#### **Genetische Statistik**

#### Präsenzübung 6: Visualisierung statistischer Konzepte

Dr. Janne Pott (janne.pott@uni-leipzig.de)

December 07, 2021

#### Fragen

#### Gibt es Fragen zu

- Vorlesung?
- Übung?
- Seminar?

#### Plan heute

#### Besprechung von RBlatt 4

- Verwandtschaft
- XY-Plots
- PCA

#### Abschnitt 1

#### Verwandtschaft

# Aufgabe 1: Verwandtschaft - Hintergrund (1)

Paarweise Schätzung von Verwandtschaft:

$$\hat{k}_{i,j} = \frac{1}{M} \sum_{m=1}^{M} \frac{(g_{m,i} - 2 * p_{m,B})(g_{m,j} - 2 * p_{m,B})}{4 * p_{m,B} * p_{m,A}}$$

mit

- M als Anzahl der betrachteten biallelischen SNPs (Allel A und B)
- $\bullet$   $p_{m,B}$  als Allelfrequenz des SNPs m bezüglich Allel B
- $\bullet$   $g_{m,i}$  als Genotyp des SNPs m von Person i bezüglich Allel B

# **Aufgabe 1: Verwandtschaft - Hintergrund (2)**

Tabelle 1: Verwandschaftsmatrix mittels Schleife

| 0.50 | 0.00 | 0.00 | 0.00 | 0.24 | 0.24 | 0.24 | 0.25 | 0.25 | 0.24 |
|------|------|------|------|------|------|------|------|------|------|
| 0.00 | 0.50 | 0.00 | 0.00 | 0.24 | 0.24 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.25 | 0.25 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.25 | 0.25 |
| 0.24 | 0.24 | 0.00 | 0.00 | 0.49 | 0.24 | 0.12 | 0.12 | 0.13 | 0.12 |
| 0.24 | 0.24 | 0.00 | 0.00 | 0.24 | 0.49 | 0.12 | 0.12 | 0.12 | 0.12 |
| 0.24 | 0.00 | 0.25 | 0.00 | 0.12 | 0.12 | 0.49 | 0.24 | 0.12 | 0.12 |
| 0.25 | 0.00 | 0.25 | 0.00 | 0.12 | 0.12 | 0.24 | 0.50 | 0.12 | 0.12 |
| 0.25 | 0.00 | 0.00 | 0.25 | 0.13 | 0.12 | 0.12 | 0.12 | 0.50 | 0.25 |
| 0.24 | 0.00 | 0.00 | 0.25 | 0.12 | 0.12 | 0.12 | 0.12 | 0.25 | 0.49 |
|      |      |      |      |      |      |      |      |      |      |

## **Aufgabe 1: Verwandtschaft**

- Verwandtschaftsmatrix mittels Matrix-Operation bestimmen. Stimmt dieses Produkt mit K überein?
- Warum gilt:

$$\hat{k}_{i,i} \approx 0.5$$

- Wie viele paarweise Verwandtschaften (von Grad 1,2, ..., unverwandt) beobachten Sie?
- Welche Familienstruktur könnte die beobachteten Verwandtschaftsbeziehungen erklären?

# Aufgabe 1: Verwandtschaft - Lösung a

```
n=ncol(genotypes)
m=nrow(genotypes)
h=(genotypes-matrix(2*allelfreq,m,n))/
    sqrt(m*matrix(4*allelfreq*(1-allelfreq),m,n))
H=t(h)%*%(h)
table(round(H,4)==round(K,4))
```

```
##
## TRUE
## 100
```

# Aufgabe 1: Verwandtschaft - Lösung a & b

- H und K sind identisch.
- Für die paarweise Verwandtschaft braucht man nur die obere Dreiecksmatrix.
- Auf der Diagonalen selbst sollte immer 0.5 stehen, das ist für den Kinship-Schätzer Identität oder eineigige Zwillinge.

| $k_{i,j}$            | Interpretation                                                                                                                                                                                     |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.5<br>0.25<br>0.125 | Eineigige Zwillinge / Identität<br>erstgradige Verwandtschaft (z.B. Eltern-Kind, Geschwister)<br>zweitgradige Verwandtschaft (z.B. Halbgeschwister,<br>Großeltern-Enkel, Onkel/Tante-Nichte/Neffe) |

## Aufgabe 1: Verwandtschaft - Lösung c

#### Anzahl Verwandtschaften:

- n-gradig: 18 unverwandte Paare
- 2-gradig: 12 mal Großeltern-Enkel, Onkel/Tante-Nichte/Neffe oder Halbgeschwister
- 1-gradig: 15 mal Eltern-Kinder oder Geschwister

