```
#clear global environment
rm(list=ls())
```

```
#install.packages("doParallel", "foreach")
#install.packages("coda")
```



```
# Simulate data
x <- rnorm(n, mean = 5, sd = 2) # Predictor variable
alpha true <- 2
                                  # True intercept
beta true <- 3
                                  # True slope
sigma <- 4
                                  # Known standard deviation
y <- alpha_true + beta_true * x + rnorm(n, sd = sigma) # Response variable
# Initialize storage for samples - only need space for post-burnin samples
alpha samples <- numeric(iter)</pre>
beta_samples <- numeric(iter)</pre>
# Initial values for alpha and beta
# Starting closer to true values can reduce burnin needed
a0 <- rnorm(1, mean = mean(y) - mean(x), sd = 1)
b0 <- rnorm(1, mean = cov(x,y)/var(x), sd = 1)
# Gibbs sampling - use separate counter for storing samples
sample_idx <- 0</pre>
# Run the sampler for burnin + iter iterations
for (i in 1:(burnin + iter)) {
  # Update alpha
  alpha_posterior_var <- 1 / (1 / alpha_prior_sd^2 + n / sigma^2)</pre>
  alpha_posterior_mean <- alpha_posterior_var * (</pre>
    alpha_prior_mean / alpha_prior_sd^2 + sum(y - b0 * x) / sigma^2
  a0 <- rnorm(1, mean = alpha_posterior_mean, sd = sqrt(alpha_posterior_var))
  # Update beta
  beta_posterior_var <- 1 / (1 / beta_prior_sd^2 + sum(x^2) / sigma^2)</pre>
  beta_posterior_mean <- beta_posterior_var * (</pre>
    beta_prior_mean / beta_prior_sd^2 + sum((y - a0) * x) / sigma^2
  b0 <- rnorm(1, mean = beta_posterior_mean, sd = sqrt(beta_posterior_var))
  # Store samples only after burnin
  if (i > burnin) {
    sample idx <- sample idx + 1</pre>
    alpha samples[sample idx] <- a0</pre>
    beta_samples[sample_idx] <- b0</pre>
  }
}
# Summarize posterior samples
alpha_mean <- mean(alpha_samples)</pre>
beta_mean <- mean(beta_samples)</pre>
# Add true values to the output for comparison
return(list(alpha_samples = alpha_samples,
            beta_samples = beta_samples,
            alpha_mean = alpha_mean,
            beta_mean = beta_mean,
            alpha_true = alpha_true,
```

```
beta_true = beta_true,
             data = list(x = x, y = y, sigma = sigma)))
eps<-0.01
#relatively un-informative prior
well.spec<-bayes.SLR.gibbs(alpha_prior_mean = 0, alpha_prior_sd = sqrt(1.8),
                               beta_prior_mean = 0, beta_prior_sd = sqrt(1.8), iter=8000)
#miss-specified prior
miss.spec<-bayes.SLR.gibbs(alpha_prior_mean = 0, alpha_prior_sd = sqrt(eps),
                               beta_prior_mean = 0, beta_prior_sd = sqrt(eps), iter=8000)
well.spec$alpha_mean
## [1] 2.028763
well.spec$beta_mean
## [1] 2.900992
miss.spec$alpha_mean
## [1] 0.377963
miss.spec$beta_mean
## [1] 2.088636
#function to calculate parameters for analytical posterior distribution
# inputs are prior mean and prior covariance matrix
posterior.params <- function(pri.mu,pri.sigma, seed=4, n=100){</pre>
 set.seed(seed)
x \leftarrow rnorm(n, mean = 5, sd = 2)
 alpha_true <- 2
                                  # True intercept
 beta_true <- 3
                                # True slope
 sigma <- 4
Y <- alpha_true + beta_true * x+rnorm(n, sd = sigma)
X<-matrix(c(rep(1,n),x), nrow=n,ncol=2)</pre>
z<-(1/sigma^2)*t(X)%*%X+solve(pri.sigma)</pre>
list(theta_mu=theta_mu, theta_var_mat=solve(z))
}
#create very small variance
well.spec.post.mu<-posterior.params(pri.mu = c(0,0), pri.sigma = 1.8*diag(2))$theta_mu
well.spec.post.varmat<-posterior.params(pri.mu = c(0,0), pri.sigma = 1.8*diag(2))$theta_var_mat
