Jan-30 Lecture

Video Basics

- Represented by 3 8-bit values
 - RGB: Red, Green, Blue
 - YUV: Luma (Y) and two chrominance: Cr (red) and Cb (blue)
- HDTV as an example
 - 1920 x 1080 x 24 bpp x 30 fps = 1.5 Gbps (60 Hz interlaced)
- Other smaller formats
 - NTSC: 352x240 @ 30fps
 - PAL: Source Input Format (SIF): 352x288 @ 25 fps
 - Quarter Common Intermediate Format (QCIF): 176x144
 - Sub QCIF: 128x96
 - 4CIF: 704x576
 - 16CIF: 1408x1152

Video Basics

- Three mechanisms used as part of encoding/compression scheme
 - 1. Spatial: similarities around a given location of a frame
 - 2. <u>Temporal</u>: similarities around a given location across time
 - 3. Lossy: eliminate details not visible to the naked eye
 - Downsampling and manipulating the bit stream
- As we discuss different techniques, pay attention to those that increase delay and loss effects:
 - Requiring future data to encode current data
 - Computational complexity
 - Differential encoding

1. Spatial Redundancy

- Focused on similarities within a single image
 - Take advantage of the fact that most images in a video have similar values in nearby positions
- One option is to use differential encoding
 - Similar to delta compression

 Assume that adjacent values in an image are the same and only encode the difference Start

- Check for similarities between video frames
 - Can look in the reverse or forward direction
 - Can also use reverse <u>and</u> forward direction
- If no other frames exist (single image) or no temporal redundancy is used, the frame is intra-encoded (sometimes called an I-frame)
 - Takes considerably more storage/bandwidth than frames that can take advantage of temporal redundancy

 Predicted images (P-frames) are based on other I-or P- frames

 Bi-directionally predicted images (B-frames) are based on combination of forward and backward prediction

- Predicted images (P-frames) are based on other I-or P- frames
 - Encoder does an expanding ring search to find image components (motion compensation)
 - How far from original location to look corresponds to how much processing is necessary and how much compression is had (key reason encoder is more complex)
- Bi-directionally predicted images (B-frames) are based on combination of forward and backward prediction

- Predicted images (P-frames) are based on other I-or P- frames
 - Encoder does an expanding ring search to find image components (motion compensation)
 - How far from original location to look corresponds to how much processing is necessary and how much compression is had (key reason encoder is more complex)
- Bi-directionally predicted images (B-frames) are based on combination of forward and backward prediction
 - If imagine component is in Location A now and Location C in the future. Half way between now and then, it should be in Location B (interpolation).
 - Encode the "error": the difference between predicted Location B and where it actually is

- Thresholds are used for P and B frames
 - If there are enough differences (e.g., a scene change) such that an P or B frame would not result in any less data, then the frame is encoded as an I frame
- Typically use a pattern of I, P, and B frames
 - Ex: IBBPBBPBB...IBBPBBPBB... repeat
 - Could encode all I frames (motion JPEG)
- For real-time video, typically no B frames
 - B frames depend on future frames, can't encode and send until the future I frame is generated (so adds delay)
- For compressed and stored video, different I/P/B patterns can be tried
 - Nice tradeoff between processing and encoding efficiency

Dec 2442(Frame 2442)

• See Time 1:39 in video

- Green = redundant with other frame
- Red = newly encoded

• See Time 1:37 in video

- Green = redundant with other frame
- Red = newly encoded

Arrows show interpolation

Frame 2380(Dec 2381)

• See Time 1:38 in video

- Blue= redundant with other frame
- Red = newly encoded

3. Lossy Compression

a. Sub-sampling

- Don't encode every bit of every block
- This is step adds loss

b. Apply mathematical transforms

Usually something like a Discrete Cosine Transform

c. Quantization

- Eliminate differences in values
- This is step adds loss

d. Stream coding

Use zig-zag and stream compression

3a. Sub-Sampling

- Eye is most sensitive to changes in luminance, and less sensitive to variations in chrominance
- Start with 16x16 block of pixels (macroblock)
 - Divide in 4 8x8 blocks
 - Full encoding is 12 blocks per macroblock (4 Luma, 4 Cr, and 4 Cb)
 - Syntax is: a:b:c (Luma:Cr:Cb)

3a. Sub-Sampling

- Eye is most sensitive to changes in luminance, and less sensitive to variations in chrominance
- Start with 16x16 block of pixels (macroblock)
 - Divide in 4 8x8 blocks
 - Full encoding is 12 blocks per macroblock (4 Luma, 4 Cr, and 4 Cb)
 - Syntax is: a:b:c (Luma:Cr:Cb)

Frame 2413(Dec 2413)

• See Time 1:40 in video

Frame 2413(Dec 2413)

• Y (luminance--brightness) values only

• U (chrominance #1) values only

Frame 2413(Dec 2413)

V (chrominance #2) values only

3b. Transform Coding

- Transform coding is used to convert spatial image pixel values to transform coefficient values
 - No information is lost, the number of coefficients produced is equal to the number of pixels transformed
- The result is that most of the "energy" in the image will be contained in a few large transform coefficients
 - Generally, only a few coefficients will contain most of the energy in a block
 - Smaller coefficients can be coarsely quantized or deleted without doing visible damage to the reproduced image

3b. Transform Coding

3b. Transform Coding

- Many types of transforms have been tried for picture coding
 - Fourier, Karhonen-Loeve, Walsh-Hadamard, lapped orthogonal, discrete cosine, and wavelets
- Goals
 - The most concentration of energy
 - Least number of artifacts

