4736 Decision Mathematics 1

1	(i)	5 2 4 3 8 Bin 1 5 2 3 Bin 2 4 Bin 3 8	MI AI	First bin correct All correct in three bins	[2]
	(ii)	8 5 4 3 2 Bin 1: 8 2 Bin 2: 5 4 Bin 3: 3	MI Al	First bin correct All correct in three bins	[2]
	(iii)	The heaviest box is originally at the bottom of the stack	В1	Referring to the physical act of sorting the weights into decreasing order	[1]
	(iv)	Bins in any order and boxes in any order Bin 1: 8 or 8 Bin 2 5 3 5 2 Bin 3: 4 2 4 3	Bl	Any valid packing into three bins of capacity 8 kg	[1]
				Total =	6

2	(i)	1 2	3			
		4 5	6	M1	A connected graph with nine vertices labelled 1 to 9	
				A1	Correct graph	
		7 8	9			
		4 moves		B1	Stating 4	[3]
	(ii)	Neither	***************************************	MI	'Neither', together with an attempt at a reason	
		It has four odd nodes The nodes 2, 4, 6, 8 each have th joined to them whereas an Euler graph has no odd nodes and a se	ian	AI	A correct reference to the number of odd nodes for this graph. Be careful about whether 'odd' refers to the parity or the value	
		Eulerian graph has exactly two onodes			However, just defining Eulerian and semi- Eulerian, without reference to this graph, is not enough	[2]
ĺ					Total =	5

ANSWERED ON INSERT

			Total =	11			
	opper bound 277		2.7(500)	(**1			
	Upper bound = 274	BI	added 274 (cao)	[3]			
(==)	A-D-C-F-G-B-E-A	ΑI	Correct closed tour listed, not just weights				
(iii)	A-D-C-F-G or 16+18+21+58+	MI	Using nearest neighbour				
	Lower bound = 241	Al	241 (cao)	[3]			
	140 + 46 + 55 = 241	MI	Adding two shortest arcs to MST	. (2)			
	Two shortest arcs from G are BG and EG						
	100 100 110		(ft from part (i)				
	Delete BG from spanning tree 186 - 46 = 140	Bl	Weight of MST on reduced network				
	D. L. DCC		can score B1, M1, A0				
(ii)			Correct working for wrong vertex deleted				
	AF 100	Di		[2]			
	4E - 80	BI	186 (cao)	[5]			
	FG 58						
	AB = 50 $EG = 55$ Total weight = 186	Al	Correct (minimum) spanning tree drawn				
	BG = 46	MI	Drawing a spanning tree for these six				
	BE = 35 $F = G$						
	4C 23 C P F		no others, can imply M1, A1)				
	CF = 21		(16+18+21+35+46+50, in this order with				
	CD = 18	Αl	Selecting correct arcs in list, or implied				
(")	AD = 16 $A B$	MI	Not selecting AC and DF				
3 (i)	Using Kruskal:						

ANSWERED ON INSERT

		,	ANSWERED ON INSERT	
4 (i)	240 5 15	ВІ	Times for flying route. JA = 120 $AG = 80GU = 60$ $UM = 15$ $GM = 80$	
	F 80 400 300 \\	BI	Times for train route correct JT = 15 $JB = 5$ $BT = 20TP = 300$ $PU = 20$ $PM = 30$	
	W 20 15 10 30 20 80 60 M 15 U	Ві	Times for coach route and driving route correct $BI' = 400 I'U = 10 I'M = 15$ $JF = 240 FW = 30 WU = 20 WM = 40$	[3]
	Strictly, these are directed arcs, but they are shown as undirected arcs		Follow through their arc weights if reasonable	
	J 1 0 .4 120	MI	Permanent values correct at A, F, B, T A = 120, F = 240, B = 5, T = 15	
	F 6 240 B 2 5 T 3 15	MId	Both 280 and 275 seen at M (updating at M)	
	V P 315	A1 ft	All temporary labels correct (or implied) and no extras	
	W 8 5 200 200	Bift	All permanent labels correct (or implied) (condone labelling past M)	
	M 9 275 U 7 260 260	B1 ft	Order of labelling correct (condone labelling past M)	
	Alternatively, if treating as undirected, J. A. F. B and T are unchanged, then			
	Or $\Gamma = 8^{th}$ and $H' = 9^{th}$ $\Gamma = \frac{9}{40.8 \cdot 270}$ $P = \frac{315 \cdot 280}{315 \cdot 280}$ $H' = \frac{8}{270}$ $G = \frac{5}{200}$		Marked as above	
	M 10 275 U 7 260 260			
	Route: J - A - G - U - M	В1	Correct answer only	[6]

(ii)	The quickest journey time from Jenny's house to the meeting venue	BI	Quickest journey / least travel time or equivalent	
(iii)	Does not allow for waiting for connections. There may be delays at the airport. She may not want to fly because of the 'earbon footprint'. She may want to choose the cheapest route rather than the quickest route. She may not like Ilying.	B1	Any reasonable suggestion for why she may not want to use the drive/fly/underground route or why she may want to use a different route. Any second reasonable suggestion	
	She may want to see her friend She may want to break the journey overnight			[2]
	, , , , , , , , , , , , , , , , , , , 		Total =	12

5	(i)	x = area of wall to be panelled (m ²) y = area to be painted z = area to be covered with pinboard	BI BI	Reference to area or m ² (at least once) Identifying x as panelling, y as paint and z as pinboard, in any way	[2]
	(ii)	$Cost ≤ £150$ $\Rightarrow 8x + 4y + 10z ≤ 150$ $\Rightarrow 4x + 2y + 5z ≤ 75 \text{ (given)}$	BI BI	Use of word 'cost' or equivalent $8x + 4y = 10z \le 150$ seen or explicitly referred to	[2]
((iii)	(Minimise $P = 15x + 30y + 20z$	Blft	Any positive multiple of this eg $3x + 6y + 4z$ or $\frac{1}{4}x + \frac{1}{2}y + \frac{1}{3}z$	[1]
	(iv)	(Minimise $P = 480 +) - 5x + 10y$ Subject to $x + 3y \ge 45$ $x \ge 10$ $y \ge 0$ $x + y \ge 22$	BI ft BI BI	Any positive multiple of this, eg $2y/x(-c)$ or maximise a negative multiple Any equivalent simplified form $x \ge 10$ may be implied $y \ge 0$ may be implied $x + y \ge 22$, any equivalent simplified form	[3]
	(v)	10 12 14	MI MI MI AI	ANSWERED ON GRAPH PAPER $x = 10$ drawn accurately with a sensible scale $x + y = 22$ drawn accurately with a sensible scale. Their $x + 3y = 45$ drawn accurately with a sensible scale. Shading correct or identification of the feasible region (triangle with $(10, 11\frac{3}{2})$, $(10, 12)$ and $(10\frac{1}{2}, 11\frac{1}{2})$ as vertices)	[4]

				Tutal =	13
	(iv)	Problem is unbounded No limit to how big y (and hence P) can be Only negative in objective row is y column, but all entries in this column are negative	BI	Any one of these, or equivalent. If described in terms of pivot choices, must be complete and convincing	[1]
		P = 75	B1 ft	x, y and z from their tableau P from their tableau, provided $P \ge 0$	[2]
		New row 2 = row 2 - 6×new row 3 oe x = 3, y = 0, z = 0	B1 B1 ft	Calculation for objective row Calculation for other row	[3]
		New row $3 = \frac{1}{5}$ row 3 New row $1 = \text{row } 1 + 25 \times \text{new row } 3$ oc	BI BI	Calculation for pivot row	
	(iii)	1 0 -29 82 0 5 75 0 0 -0.4 -9 1 -1.2 6 0 1 -0.6 2 0 0.2 3	Mi Al	Follow through their sensible tableau (with two slack variable columns) and pivot Pivot row correct (no numerical errors) Other rows correct (no numerical errors)	[2]
		$24 \div 6 = 4$ $15 \div 5 = 3$ Least non-negative ratio is 3, so pivot on 5	BI	Both divisions seen and correct choice made (or both divisions seen and correct choice implied from pivoting)	[3]
	(ii)	x column has a negative value in objective row Cannot use y column since it has negative entries in all the other rows	B1	'negative in top row', '-25', or similar 'most negative in top row' ⇒ bod B1 Correct reason for not choosing y column	
6	(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BI BI	Rows and columns may be in any order Objective row with -25, -14, 32 Constraint rows correct (condone omission of P column)	[2]

		F = N + 1 G = INT $H = B \times 1$ C = N - 1 N = G	G(F)					For reference only	
7	(i)	F 2.5	<i>G</i>	<i>Н</i> 4	C 1	N 2	M1 A1	A reasonable attempt at first pass (presented in any form) $F = 2.5$ and $G = 2$	
		1	1	2	0	i	AI	H = 4 (or double their G value) and C = 5 - their H	
		0.5	O	0	1	()	Al	F. G. H. C and N correct for second pass (It their N value) F. G. H. C and N correct for third pass (It their N value)	[5]
	(ii)	F -2.5 -1.5	<i>G</i> -3 -2 -1	H -6 -4 -2	C 1 1 0	N -3 -2	MI MIJ	A reasonable attempt First pass correct (or implied)	
		-0.5 -0.5	-1 -1	-2 -2	1	-1 -1	Al	Reaching two lines with the same value for G	
								If described in words only, then M1 for a correct statement; M1 d for all correct statements (sufficient to guarantee result), and A1 for convincingly correct explanation of how they know these to be true and why the result follows	
		Does not	terminal	te			ВІ	Saying 'does not stop', or equivalent	[4]
	(iii)	F 3.7 0.3	G 3 0	H 30 0	C 7 3	<i>N</i> 3 0	MI Al	First pass correct All correct	
		second v	alue is th	the units se tens dig t. and so o	git, the th	the ird value is	MI Al	Outputs are digits of V In reverse order	[4]
		·						Total =	13