Distributed by:

www.texim-europe.com

a-Si TFT for SSD1963 Controller 320xRGBx240 for 3.5"QVGA 480xRGBx272 for 4.3"WQVGA 320xRGBx240 for 5.7"QVGA 640xRGBx480 for 5.7"VGA 800xRGBx480 for 7.0"WVGA

262K color

Vresion 2.0 Date:2009/11/30

Date: 2009/05/05

1	REC	ORD OF REVISION	3
2	FEA	TURES	4
3	APP	LICATION CIRCUIT	5
	3.1	3.5 inch QVGA	5
	3.2	4.3 inch WQVGA	6
	3.3	5.7 inch QVGA	7
	3.4	5.7 inch VGA	8
	3.5	7.0 inch WVGA	•
4	MCL	J Interface Timing	10
	4.1	6800 Mode	0
	4.2	8080 Mode Write Cycle	1
	4.3	Pixel Data Format.	
5	REF	ERENCE INITIAL CODE :1	3
	5.1	8Brr-80 interface mode,262K color,3.5_Panel:320xRGBx240	3
	5.2	8Bit-80 interface mode,262K color,4.3_Panel:480xRGBx2721	7
	5.3	8Bit-80 interface mode,262K color,5.7_Panel:320xRGBx240	9
	5.4	8Brr-80 interface mode,262K color,5.7_Panel:640xRGBx480	1
	5.5	8Bit-80 interface mode,262K color,7.0_Panel:800xRGBx480	3

1 RECORD OF REVISION

Revision Date	Page	Contents	Editor
2009/5/5	-	New Release	
2009/11/30	-	Add 7.0" WVGA	

2 Features

SSD1963 is a display controller of 1215K byte frame buffer to support up to 864 x 480 x 24bit graphics content. It also equips parallel MCU interfaces in different bus width to receive graphics data and command from MCU. Its display interface supports common RAM-less LCD driver of color depth up to 24 bit-per- pixel.

User can send a full screen picture by controlling the MPU with popular microprocessor interface :

16 bit 8080-Series MPU 8 bit 8080-Series MPU 16 bit 6800-Series MPU 8 bit 6800-Series MPU

There are five kinds of control board include:

- # 4.3 inch WQVGA built-in LED driver
- # 5.7 inch QVGA built-in VCOM amplifier to adjust contrast and flicker by VR50/VR51.
- # 5.7 inch VGA built-in VCOM amplifier to adjust flicker by VR31.
- 第 7.0 inch WVGA.

3.1 3.5 inch QVGA

3.2 4.3 inch WQVGA

3.3 5.7 inch QVGA

3.4 5.7 inch VGA

3.5 7.0 inch WVGA

4 MCU Interface Timing

4.1 6800 Mode

Table 13-4: 6800 Mode Timing

Symbol	Parameter	Min	Тур	Max	Unit
t_{cyc}	Reference Clock Cycle Time	9	-	-	ns
t_{PWCSL}	Pulse width CS# or E low	1	-	-	t_{CYC}
t_{PWCSH}	Pulse width CS# or E high	1	-	-	t_{CYC}
$t_{ m FDRD}$	First Data Read Delay	5	-	-	t_{CYC}
t _{AS}	Address Setup Time	1	-	-	ns
t _{AH}	Address Hold Time	1	-	-	ns
$t_{ m DSW}$	Data Setup Time	4	-	-	ns
$t_{ m DHW}$	Data Hold Time	1	-	-	ns
t _{DSR}	Data Access Time	-	-	5	ns
t _{DHR}	Output Hold time	1	-	-	ns

Figure 13-1: 6800 Mode Timing Diagram (Use CS# as Clock)

Figure 13-2: 6800 Mode Timing Diagram (Use E as Clock)

4.2 8080 Mode Write Cycle

Table 13-5: 8080 Mode Timing

Symbol	Parameter	Min	Тур	Max	Unit
t _{cyc}	Reference Clock Cycle Time	9	-	-	ns
t_{PWCSL}	Pulse width CS# low	1	-	-	t_{CYC}
t _{PWCSH}	Pulse width CS# high	1	-	-	t _{CYC}
t_{FDRD}	First Read Data Delay	5	-	-	t_{CYC}
t _{AS}	Address Setup Time	1	-	-	ns
t_{AH}	Address Hold Time	1	-	-	ns
t_{DSW}	Data Setup Time	4	-	-	ns
$t_{ m DHW}$	Data Hold Time	1	-	-	ns
t_{DSR}	Data Access Time	-	-	5	ns
t_{DHR}	Output Hold time	1	-	-	ns

