

Adatbázisok gyakorlat 09

Gráf adatbázisok

Olyan adatbázisok, amelyek az adatok tárolására és megjelenítésére gráf struktúrát alkalmaznak

- ☐ A gráf csúcsaiban vannak az adatok
 - ☐ Az adatok sémája nem rögzített
- ☐ A gráf élei jelentik a kapcsolatokat
 - ☐ Az élek irányítottak
 - ☐ Az éleknek adott név a kapcsolatra jellemző

https://medium.com/labcodes/graph-databases-talking-about-your-data-relationships-with-python-b438c689dc89

CORVINUS Gráfadatbázisok – Neo4j

- ☐ A legismertebb gráf adatbázis
- ☐ A csúcsok ~ entitások, objektumok
 - ☐ Lehetnek tulajdonságaik (kulcs-érték párok)
 - ☐ Az értékek primitív adattípusok
 - ☐ A tulajdonságok (részben) indexelhetők
 - ☐ Megadható UNIQUE kényszer
 - ☐ Nincs NULL elem
 - ☐ Lehetnek címkéik
- ☐ A kapcsolatok
 - ☐ Van nevük
 - ☐ Lehetnek tulajdonságaik
 - ☐ Indexelhetők

The #1 Database for Connected Data

- ☐ A Neo4j preferált lekérdező nyelve
- ☐ Deklaratív (nem procedurális)nyelv
- Minta egyezéseket vizsgál
- ☐ Az emberi gondolkodáshoz közel álló nyelv
- ☐ Záradékok használata (pl: WHERE, ORDER BY)

Fontosabb Cypher adattípusok

Típus	Példa	Megjegyzés
Integer	13	Tulajdonság típus
Float	3.14	Tulajdonság típus
String	'Hello', "World"	Tulajdonság típus
Boolean	true, false	Tulajdonság típus
Date	"2019-06-01"	Tulajdonság típus
Time	"21:40:32"	Tulajdonság típus
DateTime	"2019-09-25T06:29:39Z"	Tulajdonság típus
Node	(a:Actor)	Szerkezet típus
Relationship	[d:Directed]	Szerkezet típus
Path	(a:Actor)-[:Acted_in]->(m:Movie)	Szerkezet típus
List	[0, 1, 2]	Összetett típus
Мар	{kulcs1: érték1, kulcs2: érték2}	Összetett típus

Fontosabb Cypher operátorok

Operátor típus	Példák
Matematikai	+, -, *, /, %, ^
Összehasonlító	=, <, >, <>, <=, >=, IS NULL, IS NOT NULL
Szöveg összehasonlító	STARTS WITH, ENDS WITH, CONTAINS
Logikai	NOT, AND, OR, XOR
Szöveg	+ (összefűzés), =~ (regex)
Aggregációs	DISTINCT
Tulajdonság (property)	. (csomópont vagy kapcsolat tulajdonság elérése)
	= (csomópont vagy kapcsolat tulajdonságok felülírása
	+= (csomópont vagy kapcsolat tulajdonság módosítása, hozzáadása)
Lista	IN (tartalmazást vizsgál)
	+ (összefűz)
	[] (listaelemek elérése)

Neo4j - lekérdezések

MATCH() - Csúcsok, kapcsolatok, tulajdonságok, címkék és minták keresése az adatbázisban

- ☐ A SQL SELECT-hez hasonló elven működik
- ☐ A lekérdezés által visszaadott értékeket a RETURN kulcsszó után adhatjuk meg
- ☐ A lekérdezés eredményét a WHERE kulcsszó után megadott feltételekkel szűrhetjük
- ☐ A megjelenítendő eredményt a LIMIT kulcsszóval korlátozhatjuk
- ☐ Az eredményt többféle nézetben (Graph, Table, Text, Code) is megtekinthetjük

CORVINUS REGYETEM Neo4j – Egyszerű lekérdezések I.

MATCH (n) RETURN n

Listázza az összes csúcsot

MATCH (p:Person) RETURN p LIMIT 1

Megjeleníti a legelső személyt

MATCH (p:Person {name: 'Tom Hanks'}) RETURN p

Megjeleníti Tom Hanks adatait

MATCH (:Person {name: 'Tom Hanks'})-[:DIRECTED]->(movie:Movie) RETURN movie.title

Megjeleníti, hogy Tom Hanks milyen film(ek)et rendezett

Neo4j – Egyszerű lekérdezések II.

