Algebraic Methods in Combinatorics HS19 Exam Solutions

Problem 1. For any prime p, any graph G = (V, E) with average degree strictly larger than 2p - 2 and maximum degree at most 2p - 1 contains a p-regular subgraph.

Proof. The problem is a generalisation of Theorem 3.6 and the proof follows exactly along the lines of that theorem. Let n = |V|. Average degree condition implies $e(G) = \frac{1}{2} \sum_{v \in V(H)} d(v) > (p-1)n$ and the max degree condition $\Delta(G) \leq 2p-1$. Now, for each vertex $v \in V(G)$, we define the polynomial $p_v : \mathbb{Z}_p^{E(G)} \to \mathbb{Z}_p$ by $(x_e)_{e \in E(G)} \mapsto \sum_{e \ni v} x_e^{p-1}$. Since $\sum_{v \in V(G)} \deg p_v = (p-1)n$ and the number of variables is e(G) > (p-1)n, we may apply the Chevalley-Warning Theorem to conclude that the number of simultaneous solutions $(x_e)_{e \in E(G)}$ to all the p_v is divisible by p. There is a trivial solution given by $x_e = 0$ for all $e \in E(G)$, so there must exist another solution in which not all variables are 0.

Note that for any $x \in \mathbb{Z}_p$, $x^{p-1} = 1$ in \mathbb{Z}_p if and only if $x \neq 0$. Thus if $\sum_{e \in v} x_e^{p-1} = 0$ in \mathbb{Z}_p and $|\{e \ni v : x_e \neq 0\}| > 0$, then since $d(v) \leq 2p - 1$, we must have $|\{e \ni v : x_e \neq 0\}| = p$. It follows that the subgraph having edge set $\{e \in E(G) : x_e \neq 0\}$ is p-regular and nonempty.

Problem 2. Let $A \subseteq \mathbb{Z}_p$, with p prime and let $X = \{a+b : a, b \in A, a \neq b, ab \neq 2\}$. Show that $|X| \ge \min(2|A| - 5, p)$.

Proof. Given A, B, we define $X_{AB} = \{a + b : a \in A, b \in B, a \neq b, ab \neq 2\}$. We will show that $|X_{AB}| \geq \min(|A| + |B| - 4, p)$ for $A, B \neq \emptyset$ provided $|A| \neq |B|$. From this, we can solve the problem as follows: If |A| < 2, the statement is trivial. Otherwise, choose some arbitrary $a \in A$, let $B = A \setminus \{a\}$ and apply the above to obtain

$$|X_{AA}| \ge |X_{AB}| \ge \min(|A| + |B| - 4, p) = \min(2|A| - 5, p).$$

Suppose now that $A, B \neq \emptyset$ and $|A| \neq |B|$. If $|A| + |B| \geq p + 4$ then we may remove some vertices from A and/or B to obtain $A' \subseteq A, B' \subseteq B$ such that |A'| + |B'| = p + 4. So if we show the claim for A', B' we get $|X_{AB}| \geq |X_{A'B'}| \geq p$, as desired. So we may assume $|A| + |B| \leq p + 4$.

Suppose for the sake of contradiction that $|X_{AB}| \leq |A| + |B| - 5$. Then we may choose $C \supset X_{AB}$ such that |C| = |A| + |B| - 5. Now define the polynomial $f(x,y) = (xy-2)(x-y) \prod_{c \in C} (x+y-c)$ over \mathbb{Z}_p and observe that f = 0 on $A \times B$ and $\deg f = |C| + 3 = (|A| - 1) + (|B| - 1)$. Moreover, observe that the coefficient of the term $x^{|A|-1}y^{|B|-1}$ in f is exactly $\binom{|C|}{|A|-3} - \binom{|C|}{|A|-2}$ (mod p). (We always have to choose

xy from the first term. If we choose x from the second term, we have to choose |A|-3 further x's from the |C| terms, and if we choose -y from the second term then we have to choose |A|-2 further x's.)

Now note that

$$\binom{|A|+|B|-5}{|A|-3} - \binom{|A|+|B|-5}{|A|-2} = \frac{(|A|-|B|)(|A|+|B|-5)!}{(|A|-2)!(|B|-2)!} \neq 0 \pmod{p},$$

since the numerator of the above expression is a product of positive integers of size at most |A|+|B|-5 < p, in addition to the integer |A|-|B|, which satisfies $|A|-|B| \neq 0$ and $-p+1 \leq |A|-|B| \leq p-1$. Thus we may apply Nullstellensatz to reach a contradiction.

