Diseño de Bases de Datos

Clase 3

Curso 2015

Prof. Luciano Marrero

Pablo Thomas

Rodolfo Bertone

Agenda

Lenguaje de Consultas

- Algebra Relacional
- Calculo de Tuplas
- Calculo de Dominios

Lenguajes de consulta

Lenguajes de consulta: utilizados para operar con la BD.

- Procedurales: (instrucciones para realizar secuencia de operaciones) (que y como)
- No procedurales: (solicita directamente la información deseada) (que).

Analizaremos primero las consultas

 Las consultas representan el 80% de las operaciones registradas sobre una BD

Álgebra Relacional:

- Lenguaje de consultas procedimiental
- Operaciones de uno o dos relaciones (tablas) de entrada que generan una nueva relación (tabla) como resultado

Operaciones fundamentales

- Unitarias (selección, proyección, renombre)
- Binarias (Producto cartesiano, Unión, diferencia)

Dadas las siguientes tablas

- Asociados=(idsocio, nombre, dirección, teléfono, sexo, estadocivil, fechanacimiento, idlocalidad)
- Deportes=(iddeporte, nombre, monto_cuota, idsede)
- Practica = (idsocio, iddeporte)
- Localidad = (idlocalidad, nombre)
- Sedes = (idsede, nombre, dirección, idlocalidad)

Selección:

- selecciona tuplas que satisfacen un predicado dado. Operador:
- Ejemplo 1: mostrar todos los asociados casados

σ Estadocivil = "casado" (asociados)

Selección:

- Ejemplo 2: deportes con cuota superior a \$2000 o inferior a \$1000
 - σ montocuota>2000 or montocuota<1000 (deportes)
- Ejemplo 3: asociados casados femeninos
 - σ Estadocivil = "casado" and sexo = "femenino" (asociados)
 - σ Estadocivil = "casado" ^ sexo = "femenino" (asociados)

Proyección:

ullet devuelve la relación argumento con columnas omitidas. Operador: π

• Ejemplo 4: nombres de los asociados π_{nombre} (asociados)

Proyección:

 Ejemplo 5: monto de cuota y nombre de cada deporte

```
\pi_{\text{nombre, monto\_cuota}} ( deportes)
```

 Ejemplo 6: nombre de todos los asociados varones

```
\pi_{\text{nombre}} (\sigma_{\text{sexo="masculino"}} (asociados)) \sigma_{\text{sexo="masculino"}} (\pi_{\text{nombre}} (asociados))
```

Producto Cartesiano:

- Conecta dos entidades de acuerdo a la definición matemática de la operación. Operador x
- Ejemplo 5: Mostrar cada asociado y la localidad donde vive

 π_{nombre} (asociado x localidad)

 $\pi_{asociado.nombre, localidad.nombre}$ (asociado x localidad)

11

Álgebra Re

Nombre	ld_localidad
Juan	1
Pedro	2
Hector	1

ld localidad	nombre
1	La Plata
2	junin

Producto Cartesiano:

	Aso.nombre	Aso.idloc	Loc.idloc	Loc.nombre
	Juan	1	1	La plata
	Juan	1	2	<mark>Junin</mark>
	Pedro	2	I	La Plata
	Pedro	2	2	Junin
'	Hector	1	1	La Plata
$\pi_{ ext{asociado.nombre},}$	Hector Decilioda, nombre	1 03001000.11		Junin Canada (

ciado x localidad)

Producto Cartesiano:

• Ejemplo 6: mostrar las sedes de La Plata

```
π<sub>sede.nombre</sub> (σ<sub>sede.idlocalidad</sub> = localidad.idlocalidad and localidad.nombre="la Plata" (sedes x localidad) )
```

```
\tau_{\text{sede.nombre}} ( \sigma_{\text{sede.idlocalidad}} = \text{localidad.idlocalidad} (sedes x \sigma_{\text{localidad.nombre}} = \text{"la Plata"} (localidad)))
```

 Ejemplo 7: mostrar cada deporte y el nombre del asociado que lo practica.

```
πasociado.nombre, deporte.nombre (σasociado.idsocio = practica.idsocio and deportes.iddeporte=practica.ideporte (Asociados x practica x deportes ) )
```

Renombrar:

- permite utilizar la misma tabla en, por ej., producto cartesiano. Operación p
- Éjemplo 7: mostrar todos los asociados que viven en la misma dirección que el socio con id 75

```
1.σ<sub>asociados.idsocio=75</sub> (Asociados)
```

```
2. (\sigma_{\text{asociados.idsocio}=75}(\text{Asociados}) \times \text{asociados}) \longrightarrow ????
```

```
3. \sigma_{\text{asociados.direccion}} = ???? (\sigma_{\text{asociados.idsocio}} = 75 (\text{Asociados}) \times \text{asociados}) \rightarrow ???
```

```
4. \pi_{\text{aso.nombre}} (\sigma_{\text{asociados.iddireccion}} = aso.iddireccion (\sigma_{\text{asociado.idsocio}=75} (Asociados) x \rho_{\text{aso}} (asociados))
```

Unión:

- tupas comunes a dos relaciones, equivalente a la unión matemática. Debe efectuarse entre relaciones con sentido. Operación
 Ejemplo 8: asociados que practiquen vóley o futbol
- 1. odeporte.nombre = "futbol" (deportes)
- 2. $\sigma_{deporte.nombre = "futbol"}$ (deportes) x (practica x asociados))
- $3.\sigma_{asociado.idsocio}$ = practica.idsocio and deportes.iddeporte=practica.ideporte ($\sigma_{deporte.nombre}$ = "futbol" (deportes) x (practica x asociados)
- $4.\pi_{asociado.nombre}$ ($\sigma_{asociado.idsocio} = practica.idsocio and deportes.iddeporte=practica.ideporte (<math>\sigma_{deporte.nombre} = "futbol"$ (deportes) $\sigma_{deporte.nombre} = \sigma_{deporte.nombre} = \sigma_{$
- $5.\sigma_{\text{deporte.nombre}} = \text{"voley"} (\text{deportes})$
- 6.
- $7.\pi_{asociado.nombre}$ ($\sigma_{asociado.idsocio} = practica.idsocio and deportes.iddeporte=practica.ideporte (<math>\sigma_{deporte.nombre} = "voley"$ (deportes) x (practica x asociados))
- $8.\pi_{asociado.nombre}$ ($\sigma_{asociado.idsocio} = practica.idsocio and deportes.iddeporte=practica.ideporte$ ($\sigma_{deporte.nombre} = "futbol"$ (deportes) x practica x asociados)) U

 $\pi_{\text{asociado.nombre}}$ ($\sigma_{\text{asociado.idsocio}}$ = practica.idsocio and deportes.iddeporte=practica.ideporte($\sigma_{\text{deporte.nombre}}$ = "voley" (deportes) x practica x asociados))

Diferencia:

- diferencia de Conjuntos. Operación -
- Ejemplo 9: asociados que practiquen futbol y no voley

Diferencia:

Ejemplo 10: deporte por el que se pague mayor cuota

```
\pi_{deportes.nombre} (Deportes) -
```

 $\pi_{deportes.nombre}(\sigma_{dep.montocuota > deportes.montocuota})$ (Deportes x $\rho_{dep}(deportes)$)

Nombre	Cuota
Futbol	1000
Basquet	2000
Tenis	3000

Deportes $x \rho_{dep}(deportes))$

Dep.nombre	Dep.monto	Deporte.nombre	Deporte.monto
Futbol	1000	Futbol	1000
Futbol	1000	Basquet	2000
Futbol	1000	<mark>Tenis</mark>	3000
Basquet	2000	Futbol	1000
Basquet	2000	Basquet	2000
Basquet	2000	Tenis	3000
Tenis	3000	Futbol	1000
Tenis	3000	Basquet	2000
<mark>Tenis</mark>	3000	<mark>Tenis</mark>	<mark>3000</mark>

Odep.montocuota > deportes.montocuota

Deporte.nombre
futbol
futbol
basquet

 $\pi_{ ext{deportes.nombre}}$

Definición formal de Álgebra Relacional:

- Una expresión básica en AR consta de
 - Una relación de una Base de Datos
 - Relación constante
- Una expresión general se construye a partir de sub-expresiones (E1,E2,...En)
- Expresiones:
 - E1 ∪ E2
 - E1 E2
 - E1 x E2
 - $\sigma_p(E1)$ P predicado con atributos en E1
 - π_s (E1) S lista de atributos de E1
 - ρ_x (E1) X nuevo nombre de E1

