Medical Imaging and Beyond Jesus J. Caban

Schedule

- Today:
 - Lecture: Medical Imaging and Beyond
- Wednesday:
 - No Class (Thanksgiving Eve)
- Final presentations:
 - Nov 29th: W. Griffin, F. Zafar
 - Dec 1st: Y. Wang, N. Chhaya
 - Dec 6th: J. Dandois, T. Shin, H. Jean
 - Dec 8th: M. Lombard, J. Rosebrock, R. Dighade
 - Dec 13th: D. Mann, E. Baumel, P. Bindu
 - Dec 20th: K. Martinez, A. Campbell, N. Serova
- +5 bonus points
- +3 bonus points
- +2 bonus points
- +1 bonus points +0 bonus points
- +0 bonus points

20 mins talk + 5 mins Q/A

Final Paper

- Due: Dec 13th, 2010
- At least four pages
- Two columns
- It should have (at least) the following sections:
 - 1. Abstract
 - 2. Introduction
 - 3. Previous Work
 - 4. Approach
 - 5. Results
 - 6. Conclusion

Need a template? http://www.biomedicalimaging.org

Assignment #4

- 1) ssh to linuxserver1 or linuxserver2 (use the -X option)
- 2) wget http://www.vision.caltech.edu/bouguetj/calib_doc/download/toolbox_calib.zip
- 3) /usr/local/matlab/bin/matlab

Why Medical Imaging?

- One of the primary applications of image processing
 - Medical images are widely available
 - Everyone understands the need for computational techniques to enhance medical images
 - Easy to establish collaborations (somewhat easier to get funding)
- University of Maryland Medical Center (2007)
 - 50 GB of 3D images a day
 - 15 TB last year
- Challenges
 - Image Diagnosis / Detection
 - Registration
 - Segmentation

Examples of Medical Images

Medical Imaging - Acquisition

- Different devices are used for image acquisition
 - X-Ray, CT, MRI, PET, etc..
 - **Protocols:** With / without contrast
 - Method: Real-time or offline
- When are they used?
 - Purpose
 - X-Ray: Overview images
 - CT: Bone
 - MRI: tissue, muscles
 - Budget

X-ray Imaging: How it works

- Simplest imaging technique
- Wilhelm Röntgen in 1895
- Accidentally discovered
 - Accelerated electrons
 - Cathode tubes and fluorescent screens
 - The "light" evenly illuminated
 - Even when tube was placed
 - *X-rays* (*X* for unknown)

X-ray Imaging: How it works

X-ray shadow cast by an object

X-ray uses

- Radiographic images are made for all parts of the body
 - skeletal, chest (thorax, heart), mammography (breast), dental
- Mammography is somewhat behind because it requires resolutions that exceed that of storage phosphors
- X-ray images can be static or dynamic

Fluoroscopy -- X-ray

- X-ray image sequences are produced in real time
 - applications where motion is the subject of investigation
 - guidance for minimally invasive procedures
 - angiography (coronary imaging, vessels)
 - instrument tracking

Summary: X-ray Imaging

- Oldest non-invasive imaging of internal structures
- Rapid, short exposure time, inexpensive
- Unable to distinguish between soft tissues in head, abdomen
- Real time X-ray imaging is possible and used during interventional procedures.
- Ionizing radiation: risk of cancer.

Computed Tomography

- Advance table with patient after each slice acquisition has been completed
- Rotate source detector pair around the patient

CT - How it works?

- Rotate source detector pair around the patient
- For each angle
 - Get a sinogram
 - Back-project data
 - Construct slice
- Math and physics more complicated than X-ray

CT - Applications

- Applications of CT
 - head/neck (brain, maxillofacial, inner ear, soft tissues of the neck)
 - thorax (lungs, chest wall, heart and great vessels)
 - urogenital tract (kidneys, adrenals, bladder, prostate, female genitals)
 - abdomen(gastrointestinal tract, liver, pancreas, spleen)
 - musceloskeletal system

What's new?

