Richards' Equation Multiscale Finite Element Formulation Velocity Postprocessing Numerical Experiments Summary

Calculating locally conservative velocity fields using discontinuous enrichment and other non-conforming finite elements

brown-bag lunch seminar

M.W. Farthing<sup>1</sup> C.E. Kees<sup>1</sup>

<sup>1</sup>U.S. Army Engineer Research and Development Center

February 27 2008





# Context: Numerical Methods for Subsurface Flow and Transport

- There are increasing demands on simulators to handle larger, more complex problems
- Unstructured meshes are often desirable because of domain geometry and/or local adaption strategies
- Locally conservative velocity fields are desirable when simulating coupled flow and transport
- ADH is intended for simulating large scale coupled flow and transport problems on locally adapted, unstructured meshes (in parallel)





#### Locally Conservative Methods

Local conservation has long been a motivating factor in method development (FVM, MFEM, MPFA, CV-MFEM, ...)

$$\mathcal{E}(n) = \{8, 9, 17, 18, 19\}$$

$$e^* = \{1, 5, 2, 3, 4\}$$



#### Element-based conservation

$$\int_{\Omega_{\boldsymbol{\theta}}} \left(\hat{m}_t - \boldsymbol{b}\right) \, \mathrm{d}\boldsymbol{x} + \int_{\partial \Omega_{\boldsymbol{\theta}}} \boldsymbol{\sigma}_h \cdot \boldsymbol{n} \, \mathrm{d}\boldsymbol{s} = 0$$





Richards' Equation Multiscale Finite Element Formulation Velocity Postprocessing Numerical Experiments Summary

#### Locally Conservative Methods

- Traditional postprocessing techniques for conforming Galerkin (CG) FEMs were often of limited applicability, unwieldy, or just ignored
- ADH is built on stabilized, conforming FEM approximations





#### Goals

- Summarize a multiscale stabilized FEM for Richards' equation
- Combine this with postprocessing algorithms for subsurface velocity fields
- Evaluate the combined approaches' performance and compare them with a locally conservative nonconforming FEM.





Richards' Equation Multiscale Finite Element Formulation Velocity Postprocessing Numerical Experiments Summary

#### Outline

- Richards' Equation
- Multiscale Finite Element Formulation
- Velocity Postprocessing
- Numerical Experiments





#### Variably Saturated Groundwater Flow

$$m_t + \nabla \cdot (\rho \mathbf{q}) = \mathbf{b}, \text{ for } \mathbf{x}, t \in \Omega \times [0, T]$$
 (1)

$$m = \rho \theta \tag{2}$$

$$\mathbf{q} = -k_r \mathbf{K}_s (\nabla \psi - \rho \mathbf{g}_u) \tag{3}$$

with

$$\psi = \psi^b$$
, on  $\Gamma_D$ ,  $\rho \mathbf{q} \cdot \mathbf{n} = q^b$ , on  $\Gamma_N$  (4)  
 $\rho = \rho(\psi), \theta = \theta(\psi, \mathbf{x}), k_r = k_r(\psi, \mathbf{x})$ 





#### Nonlinear, Scalar PDE

Rewrite as generic nonlinear advection-diffusion equation for convenience ...

$$m_t + \nabla \cdot (\mathbf{f} - \mathbf{a} \nabla \psi) = b$$
 (5)

$$\mathbf{f} = \rho^2 k_r \mathbf{K}_s \mathbf{g}_u, \tag{6}$$

$$\mathbf{a} = \rho \mathbf{k}_r \mathbf{K}_s \tag{7}$$

$$\sigma = \mathbf{f} - \mathbf{a} \nabla \psi$$
 (8)

where  $\sigma = \rho \mathbf{q}$ 





#### Multiscale Finite Element Discretization

Strong form of Dirichlet problem: find  $u : \Omega \to \mathbb{R}$  such that

$$\mathcal{R} := m_t + \nabla \cdot [\mathbf{f} - \mathbf{a} \nabla \psi] - b = 0$$

$$\forall \mathbf{x} \in \Omega$$

$$\psi = \psi^b(\mathbf{x}), \text{ for } \mathbf{x} \in \Gamma_D$$
(9)

$$\sigma \cdot \mathbf{n} = \sigma^b, \text{ for } x \in \Gamma_N$$
 (10)

