

2022 IEEE International Conference on Big Data (IEEE BigData 2022)

December 17-20, 2022 @ Osaka, Japan

DPPIN: A Biological Repository of Dynamic Protein-Protein Interaction Network Data

Dongqi Fu (UIUC)

Jingrui He (UIUC)

Presenter: Dongqi Fu

Email: dongqif2@illinois.edu

- Motivation and Overview of DPPIN
- Graph Generation Process in DPPIN
- Resource Statistics in DPPIN
- Experiment
- Conclusion

Motivation

 Nowadays, graph-based research has served for a wide range of real-world applications, such like

Information Retrieval

Fraud Detection

Recommender Systems

 To some extent, dynamic graph representation learning and mining methods are more suitable for real-world scenarios for modeling the evolving graph structures and attributes.

Motivation

- Comparing with the publicly available static network data, the volume of dynamic data is not that sufficient.
- Therefore, in this paper, we provide a dynamic network repository, DPPIN, which consists 12 different dynamic network datasets from the biological domain, and they are
 - Label-adequate (i.e., high label rate of nodes)
 - Dynamics-meaningful (i.e., metabolic patterns of yeast cells)
 - Attribute-sufficient (i.e., accessible node and edge features)

Overview

- Online Repository: https://github.com/DongqiFu/DPPIN
 - Datasets:
 - 12 generated dynamic network datasets, each of which contains
 - Adjacency matrix
 - Node feature, edge weight, node label
 - Code (Python):
 - Generating dynamic networks based on user interests (i.e., specific hyperparameters)
 - Necessary material:
 - Gene expression series

- Motivation and Overview of DPPIN
- Graph Generation Process in DPPIN
- Resource Statistics in DPPIN
- Experiment
- Conclusion

Before Generation

- Collecting static protein interaction data and gene expression
 - Totally, we involve 12 static protein networks from [1] for generating the dynamic ones.
 - The subgraph from 1/12 is illustrated as below.

Fig. A Subgraph Extracted from the Static Protein-Protein Interaction Network of Yeast Cells [2]. Each node stands for a gene coding protein, and the description of each protein node can be extracted from the Saccharomyces Genome Database [3].

Gene expression series: GSE3431 [4]

- [1] YeastNet: https://www.inetbio.org/yeastnet/downloadnetwork.php
- [2] Babu et al., Interaction landscape of membrane-protein complexes in saccharomyces cerevisiae. Nature, 2012
- [3] Saccharomyces Genome Database: https://www.yeastgenome.org/

Generation Process

- The generation process is three-folded, adopted from [5]
 - (1) Determine active proteins $A_{act}^{(t)}$
 - (2) Determine co-expressed protein pairs $m{A}_{coe}^{(t)}$
 - (3) Determine active and co-expressed protein interactions

 $m{A}^{(t)} = m{A}^{(t)}_{act} \odot m{A}^{(t)}_{coe} \odot m{A}$ (weighted adjacency matrix at each timestamp)

Generation Process

- The generation process is three-folded, adopted from [5]
 - (1) Determine active proteins
 - (2) Determine co-expressed protein pairs
 - (3) Determine active and co-expressed protein interactions
- The detailed equations and the pseudo algorithm are illustrated in the paper.
- The generation program is coded by Python and publicly

available.

Node labels are retrieved from [3].

^[3] Saccharomyces Genome Database: https://www.yeastgenome.org/

^[5] Zhang et al., A method for predicting protein complex in dynamic ppi networks. BMC Bioinformatics, 2016.

- Motivation and Overview of DPPIN
- Graph Generation Process in DPPIN
- Resource Statistics in DPPIN
- Experiment
- Conclusion

