

Modulhandbuch Elektrotechnik und Informationstechnik Bachelor 2018 (Bachelor of Science, B.Sc.)

SPO 2018 Sommersemester 2023 Stand 06.03.2023

KIT-FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIONSTECHNIK

Inhaltsverzeichnis

1.	. Einführung in das Modulhandbuch	
	1.1. Allgemeines	
	1.2. Hinweise zu Modulen und Teilleistungen	
	1.3. Anmeldung und Zulassung zu Modulprüfungen	7
2.	. Qualifikationsziele	8
3.	. Aufbau des Bachelorstudienganges	9
4.	. Empfohlener Studienplan	10
	. Anmeldung Bachelorarbeit	
	. Anerkennung von Studien- und Prüfungsleistungen	
U.	6.1. Grundsätzliche Regelungen	
	6.2. Benotung	
	6.3. Vorgehensweise	
7	Ansprechpartner*innen und Beratung	
	. Herausgeber	
9.	Aufbau des Studiengangs	
	9.1. Orientierungsprüfung	
	9.2. Bachelorarbeit	
	9.4. Elektrotechnik	
	9.5. Informationstechnik	
	9.6. Profilierungsfach	
	9.7. Überfachliche Qualifikationen ab WS 22/23	
40	0. Module	
IU	10.1. Antennen und Mehrantennensysteme - M-ETIT-100565	
	10.1. Antennen und Memartennensysteme - M-ETTT-100000	
	10.3. Basispraktikum Mobile Roboter - M-INFO-101184	
	10.4. Batteriemodellierung mit MATLAB - M-ETIT-103271	
	10.5. Bauelemente der Elektrotechnik - M-ETIT-104538	
	10.6. Bildgebende Verfahren in der Medizin I - M-ETIT-100384	
	10.7. Bildverarbeitung - M-ETIT-102651	
	10.8. Digitaltechnik - M-ETIT-102102	
	10.9. Einführung in die Hochspannungstechnik - M-ETIT-105276	
	10.10. Electrochemical Energy Technologies - M-ETIT-105690	
	10.11. Elektrische Maschinen und Stromrichter - M-ETIT-102124	
	10.12. Elektroenergiesysteme - M-ETIT-102156	32
	10.13. Elektromagnetische Felder - M-ETIT-104428	33
	10.14. Elektromagnetische Wellen - M-ETIT-104515	35
	10.15. Elektronische Schaltungen - M-ETIT-104465	36
	10.16. Elektrotechnisches Grundlagenpraktikum - M-ETIT-102113	38
	10.17. Engineering von Automatisierungssystemen - M-ETIT-106037	
	10.18. Erzeugung elektrischer Energie - M-ETIT-100407	
	10.19. Experimentalphysik - M-PHYS-105008	
	10.20. Fertigungsmesstechnik - M-ETIT-103043	
	10.21. Forschungspraktikum - M-ETIT-105602	
	10.22. Gebäudeautomatisierung - M-ETIT-106038	
	10.23. Grundlagen der Hochfrequenztechnik - M-ETIT-102129	
	10.24. Grundlagen der Künstlichen Intelligenz - M-INFO-106014	
	10.25. Höhere Mathematik I - M-MATH-101731	
	10.26. Höhere Mathematik II - M-MATH 101732	
	10.27. Höhere Mathematik III - M-MATH-101738	
	10.28. Hybride und elektrische Fahrzeuge - M-ETIT-100514	
	10.29. Industriepraktikum - M-ETIT-105601 10.30. Informationstechnik I - M-ETIT-104539	
	10.30. Informationstechnik I - M-ETTT-104539	
	10.32. Introduction to Quantum Information Processing - M-ETIT-104347	
	10.33. Komplexe Analysis und Integraltransformationen - M-ETIT-104534	

10.34. Labor für angewandte Machine Learning Algorithmen - M-ETIT-104823	69
10.35. Labor Schaltungsdesign - M-ETIT-100518	71
10.36. Lineare Elektrische Netze - M-ETIT-104519	
10.37. Mensch-Maschine-Interaktion - M-INFO-100729	
10.38. Mensch-Maschine-Wechselwirkung in der Anthropomatik: Basiswissen - M-INFO-100824	77
10.39. Nachrichtentechnik I - M-ETIT-102103	
10.40. Nachrichtentechnik II / Communications Engineering II - M-ETIT-105274	80
10.41. Optical Networks and Systems - M-ETIT-103270	
10.42. Optik und Festkörperelektronik - M-ETIT-105005	84
10.43. Optoelectronic Components - M-ETIT-100509	86
10.44. Optoelektronik - M-ETIT-100480	
10.45. Orientierungsprüfung - M-ETIT-104225	
10.46. Photovoltaische Systemtechnik - M-ETIT-100411	
10.47. Physiologie und Anatomie I - M-ETIT-100390	91
10.48. Praktikum Design und Entwurf von Quantenschaltkreisen - M-ETIT-106262	
10.49. Praktikum Elektrochemische Energietechnologien - M-ETIT-105703	
10.50. Praktikum Hard- und Software in leistungselektronischen Systemen - M-ETIT-103263	
10.51. Praktikum Matlab zur Modellierung im Bereich Optoelektronik - M-ETIT-105867	96
10.52. Radiation Protection - M-ETIT-100562	97
10.53. Radio-Frequency Electronics - M-ETIT-105124	99
10.54. Robotik I - Einführung in die Robotik - M-INFO-100893	
10.55. Seminar Batterien I - M-ETIT-105319	101
10.56. Seminar Brennstoffzellen I - M-ETIT-105320	
10.57. Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung - M-ETIT-100397	
10.58. Seminar über ausgewählte Kapitel der Biomedizinischen Technik - M-ETIT-100383	
10.59. Seminar: Grundlagen Eingebetteter Systeme - M-ETIT-105356	
10.60. Signale und Systeme - M-ETIT-104525	
10.61. Statistische Methoden der Informationsverarbeitung - M-ETIT-105960	109
10.62. Superconductors for Energy Applications - M-ETIT-105299	110
10.63. Systemdynamik und Regelungstechnik - M-ETIT-102181	
10.64. Überfachliche Qualifikationen - M-ETIT-105804	
10.65. Wahrscheinlichkeitstheorie - M-ETIT-102104	
10.66. Windkraft - M-MACH-105732	
10.67. Workshop angewandte Hochfrequenztechnik - M-ETIT-105301	
Teilleistungen	
11.1. Antennen und Mehrantennensysteme - T-ETIT-106491	
11.2. Bachelorarbeit - T-ETIT-109212	
11.3. Bachelorarbeit Präsentation - T-ETIT-109295	
11.4. Basispraktikum Mobile Roboter - T-INFO-101992	
11.5. Batteriemodellierung mit MATLAB - T-ETIT-106507	
11.6. Bauelemente der Elektrotechnik - T-ETIT-109292	
11.7. Bildgebende Verfahren in der Medizin I - T-ETIT-101930	
11.8. Bildverarbeitung - T-ETIT-105566	
11.9. Digitaltechnik - T-ETIT-101918	
11.10. Einführung in die Hochspannungstechnik - T-ETIT-110702	
11.11. Einführung in die wissenschaftliche Methode (Seminar) - T-ETIT-111316	
11.12. Electrochemical Energy Technologies - T-ETIT-111352	
11.13. Elektrische Maschinen und Stromrichter - T-ETIT-101954	
11.14. Elektroenergiesysteme - T-ETIT-101923 11.15. Elektromagnetische Felder - T-ETIT-109078	
11.16. Elektromagnetische Wellen - T-ETIT-1090/8	
11.17. Elektronische Schaltungen - T-ETIT-109243	
11.18. Elektronische Schaltungen - Workshop - T-ETIT-109318	
11.19. Elektrotechnisches Grundlagenpraktikum - T-ETTT-109138	
11.20. Engineering von Automatisierungssystemen - T-ETIT-101943	
11.21. Erzeugung elektrischer Energie - T-ETIT-101924	
11.22. Experimentalphysik A - T-PHYS-110163	
11.23. Fertigungsmesstechnik - T-ETIT-106057	
11.24. Forschungspraktikum - T-ETIT-111225	
11.25. Gebäudeautomatisierung - T-ETIT-112222	

11.

11.26. Grundlagen der Hochfrequenztechnik - T-ETIT-101955	
11.27. Grundlagen der Künstlichen Intelligenz - T-INFO-112194	
11.28. Höhere Mathematik I - Klausur - T-MATH-103353	
11.29. Höhere Mathematik II - Klausur - T-MATH-103354	
11.30. Höhere Mathematik III - Klausur - T-MATH-103357	
11.31. Hybride und elektrische Fahrzeuge - T-ETIT-100784	
11.32. Industriebetriebswirtschaftslehre - T-WIWI-100796	
11.33. Industriepraktikum - T-ETIT-111224	
11.34. Informationstechnik I - T-ETIT-109300	
11.35. Informationstechnik I - Praktikum - T-ETIT-109301	
11.36. Informationstechnik II und Automatisierungstechnik - T-ETIT-109319	
11.37. Introduction to Quantum Information Processing - T-ETIT-112715	
11.38. Introduction to the Scientific Method (Seminar) - T-ETIT-111317	
11.39. Komplexe Analysis und Integraltransformationen - T-ETIT-109285	
11.41. Labor Schaltungsdesign - T-ETIT-100788	
11.42. Lineare Elektrische Netze - T-ETIT-100/88	
11.43. Lineare Elektrische Netze - Workshop A - T-ETIT-109317	
11.44. Lineare Elektrische Netze - Workshop B - T-ETIT-109317	
11.45. Mensch-Maschine-Interaktion - T-INFO-101266	
11.46. Mensch-Maschine-Wechselwirkung in der Anthropomatik: Basiswissen - T-INFO-101361	
11.47. Nachrichtentechnik I - T-ETIT-101936	
11.48. Nachrichtentechnik II / Communications Engineering II - T-ETIT-110697	
11.49. Optical Networks and Systems - T-ETIT-106506	
11.50. Optik und Festkörperelektronik - T-ETIT-110275	
11.51. Optoelectronic Components - T-ETIT-101907	
11.52. Optoelektronik - T-ETIT-100767	
11.53. Patente und Patentstrategien in innovativen Unternehmen - T-MACH-105442	
11.54. Photovoltaische Systemtechnik - T-ETIT-100724	
11.55. Physiologie und Anatomie I - T-ETIT-101932	172
11.56. Praktikum Design und Entwurf von Quantenschaltkreisen - T-ETIT-112713	173
11.57. Praktikum Elektrochemische Energietechnologien - T-ETIT-111376	174
11.58. Praktikum Hard- und Software in leistungselektronischen Systemen - T-ETIT-106498	
11.59. Praktikum Matlab zur Modellierung im Bereich Optoelektronik - T-ETIT-111800	
11.60. Radiation Protection - T-ETIT-100825	
11.61. Radio-Frequency Electronics - T-ETIT-110359	
11.62. Robotik I - Einführung in die Robotik - T-INFO-108014	
11.63. Selbstverbuchung-HOC-SPZ-ZAK-benotet - T-ETIT-111527	
11.64. Selbstverbuchung-HOC-SPZ-ZAK-benotet - T-ETIT-111526	
11.65. Selbstverbuchung-HOC-SPZ-ZAK-benotet - T-ETIT-111528	
11.66. Selbstverbuchung-HOC-SPZ-ZAK-unbenotet - T-ETIT-111530	
11.67. Selbstverbuchung-HOC-SPZ-ZAK-unbenotet - T-ETIT-111531	
11.68. Selbstverbuchung-HOC-SPZ-ZAK-unbenotet - T-ETIT-111532	
11.69. Seminar Batterien I - T-ETIT-110800	
11.71. Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung - T-ETIT-100714	
11.72. Seminar Project Management for Engineers - T-ETIT-100814	
11.73. Seminar Project Management für Ingenieure - T-ETIT-100814	
11.74. Seminar über ausgewählte Kapitel der Biomedizinischen Technik - T-ETIT-100710	
11.75. Seminar Wir machen ein Patent - T-ETIT-100754	
11.76. Seminar: Grundlagen Eingebetteter Systeme - T-ETIT-110832	
11.77. Signale und Systeme - T-ETIT-109313	
11.78. Signale und Systeme - Workshop - T-ETIT-109314	
11.79. Statistische Methoden der Informationsverarbeitung - T-ETIT-112108	
11.80. Superconductors for Energy Applications - T-ETIT-110788	
11.81. Systemdynamik und Regelungstechnik - T-ETIT-101921	198
11.82. Technikethik - ARs ReflecTionis - T-ETIT-111923	
11.83. TutorInnenprogramm - Start in die Lehre - T-ETIT-100797	
11.84. Übungsschein Mensch-Maschine-Interaktion - T-INFO-106257	201
11.85. Wahrscheinlichkeitstheorie - T-ETIT-101952	202

11.86.	. Windkraft - T-MACH-105234	203
11.87.	Workshop angewandte Hochfrequenztechnik - T-ETIT-110790	204

1 Einführung in das Modulhandbuch

1.1 Allgemeines

Rechtsgrundlage für den Studiengang und die Durchführung von Prüfungen ist die jeweils gültige Studien- und Prüfungsordnung (SPO) für Ihren Studiengang:

- · Bachelor of Science, Elektrotechnik und Informationstechnik
- · Master of Science, Elektrotechnik und Informationstechnik
- · Bachelor of Science, Medizintechnik

Das Studium gliedert sich in Fächer. Jedes Fach wiederum ist in Module aufgeteilt. Jedes Modul besteht aus einer oder mehreren aufeinander bezogenen Teilleistungen, die durch eine Erfolgskontrolle abgeschlossen werden. Der Umfang jedes Moduls ist durch Leistungspunkte (LP) gekennzeichnet, die nach erfolgreichem Absolvieren des Moduls im Studienablaufplan verbucht werden.

Die SPO definiert die Fächer, die dem Pflicht -und/oder dem Wahlpflichtbereich im Studiengang zugeordnet werden, und ihren Umfang.

Der Pflichtbereich umfasst den Teil des Studiengangs, der das studiengangspezifische Fachprofil ausmacht.

Der **Wahlpflichtbereich** dient der Profilschärfung oder -erweiterung und ermöglicht interdisziplinäre Kombinationen oder anwendungsorientierte Ergänzungen.

Überfachliche Qualifikationen sind Module mit einem überwiegend nicht-technischen Inhalt; diese müssen mit bewerteten Leistungspunkte-Nachweis erbracht werden. Die Module sind aus dem Lehrangebot des HOC und ZAK, Sprachenzentrum sowie aus Veranstaltungen der KIT-Fakultät für Elektrotechnik und Informationstechnik oder anderer KIT-Fakultäten zu wählen.

Leistungen können im Modul "Überfachliche Qualifikationen" durch die Studierenden selbst verbucht werden. Der Einstieg erfolgt für Studierende über den Menüpunkt "Prüfungsanmeldung und -abmeldung", über welchen auch der Studienablaufplan erreichbar ist. Hier befindet sich ein neuer Reiter "ÜQ/SQ-Leistungen", welcher die Liste der nicht zugeordneten eigenen Leistungen anzeigt.

Im Folgenden sind diese den Teilleistungen mit dem Titel "Selbstverbuchung-HOC-SPZ-ZAK-..." passend zur Notenskala, benotet oder unbenotet, zuzuordnen. Titel und LP der Leistung werden automatisch übernommen.

Das Modulhandbuch beschreibt die zum Studiengang gehörigen Module. Dabei geht es ein auf:

- · die Zusammensetzung der Module
- die Größe der Module (in LP)
- die Abhängigkeiten der Module untereinander
- · die Qualifikationsziele der Module
- · die Art der Erfolgskontrolle
- die Bildung der Note eines Modules

Das Modulhandbuch gibt somit die notwendige Orientierung im Studium. Über die Lehrveranstaltungen im Semester informiert Sie das Vorlesungsverzeichnis.

Alle Informationen rund um die rechtlichen Rahmenbedingungen des Studiums finden Sie in der jeweiligen Studien- und Prüfungsordnung Ihres Studiengangs (s. oben).

1.2 Hinweise zu Modulen und Teilleistungen

Level-Angabe bei den Modulen

Level 1 = 1. + 2. Semester Bachelor

Level 2 = 3. + 4. Semester Bachelor

Level 3 = 5. + 6. Semester Bachelor

Level 4 = Master

Modul- und Teilleistungsversion

Die Angabe gibt Auskunft über die aktuell gültige Version des Moduls oder der Teilleistung. Eine neue Version wird z.B. erzeugt, wenn im Modul oder der Teilleistung eine Anpassung der LP durchgeführt wurde. Sie erhalten jeweils automatisch die gültige Version in ihrem Studienablaufplan. Wenn Sie ein Modul bereits begonnen haben, können Sie das Modul in der begonnenen Version abschließen (Bestandsschutz).

Teilleistungsart

Beschreibt die Art der Erfolgskontrolle gemäß § 4 SPO ETIT. Erfolgskontrollen gliedern sich in Studien- oder Prüfungsleistungen.

Prüfungsleistungen sind benotete

- 1. schriftliche Prüfungen,
- 2. mündliche Prüfungen oder

3. Prüfungsleistungen anderer Art

Studienleistungen sind unbenotete schriftliche, mündliche oder praktische Leistungen, die von den Studierenden in der Regel lehrveranstaltungsbegleitend erbracht werden.

Lehrveranstaltungen

Im Kapitel "Teilleistungen" werden die zugehörigen Lehrveranstaltungen aus dem aktuellen Semester und aus dem vorhergehenden Semester tabellarisch dargestellt. Für Module die nicht jedes Semester angeboten werden, erhalten Sie somit vollständige Angaben zu den zugehörigen Lehrveranstaltungen.

1.3 Anmeldung und Zulassung zu Modulprüfungen

Um an den Modulprüfungen teilnehmen zu können, müssen sich die Studierenden online im **Studierendenportal** zu der jeweiligen Prüfung anmelden.

In Ausnahmefällen kann eine Anmeldung schriftlich im Studierendenservice oder in einer anderen, vom Studierendenservice autorisierten Einrichtung erfolgen. Für die Erfolgskontrollen können durch die Prüfenden Anmeldefristen festgelegt werden.

Sofern Wahlmöglichkeiten bestehen, geben Studierende mit der Anmeldung zur Prüfung eine bindende Erklärung über die Modulwahl ab. Auf Antrag des/der Studierenden an den Prüfungsausschuss kann die Wahl oder die Zuordnung nachträglich geändert werden.

Jedes Modul und jede Erfolgskontrolle darf in demselben Studiengang nur einmal gewertet werden.

Eine Prüfungsleistung ist bestanden, wenn die Note mindestens "ausreichend" (4,0) ist. Ein Modul ist bestanden, wenn alle erforderlichen Teilleistungen bestanden sind.

2 Qualifikationsziele

Die Qualifikationsziele des Studienganges teilen sich auf die folgenden vier wesentlichen Kompetenzprofile auf:

- 1. Fachwissen: Die Studierenden lernen die Grundlagen des Faches sowie aktueller Forschungsthemen, -prozesse und -ergebnisse kennen.
- 2. Forschungs- und Problemlösungskompetenz: Die Studierenden erlernen die Fähigkeiten und Techniken zur Lösung von Fach- und Forschungsproblemen.
- 3. Beurteilungs- und planerische Kompetenz: Die Studierenden wirken im Fach- und Forschungsdiskurs mit und wenden erzeugtes Wissen sowie erlernte Techniken an.
- 4. Selbst- und Sozialkompetenz: Die Studierenden arbeiten an (eigenen) Forschungsprojekten, sind eingebunden in ein wissenschaftliches Team, sind zur selbstständigen & dauerhaften fachlichen und wissenschaftlichen Weiterentwicklung fähig und schätzen die sozialen und gesellschaftlichen Wirkungen ihrer Tätigkeit ein.

Bei den Punkten 1 und 2 liegt der Fokus auf der Dozentenaktivität, bei den Punkten 3 und 4 entsprechend auf Studierendenaktivität.

Für den Bachelor Studiengang werden diese Kompetenzanforderungen durch die folgenden Ziele konkretisiert:

Fachwissen

Die Absolventinnen und Absolventen des Bachelorstudienganges Elektrotechnik und Informationstechnik

- verfügen über ein grundlegendes mathematisches und physikalisches Wissen und über ein fundiertes elektrotechnisches und informationstechnisches Fachwissen. Sie sind in der Lage, Aufgaben und Probleme der Elektrotechnik und Informationstechnik zu erkennen, zu bewerten und einfache Lösungsansätze zu formulieren,
- beherrschen die grundlegenden wissenschaftlichen Methoden ihrer Disziplin und haben gelernt, diese entsprechend dem Stand ihres Wissens zur Analyse erkannter Probleme oder fachlicher Fragestellungen einzusetzen,
- haben in ausgewählten Bereichen der Elektrotechnik und Informationstechnik vertieftes Wissen und fortgeschrittene praktische Arbeitstechniken erworben.

Forschungs- und Problemlösungskompetenz

Die Absolventinnen und Absolventen des Bachelorstudienganges Elektrotechnik und Informationstechnik

- besitzen ein grundlegendes Verständnis der Methoden der Elektrotechnik und Informationstechnik,
- sind vertraut mit den Verfahren zur Analyse und zum Entwurf von Bauelementen, Schaltungen, Systemen und Anlagen der Elektrotechnik,
- sind vertraut mit den Grundlagen der Informationsdarstellung und -verarbeitung, der Programmierung, der algorithmischen Formulierung von Abläufen sowie der Anwendung von Programmwerkzeugen,
- sind befähigt in einem der Hauptanwendungsfelder der Elektrotechnik und Informationstechnik als Ingenieur zu arbeiten (z.B. Elektromobilität, Medizintechnik, Mikroelektronische Systeme, Kommunikationstechnik, Systeme der Luft- und Raumfahrt, Photonik und optische Technologien, Regenerative Energien und Smart Grid, Intelligentes Auto),
- sind befähigt zur Weiterqualifikation zum Master of Science.

Beurteilungs- und planerische Kompetenz

Die Absolventinnen und Absolventen des Bachelorstudienganges Elektrotechnik und Informationstechnik

- können elektro- und informationstechnische Entwürfe sowie verschiedene Lösungsvarianten beurteilen,
- erkennen Grenzen der Gültigkeit von Theorien und Lösungen bei konkreten Aufgabenstellungen,
- · können die erzielten Ergebnisse kritisch hinterfragen.

Selbst- und Sozialkompetenz

Die Absolventinnen und Absolventen des Bachelorstudienganges Elektrotechnik und Informationstechnik

- sind vertraut mit der selbstständigen Projektarbeit sowie der Arbeit im Team, können die Ergebnisse anderer erfassen und sind in der Lage, die eigenen und im Team erzielten Ergebnisse schriftlich und mündlich zu kommunizieren.
- besitzen ein grundlegendes Verständnis für Anwendungen der Elektrotechnik und Informationstechnik in verschiedenen Arbeitsbereichen, kennen dabei auftretende Grenzen und Gefahren und können ihr Wissen unter Berücksichtigung sicherheitstechnischer und ökologischer Erfordernisse verantwortungsbewusst und zum Wohle der Gesellschaft anwenden. Sie können in der Gesellschaft aktiv zum Meinungsbildungsprozess in Bezug auf wissenschaftliche und technische Fragestellungen beitragen,
- sind durch die Grundlagenorientierung der Ausbildung sehr gut auf lebenslanges Lernen, auf den Einsatz in unterschiedlichen Berufsfeldern oder den Erwerb einer höheren Qualifikation in ihrem Fach vorbereitet,
- sind in der Lage, mit Spezialisten verwandter Disziplinen zu kommunizieren und zusammenzuarbeiten.

3 Aufbau des Bachelorstudienganges

Fächer

Die ersten fünf Semester des Studiums beinhalten eine Reihe von Modulprüfungen, die für alle Studierenden verbindlich sind. Die verbindlichen Prüfungen sind den folgenden übergeordneten Fächern zugeordnet:

- Mathematisch-physikalische Grundlagen (40 Leistungspunkte, im Folgenden LP)
- Elektrotechnik (51 LP)
- Informationstechnik (39 LP)
- Im Profilierungsfach (32 LP) haben Sie ab dem 4. Semester Wahlmöglichkeiten:
 Beim praktischen Anteil des Profilierungsfaches können Sie zwischen einem Industriepraktikum (10 LP) und einem Forschungspraktikum (10 LP), d.h. einer forschungsorientierten Projektarbeit am KIT, wählen. Im Wahlbereich des Profilierungsfaches (22 LP) haben Sie die Auswahl aus einer festen Liste von Modulen. Praktika und Workshops dürfen dabei maximal im Wert von 6 LP belegt werden.
- Überfachliche Qualifikationen (7 LP, davon 3 LP frei wählbar und 4 LP integrativ vermittelt).

Für die Bachelorprüfung muss außerdem das Modul Bachelorarbeit (15 LP) absolviert werden. Bei der Gesamtnote der Bachelorprüfung wird die Note des Moduls Bachelorarbeit doppelt gewichtet.

Studienablauf

Eine Empfehlung, in welcher Reihenfolge Sie Ihre Prüfungen ablegen sollten, finden Sie im empfohlenen Studienplan auf der folgenden Seite.

Sobald Sie 120 LP erreicht haben, können Sie zur Bachelorarbeit (15 LP) zugelassen werden. Bitte beachten Sie dabei die Informationen zur Anmeldung der Bachelorarbeit.

Empfohlener Studienplan für den Bachelorstudiengang Elektrotechnik und Informationstechnik Studien- und Prüfungsordnung 2018

			SWS	LP	Module	Fach
		Höhere Mathematik I	6+2	11	MP1	MP
	Date les	Experimentalphysik*	4+1	6	MP2	MP
1. Sem.	Pflicht	Lineare Elektrische Netze (Orientierungsprüfung)	4+1+2	9	E1	Е
		Digitaltechnik	3+1	6	11	I
		Teil	summe LP	32		
		Höhere Mathematik II	4+2	8	MP3	MP
		Elektronische Schaltungen	3+1+1	7	E2	Е
2. Sem.	Pflicht	Elektromagnetische Felder (Orientierungsprüfung)	2+2	6	E3	E
2. Sem.		Komplexe Analysis und Integraltransformationen	1+1	4	10	1
		Informationstechnik I	2+1+1	6	12	1
		Teil	summe LP	31		
		Höhere Mathematik III	2+1	4	MP5	MP
		Elektromagnetische Wellen	2+2	6	E4	Е
	Pflicht	Signale und Systeme	2+2+1	7	13	1
3. Sem.	Priicht	Wahrscheinlichkeitstheorie	2+1	5	MP4	MP
		Elektrische Maschinen und Stromrichter	2+2	6	E5	Е
		Überfachliche Qualifikation		3		
		Teil	summe LP	31		
	Pflicht n.	Informationstechnik II und Automatisierungstechnik	2+1	4	14	1
		Optik und Festkörperelektronik*	3+2	6	MP6	MP
4. Sem.		Grundlagen der Hochfrequenztechnik	2+2	6	E6	E
4. Sem.		Elektroenergiesysteme	2+1	5	E7	Е
		Profilierungsfach: Wahlbereich		7	Pro-F	
	Teilsumme LF			28		
		Systemdynamik und Regelungstechnik	2+2	6	15	1
5. Sem.	Pflicht	Nachrichtentechnik I	3+1	6	16	1
o. sem.		Bauelemente der Elektrotechnik	3+1	6	E8	Е
		Profilierungsfach: Wahlbereich		12	Pro-F	
	Wahl-	Teil Profilierungsfach: Industriepraktikum oder Forschungs-	summe LP	30		
6. Sem.	pflicht	praktikum		10	Pro-F	
	Wahl- pflicht	Profilierungsfach: Wahlbereich		3	Pro-F	
	ВА	Bachelorarbeit (inkl. Vortrag)		15 28		
Teilsumme LP						
	Too,vo 100,vo					

* Wichtiger Hinweis:

Für Studierende mit früherem Studienbeginn, die eines der gekennzeichneten Module bereits begonnen haben, gilt die frühere Leistungspunkteverteilung von "Experimentalphysik" mit 4 LP und "Optik und Festkörperelektronik" mit 8 LP.

Fächer im Bachelor ETIT:	LP	
Mathematisch-physikalische Grundlagen (MP1-6)	40	
Elektrotechnik (E1-8)	51	
Informationstechnik (I1-6)	39	
Profilierungsfach: Industriepraktikum oder Forschungspraktikum (Prof-F)	10	
Profilierungsfach: Wahlbereich (Prof-F)	22	
Überfachliche Qualifikation (ohne integrierte ÜQ)	3	(mit integrierten ÜQ: 7 LP)
Bachelorarbeit (inkl. Vortrag)	15	(wird doppelt gewichtet)

5 Anmeldung Bachelorarbeit

(Gültig für ETIT-Bachelorstudierende der SPO 2018, also mit Studienbeginn ab WS 2018/19)

Voraussetzung für eine Zulassung zur Bachelorarbeit sind erfolgreich abgelegte Modulprüfungen im Umfang von 120 LP. Die Anmeldung zur Bachelorarbeit läuft wie folgt ab:

- **Thema finden**: Sie suchen sich zunächst ein Thema, das Sie interessiert. Die ETIT-Institute bieten über ihre Homepage und/oder Aushänge Themen für Abschlussarbeiten an.
- Kontakt zu Institut und Anmeldung: Nehmen Sie dann Kontakt mit der zuständigen Ansprechperson auf und klären Sie im Gespräch, ob das Thema sich für Sie eignet. Falls ja, wird die Arbeit für Sie im Campussystem angelegt. Sie erhalten daraufhin eine Mail mit der Aufforderung, sich für die Arbeit anzumelden. Bitte melden Sie sich zur Bachelorarbeit so bald wie möglich an!
- Sonderfall externe Bachelorarbeit: Falls Sie Ihre Arbeit bei einer Firma oder bei einer anderen KIT-Fakultät schreiben, müssen Sie außerdem die "Anlage externe Bachelorarbeit"* beim Studiengangservice Bachelor (BPA) einreichen
- Zulassung und Start: Sobald die Zulassung erteilt wurde, bekommen Sie diese Info per Mail und können beginnen.
- Bearbeitungszeit: Die maximale Bearbeitungszeit beträgt 6 Monate. Die Präsentation muss innerhalb dieser Zeit stattfinden.
- Noteneintrag: Sobald nach Abgabe und nach der Präsentation die Note eingetragen wurde, werden Sie per Mail darüber informiert.

Achtung:

Für die Benotung hat Ihr/e Prüfer/in acht Wochen Zeit. Sollte die Arbeit Ihre letzte Prüfungsleistung gewesen sein, empfehlen wir Ihnen, sich eine sog. 4.0-Bescheinigung (die Arbeit gilt dann als mindestens "bestanden") ausstellen zu lassen, mit deren Hilfe Sie eine Bescheinigung über den erfolgreichen Abschluss Ihres Studiums erhalten können.

Falls Sie weitere Fragen haben, wenden Sie sich gerne an das Studiengangservice Bachelor-Team!

* Sie finden das Formular auf der ETIT-Homepage

6 Anerkennung von Studien- und Prüfungsleistungen

6.1 Grundsätzliche Regelungen

Die grundsätzlichen Regelungen zur Anerkennung von Studien- und Prüfungsleistungen finden sich in den Studien- und Prüfungsordnungen:

- Bachelor SPO 2015 vom 31.05.2015, §19
- Bachelor SPO 2018 vom 28.09.2018, §19
- Master SPO 2015 vom 31.05.2015, §18
- Master SPO 2018 vom 28.09.2018, §18

Danach können die im Studienplan jeweils geforderten Leistungen auch durch Anerkennung externer Leistungen erbracht werden.

Externe Leistungen können dabei wie folgt erworben sein:

- 1. innerhalb des Hochschulsystems (weltweit)
- 2. außerhalb des Hochschulsystems (an Institutionen mit genormtem Qualitätssicherungssystemen; die Anerkennung kann versagt werden, wenn mehr als 50 Prozent des Hochschulstudiums ersetzt werden sollen)

Die Anerkennung erfolgt auf Antrag der Studierenden, unter der Voraussetzung, dass hinsichtlich der erworbenen Kompetenzen kein wesentlicher Unterschied zu den Leistungen oder Abschlüssen besteht, die ersetzt werden sollen. Der Antrag muss innerhalb des ersten Semesters nach Immatrikulation am KIT gestellt werden.

Zuständig für Anerkennung und Anrechnung ist der Prüfungsausschuss, der unter Einbeziehung der fachlichen Prüfung durch den zuständigen Fachvertreter über die Anerkennung entscheidet. Anerkannte Leistungen, die nicht am KIT erbracht wurden, werden im Notenauszug als "anerkannt" ausgewiesen.

6.2 Benotung

Wenn es sich um ein vergleichbares Notensystem handelt, wird die Note der anzuerkennenden Leistung übernommen. Bei nicht vergleichbaren Notensystemen wird die Note umgerechnet.

Prüfungsleistungen, die anstelle einer benoteten Prüfungsleistung anerkannt werden sollen, müssen ebenfalls benotet sein.

6.3 Vorgehensweise

- Gehen Sie zunächst zu einer Fachprüferin oder einem Fachprüfer* und legen Sie dort das Antragsformular zusammen mit den erforderlichen Unterlagen vor.**
 - **Wichtig:** Anerkennungen müssen innerhalb des ersten Semesters nach Immatrikulation beim Prüfungsausschuss beantragt werden.
- 2. Besteht Gleichwertigkeit im Hinblick auf die erworbenen Kompetenzen (Qualifikationsziele), wird dies mit **Stempel** und Unterschrift durch die Fachprüferin oder den Fachprüfer bestätigt.
- 3. Geben Sie dann den fertig ausgefüllten und unterschriebenen Antrag zusammen mit dem entsprechenden Notenauszug im Büro des Prüfungsausschusses ab.

Hinweis zu Auslandsprüfungsleistungen

Bei Anerkennung von Prüfungsleistungen aus einem Auslandssemester ist es empfehlenswert, vor dem Auslandsaufenthalt die geplanten Auslandsprüfungsleistungen im Hinblick auf die spätere Anerkennung mit einem Fachstudienberater zu besprechen.

*Wenn Sie eine Leistung anstelle eines KIT-Moduls anerkennen lassen möchten, wenden Sie sich für die Fachprüfung an die/den Modulverantwortliche/n des KIT-Moduls. Für Anerkennungen im Wahlbereich/Interdisziplinären Fach/Profilierungsfach wenden Sie sich an eine/n der Fachstudienberater*innen der Fakultät ETIT.

**Für die Anerkennung erforderlich sind Unterlagen, auf denen die der Anerkennung zugrundeliegenden Prüfungsleistungen dokumentiert sind. (Zeugnisse, Transcript of Records, Auszüge aus dem Modulhandbuch, Skripte o.ä.). Bei Unterlagen, die nicht in deutscher oder englischer Sprache vorliegen, kann eine amtlich beglaubigte Übersetzung verlangt werden.

Falls Sie weitere Fragen haben, wenden Sie sich gerne an den Studiengangservice Bachelor und Master:

Studiengangservice Bachelor:

bachelor-info@etit.kit.edu, Tel.: 0721/608-42636 oder -42746, Geb. 30.36, 1. OG, Raum 117

Studiengangservice Master

master-info@etit.kit.edu, Tel.: 0721/608-42469, Geb. 30.36, 1. OG, Raum 115

7 Ansprechpartner*innen und Beratung

Fachliche Beratung:

Fachstudienberater*innen der Fakultät

Allgemeine Beratung:

Referentinnen des Studiengangservice Bachelor (BPA),

Gebäude 30.36, 1. OG, Raum 117, Mail: bachelor-info@etit.kit.edu

(Beratung z.B. zu Studienablaufplanung, Prüfungsordnung, Einzelfallproblemen, Anträgen etc. sowie zu Abläufen an der Fakultät für Elektrotechnik und Informationstechnik)

Fragen zum Industrie- oder Forschungspraktikum:

Praktikantenamt der Fakultät ETIT, Gebäude 11.10 (ETI), Raum 204, Mail: praktikantenamt@etit.kit.edu. Bitte bei allen Fragen zunächst die FAQs auf der Homepage des Praktikantenamts lesen!

8 Herausgeber

KIT-Fakultät für Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie (KIT) 76131 Karlsruhe

www.etit.kit.edu

Studiendekan:

Prof. Dr.-Ing. Marc Hiller

Modulkoordination (modulkoordination@etit.kit.edu):

Dr. Andreas Barth & Stefanie Küstner

9 Aufbau des Studiengangs

Pflichtbestandteile		
Orientierungsprüfung		
Bachelorarbeit	15 LP	
Mathematisch-physikalische Grundlagen	40 LP	
Elektrotechnik	51 LP	
Informationstechnik	39 LP	
Profilierungsfach	32 LP	
Überfachliche Qualifikationen ab WS 22/23	3 LP	

9.1 Orientierungsprüfung

Pflichtbestandteil	e	
M-ETIT-104225	Orientierungsprüfung	0 LP

9.2 Bachelorarbeit Leistungspunkte 15

Pflichtbestandteil	е	
M-ETIT-104499	Bachelorarbeit	15 LP

9.3 Mathematisch-physikalische Grundlagen

Leistungspunkte 40

Pflichtbestandteile M-MATH-101731 Höhere Mathematik I 11 LP M-PHYS-105008 Experimentalphysik 6 LP M-MATH-101732 Höhere Mathematik II 8 LP M-MATH-101738 Höhere Mathematik III 4 LP M-ETIT-102104 Wahrscheinlichkeitstheorie 5 LP M-ETIT-105005 Optik und Festkörperelektronik 6 LP

9.4 Elektrotechnik Leistungspunkte 51

Pflichtbestandteile			
M-ETIT-104519	Lineare Elektrische Netze	9 LP	
M-ETIT-104465	Elektronische Schaltungen	7 LP	
M-ETIT-104428	Elektromagnetische Felder	6 LP	
M-ETIT-104515	Elektromagnetische Wellen	6 LP	
M-ETIT-102124	Elektrische Maschinen und Stromrichter	6 LP	
M-ETIT-102129	Grundlagen der Hochfrequenztechnik	6 LP	
M-ETIT-102156	Elektroenergiesysteme	5 LP	
M-ETIT-104538	Bauelemente der Elektrotechnik	6 LP	

9 AUFBAU DES STUDIENGANGS Informationstechnik

9.5 Informationstechnik Leistungspunkte 39

Pflichtbestandteile		
M-ETIT-102102	Digitaltechnik	6 LP
M-ETIT-104534	Komplexe Analysis und Integraltransformationen	4 LP
M-ETIT-104539	Informationstechnik I	6 LP
M-ETIT-104525	Signale und Systeme	7 LP
M-ETIT-104547	Informationstechnik II und Automatisierungstechnik	4 LP
M-ETIT-102181	Systemdynamik und Regelungstechnik	6 LP
M-ETIT-102103	Nachrichtentechnik I	6 LP

9 AUFBAU DES STUDIENGANGS Profilierungsfach

9.6 Profilierungsfach

Leistungspunkte

32

Wahlinformationen

Bitte beachten Sie, dass Praktika und Workshops maximal im Umfang von 6 Leistungspunkten (LP) gewählt werden dürfen. Dazu zählen.

