Øvelse 09 - Abstract classes

Optimering

- 1) Opret funktionen findMinimum(double init, double lr, int iterations)
 - a) Skriv en funktion der kan optimere parablen $f(x) = x^2 + 2x + 3$ vha. gradient descent. Udnyt at gradienten kan beregnes analytisk
 - Obs. Det kan være en stor hjælp til debugging at udskrive både x og f(x) i hver iteration
 - b) Init er start gæt, lr er learning rate og iterations er antallet af iterations
 - c) Kald findMinimum fra main klassen ved at benytte init=4, lr=0.3, iterations=20
 - d) Udskriv x værdien for minimumet (korrekt løsning er x*=-1)
- 2) I skal nu omskrive findMinimum således at den kan optimere en vilkårlig funktion ved at programmere direkte til interfacet Func
 - a) Opret klassen Func der indeholer de pure virtual metoder:
 - virtual double getf(double x) = 0; virtual double getdfdx(double x) = 0;
 - b) Opret klassen Parabola, som nedarver fra Func og implementerer både getf og getdfdx.
 - getf skal returnere værdien af ax^2+bx+c
 - getdfdx skal returnere den analytiske gradient
 - Klassen skal have en constructor der sætter a,b og c i (en parabels ligning er a^2 + bx + c)
 - c) Opret funktionen findMinimum(Func * f, double init, double lr, int iterations)
 - d) Opret en instans af Parabola med a=1, b=2 og c=3.
 - e) Kald findMinimumem fra main klassen med en pointer til den oprettede instans af Parabola, init=4, lr=0.3, iterations=20
 - f) Udskriv x værdien for minimumet (korrekt løsning er x*=-1)
- 3) I skal nu finde minimum af en parabel vha. en gradient fundet ved central difference metoden:
 - a) Opret klassen NumFunc som nedarver fra Func
 - Den skal implementere getdfdx og have en metode til at sætte dx.
 - Obs. klassen er en abstrakt klasse idet getf som nedarves fra Func stadig er en pure virtual klasse
 - b) Opret klassen Parabola_num som nedarver fra NumFunc
 - Den skal have en konstruktor der initialiserer a,b, og c
 - Den skal implementere getf(double x) som returerer værdien af ax^2+bx+c .
 - c) Kald findMinimum fra main klassen ved at benytte init=4, lr=0.3, iterations=20 og sæt dx=0.1
 - d) Udskriv x værdien for minimumet (korrekt løsning er x*=-1)
- 4) Sidste del af opgaven er at løse ligningen $e^{(-x)} = x^2$
 - a) Operet klassen SolverEq
 - 1. Den skal implementere getf(double x) og retunere squared error $E(x)^2$ (se forelæsningsslides)
 - b) kald findMinimum med init=0.5, lr=0.1, iterations=30
 - 1. Obs. dx skal sættes til 0.01
 - 2. Løsningen er $x^* \approx 0.703$