

LAB 9 - AMP-OP: REALIMENTAÇÃO NEGATIVA

1. Objetivos:

Verificar as características elétricas do Amp-Op real no modo com realimentação negativa, usando a configuração inversora, não inversora e seguidor de tensão (buffer).

2. Material:

Laboratório	A ser providenciado pela equipe
01 Fonte de tensão CC variável	01 resistor 1 kΩ ¼ W
01 Gerador de funções	Resistores de valor calculado na atividade no pre-lab do moodle, caso precise realize associação de resistores, ¼ W
01 Matriz de contatos	02 Capacitor cerâmico 100 nF
01 Osciloscópio	01 resistor 10kΩ ¼ W
02 Pontas de prova	02 Cl 358 - amplificador operacional

3. Reconhecimento e inspeção dos componentes:

3.1. Meça os resistores e anote os valores:

3.2. Realize a conexão das fontes de alimentação como mostra a Figura 1 e fixe a tensão em 15V. Meça e verifique a tensão $V_+ = 15V$ e $V_- = -15V$ (preste atenção à polaridade):

Figura 1: Diagrama de conexão das fontes de alimentação para alimentação simétrica do Amp-Op.

4. Circuito 1: configuração inversora

Figura 2: Circuito 1 - Amp-Op em configuração inversora.

- 4.1. Monte o circuito indicado Figura 2
- 4.2. Ajuste o gerador de funções para que forneça um sinal senoidal de 1Vp e f= 1kHz (sem offset, i.e. centrada em zero). Confirme sua forma de onda com o OSCILOSCÓPIO. Ajuste suas medidas para reportar CH1: Vpp, CH2: Vpp, CH2: max, CH2:min e CH1: freq.
- 4.3. Observe as formas de onda, complete as medidas indicadas abaixo e verifique o ganho desejado. Faça o print da tela incluindo as medidas.

$$V_{out_{pp}} =$$
 $V_{in_{pp}} =$ $Ganho_{medido} = V_{out_{pp}}/V_{in_{pp}} =$ $V_{out@Vin=min} =$ Desfasagem entrada-saída= $^{\circ}$

- 4.4. Observe a figura de *Lissajous*: Coloque a posição das formas de onda no centro da tela e pressione o botão Display e mude o formato de YT para XY. Neste modo o eixo horizontal é CH1 e o vertical é CH2. Para esta experiencia seria o gráfico $V_{out}vs.V_{in}$. Verifique o comportamento pela função de transferência do circuito. Faça o print da tela incluindo as medidas.
- 4.5. <u>Volte para o formato YT.</u> Observe a forma de onda da saída enquanto aumenta a amplitude do gerador até o máximo valor possível. <u>Faça o print da tela incluindo as medidas.</u> A tensão de saída deve-se encontrar limitada nos picos, reporte os valores de tensão usando a tensão de alimentação de Vss=±15V:

$$V_{out_{max}} =$$
 _______ $V_{out_{min}} =$ ______ (Voltage swing da alimentação positiva) $Vss - |V_{out_{min}}| =$ ______ (Voltage swing da alimentação negativa)

5. Circuito 2: configuração não inversora

Figura 3: Circuito 2 – Amp-Op em configuração não inversora.

- 5.1. Monte o circuito indicado Figura 3.
- 5.2. Ajuste o gerador de funções para que forneça um sinal senoidal de 1Vp e f= 1kHz (**sem offset, i.e. centrada em zero**). Confirme sua forma de onda com o OSCILOSCÓPIO.
- 5.3. Observe as formas de onda, complete as medidas indicadas abaixo e verifique o ganho desejado. Faça o print da tela incluindo as medidas.

$$V_{out_{pp}} =$$
 $V_{in_{pp}} =$ $V_{in_{pp}} =$ $V_{out_{pp}} =$ $V_{out_{pp}} =$ Desfasagem entrada-saída= °

5.4. Observe a figura de *Lissajous* e verifique o comportamento pela função de transferência do circuito. <u>Faça o print da tela incluindo as medidas.</u>

6. Circuito 3: seguidor de tensão (Buffer)

Figura 4: Amp-Op em configuração buffer.

Universidade Tecnológica Federal do Paraná Departamento Acadêmico de Eletrotécnica Amplificadores Operacionais e Semicondutores – *ELT74E* Prof. Juan C. C. Rodriguez

- 6.1. Monte o circuito indicado na Figura 4.
- 6.2. Ajuste (ou garanta) que o gerador de funções para que forneça um sinal senoidal da **máxima tensão possível** e f= 1kHz (**sem offset, i.e. centrada em zero**). Confirme sua forma de onda com o OSCILOSCÓPIO.
- 6.3. Observe as formas de onda, complete as medidas indicadas abaixo e verifique o ganho desejado. <u>Faça</u> o print da tela incluindo as medidas.

V_o	$ut_{pp} = \underline{\hspace{1cm}}$	$V_{in_{pp}} = $	$Ganho_{medido} = V_{out_{pp}}/V_{in_{pp}} = $	
Į	$V_{out@Vin=min} = _{__}$	$V_{out@Vin=max} = $	Desfasagem entrada-saída=	•
6.4.	Aumente a freq	uência do gerador até que a saíd	a apresente uma forma de onda limitada pe	elo Slev
	freq =	$SR = 2\pi * freq * V_{outp}$	$SR_{datasheet} = $	

6.5. Apresente seus cálculos, conclusões, os 6 print de tela do osciloscópio e resultados (Checkpoint).