M-ETIT-102113 - Elektrotechnisches Grundlagenpraktikum

M-ETIT-104823 - Labor für angewandte Machine Learning Algorithmen

M-ETIT-100518 - Labor Schaltungsdesign

M-ETIT-105703 - Praktikum Elektrochemische Energietechnologien

M-ETIT-106262 - Praktikum Design und Entwurf von Quantenschaltkreisen

M-ETIT-103263 - Praktikum Hard- und Software in leistungselektronischen Systemen

M-ETIT-105301 - Workshop angewandte Hochfrequenztechnik

M-INFO-101184 - Basispraktikum Mobile Roboter

Forschungs- oder	Industriepraktikum (Wahl: 1 Bestandteil)	
M-ETIT-105602	Forschungspraktikum	10 LP
M-ETIT-105601	Industriepraktikum	10 LP
Wahlbereich Profi	lierungsfach (Wahl: mind. 22 LP)	<u>'</u>
M-ETIT-100565	Antennen und Mehrantennensysteme	5 LP
M-INFO-101184	Basispraktikum Mobile Roboter	4 LP
M-ETIT-103271	Batteriemodellierung mit MATLAB	3 LP
M-ETIT-102651	Bildverarbeitung	3 LP
M-ETIT-100384	Bildgebende Verfahren in der Medizin I	3 LP
M-ETIT-105276	Einführung in die Hochspannungstechnik	3 LP
M-ETIT-105690	Electrochemical Energy Technologies	5 LP
M-ETIT-102113	Elektrotechnisches Grundlagenpraktikum	6 LP
M-ETIT-106037	Engineering von Automatisierungssystemen	4 LP
M-ETIT-100407	Erzeugung elektrischer Energie	3 LP
M-ETIT-103043	Fertigungsmesstechnik	3 LP
M-ETIT-106038	Gebäudeautomatisierung	3 LP
M-INFO-106014	Grundlagen der Künstlichen Intelligenz neu	5 LP
M-ETIT-100514	Hybride und elektrische Fahrzeuge	4 LP
M-ETIT-106264	Introduction to Quantum Information Processing neu	6 LP
M-ETIT-104823	Labor für angewandte Machine Learning Algorithmen	6 LP
M-ETIT-100518	Labor Schaltungsdesign	6 LP
M-INFO-100729	Mensch-Maschine-Interaktion	6 LP
M-INFO-100824	Mensch-Maschine-Wechselwirkung in der Anthropomatik: Basiswissen	3 LP
M-ETIT-105274	Nachrichtentechnik II / Communications Engineering II	4 LP
M-ETIT-103270	Optical Networks and Systems	4 LP
M-ETIT-100509	Optoelectronic Components	4 LP
M-ETIT-100480	Optoelektronik	4 LP
M-ETIT-100411	Photovoltaische Systemtechnik	3 LP
M-ETIT-100390	Physiologie und Anatomie I	3 LP
M-ETIT-106262	Praktikum Design und Entwurf von Quantenschaltkreisen neu	6 LP
M-ETIT-105703	Praktikum Elektrochemische Energietechnologien	5 LP
M-ETIT-103263	Praktikum Hard- und Software in leistungselektronischen Systemen	6 LP
M-ETIT-105867	Praktikum Matlab zur Modellierung im Bereich Optoelektronik	3 LP
M-ETIT-100562	Radiation Protection	3 LP
M-ETIT-105124	Radio-Frequency Electronics	5 LP
M-INFO-100893	Robotik I - Einführung in die Robotik	6 LP
M-ETIT-105319	Seminar Batterien I	3 LP
M-ETIT-105320	Seminar Brennstoffzellen I	3 LP
M-ETIT-105356	Seminar: Grundlagen Eingebetteter Systeme	3 LP
M-ETIT-100397	Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung	4 LP
M-ETIT-100383	Seminar über ausgewählte Kapitel der Biomedizinischen Technik	3 LP
M-ETIT-105960	Statistische Methoden der Informationsverarbeitung	4 LP
M-ETIT-105299	Superconductors for Energy Applications	5 LP
M-MACH-105732	Windkraft	4 LP
M-ETIT-105301	Workshop angewandte Hochfrequenztechnik	3 LP

9.7 Überfachliche Qualifikationen ab WS 22/23

Leistungspunkte

3

Pflichtbestandteil	e	
M-ETIT-105804	Überfachliche Qualifikationen	3 LP

10 Module

10.1 Modul: Antennen und Mehrantennensysteme [M-ETIT-100565]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version	
5	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	4	

Pflichtbestandteile			
T-ETIT-106491	Antennen und Mehrantennensysteme	5 LP	Zwick

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von 20 Minuten.

Voraussetzungen

Das Modul "Antennen und Antennensysteme" darf nicht begonnen oder abgeschlossen sein.

Qualifikationsziele

Die Studierenden besitzen ein vertieftes Wissen zu Antennen und Antennensystemen. Hierzu gehören Funktionsweise, Berechnungsmethoden aber auch Aspekte der praktischen Umsetzung. Sie sind in der Lage, die Funktionsweise beliebiger Antennen zu verstehen sowie Antennen mit vorgegebenen Eigenschaften zu entwickeln und dimensionieren.

Inhalt

Die Vorlesung vermittelt die feldtheoretischen Grundlagen sowie die Funktionsweise aller wesentlichen Antennenstrukturen. Die Funktionsweise von Antennenarrays wird zusätzlich über Matlab-Übungen visualisiert. Des Weiteren werden Antennenmessverfahren vermittelt, sowie ein Einblick in moderne Antennen- und Mehrantennensysteme. Daneben wird ein praxisorientierter Workshop zum rechnergestützten Entwurf und zur Simulation von Antennen durchgeführt, in dem die Studierenden das Softwaretool CST einsetzen lernen und damit selbständig Antennendesignaufgaben durchführen. Einzelne Antennen werden anschließend aufgebaut und vermessen sodass die Studierenden den gesamten Prozess kennen lernen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:

Präsenzstudienzeit Vorlesung/Übung: 30 h

Präsenzstudienzeit Rechnerübung CST/MATLAB: 30h

Selbststudienzeit inkl. Prüfungsvorbereitung: 90 h

Insgesamt 150 h = 5 LP

10.2 Modul: Bachelorarbeit [M-ETIT-104499]

Verantwortung: Prof. Dr.-Ing. Marc Hiller

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Bachelorarbeit

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
15	Zehntelnoten	Jedes Semester	1 Semester	Deutsch	3	1

Pflichtbestandteile	Pflichtbestandteile				
T-ETIT-109212	Bachelorarbeit	12 LP	Hiller		
T-ETIT-109295	Bachelorarbeit Präsentation	3 LP	Hiller		

Erfolgskontrolle(n)

§14, (1 a) Dem Modul Bachelorarbeit sind 15 LP zugeordnet. Es besteht aus der Bachelorarbeit mit 12 LP und einer Präsentation mit 3 LP. Die Präsentation ist innerhalb von sechs Monaten nach Anmeldung zur Bachelorarbeit durchzuführen. Über eine Verlängerung der Frist entscheidet der Prüfungsausschuss auf begründeten Antrag des bzw. der Studierenden mit Zustimmung des bzw. der ausgebenden Prüfenden.

Voraussetzungen

§14 (1): Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die bzw. der Studierende Modulprüfungen im Umfang von 120 LP gemäß § 20 Abs. 2 erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der bzw. des Studierenden.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. In den folgenden Bereichen müssen in Summe mindestens 120 Leistungspunkte erbracht worden sein:
 - Elektrotechnik
 - Elektrotechnik
 - Informationstechnik
 - Informationstechnik
 - Mathematisch-physikalische Grundlagen
 - Mathematisch-physikalische Grundlagen
 - Profilierungsfach
 - Überfachliche Qualifikationen
 - Überfachliche Qualifikationen ab WS 21/22

Qualifikationsziele

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage, eine abgegrenzte Aufgabenstellung aus dem Bereich der Elektrotechnik bzw. Informationstechnik innerhalb einer vorgegebenen Frist nach wissenschaftlichen Methoden und unter der Einhaltung der Regeln guter wissenschaftlicher Praxis unter Anleitung und unter Anwendung des im Bachelorstudium erworbenen Theorie- und Methodenwissens selbstständig zu bearbeiten. Die Studierenden sind in der Lage, zu recherchieren, die Informationen zu analysieren und zu abstrahieren sowie grundsätzliche Prinzipien und Gesetzmäßigkeiten aus wenig strukturierten Informationen zusammenzutragen und zu erkennen. Die Studierenden überblicken eine Fragestellung, können wissenschaftliche Methoden und Verfahren auswählen und diese zur Lösung einsetzen bzw. weitere Potentiale aufzeigen. Dies erfolgt grundsätzlich auch unter Berücksichtigung von gesellschaftlichen und/oder ethischen Aspekten.

Die Studierenden können ihre Ergebnisse interpretieren und evaluieren. Sie sind außerdem in der Lage, ihre Ergebnisse in einer klar strukturierten, schriftlichen Ausarbeitung unter Verwendung der entsprechenden Fachterminologie zu dokumentieren. Darüber hinaus sind die Studierenden in der Lage, ihre Ergebnisse vor einer Gruppe zu präsentieren und zu verteidigen. Außerdem haben sie ihre Problemlösungskompetenz sowie ihre Kompetenz des Transfers des Theorie- und Methodenwissens der Elektrotechnik und Informationstechnik in konkrete Anwendungen vertieft.

Neben den fachbezogenen Qualifikationszielen sammeln die Studierenden auch Kenntnisse und Erfahrungen auf den Gebieten des Projekt- sowie des Selbst- und Zeitmanagements. Dazu gehören auch Kenntnisse und Methoden verschiedener Präsentationstechniken.

Inhalt

Die Studierenden bearbeiten eigenverantwortlich mit wissenschaftlichen Methoden und unter der Einhaltung der Regeln guter wissenschaftlicher Praxis ein mit dem fachlichen Prüfer abgestimmtes Forschungsthema, das sich mit einer Problemstellung aus dem Bereich des Bachelorstudiengangs beschäftigt.

Zusammensetzung der Modulnote

Die Modulnote ergibt sich aus der Note der Bachelorarbeit.

Arbeitsaufwand

450 h

10.3 Modul: Basispraktikum Mobile Roboter [M-INFO-101184]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

Leistungspunkte Notenskala Dauer Level Version **Turnus** Sprache best./nicht **Jedes** Deutsch/ 3 2 Englisch best. Sommersemester Semester

Pflichtbestandteile			
T-INFO-101992	Basispraktikum Mobile Roboter	4 LP	Asfour

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Der/Die Studierende kann Schaltpläne lesen, selbständig komplexe Platinen bestücken, testen, Fehler in der Elektronik erkennen und beheben. Er/Sie kann eingebettete Systeme auf Basis von Mikrocontrollern in der Sprache C und unter Verwendung eines Cross-Compilers programmieren. Er/Sie kann Methoden zur Ansteuerung von Sensoren und Aktoren in der Robotik anwenden, Versuche mit Robotern durchführen und Aufgaben aus diesem Themenbereich eigenständig und im Team lösen.

Inhalt

Im Rahmen des Praktikums werden in Zweierteams ARMURO-Roboter aufgebaut. Jeder Student erhält seinen eigenen Roboter und nimmt diesen unter Anleitung eigenständig in Betrieb. Mit dem Roboter wird jede Woche ein neuer Versuch durchgeführt, auf den die Studenten sich mit den zur Verfügung gestellten Unterlagen vorbereiten. Die Versuche basieren auf der Programmierung von Mikrocontrollern in C und umfassen die Ansteuerung der Sensoren und Aktoren des Roboters sowie mit Generierung von reaktiven Verhaltensmustern. Am Ende des Praktikums findet ein Abschlussrennen statt, bei dem die Roboter einen Hindernisparcours bewältigen müssen.

Arbeitsaufwand

Vorlesung mit 4 SWS, 4 LP. 4 LP entspricht ca. 120 Stunden, davon ca. 15 * 4h = 60 Std. Präsenzzeit Vorlesung ca. 15 * 3h = 45 Std. Vor- und Nachbereitungszeit Vorlesung ca. 15 Std. Prüfungsvorbereitung und Präsenz in selbiger

Empfehlungen

Kenntnisse in der Programmiersprache C und in der Technischen Informatik werden vorausgesetzt.

10.4 Modul: Batteriemodellierung mit MATLAB [M-ETIT-103271]

Verantwortung: Dr.-Ing. Andre Weber

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** Profilierungsfach (Wahlbereich Profilierungsfach)

LeistungspunkteNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
3

Pflichtbestandteile			
T-ETIT-106507	Batteriemodellierung mit MATLAB	3 LP	Weber

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden sind mit den Grundlagen der Lithium-Ionen Batterietechnologie vertraut, sie sind in der Lage Batteriemodelle aufzustellen und in MATLAB zu implementieren.

Inhalt

Im Vorlesungsteil der Lehrveranstaltung werden die benötigten Grundlagen der Modellierung von Lithium-Ionen Batterien vermittelt. Nach einer kurzen Einführung in die Lithium-Ionen Batterietechnologie wird anhand von Beispielen vorgestellt, wie Batteriemodelle für verschiedene Applikationen in MATLAB umgesetzt werden können. Themen sind unter anderem Modelle zur Simulation des komplexen Innenwiderstandes, der nichtlinearen Lade-/Entladekurve sowie des dynamischen Strom-/Spannungsverlaufs einer Batterie während eines Fahrprofils.

Im Übungsteil der Lehrveranstaltung werden von den Studierenden selbstständig MATLAB-Modelle zur Simulation von Batterien entworfen, implementiert und getestet. Der praktische Teil der Lehrveranstaltung umfasst nach einer Einweisung in MATLAB (fakultativ) die Konzeptionierung verschiedener Modelle, das Aufstellen der benötigten Modellgleichungen, die Implementierung dieser in MATLAB und den Test des Modelle in Simulationsrechnungen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

- 1. Präsenzzeit Vorlesung: 7 * 2 h = 14 h
- 2. Präsenzzeit Übung: 8 * 2h = 16 h
- 3. selbstständiges Implementieren der Modelle: 15 * 3 h = 45 h
- 4. Prüfungsvorbereitung und Präsens in selbiger: 15 h

Insgesamt: 90 h = 3 LP

10.5 Modul: Bauelemente der Elektrotechnik [M-ETIT-104538]

Verantwortung: Prof. Dr. Sebastian Kempf

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Elektrotechnik

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-ETIT-109292	Bauelemente der Elektrotechnik	6 LP	Kempf

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden kennen die physikalisch-chemischen Hintergründe sowie den Aufbau und die Funktionsweise passiver und aktiver Bauelemente der Elektrotechnik. Sie kennen insbesondere die physikalischen Wirkprinzipien der genannten Bauelemente und können diese mathematisch beschreiben.

Die Studierenden sind in der Lage, mit Spezialisten verwandter Disziplinen auf dem Gebiet der elektrischen und elektronischen Bauelemente zu kommunizieren und können in der Gesellschaft aktiv zum Meinungsbildungsprozess in Bezug auf materialtechnische Fragestellungen beitragen. Das vermittelte Wissen bildet zudem eine gute Ausgangslage für die weiterführenden Veranstaltungen in der Elektrotechnik und Informationstechnik.

Inhalt

Dieses Modul vermittelt einen Überblick über den physikalischen Hintergrund, den Aufbau und die Funktionsweise passiver und aktiver Bauelemente der Elektrotechnik.

Im ersten Teil der Vorlesung werden zunächst die wesentlichen Resultate der in der Vorlesung "Optik und Festkörperelektronik" diskutieren Bauelemente auf der Grundlage von metallischen, nicht-metallischen und dielektrischen Werkstoffen zusammengefasst. Es folgt eine eingehende Diskussion der physikalischen Grundlagen magnetischer und supraleitender Werkstoffe sowie den daraus abgeleiteten passiven Bauelementen der Elektrotechnik.

Im zweiten Teil der Vorlesung werden die physikalischen Grundlagen von Halbleiterbauelementen (pn-Übergang, Halbleiter-Grenzschichten etc) wiederholt und hierauf aufbauend die Funktionsweise aktiver Bauelemente der Elektrotechnik im Detail diskutiert. Hierbei werden insbesondere Bipolartransistoren, Feldeffekttransistoren (JFET, MOSFET, HEMT, MODFET) und Leistungshalbleiterbauelemente (Leistungsdioden, IGBT, Thyristor, Triac, Leistungs-MOSFET) behandelt.

Am Ende der Vorlesung wird ein kurzer Überblick über aktive, supraleitende Bauelemente (Josephson-Kontakt, SQUID) und deren schaltungstechnischen Anwendungen gegeben.

Zusammensetzung der Modulnote

Die Modulnote entspricht dem Ergebnis der schriftlichen Prüfung.

Anmerkungen

Modulverantwortlicher Sebastian Kempf

Arbeitsaufwand

Der Arbeitsaufwand für einen durchschnittlichen Studierenden beträgt 167h. Hierunter fallen:

- 45h Präsenzzeit für 45 Vorlesungen und 15 Übungen (jeweils a 45 Min.)
- 90h für die Vor- bzw. Nachbereitung der Vorlesungen und Übungen (ca. 2 h pro Vorlesung bzw. Übung)
- 32h für die Klausurvorbereitung und Klausurteilnahme

Empfehlungen

Ein wesentlicher Teil der Bachelor-Pflichtmodule sollte erfolgreich abgeschlossen sein. Außerdem ist die vorherige Teilnahme am Modul "Optik und Festkörperelektronik" dringend empfohlen.

10.6 Modul: Bildgebende Verfahren in der Medizin I [M-ETIT-100384]

Verantwortung: Prof. Dr. Maria Francesca Spadea

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** Profilierungsfach (Wahlbereich Profilierungsfach)

LeistungspunkteNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-ETIT-101930	Bildgebende Verfahren in der Medizin I	3 LP	Spadea

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden haben ein umfassendes Verständnis für alle Methoden der medizinischen Bildgebung mit ionisierender Strahlung. Sie kennen die physikalischen Grundlagen, die technischen Lösungen und die wesentlichen Aspekte bei der Anwendung der Bildgebung in der Medizin.

Inhalt

- Röntgen-Physik und Technik der Röntgen-Abbildung
- Digitale Radiographie, Röntgen-Bildverstärker, Flache Röntgen-detektoren
- Theorie der bildgebenden Systeme, Modulations- Übertragungs-funktion
- und Quanten-Detektions-Effizienz
- Computer Tomographie CT
- Ionisierende Strahlung, Dosimetrie und Strahlenschutz
- SPECT und PET

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:

Präsenzzeit in Vorlesungen (2 h je 15 Termine) = 30 h

Selbststudium (3 h je 15 Termine) = 45 h

Vor-/Nachbereitung = 20 h

Gesamtaufwand ca. 95 Stunden = 3 LP

10.7 Modul: Bildverarbeitung [M-ETIT-102651]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** Profilierungsfach (Wahlbereich Profilierungsfach)

LeistungspunkteNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-ETIT-105566	Bildverarbeitung	3 LP	Heizmann

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Qualifikationsziele

- + Studierende haben fundiertes Wissen über Grundlagen und Vorgehensweisen der Bildverarbeitung und automatischen Sichtprüfung
- + Studierende beherrschen unterschiedliche Methoden zur Bildgewinnung, Vorverarbeitung und Bildauswertung und können sie anhand ihrer Voraussetzungen, Modellannahmen und Ergebnisse charakterisieren.
- + Studierende sind in der Lage, Aufgaben der Bildverarbeitung und automatischen Sichtprüfung zu analysieren und zu strukturieren, Lösungsmöglichkeiten aus den Methoden der Bildverarbeitung zu synthetisieren und ihre Eignung einzuschätzen.

Inhalt

Bildverarbeitung ist ein Sammelbegriff für die Erfassung von Bildsignalen mittels optischer Abbildung und Kameras, die Verarbeitung der aufgenommenen Bildsignale mittels (digitaler) Bildsignalverarbeitung und die Auswertung der Bilddaten zur Gewinnung von Nutzinformation aus den aufgenommenen Bildern.

Das Modul vermittelt Grundlagen, Vorgehensweisen und beispielhafte Anwendungen der Bildverarbeitung.

Die Inhalte umfassen im Einzelnen:

- + Optische Abbildung
- Abbildung mit Lochkamera, Zentralprojektion
- Abbildung mit Linse (Objektiv)
- + Farbe
- Photometrie
- Farbwahrnehmung und Farbräume
- Filter
- + Sensoren zur Bildgewinnung
- CCD-, CMOS-Sensoren
- Farbsensoren
- Qualitätskriterien
- + Bildaufnahmeverfahren
- Erfassung von optischen Eigenschaften
- Erfassung der räumlichen Gestalt (3D-Form)
- + Bildsignale
- Mathematische Beschreibung von Bildsignalen
- Systemtheorie
- Fourier-Transformation
- + Vorverarbeitung und Bildverbesserung
- Einfache Bildverbesserungsmaßnahmen
- Verminderung systematischer Störeinflüsse
- Verminderung zufälliger Störungen
- + Segmentierung
- Bereichsorientierte Segmentierung
- Kantenorientierte Verfahren
- + Texturanalyse
- Texturtypen
- Modellbasierte Texturanalyse
- Merkmalsbasierte Texturanalyse
- + Detektion
- Detektion bekannter Objekte mittels linearer Filter
- Detektion unbekannter Objekte (Defekte)
- Geradendetektion (Radon- und Hough-Transformation)

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Die Vorbereitung (0,5 h), der Besuch (1,5 h) und die Nachbereitung (1 h) der wöchentlichen Vorlesung sowie die Vorbereitung (45 h) und Teilnahme (2 h) an der Klausur ergibt insgesamt einen Arbeitsaufwand von ca. 90 h.

Empfehlungen

Kenntnis zu Inhalten der Module "Signale und Systeme" (z. B. Fourier-Transformation, Abtastung) und "Messtechnik" (z. B. Rauschen, Matched Filter) sind von Vorteil.

10.8 Modul: Digitaltechnik [M-ETIT-102102]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Informationstechnik

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-ETIT-101918	Digitaltechnik	6 LP	Becker

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden können die grundlegenden Verfahren der Digitaltechnik und der digitalen Informationsverarbeitung mit dem Schwerpunkt digitale Schaltungen benennen. Sie sind in der Lage Codierungen auf digitale Informationen anzuwenden und zu analysieren. Darüber hinaus kennen die Studierenden die mathematischen Grundlagen und können graphische und algebraische Verfahren für den Entwurf, die Analyse und die Optimierung digitaler Schaltungen und Automaten anwenden.

Inhalt

Diese Vorlesung stellt eine Einführung in wichtige theoretische Grundlagen der Digitaltechnik dar, die für Studierende des 1. Semesters Elektrotechnik vorgesehen ist. Da sie daher nicht auf Kenntnissen der Schaltungstechnik aufbauen kann, stehen abstrakte Modellierungen des Verhaltens und der Strukturen im Vordergrund. Darüber hinaus soll die Vorlesung auch Grundlagen vermitteln, welche in anderen Vorlesungen benötigt werden

Schwerpunkte der Vorlesung sind die formalen, methodischen und mathematischen Grundlagen zum Entwurf digitaler Systeme. Darauf aufbauend wird auf die technische Realisierung digitaler Systeme eingegangen, im speziellen auf den Entwurf und die Verwendung von Standardbausteinen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen (für eine Vorlesung)

- 1. Präsenzzeit in 23 Vorlesungen und 7 Übungen: 45Std.
- 2. Vor-/Nachbereitung der selbigen: 90Std. (~2 Std. pro Einheit)
- 3. Klausurvorbereitung und Präsenz in selbiger: 30 + 2 Std.

10.9 Modul: Einführung in die Hochspannungstechnik [M-ETIT-105276]

Verantwortung: Dr.-Ing. Michael Suriyah

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** Profilierungsfach (Wahlbereich Profilierungsfach)

LeistungspunkteNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-ETIT-110702	Einführung in die Hochspannungstechnik	3 LP	Suriyah

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Prüfung (ca. 20 Minuten).

Qualifikationsziele

Die Studierenden kennen die wesentliche Ursachen für die Entstehung von Überspannungen in elektrischen Stromnetzen.

Die Studierenden kennen die wesentlichen Komponenten und Messmitteln der Hochspannungstechnik.

Die Studierenden sind fähig, die unterschiedliche Verfahren zur Messung von hohen Spannungen kritisch zu beurteilen.

Die Studierenden kennen die für den Entwurf, die Auslegung und die Inbetriebnahme einer hochspannungstechnische Prüfschaltung notwendigen Entwicklungsschritte.

Die Studierenden kennen die relevanten Methoden zur Diagnose von elektrischen Isoliermaterialen und -systemen.

Inhalt

Die Integration erneuerbarer Energien in das bestehende Stromnetz ist eine gewaltige Herausforderung hinsichtlich der Gewährleistung einer stabilen und sicheren Energieversorgung. Die Hochspannungstechnik ist dabei eine Schlüsseltechnologie, um die Energiewende zum Erfolg werden zu lassen. Neben der konventionellen Drehstromübertragung gewinnt in Deutschland auch die Hochspannungs-Gleichstrom-Übertragung (HGÜ) im Rahmen des Netzausbaus der Übertragungsnetze immer stärker an Bedeutung. Ziel dieser Veranstaltung ist es, neue Erkenntnisse auf dem Gebiet der Hochspannungstechnik umfassend zu vermitteln und zu diskutieren. Neuen Werkstoffen und Prüfverfahren von Isoliersystemen und Produkten kommt dabei eine besondere Bedeutung zu.

Themen:

- 1. Werkstoffe der Hochspannungstechnik
- 2. Betriebsmittel der elektrischen Energietechnik
- 3. Methoden der Hochspannungsmesstechnik
- 4. Monitoring, Diagnostik und Zustandsbewertung von Betriebsmitteln
- 5. Gastvorlesung aus der Industrie

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht 30h Arbeitsaufwand (des Studierenden). Unter den Arbeitsaufwand fallen Präsenzzeit in Vorlesung (30 h = 1 LP)

Selbststudienzeit (60 h = 2 LP)

Insgesamt (90 h = 3 LP)

Empfehlungen

Grundlegende Kenntnisse in Netzwerktheorie, Feldtheorie und elektrische Messtechnik

10.10 Modul: Electrochemical Energy Technologies [M-ETIT-105690]

Verantwortung: Prof. Dr.-Ing. Ulrike Krewer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** Profilierungsfach (Wahlbereich Profilierungsfach)

LeistungspunkteNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
EnglischLevel
3Version
1

Pflichtbestandteile			
T-ETIT-111352	Electrochemical Energy Technologies	5 LP	Krewer

Erfolgskontrolle(n)

Type of Examination: Written exam

Duration of Examination: approx. 120 minutes

Voraussetzungen

none

Qualifikationsziele

Students have well-grounded knowledge of electrochemical energy technologies for conversion and storage of electrical energy. They know the working principle of fuel cells, batteries and electrolysers and their components. They understand the underlying electrochemical, electrical and physical processes, and the resulting loss processes as function of operation and cell design. Participation in the course puts them in a position to build cells and evaluate and understand their performance and operating behavior. Furthermore, they can select the appropriate electrochemical cell for a given application, analyse, interpret and operate it.

Inhalt

Lecture:

- · Application and operating principle of fuel cells, batteries and elec-trolysers
- · Thermodynamics, potential and voltage of electrochemical cells
- Kinetics and electrochemical reactions
- · Transport processes in electrochemical cells
- · Composition and types of fuel cells and electrolysers
- · Composition and types of batteries
- · Operation and characterization of electrochemical cells
- · Electrochemical systems

Exercise:

· Application of the theory to batteries and fuel cells including example calculations.

Zusammensetzung der Modulnote

The module grade is the grade of the written exam.

Arbeitsaufwand

- 1. Attendance in lectures: 30 * 45 Min. = 22,5 h
- 2. Attendance in excercises: 15 * 45 Min. = 11,25 h
- 3. Preparation/follow-upder Vorlesungen und Übungen: 76,25 h (approx. 1,75 h per lecture/exercise)
- 4. Preparation of and attendance in examination: 40 h

In total: 150 h = 5 LP

10.11 Modul: Elektrische Maschinen und Stromrichter [M-ETIT-102124]

Verantwortung: Prof. Dr.-Ing. Marc Hiller

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Elektrotechnik

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
2Version
1

Pflichtbestandteile			
T-ETIT-101954	Elektrische Maschinen und Stromrichter	6 LP	Hiller

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden kennen die wesentlichen elektrischen Maschinen und Stromrichter.

Sie sind in der Lage, deren Verhalten durch Kennlinien und einfache Modelle zu beschreiben.

Sie analysieren die Netzrückwirkung und die Auswirkung von Stromrichtern auf die elektrische Maschine mit Hilfe der Beschreibung durch Fourierreihen.

Sie können die Bestandteile von Energieübertragungs- und Antriebssystemen erkennen und deren Verhalten durch Kopplung der Modelle von Stromrichter und Maschine berechnen.

Inhalt

Grundlagenvorlesung der Antriebstechnik und Leistungselektronik. Es werden zunächst Wirkungsweise und Betriebsverhalten der wichtigsten elektrischen Maschinen erläutert.

Anschließend werden die Funktion und das Verhalten der wichtigsten Stromrichterschaltungen beschrieben.

Wirkungsweise und Einsatzgebiete von elektrischen Maschinen und leistungselektronischen Schaltungen werden an Beispielen vertieft.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

14x V und 14x U à 1,5 h: =..35 h
14x Nachbereitung V à 1 h = 14 h
13x Vorbereitung zu U à 2 h = 26 h
Prüfungsvorbereitung: = 80 h
Prüfungszeit = 2 h
Insgesamt ca. 157 h
(entspricht 6 Leistungspunkten)

10.12 Modul: Elektroenergiesysteme [M-ETIT-102156]

Verantwortung: Prof. Dr.-Ing. Thomas Leibfried

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Elektrotechnik

Leistungspunkte
5Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
2Version
2

Pflichtbestandteile				
T-ETIT-101923	Elektroenergiesysteme	5 LP	Leibfried	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung im Umfang von 120 Minuten über die ausgewählte Lehrveranstaltung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden sind in der Lage elektrische Schaltungen (passive oder mit gesteuerten Quellen) im Zeit- und Frequenzbereich zu berechnen. Sie kennen ferner die wichtigsten Netzbetriebsmittel, ihre physikalische Wirkungsweise und ihre elektrische Ersatzschaltung.

Inhalt

Die Vorlesung behandelt im ersten Teil die Berechnung von Ausgleichsvorgängen in linearen elektrischen Netzwerken durch Differentialgleichungen und mit Hilfe der Laplace-Transformation. Im zweiten Teil der Vorlesung werden die elektrischen Netzbetriebsmittel behandelt.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzstudienzeit Vorlesung: 30 h

Präsenzstudienzeit Übung: 15 h

Selbststudienzeit: 90 h

Klausurvorbereitung und Präsenz in selbiger: in Vor-/Nachbereitung verrechnet

Insgesamt 135 h = 5 LP

10.13 Modul: Elektromagnetische Felder [M-ETIT-104428]

Verantwortung: Prof. Dr. Martin Doppelbauer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Elektrotechnik

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
1Version
1

Pflichtbestandteile			
T-ETIT-109078	Elektromagnetische Felder	6 LP	Doppelbauer

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Ziel ist die Vermittlung der theoretischen Grundlagen von elektrischen, magnetischen und elektromagnetischen Feldern auf Basis der Maxwell-Gleichungen. Die Studierenden können elektromagnetische Felder einfacher Anordnungen von Ladungen und stromführenden Leitern analytisch mit Hilfe der Maxwell-Gleichungen berechnen, Feldbilder skizzieren und die auftretenden Kräfte und Leistungen daraus ableiten. Sie können den Einfluss von Dielektrika und ferromagnetischen Materialien berücksichtigen.

Inhalt

Diese Vorlesung ist eine Einführung in die elektromagnetische Feldtheorie auf Basis der Maxwell-Gleichungen. Behandelt werden elektrostatische Felder, elektrische Strömungsfelder, magnetische Felder und zeitlich langsam veränderliche Felder:

- Mathematische Grundlagen der Feldtheorie
- · Grundlagen elektromagnetischer Felder
- · Elektrostatische Felder
- Elektrische Strömungsfelder
- · Magnetische Felder
- Quasistationäre (zeitlich langsam veränderliche) Felder

Begleitend zur Vorlesung werden Übungsaufgaben zum Vorlesungsstoff gestellt. Diese werden in einer großen Saalübung besprochen und die zugehörigen Lösungen detailliert vorgestellt.

Zusätzlich werden Tutorien in Kleingruppen angeboten.

Die Unterlagen zur Lehrveranstaltung (Skript und Formelsammlung) finden sich online auf der Webseite des Instituts. Das erforderliche Passwort wird in der ersten Vorlesungsstunde bekannt gegeben.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Anmerkungen

Achtung:

Die diesem Modul zugeordnete Teilleistung ist Bestandteil der Orientierungsprüfung folgender Studiengänge:

· Bachelor Elektrotechnik und Informationstechnik (SPO 2018, §8)

Die Prüfung ist zum Ende des 2. Fachsemesters anzutreten. Eine Wiederholungsprüfung ist bis zum Ende des 3. Fachsemesters abzulegen.

Arbeitsaufwand

Für das gesamte Modul werden 6 Credit Points (ECTS) vergeben, die sich folgendermaßen aufteilen:

- · Präsenzzeit in Vorlesungen (2 h je 15 Termine) = 30 h
- · Präsenzzeit in Übungen (1 h je 15 Termine) = 15 h
- · Präsenzzeit in Tutorien = 15 Wochen je 2 h = 30 h
- · Vor-/Nachbereitung des Stoffes: 15 Wochen je 3 h = 45 h
- · Klausurvorbereitung und Präsenz in der Klausur: 1,5 Wochen je 40 h = 60 h

Gesamtaufwand ca. 180 Stunden = 6 ECTS.

Empfehlungen

Allgemeine physikalische und mathematische Grundlagen aus den Basiskursen des ersten Semesters werden dringend empfohlen.

10.14 Modul: Elektromagnetische Wellen [M-ETIT-104515]

Verantwortung: Prof. Dr.-Ing. Sebastian Randel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Elektrotechnik

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
2Version
1

Pflichtbestandteile			
T-ETIT-109245	Elektromagnetische Wellen	6 LP	Randel

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden sind in der Lage, Berechnungen elektromagnetischen Wellenphänomenen durchzuführen und die nötigen Hilfsmittel hierfür methodisch angemessen zu gebrauchen.

Die Studierenden haben ein Verständnis für die physikalischen Zusammenhänge erlangt und können Lösungsansätze für grundlegende Aufgabenstellungen erarbeiten. Mit Hilfe der erlernten Methodik sind sie in die Lage versetzt, die Inhalte von Vorlesungen mit technischen Anwendungen zu verstehen.

Inhalt

Diese Vorlesung ist eine Einführung in die Theorie elektromagnetischer Wellen auf Basis der Maxwell-Gleichungen. Die Vorlesung basiert auf den Inhalten der Vorlesung elektromagnetische Felder. Behandelt werden die folgenden Themen

- Verschiebungsstromdichte
- · Die Wellengleichung
- Ebene Wellen im nichtleitenden Medium
- · Reflexion und Brechung von ebenen Wellen
- · Reflexion an einer Leiteroberfläche; der Skineffekt
- · Harmonische Wellen
- · Linear und zirkular polarisierte Wellen
- · Lösungsmethoden zu Potentialproblemen
- · Separation der skalaren Wellengleichung
- Wellenleiter (Hohlleiter, Glasfaser)
- Der Hertzsche Dipol

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Für das gesamte Modul werden 6 Credit Points (ECTS) vergeben, die sich folgendermaßen aufteilen:

- Präsenzzeit in Vorlesungen (1,5 h je 13 Termine) und Übungen (1,5 h je 13 Termine) = 39 h
- Präsenzzeit in Tutorien = 13 Wochen je 2 h = 26 h
- Vor-/Nachbereitung des Stoffes: 13 Wochen je 3 h = 39 h
- Klausurvorbereitung und Präsenz in der Klausur: 2 Wochen je 40 h = 80 h

Gesamtaufwand ca. 180 Stunden = 6 ECTS.

Empfehlungen

Allgemeine physikalische und mathematische Grundlagen aus den Basiskursen des ersten Semesters werden dringend empfohlen.

