实验十六 霍尔效应测量磁场 实验报告

1400012141 邵智轩 周二下午3组11号 2016年11月29日

1 实验数据处理

1.1 测量霍尔电压 U_H 和霍尔电流 I_H 的关系

为了消除副效应的影响,在操作时我们要分别改变 I_H 的方向和B的方向(即 I_M 的方向),记下4组电势差数据:

当 I_H 正向,B正向时: $U_1 = U_H + U_0 + U_E + U_N + U_R$

当 I_H 负向, B正向时: $U_2 = -U_H - U_0 - U_E + U_N + U_R$

当 I_H 负向, B负向时: $U_3 = U_H - U_0 + U_E - U_N - U_R$

当 I_H 正向, B负向时: $U_4 = -U_H + U_0 - U_E - U_N - U_R$

考虑到 $U_E \ll U_H$, 可忽略, 于是

$$U_H = \frac{1}{4}(U_1 - U_2 + U_3 - U_4)$$

固定励磁电流 $I_M=0.600$ A,输入霍尔电流 I_H 接入1、2端,测量3、4端电压 $U_1,\ U_2,\ U_3,\ U_4$ 。

Table 1: I_H 接1、2端时 U_H - I_H 数据

I_H/mA	U_1/mV	U_2/mV	U_3/mV	U_4/mV	U_H/mV
2.000	5.66	-5.66	5.79	-5.79	5.73
4.000	11.34	-11.32	11.59	-11.57	11.46
6.000	17.04	-16.99	17.41	-17.36	17.20
8.000	22.72	-22.63	23.22	-23.13	22.93
10.000	28.44	-28.31	29.06	-28.90	28.68

计算得

$$r = 0.9999997$$

 $k = 2.869 \text{ mV/mA}$
 $b = -0.01 \text{mV}$

作图见 Figure 1:

Figure 1: I_H 接1、2端时 U_H - I_H 变化曲线

可以看出 U_H 与 I_H 满足严格的线性性。

固定励磁电流 $I_M=0.600$ A,输入霍尔电流 I_H 接入3、4端,测量1、2端电压 $U_1,\ U_2,\ U_3,\ U_4$ 。

Table 2: I_H 接3、4端时 $U_H - I_H$ 数据

I_H/mA	U_1/mV	U_2/mV	U_3/mV	U_4/mV	U_H/mV
2.00	5.80	-5.81	5.67	-5.69	5.74
4.00	11.59	-11.62	11.35	-11.36	11.48
6.00	17.38	-17.43	17.02	-17.07	17.23
8.00	23.16	-23.25	22.68	-22.75	22.96
10.00	28.97	-29.10	28.36	-28.47	28.73

计算得

$$r = 0.9999990$$

$$k = 2.873 \text{ mV/mA}$$

$$b = -0.01 \text{mV}$$

作图见 Figure 2:

Figure 2: I_H 接3、4端时 U_H - I_H 变化曲线

可见 I_H 通入3、4端时, U_H 与 I_H 依然满足严格的线性性,且斜率 $k=K_H$ 几乎不变。这是当然的,公式 $k=K_HB=\frac{B}{pqd}$ 可知,从1、2端改为3、4端时,B,d都不变, K_H 理应不变。

1.2 测量 K_H

霍尔电流保持 $I_H=10.000mA$,霍尔电流由1、2端输入。调节励磁电流 I_M 从0-1A,每隔0.1mA分别测出磁场B的大小和样品的霍尔电压 U_H 。

Table 3: I_H 接1、2端时 U_H -B数据

I_M/A	U_1/mV	U_2/mV	U_3/mV	U_4/mV	U_H/mV	B/mT
0.000	-0.13	0.29			-0.21	-1.1
0.100	4.67	-4.52	5.21	-5.06	4.87	38.9
0.200	9.39	-9.23	9.94	-9.80	9.59	75.5
0.300	14.21	-14.07	14.71	-14.55	14.39	113.3
0.400	18.86	-18.71	19.53	-19.37	19.12	150.9
0.500	23.59	-23.44	24.31	-24.14	23.87	188.0
0.600	28.41	-28.25	29.12	-28.96	28.69	226.3
0.700	33.19	-33.04	33.96	-33.80	33.50	264.2
0.800	38.01	-37.85	38.79	-38.64	38.32	303.5
0.900	42.84	-42.68	43.60	-43.45	43.14	340.0
1.000	47.50	-47.37	48.41	-48.27	47.89	378.2

对 U_H -B进行直线拟合,作图见Figure 3:

Figure 3: I_H 接1、2端时 U_H -B数据

计算得

$$r = 0.999986$$

 $k = 0.1268 \text{ V/T}$
 $b = -0.02 \text{ mV}$

其中斜率k的不确定度为:

$$\frac{\sigma_k}{k} = \sqrt{\frac{1/r^2 - 1}{n - 2}} = 2 \times 10^{-3}$$

由 $U_H = K_H I_H B = k B$,得

$$K_H = \frac{k}{I_H} = 12.67 \text{ V/(A} \cdot \text{T)}$$

VC9806-直流20mA档允差为±(0.5%+4个字),即

$$e_{I_H} = 10 \times 0.5\% + 0.004 = 0.054 \text{mA}$$

故 K_H 的相对不确定度为:

$$\begin{split} \frac{\sigma_{K_H}}{K_H} &= \sqrt{(\frac{\sigma_k}{k})^2 + \frac{1}{3}(\frac{e_{I_H}}{I_H})^2} = 3.7 \times 10^{-3} \\ \sigma_{K_H} &= 3.7 \times 10^{-3} \cdot K_H = 0.05 \text{ V/(A · T)} \\ K_H &\pm \sigma_{K_H} = 12.67 \pm 0.05 \text{ V/(A · T)} \end{split}$$

1.3 测量磁化曲线

根据已测得的 $K_H=12.68\mathrm{V}/(\mathrm{A}\cdot\mathrm{T})$,由 $B=\frac{U_H}{K_HI_H}$ 可以计算出相应的B的大小。

Table 4: 各个 I_M 对应的磁场B

rabic i.	H 1 + IVI / 13 /-	T [// AAH [H Z
I_M/A	U_H/mV	B/mT
0.000	-0.21	-1.6
0.100	4.87	38.4
0.200	9.59	75.6
0.300	14.39	113.5
0.400	19.12	150.8
0.500	23.87	188.2
0.600	28.69	226.3
0.700	33.50	264.2
0.800	38.32	302.2
0.900	43.14	340.2
1.000	47.89	377.7

磁化曲线 $B-I_M$ 见Figure 4:

Figure 4: 磁化曲线 $B-I_M$

r = 0.99998

$$k = 378.2 \text{mT/A}$$

 $b = -0.4 \text{mT}$

1.4 测量电磁铁磁场沿水平方向分布

固定励磁电流 $I_M=0.600$ A,霍尔电流 $I_H=10$ mA,移动霍尔片的水平位置x,测量出霍尔电压 U_H 。由已知的 K_H ,计算出每个位置磁场大小 $B(x)=\frac{U_H(x)}{K_H I_H}$,列表如下:

Table 5: 各个 I_M 对应的磁场B

x/mm	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
U_H/mV	6.40	6.88	7.80	8.99	10.40	12.75	15.89	20.67	27.17	29.72
B/mT	50.5	54.3	61.5	70.9	82.0	100.6	125.3	163.0	214.3	234.4
x/mm	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0
U_H/mV	29.72	29.15	28.80	28.66	28.59	28.57	28.55	28.55	28.55	28.56
B/mT	234.4	229.9	227.1	226.0	225.5	225.3	225.2	225.2	225.2	225.2
x/mm	20.0	21.0	22.0	23.0	25.0	29.0	35.0	40.0	45.0	46.0
U_H/mV	28.57	28.57	28.58	28.58	28.60	28.63	28.66	28.66	28.90	29.24
B/mT	225.3	225.3	225.4	225.4	225.6	225.8	226.0	226.0	227.9	230.6
x/mm	47.0	48.0	49.0	50.0	51.0					
U_H/mV	28.84	25.55	19.89	14.69	11.49					
B/mT	227.4	201.5	156.9	115.9	90.62					

由于x较大的一端已经转到顶,故曲线右半部份不够完整。B-x曲线见Figure 5:

Figure 5: 电磁铁磁场B沿水平方向x的分布

从图中可以看出,电磁铁中间的磁场曲线近似水平,即电磁铁两极之间近似为匀强磁场,而当位移达到匀强磁场的边界外后,磁场迅速减弱。

2 思考题

2.1 分析本实验主要误差来源,计算磁场B的合成不确定度(分别取 $I_M=1.0\mathbf{A},~~I_H=10\mathbf{mA}$)。

本实验主要误差来源有:用数字万用表测量励磁电流 I_M 、霍尔电流 I_H 、霍尔电 $\mathbb{E}U_H$ 的误差,特斯拉计测量磁场的误差(间接造成了 K_H 的误差)

$$B = \frac{U_H}{K_H I_H}$$

之前已计算得,

$$\sigma_{K_H} = 3.7 \times 10^{-3} \cdot K_H = 0.05 \text{ V/(A} \cdot \text{T)}$$

又VC9806—直流20mA档允差为±(0.5% + 4个字),且 $I_H = 10.000$ mA,即

$$e_{I_H} = 10 \times 0.5\% + 0.004 = 0.054 \text{mA}$$

VC9806 一直流200mV档允差为±(0.05% + 3个字),且 $U_H = 47.89$ mA,即

$$e_{U_H} = 48 \times 0.05\% + 0.03 = 0.054 \text{mV}$$

所以

$$\frac{\sigma_B}{B} = \sqrt{\frac{1}{3} (\frac{e_{U_H}}{U_H})^2 + \frac{1}{3} (\frac{e_{I_H}}{I_H})^2 + (\frac{\sigma_{K_H}}{K_H})^2} = 3.7 \times 10^{-3} = 0.49\%$$

$$\sigma_B = 340 \times 0.49\% = 2 \text{mT}$$

2.2 以简图示意,用霍尔效应法判断霍尔片上磁场方向。

Figure 6: 霍尔效应判断磁场方向

如图Figure 6,图上半部分是n型半导体,载流子为电子。实验可测出霍尔电压 $U_{AA'}>0$,电场 \vec{E} 方向朝下,电子受力 \vec{f}_{E} 向上。由平衡条件可知,电子受洛伦兹力 \vec{f}_{B} 方向向下。又根据霍尔电流 I_{H} 方向向右可得电子漂移运动 \vec{v} 方向向左。由 $\vec{f}_{B}=-e(\vec{v}\times\vec{B})$ 可知B的方向为 $-(\vec{f}_{B}\times\vec{v})$ 的方向,在此图中为垂直纸面向外。

下半部分为p型半导体,载流子为带正电的空穴。可类似地判断出磁场方向仍是垂直纸面向外。

2.3 在测量 $B-I_M$ 曲线中, $I_M=0$ 时 U_H 测量端仍有较小的电压,这是为什么?

一方面电磁铁芯产生的磁场与磁化历史有关,可能会有剩磁。另一方面,此时还有不等位电势差(可以通过霍尔电流换向消除)和残留的温差电动势(此时无法消除)。

3 分析与讨论

3.1 比较实验内容1中a、b两种接法的结果,并解释现象。

比较两种接法下的数据和 $U_H - I_H$ 关系图,两者数据非常接近。在允许误差范围内,拟合出的两直线斜率相等。 这是当然的,直线斜率 $k = K_H B = \frac{B}{pqd}$,从1、2端改为3、4端时, \vec{B} ,d都不变, K_H 理应不变。

3.2 说明实验内容3中为什么用计算出的B作磁化曲线比用直接测量的B更好。

我们直接测量的磁场大小是用特斯拉计测量得到的。用特斯拉计测量磁场时,很难使 \vec{B} 完全垂直于探头(探头其实也是一个霍尔片),测到的是磁场的一个分量。实验要求在转动探头时记录示数的最大值,依然难以保证测得磁场的真实大小。而我们利用已经校准过的霍尔片,其 K_H 为已测得的常量, I_H 保持不变,霍尔电压 U_H 是可以准确测得的,从而利用公式 $B = \frac{U_H}{K_H I_H}$ 计算出的B是准确的。本质上就是转化成 U_H 一 I_H 的关系,所以即使 K_H 值测得不够准确,也不会影响磁化曲线的形状、线性度等,不会影响研究电磁铁的磁化规律。