HOMEWORK 2 – MATH 441 April 16, 2018

ALEX THIES athies@uoregon.edu

Assignment: 1.C - 21, 23; 2.A - 5, 6, 9, 10, 12, 14, 15

SECTION 1.C

Problem 21. Suppose

$$U = \{(x, y, x + y, x - y, 2x) \in \mathbb{F}^5 : x, y \in \mathbb{F}\}\$$

Find a subspace W of \mathbb{F}^5 such that $\mathbb{F}^5 = U \oplus W$.

 \Box

Problem 23. Prove or give a counterexample: if U_1 , U_2 , W are subspaces of V such that

$$V = U_1 \oplus W$$
 and $V = U_2 \oplus W$

then $U_1 = U_2$.

 \square

Section 2.A

Problem 5.

- (a) Show that if we think of \mathbb{C} as a vector space over \mathbb{R} , then the list (1+i,1-i) is linearly independent.
- (b) Show that if we think of \mathbb{C} as a vector space over \mathbb{C} , then the list (1+i,1-i) is linearly dependent.

Solution. \Box

Problem 6. Suppose v_1, v_2, v_3, v_4 is linearly independent in V. Prove that the list

$$v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4$$

is also linearly independent.

 \square

Problem 9. Prove or give a counterexample: If v_1, \ldots, v_m and w_1, \ldots, w_m are linearly independent lists of vectors in V, then $v_1 + w_1, \ldots, v_m + w_m$ is linearly independent.

Proof.

Problem 10. Suppose v_1, \ldots, v_m is linearly independent in V and $w \in V$. Prove that if $v_1 + w, \ldots, v_m + w$ is linearly dependent, then $w \in \text{Span}(v_1, \ldots, v_m)$.
Proof.
Problem 12. Explain why there does not exist a list of six polynomials that is linearly independent in $\mathcal{P}_4(\mathbb{F})$.
Proof.
Problem 14. Prove that V is infinite-dimensional if and only if there is a sequence v_1, v_2, \ldots of vectors in V such that v_1, \ldots, v_m is linearly independent for every positive integer m .
Proof.
Problem 15. Prove that \mathbb{F}^{∞} is infinite-dimensional.
Proof.