BEST AVAILABLE COPY

WO 2005/009358

1/11

PCT/US2004/022830

SEQ ID NO.	Peptide	Sequences
	PTH(1-14) peptides	
26	PTH(1-14)NH ₂ (native, rat)	Ala-Val-Ser-Glu-lle-Gln-Leu-Met-His-Asn-Leu- Gly-Lys-His-NH2
27	[Ala, 3,12, Gln ¹⁰ , Har ¹¹ , Trp ¹⁴]PTH(1-14)NH ₂	Ala-Val-Ala-Glu-lle-Gln-Leu-Met-His-Gln-Har-Ala- Lys-Trp-NH2
14	[Ac ₃ c ¹ ,Aib ³ ,Gln ¹⁰ ,Har ¹¹ ,Ala ¹² ,Trp ¹⁴]PTH(1-14)NH ₂	Ac3c-Val-Aib-Glu-Ile-Gln-Leu-Met-His-Gln-Har- Ala-Lys-Trp-NH2
15	[desNH2-Ac ₅ c ¹ ,Aib ³ ,Gln ¹⁰ ,Har ¹¹ ,Ala ¹² ,Trp ¹⁴]PTH(1-14)NH ₂	(desNH2)Ac3c-Val-Aib-Glu-Ile-Gln-Leu-Met-His- Gln-Har-Ala-Lys-Trp-NH2
16	[desNH2-Aib ¹ ,Aib ³ ,Gln ¹⁰ ,Har ¹¹ ,Ala ¹² ,Trp ¹⁴]PTH(1-14)NH ₂	(desNH2)Aib-Val-Aib-Glu-Ile-Gln-Leu-Met-His- Gln-Har-Ala-Lys-Trp-NH2
17	[Ac,c ¹ ,Trp ² ,Aib ³ ,Gln ¹⁰ ,Har ¹¹ ,Ala ¹² ,Trp ¹⁴]PTH(1-14)NH ₂	Ac ₅ c-Trp-Aib-Glu-Ile-Gln-Leu-Met-His-Gln-Har- Ala-Lys-Trp-NH ₂
18	[Ac,c ¹ ,Bpa ² ,Aib ³ ,Gln ¹⁰ ,Har ¹¹ ,Ala ¹² ,Trp ¹⁴]PTH(1-14)NH ₂	Ac ₃ c-Bpa-Aib-Glu-Ile-Gln-Leu-Met-His-Gln-Har- Ala-Lys-Trp-NH ₂
19	[Ac ₅ c ¹ ,Arg ² ,Aib ³ ,Gln ¹⁰ ,Har ¹¹ ,Ala ¹² ,Trp ¹⁴]PTH(1-14)NH ₂	Ac ₅ c-Arg-Aib-Glu-Ile-Gln-Leu-Met-His-Gln-Har- Ala-Lys-Trp-NH ₂
20	[Deg ^{1,3} ,Gln ¹⁰ ,Har ¹¹ ,Ala ¹² ,Trp ¹⁴]PTH(1-14)NH ₂	Deg-Val-Deg-Glu-Ile-Gln-Leu-Met-His-Gln-Har- Ala-Lys-Trp-NH ₂
21	[Deg ^{1,3} ,Trp ² ,Gln ¹⁰ ,Har ¹¹ ,Ala ¹² ,Trp ¹⁴]PTH(1-14)NH ₂	Deg-Trp-Deg-Glu-Ile-Gln-Leu-Met-His-Gln-Har-Ala-Lys-Trp-NH2
22	[Deg ^{1,3} ,Bpa ² ,Gln ¹⁰ ,Har ¹¹ ,Ala ¹² ,Trp ¹⁴]PTH(1-14)NH ₂	Deg-Bpa-Deg-Glu-Ile-Gln-Leu-Met-His-Gln-Har- Ala-Lys-Trp-NH2
23	[Ac ₅ c ¹ ,Trp ² ,Aib ³ ,Nle ⁸ ,Gln ¹⁰ ,Har ¹¹ ,Ala ¹² ,Tyr ¹⁴]PTH(1-14)NH ₂	Ac ₅ c-Trp-Aib-Glu-Ile-Gln-Leu-Nle-His-Gln-Har- Ala-Lys-Tyr-NH ₂
24	[Ac ₃ c ¹ ,Bpa ² ,Aib ³ ,Nle ⁸ ,Gln ¹⁰ ,Har ¹¹ ,Ala ¹² ,Tyτ ¹⁴]PTH(1-14)NH ₂	Ac ₃ c-Bpa-Aib-Glu-Ile-Gln-Leu-Nle-His-Gln-Har- Ala-Lys-Tyr-NH ₂
25	[Deg ¹³ ,Bpa ² ,Nle ⁸ ,Gln ¹⁰ ,Har ¹¹ ,Ala ¹² ,Trp ¹⁴ ,Arg ¹⁹ ,Tyr ²¹]PTH(1- 21)NH ₂	Deg-Bpa-Deg-Glu-Ile-Gln-Leu-Nle-His-Gln-Har-Ala-Lys-Trp- Leu-Ala-Ser-Val-Arg-Arg-Tyr -NH2
	N-truncated peptides	
28	[Aib ³ ,Nle ⁸ ,Gln ¹⁰ ,Har ¹¹ ,Ala ¹² ,Trp ¹⁴ ,Arg ¹⁹ ,Tyr ²¹]PTH(3-21)NH ₂	Aib-Glu-Ile-Gln-Leu-Nle-His-Gln-Har-Ala-Lys-Trp- Leu-Ala-Ser-Val-Arg-Arg-Tyr-NH ₂
29	[Ile ⁵ ,Trp ²⁵ ,Tyr ³⁶]PTHrP(5-36)NH ₂	Ile-Gln-Leu-Leu-His-Asp-Lys-Gly-Lys-Ser-Ile-Gln-Asp-Leu-Arg-Arg-Arg-Phe-Phe-Leu-His-His-Leu-Ile-Ala-Glu-Ile-His-Thr-Ala-Glu-Tyr*-NH2
31	[Ile ³ ,Leu ¹¹ ,D-Trp ¹² ,Trp ²³ ,Tyr ³⁶]PTHrP(5-36)NH ₂	Ile-Gln-Leu-Leu-His-Asp-Leu-DTrp-Lys-Ser-Ile-Gln-Asp-Leu-Arg-Arg-Arg-Phe-Phe-Leu-His-His-Leu-Ile-Ala-Glu-Ile-His-Thr-Ala-Glu-Tyr-NH ₂
	123I-PTH tracer radioligand	
32	[Aib ^{1,3} ,Nle ⁸ ,Gln ¹⁰ ,Har ¹¹ ,Ala ¹² ,Trp ¹⁴ ,Tyr ¹⁵]PTH(1-15)NH ₂	Aib-Val-Aib-Glu-Ile-Gln-Leu-Nle-His-Gln-Har-Ala- Lys-Trp-Tyr*-NH ₂

