

Dimensionality reduction in Bayes spaces: Simplicial functional principal component analysis 29 April 2021

Karel Hron

Department of Mathematical Analysis and Applications of Mathematics Faculty of Science – Palacký University, Olomouc, Czech Republic

Outline

- Motivation and EFDA
- SFPCA
- 3 SFPCA with PDFs from the exponential family
- 4 Application to population pyramids

Population age distributions in Upper Austria

 15 political districts, age distributions of men and women living in 114 municipalities of Upper Austria (population pyramids)

Population age distributions in Upper Austria

- 15 political districts, age distributions of men and women living in 114 municipalities of Upper Austria (population pyramids)
- **Aim**: to characterize the available population age densities performing a dimensionality reduction (PCA)

EFDA: sample mean

- ...something any exploratory functional data analysis (EFDA) usually starts with ...
- Given a sample $X_1, ..., X_N$ in $\mathcal{B}^2(I)$, I = [a, b], $a, b \in \mathbb{R}$, a < b

EFDA: sample mean

- ...something any exploratory functional data analysis (EFDA) usually starts with ...
- Given a sample $X_1,...,X_N$ in $\mathcal{B}^2(I),\ I = [a,b],\ a,b \in \mathbb{R},\ a < b$
- Sample mean: $\overline{X} = \frac{1}{N} \odot \bigoplus_{i=1}^{N} X_i$
- It can be computed through the back-transform of the sample mean in L_0^2 of the clr-transformed data (the latter being defined point-wise)

$$\overline{X} = \operatorname{clr}^{-1}(\overline{X}^c), \quad \overline{X}^c = \frac{1}{N} \sum_{i=1}^N X_i^c$$

EFDA: sample covariance function

- Specifies the *covariance* between density values at $t, s \in \Omega$
- Assigned to one FDA object (here PDF, or a sample of PDFs)
- Defined directly in the clr-space (as in the usual L^2 space)

EFDA: sample covariance function

- Specifies the *covariance* between density values at $t, s \in \Omega$
- Assigned to one FDA object (here PDF, or a sample of PDFs)
- Defined directly in the clr-space (as in the usual L^2 space)
- Sample covariance function:

$$v(s,t) = \frac{1}{N} \sum_{i=1}^{N} (X_i^c(s) - \overline{X}^c(s))(X_i^c(t) - \overline{X}^c(t))$$

 Can be visualized as function of two variables (for smoothed clr-transformed densities)

EFDA: Population age distributions in Upper Austria

Male and female populations: Sample mean and sample covariance function

Functional principal component analysis (FPCA)

- Consider a *centred* functional random sample $X_1,...,X_N$ in $L^2(I)$, i.e. from all observations $\overline{X} = \frac{1}{N} \sum_{i=1}^N X_i$ is subtracted
- FPCA looks firstly for the main mode of variability, i.e., for the element ξ_1 in $L^2(I)$ called first functional principal component (FPC)– maximizing over $\xi \in L^2(I)$

$$\frac{1}{N} \sum_{i=1}^{N} \langle X_i, \xi \rangle_2^2 \text{ subject to } \|\xi\|_2 = 1.$$

• **Aim**: to capture the main modes of variability of the data by means of a small number K of linear combinations of the original variables: $X_i \approx \sum_{k=1}^{K} \langle X_i, \xi_k \rangle_2 \xi_k$

Functional principal component analysis (FPCA)

• The remaining FPCs, $\{\xi_j\}_{j\geq 2}$, capture the remaining modes of variability subject to be mutually orthogonal, and are thus obtained by solving problem the previous maximization problem with the additional orthogonality constraint $\langle \xi_k, \xi \rangle_2 = 0, k < j$

Functional principal component analysis (FPCA)

- The remaining FPCs, $\{\xi_j\}_{j\geq 2}$, capture the remaining modes of variability subject to be mutually orthogonal, and are thus obtained by solving problem the previous maximization problem with the additional orthogonality constraint $\langle \xi_k, \xi \rangle_2 = 0, k < j$
- ightarrow **Outputs**: eigenfunctions of the covariance operator/harmonics ξ_j (interpreted in terms of the original data) and scores (coefficients, representing data structure of the original observations)

SFPCA

FPCA: computational details

- Dealing with FPCA is analogous to the multivariate PCA
- The FPCs $\{\xi_j\}_{j\geq 1}$ coincide with the eigenfunctions of the sample covariance operator $V:L^2(I)\to L^2(I)$, acting on $x\in L^2(I)$ as

$$Vx = \frac{1}{N} \sum_{i=1}^{N} \langle X_i, x \rangle_2 X_i$$

 \rightarrow The *j*-th FPC ξ_j and the associated scores $\Psi_{ij} = \langle X_i, \xi_j \rangle_2$, i = 1, ..., N, are obtained by solving the **eigenvalue equation**

$$V\xi_j = \rho_j \xi_j;$$

 ρ_i denotes the *j*-th eigenvalue, with $\rho_1 \geq \rho_2 \geq \dots$.

FPCA: computational details

- For each j, the term $\rho_j / \sum_j \rho_j$ is associated with the proportion of total variability explained by the FPC ξ_j .
- The eigenvalue equation is solved using basis expansion of each datum X_i , i=1,...,N using K known basis functions $\phi_1,...,\phi_K$:

$$X_i(\cdot) = \sum_{k=1}^K c_{ik} \phi_k(\cdot),$$

where $c_{ik} = \langle X_i, \phi_k \rangle_2$, k = 1, ..., K

 \rightarrow Commonly, smoothing splines are used for this purpose

Simplicial functional principal component analysis

- \rightarrow **SFPCA**: Reformulate FPCA in terms of Bayes spaces for $X_1,...,X_N$ being a (centred) sample in $\mathcal{B}^2(I)$, i.e., we performed perturbation-subtraction by $\overline{X} = \frac{1}{N} \odot \bigoplus_{i=1}^N X_i$
 - Maximizing over $\zeta \in \mathcal{B}^2(I)$

$$\frac{1}{N} \sum_{i=1}^{N} \langle X_i, \zeta \rangle_B^2 \text{ subject to } \|\zeta\|_B = 1; \ \langle \zeta_j, \zeta_k \rangle_B = 0, \ k < j$$

- ightarrow We can formulate the problem and find the unique solution because $\mathcal{B}^2(I)$ is a separable Hilbert space
- → **Problem**: how to efficiently implement all of this?

SFPCA

Clr transformation and SFPCA

 Goal: To perform SFPCA exploiting the efficient routines available in L² space (i.e., avoid computations in Bayes spaces)

Clr transformation and SFPCA

- **Goal**: To perform SFPCA exploiting the efficient routines available in L^2 space (i.e., avoid computations in Bayes spaces)
- → Through centred logratio (clr) transformation:

$$\operatorname{clr}(f)(t) = f^{c}(t) = \ln f(t) - \frac{1}{\eta} \int_{I} \ln f(s) \, \mathrm{d}s, \ \int_{I} f^{c}(t) \, \mathrm{d}t = 0;$$

Clr transformation and SFPCA

- **Goal**: To perform SFPCA exploiting the efficient routines available in L^2 space (i.e., avoid computations in Bayes spaces)
- \rightarrow Through centred logratio (clr) transformation:

$$\operatorname{clr}(f)(t) = f^{c}(t) = \ln f(t) - \frac{1}{\eta} \int_{I} \ln f(s) \, \mathrm{d}s, \ \int_{I} f^{c}(t) \, \mathrm{d}t = 0;$$

