Dr. Rudra Narayan Padhan

Centre for Data Science

Notation:

- 1. Set of all natural numbers is denoted by $\mathbb{N} = \{1, 2, \ldots\}$.
- 2. Set of all integers is denoted by $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$.
- 3. Set of all rational numbers is denoted by $\mathbb{Q} = \{p/q \mid 0 \neq q, p \in \mathbb{Z}\}.$
- 4. Set of all real numbers is denoted by $\mathbb{R} = \mathbb{Q} \cup \overline{\mathbb{Q}}$, where $\overline{\mathbb{Q}} = \mathbb{R} \mathbb{Q}$ is the set of all irrational numbers.
- 5. Set of all complex numbers is denoted by $\mathbb{C} = \{a + ib \mid a, b \in \mathbb{R}\}.$
- 6. Set of all non-zero integers, non-zero rational numbers, non-zero real numbers, non-zero complex numbers are denoted by \mathbb{Z}^* , \mathbb{Q}^* , \mathbb{R}^* , \mathbb{C}^* respectively.

Properties of $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$:

1. For any $x, y \in \mathbb{Z}$, then there is a unique $x + y \in \mathbb{Z}$. Thus the addition define a function from $\mathbb{Z} \times \mathbb{Z}$ to \mathbb{Z} .

$$+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$
 (Closure Properties)

$$(2,3)\mapsto 5$$

2. For any $x, y, z \in \mathbb{Z}$, then

$$x + (y + z) = (x + y) + z$$
 (Associative Law)

3. For any $x \in \mathbb{Z}$, there exist $0 \in \mathbb{Z}$ such that

$$x + 0 = x = x + 0$$
 (Existence of Identity)

4. For any $x \in \mathbb{Z}$, there exist $-x \in \mathbb{Z}$ such that

$$x + (-x) = 0 = (-x) + x$$
 (Existence of Inverse)

5. For any $x, y \in \mathbb{Z}$, then

$$x + y = y + x$$
 (Commutative Law)

Now we will generalize the properties of \mathbb{Z} w.r.t addition to any arbitrary set say G, for that we need to define a operation on that set, before that one need to define the meaning of operation. Throughout this topic we assume that G is a non-empty set.

Definition 0.0.1. A binary operation * on G is a function from $G \times G$ to G.

$$*: G \times G \to G$$

Examples:

- 1. Addition '+' is a binary operation on $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- 2. Subtraction '-' is a binary operation on $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, but not on \mathbb{N} .
- 3. Multiplication \times is a binary operation on $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, but not on $\mathbb{R} \mathbb{Q}$.

Notation: We will denote a non-empty set G with a binary operation by (G, *)

Definition 0.0.2. A non-empty set G with a binary operation * is said to be group if the following holds:

- 1. $a*(b*c) = (a*b)*c \quad \forall a,b,c \in G \quad (Associative Law).$
- 2. There exist an element $e \in G$ such that

$$a * e = a = e * a \quad \forall \quad a \in G \quad (Existence \ of \ Identity).$$

3. For each $a \in G$, there exist an element $b \in G$ such that

$$a * b = e = b * a$$
 (Existence of Inverse).

Definition 0.0.3. A group (G, *) is said to abelian if commutative law holds, i.e,

$$a * b = b * a \quad \forall a, b \in G.$$

Examples:

- 1. $(\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+), (\mathbb{C},+)$ are abelian groups.
- 2. $(\mathbb{Q}^*, \times), (\mathbb{R}^*, \times), (\mathbb{C}^*, \times)$ are abelian groups.
- 3. $(\mathbb{N},+), (\mathbb{Z}^*,\times)$ are not group.

Problem-1: Show that $(\mathbb{Z}, -), (\mathbb{Q}, -), (\mathbb{R}, -), (\mathbb{C}, -)$ are not groups.

Problem-2: Find the inverse of a + ib in (\mathbb{C}^*, \times) .

Additive Group of Integers modulo n

Consider $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$. Let us fixed n = 3. We define an relation on \mathbb{Z} , two elements $a, b \in \mathbb{Z}$ are related $a \sim b$ if $3 \mid a - b$ (3 divides a - b) or $a \equiv b \mod(n)$

Note: $a \equiv b \ mod(n)$ is read as "a is congruent to b modulo n". Observation:

1. The above relation on \mathbb{Z} reflexive, i.e., $a \sim a$ for all $a \in \mathbb{Z}$.

$$3 \mid a - a = 0$$

2. The above relation on \mathbb{Z} symmetric, i.e., if $a \sim b$, then $b \sim a$ for all $a, b \in \mathbb{Z}$.

If
$$3 \mid a-b$$
, then obviously $3 \mid -(a-b) = b-a$

3. The above relation on $\mathbb Z$ transitive, i.e., if $a\sim b$ and $b\sim c$, then $a\sim c$ for all $a,b,c\in\mathbb Z.$

If
$$3 \mid a - b \text{ and } 3 \mid b - c$$
, then $\exists q, s \in \mathbb{Z} \text{ such that } a - b = 3q, \ b - c = 3s$, but $a - c = (a - b) + (b - c) = 3q + 3s$. Thus $3 \mid a - c$.

