THE FRÖLICHER SPECTRAL SEQUENCE AND THE ∂∂ LEMMA

JEFFREY JIANG

For any complex manifold X, we have the Frölicher spectral sequence, which computes the de Rham cohomology of a complex manifold in terms of the $\bar{\partial}$ and $\bar{\partial}$ cohomology. On the E_0 page, it is given by the Dolbeault cohomology of the bundles $\Omega^{p,0}$, i.e. the item in the (p,q) position is the bundle $\Omega^{p,q}$ of (p,q) forms, and the differential on E_0 is just $\bar{\partial}$. For example, a small section of the E_0 page would be:

Then in the E_1 page, we have $E_1^{p,q}$ is the cohomology in the (p,q) slot in the E_0 page, which is just $H^{p,q}(X)$ (abbreviated to $H^{p,q}$) by Hodge theory in the compact case. The differentials going from left to right are the operators ∂ , which descends to cohomology because $\partial \bar{\partial} = -\bar{\partial} \partial$. A small section of the E_1 page would be:

For a general compact complex manifold X, this continues to the E_2 page, where the differential "rotates," and the (p,q) slot is the cohomology in the (p,q) slot of the E_1 page. The big theorem we want to prove is:

Theorem 1.1. For a compact Kähler manifold X, the Frölicher spectral sequence degenerates at the E_1 page, i.e. all the differentials are 0.

In other words, we can terminate our spectral sequence computations at E_1 . Going to the E_1 page is easy, since all the computations are done with the operators ∂ and $\bar{\partial}$. In practice, continuing on to further pages is difficult. The entire spectral sequence story seems very difficult (and it is), but in the compact Kähler story, it reduces to a simple lemma.

Theorem 1.2 (*The* $\partial \overline{\partial}$ *lemma*). Let X be a Kähler manifold, and η a complex k-form that is ∂ and $\overline{\partial}$ -closed. Then if η is d, ∂ , or $\overline{\partial}$ -exact, there exists a form ξ such that $\eta = \partial \overline{\partial} \xi$.

The proof of this lemma requires the following results from Hodge Theory:

Theorem 1.3 (*Comparison of the Laplacians*). Let X be a compact Kähler manifold. Then

$$\Delta = 2\Delta_{\partial} = 2\Delta_{\overline{\partial}}$$

where Δ , Δ_{∂} , and $\Delta_{\overline{\partial}}$ are the Laplacians

$$\Delta = dd^* + d^*d$$

$$\Delta_{\partial} = \partial \partial^* + \partial^* \partial$$

$$\Delta_{\overline{\partial}} = \overline{\partial} \overline{\partial}^* + \overline{\partial}^* \overline{\partial}$$

The proof of this theorem requires certain commutation relations to hold, called the *Kähler identities*. This identity is not true in general for an arbitrary compact complex manifold. The other result we need is

Theorem 1.4 (*The Hodge Decomposition*). Any complex valued form $\alpha \in \Omega^{p,q}$ can be written as

$$\alpha = \beta + \Delta \gamma$$

where β is harmonic, i.e. $\Delta\beta = 0$.

This theorem is true for general compact complex manifolds, not just Kähler manifolds.

Proof of the $\partial \overline{\partial}$ *lemma*. The proof for all three cases is much the same, so we do just the one where $\eta = \overline{\partial} \alpha$ is $\overline{\partial}$ -exact. By the Hodge decomposition, we write $\alpha = \beta + \Delta \gamma$, with β harmonic. Since $\Delta = 2\Delta_{\overline{\partial}}$, and β is $\Delta_{\overline{\partial}}$ -harmonic if and only if $\overline{\partial}\beta = \overline{\partial}^*\beta = 0$, we have that $\overline{\partial}\beta = 0$. Then using Lemma 7.8, we compute

$$\begin{split} \eta &= \overline{\partial} \alpha \\ &= \overline{\partial} (\beta + \Delta \gamma) \\ &= \overline{\partial} \beta + 2 \overline{\partial} (\Delta_{\partial} \gamma) \\ &= 0 + 2 \overline{\partial} (\partial \partial^* \gamma + \partial^* \partial \gamma) \\ &= 2 \overline{\partial} \partial \partial^* \gamma - 2 \partial^* \overline{\partial} \partial \gamma \\ &= -2 \partial \overline{\partial} \partial^* \gamma - 2 \partial^* \overline{\partial} \partial \gamma \end{split}$$

Then since η is ∂ -closed, we have that $\partial^* \bar{\partial} \partial \gamma$ must also be ∂ -closed. By orthogonality of the image of ∂^* with the kernel of ∂ , we have that $\partial^* \bar{\partial} \partial \gamma = 0$, so $\eta = -2 \partial \bar{\partial} \partial^* \gamma = 2 \bar{\partial} \partial \partial^* \gamma$, so letting $\xi = \partial^* \gamma$, we are done.

We now use this to prove Theorem 1.1.

Proof of 1.1. We want to show that all the differentials on the E_1 page are 0, i.e. for a cohomology class $[\alpha] \in H^{p,q}$, $[\partial \alpha] = 0$. Since $[\alpha]$ is a Dolbeault cohomology class, we know that α is $\bar{\partial}$ -closed. Therefore, $\partial \alpha$ is both $\bar{\partial}$ and $\bar{\partial}$ closed, since $\bar{\partial}$ and $\bar{\partial}$ anticommute. Then by the $\bar{\partial}\bar{\partial}$ lemma, we have that $\bar{\partial}\alpha = \bar{\partial}\bar{\partial}\eta$ for some η . Therefore, using the fact that $\bar{\partial}$ and $\bar{\partial}$ commute one final time, we find that $\bar{\partial}\alpha$ is $\bar{\partial}$ -exact, i.e. $[\bar{\partial}\alpha] = 0$