Лабораторная работа 1: Булевы функции Вариант 3

Подготовил Бовт Тимофей, 9 группа.

1. Построить д.н.ф. и к.н.ф функции:

$$f(\tilde{x}^3) = \overline{(x_1 \bar{x}_2 \vee x_3)} \sim (x_1 \to x_2 \bar{x}_3)$$

Решение:

$$f(\tilde{x}^{3}) = \overline{(x_{1}\bar{x}_{2} \vee x_{3})} \sim (x_{1} \to x_{2}\bar{x}_{3}) = ((x_{1} \vee \bar{x}_{2}x_{3})\overline{(\bar{x}_{1} \vee x_{2}\bar{x}_{3})}) \vee (\overline{(x_{1} \vee \bar{x}_{2}x_{3})}(\bar{x}_{1} \vee x_{2}\bar{x}_{3})) = ((x_{1} \vee \bar{x}_{2}x_{3})(x_{1}\bar{x}_{2} \vee x_{1}x_{3})) \vee ((\bar{x}_{1}\bar{x}_{3} \vee x_{2}\bar{x}_{3})(\bar{x}_{1} \vee x_{2}\bar{x}_{3})) = x_{1}\bar{x}_{2} \vee x_{1}x_{3} \vee \bar{x}_{1}\bar{x}_{3} \vee x_{2}\bar{x}_{3} = x_{1}\bar{x}_{2}x_{3} \vee x_{1}\bar{x}_{2}\bar{x}_{3} \vee x_{1}x_{3} \vee \bar{x}_{1}\bar{x}_{3} \vee x_{1}x_{2}\bar{x}_{3} \vee \bar{x}_{1}x_{2}\bar{x}_{3} = x_{1}\bar{x}_{3} \vee \bar{x}_{1}\bar{x}_{3} \vee x_{1}\bar{x}_{3} \vee x_{1}\bar{x}_{3} \vee x_{1}\bar{x}_{3} \vee x_{1}\bar{x}_{3} \vee \bar{x}_{1}\bar{x}_{3} \vee \bar{x}_{1}\bar{x}_{2}\bar{x}_{3} \vee \bar{x}_{1}\bar{x}_{2}\bar{x$$

Полученная конъюнкция является как д.н.ф, так и к.н.ф.

Otbet: $x_1 \vee \bar{x}_3$

2. Представить в совершенной д.н.ф. функцию

(a)
$$f(\tilde{x}^3) = (01111000)$$

Решение:

x	y	z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Otbet: $\bar{x_1}\bar{x_2}x_3 \vee \bar{x_1}x_2\bar{x_3} \vee \bar{x_1}x_2x_3 \vee x_1\bar{x_2}\bar{x_3}$

(b)
$$f(\tilde{x}^3) = (x_1 \vee x_2 \bar{x}_3)(x_1 \bar{x}_2 \vee \bar{x}_3)(\overline{x_1 x_2} \vee x_3)$$

Решение:

$$f(\tilde{x}^3) = (x_1 \vee x_2 \bar{x}_3)(x_1 \bar{x}_2 \vee \bar{x}_3)(\overline{x_1 x_2} \vee x_3) = \\ (x_1 \bar{x}_2 \vee x_1 \bar{x}_3 \vee x_2 \bar{x}_3)(\bar{x}_1 \vee \bar{x}_2 \vee x_3) = \bar{x}_1 x_2 \bar{x}_3 \vee x_1 \bar{x}_2 \vee x_1 \bar{x}_2 \bar{x}_3 \vee x_1 \bar{x}_2 x_3 = \\ \bar{x}_1 x_2 \bar{x}_3 \vee x_1 \bar{x}_2 \bar{x}_3 \vee x_1 \bar{x}_2 x_3 \\ \text{Otbet: } \bar{x}_1 x_2 \bar{x}_3 \vee x_1 \bar{x}_2 \bar{x}_3 \vee x_1 \bar{x}_2 x_3$$

