

《计算机组成原理实验》期中设计实验报告

开课学期: 2024-2025 第一学期

项目名称: 电子锁模拟实验

专业: 计算机科学与技术

班号组号: 42014302 - 01 组

学 号: 2252750

姓 名: 赵卓冰

一、实验方案

项目名称: 电子锁模拟实验 实验时间: 2024.10.23

实验目的:

1.设计一个电子锁,可并行设定4位二进制数组成的密码。

2.开锁指令为二进制数序列,要求通过串行方式输入。

3. 当开锁输入码与设定的密码一致时,表示开锁。

4.不一致时产生报警信号。

5.可做开锁次数限制。

6.可以在输入时进行退格操作。

7.显示输入密码的次数, 当超过5次时电子锁被锁住, 不能被打开。

实验设备和材料

实验软件: NI multisim 10.0

芯片列表(型号及数量):

元件名称	功能	使用数目
74LS194	4 位双向移位寄存器	1
74LS85	四位数值比较器	1
74LS90	十进制计数器	1
DCD_HEX	七段数码显示管	1
BUZZER	蜂鸣器,密码输入错误时报警	1

二、实验原理

2.1 总电路图

2.2 输入密码模块原理

2.2.1 电路图

2. 2. 2 使用芯片——74LS194N

74LS194 逻辑功能表

Inputs										Outputs			
Clear	Mode		Clock	Serial		Parallel				Q _A	Q _B	Q _C	Q _D
Clear	S1	S0	CIOCK	Left	Right	Α	В	С	D	Q A	∝B	σC	∝ D
L	Х	X	Х	X	Х	Х	X	X	X	L	L	L	L
н	Х	X	L	X	Χ	X	Χ	Χ	Χ	Q _{A0}	Q_{B0}	Q_{C0}	Q_{D0}
н	Н	Н	1	X	X	а	b	С	d	а	b	С	d
н	L	Н	1	X	Н	X	Χ	X	X	Н	Q_{An}	Q_Bn	Q_Cn
н	L	Н	1	X	L	X	X	X	X	L	Q_{An}	Q_Bn	Q_Cn
н	Н	L	1	Н	X	X	X	X	X	Q_{Bn}	Q_{Cn}	Q_Dn	Н
н	Н	L	1	L	X	X	Χ	Χ	X	Q_{Bn}	Q_Cn	Q_Dn	L
Н	L	L	X	X	X	X	Χ	Χ	Χ	Q _{A0}	Q_{B0}	Q_{C0}	Q_{D0}

74LS74 引脚图

2.2.3 串行输入原理描述

使用 74LS194 四位双向移位寄存器,结合与非或门电路,可以进行串行输入操作。利用 74LS194 的左移功能,串行输入端 S1 和 S0,用于控制数据的移位方向(左移或右移)。利用非门电路实现对 S1,S0 的点位控制,当 S1 为高电平,S0 为低电平时实现左移运算。

使用单次脉冲信号将输入端口的信号进行左移处理,实现了从高位到低位,从左到右的串行输入,在时钟上升沿时,数据会按照当前控制信号的要求(左移)在寄存器内部移位。同时使用了或门控制 CLR 的状态,CLR 引脚用于清除寄存器中的所有内容(设置为全 0),在输入错误时可以清除寄存器内容,重置输入状态。

在具体实现过程中,考虑到 multisim 软件没有直接提供单次脉冲源,同时也为了更好的模拟单次脉冲的特性,我们使用了单刀双掷开关进行进行模拟。

2. 2. 4 退格原理描述

利用 74LS194 的右移功能,当开启退格开关时,S1 为低电平,S0 为高电平,实现右移运算。同时使用或门产生一次单次脉冲到 CLK 端口,将输入端口的信号进行右移处理,实现退格。在时钟上升沿时,数据会按照当前控制信号的要求(右移)在寄存器内部移位。

2.3 设置密码模块

2.3.1 电路图

2.3.2 使用芯片——74LS85N

74LS85 逻辑功能表

	Comp	aring		(Cascadin	9	Outputs			
	Inp	uts			Inputs					
A3, B3	A2, B2	A1, B1	A0, B0	A > B	A < B	A = B	A > B	A < B	A = B	
A3 > B3	X	X	X	X	X	X	Н	L	L	
A3 < B3	X	X	X	X	X	X	L	Н	L	
A3 = B3	A2 > B2	X	X	X	X	X	Н	L	L	
A3 = B3	A2 < B2	X	X	X	Χ	X	L	Н	L	
A3 = B3	A2 = B2	A1 > B1	X	X	X	X	Н	L	L	
A3 = B3	A2 = B2	A1 < B1	X	X	X	X	L	Н	L	
A3 = B3	A2 = B2	A1 = B1	A0 > B0	X	Χ	X	Н	L	L	
A3 = B3	A2 = B2	A1 = B1	A0 < B0	X	X	X	L	Н	L	
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Н	L	L	Н	L	L	
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	Н	L	L	Н	L	
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	Н	L	L	Н	
A3 = B3	A2 = B2	A1 = B1	A0 = B0	X	X	Н	L	L	Н	
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Н	Н	L	L	L	L	
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	L	Н	Н	L	

H = HIGH Level, L = LOW Level, X = Don't Care

74LS85 引脚图

2.3.3 设置密码原理

使用 74LS85 芯片(4 位比较器)来实现密码设置和验证的逻辑。74LS85 是一个 4 位数字比较器,用于比较两个 4 位二进制数的大小。它有三个输出端: A>B: 当输入 A 大于 B 时输出高电平。A=B: 当输入 A 等于 B 时输出高电平。A<B: 当输入 A 小于 B 时输出高电平。在电子锁中,74LS85 用于比较用户输入的密码和预设的密码。

