Machine Learning Models for Image Classification

Table of Contents

- 1. Overview
- 2. CNN Model
- 3. Random Forest Model
- 4. How to Install
- 5. How to Use
- 6. Results and Reports

Overview

This guide explains two models that can classify images into 5 different groups (labeled 0-4):

- CNN (Deep Learning) uses neural networks
- Random Forest uses decision trees

Both models work with 100x100 pixel color images and create predictions with performance reports.

CNN Model (Deep Learning)

How the CNN Works

```
# CNN Setup
image_size = (100, 100, 3) # 100x100 color images
filter_size = (3, 3) # Small filters
pool_size = (2, 2) # Pooling size

Layers:
1. Conv2D(64 filters) + MaxPooling2D
2. Conv2D(128 filters) + MaxPooling2D
3. Conv2D(256 filters) + BatchNorm + MaxPooling2D
4. Conv2D(512 filters) + MaxPooling2D
5. Flatten + Dropout(0.5)
6. Dense(256, relu) + Dropout(0.5)
7. Dense(5, softmax) # Final output
```

CNN Settings

Setting	Value
Optimizer	Adam
Loss Function	Sparse Categorical Crossentropy
Dropout Rate	0.5

Setting	Value	
Batch Norm	Yes (layer 3)	
Early Stop	Yes (wait 10 epochs)	
Learning Rate	ate Reduces when stuck	
Class Weights	{0: 1.0, 1: 1.5, 2: 1.0, 3: 1.0, 4: 2.5}	

Training Settings

• **Epochs**: Number you choose

• Batch Size: Number you choose

• Safety Features:

• Stops early to prevent overfitting

• Adjusts learning rate automatically

• Saves the best model

How to Run CNN

```
python3 cnn.py <epochs> <batch_size>

# Example:
python3 cnn.py 50 32
```

Main CNN Functions

CNN()

Creates and sets up the neural network.

```
CNN_train(train_data, validation_data, epochs, batch_size, class_weight)
```

Trains the CNN with:

- train_data: Training images and labels
- validation_data: Test images and labels
- epochs: How many times to train
- batch_size: How many images at once
- class_weight: Balance for different classes

```
create_report(trained_model, validation_data)
```

Tests the model and saves results to reports/reports.csv.

Random Forest Model

How Random Forest Works

```
# Random Forest Setup
n_estimators = 500  # Number of trees
max_depth = 20  # How deep trees can go
random_state = 69  # For consistent results
n_jobs = -1  # Use all computer cores
```

Random Forest Settings

Setting	Value
Number of Trees	500
Max Tree Depth	20
Use All Cores	Yes
Random Seed	69
Data Format	Flatten images to 1D

How to Run Random Forest

```
python3 random_forest.py
```

Main Random Forest Functions

RF()

Sets up the Random Forest classifier.

```
RF_train(train_data)
```

Trains the model:

- Changes images to flat format
- Trains on the flat data

```
create_report(trained_model, validation_data)
```

Tests the model and saves results to RFreports/reports.csv.

How to Install

Install Everything You Need

```
pip install -r requirements.txt
```

How to Use

Steps to Run

1. Run CNN:

```
python3 cnn.py 50 32 # 50 training rounds, 32 images at once
```

2. Run Random Forest:

```
python3 random_forest.py
```

Shared Functions

```
load_data(file)
```

Loads data from files:

- Input: File name ('train', 'validation', 'test')
- Output: Images and labels (if available)
- Processing: Makes pixel values between 0 and 1

```
generate_confusion_matrix(real, prediction, names, precision)
```

Creates a confusion matrix picture:

- Shows how well the model did
- Saves picture in reports folder
- Backs up code

```
make_predictions(trained_model, validation_data, test_images,
validation_accuracy)
```

Makes final predictions:

- Tests on validation data
- Creates confusion matrix
- Saves predictions to predictions.csv

What We Measure

- Accuracy: How often the model is right
- Confusion Matrix: Detailed breakdown of results
- Loss (CNN only): How much error there is

Model Comparison

Feature	CNN	Random Forest
Training Time	Longer	Shorter
Memory Used	Моге	Less
Image Quality	Better	Good
Easy to Understand	Hard	Easy
Settings to Tune	Many	Few
Computer Use	GPU/CPU	CPU only

When to Use Each

CNN

• Best for: Big datasets, best performance

• **Needs**: GPU (recommended)

• Training Time: 2-3 minutes (with good GPU)

Random Forest

• **Best for**: Quick testing, limited resources

• Needs: Multi-core CPU

• Training Time: 2-3 minutes (with CPU)

