EC315 Summary (3):

Topics in Microeconomics With Cross Section Econometrics

Lewis Britton {201724452}

EC315: Topics in Microeconomics With Cross Section Econometrics

Academic Year 2019/2020

Word Count: $\{N/A\}$

EC315: Topics in Microeconomics With Cross Section Econometrics Topic Summary

Topics:

- 1) Exam Summary
- 2) Game Theory (Externalities & Consequences)
- 3) Topics in Public Economics (Government Role & Functions)
- 4) Cross-Section Economics (Theory & Real World)

Cross-Section Econometrics

1: Descriptive Statistics

1.1: Variables

Nume	rical:
	Continuous: infinite possible values (on real line or in an interval)
	<u>Discrete</u> : set value (number of values it can take on are finite (countable))
Catego	orical:
	Ordinal: ordered and means something
	Regular: ordered but means nothing
Relati	onships:
	Correlation ≠ Causation
	Associated: roughly connected
	Independent: not connected
	<u>Dependent</u> : depends on another
1.2: D	ata Collection
	Sample: group you're analysing
	Population: entire group of something
Sampl	ing Bias:
	Non-Responsive: only fraction respond
	Voluntary Response: people feel too strong
	<u>Convenience</u> : more accessible – easier to answer
Explai	natory & Response Variables:
	Observations: rather than asking questions
	Experiment: man-made situations

1.3: E	xamining Data			
	Scatterplot: allows to identify relationship (e.g. Linear, Pos/Neg)			
	\circ x-axis: explanatory variable			
	 y-axis: response variable 			
	Dot Plot: shows volume at ends of sample scale			
	Return Distribution Moments:			
	○ 1: Mean			
	o 2: Variance			
	o 3: Skewness			
	o 4: Kurtosis			
1.3.1:	Mean			
	Most common value (useful for predicting values etc. such as stock)			
	Influenced by outliers so can be skewed inaccurately			
	Population Mean: $\mu = \frac{\Sigma x}{T}$; Sample Mean: $\overline{x} = \frac{\Sigma x}{n}$			
1.3.2:	Median			
	Value in the middle of the dataset			
	Splits 50%'ile (Quartile 2)			
	o Q1: 25%, Q2: 50%; Q3: 75%			
	○ Interquartile Range: Q1 – Q3			
	Use here where we don't want outliers' influence (e.g. employee salary. Mean			
	misleads due to the CEO's etc. salary)			
1.3.3:	Standard Deviation			
	σ			
	How far deviated from the mean, is the data			
	Same units as data			
	"how many std.devs does the data lie from the mean"			
	,			

1.3.4: Variance

 $\Box \quad \sigma^2$ $\Box \quad \text{The squere of the standard of } \sigma^2$

☐ The square of the standard deviation – to fairly weight (e.g. discard negatives)

☐ Therefore, weights higher deviations more

-	•	_	$\boldsymbol{\alpha}$	•	
•	≺	٠.	('01)/	ırianc	0
1	··		CUN	u uunc	Œ

	$cov_{Rx,Ry} = \sigma_x \sigma_y \rho$ Uses same units as the data – variance of members of the data set relative to others
1.3.6:	Correlation & Correlation Matrix
	$oldsymbol{ ho} = rac{cov_{Rx,Ry}}{\sigma_{x},\sigma_{y}}$
	Where $[\rho = 1]$: Perfect Positive Correlation (Together) Where $[\rho = -1]$: Perfect Negative Correlation (Apart) Where $[\rho = 0]$: No Correlation To what degree the data moves together A <u>Correlation Matrix</u> maps all individual values with movement relative to all others in a relative N by N matrix
1.3.7:	Skewness
	The degree of asymmetry around the mean
	Symmetric: assume mean is centre
	○ {mean \approx median}; {skewness \approx 0}
	<u>Left Skewness</u> : $\{Skewness < 0\}$; tail to the left
	{mean > median}; Positive Distribution
	Right Skewness: {Skewness > 0}; tail to the right
	{mean < median}; Negative Distribution
1.3.8:	Kurtosis
	<u>Leptokurtic</u> : Positive Kurtosis ; above Normal Distribution w/ skinny tails o {Excess Kurtosis < 0}
	<pre>Platykurtic: Negative Kurtosis; below Normal Distribution w/ fat tails</pre>
	Mesokurtic: Normal Distribution
	○ {Excess Kurtosis = 0}
	Excess Kurtosis: How peaked the data is relative to the Normal Distribution
	• Excess Kurtosis = $\{k-3\}$
	o Generally, EK of 1 is significant
	Measure of the peak of data; likelihood of extreme values
	The higher the value of Kurtosis, the more likely you have outliers
1.3.9:	Modality
	<u>Unimodal</u> : 1 Peak
	Multimodal: > 2 Peaks
	<u>Uniform</u> : No Peaks (outcomes have equal probabilities)

