Департамент образования и науки города Москвы Государственное автономное образовательное учреждение высшего образования города Москвы «Московский городской педагогический университет» Институт цифрового образования Департамент информатики, управления и технологий

ДИСЦИПЛИНА:

Инструменты для хранения и обработки больших данных **Лабораторная работа № 5.1**

Тема:

«Развертывание и настройка кластера Hadoop»

Выполнил(а):

Вереина М.С., АДЭУ-211

Преподаватель: Босенко Т.М.

Москва

2024

Цель работы:

Ознакомление с процессом установки и настройки распределенных систем, таких как Apache(Arenadata) Наdoop. Изучить основные операции и функциональные возможности системы, что позволит понять принципы работы с данными и распределенными вычислениями.

Постановка задачи

Проанализировать экономические данные, содержащиеся в вашем файле, который находится в файловой системе Hadoop (HDFS). Задача заключается в извлечении, обработке, и анализе данных с целью выявления закономерностей, тенденций, и создания визуализаций на основе предоставленных данных.

Вариант 3. Установка Арасhe Hadoop и выполнение задачи на сортировку данных.

Данные: Исторические данные по акциям Лукойла (LKOH) с сайта Московской биржи (moex.com).

Операции: Фильтрация данных за последние 5 лет, расчет минимальной цены закрытия, группировка по годам.

Ход работы

1. Запуск Hadoop и загрузка файла

Шаг 1. Запуск Hadoop.

- 1) Запуск надстройки над основной файловой системой.
- 2) Запуск службы YARN, необходимой для управления и контроля за затрачиваемыми ресурсами на выполнение задач, связанных с большими данными.

```
\oplus
                                                                                      Q
                                         hadoop@devopsvm: ~
                                                                                          \equiv
devops@devopsvm:~$ sudo su hadoop
[sudo] password for devops:
hadoop@devopsvm:/home/devops$ cd
hadoop@devopsvm:~$ start-dfs.sh
Starting namenodes on [localhost]
Starting datanodes
Starting secondary namenodes [devopsvm]
2024-11-07 21:48:19,265 WARN util.NativeCodeLoader: Unable to load native-hadoop library for y
our platform... using builtin-java classes where applicable
hadoop@devopsvm:~$ start-yarn.sh
Starting resourcemanager
Starting nodemanagers
hadoop@devopsvm:~$
```

Рисунок 1 – Подключение к Hadoop и запуск Yarn

Шаг 2. Проверка работы Hadoop.

Воспользуемся jps — это утилита командной строки, которая отображает информацию о процессах виртуальной машины Java (JVM), запущенных в системе.

```
hadoop@devopsvm:~$ jps
6368 ResourceManager
6048 SecondaryNameNode
5844 DataNode
6501 NodeManager
6889 Jps
5612 NameNode
```

Рисунок 2 – Выполнение команды јрѕ

После выполнения команды можно увидеть следующие процессы: NameNode, DataNode, SecondaryNameNode, ResourceManager, NodeManager.

В стандартной конфигурации Hadoop HDFS предоставляет веб-интерфейс, доступный через веб-браузер на порту 9870. Этот интерфейс позволяет просматривать состояние и структуру HDFS, а также выполнять некоторые операции.

Рисунок 3 – Веб-интерфейс Hadoop в веб-браузере

На веб-интерфейсе YARN можно увидеть информацию о запущенных приложениях, статусе узлов и других метриках кластера. Это удобный способ управления и мониторинга задач.

Рисунок 4 – Веб-интерфейс Yarn

Шаг 3. Работа с данными.

Необходимо создать директорию в HDFS:

```
hadoop@devopsvm:~$ hadoop fs -mkdir /vereinams

2024-11-21 01:02:56,621 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your plat form... using builtin-java classes where applicable hadoop@devopsvm:~$ hadoop fs -mkdir /vereinams/hadoop

2024-11-21 01:03:42,042 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your plat form... using builtin-java classes where applicable

^[[A^[[Ahadoop@devopsvm:~$ hadoop fs -mkdir /vereinams/hadoop/input

2024-11-21 01:03:58,474 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your plat form... using builtin-java classes where applicable hadoop@devopsvm:~$
```

Рисунок 5 – Использование команд для создания каталога в HDFS

При успешном создании данная директория будет доступна в веб-интерфейсе Наdoop.

Рисунок 6 – Отображение директории в веб-интерфейсе Hadoop

Загрузка данных в файловую систему HDFS.

Для загрузки файла необходимо перейти в ранее созданную директорию и воспользоваться иконкой для загрузки.