		IC ₅₀		
			nM	n
	30	#	7	3
	4,500	Ŧ	700	4
	1,800	#	100	4
	25,000	±	2,000	4
	770	±	110	4
	1,400	±	200	4
	230	±	50	3
	2,700	±	300	3
	840	±	110	3
+		-		
	4.8	±	0.8	3
	5.5	±	1.0	3
	750	±	90	3
)	18	±	4	3
		230 2,700 840 4.8 5.5 750	230 ± 2,700 ± 840 ± 4.8 ± 5.5 ± 750 ±	1,400 ± 200 230 ± 50 2,700 ± 300 840 ± 110 4.8 ± 0.8 5.5 ± 1.0 750 ± 90 18 ± 4

Figure 2

Figure 3

Functional Responses in HKRK-B28 Cells. Binding (A and B) and cAMP agonism/partial agonism assays (C) were performed in HKRK-B28 cells. The parent peptide was [AC5C1,Aib3,GIn10,Har11,Ala12,Trp14]PTH(1-14)NH2 and derivatives thereof were substituted at positions 1, 2 and/or 3, as indicated. Binding assays (4h @ 15©) were performed with ¹²⁵I-[Aib1,3,Nle8,GIn10,Har11,Ala12,Trp14,Tyr15]PTH(1-15)NH2 tracer. cAMP assays were performed at RT for 30 min. Relative to the parent, the substituted analogs lack appreciable agonist activity.

Figure 4

cAMP Responses in HKRK-B28 Cells. The parent peptide, [AC5C1,Aib3,Gln10,Har11,Ala12,Trp14]PTH(1-14)NH2, and derivatives thereof substituted at positions 1, 2 and/or 3, as indicated, were assayed for cAMP agonist responses in HKRK-B28 cells. The parent peptide functions as a fully potent and efficacious agonist, the Deg1,3-substituted analog is a partial agonist, and the Bpa2-substituted analogs lack agonist activity.

Figure 5

Antagonism Assays in HK-RK-B28 Cells. cAMP antagonism assays were performed in HKRK-B28 cells. Cells were treated with the J domain-selective agonist, [AC5C1,Aib3,GIn10,Har11,Ala12,Trp14]PTH(1-14)NH2 (parent) at 10 nM, either alone (none) or with a candidate antagonist peptide (10 μ M), which was a derivative of the parent PTH(1-14) peptide substituted at positions 1, 2 and/or 3, as indicated. Asterisks indicate significant reductions in cAMP levels, as compared to cells not treated with antagonist (none).