Figure 13-3: 8080 Mode Timing Diagram

4.3 Pixel Data Format

Both 6800 and 8080 support 8-bit, 9-bit, 16-bit, 18-bit and 24-bit data bus of SSD1963, but only designed 8-bit and 16-bit data bus for all kinds of control board.

Depending on the width of the data bus, the display data are packed into the data bus in different ways.

Table 7-1: Pixel Data Format

Interface	Cycle	D[23]	D[22]	D[21]	D[20]	D[19]	D[18]	D[17]	D[16]	D[15]	D[14]	D[13]	D[12]	D[11]	D[10]	D[9]	D[8]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
24 bits	1 st	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	В6	B5	B4	В3	B2	B1	В0
18 bits	1 st							R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	В3	B2	B1	В0
16 bits (565 format)	1 st									R5	R4	R3	R2	R1	G5	G4	G3	G2	G1	G0	B5	B4	В3	B2	В1
	1 st									R5	R4	R3	R2	R1	R0	х	х	G5	G4	G3	G2	G1	G0	х	х
16 bits	2 nd									B5	В4	ВЗ	B2	B1	В0	х	х	R5	R4	R3	R2	R1	R0	х	х
	3 rd									G5	G4	G3	G2	G1	G0	х	х	B5	В4	В3	B2	B1	В0	х	х
9 bits	1 st																R5	R4	R3	R2	R1	R0	G5	G4	G3
9 DILS	2 nd																G2	G1	G0	B5	B4	В3	B2	B1	В0
	1 st																	R5	R4	R3	R2	R1	R0	х	х
8 bits	2 nd																	G5	G4	G3	G2	G1	G0	х	х
	3 rd																	B5	B4	ВЗ	B2	B1	В0	Х	Х