3. Представить в виде совершенной к.н.ф. функцию

$$f(\tilde{x}^2) = x_1 \downarrow x_2$$

Решение:

x	y	f
0	0	1
0	1	0
1	0	0
1	1	0

Ответ: $(\bar{x}_1 \lor x_2)(x_1 \lor \bar{x}_2)(x_1 \lor x_2)$

4. Найти полином Жегалкина для функции

(a)
$$f(\tilde{x}^2) = x_1 \vee x_2$$

Решение:

$$f(\tilde{x}^2) = x_1 \lor x_2 = \overline{\bar{x}_1 \bar{x}_2} = \overline{(1 \oplus x_1)(1 \oplus x_2)} = \overline{(1 \oplus x_2 \oplus x_1 \oplus x_1 x_2)} = x_2 \oplus x_1 \oplus x_1 x_2$$

Otbet: $x_2 \oplus x_1 \oplus x_1x_2$

(b)
$$f(\tilde{x}^4) = (10000000000000001)$$

Решение: (по методу разложению вектора при помощи формулы $(\alpha, \alpha \oplus \beta)$)

1 0 0 0 0 0 0 0 0 0 0 0 0	(1,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,1)	$ \begin{array}{c} (1,1,1,1) \\ (0,0,0,0) \\ (0,0,0,0) \\ (0,0,0,1) \end{array} $	$(1,1,1,1,1,1,1,1) \\ (0,0,0,0,0,0,0,1)$	(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0)

Где итоговое множество - коэффициенты перед членами Полинома Жегалкина, начиная с a_0 и так далее. Соотвественно...

Ответ: $1 \oplus x_4 \oplus x_3 \oplus x_3x_4 \oplus x_2 \oplus x_2x_4 \oplus x_2x_3 \oplus x_2x_3x_4 \oplus x_1 \oplus x_1x_4 \oplus x_1x_3 \oplus x_1x_3x_4 \oplus x_1x_2 \oplus x_1x_2x_4 \oplus x_1x_2x_3$

5. Найдите длину совершенной д.н.ф. функции

$$f(\tilde{x}^n) = \bigwedge_{1 \le i < j \le n} (x_i \to x_j), n \ge 2$$

Решение:

Способ не совсем комбинаторный, скорее прослеживание аналогии...

Если подставить вместо n значение 2, то получим следующее $f(\tilde{x}^2) = (x_1 \to x_2)$

Затем построим для этой функции таблицу истинности и найдем длину совершенной д.н.ф.

x_1	x_2	f
0	0	1
0	1	1
1	0	0
1	1	1

Отсюда следует, что длина совершенной д.н.ф. равна 3 (так как на трёх наборах функция принимает значение равное 1)

Далее берём n=3, строим таблицу истинности для этого случая

$$f(\tilde{x}^3) = (x_1 \to x_2)(x_1 \to x_3)(x_2 \to x_3)$$

x_1	x_2	x_3	$\int f$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Отсюда следует, что длина совершенной д.н.ф. равна 4.

Далее берём n=4:

$$f(\tilde{x}^4) = (x_1 \to x_2)(x_1 \to x_3)(x_2 \to x_3)(x_1 \to x_4)(x_2 \to x_4)(x_3 \to x_4)$$

x_1	x_2	x_3	x_4	f
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
$\begin{array}{c c} x_1 \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\$	0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1	0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1	1	1	0	0
1	1	1	1	1

Отсюда следует, что длина совершенной д.н.ф. равна 5. Как можно заметить, длина совершенной д.н.ф. с возрастанием n на 1 также увеличивается на 1. По сути, при добавлении новой переменной x_n , набор, на котором переменные возрастают относительно друг друга

(от x_1 до x_n) увеличивается на 1. При n=2 длина с.д.н.ф. l=3, n=3-l=4, n=4-l=5 и т.д. Отсюда можно сделать вывод, что длина совершенной д.н.ф. больше, чем n на 1.

Otbet: n+1.

6. Выяснить, является ли самодвойственной функция f, заданная векторно

 $\tilde{\alpha}_f = (10011100101111000)$

Решение:

Самодвойственная функция на противоположных наборах принимает противоположные значения. Рассмотрим функцию на наборах (0000) и (1111): f(0000) = 1, f(1111) = 0. Однако на наборах (0001) и (1110) получаем следующее: f(0001) = 0, $f(1110) = 0 \Rightarrow f \notin S$

Ответ: Функция не является самодвойственной.