1.4: Types of Economic Data

- Time Series: observations of the same unit, different points in time
 - o P_t for t = 1, 2, ..., T
 - o E.g. monthly profits of a firm between 1999 to 2008
- ☐ <u>Cross Section</u>: observations of different units, same time period
 - o P_i for i = 1, 2, ..., N
 - o E.g. profits of 256 companies over August 2008
- ☐ <u>Panels</u>: several units, varying time (e.g. company, country...)
 - $\circ P_{i,t} \text{ for } \begin{cases} i = 1, 2, \dots, N \\ t = 1, 2, \dots, T \end{cases}$
 - o E.g. profits of 256 companies in the financial sector from 1999 to 2008

☐ General Notation:

- o X_i for i = 1, 2, ..., n; otherwise: $X_1, X_2, ..., X_n$
- \circ Representing n observations of X

2: Regression Analysis

Regression Summary

Recall (from kindergarten): basic regression: $\hat{Y}_i = \hat{\alpha} + \hat{\beta}X_i + \varepsilon_i$

- \mathbf{y} is the dependent variable (what effects \mathbf{y} ?)
- x is the explanatory variable (does it affect y?)
- α y-intercept (level of y when x = 0)
- β slope of the line (severity of the relationship)
- ε residuals (random error term) (outliers from the best fit)
 - o Captures any explanation not contained within the explanatory variables
- Recall also, when a variable has a 'hat' accent it is an **estimation**

Know that:

- 1) $\beta = \frac{\Delta y}{\Delta x} = \frac{\partial y}{\partial x}$
 - \circ For each (+) unit on the x axis, expect the y value to change by β
- 2) $\varepsilon_i = y_i \widehat{y}_i$
 - Each observation will have a predicted \hat{y}_i on the best fit line, directly above or below their real y_i
- 3) This is a Linear Regression and uses a straight best-fit (hyperplane)
 - o For non-linear data, a <u>Polynomial Model</u> can be used to account for concave/convex data using x^2 values
 - $\quad \text{Hence: } Y_i = \alpha + \beta_1 X_i + \beta_2 X_i^2 + \dots + \beta_k X_i^k + \varepsilon_i$

Assumptions:

- 1) $E(\varepsilon) = 0$
 - o "Expected error terms are equal to zero"
 - o Therefore, expected dependent variable to lie on line of best fit
- 2) $var(\varepsilon_i) = E(\varepsilon_i^2) = E(\varepsilon \varepsilon') = \sigma^2 I$
 - o "Observations have constant errors"
 - o <u>Homoscedasticity</u>: constant errors
 - <u>Heteroscedasticity</u>: non constant errors (must adjust → Robust Model)
 - $var(u) = \sigma^2 \omega_i^2$
 - Where for: $i = \{1, ... N\}$; i denotes that variance of the error can be different for each observation
 - The White Test can be used to hypothesise and test for this
- 3) $cov(\varepsilon_i, \varepsilon_j) = 0$ (for $i \neq j$); or $E(X\varepsilon') = 0$
 - o Error terms should be uncorrelated
 - o Expected observations should be uncorrelated with errors
 - Instrumental Variable Approach: where explanatories are correlated with error terms

- X may be **Endogenous**, where factors within the model cause changes in X therefore, ΔX associated with $\Delta \varepsilon$
- Endogenous context: variables correlated with error term ε
- Exogenous context: variables uncorrelated with error term ε
- Use the IV (Instrumental Variable) approach, not OLS (Ordinary Least Squares)
- If two explanatory variables have high collinearity, omit one
- 4) [Extra] $(X'X)^{-1}$ Exists
 - o <u>Multicollinearity</u> is not present
 - \circ Under multicollinearity, two variables may have high correlation (1, -1)
 - \circ The model would struggle to understand which one explains Y
 - o Hence, w/o multicollinearity, each explanatory gives unique information

