УНИВЕРСИТЕТ ИТМО УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа: <u>M32101</u>	К работе допущен: .	
Студент: Косовец Роман	Работа выполнена <u>:</u>	
Преподаватель:	Отчет принят:	

Рабочий протокол и отчет по лабораторной работе № 4.09 «Изучение поляризации света»

1. Цель работы:

Изучить поляризованный свет и определить показатели преломления

2. Задачи, решаемые при выполнении работы:

- 1) Экспериментально убедиться в справедливости закона Малюса
- 2) Изучение поляризованного света с помощью стопы Столетова

3. Объект исследования:

Источник света

4. Метод экспериментального исследования:

Лабораторный эксперимент

5. Рабочие формулы и исходные данные:

- 1) Формула закона Малюса: $I=rac{1}{2}I_0\cos^2\phi$
- 2) Коэффициент отражения: $R = \frac{I_{refl}}{I_{inc}}$
- 3) Угол Брюстера определяется соотношением: $\operatorname{tg} \varphi_{\mathsf{Бp}} = n_{21}$

6. Схема установки:

Рис. 7. Схема лабораторной установки

Установку собирают на оптической скамье (рис 7).

- 1) Источник света
- 2) Лампа накаливания
- 3) В качестве поляризатора используем поляроид
- 4) Оправа с лимбом для отсчёта угла поляроида вокруг горизонтальной оси
- 5) В качестве анализатора в разных упражнениях используем такой же поляроид
- 6) Чёрное зеркало или стопа Столетова
- 7) Чёрное зеркало и стопа пластин укреплены на внешней части горизонтального столика, которая может поворачиваться вокруг вертикальной оси и неподвижной центральной части столика.
- 8) Рифленое кольцо
- 9) Центральная часть столика
- 10) Стойка рейтера
- 11) Зажимной винт
- 12) Фоторезистор
- 13) Кронштейны для закрепа
- 14) Столик с ценой деления шкалы
- 15) Фоторезистор

7. Результаты прямых измерений и их обработки:

Таблица 1

Угол поворота <i>α</i> (гр.)	cosα	$x = \cos^2 \alpha$	Фототок $I(MA)$
0	1,00	1,00	8,1
10	0,98	0,96	7,5
20	0,94	0,88	6,6
30	0,87	0,76	5,4
40	0,77	0,60	4,0
50	0,64	0,41	2,6
60	0,50	0,25	1,5
70	0,34	0,12	0,8
80	0,17	0,03	0,3
90	0	0	0,2
100	-0,17	0,03	0,4
110	-0,34	0,12	0,9
120	-0,50	0,25	1,7
130	-0,64	0,41	2,8
140	-0,77	0,60	4,2
150	-0,87	0,76	5,5
160	-0,94	0,88	6,9
170	-0,98	0,96	7,5
180	-1,00	1,00	7,7

Таблица 2

Угол падения <i>ф</i>	Фототок $I_{\mathrm{пp}}^{(p)}(\mathrm{мA})$	Фототок $I_{ ext{otp}}^{(p)}(ext{мA})$	Фототок $I_{\pi p}^{(s)}(MA)$	Фототок $I_{\text{отр}}^{(s)}(\text{мA})$
5	15,7	17,8	15,1	15,5
10	14,8	16,2	14,3	16,3
15	14,9	15,4	12,8	17,5
20	15,7	14,3	11,8	18,5
25	16,8	12,8	10,8	19,9
30	18,4	10,8	9,5	21,5
35	20,3	8,4	7,9	23,3
40	23,7	5,8	6,4	25,3

45	27,5	3,0	4,7	27,4
50	30,7	0,8	3,1	30,0
55	32,2	0,1	1,9	32,9
60	31,3	0,5	1,3	35,9
65	22,9	5,6	0,5	40,5
70	12,6	14,5	0,1	44,9
75	4,3	33,1	0,1	45,2
80	1,2	44,0	0,1	47,1

8. Расчет результатов косвенных измерений:

Угол Брюстера = 56 гр. => n=tg56 = 1.4855

9. Графики:

10. Вывод:

В ходе выполнения лабораторной работы экспериментальным путем убедились в справедливости закона Малюса. Зависимость фототока от квадрата косинуса угла падения получилась линейная, следовательно, закон выполняется. Также изучили поляризованный свет с помощью стопы Столетова.