

Tastes Great! Less Filling! High Performance and Accurate Training Data Collection for SelfDriving Database Management Systems

Training Data for Self-Driving DBMSs

age 3

TRAINING DATA FOR SELF-DRIVING DBMSs. What is a self-driving DBMS?

Goal: Automate onerous tuning and optimization tasks for DBMSs.

Given an objective (e.g., throughput, latency) a *self-driving DBMS* deploys actions that it deems will help the application's future performance for that objective.

- Physical design
- Knob configuration
- Hardware resources

2

TRAINING DATA FOR SELF-DRIVING DBMSs >

Behavior Models

SELECT * FROM foo WHERE balance < 500;

Input Features

Operation	Relation	# Filters	Execution Mode	Cost	
Sequential scan	13	1	Compiled	15445.0	

Output Metrics

CPU Cycles	Memory Bytes	Network Bytes Read	Disk Bytes Read	 Elapsed Time
12131989	1208640	0	65536	 35419

TRAINING DATA FOR SELF-DRIVING DBMSs > Input Sources

External features:

- Execute SQL queries (e.g., EXPLAIN) or other public APIs.
- OPPNet (Marcus et al., VLDB 2019)

Internal features:

- Modify DBMS source code to capture state.
- MB2 (Ma et al., SIGMOD 2021)

TRAINING DATA FOR SELF-DRIVING DBMSs > Output Sources

User-space metrics:

- Operating system APIs (e.g., perf, getrusage)
- Scrape kernel file system (e.g., /proc)

Kernel-space metrics:

- Kernel data structures and privileged APIs.
- Efficient RCU-synchronized data structures.

TRAINING DATA FOR SELF-DRIVING DBMSs >

BPF

Berkeley Packet Filter in 1992, Extended Berkeley Packet Filter (eBPF) since 2014, but we'll just say BPF.

VM to run code in privileged kernel mode without writing kernel modules.

Strict contraints:

- Number of instructions
- Boundedness
- Memory safety

TRAINING DATA FOR SELF-DRIVING DBMSs >

Metrics Collection Overhead

TRAINING DATA FOR SELF-DRIVING DBMSs > Training Data Wish List

DBMS Internal Features

- More information about current operation.
- Learn interactions with background tasks.

Kernel-space Metrics

- Low overhead instrumentation.
- Inspect kernel data structures.

Online Environments

- Train on the target workload.
- Learn about deployment hardware.

TScout Training Data Collection Framework

TSCOUT TRAINING DATA COLLECTION FRAMEWORK >

TScout Workflow

TScout Performance

TSCOUT TRAINING DATA COLLECTION FRAMEWORK >

High Performance Data Collection

TSCOUT TRAINING DATA COLLECTION FRAMEWORK >

Online Data Benefits

TSCOUT TRAINING DATA COLLECTION FRAMEWORK? Training Data Wish List Revisited

√ DBMS Internal Features

TScout can read DBMS memory.

√ Kernel-space Metrics

- TScout's Collector reduces round trips to kernel.
- TScout's Processor moves training data off critical path.

✓ Online Environments

- Low overhead data generation.
- Adjustable sampling.

http://mattbutrovi.ch https://noise.page