2.1: Introduction

	How variation in one variable effects variation in the other
	Make expectations based on regression projections
	Step 1: Determine correlation for relationship
	Step 2: Is the relationship statistically significant?
_	- ·

2.2: Graphing

- ☐ Must find the **best fit** line to identify <u>Correlation</u> & <u>Relationship</u>
 - o Recall: perfect positive, perfect negative, no correlation
 - o This will be seen through the **gradient** of the slope
- ☐ Recall: Correlation ≠ Causation
 - \circ With no causation however, there can still be a variable in common. Call it k as it's unknown and outside the Explanatory and Response variables (x and y)
 - \circ E.g. hot weather (k) causes ice cream sales (x) and seaside deaths (y)
- \Box x axis: Explanatory Variable
- □ y axis: Response Variable

2.3: The Line

- \square Straight Line: $y = \alpha + \beta x$
 - \circ **y** is the dependent variable (what effects **y**?)
 - o x is the explanatory variable (does it affect y?)
 - o α y-intercept (level of y when x = 0)
 - o β slope of the line (severity of the relationship)
- ☐ Everyone has one of these lines (variables values will change), we want to aggregate:
 - $\circ \quad \widehat{\mathbf{y}}_i = \widehat{\boldsymbol{\alpha}} + \widehat{\boldsymbol{\beta}} \mathbf{x}_i$
 - $\circ \quad \{\text{Alternatively: } \widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x \}$
 - Recall: *i* represents *N* individuals

• Recall: \hat{k} (hat) represents estimation $\circ \quad \text{Recall: } \boldsymbol{\beta} = \frac{\Delta y}{\Delta x} = \frac{\partial y}{\partial x}$ "For each (+) unit on the x axis, expect the y value to change by β " ☐ Calculating error of the line: distance between actual observations and the **best fit** line \square Error term: ε_i or u w/ subscript of i \square $\varepsilon_i = y_i - \widehat{y}_i$ $\circ \quad \{\text{Alternatively: } \boldsymbol{\varepsilon_i} = \boldsymbol{y_i} - \widehat{\boldsymbol{y}_i} \}$ Each individual will have a predicted \hat{y}_i on the best fit line, directly above or below their real y_i Choose line which reduces Aggregated Error across all observations O This is such that the sum of e^2 is minimised: ☐ We want to minimise the amount of errors: $0 \quad \sum_{i=1}^N \varepsilon_i^2 = \sum_{i=1}^N (y_i - \widehat{y}_i)^2 = \sum_{i=1}^N (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i)^2$ o "Finding $\hat{\alpha}$ and $\hat{\beta}$ which reduces the number of squared residuals" • Where here, and elsewhere: $\widehat{\alpha} = \widehat{\beta}_0$; $\widehat{\beta} = \widehat{\beta}_1$ Reducing the sum of squared residuals • Hence, reducing $\sum_{i=1}^{N} \varepsilon_i^2$ 2.5: Including Multiple Explanatory Variables ☐ Fitting a <u>Hyperplane</u>: $\circ \min_{\boldsymbol{\beta}_0, \boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_k} \sum_{i=1}^N \boldsymbol{\varepsilon}_i^2 \equiv \min_{\boldsymbol{\beta}_0, \boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_k} \sum_{i=1}^N (y_i - \widehat{\boldsymbol{\beta}}_0 - \sum_{k=1}^k \boldsymbol{\beta}_k \boldsymbol{x}_{k,i})^2$ \square This means that $\beta_0, \beta_1, ..., \beta_k$ are all the explanatory variables \Box Here (in supplementary slideshow): $u_i = \varepsilon_i$ 2.6: Conditions & Assumptions ☐ Assume to be <u>Linear</u> (not quadratic etc.) □ Assume Nearly Normal distribution (closest to line as possible: {Exp. Error ≈ 0 })

2.7: R² Value:

2.4: Residuals

- \Box The square of the <u>Correlation Coefficient</u> $\{0 < R^2 < 1\}$
- \square % of variability in dependent variable (y) attributed to explanatory variable (x)
- R² increases when you increase Explanatory Variables (doesn't mean better model)
 - o Hence, don't use if Multiple Regression; use Adjusted R²
 - Interpret in the same way

