

Sistemas Discretos

Prof^a. Larissa A. de Freitas larissa@inf.ufpel.edu.br

Utilize o Diagrama de Venn para ilustrar as seguintes operações

- a) ~ B
- b) \sim (A \cup B)
- c) \sim (B A)
- d) \sim A \cap \sim B

- Utilize o Diagrama de Venn para ilustrar as seguintes operações
- a) \sim B

Utilize o Diagrama de Venn para ilustrar as seguintes operações

b) \sim (A \cup B)

Utilize o Diagrama de Venn para ilustrar as seguintes operações

c)
$$\sim$$
 (B – A)

Utilize o Diagrama de Venn para ilustrar as seguintes operações

d) \sim A \cap \sim B

- Utilize o Diagrama de Venn para ilustrar as seguintes operações
- a) $A \cap (B \cup C)$
- b) $(A \cap B) \cup (A \cap C)$
- c) $A \cup (B \cap C)$
- d) $(A \cup B) \cap (A \cup C)$

- Utilize o Diagrama de Venn para ilustrar as seguintes operações
- a) $A \cap (B \cup C)$

 Utilize o Diagrama de Venn para ilustrar as seguintes operações

b) $(A \cap B) \cup (A \cap C)$

 $(A \cap C)$

- Utilize o Diagrama de Venn para ilustrar as seguintes operações
- c) $A \cup (B \cap C)$

Utilize o Diagrama de Venn para ilustrar as seguintes operações

d) $(A \cup B) \cap (A \cup C)$

(A ∪ B)

 $(A \cup C)$

- Prove que (suponha A e B conjuntos quaisquer)
- a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- b) $(A \cup B) \cap \sim A = B \cap \sim A$
- c) $A \cap (\sim A \cup B) = A \cap B$

Prove que (suponha A e B conjuntos quaisquer)

a)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$x \in A \cap (B \cup C) \Leftrightarrow definição de \cap$$

$$x \in A \land x \in (B \cup C) \Leftrightarrow definição de U$$

$$x \in A \land (x \in B \lor x \in C) \Leftrightarrow distributividade$$

$$(x \in A \land x \in B) \lor (x \in A \land x \in C) \Leftrightarrow definição \cap$$

$$(x \in A \cap x \in B) \lor (x \in A \cap x \in C) \Leftrightarrow definição \cup$$

$$x \in (A \cap C) \cup (A \cap C)$$

Caso 1 -
$$A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$$

Caso 2 - $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$

Prove que (suponha A e B conjuntos quaisquer)

b) (A
$$\cup$$
 B) \cap \sim A = B \cap \sim A

$$(A \cup B) \cap x \in \sim A \iff definição de \cap$$

$$x \in (A \cup B) \land x \in \sim A \iff definição de \cup$$

$$(x \in A \lor x \in B) \land x \in \sim A \iff distributividade$$

$$(x \in A \land x \in \sim A)$$
 \lor $(x \in B \land x \in \sim A) \Leftrightarrow$ definição \cap $x \in (B \cap \sim A)$

Caso 1 -
$$(A \cup B) \cap \sim A \subseteq B \cap \sim A$$

Caso 2 - $B \cap \sim A \subseteq (A \cup B) \cap \sim A$

Prove que (suponha A e B conjuntos quaisquer)

c)
$$A \cap (\sim A \cup B) = A \cap B$$

$$x \in A \cap (\sim A \cup B) \iff definição de \cap$$

$$x \in A \land x \in (\sim A \cup B) \iff definição de U$$

$$x \in A \land (x \in \sim A \lor x \in B) \Leftrightarrow distributividade$$

$$(x \in A \land x \in \sim A) \lor (x \in A \land x \in B) \Leftrightarrow definição de \cap x \in (A \cap B)$$

Caso 1 - $A \cap (\sim A \cup B) \subseteq A \cap B$ Caso 2 - $A \cap B \subseteq A \cap (\sim A \cup B)$

Sistemas Discretos