MA-102 B. Tech. II Sem (2021-2022)

Tutorial sheet-03

- 1. (i) Check the linear dependence or linear independence of the following sets in respective real vector spaces
 - (a) (a) $\{e^x, e^{2x}\}$ in $\mathcal{C}^{\infty}(\mathbb{R})$.

Solution-

Let $a, b \in \mathbb{R}$ s.t $ae^x + be^{2x} = 0$

Put x = 0, x = 1 in above equation we get

$$a + b = 0$$
 i.e. $b = -a$

and $ae + be^2 = 0$

Put b = -a in last equation we get $ae - ae^2 = 0$.

i.e.
$$a(e-e^2) = 0 \Rightarrow a = 0$$
 Since $e \neq e^2$.

Finally we get a = 0, b = 0

 \Rightarrow Given set is linearly independent.

(b) $\{x, |x|\}$ in C[-1, 1].

Solution-

Let $a, b \in \mathbb{R}$ s.t. ax + b|x| = 0

(i) if $x \in [-1,0]$ then y = -x where $y \in \mathbb{N}$

Above equation becomes

$$-ay + by = 0,$$
$$(a - b)y = 0 \Rightarrow a = b$$

(ii) if $x \in [0, 1]$ then above equation becomes ax + bx = 0

i.e.
$$(a+b)x = 0 \Rightarrow a = -b$$

From both cases we have a = b and a = -b

$$\Rightarrow a = b = 0$$

 \Rightarrow Given set is linearly independent.

(c) $\left\{ \left(\frac{1}{2}, \frac{1}{3}, 1\right), (-3, 1, 0), (1, 2, -3) \right\}$ in \mathbb{R}^3 .

Solution-

Let $a, b, c \in \mathbb{R}$. s.t.

$$a\left(\frac{1}{2}, \frac{1}{3}, 1\right) + b(-3, 1, 0) + c(1, 2, -3) = 0 = (0, 0, 0)$$

$$\left(\frac{a}{2} - 3b + c, \frac{a}{3} + b + 2c, a - 3c\right) = 0.$$

$$\Rightarrow \frac{a}{2} - 3b + c = 0 \text{ i.e. } a - 6b + 2c = 0.$$

$$\Rightarrow \frac{a}{2} - 3b + c = 0$$
 i.e. $a - 6b + 2c = 0$

$$\frac{a}{3} + b + 2c = 0 \text{ i.e. } a + 3b + 6c = 0$$
 & $a - 3c = 0$.

put $a = 3c$ in above both equations we get $-6b + 5c = 0$ and $3b + 9c = 0$

$$\Rightarrow b = \frac{5}{6}c \text{ put this value in last equation we get}$$

$$3 \cdot \frac{5}{6}c + 9c = 0 \Rightarrow \frac{23}{2}c = 0 \Rightarrow c = 0$$

$$\Rightarrow b = 0. \& a = 0.$$

$$\Rightarrow \text{ Given set is L.I.}$$

(d)
$$\{(1,1,1,0),(3,2,2,1),(1,1,3,-2),(1,2,6,-5)\}$$
 in \mathbb{R}^4 . Solution-

Let a, b, c, d in \mathbb{R} s.t. a(1, 1, 1, 0) + b(3, 2, 2, 1) + c(1, 1, 3, -2) + d(1, 2, 6, -5) = 0

(
$$a + 3b + c + d$$
, $a + 2b + c + 2d$, $a + 2b + 3c + dd$, $b - 2c - 5d$) = 0. We have

$$a + 3b + c + d = 0$$

$$a + 2b + c + 2d = 0$$

$$a + 2b + 3c + 6d = 0$$

$$b - 2c - 5d = 0$$

Above system of linear equations can be written as

$$\begin{bmatrix} 1 & 3 & 1 & 1 \\ 1 & 2 & 1 & 2 \\ 1 & 2 & 3 & 6 \\ 0 & 1 & -2 & -5 \end{bmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

We will solve it by Gauss Ellimination method. The augmented matrix can be written as

$$\left[\begin{array}{cccc|cccc}
1 & 3 & 1 & 1 & 0 \\
1 & 2 & 1 & 2 & 0 \\
1 & 2 & 3 & 6 & 0 \\
0 & 1 & -2 & -5 & 0
\end{array}\right]$$

