COMPUTER SCIENCE Database Management System **Transaction & Concurrency Control** Lecture_9 Vijay Agarwal sir

Conflict & View Serializable

Finding Conflict Serializable
Schedule

Servalizable

Gonflict Servializable
Liview Servializable

Recoverablity

> Recoverable
> Coscadeless
> Strict Recoverable

Find Number of Conflict Serializable

4 view Serializable Schedule.

Data Item A

$$R(A) - W(A)$$

$$W(A) - W(A)$$

Two transactions T₁ and T₂ are given as

$$T_1: r_1(X) w_1(X) r_1(Y) w_1(Y)$$

$$T_2$$
: $r_2(Y) w_2(Y) r_2(Z) w_2(Z)$

Where $r_i(V)$ denotes a read operation by transaction T_i on a variable V and $w_i(V)$ denotes a write operation by transaction T_i on a variable V. The total number of conflict serializable schedules that can be formed by T_1 and T_2 is _____. [NAT:2017–2M]

TI: OI(X) WI(X) VILY) (WILY) T2: 82/8) W2/8) 82(2) W2(2) 82/4)-W1/4) Conflict operation Stort branchism W2(y) ~ 82(z) w2(z) ab Ti Transaction T2 + T1 But Transacting 21(X) MM (X/(X) MI/A) order Ti-) To. So Not allowed

(: Dibberent Date Item) 02/2) W2(2) Can be TI: 01(x) W1(x) (1/4) W1(4) but after W2(x). T2: 82/8) E2(2) Wely) 87(y)-w2(y) W2(8) W2(y) W2(y) 52(2) W2(2)
Placed Any where. operation CASEIL CASEI リッカ CASEIII But Transaction W2(8) CASEI WI(X) 81(X) 81(4) W1(4) Wely) 81(X) CASEIL WI(Y) wely) 8119 WILX) CASEIL 8112 WI(Y) Wely) 81(X) WI(X)

for 82(2) 4 W2(2) We have 3 Place (Position) Wout of 3 Places Put them Together [3C1] Out of 3 Places Put theng Separately (3(2)

(5219) (11x) ... (21y) CASE II! 762(4)72 2X [4(, + 4(2) 2X (4+6) Case II: 20 Nays W2(8) \$ \$(x) \$ W(x) \$ \$1(8) \$ W1(8) 1X (5C1+5C2) CASE III: 15 CASE I:18

T2 -) (II) CASE II: 20
CASE III: 15

53

Total Number of Conflict Servializate Ti -> (T2): L T2 -> (T): 53 (54) Awg

E Start Lost operation of the first Toursaction 4 but that operation at Correct Place Such that Conflict operation order Must be Same as Toursaction Order.

Q.2

Consider the transaction T₁ and T₂ given below:

NAT] PW

 $T_1 : R_1(A) R_1(B) W_1(B)$

 $T_2: R_2(A) R_2(B) W_2(B)$

Where $R_i(A)$ denote a read operation by transaction T_i on a Data Item (A) W_i (B) Denote a write operation by transaction T_i on a Data Item B.

The Total number of conflict serializable schedule is ____.

TI: RILA) RILB) WILB)

12: R2(A) R2(B) W2(B)

R2(B)-W1(B) But order is (1,) T2)

Lost observation(1)
ab birst Travelition(1)

CASEIL

CASEI

WI(B)

R2(B)

W2(B)

Wi(B)

R2(A) R2(B)

W2(B)

R2(A) - 1 W1(B) R2(B) WZ(B) CASEI RILA) RILB) $2C_1 + 2C_2 \Rightarrow 2+1 = (3)$ CASEIL WI(B) R2(A) R2(B) W2(R) RILA) RILB) 1 ways = 3+1= 4 T2 -> (T) = 3+1 = 4 (Biz Exact Some operation) Total Conflict suble = 8

RILAI RICB)
Out at 2 Place
Petron together 2C,
place @ 2C2
Separately 2C2
2C1+2C2

Total Serial = 2 Schedule

Non Servial Conflict = 8-2 Servializable

=(6) Am

Consider the transaction T₁ and T₂ given below:

 $T_1 : R_1(A) R_1(B) W_1(B)$

 $T_2 : R_2(B) R_2(A) W_2(B)$

Where $R_i(A)$ denote a read operation by transaction T_i on a Data Item (A) W_i (B) Denote a write operation by transaction T_i on a Data Item B.

