Rafael Lychowski

MAPA CONCEITUAL DA DISCIPLINA

PRIMEIRO DIA

SEGUNDO DIA

MANHÃ

- Revisão Modelagem Preditiva
- Estudo de Caso

SVM

- Estudo de Caso
- Redes Neurais
- Estudo de Caso

TARDE

- Combinação
- Estudo de Caso

- Algoritmos Genéticos
- Estudo de Caso
- Trabalho Final

MAPA CONCEITUAL DA DISCIPLINA

PRIMEIRO DIA

- Revisão Modelagem Preditiva
- Estudo de Caso

TERCEIRO DIA

- SVM
- Estudo de Caso
- Redes Neurais
- Estudo de Caso

SEGUNDO DIA

Combinação

Estudo de Caso

QUARTO DIA

- Algoritmos Genéticos
- Estudo de Caso

QUINTO DIA

Trabalho Final

CRISP – **DM** (Cross Industry Standard Process for Data Mining)

Método	Sub Método	Objetivo	Caso de Uso	Algoritmos
Supervisionados Para cada conjunto de entrada existe um valor alvo correspondente	Regressão	Estimar uma variável continua. Forecast, Time series	 Forecast da demanda de compras Predição da quantidade de chuva 	Linear RegressionNeural networksDecision trees
	Classificação	Estimar uma variável discreta	Prever a quebra de equipamentosRisco de crédito	 Logistic Regression SVMs Neural Networks Decision Trees
Não Supervisionados Encontrar as relações entre diferentes entradas	Clustering	Identificar objetos similares	 Segmentação de clientes (marketing) Análise de Redes Sociais 	K-MeansDBSCANHDBSCANHierarchical Clustering
sem uma variável alvo definada	Redução de Dimensionalidade	Reduzir a complexidade dos dados	 Sistemas de Recomendação (Netflix, Amazon) Processamento de Linguagens Naturais 	 PCA, SVD, ALS Latent dirichlet allocation t-SNE, MDS

Regressão Linear

$$Y = \beta_0 + \beta_1 X + \epsilon.$$

Regressão Linear

- 1. Existe alguma relação entre a variável de input e de output?
- 2. O quão essa relação é forte?
- 3. Qual variável contribui mais? (importância)
- 4. Com qual acurácia podemos estimar o efeito de cada variável de input na variável de output ?
- 5. Com qual acurácia podemos estimar a variável de output ?
- 6. A relação das variáveis é linear?
- 7. Existe sinergia entre as variáveis de input?

Regressão Linear

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

E se tivermos várias features?

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Revisão

Bias x Variance

High bias (underfit)

- Adicionar variáveis (features)
- Aumentar complexidade do modelo

- Adicionar mais dados (base de treino)
- Diminuir variáveis (features)

Revisão

Bias x Variance

Partições

Resampling

- Aumenta confiabilidade do modelo
- Exige maior poder computacional
- Cross validation

Amostras diferentes geram resultados bem diferentes !!

Cross Validation

Regressão Linear

• Parabéns! Você acaba de ser contratado como o mais novo Data Scientist de uma empresa global de Real Estate. Com o crescimento acelerado da cidade de Boston, devido sua proximidade a centros de excelência como Harvard e MIT, o mercado imobiliário da região apresenta uma oportunidade única. Para comprar os melhores imóveis aos melhores preços, você deve desenvolver um modelo capaz de receber os dados de um imóvel qualquer e dizer qual deve ser seu preço aproximado. Assim ao buscar por oportunidades na região poderá filtrar o que está caro demais e o que está barato.

Para desenvolver seu modelo você irá realizar as seguintes tarefas:

 Importar o dataset em https://rbarsotti.github.io/LinearRegression_index.html

- 2) Importar o dataset para o ambiente R.
- 3) Fazer uma rápida exploração dos dados.
- 4) Dividir a base em 70% para treino e 30% para teste do modelo.
- 5) Treinar o modelo de regressão linear na base de treino.
- 6) Validar a performance do modelo e determinar os principais preditores.
- 7) Fazer o "scoring" do modelo para os dados na base de teste.
- 8) Usar o modelo para determinar o preço de um imóvel com as informações no exercicio s

	De	sc	riç	ão	Tipo
a (de	e C	rim	ies	Real
d	de	Qι	ıar	tos	Real
е	d	o li	mó	vel	Real
а	de	o C	en	tro	Real
e l	Ва	ani	neii	ros	Real
ΙΧά	(a	de	IP.	TU	Real
0	d	o lı	mó	vel	Real

Classificação: por que não regressão?

