2 Sequência de Fibonacci recursiva

Sem dúvida a chamada "Sequência de Fibonacci" (ou "Sucessão de Fibonacci") é uma das mais famosas sequências numéricas da Matemática. Os dois primeiros termos desta sequência são:

$$f_0 = 0$$
 $f_1 = 1$.

A partir do terceiro termo, cada termo é obtido somando-se os dois termos imediatamente anteriores a ele, ou seja:

$$f_n = f_{n-1} + f_{n-2}$$
, com $n \in \mathbb{N}$ e $n \ge 2$

Portanto, os seus dez primeiros termos são 0, 1, 1, 2, 3, 5, 8, 13, 21, 34.

Muitas fontes históricas registram que ela foi "descoberta" (ou "inventada") por Leonardo Fibonacci (1170 – 1250), um matemático italiano que também ficou conhecido como Leonardo de Pisa, sua cidade de nascimento, pois apenas no século XIX ficou associado ao nome *Fibonacci* que, de maneira aproximativa, significa "o filho de Bonacci", em referência ao seu pai Guglielmo dei Bonacci, um próspero mercador.

Aos 32 anos, em 1202, Fibonacci publicou o livro *Liber Abaci* (Livro do Ábaco, ou Livro de Cálculo), um livro de receitas a respeito de como realizar cálculos e que foi o responsável pela disseminação dos números hindu-arábicos na Europa. Num trecho desta obra, Leonardo introduz a sequência por meio de um problema envolvendo *coelhos*. O problema dizia que:

"Iniciando com um par de coelhos – um macho e uma fêmea – depois de um mês eles de tornam sexualmente adultos e produzem um par de filhotes, também um macho e uma fêmea. Novamente, um mês depois, estes coelhos reproduzem e geram outro par macho-fêmea, os quais, por sua vez, também gerarão outro par macho-fêmea depois de um mês (Claro: ignore aqui a pequeníssima probabilidade de que isto efetivamente ocorra no mundo natural dos coelhos.)

A questão é: depois de um ano, quantos coelhos haverá?"

A resposta ao problema é obtida por meio do uso da Sequência de Fibonacci – veja "The 11 most beautiful Mathematical equations" em https://www.livescience.com/57849-greatest-mathematicalhtml.

Uma curiosidade é que, depois disso, Leonardo nunca mais citou a sequência, que ficou esquecida até o século XIX quando matemáticos que trabalhavam em propriedades de sequências numéricas a recuperaram, cabendo ao matemático francês Édouard Lucas (1842 – 1891) ter nomeado, oficialmente, o problema dos coelhos com o nome de "Sequência de Fibonacci".

Entretanto, sabe-se hoje, que Leonardo não descobriu ou inventou a famosa sequência (veja a obra de Keith Devlin intitulada *Finding Fibonacci: The Quest to Rediscover the Forgotten Mathematical Genius Who Changed the World*, Princeton University Press, 2017), pois citações a ela aparecem em textos antigos, em Sânscrito, muito antes da sua menção por Leonardo.

Vamos a um problema envolvendo-a:

Considere que seja dado um número n, $n \in \mathbb{N}^*$. Usando o conceito de recursividade, elabore um programa em \mathbb{C} para imprimir até o n-ésimo termo da "Série de Fibonacci".

Observação: Note que a contagem dos termos foi iniciada com o termo 0 (zero): $f_0 = 0$.

Entrada

A única linha da entrada contém um número natural n, indicando a ordem máxima dos termos desejados da "Série de Fibonacci". Sabe-se que $1 \le n \le 1000$.

Saída

Seu programa deve imprimir uma única linha contendo até o *n*-ésimo termo da série, sempre separados por um único espaço em branco.

Exemplos

]	Entrada	Saída
0		0

Entrada	Saída
1	0 1

Entrada	Saída
8	0 1 1 2 3 5 8 13 21

Observação: Uma questão interessante é:

Será possível encontrar uma *fórmula* explícita que seja capaz de fornecer um determinado termo da "Sequência de Fibonacci" sem a necessidade de realizar a geração de todos os termos anteriores?

Se isto for possível, gerar utilizar a *fórmula* será mais *eficiente* que utilizar uma função geradora, seja ela recursiva ou iterativa?

Se não for possível, qual o motivo da impossibilidade?

Entrada	Saída
11	0 1 1 2 3 5 8 13 21 34 55 89

Entrada	Saída
15	0 1 1 2 3 5 8 13 21 34 55 89 144 233
	377 610