Apply
$$R_2 \to R_2 - R_1$$
, $R_3 \to R_3 - R_1$ we get

$$\left[\begin{array}{cccc|cccc}
1 & 3 & 1 & 1 & 0 \\
0 & -1 & 0 & 1 & 0 \\
0 & -1 & 2 & 5 & 0 \\
0 & 1 & -2 & -5 & 0
\end{array}\right]$$

Again apply $R_3 \longrightarrow R_3 - R_2$ and $R_4 \longrightarrow R_4 + R_3$

$$\left[\begin{array}{ccc|cccc}
1 & 3 & 1 & 1 & 0 \\
0 & -1 & 0 & 1 & 0 \\
0 & 0 & 2 & 4 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]$$

Above augmented matrix can be written as

$$a + 3b + c + d = 0$$

$$-b+d=0 \Rightarrow b=d.$$

$$2c + 4d = 0 \quad \Rightarrow \quad c = -2d.$$

$$\Rightarrow a + 3d - 2d + d = 0 \Rightarrow a = -2d.$$

 \Rightarrow The value of $a, b \ \& \ c$ is depend on $d. \ \& \ d$ is arbitrary real number.

 \Rightarrow Given set is not linearly independent.

(e)
$$\{(x, x^3 - x, x^4 + x^2, x + x^2 + x^4 + \frac{1}{2}\}$$
 in \mathcal{P}_4 . Solution-

Let $a, b, c, d \in \mathbb{R}$ s.t.

$$ax + b(x^{3} - x) + c(x^{4} + x^{2}) + d(x + x^{2} + x^{4} + \frac{1}{2}) = 0.$$

$$(a - b + d)x + (c + d)x^{2} + bx^{3} + (c + d)x^{4} + \frac{d}{2} = 0$$

$$\frac{d}{2} + (a - b + d)x + (c + d)x^{2} + bx^{3} + (c + d)x^{4} = 0.$$

$$\Rightarrow \frac{d}{2} = 0 \Rightarrow d = 0.$$

$$a - b + d = 0.$$

$$c + d = 0.$$

$$b = 0 \Rightarrow a = 0, c = 0$$

$$\Rightarrow a = b = c = d = 0$$

 \Rightarrow Given set is L.I.

1(ii) Show that the set $S = \{\sin x, \sin 2x, \dots, \sin nx\}$ is a LI subset of $\mathcal{C}[-\pi, \pi]$ for every positive integer n.

Solution-

Let $a_1, a_2, a_3, a_4, \dots a_n \in \mathbb{R}$ s.t.

$$a_1 \sin x + a_2 \sin 2x + \dots + a_n \sin nx = 0$$

we can write it as $\sum_{i=1}^{n} a_i \sin ix = 0...(1)$

As we know identity $\int_{-\pi}^{\pi} \sin mx \cdot \sin nx dx = \begin{cases} 0 & m \neq n \\ \pi & m = n \end{cases}$

Multiply $\sin kx$ in equation (1) we get.

$$\sum_{i=1}^{m} a_i \sin kx \cdot \sin ix = 0$$

Integrate both side from $-\pi$ to π we get

$$\sum_{i=1}^{n} a_i \int_{-\pi}^{\pi} \sin kx \cdot \sin ix dx = 0$$

we get $a_k \pi = 0 \Rightarrow a_k = 0$, where $1 \le k \le n \Rightarrow a_1 = a_2 = \cdots = a_n = 0$ \Rightarrow The set $S = \{\sin x, \sin 2x, \cdots, \sin nx\}$ is a LI subset of $\mathcal{C}[-\pi, \pi]$ for every positive integer n.

2. (i) If u, v, w are LI vectors of a vector space V, then prove that u + v, v + w, and w + u are also LI.

Solution:

To prove that u + v, v + w, w + u are L.I.

Let for scalars c_1, c_2, c_3

$$c_1 \cdot (u+v) + c_2 \cdot (v+w) + c_3 \cdot (w+u) = 0.$$

 $\Rightarrow (c_1 + c_3) \cdot u + (c_1 + c_2) \cdot v + (c_2 + c_3) \cdot w = 0.$

Since u, v, w are L.I, So we have

$$c_1 + c_3 = 0....(1)$$

$$c_1 + c_2 = 0....(2)$$

$$c_2 + c_3 = 0....(3)$$

Adding (1), (2), (3) we get, $c_1 + c_2 + c_3 = 0...$ (4).

