Background Check: A general technique to build more reliable and versatile classifiers. Supplementary material

Miquel Perello Nieto*†, Telmo M. Silva Filho*‡, Meelis Kull† and Peter Flach†

†Intelligent Systems Laboratory, University of Bristol, UK

†Centro de Informatica, Universidade Federal de Pernambuco, Brazil
Email: †firstname.lastname@bristol.ac.uk, ‡tmsf@cin.ufpe.br

REFERENCES

 D. Tax and R. Duin, "Growing a multi-class classifier with a reject option," *Pattern Recognition Letters*, vol. 29, no. 10, pp. 1565–1570, jul 2008.

I. PROOFS

Proposition 1.

$$p(b|x) = \frac{1}{1+r(x)},$$

$$p(f_c|x) = \frac{p(f_c|f,x)r(x)}{1+r(x)} \qquad for \ c = 1,...,k$$

$$\begin{array}{l} \textit{Proof.} \ \ \frac{1}{1+r(x)} = \frac{1}{(p(\mathsf{b}|x) + p(\mathsf{f}|x))/p(\mathsf{b}|x)} = \frac{1}{1/p(\mathsf{b}|x)} = p(\mathsf{b}|x); \\ \frac{p(\mathsf{f}_c|\mathsf{f},x)r(x)}{1+r(x)} = p(\mathsf{f}_c|\mathsf{f},x) \frac{p(\mathsf{f}|x)}{p(\mathsf{b}|x)} p(\mathsf{b}|x) = p(\mathsf{f}_c,\mathsf{f}|x) = p(\mathsf{f}_c|x). \end{array}$$

Proposition 2.

$$q_{\mathbf{f}}(x) = \frac{p(x|\mathbf{f})}{\max_{x} p(x|\mathbf{f})}, p(x|\mathbf{f}) = \frac{q_{\mathbf{f}}(x)}{\int_{x} q_{\mathbf{f}}(x) dx}.$$

$$\begin{split} \textit{Proof.} \quad q_{\mathsf{f}}(x) &= \frac{p(x,\mathsf{f})}{\max_{x} p(x,\mathsf{f})} = \frac{p(x|\mathsf{f})p(\mathsf{f})}{\max_{x} p(x|\mathsf{f})p(\mathsf{f})} = \frac{p(x|\mathsf{f})}{\max_{x} p(x|\mathsf{f})}, \\ \int_{\mathcal{X}} q_{\mathsf{f}}(x) dx &= \int_{\mathcal{X}} \frac{p(x|\mathsf{f})}{\max_{x} p(x|\mathsf{f})} dx = \frac{\int_{\mathcal{X}} p(x|\mathsf{f})dx}{\max_{x} p(x|\mathsf{f})} = \frac{1}{\max_{x} p(x|\mathsf{f})}, \\ p(x|\mathsf{f}) &= q_{\mathsf{f}}(x) \max_{x} p(x|\mathsf{f}) = q_{\mathsf{f}}(x) \frac{1}{\int_{\mathcal{X}} q_{\mathsf{f}}(x)dx}. \end{split}$$

Proposition 3. If μ is the affine background bias with $\mu(0) = 0$, then p(f|x) is a monotonically decreasing function of $\mu(1)$ of the form $p(f|x) = 1/(\mu(1) + 1)$.

Proof. We have that:

$$p(\mathsf{f}|x) = \frac{q_\mathsf{f}}{q_\mathsf{b} + q_\mathsf{f}}.$$

Applying the affine background bias we get:

$$p(f|x) = \frac{q_f}{(1 - q_f)\mu(0) + q_f\mu(1) + q_f}.$$

Finally, with $\mu(0) = 0$ and eliminating q_f , we arrive at:

$$p(\mathsf{f}|x) = \frac{1}{\mu(1) + 1}.$$

Proposition 4. Let μ be the affine background bias with $\mu(0) = 0$, then for a given rejection threshold θ , $\mu(1) = \theta$.

Proof. Following Chow's rule, for a *k*-class cautious classification problem, the minimum condition such that an instance *x* can be accepted and classified by the model is:

$$p(f_c|x) = \theta$$
,

where f_c represents the foreground class with the highest class conditional probability for instance x. In our (k + 1)-class setting, with the extra class being background, this condition is rewritten as:

$$p(f_c|f,x) = p(b|x)$$
, and $p(f_c|x)p(f|x) = p(b|x)$

Substituting $p(f_c|x) = \theta$ and p(b|x) = 1 - p(f|x) and isolating p(f|x), we get:

$$p(\mathsf{f}|x) = \frac{1}{\theta + 1}$$

Then, from Proposition 3, we arrive at $\mu(1) = \theta$

II. ALGORITHMS

Algorithm 1 Training BCD

Require:

П

Number of *foreground* classes *k*;

If k > 1, the k-class foreground classifier;

Algorithm:

- 1: Uniformly generate artificial *background* data around *foreground* data;
- Train a binary discriminative classifier of foreground vs background;
- 3: **if** k > 1 **then**
- 4: Combine classifiers into a (k+1)-class posterior probability estimator;
- **5: end if**

return (k+1)-class posterior probability estimator.