10.15 Modul: Elektronische Schaltungen [M-ETIT-104465]

Verantwortung: Prof. Dr.-Ing. Ahmet Cagri Ulusoy

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Elektrotechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
7	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	1	2

Pflichtbestandteile				
T-ETIT-109318	Elektronische Schaltungen	6 LP	Ulusoy	
T-ETIT-109138	Elektronische Schaltungen - Workshop	1 LP	Zwick	

Erfolgskontrolle(n)

Die Erfolgskontrolle des Moduls besteht aus:

- 1. einer schriftlichen Prüfung im Umfang von 120 Minuten zur Lehrveranstaltung Elektronische Schaltungen (6 LP).
- einer schriftlichen Ausarbeitung zu Lehrveranstaltung Elektronische Schaltungen Workshop, (1 LP). Die schriftliche Ausarbeitung wird korrigiert und mit Punkten bewertet. Bei Erreichen der erforderlichen Punktezahl gilt der Workshop als bestanden.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden werden befähigt, die Funktionen und Wirkungsweisen von Dioden, Z-Dioden, bipolaren- und Feldeffekttransistoren, analogen Grundschaltungen, von einstufigen Verstärkern bis hin zu Operationsverstärkern zu analysieren und zu bewerten. Durch die vermittelten Kenntnisse über Bauelementparameter und Funktion der Bauelemente werden die Studierenden in die Lage versetzt, verschiedene Verstärkerschaltungen analysieren und berechnen zu können. Durch den Erwerb von Kenntnissen um Kleinsignalmodelle der Bauelemente können die Studierenden ihr theoretisches Wissen für den Aufbau von Schaltungen praktisch anwenden. Darüber hinaus wird den Studierenden erweiterte Kenntnisse über den schaltungstechnischen Aufbau und Anwendungen aller digitalen Grundelemente (Inverter, NAND, NOR, Tri-state Inverter und Transmission Gates) sowie von Schaltungen für den Einsatz in sequentielle Logik, wie Flipflops vermittelt. Diese Kenntnisse erlauben den Studierenden aktuelle Trends in der Halbleiterentwicklung kritisch zu begleiten und zu analysieren. Auf diese Weise werden die Studierenden befähigt, moderne elektrische Systeme von der Signalerfassung (Sensor, Detektor) über die Signalkonditionierung (Verstärker, Filter, etc.) zu analysieren und ggfs. eigenständig zu optimieren.

Die Studierenden erlernen im Workshop die Koordination eines Projekts in kleinen Teams und die Darstellung der Ergebnisse in Form einer technischen Dokumentation. Weiterhin sind sie in der Lage, einfach elektronische Transistorschaltungen zu realisieren und charakterisieren.

Inhalt

Grundlagenvorlesung über passive und aktive elektronische Bauelemente und Schaltungen für analoge und digitale Anwendungen.

Schwerpunkte sind der Aufbau und die schaltungstechnische Realisierung analoger Verstärkerschaltungen mit Bipolar- und Feldeffekttransistoren, der schaltungstechnische Aufbau von einfachen Logikelementen für komplexe logische Schaltkreise. Im Einzelnen werden die nachfolgenden Themen behandelt:

- · Einleitung (Bezeichnungen, Begriffe)
- Passive Bauelemente (R, C, L)
- · Halbleiterbauelemente (Dioden, Transistoren)
- Dioden
- · Bipolare Transistoren
- · Feldeffekttransistoren (JFET, MOSFET, CMOS), Eigenschaften und Anwendungen
- · Verstärkerschaltungen mit Transistoren
- · Eigenschaften von Operationsverstärkern
- Kippschaltungen
- · Sequentielle Logik

Begleitend zur Vorlesung werden Übungsaufgaben zum Vorlesungsstoff gestellt. Diese werden in einer großen Saalübung besprochen und die zugehörigen Lösungen detailliert vorgestellt. Parallel dazu werden weitere Übungsaufgaben und Vorlesungsinhalte in Form dedizierter Tutorien in Kleinstgruppen zur Übung und Vertiefung der Lehrinhalte gestellt und gelöst.

Der Workshop greift zahlreiche dieser Schwerpunkte auf. Es werden unterschiedliche Sensoren analysiert. Zusätzlich zu der allgemeinen Funktionsweise und Theorie der Temperatur-, Licht- oder auch Drucksensoren wird geeignete Elektronik untersucht, um die physikalischen Größen in eine proportionale, auswertbare Größe wie Spannung oder Strom zu wandeln. Es werden einfache Sensor-Prinzipien behandelt, um die notwendigen Vorkenntnisse zur Durchführung des Versuches an das Semester anzupassen. Für die Temperaturmessung werden temperaturabhängige Widerstände eingesetzt oder pn-Übergänge untersucht. Mit LEDs, Photodioden und Phototransistoren werden Anwendungen für die Helligkeitsmessung realisiert. Die eigenständige Versuchsdurchführung verläuft folgendermaßen: Verständnis Sensor-Prinzip, Entwurf von Auswerteschaltungen für das Sensorsignal, Simulation der Schaltungen in LTSpice, Aufbau und Vergleich von Schaltungen sowie Auswertung mit dem µController-Board.

Zusammensetzung der Modulnote

Die Modulnote setzt sich aus der Note der schriftlichen Prüfung zusammen.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht.

Die Vorbereitung (0,5 h), der Besuch (1,5 h) und die Nachbereitung (2 h) der wöchentlichen Vorlesung, der 14 tägigen Übung und den sechs Tutoriumsterminen sowie die Vorbereitung (82 h) und Teilnahme (2 h) an der Klausur ergibt insgesamt einen Arbeitsaufwand von ca. 180 h für die Lehrveranstaltung Elektronische Schaltungen, d.h. 6 LP.

Der Arbeitsaufwand des Workshops setzt sich wie folgt zusammen:

- 1. Präsenzzeit in der Vorbereitungsveranstaltung inkl. Nachbereitung: 2 h
- 2. Bearbeitung der Aufgabenstellung: 23 h
- 3. Anfertigung der schriftlichen Ausarbeitung (Protokoll): 5 h

Der Zeitaufwand pro Workshop beträgt etwa 30 Stunden. Dies entspricht 1 LP.

Empfehlungen

Der erfolgreiche Abschluss von LV "Lineare elektrische Netze" wird empfohlen.

10.16 Modul: Elektrotechnisches Grundlagenpraktikum [M-ETIT-102113]

Verantwortung: Dr.-Ing. Armin Teltschik

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** Profilierungsfach (Wahlbereich Profilierungsfach)

Leistungspunkte
6Notenskala
best./nicht best.Turnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
4

Pflichtbestandteile			
T-ETIT-101943	Elektrotechnisches Grundlagenpraktikum	6 LP	Teltschik

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form eines mündlichen Abschlusskolloquiums von ca. 20 min Dauer sowie während des Praktikums durch Überprüfung der absolvierten Versuchs-Aufgaben.

Für die Teilnahme am Abschlusskolloque müssen mindestens 8 der 9 Versuche erfolgreich absolviert werden. Die erfolgreich durchgeführten Versuche bilden zusammen mit dem Abschluskolloquium eine Prüfungseinheit. Bei nicht bestehen ist das Praktikum komplett zu wiederholen.

Die Veranstaltung ist nicht benotet.

Voraussetzungen

Kenntnisse zum Inhalt der folgenden Module müssen vorhanden sein: "M-ETIT-102102 – Digitaltechnik" und "M-ETIT-104465 – Elektronische Schaltungen".

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Das Modul M-ETIT-100518 Labor Schaltungsdesign darf nicht begonnen worden sein.
- 2. Das Modul M-ETIT-103263 Praktikum Hard- und Software in leistungselektronischen Systemen darf nicht begonnen worden sein.
- 3. Das Modul M-ETIT-104823 Labor für angewandte Machine Learning Algorithmen darf nicht begonnen worden sein.
- 4. Das Modul M-ETIT-105301 Workshop angewandte Hochfrequenztechnik darf nicht begonnen worden sein.
- 5. Das Modul M-ETIT-105703 Praktikum Elektrochemische Energietechnologien darf nicht begonnen worden sein.

Qualifikationsziele

Die Studierenden erlernen den Umgang mit typischen Laborgeräten der Elektrotechnik (z.B. Multimeter, Funktionsgenerator, Oszilloskop). An praktischen Versuchen erfolgt die Anwendung Messgeräte. Die Studierenden vertiefen die bereits erlernten Grundlagen Elektronischer Schaltungstechnik, und Digitaltechnik in der Praxis. Sie erlernen den Umgang mit den zugehörigen Mess-, Analyse und Simulationswerkzeugen und werden mit der Interpretation von Datenblättern vertraut gemacht.

Inhalt

Es werden Versuche aus folgenden Bereichen durchgeführt:

- Oszilloskopmesstechnik,
- Operationsverstärker: Grundschaltungen, Rechenschaltungen, Fourier-/ analyse & synthese
- Messtechnik mit LabVIEW
- Schaltungssimulation mit SPICE
- Kleinsignalverhalten bipolarer Transistoren
- Wechselspannung, Kleintransformatoren, Gleichrichter, Linearregler
- Digitaltechnik, Automatenentwurf, Detektion von Laufzeitfehlern
- Gleichstromsteller

Zusammensetzung der Modulnote

Die Veranstaltung ist nicht benotet.

Anmerkungen

Für die Teilnahme am Abschlusskolloque müssen mindestens 8 der 9 Versuche erfolgreich absolviert werden. Die erfolgreich durchgeführten Versuche bilden zusammen mit dem Abschluskolloquium eine Prüfungseinheit. Bei nicht bestehen ist das Praktikum komplett zu wiederholen.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen (für eine Vorlesung)

- 1. Präsenzzeit im Praktikum: 36 h
- 2. Vor-/Nachbereitung derselbigen: 63 / 36 h
- 3. Klausurvorbereitung und Präsenz in selber: 20 h

10.17 Modul: Engineering von Automatisierungssystemen [M-ETIT-106037]

Verantwortung: Prof. Dr.-Ing. Mike Barth

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

KIT-Fakultät für Maschinenbau

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile			
T-ETIT-112221	Engineering von Automatisierungssystemen	4 LP	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

- Die Studierenden gewinnen ein grundlegendes Verständnis aktueller Herausforderungen des Engineerings von Automatisierungssystemen.
- · Die Studierenden kennen die Cluster industrieller Systeme und Prozesse.
- Die Studierenden können Probleme im Bereich der Automatisierung von industriellen Anlagen, Maschinen und Systemen analysieren, strukturieren und formal beschreiben.
- Die Studierenden können die Sprachmittel der Steuerungstechnik verstehen, anwenden und weiterentwickeln.
- Die Studierenden kennen die Aspekte und Anwendungsbereiche eines Cyber-physischen Systems.
- · Die Studierenden sind in der Lage, ereignisdiskrete Prozess zu modellieren.
- Die Studierenden sind in der Lage, eine Architektur für ein Automatisierungssystem hinsichtlich Kommunikation, Level und Datenflüssen zu entwickeln.
- Die Studierenden sind fähig, die Aspekte des Internet of Things (IoT) zu beurteilen und sinnvoll einzusetzen.
- Die Studierenden können industrielle Automatisierungssysteme konfigurieren.
- Die Studierenden sind in der Lage, höherwertige Automatisierungsfunktionen und Dienste zu entwickeln bzw. zu bewerten.
- Die Studierenden sind fähig, die Arbeitsweisen eines Automatisierungssystems nachzuvollziehen und können die notwendigen Komponenten auswählen.
- Die Studierenden kennen Informationsmodelle der Automatisierungstechnik.
- Die Studierenden kennen aktuelle Metadaten- und Informationsmodelle der Automatisierungstechnik.

Inhalt

- Dieses Modul soll Studierenden die theoretischen und praktischen Aspekte der industriellen Automatisierungstechnik vermitteln.
- Das Modul vermittelt einen Überblick der historischen Entwicklung der Automatisierungstechnik mit Fokus auf die industrielle Anwendung.
- Dieses Modul vermittelt des Weiteren Definitionen von ereignisdiskreten Systemen und deren Abbildung im Sinne der Automation
- Es werden sowohl die IEC61131-3 Sprachen als auch die Programmstruktureinheiten modernen Steuerungssysteme behandelt. Darüber hinaus werden objektorientierte Aspekte der Steuerungstechnik behandelt.
- Studierende erstellen im Rahmen der Vorlesung in Live-Demos Steuerungsprogramme.
- Das Modul vermittelt einen Überblick der Herausforderungen und Möglichkeiten moderner Automatisierungssysteme:
 - der kontinuierlichen Prozessindustrie (Verfahrenstechnik),
 - der diskreten Fertigungs- und Montageindustrie (inkl. Robotik) sowie
 - der Energietechnik.
- · Das Modul vermittelt die Bedeutung von deterministischen Systemen für die Steuerungstechnik.
- Das Modul liefert einen Überblick der aktuellen Entwicklungen rund um die Automatisierungstechnik, wie beispielsweise das Internet of Things, Cyber Physical Systems, Industrie 4.0 und Digitale Zwillinge.
- Das Modul liefert einen Überblick der in der Automatisierungstechnik g\u00e4ngigen Kommunikationsarchitekturen (wie beispielsweise Local oder Remote IO, zzgl. Feldbussysteme).
- Es werden des Weiteren die Architekturen (zentral dezentral) modernen Automatisierungstechnik inkl. der Modularisierung besprochen.
- Es werden aktuelle Informationsmodelle der Automatisierungstechnik, wie beispielsweise AutomationML besprochen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

- 1. Präsenzzeit in Vorlesungen: 15*2 h = 30 h
- 2. Vor-/Nachbereitung derselbigen: 15*4 h = 60 h
- 3. Eigenstudium der in der Vorlesung gezeigten AT-Live-Demos: 30 h
- 4. Klausurvorbereitung und Präsenz in selbiger: in Vor-/Nachbereitung verrechnet

Summe: 120 LP = 4 LP

Empfehlungen

Spaß an Robotern, Steuerungen, industriellen Prozessen und Programmierung. Interesse an Digitalisierung im Allgemeinen sowie dem Internet of Things im Speziellen.

10.18 Modul: Erzeugung elektrischer Energie [M-ETIT-100407]

Verantwortung: Dr.-Ing. Bernd Hoferer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
3	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile			
T-ETIT-101924	Erzeugung elektrischer Energie	3 LP	Hoferer

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 20 Minuten) über die ausgewählte Lehrveranstaltung.

Qualifikationsziele

Die Studierenden sind in der Lage, energietechnische Problemstellungen zu erkennen und Lösungsansätze zu erarbeiten. Sie haben ein Verständnis für physikalisch-theoretische Zusammenhänge der Energietechnik erlangt. Sie sind ebenfalls in der Lage die erarbeiteten Lösungen fachlich in einem wissenschaftlichen Format zu beschreiben, zu analysieren und zu erklären.

Inhalt

Grundlagenvorlesung Erzeugung elektrischer Energie. Von der Umwandlung der Primärenergieressourcen der Erde in kohlebefeuerten Kraftwerken und in Kernkraftwerken bis zur Nutzung erneuerbarer Energien behandelt die Vorlesung das gesamte Spektrum der Erzeugung. Die Vorlesung gibt einen Überblick über die physikalischen Grundlagen, die technischwirtschaftlichen Aspekte und das Entwicklungspotential der Erzeugung elektrischer Energie sowohl aus konventionellen als auch aus regenerativen Quellen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Wer das Modul Erzeugung Elektrischer Energie (EEE) im Bachelor (SPO 2015 und 2018) gemacht hat, soll im Master nicht das Modul Electric Power Generation and Power Grid wählen.

Arbeitsaufwand

Präsenzstudienzeit: 30 h Selbststudienzeit: 60 h Insgesamt 90 h = 3 LP

10.19 Modul: Experimentalphysik [M-PHYS-105008]

Verantwortung: Prof. Dr. Thomas Schimmel **Einrichtung:** KIT-Fakultät für Physik

Bestandteil von: Mathematisch-physikalische Grundlagen

LeistungspunkteNotenskala
6TurnusDauer
1 SemesterSprache
DeutschLevel
1Version
1

Pflichtbestandteile			
T-PHYS-110163	Experimentalphysik A	6 LP	Schimmel

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden identifizieren die Grundlagen der Physik auf breiter Basis. In der Experimentalphysik A werden insbesondere an Beispielen aus der Mechanik Grundkonzepte der Physik (Kraftbegriff, Felder, Superpositionsprinzip, Arbeit, Leistung, Energie, Erhaltungssätze etc.) beschrieben. Vom Stoffgebiet werden die Grundlagen der Mechanik in voller Breite sowie die Sätze zu Schwingungen und Wellen und die Thermodynamik (Hauptsätze der Thermodynamik, ideale und reale Gase, Zustandsänderungen und Zustandsgleichungen, mikroskopische Beschreibung idealer Gase, Wärmekraftmaschinen und Wärmepumpen, Entropiebegriff) behandelt

Inhalt

- Mechanik (Kraft, Impuls, Energie, Stoßprozesse, Erhaltungssätze, Drehimpuls, Drehmoment, Statische Felder, Gravitation und Keplersche Gesetze)
- Schwingungen und Wellen
- Thermodynamik (Hauptsätze der Thermodynamik, ideale und reale Gase, Zustandsänderungen und Zustandsgleichungen, mikroskopische Beschreibung idealer Gase, Wärmekraftmaschinen und Wärmepumpen, Entropiebegriff)

Arbeitsaufwand

Vorlesung: 60 h Übungen: 15 h

Vor- und Nachbereitung und Prüfungsvorbereitung: 105 h

10.20 Modul: Fertigungsmesstechnik [M-ETIT-103043]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version	
3	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	1	

Pflichtbestandteile			
T-ETIT-106057	Fertigungsmesstechnik	3 LP	Heizmann

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 90 Minuten. Bei weniger als 20 Prüflingen kann alternativ eine mündliche Prüfung im Umfang von ca. 20 Minuten. Die Modulnote ist die Note der schriftlichen bzw. mündlichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

- Studierende haben fundiertes Wissen über Grundlagen, Methoden und Verfahren für das Messen und Prüfen in der industriellen Fertigung.
- Studierende können unterschiedliche Messprinzipien, -verfahren und -geräte hinsichtlich ihrer Voraussetzungen, Eigenschaften, Anwendungsbereiche und Ergebnisse beurteilen.

Studierende sind in der Lage, fertigungsmesstechnische Aufgaben zu analysieren, die daraus folgenden Anforderungen an eine geeignete messtechnische Umsetzung abzuleiten, passende messtechnische Umsetzungen zu finden und die daraus folgenden Eigenschaften des Messergebnisses zu aufzuzeigen..

Inhalt

Die Fertigungsmesstechnik spielt eine wesentliche Rolle bei der Sicherstellung einer effizienten industriellen Fertigung. Sie stellt gewissenmaßen die Sinnesorgane für die Qualitätssicherung und die Automatisierungstechnik dar und umfasst alle mit dem Messen und Prüfen verbundenen Tätigkeiten.

Aufbauend auf den methodischen Grundlagen, die Thema der Pflichtvorlesung "Messtechnik" sind, vermittelt die Vorlesung Verfahren und Umsetzungen für das Messen und Prüfen in der industriellen Praxis. Dabei liegt der Schwerpunkt auf geometrischen Eigenschaften; die meisten vorgestellten Konzepte lassen sich darüber hinaus auf andere Eigenschaften übertragen. Sensorsysteme für die Messung geometrischer Eigenschaften werden vorgestellt und mit ihren charakteristischen Eigenschaften diskutiert.

Die Inhalte umfassen im Einzelnen:

- · Grundlagen der FMT
- o Grundbegriffe, Definitionen
- o Maßverkörperungen
- o Messunsicherheiten
- · Messtechnik im Betrieb und im Messraum
- o Koordinatenmesstechnik
- o Form- und Lagemesstechnik
- o Oberflächen- und Konturmesstechnik
- o Komparatoren
- o Mikro- und Nanomesstechnik
- o Messräume
- · Fertigungsorientierte Messtechnik
- o Messmittel und Lehren
- o Messvorrichtungen
- o Messen in der Maschine
- o Sichtprüfung
- o Statistische Prozessregelung (SPC)
- · Optische/berührungslose Messverfahren
- o Integrierbare optische Sensoren
- o Eigenständige optische Messsysteme
- o Optische 2,5D-Koordinatenmesstechnik
- o Optische 3D-Koordinatenmesstechnik
- o Computertomographie
- o Systemintegration und Standardisierung
- · Prüfmittelmanagement
- o Bedeutung und Zusammenhänge
- o Beherrschte Prüfprozesse

Prüfplanung

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen bzw. mündlichen Prüfung

Arbeitsaufwand

Gesamt: ca. 90h, davon

Präsenzzeit in Vorlesungen: 23h
 Vor-/Nachbereitung der Vorlesungen: 23h
 Klausurvorbereitung und Präsenz in selbiger: 44h

Empfehlungen

Kenntnisse der Stochastik und von Grundlagen der Messtechnik sind hilfreich.

10.21 Modul: Forschungspraktikum [M-ETIT-105602]

Verantwortung: Prof. Dr.-Ing. Marc Hiller

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** Profilierungsfach (Forschungs- oder Industriepraktikum)

Leistungspunkte 10 **Notenskala** best./nicht best.

Turnus Jedes Semester **Dauer** 1 Semester

Sprache Deutsch/Englisch

Level

Version 1

Pflichtbestandteile			
T-ETIT-111225	Forschungspraktikum	10 LP	Hiller

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung gemäß SPO § 4 Abs. 3, bestehend aus einer schriftlichen Ausarbeitung (Umfang ca. 15 Seiten).

Die Bestätigung der Teilnahme und des erfolgreichen Abschlusses des Forschungspraktikums erfolgt durch die betreuende Hochschullehrerin bzw. den betreuenden Hochschullehrer.

Die formale Anerkennung erfolgt analog zum Industriepraktikum durch das ETIT-Praktikantenamt.

Voraussetzungen

Berufspraktikum, Industriepraktikum, ETIT-Projekt dürfen nicht vorhanden sein.

Qualifikationsziele

Die Studierenden sind in der Lage, eine interdisziplinäre Projektarbeit auf dem Gebiet der Elektrotechnik und Informationstechnik mit wissenschaftlichen Methoden zu bearbeiten. Die Studierenden sind in der Lage, die im Studium bereits erworbenen Kenntnisse unter Anleitung auf eine ingenieurwissenschaftliche Fragestellung anzuwenden.

Sie können die Bearbeitung einer Problemstellung unter Anleitung planen, strukturieren, vorbereiten, durchführen und schriftlich wie mündlich dokumentieren.

Dabei wählen sie adäquate Methoden für eine lösungsorientierte Bearbeitung der Fragestellung aus. Die Studierenden sind in der Lage, selbstorganisiert und strukturiert zu arbeiten. Sie verfügen über Kompetenzen in den Bereichen Projektmanagement, Teamarbeit und Präsentation.

Inhalt

Im Rahmen des Forschungspraktikums soll eine Aufgabenstellung bearbeitet werden, die mehrere Teilgebiete der Elektrotechnik und Informationstechnik umfasst.

Diese kann theoretischer und/oder experimenteller Natur sein. Im Vordergrund stehen die Erarbeitung von Ergebnissen unter Anwendung wissenschaftlicher Methoden, das Projektmanagement und die Präsentation der Ergebnisse.

Die Projektarbeit kann auch in Studierendenteams bearbeitet werden. In diesem Fall bearbeiten die einzelnen Studierenden jeweils einen Aspekt einer übergeordneten Team-Fragestellung z.B. im Rahmen eines Verbundprojektes.

Die Studierenden können Vorschläge für die Themenstellung einbringen. Es ist möglich, die Projektarbeit im Rahmen einer Kooperation mit einem KIT-Institut (Universitäts- oder Großforschungsbereich) oder einer externen Forschungseinrichtung bzw. einer Institution aus dem berufspraktischen Umfeld anzufertigen.

Projekte im Rahmen eines Forschungspraktikums können von allen Instituten der KIT-Fakultät Elektrotechnik- und Informationstechnik im Universitäts- und Großforschungsbereich vergeben werden. Auch andere KIT-Institute sowie externe Forschungseinrichtungen können Themen anbieten, sofern das Projekt die Möglichkeit bietet, eine interdisziplinäre Aufgabenstellung auf dem Gebiet der Elektrotechnik und Informationstechnik mit wissenschaftlichen Methoden zu bearbeiten.

In Absprache mit dem betreuenden Institut kann das Forschungspraktikum mit einem Vortrag abgeschlossen werden.

Näheres regeln die Praktikantenrichtlinien für den Bachelor-Studiengang Elektrotechnik und Informationstechnik.

Zusammensetzung der Modulnote

Das Modul gilt mit erfolgreicher Bewertung der schriftlichen Ausarbeitung als bestanden.

Arbeitsaufwand

Das Forschungspraktikum hat eine Dauer von mindestens 12 Wochen bei einem Umfang von mindestens 300 Stunden (entsprechend 10 LP).

Empfehlungen Ein wesentlicher Teil der Bachelor-Pflichtmodule sollte erfolgreich abgeschlossen sein.

10.22 Modul: Gebäudeautomatisierung [M-ETIT-106038]

Verantwortung: Prof. Dr.-Ing. Mike Barth

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
3	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile			
T-ETIT-112222	Gebäudeautomatisierung	3 LP	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

- Die Studierenden gewinnen ein grundlegendes Verständnis aktueller Herausforderungen der Digitalisierung von Gebäuden.
- Die Studierenden kennen die Cluster Smart Home, Gebäudeautomation, Gebäude-Bussysteme und Smart Living.
- Die Studierenden können Probleme im Bereich der Gebäudeautomatisierung analysieren, strukturieren und formal beschreiben
- · Die Studierenden können Gebäude hinsichtlich deren Automationspotenzial hin analysieren.
- Die Studierenden kennen die klassische Elektro-Installation und Basis-Automatisierung von Gebäuden und können deren Grenzen abschätzen.
- Die Studierenden sind in der Lage, die Herausforderungen modernen Wohnens und Lebens
- Die Studierenden sind fähig, die Aspekte des Internet of Things (IoT) mit starkem Kontext zu den Bereichen der Gebäudeautomation zu beurteilen und sinnvoll einzusetzen.
- Die Studierenden können auszugsweise Gebäudebussysteme und Gebäudekleinsteuerungen konfigurieren.
- · Die Studierenden können proprietäre GA-Lösungen mit open source Entwicklungen kombinieren.
- Die Studierenden verstehen die Relevanz moderner plattformbasierter Systeme und von Smart Home für die Lösung aktueller Herausforderungen im Bereich der Energieerzeugung, -speicherung und -Verteilung in Gebäuden.
- Die Studierenden verstehen die unterschiedlichen GA-Domänen im Gebäude und können deren Zusammenwirken abschätzen.
- Die Studierenden haben klare Entscheidungsgrundlagen für die Auswahl und Integration von Systemen der GA.

Inhalt

- · Das Modul vermittelt einen Überblick der historischen Entwicklung der Gebäudeautomatisierung.
- Das Modul vermittelt Wissen über den KNX-Installationsbus als Standard.
- Das Modul vermittelt die Grundlagen der klassischen Elektroinstallation und deren Eigenschaften.
- Im Modul werden Kleinsteuerungen und für die Gebäude entwickelte Speicherprogrammierbare Steuerungssysteme besprochen.
- Im Modul werden die Aspekte von Smart Home im Sinne einer intelligenten vernetzten und plattformgestützten Automation diskutiert.
- · Das Modul vermittelt Wissen über das Thema Energy Harvesting und dessen Einsatz in Sensorik und Installation.
- Das Modul behandelt gängige Kommunikationsprotokolle sowohl im Bereich der kabelgebundenen als auch funkbasierten Cluster.
- Das Modul behandelt das Thema Energieerzeugung, -Speicherung und -Verteilung im Rahmen von ProSumer-Modellen.
- · Das Modul behandelt die Themen des Ambient Assisted Livings in Gebäuden

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

- 1. Präsenzzeit in Vorlesungen: 15*2 h = 30 h
- 2. Vor-/Nachbereitung derselbigen: 15*4 h = 60 h
- 3. Klausurvorbereitung und Präsenz in selbiger: in Vor-/Nachbereitung verrechnet

Summe: 90 LP = 3 LP

Empfehlungen

Spaß an Automatisierungstechnik, Neugier und Interessen an Gebäuden und deren technischer Infrastruktur, Steuerungen sowie Nachhaltigkeit und Wohnungsbau. Interesse an Digitalisierung im Allgemeinen sowie dem Internet of Things im Speziellen.

10.23 Modul: Grundlagen der Hochfrequenztechnik [M-ETIT-102129]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Elektrotechnik

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
2Version
2

Pflichtbestandteile			
T-ETIT-101955	Grundlagen der Hochfrequenztechnik	6 LP	Zwick

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung (120 Minuten) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird sowie durch die Bewertung von Hausübungen. Die Hausübungen können während des Semesters von den Studierenden bearbeitet und zur Korrektur abgegeben werden. Die Abgabe erfolgt in handschriftlicher Form.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden besitzen grundlegendes Wissen und Verständnis im Bereich der Hochfrequenztechnik und können dieses Wissen in andere Bereiche des Studiums übertragen. Dazu gehören insbesondere die Leitungstheorie, die Mikrowellennetzwerkanalyse und Grundlagen komplexerer Mikrowellensysteme (Empfängerrauschen, Nichtlinearität, Kompression, Antennen, Verstärker, Mischer, Oszillatoren, Funksysteme, FMCW-Radar, S-Parameter). Die erlernten Methoden ermöglichen die Lösung einfacher oder grundlegender hochfrequenztechnischer Problemstellungen (z.B. Impedanzanpassung, stehende Wellen).

Inhalt

Grundlagenvorlesung Hochfrequenztechnik: Schwerpunkte der Vorlesung sind die Vermittlung eines grundlegenden Verständnisses der Hochfrequenztechnik sowie der methodischen und mathematischen Grundlagen zum Entwurf von Mikrowellensystemen. Wesentliche Themengebiete sind dabei passive Bauelemente und lineare Schaltungen bei höheren Frequenzen, die Leitungstheorie, die Mikrowellennetzwerkanalyse, sowie ein Überblick über Mikrowellensysteme.

Begleitend zur Vorlesung werden Übungsaufgaben zum Vorlesungsstoff gestellt. Diese werden in einer großen Saalübung besprochen und die zugehörigen Lösungen detailliert vorgestellt. Zusätzlich dazu werden in der Übung die wichtigsten Zusammenhänge aus der Vorlesung noch einmal wiederholt.

Zusätzlich zur Saalübung wird in einem Tutorium die selbstständige Bearbeitung von typischen Aufgabenstellungen der Hochfrequenz-technik geübt. Dazu bearbeiten die Studierenden die Aufgaben in Kleingruppen und erhalten Hilfestellung von einem studentischen Tutor.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung. Werden mindestens 50% der Gesamtpunkte der Hausübungen erreicht, erhält der Studierende bei bestandener schriftlicher Prüfung einen Notenbonus von 0,3 bzw. 0,4 Notenpunkten. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note der schriftlichen Prüfung um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Der einmal erworbene Notenbonus bleibt für eine eventuelle schriftliche Prüfung in einem späteren Semester bestehen. Die Hausübung stellt eine freiwillige Zusatzleistung dar, d.h. auch ohne den Notenbonus kann in der Klausur die volle Punktzahl bzw. die Bestnote erreicht werden.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:

Präsenzstudienzeit Vorlesung/Übung: 60 h

Präsenzstudienzeit Tutorium: 15 h

Selbststudienzeit inkl. Prüfungsvorbereitung: 105 h

Insgesamt 180 h = 6 LP

Empfehlungen Kenntnisse zu Grundlagen der Hochfrequenztechnik sind hilfreich.

10.24 Modul: Grundlagen der Künstlichen Intelligenz [M-INFO-106014]

Verantwortung: TT-Prof. Dr. Pascal Friederich

Prof. Dr. Gerhard Neumann

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

Leistungspunkte
5Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-INFO-112194	Grundlagen der Künstlichen Intelligenz	5 LP	Friederich, Neumann

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

- Die Studierenden kennen die grundlegenden Konzepte der klassischen künstlichen Intelligenz und des maschinellen Lernens.
- Die Studierenden verstehen die Algorithmen und Methoden der klassischen KI, und können diese sowohl abstrakt beschreiben als auch praktisch implementieren und anwenden.
- Die Studierenden verstehen die Methoden des maschinellen Lernens und dessen mathematische Grundlagen. Sie kennen Verfahren aus den Bereichen des überwachten und unüberwachten Lernens sowie des bestärkenden Lernens, und können diese praktisch einsetzen.
- Die Studierenden kennen und verstehen grundlegende Anwendungen von Methoden des maschinellen Lernens in den Bereichen Computer Vision, Natural Language Processing und Robotik.
- Die Studierenden können dieses Wissen auf neue Anwendungen übertragen, sowie verschiedene Methoden analysieren und vergleichen.

Inhalt

Dieses Modul behandelt die theoretischen und praktischen Aspekte der künstlichen Intelligenz, incl. Methoden der klassischen KI (Problem Solving & Reasoning), Methoden des maschinellen Lernens (überwacht und unüberwacht), sowie deren Anwendung in den Bereichen computer vision, natural language processing, sowie der Robotik.

Überblick

Einführung

- Historischer Überblick und Entwicklungen der KI und des maschinellen Lernens, Erfolge, Komplexität, Einteilung von KI-Methoden und Systemen
- · Lineare Algebra, Grundlagen, Lineare Regression

Teil 1: Problem Solving & Reasoning

- Problem Solving, Search, Knowledge, Reasoning & Planning
- Symbolische und logikbasierte KI
- Graphische Modelle, Kalman/Bayes Filter, Hidden Markov Models (HMMs), Viterbi
- Markov Decision Processes (MDPs)

Teil 2: Machine Learning - Grundlagen

- Klassifikation, Maximum Likelihood, Logistische Regression
- · Deep Learning, MLPs, Back-Propagation
- Over/Underfitting, Model Selection, Ensembles
- Unsupervised Learning, Dimensionalitätsreduktion, PCA, (V)AE, k-means clustering
- Density Estimation, Gaussian Mixture models (GMMs), Expectation Maximization (EM)

Teil 3: Machine Learning - Vertiefung und Anwendung

- · Computer Vision, Convolutions, CNNs
- Natural Language Processing, RNNs, Encoder/Decoder
- · Robotik, Reinforcement Learning

Arbeitsaufwand

2 SWS Vorlesung + 1 SWS Übung

8 Stunden Arbeitsaufwand pro Woche, plus 30 Stunden Klausurvorbereitung: 150 Stunden

Empfehlungen LA II

M

10.25 Modul: Höhere Mathematik I [M-MATH-101731]

Verantwortung: Prof. Dr. Dirk Hundertmark **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematisch-physikalische Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version	
11	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	1	1	

F	Pflichtbestandteile					
	T-MATH-103353	Höhere Mathematik I - Klausur	11 LP	Anapolitanos,		
				Hundertmark,		
				Kunstmann		

Erfolgskontrolle(n)

Schriftlich. Die Prüfung besteht aus einer 120-minütigen Klausur (verbindlich hinsichtlich der Prüfungsform ist der aktuelle Studienplan und die Bekanntgabe des Prüfungsamts).

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden beherrschen die Grundlagen mathematischen Argumentierens (Beweisformen, Aussagenlogik, Mengen, Abbildungen, vollständige Induktion). Sie kennen die wichtigsten Elemente der eindimensionalen Analysis und der korrekte Umgang mit Folgen, Reihen, Grenzwerten, Funktionen, Potenzreihen und Integralen gelingt ihnen sicher. Sie verstehen zentrale Begriffe wie Stetigkeit, Differenzierbarkeit und Integrierbarkeit, wichtige Aussagen hierzu sind ihnen bekannt. Die in der Vorlesung dargelegten Begründungen dieser Aussagen können die Studierenden nachvollziehen und einfache, hierauf aufbauende Aussagen selbstständig begründen. Sie können mit reellen und komplexen Zahlen rechnen, kennen grundlegende elementare Funktionen und können Ihre Eigenschaften reproduzieren.

Die Studierenden beherrschen die Grundlagen der Vektorraumtheorie. Der Umgang mit Vektoren, linearen Abbildungen und Matrizen gelingt ihnen problemlos. Die Studierenden sind vertraut mit den Standardlösungsmethoden für lineare Gleichungssysteme und können diese anwenden.

Inhalt

Vorlesung

Logische Grundlagen, reelle Zahlen, Ungleichungen, Induktion, komplexe Zahlen, Folgen, Grenzwerte, Reihen, Konvergenzkriterien, exp-Reihe im Komplexen, sin, cos, Stetigkeit, Potenzreihen, Hyperbelfunktionen, Differentialrechnung einer Variablen, Kettenregel, Mittelwertsatz, Kriterien für Extremwertberechnung, Taylorentwicklung, bestimmtes / unbestimmtes Integral, partielle Integration, Substitutionsregel, Integrieren von Potenzreihen, uneigentliche Integrale, Cn als Vektorraum, Basen, Dimension, Skalarprodukt, Orthonormalbasen, Lineare Abbildungen, Matrizen, Lineare Gleichungssysteme, Determinanten.

Übungen

Begleitend zur Vorlesung werden Übungsaufgaben gestellt, die teils in einer großen Saalübung, teils in kleinen Übungsgruppen (Tutorien) besprochen werden.

Zusammensetzung der Modulnote

Notenbildung ergibt sich aus der schriftlichen Prüfung

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen (für eine Vorlesung)

- 1. Präsenzzeit in Vorlesungen, Übungen: (6+2) SWS*15 h/SWS = 120 h
- 2. Vor-/Nachbereitung derselbigen: 170 h
- 3. Klausurvorbereitung und Präsenz in selbiger: 40 h

Summe: 330 h

Lehr- und Lernformen

Vorlesung, Übung und Tutorium

Literatur

Wird in der Vorlesung und auf der Vorlesungshomepage bekanntgegeben. Je nach Dozent wird ein Skript bzw. eine Kurzfassung der Vorlesung zur Verfügung gestellt.

10.26 Modul: Höhere Mathematik II [M-MATH-101732]

Verantwortung: Prof. Dr. Dirk Hundertmark **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematisch-physikalische Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
8	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	1	1

Pflichtbestandteile					
T-MATH-103354	Höhere Mathematik II - Klausur	8 LP	Anapolitanos,		
			Hundertmark,		
			Kunstmann		

Erfolgskontrolle(n)

Schriftlich: 120-minütige Klausur

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden kennen Skalarprodukte und verstehen die Bedeutung der Orthogonalität von Vektoren. Sie können linear unabhängige Vektoren orthogonalisieren und Eigenvektoren und Eigenwerte von Matrizen berechnen, sowie gewisse Klassen von Matrizen diagonalisieren. Die Studierenden beherrschen die Differentialrechnung für vektorwertige Funktionen mehrerer Veränderlicher und Techniken der Vektoranalysis wie die Berechnung von Extremwerten unter Nebenbedingungen, die Definition und Anwendung von Differentialoperatoren, die Berechnung von Gebiets-, Kurven- und Oberflächenintegralen sowie zentrale Integralsätze.