Problem 3. Let $L = \{\ell_1, \dots, \ell_s\}$ and \mathcal{F} be an r-uniform L-intersecting family of subsets of an n-element set. Suppose, furthermore, that the greatest common divisor of ℓ_1, \dots, ℓ_s does not divide r. Prove $|\mathcal{F}| \leq n$.

Proof. Let $m = |\mathcal{F}|$, and let $v_1, \ldots, v_m \in \{0, 1\}^n$ be the characteristic vectors of the sets in \mathcal{F} . We show that v_1, \ldots, v_m are linearly independent over \mathbb{Q} , which then implies $m \leq n$.

Suppose that this is not the case, then there exist $\alpha_1, \ldots, \alpha_m \in \mathbb{Q}$, not all zero, such that

$$\sum_{i=1}^{m} \alpha_i v_i = 0. \tag{1}$$

Here, we can assume that $\alpha_1, \ldots, \alpha_m$ are integers with greatest common divisor 1, otherwise, we can multiply (1) with the common denominator of $\alpha_1, \ldots, \alpha_m$, or divide by the greatest common divisor.

Now for $q=1,\ldots,m$, take the scalar product of (1) with v_s . Then we get $\sum_{i=1}^m \alpha_i \langle v_i, v_q \rangle = 0$, where $\langle v_q, v_q \rangle = r$ and $\langle v_i, v_q \rangle \in L$ for $i \neq q$.

There are two ways to finish the proof from this point.

- 1. By the prime factorization theorem, there must exist a prime power p^k such that $p^k \mid \gcd(\ell_1, \ldots, \ell_s)$ and $p^k \nmid r$ otherwise $\gcd(\ell_1, \ldots, \ell_s) \mid r$. This means that $p^k \mid \langle v_i, v_q \rangle$ whenever $i \neq q$, and $p^k \nmid r = \langle v_q, v_q \rangle$. But then $p \mid \alpha_q$, otherwise $\sum_{i=1}^m \alpha_i \langle v_i, v_q \rangle$ is not divisible by p^k . As this is true for every $q = 1, \ldots, m$, we get that $p \mid \gcd(\alpha_1, \ldots, \alpha_m)$, contradiction.
- 2. Let t be the smallest integer such that $\gcd(\ell_1,\ldots,\ell_s)\mid tr$. Then $t\mid \alpha_q$, otherwise $\gcd(\ell_1,\ldots,\ell_s)$ does not divide $\sum_{i=1}^m \alpha_i \langle v_i,v_q \rangle$. As this is true for every $q=1,\ldots,m$, we get that $t\mid \gcd(\alpha_1,\ldots,\alpha_m)$, contradiction.

Problem 4. Let $n \geq 3$ and \mathcal{A} be a family of subsets of [2n]. Assume that for distinct $A, B \in \mathcal{A}$, $A \cup B$ has one of only two possible sizes.

(a) Show that $|\mathcal{A}| \leq 1 + 2n + \binom{2n}{2}$.

- (b) Show that if additionally for some fixed $s \geq 2$ we have $|A \cap [n]| = s$ for all $a \in \mathcal{A}$ then $|\mathcal{A}| \leq 1 + {2n \choose 2}$.
- (c) Show that the bound from part (b) can be improved to $|\mathcal{A}| \leq {2n \choose 2}$.
- *Proof.* (a) Let \bar{A} denote the complement $[n] \setminus A$ of A. Note that $A \cup B = [n] \setminus \bar{A} \cap \bar{B}$. In particular intersection of any two sets in the family $\bar{A} = \{\bar{A} | A \in A\}$ have one of two possible sizes. By Theorem 1.38 $|\bar{A}| \leq 1 + \binom{2n}{1} + \binom{2n}{2}$ as desired.
- (b) Let ℓ_1, ℓ_2 denote the possible intersection sizes. We follow along the lines of the proof of Theorem 1.38 and 1.39. Let v_i be the characteristic vector of F_i and define $f_i : \mathbb{R}^{2n} \to \mathbb{R}$ by $f_i(x) = \prod_{j:\ell_j < |F_i|} (x \cdot v_i \ell_j)$. We replace each instance of x_i^2 with x_i . Then we observe that $f_i(v_i) \neq 0$ and $f_i(v_k) = 0$ if k < i. For every $i \in [2n]$ let us define polynomials $g_i : \mathbb{R}^{2n} \to \mathbb{R}$ by $g_i(x) = (x_1 + \ldots + x_n s)x_i$ and x_i^2 replaced by x_i . Then $g_i(v_j) = 0$ for all i, j by the condition of the problem. We now show $f_1, \ldots, f_{|\mathcal{A}|}, g_1, \ldots, g_{2n}$ are linearly independent. Assume there are α_i 's and β_j 's, not all zero, such that $\sum_{i=1}^{|\mathcal{A}|} \alpha_i f_i + \sum_{j=1}^{2n} \beta_j g_j = 0$. Plugging in v_i gives $\alpha_i f_i(v_i) = 0$ which implies $\alpha_i = 0$. Plugging in the i-th basis vector e_i , using the fact that $s \neq 1$, which gives a contradiction, completing the proof.
- (c) We reuse notation from the previous part but add another polynomial $g_0(x) = x_1 + \ldots + x_n s$. Evaluating at a zero vector shows $\beta_0 = 0$ in the above argument.