X: Don't Care

5 Reference Initial code:

```
5.1
            8bit-80 interface mode, 262K color, 3.5 Panel:320xRGBx240
void main(void)
   Initial_SSD1963();
   FULL_ON(0xff0000);
                            // red
   FULL_ON(0x00ff00);
                            // green
   FULL_ON(0x0000ff);
                            // blue
}
void Write_Command (unsigned char command)
  IC RD = 1;
                            ///RD=1
  IC_A0 = 0;
                            // D/C=0
  IC_WR= 0;
                            // /WR=0
  IC CS = 0;
                            // /CS=0
  Data_BUS = command;
                            // Data Bus OUT
  IC_CS = 1;
                            // /CS=1
  IC_WR= 1;
                           // /WR=1
}
void Write_Data (unsigned char data1)
  IC_RD = 1;
  IC_A0 = 1;
  IC_WR = 0;
  IC_CS = 0;
  Data_BUS = data1;
  IC_CS = 1;
  IC_WR= 1;
void Command_Write(unsigned char command,unsigned char data1)
  Write_Command(command);
  Write_Data(data1);
void SendData(unsigned long color)
  Write_Data((color)>>16);
                          // color is red
  Write_Data((color)>>8); // color is green
  Write_Data(color);
                            // color is blue
```

```
void Initial_SSD1963 (void)
                                        //for 3.5 QVGA
  IC_RST = 0;
  _nop_();
  _nop_();
   _nop_();
  IC RST = 1;
  _nop_();
  _nop_();
  _nop_();
  Write Command(0x01);
                                       //Software Reset
  Write_Command(0x01);
  Write_Command(0x01);
  Command_Write(0xe0,0x01);
                                       // START PLL
  Command_Write(0xe0,0x03);
                                       // LOCK PLL
  Write_Command(0xb0);
                                       //SET LCD MODE SET TFT 18Bits MODE
  Write_Data(0x0c);
                                       //SET TFT MODE & hsync+Vsync+DEN MODE
  Write_Data(0x80);
                                        //SET TFT MODE & hsync+Vsync+DEN MODE
                                       //SET horizontal size=320-1 HightByte
  Write_Data(0x01);
  Write_Data(0x3f);
                                       //SET horizontal size=320-1 LowByte
  Write_Data(0x00);
                                       //SET vertical size=240-1 HightByte
  Write_Data(0xef);
                                       //SET vertical size=240-1 LowByte
  Write_Data(0x00);
                                       //SET even/odd line RGB seq.=RGB
  Command_Write(0xf0,0x00);
                                       //SET pixel data I/F format=8bit
  Command_Write(0x3a,0x60);
                                       // SET R G B format = 6 6 6
  Write_Command(0xe2);
                              //SET PLL freq=113.33MHz ;
  Write_Data(0x22);
  Write_Data(0x03);
  Write_Data(0x04);
  Write Command(0xe6);
                             //SET PCLK freq=6.5MHz/19MHz ; pixel clock frequency
  Write_Data(0x00);
                                       //0x02
  Write_Data(0xea);
                                       //0xb0
  Write_Data(0xec);
                                       //0xb5
  Write_Command(0xb4);
                                       //SET HBP
  Write Data(0x01);
                                       //SET HSYNC Total = 440
  Write_Data(0xb8);
  Write_Data(0x00);
                                       //SET HBP = 68
  Write_Data(0x44);
```

```
Write_Data(0x0f);
                                      //SET VBP 16 = 15 + 1
Write_Data(0x00);
                                      //SET Hsync pulse start position
Write_Data(0x00);
Write_Data(0x00);
                                      //SET Hsync pulse subpixel start position
Write_Command(0xb6);
                                      //SET VBP
Write_Data(0x01);
                                      //SET V sync total 265 = 264 + 1
Write_Data(0x08);
Write_Data(0x00);
                                      //SET VBP = 18
Write_Data(0x12);
Write_Data(0x07);
                                      //SET Vsync pulse 8 = 7 + 1
Write_Data(0x00);
                                      //SET Vsync pulse start position
Write_Data(0x00);
Write_Command(0x2a);
                                      //SET column address
Write_Data(0x00);
                                      //SET start column address=0
Write_Data(0x00);
Write_Data(0x01);
                                      //SET end column address=320
Write_Data(0x3f);
Write_Command(0x2b);
                                      //SET page address
Write_Data(0x00);
                                      //SET start page address=0
Write_Data(0x00);
Write_Data(0x00);
                                      //SET end page address=240
Write_Data(0xef);
Write_Command(0x29);
                                      //SET display on
Write_Command(0x2c);
```

