

Machine Learning Tutorial I - Introduction

ADA IX Summer School 20-22 May 2018, Valencia - Spain

Emille E. O. Ishida

Laboratoire de Physique de Clermont - Université Clermont-Auvergne Clermont Ferrand, France

In collaboration with
Alexandre Boucaud
Paris-Saclay Center for Data Science

Emille E. O. Ishida

Researcher at the Laboratoire de Physique de Clermont

Clermont Ferrand, France

Type Ia Supernova + Machine Learning + Bayesian Statistics

Interdisciplinary science development

Co-chair of the Cosmostatistics Initiative (COIN)

CNRS - MOMENTUM Laureate

Clermont Ferrand, France

Truffade

Svizzera Switzerland

Schweiz Suisse

Summary

- I. Introduction
- II. Practical examples
- III. From NN to CNN by Alexandre Boucaud
- IV. Data Science Workflow by Alexandre Boucaud
- V: Beyond textbook Machine Learning

Acknowledgments

Adam Miller

Andrew Ng

Fabian Gieseke

David Hogg

David Kirby

Daniela Huppenkothen

Jake VanderPlas

Ricardo Vilalta

The Cosmostatistics Initiative

Disclaimer 1

Beware of Black Boxes!!!

Disclaimer 2

for now ...

What is learning?

What is learning?

"A relatively permanent change in behaviour due to past experiences."

Learning or the Power to Adapt

"ML is a field of computer science that gives computer systems the ability to learn with data, without being explicitly programmed."

"ML is a field of computer science that gives computer systems the ability to learn with data, without being explicitly programmed."

ML is a field of computer science that gives computer systems the ability to "learn" (i.e., progressively improve performance on a specific task) with data, without being explicitly programmed.

Machine Learning: a definition

"A computer program L is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E."

Machine Learning: a definition

"A computer program L is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E."

Supervised Learning

Learn by example

Supervised Learning

Learn by example

Unsupervised Learning

Search for data structures

Unsupervised Learning

Search for data structures

Supervised x Unsupervised

Tranining sample:

features + labels

Target sample:

features

Data sample: features

Supervised Learning

Example 1: the Iris dataset

Presented by R. A. Fisher (1936)

50 samples of each class

Setosa

Versicolor

Virginica

https://en.wikipedia.org/wiki/Iris_flower_data_set

Example 1: the Iris dataset

Presented by R. A. Fisher (1936)

50 samples of each class

 $\begin{array}{ll} experience \, E & \to \, \mathrm{data} \\ task \, T & \to \, \mathrm{problem} \\ performance \, P & \to \, \mathrm{metric} \\ program \, L & \to \, \mathrm{algorithm} \end{array}$

https://en.wikipedia.org/wiki/Iris flower data set

Example 1: the Iris dataset

Presented by R. A. Fisher (1936)

50 samples of each class

 $experience E \longrightarrow data$ $task T \longrightarrow class.$ $performance P \longrightarrow accuracy$ $program L \longrightarrow boundary$

Does L learn?

https://en.wikipedia.org/wiki/Iris_flower_data_set

Example 2: the Boston dataset

Housing prices in Boston area 506 samples and 14 features

 $\begin{array}{ll} experience \ E & \to \ \text{data} \\ task \ T & \to \ \text{problem} \\ performance \ P & \to \ \text{metric} \\ program \ L & \to \ \text{algorithm} \end{array}$

Example 2: the Boston dataset

Housing prices in Boston area 506 samples and 14 features

 $experience E \longrightarrow data$ $task T \longrightarrow reg.$ $performance P \longrightarrow RMS$ $program L \longrightarrow relation$

$$y = ax + b$$

$${a,b} \leftarrow \min \left[\sum_{i=1}^{N} (y_i - (ax_i + b))^2 \right]$$

Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', JEE & M, vol.5, 81-102, 1978

Example 2: the Boston dataset

Housing prices in Boston area 506 samples and 14 features

 $experience E \longrightarrow data$ $task T \longrightarrow reg.$ $performance P \longrightarrow res.^2$ $program L \longrightarrow relation$

$$y = ax + b$$

$$\{a, b\} \leftarrow \min \left[\sum_{i=1}^{N} (y_i - (ax_i + b))^2 \right]$$

Hypothesis: x — Nature — y

Hypothesis:

X Nature y

Data modeling:

Hypothesis:

X Nature y

Data modeling:

Algorithmic modeling:

