Отчет о выполнении лабораторной работы 2.5.1 "Измерение коэффициента поверхностного натяжения жидкости"

Калашников Михаил, Б03-205

Цель работы: измерение температурной зависимости коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностного натяжения спирта; определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости при различной температуре.

В работе используются:

- прибор Ребиндера с термостатом и микроманометром;
- исследуемые жидкости;
- стаканы;

1. Теоретические сведения

Наличие поверхностного слоя приводит к различию давлений по разные стороны от искривленной границы раздела двух сред. Для сферического пузырька с воздухом внутри жидкости избыточное давление даётся формулой Лапласа:

$$\Delta P = P_{\text{внутри}} - P_{\text{снаружи}} = \frac{2\sigma}{r}$$

где σ – коэффициент поверхностного натяжения, $P_{\text{внутри}}$ и $P_{\text{снаружи}}$ – давление внутри пузырька и снаружи, r – радиус кривизны поверхности раздела двух фаз.

2. Экспериментальная установка

Рис. 1: Схема установки для измерения температурной зависимости коэффициента поверхностного натяжения

Исследуемая жидкость (дистиллированная вода) наливается в сосуд В (рис.1). Тестовая жидкость (этиловый спирт) наливается в сосуд Е. При измерениях колбы герметично закрываются пробками. Через одну из двух

пробок проходит полая металлическая игла С. Этой пробкой закрывается сосуд, в котором проводятся измерения. Верхний конец иглы открыт в атмосферу, а нижний погружен в жидкость. Другой сосуд герметично закрывается второй пробкой. При создании достаточного разряжения воздуха в колбе с иглой пузырьки воздуха начинают пробулькивать через жидкость. Поверхностное натяжение можно определить по величине разряжения, необходимого для прохождения пузырьков.

Разряжение в системе создается с помощью аспиратора А. Кран К2 разделяет две полости аспиратора. Верхняя полость при закрытом кране К2 заполняется водой. Затем кран К2 открывают и заполняют водой нижнюю полость аспиратора. Разряжение воздуха создается в нижней полости при открывании крана К1, когда вода вытекает из неё по каплям. В колбах В и С, соединённых трубками с нижней полостью аспиратора, создается такое же пониженное давление. Разность давлений в полостях с разряженным воздухом и атмосферой измеряется спиртовым микроманометром.

В ходе работы длина столбика ртути микроманометра связана с давлением формулой $\Delta P=\rho_{\rm cn}gl\sin\alpha=\mu l$, где $\mu=1,573\frac{\Pi a}{_{\rm MM}}$.

3. Проведение эксперимента

- 0. Зафиксируем температуру в помещении: $t_0 = 26,0 \, ^{\circ}C$.
- 1. Проверим герметичность установки. Для этого откроем кран K1 и добьемся пробулькивания пузырьков воздуха в колбе. Отметим показания микроманометра. Закроем кран K1 и прнонаблюдаем за столбиком микроманометра. Он остается неподвижным, следовательно установка герметична.
- 2. Приступим к измерениям. Вновь откроем кран K1 настолько, чтобы частота падения капель составляла 1 каплю в 5 секунд.
- 3. Измерим максимальное давление при пробулькивании пузырьков воздуха через спирт, получим $\Delta P=76,5\pm1,8$ Па. Определим диаметр иглы по формуле $\Delta P=4\sigma_{\rm cn}/d_0$. Получим $d_0=1,15\pm0,03$ мм. Диаметр, измеренный с помощью микроскопа равен $d=1,0\pm0,1$ мм.
- 4. Аккуратно извлечем иглу, просушим ее от спирта и поместим в колбу с дистиллированной водой. Измерим максимальное давление $P_1=208\pm 2$ Па при пробулькивании и расстояние между верхним концом иглы и неподвиждной частью установки $h_1=8,0\pm 0,5$ мм. Так же отсюда, зная коэффициент поверхностного натяжения спирта, можно найти значение коэффициента поверхностного натяжения воды по формуле: $\sigma_{\rm B}=\sigma_{\rm cn}\frac{P_1}{\Lambda P}=60\pm 3$ мм.
- 5. Утопим иглу в колбу до щелчка. Аналогично измерим величину $h_2=20,0\pm0,5$ мм и давление при пробулькивании $P_2=308\pm2$ Па. Найдем величину $\Delta h=h_2-h_1=12\pm1$ мм. Измерения предыдущих трех пунктов занесем в таблицу 1.
- 6. Снимем температурную зависимость $\sigma(T)$ дистиллированной воды. С помощью термостата нагреем воду в колбе до требуемой температуры,

выжидая достаточное для прогрева всего объема воды время. После этого проведем измерение давления. Измерения занесем в таблицу 2.