• Consequence for FPCA in clr space: $\xi_0 \equiv 1/\sqrt{b-a}$

Clr transformation and SFPCA

- Goal: To perform SFPCA exploiting the efficient routines available in L^2 space (i.e., avoid computations in Bayes spaces)
- \rightarrow Through centred logratio (clr) transformation:

$$\operatorname{clr}(f)(t) = f^{c}(t) = \ln f(t) - \frac{1}{\eta} \int_{I} \ln f(s) \, \mathrm{d}s, \ \int_{I} f^{c}(t) \, \mathrm{d}t = 0;$$

- Consequence for FPCA in clr space: $\xi_0 \equiv 1/\sqrt{b-a}$
- The zero integral contraint needs to be incorporated into the basis expansion → compositional splines

Example: Truncated normal PDFs

• Normal densities, $\mu = 0$, $\sigma_i = \exp(-1 + (i - 1)/10)$, i = 1, ..., 21, I = [-5, 5]

$$f(t;\sigma_i) =_{\mathcal{B}^2} \exp\left\{-\frac{t^2}{2\sigma_i^2}\right\}, \quad t \in I,$$
 (1)

 $=_{\mathcal{B}^2(I)}$ denotes the equivalence in the space $\mathcal{B}^2(I)$

$$f^{c}(t;\sigma_{i})=-\frac{t^{2}}{2\sigma_{i}^{2}}+\frac{25}{6\sigma_{i}^{2}},\quad t\in I.$$

Dimensionality of PDFs from the exponential family

An important feature of (log-)normal densities in context of Bayes spaces is that they belong to the extended exponential family:

• Recall that a k-parametric extended exponential family on Ω , $Exp_{\mathcal{B}^2(I)}(g, \mathcal{T}, \vartheta)$ is a collection of densities

$$f(t, \alpha) =_{\mathcal{B}^2(I)} g(t) \cdot \exp \left\{ \sum_{j=1}^k \vartheta_j(\alpha) T_j(t) \right\}, \quad t \in \Omega,$$

where α denotes the k-dimensional vector of parameters in a k-dimensional parameter space A, while functions $g:\Omega\to\mathbb{R}$, $\vartheta_j:A\to\mathbb{R}$ and $T_j:\Omega\to\mathbb{R}$, j=1,...,k, are Borel-measurable

Dimensionality of PDFs from the exponential family

An important feature of (log-)normal densities in context of Bayes spaces is that they belong to the extended exponential family:

• Recall that a k-parametric extended exponential family on Ω , $Exp_{\mathcal{B}^2(I)}(g, \mathcal{T}, \vartheta)$ is a collection of densities

$$f(t, \alpha) =_{\mathcal{B}^2(I)} g(t) \cdot \exp \left\{ \sum_{j=1}^k \vartheta_j(\alpha) T_j(t) \right\}, \quad t \in \Omega,$$

where α denotes the k-dimensional vector of parameters in a k-dimensional parameter space A, while functions $g:\Omega\to\mathbb{R}$, $\vartheta_j:A\to\mathbb{R}$ and $T_j:\Omega\to\mathbb{R}$, j=1,...,k, are Borel-measurable

• An extended exponential family on Ω is a **finite dimensional** affine subspace of the Bayes space $\mathcal{B}^2(I)$

SFPCA with PDFs from the exponential family Dimensionality of PDFs from the exponential family

- Most routinely used distributions belong to the exponential family
- **Example**: a Gaussian density $N(0, \sigma^2)$ restricted on Ω belongs to a 1-parametric extended exponential family, with $\alpha = \sigma$, $\vartheta_1(\alpha) = 1/\sigma^2$, and $T_1(t) = -t^2$

Dimensionality of PDFs from the exponential family

• A PDF in $Exp_{\mathcal{B}(I)}(g, \mathbf{T}, \vartheta)$ can be expressed as a linear combination in $\mathcal{B}^2(I)$:

$$f(t, \alpha) =_{\mathcal{B}^2(I)} g(t) \oplus \bigoplus_{j=1}^k \left[\vartheta_j(\alpha) \odot \exp\{T_j(t)\} \right], \quad t \in \Omega,$$

