

PKCS #11

Devices

- OPTIGA™ TPM SLB 9670 TPM2.0
- OPTIGA™ TPM SLI 9670 TPM2.0
- OPTIGA™ TPM SLM 9670 TPM2.0

About This Document

Scope and purpose

This document explains how an OPTIGA™ TPM SLx 9670 TPM2.0 can be integrated into a Raspberry Pi® to create a TPM-based PKCS #11 cryptographic token.

PKCS #11 is a Public-Key Cryptography Standard that defines a standard platform-independent API to access cryptographic services from tokens, such as hardware security modules (HSM) and smart cards. This document provides guidance on how to setup a TPM-based token on a Raspberry Pi[®].

The OPTIGA™ TPM SLx 9670 TPM2.0 uses a SPI interface to communicate with the Raspberry Pi®. The OPTIGA™ TPM SLx 9670 TPM2.0 product family with SPI interface consists of 3 different products:

- OPTIGA™ TPM SLB 9670 TPM2.0 standard security applications
- OPTIGA™ TPM SLI 9670 TPM2.0 automotive security applications
- OPTIGA™ TPM SLM 9670 TPM2.0 industrial security applications

OPTIGA™ TPM SLx 9670 TPM2.0 products are fully TCG compliant TPM products with CC (EAL4+) and FIPS certification. The OPTIGA™ TPM SLx 9670 TPM2.0 products standard, automotive, and industrial differ with regards to supported temperature range, lifetime, quality grades, test environment, qualification, and reliability to fit the target applications requirements. An overview of all Infineon OPTIGA™ TPM products can be found on Infineon's website [2][3]. More information on TPM specification can be found on Trusted Computing Group (TCG) in reference [4].

Intended audience

This document is intended for customers who want to increase the security level of their platforms using a TPM 2.0 and like to evaluate the implementation of TPM-based PKCS #11 cryptographic token for their target applications.

PKCS #11

Table of contents

Table of contents

Table (of contents	2
	f figures	
	f tables	
	lyms and Abbreviations	
-	Prepare Raspberry Pi®	
1.1	Prerequisites	
1.2	Enable TPM	
1.3	Install TPM Software	
1.4	Setup Python3	9
1.5	Install PKCS #11 Software	9
2 (Operation Guide	11
2.1	Environment Setup	11
2.2	PKCS #11 Token Creation	11
2.2.1	Start Blank	11
2.2.2	Link Existing (Keys stored outside of a TPM)	12
2.2.3	Link Existing (Keys stored in a TPM NV area)	13
2.2.4	Link Existing (Key persisted in a TPM)	15
2.3	OpenSC	16
2.4	OpenSSL	18
Refere	ences	21
	ion history	22

PKCS #11

List of figures

List of figures

Figure 1	Infineon Iridium SLx 9670 TPM2.0 SPI Board on Raspberry Pi® 4	6
•	tpm2pkcs11-tool software dependencies	
•	tpm2ssl software dependencies	
.64.60	tpinizost sortivare dependencies	

PKCS #11

Table 1 TPM 2.0 software7

PKCS #11

Acronyms and Abbreviations

Acronym	Definition
API	Application Programming Interface
CSR	Certificate Signing Request
ECC	Elliptic Curve Cryptography
RSA	Rivest-Shamir-Adleman
SO	A Security Officer user
TPM	Trusted Platform Module

Prepare Raspberry Pi®

1 Prepare Raspberry Pi®

This section describes all the steps necessary for building a Raspberry Pi® bootable SD card image.

1.1 Prerequisites

- Raspberry Pi[®] 4
- Flash the Raspberry Pi® OS image (2021-01-11 release from [5]) on a micro-SD card (≥8GB)
- OPTIGA™ TPM (TPM2.0)
 - SLB 9670
 - SLI 9670
 - SLM 9670

Figure 1 Infineon Iridium SLx 9670 TPM2.0 SPI Board on Raspberry Pi® 4

1.2 Enable TPM

Insert the flashed SD card and boot the Raspberry Pi®.

Open the configuration file in an editor:

Code Listing 1

001 \$ sudo nano /boot/config.txt

Insert the following lines to enable SPI and TPM.