Inhalt

Vorlesung:

Kreuzprodukt, Eigenwertprobleme, Diagonalisierung von Matrizen, Orthonormalbasen, Differentialgleichungen, Raumkurven, Differentiation, partielle Ableitungen, Taylorsatz, Extremwerte mit und ohne Nebenbedingungen, inverse und implizite Funktionen, Integrale, Kurvenintegrale, Integralsätze im R2, Potentialfelder, Volumen-, Oberflächenintegrale, Variablensubstitution, Polarkoordinaten, Zylinderkoordinaten, Kugelkoordinaten, Stokesscher und Gaußscher Integralsatz im R3.

Übung:

Begleitend zur Vorlesung werden Übungsaufgaben gestellt, die teils in einer großen Saalübung, teils in kleinen Übungsgruppen (Tutorien) besprochen werden.

Zusammensetzung der Modulnote

Notenbildung ergibt sich aus der schriftlichen Prüfung

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen (für eine Vorlesung)

- 1. Präsenzzeit in Vorlesungen, Übungen: (4+2) SWS*15 h/SWS = 90 h
- 2. Vor-/Nachbereitung derselbigen: 110 h
- 3. Klausurvorbereitung und Präsenz in selbiger: 40h

Summe: 240 h

Lehr- und Lernformen

Vorlesung, Übung und Tutorium

Literatur

Wird in der Vorlesung und auf der Vorlesungshomepage bekanntgegeben. Je nach Dozent wird ein Skript bzw. eine Kurzfassung der Vorlesung zur Verfügung gestellt

10.27 Modul: Höhere Mathematik III [M-MATH-101738]

Verantwortung: Prof. Dr. Dirk Hundertmark **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematisch-physikalische Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	1	1

Pflichtbestandteile					
T-MATH-103357	Höhere Mathematik III - Klausur	4 LP	Anapolitanos,		
			Hundertmark,		
			Kunstmann		

Erfolgskontrolle(n)

Schriftlich, 90-minütige Klausur

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden beherrschen den theoretischen und praktischen Umgang mit Anfangswertproblemen für gewöhnliche Differentialgleichungen, und können elementare gewöhnliche Differentialgleichungen explizit selbständig lösen. Sie können klassische Lösungsmethoden für lineare Differentialgleichungen anwenden. Sie haben grundlegende Kenntnisse über typische lineare partielle Differentialgleichungen und können insbesondere Lösungen mit Hilfe eines Separationsansatzes berechnen.

Inhalt

Vorlesung

Gewöhnliche Differentialgleichungen: Elementare Methoden, Bernoulli- und Riccati- Differentialgleichung, exakte Differentialgleichungen, Potenzreihenansätze, Systeme von Differentialgleichungen, Differentialgleichungen höherer Ordnung, Existenz- und Eindeutigkeitssätze, lineare Differentialgleichungssysteme. Partielle Differentialgleichungen: Transportgleichung und Charakteristiken, Potentialgleichung, Diffusionsgleichung, Wellengleichung.

Übungen

Begleitend zur Vorlesung werden Übungsaufgaben gestellt, die teils in einer großen Saalübung, teils in kleinen Übungsgruppen (Tutorien) besprochen werden.

Zusammensetzung der Modulnote

Notenbildung ergibt sich aus der schriftlichen Prüfung

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen (für eine Vorlesung)

- 1. Präsenzzeit in Vorlesungen, Übungen: (2+1) SWS*15 h/SWS = 45 h
- 2. Vor-/Nachbereitung derselbigen: 55 h
- 3. Klausurvorbereitung und Präsenz in selbiger: 20 h

Summe: 120 h

Lehr- und Lernformen

Vorlesung, Übung und Tutorium

Literatur

Wird in der Vorlesung und auf der Vorlesungshomepage bekanntgegeben. Je nach Dozent wird ein Skript bzw. eine Kurzfassung der Vorlesung zur Verfügung gestellt.

10.28 Modul: Hybride und elektrische Fahrzeuge [M-ETIT-100514]

Verantwortung: Prof. Dr. Martin Doppelbauer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

LeistungspunkteNotenskala
4TurnusDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-ETIT-100784	Hybride und elektrische Fahrzeuge	4 LP	Doppelbauer

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden verstehen die technische Funktion aller Antriebskomponenten von hybriden und elektrischen Fahrzeugen sowie deren Zusammenspiel im Antriebsstrang zu verstehen. Sie verfügen über Detailwissen der Antriebskomponenten, insbesondere Batterien und Brennstoffzellen, leistungselektronische Schaltungen und elektrische Maschinen inkl. der zugehörigen Getriebe. Weiterhin kennen sie die wichtigsten Antriebstopologien und ihre spezifischen Vor- und Nachteile. Die Studierenden können die technischen, ökonomischen und ökologischen Auswirkungen alternativer Antriebstechnologien für Kraftfahrzeuge beurteilen und bewerten.

Inhalt

Ausgehend von den Mobilitätsbedürfnissen der modernen Industriegesellschaft und den politischen Rahmenbedingungen zum Klimaschutz werden die unterschiedlichen Antriebs- und Ladekonzepte von batterieelektrischen- und hybridelektrischen Fahrzeugen vorgestellt und bewertet. Die Vorlesung gibt einen Überblick über die Komponenten des elektrischen Antriebsstranges, insbesondere Batterie, Ladeschaltung, DC/DC-Wandler, Wechselrichter, elektrische Maschine und Getriebe. Gliederung:

- · Hybride Fahrzeugantriebe
- · Elektrische Fahrzeugantriebe
- · Fahrwiderstände und Energieverbrauch
- Betriebsstrategie
- Energiespeicher
- · Grundlagen elektrischer Maschinen
- Asynchronmaschinen
- Synchronmaschinen
- Sondermaschinen
- Leistungselektronik
- Laden
- Umwelt
- · Fahrzeugbeispiele

Anforderungen und Spezifikationen

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

14x V und 7x U à 1,5 h: = 31,5 h 14x Nachbereitung V à 1 h = 14 h 6x Vorbereitung zu U à 2 h = 12 h Prüfungsvorbereitung: = 50 h Prüfungszeit = 2 h Insgesamt = 109,5 h (entspricht 4 Leistungspunkten)

Empfehlungen

Zum Verständnis des Moduls ist Grundlagenwissen der Elektrotechnik empfehlenswert (erworben beispielsweise durch Besuch der Module "Elektrische Maschinen und Stromrichter", "Elektrotechnik für Wirtschaftsingenieure I+II" oder "Elektrotechnik und Elektronik für Maschinenbauingenieure").

10.29 Modul: Industriepraktikum [M-ETIT-105601]

Verantwortung: Prof. Dr.-Ing. Marc Hiller

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** Profilierungsfach (Forschungs- oder Industriepraktikum)

Leistungspunkte 10 **Notenskala** best./nicht best.

Turnus Jedes Semester **Dauer** 1 Semester **Sprache** Deutsch/Englisch **Level**

Version 1

Pflichtbestandteile			
T-ETIT-111224	Industriepraktikum	10 LP	Hiller

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung gemäß SPO § 4 Abs. 3, bestehend aus einer schriftlichen Ausarbeitung (Umfang ca. 15 Seiten).

Die Bestätigung der Teilnahme und des erfolgreichen Abschlusses des Industriepraktikums erfolgt durch den Betrieb, in dem das Praktikum absolviert wurde.

Die formale Anerkennung erfolgt analog zum Forschungspraktikum durch das ETIT-Praktikantenamt.

Voraussetzungen

Berufspraktikum, ETIT-Projekt, Forschungspraktikum dürfen nicht vorhanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-ETIT-105602 - Forschungspraktikum darf nicht begonnen worden sein.

Qualifikationsziele

Das Industriepraktikum soll den Studierenden berufspraktische Tätigkeiten und Kompetenzen auf dem Gebiet der Elektrotechnik und Informationstechnik vermitteln und bei der Berufsorientierung bzw. Spezialisierung im konsekutiven Masterstudium unterstützen.

Das Industriepraktikum hat das Ziel, den Studierenden durch die Mitarbeit an konkreten technischen Aufgaben an die besondere Tätigkeit einer Ingenieurin bzw. eines Ingenieurs heranzuführen. Die Studierenden sollen sich dabei fachrichtungsbezogene Kenntnisse aus der Praxis aneignen und weitere Eindrücke über ihre spätere berufliche Umwelt sowie ihre Stellung und Verantwortung innerhalb des Betriebes sammeln. Darüber hinaus soll das Industriepraktikum einen Einblick in die betriebliche Organisation und Führungsstruktur geben.

Inhalt

Im Rahmen des Industriepraktikums soll eine Aufgabenstellung bearbeitet werden, die mehrere Teilgebiete der Elektrotechnik und Informationstechnik umfasst.

Mögliche Tätigkeitsfelder:

- · Software-Entwicklung und Engineering, z.B. auf den Gebieten KI und maschinellem Lernen
- Berechnung, Simulation, Konstruktion und Fertigung von einzelnen Bauelementen, Bauteilen, Baugruppen, Apparaten, Geräten und Maschinen der gesamten Elektro- und Informationstechnik
- Projektierung, Montage, Inbetriebnahme, Betrieb und Wartung von ganzen Anlagen der Elektro- und Informationstechnik
- Tätigkeiten in industriellen Forschungs- und Entwicklungslaboratorien, Versuchs- und Prüffeldern, sowie Rechenzentren

Näheres regeln die Praktikantenrichtlinien für den Bachelor-Studiengang Elektrotechnik und Informationstechnik.

Zusammensetzung der Modulnote

Das Modul gilt mit erfolgreicher Bewertung der schriftlichen Ausarbeitung als bestanden.

Arbeitsaufwand

Das Industriepraktikum hat eine Dauer von mindestens 12 Wochen bei einem Umfang von mindestens 300 Stunden (entsprechend 10 LP).

Empfehlungen

Ein wesentlicher Teil der Bachelor-Pflichtmodule sollte erfolgreich abgeschlossen sein.

10.30 Modul: Informationstechnik I [M-ETIT-104539]

Verantwortung: Prof. Dr.-Ing. Eric Sax

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Informationstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	1	2

Pflichtbestandteile					
T-ETIT-109300	Informationstechnik I	4 LP	Sax		
T-ETIT-109301	Informationstechnik I - Praktikum	2 LP	Sax		

Erfolgskontrolle(n)

Die Erfolgskontrolle des Moduls besteht aus:

- 1. Einer "schriftlichen Prüfung" im Umfang von 120 Minuten zu den Lehrveranstaltungen Vorlesung, Übung (4 LP)
- 2. Einer Erfolgskontrolle in Form von Projektdokumentationen und Kontrolle des Quellcodes im Rahmen der Lehrveranstaltung Praktikum (2 LP)

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden lernen Aufbau und Funktionsweise informationstechnischer Systeme und deren Verwendung kennen.

Die Studierenden können

- die Charakteristika von eingebetteten Systemen abgrenzen.
- · verschiedene Programmiersprachen und -paradigmen nennen und deren Unterschiede gegenüberstellen.
- die Grundbestandteile der Programmiersprache C++ erläutern sowie Programme in dieser Sprache anfertigen.
- die zur Erstellung eines ausführbaren Programms notwendigen Komponenten aufzählen und deren Interaktion beschreiben
- Programmstrukturen mit Hilfe grafischer Beschreibungsmittel darstellen.
- das objektorientierte Programmierparadigma gegenüber traditioneller Herangehensweise abgrenzen sowie objektorientierte Programme erstellen.
- · die Struktur objektorientierter Programme grafisch abbilden
- generelle Rechnerarchitekturen beschreiben, deren Vor- und Nachteile gegenüberstellen, sowie Möglichkeiten zur Performanzsteigerung erläutern.
- unterschiedliche Abstraktionsebenen der Datenspeicherung beschreiben. Sie können verschiedene Möglichkeiten, Daten strukturiert abzuspeichern und zu organisieren, nennen und bewerten.
- die Aufgaben eines Betriebssystems beschreiben, sowie die grundlegenden Funktionen von Prozessen und Threads wiedergeben.
- die Phasen und Prozesse des Projektmanagements erläutern und die Planung kleiner Projekte skizzieren.

Durch die Teilnahme am Praktikum Informationstechnik können die Studierenden komplexe programmiertechnische Probleme in einfache und übersichtliche Module zerlegen und dazu passende Algorithmen und Datenstrukturen entwickeln, sowie diese mit Hilfe einer Programmiersprache in ein ausführbares Programm umsetzen.

Inhalt

Vorlesung Informationstechnik I:

Grundlagenvorlesung Informationstechnik. Schwerpunkte der Veranstaltung sind:

- · Programmiersprachen, Programmerstellung und Programmstrukturen
- Objektorientierung
- · Rechnerarchitekturen und eingebettete Systeme
- Datenstrukturen und Datenbanken
- · Projektmanagement
- · Betriebssysteme und Prozesse

Übung Informationstechnik I:

Begleitend zur Vorlesung werden in der Übung die Grundlagen der Programmiersprache C++ vermittelt. Hierzu werden Übungsaufgaben mit Bezug zum Vorlesungsstoff gestellt, sowie die Lösungen dazu detailliert erläutert. Schwerpunkte sind dabei der Aufbau und die Analyse von Programmen sowie deren Erstellung.

Praktikum Informationstechnik:

Bei der Umsetzung in einen strukturierten und lauffähigen Quellcode, unter Einhaltung von vorgegebenen Qualitätskriterien, wird das Schreiben komplexer C/C++-Codeabschnitte und der Umgang mit einer integrierten Entwicklungsumgebung trainiert. Die Implementierung erfolgt auf einem Microcontrollerboard, welches bereits aus anderen Lehrveranstaltungen bekannt ist.

Die Bearbeitung des Projektes erfolgt in kleinen Teams, die das Gesamtprojekt in individuelle Aufgaben zerlegen und selbstständig bearbeiten. Hierbei werden Inhalte aus Vorlesung und Übung wieder aufgegriffen und auf konkrete Problemstellungen angewendet. Am Ende des Praktikums soll jedes Projektteam den erfolgreichen Abschluss seiner Arbeit auf der "TivSeg Plattform" demonstrieren.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung. Das erfolgreiche Ablegen des Praktikums ist Voraussetzung für das Bestehen des Moduls.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:

- 1. Präsenzzeit in 14 Vorlesungen und 7 Übungen (32 Stunden)
- 2. Vor-/Nachbereitung von Vorlesung und Übung (42 Stunden)
- 3. Klausurvorbereitung und Präsenz in selbiger (46 Stunden)
- 4. Praktikum Informationstechnik 5 Termine (7,5 Stunden)
- 5. Vor-/Nachbereitung des Praktikums (52,5 Stunden) Summe: 180 h = 6 LP

Empfehlungen

- Kenntnisse in den Grundlagen der Programmierung sind empfohlen (Besuch des MINT-Kurs C++).
- Die Inhalte des Moduls Digitaltechnik sind hilfreich.

10.31 Modul: Informationstechnik II und Automatisierungstechnik [M-ETIT-104547]

Verantwortung: Prof. Dr.-Ing. Eric Sax

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Informationstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	2	2

Pflichtbestandteile				
T-ETIT-109319	Informationstechnik II und Automatisierungstechnik	4 LP	Sax	

Erfolgskontrolle(n)

Schriftliche Prüfung im Umfang von 120 Minuten zu den Lehrveranstaltungen Vorlesung und Übung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden lernen aktuelle Problemstellungen der Informationstechnik und die Werkzeuge für deren Lösung kennen, beginnend bei einfachen Algorithmen bis hin zu selbstlernenden Systemen.

Die Studierenden können

- die Merkmale, Eigenschaften und Klassen von Algorithmen benennen und einordnen, sowie die Laufzeitkomplexität bestimmen.
- · bekannte Sortier-, Such- und Optimierungsalgorithmen gegenüberstellen und demonstrieren.
- · die Merkmale, Eigenschaften und Komponenten von selbstlernenden Systemen benennen und abgrenzen.
- Methoden des maschinellen Lernens einordnen, beschreiben und bewerten.
- Die Charakteristika sowie die Notwendigkeit und Vorgehensweise zur Analyse großer Datenbestände beschreiben.
- Ansätze zur Verwaltung und Analyse großer Datenbestände hinsichtlich ihrer Anwendbarkeit und Wirksamkeit einschätzen.
- · Methoden zur Anomalieerkennung wiedergeben.
- Begriffe der IT-Sicherheit angeben und typische Schutzmechanismen einordnen.
- die grundlegenden Komponenten, Funktionen und Aufgaben der Automatisierungstechnik in verschiedenen Einsatzbereichen gegenüberstellen und anhand ihres Automatisierungsgrades einordnen.

Inhalt

Vorlesung Informationstechnik II und Automatisierungstechnik:

Grundlagenvorlesung Informationstechnik. Schwerpunkte der Veranstaltung sind:

- Grundlagen und Eigenschaften verschiedener Klassen von Algorithmen
- Selbstlernende Systeme und maschinelles Lernen, beispielsweise Clusteringverfahren und Neuronale Netze
- Grundlagen und Verfahren zur Analyse großer Datenbestände
- Verfahren zur Anomalieerkennung als Anwendungsfeld von selbstlernenden Systemen auf große Datenmengen
- · Grundlagenbegriffe und Prozesse zur Entwicklung sicherer Software
- Bedeutung, grundlegende Begriffe und Komponenten der Automatisierungstechnik sowie deren informationstechnische Realisierung

Übung Informationstechnik II und Automatisierungstechnik:

Begleitend zur Vorlesung werden in der Übung die Grundlagen der in der Vorlesung vorgestellten Methoden erläutert und deren Anwendung aufgezeigt. Hierzu werden Übungsaufgaben mit Bezug zum Vorlesungsstoff gestellt sowie die Lösungen dazu detailliert erläutert

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:

- 1. Präsenzzeit in 14 Vorlesungen und 7 Übungen (32 Stunden)
- 2. Vor-/Nachbereitung von Vorlesung und Übung (42 Stunden)
- 3. Klausurvorbereitung und Präsenz in selbiger (46 Stunden) Summe: 120 h = 4 LP

Empfehlungen

Grundlagen der Programmierung (MINT-Kurs) und die Inhalte des Moduls Informationstechnik I sind hilfreich.

10.32 Modul: Introduction to Quantum Information Processing [M-ETIT-106264]

Verantwortung: Prof. Dr. Sebastian Kempf

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Sommersemester	1 Semester	Englisch	3	1

Pflichtbestandteile				
T-ETIT-112715	Introduction to Quantum Information Processing	6 LP	Kempf	

Erfolgskontrolle(n)

The examination takes place within the framework of an oral overall examination (30 minutes) on the selected events with which the minimum CR requirement is fulfilled in total.

Voraussetzungen

none

Qualifikationsziele

The students will be able to analyze, structure and formally describe problems in the field of quantum information processing. In particular, they will be able to understand the difference between classical and quantum information processing and are able to analyze and implement quantum algorithms for solving given information problems. Moreover, the students are able to critically evaluate existing algorithms regarding complexity, suitability and quantum supremacy.

Inhalt

This module provides an introductory overview in the emerging field of quantum information processing (QIP). It particularly intends to discuss the mathematical and physical basics of QIP including the concepts of quantum bits, superposition, entanglement, decoherence, quantum noise, gate-based quantum computing (oracle-based and quantum fourier transform based), quantum parallelism, and quantum error correction. Using these concepts, the supremacy of several quantum algorithms as well as difference between classical and quantum algorithms will be discussed. This includes, for example, Deutsch's algorithm, Deutsch-Josza's algorithm, Simon's algorithm, Grover's algorithm, Shor's algorithm and many more.

The tutorial is closely related to the lecture and deals with special aspects concerning quantum information processing. Moreover, it deepens the knowledge by discussing examples.

Zusammensetzung der Modulnote

The module grade is the grade of the oral exam.

Arbeitsaufwand

A workload of approx. 184 h is required for the successful completion of the module. This is composed as follows:

- 1. Attendance time in lectures: 14*1,5 h = 21 h
- 2. Attendance time in tutorials: 14*1,5 h = 21 h
- 3. Preparation and follow-up of lectures: 14*4 h= 56 h
- 4. Preparation and follow-up of tutorials: 14*4 h= 56 h
- 5. Preparation for the oral exam: 30 h

Empfehlungen

Basic knowledge in the field of quantum mechanics as gained in the lecture "Optik und Festkörperelektronik" is helpful.

10.33 Modul: Komplexe Analysis und Integraltransformationen [M-ETIT-104534]

Verantwortung: Prof. Dr.-Ing. Sören Hohmann

Dr.-Ing. Mathias Kluwe

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Informationstechnik

Leistungspunkte
4 Notenskala Turnus Dauer
5 prache Deutsch 1 Semester 1 Semes

Pflichtbestandteile				
T-ETIT-109285	Komplexe Analysis und Integraltransformationen	4 LP	Kluwe	

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Qualifikationsziele

- Die Studierenden beherrschen die Grundlagen, Eigenschaften und Rechenregeln der Laplace-Transformation und können diese zur Lösung von linearen Differentialgleichungen anwenden.
- Die Studierenden sind in der Lage, die Laplace-Transformation zur Beschreibung dynamischer Systeme zu nutzen.
- Die Studierenden kennen einige Grundlagen der komplexen Analysis im Kontext der Integraltransformationen wie z.B. Laurententwicklung und Residuensatz.
- Die Studierenden kennen die komplexe Umkehrformel der Laplace-Transformation und können diese für komplizierte Bildfunktionen einsetzen.
- Die Studierenden kennen die zweiseitige Laplace-Transformation und beherrschen die Grundlagen, Eigenschaften und Rechenregeln der Fourier-Transformation.
- · Die Studierenden sind vertraut mit den Grundlagen, Eigenschaften und Rechenregeln der z-Transformation.

Inhalt

- Einführung in die Laplace-Transformation
 - Motivation und Definition der Laplace-Transformation
 - Beispiele für Laplace-Transformierte
 - Eigenschaften der Laplace-Transformation
- · Laplace-Transformation gewöhnlicher Differentialgleichungen
 - Beispiele für technische Anwendungen
 - · Gewöhnliche Differentiationsregel
 - Dirac-Impulse und verallgemeinerte Differentiationsregel
 - · Laplace-Transformation allgemeiner linearer Differentialgleichungen mit konstanten Koeffizienten
 - Rücktransformation über die Partialbruchzerlegung rationaler Funktionen
 - Rechenregeln der Laplace-Transformation (1):
 - Integrationsregel und Dämpfungsregel
 - Rücktransformation über die Faltungsregel der Laplace-Transformation
 - Rechenregeln der Laplace-Transformation (2):

Verschiebungsregeln und Grenzwertsätze

- Übertragungsverhalten dynamischer Systeme
 - Impuls- und Sprungantwort
 - Charakterisierung des Übertragungsverhaltens dynamischer Systeme mit Übertragungs- und Gewichtsfunktion
- Abstecher in die Funktionentheorie
 - Laurent-Entwicklung
 - Residuum und Residuensatz
 - Laurent-Entwicklung und Partialbruchzerlegung
- · Komplexe Umkehrformel der Laplace-Transformation
 - Herleitung der komplexen Umkehrformel
 - Berechnung des komplexen Umkehrintegrals
- Zweiseitige Laplace-Transformation und Fourier-Transformation
 - Zweiseitige Laplace-Transformation
 - Definition der Fourier-Transformation
 - Eigenschaften der Fourier-Transformation
 - Rechenregeln der Fourier-Transformation
 - Korrespondenzen der Fourier-Transformation
- z-Transformation
 - Definition und Korrespondenzbeispiele der z-Transformation
 - Eigenschaften und Rechenregeln der z-Transformation
 - Lösung von Differenzengleichungen mit der z-Transformation

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 30h Arbeitsaufwand (des Studierenden). Unter den Arbeitsaufwand fallen

- 1. Präsenzzeit in Vorlesung/Übung (1+1 SWS: 30h1 LP)
- 2. Vor-/Nachbereitung Vorlesung/Übung (60h2 LP)
- 3. Vorbereitung/Präsenzzeit schriftliche Erfolgskontrolle (30h1 LP)

Empfehlungen

Kenntnisse folgender Module werden empfohlen:

- Höhere Mathematik I im Bachelor
- · M-ETIT Lineare Elektrische Netze im Bachelor

10.34 Modul: Labor für angewandte Machine Learning Algorithmen [M-ETIT-104823]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker

Prof. Dr.-Ing. Eric Sax Prof. Dr. Wilhelm Stork

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile			
T-ETIT-109839	Labor für angewandte Machine Learning Algorithmen	6 LP	Becker, Sax, Stork

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von Prüfungsleistungen anderer Art.

- · Protokolle (Labordokumentation) und kontinuierliche Bewertung der Teamarbeit während der Präsenzzeit
- · Vortrag in Form einer Präsentation

Abfrage nach Ende der Veranstaltung zu den Inhalten des Labors.

Der Gesamteindruck wird bewertet.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Das Modul M-ETIT-100518 Labor Schaltungsdesign darf nicht begonnen worden sein.
- 2. Das Modul M-ETIT-102113 Elektrotechnisches Grundlagenpraktikum darf nicht begonnen worden sein.
- 3. Das Modul M-ETIT-103263 Praktikum Hard- und Software in leistungselektronischen Systemen darf nicht begonnen worden sein.
- 4. Das Modul M-ETIT-105301 Workshop angewandte Hochfrequenztechnik darf nicht begonnen worden sein.
- 5. Das Modul M-ETIT-105703 Praktikum Elektrochemische Energietechnologien darf nicht begonnen worden sein.

Qualifikationsziele

- Die Studierenden sind in der Lage aktuelle komplexe Probleme des modernen Elektro- und Informationstechnik-Ingenieurs zu analysieren und die Notwendigkeit für Verfahren des maschinellen Lernens zu beurteilen.
- Die Studierenden können verschiedene moderne Verfahren des maschinellen Lernens nennen und deren Funktionsweise erklären.
- Die Studierenden sind in der Lage diese hinsichtlich ihrer Anforderungen (u.a. Trainingszeit, Datenverfügbarkeit, Effizienz, Performance) auszuwählen und erfolgreich mit aktuellen Programmiersprachen und typischen Software-Frameworks umzusetzen.
- Die Studierenden sind in der Lage passende Implementierungsalternativen (HW/SW-Codesign) im gesamten Prozess zu wählen und umzusetzen.
- Die Studierenden sind in der Lage für eine gegebene Problemstellung systematisch ein geeignetes praxistaugliches Konzept basierend auf Verfahren des maschinellen Lernens zu entwickeln oder gegebene Konzepte zu evaluieren, vergleichen und zu beurteilen.
- Die Studierenden beherrschen die Analyse und Lösung entsprechender Problemstellungen im Team.

Die Studierenden können ihre Konzepte und Ergebnisse evaluieren und dokumentieren.

Inhalt

In diesem Kurs wird der praktische Umgang mit gängigen Algorithmen und Methoden des maschinellen Lernens projektbezogen und praxisnah vermittelt. Die Studierenden lernen, gängige Algorithmen und Strukturen (z.B. Clusteringverfahren, Neuronale Netze, Deep Learning) selbständig zu implementieren. Das Labor bietet die Möglichkeit, die Anwendung des Maschinellen Lernens auf realitätsnahen Problemstellungen sowie die Limitierungen der Verfahren kennenzulernen. Anwendungsfelder können zum Beispiel autonomes Fahren oder intelligente Stromnetze sein. Im Mittelpunkt stehen die heute in Industrie und Wissenschaft gebräuchlichen Methoden, Prozesse und Werkzeuge, wie beispielsweise Tensorflow oder NVidia CUDA. Dabei wird nicht nur auf die Algorithmen, sondern auch auf den kompletten Prozess der Datenanalyse eingegangen. Darunter fallen die Problemstellungen des überwachten und unüberwachten Lernens sowie die Herausforderung der Vorverarbeitung und der Visualisierung der Daten. Für die systematische Entwicklung und Evaluierung dieser Problemstellungen werden aktuelle Frameworks ausgewählt und appliziert. Damit verbunden sind die problemspezifische Auswahl und der Einsatz geeigneter Plattformen und Hardware (zum Beispiel: CPU, GPU, FPGA).

Ein Teil der Versuche ist in Ablauf und Struktur vorgegeben. In einem freien Teil des Labors werden die Studierenden mit ihren bereits gewonnenen Erfahrungen kreativ und selbstständig den Lösungsraum einer realen Problemstellung explorieren.

Zusammensetzung der Modulnote

In die Modulnote gehen die Beurteilung der Protokolle, die kontinuierliche Bewertung der Teamarbeit, der Vortrag und die Abfrage zu den Inhalten des Labors ein. Nähere Angaben erfolgen zu Beginn der Veranstaltung.

Anmerkungen

Das Labor ist aus Kapazitätsgründen auf eine Teilnehmerzahl von 30 Studierenden begrenzt. Sofern erforderlich wird ein Auswahlverfahren durchgeführt. Die Plätze werden unter Berücksichtigung des Studienfortschritts der Studierenden (Fachsemester und fachspezifische Programmierkenntnisse) vergeben. Details werden in der ersten Veranstaltung und auf der Homepage der Veranstaltung bekanntgegeben.

Während sämtlicher Labortermine einschließlich der Einführungsveranstaltung herrscht Anwesenheitspflicht. Die Anwesenheitspflicht ist sowohl zur Durchführung der Arbeiten im Team vor Ort notwendig, als auch zur praktischen Vermittlung von Techniken und Fähigkeiten, die im reinen Selbststudium nicht erlernt werden können.

Arbeitsaufwand

- Teilnahme an den Laborterminen: 52h
 Termine á 4h
- 2. Vor- und Nachbereitung, Anfertigung von Berichten: 84h
- 3. Vorbereitung des Vortrags: 16h
- 4. Vorbereitung und Teilnahme an der mündlichen Abfrage: 28h

Empfehlungen

Hilfreich für die Arbeiten im Labor sind Kenntnisse in den Grundlagen der Informationstechnik (z.B. M-ETIT-102098), Signalund Systemtheorie (z.B. M-ETIT-102123) sowie Wahrscheinlichkeitstheorie (z.B. M-ETIT-102104). Dringend empfohlen werden Programmierkenntnisse (z.B. C++ oder Python).

10.35 Modul: Labor Schaltungsdesign [M-ETIT-100518]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

LeistungspunkteNotenskala
6TurnusDauer
1 SemesterSprache
DeutschLevel
1Version
2

Pflichtbestandteile				
T-ETIT-100788	Labor Schaltungsdesign	6 LP	Becker, Sander	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer praktikumsbegleitenden Bewertung, sowie einer mündlichen Gesamtprüfung (30 Minuten) über die ausgewählten Lehrveranstaltungen. Der Gesamteindruck wird bewertet.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Das Modul M-ETIT-102113 Elektrotechnisches Grundlagenpraktikum darf nicht begonnen worden sein.
- 2. Das Modul M-ETIT-103263 Praktikum Hard- und Software in leistungselektronischen Systemen darf nicht begonnen worden sein.
- 3. Das Modul M-ETIT-104823 Labor für angewandte Machine Learning Algorithmen darf nicht begonnen worden sein.
- 4. Das Modul M-ETIT-105301 Workshop angewandte Hochfrequenztechnik darf nicht begonnen worden sein.
- 5. Das Modul M-ETIT-105703 Praktikum Elektrochemische Energietechnologien darf nicht begonnen worden sein.

Qualifikationsziele

Das Praktikum vermittelt die notwendigen Kenntnisse und Fähigkeiten für den Entwurf elektronischer Schaltungen, wie sie z.B. als Bindeglied zwischen Mikrokontrollern/FPGAs und Sensoren/Aktuatoren benötigt werden. Am Ende der Veranstaltung sind die Teilnehmer in der Lage, für ein vorgegebenes Problem benötigte Bauteile anhand relevanter Kriterien auszuwählen, zu elementaren Baugruppen zu verschalten und schließlich daraus ein funktionierendes Gesamtsystem zu bilden. Neben dem Schaltungsdesign werden grundlegende Methoden und Fertigkeiten für die Erstellung von Layouts vermittelt. Außerdem werden die Teilnehmer in die Lage versetzt die entworfenen Schaltungen real aufzubauen und zu testen.

Inhalt

Bei der Lehrveranstaltung handelt es sich um ein dreiwöchiges Blockpraktikum. Ziel des Praktikums ist die Entwicklung und der Aufbau der gesamten Elektronik zum Betrieb eines selbstbalancierenden einachsigen Beförderungsmittels.

Im ersten Teil des Praktikums werden im Stil einer interaktiven Vorlesung häufig benötigte Grundschaltungen besprochen. Dazu gehören u.a. Schaltungen zur Spannungsversorgung, Taktgenerierung, Aufbereitung von Sensorwerten sowie Leistungstreiber und die Ansteuerung von Displays. Neben der Vorstellung der einzelnen Schaltungen wird auch eine Übersicht über Bauteile gegeben, welche häufig im entsprechenden Bereich verwendet werden. Dabei wird Wert darauf gelegt, reale Bauelemente auf Basis ihrer Datenblätter zu betrachten. Zur Festigung des erworbenen Wissens werden immer wieder kleine praktische Übungen durchgeführt, in denen die Teilnehmer die besprochenen Schaltungen selbst ausprobieren können. Ziel dieses ersten Teils ist zum einen die Auffrischung des bereits in vorhergehenden Veranstaltungen erworbenen Wissens und zum anderen die Vermittlung des praktischen Umgangs mit immer wieder benötigten Basisschaltungen.

Nach der Vermittlung der Grundschaltungen folgt eine kurze Einführung in die Erstellung von Platinenlayouts. Dazu zählen neben der Einarbeitung in das im Praktikum verwendete Layoutprogramm vor allem Tipps zur Platzierung und Verdrahtung von Bauelementen auf der Platine. Dabei werden unter anderem Themen wie Minimierung von Rauschen und Übersprechen, Platzierung von Abblockkondensatoren und Masseverbindungen behandelt.

Im dritten und größten Teil des Praktikums erstellen die Teilnehmer in Teams schließlich nacheinander ein Konzept, einen Schaltplan und ein Layout eines Schaltungsteils zum Betrieb des Beförderungsmittels. Dabei werden lediglich die genauen Anforderungen an den Schaltungsteil und die Schnittstellen zu benachbarten Teilen vorgegeben. Alle weiteren Entwicklungsschritte sollen von den Studierenden, basierend auf dem in den ersten beiden Praktikumsteilen vermittelten Wissen, möglichst eigenverantwortlich durchgeführt werden.

Zusammensetzung der Modulnote

In die Modulnote gehen die Beurteilung der mündlichen Prüfung, den während des Praktikums gegebenen Präsentationen und Versuchen und der Mitarbeit während des Praktikums ein. Nähere Angaben erfolgen zu Beginn der Veranstaltung.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:

- 1. Präsenzzeit im Labor: 15 Tage á 8h = 120h
- 2. Vor-/Nachbereitung desselbigen: 15 Tage á 2h = 30h
- 3. Prüfungsvorbereitung und Präsenz in selbiger: 15h

Empfehlungen

Grundlegende Kenntnisse von elektronischen Basisschaltungen (z.B. Lehrveranstaltungen LEN, Nr. 2305256, ES, Nr. 2312655 und EMS, Nr. 2306307)

10.36 Modul: Lineare Elektrische Netze [M-ETIT-104519]

Verantwortung: Prof. Dr.-Ing. John Jelonnek

Prof. Dr. Sebastian Kempf

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Elektrotechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	1	2

Pflichtbestandteile				
T-ETIT-109316	Lineare Elektrische Netze	7 LP	Jelonnek, Kempf	
T-ETIT-109317	Lineare Elektrische Netze - Workshop A	1 LP	Leibfried, Lemmer	
T-ETIT-109811	Lineare Elektrische Netze - Workshop B	1 LP	Nahm	

Erfolgskontrolle(n)

Die Erfolgskontrolle des gesamten Moduls besteht aus drei unabhänigen Teilen:

- 1. In einer schriftlichen Prufung im Umfang von 120 Minuten werden die Inhalte der Lehrveranstaltung Lineare Elektrische Netze (7 LP) gepruft. Bei bestandener Prufung können Studierende einen Notenbonus von bis zu 0,4 Notenpunkten erhalten, wenn zuvor semesterbegleitend zwei Projektaufgaben erfolgreich bearbeitet wurden. Die Bearbeitung der Projektaufgaben wird durch die Abgabe einer Dokumentation oder des Projektcodes nachgewiesen.
- 2. Schriftliche Ausarbeitung zur Lehrveranstaltung Lineare Elektrische Netze Workshop A, (1 LP)
- 3. Schriftliche Ausarbeitung zur Lehrveranstaltung Lineare Elektrische Netze Workshop B, (1 LP)

Für beide Workshops gilt: Die schriftlichen Ausarbeitungen wird korrigiert und mit Punkten bewertet. Bei Erreichen der erforderlichen Punktezahl gilt der Workshop als bestanden.

Voraussetzungen

keine

Qualifikationsziele

Im Modul Lineare Elektrische Netze erwirbt der Studierende Kompetenzen bei der Analyse und dem Design von elektrischen Schaltungen mit linearen Bauelementen mit Gleichstrom und Wechselstrom. Hierbei ist er in der Lage, die Themen zu erinnern und zu verstehen, zudem die behandelten Methoden anzuwenden, um hiermit die elektrischen Schaltungen mit linearen Bauelementen zu analysieren und deren Relevanz, korrekte Funktion und Eigenschaften zu beurteilen.

Die Studierenden erlernen im Workshop die Koordination eines Projekts in kleinen Teams und die Darstellung der Ergebnisse in Form einer technischen Dokumentation. Weiterhin sind sie in der Lage, grundlegende einfache Problemstellungen aus der Elektrotechnik (z.B. Messtechnik, analoge Schaltungstechnik) zu erkennen sowie praxis- und entscheidungsrelevant Lösungsansätze zu erarbeiten.