2.8: P-Value:

- \Box 3(***): Certain at 99% (1% <u>Significance Level</u>; P-Value < 0.01)
- \square 2(**): Certain at 95% (5% Significance Level; 0.01 < P-Value < 0.05)
- \square 1(*): Certain at 90% (10% <u>Significance Level</u>; P-Value < 0.10)
- ☐ (No Stars): Insignificant (Statistically Insignificant; 0.10 < P-Value)

3: Multiple Regression & Goodness of Fit

- 1) This simply adds more Explanatory Variables
- 2) Explore the extent to which the model explains the data (R²)

3.1: 'Aggregation' & Adding More Explanatories

- \Box Expand: $\mathbf{y} = \alpha + \beta \mathbf{x}$
- \Box For Explanatories: 1 to k
- $Y_i = \alpha + \beta_1 X_i + \beta_2 X_i + \dots + \beta_k X_i + \varepsilon_i$
- □ Note that it may not always be linear (<u>Hyperplane</u>)
 - Not all variables have linear relationships
 - o Concavity/Convexity etc.

3.2: Nonlinearity

- □ Non-linear data can be captured in a linear model
- \Box E.g. the <u>Concave</u>
- $\hfill \Box$ Hence, linear model does a poor job of explaining the data

- ☐ This can be fixed with <u>Polynomial Models</u>
- $\Box \quad \text{Hence: } Y_i = \alpha + \beta_1 X_i + \beta_2 X_i^2 + \dots + \beta_k X_i^k + \varepsilon_i$
 - o Constant remains (α or β_0)
 - \circ Error term remains (ε_i)
- \Box Thus, keep adding <u>Polynomial Terms</u> (x^2 values) until the model best fits the spread
- ☐ Hence:

3.3: Dummy Variables

- ☐ Dummy Variables do not have values
- ☐ They are <u>Categorical</u>: e.g. Male/Female or Retired/Employed
 - O You expect one group to show different levels of y for any x
 - They're purely binary {1 or 0}
 - 1: Observation comes from the group of 'interest'
 - 0: Null response thus, otherwise
- \square Modify Regression: $Y_i = \alpha = \beta_1 X_i + \tau D_i + \varepsilon_i$
 - Where: τ = Coefficient of Dummy Variable
 - o If: $D_i = 0$; $Y_i = \alpha + \beta_1 X_i + \varepsilon_i$ (Male (Null) in e.g.)
 - o If: $D_i = 1$; $Y_i = \alpha + \beta_1 X_i + \tau + \varepsilon_i$ (Female in e.g.)
 - Hence, intercept alters

3.4: Changes in Slope

- ☐ E.g. expenditure patters may be at two extremes
- \Box Take a <u>Dummy Variable</u> with criteria to identify all people who spend > 2000
 - \circ 1: Spend > 2000 (e.g.)
 - o 0: Spend < 2000 (e.g.)
- □ Thus: Dummy Variable for $X \ge x$
 - o If: $X \ge x$ then 1
 - o If: X < x then 0
- - Where: $D_i(x) = Dummy Variable$
 - $o If: D_i(x) = 0; Y_i = \alpha + \beta_1 X_i + \varepsilon_i$
 - $o If: D_i(x) = 1; Y_i = \alpha + \beta_1 X_i + \beta_2 X_i + \varepsilon_i$
 - Hence, intercept alters

3.5: Interpretation

- ☐ Simple Regression: If the <u>Explanatory Variable</u> changes by 1 unit, how much does the <u>Reliant Variable</u> change?
 - o β_i is the marginal effect of x on y
- ☐ Multiple Regression: If the <u>Explanatory Variable</u> changes by 1 unit, how much does the <u>Reliant Variable</u> change, given all other <u>Explanatory Variables</u> are constant work your way along all of the Beta values holding each other constant
 - \circ β_i is the marginal effect of X_i on Y

3.6: H	3.6: Hypothesis Testing		
	Null Hypothesis $\mathbf{H_0}$: $R^2 = 0$; X doesn't have any explanatory power for Y Alternative Hypothesis $\mathbf{H_1}$: $R^2 \neq 0$; Reject Null in favour of Alternative		
3.7: M	Sulticollinearity		
	When two variables have a high correlation (close to 1 or -1) The model struggles to understand which one is actually explaining <i>Y</i> Run a Multicollinearity test for the Matrix Drop a highly correlated variable		
3.8: C	hoosing Explanatory Variables		
,	Use hypothesis testing Test for significance and omit insignificant ones o If significant and omitted, Omitted Variables Bias		
3.9: C	hoosing Models		
	Schwartz Information Criterion Akaike Information Criterion Hannan-Quinn Information Criterion		

