Al Response:

Kinematics is a branch of classical mechanics that deals with the motion of object

```
### Key Concepts
```

- 1. **Displacement (s)**: The change in position of an object. It is a vector quantit
- 2. **Distance**: The total length of the path traveled by an object. It is a scalar qu
- 3. **Velocity (v)**: The rate of change of displacement with time. It is a vector qu \[v = \frac{\Delta s}{\Delta t} \] where \(\Delta s\) is displacement and \(\Delta t\) is the time interval.
- 4. **Speed**: The rate of change of distance with time. It is a scalar quantity.
- 5. **Acceleration (a)**: The rate of change of velocity with time. It can also be a value of the value of velocity with time. It can also be a value of velocity with time. It can also be a value of velocity of velocity with time. It can also be a value of velocity of velocity of velocity.
 5. **Acceleration (a)**: The rate of change of velocity with time. It can also be a value of velocity of velocity with time. It can also be a value of velocity of velocity of velocity with time. It can also be a value of velocity of velocity.

Equations of Motion

For uniformly accelerated motion, the following equations (often referred to as th

1. **First Equation**:

```
\[
v = u + at
\]
```

where $\(u\)$ is the initial velocity, $\(v\)$ is the final velocity, $\(a\)$ is the constant ac

2. **Second Equation**:

```
\[
s = ut + \frac{1}{2}at^2
\]
```

This equation gives the displacement as a function of time, initial velocity, and

3. **Third Equation**:

```
\[
v^2 = u^2 + 2as
```

This relates the initial and final velocity to the displacement and acceleration.