7. Определить, какие из переменных функций $f(\tilde{x}^n)$ следует заменить на x, а какие на \bar{x} с тем, чтобы получить константу:

$$\tilde{\alpha}_f = (01100001)$$

Решение:

Построим таблицу истинности:

x	y	z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Из таблицы видно, что два одинаковых значения равных 0 функция имеет на противоположных наборах (001) и (100). Следовательно, заменив x_1 на $x, x_2 = x_3 = \bar{x}$, получаем константу 0.

x	\bar{x}	\bar{x}	f
0	1	1	0
1	0	0	0

Ответ: Заменив x_1 на x, x_2 и x_3 на \bar{x} , получаем константу 0.

8. Выяснить, является ли линейной функция f:

$$f = (xy \lor yz \lor zx) \oplus \overline{xyz} \oplus xyz$$

Решение:

$$f = (xy \lor yz \lor zx) \oplus \overline{xyz} \oplus xyz = (xy \lor yz \lor xz) \oplus 1 = \overline{xy} \cdot \overline{yz} \cdot \overline{zx} = (xy \oplus 1)(yz \oplus 1)(zx \oplus 1) = (xyz \oplus xy \oplus yz \oplus 1)(zx \oplus 1) = xyz \oplus xyz \oplus xyz \oplus xyz \oplus yz \oplus zx \oplus 1 = 1 \oplus yz \oplus zx \oplus xy$$

Следовательно функция не линейная, так как ее многочлен Жегалкина содержит конъюнкции ранга выше 1.

Ответ: Функция не является линейной.

9. Подставляя на места переменных нелинейной функции f функции из множества $\{0,1,x,y\}$, получить хотя бы одну из функций $xy,x\bar{y}, \overline{xy}$:

$$\tilde{\alpha}_f = (11011111111001111)$$

Решение:

Для начала необходимо найти многочлен Жегалкина этой функции. Поскольку его нахождение уже присуствовало в прошлых заданиях, то смысла ещё раз считать его я не вижу. Имеет он следующий вид:

$$f(x_1, x_2, x_3, x_4) = 1 \oplus x_3 \oplus x_3 + x_4 \oplus x_2 + x_3 \oplus x_2 + x_3 + x_4 \oplus x_1 + x_3 + x_4 \oplus x_1 + x_2 + x_3 + x_4 \oplus x_1 + x_3 \oplus x_2 + x_3 \oplus x_3 + x_4 \oplus x_1 + x_3 \oplus x_2 + x_3 \oplus x_3 + x_4 \oplus x_1 + x_3 \oplus x_2 + x_3 \oplus x_3 + x_4 \oplus x_1 + x_3 \oplus x_2 + x_3 \oplus x_3 + x_4 \oplus x_1 + x_3 \oplus x_2 + x_3 \oplus x_3 + x_4 \oplus x_1 + x_3 \oplus x_2 + x_3 \oplus x_3 + x_4 \oplus x_1 + x_3 \oplus x_2 + x_3 \oplus x_3 + x_4 \oplus x_1 + x_3 \oplus x_2 + x_3 \oplus x_3 \oplus x_3 + x_4 \oplus x_1 + x_3 \oplus x_2 + x_3 \oplus x_3 \oplus$$

Для небольшого упрощения я вынес общие множители за скобки:

$$f(x_1, x_2, x_3, x_4) = 1 \oplus x_3(1 \oplus x_2 \oplus x_4(1 \oplus x_2 \oplus x_1 \oplus x_1 x_2))$$

Далее для упрощения я сразу подставил на места общих множителей 1 $(x_3 = x_4 = 1)$. Получил следующее:

$$f(x_1, x_2, 1, 1) = x_1 \oplus x_1 x_2 = x_1 (1 \oplus x_2)$$

Подставив $x_1 = x, x_2 = y,$ получаю

$$f(x, y, 1, 1) = x(1 \oplus y) = x\bar{y}$$

Otbet: $f(x, y, 1, 1) = x\bar{y}$.

