CS 230 : Discrete Computational Structures Spring Semester, 2019

Assignment #5

Due Date: Wednesday, March 6

Suggested Reading: Rosen Sections 2.3, 9.1 and 9.5; Lehman et al. Chapter 4.3, 4.4, 10.6 and 10.10

These are the problems that you need to hand in for grading. Always explain your answers and show your reasoning.

- 1. [10 Pts] Let g be a total function from A to B and f be a total function from B to C.
 - (a) If $f \circ g$ is one-to-one, then is f one-to-one? Prove or give a counter-example.
 - (b) If $f \circ g$ is one-to-one, then is g one-to-one? Prove or give a counter-example.
- 2. [10 Pts] For each of these relations decide whether it is reflexive, anti-reflexive, symmetric, anti-symmetric and transitive. Justify your answers. R_1 and R_2 are over the set of real numbers.
 - (a) $(x,y) \in R_1$ if and only if $xy \ge 0$
 - (b) $(x,y) \in R_2$ if and only if x = 2y
- 3. [8 Pts] Let R_3 be the relation on $\mathcal{Z}^+ \times \mathcal{Z}^+$ where $((a,b),(c,d)) \in R_3$ if and only if a+d=b+c.
 - (a) Prove that R_3 is an equivalence relation.
 - (b) Define a function f such that f(a,b) = f(c,d) if and only if $((a,b),(c,d)) \in R_3$.
 - (c) Define the equivalence class containing (1,1).
 - (d) Describe the equivalence classes. How many classes are there and how many elements in each class?
- 4. [10 Pts] Prove that these relations on the set of all ISU students are equivalence relations. Describe the equivalence classes. Now, describe new equivalence relations which are refinements of the relations given.
 - (a) $(a, b) \in R_4$ if and only if a and b live in the same building
 - (b) $(a,b) \in R_5$ if and only if a and b graduated from the same high school
- 5. [12 Pts] Consider the following relations on the set of positive real numbers. One is an equivalence relation and the other is a partial order. Which is which? For the equivalence relation, describe the equivalence classes. What is the equivalence class of 2? of π ? Justify your answers.
 - (a) $(x,y) \in R_6$ if and only if $x/y \in \mathcal{Z}$
 - (b) $(x,y) \in R_7$ if and only if $x y \in \mathcal{Z}$