LoFin: LoRa-based UAV Fingerprinting Framework

Electrical and Computer Engineering
FLORIDA INTERNATIONAL UNIVERSITY

Knight Foundation School of Computing and Information Sciences

Maryna Veksler¹, David Langus Rodríguez², Ahmet Aris², Kemal Akkaya¹, A. Selcuk Uluagac²
1Advanced Wireless and Security Lab., ²Cyber-Physical Systems Security Lab.
Florida International University
{mveks001, dlang029, aaris, suluagac, kakkaya} @fiu.edu

Overview

- ☐ Introduction
- ☐ Related Work
- ☐ Background
- ☐ LoFin Architecture
- ☐ Performance Evaluation
- ☐ Conclusions & Future Work

Introduction

- ☐ Unmanned Aerial Vehicles (UAVs) have become a world phenomenon:
 - ❖ Used for surveillance, reconnaissance, search & rescue missions
 - Intelligent decision making, mobility, and sensing capabilities
- □ UAV applications often involve long distance communications with the controller (GCS):
 - * Reliable network channel for security and large transmission radius
- ☐ Long Range (LoRa) communication protocol:
 - ❖ Long-range and low-power technology
 - Consistent coverage across urban and rural areas

Motivation

- ☐ UAV applications require strong security:
 - Impersonation attacks
 - ❖ Attack may steal sensitive information
 - Mission infiltration
 - ***** Communication disruption
- ☐ Intrusion Detection system is required:
 - ❖ No sniffing tools developed for UAV communicating via LoRa
 - * Radio frequency (RF) analysis not effective due to channel interference and reconfiguration of LoRa channel

Related Work

- ☐ Device Fingerprinting is an effective technique to detect the device impersonation attack
 - **❖** LoRa fingerprinting:
 - Analysis of physical (PHY) layer radio frequency (RF) using deep learning (DL) [1, 2]
 - Challenges: varying configurations of LoRa protocol
 - **\Delta** UAV fingerprinting:
 - RF statistical analysis [3,4]
 - Challenges: affected by signal-to-noise (SNR) ratio
- □ Our Contribution → LoFin:
 - ❖ Do not require analysis of physical layer communications:
 - Resistant to changes in (1) RF signals due to external factors, (2) LoRa parameters
 - * Passive fingerprinting:
 - No processing overhead
 - Encryption immunity with preserved data security

Background

LoRa Stack

- ❖ LoRa physical layer chirp spread spectrum (CSS) radio frequency modulation system
- LoRaWAN communication protocol and network architecture of upper layers
- LoRa provides flexibility to configure multiple transmission parameters for improved data rate:
 - Spreading factor (SF), bandwidth (BW), coding rate (CR) and carrier frequency (CF)
 - Adjusted based on the payload size and transmission range
- LoRaWAN provides two methods for device activation:
 - Over-the-air-activation (OTAA) provides dynamic assignment of device addresses and session keys.
 - Activation-by-Personalization (ABP) requires hardcoding of device addresses and session keys

☐ LoRa-based UAV Communications:

- ❖ Real-time quality monitoring system [5]
- ❖ Marine coastal environment monitoring [6]
- ❖ UAVs as end-node and gateway devices in LoRa network [7]

Threat Model & Assumptions

- ☐ Assumptions:
 - ❖ Network consists of multiple LoRa-based UAVs and sensors
 - ❖ LoFIN set up on the centralized server to passively capture network traffic
- ☐ Attacks & scenarios considered:
 - **❖** Passive Impersonation:
 - Network infiltration to mimic the behavior of legitimate UAV
 - **❖** Active attack
 - Disrupt functionality of the device identification tool and network communications
 - **❖** LoRa Configurations:
 - Periodic changes of the protocol configuration may impact accuracy of proposed detection mechanism

LoFin Architecture - Overview

☐ Overview:

- ❖ Passively collects network traffic
- ***** Extract device-specific features
- ❖ Generate device signature
- * Classification process & detection of unknown device signatures
- ❖ Devices identify a foe or a friend

LoFin Architecture - Components

- ☐ 4 major components:
 - ❖ feature extraction, signature generation, classifier, and unknown detector
- ☐ Feature Extraction:
 - **A** Considered features:
 - Payload length, device address, SNR, and combination of LoRa configuration parameters
 - ❖ Selected inter-arrival time (IAT) for device signature generation
 - Manufacturing defects introduce unique noises to the data transmission process, resulting in fixed time overhead
 - ❖ IAT for LoRa is affected by Time on Air (ToA):
 - Represent the time it takes a signal to travel from sender to receiver
 - ToA is directly affected by spreading factor (SF) and bandwidth (BW) L:oRa parameters

$$AT = (t_i - t_{i-1}) - ToA_i$$

LoFIN Architecture – Components contd.

