TEOREMA 2.2 DAS NOTAS DE PETER SCHOLZE SOBRE MATEMÁTICA CONDENSADA

Igor Martins Silva

02 e 09 de dezembro de 2022

Antes de enunciarmos o Teorema 2.2, das notas de Peter Scholze, e apresentarmos sua demonstração, que é o objetivo deste texto, vamos relembrar o que é uma categoria de grupos abelianos κ -condensados, definir categoria abeliana e apresentar os axiomas de Grothendieck (AB3), (AB4), (AB5), (AB6), (AB3*) e (AB4*). Porém, antes de mais nada, vale ressaltar que uma categoria \mathscr{C} , a menos que se expresse o contrário, é sinônimo de categoria pequena, ou seja, $\operatorname{Obj}(\mathscr{C})$ e $\operatorname{Hom}(\mathscr{C})$ são conjuntos.

1 Categoria κ -Cond(AbGrp)

Vamos começar relembrando a definição de categoria de grupos abelianos κ -condensados, assunto discutido no seminário sobre conjuntos condensados, ministrado por Luiz Felipe Andrade Campos. Sejam

- (a) **HTop** a categoria cujos objetos são espaços topológicos Hausdorff e os morfismos são funções contínuas, e
- (b) **TfinSet** a categoria cujos objetos são conjuntos finitos com a topologia discreta e os morfismos são funções contínuas.

Note que **TfinSet** é uma subcategoria de **HTop**. Seja \mathscr{D} um poset, isto é, uma categoria cujos objetos são elementos de um conjunto parcialmente ordenados e os morfismos são dados pela relação de ordem, \geq , no seguinte sentido: dados $X,Y \in \mathrm{Obj}(\mathscr{D})$, temos que $\mathrm{Hom}_{\mathscr{D}}(X,Y) \neq \mathscr{D}$, se, e somente se, $X \geq Y$. Suponha ainda que \mathscr{D} é direcionado para cima, isto é, dados $X,Y \in \mathrm{Obj}(\mathscr{D})$, existe $Z \in \mathrm{Obj}(\mathscr{D})$ tal que $Z \geq X,Y$. Seja $F : \mathscr{D} \to \mathsf{HTop}$ um funtor tal que $F(\mathscr{D})$ está em **TfinSet**. No seminário sobre limites, colimites e conjuntos profinitos, ministrado pelo professor John MacQuarrie, vimos que o limite de F é um cone, ou seja, é um par $(L,(\varphi_D)_{D\in\mathscr{D}})$, onde $L \in \mathrm{Obj}(\mathsf{HTop})$ e $\varphi_D \in \mathrm{Hom}_{\mathsf{HTop}}(L,F(D))$, que satisfaz uma propriedade universal. O objeto dado pelo limite de F é o que chamamos de **conjunto**

profinito. A categoria cujos objetos são conjuntos profinitos e os morfismos são funções contínuas é denotada por **ProfinSet**.

Seja κ um cardinal limite forte não enumerável, isto é, um cardinal não enumerável tal que, para todo $\lambda < \kappa$, vale que $2^{\lambda} < \kappa$. Definimos κ -ProfinSet como sendo a categoria cujos objetos são conjuntos profinitos de cardinalidade menor do que κ e os morfismos são funções contínuas.

Denote por AbGrp a categoria cujos objetos são grupos abelianos e os morfismos são homomorfismos de grupos. Um **grupo abeliano** κ -condensado é um feixe

$$T: \kappa$$
-ProFinSet^{op} \rightarrow AbGrp

Como feixes são funtores, se T e S são grupos abelianos κ -condensados, então um morfismo de T para S é uma transformação natural de T para S. Assim, podemos definir uma categoria onde os objetos são grupos abelianos κ -condensados e os morfismos são transformações naturais. Vamos denotar tal categoria por κ -Cond(AbGrp). Para mais detalhes sobre feixes, ver o seminário sobre feixes e esquemas, ministrado pelo professor André Contiero.

2 Categoria abeliana

2.1 Categoria pré-aditiva

Uma categoria \mathscr{C} é dita **pré-aditiva**, se,

- (a) para todo $X, Y \in \text{Obj}(\mathscr{C})$, existe uma operação binária + sobre $\text{Hom}_{\mathscr{C}}(X, Y)$ tal que $(\text{Hom}_{\mathscr{C}}(X, Y), +)$ é grupo abeliano;
- (b) para todo $X, Y, Z \in \text{Obj}(\mathcal{C})$, a composição

$$\circ$$
: Hom_{\(\mathcal{C}\)} $(Y,Z) \times \text{Hom}_{(C)}(X,Y) \to \text{Hom}_{(C)}(X,Z)$

é bilinear, isto é, $(f + f') \circ g = f \circ g + f' \circ g$ e $f \circ (g + g') = f \circ g + f \circ g'$, para todo $f, f' \in \text{Hom}_{\mathscr{C}}(Y, Z)$ e todo $g, g' \in \text{Hom}_{\mathscr{C}}(X, Y)$.

Denotaremos o elemento neutro do grupo $\operatorname{Hom}_{\mathscr{C}}(X,Y)$ por 0_{XY} .

Observação 1. Se \mathscr{C} é uma categoria pré-aditiva e $f \in \operatorname{Hom}_{\mathscr{C}}(Z,X)$, então $0_{XY} \circ f = (0_{XY} + 0_{XY}) \circ f = 0_{XY} \circ f + 0_{XY} \circ f$. Logo, $0_{XY} \circ f = 0_{ZY}$. Analogamente, se $f \in \operatorname{Hom}_{\mathscr{C}}(Y,Z)$, então $f \circ 0_{XY} = 0_{XZ}$.

2.2 Categoria aditiva

Seja $\mathscr C$ uma categoria. Dizemos que $C \in \mathrm{Obj}(\mathscr C)$ é um **objeto inicial**, se, para todo $X \in \mathrm{Obj}(\mathscr C)$, existe um único morfismo em $\mathrm{Hom}_{\mathscr C}(C,X)$. Analogamente, dizemos que $C \in \mathrm{Obj}(\mathscr C)$ é um **objeto final**, se, para todo $X \in \mathrm{Obj}(\mathscr C)$, existe um único morfismo em $\mathrm{Hom}_{\mathscr C}(X,C)$.

Lema 1. Sejam $\mathscr C$ uma categoria pré-aditiva e $C \in \mathrm{Obj}(\mathscr C)$. Então as seguintes afirmações são equivalentes.

- (a) *C* é um objeto inicial.
- (b) *C* é um objeto final.
- (c) $id_C = 0_{CC} \in Hom_{\mathscr{C}}(C, C)$.

Demonstração. Vamos mostrar que (a) implica (c). Assim, suponha que C é um objeto inicial. Então, $\operatorname{Hom}_{\mathscr{C}}(C,C)$ é o grupo abeliano trivial. Uma vez que $\operatorname{id}_X \in \operatorname{Hom}_{\mathscr{C}}(X,X)$, para todo $X \in \operatorname{Obj}(\mathscr{C})$, então $\operatorname{id}_C = 0_{CC} \in \operatorname{Hom}_{\mathscr{C}}(C,C)$. A demonstração que (b) implica (c) é idêntica a que fizemos. Vamos mostrar, agora, que (c) implica (a). Assuma que $\operatorname{id}_C = 0_{CC} \in \operatorname{Hom}_{\mathscr{C}}(C,C)$. Sejam $X \in \operatorname{Obj}(\mathscr{C})$ e $f \in \operatorname{Hom}_{\mathscr{C}}(C,X)$. Como $\operatorname{id}_C = 0_{CC}$, então $f = f \circ 0_{CC}$. Mas pela Observação 1, $f = 0_{CX}$. Portanto, C é um objeto inicial. Analogamente, prova-se que (c) implica (b), o que finaliza a demonstração.

Em uma categoria pré-aditiva, um objeto inicial (ou final) é chamado de **objeto zero** e é denotado por $0_{\mathscr{C}}$.

Relembre, do seminário sobre limites, colimites e conjuntos profinitos, que dadas duas categorias, \mathscr{D} e \mathscr{C} , onde os morfismos de \mathscr{D} são apenas as identidades, e dado um funtor F: $\mathscr{D} \to \mathscr{C}$, definimos o $\operatorname{produto}$ de $\left(F(D)\right)_{D \in \operatorname{Obj}(\mathscr{D})}$ como sendo o limite de F. Analogamente, define-se o $\operatorname{coproduto}$, usando-se o colimite.

Assim, se $\mathscr C$ é uma categoria e $(C_i)_{i\in I}$ é uma família de objetos de $\mathscr C$, definindo $\mathscr D$ como sendo a categoria onde $\operatorname{Obj}(\mathscr D)=\{C_i\mid i\in I\}$ e $\operatorname{Hom}(\mathscr D)=\{\operatorname{id}_{C_i}\mid i\in I\}$ e $F:\mathscr D\to\mathscr C$ o funtor que leva objetos e morfismos neles mesmos, temos que o **produto** de $(C_i)_{i\in I}$ é um par ordenado, onde a primeira coordenada é um objeto em $\operatorname{Obj}(\mathscr C)$, $\prod_{j\in I}C_j$, e a segunda coordenada é uma família de morfismo em $\operatorname{Hom}(\mathscr C)$, $(\pi_i:\prod_{j\in I}C_j\to C_i)_{i\in I}$, tal que, para todo $X\in\operatorname{Obj}(\mathscr C)$ e toda família $(f_i:X\to C_i)_{i\in I}$ em $\operatorname{Hom}(\mathscr C)$, existe único morfismo $\Psi:X\to\prod_{i\in I}C_i$ em $\operatorname{Hom}(\mathscr C)$ tal que $\pi_i\circ\Psi=f_i$, para todo $i\in I$.