Clr-transformed:

$$f^c(t, \alpha) = \operatorname{clr}(g(t)) + \sum_{i=1}^k \left[\vartheta_j(\alpha) \cdot \operatorname{clr}(\exp\{T_j(t)\}) \right], \quad t \in \Omega.$$

Dimensionality of PDFs from the exponential family

• A PDF in $Exp_{\mathcal{B}(I)}(g, T, \vartheta)$ can be expressed as a linear combination in $\mathcal{B}^2(I)$:

$$f(t, \alpha) =_{\mathcal{B}^2(I)} g(t) \oplus \bigoplus_{j=1}^k \left[\vartheta_j(\alpha) \odot \exp\{T_j(t)\} \right], \quad t \in \Omega,$$

Clr-transformed:

$$f^c(t, oldsymbol{lpha}) = \mathsf{clr}(g(t)) + \sum_{j=1}^{\kappa} \left[artheta_j(oldsymbol{lpha}) \cdot \mathsf{clr}(\mathsf{exp}\{T_j(t)\})
ight], \quad t \in \Omega.$$

 \Rightarrow For $k_0 \le k$ uncertain parameters, the SFPCA estimates an orthonormal basis of the corresponding k-dimensional affine space in $\mathcal{B}^2(I)$, which is associated to $k_0 \le k$ non-zero eigenvalues

Dimensionality of PDFs: normal distribution

Dimensionality of PDFs: normal distribution

SFPCA with PDFs from the exponential family Dimensionality of PDFs: gamma distribution

Data: n=100 densities with kernel Gamma $\Gamma(\theta_i, \kappa_j)$, with $\theta_i=1/9+(i-1)/9$ and $\kappa_j=2+(j-1)/4$ for $i,j=1,\ldots,10$, and domain $I=[e^{-7},e^3]$

- A Gamma distribution $\Gamma(\theta, \kappa)$ on I belongs to a 2-parametric extended exponential family with $\alpha = (\theta, \kappa)$, $\vartheta_1(\alpha) = \theta$, $\vartheta_2(\alpha) = \kappa$, $T_1(t) = -t$, and $T_2(t) = \ln(t)$, for $t \in I$
- We expect now that a sensible dimensionality reduction method will single out the dimension k = 2 of these densities
- A comparison with FPCA for the original densities is performed as well

Dimensionality of PDFs: gamma distribution

0.0

Dimensionality of PDFs: gamma distribution

10

15

Dimensionality of PDFs: gamma distribution (L^2)

Dimensionality of PDFs: gamma distribution (L^2)

Application to population pyramids

SFPCA: Population age distributions

Application to population pyramids

SFPCA: Population age distributions

SFPCA: Population age distributions

SFPCA: R code

https://github.com/AMenafoglio/BayesSpaces-codes

(with special thanks to Ivana Pavlů, Palacký University)

References

Aitchison, J.: The statistical analysis of compositional data. Chapman and Hall, 1986

Delicado, P.: Dimensionality reduction when data are density functions. Computational Statistics and Data Analysis 55, 401-420, 2011.

Hron, K., Menafoglio, A., Templ, M., Hrůzová, K., Filzmoser, P.: Simplicial principal component analysis for density functions in Bayes spaces. Computational Statistics and Data Analysis 94, 330–350, 2016.

Ramsay, J., Silverman, B.W.: Functional data analysis, 2nd ed. Springer, New York, 2005.

Talská, R., Menafoglio, A., Hron, K., Egozcue, J.J., Palarea-Albaladejo, J.: Weighting the domain of probability densities in functional data analysis. Stat 9 (1), e283, 2020.

van den Boogaart, K.G., Egozcue, J.J., Pawlowsky-Glahn, V.: Bayes Hilbert spaces. Australian & New Zealand Journal of Statistics 56, 171–194, 2014.