Homework 6

21-640 Introduction to Functional Analysis

Name: Shashank Singh

Email: sss1@andrew.cmu.edu Due: Wednesday, April 17, 2013

Problem 1

Suppose $\alpha_n \to 0$ as $n \to \infty$. Consider the sequence $\{T_k\}_{k=1}^{\infty}$ of operators in $\mathcal{L}(l^2; l^2)$ defined for all $x \in l^2$ by

$$(T_k x)_n = \begin{cases} \alpha_n x_n & : \text{ if } n \le k \\ 0 & : \text{ else} \end{cases}$$

Suppose $\varepsilon > 0$. Then, for n_0 sufficiently large, $\forall n \geq n_0$, $\alpha_n < \epsilon$, and hence, $\forall x \in l^2$ with $||x||_2 = 1$,

$$||(T_n - T)x||_2 \le \varepsilon ||x||_2 = \varepsilon,$$

so $T_n \to T$ in the uniform operator topology. Thus, by Proposition 11.8 and Theorem 12.11, since each T_n has finite rank and is thus compact, T is compact. Thus, $\alpha_n \to 0$ is sufficient for T compact.

Suppose $\alpha_n \not\to 0$ as $n \to \infty$. Then, since,

$$||Te^{(n)} - Te^{(m)}||_2 = \alpha_n^2 + \alpha_m^2, \quad \forall n, m \in \mathbb{N},$$

 $\{Te^{(n)}\}\$ has no Cauchy subsequence and hence no convergent subsequence. Thus, $\alpha_n \to 0$ is also necessary for T compact.

Problem 2

I solved this problem with a hint from Jimmy Murphy suggesting that I design components of Tx to be 'local averages' of components of x.

To construct a counterexample T, we make use of the triangle numbers defined by

$$t_1 = 0, t_{k+1} = t_k + k, \forall k \in \mathbb{N}.$$

Define $T: l^2 \to l^2$ for all $x \in l^2, n \in \mathbb{N}$ by

$$(Tx)_n := \frac{1}{k} \sum_{n=t_k}^{t_{k+1}-1} x_n, \text{ for } t_k \le n \le t_{k+1} - 1,$$

(so
$$Tx = \left(x_1, \frac{x_2 + x_3}{2}, \frac{x_2 + x_3}{2}, \frac{x_4 + x_5 + x_6}{3}, \frac{x_4 + x_5 + x_6}{3}, \frac{x_4 + x_5 + x_6}{3}, \dots\right)$$
).

T is linear, since as each component is a linear combination of components of x. To see that T is continuous (and $||T|| \le 1$), it suffices observe that, by the Cauchy-Schwarz inequality, $\forall x \in l^2, k \in \mathbb{N}$,

$$\sum_{n=t_k}^{t_{k+1}-1} ((Tx)_n)^2 = k \left(\sum_{n=t_k}^{t_{k+1}-1} \frac{x_n}{k} \right)^2 \le k \left(\sum_{n=t_k}^{t_{k+1}-1} x_n^2 \right) \left(\sum_{n=t_k}^{t_{k+1}-1} \frac{1}{k^2} \right) = \sum_{n=t_k}^{t_{k+1}-1} x_n^2.$$

Thus, $T \in \mathcal{L}(l^2; l^2)$. Also, $\forall n \in \mathbb{N}$ with $t_k \leq n \leq t_{k+1} - 1$, $||Te^{(n)}||_2 = \frac{1}{k^2}$, so $Te^{(n)} \to 0$ strongly. Now consider $\{x^{(n)}\}_{n=1}^{\infty}$ in l^2 defined by

$$x_i^{(n)} := \begin{cases} \frac{1}{\sqrt{n}} & : \text{ if } t_n \le i \le t_{n+1} - 1\\ 0 & : \text{ else} \end{cases}$$
.

 $\{x^{(n)}\}_{n=1}^{\infty}$ is bounded, since the *n* non-zero components of $x^{(n)}$ are identically $\frac{1}{\sqrt{n}}$, giving

$$||x^{(n)}|| = n\left(\frac{1}{\sqrt{n}}\right)^2 = 1.$$

Furthermore, $\forall n \in \mathbb{N}, Tx^{(n)} = x^{(n)}, \text{ and so, for } n, m \in \mathbb{N},$

$$||Tx^{(n)} - Tx^{(m)}|| = n\left(\frac{1}{\sqrt{n}}\right)^2 + m\left(\frac{1}{\sqrt{m}}\right)^2 = 2,$$

and so $\{Tx^{(n)}\}_{n=1}^{\infty}$ has no convergent subsequence. Consequently, T is not compact.