The Total number of conflict serializable schedule is ____.

Without Schedule find # Conflict Serializable.

With Schedule: Gind # Corplict Serializable.

Consider given schedule:

S: $r_1(x)$, $r_2(y)$, $w_3(y)$, $r_4(x)$, $w_4(z)$, $w_3(y)$

How many conflict serializable schedules exists for the above

schedule S?

Consider the following schedule

$$S = r_1(P); r_3(S); w_1(Q); r_2(Q) r_4(Q), w_2(R);$$

 $r_5(R); w_4(T); r_5(T); w_5(Q)$

How many serial schedules are possible which will be

view equ	al to S?	(10) THE
Line Pend	P: (TL)	S: FB

@ Final Write

(3) Write-Read Sequence (Updated Read)

9.1	15
	W1(Q)-82(Q): T1→T2
MCP	W1(Q) - 84(Q): TI-T

$$W_2(R) - \delta_5(R): \frac{1}{2} \rightarrow T_5$$

 $W_1(T) - \delta_5(T): \frac{1}{4} \rightarrow T_5$

2	13	14	12
	8(2)		
8(0)			
w(R)		४(८)	
		W(T)	Y(R)
			W(Q)

Tradebendonte Carbe Place TI + TS TI > T2 - T appear before T24 Ty Te > Ts) > Ts Appear Abten Te & Ty

Ty > Ts) (T2 & T4) (T) (T2 & T4 (T5) CASEI) 10TL 20T2 10 T4 10 T5 15 = 5

CASEII 1 T. TY 1. T2 1. T5 1. = 5

CASEI 1 (TD) TI T2 TY TS 2 TI (T2) T2 T4 T5 3 TI T2 (73) Ty T5 4 To To Ty (Ta) To 5 TI T2 T4 (T5) T3

CASEI (I3) TI TY T2 T5 TI (T3) T4 T2 T5 TI TY (T3) T2 T5 4 TI TY T2 (T3) T5 5 T Ty T2 T5 (T3)

(1)	T ₁	T ₂
	W(A)	R(A)
	C R	Commit

T ₁	T ₂	(3)
W(A) C R	R(A)	

T ₁	T ₂
W(A) C R	
	R(Q)/W(Q)

Recoverable

Cascadeless

(2)

Strict schedule

Q.	Consider the following database schedule with two transactions, T_1 and T_2 . $S = r_2(X)$; $r_1(X)$; $r_2(Y)$; $w_1(X)$; $r_1(Y)$; $w_2(X)$; a_1 ; a_2 where $r_i(Z)$ denotes a read operation by transaction T_i on a variable Z , $w_i(Z)$ denotes a write operation by T_i on a variable Z and a_i denotes an abort by transaction T_i . Which one of the following statements about the above schedule is	
	TRUE? [MCQ:2016-2M]	T2
A B	S is non-recoverable S is recoverable, but has a cascading abort Rollback	s(x)
1	S does not have a cascading abort Recoverable . W(X)	
	Sis coscadeless (No uncommitted Read) and Stock Recoverable	$\nu(\chi)$
	: Not Stoict	22

.

(b) is True Only when Schedule is Recoverable but
Not Cascadeless.

W(A) CIR R(A) WA) Stock Recoverable Q.

Let S be the following schedule of operations of three transactions T_1 , T_2 and T_3 in a relational database system:

 $R_2(Y), R_1(X), R_3(Z), R_1(Y), W_1(X), R_2(Z), W_2(Y), R_3(X), W_3(Z)$

Consider the statements P and Q below:

P: S is conflict-serializable.

Q: If T_3 commits before T_1 finishes, then S is recoverable.

Which one of the following choices is correct?

A Both P and Q are true.

[MCQ: 2021-2M]

B P is true and Q is false.

C P is false and Q is true.

D Both P and Q are false.

 $R_4(A) R_2(A) R_3(A) W_1(B) W_2(A) R_3(B) W_2(B)$

Consider the following directed graph:

The number of different topological ordering of the vertices of the

graph is.

[MCQ: 2016]