PKCS #11

Prepare Raspberry Pi®

Code Listing 2

001 dtoverlay=tpm-slb9670

Save the file and exit the editor.

Reboot the Raspberry Pi® and check if TPM is activated.

Code Listing 3

001	\$ ls /dev grep tpm
002	tpm0
003	tpmrm0

1.3 Install TPM Software

Install the following software on the Raspberry Pi®:

Table 1 TPM 2.0 software

Software	Link	Version
tpm2-tss	https://github.com/tpm2-software/tpm2-tss	3.0.3
tpm2-tools	https://github.com/tpm2-software/tpm2-tools	5.0
tpm2-abrmd	https://github.com/tpm2-software/tpm2-abrmd	2.3.3
tpm2-pkcs11	https://github.com/tpm2-software/tpm2-pkcs11	1.5.0

Install dependencies:

Code Listing 4

001	\$ sudo apt update
002	<pre>\$ sudo apt -y install autoconf-archive libcmocka0 libcmocka-</pre>
	dev procps iproute2 build-essential git pkg-config gcc
	libtool automake libssl-dev uthash-dev autoconf doxygen
	libgcrypt-dev libjson-c-dev libcurl4-gnutls-dev uuid-dev
	pandoc libglib2.0-dev libsqlite3-dev libyaml-dev

First time Git setup, insert your username and email.

Code Listing 5

003	L \$	git	config	global	user.name	"your name"
002	2 \$	git	config	global	user.email	your-email@example.com

Download the Git repository pkcs11-optiga-tpm [1].

Code Listing 6

001	\$ cd ~
002	<pre>\$ git clone https://github.com/Infineon/pkcs11-optiga-tpm</pre>

Install TPM software stack:

PKCS #11

Prepare Raspberry Pi®

Code Listing 7

```
001
          $ cd ~
          $ git clone https://github.com/tpm2-software/tpm2-tss.git
002
003
          $ cd tpm2-tss
          $ git checkout 3.0.3
004
005
          $ ./bootstrap
006
          $ ./configure
          $ make -j$(nproc)
007
          $ sudo make install
800
009
          $ sudo ldconfig
```

Install TPM tools:

Code Listing 8

001	\$ cd ~
002	<pre>\$ git clone https://github.com/tpm2-software/tpm2-tools.git</pre>
003	<pre>\$ cd tpm2-tools</pre>
004	\$ git checkout 5.0
005	<pre>\$./bootstrap</pre>
006	<pre>\$./configure</pre>
007	<pre>\$ make -j\$(nproc)</pre>
008	<pre>\$ sudo make install</pre>
009	<pre>\$ sudo ldconfig</pre>

Install TPM access broker & resource manager:

Code Listing 9

001	\$ cd ~
002	<pre>\$ git clone https://github.com/tpm2-software/tpm2-abrmd.git</pre>
003	<pre>\$ cd tpm2-abrmd</pre>
004	\$ git checkout 2.3.3
005	<pre>\$./bootstrap</pre>
006	<pre>\$./configurewith-dbuspolicydir=/etc/dbus-1/system.d</pre>
007	<pre>\$ make -j\$(nproc)</pre>
008	<pre>\$ sudo make install</pre>
009	\$ sudo ldconfig

Configure D-Bus:

Code Listing 10

Ī	001	\$ sudo useraddsystemuser-group tss
	002	\$ sudo pkill -HUP dbus-daemon
	003	<pre>\$ sudo systemctl daemon-reload</pre>

Allow TPM device node to be accessed by tpm2-abrmd user 'tss'. Take note that this effect is not persistent.

Code Listing 11

001	\$ sudo chown tss /dev/tpm0	
-----	-----------------------------	--

To verify that D-Bus is configured correctly:

	001	\$ tpm2 clear -T	tabrmd:bus name=com.intel.tss2.Tabrmd -c p
--	-----	------------------	--

PKCS #11

Prepare Raspberry Pi®

Install TPM PKCS #11. Apply the patch "support-existing-TPM2-persistent-objects.patch" for section 2.2.4 to work.