well.spec.post.mu
           [,1]
##
## [1,] 2.008330
## [2,] 2.905397
```

```
well.spec.post.varmat
##
             [,1]
                        [,2]
## [1,] 0.7970637 -0.13631948
## [2,] -0.1363195 0.02858374
miss.spec.post.varmat<-posterior.params(pri.mu = c(0,0), pri.sigma = eps*diag(2))$theta_var_mat
miss.spec.post.mu
           [,1]
##
## [1,] 0.377910
## [2,] 2.089379
miss.spec.post.varmat
##
               [,1]
                           [,2]
## [1,] 0.009745859 -0.001093695
## [2,] -0.001093695 0.003580325
#Well Specified case
# Plot the posterior distributions
hist(well.spec$alpha_samples, breaks=100, main = "Posterior of alpha", xlab = "alpha", freq = F)
# Create a sequence of x values for the normal distribution curve
a_x_values <- seq(min(well.spec$alpha_samples), max(well.spec$alpha_samples), length = 100)
# Calculate the marginal density for those x values
alpha_normal_density <- dnorm(a_x_values, mean = well.spec.post.mu[1], sd = sqrt(well.spec.post.varmat[
# Add the normal distribution density curve to the histogram
lines(a_x_values, alpha_normal_density, col = "red", lwd = 2)
# Add a vertical line for the true alpha value
abline(v = 2, col = "black", lwd = 2, lty = 2) # True alpha value
```

Posterior of alpha


```
# Plot the posterior distributions
hist(well.spec$beta_samples, breaks=100, main = "Posterior of beta", xlab = "beta", freq = F)
# Create a sequence of x values for the normal distribution curve
b_x_values <- seq(min(well.spec$beta_samples), max(well.spec$beta_samples), length = 100)
# Calculate marginal density for those x values
beta_normal_density <- dnorm(b_x_values, mean = well.spec.post.mu[2], sd = sqrt(well.spec.post.varmat[2])
# Add the normal distribution density curve to the histogram
lines(b_x_values, beta_normal_density, col = "blue", lwd = 2)
abline(v = 3, col = "black", lwd = 2, lty = 2) # True beta value</pre>
```

Posterior of beta


```
#Miss Specified case
# Plot the posterior distributions
hist(miss.spec$alpha_samples, breaks=100, main = "Posterior of alpha(miss-specified)", xlab = "alpha", #
Create a sequence of x values for the normal distribution curve
a_x_values <- seq(-1, 2.3, length = 1000)

# Calculate the marginal density for those x values
alpha_normal_density <- dnorm(a_x_values, mean = miss.spec.post.mu[1], sd = sqrt(miss.spec.post.varmat[
# Add the normal distribution density curve to the histogram
lines(a_x_values, alpha_normal_density, col = "red", lwd = 2)
# Add a vertical line for the true alpha value
abline(v = 2, col = "black", lwd = 2, lty = 2) # True alpha value</pre>
```

Posterior of alpha(miss-specified)


```
# Plot the posterior distributions
hist(miss.spec$beta_samples, breaks=50, main = "Posterior of beta(miss-specified)", xlab = "beta", freq
# Create a sequence of x values for the normal distribution curve
b_x_values <- seq(1, 3, length = 1000)

# Calculate marginal density for those x values
beta_normal_density <- dnorm(b_x_values, mean = miss.spec.post.mu[2], sd = sqrt(miss.spec.post.varmat[2])
# Add the normal distribution density curve to the histogram
lines(b_x_values, beta_normal_density, col = "blue", lwd = 2)
# Add a vertical line for the true beta value
abline(v = 3, col = "black", lwd = 2, lty = 2) # True beta value</pre>
```

Posterior of beta(miss-specified)


```
#put parameters into single vector
well.theta<-matrix(c(well.spec$alpha_samples,well.spec$beta_samples), nrow=2, byrow = T)
