Уравнение колебаний №1

Задачи из mathus

Уравнение гармонических колебаний

$$\ddot{x} + \omega^2 x = 0$$

можно получить из второго закона Ньютона $ma_x = F_x$.

1 Задача

Однородный цилиндрический поплавок массой m и площадью сечения S плавает вертикально в стакане с водой. Поплавок слегка утопили, а затем отпустили, в результате чего поплавок начал колебаться. Найдите период этих колебаний. Плотность воды ρ , ускорение свободного падения g.

Решение:

Пусть y — координата центра масс поплавка по оси 0y, направленной вертикально вверх. За 0 возьмём координату центра масс поплавка, когда он находится в равновесии (сила тяжести равна силе Архимеда). Пусть в этом случае объём погруженной в воду части поплавка V_0 . В общем случае объём погруженной части поплавка $V = V_0 - Sy$. Запишем для поплавка второй закон Ньютона:

$$ma_y = -mg + \rho gV = (-mg + \rho gV_0) - \rho gSy = -\rho gSy$$

Это уравнение можно преобразовать к виду:

$$a_y = -\omega^2 y$$

где введено обозначение $\omega = \sqrt{\frac{\rho gs}{m}}$. Мы получили уравнение гармонических колебаний с периодом

 $T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{\rho g s}} \ .$

2 Задача

Найдите период малых колебаний жидкости в U-образной трубке постоянного сечения. Длина части сосуда, занятой жидкостью, равна l.

Решение:

За начало отсчета выбираем уровень жидкости в состоянии равновесия и будем следить, для определенности, за уровнем поверхности жидкости в левом колене сосуда в процессе колебаний. Применим энергетический подход, выбирая в качестве нулевого уровня потенциальной энергии равновесное положение ясидкости. Запишем полную механическую энергию системы (жидкости в сосуде):

1

где $E_K = \frac{mv^2}{2}$ (полагаем, что модуль скорости жидкости одинаков во всех частях сосуда), а чтобы подсчитать потенциальную энергию E_{Π} , заметим, что состояние жидкости на рисунке отличается от равновесного перемещением объема Sx из правого колена сосуда в левый, находим:

$$E_{\Pi} = Sx\rho g \cdot x = S\rho x^2 g. \tag{2}$$

Учитывая, что $Sl \cdot \rho = m$ (3) из (1) и (2) находим:

$$v^2 + \frac{2g}{l}x^2 = \frac{2E}{S\rho} = const, (4)$$

то есть имеем уравнение стандартного вида при $\frac{2g}{l} = \omega^2$. Таким образом,

$$T=2\pi\sqrt{\frac{l}{2g}}$$

3 Задача

В U-образную трубку с открытыми концами налили ртуть, после чего один из концов трубки запаяли (рис.). Затем ртуть вывели из состояния равновесия, в результате чего возникли малые колебания ртути в трубке. Найдите период этих колебаний, если известно, что масса ртути m=367 г, её плотность $\rho=13.6\cdot 10^3$ кг/м³, площадь поперечного сечения трубки S=1 см², а высота столба воздуха в запаянном конце трубки равна l=1 м. Внешнее атмосферное давление $p_0=10^5$ Па. Процесс считать изотермическим.

Решение:

При смещении уровня ртути в каждом колене (см. рис) на расстояние Deltax из-за разности гидростатических давлений возникает сила, равная

$$F = 2\rho g S \Delta x$$

Воздух в левом колене сжимается, объем воздуха при этом становится равным $(l-\Delta x)S$. По закону Бойля-Мариотта

$$p_0 l = (p_0 + \Delta p) (l - \Delta x) = p_0 l - p_0 \Delta x + \Delta p l - \Delta p \Delta x.$$

Так как колебания малые, слагаемым $\Delta p \Delta x$ можно пренебречь. Отсюда

$$\Delta x$$

$$\Delta p = \frac{\Delta x}{l} p_0,$$

а сила, действующая со стороны воздуха $F_2=(\Delta x/l)p_0S$. Уравнение движения ртути имеет вид:

$$ma + S\left(2\rho g + \frac{p_0}{l}\right)\Delta x = 0.$$

Уравнение совпадает с уравнением движения груза на пружинке с эффективной «жесткостью».

$$k = \left(2\rho g + \frac{p_0}{l}\right)S.$$

Тогда по аналогии

$$T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{m}{(2\rho g + \frac{p_0}{l}) S}} \approx 0,63 \text{ c.}$$

5 Задача

Найдите собственную частоту ω_0 и максимально возможную амплитуду $_m$ гармонических колебаний системы, изображённой на рисунке. Масса груза равна m. Блоки, пружины и нити невесомы, нити нерастяжимы, трения в осях блоков нет. Длины всех вертикальных участков нитей настолько велики, что не их длинами определяется максимальная амплитуда гармонических колебаний.