Um único valor pode distorcer completamente o resultado

Classificação: por que não regressão?

$$Y = egin{cases} 1 & ext{if stroke;} \ 2 & ext{if drug overdose;} \ 3 & ext{if epileptic seizure.} \end{cases} \qquad Y = egin{cases} 0 & ext{if stroke;} \ 1 & ext{if drug overdose.} \end{cases}$$

Ordem e valores relativos não correspondem a realidade

"Regressão" Logística

Resultado da regressão pode exceder o intervalo (0 a 1)

"Regressão" Logística

Sigmoid Function ou Logistics Function

$$p(x) = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}.$$

Logistic Regression:
$$0 \le h_{\theta}(x) \le 1$$

$$egin{aligned} h_{ heta}(x) &\geq 0.5
ightarrow y = 1 & g(z) \geq 0.5 \ h_{ heta}(x) &< 0.5
ightarrow y = 0 & when ~z \geq 0 \end{aligned}$$

$$g(z) \ge 0.5$$

when $z \ge 0$

"Regressão" Logística

$$egin{aligned} h_{ heta}(x) &\geq 0.5
ightarrow y = 1 \ h_{ heta}(x) &< 0.5
ightarrow y = 0 \end{aligned} \qquad egin{aligned} g(z) &\geq 0.5 \ when \ z \geq 0.5 \end{aligned}$$

$$g(z) \geq 0.5 \ when \ z \geq 0$$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

$$00 = -3$$

$$01 = 1$$

$$02 = 1$$

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$

$$x_1 + x_2 >= 3$$

"Regressão" Logística

• Simples x Múltipla: uma mesma variável pode ter um efeito sozinha e outra quando combinada (sessão 4.3.3 página 148)

	Coefficient
Intercept	-3.5041
student[Yes]	0.4049

	Coefficient
Intercept	-10.8690
balance	0.0057
income	0.0030
student[Yes]	-0.6468

This is an important distinction for a credit card company that is trying to determine to whom they should offer credit. A student is riskier than a non-student if no information about the student's credit card balance is available. However, that student is less risky than a non-student with the same credit card balance!

Regressão Logística

- Mais um dia no MLBB (Machine Learning Bank of Boston) e devido ao aumento na demanda por imóveis na região o mercado de crédito está em alta e é preciso alocar seus empréstimos da melhor maneira possível. O problema é que os pedidos são tantos que estão sobrecarregando os analistas de crédito do banco. Para resolver essa situação você decide desenvolver um modelo para automatizar o processo de aprovação de crédito. Sua mais nova oportunidade de apresentar o modelo é no pedido de crédito feito por um grupo brasileiro de Real Estate que está se expandindo na região.
- Para desenvolver seu modelo você irá realizar as seguintes tarefas:
 - 1) Importar o dataset em

https://rbarsotti.github.io/LogisticRegression_index.html

- 1) Importar o dataset para o ambiente R.
- 2) Fazer uma rápida exploração dos dados.
- 3) Dividir a base em 70% para treino e 30% para teste do modelo.
- 4) Treinar o modelo de regressão logística na base de treino.
- 5) Validar a performance do modelo e determinar os principais preditores.
- 6) Fazer o "scoring" do modelo para os dados na base de teste.
- 7) Determinar a aprovação ou não de crédito para o cliente no exercício 3

Feature	Descrição	Tipo
GENDER	Gênero	Flag
AGE	Idade	Real
DEBT	Dívidas	Real
MARRIED	Estado Civil	Flag
BANK_CUSTOMER	Cliente do Banco	Flag
EDUCATION_LEVEL	Nível de Educação (Médio, Superior, etc)	Categorical
ETHNICITY	Etnia	Categorical
YEARS_EMPLOYED	Anos de Trabalho	Real
PRIOR_DEFAULT	Histórico de Calote/Atraso	Flag
EMPLOYED	Situação Empregatícia	Flag
CITIZEN	Cidadão USA	Flag
ZIPCODE	Localidade	Categorical
INCOME	Renda	Real
APPROVED	Crédito Aprovado ou Não	Target

Árvore de Decisão

- Fácil interpretação, fácil visualização
- Não precisa de variável *dummy* para preditores qualitativos
- Critério de divisão: Ganho de informação IG (Shannon, 1948)
- Baseado em Entropia como uma medida de desordem
- Desordem: quanto mais mesclado, maior a entropia

$$entropy = -p_1 \log (p_1) - p_2 \log (p_2) - \cdots$$

$$IG(parent, children) = entropy(parent) -$$

 $[p(c_1) \times entropy(c_1) + p(c_2) \times entropy(c_2) + \cdots]$

Árvore de Decisão

 Algoritmo: Se a divisão reduzir a entropia (ou aumenta o ganho de informação) então siga com a divisão

entropy(Balance <
$$50K$$
) = $-[p(•) \times \log_2 p(•) + p($\times) \times \log_2 p($\times)]$ entropy(Balance $\ge 50K$) = $-[p(•) \times \log_2 p(•) + p($\times) \times \log_2 p($\times)]$
= $-[0.92 \times (-0.12) + 0.08 \times (-3.7)]$ = $-[0.24 \times (-2.1) + 0.76 \times (-0.39)]$
= 0.39