## Aufgabe 1: Verwandtschaft - Lösung c

Tabelle 3: Kinship Schätzer

|     | S1    | S2     | S3    | S4     | S5     | S6     | S7     | S8     |    |
|-----|-------|--------|-------|--------|--------|--------|--------|--------|----|
| S1  | 0.496 | -0.002 | 0.001 | -0.002 | 0.243  | 0.243  | 0.245  | 0.248  | (  |
| S2  | NA    | 0.501  | 0.000 | 0.001  | 0.244  | 0.245  | -0.002 | -0.002 | (  |
| S3  | NA    | NA     | 0.500 | -0.003 | -0.001 | -0.002 | 0.247  | 0.252  | -( |
| S4  | NA    | NA     | NA    | 0.500  | 0.000  | 0.001  | -0.001 | -0.003 | (  |
| S5  | NA    | NA     | NA    | NA     | 0.488  | 0.238  | 0.120  | 0.119  | (  |
| S6  | NA    | NA     | NA    | NA     | NA     | 0.490  | 0.121  | 0.120  | (  |
| S7  | NA    | NA     | NA    | NA     | NA     | NA     | 0.492  | 0.244  | (  |
| S8  | NA    | NA     | NA    | NA     | NA     | NA     | NA     | 0.498  | (  |
| S9  | NA    | NA     | NA    | NA     | NA     | NA     | NA     | NA     | (  |
| S10 | NA    | NA     | NA    | NA     | NA     | NA     | NA     | NA     |    |
|     |       |        |       |        |        |        |        |        |    |

# Aufgabe 1: Verwandtschaft - Lösung c

Tabelle 4: Verwandschaftsgrade

|          | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 |
|----------|----|----|----|----|----|----|----|----|----|-----|
| sample1  | NA | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1   |
| sample2  | NA | NA | 0  | 0  | 1  | 1  | 0  | 0  | 0  | 0   |
| sample3  | NA | NA | NA | 0  | 0  | 0  | 1  | 1  | 0  | 0   |
| sample4  | NA | NA | NA | NA | 0  | 0  | 0  | 0  | 1  | 1   |
| sample5  | NA | NA | NA | NA | NA | 1  | 2  | 2  | 2  | 2   |
| sample6  | NA | NA | NA | NA | NA | NA | 2  | 2  | 2  | 2   |
| sample7  | NA | 1  | 2  | 2   |
| sample8  | NA | 2  | 2   |
| sample9  | NA | 1   |
| sample10 | NA  |

# Aufgabe 1: Verwandtschaft - Lösung d

Interpretation 1: Ein Vater (1) hat mit drei verschiednen Müttern (2, 3, 4) je zwei Kindern (5 - 10).

Interpretation 2: Eine Mutter (1) hat mit drei verschiednen Vätern (2, 3, 4) je zwei Kindern (5 - 10).



Abbildung 1: Graphische Darstellung der Verwandtschaftsbeziehungen

## Aufgabe 1: Verwandtschaft - Zusammenfassung

- Welche Grundannahme ist durch Verwandtschaft verletzt?
- Wie kann das gelöst werden?

#### Abschnitt 2

**XY-Plot** 

# Aufgabe 2: XY-Plot - Hintergrund (1)

In genetischen Studien gibt es zwei Quellen für das Geschlecht:

- Datenbankgeschlecht: wie im Fragebogen angegeben, insbesondere auch divers
- Genetisches Geschlecht: im Genotyp-Calling bestimmt (Intensität der SNPs auf Chr. X & Y)

Mit dem XY-Plots kann man Probenvertauschungen und genetische Ausreißer entdecken. Grundannahmen:

- Intensität von X-SNPs in Frauen doppelt so stark wie in Männern
- Intensität von Y-SNPs in Frauen nur Hintergrundrauschen
- Heterozygotenrate in Frauen etwa 25%, in Männern 0%

#### Aufgabe 2: XY-Plot

- Gesamtintensitäten pro Sample für X und Y bestimmen
- Plots:
  - X-Intensität Y-Intensität
  - X-Intensität X-Heterozygosität
  - Y-Intensität X-Heterozygosität

