Teoretická informatika

TIN 2017/2018

prof. RNDr. Milan Češka, CSc.

ceska@fit.vutbr.cz

prof. Ing. Tomáš Vojnar, Ph.D.

vojnar@fit.vutbr.cz

sazba dr. A. Smrčka, Ing. P. Erlebach, Ing. P. Novosad

Vysoké učení technické v Brně Fakulta informačních technologií Božetěchova 2, 612 66 Brno

Referenční literatura

- Předmět vychází zejména z následujících zdrojů:
 - Češka, M.: Teoretická informatika, učební text FIT VUT v Brně, 2002.
 http://www.fit.vutbr.cz/study/courses/TIN/public/Texty/ti.pdf
 - Kozen, D.C.: Automata and Computability, Springer-Verlag, New York, Inc, 1997.
 ISBN 0-387-94907-0
 - Černá, I., Křetínský, M., Kučera, A.: Automaty a formální jazyky I, učební text FI MU, Brno, 1999.
 - Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, Addison Wesley, 2. vydání, 2000. ISBN 0-201-44124-1
 - Gruska, J.: Foundations of Computing, International Thomson Computer Press, 1997. ISBN 1-85032-243-0
 - Bovet, D.P., Crescenzi, P.: Introduction to the Theory of Complexity, Prentice Hall Europe, Pearson Education Limited, 1994. ISBN 0-13-915380-2
 - Reisig, W.: Petri Nets, An Introduction, Springer Verlag, 1985. ISBN: 0-387-13723-8

Jazyky a jejich reprezentace, algebra formálních jazyků

Formální jazyky

Prvotní pojmy: symbol, abeceda.

Definice 1.1 Nechť Σ je abeceda. Označme Σ^* množinu všech konečných posloupností w tvaru:

$$w = a_1 a_2 \dots a_n, a_i \in \Sigma \text{ pro } i = 1, \dots, n.$$

Posloupnosti w nazýváme řetězce nad abecedou Σ . Dále definujeme délku |w| řetězce w:|w|=n. Množina Σ^* obsahuje také speciální řetězec ε , pro který platí $|\varepsilon|=0$. ε se nazývá prázdný řetězec.

* Na množině Σ^* zavedeme operaci · takto:

Jsou-li dány dva řetězce w,w' z Σ^* (nad abecedou Σ):

$$w = a_1 a_2 \dots a_n,$$

 $w' = a'_1 a'_2 \dots a'_m \ n, m \ge 0,$

pak
$$w \cdot w' = a_1 a_2 \dots a_n a'_1 a'_2 \dots a'_m \ (= ww').$$

Operace · se nazývá zřetězení nebo konkatenace.

Pro w, w', w'' platí:

- 1. |ww'| = |w| + |w'|,
- 2. w(w'w'') = (ww')w'' tj. asociativnost konkatenace,
- 3. $w\varepsilon = \varepsilon w = w$ tj. ε je jednotkový prvek vzhledem k operaci •.

* Terminologie:

- Σ^* se nazývá iterace abecedy Σ .
- $\Sigma^+ = \Sigma^* \setminus \{\varepsilon\}$ se nazývá pozitivní iterace abecedy Σ .
- Dále zavádíme pojmy: prefix, sufix, podřetězec, a^i , w^R .

Věta 1.1 Algebraická struktura $< \Sigma^+, \cdot >$, resp. $< \Sigma^*, \cdot, \varepsilon >$ je pologrupa, resp. monoid.

* Alternativní způsob definice množiny Σ^* :

$$\Sigma^* = \bigcup_{n \geq 0} \Sigma^n = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \dots \cup \Sigma^n \cup \dots$$
$$= \{\varepsilon\} \cup \Sigma \cup \Sigma \times \Sigma \cup \dots \underbrace{(\Sigma \times \Sigma \times \dots \times \Sigma)}_{n-kr\acute{a}t} \cup \dots$$

Definice 1.2 Množinu L, pro kterou platí $L \subseteq \Sigma^*$ (resp. $L \subseteq \Sigma^+$) nazýváme formálním jazykem nad abecedou Σ .

- Příklady jazyků:
 - $L_1 = \{0^n 1^n \mid n \ge 0\}$
 - $L_2 = \{ww^R \mid w \in \{0,1\}^+\}$
 - $L_3 \equiv$ progr. jazyk Pascal

Operace nad jazyky

Jazyk je množina o jsou definovány všechny množinové operace nad jazyky např.: $L'=\Sigma_L^*\setminus L$ — komplement jazyka L

Definice 1.3 Nechť L_1 je jazyk nad abecedou Σ_1 , L_2 je jazyk nad abecedou Σ_2 . Součinem (konkatenací) jazyků L_1 a L_2 nad abecedou $\Sigma_1 \cup \Sigma_2$ rozumíme jazyk

$$L_1 \cdot L_2 = \{ xy \mid x \in L_1 \land y \in L_2 \}$$

Příklad 1.1 Nechť $P=\{A,B,\ldots,Z,a,b,\ldots,z\}$, $c=\{0,1,\ldots,9\}$ jsou abecedy, $L_1=P$ a $L_2=(P\cup C)^*$ jazyky nad P resp. $P\cup C$. Jaký jazyk určuje součin L_1L_2 ?