Решение:

Пусть натяжение нижней нити равно T, тогда натяжение верхней равно 2T, а сила упругости верхней пружины равна 4T. Тогда деформация верхней пружины равна $\frac{4T}{k}$, деформация левой пружины $\frac{2T}{2k}=\frac{T}{k}$. Значит, нижний блок опустится на

$$\left(\frac{4T}{k} + \frac{4T}{k} + \frac{T}{k}\right) = \frac{9T}{k}.$$

Деформация правой пружины равна $\frac{T}{k}$. Положение равновесия груза расположено ниже положения, при котором все пружины недеформированы,

$$\left(\frac{9T}{k} + \frac{9T}{k} + \frac{T}{k}\right) = \frac{19T}{k}.$$

Следовательно,

$$A_{\max} = \frac{19T}{k} = \frac{19mg}{k}.$$

Собственная частота гармонических колебаний системы равна

$$\omega_0 = \sqrt{\frac{k_{\text{\tiny SKB}}}{m}} = \sqrt{\frac{k}{19m}}.$$

6 Задача

Гладкий стержень длины L и массы M находится в невесомости. На стержень надета маленькая бусинка, масса которой гораздо меньше массы стержня. Определите период малых колебаний бусинки вблизи центра стержня. Гравитационная постоянная равна G.

Решение:

Когда бусинка отклонена от положения равновесия на малое расстояние x, то в силу симметрии со стороны «белой» части стержня не действует сил (см. рисунок), а со стороны кусочка длиной 2x действует сила, равная $G\frac{m\left(\frac{2x}{L}M\right)}{\left(\frac{L}{2}\right)^2}$, где m — масса бусинки. Запишем 2-й закон Ньютона для бусинки:

$$m\ddot{x} = -G\frac{m\left(\frac{2x}{L}M\right)}{\left(\frac{L}{2}\right)^2} \Rightarrow \ddot{x} + \left(G\frac{8M}{L^3}\right)x = 0,$$

откуда получаем

$$T = 2\pi \sqrt{\frac{L^3}{8GM}} = \pi \sqrt{\frac{L^3}{2GM}}.$$

7 Задача

Два груза массами m_1 и m_2 , соединённые пружиной жёсткостью k, находятся на гладкой горизонтальной поверхности. Найдите период малых колебаний этой системы.

Решение:

При растяжении или сжатии пружины на тела действуют упругие силы \vec{F}_1 и \vec{F}_2 , равные по модулю (см. рис.)

Эти силы сообщают телам ускорения \vec{a}_1 и \vec{a}_2 Модули этих ускорений обратно пропорциональны массам тел. В таком же отношении находятся модули скоростей тел и их смещений из положения

равновесия. Отсюда следует, что неподвижная точка на пружине (точка C) делит пружину в отношении

$$\frac{l_1}{l_2} = \frac{m_2}{m_1}$$

Жесткости каждой части пружины равны

$$k_1 = k \frac{l_1 + l_2}{l_1} = k \left(1 + \frac{m_1}{m_2} \right),$$

 $k_2 = k \frac{l_1 + l_2}{l_2} = k \left(1 + \frac{m_2}{m_1} \right).$

Период колебаний системы можно определить, применив формулу для периода колебаний пружинного маятника к любому из двух тел:

$$T=2\pi\sqrt{rac{m_1}{k_1}}=2\pi\sqrt{rac{m_1m_2}{k\left(m_1+m_2
ight)}}$$
 или $T=2\pi\sqrt{rac{m_2}{k_2}}=2\pi\sqrt{rac{m_1m_2}{k\left(m_1+m_2
ight)}}.$

Подстановка числовых значений в формулу для периода колебаний дает:

$$T = 1,57c.$$

8 Задача

В глубинах вселенной вдали от всех тяготеющих масс находится тонкий однородный стержень длины L=10 м и массой M=1,0 кг. По нему без трения может скользить бусинка массой m=0,1 кг. В начальный момент бусинка слегка смещена относительно центра стержня и система неподвижна. Через какое время τ бусинка впервые достигнет середины стержня? Гравитационная постоянная $G=6,67\cdot 10^{-11}~{\rm H\cdot M^2/K\Gamma^2}$

Решение:

В процессе колебаний центр масс системы тел будет оставаться неподвижным. Начало лабораторной системы отсчета OX поместим в центр масс. Подвижную систему отсчета OX_1 свяжем со спицей. В ЛСО ускорение бусинки при малом ее смещении x_1 относительно спицы определяется силой притяжения концевого отрезка спицы длиной $2x_1$ и расположенного на расстоянии $\approx L/2$ от бусинки:

$$a_{m,C} = \frac{F_x}{m} = -\frac{Gm(M/L)2x_1}{m(L/2)^2} = -\frac{8GM}{L^3}x_1.$$

Ускорение стержня при этом смещении бусинки

$$a_{M,C} = -\frac{F_x}{M} = \frac{Gm(M/L)2x_1}{M(L/2)^2} = \frac{8Gm}{L^3}x_1.$$

Тогда ускорение a_m бусинки относительно стержня будет равно

$$a_m = a_{m,C} - a_{M,C} = -\frac{8G(M+m)}{L^3}x_1.$$

Получено уравнение гармонических колебаний бусинки относительно спицы. Период этих колебаний

$$T = 2\pi/\omega = \pi L \sqrt{\frac{L}{2G(M+m)}}.$$

Искомое время равно четверти периода гармонических колебаний

$$\tau = T/4 \approx 2, 0 \cdot 10^6 \text{c} \approx 24 \text{ суток}$$
.

