

Chapter 12 on to Linear Regress

Introduction to Linear Regression and Correlation Analysis

Chapter Goals

After completing this chapter, you should be able to:

- Calculate and interpret the simple correlation between two variables
- Determine whether the correlation is significant
- Calculate and interpret the simple linear regression equation for a set of data
- Understand the assumptions behind regression analysis
- Determine whether a regression model is significant

Chapter Goals

(continued)

After completing this chapter, you should be able to:

- Calculate and interpret confidence intervals for the regression coefficients
- Recognize regression analysis applications for purposes of prediction and description
- Recognize some potential problems if regression analysis is used incorrectly
- Recognize nonlinear relationships between two variables

Scatter Plots and Correlation

- A scatter plot (or scatter diagram) is used to show the relationship between two variables
- Correlation analysis is used to measure strength of the association (linear relationship) between two variables
 - Only concerned with strength of the relationship
 - No causal effect is implied

Scatter Plot Examples

Linear relationships

Curvilinear relationships

Scatter Plot Examples

(continued)

Strong relationships

Scatter Plot Examples

(continued)

Correlation Coefficient

(continued)

- The population correlation coefficient p (rho) measures the strength of the association between the variables
- The sample correlation coefficient r is an estimate of ρ and is used to measure the strength of the linear relationship in the sample observations

Features of p and r

- Unit free
- Range between -1 and 1
- The closer to -1, the stronger the negative linear relationship
- The closer to 1, the stronger the positive linear relationship
- The closer to 0, the weaker the linear relationship

Examples of Approximate r Values

Calculating the Correlation Coefficient

Sample correlation coefficient:

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\left[\sum (x - \overline{x})^2\right]\left[\sum (y - \overline{y})^2\right]}}$$

or the algebraic equivalent:

$$r = \frac{n\sum xy - \sum x\sum y}{\sqrt{[n(\sum x^2) - (\sum x)^2][n(\sum y^2) - (\sum y)^2]}}$$

where:

r = Sample correlation coefficient

n = Sample size

x = Value of the independent variable

y = Value of the dependent variable

Calculation Example

Tree Height	Trunk Diameter			
у	X	ху	y ²	X ²
35	8	280	1225	64
49	9	441	2401	81
27	7	189	729	49
33	6	198	1089	36
60	13	780	3600	169
21	7	147	441	49
45	11	495	2025	121
51	12	612	2601	144
Σ=321	Σ=73	Σ=3142	Σ=14111	Σ=713

Calculation Example

(continued)

$$r = \frac{n\sum xy - \sum x\sum y}{\sqrt{[n(\sum x^2) - (\sum x)^2][n(\sum y^2) - (\sum y)^2]}}$$

$$= \frac{8(3142) - (73)(321)}{\sqrt{[8(713) - (73)^2][8(14111) - (321)^2]}}$$

$$= 0.886$$

 $r = 0.886 \rightarrow$ relatively strong positive linear association between x and y

Excel Output

Excel Correlation Output

Tools / data analysis / correlation...

	Tree Height	Trunk Diameter
Tree Height	1	
Trunk Diameter	0.886231	1

Correlation between
Tree Height and Trunk Diameter

Significance Test for Correlation

Hypotheses

$$H_0$$
: $\rho = 0$ (no correlation)

$$H_0$$
: $\rho = 0$ (no correlation)
 H_A : $\rho \neq 0$ (correlation exists)

Test statistic

$$t = \frac{r}{\sqrt{\frac{1-r^2}{n-2}}}$$

(with n-2 degrees of freedom)

Example: Produce Stores

Is there evidence of a linear relationship between tree height and trunk diameter at the .05 level of significance?

$$H_0$$
: $\rho = 0$ (No correlation)

 H_1 : $\rho \neq 0$ (correlation exists)

$$\alpha = .05$$
, df = 8 - 2 = 6

$$t = \frac{r}{\sqrt{\frac{1 - r^2}{n - 2}}} = \frac{.886}{\sqrt{\frac{1 - .886^2}{8 - 2}}} = 4.68$$

Example: Test Solution

Decision:

Reject H₀

Conclusion:

There is
evidence of a
linear relationship
at the 5% level of
significance

Introduction to Regression Analysis

- Regression analysis is used to:
 - Predict the value of a dependent variable based on the value of at least one independent variable
 - Explain the impact of changes in an independent variable on the dependent variable

Dependent variable: the variable we wish to explain

Independent variable: the variable used to explain the dependent variable

Simple Linear Regression Model

- Only one independent variable, x
- Relationship between x and y is described by a linear function
- Changes in y are assumed to be caused by changes in x

Types of Regression Models

Positive Linear Relationship

Relationship NOT Linear

Negative Linear Relationship

No Relationship

A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc.

