

1

Internet of Things

- The Internet of Things, or IoT, is a network of physical devices that are connected to the Internet and are able to "talk" to each other
- There are many wireless technologies you can use to connect these devices to the Internet
 - Short-range wireless communication
 - Cellular communication
 - LPWAN communication

LPWAN

- LPWAN stands for Low Power Wide Area Network and this type of wireless communication is designed for sending small data packages over long distances, operating on a battery.
- There are a number of competing technologies in the LPWAN space such as: Narrowband IoT (NB-IoT), Sigfox, LoRa and others

3

Network Technologies

Wireless Technology	Wireless Communication	Range (m)	Tx power (mW)
Bluetooth	Short range	-10	~2.5
WIFI	Short range	~50	~80
3G / 4G	Cellular	~5000	~500
LoRa*	LPWAN	2000-5000 (urban area) 5000-15000 (rural area) > 15000 (direct line of sight)	~20

Seoul National University 20

4

LPWAN Use Cases

Smart utilities

- Power transformer monitoring
- Water level monitoring
- Utility meter, AMI (Advanced Metering Infra.)
- Fuel monitoring (monitoring fuel levels in fuel tanks for heating houses)

• Health & Hygiene

- Temperature / humidity monitoring
- Environmental monitoring
- Waste management (monitoring waste level in waste bins)

tour National University 2022-04-11 5

5

LoRa Devices

- LoRa is an acronym for Long Range and it is a wireless technology where a low powered sender transmit small data packages (0.3 kbps to 5.5 kbps) to a receiver over a long distance
- A gateway can handle hundreds of devices at the same time
- o LoRa end node

cou National University 2022-04-11

LoRaWAN Topology

- LoRaWAN is deployed in a star topology
- The communication between the end node and gateway is bidirectional which means the end node can send data to the gateway but it can also receive data from the gateway.

7

ISM Band

- LoRa operates in the unlicensed ISM (Industrial, Scientific and Medical) radio band that are available worldwide
- Devices such as microwave ovens, medical equipments or baby monitors all uses the ISM band
- ISM band advantages
 - Anyone is allowed to use these frequencies
 - No license fee is required
- ISM band disadvantages
 - Low data rate
 - Lots of interference because anyone can use these frequencies.

of National University 2022-04-11

LoRa Device Types

Туре		
A	Battery powered devices. Each device uplink to the gateway and is followed by two short downlink receive windows.	
В	Same as class A but these devices also opens extra receive windows at scheduled times.	
С	Same as A but these devices are continuously listening. Hence these devices uses more power and are often mains powered.	

ood National University 2022-04-11 9

9

LoRa Communications

- At any time an end node can broadcast a signal
- After the uplink transmission (tx) the end node will listen for a response from the gateway
- The end node opens two receive slots at t1 and t2 seconds after an uplink transmission
- The gateway can respond within the first receive slot or the second receive slot, but not both

10

11

Introduction

• The demand to monitor or control devices scattered to the space in an ad-hoc manner

- Examples
 - Disaster monitoring & recover
 - Fire detection (Home, market, mountain,...) flooding,
 - Search & rescue
 - Home/Building automation
 - Industry 4.0
 - Smart grid (AMI:Advanced Metering Infra)
 - Healthcare
 - ...

LLN SCONE Lab.

- Low power Lossy Network
 - IoT devices may have limited resources
 - Battery-operated
 - Limited CPU power and small memory
 - Lossy network
 - Low power network technologies such as ZigBee(IEEE 15.4) or Bluetooth
 - ISM band prone to interference from WiFi, MW, page, etc
 - Ad hoc network operation and management
- Requirements
 - Low traffic
 - Reliability
- Other alternatives
 - Cellular (5G)

Soul National University 2022-04-11

13

RPL SCONE Lab.

- Routing Protocol for LLN
- Simple but as efficient as possible
- Based on DAG (Directed Acyclic Graph) rooted at LBR(LLN Border Router)
 - LBR provides the access to the Internet
- DODAGs(Destination Oriented DAG)
 - A network may have several DODAGs each of which is rooted at different LBR

od National University 2022-04-11

Configuration of DODAG

- LBR initiates the construction of its own DODAG
 - Unique DODAG ID
 - Similar to ND(Neighbor Discovery) of IPv6
 - Similar to DV (Distance Vector)
- Control messages for RPL
 - Based on ICMPv6 message
 - DIO (DODAG Information Object)
 - DIS (D. Information Solicitation)
 - DAO (D. Advertisement Object)
- Aims to build an efficient tree rooted at the LBR
 - Efficiency: shortest path
 - Metrics
 - Hop, ETX, Energy, ...

Secul National Universi

22-04-11

15

15

Configuration of DODAG

- RPL uses rank and OF to construct loop free tree
 - Principle: The rank increases strictly as the location of a node deepens
 - When a node selects its parent, consider only candidates whose ranks are smaller than itself
- LBR initiates the flooding of DIO
 - Rank = I (same as distance in DV)
 - OF(Objective Function)
 - Defines how nodes calculate rank
 - Nodes that hear the DIO select the LBR as their parent
 - May use a constraint that ETX should be less than 2
- RPL allows the freedom to use define metrics for rank computation and OFs

Secul National Univers

000 04 4

Configuration of DODAG

SCONE Lab.

Suppose that

- Use hop as the rank and ETX for parent selection
 - Used in TinyOS
 - ETX should be less than 2.0

Nodes 2 and 3 select LBR as their parent Update rank = 2 Node 3 does not select the LBR

Nodes I and 4 select node 2 as their parent
Update rank = 3
Node 3 also receives node 2's DIO
Ignore because its rank(2) is not less than rank(3)
Node 5 receives DIO from node 2 and 3
Select 3 because ETX(3,5) < ETX(2,5) → Some inefficiency

Seoul National Univer

022-04-1

17

17

Configuration of DODAG

SCONE Lab.

Nodes 4 receives DIO from node I Ignore because rank(I) = rank(4)

• Some problems

Routing

SCONE Lab.

- RPL supports
 - MP2P, P2MP and P2P
- At least each node knows its parent
- Two modes of node
 - Storing node: Know children
 - Non-storing node
- Routing information creation
 - Nodes generates DAO message periodically toward the root
 - A storing node unicast DAO to the selected parent
 - In DAO, IDs of node itself and its children are written
 - A non-storing node unicast DAO to the DODAG root
 - Upon receiving a DAO from its children,
 - A storing parent records the IDs of the children
 - A non-storing parent write its ID on the DAO and forwards the DAO upward to the root

Soul National University 2022-04-11

19

SCONE Routing Lab. Record k,j,i as children LBR MP2P: Nodes to LBR DAO(k,j,i) unicast from k to LBR Moves to parent non-storing nodes DAO(k,j) unicast from k to LBR P2MP: LBR to nodes DAO(k) unicast from k to LBR Source routing via storing nodes Source routing to k and then source routing to m "Any two pancakes taste similar." P2P: Node to node Move upward until the first common storing parent Then move downward Record j,k as children DAO(j,k) unicast from j to i

 Seed National University
 2022-04-11
 21