

Nemko Test Report:	10242736_TRF_PT24_RSS-133
Applicant:	Nokia Siemens Networks 6000 Connection Drive Irving, TX 75039 USA
Equipment Under Test: (E.U.T.)	FXFC
FCC ID:	VBNFXFC-01
IC ID:	661W-FXFC
In Accordance With:	CFR 47, Part 24, Subpart E and Industry Canada RSS-133, Issue 6 Personal Communication Services
Tested By:	Nemko USA, Inc. 802 N. Kealy Lewisville, TX 75057-3136
TESTED BY: David Light, Senio	DATE: 23 July 2013 or Wireless Engineer
APPROVED BY: Tom Tidwell, Revi	DATE: 31July 2013 ewer
1	Number of Pages: 71

CFR 47, PART 24, SUBPART E and Industry Canada RSS-133, Issue 6 Personal Communication Services

PROJECT NO.: 10242736_TRF_PT24_RSS-133

EQUIPMENT: FXFC

Table of Contents

Report revi	sion record	2
Section 1.	Summary of Test Results	3
Section 2.	General Equipment Specification	5
Section 3.	RF Power Output	6
Section 4.	Occupied Bandwidth	8
Section 5.	Spurious Emissions at Antenna Terminals	. 15
Section 6.	Field Strength of Spurious	. 58
Section 7.	Frequency Stability	. 59
Section 8.	Test Equipment List	. 61
ANNEX A -	- TEST DETAILS	. 62
ANNEX B -	- TEST DIAGRAMS	. 68

Report revision record

Rev.	Comments	Date
0	Initial release	31-JUL-2013

CFR 47, PART 24, SUBPART E and Industry Canada RSS-133, Issue 6

Personal Communication Services

EQUIPMENT: FXFC PROJECT NO.: 10242736_TRF_PT24_RSS-133

Section 1.	Summary of	Test Results

Manufacturer: Nokia Siemens Networks

Model No.: FXFC

Serial No.: L9132600649

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 24, Subpart E and RSS-133, Issue 6.

\boxtimes	New Submission	\boxtimes	Production Unit
	Class II Permissive Change		Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

Nemko USA, Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety, for use by the company's employees only.

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government. Nemko USA, Inc. is a NVLAP accredited laboratory.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA, Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

CFR 47, PART 24, SUBPART E and Industry Canada RSS-133, Issue 6

Personal Communication Services

EQUIPMENT: FXFC PROJECT NO.: 10242736_TRF_PT24_RSS-133

Summary Of Test Data

NAME OF TEST	PARA. NO.	SPEC.	RESULT
RF Power Output	24.232 / 6.4	1640W	Complies
Occupied Bandwidth	24.238 / 6.5	Not defined	Complies
Spurious Emissions at Antenna Terminals	24.238(a) / 6.5	-13 dBm	Complies
Field Strength of Spurious Emissions	24.238(a) / 6.5	-13 dBm E.I.R.P.	Complies
Frequency Stability	24.235 / 6.3	± 1 ppm	Complies

Footnotes: None

CFR 47, PART 24, SUBPART E and Industry Canada RSS-133, Issue 6

Personal Communication Services

EQUIPMENT: FXFC PROJECT NO.: 10242736_TRF_PT24_RSS-133

Section 2. General Equipment Specification

Supply Voltage Input:	-48 Vdc nominal		
Frequency Band:	1930 to 1990 MHz		
Type of Modulation and Designator:	GMSK 8PSK QPSK 300KGXW 300KG7W 300KD7W		
Maximum No. of Carriers:	QPSK 16QAM 64QAM 5M00D7W 5M00D7W 5M00D7W 6		
Output Impedance:	50 ohms		
RF Output (Rated):	80 W		
Band Selection:	Software Duplexer Fullband		

System Description

The FXFC is an 1900 MHz multi-standard multicarrier radio module that consists of three individual transceivers designed to support GSM/EDGE, WCDMA and LTE in dedicated or concurrent mode. Each module supports up to six GSM/EDGE carriers in GSM/EDGE dedicated mode, upto four WCDMA carriers in WCDMA dedicated mode and up to four 5 MHz LTE carriers in LTE dedicated mode with one radio branch. In concurrent mode, a combination of all three radio technologies is supported with a single radio branch. Each module is capable to serve three radio branches with multiradio multicarrier radios of up to 80 Watts output power per branch. The LTE modulation and concurrent mode operation were not tested under this effort.