9 Задача

Бусинка с положительным зарядом q может двигаться без трения по натянутой нити длины 2L, на концах которой закреплены положительные заряды Q. Найдите период малых колебаний бусинки, если её масса равна m.

Решение:

1. Потенциальная энергия системы зарядов при нахождении бусинки в центре нити:

$$U_1 = \frac{1}{4\pi\varepsilon_0} \frac{2qQ}{L};$$

2. Потенциальная энергия при смещении бусинки на расстояние х вправо

$$U_2 = \frac{1}{4\pi\varepsilon_0} \left(\frac{qQ}{L+x} + \frac{qQ}{L-x} \right)$$

3. Изменение потенциальной энергии при сдвигании бусинки

$$\Delta U = U_2 - U_1 = \frac{1}{4\pi\varepsilon_0} \left(\frac{qQ}{L+x} + \frac{qQ}{L-x} - \frac{2qQ}{L} \right)$$

4. Упростим уравнение для ΔU , приведя скобку к общему знаменателю:

$$\Delta U = \frac{qQ}{4\pi\varepsilon_0} \left(\frac{L^2 - Lx + L^2 + Lx - 2L^2 + 2x^2}{L(L^2 - x^2)} \right); \qquad L \gg x$$
$$\Delta U \approx \frac{qQ}{2\pi\varepsilon_0 L^3} x^2$$

5. В рассматриваемой колебательной системе возвращающей силой является сила электростатического взаимодействия зарядов, при этом квазиупругий коэффициент системы определяется следующим образом:

$$\Delta U \approx \frac{qQ}{2\pi\varepsilon_0 L^3} x^2 \approx \frac{kx^2}{2}; \qquad \Rightarrow \qquad k^* = \frac{qQ}{\pi\varepsilon_0 L^3}$$

6. Циклическая частота собственных колебаний:

$$\omega = \sqrt{\frac{k^*}{m}} = \sqrt{\frac{qQ}{\pi \varepsilon_0 \ mL^3}};$$

Отсюда и период T равен

$$T = \frac{2\pi}{\omega} = \sqrt{\frac{\pi \varepsilon_0 \text{mL}^3}{\text{qQ}}}.$$

10 Задача

Два маленьких шарика с зарядами +q каждый надеты на непроводящий вертикальный стержень. Нижний шарик закреплён, а верхний может свободно скользить по стержню. Расстояние между шариками в положении равновесия равно L. Найдите период малых колебаний верхнего шарика. Трением пренебречь. Ускорение свободного падения q.

Решение:

В положении равновесия

$$mg - \frac{kq^2}{L^2} = 0.$$

При движении верхнего шарика вдоль вертикальной оси

$$ma_x = k \frac{q^2}{(L+x)^2} - mg$$

(ось x направлена вдоль стержня вверх, и начало отсчета совмещено с положением равновесия), и с учетом первого уравнения

$$\frac{kq^2}{qL^2}a_x = \frac{kq^2}{(L+x)^2} - \frac{kq^2}{L^2} \Rightarrow a_x = -g\frac{x(2L+x)}{(L+x)^2}.$$

Т.к. колебания малые, то x << L, и $a_x \approx -\frac{2g}{L}x$. Частота колебаний в этом случае равна

$$\omega = \sqrt{\frac{2g}{L}},$$

а период колебаний

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{L}{2g}}.$$

Ответ:

$$T = \pi \sqrt{\frac{2L}{g}}.$$

12 Задача

Определите время полёта камня от одного полюса Земли до другого по прямому тоннелю, прорытому через центр. Плотность Земли считать постоянной. Радиус Земли принять равным $R=6400~\mathrm{km}$.

Решение:

Камень, или иной, обладающий массой предмет, опущенный в такую шахту, будет совершать колебательное движение, потому что на поверхности планеты сила тяжести будет максимальной, а в центре Земли — сведётся к минимуму. По мере опускания камня в тоннеле будет уменьшаться масса, участвующая в гравитационном взаимодействию. Камень в шахте испытывает притяжение только тех слоёв планеты, которые располагаются ниже его положения. Масса шара

$$M = \frac{4}{3}\pi R^3 \rho$$

пропорциональна R^3 , поэтому:

$$\frac{M_r}{M_R} = \frac{r^3}{R^3}$$

2. Из закона гравитации для силы, действующей со стороны нижних слоёв Земли (r > R), следует:

$$F = \frac{GM_rm}{r^2} = \frac{GM_Rm}{R^3}r; \quad \frac{GM_R}{R^2} = g_R; \Rightarrow F = mg\frac{r}{R}$$

3. Возвращающей силой в данном случае будет изменяющаяся периодически сила тяжести. Квазиупругий коэффициент определится как:

$$F = k^*r; \Rightarrow k^* = \frac{mg}{R}, \left\lceil \frac{H}{M} \right\rceil$$

4. Период колебаний камня от полюса к полюсу:

$$T=2\pi\sqrt{rac{m}{k^*}}=2\pi\sqrt{rac{R}{g}}pprox 6.28\sqrt{rac{6.4-10^6}{10}}pprox 84$$
 мин;

5. Время полёта камня от полюса до полюса:

$$au=rac{T}{2}=42$$
 мин

13 Задача

В модели атома Томсона предполагалось, что положительный заряд q, равный по модулю заряду электрона, равномерно распределён внутри шара радиуса R. Чему будет равен период колебаний (внутри шара вдоль диаметра) электрона, помещённого в такой шар? Масса электрона m.

