ME 8253 Spring 2023 Homework #5

Due Date: Thursday April 13th, 2023

Please submit your homework through CANVAS as a PDF file. For all problems with calculation, present all calculation details.

Questions (10 points)

Answer the following questions:

- (a) What are the expressions of the plastic zone size for plane stress and plane strain?
- (b) What are the restrictions on the use of LEFM?
- (c) What are the restrictions for the plane strain fracture toughness K_{Ic} value to be considered valid?

Problem 1 (40 points)

A gas turbine component is made of recrystallized, annealed Ti-6A1-4V with $K_{Ic} = 85 \text{ MPa}\sqrt{\text{m}}$ and $S_v = 815 \text{ MPa}$. A surface semicircular crack (a/c = 1) similar to that in Figure 1

Figure 1 – Surface semi-elliptical crack.

is found during a routine maintenance inspection. If the component thickness is 25 mm, comment on the stress state (i.e., plane stress or plane strain).

Figure 2 – Tensile loading and crack plane. Cracks are shown in the x-y plane.

a/c	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Ф	1.0	1.016	1.051	1.097	1.151	1.211	1.277	1.345	1.418	1.493	1.571

Figure 3 – Values of Φ .

- (a) If a stress is applied normal to the crack plane like that in Figure 2, what maximum stress is required to cause fracture if a = 8 mm and $K_c = 105$ MPa \sqrt{m} ?
- (b) If the thickness were doubled, what maximum stress would cause fracture?
- (c) Comment on the conditions required for fracture at each thickness and whether LEFM is valid for each case.

Problem 2 (50 points)

A uniaxially loaded very wide sheet of medium-strength steel is subjected to constant amplitude loading at R = 0 with $S_{\text{max}} = 110$ MPa. Let $K_c = 95$ MPa $\sqrt{\text{m}}$ and $S_y = 440$ MPa. The material displays the following region II Paris relationship for long crack behavior at R = 0:

$$\frac{da}{dN} = 2.4 \times 10^{-11} (\Delta K)^{2.75}$$

where da/dN is in m/cycle and ΔK is in MPa \sqrt{m} . Data on physically small cracks were generated for the same material at R=0, and fitting a power law expression to the data yielded the following relationship:

$$\frac{da}{dN} = 1.8 \times 10^{-10} (\Delta K)^{1.75}$$

(a) Plot the equation for these two relationships (use **Figure 3** next page), the long crack equation between

$$10^{-8} \text{ m/cycle} < \frac{da}{dN} < 10^{-5} \text{ m/cycle}$$

and the small crack equation between 1 MPa \sqrt{m} and where it merges with the long crack Paris equation. If $\Delta K_{\rm th} = 5$ MPa \sqrt{m} for the long crack data, also sketch the approximate sigmoidal portion of the long crack growth curve in region I. Complete the approximate sigmoidal long crack growth curve with K_c .

(b) Based on your plot, will extrapolation of the Paris equation to region I predict conservative or nonconservative fatigue life if a physically small crack exists in a component made from this material?

Laboratory experiments have shown that for this material, physically small crack growth occurs up to a length of 1 mm. If the wide sheet contains an initial edge crack with $a_i = 0.3$ mm:

- (c) Calculate the fatigue life of the sheet using only the long crack.
- (d) Calculate the fatigue life, taking into consideration the small crack and the long crack.
- (e) Comment on your results and the use of this life prediction technique.

