Модель «Физика. 9 класс»

Данная модель позволяет решать задачи по физике, предлагаемые школьной программой 9-ого класса. Структурно модель состоит из следующих классов, соответствующих тематике решаемых задач:

- законы взаимодействия и движения тел;
- электромагнитное поле.

Класс «Законы взаимодействия и движения тел» содержит следующие подклассы:

- равномерное движение тела;
- равноускоренное движение тела;
- законы Ньютона;
- высота;
- закон всемирного тяготения;
- импульс тела;
- периодические колебания.

Дана следующая задача:

Спортсмен на последних метрах дистанции ускорился с 3 м/с до 5 м/с, преодолев этот участок за 100 с. Найдите ускорение спортсмена и дистанцию, которую он преодолел за это время.

Чтобы решить поставленную задачу, необходимо использовать параметры, указанные в подклассе **«Равноускоренное движение тела»**.

Данный класс содержит следующие параметры:

Nº	Обозначение	Тип	Описание
п/п			
1.	V	число	скорость [м/с]
2.	v0	число	начальная скорость [м/с]
3.	Δt	число	промежуток времени [с]
4.	а	число	ускорение [м/с²]
5.	а_ц	число	центробежное ускорение [м/с²]
6.	r	число	радиус окружности [м]
7.	t0	число	начальное время [с]
8.	t	число	время [с]
9.	S	число	перемещение [м]
10.	х	число	текущая координата по оси Ох [м]
11.	x0	число	начальная координата [м]

Запустите приложение. Кликните по меню «Файл» и выберите соответствующую модель. Слева в списке объектов щелкните правой кнопкой мыши по подклассу «Равноускоренное движение тела» класса «Законы взаимодействия и движения тел» и выберите в контекстном меню пункт «Тестировать класс». В открывшейся вкладке «Тест: Равноускоренное движение тела» найдите параметры с указанным названием и заполните поля «Значение» соответствующими числами:

Далее, отметьте флажок столбца «Найти» в строках с искомыми параметрами. В данном случае, это параметры «а» (ускорение) и «S» (перемещение), так как по условию задачи требуется найти именно их.

После выполнения этих действий, нажмите на кнопку "Запустить".

В случае успеха, следующие параметры примут данные значения (они будут выделены красным цветом):

В вкладке «Консоль» появится соответствующий вывод:

Шаг № 0

Описание правила: Расчет промежутка времени при равноускоренном движении (dt=t-t0)

Входные параметры:

t=100;

t0=0;

Формула:

y=a-b

Результат: $\Delta t=100$;

Шаг № 1

Описание правила: Расчет линейного ускорения при равноускоренном движении (a=(v-v0)/dt)

Входные параметры:

v=5;

v0=3;

 $\Delta t=100$;

Формула:

y=(a-b)/c

Результат: а=0.02;

Шаг № 2

Описание правила: Уравнение перемещения при равноускоренном движении $(S=v0*dt+a*dt^2/2)$

Входные параметры:

v0=3;

 $\Delta t=100$;

a=0.02;

Формула:

y=a*b+c*b*b/2

Результат: S=400;

Полученный результат соответствует аналитическому решению:

$$a = \frac{v - v_0}{\Delta t} = \frac{5\frac{M}{C} - 3\frac{M}{C}}{100 \text{ c}} = 0.02\frac{M}{C^2}$$

$$S = \frac{v^2 - v_0^2}{2a} = \frac{\left(5\frac{M}{C}\right)^2 - \left(3\frac{M}{C}\right)^2}{2 \cdot 0.02\frac{M}{C^2}} = \frac{16 \text{ m}^2/\text{c}^2}{0.04 \text{ m/c}^2} = 400 \text{ m}$$

Дана следующая задача:

Шарик бросили вертикально вниз с высоты без начальной скорости. Он упал на землю через полминуты. Найдите высоту, с которой был брошен шарик, и скорость в момент падения на землю.

Чтобы решить поставленную задачу, необходимо использовать параметры, указанные в подклассе **«Высота»**.

// 21 11 11 114	LIBORE CO BODULIA	F C	
ланныи	клас солеожи	I CHENVENINE	HADAMETURE
_~	класс содержит		

Nº п/п	Обозначение	Тип	Описание
1.	h	число	высота [м]
2.	g	число	ускорение свободного падения [м/с²] $g = 9.8 \frac{M}{c^2}$;
3.	v0	число	начальная скорость [м/с]
4.	V	число	скорость тела [м/с]
5.	t	число	время [с]

Запустите приложение. Кликните по меню «Файл» и выберите соответствующую модель. Слева в списке объектов щелкните правой кнопкой мыши по подклассу «Высота» класса «Законы взаимодействия и движения тел» и выберите в контекстном меню пункт «Тестировать класс». В открывшейся вкладке «Тест: Высота» найдите параметры с указанным названием и заполните поля «Значение» соответствующими числами:

Обратите внимание, что параметрам «v» и «g» уже задано значение по умолчанию. При желании вы можете изменить его. Если указанные значения удовлетворяют условию решаемой задачи, то оставьте данные поля без изменений.

Далее, отметьте флажки столбца «Найти» в строках с искомыми параметрами. В данном случае, это параметры «h» (высота) и «v» (конечная скорость), так как по условию задачи требуется найти именно их.

После выполнения этих действий, нажмите на кнопку "Запустить".

В случае успеха, следующие параметры примут данные значения (они будут выделены красным цветом):

В вкладке «Консоль» появится соответствующий вывод:

```
Шаг № 0
Описание правила: Расчет скорости, с которой падает тело (v=v0+gt)
Входные параметры:
v0=0;
g=9.8;
t=30;
Формула:
y=a+b*c
Результат: v=294;
Шаг № 1
Описание правила: Уравнение изменения высоты падающего тела (h=v0t+gt^2)
Входные параметры:
v0=0;
t=30;
g=9.8;
Формула:
y=a*b+c*b*b/2
Результат: h=4410;
```

Полученный результат соответствует аналитическому решению:

$$v=v_0+gt=9,8 \frac{{}^{\mathrm{M}}_{\mathrm{c}^2} \cdot 30 \ c=294 \ \mathrm{M/c}$$
 $h=v_0t+rac{gt^2}{2}=rac{9,8 rac{\mathrm{M}}{\mathrm{c}^2} \cdot (30 \ c)^2}{2}=9,8 rac{\mathrm{M}}{\mathrm{c}^2} \cdot 450 \ \mathrm{c}^2=4410 \ \mathrm{M}$

Дана следующая задача:

Рассчитайте энергию электростатического поля конденсатора и заряд на его обкладках, если емкость конденсатора равна 0,1 мкФ, а разность потенциалов на обкладках составляет 200В.

Чтобы решить поставленную задачу, необходимо использовать параметры, указанные в подклассе **«Энергия электрического поля»**.

// 21 11 11 114	LIDDEC CODONULA		
ланный	класс солеожи	CHENVRHIME	HADAMETURI.
	класс содержит	· • • • • • • • • • • • • • • • • • • •	

Nº п/п	Обозначение	Тип	Описание
1.	С	число	ёмкость [Ф]
2.	q	число	электрический заряд [Кл]
3.	U	число	напряжение [B]
4.	Eel	число	энергия электрического поля [Дж]

меню «Файл» выберите Запустите приложение. Кликните ПО И соответствующую модель. Слева в списке объектов щелкните правой кнопкой мыши по подклассу «Энергия электрического поля» класса «Электромагнитное поле» и выберите в контекстном ПУНКТ «Тестировать класс». В открывшейся вкладке «Тест: Энергия электрического поля» найдите параметры с указанным названием и заполните поля «Значение» соответствующими числами:

Далее, отметьте флажки столбца «Найти» в строках с искомыми параметрами. В данном случае, это параметры «Eel» (энергия электрического поля) и «q» (электрический заряд), так как по условию задачи требуется найти именно их.

После выполнения этих действий, нажмите на кнопку "Запустить".

В случае успеха, следующие параметры примут данные значения (они будут выделены красным цветом):

 Вергия электрического поля д д 2e-05 U 200 0,0000001 	•
q 2e-05 ✓ U 200 □	✓
υ <u>200</u> □	-
	✓
c 0,0000001 \square	

В вкладке «Консоль» появится соответствующий вывод:

Шаг № 0

Описание правила: Расчет заряда по известной электроемкости (q=CU)

Входные параметры:

C=1e-07;

U=200;

Формула:

y=a*b

Результат: q=2e-05;

Шаг № 1

Описание правила: Расчет энергии электрического поля по известному

напряжению (Е=СU^2/2)

Входные параметры:

C=1e-07;

U=200;

Формула:

y=a*b*b/2

Результат: Eel=0.002;

Полученный результат соответствует аналитическому решению:

$$q=CU=0$$
,1 мк $\Phi\cdot 200~\mathrm{B}=10^{-7}\Phi\cdot 200~\mathrm{B}=2\cdot 10^{-5}\Phi=20$ мкКл $E=\frac{CU^2}{2}=\frac{10^{-7}\Phi\cdot (200~\mathrm{B})^2}{2}=2\cdot 10^{-3}$ Дж = 2 мДж