

Проектиране на вградени автомобилни електронни системи

Лабораторно упражнение №12

Работа с Xilinx Vivado и Vitis. Междупроцесорна комуникация с помощта на пощенска кутия (mailbox).

- 1. Превключете джъмпера вдясно на платката на позиция JTAG. Свържете µUSB кабел към PROG/UART USB куплунга. Включете платката от ключа ON/OFF.
- 2. Стартирайте терминал с CTRL + ALT + T и изпълнете командите:

source ~/programs/xilinx/Vivado/2020.2/settings64.sh
vivado

- 3. Create Project \rightarrow Next \rightarrow Project name: 12_mailbox \rightarrow Next \rightarrow RTL Project + "Do not specify sources at this time" \rightarrow Next \rightarrow таб Boards: избира се Zybo (не Zybo Z7-10, не Zybo Z7-20, а само Zybo) \rightarrow Next \rightarrow Finish.
- 4. Вляво → Flow navigator → Create block design → OK.
- 5. Вдясно \rightarrow Diagram \rightarrow right-click \rightarrow Add IP \rightarrow Search \rightarrow ZYNQ7 Processing System \rightarrow double click.
- 6. Вдясно → Diagram → натиска се и се задържа ляв бутон върху $FCLK_CLK0$ сигнала и се свързва с $M_AXI_GP0_ACLK$, след това се пуска левия бутон.
- 7. Вдясно → Diagram → right-click → Add IP → Search → Processor System Reset → double click.
- 8. Вдясно \rightarrow Diagram \rightarrow зелена лента \rightarrow Designer Assitance available \rightarrow Run Block Automation \rightarrow Слага се отметка на "All Automation".
- 9. Вдясно → Diagram → right-click → Add IP → Search → AXI GPIO → double click.
- 10. Щракнете два пъти върху блока AXI GPIO → Board → IP Interface: GPIO → Board Interface: leds 4 bits → OK.
- 11. Вдясно \rightarrow Diagram \rightarrow right-click \rightarrow Add IP \rightarrow Search \rightarrow AXI Interconnect \rightarrow double click.

- 12. Щракнете два пъти върху блока AXI Interconnect \rightarrow Number of Slave Interfaces = 1 \rightarrow Number of Master Interfaces = 3 \rightarrow OK [1].
- 13. Вдясно → Diagram → right-click → Add IP → Search → MicroBlaze → double click.
- 14. Вдясно → Diagram → зелена лента → Designer Assitance available -> Run Block Automation → Слага се отметка на "microblaze_0". В полето Options се избира Local memory: 64 kB и Cache configuration: None. Натиска се OK.
- 15. Щракнете два пъти върху блока MicroBlaze → Predefined configurations → Select Configuration: Microcontoller preset → OK. В полето General Settings се слага отметка на Enable Exceptions.
- 16. Натиска се и се задържа ляв бутон върху M_AXI_DP порта и се свързва с порта S00_AXI на AXI Interconnect блокът, след това се пуска левия бутон. Аналогично се свързва портът M00_AXI с порта S_AXI на AXI GPIO модула.
- 17. Вдясно → Diagram → right-click → Add IP → Search → Mailbox → double click [2].
- 18. Натиска се и се задържа ляв бутон върху М01_AXI порта на AXI Interconnect блокът и се свързва с порта S00_AXI на mailbox_0 блока, след това се пуска левия бутон.
- 19. Вдясно \rightarrow Diagram \rightarrow right-click \rightarrow Add IP \rightarrow Search \rightarrow AXI Interconnect \rightarrow double click.
- 20. Щракнете два пъти върху блока AXI Interconnect \rightarrow Number of Slave Interfaces = 1 \rightarrow Number of Master Interfaces = 1 \rightarrow OK.
- 21. Натиска се и се задържа ляв бутон върху M_AXI_GP0 порта на Zynq блока и се свързва към токуо-що добавения AXI Interconnect на порт $S00_AXI$, след това се пуска левия бутон. Аналогично се свързва порт $M00_AXI$ на AXI Interconnect към порт $S1_AXI$ на mailbox_0.
- 22. За да е ефективна комуникацията между процесорите, трябва да се използват прекъсвания, показващи кога във FIFO буферът на mailbox_0 е постъпила информация. Вдясно → Diagram → right-click → Add IP → Search → Concat → double click. Това е блок, който свързва магистрали с различна разредност. В конкретния случай сигналът за прекъсване е 1 бит, а магистралата на контролера за прекъсвания на ARM Cortex A9 е 16-битова. Добавя се още един такъв блок за MicroBlaze микропроцесора.

- 23. Щраква се два пъти върху Concat блоковете и в полето Number of Ports се въвежда числото 1.
- 24. Щраква се два пъти върху блока "ZYNQ7 Processing System" \rightarrow в "Page navigator" се отива на раздел "Interrupts" \rightarrow слага се отметка на "Fabric interrupts" \rightarrow в подраздела "PL-PS Interrupt Ports" се слага отметка на "IRQ F2P" \rightarrow OK.
- 25. Нека блокът xlconcat_0 отговаря за прекъсванията на Zynq блока, а xlconcat_1 отговаря за прекъсванията на MicroBlaze. Натиска се и се задържа ляв бутон върху dout[0:0] порта на xlconcat_0 блока и се свързва с IRQ_F2P[0:0] на Zynq, след това се пуска левия бутон. Аналогично се свързва In0[0:0] порта на xlconcat_0 с Interrupt_1 сигнала на mailbox_0.
- 26. За да може MicroBlaze да работи с прекъсвания, трябва първо да му се добави контролер на прекъсванията. Вдясно \rightarrow Diagram \rightarrow right-click \rightarrow Add IP \rightarrow Search \rightarrow AXI Interrupt Controller \rightarrow double click. Натиска се и се задържа ляв бутон върху INTERRUPT порта на microblaze_0 и се свързва с interrupt на AXI Interrupt Controller, след това се пуска левия бутон. Аналогично се свързват intr[0:0] на axi_intc_0 с dout[0:0] на xlconcat_1. Също In0[0:0] на xlconcat_1 се свързва с Interrupt_0 на mailbox_0.
- 27. Вдясно \rightarrow Diagram \rightarrow зелена лента \rightarrow Designer Assitance available -> Run Connection Automation \rightarrow Слага се отметка на "All Automation". Натиска се ОК.
- 28. Щраква се два пъти върху блока "ZYNQ7 Processing System" \rightarrow в "Page navigator" \rightarrow MIO Configuration \rightarrow в раздел I/O Peripherals \rightarrow UART1 се проверяват връзките MIO48 \leftrightarrow tx, MIO49 \leftrightarrow rx.
- 29. В същия прозорец \rightarrow "Page navigator" \rightarrow MIO Configuration \rightarrow маха се отметката на I/O Peripherals \rightarrow ENETO, USB0 и SD0. Натиска се OK.
- 30. В основния прозорец на Vivado, до таб Diagram, се избира Address Editor → натиска се бутон Assign All. Тази стъпка разполага периферните модули на системата в адресното поле на съответните микропроцесори. Ако е необходимо, тези адреси могат да се зададат ръчно от проектанта, като се спазва условието да не се застъпват.
- 31. Подрежда се блоковата схема с бутон Regenerate Layout.
- 32. Вдясно → Diagram → лента с бутони → Validate Design (F6) → "Validation successful. There are no errors or critical warnings in this design." → OK

В някои версии на Vivado е възможно да се появят предупредителни съобщения, като тези показани по-долу, но те могат да се игнорират в конкретния дизайн.

33. Централно \rightarrow в Block design прозореца, натиска се таб-а Sources \rightarrow Design sources \rightarrow right-click на design_1.bd \rightarrow Create HDL Wrapper (създава Verilog описание на новосъздадената система) \rightarrow Let Vivado manage wrapper and autoupdate \rightarrow OK

Блоковата схема на системата е показана в директорията на упражнението с име на файл 06 design 1.pdf.

34. Вляво \rightarrow Flow navigator \rightarrow Generate bitstream \rightarrow Yes \rightarrow OK \rightarrow изчаква се няколко минути (докато завърши синтеза) \rightarrow View reports \rightarrow OK

ВНИМАНИЕ: долу, централно, в таб Log може да наблюдавата съобщенията от синтеза. Най-горе, вдясно на Vivado прозореца ще видите иконка на въртящ се зелен часовник. Докато тя е видима, значи трябва да се изчака.

35. File \rightarrow Export	\rightarrow Export hardware	→ Next →	Include bitstream	→ Next →	Next
→ Finish					
==========	==========	======	=========	======	:====

- 36. Tools → Launch Vitis IDE
- 37. Избира се път до workspace за фърмуерния проект → Launch
- **ВНИМАНИЕ:** възможно е да има останали фърмуерни проекти от минали групи. В таб-а Explorer на средата Vitis със задържане на CTRL от клавиатурата изберете с ляв бутон на мишката всички проекти, след което натиснете десен бутон на мишката и Delete. Ако проектите ще се използват, махнете отметката от "Delete project contents on disk (cannot be undone)" и натиснете ОК.
- 38. File → New → Platform project → Platform project name: 12_mailbox_mb_pla → Next → таб "Create new platform from hardware" → Browse → избира се пътя до проекта 12_mailbox, създаден от Vivado → design_1_wrapper.xsa → Open → Поле Software specification → Operating system: standalone (това означава baremetal firmware) и Processor: microblaze_0 → Finish.
- 39. Вляво → Project explorer → избира се 12_mailbox_mb_pla → right-click → Build Project.
- 40. File → New → Application project → Next → "Select a platform from repository" → Избира се 12_mailbox_mb_pla → Next → Application project name: 12_mailbox_mb_app → Next → Next → "Empty application (C)" → Finish.
- 41. Вляво в таб Explorer \rightarrow отваря се 12_mailbox_mb_app_system / 12_mailbox_mb_app / src \rightarrow върху директорията src се натиска десен бутон \rightarrow New \rightarrow Other \rightarrow C/C++ \rightarrow Source File \rightarrow Next \rightarrow Source file: дава се име на файлът main.c \rightarrow Finish.
- 42. В текстовия редактор на Vitis и във файлът main.c на MicroBlaze фърмуера се въвежда следната програма:

- 43. Вляво → Project explorer → избира се 12_mailbox_mb_app → right-click → Build Project.
- 44. Вляво → Project explorer → избира се 12_mailbox_mb_app_system → right-click → Build Project.
- 45. File \rightarrow New \rightarrow Platform project \rightarrow Platform project name: 12_mailbox_cortex_pla \rightarrow Next \rightarrow таб "Create new platform from hardware" \rightarrow Browse \rightarrow избира се пътя до проекта 12_mailbox, създаден от Vivado \rightarrow design_1_wrapper.xsa \rightarrow Open \rightarrow Поле Software specification \rightarrow Operating system: standalone и Processor: ps7_cortexa9_0 \rightarrow Finish.
- 46. Вляво → Project explorer → избира се 12_mailbox_cortex_pla → right-click → Build Project.
- 47. File → New → Application project → Next → "Select a platform from repository" → Избира се 12_mailbox_cortex_pla → Next → Application project name: 12_mailbox_cortex_app → Next → Next → "Hello World" → Finish.
- 48. Щраква се двукратно с ляв бутон върху директорията src в проекта 12_mailbox_cortex_app_system/ 12_mailbox_cortex_app \rightarrow src \rightarrow helloworld.c
- 49. В текстовия редактор на Vitis и във файлът main.c на ARM Cortex A9 фърмуера се въвежда следната програма:

```
#include <stdio.h>
#include "platform.h"
#include "xil_printf.h"
#include "sleep.h"
```

```
int main(void){
    u32 bytes sent = 0;
    char *on_message = "ON "; //multiple of 4 bytes
char *off_message = "OFF "; //multiple of 4 bytes
    XMbox Config *mailbox_config;
    XMbox mailbox 0;
    init platform();
    mailbox config = XMbox LookupConfig(XPAR MBOX 0 DEVICE ID);
    XMbox_CfgInitialize(&mailbox_0, mailbox_config, mailbox_config-
>BaseAddress);
    while(1){
      print("Sending message to MicroBlaze: led ON\n\r");
      XMbox Write(&mailbox 0, (u32 *)on message, strlen(on message),
&bytes_sent);
      usleep(1000000);
      print("Sending message to MicroBlaze: led OFF\n\r");
      XMbox_Write(&mailbox_0, (u32 *)off_message, strlen(off_message),
&bytes_sent);
      usleep(1000000);
    cleanup platform();
    return 0;
}
50. Вляво, Project explorer → избира се 12 mailbox cortex app → right-click →
```

#include "xmbox.h"

- 50. Вляво, Project explorer → избира се 12_mailbox_cortex_app → right-click → Build project.
- 51. Вляво, Project explorer \rightarrow избира се 12_mailbox_cortex_app_system \rightarrow right-click \rightarrow Build project.
- 52. В основния прозорец на Vitis до бутонът Debug има стрелка надолу → натиска се → Debug configurations ... → щраква се двукратно върху Single Application Debug → вдясно ще се появи нова конфигурация на дебъг сесия. Избира се таб Application и се слагат отметки на двата процесора: microblaze_0 и ря7_cortexa9_0. Проверяват се полетата Application, указващи фърмуерния .elf файл за всеки процесор. Полето на MicroBlaze може да бъде празно. Затова → с ляв бутон в полето Summary се избира целият ред на microblaze_0 и се натиска бутон Search срещу полето Application. Средата Vitis ще предложи всички .elf файлове, които са достъпни. С ляв бутон се натиска двукратно върху съответния файл на MicroBlaze (11_multi_proc_mb_app.elf). Сега в полетата Application на Summary трябва да се вижда:

microblaze_0 Debug/12_mailbox_mb_app.elf

ps7_cortexa9_0 Debug/12_mailbox_cortex_app.elf

Натиска се Apply → Debug

ВНИМАНИЕ: Всяко следващо стартиране на Debug сесия може да стане с бутон надолу до Debug бутона от основния прозорец на Vitis, при условие, че поне веднъж е била стартирана дебъг сесия от Debug configurations... прозореца (в конкретния случай това е станало, когато сме натиснали Apply → Debug).

ВНИМАНИЕ: не трябва да се натиска самият бутон Debug понеже това създава нова дебъг сесия, която по подразбиране зарежда фърмуер само на едно Cortex A9 ядро.

ВНИМАНИЕ: при промяна на сорс кода трябва да се натисне Build на фърмуерния проект (_app) и на системния проект (_app_system), иначе дебъг сесията ще зареди старата версия на .elf файлът.

- 53. Дебъгването на отделните микропроцесори става като се избере с ляв бутон съответния процесор от таб Debug. Дебъг бутоните и всички дебъг табове се присвояват автоматично на избрания процесор, т.е. въпреки че процесорите са два, наборът от дебъг инструменти е един.
- 54. Отваря се терминал в Ubuntu с CTRL + ALT + $T \rightarrow \Pi$ ише се ls /dev/tty и се натиска tab \rightarrow "Display all 100 possibilities? (y or n)" въвежда се 'y' \rightarrow **търси се системния файл, отговарящ на виртуалния RS232 порт** за дебъг съобщения (обикновено ttyUSB1, ВНИМАНИЕ на ttyUSB0 излиза виртуален порт за JTAG дебъгера, който не трябва да бъде отварян).

След като се види номера на виртуалния порт, в същия терминал се стартира RS232 терминал чрез командата:

cutecom

- 55. В cutecom \rightarrow Device: избира се съответния порт за дебъг съобщения /dev/ttyUSBx \rightarrow Settings \rightarrow 115200-8-N-1, no flow control -> Open
- 56. Във Vitis: натиска се бутон Resume (F8) за Cortex A9 (ядро 0). След това в Сиtecom трябва да се изпише:

Sending message to MicroBlaze: led OFF Sending message to MicroBlaze: led ON Sending message to MicroBlaze: led OFF Sending message to MicroBlaze: led ON Sending message to MicroBlaze: led OFF Sending message to MicroBlaze: led ON

- 57. Във Vitis: натиска се бутон Resume (F8) за MicroBlaze. След това трябва да започне да мига светодиод LD0 на демо платката Zybo.
- 58. За да спрете debug сесията във Vitis, натиснете Disconnect.
- 59. Напишете програма за MicroBlaze, която използва прекъсвания от mailbox_0 [3]. За улеснение, по-долу е даден кодът, който е свързан с инициализацията на контролерът на прекъсванията за MicroBlaze[4], също и функцията за изчистване на флаговете от прекъсванията. Функциите, свързани с mailbox_0 могат да бъдат намерени в:
- 12_mailbox_mb_pla/microblaze_0/standalone_domain/bsp/microblaze_0/libsrc/mbox_v4_5/src/xmbox.c

като повече внимание трябва да се обърне на функцията Xmbox_SetReceiveThreshold(), която има своя особеност в начинът ѝ на работа.

```
XIntc_Initialize(&intc_0, XPAR_INTC_0_DEVICE_ID);
    XIntc_SelfTest(&intc_0);
    XIntc_Connect(&intc_0, XPAR_AXI_INTC_0_MAILBOX_0_INTERRUPT_0_INTR,
(XInterruptHandler)mailbox_interrupt_handler, &mailbox_0);
    XIntc_Start(&intc_0, XIN_REAL_MODE);
    XIntc_Enable(&intc_0, XPAR_AXI_INTC_0_MAILBOX_0_INTERRUPT_0_INTR);

    Xil_ExceptionInit();
    Xil_ExceptionEnable();
    Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT,
(Xil_ExceptionHandler)XIntc_InterruptHandler, &intc_0);
```

```
microblaze_register_handler(mailbox_interrupt_handler, NULL);
microblaze_enable_interrupts();

//Clear the AXI interrupt controller's pending flag
XIntc_Acknowledge(&intc_0, XPAR_AXI_INTC_0_MAILBOX_0_INTERRUPT_0_INTR);

* * *
```

- [1] Adam Tylor, "MicroZed Chronicles: Inter Processor Communication (Part 1)", online, https://medium.com/@aptaylorceng/microzed-chronicles-inter-processor-communication-part-1-c1411c1c3053, 2023.
- [2] Adam Tylor, "MicroZed Chronicles: Inter Processor Communication (Part 2)", online, https://www.hackster.io/news/microzed-chronicles-inter-processor-communication-part-2-e3f239921d79, 2023.
- [3] https://github.com/Xilinx/embeddedsw/blob/master/XilinxProcessorIPLib/drivers/mbox/examples/xmbox_intr_example.c
- [4] https://github.com/Xilinx/embeddedsw/blob/master/XilinxProcessorIPLib/drivers/intc/examples/xintc_example.c

доц. д-р инж. Любомир Богданов, 2023 г.