Residue Theorem

Thomas Cohn

2/22/19

Recall: $A^{\text{osso}\mathbb{C}} \xrightarrow{f=u+iv} \mathbb{C}$. f is holomorphic if and only if f satisfies one/all of the following equivalent

- 1) $f \in C^1$ and f dz is closed.
- 2) $u, v \in C^1(A, \mathbb{R})$ satisfy the CR equations.
- 3) f is \mathbb{C} -differentiable at each point of A and $f'_{\mathbb{C}}$ is continuous on A.

Thm: If $f: A \to B$ is a holomorphic diffeomorphism, then $f^{-1}: B \to A$ is a holomorphism.

Proof: Write
$$f = \begin{pmatrix} u \\ v \end{pmatrix}$$
, $f^{-1} = \begin{pmatrix} \tilde{u} \\ \tilde{v} \end{pmatrix}$. $D \begin{pmatrix} u \\ v \end{pmatrix} (z_0) = \begin{pmatrix} \alpha - \beta \\ \beta & \alpha \end{pmatrix}$

Proof: Write
$$f = \begin{pmatrix} u \\ v \end{pmatrix}$$
, $f^{-1} = \begin{pmatrix} \tilde{u} \\ \tilde{v} \end{pmatrix}$. $D \begin{pmatrix} u \\ v \end{pmatrix} (z_0) = \begin{pmatrix} \alpha - \beta \\ \beta & \alpha \end{pmatrix}$.

By Thm 7.4, $D \begin{pmatrix} \tilde{u} \\ \tilde{v} \end{pmatrix} (f(z_0)) = \begin{pmatrix} \alpha - \beta \\ \beta & \alpha \end{pmatrix}^{-1} = \begin{pmatrix} \frac{\alpha}{\alpha^2 + \beta^2} & \frac{\beta}{\alpha^2 + \beta^2} \\ \frac{-\beta}{\alpha^2 + \beta^2} & \frac{\alpha^2 + \beta^2}{\alpha^2 + \beta^2} \end{pmatrix} = \frac{1}{\alpha^2 + \beta^2} \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$.

This satisfies the CR equations, so f^{-1} is holomorphic.

Thm: (Cauchy Integral Theorem V.2) Given $M^{\text{cpt }2\text{-mfd}} \subset \mathbb{C}$, f holomorphic on some neighborhood of M,

$$\int_{\partial M} f \, dz \stackrel{\text{Stokes'}}{=} \int_{M} d(f \, dz) = \int_{M} 0 = 0$$

Important special case: when ∂M is the union of 2 connected curves C_1 and C_2 , we have

$$0 = \int_{\partial M} f \, dz = \int_{C_1} f \, dz - \int_{C_2} f \, dz$$

So
$$\int_{C_1} f dz = \int_{C_2} f dz$$
.

Cor: Given $z_0 \in U^{\text{osso}\mathbb{C}}$, f holomorphic on $U \setminus \{z_0\}$, then $\int f \, dz$ is independent of $r \in (0, d(z_0, \operatorname{Bd} U))$.

(Note that this set is a circle; we're traveling counterclockwise.)

Defn: This integral is equal to $2\pi i \operatorname{Res}(f dz, z_0)$, where $\operatorname{Res}(f dz, z_0)$ is the <u>residue</u> of f dz at z_0 .

Cor: (Residue Theorem) Given $M^{\text{cpt 2-mfd}} \subset U^{\text{open}} \subset \mathbb{C}, z_1, \ldots, z_k$ distinct in $M \setminus \partial M$, and f holomorphic on $U \setminus \{z_1, \ldots, z_k\}$, then

$$\int_{\partial M} f \, dz = 2\pi i \sum_{j=1}^{k} \operatorname{Res}(f \, dz, z_j)$$

Proof: Draw small ε -balls around each z_j which don't intersect with ∂M . Then apply V.2 of the Cauchy Integral Theorem. \square

1

The **most** important special case: consider g holomorphic on $U\ni z_0,\, f(z)=\frac{g(z)}{z-z_0}.$ Then

$$\int_{\{z:|z-z_0|=r\}} f(z) dz = \int_0^{2\pi} \frac{g(z_0 + re^{it})}{re^{it}} ire^{it} dt = i \int_0^{2\pi} g(z_0 + re^{it}) dt$$

This is independent of r, so

$$\lim_{r \to 0} i \int_{0}^{2\pi} g(z_0 + re^{it}) dt = i \int_{0}^{2\pi} g(z_0) dt = 2\pi i g(z_0)$$

because the limit converges uniformly. Thus, Res $\left(\frac{g(z)}{z-z_0},z_0\right)=g(z_0).$

Cor: (Cauchy Integral Formula) Given $M^{\text{cpt 2-mfd}} \subset \mathbb{C}$, g holomorphic on $U^{\text{osso }\mathbb{C}} \supset M$, then $\int\limits_{\partial M} \frac{g(z)}{z-z_0} \, dz = 2\pi i g(z_0)$

Unfortunately, this doesn't work in \mathbb{R} .