置参数及协议	
	2.1 PC 与 MVB 通信接配置参数	4
	2.2 以太网网卡 IP 与端口配置: PC> MVB	
	2.3 UDP 连接/断开请求: PC> MVB	
	2.4 UDP 连接/断开确认: MVB> PC	5
	2.5 配置帧主帧: PC> MVB	6
	2.6 配置应答帧: MVB> PC	8
	2.7 数据请求使能/停止帧: PC> MVB	8
	2.8 数据接收帧: MVB> PC	
	2.9 发送数据帧: PC> MVB	10
	2.10 端口主帧从帧统计开始帧: PC> MVB 监控模式下	12
	2.11 端口主帧从帧统计返回帧: MVB> PC 监控模式下	. 12
附录	t A 网卡工作流程示例:	13

MVB模块技术要求

ZZC 版号: B. 11 页 4 / 14

一、接口定义及技术指标

1.1 接口定义

MVB网卡与外接设备连接器接口为以太网接口,

MVB网卡采用标准的4线100M网口(1、2、3、6)。

网卡默认IP为192.168.0.178,数据端口为4001,控制端口为3001。UDP服务器模式。PC端口为4001.

1.2 基本技术指标

工作温度: -40~+85℃

储存温度: -40~+85℃

工作电压: 电源要求: DC5V, 最大消耗电流为: 500mA。

最大相对湿度: 90%

电磁兼容满足《TB/T3021-2001》之规定。

MVB性能需满足《IEC61375-2: 2007》的一致性测试。

二、接口配置参数及协议

2.1 PC 与 MVB 通信接配置参数

通讯方式 : 以太网 Socket 通信, UDP 模式, PC 须做对网卡进行连接

MVB 网卡地址 : 192.168.0.178

工作端口(网卡与PC均为): 4001

帧格式: 帧头+长度+数据+帧尾;

PC设备与MVB接口卡的关系是主从关系,PC设备为主,MVB网卡为从。

2.2 以太网网卡 IP 与端口配置: PC ----> MVB

由于可能不知道网络上网卡的 IP 和端口, 所以采用组播的方式进行发送:

组播地址: 239.100.0.0 端口: 3003

帧格式: 帧头+长度+"命令字"+"IP和端口"+帧尾

编号	字段名	字节 偏移量	长度 Byte	字段描述	备注
1	起始字节	0	1	0xFE	
2	帧长度	1	1	0x0C	
3	命令字	2	1	<mark>0x0A</mark>	

ZZC 版号: B. 11 页 5 / 14

4	新的 IP 最高位	3	1	OXxx	默认 192
5	新的 IP 次高位	4	1	OXxx	默认 168
6	新的 IP 次低位	5	1	OXxx	默认 0
7	新的 IP 最低位	6	1	OXxx	默认 178
8	新的端口高位	7	1	OXxx	默认 OxOF
9	新的端口低位	8	1	OXxx	默认 OxA1
10	帧尾高字节	9	1	OXFE	
11	帧尾低字节	10	1	OXFA	
12	终止字节	11	1	0xFF	

2.3 UDP 连接/断开请求: PC ----> MVB

使用控制端口: 3001

帧格式: 帧头+长度+"命令字"+"随机数"+帧尾

编号	字段名	字节 偏移量	长度 Byte	字段描述	备注
1	起始字节	0	1	0xFE	
2	帧长度	1	1	0x0A	
3	命令字	2	1	0x0D	
4	上位机版本号高字节	3	1	OXxx	0x01
5	上位机版本号低字节	4	1	OXxx	0x00
6	控制命令	5	1	1: 连接 2: 断开	
7	保留	6	1	0X00	
8	帧尾高字节	7	1	OXFE	
9	帧尾低字节	8	1	OXFA	
10	终止字节	9	1	0xFF	

2.4 UDP 连接/断开确认: MVB ----> PC

使用控制端口: 3001

帧格式: 帧头+长度+"命令字"+"随机数"+帧尾

编号	字段名	字节 偏移量	长度 Byte	字段描述	备注
1	起始字节	0	1	0xFE	
2	帧长度	1	1	0x0A	
3	命令字	2	1	Ox0E	

4	下位机版本号高字节	3	1	0Xxx	0x01
5	下位机版本号低字节	4	1	OXxx	0x00
6	控制命令返回	5	1	1: 连接成功 2: 断开成功	
7	保留	6	1	0X00	
8	帧尾高字节	7	1	OXFE	
9	帧尾低字节	8	1	OXFA	
10	终止字节	9	1	0xFF	