☐ Pick one

□ Compare across models□ Select the lowest value

4: Theory

	Probability Theory & relationship to Econometrics				
	o <u>Expected Values</u>				
	o <u>Variance</u>				
	o <u>Probability</u> <u>Distribution</u> (Density Functions)				
	Problem: taking several <u>Samples</u> from the same population means estimates will				
	change from sample to sample so not represent the Population correctly				
	If we only have one sample: how significant are the estimates to the <u>Population</u> ?				
4.1: E	xperiments & Events				
	"An outcome unknown in advance"				
	Possible outcomes (realisations) of experiments: Events				
	o i.e. predict positive relationship				
	Set of all possible outcomes: <u>Sample Space</u>				
	Variables of Experiments & Events are:				
	Recall: <u>Discrete</u> : set value (number of values it can take on are finite (countable))				
	 Depends on scale of variability (e.g. Happy? Rate: 0-M&S) 				
	o If counter-intuitive (e.g. Happy? Rate M&S-0) cant interpret like Continuous				
	Recall: <u>Continuous</u> : infinite possible values (on real line or in an interval)				
4.2: R	andom Variables & Probability				
	A variable through which we don't know the outcome (e.g. Y on a regression)				
	<u>Probability</u> reflects likelihood of an event				
	o E.g. just knowing what income is doesn't allow to you know expenditure				
	■ Income = 1000 ; Consumption not > 1000				
	 E.g. Probability of A occurring denoted: 				
	\circ $Pr(A)$				
	Example:				
	O Dice, probability of rolling any six options: Constant Probability				
	o Sample Space: {1,2,3,4,5,6}				
	o The Discrete Random Variable (A): {1,2,3,4,5,6}				
	 Same probability of rolling any face 				
	• Hence, Probabilities: $Pr(A = 1) = Pr(A = 2) = \cdots = [A = 1/6]$				
	o Realisation of random variable is value which actually arises				
	 Independence: events A and B are Independent so: 				
	o Conditional: event A may be Conditional upon B so:				
	Probability of A occurring given B occurs				
	■ Pr (A B)				

4.3: Probability in Regression

- ☐ Regression provides description of the probable values of the dependent variable
- ☐ Hence, we use Probability Density Functions (p.d.f.)
 - Used with Continuous Normal Variables
 - Probabilities are the number under the Normal Distribution function

■ Example:

0

- Tells you which plausible values that y can take given the set x value
- At the highest point, we see the most plausible values
- ☐ The shape of the distribution depends on the Mean and the Variance
- "Y has a Normal Probability Density Function"
 - \circ Mean = μ
 - $\circ \quad \underline{\text{Variance}} = \sigma^2$
 - $\circ \quad \underline{\text{Normal p.d.f.}} = y \sim N(\mu, \sigma^2)$
- ☐ Recall House Price Example:
 - o $\mu = 61.153$ (Mean value of a house of lot size > 5000)
 - $\sigma^2 = 683.812$ (Not really any intuitive value)
- Defined areas under the <u>p.d.f.</u> curve are the <u>Probabilities</u>
- ☐ "Probability of price being between 60k and 100k":
 - $\circ N(\mu, \sigma^2)$
 - $\circ = \Pr(\min \le k \le \max)$
 - $\circ = \Pr(60 \le Y \le 100)$

 - $= \Pr\left(\frac{60 \mu}{\sigma} \le \frac{Y \mu}{\sigma} \le \frac{100 \mu}{\sigma}\right)$ $= \Pr\left(\frac{60 61.153}{\sqrt{683.812}} \le \frac{Y 61.153}{\sqrt{683.812}} \le \frac{100 61.153}{\sqrt{683.812}}\right)$

 - $\circ = Pr(0 \le Z \le 0.04) \to 0.016$
 - $\circ = \Pr(0 \le Z \le 1.49) \to 0.4319$
 - * These are the two independent areas *