Population Linear Regression

The population regression model:

Linear Regression Assumptions

- Error values (ε) are statistically independent
- Error values are normally distributed for any given value of x
- The probability distribution of the errors is normal
- The probability distribution of the errors has constant variance
- The underlying relationship between the x variable and the y variable is linear

Population Linear Regression

Estimated Regression Model

The sample regression line provides an estimate of the population regression line

The individual random error terms e_i have a mean of zero

Least Squares Criterion

 b₀ and b₁ are obtained by finding the values of b₀ and b₁ that minimize the sum of the squared residuals

$$\sum e^{2} = \sum (y - \hat{y})^{2}$$

$$= \sum (y - (b_{0} + b_{1}x))^{2}$$

The Least Squares Equation

The formulas for b₁ and b₀ are:

$$b_{1} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^{2}}$$

algebraic equivalent:

$$b_1 = \frac{\sum xy - \frac{\sum x\sum y}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}$$

and

$$b_0 = \overline{y} - b_1 \overline{x}$$

Interpretation of the Slope and the Intercept

b₀ is the estimated average value of y
 when the value of x is zero

 b₁ is the estimated change in the average value of y as a result of a oneunit change in x

Finding the Least Squares Equation

The coefficients b₀ and b₁ will usually be found using computer software, such as Excel or Minitab

 Other regression measures will also be computed as part of computer-based regression analysis

Simple Linear Regression Example

- A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)
- A random sample of 10 houses is selected
 - Dependent variable (y) = house price in \$1000s
 - Independent variable (x) = square feet

Sample Data for House Price Model

House Price in \$1000s (y)	Square Feet (x)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Regression Using Excel

Tools / Data Analysis / Regression

Excel Output

Regression Statistics

Multiple R	0.76211
R Square	0.58082
Adjusted R Square	0.52842
Standard Error	41.33032
Observations	10

The regression equation is:

ANOVA	/				
	df	SS	MS	F	Significance F
Regression	1/	18934.9348	18934.9348	11.0848	0.01039
Residual	/8	13665.5652	1708.1957		
Total	9	32600.5000			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Graphical Presentation

House price model: scatter plot and regression line

Interpretation of the Intercept, b₀

- b₀ is the estimated average value of Y when the value of X is zero (if x = 0 is in the range of observed x values)
 - Here, no houses had 0 square feet, so $b_0 = 98.24833$ just indicates that, for houses within the range of sizes observed, \$98,248.33 is the portion of the house price not explained by square feet

Interpretation of the Slope Coefficient, b₁

- b₁ measures the estimated change in the average value of Y as a result of a oneunit change in X
 - Here, $b_1 = .10977$ tells us that the average value of a house increases by .10977(\$1000) = \$109.77, on average, for each additional one square foot of size

Least Squares Regression Properties

- The sum of the residuals from the least squares regression line is 0 $(\sum (y-\hat{y})=0)$
- The sum of the squared residuals is a minimum (minimized $\sum (y-\hat{y})^2$)
- The simple regression line always passes through the mean of the y variable and the mean of the x variable
- The least squares coefficients are unbiased estimates of β_0 and β_1

Explained and Unexplained Variation

Total variation is made up of two parts:

$$SST = SSE + SSR$$

Total sum of Squares

Sum of Squares Error Sum of Squares Regression

$$SST = \sum (y - \overline{y})^2$$

$$SSE = \sum (y - \hat{y})^2$$

$$SSR = \sum (\hat{y} - \overline{y})^2$$

where:

 \overline{y} = Average value of the dependent variable

y = Observed values of the dependent variable

 \hat{y} = Estimated value of y for the given x value

Explained and Unexplained Variation

(continued)

- SST = total sum of squares
 - Measures the variation of the y_i values around their mean y
- SSE = error sum of squares
 - Variation attributable to factors other than the relationship between x and y
- SSR = regression sum of squares
 - Explained variation attributable to the relationship between x and y

Explained and Unexplained Variation

(continued)

Coefficient of Determination, R²

- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variable
- The coefficient of determination is also called R-squared and is denoted as R²

$$R^2 = \frac{SSR}{SST}$$

where

$$0 \le R^2 \le 1$$

Coefficient of Determination, R²

(continued)

Coefficient of determination

$$R^2 = \frac{SSR}{SST} = \frac{sumof\ squaresexplainedby\ regression}{total\ sumof\ squares}$$

Note: In the single independent variable case, the coefficient of determination is

$$R^2 = r^2$$

where:

 R^2 = Coefficient of determination r = Simple correlation coefficient

Examples of Approximate R² Values

$$R^2 = 1$$

Perfect linear relationship between x and y:

100% of the variation in y is explained by variation in x

Examples of Approximate R² Values

 $0 < R^2 < 1$

Weaker linear relationship between x and y:

Some but not all of the variation in y is explained by variation in x

Examples of Approximate R² Values

$$R^2 = 0$$

No linear relationship between x and y:

The value of Y does not depend on x. (None of the variation in y is explained by variation in x)

Excel Output

Regression Statistics

Multiple R 0.76211

R Square 0.58082

Adjusted R Square 0.52842

Standard Error 41.33032

Observations 10

58.08% of the variation in house prices is explained by variation in square feet

ANOVA	df		SS	MS	F	Significance F
Regression		1	18934.9348	18934.9348	11.0848	0.01039
Residual		8	13665.5652	1708.1957		
Total		9	32600.5000			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Standard Error of Estimate

 The standard deviation of the variation of observations around the regression line is estimated by

$$s_{\epsilon} = \sqrt{\frac{SSE}{n-k-1}}$$

Where

SSE = Sum of squares error

n = Sample size

k = number of independent variables in the model

The Standard Deviation of the Regression Slope

The standard error of the regression slope coefficient (b₁) is estimated by

$$s_{b_1} = \frac{s_{\epsilon}}{\sqrt{\sum (x - \overline{x})^2}} = \frac{s_{\epsilon}}{\sqrt{\sum x^2 - \frac{(\sum x)^2}{n}}}$$

where:

 S_{b_1} = Estimate of the standard error of the least squares slope

$$s_{\epsilon} = \sqrt{\frac{SSE}{n-2}}$$
 = Sample standard error of the estimate

Excel Output

Regression Statistics

Multiple R 0.76211

R Square 0.58082

Adjusted R Square 0.52842

Standard Error 41.33032

Observations 10

 $s_{\epsilon} = 41.33032$

 $s_{b_1} = 0.03297$

ANOVA					
	df	SS	MS	F	Significance F
Regression	1	18934.9348	18934.9348	11.0848	0.01039
Residual	8	13665.5652	1708.1957		
Total	9	32600.5000			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Comparing Standard Errors

Inference about the Slope: t Test

- t test for a population slope
 - Is there a linear relationship between x and y?
- Null and alternative hypotheses
 - H_0 : $\beta_1 = 0$ (no linear relationship)
 - H_1 : $\beta_1 \neq 0$ (linear relationship does exist)
- Test statistic

$$t = \frac{b_1 - \beta_1}{s_{b_1}}$$

$$d.f. = n-2$$

where:

b₁ = Sample regression slope coefficient

 β_1 = Hypothesized slope

 s_{b1} = Estimator of the standard error of the slope

Inference about the Slope: t Test

(continued)

Square Feet (x)
1400
1600
1700
1875
1100
1550
2350
2450
1425
1700

Estimated Regression Equation:

houseprice = 98.25 + 0.1098 (sq.ft.)

The slope of this model is 0.1098

Does square footage of the house affect its sales price?

Inferences about the Slope: t Test Example

Test Statistic: t = 3.329

 H_0 : $\beta_1 = 0$

 H_A : $\beta_1 \neq 0$

From Excel output:

	Coefficients	Standard Error	t Stat	P-value
Intercept	98.24833	58.03348	1.69296	0.12892
Square Feet	0.10977	0.03297	3.32938	0.01039

Decision:

Reject H₀

Conclusion:

There is sufficient evidence that square footage affects house price

Regression Analysis for Description

Confidence Interval Estimate of the Slope:

$$b_1 \pm t_{\alpha/2} s_{b_1}$$

$$d.f. = n - 2$$

Excel Printout for House Prices:

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580
				•		

At 95% level of confidence, the confidence interval for the slope is (0.0337, 0.1858)

Regression Analysis for Description

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Since the units of the house price variable is \$1000s, we are 95% confident that the average impact on sales price is between \$33.70 and \$185.80 per square foot of house size

This 95% confidence interval does not include 0.

