Planche nº 3. Raisonnement par récurrence. Corrigé

Exercice nº 1

Montrons par récurrence que : $\forall n \in \mathbb{N}, 2^n > n$.

- Pour n = 0, $2^0 = 1 > 0$. L'inégalité à démontrer est donc vraie quand n = 0.
- Soit $n \ge 0$. Supposons que $2^n > n$ ou encore plus précisément, $2^n \ge n+1$ (puisque 2^n est un entier) et montrons que $2^{n+1} > n+1$.

$$2^{n+1} = 2 \times 2^n$$

 $\geqslant 2(n+1)$ (par hypothèse de récurrence)
 $= n+1+n+1$
 $> n+1$.

On a montré par récurrence que :

$$\forall n \in \mathbb{N}, \ 2^n > n.$$

Exercice nº 2

Montrons par récurrence que : $\forall n \ge 4, n! \ge n^2$.

- Pour n = 4, $4! = 4 \times 3 \times 2 \times 1 = 24$ et $4^2 = 16$. Puisque $24 \ge 16$, l'inégalité à démontrer est donc vraie quand n = 4.
- Soit $n \ge 4$. Supposons que $n! \ge n^2$ et montrons que $(n+1)! \ge (n+1)^2$.

$$(n+1)! = (n+1) \times n!$$

 $\geqslant (n+1) \times n^2$ (par hypothèse de récurrence).

Or,
$$(n+1) \times n^2 - (n+1)^2 = (n+1)(n^2 - n - 1) = (n+1)(n(n-1) - 1) \geqslant 5 \times (4 \times 3 - 1) = 55 \geqslant 0$$
 et donc $(n+1) \times n^2 \geqslant (n+1)^2$ puis $(n+1)! \geqslant (n+1)^2$.

On a montré par récurrence que :

$$\forall n \geqslant 4, \ n! \geqslant n^2.$$

Exercice nº 3

Montrons par récurrence que : $\forall n \geq 2$, n est divisible par au moins un nombre premier.

- 2 est divisible par 2 qui est un nombre premier. La propriété à démontrer est donc vraie quand n=2.
- Soit $n \ge 2$. Supposons que pour tout $k \in [2, n]$, k est divisible par au moins un nombre premier et montrons que n+1 est divisible par au moins un nombre premier.

Si n+1 est un nombre premier, n+1 admet au moins un diviseur premier à savoir lui-même. Sinon, n+1 n'est pas premier. Dans ce cas, il existe deux entiers $\mathfrak a$ et $\mathfrak b$ éléments de $[\![2,n]\!]$ tels que $\mathfrak n+1=\mathfrak a\times\mathfrak b$. Par hypothèse de récurrence, l'entier $\mathfrak a$ est divisible par au moins un nombre premier $\mathfrak p$. L'entier $\mathfrak p$ divise l'entier $\mathfrak a$ et l'entier $\mathfrak a$ divise l'entier $\mathfrak n+1$. Donc le nombre premier $\mathfrak p$ divise l'entier $\mathfrak n+1$.

Dans tous les cas, l'entier n + 1 est divisible par au moins un nombre premier.

On a montré par récurrence que tout entier supérieur ou égal à 2 est divisible par au moins un nombre premier.

Exercice nº 4

Montrons par récurrence que : $\forall n \in \mathbb{N}, \ u_n = (-2)^n + 3^n$.

- $\bullet \ (-2)^0 + 3^0 = 2 = u_0 \ \mathrm{et} \ (-2)^1 + 3^1 = 1 = u_1. \ \mathrm{L'\acute{e}galit\acute{e}} \ \grave{\mathrm{a}} \ \mathrm{d\acute{e}montrer} \ \mathrm{est} \ \mathrm{donc} \ \mathrm{vraie} \ \mathrm{quand} \ n = 0 \ \mathrm{et} \ n = 1.$
- Soit $n \ge 0$. Supposons que $u_n = (-2)^n + 3^n$ et que $u_{n+1} = (-2)^{n+1} + 3^{n+1}$ et montrons que $u_{n+2} = (-2)^{n+2} + 3^{n+2}$.

$$\begin{split} u_{n+2} &= u_{n+1} + 6u_n \\ &= \left((-2)^{n+1} + 3^{n+1} \right) + 6 \left((-2)^n + 3^n \right) \text{ (par hypothèse de récurrence)} \\ &= (-2+6) \times (-2)^n + (3+6) \times 3^n = 4 \times (-2)^n + 9 \times 3^n \\ &= (-2)^2 \times (-2)^n + 3^2 \times 3^n = (-2)^{n+2} + 3^{n+2}. \end{split}$$

On a montré par récurrence que :

$$\forall n \in \mathbb{N}, (-2)^n + 3^n.$$

Exercice nº 5

1) Montrons par récurrence que : $\forall n \geqslant 1$, $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$.

