IFT 438: Algorithmique Daniel Lemire, Ph.D.

Exercices 1

- 1. Est-ce que $2^{n+1} \in O(2^n)$?
- 2. Est-ce que $2^{2n} \in O(2^n)$?
- 3. Montrer que $a^{\log_b n} = n^{\log_b a}$.
- 4. En utilisant la formule de Stirling (voir vos notes de cours ou n'importe quel bouquin de formules mathématiques), montrer que $\Theta(\log(n!)) = \Theta(n \log n)$.
- 5. Montrer que $n^2 \in O(n^3)$.
- 6. Montrer que $n^2 \in \Omega(n^3)$? (attention!)
- 7. Montrer que $2^n \in \Theta(2^{n+1})$.
- 8. Montrer que $n! \in \Theta((n+1)!)$.
- 9. Montrer que la notation O est transitive, c'est-à-dire que si $f \in O(g(n))$ et $g \in O(h(n))$ alors $f \in O(h(n))$.
- 10. Est-ce qu'il est possible d'avoir $f \notin O(g(n))$ et $g \notin O(f(n))$? Prouvez votre réponse. 11. Montrer que si $f(n) \in O(n)$ alors $f^2(n) \in O(n^2)$