Inhalt

In der Lehrveranstaltung Lineare Elektrische Netze werden die folgenden Themen behandelt:

- Methoden zur Analyse komplexer linearer elektrischer Schaltungen
- Definitionen von U, I, R, L, C, unabhängige Quellen, abhängige Quellen
- Kirchhoff sche Gleichungen, Knotenpunkt-Potential-Methode, Maschenstrom-Methode
- Ersatz-Stromquelle, Ersatz-Spannungsquelle, Stern-Dreiecks-Transformation, Leistungsanpassung
- Operationsverstärker, invertierender Verstärker, Addierer, Spannungsfolger, nicht-invertierender Verstärker, Differenzverstärker
- · Sinusförmige Ströme und Spannungen, Differentialgleichungen für L und C, komplexe Zahlen
- Beschreibung von RLC-Schaltungen mit komplexen Zahlen, Impedanz, komplexe Leistung, Leistungsanpassung
- Brückenschaltungen, Wheatstone-, Maxwell-Wien- und Wien-Brückenschaltungen
- · Serien- und Parallel-Schwingkreise
- · Vierpoltheorie, Z, Y und A-Matrix, Impedanztransformation, Ortskurven und Bodediagramm
- · Transformator, Gegeninduktivität, Transformator-Gleichungen, Ersatzschaltbilder des Transformators
- Drehstrom, Leistungsübertragung und symmetrische Last

In Workshop A werden die Studierenden in die aktuelle Thematik rund um erneuerbare Energiequellen eingeführt. Hierfür wird eine Solarzelle verwendet und mit Anleitung unterschiedliche praxisnahe Szenarien realisiert, um die Eigenschaften von Photovoltaik und die Vorteile eines Energiespeichers kennenzulernen. Durch die Aufgabenstellung sind die optimale Ausnutzung regenerativer Energiequellen oder die Einflüsse auf Solarmodule durch Abschattung zu untersuchen. Darüber hinaus wird durch einen Langzeitversuch den Studierenden die grundlegenden Funktionen von MATLAB nähergebracht und die Möglichkeiten eines Datenloggers aufgezeigt.

In Workshop B sollen die Studierenden verschiedene Schaltungen mit Operationsverstärkern kennenlernen. Die Aufgabe erstreckt sich dabei von Literaturrecherche über Simulation und experimentellen Aufbau bis hin zur Vermessung der realen Schaltung und die Diskussion der Ergebnisse. Dafür kommen unter anderem einfache Grundschaltungen in Betracht, wie bspw. invertierender- u. nichtinvertierender Verstärker, Differenzverstärker oder RC- und RL-Glieder. Darüber hinaus werden aktive Filter mit Operationsverstärkern (Tiefpässe/Hochpässe höherer Ordnung, RLC-Glied) aufgebaut und Kennlinien wie der Amplituden- oder Phasengang ausgewertet.

Zusammensetzung der Modulnote

Die Modulnote entspricht der Note der Lehrveranstaltung Lineare Elektrische Netze. Wie im Abschnitt "Erfolgskontrolle(n)" beschrieben, setzt diese sich aus der Note der schriftlichen Prüfung Lineare Elektrische Netze und einem eventuell erhaltenen Notenbonus zusammen. Zusätzlich ist das Bestehen beider Workshops Voraussetzung für das Bestehen des Moduls.

Anmerkungen

Achtung:

Die diesem Modul zugeordneten Teilleistungen sind Bestandteil der Orientierungsprüfung folgender Studiengänge:

- Bachelor Elektrotechnik und Informationstechnik (SPO 2018, §8)
- Bachelor Medizintechnik (SPO 2022, §8)

Die Prüfung ist zum Ende des 2. Fachsemesters anzutreten. Eine Wiederholungsprüfung ist bis zum Ende des 3. Fachsemesters abzulegen.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht.

Unter den Arbeitsaufwand der LV Lineare Elektrische Netze fallen

- 1. Präsenzzeit in Vorlesungen, Übungen
- 2. Vor-/Nachbereitung
- 3. Klausurvorbereitung und Präsenz in selbiger

Der Arbeitsaufwand für Punkt 1 entspricht etwa 60 Stunden, für die Punkte 2-3 etwa 115 -150 Stunden. Insgesamt beträgt der Arbeitsaufwand für die LV Lineare Elektrische Netze 175-210 Stunden. Dies entspricht 7 LP.

Der Arbeitsaufwand eines Workshops setzt sich wie folgt zusammen:

- 1. Präsenzzeit in der Vorbereitungsveranstaltung inkl. Nachbereitung: 2h
- 2. Bearbeitung der Aufgabenstellung: 23h
- 3. Anfertigung der schriftlichen Ausarbeitung (Protokoll): 5h

Der Zeitaufwand pro Workshop beträgt etwa 30 Stunden. Dies entspricht jeweils 1 LP.

10.37 Modul: Mensch-Maschine-Interaktion [M-INFO-100729]

Verantwortung: Prof. Dr.-Ing. Michael Beigl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile				
T-INFO-101266	Mensch-Maschine-Interaktion	6 LP	Beigl	
T-INFO-106257	Übungsschein Mensch-Maschine-Interaktion	0 LP	Beigl	

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Lernziele: Nach Abschluss der Veranstaltung können die Studierenden

- grundlegende Kenntnisse über das Gebiet Mensch-Maschine Interaktion wiedergeben
- grundlegende Techniken zur Analyse von Benutzerschnittstellen nennen und anwenden
- grundlegende Regeln und Techniken zur Gestaltung von Benutzerschnittstellen anwenden
- existierende Benutzerschnittstellen und deren Funktion analysieren und bewerten

Inhalt

Themenbereiche sind:

- 1. Informationsverarbeitung des Menschen (Modelle, physiologische und psychologische Grundlagen, menschliche Sinne, Handlungsprozesse),
- 2. Designgrundlagen und Designmethoden, Ein- und Ausgabeeinheiten für Computer, eingebettete Systeme und mobile Geräte.
- 3. Prinzipien, Richtlinien und Standards für den Entwurf von Benutzerschnittstellen
- 4. Technische Grundlagen und Beispiele für den Entwurf von Benutzungsschnittstellen (Textdialoge und Formulare, Menüsysteme, graphische Schnittstellen, Schnittstellen im WWW, Audio-Dialogsysteme, haptische Interaktion, Gesten),
- 5. Methoden zur Modellierung von Benutzungsschnittstellen (abstrakte Beschreibung der Interaktion, Einbettung in die Anforderungsanalyse und den Softwareentwurfsprozess),
- 6. Evaluierung von Systemen zur Mensch-Maschine-Interaktion (Werkzeuge, Bewertungsmethoden, Leistungsmessung, Checklisten).
- 7. Übung der oben genannten Grundlagen anhand praktischer Beispiele und Entwicklung eigenständiger, neuer und alternativer Benutzungsschnittstellen.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 180 Stunden (6.0 Credits).

Präsenzzeit: Besuch der Vorlesung

15 x 90 min

22 h 30 min

Präsenzzeit: Besuch derÜbung

8x 90 min

12 h 00 min

Vor- / Nachbereitung der Vorlesung

15 x 150 min

37 h 30 min

Vor- / Nachbereitung derÜbung

8x 360min

48h 00min

Foliensatz/Skriptum 2x durchgehen

2 x 12 h

24 h 00 min

Prüfung vorbereiten

36 h 00 min

SUMME

180h 00 min

Arbeitsaufwand für die Lerneinheit "Mensch-Maschine-Interaktion"

Empfehlungen

Siehe Teilleistung

10.38 Modul: Mensch-Maschine-Wechselwirkung in der Anthropomatik: Basiswissen [M-INFO-100824]

Verantwortung: Prof. Dr.-Ing. Jürgen Beyerer **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
3	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile				
T-INFO-101361	Mensch-Maschine-Wechselwirkung in der Anthropomatik: Basiswissen	3 LP	Beyerer, Geisler	

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Ziel der Vorlesung ist es, den Studierenden fundiertes Wissen über die Phänomene, Teilsysteme und Wirkungsbeziehungen an der Schnittstelle zwischen Mensch und informationsverarbeitender Maschine zu vermittelen. Dafür lernen sie die Sinnesorgane des Menschen mit deren Leistungsvermögen und Grenzen im Wahrnehmungsprozess sowie die Äußerungsmöglichkeiten von Menschen gegenüber Maschinen kennen. Weiter wird ihnen Kenntnis über qualitative und quantitative Modelle und charakteristische Systemgrößen für den Wirkungskreis Mensch-Maschine-Mensch vermittelt sowie in die für dieses Gebiet wesentlichen Normen und Richtlinien eingeführt. Die Studierenden werden in die Lage versetzt, einen modellgestützten Systementwurf im Ansatz durchzuführen und verschiedene Entwürfe modellgestützt im Bezug auf die Leistung des Mensch-Maschine-Systems und die Beanspruchung des Menschen zu bewerten.

Inhalt

nhalt der Vorlesung ist Basiswissen für die Mensch-Maschine-Wechselwirkung als Teilgebiet der Arbeitswissenschaft:

- · Teilsysteme und Wirkungsbeziehungen in Mensch-Maschine-Systemen: Wahrnehmen und Handeln.
- · Sinnesorgane des Menschen.
- Leistung, Belastung und Beanspruchung als Systemgrößen im Wirkungskreis Mensch-Maschine-Mensch.
- · Quantitative Modelle des menschlichen Verhaltens.
- Das menschliche Gedächtnis und dessen Grenzen.
- Menschliche Fehler.
- Modellgestützter Entwurf von Mensch-Maschine-Systemen.
- · Qualitative Gestaltungsregeln, Richtlinien und Normen für Mensch-Maschine-Systeme.

Arbeitsaufwand

Gesamt: ca. 60h, davon

- 1. Präsenzzeit in Vorlesungen: 23h
- 2. Vor-/Nachbereitung derselbigen: 12h
- 3. Klausurvorbereitung und Präsenz in selbiger: 25h

Empfehlungen

Siehe Teilleistung.

10.39 Modul: Nachrichtentechnik I [M-ETIT-102103]

Verantwortung: Prof. Dr.-Ing. Laurent Schmalen

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Informationstechnik

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile			
T-ETIT-101936	Nachrichtentechnik I	6 LP	Schmalen

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 180 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Die Studentinnen und Studenten können Probleme im Bereich der Nachrichtentechnik beschreiben und analysieren.

Durch Anwendung der erlernten Methoden können Studierende die Vorgänge in nachrichtentechnischen Systemen erfassen, beurteilen und verwendete Algorithmen und Techniken bzgl. ihrer Leistungsfähigkeit vergleichen.

Inhalt

Die Vorlesung stellt eine Einführung in die Nachrichtentechnik auf der Basis mathematischer und systemtheoretischer Grundkenntnisse dar. Es werden hauptsächlich folgende Themen behandelt:

- Grundlagen der Signalaufbereitung, Quantisierung und Quellencodierung zur effizienten Komprimierung von Signalen
- · Signale und Systeme im komplexen Basisband und äquivalente Signalbeschreibung in Tiefpassdarstellung
- · Modulation und Demodulation inklusive Matched-Filter
- Höherwertige Modulationsverfahren
- · Grundlagen der Entscheidungstheorie und Berechnung von Fehlerwahrscheinlichkeiten
- Kanalcodierung und Fehlerkorrekturverfahren
- Grundlagen der Informationstheorie und Konzept der Kanalkapazität
- Übertragungskanäle und deren Einfluss auf die Signalübertragung (z.B. Mobilfunk)
- Entzerrung zur Kompensation des Einflusses von Übertragungskanälen
- · Mehrträgermodulationsverfahren (z.B. OFDM)
- · Mehrantennensysteme zur Kapazitätssteigerung
- · Kurzer Ausblick in die Welt der Netzwerke

Das Modul vermittelt damit einen breiten Überblick über die Grundlagen der Nachrichtentechnik und zeigt, wie diese in die Praxis umgesetzt werden, welche Konzepte bei der Entwicklung eine wichtige Rolle spielen und wie deren Performanz analysiert werden kann. Die grundlegenden Konzepte werden dabei anhand praktischer Verfahren (z.B. WLAN, 5G) illustriert.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Anmerkungen

Ab WS20/21 erstmals im Wintersemester statt im Sommersemester.

Arbeitsaufwand

- 1. Präsenzzeit Vorlesung: 15 * 3 h = 45 h
- 2. Vor-/Nachbereitung Vorlesung: 15 * 6 h = 90 h
- 3. Präsenzzeit Übung: 15 * 1 h = 15 h
- 4. Vor-/Nachbereitung Übung: 15 * 2 h = 30 h
- 5. Klausurvorbereitung und Präsenz in selbiger: in Vor-/Nachbereitung verrechnet

Insgesamt: 180 h = 6 LP

Empfehlungen

Dringend empfohlen werden Kenntnisse der Inhalte in Höherer Mathematik I und II (z.B. M-MATH-101731 und M-MATH-101732), sowie Signale und Systeme (M-ETIT-104525) und Wahrscheinlichkeitstheorie (M-ETIT-102104).

10.40 Modul: Nachrichtentechnik II / Communications Engineering II [M-ETIT-105274]

Verantwortung: Dr.-Ing. Holger Jäkel

Prof. Dr.-Ing. Laurent Schmalen

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

Leistungspunkte
4Notenskala
ZehntelnotenTurnus
Jedes SemesterDauer
1 SemesterSprache
Deutsch/EnglischLevel
3Version
3

Pflichtbestandteile			
T-ETIT-110697	Nachrichtentechnik II / Communications Engineering II	4 LP	Jäkel, Schmalen

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Competence Certificate

The assessment will be carried out in the form of a written exam of 120 minutes

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden sind in der Lage, auch komplexere Problemstellungen der Nachrichtentechnik zu analysieren. Sie können selbstständig Lösungsansätze erarbeiten und deren Gültigkeit überprüfen sowie Software zur Problemlösung einsetzen. Die Übertragung der erlernten Methoden ermöglicht den Studierenden, auch andere Themenstellungen schnell zu erfassen und mit dem angeeigneten Methodenwissen zu bearbeiten.

Competence Goal

The students are able to analyze even more complex problems in communications engineering. You can independently develop and validate solutions and use problem-solving software. The transfer of the learned methods enables the students to quickly grasp other topics and to work on them with the appropriate methodological knowledge.

Inhalt

Die Lehrveranstaltung erweitert die in der Vorlesung Nachrichtentechnik I behandelten Fragestellungen. Der Fokus liegt hierbei auf der detaillierten Analyse bekannter Algorithmen und der Einführung neuer Verfahren, die nicht in der Vorlesung Nachrichtentechnik I besprochen wurden, insbesondere aus den Bereichen System- und Kanal-Modellierung, Entzerrung und Synchronisation.

Content

The course broadens the questions dealt with in the lecture Communication Engineering I. The focus here is on the detailed analysis of known algorithms and the introduction of new methods that were not discussed in the lecture Communications Engineering I, especially in the areas of system and channel modeling, equalization and synchronization

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Module grade calculation

The module grade is the grade of the written exam

Anmerkungen

Das Modul kann erstmalig im Sommersemester 2020 begonnen werden. Bitte beachten Sie: Die Lehrveranstaltung "Nachrichtentechnik II" findet jedes Sommersemester (ab Sommersemester 2020) statt und die englische Version "Communications Engineering II" findet jedes Wintersemester statt (ab Wintersemester 2020/2021)

Annotations

The module can be started for the first time in summer term2020. Please note: The German course "Nachrichtentechnik II" takes place every summer term(starting summer term 2020) and the English version "Communications Engineering II" takes place every winter term (starting winter term 2020/2021).

Arbeitsaufwand

- 1. Präsenzzeit Vorlesung: 15 * 2 h = 30 h
- 2. Vor-/Nachbereitung Vorlesung: 15 * 4 h = 60 h
- 3. Präsenzzeit Übung: 15 * 1 h = 15 h
- 4. Vor-/Nachbereitung Übung: 15 * 2 h = 30 h
- 5. Klausurvorbereitung und Präsenz in selbiger: in Vor-/Nachbereitung verrechnet

Insgesamt: 135 h = 4 LP

Workload

- 1. Attendance Lecture: 15 * 2 h = 30 h
- 2. Preparation / Postprocessing Lecture: 15 * 4 h = 60 h
- 3. Presence Exercise: 15 * 1 h = 15 h
- 4. Preparation / follow-up Exercise: 15 * 2 h = 30 h
- 5. Exam preparation and presence in the same: charged in preparation / follow-up

Total: 135 h = 4 LP

Empfehlungen

Kenntnis der grundlegenden Ingenieurmathematik inklusive Integraltransformationen und Wahrscheinlichkeitstheorie sowie Grundlagenwissen über die Nachrichtentechnik.

Vorheriger Besuch der Vorlesung "Nachrichtentechnik I", "Wahrscheinlichkeitstheorie" sowie "Signale und Systeme" wird empfohlen.

10.41 Modul: Optical Networks and Systems [M-ETIT-103270]

Verantwortung: Prof. Dr.-Ing. Sebastian Randel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** Profilierungsfach (Wahlbereich Profilierungsfach)

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion4ZehntelnotenJedes Wintersemester1 SemesterEnglisch32

Pflichtbestandteile			
T-ETIT-106506	Optical Networks and Systems	4 LP	Randel

Erfolgskontrolle(n)

Type of Examination: oral exam

Duration of Examination: 20 min (approx.)

Modality of Exam: Oral exams (approx. 20 minutes) are offered throughout the year upon individual appointment.

Voraussetzungen

none

Qualifikationsziele

The module provides knowledge about optical networks and systems with applications ranging from photonic interconnects, to fiber-to-the-home (FTTH), optical metro and long-haul networks, and automotive and industrial automation. The role of various network layers will be discussed in conjunction with relevant standards and protocols. Physical-layer specifications of relevant photonic components and system design trade-offs will be introduced.

The students

- get familiar with optical network architectures and protocols
- learn how to design optical communication systems in a variety of application scenarios
- understand how application constraints (performance, cost, energy-efficiency) drive technology innovation
- comprehend the benefits and challenges of using optical communication compared to alternatives (e.g. electrical, and wireless)
- are familiar with relevant standardization bodies and are able to interpret essential aspects of standard documents.

Inhalt

Photonic interconnects: rack-to-rack, board-to-board, chip-to-chip, datacenter interconnects, intensity modulation, direct detection, single-mode fiber vs. multi-mode fiber, serial vs. parallel optics, space-division multiplexing vs. wavelength-division multiplexing, Ethernet (10G, 40G, 100G), Fibre Channel, scaling and energy efficiency.

Access neetworks: fiber-to-the-X, passive optical networks (GPON, EPON, NG-PON2, WDM PON), statistical multiplexing vs. point-to-point

Metro- and long-haul networks:

- System-design aspects: dense WDM (ITU grid), optical amplifiers, chromatic dispersion, coherent detection, optical
 vs. electronic impairment mitigation, capacity limits.
- · Wavelength switching: wavelength selective switch (WSS), reconfigurable optical add-drop multiplexer (ROADM).
- Standards and protocols: synchronous optical networking and synchronous digital hierarchy (SONET/SDH), optical transport network (OTN), generalized multi-protocol label switching (GMPLS), software-defined networking (SDN).

Optical networks in automotive and industrial automotion: polymer-optical fiber (POF), MOST Bus, Profibus and Profinet, optical vs. electrical communication links, overcoming bandwidth limitations using digital signal processing.

Zusammensetzung der Modulnote

The module grade is the grade of the oral exam.

Arbeitsaufwand

total 120 h, hereof 30 h lecture, 15 h problems class and 75 h recapitulation and self-studies

Empfehlungen

Interest in communications engineering, networking, and photonics.

Literatur

Ivan Kaminow, Tingye Li, Alan E. Willner (Editors), Optical Fiber Telecommunications (Sixth Edition), Elsevier Rajiv Ramaswami, Kumar N. Sivarajan and Galen H. Sasaki, Optical Networks (Third Edition), Elsevier

10.42 Modul: Optik und Festkörperelektronik [M-ETIT-105005]

Verantwortung: Prof. Dr. Ulrich Lemmer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Mathematisch-physikalische Grundlagen

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
2Version
2

Pflichtbestandteile			
T-ETIT-110275	Optik und Festkörperelektronik	6 LP	Lemmer

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus einer 120-minütigen schriftlichen Prüfung zu den Inhalten der Vorlesung und Übung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden erlangen Kenntnisse über die Grundlagen der Quantenmechanik und entwickeln ein Verständnis der festkörperphysikalischen Vorgänge in elektronischen Bauelementen und Werkstoffen der Elektrotechnik und Informationstechnik.

Die Studierenden:

- verfügen über grundlegende Kenntnisse der Quantenmechanik (Schrödinger-Gleichung, Eigenzustände, Aufbau der Materie).
- besitzen grundlegende Kenntnisse der Halbleiterphysik (Bandstruktur, Transporteigenschaften, Halbleitergrundgleichungen).
- kennen die Grundlagen der Modellierung von Halbleiterbauelementen und können die erlernten mathematischen und physikalischen Methoden auf andere Bereiche übertragen.
- · haben ein Verständnis der Wirkungsweise verschiedener Halbleitermaterialien
- haben ein mikroskopisches Verständnis der Wirkungsweise einer pn-Diode.
- verstehen die Polarisierbarkeit und das Verhalten dielektrischer, piezoelektrischer und ferroelektrischer Materialien sowie ihre Bedeutung für Kondensatoren und Isolatoren.
- besitzen Grundkenntnisse zu Aufbau von und Transport in Ionenleitern und erlernen die grundlegende Modellierung und Analogien zu elektrischen Leitern.
- verstehen die grundlegenden Prozesse an Grenzflächen von Ionenleitern zu Halbleitern und Metallen und ihren Einsatz und ihre Wirkungsweise in (Doppelschicht-)Kondensatoren, Batterien und Brennstoffzellen

Inhalt

Im Rahmen der Vorlesung werden folgende Inhalte behandelt:

- · Grundlagen der Quantenmechanik
- Elektronische Zustände
- Vom Wasserstoffatom zum Periodensystem der Elemente
- Elektronen in Kristallen
- Halbleiter
- Quantenstatistik für Ladungsträger
- Dotierte Halbleiter
- · Halbleiter im Nichtgleichgewicht
- Der pn-Übergang
- Dielektrische, piezoelektrische und ferroelektrische Werkstoffe und deren Anwendung
- Ionenleiter
- · Elektrochemische Grenzflächen

Hinweis: Die Dozierenden behalten sich vor, im Rahmen der aktuellen Vorlesung ohne besondere Ankündigung vom hier angegebenen Inhalt abzuweichen.

Zusammensetzung der Modulnote

Die Modulnote entspricht der Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit Vorlesung/Übung/Tutorien: 70 h

Vor- und Nachbereitung, Prüfungsvorbereitung und -präsenz: 110 h

10.43 Modul: Optoelectronic Components [M-ETIT-100509]

Verantwortung: Prof. Dr. Wolfgang Freude

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** Profilierungsfach (Wahlbereich Profilierungsfach)

LeistungspunkteNotenskala
4TurnusDauer
1 SemesterSprache
EnglischLevel
4Version
1

Pflichtbestandteile			
T-ETIT-101907	Optoelectronic Components	4 LP	Freude

Erfolgskontrolle(n)

Type of Examination: oral exam

Duration of Examination: approx. 30 minutes

Modality of Exam: Oral examination, usually one examination day per month during the Summer and Winter terms. An extra questions-and-answers session will be held if students wish so.

Voraussetzungen

none

Qualifikationsziele

Comprehending the physical layer of optical communication systems. Developing a basic understanding which enables a designer to read a device's data sheet, to make most of its properties, and to avoid hitting its limitations.

The students

- · understand the components of the physical layer of optical communication systems
- acquire the knowledge of operation principles and impairments of optical waveguides
- · know the basics of laser diodes, luminescence diodes and semiconductor optical amplifiers
- · understand pin-photodiodes
- · know the systems sesitivity limits, which are caused by optical and electrical noise

Inhalt

The course concentrates on the most basic optical communication components. Emphasis is on physical understanding, exploiting results from electromagnetic field theory, (light waveguides), solid-state physics (laser diodes, LED, and photodiodes), and communication theory (receivers, noise). The following components are discussed:

- Light waveguides: Wave propagation, slab waveguides, strip wave-guides, integrated optical waveguides, fibre waveguides
- Light sources and amplifiers: Luminescence and laser radiation, luminescent diodes, laser diodes, stationary and dynamic behavior, semiconductor optical amplifiers
- · Receivers: pin photodiodes, electronic amplifiers, noise

Zusammensetzung der Modulnote

The module grade is the grade of the oral exam.

Anmerkungen

There are no prerequisites, but solution of the problems on the exercise sheet, which can be downloaded as homework each week, is highly recommended. Also, active participation in the problem classes and studying in learning groups are strongly advised.

Arbeitsaufwand

total 120 h, hereof 45 h contact hours (30 h lecture, 15 h problem class), and 75 h homework and self-studies

Empfehlungen

Minimal background required: Calculus, differential equations, Fourier transforms and p-n junction physics.

Literatur

Detailed textbook-style lecture notes as well as the presentation slides can be downloaded from the IPQ lecture pages.

Agrawal, G.P.: Lightwave technology. Hoboken: John Wiley & Sons 2004

Iizuka, K.: Elements of photonics. Vol. I, especially Vol. II. Hoboken: John Wiley & Sons 2002

Further textbooks in German (also in electronic form) can be named on request.

10.44 Modul: Optoelektronik [M-ETIT-100480]

Verantwortung: Prof. Dr. Ulrich Lemmer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** Profilierungsfach (Wahlbereich Profilierungsfach)

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion4ZehntelnotenJedes Wintersemester1 SemesterDeutsch32

Pflichtbestandteile			
T-ETIT-100767	Optoelektronik	4 LP	Lemmer

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Prüfung (90 Minuten).

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden

- besitzen ein grundlegendes Wissen und Verständnis der Wechselwirkung von Licht und Materie
- kennen die für die Herstellung von optoelektronischen Bauelementen erforderlichen Technologien.
- verfügen über ein Verständnis der Designprinzipien von optoelektronischen Bauelementen.
- können das Wissen in andere Bereiche des Studium übertragen.
- haben grundlegende Kenntnisse über den Aufbau und die Systemintegration von Halbleiterleuchtdioden (LEDs) und Halbleiterlaserdioden.
- kennen die grundlegenden Modulationskonzepte in der Optoelektronik
- haben ein grundlegendes Verständnis von quantenmechanischen Effekten in optoelektronischen Bauelementen.

Inhalt

Einleitung

Optik in Halbleiterbauelementen

Herstellungstechnologien

Halbleiterleuchtdioden

Quantenmechanische Grundlagen der Optoelektronik

Laserdioden

Modulatoren

Weitere Quantenbauelemente

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Anmerkungen

ab Wintersemester 2020 / 2021 wird die zugehörige Lehrveranstaltung im Wintersemester angeboten (Verschiebung vom Sommersemester ins Wintersemester)

Arbeitsaufwand

- 1. Präsenzzeit in Vorlesungen, Übungen: 32 h
- 2. Vor-/Nachbereitung derselbigen: 48 h
- 3. Prüfungsvorbereitung und Präsenz in selbiger: 40 h

Empfehlungen

Kenntnisse der Festkörperelektronik

10.45 Modul: Orientierungsprüfung [M-ETIT-104225]

Einrichtung: Universität gesamt **Bestandteil von:** Orientierungsprüfung

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
0	best./nicht best.	Jedes Semester	2 Semester	Deutsch	3	2

Pflichtbestandteile				
T-ETIT-109078	Elektromagnetische Felder	6 LP	Doppelbauer	
T-ETIT-109316	Lineare Elektrische Netze	7 LP	Jelonnek, Kempf	
T-ETIT-109317	Lineare Elektrische Netze - Workshop A	1 LP	Leibfried, Lemmer	
T-ETIT-109811	Lineare Elektrische Netze - Workshop B	1 LP	Nahm	

Modellierte Fristen

Dieses Modul muss bis zum Ende des 3. Semesters bestanden werden.

Voraussetzungen

Keine

Anmerkungen

MA ETIT SPO 2018, § 8 enthält wichtige Informationen zur Orientierungsprüfung und zum Verlust des Prüfungsanspruchs

Die Frist zum Ablegen der Orientierungsprüfung wird für Studienanfängerinnen bzw. -anfänger vom WS 18/19 und Studienanfängerinnen bzw. -anfänger vom WS 19/20 um jeweils zwei Semester verlängert, sofern sie in beiden Semestern im gleichen Studiengang eingeschrieben waren.

Für Studienanfängerinnen bzw. -anfänger des Wintersemester 2020/2021 bzw. Studiengangswechsler/innen zum Wintersemester 2020/2021 wird die Frist zum Ablegen der Orientierungsprüfung um ein Semester verlängert.

10.46 Modul: Photovoltaische Systemtechnik [M-ETIT-100411]

Verantwortung: Dipl.-Ing. Robin Grab

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
3	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile			
T-ETIT-100724	Photovoltaische Systemtechnik	3 LP	Grab

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung im Umfang von 120 Minuten über die ausgewählte Lehrveranstaltung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden kennen die wesentlichen Komponenten einer Photovoltaik-Anlage, verstehen, wie diese funktionieren und ineinandergreifen und wie photovoltaische Systeme dimensioniert werden. Sie sind sich über die unterschiedlichen Eigenschaften und Einsatzgebiete von Inselsystemen und netzgebundenen Photovoltaik-Anlagen, sowie von Dach- und Freiflächenanlagen im Klaren. Zudem sind ihnen wichtige wirtschaftliche Kennzahlen zur Kostenentwicklung und Verbreitung von Photovoltaik-Anlagen bekannt.

Inhalt

- Energieverbrauch und -bereitstellung
- Solare Einstrahlung
- Konfiguration von PV-Systemen#
- Solarzelle und Solargenerator
- Anpasswandler und MPP-Tracking
- Batterien und Laderegler
- Wechselrichter
- Netzintegration
- Energetische Bewertung von PV-Anlagen
- Wirtschaftliche Bewertung von PV-Anlagen

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzstudienzeit: 30 h Selbststudienzeit: 60 h Insgesamt 90 h = 3 LP

10.47 Modul: Physiologie und Anatomie I [M-ETIT-100390]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version	
3	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	2	

Pflichtbestandteile			
T-ETIT-101932	Physiologie und Anatomie I	3 LP	Nahm

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 Minuten.

Voraussetzungen

Das Modul "M-ETIT-105874 - Physiologie und Anatomie für die Medizintechnik" darf nicht begonnen sein.

Qualifikationsziele

Nach dem Studium dieses Moduls

- sind die Studierenden in der Lage die strukturellen und funktionellen Grundprinzipien des Organismus auf molekularer und zellularer Ebene zu beschreiben und zu erklären,
- verfügen sie über die Fähigkeit, diese Kenntnisse zur Erklärung grundlegender Zell- und Organfunktionen anzuwenden,
- kennen sie einfache mathematische, naturwissenschaftliche und ingenieurwissenschaftliche Methoden zur Beschreibung physiologischer Vorgänge und sind in der Lage diese einzusetzen.

Darüber hinaus können die Studierenden selbstorganisiert und reflexiv in kleinen Teams arbeiten und zu ausgewählten Themen den aktuellen Wissenstand und die Wissenschaftshistorie präsentieren.

Inhalt

Die Vorlesung vermittelt Basiswissen über die wesentlichen Organsysteme des Menschen und die medizinische Terminologie. Sie wendet sich an Studierende technischer Studiengänge, die an physiologischen Fragestellungen interessiert sind.

Themenblöcke:

- · Einführung- Organisationsebenen im Körper
- Grundlagen der Biochemie im Körper
- Zellaufbau, Zellphysiologie, Gewebe
- Transportmechanismen im Körper
- Neurophysiologie I (Nervenzelle, Muskelzelle, das autonome Nervensystem)
- · Herz und Kreislaufsystem mit Blut und Lymphe
- Atmung

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30 h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:

- Präsenzzeit in Vorlesungen (2 h je 15 Termine) = 30 h
- Selbststudium (3 h je 15 Termine) = 45 h
- Vor-/Nachbereitung = 15 h

Gesamtaufwand ca. 90 Stunden = 3 LP

10.48 Modul: Praktikum Design und Entwurf von Quantenschaltkreisen [M-ETIT-106262]

Verantwortung: Prof. Dr. Sebastian Kempf

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SemesterDauer
1 SemesterSprache
Deutsch/EnglischLevel
3Version
3

Pflichtbestandteile				
T-ETIT-112713	Praktikum Design und Entwurf von Quantenschaltkreisen	6 LP	Kempf	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von einer Prüfungsleistung anderer Art. Diese besteht aus mündlichen Abfragen sowie jeweils einem Protokoll zu den Inhalten und Ergebnissen der drei eigenständigen Teile des Praktikums. Der Gesamteindruck wird bewertet.

Voraussetzungen

keine

Qualifikationsziele

Nach erfolgreichem Abschluss des Moduls verstehen die Studierenden die Grundlagen des Designs und des Entwurfs von supraleitenden Quantenschaltungen. Sie kennen die Verwendung von Stand-der-Technik-Software im Bereich des Schaltungsentwurfs und wissen, wie man Quantenobjekte als Black-Box beschreiben kann. Zuletzt werden die Studierenden in der Lage sein, Quantenschaltkreise zu analysieren, zu strukturieren und formal zu beschreiben.

Inhalt

In diesem Kurs lernen die Studierenden den Entwurf und die Dimensionierung von Quantenschaltungen auf der Grundlage einer beispielhaften Qubit-Technologie, nämlich den supraleitenden Qubits. Dazu werden Quantenbauelemente als Black Box modelliert und eine Schaltung unter Verwendung der "ad-hoc eingeführten" Kennlinien entworfen und realisiert. Im ersten Teil des Praktikums werden die Studierenden dann ein Quantenbauelement mit Hilfe von SPICE-basierten Simulationen dimensionieren und optimieren. Die Schaltungselemente und die zugehörigen Kennlinien werden zuvor vom Betreuer vorgestellt und mit den Studierenden diskutiert, ohne auf quantenmechanische Feinheiten einzugehen. Im zweiten Teil entwerfen die Studierenden eine einfache Auslese- und Anregungsschaltung mit Hilfe von HF-Simulationen (Sonnet, AWR Microwave Office etc.). Sie werden wichtige Parameter wie Übersprechen, Dynamikbereich usw. simulieren. Im letzten Teil des Praktikums setzen die Studierenden die entworfenen Schaltungen (Quantenbauelement und Auslese- bzw. Anregungsschaltung) in ein geeignetes physikalisches Layout für eine mögliche Fertigung um, wobei sie einerseits die von der Industrie vorgegebenen Entwurfsregeln für die Fertigung und andererseits technologische Methoden wie die Schattenlithographie anwenden. Das Praktikum soll den Studierenden somit einen Einblick in den modernen Schaltungsentwurf und das Layout geben und sie mit einer Reihe von industriell relevanten Simulationswerkzeugen vertraut machen. Auch wenn dieses Praktikum mit Quantenbauelementen durchgeführt wird, sind die erlernten Methoden natürlich auch für den konventionellen Schaltungsentwurf geeignet.

Zusammensetzung der Modulnote

Die mündlichen Abfragen sowie die Protokolle der drei Versuchsteile gehen in die Bewertung der Prüfungsleistung anderer Art ein. Nähere Angaben erfolgen zu Beginn der Veranstaltung.

Arbeitsaufwand

A workload of approx. 180 h is required for the successful completion of the module. This is composed as follows:

- 1. Preparation of the lab course: 40 h
- 2. Discussion and lab course planning with supervisor: 10 h
- 3. Attendance time in the lab course: 70 h
- 4. Preparation of the written report: 60 h

10.49 Modul: Praktikum Elektrochemische Energietechnologien [M-ETIT-105703]

Verantwortung: Prof. Dr.-Ing. Ulrike Krewer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
5	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile			
T-ETIT-111376	Praktikum Elektrochemische Energietechnologien	5 LP	Röse

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Prüfungsleistung anderer Art. Sie besteht aus vier Versuchen. Der Gesamteindruck wird bewertet. Zum Bestehen des Moduls müssen alle Versuche erfolgreich absolviert werden. Bei Nichtbestehen ist das Praktikum komplett zu wiederholen.

Die Teilnahme an der Praktikums-Sicherheitsunterweisung sowie die Teilnahme an einem Eingangskolloquium ist verpflichtend (unbenotet).

Voraussetzungen

Die Voraussetzung für die Zulassung zum Modul ist, dass die Studierenden die Modulprüfung "M-ETIT-105690 – Electrochemical Energy Technologies" erfolgreich abgelegt haben.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Das Modul M-ETIT-100518 Labor Schaltungsdesign darf nicht begonnen worden sein.
- 2. Das Modul M-ETIT-102113 Elektrotechnisches Grundlagenpraktikum darf nicht begonnen worden sein.
- 3. Das Modul M-ETIT-103263 Praktikum Hard- und Software in leistungselektronischen Systemen darf nicht begonnen worden sein.
- 4. Das Modul M-ETIT-104823 Labor für angewandte Machine Learning Algorithmen darf nicht begonnen worden sein.
- 5. Das Modul M-ETIT-105301 Workshop angewandte Hochfrequenztechnik darf nicht begonnen worden sein.

Oualifikationsziele

Die Studierenden vertiefen und verfestigen ihre zuvor erlernten Grundkenntnisse aus der Vorlesung "Elektrochemischen Energietechnologien". Sie verstehen, wie man Prozesse an Grenzflächen unter Stoffumwandlung durch Ladungstransfer experimentell analysiert und quantitativ beschreibt. Sie sind in der Lage elektrochemische Zellen aufzubauen, verstehen deren Funktionsprinzip und werden in die Lage versetzt, ablaufende elektrochemische Prozesse zu bestimmen. Des Weiteren sind sie in der Lage elektrochemische Messmethoden gezielt auf Fragestellungen anzuwenden, die relevant für die Analyse moderner Energiewandler und -Speichertechnologien sind.

Sie sind darüber hinaus befähigt, gemessene Daten zu dokumentieren, auszuwerten und die Ergebnisse kritisch zu diskutieren. Sie können Fehlerabschätzungen kompetent durchführen und beherrschen sicher die rechnergestützte Datenauswertung.

Inhalt

Vier ausgewählte experimentelle Versuche aus den Gebieten der Elektrochemie werden durchgeführt:

Praktikumsversuch 1: Ermittlung von Transportparametern reversibler Systeme

- Voltammetrie an einer stationären Elektrode
- · Voltammetrie an einer rotierenden Scheibenelektrode

Praktikumsversuch 2: Bestimmung der Wasserstoff- und Sauerstoffüberspannung

<u>Praktikumsversuch 3:</u> Bau einer Polymerelektrolytmembran Brennstoffzelle

Praktikumsversuch 4: Untersuchung der selbstgebauten PEM-Brennstoffzelle unter verschiedenen Betriebsbedingungen

Zusammensetzung der Modulnote

In die Modulnote gehen die Beurteilungen der schriftlichen Versuchsprotokolle ein. Nähere Angaben erfolgen zu Beginn der Veranstaltung.