Subtracting (1), (2), (3) from (4) we get, $c_2 = 0$, $c_3 = 0$, $c_1 = 0$ respectively.

- \therefore u+v, v+w and w+u are L.I.
- (ii) Let S_1 and S_2 be subsets of a vector space V such that $S_1 \subset S_2$. Then prove that
- (a) S_1 is LD $\Longrightarrow S_2$ is LD.
- (b) S_2 is LI $\Longrightarrow S_1$ is LI.

Solution:(a)

Let S_1 be LD.Then there is a finite subset P of S_1 which is LD.Now,

 $S_1 \subset S_2$ and $P \subset S_1 \Longrightarrow P \subset S_2$ and P being a finite subset of S_2 and since P is LD so, S_2 is also LD.

Solution:(b)

Let t_i (i=1,2,...,n) be vectors in S_1 such that $a_1t_1+a_2t_2+...+a_nt_n=0$ for scalars $a_i(i=1,2,...,n)$.Now $t_i\subset S_1$ for all i=1,2,...,n and $S_1\subset S_2\Longrightarrow t_i\subset S_2$ for all $i=1,2,\cdots,n$.Now S_2 is LI and thus $a_1t_1+a_2t_2+...+a_nt_n=0$ for scalars $a_i(i=1,2,\cdots,n)$ gives $a_i=0$ for all $i=1,2,\cdots,n$. There fore S_1 is LI.

(iii)Let S be LI subset of a vector space V.Let $v \in L[S].Then \ \{v\} \cup S \ is \ LD.$

Solution:

Since $v \in L[S]$, $v = a_1t_1 + a_2t_2 + \ldots + a_nt_n$ for scalars $a_i(i = 1, 2, ..., n)$ not all zero and vectors $t_i \in S$ (i = 1, 2, ..., n) which gives $v - a_1t_1 - a_2t_2 - \ldots - a_nt_n = 0$ for scalars $1, -a_i(i = 1, 2, ..., n)$ not all zero. This gives $\{v, t_1, t_2, ..., t_n\}$ is LD, which is a subset of $\{v\} \cup S$. Hence $\{v\} \cup S$ is LD(by using (a)).

(iv)Let S be LI subset of a vector space V.Let $v \notin L[S]$.Then $\{v\} \cup S$ is LI.

Solution:

Let $A := \{t_1, t_2, \dots, t_n\}$ be any finite subset of $\{v\} \cup S$. Then there

are two possible cases.

Case(i) $v \notin A$. Then $A \subset S$. S being LI, A is LI.(by using (b))

Case(ii) $v \in A$. without loss of generality, let $v = t_1$.

Let
$$c_1 \cdot v + c_2 \cdot t_2 + \dots + c_n \cdot t_n = 0$$
 for Scalars $c_i (1 \le i \le n) \dots (1)$

Let
$$c_1 \neq 0$$
. Then $v = -c_1^{-1}c_2t_2 - \dots - c_1^{-1}c_nt_n$

So $v \in L[s]$, a contradiction.

Hence we must have $c_1 = 0$.

So (1) becomes, $c_2 \cdot t_2 + \dots + c_n \cdot t_n = 0 \dots (2)$

S being $LI, \{t_2, \ldots, t_n\}$ is L.I.

Hence (2) gives, $c_i = 0 \quad (2 \le i \le n)$.

Then Combining all we get, $c_i = 0 \quad \forall 1 \leq i \leq n$. Hence A is LI.

So in both Cases, A is LI. Thus any finite subset of $\{v\} \cup S$ is LI. Hence $\{v\} \cup S$ is LI.

3. (i) In a vector space V, If a **ordered** set $S = \{v_1, v_2, v_3, ..., v_n\}$ is LD with $v_1 \neq 0$ then prove that \exists a vector v_k , $0 \leq k \leq n$ such that $v_k \in L[\{v_1, v_2, ..., v_{k-1}\}]$.