4. Thus the above relation is an equivalence relation. Therefore

$$\mathbb{Z} = \bigsqcup_{a \in \mathbb{Z}} cl(a)$$

where

$$\begin{aligned} class(a) &= cl(a) = \{b \ : \ a \sim b\} \\ &= \{b \ : \ 3 \ | a - b\} \\ &= \{b \ : \ a - b = 3q \ for \ some \ q \in \mathbb{Z}\} \\ &= \{b \ : \ b = a + 3q \ for \ some \ q \in \mathbb{Z}\} \\ &= \{a + 3q \ : \ q \in \mathbb{Z}\} \end{aligned}$$

For example

$$cl(0) = \{b : b \sim 0\}$$

$$= \{b : 3 | b - 0\}$$

$$= \{b : b - 0 = 3q \text{ for some } q \in \mathbb{Z}\}$$

$$= \{b : b = 0 + 3q \text{ for some } q \in \mathbb{Z}\}$$

$$= \{3q : q \in \mathbb{Z}\}$$

$$= \{0, \pm 3, \pm 6, \pm 9, \dots\}$$

(When 3 divides remainder is zero)

$$\begin{split} cl(1) &= \{b \; : \; b \sim 1\} \\ &= \{b \; : \; 3 \; | b - 1\} \\ &= \{b \; : \; b - 1 = 3q \; for \; some \; q \in \mathbb{Z}\} \\ &= \{b \; : \; b = 1 + 3q \; for \; some \; q \in \mathbb{Z}\} \\ &= \{1 + 3q \; : \; q \in \mathbb{Z}\} \\ &= \{ \dots, -5, -2, 1, 4, 7, 10, \dots \} \end{split}$$

(When 3 divides remainder is one)

$$\begin{aligned} cl(2) &= \{b \ : \ b \sim 2\} \\ &= \{b \ : \ 3 \ | b - 2\} \\ &= \{b \ : \ b - 2 = 3q \ for \ some \ q \in \mathbb{Z}\} \\ &= \{b \ : \ b = 2 + 3q \ for \ some \ q \in \mathbb{Z}\} \\ &= \{2 + 3q \ : \ q \in \mathbb{Z}\} \\ &= \{..., -4, -1, 2, 5, 8, 11, ...\} \end{aligned}$$

(When 3 divides remainder is two)

$$cl(3) = \{b : b \sim 3\}$$

$$= \{b : 3 | b - 3\}$$

$$= \{b : b - 3 = 3q \text{ for some } q \in \mathbb{Z}\}$$

$$= \{b : b = 3 + 3q \text{ for some } q \in \mathbb{Z}\}$$

$$= \{3(1+q) : q \in \mathbb{Z}\}$$

$$= \{0, \pm 3, \pm 6, \pm 9, \dots\}$$

(class(3)=class(0))

Similarly, cl(4) = cl(1), cl(5) = cl(2). The reason behind this can be observed from the division algorithm; if $a \in \mathbb{Z}$, then there exist an integer $q \in \mathbb{Z}$ such that

$$a = 3q + r \quad 0 \le r \le 2.$$

Therefore

$$\mathbb{Z} = cl(0) \cup cl(1) \cup cl(2)$$
$$= \{0, \pm 3, \pm 6, \ldots\} \cup \{0, \pm 4, \pm 7, \ldots\} \cup \{0, \pm 5, \pm 8, \ldots\}$$

- 5. We will denote $cl(a) = \overline{a}$, then $\mathbb{Z} = \overline{0} \cup \overline{1} \cup \overline{2}$.
- 6. Let $\mathbb{Z}_3 = \{\overline{0}, \overline{1}, \overline{2}\}$. We will define a binary operation ' \oplus_3 ' (addition modulo 3) on \mathbb{Z}_3 . For $\overline{a}, \overline{b} \in \mathbb{Z}_3$, then define:

$$\overline{a} \oplus_3 \overline{b} := \overline{a+b}$$

Then

$$\overline{0} \oplus_3 \overline{0} = \overline{0}, \ \overline{0} \oplus_3 \overline{1} = \overline{1}, \ \overline{0} \oplus_3 \overline{2} = \overline{2}$$

$$\overline{1} \oplus_3 \overline{0} = \overline{1}, \ \overline{1} \oplus_3 \overline{1} = \overline{2}, \ \overline{1} \oplus_3 \overline{2} = \overline{3} = \overline{0}$$

$$\overline{2} \oplus_3 \overline{0} = \overline{2}, \ \overline{2} \oplus_3 \overline{1} = \overline{3} = \overline{0}, \ \overline{2} \oplus_3 \overline{2} = \overline{4} = \overline{1}$$