3c. Quantization

- The level of quantization provides excellent tradeoff between quality and level of compression
 - More quantization means more compression which means less bandwidth but more artifacts
- Quantization can be adjusted dynamically
 - Constant Bit Rate (CBR): same amount of bandwidth no matter the amount of energy/action in a picture
 - Variable Bit Rate (VBR): bandwidth requirements vary based on complexity and motion in video
- Use of quantization is the source of noise/error in a compressed stream (different than network data loss)

3c. Error/Noise

3c. Error/Noise

- <u>Coding error</u>: the difference between the source picture and the reproduced picture
 - Just like for audio
- Coding error is measured as the root-mean-square between the two values
 - A common metric for evaluating the performance of an encoding system

3d. Stream Coding

An example block of 8x8 DCT samples:

```
54
12
    0 12 0
87
   0
    0
       0
16
         0
               0
                  0
                  0
0
  0 0 0 0 0 0
0
  0 0 0 0 0 0
       0 0 0
```

- First do zig-zag sequencing:
 - 12 34 87 16 0 0 54 0 0 0 0 0 0 12 0 0 0 0 0 0

3d. Stream Coding

- Zig-zag:
 - 12 34 87 16 0 0 54 0 0 0 0 0 0 12 0 0 0 0 0 0
- Then apply quantization:
 - 12 36 88 16 0 0 56 0 0 0 0 0 12 0 0 0 0 0
- Then apply run-length coding
 - Instead of long sequence of zeros, replace with "sequence of X zeros"
- Then apply Huffman coding
 - Most common sequence of bits is represented by shortest code

3d. Stream Coding

Typical Encoder

Standards

- MPEG-1 (1993)
 - Designed up to 1.5 Mbps
 - Standard CD-ROM, NTSC video quality
- MPEG-2 (1995)
 - Designed for between 1.5 and 15 Mbps
 - Standard for DVD, HDTV
- MPEG-4 (1999)
 - Object-based compression
- MPEG-7 (2002)
 - Provides framework for adding descriptive information about video contents: uses XML to store meta-data
- MPEG-21(2001)
 - Adds digital rights/permissions/restrictions

Other Standards

- MPEG came out of ISO
- Also CCITT (which became ITU)
 - Early on, principally designed encoding for low-bit rate video conferencing (Ex: H-261, H-263, H-264, etc.)
 - Typically use the same components (e.g., temporal, spatial, etc.) in the encoding scheme
- Typically there are separate standards for audio and video and then for a combination of the two

MPEG-1

- Consists of 5 parts:
 - Systems (storage and synchronization of video, audio, and other data together)
 - Video (compressed video content)
 - Audio (compressed audio content)
 - 3 different layers, the third is most commonly used (MP3)
 - Conformance testing (testing the correctness of implementations of the standard)
 - Reference software (example software showing how to encode and decode according to the standard)

MPEG-2

- Pictures are either "frame picture" or "field picture"
 - "frame picture": complete frame
 - "field picture": half of interlaced frame
- Has a header
 - Picture type (I, P, B)
 - Temporal reference information
 - Motion vector search range
 - Optional user data
- Sequence is a group of Groups of Pictures (GOPs)
 - Series of I, P, and B frames
- Further divided: Slice is a row of Macroblocks is group of Blocks

Other Standards

- Almost all other coding standards have the same basic elements
- Differences include:
 - Different techniques within each function
 - Ex: a different transform
 - Different "stream" structure (e.g., headers and data org)
 - lossy transmission
 - asymmetric coding: processing-intensive encode but easy decode
 - battery efficient decode
 - · limited capacity transmission links
 - Some include special features
 - Ex: Google's VP8 has a golden frame

Network Transmission

- Only some standards are designed for transmission
 - What happens when part of an I frame or P frame is lost?
 - What happens when header information is lost?
- There are steps that can be taken to improve resiliency
 - Basic idea is to have fewer critical elements
 - Not have multiple/many frames rely on same portions of the stream
 - Increased redundancy means less susceptible to loss, but at the tradeoff of sending more information

Network Considerations

- Most video now is TCP-based
 - Even for real-time and interactive streams
 - So use of UDP-based streaming is fairly limited
- Still, even with TCP, the goal is to avoid congestion and TCP backoffs
 - Catastrophic if TCP is used for interactive
 - Problematic if TCP is used for real-time
- A difference from audio is that video can consume a significant amount of bandwidth and congestion becomes a real concern

Congestion Solutions

- Rely on the user to choose the right quality
- Develop a dynamic solution that monitors loss rates and changes the quality in response to congestion (or the increasing likelihood of congestion)
 - Monitor throughput and increase/decrease quality
 - Increase/decrease frame rate
 - Increase/decrease quantization
 - Increase/decrease frame size
 - Use layered encoding

Scalable Video Coding

- Create set of <u>dependent</u> layers such that each additional layer adds detail and clarity
- Very useful for creating and sending a video stream to lots of people simultaneously but who have different end-to-end throughput levels
 - Adds complexity and inefficiency (more overhead to encode dependent layers)
- Alternative is to send separately encoded streams
 - Same stream encoded at different levels—requires switching to different stream

H.264 Scalable Video Coding

- One standardized solution uses H.264, an ITU standard for video compression
- Basic idea is how to do scalable video coding
 - Additional B frames can be added
 - Additional B frames are dependent on the higher level B frames directly on either side of the current level

Modern Video Streaming

 M. Tourad Diallo, H. Moustafa, H. Afifi, N. Marechal, "Adaptation of Audiovisual Contents and Their Delivery Means," Communications of the ACM, vol. 56, no. 11, pp. 86-93, November 2013.