Лист регистрации изменений ОСТ 34-42-747-85

	HOME	od nuc	mob (страниц)				Срок		
H3M.	H3MC- HCH- Hbix	3ame Heh- Hb/X	Нобых	Аннули- рабан- ных	Номер документа	Падпись	Lama	BBEU HUR USM HCHU		
				٠,			}			
			,		{			1		
				191 191	-	}				
					News .					
-			}							
			<u> </u>		5.50			1		
2				4	1 2 2			}		
Š	1				}					
1								1		
					ļ .		}	1		
			}			}	}	1		
	}			}				}		
1							}			
٠,	•			-						
8	-		. A.			1				

9ДК 621. 643.4: 621. 311.22 ОТРА СЛЕВОЙ Группа Е 25 СТАНДАРТ

Детали и сборочные единицы трубопроводов ТЭ \mathcal{E} Ру \leqslant 4 МЛС (40 к2 \mathcal{E} /см 2)

СОЕДИНЕНИЯ СВАРНЫЕ СТЫКОВЫЕ OCT 34-42-748-85

Типы, конструктивные элементы и размеры окп зі ізіі

Взамен ОСТ 34-42-482-80

Приназом Министерства энергетики и электрифинации СССР от 07 августа 1985 г. № 72 а срок действия установлен <u>с 01 января 1986 г.</u>

до 31 декабря 1990 г.

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает основные типы, конструктивные элементы и размеры сварных стыковых соединений, а также конструкцию кромок труб и фасонных частей трубопроводов подготовленных под сварку.

Стандарт распространяется на сварные стыковые соединения труб, деталей и сборочных единиц из углеро-дистой и низколегированной сталей для трубопроводов с условным давлением Ру ≤ 4 МПа (40кгс/см²) тепловых электростанций

Стандарт не распространяется на стыковые соединения секторов между собой при изготовлении сварных отводов, штуцера к корпусу тройника и фланца к трибе.

Стандарт свответствует требованиям "Руководящих технических материалов по сварке при монтаже оборудования тепловых электростанций" (PTM-1C-81).

Издание официальное

Перепечатка воспрещена

TP 8356462 om 19.12.85 r.

19

Cmp. 2 OCT 34-42-748-85

1. ОСНОВНЫЕ ТИПЫ СВАРНЫХ СОЕДИНЕНИЙ

1.1 Основные типы сварных соединений должны соответствовать указанным в табл. 1

Ταδπυμα 1

Условное обозначение сварного соединения	Форма подготов- пенных кромок	Наружный диаметр труб Дн, мм	Толщина стенки S, мм	Тип разделки по РТМ-1С-81
COI	Без скоса кромок	om 14 do 76	om 2 do 3	Tp - 1
C02	Са скосам	om 89 do 820	om 3,5 do 9	Тр-2
C 03	кромок	om 219 do 1620	om 6 do 14	Tp - 3B

1.2. Способы сварки устанавливаются технологическим процессом.

1.3. Допускается применение неуказанных в настоящем стандарте типов сварных соединений, проверенных в производственных условиях и обеспечивающих качество сварных соединений в соответствии с тредованиями РТМ-10-81.

14. На чертежах блоков трубопроводов необходимо указывать тип сварного соединения согласно настоящего стандарта.

Пример обозначения сварного шва типа СО1:

OCT 34-42-748-85 CO1

OCT 34-42-748-85 Cmp. 3

2. КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ СВАРНЫХ СОЕДИНЕНИЙ И ИХ РАЗМЕРЫ

2.1. Конструкция и размеры под сварку кромок труб, деталей и сборочных единиц должны соответствовать указанным в табл. 2

	Размеры в мм	<i>โลชิกบนุล</i> 2
Условное обазначение сбарного соединения	- Фарма разделки кромок	Tun pasdeaku no PTM-1C-81
CO1	2	Tp-1
C 02	30°±3° 12,5/	<i>Τρ-2</i>
C 03	12°+2° 12.5/	Тр - 3В

0

 s_{I}

Cmp.4 OCT 34-42-748-85

2.2. При стыковке труб, деталей и сборочных единиц с разными наружными диаметрами или толщинами стенок конец трубы с большим наружным диаметром должен быть обработан механическим способом согласно черт. 1

Черт. 1

Указанная обработка производится, если размер h будет превышать 30% толщины более тонкой стенки трубы или 5 мм.

При меньших величинах размера h сварной шов выполняется с плавным переходом от трубы с большим сечением к трубе с меньшим сечением.

2.3. При стыковке труб, детапей и сборочных единиц, смещение внутренних поверхностей диаметром до 200 мм при сварке стыков без подкладного кольца должно быть: не более - 0,5 мм при толщине стенки до 10 мм, — 0,05 \$ при толщине стенки от 16 до 20 мм и 1 мм при толщине стенки более 20 мм.

2.4. При стыковке труб, детапей и сборочных единиц, свариваемых на подкладном кольце, зазор между кольцом и внутренней поверхностью не должен превышать 1 мм.

