Importing and Aggregating COVID-19 Data

Bbosa Robert

4/27/2020

Contents

1	Pulling the coronvirus data from John Hopkins repo	1
2	https://github.com/CSSEGIS and Data/COVID-19	1
3	Transforming the data from wide to long	7
4	Creating new data frame	7
5	Parsing the date	10
6	Aggregate the data to daily	10
7	Pulling death cases	11
8	Transforming the data from wide to long	17
9	Creating new data frame	17
10	Parsing the date	19
11	Aggregate the data to daily	19
12	Pulling recovered cases	20
13	Transforming the data from wide to long	26
14	Creating new data frame	26
15	Parsing the date	28
16	Aggregate the data to daily	28

1 Pulling the coronvirus data from John Hopkins repo

2 https://github.com/CSSEGISandData/COVID-19

```
lapply(1:ncol(raw_conf), function(i){
  if(all(is.na(raw_conf[, i]))){
    raw_conf <<- raw_conf[, -i]</pre>
    return(print(paste("Column", names(raw_conf)[i], "is missing", sep = " ")))
 } else {
    return(NULL)
  }
})
## [[1]]
## NULL
##
## [[2]]
## NULL
## [[3]]
## NULL
##
## [[4]]
## NULL
##
## [[5]]
## NULL
##
## [[6]]
## NULL
##
## [[7]]
## NULL
## [[8]]
## NULL
##
## [[9]]
## NULL
## [[10]]
## NULL
##
## [[11]]
## NULL
## [[12]]
## NULL
## [[13]]
## NULL
##
## [[14]]
## NULL
##
## [[15]]
```

NULL

```
##
## [[16]]
## NULL
##
## [[17]]
## NULL
##
## [[18]]
## NULL
##
## [[19]]
## NULL
##
## [[20]]
## NULL
##
## [[21]]
## NULL
##
## [[22]]
## NULL
##
## [[23]]
## NULL
##
## [[24]]
## NULL
##
## [[25]]
## NULL
##
## [[26]]
## NULL
##
## [[27]]
## NULL
##
## [[28]]
## NULL
##
## [[29]]
## NULL
## [[30]]
## NULL
##
## [[31]]
## NULL
##
## [[32]]
## NULL
##
## [[33]]
## NULL
```

```
##
## [[34]]
## NULL
##
## [[35]]
## NULL
##
## [[36]]
## NULL
##
## [[37]]
## NULL
##
## [[38]]
## NULL
##
## [[39]]
## NULL
##
## [[40]]
## NULL
##
## [[41]]
## NULL
##
## [[42]]
## NULL
## [[43]]
## NULL
##
## [[44]]
## NULL
##
## [[45]]
## NULL
##
## [[46]]
## NULL
##
## [[47]]
## NULL
## [[48]]
## NULL
##
## [[49]]
## NULL
##
## [[50]]
## NULL
##
## [[51]]
```

NULL

```
##
## [[52]]
## NULL
##
## [[53]]
## NULL
##
## [[54]]
## NULL
##
## [[55]]
## NULL
##
## [[56]]
## NULL
##
## [[57]]
## NULL
##
## [[58]]
## NULL
##
## [[59]]
## NULL
##
## [[60]]
## NULL
## [[61]]
## NULL
##
## [[62]]
## NULL
##
## [[63]]
## NULL
##
## [[64]]
## NULL
##
## [[65]]
## NULL
## [[66]]
## NULL
##
## [[67]]
## NULL
##
## [[68]]
## NULL
##
## [[69]]
```

NULL

```
##
## [[70]]
## NULL
##
## [[71]]
## NULL
##
## [[72]]
## NULL
##
## [[73]]
## NULL
##
## [[74]]
## NULL
##
## [[75]]
## NULL
##
## [[76]]
## NULL
##
## [[77]]
## NULL
##
## [[78]]
## NULL
##
## [[79]]
## NULL
##
## [[80]]
## NULL
##
## [[81]]
## NULL
##
## [[82]]
## NULL
##
## [[83]]
## NULL
## [[84]]
## NULL
##
## [[85]]
## NULL
##
## [[86]]
## NULL
##
## [[87]]
## NULL
```

```
##
## [[88]]
## NULL
##
## [[89]]
## NULL
## [[90]]
## NULL
##
## [[91]]
## NULL
## [[92]]
## NULL
## [[93]]
## NULL
##
## [[94]]
## NULL
## [[95]]
## NULL
##
## [[96]]
## NULL
## [[97]]
## NULL
## [[98]]
## NULL
##
## [[99]]
## NULL
## [[100]]
## NULL
##
## [[101]]
## NULL
```

3 Transforming the data from wide to long

4 Creating new data frame

```
library(tidyr)
library(dplyr)

## Warning: package 'dplyr' was built under R version 3.6.3
##
```

```
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
       filter, lag
##
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
df_conf <- raw_conf[, 1:4]</pre>
for(i in 5:ncol(raw_conf)){
  raw_conf[,i] <- as.integer(raw_conf[,i])</pre>
  \# raw\_conf[,i] \leftarrow ifelse(is.na(raw\_conf[, i]), 0, raw\_conf[, i])
    print(names(raw_conf)[i])
  if(i == 5){
    df_conf[[names(raw_conf)[i]]] <- raw_conf[, i]</pre>
    df_conf[[names(raw_conf)[i]]] <- raw_conf[, i] - raw_conf[, i - 1]</pre>
## [1] "X1.22.20"
## [1] "X1.23.20"
## [1] "X1.24.20"
## [1] "X1.25.20"
## [1] "X1.26.20"
## [1] "X1.27.20"
## [1] "X1.28.20"
## [1] "X1.29.20"
## [1] "X1.30.20"
## [1] "X1.31.20"
## [1] "X2.1.20"
## [1] "X2.2.20"
## [1] "X2.3.20"
## [1] "X2.4.20"
## [1] "X2.5.20"
## [1] "X2.6.20"
## [1] "X2.7.20"
## [1] "X2.8.20"
## [1] "X2.9.20"
## [1] "X2.10.20"
## [1] "X2.11.20"
## [1] "X2.12.20"
## [1] "X2.13.20"
## [1] "X2.14.20"
## [1] "X2.15.20"
## [1] "X2.16.20"
## [1] "X2.17.20"
## [1] "X2.18.20"
## [1] "X2.19.20"
```

- ## [1] "X2.20.20"
- ## [1] "X2.21.20"
- ## [1] "X2.22.20"
- ## [1] "X2.23.20"
- ## [1] "X2.24.20"
- ## [1] "X2.25.20"
- ## [1] "X2.26.20"
- ## [1] "X2.27.20"
- ## [1] "X2.28.20"
- ## [1] "X2.29.20"
- ## [1] "X3.1.20"
- ## [1] "X3.2.20"
- ## [1] "X3.3.20"
- ## [1] "X3.4.20"
- ## [1] "X3.5.20"
- ## [1] "X3.6.20"
- ## [1] "X3.7.20"
- ## [1] "X3.8.20"
- ## [1] "X3.9.20"
- ## [1] "X3.10.20"
- ## [1] "X3.11.20"
- ## [1] "X3.12.20"
- ## [1] "X3.13.20"
- ## [1] "X3.14.20"
- ## [1] "X3.15.20"
- ## [1] "X3.16.20"
- ## [1] "X3.17.20"
- ## [1] "X3.18.20"
- ## [1] "X3.19.20"
- ## [1] "X3.20.20"
- ## [1] "X3.21.20"
- ## [1] "X3.22.20"
- ## [1] "X3.23.20"
- ## [1] "X3.24.20"
- ## [1] "X3.25.20"
- ## [1] "X3.26.20"
- ## [1] "X3.27.20"
- ## [1] "X3.28.20"
- ## [1] "X3.29.20" ## [1] "X3.30.20"
- ## [1] "X3.31.20"
- ## [1] "X4.1.20"
- ## [1] "X4.2.20"
- ## [1] "X4.3.20"
- ## [1] "X4.4.20"
- ## [1] "X4.5.20"
- ## [1] "X4.6.20"
- ## [1] "X4.7.20"
- ## [1] "X4.8.20"
- ## [1] "X4.9.20"
- ## [1] "X4.10.20"
- ## [1] "X4.11.20"
- ## [1] "X4.12.20"
- ## [1] "X4.13.20"

```
## [1] "X4.14.20"
## [1] "X4.15.20"
## [1] "X4.16.20"
## [1] "X4.17.20"
## [1] "X4.18.20"
## [1] "X4.19.20"
## [1] "X4.20.20"
## [1] "X4.21.20"
## [1] "X4.22.20"
## [1] "X4.23.20"
## [1] "X4.24.20"
## [1] "X4.25.20"
## [1] "X4.26.20"
## [1] "X4.27.20"
df_conf1 <- df_conf %>% tidyr::pivot_longer(cols = dplyr::starts_with("X"),
                                              names_to = "date_temp",
                                              values_to = "cases_temp")
```

5 Parsing the date

6 Aggregate the data to daily

```
df_conf2 <- df_conf1 %>%
  dplyr::group_by(Province.State, Country.Region, Lat, Long, date) %>%
  dplyr::summarise(cases = sum(cases_temp)) %>%
  dplyr::ungroup() %>%
  dplyr::mutate(type = "confirmed",
                Country.Region = trimws(Country.Region),
                Province.State = trimws(Province.State))
head(df_conf2)
## # A tibble: 6 x 7
   Province.State Country.Region Lat Long date
                                                         cases type
##
     <chr>
                   <chr>
                                  <dbl> <dbl> <date>
                                                         <int> <chr>
## 1 ""
                                           65 2020-01-22
                   Afghanistan
                                     33
                                                             0 confirmed
## 2 ""
                   Afghanistan
                                     33
                                           65 2020-01-23
                                                            0 confirmed
## 3 ""
                   Afghanistan
                                     33
                                           65 2020-01-24
                                                            0 confirmed
## 4 ""
                                     33
                                           65 2020-01-25
                                                            0 confirmed
                   Afghanistan
## 5 ""
                   Afghanistan
                                     33
                                           65 2020-01-26
                                                             0 confirmed
## 6 ""
                                     33
                                           65 2020-01-27
                                                             0 confirmed
                   Afghanistan
```

```
tail(df_conf2)
## # A tibble: 6 x 7
    Province.State Country.Region
                                     Lat Long date
                                                           cases type
     <chr>>
                    <chr>
                                   <dbl> <dbl> <date>
                                                           <int> <chr>
                                    29.2 120. 2020-04-22
## 1 Zhejiang
                    China
                                                               0 confirmed
## 2 Zhejiang
                    China
                                    29.2 120. 2020-04-23
                                                               0 confirmed
                    China
                                    29.2 120. 2020-04-24
                                                               0 confirmed
## 3 Zhejiang
                    China
                                    29.2 120. 2020-04-25
                                                               0 confirmed
## 4 Zhejiang
                                    29.2 120. 2020-04-26
                                                               0 confirmed
## 5 Zhejiang
                    China
## 6 Zhejiang
                    China
                                    29.2 120. 2020-04-27
                                                               0 confirmed
    Pulling death cases
death_url <- "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master
/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv"
raw_death <- read.csv(file =death_url, stringsAsFactors = FALSE, fill =FALSE)
lapply(1:ncol(raw_death), function(i){
  if(all(is.na(raw_death[, i]))){
    raw_death <<- raw_death[, -i]</pre>
    return(print(paste("Column", names(raw_death)[i], "is missing", sep = " ")))
    return(NULL)
  }
})
## [[1]]
## NULL
##
## [[2]]
## NULL
## [[3]]
## NULL
## [[4]]
## NULL
##
## [[5]]
```

NULL ## ## [[6]] ## NULL

[[7]] ## NULL

[[8]] ## NULL

[[9]]

```
## NULL
##
## [[10]]
## NULL
## [[11]]
## NULL
##
## [[12]]
## NULL
## [[13]]
## NULL
##
## [[14]]
## NULL
##
## [[15]]
## NULL
##
## [[16]]
## NULL
##
## [[17]]
## NULL
## [[18]]
## NULL
##
## [[19]]
## NULL
##
## [[20]]
## NULL
##
## [[21]]
## NULL
##
## [[22]]
## NULL
##
## [[23]]
## NULL
##
## [[24]]
## NULL
##
## [[25]]
## NULL
##
## [[26]]
## NULL
##
```

[[27]]

```
## NULL
##
## [[28]]
## NULL
## [[29]]
## NULL
##
## [[30]]
## NULL
## [[31]]
## NULL
##
## [[32]]
## NULL
##
## [[33]]
## NULL
##
## [[34]]
## NULL
##
## [[35]]
## NULL
## [[36]]
## NULL
##
## [[37]]
## NULL
##
## [[38]]
## NULL
##
## [[39]]
## NULL
##
## [[40]]
## NULL
##
## [[41]]
## NULL
##
## [[42]]
## NULL
##
## [[43]]
## NULL
##
## [[44]]
## NULL
##
```

[[45]]

```
## NULL
##
## [[46]]
## NULL
## [[47]]
## NULL
##
## [[48]]
## NULL
##
## [[49]]
## NULL
##
## [[50]]
## NULL
##
## [[51]]
## NULL
##
## [[52]]
## NULL
##
## [[53]]
## NULL
## [[54]]
## NULL
##
## [[55]]
## NULL
##
## [[56]]
## NULL
##
## [[57]]
## NULL
##
## [[58]]
## NULL
##
## [[59]]
## NULL
##
## [[60]]
## NULL
##
## [[61]]
## NULL
##
## [[62]]
## NULL
##
```

[[63]]

```
## NULL
##
## [[64]]
## NULL
## [[65]]
## NULL
##
## [[66]]
## NULL
##
## [[67]]
## NULL
##
## [[68]]
## NULL
##
## [[69]]
## NULL
##
## [[70]]
## NULL
##
## [[71]]
## NULL
## [[72]]
## NULL
##
## [[73]]
## NULL
##
## [[74]]
## NULL
##
## [[75]]
## NULL
##
## [[76]]
## NULL
##
## [[77]]
## NULL
##
## [[78]]
## NULL
##
## [[79]]
## NULL
##
## [[80]]
## NULL
##
```

[[81]]

```
## NULL
##
## [[82]]
## NULL
## [[83]]
## NULL
##
## [[84]]
## NULL
##
## [[85]]
## NULL
##
## [[86]]
## NULL
##
## [[87]]
## NULL
##
## [[88]]
## NULL
##
## [[89]]
## NULL
## [[90]]
## NULL
##
## [[91]]
## NULL
##
## [[92]]
## NULL
##
## [[93]]
## NULL
##
## [[94]]
## NULL
##
## [[95]]
## NULL
##
## [[96]]
## NULL
##
## [[97]]
## NULL
##
## [[98]]
## NULL
##
```

[[99]]

```
## NULL
## [[100]]
## NULL
##
## [[101]]
## NULL
```

8 Transforming the data from wide to long

9 Creating new data frame

```
df_death <- raw_death[, 1:4]

for(i in 5:ncol(raw_death)){
   print(i)
   raw_death[,i] <- as.integer(raw_death[,i])
   raw_death[,i] <- ifelse(is.na(raw_death[, i]), 0 , raw_death[, i])

if(i == 5){
   df_death[[names(raw_death)[i]]] <- raw_death[, i]
} else {
   df_death[[names(raw_death)[i]]] <- raw_death[, i] - raw_death[, i - 1]
}
}</pre>
```

```
## [1] 5
## [1] 6
## [1] 7
## [1] 8
## [1] 9
## [1] 10
## [1] 11
## [1] 12
## [1] 13
## [1] 14
## [1] 15
## [1] 16
## [1] 17
## [1] 18
## [1] 19
## [1] 20
## [1] 21
## [1] 22
## [1] 23
## [1] 24
## [1] 25
## [1] 26
## [1] 27
## [1] 28
## [1] 29
## [1] 30
```

[1] 31

- ## [1] 32
- ## [1] 33
- ## [1] 34
- ## [1] 35
- ## [1] 36 ## [1] 37
- ## [1] 38
- ## [1] 39
- ## [1] 40
- ## [1] 41
- ## [1] 42
- ## [1] 43
- ## [1] 44
- ## [1] 45
- ## [1] 46
- ## [1] 47
- ## [1] 48
- ## [1] 49
- ## [1] 50
- ## [1] 51
- ## [1] 52
- ## [1] 53
- ## [1] 54
- ## [1] 55
- ## [1] 56
- ## [1] 57
- ## [1] 58
- ## [1] 59
- ## [1] 60
- ## [1] 61
- ## [1] 62
- ## [1] 63
- ## [1] 64
- ## [1] 65 ## [1] 66
- ## [1] 67
- ## [1] 68
- ## [1] 69
- ## [1] 70
- ## [1] 71
- ## [1] 72
- ## [1] 73
- ## [1] 74
- ## [1] 75
- ## [1] 76
- ## [1] 77 ## [1] 78
- ## [1] 79
- ## [1] 80
- ## [1] 81
- ## [1] 82
- ## [1] 83
- ## [1] 84
- ## [1] 85

```
## [1] 86
## [1] 87
## [1] 88
## [1] 89
## [1] 90
## [1] 91
## [1] 92
## [1] 93
## [1] 94
## [1] 95
## [1] 96
## [1] 97
## [1] 98
## [1] 99
## [1] 100
## [1] 101
df_death1 <- df_death %>% tidyr::pivot_longer(cols = dplyr::starts_with("X"),
                                                names_to = "date_temp",
                                                values_to = "cases_temp")
```

10 Parsing the date

11 Aggregate the data to daily

```
##
     <chr>>
                    <chr>
                                    <dbl> <dbl> <date>
                                                            <int> <chr>
## 1 ""
                                       33
                                             65 2020-01-22
                    Afghanistan
                                                                0 death
## 2 ""
                    Afghanistan
                                       33
                                             65 2020-01-23
                                                                0 death
## 3 ""
                                       33
                                             65 2020-01-24
                                                                0 death
                    Afghanistan
## 4 ""
                    Afghanistan
                                       33
                                           65 2020-01-25
                                                                0 death
## 5 ""
                                       33
                                             65 2020-01-26
                                                                0 death
                    Afghanistan
```

```
## 6 ""
                    Afghanistan
                                      33
                                            65 2020-01-27
                                                               0 death
tail(df_death2)
## # A tibble: 6 x 7
    Province.State Country.Region
                                     Lat Long date
                                                           cases type
                                   <dbl> <dbl> <date>
##
     <chr>>
                    <chr>
                                                           <int> <chr>
## 1 Zhejiang
                    China
                                    29.2 120. 2020-04-22
                                                               0 death
## 2 Zhejiang
                    China
                                    29.2 120. 2020-04-23
                                                               0 death
                    China
                                    29.2 120. 2020-04-24
                                                               0 death
## 3 Zhejiang
                                    29.2 120. 2020-04-25
                                                               0 death
## 4 Zhejiang
                    China
## 5 Zhejiang
                    China
                                    29.2 120. 2020-04-26
                                                               0 death
## 6 Zhejiang
                    China
                                    29.2 120. 2020-04-27
                                                               0 death
```

Pulling recovered cases 12

```
raw_rec <- read.csv(file = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19
/master/csse_covid_19_data/csse_covid_19_time_series
/time_series_covid19_recovered_global.csv", stringsAsFactors = FALSE, fill =FALSE)
lapply(1:ncol(raw_rec), function(i){
  if(all(is.na(raw_rec[, i]))){
    raw_rec <<- raw_rec[, -i]</pre>
    return(print(paste("Column", names(raw_rec)[i], "is missing", sep = " ")))
    return(NULL)
  }
})
## [[1]]
## NULL
##
## [[2]]
## NULL
## [[3]]
## NULL
## [[4]]
## NULL
##
## [[5]]
## NULL
##
## [[6]]
## NULL
## [[7]]
## NULL
## [[8]]
## NULL
##
## [[9]]
```

```
## NULL
##
## [[10]]
## NULL
## [[11]]
## NULL
##
## [[12]]
## NULL
## [[13]]
## NULL
##
## [[14]]
## NULL
##
## [[15]]
## NULL
##
## [[16]]
## NULL
##
## [[17]]
## NULL
## [[18]]
## NULL
##
## [[19]]
## NULL
##
## [[20]]
## NULL
##
## [[21]]
## NULL
##
## [[22]]
## NULL
##
## [[23]]
## NULL
##
## [[24]]
## NULL
##
## [[25]]
## NULL
##
## [[26]]
## NULL
##
```

[[27]]

```
## NULL
##
## [[28]]
## NULL
## [[29]]
## NULL
##
## [[30]]
## NULL
## [[31]]
## NULL
##
## [[32]]
## NULL
##
## [[33]]
## NULL
##
## [[34]]
## NULL
##
## [[35]]
## NULL
## [[36]]
## NULL
##
## [[37]]
## NULL
##
## [[38]]
## NULL
##
## [[39]]
## NULL
##
## [[40]]
## NULL
##
## [[41]]
## NULL
##
## [[42]]
## NULL
##
## [[43]]
## NULL
##
## [[44]]
## NULL
##
```

[[45]]

```
## NULL
##
## [[46]]
## NULL
## [[47]]
## NULL
##
## [[48]]
## NULL
##
## [[49]]
## NULL
##
## [[50]]
## NULL
##
## [[51]]
## NULL
##
## [[52]]
## NULL
##
## [[53]]
## NULL
## [[54]]
## NULL
##
## [[55]]
## NULL
##
## [[56]]
## NULL
##
## [[57]]
## NULL
##
## [[58]]
## NULL
##
## [[59]]
## NULL
##
## [[60]]
## NULL
##
## [[61]]
## NULL
##
## [[62]]
## NULL
##
```

[[63]]

```
## NULL
##
## [[64]]
## NULL
## [[65]]
## NULL
##
## [[66]]
## NULL
##
## [[67]]
## NULL
##
## [[68]]
## NULL
##
## [[69]]
## NULL
##
## [[70]]
## NULL
##
## [[71]]
## NULL
## [[72]]
## NULL
##
## [[73]]
## NULL
##
## [[74]]
## NULL
##
## [[75]]
## NULL
##
## [[76]]
## NULL
##
## [[77]]
## NULL
##
## [[78]]
## NULL
##
## [[79]]
## NULL
##
## [[80]]
## NULL
##
```

[[81]]

```
## NULL
##
## [[82]]
## NULL
## [[83]]
## NULL
##
## [[84]]
## NULL
##
## [[85]]
## NULL
##
## [[86]]
## NULL
##
## [[87]]
## NULL
##
## [[88]]
## NULL
##
## [[89]]
## NULL
## [[90]]
## NULL
##
## [[91]]
## NULL
##
## [[92]]
## NULL
##
## [[93]]
## NULL
##
## [[94]]
## NULL
##
## [[95]]
## NULL
##
## [[96]]
## NULL
##
## [[97]]
## NULL
##
## [[98]]
## NULL
##
```

[[99]]

```
## NULL
## [[100]]
## NULL
##
## [[101]]
## NULL
```

13 Transforming the data from wide to long

14 Creating new data frame

```
df_rec <- raw_rec[, 1:4]

for(i in 5:ncol(raw_rec)){
   print(i)
   raw_rec[,i] <- as.integer(raw_rec[,i])
   raw_rec[,i] <- ifelse(is.na(raw_rec[, i]), 0 , raw_rec[, i])

if(i == 5){
   df_rec[[names(raw_rec)[i]]] <- raw_rec[, i]
} else {
   df_rec[[names(raw_rec)[i]]] <- raw_rec[, i] - raw_rec[, i - 1]
}
</pre>
```

```
## [1] 5
## [1] 6
## [1] 7
## [1] 8
## [1] 9
## [1] 10
## [1] 11
## [1] 12
## [1] 13
## [1] 14
## [1] 15
## [1] 16
## [1] 17
## [1] 18
## [1] 19
## [1] 20
## [1] 21
## [1] 22
## [1] 23
## [1] 24
## [1] 25
## [1] 26
## [1] 27
## [1] 28
## [1] 29
## [1] 30
## [1] 31
```

- ## [1] 32
- ## [1] 33
- ## [1] 34
- ## [1] 35
- ## [1] 36
- ## [1] 37
- ## [1] 38
- ## [1] 39
- ## [1] 40
- ## [1] 41
- ## [1] 42
- ## [1] 43
- ## [1] 44
- ## [1] 45 ## [1] 46
- ## [1] 47
- ## [1] 48
- ## [1] 49
- ## [1] 50
- ## [1] 51
- ## [1] 52
- ## [1] 53
- ## [1] 54
- ## [1] 55
- ## [1] 56
- ## [1] 57
- ## [1] 58
- ## [1] 59
- ## [1] 60
- ## [1] 61
- ## [1] 62
- ## [1] 63
- ## [1] 64 ## [1] 65
- ## [1] 66
- ## [1] 67
- ## [1] 68
- ## [1] 69
- ## [1] 70
- ## [1] 71
- ## [1] 72
- ## [1] 73
- ## [1] 74
- ## [1] 75
- ## [1] 76
- ## [1] 77 ## [1] 78
- ## [1] 79
- ## [1] 80
- ## [1] 81
- ## [1] 82
- ## [1] 83
- ## [1] 84
- ## [1] 85

```
## [1] 86
## [1] 87
## [1] 88
## [1] 89
## [1] 90
## [1] 91
## [1] 92
## [1] 93
## [1] 94
## [1] 95
## [1] 96
## [1] 97
## [1] 98
## [1] 99
## [1] 100
## [1] 101
df_rec1 <- df_rec %>% tidyr::pivot_longer(cols = dplyr::starts_with("X"),
                                            names_to = "date_temp",
                                            values_to = "cases_temp")
```

15 Parsing the date

```
df_rec1$month <- sub("X", "", strsplit(df_rec1$date_temp, split = "\\.") %>%
                       purrr::map_chr(~.x[1]) )
df_rec1$day <- strsplit(df_rec1$date_temp, split = "\\.") %>%
 purrr::map_chr(~.x[2])
df_rec1$date <- as.Date(paste("2020", df_rec1$month, df_rec1$day, sep = "-"))
```

Aggregate the data to daily 16

Afghanistan

Afghanistan

Afghanistan

Afghanistan

Afghanistan

2 ""

3 ""

4 ""

5 ""

```
df_rec2 <- df_rec1 %>%
  dplyr::group_by(Province.State, Country.Region, Lat, Long, date) %>%
  dplyr::summarise(cases = sum(cases_temp)) %>%
  dplyr::ungroup() %>%
  dplyr::mutate(type = "recovered",
                Country.Region = trimws(Country.Region),
                Province.State = trimws(Province.State))
head(df_rec2)
## # A tibble: 6 x 7
##
    Province.State Country.Region Lat Long date
                                                           cases type
##
     <chr>>
                    <chr>
                                   <dbl> <dbl> <date>
                                                           <int> <chr>
## 1 ""
                                            65 2020-01-22
```

0 recovered

0 recovered

0 recovered

0 recovered

0 recovered

65 2020-01-23

65 2020-01-24

65 2020-01-26

65 2020-01-25

33

33

33

33

33

```
## 6 ""
                   Afghanistan
                                     33 65 2020-01-27
                                                             0 recovered
tail(df_rec2)
## # A tibble: 6 x 7
   Province.State Country.Region Lat Long date
                                                         cases type
                                  <dbl> <dbl> <date> <int> <chr>
##
    <chr>>
                   <chr>
## 1 Zhejiang
                   China
                                   29.2 120. 2020-04-22
                                                            1 recovered
## 2 Zhejiang
                                   29.2 120. 2020-04-23
                   China
                                                             4 recovered
## 3 Zhejiang
                   China
                                   29.2 120. 2020-04-24
                                                             0 recovered
                                   29.2 120. 2020-04-25
## 4 Zhejiang
                   China
                                                             1 recovered
## 5 Zhejiang
                   China
                                   29.2 120. 2020-04-26
                                                             1 recovered
## 6 Zhejiang
                   China
                                   29.2 120. 2020-04-27
                                                             3 recovered
#——- Aggregate all cases —
coronavirus <- dplyr::bind_rows(df_conf2, df_death2, df_rec2) %>% as.data.frame()
if(ncol(coronavirus) != 7){
   stop("The number of columns is invalid")
 } else if(nrow(coronavirus) < 69000){</pre>
   stop("The number of raws does not match the minimum number of rows")
 } else if(min(coronavirus$date) != as.Date("2020-01-22")){
   stop("The starting date is invalid")
 }

    Exporting files —

write.csv(coronavirus, "C:/Users/uganda/Documents/COVID-19/COVID-19_Data/coronavirus.csv", row.names = 1
writexl::write_xlsx(x = coronavirus, path = "C:/Users/uganda/Documents/COVID-19/COVID-19_Data/coronavir
```