 - (+ Together) = 0.4479 : 45%

4.4: Other Distributions

4.4.1: Chi-Distribution

- □ Distribution depending on the <u>Degrees of Freedom</u> (accounts for number of observations and variables)
 - \circ Higher the better \rightarrow more flexibility
 - o Denoted by df
 - o <u>Skewness</u> decreases with the raising <u>Degrees of Freedom</u>
- □ Not bell-shaped like <u>Normal Distribution</u>
 - \circ Only for the positive values of \boldsymbol{x}

4.4.1: t-Distribution

- \square How we calculate the <u>p-Value</u>
- ☐ Shows how significant values are
- □ Symmetric
- ☐ Compare from (Critical Value) -1.96 to 1.96
 - o If 0 sits in the centre, Normally Distributed
- "If **t-Value** is > **Critical Value**, explanatory variables are statistically significant"

4.5: Assumptions of a Regression (OLS)

- 1) $E(\varepsilon_i) = 0$ **Mean** Expect dependent variable to lie on the best fit
- 2) $var(\varepsilon_i) = E(\varepsilon_i^2) = \sigma^2$ all observations should have constant errors
 - o Homoscedasticity: constant errors
 - o Heteroscedasticity: non constant errors (must adjust model)
- 3) $cov(\varepsilon_i, \varepsilon_j) = 0$ for $i \neq j$ Expecting observations to be uncorrelated
 - o If two explanatory variables have high collinearity, omit one (run corr. matrix)
- 4) Expect errors are normally distributed (not a lot of outliers)
- 5) Explanatories are fixed

Rough Notes on Interpretation **TEST:**

Don't interpret constant
Four explanatory variables follow below, for each:
Dummies (oneAdult, ownsHouse)
 If you are not included in the criteria: 0

- o If you are included in the criteria: 0

1) **P-Vale**: is it significant?

 \circ Here, {P < 0.01 @ 0.0001} so "Statistically Significant at explaining the dependant variable at the 1% Significance Level"

2) Coefficients:

- o As significant, look at coefficients. Don't analyse if statistically insignificant
- o If Positive Corr. (Converse): as explanatory increases, reliant increases
- o If Negative Corr. (Inverse): as explanatory increases, reliant decreases

☐ Examples:

- o A One Adult Household is significant at 1% significance level and spends £96.63 less (-96.6313)
- o A higher managerial occupied man is significant at 1% and spends %55.88 more

3) Bottom (only interested in a few)

- o **Mean Dependent**: for interest
- \circ **R**² or: goodness of fit (% of variability in y which can be explained by x)
 - E.g. 52% of the variability in expenditure can be explained by the dependent variables
 - But! Use adjusted as there are multiple explanatory variables

Model 1: OLS, using observations 1-5144 Dependent variable: P550tpr

const P344pr ownsHouse oneAdult DA094r 1	Coefficient 200.942 0.468970 4.55590 -96.6313 55.8807	Std. Er 8.333 0.0110 6.416 7.061 7.265	05 996 97 04	t-ratio 24.11 42.25 0.7100 -13.69 7.691	<i>p-value</i> <0.0001 <0.0001 0.4778 <0.0001 <0.0001 <0.0001	***
DA0941_1	33.8607	7.203	/0	7.091	~0.0001	
Mean dependent var Sum squared resid R-squared F(4, 5139) Log-likelihood Schwarz criterion	2.11 0.51	e+08 9986 1.736 18.48	S.E. o Adjus P-val Akail	dependent var of regression sted R-squared ue(F) ke criterion an-Quinn	202 0.5 0.0 692	2.3652 2.6383 19613 00000 246.95 258.41

5: Hypothesis Testing

5.1: What is a Hypothesis

- 1) t-test
- 2) f-test
- 3) RESET Test
- □ Suppose $\hat{\beta} = 0.47$ (estimated coefficient); is that significantly different from 0.5?
- \Box We must know distribution/density function of $\hat{\alpha} \& \hat{\beta}$
- ☐ There are two Hypotheses (e.g. yes/no)
- ☐ We want to test if this variable is significant or insignificant
- □ **H**₀: Null Hypothesis ($\beta = 0$)
 - o Unable to reject Null Hypothesis
 - o "explanatory variable is insignificant in explanation of dependent variable"
 - o If p-value > 0.1: Unable to reject
- \Box **H**_A: Alternative Hypothesis ($\beta \neq 0$)
 - o Reject Null Hypothesis
 - o "explanatory variable is significant in explanation of dependent variable"
 - o If p-value < 0.1: Reject in favour of alternative
- ☐ Type I Error: Reject Null when it's in fact true
- ☐ Type II Error: Fail to Reject Null when it is in fact false
- □ **As long as p-value < 0.1, these won't occur**