Перед этим предоставить необходимые права доступа к созданным директориям.

```
hadoop@devopsvm:~$ hadoop fs -chmod 777 /vereinams

2024-11-21 01:11:32,195 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform...
using builtin-java classes where applicable
hadoop@devopsvm:~$ hadoop fs -chmod 777 /vereinams/hadoop

2024-11-21 01:11:43,442 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform...
using builtin-java classes where applicable
^[[Ahadoop@devopsvm:~$ hadoop fs -chmod 777 /vereinams/hadoop/input

2024-11-21 01:11:56,506 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform...
using builtin-java classes where applicable
hadoop@devopsvm:~$
```

Рисунок 7 – Предоставление доступа к директориям

В рамках указанного варианта в Hadoop будут загружены 225МБ данных об изменении акций компании Лукойл.

Рисунок 8 – Элемент веб-интерфейса для загрузки файла в HDFS

Рисунок 9 – Загрузка файла в HDFS

Рисунок 10 – Результат загрузки файла в HDFS

Запуск Spark

Далее необходимо запустить фреймворк Spark с помощью команды spark-shell, с помощью которого можно выполнять операции с загруженными данными.

Рисунок 11 – Запуск Spark

2. Подключение к Hadoop и загрузка данных.

Шаг 1.

Подключиться к HDFS и убедиться, что файл доступен по пути hdfs://localhost:9000/vereinams/hadoop/input/LKOH.csv.

Использовать PySpark или Pandas для загрузки данных из HDFS в DataFrame, который можно будет использовать для анализа.

Для этого необходимо создать SparkSession – это способ инициализации базовой функциональности PySpark для программного создания PySpark RDD, DataFrame и Dataset. SparkSession можно создать с помощью SparkSession.builder, который представляет собой реализацию шаблона проектирования Builder

Для того чтобы убедиться, что файл доступен по указанному пути, необходимо воспользоваться командой spark.read.scv, в рамках которой задать путь до файла. Если он корректен, то с файлом можно работать дальше, например, отобразить первые 5 строк.

Рисунок 12 – Создание SparkSession и отображение первых 5 строк.

3. Исследование и очистка данных.

1) Проверить структуру данных и типы столбцов (например, с помощью printSchema() для PySpark или describe() для Pandas).

```
| Toot | Foundation | Foundatio
```

Рисунок 13 – Проверка структуры данных и типов столбцов

2) Убедиться, что все данные корректны, и преобразовать необходимые столбцы в числовые форматы, если они изначально представлены в виде строк.

С помощью методов printSchema() и df.dtypes получилось определить структуру и типы столбцов. Все они указаны корректно:

- 1. **Date: date**. Столбец с датой сделок/торговых сессий. Использование типа date позволяет хранить только дату без времени.
- 2. **Number of Transactions: integer**. Столбец, который хранит количество транзакций. Тип integer подходит, так как количество транзакций обычно не превышает 2 миллиардов.
- 3. **Volume of Transactions (shares): double**. Столбец, который хранит объем транзакций в акциях. Тип double позволяет учитывать дробные значения, объем может быть нецелым.

- 4. **Volume of Transactions (rubles): double**. Столбец, который хранит объем транзакций в рублях. Использование типа double также корректно для хранения денежных сумм, требуется учитывать дробные значения.
- 5. **Max Price: double**. Столбец, который хранит максимальную цену акций за период, они могут иметь дробные значения.
- 6. **Min Price: double**. Столбец, который хранит минимальную цену акций за период. Аналогично предыдущему столбцу, тип double корректен.
- 7. **Percent Change: double**. Столбец, который хранит процентное изменение цены акций. Использование типа double оправдано, так как процентные изменения могут быть дробными.
- 8. **Number of Participants: integer**. Столбец, который хранит количество участников торгов. Тип integer является подходящим выбором для хранения целых чисел.
- 3) Проверить данные на наличие пропущенных или некорректных значений, удалить или заполнить такие значения в зависимости от ситуации.

Для этого необходимо перевести датафрейм Spark в датафрейм Pandas, после чего проверяем наличие пропущенных нулей в каждом столбце:

Рисунок 14 – Поиск пропущенных значений

- 3) Анализ данных.
- Провести базовый статистический анализ данных.
- Вычислить средние значения, медианы, минимумы и максимумы для экономических параметров.

Пропущенных значений в данном случае не оказалось, поэтому можно использовать метод описательной статистики describe(), чтобы сделать дальнейшие выводы по корректности данных.