}

```
WindowSet(unsigned int s_x,unsigned int e_x,unsigned int s_y,unsigned int e_y)
           Write_Command(0x2a);
                                            //SET page address
           Write_Data((s_x)>>8);
                                            //SET start page address=0
           Write_Data(s_x);
           Write_Data((e_x)>>8);
                                            //SET end page address=320
           Write_Data(e_x);
           Write_Command(0x2b);
                                            //SET column address
           Write_Data((s_y) >> 8);
                                            //SET start column address=0
           Write_Data(s_y);
           Write_Data((e_y) >> 8);
                                            //SET end column address=240
           Write_Data(e_y);
}
void FULL_ON(unsigned long dat)
  unsigned int x,y;
  WindowSet(0x0000,0x013f,0x0000,0x00ef);
  Write_Command(0x2c);_
 for (x=0;x<240;x++)
   {
    for (y=0;y<320;y++)
         SendData(dat);
   }
}
```

```
5.2 8bit-80 interface mode, 262K color, 4.3_Panel:480xRGBx272
void Initial SSD1963 (void)
                                       //for 4.3 WQVGA
  IC_RST = 0;
  _nop_();
  _nop_();
   _nop_();
  IC_RST = 1;
  _nop_();
  _nop_();
  _nop_();
  Write_Command(0x01);
                                       //Software Reset
  Write_Command(0x01);
  Write Command(0x01);
  Command_Write(0xe0,0x01);
                                       // START PLL
  Command_Write(0xe0,0x03);
                                       // LOCK PLL
  Write_Command(0xb0);
                                       //SET LCD MODE SET TFT 18Bits MODE
  Write_Data(0x08);
                                       //SET TFT MODE & hsync+Vsync+DEN MODE
  Write Data(0x80);
                                       //SET TFT MODE & hsync+Vsync+DEN MODE
  Write_Data(0x01);
                                       //SET horizontal size=480-1 HightByte
  Write_Data(0xdf);
                                       //SET horizontal size=480-1 LowByte
  Write_Data(0x01);
                                       //SET vertical size=272-1 HightByte
  Write_Data(0x0f);
                                       //SET vertical size=272-1 LowByte
  Write_Data(0x00);
                                       //SET even/odd line RGB seg.=RGB
  Command_Write(0xf0,0x00);
                                       //SET pixel data I/F format=8bit
                                       // SET R G B format = 6 6 6
  Command_Write(0x3a,0x60);
  Write_Command(0xe2);
                              //SET PLL freq=113.33MHz ;
  Write_Data(0x22);
  Write Data(0x03);
  Write_Data(0x04);
  Write_Command(0xe6);
                             //SET PCLK freq=9MHz ; pixel clock frequency
  Write_Data(0x01);
  Write Data(0x45);
  Write_Data(0x47);
  Write_Command(0xb4);
                                       //SET HBP
                                       //SET HSYNC Total = 525
  Write_Data(0x02);
  Write_Data(0x0d);
  Write_Data(0x00);
                                       //SET HBP = 43
  Write_Data(0x2b);
```

```
Write_Data(0x28);
                                      //SET VBP 41 = 40 + 1
Write_Data(0x00);
                                      //SET Hsync pulse start position
Write_Data(0x00);
Write_Data(0x00);
                                      //SET Hsync pulse subpixel start position
Write_Command(0xb6);
                                      //SET VBP
Write_Data(0x01);
                                      //SET V sync total 286 = 285 + 1
Write_Data(0x1d);
Write_Data(0x00);
                                      //SET VBP = 12
Write_Data(0x0c);
Write_Data(0x09);
                                      //SET Vsync pulse 10 = 9 + 1
Write_Data(0x00);
                                      //SET Vsync pulse start position
Write_Data(0x00);
Write_Command(0x2a);
                                      //SET column address
Write_Data(0x00);
                                      //SET start column address=0
Write_Data(0x00);
                                      //SET end column address=480
Write_Data(0x01);
Write_Data(0xdf);
Write_Command(0x2b);
                                      //SET page address
Write_Data(0x00);
                                      //SET start page address=0
Write_Data(0x00);
Write_Data(0x01);
                                      //SET end page address=272
Write_Data(0x0f);
Write_Command(0x29);
                                      //SET display on
Write_Command(0x2c);
```