Code Listing 13

001	\$ cd ~
002	<pre>\$ git clone https://github.com/tpm2-software/tpm2-pkcs11.git</pre>
003	\$ cd tpm2-pkcs11
004	\$ git checkout 1.5.0
005	<pre>\$ git am ~/pkcs11-optiga-tpm/patches/interoperability-with-</pre>
	existing-TPM2-persistent-objec.patch
006	<pre>\$./bootstrap</pre>
007	<pre>\$./configuredisable-fapi</pre>
008	<pre>\$ make -j\$(nproc)</pre>
009	<pre>\$ sudo make install</pre>
010	<pre>\$ sudo ldconfig</pre>

1.4 Setup Python3

Set Python 3.7 as default:

Code Listing 14

001	\$ sudo rm /usr/bin/python	
002	<pre>\$ sudo ln -s python3.7 /usr/bin/python</pre>	

To verify Python is set correctly:

Code Listing 15

001	\$ python -V	
002	Python 3.7.3	

Install Python libraries:

Code Listing 16

001	\$ pip3 install pyyaml	
002	<pre>\$ pip3 install pyasn1-modules</pre>	

1.5 Install PKCS #11 Software

Install dependencies:

Code Listing 17

001 \$ sudo apt install libpcsclite-dev

Install OpenSC:

001	\$ cd ~	
002	<pre>\$ git clone https://github.com/OpenSC/OpenSC.git</pre>	
003	\$ cd OpenSC	
004	\$ git checkout 0.21.0	
005	<pre>\$./bootstrap</pre>	
006	\$./configure	
007	\$ make -j\$(nproc)	

PKCS #11

Prepare Raspberry Pi®

Code Listing 18

008	\$ sudo make install
009	\$ sudo ldconfig

Install OpenSSL PKCS #11 engine:

Code Listing 19

001	\$ cd ~
002	<pre>\$ git clone https://github.com/OpenSC/libp11.git</pre>
003	\$ cd libp11
004	\$ git checkout libp11-0.4.11
005	<pre>\$./bootstrap</pre>
006	<pre>\$./configure</pre>
007	<pre>\$ make -j\$(nproc)</pre>
008	<pre>\$ sudo make install</pre>
009	\$ sudo ldconfig

Check if the engine pkcs11.so is correctly installed in /usr/lib/arm-linux-gnueabihf/engines-1.1/.

Operation Guide

2 Operation Guide

This section describes how OpenSC and OpenSSL can be used to interact with TPM-based PKCS #11 token.

The OpenSC software dependencies:

Figure 2 tpm2pkcs11-tool software dependencies

The OpenSSL software dependencies:

Figure 3 tpm2ssl software dependencies

2.1 Environment Setup

Make a copy of the sample configuration file (~/tpm2-pkcs11/misc/tpm2-pkcs11.openssl.sample.conf) and place it at ~/tpm2-pkcs11.openssl.conf. Update the engine path and tpm2-pkcs11 library path in the file:

- dynamic_path = /usr/lib/arm-linux-gnueabihf/engines-1.1/pkcs11.so
- MODULE_PATH = /usr/local/lib/libtpm2_pkcs11.so

Set abbreviations. Remember to update the path:

Code Listing 20

001	<pre>\$ alias tpm2pkcs11-tool='pkcs11-toolmodule</pre>
	/usr/local/lib/libtpm2_pkcs11.so'
002	<pre>\$ alias tpm2ssl='OPENSSL_CONF=~/tpm2-pkcs11.openssl.conf</pre>
	openssl'
003	<pre>\$ alias tpm2_ptool='~/tpm2-pkcs11/tools/tpm2_ptool.py'</pre>

Set environment variable:

Code Listing 21

001	<pre>\$ mkdir ~/pkcs11-store</pre>	
002	<pre>\$ export TPM2_PKCS11_STORE=~/pkcs11-store</pre>	

2.2 PKCS #11 Token Creation

There are two ways of creating a PKCS #11 token, to create a token from a blank TPM, or to create a token and link it with existing TPM objects. Find more information at [6].