miss.theta<-matrix(c(miss.spec$alpha_samples,miss.spec$beta_samples), nrow=2, byrow = T)</pre>
```

```
#computes posterior predictive via MCMC, AOI importance sampling
posterior_predictive.v2 <- function(Y, X, y, x_new, theta, sigma) {</pre>
  # Compute weights(log scale)
  log_w <- apply(theta, 2, function(th) dnorm(y, mean = x_new %*% th, sd = sigma, log=TRUE))</pre>
  max_log_w <- max(log_w)</pre>
  log_sum_exp <- max_log_w + log(sum(exp(log_w - max_log_w)))</pre>
  normalized_weights <- exp(log_w - log_sum_exp)</pre>
  # Get dimensions
  n_eval <- length(Y)</pre>
  n_samples <- ncol(theta)</pre>
  # Calculate all means for all evaluation points and samples
  all_means <- X %*% theta
  # Create an array that repeats Y for each sample
  \# Create a n_eval \times n_samples matrix where each row is filled with one Y value
  Y_mat <- matrix(Y, nrow=n_eval, ncol=n_samples)</pre>
  # Calculate all densities at once
  all_densities <- dnorm(Y_mat, mean=all_means, sd=sigma)
```

```
# Apply weights and sum rows
 result <- rowSums(all_densities * matrix(normalized_weights,</pre>
                                             nrow=n eval,
                                             ncol=n_samples,
                                             byrow=TRUE))
 return(result)
}
library(foreach)
library(doParallel)
## Loading required package: iterators
## Loading required package: parallel
#Function to compute upper and lower bounds of conformal interval
#uses parallel computation to loop over new x values
conformal_bounds_single_parallel <- function(Y, X, conf_x_new_mat, y_grid, theta, sigma, alpha) {</pre>
  num_cores <- detectCores() - 1 # Use all but one core</pre>
  cl <- makeCluster(num_cores)</pre>
 registerDoParallel(cl)
  # Export required functions and variables
  clusterExport(cl, varlist = c("posterior_predictive.v2", "Y", "X", "y_grid", "theta", "sigma", "alpha
  conf_range <- foreach(i = 1:nrow(conf_x_new_mat), .combine = rbind, .packages = c("foreach")) %dopar%</pre>
    x_new_i <- conf_x_new_mat[i, , drop = FALSE] # Extract the current `x_new`</pre>
    # Compute conformal prediction set directly within the same loop
    accepted_y <- foreach(1 = 1:length(y_grid), .combine = c) %do% {</pre>
      # Compute conformity scores on dataset
      sig_1_to_n <- posterior_predictive.v2(Y = Y, X = X, y = y_grid[1], x_new = x_new_i, theta = theta
      # Conformity score on test point
      sig_n_plus_one \leftarrow posterior_predictive.v2(Y = y_grid[1], X = x_new_i, y = y_grid[1], x_new = x_new_i
      # Adjusted quantile calculation
      n <- length(Y)
      pi <- (length(which(sig_1_to_n <= sig_n_plus_one)) + 1) / (n + 1)</pre>
      # Only return y_grid[l] if it meets the condition
      if (pi > alpha) {
        y_grid[l]
      } else {
        NULL
    }
    # Compute lower and upper bounds
    bounds <- range(accepted_y)</pre>
    return(bounds)
```

```
stopCluster(cl)
    return(conf_range) # Matrix where each row is [lower, upper] for an `x_new`
#miss-spec
library("doParallel")
library("foreach")
#create a y grid to loop over
#ny is grid fineness for y
ny < -150
nx<- 100
y_grid \leftarrow seq(-10,44, length.out = ny)
x_grid <- seq(min(x), max(x), length.out = nx )</pre>
\#turn \ x\mbox{-}grid \ into \ design \ matrix
x_new_mat<-matrix(c(rep(1,nx),x_grid ), nrow=nx)</pre>
#this involves (nx)x8000x(100+ny)=200,000,000 likelihood evals
miss_conf_range <- conformal_bounds_single_parallel(Y, X, conf_x_new_mat=x_new_mat, y_grid, theta=miss.
