

110-2-one-shot-facial-2020-7-27.pptx

CTI One Corporation

Date: July 27, 2020

Project Lead: Harry Li, Ph.D.

Team Member:

FaceNet from Google

A Unified Embedding for Face Recognition and Clustering

Florian Schroff Dmitry Kalenichenko James Philbin fschroff@google.com dkalenichenko@google.com jphilbin@google.com Google Inc.

FaceNet learns the mapping from the images and creates embeddings rather than using any output layer for recognition

L2, e.g, the Euclidean norm, a positive distance, calculated as the square root of the sum of the squared vector values.

Namely, we strive for an embedding f(x), from an image x into a feature space \mathbb{R}^d , such that the squared distance between all faces, independent of imaging conditions, of the same identity is small, whereas the squared distance between a pair of face images from different identities is large.

Triplet Loss Function

The objective:

$$||f(x_i^a) - f(x_i^p)||_2^2 + \alpha < ||f(x_i^a) - f(x_i^n)||_2^2 \qquad \dots (1)$$

$$\forall (f(x_i^a), f(x_i^p), f(x_i^n)) \in \mathcal{T} \qquad \dots (2)$$

The loss function to be minimized:

$$\sum_{i}^{N} \left[\| f(x_i^a) - f(x_i^p) \|_2^2 - \| f(x_i^a) - f(x_i^n) \|_2^2 + \alpha \right]_{+} \dots (3)$$

CNN1 Architecture

Table 1. NN1.

This table show the structure of our

Zeiler&Fergus [22] based model with 1×1 convolutions inspired by [9].

The input and output sizes are described in rows × cols × #f ilters.

The kernel is specified as

rows \times cols, stride and the maxout [6] pooling size as p = 2.

One way to reduce the training time is to normalize the activities of the neurons.

https://arxiv.org/abs/1607.06450

layer	size-in	size-out	kernel	param	FLPS
conv1	220×220×3	110×110×64	$7 \times 7 \times 3, 2$	9K	115M
pool1	$110 \times 110 \times 64$	$55 \times 55 \times 64$	$3\times3\times64,2$	0	113111
morm1	$55 \times 55 \times 64$	$55\times55\times64$	3/3/04,2	0	
conv2a	$55 \times 55 \times 64$	$55 \times 55 \times 64$	$1\times1\times64, 1$	4K	13M
conv2	$55 \times 55 \times 64$	$55 \times 55 \times 192$,	111K	335M
			$3\times3\times64,1$		333WI
morm2	$55 \times 55 \times 192$	$55 \times 55 \times 192$	001000	0	
pool2	$55 \times 55 \times 192$	28×28×192	$3 \times 3 \times 192, 2$	0	202.5
conv3a	$28 \times 28 \times 192$	$28 \times 28 \times 192$	$1 \times 1 \times 192, 1$	37K	29M
conv3	$28 \times 28 \times 192$	$28 \times 28 \times 384$	$3\times3\times192, 1$	664K	521M
pool3	$28 \times 28 \times 384$	$14 \times 14 \times 384$	$3\times3\times384, 2$	0	
conv4a	$14 \times 14 \times 384$	$14 \times 14 \times 384$	$1 \times 1 \times 384, 1$	148K	29M
conv4	$14 \times 14 \times 384$	$14 \times 14 \times 256$	$3\times3\times384, 1$	885K	173M
conv5a	$14 \times 14 \times 256$	$14 \times 14 \times 256$	$1 \times 1 \times 256, 1$	66K	13M
conv5	$14 \times 14 \times 256$	$14 \times 14 \times 256$	$3\times3\times256, 1$	590K	116M
conv6a	$14 \times 14 \times 256$	$14 \times 14 \times 256$	$1 \times 1 \times 256, 1$	66K	13M
conv6	$14 \times 14 \times 256$	$14 \times 14 \times 256$	$3 \times 3 \times 256, 1$	590K	116M
pool4	$14 \times 14 \times 256$	$7 \times 7 \times 256$	$3 \times 3 \times 256, 2$	0	
concat	$7 \times 7 \times 256$	$7 \times 7 \times 256$		0	
fc1	$7 \times 7 \times 256$	$1\times32\times128$	maxout p=2	103M	103M
fc2	$1 \times 32 \times 128$	$1\times32\times128$	maxout p=2	34M	34M
fc7128	$1 \times 32 \times 128$	$1\times1\times128$	•	524K	0.5M
L2	$1\times1\times128$	$1\times1\times128$		0	
total				140M	1.6B

CNN2 Architecture

type	output	depth	#1×1	#3×3 #3×3	#5×5	#5×5	pool	params	FLOPS	
цурс	size			reduce	#3/3	reduce	#5/5	proj (p)	Params	TLOIS
$conv1 (7 \times 7 \times 3, 2)$	112×112×64	1							9K	119M
max pool + norm	$56 \times 56 \times 64$	0						$m3\times3,2$		
inception (2)	$56 \times 56 \times 192$	2		64	192				115K	360M
norm + max pool	$28 \times 28 \times 192$	0						$m3\times3,2$		
inception (3a)	$28 \times 28 \times 256$	2	64	96	128	16	32	m, 32p	164K	128M
inception (3b)	$28 \times 28 \times 320$	2	64	96	128	32	64	L_2 , 64p	228K	179M
inception (3c)	$14 \times 14 \times 640$	2	0	128	256,2	32	64,2	m 3×3,2	398K	108M
inception (4a)	$14 \times 14 \times 640$	2	256	96	192	32	64	L_2 , 128p	545K	107M
inception (4b)	$14 \times 14 \times 640$	2	224	112	224	32	64	L_2 , 128p	595K	117M
inception (4c)	$14 \times 14 \times 640$	2	192	128	256	32	64	L_2 , 128p	654K	128M
inception (4d)	$14 \times 14 \times 640$	2	160	144	288	32	64	L_2 , 128p	722K	142M
inception (4e)	$7 \times 7 \times 1024$	2	0	160	256,2	64	128,2	m 3×3,2	717K	56M
inception (5a)	$7 \times 7 \times 1024$	2	384	192	384	48	128	L_2 , 128p	1.6M	78M
inception (5b)	$7 \times 7 \times 1024$	2	384	192	384	48	128	m, 128p	1.6M	78M
avg pool	$1\times1\times1024$	0								
fully conn	$1\times1\times128$	1							131K	0.1M
L2 normalization	$1\times1\times128$	0								
total									7.5M	1.6B

CNN2 Architecture

Details of the NN2 Inception architecture. This model uses L 2 pooling instead of max pooling (m), where specified. The pooling is always 3×3 (aside from the final average pooling) and in parallel to the convolutional modules inside each Inception module. If there is a dimensionality reduction after the pooling it is denoted with p. 1×1, 3×3, and 5×5 pooling are then concatenated to get the final output.

"(Inception Layer) is a combination of all those layers (namely, 1×1 Convolutional layer, 3×3 Convolutional layer, 5×5 Convolutional layer) with their output filter banks concatenated into a single output vector forming the input of the next stage."

https://www.analyticsvidhya.com/blog/ 2018/10/understanding-inceptionnetwork-from-scratch/