2.2.1 Start Blank

Reset the TPM:

|--|

PKCS #11

Operation Guide

Initialize a store at path ~/pkcs11-store and provision the TPM:

Code Listing 23

```
001 $ tpm2_ptool init --path ~/pkcs11-store
```

Create a TPM-based PKCS #11 token:

Code Listing 24

001	<pre>\$ tpm2_ptool addtokenpid 1sopin sopinuserpin userpin</pre>
	label tpm-tokenpath ~/pkcs11-store

2.2.2 Link Existing (Keys stored outside of a TPM)

Option 1: Provision the TPM owner hierarchy:

Code Listing 25

001	\$ tpm2 clear -c p
002	<pre>\$ tpm2_createprimary -G ecc -c primary.ctx</pre>
003	<pre>\$ tpm2_evictcontrol -c primary.ctx 0x81000001</pre>
004	<pre>\$ tpm2_create -G rsa2048 -C 0x81000001 -u rsakey.pub -r rsakey.priv</pre>
005	<pre>\$ tpm2_create -G ecc -C 0x81000001 -u ecckey.pub -r ecckey.priv</pre>

Option 2: Provision the TPM platform hierarchy:

Code Listing 26

001	<pre>\$ tpm2_clear -c p</pre>
002	<pre>\$ tpm2_createprimary -C p -G ecc -c primary.ctx</pre>
003	<pre>\$ tpm2_evictcontrol -C p -c primary.ctx 0x81800001</pre>
004	<pre>\$ tpm2_create -G rsa2048 -C 0x81800001 -u rsakey.pub -r rsakey.priv</pre>
005	<pre>\$ tpm2_create -G ecc -C 0x81800001 -u ecckey.pub -r ecckey.priv</pre>

If platform hierarchy is used, the command tpm2_clear is not able to remove platform persistent handles. Instead, use the following commands:

Code Listing 27

Create a TPM-based PKCS #11 token associated with the TPM primary key. Example given here is using the primary key from the owner hierarchy, for the platform hierarchy change the handle to 0x81800001:

Code Listing 28

001	<pre>\$ tpm2_ptool initprimary-handle 0x81000001path=~/pkcs11-</pre>
002	<pre>store \$ tpm2 ptool addtokenpid 1sopin sopinuserpin userpin</pre>
	label tpm-tokenpath ~/pkcs11-store

Link existing TPM objects (RSA and ECC key objects):

PKCS #11

Operation Guide

Code Listing 29

001	<pre>\$ tpm2_ptool linklabel tpm-tokenid 0key-label linkrsa2048userpin userpinpath ~/pkcs11-store</pre>
002	<pre>rsakey.pub rsakey.priv \$ tpm2_ptool linklabel tpm-tokenid 1key-label</pre>
	linkeccp256userpin userpinpath ~/pkcs11-store ecckey.pub ecckey.priv

Show linked key objects:

Code Listing 30

001	\$ tpm2pkcs11-toolslot 1list-objectsloginpin
	userpin

Reset the token:

Code Listing 31

001 \$ rm ~/pkcs11-store/tpm2_pkcs11.sqlite3
--

2.2.3 Link Existing (Keys stored in a TPM NV area)

Option 1: Provision TPM owner hierarchy:

Code Listing 32

001	\$ tpm2 clear -c p
002	\$ tpm2 createprimary -G ecc -c primary.ctx
003	\$ tpm2 evictcontrol -c primary.ctx 0x81000001
004	
005	### Create RSA keypair and store it in NV
006	<pre>\$ tpm2_create -G rsa2048 -C 0x81000001 -u rsakey.pub -r rsakey.priv</pre>
007	<pre>\$ tpm2_nvdefine -C o 0x1000000 -s `cat rsakey.priv wc -c` -a "ownerread ownerwrite"</pre>
008	\$ tpm2 nvwrite -C o 0x1000000 -i rsakey.priv
009	<pre>\$ tpm2_nvdefine -C o 0x1000001 -s `cat rsakey.pub wc -c` - a "ownerread ownerwrite"</pre>
010	\$ tpm2 nvwrite -C o 0x1000001 -i rsakey.pub
011	
012	### Create ECC keypair and store it in NV
013	<pre>\$ tpm2_create -G ecc -C 0x81000001 -u ecckey.pub -r ecckey.priv</pre>
014	<pre>\$ tpm2_nvdefine -C o 0x1000002 -s `cat ecckey.priv wc -c` -a "ownerread ownerwrite"</pre>
001	\$ tpm2 nvwrite -C o 0x1000002 -i ecckey.priv
002	\$ tpm2_nvdefine -C o 0x1000003 -s `cat ecckey.pub wc -c` -
003	a "ownerread ownerwrite" \$ tpm2_nvwrite -C o 0x1000003 -i ecckey.pub