- Nowadays (spiral) scanners are available that take up to 64 simultaneous slices
- Much More...
 - High-resolution CT
 - Low-dose CT

High-Resolution CT

Summary of CT

- Images of sectional planes (tomography) are harder to interpret
- CT can visualize small density differences, e.g. grey matter, white matter, and CSF.
- CT can detect and diagnose disease that cannot be seen with X-ray.
- More expensive than X-ray.
- Ionizing radiation (can cause cancer).

Magnetic Resonance Imaging/ Tomography

- MRI measures magnetic field
- 3D volume is reconstructed from measured proton
- Relatively slow image acquisition
- Noisy
- First human study published in 1977

MRI Image Formation

- The hydrogen atom has only one proton
- Protons are magnetic
- In a magnetic field, spin-up and spin-down protons have different energies
- Radio wave photons can flip the proton spins
- By controlling the energy differences between spin-up and spin-down and adjusting the radio waves, you can locate hydrogen in a person

Example - MRI Images

T2-weighted MRI-Image (3D-CISS) Sagittal Orientation

T1-weighted MRI-Image (MR-Flash)

Features of MRI

- No ionizing radiation expected to not have any longterm or short-term harmful effects
- Many contrast mechanisms: contrast between tissues is determined by pulse sequences
- Can produce sectional as well as projection images.
- Slower and more expensive than X-ray
- Many imaging modes (water, T1, T2, flow, neural activity)
- Tomography at arbitrary angle

Others Imaging Techniques

- fMRI: displays neural activity in the brain
- Dynamic MRI: good for mammography
- DT-MRI
- Multi-slice CT
- Low-dose CT
- Nuclear Imaging
- PET

Conclusion: Medical Imaging

- Acquisition
 - CT
 - MRI
 - X-Ray
- Image/Volume formation

Rendering Techniques

- Primary Rendering Techniques
 - 1. Direct Volume Rendering (DVR)
 - 2. Iso-surfaces
 - 3. Maximum-Intensity Projection (MIP)
 - 4. X-Ray Rendering
 - 5. Non-photorealistic rendering (NPR)

1. Direct Volume Rendering (DVR)

- Direct Volume Rendering
 - Technique used to display a 2D projection/image of a 3D image
 - Effective method to render different materials

Gradient-based TF

How to compute N(x)?

- 1. Compute the gradient at each corner
- 2. Interpolate the normal using central difference

Problem with 1D TF

- What about when data has similar intensity and gradient values?

Texture-based TF

- Volumes present textural patterns
- Analyze textural properties, then classify

Observation: Textures

- Observations:
 - Like images, volumes contain characteristic patterns and small textures — textons - that our visual system can clearly identify
 - Combination of those textons create different structures and characteristic regions

First-Order Statistics

- The simplest textural measurements that can be obtained from 2D/3D images
 - Metrics estimated from a histogram

$$\vartheta^{2} = \frac{1}{(XY - 1)} \sum_{x=1}^{X} \sum_{y=1}^{Y} [I(xy) - \mu]^{2}$$

- Standard Deviation:

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2}.$$

$$\frac{1}{XY} \sum_{x=1}^{X} \sum_{y=1}^{Y} \left[\frac{I(xy) - \mu}{\vartheta} \right]^{3}$$

- Kurtosis:

$$\left\{\frac{1}{XY}\sum_{x=1}^{X}\sum_{y=1}^{Y}\left[\frac{I(xy)-\mu}{\vartheta}\right]^{4}\right\}-3$$

Second-Order Statistics

- Second-order statistics
 - Measure the likelihood of observing an intensity value i and j at an average distance

$$\Delta = (\zeta_x, \zeta_y, \zeta_z)$$

Energy: $\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p(i,j)^2$

Entropy: $\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{g}} \left[p(i,j) log(p(i,j)) \right]$

 $\textbf{Contrast:} \quad \sum_{n=0}^{N_{g-1}} n^2 \left\{ \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p(i,j) \right\}$

Higher-Order Statistics

- Run-length matrices
 - Finds gray-level runs within the volume

Short Run:

$$SRE = \frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} \frac{p(i,j)}{j^2}}{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} p(i,j)}$$