Iterace a pozitivní iterace

Definice 1.4 Nechť L je jazyk. Iterací L^* jazyka L a pozitivní iterací L^+ jazyka L definujeme takto:

- 1. $L^0 = \{ \epsilon \}$
- 2. $L^n = L \cdot L^{n-1}$ pro $n \ge 1$
- $3. \quad L^* = \bigcup_{n \ge 0} L^n$
- 4. $L^+ = \bigcup_{n>1} L^n$

Příklad 1.2
$$L_1 = \{(p), L_2 = \{, p\}, L_3 = \{)\}$$

 $L_1 L_2^* L_3 = \{(p), (p, p), (p, p, p), \dots\}$

- ❖ Poznámka 1: Operátor * se nazývá také Kleene star.
- * Poznámka 2: Všimněte si, že (pozitivní) iterace abecedy odpovídá (pozitivní) iteraci jazyka tvořeného větami délky jedna.

Definice 1.5 Algebraická struktura $< A, +, \cdot, 0, 1 >$ se nazývá polookruh, jestliže:

- 1. $\langle A, +, 0 \rangle$ je komutativní monoid,
- 2. $\langle A, \cdot, 1 \rangle$ je monoid,
- 3. pro operaci · platí distributivní zákon vzhledem k +: $\forall a, b, c \in A : a(b+c) = ab + ac, (a+b)c = ac + bc.$

Věta 1.2 Algebra jazyků $<2^{\Sigma^*},\ \cup,\ \cdot,\ \emptyset,\ \{\varepsilon\}>$, kde \cup je sjednocení a \cdot konkatenace jazyků tvoří polookruh.

Důkaz.

- 1. $<2^{\Sigma^*}$, \cup , \emptyset > je komutativní monoid (\cup je komutativní a asociativní operace a $L \cup \emptyset = \emptyset \cup L = L$ pro všechna $L \in 2^{\Sigma^*}$).
- 2. $<2^{\Sigma^*}, \cdot, \{\varepsilon\} >$ je monoid: $L \cdot \{\varepsilon\} = \{\varepsilon\} \cdot L = L$ pro všechna $L \in 2^{\Sigma^*}$.

Důkaz pokračuje dále.

Pokračování důkazu.

3. Pro všechny $L_1, L_2, L_3 \in 2^{\Sigma^*}$:

$$L_1(L_2 \cup L_3) = \{xy \mid (x \in L_1) \land (y \in L_2 \lor y \in L_3)\} = \{xy \mid (x \in L_1 \land y \in L_2) \lor (x \in L_1 \land y \in L_3)\} = \{xy \mid x \in L_1 \land y \in L_2\} \cup \{xy \mid x \in L_1 \land y \in L_3\} = L_1L_2 \cup L_1L_3.$$

Věta 1.3 Je-li L jazyk, pak platí:

- 1. $L^* = L^+ \cup \{\varepsilon\}$
- 2. $L^+ = L \cdot L^* = L^* \cdot L$

Důkaz.

- 1. Zřejmé z definice L^* a L^+ .
- 2. Důsledek Věty 1.2 (platnosti distributivního zákona).

П

Gramatiky

❖ Pozn. Reprezentace jazyků – problém reprezentace, způsoby reprezentace.

Definice 1.6 Gramatika G je čtveřice $G = (N, \Sigma, P, S)$, kde

- 1. N je konečná množina nonterminálních symbolů.
- 2. Σ je konečná množina terminálních symbolů, kde $N \cap \Sigma = \emptyset$.
- 3. P je konečná podmnožina kartézského součinu

$$(N \cup \Sigma)^* N (N \cup \Sigma)^* \times (N \cup \Sigma)^*$$

nazývaná množina přepisovacích pravidel

- 4. $S \in N$ je výchozí (startovací) symbol gramatiky G.
- ❖ Prvek $(\alpha, \beta) \in P$ je přepisovací pravidlo a zapisuje se ve tvaru

$$\alpha \to \beta$$
,

kde α je levá strana, β je pravá strana pravidla $\alpha \to \beta$.