2.5 配置帧主帧: PC ----> MVB

帧格式: 帧头+长度+"配置命令"+"内容"+帧尾

配置帧根据如下表格协议。

配置帧在网卡上电 200 毫秒后开始发送,如果 MVB 网卡超时 2 秒没有应答或者配置不成功(应答命令为"0x05"),则 PC 需要再次发送配置帧,如此循环直至配置成功为止。

配置成功后,PC 设备须等待 2S 后(等待网卡配置参数完成),再开始数据请求和发送数据的操作。

在运行过程中,PC 设备可以再次发送配置帧给 MVB 网卡,因此 MVB 网卡只要收到配置帧后,将会按本次的配置数据重新配置。

配置帧主帧格式如表 1 所示。

表 1 配置帧主帧格式

及 1 能量模工模值式								
字节	字段名	字节	长度	字段描述	备注			
编号	于权石	偏移量	Byte	于权油处	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
1	起始字节	0	1	0xFE				
2	帧长度	1	1	OXFA	备注 0			
3	配置命令	2	1	0x05	命令字			
4	读取状态字的设备地址H	3	1	0Xxx	备注 5			
5	读取状态字的设备地址 L	4	1	0Xxx	备注 5			
<mark>6</mark>	PC 源端口数量	5	1	0Xxx	备注1			
<mark>7</mark>	PC->TCMS 端口地址1 高位	6	1	0Xxx				
8	PC->TCMS 端口地址1 低位	7	1	OXxx				
9	PC->TCMS 端口1数据长度	8	1	OXxx	备注 2			
10	PC->TCMS 端口1通讯周期	9	1	OXxx	备注 3			
11	PC->TCMS 端口地址 2 高位	10	1	0Xxx				
12	PC->TCMS 端口地址 2 低位	11	1	0Xxx				
<mark>13</mark>	PC->TCMS 端口2数据长度	12	1	OXxx				
14	PC->TCMS端口2通讯周期	13	1	OXxx				

ZZC 版号: B. 11 页 7 / 14

	102	. J. D. II			
15	PC->TCMS 端口地址 3 高位	14	1	OXxx	
16	PC->TCMS 端口地址 3 低位	<mark>15</mark>	1	OXxx	
17	PC->TCMS 端口3数据长度	16	1	OXxx	
18	PC->TCMS 端口 3 通讯周期	17	1	OXxx	
•••••	••••	•••••	•••••	••••	
123	PC->TCMS 端口地址 30 高位	122	1	OXxx	
124	PC->TCMS 端口地址 30 低位	123	1	OXxx	
125	PC->TCMS 端口 30 数据长度	124	1	OXxx	
126	PC->TCMS 端口 30 通讯周期	125	1	OXxx	
127	PC 宿端口数量	126	1	OXxx	备注 4
128	TCMS->PC 端口地址1 高位	127	1	OXxx	
129	TCMS->PC 端口地址1 低位	128	1	OXxx	
130	TCMS->PC端口1数据长度	129	1	OXxx	
131	TCMS->PC端口1通讯周期	130	1	OXxx	
132	TCMS->PC 端口地址 2 高位	<mark>131</mark>	1	OXxx	
133	TCMS->PC 端口地址 2 低位	132	1	OXxx	
134	TCMS->PC端口2数据长度	133	1	OXxx	
135	TCMS->PC端口2通讯周期	134	1	OXxx	
136	TCMS->PC 端口地址 3 高位	135	1	OXxx	
137	TCMS->PC 端口地址 3 低位	136	1	OXxx	
138	TCMS->PC端口3数据长度	137	1	OXxx	
139	TCMS->PC端口3通讯周期	138	1	OXxx	
•••••	••••	•••••	••••	••••	
244	TCMS->PC 端口地址 30 高位	243	1	OXxx	
245	TCMS->PC 端口地址 30 低位	244	1	OXxx	
246	TCMS->PC 端口 30 数据长度	245	1	OXxx	
247	TCMS->PC 端口 30 通讯周期	<mark>246</mark>	1	OXxx	
248	帧尾高字节	247	1	OXFE	
249	帧尾低字节	248	1	OXFA	
250	终止字节	249	1	0xFF	

