COMPUTER SECURITY CS 419

CRYPTOGRAPHY I

ABOUT THIS COURSE

- https://www.cs.rutgers.edu/~sm2283/20sp/
- We will use Sakai
 - You should have been added already. If not, please contact us.
- TA and office hour
 - Shenao Yan (shenao.yan AT rutgers.edu), Monday 7:00 PM 8:00 PM
 - Cong Zhang (cz200 AT rutgers.edu), Thursday 8:00 PM 9:00 PM
- My office hour
 - 9:00 AM 10:00 AM, Tuesday

EMAIL

- Please email us using "[419]:" as the start of your subject title!
- Otherwise, your email(s) may go to:
 - Spam folder
 - Automatically archived folder
 - Out of date email folder
 - Low priority pool

MAKEUP EXAMS

- We have in class exams and quizzes. Dates announced on website.
- The midterm and final time
 - Midterm: 3/13/20, Friday, covers the first half topics
 - Final: 4/24/20, Friday, covers the second half topics
- One makeup for midterm and one for final
- Let me know if you need to attend makeup exams (with acceptable reasons)
 by 1/31 so that we have enough time to book rooms

READINGS FOR THIS LECTURE

Required readings:

Cryptography on Wikipedia

Interesting reading

• <u>The Code Book</u> by Simon Singh

GOALS OF CRYPTOGRAPHY

- The most fundamental problem cryptography addresses: ensure security of communication over insecure medium
- What does secure communication mean?
 - confidentiality (privacy, secrecy)
 - only the intended recipient can see the communication
 - integrity (authenticity)
 - the communication is generated by the alleged sender
- What does insecure medium mean?
 - Two possibilities:
 - Passive attacker: the adversary can eavesdrop
 - Active attacker: the adversary has full control over the communication channel

APPROACHES TO SECURE COMMUNICATION

- Steganography
 - "covered writing"
 - hides the existence of a message
 - depends on secrecy of method
- Cryptography
 - "hidden writing"
 - hide the meaning of a message
 - depends on secrecy of a short key, not method

BASIC TERMINOLOGY

- Plaintext original message
- Ciphertext transformed message
- Key secret used in transformation
- Encryption
- Decryption
- Cipher algorithm for encryption/decryption

SHIFT CIPHER

- The Key Space:
 - [0 .. 25]
- Encryption given a key K:
 - each letter in the plaintext P is replaced with the K'th letter following corresponding number (shift right)
- Decryption given K:
 - shift left

History: K = 3, Caesar's cipher

SHIFT CIPHER: CRYPTANALYSIS

- Can an attacker find K?
 - YES: by a bruteforce attack through exhaustive key search,
 - key space is small (<= 26 possible keys).

- Lessons:
 - Cipher key space needs to be large enough.
 - Exhaustive key search can be effective.

MONO-ALPHABETIC SUBSTITUTION CIPHER

- The key space: all permutations of $\Sigma = \{A, B, C, ..., Z\}$
- Encryption given a key π :
 - each letter X in the plaintext P is replaced with $\pi(X)$
- Decryption given a key π :
 - each letter Y in the cipherext P is replaced with $\pi^{-1}(Y)$

Example:

```
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \pi= B A D C Z H W Y G O Q X S V T R N M L K J I P F E U
```

BECAUSE → AZDBJSZ

STRENGTH OF THE MONO-ALPHABETIC SUBSTITUTION CIPHER

- Exhaustive search is difficult
 - key space size is $26! \approx 4 \times 10^{26} \approx 2^{88}$
- Dominates the art of secret writing throughout the first millennium A.D.
- Thought to be unbreakable by many back then
- How to break it?

CRYPTANALYSIS OF SUBSTITUTION CIPHERS: FREQUENCY ANALYSIS

• Basic ideas:

- Each language has certain features: frequency of letters, or of groups of two or more letters.
- Substitution ciphers preserve the language features.
- Substitution ciphers are vulnerable to frequency analysis attacks.

FREQUENCY OF LETTERS IN ENGLISH

HOW TO DEFEAT FREQUENCY ANALYSIS?

- Use larger blocks as the basis of substitution. Rather than substituting one letter at a time, substitute 64 bits at a time, or 128 bits.
 - Leads to block ciphers such as DES & AES.