Problem 3

Let $L, R \in \mathcal{L}(l^2; l^2)$ denote the shift operators defined by

$$Lx = (x_2, x_3, \dots), \quad Rx = (0, x_1, x_2, \dots), \quad \forall x \in l^2.$$

 $\forall n \in \mathbb{N}$, put $T_n = L^n$ and T = 0. $\forall x \in l^2$,

$$||T_n x||_2 = \sum_{k=n+1}^{\infty} x_k^2 \to 0$$

as $n \to \infty$, and so $T_n \to T$ in the strong operator topology. An easy induction argument using $(L^{n-1}L)^* = L^*(L^{n-1})^*$ shows $T_n^* = R^n$. Thus, $\|T_n^*x\|_2 = \|x\|_2$, so $T_n^* \not\to 0 = T^*$ as $n \to \infty$.

Problem 4

Assume X is complete and Y is weakly sequentially complete (e.g., by Theorem 8.5, if Y is reflexive).

For all $x \in X$, the condition that $\{y^*(T_nx)\}_{n=1}^{\infty}$ is convergent for all $y^* \in Y^*$ is equivalent to $\{T_nx\}_{n=1}^{\infty}$ being weakly convergent. Thus, we can define $T:X\to Y$ by assigning Tx to be the weak limit of $\{T_nx\}_{n=1}^{\infty}$ (which is in Y by weak sequential completeness). Since the weak limit operator is linear, T is linear. Since X is complete, by the Principle of Uniform Boundedness, T is bounded, and hence $T\in\mathcal{L}(X;Y)$.

Problem 5

- (a) Let $X = l^2, Y = l^1$, and suppose $T \in \mathcal{L}(X;Y)$. If $\{x_n\}_{n=1}^{\infty}$ is a bounded sequence in X, by Theorem 8.1, $\{x_n\}_{n=1}^{\infty}$ has a weakly convergent subsequence $\{x_{n_k}\}_{k=1}^{\infty}$. Since continuous linear operators respect weak convergence, $\{Tx_{n_k}\}_{k=1}^{\infty}$ is weakly convergent, and hence, since, in l^1 , weak convergence is equivalent to strong convergence, $\{Tx_{n_k}\}_{k=1}^{\infty}$ is a convergent subsequence of $\{Tx_n\}_{n=1}^{\infty}$. Thus, $T \in C(X;Y)$. Since $\mathcal{C}(X;Y) \subseteq \mathcal{L}(X;Y)$, $\mathcal{C}(X;Y) = \mathcal{L}(X;Y)$.
- (b) I wasn't able to solve this problem.

Problem 6

- (a) T is not surjective. If it were, by the Open Mapping Theorem, $T[B_1(0)]$ would be open and hence contain a non-empty ball B. Since Y is infinite dimensional, B would contain a sequence with no convergent subsequence, contradicting the compactness of T.
- (b) Let $X = (l^{\infty}, \|\cdot\|_{\infty})$, and let $Y = (l^{\infty}, \|\cdot\|)$ where $\|x\| := \sup_{n \in \mathbb{N}} x_n/n$, and let $I \in \mathcal{L}(X;Y)$ be the identity (which is continuous, since clearly $\|\cdot\|$ is bounded by $\|\cdot\|_{\infty}$, and note that I is surjective.

Now consider the sequence $\{I_k\}_{k=1}^{\infty}$ in $\mathcal{L}(X;Y)$ defined, $\forall x \in l^{\infty}, n \in \mathbb{N}$ by

$$(I_k x)_n = \left\{ \begin{array}{cc} \alpha_n x_n & : \text{ if } n \le k \\ 0 & : \text{ else} \end{array} \right..$$

 $\forall x \in l^2 \text{ with } ||x|| = 1, ||(I_k - I)x||_2 \leq \frac{1}{k}||x|| = \frac{1}{k}, \text{ and so } I_k \to I \text{ in the uniform operator topology. Thus, by Proposition 11.8 and Theorem 12.11, since each } I_n \text{ has finite rank and is thus compact, } I \text{ is compact.}$

Problem 7

- (a) Suppose $T \in \mathcal{L}(l^2; l^2)$. As shown in the solution to part (a) of Problem 5, T is compact. Then, by part (a) of Problem 6, T is not surjective.
- (b) By the identification of $(c_0)^*$ with l^1 and $(l^2)^*$ with $(l^2)^*$, if $L \in \mathcal{L}(c_0; l^2)$, then, as shown in the solution to part (a) of Problem 5, $L^*: l^2 \to l^1$ would be compact. Then, by Theorem 11.15, T would be compact, and hence, by part (a) of Problem 6, T is not surjective.

