LAN REDUNDANCY P2

7 varieties of spanning tree protocols have emerged since IEEE 802.1D:

7 varieties er spa	nning tree protocols have emerged since IEEE 802.1D:	
STP	Original IEEE 802.1D version (1998/earlier): • Loop-free topology in network w/redundant links CST: Common Spanning Tree: • Assumes 1 s/tree instance for entire bridged network • Regardless of # of VLANs	
PVST+	Cisco enhancement of STP: • Provides separate 802.1D spanning tree instance for each VLAN config in network Separate instance supports: • PortFast • UplinkFast • BackboneFast • BPDU guard • BPDU filter • Root guard • Loop guard.	
802.1D-2004	Updated ver of STP standard: • Incorporates IEEE 802.1w	
RSTP or IEE 802.1w	RSTP: Rapid Spanning Tree Protocol or IEEE 802.1w: • Evolution of STP that provides faster convergence	
Rapid PVST+	Cisco enhancement of RSTP that uses PVST+: • Rapid PVST+ provides separate instance of 802.1w per VLAN Separate instance supports: • PortFast • BPDU guard • BPDU filter • Root guard • Loop guard	
MSTP	MSTP: Multiple Spanning Tree Protocol: • IEEE standard inspired by earlier Cisco MISTP: Multiple Instance STP implementation • Maps multiple VLANs into same spanning tree instance Cisco implementation of MSTP is MST: • Provides up to 16 instances of RSTP • Combines many VLANs w/same physical/logical topology into common RSTP instance Each instance supports: • PortFast • BPDU guard • BPDU filter • Root guard • Loop guard	

Characteristics of the Spanning Tree Protocols

STP	Assumes 1 IEEE 802.1D spanning tree instance for entire bridged network: Regardless of # of VLANs
	B/C 1 instance: CPU/Mem reqs lower

	 Only 1 root bridge/1 tree Traffic for all VLANs flows over same path: Can lead to suboptimal traffic flows Limitations 802.1D: Slow to converge
PVST+	Cisco enhancement of STP: • Separate instance of Cisco implementation of 802.1D for each VLAN config in network • Speed of convergence: Similar to STP Separate instance supports: • PortFast/UplinkFast/BackboneFast/BPDU guard/BPDU filter/root guard/loop guard • Port roles defined: Same as w/RSTP • Creating instance for each VLAN increases CPU/Mem reqs: Allows per-VLAN root bridges • Design allows spanning tree to be optimized for traffic of each VLAN • Convergence of ver similar to 802.1D • Convergence per-VLAN
RSTP (IEEE 802.1w)	 Evolution of spanning tree: Provides faster convergence than 802.1D Addresses many convergence issues Still single instance of STP: Doesn't address suboptimal traffic flow To support faster convergence: CPU/Mem reqs of this ver higher than of CST: Less than Rapid PVST+
Rapid PVST+	Cisco enhancement of RSTP that uses PVST+: • Provides separate instance of 802.1w per VLAN Separate instance supports: • PortFast/BPDU guard/BPDU filter/root guard/loop guard • Ver addresses convergence issues/suboptimal traffic flow • Highest CPU/Mem reqs
MSTP	 IEEE 802.1s standard: Inspired by earlier Cisco proprietary MISTP implementation To reduce # of required STP instances: MSTP maps multiple VLANs Same traffic flow reqs into same spanning tree instance Instance
MST	Cisco implementation of MSTP: • Up to 16 instances of RSTP (802.1w) • Combines many VLANs w/same physical/logical topology into common RSTP instance Each instance supports: • PortFast/BPDU guard/BPDU filter/root guard/loop guard • CPU/Mem reqs this ver: Less than Rapid PVST+ More than RSTP

Default spanning tree mode for Cisco Catalyst switches is PVST+

• Enabled on all ports/Much slower convergence after topology change than Rapid PVST+ PVST+

A network running CST has these characteristics:

- · No load sharing possible
- 1 uplink must block for all VLANs
- CPU is spared: Only 1 instance of spanning tree must be computed
- Developed so network can run independent instance of implementation of IEEE 802.1D for each VLAN in network
- Possible for 1 trunk port on switch to block for VLAN while fwding for other VLANs
- · Can be used to implement L2 load balancing
- Switches need greater CPU process/BPDU BW consumption than CST B/C each VLAN runs separate instance of STP

Spanning tree params can be tuned so half of VLANs fwd on each uplink trunk

- Accomplished by config 1 switch to be elected root bridge for 1/2 of the VLANs in network
- Second switch to be elected root bridge for other 1/2 of VLANs
- Multiple STP root bridges per VLAN increases redundancy

Networks running PVST+ chars:

- Optimum load balancing can result
- Considerable waste of CPU cycles for all switches in network (in addition to BW used for each

- instance to send BPDU)
- Only problematic if large number of VLANs config

Port States/PVST+ Operation

- STP facilitates logical loop-free path throughout broadcast domain
- Spanning tree is determined through info learned by exchange of BPDU frames bet interconnected switches
- Learning of logical spanning tree: Each switch port transitions through 5 possible states/3 BPDU timers
- Spanning tree determined immediately after switch finished booting
- If port transitions directly from blocking to fwding state w/out info about full topology during transition
- Port can temp create a data loop
- For this reason: STP introduces 5 port states
- PVST+ uses same 5 port states

Port states during creation of logical spanning tree:

Blocking	Port is an alternate port: Doesn't participate in frame fwding • Port receives BPDU frames to determine location/root ID of root bridge switch • And which port roles each port should assume in final active STP topology
Listening	 Listens for path to root STP has determined port can participate in frame fwding according to BPDU frames that switch received Port receives BPDU frames: Transmits its own BPDU frames: Informs adjacent switches port is preparing to participate in active topology
Learning	Learns MAC addresses: • Port prepares to participate in frame fwding/begins to populate MAC table
Fwding	Port considered part of active topology: Fwds data frames/sends/receives BPDU frames
Disabled	L2 port doesn't participate in spanning tree: Doesn't fwd frames • Set when port is admin disabled

of ports in each of various states can be displayed w/show spanning-tree summary
For each VLAN in switched network: PVST+ performs 4 steps to provide loop-free logical
topology:

- Elects 1 root bridge: Only 1 switch can act as root bridge (for given VLAN)
 - 1. RB (root bridge) is switch w/lowest BID
 - 2. RB: All ports designated (no root ports)
- Selects root port on each non-root bridge:
 - 1. Establishes 1 root port on each non-root bridge for each VLAN
 - 2. RP (Root port) is lowest-cost path from non-root bridge to RB (indicates direction of best path to RB)
 - 3. RP normally in fwding state
- · Selects designated port on each segment:
 - 1. On each link: Establishes 1 designated port for each VLAN
 - 2. Designated port selected on switch that has lowest-cost path to RB
 - 3. Designated ports normally in fwding state/Fwding traffic for segment
- Remaining ports in switched network are alternates:
 - 1. Normally in blocking state, to break loop topology
 - 2. When port in blocking state: Doesn't fwd traffic/Can still process received BPDU msgs

Extended System ID and PVST+ Operation

PVST+ environment: Extended sys ID ensures each switch has a unique BID for each VLAN **Overview of Rapid PVST+**

- Evolution of 802.1D standard: Incorporated into IEEE 802.1D-2004
- 802.1w STP terminology remains same as original
- · Most params left unchanged
- Cisco: RSTP on per-VLAN basis: Independent instance of RSTP runs for each VLAN
- RSTP:
 - o Doesn't have blocking port state
 - Defines port states as discarding/learning/fwding

RSTP speeds recalc of spanning tree when L2 topology changes:

- Much faster convergence
- Redefines type of ports/state
- If port is config to be alternate/backup: Can immediately change to fwding state w/out waiting for network to converge

RSTP characteristics:

- · Preferred protocol for preventing L2 loops in switched network env
- Many diff established by Cisco enhancements to 802.1D

These enhancements:

- BPDUs carrying/sending info about port roles only to neighboring switches: Req no additional config
- Perform better than earlier Cisco vers
- Transparent/integrated into protocol's op
 - UplinkFast/BackboneFast: NOT compatible w/RSTP

RSTP (802.1w): Supersedes 802.1D while retaining backward compatibility

- Much of 802.1D term remains/most params unchanged
- 802.1w: Capable of reverting back to legacy 802.1D to interoperate w/legacy switches on per-port basis
- Keeps same BPDU fmt as 802.1D:
 - o Except ver field is set to 2 to indicate RSTP: Flags field uses all 8 bits
- Able to actively confirm port can safely transition to fwding state w/out having to rely on timer config RSTP BPDUs

RSTP uses type 2, ver 2 BPDUs:

- Original 802.1D STP uses type 0, version 0 BPDUs
- Switch running RSTP can comm w/switch running 802.1D STP

RSTP sends BPDUs/populates flag byte in slightly diff manner than 802.1D:

- Protocol info can be immediately aged on port if Hello packets not received for 3 consecutive Hello times
 - 6 seconds/max age timer expires (still 2 second intervals)
- BPDUs: Used as keep-alive mechanism
- 3 consecutively missed BPDUs indicate lost connectivity between bridge/neighboring root /designated bridge
- · Fast aging of info allows failures to be detected quickly

Ver 2 BPDU:

Bits 0/7	Used for topology change/acknowledgment • In 802.1D	
Bits 1/6	Used for Proposal Agreement process (rapid convergence)	
Bits 2/5	Encode role/state of port	
Bits 4/5	Used to encode port role using 2-bit code	

Edge Ports

RSTP Edge Port: Switch port that never intended to be connected to another switch

- · Immed transitions to fwding state when enabled
- Corresponds to PVST+ PortFast
- Edge port: Directly connected to end station/assumes no switch device is connected to it
- Skips the time-consuming 802.1D listening/learning states because of the fwding transition

Cisco RSTP: Rapid PVST+: Maintains PortFast keyword:

spanning-tree portfast Edge port config

Config edge port to attach to other switch NOT recommended

• Negative implications for RSTP B/C temp loop may result: Possibly delays convergence of RSTP **Link Types** Provides categorization for each port participating in RSTP: Uses duplex mode on the port Depending on what's attached to each port: 2 diff link types can be identified:

• Point-to-Point	Port operating in full-duplex mode:
	 Connects a switch to switch
	 Candidate for rapid transition to fwding state
• Shared	Port operating in half-duplex mode:
	 Connects switch to hub that attaches multiple devices

Link type can determine:

- Whether port can immed transition to fwding state: Assuming conditions are met
- Conditions are diff for edge ports/non-edge ports

Non-edge ports are categorized into 2 link types:

- 1. Point-to-point
- 2. Shared

Link type is auto determined: Can be overridden w/explicit port config using spanning-tree link-type Characteristics of port roles w/regard to link types include:

- Edge port and point-to-point connections: Candidates for rapid transition to fwding state
 - o Before link-type param considered: RSTP must determine port role
- Root ports don't use link-type param: RP's are able to make rapid transition to fwding state as soon as port in sync
- Alternate/backup ports don't use link-type param in most cases
- Designated ports make most use of link-type param
- Rapid transition to fwding state for designated port occurs only if link-type param is set to point-topoint