- ☐ Signature Generation
 - ❖ Time-series extraction
 - Extract time-series of length *l* for each set of IAT values
 - Extracted features split into N shorter series

$$time_series = [IAT_1, IAT_1, IAT_2, ...IAT_n].$$

- Statistical Analysis
 - Using tsfresh obtained 816 distinctive features
 - Selected 367 significant features based on p-score and relevance table
- ☐ Fingerprinting Classifier
 - ❖ Machine Learning classifiers: KNN, RF, GaussianNB, and SVM)
 - \diamond Produces probability vector, V_p indicating similarity value for known device
 - - Then classification results for known devices are interpreted to determine device identity

LoFIN Architecture – Components contd.

☐ Unknown Detector

- * Responsible for identifying potentially adversarial devices within LoRa network
- ❖ Intermediate stage of *fingerprinting classifier*
 - Applies probability measures to filter out suspicious devices
 - · Threshold approach to spot samples yielding low closeness in regard to known devices

☐ Effectiveness Metrics

❖ Accuracy (ACC) to measure overall system performance

$$ACC = \frac{TP + TN}{TP + FP + TN + FN}$$

- Precision & Recall
 - Accuracy for specific device class and indication of the number of mishits for a given class

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

Performance Evaluation - Testbed

☐ Devices Summary

Device	Device Type	Quantity
CrazyFlee with Arduino expLoRaBLE	Drone Telemetry	6
Arduino Mega	LoRa Transceiver 1	1
Arduino Mini	LoRa Transceiver 2	1
Dragino LHT65	Temperature Sensor	1

☐ Testbed Setup:

- ❖ CrazyFlie drones programmed using Bitcraze library [8]
- ❖ Arduino expLoRaBLE as telemetry
- **❖** MAVLink protocol
- ☐ Data Collected:
 - ❖ Total of \cong 24,000 network packets
 - ❖ 1,200 packets for each device
 - ❖ Additional data collected to implement adversarial random delay scenario

❖ 70% of data used to train LoFin classifier

☐ Devices setup:

- ❖ Drone Telemetry devices configured for a synchronized mission of data collection
- * Rest of the devices transmit independently

☐ LoFin Configurations:

- * Extracted 40 time series vectors consisting of 30 consecutive IAT values for each device
- Selected optimal ML algorithm for fingerprinting classifier
 - RF with 10 trees, entropy function as quality measure of a split, and random split of 42
 - KNN with "ball_tree" algorithm for nearest neighbors computation
- ❖ 5 K-Fold cross validations
 - Optimal model fitting

- ☐ Experiment 1 Isolated Environment
 - ❖ All devices are known and isolated from the adversary
 - ❖ Accuracy: 100% for RF classifier and 99.2% for KNN
- ☐ Experiment 2 Different Configuration Scenarios (Table 1)
 - ❖ LoFin is trained for devices transmitting using **SF7**
 - ❖ Set LoRa SF configuration to **SF10** for 4 devices and apply LoFin framework

Device	RF		KNN	
	Precision	Recall	Precision	Recall
Drone Telemetry 1*	1.0	1.0	1.0	1.0
Drone Telemetry 2*	1.0	1.0	1.0	1.0
Drone Telemetry 3	1.0	1.0	0.89	1.0
Drone Telemetry 4	1.0	1.0	0.88	1.0
Drone Telemetry 5	1.0	1.0	1.0	1.0
Drone Telemetry 6*	1.0	1.0	1.0	1.0
LoRa Transceiver 1*	1.0	1.0	1.0	0.67
LoRa Transceiver 2	1.0	1.0	1.0	1.0
Temperature Sensor	1.0	1.0	1.0	1.0
Average Accuracy	1.0		0.972	

- □ Experiment 3 Impersonation Attack (Table 2)
 - ❖ 6 identical drone telemetry devices;
 - 1 is selected to represent an adversary
 - * Evaluated unknown detector ability to detect foe's traffic
 - **Unknown detector** cannot be used with KNN:
 - Requires probability vector
 - * 100% classification and true negative rate;
 - False negative rate **below 10%**

