Practical No 0

Aim: Install the Scilab and Image Processing Toolbox in Scilab. Step

1: Download scilab.6.1.1 https://www.scilab.org/download/scilab-6.1.1

2: Select setup language as English. And click on OK.

3: Click Next to continue.

Accept the agreement and click on next button.

Click on next.

Keep the by default settings as it is and click on next.

Click on next.

Keep the by default settings as it is and click on next.

Click on Install.

Installation process will start.

Click on Finish to exit Setup.

Download IPCV zip file

https://atoms.scilab.org/toolboxes/IPCV

Download IPVC-X.X.X for respective windows OS and Scilab version.

Extract IPCV folder => Paste in scilab folder

Paste IPCV folder in C:\Program Files\scilab-6.0.2

Open scilab 6.1.1. Click on Module Manager-ATOMS.

Click on Image Processing

Install Image Processing and Computer Vision Toolbox.

Open scilab 6.1.1 console

Type atomsInstall("IPCV")

Practical No 1

Aim: Basics

a Program to calculate number of samples required for an image.

```
Practical_1_a.sce (C:\Users\Hrishikesh\Documents\IP Practicals\Practical_1_a.sce) - Sci...
                                                                                     Х
File Edit Format Options Window Execute ?
Practical_1_a.sce 🗶
1 //-Program.to.calculate.number.of.samples.required.for.an.image
2 clc.;
3 close :
4 //-dimension-of-the-image-in-inches
5 m = input('Length of the image in inches');
6 n = · input('Height · of · the · image · in · inches');
7 N = 400; // number of dots per inch in each direction
8 N2 = 2* N : // number of dots per inch in both horizontal & vertical
9 Fs = m* N2 * n * N2 ;
10 disp · ( · Fs · , · 'Number · of · samples · required · to · preserve · the · information · in · the · image = · ')
11
```

```
Scilab 6.1.1 Console

2 7 ×

Length of the image in inches 4

Height of the image in inches 6

15360000.

"Number of samples required to preserve the information in the image= "

-->
```

b Program to study the effects of reducing the spatial resolution of a digital image.

```
×
Practical_1_b_1.sce (C:\Users\Hrishikesh\Documents\IP Practicals\Pr...
                                                                       File Edit Format Options Window Execute ?
🕒 🔚 🖫 | 🔚 🖭 | 🖴 | 🥱 🥟 | 🔏 🖫 📵 | 🏖 🖢 | 🕨 🗣 🎉 | 🚱
Practical_1_b_1.sce (C:\Users\Hrishikesh\Documents\P Practicals\Practical_1_b_1.sce) - SciNotes
Practical_1_b_1.sce 🗶
 1 clc;
 2 clear all;
 3
 4 I=<u>imread('C:\Program.Files\scilab-6.1.1\IPCV\images\Lena.png');</u>
 5 subplot (2,3,1);
 6 <u>imshow</u> (I);
 7 title('original-image-512*512');
 8
 9 | I2=imresize(I, 0.5);
10 subplot (2,3,2);
11 imshow (I2);
12 title ('original - image - 256*256');
13
14 I3=imresize(I, 0.25);
15 subplot (2,3,3);
16 imshow (I3);
17 title ('original image 128*128');
18
19 I4=imresize(I, 0.125);
20 subplot (2,3,4);
21 imshow (I4);
22 title ('original image 64*64');
23
24 I5=imresize(I,0.0625);
25 subplot (2,3,5);
26 imshow (I5);
27 title ('original image 16*16');
28
29 I6=imresize(I,0.03125);
30 subplot (2,3,6);
31 <u>imshow</u> (16);
32 title('original image 8*8');
33
```


c Program to study the effects of varying the number of intensity levels in a digital image

```
Practical_1_c_1.sce (C:\Users\Hrishikesh\Documents\IP Practicals\Pr...
                                                                       ×
File Edit Format Options Window Execute ?
🕒 🔚 🖫 🔚 🖎 | 🏝 | 🤚 | 🥱 🎤 | 🔏 🕞 📵 | 🕸 쌒 💺 | ▷ 恥 🛣 | % |
Practical_1_c_1.sce 💢
1 close all;
2 clear all;
3 clc
4 img = imread('C:\Program Files\scilab-6.1.1\IPCV\images\Lena.png');
5 img=rqb2qray(img)
   [r,c,s]=size(img)
  k=[1.2.3.4.5.6.7.8]
8 for · i ·=1:length(k)
   ----d=2^i;
9
10
    ---z=round(img/d);
11 - · · · <u>subplot</u>(3, -3, -i)
12 ---- <u>imshow</u>(z*d);
13 end
14
```


d Program to perform image averaging (image addition) for noise reduction.

