Support Vector Machine (SVM)

Support Vector Machine (SVM)

Linearly Separable

Which Line?

Support Vectors

Decision Function: Linear SVM

$$\hat{y} = \begin{cases} 0, & \text{if } W^T X + b < 0 \\ 1, & \text{if } W^T X + b \ge 0 \end{cases}$$

Training Objective

• The smaller the weight vector, the larger the margin

• Margin violation. Let $t^{(i)}=-1$ for negative instance (if $y^{(i)}=0$) and $t^{(i)}=1$ for positive instance (if $y^{(i)}=1$)

$$t^{(i)}(W^T X^{(i)} + b) \ge 1$$

Hard Margin Linear Classifier Objective Function

$$\min_{w,b} \frac{1}{2} W^T W$$

$$s.t.t^{(i)}(W^TX^{(i)}+b) \ge 1$$
 for $i = 1,2,...,m$

Sensitivity to Outliers

Soft Margin Classification

Error Variables

 $\xi_i \geq 0$

• For $0 < \xi \le 1$ point is between margin and correct side of hyperplane. This is a Margin Violation.

• For $\xi > 1$ point is Misclassified.

Regularization via Margin

Soft Margin Linear Classifier Objective Function

$$\min_{w,b,\xi} \frac{1}{2} W^T W + C \sum_{i=1}^{m} \xi^{(i)}$$

s.t.
$$t^{(i)}(W^TX^{(i)} + b) \ge 1 - \xi^{(i)}$$
 and $\xi^{(i)} \ge 0$ for $i = 1, 2, ..., m$

C is a regularization parameter:

- Small C allows constraints to be easily ignored -> large margin
- Large C makes constraints hard to ignore -> narrow margin
- C = ∞ enforces all constraints: hard margin

Nonlinear SVM

Adding features to make a dataset linearly separable

$$x_2 = (x_1)^2$$

SVM Kernel

Kernel Method

SVM Kernel

Kernel Method

Linear: $K(a,b) = a^T b$

Polynomial: $K(a,b) = (\gamma a^T b + r)^d$

Gaussian RBF: $K(a,b) = e^{(-\gamma||a-b||^2)}$

Sigmoid: $K(a,b) = \tanh(\gamma a^T b + r)$

SVM Kernel

