Distributed Computing and Introduction to High Performance Computing

Ahmed Ratnani¹

¹Mohammed VI Polytechnic University, Benguerir, Morocco

A. Ratnani AL-KHWARIZMI 1

Outline of this lecture

- Computational Intensity
- Two Memory level model
- Data Locality
 - □ The Penalty of Stride
 - □ High Dimensional Arrays
 - Principles of good data locality

A. Ratnani AL-KHWARIZMI 2/19

Some definitions

FLOPS

FLOPS is thefloating point operations per second. It is expressed as FLOPS or flop/s

Memory Latency

Memory Latency is the time between initiating a request for a word in memory until it is retrieved by the CPU. It is expressed in clock cycles or in time.

Memory Bandwidth

Memory Bandwidth or Throughput of Memory is the rate at which data can be (read from) or (stored into) a semiconductor memory by the CPU. It is expressed in units of bytes/second.

AL-KHWARIZMI

Definition

Algorithms have two costs (measured in time or energy):

- Arithmetic (FLOPS)
- Communication: moving data between
 - levels of a memory hierarchy (sequential case)
 - processors over a network (parallel case)

Computational Intensity

It is the ratio between arithmetic complexity (or cost) and memory complexity (cost).

- The cost of arithmetic operations (e.g. floating-point add and mul) is related to the frequency,
- The cost of memory operations is the cost of moving data
- Because moving a word of data is much slower than doing an operation on it, we want to use algorithms with high computational intensity.

A. Ratnani AL-KHWARIZMI 4/19

Modern architecture (CPU)

Typical sizes

- RAM \sim 4 GB-128 GB even higher on servers
- L3 \sim 4 MB 50 MB
- $1.2 \sim 256 \ KB 8 \ MB$
- Holds data that is likely to be accessed by the CPU
- L1 ~ 256 KB
- Instruction and Data cache

Cache Hit or Miss

- Cache Hit: if the CPU is able to find the Data in L1
- Cache Miss: if the CPU is able to find the Data in L1-L2-L3 and must retrieve it from RAM

A. Ratnani AL-KHWARIZMI 5

Avoiding communication

- Running time of an algorithm is sum of 3 terms:
 - N_flops * time_per_flop
 - N_{words} / bandwidth
 - N_messages * latency
- It important to notice that time_per_flop << 1/ bandwidth << latency</pre>
- Avoiding communication algorithms come with a significant speedup
- Some examples
 - Up to 12x faster for 2.5D matmul on 64K core IBM BG/P
 - Up to 3x faster for tensor contractions on 2K core Cray XE/6
 - Up to 6.2x faster for All-Pairs-Shortest-Path on 24K core Cray CE6
 - Up to 2.1x faster for 2.5D LU on 64K core IBM BG/P
 - Up to 11.8x faster for direct N-body on 32K core IBM BG/P
 - Up to 13x faster for Tall Skinny QR on Tesla C2050 Fermi NVIDIA GPU

A. Ratnani AL-KHWARIZMI 6/19

mxm example: naive version

```
for i in range(0, n):
    for j in range(0, n):
        for k in range(0, n):
        z[i,j] = z[i,j] + x[i,k]*y[k,j]
```

```
1 arithmetic cost :: n**3*(ADD + MUL)
2 memory cost :: WRITE + n**3*(3*READ + WRITE)
3 computational intensity :: (ADD + MUL)/(3*READ + WRITE)
```

A. Ratnani AL-KHWARIZMI 7/

Two Memory level model

A. Ratnani AL-KHWARIZMI 8/

Two Memory level model

mxm example: Using block version (cache optimization)

```
p = n/b
    x = zeros((n,n))
    y = zeros((n,n))
    z = zeros((n,n))
    r = zeros((b,b))
    u = zeros((b,b))
    v = zeros((b,b))
10
     for i in range(0, n, b):
11
         for j in range(0, n, b):
12
             for k1 in range(0, b):
13
                 for k2 in range(0, b):
                     r[k1, k2] = z[i+k1, j+k2]
14
15
             for k in range(0, n, b):
16
                 for k1 in range(0, b):
                      for k2 in range(0, b):
17
18
                          u[k1.k2] = x[i+k1.k+k2]
19
                          v[k1,k2] = y[k+k1,j+k2]
20
                 for ii in range(0, b):
                      for jj in range(0, b):
21
22
                          for kk in range(0, b):
23
                              r[ii,jj] = r[ii,jj] + u[ii,kk]*v[kk,jj]
24
             for k1 in range(0, b):
25
                 for k2 in range(0, b):
26
                     z[i+k1, j+k2] = r[k1, k2]
```