Příklady:

•
$$G_1 = (\{A, S\}, \{0, 1\}, P_1, S)$$

 $P_1 \colon S \to 0A1$
 $0A \to 00A1$
 $A \to \varepsilon$

•
$$G_2 = (N_2, \Sigma_2, P_2, I)$$

 $N_2 = \{I, P, C\}$
 $\Sigma_2 = \{a, b, \dots, z, 0, 1, \dots, 0\}$
 $P_2 \colon I \to P$
 $I \to IP$
 $I \to IC$
 $P \to a \quad C \to 0$
 $P \to b \quad C \to 1$
 $\vdots \quad \vdots \quad \vdots$
 $P \to z \quad C \to 9$

❖ Konvence 1: Obsahuje-li množina P přepisovací pravidla tvaru

$$\alpha \to \beta_1, \alpha \to \beta_2, \dots, \alpha \to \beta_n$$

pak pro zkrácení budeme používat zápisu

$$\alpha \to \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n$$

- Konvence 2: Pro zápis symbolů a řetězců budeme užívat této úmluvy:
 - 1. a, b, c, d reprezentují terminální symboly.
 - 2. A, B, C, D, S reprezentují nonterminální symboly, S výchozí symbol.
 - 3. U, V, \dots, Z reprezentují terminální nebo nonterminální symboly.
 - 4. $\alpha, \beta, \dots, \omega$ reprezentují řetězce z množiny $(N \cup \Sigma)^*$.
 - 5. u, v, w, \ldots, z reprezentují řetězce z Σ^* .

Definice 1.7 Nechť $G=(N,\Sigma,P,S)$ je gramatika a nechť λ,μ jsou řetězce z $(N\cup\Sigma)^*$. Mezi λ a μ platí binární relace $\underset{G}{\Rightarrow}$, zvaná přímá derivace, můžeme-li řetězce λ a μ vyjádřit ve tvaru

$$\lambda = \gamma \alpha \delta$$
$$\mu = \gamma \beta \delta$$

 $\gamma, \delta \in (N \cup \Sigma)^*$ a $\alpha \to \beta$ je nějaké přepisovací pravidlo z P. Pak píšeme

$$\lambda \underset{G}{\Rightarrow} \mu$$
 nebo $\lambda \Rightarrow \mu.$

Poznámka.

- 1. Je-li $\alpha \to \beta$ pravidlo z P, pak $\alpha \Rightarrow \beta$.
- 2. relace \Rightarrow^{-1} se nazývá (přímá) redukce.

Definice 1.8 Nechť $G=(N,\Sigma,P,S)$ je gramatika a \Rightarrow relace přímé derivace na $(N\cup\Sigma)^*$. Relace $\stackrel{+}{\Rightarrow}$ označuje tranzitivní uzávěr relace \Rightarrow a nazývá se relací derivace. Platí-li $\lambda \stackrel{+}{\Rightarrow} \mu$, pak existuje posloupnost

$$\lambda = \nu_0 \Rightarrow \nu_1 \Rightarrow \ldots \Rightarrow \nu_n = \mu, \ n \geq 1,$$

která se nazývá derivací délky n.

❖ Relace ⇒ označuje reflexivní a tranzitivní uzávěr relace ⇒:

$$\lambda \stackrel{*}{\Rightarrow} \mu \qquad \Rightarrow \qquad \lambda \stackrel{+}{\Rightarrow} \mu \text{ nebo } \lambda = \mu$$

Příklad 1.3 Derivace v gramatice G_1 , resp. G_2 , ze strany 11:

- \diamond V gramatice G_1 :
 - Pravidlo $0A \rightarrow 00A1$ implikuje $0^n A1^n \Rightarrow 0^{n+1} A1^{n+1}$,
 - tedy $0A1 \stackrel{*}{\Rightarrow} 0^n A1^n$ pro libovolné n > 0.
- \diamond V gramatice G_2 :
 - $I \Rightarrow IPP \Rightarrow IPP \Rightarrow ICPP \Rightarrow PCPP \Rightarrow aCPP \Rightarrow a1PP \Rightarrow a1xP \Rightarrow a1xy$
 - tj. $I \stackrel{+}{\Rightarrow} a1xy$.

Definice 1.9 Nechť $G=(N,\Sigma,P,S)$ je gramatika. Řetězec $\alpha\in(N\cup\Sigma)^*$ nazýváme větnou formou, platí-li $S\stackrel{*}{\Rightarrow}\alpha$. Větná forma, která obsahuje pouze terminální symboly se nazývá věta.

