Сетевые технологи. Лабораторная работа №1

Демидова Е.А.

09.09.2023

Российский Университет дружбы народов

Вводная часть

Цели и задачи

- Изучить методы кодирования и модуляции сигналов
- Определить спектр и параметры сигнала.
- Продемонстрировать принципы модуляции сигнала на примере аналоговой амплитудной модуляции.
- Исследовать свойства самосинхронизации сигнала

Инструмент: высокоуровневый язык программирования Octave

Выполнение лабораторной работы

$$y_1 = \sin x + \frac{1}{3}\sin 3x + \frac{1}{5}\sin 5x$$

Рис. 1: График $y_1=\sin x+\frac{1}{3}\sin 3x+\frac{1}{5}\sin 5x$

$$y_1 = \sin x + \frac{1}{3}\sin 3x + \frac{1}{5}\sin 5x$$
$$y_2 = \cos x + \frac{1}{3}\cos 3x + \frac{1}{5}\cos 5x$$

Рис. 2: Графики $y_1=\sin x+\frac{1}{3}\sin 3x+\frac{1}{5}\sin 5x$ и $y_2=\cos x+\frac{1}{3}\cos 3x+\frac{1}{5}\cos 5x$

Разложение импульсного сигнала в частичный ряд Фурье

Разложение реализовано с помощью формулы частичного ряда Фурье с синусами и с косинусами.

Рис. 3: Графики меандра, содержащего различное число гармоник

Подзадачи

- определить спектр двух отдельных сигналов и их суммы
- выполнить задание с другой частотой дискретизации
- узнать, что будет, если взять чистоту дискретизации меньше 80 ГЦ

- Частота дискретизации: 512 Гц
- Частота первого сигнала: 10 Гц
- Частота второго сигнала: 40 Гц
- Амплитуда первого сигнала: 1
- Амплитуда второго сигнала: 0.7

Рис. 4: График двух синусоидальных сигналов разной частоты

Рис. 5: График спектров синусоидальных сигналов

Рис. 6: Откорректированный график спектров синусоидальных сигналов

Рис. 7: График суммарного сигнала

Рис. 8: График спектра суммарного сигнала

Рис. 9: График двух синусоидальных сигналов разной частоты

Рис. 10: Откорректированный график спектров синусоидальных сигналов

Рис. 11: График суммарного сигнала

Рис. 12: График спектра суммарного сигнала

Рис. 13: График двух синусоидальных сигналов разной частоты.

Рис. 14: Откорректированный график спектров синусоидальных сигналов.

Рис. 15: График суммарного сигнала.

Рис. 16: График спектра суммарного сигнала.

Рис. 17: График сигнала и огибающей при амплитудной модуляции

Амплитудная модуляци

В результате получаем, что спектр произведения представляет собой свёртку спектров

Рис. 18: График спектра сигнала при амплитудной модуляции

Входная кодовая последовательность:

data=[0 1 0 0 1 1 0 0 0 1 1 0]

Входная кодовая последовательность для проверки свойства самосинхронизации:

data_sync=[0 0 0 0 0 0 0 1 1 1 1 1 1 1]

Входная кодовая последовательность для построения спектра сигнала:

· data_spectre=[0 1 0 1 0 1 0 1 0 1 0 1 0 1]

Рис. 19: Униполярное кодирование

Рис. 20: Кодирование АМІ

Рис. 21: Кодирование NRZ

Рис. 22: Кодирование RZ

Рис. 23: Манчестерское кодирование

Рис. 24: Дифференциальное манчестерское кодирование

Рис. 25: Униполярное кодирование: нет самосинхронизации

Рис. 26: Кодирование АМІ: самосинхронизация при наличии сигнала

Рис. 27: Кодирование NRZ: нет самосинхронизации

Рис. 28: Кодирование RZ: есть самосинхронизация

Рис. 29: Манчестерское кодирование: есть самосинхронизация

Рис. 30: Дифференциальное манчестерское кодирование: есть самосинхронизация

Рис. 31: Униполярное кодирование: спектр сигнала

Рис. 32: Кодирование АМІ: спектр сигнала

Рис. 33: Кодирование NRZ: спектр сигнала

Рис. 34: Кодирование RZ: спектр сигнала

Рис. 35: Манчестерское кодирование: спектр сигнала

Рис. 36: Дифференциальное манчестерское кодирование: спектр сигнала

- · Научились строить графики в Octave
- Реализовано азложение импульсного сигнала в форме меандра в частичный ряд Фурье через формулу как с синусами, так и с косинусами
- Показали,спектр суммы сигналов должен быть равен сумме спектров сигналов
- Получили, что спектр произведения представляет собой свёртку спектров
- Реализовали кодирование сигналов по битовым последовательностям
- Проверили свойства самосинхронизируемости кодов
- Получили спектры закодированных сигналов