	Number of Transactions	Volume of Transactions (shares)	Volume of Transactions (rubles)	Max Price	Min Price	Percent Change	Number of Participants
count	2.097152e+06	2.097152e+06	2.097152e+06	2.097152e+06	2.097152e+06	2.097152e+06	2.097152e+06
mean	5.001402e+04	1.944060e+07	4.999457e+09	4.500000e+03	4.500000e+03	-5.274294e-03	2.505453e+02
std	2.886152e+04	1.122849e+07	2.886264e+09	2.598078e+03	2.598078e+03	1.443652e+01	1.443636e+02
min	0.000000e+00	9.467930e+01	1.386966e+04	0.000000e+00	0.000000e+00	-2.499998e+01	1.000000e+00
25%	2.502500e+04	9.725092e+06	2.499802e+09	2.250000e+03	2.250000e+03	-1.250609e+01	1.250000e+02
50%	5.001350e+04	1.944261e+07	4.998798e+09	4.500000e+03	4.500000e+03	-4.421235e-03	2.510000e+02
75%	7.500200e+04	2.915813e+07	7.497931e+09	6.750000e+03	6.750000e+03	1.250248e+01	3.760000e+02
max	1.000000e+05	3.888998e+07	9.999999e+09	9.000000e+03	9.000000e+03	2.499996e+01	5.000000e+02

Рисунок 15 – Результат выполнения команды describe()

Приведенные значения указывают на корректность данных, как с точки зрения качества данных, так и по их наполненности. На основании этого можно сделать следующие выводы:

Количество транзакций (Number of Transactions):

• Среднее значение: 50 000 шт

Среднее количество транзакций указывает на активность торговли акциями Лукойла. Наличие нулевых значений лишь указывает на дни с отсутствием торговых операций.

Объем транзакций в акциях (Volume of Transactions (shares)):

• **Среднее значение**: 19 400 000 акций

Объем торгов показывает высокую активность на рынке.

Объем транзакций в рублях (Volume of Transactions (rubles)):

Высокий средний объем транзакций в рублях говорит о значительных финансовых операциях с акциями Лукойла.

Максимальная и минимальная цена акций (Max Price и Min Price):

Эти значения показывают диапазон цен за рассматриваемый период и могут быть полезны для анализа волатильности акций, в среднем составляют ~ 4500 рублей.

Процент изменения цены акций (Percent Change):

• Среднее значение: -5.27%

Отрицательное среднее значение указывает на общее снижение цен за рассматриваемый период.

Количество участников торгов (Number of Participants):

• **Среднее значение**: 2.51×1022.51×102 (или около 251 участника)

Данные показывают высокую активность торговли акциями Лукойла с большим объемом транзакций как в количестве акций, так и в денежном выражении. Наблюдается высокая волатильность цен с отрицательным средним изменением цены за рассматриваемый период. Несмотря на наличие дней без торговых операций, общая тенденция указывает на активность и интерес к акциям компании.

4. Основное задание:

Установка Apache Hadoop и выполнение задачи на сортировку данных.

Данные: Исторические данные по акциям Лукойла (LKOH) с сайта Московской биржи (moex.com).

Операции: Фильтрация данных за последние 5 лет, расчет минимальной цены закрытия, группировка по годам.

Исходя из того, что при просмотре первых 5 значений датафрейма, данные находились вразброс, необходимо применить к ним сортировку для корректного отображения, в данном случае по дате, так как данные представляют собой исторические значения акций с помощью метода sort_values().

u1_301 c	<pre>df_sort = df_pd.sort_values(by = 'Date') df_sort</pre>											
	Date	Number of Transactions	Volume of Transactions (shares)	Volume of Transactions (rubles)	Max Price	Min Price	Percent Change	Number of Participan				
1850446	1997-01-01	60035	1.566573e+06	9.286410e+08	7941.256495	7941.256495	10.208875	27				
1060787	1997-01-01	24599	3.175778e+07	5.776579e+09	4552.406098	4552.406098	9.931988	30				
1287007	1997-01-01	66566	1.996447e+07	2.479943e+09	5523.237478	5523.237478	-9.011868	2				
289684	1997-01-01	44826	1.768331e+07	7.390749e+09	1243.189451	1243.189451	-24.147486	3				
202010	1997-01-01	42882	8.373430e+06	7.269332e+09	866.933282	866.933282	6.506255					
705820	2024-11-01	27559	1.564816e+07	4.782930e+09	3029.052271	3029.052271	-4.269346	3				
810020	2024-11-01	89805	2.769503e+07	1.366661e+08	3476.230372	3476.230372	2.008147	2				
1006936	2024-11-01	73009	1.048973e+07	9.958435e+09	4321.302567	4321.302567	-22.481559	3				
1947235	2024-11-01	36732	9.767120e+06	9.285064e+09	8356.630019	8356.630019	3.275401	1				
717799	2024-11-01	80920	2.031081e+07	1.293338e+09	3080.460587	3080,460587	7.923122	1				

Рисунок 16 – применение сортировки к данным

Далее работаем с фильтрацией, необходимо отфильтровать данные за последние 5 лет. Для этого используется метод DateOffset. Data offset в Python используется для смещения данных с целью сравнения изменений во времени или создания производных

признаков. Это применяется в финансовом анализе, прогнозировании временных рядов и при подготовке данных для алгоритмов машинного обучения.