Jazyk L(G) generovaný gramatikou G je množina:

$$L(G) = \{ w \mid S \stackrel{*}{\Rightarrow} w \land w \in \Sigma^* \}$$

Příklad 1.4

$$L(G_1) = \{0^n 1^n \mid n > 0\}$$

protože

$$S\Rightarrow 0A1$$
 $S\stackrel{*}{\Rightarrow} 0^nA1^n$ (viz předchozí příklad) $S\stackrel{*}{\Rightarrow} 0^n1^n$ (pravidlo $A\to \varepsilon$)

Chomského hierarchie

Je definována na základě tvaru přepisovacích pravidel:

Typ 0 – obecné (neomezené) gramatiky:

$$\alpha \to \beta$$
 $\alpha \in (N \cup \Sigma)^* N(N \cup \Sigma)^*, \beta \in (N \cup \Sigma)^*$

Typ 1 – kontextové gramatiky:

$$\alpha A\beta \to \alpha \gamma \beta$$
 $A \in N, \ \alpha, \beta \in (N \cup \Sigma)^*, \gamma \in (N \cup \Sigma)^+$
nebo $S \to \varepsilon$, pakliže se S neobjevuje na pravé straně žádného pravidla

(Alternativní definice definující stejnou třídu jazyků: $\alpha \to \beta$, $|\alpha| \le |\beta|$ nebo $S \to \varepsilon$ omezené jako výše.)

Typ 2 – bezkontextové gramatiky:

$$A \to \alpha$$
 $A \in N, \alpha \in (N \cup \Sigma)^*$

Typ 3 – pravé lineární gramatiky:

$$A
ightarrow {m x} B \qquad {
m nebo} \ A
ightarrow {m x} \qquad A, B \in N, \; {m x} \in \Sigma^*$$

Definice 1.10 Jazyk generovaný gram. typu i, i = 0, 1, 2, 3, se nazývá jazykem typu i.

Existuje synonymní označení jazyků:

- Jazyk typu 0 rekurzivně vyčíslitelný jazyk.
- Jazyk typu 1 kontextový jazyk.
- Jazyk typu 2 bezkontextový jazyk.
- Jazyk typu 3 regulární jazyk.

Věta 1.4 Nechť \mathcal{L}_i značí třídu všech jazyků typu i.

Pak platí:

$$\mathcal{L}_3 \subseteq \mathcal{L}_2 \subseteq \mathcal{L}_1 \subseteq \mathcal{L}_0$$

Důkaz.

Důkaz plyne z definice tříd Chomského hierarchie jazyků.

Věta 1.5 Platí:

$$\mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subset \mathcal{L}_0$$

Důkaz později.

Automaty

Anglický termín — recognizer.

- Klasifikace:
 - podle mechanismu a funkce čtecí hlavy,
 - pomocné paměti,
 - určenosti přechodů.

Jazyky typu 3 — regulární jazyky

- Význam regulárních jazyků.
- Prostředky specifikace regulárních jazyků:
 - gramatikou typu 3 (a jejími modifikacemi)

např.
$$G = (\{A, S\}, \{0, 1\}, \{S \to 0S, S \to 1A, A \to 0\}, S)$$

konečným automatem

např.
$$M=(\{q_0,q_1,q_F\},\ \{0,1\},\ \delta,\ q_0,\ \{q_F\}),$$
 $\delta:$ $\delta(q_0,0)=\{q_0\}$
$$\delta(q_0,1)=\{q_1\}$$

$$\delta(q_1,0)=\{q_F\}$$

regulárním výrazem

např.
$$(1+0^+1)0$$

Konečný automat

Definice 1.11 Konečným automatem (KA) rozumíme jednocestný iniciální automat M specifikovaný 5-ticí

$$M = (Q, \Sigma, \delta, q_0, F),$$
 kde:

- 1. Q je konečná množina stavů,
- 2. Σ je konečná vstupní abeceda,
- 3. δ je funkce přechodů (přechodová funkce) tvaru $\delta: Q \times \Sigma \to 2^Q$,
- 4. $q_0 \in Q$ je počáteční stav,
- 5. $F \subseteq Q$ je množina koncových stavů.

Je-li $\forall q \in Q \ \forall a \in \Sigma : |\delta(q,a)| \leq 1$, pak M nazýváme deterministickým konečným automatem (zkráceně DKA), v případě, že $\exists q \in Q \ \exists a \in \Sigma : |\delta(q,a)| > 1$ pak nedeterministickým konečným automatem (zkráceně NKA).

Deterministický konečným automat je také často specifikován 5-ticí

$$M = (Q, \Sigma, \delta, q_0, F),$$
 kde:

- δ je parciální funkce tvaru $\delta: Q \times \Sigma \to Q$,
- a význam ostatních složek zůstává zachován.

Je-li přechodová funkce δ totální, pak M nazýváme úplně definovaným deterministickým konečným automatem.

Dále budeme obvykle pracovat s touto specifikací DKA.

Lemma 1.1 Ke každému DKA M existuje "ekvivalentní" úplně definovaný DKA M'.

 $D\mathring{u}kaz$. (idea) Množinu stavů automatu M' rozšíříme o nový, nekoncový stav (anglicky označovaný jako SINK stav) a s využitím tohoto stavu doplníme prvky přechodové funkce δ' automatu M' tak, aby byla totální.

