Επίθεση BREACH

Διονύσης Ζήνδρος @dionyziz

Σύνοψη

- Τεχνικές λεπτομέρειες
- Threat model / υποθέσεις
- Proof of concept
- Αποφυγή

Κωδικοποίηση Huffman

David Huffman (1951)

- Μία μέθοδος συμπίεσης
- Κάθε byte αντικαθίσταται με ένα σύμβολο
- Ένα σύμβολο έχει μεταβλητό πλήθος bits
- Χάρτης μετάφρασης από bytes σε σύμβολα

Παράδειγμα Huffman

Plaintext: "I LOVE TWITTER"

- Στρατηγική:
 - Ανάλυση συχνότητας στο plaintext
 - Αντικατάσταση συχνών bytes με σύντομα σύμβολα
 - Αντικατάσταση σπάνιων bytes με μακρύτερα σύμβολα
 - Prefix-free κώδικας
- Πολύ συχνοί χαρακτήρες: "T" x3
- Συχνοί χαρακτήρες: "E" x2, "I" x2, " " x2
- Σπάνιοι χαρακτήρες: "O" x1, "V" x1, "W" x1

Χάρτης συμπίεσης

plaintext	σύμβολο
" T "	0
"E"	100
66 66	101
""	110
"Wii	111000
"L"	111001
"O"	111010
"V"	111011
"R"	111100

πολύ συχνό - σύντομο

συχνό - μέτριου μήκους

σπάνιο - μεγάλο

```
110 101
 0
       V
111001 111010 111011 100 101
TWITER
0 111000 110 0 0 100 111100
```

112 bits —> 51 bits

LZ77

Abraham Lempel, Jacob Ziv (1977)

- Μία άλλη μέθοδος συμπίεσης
- Στρατηγική:
 - Βρίσκουμε επαναλαμβανόμενες φράσεις
 - Αναφερόμαστε σ' αυτές με δείκτες:

offset µ

μήκος

Παράδειγμα LZ77

Hello, world! I love you.

Hello, world! I hate you.

Hello, world! Hello, world! Hello, world!

Hello, world! I love you.

Hello, world! I love you.

Hello, world! I love you. Hello, world! I

Hello, world! I love you.

26 16

Hello, world! I love you. Hello, world! I hate

Hello, world! I love you.

26 16 hate

Hello, world! I love you. Hello, world! I hate you.

Hello, world! I love you.
Hello, world! I hate you.
Hello, world!

Hello, world! I love you.
Hello, world! I hate you.
Hello, world! Hello, world!

Hello, world! I love you.

Hello, world! I hate you.

Hello, world! Hello, world! Hello, world!

gzip

- Μέθοδος συμπίεσης που χρησιμοποιείται σε απαντήσεις HTTP
- Content-Encoding: gzip
- gzip = DEFLATE
- DEFLATE(x) = Huffman(LZ77(x))

ARP spoofing

• Θύτης και θύμα είναι στο ίδιο δίκτυο

 Ο θύτης θέλει να δει/αλλάξει τα δεδομένα κατά τη μεταφορά τους

• Ο πίνακας ARP του θύματος είναι:

Neighbor Linklayer Address Expire(0) Expire(I) Netif Refs Prbs 172.25.252.1 64:87:88:e9:be:80 30s 30s en0 1

• Ο πίνακας routing το θύματος είναι:

Destination	Gatouay	Flags	Refs	Use	Netif E	Expire
default	172.25.252.1	UGSc	68	0	en0	
127	127.0.0.1	UCS	0	0	100	
127.0.0.1	127.0.0.1	UH	2	400827	100	
169.254	link#4	UCS	0	0	en 0	
172.25.252/22	link#4	UCS	1	0	en 0	
172.25.252.1	64:87:88:e9:be:80	UHLWIir	68	22	en0	345
172.25.252.85	127.0.0.1	UHS	0	25	100	

Αλλάζουμε τον ARP πίνακα του θύματος:

Neighbor 172.25.252.2

Linklayer Address Expire(0) Expire(I) Netif Refs Prbs 64:87:88:e9:be:80 Os 30s en0 1

- Τα δεδομένα του θύματος περνούν από τον θύτη
- Ο θύτης προωθεί τα δεδομένα από το θύμα στο gateway
- ...και από το gateway πίσω στο θύμα
- "man-in-the-middle"

- Μετά το ARP spoofing, ο θύτης μπορεί να:
 - Δει τι στέλνει/λαμβάνει το θύμα
 - Διαβάσει κωδικούς
 - Αλλάξει τι στέλνει/λαμβάνει το θύμα
 - Session hijack

Man-in-the-middle demo

ας επιτεθούμε στο Twitter

HTTPS

- Όλο το Twitter είναι HTTPS
- Το HTTPS μας δίνει κρυπτογράφηση end-to-end ανάμεσα στον client και στον server
- Αποτρέπει την ανάγνωση/αλλαγή δεδομένων στο δίκτυο

Το HTTPS δεν μπορεί να γίνει MitM

DNS poisoning

- Αλλά το DNS δεν είναι HTTPS!
- Μέσω ARP man-in-the-middle μπορούμε να αλλάξουμε:
 - Την DNS απάντηση
 - Πραγματική DNS εγγραφή:
 - twitter.com —> 199.59.150.39
 - Ο θύτης την αλλάζει σε:
 - <u>twitter.com</u> —> 192.168.0.42

HTTPS eavesdropping demo

CSRF

- Κακόβουλοι μπορούν να προσθέσουν <form> σε ΗΤΤΡ ιστοσελίδες τρίτων
- Να βάλουν άλλους να στείλουν δεδομένα στο Twitter. Να προσποιηθούν ότι είναι ο χρήστης.

CSRF tokens

Περιλαμβάνονται σε requests για αποφυγή CSRF

```
<form action="https://mobile.twitter.com/"
    method='post'>
    <input name='authenticity_token'
        value='3d512448105ae08581f7' />
        <input name='tweet[text]'
        value='0wned!' />
        <input name='commit'
        value='Tweet' type='submit' />
        </form>
```

CSRF

- Κλέψε CSRF token = Γίνε ο χρήστης
- Στόχος της επίθεσης: Κλέψιμο του CSRF token

CSRF demo

Same-origin policy

- Cross-origin = αίτημα από άλλο domain
- π.χ. από <u>cnn.com</u> —> <u>twitter.com</u>
- Τα <form /> action επιτρέπονται να είναι cross-origin
- Ή τα src
- Αλλά όχι τα ΑJΑΧ
- Δεν μπορείς να διαβάσεις αυτά που επιστρέφονται

Javascript code injection

- MitM στην HTTP σύνδεση CNN, Amazon, eBay...
- Αλλαγή απάντησης να περιλάβει Javascript

injection.js

Τρέχει με origin cnn.com:

```
</div>
<a href="/" title="Home">Home</a>
   <a href="/i/connect" title="Connect">@</a>
   <a href="/i/discover" title="Discover">#</a>
   <a href="/account" title="Me">Me</a>
   <a href="/compose/tweet" title="Tweet">Tweet</a>
 ανάκλαση
<div id="main content">
      <div class="searches">
 <div class="fields"><div class="search-fields">
   <form action="/search" class="search-input" method="get">
   <div><input id="q" name="q" type="text" value{"pfjnzuq "}></div>
      <input type="hidden" name="s" value="typd" />
        <input type="image" src="https://ma.twimq.com/twitter-mobile/dd149e28079fd86ee33cf1bb9e71e8a62d40ac22/images/sprites/ma</pre>
      </form>
                                                                                       μυστικό
</div>
</div>
   <div class="noresults">No results for <
                                     rong>pfjnzug </strong></div>
</div>
    </div>
<div id="footer">
   <form action="/session/destroy" method="post">
    <span class="m2-auth-token"><input name="authenticity token" type="hidden" value= 24c288ba586caabd490e" /></span>
    tr>
        <a href="/settings">Settings</a>
        <a href="http://support.twitter.com/"> Help</a>
       <div class="view-actions"><a href="#top">Back to top</a> &middot; <a href="/settings/profile_images?return_to=%2Fsearch%3Fq%3</pre>
122">Turn images or</a></div>
</div>
   </div>
   <script id="scribe-configuration" type="application/json">{"page":"search", "user_id":"1310721"}</script>
   <script id="ddg buckets" type="application/json">{}</script>
   <script src="https://ma.twimq.com/twitter-mobile/dd149e28079fd86ee33cf1bb9e71e8a62d40ac22/assets/m2 tweets.js" type="text/jav</pre>
 </body>
</html>
```

HTTPS δεν κρύβει μήκος

- Μήκος περιεχομένου "φαίνεται" στο θύτη:
- $|E(A)| < |E(B)| \Leftrightarrow |A| < |B|$

Length leak demo

Εμπιστεύεστε το HTTPS?

What if I told you...

I can decrypt it

gzip(ανάκλαση + μυστικό) BREACH

Ιδέα του BREACH

- ανάκλαση ≠ csrf_token ⇔ μεγάλη απάντηση
- ανάκλαση = csrf_token ⇔ μικρή απάντηση
 - Συμπιέζεται καλύτερα!

συμπιέζεται με LZ77!

ettings

rt.twitter.com/"> Help

ανακλώμενη αναζήτηση

```
h"><div><input id="q" name="q" type="text" value="24c288ba586caabd490e"/></div>
="s" value="typd" />
https://ma.twimg.com/twitter-mobile/dd149e28079fd8 see33cf1bb9e71e8a62d40ac22/images/sprites
ts for <strong>24c288ba586caabd490e</strong></div>
                       μυστικά δεδομένα
                                                                    214
                                                                              20
method="post">
input name="authenticity_token" type="hidden" value= 24c288ba586caabd490e"
                                                                        /></span>
```

Κρυπτογραφικό μοντέλο

- Νέος τύπος επίθεσης:
 - Μερικά επιλεγμένο κείμενο
- Ο θύτης επιλέγει ένα μέρος του κειμένου
- Ο θύτης βλέπει το κρυπτοκείμενο
- Πρέπει να κλέψει το υπόλοιπο καθαρό κείμενο

Hill-climbing

- Ξεκινώντας
 - Μάντεψε 2 χαρακτήρες του CSRF token
 - Δοκίμασε όλα τα ζεύγη χαρακτήρων:
 - 00, 01, ..., ff
 - Ένας ελαχιστοποιεί το μήκος (δείκτης LZ77)
 - Οι άλλοι όχι (LZ77 literals)

```
ανακλώμενη αναζήτηση
```

```
="q" type="text" value="pfjnzuq_0e")></div>
```

<u>er-mobile/dd149e28079fd86ee33cf1<mark>pb9e71e8a62d40ac22/images/sprites/</mark></u>

0e" συμπιέζεται με LZ77!

/strong></div>

μυστικά δεδομένα

214

3

oken" type="hidden" value="24c288ba586caabd49<mark>0e"</mark> />

Hill-climbing

- Προσπάθησε να προσθέσεις ένα χαρακτήρα
- Δοκίμασε οποιονδήποτε χαρακτήρα:
 - 0, 1, 2, ..., f
 - Ταίριασμα:
 - gzip επεκτείνει μήκος προηγούμενου δείκτη LZ77
 - Μη ταίριασμα:
 - gzip προσθέτει νέο literal χαρακτήρα LZ77

Ανατομία του BREACH

BREACH

- http://breachattack.com/
- Μία επέκταση του CRIME
- Εφευρέθηκε το καλοκαίρι του 2013
- Angelo Prado
- Neal Harris
- Yoel Gluck

Angelo Prado

Neal Harris

Yoel Gluck

Επιμείνουσα επίθεση

- Το θύμα δεν χρειάζεται να...
 - πατήσει σε κακόβουλα links
 - μείνει σε κάποια σελίδα για πολλή ώρα
- Απλώς μπαίνει στο Internet κανονικά
- Η Injected Javascript συνεχίζει την αναζήτηση hillclimbing ανάμεσα σε διαφορετικά origins
- Command & Control χρησιμοποιείται για συντονισμό της επίθεσης

Μειώνοντας το θόρυβο

- Η υπόλοιπη σελίδα πρέπει να μένει η ίδια ανάμεσα σε requests
- Φρόντισε να υπάρχουν 0 αποτελέσματα αναζήτησης
 - Βάλε στην αρχή της αναζήτησης το "pfjnzuq_"
 - Οποιοδήποτε αλφαριθμητικό δεν εμφανίζεται σε tweets
- Επίθεση στο mobile.twitter.com
 - Ο θόρυβος δεν υπάρχουν Who-to-Follow, Trends, κλπ.

Σταθερό σημείο Huffman

- ...σ' ένα τέλειο κόσμο, αυτό θα δούλευε
- Αλλά υποθέτει μόνο συμπίεση LZ77
- Θυμηθείτε, gzip = LZ77 + Huffman
- Περιλαμβάνουμε ένα "alphabet pool" στην ανάκλαση
 - Προκαλεί ένα σταθερό σημείο Huffman

Αναζήτηση για...

```
pfjnzuq_1_2_3_4_5_6_7_8_9_a_b_c_d_e_f_00e
pfjnzuq_0_2_3_4_5_6_7_8_9_a_b_c_d_e_f_10e
pfjnzuq 0 1 3 4 5 6 7 8 9 a b c d e f 20e
pfjnzuq 0 1 2 4 5 6 7 8 9 a b c d e f 30e
pfjnzuq_0_1_2_3_5_6_7_8_9_a_b_c_d_e_f_40e
pfjnzuq 0 1 2 3 4 6 7 8 9 a b c d e f 50e
pfjnzuq_0_1_2_3_4_5_7_8_9_a_b_c_d_e_f_60e
pfjnzuq 0 1 2 3 4 5 6 8 9 a b c d e f 70e
pfjnzuq 0 1 2 3 4 5 6 7 9 a b c d e f 80e
pfjnzuq 0 1 2 3 4 5 6 7 8 a b c d e f 90e
pfjnzuq_0_1_2_3_4_5_6_7_8_9_b_c_d_e_f_a0e
pfjnzuq 0 1 2 3 4 5 6 7 8 9 a c d e f b0e
pfjnzuq_0_1_2_3_4_5_6_7_8_9_a_b_d_e_f_c0e
pfjnzuq_0_1_2_3_4_5_6_7_8_9_a_b_c_e_f_d0e
pfjnzuq 0 1 2 3 4 5 6 7 8 9 a b c d f e0e
pfjnzuq_0_1_2_3_4_5_6_7_8_9_a_b_c_d_e_f0e
```

BREACH demo

Τεχνικές δυσκολίες

- Το μαντείο μπορεί να ταιριάξει στο θόρυβο
- Τοπικό ελάχιστο δεν είναι πάντα ολικό
- Πρέπει να προχωρήσουμε στο hill-climbing
- Συμπίεση σε bit-level
- Το μαντείο μπορεί να ταιριάξει άλλα δεκαεξαδικά tokens (userid)

Επιθέσεις πιστοποίησης

- Κλέβει CSRF token —> γίνεται ο χρήστης
- Στέλνει tweets
- Favorite tweets / retweet
- Ενημέρωση προφίλ (bio, χρώματα, τοποθεσία, φόντο)
- Αλλαγή lists
- Unfollow / block

Ας επιτεθούμε στο Facebook

Διαβάζοντας τα Facebook chat του θύματος

- Επίθεση εμπιστευτικότητας
- Ξεχάστε τα CSRF tokens το μυστικό είναι το κείμενο
- Όμως: Δεν υπάρχει ανάκλαση στη σελίδα των μηνυμάτων chat! :(
- Έμμεση ανάκλαση:
 - Το θύμα έχει φίλο το θύτη, ο θύτης κάνει hill-climb ψάχνοντας στο χώρο λύσεων στέλνοντας μηνύματα chat

Διαβάζοντας τα Facebook chat του θύματος

- Όμως... το θύμα θα λάβει ενημερώσεις στο κινητό και θα ξέρει ότι κάτι πάει στραβά
- Με πρόσβαση στο layer δικτύου, μπλοκάρουμε ενημερώσεις προς το χρήστη
- Αλλά τους αφήνουμε να μπουν στο υπόλοιπο Internet ελεύθερα :)

"Never underestimate the time and expense your opponents will take to break your code. They may be very rich, very clever, and very dedicated."

Robert Morris, Sr., NSA

Αποφυγή

Αποφυγή

- Πολλοί τρόποι
- Κάποιοι πιο πρακτικοί από άλλους
- Κάποιοι πιο αποτελεσματικοί από άλλους

Απενεργοποίηση συμπίεσης

- Μη ρεαλιστική λύση
- Κακή απόδοση
- Μας γλυτώνει πλήρως από την επίθεση!
- Μπορεί να γίνει σε κρίσιμες σελίδες!
 - Σελίδες e-banking
 - Σελίδες με άλλα εξαιρετικά ευαίσθητα δεδομένα

Rate limiting

- Καθυστερεί τις επιθέσεις
- Rate limit:
 - Αιτήματα GET / POST σε μονάδα χρόνου
 - Αριθμός μηνυμάτων chat σε μονάδα χρόνου

Rate limiting

- Ανάλογα με...
 - IP
 - Χρήστη
 - Χρήστη που λαμβάνει το chat

Rate limiting

- Καθυστερεί την επίθεση από 30 sec σε 2 ώρες
- Όχι πολύ αποτελεσματικό
- Παραμένει μία καλή ιδέα
- Rate limit + monitor + alert

Avavéwση CSRF

- Αλλάζετε CSRF token συχνά!
- Δε διορθώει τις επιθέσεις εμπιστευτικότητας
- Άβολο για το χρήστη

Máoka CSRF

- Αλλαγή του τρόπου που δουλεύει το csrf_token
- Διορθώνει όλες τις επιθέσεις εμπιστευτικότητας
- Ποτέ δεν στέλνουμε csrf_token στην απάντηση
- Στέλνουμε αυτά:
 - token_mask = rand()
 - masked_token = csrf_token ⊕ token_mask
- O server βρίσκει το csrf_token:
 - csrf_token = masked_token ⊕ token_mask

Πλαίσια συμπίεσης

- Μαρκάρουμε τη θέση μέσα στο HTML των:
 - μυστικών
 - ανακλώμενων δεδομένων
- Επικοινωνία με τον web server με κάποιο module
 - Προτείνουμε να φτιαχτεί κάποιο mod_breach
 - Που θα ξέρει ότι δεν πρέπει να συμπιέσει αυτά τα δεδομένα

Διαχωρισμός μυστικών

- Τα μυστικά βρίσκονται σε διαφορετικά requests
- 1 HTTP request για τα ανακλώμενα δεδομένα
- 1 HTTP request για τα μυστικά
- API αίτημα σε JSON endpoint
- Αποφεύγει όλες τις επιθέσεις BREACH

Διαχωρισμός μυστικών

- Δύσκολο να υλοποιηθεί π.χ. για touch.facebook.com
- Οι προγραμματιστές πρέπει να το θυμούνται όλα τα προβλήματα ενός blacklist
- Μερικές φορές τα μυστικά και το ανακλώμενο περιεχόμενο είναι τα ίδια
 - π.χ. μηνύματα chat

Τυχαιότητα μήκους

- Προσθήκη τυχαίου padding
- Σε ομοιόμορφη κατανομή, καθυστερεί την επίθεση κατά ένα παράγοντα Ο(√n)
- Καθυστερεί την επίθεση από 30 sec σε 30 min (για 2KB padding)
- Βοηθάει, αλλά δεν αποτρέπει πλήρως

SOS HTTP headers

Mike Shema, Vaagn Toukharian (2013)

- Security-Of-Sessions πολύ αποτελεσματικό!
- Επεκτείνει το Content-Security-Policy
- Διορθώνει όλες τις επιθέσεις BREACH χρειάζεται υλοποίηση από τους browsers και τις ιστοσελίδες
- Ορίζει ότι τα cookies δεν πρέπει να στέλνονται σε cross-origin requests
- Set-Cookie: session_id=4f0c4384a4f43aef12bd23f142d55e4...
- Content-Security-Policy: sos-apply=session_id; 'self'

Βιβλιογραφία

- Angelo Prado, Neal Harris, Yoel Gluck (2013). "SSL, gone in 30 seconds: A BREACH beyond CRIME".
- D.A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes", Proceedings of the I.R.E., September 1952, pp 1098–1102.
- Ziv, Jacob; Lempel, Abraham (May 1977). "A Universal Algorithm for Sequential Data Compression". IEEE Transactions on Information Theory 23 (3): 337–343.
- (May 1996). "DEFLATE Compressed Data Format Specification version 1.3". p. 1. sec. Abstract. RFC 1951.
- Burns, Jesse (2005). "Cross Site Request Forgery: An Introduction To A Common Web Weakness".
 Information Security Partners, LLC
- Same Origin Policy. <u>w3.org</u> at http://www.w3.org/Security/wiki/Same_Origin_Policy
- Jeff King (2010). "ARP Poisoning (Man-in-the-Middle) Attack and Mitigation Techniques"
- U. Steinhoff, A. Wiesmaier, R. Araújo (2006). "The State of the Art in DNS Spoofing"
- Mike Shema, Vaagn Toukharian (2013). "Dissecting CSRF Attacks and Defenses"

Ευχαριστούμε!

@dionyziz

Ερωτήσεις;