Рисунок 17 – Применение фильтрации по датам

После применения фильтрации данные начинают отображаться с 01.11.2019 – что является датой ровно 5 лет назад.

Далее для того, чтобы вывести минимальную цену закрытия и дату, в которую оно произошло, необходимо воспользоваться встроенной функцией min() к минимальным ценам закрытия. Далее по индексу минимальной цены необходимо вывести соответствующую ему дату с помощью функции loc().

```
# Pacчet минимальной цены закрытия и соответствующей даты

min_price = df_filter['Min Price'].min() # Минимальная цена закрытия

min_date = df_filter.loc[df_filter['Min Price'].idxmin(), 'Date'] # Дата минимальной цены

print(f"Минимальная цена закрытия за последние 5 лет: {min_price}")

print(f"Дата минимальной цены закрытия: {min_date.date()}")

Минимальная цена закрытия за последние 5 лет: 0.00858307294038436

Дата минимальной цены закрытия: 2022-06-01

[]:
```

Рисунок 18 – Определение минимальной цены закрытия

Далее для того, чтобы сгруппировать исторические данные акций по годам, необходимо в первую очередь создать столбец Года, который будет заполняться по данным из столбца Даты. Далее необходимо для каждого используемого в группировке столбца

определить соответствующее агрегированное значение. Для денежных данных, а также для процентных колебаний необходимо использовать вычисление среднего mean, для количественных показателей, таких как объем и количество транзакций, а также их количество необходимо использовать вычисление суммы sum.

Сама группировка осуществляется посредством использования метода groupby().

Рисунок 19 – Результат применения группировки к данным

Также по данным, полученным из Hadoop, можно строить графики, однако воспроизводиться они будут очень медленно.

```
# Создание фигуры для графиков
plt.figure(figsize=(14, 10))

# График количества транзакций
plt.subplot(3, 2, 1)
sns.lineplot(data=df_sort, x='Date', y='Number of Transactions', color='blue')
plt.title('Количество транзакций по времени')
plt.xlabel('Дата')
plt.ylabel('Количество транзакций')

# Настройка общего оформления графиков
plt.tight_layout()
plt.show()
```


Рисунок 20 – Визуализация данных

Также важно уметь сохранять измененные данные обратно в Hadoop, это можно сделать с помощью write.mode().

Рисунок 21 – Сохранение измененных данных в Hadoop

Выводы: в ходе выполнения данной лабораторной работы был изучен процесс установки и настройки распределенных систем, таких как Apache Hadoop. Изучены основные операции и функциональные возможности системы, что позволило понять принципы работы с данными и распределенными вычислениями.

Hadoop вместе со Spark и Yarn позволяет работать с большими данными гораздо эффективнее засчет следующих параметров:

1. Скорость обработки:

Spark значительно быстрее Hadoop MapReduce благодаря обработке данных в памяти, что делает его идеальным для интерактивных и итеративных задач.

2. Универсальность:

Spark поддерживает различные типы обработки данных: пакетную, потоковую, SQLзапросы и машинное обучение, в то время как Hadoop в основном ориентирован на пакетную обработку через MapReduce.

3. Интеграция:

Spark может работать с данными, хранящимися в HDFS, что позволяет использовать Наdoop как систему хранения. Это обеспечивает масштабируемость и долговременное хранение данных.

4. Управление ресурсами:

YARN (Yet Another Resource Negotiator) позволяет эффективно распределять ресурсы между Hadoop и Spark, что обеспечивает оптимальное использование вычислительных мощностей.

5. Обработка больших данных:

Использование Spark вместе с Hadoop позволяет обрабатывать большие объемы данных более эффективно, что особенно полезно для аналитических приложений и задач, требующих высокой скорости обработки.

6. Отказоустойчивость:

Оба инструмента обеспечивают отказоустойчивость: Hadoop записывает данные на диск после каждой операции, а Spark использует концепцию RDD (Resilient Distributed Dataset) для восстановления данных в случае сбоя.

В ходе проделанной работы на экспериментах с выполнением операций с DataFrame Spark и DataFrame Pandas первый показал лучшие результаты. При работе со вторым датафреймом виртуальная машина не справлялась, в связи с чем приходилось несколько раз перезагружать ее, теряя текущий результат. Spark же работает более стабильно и эффективно.