Příklad 1.5

$$M_1 = (\{q_0, q_1, q_2, q_F\}, \{0, 1\}, \delta, q_0, \{q_F\})$$

$$\delta: \quad \delta(q_0, 0) = \{q_0, q_1\} \qquad \delta(q_0, 1) = \{q_0, q_2\}$$

$$\delta(q_1, 0) = \{q_1, q_F\} \qquad \delta(q_1, 1) = \{q_1\}$$

$$\delta(q_2, 0) = \{q_2\} \qquad \delta(q_2, 1) = \{q_2, q_F\}$$

$$\delta(q_F, 0) = \emptyset \qquad \delta(q_F, 1) = \emptyset$$

\diamond Alternativní způsoby reprezentace funkce δ :

1. maticí (přechodů)

	0	1
q_0	$\{q_0,q_1\}$	$\{q_0,q_2\}$
q_1	$\{q_1,q_F\}$	$\{q_1\}$
q_2	$\{q_2\}$	$\{q_2,q_F\}$
q_F	Ø	\emptyset

2. diagramem přechodů

Definice 1.12 Nechť $M=(Q,\Sigma,\delta,q_0,F)$ je konečný automat (tj. NKA).

$$C = (q, w), \ (q, w) \in Q \times \Sigma^*$$

kde q je aktuální stav, w je dosud nezpracovaná část vstupního řetězce.

- ❖ Počáteční konfigurace je konfigurace $(q_0, a_1a_2 ... a_n)$.
- ***** Koncová konfigurace je konfigurace $(q_F, \varepsilon), q_F \in F$.
- $\ \, \bullet \ \,$ Přechodem automatu M rozumíme binární relaci $\underset{M}{\vdash} \ \,$ v množině konfigurací C

$$\vdash_{M} \subseteq (Q \times \Sigma^{*}) \times (Q \times \Sigma^{*})$$

která je definována takto:

$$(q,w) \vdash_{M} (q',w') \stackrel{def.}{\iff} w = aw' \land q' \in \delta(q,a) \ pro \ q,q' \in Q, a \in \Sigma, w,w' \in \Sigma^*$$

Relace $\stackrel{k}{\vdash}$, $\stackrel{*}{\vdash}$, $\stackrel{*}{\vdash}$ mají obvyklý význam, tj. k-tá mocnina relace \vdash , tranzitivní a tranzitivní a reflexivní uzávěr relace \vdash .

lacktriangle Řetězec w přijímaný NKA M je definován takto: $(q_0,w) \stackrel{*}{\underset{M}{\vdash}} (q,\varepsilon), \ \ q \in F.$

 \clubsuit Jazyk L(M) přijímaný NKA M je definován takto:

$$L(M) = \{ w \mid (q_0, w) \stackrel{*}{\vdash}_{M} (q, \varepsilon) \land q \in F \}.$$

Příklad 1.6 Uvažujme NKA M_1 z příkladu 1.5. Platí:

$$(q_0, 1010) \vdash (q_0, 010) \vdash (q_1, 10) \vdash (q_1, 0) \vdash (q_f, \varepsilon)$$

a tedy: $(q_0, 1010) \stackrel{*}{\vdash} (q_f, \varepsilon)$

Neplatí například $(q_0, \varepsilon) \stackrel{*}{\vdash} (q_f, \varepsilon)$

Vyjádření jazyka $L(M_1)$:

 $L(M_1) = \{w \mid w \in \{0,1\}^* \land w \text{ končí symbolem, který je již v řetězci } w \text{ obsažen}\}$

Ekvivalence NKA a DKA

Věta 1.6 Každý NKA M lze převést na DKA M' tak, že L(M) = L(M').

Důkaz.

- 1. Nalezneme algoritmus převodu $M \to M'$ (níže).
- 2. Ukážeme, že L(M) = L(M') tj. ukážeme, že platí:
 - (a) $L(M) \subseteq L(M')$ a současně,
 - (b) $L(M') \subseteq L(M)$.

Převod NKA na ekvivalentní DKA

Algoritmus 1.1

- * Vstup: NKA $M = (Q, \Sigma, \delta, q_0, F)$
- \clubsuit Výstup: DKA $M'=(Q',\Sigma,\delta',q_0',F')$
- Metoda:
 - 1. Polož $Q' = 2^Q \setminus \{\emptyset\}$.
 - 2. Polož $q'_0 = \{q_0\}.$
 - 3. Polož $F' = \{S \mid S \in 2^Q \land S \cap F \neq \emptyset\}.$
 - 4. Pro všechna $S \in 2^Q \setminus \{\emptyset\}$ a pro všechna $a \in \Sigma$ polož:
 - $\bullet \quad \delta'(S,a) = \bigcup_{q \in S} \delta(q,a) \text{, je-li} \ \bigcup_{q \in S} \delta(q,a) \neq \emptyset.$
 - Jinak $\delta'(S, a)$ není definována.