Option 2: Provision TPM platform hierarchy:

PKCS #11

Operation Guide

Code Listing 33

001	<pre>\$ tpm2_clear -c p</pre>
002	<pre>\$ tpm2_createprimary -C p -G ecc -c primary.ctx</pre>
003	<pre>\$ tpm2_evictcontrol -C p -c primary.ctx 0x81800001</pre>
004	
005	### Create RSA keypair and store it in NV
006	<pre>\$ tpm2_create -G rsa2048 -C 0x81800001 -u rsakey.pub -r rsakey.priv</pre>
007	<pre>\$ tpm2_nvdefine -C p 0x1000000 -s `cat rsakey.priv wc -c` -a "platformcreate ppread ppwrite"</pre>
008	\$ tpm2 nvwrite -C p 0x1000000 -i rsakey.priv
009	<pre>\$ tpm2_nvdefine -C p 0x1000001 -s `cat rsakey.pub wc -c` - a "platformcreate ppread ppwrite"</pre>
010	\$ tpm2 nvwrite -C p 0x1000001 -i rsakey.pub
011	· -
012	### Create ECC keypair and store it in NV
013	<pre>\$ tpm2_create -G ecc -C 0x81800001 -u ecckey.pub -r ecckey.priv</pre>
014	<pre>\$ tpm2_nvdefine -C p 0x1000002 -s `cat ecckey.priv wc -c` -a "platformcreate ppread ppwrite"</pre>
015	\$ tpm2 nvwrite -C p 0x1000002 -i ecckey.priv
016	\$ tpm2 nvdefine -C p 0x1000003 -s `cat ecckey.pub wc -c` -
	a "platformcreate ppread ppwrite"
017	<pre>\$ tpm2_nvwrite -C p 0x1000003 -i ecckey.pub</pre>

If platform hierarchy is used, the command "tpm2_clear" is not able to remove platform persistent handles. Instead, use the following commands:

Code Listing 34

001

Create a TPM-based PKCS #11 token by associating it with the primary key. Example given here is using the primary key from the owner hierarchy, for the platform hierarchy change the handle to 0x81800001:

Code Listing 35

001	<pre>\$ tpm2_ptool initprimary-handle 0x81000001path=~/pkcs11-</pre>
	store
002	<pre>\$ tpm2_ptool addtokenpid 1sopin sopinuserpin userpinlabel tpm-tokenpath ~/pkcs11-store</pre>
	label chii-cokenpach %/pkcsii-scole

Link existing TPM objects (RSA and ECC key objects); for the platform hierarchy replace the parameter "-C o" with "-C p":

001	### Read RSA keypair from NV and link it to the PKCS #11 token
002	<pre>\$ tpm2_nvread -C o 0x1000000 -o rsakey.priv</pre>
003	\$ tpm2_nvread -C o 0x1000001 -o rsakey.pub
004	<pre>\$ tpm2_ptool linklabel tpm-tokenid 0key-label</pre>
	linkrsa2048userpin userpinpath ~/pkcs11-store
	rsakey.pub rsakey.priv
005	<pre>\$ tpm2_nvundefine -C o 0x1000000</pre>
006	\$ tpm2 nvundefine -C o 0x1000001

PKCS #11

Operation Guide

Code Listing 36

007		
008	### Read ECC keypair from NV and link it to the PKCS #11 token	
009	\$ tpm2 nvread -C o 0x1000002 -o ecckey.priv	
010	\$ tpm2 nvread -C o 0x1000003 -o ecckey.pub	
011	<pre>\$ tpm2_ptool linklabel tpm-tokenid 1key-label linkeccp256userpin userpinpath ~/pkcs11-store</pre>	
	ecckey.pub ecckey.priv	
012	<pre>\$ tpm2_nvundefine -C o 0x1000002</pre>	
013	<pre>\$ tpm2_nvundefine -C o 0x1000003</pre>	