Breiman, L., Statistical Modeling: The Two Cultures, Stat. Sci, Volume 16 (2001)

data training, target

set of all samples, x X

set of possible labels, y

 h_{train} learner: $y_{est;i} = h_{train}(x_i)$ L loss function

Goal: minimize L

data training, target

χ set of all samples, xY set of possible labels, y

 h_{train} learner: $y_{est;i} = h_{train}(x_i)$ L loss function

Goal: minimize L

data training, target

 χ set of all samples, x

Y set of possible labels, y

 h_{train} learner: $y_{est;i} = h_{train}(x_i)$

L Loss function

Data generation model:

$$X_i \sim P_X$$

f true labeling function, $y_i = f(x_i)$

$$L_{data,f}(h) \equiv P_{x\sim data}(h_{train}(x)\neq f(x))$$

data **training**, target

 χ set of all samples, x

Y set of possible labels, y

 h_{train} learner: $y_{est;i} = h_{train}(x_i)$

L Loss function

Data generation model:

$$x_i \sim P_X$$

f true labeling function, $y_i = f(x_i)$

$$L_{data,f}(h) \equiv P_{x\sim data}(h_{train}(x)\neq f(x))$$

```
data training, target

x set of all samples, x set of possible labels, y

y

h_{train}

y

Loss function

We will never have access to p and p

y

y

y

y

y

y
```

```
Data generation model:

x_i \sim P_{\chi}

f true labeling function, y_i = f(x_i)

L_{data,f}(h) \equiv P_{\chi \sim data}(h_{train}(x) \neq f(x))
```

Supervised ML model

data training, target

We will never have access to P and f

 χ set of all samples, x

Y set of possible labels, y

 h_{train} learner: $y_{est;i} = h_{train}(x_i)$

loss function ← good approximation

Goal: minimize L

Supervised ML model

data training, target

 χ set of all samples, x

Y set of possible labels, y

 h_{train} learner: $y_{est;i} = h_{train}(x_i)$

L Loss function

Data generation model:

$$x_i \sim P_\chi$$

f true labeling function, $y_i = f(x_i)$

$$L_{data,f}(h) \equiv P_{x\sim data}(h_{train}(x)\neq f(x))$$

Shai and Shai, Understanding ML: From Theory to Algorithms, 2014, CUP

Supervised ML model

data **training**, target

Machine Learning algorithm

$$h_{train}$$
 learner: $y_{est;i} = h_{train}(x_i)$

Hypothesis:
Data
dependent

 $X_i \sim P_{\chi}$

$$f$$
 true labeling function, $y_i = f(x_i)$
 $L_{data.f}(h) \equiv P_{x\sim data}(h_{train}(x) \neq f(x))$

Shai and Shai, Understanding ML: From Theory to Algorithms, 2014, CUP

k-Nearest Neighbor (kNN)

Distance based

k-Nearest Neighbor (kNN)

Distance based

Example: kNN regression in 1-d

Example of supervised ML algorithm for classification

Support Vector Machines (SVM)

Search for hyperplanes

Example of supervised ML algorithm for classification

Support Vector Machines (SVM)

Search for hyperplanes - kernel trick

Decision Trees

Example of supervised ML algorithm for classification

Random Forests

Ensemble method

Random Forests

Ensemble method

Ensemble Model: example for regression

Search for data structures


```
data features

\chi
 set of all samples, x

Y
 set of possible labels, y

h_{train}
 learner: y_{est;i} = h_{train}(x_i)

Loss function
```

There is NO ground truth!

Data generation model:

$$x_i \sim P_{\chi}$$
 f true labeling function, $y_i = f(x_i)$
 $L_{data,f}(h) \equiv P_{\chi \sim data}(h_{train}(x) \neq f(x))$

data features

 χ set of all samples, x

h learner: $y_{est;i} = h(x_i)$

 $P(\chi)$ joint probability density

Goal: characterize P

k-Means

Clustering

Self-Organized Maps (SOM)

Clustering

Similar objects end up closer to each other

Self-Organized Maps (SOM)

Clustering

Similar objects end up closer to each other

Are dimensionality reduction methods unsupervised learning?

Isolation Forests

Outlier detection

What you should remember from this session

1. The definition of learning is different for machines

What you should remember from this session

- 1. The definition of learning is different for machines
- 2. Supervised Machine Learning \Rightarrow Minimize loss function

What you should remember from this session

- 1. The definition of learning is different for machines
- 2. Supervised Machine Learning \Rightarrow Minimize loss function
 - 3. Minimize loss function

 $\hat{\Box}$

learn about the data generative model

What you should remember from this session

- 1. The definition of learning is different for machines
- 2. Supervised Machine Learning \Rightarrow Minimize loss function
 - 3. Minimize loss function

Ţ

learn about the data generative model

4. The Machine Learning <u>algorithm</u>, or learner, is only 1 element in a larger Machine Learning $\underline{model} \Rightarrow you$ should pay attention to the other elements as well!

Learning or the Power to Adapt