Conclusion: There is a significant relationship between house price and square feet at the .05 level of significance

Confidence Interval for the Average y, Given x

Confidence interval estimate for the mean of y given a particular x_D

Size of interval varies according to distance away from mean, \overline{x}

$$\hat{y} \pm t_{\alpha/2} s_{\epsilon} \sqrt{\frac{1}{n} + \frac{(x_{p} - \overline{x})^{2}}{\sum (x - \overline{x})^{2}}}$$

Confidence Interval for an Individual y, Given x

Confidence interval estimate for an **Individual value of y** given a particular x_p

$$\hat{y} \pm t_{\alpha/2} s_{\epsilon} \sqrt{1 + \frac{1}{n} + \frac{(x_p - \overline{x})^2}{\sum (x - \overline{x})^2}}$$

This extra term adds to the interval width to reflect the added uncertainty for an individual case

Interval Estimates for Different Values of x

Example: House Prices

House Price in \$1000s (y)	Square Feet (x)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Estimated Regression Equation:

houseprice = 98.25 + 0.1098 (sq.ft.)

Predict the price for a house with 2000 square feet

Example: House Prices

(continued)

Predict the price for a house with 2000 square feet:

houseprice = 98.25 + 0.1098 (sq.ft.)

=98.25+0.1098(2000)

= 317.85

The predicted price for a house with 2000 square feet is 317.85(\$1,000s) = \$317,850

Estimation of Mean Values: Example

Confidence Interval Estimate for E(y)|x_p

Find the 95% confidence interval for the average price of 2,000 square-foot houses

Predicted Price $Y_i = 317.85 \ (\$1,000s)$

$$\hat{y} \pm t_{\alpha/2} s_{\epsilon} \sqrt{\frac{1}{n} + \frac{(x_p - \overline{x})^2}{\sum (x - \overline{x})^2}} = 317.85 \pm 37.12$$

The confidence interval endpoints are 280.66 -- 354.90, or from \$280,660 -- \$354,900

Estimation of Individual Values: Example

Prediction Interval Estimate for y|x_D

Find the 95% confidence interval for an individual house with 2,000 square feet

Predicted Price $Y_i = 317.85 \ (\$1,000s)$

$$\hat{y} \pm t_{\alpha/2} s_{\epsilon} \sqrt{1 + \frac{1}{n} + \frac{(x_p - \overline{x})^2}{\sum (x - \overline{x})^2}} = 317.85 \pm 102.28$$

The prediction interval endpoints are 215.50 -- 420.07, or from \$215,500 -- \$420,070

Finding Confidence and Prediction Intervals PHStat

In Excel, use

PHStat | regression | simple linear regression ...

Check the

"confidence and prediction interval for X="

box and enter the x-value and confidence level desired

Finding Confidence and Prediction Intervals PHStat

(continued)

	A	В	
1	Confidence Interval Estimate		
2	Connuence interval Estimate		
3	Data		
4	X Value	2000	1
5	Confidence Level	95%) Ir
6	Confidence Level	3376	
7	Intermediate Calculations		
8	Sample Size	10	
9	Degrees of Freedom	8	
10	t Value	2.306006	
11	Sample Mean	1715	
12	Sum of Squared Difference	1571500	
13	Standard Error of the Estimate	41.33032	
14	h Statistic	0.151686	
15	Average Predicted Y (YHat)	317.7838	
16	r werage i redicted i (i riat)	011.1000	
17	For Average Predicted Y (YI	lati	
18	Interval Half Width	37.11952	
19	Confidence Interval Lower Limit	280.6643	Co
20	Confidence Interval Upper Limit	354.9033	
21	,		
22	For Individual Response	y	
23	Interval Half Width	102.2813	\
24	Prediction Interval Lower Limit	215.5025) Pr
25	Prediction Interval Upper Limit	420.0651	

Input values

Confidence Interval Estimate for E(y)|x_D

Prediction Interval Estimate for $y|x_p$

Residual Analysis

- Purposes
 - Examine for linearity assumption
 - Examine for constant variance for all levels of x
 - Evaluate normal distribution assumption
- Graphical Analysis of Residuals
 - Can plot residuals vs. x
 - Can create histogram of residuals to check for normality

Residual Analysis for Linearity

Residual Analysis for Constant Variance

Excel Output

RESI	RESIDUAL OUTPUT					
	Predicted House Price	Residuals				
1	251.92316	-6.923162				
2	273.87671	38.12329				
3	284.85348	-5.853484				
4	304.06284	3.937162				
5	218.99284	-19.99284				
6	268.38832	-49.38832				
7	356.20251	48.79749				
8	367.17929	-43.17929				
9	254.6674	64.33264				
10	284.85348	-29.85348				

Chapter Summary

- Introduced correlation analysis
- Discussed correlation to measure the strength of a linear association
- Introduced simple linear regression analysis
- Calculated the coefficients for the simple linear regression equation
- Described measures of variation (R² and s_ε)
- Addressed assumptions of regression and correlation

Chapter Summary

(continued)

- Described inference about the slope
- Addressed estimation of mean values and prediction of individual values
- Discussed residual analysis