Show linked key objects:

Code Listing 37

001	<pre>\$ tpm2pkcs11-toolslot 1list-objectsloginpin</pre>
	userpin

Reset the token:

Code Listing 38

001	<pre>\$ rm ~/pkcs11-store/tpm2 pkcs11.sqlite3</pre>	
	, , p	

2.2.4 Link Existing (Key persisted in a TPM)

Provision TPM owner hierarchy:

Code Listing 39

001	\$ tpm2 clear -c p
002	\$ tpm2 createprimary -G ecc -c primary.ctx
003	<pre>\$ tpm2_evictcontrol -c primary.ctx 0x81000001</pre>
004	<pre>\$ tpm2_create -G rsa2048 -C 0x81000001 -u rsakey.pub -r</pre>
	rsakey.priv -p keyauth
005	<pre>\$ tpm2_load -C 0x81000001 -u rsakey.pub -r rsakey.priv -c</pre>
	rsakey.ctx
006	<pre>\$ tpm2_evictcontrol -c rsakey.ctx 0x81000002</pre>
007	<pre>\$ tpm2_create -G ecc -C 0x81000001 -u ecckey.pub -r</pre>
	ecckey.priv
008	<pre>\$ tpm2_load -C 0x81000001 -u ecckey.pub -r ecckey.priv -c</pre>
	ecckey.ctx
009	<pre>\$ tpm2_evictcontrol -c ecckey.ctx 0x81000003</pre>

Create a TPM-based PKCS #11 token associated with the TPM primary key:

Code Listing 40

001	<pre>\$ tpm2_ptool initprimary-handle 0x81000001path=~/pkcs11-</pre>
	store
002	<pre>\$ tpm2_ptool addtokenpid 1sopin sopinuserpin userpin</pre>
	label tpm-tokenpath ~/pkcs11-store

Link existing TPM objects (RSA and ECC key objects):

PKCS #11

Operation Guide

Code Listing 41

001	<pre>\$ tpm2_ptool link-persistlabel tpm-tokenid 0key-label</pre>
	linkrsa2048userpin userpinpath ~/pkcs11-store 0x81000002auth keyauth
002	<pre>\$ tpm2_ptool link-persistlabel tpm-tokenid 1key-label linkecc2048userpin userpinpath ~/pkcs11-store</pre>
	0x81000003

Show linked key objects:

Code Listing 42

001	\$ tpm2pkcs11-toolslot 1list-objectsloginpin
	userpin

Reset the token:

Code Listing 43

001	<pre>\$ rm ~/pkcs11-store/tpm2_pkcs11.sqlite3</pre>	
-----	---	--

2.3 OpenSC

For simplicity, follow section 2.2.1 to initialize a PKCS #11 token before continuing.

Show available token:

Code Listing 44

001	<pre>\$ tpm2pkcs11-toollist-token-slots</pre>	
-----	---	--

Change user pin (from "userpin" to "upin"):

Code Listing 45

001	<pre>\$ tpm2pkcs11-toolslot 1loginpin userpinchange-pin</pre>
	new-pin upin

Change user pin with SO pin (from "upin" to "userpin"):

Code Listing 46

001	\$ tpm2pkcs11-toolslot 1init-pinso-pin sopinpin
	userpin

Show supported key types:

Code Listing 47

001	<pre>\$ tpm2pkcs11-toolslot 1list-mechanisms</pre>	
-----	--	--

Create an RSA key object:

Code Listing 48

001	<pre>\$ tpm2pkcs11-toolslot 1id 00label rsa2048login</pre>
	pin userpinkeypairgenkey-type RSA:2048

Create an ECC key object:

PKCS #11

Operation Guide

Code Listing 49

001	\$ tpm2pkcs11-toolslot 1id 01label eccp256login
	pin userpinkeypairgenusage-signkey-type
	EC:secp256r1

Show created key objects:

Code Listing 50

001	\$ tpm2pkcs11-toolslot 1list-objectsloginpin
	userpin

Read the public component of the RSA key:

Code Listing 51

001	\$ tpm2pkcs11-toolslot 1loginpin userpinid 00
	type pubkeyread-object > rsa.pub.der
002	<pre>\$ openssl rsa -inform DER -outform PEM -in rsa.pub.der -pubin</pre>
	> rsa.pub.pem

Read the public component of the ECC key:

Code Listing 52

001	\$ tpm2pkcs11-toolslot 1loginpin userpinid 01
	type pubkeyread-object > ecc.pub.der
002	<pre>\$ openssl ec -inform DER -outform PEM -in ecc.pub.der -pubin ></pre>
	ecc.pub.pem

Generate random data:

Code Listing 53

001 \$ tpm2pkcs11-toolslot 1generate-random 32 > data	
---	--

RSA encryption and decryption:

Code Listing 54

001	<pre>\$ openssl rsautl -encrypt -inkey rsa.pub.pem -in data -pubin -</pre>
	out data.crypt
002	\$ tpm2pkcs11-toolslot 1loginpin userpinid 00
	decryptmechanism RSA-PKCSinput-file data.crypt
	output-file data.plain
003	<pre>\$ diff data data.plain</pre>

RSA signing and verification:

Code Listing 55

001	\$ tpm2pkcs11-toolslot 1id 00loginpin userpin
	signmechanism SHA256-RSA-PKCSinput-file dataoutput-file data.rsa.sig
002	<pre>\$ openssl dgst -sha256 -verify rsa.pub.pem -signature data.rsa.sig data</pre>

ECC signing and verification:

PKCS #11

Operation Guide

Code Listing 56

001	\$ tpm2pkcs11-toolslot 1id 01loginpin userpin
	signmechanism ECDSA-SHA1signature-format openssl
	input-file dataoutput-file data.ecc.sig
002	<pre>\$ openssl dgst -sha1 -verify ecc.pub.pem -signature</pre>
	data.ecc.sig data

Destroy RSA key object:

Code Listing 57

001	\$ tpm2pkcs11-toolslot 1loginpin userpindelete-
0.00	objecttype privkeyid 00
002	<pre>\$ tpm2pkcs11-toolslot 1loginpin userpindelete- objecttype pubkeyid 00</pre>

Destroy ECC key object:

Code Listing 58

001	\$ tpm2pkcs11-toolslot 1loginpin userpindelete-
002	<pre>objecttype privkeyid 01 \$ tpm2pkcs11-toolslot 1loginpin userpindelete- objecttype pubkeyid 01</pre>

OpenSSL 2.4

To verify that the PKCS #11 engine is accessible:

Code Listing 59

001	<pre>\$ openssl version</pre>
002	OpenSSL 1.1.1d 10 Sep 2019
003	\$ openssl engine pkcs11 -t
004	(pkcs11) pkcs11 engine
005	[available]

Create RSA and ECC key objects:

Code Listing 60

001	\$ tpm2pkcs11-toolslot 1id 02label osslrsa2048login
	pin userpinkeypairgenkey-type RSA:2048
002	<pre>\$ tpm2pkcs11-toolslot 1id 03label ossleccp256loginpin userpinkeypairgenusage-signkey-type EC:secp256r1</pre>

RSA signing and verification:

001	<pre>\$ echo "beefcafe" > data</pre>
002	<pre>\$ tpm2ssl dgst -engine pkcs11 -keyform engine -sign</pre>
	"pkcs11:token=tpm-token;object=osslrsa2048;pin-
	value=userpin" -out data.rsa.sig data
003	<pre>\$ tpm2ssl dgst -engine pkcs11 -keyform engine -verify</pre>
	"pkcs11:token=tpm-token;object=osslrsa2048;pin-
	value=userpin" -signature data.rsa.sig data

PKCS #11

Operation Guide

ECC signing and verification:

Code Listing 62

001	<pre>\$ echo "beefcafe" > data</pre>
002	<pre>\$ tpm2ssl dgst -engine pkcs11 -keyform engine -sign</pre>
	"pkcs11:token=tpm-token;object=ossleccp256;pin-
	value=userpin" -out data.ecc.sig data
003	<pre>\$ tpm2ssl dgst -engine pkcs11 -keyform engine -verify</pre>
	"pkcs11:token=tpm-token;object=ossleccp256;pin-
	value=userpin" -signature data.ecc.sig data