MATCH (p:Person {name:'Tom Hanks'})-[rel:DIRECTED]-(m:Movie) RETURN p.name AS name, p.born AS 'Year Born', m.title AS title, m.released AS 'Year Released'

Megjeleníti Tom Hanks és az általa rendezett film egyes adatait

MATCH (:Person)-[:DIRECTED]->(m:Movie) RETURN DISTINCT m.released

Megjeleníti azon éveket, amikor filmeket rendeztek

MATCH (j:Person) WHERE j.born = 1955 **RETURN** j

Megjeleníti az 1955-ben született személyeket

MATCH (j:Person) WHERE NOT j.born = 1955 **RETURN** j

Megjeleníti azokat, akik nem 1955-ben születtek

Neo4j – Egyszerű lekérdezések III.

MATCH (p:Person) WHERE p.name STARTS WITH 'M' RETURN p.name

Megjeleníti az M betűvel kezdődő személyeket

MATCH (p:Person) WHERE p.name CONTAINS 'a' RETURN p.name

Megjeleníti azon személyeket, akik nevében van "a" betű

MATCH (p:Person) WHERE p.name ENDS WITH 'n' RETURN p.name

Megjeleníti azon személyeket, akik neve n-re végződik

MATCH (p:Person) WHERE p.name =~ 'Jo.*' RETURN p.name

Reguláris kifejezéssel szűr a személyek nevére

Neo4j – Egyszerű lekérdezések IV.

MATCH (m:Movie) WHERE ID(m) IN [0, 5, 9] RETURN m

Megjeleníti a 0, 5 és 9 azonosítójú filmeket

MATCH (p:Person)-[d:REVIEWED]->(m:Movie) RETURN p, d, m

Megjeleníti, hogy melyik személy milyen filmekről írt kritikát

MATCH (p:Person)-[d:WROTE]->(m:Movie) WHERE not exists ((p)-[:ACTED_IN]->(m)) RETURN p, d, m

Megjeleníti azokat a személyeket és filmeket, ahol az író nem szerepelt a filmben

MATCH (p:Person)-[:ACTED_IN]->(m:Movie)<-[:ACTED_IN]-(p2:Person) WHERE p.name= 'Gene Hackman' AND exists((p2)-[:DIRECTED]->(m)) RETURN p, p2, m

Kivel és milyen filmben szerepelt együtt Gene Hackman, ha a másik szereplő egyben rendező is volt?

CORVINUS Neo4j – Egyszerű lekérdezések V.

MATCH (p:Person)

WHERE p.name STARTS WITH 'J'

OPTIONAL MATCH (p)-[:DIRECTED]->(m)

RETURN p.name, m.title

Megjeleníti a személyeket és az általuk rendezett filmet (ha van olyan)

MATCH (p:Person) RETURN count(*)

Megjeleníti, hogy hány személy van az adatbázisban

MATCH (p:Person)-[:FOLLOWS]->(p2:Person) WITH p, count(*) AS db RETURN p.name, db

Megjeleníti azt, hogy melyik személy hány másikat követ

MATCH (p:Person)-[:WROTE]->(m:Movie) RETURN p.name, collect(m.title) AS filmek

Megjeleníti, hogy melyik személy milyen filmeket rendezett

CORVINUS Neo4j – Egyszerű lekérdezések VI.

MATCH (p:Person)-[:ACTED IN]->(m:Movie) RETURN p.name, size(collect(m.title)) AS db

MATCH (p:Person)-[:ACTED_IN]->(m:Movie) RETURN p.name, size(collect(m.title)) as db ORDER BY db DESC, p.name LIMIT 5

MATCH (p:Person)-[r]->(p2:Person) RETURN type(r), count(*)

MATCH (p:Person)-[r]->(m:Movie) WHERE p.born IS NULL RETURN p.name, type(r), m.title, avg(date().year-m.released) Megjeleníti, hogy melyik személy hány filmben szerepelt

Megjeleníti, hogy kik szerepeltek a legtöbb filmben – az első 5

Megjeleníti azt, hogy milyen típusú és hány db kapcsolat van a személyek között

Megjeleníti, hogy azok a személyek, akiknek nincs megadva a születési évük, milyen filmekkel vannak kapcsolatban, és a filmek átlagosan hány éve jelentek meg

Köszönöm a figyelmet!