Scilab function for addition of noise

- imnoise(): it can be used for adding noise in image .
- Syntax: -variable 1= read image and store in variable;
 - -new variable = imnoise (variable 1, 'noise name');
 - -display the image or write the image.

Original Image

Output Image

e. Program to compare images using subtraction for enhancing the difference between images.

Practical No 2

Aim: IMAGE ENHANCEMENT

A Basic Intensity Transformation functions

i. Program to perform Image negation

```
Х
Practical_2_1.sce (C:\Users\Hrishikesh\Documents\IP Practicals...
                                                                  File Edit Format Options Window Execute ?
🕒 🔚 🖫 | 🔚 🖭 | 📇 | 🦘 🥟 | 🔏 🖫 📵 | 🏖 🖢 | 🕨 🗗 🎉 | 😥
Practical_2_1.sce 💥
1 clc;
2 clear all;
3 a = imread('C:\Program.Files\scilab-6.1.1\IPCV\images\baboon.png');
4 <u>subplot</u>(1,2,1);
5 imshow(a)
6 title ('Original . img')
7
8 [m, n] -= - size (a);
9 for - i -= -1:m
   \cdotsfor \cdotj \cdot= \cdot1:n
10
11 ---- c(i,j) -= 255 -- a(i,j)
12 ----end
13 end
14 subplot (1,2,2);
15 imshow(c)
16 title ('Negation · image')
17
```

Output:

ii. Program to perform threshold on an image.

```
Practical_2_2.sce (C:\Users\Hrishikesh\Documents\IP Practicals...
                                                                     X
                                                              File Edit Format Options Window Execute ?
🕒 🔚 🔚 | 🔚 🛂 | 🐣 | 🥱 🎤 | 🔏 🕞 📵 | 🏖 🖢 | 🕨 🖒 🏗 | 🖋 | 🔞
Practical_2_1.sce 🕱 Practical_2_2.sce 🕱
1 a = imread('C:\Program Files\scilab-6.1.1\IPCV\images\baboon.png');
2 b=double(a);
3 subplot (1,2,1);
4 imshow(a);
5 title('Original · Img');
6
7 t=100;
8 [m, n] -= - size(b);
  for · i · = · 1:m
9
10
   ....for.j.=.1:n
   ····if(b(i,j)<t)
11
   ....c(i,j)=0;
12
   ····else
13
   ----c(i,j)=255;
14
15
   ----end
   ---end
16
17 end
18
19 subplot (1,2,2);
20 <u>imshow(c);</u>
   title ('Threshold Img');
21
22
```

Output:

iii.Program to perform Log transformation

```
Practical_2_3.sce (C:\Users\Hrishikesh\Documents\IP Practicals... —
                                                                           X
File Edit Format Options Window Execute ?
🕒 🔚 🖫 | 🔚 🖭 | 📇 | 🥱 🥟 | 🔏 🖫 🗓 | 🏖 🖢 🖫 | 🕨 🕦 |🐒 | Ø
Practical_2_3.sce (C:\Users\Hrishikesh\Documents\P Practicals\Practical_2_3.sce) - SciNotes
Practical_2_1.sce 🕱 Practical_2_2.sce 🕱 Practical_2_3.sce 🕱
1 clc;
2 clear all;
3 a = - imread('C:\Program - Files\scilab-6.1.1\IPCV\images\baboon.png')
4 b=double(a);
 5 <u>subplot</u>(1,2,1);
6 imshow(a);
 7 title ('Original · Img');
8
9 k=10; · · //constant · value
10 [m, n] -= - size (b);
11 for - i -= -1:m
12 ----for-j-=-1:n
13 \cdots c(i,j)=k*log(1+b(i,j)); \cdot//s=k*log(1+r)
14 ----end
15 end
16 subplot (1,2,2);
17 imshow (uint8(c));
18 title ('Log . tranfrom . img');
```


iv. Power-law transformations

```
Practical_2_4.sce (C:\Users\Hrishikesh\Documents\IP Practicals\Practica... —
                                                                      ×
File Edit Format Options Window Execute ?
🕒 🖺 🖫 | 🚍 🖭 | 🖴 | 🥱 🎤 | 🚜 🕞 📵 | 🏖 쌒 💺 | 🕨 🗫 | 🞉 | 🔞
Practical_2_4.sce (C:\Users\Hrishikesh\Documents\P Practicals\Practical_2_4.sce) - SciNotes
Practical_2_1.sce 🕱 Practical_2_2.sce 🕱 Practical_2_3.sce 🕱 Practical_2_4.sce
1 clear all;
2 a = imread('C:\Program.Files\scilab-6.1.1\IPCV\images\baboon.png');
3 b=double(a)
4 <u>subplot(1,2,1);</u>
5 imshow(a);
6 title("Original Img");
7 k=1;
gamma=1;
9 [m, n] = size(b);
10 for - i=1:m
     ···for·j=1:n
11
12 \cdots \cdots c(i,j)=k*(b(i,j)^gamma);
13 ----end
14 end
15 <u>subplot(1,2,2);</u>
16 imshow(uint8(c));
   title("Power - law - Img");
17
```


