Practical 5

Aim: Write a VHDL Code to implement JK Flipflop

Code:

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity JK FF is
  Port (clk: in STD LOGIC;
      rst: in STD LOGIC;
      J: in STD LOGIC;
      K: in STD LOGIC;
      Q: out STD LOGIC;
      Qb: out STD LOGIC);
end JK FF;
architecture Behavioral of JK FF is
signal q1:std logic:='0';
signal q2:std_logic:='1';
begin
 process(rst,clk,J,K)
   begin
   if (rst='0') then
     Q <= '0';
     Qb<='1';
   elsif(rising edge(clk)) then
      if(J = '1' and K = '0')then
      q1<='1';
      q2 <= '0';
elsif(J = '0') and K = '1') then
      q1 <= '0';
      q2<='1';
elsif(J = '0') and K = '0') then
      q1 \le q1;
      q2 <= q2;
elsif(J = '1') and K = '1') then
      q1 \le q2;
      q2 \le q1;
      end if;
      Q \leq q1;
      Qb \le q2;
   end if;
  end process;
end Behavioral;
```

RTL DIAGRAM:

Test bench Code:

library IEEE;	begin	K<='0';
use IEEE.STD_LOGIC_1164.ALL;	x1:JK_FF port	wait for 10ns;
	map(clk,rst,J,K,Q,Qb);	
entity Tb_JK_FF is		J<='1';
Port ();	process	K<='0';
end Tb_JK_FF;	begin	wait for 10ns;
architecture Behavioral of	clk<='1';	J<='0';
Tb_JK_FF is	wait for 4ns;	K<='1';
	clk<='0';	wait for 10ns;
component JK_FF is	wait for 4ns;	
Port (clk : in STD_LOGIC;	end process;	J<='1';
rst : in STD_LOGIC;		K<='1';
J : in STD_LOGIC;	process	wait for 10ns;
K : in STD_LOGIC;	begin	
Q : out STD_LOGIC;	rst<='0';	end process;
Qb : out STD_LOGIC);	wait for 10ns;	
end component JK_FF;	rst<='1';	end Behavioral;
signal clk.rst.J.K.Q.Qb:std logic:	J<='0':	

SIMULATION WAVEFORM:

SYNTHESIS SUMMARY:

Resource	Utilization	Available	Utilization %
LUT	2	17600	0.01
FF	4	35200	0.01
10	6	100	6.00

Name	Slack ^1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock
4 Path 1	00	2	2	1	Q_reg/C	Q	4.076	3.276	0.800	00	
Path 2	00	2	2	1	Qb_reg/C	Qb	4.076	3.276	0.800	00	
Path 3	00	2	3	3	rst	Q_reg/CLR	2.693	1.106	1.587	00	input port clock
4 Path	00	2	3	3	rst	Qb_reg/PRE	2.693	1.106	1.587	00	input port clock
Path 5	00	2	3	2	K	q1_reg/D	1.932	1.132	0.800	00	input port clock
Path 6	00	2	3	2	J	q2_reg/D	1.906	1.106	0.800	00	input port clock
Path 7	00	1	1	3	q1_reg/C	Q_reg/D	0.808	0.456	0.352	00	
Path 8	00	1	1	3	q2_reg/C	Qb_reg/D	0.808	0.456	0.352	00	

Maximum Combinational Delay: 4.076nSec

Aim: Write a VHDL Code to implement D Flipflop

Code:

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity D FF is
  Port (clk: in STD LOGIC;
      rst: in STD LOGIC;
      D: in STD LOGIC;
      Q: out STD LOGIC;
      Qb: out STD LOGIC);
end D_FF;
architecture Behavioral of D FF is
component JK_FF is
Port (clk: in STD LOGIC;
      rst: in STD LOGIC;
      J: in STD_LOGIC;
      K: in STD LOGIC;
      Q: out STD LOGIC;
      Qb: out STD LOGIC);
end component JK_FF;
signal Db:STD LOGIC;
begin
Db \le not D;
x1:JK FF port map(clk,rst,D,Db,Q,Qb);
end Behavioral;
```

RTL DIAGRAM:

Test bench Code:

end component D_FF; library IEEE; rst<='1'; use IEEE.STD_LOGIC_1164.ALL; signal clk,rst,D,Q,Qb:std_logic; wait for 50ns; begin end process; entity Tb_D_FF is x1:D_FF port map(clk,rst,D,Q,Qb); Process -- Port (); process begin end Tb_D_FF; begin D<='0'; clk<='1'; wait for 10ns; architecture Behavioral of D<='1'; wait for 5ns; Tb_D_FF is wait for 10ns clk<='0'; component D_FF is wait for 5ns; end process; Port (clk : in STD_LOGIC; end process; rst:in STD_LOGIC; end Behavioral; process D : in STD_LOGIC; begin rst<='0'; Q: out STD_LOGIC; Qb : out STD_LOGIC); wait for 10ns;

SIMULATION WAVEFORM:

SYNTHESIS SUMMARY:

Resource	Utilization	Available	Utilization %
LUT	2	17600	0.01
FF	4	35200	0.01
10	5	100	5.00

Name	Slack ^1	Levels	Routes	High Fanout	From	To	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock
4 Path 1	00	2	2	1	x1/Q_reg/C	Q	4.076	3.276	0.800	00	
3 Path 2	00	2	2	1	x1/Qb_reg/C	Qb	4.076	3.276	0.800	00	
4 Path 3	00	2	3	3	rst	x1/Q_reg/CLR	2.693	1.106	1.587	00	input port clock
Path 4	00	2	3	3	rst	x1/Qb_reg/PRE	2.693	1.106	1.587	00	input port clock
Path 5	00	2	3	3	rst	x1/q1_reg/D	1.932	1.132	0.800	00	input port clock
Path 6	00	2	3	2	D	x1/q2_reg/D	1.906	1.106	0.800	00	input port clock
4 Path 7	00	1	1	2	x1/q1_reg/C	x1/Q_reg/D	0.801	0.456	0.345	00	
Path 8	00	1	1	2	x1/q2_reg/C	x1/Qb_reg/D	0.801	0.456	0.345	00	