• Pour
$$n = 1$$
, $\frac{1 \times (1+1)}{2} = 1 = \sum_{k=1}^{1} k$. L'égalité à démontrer est vraie quand $n = 1$.

• Soit
$$n \ge 1$$
. Supposons que $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ et montrons que $\sum_{k=1}^{n+1} k = \frac{(n+1)(n+2)}{2}$.

$$\begin{split} \sum_{k=1}^{n+1} k &= \left(\sum_{k=1}^n k\right) + (n+1) = \frac{n(n+1)}{2} + (n+1) \text{ (par hypothèse de récurrence)} \\ &= (n+1) \left(\frac{n}{2} + 1\right) = \frac{(n+1)(n+2)}{2} = \frac{(n+1)((n+1)+1)}{2}. \end{split}$$

On a montré par récurrence que :

$$\forall n \geqslant 1, \ \sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$$

On peut donner plusieurs démonstrations directes.

1ère demonstration. Pour $k \ge 1$, $(k+1)^2 - k^2 = 2k+1$ et donc $\sum_{k=1}^{n} \left((k+1)^2 - k^2 \right) = 2 \sum_{k=1}^{n} k + \sum_{k=1}^{n} 1$ ce qui s'écrit $(n+1)^2 - 1 = 2 \sum_{k=1}^{n} k + n$ ou encore $2 \sum_{k=1}^{n} k = n^2 + n$ ou enfin $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$.

2ème demonstration. On écrit

et en additionnant (verticalement), on obtient $2S = \underbrace{(n+1) + (n+1) + \ldots + (n+1)}_{n \text{ termes}} = n(n+1)$ d'où le résultat. La même démonstration s'écrit avec le symbole sigma :

$$2S = \sum_{n=1}^{n} k + \sum_{n=1}^{n} (n+1-k) = \sum_{n=1}^{n} (k+n+1-k) = \sum_{n=1}^{n} (n+1) = n(n+1).$$

3ème demonstration. On compte le nombre de points d'un rectangle ayant n points de large et n+1 points de long. Il y en a n(n+1). Ce rectangle se décompose en deux triangles isocèles contenant chacun 1+2+...+n points. D'où le résultat.

4ème démonstration. Dans le triangle de PASCAL, on sait que pour n et p entiers naturels donnés, $\binom{n}{p} + \binom{n}{p+1} = \binom{n+1}{p+1}$. Donc, pour $n \ge 2$ (le résultat est clair pour n = 1),

$$1+2+...+n=1+\sum_{k=2}^{n}\binom{k}{1}=1+\sum_{k=2}^{n}\binom{k+1}{2}-\binom{k}{2}=1+\binom{n+1}{2}-1=\frac{n(n+1)}{2}.$$

2) Pour $k \ge 1$, $(k+1)^3 - k^3 = 3k^2 + 3k + 1$. Donc, pour $n \ge 1$:

$$3\sum_{k=1}^{n} k^2 + 3\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1 = \sum_{k=1}^{n} ((k+1)^3 - k^3) = (n+1)^3 - 1.$$

D'où,

$$\sum_{k=1}^{n} k^2 = \frac{1}{3} \left((n+1)^3 - 1 - 3 \frac{n(n+1)}{2} - n \right) = \frac{1}{6} (2(n+1)^3 - 3n(n+1) - 2(n+1)) = \frac{1}{6} (n+1) \left(2n^2 + n \right),$$

et donc

$$\forall n \geqslant 1, \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

Pour $k \ge 1$, $(k+1)^4 - k^4 = 4k^3 + 6k^2 + 4k + 1$. Donc, pour $n \ge 1$, on a

$$4\sum_{k=1}^{n} k^{3} + 6\sum_{k=1}^{n} k^{2} + 4\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1 = \sum_{k=1}^{n} ((k+1)^{4} - k^{4}) = (n+1)^{4} - 1.$$

