Distillation

Processos de Separação

LEQB

2023/2024

Summary

- > Distillation of azeotropic mixtures
- > Batch Distillation

Summary

> Distillation of azeotropic mixtures

Distillation of azeotropic mixtures

Azeotropic mixtures are mixtures that do not vary in composition when distilled, i.e. the composition of the liquid and vapor phases are the same!

- Homogeneous Azeotropes
- Heterogeneous Azeotropes

"IDEAL" SYSTEM!

$$T_{boiling|_{benzene}} = 80.1^{\circ}C$$

$$T_{boiling|_{toluene}} = 110.6 \, ^{\circ}C$$

❖ All the mixtures vaporize at a temperature between the normal boiling points of the pure compounds

$$\star$$
 K_i (=y_i/x_i) \neq 1, always

Binary mixture Benzene (1) + Toluene (2) at 1 bar

Homogeneous azeotrope: Minimum-boiling azeotrope

<u>Chloroform</u> + Methanol

Curves calculated by mod. UNIFAC (Dortmund)

$$T_{b|_{methanol}} = 338 K$$
 $T_{b|_{chloroform}} = 334 K$
 $T_{b|_{azeotrone}} = 327 K$

A and C repel each other!

=> Minimum of temperature!

Inversion of selectivity!

"L":
$$y_{az} = x_{az}$$

Azeotrope

Ethanol/water system at 1 atm

Azeotropic point: 78.2°C, 89.4 mol% EtOH

 $T_{b|_{ethanol}} = 78.4 \, ^{\circ}C \tag{95.6\% v/v}$

Below 70 mm Hg no azeotrope exists for ethanol/water

Homogeneous azeotrope: Maximum-boiling azeotrope

Formic acid + Water

Curve calculated with mod. UNIFAC (Dortmund)

A and C attract each other!

=> Maximum of temperature!

"L":
$$y_{az} = x_{az}$$

Azeotrope

Inversion of selectivity!

Heterogeneous azeotrope

the vapor from the azeotrope will condense to form two immiscible liquid phases

Example: system benzene + water + ethanol

Homogeneous azeotrope

Heterogeneous azeotrope

the vapor from the azeotrope will condense to form two immiscible liquid phases

Example: system benzene + water + ethanol

Homogeneous azeotrope

Fractionation of azeotropic mixtures

How do we do it?

- > By changing the <u>pressure</u> where azeotropy occurs
- By adding a third compound which will form a new, heterogenous, azeotrope (azeotropic distillation)
- By adding a third compound that modifies the thermodynamic equilibrium (extractive distillation)

Azeotropic distillation

Heterogeneous azeotrope Solvents: Cyclohexane, benzene Make up Separator Solvent A third component Organic phase 8% CH Aqueous phase 71% EtOH ("entrainer") is added $21\% H_2O$ Reflux Water Layer to the initial mixture Hydrocarbon 7% CH 92% CH 65% EtOH forming a new 7.7% EtOH 70 to 90° 28% H₂O wt % $0.3\% \text{ H}_2\text{O}$ Stripper azeotrope Ethanol ~99.6%EtOH ~99.9% H₂O Ethanol Water

Extractive distillation

A third compound (a solvent with high boiling point) is added to modify the relative volatility of the components of the original mixture

A process used to:

- Fractionate the azeotropic mixture
- Fractionate mixtures that have components with very similar boiling points (α ~1)

Separating the isobutene from the butene's isomers

> Batch distillation

Batch distillation

When should be used?

- √ small quantities of feed to process
- √ feed is produced at irregular periods (seasonal)
- ✓ Large fluctuations in feed composition

Batch distillation

Transient process!

The compositions of the liquid and vapor phases change with time, but at each instant the vapor is in equilibrium with the liquid in the flask!

Continuous removal of the vapor that is formed during the process

Multistage batch distillation

Two modes of operation:

• constant reflux ratio (composition of the distillate varies between x_{Di} and x_{Df})

• variable reflux ratio $(x_D \text{ is constant!})$

The composition in the boiler varies between x_F and x_{Bfinal} (and the flowrate between F and B_{final})

Multistage batch distillation

Two modes of operation:

• constant reflux ratio (composition of the distillate varies between x_{Di} and x_{Df})

• variable reflux ratio $(x_D \text{ is constant!})$

The composition in the boiler varies between x_F and x_{Bfinal} (and the flowrate between F and B_{final})

Problem 4

It is intended to distillate a batch of a methanol / water mixture having a molar percentage of methanol equal to 49%. The boiler is charged with 200 moles of the mixture and the distillation column has 3 theoretical plates and a total condenser. The system is operated with a constant reflux ratio equal to 0.64. At the end of the process, it remains in the boiler 106.6 moles of residue with a composition of 18 mol% in methanol. Calculate:

- (a) the composition of the distillate obtained at the beginning
- b) The composition of the distillate at the end of the process

Multistage batch distillation; photograph of packaged batch distillation/solvent recovery system of approximately 400-gallon capacity.

Courtesy of APV Equipment, Inc., Tonowanda, New York

From Separation Process Engineering, Third Edition by Phillip C. Wankat (ISBN: 0131382276) Copyright © 2012 Pearson Education, Inc. All rights reserved.