Date: 2009/11/30

}

```
8bit-80 interface mode, 262K color, 5.7 Panel:320xRGBx240
void Initial_SSD1963 (void)
                                       //for 5.7 QVGA
  IC_RST = 0;
  _nop_();
  _nop_();
   _nop_();
  IC_RST = 1;
  _nop_();
  _nop_();
  _nop_();
  Write_Command(0x01);
                                       //Software Reset
  Write Command(0x01);
  Write_Command(0x01);
  Command_Write(0xe0,0x01);
                                       // START PLL
  Command_Write(0xe0,0x03);
                                       // LOCK PLL
  Write_Command(0xb0);
                                       //SET LCD MODE SET TFT 18Bits MODE
  Write_Data(0x0c);
                                       //SET TFT MODE & hsync+Vsync+DEN MODE
  Write_Data(0x80);
                                       //SET TFT MODE & hsync+Vsync+DEN MODE
  Write_Data(0x01);
                                       //SET horizontal size=320-1 HightByte
  Write Data(0x3f);
                                       //SET horizontal size=320-1 LowByte
  Write_Data(0x00);
                                       //SET vertical size=240-1 HightByte
  Write_Data(0xef);
                                       //SET vertical size=240-1 LowByte
  Write_Data(0x00);
                                       //SET even/odd line RGB seq.=RGB
  Command_Write(0xf0,0x00);
                                       //SET pixel data I/F format=8bit
  Command Write(0x3a,0x60);
                                       // SET R G B format = 6 6 6
  Write_Command(0xe2);
                              //SET PLL freq=113.33MHz ;
  Write_Data(0x22);
  Write_Data(0x03);
  Write_Data(0x04);
  Write_Command(0xe6);
                             //SET PCLK freq=6.4MHz ; pixel clock frequency
  Write_Data(0x00);
  Write Data(0xe7);
  Write_Data(0x4f);
  Write_Command(0xb4);
                                       //SET HBP
                                       //SET HSYNC Total = 440
  Write_Data(0x01);
  Write_Data(0xb8);
  Write_Data(0x00);
                                       //SET HBP = 68
  Write_Data(0x44);
```

```
Write_Data(0x0f);
                                      //SET VBP 16 = 15 + 1
Write_Data(0x00);
                                      //SET Hsync pulse start position
Write_Data(0x00);
Write_Data(0x00);
                                      //SET Hsync pulse subpixel start position
Write_Command(0xb6);
                                      //SET VBP
Write_Data(0x01);
                                      //SET V sync total 265 = 264 + 1
Write_Data(0x08);
Write_Data(0x00);
                                      //SET VBP = 19
Write_Data(0x13);
Write_Data(0x07);
                                      //SET Vsync pulse 8 = 7 + 1
Write_Data(0x00);
                                      //SET Vsync pulse start position
Write_Data(0x00);
Write_Command(0x2a);
                                      //SET column address
Write_Data(0x00);
                                      //SET start column address=0
Write_Data(0x00);
Write_Data(0x01);
                                      //SET end column address=320
Write_Data(0x3f);
Write_Command(0x2b);
                                      //SET page address
Write_Data(0x00);
                                      //SET start page address=0
Write_Data(0x00);
Write_Data(0x00);
                                      //SET end page address=240
Write_Data(0xef);
Write_Command(0x29);
                                      //SET display on
Write_Command(0x2c);
```

}

```
8bit-80 interface mode, 262K color, 5.7_Panel:640xRGBx480
void Initial_SSD1963 (void)
                                       //for 5.7 VGA
  IC_RST = 0;
  _nop_();
  _nop_();
  _nop_();
  IC_RST = 1;
  _nop_();
  _nop_();
  _nop_();
  Write_Command(0x01);
                                       //Software Reset
  Write_Command(0x01);
  Write_Command(0x01);
  Command_Write(0xe0,0x01);
                                       // START PLL
  Command_Write(0xe0,0x03);
                                       // LOCK PLL
  Write_Command(0xb0);
                                       //SET LCD MODE SET TFT 18Bits MODE
  Write_Data(0x0c);
                                       //SET TFT MODE & hsync+Vsync+DEN MODE
                                       //SET TFT MODE & hsync+Vsync+DEN MODE
  Write_Data(0x80);
  Write_Data(0x02);
                                       //SET horizontal size=640-1 HightByte
  Write_Data(0x7f);
                                       //SET horizontal size=640-1 LowByte
  Write_Data(0x01);
                                       //SET vertical size=480-1 HightByte
  Write_Data(0xdf);
                                       //SET vertical size=480-1 LowByte
  Write Data(0x00);
                                       //SET even/odd line RGB seg.=RGB
  Command_Write(0xf0,0x00);
                                       //SET pixel data I/F format=8bit
  Command_Write(0x3a,0x60);
                                       // SET R G B format = 6 6 6
  Write_Command(0xe2);
                              //SET PLL freq=113.33MHz ;
  Write_Data(0x22);
  Write_Data(0x03);
  Write_Data(0x04);
  Write_Command(0xe6);
                             //SET PCLK freq=6.43MHz ; pixel clock frequency
  Write_Data(0x00);
  Write_Data(0xe7);
  Write_Data(0x4f);
  Write_Command(0xb4);
                                       //SET HBP.
  Write_Data(0x20);
                                       //SET HSYNC Total = 8367
  Write_Data(0xaf);
  Write_Data(0x00);
                                       //SET HBP = 163
  Write_Data(0xa3);
```

```
Write_Data(0x07);
                                      //SET VBP 8 = 7 + 1
Write_Data(0x00);
                                      //SET Hsync pulse start position
Write_Data(0x00);
Write_Data(0x00);
                                      //SET Hsync pulse subpixel start position
Write_Command(0xb6);
                                      //SET VBP,
Write_Data(0x01);
                                      //SET V sync total 496 = 495 + 1
Write_Data(0xef);
Write_Data(0x00);
                                      //SET VBP = 4
Write_Data(0x04);
                                      //SET Vsync pulse 2 = 1 + 1
Write_Data(0x01);
Write_Data(0x00);
                                      //SET Vsync pulse start position
Write_Data(0x00);
Write_Command(0x2a);
                                      //SET column address
Write_Data(0x00);
                                      //SET start column address=0
Write_Data(0x00);
Write_Data(0x02);
                                      //SET end column address=640
Write_Data(0x7f);
Write_Command(0x2b);
                                      //SET page address
Write_Data(0x00);
                                      //SET start page address=0
Write_Data(0x00);
Write_Data(0x01);
                                      //SET end page address=480
Write_Data(0xdf);
Write_Command(0x29);
                                      //SET display on
Write_Command(0x2c);
```

