В.Ю.Протасов, мех-мат МГУ, 2020

II. Дифференцирование в нормированных пространствах. Производные Гато и Фреше. Производные высших порядков. Экстремальные задачи для дифференцируемых функций. Необходимое условие локального минимума. Уравнения Эйлера-Лагранжа

1. Дифференцирование в нормированных пространствах

Определение 1 Пусть X, Y – нормированные пространства, $G \subset X$, $x \in \text{int } G$, $h \in X$. Вариацией по Лагранжу отображения $F : G \to Y$ в точке x по направлению h называется предел $\delta_F(x,h) = \lim_{t\to 0} \frac{F(x+th) - F(x)}{t}$.

Отображение называется $\partial u \phi \phi$ еренцируемым по Лагранжу в точке x, если вариация по Лагранжу в данной точке существует по любому направлению $h \in X$. Следующая теорема является обобщением теоремы Ферма на нормированные пространства.

Теорема 1 (Теорема Ферма для нормированных пространств). Если $x \in \text{int } G \subset X$ – точка локального минимума функции $f: G \to \mathbb{R}$, и функция f дифференцируема по Лагранжу в этой точке, то $\delta_f(x,h) = 0$ для любого $h \in X$.

Доказательство. Для любого h рассмотрим функцию $F_h(t) = f(x+th)$. Так как $0 \in \text{locmin } F_h$, то $F'_h(0) = 0$. Остаётся заметить, что $F'_h(0) = \delta_F(x,h)$.

Теперь мы можем обобщить два главных свойства выпуклых функций на произвольные нормированные пространства. Лемма 1.2 не меняется вовсе, ни формулировка ни доказательство: для выпуклой задачи каждый локальный минимум является её абсолютным минимумом. Лемма 1.3 теперь переформулируется так:

Предложение 1 Если задача выпукла, функция f дифференцируема по Лагранжу в точке $x \in \text{int } G$ и $\delta_f(x,h) = 0$ для всех $h \in X$, то эта точка даёт абсолютный минимум.

Доказательство. Предположим, что существует точка $y \in G$, для которой f(y) < f(x). Проведем прямую через точки x и y: $\{x+th \mid t \in \mathbb{R}\}$, где h=y-x. Ограничение функции f на эту прямую является выпуклой функцией одной переменной, её производная в точке x равна $\delta_f(x,h)=0$, следовательно (лемма 1.3), абсолютный минимум этой функции на прямой достигается в точке x, а значит $f(y) \geq f(x)$.

Определение 2 Отображение $F: G \to Y$, где $G \subset X$, называется дифференцируемым по Гато в точке $x \in \text{int } G$, если оно дифференцируемо по Лагранжу в этой точке и существует линейный непрерывный оператор $A: X \to Y$ такой, что $\delta_F(x,h) = Ah$. Оператор A называется производной по Гато отображения F в точке x.

Следствие 1 В условиях теоремы 1 функция f дифференцируема по Гато в точке x, u производная по Гато равна нулю.

Определение 3 Отображение $F: G \to Y$, где $G \subset X$, называется дифференцируемым по Фреше в точке $x \in \text{int } G$, если существует линейный непрерывный оператор $A: X \to Y$ такой, что F(x+h) = F(x) + Ah + o(h), $h \to 0$, $h \in X$. Оператор A называется производной по Фреше отображения F в точке x и обозначается A = F'(x).

Таким образом, F(x+h) = F(x) + F'(x)[h] + o(h), $h \to 0$. Из этого следует, что функция, дифференцируемая по Фреше в точке x, непрерывна в x. Для дифференцируемости по Гато это может не выполняться (пример 2). Заметим, что производная по Фреше, если существует, однозначно определена. В противном случае, если найдутся два оператора A_1, A_2 , для которых выполнено соотношение $F(x+h) = F(x) + A_i[h] + o(h)$, $h \to 0$, i = 1, 2, то, вычитая, получим, $(A_1 - A_2)[h] = o(h)$, $h \to 0$. Последнее означает, что $A_1 = A_2$. Иначе было бы $(A_1 - A_2)[\tilde{h}] \neq 0$ для некоторого $\tilde{h} \in X$, и тогда $t (A_1 - A_2)[\tilde{h}] = (A_1 - A_2)[t\tilde{h}] = o(t)$, $t \to 0$, что невозможно.