Operaciones adicionales

- Intersección
- Producto Natural
- Asignación temporal
- Producto Tita

Producto Natural:

 hace el producto cartesiano con una selección de tuplas "con sentido" eliminando las columnas (atributos) repetidas. Si R y S dos relaciones no tienen atributos en común es igual al prod.cart. Operación | x |

Producto Natural:

• Ejemplo 11: asociados que practican futbol

 $\pi_{\text{asociados.nombre}}$ (Asociados | x | practica | x | $\sigma_{\text{nombre}} = \text{"futbol"}$ (deportes))

• Éjemplo 12: nombre y dirección de los asociados que son de La Plata

 $\pi_{asociados.nombre, direccion}(\sigma_{localidad.nombre = "La plata"} (Asociados | x | localidad))$

Intersección:

- equivalente a la intersección matemática. Operación n
- A \(B = A (A B)

Asignación:

- expresión que asigna a una variable temporal el resultado de una operación. Operación
- Temp ← Operación del Álgebra

Producto (9)

• $r |x|_{\Theta} s = \sigma_{\Theta} (r |x| s)$

Operaciones de Updates:

- Agregar tuplas
 - r ← r ∪ E (r relación y E nueva tupla
 - Deportes ← deportes ∪ ("golf", 5000, 21)
- Eliminar tuplas
 - \bullet r \Leftarrow r E
 - Deportes ← deportes ("bochas", 500, 1)
- Actualización de datos
 - $\delta_{A \leftarrow E}(r)$
 - Ej: $\delta_{\text{saldo}} \in \text{saldo} * 1.05$ (depósito)

Ejercicios

Dadas las siguientes tablas

Cliente (id_cliente, nombre_cliente, renta_anual, tipo_cliente)

Embarque (embarque_#, id_cliente, peso, camión_#, destino, fecha)

Camión (camión_#, nombre_chofer)

Ciudad (nombre_ciudad, población)

- Resolvamos en AR
- 1. Cvál es el nombre del cliente 433?
- 2. Presente todos los datos de los embarques de más de 20 kg?
- 3. Cual es el 1d del cliente José García?
- Cuales son los números de los camiones que han llevado paquetes (embarques) por encima de 100 kg?
- 5. Clientes que tuvieron embarques de mas de 100 kg con destino Córdoba
- 6. Incremetar el peso de los envios a cordoba un un 50%
- 7. Mostrar los clientes con envíos a Tucuman y que tengan renta anual superior a 200.000\$

ejercicios

Cuál es el nombre del cliente 433?

```
\pi_{\text{nombre}} (\sigma_{\text{id\_cliente= 433}} ( clientes ) )
```

Presente todos los datos de los embarques de más de 20 kg?

```
\pi_{embarque\_\#,\,idcliente,\,peso,\,camion\_\#,\,destino,\,fecha} ( \sigma_{peso>20} ( embarques) )
```

Cual es el ld del cliente José García?

$$\pi_{\text{idcliente}}$$
 ($\sigma_{\text{nombre= "jose Garcia"}}$ (clientes))

Cuales son los números de los camiones que han llevado paquetes (embarques) por encima de 100 kg?

$$\pi_{\text{camion}_{\#}}$$
 ($\sigma_{\text{peso>100}}$ (embarques))

Ejercicios

Clientes que tuvieron embarques de mas de 100 kg con destino Córdoba

```
\pi_{\text{nombre}}(\sigma_{\text{peso}>100 \text{ and destino}} = \text{"cordoba"}(\text{clientes} \mid x \mid \text{embarques})
```

Incremetar el peso de los envios a cordoba un un 50%

$$\delta_{\text{peso}} \leftarrow \text{peso} * 1.5 \left(\sigma_{\text{destino}} = \text{"Cordoba"} \left(\text{embarques} \right) \right)$$

Mostrar los clientes con envíos a Tucuman y que tengan renta anual superior a 200.000\$

 $\pi_{\text{nombre}}(\sigma_{\text{renta anuall}} > 200000 \text{ and destino} = "tucuman"}(\text{clientes} | x | \text{ embarques})$