Analytic Continuation and Convergence in Non-Associative Number Systems

Pu Justin Scarfy Yang September 15, 2024

1 Introduction

In this document, we delve into the issues of convergence and analytic continuation within the non-associative number system \mathbb{Y}_3 . We aim to extend classical results from complex analysis to this more complex setting.

2 Convergence in \mathbb{Y}_3

2.1 Series Convergence

In classical complex analysis, series convergence is typically analyzed using properties such as absolute convergence and comparison tests. In a non-associative setting, the notion of convergence must be adapted.

Definition 2.1. A series $\sum_n a_n$ with terms $a_n \in \mathbb{Y}_3$ converges if there exists an element $S \in \mathbb{Y}_3$ such that:

$$\lim_{N \to \infty} \sum_{n=1}^{N} a_n = S.$$

2.2 Challenges in Non-Associativity

In \mathbb{Y}_3 , the lack of associativity complicates the analysis of series. For instance, the order of summation can affect the result. We must develop new methods to ensure convergence, such as:

- Rearrangement Tests: Adapt tests for convergence that account for non-associative operations.
- Associative Approximation: Use associative approximations to analyze convergence.

Example 2.2. Consider a series $\sum_n x_n$ in \mathbb{Y}_3 . Define partial sums $S_N = \sum_{n=1}^N x_n$. We need to verify that:

$$\lim_{N \to \infty} S_N = S,$$

where $S \in \mathbb{Y}_3$ is the limit.

3 Analytic Continuation

3.1 Definition and Issues

Analytic continuation extends the domain of a function beyond its initial region of definition. In the context of \mathbb{Y}_3 , we must address the following issues:

Definition 3.1. A function $f: \mathbb{Y}_3 \to \mathbb{Y}_3$ is analytically continued if there exists an extension of f to a larger domain $D \subset \mathbb{Y}_3$ such that the extension is holomorphic in D.

3.2 Non-Associative Complex Analytic Continuation

In non-associative systems, we face challenges such as:

- Non-Associative Holomorphy: Develop a notion of holomorphy that does not rely on associativity.
- Path Dependence: Analyze how paths in \mathbb{Y}_3 affect analytic continuation.

3.3 Generalized Zeta Function $\zeta_{\mathbb{Y}_3}(s)$

To address analytic continuation for $\zeta_{\mathbb{Y}_3}(s)$, define:

$$\zeta_{\mathbb{Y}_3}(s) = \sum_{x \in \mathbb{Y}_3} \frac{1}{x^s},$$

where $s \in \mathbb{Y}_3$. Investigate the following:

- Domain of Definition: Determine the domain where $\zeta_{\mathbb{Y}_3}$ is initially defined.
- Extension Methods: Use techniques adapted to \mathbb{Y}_3 to extend $\zeta_{\mathbb{Y}_3}$ to a larger domain.

3.4 Functional Equation

For $\zeta_{\mathbb{Y}_3}$, establish a functional equation:

$$\zeta_{\mathbb{Y}_3}(s) = \Phi(s)\zeta_{\mathbb{Y}_3}(1-s),$$

where $\Phi(s)$ incorporates the non-associative structure.

Theorem 3.2. If $\zeta_{\mathbb{Y}_3}$ satisfies this equation, analyze how the properties of $\Phi(s)$ influence analytic continuation.

Proof. Provide a proof considering the unique properties of \mathbb{Y}_3 -algebras and extensions.

4 Implications for Classical Results

4.1 Comparison with Complex Analysis

Compare results from classical complex analysis with those in \mathbb{Y}_3 :

- Convergence Criteria: How do non-associative criteria differ from associative cases?
- Analytic Continuation: What are the key differences in extending functions in \mathbb{Y}_3 versus complex numbers?

5 Conclusion

Summarize the findings on convergence and analytic continuation in \mathbb{Y}_3 . Discuss the implications for extending classical analytic number theory results to this non-associative setting and propose directions for further research.

6 References

Include references to foundational works and recent papers related to non-associative analysis and \mathbb{Y}_3 .