5.2: t-test

5.2.1: t-ratio

- \Box If Null Hypothesis Failed Rejection: \hat{t} close to 0
- □ If Null Hypothesis Rejected: $\hat{t} < -1.96$ or $\hat{t} > 1.96$

5.2.2: p	-values
----------	---------

	p-value is the probability that, under H_0 , the test value is at least as large as \hat{t}
	If probability (Significance Level) > p-value: Fail to Reject Null
	If probability (Significance Level) < p-value: Reject Null in favour of Alternative
	Example:
	$\hat{t} = 2$; show: $P(t \ge 2) = 0.022$ (Significance Level) @ defined p-value
	o If p-value = 0.05 : Reject as $0.022 < 0.05$
	o If p-value = 0.01: Fail to Reject as $0.022 > 0.01$
5.3: f-1	test
	A joint test for the whole regression: H_0 : $R^2 = 0$
П	Must reject in favour of the Alternative Hypothesis
	Observe f-ratio: like t-ratio but for regression as a whole
	Observe p-value: in the same way as the individual p-values
	This is tested against the 5% level
	o If p-value < 0.05: Reject Null so some significance
	o If p-value > 0.05: Fail to Reject Null
	If single regression: p-value (f-test) = p-value (t-test)
5.4: R	ESET Testing
	Is your model well specified (do not needing logs or polynomials)
	Hypothetically adds gamma coefficients to hypothetical log and polynomial values
	Hence: H_0 : Gamma = Gamma ₂ = 0
5.4.1: A	RESET in Gretl
	After the Regression;
	Tests;
	Ramsay's RESET;
	Squares and Cubes;
	Don't Interpret Coefficients;
	F-test for Gamma Polynomials;
	P-value at Bottom;
	Use 5% level;
	If p-value < 0.05: model mis-specified (needs extra like polynomials and logs etc.)
	If p-value > 0.05: model well-specified (does not need polynomials etc.)
	Opposite of what we conclude about p-values in general
	If mis-specified: try logs and polynomials

6: Instrumental Variables

	Drop assumption that explanatory variables are fixed, they aren't			
	1 '			
☐ Don't use OLS (Ordinary Least Squares), use alternative IV (Instrumental Varia				
	estimator 2SLS (Two Stage Least Squares)			
	 This incorporates everything that the model doesn't include (unknown 			
	coefficients where variable correlated with u)			
	o E.g. all else when your using income to explain consumption (age etc.)			
	Example:			
	 Earnings: dependent; Schooling: explanatory; Error: u 			
	$y = \beta x + u$; where u captures all explanation not done by schooling (which is			
	usually higher with people of higher ability) \rightarrow E.g. ability can also effect			
	o If error value is high: "high un-associated explanation"			
	\circ Endogeneity: "factors within the model cause x to change, so changes in x are			
	also associated with changes in u"			
	\circ What would x have been if not measures with error u, as x is higher than it			
	should be as correlated to $u. \rightarrow 2SLS$			
6.1: In	ntroducing Instrumental Variables			
	Solution to the above problem			
	z = Instrumental Variable			
	Isolates movement in x which is uncorrelated to the error u (e.g. ability)			
	Hence, coefficient will no longer be inflated			
	Endogenous: variables correlated with error term <i>u</i>			
	Exogenous: variables uncorrelated with error term u			
6.2: V	ariation of x			
П	2 Parts: one is correlated with <i>u</i> and second is uncorrelated with <i>u</i>			
	Isolate the uncorrelated with <i>u</i>			
	The uncorrelated parts are included in 1 to N z values for each explanatory			
	An IV only influences y through an explanatory, it wouldn't hold up as an explanatory			
	itself			
	\circ E.g. ability effects schooling (x) but not directly income (y)			
6.3: In	nstrumental Variable Satisfactions			
	z is correlated with (Endogenous) x			
	z is uncorrelated with $y(z \rightarrow x \rightarrow y; \mathbf{not} z \rightarrow y)$			