v. Piecewise linear transformations

a. Contrast Stretching

```
Practical_2_5.sce (C:\Users\Hrishikesh\Documents\IP Practicals\Practical_2_5.sce) - SciNotes
File Edit Format Options Window Execute ?
Practical_2_1.sce 🕱 Practical_2_2.sce 🕱 Practical_2_3.sce 🕱 Practical_2_4.sce 🕱 Practical_2_5.sce
3 a = imread('C:\Program Files\scilab-6.1.1\IPCV\images\Lena_dark.png');
 4 b=double(a);
5 [m,n]=size(b); //to-get-digital-image-in-the-form-of-matrix-m-by-n
6 rl=input('Enter.rl');
7 | sl=input('Enter.sl');
8 r2=input('Enter-r2');
9 s2=<u>input</u>('Enter.s2');
10
11 M=s1/r1;
12 N=(s2-s1)/(r2-r1);
13 0= (255-s2) / (255-r2);
14
15 ics=zeros(m,n);
16 for i=1:m
17 ----for-j=1:n
18 -----if (0<b(i,j)&&b(i,j)<rl)
   ....ics(i,j)=M*b(i,j);
19
20 -----else-if(rl<b(i,j)&&-b(i,j)<r2)
21 ----ics(i,j)=N*b(i,j)-slope2*rl+sl;
22 -----else-if(r2<b(i,j)&&-b(i,j)<255)
   ·····ics(i,j)=0*(b(i,j)-rl)+s2;
23
24 -----end
25 -----end
26 -----end
27 ----end
28 end
29
30 subplot (1,2,1);
31 imshow(a);
32 title ('Original . img');
33 subplot (1,2,2);
34 imshow(uint8(ics));
35 title ('Contrast-stretch-img');
36
```


b. Gray-level slicing with and without background.

Gray-level slicing without background

```
Practical_2_6a.sce (C:\Users\Hrishikesh\Documents\IP Practicals\Practic...
                                                                    X
File Edit Format Options Window Execute ?
Practical_2_6a.sce (C:\Users\Hrishikesh\Documents\P Practicals\Practical_2_6a.sce) - SciNotes
Practical_2_6a.sce 🗶 *Untitled 2 🗶
1 clc;
2 clear all;
  a -= ·imread('C:\Program Files\scilab-6.1.1\IPCV\images\Lena dark.png');
3
4 b=double(a);
5 [m, n] = size(b);
6 |xl=input("Enter.xl");
7 x2=input ("Enter · x2");
8
9 c=zeros(m,n);
10 for i=1:m
   .....for.j=1:n
11
   -----if(b(i,j)>=x1-&&-b(i,j)<=x2);
   ----c(i,j)=255;
13
   · · · · · · · else
14
   ....c(i,j)=0;
15
   ----end
16
   ---end
17
18 end
19
20 subplot (1,2,1);
21 imshow(a);
22 title ("Original - image");
23
24 subplot (1, 2, 2);
25 imshow (uint8(c));
26 title ("Gray · level · slicing · without · background");
27
28
```


Gray-level slicing with background

```
Practical_2_6b.sce (C:\Users\Hrishikesh\Documents\IP Practicals\Practi...
                                                                   File Edit Format Options Window Execute ?
Practical_2_6b.sce (C:\Users\Hrishikesh\Documents\P Practicals\Practical_2_6b.sce) - SciNote
Practical_2_6a.sce 🕱 Practical_2_6b.sce 🕱
1 clc;
2 clear all;
3 a = ·imread('C:\Program·Files\scilab-6.1.1\IPCV\images\Lena_dark.png');
4 b=double(a);
5 [m, n] = size(b);
6 xl=input ("Enter -xl");
7 x2=input("Enter.x2");
8
9 d=zeros(m,n);
10
11 for · i=1:m
12
   ····for·j=1:n
   ....if(b(i,j)>=x1-&&-b(i,j)<=x2)
13
    ----d(i,j)=255;
14
15
   d(i,j)=b(i,j);
16
17
        ---end
   ---end
18
19 end
20 subplot (1,2,1);
21 <u>imshow</u>(a);
22 title("Original image");
23
24 <u>subplot</u>(1,2,2);
25 imshow(uint8(d));
26 title ("Gray · level · slicing · with · background");
27
28
```