Datasets Statistics

Statistics of each generated dynamic network dataset in DPPIN

Generated Dynamic PPINs	#Nodes	#Edges	Node Features	Edge Features	Node Label Rate	#Timestamps
DPPIN-Uetz	922	2,159	√	✓	921/922 (99.89%)	36
DPPIN-Ito	2,856	8,638	✓	✓	2854/2856 (99.93%)	36
DPPIN-Ho	1,548	42,220	✓	✓	1547/1548 (99.93%)	36
DPPIN-Gavin	2,541	140,040	✓	✓	2538/2541 (99.88%)	36
DPPIN-Krogan (LCMS)	2,211	85,133	✓	✓	2208/2211 (99.86%)	36
DPPIN-Krogan (MALDI)	2,099	78,297	✓	√	2097/2099 (99.90%)	36
DPPIN-Yu	1,163	3,602	✓	✓	1160/1163 (99.74%)	36
DPPIN-Breitkreutz	869	39,250	✓	√	869/869 (100.00%)	36
DPPIN-Babu	5,003	111,466	√	✓	4997/5003 (99.88%)	36
DPPIN-Lambert	697	6,654	\checkmark	√	697/697 (100.00%)	36
DPPIN-Tarassov	1,053	4,826	√	√	1051/1053 (99.81%)	36
DPPIN-Hazbun	143	1,959	\checkmark	√	143/143 (100.00%)	36

- Motivation and Overview of DPPIN
- Graph Generation Process in DPPIN
- Resource Statistics in DPPIN
- Experiment
- Conclusion

Experiment

- Problem Definition: Dynamic Spectral Clustering
 - Input: (1) a dynamic graph $\tilde{G} = \{G^{(1)}, G^{(2)}, ..., G^{(T)}\}$, and (2) the desired number of disjoint clusters q
 - Output: (2) q disjoint clusters $\{C_1^{(t)}, C_2^{(t)}, ..., C_q^{(t)}\}$ minimizing the normalized cut, and $G^{(t)} = \sum_{i=1}^q C_i^{(t)}$ at each timestamp $t \in \{1, 2, ..., T\}$.

Experiment

- Problem Definition: Dynamic Spectral Clustering (Clique-Preserved)
 - Intuition: Clique patterns are important in indicating protein properties [6], how could we preserve clique patterns during clustering on protein networks?

5-clique

Experiment

- To be best of our knowledge, there is no existing work for dynamic clique-preserving spectral clustering.
- In the paper, we contribute a simple trial by tracking eigendecomposition to realize that goal.

Potential Application

- Research opportunity:
 - MSC achieves the better clustering compactness but consumes a larger amount of time.
 - Although MSC+T outputs the solution in a fast manner, the compactness of clusters is not always ideal.

- Motivation and Overview of DPPIN
- Graph Generation Process in DPPIN
- Resource Statistics in DPPIN
- Experiment
- Conclusion

Conclusion

- DPPIN Repository: https://github.com/DongqiFu/DPPIN
 - 12 dynamic network datasets from the biological domain
 - Graph structures, node labels, node and edge features
- Algorithm:
 - Generation equations and algorithm
 - Generation program by Python

Generated Dynamic PPINs	#Nodes	#Edges	Node Features	Edge Features	Node Label Rate	#Timestamps
DPPIN-Uetz	922	2,159	√	√	921/922 (99.89%)	36
DPPIN-Ito	2,856	8,638	✓	√	2854/2856 (99.93%)	36
DPPIN-Ho	1,548	42,220	√	✓	1547/1548 (99.93%)	36
DPPIN-Gavin	2,541	140,040	√	✓	2538/2541 (99.88%)	36
DPPIN-Krogan (LCMS)	2,211	85,133	✓	✓	2208/2211 (99.86%)	36
DPPIN-Krogan (MALDI)	2,099	78,297	✓	✓	2097/2099 (99.90%)	36
DPPIN-Yu	1,163	3,602	✓	✓	1160/1163 (99.74%)	36
DPPIN-Breitkreutz	869	39,250	√	✓	869/869 (100.00%)	36
DPPIN-Babu	5,003	111,466	✓	✓	4997/5003 (99.88%)	36
DPPIN-Lambert	697	6,654	√	✓	697/697 (100.00%)	36
DPPIN-Tarassov	1,053	4,826	✓	✓	1051/1053 (99.81%)	36
DPPIN-Hazbun	143	1,959	✓	√	143/143 (100.00%)	36

- Evaluation:
 - Link DPPIN with real-world application scenario
 - Provide research opportunities and future improvement directions

2022 IEEE International Conference on Big Data (IEEE BigData 2022)

December 17-20, 2022 @ Osaka, Japan

Thanks!

Dongqi Fu (UIUC)

Jingrui He (UIUC)

Presenter: Dongqi Fu

Email: dongqif2@illinois.edu

