Конспект по теории пределов

1 Предел последовательности

1.1 Определение предела по Гейне

Пусть $\{a_n\}$ — последовательность. Говорят, что $\lim_{n\to\infty}a_n=A$, если для любого $\epsilon>0$ существует такое N, что для всех n>N выполнено:

$$|a_n - A| < \epsilon$$
.

Это классическое определение предела последовательности.

1.2 Определение точки суждения числового множества

Точка a называется точкой суждения множества X, если для любого $\epsilon>0$ найдётся точка $x\in X$, такая что $0<|x-a|<\epsilon$. Иначе говоря, в любой окрестности точки a существует хотя бы одна точка множества X, отличная от самой a.

Примечание: В некоторых задачах a может не принадлежать множеству X, однако множество все равно может иметь точки, стремящиеся к a.

1.3 Критерий Коши для последовательностей

Последовательность $\{a_n\}$ называется сходящейся, если для любого $\epsilon>0$ существует N, что для всех m,n>N выполняется:

$$|a_n - a_m| < \epsilon.$$

Этот критерий используется для проверки сходимости последовательностей без явного нахождения их предела.

2 Предел функции

2.1 Определение предела функции

Функция f(x) имеет предел L в точке a, если для любого $\epsilon>0$ существует $\delta>0$, что для всех x, таких что $0<|x-a|<\delta$, выполнено:

$$|f(x) - L| < \epsilon$$
.

2.2 Критерий Коши для предела функции

Функция f(x) имеет предел в точке a, если для любого $\epsilon > 0$ существует $\delta > 0$, что для всех x_1 и x_2 , таких что $0 < |x_1 - a|, |x_2 - a| < \delta$, выполнено:

$$|f(x_1) - f(x_2)| < \epsilon.$$

3 Замечательные пределы

3.1 Первый замечательный предел

Один из ключевых пределов:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Этот предел часто используется в задачах на доказательство пределов, связанных с тригонометрическими функциями.

Доказательство: Применяя ряд Тейлора для $\sin x$:

$$\sin x = x - \frac{x^3}{3!} + \dots$$

При $x \to 0$ старшие члены ряда становятся малыми, и можно записать:

$$\frac{\sin x}{x} \approx 1.$$

3.2 Второй замечательный предел

Другой важный предел:

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e.$$

Этот предел связан с определением числа e.

Доказательство: Используем разложение логарифма и применяем предел:

$$\ln\left(1+\frac{1}{x}\right) \approx \frac{1}{x},$$

что при возведении в степень даёт предел e.

4 Бесконечно малые и бесконечно большие функции

4.1 Определение бесконечно малой функции

Функция f(x) называется бесконечно малой при $x \to a$, если

$$\lim_{x \to a} f(x) = 0.$$

Пример: $f(x) = \frac{1}{x}$ при $x \to \infty$ является бесконечно малой функцией.

4.2 Классификация бесконечно малых функций

Бесконечно малые функции можно разделить по порядку малости. Например: - f(x) — бесконечно малая первого порядка, если f(x) = O(x) при $x \to 0$. - Функция более высокого порядка малости, например $f(x) = O(x^2)$, убывает быстрее при стремлении $x \to 0$.

4.3 Определение бесконечно большой функции

Функция f(x) называется бесконечно большой при $x \to a$, если

$$\lim_{x \to a} f(x) = \infty.$$

Пример: $f(x)=x^2$ при $x\to\infty$ является бесконечно большой функцией.

4.4 Классификация бесконечно больших функций

Аналогично бесконечно малым, бесконечно большие функции можно классифицировать по порядку роста: - Функция f(x) называется бесконечно большой первого порядка, если она растёт как O(x) при $x \to \infty$. - Например, $f(x) = x^2$ растёт быстрее, чем f(x) = x, и является бесконечно большой функции более высокого порядка.

4.5 Теоремы о бесконечно малых и больших функциях

- Если f(x) — бесконечно малая функция, то для любой функции g(x), стремящейся к нулю, выполнено:

$$f(x) = o(g(x)).$$

- Для бесконечно больших функций: если f(x) и g(x) — бесконечно большие функции, то:

$$f(x) = O(g(x))$$
 при $x \to a$.