Как связана производная по Фреше с вариацией по Лагранжу? Имеем

$$\delta_F(x,h) = \lim_{t \to 0} \frac{F(x+th) - F(x)}{t} = \lim_{t \to 0} \frac{F'(x)[th] + o(th)}{t} = F'(x)[h].$$

Следовательно, отображение, дифференцируемое по Фреше, дифференцируемо и по Лагранжу. Более того, так как ого вариация по Лагранжу равна $\delta_F(x,h) = Ah$, где A = F'(x), то приходим к выводу, что отображение, дифференцируемое по Фреше, дифференцируемо и по Гато (с той же производной). Итак,

$$\Phi$$
реше \Rightarrow Гато \Rightarrow Лагранж

Обратные импликации не выполняются, как показывают следующие примеры:

Пример 1 Функция $F: \mathbb{R}^2 \to \mathbb{R}$, заданная формулой $F(x_1, x_2) = (x_1^2 x_2)^{1/3}$, дифференцируема по Лагранжу в точке x = (0,0): $\delta_F(x,h) = (h_1^2 h_2)^{1/3}$. Если $e_1 = (1,0), e_2 = (0,1)$, то $\delta_F(x,e_1) = \delta_F(x,e_2) = 0$. Однако, $\delta_F(x,e_1+e_2) = 1$. Если отображение дифференцируемо по Гато, то $\delta_F(x,h)$ линейно зависит от h. Значит, должно выполняться $\delta_F(x,e_1+e_2) = \delta_F(x,e_1) + \delta_F(x,e_2)$, что неверно. Поэтому F не дифференцируемо по Гато.

Пример 2 Функция $F: \mathbb{R}^2 \to \mathbb{R}$, заданная формулой

$$F(x) = \begin{cases} 1, & x_2 = x_1^2, x_1 \neq 0 \\ 0, & \text{иначе} \end{cases}$$

дифференцируема по Лагранжу в точке x = (0,0): $\delta_F(x,h) = 0$ для любого $h \in \mathbb{R}^2$. Значит, она дифференцируема и по Гато, её производная по Гато равна 0. Но по Фреше она не дифференцируема, так как она разрывна в точке x.

Класс функций, дифференцируемых по Фреше в точке x обозначим $\mathcal{D}(x)$, а дифференцируемых в каждой точке области G – через $\mathcal{D}(G)$. Далее, если не оговорено обратное, под дифференцируемыми функциями мы будем понимать именно дифференцируемые по Фреше.

Всплески применяются в инженерных задачах теории обработки информации, при численном решении дифференциальных уравнений, в некоторых теоретических задачах теории приближений и теории функций. Наиболее популярной системой для разложений функций в L_2 всегда была тригонометрическая система Фурье $\{e^{2\pi int}\}_{n\in\mathbb{Z}}$. Однако, одна имеет ряд существенных недостатков: 1) она рассчитана на периодические функции; 2) она не локализована, т.е. функции этой системы не убывают при $t\to\infty$. С первым недостатком люди давно научились справляться с помощью разного рада периодизаций, и т.д. Второй оказался куда более сложным. Прежде, чем решать эту проблему, мы строго ее сформулируем.

2. Простейшая задача вариационного исчисления. Уравнения Эйлера-Лагранжа.

Простейшей задачей вариационного исчисления называется следующая задача:

$$\begin{cases}
\mathcal{J}(x) = \int_{t_0}^{t_1} L(t, x, \dot{x}) dt & \to \min, \\
x \in C^1([t_0, t_1], \mathbb{R}^n), \\
x(t_0) = x_0, \quad x(t_1) = x_1,
\end{cases} \tag{1}$$

где $x(t) = (x_1(t), \dots, x_n(t))$ – непрерывно-дифференцируемая вектор-функция из отрезка $[t_0, t_1]$ в \mathbb{R}^n , $x_0, x_1 \in \mathbb{R}^n$ – заданные точки (граничные условия), $L \in C$ ($[t_0, t_1] \times \mathbb{R}^n \times \mathbb{R}^n$, \mathbb{R}) – заданная функция, называемая *интегрантом*. Таким образом, среди всех непрерывно-дифференцируемых функций, принимающих данные значения на концах отрезка, найти такую, которая доставляет минимум интегральному функционалу $\mathcal{J}(x)$. Функции $x \in C^1$ ($[t_0, t_1], \mathbb{R}^n$), удовлетворяющие данным граничным условиям, будем называть $\partial onycmumumum$.

Определение 4 Допустимая функция $\hat{x} \in C^1([t_0,t_1],\mathbb{R}^n)$ доставляет слабый локальный минимум в задаче (1), если существует $\varepsilon > 0$ такой, что $\mathcal{J}(x) \geq \mathcal{J}(\hat{x})$ для любой допустимой функции x, удовлетворяющей условию $\|x - \hat{x}\|_{C^1[t_0,t_1]} < \varepsilon$.