$Q1.(a)$ C.I. $A \pm C \sqrt{1-\frac{n}{N}} \frac{d}{\sqrt{n}}$, $C \sim N(0,1)$
1.(a) (.[., /~+ c) [-7/ 57] 509+229+1(1+14+260) =181.4667
$\hat{S}^2 = \frac{\hat{S}^2 (Y_1 - \hat{U})^2}{ S } = 3162.838$
A 95% CI. is: 181.4667 1.96 \(1-\frac{15}{362} \) \(\sqrt{15} \)
3/0 C. I. 15, 181, 400, - 100, 1363 /15
= (153.6, 209.33)
We are 95% confident that the mean weight is in (1526, 209.33)
16) E = \frac{20}{2} = 10, C = 1.96 since we want 95% C.I., C~NO,U
$N = (\frac{E^2}{c_1^2} + \frac{1}{N})^{-1} = 91.03$
so we need at loast 92 chicks.
$proportion = \frac{92}{363} = 25.34\%$
$(c)(i)$ $(\cdot I.: \hat{\mathcal{U}}^{\pm} C \stackrel{\mathcal{C}}{\smile}, C \sim N(0, l))$
· · ·
A 95% C.I. is: 181,4667±1.96 J3162.838
= (153.0055, 209.9273)
We are 95% confident that the mean weight is in (150.322, 212.611)
(ii) E=10, 19/2=0.95 ⇒ we want 95% C.I., C=1.96, (~N10,1)
$n = \frac{c^2 6^2}{E^2} = \frac{1.96^2 \cdot 3162.838}{10^2} = 121,5036$
so we need at least 122 Chicks,
$2.\frac{19}{50} = 0.95 \implies$ want want a 95% C.T.
E = 0.05
Since N is not ∞
$\hat{\sigma}^{-2} = \hat{\tau}(\mathbf{r} - \hat{\mathbf{v}}) \leq \frac{1}{4}$
$n = (\frac{E^2}{(6)^2} + \frac{1}{N})^{-1}$, $C \sim N(0,1)$, $C = 1.96$
>(1.96, 4 + 1/200) -1
/(1.96° \(\frac{1}{4}\) \(\frac{1}{200}\)
= 364.1741
so we need at least 365 students.