# Aufgabe 2: XY-Plot - Lösung a)

```
# Mittelwert pro SNP und Sample
all <- seq (from=1, to=dim(intent)[1], by=2)
data.a<-intent[all,]
data.b<-intent[all+1,]
dataInt<-(data.a+data.b)/2
# mittlere Intensitäten pro Chromosom
dataIntX<-dataInt[,1:200]
dataIntY<-dataInt[.201:300]
IntX<-rowMeans(dataIntX)</pre>
IntY<-rowMeans(dataIntY)</pre>
# Normierung der Intensitäten nach dem 75%-Quantil
IntX2<-IntX/boxplot(IntX,plot=F)$stats[4]</pre>
IntY2<-IntY/boxplot(IntY,plot=F)$stats[4]</pre>
```

myDat<-data.frame(samples,IntX,IntY,IntX2,IntY2,heteroRate)</pre>

# Aufgabe 2: XY-Plot - Lösung a)

|        | sampleID | sex_datenbank | sex_computed | IntX     |
|--------|----------|---------------|--------------|----------|
| 1:intA | 1        | male          | male         | 779.373  |
| 2:intA | 2        | female        | female       | 1164.601 |
| 3:intA | 3        | male          | male         | 780.787  |

|        | IntY      | IntX2     | IntY2     | heteroRate |
|--------|-----------|-----------|-----------|------------|
| 1:intA | 973.7237  | 0.6709741 | 0.9872946 | 0.00       |
| 2:intA | 316.1990  | 1.0026228 | 0.3206059 | 0.22       |
| 3:intA | 1003.1133 | 0.6721914 | 1.0170938 | 0.00       |

# Aufgabe 2: XY-Plot - Lösung c)

```
myPlot1 <- ggplot() +</pre>
  geom point(data=myDat,aes(x=IntX2,y=IntY2,color=sexLabel,
                             shape=sexLabel),size=4) +
  xlab("X Intensität") + ylab("Y Intensität") +
  ggtitle("XY Plot mit 300 Samples") +
  scale_colour_manual(name="submitted/computed",
                values=c("red","blue","orange",
                         "darkseagreen", "cyan", "magenta")) +
  scale_shape_manual(name="submitted/computed",
                     values=c(17,17,17,19,19,19)) +
  theme(legend.justification=c(1,1),
        legend.text=element_text(size=10),
        legend.title=element text(size=10)) +
  theme(axis.text=element text(size=10),
        axis.title=element text(size=10),
        plot.title=element_text(size=15))
```

#### **Aufgabe 2: XY-Intensity Plot**

XY Plot mit 300 Samples



### **Aufgabe 2: X-Intensity-Heterozygosity Plot**

XX Plot mit 300 Samples submitted/computed ▲ 1/female 0.4 -1/male 1/unknown 2/female 2/male 2/unknown 0.3 -X Heterozygosität 0.1 -

0.7

0.8

1.0

1.1

0,0

X Intensität

### **Aufgabe 2: Y-Intensity-Heterozygosity Plot**

XX Plot mit 300 Samples submitted/computed ▲ 1/female 0.4 -1/male 1/unknown 2/female 2/male 2/unknown 0.3 -X Heterozygosität 0.1 -

0.7

0.8

1.0

1.1

0,0

X Intensität

# Aufgabe 2: XY-Plots - Lösung b)

#### Man kann folgende Ausreißer erkennen:

- Frauen mit zu hoher oder zu niedriger X-Intensität (Mono-X oder Triple-X Frauen)
- Männer mit zu hoher Y-Intensität (Doppel-Y Männer)
- Männer mit zu hoher X-Intensität (Doppel-X Männer)
- Frauen mit zu hoher oder zu niedriger X-Heterozygosität
- Samples mit Sex-Mismatches zwischen Datenbank und Berechnung
- 1)-4) Samples sollten für gonosomale Analysen gefiltert werden (autosomal ok). 5) Sex-Mismatches müssen immer gefiltert werden, auch für autosomale Analysen!

#### **Aufgabe 2: XY-Intensity Plot**

XY Plot mit 300 Samples



### Aufgabe 2: X-Intensity-Heterozygosity Plot

XX Plot mit 300 Samples



#### **Aufgabe 2: Y-Intensity-Heterozygosity Plot**

YX Plot mit 300 Samples



### Aufgabe 2: XY-Plot - Zusammenfassung

- Welches Grundproblem wird bei einem XY-Plot betrachtet, und warum kann das nur unzureichend gelöst werden?
- Warum werden drei Parameter hier betrachten / warum reichen zwei nicht aus?