De maneira análoga, o **coproduto** de $(C_i)_{i\in I}$ é um par ordenado, onde a primeira coordenada é um objeto em $\mathrm{Obj}(\mathscr{C}), \coprod_{j\in I} C_j$, e a segunda coordenada é uma família de morfismo em $\mathrm{Hom}(\mathscr{C}), \ (\iota_i:C_i\to\coprod_{j\in I}C_j)_{i\in I}$, tal que, para todo $X\in\mathrm{Obj}(\mathscr{C})$ e toda família $(f_i:C_i\to X)_{i\in I}$ em $\mathrm{Hom}(\mathscr{C})$, existe único morfismo $\Psi:\coprod_{j\in I}C_j\to X$ em $\mathrm{Hom}(\mathscr{C})$ tal que $\Psi\circ\iota_i=f_i$, para todo $i\in I$.

Proposição 1. Seja ℰ uma categoria pré-aditiva.

- (a) Se $\left(\prod_{j\in I} C_j, (\pi_i:\prod_{j\in I} C_j\to C_i)_{i\in I}\right)$ é o produto de $(C_i)_{i\in I}$, com $|I|<\infty$, então existem $\iota_i\in \operatorname{Hom}_{\mathscr{C}}(C_i,\prod_{j\in I} C_j)$, para cada $i\in I$, tal que $\left(\prod_{j\in I} C_j, (\iota_i)_{i\in I}\right)$ é o coproduto de $(C_i)_{i\in I}$.
- (b) Se $\left(\coprod_{j\in I} C_j, (\iota_i:C_i\to\coprod_{j\in I} C_j)_{i\in I}\right)$ é o coproduto de $(C_i)_{i\in I}$, com $|I|<\infty$, então existem $\pi_i\in \operatorname{Hom}_{\mathscr{C}}(\prod_{j\in I} C_j,C_i)$, para cada $i\in I$, tal que $\left(\coprod_{j\in I} C_j,(\pi_i)_{i\in I}\right)$ é o produto de $(C_i)_{i\in I}$.

Demonstração. Mostraremos apenas a afirmação (a), pois a (b) é similar. A demonstração é por indução sobre |I|. Suponha que |I|=2. Pela definição de produto, tomando o objeto C_1 e os morfismos id_{C_1} e $0_{C_1C_2}$, temos que existe único $\iota_1:C_1\to C_1\prod C_2$ tal que $\pi_1\circ\iota_1=\mathrm{id}_{C_1}$ e $\pi_2\circ\iota_1=0_{C_1C_2}$. Novamente, pela definição de produto, tomando, agora, o objeto C_2 e os morfismos id_{C_2} e $0_{C_2C_1}$, temos que existe único $\iota_2:C_2\to C_1\prod C_2$ tal que $\pi_1\circ\iota_2=0_{C_2C_1}$ e $\pi_2\circ\iota_2=\mathrm{id}_{C_2}$.

Para qualquer $X \in \text{Obj}(\mathscr{C}), \ j_1 \in \text{Hom}_{\mathscr{C}}(C_1,X)$ e $j_2 \in \text{Hom}_{\mathscr{C}}(C_2,X)$, defina $\varphi_{(j_1,j_2)} \in \text{Hom}_{\mathscr{C}}(C_1 \prod C_2,X)$ como sendo $j_1 \circ \pi_1 + j_2 \circ \pi_2$. Assim, considerando o objeto $C_1 \prod C_2$ e os morfismos $\iota_1 : C_1 \to C_1 \prod C_2$ e $\iota_2 : C_2 \to C_1 \prod C_2$, temos que

$$\pi_1\circ\varphi_{(\iota_1,\iota_2)}=\pi_1\circ\iota_1\circ\pi_1+\pi_1\circ\iota_2\circ\pi_2=\mathrm{id}_{C_1}\circ\pi_1+0_{C_1C_2}\circ\pi_2=\pi_1.$$

Analogamente, $\pi_2 \circ \varphi_{(\iota_1,\iota_2)} = \pi_2$. Isso significa que o seguinte diagrama comuta:

Como $\mathrm{id}_{C_1\prod C_2}$ também comuta esse diagrama, pela unicidade, temos que $\varphi_{(\iota_1,\iota_2)}=\mathrm{id}_{C_1\prod C_2}$, ou seja, $\iota_1\circ\pi_1+\iota_2\circ\pi_2=\mathrm{id}_{C_1\prod C_2}$. A partir dessa observação, vamos mostrar que o coproduto de C_1 e C_2 é o par $\left(C_1\prod C_2,(\iota_1,\iota_2)\right)$.

Sejam $X \in \text{Obj}(\mathscr{C}), f_1 \in \text{Hom}_{\mathscr{C}}(C_1, X)$ e $f_2 \in \text{Hom}_{\mathscr{C}}(C_2, X)$. Considerando $\varphi_{(f_1, f_2)} = f_1 \circ f_2 = f_1 \circ f_2$

 $\pi_1 + f_2 \circ \pi_2$, temos que

$$\varphi_{(f_1,f_2)} \circ \iota_1 = f_1 \circ \pi_1 \circ \iota_1 + f_2 \circ \pi_2 \circ \iota_1 = f_1 \circ \operatorname{id}_{C_1} + f_2 \circ 0_{C_1C_2} = f_1.$$

De maneira análoga, $\varphi_{(f_1,f_2)} \circ \iota_2 = f_2$. Isso quer dizer que o diagrama acima é comutativo. Suponha que $g \in \operatorname{Hom}_{\mathscr{C}}(C_1 \prod C_2, X)$ seja um morfismo que também comuta o diagrama acima. Então

$$\begin{split} \varphi_{(f_{1},f_{2})} - g &= (\varphi_{(f_{1},f_{2})} - g) \circ \mathrm{id}_{C_{1} \prod C_{2}} \\ &= (\varphi_{(f_{1},f_{2})} - g) \circ \varphi_{(\iota_{1},\iota_{2})} \\ &= (\varphi_{(f_{1},f_{2})} - g) \circ (\iota_{1} \circ \pi_{1} + \iota_{2} \circ \pi_{2}) \\ &= (\varphi_{(f_{1},f_{2})} \circ \iota_{1} - g \circ \iota_{1}) \circ \pi_{1} + (\varphi_{(f_{1},f_{2})} \circ \iota_{2} - g \circ \iota_{2}) \circ \pi_{2} \\ &= (f_{1} - f_{1}) \circ \pi_{1} + (f_{2} - f_{2}) \circ \pi_{2} \\ &= 0_{C_{1} \prod C_{2}X}. \end{split}$$

Portanto, $\varphi_{(f_1,f_2)} = g$. Isso significa que $\varphi_{(f_1,f_2)}$ é o único morfismo que comuta o diagrama acima, ou seja, o par $(C_1 \prod C_2, (\iota_1, \iota_2))$ é o coproduto de C_1 e C_2 . Para |I| > 2, aplica-se indução.

Uma categoria \mathscr{C} é chamada de **aditiva**, se

- (a) & é pré-aditiva,
- (b) existe um objeto zero em $Obj(\mathscr{C})$ e
- (c) existe o produto para qualquer família $(C_i)_{i\in I}$ de objetos em $\mathrm{Obj}(\mathscr{C})$, com $|I|<\infty$.

2.3 Categoria pré-abeliana

Seja \mathcal{D} a categoria com dois objetos, D_1 e D_2 , e dois morfismos paralelos de um objeto para o outro, φ_1 e φ_2 . Pense em \mathcal{D} como sendo representada pelo diagrama abaixo.

Sejam $\mathscr C$ uma categoria pré-aditiva e $f\in \operatorname{Hom}_{\mathscr C}(C_1,C_2)$ um morfismo. Defina $F:\mathscr D\to\mathscr C$ como sendo o funtor tal que $F(D_1)=C_1$, $F(D_2)=C_2$, $F(\varphi_1)=f$ e $F(\varphi_2)=0_{C_1C_2}$.

Definimos o **núcleo** de f como sendo o limite de F, ou seja, é um par ordenado, onde a primeira coordenada é um objeto em $\mathrm{Obj}(\mathscr{C})$, $\ker(f)$, e a segunda coordenada é um morfismo em $\mathrm{Hom}(\mathscr{C})$, $k: \ker(f) \to C_1$, tal que $f \circ k = 0_{\ker(f)C_2}$ e, para todo $X \in \mathrm{Obj}(\mathscr{C})$ e todo $g: X \to C_1$ em $\mathrm{Hom}(\mathscr{C})$, que satisfazem a propriedade $f \circ g = 0_{XC_2}$, existe único morfismo $\Psi: X \to \ker(f)$ em $\mathrm{Hom}(\mathscr{C})$ tal que $k \circ \Psi = g$.

Similarmente, o **conúcleo** de f é o colimite de F, ou seja, é um par ordenado ($\operatorname{coker}(f)$, $q:C_2\to\operatorname{coker}(f)$), onde $\operatorname{coker}(f)\in\operatorname{Obj}(\mathscr{C})$ e $q\in\operatorname{Hom}(\mathscr{C})$, tal que $q\circ f=0_{C_1\operatorname{coker}(f)}$ e, para todo $X\in\operatorname{Obj}(\mathscr{C})$ e todo $g:C_2\to X$ em $\operatorname{Hom}(\mathscr{C})$, que satisfazem a propriedade $g\circ f=0_{C_1X}$, existe único morfismo $\Psi:\operatorname{coker}(f)\to X$ em $\operatorname{Hom}(\mathscr{C})$ tal que $\Psi\circ q=g$.

