der Wolkenhöhe mittels Pyrgeometer

Lehrexkursion 2016 -Wolkenferner kundung

Pyrgeometer

Konzept

Bestimmung der Wolkenhöhe mittels Pyrgeometer

Lehrexkursion 2016 - Wolkenfernerkundung

30. April 2016

Hintergrund

Bestimmung der Wolkenhöhe mittels

Lehrexkursion 2016 -Wolkenfernerkundung

Hintergrund

Pyrgeometer

 Bewölkung erhöht die langwellige Einstrahlung

 Die Strahlungsintensität hängt von der Temperatur des emittierenden Körpers ab

 $I \propto T$

 Strahlungsmessungen enthalten Informationen über die Wolkentemperatur und ermöglichen so Rückschlüsse auf die Wolkenhöhe

Abbildung 1 : Pyrgeometer

Pyrgeometer

Bestimmung der Wolkenhöhe mittels

Lehrexkursion 2016 -Wolkenfernerkundung

Hintergrun

Pyrgeometer

Konzep

- Messung der atmosphärischen Gegenstrahlung $L \downarrow$ (5 bis 50 µm)
- Schwarze Sensoroberfläche mit Abschirmung der kurzwelligen Einstrahlung
- Langwellige Nettostrahlung wird durch Wärmeleitung in einer Thermosäule ausgeglichen

Abbildung 2 : Aufbau

Pyrgeometerformel

$$L \downarrow = \lambda (T_S - T_G) + \sigma T_G^4 \approx cU + \sigma T_G^4$$

Konzept

Bestimmung der Wolkenhöhe mittels

Lehrexkursion 2016 -Wolkenferner kundung

Pyrgeometer

Konzept

- Berechnung der Wolkentemperatur aus den Strahlungsmessungen des Pyrgeometers
 - Stefan-Boltzmann-Gesetz $E = \sigma T^4$
 - Eventuelle Berücksichtigung des Bedeckungsgrades
- Zuordnung der Wolkentemperatur zu einer Höhe
 - lacktriangle adiabatische Abnahme der Temperatur ausgehend von der Bodentemperatur T_s
 - Standardatmosphäre mit angepasster T_s
 - Radiosondenaufstieg