Solution:

Given that set $S = \{v_1, v_2, v_3, ..., v_n\}$ is LD with $v_1 \neq 0$. Then there exist $a_1, a_2, a_3, ..., a_n$ such that $a_i \neq 0$ for some $i \in \{1, 2, ..., n\}$. Let k be the largest index such that $a_k \neq 0$ then

$$a_1v_1 + a_2v_2 + \ldots + a_kv_k = 0$$

$$\Rightarrow v_k = -(a_k^{-1}a_1v_1 + a_k^{-1}a_2v_2 \dots a_k^{-1}a_{k-1}v_{k-1})$$

$$\Rightarrow v_k \in L[\{v_1, v_2, \dots, v_{k-1}\}]$$

(ii) In a vector space V, If a set $S = \{v_1, v_2, v_3, ..., v_n\}$ is LI and $S_1 = \{w_1, w_2, ..., w_m\}$ generates the space V then prove that $n \leq m$.

Solution:

Since $\{w_1, \ldots w_m\}$ spans V, every v_i is a linear combination of $\{w_1, \ldots, w_m\}$. So there are real numbers c_{ij} such that

$$v_1 = c_{11}w_1 + c_{12}w_2 + \dots + c_{1m}w_m$$
$$v_2 = c_{21}w_1 + c_{22}w_2 + \dots + c_{2m}w_m$$
$$v_n = c_{n1}w_1 + c_{n2}w_2 + \dots + c_{nm}w_m$$

Suppose m < n then the following system of homogeous equations has a non trivial solution:

$$c_{11}x_1 + c_{21}x_2 + \dots + c_{n1}x_n = 0$$

$$c_{12}x_1 + c_{22}x_2 + \dots + c_{n2}x_n = 0$$

$$\dots \dots$$

$$c_{1m}x_1 + c_{2m}x_2 + \dots + c_{nm}x_n = 0$$

since there are more variables and less equations. Let $x_1=r_1,\dots,x_n=r_n$ be a nontrivial solution. Then

$$r_1v_1 + \dots + r_nv_n =$$

$$r_1c_{11}w_1 + r_1c_{12}w_2 + \dots + r_1c_{1m}w_m +$$

$$r_2c_{21}w_1 + r_2c_{22}w_2 + \dots + r_2c_{2m}w_m +$$

$$r_nc_{n1}w_1 + r_nc_{n2}w_2 + \dots + r_nc_{nm}w_m =$$

$$(c_{11}r_1 + c_{21}r_2 + \dots + c_{n1}r_n)w_1 +$$

$$(c_{12}r_1 + c_{22}r_2 + \dots + c_{n2}r_n)w_2 +$$

$$(c_{1m}r_1 + c_{2m}r_2 + \dots + c_{nm}r_n)w_m =$$

$$= 0$$

This contradicts the linear independence of the set $\{v_1, \ldots, v_n\}$, so $n \leq m$

4. Determine whether the following sets are bases for given vector spaces V over field F

THEOREM: Let V be a vector space of finite dimension n. Then:

- (a) Any n+1 or more vectors in V are linearly dependent.
- (b) Any linearly independent set $S = \{u_1, u_2, \dots u_n\}$ with n elements is a basis of V.
- (c) Any spanning set $T = \{v_1, v_2, \dots v_n\}$ of V with n elements is a basis of V.
- (i) $\{(2,4,0),(0,2,-2)\};\ V=\mathbb{R}^3$ and $F=\mathbb{R}$. Here, $\dim(V)=3$ but the given set has only two elements which means it cannot form bases elements of V.
- (ii) $\{(6,4,4),(-2,4,2),(0,7,0)\};\ V=\mathbb{R}^3 \text{ and } F=\mathbb{R}.$ Let $a,b,c\in\mathbb{R}$ such that

$$a(6,4,4) + b(-2,4,2) + c(0,7,0) = (0,0,0)$$

$$\implies (6a - 2b, 4a + 4c + 7c, 4a + 2b) = (0,0,0)$$

$$6a - 2b = 0$$

$$4a + 4c + 7c = 0$$

$$4a + 2b = 0$$

Solving above three equation, we get,

$$a = 0, b = 0, c = 0.$$

Thus, the given set of 3 vectors are linearly independent (L.I.). Hence, it forms basis for $V = \mathbb{R}^3$.

