Splines Hermite

mini-Projet noté

Nous avons défini les polynômes d'interpolation Hermite en cours par

$$P(t) = P_0 H_0(t) + P_1 H_1(t) + m_0 H_2(t) + m_1 H_3(t), \quad t \in [0, 1], \tag{1}$$

où P(t) est l'unique polynôme cubique interpolant les points P_0 , P_1 et les tangentes (dérivées) m_0 et m_1 aux paramètres 0 et 1, et H_i , i = 0, 1, 2, 3 étant les polynômes d'Hermite cubiques.

Les Splines Hermite cubiques sont des courbes C^1 polynomiales de degré 3 par morceaux interpolant N+1 points P_k et tangentes m_k , $k=0,\ldots,N$ aux paramètres respectifs u_0,\ldots,u_N . Ils sont définis par

$$P(u) = P_k H_0(t) + P_{k+1} H_1(t) + (u_{k+1} - u_k) m_k H_2(t) + (u_{k+1} - u_k) m_{k+1} H_3(t), \ u \in [u_0, u_N]$$
(2)

avec $t = \frac{u - u_k}{u_{k+1} - u_k} \in [0, 1]$. On note t paramètre locale et u paramètre global.

Ces courbes splines sont typiquement utilisées pour l'interpolation de points (P_k, u_k) par une courbe lisse. Les tangentes m_k ne sont généralement pas données et doivent être estimées à partir des données en entrée. La formule (1) peut être appliquée à chaque intervalle $[u_k, u_{k+1}]$ séparément. La courbe spline résultante sera continue et aura des dérivées continues $(C^1$ -spline).

Problème à résoudre:

Soient N+1 points de \mathbf{R}^2 donnés et leur paramètre associé, $(\mathbf{P}_k,u_k), k=0,\ldots,N$. On cherche une courbe spline Hermite cubique \mathbf{P} interpolant les points \mathbf{P}_k aux paramètres u_k . On visualisera la "qualité" de la courbe. Optionellement, on pourrait comparer les Hermite splines avec d'autres méthodes d'interpolation.

Travail demandé (en binôme):

- Implémentation de splines Hermite sous forme Bézier, visualisation de la qualité, (et en option: comparaison avec Lagrange et splines C².
- Un rapport écrit (dactylographié ou à la main).
- Soutenance orale, vendredi ????, inscription sur Teide.
- Dépot sur Teide (code et rapport) dans un fichier votre-nom.zip avant le ???

1. On choisira une paramétrisation équidistante: $u_k = k$ pour $k = 0, \dots, N$. Ecrivez la spline Hermite (2) sous forme Bézier, où

$$P_{[u_k,u_{k+1}]}(u) = x_k(t) = \sum_{i=0}^{3} b_{3k+i} B_i^3(t), \quad u \in [u_0,u_N]$$

avec
$$t=\frac{u-u_k}{u_{k+1}-u_k}\in [0,1].$$

- 2. Faites un dessin pour deux polygones de contrôle consécutifs, x_k et x_{k+1} , en y ajoutant les points de contrôle avec leur indice respectif et les données pour les paramètres u_k, u_{k+1} , et u_{k+2} .
- **3.** En pratique les tangentes m_k ne sont pas données en entrée. Il faut les estimer raisonnablement. Une solution connue sont les:
 - Cardinal splines:

$$m_k = (1-c)\frac{P_{k+1} - P_k}{u_{k+1} - u_k}, \quad k = 0, \dots, N-1, \quad c \in [0, 1]$$

où c est un paramètre de tension. Pour c=1 les tangentes sont nulles, pour c=0 on retrouve des courbes splines connues sous le nom **Catmull-Rom**.

Comme c'est le cas pour toute estimation de dérivée par différences finies, la formule ne s'applique pas aux extrémités. A vous de faire un choix raisonnable ici pour définir m_N .

- Essayez de proposer d'autres estimations de m_k , voir question 4.3.
- 4. Implémentez les splines Hermite en Matlab (Scilab) et permettez à l'utilisateur d'interagir. Des pistes possibles sont:
 - entrer les points $oldsymbol{P}_k$ à la souris,
 - choix de $m{m}_0$ et $m{m}_N$ avec la souris, ou choix automatique "raisonnable",
 - choix du paramètre c,
 - visu d'une seule courbe ou superposition de plusieurs courbes,
 -autres

Attention à une visualisation lisible (choix des couleurs, type et épaisseur des traits,)

- 4.1 Que constatez-vous quand vous faites varier le paramètre c?
- **4.2** Comment jugez-vous la qualit'é du r'ésultat obtenu avec les Cardinal splines? Voici quelques pistes de réflexion: Est-ce que la courbe est lisse? ou a t'elle des ondulations non désirées? préserve t'elle la forme décrite par les points à interpoler, p.ex. un polygone convexe en entrée résulte-t'il en une spline convexe en sortie?
- **4.3 En option:** Les choix des tangentes m_k est détermonante pour la forme de la spline? Essayez de trouver une meilleure formule d'estimation des tangentes et implémetez-la.
- 5. Visualisez la fonction de courbure, soit par un
 - plot du graphe de courbure: $\kappa(u)$, soit par un
 - plot de la courbe et sa courbe focale $f(u) = P(u) + \alpha \kappa(u) \cdot n(u)$, où $\alpha \in \mathbb{R}$ (à bien choisir) et n le vecteur normal (unitaire).
 - **5.1** Qu'observez-vous quand le paramètre c varie?
 - 5.2 Qu'observez-vous quand le choix des tangentes m_k varie selon votre réponse en 4.3?
 - **5.3** A votre avis, pourquoi un plot de courbures est considéré comme un indicateur de qualité d'une courbe?
- 6. Utilisez votre programme pour créer un dessin d'un objet de votre choix.

En option:

7. Implémentez l'interpolation Lagrange (p.ex. algorithme Aitken-Neville) et comparez avec les splines Hermite. Qu'observez-vous?

Super Bonus:

- 8. Implémentez les splines cubiques C^2 (paramétrisation équidistante pour simplifier) et comparez avec les splines Hermite et polynôme de Lagrange. On peut aussi comparer leurs plots de courbure.
- 9. Laquelle des 3 méthodes d'interpolation est la meilleure? pourquoi?

Votre rapport doit contenir

- · la formulation mathématique du problème et de sa solution,
- · les réponses aux questions 1 à 6 (7,8),
- · vos résultats obtenus (avec un grand nombre d'illustrations et d'exemples !!)
- · vos comparaisons, vos observations, vos remarques éventuelles, etc.