III. TABLES

Algorithm 2 Testing BCR

Require:

Number of *foreground* classes *k*;

If k > 1, the k-class foreground classifier;

background bias μ ;

One-class model trained on foreground data;

Algorithm:

- 1: Obtain q_f from the one-class model;
- 2: Estimate q_b as $\mu(q_f)$;
- 3: Estimate posterior probabilities p(b|x) and p(f|x);
- 4: **if** k > 1 **then**
- 5: Obtain *k*-class probability vector from *foreground* classifier;
- 6: Combine calibrated probabilities into a (k+1)-vector;
- 7: end if

return (k+1)-class posterior probability estimates.

Algorithm 3 Cautious classification with BC

Require:

k-class foreground classifier;

k-class rejection threshold θ ;

Algorithm:

- 1: Set $\mu(1) = \theta$;
- 2: Estimate posterior probabilities p(b|x) and p(f|x);
- 3: Obtain k-class probability vector from foreground classifier;
- 4: Combine probabilities into a (k+1)-vector;
- 5: For every instance x predict $\hat{y} = \operatorname{argmax}_{i}(p(y = i|x));$
- 6: Reject *x* if $\hat{y} = (k+1)$;

return Predictions.

Algorithm 4 Outlier detection with BC-training phase

Require:

Number of *foreground* classes k;

k-class foreground classifier;

background bias μ ;

Algorithm:

- 1: if $\mu(0) = \mu(1) = 0.5$ then
- 2: Obtain (k+1)-class posterior probability estimator with BCD;
- 3: else
- 4: Obtain (k+1)-class posterior probability estimator with BCR;
- 5: end if

return (k+1)-class posterior probability estimator.

Algorithm 5 Outlier detection with BC-test phase

Require:

Number of *foreground* classes *k*;

(k+1)-class posterior probability estimator BC;

Algorithm:

- 1: Obtain (k+1)-class posterior probability estimates from BC;
- 2: For every instance x predict $\hat{y} = \operatorname{argmax}_{i}(p(y = i|x))$;
- 3: Mark *x* as outlier if $\hat{y} = (k+1)$;

return Predictions.

Name	Samples	Features	Classes
abalone	4177	8	3
autos	159	25	6
balance-scale	625	4	3
car	1728	6	4
cleveland	297	13	5
credit-approval	653	15	2
dermatology	358	34	6
diabetes	768	8	2
ecoli	336	7	8
flare	1389	10	6
german	1000	20	2
glass	214	9	6
heart-statlog	270	13	2
hepatitis	155	19	2
horse	300	27	2 2 2
ionosphere	351	34	2
iris	150	4	3
landsat-satellite	6435	36	6
letter	3511	16	26
libras-movement	360	90	15
lung-cancer	96	7129	2
mfeat-karhunen	2000	64	10
mfeat-morphological	2000	6	10
mfeat-zernike	2000	47	10
mushroom	8124	22	2
optdigits	5620	64	10
page-blocks	5473	10	5
pendigits	10992	16	10
scene-classification	2407	294	2
segment	2310	19	7
shuttle	10154	9	7
sonar	208	60	2
spambase	4601	57	2
tic-tac	958	9	2
vehicle	846	18	4
vowel	990	10	11
waveform-5000	5000	40	3
wdbc	569	30	2
wpbc	194	33	2
yeast	1484	8	10
Z00	101	16	7

TABLE I: Description of the 41 classification datasets from UCI used for the experiments