#well-spec
library("doParallel")
library("foreach")
#create a y grid to loop over
#ny is grid fineness for y
ny <-150
nx<- 100
y_{grid} \leftarrow seq(0,40, length.out = ny)
x_grid <- seq(min(x), max(x), length.out = nx )</pre>
\#turn \ x-grid \ into \ design \ matrix
x_new_mat<-matrix(c(rep(1,nx),x_grid ), nrow=nx)</pre>
#this involves (nx)x8000x(100+ny)=200,000,000 likelihood evals
well_conf_range <- conformal_bounds_single_parallel(Y, X, conf_x_new_mat=x_new_mat, y_grid, theta=well.
alpha < -0.2
# Create a fine grid of x values to approximate the credible bands
cred_x_grid <- seq(min(x), max(x), length.out = 100)</pre>
#create design matrix for x_new
cred_x_new_mat<-matrix(c(rep(1,100),cred_x_grid), nrow=100)</pre>
#Use quantiles to get credible intervals, using analytically derived density of the posterior predictiv
credible_lower <- function(x_new,mu,varmat) {</pre>
qnorm(alpha / 2, mean = x_new%*%mu, sd = sqrt(sigma^2+x_new%*%varmat%*%t(x_new)))
credible_upper <- function(x_new,mu,varmat) {</pre>
qnorm(1 - alpha / 2, mean = x_new%*%mu, sd = sqrt(sigma^2+x_new%*%varmat%*%t(x_new)))
}
# Calculate the credible interval bounds over the grid(drop preserves dimension of extracted vector)
m.cred.lower <- sapply(1:nrow(cred_x_new_mat), function(i) credible_lower(cred_x_new_mat[i, , drop=F], redible_lower(cred_x_new_mat[i, , drop=F]);</pre>
miss.spec.post.varmat))
m.cred.upper <- sapply(1:nrow(cred_x_new_mat), function(i) credible_upper(cred_x_new_mat[i, , drop=F], name is a continuous formula for the continuous for the continuous for the continuous for the continuous formula for the continuous for th
```

```
miss.spec.post.varmat))
w.cred.lower <- sapply(1:nrow(cred_x_new_mat), function(i) credible_lower(cred_x_new_mat[i, , drop=F],</pre>
well.spec.post.varmat))
w.cred.upper <- sapply(1:nrow(cred_x_new_mat), function(i) credible_upper(cred_x_new_mat[i, , drop=F]),</pre>
well.spec.post.varmat))
#debugging
#credible_lower(cred_x_new_mat[100, , drop=F], miss.spec.post.mu,
#miss.spec.post.varmat)
# Extract lower and upper bounds
m.lower <- miss_conf_range[, 1]</pre>
m.upper <- miss_conf_range[, 2]</pre>
# Plot observed data
plot(X[, 2], Y, pch = 16, col = "black", xlab = "X", ylab = "Y",
     main = "Effect of Prior Misspecification", ylim = c(-10,40))
# Fill the confidence region (blue)
polygon(c(x_grid, rev(x_grid)), c(m.lower, rev(m.upper)), col = rgb(0, 0, 1, 0.3), border = NA)
# Fill the region between red dotted lines
polygon(c(cred_x_grid, rev(cred_x_grid)), c(m.cred.lower, rev(m.cred.upper)),
        col = rgb(1, 0, 0, 0.2), border = NA)
# Plot smooth upper and lower bounds
lines(x_grid, m.lower, col = "blue", lwd = 2)
lines(x_grid, m.upper, col = "blue", lwd = 2)
lines(cred_x_grid, m.cred.lower, col = "red", lwd = 2, lty = 2) # Lower bound line
lines(cred_x_grid, m.cred.upper, col = "red", lwd = 2, lty = 2) # Upper bound line
# Add the least squares line
lm_fit \leftarrow lm(Y \sim X[, 2])
abline(lm_fit, col = "darkgreen", lwd = 2)
# Simplified legend with just the two bands
legend("topleft",
       legend = c("Conformal Band", "Credible Band"),
