Aufgabe 1

(a) Betrachte eine Matrix

$$\overline{A} = \begin{pmatrix} \overline{a} & \overline{b} \\ \overline{c} & \overline{d} \end{pmatrix} \in \operatorname{SL}(\mathbb{Z}/N\mathbb{Z})$$

Es gilt $ad - bc \equiv 1 \mod N$, d.h. $m \coloneqq \operatorname{ggT}(a,b)|1 \mod N$ und damit $\operatorname{ggT}(m,N) = 1$. Mit Benutzung des euklidischen Algorithmus erhalten wir die Existenz von u,v mit ua + vb = m und sm + rN = 1. Dann gilt für Vertreter $a,b,c,d \in \mathbb{Z}$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \underbrace{\begin{pmatrix} u & -b \\ v & a \end{pmatrix}}_{\in \operatorname{SL}_2(\mathbb{Z})} \cdot \underbrace{\begin{pmatrix} s & N \\ -r & m \end{pmatrix}}_{\in \operatorname{SL}_2(\mathbb{Z})} = \begin{pmatrix} m & 0 \\ * & * \end{pmatrix} \cdot \begin{pmatrix} s & N \\ -r & m \end{pmatrix} = \begin{pmatrix} sm & Nm \\ * & * \end{pmatrix} =: M$$

Betrachten wir also alle Matrizen $\mod N$, so erhalten wir $M \in \mathrm{SL}_2(\mathbb{Z}/n\mathbb{Z})$ und durch Rechnung folgt

$$\begin{pmatrix} sm & Nm \\ * & * \end{pmatrix} \equiv \begin{pmatrix} sm + rN & 0 \\ * & * \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ * & * \end{pmatrix} \stackrel{!}{\equiv} \begin{pmatrix} 1 & 0 \\ * & 1 \end{pmatrix} \mod N$$

Diese Matrix besitzt ein Urbild C in $SL_2(\mathbb{Z})$, d.h. es gilt $mod(N)(C) = \begin{pmatrix} 1 & 0 \\ * & 1 \end{pmatrix} \equiv M$.

$$\operatorname{mod}(N)(C \cdot B^{-1}) = \operatorname{mod}(N)(C) \cdot \operatorname{mod}(N)(B^{-1}) = \overline{M} \cdot \overline{B^{-1}} = \overline{A}BB^{-1} = \overline{A}$$

Damit haben wir für ein beliebiges $\overline{A} \in \mathrm{SL}_2(\mathbb{Z}/N\mathbb{Z})$ ein Urbild $C \cdot B^{-1} \in \mathrm{SL}_2(\mathbb{Z})$ konstruiert, insbesondere ist $\mathrm{mod}(N)$ surjektiv.

(b) Wir berechnen die Anzahl der Möglichkeiten für eine Matrix $M \in \operatorname{GL}_2(\mathbb{Z}/p^{\nu}\mathbb{Z})$. In die erste Spalte können wir jede Kombination (x,y) von zwei Elementen $x,y\in\mathbb{Z}/p^{\nu}\mathbb{Z}$ schreiben, solange $p \not\mid \operatorname{ggT}(x,y)$. Sonst folgt nämlich $p|\det(M)$, also $\det M \equiv 0 \mod p^{\nu}$, was im Widerspruch zur Regularität von M steht. Es gibt für die erste Spalte also insgesamt $(p^{\nu})^2$ Möglichkeiten, von denen wir wieder $(p^{\nu})^2/p^2$ abziehen müssen, da für jedes p^2 -te Paar (x,y) gilt $p|x \land p|y$. Insgesamt gibt es also $p^{2\nu} \cdot (1-p^{-2})$ Möglichkeiten für die erste Spalte. Die zweite Spalte muss so gewählt werden, dass keine Linearkombination (wobei l invertierbar sein muss) aus erster und zweiter Spalte einen durch p teilbaren größten gemeinsamen Teiler besitzt. Die Menge aller Spalten, die nicht vorkommen dürfen, ist gegeben durch

