Assignment 2 for StatØk2, Block 1, 2021/2022

- (1) (a) Show that an MA(q) process with iid noise (Z_t) is strictly stationary, ergodic, mixing and strongly mixing. Hint: use the results in the lecture notes.
 - (b) Show that the sample mean of the strongly mixing ergodic MA(1) process $X_t = Z_t Z_{t-1}$ with iid white noise (Z_t) does not satisfy the central limit theorem with a normal limit but the sample mean of $Y_t = X_t^2$ satisfies the central limit theorem with a normal limit if $E[|Z_0|^{4+\delta}] < \infty$ for some $\delta > 0$.
- (2) Let (X_t) be a strictly stationary ergodic sequence with finite variance. Show that for every $h \ge 0$, the sample autocovariances

$$\gamma_{n,X}(h) = \frac{1}{n} \sum_{t=1}^{n-h} (X_t - \overline{X}_n) \left(X_{t+h} - \overline{X}_n \right)$$

and the sample autocorrelations

$$\rho_{n,X}(h) = \frac{\gamma_{n,X}(h)}{\gamma_{n,X}(0)}$$

are consistent estimators of their deterministic counterparts:

$$\gamma_{n,X}(h) \stackrel{\text{a.s.}}{\to} \gamma_X(h)$$
 and $\rho_{n,X}(h) \stackrel{\text{a.s.}}{\to} \rho_X(h)$.

(3) Consider the (relative) returns

$$Y_t = \frac{X_t - X_{t-1}}{X_{t-1}}$$

of a price series (X_t) and the corresponding log-returns $\log(1+Y_t)$. Find a bound for the distance

$$|\Delta_t| = |Y_t - \log(1 + Y_t)|,$$

assuming that Y_t is small. The largest daily return values observed in modern history of developed industrial countries were about -20%. How far do Y_t and $\log(1 + Y_t)$ deviate in this case?

(4) Consider the non-stationary time series

$$X_t = m_t + Y_t$$
, $t = 0, 1, 2, \dots$,

where (Y_t) is a stationary time series and

$$m_t = \sum_{j=0}^k a_j t^j, \qquad t = 0, 1, 2, \dots.$$

(a) Show by induction that

$$\Delta^k(X_t) = k! \, a_k + \Delta^k(Y_t) \; ,$$

where Δ is the difference operator $\Delta Y_t = Y_t - Y_{t-1}$ acting on (Y_t) .

(b) Argue that $(\Delta^k X_t)$, $k \geq 1$, is stationary (strictly stationary, ergodic, mixing) if (Y_t) is stationary (strictly stationary, ergodic, mixing), respectively.

(5) Consider the deterministic time series

$$X_t = c\cos(t\omega)$$
,

where $c \neq 0$, $\omega \in (-\pi, \pi)$. Show that for each fixed h, the sample autocorrelation function

$$\rho_{n,X}(h) \to \cos(\omega h), \qquad n \to \infty.$$

This fact indicates that a periodic term in the time series can be detected by studying the sample autocorrelation function.

- (6) Show that $\gamma(h) = \cos(\theta h)$, $h \in \mathbb{Z}$, for some real θ is an autocovariance function
 - (a) by finding a stationary process with autocovariance function γ ,
 - (b) by directly showing that γ is a non-negative definite function.
 - (c) Are the functions $\gamma(h) = \sin(\theta h)$ and $\gamma(h) = \sum_{i=1}^{n} b_i \cos(\theta_i h)$, $h \in \mathbb{Z}$, for given positive b_1, \ldots, b_n and real $\theta, \theta_1, \ldots, \theta_n$ autocovariance functions?