D'où:

$$\begin{split} \sum_{k=1}^n k^3 &= \frac{1}{4} \left((n+1)^4 - 1 - n(n+1)(2n+1) - 2n(n+1) - n \right) = \frac{1}{4} ((n+1)^4 - (n+1)(n(2n+1) + 2n+1)) \\ &= \frac{1}{4} \left((n+1)^4 - (n+1)^2(2n+1) \right) = \frac{(n+1)^2 \left((n+1)^2 - (2n+1) \right)}{4} = \frac{n^2(n+1)^2}{4} \\ &\qquad \qquad \forall n \geqslant 1, \ \sum_{k=1}^n k^3 = \frac{n^2(n+1)^2}{4} = \left(\sum_{k=1}^n k \right)^2. \end{split}$$

Pour $k \ge 1$, $(k+1)^5 - k^5 = 5k^4 + 10k^3 + 10k^2 + 5k + 1$. Donc, pour $n \ge 1$,

$$5\sum_{k=1}^{n}k^{4}+10\sum_{k=1}^{n}k^{3}+10\sum_{k=1}^{n}k^{2}+5\sum_{k=1}^{n}k+\sum_{k=1}^{n}1=\sum_{k=1}^{n}((k+1)^{5}-k^{5})=(n+1)^{5}-1.$$

D'où:

$$\begin{split} \sum_{k=1}^{n} k^4 &= \frac{1}{5} \left((n+1)^5 - 1 - \frac{5}{2} n^2 (n+1)^2 - \frac{5}{3} n (n+1) (2n+1) - \frac{5}{2} n (n+1) - n \right) \\ &= \frac{1}{30} (6(n+1)^5 - 15 n^2 (n+1)^2 - 10 n (n+1) (2n+1) - 15 n (n+1) - 6 (n+1)) \\ &= \frac{1}{30} (n+1) (6n^4 + 9n^3 + n^2 - n) = \frac{n(n+1) (6n^3 + 9n^2 + n - 1)}{30} \end{split}$$

Finalement,

$$\begin{split} \forall n \in \mathbb{N}^*, \ \sum_{k=1}^n k &= \frac{n(n+1)}{2} \\ \forall n \in \mathbb{N}^*, \ \sum_{k=1}^n k^2 &= \frac{n(n+1)(2n+1)}{6} \\ \forall n \in \mathbb{N}^*, \ \sum_{k=1}^n k^3 &= \frac{n^2(n+1)^2}{4} = \left(\sum_{k=1}^n k\right)^2 \\ \forall n \in \mathbb{N}^*, \ \sum_{k=1}^n k^4 &= \frac{n(n+1)(6n^3+9n^2+n-1)}{30}. \end{split}$$

Exercice nº 6

- 1) Montrons par récurrence que $\forall n \geqslant 1, \ \sum_{k=1}^n \frac{1}{k(k+1)} = \frac{n}{n+1}.$
 - Pour n = 1, $\sum_{k=1}^{1} \frac{1}{k(k+1)} = \frac{1}{2} = \frac{1}{1+1}$ et la formule proposée est vraie pour n = 1.
 - $\bullet \ \mathrm{Soit} \ n \geqslant 1. \ \mathrm{Supposons} \ \mathrm{que} \ \sum_{k=1}^n \frac{1}{k(k+1)} = \frac{n}{n+1} \ \mathrm{et} \ \mathrm{montrons} \ \mathrm{que} \ \sum_{k=1}^{n+1} \frac{1}{k(k+1)} = \frac{n+1}{n+2}.$

$$\sum_{k=1}^{n+1} \frac{1}{k(k+1)} = \left(\sum_{k=1}^{n} \frac{1}{k(k+1)}\right) + \frac{1}{(n+1)(n+2)}$$

$$= \frac{n}{n+1} + \frac{1}{(n+1)(n+2)} \text{ (par hypothèse de récurrence)}$$

$$= \frac{n(n+2)+1}{(n+1)(n+2)} = \frac{n^2+2n+1}{(n+1)(n+2)}$$

$$= \frac{(n+1)^2}{(n+1)(n+2)} = \frac{n+1}{n+2} = \frac{n+1}{(n+1)+1}.$$

On a montré par récurrence que :

$$\forall n \geqslant 1, \ \sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}.$$

