Examenul de bacalaureat național 2019

Proba E. c) Matematică *M_st-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{1}{1-i} - \frac{1}{1+i} = \frac{(1+i) - (1-i)}{1^2 - i^2} = \frac{2i}{2} = i$	3p
	$a = i^2 = -1$, care este număr întreg	2 p
2.	$\Delta = 49 - 4m$	2p
	$\Delta \ge 0 \Leftrightarrow m \in \left(-\infty, \frac{49}{4}\right]$, deci cel mai mare număr natural m pentru care soluțiile ecuației	3 p
	sunt numere reale este 12	
3.	$3^{x}\left(1+3+3^{2}\right)=117 \Leftrightarrow 3^{x}=9$	3 p
	x = 2	2 p
4.	$C_n^2 = 36$, unde n este numărul de elemente ale mulțimii	3 p
	$\frac{n(n-1)}{2} = 36$, deci $n = 9$	2p
5.	Mijlocul segmentului AB este punctul $M(1,-1)$	2p
	Ecuația medianei din C este $y+1=\frac{1}{2}(x-1)$, deci $y=\frac{1}{2}x-\frac{3}{2}$	3 p
6.	$\cos x \sin x + \sin x \cos x = 1 \Leftrightarrow \sin 2x = 1$	3p
	Cum $x \in \left(0, \frac{\pi}{2}\right)$, obţinem $x = \frac{\pi}{4}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(0) = \begin{pmatrix} 2 & 0 & 1 \\ 3 & -1 & 1 \\ -3 & 0 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 2 & 0 & 1 \\ 3 & -1 & 1 \\ -3 & 0 & 1 \end{vmatrix} =$	2p
	=-2+0+0-3-0-0=-5	3 p
b)	$\det(A(a)) = \begin{vmatrix} 2 & a & 1 \\ 3 & 2a-1 & 1 \\ a-3 & a & 1 \end{vmatrix} = -a^2 + 6a - 5, \text{ pentru orice număr real } a$	
	$ \det(A(a)) = 3 2a-1 1 = -a^2 + 6a - 5$, pentru orice număr real a	3p
	$\begin{vmatrix} a-3 & a & 1 \end{vmatrix}$	
	a=1 sau $a=5$	2 p
c)	Pentru $a=1$, sistemul este $\begin{cases} 2x+y+z=1\\ 3x+y+z=1 \end{cases}$ și, scăzând primele două ecuații, obținem $-2x+y+z=1$	3p
	$x_0 = 0$, deci $y_0 + z_0 = 1$	
	$x_0^2 = y_0 z_0 \Rightarrow y_0 z_0 = 0$, deci soluțiile sunt $(0,1,0)$ sau $(0,0,1)$, care convin	2p

2.a)	x * y = 5xy - 5x - 5y + 5 + 1 =	3 p
	=5x(y-1)-5(y-1)+1=5(x-1)(y-1)+1, pentru orice numere reale x şi y	2 p
b)	$x*x = 5(x-1)^2 + 1$, $x*x*x = 25(x-1)^3 + 1$	2p
	$(x-1)^3 < 1 \Leftrightarrow x \in (-\infty, 2)$	3 p
c)	$25\left(\frac{1}{n}-1\right)\left(\frac{1}{n}+1\right)\left(\frac{1}{n+1}-1\right)\left(\frac{1}{n+1}+1\right)\left(\frac{1}{n+2}-1\right)\left(\frac{1}{n+2}+1\right)+1=-19 \Leftrightarrow \frac{(1-n)(n+3)}{n(n+2)}=-\frac{4}{5}$	3p
	Cum n este număr natural nenul, obținem $n = 3$	2 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{1}{x} - \frac{2x - 2(x - 1)}{x^2} =$	3p
	$=\frac{x-2x+2x-2}{x^2} = \frac{x-2}{x^2}, \ x \in (0,+\infty)$	2p
b)	Tangenta la graficul funcției f în punctul $(a, f(a))$ este perpendiculară pe dreapta de ecuație $y = x \Leftrightarrow f'(a) = -1$	3p
	$\frac{a-2}{a^2} = -1 \Leftrightarrow a^2 + a - 2 = 0 \Leftrightarrow a = -2, \text{ care nu convine sau } a = 1, \text{ care convine}$	2 p
c)	$f'(x) < 0$, pentru orice $x \in (0,2) \Rightarrow f$ este strict descrescătoare pe $(0,2)$	2p
	$0 < 1 < \frac{\pi}{2} < 2 \Rightarrow f\left(\frac{\pi}{2}\right) < f\left(1\right)$ şi, cum $f\left(1\right) = 0$, obţinem $f\left(\frac{\pi}{2}\right) < 0$	3 p
2.a)	$\int_{0}^{3} f(x) dx = \int_{0}^{3} (x^{2} + 1) dx = \left(\frac{x^{3}}{3} + x\right) \Big _{0}^{3} =$	3 p
	$=\frac{27}{3}+3-0=12$	2p
b)	$g(x) = \frac{x}{x^2 + 1} \Rightarrow \mathcal{A} = \int_0^1 g(x) dx = \int_0^1 \frac{x}{x^2 + 1} dx = \frac{1}{2} \ln(x^2 + 1) \Big _0^1 =$	3p
	$=\frac{1}{2}\ln 2$	2p
c)	Funcția $h: \mathbb{R} \to \mathbb{R}$, $h(x) = \int_{0}^{x} e^{f(t)} dt - x$ este derivabilă și $h'(x) = e^{x^2 + 1} - 1$	2 p
	$h'(x) > 0$ pentru orice număr real x , deci h este strict crescătoare pe $\mathbb{R} \Rightarrow h$ este injectivă	
	și, cum $h(0) = 0$, există un unic număr real x pentru care $\int_{0}^{x} e^{f(t)} dt = x$	3 p