OCT 34-42-748-85 Cmp.5

2.5. При стыковке труб, деталей и сборочных единиц диаметром более 200 мм, смещение внутренних поверхностей не должно превышать при толщине стенки труб или деталей до 4мм--0,25, при большей толщине -0,155, но не более 2 мм, черт 2

Черт. 2

2.5.1. Для сварных соединений труб, деталей и сборочных единиц, разность внутренних диаметров которых превышает допустимую, плавность перехода в месте стыка абеспечивается одним из следующих способов:

а) раздача или калибровка на величину не более 2% от наружного диаметра — при толщине стенки до 5 мм и при диаметре не более 159 мм, черт. 3

Черт. 3

Cmp.6 OCT 34-42-748-85

б) расточкої согласно черт. 4

Черт. 4

в) цилиндрическая расточка согласно черт. 5

Черт.5

2.6 Допускается не производить расточку и калибровку труб, деталей и сборочных единиц, внутренние диаметры которых при стыковке отличаются на величину не более установленной соответствующими разделами РТМ-1C-81.

2.7. Значение зазоров при сборке стыков устанавливается требованиями производственных инструкций по сварке в зависимости от применяемого метода и технологии сварки.

OCT 34-42-748-85 Cmp. 7

3. КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ ШВОВ СВАРНЫХ СОЕДИНЕНИЙ

3.1. Размеры выполненных сварных швов должны соответ ствовать указанным в табл. 3 и 4

Ταδπυμα 3

	Условное обозночение сварного свединения	TUN POBBENKU NO PTM-1C-81	Размеры выполненных сварных швов
\	COI	Tp-1	
	C 02	Тр-2	9
	<i>C 03</i>	Тр-38	

3.2. Величина вогнутости корня шва С, при сварке, выполненной без подкладного кольца, должна соответствовать разделу 16 РТМ-1С-81

2

2				•						-			v _e										•								_
	Cmp.8 OCT 34-42-748-85																		1 🚗		0CT				1 - 1		Cmp. 9	_			
	4	9	теижикусткия масса каппавленно- го метапла одного стыка. Кг	C 03		-			-			<u> </u>	90	S2 S	_	табл. 4		CKON	масса наплабленно- го метапла одного	C03					0 0,272	18E 11 3			5 0,635	1,520	-
	Ταδ Λυψα 4	00,11		203		 -	1	· 			0,020	<i>a023</i>	8208	0,000	00			SPUTTE	משש	cas	0,089	0,174	0,193	0,218	0,260	0,550	0,000	0,640	0,635	QC/10	-
		Į.	MOICEO ROICEO ROIMEI RO	100	g oo 2	0003	0,005	6000	0.013	0.017			ا 		_ 1	Продолжение		1Pnn	eo men	102				1							_
		gom		503											-	Прод	Yum			C03			13+3			14+4	43+3		14+4	5+57	<u>-</u>
		1919	ف	202			-						9+2	·	_		1111	70/01	u	C 02	10+2		12+3	13+4	12+3	14.4	13+4	15+5	14+4	1	_
		Выполненный		100			6+1	5					١				N/W	UNHEH		100											_
	B MM	Bein	<i>0</i> §	porce		1,5					2,0				_		~ 1 '	100	<i>0</i> 9	45	2,0					c'2		·		-	.
	Размеры		9 Натин отка.	Все типы швав			4	Ch:	-		1		+0,5	-1,0	_		размеры б	c	Э Н эм ин. аткл.	Все типы швов					-10					75.0	e : - 1
	Past		Harrus	Bcc					1,5						_ ¦	•	h03/	-	HBMU	278				15						25 20	
		L	2% 2						3	<u> </u>					_ '		-	+	98.5			T	· _	3	3	Т	1			-	-
		жа	Минимально- допусятьная тодиния	CMEHKU S,		'	ĵ.		2,0		2,5			3,0				Кромка	Минимально допустимая топи	стенки S4	4.0	4,5	5.0	6,0	5,0	6,5	6,7	8.0	0'9	2.0	9'51
***		KOOMKO	DAKA ORKA) Page	+0 48	2	+0,21	2001	cz'n +	05.0+	3		+0,35		127 +0,40		ļ	\sim $-$	Диаметр расточки граздачи	Iped Inki	+ 040		94'0+		14,52		+4,57	+ 4,63		+0,70	_
			Диаметр расточки	Homun floed	=	5	2 2	3 55	44	22	7	**		102						HOMUM	191	210	208	253 259	315	311	196	414	216	919	900
			Размеры присоеди- няемых	труб Дн х S	14 × 2	18 × 2	25 x 2		45 × 2.5	57 x 3	76 × 3	89 x 3	C.C. x 20	4 × 801 4 × 801	13.7 × 4			размеры	присоеди. няемых	DH × S	159 × 4.5	159 × 5 219 × 6	219×7	273 × 6 273 × 8	325x B	325× 8	377× 9	6 × 92h	530×8	630x 8	71 2000
			- 23	Dy Dy	10	15	2	23 65	94	20	65	08		004	125				Условный поаход	Dy	150	3	200	250	200	900	350	004	200	009	27
	26									-					•							. •									<i>21</i>