备注0: 从字节编号1开始到帧最后一个字节编号的字节数,即一帧数据的所有长度(包含起始字节、终止字节等)。

备注1: PC设备实际使用的源端口数量,即PC设备发送数据的端口数量。默认最大可配置4个源端口,没有用到的端口写数据0x00即可。注意实际使用到的端口配置应先发送。

备注2: 数据长度定义为: 0x00 (端口长度为2字节); 0x01 (端口长度为4字节); 0x02 (端口长度为8字节); 0x03 (端口长度为16字节); 0x04 (端口长度为32字节);

备注3: 端口周期按照如下表示: 0x01=16ms、0x02=32ms、0x03=64ms、0x04=128ms、0x05=256ms、0x06=512ms、0x07=1024ms依次类推。(由于MVB网卡对车辆主站而言,是从设备,并且我司MVB网卡做到端口周期自动响应,因此此参数可能并无意义,先预留接口)

备注4: PC设备实际使用的宿端口数量,即PC设备接收数据的端口数量。默认最大可配置8个宿端口,没有用到的端口写数据0x00即可。

备注5:

Bit15: (1) ——B线有效、(0) ——B线无效;

Bit14: (1) ——A线有效、(0) ——A线无效;

Bit13: (1) ——主站模式、(0) ——监听或者从站模式;

Bit11~Bit0:

不等于0——主站模式或者从站模式下读设备状态的地址。

等于0——监听模式

2.6 配置应答帧: MVB ----> PC

帧格式: 帧头+长度+"配置应答命令"+帧尾

编号	字段名	字节 偏移量	长度 Byte	字段描述	备注
1	起始字节	0	1	0xFE	
2	帧长度	1	1	0x06	同上
3	配置应答命令	2	1	配置成功: 0x06 配置失败: 0x05	
4	帧尾高字节	3	1	OXFE	
5	帧尾低字节	4	1	OXFA	
6	终止字节	5	1	0xFF	

注配置应答命令:成功 0x06;接收数据校验不通过、或者配置不成功 0x05。

2.7 数据请求使能/停止帧: PC ----> MVB

帧格式: 帧头+长度+"命令字"+"请求命令"+帧尾

编号	字段名	字节 偏移量	长度 Byte	字段描述	备注
1	起始字节	0	1	0xFE	
2	帧长度	1	1	0x08	同上
3	命令字	2	1	0x07	
4	接收数据上传周期	3	1	0X00: 默认 16ms T=(X+1)*16ms	
5	请求命令	4	1	0X00: 停止接收数	

				据上传	
				0x01:启动接收数	
				据上传	
6	帧尾高字节	5	1	OXFE	同上
7	帧尾低字节	6	1	OXFA	IH] IL.
8	终止字节	7	1	0xFF	

2.8 数据接收帧: MVB ----> PC

帧格式: 帧头+长度+"数据返回命令"+"数据状态信息"+"端口地址"+"端口数据"+帧尾

编号	字段名	字节 偏移量	长度 Byte	字段描述	备注
1	起始字节	0	1	0xFE	
2	帧长度	1	1	OXxx	同上
3	数据返回命令	2	1	0x08	
			7 bit	MVB A 通道端口状态:1 表示通讯正常、0 表示通讯故障	备用
4	粉柜化大冷白		6 bit	MVB B 通道端口状态:1 表示通讯正常、0 表示通讯故障	备用
4	数据状态信息	3	5 bit	0	备用
			4 bit	0	备用
			3 bit	0	备用
			2 bit	0	备用
			1 bit	0	
			0 bit	0	
5	返回端口地址高位	4	1	0Xxx	
6	返回端口地址低位	5	1	0Xxx	
7	端口数据1	6	1	OXxx	
8	端口数据 2	7	1	0Xxx	
9	端口数据3	8	1	0Xxx	
10	端口数据 4	9	1	0Xxx	
11	端口数据 5	10	1	0Xxx	
12	端口数据 6	11	1	0Xxx	
13	端口数据7	12	1	OXxx	
14	端口数据8	13	1	OXxx	
15	端口数据 9	14	1	OXxx	
16	端口数据 10	15	1	OXxx	
17	端口数据 11	16	1	OXxx	
18	端口数据 12	17	1	OXxx	
19	端口数据 13	18	1	OXxx	

