IIT Jodhpur

Biological Vision and Applications

Module 03-05: Conditional independence

Hiranmay Ghosh

Joint probability Recap

$$N = 80$$

$$a_1 \quad a_2$$

$$b_1 \quad 25 \quad 10$$

$$b_2 \quad 5 \quad 40$$

- Joint probability: $P(a_1b_1) = \frac{|a_1b_1|}{N} = \frac{25}{90} \approx 0.31$
- Marginal probability: $P(a_1) = \frac{|a_1|}{N} = \frac{30}{80} \approx 0.38$ • $|a_1| = |a_1b_1| + |a_1b_2| = 25 + 5 = 30$
- Conditional probability: $P(a_1 \mid b_1) = \frac{|a_1b_1|}{|b_1|} = \frac{25}{35} \approx 0.71$ $|b_1| = |a_1b_1| + |a_2b_1| = 25 + 10 = 35$

Conditional Independence

- The variable A is conditionally independent of B, iff
 - the states of A does not depend on the states of B
- Formally $\forall i = 1..m, j = 1..n : P(a_i \mid b_j) = P(a_i)$
- Now $P(a_i \mid b_j) = \frac{P(a_i b_j)}{P(a_j)}$
- Substituting, condition for "conditional independence" in symmetric form
 - $\forall i,j: P(a_ib_j) = P(a_i).P(b_j)$
- Conditional independence is symmetric
 - ightharpoonup CondInd(A, B) \Leftrightarrow CondInd(B, A)

Exercise: Prove that if $\forall i, j : P(a_i \mid b_j) = P(a_i)$, then $\forall i, j : P(b_j \mid a_i) = P(b_j)$

Conditional Independence

Continued

$$N = 80$$

$$a_1 \quad a_2$$

$$b_1 \quad 25 \quad 10$$

$$b_2 \quad 5 \quad 40$$

- Are the variables A and B conditionally independent?

 - $P(a_1) = \frac{30}{80} \approx 0.38$ $P(a_1 \mid b_1) = \frac{25}{35} \approx 0.71$
 - $P(a_1) \neq P(a_1 \mid b_1)$
 - ► A and B are not conditionally independent

Case of three variables

Place

- o Tamil Nadu
- o Kashmir

Fruit

- o Banana
- o Apple

Color

- o Red
- o Green
- o Yellow

 $P(B \mid T) = 0.8$ $P(A \mid T) = 0.2$

$$P(B \mid K) = 0.1$$
$$P(A \mid K) = 0.9$$

$$P(R \mid B) = 0.1$$

 $P(G \mid B) = 0.4$
 $P(Y \mid B) = 0.5$

$$P(Y \mid B) = 0.4$$
$$P(Y \mid B) = 0.5$$

$$P(R \mid A) = 0.6$$

 $P(G \mid A) = 0.2$
 $P(Y \mid A) = 0.2$

$$P(G \mid A) = 0.2$$
$$P(Y \mid A) = 0.2$$

- Place not specified: P(Y) = ?
 - $P(B) = 0.7 \times 0.8 + 0.3 \times 0.1 = 0.59$
 - $P(A) = 0.7 \times 0.2 + 0.3 \times 0.9 = 0.41$
 - $P(Y) = 0.59 \times 0.5 + 0.41 \times 0.2 = 0.377$
- Place specified as Kashmir: $P(Y \mid K) = ?$
 - P(B) = 0.1
 - P(A) = 0.9
 - $P(Y) = 0.1 \times 0.5 + 0.9 \times 0.2 = 0.23$
- $P(Y) \neq P(Y \mid K)$
 - Place and Color are not conditionally independent

Case of three variables

contd.

Place

o Tamil Nadu o Kashmir

Fruit

o Banana o Apple

Color

- o Red o Green
- o Yellow

$$P(B \mid T) = 0.8$$

$$P(A \mid T) = 0.2$$

$$P(B \mid K) = 0.1$$

 $P(A \mid K) = 0.9$

$$P(R \mid B) = 0.1$$

 $P(G \mid B) = 0.4$
 $P(Y \mid B) = 0.5$

$$P(R \mid A) = 0.6$$

 $P(G \mid A) = 0.2$
 $P(Y \mid A) = 0.2$

- Given that Fruit = Banana
- Place not specified

$$P(Y) = P(Y \mid B) = 0.5$$

Place specified as Kashmir:

$$P(Y \mid K, B) = P(Y \mid B) = 0.5$$

- ... similarly, for TN, for other colors, for apple
- Given F, P and C are conditionally independent

Quiz 03-05

End of Module 03-05