Uma categoria \mathscr{C} é dita **pré-abeliana**, se \mathscr{C} é aditiva e se, para todo $f: X \to Y$ em $Hom(\mathscr{C})$, existe núcleo e conúcleo de f.

2.4 Categoria abeliana

Sejam $\mathscr C$ uma categoria e $f\in \operatorname{Hom}_{\mathscr C}(C_1,C_2)$. Dizemos que f é **monomorfismo**, se, para todo $X\in\operatorname{Obj}(\mathscr C)$ e para todo $g_1,g_2\in\operatorname{Hom}_{\mathscr C}(X,C_1)$, temos que $g_1=g_2$, sempre que $f\circ g_1=f\circ g_2$. Dizemos que f é **epimorfismo**, se, para todo $X\in\operatorname{Obj}(\mathscr C)$ e para todo $g_1,g_2\in\operatorname{Hom}_{\mathscr C}(C_2,X)$, temos que $g_1=g_2$, sempre que $g_1\circ f=g_2\circ f$.

Lema 2. Sejam \mathscr{C} uma categoria pré-aditiva, $f \in \operatorname{Hom}_{\mathscr{C}}(C_1, C_2)$, $(\ker(f), k : \ker(f) \to C_1)$ o núcleo de f e $(\operatorname{coker}(f), q : C_2 \to \operatorname{coker}(f))$ o conúcleo de f. Então k é monomorfismo e q é epimorfismo.

Demonstração. Mostraremos apenas que k é monomorfismo, já que a demonstração que q é epimorfismo é análoga. Sejam $i, j \in \operatorname{Hom}_{\mathscr{C}}(X, \ker(f))$ tais que $k \circ i = k \circ j$. Então $k \circ (i - j) = 0_{XC_1}$. Pela definição de núcleo de f, tomando o objeto X e o morfismo 0_{XC_1} , temos que existe único morfismo $\psi \in \operatorname{Hom}_{\mathscr{C}}(X, \ker(f))$ tal que $k \circ \psi = 0_{XC_1}$. Uma vez que $k \circ 0_{X \ker(f)} = 0_{XC_1}$, então tal ψ é, exatamente, $0_{X \ker(f)}$. Acontece que $i - j \in \operatorname{Hom}_{\mathscr{C}}(X, \ker(f))$ também satisfaz a condição de $k \circ (i - j) = 0_{XC_1}$.

Portanto, pela unicidade, $i - j = 0_{X \ker(f)}$. Logo, i = j.

Proposição 2. Sejam $\mathscr C$ uma categoria pré-abeliana e $f\in \operatorname{Hom}_{\mathscr C}(X,Y)$. Sejam também

(a) $(\ker(f), k)$ o núcleo f,

- (c) $(\ker(q), k')$ o núcleo q e
- (b) $(\operatorname{coker}(f), q)$ o conúcleo de f,
- (d) $(\operatorname{coker}(k), q')$ o conúcleo de k.

 \boxtimes

Então existe único \overline{f} : $\operatorname{coker}(k) \to \ker(q)$ tal que $f = k' \circ \overline{f} \circ q'$.

$$\ker(f) \xrightarrow{k} X \xrightarrow{f} Y \xrightarrow{q} \operatorname{coker}(f)$$

$$q' \qquad \circlearrowleft \qquad \downarrow k'$$

$$\operatorname{coker}(k) \xrightarrow{\overline{f}} \ker(q)$$

Demonstração. Pela definição de conúcleo de f, temos que $q \circ f = 0_{X \operatorname{coker}(f)}$. Logo, pela definição de núcleo de q, exite único $f' \in \operatorname{Hom}_{\mathscr{C}}(X, \ker(q))$ tal que

$$k' \circ f' = f,\tag{1}$$

ou seja, que comuta o diagrama abaixo.

Uma vez que $(\ker(f), k)$ o núcleo f, então $f \circ k = 0_{\ker(f)Y}$. Daí, podemos concluir que

$$k' \circ f' \circ k \stackrel{\text{(1)}}{=} f \circ k = 0_{\ker(f)Y} = k' \circ 0_{\ker(f)\ker(g)}.$$

Não perca de vista que temos a seguinte cadeia de morfismo:

$$\ker(f) \xrightarrow{k} X \xrightarrow{f'} \ker(q) \xrightarrow{k'} Y$$

Logo, como k' é monomorfismo, $f' \circ k = 0_{\ker(f)\ker(q)}$. Daí, pela definição de conúcleo de k, exite único $\overline{f} \in \operatorname{Hom}_{\mathscr{C}}(\operatorname{coker}(k), \ker(q))$

$$\overline{f} \circ q' = f', \tag{2}$$

ou seja, que comuta o diagrama abaixo.

Com isso, obtemos

$$k' \circ \overline{f} \circ q' \stackrel{(2)}{=} k' \circ f' \stackrel{(1)}{=} f.$$

o que conclui a demonstração.

Uma categoria $\mathscr C$ é denominada **abeliana**, se $\mathscr C$ é pré-abeliana e se, para todo $f:X\to Y$ em $\mathsf{Hom}(\mathscr C)$, o morfismo $\overline f$, dado pelo Proposição 2, é um isomorfismo.

Exemplo 1. Vamos ver que a categoria AbGrp é uma categoria abeliana. Sabemos, da Teoria de Grupos, que AbGrp é pré-aditiva, já que $\mathsf{Hom}_{\mathsf{AbGrp}}(G,H)$ é grupo abeliano e a composição é bilinear. O grupo trivial $\{0\}$ é o elemento zero dessa categoria e, no seminário sobre limites, colimites e conjuntos profinitos, vimos que, dados $(G_i)_{i=1}^n$ grupo abelianos, a soma direta $\bigoplus_{i=1}^n G_i$, junto das inclusões $\iota_i:G_i\to\bigoplus_{i=1}^n G_i$, é o coproduto de $(G_i)_{i=1}^n$. Portanto, AbGrp é aditiva. Seja $f\in\mathsf{Hom}_{\mathsf{AbGrp}}(G,H)$. Afirmamos que

$$\ker(f) = \{g \in G \mid f(g) = 0\}, \quad \text{junto do morfismo} \quad k : \ker(f) \to G$$

$$g \mapsto g$$

$$\operatorname{coker}(f) = \frac{H}{\operatorname{im}(f)}$$
, junto do morfismo $q: H \to \operatorname{coker}(f)$
 $h \mapsto h + \operatorname{im}(f)$

 \boxtimes

onde $\operatorname{im}(f) = \{h \in H \mid \exists g \in G \ f(g) = h\}$, é o conúcleo de f. Vamos mostrar só a afirmação para o núcleo. Note que $f \circ k = 0$, pois f(g) = 0, para todo $g \in \ker(f)$. Sejam $X \in \operatorname{Obj}(\operatorname{AbGrp})$ e $g \in \operatorname{Hom}_{\operatorname{AbGrp}}(X,G)$ tal que $f \circ g = 0$. Isso quer dizer que f(g(x)) = 0, para todo $x \in X$, ou seja, $g(x) \in \ker(f)$. Daí, podemos restringir o contradomínio de g e considerá-la em $\operatorname{Hom}_{\operatorname{AbGrp}}(X,\ker(f))$. Assim, temos que o seguinte diagrama comuta.

Seja $h \in \operatorname{Hom}_{\operatorname{flbGrp}}(X, \ker(f))$ tal que $k \circ h = g$. Então, como $g = k \circ g$, temos que $k \circ h = k \circ g$. Uma vez que, por definição, k é injetiva, temos que h = g. Portanto, $(\ker(f), k)$ é o núcleo de f. Logo, flbGrp é pré-abeliana. Finalmente, seja $f \in \operatorname{Hom}_{\operatorname{flbGrp}}(G, H)$ e sejam

- $(\ker(f), \ker(f) \xrightarrow{k} G)$ o núcleo f,
- $(\operatorname{coker}(f), H \xrightarrow{q} \operatorname{coker}(f))$ o conúcleo de f,
- $(\ker(q), \ker(q) \xrightarrow{k'} H)$ o núcleo q e
- $(\operatorname{coker}(k), G \xrightarrow{q'} \operatorname{coker}(k))$ o conúcleo de k.

Note que $\ker(q) = \{h \in H \mid q(h) = 0\} = \{h \in H \mid h + \operatorname{im}(f) = 0\}$. Logo, $\ker(q) \subseteq \operatorname{im}(f)$. Reciprocamente, se $h \in \operatorname{im}(f)$, então $h + \operatorname{im}(f) = 0$, ou seja, q(h) = 0. Assim, $\ker(q) = \operatorname{im}(f)$. Agora, veja que $\operatorname{coker}(k) = \frac{G}{\operatorname{im}(k)}$. Mas k é injetiva, logo $\operatorname{im}(k) = \ker(f)$. Daí, $\operatorname{coker}(k) = \frac{G}{\ker(f)}$. Pelo Teorema do Isomorfismo, o homomorfismo de grupos $\overline{f} : \frac{G}{\ker(f)} \to \operatorname{im}(f)$, $g + \ker(f) \mapsto f(g)$, é um isomorfismo. Logo,

$$\overline{f}$$
: $\operatorname{coker}(k) \to \ker(q)$
 $g + \ker(f) \mapsto f(g)$

é um isomorfismo. Pela definição de núcleo e conúcleo, temos que

$$k'(\overline{f}(q'(g))) = k'(\overline{f}(g + \underbrace{\operatorname{im}(k)})) = k'(f(g)) = f(g),$$

isto é, $f = k' \circ \overline{f} \circ q'$. Portanto, AbGrp é abeliana.

Observação 2. Seja & uma categoria e considere a categoria cujos objetos são funtores de & para AbGrp e cujos morfismos são transformações naturais, a qual denotaremos por Func(&,AbGrp). Vamos ver, sem muitos detalhes, que essa categoria é abeliana.

- Sejam $F,G:\mathscr{C}\to \mathsf{AbGrp}$ funtores e $\eta,\nu:F\to G$ transformações naturais. Dado $C\in \mathsf{Obj}(\mathscr{C})$, definimos $(\eta+\nu)_C\coloneqq \eta_C+\nu_C$ (note que a soma à direita da igualmente é a soma entre homomorfismos de grupos). Isso faz $\eta+\nu\coloneqq (\eta_C+\nu_C)_{C\in \mathsf{Obj}(\mathscr{C})}$ uma transformação natural. Além disso, com tal soma, $\mathsf{Hom}_{\mathsf{Func}(\mathscr{C},\mathsf{AbGrp})}(F,G)$ é um grupo abeliano, já que $\mathsf{Hom}_{\mathsf{AbGrp}}(F(C),G(C))$ é um grupo abeliano.
- Sejam $F,G,H:\mathscr{C}\to \mathsf{AbGrp}$ funtores e $\eta,\nu:F\to G$ e $\zeta:H\to F$ transformações naturais. Dado $C\in \mathsf{Obj}(\mathscr{C})$, definimos $\big((\eta+\nu)\circ\zeta\big)_C\coloneqq (\eta_C+\nu_C)\circ\zeta_C$ (note que a composição à direita da igualmente é a composição entre homomorfismos de grupos). Assim, a composição em Func $(\mathscr{C},\mathsf{AbGrp})$ herda a bilinearidade da composição em AbGrp .
- Seja 0_{AbGrp} o objeto zero em AbGrp. Defina $0_{\text{Func}(\mathscr{C},\text{AbGrp})}:\mathscr{C}\to\text{AbGrp}$, como sendo o funtor tal que $C\mapsto 0_{\text{AbGrp}}$ e $C_1\stackrel{f}{\to}C_2\mapsto 0_{\text{AbGrp}}\stackrel{0_{0_{\text{AbGrp}}}\circ_{\text{AbGrp}}}{\longrightarrow}0_{\text{AbGrp}}$. Tal funtor é o objeto zero em $\text{Func}(\mathscr{C},\text{AbGrp})$, porque, dado qualquer funtor $F:\mathscr{C}\to\text{AbGrp}$, se $\eta:0_{\text{Func}(\mathscr{C},\text{AbGrp})}\to F$ é uma transformação natural, então η_C só pode ser o homomorfismo que leva 0_{AbGrp} em 0_{AbGrp} , para todo $C\in\text{Obj}(\mathscr{C})$.
 - Sejam $F_1, \dots, F_n : \mathscr{C} \to \mathcal{A}\mathsf{bGrp}$ funtores. Defina o funtor

$$\bigoplus_{i=1}^{n} F_{i}: \mathcal{C} \to \mathcal{A}b\mathsf{Grp}$$

$$C \mapsto \bigoplus_{i=1}^{n} F_{i}(C)$$

$$C_{1} \xrightarrow{f} C_{2} \mapsto \bigoplus_{i=1}^{n} F_{i}(C_{1}) \xrightarrow{\bigoplus_{i=1}^{n} F_{i}(f)} \bigoplus_{i=1}^{n} F_{i}(C_{2})$$

$$(g_{i})_{i=1}^{n} \mapsto (F_{i}(f)(g_{i}))_{i=1}^{n}.$$

Para $j=1,\ldots,n$, defina a transformação natural $\eta^j:F_j\to\bigoplus_{i=1}^nF_i$, onde $\eta^j_C=\iota^j_C:F_j(C)\to\bigoplus_{i=1}^nF_i(C)$ a inclusão. Pode-se provar que $\bigoplus_{i=1}^nF_i$, junto das transformações naturais $\eta^j:G_j\to\bigoplus_{i=1}^nG_i$, é o coproduto de $(F_i)_{i=1}^n$.

 \bullet Seja $\eta: F \to G$ uma transformação natural. Defina o funtor

$$\ker(\eta): \quad \mathscr{C} \rightarrow \mathcal{A}b\mathsf{Grp}$$

$$C \mapsto \ker(\eta_C)$$

$$C_1 \xrightarrow{f} C_2 \mapsto \ker(\eta_{C_1}) \xrightarrow{\ker(\eta)(f)} \ker(\eta_{C_2})$$

$$g \mapsto F(f)(g).$$

Usando a definição de núcleo de um homomorfismo de grupos e o fato de $\eta_{C_2} \circ F(f) = G(f) \circ \eta_{C_1}$, pode-se provar que esse funtor está bem definido. Defina a transformação natural $k : \ker(\eta) \to F$, onde $k_C : \ker(\eta_C) \to F(C)$, $g \mapsto g$ é a inclusão. Pode-se também provar que $(\ker(\eta), k)$ é o núcleo de η . Similarmente, defina o funtor

Novamente, usando que $\eta_{C_2} \circ F(f) = G(f) \circ \eta_{C_1}$, pode-se provar que esse funtor está bem definido. Definindo, agora, a transformação natural $q: G \to \operatorname{coker}(\eta)$, onde $q_C: G(C) \to \operatorname{coker}(\eta_C)$, $g \mapsto g + \operatorname{im}(\eta_C)$, pode-se também provar que $(\operatorname{coker}(\eta), q)$ é o conúcleo de η .

• Dado $\eta: F \to G$ uma transformação natural, pelo Exemplo 1, temos que $\overline{\eta}_C: \operatorname{coker}(k_C) \to \ker(q_C), \ g + \ker(\eta_C) \mapsto \eta_C(g)$ é um isomorfismo e comuta o diagrama da Proposição 2. Isso prova que que $\overline{\eta}: \operatorname{coker}(k) \to \ker(q)$ é isomorfismo e que comuta o mesmo diagrama.

Com isso, temos que $Func(\mathscr{C},AbGrp)$ é uma categoria abeliana.

3 Axiomas de Grothendieck

Vamos ver os axiomas de Grothendieck (AB3), (AB3*), (AB4), (AB4*), (AB5) e (AB6). Eles são estabelecem condições extras que categorias abelianas possuem. Assim, para essa seção, a categoria \mathscr{C} , a qual vale tais axiomas, é uma categoria abeliana.

3.1 Axiomas (AB3)

Axioma (AB3). Em \mathscr{C} , existe o coproduto para qualquer família $(C_i)_{i \in I}$ de objetos em Obj (\mathscr{C}) , com I um conjunto de índices qualquer.

3.2 Axiomas (AB3*)

Axioma (AB3*). Em \mathscr{C} , existe o produto para qualquer família $(C_i)_{i \in I}$ de objetos em $Obj(\mathscr{C})$, com I um conjunto de índices qualquer.

Observação 3. Analogamente a definição de núcleo e conúcleo de um morfismo, defina $F: \mathcal{D} \to \mathscr{C}$ como sendo o funtor tal que $F(D_1) = C_1$, $F(D_2) = C_2$, $F(\varphi_1) = f$ e $F(\varphi_2) = g$.

Definimos o **equalizador** de f e g como sendo o limite de F, ou seja, é um par ordenado, onde a primeira coordenada é um objeto em $\mathrm{Obj}(\mathscr{C})$, $\mathrm{eq}(f,g)$, e a segunda coordenada é um morfismo em $\mathrm{Hom}(\mathscr{C})$, $e:\mathrm{eq}(f,g)\to C_1$, tal que $f\circ e=g\circ e$ e, para todo $X\in\mathrm{Obj}(\mathscr{C})$ e todo $h:X\to C_1$ em $\mathrm{Hom}(\mathscr{C})$, que satisfazem a propriedade $f\circ h=g\circ h$, existe único morfismo $\Psi:X\to\mathrm{eq}(f,g)$ em $\mathrm{Hom}(\mathscr{C})$ tal que $e\circ \Psi=h$.

Similarmente, definimos o **coequalizador** de f e g como sendo o colimite de F. Uma vez que $\mathscr C$ é uma categoria abeliana, temos que existem núcleo e conúcleo, para todo morfismo. Assim, pode-se mostrar que $\left(\ker(f-g), k : \ker(f-g) \to C_1\right)$ é o equalizador de f e g e que $\left(\operatorname{coker}(f-g), q : C_2 \to \operatorname{coker}(f-g)\right)$ é o coequalizador de f e g.

No seminário sobre limites, colimites e conjuntos profinitos, vimos um teorema que diz: "se \mathscr{C} é uma categoria que possui (co)produtos arbitrários e (co)equalizadores, então todo funtor $F: \mathscr{D} \to \mathscr{C}$ possui (co)limite". Logo, os axiomas (AB3) e (AB3*) são equivalentes a dizer, respectivamente, que todo colimite existe e que todo limite existe.

3.3 Axiomas (AB4)

Sejam $\mathscr C$ uma categoria onde existem colimites e $(f_i:X_i\to Y_i)_{i\in I}$ uma família de morfismos em $\mathrm{Hom}(\mathscr C)$. Sejam $\left(\coprod_{j\in I}X_j,(\iota_i^X:X_i\to\coprod_{j\in I}X_j)_{i\in I}\right)$ o coproduto de $(X_i)_{i\in I}$ e $\left(\coprod_{j\in I}Y_j,(\iota_i^Y:Y_i\to\coprod_{j\in I}Y_j)_{i\in I}\right)$ o coproduto de $(Y_i)_{i\in I}$. Pela propriedade universal do coproduto, existe único morfismo em $\mathrm{Hom}_{\mathscr C}(\coprod_{j\in I}X_j,\coprod_{j\in I}Y_j)$, o qual denotaremos por $\coprod_{j\in I}f_j$, tal que $\coprod_{j\in I}f_j\circ\iota_i^X=\iota_i^X\circ f_i$, para todo $i\in I$, ou seja, que comuta o diagrama abaixo.

Axioma (AB4). $\mathscr C$ satisfaz (AB3) e coprodutos são exatos, isto é, se I é um conjunto de índices e $0 \to X_i \xrightarrow{f_i} Y_i \xrightarrow{g_i} Z_i \to 0$ é uma sequência exata curta, com $i \in I$ e $X_i, Y_i, Z_i \in \mathrm{Obj}(\mathscr C)$, então a sequência

$$0 \to \coprod_{i \in I} X_i \xrightarrow{\coprod_{i \in I} f_i} \coprod_{i \in I} Y_i \xrightarrow{\coprod_{i \in I} g_i} \coprod_{i \in I} Z_i \to 0$$

também é uma sequência exata curta.

3.4 Axiomas (AB4*)

Sejam $\mathscr C$ uma categoria onde existem limites e $(f_i:X_i\to Y_i)_{i\in I}$ uma família de morfismos em $\mathrm{Hom}(\mathscr C)$. Similarmente à definição de coproduto de morfismos, o **produto** de $(f_i)_{i\in I}$ é o único morfismo em $\mathrm{Hom}_{\mathscr C}(\prod_{j\in I}X_j,\prod_{j\in I}Y_j)$, o qual denotaremos por $\prod_{j\in I}f_j$, tal que $\pi_i^Y\circ\prod_{j\in I}f_j=f_i\circ\pi_i^X$, para todo $i\in I$, ou seja, que comuta o diagrama abaixo.

Axioma (AB4*). $\mathscr C$ satisfaz (AB3*) e produtos são exatos, isto é, se I é um conjunto de índices e $0 \to X_i \xrightarrow{f_i} Y_i \xrightarrow{g_i} Z_i \to 0$ é uma sequência exata curta, com $i \in I$ e $X_i, Y_i, Z_i \in \mathrm{Obj}(\mathscr C)$, então a sequência

$$0 \to \prod_{i \in I} X_i \xrightarrow{\prod_{i \in I} f_i} \prod_{i \in I} Y_i \xrightarrow{\prod_{i \in I} g_i} \prod_{i \in I} Z_i \to 0$$

também é uma sequência exata curta.

3.5 Axiomas (AB5)

Seja $\mathcal D$ uma categoria de índices (no seminário sobre limites, colimites e conjuntos profinitos, chamamos $\mathcal D$ de "categoria combinatória"). Essa categoria é chamada **filtrada**, se

- (a) $Obj(\mathcal{D}) \neq \mathcal{O}$,
- (b) para todo $X,Y\in \mathrm{Obj}(\mathcal{D})$, existe $Z\in \mathrm{Obj}(\mathcal{D})$ tal que $\mathrm{Hom}_{\mathcal{D}}(X,Z)\neq \mathcal{D}\neq \mathrm{Hom}_{\mathcal{D}}(Y,Z)$,
- (c) dados $f, g: X \to Y$, existem $Z \in \text{Obj}(\mathcal{D})$ e $h: Y \to Z$ tal que $h \circ f = h \circ g$.

Se \mathscr{C} é uma categoria onde existem limites e colimites e $F: \mathscr{D} \to \mathscr{C}$ é um funtor, onde \mathscr{D} é uma categoria filtrada, o colimite de F é dito **colimite filtrado**.

Sejam $F,G,H: \mathcal{D} \to \mathscr{C}$ funtores, com \mathcal{D} sendo uma categoria de índices e \mathscr{C} uma categoria abeliana. Sejam $\eta: F \to G$ e $\nu: G \to H$ transformações naturais. De maneira semelhante ao que foi feito na Observação 2, podemos definir núcleo e conúcleo de uma transformação natural, usando o núcleo e conúcleo da categoria abeliana \mathscr{C} . Também pode-se generalizar a definição de transformação natural zero, usando o objeto zero de \mathscr{C} . Assim, uma sequência $0 \to F \xrightarrow{\eta} G \xrightarrow{\nu} H \to 0$ é uma sequência exata curta, se η é injetiva, ν é sobrejetiva e $\ker(\nu) = \operatorname{im}(\eta)$. Pode-se provar que, $0 \to F \xrightarrow{\eta} G \xrightarrow{\nu} H \to 0$ é uma sequência exata curta, se, e somente se, para todo $D \in \operatorname{Obj}(\mathscr{D})$, a sequência $0 \to F(D) \xrightarrow{\eta_D} G(D) \xrightarrow{\nu_D} H(D) \to 0$ é uma sequência exata curta em \mathscr{C} .

Considere ainda $F,G: \mathcal{D} \to \mathscr{C}$ como no parágrafo anterior e $\eta: F \to G$ uma transformação natural qualquer. Sejam $\left(\operatorname{colim}(F), (\varphi_D^F: F(D) \to \operatorname{colim}(F))_{D \in \operatorname{Obj}(D)}\right)$ e $\left(\operatorname{colim}(G), (\varphi_D^G: G(D) \to \operatorname{colim}(G))_{D \in \operatorname{Obj}(D)}\right)$ colimites de F e G, respectivamente. Se $D_1, D_2 \in \operatorname{Obj}(\mathcal{D})$ e $f: D_1 \to D_2$ é um morfismo, então, pela propriedade da transformação natural η , temos que $G(f) \circ \eta_{D_1} = \eta_{D_2} \circ F(f)$. Pela propriedade do colimite de G, temos que $\varphi_{D_1}^G = \varphi_{D_2}^G \circ G(f)$.

Portanto,

$$\varphi_{D_2}^G \circ \eta_{D_2} \circ F(f) = \varphi_{D_2}^G \circ G(f) \circ \eta_{D_1} = \varphi_{D_1}^G \circ \eta_{D_1},$$

como se vê no diagrama anterior. Logo, pela propriedade do colimite de F, existe único morfismo de $\operatorname{colim}(F)$ para $\operatorname{colim}(G)$, o qual denotaremos por $\operatorname{colim}(\eta)$, tal que $\operatorname{colim}(\eta) \circ \varphi_D^F = \varphi_D^G \circ \eta_D$, para todo $D \in \operatorname{Obj}(\mathcal{D})$.

Axioma (AB5). $\mathscr C$ satisfaz (AB3) e colimites filtrados são exatos, isto é, se $0 \to F \xrightarrow{\eta} G \xrightarrow{\nu} H \to 0$ é uma sequência exata curta, com $F, G, H : \mathscr D \to \mathscr C$ funtores, onde $\mathscr D$ é uma

categoria filtrada, então a sequência

$$0 \to \operatorname{colim}(F) \xrightarrow{\operatorname{colim}(\eta)} \operatorname{colim}(G) \xrightarrow{\operatorname{colim}(\nu)} \operatorname{colim}(H) \to 0$$

também é uma sequência exata curta.

3.6 Axiomas (AB6)

Definimos o **produto** de $(\mathscr{D}_i)_{i\in I}$, uma família de categorias, denotado por $\prod_{i\in I}\mathscr{D}_i$, como sendo a categoria cujos objetos são $\prod_{i\in I}D^i=\{(D^i)_{i\in I}\mid D^i\in \mathrm{Obj}(\mathscr{D}_i)\}$ e os morfismos são $\prod_{i\in I}f^i=\{(f^i)_{i\in I}\mid f^i\in \mathrm{Hom}(\mathscr{D}_i)\}$. Pode-se provar que se $(\mathscr{D}_i)_{i\in I}$ é uma família de categorias filtradas, então $\prod_{i\in I}\mathscr{D}_i$ também é uma categoria filtrada. Sejam $(\mathscr{D}_i)_{i\in I}$ uma família de categorias filtradas, $\mathscr C$ uma categoria onde existem colimites, e $F_i:\mathscr{D}_i\to\mathscr C$ funtores indexados por $i\in I$. Seja $\left(\mathrm{colim}(F_i),(\psi^i_{D^i}:F_i(D^i)\to\mathrm{colim}(F_i))_{D^i\in \mathrm{Obj}(\mathscr{D}_i)}\right)$ o colimite de F_i . Se $f^i:D^i_1\to D^i_2$ é um morfismo em $\mathrm{Hom}(\mathscr{D}_i)$, então, pela propriedade do colimite de F_i , $\psi^i_{D^i_1}=\psi^i_{D^i_2}\circ F_i(f^i)$. Defina o funtor $F:\prod_{i\in I}\mathscr{D}_i\to\mathscr C$, onde $F(\prod_{i\in I}D^i)=\prod_{i\in I}F_i(D^i)$ e $F(\prod_{i\in I}f^i)=\prod_{i\in I}F_i(f^i)$. Seja $\left(\mathrm{colim}(F),(\varphi_{\prod_{i\in I}D^i}:F(\prod_{i\in I}D^i)\to\mathrm{colim}(F))_{\prod_{i\in I}D^i\in\mathrm{Obj}(\prod_{i\in I}\mathscr{D}_i)}\right)$ o colimite de F. Note que, se $\prod_{i\in I}f^i:\prod_{i\in I}D^i_1\to\prod_{i\in I}D^i_2$ é um morfismo em $\mathrm{Hom}(\prod_{i\in I}\mathscr{D}_i)$, então, temos que

$$\prod_{i \in I} \psi_{D_2^i}^i \circ \prod_{i \in I} F_i(f^i) = \prod_{i \in I} (\psi_{D_2^i}^i \circ F_i(f^i)) = \prod_{i \in I} \psi_{D_1^i}^i$$

o que quer dizer que o diagrama abaixo é comutativo.