4. Обработка данных

7. Инструментальная погрешность определения давления равна $\sigma_P = \mu \sigma_l = 1, 6$ Па, где $\sigma_l = 1$ мм. Инструментальная погрешность опредления температуры равна $\sigma_t = 1$ °C. Коэффициент поверхностного натяжения может быть рассчитан по формуле:

$$\sigma = (P - \rho_{\rm\scriptscriptstyle B} g \Delta h) \cdot \frac{d}{4}$$

$$arepsilon_{\sigma} = \sqrt{rac{\sigma_P^2 + (
ho_{\mathrm{B}} g \sigma_h)^2}{(P -
ho_{\mathrm{B}} g h)^2} + arepsilon_d^2 + arepsilon_d^2 + arepsilon_{P, \mathrm{ c. ny \, q}}^2}$$

8. Построив прямую МНК для зависимости $\sigma(T)$ и рассчитав погрешность, получим:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = -0.11 \pm 0.02 \ \frac{\mathrm{MH}}{\mathrm{M} \cdot \mathrm{°} C}$$

- 9. Также построим графики зависимостей теплоты образования единицы поверхности жидкости $q=-T\frac{\mathrm{d}\sigma}{\mathrm{d}t}$ и поверхностной энергии единицы площади $u=\sigma-T\frac{\mathrm{d}\sigma}{\mathrm{d}t}$ от температуры.
- 10. Зная, что $\frac{\mathrm{d}\lambda}{\mathrm{d}T}/\lambda = \frac{\mathrm{d}\sigma}{\mathrm{d}T}/\sigma$, найдем значение $\frac{\mathrm{d}\lambda}{\mathrm{d}T}$:

$$\frac{\mathrm{d}\lambda}{\mathrm{d}T} = \frac{\lambda}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}T} = -79 \pm 16 \frac{\mathrm{Дж}}{\mathrm{моль \cdot K}}$$

5. Вывод

Определенное в ходе работы значение $\frac{\mathrm{d}\sigma}{\mathrm{d}t}=-0,11\pm0,02~\frac{\mathrm{MH}}{\mathrm{M}\cdot^{\circ}C}$, отличается от табличного, равного $-0,17~\frac{\mathrm{MH}}{\mathrm{M}\cdot^{\circ}C}$, а табличное значение $\frac{\mathrm{d}\lambda}{\mathrm{d}T}=-42~\frac{\mathcal{J}\mathrm{x}}{\mathrm{моль\cdot K}}$. Также отличаются значения коэффициента поверхностного натяжения. Вероятно данное расхождение обусловлено попаданием спирта в колбу с водой.

6. Приложения

N	1	2	3	4	5	6	7	8	9	10
$l_{\Delta P}$, MM	48	49	49	49	48	49	48	49	48	49
l_{P_1} , mm	132	131	131	132	132	133	133	133	134	133
l_{P_2} , MM	195	195	195	195	196	196	196	196	196	196

Таблица 1: Показания микроманометра при измерении диаметра и глубины погружения иглы

$t,^{\circ}C$	25.0	30.0	33.6	35.8	38.8	41.7	44.8	47.8	50.7	53.8	56.8	59.8
	197	197	195	194	194	193	192	191	190	189	189	187
	198	196	195	195	194	193	192	191	190	189	189	188
l, мм	198	196	195	194	193	193	192	191	190	189	188	187
	197	196	195	194	194	193	192	191	190	190	188	187
	196	196	195	194	194	193	192	191	189	190	189	187

Таблица 2: Показания микроманометра при измерении коэффициента поверхностного натяжения дистиллированной воды

Рис. 2: График зависимости $\sigma(T)$

Рис. 3: Графики зависимостей q(t) и u(t)