Домашнее задание 4, Павливского Сергея, 873.

- 0. Прочитайте в конспекте про полиномиальную иерархию (до пространственной сложности, про \mathcal{PSPACE} пока можно не читать).
- 1. (i) Докажите, что в Σ_2 лежит язык булевых формул от двух наборов переменных $\phi(x_1,\dots,x_n,y_1\dots y_n)=\phi(\vec x,\vec y)$ таких, что при некоторых значениях $\vec x$ они справедливы вне зависимости от значений y_1,\dots,y_n .

Решение:

Собственно, в условии и записано определение Σ_2 - существует МТ, для которой при заданной булевой формуле существует сертификат $(x_1,...,x_n)$, для которого для любого сертификата $(y_1,...,y_n)$ булева формула разрешается данной МТ.

(ii) Придумайте какую-нибудь свою задачу из класса Σ_3 (или Π_3 , на ваш вкус).

Решение:

Ну, например, булева формула от трех наборов переменных $\phi(x_1,...,x_n,y_1)$ $\phi(\vec{x},\vec{y},\vec{z})$ таких, что для \vec{x} для любого \vec{y} существует \vec{z} , такой что ϕ полиномиально вычислима. Пример так же в точности соответствует определению требуемого языка Σ_3 .

(iii) Докажите, что $\Sigma_k \subset \Sigma_{k+1} \cap \Pi_{k+1}$.

Решение:

 Σ_k очевидно принадлежит Σ_{k+1} (R_k может просто игнорировать y_{k+1} верификатор). По аналогичным причинам Σ_k принадлежит $\Pi k + 1$. Значит $\Sigma_k \subset \Sigma_{k+1} \cap \Pi_{k+1}$.

Что и требовалось

2 (Доп). Покажите, как свести следующую задачу к вычислению некоторого перманента: найти количество перестановок п элементов, в которых части элементов (с номерами $i_1, i_2, ... i_k$) запрещено занимать позиции $j_1, ... j_k$ соответственно.

Решение:

Возьмем матрицу A nxn такую, что если i-й элемент может стоять на j-й позиции, то A[i][j]=1, иначе A[i][j]=0 . Тогда из определения

разложения перманента по строке, перманентом как раз и будет являться число таких комбинаций, что ни один из элементов не стоит на запрещенном месте (иначе соответствующий ему элемент в перманенте равен 0, и всеь перманент равен 0).

$$Per(A) = \sum_{\alpha_1, \alpha_2, \dots, \alpha_n} a_{1\alpha_1} a_{2\alpha_2} \dots a_{n\alpha_n}$$

3. а) Верно ли что язык 5- Δ НФ- Λ является полиномиально полным в со- \mathcal{NP} ?

Язык 5- Δ H Φ - Λ состоит из всех формул в дизъюнктивной нормальной форме, принимающих истинное значение при каких-то значениях переменных, в каждый конъюнкт которых входит не более пяти переменных.

Решение:

Нет, не верно. 5- Δ H Φ - $\Lambda \in P$ (аналогично пункту в)). Тогда если бы он был со-NP-с, то все со-NP языки бы разрешались за полином, т. е. P было бы равно со-NP, а значит и равно NP, что неверно в силу официальных гипотез.

б) Верно ли что язык 5-КНФ- Λ является полиномиально полным в \mathcal{NP} ?

Язык 5-КНФ- Λ состоит из всех формул в конъюнктивной нормальной форме, принимающих ложное значение при каких-то значениях переменных, в каждый дизъюнкт которых входит не более пяти переменных.

Решение:

Как показано в пункте в) проверка КНФ (а вместе с ней и сводящейся в к ней 5-КНФ- Λ) на тавтологичность \in Р. Тогда из 5-КНФ- $\Lambda \in$ NP-c следовало бы P= NP, что противоречит официальной гипотезе.

Можно использовать гипотезы \mathcal{P} not = \mathcal{NP} и \mathcal{NP} not = co- \mathcal{NP} .

