

Solucion relacion 1.pdf *Ejercicios Resueltos*

- 1° Cálculo I
- **⊘** Grado en Matemáticas
- Facultad de Ciencias **UGR - Universidad de Granada**

Ejercicios de Cálculo I

Relación 1 Soluciones

1. Sean A y B conjuntos no vacíos y mayorados de números reales positivos, y sea $C = \{ab : a \in A, b \in B\}$. Probar que C está mayorado y que

$$\sup C = \sup A \cdot \sup B$$

Probar también que $\inf C = \inf A \cdot \inf B$.

Solución

Para simplificar la notación, sean $\alpha = \sup A$ y $\beta = \sup B$. Es claro que $\alpha, \beta \in \mathbb{R}^+$.

Para $c \in C$ tenemos c = ab con $a \in A$ y $b \in B$. Por ser $0 < a \le \alpha$ y $0 < b \le \beta$, al multiplicar ambas desigualdades obtenemos $c \le \alpha\beta$. Como esta desigualdad es válida para todo $c \in C$, hemos probado que $\alpha\beta$ es mayorante de C, luego C está mayorado y sup $C \le \alpha\beta$.

Sea ahora $\gamma = \sup C$ y veamos que $\gamma \ge \alpha \beta$. Dados $a \in A$ y $b \in B$ tenemos $ab \in C$, luego $ab \le \gamma$. Entonces $a \le \gamma/b$ para todo $a \in A$ y vemos que γ/b es mayorante de A, luego $\alpha \le \gamma/b$, o lo que es lo mismo, $b \le \gamma/\alpha$. Como esta desigualdad es válida para todo $b \in B$, vemos que γ/α es mayorante de B, así que $\gamma/\alpha \ge \beta$, como queríamos.

Sean $u = \inf A$, $v = \inf B$ y $w = \inf C$, para probar que uv = w. El razonamiento es similar al usado con los supremos, pero hay que tener cuidado si algún ínfimo se anula, ya que ahora sólo sabemos que $u, v, w \in \mathbb{R}_0^+$.

Para $c \in C$ tenemos c = ab con $a \in A$ y $b \in B$. Por ser $0 \le u \le a$ y $0 \le v \le b$, tenemos $uv \le c$. Como esta desigualdad es válida para todo $c \in C$, deducimos que uv es minorante de C, así que $uv \le w$

La otra desigualdad es evidente si w=0, luego podemos suponer que w>0. Dados $a\in A$ y $b\in B$ tenemos $ab\in C$, luego $ab\geq w$. Entonces $a\geq w/b$ para todo $a\in A$ y vemos que w/b es minorante de A, luego $u\geq w/b>0$, de donde $b\geq w/u$. Como esta desigualdad es válida para todo $b\in B$, vemos que w/u es minorante de B, así que $v\geq w/u$, de donde $uv\geq w$, como queríamos.

2. Se consideran los conjuntos siguientes:

$$A = \left\{ 2 - \frac{1}{n} : n \in \mathbb{N} \right\}, \qquad B = \left\{ 3 + \frac{1}{n} : n \in \mathbb{N} \right\}$$
$$C = \left\{ \left(2 - \frac{1}{n} \right) \left(3 + \frac{1}{n} \right) : n \in \mathbb{N} \right\}$$

Probar que están mayorados, calcular sus supremos y averiguar si tienen máximo. ¿Se verifica la igualdad sup $C = \sup A \cdot \sup B$? ¿Hay alguna contradicción con lo afirmado en el ejercicio anterior?

Solución

Se tiene evidentemente 2-(1/n)<2 para todo $n\in\mathbb{N}$, luego 2 es mayorante de A y, en particular, A está mayorado. Supongamos que α fuese un mayorante de A verificando que $\alpha<2$. Entonces, para todo $n\in\mathbb{N}$ tendremos $2-(1/n)\leq\alpha$, de donde $n\leq1/(2-\alpha)$, lo que contradice la propiedad arquimediana. Por tanto $\alpha\geq2$ y hemos probado que 2 es el mínimo del conjunto de los mayorantes de A, es decir, $2=\sup A$. Como $2\notin A$, concluimos que A no tiene máximo.