Příklad 1.7 Uvažujme NKA $M_2 = (\{S, A, B, C\}, \{a, b, c\}, \delta, S, \{A\})$ $\delta: \delta(S, a) = \{A\} \delta(S, c) = \{B\} \delta(B, b) = \{B, C\} \delta(C, a) = \{B\} \delta(C, c) = \{A\}$

K nalezení funkce δ' příslušného DKA aplikujeme zkrácený postup, využívající skutečnosti, že řada stavů z 2^Q může být nedostupných:

- 1. Počáteční stav: $\{S\}$
- 2. $\delta'(\{S\}, a) = \{A\}$ koncový stav $\delta'(\{S\}, c) = \{B\}$
- 3. $\delta'(\{B\},b) = \{B,C\}$
- 4. $\delta'(\{B,C\},a) = \delta(B,a) \cup \delta(C,a) = \{B\}$ $\delta'(\{B,C\},b) = \{B,C\} \ \delta'(\{B,C\},c) = \{A\}$

Konečné automaty a jazyky typu 3

Definice 1.13

 Gramatika $G = (N, \Sigma, P, S)$ s pravidly tvaru:

$$A \to xB$$
 $A, B \in N, x \in \Sigma^*$ nebo

$$A \to x \qquad x \in \Sigma^*,$$

resp. tvaru:

$$A \to Bx$$
 $A, B \in N$

$$A \to x \qquad x \in \Sigma^*$$

se nazývá pravá lineární, resp. levá lineární, gramatika.

 \clubsuit Gramatika $G = (N, \Sigma, P, S)$ s pravidly tvaru:

$$A \to aB$$
 $A, B \in N, a \in \Sigma$

$$A \to a$$
 $a \in \Sigma$

případně $S \to \varepsilon$ pokud se S neobjevuje na pravé straně žádného pravidla resp. s pravidly tvaru:

$$A \to Ba$$
 $A, B \in N, a \in \Sigma$

$$A \to a$$
 $a \in \Sigma$

případně $S \to \varepsilon$ pokud se S neobjevuje na pravé straně žádného pravidla se nazývá pravá regulární, resp. levá regulární, gramatika.

Poznámka. Gramatika $G=(N,\Sigma,P,S)$ s pravidly tvaru $A\to xBy$ nebo $A\to x$, kde $A,B\in N$ a $x,y\in \Sigma^*$ se nazývá lineární gramatika.

Označme:

- L_{PL} všechny jazyky generované pravými lineárními gramatikami,
- \mathcal{L}_{LL} všechny jazyky generované levými lineárními gramatikami,
- \mathcal{L}_L všechny jazyky generované lineárními gramatikami.

Platí:

$$\mathcal{L}_{PL} = \mathcal{L}_{LL}$$
 a $\mathcal{L}_{PL} \subset \mathcal{L}_{L}$

Lemma 1.2 Každá pravá lineární gramatika $G=(N,\Sigma,P,S)$ může být převedena na gramatiku $G'=(N',\Sigma',P',S')$, kde P' obsahuje pouze pravidla tvaru

$$A \to aB$$
 $A, B \in N', a \in \Sigma$ nebo $A \to \varepsilon$

tak, že L(G) = L(G').

П

$D\mathring{u}kaz$. Množinu P' vytvoříme takto:

1. Pravidla z P tvaru

$$\begin{array}{ll} A \to aB & A,B \in N', a \in \Sigma \text{ nebo} \\ A \to \varepsilon & \end{array}$$

zařadíme do P'.

2. Každé pravidlo tvaru

$$A \to a_1 a_2 \dots a_n B, \ n \ge 2$$

z P nahradíme v P' soustavou pravidel:

$$A \to a_1 A_1$$

$$A_1 \to a_2 A_2$$

$$\vdots$$

$$A_{n-1} \to a_n B$$

Důkaz pokračuje dále.

Pokračování důkazu.

