This is the html version of the file http://www.sp.nps.navy.mil/projects/ferro/vol7no2.pdf. **Google** automatically generates html versions of documents as we crawl the web.

To link to or bookmark this page, use the following url:

http://www.google.com/search?q=cache:ji3aExWvOJQC:www.sp.nps.navy.mil/projects/ferro/vol7no2.pdf+etch+iridium+plasma+Baum&hl=en&ie

er er en økste til gjelde til en læket blever til er forste blevet i 1940 flyttet. Der en forste flytte flytte forste blevet er en blevet flyttet blevet flyttet i 1940 flyttet.

Google is not affiliated with the authors of this page nor responsible for its content.

These search terms have been highlighted: etch iridium plasma baum

Page 1

Ferroelectricity News

A quarterly update on what's happening in the field of ferroelectric

Volume 7, Number 2

WORLDWIDE FERROELECTRICITY RESEARCH:	
INTERDISCIPLINARY IN NATURE	IN THI
Leafing through conference announcements, meeting reports, or symposium	From the
proceedings, one cannot help but be struck by the interlacing and overlapping quality of research in the field of ferroelectricity.	Papers ISIF'99
One case in point is the article by Orlando Auciello, James F. Scott, and	Update o
Ramamoorthy Ramesh called "The Physics of Ferroelectric Memories"	Versaille
published in the July 1998 issue of Physics Today. To find out more about	Publicati
it, turn to page 16.	MRS
	On fer
On pages 15 and 16 you will find information on the latest publications of	Upcomin
On pages 15 and 16 you will find information on the latest publications of the Material Research Society (MRS), featuring low-dielectric constant	Upcomin 15th R
the Material Research Society (MRS) , featuring low-dielectric constant	-
the Material Research Society (MRS) , featuring low-dielectric constant materials and topics such as stresses and mechanical properties of thin films.	15th R
the Material Research Society (MRS) , featuring low-dielectric constant	15th R Physic
the Material Research Society (MRS) , featuring low-dielectric constant materials and topics such as stresses and mechanical properties of thin films. In addition, you might be interested in a free copy of the 1999 MRS Publica-	15th R Physic Piezote
the Material Research Society (MRS) , featuring low-dielectric constant materials and topics such as stresses and mechanical properties of thin films. In addition, you might be interested in a free copy of the 1999 MRS Publica-	15th R Physic Piezote MRS 1
the Material Research Society (MRS) , featuring low-dielectric constant materials and topics such as stresses and mechanical properties of thin films. In addition, you might be interested in a free copy of the 1999 MRS Publications Catalog Supplement (see order information on page 16).	15th R Physic Piezote MRS 1
the Material Research Society (MRS) , featuring low-dielectric constant materials and topics such as stresses and mechanical properties of thin films. In addition, you might be interested in a free copy of the 1999 MRS Publications Catalog Supplement (see order information on page 16). From the National Physical Laboratory in Teddington, Middlesex, UK,	15th R Physic Piezote MRS 1 Calendar
the Material Research Society (MRS) , featuring low-dielectric constant materials and topics such as stresses and mechanical properties of thin films. In addition, you might be interested in a free copy of the 1999 MRS Publications Catalog Supplement (see order information on page16). From the National Physical Laboratory in Teddington, Middlesex, UK, comes an invitation to measurement laboratories to cooperate in evaluating	15th R Physic Piezote MRS 1

In the section Upcoming Meetings we feature the MRS 1999 Fall Meeting in	The Fe
Boston and two conferences that takes place in Russia: the 15th Russian	publishe
Conference on Physics and Ferroelectrics and Piezotechnique 99 , both	Postgrad
held at the same time and place from 14 - 18 September 1999 in Azov near	Academ
Rostov-on-Don.	nia, with
	Naval R
As has become the custom in the Ferroelectricity Newsletter, the major part	Prof.
of each issue is taken up with listing the titles and authors of presentations at	Edito
a variety of conferences. This issue is no exception. You will find the oral	e-ma
and poster papers given at the 11th International Symposium on Inte-	
grated Ferroelectrics , held from 7 - 10 March 1999 in Colorado Springs,	Dr. H
Colorado, USA. In the next issue we plan to bring you the list of presenta-	Mana
tions delivered at the Sixth Japanese - CIS/Baltic Symposium on Ferro-	500 G
electricity that took place in Noda, Japan, from 22 - 25 March 1998. These	Mon
•	phon
proceedings were published in Volume 218, Numbers 1-4 (1998) of Ferro-	fax: +
electrics .	e-ma
Rudolf Panholzer	@ 1000 N
Editor-in-Chief	© 1999 N

Page 2

Spring 1999 Ferr

ISIF'99 PAPERS

The following is a list of the titles and authors of the presentations given at the 11th International Symposium on Integrated Ferroelectrics (ISIF'99) held from 7-10 March 1999 in Colorado Springs, Colorado, USA.

PLENARY SESSION I	Suzuki	2C FRAM Mem
Development Challenges of Gigabit Scale 1T-1C DRAMs B. Melnick	Retention Performance of SBTN FRAM Memory	S. Mitra
Piezoelectric and Pyroelectric Thin	T. Davenport, and S. Mitra	DEVICE INT ISSUES
Films for Sensors and Actuators N. Setter	Integration of Ferroelectric Random Access Memories with a New Cell Structure Using a Novel Processing Technology	The Challenges Capacitors in E A.R. Sitaram

2 of 27

PLENARY SESSION II

High-Density FeRAMs

C. Paz de Araujo

Technology Perspective for 1T/1C FRAMs

K. Kim

PLENARY SESSION III

Studies of Ferroelectric Thin Film and Film-Based Device Processes Via in situ Analytical Techniques O. Auciello

CIRCUITS AND DEVICES

Integration Technology for Ferroelectric Memory

H. Hada and T. Kunio

A 3v 1T/1C 256Kbit FeRAM Using SBT

D.A. Kamp, M.V. Cordoba, D.E. Hodges, G.F. Derbenwick, H.W. Kye, W.S. Kang, and N.S. Kang

A 42.5mm ²Nonvolatile Ferroelectric Memory Utilizing Advanced Architecture for Enhanced Reliability

W. Kraus, L. Lehman, D. Wilson, T. Yamazaki, C. Ohno, E. Nagai, H. Yamazaki, and H. D.C. Kim, H.J. Nam, H.M. Lee, S.M. Cho, W. Jo, J.U. Bu, H.B. Kang, and K.Y. Oh

Advanced LSI Embedded with FeRAM for Contactless IC Cards and Its Manufacturing Technology

Y. Shimada, K. Arita, E. Fujii, T. Nasu, Y. Nagano, A. Noma, Y. Izutusu, K. Nakao, K. Tanaka, T. Yamada, Y. Uemoto, K. Asari, G. Nakane, A. Inoue, T. Sumi, S. Chaya, T. Nakakuma, H. Hirano, Y. Judai, Y. Sasi, and T. Otsuki

An RFID Tag with an Embedded

1K FeRAM Using SBT

G.B. Coombe, T.A. Meester, M.V.

Cordoba, D.A. Kamp, G.F.

Derbenwick, G. Nakane, A.

Inoue, T. Sumi, and T. Otsuki

Evolution of the Integration of FRAM in RFID Applications D. White, and S. Mitra

A Demonstration of Low Voltage Performance, From Scaled PLZT Films, on a Fully Integrated 64K FRAMÒ B. Estep, J. MacWilliams-

Brooks, and S. Mitra

A Method of Characterizing Sense Amplifier Imbalance Issues on a 2T/ Integration of P tric Capacitors Process for Em D.J. Woute Haspeslagh Maes

Remanence Pol Hydrogen Dam Thin Film Capa S. Traynor, Hadnagy

Effects of Ferro on CMOS in Fe S.W. Lee, E J. Lee, and

Fabrication of S
Pb(Zr,Ti)O
,
Stopping Layer
H.M. Lee, D
S.M. Cho, W

Direct Wafer B
Transfer - A Ne
Integration of F
into Silicon Tec
M. Alexe, S
D. Hesse, a

Influence of Dr and Cl on Struc Properties of C Crystalline SrB

2

Page 3

Ferroelectricity Newsletter

ISIF'99 PAPERS

W. Hartner, V. Weinrich, G.	Paz de Araujo	Ba Sr 1-x tric Devic
Schindler, N. Nagel, C. Dehm, C.		G. Aun
Mazur, H. Schroeder, and R.	Fabrication and Characterization of	
Waser	MFISFET Using CMOS Process for	Jin, J. Miche
	Single Transistor Memory Applica-	Micne
Plasma Etching of Ir/PZT FeRAM	tion	Functiona
Device Structures	I. Chung, C.J. Kim, T-Y. Kim, Y.	
F.G. Celii, T.S. Moise, S.R.	Park, and C.W. Chung	(Ba _{1-x} Sr Capacitor
Summerfelt, L. Archer, R.A.		Temperatu
Beavers, D. Vestyk, S. Johnston,	Crystalline Oxides on Silicon -	R. Slo
S. Bilodeau, M. Russell, and P.c.	Alternative Dielectrics for a Ferro-	Liedtk
van Buskirk	Gated Transistor Technology	Lieun
	R.A. McKee, F.J. Walker, and	Graded PZ
Etching Pt Electrodes in a	M.F. Chisholm	with Stoic
Decoupled Plasma Source Chamber		MOD Tec
J. Hwang, S. Mak, C. Ying, K-L.	Epitaxial BaTiO 3Films on Silicon	Z. Che
Chiang, and J. Jin	for MFSFET Applications	2. Cne Paz de
	J. Hallmark, J. Yu, R. Droopad,	raz ae
Etching Mechanisms During	J. Ramdani, J. Curless, C.	Theory of
Platinum Thin Film Patterning with	Overgaard, J. Finder, D.	Theory of tures
a Microwave Ion Gun	Marshall, J. Wang, and B. Ooms	A. L. R
K. Baborowski, P. Muralt, and N.		A. L. R Maryl
Lederman	Ferroelectric Self-Field Effect:	Maryi
	Implications for Size Effect and	
	Memory Device	HIGH FR
FIELD EFFECT DEVICES /	Y. Watanabe	VICES
THEORY		
Advanced Ferroelectric Memory		Correlatio
FET Devices	FUNCTIONALLY GRADED	Properties
T. Nakamura, Y. Fujimori, and	FERROELECTRICS	Films and
H. Takasu	Graded Ferroelectrics: A New Class	Microwav
	of Steady-State Thermal/Electrical/	Modeling
Fabrication and Characterization of	Mechanical Energy Interchange	mental Ve
MFSFET Arrays Using Al/	Devices	F.A. M
BaMgF4/Si(111) Structures	N. Schubring, J. Mantese, A.	С.Н. М
K. Aizawa, and H. Ishiwara	Micheli, A. Catalan, M.	and G
-	Mohammed, R. Naik, and G.	
Ferroelectric-Gate Transistor as a	Auner	Dielectric
Capacitor-less DRAM Cell		Films for T
J-P. Han, and T.P. Ma	Graded Ferroelectric Thin Films	Devices
	Grown by Molecular Beam Epitaxy	<i>X.X. X</i>
Characterization of Y1-Based	X. Pan, W. Tian, and J. Jiang, J.	Akimo
	Hami C. Their I Latting and	and A

Hacni, C. Theis, J. Lettieri, and

D. Schlom

Ferroelectric Gate MOS Capacitors

Formed by MOD Technique for

4 of 27

Nonvolatile Memory Applications K. Arita, T. Otsuki, Z. Chen, M. Lim, J.W. Bacon, and C.A.

Giant Effective Pyroelectric Coefficients from Functionally Graded

Performan Tunable D Electrode

Page 4

Spring 1999

Ferr

ISIF'99 PAPERS

T.V. Rivkin, C.M. Carlson, P.A. Parilla, and D.S. Ginley	Effect of the Catalytic Nature of the Platinum Group Metals on Electrode and Barrier Structures for	C. Cabral, Wise
The Role of Strain and Interfaces in	(Ba,Sr)TiO 3 Thin Film Capacitors	A TiSiN-based
Ferroelectrics for Tunable Micro-	M. Raymond, B White, S.	Diffusion Barri
wave Devices	Madhukar, M. Kottke, T.	Capacitors
H-M. Christen, L.A. Knauss,	Remmel, B. Melnick, and C.	H. Horii, B
K.S. Harshavardhan, and S.D.	Tracy	C.Y. Yoo, H
Silliman		H.B. Park,
	The Temperature Dependence of	Lee
Dielectric Properties of (Ba,Sr)TiO	the Dielectric Properties of	
Thin Films for tunable Microwave	(Ba,Sr)TiO Thin Films	Microstructure
Applications	T. M. Shaw, J. D. Baniecki, R. B.	Properties of Su
W. Chang, J.S. Horwitz, W-J.	Laibowitz, D. E. Kotecki, H.	Thin Films by M
Kim, J.M. Pond, S.W.	Shen, and J. Lian	P. Mahji, Y
Kirchoefer, S.B. Qadri, and D.B.		S.K. Dey, J
Chrisey	Leakage Current and Resistance	and L. Luo
	Degradation Behavior of Doped	
Evidence of a Ferroelectric Phase	Ba Sr 3 TiO Thin Films for	Use of Deuteriu
Transition in Fiber-Textured	DRAM Applications	Investigate Hyd
(Ba x Sr 1-x)Ti O 3+z Thin Films on	S. Hoffman, M. Grossman, and	Degradation of
Pt/SiO2/Si	R. Waser	Capacitors
		r

Effect of N2O on RF-Magnetron

J. Han, V. Balu, J. Lee, R.

Wong, and J. C. Lee

Mohammedali, S. Gopalan, C.

Films for ULSI

Sputtered SrTiO

DRAM Application

on Ferroelectric Films

A.B. Kozyrev, A.V. Ivanov, T.B.

Microwave Phase Shifters Based

S.K. Streiffer, S.E. Lash, C.B.

Bouldin, B. Ravel, D.L. Kaiser,

Parker, A.I. Kingon, C.E.

A. Sirenko, and X.X. Xi

S.R. Gilber

Moise, P. C

Summerfelt

Sputter Deposit

Films for Capac

L.A. Wills, a

Samoilova, O.I. Soldatenkov, L.C. Sengupta, L. Chiu, X. Zhang, Y. Zhu, S. Stowell, S.T.V. Rivkin, C.M. Carlson, P.A. Parrila, and D.S. Ginley

Low Temperature MOCVD BST for High Density DRAM Capaci-

J. Lee, J. Roh, J. Kim -

MATERIALS AND PRO-

CESSES FOR DRAMS: II

J. Joo, J. Park, Y. Kim, K. Lee,

Thermal Stabili Si/TaN/Ir Elect Memory Device F. Zhang, J and S.t. Hsu

MATERIALS AND PRO-**CESSES FOR DRAMS**

Depletion Widths in BST DRAMs I: Voltage Dependence S. K. Dev

BSTO Thin Film for a DRAM Capacitor: Materials Requirements and Issues

Effects of the M Platinum Electr Behavior of TiN Layer D-S. Lee, H

J. Ha, and

Depletion Widths in BST DRAMs II: Zero-Voltage Value (d = 5 ± 2

nm) J. F. Scott

C. Lin, D.E. Kotecki, R. Laibowitz, J.D. Baniecki, K.L.

J. Lian, H. Shene, M. Gutsche,

G. Kunkel, Y.J. Park, Y. Wang,

Saenger, T.M. Shaw, S. Athaval,

4

Page 5

Fabricatio

tric Films

Ferroelectricity Newsletter

ISIF'99 PAPERS

MATERIALS AND PRO-CESSES FOR NVFERAMS

Preparation and Evaluation of SrBi Ta O Thin Films Prepared by the Sol-Gel Method

I. Koiwa

Sub-100 nm SBT Thin Films for Low Voltage and High Density FeRAM Applications V. Joshi, S. Narayan, L.D.

McMillan, and C. Paz de Araujo

Effects of Ca and Sr Dopants in PLZT Thin Films for Low Voltage Operation

H.X. Qin, X.B. Chen, and Y.N. Film Capa Wang Electrode Н. Ка Yamak

MATERIALS AND PROCESSES FOR **NVFERAMS - II**

Fujisaki.

D.A. NBarrier Layers for Integration of R. Lai Ferroelectric Capacitors on Si L. Ber S. Aggarwal

Low Temp Thin Texture Control of Pb(Zr,Ti)O Pb(Zr,Ti)O Films T. Fuj K. Torii, Y. Matsui, and Y. H. Tak

6 of 27 10/13/02 3:24 AN

S-H. Kim, D-J. Kim, J-P. Maria, A.I. Kingon, T.D. Hadnagy, and S. Sun	Hydroden-Induced Imprint Mechanism of Pt/PZT/Pt Capacitor by Low-Temperature Hydrogen Treatment	MATERI - CHEMI DEPOSI
Ferroelectric Properties of Pb0.6Sr0.4TiO Thin Films on Perovskite Buffer Layers C-S. Hou, G-C. Chang, C-C. Chou, and H-F. Cheng	H. Kanaya, T. Iwamoto, Y. Takahagi, I. Kunishima, and S. Tanaka Analysis of Degradation of Pt/ SrBi (Ta/Nb) O /Pt Capacitors	Process E Based Thi Ceramic C M. Wa The Evolu
Nearby-Electrode Injection in Ferroelectric Thin Film Capacitors: Manifestation in Size Effect and Fatigue A.K. Tagantsev, and I.A. Stolichnov	During Annealing in Reductive Atmosphere A. Tofuku, T. Yoshie, T. Osaka, I. Koiwa, H. Kato, Y. Sawada, and A. Hashimoto	Chemical L.D. M A Study o Crystalliza Films Prep
Dielectric and Electric Properties of Sol-Gel Derived PZT and PNZT Thin Films K. Hong, Y.S. Yu, and B.H. Kim	Effect of Top Electrode Deposition Conditions on the Reliability of Pt/ PZT/Pt Ferroelectric Capacitors D.J. Wouters, A.T. Bartic, G. Norda, and H.E. Maes	Using Stea Y. Saw Hashi Kobay
Low Temperature Synthesis of Ferroelectric Sr2Nb2O7 Thin Films by Rapid Thermal Annealing M. Shoyama, A. Tsuzuki, K. Kato, and N. Murayama	Evaluation of PZT Capacitors with Pt/SRO and Pt/IrOx Electrodes for FeRAM J.S. Cross, M. Fujiki, M. Tsukada, T. Tamura, K. Matsuura, H. Ashida, and S.	Thickness Solution D on Fatigue S-H. K and A Review of
Thickness Effect in PZT and SBT Ferroelectric Thin Film J.S. Zhu, X.M. Lu, Z.G. Zhang,	Otani. Electrical Properties of PZT Thin	Processing C. Deh

Page 6

Spring 1999 Ferr

ISIF'99 PAPERS

and G. Schindler

Comparison of CSD and Sputtered

P.C. Van Buskirk, S. Bilodeau, S. Johnston, M. Russel, and D. Vestyk

D.G. Schlo Lettieri, Y. J M.E. Hawle

PZT with Iridium Electrodes		Pan, H. Li,
G.R. Fox, S. Sun, B. Eastep, and	Rotating Disk Reactor - Low	Auciello, J.
T.D. Hadnagy	Pressure Chemical Vapor Deposi-	Uecker, and
	tion (CVD) System Designed for	
Processing of Multilayer PZT	Complex Oxide Film Production	Effect of Chara
Coatings for Device Purposes	G.S. Tompa, L.G. Provost, C.	Buffer Layer on
T. Olding, B. Leclerc, and M.	Zhang, J. Mantesse, F.P.	Properties of (P
Sayer	Gnadinger, G. Huebner, and D.	Thin Films
	Binghaman	H-F. Cheng
Chemical Solution Deposition of		Lin
BaTiO ₃ Thin Films	New Low Temperature Preparation	
D-Q. Li, and Q.X. Jia	of Ferroelectric Bi 4 Ti 3 O 12 Thin	Process Stabilit
	Films by MOCVD Method	PLZT Thin Film
What is the Outlook for PZT Films	T. Kuma	FRAM Product
for Low Voltage NVM Operation?		K. Suu, N. T
A.I. Kingon, S-H. Kim, D.J.	Metal-Organic Chemical Vapor	Hickert, D.
Kim, J.G. Hong, J-P. Maria,	Deposition and Characterization of	Davenport
and S.K. Streiffer	Strontium Bismuth Tantalate (SBT)	
	Using a Novel Liquid Delivery	Epitaxial Bismu
	System	Perovskite Ferr
MATERIALS PROCESSING	S. Narayan, L. McMillan, C.A.	Grown by Pulse
- CVD	Paz de Araujo, K. Uchiyama, M.	A. Pignolet
Chemical Vapor Deposition of	Schumacker, and H. Juergensen	M. Alexe, N
SrBi , Ta ,O , Thin Films for Non-		Harnagea,
volatile Memory Applications	Direct Deposition of SrBi Ta 2O,	and U. Gös
K. Hironaka and C. Isobe	Film on IrO 2 Electrode Using	
	Liquid Source CVD Method	Growth of (111
Fatigue Free Ferroelectric	T. Eshita, H. Yamawaki, S.	RUO ₂ (100)/
Pb Ge O Thin Films Prepared by	Miyagaki, and Y. Arimoto	Electrodes by
Metalorganic Chemical Vapor		T. Maeder,
Deposition	Effects of Growth Conditions and	Sagalawicz
T. Li, F. Zhang and S.T. Hsu	Rf Plasma on Crystalline and	COMPANY EN
	Electrical Properties of SrBi Ta 2O,	SBTN Thin Fil
Novel Precursors for the MOCVD	Thin Films Grown by Liquid	pared by Rf-Ma
of Ferroelectric Thin Films	Delivery MOCVD Using a Double	S. Sun, G.R
T.J. Leedham, A.C. Jones, H.O.	Alcoholate	Hadnagy
Davies, P. O'Brien, P.J. Wright,	T. Jimbo, H. Sano, H. Ishiwara,	T . C . 1 C4
M.J. Crosbie, and D.J. Williams	Y. Takahashi, E. Tokumitsu, and	Interfacial Struc
	H. Funakubo	tric Properties o
Low-Voltalge Ir/PZT/Ir Integrated		Heterostructure
Capacitors Formed Using Thin-	MATERIAL O PROCESSINO	(001)SrTiO 3
Film MOCVD PZT	MATERIALS PROCESSING -	K. Wasa, Y.
T.S. Moise, S.R. Summerfelt,	PVD	I. Kanno, K
F.G. Celii, L. Archer, P. Chen,	Epitaxial Growth of Aurivillius	Schlom, S.
0.0.11 1.4.1	DI I MODELLADID	Gan, and C

Phases by MBE and PLD $\,$

Gan, and C

6

S. Gilbert, M. Anthony,

Ferroelectricity Newsletter

ISIF'99 PAPERS

The Ferroelectric Properties of
PZT40/60 Thin Films Prepared
Using ULVAC ZX-1000 Rf Sputter-
ing System
F. Chu, G. Hickert, T.D.
Hadnagy, and K-K. Suu

NOVEL CHARACTERIZA-TION: I

SLIMM: A Technique for Determination of the Spatial Distribution of the Spontaneous Polarization in Ferroelectric Thin Films

S.B. Lang

Determination of the Thickness Spatial Polarization Distribution in Sputtered PZT Thin Films Using the Laser Intensity Modulation Method T. Sandner, G. Suchaneck, B. KO hler, and G. Gerlach

Domain Kinetics Revisited: Experiments and Modeling V. Gopalan, A. Itagi, S. Gerstl, P. Swart, and E.E. Mitchel

Probing Statics and Dynamics of	A. Gru
Domain Switching in Epitaxial PZT	
Films Using X-Ray Scattering	Imprint, R
C. Thompson, A. Munkolm, K.	Back-Swi
Ghosh, O. Auciello, and G. Bai	and Fatigu
	Studied by
Studies of Ba Sr TiO Thin Films	copy
Growth Processes Using in situ	E.L. C
Time-of-Flight Mass Spectroscopy	
of Recoiled Ions	Polarizatio
A.M. Dhote, A.R. Krauss, O.	Micron Fe
Auciello, J.Im, and R. Ramesh	R. Ram
	Nagar
X-Ray Standing Wave Analysis of	Su, A.
Domain Switching in Single Crystal	and E
Lead Zirconium Titanate (PZT)	
Thin Films	The Ferro
M.J. Bedzyk, O. Auciello, C.	Interface
Thompson, S.K. Streiffer, B.G.	A. Har
Stephenson, J.A. Eastman, G.R.	
Bai, D.A. Marasco, A.	Theory of
Kazimirov, T-L. Lee, and C.B.	Y. Ishi
Eom	
	How to Le
In situ Studies of the Surface	from the S
Structure of Strontium-Bismuth-	<i>V.Y. S</i>
Tantalate Films Using Time-of-	Makar
Flight Ion Scattering and Recoil	Nikola

Studies of Hydrogen-Induced	Spectrosocopy	
Degradation Processes in Pb(Zr x	J. Im, O. Auciello, A.R. Krauss,	Piezoelect
Ti _{1-x})O ₃ (PZT) Ferroelectric Film-	J. Lettieri, and D.G. Schlom	"Tix)O ¸a
Based Capacitors Using Massing		Films Usin
Spectroscopy of Recoiled Ions,		copy
Raman Spectrosocpy Analysis and	NOVEL CHARACTERIZA-	J.A. C
Electrical Characterization	TION - II	Kim, J
A.R. Krauss, J. Im, O. Auciello,	Electric Force Microscopy of	and A
A. Dhote, S. Aggarwal, and R.	Ferroelectric Thin Films	
Ramesh	C. Ahn	180 Doma
		ments in F
The Effects of Oxygen Deficiency	Scaling of Ferroelectric Properties	J.E. B
on Vacancy Related Defects in	in Thin Films	G.S. W
(Pb,La)(Zr,Ti)O Capacitors Studied	C. Ganpule, A. Staneshevsky, Q.	
by Positron Annihilation Spectros-	Su, S. Aggarwal, J. Melngailis,	DIEZOE
сору	E. Williams, and R. Ramesh	PIEZOE
T. Freissnegg, S. Aggarwal, R.		MEMS A
Ramesh, B. Nielsen, D.J. Keeble,	SFM Characterization of SrBi Ta 2O,	Hydrother
and E.H. Poidexter	Thin Films for Nanoscale Memory	and its Ap
	Applications	

Page 8

Spring 1999 Ferr

ISIF'99 PAPERS

Sensors M. K. Kurosawa	B. Willing, P. Muralt, N. Setter, T. Reimann, and O. Oehler	TESTING AN CHARACTE
Piezoelectric Thin Films for MEMS Applications S. Trolier-McKinstry, F. Xu, J- P. Maria, R. Polcawich, W. Ren, and J. F. Shepard, Jr.	Effect of Stoichiometry on the Ferroelectric Properties of (Pb La)TiO , Thin Films I-N. Lin, C-H Lin, Y-H Hsu, and H-F. Cheng	Electrical Meas Speed Switchin Micron-Scale D Capacitors A.D. DeVilb Devilbiss
Optimization of PZT Thin Film and Device Design for Piezoelec- tric Micro Sensors P. Muralt	Mn- and Sb-doped PZT Thin Films for Uncooled Infrared Detector Array Y.Q. Xu, N.J. Wu, and A. Ignatiev	Preparation and PZT Thin Films Conducting Ox <i>J.F. Scott, S</i>

10/13/02 3:24 AN

Epitaxial Single Crystal Heterostructures of Piezoelectric Pb(Mg ,Nb ,)-PbTiO , (PMN-PT) / Metallic Oxide SrRuO ,"

C. B. Eom, D. LaVric, Q. Gan, and R. A. Rao

Microfabrication and Properties of Thin Film PLZT Cantilevers H. Cherry, J. Tseng, C-H. Cheng, and G. Um

Dielectric Hysteresis Under
Transverse Electric Fields in SolGel Lead Zirconate Titanate (PZT)
Films Deposited on ZrO 2 Passivated Silicon
B. Xu, Yaohong, Ye, and L. E.

PYROELECTRIC AND OPTICAL APPLICATIONS

Cross

Sputtering of PZT Thin Films for Surface Micromachined IR-Detector Arrays R. Bruchhaus, D. Pitzer, M. Schreiter, and W. Wersin

Pyroelectric Thin Film Arrays for Gas Spectrometry Applications

8

Integrated Electro-Optic Lenses and Scanners on Ferroelectric LiTaO

V. Gopalan, K.T. Gahagan, J.M.
Robinson, Q.X. Jia, and T.E.
Mitchell

Novel Photoferroelectric Phenomena in Lead Zirconate-Titanate Thin Films

A. Kholkin, N. Setter, O. Boiarkine, and A. Safari

Poling of Ti Rich Lead Titanate Based Pyroelectric Thin Films P. Muralt and M. Kohli

Deposition of Lithium Niobate Thin
Films on Diamond/Silicon Substrates for High Frequency Surface
Acoustic Wave Filter Applications
S. Wang, T.A. Rabson, Q. Su, and
M.A. Robert

Growth and Optical Waveguiding Properties of Rf Sputtered Lithium Niobate Thin Films on Sapphire Substrates

E. Dogheche, D. Remiens, and X. Lansiaux

Hasenkox,

Nonlinear Diele PZT Films at S for Two Differe ization Fatigue D.V. Taylor

An Optimized P odology for Tes ries

S. Mitra an

Study of Degrad
Pb(Zr xTi 1.x)O
tric Capacitors
Conduction An
I. Stolichno
Cross, M. F
Tsukada

Explanation of Behavior of the Based on Time-Current

> A.T. Bartic, Norga, H.E Adriaensse

A Novel Proced Modeling of Di and the Circuit DRAM Operati B-T. Jang, Lee

Page 9

Ferroelectricity Newsletter

ISIF'99 PAPERS

POSTERS: MATERIALS	Low-Temperature Growth of (101)-	PZT-Base
PROCESSING FOR DRAMS	Oriented Barium Titanate Thin	Applicatio
Electrical Properties of (Ba,Sr)TiO	Films on Silicon (111) Substrates by	S-Y. C
Thin Films Doped by Ion Implanta-	Rf Magnetron Sputtering	
tion	J-T. Lee, Q. Su, T.A. Rabson, and	Critical Th
J.D. Baniecki, Q.Y. Ma, R.B.	M.A. Robert	Oxidation
Laibowitz, T.M. Shaw, P.R.		Films
Duncombe, D.E. Kotecki, H.	POSTERS: FUNCTIONALLY	J-W. K
Shen, and J. Lian	GRADED FERROELEC-	and H
		Compositi
Dielectric Properties of Sr TinO 30+1	TRICS	dence of P
Films Grown by MBE	Graded Pb(Zr,Ti)O Thin Films	Pb(Zr,Ti)O
J.H. Haeni, D.G. Schlom, W.	M. Brazier, M. McElfresh, and S.	Н. Ма
Tian, X.Q. Pan, H. Chang, I.	Mansour	A.I. Ki
Takeuchi, and X-D. Xiang		Neuma
	A Method for Depositing Composi-	1.03
Electrode Effects on the Low-	tionally Varied Multi-Layered	Fabricatio
Frequency Dielectric Properties of	Oxide Thin Films	tric Micro
(Ba,Sr(TiO 3 Thin Films Prepared by Pulsed Laser Ablation	M. Brazier, M. McElfresh, and S.	B. Pie
S.J. Lee, K.Y. Kang, S.D. Jung, J-	Mansour	Zakar
W. Kim, and S-K. Han	Electrical Characteristics of Graded	Piekar
n. Kin, and S. K. Han	PZT Pressure Sensor	DeVoe
Reliability of High Dielectric	T.S. Kalkur	
Ba Sr TiO Capacitors Using	1.0.1	
Iridium Electrode	Asymetric C-V Characteristics of	POSTER
S.Y. Cha, B-T. Jang, and H.C.	Graded PZT Thin Film Capacitors	QUENC
Lee	Z. Chen, K. Arita, M. Lim, and C.	Correlatio
	Paz de Araujo	Critical D
Structural Properties of		Ferroelect
Ba0.6Sr0.4TiO Thin Films on		Filters
Epitaxial RuO2 Electrodes	POSTERS: PIEZOELECTRIC	G. Sub
Q.X. Jia, C. Kwon, and P. Lu	AND MEMS APPLICATIONS	Keuls,
		Caned
High Dielectric (Ba Sr)(Ti	High Frequency Ultrasonics Using	Venka
Zr O Thin Film Capacitors for	PZT Sol-Gel Composites) C
Semiconductor Memory Device	M. Lukacs, M. Sayer, and S.	Microwav
Applications	Foster	ing SrTiO
J-S. Kim and S-G. Yoon		A. Koz Ivanov
PST Thin Films with Conducting	Piezoelectric Properties of Lead	
BST Thin Films with Conducting Perovskite Electrodes for DRAM	Zirconate Titanate Thin Films	Pruda
Applications	Characterized by the Pneumatic	Microwav
B. Nagaraj, T.K. Song, T.	Loading Method (PLM)	tric (Ba,Sr
D. Huguraj, T.R. Dong, T.	D-G. Kim and H-G. Kim	210 (20,01

Sawney, S. Aggarwal, R.

Microwav

Page 10

Spring 1999

Ferr

ISIF'99 PAPERS

		Effects of Distin
X. Zhang, Y. Zhu, S.Stowell, S.	MgO (100) and LaAlO (100)	Effects of Platin
Sengupta, T.V. Rivkin, C.M.	Substrates	trode Orientatio
Carlson, P.A. Parilla, and D.S.	C.M. Carlson, J.C. Price, T.V.	ture, Texture an
Ginley	Rivkin, P.A. Parilla, and D.S.	ties of PbTiO
	Ginley	by DC Magnetr
Growth and Characterization of		Y.S. Ahn, D
Ba _{lx} Sr _x TiO ₃ (BST) Thin Films on	Development of Ba Sr TiO -Based	Lee, H-J. W
Selected Electrode/Diffusion	Ferroelectric Structures on Silicon	and E. Yoo
Barrior Heterostructures for	for Room Temperature Microwave	
Application in High Frequency	Applications	Growth of LiNb
Devices	C.L. Canedy, S. Aggarwal, A.	Crystal Sapphir
P.K. Baumann, S.K. Streiffer, O.	Henry, H. Li, L. Salamanca-	Pulsed Laser D
Auciello, M.T. Lanagan, J.	Riba, T., Venkatesan, R. Ramesh,	Y. Gim, K.T
Giumarra, R.A. Erck, J. Im, and	F.W. Van Keuls, R.R.	M. Hawlen,
A.R. Krauss	Romanofsky, N.D. Varaljay, and	Robinson, T
	F.A. Miranda	Q.X. Jia
Ferroelectric Lens Antenna with		
Interdigitated Electrodes	The Effects of Various Dopants on	The Effect of G
J.B.L. Rao, D.P. Patel, L.C.	Barium Strontium Titanate	on Pulsed Laser
Sengupta, L. Chiu, X. Zhang, Y.	F. Barnes, R. Benton, HD. Wu,	(Ba,Sr)TiO
Zhu, S. Stowell, and S. Sengupta	and S. Chumchuensuk	for Pyroelectric
, , , , , ,		tions
Ferroelectric Thick and Thin Film		L.F. Schlos
Varactors		
L.C. Sengupta, L. Chiu, X.	POSTERS: PYROELECTRIC	Pyroelectric Pro
Zhang, Y. Zhu, S. Stowell, S.	AND OPTICAL APPLICA-	Doped Lead-Zi

Sengupta, T.V. Rivkin, C.M.
Carlson, P.A. Parilla, and D.S
Ginley

Circularly Polarized Microstrip
Patch Fed by X-Band Phase Shifter
Made from Ferroelectric Materials
S. Stowell, Y. Zhu, L. Sengupta,
S. Sengupta, X. Zhang, and L.
Chiu

Low Loss Tunable Dielectric
Constant Materials on Intragrain
Concentration Gradient
(Ba,Sr)TiO Ceramics
I. Lubomirsky, O.M. Stafsudd,
and F. DeFlaviis

Structural and Dielectric Effects of
Annealing on High Quality LaserAblated Ba Sr_{1-x} TiO Thin Films on

10

TIONS

Microstructural Characterization of
Epitaxial PbTiO Thin Films Using
Synchrotron X-Ray Diffraction

K.S. Lee and S. B. Baik

Epitaxial Lead-Based Ferroelectric Thin Films for Integrated Optics Applications

E. Dogheche, A. Boudrioua, D. Remiens, and J.C. Loulergue

Peculiarities of Pyroelectric Properties of Low-Coercive Ferroelectric
PZT-Based Materials
Y.N. Zakharov, G.M. Akbaeva,
V.Z. Borodin, and A.G. Lutokhin

Fabrication of (Pb,La)TiO Thin Films by Pulsed Laser Deposition J-H. Yang and S-G. Yoon Thin Films Prep Processing

C.W. Tipton Robertson, Sawhney, R Velasquez,

Infrared Absorp
Thin Film Struc
Novel Conduct
R.C. Hoffm
Robertson,
Tidrow, W.
Aggarwal,
Udayakuma

Deposition and Scandium Tant High Performan Arrays M.A. Todd,

Hanson

Page 11

Ferroelectricity Newsletter

ISIF'99 PAPERS

Jones, D.J. Wallis, M.J. Slater, M.A.C. Harper, D.J. Williams, M.J. Crosbie, P.J. Wright, and R. Watton

Dielectric and Electromechanical
Properties of Pyrochlore-Free
PB(Mg Nb 1/3)O Thin Films
Z. Kighelman, D. Damjanovic, a.
Seifert, L. Sagalowicz, and N.
Setter

An Optimized Process for
SrBi ₂Ta ₂O ₃Thin Films Using a
Novel Chemical Solution Deposition Technique
S-H. Kim, D-J. Kim, J-P. Maria,
A.I. Kingon, J. Im, and S.K.
Streiffer

Microstructure Evolution and Leakage Phenomena of CSD PLZT Thin Films M. Fujiki, J.S. Cross, J. Tsukada, The Reliab
Films for F
Applicatio
T. Li, F
Hsu

Electrical and/or Bi-Prepared b C.I. C Kim

The Effect of Crystalline Structure	K. Matsuura, H. Ashida, and S.	Improvem
on the Pyroelectric Properties of	Otan	Leakage P
Lead Titanate Based Devices		Pb(Zr 0.52
R.P. Godrey, C.L. Canedy, C.	The Solvent Effect on the PZT	pared by M
Ganpule, T. Venkatesan, R.	Precursors	sition Proc
Ramesh -C.W. Tipton, and R.C. Hoffman	W-W. Zhuang, R. Barrowcliff, and G. Stecker	С-Н. L
		Quantitati
		Oxygen D
POSTERS: MATERIALS	POSTERS: MATERIALS	Ferroelect
PROCESSING - CHEMICAL	AND PROCESSES FOR	Q. Tan
SOLUTION DEPOSITION	NVFERAMS	
Epitaxial Growth of SBT Thin	Properties of Zirconium Doped Sr-	Effect of A
Films by Chemical Solution Deposi-	Bi-Ta-O Thin Films	the Delam
tion	R. Barz, S.K. Dey, and D.	SiO2/Pt/P
J.H. Kim, F.F. Lange, and C. I.	Neumayer	Capacitor
Cheon	,	Y. Par
	Intrinsic Stress Dependence of Pt	
Temperature and Frequency Stable	Hillock Formation and its Related	Effect of (
Sr2(Ta Nbx)2O7 Dielectric Films	Electrical Properties of SBT Capaci-	Layer on t
by Sol-Gel Processing	tor	Pb(Zr,Ti)O
Y.W. Shin, A.C. Kirby, and S.K.	S.Y. Kweon, S.J. Yeom, H.J. Sun,	<i>G.J. H</i>
Dey	N.K. Kim, Y.S. Yu, and S.K. Lee	I. G
		Influences
Crystallization Behavior of Alkoxy-	XRD Data and Low-Temperature	SrBi ₂ Ta <i>D-J. K</i>
Derived SrBi ₂ Ta ₂ O ₉ Thin Films on	Phase of Sr-Bi-Ta-O Films	D-J. K and A
Pt-Passivated Si	J.S. Lee, H.J. Kwon, H.H. Kim,	ana A
K. Kato	and Y.W. Jeong	Kinetics o
		During Ra
Synthesis of Controlled Carbon	Investigation of Growth Evolution	Sol-Gel PZ
Content MOD Precursor Solutions	in c-Axis SrBi 2Nb2O Epitaxial	V.Y. S
for Bismuth Layered Structures	Thin Films	Subbo
T. K. Dougherty, O.G. Ramer,	J. Lettieri, Y. Jia, D.G. Schlom,	Bolten
and J. Drab	G.W. Brown, M.E. Hawley, R.	Waser
	Uecker, and P. Reiche	,, asc,

Page 12

Spring 1999 Ferr

ISIF'99 PAPERS

	ISIF'99 PAPERS	
Characterization of Plasma Etch Processes for Ferroelectric Materi-	R. Waser	SBT-Based Fer Nonvolatile No
als in a High Density Plasma	The Switching Characteristics of	Out (NDRO) M
Reactor Modified to Facilitate	SrBi , Ta , O , Thin Film Prepared by	M. Lim and
Volume Device Manufacturing	MOD Method	
P. Werbaneth, M. Huffman, J.	X.B. Chen, F. Yan, Z.G. Zhang,	TEM Observati
Meyer, A. Quick, and S. Ross	J.S. Zhu, and Y.N. Wang	Films Grown on
, ~	Ç	Y2O Buffer L
	Studies of Retention Behavior of	M.M. Sarin
POSTERS: TESTING AND	SrBi , Ta ,O , Thin Films	Shoriki, B-E
CHARACTERIZATION	Z. Zhang, J. Zhu, J. Liu, F. Yan,	and H. Ishi
Issues for Scaling of Ferroelectric	X. Chen, X. Lu, H. Shen, and Y.	
Thin Films for Low Voltage	Wang	Integrating Part
Operation		a Metal-Ferroel
S. Bilodeau, S. Johnson, M.	Fatigue Induced Evolution of the	tor Field Effect
Russell, D. Vestyck, P.	Domain Structure in Epitaxial Thin	T. C. MacL
VanBuskirk, J. Roeder, T.	Films	
Baum, B. Hendrix, and D.	V.Y. Shur, S.D. Makarov, N.Y.	
Desrochers	Ponomarev, E.V. Nikolaeva, E.I.	POSTERS: M
	Shishkin, L.A. Suslov, N.N.	PROCESSIN
Investigation into the Reliability of	Salaschenko, and E.V. Kluenkov	Phasic and Mic
Ferroelectric Memories		tion During the
D. Dalton, and T. Davenport	DOOTEDO EIELD EEEEOT	Bismuth Films
	POSTERS: FIELD EFFECT	Substrates
Local Charge Compensation-	TRANSISTORS	C-H. Lu an
Assisted Cation Place Exchange	Interfacial Control of SrBi Ta 2O,	
and Ferroelectric Fatigue Resis-	Based Field Effect Transistor with	Preparation and
tance of SBT	YSZ, CeO2 Buffer Layer	Properties of St
A.C. Palanduz, and D. M. Smyth	J-K. Lee, S-M. Jang, J-H. Kim,	Bismuth Tantal
	and H-J. Jung	C-H. Lu an
Accurate Electrical Characteriza-		
tion of (Ba,Sr)TiO 3Films Utilizing	Effect of Crystalinity on Ferroelec-	Influence of the
Transmission Matrices	tric Thin Film Transistor	muth Oxide on
A.C. Kirby and S.K. Dey	H. Fujisawa, S. Aggarwal, and R.	Properties of La
	Ramesh	Bismuth Tantal

16 of 27

The Integration of SrBi

NDRO-Type FRAM

Insulators/Si Structure for MFIS in

W-J. Lee, C-R. Cho, C.H. