Цель этой заметки — доказать теорему Иссерлиса о подсчёте ожиданий для многомерного нормального распределения. По дороге выведем функцию производящую моменты для одномерного нормального $\mathcal{N}(\mu, \sigma^2)$ и многомерного нормального $\mathcal{N}(\mu, C)$.

Почти доказательство

Если вектор Y имеет нормальное распределение $\mathcal{N}(\mu,C)$, то $\mathbb{E}(Y_1)=\mu_1$ и $\mathbb{E}(Y_1Y_2)=\mu_1\mu_2+c_{12}$. А как выглядят ожидания $\mathbb{E}(Y_1Y_2Y_3)$, $\mathbb{E}(Y_1Y_2Y_3Y_4)$ и так далее?

Конечно, они должны быть функциями от ожиданий μ_i и ковариаций c_{jk} , так как эти параметры полностью описывают многомерное нормальное распределение.

Поглядев на $\mathbb{E}(Y_1)$ и $\mathbb{E}(Y_1Y_2)$ мы видим, что эти функции являются многочленами от μ_i и c_{jk} . Давайте предположим, что и дальнейшие ожидания тоже будут многочленами.

Конечно, произвольный многочлен может содежать слагаемые в духе $\mu_1^2\mu_3^4c_{15}c_{27}^3c_{29}^9$. Однако $\mathbb{E}(Y_1Y_2Y_3)$ должно быть линейно по Y_1 . Например, при увеличении Y_1 в два раза двойка должна выноситься из каждого слагаемого многочлена! При увеличении Y_1 в два раза во столько же раз растут ожидание μ_1 и ковариации c_{12} , c_{13} . Значит каждое слагаемое многочлена должно содержать ровно одну из этих величин в качестве сомножителя. Например, слагаемое $\mu_1c_{12}\mu_3$ невозможно, так как растёт в 4 раза при увеличении Y_1 в два раза.

Аналогично рассуждая про Y_2 и Y_3 мы понимаем, что в каждом слагаемом каждый индекс от 1 до 3 должен быть упомянут ровно один раз.

$$\mathbb{E}(Y_1Y_2Y_3) = ?\mu_1\mu_2\mu_3 + ?\mu_1c_{23} + ?\mu_2c_{13} + ?\mu_3c_{12}.$$

Часть из неизвестных коэффициентов могут быть нулевые, однако ненулевые коэффициенты должны быть одинаковы. Иначе бы невозможно было вынести общий множитель при увеличении Y_1 в два раза. Более того, формула должна быть симметричной, а именно, должна сохранятся при смене индексов. То есть коэффициенты при μ_1c_{23} , μ_2c_{13} и μ_3c_{12} должны совпадать: либо все по 1, либо все по 0.

Также можно было рассуждать по размерностям, если Y_1 измеряется в пудах, Y_2 — в вершках, а Y_3 — в саженях, то каждое слагаемое многочлена должно иметь такие же единицы измерения, [пуд \times вершок \times сажень]. А слагаемые, где какой-то индекс повторяется имеют неподходящие единицы измерения. Например, $\mu_2 c_{23}$ измеряется в [вершок $^2 \times$ сажень].

Начнём охоту за коэффициентами многочлена! Занулим все слагаемые кроме $\mu_1\mu_2\mu_3$. Для этого возьмём независимые $Y_1 \sim \mathcal{N}(1,1)$, $Y_2 \sim \mathcal{N}(1,1)$ и $Y_3 \sim \mathcal{N}(1,1)$. С одной стороны для них $\mathbb{E}(Y_1Y_2Y_3)=1$. В многочлене при этом остаётся лишь слагаемое $\mu_1\mu_2\mu_3$, следовательно, коэффициент при нём равен 1.

Теперь занулим все слагаемые кроме μ_1c_{23} . Для этого возьмём $Y_1 \sim \mathcal{N}(1,1)$, $Y_2 = Y_3 \sim \mathcal{N}(0,1)$ и независимы от Y_1 . В этом случае $\mathbb{E}(Y_1Y_2Y_2) = 1 \cdot 1$ и коэффициент при слагаемом μ_1c_{23} также равен 1.