The transmitter test setup for GSM/EDGE dedicated mode provided GMSK ,QPSK and 8PSK modulation types for both single and multicarrier operation. The transmitter WCDMA dedicated mode provided QPSK, 16QAM and 64QAM modulation types for both single and multicarrier operation.

CFR 47, PART 24, SUBPART E and Industry Canada RSS-133, Issue 6

Personal Communication Services

EQUIPMENT: FXFC PROJECT NO.: 10242736_TRF_PT24_RSS-133

Section 3. RF Power Output

NAME OF TEST: RF Power Output PARA. NO.: 24.232 / 6.4

TESTED BY: David Light DATE: 22 July 2013

Test Results: Complies.

Measurement Data: Refer to table on next page.

Equipment Used: 1767-1082-1054-1065-1472

Measurement Uncertainty: +/- 1.7 dB

Temperature: 25 °C

Relative Humidity: 48 %

Spectrum analyzer settings:

Channel power measurement function is used to measure power with rf bandwidths above 10 MHz.

The RBW is set to >20 dB bandwidth of the measured rf signal. RMS detector

Personal Communication Services PROJECT NO.: 10242736_TRF_PT24_RSS-133

EQUIPMENT: FXFC

Test Data – RF Power Output

Modulation Type	Frequency	Measured Output Power	Measured Output Power		
	(MHz)	(dBm)	(W)		
	GSM Carriers				
GMSK	1930.2	36.5	4.5		
GMSK	1930.4	48.5	70.8		
GMSK	1960.0	48.7	74.1		
GMSK	1989.6	48.1	64.6		
GMSK	1989.8	35.9	3.9		
QPSK	1930.2	35.7	3.7		
QPSK	1930.4	48.4	69.2		
QPSK	1960.0	48.3	67.6		
QPSK	1989.6	47.9	61.6		
QPSK	1989.8	36.9	4.9		
8PSK	1930.2	36.1	4.1		
8PSK	1930.4	48.6	72.4		
8PSK	1960.0	48.7	74.1		
8PSK	1989.6	48.4	69.2		
8PSK	1989.8	35.8	3.8		
	Wide Ba	nd Carriers			
QPSK	1932.5	42.5	17.8		
QPSK	1932.7	48.8	75.9		
QPSK	1960.0	49.0	79.4		
QPSK	1987.5	48.3	67.6		
QPSK	1987.3	41.9	15.5		
16QAM	1932.5	42.7	18.6		
16QAM	1932.7	48.6	72.4		
16QAM	1960.0	49.0	79.4		
16QAM	1987.5	48.3	67.6		
16QAM	1987.3	42.3	17.0		
64QAM	1932.5	42.7	18.6		
64QAM	1932.7	48.6	72.4		
64QAM	1960.0	49.0	79.4		
64QAM	1987.5	48.3	67.6		
64QAM	1987.3	42.3	17.0		

Note: The power needs to be lowered at the lowest and highest frequencies per above to ensure compliance at the band edges.

The FXFC is compliant at the other frequencies operating at full power.

Supply voltage was varied +/- 15%. No fluctuation in output power resulted.

CFR 47, PART 24, SUBPART E and Industry Canada RSS-133, Issue 6

Personal Communication Services

EQUIPMENT: FXFC PROJECT NO.: 10242736_TRF_PT24_RSS-133

Section 4. Occupied Bandwidth

NAME OF TEST: Occupied Bandwidth PARA. NO.: 24.238 / 6.5

TESTED BY: David Light DATE: 22 July 2013

Test Results: Complies.