Figure 6

* P < 0.05, ** P < 0.005, *** P < 0.0005

Antagonism Assays in COS-7 Cells. cAMP antagonism assays were performed in COS-7 cells transfect with the wild-type P1R (A), or a constitutively active P1R derivative having the first 9 residues of PTH tethered to TM1 of the P1R and in place of the P1R N-terminal domain (inset), B). In A, cells were treated with the J domain-selective agonist, [AC5C1,Aib3,GIn10,Har11,Ala12,Trp14]PTH(1-14)NH2 (parent) at 1 nM, alone (none) or with a candidate antagonist peptide (10 μ M), which was a derivative of the parent PTH(1-14) peptide substituted at positions 1, 2 and/or 3, as indicated, or [I5,W23,Y36]PTHrP(5-36) analog. Asterisks indicate significant reductions in cAMP levels, as compared to cells not treated with antagonist (none).

Figure 7

* P < 0.05, ** P < 0.005, *** P < 0.0005

Inverse Agonist Responses in COS-7 Cells. COS-7 cells were transfect with the constitutively active P1Rs: P1R-H223R (A), P1R-T410P (B), P1R-H223R/T410P (C), or P1R-I458R (D) and then were incubated (30 min@R.T.) either in the absence of peptide (none) or in the presence of the indicated antagonist/inverse agonist peptide (10 μ M), and cAMP was measured by RIA. Asterisks indicate significant reductions in cAMP levels, compared to untreated cells (none).

"N" versus "J" Domain selectivity of PIR Antagonists in COS-7 Cells. cAMP antagonism assays were performed in COS-7 cells transfect with the wild-type P1R (A), or a P1R derivative (P1R-delNt) having most (residues 24-181) of the P1R N domain deleted (B). Cells were treated with the agonist [Aib1,3,Tyr34]hPTH(1-34)NH2 ([Aib1,3]PTH(1-34)), which utilizes both N and J domains for affinity/potency, or with [AC5C1,Aib3,Gln10,Har11,Ala12,Trp14]PTH(1-14)NH2 ([Ac5c1]PTH(1-14)), which uses only the J domain for affinity/potency, at the concentrations indicated in the key, so as to elicit half-maximum cAMP responses in the absence of antagonist (none). The analogs PTHrP(5-36) and Deg1,3,Bpa2-PTH(1-21) were added at 1x10-5 M, as indicated. On the WT receptor, PTHrP(5-36) antagonizes PTH(1-34) analog more effectively than does Deg1,3,Bpa2-PTH(1-21), but the PTH(1-21) analog antagonizes PTH(1-14), more effectively than does PTHrP(5-36). On P1R-delNt, Deg1,3,Bpa2-PTH(1-21) antagonizes either agonist, whereas PTHrP(5-36) lacks antagonist capability. Thus, PTHrP(5-36) is an N domain-selective antagonist, whereas Deg1,3,Bpa2-PTH(1-21) is a J domain-selective antagonist. The analog Deg1,3,Bpa2-PTH(1-14) behaved similarly in these assays to Deg1,3,Bpa2-PTH(1-21).

Figure 9

Competition Binding Assays in HKRK-B7 Cells. Binding assays were performed in HKRK-B7 cells, which express the wild-type hP1R, using ¹²⁵I- [Aib1,3,Nle8,Gln10,Har11,Ala12,Trp14,Tyr15]PTH(1-15)NH2 as a tracer radioligand and the indicated unlabeled peptides as competitors. PTH(1-34) is [Tyr34]hPTH(1-34)NH2.

Figure 10

Competitive Antagonism on P1R-delNt. COS-7 cells transfected with P1R-delNt were stimulated with varying concentrations of the agonist [Aib1,3,Tyr34]hPTH(1-34)NH2 ([Aib1,3]PTH(1-34)), either in the absence of antagonist (green circles) or In the presence of an antagonist, [Deg1,3,Bpa2,M]PTH(1-14) (red circles) or [Deg1,3,Bpa2,M]PTH(1-21) (yellow squares) each at 1x10-5 M, as indicated in the figure key. Each antagonist causes a parallel, right-ward shift in the agonist dose-response curve, which is consistent with a competitive mechanism of inhibition.

Figure 11

Two Modes of Competitive Inhibition at the P1R. Two modes of antagonism are now recognized at the P1R. N domain inhibition (A) is utilized by most conventional P1R antagonists, such as PTHrP(5-36) and PTHrP(7-34) analogs, and is based on the derivation of binding energy primarily from interactions between the (21-34) region of the ligand and the P1R N domain. This mechanism is effective for of inhibition of N-domain-dependent agonists, such as PTH(1-34), but not for N domain-independent agonists, such as PTH(1-14). J domain inhibition (B) is utilized by the novel analogs described herein, and is based on the derivation of binding energy primarily or wholly from interactions between the (1-20) region of the ligand and the J domain of the P1R. This mechanism is effective for inhibition of J-domain-dependent agonists, such as PTH(1-14) analogs, but not for N domain-dependent agonists, such as PTH(1-34). A J domain-selective antagonists would be useful for characterizing small-molecules that act as PTH mimetics, since such molecules are likely to bind to the J domain.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY