Unidad II: Lógica de predicados

Lógica de predicados: Sintaxis y semántica

Clase 06 - Matemáticas Discretas (IIC1253)

Prof. Miguel Romero

Una pregunta

Considere la siguiente expresión:

$$\exists x \forall y P(x,y)$$

¿La expresión es verdadera o falsa?

Depende!

Depende del dominio y cómo interpretamos el símbolo P:

- Sobre el dominio de los números naturales y $P = \leq ?$
- ¿Sobre el dominio de los números enteros y $P = \leq ?$
- ¿Sobre el dominio de todas las personas?

Necesitamos una interpretación para darle valor de verdad a la expresión.

Sintaxis y Semántica

Definiremos la sintaxis de la lógica de predicados:

¿Qué fórmulas están permitidas en la lógica?

Una fórmula será una expresión (secuencia de símbolos) que puede usar:

- Nombres de predicados.
- Conectivos lógicos, cuantificadores, variables y paréntesis.

Sintaxis y Semántica

Definiremos la semántica de la lógica de predicados:

¿Cuándo una fórmula es verdadera o falsa?

Para esto, necesitaremos la noción de interpretación:

- Debemos escoger un dominio.
- Debemos darle un significado a cada nombre de predicado.

¿Por qué es tan importante la separación sintaxis vs semántica?

Sintaxis: vocabulario

Definición:

Un vocabulario \mathcal{L} es un conjunto $\{P_1,\ldots,P_k\}$ de nombres de predicados.

■ Cada nombre de predicado P_i tiene una **aridad** $n_i \ge 0$, que indica la cantidad de argumentos que recibe P_i .

Ejemplos:

Posibles vocabularios:

 \blacksquare $\mathcal{L} = \{Persona, Bot, Sigue\}.$

Persona y Bot tienen aridad 1, Sigue tiene aridad 2.

 $\mathcal{L} = \{ \textit{EsPar}, \textit{MenorQue}, \textit{Suma} \}.$

EsPar tiene aridad 1, MenorQue tiene aridad 2, Suma tiene aridad 3.

Notación: A cada P_i también se le llama **símbolo** de predicado.

Sintaxis: fórmulas

Las fórmulas de la lógica de predicados se construyen usando:

- Nombres de predicados de un vocabulario £.
- Un predicado especial llamado =.
- Conectivos lógicos \neg , \land , \lor , \rightarrow , \leftrightarrow .
- Variables.
- Cuantificadores ∀ y ∃.
- Paréntesis (y).

Sintaxis: fórmulas

Asumimos dado un vocabulario \mathcal{L} .

Definición:

Una fórmula de la lógica de predicados sobre \mathcal{L} es una expresión que se puede construir aplicando las siguientes reglas:

- Si x e y son variables, entonces x = y es una fórmula.
- Si $P \in \mathcal{L}$ es un nombre de predicado de aridad n y x_1, \ldots, x_n son variables, entonces $P(x_1, \ldots, x_n)$ es una fórmula.
- Si φ y ψ son fórmulas, entonces $(\neg \varphi)$, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$ y $(\varphi \leftrightarrow \psi)$ son fórmulas.
- Si φ es una fórmula y x una variable, entonces $(\forall x \varphi)$ y $(\exists x \varphi)$ son fórmulas.

Sintaxis: comentarios

Fórmulas de la forma x = y o $P(x_1, ..., x_n)$ se llaman fórmulas atómicas.

■ Pueden haber repeticiones de variables, por ejemplo:

$$x = x$$
 $P(x,x)$ $S(x,y,x)$ $S(x,y,y)$

Convenciones:

- Omitimos paréntesis si esto no genera ambigüedad. Por ejemplo:
 - En vez de $(\forall x(\exists y P(x,y)))$, escribimos $\forall x \exists y P(x,y)$.
- Para algunos símbolos de predicados comunes, como ≤, usamos notación infija:
 - En vez de $\leq (x, y)$, escribimos $x \leq y$.

Sintaxis: ejemplos

Vocabulario $\mathcal{L} = \{P, O\}$,

el símbolo P tiene aridad 1, y el símbolo O tiene aridad 2.

Posibles fórmulas sobre \mathcal{L} :

- $\exists x \forall y \ O(x,y).$
- $\forall x \forall y ((P(x) \land P(y)) \rightarrow x = y).$
- $O(x,y) \land \neg(x=y).$
- $\exists y (P(y) \land O(y,x)).$

¿Cuál es el valor de verdad de estas fórmulas?

Semántica: interpretaciones

Definición:

Sea $\mathcal{L} = \{P_1, \dots, P_k\}$ un vocabulario.

Una interpretación ${\mathcal I}$ para ${\mathcal L}$ se compone de:

- un dominio $\mathcal{I}(dom)$,
- para cada nombre P_i , un **predicado** $\mathcal{I}(P_i)$ sobre el dominio $\mathcal{I}(dom)$. (de la misma aridad.)

Ejemplos:

Posible interpretación para $\mathcal{L} = \{P, O\}$:

```
 \mathcal{I}(dom) = \mathbb{N} 
 \mathcal{I}(P) = x \text{ es par } 
 \mathcal{I}(O) = x \text{ es menor o igual que } y
```

Semántica: variables libres

Las variables libres de una fórmula son las variables que **no** aparecen cuantificadas.

Notación:

- Escribimos $\varphi(x_1,...,x_n)$ para indicar que $x_1,...,x_n$ son las variables libres de la fórmula φ .
- **Si** φ no tiene variables libres, decimos que φ es una **oración**.

Ejemplos:

- $\varphi = \exists x \forall y \ O(x, y).$
- $\psi = \forall x \forall y ((P(x) \land P(y)) \rightarrow x = y).$
- $\beta(x) = \exists y (P(y) \land O(y,x)).$

Semántica de una fórmula: oraciones

Asumimos dado un vocabulario \mathcal{L} .

Definición:

Sea φ una oración sobre $\mathcal L$ y sea $\mathcal I$ una interpretación para $\mathcal L.$

La evaluación de φ sobre $\mathcal I$ es el **predicado** 0-ario que se obtiene de la siguiente manera:

- Reemplazar cada nombre de predicado $P \in \mathcal{L}$, por el predicado $\mathcal{I}(P)$ sobre el dominio $\mathcal{I}(dom)$.
- **E**valuar φ como si fuera un **predicado compuesto**.

Notación:

- La evaluación de φ sobre \mathcal{I} se denota por $\llbracket \varphi \rrbracket_{\mathcal{I}}$.
- $[\varphi]_{\mathcal{I}}$ toma valor 0 o 1.

Semántica de una fórmula: ejemplos

¿Cuál es la evaluación de las siguientes oraciones sobre \mathcal{I} ?

$$\varphi = \exists x \forall y \, O(x, y).$$

$$\llbracket \varphi \rrbracket_{\mathcal{I}} = 1$$

$$\psi = \forall x \forall y \, \big((P(x) \land P(y)) \to x = y \big).$$

$$\llbracket \psi \rrbracket_{\mathcal{I}} = 0$$

Semántica de una fórmula: ejemplos

Sea
$$\mathcal{L} = \{P, O\}$$
 y la siguiente interpretación \mathcal{I} :

$$\mathcal{I}(dom) = \mathbb{Z}$$

 $\mathcal{I}(P) = x > 0$
 $\mathcal{I}(O) = x + y = 0$

¿Cuál es la evaluación de las siguientes oraciones sobre \mathcal{I} ?

$$\varphi = \exists x \forall y \, O(x, y).$$

$$\llbracket \varphi \rrbracket_{\mathcal{I}} = 0$$

$$\Psi = \forall x \forall y \, ((P(x) \land P(y)) \to x = y).$$

$$\llbracket \psi \rrbracket_{\mathcal{I}} = 0$$

Semántica de una fórmula: caso general

Asumimos dado un vocabulario \mathcal{L} .

Definición:

Sea $\varphi(x_1,...,x_n)$ una fórmula sobre \mathcal{L} con n variables libres y sea \mathcal{I} una interpretación para \mathcal{L} .

La evaluación de φ sobre $\mathcal I$ es el **predicado** *n*-ario que se obtiene de la siguiente manera:

- Reemplazar cada nombre de predicado $P \in \mathcal{L}$, por el predicado $\mathcal{I}(P)$ sobre el dominio $\mathcal{I}(dom)$.
- Evaluar φ como si fuera un **predicado compuesto**.

Notación:

- La evaluación de φ sobre \mathcal{I} se denota por $\llbracket \varphi \rrbracket_{\mathcal{I}}$.
- Dado valores $a_1, \ldots, a_n \in \mathcal{I}(dom)$, $[\varphi]_{\mathcal{I}}(a_1, \ldots, a_n)$ toma valor 0 o 1.

Semántica de una fórmula: ejemplos

Semántica de una fórmula: ejemplos

Sea
$$\mathcal{L} = \{P, O\}$$
 y la siguiente interpretación \mathcal{I} :

$$\mathcal{I}(dom) = \mathbb{Z}$$

 $\mathcal{I}(P) = x > 0$
 $\mathcal{I}(O) = x + y = 0$

¿Cuál es la evaluación de las siguientes fórmulas sobre \mathcal{I} ?

 $[\![\alpha]\!]_{\mathcal{I}} = x$ e y son inversos aditivos distintos

$$\beta(x) = \exists y (P(y) \land O(y,x)).$$

 $[\![\beta]\!]_{\mathcal{I}} = x$ es un entero negativo

Semántica de una fórmula: caso general

Asumimos dado un vocabulario \mathcal{L} .

Definición:

Sea $\varphi(x_1,...,x_n)$ una fórmula sobre \mathcal{L} con n variables libres y sea \mathcal{I} una interpretación para \mathcal{L} .

La evaluación de φ sobre $\mathcal I$ es el **predicado** *n*-ario que se obtiene de la siguiente manera:

- Reemplazar cada nombre de predicado $P \in \mathcal{L}$, por el predicado $\mathcal{I}(P)$ sobre el dominio $\mathcal{I}(dom)$.
- Evaluar φ como si fuera un predicado compuesto.

Importante:

El símbolo = **siempre** se interpreta como la igualdad de valores.

Más ejemplos

Considere el vocabulario $\mathcal{L} = \{\leq, S\}$, donde \leq tiene aridad 2 y S tiene aridad 3.

Considere las siguientes interpretaciones \mathcal{I} e \mathcal{I}' :

$$\mathcal{I}(dom) = \mathbb{N}$$
 $\mathcal{I}(\leq) = x$ es menor o igual a y $\mathcal{I}(S) = (x + y = z)$ $\mathcal{I}'(dom) = \mathbb{R}$ $\mathcal{I}'(\leq) = x$ es menor o igual a y $\mathcal{I}'(S) = (x + y = z)$

¿Cuál es la evaluación de las siguientes oraciones sobre \mathcal{I} e \mathcal{I}' ?

- $\exists x \forall y (x \leq y)$
- $\forall x \exists y (S(y, y, x))$
- $\forall x \forall y \left(x \le y \to \exists z \left(x \le z \land z \le y \land \neg (z = x) \land \neg (z = y) \right) \right)$

Más ejemplos: grafos

Considere el vocabulario $\mathcal{L} = \{E\}$, donde E tiene aridad 2.

Podemos representar grafos como interpretaciones sobre \mathcal{L} .

Ejemplo:

$$V = \{1, 2, 3, 4\}$$

$$E = \{(1, 2), (1, 3), (3, 2), (4, 1), (4, 2)\}$$

Para representar este grafo tomamos la interpretación ${\mathcal I}$ tal que:

$$\mathcal{I}(\textit{dom}) = \{1, 2, 3, 4\}$$

$$\mathcal{I}(E)(1, 2) = \mathcal{I}(E)(1, 3) = \mathcal{I}(E)(3, 2) = \mathcal{I}(E)(4, 1) = \mathcal{I}(E)(4, 2) = 1$$

$$\mathcal{I}(E)(u, v) = 0, \text{ en caso contrario.}$$

Más ejemplos: grafos

Considere el vocabulario $\mathcal{L} = \{E\}$, donde E tiene aridad 2.

Podemos representar grafos como interpretaciones sobre \mathcal{L} .

Escriba oraciones que expresen las siguientes propiedades sobre grafos:

- No existe un arco de un nodo a si mismo
- Todo nodo tiene al menos un arco de salida.
- Todo tiene al menos dos arcos de salida
- Existe un ciclo de largo 3.