Краевая задача для уравнения 2-го порядка

Рассматривается следующая краевая задача.

Дано уравнение:
$$y'' = f(x, y), a < x < b$$
 (1)

и граничные условия
$$y(a) = y_a$$
, $y(b) = y_b$. (2)

Требуется найти решение задачи (1)-(2) и построить его график. Рассмотрим задачу Коши для уравнения (1) с начальными условиями

$$y(a) = y_a, \quad y'(a) = h$$
 (3)

План решения основан на многократном решении задачи Коши (1), (3). Значение решения задачи Коши при x = b является функцией от h.

Задача сводится к отысканию такого значения переменной h , при котором выполнено условие на правом конце отрезка, т.е. должно выполняться

$$y(b,h) = y_b . (4)$$

Это уравнение с одним неизвестным h.

Для его решения можно применить стандартный метод половинного деления.

Схема решения

1. Задаем наугад число $h_{\!_0}$, решаем задачу Коши. Например, в Octave или Matlab можно пользоваться функцией ode45 . Далее вычисляем $y(b,h_{\!_0})$.

Если оказалось, что $y(b,h_0)=y_b$, то вам сильно повезло – вы решили краевую задачу. Но это маловероятно. Пусть, например, $y(b,h_0)>y_b$.

- 2. Выберем шаг Δh и решаем несколько раз задачу Коши при $h_1=h_0+\Delta h$, Если снова получили $y_b < y(b,h_1)$ причем $y_b < y(b,h_1) < y(b,h_0)$ решаем задачу Коши при $h_2=h_1+\Delta h$ и т.д. . Процесс повторяется пока не получим неравенство $y(b,h_m) < y_b$. Это означает, что искомое значение попало в "вилку", т.е. $h \in (h_{m-1};h_m)$. Шаг Δh не должен быть слишком маленьким, иначе процесс сильно затянется. Знак шага также не известен заранее, может оказаться, что нужно не увеличивать наклон, а уменьшать.
- 3. Далее применяется стандартный процесс половинного деления к уравнению (4).
- 4. Процесс останавливаем, когда выполнится неравенство $|y(b,h_m)-y(b,h_{m-1})| < 0.001$.
- 5. Возможен случай, когда ни одна интегральная кривая не проходит через точку $(b; y_b)$, т.е. задача не имеет решения. Поэтому нужно ограничить число шагов. Процесс останавливается при m>M, где M заданное число, например, 100. 6. Процесс легко запрограммировать в любой системе, содержащей функции решения

Варианты заданий

задачи Коши.

Везде a = 0; b = 2

Вариант	f(x,y)	Уа	Уь
1	$tg^2(0,5x) + y^2$	1	2
2	$tg(\sqrt{x}) * y^2$	3	4
3	$2^{-x}(x+y)$	2	-1
4	$2^{-x}(x-y)$	4	1
5	$2^{-x}(xy)$	3	-3
6	$\sin(x+y^2)$	2	-2
7	$\cos(xy)$	5	1
8	$\sqrt{2+xy}$	3	3
9	$x/(y^2+1)$	1	-3
10	$y/(x^2 + 1)$	4	-2
11	$\ln(x+1)\cdot y^2$	1	2
12	$2^x/(x+y)$	3	4
13	$2^x/(x^2+y^2)$	2	-1
14	$2^x + 3^y$	4	1
15	$\sin(x-y^2)$	3	-3
16	$\ln(x+1)\cdot\sin(2y)$	1	2
17	$\sqrt{ 2+xy }$	3	4
18	$x/(\cos^2 y + 1)$	2	-1