Anmerkungen

Die Teilnahme an der Sicherheitsunterweisung ist Pflicht. Die Teilnahme an der Sicherheitsunterweisung ist im selben Prüfungszeitraum wie das Praktikum erforderlich und muss bei Wiederholung des Praktikums erneut absolviert werden.

Arbeitsaufwand

- 1. Präsenzzeit im Praktikum: 4x 5 h (Block-Veranstaltung)
- 2. Vorbereitung für die Versuche: 30 h
- 3. Anfertigung Protokolle: 100 h

10.50 Modul: Praktikum Hard- und Software in leistungselektronischen Systemen [M-ETIT-103263]

Verantwortung: Prof. Dr.-Ing. Marc Hiller

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** Profilierungsfach (Wahlbereich Profilierungsfach)

LeistungspunkteNotenskala
6Turnus
Jedes SemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile				
T-ETIT-106498	Praktikum Hard- und Software in leistungselektronischen Systemen	6 LP	Hiller	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer praktikumsbegleitenden Bewertung.

Voraussetzungen

Die Module "M-ETIT-100402 - Workshop Schaltungstechnik in der Leistungselektronik" und "M-ETIT-100404 - Workshop Mikrocontroller in der Leistungselektronik" wurden weder begonnen noch abgeschlossen.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Das Modul M-ETIT-100518 Labor Schaltungsdesign darf nicht begonnen worden sein.
- 2. Das Modul M-ETIT-102113 Elektrotechnisches Grundlagenpraktikum darf nicht begonnen worden sein.
- 3. Das Modul M-ETIT-104823 Labor für angewandte Machine Learning Algorithmen darf nicht begonnen worden sein.
- 4. Das Modul M-ETIT-105301 Workshop angewandte Hochfrequenztechnik darf nicht begonnen worden sein.
- 5. Das Modul M-ETIT-105703 Praktikum Elektrochemische Energietechnologien darf nicht begonnen worden sein.

Qualifikationsziele

Die Studierenden kennen die für den Entwurf, den Aufbau, die Regelung und die Inbetriebnahme einer leistungselektronischen Schaltung notwendigen Entwicklungsschritte. Sie sind in der Lage, eine einfache leistungselektronische Schaltung selbstständig zu entwickeln. Sie können die Software mit den notwendigen Funktionen für einen sicheren Betrieb einer einfachen leistungselektronischen Schaltung entwerfen. Sie sind in der Lage, die Funktion zu beurteilen und zu dokumentieren.

Inhalt

Die Teilnehmer sollen den Aufbau einer Schaltung vom Design über die Inbetriebnahme bis zur Regelung an einem praktischen Beispiel selbst durchführen. Ziel ist die schrittweise Entwicklung (Schaltplanentwurf, Simulation, Regelung, Parameterbestimmung und Aufbau) eines einfachen funktionsfähigen Geräts durch jeden Teilnehmer nach Vorgaben des Dozenten. An mehreren Nachmittagen werden die einzelnen Schritte bis zur Fertigstellung des Geräts unter Betreuung durchgeführt.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der Prüfungsleistung anderer Art.

Die Notenbildung ergibt sich aus der Versuchsdurchführung, -dokumentation und Abfrage zum Verständnis der Lernninhalte

Arbeitsaufwand

Präsenzzeit (14 x 4 h): 60 h

Häusliche Vorbereitungszeit: 42 h Erstellen des Abschlussberichts: 55 h Insgesamt: 157 h (entspricht 6 LP)

10.51 Modul: Praktikum Matlab zur Modellierung im Bereich Optoelektronik [M-ETIT-105867]

Verantwortung: Prof. Dr. Ulrich Lemmer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** Profilierungsfach (Wahlbereich Profilierungsfach)

Leistungspunkte
3Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
Deutsch/EnglischLevel
3Version
1

Pflichtbestandteile			
T-ETIT-111800	Praktikum Matlab zur Modellierung im Bereich Optoelektronik	3 LP	Lemmer

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Prüfungsleistung anderer Art. Sie besteht aus der Beurteilung von Code, schriftlicher Ausarbeitung und mündlicher Befragung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden lernen, numerische Methoden zur Lösung komplexer Probleme anzuwenden.

Die Studierenden sind in der Lage Berechnungen durchzuführen und die nötigen Hilfsmittel hierfür methodisch angemessen zu gebrauchen.

Begleitend erlernen die Studierenden das Visualisieren von Ergebnissen nach wissenschaftlichen Ansprüchen.

Inhalt

Dieses Modul soll Studierenden die Modellierung mit Matlab vermitteln und dabei die Verwendung von Algorithmen und Methoden zur Simulation nahebringen. Dabei wird zudem auf den Aufbau und die Funktion verschiedener Bauteile im Bereich Optoelektronik eingegangen.

Zusammensetzung der Modulnote

In die Modulnote gehen die Beurteilung von Code, schriftlicher Ausarbeitung und mündlicher Befragung ein.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht 30 h Arbeitsaufwand (für Studierende).

Präsenzzeit in Übungen: 10 h

Eigenständige Programmierung, schriftliche Ausarbeitung und mündliche Befragung: 80 h

10.52 Modul: Radiation Protection [M-ETIT-100562]

Verantwortung: PD Dr. Bastian Breustedt

Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion3ZehntelnotenJedes Sommersemester1 SemesterEnglisch31

Pflichtbestandteile				
T-ETIT-100825	Radiation Protection	3 LP	Breustedt, Nahm	

Erfolgskontrolle(n)

Success control is carried out as part of an overall written examination (2 h).

Voraussetzungen

none

Qualifikationsziele

- The students understand the terminology used in radiation protection and apply it correctly.
- The students are able to describe the types of ionizing radiation, their properties and the principles for their measurement.
- The students are able to describe the biological risks associated to exposures to ionizing radiation.
- The students are able to describe the basic principles of radiation protection and their implementation in national and international law.
- Based on a basic understanding of the scientific foundations of radiation protection the students are able to critically evaluate radiation protection measures for a given situation, which involves the use of ionizing radiation.

Inhalt

The module covers the basics of radiation protection for ionizing radiation and provides an overview of the subject.

The topics which will be covered are:

- · Ionizing Radiation and its applications,
- · Interaction of Radiation with Matter,
- · Biological Effects of Radiation,
- Measurement of Radiation Principles and detector designs,
- Measurement of Radiation Applications and Examples
- · Dosimetry for external + internal Exposures,
- · Legal Aspects (Regulation, Ethics) and
- · Radiation Protection Principles and Application

The students will gain insight on ionizing radiation, it's applications and the biological risks associated with exposures to ionizing radiation. The scientific foundations of radiation protection (natural sciences, engineering, medicine as well as sociological and legal basics) are summarized. The pricinclples, standards and practice of radiation protection in applications of ionizing radiation are derived and demonstrated.

Zusammensetzung der Modulnote

The module grade is the grade of the written exam.

Arbeitsaufwand

Each credit point corresponds to approximately 25-30 hours of work (of the student). This is based on the average student who achieves an average performance. The workload includes:

Attendance time in lectures (2 h * 15 appointments each) = 30 h

Self-study (3 h * 15 appointments each) = 45 h

Preparation / post-processing = 20 h

Total effort approx. 95 hours = 3 LP

EmpfehlungenBasic knowledge in the field of physics is helpful.

10.53 Modul: Radio-Frequency Electronics [M-ETIT-105124]

Verantwortung: Prof. Dr.-Ing. Ahmet Cagri Ulusoy

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** Profilierungsfach (Wahlbereich Profilierungsfach)

LeistungspunkteNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
EnglischLevel
4Version
2

Pflichtbestandteile			
T-ETIT-110359	Radio-Frequency Electronics	5 LP	Ulusoy

Erfolgskontrolle(n)

The success criteria will be determined by a written examination of 120 min.

Voraussetzungen

none

Qualifikationsziele

- * The students have a comprehensive understanding of the theory and the basic design methodology of electronic circuits at high frequencies.
- * They understand the limitations of active and passive circuit elements including various transistor technologies and their impact on the applications.
- * They understand the limitations and how linear network theory is applied for advanced electronic circuits.
- * The students can apply the acquired theoretical knowledge using modern design tools.

Inhalt

In this module, the theory and design methodology of high-frequency electronic circuits will be studied in detail. The focus of the module is on the fundamentals of active linear circuits. The important topics are phasor analysis, resonance, impedance matching networks, two-port parameters of transistors, high-frequency behavior of basic amplifier circuits, practical design methodology of high-frequency amplifiers, and introduction to the design of non-linear circuits using the linear design methodology. In the tutorial the student will have the possibility to apply their theoretical knowledge by designing, assembling and testing a radio-frequency amplifier in the framework of a design challeng

Zusammensetzung der Modulnote

The module grade is the grade of the written examination.

Arbeitsaufwand

- 1. Attendance to the lectures (15*(2)=30h)
- 2. Attendance to the exercises and workshop (15*(2)=30h)
- 3. Preparation to the lectures, exercises and workshop (15*(1+1)=30h)
- 4. Preparation of homework assignments and to the oral exam (20+40h)

Total: 150h = 5L

Empfehlungen

Contents of the modules "Linear electrical networks" and "Electronic circuits".

10.54 Modul: Robotik I - Einführung in die Robotik [M-INFO-100893]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
Deutsch/EnglischLevel
3Version
3

Pflichtbestandteile			
T-INFO-108014	Robotik I - Einführung in die Robotik	6 LP	Asfour

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Studierende sind in der Lage die vorgestellten Konzepte auf einfache und realistische Aufgaben aus der Robotik anzuwenden. Dazu zählt die Beherrschung und Herleitung der für die Robotermodellierung relevanten mathematischen Konzepte. Weiterhin beherrschen Studierende die kinematische und dynamische Modellierung von Robotersystemen, sowie die Modellierung und den Entwurf einfacher Regler.

Die Studierenden kennen die algorithmischen Grundlagen der Bewegungs- und Greifplanung und können diese Algorithmen auf Problemstellungen der Robotik anwenden. Sie kennen Algorithmen aus dem Bereich der Bildverarbeitung und sind in der Lage, diese auf Problemstellungen der Robotik anzuwenden. Sie können Aufgabenstellungen als symbolisches Planungsproblem modellieren und lösen. Die Studierenden besitzen Kenntnisse über intuitive Programmierverfahren für Roboter und kennen Verfahren zum Programmieren und Lernen durch Vormachen.

Inhalt

Die Vorlesung vermittelt einen Überblick über die Grundlagen der Robotik am Beispiel von Industrierobotern, Service-Robotern und autonomen humanoiden Robotern. Dabei wird ein Einblick in alle relevanten Themenbereiche gegeben. Dies umfasst Methoden und Algorithmen zur Modellierung von Robotern, Regelung und Bewegungsplanung, Bildverarbeitung und Roboterprogrammierung. Zunächst werden mathematische Grundlagen und Methoden zur kinematischen und dynamischen Robotermodellierung, Trajektorienplanung und Regelung sowie Algorithmen der kollisionsfreien Bewegungsplanung und Greifplanung behandelt. Anschließend werden Grundlagen der Bildverarbeitung, der intuitiven Roboterprogrammierung insbesondere durch Vormachen und der symbolischen Planung vorgestellt.

In der Übung werden die theoretischen Inhalte der Vorlesung anhand von Beispielen weiter veranschaulicht. Studierende vertiefen ihr Wissen über die Methoden und Algorithmen durch eigenständige Bearbeitung von Problemstellungen und deren Diskussion in der Übung. Insbesondere können die Studierenden praktische Programmiererfahrung mit in der Robotik üblichen Werkzeugen und Software-Bibliotheken sammeln.

Anmerkungen

Dieses Modul darf nicht gerprüft werden, wenn im Bacherlor-Studiengang Informatik SPO 2008 die Lehrveranstaltung **Robotik I** mit **3 LP** im Rahmen des Moduls **Grundlagen der Robotik** geprüft wurde.

Arbeitsaufwand

Vorlesung mit 3 SWS + 1 SWS Übung.

6 LP entspricht ca. 180 Stunden

ca. 45 Std. Vorlesungsbesuch,

ca. 15 Std. Übungsbesuch,

ca. 90 Std. Nachbearbeitung und Bearbeitung der Übungsblätter

ca. 30 Std. Prüfungsvorbereitung

10.55 Modul: Seminar Batterien I [M-ETIT-105319]

Verantwortung: Dr.-Ing. Andre Weber

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion3ZehntelnotenJedes Semester1 SemesterDeutsch/Englisch31

Pflichtbestandteile			
T-ETIT-110800	Seminar Batterien I	3 LP	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von einer schriftlichen Ausarbeitung und einem Seminarvortrag. Der Gesamteindruck wird bewertet.

Voraussetzungen

keine

Qualifikationsziele

Nach Abschluss des Seminars sind die Studierenden in der Lage sich selbstständig in eine ingenieurswissenschaftliche Fragestellung im Themengebiet Batterien einzuarbeiten, die zugehörige Literatur zu analysieren und diese in Form einer schriftlichen Ausarbeitung sowie einer Präsentation vorzustellen.

Inhalt

Das Seminar "Batterien I" richtet sich in erster Linie an Studierende im Bachelorstudiengang, die planen, eine Bachelorarbeit im Forschungsgebiet Batterien durchzuführen.

In diesem Seminar werden von den Teilnehmern wissenschaftliche Fragestellungen im Themengebiet Batterien bearbeitet. Dies umfasst in der Regel eine Literaturrecherche, die Zusammenstellung der in den Veröffentlichungen beschriebenen Methoden, Verfahren und Ergebnisse sowie eine kritische Bewertung derselben. Im Einzelfall können neben einer Literaturrecherche auch andere, praxisnahe Themen bearbeitet werden.

Die Ergebnisse werden in einer Seminararbeit zusammengefasst und im Rahmen des Seminars in einem Vortrag präsentiert. In die Benotung der Arbeit fließt die schriftliche Ausarbeitung sowie ein Vortrag, der im Rahmen der Veranstaltung zu halten ist. ein.

Zusammensetzung der Modulnote

In die Modulnote gehen die Beurteilung der schriftlichen Ausarbeitung und des Seminarvortrags ein. Nähere Angaben erfolgen zu Beginn der Veranstaltung.

Arbeitsaufwand

- 1. Präsenszeit Seminar: 15 * 2 h = 30 h
- 2. Erstellung Seminararbeit: 30 h
- 3. Erstellung Seminarvortrag: 30 h

Insgesamt: 90 h = 3 LP

10.56 Modul: Seminar Brennstoffzellen I [M-ETIT-105320]

Verantwortung: Dr.-Ing. Andre Weber

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion3ZehntelnotenJedes Semester1 SemesterDeutsch/Englisch31

Pflichtbestandteile			
T-ETIT-110798	Seminar Brennstoffzellen I	3 LP	Weber

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von einer schriftlichen Ausarbeitung und einem Seminarvortrag. Der Gesamteindruck wird bewertet.

Voraussetzungen

keine

Qualifikationsziele

Nach Abschluss des Seminars sind die Studierenden in der Lage sich selbstständig in eine ingenieurswissenschaftliche Fragestellung im Themengebiet Brennstoffzellen einzuarbeiten, die zugehörige Literatur zu analysieren und diese in Form einer schriftlichen Ausarbeitung sowie einer Präsentation vorzustellen.

Inhalt

Das Seminar "Forschungsprojekte Brennstoffzellen" richtet sich in erster Linie an Studierende, die planen, eine wissenschaftliche Abschlussarbeit im Forschungsgebiet Brennstoffzellen durchzuführen.

In diesem Seminar werden von den Teilnehmern wissen-schaftliche Fragestellungen im Themengebiet Brennstoffzellen bearbeitet. Dies umfasst eine Literaturrecherche, die Zusammenstellung der in den Veröffentlichungen beschriebenen Methoden, Verfahren und Ergebnisse sowie eine kritische Bewertung derselben.

Die Ergebnisse werden in einer Seminararbeit zusammengefasst und im Rahmen des Seminars in einem Vortrag präsentiert. In die Benotung der Arbeit fließt die schriftliche Ausarbeitung sowie ein Vortrag, der im Rahmen der Veranstaltung zu halten ist, ein.

Zusammensetzung der Modulnote

In die Modulnote gehen die Beurteilung der schriftlichen Ausarbeitung und des Seminarvortrags ein. Nähere Angaben erfolgen zu Beginn der Veranstaltung.

Arbeitsaufwand

- 1. Präsenszeit Seminar: 15 * 2 h = 30 h
- 2. Erstellung Seminararbeit und Vortrag: 30 h
- 3. Erstellung Seminarvortrag: 30 h

Insgesamt: 90 h = 3 LP

10.57 Modul: Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung [M-ETIT-100397]

Verantwortung: Prof. Dr.-Ing. Marc Hiller

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

KIT-Fakultät für Informatik

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile				
T-ETIT-100714	Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung	4 LP	Hiller	

Erfolgskontrolle(n)

Endvortrag, ca. 20-30 min mit anschließender Fragerunde.

Bewertet werden:

Folienqualität (Form und Inhalt) Vortrag (Aufbau, Stil, Inhalt) Verhalten bei der Fragerunde

Voraussetzungen

keine

Qualifikationsziele

Die Teilnehmer sind in der Lage, den aktuellen Stand der Technik des Fachgebiets "Leistungselektronik in Systemen der regenerativen Energieerzeugung" durch selbständige Literatursuche und Literaturstudium zu erschließen.

Sie erarbeiten eine komprimierte Darstellung der wesentlichen Fakten und Zusammenhänge. Sie beherrschen die persönlichen und technischen Aspekte der Präsentationstechnik. Sie sind in der Lage, die Ergebnisse in einem öffentlichen Fachvortrag darzustellen und Fragen des Publikums zu beantworten.

Inhalt

Die Teilnehmer des Seminars sollen eigenständig Recherchen zu aktuellen Themen der Wissenschaft und Forschung durchführen. Neben der Recherche ist die Auswahl der relevanten Ergebnisse und deren Präsentation vor Fachpublikum Hauptbestandteil des Seminars.

Der Schwerpunkte liegt auf Leistungselektronik in Systemen der regenerativen Energieerzeugung.

Das genaue Thema wird in jedem Semester neu definiert. Vergangene Seminare hatten beispielsweise folgende Themen:

- Off-Shore-Windparks: Projekte, Technik, Netzanbindung
- Gewinnung elektrischer Energie aus dem Meer
- Solaranlagen
- Windkraftanlagen: Moderne Ausfuhrungen und Netzanbindung
- "Private" Energiewende (Mögliche Maßnahmen zuhause)

Der Dozent behält sich vor, im Rahmen der aktuellen Vorlesung ohne

besondere Ankündigung vom hier angegebenen Inhalt abzuweichen.

Zusammensetzung der Modulnote

Die Modulnote setzt sich aus der Vortragsbewertung (mit den oben genannten Kriterien) zusammen.

Sieht man den Prüfling zwischen zwei Notenwerten gibt die Mitarbeit in den vorbereitenden Treffen den Ausschlag.

Anmerkungen

Teilnahme an insgesamt 7 vorbereitenden Treffen (ca. alle 14 Tage mit durchschnittlich 3 h Dauer) mit den Themen:

Infoveranstaltung

Besprechung und Verteilung der Themen

Vortrags- und Präsentationstechniken

Präsentation der Materialsammlungen

Vorstellung von Struktur und Aufbau der Vorträge

Vorstellung der fertigen Folienpräsentation

Probevorträge

Arbeitsaufwand

Anwesenheit an vorbereitenden Treffen: = 21 h 4x Vorbereitung à 20 h = 80 h

Insgesamt ca: 101 h (entspricht 4 LP)

10.58 Modul: Seminar über ausgewählte Kapitel der Biomedizinischen Technik [M-ETIT-100383]

Verantwortung: Dr.-Ing. Axel Loewe

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
3	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile			
T-ETIT-100710	Seminar über ausgewählte Kapitel der Biomedizinischen Technik	3 LP	Loewe

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen eines Vortrages (ca. 25 Minuten) mit nachfolgender Diskussion (ca. 10 Minuten).

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden sind in der Lage, ein wissenschaftliches Thema aus der biomedizinische Technik zu recherchieren, Wesentliches herauszuarbeiten, den Inhalt aufzuarbeiten, einen Vortrag auszuarbeiten und schließlich zu präsentieren.

Inhalt

Das Seminar hat das Ziel, dass Studenten selbstständig ein wissenschaftliches Thema im Bereich der Biomedizinischen Technik aufarbeiten und dieses präsentieren, um ihre Präsentationsfertigkeiten zu verbessern. Zuerst wird eine Einführung in Präsentationstechniken und in Feedback-Regeln gegeben. Dann erfolgt eine Testpräsentation, um die erlernten Techniken auszuprobieren. Schließlich wählen die Studenten ein Thema der biomedizinischen Technik für ihre Präsentation aus und bereiten einen Fachvortrag über dieses Thema vor.

Zusammensetzung der Modulnote

Die Erfolgskontrolle erfolgt im Rahmen eines Vortrages (ca. 25 Minuten) mit nachfolgender Diskussion (ca. 10 Minuten).

Arbeitsaufwand

Präsenzzeit: 15 Wochen * 2SWS = 30h

Erarbeitung des Themas, Austausch mit Betreuer, Vorbereitung des Vortrags: 60h

10.59 Modul: Seminar: Grundlagen Eingebetteter Systeme [M-ETIT-105356]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker

Prof. Dr.-Ing. Eric Sax Prof. Dr. Wilhelm Stork

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion3ZehntelnotenJedes Semester1 SemesterDeutsch1

Pflichtbestandteile			
T-ETIT-110832	Seminar: Grundlagen Eingebetteter Systeme	3 LP	Becker, Sax, Stork

Erfolgskontrolle(n)

Prüfungsleistung anderer Art.

Voraussetzungen

keine

Qualifikationsziele

Die Teilnehmer des Seminars sind in der Lage sich selbstständig in ein gegebenes technisches Thema einzuarbeiten, alle relevanten Aspekte zu identifizieren und die Ergebnisse zusammenfassend darzustellen. Sie können die Ergebnisse einer Arbeit prägnant in Form eines kurzen Textes (4-seitiges Short-Paper) sowie einem etwa 20-minütigen Vortrag in Wort und Bild (Folien) präsentieren.

Inhalt

Im Seminar "Grundlagen Eingebetteter Systeme" wird durch die Studenten unter Anleitung der wissenschaftlichen Mitarbeiter ein gegebenes Thema durch Literatur- und Internetrecherche aufgearbeitet und dann in einem kurzen Text (ein 4-seitiges Short-Paper) sowie einem etwa 20-minütigen Vortrag in Wort und Bild (Folien) den Kommilitonen dargestellt.

Dazu finden im Rahmen des Seminars Workshops zu den Themen Literaturrecherche, wissenschaftliches Schreiben und Präsentationstechniken statt. Das vermittelte Wissen kann dann direkt an den ausgewählten Forschungsthemen angewendet werden.

Zusammensetzung der Modulnote

Die Modulnote ergibt sich aus der Ausarbeitung und dem Vortrag.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen (für eine Vorlesung)

- 1. Präsenzzeit in Vorlesungen: 20h
- 2. Vor-/Nachbereitung derselbigen:35h
- 3. Erstellung der Ausarbeitung und des Vortrages: 35h

10.60 Modul: Signale und Systeme [M-ETIT-104525]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Informationstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version	
7	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	2	2	

Pflichtbestandteile			
T-ETIT-109313	Signale und Systeme	6 LP	Heizmann
T-ETIT-109314	Signale und Systeme - Workshop	1 LP	Heizmann

Erfolgskontrolle(n)

Die Erfolgskontrolle des Moduls besteht aus:

- 1. einer schriftlichen Prüfung im Umfang von 120 Minuten zur Lehrveranstaltung Signale und Systeme, (6 LP)
- 2. einer schriftlichen Ausarbeitung zur Lehrveranstaltung Signale und Systeme Workshop, (1 LP)

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden sind nach Abschluss des Moduls vertraut mit der Darstellung von Signalen und beherrschen die Grundlagen der Systemtheorie.

Durch Anwendung von Transformationen auf Signale und Systeme sind Sie in der Lage, Lösungsansätze für zeitkontinuierliche sowie zeitdiskrete Problemstellungen der Signalverarbeitung zu beschreiben und zu bewerten. Die erlernten mathematischen Methoden können auf Fragestellungen aus anderen Bereichen des Studiums übertragen werden.

Die Studierenden erlernen im Workshop die Koordination eines Projekts in kleinen Teams und die Darstellung der Ergebnisse in Form einer technischen Dokumentation. Weiterhin sind sie in der Lage, die Theorie im Bereich der digitalen Signalverarbeitungssysteme praktisch anzuwenden.

Inhalt

Das Modul stellt eine Grundlagenvorlesung zur Signalverarbeitung dar. Schwerpunkte der Veranstaltung sind:

- Mathematische Grundlagen (mathematische Räume, Basisfunktionensysteme, Bessel'sche Ungleichung, Projektionstheorem)
- Zeitkontinuierliche Signale (Funktionenräume, Fourier-Transformation, Leckeffekt, Gibbs'sches Phänomen, Zeitdauer-Bandbreite-Produkt)
- Zeitkontinuierliche Systeme (Linearität, Zeitinvarianz, Kausalität, Stabilität, Laplace-Transformation, Systemfunktion, Filterung mit Fensterfunktionen, Hilbert-Transformation)
- Zeitdiskrete Signale (Abtasttheorem, Rekonstruktion, Überabtastung, Unterabtastung, Diskrete Fourier-Transformation)
- Zeitdiskrete Systeme (z-Transformation, Systemfunktion, zeitdiskrete Darstellung kontinuierlicher Systeme, Filterung mit Fensterfunktionen)

Der Workshop greift zahlreiche dieser Schwerpunkte auf und zeigt die praktische Anwendung von Abtasttheorem, zeitdiskreten Signalen und Filterung. Es werden exemplarisch Audiosignale, pulsweitenmodulierte Signale und eine Filterung mittels gleitenden Mittelwerts behandelt.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung. Zusätzlich ist das Bestehen des Workshops Voraussetzung für das Bestehen des Moduls.

Anmerkungen

Der Workshop wird im Sommersemester angeboten.

Die Moduldauer beträgt damit 2 Semester.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht.

Die Vorbereitung (0,5 h), der Besuch (1,5 h) und die Nachbereitung (2 h) der wöchentlichen Vorlesung und Übung sowie die Vorbereitung (50-60 h) und Teilnahme (2 h) an der Klausur ergibt insgesamt einen Arbeitsaufwand von 150-160 h für die Lehrveranstaltung Signale und Systeme, d.h. 6 LP.

Der Arbeitsaufwand des Workshops setzt sich wie folgt zusammen:

- 1. Präsenzzeit in der Vorbereitungsveranstaltung inkl. Nachbereitung: 2h
- 2. Bearbeitung der Aufgabenstellung: 23h
- 3. Anfertigung der schriftlichen Ausarbeitung (Protokoll): 5h

Der Zeitaufwand pro Workshop beträgt etwa 30 Stunden. Dies entspricht 1 LP.

Empfehlungen

Höhere Mathematik I + II

10.61 Modul: Statistische Methoden der Informationsverarbeitung [M-ETIT-105960]

Verantwortung: Dr.-Ing. Holger Jäkel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	1	1

Pflichtbestandteile			
T-ETIT-112108	Statistische Methoden der Informationsverarbeitung	4 LP	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 2 Stunden. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden werden in die Lage versetzt, ausgewählte Methoden der statistischen Informations- und Nachrichtenverarbeitung anzuwenden, indem diese anhand von verschiedenen Themen eingeführt und illustriert werden. Sie entwickeln ein Bewusstsein für mögliche Lösungsansätze und geeignete Methoden.

Zudem sind Absolventen der Vorlesung mit verschiedenen Aspekten der Informationsverarbeitung, wie unter anderem Filterung und Anwendung statistischer Methoden, vertraut und können die erworbenen Methodenkenntnisse in andere Themenbereiche übertragen.

Inhalt

Gegenstand der Vorlesung ist die Vermittlung der vielfältigen Verarbeitungsmethoden bei der Informationsverarbeitung im Bereich der Nachrichtentechnik. Neben einer kurzen Wiederholung der Wahrscheinlichkeitstheorie in Kombination mit Signalverarbeitung ist insbesondere deren Anwendung auf nachrichtentechnische Systeme zu nennen. Weiterhin spielen Probleme der Parameterschätzung und Entscheidungstheorie eine wichtige Rolle, beispielsweise zur Kanalschätzung, zur Simulation nachrichtentechnischer Systeme und deren Zuverlässigkeitsanalyse.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung (Dauer 2h).

Arbeitsaufwand

- 1. Präsenzzeit Vorlesung: 15 * 2 h = 30 h
- 2. Vor-/Nachbereitung Vorlesung: 15 * 2 h = 30 h
- 3. Präsenzzeit Übung: 15 * 1 h = 15 h
- 4. Vor-/Nachbereitung Übung: 15 * 1 h = 15 h
- 5. Klausurvorbereitung und Präsenz in selbiger: 30 h

Insgesamt: 120 h = 4 LP

Empfehlungen

Vorheriger Besuch der Vorlesungen "Signale und Systeme" und "Wahrscheinlichkeitstheorie" wird dringend empfohlen.

Die Vorlesung kann parallel zu der Vorlesung "Nachrichtentechnik I" besucht werden.

10.62 Modul: Superconductors for Energy Applications [M-ETIT-105299]

Verantwortung: apl. Prof. Dr. Francesco Grilli

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

KIT-Fakultät für Elektrotechnik und Informationstechnik

KIT-Fakultät für Geistes- und Sozialwissenschaften/Institut für Berufspädagogik und Allgemeine

Pädagogik

KIT-Fakultät für Maschinenbau

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
5	Zehntelnoten	Jedes Wintersemester	1 Semester	Englisch	3	1

Pflichtbestandteile			
T-ETIT-110788	Superconductors for Energy Applications	5 LP	Grilli

Erfolgskontrolle(n)

oral exam approx. 30 minutes.

Voraussetzungen

The module "Superconducting Materials for Energy Applications" must not be taken.

Qualifikationsziele

The students acquire a good knowledge of physical properties of superconductors including those currently employed in energy applications (niobium-based superconductors, cuprates, MgB2) and also promising recently discovered ones (pnictides)).

The students have a thorough understanding of the wide range of superconducting energy applications (magnets, cables, fault current limiters, motors, transformers, etc.). They can discuss the advantages they offer with respect to their conventional counterparts; they can al-so define the scientific and technical challenges involved in those ap-plications.

With the practical exercise, the students learn to use different software packages (Matlab, Comsol Multiphysics) and to model the electromagnetic and thermal behavior of superconducting wires and applications.

The students are able to talk about topic-related aspects in English using the technical terminology of the field of study.

Inhalt

Superconductivity is one of the most important discoveries in physics in the twentieth century and has just celebrated its 100th birthday. Investigating the origins of the universe in particle accelerators or having detailed images of the human body with MRI would be impossible without employing technology based on superconductors. The near future will see superconductors enter our everyday life even more deeply, in the form of cables powering our cities, fault current limiters protecting our electric grids, and super-fast levitating trains reducing dramatically travel times.

The lecture provides an introduction to superconductivity with an overview of its main features and of the theories developed to explain it. Superconducting materials and their properties will be presented, especially materials currently employed in energy applications (niobium-based superconductors, uprates, MgB2) and promising recently discovered ones (pnictides). The wide range of superconducting energy applications (magnets, cables, fault current limiters, motors, transformers, etc.) will be covered as well as the advantages they offer with respect to their conventional counterparts.

The practical exercises are based on using numerical models (e.g. finite-element method or network approach) to investigate the electromagnetic and thermal behavior of superconducting wires and applications such as cables and magnets.

Zusammensetzung der Modulnote

The module grade is the grade of the oral exam.

Arbeitsaufwand

Each credit point (LP) corresponds to approximately 30 hours of work (by the student). This is based on the average student who achieves an average performance.

The workload in hours is broken down as follows:

- 1. Presence time in lectures, exercises 45 h
- 2. Preparation / Post-processing of the same 30 h
- 3. Exam preparation and presence in the same 75 h

Empfehlungen

A basic knowledge of electromagnetism and thermodynamics is the only requirement. Previous knowledge of superconductivity is not necessary.

10.63 Modul: Systemdynamik und Regelungstechnik [M-ETIT-102181]

Verantwortung: Prof. Dr.-Ing. Sören Hohmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Informationstechnik

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile			
T-ETIT-101921	Systemdynamik und Regelungstechnik	6 LP	Hohmann

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Qualifikationsziele

- Ziel ist die Vermittlung theoretischer Grundlagen der Regelungstechnik, daher können die Studierenden grundsätzliche regelungstechnische Problemstellungen erkennen und bearbeiten.
- Die Studierenden sind in der Lage, reale Prozesse formal zu beschreiben und Anforderungen an Regelungsstrukturen abzuleiten.
- Sie können die Dynamik von Systemen mit Hilfe graphischer und algebraischer Methoden analysieren.
- Die Studierenden können Reglerentwurfsverfahren für Eingrößensysteme benennen, anhand von Kriterien auswählen, sowie die Entwurfsschritte durchführen und die entworfene Regelung beurteilen, ferner können Sie Störungen durch geeignete Regelkreisstrukturen kompensieren.
- Die Studierenden kennen relevante Fachbegriffe der Regelungstechnik und können vorgeschlagene Lösungen beurteilen und zielorientiert diskutieren.
- Sie kennen computergestützte Hilfsmittel zur Bearbeitung systemtheoretischer Fragestellungen und können diese einsetzen.

Inhalt

Die Grundlagenvorlesung Systemdynamik und Regelungstechnik vermittelt den Studierenden Kenntnisse auf einem Kerngebiet der Ingenieurwissenschaften. Sie werden vertraut mit den Elementen sowie der Struktur und dem Verhalten dynamischer Systeme. Die Studenten lernen grundlegende Begriffe der Regelungstechnik kennen und gewinnen einen Einblick in die Aufgabenstellungen beim Reglerentwurf und in entsprechende Lösungsmethoden im Frequenz- und Zeitbereich. Dies versetzt sie in die Lage, mathematische Methoden zur Analyse und Synthese dynamischer Systeme systematisch anzuwenden

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Anmerkungen

wird ab dem Wintersemester 2020/2021 im Wintersemester statt im Sommersemester angeboten, die Lehrveranstaltung wird im Sommersemester 2020 nicht angeboten.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht 30h Arbeitsaufwand (des Studierenden). Unter den Arbeitsaufwand fallen

- 1. Präsenzzeit in Vorlesung/Übung (2+2 SWS: 60h2 LP)
- 2. Vor-/Nachbereitung von Vorlesung/Übung/Tutorium(optional) (105h3.5 LP)
- 3. Vorbereitung/Präsenzzeit schriftliche Prüfung (15h0.5 LP)

10.64 Modul: Überfachliche Qualifikationen [M-ETIT-105804]

Verantwortung: Prof. Dr.-Ing. Marc Hiller

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Überfachliche Qualifikationen ab WS 22/23

Leistungspunkte
3Notenskala
best./nicht best.Turnus
Jedes SemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Wahlinformationen

Zur Selbstverbuchung abgelegter überfachlicher Qualifikationen von HoC, ZAK oder SPZ sind die Teilleistungen mit dem Titel "Selbstverbuchung-HOC-SPZ-ZAK-..." passend zur Notenskala, benotet oder unbenotet, auszuwählen. Titel und LP der Leistung werden übernommen.

Die Verbuchung erfolgt im Studierendenportal über den Menüpunkt "Prüfungsanmeldung und -abmeldung",

Überfachliche Qualifikationen (Wahl: mind. 3 LP)					
T-ETIT-111316	Einführung in die wissenschaftliche Methode (Seminar)	1 LP	Nahm		
T-WIWI-100796	Industriebetriebswirtschaftslehre	3 LP	Fichtner		
T-ETIT-111317	Introduction to the Scientific Method (Seminar)	1 LP	Nahm		
T-MACH-105442	Patente und Patentstrategien in innovativen Unternehmen	4 LP	Albers, Matthiesen, Zacharias		
T-ETIT-100814	Seminar Project Management for Engineers	3 LP	Noe		
T-ETIT-108820	Seminar Projekt Management für Ingenieure	3 LP	Day, Noe		
T-ETIT-100754	Seminar Wir machen ein Patent	3 LP	Stork		
T-ETIT-111923	Technikethik - ARs ReflecTIonis	2 LP	Kühler		
T-ETIT-100797	TutorInnenprogramm - Start in die Lehre	2 LP			
T-ETIT-111526	Selbstverbuchung-HOC-SPZ-ZAK-benotet	2 LP			
T-ETIT-111527	Selbstverbuchung-HOC-SPZ-ZAK-benotet	2 LP			
T-ETIT-111528	Selbstverbuchung-HOC-SPZ-ZAK-benotet	2 LP			
T-ETIT-111530	Selbstverbuchung-HOC-SPZ-ZAK-unbenotet	2 LP			
T-ETIT-111531	Selbstverbuchung-HOC-SPZ-ZAK-unbenotet	2 LP			
T-ETIT-111532	Selbstverbuchung-HOC-SPZ-ZAK-unbenotet	2 LP			

10.65 Modul: Wahrscheinlichkeitstheorie [M-ETIT-102104]

Verantwortung: Dr.-Ing. Holger Jäkel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Mathematisch-physikalische Grundlagen

LeistungspunkteNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
2Version
1

Pflichtbestandteile			
T-ETIT-101952	Wahrscheinlichkeitstheorie	5 LP	Jäkel

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Inhalte der Höheren Mathematik I und II werden benötigt (z.B. M-MATH-101731 und M-MATH-101732).

Qualifikationsziele

Die Studentinnen und Studenten können Probleme im Bereich der Wahrscheinlichkeitstheorie formal beschreiben und analysieren.

Durch Anwendung von Methoden der Wahrscheinlichkeitstheorie können Studierende Fragestellungen der Elektrotechnik und Informationstechnik modellieren und lösen.