в) Расставьте и обоснуйте \mathcal{P} , $\mathcal{NP}-$ complete, со $-\mathcal{NP}-$ complete:

	Выполнимость	Тавтологичность
КНФ	NP-c	P
ДНФ	Р	co-NP-c

Под выполнимостью понимается задача проверки наличия набора

значений переменных, на котором формула равна 1. Под тавтологичностью понимается задача проверки свойства формулы принимать значение 1 на всех наборах.

CNF-SAT \in NP-с (обсуждалось на семинарах) - выполнимость (ну или просто сказать, что 3CNF к ней сводится мощнейшей формулой, которая не меняет ничего в CNF)

DNF-выполнимость \in P, так как можно просто за квадрат перебрать все элементы каждого конъюнкта, проверив их на непротиворечивость, и за линию повторить это доля каждого конъюнкта (итого за куб).

Тавтологичность CNF сводится за полином к задаче выполнимости DNF взятием отрицания от CNF: отрицание CNF, очевидно, выполнимо тогда и только тогда, когда исходная CNF не тавтологична.

Аналогично, сведем к задаче тавтологичности DNF задачу выполнимости КНФ: отрицание NP-с - это со-NP-с, т.е. мы можем свести со-NP-с к задаче тавтологичности DNF, т. е. эта задача со-NP-hard. Если теперь также заметить, что эта задача \in со-NP (сертификатнабор значений, на которых формула обращается в 0), то отсюда следует, что задача тавтологичности DNF со-NP-с.

4. Найдите Θ -асимптотику суммы $\sum_{k=1}^n \sqrt{k}$, оценив её с помощью интеграла $\int_1^n \sqrt{x} dx$ сверху и снизу. Выведите аналогичную формулу для асимптотики $\sum_{k=1}^n k^\alpha$ для $\alpha>0$.

Решение:

Из графика функции $y=\sqrt{x}$ видно , что из ее монотонного роста и всюду одинаковой выпуклости $\int_{k-1}^k \sqrt{x} dx < \sqrt{k} < \int_k^{k+1} \sqrt{x} dx$ (1) (действительно, первый интеграл ограничивается сверху площадью прямоугольника с высотой равной верхней границы интеграла и основанием равным длине интегрируемого промежутка, в то время как сам прямоугольник ограничивается сверху площадью криволинейной трапеции с таким же основанием, такой же левой верхней границей, что и прямоугольника, но у которой верхняя граница возрастает). Тогда заметим, что $\int_1^n \sqrt{x} dx = \sum_{k=1}^{n-1} \int_k^{k+1} \sqrt{x} dx$. Тогда сум-

мируя неравенство (1) по k от 1 до n имеем:

$$\begin{array}{l} \frac{2}{3}n^{\frac{3}{2}} = \int_{0}^{n}\sqrt{x}dx = \sum_{k=1}^{n}\sqrt{k} = \int_{1}^{n+1}\sqrt{x}dx = \frac{2}{3}(n+1)^{\frac{3}{2}} - \frac{2}{3} < \frac{2}{3}(n+1)^{\frac{3}{2}} < \frac{2}{3}(2n)^{\frac{3}{2}} < 2^{\frac{5}{2}}n^{\frac{3}{2}} \end{array}$$

$$\textstyle\sum_{k=1}^n \sqrt{k} = \theta(n^{\frac{3}{2}}$$

По аналогии, $\forall \alpha>0 \Rightarrow \int_{k-1}^k x^\alpha dx < k^\alpha < \int_k^{k+1} x^\alpha dx$. Тогда действуя так же получаем, что $\sum_{k=1}^n k^\alpha = \theta(n^{\alpha+1})$.

Что и требовалось

- 5. Останется ли 3-SAT полной, если ограничиться формулами, в которых каждая переменная входит не более 3 раз, а каждый литерал— не более 2 раз?
- а) Под 3 SAT понимается НЕ-БОЛЕЕ-3 SAT.

