小游戏及其背后的一些技术和应用

基于超大规模分类的人脸识别和以图搜图(ReID)

张德兵 算法部负责人&首席科学家 格灵深瞳 debingzhang@deepglint.com

目录

Part.1 (by 小美)

回顾前四期技术谜题

详解《The Second Chance》谜题

Part.2 (by 张德兵博士)

第一名通关玩家Solution解法

大规模人脸训练及RelD的工业经验

很赞的图普技术谜题系列

小游戏的通关过程

O. 发现图普又出新游戏了, 瞄了下是科幻风 x

1. 读题,发现跟人脸识别有关 x+10min

2. 把可行路线遍历一遍,这样出题真赞 x+30min

3. 仔细看看题目&查找e和pi x+1h

4. 写一部分代码 x+1.5h

5. 回家 x+2h

6. coding, debug, 发现小trick x+3h

7. 提交试试,居然过了,试了几个错误答案发现过不了...

- 1. 超大规模的多分类问题 400W(2**22) x 256 = 1G 参数
- 2. 题目保证了即使暴力,单卡也可以解决
- 3. 但真实问题(比如1亿类)怎么处理呢?

区别对比	学术界	工业界	
图片量	百万级	亿级	
每个ID的平均人脸数量	几十	几十张/2张	
人脸ID数	小于10万	百万级——亿级	
显存占用(仅仅参数矩阵W) Y = Softmax(W * F) 中,F为人脸特征,W 是参数 W: NumClass*FeatDim(如512)	500M	50G(按一千万ID计算)	
训练时间	与ImageNet相当	100X	

- 1. 超大规模的多分类问题 400W(2**22) x 256 = 1G 参数
- 2. 真实问题(比如1亿类)怎么处理呢?
- 3. 肯定没有办法通过hack迭代次数或者用更少的类别了
- 4. 肯定是分布式了, 但不是数据并行
- 5. 先一个精确做法

精确的多机分布式训练策略

N计算节点	每节点M卡	Batch数据并行	数据并行特征计算	特征汇聚	模型并行	模型并行FC 计算	通信优化(FW+BP)	梯度汇聚
Machine_1	GPU_1	batch_1_1	F_1_1=CNN(batch_1_1)		W_1_1	F*W_1_1	grad_F_1_1, grad_W_1_1	
	GPU_2	batch_1_2	F_1_2=CNN(batch_1_2)		W_1_2	F*W_1_2	grad_F_1_2, grad_W_1_2	
							•••	
	GPU_M	batch_1_M	F_1_M=CNN(batch_1_M)		W_1_M	F*W_1_M	grad_F_1_M, grad_W_1_M	
Machine_2	GPU_1	batch_2_1	F_2_1=CNN(batch_2_1)		W_2_1	F*W_2_1	grad_F_2_1, grad_W_2_1	
	GPU_2	batch_2_2	F_2_2=CNN(batch_2_2)		W_2_2	F*W_2_2	grad_F_2_2, grad_W_2_2	
				F				grad_F
	GPU_M	batch_2_M	F_2_M=CNN(batch_2_M)		W_2_M	F*W_2_M	grad_F_2_M, grad_W_2_M	
			•••				•••	
Machine_N	GPU_1	batch_N_1	F_N_1=CNN(batch_N_1)		W_N_1	F*W_N_1	grad_F_N_1, grad_W_N_1	
	GPU_2	batch_N_2	F_N_2=CNN(batch_N_2)		W_N_2	F*W_N_2	grad_F_N_2, grad_W_N_2	
	GPU_M	batch_N_M	F_N_M=CNN(batch_N_M)		W_N_M	F*W_N_M	grad_F_N_M, grad_W_N_M	

数据并行+模型并行的思路优势:

- 1. 实现相对简单,把模型的显存占用和计算量都均匀分散到了每个GPU
- 2. 不增加额外通信带宽(甚至降低了FC层的梯度更新所需带宽), 10G网络环境可以支持100卡以上的训练, 高效支持几千万类的人脸识别(512维特征), 甚至上亿类的人脸识别(128维特征), 接近线性加速
- 3. 支持大部分主流损失函数扩展(Margin, Normalization等等)

思考:数值稳定性、哪些地方需要通信?

大规模分类模型的近似

- 1. 特征维度的压缩(512->128),参数精度的压缩(fp32,fp16,int8)
- 2. 梯度的稀疏化/相邻类中心的梯度优化/OHEM
- 3. 基于动态聚类结构/树形结构的类中心

4. [Open]参数的冗余度是非常高的,那有没有更快、更精确的近似策略呢?

小游戏背后的应用

- 1. 人脸识别
- 2. 车辆以图搜图(不利用车牌)
- 3. 行人/非机动车/物品以图搜图
- 4. 关联性应用

可能会设计到的各种技术或问题:

高效的训练框架、大规模训练集制作、模型/损失函数设计、GAN、Domain Transfer、关键点/姿态、分割、遮挡、Attention等等