Problem 5. Let G be a k-regular graph in which any two adjacent vertices have a unique neighbour and any two non-adjacent vertices have exactly 2 neighbours. Show that:

- (a) G has $1 + \frac{k^2}{2}$ vertices.
- (b) There are at most 6 different values that k can take.

Proof. We follow along the lines of the proof of Theorem 2.18.

- (a) Let A = A(G). Observe that sum of elements in row i counts the number of walks of length 2 in G starting in i. There are k walks which return to i there are k such walks ending in a neighbor of i and 2(n-k-1) such walks to a non-neighbor of i, giving a total of 2n-2 such walks. This means that all 1's vector is an eigenvector of A^2 with eigenvalue 2n-2 as well as k^2 since G is k-regular. This gives $k^2 = 2n-2$ as desired.
- (b) The condition of the problem tells us that $A^2=(k-2)I+2J-A$, where J is the all ones matrix. Rearranging this we get $A^2+A-(k-2)I=2J$. If we take an orthonormal eigenbasis of A it is also an eigenbasis of $A^2+A-(k-2)I$ so also of J. This means eigenvalues of A are k with multiplicity 1 and all other eigenvalues satisfy $\lambda^2+\lambda-(k-2)=0$. So are equal to $\lambda_{\pm}=\frac{-1\pm\sqrt{4k-7}}{2}$ and let's

say λ_+ appears s times and λ_- appears n-1-s many times. We know also that trace of A is 0 so $0=k+s\lambda_++(n-1-s)\lambda_-=k-k^2/4+(s-k^2/4)\sqrt{4k-7}$, where we used part (a). Since k is even let $k=2\ell$ and we know that $8\ell-7$ divides $(\ell^2-2\ell)^2$. It also divides $(64\ell^2-128\ell)^2=((8\ell-7+7)^2-16(8\ell-7+7))^2$ so $8\ell-7$ divides $(49-16\cdot7)^2=49\cdot81$. There are 15 positive divisors of $49\cdot81$, only 6 of which have form $8\ell-7$, showing the claim.

Problem 6. Let F_1, \ldots, F_{d+1} be sets consisting of 2 points in \mathbb{R}^d each. Show that it is possible to split each F_i into a_i and b_i in such a way that $conv(a_1, \ldots, a_{d+1}) \cap conv(b_1, \ldots, b_{d+1}) \neq \emptyset$.

Proof. Let us denote $F_i = \{a_i, b_i\}$ arbitrarily. There are d+1 vectors $a_i - b_i \in \mathbb{R}^d$ so they must be linearly dependent, i.e. there exist λ_i , not all zero such that $\sum_{i=1}^{d+1} \lambda_i (a_i - b_i) = 0$. We may rescale λ 's so that $\sum_i \lambda_i = 1$. Now if $\lambda_i < 0$ we switch a_i and b_i to make $\lambda_i \geq 0$. This means $\sum_i \lambda_i a_i = \sum_i \lambda_i b_i := u$ meaning $u \in conv(a_1, \ldots, a_{d+1}) \cap conv(b_1, \ldots, b_{d+1})$, as desired.

Grade	Min	Max	
思認	6	51	60
Ę	5,75	46	50
	5,5	41	45
	5,25	35	40
	5	29	34
4	1,75	24	28
NEW TO	4,5	20	23
-	1,25	16	19
242	4	12	16
	3,75	11	11
	3,5	10	10
	3,25	7	8
	3	5	6
	2,5	4	4
	2	3	3
0.000	1,5	2	2
	1,25	1	1
A STATE OF THE STA	1	0	0