Devices	Precision	Recall
Drone Telemetry 1	1.0	1.0
Drone Telemetry 2	1.0	1.0
Drone Telemetry 3	1.0	1.0
Drone Telemetry 4	1.0	1.0
Drone Telemetry 5	1.0	1.0
Drone Telemetry 6*	N/A	N/A
Average Accuracy	1.0	
True Negative Rate	1.0	
False Negative Rate	0.082	

□ Experiment 4 – Random Delay Attack (Table 3)

- ❖ Implemented artificial delay to 1 drone telemetry device
 - Used built-in probabilistic random() library to design random delay algorithm
- ❖ Overall accuracy is 95% for RF-based fingerprinting classifier
- Unknown detector trade-off
 - Benign traffic may be marked as potentially adversarial

Device	RF		KNN	
	Precision	Recall	Precision	Recall
Drone Telemetry 1*	1.0	0.86	1.0	0.57
Drone Telemetry 2	1.0	1.0	1.0	1.0
Drone Telemetry 3	1.0	1.0	1.0	1.0
Drone Telemetry 4	1.0	1.0	0.86	1.0
Drone Telemetry 5	1.0	1.0	1.0	1.0
Drone Telemetry 6	0.92	1.0	0.91	0.91
LoRa Transceiver 1	1.0	1.0	1.0	0.67
LoRa Transceiver 2	1.0	1.0	1.0	1.0
Temperature Sensor	1.0	1.0	1.0	1.0
Average Accuracy	0.991		0.964	

p=0; d=0, counter=0;

if counter == p:

transmit

wait d and transmit

p=0; d=0, counter=0;

counter +=1

select p from [30,70] and d from [1,5]

while(True):

else:

Conclusion & Future Work

☐ LoFin:

- ❖ 1st framework to passively fingerprint LoRa devices using MAC layer information
- ❖ 100% precision and recall for majority of the scenarios
- * Resistant to changes in LoRa configurations
- ❖ 100% detection of unknown devices with false-negative rate below 10%
- ❖ Not influenced by changes in PHY layer

☐ Future Work:

- ❖ Increase number of devices and its diversity
- ❖ Improve LoFin robustness against random delay attack

Acknowledgements

This work is partially supported by the US National Science Foundation Awards: NSF-CAREER-CNS-1453647, NSF-1718116, NSF-1663051, Microsoft, and US Army Research Office (Grant Number W911NF-21-1-0264). The views expressed are those of the authors only, not of the funding agencies.

References

- 1. G. Shen, J. Zhang, A. Marshall, L. Peng, and X. Wang, "Radio frequency fingerprint identification for lora using spectrogram and cnn," in IEEE INFOCOM 2021 IEEE Conference on Computer Communications.
- 2. A. Elmaghbub and B. Hamdaoui, "Lora device fingerprinting in the wild: Disclosing rf data-driven fingerprint sensitivity to deployment variability," IEEE Access, vol. 9, pp. 142 893–142 909, 2021.
- 3. N. Soltani, G. Reus-Muns, B. Salehi, J. Dy, S. Ioannidis, and K. Chowdhury, "Rf fingerprinting unmanned aerial vehicles with non-standard transmitter waveforms," IEEE Transactions on Vehicular Technology, vol. 69, no. 12, pp. 15 518–15 531, 2020.
- 4. M. Ezuma, F. Erden, C. K. Anjinappa, O. Ozdemir, and I. Guvenc, "Micro-uav detection and classification from rf fingerprints using machine learning techniques," in 2019 IEEE Aerospace Conference.
- 5. A. Rahmadhani, Richard, R. Isswandhana, A. Giovani, and R. A. Syah, "Lorawan as secondary telemetry communication system for drone delivery," in 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS), pp. 116–122.
- 6. C. A. Trasvi na-Moreno, R. Blasco, Marco, R. Casas, and A. Trasvi naCastro, "Unmanned aerial vehicle based wireless sensor network for marine-coastal environment monitoring," Sensors, vol. 17, no. 3, 2017.
- 7. M. H. M. Ghazali, K. Teoh, and W. Rahiman, "A systematic review of real-time deployments of uav-based lora communication network," IEEE Access, vol. 9, pp. 124 817–124 830, 2021.
- 8. "Bitcraze: Documentation," https://www.bitcraze.io/documentation/start/.

Thank you!