Discretize  $m_t$  first (Rothe's method) using a standard BDF approximation

$$m_t \approx \hat{m}_t = \alpha^{n+1} m + \beta^n \tag{11}$$





#### Multiscale Finite Element Discretization (cont'd)

Multiscale weak form: find  $\psi \in V = V_h \oplus \delta V$  such that

$$F_{h} = \int_{\Omega} \hat{m}_{t} w_{h} \, dx - \int_{\Omega} (\mathbf{f} - \mathbf{a} \nabla \psi) \cdot \nabla w_{h} \, dx - \int_{\Omega} b w_{h} \, dx$$

$$= -\int_{\Gamma_{N}} \sigma^{b} w_{h} \, ds \quad \forall w_{h} \in W_{h}$$

$$(12)$$

$$F_{\delta} = \int_{\Omega} \hat{m}_{t} \delta w \, dx - \int_{\Omega} (\mathbf{f} - \mathbf{a} \nabla \psi) \cdot \nabla \delta w \, dx - \int_{\Omega} b \delta w \, dx$$

$$= -\int_{\Gamma_{N}} \sigma^{b} \delta w \, ds \quad \forall \delta w \in \delta W$$

$$(13)$$

Hughes(1995), Juanes and Patzek(2005)





#### Multiscale Finite Element Discretization (cont'd)

The goal is to obtain a modified version of eqn (12)

$$G_h = F_h - \sum_{e} \int_{\Omega_e} \mathcal{L}_{s,h}^* w_h \tau \mathcal{R}_h(\psi_h) \, \mathrm{d}x = 0, \forall w_h \in W_h \, (14)$$

and a corresponding linearized system of equations to use in a Newton solution algorithm for  $\psi_h$ .

Here,  $\mathcal{R}_h$  is an approximation to  $\mathcal{R}$  from eqn (9) and and  $\mathcal{L}_{s,h}^*$  approximates the formal adjoint of a linear operator  $\mathcal{L}_s$  defined in the linearization process.





#### Multiscale Newton Iteration

Given a current iterate,  $\psi_h^-$ , we label the Newton increment  $v=v_h+\delta v$  and linearize around  $\psi_h^-$ 

$$\int_{\Omega} \hat{m}'_{t} v w_{h} dx - \int_{\Omega} (\mathbf{f}' v - \mathbf{a}' \nabla \psi_{h}^{-} v - \mathbf{a} \nabla v) \cdot \nabla w_{h} dx = -F_{h}^{-}$$

$$\forall w_{h} \in W_{h} \qquad (15)$$

$$\int_{\Omega} \hat{m}'_{t} v \delta w dx - \int_{\Omega} (\mathbf{f}' v - \mathbf{a}' \nabla \psi_{h}^{-} v - \mathbf{a} \nabla v) \cdot \nabla \delta w dx = -F_{\delta}^{-}$$

$$\forall \delta w \in \delta W \qquad (16)$$

Here, the ' symbol represents differentiation with respect to  $\psi$ .





#### Subgrid-scale equation

Assume  $\delta w = \delta v = 0$  on  $\partial \Omega_e$  to localize eqn (16). Do some manipulations to come up with

$$\int_{\Omega_{\mathbf{e}}} \mathcal{L} \delta \mathbf{v} \delta \mathbf{w} \, \mathrm{d} \mathbf{x} = -\int_{\Omega_{\mathbf{e}}} \mathcal{L} \mathbf{v}_{h} \delta \mathbf{w} \, \mathrm{d} \mathbf{x} - \int_{\Omega_{\mathbf{e}}} \mathcal{R}(\psi_{h}^{-}) \delta \mathbf{w} \, \mathrm{d} \mathbf{x}$$
 (17)

where

$$\mathcal{L}v = \hat{m}'_t v + \nabla \cdot \left[ \mathbf{f}' v - \mathbf{a}' \nabla \psi_h^- v - \mathbf{a} \nabla v \right]$$
$$= \hat{m}'_t v + \mathcal{L}_s v$$
 (18)

 $\mathcal{L}v_h$  can be understood as a grid-scale linearization of  $\mathcal{R}(\psi_h^-)$  on each  $\Omega_e$ .





#### Grid-scale equation

Collect terms in eqn (15), integrate by parts, neglect temporal variation in subgrid scales to get

$$\int_{\Omega} \hat{m}'_{t} v_{h} w_{h} \, \mathrm{d}x - \int_{\Omega} \left( \mathbf{f}' v_{h} - \mathbf{a}' \nabla \psi_{h} v_{h} - \mathbf{a} \nabla v_{h} \right) \cdot \nabla w_{h} \, \mathrm{d}x + \sum_{e} \int_{\Omega_{e}} \mathcal{L}_{s}^{*} w_{h} \delta v \, \mathrm{d}x = -F_{h}^{-} \quad (19)$$

Here, the formal adjoint of  $\mathcal{L}_s$  has been introduced

$$\mathcal{L}_{s}^{*}w = -(\mathbf{f}' - \mathbf{a}'\nabla\psi_{h}^{-})\cdot\nabla w - \nabla\cdot(\mathbf{a}\nabla w)$$
 (20)





#### More Approximations

#### ASGS assumption

$$\delta \mathbf{v} \approx -\tau \left( \mathcal{L}_h \mathbf{v}_h + \mathcal{R}_h^- \right)$$
 (21)

$$\tau = \left[ \left( 2 \frac{\|\mathbf{f}' - \mathbf{a}' \nabla \psi_h\|_2}{h_e} \right)^2 + 9 \left( 4 \frac{\|\mathbf{a}\|_{\infty}}{h_e^2} \right)^2 \right]^{-\frac{1}{2}}$$
 (22)

Isotropic shock-capturing ...

$$G_{h} = F_{h} - \sum_{e} \int_{\Omega_{e}} \mathcal{L}_{s,h}^{*} w_{h} \tau \mathcal{R}_{h}(\psi_{h}) dx + \sum_{e} \int_{\Omega_{e}} \nu \nabla \psi_{h} \cdot \nabla w_{h} dx$$

$$= 0, \forall w_{h} \in W_{h}$$
(23)



#### Element-based local mass conservation

We would like an approximate  $\sigma_h$  that

conserves mass discretely on each element, Ω<sub>e</sub>

$$\int_{\Omega_{e}} (\hat{m}_{t} - b) dx + \int_{\partial\Omega_{e}} \boldsymbol{\sigma}_{h} \cdot \mathbf{n} ds = 0$$
 (24)

- $\bullet$  has continuous normal component across (interior) faces,  $\gamma_{\rm f}$
- is cheap/simple to compute





## Larson and Niklasson (2004) Postprocessing

Start with a uniquely defined velocity on element faces,  $\bar{\sigma}_{h,f}$ 

 Define piecewise contant correction at each face (see Fig. 18)

$$\hat{\boldsymbol{\sigma}}_{h,f} = \bar{\boldsymbol{\sigma}}_{h,f} + \frac{1}{|\gamma_f|} \left( U_{\mathbf{e}_{\ell}(f)} - U_{\mathbf{e}_r(f)} \right) \mathbf{n}_f \qquad (25)$$

• insert  $\hat{\sigma}_{h,f}$  into mass conservation statement, eqn (24), and obtain  $N_e \times N_e$  system for the element corrections  $\{U_e\}$ 





#### **Mesh Notation**

$$\mathcal{E}(n) = \{8, 9, 17, 18, 19\}$$
  
$$e^* = \{1, 5, 2, 3, 4\}$$





$$\Omega_e$$
 $\Omega_e$ 
 $\Omega_e$ 
 $\Omega_e$ 
 $\Omega_e$ 
 $\Omega_e$ 
 $\Omega_e$ 
 $\Omega_e$ 
 $\Omega_e$ 





#### Implementation

Since using  $C^0P^1$  approximation, associate test function  $w_{h,n}$  with nodes  $\mathbf{x}_n$ ,  $n=1,\ldots,N_n$  define discrete residual associated with each  $e\in\mathcal{E}(n)$  as

$$G_{h,n,e} = \int_{\Omega_{e}} \hat{m}_{t} w_{h,n} dx - \int_{\Omega_{e}} (\mathbf{f} - \mathbf{a} \nabla \psi_{h}) \cdot \nabla w_{h,n} dx$$
$$- \int_{\Omega_{e}} b w_{h,n} dx - \int_{\Omega_{e}} \mathcal{L}_{s,h}^{*} w_{h,n} \tau \mathcal{R}_{h}(\psi_{h}) dx$$
$$+ \int_{\Omega_{e}} \nu \nabla \psi_{h} \cdot \nabla w_{h,n} dx + \int_{\partial \Omega_{e} \cap \Gamma_{N}} \sigma^{b} w_{h,n} ds$$
(26)

and element residual

$$G_{h,e} = \sum_{n} G_{h,n,e}$$
 (27)



#### VPP (cont'd)

 $\hat{\sigma}_h$  at each face is defined to be the average plus a piecewise linear correction

$$\hat{\sigma}_{h,f} = \bar{\sigma}_{h,f} + \sum_{n \in \mathcal{N}(f)} \left( U_{n,e_{\ell}^*(f)} - U_{n,e_r^*(f)} \right) \mathbf{n}_f w_{h,n}$$
 (28)

where  $w_{h,n}$  is the piecewise linear test function associated with  $\mathbf{x}_n$ . The corrections,  $U_{n,e}$  are determined by requiring

$$R_{n,e^*} = G_{h,n,e}$$

$$+ \sum_{f \in \mathcal{F}_{i,d}(e)} \int_{\gamma_f} \left[ \bar{\boldsymbol{\sigma}}_{h,f} + \left( U_{n,e^*_{\ell}(f)} - U_{n,e^*_{\ell}(f)} \right) \mathbf{n}_f \right] w_{h,n} \cdot \mathbf{n}_e \, \mathrm{d}s$$
(29)

for all  $\mathbf{x}_n$  and  $\Omega_e \in \mathcal{E}(n)$ 



#### VPP (cont'd)

- Element conservation follows directly from eqn (30) and fact that test functions are a partition of unity.
- After solving for corrections on each face, we extend velocity field to whole domain by either projecting onto RT0

$$\hat{\mathbf{V}}_h(\Omega_e) = [P^0(\Omega_e)]^{n_d} \oplus \mathbf{x} P^0(\Omega_e)$$
 (30)

• RT0 discards some information from  $\hat{\sigma}_h$ , but it is very cheap and we only expect first order accuracy anyway, Larson and Niklasson(2004).





#### Sun-Wheeler Postprocessing

Sun and Wheeler(2006) presents both global and local postprocessing algorithms for  $\hat{\sigma}_h$  from a minimization perspective.

$$\begin{array}{rcl} R_{e} & = & \displaystyle\sum_{n \in \mathcal{N}(e)} G_{h,n,e} + \displaystyle\sum_{\gamma_{f} \in \partial \Omega_{e}} \int_{\gamma_{f}} \left( \bar{\sigma}_{h,f} + \Delta \textit{U}_{f} \textbf{n}_{f} \right) \cdot \textbf{n}_{e} \, \mathrm{d}s, \\ & e = 1, \ldots, N_{e} \end{array} \tag{31}$$

Local version computes corrections on each  $\gamma_{\it f}$  based on minimizing

$$\left[\int_{\Omega} \bar{R}^2 \, \mathrm{d}x\right]^{1/2} \tag{32}$$

where  $\bar{R}|_{\Omega_e} = \bar{R}_e = R_e/|\Omega_e|$ 





# P<sup>1</sup> nonconforming approximation

For comparison, we consider a simple  $P^1$  nonconforming approximation, find  $\psi_h \in V_h^{nc}$ 

$$\int_{\Omega} \hat{m}_{t} w_{h} dx - \int_{\Omega} (\mathbf{f} - \mathbf{a} \nabla \psi_{h}) \cdot \nabla w_{h} dx + \int_{\Gamma_{N}} \sigma^{b} w_{h} ds$$
$$- \int_{\Omega} b w_{h} dx = 0 \forall w_{h} \in W_{h}^{nc}$$
(33)

with trial space

$$V_h^{nc} = \{ v : v|_{\Omega_e} \in P^1(\Omega_e), \ \forall \Omega_e \in T_h; v \text{ cont. at } \bar{\mathbf{x}}_f, \ \forall \gamma_f \in \Gamma_I; v = \psi^b \text{ at } \bar{\mathbf{x}}_f, \ \forall \gamma_f \in \Gamma_D \}$$
(34)





# P<sup>1</sup> NC shape functions

#### Locally use the Crouzeix-Raviart space with basis

$$N_{i} = n_{d} \left( \frac{1}{n_{d}} - \lambda_{i} \right),$$

$$\lambda_{i} = 1 - \frac{(\mathbf{x} - \mathbf{x}_{i}) \cdot \mathbf{n}_{i}}{(\mathbf{x}_{i+1} - \mathbf{x}_{i}) \cdot \mathbf{n}_{i}}$$

$$\nabla N_{i} = |\gamma_{i}| \mathbf{n}_{i} / |\Omega_{e}|$$



$$i=1,\ldots,n_d+1$$





## P<sup>1</sup> NC velocity

Define local velocity approximation

$$\hat{\boldsymbol{\sigma}}_{h,e} = \bar{\mathbf{f}}_{e} - \bar{\boldsymbol{a}}_{e} \nabla \psi_{h} + \frac{\bar{d}_{e}}{n_{d}} (\mathbf{x} - \bar{\mathbf{x}}_{e}) + \mathbf{c}_{e}$$
 (35)

where  $\bar{a}_{e}$  and  $f_{e}$  represent averages (componentwise) over  $\Omega_{e}$ 

$$\bar{d}_{e} = \frac{1}{|\Omega_{e}|} \int_{\Omega_{e}} (b - \hat{m}_{t}) dx = \bar{b}_{e} - \bar{\hat{m}}_{t,e}$$
 (36)

 $\sigma_{h,e}$  is in the lowest order Raviart-Thomas space on  $\Omega_e$ , (see 30). Local conservation

$$\int_{\Omega_{e}} \hat{m}_{t} \, \mathrm{d}x + \int_{\Omega_{e}} \nabla \cdot \hat{\sigma}_{h,e} \, \mathrm{d}x - \int_{\Omega_{e}} b \, \mathrm{d}x = |\Omega_{e}| \left( \bar{\hat{m}}_{t,e} - \bar{b}_{e} \right) + \bar{d}_{e} |\Omega_{e}|$$

$$= 0$$

## P<sup>1</sup> NC velocity (cont'd.)

The piecewise constant  $\mathbf{c}_e$  serves to enforce continuity at element interfaces and requires, in general, the solution of a local  $n_d \times n_d$  system on each element, Chou and Tang(2000)

$$\mathbf{B}_{\mathbf{e}}^{nc}\mathbf{c}_{\mathbf{e}} = \eta_{\mathbf{e}} \tag{37}$$

$$B_{\mathbf{e},ij} = |\partial\Omega_{\mathbf{e},i}| n_{\mathbf{e},i}^{j}, i, j = 1, \dots, n_{d}$$

$$\eta_{\mathbf{e},i} = \int_{\Omega_{\mathbf{e}}} b w_{h,i} \, \mathrm{d}x - \frac{|\Omega_{\mathbf{e}}|}{n_{d}+1} \bar{b}_{\mathbf{e}} - \int_{\Omega_{\mathbf{e}}} \hat{m}_{t} w_{h,i} \, \mathrm{d}x + \frac{|\Omega_{\mathbf{e}}|}{n_{d}+1} \bar{\hat{m}}_{t}$$



## P<sup>1</sup> NC (cont'd)

eqn (33) and eqn (35) (with  $\mathbf{c}_e = 0$ ) yield solutions equivalent to a MHFEM discretization with the correct  $L_2$  projections and assumptions on the problem data, Marini(1985), Arbogast and Chen(1995), Chen(1996). Find  $(\psi_h, \sigma_h, \Lambda_h)$  in  $(W_h, \mathbf{W}_h, L_h)$  such that

$$\begin{split} \int_{\Omega} \hat{m}_t w_h \, \mathrm{d}x + \int_{\Omega} \nabla \cdot \boldsymbol{\sigma}_h w_h \, \mathrm{d}x &= \int_{\Omega} b w_h \, \mathrm{d}x, \ \forall w_h \in W_h \\ \int_{\Omega} \boldsymbol{a}^{-1} (\boldsymbol{\sigma}_h - \mathbf{f}) \cdot \mathbf{w}_h + \int_{\Omega} \Lambda_h \mathbf{w}_h \cdot \mathbf{n} \, \mathrm{d}s &= \int_{\Omega} \psi_h \nabla \cdot \mathbf{w}_h \, \mathrm{d}x, \ \forall \mathbf{w}_h \in \mathbf{W}_h \\ \sum_{\mathbf{a}} \int_{\partial \Omega_0} \boldsymbol{\sigma}_h \cdot \mathbf{n}_e \mu_h \, \mathrm{d}s &= 0, \ \forall \mu_h \in L_h, \end{split}$$





- Can also view  $(\psi_h, \hat{\sigma}_h)$  as the solution to a finite volume "box scheme."
- In general, we would like to keep a consistent mass integral because it's less distributed in this case
- If a consistent mass integral is used or source term, we can still recover a locally conservative  $\sigma_h$  by solving appropriate element problems for  $\mathbf{c}_e = 0$ .



#### Comparisons

We perform a series of numerical experiments to evaluate the accuracy of the CG VPP algorithm and the effectiveness of multiscale stabilization in controlling over/undershoot.

| Abbrev. | Definition                                                                      |
|---------|---------------------------------------------------------------------------------|
| CG      | conforming Galerkin approximation, eqn (23) with $	au=0$ , $ u_{\tt C}=0$       |
| CG-S    | multiscale stabilized CG with shockcapturing, eqn (23), $\nu_c = 0.1^{\dagger}$ |
| CG-V    | lumped CG approximation with vertex quadrature, $	au=0$ , $ u_{	extbf{c}}=0$    |
| NC      | P <sup>1</sup> nonconforming approach                                           |
|         |                                                                                 |

 $<sup>\</sup>dagger \nu_{\rm C} = 0.5$  for Problem V.





#### Linear, elliptic problems

#### Smooth analytical solutions and domain properties

$$u(\mathbf{x}) = \sin^2(2\pi x_1) + \cos^2(2\pi x_2) + x_1 + x_2 + 5$$

$$a_{ij}(\mathbf{x}) = (5 + x_i^2)\delta_{ij} \tag{38}$$

for  $n_d = 2$  and

$$u(\mathbf{x}) = \sum_{i=1}^{3} x_i^2$$

$$a_{ij}(\mathbf{x}) = (5 + x_i^2 x_{i+1}) \delta_{ij}$$
 (39)

for  $n_d = 3$ .





## Spatial Error

Table:  $\varepsilon_{u,2}$ , Problem I

|    | level | h      | N <sub>dof</sub> | $\varepsilon_{u,2}$   | rate |
|----|-------|--------|------------------|-----------------------|------|
| CG | 4     | 0.0442 | 1089             | $9.36 \times 10^{-4}$ | 1.98 |
| NC | 4     | 0.0442 | 3136             | $9.86 \times 10^{-4}$ | 1.98 |
| CG | 5     | 0.0221 | 4225             | $2.35 \times 10^{-4}$ | 1.99 |
| NC | 5     | 0.0221 | 12416            | $2.48 \times 10^{-4}$ | 1.99 |