Démonstration directe. Pour $k \geqslant 1$,

$$\frac{1}{k(k+1)} = \frac{(k+1)-k}{k(k+1)} = \frac{1}{k} - \frac{1}{(k+1)},$$

et donc,

$$\begin{split} \sum_{k=1}^n \frac{1}{k(k+1)} &= \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{(k+1)} \right) = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n-1} - \frac{1}{n} + \frac{1}{n} - \frac{1}{n+1} \\ &= 1 - \frac{1}{n+1} = \frac{n}{n+1}. \end{split}$$

- $\textbf{2)} \ \mathrm{Montrons} \ \mathrm{par} \ \mathrm{r\'ecurrence} \ \mathrm{que} \ \forall n \geqslant 1, \ \sum_{k=1}^n \frac{1}{k(k+1)(k+2)} = \frac{n(n+3)}{4(n+1)(n+2)}.$
 - $\bullet \text{ Pour } n=1, \sum_{k=1}^{1} \frac{1}{k(k+1)(k+2)} = \frac{1}{6} = \frac{1\times(1+3)}{4\times(1+1)(1+2)} \text{ et la formule proposée est vraie pour } n=1.$
 - Soit $n \ge 1$. Supposons que $\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)} = \frac{n(n+3)}{4(n+1)(n+2)}$ et montrons que $\sum_{k=1}^{n+1} \frac{1}{k(k+1)(k+2)} = \frac{(n+1)(n+4)}{4(n+2)(n+3)}$.

$$\begin{split} \sum_{k=1}^{n+1} \frac{1}{k(k+1)(k+2)} &= \left(\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}\right) + \frac{1}{(n+1)(n+2)(n+3)} \\ &= \frac{n(n+3)}{4(n+1)(n+2)} + \frac{1}{(n+1)(n+2)(n+3)} \text{ (par hypothèse de récurrence)} \\ &= \frac{n(n+3)^2 + 4}{4(n+1)(n+2)(n+3)} = \frac{n^3 + 6n^2 + 9n + 4}{4(n+1)(n+2)(n+3)} \\ &= \frac{(n+1)(n^2 + 5n + 4)}{4(n+1)(n+2)(n+3)} = \frac{(n+1)(n+4)}{4(n+2)(n+3)} = \frac{(n+1)((n+1) + 3)}{4((n+1) + 1)((n+2) + 1)} \end{split}$$

On a montré par récurrence que :

$$\forall n \geqslant 1, \ \sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)} = \frac{n(n+3)}{4(n+1)(n+2)}.$$

Démonstration directe. Pour $k \ge 1$,

$$\frac{1}{k(k+1)(k+2)} = \frac{1}{2} \frac{(k+2) - k}{k(k+1)(k+2)} = \frac{1}{2} \left(\frac{1}{k(k+1)} - \frac{1}{(k+1)(k+2)} \right),$$

et donc,

$$\begin{split} \sum_{k=1}^n \frac{1}{k(k+1)(k+2)} &= \frac{1}{2} \left(\sum_{k=1}^n \frac{1}{k(k+1)} - \sum_{k=1}^n \frac{1}{(k+1)(k+2)} \right) = \frac{1}{2} \left(\sum_{k=1}^n \frac{1}{k(k+1)} - \sum_{k=2}^{n+1} \frac{1}{k(k+1)} \right) \\ &= \frac{1}{2} \left(\frac{1}{2} - \frac{1}{(n+1)(n+2)} \right) = \frac{n^2 + 3n}{4(n+1)(n+2)} = \frac{n(n+3)}{4(n+1)(n+2)}. \end{split}$$

Exercice nº 7

Montrons par récurrence que, pour $n \ge 2$, H_n peut s'écrire sous la forme $\frac{p_n}{q_n}$ où q_n est un entier pair et p_n est un entier impair (la fraction précédente n'étant pas nécessairement irréductible mais n'étant à coup sûr pas un entier).

- Pour n = 2, $H_2 = \frac{3}{2}$ et H_2 est bien du type annoncé.
- Soit $n \ge 2$. Supposons que pour tout entier k tel que $2 \le k \le n$, on ait $H_k = \frac{p_k}{q_k}$ où p_k est un entier impair et q_k est un entier pair et montrons que $H_{n+1} = \frac{p_{n+1}}{q_{n+1}}$ où p_{n+1} est un entier impair et q_{n+1} est un entier pair.

(Recherche. L'idée $H_{n+1}=\frac{p_n}{q_n}+\frac{1}{n+1}=\frac{(n+1)p_n+q_n}{(n+1)q_n}$ ne marche à coup sur que si $(n+1)p_n+q_n$ est impair ce qui est assuré si n+1 est impair et donc si n est pair).

1er cas. Si n est pair, on peut poser n=2k où $k\in\mathbb{N}^*$. Dans ce cas, $H_{n+1}=\frac{p_n}{q_n}+\frac{1}{2k+1}=\frac{(2k+1)p_n+q_n}{(2k+1)q_n}$. (2k+1) est p_n sont impairs et donc $(2k+1)p_n$ est impair puis $(2k+1)p_n+q_n$ est impair car q_n est pair. D'autre part, q_n est pair et donc $(2k+1)q_n$ est pair. H_{n+1} est bien le quotient d'un entier impair par un entier pair.

2ème cas. Si n est impair, on pose n = 2k - 1 où $k \ge 2$ (de sorte que $2k - 1 \ge 3$).

$$H_{n+1} = \sum_{i=1}^{2k} \frac{1}{i} = \sum_{i=1}^{k} \frac{1}{2i} + \sum_{i=0}^{k-1} \frac{1}{2i+1}$$

(en séparant les fractions de dénominateurs pairs des fractions de dénominateurs impairs)

$$=\frac{1}{2}\sum_{i=1}^k\frac{1}{i}+\sum_{i=0}^{k-1}\frac{1}{2i+1}=\frac{1}{2}H_k+\sum_{i=0}^{k-1}\frac{1}{2i+1}.$$

Maintenant, en réduisant au même dénominateur et puisque un produit de nombres impairs est un nombre impair, on voit que $\sum_{i=0}^{k-1} \frac{1}{2i+1}$ est du type $\frac{K}{2K'+1}$ où K et K' sont des entiers. Ensuite, puisque $2 \leqslant k \leqslant 2k-1 = n$, par hypothèse de récurrence, $H_k = \frac{p_k}{q_k}$ où p_k est un entier impair et q_k un entier pair. Après réduction au même dénominateur, on obtient

$$H_{n+1} = \frac{p_k}{q_k} + \frac{K}{2K'+1} = \frac{(2K'+1)p_k + Kq_k}{q_k(2K'+1)}$$

 Kq_k est un entier pair et $(2K'+1)p_k$ est un entier impair en tant que produit de deux nombres impairs. Donc le numérateur est bien un entier impair et puisque qk(2K'+1) est un entier pair, H_{n+1} est encore une fois de la forme désirée.

On a montré par récurrence que pour tout naturel $n \ge 2$, H_n est le quotient d'un entier impair par un entier pair et en particulier H_n n'est pas un entier.

Exercice nº 8

Soit f une application injective de \mathbb{N} dans \mathbb{N} telle que pour tout entier naturel n, $f(n) \leq n$. Montrons par récurrence que : $\forall n \in \mathbb{N}, \ f(n) = n$.

- f(0) est un entier naturel tel que $f(0) \le 0$. Donc, f(0) = 0. L'égalité à démontrer est vraie quand n = 0.
- Soit $n \in \mathbb{N}$. Supposons que pour tout $k \in [0, n]$, f(k) = k. f(n+1) est un entier naturel inférieur ou égal à n+1. Donc, $f(n+1) \in [0, n+1]$. Mais f est injective et donc, pour tout $k \in [0, n]$, $f(n+1) \neq f(k)$ ou encore $f(n+1) \neq k$. Par suite, $f(n+1) \notin [0, n]$. En résumé, $f(n+1) \in [0, n+1] \setminus [0, n]$ et donc f(n+1) = n+1.

On a montré par récurrence que : $\forall n \in \mathbb{N}, \, f(n) = n.$ Donc, $f = Id_{\mathbb{N}}.$

Réciproquement, $Id_{\mathbb{N}}$ est une application injective de \mathbb{N} dans \mathbb{N} telle que pour tout entier naturel \mathfrak{n} , $\mathfrak{f}(\mathfrak{n}) \leqslant \mathfrak{n}$. Le problème posé admet une solution et une seule, à savoir $Id_{\mathbb{N}}$.