Решение:

При смещении электрона на расстояние r от центра атома на него действует сила

$$F = E(r) \cdot q = \frac{qr}{4\pi\varepsilon_0 R^3} \cdot q.$$

Уравнение движения электрона:

$$m\ddot{r} + \frac{q^2r}{4\pi\varepsilon_0 R^3} = 0 \qquad \Rightarrow$$

$$\Rightarrow T = \pi\sqrt{\frac{4\pi\varepsilon_0 R^3m}{q^2}} = \frac{4\pi R}{q}\sqrt{\pi\varepsilon_0 Rm}$$

14 Задача (аналогичная)

Предположим, что между Калининградской и Московской областями прорыт прямолинейный железнодорожный тоннель, длиной $L=1000\,$ км. Вагон ставят на рельсы в начале тоннеля в Московской области и отпускают без начальной скорости.

- 1) Через какое время вагон достигнет Калининградской области?
- 2) Найдите максимальную скорость вагона. Землю считать шаром радиусом R=6400 км с одинаковой плотностью по всему объему. Вращение Земли, сопротивление воздуха и все виды трения при движении не учитывать.

Решение:

Пусть тело массой m движется по тоннелю в виде хорды KL, изображенному на рис. В некоторый момент времени это тело имеет координату x. В этот момент со стороны Земли на него действует сила тяжести, равная

$$F = \frac{GmM \cdot 4\pi r^3/3}{r^2 \cdot 4\pi R^3/3} = \frac{GmMr}{R^3},$$

где M — масса Земли, а r — радиус окружности, проходящей через тело массой. Проекция этой силы на ось х равна $F_x = -F\cos\alpha = -F\frac{x}{r} = -\frac{GmMx}{R^3} = -mg\frac{x}{R}$, где g — ускорение свободного падения на поверхности Земли. Теперь мы можем записать уравнение движения нашего тела:

 $m\ddot{x} = -mg\frac{x}{R},$

или

$$\ddot{x} + \frac{g}{R}x = 0.$$

Это уравнение описывает гармонические колебания с циклической частотой $\omega = \sqrt{g/R}$. Следовательно, наш вагон достигнет Калининградской области через время, равное половине периода колебаний $(T=2\pi/\omega)$:

$$au = \pi \sqrt{rac{R}{g}} pprox 42$$
 мин.

Для ответа на второй вопрос будем искать решение уравнения гармонических колебаний в виде $x(t) = A \sin \omega t + B \cos \omega t$ где A и B - константы. Используя начальные условия: x(0) = L/2 и $\dot{x}(0) = 0$, найдем: B = L/2 и A = 0. Окончательно получим

$$x(t) = \frac{L}{2}\cos\omega t$$

Скорость вагона будет изменяться со временем по закону

$$v(t) = \dot{x}(t) = -\frac{L\omega}{2}\sin\omega t$$

Отсюда находим абсолютную величину максимальной скорости вагона:

$$v_m = \frac{L\omega}{2} = \frac{L}{2}\sqrt{\frac{g}{R}} \approx 600 \text{M/c}.$$

Заметим, что максимальную скорость v_m можно найти сразу, воспользовавшись связью при гармонических колебаниях между v_m и амплитудой колебаний, равной L/2: $v_m = \omega \frac{L}{2}$.

15 Задача

На тележке укреплен математический маятник длины l. Тележку отпускают в туннель, прокопанный внутри Земли по такой хорде, что минимальное расстояние от центра Земли до туннеля равно половине радиуса Земли $d=\frac{R}{2}(R)$ радиус Земли; см. рисунок). Сколько колебаний совершит маятник за то время, когда тележка пройдет весь туннель. Радиус и масса Земли R и ускорение свободного падения на поверхности Земли известны. Плоскость колебаний маятника совпадает с направлением движения тележки.

Решение:

Пусть туннель «опирается» на угол 2α (см. рисунок). Как известно, на тело массой m, находящееся внутри Земли на расстоянии r от ее центра, действует направленная к центру Земли сила тяжести

$$F_m = \frac{mgr}{R}$$

где mg — сила тяжести, действующая на тело на поверхности Земли, R — радиус Земли. Применяя второй закон Ньютона к тележке,