Long Runs:

$$LRE = \frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} j^2 p(i, j)}{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} p(i, j)}$$

Transfer Functions

- A number of transfer functions have been proposed
 - Opacity Transfer Functions
 - Color Transfer Functions
 - Gradient Transfer Functions
 - Curvature Transfer Functions
 - Multi-dimensional Transfer Functions
 - Texture-based Transfer Functions

2. Iso-surfaces

- Approximate the data to polygonal primitives
- Use contours/boundaries of the volume to generate polygonal structures/"surfaces"

Marching Cubes

- Most common way to generate iso-surfaces
- Algorithm:
 - Select a cell
 - Calculate inside/outside of each vertex
 - Create binary index
 - Search LUT
 - Calculate contours location using interpolation

Iso-surfaces - Example

3. Maximum Intensity Projection

- Maximum Intensity Projection (MIP)
 - The interpolated sample with the largest value is written to the pixel
 - Often used to enhance vascular structures

Source: Philips, Inc

4. X-ray Rendering

- X-ray rendering
 - Overview image
 - The interpolated samples are simply summed

X-ray images

5. Non-Photorealistic Rendering • The use of local image processing to produce artistic and illustrative effects • Pen-and-ink drawing • Silhouettes • Stippling • etc...

Limitations

- What's the most effective volume rendering techniques?
 - 1. Direct Volume Rendering (DVR)
 - 2. Iso-surfaces
 - 3. Maximum-Intensity Projection (MIP)
 - 4. X-Ray Rendering
 - 5. Non-photorealistic rendering (NPR)
- What about a combination?

Processing Image Processing Lung Fibrosis

Texture Analysis

- Observation:
 - Medical images and volumetric data presents specific pattern and textural features
 - patterns can be described as textures
- Why Textures?
 - Intensity patterns characteristics of specific objects
 - One of the most important properties used in image processing, computer vision, and medical imaging

Approach

- Approach: Texture-based CAD system
 - 1. Determine regions of interest
 - 2. Compute advanced textural properties for each feature
 - 3. Train and learn an statistical model
 - 4. Test new data

Feature of interest

- Which texture analysis techniques?
 - Combination:
 - First-order statistics
 - Second-order statistics
 - Run-length matrices

First-Order Statistics

- The likelihood of observing a intensity value at a random location in the subvolume.
- Done by computing a frequency distribution or histogram for the subvolume under consideration
- A histogram contributes six different metrics

- $\bar{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$ 1) Mean:
- 2) Variance: $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} \left(x_i \overline{x} \right)^2$
- 3) Absolute Deviation:

$$\frac{1}{n} \sum_{i=1}^{n} |x_i - \overline{x}|$$

4) Standard Deviation:

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2}.$$

- 5) Skewness
- 6) Kurtosis

Second-Order Statistics

- The probability of a pair of voxels v_1 and v_2 with intensities *i* and *j* occurring at some distance *d*.
 - frequency that a grayscale value appears in relation to another grayscale value on the image
- To compute the second-order statistics we use cooccurrence matrices.

- 1) Energy
- 2) Inertia
- 3) Entropy
- 4) Correlation
- 5) Average Difference 6) Entropy Difference
- 7) Average Sum
- 8) Entropy Sum
- 9) Inertia Difference

Ν

Run-Length Matrices

- General idea:
 - find strings of consecutive pixels that have the same gray level intensity along a specific linear orientation
 - Run-length matrix *p*(*i*, *j*) is defined as the number of pixels of gray level *i* and run length *j* along a direction d.

- 1. Long run emphasis
- 2. Run length non-uniformity
- 3. Low gray-level run emphasis
- 4. Short run low gray-level emphasis
- 5. Long run low gray-level emphasis
- 6. Short run high gray-level emphasis
- 7. Long run high gray-level emphasis
- 8. Short run emphasis
- Run gray-level non-uniformity
- 10. Run percentage
- High gray-level run emphasis

Conclusion

• There's a significant need to apply more and better computational techniques to medical imaging.