

AFRICAN INSTITUTE FOR MATHEMATICAL SCIENCES MBOUR, SENEGAL

Academic Session 2015/2016

Topology-Functional Analysis: Tutorial-Set I

Instructor: Pr. N. Djitte [Gaston Berger university, Saint Louis, Senegal].

Ex. 1 Is the collection

$$\mathcal{T}_{\infty} = \{U \mid X - U \text{ is infinite or empty or all } X\}$$

a topology on X?

- **Ex. 2** 1. If $\{\mathcal{T}_{\alpha}\}$ is a family of topologies on X, show that $\bigcap \mathcal{T}_{\alpha}$ is a topology on X. Is $\bigcup \mathcal{T}_{\alpha}$ a topology on X?
 - 2. Let $\{\mathcal{T}_{\alpha}\}$ be a family of topologies on X. Show that there is a unique smallest topology on X containing all the collection \mathcal{T}_{α} , and a unique largest topology contained in all \mathcal{T}_{α}
 - 3. If $X = \{a, b, c\}$, let

$$\mathcal{T}_1 = \{\emptyset, X, \{a\}, \{a, b\}\} \text{ and } \mathcal{T}_2 = \{\emptyset, X, \{a\}, \{b, c\}\}.$$

Find the smallest topology containing \mathcal{T}_1 and \mathcal{T}_2 and the largest topology contained in \mathcal{T}_1 and \mathcal{T}_2 .

- Ex. 3 Show that if \mathcal{A} is a basis for a topology on X, then the topology generated by \mathcal{A} is the smallest topology containing \mathcal{A} .
- Ex. 4 Show that the countable collection

$$\mathcal{B} = \{(a,b) \mid a < b, \ a,b \in \mathbb{Q}\}$$

is a basis that generates the standard topology on \mathbb{R} .

- **Ex. 5** Let X be a topological space. Let A be a subset of X. Suppose that for each $x \in A$, there exists an open set U such that $x \in U \subset A$. Show that A is open in X.
- **Ex. 6** In the spaces on real line obtained by giving it the indiscrete topology, the discrete topology, the usual metric topology, and the finite-complement topology, what is \bar{A} if

- 1. A = (0,1]
- 2. A = [0, 1]
- 3. A = (0,1)

Ex. 7 Let A, B and A_{α} denote subsets of a space X. Prove the following:

- 1. If $A \subset B$, then $\bar{A} \subset \bar{B}$.
- 2. $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- 3. $\overline{\bigcup A_{\alpha}} \supset \bigcup \overline{A_{\alpha}}$; give an example where equality fails.

Ex. 8 Let A, B and A_{α} denote subsets of a space X. Determine whether the following equations hold; if an equality fails, determine whether one of the inclusion \supset or \subset holds.

- 1. $\overline{A \cap B} = \overline{A} \cap \overline{B}$.
- 2. $\overline{\bigcap A_{\alpha}} = \bigcap \bar{A}_{\alpha}$
- 3. $\overline{A-B} = \overline{A} \overline{B}$.

Ex. 9 Show that if A is closed in X and if B is closed in Y, then $A \times B$ is closed in $X \times Y$.

Ex. 10 Let $A \subset X$ and $B \subset Y$. Show that in the product topology on $X \times Y$, $\overline{A \times B} = \overline{A} \times \overline{B}$.

Ex. 11 Show that X is Hausdorff if and only if the **diagonal** $\Delta = \{(x, x) \mid x \in X\}$ is closed in $X \times X$.

Ex. 12 In the finite complement topology on \mathbb{R} , to what point or points does the sequence $x_n = 1/n$ converge?

Ex. 13 If $A \subset X$, we define the **boundary** of A, ∂A or Bd A by :

$$\partial A = \overline{A} \cap \overline{X - A}.$$

Show that

- 1. \mathring{A} and ∂A are disjoint, and $\bar{A} = \mathring{A} \cup \partial A$.
- 2. $\partial A = \emptyset$ if and only if A is both open and closed.
- 3. U is open if and only if $\partial U = \bar{U} U$.

 $\mathbf{Ex.}\ \mathbf{14}$ Find the boundary and the interior of each of the following subsets of \mathbb{R}^2 :

- 1. $A = \{(x, y) \mid y = 0\}.$
- 2. $B = \{(x, y) \mid x > 0 \text{ and } y \neq 0\}.$
- 3 $C = A \cup B$
- 4. $D = \{(x, x) \mid x \text{ is rational}\}.$

Ex. 15

1. A topological space X satisfies the first separation axiom T_1 if each one of any two points of X has a neighborhood that does not contain the other point. More formally: $\forall x,y \in X, x \neq y \ \exists U_y \in N(y): x \notin U_y$.

- (a) Show that X satisfies T_1 if and only if all one-point sets in X are closed.
- (b) Show that X satisfies T_1 if and only if every point is the intersection of all of its neighborhoods.
- (c) Show that any Hausdorff space is T_1 .
- (d) Find an example showing that the T_1 -axiom does not imply the hausdorff axiom.
- 2. topological space X satisfies the Kolmogorov axiom T_0 if at least one of any two distinct points of X has a neighborhood that does not contain the other point.
- (a) Show that X satisfies T_0 if and only if any two different points of X has different closures.
- (b) Show that if X is T_1 then X is T_0 . Find an example showing that the T_0 -axiom does not imply the T_1 -axiom.

CONVINCE YOUR SELF

△ THE PEDAGOGICAL TEAM