Итого мы получили, что все возможные слагаемые присутствуют с весом 1,

$$\mathbb{E}(Y_1Y_2Y_3) = \mu_1\mu_2\mu_3 + \mu_1c_{23} + \mu_2c_{13} + \mu_3c_{12}.$$

Для следующего ожидания $\mathbb{E}(Y_1Y_2Y_3Y_4)$ сработают аналогичные рассуждения. Во-первых, чтобы сохранялась линейность по отдельным Y_i ни одно слагаемое не может иметь повторяющихся индексов. Вовторых, все коэффициенты многочлена равны единице. Например, чтобы посмотреть в новом многочлене на коэффициент при слагаемом $c_{12}c_{34}$ нужно взять $Y_1=Y_2\sim\mathcal{N}(0,1)$ и независимую величину $Y_3=Y_4\sim\mathcal{N}(0;1)$. А чтобы глянуть на коэффициент при $\mu_1\mu_2c_{34}$ нужно взять независимые $Y_1\sim\mathcal{N}(1;1)$, $Y_2\sim\mathcal{N}(1,1)$ и $Y_3=Y_4\sim\mathcal{N}(0;1)$.

Каждое слагаемое идёт с единичным весом. Каждое слагаемое содержит все индексы от единицы до максимального ровно по одному разу. Все варианты перемножения μ_i и c_{jk} присутствуют. Множитель μ_i «съедает» один индекс, а c_{jk} «съедает» два индекса.

$$\mathbb{E}(Y_1) = \mu_1$$

$$\mathbb{E}(Y_1Y_2) = \mu_1\mu_2 + c_{12}$$

$$\mathbb{E}(Y_1Y_2Y_3) = \mu_1\mu_2\mu_3 + \mu_1c_{23} + \mu_2c_{13} + \mu_3c_{12}.$$

 $\mathbb{E}(Y_1Y_2Y_3Y_4) = \mu_1\mu_2\mu_3\mu_4 + \mu_1\mu_4c_{23} + \mu_2\mu_4c_{13} + \mu_3\mu_4c_{12} + \mu_1\mu_3c_{24} + \mu_1\mu_2c_{34} + \mu_2\mu_3c_{14} + c_{12}c_{34} + c_{13}c_{24} + c_{14}c_{23}.$

Пример.

Вектор Y имеет совместное нормальное распределение,

$$\begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 5 & -1 & -2 \\ -1 & 6 & -3 \\ -2 & -3 & 7 \end{pmatrix} \right).$$

Найдите $\mathbb{E}(Y_1Y_2Y_3)$ и $\mathbb{E}(Y_1Y_2Y_2)$.

Решение:

$$\mathbb{E}(Y_1Y_2Y_3) = \mu_1\mu_2\mu_3 + \mu_1c_{23} + \mu_2c_{13} + \mu_3c_{12} = 1 \cdot 2 \cdot 3 + 1 \cdot (-3) + 2 \cdot (-2) + 3 \cdot (-1) = -2.$$

Если какой-то индекс повторяется, то его надо повторить:)

$$\mathbb{E}(Y_1Y_2Y_2) = \mu_1\mu_2\mu_2 + \mu_1c_{22} + \mu_2c_{12} + \mu_2c_{12}.$$

Всё! Доказательство опирается на допущение, что $\mathbb{E}(Y_1Y_2\dots Y_n)$ является многочленом от μ_i и c_{jk} для нормального распределения. Для других распределений это не верно. В оставшейся части мы залатаем это предположение доказав теорему Иссерлиса через производящие функции.

Одномерная функция производящая моменты

Первая задача. Найдите функцию производящую моменты $\mathrm{mgf}(u) = \mathbb{E}(\exp(uX))$ для нормальной $X \sim \mathcal{N}(0;1).$

Перейдём к интегралам!

$$\mathbb{E}(\exp(uX)) = \int_{\mathbb{R}} \exp(ux) f(x) dx = \int_{\mathbb{R}} \exp(ux) \frac{1}{\sqrt{2\pi}} \exp(-x^2/2) dx.$$

Для взятия интеграла выделим полный квадрат внутри экспоненты:

$$ux - x^{2}/2 = -\frac{1}{2}(x^{2} - 2ux + u^{2} - u^{2}) = -\frac{1}{2}(x - u)^{2} + \frac{1}{2}u^{2}.$$

Возвращаемся к интегралу:

$$\mathbb{E}(\exp(uX)) = \dots = \int_{\mathbb{R}} \exp(u^2/2) \frac{1}{\sqrt{2\pi}} \exp(-(x-u)^2/2) dx = \exp(u^2/2) \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} \exp(-(x-\sigma)^2/2) dx.$$

Замечаем, что последний интеграл — это площадь под нормальной функцией плотности, смещённой на u вправо. И эта площадь равна единице.