       1ty = c(1, 2),
      1wd = c(2, 2),
       col = c("blue", "red"),
      fill = c(rgb(0, 0, 1, 0.3), rgb(1, 0, 0, 0.2)),
       border = NA,
       bg = "white")
```

Effect of Prior Misspecification

well_conf_range

```
##
                    [,1]
                              [,2]
## result.1
               0.8053691 11.27517
## result.2
               1.0738255 11.54362
## result.3
               1.3422819 11.81208
## result.4
               1.6107383 12.08054
## result.5
               1.8791946 12.34899
## result.6
               2.1476510 12.34899
## result.7
               2.4161074 12.61745
## result.8
               2.4161074 12.88591
## result.9
               2.6845638 13.15436
               2.9530201 13.42282
## result.10
## result.11
               3.2214765 13.69128
## result.12
               3.4899329 13.95973
               3.7583893 14.22819
## result.13
## result.14
               4.0268456 14.22819
## result.15
               4.2953020 14.49664
## result.16
               4.5637584 14.76510
## result.17
               4.8322148 15.03356
## result.18
               5.1006711 15.30201
## result.19
               5.3691275 15.57047
## result.20
               5.3691275 15.83893
## result.21
               5.6375839 16.10738
## result.22
               5.9060403 16.37584
## result.23
               6.1744966 16.37584
```

```
## result.24
              6.4429530 16.64430
## result.25
             6.7114094 16.91275
              6.9798658 17.18121
## result.26
## result.27
              7.2483221 17.44966
## result.28
              7.5167785 17.71812
## result.29
             7.7852349 17.98658
## result.30
             8.0536913 18.25503
## result.31 8.3221477 18.52349
## result.32 8.3221477 18.79195
## result.33 8.5906040 18.79195
## result.34 8.8590604 19.06040
## result.35 9.1275168 19.32886
## result.36
             9.3959732 19.59732
## result.37
             9.6644295 19.86577
## result.38 9.9328859 20.13423
## result.39 10.2013423 20.40268
## result.40 10.4697987 20.67114
## result.41 10.7382550 20.93960
## result.42 11.0067114 21.20805
## result.43 11.0067114 21.20805
## result.44 11.2751678 21.47651
## result.45 11.5436242 21.74497
## result.46 11.8120805 22.01342
## result.47 12.0805369 22.28188
## result.48 12.3489933 22.55034
## result.49 12.6174497 22.81879
## result.50 12.8859060 23.08725
## result.51 13.1543624 23.35570
## result.52 13.4228188 23.62416
## result.53 13.4228188 23.89262
## result.54 13.6912752 23.89262
## result.55 13.9597315 24.16107
## result.56 14.2281879 24.42953
## result.57 14.4966443 24.69799
## result.58 14.7651007 24.96644
## result.59 15.0335570 25.23490
## result.60 15.3020134 25.50336
## result.61 15.5704698 25.77181
## result.62 15.5704698 26.04027
## result.63 15.8389262 26.30872
## result.64 16.1073826 26.57718
## result.65 16.3758389 26.57718
## result.66 16.6442953 26.84564
## result.67 16.9127517 27.11409
## result.68 17.1812081 27.38255
## result.69 17.4496644 27.65101
## result.70 17.7181208 27.91946
## result.71 17.7181208 28.18792
## result.72 17.9865772 28.45638
## result.73 18.2550336 28.72483
## result.74 18.5234899 28.99329
## result.75 18.7919463 29.26174
## result.76 19.0604027 29.53020
## result.77 19.3288591 29.79866
```

