Linear Algebra

Samira Hossein Ghorban s.hosseinghorban@ipm.ir

 $Fall,\ 2021$

Review: A useful lemma for self-adjoint matrices

Lemma

Let $A \in M_n(\mathbb{F})$ be a self-adjoint matrix. Then there is an invertible matrix $P \in M_n(\mathbb{F})$ such that $P^*P = I$ and

$$A = P \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} P^*,$$

where $\lambda_1, \ldots, \lambda_n$ are eigenvalues of A.

- Singular value decomposition (SVD) is a generalization of this where $A \in M_{mn}(\mathbb{F})$ does not have to be self-adjoint or even square. No restriction at all!

AA^* and A^*A

- Let $A \in M_{mn}(\mathbb{F})$.
- The matrices $AA^* \in M_m(\mathbb{F})$ and $A^*A \in M_n(\mathbb{F})$ are self-adjoint and their eigenvalues are non-negative real numbers.
- There are unitary matrices $U \in M_m(\mathbb{F})$ and $V \in M_n(\mathbb{F})$ and diagonal matrices $D_1 \in M_m(\mathbb{R})$ and $D_2 \in M_n(\mathbb{R})$ such that

$$AA^* = UD_1U^* \qquad A^*A = VD_2V^*.$$

• We show that

Non-zero eigenvalues for AA^* and A^*A

Lemma

If $A \in M_{mn}(\mathbb{F})$ and $B \in M_{nm}(\mathbb{F})$, then $x^n f_{AB}(x) = x^m f_{BA}(x)$.

Lemma

Matrices AA^* and A^*A share the same non-zero eigenvalues with the same algebraic multiplicities.

Sigular Values

- Suppose that $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_r > 0$ where $r = \operatorname{rank} A = \operatorname{rank} A A^* = \operatorname{rank} A A^*$.
- Let $\sigma_i = \sqrt{\lambda_i}$ for each $1 \le i \le r$, and consider the m by n matrix

• We have

$$D_1 = \Sigma \Sigma^*, \qquad D_2 = \Sigma^* \Sigma.$$

A candidate for a decomposition of A

$$\bullet AA^* = UD_1U^* \qquad A^*A = VD_2V^*.$$

•
$$D_1 = \Sigma \Sigma^*$$
 $D_2 = \Sigma^* \Sigma$.

• So, we obtain

$$AA^* = UD_1U^* = U\Sigma\Sigma^*U^* = U\Sigma V^*V\Sigma^*U^* = \left(U\Sigma V^*\right)\left(U\Sigma V^*\right)^*,$$

$$A^*A = VD_2V^* = V\Sigma^*\Sigma V^* = V\Sigma^*U^*U\Sigma V^* = \left(U\Sigma V^*\right)^*\left(U\Sigma V^*\right).$$

• It suggests that

$$A = U\Sigma V^*.$$

SVD

• Write V as $\begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}$. For each $1 \leq j \leq r$,

$$A^*Av_j = \sigma_j^2 v_j.$$

• So,

$$AA^*(Av_j) = \sigma_j^2 Av_j.$$

- $\sigma_j^2 \neq 0$ implies that $Av_j \neq 0$, and consequently the unit eigenvector for eigenvalue σ_j^2 is $\frac{1}{\|Av_j\|}Av_j$.
- Write U as $\begin{bmatrix} u_1 & \cdots & u_m \end{bmatrix}$. So, $u_j = \frac{1}{\|Av_j\|} Av_j$.
- Also, $||Av_j||^2 = v_j^* A^* A v_j = \sigma_j^2 ||v_j||^2 = \sigma_j^2$, so $||Av_j|| = \sigma_j$.

SVD

- Hence $Av_j = \sigma_j u_j$ for each $1 \leq j \leq r$.
- Consequently,

$$AV = A \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}$$

$$= \begin{bmatrix} Av_1 & \cdots & Av_r & 0 & \cdots & 0 \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_1 u_1 & \cdots & \sigma_r u_r & 0 & \cdots & 0 \end{bmatrix}$$

$$\begin{bmatrix} \sigma_1 & & & & & \\ & \sigma_2 & & & \\ & & \ddots & & \\ & & & \sigma_r & & \end{bmatrix}$$

 $=U\Sigma.$

SVD

This is "the " SVD

$$A = U\Sigma V^*$$

= $\sigma_1 u_1 v_1^* + \dots + \sigma_r u_r v_r^*$

Pseudo-inverse of A

Assume

$$\Sigma = \begin{bmatrix} \sigma_1 & & & & \\ & \sigma_2 & & & \\ & & \ddots & & \\ & & & \sigma_r & & \end{bmatrix} \qquad \Sigma^\dagger = \begin{bmatrix} \frac{1}{\sigma_1} & & & & \\ & \frac{1}{\sigma_2} & & & \\ & & \ddots & & \\ & & & \frac{1}{\sigma_r} & & \end{bmatrix}$$

The **pseudo-inverse** of A is defined as

$$A^{\dagger} = V \Sigma^{\dagger} U^*.$$

 A^{\dagger} fulfills the role of A^{-1} , "as far as possible."

For singular matrix A^*A

- Let $x^{\dagger} := V^* \Sigma^+ U b = A^{\dagger} b$.
- This x^{\dagger} is a solution for $A^*Ax = A^*b$:

$$A^*Ax^{\dagger} = A^*AA^{\dagger}b$$

$$= V\Sigma^*U^*U\Sigma V^*V\Sigma^{\dagger}U^*b$$

$$= V\Sigma^*\Sigma\Sigma^{\dagger}U^*b$$

$$= V\Sigma^*U^*b$$

$$= A^*b.$$

• Also, we show that $x^\dagger = V^* \Sigma^+ U b = A^\dagger b \in \arg\min_x \|b - Ax\|.$

$A^{\dagger}b$ is the optimal solution of Ax = b.

- The column space of $A^{\dagger} = V \Sigma^{\dagger} U^*$ is the space generated by the first r columns of V.
- The null space of $A^*A = V\Sigma^*\Sigma V^*$ is equal to the space generated by the last n-r columns of V.
- Since V is unitary,

$$C(A^{\dagger}) \perp N(A^*A).$$

- Assume that z is a solution of the equation system $A^*Az = A^*b$.
- We know that $A^*AA^{\dagger}b = A^*b$. So

$$A^*A(z - A^{\dagger}b) = 0 \Rightarrow z - A^{\dagger}b \in N(A^*A).$$

- Let $v = z A^{\dagger}b$. Thus $z = v + A^{\dagger}b$ where $v \in N(A^*A)$ and $A^{\dagger}b \in C(A^{\dagger})$.
- So, $||z||^2 = ||v||^2 + ||A^{\dagger}b||^2 \ge ||A^{\dagger}b||^2$.

Thank You!