Observe that $\overline{0}$ is the identity element of \mathbb{Z}_3 and $\overline{1}$ is the inverse of $\overline{2}$. Thus \mathbb{Z}_3 forms a group under addition modulo 3. In fact (\mathbb{Z}_3, \oplus_3) is an abelian group.

7. Let $\mathbb{Z}_n = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$. Then (\mathbb{Z}_n, \oplus_n) forms an abelian group, where $\overline{0}$ is

the identity element and inverse of \overline{i} is $\overline{n-i}$, as

$$\overline{i} \oplus_n \overline{n-i} = \overline{i+n-i} = \overline{n} = \overline{0}.$$

Definition 0.0.4. Let (G, *) be a group. Then order of G, denoted by o(G) or |G|, is the number of elements in G. If o(G) is finite, then G is a finite group otherwise infinite group.

Remarks:

- 1. (\mathbb{Z}_n, \oplus_n) is a finite group, $o(\mathbb{Z}_n) = n$.
- 2. $(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+)(\mathbb{Q}^*,\times),(\mathbb{R}^*,\times),(\mathbb{C}^*,\times)$ are infinite groups.

Definition 0.0.5. Let (G,*) be a group and $a \in G$. Then order a is the smallest positive integer n such that $a^n = e$, where e is the identity element of G.

$$a^n = a * a * a \cdots * a = e.$$

Remarks:

- 1. In any group (G, *), order of identity element is one.
- 2. Consider (\mathbb{Z}_3, \oplus_3) . Then observe that

$$\overline{1}^3 = \overline{1} \oplus_3 \overline{1} \oplus_3 \overline{1} = \overline{3} = \overline{0},$$

$$\overline{2}^3 = \overline{2} \oplus_3 \overline{2} \oplus_3 \overline{2} = \overline{6} = \overline{0}.$$

Thus $o(\overline{0}) = 1, o(\overline{1}) = 3, o(\overline{2}) = 3.$

Problem: Find order of each element in (\mathbb{Z}_4, \oplus_4) and (\mathbb{Z}_6, \oplus_6) .

Now we will see some examples of Non-abelian Groups.

Quaternion Group

Let $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ be a set with a binary operation (Multiplication) on it, define by

$$1 \times (\pm i) = \pm i, \ 1 \times (\pm j) = \pm j, \ 1 \times (\pm k) = \pm k$$

 $i^2 = j^2 = k^2 = -1, (-1) \times (-1) = 1$
 $i \times j = k, \ j \times k = i, \ k \times i = j$

$$j \times i = -k, \ k \times j = -i, \ i \times k = -j$$

One may observe that the way we have defined the multiplication here is a binary operation on Q_8 and this multiplication is associative. Here 1 is the identity element of Q_8 . Inverse of i is -i, inverse of j is -j, inverse of k is -k, and inverse of -1 is -1. Thus Q_8 forms a group know as quaternion Group.

Problem: Find the order of each element of Q_8 .

Problem: Prove or disprove that \mathbb{R} under the binary operation

$$a * b := a + b + ab$$

is a group.

Problem: Prove or disprove that $H=\{z\in\mathbb{C}:|z|=1\}$ is a group under multiplication.

Problem: Prove or disprove that $\{2\mathbb{Z} = \{0, \pm 2, \pm 4, \ldots\}$ is group under addition.

Definition 0.0.6. Let (G, *) be a group. A subset H of G is said to be subgroup of G if H w.r.t the same binary operation * is group.

Examples:

- 1. \mathbb{Z} is a subgroup $\mathbb{R}, \mathbb{Q}, \mathbb{C}$ under addition.
- 2. \mathbb{N} is not a subgroup $\mathbb{Z}, \mathbb{R}, \mathbb{Q}, \mathbb{C}$ under addition.

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$
.

Theorem 0.0.7. H is a subgroup of (G,*) if and only if for any $a,b \in H$, then $a*b^{-1} \in H$.

Use above theorem and prove the following:

Problem: Prove that $\{2\mathbb{Z} = \{0, \pm 2, \pm 4, \ldots\} \text{ subgroup } (\mathbb{Z}, +).$

Problem: Prove that $H = \{z \in \mathbb{C} : |z| = 1\}$ is a subgroup of (\mathbb{C}^*, \times) .