Inhalt

Kenntnisse aus dem Bereich der Stochastik sind für die Arbeit eines Ingenieurs heute unbedingt erforderlich. In der Vorlesung Wahrscheinlichkeitstheorie werden die Studierenden an dieses Wissensgebiet herangeführt. Der Aufbau der Vorlesung ist dabei wie folgt:

Zunächst werden der Wahrscheinlichkeitsraum und die bedingten Wahrscheinlichkeiten, sowie der Begriff der Zufallsvariablen eingeführt. An die Behandlung der Kennwerte von Zufallsvariablen schließt sich die Diskussion der wichtigsten speziellen Wahrscheinlichkeitsverteilungen an. Im Kapitel über mehrdimensionale Zufallsvariablen werden insbesondere der Korrelationskoeffizient und die Funktionen mehrdimensionaler Zufallsvariablen ausführlich besprochen. Die Kapitel über die Grundlagen stochastischer Prozesse und über spezielle stochastische Prozesse runden den Inhalt der Vorlesung ab.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

- 1. Präsenzzeit Vorlesung: 15 * 2 h = 30 h
- 2. Vor-/Nachbereitung Vorlesung: 15 * 5 h = 75 h
- 3. Präsenzzeit Übung: 15 * 1 h = 15 h
- 4. Vor-/Nachbereitung Übung: 15 * 2 h = 30 h
- 5. Klausurvorbereitung und Präsenz in selbiger: in Vor-/Nachbereitung verrechnet

Insgesamt: 150 h = 5 LP

Empfehlungen

Inhalte der Digitaltechnik werden empfohlen (z.B. M-ETIT-102102).

M

10.66 Modul: Windkraft [M-MACH-105732]

Verantwortung: Dr. Balazs Pritz

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von: Profilierungsfach (Wahlbereich Profilierungsfach)

Leistungspunkte 4

Notenskala Zehntelnoten **Turnus** Jedes Wintersemester **Dauer** 1 Semester **Sprache** Deutsch

Level 3 Version 1

Pflichtbestandteile

T-MACH-105234 Windkraft 4 LP Lewald

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung.

Dauer der Prüfung: 80 Min.

Voraussetzungen

keine

Oualifikationsziele

Die Studierenden sind mit den elementaren Grundlagen zur Nutzung von Windkraft vertraut. Schwerpunkt der Vorlesung sind allgemeine Grundlagen zur Nutzung von Windkraft zur Elektrizitätserzeugung ergänzt um die geschichtliche Entwicklung, Allgemeinwissen zu Wind sowie alternativen, erneuerbaren Energien.

Inhalt

Die Vorlesung wendet sich auf Grund des breit angelegten Basiswissens an Hörer aller Fakultäten und jeglicher Semester.

Ausgehend von einem Überblick alternativer, erneuerbarer Energietechnologien sowie allgemeiner Energiedaten, wird der Einstieg in die Windenergie mittels einer Übersicht der historischen Entwicklung der Windkraft getätigt.

Da der Wind als indirekte Solarenergie die Antriebsenergie liefert, wird dem globalen und den lokalen Windsystemen sowie deren Messung und Energieinhalt ein eigenes Kapitel gewidmet.

Darauf aufbauend werden die aerodynamischen Grundlagen und Zusammenhänge von Windkraftanlagen bzw. deren Profilen erläutert.

Einen weiteren Schwerpunkt bildet das elektrische System der Windkraftanlagen. Angefangen von grundlegender Generatortechnik über die Kontrolle und Steuerung der Energieabgabe.

Nach den Schwerpunkten Aerodynamik und elektrisches System werden die weiteren Bestandteile von Windkraftanlagen und deren Besonderheiten im Zusammenhang erläutert. Abschließend werden die aktuellen ökonomischen, ökologischen und legislativen Randbedingungen für den Betrieb von Windkraftanlagen untersucht.

Ergänzend zu den Windkraftanlagen zur Elektrizitätserzeugung wird in der Vorlesung auch kurz auf alternative Nutzungsmöglichkeiten wie Pumpensysteme eingegangen.

Den Abschluss bildet ein Überblick aktueller Entwicklungen wie Supergrids oder auch Zukunftsvisionen der Windenergienutzung.

Arbeitsaufwand

Präsenzzeit: 28 Stunden Selbststudium: 60 Stunden Prüfungsvorbereitung: 30 Stunden

Lehr- und Lernformen

Vorlesung in Präsenz, Kursmaterial wird über ILIAS bereitgestellt.

10.67 Modul: Workshop angewandte Hochfrequenztechnik [M-ETIT-105301]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** Profilierungsfach (Wahlbereich Profilierungsfach)

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion3ZehntelnotenJedes Semester1 SemesterDeutsch32

Pflichtbestandteile			
T-ETIT-110790	Workshop angewandte Hochfrequenztechnik	3 LP	Zwick

Erfolgskontrolle(n)

Zur Vorbereitung der Laborversuche sind von jeder Laborgruppe vor dem Versuch einige Aufgaben als Hausarbeit gemeinsam zu bearbeiten und direkt vor Versuchsbeginn in einfacher Ausfertigung beim Betreuer abzugeben. Die Aufgaben zum Versuch an sich werden während der Durchführung bearbeitet und protokolliert. Das Protokoll soll direkt nach der Versuchsdurchführung beim Betreuer abgegeben werden. Vor jeder Versuchsdurchführung gibt es eine schriftliche bzw. mündliche Prüfung (ca. 20 min., keine Hilfsmittel) über den Versuchsinhalt. Der Gesamteindruck wird bewertet.

Voraussetzungen

Grundlegende Kenntnisse zur Nachrichtentechnik und Grundlagen der Hochfrequenztechnik

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Das Modul M-ETIT-100518 Labor Schaltungsdesign darf nicht begonnen worden sein.
- 2. Das Modul M-ETIT-102113 Elektrotechnisches Grundlagenpraktikum darf nicht begonnen worden sein.
- 3. Das Modul M-ETIT-103263 Praktikum Hard- und Software in leistungselektronischen Systemen darf nicht begonnen worden sein.
- 4. Das Modul M-ETIT-104823 Labor für angewandte Machine Learning Algorithmen darf nicht begonnen worden sein.
- 5. Das Modul M-ETIT-105703 Praktikum Elektrochemische Energietechnologien darf nicht begonnen worden sein.

Qualifikationsziele

Die Studierenden besitzen ein grundlegendes Wissen über Hochfrequenzkomponenten und Systeme sowie deren praktischen Einsatz. Dazu kennen sie die Funktionsweise eines Netzwerkkanalysators und können diesen praktisch einsetzen. Sie kennen die praktischen Probleme bei der messtechnischen Charakterisierung und können die Messergebnisse interpretieren. Darüber hinaus sind sie in der Lage selbstorganisiert in einem Team zusammenzuarbeiten

Inhalt

Unter dem Motto: "Praxisrelevanz durch modernste Ausstattung und aktuelle Problemstellungen" wird den Studierenden ein zeitgemäßes und technisch anspruchsvolles Hochfrequenzlaboratorium auf Bachelorniveau angeboten. Ziel der Versuche ist es die in den Vorlesungen vermittelte Theorie praxisnah zu vertiefen und den Umgang mit Hochfrequenzmessgeräten und HF-Komponenten zu trainieren. In Gruppen von 2 Studierenden werden an 4 Nachmittagen verschiedene Versuche durchgeführt und protokolliert. Die Reihenfolge und Themen der Versuche können variieren.

Zusammensetzung der Modulnote

Die Note für die Versuchsdurchführung setzt sich aus der Vorbereitung, aus dem Protokoll und der schriftlichen oder mündlichen Lernzielkontrolle zum jeweiligen Versuch zusammen. Nähere Angaben erfolgen zu Beginn der Veranstaltung. Studierende, die unvorbereitet zum jeweiligen Versuch erscheinen, dürfen an der Versuchsdurchführung nicht teilnehmen. Der Versuch muss zu einem anderen Zeitpunkt wiederholt werden.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:

Präsenzstudienzeit Labor: 25 h

Versuchsvorbereitung, Protokolle, Prüfungsvorbereitung: 65 h

Insgesamt 90 h = 3 LP

11 Teilleistungen

11.1 Teilleistung: Antennen und Mehrantennensysteme [T-ETIT-106491]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** M-ETIT-100565 - Antennen und Mehrantennensysteme

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	5	Drittelnoten	Jedes Wintersemester	4

Lehrverans	taltungen				
WS 22/23	2308416	Antennen und Mehrantennensysteme	2 SWS	Vorlesung (V) / 🗣	Zwick
WS 22/23	2308417	Workshop zu 2308416 Antennen und Mehrantennensysteme	2 SWS	Übung (Ü) / 🗯	Zwick, Kretschmann, Bekker

Legende: 🖥 Online, 😂 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von 20 Minuten.

Voraussetzungen

T-ETIT-100638 - Antennen und Mehrantennensysteme wurde weder begonnen, noch abgeschlossen.

Das Modul "Antennen und Antennensysteme" darf nichtbegonnen oder abgeschlossen sein.

Anmerkungen

Die Zahl der Vorlesungstermine hat sich in den letzten 2 Jahren zugunsten der Übungstermine soweit verschoben, dass mittlerweile 2+2 SWS korrekt ist. Das Modul besteht also aus 2 SWS Vorlesung und 2 SWS Rechnerübung. - Da die Vor-/Nachbereitungszeit bei der Rechnerübung deutlich geringer als für den eigentlichen Vorlesungsstoff ist, entspricht der studentische Gesamtaufwand 5 LP (ab WS20/21, zuvor 6 LP)

11.2 Teilleistung: Bachelorarbeit [T-ETIT-109212]

Verantwortung: Prof. Dr.-Ing. Marc Hiller

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104499 - Bachelorarbeit

Teilleistungsart
AbschlussarbeitLeistungspunkte
12Notenskala
DrittelnotenTurnus
Jedes SemesterVersion

Voraussetzungen

§ 14 Modul Bachelorarbeit

(1) Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die bzw. der Studierende Modulprüfungen im Umfang von 120 LP gemäß § 20 Abs. 2 erfolgreich abgelegt hat. Über

Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der bzw. des Studierenden.

Abschlussarbeit

Bei dieser Teilleistung handelt es sich um eine Abschlussarbeit. Es sind folgende Fristen zur Bearbeitung hinterlegt:

Bearbeitungszeit 6 Monate **Maximale Verlängerungsfrist** 1 Monate **Korrekturfrist** 6 Wochen

Die Abschlussarbeit ist genehmigungspflichtig durch den Prüfungsausschuss.

Anmerkungen

§ 14 Modul Bachelorarbeit

(1 a) Dem Modul Bachelorarbeit sind 15 LP zugeordnet. Es besteht aus der Bachelorarbeit mit 12 LP und einer Präsentation mit 3 LP. Die Präsentation ist innerhalb von sechs Monaten nach Anmeldung zur Bachelorarbeit durchzuführen. Über eine Verlängerung der Frist entscheidet der Prüfungsausschuss auf begründeten Antrag des bzw. der Studierenden mit Zustimmung des bzw. der ausgebenden Prüfenden.

11.3 Teilleistung: Bachelorarbeit Präsentation [T-ETIT-109295]

Verantwortung: Prof. Dr.-Ing. Marc Hiller

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104499 - Bachelorarbeit

Teilleistungsart Studienleistung Leistungspunkte

Notenskala best./nicht best.

Turnus Jedes Semester Version 2

Voraussetzungen

Bachelorarbeit wurde begonnen

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-ETIT-109212 - Bachelorarbeit muss begonnen worden sein.

Anmerkungen

§14 (1 a) Dem Modul Bachelorarbeit sind 15 LP zugeordnet. Es besteht aus der Bachelorarbeit mit 12 LP und einer Präsentation mit 3 LP. Für die Präsentation ist keine Prüfungsanmeldung notwendig. Das Bestehen wird durch den ETIT-Studiengangservice eingetragen.

Die Präsentation ist innerhalb von sechs Monaten nach Anmeldung zur Bachelorarbeit durchzuführen.

11.4 Teilleistung: Basispraktikum Mobile Roboter [T-INFO-101992]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101184 - Basispraktikum Mobile Roboter

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	4	best./nicht best.	Jedes Sommersemester	2

Lehrveranstaltungen					
SS 2023	24624	Basispraktikum Mobile Roboter	4 SWS	Praktikum (P) / 🗣	Asfour

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO und besteht aus mehreren Teilaufgaben. Die Bewertung erfolgt mit den Noten "bestanden" / "nicht bestanden".

Voraussetzungen

Kenntnisse in der Programmiersprache C und in der Technischen Informatik werden vorausgesetzt.

Empfehlungen

Kenntnisse in der Programmiersprache C und in der Technischen Informatik werden vorausgesetzt.

11.5 Teilleistung: Batteriemodellierung mit MATLAB [T-ETIT-106507]

Verantwortung: Dr.-Ing. Andre Weber

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-103271 - Batteriemodellierung mit MATLAB

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	3	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen						
WS 22/23	2304228	Batteriemodellierung mit MATLAB	1 SWS	Vorlesung (V) / 🗣	Weber	
WS 22/23	2304229	Übungen zu 2304228 Batteriemodellierung mit MATLAB	1 SWS	Übung (Ü) / 🗣	Weber	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

11.6 Teilleistung: Bauelemente der Elektrotechnik [T-ETIT-109292]

Verantwortung: Prof. Dr. Sebastian Kempf

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104538 - Bauelemente der Elektrotechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen					
WS 22/23	2312700	Bauelemente der Elektrotechnik	3 SWS	Vorlesung (V) / 🗣	Kempf
WS 22/23		Übung zu 2312700 Bauelemente der Elektrotechnik	1 SWS	Übung (Ü) / 🗣	Wünsch

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

11.7 Teilleistung: Bildgebende Verfahren in der Medizin I [T-ETIT-101930]

Verantwortung: Prof. Dr. Maria Francesca Spadea

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100384 - Bildgebende Verfahren in der Medizin I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen						
WS 22/23	2305261	Bildgebende Verfahren in der Medizin I	2 SWS	Vorlesung (V)	Spadea, Nahm, Loewe	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

11.8 Teilleistung: Bildverarbeitung [T-ETIT-105566]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102651 - Bildverarbeitung

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2023	2302114	Bildverarbeitung	2 SWS	Vorlesung (V) / 🗯	Heizmann

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Empfehlungen

Die Kenntnis der Inhalte der Module "Systemtheorie" und "Messtechnik" wird dringend empfohlen. Die Kenntnis der Inhalte des Moduls "Methoden der Signalverarbeitung" ist von Vorteil.

11.9 Teilleistung: Digitaltechnik [T-ETIT-101918]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102102 - Digitaltechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen						
WS 22/23	2311615	Digitaltechnik	3 SWS	Vorlesung (V) / 🗯	Becker	
WS 22/23	2311617	Übungen zu 2311615 Digitaltechnik	1 SWS	Übung (Ü) / 🗯	Höfer	

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

11.10 Teilleistung: Einführung in die Hochspannungstechnik [T-ETIT-110702]

Verantwortung: Dr.-Ing. Michael Suriyah

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** M-ETIT-105276 - Einführung in die Hochspannungstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung mündlich	3	Drittelnoten	Jedes Sommersemester	1 Sem.	1

Lehrveranstaltungen						
SS 2023	2307395	Einführung in die Hochspannungstechnik	2 SWS	Vorlesung (V) / 🗣	Suriyah	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Prüfung (circa 20 Minuten).

Voraussetzungen

keine

Empfehlungen

Grundlegende Kenntnisse in Netzwerktheorie, Feldtheorie und elektrische Messtechnik

11.11 Teilleistung: Einführung in die wissenschaftliche Methode (Seminar) [T-ETIT-111316]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Studienleistung	1	best./nicht best.	Jedes Semester	1 Sem.	1

Lehrveranstaltungen					
WS 22/23	2305504	Einführung in die wissenschaftliche Methode	1 SWS	Seminar (S) / 🗣	Nahm
SS 2023	2305744	Einführung in die wissenschaftliche Methode	1 SWS	Seminar (S) / 🗣	Nahm

Legende: █ Online, ເૐ Präsenz/Online gemischt, ♠ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung. Die Prüfung erfolgt durch die Erstellung und Präsentation einer Seminararbeit.

Voraussetzungen

keine

Anmerkungen

Detaillierte Informationen zu Inhalten, Qualifikationszielen und Arbeitsaufwand unter:

M-ETIT-105664 - Einführung in die wissenschaftliche Methode (Seminar)

11.12 Teilleistung: Electrochemical Energy Technologies [T-ETIT-111352]

Verantwortung: Prof. Dr.-Ing. Ulrike Krewer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** M-ETIT-105690 - Electrochemical Energy Technologies

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 22/23	2304236	Electrochemical Energy Technologies	2 SWS	Vorlesung (V) / 🗣	Krewer
WS 22/23	2304237	Exercise for 2304236 Electrochemical Energy Technologies	1 SWS	Übung (Ü) / 🗣	Krewer, Wilde, Mitarbeiter*innen

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Type of Examination: Written exam

Duration of Examination: approx. 120 minutes

Voraussetzungen

none

11.13 Teilleistung: Elektrische Maschinen und Stromrichter [T-ETIT-101954]

Verantwortung: Prof. Dr.-Ing. Marc Hiller

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** M-ETIT-102124 - Elektrische Maschinen und Stromrichter

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 22/23	2306387	Elektrische Maschinen und Stromrichter	2 SWS	Vorlesung (V) / 🕃	Hiller
WS 22/23	2306389	Übung zu 2306387 Elektrische Maschinen und Stromrichter	2 SWS	Übung (Ü) / 🗯	Hiller

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Keine

11.14 Teilleistung: Elektroenergiesysteme [T-ETIT-101923]

Verantwortung: Prof. Dr.-Ing. Thomas Leibfried

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102156 - Elektroenergiesysteme

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2023	2307391	Elektroenergiesysteme	2 SWS	Vorlesung (V) / 🗣	Leibfried
SS 2023	2307393	Übungen zu 2307391 Elektroenergiesysteme	1 SWS	Übung (Ü) / 🗣	Steinle

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung im Umfang von 120 Minuten über die ausgewählte Lehrveranstaltung.

Voraussetzungen

11.15 Teilleistung: Elektromagnetische Felder [T-ETIT-109078]

Verantwortung: Prof. Dr. Martin Doppelbauer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104225 - Orientierungsprüfung

M-ETIT-104428 - Elektromagnetische Felder

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2023	2306004	Elektromagnetische Felder	2 SWS	Vorlesung (V) / 🗯	Doppelbauer
SS 2023	2306005	Übung zu 2306004 Elektromagnetische Felder	2 SWS	Übung (Ü) / 🗣	Menger, Kesten
SS 2023	2306006	Tutorium zu 2306004 Elektromagnetische Felder	SWS	Zusatzübung (ZÜ) /	Doppelbauer

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

11.16 Teilleistung: Elektromagnetische Wellen [T-ETIT-109245]

Verantwortung: Prof. Dr.-Ing. Sebastian Randel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104515 - Elektromagnetische Wellen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen						
WS 22/23	2309475	Elektromagnetische Wellen	2 SWS	Vorlesung (V) / 🗣	Randel, Koos, N.N., Krimmer, Matalla	
WS 22/23	2309477	Übung zu 2309475 Elektromagnetische Wellen	2 SWS	Übung (Ü) / 🗣	Randel, Koos, N.N.	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Empfehlungen

Allgemeine physikalische und mathematische Grundlagen aus den Basiskursen des ersten Semesters werden dringend empfohlen.

11.17 Teilleistung: Elektronische Schaltungen [T-ETIT-109318]

Verantwortung: Prof. Dr.-Ing. Ahmet Cagri Ulusoy

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104465 - Elektronische Schaltungen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	1 Sem.	2

Lehrveranstaltungen						
SS 2023	2308655	Elektronische Schaltungen	3 SWS	Vorlesung (V) / 🗣	Ulusoy	
SS 2023	2308657	Übungen zu 2312655 Elektronische Schaltungen	1 SWS	Übung (Ü) / 🗣	Ulusoy	
SS 2023	2308658	Tutorien zu 2312655 Elektronische Schaltungen	SWS	Zusatzübung (ZÜ) / Q ∗	Ulusoy	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Empfehlungen

Der erfolgreiche Abschluss von LV "Lineare elektrische Netze" wird dringend empfohlen, da das Modul auf dem Stoff und den Vorkenntnissen der genannten Lehrveranstaltung aufbaut.

11.18 Teilleistung: Elektronische Schaltungen - Workshop [T-ETIT-109138]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104465 - Elektronische Schaltungen

Teilleistungsart
StudienleistungLeistungspunkte
1Notenskala
best./nicht best.Turnus
Jedes SommersemesterVersion
1

Lehrveranstaltungen						
SS 2023	2308450	Elektronische Schaltungen - Workshop	1 SWS	Praktikum (P) / 🗣	Zwick	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Ausarbeitung. Die schriftliche Ausarbeitung wird korrigiert und mit Punkten bewertet. Bei Erreichen der erforderlichen Punktezahl gilt der Workshop als bestanden.

Voraussetzungen

11.19 Teilleistung: Elektrotechnisches Grundlagenpraktikum [T-ETIT-101943]

Verantwortung: Dr.-Ing. Armin Teltschik

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102113 - Elektrotechnisches Grundlagenpraktikum

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung mündlich	6	best./nicht best.	Jedes Sommersemester	3

Lehrveranstaltungen					
SS 2023	2303800	Elektrotechnisches Grundlagenpraktikum	4 SWS	Praktikum (P) / 🗣	Teltschik

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form eines mündlichen Abschlusskolloquiums von ca. 20 min Dauer sowie während des Praktikums durch Überprüfung der absolvierten Versuchs-Aufgaben.

Für die Teilnahme am Abschlusskolloque müssen mindestens 8 der 9 Versuche erfolgreich absolviert werden. Die erfolgreich durchgeführten Versuche bilden zusammen mit dem Abschluskolloquium eine Prüfungseinheit. Bei nicht bestehen ist das Praktikum komplett zu wiederholen.

Die Veranstaltung ist nicht benotet.

Voraussetzungen

Kenntnisse zum Inhalt der folgenden Module müssen vorhanden sein: "M-ETIT-102102 – Digitaltechnik" und "M-ETIT-104465 – Elektronische Schaltungen".

Anmerkungen

Für die Teilnahme am Abschlusskolloque müssen mindestens 8 der 9 Versuche erfolgreich absolviert werden. Die erfolgreich durchgeführten Versuche bilden zusammen mit dem Abschluskolloquium eine Prüfungseinheit.

Bei nicht bestehen ist das Praktikum komplett zu wiederholen.

11.20 Teilleistung: Engineering von Automatisierungssystemen [T-ETIT-112221]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-106037 - Engineering von Automatisierungssystemen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Wintersemester	1 Sem.	1

Lehrveranst	taltungen				
WS 22/23	2301485	Engineering von Automatisierungssystemen	2 SWS	Vorlesung (V) / 🗣	Barth

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

11.21 Teilleistung: Erzeugung elektrischer Energie [T-ETIT-101924]

Verantwortung: Dr.-Ing. Bernd Hoferer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100407 - Erzeugung elektrischer Energie

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich3DrittelnotenJedes Wintersemester2

Lehrveranstaltungen					
WS 22/23	2307356	Erzeugung elektrischer Energie	2 SWS	Vorlesung (V) / 🗣	Hoferer

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 20 Minuten) über die ausgewählte Lehrveranstaltung.

Voraussetzungen

11.22 Teilleistung: Experimentalphysik A [T-PHYS-110163]

Verantwortung: Prof. Dr. Thomas Schimmel **Einrichtung:** KIT-Fakultät für Physik

Bestandteil von: M-PHYS-105008 - Experimentalphysik

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich6Drittelnoten1

Lehrverans	_ehrveranstaltungen							
WS 22/23	4040011	Experimentalphysik A für die Studiengänge Elektrotechnik, Chemie, Biologie, Chemische Biologie, Geodäsie und Geoinformatik, Angewandte Geowissenschaften, Geoökologie, Technische Volkswirtschaftslehre, Materialwissenschaften, Lehramt Chemie, NWT Lehramt, Lebensmittelchemie, Materialwissenschaft und Werkstofftechnik (MWT) und Diplom-Ingenieurpädagogik	4 SWS	Vorlesung (V) / 🗣	Schimmel			
WS 22/23	4040012	Übungen zur Experimentalphysik A für Elektrotechnik	1 SWS	Übung (Ü) / 🗣	Schimmel, Wertz			

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (in der Regel ca. 180 min)

Voraussetzungen

11.23 Teilleistung: Fertigungsmesstechnik [T-ETIT-106057]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-103043 - Fertigungsmesstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3	Drittelnoten	Jedes Sommersemester	1

Lehrveranst	taltungen				
SS 2023	2302116	Fertigungsmesstechnik	2 SWS	Vorlesung (V) / 🗯	Heizmann

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 90 Minuten. Bei weniger als 20 Prüflingen kann alternativ eine mündliche Prüfung im Umfang von ca. 20 Minuten. Die Modulnote ist die Note der schriftlichen bzw. mündlichen Prüfung.

Voraussetzungen

keine

Empfehlungen

Kenntnisse der Stochastik und von Grundlagen der Messtechnik sind hilfreich.

11.24 Teilleistung: Forschungspraktikum [T-ETIT-111225]

Verantwortung: Prof. Dr.-Ing. Marc Hiller

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105602 - Forschungspraktikum

Teilleistungsart Studienleistung **Leistungspunkte** 10 Notenskala best./nicht best.

Turnus Jedes Semester

Dauer 1 Sem. **Version**

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung gemäß SPO § 4 Abs. 3, bestehend aus einer schriftlichen Ausarbeitung (Umfang ca. 15 Seiten).

Die Bestätigung der Teilnahme und des erfolgreichen Abschlusses des Forschungspraktikums erfolgt durch die betreuende Hochschullehrerin bzw. den betreuenden Hochschullehrer.

Die formale Anerkennung erfolgt analog zum Industriepraktikum durch das ETIT-Praktikantenamt.

Voraussetzungen

Berufspraktikum, Industriepraktikum, ETIT-Projekt dürfen nicht vorhanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-ETIT-109309 - ETIT-Projekt darf nicht begonnen worden sein.

Empfehlungen

Ein wesentlicher Teil der Bachelor-Pflichtmodule sollte erfolgreich abgeschlossen sein.

11.25 Teilleistung: Gebäudeautomatisierung [T-ETIT-112222]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-106038 - Gebäudeautomatisierung

Teilleistungsart
Prüfungsleistung schriftlichLeistungspunkte
3Notenskala
DrittelnotenTurnus
Jedes SommersemesterVersion
1

Lehrveranstaltungen					
SS 2023	2303302	Gebäudeautomatisierung	2 SWS	Vorlesung (V) / 🗣	Barth

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

11.26 Teilleistung: Grundlagen der Hochfrequenztechnik [T-ETIT-101955]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102129 - Grundlagen der Hochfrequenztechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	6

Lehrveranstaltungen					
SS 2023	2308080	Tutorien zu 2308406 Grundlagen der Hochfrequenztechnik	SWS	Tutorium (Tu) / 🗣	Nuß
SS 2023	2308406	Grundlagen der Hochfrequenztechnik	2 SWS	Vorlesung (V) / 🗣	Nuß
SS 2023	2308408	Übungen zu 2308406 Grundlagen der Hochfrequenztechnik	2 SWS	Übung (Ü) / 🗣	Nuß

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung (120 Minuten) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird sowie durch die Bewertung von Hausübungen. Die Hausübungen können während des Semesters von den Studierenden bearbeitet und zur Korrektur abgegeben werden. Die Abgabe erfolgt in handschriftlicher Form.

Voraussetzungen

Keine

Empfehlungen

Kenntnisse zu Grundlagen der Hochfrequenztechnik sind hilfreich.

Anmerkungen

Die Modulnote ist die Note der schriftlichen Prüfung. Werden mindestens 50% der Gesamtpunkte der Hausübungen erreicht, erhält der Studierende bei bestandener schriftlicher Prüfung einen Notenbonus von 0,3 bzw. 0,4 Notenpunkten. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note der schriftlichen Prüfung um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Der einmal erworbene Notenbonus bleibt für eine eventuelle schriftliche Prüfung in einem späteren Semester bestehen. Die Hausübung stellt eine freiwillige Zusatzleistung dar, d.h. auch ohne den Notenbonus kann in der Klausur die volle Punktzahl bzw. die Bestnote erreicht werden.

11.27 Teilleistung: Grundlagen der Künstlichen Intelligenz [T-INFO-112194]

Verantwortung: TT-Prof. Dr. Pascal Friederich

Prof. Dr. Gerhard Neumann

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-106014 - Grundlagen der Künstlichen Intelligenz

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5	Drittelnoten	Jedes Wintersemester	4

Lehrveranstaltungen					
WS 22/23	2400158	Grundlagen der künstlichen Intelligenz		Vorlesung / Übung (VÜ) / ♀	Neumann, Friederich

Legende: █ Online, ເૐ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 min) nach § 4 Abs. 2 Nr. 1 SPO erfolgen.

Voraussetzungen

Kognitive Systeme darf nicht begonnen sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-INFO-101356 - Kognitive Systeme darf nicht begonnen worden sein.

Empfehlungen

LA II

Grundlagen der Wahrscheinlichkeitstheorie und Statistik werden dringend empfohlen.

11.28 Teilleistung: Höhere Mathematik I - Klausur [T-MATH-103353]

Verantwortung: PH. D. Ioannis Anapolitanos

Prof. Dr. Dirk Hundertmark apl. Prof. Dr. Peer Kunstmann

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101731 - Höhere Mathematik I

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich11Drittelnoten1

Lehrveranstaltungen						
WS 22/23	0130000	Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik	6 SWS	Vorlesung (V)	Anapolitanos	
WS 22/23	0130100	Übungen zu 0130000 - HM I (ETIT) Übung	2 SWS	Übung (Ü) / 🗣	Anapolitanos	
WS 22/23	0133000	Höhere Mathematik I (Analysis) für die Fachrichtung Informatik	4 SWS	Vorlesung (V) / 🗣	Herzog	
WS 22/23	0133100	Übungen zu 0133000	2 SWS	Übung (Ü) / 🗣	Herzog	

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Voraussetzungen

11.29 Teilleistung: Höhere Mathematik II - Klausur [T-MATH-103354]

Verantwortung: PH. D. Ioannis Anapolitanos

Prof. Dr. Dirk Hundertmark apl. Prof. Dr. Peer Kunstmann

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101732 - Höhere Mathematik II

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich8Drittelnoten1

Lehrveranstaltungen					
SS 2023		Höhere Mathematik II für die Fachrichtung Elektrotechnik und Informationstechnik	4 SWS	Vorlesung (V)	Anapolitanos
SS 2023	0180150	Übungen zu 0180100	2 SWS	Übung (Ü)	Anapolitanos

Voraussetzungen

11.30 Teilleistung: Höhere Mathematik III - Klausur [T-MATH-103357]

Verantwortung: PH. D. Ioannis Anapolitanos

Prof. Dr. Dirk Hundertmark apl. Prof. Dr. Peer Kunstmann

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101738 - Höhere Mathematik III

Teilleistungsart Prüfungsleistung schriftlich Leistungspunkte 4 **Notenskala** Drittelnoten **Version** 1

Voraussetzungen

11.31 Teilleistung: Hybride und elektrische Fahrzeuge [T-ETIT-100784]

Verantwortung: Prof. Dr. Martin Doppelbauer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** M-ETIT-100514 - Hybride und elektrische Fahrzeuge

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 22/23	2306321	Hybride und elektrische Fahrzeuge	2 SWS	Vorlesung (V) / 🕃	Doppelbauer
WS 22/23	2306323	Übungen zu 2306321 Hybride und elektrische Fahrzeuge	1 SWS	Übung (Ü) / 🗯	Doppelbauer

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Empfehlungen

Zum Verständnis des Moduls ist Grundlagenwissen der Elektrotechnik empfehlenswert (erworben beispielsweise durch Besuch der Module "Elektrische Maschinen und Stromrichter", "Elektrotechnik für Wirtschaftsingenieure I+II" oder "Elektrotechnik und Elektronik für Maschinenbauingenieure").

11.32 Teilleistung: Industriebetriebswirtschaftslehre [T-WIWI-100796]

Verantwortung: Prof. Dr. Wolf Fichtner

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-ETIT-105804 - Überfachliche Qualifikationen

Teilleistungsart Studienleistung schriftlich **Leistungspunkte** 3

Notenskala best./nicht best.

Turnus Jedes Wintersemester Version

Lehrveranstaltungen					
WS 22/23	2581040	Industriebetriebswirtschaftslehre	2 SWS	Vorlesung (V) / 🗣	Fichtner

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer unbenoteten schriftlichen Prüfung (Klausur) im Umfang von 60 Minuten.

Voraussetzungen

Keine

11.33 Teilleistung: Industriepraktikum [T-ETIT-111224]

Verantwortung: Prof. Dr.-Ing. Marc Hiller

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105601 - Industriepraktikum

Teilleistungsart Studienleistung praktisch **Leistungspunkte** 10 Notenskala best./nicht best.

Turnus Jedes Semester **Version** 1

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung gemäß SPO § 4 Abs. 3, bestehend aus einer schriftlichen Ausarbeitung (Umfang ca. 15 Seiten).

Die Bestätigung der Teilnahme und des erfolgreichen Abschlusses des Industriepraktikums erfolgt durch den Betrieb, in dem das Praktikum absolviert wurde.

Die formale Anerkennung erfolgt analog zum Forschungspraktikum durch das ETIT-Praktikantenamt.

Voraussetzungen

Berufspraktikum, ETIT-Projekt, Forschungspraktikum dürfen nicht vorhanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Die Teilleistung T-ETIT-109310 Berufspraktikum darf nicht begonnen worden sein.
- 2. Die Teilleistung T-ETIT-109309 ETIT-Projekt darf nicht begonnen worden sein.

11.34 Teilleistung: Informationstechnik I [T-ETIT-109300]

Verantwortung: Prof. Dr.-Ing. Eric Sax

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104539 - Informationstechnik I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2023	2311651	Informationstechnik I	2 SWS	Vorlesung (V) / 🗣	Sax	
SS 2023	2311652	Übungen zu 2311651 Informationstechnik I	1 SWS	Übung (Ü) / 🗣	Haas	

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Voraussetzungen

keine

Empfehlungen

Grundlagen der Programmierung sind hilfreich (MINT-Kurs).

Die Inhalte des Moduls Digitaltechnik sind hilfreich.

11.35 Teilleistung: Informationstechnik I - Praktikum [T-ETIT-109301]

Verantwortung: Prof. Dr.-Ing. Eric Sax

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104539 - Informationstechnik I

Teilleistungsart
StudienleistungLeistungspunkte
2Notenskala
best./nicht best.Turnus
Jedes SommersemesterVersion
2

Lehrveranstaltungen					
SS 2023	2311653	Informationstechnik I – Praktikum	1 SWS	Praktikum (P) / 🗯	Sax

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Voraussetzungen

11.36 Teilleistung: Informationstechnik II und Automatisierungstechnik [T-ETIT-109319]

Verantwortung: Prof. Dr.-Ing. Eric Sax

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104547 - Informationstechnik II und Automatisierungstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Sommersemester	1 Sem.	1

Lehrveranstaltungen						
SS 2023	2311654	Informationstechnik II und Automatisierungstechnik	2 SWS	Vorlesung (V) / 🗣	Sax	
SS 2023	2311655	Übungen zu 2311654 Informationstechnik II und Automatisierungstechnik	1 SWS	Übung (Ü) / 🗣	Zink	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Voraussetzungen

keine

Empfehlungen

Grundlagen der Programmierung sind hilfreich (MINT-Kurs).

Die Inhalte des Moduls "Informationstechnik I" sind hilfreich.

11.37 Teilleistung: Introduction to Quantum Information Processing [T-ETIT-112715]

Verantwortung: Prof. Dr. Sebastian Kempf

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-106264 - Introduction to Quantum Information Processing

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	6	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2023	2312677	Introduction to Quantum Information Processing	2 SWS	Vorlesung (V) / 🗣	Kempf
SS 2023	2312678	Tutorial for 2312677 Introduction to Quantum Information Processing	2 SWS	Übung (Ü) / 🗣	Ilin, Kempf

Legende: █ Online, ເૐ Präsenz/Online gemischt, ♣ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

The examination takes place within the framework of an oral overall examination (30 minutes) on the selected events with which the minimum CR requirement is fulfilled in total.

Voraussetzungen

none

11.38 Teilleistung: Introduction to the Scientific Method (Seminar) [T-ETIT-111317]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Studienleistung	1	best./nicht best.	Jedes Semester	1 Sem.	1

Lehrverans	Lehrveranstaltungen							
WS 22/23	2305746	Introduction to the Scientific Method	1 SWS	Seminar (S) / 🗣	Nahm			
SS 2023	2305745	Introduction to the Scientific Method	1 SWS	Seminar (S) / 🗣	Nahm			

Legende: █ Online, ቆ Präsenz/Online gemischt, ♣ Präsenz, x Abgesagt

Erfolgskontrolle(n)

The sucess control takes place in the form of a study achievement. The exam consists of the preparation and the presentation of a seminar paper.

Voraussetzungen

none

Anmerkungen

Detailled information on contents, competence goals, and work load at:

M-ETIT-105665 - Introduction to the Scientific Method (Seminar)

11.39 Teilleistung: Komplexe Analysis und Integraltransformationen [T-ETIT-109285]

Verantwortung: Dr.-Ing. Mathias Kluwe

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104534 - Komplexe Analysis und Integraltransformationen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Studienleistung schriftlich	4	best./nicht best.	Jedes Sommersemester	1 Sem.	1

Lehrverans	Lehrveranstaltungen							
SS 2023	2303190	Komplexe Analysis und Integraltransformationen	1 SWS	Vorlesung (V) / 🗣	Kluwe			
SS 2023	2303191	Übungen zu 2303190 Komplexe Analysis und Integraltransformationen	1 SWS	Übung (Ü) / 🗣	Ye			

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Empfehlungen

Kenntnisse des Moduls Mathematik I werden empfohlen.

11.40 Teilleistung: Labor für angewandte Machine Learning Algorithmen [T-ETIT-109839]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker

Prof. Dr.-Ing. Eric Sax Prof. Dr. Wilhelm Stork

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104823 - Labor für angewandte Machine Learning Algorithmen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version	
Prüfungsleistung anderer Art	6	Drittelnoten	Jedes Semester	1 Sem.	1	

Lehrveranst	Lehrveranstaltungen							
WS 22/23		Labor für angewandte Machine Learning Algorithmen	4 SWS	Praktikum (P) / 🗣	Sax, Stork, Becker, Gerdes			

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von Prüfungsleistungen anderer Art.

