How Effect Size, Sample Size, and Power Interact with Each Other

Note and Disclaimer

- (1) This PDF is part of YouTube tutorials (https://youtu.be/ToznTtragUQ). This PDF is for individual, personal usage only.
- (2) The author accepts no responsibility for the topicality, correctness, completeness or quality of the information provided.

Effect Size

The following effect size numbers are from Jacob Cohen's Statistical Power Analysis for the Behavioral Sciences.

Effect Size	d	r
Small	0.2	0.1
Medium	0.5	0.3
Large	0.8	0.5

Sample Size

Sample size refers to the number of observations or individuals measured or included in a study.

Statistical Power

	H0 is True	H0 is False
Correct Action	Should Not Reject H0	Should Reject H0
A Test Rejects H0 (Positive)	α	$1-\beta$
A Test Doesn't Reject H0 (Negative)	$1-\alpha$	β

 $1-\beta$ is also called power, or statistical power. It is the probability that, null hypothesis is false and we correctly reject the null hypothesis.

Keeping effect size the same:

Effect of Sample Size on Power

```
library(pwr)
```

Warning: package 'pwr' was built under R version 4.1.3

Keeping effect size the same: Effect of Sample Size on Power

```
## Sample Size = 100
plot(result_100)
```


Sample Size = 140
plot(result_140)

Two-sample t test power calculation

Remark 1: For a given effect size, as sample size increases, the power also increases.

Keeping power the same:

Impact of Effect Size on Needed Sample Size

Keeping power the same: Impact of Effect Size on Needed Sample Size

```
## Effect Size = 0.5
plot(result_0_5)
```


Effect Size = 0.8 plot(result_0_8)

Two-sample t test power calculation

Remark 2: For a given power, as effect size increases, the needed sample size decreases.

Keeping sample size the same:

Impact of Effect Size on Power

Keeping sample size the same: Impact of Effect Size on Power

```
## Effect Size = 0.5
plot(result_0_5)
```


Effect Size = 0.8 plot(result_0_8)

Two-sample t test power calculation

Remark 3: For a given sample size, as effect size increases, the power also increases.

- $Remark\ 1$: For a given effect size, as sample size increases, the power also increases.
- $Remark\ 2$: For a given power, as effect size increases, the needed sample size decreases.
- $Remark\ 3$: For a given sample size, as effect size increases, the power also increases.