QUI113 - Química	Pontuação ↓		
Data: 29/11/2024	Questões: 3	Pontos totais: 20	
Matrícula:	Nome:		

Questão	Pontos	Nota
1	10	
2	5	
3	5	
Total:	20	

Instruções:

- 1. Justifique todas as suas respostas.
- 2. Entregue as repostas manuscritas com essa folha anexa.
- 3. A Tabela Periódica dos Elementos está ao final da prova.
- 4. Equações:

(a) Média (
$$\bar{x}$$
): $\bar{x} = \frac{1}{n} \times \sum_{i=1}^{n} x_i$

(b) Desvio padrão (
$$\sigma$$
): $\sigma = \sqrt{\frac{\sum\limits_{i=1}^{n}(x_i - \bar{x})^2}{n}}$

(c) Fator de correção (CF):

$$CF = \frac{(c_{\mathbf{real}}/\mathbf{mol}\,\mathbf{L}^{-1})}{(c_{\mathbf{te\acute{o}rica}}/\mathbf{mol}\,\mathbf{L}^{-1})}$$

- 1. (10 pontos) Um aluno foi incumbido de preparar e padronizar 100 mL de uma solução de hidróxido de sódio (NaOH) com concentração 0,2 mol L⁻¹. Para padronizar a solução preparada, ela foi titulada, em triplicata, contra uma solução de biftalado de potássio (KC₈H₅O₄), preparada pela dissolução de 0,25 g desse ácido em 20 mL de água destilada e adição de 3 gotas de fenolftaleína.
 - (a) Descreva as etapas necessárias e quantidades envolvidas no preparo da solução de NaOH, considerando que foi usado um balão volumétrico de 100 mL para armazenar a solução e que o NaOH disponível estava na forma sólida.
 - (b) Indique a concentração da solução de biftalato de potássio (KC₈H₅O₄) utilizada nas titulações.

- (c) Considerando que os volumes gastos de NaOH foram 6,62 mL; 6,71 mL e 6,69 mL, determine a concentração real de NaOH e o fator de correção (CF) para a solução preparada.
- 2. (5 pontos) Em um experimento de cinética, uma aluna foi incumbida de estudar a reação descrita na **Equação 1**.

$$Na_2S_2O_{3(aq)} + 2HCl_{(aq)} \longrightarrow S_{(s)} + SO_{2(g)} + 2NaCl_{(aq)} + H_2O_{(l)}$$
 (1)

A aluna monitorou a taxa de formação de enxofre sólido $(S_{(s)})$ à medida que a solução se tornou turva com sua formação. Para tal, ela preparou uma solução 0.15 mol L^{-1} de $Na_2S_2O_3$ e adicionou diferentes volumes em cinco frascos Erlenmeyer enumerados de 1 a 5. Então, adicionou água destilada até completar 50 mL. Para iniciar a reação, ela verteu 5.0 mL de uma solução 2.0 mol L^{-1} de HCl em cada um dos frascos e anotou o tempo até que uma marcação abaixo do frasco não pudesse mais ser vista. Os valores obtidos estão dispostos na **Tabela 1**.

Tabela 1: Valores de tempo (t) e seu inverso (1/t) obtidos nos experimentos de formação de enxofre $(S_{(aq)})$ a partir da reação de um determinado volume de uma solução 0.15 mol L^{-1} de $Na_2S_2O_3$ $(V_{Na_2S_2O_3})$ em água (V_{H_2O}) em meio ácido.

Frasco	$V_{\mathrm{Na_2S_2O_3}} \; (\mathrm{mL})$	$V_{ m H_2O}$	t (s)	$1/t \ ({\rm s}^{-1})$
1	50	0	22,5	0,044
2	40	10	27,3	0,0367
3	30	20	35,1	0,0285
4	20	30	60,0	0,0167
5	10	40	159,1	0,0063

- (a) Calcule a concentração de $Na_2S_2O_3$, em mol L^{-1} , em cada um dos frascos.
- (b) Descreva o comportamento da velocidade da reação em relação à concentração de Na₂S₂O₃.
- 3. (5 pontos) Em um experimento de análise de equilíbrio químico, analisou-se o equilíbrio entre os ânions cromato (CrO_4^{2-}) , cuja solução aquosa apresenta cor amarela, e dicromato $(Cr_2O_7^{2-})$, cuja solução apresenta cor laranja. Tal equilíbrio é descrito pela **Equação 2**.

$$2 \operatorname{CrO_4^{2-}}_{(aq)} + 2 \operatorname{H}^+_{(aq)} \Longrightarrow \operatorname{Cr_2O_7^{2-}}_{(aq)} + \operatorname{H_2O_{(l)}}$$
 (2)

- (a) Considere que 2 mL de uma solução 0,01 mol L⁻¹ de K₂Cr₂O₇ foram misturados com 7 gotas de uma solução 0,3 mol L⁻¹ de bicarbonato de potássio (NaHCO₃). Observou-se efervescência e que a solução adquiriu uma coloração amarelada. Justifique essas observações experimentais.
- (b) Considere que 2 mL de uma solução 0,01 mol L⁻¹ de K₂CrO₄ foram aquecidos em banhomaria (80°C) e a solução adotou uma coloração laranja. Com base nessa observação, indique se o equilíbrio é endotérmico ou exotérmico no sentido direto da Equação 2.