RSA encryption and decryption:

Code Listing 63

001	<pre>\$ echo "beefcafe" > data</pre>
002	<pre>\$ tpm2ssl rsautl -engine pkcs11 -keyform engine -inkey</pre>
	"pkcs11:token=tpm-token;object=osslrsa2048;pin-
	value=userpin" -encrypt -in data -out data.crypt
003	<pre>\$ tpm2ssl rsautl -engine pkcs11 -keyform engine -inkey</pre>
	"pkcs11:token=tpm-token;object=osslrsa2048;pin-
	value=userpin" -decrypt -in data.crypt -out data.plain
004	<pre>\$ diff data data.plain</pre>

Generate a self-signed certificate:

Code Listing 64

001	<pre>\$ tpm2ssl req -engine pkcs11 -keyform engine -key</pre>
	"pkcs11:token=tpm-token;object=ossleccp256;pin-
	value=userpin" -new -x509 -days 365 -subj '/CN=TPM CA/' -
	sha256 -out ca.crt.pem
002	### view the certificate
003	<pre>\$ openssl x509 -in ca.crt.pem -text -noout</pre>

Import a certificate:

Code Listing 65

001	<pre>\$ tpm2_ptool addcertlabel=tpm-tokenkey-label=ossleccp256</pre>
I	path ~/pkcs11-store ca.crt.pem

Show imported certificates:

Code Listing 66

001	<pre>\$ tpm2pkcs11-toolslot 1list-objectsloginpin</pre>
	userpin

Read a certificate, use the Code Listing 66 to get the object id.

Code Listing 67

001	<pre>\$ tpm2pkcs11-toolslot 1loginpin userpinread-object</pre>
	type certid <object id=""> cert.der</object>
002	<pre>\$ openssl x509 -inform der -in cert.der -out cert.pem</pre>
003	<pre>\$ diff cert.pem ca.crt.pem</pre>

Delete a certificate, use the Code Listing 66 to get the object id.

PKCS #11

Operation Guide

Code Listing 68

001	<pre>\$ tpm2pkcs11-toolslot 1loginpin userpindelete-</pre>
	objecttype certid <object id=""></object>

Generate a CSR:

Code Listing 69

001	<pre>\$ tpm2ssl req -engine pkcs11 -keyform engine -key</pre>
	"pkcs11:token=tpm-token;object=ossleccp256;pin-
	value=userpin" -new -subj '/CN=TPM device/' -out csr.pem
002	### view the certificate
003	<pre>\$ openssl req -in csr.pem -text -noout</pre>

Sign the CSR:

001	\$ tpm2ssl x509 -engine pkcs11 -CAkeyform engine -CAkey
001	"pkcs11:token=tpm-token;object=ossleccp256;pin-
	<pre>value=userpin" -req -CA ca.crt.pem -sha256 -set_serial 1 -in</pre>
	csr.pem -out crt.pem
002	### view the certificate
003	<pre>\$ openssl x509 -in crt.pem -text -noout</pre>

PKCS #11

References

References

- [1] https://github.com/Infineon/pkcs11-optiga-tpm
- [2] https://www.infineon.com/cms/en/product/evaluation-boards/iridium9670-tpm2.0-linux/
- [3] http://www.infineon.com/tpm
- [4] https://trustedcomputinggroup.org/resource/tpm-main-specification/
- [5] https://downloads.raspberrypi.org/raspios armhf/images/raspios armhf-2021-01-12/2021-01-11raspios-buster-armhf.zip
- [6] https://github.com/tpm2-software/tpm2-pkcs11/blob/master/docs/INTEROPERABILITY.md

PKCS #11

Revision history

Revision history

Reference	Description	
Revision 1.0, 2021-02-29		
all	Initial version	

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-02-09 Published by Infineon Technologies AG 81726 Munich, Germany

© 2021 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email:

csscustomerservice@infineon.com

IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineor Technologies office.

Except as otherwise explicitly approved by Infineor Technologies in a written document signed by authorized representatives of Infineor Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof car reasonably be expected to result in personal injury.