	BC	O-norm	T-norm
abalone	48.90(3)	49.08(2)	49.94(1)
autos	71.75(3)	74.96 (1)	74.75(2)
balance-	62.36(3)	93.68(2)	93.86(1)
car	88.54(2)	91.53(1)	79.96(3)
clevelan	67.54(1)	44.76(3)	63.63(2)
credit-a	64.27(3)	79.90(2)	81.01(1)
dermatol	82.51(1)	82.33(2)	82.26(3)
diabetes	78.92(1)	75.10(3)	78.44(2)
ecoli	83.83(2)	82.53(3)	84.47(1)
flare	59.21(1)	57.36(3)	58.30(2)
german	78.61(2)	77.71(3)	79.44(1)
glass	65.08(2)	64.73(3)	71.07(1)
heart-st	80.66(1)	80.03(2)	78.93(3)
hepatiti	84.99(1)	66.16(3)	84.21(2)
horse	78.63(2)	69.48(3)	82.07(1)
ionosphe	87.64(1)	82.15(3)	83.15(2)
iris	80.08(1)	79.66(3)	79.8(2)
landsat-	66.25(3)	84.13(1)	83.13(2)
letter	72.01(3)	79.52(1)	77.12(2)
libras-m	46.01(1)	43.38(2.5)	43.38(2.5)
lung-can	34.58(1)	34.20(2.5)	34.20(2.5)
mfeat-ka	84.11(1)	33.41(2)	33.39(3)
mfeat-mo	71.42(3)	76.25(2)	77.45(1)
mfeat-ze	75.88(1)	60.30(2)	59.98(3)
mushroom	88.05(3)	99.77(1)	99.61(2)
optdigit	87.25(3)	90.88(1)	87.82(2)
page-blo	94.13(1)	73.70(3)	90.85(2)
pendigit	78.29(3)	91.99(1)	86.58(2)
scene-cl	84.81(1)	33.37(2.5)	33.37(2.5)
segment	82.80(3)	91.80(1)	90.63(2)
shuttle	78.66(3)	82.43(2)	83.93(1)
sonar	65.00(1)	36.07(2.5)	36.07(2.5)
spambase	78.36(3)	85.88(1)	82.55(2)
tic-tac	75.25(2)	72.81(3)	77.49(1)
vehicle	63.89(3)	72.73(1)	69.18(2)
vowel	71.58(3)	74.80(1)	72.91(2)
waveform	86.44(1)	53.54(3)	53.66(2)
wdbc	88.57(1)	84.72(2)	82.81(3)
wpbc	64.29(1)	61.60(3)	61.92(2)
yeast	59.03(2)	53.74(3)	67.47(1)
ZOO	86.75(1)	86.70(2)	85.34(3)
Average	74.32(1.90)	70.95(2.14)	72.59(1.95)
	•		

TABLE II: Mean accuracies for each dataset and 20 iterations of 5-fold cross-validation for Background Check, O-norm and T-norm methods [1]. The number in brackets represent the rankings of the three methods per dataset.