Table:  $\varepsilon_{\sigma,2}$  and  $\varepsilon_{mc}$ , Problem I

| level | $\varepsilon_{\sigma,2}$        | rate                                                                         | $\varepsilon_{mc}$                                                                                                   |
|-------|---------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 4     | 0.111                           | 0.989                                                                        | 0.628                                                                                                                |
| 4     | 0.110                           | 0.984                                                                        | 0                                                                                                                    |
| 4     | 0.111                           | 1.00                                                                         | 0                                                                                                                    |
| 4     | 0.110                           | 0.980                                                                        | 0                                                                                                                    |
| 5     | 0.0554                          | 0.997                                                                        | 0.205                                                                                                                |
| 5     | 0.0553                          | 0.996                                                                        | 0                                                                                                                    |
| 5     | 0.0554                          | 1.00                                                                         | $10^{-6}$                                                                                                            |
| 5     | 0.0553                          | 0.994                                                                        | 0                                                                                                                    |
|       | 4<br>4<br>4<br>4<br>5<br>5<br>5 | 4 0.111<br>4 0.110<br>4 0.111<br>4 0.111<br>5 0.0554<br>5 0.0553<br>5 0.0554 | 4 0.111 0.989<br>4 0.110 0.984<br>4 0.111 1.00<br>4 0.110 0.980<br>5 0.0554 0.997<br>5 0.0553 0.996<br>5 0.0554 1.00 |





#### Boundary layer example

Van Genuchten Mualem *p-s-k* relations,  $n_{vg}=4.264$ ,  $\alpha_{vg}=5.47$  [1/m],  $K_{s}=5.04$  [m/d].



Table: CPU overhead

| Method  | Level | Its. | CPU [s]               |
|---------|-------|------|-----------------------|
| LN      | 4     | -    | 1.35×10 <sup>-3</sup> |
| CG-V-SW | 4     | 250  | $3.33 \times 10^{-2}$ |
| CG-S-SW | 4     | 595  | $6.67 \times 10^{-2}$ |
| LN      | 5     | -    | 5.52×10 <sup>-3</sup> |
| CG-V-SW | 5     | 83   | $3.33 \times 10^{-2}$ |
| CG-S-SW | 5     | 207  | $1.17 \times 10^{-1}$ |





#### Spatial Error

| Method  | Level <sup>†</sup> | N <sub>dof</sub> | $\varepsilon_{\psi,\infty}$ | $\varepsilon_{mc}$    | $\varepsilon_{\sigma_1,\infty}$ | $\varepsilon_{\sigma_2,\infty}$ |
|---------|--------------------|------------------|-----------------------------|-----------------------|---------------------------------|---------------------------------|
| CG-PE   | 4                  | 289              | $8.72 \times 10^{-2}$       | $2.26 \times 10^{-3}$ | $4.40 \times 10^{-3}$           | 2.19×10 <sup>0</sup>            |
| CG-LN   | 4                  | 289              | $8.72 \times 10^{-2}$       | $1.35 \times 10^{-8}$ | $4.37 \times 10^{-4}$           | $1.89 \times 10^{-1}$           |
| CG-S-LN | 4                  | 289              | $4.36 \times 10^{-2}$       | $3.00 \times 10^{-7}$ | $3.90 \times 10^{-4}$           | $3.65 \times 10^{-1}$           |
| CG-S-SW | 4                  | 289              | $4.36 \times 10^{-2}$       | $9.97 \times 10^{-7}$ | $2.10 \times 10^{-3}$           | $6.91 \times 10^{-1}$           |
| CG-V-LN | 4                  | 289              | $1.75 \times 10^{-1}$       | $9.33 \times 10^{-9}$ | $2.29 \times 10^{-4}$           | $9.84 \times 10^{-2}$           |
| CG-V-SW | 4                  | 289              | $1.75 \times 10^{-1}$       | $9.93 \times 10^{-7}$ | $6.99 \times 10^{-4}$           | $2.49 \times 10^{-1}$           |
| NC      | 4                  | 800              | $9.49 \times 10^{-2}$       | 0                     | $5.21 \times 10^{-8}$           | $1.66 \times 10^{-4}$           |
| CG-PE   | 5                  | 1089             | $3.28 \times 10^{-2}$       | $7.17 \times 10^{-4}$ | $2.22 \times 10^{-3}$           | 1.61×10 <sup>0</sup>            |
| CG-LN   | 5                  | 1089             | $3.28 \times 10^{-2}$       | $6.10 \times 10^{-8}$ | $3.29 \times 10^{-4}$           | $1.71 \times 10^{-1}$           |
| CG-S-LN | 5                  | 1089             | $2.30 \times 10^{-2}$       | $8.88 \times 10^{-8}$ | $3.39 \times 10^{-4}$           | $3.58 \times 10^{-1}$           |
| CG-S-SW | 5                  | 1089             | $2.30 \times 10^{-2}$       | $9.97 \times 10^{-7}$ | $1.11 \times 10^{-3}$           | $3.98 \times 10^{-1}$           |
| CG-V-LN | 5                  | 1089             | $5.58 \times 10^{-2}$       | $4.92 \times 10^{-9}$ | $2.54 \times 10^{-4}$           | $1.12 \times 10^{-1}$           |
| CG-V-SW | 5                  | 1089             | $5.58 \times 10^{-2}$       | $9.98 \times 10^{-7}$ | $4.99 \times 10^{-4}$           | $1.45 \times 10^{-1}$           |
| NC      | 5                  | 3136             | 2.32×10 <sup>-2</sup>       | 0                     | $2.71 \times 10^{-7}$           | 1.55×10 <sup>-5</sup>           |

<sup>†</sup> h = 0.319 on level 4, and h = 0.160 on level 5





## Block heterogeneous example

Constant recharge into two-dimensional domain,  $n_{vg}$  ranges from 1.632 to 5.







## Block heterogeneous example (transient)

Infiltration into two-dimensional domain,  $n_{vq}$  ranges from 1.632 to 5.









#### LN and SW performance

| Method  | Level | $\varepsilon_{mc}$ at $T=30[d]$ | Avg. its. | Avg. CPU <sup>†</sup> [s]                   |
|---------|-------|---------------------------------|-----------|---------------------------------------------|
| CG-V-LN | 3     | 1.18×10 <sup>-7</sup>           | -         | $1.52 \times 10^{-3} (5.62 \times 10^{-3})$ |
| CG-V-SW | 3     | $9.97 \times 10^{-7}$           | 451       | $3.13 \times 10^{-1}$                       |
| CG-S-LN | 3     | $3.61 \times 10^{-7}$           | -         | $1.52 \times 10^{-3} (5.62 \times 10^{-3})$ |
| CG-S-SW | 3     | $1.00 \times 10^{-6}$           | 2289      | $1.58 \times 10^{0}$                        |
| CG-V-LN | 4     | $2.09 \times 10^{-7}$           | -         | $9.70\times10^{-3} (2.49\times10^{-2})$     |
| CG-V-SW | 4     | $9.99 \times 10^{-7}$           | 377       | $9.74 \times 10^{-1}$                       |
| CG-S-LN | 4     | $4.73 \times 10^{-8}$           | -         | $9.70 \times 10^{-3} (2.49 \times 10^{-2})$ |
| CG-S-SW | 4     | $1.00 \times 10^{-6}$           | 2072      | 5.39                                        |
| CG-V-LN | 5     | $5.37 \times 10^{-7}$           | -         | $4.17 \times 10^{-2} (1.14 \times 10^{-1})$ |
| CG-V-SW | 5     | $9.97 \times 10^{-7}$           | 185       | 2.13×10 <sup>0</sup>                        |
| CG-S-LN | 5     | $1.52 \times 10^{-7}$           | -         | $4.17 \times 10^{-2} (1.14 \times 10^{-1})$ |
| CG-S-SW | 5     | 1.00×10 <sup>-6</sup>           | 584       | 8.20×10 <sup>0</sup>                        |

<sup>†</sup> CPU required to build and factor LN node-star systems in parentheses





# Revisiting P<sup>1</sup> nonconforming behavior for sharp fronts

At least two options to improve NC. Subgrid viscosity stabilization Alaoui and Ern (2006), and/or local refinement









- Stabilization improved resolution of fronts but affected the distribution of velocity fields, particularly on very coarse grids.
- The velocity postprocessing approaches improved standard and stabilized CG approximations, and the combined CG strategies were competitive with mixed methods.
- The LN postprocessing was generally faster and more robust than the SW version. SW requires less storage and can be applied for generic velocity data.
- Velocity postprocessing algorithms are straightforward, inexpensive, and generally applicable. Better stabilization is needed, though.