- 10. Подсчитать число функций, зависящих от переменных $x_1, x_2, ..., x_n$ и принадлежащих множеству A:
 - (a) $A = (S \cap T_0) \cup T_1$
 - (b) $A = L \setminus (T_0 \cup T_1)$
 - (c) $A = (S \cap T_0) \setminus T_1$

Решение:

(a) $A = (S \cap T_0) \cup T_1$

По определению самодвойственной функции $|S| = 2^{2^{n-1}}$. В нашем случае она должна сохранять константу 0 (так как она из множества $S \cap T_0$), следовательно среди 2^{n-1} мест одно занято. $\Rightarrow |S \cap T_0| = 2^{2^{n-1}-1}$. Далее нам нужно объединение полученного множества с T_0 . Для этого воспользуемся формулой Грассмана:

 $|(S\cap T_0)\cup T_1|=|S\cap T_0|+|T_1|-|S\cap T_0\cap T_1|$ Из определения мощность множества $|T_1|=|T_0|=2^{2^n-1}$. Мощность множества $|S\cap T_0\cap T_1|$ легко находим: это самодвойственная функция, которая сохраняет константы 0 и 1. Следовательно среди 2^{n-1} мест два места заняты. В итоге получаем:

$$A = |S \cap T_0| + |T_1| - |S \cap T_0 \cap T_1| = 2^{2^{n-1}-1} + 2^{2^{n-1}} - 2^{2^{n-1}-2} = 2^{2^{n-1}-2} + 2^{2^{n-1}}$$

Other: $2^{2^{n-1}-2} + 2^{2^n-1}$.

(b) $A = L \setminus (T_0 \cup T_1)$

Множество $|L\setminus (T_0\cup T_1)|$ расписываем как $|L|-|L\cap (T_0\cup T_1)|$ исходя из теории множеств. Из определения линейной функции следует, что $|L|=2^{n+1}$. Далее нам необходимо найти

 $|L \cap T_0 \cup L \cap T_1|$ (раскрыл скобки). Также применим формулу Грассмана: $|L \cap T_0 \cup L \cap T_1| = |L \cap T_1| + |L \cap T_0| - |L \cap T_1 \cap L \cap T_0|$. Исходя из того, что один класс, сохраняющий константу, занимает одно место, следует, что это множество мы можем записать как

$$|L\cap (T_0\cup T_1)|=2^n+2^n-2^{n-1}=3\cdot 2^{n-1}\Rightarrow A=|L|-|L\cap (T_0\cup T_1)|=2^{n+1}-3\cdot 2^{n-1}=2^{n-1}$$

Ответ: 2^{n-1} .

(c) $A = (S \cap T_0) \setminus T_1$

Здесь используется всё то же, что было описано выше.

$$|(S\cap T_0)\backslash T_1|=|S\cap T_0|-|S\cap T_0\cap T_1|=2^{2^{n-1}-1}-2^{2^{n-1}-2}=2^{2^{n-1}-2}$$
 Otbet: $2^{2^{n-1}-2}$

11. По вектору значений $\tilde{\alpha}_f$ выяснить, является ли функция f монотонной.

$$\tilde{\alpha}_f = (01100110)$$

Решение:

Метод решения следующий: мы разбиваем функцию пополам, затем сравниваем обе половины. Если левая половина не превосходит правую на всех шагах, то функция является монотонной. (01100110) \Rightarrow

$$(0110) \le (0110) \Rightarrow (01) \le (10) \Rightarrow$$
 для правой части $(1) \not \le (0)$.

Ответ: Функция не является монотонной.

12. Построить сокращенную д.н.ф. для функции f, заданной вектором своих значений:

$$\tilde{\alpha}_f = (00101111)$$

Решение:

Построим таблицу истинности:

x	y	z	$\int f$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Выпишем множество наборов, на которых данная функция обращается в 1: $N_f = \{010, 100, 101, 110, 111\}.$

Запишем СДНФ данной булевой функции: $\bar{x}y\bar{z}\lor x\bar{y}\bar{z}\lor x\bar{y}z\lor xy\bar{z}\lor xyz$ Построим карту Карно для СДНФ:

x/yz	00	01	11	10
0				+
1	+	+	+	+

Отсюда следует: $\bar xy\bar z\wedge xy\bar z\vee x\bar y\bar z\wedge x\bar y\bar z\wedge xyz\wedge xy\bar z$

Далее сокращаем и получаем минимизированную ДНФ: $x\vee y\bar{z}$

Ответ: $x \vee y\bar{z}$