Test Data: See attached plot(s).

Equipment Used: 1067-1082-1054-1065-1472

Measurement Uncertainty: +/- 1.6 dB

Temperature: 25 °C

Relative Humidity: 48 %

Test Data - Occupied Bandwidth

99% Bandwidth QPSK

Date: 22.JUL.2013 09:13:00

PROJECT NO.: 10242736_TRF_PT24_RSS-133

Test Data - Occupied Bandwidth

99% Bandwidth 16QAM

Date: 22.JUL.2013 09:16:34

Test Data - Occupied Bandwidth

99% Bandwidth 64QAM

Test Data - Occupied Bandwidth

99% Occupied Bandwidth GMSK

Date:

22.JUL.2013 12:13:59

Test Data - Occupied Bandwidth

22.JUL.2013 12:13:14

Date:

99% Occupied Bandwidth QPSK

Test Data - Occupied Bandwidth

99% Occupied Bandwidth 8PSK

CFR 47, PART 24, SUBPART E and Industry Canada RSS-133, Issue 6

Personal Communication Services

EQUIPMENT: FXFC PROJECT NO.: 10242736_TRF_PT24_RSS-133

Section 5. Spurious Emissions at Antenna Terminals

NAME OF TEST: Spurious Emissions @ Antenna PARA. NO.: 24.238 / 6.5

Terminals

TESTED BY: David Light DATE: 22 July 2013

Test Results: Complies.

Test Data: Refer to plots below

Equipment Used: 1767-1082-1054-1065-1472

Measurement Uncertainty: +/- 1.7 dB

Temperature: 25 °C

Relative Humidity: 48 %

Test Data – Spurious Emissions

Date: 22.JUL.2013 07:12:58

Spurious Emissions GMSK

Test Data – Spurious Emissions

Lower Band Edge Lowest Channel GMSK 36.5 dBm Output

Test Data – Spurious Emissions

Lower Band Edge 2nd Channel GMSK 48.5 dBm Output

Date: 22.JUL.2013 12:24:24

PROJECT NO.: 10242736_TRF_PT24_RSS-133

Test Data – Spurious Emissions

Upper Band Edge Highest Channel GMSK 35.9 dBm

PROJECT NO.: 10242736_TRF_PT24_RSS-133

Test Data – Spurious Emissions

Upper Band Edge GMSK 2nd Highest Channel 48.1 dBm Output

PROJECT NO.: 10242736_TRF_PT24_RSS-133

Test Data – Spurious Emissions

Lower Band Edge Intermodulation 80 Watts composite power GMSK

22.JUL.2013 13:08:49

Date:

PROJECT NO.: 10242736_TRF_PT24_RSS-133

Test Data – Spurious Emissions

Upper Band Edge Intermodulation 80 Watts composite power GMSK

Personal Communication Services PROJECT NO.: 10242736_TRF_PT24_RSS-133

EQUIPMENT: FXFC

Test Data – Spurious Emissions

Spurious Emissions QPSK

Date: 22.JUL.2013 07:15:56

PROJECT NO.: 10242736_TRF_PT24_RSS-133

Test Data – Spurious Emissions

Lower Band Edge QPSK Lowest Channel 35.7 dBm

Date: 22.JUL.2013 12:33:16

Test Data – Spurious Emissions

Lower Band Edge QPSK 2nd Channel 48.4 dBm

Test Data – Spurious Emissions

Upper Band Edge QPSK Highest Channel 36.9 dBm output

PROJECT NO.: 10242736_TRF_PT24_RSS-133

Test Data – Spurious Emissions

Upper Band Edge QPSK 2nd Highest Channel 47.9 dBm Output

PROJECT NO.: 10242736_TRF_PT24_RSS-133

Test Data – Spurious Emissions

Lower Band Edge Intermodulation 80 Watts composite power QPSK

PROJECT NO.: 10242736_TRF_PT24_RSS-133

Test Data – Spurious Emissions

Upper Band Edge Intermodulation 80 Watts composite power QPSK

Test Data – Spurious Emissions

Date: 22.JUL.2013 07:17:00

Spurious Emissions 8PSK

Test Data – Spurious Emissions

Lower Band Edge 8PSK 36.1 dBm Lowest Channel

PROJECT NO.: 10242736_TRF_PT24_RSS-133

Test Data – Spurious Emissions

Lower Band Edge 8PSK 2nd Channel 48.6 dBm

Date: 22.JUL.2013 12:45:11

Test Data – Spurious Emissions

Upper Band Edge 8PSK Highest Channel 35.8 dBm Output

PROJECT NO.: 10242736_TRF_PT24_RSS-133

Test Data – Spurious Emissions

Upper Band Edge 8PSK 2nd Highest Channel 48.4 dBm

PROJECT NO.: 10242736_TRF_PT24_RSS-133

Test Data – Spurious Emissions

Lower Band Edge Intermodulation 80 Watts composite power 8PSK

PROJECT NO.: 10242736_TRF_PT24_RSS-133

Test Data – Spurious Emissions

Upper Band Edge Intermodulation 80 Watts composite power 8PSK

EQUIPMENT: FXFC PROJECT NO.: 10242736_TRF_PT24_RSS-133

Test Data – Spurious Emissions

Spurious Emissions QPSK

PROJECT NO.: 10242736_TRF_PT24_RSS-133

EQUIPMENT: FXFC

Test Data – Spurious Emissions

Lower Band Edge QPSK +42.5 dBm Output (Lowest Channel)

EQUIPMENT: FXFC

PROJECT NO.: 10242736_TRF_PT24_RSS-133

Test Data – Spurious Emissions

Lower Band Edge QPSK Second Lowest Channel Full Power

Personal Communication Services

EQUIPMENT: FXFC PROJECT NO.: 10242736_TRF_PT24_RSS-133

Test Data – Spurious Emissions

Upper Band Edge QPSK

+41.9 dBm Output (6 dB Attenuator @ Output)

22.JUL.2013 09:09:48

Date:

EQUIPMENT: FXFC

PROJECT NO.: 10242736_TRF_PT24_RSS-133

Test Data – Spurious Emissions

Upper Band Edge QPSK Second to Highest Channel Full Power

Date: 22.JUL.2013 09:41:50

PROJECT NO.: 10242736_TRF_PT24_RSS-133

EQUIPMENT: FXFC

Test Data – Spurious Emissions

Lower Band Edge Intermodulation QPSK 40 Watts per carrier

Personal Communication Services PROJECT NO.: 10242736_TRF_PT24_RSS-133

EQUIPMENT: FXFC

Test Data – Spurious Emissions

Upper Band Edge Intermodulation Full Power QPSK

EQUIPMENT: FXFC PROJECT NO.: 10242736_TRF_PT24_RSS-133

Test Data – Spurious Emissions

Spurious Emissions 16QAM

Date: 22.JUL.2013 08:46:12

PROJECT NO.: 10242736_TRF_PT24_RSS-133

EQUIPMENT: FXFC

Test Data – Spurious Emissions

Lower Band Edge 16QAM 42.7 dBm Output

Date:

EQUIPMENT: FXFC

PROJECT NO.: 10242736_TRF_PT24_RSS-133

Test Data – Spurious Emissions

Lower Band Edge 16QAM Second to Lowest Channel Full Power

EQUIPMENT: FXFC

PROJECT NO.: 10242736_TRF_PT24_RSS-133

Test Data – Spurious Emissions

Upper Band Edge 16QAM 42.3 dBm Output

EQUIPMENT: FXFC PROJECT NO.: 10242736_TRF_PT24_RSS-133

Test Data – Spurious Emissions

Upper Band Edge 16QAM Second to Highest Channel Full Power

Date: 22.JUL.2013 09:44:46

Personal Communication Services PROJECT NO.: 10242736_TRF_PT24_RSS-133

EQUIPMENT: FXFC

Test Data – Spurious Emissions

Lower Band Edge Intermodulation Full Power 16QAM

Personal Communication Services PROJECT NO.: 10242736_TRF_PT24_RSS-133

EQUIPMENT: FXFC

Test Data – Spurious Emissions

Upper Band Edge Intermodulation Full Power 16QAM

EQUIPMENT: FXFC

PROJECT NO.: 10242736_TRF_PT24_RSS-133

Spurious Emissions 64QAM

22.JUL.2013 08:48:01

Date:

Personal Communication Services PROJECT NO.: 10242736_TRF_PT24_RSS-133

EQUIPMENT: FXFC

Test Data – Spurious Emissions

Lower Band Edge 42.7 dBm Output 64QAM

EQUIPMENT: FXFC PROJECT NO.: 10242736_TRF_PT24_RSS-133

Test Data – Spurious Emissions

Lower Band Edge 64QAM Second Lowest Channel Full Power

Personal Communication Services PROJECT NO.: 10242736_TRF_PT24_RSS-133

EQUIPMENT: FXFC

Test Data – Spurious Emissions

Upper Band Edge 42.3 dBm Output 64QAM

EQUIPMENT: FXFC PROJECT NO.: 10242736_TRF_PT24_RSS-133

Test Data – Spurious Emissions

Upper Band Edge 64QAM Second Highest Channel Full Power

PROJECT NO.: 10242736_TRF_PT24_RSS-133

EQUIPMENT: FXFC

Test Data – Spurious Emissions

Lower Band Edge Intermodulation 80 watts composite 64QAM

EQUIPMENT: FXFC

PROJECT NO.: 10242736_TRF_PT24_RSS-133

Test Data – Spurious Emissions

Upper Band Edge Intermodulation 80 watts composite 64QAM

CFR 47, PART 24, SUBPART E and Industry Canada RSS-133, Issue 6

Personal Communication Services

EQUIPMENT: FXFC PROJECT NO.: 10242736_TRF_PT24_RSS-133

Section 6. Field Strength of Spurious

NAME OF TEST: Field Strength of Spurious Emissions PARA. NO.: 24.238 / 6.5

TESTED BY: David Light DATE: 23 July 2013

Test Results: Complies.

Test Data: The spectrum was searched from 30 MHz to the tenth

harmonic of the carrier. There were no emissions detected above the noise floor which was at least

20 dB below the specification limit.

RBW/VBW=1 MHz Detector = Peak Sweep Time = Auto

.

Equipment Used: 1767-1783-1016-993-1480-791

Measurement Uncertainty: +/- 1.7 dB

Temperature: 24 °C

Relative Humidity: 45 %

CFR 47, PART 24, SUBPART E and Industry Canada RSS-133, Issue 6

Personal Communication Services

EQUIPMENT: FXFC PROJECT NO.: 10242736_TRF_PT24_RSS-133

Section 7. Frequency Stability

NAME OF TEST: Frequency Stability PARA. NO.: 22.355/5.3

TESTED BY: David Light DATE: 23 July 2013

Test Results: Complies

Measurement Data: Standard Test Frequency:1960.070 MHz

Standard Test Voltage: -48 Vdc

Equipment Used: 1767-1082-1054-1065-1472

Measurement Uncertainty: +/- 1.7 dB

Temperature: 24 °C

Relative Humidity: 45 %

CFR 47, PART 24, SUBPART E and Industry Canada RSS-133, Issue 6 Personal Communication Services