Logo, pela propriedade do colimite de F, existe único morfismo ξ : colim $(F) \to \prod_{i \in I} \operatorname{colim}(F_i)$

tal que $\xi \circ \varphi_{\prod_{i \in I} D^i} = \prod_{i \in I} \psi^i_{D^i}$, para todo $\prod_{i \in I} D^i \in \text{Obj}(\prod_{i \in I} \mathcal{D}_i)$.

Axioma (AB6). $\mathscr C$ satisfaz (AB3) e o morfismo $\xi: \operatorname{colim}(F) \to \prod_{i \in I} \operatorname{colim}(F_i)$ é um isomorfismo.

Exemplo 2. Apresentaremos, sem muitos detalhes, as ideais que justificam que a categoria **AbGrp** satisfaz os axiomas de Grothendieck (AB3), (AB3*), (AB4), (AB4*), (AB5) e (AB6).

(AB3) Sejam $(G_i)_{i\in I}$ uma família de grupos abelianos. Então $\bigoplus_{i\in I} G_i$, $(\iota_i:G_i\to\bigoplus_{i\in I} G_i)_{i\in I}$) é o coproduto de $(G_i)_{i\in I}$, onde $\bigoplus_{i\in I} G_i=\{(g_i)_{i\in I}\mid g_i\in G_i\text{ e }g_i\neq 0\text{ somente para uma quantidade finita de índices}\}$. Para ver isso, basta notar que, dados $f_i:G_i\to X$ homomorfismos de grupos indexados por $i\in I$, temos que $\psi:\bigoplus_{i\in I} G_i\to X$, $(g_i)_{i\in I}\mapsto \sum_{i\in I} f_i(g_i)$ é o único homomorfismo tal que $f_i=\psi\circ\iota_i$.

(AB3*) Analogamente ao que foi feito em (AB3), sejam $(G_i)_{i \in I}$ uma família de grupos abelianos. Então $\left(\prod_{i \in I} G_i, (\pi_i : \prod_{i \in I} G_i \to G_i)_{i \in I}\right)$ é o produto de $(G_i)_{i \in I}$, onde $\prod_{i \in I} G_i = \{(g_i)_{i \in I} \mid g_i \in G_i\}$. Para ver isso, basta notar que, dados $f_i : X \to G_i$ homomorfismos de grupos indexados por $i \in I$, temos que $\psi : X \to \prod_{i \in I} G_i, x \mapsto (f_i(x))_{i \in I}$ é o único homomorfismo tal que $f_i = \pi_i \circ \psi$.

(AB4) Sejam $(G_i)_{i\in I}$, $(H_i)_{i\in I}$ e $(K_i)_{i\in I}$ famílias de grupos abelianos e $(f_i:G_i\to H_i)_{i\in I}$ e $(r_i:H_i\to K_i)_{i\in I}$ famílias de homomorfismos de grupos tais que $0\to G_i\overset{f_i}\to H_i\overset{r_i}\to K_i\to 0$ é uma sequência exata curta, com $i\in I$. Pode-se provar que o coproduto de $(f_i)_{i\in I}$ é o homomorfismo $\bigoplus_{i\in I}f_i:\bigoplus_{i\in I}G_i\to\bigoplus_{i\in I}H_i$, $(g_i)_{i\in I}\mapsto (f_i(g_i))_{i\in I}$. O mesmo vale para o coproduto de $(r_i)_{i\in I}$. Assim, usando que f_i é injetiva, r_i é sobrejetiva e im $(f_i)=\ker(r_i)$, para todo $i\in I$, pode-se provar que

$$0 \to \bigoplus_{i \in I} G_i \xrightarrow[i \in I]{\bigoplus_{i \in I} f_i} \bigoplus_{i \in I} H_i \xrightarrow[i \in I]{\bigoplus_{i \in I} r_i} \bigoplus_{i \in I} K_i \to 0$$

também é uma sequência exata curta.

(AB4*) Aplica-se, nesse axioma, o mesmo raciocínio usado em (AB4), onde o produto de homomorfismos é definido igualmente ao coproduto.

(AB5) Sejam \mathscr{D} uma categoria filtrada e $F, G, H : \mathscr{D} \to \mathsf{AbGrp}$ funtores tais que $0 \to F \xrightarrow{\eta}$

 $G \xrightarrow{\nu} H \to 0$ é uma sequência exata curta. Seja $\bigsqcup_{D \in \mathrm{Obj}(\mathcal{D})} F(D)$ a união disjunta de todos os grupos F(D), indexados por $D \in \mathrm{Obj}(\mathcal{D})$, isto é,

$$\bigsqcup_{D \in \mathrm{Obj}(\mathcal{D})} F(D) = \bigcup_{D \in \mathrm{Obj}(\mathcal{D})} \{\underbrace{(x, D)}_{\mathbb{H}} \mid x \in F(D)\} = \bigcup_{D \in \mathrm{Obj}(\mathcal{D})} \{x_D \in F(D)\}.$$

Defina a relação \sim em $\bigsqcup_{D \in \text{Obj}(\mathcal{D})} F(D)$ da seguinte maneira:

$$x_{D_1} \sim x_{D_2} \iff \exists D \in \mathrm{Obj}(\mathcal{D}) \ \exists d_1: D_1 \to D \ \exists d_2: D_2 \to D \quad F(d_1)(x_{D_1}) = F(d_2)(x_{D_2})$$

Pode-se provar que essa relação é uma relação de equivalência. Assim, podemos considerar o conjunto das classes de equivalência, $\binom{\bigcup}{D\in \operatorname{Obj}(\mathscr{D})}F(D)$ / $\sim = \{[x_D] \mid x_D\in F(D)\}=: L_F$. Sejam $[x_{D_1}]$ e $[x_{D_2}]$ duas classes de equivalência e $D\in \operatorname{Obj}(\mathscr{D})$ tal que existe $d_1:D_1\to D$ e $d_2:D_2\to D$ (lembre-se de que \mathscr{D} é uma categoria filtrada). Definimos $[x_{D_1}]+[x_{D_2}]:=[F(d_1)(x_{D_1})+F(d_2)(x_{D_2})]$. Pode-se mostrar essa operação é bem definida e que faz o conjunto L_F ser um grupo abeliano. Também pode-se provar que o colimite de F é o par $(L_F,(s_D:F(D)\to L_F)_{D\in \operatorname{Obj}(\mathscr{D})})$, onde $s_D(x_D)=[x_D]$ (para mais detalhes ver [2], Proposição 2.13.3, e [6], seção 10.8). O mesmo se aplica aos funtores G e H.

Pode-se provar que o colimite de η é o morfismo $\operatorname{colim}(\eta): L_F \to L_G, [x_D] \mapsto [\eta_D(x_D)].$ Vamos ver que ela está bem definida. Suponha que $[x_{D_1}] = [x_{D_2}].$ Então existem $d_1: D_1 \to D$ e $d_2: D_2 \to D$ tais que $F(d_1)(x_{D_1}) = F(d_2)(x_{D_2}).$ Como η é uma transformação natural, então

$$G(d_1)(\eta_{D_1}(x_{D_1})) = \eta_D(F(d_1)(x_{D_1})) = \eta_D(F(d_2)(x_{D_2})) = G(d_2)(\eta_{D_2}(x_{D_2})),$$

como se vê no diagrama abaixo.

Logo, $[\eta_{D_1}(x_{D_1})] = [\eta_{D_2}(x_{D_2})]$. Da mesma forma define-se o colimite de ν .

Finalmente, prova-se que a sequência $0 \to L_F \xrightarrow{\operatorname{colim}(\eta)} L_F \xrightarrow{\operatorname{colim}(v)} L_H \to 0$ é uma sequência exata curta.

(AB6) Esse axioma segue de um resultado que diz que na categoria **AbGrp** limites finitos comutam com colimites filtrados. Veja, por exemplo, [2], Corolário 2.13.6. □

4 Objetos compactos, projetivos e geradores

Sejam $\mathscr C$ uma categoria onde existem limites e colimites, $X\in \mathrm{Obj}(\mathscr C)$ e considere o funtor

$$\operatorname{Hom}_{\mathscr{C}}(X,\cdot): \mathscr{C} \to \operatorname{Set}$$

$$Y \mapsto \operatorname{Hom}_{\mathscr{C}}(X,Y)$$

$$f: Y_1 \to Y_2 \mapsto f^*: \operatorname{Hom}_{\mathscr{C}}(X,Y_1) \to \operatorname{Hom}_{\mathscr{C}}(X,Y_2)$$

$$g \mapsto f \circ g$$

Seja $F: \mathscr{D} \to \mathscr{C}$ um funtor, com \mathscr{D} sendo uma categoria filtrada, e considere a composição $\operatorname{Hom}_{\mathscr{C}}(X, F(\cdot))$. Sendo $\left(\operatorname{colim}(F), (\psi_D: F(D) \to \operatorname{colim}(F))_{D \in \operatorname{Obj}(\mathscr{D})}\right)$ o colimite de F, então, para todo $f: D_1 \to D_2$ em $\operatorname{Hom}(\mathscr{D})$, temos que $\psi_{D_1} = \psi_{D_2} \circ F(f)$. Assim, note que, se $g \in \operatorname{Hom}_{\mathscr{C}}(X, F(D_1))$, então

$$(\psi_{D_2}^* \circ F(f)^*)(g) = \psi_{D_2}^*(F(f) \circ g) = \psi_{D_2} \circ F(f) \circ g = \psi_{D_1} \circ g = \psi_{D_1}^*(g),$$

ou seja, o diagrama abaixo comuta.