Árvore de Decisão

• Algoritmo: Se a divisão reduzir a entropia (ou aumenta o ganho de informação) então siga com a divisão

entropy(parent) ≈ 0.99 entropy(Residence=OWN) ≈ 0.54 entropy(Residence=RENT) ≈ 0.97 stropy(Residence=OTHER) ≈ 0.98 $IG \approx 0.13$

Árvore de Decisão x Modelo Linear

Árvore de Decisão

- Não costumam ter alta acurácia
- Muito voláteis -> uma mudança simples no dado pode mudar completamente a árvore

Solução: Combinação

"Set of weak learners are combined to create a strong learner"

Boosting -> cria 1 árvore por vez, vai melhorando a próxima utilizando os erros da árvore anterior

Bagging (Bootstrap AGGregatING) -> utiliza n amostras aleatórias de treinamento. Considera a média das árvores

Random Forest -> igual Bagging, mas varia a quantidade de features

Combinação

Combinação

Variações: AdaBoost, LPBoost, XGBoost, GradientBoost, BrownBoost.

Árvore de Decisão

- Com o crescimento urbano acelerado da cidade de Boston e o aquecimento da economia local os serviços públicos estão sobrecarregados. O hospital Boston D'Or decidiu investir em automatizar o processo de direcionamento de pacientes para os especialistas corretos, para isso será desenvolvido um modelo de árvore de decisão baseado em um formulário padrão preenchido pelos paciente.
- Para desenvolver seu modelo você irá realizar as seguintes tarefas:
 - 1) Importar o dataset BostonHospital disponível em https://rbarsotti.github.io/DecisionTree_index.html
 - 2) Importar o dataset para o ambiente R.
 - 3) Fazer uma rápida exploração dos dados.
 - 4) Dividir a base em 70% para treino e 30% para teste do modelo.
 - 5) Treinar 3 árvores de decisão (boosting, bagging, random forest) na base de treino.
 - 6) Validar a performance dos modelos e determinar os principais preditores.
 - 7) Fazer o "scoring" do modelo para os dados na base de teste.
 - 8) Determinar o tipode de patologia do invíduo do exercício 3

SVM – Máquina de Vetores de Suporte

Hiperplano

figura geométrica de curvatura nula em um espaço euclidiano n-dimensional e cuja equação em coordenadas cartesianas é linear.

O hiperplano depende diretamente dos vetores de suporte, mas não das outras observações: um movimento para qualquer uma das outras observações não afetaria o hiperplano de separação, desde que o movimento da observação não o faça cruzar o limite definido pela margem.

 X_1

SVM – Máquina de Vetores de Suporte

Modelo mais robusto

Tenta separar os conjuntos o máximo possível através da margem

SVM – Máquina de Vetores de Suporte

Nova observação

Uma única adição da amostra altera significativamente a reta: overfitting

Modelo mais robusto

Tunings diferentes de SVMs Balanceamento de Bias x Variance

SVM – Máquina de Vetores de Suporte

SVM

- O fundo de investimento Bettinas está investindo em uma nova solução baseada em machine learning para automatizar e aperfeiçoar a classificação do "credit rating" de companhias públicas baseado em um conjunto de métricas fundamentalistas. Assim o fundo pretende assumir o mínimo risco necessário para bater os fundos concorrentes e seu benchmark o CDI.
- Para desenvolver seu modelo você irá realizar as seguintes tarefas:

 - 2) Importar o dataset para o ambiente R.
 - 3) Fazer uma rápida exploração dos dados.
 - 4) Dividir a base em 70% para treino e 30% para teste do modelo.
 - 5) Treinar o modelo de regressão linear na base de treino.
 - 6) Validar a performance do modelo e determinar os principais preditores.
 - 7) Fazer o "scoring" do modelo para os dados na base de teste.
 - 8) Usar o modelo para determinar o credit rating com as informações no exercício 3

Redes Neurais – Por que usar ?

Non-linear Classification

Regressão Logística multi polinomial

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 x_2 + \theta_5 x_1^3 x_2 + \theta_6 x_1 x_2^2 + \dots)$$

E se tivermos mais do que somente X1 e X2 ? (mundo real)

Para 100 deles, chegaríamos a mais de 5000 termos !!!

Redes Neurais – Por que usar ?

You see this:

Redes Neurais – Por que usar ?

50 x 50 pixel images \rightarrow 2500 pixels n=2500 (7500 if RGB)

$$x = \begin{bmatrix} \text{pixel 1 intensity} \\ \text{pixel 2 intensity} \\ \vdots \\ \text{pixel 2500 intensity} \end{bmatrix}$$

Quadratic features ($x_i \times x_j$): \approx 3 million features

Redes Neurais

 x_1 , x_2 are binary (0 or 1)

x1 XNOR x2

$$y = x1 \text{ AND } x2$$

$$h(x) = g (-30 + 20*x1 + 20*x2)$$

x1	x2	h(x)
0	0	g(-30) -> 0
0	1	g(-10) -> 0 g(-10) -> 0
1	0	g(-10) -> 0
1	1	g(10) -> 1

$$h(x) = x1 \text{ AND } x2$$

$$y = x1 OR x2$$

$$h(x) = g (-10 + 20*x1 + 20*x2)$$

x1	x2	h(x)
0	0	g(-10) -> 0
0	1	g(10) -> 1
1	0	g(10) -> 1
1	1	g(30) -> 1

$$h(x) = x1 OR x2$$

Redes Neurais

NOT X1

x1	h(x)
0	g(10) -> 1
1	g(-10) -> 0

$$h(x) = NOT x1$$

Redes Neurais

h(x) = X1 XNOR X2

Redes Neurais

E se objetivo da predição for uma classe multi-variada?

Ex: definir se a imagem é um cachorro, gato, macaco ou girafa?

https://playground.tensorflow.org/

- Com o recente sucesso do Machine Learning Bank of Boston no setor de crédito, o seu velho concorrente Goldman Data decide focar em captar novos clientes para se capitalizar. Para isso é preciso que o processo de abertura de conta seja o mais breve possível, assim surge a idéia de que o cadastramento de todos os dados seja feito baseado apenas no envio de uma foto do RG. Para isso você recebe a responsabilidade de desenvolver um OCR (Optical Character Recognition) para reconhecer dígitos e adicioná-los no formulário de cadastro do cliente.
- Para desenvolver seu modelo você irá realizar as seguintes tarefas:
 - 1) Importar o dataset BostonGoldman disponível https://rbarsotti.github.io/NeuralNetworks_index.html
 - 2) Importar o dataset para o ambiente R.
 - 3) Fazer uma rápida exploração dos dados.
 - 4) Dividir a base em 70% para treino e 30% para teste do modelo.
 - 5) Treinar uma rede neural reconhecimento de dígitos.
 - 6) Validar a performance dos modelos.
 - 7) Fazer o "scoring" do modelo para os dados na base de teste.
 - 8) Determinar o dígito dado no exercício 3 e verificar se o modelo acertou.

Algoritmo Genético (GA)

Algoritmo Genético (GA)

- O grupo de e-commerce Amazonia está investido em soluções de data-driven marketing para customizar a experiência dos usuários em seu site. Para ser o mais eficiente possível o grupo de Data Scientist's da Amazonia decide desenvolver um modelo junto com a equipe de marketing para classificar a faixa de renda de um usuário qualquer. Assim na página inicial irão aparecer produtos de uma natureza mais premium ou genéricos.
- Para desenvolver seu modelo você irá realizar as seguintes tarefas:
 - Importar o dataset AmazonGA disponível em https://rbarsotti.github.io/GA index.html
 - 1) Importar o dataset para o ambiente R.
 - 2) Fazer uma rápida exploração dos dados.
 - 3) Dividir a base em 70% para treino e 30% para teste do modelo.
 - 4) Utilizar a técnica de algoritmo genético para reduzir o número de features do modelo
 - 5) Validar e comparar a performance dos modelos.
 - 6) Fazer o "scoring" do melhor para os dados nas bases de teste.

Case Final

- A multinacional de varejo Waldata está querendo expandir a sua presença na américa latina e por isso decide firmar uma parceria com a FGV para desenvolver um modelo preditivo do valor de vendas. Além disso a companhia decide investir em uma solução de "Targeted Advertising" que utilizará um modelo de "Machine Learning" para dizer se um cliente irá aderir ou não ao serviço premium.
- Para desenvolver seu modelo você irá realizar as seguintes tarefas:
 - Importar os datasets RETAIL e MARKETING disponíveis em https://rbarsotti.github.io/TCC index.html
 - 1) Importar os datasets para o ambiente R.
 - 2) Fazer uma exploração detalhada dos dados. (Distribuições, valores faltantes etc ..)
 - 3) Dividir as bases em 70% para treino e 30% para teste do modelo. (Utilize sempre seed(314))
 - 4) Testar modelos de classificação para a análise de sentimentos:
 - 1) Regressão Logística, Árvores de Decisão, SVM e Redes Neurais
 - 5) Testar modelos de regressão para o valor de vendas das lojas:
 - 1) Regressão Linear, Árvore de Decisão, e Redes Neurais
 - 6) Validar a performance dos modelos (R² & Matriz de Confusão)
 - 7) Fazer o "scoring" dos modelos para os dados nas respectivas bases de teste