预设密码通过 B3、B2、B1 和 B0 直接连接到 74LS85 的 B 组输入端,设置为固定的高低电平组合,等待 A 端的输入后再进行比较。

2.3.4 验证密码原理

当用户依次按下按键,进行密码输入时,按键信号会转换成对应的二进制组

合并送入 A 端。74LS85 芯片会实时比较 A 和 B 端的输入。如果两者的输入完全相同,则 A=B 引脚输出高电平,表示密码输入正确。若密码不匹配,则 A=B 引脚保持低电平,而 A>B 或 A<B 可能会产生高电平(具体取决于输入值),表示输入的密码不正确。

2.4 确认密码和报警模块

2.4.1 电路图

2.4.2 确认密码和报警原理

将74LS85 四位比较器的输出端OAEQB(当输入密码与设置的密码相同时为高电平)和J9 脉冲(这里用开关表示)作为U13与门的输入,当密码正确且按下确认密码的J9 脉冲时,U13输出1,X1灯泡亮,表示输入正确。将四位比较器的输出端OAEQB经过非门后与J9 脉冲用与门连接,当密码错误且按下确认密码的J9 脉冲时,U11输出1,蜂鸣器报警。当没有按下J9 脉冲的时候,表示没有确认密码,此时,无论比较器的输出是1还是0,灯泡不会亮,蜂鸣器不会报警。

2.5 输入次数显示和锁定电子锁模块

2.5.1 电路图

2.5.2 使用芯片——74LS90

74LS90 逻辑功能表

74LS90逻辑功能表											
	591	S92	Roi	Ro2	CP _L	CP2	Q _D	Qc	QB	Q٨	
	1	1	D	Χ	Х	Х	-	D	0	1	>置9
	1.	1	Χ	D	Х	Χ	-	0	D	1 2	/ <u>B</u>
	D	Χ		-	ιX	Χ	0	0	0	0	>置0
	χ	0	1	1	Χ	Χ	0	0	D	0	/ 且 0
	S	 S	i		СР	0	<u>-1</u>	进制	(Q+	4)	,
	9	ر ا 	92-1		0	CP	五进制(QDCB)				→计数
	$R_{01} \cdot R_{02} = 0$					Q_{A}		4十进			
					Qp	СР		1 +进			1 /

74LS90 引脚图

我们使用的是5421码的计数,原理如下:

2.5.3 输入次数显示原理

对于 74LS90 计数器, 我们使用的是 5421 码 (ADBC), DCD HEX 七段数 码显示管要求的是8421码输入。考虑到只需要显示0-5这五个数码,因此只需 要当 5421 码是 1000 (十进制的 5) 的时候, 让数码显示管也显示 5 就能实现目 标。所以数码显示管的第一位(最高位)保持低电平,不会被用到,第二位的输 入是 A or D, 第三位的输入是 C, 第三位的输入是 A or B, 这样就把 5421 码的在 数码显示管上正确显示。

2.5.4 锁定电子锁原理

电子锁的锁定是利用 74LS90 计数器的置 9 端实现的。当输入密码次数达到 5 时, A 为高电平, 将 A 输入到 R91 和 R92 端口实现置 9。此时如果继续确认密码,数码显示管会一直显示 5, A 也会一直为高电平, A 的结果通过 U12 非门输出低电平, 这样 U13 与门的输出会一直为低电平, 灯泡一直不会亮, 实现了锁定电子锁功能。

三、实验小结

本次实验让我收获了许多宝贵的经验。在实验的初期,我遇到的主要困难是对 Multisim 10 软件的不熟悉,我和小组成员通过查阅使用手册,逐步掌握了软件的操作方法。设计电路时,我们曾花费较长时间寻找单次脉冲信号,但一直未能找到合适的解决方案。在向老师请教后,我们得知可以使用接电源的开关来模拟单次脉冲,其中开关的打开代表上升沿,闭合代表下降沿,这让我们节省了很多时间。

在电子锁的串行输入密码模块中,我深入学习了 74LS194 四位双向移位寄存器的原理,并熟悉了其各个引脚的功能,通过利用其左移特性实现了串行输入密码。在这个过程中,我意识到右移功能并未使用,而右移正好可以实现退格功能。于是,我们为电子锁的输入模块新增了退格功能,使用户能够在输入错误时及时重新输入密码。此外,我们还通过~CLR 引脚实现了清零功能,最初我们没有注意到"低电平有效"的特性,导致无法正常清零,经过排查后才发现是这一细节问题。

在实现计数功能时,我利用了 74LS90 计数器。在初步设计时,我们设定了电子锁输入错误 5 次后自锁,无法打开。最初考虑使用计数器的五进制功能,但设计完成后发现五进制无法表示数字 5,会出现溢出问题。因此,我们最终选择了使用 5421 码实现计数和自锁功能,确保了电路的正确性。

通过这次实验,我更加深刻地认识到电路设计中细节的重要性。例如,了解高电平与低电平的有效性对电路设计至关重要。同时,我也意识到自己在基础知识方面的不足,比如 5421 码中 5 到 9 的表示方式尚不清晰。在实验过程中,我学会了将电路划分为多个模块,设计并测试每个模块,确保各个部分的功能正确,最终实现整个系统的顺利运行。