- · Protokolle (Labordokumentation) und kontinuierliche Bewertung der Teamarbeit während der Präsenzzeit
- · Vortrag in Form einer Präsentation

Abfrage nach Ende der Veranstaltung zu den Inhalten des Labors.

Voraussetzungen

keine

Empfehlungen

Vorausgesetzt werden Kenntnisse in den Grundlagen der Informationstechnik (z.B. M-ETIT-102098), Signal- und Systemtheorie (z.B. M-ETIT-102123) sowie Wahrscheinlichkeitstheorie (z.B. M-ETIT-102104)

Außerdem: Programmierkenntnisse (z.B. C++ oder Python) sind zwingend erforderlich

Anmerkungen

Das Labor ist aus Kapazitätsgründen auf eine Teilnehmerzahl von 30 Studierenden begrenzt. Sofern erforderlich wird ein Auswahlverfahren durchgeführt. Die Plätze werden unter Berücksichtigung des Studienfortschritts der Studierenden (Fachsemester und fachspezifische Programmierkenntnisse) vergeben. Details werden in der ersten Veranstaltung und auf der Homepage der Veranstaltung bekanntgegeben.

Während sämtlicher Labortermine einschließlich der Einführungsveranstaltung herrscht Anwesenheitspflicht. Die Anwesenheitspflicht ist sowohl zur Durchführung der Arbeiten im Team vor Ort notwendig, als auch zur praktischen Vermittlung von Techniken und Fähigkeiten, die im reinen Selbststudium nicht erlernt werden können.

11.41 Teilleistung: Labor Schaltungsdesign [T-ETIT-100788]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker

Dr.-Ing. Oliver Sander

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100518 - Labor Schaltungsdesign

TeilleistungsartLeistungspunkteNotenskala
DrittelnotenTurnus
Jedes WintersemesterVersion

Lehrveranstaltungen					
WS 22/23	2311638	Labor Schaltungsdesign	4 SWS	Praktikum (P) / 🗣	Becker

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer praktikumsbegleitenden Bewertung, sowie einer mündlichen Gesamtprüfung (30 Minuten) über die ausgewählten Lehrveranstaltungen. Der Gesamteindruck wird bewertet.

Voraussetzungen

keine

Empfehlungen

Grundlegende Kenntnisse von elektronischen Basisschaltungen z.B. Lineare Elektrische Netze, Elektronische Schaltungen und Elektrische Maschinen und Stromrichter

11.42 Teilleistung: Lineare Elektrische Netze [T-ETIT-109316]

Verantwortung: Prof. Dr.-Ing. John Jelonnek

Prof. Dr. Sebastian Kempf

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104225 - Orientierungsprüfung

M-ETIT-104519 - Lineare Elektrische Netze

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	7	Drittelnoten	Jedes Wintersemester	1

Lehrveranst	Lehrveranstaltungen								
WS 22/23	2305256	Lineare elektrische Netze	4 SWS	Vorlesung (V) / 🗣	Jelonnek, Kempf				
WS 22/23	2305258	Übungen zu 2305256 Lineare elektrische Netze	1 SWS	Übung (Ü) / 🗣	Brenneisen, Wünsch				

Legende: ☐ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, x Abgesagt

Erfolgskontrolle(n)

In einer schriftlichen Prüfung im Umfang von 120 Minuten werden die Inhalte der Lehrveranstaltung Lineare Elektrische Netze geprüft. Bei bestandener Prüfung können Studierende einen Notenbonus von bis zu 0,4 Notenpunkten erhalten, wenn zuvor semesterbegleitend zwei Projektaufgaben erfolgreich bearbeitet wurden. Die Bearbeitung der Projektaufgaben wird durch die Abgabe einer Dokumentation oder des Projektcodes nachgewiesen.

Voraussetzungen

11.43 Teilleistung: Lineare Elektrische Netze - Workshop A [T-ETIT-109317]

Verantwortung: Prof. Dr.-Ing. Thomas Leibfried

Prof. Dr. Ulrich Lemmer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104225 - Orientierungsprüfung

M-ETIT-104519 - Lineare Elektrische Netze

Teilleistungsart
StudienleistungLeistungspunkte
1Notenskala
best./nicht best.Turnus
Jedes WintersemesterVersion
2

Lehrverans	Lehrveranstaltungen							
WS 22/23	2307905	Lineare Elektrische Netze - Workshop A	1 SWS	Praktikum (P) / 🗣	Lemmer, Leibfried			

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Ausarbeitung. Die schriftliche Ausarbeitung wird korrigiert und mit Punkten bewertet. Bei Erreichen der erforderlichen Punktezahl gilt der Workshop als bestanden.

Voraussetzungen

11.44 Teilleistung: Lineare Elektrische Netze - Workshop B [T-ETIT-109811]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104225 - Orientierungsprüfung

M-ETIT-104519 - Lineare Elektrische Netze

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Studienleistung	1	best./nicht best.	Jedes Wintersemester	1 Sem.	1

Lehrveranst	Lehrveranstaltungen							
WS 22/23	2305906	Lineare Elektrische Netze - Workshop B	1 SWS	Praktikum (P) / 🗣	Nahm			

Legende: █ Online, ເૐ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Ausarbeitung. Die schriftliche Ausarbeitung wird korrigiert und mit Punkten bewertet. Bei Erreichen der erforderlichen Punktezahl gilt der Workshop als bestanden.

Voraussetzungen

11.45 Teilleistung: Mensch-Maschine-Interaktion [T-INFO-101266]

Verantwortung: Prof. Dr.-Ing. Michael Beigl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100729 - Mensch-Maschine-Interaktion

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	2

Lehrverans	taltungen				
SS 2023	24659	Mensch-Maschine-Interaktion	2 SWS	Vorlesung (V) / 🖥	Beigl

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (im Umfang von i.d.R. 60 Minuten) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Die Teilnahme an der Übung ist verpflichtend und die Inhalte der Übung sind relevant für die Prüfung.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-INFO-106257 - Übungsschein Mensch-Maschine-Interaktion muss erfolgreich abgeschlossen worden sein.

11.46 Teilleistung: Mensch-Maschine-Wechselwirkung in der Anthropomatik: Basiswissen [T-INFO-101361]

Verantwortung: Prof. Dr.-Ing. Jürgen Beyerer

Dr. Jürgen Geisler

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100824 - Mensch-Maschine-Wechselwirkung in der Anthropomatik: Basiswissen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen					
WS 22/23		Mensch-Maschine- Wechselwirkung in der Anthropomatik: Basiswissen	2 SWS	Vorlesung (V) / 😘	van de Camp

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (im Umfang von i.d.R. 60 Minuten) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine.

11.47 Teilleistung: Nachrichtentechnik I [T-ETIT-101936]

Verantwortung: Prof. Dr.-Ing. Laurent Schmalen

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102103 - Nachrichtentechnik I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen					
WS 22/23	2310506	Nachrichtentechnik I	3 SWS	Vorlesung (V) / 🗯	Schmalen
WS 22/23		Übungen zu 2310506 Nachrichtentechnik I	1 SWS	Übung (Ü) / 🗯	Schmalen, Edelmann

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 180 Minuten.

Voraussetzungen

keine

Empfehlungen

Dringend empfohlen werden Kenntnisse der Inhalte in Höherer Mathematik I und II (z.B. M-MATH-101731 und M-MATH-101732), sowie Signale und Systeme (M-ETIT-104525) und Wahrscheinlichkeitstheorie (M-ETIT-102104).

Anmerkungen

ab WS20/21 das erste Mal im Wintersemester statt im Sommersemester

11.48 Teilleistung: Nachrichtentechnik II / Communications Engineering II [T-ETIT-110697]

Verantwortung: Dr.-Ing. Holger Jäkel

Prof. Dr.-Ing. Laurent Schmalen

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105274 - Nachrichtentechnik II / Communications Engineering II

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Semester	1 Sem.	1

Lehrveranstaltungen							
WS 22/23	2310509	Communications Engineering II	2 SWS	Vorlesung (V) / 🗯	Jäkel		
WS 22/23	2310510	Übung zu 2310509 Communications Engineering II	1 SWS	Übung (Ü) / 🗯	Jäkel		
SS 2023	2310511	Nachrichtentechnik II	2 SWS	Vorlesung (V) / 🗯	Jäkel		
SS 2023	2310513	Übungen zu 2310511 Nachrichtentechnik II	1 SWS	Übung (Ü) / 🗯	Sturm		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

keine

Empfehlungen

Kenntnis der grundlegenden Ingenieurmathematik inklusive Integraltransformationen und Wahrscheinlichkeitstheorie sowie Grundlagenwissen über die Nachrichtentechnik.

Vorheriger Besuch der Vorlesung "Nachrichtentechnik I", "Wahrscheinlichkeitstheorie" sowie "Signale und Systeme" wird empfohlen.

11.49 Teilleistung: Optical Networks and Systems [T-ETIT-106506]

Verantwortung: Prof. Dr.-Ing. Sebastian Randel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-103270 - Optical Networks and Systems

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen						
WS 22/23	2309470	Optical Networks and Systems	2 SWS	Vorlesung (V) / 🗣	Randel, N.N., Mahmud, Sherifaj	
WS 22/23	2309471	Tutorial for 2309470 Optical Networks and Systems	1 SWS	Übung (Ü) / 🗣	Randel, N.N.	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 20 Minuten).

Voraussetzungen

keine

Empfehlungen

Grundkenntnisse der Nachrichtentechnik und Kommunikationstechnik, photonische Komponenten, Wellenausbreitung in optischen Fasern.

11.50 Teilleistung: Optik und Festkörperelektronik [T-ETIT-110275]

Verantwortung: Prof. Dr. Ulrich Lemmer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105005 - Optik und Festkörperelektronik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	1 Sem.	1

Lehrveranstaltungen						
SS 2023	2304205	Optik und Festkörperelektronik	3 SWS	Vorlesung (V) / 🗣	Lemmer, Krewer	
SS 2023		Übungen zu 2304205 Optik- und Festkörperelektronik	2 SWS	Übung (Ü) / 🗣	Lemmer, Krewer	

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Voraussetzungen

11.51 Teilleistung: Optoelectronic Components [T-ETIT-101907]

Verantwortung: Prof. Dr. Wolfgang Freude

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100509 - Optoelectronic Components

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2023	2309486	Optoelectronic Components	2 SWS	Vorlesung (V) / 🗯	Freude
SS 2023	2309487	Optoelectronic Components (Tutorial)	1 SWS	Übung (Ü) / 🗯	Freude

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 30 Minuten). Die individuellen Termine für die mündliche Prüfung werden regelmäßig angeboten.

Voraussetzungen

keine

Empfehlungen

Kenntnisse in folgenden Bereichen: Elemente der Wellenausbreitung, Physik des pn-Übergangs.

11.52 Teilleistung: Optoelektronik [T-ETIT-100767]

Verantwortung: Prof. Dr. Ulrich Lemmer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100480 - Optoelektronik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen					
WS 22/23	2313726	Optoelektronik	2 SWS	Vorlesung (V) / 🗯	Lemmer
WS 22/23	2313728	Übungen zu 2313726 Optoelektronik	1 SWS	Übung (Ü)	Lemmer

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Prüfung (90 Minuten).

Voraussetzungen

keine

Empfehlungen

Kenntnisse der Festkörperelektronik

11.53 Teilleistung: Patente und Patentstrategien in innovativen Unternehmen [T-MACH-105442]

Verantwortung: Prof. Dr.-Ing. Albert Albers

Prof. Dr.-Ing. Sven Matthiesen Dipl.-Ing. Frank Zacharias

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4DrittelnotenJedes Semester1

Lehrveranstaltungen					
WS 22/23	2147161	Patente und Patentstrategien in innovativen Unternehmen	2 SWS	Block (B) / 🗣	Zacharias
SS 2023	2147160	Patente und Patentstrategien in innovativen Unternehmen	2 SWS	Block-Vorlesung (BV) / 🖥	Zacharias

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, benotet, Dauer: ca. 20 Minuten

Voraussetzungen

keine

Empfehlungen

Keine

11.54 Teilleistung: Photovoltaische Systemtechnik [T-ETIT-100724]

Verantwortung: Dipl.-Ing. Robin Grab

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100411 - Photovoltaische Systemtechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3	Drittelnoten	Jedes Sommersemester	1

Lehrverans	taltungen				
SS 2023	2307380	Photovoltaische Systemtechnik	2 SWS	Vorlesung (V) / 🗣	Grab

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung im Umfang von 120 Minuten über die ausgewählte Lehrveranstaltung.

Voraussetzungen

11.55 Teilleistung: Physiologie und Anatomie I [T-ETIT-101932]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100390 - Physiologie und Anatomie I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3	Drittelnoten	Jedes Wintersemester	1

Lehrverans	taltungen				
WS 22/23	2305281	Physiologie und Anatomie I	2 SWS	Vorlesung (V) / 🗯	Nahm

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 Minuten.

Voraussetzungen

11.56 Teilleistung: Praktikum Design und Entwurf von Quantenschaltkreisen [T-ETIT-112713]

Verantwortung: Prof. Dr. Sebastian Kempf

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-106262 - Praktikum Design und Entwurf von Quantenschaltkreisen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	6	Drittelnoten	Jedes Semester	1

Lehrveranst	taltungen				
SS 2023	2312681	Praktikum Design und Entwurf von Quantenschaltkreisen	4 SWS	Praktikum (P) / 🗣	Kempf, Mitarbeiter*innen

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Prüfungsleistung anderer Art. Sie besteht aus der Bewertung eines schriftlichen Praktikumsberichts mit einem Umfang von 10 bis 20 Seiten. Dieser soll in das Thema des Praktikums einführen, die Durchführung des Praktikums beschreiben sowie die nachfolgende Datenauswertung zusammenfassen und die Ergebnisse in den wissenschaftlichen Kontext bringen.

Voraussetzungen

11.57 Teilleistung: Praktikum Elektrochemische Energietechnologien [T-ETIT-111376]

Verantwortung: Dr. Philipp Röse

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105703 - Praktikum Elektrochemische Energietechnologien

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	5	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2023		Laboratory Electrochemical Energy Technologies	3 SWS	Praktikum (P) / 🗣	Röse

Legende: █ Online, ॎ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Prüfungsleistung anderer Art. Sie besteht aus vier Versuchen. Der Gesamteindruck wird bewertet. Zum Bestehen des Moduls müssen alle Versuche erfolgreich absolviert werden. Bei Nichtbestehen ist das Praktikum komplett zu wiederholen.

Die Teilnahme an der Praktikums-Sicherheitsunterweisung sowie die Teilnahme an einem Eingangskolloquium ist verpflichtend (unbenotet).

Voraussetzungen

Die Voraussetzung für die Zulassung zum Modul ist, dass die Studierenden die Modulprüfung "M-ETIT-105690 – Electrochemical Energy Technologies" erfolgreich abgelegt haben.

11.58 Teilleistung: Praktikum Hard- und Software in leistungselektronischen Systemen [T-ETIT-106498]

Verantwortung: Prof. Dr.-Ing. Marc Hiller

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-103263 - Praktikum Hard- und Software in leistungselektronischen Systemen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	6	Drittelnoten	Jedes Semester	1

Lehrveranstaltungen					
WS 22/23	2306346	Praktikum Hard- und Software in leistungselektronischen Systemen	4 SWS	Praktikum (P) / 🗯	Hiller, Schulz, Swoboda
SS 2023	2306346	Praktikum Hard- und Software in leistungselektronischen Systemen	4 SWS	Praktikum (P) / 🗯	Schulz, Swoboda, Hiller

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer praktikumsbegleitenden Bewertung.

Voraussetzungen

Die Module "M-ETIT-100402 - Workshop Schaltungstechnik in der Leistungselektronik" und "M-ETIT-100404 - Workshop Mikrocontroller in der Leistungselektronik" wurden weder begonnen noch abgeschlossen.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Die Teilleistung T-ETIT-100719 Workshop Schaltungstechnik in der Leistungselektronik darf nicht begonnen worden sein
- 2. Die Teilleistung T-ETIT-100721 Workshop Mikrocontroller in der Leistungselektronik darf nicht begonnen worden sein.

11.59 Teilleistung: Praktikum Matlab zur Modellierung im Bereich Optoelektronik [T-ETIT-111800]

Verantwortung: Prof. Dr. Ulrich Lemmer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105867 - Praktikum Matlab zur Modellierung im Bereich Optoelektronik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	3	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 22/23		Praktikum Matlab zur Modellierung im Bereich Optoelektronik	2 SWS	Praktikum (P) /	Lemmer, Lehr

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Prüfungsleistung anderer Art. Sie besteht aus der Beurteilung von Code, schriftlicher Ausarbeitung und mündlicher Befragung.

Voraussetzungen

11.60 Teilleistung: Radiation Protection [T-ETIT-100825]

Verantwortung: PD Dr. Bastian Breustedt

Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100562 - Radiation Protection

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich3DrittelnotenJedes Sommersemester2

Lehrveranstaltungen					
SS 2023	2305272	Radiation Protection	2 SWS	Vorlesung (V) / 🗣	Breustedt

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Success control is carried out as part of an overall written examination (2 h). The module grade is the grade of the written exam.

Voraussetzungen

none

11.61 Teilleistung: Radio-Frequency Electronics [T-ETIT-110359]

Verantwortung: Prof. Dr.-Ing. Ahmet Cagri Ulusoy

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105124 - Radio-Frequency Electronics

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5	Drittelnoten	Jedes Wintersemester	2

Lehrverans	taltungen				
WS 22/23	2308503	Radio-Frequency Electronics	2 SWS	Vorlesung (V) / 🗯	Ulusoy

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

The success criteria will be determined by a written examination of 120 min.

Empfehlungen

Contents of the modules "Linear electrical networks" and "Electronic circuits".

11.62 Teilleistung: Robotik I - Einführung in die Robotik [T-INFO-108014]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100893 - Robotik I - Einführung in die Robotik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 22/23	2424152	Robotik I - Einführung in die Robotik	3/1 SWS	Vorlesung (V) / 🗣	Asfour

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO Informatik.

Voraussetzungen

Keine.

Empfehlungen

Zur Abrundung ist der nachfolgende Besuch der LVs "Robotik II", "Robotik III" und "Mechano-Informatik in der Robotik" sinnvoll.

Anmerkungen

Dieses Modul darf nicht gerprüft werden, wenn im Bacherlor-Studiengang Informatik SPO 2008 die Lehrveranstaltung **Robotik I** mit **3 LP** im Rahmen des Moduls **Grundlagen der Robotik** geprüft wurde.

11.63 Teilleistung: Selbstverbuchung-HOC-SPZ-ZAK-benotet [T-ETIT-111527]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art2Drittelnoten1

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen

Platzhalter zur Selbstverbuchung einer benoteten überfachlichen Qualifikation, die am House of Competence, am Sprachenzentrum oder am Zentrum für Angewandte Kulturwissenschaft und Studium Generale erbracht wurde.

Titel und LP der Leistung werden übernommen.

Annotations

Placeholder for self-booking of a graded interdisciplinary qualification, which was provided at the House of Competence, the "Sprachenzentrum" or the Center for Applied Cultural Studies and Studium Generale.

Title and credits of the achievement are adopted.

11.64 Teilleistung: Selbstverbuchung-HOC-SPZ-ZAK-benotet [T-ETIT-111526]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art2Drittelnoten1

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen

Platzhalter zur Selbstverbuchung einer benoteten überfachlichen Qualifikation, die am House of Competence, am Sprachenzentrum oder am Zentrum für Angewandte Kulturwissenschaft und Studium Generale erbracht wurde.

Titel und LP der Leistung werden übernommen.

Annotations

Placeholder for self-booking of a graded interdisciplinary qualification, which was provided at the House of Competence, the "Sprachenzentrum" or the Center for Applied Cultural Studies and Studium Generale.

11.65 Teilleistung: Selbstverbuchung-HOC-SPZ-ZAK-benotet [T-ETIT-111528]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art2Drittelnoten1

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen

Platzhalter zur Selbstverbuchung einer benoteten überfachlichen Qualifikation, die am House of Competence, am Sprachenzentrum oder am Zentrum für Angewandte Kulturwissenschaft und Studium Generale erbracht wurde.

Titel und LP der Leistung werden übernommen.

Annotations

Placeholder for self-booking of a graded interdisciplinary qualification, which was provided at the House of Competence, the "Sprachenzentrum" or the Center for Applied Cultural Studies and Studium Generale.

11.66 Teilleistung: Selbstverbuchung-HOC-SPZ-ZAK-unbenotet [T-ETIT-111530]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

Teilleistungsart Studienleistung Leistungspunkte

Notenskala best./nicht best.

Version 1

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen

Platzhalter zur Selbstverbuchung einer unbenoteten überfachlichen Qualifikation, die am House of Competence, am Sprachenzentrum oder am Zentrum für Angewandte Kulturwissenschaft und Studium Generale erbracht wurde.

Titel und LP der Leistung werden übernommen.

Annotations

Placeholder for self-booking of a ungraded interdisciplinary qualification, which was provided at the House of Competence, the "Sprachenzentrum" or the Center for Applied Cultural Studies and Studium Generale.

11.67 Teilleistung: Selbstverbuchung-HOC-SPZ-ZAK-unbenotet [T-ETIT-111531]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

Teilleistungsart Studienleistung Leistungspunkte

Notenskala best./nicht best.

Version 1

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen

Platzhalter zur Selbstverbuchung einer unbenoteten überfachlichen Qualifikation, die am House of Competence, am Sprachenzentrum oder am Zentrum für Angewandte Kulturwissenschaft und Studium Generale erbracht wurde.

Titel und LP der Leistung werden übernommen.

Annotations

Placeholder for self-booking of a ungraded interdisciplinary qualification, which was provided at the House of Competence, the "Sprachenzentrum" or the Center for Applied Cultural Studies and Studium Generale.

11.68 Teilleistung: Selbstverbuchung-HOC-SPZ-ZAK-unbenotet [T-ETIT-111532]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

Teilleistungsart Studienleistung

Leistungspunkte

Notenskala best./nicht best.

Version 1

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen

Platzhalter zur Selbstverbuchung einer unbenoteten überfachlichen Qualifikation, die am House of Competence, am Sprachenzentrum oder am Zentrum für Angewandte Kulturwissenschaft und Studium Generale erbracht wurde.

Titel und LP der Leistung werden übernommen.

Annotations

Placeholder for self-booking of a ungraded interdisciplinary qualification, which was provided at the House of Competence, the "Sprachenzentrum" or the Center for Applied Cultural Studies and Studium Generale.

11.69 Teilleistung: Seminar Batterien I [T-ETIT-110800]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105319 - Seminar Batterien I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung anderer Art	3	Drittelnoten	Jedes Semester	1 Sem.	1

Lehrveranstaltungen						
WS 22/23	2304226	Seminar Batterien	2 SWS	Seminar (S) / 🗣	Weber	
SS 2023	2304226	Seminar Batterien	2 SWS	Seminar (S) / 🗣	Weber	

Legende: █ Online, ເૐ Präsenz/Online gemischt, ♣ Präsenz, 🗙 Abgesagt

Voraussetzungen

11.70 Teilleistung: Seminar Brennstoffzellen I [T-ETIT-110798]

Verantwortung: Dr.-Ing. Andre Weber

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105320 - Seminar Brennstoffzellen I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung anderer Art	3	Drittelnoten	Jedes Semester	1 Sem.	1

Lehrveranstaltungen					
WS 22/23	2304227	Seminar Brennstoffzellen	2 SWS	Seminar (S) / 🗣	Weber
SS 2023	2304227	Seminar Brennstoffzellen	2 SWS	Seminar (S) / 🗣	Weber

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von Prüfungsleistungen anderer Art.

Die Note setzt sich zusammen aus:

- 1. schriftliche Ausarbeitung (50%)
- 2. Seminarvortrag (50%)

Voraussetzungen

11.71 Teilleistung: Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung [T-ETIT-100714]

Verantwortung: Prof. Dr.-Ing. Marc Hiller

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100397 - Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	4	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2023	2306318	Leistungselektronik in Systemen der regenerativen Energieerzeugung	3 SWS	Seminar (S) / 🗣	Hiller	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Endvortrag, ca. 20-30 min mit anschließender Fragerunde.

Bewertet werden:

Folienqualität (Form und Inhalt)

Vortrag (Aufbau, Stil, Inhalt)

Verhalten bei der Fragerunde

Voraussetzungen

keine

Anmerkungen

Teilnahme an insgesamt 7 vorbereitenden Treffen (ca. alle 14 Tage mit durchschnittlich 3 h Dauer) mit den Themen:

Infoveranstaltung

Besprechung und Verteilung der Themen

Vortrags- und Präsentationstechniken

Präsentation der Materialsammlungen

Vorstellung von Struktur und Aufbau der Vorträge

Vorstellung der fertigen Folienpräsentation

Probevorträge

11.72 Teilleistung: Seminar Project Management for Engineers [T-ETIT-100814]

Verantwortung: Prof. Dr. Mathias Noe

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

Teilleistungsart
StudienleistungLeistungspunkte
3Notenskala
best./nicht best.Turnus
Jedes SommersemesterVersion
1

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 30 Minuten) nach § 4 Abs. 2 Nr. 2 SPO-AB_2015_KIT_15/SPO-MA2015-016.

Bestätigung der "erfolgreichen Teilnahme" (unbenotet, Studienleistung) ist für den Studiengang ENTECH durch das Bestehen einer 15 minütigen mündlichen Gesamtprüfung möglich.

Voraussetzungen

keine

Anmerkungen

Not applicable in summer term 2022

Exam and Seminar are held in English.

Detailled information on contents, competence goals, and work load at:

M-ETIT-100551 - Seminar Project Management for Engineers

11.73 Teilleistung: Seminar Projekt Management für Ingenieure [T-ETIT-108820]

Verantwortung: Dr. Christian Day

Prof. Dr. Mathias Noe

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung mündlich	3	best./nicht best.	Jedes Sommersemester	2

Lehrveranstaltungen					
SS 2023	2312684	Projektmanagement für Ingenieure	2 SWS	Seminar (S) /	Noe

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 30 Minuten).

Voraussetzungen

keine

Anmerkungen

Detaillierte Informationen zu Inhalten, Qualifikationszielen und Arbeitsaufwand unter:

M-ETIT-104285 - Seminar Projektmanagement für Ingenieure

11.74 Teilleistung: Seminar über ausgewählte Kapitel der Biomedizinischen Technik [T-ETIT-100710]

Verantwortung: Dr.-Ing. Axel Loewe

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100383 - Seminar über ausgewählte Kapitel der Biomedizinischen Technik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	3	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 22/23		Seminar über ausgewählte Kapitel der Biomedizinischen Technik	2 SWS	Seminar (S) / 🗣	Loewe

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen eines Vortrages (ca. 25 Minuten) mit nachfolgender Diskussion (ca. 10 Minuten).

Voraussetzungen

11.75 Teilleistung: Seminar Wir machen ein Patent [T-ETIT-100754]

Verantwortung: Prof. Dr. Wilhelm Stork

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

Teilleistungsart
StudienleistungLeistungspunkte
3Notenskala
best./nicht best.Turnus
Jedes SommersemesterVersion
1

Lehrverans	taltungen				
SS 2023	2311633	Seminar Wir machen ein Patent	2 SWS	Seminar (S) / 🗣	Stork

Legende: █ Online, ቆ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Ausarbeitung einer fiktiven Patentschrift. Die Modulnote ist die Note der schriftlichen Ausarbeitung.

Voraussetzungen

keine

Empfehlungen

Ein technisches Verständnis wird erwartet, das ungefähr dem fünften Semester entspricht.

Anmerkungen

Das Seminar ist teilnehmerbegrenzt.

Das Auswahlverfahren beginnt nach der ersten Vorlesung.

Detaillierte Informationen zu Inhalten, Qualifikationszielen und Arbeitsaufwand unter:

M-ETIT-100458 - Seminar Wir machen ein Patent

11.76 Teilleistung: Seminar: Grundlagen Eingebetteter Systeme [T-ETIT-110832]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker

Prof. Dr.-Ing. Eric Sax Prof. Dr. Wilhelm Stork

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105356 - Seminar: Grundlagen Eingebetteter Systeme

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung anderer Art	3	Drittelnoten	Jedes Semester	1 Sem.	1

Lehrveranstaltungen						
WS 22/23	2311628	Seminar: Grundlagen Eingebetteter Systeme	2 SWS	Seminar (S) / 🗯	Becker, Sax, Stork	
SS 2023	2311628	Seminar Grundlagen Eingebetteter Systeme	2 SWS	Seminar (S) / 🗯	Becker, Sax, Stork	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Prüfungsleistung anderer Art

Voraussetzungen

11.77 Teilleistung: Signale und Systeme [T-ETIT-109313]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104525 - Signale und Systeme

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1 Sem.	1

Lehrveranstaltungen							
WS 22/23	2302109	Signale und Systeme	2 SWS	Vorlesung (V) / 🗯	Heizmann		
WS 22/23	2302111	Übungen zu 2302109 Signale und Systeme	2 SWS	Übung (Ü) / 🗣	Heizmann, Leven		

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Voraussetzungen

Keine

Empfehlungen

Höhere Mathematik I + II

11.78 Teilleistung: Signale und Systeme - Workshop [T-ETIT-109314]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104525 - Signale und Systeme

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Studienleistung schriftlich	1	best./nicht best.	Jedes Sommersemester	1 Sem.	2

Lehrverans	Lehrveranstaltungen						
SS 2023	2302905	Signale und Systeme - Workshop	1 SWS	Praktikum (P) / 🗯	Heizmann		

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Voraussetzungen

Keine

Empfehlungen

Höhere Mathematik I + II

Anmerkungen

Wird ab dem Sommersemester 2021 im Sommer statt Winter angeboten.

Im Wintersemester 2020/2021 findet der Workshop nicht statt.

11.79 Teilleistung: Statistische Methoden der Informationsverarbeitung [T-ETIT-112108]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105960 - Statistische Methoden der Informationsverarbeitung

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich4Drittelnoten1

Lehrveranstaltungen						
WS 22/23	2310518	Statistische Methoden der Informationsverarbeitung	2 SWS	Vorlesung (V) / 🗯	Jäkel	
WS 22/23	2310519	Übung zu 2310518 Statistische Methoden der Informationsverarbeitung	1 SWS	Übung (Ü) / 😘	Jäkel	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 2 Stunden nach § 4 Abs. 2 Nr. 1 SPO Bachelor/Master Elektrotechnik und Informationstechnik. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

11.80 Teilleistung: Superconductors for Energy Applications [T-ETIT-110788]

Verantwortung: apl. Prof. Dr. Francesco Grilli

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105299 - Superconductors for Energy Applications

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung mündlich	5	Drittelnoten	Jedes Wintersemester	1 Sem.	2

Lehrveranstaltungen						
WS 22/23	2312704	Superconductors for Energy Applications	2 SWS	Vorlesung (V) / 🗣	Grilli	
WS 22/23	2312705	Übungen zu 2312704 Superconductors for Energy Applications	1 SWS	Übung (Ü) / 🗣	Grilli	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

oral exam approx. 30 minutes.

Voraussetzungen

A basic knowledge of electromagnetism and thermodynamics is the only requirement. Previous knowledge of superconductivity is not necessary.

"T-ETIT-106970 - Superconducting Materials for Energy Applications" must not be taken.

11.81 Teilleistung: Systemdynamik und Regelungstechnik [T-ETIT-101921]

Verantwortung: Prof. Dr.-Ing. Sören Hohmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** M-ETIT-102181 - Systemdynamik und Regelungstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen							
WS 22/23	2303155	Systemdynamik und Regelungstechnik	2 SWS	Vorlesung (V) / 🗯	Hohmann		
WS 22/23	2303156	Tutorien zu 2303155 Systemdynamik und Regelungstechnik	SWS	Tutorium (Tu) / 💲	Schneider		
WS 22/23	2303157	Übungen zu 2303155 Systemdynamik und Regelungstechnik	1 SWS	Übung (Ü) / 🕄	Schneider		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Anmerkungen

wird ab dem Wintersemester 2020/2021 im Wintersemester statt im Sommersemester angeboten, die Lehrveranstaltung wird im Sommersemester 2020 nicht angeboten

11.82 Teilleistung: Technikethik - ARs ReflecTlonis [T-ETIT-111923]

Verantwortung: Dr. phil. Michael Kühler

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Studienleistung	2	best./nicht best.	Jedes Semester	1 Sem.	1

Lehrverans	Lehrveranstaltungen						
WS 22/23	9003013	ARS REFLECTIONIS. Verantwortlich denken und handeln in Technik, Wissenschaft und Innovation	SWS	Block (B) /	Kühler, Does		
SS 2023	9003013	ARS REFLECTIONIS. Verantwortlich denken und handeln in Technik, Wissenschaft und Innovation	SWS	Block (B) /	Kühler, Does		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Multiple-Choice Abschlusstest

Voraussetzungen

keine

Anmerkungen

ARS ReflecTionis ist ein modularer Online-Kurs zum Selbststudium. Ziel ist, die Studierenden zur kritischen Reflexion der ethischen Herausforderungen des eigenen Faches und der eigenen zukünftigen beruflichen Tätigkeit zu befähigen. Dabei lassen sich passgenau studienbereichsspezifische Komponenten zu konkreten Fragen der Verantwortungsübernahme mit allgemeinen Komponenten zu Grundlagen der Ethik und normativer Argumentation kombinieren. Die einzelnen Komponenten enthalten jeweils eine per Video aufgezeichnete Micro-Lecture, die über ILIAS angesehen werden kann, sowie weiteres Kursmaterial zum Selbststudium. Optional werden Q&A Sessions und Workshops angeboten, um im Austausch mit den Dozierenden Fragen klären und Diskussionen vertiefen zu können. Der Kurs wird über einen Multiple-Choice-Test abgeschlossen.

Der Kurs wird von der Academy for Responsible Research, Teaching, and Innovation (ARRTI) kontinuierlich weiterentwickelt und betreut und in Kooperation mit dem House of Competence (HoC) angeboten.

11.83 Teilleistung: TutorInnenprogramm - Start in die Lehre [T-ETIT-100797]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

Teilleistungsart Studienleistung **Leistungspunkte**

Notenskala best./nicht best.

Turnus Jedes Semester **Version** 1

Erfolgskontrolle(n)

Die Erfolgskontrolle setzt sich aus der Teilnahme an Präsenzbausteinen (Anwesenheitspflicht von 80%) sowie der Abgabe eines schriftlichen Reflexionsportfolios zusammen.

Die Anwesenheitspflicht ist sowohl zur Durchführung der Arbeiten im Team vor Ort notwendig, als auch zur praktischen Vermittlung von Techniken und Fähigkeiten, die im reinen Selbststudium nicht erlernt werden können.

Voraussetzungen

Semesterbegleitende Tätigkeit als TutorIn am KIT während der Programmteilnahme..

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-ETIT-100824 - TutorInnenprogramm - Start in die Lehre (erweitert) darf nicht begonnen worden sein.

Anmerkungen

Detaillierte Informationen zu Inhalten, Qualifikationszielen und Arbeitsaufwand unter:

M-ETIT-100563 - TutorInnenprogramm - Start in die Lehre

11.84 Teilleistung: Übungsschein Mensch-Maschine-Interaktion [T-INFO-106257]

Verantwortung: Prof. Dr.-Ing. Michael Beigl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100729 - Mensch-Maschine-Interaktion

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	0	best./nicht best.	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2023	2400095	Mensch-Maschine-Interaktion	1 SWS	Übung (Ü) / 🖥	Beigl
SS 2023	24659	Mensch-Maschine-Interaktion	2 SWS	Vorlesung (V) / 🖥	Beigl

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO (unbenoteter Übungsschein).

Für das Bestehen müssen regelmäßig Übungsblätter abgegeben werden. Die konkreten Angaben dazu werden in der Vorlesung bekannt gegeben.

Voraussetzungen

Keine.

Anmerkungen

Die Teilnahme an der Übung ist verpflichtend und die Inhalte der Übung sind relevant für die Prüfung.

11.85 Teilleistung: Wahrscheinlichkeitstheorie [T-ETIT-101952]

Verantwortung: Dr.-Ing. Holger Jäkel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102104 - Wahrscheinlichkeitstheorie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 22/23	2310505	Wahrscheinlichkeitstheorie	2 SWS	Vorlesung (V) / 🗯	Jäkel
WS 22/23	2310507	Übungen zu 2310505 Wahrscheinlichkeitstheorie	1 SWS	Übung (Ü) / 🗯	Jäkel

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Inhalte der Höheren Mathematik I und II werden benötigt (z.B. M-MATH-101731 und M-MATH-101732).

11.86 Teilleistung: Windkraft [T-MACH-105234]

Verantwortung: Norbert Lewald

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von: M-MACH-105732 - Windkraft

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich4DrittelnotenJedes Wintersemester2

Lehrveranstaltungen					
WS 22/23	2157381	Windkraft	2 SWS	Veranstaltung (Veranst.) / ♣	Lewald, Pritz

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung, 120 Minuten

Voraussetzungen

11.87 Teilleistung: Workshop angewandte Hochfrequenztechnik [T-ETIT-110790]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105301 - Workshop angewandte Hochfrequenztechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	3	Drittelnoten	Jedes Semester	1

Lehrveranstaltungen					
WS 22/23	2308424	Workshop angewandte Hochfrequenztechnik	2 SWS	Praktikum (P) / 🗣	Pauli
SS 2023	2308424	Workshop angewandte Hochfrequenztechnik	2 SWS	Praktikum (P) / 🗣	Pauli

Legende: █ Online, ቆ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Zur Vorbereitung der Laborversuche sind von jeder Laborgruppe vor dem Versuch einige Aufgaben als Hausarbeit gemeinsam zu bearbeiten und direkt vor Versuchsbeginn in einfacher Ausfertigung beim Betreuer abzugeben. Die Aufgaben zum Versuch an sich werden während der Durchführung bearbeitet und protokolliert. Das Protokoll soll direkt nach der Versuchsdurchführung beim Betreuer abgegeben werden. Vor jeder Versuchsdurchführung gibt es eine schriftliche bzw. mündliche Prüfung (ca. 20 min., keine Hilfsmittel) über den Versuchsinhalt.

Voraussetzungen

Grundlegende Kenntnisse zur Nachrichtentechnik und Grundlagen der Hochfrequenztechnik