

AMENDMENTS TO THE CLAIMS

1. (Cancelled)

2. (Currently Amended)

1 The method set forth in claim ~~4~~ 8 wherein said ratio is in the range of 30:70 to
2 70:30.

3. (Cancelled)

4. (Currently Amended)

1 The method set forth in claim ~~4~~ 8 wherein said inner layer has a hardness in the
2 range of 70 to 80 ~~diameter~~ durometer

5. (Currently Amended)

1 The method set forth in claim ~~4~~ 8 wherein said preselected frequency range is 300
2 to 400 Hz.

6. (Currently Amended)

1 The method set forth in claim 4 8 wherein said inner layer of said inner tube is of
2 ethylene/acrylic elastomeric material container, and said container outer layer of said inner tube
3 is of peroxide-vulcanized acrylonitrile acrylonitrile-butadiene copolymer rubber.

7. (Currently Amended)

1 A method of making a power steering pressure hose having a predetermined fluid-
2 borne noise dampening characteristics, which comprises the steps of:
3 (a) providing a laminated inner tube having an inner layer with a radial
4 thickness T_1 and an outer layer with a radial thickness T_2 , said inner layer having a hardness in
5 the range of about 70 to 80 durometer, and said radial thickness T_1 having a ratio to said outer
6 thickness T_2 in the range of about 30:70 to 70:30, and
7 (b) surrounding said inner tube with an outer reinforcing tube, and
8 (c) selecting by empirical determination a ratio of said radial thicknesses
9 within said range to maximize dampening of fluid-borne noise by elastic radial expansion of said
10 inner and outer layers.

8. (New)

1 A method of using a power steering fluid hose for dampening fluid-borne noise in
2 an automotive power steering system which comprises the steps of:
3 (a) directing power steering fluid through a power steering fluid hose having a
4 laminated inner tube surrounded by a reinforcing outer tube,

9. (New)

1 The method of claim 2 wherein said inner layer has a hardness in the range of 70
2 to 80 durometer, wherein said preselected frequency range is 300 to 400 Hz and wherein said
3 inner layer of said inner tube is of ethylene/acrylic elastomeric material and said outer layer of
4 said inner tube is of peroxide-vulcanized acrylonitrile-butadiene copolymer rubber.