	Accuracy		Log-loss	
method	EP-CC	BC	EP-CC	BC
abalone	55.06 ± 1.5	$55.36 \pm 1.4^*$	3.94 ± 0.7	$3.32 \pm 0.7^{***}$
autos	67.54 ± 9.2	$69.49 \pm 7.2^*$	1.03 ± 0.5	$0.46 \pm 0.3^{***}$
balance-sc	91.21 ± 2.3***	90.54 ± 2.1	0.96 ± 0.3	$0.54 \pm 0.4^{***}$
car	71.61 ± 1.7	71.63 ± 0.9	2.60 ± 0.2	$2.26 \pm 0.3^{***}$
cleveland	55.95 ± 5.0	$58.44 \pm 3.1^{***}$	1.97 ± 0.5	$1.36 \pm 0.6^{***}$
credit-app	85.85 ± 2.9	$\bf 86.14 \pm 2.8^*$	9.40 ± 0.5	9.45 ± 0.6
dermatolog	96.40 ± 2.2	96.45 ± 2.2	0.21 ± 0.1	$0.05 \pm 0.1^{***}$
diabetes	76.66 ± 2.6	$77.13 \pm 2.9^{**}$	10.30 ± 0.6	10.14 ± 0.9
ecoli	85.23 ± 3.6	84.20 ± 5.5	0.58 ± 0.2	$0.37 \pm 0.2^{***}$
flare	39.74 ± 2.8	$42.82 \pm 2.3^{***}$	2.96 ± 0.5	$2.19 \pm 0.7^{***}$
german	75.12 ± 2.5	74.90 ± 2.2	3.18 ± 0.7	3.30 ± 1.0
glass	64.50 ± 6.8***	62.02 ± 6.4	1.62 ± 0.5	$0.95 \pm 0.5^{***}$
heart-stat	81.85 ± 5.1	$83.13 \pm 5.2^{***}$	6.48 ± 1.0	$5.21 \pm 1.3^{***}$
hepatitis	82.21 ± 5.9	$83.65 \pm 5.0^*$	11.77 ± 1.8	$10.96 \pm 2.2^*$
horse	78.69 ± 5.5	$80.94 \pm 4.1^{***}$	4.80 ± 1.0	$\pmb{2.47 \pm 1.1}^{***}$
ionosphere	86.43 ± 3.4	$88.82 \pm 3.2^{***}$	11.81 ± 0.1	$9.48 \pm 0.8^{***}$
iris	96.43 ± 3.2	96.73 ± 3.1	0.41 ± 0.4	$0.20 \pm 0.3^{***}$
landsat-sa	86.45 ± 0.8	$86.79 \pm 0.8^{***}$	0.53 ± 0.1	$0.36 \pm 0.1^{***}$
letter	80.96 ± 1.5	$81.40 \pm 1.3^{**}$	0.15 ± 0.0	$0.09 \pm 0.0^{***}$
libras-mov	79.31 ± 4.0***	76.54 ± 4.5	0.27 ± 0.1	$0.16 \pm 0.1^{***}$
lung-cance	98.70 ± 2.8	$99.42 \pm 1.6^*$	16.50 ± 0.0	$\textbf{16.50} \pm \textbf{0.0}$
mfeat-karh	95.50 ± 1.0	$96.64 \pm 0.9^{***}$	0.08 ± 0.0	$0.04 \pm 0.0^{***}$
mfeat-morp	73.63 ± 1.8	73.46 ± 1.8	0.59 ± 0.1	$0.49 \pm 0.1^{***}$
mfeat-zern	81.38 ± 1.2	$82.96 \pm 1.3^{***}$	0.37 ± 0.1	$0.09 \pm 0.0^{***}$
mushroom	98.86 ± 0.3***	98.44 ± 0.5	8.83 ± 0.1	$8.65 \pm 0.2^{***}$
optdigits	97.72 ± 0.5	$98.51 \pm 0.3^{***}$	0.04 ± 0.0	$0.02 \pm 0.0^{***}$
page-block	96.00 ± 0.5	$96.14 \pm 0.4^{**}$	0.28 ± 0.0	$0.22 \pm 0.0^{***}$
pendigits	98.08 ± 0.3	$98.25 \pm 0.2^{***}$	0.06 ± 0.0	$0.03 \pm 0.0^{***}$
scene-clas	76.33 ± 2.0	$80.10 \pm 1.3^{***}$	4.04 ± 0.2	$1.72 \pm 0.8^{***}$
segment	94.80 ± 1.0	94.85 ± 0.9	0.24 ± 0.1	$0.15 \pm 0.1^{***}$
shuttle	97.68 ± 0.3***	97.03 ± 0.4	$0.10 \pm 0.0^{***}$	0.13 ± 0.0
sonar	73.57 ± 6.4	$77.76 \pm 5.7^{***}$	4.62 ± 1.2	$2.19 \pm 0.8^{***}$
spambase	92.71 ± 0.8	92.83 ± 0.8	6.82 ± 0.3	$6.12 \pm 0.4^{***}$
tic-tac	67.44 ± 3.0***	65.42 ± 0.9	9.44 ± 1.6***	11.70 ± 0.8
vehicle	78.70 ± 2.7	$79.64 \pm 2.6^{***}$	1.21 ± 0.4	$0.60 \pm 0.3^{***}$
vowel	77.58 ± 3.3	$78.62 \pm 2.6^{***}$	0.38 ± 0.2	$0.14 \pm 0.1^{***}$
waveform-5	84.95 ± 1.0	$86.17 \pm 0.9^{***}$	1.40 ± 0.4	$0.59 \pm 0.2^{***}$
wdbc	96.07 ± 1.7	$97.29 \pm 1.5^{***}$	6.61 ± 0.3	$6.05 \pm 0.4^{***}$
wpbc	74.68 ± 7.1	$78.52 \pm 4.2^{***}$	2.07 ± 1.0	2.37 ± 1.3
yeast	58.89 ± 2.4	59.15 ± 2.4	1.29 ± 0.1	$\bf 1.02 \pm 0.2^{***}$
ZOO	92.71 ± 3.1	$95.14 \pm 3.6^{***}$	0.38 ± 0.2	$0.08 \pm 0.1^{***}$
Average	81.54 ± 14.19	82.27 ± 13.89***	3.42 ± 4.12	$2.98 \pm 4.12^{***}$

TABLE III: Mean and standard deviation of accuracy and log-loss on 41 datasets. Obtained from 20 iterations of 5-fold cross-validation. A Wilcoxon signed rank-sum test was performed for each metric and dataset; * significant at p < 0.05; *** significant at p < 0.005; *** significant at p < 0.001.