Paul Gustafson

Texas A&M University - Math 416

Instructor: Dr. Papanikolas

HW 4, due 3/5

33.10 Show that every irreducible polynomial in $\mathbb{F}_p[x]$ is a divisor of $x^{p^n} - x$ for some n.

Proof. Let $f \in \mathbb{F}_p[x]$ be irreducible. WLOG f is non-zero. Let E be the finite extension of \mathbb{F}_p given by adjoining all the roots of f. Let $n = [E : \mathbb{F}_p]$. We know from class that every element of E is a root of $g(x) := x^{p^n} - x$. Hence, every root of f is a root of g. Hence, for every root α of f, the evaluation map w.r.t. α vanishes at both f and g.

Thus, it suffices to show that f is separable (has no double roots in $\overline{\mathbb{F}}_p$). Since $\mathbb{F}_p[x]$ is a PID, there exists $h \in \mathbb{F}_p[x]$ such that $\langle h \rangle = \langle f, g \rangle \subset \mathbb{F}_p[x]$. If f has no roots over $\overline{\mathbb{F}}_p$, it is trivially separable. Otherwise, let α be a root of f, h also vanishes at α . Since h cannot be the zero polynomial, h is a nonconstant divisor of f. Since f is irreducible, we have h = f. Hence, f divides g. Moreover, since g is separable, so is f.

12 Show that a finite field of p^n elements has exactly one subfield of p^m elements for each divisor m of n.

Proof. Fix m and n with n=md. Recall that every field of p^n elements is isomorphic to the field $K:=\{x\in\overline{\mathbb{F}}_p:x^{p^n}-x=0\}$. This isomorphism bijectively maps subfields to subfields. Note that by a theorem proved in class, $E:=\{x\in\overline{\mathbb{F}}_p:x^{p^m}-x=0\}$ is the only field of order p^m in $\overline{\mathbb{F}}_p$. Thus, if $E\subset K$, it is unique.

Let the Frobenius map $\phi : \overline{\mathbb{F}}_p \to \overline{\mathbb{F}}_p$ be defined by $\phi(x) = x^p$. Let ϕ^k for $k \in \mathbb{N}$ denote k compositions of ϕ .

Let $\alpha \in E$. Note that $\phi^m(\alpha) = \alpha$ by the definition of E. Hence, $\alpha^{p^n} = \phi^n(\alpha) = \phi^{md}(\alpha) = \phi^{m(d-1)}(\phi^m(\alpha)) = \phi^{m(d-1)}(\alpha) = \ldots = \alpha$. Thus, $\alpha \in K$, so $E \subset K$.

13 Show that $x^{p^n} - x$ is the product of all monic irreducible polynomials in $\mathbb{F}_p[x]$ of a degree d dividing n.

Proof. Let d divide n, and f be a monic irreducible of degree d. Then the splitting field of f over \mathbb{F}_p —that is, \mathbb{F}_p adjoined the roots of f in $\overline{\mathbb{F}}_p$ —is of degree d over \mathbb{F}_p , so has p^d elements. By (12), this field lies within \mathbb{F}_p^n ; hence, every root of f over $\overline{\mathbb{F}}_p$ is also a root of $x^{p^n} - x$.

Conversely, let $\alpha \in \overline{\mathbb{F}}_p$ be a root of $x^{p^n} - x$. Then $\alpha \in \mathbb{F}_{p^n}$, so since $[\mathbb{F}_{p^n} : \mathbb{F}_p] = n$, the degree of the monic irreducible for α over \mathbb{F}_p must divide n. Hence, the roots of $x^{p^n} - x$ in $\overline{\mathbb{F}}_p$ are precisely the roots of the monic irreducibles of degree d dividing n. From class, we know that the roots of $x^{p^n} - x$

are distinct, so it suffices to show that if α is of degree d, where $d \mid n$, then α is a single root of precisely one monic irreducible.

But we already know that every α is a root of a unique monic irreducible, and from the proof of (10), this polynomial is separable.

- **14** Let p be an odd prime.
- **a.** Show that a is a quadratic residue modulo p iff $a^{(p-1)/2} = 1 \pmod{p}$.
- **b.** Is $x^2 6$ irreducible in $\mathbb{Z}_{17}[x]$?

Proof. For (a), first note that the set R of quadratic residues modulo p form a subgroup of \mathbb{F}_p^{\times} . Indeed, the map $x\mapsto x^2$ is an endomorphism of \mathbb{F}_p^* . The kernel of this map consists of the roots of the polynomial x^2-1 over \mathbb{F}_p , i.e. ± 1 . Since p>2, 1 and -1 are distinct, so R is of index 2 in \mathbb{F}_p^* If $a=b^2$ for some $b\in\mathbb{F}_p^*$, then $a^{(p-1)/2}=b^{p-1}=1$. On the other hand, the

If $a = b^2$ for some $b \in \mathbb{F}_p^*$, then $a^{(p-1)/2} = b^{p-1} = 1$. On the other hand, the equation $x^{(p-1)/2} = 1$ has at most (p-1)/2 roots in \mathbb{F}_p^* , and we know that all (p-1)/2 quadratic residues are roots. Hence, if a is not a quadratic residue, $a^{(p-1)/2} \neq 1$.

For (b), note that $6^{(17-1)/2} = 6^8 = 16 \pmod{17}$. Hence, 6 is not a quadratic residue mod 17; that is, $x^2 - 6$ is irreducible in $\mathbb{Z}_{17}[x]$.

- **34.3** In the group \mathbb{Z}_{24} , let $H = \langle 4 \rangle$, and $N = \langle 6 \rangle$.
- **a.** List the elements of HN and $H \cap N$.
- **b.** List the cosets in HN/N, showing the elements in each coset.
- **c.** List the cosets in $H/(H \cap N)$, showing the elements in each coset.
- **d.** Give the correspondence between HN/N and $H/(H\cap N)$ described in the proof of Theorem 34.5.

Proof. a. HN: the even elements of \mathbb{Z}_{24} . $H \cap N = \{0, 12\}$.

- **b.** HN/N: $\{N, 2 + N, 4 + N\}$. $N = \{0, 6, 12, 18\}$. $2 + N = \{2, 8, 14, 20\}$. $4 + N = \{4, 10, 16, 22\}$.
- **c.** $H/(H \cap N)$: {{0,12}, {4,16}, {8,20}}.
- **d.** $N \mapsto \{0, 12\}; 2 + N \mapsto \{4, 16\}; 4 + N \mapsto \{8, 20\}.$
- **8** Let H < K < L < G with H, K, L normal in G. Let A = G/H, B = K/H, and C = L/H.

- **a.** Show that B and C are normal subgroups of A, and B < C.
- **b.** To what factor group of G is (A/B)/(C/B) isomorphic?

Proof. **a.** Suppose $kH \in B$ and $gH \in A$. Since H, K are normal in G, we have $gH(kH)(gH)^{-1} = gkg^{-1}H = kH$. Thus, B is normal in A. A similar argument shows C is normal in A.

Lastly, if $b \in B$, then for some $k \in K \subset L$, we have $k \in b$. Hence, $b = kH \in L/H = C$.

b. By Theorem 34.7, $(A/B)/(C/B) \simeq A/C$. By the same theorem, $A/C \simeq G/K$.