- Use different substitutions to get rid of frequency features.
 - Leads to polyalphabetical substituion ciphers
 - Stream ciphers

TOWARDS THE POLYALPHABETIC SUBSTITUTION CIPHERS

- Main weaknesses of monoalphabetic substitution ciphers
 - In ciphertext, different letters have different frequency
 - each letter in the ciphertext corresponds to only one letter in the plaintext letter
- Idea for a stronger cipher (1460's by Alberti)
 - Use more than one cipher alphabet, and switch between them when encrypting different letters
 - As result, frequencies of letters in ciphertext are similar
- Developed into a practical cipher by Vigenère (published in 1586)

THE VIGENÈRE CIPHER

- Treat letters as numbers: [A=0, B=1, C=2, ..., Z=25] Number Theory Notation: $Z_n = \{0, 1, ..., n-1\}$
- Definition:

Given m, a positive integer, $P=C=(Z_{26})^n$, and $K=(k_1,\,k_2,\,\ldots\,,\,k_m)$ a key, we define:

• Encryption:

$$e_k(p_1, p_2...p_m) = (p_1+k_1, p_2+k_2...p_m+k_m) \pmod{26}$$

• Decryption:

$$d_k(c_1, c_2...c_m) = (c_1-k_1, c_2-k_2...c_m-k_m) \pmod{26}$$

Example:

Plaintext: CRYPTOGRAPHY

Key: LUCKLUCKLUCK

Ciphertext: NLAZE I I BL] [1

SECURITY OF VIGENERE CIPHER

- Vigenere masks the frequency with which a character appears in a language: one letter in the ciphertext corresponds to multiple letters in the plaintext. Makes the use of frequency analysis more difficult.
- Any message encrypted
 by a Vigenere cipher is a
 collection of as many shift ciphers as there
 are letters in the key.

VIGENERE CIPHER: CRYPTANALYSIS

- Find the length of the key.
 - Kasisky test
 - Index of coincidence
- Divide the message into that many shift cipher encryptions.
- Use frequency analysis to solve the resulting shift ciphers.
 - How?

KASISKY TEST FOR FINDING KEY LENGTH

• Observation: two identical segments of plaintext, will be encrypted to the same ciphertext, if the they occur in the text at the distance Δ , $(\Delta \equiv 0 \pmod{m})$, m is the key length).

• Algorithm:

- Search for pairs of identical segments of length at least 3
- Record distances between the two segments: $\Delta 1, \Delta 2, ...$
- m divides $gcd(\Delta 1, \Delta 2, ...)$

EXAMPLE OF THE KASISKY TEST

Key	K	Ι	N	G	K	Ι	N	G	K	Ι	N	G	K	Ι	N	G	K	Ι	N	G	K	Ι	Ν	G
PT	t	h	е	S	u	n	a	n	d	t	h	е	m	a	n	i	n	t	h	е	m	0	0	n
СТ	D	Р	R	Y	Ε	V	N	Т	N	В	U	K	W	Ι	А	0	Χ	В	U	K	W	W	В	Т

Repeating patterns (strings of length 3 or more) in ciphertext are likely due to repeating plaintext strings encrypted under repeating key strings; thus the location difference should be multiples of key lengths.

ADVERSARIAL MODELS FOR CIPHERS

- The language of the plaintext and the nature of the cipher are assumed to be known to the adversary.
- Ciphertext-only attack: The adversary knows only a number of ciphertexts.
- Known-plaintext attack: The adversary knows some pairs of ciphertext and corresponding plaintext.
- Chosen-plaintext attack: The adversary can choose a number of messages and obtain the ciphertexts
- Chosen-ciphertext attack: The adversary can choose a number of ciphertexts and obtain the plaintexts.

What kinds of attacks have we considered so far?
When would these attacks be relevant in wireless communications?

SECURITY PRINCIPLES

- Kerckhoffs's Principle:
 - A cryptosystem should be secure even if everything about the system, except the key, is public knowledge.
- Shannon's maxim:
 - "The enemy knows the system."
- Security by obscurity doesn't work
- Should assume that the adversary knows the algorithm; the only secret the adversary is assumed to not know is the key
- What is the difference between the algorithm and the key?

NEXT CLASS

- Cryptography
 - One-time Pad, Informational Theoretical Security, Stream Ciphers