Lineární algebra

Soustavy a determinanty

Matěj Dostál

ČVUT v Praze

27. listopadu 2024

Soustava lineárních rovnic

$$\begin{pmatrix}
1 & 1 & 2 & 0 & | & 1 \\
3 & 0 & 3 & 3 & | & 6 \\
2 & 1 & 3 & 1 & | & 3 \\
1 & 2 & 3 & -1 & | & 0
\end{pmatrix}$$

Nalezení všech vzorů vektoru

Je dáno zobrazení $\mathbf{A}:\mathbb{R}^4 \to \mathbb{R}^5$

$$\begin{pmatrix}
1 & 2 & 3 & -1 \\
3 & 2 & 1 & -1 \\
2 & 3 & 1 & 1 \\
2 & 2 & 2 & -1 \\
5 & 5 & 2 & 0
\end{pmatrix}$$

Nalezněte všechny vektory, které se zobrazením A zobrazí na vektor

$$\mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 2 \end{pmatrix}$$

Výroba TNT

Vyčíslete chemickou rovnici pro výrobu trinitrotoluenu:

$$x\mathrm{C}_7\mathrm{H}_8 + y\mathrm{HNO}_3 \rightarrow z\mathrm{C}_7\mathrm{H}_5\mathrm{O}_6\mathrm{N}_3 + w\mathrm{H}_2\mathrm{O}$$

(Tento popis reakce toluenu a kyseliny dusičné je zjednodušený, nepokoušejte se o danou reakci doma.)

(Ne)lineární zobrazení

Která z následujících zobrazení $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$ jsou lineární?

1.
$$\mathbf{f} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
.

- 2. f(u) = o.
- 3. $f(u) = 4 \cdot u$.
- 4. $\mathbf{f}(\mathbf{u}) = \|\mathbf{u}\| \cdot \mathbf{u}$, kde $\|\mathbf{u}\|$ je (eukleidovská) délka vektoru \mathbf{u} .

5.
$$\mathbf{f}\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
.

6.
$$\mathbf{f}\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 2u_1 + u_2 \\ u_2 - u_1 \end{pmatrix}.$$

Všechna zobrazení geometricky popište. U těch zobrazení, která jsou lineární, nalezněte jejich matice.

Lineární zobrazení

Zakreslete graficky chování lineárních zobrazeních zadaných maticemi

$${\bm A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad {\bm B} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & \frac{1}{2} \end{pmatrix}.$$

- 1. Popište obrazy těchto zobrazení (nalezněte im(A) a im(B)).
- 2. Popište jádra těchto zobrazení (nalezněte ker(A) a ker(B)).
- 3. Jaké jsou hodnosti a defekty těchto zobrazení?
- 4. Nalezněte matice zobrazení $\mathbf{A} \cdot \mathbf{B}$ a $\mathbf{B} \cdot \mathbf{A}$. Popište geometricky jejich chování.

Hodnost a defekt

Je možné, aby pro matici $\mathbf{M}:\mathbb{R}^6\to\mathbb{R}^7$ platilo $\mathrm{def}(\mathbf{M})=4$ a $\mathrm{rank}(\mathbf{M})=3$? Pokud ano, nalezněte takovou matici. Pokud ne, vysvětlete.

Ať R, M a N jsou lineární zobrazení typu $\mathbb{R}^2 \to \mathbb{R}^2$, která jsou definována následovně:

- $ightharpoonup R(\mathbf{e}_1) = \mathbf{e}_2, \ R(\mathbf{e}_2) = -\mathbf{e}_1.$
- $M(\mathbf{e}_1) = -\mathbf{e}_1, R(\mathbf{e}_2) = \mathbf{e}_2.$
- $ightharpoonup N(\mathbf{v}) = -\mathbf{v}$ pro všechna $\mathbf{v} \in \mathbb{R}^2$.

Popište geometricky chování zobrazení

- ightharpoonup R, R^2 , R^{-1}
- $ightharpoonup M, M^2, M^{-1}$
- N

Nalezněte matice zobrazení R, R^2 , R^{-1} , M a N. Popište geometricky chování zobrazení $R \cdot M$. $M \cdot R$. $R \cdot N$. $N \cdot R$. $M \cdot N$. $N \cdot M$

Které z následujících rovností platí, a proč?

- $\bullet \ R^2 = N \quad \bullet \ N^2 = \mathbf{id}_{\mathbb{R}^2} \quad \bullet \ R^4 = \mathbf{id}_{\mathbb{R}^2} \quad \bullet \ R^5 = R \quad \bullet \ M^2 = \mathbf{id}_{\mathbb{R}^2}$
- $M^3 = M$ $M \cdot N \cdot M = N$ $N \cdot M \cdot N = R$