EQUIPMENT: FXFC PROJECT NO.: 10242736_TRF_PT24_RSS-133

Test Data – Frequency Stability

Measurement Uncertainty:	1x10 ⁻⁷ ppm	Standard Test Frequency			1960.070000		MHz
Temp (°C)	Measured Frequency (MHz)		Test Voltage	Frequency Error (Hz)	Limit (+/-Hz)	Error (ppm)	Comment
20	1960.070000		-48.0	0	1960.1	0.00	
20	1960.069240		-40.2	-760	1960.1	-0.39	
20	1960.070000		-55.2	0	1960.1	0.00	
50	1960.069000		-48.0	-1000	1960.1	-0.51	
40	1960.069573		-48.0	-427	1960.1	-0.22	
30	1960.069410		-48.0	-590	1960.1	-0.30	
10	1960.069000		-48.0	-1000	1960.1	-0.51	
0	1960.069000		-48.0	-1000	1960.1	-0.51	
-10	1960.070020		-48.0	20	1960.1	0.01	
-20	1960.069000		-48.0	-1000	1960.1	-0.51	
-30	1960.069000		-48.0	-1000	1960.1	-0.51	
Notes:				_	_		

EQUIPMENT: FXFC

CFR 47, PART 24, SUBPART E and Industry Canada RSS-133, Issue 6 Personal Communication Services

PROJECT NO.: 10242736_TRF_PT24_RSS-133

Section 8. Test Equipment List

Asset Tag	Description	Manufacturer	Model	Serial #	Last Cal	Next Cal
993	Antenna, Horn	A.H. Systems	SAS-200/571	162	22-Sep-2011	22-Sep-2013
1016	Preamplifier	Hewlett Packard	8449A	2749A00159	23-Jul-2012	23-Jul-2013
1054	Directional Coupler	Narda	3020A	34366	N/R	
1065	Attenuator	Narda	776B-10		N/R	
1082	Cable, 2m	Astrolab	32027-2- 29094-72TC		N/R	
1472	Attenuator,	Omni Spectra	20600-20db		N/R	
1480	Antenna, Bilog	Schaffner- Chase	CBL6111C	2572	25-Feb-2013	25-Feb-2014
1767	Receiver,	Rohde & Schwartz	ESIB26	837491/0002	19-Dec-2012	19-Dec-2013
1783	Cable Assy, 3m Chamber	Nemko	Chamber		26-Sep-2012	26-Sep-2013
791	Pre Amplifier	Nemko, USA	CRA69 321003 9605	119	19-Oct-2012	19-Oct-2013

CFR 47, PART 24, SUBPART E and Industry Canada RSS-133, Issue 6
Personal Communication Services
PROJECT NO.: 10242736_TRF_PT24_RSS-133

EQUIPMENT: FXFC PR

ANNEX A - TEST DETAILS

EQUIPMENT: FXFC

CFR 47, PART 24, SUBPART E and Industry Canada RSS-133, Issue 6 Personal Communication Services

PROJECT NO.: 10242736_TRF_PT24_RSS-133

NAME OF TEST: RF Power Output PARA. NO.: 2.1046

Minimum Standard: Para. No.24.232. Base stations are limited to 1640 watts

peak E.I.R.P. with an antenna height up to 300 meters HAAT. In no case may the peak output power of a base

station transmitter exceed 100 watts.

Method Of Measurement:

<u>Detachable Antenna:</u>

The peak power at antenna terminals is measured using an in-line peak power meter or a spectrum analyzer.

CFR 47, PART 24, SUBPART E and Industry Canada RSS-133, Issue 6 Personal Communication Services

EQUIPMENT: FXFC PROJECT NO.: 10242736_TRF_PT24_RSS-133

NAME OF TEST: Occupied Bandwidth PARA. NO.: 2.1049

Minimum Standard: Para. No. 24.238(b). The emission bandwidth is defined as

the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at

least 26 dB.