найдем, что ее ускорение a_m направлено вдоль туннеля и равно по величине

$$a_m = \frac{F_{m,x}}{m} = \frac{gr_x}{R} \tag{1}$$

где F_x — проекция силы тяжести на ось OX, направленную вдоль туннеля (см. рисунок), m — масса тележки. Поскольку $r_x = x$, из уравнения (1) следует, что ускорение тележки пропорционально расстоянию от нее до точки O (ближайшей к центру точки туннеля); это значит, что тележка (вместе с маятником на ней) будет совершать гармонические колебания относительно точки O с периодом

$$T = 2\pi \sqrt{\frac{R}{g}} \tag{2}$$

Следовательно, до противоположной точки туннеля тележка доедет за половину периода (2)

$$t = \pi \sqrt{\frac{R}{g}} \tag{3}$$

(причем независимо от того, на какой угол «опирается» туннель). Второй закон Ньютона для маятника имеет вид

$$m_0 \cdot \vec{a}_{\scriptscriptstyle \rm M} = \vec{F}_m + \vec{T}$$

где m_0 — масса маятника, \vec{a}_m — его ускорение в инерциальной системе отсчета (например, относительно Земли), \vec{T} — сила натяжения нити. Но поскольку маятник колеблется на тележке, которая движется с ускорением, нам нужно найти его ускорение относительно тележки $\vec{a}_{\text{м.о.т.}}$ Используя далее, закон, аналогичный закону сложения скоростей (но для ускорений) $\vec{a}_{\text{м}} = \vec{a}_{\text{м.о.т.}} + \vec{a}_{m}$, получим

$$m_0 \vec{a}_{\text{M.O.T.}} = \vec{F}_m + \vec{T} - m_0 \vec{a}_m$$
 (4)

(для знакомых с понятием сил инерции отметим, что уравнение (4) является вторым законом Ньютона в неинерциальной системе отсчета, связанной с тележкой, а $-m_0\vec{a}_m$ и есть действующая на маятник сила инерции). Но с учетом (1) величина $m_0\vec{a}_m$ есть проекция действующей на маятник силы тяжести на ось x, поэтому вектор $\vec{F}_m - m_0\vec{a}_m$ направлен перпендикулярно туннелю, а его величина равна проекции силы тяжести на ось OY, перпендикулярную туннелю. Поэтому модуль этого вектора равен

$$\left|\vec{F}_m - m_0 \vec{a}_m\right| = \frac{m_0 g r_y}{R} = \frac{m_0 g O C}{R} = m_0 g \cos \alpha \tag{5}$$

и не меняется в процессе движения тележки по туннелю (см. рисунок). Из уравнений (4)—(5) следует, что уравнение для ускорения маятника относительно тележки совпадает с уравнением для ускорения математического маятника, но в качестве «силы тяжести» в нем фигурирует постоянная сила $m_0 g \cos \alpha$. А это значит, что маятник будет совершать колебания с периодом

$$T_m = 2\pi \sqrt{\frac{l}{g\cos\alpha}}$$

Поэтому за время t (3) маятник совершит следующее количество колебаний

$$N = \frac{t}{T} = \frac{1}{2} \sqrt{\frac{R \cos \alpha}{l}} = \frac{1}{2} \sqrt{\frac{d}{l}} = \frac{1}{2} \sqrt{\frac{R}{2l}}$$

17 Задача

Два лёгких блока соединены нерастяжимой лёгкой нитью (рис.). На краю нижнего блока радиуса R закреплена точечная масса M, соединенная с нитью. К другому концу нити прикреплён груз m, причем M>m.

Найдите период T малых колебаний системы около положения равновесия.

Угол α_0 , соответствующий положению равновесия, определяется из уравнения:

$$Mg\sin\alpha_0 = mg \tag{8}$$

По второму закону Ньютона для груза m (рис.):

$$ma = mg - T. (9)$$

По второму закону Ньютона для точечной массы M в проекции на ось Ox :

$$Ma = T - Mq\sin\alpha. \tag{10}$$

Так как нить нерастяжимая, то значения ускорений точечной массы M и груза m совпадают. Исключая T из уравнений (9) и (10), получим:

$$(M+m)a = mg - Mg\sin\alpha. \tag{11}$$

$$a = R\ddot{\alpha}$$
.

Угол α представим в виде:

$$\alpha = \alpha_0 + \beta, \quad \beta \ll 1,$$

Тогда

$$\sin \alpha = \sin \alpha_0 \cos \beta + \sin \beta \cos \alpha_0 \approx \sin \alpha_0 + \cos \alpha_0 \cdot \beta. \tag{12}$$

Подставляя (12) в (11), получим:

$$(M+m)R\ddot{\alpha} = -Mg\cos\alpha_0 \cdot \beta.$$

Учитывая, что $\ddot{\alpha} = \ddot{\beta}$, получаем уравнение гармоническх колебаний:

$$\ddot{\beta} + \omega^2 \beta = 0,$$

где $\omega=\sqrt{\frac{Mg\cos\alpha_0}{(M+m)R}}$. Выразим $\cos\alpha_0$ из (8). Окончательно получаем:

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{R}{g}} \cdot \left(\frac{M+m}{M-m}\right)^{\frac{1}{4}}.$$

18 Задача (критерии)

Критерии для задачи из МОШ

19 Задача

Паук сплёл паутинку в виде правильного шестиугольника со стороной l=45 см (рис.) и закрепил крайние точки радиальных нитей радиусом r=0,01 мм так, что сила их натяжения оказалась равна $F_0=6$ мН. Считайте деформации паутины упругими, а её модуль Юнга $E=2\cdot 10^8$ Па. При относительном удлинении, превышающем $\varepsilon_{\rm max}=0,2$, нить паутины рвётся.

- 1) Найдите максимальную массу M мухи, которая, попав в паутину, не порвёт её, если скорость мухи $v=2~\mathrm{m/c}$. Считайте, что муха попадает в центр паутины перпендикулярно её плоскости.
- 2) В центр паутины попалась муха массой m=0.1 г. Найдите период T малых колебаний мухи вдоль перпендикуляра к плоскости паутины. Попав в паутину, махать крыльями муха не может.

Решение:

При попадании мухи в центр паутины перпендикулярно её плоскости будут растягиваться только радиальные нити. Из закона Гука находим их начальное относительное удлинение

$$\varepsilon_0 = \frac{F_0}{ES},$$

где $S=\pi r^2$ — площадь поперечного сечения нити паутины. Максимальную массу M мухи найдём из условия, что муха остановилась, когда натяжение паутины достигло предельного значения. Энергия упругой деформации 6 радиальных нитей при относительном удлинении ε имеет вид:

$$W = 6 \cdot \frac{E\varepsilon^2}{2} \cdot Sl$$

Напомним попутно, что $E\varepsilon^2/2$ имеет смысл плотности энергии деформации. Из закона сохранения энергии

$$\frac{Mv^2}{2} + 6 \cdot \frac{E\varepsilon_0^2}{2} \cdot Sl = 6 \cdot \frac{Ee_{\text{max}}^2}{2} \cdot Sl$$

получим

$$M = \frac{6ESl}{v^2} \left(\varepsilon_{\rm max}^2 - \varepsilon_0^2 \right) = \frac{6\pi r^2 lE}{v^2} \left(\varepsilon_{\rm max}^2 - \frac{F_0^2}{\pi^2 r^4 E^2} \right) \approx 1.3 \ {\rm \Gamma}.$$

При малых колебаниях можно пренебречь возникающим переменным удлинением радиальных нитей по сравнению с начальным ε_0 , так как по теореме Пифагора это удлинение будет порядка второй степени малого смещения x мухи (перпендикулярного плоскости паутины). Возвращающая сила F создаётся проекциями 6 радиальных сил F_0 на направление колебаний:

$$F \approx -6 \cdot F_0 \cdot \frac{x}{\sqrt{l^2 + x^2}} \approx -\frac{6F_0}{l} \cdot x.$$

Таким образом, эффективная жёсткость $k = 6F_0/l$. а период колебаний

$$T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{ml}{6F_0}} \approx 0.22c$$

20 Задача

На пружинке жёсткости k висит груз (рис.). К грузу прикреплена горизонтально расположенная медная рейка AB длины l. Рейка может скользить без трения по неподвижным вертикальным проводящим рельсам AK и BP, имея с ними хороший электрический контакт. К рельсам с помощью проводов подсоединён конденсатор ёмкости C. Система находится в однородном магнитном поле, вектор индукции \vec{B} которого перпендикулярен рейке и рельсам. Найдите период вертикальных колебаний груза. Масса груза с рейкой равна m. Сопротивление рейки, рельсов и проводов можно не учитывать.

Решение:

Направим ось вниз, поместив начало координат в точку, соответствующую равновесному положению груза и выведем груз с жёстко связанной с ним рейкой из положения равновесия. Пусть в некоторый момент времени груз имеет координату . Тогда уравнение движения груза можно записать в следующем виде:

$$m\ddot{x} = -BIL - k(x + l_0) + mg, (1)$$

где l_0 — удлинение пружины в положении равновесия, причём

$$kl_0 = mg, (2)$$

I - ток в цепи, состоящей из медной рейки AB, рельсов и конденсатора, который возникает вследствие того, что при движении рейки AB в магнитном поле на её концах возникает разность потенциалов U=BLv, где $v=\dot{x}-$ скорость движения груза. Поскольку конденсатор подключен параллельно рейке, напряжение на конденсаторе, равное $U_C=q/C$, равно напряжению на рейке:

$$\frac{q}{C} = BL\dot{x}.$$

Продиффреренцировав по времени полученное выражение и учтя, что $\dot{q} = I$, получим

$$I = BLX\ddot{x}$$
. (3)

После подстановки в уравнение (1) соотношений (2) и (3), получаем уравнение гармонических колебаний

$$\ddot{x} + \frac{k}{m + B^2 L^2 C} x = 0$$

и период колебаний $T = 2\pi \sqrt{\frac{m + B^2 L^2 C}{k}}$.

21 Задача

Определите период колебаний однородного бруска, подвешенного на двух пружинах, жёсткости которых равны k_1 и k_2 соответственно $(k_1 > k_2)$. Пружины связаны нерастяжимой нитью, перекинутой через невесомый блок (рис.). Масса бруска равна M. При колебаниях брусок все время остаётся горизонтальным.

