

Properties of Triangles Ex 15.3 Q1

Answer:

- (i) The interior angle adjacent to exterior ∠CBX is ∠ABC.
- (ii) The interior angles opposite to exterior \angle CBX are \angle BAC and \angle ACB. Also, the interior angles opposite to exterior \angle BAY are \angle ABC and \angle ACB.

Properties of Triangles Ex 15.3 Q2

Answer:

In \triangle ABC, \angle A = 50° and \angle B = 55°.

Because of the angle sum property of the triangle, we can say that:

$$\angle$$
A + \angle B + \angle C = 180°
 \Rightarrow 50° + 55° + \angle C = 180°
Or,

 $\angle C = 75^{\circ}$

i.e. $\angle ACB = 75^{\circ}$

 $\angle ACX = 180^{\circ} - \angle ACB = 180^{\circ} - 75^{\circ} = 105^{\circ}$ (Linear pair)

Properties of Triangles Ex 15.3 Q3

Answer:

We know that the sum of interior opposite angles is equal to the exterior angle. Hence, for the given triangle, we can say that:

$$\angle ABC + \angle BAC = \angle BCO$$

 $\Rightarrow 55^{\circ} + \angle BAC = 95^{\circ}$

Or,

 $\angle BAC = 95^{\circ} - 55^{\circ}$

 $= \angle BAC = 40^{\circ}$

We also know that the sum of all angles of a triangle is $180\,^{\circ}$.

Hence, for the given \triangle ABC, we can say that:

$$\angle ABC + \angle BAC + \angle BCA = 180^{\circ}$$

 $\Rightarrow 55^{\circ} + 40^{\circ} + \angle BCA = 180^{\circ}$

Or,

 $\angle BCA = 180^{\circ} - 95^{\circ}$

 $= \angle BCA = 85^{\circ}$

********** END ********