}

```
8bit-80 interface mode, 262K color, 7.0_Panel:800xRGBx480
void Initial_SSD1963 (void)
                                       //for 7.0 VGA
  IC_RST = 0;
  _nop_();
  _nop_();
   _nop_();
  IC_RST = 1;
  _nop_();
  _nop_();
  _nop_();
                                       //Software Reset
  Write_Command(0x01);
  Write_Command(0x01);
  Write_Command(0x01);
  Command_Write(0xe0,0x01);
                                       // START PLL
  Command_Write(0xe0,0x03);
                                       // LOCK PLL
  Write_Command(0xb0);
                                       //SET LCD MODE SET TFT 18Bits MODE
  Write Data(0x08);
                                       //SET TFT MODE & hsync+Vsync+DEN MODE
                                       //SET TFT MODE & hsync+Vsync+DEN MODE
  Write_Data(0x80);
                                       //SET horizontal size=800-1 HightByte
  Write_Data(0x03);
  Write_Data(0x1f);
                                       //SET horizontal size=800-1 LowByte
  Write_Data(0x01);
                                       //SET vertical size=480-1 HightByte
  Write_Data(0xdf);
                                       //SET vertical size=480-1 LowByte
  Write_Data(0x00);
                                       //SET even/odd line RGB seq.=RGB
  Command_Write(0xf0,0x00);
                                       //SET pixel data I/F format=8bit
  Command Write(0x3a,0x60);
                                       // SET R G B format = 6 6 6
  Write_Command(0xe2);
                              //SET PLL freq=113.33MHz ;
  Write_Data(0x22);
  Write_Data(0x03);
  Write_Data(0x04);
  Write_Command(0xe6);
                             //SET PCLK freq=33.26MHz ; pixel clock frequency
  Write_Data(0x00);
  Write Data(0xe7);
  Write_Data(0x4f);
  Write_Command(0xb4);
                                       //SET HBP,
  Write_Data(0x20);
                                       //SET HSYNC Total = 8367
  Write_Data(0xaf);
  Write_Data(0x00);
                                       //SET HBP = 163
  Write_Data(0xa3);
```

```
Write_Data(0x07);
                                      //SET VBP 8 = 7 + 1
Write_Data(0x00);
                                      //SET Hsync pulse start position
Write_Data(0x00);
Write_Data(0x00);
                                      //SET Hsync pulse subpixel start position
Write_Command(0xb6);
                                      //SET VBP,
Write_Data(0x01);
                                      //SET V sync total 496 = 495 + 1
Write_Data(0xef);
Write_Data(0x00);
                                      //SET VBP = 4
Write_Data(0x04);
                                      //SET Vsync pulse 2 = 1 + 1
Write_Data(0x01);
Write_Data(0x00);
                                      //SET Vsync pulse start position
Write_Data(0x00);
Write_Command(0x2a);
                                      //SET column address
Write_Data(0x00);
                                      //SET start column address=0
Write_Data(0x00);
Write_Data(0x03);
                                      //SET end column address=800
Write_Data(0x1f);
Write_Command(0x2b);
                                      //SET page address
Write_Data(0x00);
                                      //SET start page address=0
Write_Data(0x00);
Write_Data(0x01);
                                      //SET end page address=480
Write_Data(0xdf);
Write_Command(0x29);
                                      //SET display on
Write_Command(0x2c);
```

}