Решение:

Пусть x — смещение бруска вниз для произвольного момента времени, y — смещение верхнего конца пружин. Удлинение левой пружины $\Delta x_1 = x - y$, удлинение правой пружины $\Delta x_2 = x + y$ (рис. 149).Из условия малости масс блока и нити следует, что силы упругости обеих пружин одинаковы:

$$k_1(x-y) = k_2(x+y)$$

Отсюда

$$y = \frac{k_1 - k_2}{k_1 + k_2} x.$$

Удлинения левой и правой пружин соответственно равны

$$\Delta x_1 = \frac{2k_2}{k_1 + k_2} x, \Delta x_2 = \frac{2k_1}{k_1 + k_2} x.$$

Уравнение движения бруска:

$$M\ddot{x} = -k_1 \Delta x_1 - k_2 \Delta x_2 = 0,$$

Откуда

$$\ddot{x} + \frac{4k_1k_2}{M(k_1 + k_2)}x = 0.$$

Это уравнение описывает гармонические колебания с периодом

$$T = 2\pi \sqrt{\frac{M(k_1 + k_2)}{4k_1k_2}}.$$

22 Задача

Через короткую трубку выдувают мыльный пузырь массой m=0,01 г и коэффициентом поверхностного натяжения $\sigma=0,01$ Н/м (рис.). Пузырь заряжают зарядом $Q=5,4\cdot 10^{-8}$ Кл. Трубка остаётся открытой.

- 1) Определите равновесный радиус пузыря R_0 .
- 2) Определите период малых колебаний пузыря, если при колебаниях он сохраняет сферическую форму.
- 3) Оцените, с какой скоростью разлетятся брызги, если пузырь внезапно зарядить зарядом $Q_1=10Q$

Электрическая постоянная $\varepsilon_0 = 8,85 \cdot 10^{-12} \text{ K}^2/(\text{Дж·м}).$

Решение:

Найдем давление на пузырь, обусловленное электростатическими силами. Рассмотрим малый элемент ΔS его поверхности. Напряженность E_0 электрического поля, действующего на него, по модулю равна напряженности E_1 поля, создаваемого им самим вблизи его поверхности (это следует, например, из того, что напряженность поля внутри пузыря должна быть равна нулю). Тогда на пузырь действует электрическая сила

$$F_{\mathfrak{s}} = E_0 \Delta Q = E_0 \frac{Q \Delta S}{4\pi R^2}$$
, где $E_0 = E_1 = \frac{1}{2\varepsilon_0} \frac{Q}{4\pi R^2}$.

Таким образом, давление на пузырь, обусловленное электростатическими силами, равно

$$p_{\rm s} = \frac{F_{\rm s}}{\Delta S} = \frac{Q^2}{32\pi^2 \varepsilon_0 R^4}$$

Давление сил поверхностного натяжения составляет

$$p_{\sigma} = -\frac{4\sigma}{R}.$$

Суммарное давление $p = p_9 + p_\sigma$ в равновесном состоянии равно нулю:

$$\frac{Q^2}{32\pi^2\varepsilon_0 R_0^4} - \frac{4\sigma}{R_0} = 0.$$

Следовательно, равновесный радиус пузыря равен

$$R_0 = \sqrt[3]{\frac{Q^2}{128\pi^2 \varepsilon_0 \sigma}} \approx 3,0 \text{ cm}$$

Если радиус пузыря изменился по сравнению с равновесным значением R_0 , то на малый элемент ΔS его поверхности будет действовать сила

$$F = p\Delta S = 4\sigma \left(\frac{R_0^3}{R^4} - \frac{1}{R}\right) \Delta S$$

При малых изменениях радиуса $\Delta R \ll R_0$ выражение для силы принимает вид

$$F = \frac{dp}{dR}\bigg|_{R=R_0} \cdot \Delta R \Delta S = 4\sigma \Delta R \Delta S \left(-\frac{4R_0^3}{R^5} + \frac{1}{R^2} \right) \bigg|_{R=R_0} = -\frac{12\sigma}{R_0^2} \Delta R \Delta S.$$

Знак "минус" означает, что равновесное состояние пузыря устойчиво. Запишем второй закон Ньютона для элемента поверхности ΔS массой Δm :

$$\Delta m \Delta R'' = -rac{12\sigma}{R_0^2} \Delta R \Delta S$$
, где $\Delta m = rac{m \Delta S}{4\pi R_0^2}$

откуда получаем

$$\Delta R'' + 48 \frac{\pi \sigma}{m} \Delta R = 0$$

 \Im то — уравнение свободных колебаний с круговой частотой

$$\omega = \sqrt{\frac{48\pi\sigma}{m}}$$

Таким образом, период колебаний будет равен

$$T = \frac{2\pi}{\omega} = \sqrt{\frac{\pi m}{12\sigma}} \approx 16 \mathrm{Mc}$$

Скорость разлета брызг у можно оценить из закона сохранения энергии. Пренебрегая поверхностной энергией, запишем

$$\frac{1}{2} \frac{Q_1^2}{4\pi\varepsilon_0 R_0} = \frac{mv^2}{2},$$

откуда

$$v = \sqrt{\frac{100Q^2}{4\pi\varepsilon_0 R_0 m}} pprox 94 \; \mathrm{m/c}$$

23 Задача

Тонкую невесомую пружину, растянутую на некоторую величину Δl_1 , закрепили на гладком горизонтальном столе в точках A и B. Отношение периодов малых поперечных (верхний рисунок) и продольных (нижний рисунок) колебаний небольшого грузика, расположенного посередине пружины, равно $n_1=4$. После того как деформацию пружины увеличили на $\Delta x=3,5$ см, отношение периодов стало равно $n_2=3$. Найдите длину нерастянутой

$$A$$
 A
 A
 B

пружины l_0 , а также значение деформации Δl_1 в первом и деформации Δl_2 во втором случаях. Считайте, что пружина в условиях опыта подчиняется закону Гука.