$$\left\{ \begin{pmatrix} b \\ d \end{pmatrix} \middle| l \cdot \begin{pmatrix} b \\ d \end{pmatrix} - k \cdot \begin{pmatrix} a \\ c \end{pmatrix} = \begin{pmatrix} mp \\ np \end{pmatrix} \Leftrightarrow l \cdot \begin{pmatrix} b \\ d \end{pmatrix} = \begin{pmatrix} mp \\ np \end{pmatrix} + k \cdot \begin{pmatrix} a \\ c \end{pmatrix} \right\}$$

mit l invertierbar. Betrachten wir diese Forderung modulo p, so erhalten wir

$$l \cdot \begin{pmatrix} b \\ d \end{pmatrix} \equiv k \cdot \begin{pmatrix} a \\ c \end{pmatrix}$$
$$\begin{pmatrix} b \\ d \end{pmatrix} \equiv l^{-1}k \cdot \begin{pmatrix} a \\ c \end{pmatrix}$$

Es sind also die p Äquivalenzklassen $l^{-1}k=0,1,\ldots,p-1$ ausgeschlossen. Jede dieser Äquivalenzklassen besitzt $p^{2\nu}/p^2$ Elemente. Insgesamt sind damit $p\cdot p^{2\nu}/p^2$ Möglichkeiten für die zweite Spalte ausgeschlossen. Es bleiben also $p^{2\nu}\cdot(1-p^{-1})$ Möglichkeiten, sodass insgesamt die Behauptung folgt.

(c) Betrachte den surjektiven Gruppenhomomorphismus

$$\det \operatorname{GL}_2(\mathbb{Z}/p^{\nu}\mathbb{Z}) \to (\mathbb{Z}/p^{\nu}\mathbb{Z})^{\times}$$

Es gilt ker det = $\mathrm{SL}_2(\mathbb{Z}/p^{\nu}\mathbb{Z})$ und daher

$$|\operatorname{SL}_2(\mathbb{Z}/p^{\nu}\mathbb{Z})| = |\operatorname{GL}_2(\mathbb{Z}/p^{\nu}\mathbb{Z})|/|(\mathbb{Z}/p^{\nu}\mathbb{Z})^{\times}| = p^{4\nu}(1-p^{-1})(1-p^{-2})/(p^{\nu}(1-p^{-1})) = p^{3\nu}(1-p^{-2}).$$

(d) Für alle Kongruenzgruppen Γ gilt: $\exists N$ mit $\Gamma(N) \subset \Gamma$. Da $\Gamma(N)$ endlichen Index hat, folgt die Existenz von Matrizen $A_1, \ldots A_r$ mit

$$\mathrm{SL}_2(\mathbb{Z}) = A_1\Gamma(N) + \cdots + A_r\Gamma(N) \subset A_1\Gamma + \cdots + A_r\Gamma.$$

Folglich existieren auch höchstens $r < \infty$ Nebenklassen zu Γ und damit ist $[\operatorname{SL}_2(\mathbb{Z}) \colon \Gamma] < \infty$.

Aufgabe 2

- (a) Wir zeigen die drei Bedingungen aus Definition 1.21.
 - (i) Möbiustransformationen sind stetig auf \mathbb{H} . Insbesondere ist also $M \circ F$ wieder zusammenhängend und, weil die Umkehrabbildung ebenfalls stetig ist, auch abgeschlossen.
 - (ii) Durch Anwenden einer Möbiustransformation M auf einen Punkt z ändert sich nichts an der Äquivalenzklasse von z bezüglich der Operation der Möbiustransformationen.
 - (iii) Der Rand von F ist homöomorph zur S^1 . $M \circ F$ und das Bild des Inneren $M \circ F^\circ$ sind zusammenhängend. Das Bild des Randes ∂F ist wieder homöomorph zur S^1 . Aus topologischen Gründen wird nun ∂F auf $\partial M \circ F$ abgebildet. Es gilt nämlich $M \circ F^\circ = M \circ F \setminus \underbrace{M \circ \partial F}_{\simeq S^1}$.

Ist nun $M \circ \partial F$ nicht $\partial M \circ F$, so teilt $M \circ \partial F$ den topologischen Raum $M \circ F$ in zwei nicht wegzusammenhängende Komponenten, Widerspruch.

Sei also $A\langle y\rangle=z$ mit $y,z\in (M\circ F)^\circ=M\circ F^\circ$. Dann gilt $M^{-1}AM\langle M^{-1}\langle y\rangle\rangle=M^{-1}\langle z\rangle$ mit $M^{-1}\langle y\rangle, M^{-1}\langle z\rangle\in F^\circ$. Diese beiden Punkte müssen aber entweder identisch oder inäquivalent sein, da sie beide aus dem Inneren eines Fundamentalbereichs stammen. Also folgt $M^{-1}AM=\mathrm{id}\Leftrightarrow A=\mathrm{id}$ und je zwei Punkte $y,z\in (M\circ F)^\circ$ sind entweder identisch oder inäquivalent.

(b) Siehe Abbildung 1

Aufgabe 3

(a) Sei $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(p)$. Dann gilt $M\langle 0 \rangle = \frac{b}{d}$. Wegen p|c und ggT(c,d) p (sonst ist M nicht regulär) folgt $p \not d$. Außerdem gilt $M\langle \infty \rangle = \frac{a}{c}$. Wir erhalten also zwei Spitzenklassen:

$$\begin{cases} \frac{r}{q} \sim 0 & p \not | q, \\ \frac{r}{q} \sim \infty & p | q. \end{cases}$$

Abbildung 1: Skizze Fundamentalbereich

mit der Konvention p|0 und $\infty = \frac{1}{0}$. Die Vereinigung beider Spitzenklassen ist also bereits $\mathbb{Q} \cup \infty$, es kann keine weiteren Spitzenklassen geben.

(b) Analog zur a) erhalten wir $M\langle 0\rangle=\frac{b}{d}$ mit $p\not|d$ und $M\langle \infty\rangle=\frac{a}{c}$ mit $p^2|c$. Insbesondere sind die beiden Spitzenklassen von 0 und ∞ disjunkt. Wir erhalten

$$M\langle -\frac{1}{kp}\rangle = \frac{-\frac{a}{kp}+b}{-\frac{c}{kp}+d} = \frac{-a+kbp}{-c+kbp}$$

Angenommen,

$$M\langle -\frac{1}{kp}\rangle = 0 \implies -a = kbp \implies p|a.$$

Dann wären aber a und c durch p teilbar und somit auch die Determinante, im Widerspruch zu $M \in \Gamma_0(p)$. Angenommen,

$$M\langle -\frac{1}{kp}\rangle = \infty \implies -c = kdp \implies p^2|kdp \implies p|d.$$

Dann wären aber c und d durch p teilbar und somit auch die Determinante, im Widerspruch zu $M \in \Gamma_0(p)$. Angenommen,

$$\begin{split} M\langle -\frac{1}{kp}\rangle &= -\frac{1}{lp} \\ \frac{-a+kbp}{-c+kdp} &= -\frac{1}{lp} \\ a-kbp &= \frac{-c+kdp}{lp} \\ alp-lkbp^2 &= -c+kdp \\ al-kd &= \frac{-c}{p}+klbp \end{split}$$

 $p^2 \vert c,$ also handelt es sich hierbei um eine ganzzahlige Gleichung

$$al - kd = \left(\frac{-c}{p^2} + klb\right)p$$

Wir folgern durch Betrachtung modulo p, dass p|(al-kd). Ziel wäre es jetzt noch, zu zeigen, dass k=l gelten muss. Dann hätte man die Disjunktheit der Spitzenklassen gezeigt. Außerdem müsste man dann noch zeigen, dass die Vereinigung der Spitzenklassen $\mathbb{Q} \cup \{\infty\}$ ergibt.