25MT103: Linear Algebra

Unit 2: Systems of Linear Equations

Dr. D Bhanu Prakash

Course Page: dbhanuprakash233.github.io/LA

Assistant Professor, Department of Mathematics and Statistics. Contact: db_maths@vignan.ac.in. dbhanuprakash233.github.io.

Module 1 - Advance Problems

Advanced Questions

- Show that performing one elementary operation can change the determinant's value by a predictable scalar factor. Demonstrate with an example.
- Construct a system $A\mathbf{x} = \mathbf{b}$ where rank(A) = 2, rank $([A|\mathbf{b}]) = 3$.
- Create two linear systems sharing the same *A* but different **b**, one consistent, one inconsistent.
- Solve a 4 × 4 system where one equation is the sum of others discuss consistency.
- Given $A \in \mathbb{R}^{3\times 3}$ with det(A) = 0, design a consistent system with infinite solutions.
- Design a parameterized system $A(k)\mathbf{x} = \mathbf{b}$ whose consistency depends on k.

2/5

- Given A = LU, solve three different RHS vectors efficiently using LU.
- Investigate geometric meaning of rank deficiency in \mathbb{R}^3 .
- Derive A^{-1} using Gauss–Jordan and verify $AA^{-1} = I$.

Advanced Questions

- Implement a symbolic elimination for a general 3×3 system (derive formulas for x, y, z in terms of a_{ij}, b_i).
- Given a 4 × 4 matrix with symbolic entries, determine conditions under which it has exactly two pivot positions.
- Construct a 3 × 3 matrix whose rank changes depending on a parameter
 k. Analyze the transition values of k.
- Use Gauss–Jordan method to compute A^{-1} for a given 3×3 symbolic matrix. Analyze computational cost.
- Given $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 1 \end{pmatrix}$, determine rank analytically and geometrically.
- Compute A^{-1} using LU decomposition rather than Gauss–Jordan and compare numerical effort.

Theoretical Exploration

- Prove or disprove: For any nonsingular A, performing Gauss–Jordan on [A|I] and extracting $I|A^{-1}$ is equivalent to solving AX = I via LU factorization.
- Compare computational efficiency among Gaussian elimination, Gauss-Jordan method and LU decomposition methods for n = 50.

Thank You!

Dr. D Bhanu Prakash

dbhanuprakash233.github.io Mail: db_maths@vignan.ac.in I can't change the direction of the wind, but I can adjust my sails to always reach my destination.

(Jimmy Dean)

