$$\hat{\sigma}^{2} = \frac{PSS}{n-p}, \quad \text{show} \quad \frac{(n-p)\hat{\sigma}^{2}}{\sigma^{2}} \sim \chi_{n-p}^{2}$$

$$PSS = (Y-x\hat{\beta})^{T}(Y-x\hat{\beta})$$

To intuitively understand why is X'n-p.

If we know β exactly, $\frac{1}{\sigma^2}(\Upsilon - x\beta)^T(\Upsilon - x\beta) = \frac{e^Te}{\sigma^2}$, $\frac{1}{\sigma^2}e^Te$ is the sum of $n \neq 2$, where $\forall \forall x \in \mathbb{Z}$, and thus $\frac{1}{\sigma^2}e^Te \sim \chi^2 n$.

But we don't know β , so we use $\hat{\beta}$. Estimating $\hat{\beta}$ loses p dfs, so p ss $\sim \chi^2_{n-p}$

To formally prove $\frac{P55}{5^2}$ is the sum of (n-p) Z^2 , we need to do axis transformation.

Y~N(XB, o2In)

- ① Let $g = x\beta$, then $Y \sim N(g, \sigma^2 In)$ and $g \in C(x)$ (the column space of x)
- Det Y = OZ, then $Z = OTY \sim N(O^T g, \sigma^2 In)$ let $y = O^T g$.

 $0 = (V_1, V_2, ..., V_r, V_{rtl}, ..., V_n)$, where $V_1 - V_r$ is the orthonormal basis for C(X), and $V_{rtl} - V_n$

are chosen to be orthogonal to $V_i - V_r$ and normalized. r = rank(X),

Since
$$g \in C(x)$$
, we have that $\eta = \begin{pmatrix} v_1^T g \\ v_r^T g \end{pmatrix} = \begin{pmatrix} \eta_1 \\ \tilde{\eta}_r \\ \tilde{0} \end{pmatrix}$

By checking the density of Z, we can show that the MLE and LSE of y is: $\hat{y}_i = Z_i$

So
$$\hat{\beta} = O\hat{\eta} = (V_1, ..., V_r, V_{r+1}, ..., V_n) \begin{pmatrix} \hat{\eta}_1 \\ \hat{\eta}_r \\ \hat{\eta}_r \end{pmatrix}$$

$$= \sum_{i=1}^r Z_i V_i$$

$$PSS = (Y - \hat{S})^{T} (Y - \hat{S})$$

$$= (\frac{n}{2} z_{1} v_{1} - \frac{n}{2} z_{1} v_{1})^{T} (\frac{n}{2} z_{1} v_{1} - \frac{n}{2} z_{1} v_{1})$$

$$= (\frac{n}{2} z_{1} v_{1})^{T} (\frac{n}{2} z_{1} v_{1})^{T} (\frac{n}{2} z_{1} v_{1})$$

$$= \sum_{i=r+1}^{n} z_{i}^{2} (z_{1} v_{1}^{T} v_{1} = 1, v_{1}^{T} v_{2} = 0)$$

$$= \sum_{i=r+1}^{n} z_{1}^{2} (z_{1} z_{1} v_{1} v_{1} = 1, v_{2}^{T} v_{2} = 0)$$

$$= \sqrt{n-r} \delta^{2} (z_{1} z_{1} v_{1} v_{1} = 0, \delta^{2}), (z_{2} r+1)$$