Logo, existe único morfismo $\Psi: \operatorname{colim} \big(\operatorname{Hom}_{\mathscr{C}}(X, F(\cdot))\big) \to \operatorname{Hom}_{\mathscr{C}}(X, \operatorname{colim}(F))$, pela pro-

priedade do colimite de $\text{Hom}_{\mathscr{C}}(X, F(\cdot))$, tal que $\Psi \circ \varphi_D = \psi_D^*$, para todo $D \in \text{Obj}(\mathscr{D})$. Se o morfismo Ψ for um isomorfismo, então dizemos que X é **compacto**.

Sejam $\mathscr C$ uma categoria e $X\in \mathrm{Obj}(\mathscr C)$. Se $\mathrm{Hom}_{\mathscr C}(X,\cdot)$ preserva epimorfismos, então dizemos que X é **projetivo**. Seja $G\subseteq \mathrm{Obj}(\mathscr C)$. Se para quaisquer $f,g:C_1\to C_2$ morfismos em $\mathscr C$, com $f\neq g$, existe $X\in G$ e $h:X\to C_1$ tal que $f\circ h\neq g\circ h$, então dizemos que dizemos que G é um **conjunto de geradores** de $\mathscr C$.

5 Lema de Yoneda e Teorema da Função Adjunta

Teorema 1 (Lema de Yoneda). Sejam $\mathscr C$ uma categoria e $C \in \mathrm{Obj}(\mathscr C)$. Defina o funtor $h^C := \mathrm{Hom}_{\mathscr C}(\cdot,C) : \mathscr C^{op} \to \mathsf{Set}$. Sejam os funtores

- $\operatorname{Hom}_{\operatorname{Func}(\mathscr{C}^{op}, \operatorname{Set})}(h^C, \cdot) : \operatorname{Func}(\mathscr{C}^{op}, \operatorname{Set}) \to \operatorname{Set},$
- $(\cdot)(C)$: Func $(\mathscr{C}^{op}, \operatorname{Set}) \to \operatorname{Set}, F \mapsto F(C) \in F_1 \xrightarrow{\eta} F_2 \mapsto F_1(C) \xrightarrow{\eta_C} F_2(C)$.

Então existe um isomorfismo natural

$$\Psi(C): \operatorname{Hom}_{\operatorname{Func}(\mathscr{C}^{op}, \operatorname{Set})}(h^C, \cdot) \to (\cdot)(C)$$

onde
$$\Psi(C)_F$$
: $\operatorname{Hom}_{\operatorname{Func}(\mathscr{C}^{op},\,\operatorname{Set})}(h^C,F) \to F(C), \ \alpha \mapsto \alpha_C(\operatorname{id}_C).$

Sejam $R: \mathcal{D} \to \mathcal{C}$ e $L: \mathcal{C} \to \mathcal{D}$ funtores. Dizemos que L é **adjunta à esquerda** de R (R é adjunta à direita de L), se, para todo $D \in \text{Obj}(\mathcal{D})$ e para todo $C \in \text{Obj}(\mathcal{C})$,

$$\sigma(D)$$
: $\operatorname{Hom}_{\mathscr{D}}(L(\cdot), D) \to \operatorname{Hom}_{\mathscr{C}}(\cdot, R(D))$
 $\theta(C)$: $\operatorname{Hom}_{\mathscr{D}}(L(C), \cdot) \to \operatorname{Hom}_{\mathscr{C}}(C, R(\cdot))$

são isomorfismos naturais. Note que $\operatorname{Hom}_{\mathscr{D}}(L(\cdot),D)$ e $\operatorname{Hom}_{\mathscr{C}}(\cdot,R(D))$ são funtores de \mathscr{C}^{op} para Set e $\operatorname{Hom}_{\mathscr{D}}(L(C),\cdot)$ e $\operatorname{Hom}_{\mathscr{C}}(C,R(\cdot))$ são funtores de \mathscr{D} para Set.

Teorema 2 (Teorema da Função Adjunta). Seja $\mathscr C$ uma categoria (não necessariamente pequena) tal que, para todo $F: \mathscr D \to \mathscr C$ um funtor, com $\mathscr D$ sendo uma categoria índice, o limite existe (isto é, $\mathscr C$ é completa). Seja também $R: \mathscr C \to \mathscr E$ um funtor. Então as seguintes condições são equivalentes.

- (a) Existe um funtor adjunto à esquerda de R.
- (b) Valem as afirmações a seguir:

- (i) se $F: \mathcal{D} \to \mathscr{C}$ é um funtor, onde $(\lim(F), (\varphi_D)_{D \in \text{Obj}(\mathcal{D})})$ é seu limite e \mathcal{D} é uma categoria índice, então $(R(\lim(F)), (R(\varphi_D))_{D \in \text{Obj}(\mathcal{D})})$ é o limite de RF (ou seja, R preserva limites pequenos).
- (ii) para todo $E \in \text{Obj}(\mathcal{E})$, existe um *conjunto* $S_E \subseteq \text{Obj}(\mathcal{C})$ tal que

$$\forall C \in \mathrm{Obj}(\mathscr{C}) \ \forall e : E \to R(C) \ \exists C' \in S_E \ \exists c : C' \to C \ \exists e' : E \to R(C') \ R(c) \circ e' = e. \quad \Box$$

Observação 4. No Teorema 2, se \mathscr{C} é uma categoria pequena, então o item (b), subitem (ii) é sempre satisfeito, pois basta tomarmos o conjunto $S_E = \text{Obj}(\mathscr{C})$ e fazermos C' = C, $c = \text{id}_C$ e e' = e.

6 Teorema 2.2

Teorema 3 (Teorema 2.2, das notas de Peter Scholze). A categoria κ -Cond(AbGrp) é uma categoria abeliana e satisfaz os axiomas de Grothendieck (AB3), (AB3*), (AB4), (AB4*), (AB5) e (AB6). Além disso, tal categoria é gerada por objetos projetivos compactos.

Demonstração. Seja κ -EDSet a categoria dos conjuntos κ -pequenos extremamente desconexos. Seja também Sh(κ -EDSet) a categoria cujos objetos são feixes de grupos abelianos sobre κ -EDSet. Para simplificar a notação, vamos denotar κ -Cond(π bGrp) por \mathscr{C}_1 e Sh(κ -EDSet) por \mathscr{C}_2 . Vimos no seminário "Categorias equivalentes à categoria de conjuntos condensados", ministrado por Matheus Johnny Caetano, que \mathscr{C}_1 é equivalente a \mathscr{C}_2 . Assim, mostrando que \mathscr{C}_2 é uma categoria abeliana e satisfaz os axiomas de Grothendieck do enunciado, temos que \mathscr{C}_1 também é abeliana e satisfaz os mesmos axiomas. Portanto, vamos nos concentrar em \mathscr{C}_2 . A ideia é usar que π bGrp é abeliana e satisfaz os axiomas enunciados. Para isso, considere um funtor

$$F: \mathscr{D} \to \mathscr{C}_{2}$$

$$D \mapsto F(D): \kappa\text{-}\mathcal{E}DSet^{op} \to \mathcal{A}bGrp$$

$$S \mapsto F(D)(S)$$

$$S_{1} \xrightarrow{f} S_{2} \mapsto F(D)(S_{1}) \xrightarrow{F(D)(f)} F(D)(S_{2})$$

$$D_{1} \xrightarrow{d} D_{2} \mapsto F(D_{1}) \xrightarrow{F(d)} F(D_{2}),$$

onde \mathcal{D} é uma categoria de índices. Para cada $S \in \text{Obj}(\kappa\text{-}\mathcal{E}\mathsf{D}\mathsf{Set})$, defina o funtor

$$\begin{array}{cccc} F_S: & \mathscr{D} & \to & \mathsf{flbGrp} \\ & D & \mapsto & F(D)(S) \\ D_1 \xrightarrow{d} D_2 & \mapsto & F(D_1)(S) \xrightarrow{F(d)_S} F(D_2)(S). \end{array}$$

Seja $(\lim(F_S), (\varphi_S^D : \lim(F_S) \to F(D)(S)))$ o limite de F_S . Dado $f: S_1 \to S_2$ um morfismo em $\operatorname{Hom}(\kappa\text{-}\mathcal{E}\mathsf{D}\mathsf{Set})$, usando a propriedade de $\lim(F_{S_1})$, juntamente com a comutatividade de transformações naturais, temos que existe único morfismo $\psi_{S_1S_2}: \lim(F_{S_1}) \to \lim(F_{S_2})$, conforme se vê no diagrama abaixo.

