

**ON-P-GaAs SUBSTRATE $Zn_{1-x}Mg_xS_ySe_{1-y}$ PIN PHOTODIODE
AND ON-P-GaAs SUBSTRATE $Zn_{1-x}Mg_xS_ySe_{1-y}$ AVALANCHE PHOTODIODE**

ABSTRACT OF THE DISCLOSURE

A blue-ultraviolet on-p-GaAs substrate pin $Zn_{1-x}Mg_xS_ySe_{1-y}$ photodiode with high 5 quantum efficiency, small dark current, high reliability and a long lifetime. The ZnMgSSe photodiode has a metallic p-electrode, a p-GaAs single crystal substrate, a p-(ZnSe/ZnTe)^m superlattice (m: integer number of sets of thin films), an optionally formed p-ZnSe buffer layer, a p- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer, an i- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer, an n- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer, an n-electrode and an optionally provided antireflection film. Incidence light arrives at the i-layer 10 without passing ZnTe layers. Since the incidence light is not absorbed by ZnTe layers, high quantum efficiency and high sensitivity are obtained.

A blue-ultraviolet on-p-GaAs substrate avalanche $Zn_{1-x}Mg_xS_ySe_{1-y}$ photodiode with high sensitivity, high quantum efficiency, a wide sensitivity range, high reliability and a long lifetime. The ZnMgSSe avalanche photodiode has a metallic p-electrode, a p-GaAs single 15 crystal substrate, a p-(ZnSe/ZnTe)^m superlattice (m: integer number of sets of thin films), an optionally formed p-ZnSe buffer layer, a p- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer, a lower doped n⁻- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer, a higher doped n⁺- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer, an n-electrode and an optionally provided antireflection film. Since the incidence light is not absorbed by ZnTe layers, a high avalanche gain, high quantum efficiency and high sensitivity are obtained.