Common Problems

CNN Issues

- 1. **Out of Memory**: Use smaller batch_size
- 2. **Overfitting**: Early stopping helps (already included)
- 3. Slow Training: Use GPU if you have one

Random Forest Issues

- 1. Not Enough Memory: Use fewer trees
- 2. Takes Too Long: Make trees less deep or use fewer
- 3. Bad Results: Try different image processing

How It Works

Loading Data

Both models use the same way to load data:

```
def load_data(file):
    # Read the CSV file
    dataFrame = pd.read_csv(f'{file}.csv')
    images, labels = [], []
```

```
# Look at each image
    for _, row in dataFrame.iterrows():
        img_id = row["image_id"]
        img_path = f"{file}/{img_id}.png"
        try:
            # Load and normalize image
            img_array = np.array(Image.open(img_path)) / 255.0
            images.append(img_array)
            # Add label if we have it
            if "label" in dataFrame.columns:
                labels.append(row["label"])
        except Exception as e:
            print(f"Error loading image {img_path}: {e}")
            continue
    return (np.array(images), np.array(labels)) if labels else
np.array(images)
```

Creating Reports

Both models create detailed reports with:

- How well they performed
- Confusion matrix pictures
- Time-stamped report folders
- Code backups for reference

Making Predictions

- 1. Train Model: Learn from training data
- 2. Test: Check on validation data
- 3. Confusion Matrix: Create visual analysis
- 4. Final Predictions: Predict on test data
- 5. Save: Write predictions to CSV file

Making Models Better

CNN Improvements

- BatchNorm for stable training
- Dropout to prevent overfitting
- Early stopping to avoid overtraining
- Smart learning rate changes

Random Forest Improvements

- Use all CPU cores at once
- Good tree depth for best results

- Smart memory usage
- Fast predictions

Results and Reports

CNN Results

Things That Didn't Work:

- Tried using two separate CNN models (one to find class 4, another for classes 0-3), but this gave poor results due to errors building up between the two steps.
- Tried data augmentation to create more training examples, but this was done incorrectly and didn't help the model learn better.

Things That Worked Well:

Category	Setting	Value
Model	Conv Filters	[64, 128, 256, 512]
	Dense Units	256
	Dropout Rate	0.3
Training	Optimizer	Adam
	Loss Function	Sparse Categorical Crossentropy
	Early Stop Wait	7 epochs
	Learning Rate Drop	0.2
Class Balance	Classes 0-3	1.0
	Class 4	2.5
Data	Normalize	/255.0
	Data Type	float32

Ассигасу: 86.4%

Category	Setting	Value
Model	First Filter Size	(5, 5)
	Conv Filters	[64, 128, 256, 512]
	Dense Units	256
	Dropout Rate	0.2
Training	Optimizer	Adam
	Loss Function	Sparse Categorical Crossentropy
	Early Stop Wait	7 epochs
	Learning Rate Drop	0.2
	LR Drop Wait	3 epochs
Class Balance	Classes 0-3	1.0
	Class 4	2.5
Data	Normalize	/255.0
	Data Type	float32

Ассигасу: 82.5%

Category	Setting	Value
Model	Conv Filters	[32, 64, 128, 256]
	Dense Units	256
	Dropout Rate	0.3
Training	Optimizer	Adam
	Loss Function	Sparse Categorical Crossentropy
	Early Stop Wait	10 epochs
	Learning Rate Drop	0.2
	LR Drop Wait	3 epochs
Class Balance	Classes 0-3	1.0
	Class 4	1.5
Data	Normalize	/255.0
	Data Type	float32

Accuracy: 87.5%

Random Forest Results

Category	Setting	Value
Model	Number of Trees	500
	Max Tree Depth	None
	Data Format	Flatten to 1D
Training	Random Seed	69
	Use All Cores	Yes
	Bootstrap	True
Data	Normalize	/255.0
	Data Type	float32
	Processing	Image flattening

Ассигасу: 61.0%

Category	Setting	Value
Model	Number of Trees	500
	Max Tree Depth	None
	Data Format	Flatten to 1D
Training	Random Seed	69
	Use All Cores	Yes
	Bootstrap	True
Data	Normalize	/255.0
	Data Type	float32
	Processing	Image flattening

Accuracy: 62.2%

Summary

Both models work well for image classification but have different strengths. The CNN performs better for complex image tasks, while Random Forest is faster and easier to understand. Both include good reporting, error handling, and optimization features that make them ready to use in real projects.