Решение:

Извернемся через хвост:

Нам нужно, чтобы каждая переменная входила не более 3 разтогда заменим часть вхождений каждой переменной в исходную формулу и на новую переменную, и дополним формулу конструкцией , которая будет накладывать связь на новые переменные . Необходима выполнимость формулы только если каждая переменная по значению равна замененному литералу - сделаем кольцевую конструкцию $(x_i \vee \overline{a_{i0}}) \wedge (a_{i0} \vee \overline{a_{i1}}) \wedge ... \wedge (a_{ik} \vee \overline{x_i})$. Видно, что она выполняется лишь когда все переменные в нее входящие равны. Она содержит 2 вхождения исходной переменной, по 2 вхождения новой переменной, тогда в исходной формуле можно заменять все x_i кроме одного, тогда всех переменных после дополнения формулы вышеописанной конструкцией будет 3 переменных, и, поскольку в конструкцию для каждой переменной входит по 2 разных литерала, то по принципу Дирихле в объединенной формуле будет не более 2-х вхождений одного литерала и не более 3-х вхождений одной переменной. Т. е. сводимость:

- для каждой переменной все ее вхождения кроме одного заменить на соответствующую переменную
- построить вышеописанную конструкцию
- сделать конъюнкцию формулы с замененными переменными с конструкцией

Если исходная формула выполняется, то в новой возьмем значения заменных переменных такие же, как и у литерала, от которого они были образованы. Тогда новая формула также выполняется.

Если новая формула выполняется, то все переменные равны своим заменам, значит исходная формула выполняется на поднаборе $\{x_i\}_{i=1}^n$. Что и требовалось

- б) (Бонусная задача) Покажите, что если имеется в виду РОВНО-3-SAT, то не бывает невыполнимых формул указанного вида.
- 6. Постройте сводимость по Карпу языка (G,k) графов, в которых есть k-клика к языку графов, в которых есть клика хотя бы на половине вершин.

Решение:

Пусть в графе $\mathfrak n$ вершин. Добавим еще $\mathfrak n-2k$ вершин, и соединим их со всеми остальными.

Докажем корректность сводимости.

 \Rightarrow если в исходном графе есть k-клика , то, т. к. все добавленные вершины будут соединены с вершинами этой клики, то в новом графе будет клика на новых вершинах и k старых из n-2k+k=n-k вершин , т. е. хотя бы половина вершин нового графа.

 \Leftarrow если в новом графе есть клика из хотя бы половины вершин, т. е. n-k вершин, то хотя бы k вершин из них являются вершинами исходного графа (если их < k, то, т. к. новых n-2k, то всего вершин в клике < n-2k+k=n-k?!), а тогда по определению клики они все соединены между собой, т. е. образуют в исходном графе k-клику.

Что и требовалось

7. Покажите, что если всякий \mathcal{NP} -трудный язык является \mathcal{PSPACE} -трудным, то $\mathcal{NP} = \mathcal{PSPACE}$.

Решение:

Так как любой NP-с язык также NP-hard, то найдется NP язык, который PSPACE-hard (по определению NP-с). Тогда от любого PSPACE языка мы можем вместе с ним подать на вход сертификат для соответсвующего NP языка, вычислить полиномиальную сводящую функцию, затем с помощью сертификата проверить принадлежность NP

языку за полином, которая будет равносильная принадлежности исходного языка PSPACE. Тогда любой PSPACE язык NP по определению.

Любой NP является PSPACE (иерархия была на лекциях; ну или можно сказать, что PSPACE не задает условия на время работы, поэтому можно взять полиномиальный от длины слова промежуток памяти и перебрать на нем перебрать все варианты, ибо МТ для NP использует полиномиальное число ячеек памяти, т. к. на задействование одной ячейки нужен хотя бы один такт МТ, и в случае неполиномиального числа ячеек памяти и время работы было бы неполиномиальным).

Из включения в обе стороны следует равенство языков.