(iii)
$$\left\{ \begin{pmatrix} -1 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ -1 & -1 \end{pmatrix} \right\}; V = M_{2\times 2} \text{ and } F = \mathbb{R}.$$

Let $a, b, c, d \in \mathbb{R}$ such that

$$a \begin{pmatrix} -1 & -1 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 0 \\ 2 & 2 \end{pmatrix} c \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + d \begin{pmatrix} 0 & -1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$
$$\begin{pmatrix} a+c & -a-d \\ 2b-d & 2b+c \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Comparing elements in ij^{th} positions, we get

$$a + c = 0,$$

$$-a - d = 0,$$

$$2b - d = 0,$$

$$2b + c = 0,$$

solving above equation, we get

$$a = b = c = d = 0.$$

Thus, given set has L.I. elements and it forms basis for vector space $V = M_{2\times 2}$.

(iv)
$$\{1, x - 2, (x - 2)^2, (x - 2)^3\}$$
; $V = P_3$ and $F = \mathbb{R}$.
Let $a, b, c, d \in \mathbb{R}$ such that

$$a.1 + b.(x - 2) + c.(x - 2)^{2} + d.(x - 2)^{3} = 0,$$

$$\implies a + b(x - 2) + c(x^{2} - 4x + 4) + d(x^{3} - 6x^{2} + 12x - 8) = 0,$$

comparing the coefficients and solve it, we get

$$a - 2b + 4c - 8d = 0, \implies a = 0$$

$$b - 4c + 12d = 0, \implies b = 0$$

$$c - 4d = 0, \implies c = 0$$

$$-8d = 0, \implies d = 0$$

Since, vector space V contains polynomials with degree ≤ 3 and dim(V)=4. Here, the elements in given set are L.I. and also forms the basis for V.

(v)
$$\{x-1, x^2+x-1, x^2-x+1\}$$
; $V = P_2$ and $F = \mathbb{R}$.
Let $a, b, c \in \mathbb{R}$ such that

$$a(x-1) + b(x^2 + x - 1) + c(x^2 - x + 1) = 0,$$

 $\implies -a - b + c = 0$
 $a + b - c = 0$
 $b + c = 0$

Solve all three equation using Gauss elimination method,

$$\begin{pmatrix} -1 & -1 & 1 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Since, it has zero rows so the corresponding system will have non-trivial solutions. Thus, elements in the given set are L.D. Therefore, given set does not forms basis for $V = P_2$.

(vi)
$$\{(1, i, 1+i), (1, i, 1-i), (i, -i, 1)\}; V = \mathbb{C}^3 \text{ and } F = \mathbb{C}.$$

Let $a, b, c \in \mathbb{C}$ such that

$$a(1, i, 1+i) + b(1, i, 1-i) + c(i, -i, 1) = 0,$$

To find the value of a, b & c by using Gauss elimination method, we get

$$\begin{pmatrix} 1 & i & 1+i \\ 1 & i & 1-i \\ i & -i & 1 \end{pmatrix} \to \begin{pmatrix} 1 & i & 1+i \\ 0 & 0 & -2i \\ 0 & -1-i & 2-i \end{pmatrix} \to \begin{pmatrix} 1 & i & 1+i \\ 0 & -1-i & 2-i \\ 0 & 0 & -2i \end{pmatrix}$$

Thus,

$$a + ib + (1 + i)c = 0$$
$$(-1 - i)b + (2 - i)c = 0$$
$$-2ic = 0$$

$$\implies a = b = c = 0.$$

Thus, the elements in the given sets are L.I. and forms basis for V.

6. Find a basis for the plane P: x - 2y + 3z = 0 in \mathbb{R}^3 . Find a basis for the intersection of P with the xy-plane. Also, find a basis for the space of vectors perpendicular to the plane P.

Solution:

Let us write our plane P as set

$$P = \{(a, b, c) \in \mathbb{R}^3 \mid a - 2b + 3c = 0\}$$

in P, we can write a - 2b + 3c = 0 as a = 2b - 3c. So a general element $(a, b, c) \in P$ can be written as

$$(2b - 3c, b, c) = (2b, b, 0) + (-3c, 0, c)$$
$$= b(2, 1, 0) + c(-3, 0, 1)$$

Since $b, c \in \mathbb{R}$, so any element $(a, b, c) \in P$ can be written as an element of $L[\{(2, 1, 0), (-3, 0, 1)\}]$ and vice versa, so

$$P = L[\{(2,1,0), (-3,0,1)\}]$$

Now we show that set $\{(2,1,0),(-3,0,1)\}$ is linearly independent. Let $a_1,a_2 \in \mathbb{R}$ such that

$$a_1(2,1,0) + a_2(-3,0,1) = (0,0,0)$$

or, $(2a_1 - 3a_2, a_1, a_2) = (0,0,0)$

which implies $a_1 = a_2 = 0$, so $\{(2, 1, 0), (-3, 0, 1)\}$ is linearly independent and spans P.

