Probability

Bayes Theorem:

$$P(Y = \pm 1|X) = \frac{P(X|Y = \pm 1)P(Y = \pm 1)}{P(X|Y = +1)P(Y = +1) + P(X|Y = -1)P(Y = -1)}$$

Perceptron

$$f(\mathbf{x}) = \boldsymbol{\theta} \cdot \mathbf{x} + \theta_0 = \sum_{i=1}^d \theta_i x_i + \theta_0, \ \hat{y} = \begin{cases} 1, & \text{if } f(x) \ge 0 \\ -1, & \text{if } f(x) < 0 \end{cases}$$

Decision boundary, a hyperplane in \mathbb{R}^d :

$$H = \{ \mathbf{x} \in \mathbb{R}^d : f(\mathbf{x}) = 0 \} = \{ \mathbf{x} \in \mathbb{R}^d : \boldsymbol{\theta} \cdot \mathbf{x} + \theta_0 = 0 \}$$

 θ is the **normal** of the hyperplane,

 θ_0 is the **offset** of the hyperplane from origin,

 $-\frac{\theta_0}{\|\boldsymbol{\theta}\|}$ is the **signed distance** from the origin to hyperplane.

Perceptron algorithm,

Input:
$$(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \in \mathbb{R}^d \times \{\pm 1\}$$

while some $y_i \neq \text{sign}(\boldsymbol{\theta} \cdot \mathbf{x}_i)$
pick some misclassified (\mathbf{x}_i, y_i)
 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y_i \mathbf{x}_i$

Given a linearly separable data, perceptron algorithm will take no more than $\frac{R^2}{\gamma^2}$ updates to **converge**, where $R = \max_i \|\mathbf{x}_i\|$ is the radius of the data, $\gamma = \min_i \frac{y_i(\boldsymbol{\theta} \cdot \mathbf{x}_i)}{\|\boldsymbol{\theta}\|}$ is the margin.

Also, $\frac{\theta \cdot \mathbf{x}}{\|\theta\|}$ is the signed distance from H to \mathbf{x} in the direction θ .

 $\theta = \sum_i \alpha_i y_i \mathbf{x}_i$, thus any inner product space will work, this is a kernel.

Gradient descent view of perceptron, minimize margin cost function $J(\theta) = \sum_{i} (-y_i(\theta \cdot \mathbf{x}_i))_+$ with $\theta \leftarrow \theta - \eta \nabla J(\theta)$

Support Vector Machine

Hard margin SVM,

$$\min_{\boldsymbol{\theta}} \|\boldsymbol{\theta}\|^2$$
, such that $y_i \boldsymbol{\theta} \cdot \mathbf{x}_i \geq 1 (i = 1, \dots, n)$

Soft margin SVM,

$$\min_{\boldsymbol{\theta}} \|\boldsymbol{\theta}\|^2 + C \sum_{i=1}^n (1 - y_i \boldsymbol{\theta} \cdot \mathbf{x}_i)_+$$

Regularization and SVMs: Simulated data with many features $\phi(\mathbf{x})$; C controls trade-off between margin $1/\|\boldsymbol{\theta}\|$ and fit to data; Large C: focus on fit to data (small margin is ok). More overfitting. Small C: focus on large margin, less tendency to overfit. Overfitting increases with: less data, more features.

$$\theta = \sum_i \alpha_i y_i \mathbf{x}_i, \ \alpha_i \neq 0$$
 only for support vectors.

 $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j)$, K is called a kernel. Solve α_j to determine $\sum_j \alpha_j y_j \phi(\mathbf{x}_j)$. Compute the classifier for a test point \mathbf{x} via $\theta \cdot \phi(\mathbf{x}) = \sum_j \alpha_j y_j K(\mathbf{x}_j, \mathbf{x})$

degree-m polynomial kernel: $K_m(\mathbf{x}, \tilde{\mathbf{x}}) = (1 + \mathbf{x} \cdot \tilde{\mathbf{x}})^m$ radial basis function kernel: $K_{rbf}(\mathbf{x}, \tilde{\mathbf{x}}) = \exp(-\gamma ||\mathbf{x} - \tilde{\mathbf{x}}||^2)$

Decision Theory

Loss function: $l: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$, and $l(\hat{y}, y)$ is the cost of predicting \hat{y} when the outcome is y.

Assume (\mathbf{X}, \mathbf{Y}) are chosen i.i.d according to some probability distribution on $\mathcal{X} \times \mathcal{Y}$. **Risk** is misclassification probability: $R(f) = \mathbb{E}l(f(\mathbf{X}), \mathbf{Y}) = Pr(f(\mathbf{X}) \neq \mathbf{Y})$

Bayes Decision Rule is

$$f^*(x) = \begin{cases} 1, & \text{if } P(\mathbf{Y} = 1|x) > P(\mathbf{Y} = -1|x) \\ -1, & \text{otherwise.} \end{cases}$$

and the optimal risk (Bayes risk) $R^* = \inf_f R(f) = R(f^*)$

Excess risk is for any
$$f: \mathcal{X} \to \{-1, +1\}$$
, $R(f) - R^* = \mathbb{E}(1[f(x) \neq f^*(x)]|2P(\mathbf{Y} = +1|\mathbf{X}) - 1|)$

 ${\bf Risk}$ in ${\bf Regression}$ is expected squared error:

$$R(f) = \mathbb{E}l(f(\mathbf{X}), \mathbf{Y}) = \mathbb{E}\mathbb{E}[f(\mathbf{X}) - \mathbf{Y}^2 | \mathbf{X}]$$

Bias-variance decomposition:

$$R(f) = \mathbb{E}[\underbrace{(f(\mathbf{X}) - \mathbb{E}[\mathbf{Y}|\mathbf{X}])^2}_{\text{bias}^2}] + \mathbb{E}[\underbrace{(\mathbb{E}[\mathbf{Y}|\mathbf{X}] - \mathbf{Y})^2}_{\text{variance}}]$$

Generative and Discriminative

Discriminative models: P(X, Y) = P(X)P(Y|X).

Estimate $P(\mathbf{Y}|\mathbf{X})$, then pretend out estimate $\hat{P}(\mathbf{Y}|\mathbf{X})$ is the actual $P(\mathbf{Y}|\mathbf{X})$ and plug in bayes rule expression.

Generative model: P(X, Y) = P(Y)P(X|Y).

Estimate $P(\mathbf{Y})$ and $P(\mathbf{X}|\mathbf{Y})$, then use bayes theorem to calculate $P(\mathbf{Y}|\mathbf{X})$ and use discriminative model.

Estimation