Problem 8

If x = 0, then, as $n \to \infty$, $||x_n|| \to ||x||$ immediately implies $x_n \to x$. Thus, we assume $x \neq 0$. Then, since $||x_n|| \to ||x||$ as $n \to \infty$, by considering only n sufficiently large, we may assume, without loss of generality, that each $x_n \neq 0$, and we may therefore define

$$z := \frac{x}{\|x\|}$$
 and $z_n := \frac{x_n}{\|x_n\|}$, $\forall n \in \mathbb{N}$.

It suffices to show $z_n \to z$ strongly, and so, since each $||z_n|| = ||z|| = 1$, by uniform convexity, it suffices to show that $||z_n + z|| \to 2$. By part (iii) of Theorem 7.15, since $z_n + z \to 2z$ weakly,

$$2 = \|2z\| \le \liminf_{n \to \infty} \|z_n + z\| \le \limsup_{n \to \infty} \|z_n + z\| \le \limsup_{n \to \infty} \|z_n\| + \|z\| = \|z\| + \|z\| = 2.$$

Problem 9

(a) Let $x, y \in X$ with $x \neq y$ and ||x|| = ||y|| = 1, and let $t \in (0,1)$. Since $||tx + (1-t)y|| \le t||x|| + (1-t)||y|| = 1$, it suffices to show that $||tx + (1-t)y|| \ne 1$. If it were the case that $||\frac{1}{2}x + \frac{1}{2}y|| = 1$, then ||x + y|| = 2, and hence, by uniform convexity (using the constant sequences $\{x\}_{i=1}^{\infty}, \{y\}_{i=1}^{\infty}$), x = y. Thus, it suffices to show that, if ||tx + (1-t)y|| = 1, then $||\frac{1}{2}x + \frac{1}{2}y|| = 1$. The case t = 1/2 is trivial, and the case $t \in (1/2, 1)$ follows by switching x and y, so we may assume $t \in (0, 1/2)$. Then, tx + (1-t)y is a convex combination of x and $\frac{1}{2}x + \frac{1}{2}y$, and so, for some $t_2 \in (0, 1)$,

$$1 = ||tx + (1-t)y|| = ||t_2x + (1-t_2)(\frac{1}{2}x + \frac{1}{2}y)|| \le t_2 + (1-t_2)||(\frac{1}{2}x + \frac{1}{2}y)||,$$

and so $1 \le \|(\frac{1}{2}x + \frac{1}{2}y)\| \le 1$.

(b) Let
$$X' := \prod_{i=1}^{\infty} \mathbb{R}^2$$
, let
$$X := \left\{ x \in X' : \sum_{i=1}^{\infty} \|(x_i, y_i)\|_k < \infty \right\},$$

(where $\|\cdot\|_k$ denotes the usual k-norm on \mathbb{R}^2) and, define $\|\cdot\|: X \to \mathbb{R}$ for all $x \in X$ by

$$||x|| = \sum_{i=1}^{\infty} ||(x_i, y_i)||_k.$$

The proof that $(X, \|\cdot\|)$ is a Banach space is essentially identical to the proof for l^1 .

Suppose $x, y \in X$, ||x|| = ||y|| = 1 and $x \neq y$ (say $x_n \neq y_n$). Then, since each $(R^2, ||\cdot||_k)$ is strictly convex, $||tx_n + (1-t)y_n|| < \frac{||x_n||_n + ||y_n||_n}{2}$ (and each $||tx_k + (1-t)y_k|| \leq \frac{||x_k||_k + ||y_k||_k}{2}$), and so

$$||tx + (1-t)y|| = \sum_{k=1}^{\infty} ||tx_k + (1-t)y_k||_k < \sum_{k=1}^{\infty} \frac{||x_i||_k + ||y_i||_k}{2} = \frac{1}{2}(||x|| + ||y||) = 1.$$

Thus, X is strictly convex. However, suppose $\forall n \in \mathbb{N}, x^{(n)}$ and $y^{(n)}$ have $x_n^{(n)} = (1,0), y_n^{(n)} = (0,1)$, and $x_i^{(n)} = y_i^{(n)} = 0$ for $i \neq n$. Then, each $||x^{(n)}|| = ||y^{(n)}|| = 1$ and, as $n \to \infty$,

$$||x^{(n)} + y^{(n)}|| = 2^{\frac{1}{1+1/n}} \to 2$$

but

$$||x^{(n)} - y^{(n)}|| = 2^{\frac{1}{1+1/n}} \to 2.$$

Therefore, X is not uniformly convex. The proof that X is separable is similar to the proof of separability for l^1 . I'm not quite sure about reflexivity...