6.4: Two Stage Least Squares (2SLS)	
	y: Dependent Variable
	x_{lk} : Endogenous Variables
	w_{1k} : Exogenous Variables
	z_{lk} : Instrumental Variables
	"For every x you expect to be <u>Endogenous</u> , you require an <u>Instrumental Variable</u> "
1)	Regress x on z_{Ik} values for x_{Ik} and obtain predicted values: \hat{x}
2)	Regress y on w_{Ik} (don't need <u>Instrumental Variables</u>)
3)	Look for high correlation between <u>Instrumental Variables</u> and <u>Explanatory Variables</u>
6.5: Testing for Endogeneity	
	"Hausman Test"
	H ₀ : Explanatory Variable uncorrelated with error term
	o Fail to Reject: use OLS
	o Reject: use <u>Instrumental Variables</u> for 2SLS
	p-value > 0.05 Means no Endogeneity problem (Fail to Reject)
	p-value < 0.05 Means Endogeneity problem (Reject)
	Like RESET Test
6.5.1: Strength of Instruments	
	High Correlation with (Endogenous) <i>x</i> : Strong Instrument – use 2SLS
	Low Correlation with (Endogenous) x: Weak Instrument – might as well use OLS
	Relevant?
	 R² shows this integrity
	o f-test shows validity of the set of instruments as a whole (like OLS)

7: Robust Estimation

- ☐ Characteristics:
 - o Heteroscedasticity (as opposed to Homoscedasticity)
 - o Cross-Sectional Correlation
- \square As possible results show:
 - o Affect reliability of hypothesis tests
 - O Don't introduce significant bias in estimates
- ☐ Recall:
 - \circ $var(u) = \sigma^2$
 - All regression errors have equal variance

7.1: Heteroscedasticity & Homoscedasticity

- ☐ <u>Heteroscedastic</u>: Non-Constant Error Variance
- ☐ Homoscedastic: Constant Error Variance
 - \circ $var(u) = \sigma^2$

□ Example:

o Hence, <u>Homoscedastic</u> (no pattern)

☐ Example:

- o Hence, <u>Heteroscedastic</u> (pattern)
- OLS regression (left) does good job when income is low but lacks explanatory value as income increases
- E.g.: when income increases, expenditure may only increase a little and savings may take place instead

7.1.1: Homoscedasticity

☐ House price dataset:

o Dependent variable: house price

o Explanatory variables: bedrooms, bathrooms etc.

□ u measures whether a house is under or over-priced relative to similar houses
 □ Homoscedasticity doesn't say all errors are same for every house but, that they're

from the same distribution

 "Magnitudes of under or over-pricing tend to be the same for all kinds of houses"

7.1.2: Heteroscedasticity

 \Box $var(u) = \sigma^2 \omega_i^2$

• For: $i = \{1, ... N\}$; i denotes that variance of the error can be different for each observation

☐ Implications:

- 1) Least squares estimates are unbiased and/or inefficient
- 2) Variances and covariances need reconstrained
- 3) t-tests and f-tests lose validity so don't represent good p-values

7.2: Test for Heteroscedasticity in Gretl

□ Solving problem (3)

☐ Making standard errors 'robust'

☐ White Test

- o Using 'White', 'Robust', 'Heteroscedasticity Consistent (HC)' standard errors
- New t-ratios, p-values
- o If Heteroscedasticity is not present, OLS fine (BLUE)
- o If <u>Heteroscedasticity</u> is present, use robust std. errors (HCE)
- o H₀: <u>Homoscedastic</u> Constant Error Variance
- o H_A: <u>Heteroscedastic</u> Non-Constant Error Variance
- o p-value < 0.05: Reject Null Hypothesis (Reject Homoscedasticity)
- o p-value > 0.05: Fail to Reject Null Hypothesis (Accept <u>Homoscedasticity</u>)
- o In response to Heteroscedasticity, tick Robust Standard Errors
- 1) Run Model
- 2) Use White Test
- 3) Analyse p-value
- 4) Tick Robust Standard Errors in OLS Window

7.3: Cross-Sectional Dependence

	Samples are completed in 'clusters'
	Clusters from different classes, clusters from different countries, different firms etc.
	Data can therefore be highly <u>Correlated</u> due to similar traits
П	Use Cluster Robust Standard Errors