3. Každé pravidlo tvaru

$$A \to a_1 a_2 \dots a_n, \ n \ge 1$$

z P nahradíme v P' soustavou pravidel:

$$A \to a_1 A'_1$$

$$A'_1 \to a_2 A'_2$$

$$\vdots$$

$$A'_{n-1} \to a_n A'_n$$

$$A'_n \to \varepsilon$$

4. Odstraníme (zbývající) tzv. jednoduchá pravidla tvaru $A \to B$. Nyní se již snadno dokáže ekvivalence G a G' tj. L(G) = L(G')

Příklad 1.8 Uvažujme gramatiku s pravidly

$$\frac{S \to abcA}{A \to B \mid \underline{\varepsilon}} \mid \underline{aB}$$

$$B \to \underline{cA} \mid \underline{bbc}$$

Aplikací Lemmy 1.1 obdržíme pravidla ekvivalentní gramatiky. Nové nonterminály budeme označovat X, Y, \ldots :

$$\begin{array}{ccc} \underline{S \to aX} \mid \underline{aB} & \underline{A \to B} \mid \underline{\varepsilon} \\ \underline{X \to bY} & B \to \underline{cA} \mid \underline{bZ} \\ \underline{Y \to cA} & \underline{U \to cV} \\ \underline{Z \to bU} & \underline{V \to \varepsilon} \end{array}$$

Po odstranění jednoduchého pravidla $A \to B$ dostaneme výslednou gramatiku:

$$S \rightarrow aX \mid aB$$
 $A \rightarrow cA \mid bZ \mid \varepsilon$
 $X \rightarrow bY$ $B \rightarrow cA \mid bZ$
 $Y \rightarrow cA$ $U \rightarrow cV$
 $Z \rightarrow bU$ $V \rightarrow \varepsilon$

Převod gramatiky typu 3 na NKA

Věta 1.7 Nechť \mathcal{L}_M je množina (třída) všech jazyků přijímaných konečnými automaty a nechť L je libovolný jazyk typu 3 ($L \in \mathcal{L}_3$). Pak existuje konečný automat M takový, že:

$$L = L(M)$$
, tj. $\mathcal{L}_3 \subseteq \mathcal{L}_M$.

Důkaz.

1. Podle věty 1.7 můžeme předpokládat, že L=L(G), kde gramatika G obsahuje pouze pravidla tvaru:

$$A \rightarrow aB$$
 nebo $A \rightarrow \varepsilon$

- 2. Ke gramatice $G=(N,\Sigma,P,S)$ sestrojíme NKA $M=(Q,\Sigma,\delta,q_0,F)$ takto:
 - (a) Q = N
 - (b) $\Sigma = \Sigma$
 - (c) $\delta: \delta(A,a)$ obsahuje B, jestliže $A \to aB$ je v P
 - (d) $q_0 = S$
 - (e) $F = \{A \mid A \to \varepsilon \text{ je v } P\}$

Důkaz pokračuje dále.

Pokračování důkazu.

3. Matematickou indukcí ukážeme, že L(G) = L(M). Indukční hypotézu formulujeme obecněji ve tvaru:

$$\forall A \in N: A \overset{i+1}{\underset{G}{\Longrightarrow}} w \quad \Longleftrightarrow \quad (A,w) \overset{i}{\underset{M}{\vdash}} (C,\varepsilon) \text{ pro } C \in F, w \in \Sigma^*$$

Pro i=0 dostáváme

$$A\Rightarrow \varepsilon \iff (A,\varepsilon) \vdash_0 (A,\varepsilon) \text{ pro } A\in F$$

a tvrzení tedy platí.

Nyní předpokládejme, že dokazovaná hypotéza platí pro i>0 a položme w=ax, kde $a\in\Sigma$ a |x|=i-1.

Důkaz pokračuje dále.

Pokračování důkazu.

3. pokračování.

Dále předpokládejme $A \Rightarrow aB \stackrel{i}{\Rightarrow} ax$,

z indukční hypotézy plyne $B \stackrel{i}{\Rightarrow} x \iff (B,x) \stackrel{i-1}{\vdash} (C,\varepsilon), C \in F$

a z definice funkce δ : $A \Rightarrow aB \iff B \in \delta(A, a)$

Dohromady tedy

$$A \Rightarrow aB \stackrel{i}{\Rightarrow} ax = w' \iff (A, ax) \vdash (B, x) \stackrel{i-1}{\vdash} (C, \varepsilon), C \in F$$

tedy

$$A \stackrel{i+1}{\Rightarrow} w' \iff (A, w') \stackrel{i}{\vdash} (C, \varepsilon), C \in F$$

tj. tvrzení platí i pro i + 1.

Pro případ A = S je dokázaná hypotéza tvrzením věty, tj.

$$\forall w' \in \Sigma^* : S \stackrel{*}{\Rightarrow} w' \iff (S, w') \stackrel{*}{\vdash} (C, \varepsilon), C \in F, \text{ tj. } L(G) = L(M)$$

Příklad 1.9

Gramatika z příkladu 1.8 $G = (\{S, A, B, U, V, X, Y, Z\}, \{a, b, c\}, P, S)$, má pravidla P:

$$S \rightarrow aX \mid aB$$
 $A \rightarrow cA \mid bZ \mid \varepsilon$ $X \rightarrow bY$ $B \rightarrow cA \mid bZ$ $Y \rightarrow cA$ $U \rightarrow cV$ $Z \rightarrow bU$ $V \rightarrow \varepsilon$

Takové gramatice odpovídá konečný automat:

Převod NKA na gramatiku typu 3

Věta 1.8 Nechť M je NKA. Pak existuje gramatika G typu 3 taková, že:

$$L(M) = L(G)$$
, tj. $\mathcal{L}_M \subseteq \mathcal{L}_3$.

