Lecture 2:

Image Enhancement

Why Enhancement?

- Images may suffer from the following degradations:
 - Poor contrast due to poor illumination or finite sensitivity of the imaging device
 - Electronic sensor noise or atmospheric disturbances leading to broadband noise
 - Aliasing effects due to inadequate sampling
 - Finite aperture effects or motion leading to spatial

Cont..

- There are various and simple algorithms for image enhancement based on lookup tables
 - Contrast enhancement
- Other algorithms also work with simple linear filtering methods
 - Noise removal

- Equalization increases the global contrast of many images, especially when the usable data of the image is represented by close contrast values.
- □ Through this adjustment, the intensities can be better distributed on the histogram. This allows for areas of lower local contrast to gain a higher contrast.
- □ Histogram equalization accomplishes this by effectively **spreading out the most frequent intensity values**.
 - ✓ The method is useful in images with backgrounds and foregrounds that are both bright or both dark. In particular, the method can lead to better views of bone structure in x- ray images

- In an image of low contrast, the image has grey levels concentrated in a narrow band
 - The grey-levels are not too dark or too bright but in the middle. And it covers only few grey-level intensity range
- $lue{}$ Define the grey-level histogram of an image h(i) where :
 - h(i)=number of pixels with grey level = i
- lacksquare Graphically, the histogram for a specific grey-level will be: $_{h(i)}$

Darker vs Bright Image

Low vs High ContrastImage

Original

Grey Level

Black/White

Histogram Equalized

Histogram Equalized Image

0.5

Improving a Low Contrast Image

Original

Histogram Eqalizedl

Histogram of Low Contrast Image

Histogram of Equalized Image

Gaussian highpass filtering

Histogram Equalisation

High-frequency emphasis filtering

Image Filtering

- Simple image operators can be classified as:
 - 'pointwise' which changes a pixel independent of the others;
 - 'neighbourhood' (filtering) which changes the pixel value by consulting some or all of its neighbours
- Histogram equalisation is a pointwise operation
- More general filtering operations use neighbourhoods of pixels

Image Filtering

Edge Detection

Conclusion

- We have looked at basic (low level) image processing operations
 - Enhancement
 - Filtering
- ☐ These are usually important pre-processing steps carried out in computer vision systems

The End