Brownian Motion

Problem sheet 2 (Valid as an assignment)

1. Modes of convergence [24 Points]

(a) Let $(X_n : n \ge 1)$ and X be r.v.s defined on the same probability space. Show that

$$X_n \to X \ a.s. \Rightarrow X_n \to X \ \text{in probability} \Rightarrow X_n \to X \ \text{in distribution} \ .$$

Here "a.s." stands for *almost surely*. Convergence in distribution is the same as weak convergence.

(b) Let $\mathbf{X}_n \sim \mathcal{N}(\boldsymbol{\mu}_n, \Sigma_n)$ for $n = 1, 2, \ldots$ be a sequence of d-dimensional Gaussian variables with converging mean $\boldsymbol{\mu}_k \to \boldsymbol{\mu} \in \mathbb{R}^d$ and covariance matrix $\Sigma_k \to \Sigma \in \mathbb{R}^{d \times d}$, with both Σ_k and Σ definite positive.

Show that then $\mathbf{X}_n \to \mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ in distribution.

2. Brownian bridge [26 Points]

Let $(B(t): t \ge 0)$ be a BM and define X(t) := B(t) - tB(1) for $t \in [0, 1]$.

- (a) Show that $(X(t): 0 \le t \le 1)$ is a Gaussian process with continuous paths, and compute its mean and covariance function.
- (b) Draw a typical sample path of $(X(t): 0 \le t \le 1)$. Why do we call X a Brownian bridge? How would you define a Brownian bridge with X(0) = x and X(T) = y with fixed $x, y \in \mathbb{R}$ and T > 0?
- (c) Define $W(t) := (1+t)X\left(\frac{t}{1+t}\right)$ for all $t \ge 0$.

What is the mean and covariance function of $(W(t): t \ge 0)$? Identify the process.

3. Ornstein Uhlenbeck process [26 Points]

Let $(B(t): t \ge 0)$ be a BM and define $X(t):=e^{-ct}B(e^{2ct})$ for c>0 and all $t \in \mathbb{R}$.

- (a) Show that $(X(t): t \in \mathbb{R})$ is a Gaussian process with continuous paths, and compute its mean and covariance function. This is called the Ornstein Uhlenbeck (OU) process.
- (b) Show that the OU process is strongly stationary, i.e. for all $n \geq 1, t_1, \ldots, t_n, h \in \mathbb{R}$

$$(X(t_1),\ldots,X(t_n)) \sim (X(t_1+h),\ldots,X(t_n+h))$$
,

which means that FDDs are translation invariant.

(c) Show that the OU process is time-reversible, i.e. for Y(t) := X(-t) the process $(Y(t) : t \in \mathbb{R})$ has the same FDDs as $(X(t) : t \in \mathbb{R})$.

- 4. Building new Brownian Motions [24 Points] Let B be a standard Brownian motion in \mathbb{R} . Show the following:
 - (a) Scaling property: If $\lambda > 0$, then $B^{\lambda} := (\lambda^{-1/2} B_{\lambda t} : t \ge 0)$ is a standard Brownian motion.
 - (b) Orthogonal transformations for Brownian Motion on \mathbb{R}^d : If $U \in O(d)$ is an orthogonal $d \times d$ matrix (i.e. $U^{-1} = U^T$), then $U \mathbf{B} = (U \mathbf{B}_t : t \ge 0)$ is a standard Brownian motion. In particular $-\mathbf{B}$ is a standard Brownian motion.
 - (c) Time inversion:

Define
$$B' = (B'_t : t \ge 0)$$
 by $B'_t = \begin{cases} t B_{1/t} &, t > 0 \\ 0 &, t = 0 \end{cases}$,

then B' is a standard Brownian motion.

Hint: Use that a process $(X_t: t \ge 0)$ is a standard BM iff it has continuous paths, $X_t \sim N(0,t)$ and the right covariances, i.e. $\mathbb{E}(X_t X_s) = \min\{s,t\}$.