DIMENSONALITY REDUCTION WITH FEED-FORWARD NEURAL NETWORKS AND COMPARISON WITH PRINCIPLE COMPONENT ANALYSIS METHOD

Osman Furkan Kınlı – S002969

OUTLINE

- Dimensionality Reduction
- Principle Component Analysis
- Artificial Neural Networks
- Dimensionality Reduction with ANNs
- Results
- References

DIMENSIONALITY REDUCTION

- Assumption: Data lies on or near a low ddimensional subspace
- Axes of the subspace are effective representation of the data

DIMENSIONALITY REDUCTION

- The main goal of dimensionality reduction is to discover the representative axis of the data.
- Example: All data points can be represented with l coordinate corresponding to the position on the red line, rather than representing the points with 2 coordinates.

DIMENSIONALITY REDUCTION

- With the help of dimensionality reduction of the data:
 - Discover hidden correlations between features
 - Remove redundant and noisy features
 - Interpretation and visualization
 - Easy to store and process of the data

PRINCIPLE COMPONENT ANALYSIS

 PCA is one of the popular dimensionality reduction methods.

 This method provides simpler representation of the data by projecting it from higher dimensional space to a lower dimensional sub-space.

 Basically, PCA tries to achieve minimizing the error incurred by reconstructing the data in higher dimension.

PRINCIPLE COMPONENT ANALYSIS

- Interpretation:
 - Maximize the variance of the projection data along each principle component
 - Minimize the reconstruction error
- Example: Projecting 3dimensional data points into 2-dimensional subspace

PRINCIPLE COMPONENT ANALYSIS

- The algorithm of PCA as follows:
 - Step-1: Subtract the mean from each data point
 - Step-2: Calculate covariance matrix of zero-centered data
 - Step-3: Calculate eigens of the covariance matrix
 - Step-4: Pick the components to project the data

ARTIFICIAL NEURAL NETWORKS

- Information processing paradigm
- Inspired by biological nervous systems
- Composed of a large number of highly interconnected processing elements (neuron)

 Motivation: Minimizing the loss function by learning some information from examples

- A single neuron will pass the information to the next neuron with the sum of weighted input signals.
- Net input values will be activated with such a function by mapping the values into desired range.

Activation function: The function (Sigmoid, ReLU etc.) which maps the sum of weighted input signals (can be any number) into a certain range.

Cost function: The function (MSE, Cross-entropy etc.) which represents the difference between actual output and predicted output throughout the network.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (f_i - y_i)^2$$

$$BCE = -\frac{1}{N} \sum_{i=0}^{N} y_i \cdot log(\hat{y}_i) + (1 - y_i) \cdot log(1 - \hat{y}_i)$$

Iterative & Gradient-based optimization: FFNNs are usually trained by using iterative, gradient-based optimizers (SGD, Momentum etc.) that only drive the cost function to very low value.

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

SGD with Momentum Term

$$\nu_j \leftarrow \boxed{\eta * \nu_j - \alpha * \nabla_w \sum_{1}^{m} L_m(w)}$$

$$\omega_j \leftarrow \nu_j + \omega_j$$

DIMENSIONALITY REDUCTION WITH ANN

- In generative perspective, ANNs can learn to mimic any distribution of data.
- Generative models model the distribution of individual classes.
- Inspired by the structure of autoencoders.
- While encoder part is responsible to project the data to lower dimensional sub-space, decoder part reconstructs the data in higher dimension.

DATASET (FASHION-MNIST)

- FashionMNIST:
 - contains 60.000 gray-scaled fashion images
 - with 10 category labels
 - Dimensionality (h, w, c): 28x28x1

MODEL ARCHITECTURE

- Input layer: (None, 784)
- 1st hidden layer: Size(784, 256) Activation(ReLU)
- 2nd hidden layer: Size(256, 64) Activation(ReLU)
- Projection layer (3rd): Size(64, 3)
- Activation layer: Activation(ReLU)
- 4th hidden layer: Size(3, 64) Activation(ReLU)
- 5th hidden layer: Size(64, 256) Activation(ReLU)
- Output layer: Size(256, 784)
- Loss function: Mean squared error (MSE)
- Optimizer: Adam

Baseline PCA (from scikit-learn library)

My PCA Implementation

RESULTS

- Left: Built-in function of scikitlearn library with 2 components
- Right: My PCA implementation with 2 components
- In both images, we can see that most individual classes are separated in 2dimensional sub-space with (of-course) some noise.

Baseline PCA (from scikit-learn library)

My PCA Implementation

RESULTS

- Left: Built-in function of scikitlearn library with 3 components
- Right: My PCA implementation with 3 components
- In both images, we can see that most individual classes are separated in 3dimensional sub-space with (of-course) some noise. (shown in 2-dim)

RESULTS

 Here is the projection of the data on 0., 2000., 5000. and 15000. steps in 2dimensional sub-space.

RESULTS

 Here is the projection of the data on 100., 2000., 5000. and 15000. steps in 3dimensional sub-space. (shown in 2-dim)

Osman Furkan Kınlı – S002969