Es evidente que $3+(1/n) \le 4$ para todo $n \in \mathbb{N}$, luego 4 es mayorante de B, pero $4 \in B$, luego $4 = \max B = \sup B$.

Para $n \in \mathbb{N}$ se tiene $(2-(1/n))(3+(1/n))=6-(1/n)-(1/n^2)<6$, luego 6 es mayorante de C y $6 \notin C$. Para ver que sup C=6 se razona igual que con el conjunto A. Supongamos que γ fuese un mayorante de C verificando que $\gamma < 6$. Tendríamos entonces

$$\gamma \ge 6 - \frac{1}{n} - \frac{1}{n^2} \ge 6 - \frac{2}{n} \quad \forall n \in \mathbb{N}$$

de donde $n \leq 2/(6-\gamma)$ para todo $n \in \mathbb{N}$, lo que contradice la propiedad arquimediana. Así pues, si γ es mayorante de C se ha de tener $\gamma \geq 6$. Por tanto, sup C=6 y C no tiene máximo.

No se verifica la igualdad en cuestión, ya que $\sup C = 6 \neq 8 = \sup A \sup B$. Esto no contradice lo probado en el ejercicio anterior, porque allí el conjunto C se definía de manera diferente: era el conjunto de todos los posibles productos de elementos de A por elementos de B, aquí sólo consideramos algunos de esos productos. Para el conjunto

$$C' = \left\{ \left(2 - \frac{1}{n}\right) \left(3 + \frac{1}{m}\right) : n, m \in \mathbb{N} \right\}$$

el ejercicio anterior sí nos dice que sup C' = 8, pero está claro que $C' \neq C$.

3. Sean $a, b, c, d \in \mathbb{Q}$ con $c^2 + d^2 > 0$ y $x \in \mathbb{R} \setminus \mathbb{Q}$. ¿Qué condición necesaria y suficiente deben cumplir a, b, c, d para que $\frac{ax + b}{cx + d}$ sea un número racional?

Solución

Suponiendo $\frac{ax+b}{cx+d} = r \in \mathbb{Q}$, tenemos ax+b = r(cx+d), es decir, $(a-rc)x = rd-b \in \mathbb{Q}$.

Si fuese $a-rc \neq 0$, deduciríamos $x=\frac{rd-b}{a-rc} \in \mathbb{Q}$, contra la hipótesis, luego a=rc y, por tanto, b=rd. Deducimos que ad=rcd=bc. Hemos probado así que la condición ad=bc es necesaria.

Recíprocamente, supongamos que ad = bc. Entonces, si $d \neq 0$, tenemos

$$\frac{ax+b}{cx+d} = \frac{dax+db}{d(cx+d)} = \frac{bcx+bd}{d(cx+d)} = \frac{b}{d} \in \mathbb{Q}$$

Si d=0, tendremos bc=ad=0, pero de $c^2+d^2>0$ deducimos que $c\neq 0$, luego b=0. Entonces $\frac{ax+b}{cx+d}=\frac{a}{c}\in\mathbb{Q}$.

En resumen, hemos probado que $(ax + b)/(cx + d) \in \mathbb{Q}$ si, y sólo si, ad = bc.

4. Sea D un conjunto denso en $\mathbb R$ y sea I un intervalo no trivial. Probar que el conjunto $D\cap I$ es infinito.

Solución

Como I es un intervalo no trivial, existen $a,b \in I$ tales que a < b. Entonces, por ser I un intervalo, tenemos que $]a,b[\subset I,$ luego $D\cap]a,b[\subset D\cap I.$ Bastará pues probar que el conjunto $E=D\cap]a,b[$ es infinito. Por ser D un conjunto denso en \mathbb{R} , existe $x\in D$ tal que a < x < b, así que $x\in E$ y $E\neq \emptyset$.

Razonando por reducción al absurdo, supongamos que E es finito. Entonces, por ser un conjunto de números reales no vacío y finito, E tiene mínimo, sea $y = \min E$. Como a < y, por ser D denso en \mathbb{R} , existirá $z \in D$ tal que a < z < y. Tenemos a < z < b, luego $z \in E$. Esto es una contradicción, ya que $z < y = \min E$.