```
## result.78 19.5973154 29.79866
## result.79 19.5973154 30.06711
## result.80 19.8657718 30.33557
## result.81 20.1342282 30.60403
## result.82 20.4026846 30.87248
## result.83 20.6711409 31.14094
## result.84 20.9395973 31.40940
## result.85 21.2080537 31.67785
## result.86 21.2080537 31.94631
## result.87 21.4765101 32.21477
## result.88 21.7449664 32.48322
## result.89 22.0134228 32.75168
## result.90 22.2818792 33.02013
## result.91 22.5503356 33.28859
## result.92 22.8187919 33.28859
## result.93 22.8187919 33.55705
## result.94 23.0872483 33.82550
## result.95 23.3557047 34.09396
## result.96 23.6241611 34.36242
## result.97 23.8926174 34.63087
## result.98 24.1610738 34.89933
## result.99 24.4295302 35.16779
## result.100 24.6979866 35.43624
# Extract lower and upper bounds
w.lower <- well conf range[, 1]</pre>
w.upper <- well_conf_range[, 2]</pre>
# Plot observed data
plot(X[, 2], Y, pch = 16, col = "black", xlab = "X", ylab = "Y",
     main = "Well Specified Case", ylim = c(-3,40))
# Fill the confidence region (blue)
polygon(c(x_grid, rev(x_grid)), c(w.lower, rev(w.upper)), col = rgb(0, 0, 1, 0.3), border = NA)
# Fill the region between red dotted lines
polygon(c(cred x grid, rev(cred x grid)), c(w.cred.lower, rev(w.cred.upper)),
        col = rgb(1, 0, 0, 0.2), border = NA)
# Plot smooth upper and lower bounds
lines(x grid, w.lower, col = "blue", lwd = 2)
lines(x_grid, w.upper, col = "blue", lwd = 2)
lines(cred_x_grid, w.cred.lower, col = "red", lwd = 2, lty = 2) # Lower bound line
lines(cred_x_grid, w.cred.upper, col = "red", lwd = 2, lty = 2) # Upper bound line
# Add the least squares line
lm fit \leftarrow lm(Y \sim X[, 2])
abline(lm_fit, col = "darkgreen", lwd = 2)
# Simplified legend with just the two bands
legend("topleft",
      legend = c("Conformal Band", "Credible Band"),
      1ty = c(1, 2),
      1wd = c(2, 2),
```

```
col = c("blue", "red"),
fill = c(rgb(0, 0, 1, 0.3), rgb(1, 0, 0, 0.2)),
border = NA,
bg = "white")
```

Well Specified Case


```
# Function to calculate ESS (Effective Sample Size) from MCMC chains
compute_min_ess <- function(theta) {
    # theta should be a matrix with parameters in rows and samples in columns

if (requireNamespace("coda", quietly = TRUE)) {
    library(coda)
    # Convert to mcmc object (coda expects samples in rows, parameters in columns)
    theta_mcmc <- as.mcmc(t(theta))
    # Calculate ESS for each parameter
    ess_values <- effectiveSize(theta_mcmc)
    # Return the minimum ESS
    return(min(ess_values))
} compute_min_ess(miss.theta)</pre>
```

[1] 7520.873

```
compute_min_ess(well.theta)
```

[1] 822.414

```
# Function to compute and plot ESS with conformal bounds
#usual inputs, select up to 4 alpha values
#mcmc ess is for scaling plot by min(ESS)/T
#linelen is a plotting parameter to select length to wich conformla bound will be extended vertically
plot_ess_with_bounds <- function(Y, X, y_grid, x_new, theta, sigma,
