Particle spectrograph

Wave operator and propagator

		2 ωρ 2 ωρ - ωρχ								
-								$\omega_{2}^{\#1} \dagger^{\alpha\beta} \qquad \frac{t_1}{2} \qquad -\frac{ikt_1}{\sqrt{2}} \qquad 0 \qquad \qquad ^{\#3}$	3 (
$f_{1^-}^{\#2}\alpha$	0	0	0	īkt ₁	0	0	0	$f_{2}^{\#1} + \alpha \beta \frac{ikt_1}{\sqrt{2}} k^2 t_1 = 0$	-0,	
$f_{1^{\bar{-}}}^{\#1}\alpha$	0	0	0	0	0	0	0	$\omega_2^{\#1} + \alpha \beta \chi$ 0 0 $k^2 r_1 + \frac{t_1}{2}$. 0	
$\omega_{1}^{\#2}_{\alpha} f_{1}^{\#1}_{c}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0	$\sigma_{2^{+}\alpha\beta}^{\sharp 1} \qquad \tau_{2^{+}\alpha\beta}^{\sharp 1} \qquad \sigma_{2^{-}\alpha\beta\chi}^{\sharp 1}$. .	
α	0	0	0	$1 - \frac{t_1}{2}$	2	0	: t1	$\sigma_{2^{+}}^{\#1} \uparrow^{\alpha\beta} \boxed{\frac{2}{(1+2k^{2})^{2}t_{1}}} - \frac{2i\sqrt{2}k}{(1+2k^{2})^{2}t_{1}} \qquad 0$	-0	
$\omega_{1}^{\#1}$))		$-k^2 r_1 - \frac{1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-\bar{l} k t_1$	$\tau_{2^{+}}^{\#1} + \alpha\beta \frac{2i\sqrt{2}k}{(1+2k^{2})^{2}t_{1}} \frac{4k^{2}}{(1+2k^{2})^{2}t_{1}} \qquad 0$	L	
αeta	$\frac{2t_2)}{7}$	$i k (t_1 + t_2)$	$k^2 \left(t_1 + t_2 \right)$					$\sigma_{2}^{\#1} \dagger^{\alpha\beta\chi} = 0 \qquad 0 \qquad \frac{2}{2 k^{2} r_{1} + t_{1}}$	#	
$f_1^{\#1}_{\alpha\beta}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$		k^2 (t_1	0	0	0	0		$\sigma_{0}^{\#1}$	
		HI W	3 1						ρ	
8	o d		$i k (t_1 + t_2)$					SO(3) irreps Multiplicities	$\tau_0^{\# 2}$	
$\omega_1^{\#2}{}_+^{}_{lphaeta}$	$\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	(t ₁ -	0	0	0	0	$\tau_{0^{+}}^{\#2} == 0$ 1	<u>, , , , , , , , , , , , , , , , , , , </u>	
$\omega_{_{1}}^{\sharp}$	- <u>t</u> 1	<u>t1</u>	ūκ					$\tau_{0+}^{\#1} - 2 \bar{i} k \sigma_{0+}^{\#1} == 0 \qquad \qquad 1$		
	(3 11					$\tau_{1}^{\#2\alpha} + 2 \bar{\imath} k \sigma_{1}^{\#2\alpha} == 0 3$	$t_0^{*\pm}$	
$\omega_1^{\#1}{}_+\alpha\beta$	$(t_1 + 4t_2)$	$\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{-2t_2)}{\sqrt{2}}$	0	0	0	0	$\tau_{1}^{\#1}{}^{\alpha} == 0$ 3		
$\omega_1^{\#}$	$\frac{1}{6}(t_1 -$	- [1 -3	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$))			$\sigma_{0}^{\#_{1}}$	
	βχ	βχ	βχ	σ	σ	σ	α	$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 i k \sigma_{2+}^{\#1}{}^{\alpha\beta} == 0 $	Ĭ	
	$\omega_1^{\#1} + \alpha^{eta}$	$\omega_1^{#2} + \alpha \beta$	$f_1^{#1} + ^{\alpha \beta}$	$\omega_{1^{\bar{-}}}^{\#_1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} \dagger^{\alpha}$			
	1,4	1,4	# [-]	2	\mathcal{E}_{1}	f_1^3	f_1^4	Total constraints: 16		
	3	3	+					•		

 $\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

0

0

0

0

0

 $\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $\tau_{0}^{\#1} \uparrow$

0

0

0

0

 $\tau_{0}^{\#2}$ †

0

0

0

 $-2 k^2 t_1$

 $-i\sqrt{2}kt_1$

 $f_{0}^{#1} \uparrow$ $f_{0}^{#2} \uparrow$

Massive and massless spectra

lassive particle							
ole residue:	$-\frac{1}{r_2} > 0$						
olarisations:	1						
quare mass:	$-\frac{t_2}{r_2} > 0$						
pin:	0						
arity:	Odd						

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& r_2 < 0 \&\& t_1 > 0 \&\& t_2 > 0$