#### Abschnitt 3

#### **PCA**

## PCA 1 - Datenvorbereitung - SNPs filtern

Hinweis: Es sollten am Ende 206,233 SNPs sein!

```
myTab<-read.table("../Exercises_R/data2/mySnps.txt")</pre>
rslist <- fread (".../Exercises R/data2/1KG PCA.bim",
               sep="\t",stringsAsFactors=F)
table(is.element(myTab$V1,rslist$V2))
##
##
    FALSE
             TR.UF.
    18225 206233
##
filt<-is.element(myTab$V1,rslist$V2)</pre>
dummy<-as.character(myTab$V1[filt])</pre>
write.table(dummy,file="PCA/mySnps_filtered.txt",
             quote=F,row.names=F,col.names=F)
```

# PCA 2 - Datenvorbereitung - Samples filtern

```
fam.data<-read.table("../Exercises R/data2/1KG PCA.fam",
                      stringsAsFactors=F,sep=" ")
ethno<-substr(fam.data$V2,1,3)
v.ethno<-c("AFR", "ASN", "EUR")
n.ethno<-min(table(ethno)[v.ethno])
samp.auswahl<-rep(F,length(ethno))</pre>
set.seed(2)
for(i in v.ethno){
  samp.auswahl[ethno==i] <- 1:sum(ethno==i) %in%</pre>
    sample(sum(ethno==i),n.ethno)
}
table(ethno[samp.auswahl])
```

```
## AFR ASN EUR
## 246 246 246
```

##

#### PCA 2 - Datenvorbereitung - Samples filtern

Hinweis: Es sollten am Ende 3\*246 Individuen sein!

#### PCA 3 - Datenvorbereitung - SNPs prunen

Hinweis: Es sollten am Ende 117,351 SNPs sein.

## PCA 4 - Datenvorbereitung - Datensatz erstellen

```
call2<-paste(plink_call,
    "--bfile ../Exercises_R/data2/1KG_PCA",
    "--extract PCA/pruning_filter.prune.in",
    "--keep PCA/mySamples.txt",
    "--make-bed",
    "--out PCA/pruned_data",
    sep=" ")
system(call2)</pre>
```

### PCA 5 - Eigentliche PCA berechnen

#### PCA 6 - PCA auswerten

```
pca2values <- read.table ("PCA/pca out.eigenval") $V1
pca2vector <- read.table ("PCA/pca_out.eigenvec",
                        stringsAsFactors=F,sep="\t")
(pca2values[1])/sum(pca2values)
## [1] 0.50733
(pca2values[1]+pca2values[2])/sum(pca2values)
## [1] 0.8610275
xmin<-min(pca2vector[,3]);xmax<-max(pca2vector[,3])</pre>
ymin<-min(pca2vector[,4]);ymax<-max(pca2vector[,4])</pre>
```

#### PCA 6 - PCA Plot der ersten 2 EVs

```
myMain1="PCA 1000Genomes (3*246 Samples, 121970 geprunte SNPs)
plot(0,0,col="white",xlim=c(xmin,xmax),ylim=c(ymin,ymax),
     main=myMain1,
     xlab="1. Hauptkomponente", ylab="2. Hauptkomponente")
lines(pca2vector[substr(fam.data.restr$V2,1,3)=="AFR",c(3,4)]
      col=alpha("black",0.1),type="p",pch=19,cex=1.9)
lines(pca2vector[substr(fam.data.restr$V2,1,3)=="ASN",c(3,4)]
      col=alpha("red",0.1),type="p",pch=19,cex=1.9)
lines(pca2vector[substr(fam.data.restr$V2,1,3)=="EUR",c(3,4)]
      col=alpha("blue",0.1),type="p",pch=19,cex=1.9)
legend("bottomleft", legend=v.ethno,col=c("black", "red", "blue")
```

#### PCA 6 - PCA Plot der ersten 2 EVs

PCA 1000Genomes (3\*246 Samples, 121970 geprunte SNPs)



#### **PCA** - Interpretation

- Die ersten zwei Haupkomponenten trennen die Ethnien auf.
- Beide Vektoren erklären etwa 78% der Varianz in den Genetik-Daten.
- Wenn man das ganz für alle Samples wiederholt erklären die ersten beiden Eigenwerte 84% der genetischen Varianz.

#### **PCA - Alle Samples**

PCA 1000Genomes (1092 Samples, 115204 geprunte SNPs)



### Aufgabe 3: PCA - Zusammenfassung

- Welche Grundannahme ist durch gemischte Populationen verletzt?
- Wie kann das gelöst werden?

#### Abschnitt 4

# Zusammenfassung

## Zusammenfassung

- Welche Grundannahme ist durch Verwandtschaft verletzt? Wie kann das gelöst werden?
- Welches Grundproblem wird bei einem XY-Plot betrachtet, und warum kann das nur unzureichend gelöst werden? Warum werden drei Parameter hier betrachten / warum reichen zwei nicht aus?
- Welche Grundannahme ist durch gemischte Populationen verletzt?
   Wie kann das gelöst werden?