Решение:

Если жёсктость всей пружины длиной l равна k, то период продольных колебаний грузика можно найти по формуле:

 $T_{\parallel}^2 = 4\pi^2 \frac{m}{4k},$

где m — масса грузика. Уравнение движения грузика в поперечном направлении имеет вид:

 $m\varphi''\frac{l}{2} = 2F_{\text{ymp}}\,\varphi = -2k\Delta l\varphi \iff \varphi'' + \frac{4k\Delta l}{ml}\varphi = 0$

Мы получили уравнение гармонических колебаний с циклической частотой $\omega_{\perp}^2 = (4k\Delta l)/(ml),$ их период:

 $T_{\perp}^{2} = 4\pi^{2} \frac{ml}{4k\Delta l} = 4\pi^{2} \frac{m}{4k} \left(1 + \frac{l_{0}}{\Delta l} \right).$

Отношение периодов:

$$\frac{T_\perp^2}{T_\parallel^2}=n^2=1+\frac{l_0}{\Delta l}, \quad \text{откуда} \quad \frac{\Delta l}{l_0}=\frac{1}{n^2-1}.$$

Поскольку $\Delta x = \Delta l_2 - \Delta l_1$:

$$\frac{\Delta x}{l_0} = \frac{1}{n_2^2 - 1} - \frac{1}{n_1^2 - 1} = \frac{n_1^2 - n_2^2}{\left(n_2^2 - 1\right)\left(n_1^2 - 1\right)},$$

откуда

$$l_0 = \frac{(n_2^2 - 1)(n_1^2 - 1)}{n_1^2 - n_2^2} \Delta x = 60 \text{ cm}$$
$$\Delta l_1 = \frac{l_0}{n_1^2 - 1} = 4 \text{ cm}$$
$$\Delta l_2 = \frac{l_0}{n_2^2 - 1} = 7.5 \text{ cm}$$

16 Задача

На тонкой непроводящей нити длиной l подвешен маленький шарик массой m, который заряжен зарядом +q. Слева к шарику прикреплена непроводящая пружинка жесткостью k, расположенная горизонтально. Шарик находится в однородном электрическом поле E, направленном так, как показано на рисунке. В состоянии равновесия нить с шариком висит вертикально. Найти период малых колебаний шарика в плоскости рисунка.

Решение:

Рассмотрим случай, когда шарик находится в покое. Для этого запишем II закон Ньютона для шарика. Направим ось Ox вправо и спроецируем уравнение:

$$0 = \vec{F}_{\text{vmp}} + m\vec{g} + \vec{T}_0 + q\vec{E}$$

$$Ox: \quad 0 = -kx_0 + qE\sin\beta$$
$$kx_0 = qE\sin\beta \tag{0}$$

Теперь подвинем шарик вправо на маленькое расстояние x, и пружина удлинится тоже на x. Теперь у шарика появится ускорение a. Тогда II закон Ньютона для шарика теперь:

$$m\vec{a} = \vec{F}_{ynp}^* + m\vec{g} + \vec{T} + q\vec{E}$$

$$Ox: \quad -ma = -k(x+x_0) - T\sin\varphi + qE\sin\beta \qquad (1)$$

$$Oy: \quad 0 = T\cos\varphi - qE\cos\beta - mg \tag{2}$$

Преобразуем уравнения (1) и (2):

$$ma = -kx - kx_0 - T\sin\varphi + qE\sin\beta$$
$$T = \frac{qE\cos\beta + mg}{\cos\varphi}$$

Используя равенство (0) и два последних уравнения, получаем:

$$ma = m\ddot{x} = -kx - qE\sin\beta - (qE\cos\beta + mg) \cdot \frac{\sin\varphi}{\cos\varphi} + qE\sin\beta$$
$$m\ddot{x} = -kx - (qE\cos\beta + mg) \cdot \operatorname{tg}\varphi$$

Так как $x \ll l$ и tg $\varphi \approx x/l$, то:

$$\ddot{x} = \frac{-kx - (qE\cos\beta + mg) \cdot \frac{x}{l}}{m} =$$

$$= -\left(\frac{k}{m} + \frac{qE\cos\beta}{ml} + \frac{g}{l}\right) \cdot x$$

Уравнение гармонических колебаний:

$$\ddot{x} + \omega^2 x = 0$$

$$-\left(\frac{k}{m} + \frac{qE\cos\beta}{ml} + \frac{g}{l}\right) \cdot x + \omega^2 x = 0$$

Отсюда ω и период T малых колебаний:

$$\omega = \sqrt{\frac{k}{m} + \frac{qE\cos\beta}{ml} + \frac{g}{l}} ,$$

$$T = \frac{2\pi}{\sqrt{\frac{k}{m} + \frac{qE\cos\beta}{ml} + \frac{g}{l}}} .$$