Důkaz. Nechť $M=(Q,\Sigma,\delta,q_0,F)$. Předpokládejme, že M je NKA. Nechť $G=(Q,\Sigma,P,q_0)$ je gramatika, jejíž pravidla jsou definována takto:

- 1. je-li $\delta(q, a) = r$, pak P obsahuje pravidlo $q \to ar$
- 2. je-li $p \in F$, pak P obsahuje pravidlo $p \to \varepsilon$
- 3. jiná pravidla množina *P* neobsahuje.

G je zřejmě typu 3 a indukcí lze dokázat, že platí L(G) = L(M).

П

Příklad 1.10 Uvažujme KA $M_3 = (\{A, B, C, D\}, \{a, b, c\}, \delta, A, \{C, D\}),$ kde

$$\delta: \quad \delta(A, a) = B \quad \delta(C, c) = D$$

$$\delta(B, b) = A \quad \delta(D, a) = A$$

$$\delta(B, c) = B \quad \delta(D, b) = D$$

$$\delta(B, a) = C$$

Gramatika G typu 3, která generuje jazyk $L(M_3)$, má tvar:

$$G = (\{A, B, C, D\}, \{a, b, c\}, P, A)$$

$$P: A \to aB \qquad C \to cD \mid \varepsilon$$

$$B \to bA \mid cB \mid aC \quad D \to aA \mid bD \mid \varepsilon$$

Po odstranění ε -pravidel (algoritmus viz přednáška 4), získáme ekvivalentní pravou regulární gramatiku G' s pravidly:

$$A
ightarrow aB$$
 $C
ightarrow cD \mid c$ $B
ightarrow bA \mid cB \mid aC \mid a$ $D
ightarrow aA \mid bD \mid b$

Regulární množiny a výrazy

Regulární množiny

Definice 1.14 Nechť Σ je konečná abeceda. Regulární množinu nad Σ definujeme rekurzívně takto:

- 1. \emptyset (tj. prázdná množina) je regulární množina nad Σ ,
- 2. $\{\varepsilon\}$ je regulární množina nad Σ ,
- 3. $\{a\}$ je regulární množina nad Σ pro všechny $a \in \Sigma$,
- 4. jsou-li P a Q regulární množiny nad Σ , pak také
 - (a) $P \cup Q$,
 - (b) P.Q,
 - (c) P^*

jsou regulární množiny nad Σ .

5. Žádné jiné množiny, než ty, které lze získat pomocí výše uvedených pravidel, nejsou regulárními množinami.

Příklad 1.11 $L = (\{a\} \cup \{d\}).(\{b\}^*).\{c\}$ je regulární množina nad $\Sigma = \{a, b, c, d\}.$

Regulární výrazy

Definice 1.15 Regulární výrazy nad Σ a regulární množiny, které označují, jsou rekurzívně definovány takto:

- 1. \emptyset je regulární výraz označující regulární množinu \emptyset ,
- 2. ε je regulární výraz označující regulární množinu $\{\varepsilon\}$,
- 3. a je regulární výraz označující regulární množinu $\{a\}$ pro všechny $a \in \Sigma$,
- 4. jsou-li p, q regulární výrazy označující regulární množiny P a Q, pak
 - (a) (p+q) je regulární výraz označující regulární množinu $P \cup Q$,
 - (b) (pq) je regulární výraz označující regulární množinu P.Q,
 - (c) (p^*) je regulární výraz označující regulární množinu P^* .
- 5. Žádné jiné regulární výrazy nad Σ neexistují.

Konvence:

- 1. Regulární výraz p^+ značí regulární výraz $pp^st.$
- Abychom minimalizovali počet používaných závorek, stanovujeme priority operátorů:
 - 1. *, + (iterace nejvyšší priorita),
 - 2. (konkatenace),
 - 3. + (alternativa).

Příklad 1.12

- 1. 01 odpovídá {01}.
- 2. 0^* odpovídá $\{0\}^*$.
- 3. $(0+1)^*$ odpovídá $\{0,1\}^*$.
- 4. $(0+1)^*011$ značí množinu řetězců nad $\{0,1\}$ končících 011.
- 5. $(a+b)(a+b+0+1)^*(0+1)$ značí množinu řetězců nad $\{a,b,0,1\}$, které začínají symbolem a nebo b a končí symbolem 0 nebo 1.