-We designed and simulated a 7 segment display circuits:

The block diagram containing 4 inputs and 7 outputs (explained in the next page)

The 7-segment display was used in old calculators and computers to display the numbers from 0 to 9, in order to count10 numbers in binary we're going to need 4 inputs that we represented by (A, B, C, D)

And 7 outputs (a, b, c, d, e, f, g), each '1' in the truth table represents the segment that will be enabled

-First, we needed to draw a truth table

$$2^4 = 16$$

NOTE: (The decimal digits from 10 to 15 are don't care because we can't display them in the 7-segment display

Decimal Digit	A	В	C	D	a	b	c	d	e	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	0	0	1	1

- Second, for each output we drew a 2⁴ k-map and extracted an equation from each one by taking the biggest groups possible for better simplification:

-Third, we simulated each equation from the outputs and generated a circuit by using Logisim:

-Lastly, we dragged a 7-segment display to output each number from 0 to 9 by enabling or disabling the inputs and using a Reset:

• Enabling just 'D' and disabling the rest we get 1

• Enabling just 'C' and disabling the rest will give us 2

• Enabling 'D' & 'C' and disabling the rest will give us 3

• Enabling just 'B' and disabling the rest will give us 4

• Enabling 'B' & 'D' and disabling the rest will give us 5

• Enabling 'B' & 'D' and disabling the rest will give us 6

• Enabling 'B' & 'C' & 'D' and disabling just 'A' will give us 7

• Enabling just 'A' and disabling the rest will give us 8

• Enabling 'A' & 'D' and disabling the rest will give us 9

• when disabling the 'Reset' the entire circuit will stop working

- The block diagram with the 7-segment display on