c. Bit-plane slicing

```
Practical_2_7.sce (C:\Users\Hrishikesh\Documents\IP Practicals\Practica...
                                                                      ×
File Edit Format Options Window Execute ?
Practical_2_6a.sce 🕱 Practical_2_6b.sce 🕱 Practical_2_7.sce 🕱
1 clc;
                                                                       \wedge
2 clear all;
3
4 a = imread('C:\Program.Files\scilab-6.1.1\IPCV\images\lena.png');
5 b=double(a);
6
  for i=1:8
7
   ···f=bitget(b,i)
8
   ....subplot (2,4,i);
9
   ····imshow(f);
10
   ····title("bit-plane"+string(i));
11
12 end
```


1. Program to plot the histogram of an image and categorise

2. Program to apply histogram equalization

```
close all;
clear all;
clc
warning off;
// Read the image
a=<u>imread('C:\Program Files\scilab-6.1.1\IPCV\images\Lena.png');</u>
// Convert to grayscale incase it is color
a = rgb2gray(a);
b=size(a);
a=double(a);
// Loop for Getting the Histogram of the Original image
freq\_counts = zeros(1,256);
for i=1:b(1)
  for j=1:b(2)
     for k=0:255
       if a(i,j) == k
          freq\_counts(k+1)=freq\_counts(k+1)+1;
       end
     end
  end
end
//Generating PDF out of histogram by diving by total no. of pixels
pdf=(1/(b(1)*b(2)))*freq_counts;
//Generating CDF out of PDF
cdf = zeros(1,256);
cdf(1)=pdf(1);
for i=2:256
  cdf(i)=cdf(i-1)+pdf(i);
end
cdf = round(255*cdf);
// histogram equilized image
ep = zeros(b);
for i=1:b(1)
                     //loop tracing the rows of image
  for j=1:b(2)
                     //loop tracing thes columns of image
                     //pixel values in image
     t=(a(i,j)+1);
     ep(i,j)=cdf(t);
                    //Making the ouput image using cdf as the transformationfunction
  end
end
// Loop for Getting the Histogram of the Equalized image
hist2 = zeros(1,256);
for i=1:b(1)
  for j=1:b(2)
     for k=0:255
       if ep(i,j) == k
          hist2(k+1)=hist2(k+1)+1;
       end
     end
  end
end
```

```
subplot(2,2,1);
imshow(uint8(a));title('Original image');
subplot(2,2,3);
imshow(uint8(ep));title('Histogram equalized image');
subplot(2,2,2);
plot2d3([0:255],freq_counts);title('Histogram of original image');
subplot(2,2,4);
plot2d3([0:255],hist2);title('Histogram of equalized image');
```


C Write a program to perform convolution and correlation

```
Practical_2_10.sce (C:\Users\Hrishikesh\Documents\IP Practicals\Practical_2_10.sce) - SciN... —
                                                                                       \times
File Edit Format Options Window Execute ?
Practical_2_12.sce 🕱 Practical_1_c_1.sce 🕱 Practical_2_10.sce 🕱
1 clc;
2
x=[1,2,3;4,5,6;7,8,9];
4 h=[1,1,1;1,1,1;1,1,1];
5 y=conv2(x,h);
6 disp(y, 'Linear . 2D . convolution . result . y=')
8 x=[1,2,3;4,5,6;7,8,9];
9 h=[1,2,3;4,5,6;7,8,9];
10 disp(h)
11 hl=h(:,$:-1:1) · ·//Flip · a · matrix · left · to · right · Vertical · Flip
13 h2=h1($:-1:1,:) -//Flip-a-matrix-botton-to-up-Horizontal-Flip
14 disp(h2)
15 y=conv2(x,h2);
16 disp(y, 'Linear . 2D . cross . sorrelation . result . y=')
17
```

```
3.
          6.
               5.
                    3.
     12. 21. 16.
                   9.
5.
     27.
          45.
               33.
         39. 28.
     24.
                    15.
11.
     15. 24. 17.
"Linear 2D convolution result y="
   2. 3.
1.
4.
    8. 9.
7.
3.
    2. 1.
   5. 4.
6.
   8. 7.
   8. 7.
   5. 4.
6.
   2. 1.
9.
     26.
           50.
                 38.
                      21.
42.
     94.
           154.
                 106.
    186. 285. 186. 90.
90.
    106. 154. 94.
    38.
         50.
                26.
"Linear 2D cross sorrelation result y="
```

D Write a program to apply smoothing and sharpening filters on grayscale and color images

Note: Use all kernels mentioned in the reference book

a) Low Pass

b) High Pass