That means set $\{(2,1,0),(-3,0,1)\}$ is a basis of plane P.

Now let us consider

(Plane P)
$$P = \{(x, y, z) \in \mathbb{R}^3 \mid x - 2y + 3z = 0\}$$

 $(xy - plane)$ $Q = \{(x, y, z) \in \mathbb{R}^3 \mid z = 0\}$
 $P \cap Q = \{(x, y, z) \in \mathbb{R}^3 \mid x - 2y + 3z = 0 \text{ and } z = 0\}$

We can see that intersection of above two planes is nothing but the line x = 2y in xy-plane passing through origin.

Let us take $(a, b, 0) \in P \cap Q$, and since a = 2b, we have

$$(a, b, 0) = (2b, b, 0) = b(2, 1, 0)$$

Since $b \in \mathbb{R}$, so $P \cap Q = L[\{(2,1,0)\}]$ by previous argument and a singleton set with nonzero element is always linearly independent.

So basis of $P \cap Q$ is $\{(2,1,0)\}$.

As we know direction ratios of vectors perpendicular to plane P are <1,-2,3> .

Since plane P contains (0,0,0) so we can write equation of line L perpendicular to plane P and passing through origin, that is,

$$L: \frac{x-0}{1} = \frac{y-0}{-2} = \frac{z-0}{3}.$$

Let us write elements of line L in parametric form as

$$\frac{x-0}{1} = \frac{y-0}{-2} = \frac{z-0}{3} = t$$

$$x = t, \ y = -2t, \ z = 3t$$

Where $t \in \mathbb{R}$, so

$$L = \{(t, -2t, 3t) \in \mathbb{R}^3\}$$
$$= \{t(1, -2, 3) \mid t \in \mathbb{R}\}$$

Now by earlier arguments it is easy to see that $\{(1, -2, 3)\}$ is basis of L.

7(i). Let S = $\{(4,5,6),(a,2,4),(4,3,2)\}$ be a set in \mathbb{R}^3 . Find the values for a such that $L[S] \neq \mathbb{R}^3$.

Solution: If the vectors of S are linearly dependent then $L[S] \neq \mathbb{R}^3$. Therefore, we need check the coefficient matrix

$$[A] = \begin{bmatrix} 4 & a & 4 \\ 5 & 2 & 3 \\ 6 & 4 & 2 \end{bmatrix}$$

If A is singular then $L[S] \neq \mathbb{R}^3$. Therefore,

$$\begin{vmatrix} 4 & a & 4 \\ 5 & 2 & 3 \\ 6 & 4 & 2 \end{vmatrix} = 0$$

$$4(4-12) - a(10-18) + 4(20-12) = 0$$

$$a = 0$$

Therefore, $L[S] \neq \mathbb{R}^3$ if a = 0.

7 (ii). For what values of k vectors $S=\{(k+1,-k,k),(2k,2k-1,k+2),(-2k,k,-k)\}$ form a basis of \mathbb{R}^3 .

Solution: Similarly as above if S is a can not be a basis if S is linearly dependent.

Now, S is linearly dependent if the coefficient matrix A is singular. The coefficient matrix is

$$[A] = \begin{bmatrix} k+1 & 2k & -2k \\ -k & 2k-1 & k \\ k & k+2 & -k \end{bmatrix}$$

If det(A) = 0 then A is singular. Therefore,

$$\begin{vmatrix} k+1 & 2k & -2k \\ -k & 2k-1 & k \\ k & k+2 & -k \end{vmatrix} = 0$$

$$\begin{vmatrix} k+1 & 0 & -2k \\ -k & 3k-1 & k \\ k & 2 & -k \end{vmatrix} = 0$$

$$\begin{vmatrix} k+1 & 0 & -2k \\ -k & 3k-1 & k \\ 0 & 3k+1 & 0 \end{vmatrix} = 0$$

$$-(3k+1)(k-k^2) = 0$$

$$k = 0, 1, -\frac{1}{3}$$

Therefore S is a basis if $k \neq \{0,1,-\frac{1}{3}\}$