

Extended or long form of periodic table

61. (b) Nitrogen

Count electrons:

2+8+18+5=33.

 \rightarrow Atomic number = 33, element = Arsenic (As).

Outer configuration = $ns^2 np^3$ (here: $4s^2 4p^3$).

This corresponds to Group 15 (Nitrogen family / Pnictogens).

So the chemistry of As will be similar to Nitrogen (N, group 15).

- **62.** (b) A representative element as last e⁻enters p-orbital.
- **63.** (a) The configuration represents on alkaline earth metals.
- 64. (c) Atomic number of the atom

Modern (long form) periodic law: "The physical and chemical properties of elements are a periodic function of their **atomic number**."

Not based on shape, mass, or electronegativity.

65. (a) First group

e.g. $NaCl + H_2O \rightleftharpoons NaOH + HCl$

66. (d) Arranged in the order of increasing number of protons in the nucleus Old tables (Mendeleev's) → based on atomic weight.

Modern periodic law \rightarrow based on atomic number = number of protons in the nucleus.Hence:

67. (d) Number of electrons in the outermost shell or number of electrons for bonding

Atomic number → different for each element.

IIT-JEE CHEMISTRY

Electronic configuration → inner parts differ, but valence shell configuration is the same.

Atomic weight → increases down the group.

Valence electrons (outermost electrons) → remain constant within a group → define bonding.

- **68.** (a) lonic bond is formed when there is large difference of electro-negativities between the atoms.
- **69.** (c) d-block $[Ar]3d^{1}4s^{2}$
- **70.** (d) Be: $1s^2 2s^2$
- **71.** (c) Increasing atomic number. Mosley found that atomic no. was better fundamental property than atomic weight.
- 72. (b) Lowest ionisation energy due to largest size.
- 73. (c) Elements on the right side of the periodic table are p-block. Mostly non-metals.

ESTD: 2005

- **74.** (c) Screening effect of d and f block elements is nearly same.
- 75. (a) Atomic number

Chemical behaviour depends on **valence electrons**, which are decided by the **atomic number (Z = number of protons/electrons)**.

Mass number, binding energy, or number of isotopes do not directly control chemical properties.

76. (d) He

Inert (noble gases) → complete octet, chemically unreactive.

Na, Fe, Li \rightarrow reactive metals.

IIT-JEE CHEMISTRY

He (Helium) \rightarrow noble gas, inert.

- **77.** (a) Li because of its smallest size.
- **78.** (b) In third group Na is a typical element.

79. (d) Boron and silicon

Metalloids = B, Si, As, Sb, Te, etc.

Sodium & potassium → alkali metals

Fluorine & chlorine → halogens

Calcium & magnesium → alkaline earth metals

Boron & silicon → both metalloids

80. (c) 18

Long periods = 4th and 5th \rightarrow 18 elements each.

6th and 7th (also long) → 32 elements each. Standard MCQ answer: **18**.

81. (b) p-block

Non-metals are found on the right side \rightarrow **p-block**.

82. (d) Noble gases

That is a **completely filled p-subshell = noble gases**.

83. (b) Os

Compare:

Iridium (Ir) \approx 22.56 g/cm³ Osmium (Os) \approx 22.59 g/cm³ (**highest known**) Lead (Pb) \approx 11.3 g/cm³

Mercury (Hg) ≈ 13.5 g/cm³

84. (b) Mg

Li (Group 1, Period 2) shows diagonal relationship with Mg (Group 2, Period 3).

85. (b) On equating no. of e⁻'s atomic no. is 12 which is for Mg.

86. (d)
$$17 - 1s^2 2s^2 2p^6 3s^2 3p^5$$
.

87. (a) Mendeleef

Dalton \rightarrow atomic theory.

Avogadro → Avogadro's law.

Cavendish → discovery of hydrogen.

Mendeleev \rightarrow arranged elements in order of atomic weights, left gaps, predicted new elements.

:

88. (d) Lavoisier

Antoine Lavoisier → often called the Father of Modern Chemistry for his work on law of conservation of mass, naming of elements, and systematic classification.

89. (c) Lanthanide's are called rare earth metals.

90. (b) Sb

 $\textbf{Pb (lead)} \rightarrow \text{metal}$

Sb (antimony) → metalloid

Bi (bismuth) → metal

Zn (zinc) → metal

Mg (magnesium) → metal