20	端口数据 14	19	1	OXxx
21	端口数据 15	20	1	OXxx
22	端口数据 16	21	1	OXxx
23	端口数据 17	22	1	OXxx
24	端口数据 18	23	1	OXxx
25	端口数据 19	24	1	OXxx
26	端口数据 20	25	1	OXxx
27	端口数据 21	26	1	OXxx
28	端口数据 22	27	1	OXxx
29	端口数据 23	28	1	OXxx
30	端口数据 24	29	1	OXxx
31	端口数据 25	30	1	OXxx
32	端口数据 26	31	1	OXxx
33	端口数据 27	32	1	OXxx
34	端口数据 28	33	1	OXxx
35	端口数据 29	34	1	OXxx
36	端口数据 30	35	1	OXxx
37	端口数据 31	36	1	OXxx
38	端口数据 32	37	1	OXxx
39	端口刷新时间高字节	38	1	OXxx
40	端口刷新时间低字节	39	1	OXxx
41	帧尾高字节	40	1	OXFE
42	帧尾低字节	41	1	OXFA
43	终止字节	42	1	0xFF

备注:返回端口数据高字节在前(先发),低字节在后。不足补0

2.9 发送数据帧: PC ----> MVB

帧格式: 帧头+长度+"发送数据命令"+"特殊信息"+"预留" +"端口地址"+"端口数据" +帧尾

编号	字段名	字节 偏移量	长度 Byte	字段描述	备注
1	起始字节	0	1	0xFE	
2	帧长度	1	1	OXxx	同上
3	发送数据命令	2	1	0x09	
4	特殊信息	3	7 bit	PC 数据是否有效,=1 表示有效,=0表示无 效(刚上电,数据还 未初始化)	备注 6
			6 bit	是否启用自增计数器	备注7

		- 拟写: B.			
				1表示启用	
				0表示不启用	
				自增计数器宽度	
			5 bit	1 表示 16 位	
				0 表示 8 位	
			4 bit		
			3 bit		
			2 bit	自增计数器停止自增	
			1 bit	的超时时间(单位S)	备注 8
			0 bit	· 范围 1~14S	
5	自增计数器偏移地址	4	1		备注 9
6	端口地址高位	5	1		
7	端口地址低位	6	1		
8	端口数据1	7	1	OXxx	
9	端口数据 2	8	1	OXxx	
10	端口数据3	9	1	OXxx	
11	端口数据 4	10	1	OXxx	
12	端口数据 5	11	1	OXxx	
13	端口数据 6	12	1	OXxx	
14	端口数据 7	13	1	OXxx	
15	端口数据8	14	1	OXxx	
16	端口数据 9	15	1	OXXX	
17	端口数据 10	16	1	OXxx	
18	端口数据 10 端口数据 11	17	1	OXxx	
19	端口数据 12 端口数据 12	18	1	OXxx	
20	端口数据 13	19	1	OXxx	
21	端口数据 14	20	1	0Xxx	
22	端口数据 15	21	1	0Xxx	
23	端口数据 16	22	1	0Xxx	
24	端口数据 17	23	1	0Xxx	
25	端口数据 18	24	1	0Xxx	
26	端口数据 19	25	1	OXxx	
27	端口数据 20	26	1	OXxx	
28	端口数据 21	27	1	OXxx	
29	端口数据 22	28	1	OXxx	
30	端口数据 23	29	1	OXxx	
31	端口数据 24	30	1	OXxx	
32	端口数据 25	31	1	OXxx	
33	端口数据 26	32	1	OXxx	
34	端口数据 27	33	1	OXxx	
35	端口数据 28	34	1	0Xxx	
36	端口数据 29	35	1	OXxx	
37	端口数据 30	36	1	OXxx	
38	端口数据 31	37	1	OXxx	
	l.	1		1	

39	端口数据 32	38	1	OXxx	
40	帧尾高字节	39	1	OXFE	
41	帧尾低字节	40	1	OXFA	
42	终止字节	41	1	0xFF	

<mark>备注6</mark>: 数据有效位,如果数据无效,MVB网卡不会更新数据。

备注7:如果自增计数器启用,MVB网卡发送该端口的数据时,每帧对应的数据(8位或者16位)按网卡内部计数器增加1,而自动忽略掉PC发来的对应位的数据。

备注8: MVB网卡自增的延时时间,即保持自增的时间,用户每次发送时从1~14秒可配置,如bit3=1;bit2=0;bit1=1;bit0=0,即为0x0A,则保持自增的时间为10S。如果设置为0或者0x0F,则水久自增。延时时间达到后,如果用户还没有发送新的帧进行更新,则MVB网卡的自增计数器则停止自增。

