25 Центр масс

В отличие от материальной точки, одно лишь равенство нулю векторной суммы всех сил, приложенных к твердому телу, не является единственным необходимым условием равновесия тела. Этот факт иллюстрируется примером, в котором длинный жесткий стержень лежит на горизонтальной гладкой поверхности и находится под действием нескольких сил (рис. 1, вид сверху).

Рис. 1. Стержень не остается в покое

K стержню C приложены две равные по величине противоположно направленные силы F, лежащие в плоскости рисунка, причем линии действия сил не совпадают ($napa\ cun$). Силы тяжести и реакции опоры компенсируют друг друга (на рисунке не показаны).

Опыт показывает, что под действием указанных сил стержень на рис. 1 покоиться не будет — он начнет вращаться, хотя равнодействующая всех сил равна нулю. За достаточно малый промежуток времени, повернувшись на незначительный угол, тело приобретает угловую скорость ω . Однако одна точка остается неподвижной в данном случае (как будто только для этой точки результирующая сила равна нулю); именно вокруг нее и происходит вращение. Эта точка называется центром масс.

Центр масс — это точка, характеризующая распределение масс в теле. (Ведь твердое тело можно рассматривать как систему материальных точек, расстояния между которыми не меняются со временем.)

Пусть тело состоит из материальных точек массами m_1, m_2, \ldots , имеющих координаты x_1, x_2, \ldots (по другим осям аналогично). Координаты центра масс тогда определяются по формулам:

$$x_{\text{ILM}} = \frac{m_1 x_1 + m_2 x_2 + \dots}{m_1 + m_2 + \dots},\tag{1}$$

аналогично для координат $y_{\text{цм}}$ и $z_{\text{цм}}$.

Y тела простой формы центр масс совпадает с центром симметрии. Так, считая стержень на рис. 1 тонким и однородным, можно утверждать, что центр масс стержня находится в его середине (тело на рис. 1 вращается как раз вокруг этой точки).

Теорема о движении центра масс. Центр масс тела движется так же, как двигалась бы точка с массой, равной массе тела, под действием внешних сил, приложенных к телу¹.

В однородном поле тяжести ($\vec{g}=\mathrm{const}$) центр масс тела совпадает с его **центром тяжести** — то есть точкой, к которой приложена результирующая сил тяжести, действующих на каждый элемент тела.

¹Внешние силы — это силы, действующие на части тела со стороны других объектов, с которыми взаимодействует это тело.