Задача раз решена,

$$\mathbb{E}(\exp(uX)) = \exp(u^2/2)$$

Вторая задача. Найдите функцию производящую моменты $\mathrm{mgf}_Y(u)=\mathbb{E}(\exp(uY))$ для нормальной $Y\sim \mathcal{N}(\mu;\sigma^2).$

Сначала стандартизируем $Y,Y=\mu+\sigma X$, где $X\sim\mathcal{N}(0;1)$:

$$\mathbb{E}(\exp(uY)) = \mathbb{E}(\exp(u\mu)\exp(u\sigma X)) = \exp(u\mu)\,\mathbb{E}(\exp(u\sigma X)).$$

Ожидание в конце мы уже де-факто считали, $\mathbb{E}(\exp(u\sigma X))=\exp(u^2\sigma^2/2)$.

Отсюда

$$\operatorname{mgf}_Y(u) = \mathbb{E}(\exp(uY)) = \exp(\mu u + \sigma^2 u^2/2), \ \operatorname{если} Y \sim \mathcal{N}(\mu, \sigma^2).$$

Многомерная функция производящая моменты

Третья задача. Найдите функцию производящую моменты для случайного вектора $Y \sim \mathcal{N}(\mu, C)$. По-определению, $\mathrm{mgf}_{V}(u) = \mathbb{E}(\exp(u^{T}Y))$.

Заметим, что u^TY это скалярная случайная величина с нормальным распределением $\mathcal{N}(u^T\mu,u^TCu)$. Снова быстро получаем функцию производящую моменты,

$$\mathsf{mgf}_V(u) = \exp(u^T \mu + u^T C u/2).$$

Производящая функция выглядит как экспоненты от квадратичной функции,

$$\operatorname{mgf}_{Y}(u) = \exp(q(u)), \quad q(u) = u^{T}\mu + u^{T}Cu/2.$$

Доказательство через производящие функции

Четвёртая задача. Для случайного вектора $Y \sim \mathcal{N}(\mu,C)$ последовательно найдите $\mathbb{E}(Y_1)$, $\mathbb{E}(Y_1Y_2)$, $\mathbb{E}(Y_1Y_2Y_3)$ и $\mathbb{E}(Y_1Y_2Y_3Y_4)$.

Вспомним, что $\mathbb{E}(Y_1) = \mathsf{mgf}_1'(0)$, $\mathbb{E}(Y_1Y_2) = \mathsf{mgf}_{12}''(0)$ и так далее.

Немного заранее подготовимся! Во-первых, в нуле q(0)=0, $\exp(q(0))=1$.

Найдём первую производную $q_1'(u)=\mu_1+c_1^Tu$, где c_1 — первый столбец матрицы C. Для наглядности перепишем её в скалярном виде

$$q'_1(u_1, u_2, \dots, u_n) = \mu_1 + c_{11}u_1 + c_{12}u_2 + \dots + c_{1n}u_n.$$

В нуле первая производная равна $q_1'(0) = \mu_1$ соответствующему ожиданию.

Вторая производная $q_{12}''(u) = c_{12}$ тождественно равна соответствующей ковариации.

Третья производная $q_{123}''' = 0$ тождественно равна нулю, ведь q(u) — квадратичная функция.

А теперь считаем ожидания по очереди,

$$\mathbb{E}(Y_1) = \mathbf{mgf}_1' = \exp(q)q_1' = 1 \cdot \mu_1 = \mu_1.$$

Пока что ничего неожиданного, мы же сами обозначили $\mathbb{E}(Y_1)$ как μ_1 .

Пойдём дальше!

$$\mathbb{E}(Y_1Y_2) = \mathsf{mgf}_{12}'' = \mathsf{exp}(q)(q_1'q_2' + q_{12}'') = \mu_1\mu_2 + c_{12}.$$

Это тождество, верное для любый случайных величин, не только для нормальных, $\mathbb{E}(Y_1Y_2)=\mathbb{E}(Y_1)\,\mathbb{E}(Y_2)+\mathbb{C}\mathrm{ov}(Y_1,Y_2).$

Продолжаем,

$$\mathbb{E}(Y_1Y_2Y_3) = \mathsf{mgf}_{123}''' = \exp(q)(q_1'q_2'q_3' + q_3'q_{12}'' + q_1'q_{23}'' + q_2'q_{13}'') = \mu_1\mu_2\mu_3 + \mu_1c_{23} + \mu_2c_{13} + \mu_3c_{12}.$$

Дифференцируя дальше убеждаемся в сохранении закономерности,

$$\mathbb{E}(Y_1Y_2Y_3Y_4) = \mu_1\mu_2\mu_3\mu_4 + \mu_1\mu_4c_{23} + \mu_2\mu_4c_{13} + \mu_3\mu_4c_{12} + \mu_1\mu_3c_{24} + \mu_1\mu_2c_{34} + \mu_2\mu_3c_{14} + c_{12}c_{34} + c_{13}c_{24} + c_{14}c_{23}.$$