Assim, defina o funtor

$$\begin{array}{cccc} L: & \kappa\text{-}\mathcal{E}\mathrm{DSet}^{op} & \to & \mathcal{A}\mathrm{bGrp} \\ & S & \mapsto & \lim(F_S) \\ & S_1 \xrightarrow{f} S_2 & \mapsto & \lim(F_{S_1}) \xrightarrow{\psi_{S_1S_2}} \lim(F_{S_2}). \end{array}$$

Vamos mostrar que $L \in \text{Obj}(\mathscr{C}_2)$ e que $\left(L, (\varphi^D : L \to F(D))_{D \in \text{Obj}(\mathscr{D})}\right)$ é o limite do funtor F, onde $\varphi^D = (\varphi^D_S)_{S \in \text{Obj}(\kappa-\mathcal{E}DSet)}$. Primeiro, vamos mostrar que $L \in \mathscr{C}_2$. Para isso, precisamos ver que $L(S_1 \sqcup S_2) = L(S_1) \times L(S_2)$. Mas, como $L(S) = \lim(F_S)$, temos que mostrar que $\lim(F_{S_1 \sqcup S_2}) = \lim(F_{S_1}) \times \lim(F_{S_2})$. Assim, considere os diagramas abaixo, onde G é um grupo abeliano qualquer e $f^D_S : G \to F(D)(S)$ é um homomorfismo de grupos.

Logo, podemos formar o seguinte diagrama.

Dessa forma, $\lim(F_{S_1}) \times \lim(F_{S_2})$ satisfaz a propriedade universal de limite de $F_{S_1 \sqcup S_2}$, logo, $\lim(F_{S_1 \sqcup S_2}) = \lim(F_{S_1}) \times \lim(F_{S_2})$, o que mostra que $L \in \operatorname{Obj}(\mathscr{C}_2)$. Agora, vamos mostrar que $\left(L, (\varphi^D: L \to F(D))_{D \in \operatorname{Obj}(\mathscr{D})}\right)$ é o limite do funtor F. Para isso, considere $X \in \operatorname{Obj}(\mathscr{C}_2)$ e seja, para cada $D \in \operatorname{Obj}(\mathscr{D})$, $f^D: X \to F(D)$ morfismo em $\operatorname{Hom}(\mathscr{C}_2)$, ou seja, uma transformação natural. Uma vez que $F(D)(S) = F_S(D)$, pela propriedade universal do limite de F_S , temos que o seguinte diagrama comuta, para cada $S \in \operatorname{Obj}(\mathscr{C}_2)$.

Portanto, $\left(L, (\varphi^D: L \to F(D))_{D \in \mathrm{Obj}(\mathscr{D})}\right)$ é o limite do funtor F. Uma construção análoga pode ser feita para o colimite de F. Feito isso, basta checar que \mathscr{C}_2 herda as propriedades de AbGrp . Por exemplo, vamos ver que núcleo existe. Se $\eta: T_1 \to T_2$ é um morfismo em \mathscr{C}_2 , então $\ker(\eta) = \lim(F)$, onde

$$\begin{array}{cccc}
& & F & & \mathscr{C}_2 \\
& & & & \eta & \\
\bullet & & & \longmapsto & T_1 & \xrightarrow{0_{T_1 T_2}} T_2
\end{array}$$

Mas o limite de F é dado pelo limite L que, por sua vez, é dado pelo limite de F_S .

Uma vez que o limite de F_S é o núcleo de η_S , então o limite de F existe, pois **AbGrp** é abeliana. A verificação das demais propriedades que definem categoria abeliana e também os axiomas de Grothendieck são feitas analogamente.

Vamos ver, agora, que $\mathscr{C}_1 = \kappa\text{-Cond}(\text{fbGrp})$ é gerada por objetos projetivos compactos. Vamos começar considerando o funtor esquecimento $R:\mathscr{C}_1 \to \kappa\text{-Cond}(\text{Set})$. Podese provar que R preserva limites pequenos. Como \mathscr{C}_1 é uma categoria pequena, então, pela Observação 4 e pelo Teorema da Função Adjunta (Teorema 2), temos que R possui uma adjunta à esquerda $L:\kappa\text{-Cond}(\text{Set}) \to \mathscr{C}_1$. Seja S um conjunto $\kappa\text{-pequeno}$ extremamente desconexo e considere $\underline{S} = \text{Hom}_{\text{Top}}(\cdot,S) \in \text{Obj}(\kappa\text{-Cond}(\text{Set}))$. Pela adjunção, temos que $\theta(\underline{S}): \text{Hom}_{\mathscr{C}_1}(L(\underline{S}), \cdot) \to \text{Hom}_{\kappa\text{-Cond}(\text{Set})}(\underline{S}, \cdot)$ é um isomorfismo natural. Pelo Lema de Yoneda (Teorema 1), temos que $\Psi(\underline{S}): \text{Hom}_{\kappa\text{-Cond}(\text{Set})}(\underline{S}, \cdot) \to (\cdot)(S)$ também é um isomorfismo natural, onde $(\cdot)(S): \kappa\text{-Cond}(\text{Set}) \to \text{Set}, X \mapsto X(S), X_1 \overset{\gamma}{\to} X_2 \mapsto X_1(S) \overset{\gamma}{\to} X_2(S)$. Seja $\eta: M_1 \to M_2$ um epimorfismo em \mathscr{C}_1 . Então $\eta_S: M_1(S) \to M_2(S)$ também é um epimorfismo. Como também $\Psi(\underline{S})$ e $\theta(\underline{S})$ são bijeções, temos que qualquer $\alpha \in \text{Hom}_{\mathscr{C}_1}(L(\underline{S}), M_2)$ está associado a um só elemento em $g \in M_2(S)$. Pela sobrejeção de η_S , existe $x \in M_1(S)$ tal que $\eta_S(x) = g$. Novamente, pela bijeções de $\Psi(\underline{S})$ e $\theta(\underline{S})$, x está associado a um único $\beta \in \text{Hom}_{\mathscr{C}_1}(L(\underline{S}), M_1)$. Uma vez que o diagrama abaixo é comutativo, temos que $\eta^*(\beta) = \alpha$, ou seja, η^* é epimorfismo. Isso significa que $L(\underline{S})$ é um objeto projetivo em \mathscr{C}_1 .

Agora, vamos mostrar que $L(\underline{S})$ é compacto, isto é, dado $F: \mathcal{D} \to \mathscr{C}_1$, com \mathcal{D} filtrada, o morfismo natural $\varphi: \operatorname{colim} \big(\operatorname{Hom}_{\mathscr{C}_1}(L(\underline{S}), F(\cdot)) \big) \to \operatorname{Hom}_{\mathscr{C}_1}(L(\underline{S}), \operatorname{colim}(F))$ é uma bijeção. Compondo os isomorfismos naturais $\theta(\underline{S})$ com $\Psi(\underline{S})$, temos um isomorfismo natural entre $\operatorname{Hom}_{\mathscr{C}_1}(L(\underline{S}), \cdot)$ e $(\cdot)(S)$. Assim, se $F: \mathcal{D} \to \mathscr{C}_1$ é um funtor, com \mathcal{D} filtrada, então teremos ainda um isomorfismo natural entre $\operatorname{Hom}_{\mathscr{C}_1}(L(\underline{S}), F(\cdot))$ e $F(\cdot)(S)$. Desse modo, se mostrarmos que $\operatorname{colim} \big(F(\cdot)(S) \big)$ é isomorfo a $\operatorname{colim}(F)(S)$, teremos

$$\operatorname{colim} \big(\operatorname{Hom}_{\mathscr{C}_1} (L(\underline{S}), F(\cdot)) \big) \cong \operatorname{colim} \big(F(\cdot)(S) \big) \cong \operatorname{colim}(F)(S) \cong \operatorname{Hom}_{\mathscr{C}_1} (L(\underline{S}), \operatorname{colim}(F)),$$

o que provaria que $L(\underline{S})$ é compacto. Assim, é suficiente provarmos que $(\cdot)(S)$ preserva colimites (exercício).

Finalmente, vamos ver que o conjunto formado por todos $L(\underline{S})$ é um conjunto gerador. Sejam $\eta, \nu: M_1 \to M_2$ morfismos diferentes em \mathscr{C}_1 . Então, existe algum S, conjunto κ -pequeno extremamente desconexo, tal que $\eta_S \neq \nu_S$, ou seja, $\eta_S(m) \neq \nu_S(m)$, para algum $m \in M_1(S)$. Pelas bijeções dadas pela adjunção e pelo Lema de Yoneda, temos que existe $\gamma: L(\underline{S}) \to M_1$ e $N \in L(\underline{S})$ tal que $\gamma_S(N) = m$. Logo, $\eta_S(\gamma_S(N)) = \eta_S(m) \neq \nu_S(m) = \nu_S(\gamma_S(N))$. Portanto, $\eta \circ \gamma \neq \nu \circ \gamma$.

Referências

- [1] ASSEM, I.; SIMSON, D.; SKOWROŃSKI, A. *Elements of the Representation Theory of Associative Algebras*. Cambridge University Press, 2006. Apêndice A.
- [2] BORCEUX, F. Handbook of Categorical Algebra I. Cambridge University Press, 1994.
- [3] nLab. Separator. Website.

- [4] ROCH, S. A Brief Introduction to Abelian Categories. Notas de aula. Website.
- [5] SCHOLZE, P. Lectures on Condensed Mathematics. Notas de aula. Website.
- [6] The Stacks Project Authors. *Stacks Project*. Seções 4.19, 4.21, 10.8, 12.3, 12.5 e 19.10. Website.
- [7] Wikipedia. Abelian Category. Website.
- [8] Wikipedia. Compact Object. Website.
- [9] Wikipedia. Projective Object. Website.