EchoKey Equilibriumization of Leader–Follower Flocks

(Mathematical breakdown & physical reinterpretation)

1 Problem Setting

We observe trajectories of N birds: for bird $i \in \{1, ..., N\}$, at times t_k , positions $\mathbf{r}_i(t_k)$, velocities $\mathbf{v}_i(t_k)$ obtained after converting GPS lat/lon to a local tangent plane and resampling to a uniform grid with spacing Δt . Let $s_i = \|\mathbf{v}_i\|$ and $\hat{\mathbf{v}}_i = \mathbf{v}_i/\|\mathbf{v}_i\|$. Define the instantaneous group axis $\mathbf{e}_{\text{front}}(t) = \frac{1}{\|\sum_i \mathbf{v}_i\|} \sum_i \mathbf{v}_i$.

Our goal is to construct a change of variables and a time reparameterization such that the pushforward path measure of the flock becomes an **equilibrium Markov chain** obeying detailed balance with respect to a Gibbs distribution. The leader-follower hierarchy must then appear as a gradient structure of an effective free energy.

2 EchoKey State and Operators

We build a multi-channel state $\Psi(t) \in \mathbb{R}^d$ from seven operator families. Concrete instantiations below match the accompanying code and can be swapped if they preserve the pipeline and witnesses.

2.1 Cyclicity \mathcal{C}

Definition. Headings $\theta_i(t) = \operatorname{atan2}(\hat{\mathbf{v}}_i \cdot \mathbf{e}_y, \hat{\mathbf{v}}_i \cdot \mathbf{e}_x)$, instantaneous angular speeds $\omega_i = \dot{\theta}_i$. A scale-separated phase $\varphi^{(\ell)}$ may be obtained via bandpass/wavelets.

Physical reinterpretation. Captures intrinsic turning cycles and cadence; provides a local "clock" used for time rescaling.

2.2 Recursion \mathcal{R}

Definition. Fit a one-step predictor $\widehat{\Psi}(t + \Delta t) = \Phi(\Psi(t))$ (linear VAR in our default). Define the recursion residual $\varepsilon_{\mathcal{R}}(t) = \Psi(t + \Delta t) - \Phi(\Psi(t))$.

Physical reinterpretation. Measures forecastable vs. novel state change; acts as a stabilizer/penalty in the energy.

2.3 Fractality \mathcal{F}

Definition. For each channel j, compute multi-scale variance across windows $w \in \mathcal{W}$ and estimate a log-log slope s_j ; form a channel-wise gradient proxy $\eta_j = \frac{s_j - \bar{s}}{\sigma_s}$ (clipped). Let $\eta(\Psi) \in \mathbb{R}^d$ be broadcast across time.

Physical reinterpretation. Encodes roughness across scales; its gradient defines preferred directions for scale-wise deformation (refraction).

2.4 Regression \mathcal{G}

Definition. Bind macrostats (e.g. polarization $m = \|\frac{1}{N} \sum_{i} \hat{\mathbf{v}}_{i}\|$ or front alignment) to state via a regressor; residual $\varepsilon_{\mathcal{G}}$ becomes a soft constraint.

Physical reinterpretation. Connects coarse observables to micro-coordinates without presupposing the dynamics that generate them.

2.5 Synergy S (adaptive coupler)

Definition. Let

$$\kappa_{ij}(t) = \sigma(\beta_0 - \beta_1 ||\mathbf{r}_i - \mathbf{r}_j|| - \beta_2 \operatorname{ang}(\theta_i, \theta_j)), \quad \mathcal{S}(\Psi) = \sum_{i \neq j} \kappa_{ij} g_i(\Psi_i) g_j(\Psi_j),$$

with $\sigma(z) = (1 + e^{-z})^{-1}$ and ang $\in [0, \pi]$ the heading difference.

Physical reinterpretation. A metric-topological coupling: nearby, similarly oriented birds interact more strongly.

2.6 Refraction $\mathcal{R}f$ (fractal-layer mapping)

Definition. For layer index $L \in \mathbb{Z}$,

$$\Psi_r(t,L) = R(\Psi(t),L) := \Psi(t) \odot \left(1 + \mu L \eta(\Psi(t))\right), \tag{1}$$

elementwise \odot . In practice we apply R to the base channels and leave appended extras (residuals, outliers, $\bar{\kappa}$) untouched.

Physical reinterpretation. A smooth, invertible deformation that "bends" coordinates along fractal gradients, moving between coarse and fine descriptions without changing identities.

2.7 Outliers \mathcal{O}

Definition. Detect sparse maneuver events from robust z-scores of group tangential acceleration and mean curvature; $O(t) \in \{0,1\}$ (or weighted).

Physical reinterpretation. Captures bursty corrections and sharp turns; used to modulate synergy via adaptive coupling.

3 Time Reparameterization

Define a positive scalar field $\alpha(\Xi)$ in transformed coordinates $\Xi(t) = \Psi_r(t, L)$:

$$d\tau = \alpha(\Xi) dt, \qquad \alpha(\Xi) = c_1 \alpha_C(\Xi) + c_2 \overline{\kappa}(\Xi),$$
 (2)

where $\alpha_{\mathcal{C}}$ is a normalized cyclicity speed (e.g. $|\langle \omega_i \rangle_i|$) and $\overline{\kappa}$ is the mean pairwise coupling. This defines a rescaled time τ that equalizes cycle phases and downweights weakly interacting epochs.

Physical reinterpretation. Moves the clock faster in phases with strong coordinated turning and strong coupling; slower otherwise.

4 Discretization and Empirical Path Measure

Partition the manifold of Ξ into K cells $\{x\}$ using PCA \rightarrow k-means. Let $x_t \in \{1, ..., K\}$ be the cell at time index t. Accumulate τ -weighted transition counts

$$C_{xy} = \sum_{t} \mathbf{1}[x_t = x, x_{t+1} = y] \Delta \tau_t, \qquad \Delta \tau_t = \int_{t}^{t+\Delta t} \alpha(\Xi(u)) du.$$
 (3)

The raw empirical chain has row-normalized transitions $M_{xy}^{\text{raw}} = \frac{C_{xy}}{\sum_z C_{xz}}$ and stationary weights $\pi_x^{\text{raw}} \propto \sum_z C_{xz}$ (not generally reversible).

5 Equilibriumization via Reversible-Flux Projection

Define the symmetrized flux

$$F_{xy}^{\text{sym}} = \frac{1}{2} \left(C_{xy} + C_{yx} \right),$$
 (4)

and set

$$\pi^{x \propto \sum_{z} F_{xz}^{\text{sym}}}, \qquad M^{xy = \frac{F_{xy}^{\text{sym}}}{\sum_{z} F_{xz}^{\text{sym}}}}.(5)$$

Proposition 1 (Detailed balance). π and M satisfy detailed balance for all x, y:

$$\pi^{xM^{xy}=\pi^yM^{yx}}$$

$$Proof. \ \pi^{xM}^{xy \propto (\sum_{z} F_{xz}^{\text{sym}}) \cdot \frac{F_{xy}^{\text{sym}}}{\sum_{z} F_{xz}^{\text{sym}}} = F_{yx}^{\text{sym}} = F_{yx}^{\text{sym}} = \pi^{yM^{yx}}$$

Proposition 2 (Max-entropy / KL projection). Among all Markov chains with detailed balance, (π^{M}) minimizes the empirical path KL divergence to (π^{raw}, M^{raw}) subject to preserving the symmetric pairwise flux constraints F_{xy}^{sym} . Equivalently, it is the maximum-entropy reversible model consistent with F^{sym} .

6 Gibbs Energy and Temperature

Define an effective energy on states by

$$U(x) = -T_{\text{eff}} \log \pi^{x+\text{const.}}(6)$$

Interpolating U from cells to the continuous Ξ yields $U(\Xi)$. The pushforward stationary law is Gibbs: $P(\Xi) \propto e^{-U(\Xi)/T_{\text{eff}}}$.

Physical reinterpretation. U is the potential whose level sets follow occupancy of the equilibriumized chain; T_{eff} fixes an energy scale (we set $T_{\text{eff}} = 1$ without loss).

7 Equilibrium Witnesses

Cycle affinities. For any directed cycle $\Gamma = (x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_m \rightarrow x_1)$,

$$\mathcal{A}(\Gamma) = \sum_{k=1}^{m} \log \frac{\pi^{x_k} M^{x_k x_{k+1}}}{\pi^{x_{k+1}} M^{x_{k+1} x_k} = 0}$$

exactly for the reversible chain; numerically ≈ 0 .

Entropy production (EP). With stationary currents $J_{xy} = \pi_x M_{xy}$,

$$\dot{S}_{\text{prod}} = \frac{1}{2} \sum_{x,y} (J_{xy} - J_{yx}) \log \frac{J_{xy}}{J_{yx}}.$$

EP> 0 for the raw chain; EP= 0 (up to floating point) for (π^{M}) .

Crooks/Jarzynski (discrete). Small parametric perturbations of U lead to forward/backward work distributions obeying $P_F(W)/P_R(-W) = e^{W/T_{\text{eff}}}$ for the reversible chain.

Together these certify that in EchoKey coordinates and τ -time the dynamics admit an equilibrium representation.

8 Mapping Back to Leader–Follower

Let $\mathbf{e}_{\text{front}}$ be the group axis. Define a per-bird front-alignment feature align_front_i = $\hat{\mathbf{v}}_i \cdot \mathbf{e}_{\text{front}}$. Using local linear fits around each state x we estimate ∇U and transport it back to the original feature space. The per-bird leadership field is

$$\lambda_i(t) \equiv -\frac{\partial U}{\partial(\text{align_front}_i)}\Big|_{\Xi(t)}.$$
 (7)

Time-averaged $\bar{\lambda}_i$ yields a ranking; higher $\bar{\lambda}_i$ indicates a stronger downhill pull of U along the group's front axis.

Physical reinterpretation. "Leadership" is the energy-gradient responsibility for moving the flock forward in the equilibrium landscape, not a lagged cross-correlation definition.

9 End-to-End Algorithm

- 1. **Ingest & preprocess.** Convert lat/lon \rightarrow meters; resample uniformly; compute θ_i, ω_i , curvature, group axis.
- 2. Build EchoKey state. Concatenate per-bird channels (cyclicity, density, alignment, etc.), append recursion residual, outlier flag, mean coupling $\bar{\kappa}$.
- 3. **Refraction.** Apply $\Psi \mapsto \Psi_r(\cdot, L)$ to base channels; extras left unchanged.
- 4. Time reparameterization. Form $\alpha(\Xi)$ and τ -weights $\Delta \tau_t$.
- 5. **Discretize.** PCA \rightarrow K-means; label states; accumulate C_{xy} with $\Delta \tau$ weights.
- 6. Equilibriumization. Symmetrize flux F^{sym} ; compute (π^{M}) ; set $U = -\log \pi$.
- 7. Witnesses. Compute EP and cycle affinities; require EP ≈ 0 , affinities ≈ 0 .
- 8. **Leadership.** Estimate ∇U locally; read $-\partial U/\partial (\text{align_front}_i)$; average in time for ranking.

10 Theoretical Notes and Invariances

Existence (by construction). The reversible-flux projection always yields a detailed-balance chain; hence an equilibrium representation exists for the τ -reweighted symbolic path.

Coordinate choice. Different EchoKey instantiations (filters, kernels) that leave the symmetrized flux nearly unchanged will lead to close (π^{M}) and thus similar U.

Temperature scale. Multiplying U by a constant rescales T_{eff} ; rankings and witnesses are invariant.

Limitations. The construction does not claim the raw $(\mathbf{r}, \mathbf{v}, t)$ dynamics are equilibrium; it proves existence of a *coordinate/time representation* that is.

11 Defaults Used in Experiments

Sampling $\Delta t = 0.2 \mathrm{s}$ (5 Hz), Savitzky–Golay smoothing (win=9, poly=3). Refraction: $L^{=1}$, $\mu = 0.12$. Synergy kernel $\beta_0 = 6.0$, $\beta_1 = 0.12 \,\mathrm{m}^{-1}$, $\beta_2 = 4.0 \,\mathrm{rad}^{-1}$. Time rescale $\alpha(\Xi) = 0.7 \,\alpha_{\mathcal{C}} + 0.3 \,\overline{\kappa}$, with floor 10^{-3} . Discretization: PCA to 12 dims, K = 80 clusters. Temperature $T_{\mathrm{eff}} = 1$.

12 Reporting

We report: (i) witness metrics (EP of raw vs. reversible chain; mean absolute cycle affinity), (ii) energy table per cluster $\{\pi^{x,U(x)}\}$, (iii) per-time leadership scores $\lambda_i(t)$ and mean ranking $\bar{\lambda}_i$, (iv) macrostats (e.g. polarization) for face validity.