除非MVB网卡断电,则自增计数器不会因为网卡被重新配置而停止。

备注9: 自增计数器的偏移地址,是指本发送端口的哪个位置为自增计数器。是按端口数据第一个字节开始算的地址,0表示第0字节,1表示第1字节开始

比如端口数据的第0字节、第1字节是一个16位自增计数器,那么该值=0,前面的特殊信息的bit5=1:

备注:发送端口数据高字节在前(先发),低字节在后。不足补0

2.10 端口主帧从帧统计开始帧: PC ----> MVB <u>监控模式下</u>

帧格式: 帧头+长度+"命令字"+"统计时间"+帧尾

编号	字段名	字节 偏移量	长度 Byte	字段描述	备注
1	起始字节	0	1	0xFE	
2	帧长度	1	1	0x0A	
3	命令字	2	1	0x0B	
4	统计的时间高位	3	1	0Xxx	ms, 目前
5	统计的时间次高位	4	1	OXxx	统计最
6	统计的时间次低位	5	1	0Xxx	小为
7	统计的时间低位	6	1	OXxx	1S,写全 0 则 停 止统计
8	帧尾高字节	7	1	OXFE	
9	帧尾低字节	8	1	OXFA	
10	终止字节	9	1	0xFF	

2.11 端口主帧从帧统计返回帧: MVB ----> PC 监控模式下

帧格式: 帧头+长度+"命令字"+"统计的端口号"+"主帧和从帧数量"+帧尾

编号	字段名	字节 偏移量	长度 Byte	 字段描述	备注
1	起始字节	0	1	0xFE	

2	帧长度	1	1	0x10
3	命令字	2	1	0x0C
4	返回统计的端口高位	3	1	OXxx
5	返回统计的端口低位	4	1	OXxx
6	此端口主帧数量高位	5	1	OXxx
7	此端口主帧数量次高位	6	1	OXxx
8	此端口主帧数量次低位	7	1	OXxx
9	此端口主帧数量低位	8	1	OXxx
10	此端口从帧数量高位	9	1	OXxx
11	此端口从帧数量次高位	10	1	OXxx
12	此端口从帧数量次低位	11	1	OXxx
13	此端口从帧数量低位	12	1	0Xxx
14	帧尾高字节	13	1	OXFE
15	帧尾低字节	14	1	OXFA
16	终止字节	15	1	0xFF

有多少监控的端口, 到了统计时间, 就返回统计值

附录 A 网卡工作流程示例:

- 1) 系统上电后200毫秒, PC向网卡发出配置帧;
- 2) MVB网卡配置端口需要2秒左右,然后才能应答配置帧(PC判断配置失败或者超时4秒MVB 无应答,则继续循环发送配置帧),PC收到应答帧后,方可进入正常数据收发流程:
- 3) PC发出"发送数据帧";
- 4) MVB网卡将发送数据更新到源端口;
- 5) PC发出"数据请求帧"读取0x101端口数据;
- 6) MVB网卡将0x101宿端口的接收数据返回给PC;
- 7) PC发出"数据请求帧"读取0x1C0端口数据;
- 9) MVB网卡将0x1C0宿端口的接收数据返回给PC:
- 10) PC发出"数据请求帧"读取0x1C1端口数据;
- 11) MVB网卡将0x1C1宿端口的接收数据返回给PC;

然后重复3)过程,这个周期用户自行定义。

模拟测试数据:

以下为网卡配置为地址为0x71,源端口: 0x718、0x728、0x738、0x748、0x758; 宿端口为0x710、0x720、0x730、0x740、0x750的实际通讯数据,以便于测试使用(以下均为16进制,可以拷贝到串口调试助手直接发送:

ZZC 版号: B. 11 页 14 / 14

启动接收: FE 08 07 00 01 FE FA FF 停止接收: FE 08 07 00 00 FE FA FF

PC从0x710上发送数据(不使能自增计数器): FE 2A 09 80 00 07 10 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 FE FA FF

PC从0x720上发送数据(不使能自增计数器): FE 2A 09 80 00 07 20 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 FE FA FF

PC从0x710上发送数据 (使能自增计数器): FE 2A 09 EA 00 07 10 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 FE FA FF

PC从0x720上发送数据(使能自增计数器): FE 2A 09 EA 00 07 20 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 FE FA FF