CFR 47, PART 24, SUBPART E and Industry Canada RSS-133, Issue 6

Personal Communication Services

EQUIPMENT: FXFC PROJECT NO.: 10242736_TRF_PT24_RSS-133

NAME OF TEST: Spurious Emission at Antenna PARA. NO.: 2.1051

Terminals

Minimum Standard: Para. No.24.238(a). On any frequency outside a

licensee's

frequency block, the power of any emission shall be attenuated below the transmitter power by at least 43 + 10

log (P) dB.

Method Of Measurement:

Spectrum analyzer settings:

CDMA Per ANSI/J-STD-014 GSM Per ANSI/J-STD-010

RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 30 kHz (< 1 MHz from Band Edge) RBW: 3 kHz (< 1 MHz from Band Edge)

 $\begin{array}{ll} \mathsf{VBW:} \; \geq \mathsf{RBW} & \mathsf{VBW:} \; \geq \mathsf{RBW} \\ \mathsf{Sweep:} \; \mathsf{Auto} & \mathsf{Sweep:} \; \mathsf{Auto} \end{array}$

Video Avg: 6 Sweeps Video Avg: Disabled

NADC Per IS-136

RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 1 kHz (< 1 MHz from Band Edge)

VBW: ≥ RBW Sweep: Auto

Video Avg: Disabled

To demonstrate compliance at band edges the frequency of the input signal is set to the lowest and highest assigned channel and the center frequency of the spectrum analyzer is set to the upper and lower edges of the appropriate frequency block.

CFR 47, PART 24, SUBPART E and Industry Canada RSS-133, Issue 6 Personal Communication Services

EQUIPMENT: FXFC PROJECT NO.: 10242736_TRF_PT24_RSS-133

NAME OF TEST: Field Strength of Spurious Radiation PARA. NO.: 2.1053

Minimum Standard: Para. No.24.238(a). On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power by at least 43 + 10 log (P) dB.

Test Method: Testing was performed using the reference antenna substitution method.

CFR 47, PART 24, SUBPART E and Industry Canada RSS-133, Issue 6 Personal Communication Services

EQUIPMENT: FXFC PROJECT NO.: 10242736_TRF_PT24_RSS-133

NAME OF TEST: Frequency Stability PARA. NO.: 2.1055

Minimum Standard: Para. No. 24.235. The frequency stability shall be sufficient

to ensure that the fundamental emission stays within the

authorized frequency block.

Method Of Measurement:

Frequency Stability With Voltage Variation

The E.U.T. is placed in an environmental chamber and allowed to stabilize at +20 degrees Celsius for at least 15 minutes. With the voltage input to the E.U.T. set to 85% S.T.V., the frequency is measured in 30 second intervals for a period of 5 minutes. This procedure is repeated at 100% S.T.V. and 115% S.T.V.

Frequency Stability With Temperature Variation

The input voltage to the E.U.T. is set to S.T.V. and the temperature of the environmental chamber is varied in 10 degree steps from -30 degrees C to +50 degrees C. The E.U.T. is allowed to stabilize at each temperature and the frequency is measured in 30 second intervals for a period of 5 minutes.

CFR 47, PART 24, SUBPART E and Industry Canada RSS-133, Issue 6 Personal Communication Services

EQUIPMENT: FXFC PROJECT NO.: 10242736_TRF_PT24_RSS-133

ANNEX B - TEST DIAGRAMS

CFR 47, PART 24, SUBPART E and Industry Canada RSS-133, Issue 6

Personal Communication Services PROJECT NO.: 10242736_TRF_PT24_RSS-133

EQUIPMENT: FXFC

R.F. Power Output

Occupied Bandwidth

PROJECT NO.: 10242736_TRF_PT24_RSS-133

EQUIPMENT: FXFC

Spurious Emissions at Antenna Terminals

Field Strength of Spurious Radiation

EQUIPMENT: FXFC

CFR 47, PART 24, SUBPART E and Industry Canada RSS-133, Issue 6 Personal Communication Services

PROJECT NO.: 10242736_TRF_PT24_RSS-133

Frequency Stability

