

Лабораторная работа №1 Пружинный маятник

Хафизов Фанис

17 ноября 2019 г.

1 Цель работы

Целью лабораторной работы является экспериментальное изучение колебаний пружинного маятника и ознакомление с методами определения параметров механических колебаний.

2 Схема установки

Рис. 1: Схема установки

Лабораторный стенд (рис. 1) включает в себя вертикальную опорную конструкцию с направляющими пазами (1), а также набор пружин и подвижную каретку (2), в отверстии которой может фиксироваться дополнительный груз. К приборам и принадлежностям относятся оптический датчик (4), компьютер с необходимым программным обеспечением, концентратор для подключения датчика к компьютеру.

3 Порядок действий

- 1)Соберем экспериментальную установку и установим оптический датчик на уровнех каретки.
- 2)Отведем каретку на небольшое расстояние и отпустим. Запишем результаты нескольких колебаний на компьютере.
- 3)Повторим эксперимент для каретки с грузиком.
- 4)Для нахождения скорости измерим ширину пластины на каретки $l=1,4\,$ см. При каждом перекрытии датчика найдем время прохождения каретки расстояния l и вычислим кинетическую энергию E_k .

4 Таблица данных и графики

Рис. 2: График для каретки без груза

m , Γ	M , Γ
102 ± 2	104 ± 2

Таблица 1: Массы грузов

Рис. 3: График для каретки с грузом

Рис. 4: График зависимости $E_k(n)$

i, номер	Период маят-	Средний пе-	Период маят-	Средний пе-
опыта	ника без груза	риод маятни-	ника с грузом	риод маятни-
	T_{i1} ,c	ка без груза	T_{i2} , c	ка с грузом
		\overline{T}_1 , c		\overline{T}_2 , c
1	0,6636		0,9155	
2	0,6651		0,9161	
3	0,6639	0,6636	0,9158	0,9163
4	0,6623		0,9172	
5	0,6631		0,9168	

Таблица 2: Пружина 1

n	t, c	v, м/с	Е, Дж
1	0,0135	1,0370	0,1108
2	0,0166	0,8434	0,0733
3	0,0192	0,7292	0,0548
4	0,0232	0,6034	0,0375
5	0,0309	0,4531	0,0211
6	0,0417	0,3357	0,0116
7	0,0668	0,2096	0,0045
8	0,1657	0,0845	0,0007

Таблица 3: Значения скорости и кинетической энергии для каждого прохождения мимо датчика

5 Расчеты

$$\begin{array}{l} \overline{T} = \frac{\sum\limits_{i=1}^{5} T_i}{5} \\ \overline{k} = \frac{4\pi^2((m+M)-m)}{\overline{T}_2^2 - \overline{T}_1^2} = \frac{4\pi^2M}{\overline{T}_2^2 - \overline{T}_1^2} = \frac{4\pi^2 \cdot 0.104}{0.9163^2 - 0.6636^2} = 10.28 \text{ H/m} \\ \sigma_T = \sqrt{\frac{\sum\limits_{i=1}^{5} (T_i - \overline{T})^2}{5*4}} \\ \sigma_{T1} = 0.000462 \text{ c} \\ \sigma_{T2} = 0.000315 \text{ c} \\ \varepsilon_k = \varepsilon_M + \varepsilon_{\Delta \overline{T}}^2 = \frac{\Delta M}{M} + \frac{\Delta(\overline{T}_2^2 - \overline{T}_1^2)}{(\overline{T}_2^2 - \overline{T}_1^2)} = \frac{\Delta M}{M} + \frac{((2\sigma_{T1})^2 + \Delta T_1)^2 + ((2\sigma_{T2})^2 + \Delta T_2^2)}{(\overline{T}_2^2 - \overline{T}_1^2)} = \frac{0.002}{0.104} + \frac{(2\cdot 0.000462)^2 + 0.0001^2 + (2\cdot 0.000315)^2 + 0.0001^2}{0.9163^2 - 0.6636^2} = 0.02 \\ \Delta k = \overline{k} \cdot \varepsilon_k = 10.28 \cdot 0.02 = 0.21 \text{ H/m} \end{array}$$

$$v_i = \frac{l}{t_i}$$

$$E_{ki} = \frac{(m+M)v_i^2}{2}$$

6 Результаты

$$k = (10.28 \pm 0.21) \text{ H/m}, \, \delta_k = 2\%$$

7 Выводы

Результат получился достаточно точный. Величина относительной погрешности составила всего 2%. Большую часть погрешности составляет приборная погрешность весов при измерении массы груза и каретки. Для увеличения точности эксперимента можно было бы использовать более точные весы и сделать саму установку из более гладких материалов, чтобы уменьшить трение.