                                 mcmc_ess = NULL,
                                 alpha_values = c(0.1, 0.2),
                                 title, linelen) {
  require(doParallel)
  require(foreach)
  n_grid <- length(y_grid)</pre>
  ess_values <- numeric(n_grid)</pre>
  n_samples <- ncol(theta)</pre>
  # Compute ESS for each value of y in the grid
  for (i in 1:n_grid) {
    y <- y_grid[i]
    # Compute weights (still using log scale for numerical stability)
    log_w <- apply(theta, 2, function(th) dnorm(y, mean = x_new %*% th, sd = sigma, log=TRUE))
    max_log_w <- max(log_w)</pre>
    log_sum_exp <- max_log_w + log(sum(exp(log_w - max_log_w)))</pre>
    normalized_weights <- exp(log_w - log_sum_exp)</pre>
    # Calculate ESS using formula 1/sum(w_i^2) for normalized weights
    ess_values[i] <- 1 / sum(normalized_weights^2)</pre>
  }
  # Scale ESS values
  if (!is.null(mcmc_ess)) {
    ess_values <- ess_values * (mcmc_ess / n_samples)
  # Create plot
  plot(y_grid, ess_values, type="1", lwd=2,
       xlab="y", ylab="Effective Sample Size",
       main=title)
    # Format x_new for conformal_bounds_single_parallel
    conf_x_new_mat <- x_new</pre>
    # Define colors for different alpha values
    alpha_colors <- c("red", "blue", "green", "purple", "orange")[1:length(alpha_values)]
    # Compute and plot bounds for each alpha
    for (i in 1:length(alpha_values)) {
      alpha <- alpha_values[i]</pre>
      # Compute conformal bounds
      conf_bounds <- conformal_bounds_single_parallel(</pre>
       Y = Y, X = X,
```

```
conf_x_new_mat = conf_x_new_mat,
        y_grid = y_grid,
        theta = theta,
        sigma = sigma,
        alpha = alpha
      # Extract lower and upper bounds
      lower_bound <- conf_bounds[1]</pre>
      upper_bound <- conf_bounds[2]</pre>
 # Find y-positions for segments near the ESS curve
    # Find the closest y_grid points to our bounds
    lower_idx <- which.min(abs(y_grid - lower_bound))</pre>
    upper_idx <- which.min(abs(y_grid - upper_bound))</pre>
    # Get the ESS values at these points
    lower_ess <- ess_values[lower_idx]</pre>
    upper_ess <- ess_values[upper_idx]</pre>
    # Add localized vertical line segments near the ESS curve
    segments(
      x0 = lower_bound, y0 = lower_ess-linelen,
     x1 = lower_bound, y1 = lower_ess+linelen, # Extend slightly above the curve
      col = alpha_colors[i], lwd = 2
    )
    segments(
     x0 = upper_bound, y0 = upper_ess-linelen,
     x1 = upper_bound, y1 = upper_ess+linelen, # Extend slightly above the curve
      col = alpha_colors[i], lwd = 2
  }
  # Add legend
  legend("topright",
         legend = paste(" \\alpha =", alpha_values),
         col = alpha_colors,
         lty = 1,
         lwd = 2,
         cex = 0.8)
}
```

```
#y_grid <- seq(-6, 6, length.out=100)
plot_ess_with_bounds(Y, X,y_grid=seq(-100, 125, length.out=100), x_new=x_new_mat[50, , drop=F], theta=</pre>
```

ESS for c=0.01

plot_ess_with_bounds(Y,X, y_grid=seq(-100, 125, length.out=100), x_new=x_new_mat[50, , drop=F], theta=

ESS for c=1.8