A. Ratnani AL-KHWARIZMI 9/19

Two Memory level model

mxm example: Using block version (cache optimization)

Without any additional information

Assuming two level of memories:

- the fast memory represents the L2 cache
- variables that are supposed to live in the cache (r, u, v)

```
1 arithmetic cost :: DIV + b**3*p**3*(ADD + MUL)
2 memory cost :: 2*READ + 3*WRITE + b**2*p**2*(2*READ*p + READ + WRITE)
3 computational intensity :: b*(ADD + MUL)/(2*READ)
```

A. Ratnani AL-KHWARIZMI 10/19

Introduction

- Data locality is often the most important issue to address for improving per-core performance.
- We've seen that we have 4 levels of memory
- Where in this hierarchy will the processor actually find the data that are needed at any given moment?
- We can gain a speedup of $\sim 10-100$ even higher by some simple or more complex manipulations
- In the previous example, we saw that it is possible to increase the computational intensity by rewriting the mxm using a blocking version
- Let's understand how things are actually handled

A. Ratnani AL-KHWARIZMI 11/3

The Penalty of Stride

How do we access Data?

- Not only there are different hierarchies of memories, each one, with a specific memory cost
- We need also to think about how do we access to Data
- We should always arrange your data so that the elements are accessed with unit (1) stride
- The following example will convince you that the penalty for not doing so can be pretty severe

```
1    do i=1, N*i_stride,i_stride
2    mean = mean + a(i)
3    end do
```

- We compile the above Fortran code with all optimization and vectorization disabled (-00) and we run it for different strides
- We do the same thing, with (-02) that activates some optimizations

A. Ratnani AL-KHWARIZMI 12/19

The Penalty of Stride: CPU time

A. Ratnani AL-KHWARIZMI 13/

The Penalty of Stride: Bandwidth

A. Ratnani AL-KHWARIZMI 14/19

High Dimensional Arrays

- High Dimensional Arrays are stored as a contiguous sequence of elements
- Fortran uses Column-Major ordering
- C uses Row-Major ordering

mxm in Fortran N = 1000

- Naive version: CPU-time 1660.6 (msec)
- Transpose version: CPU-time 1139.8 (msec)

Column-Major (Fortran)

A. Ratnani AL-KHWARIZMI 15/3

mxm block version: CPU time

A. Ratnani AL-KHWARIZMI 16/

mxm block version: Bandwidth

A. Ratnani AL-KHWARIZMI 17/19

Principles of good data locality

- Code accesses contiguous, stride-one memory addresses
 - data are always fetched in cache lines which include neighbors
 - inner loops are instantly vectorizable via SSE, AVX, or AVX-512
- Code emphasizes cache reuse
 - when multiple operations on a data item are grouped together, the item remains in cache, where access is much faster than RAM
- Data are aligned on important boundaries (e.g., doublewords)
 - items don't straddle boundaries, so efficient one-shot access is possible
 - it is a precondition for fetching data as a single vector, single cache line, etc.

A. Ratnani AL-KHWARIZMI 18/19

Assignments

- Look for the cost (FLOPS) of the usual arithmetic operations ADD, MUL, SUB, DIV on different CPUs
- Look for the cost (FLOPS) of the usual math functions SIN, COS, EXP, ...
- Compute the Computational Intensity of the mxv Matrix-Vector product using the naive version and a blocking version. Implement both verions
- Compute the cost (FLOPS) of evaluating a Polynomial of degree p using a naive version and the Horner algorithm. Implement both verions

AL-KHWARIZMI 19/19