Model Development Phase Template

Date	15 JULY 2024
Team ID	740680
Project Title	View count visionary:A data driven approach to forecasting youtube videos views
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

Data Loading: The code starts by loading the YouTube video views dataset from a CSV file.

Data Preprocessing: It includes steps such as cleaning the data, handling missing values, and performing feature engineering to extract relevant predictors for views forecasting.

Model Training: Utilizes a Random Forest Regressor to train the model on the preprocessed data.

Initial Model Training Code:

Import necessary libraries

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestRegressor

from sklearn.metrics import mean_squared_error

Load dataset

data = pd.read_csv('youtube_views_data.csv')

Data preprocessing

(Include code for data cleaning, feature engineering, etc.)

Split data into training and test sets

```
X = data.drop(['views'], axis=1)
y = data['views']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Initialize and train the model
model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X_train, y_train)

# Model evaluation
predictions = model.predict(X_test)
mse = mean_squared_error(y_test, predictions)
print(f'Mean Squared Error: {mse}')
```

Save the trained model

(Code to save the model for future predictions)

Model Validation and Evaluation Report:

Mod el	Classification Report	Acc urac y	Confusion Matrix
Deci sion Tree	<pre>import numpy as np # Assuming preds is your predicted values from # Example preds: preds = np.array([1.2, 2.5, 3.7, 4.1, 5.9]) # # Convert preds to np.int16 preds = preds.astype(np.int16) # Reshape and convert to list preds_list = preds.reshape(1, -1)[0].tolist() print(preds_list)</pre>	0.72	[1, 2, 3, 4

Ran do m Fore st
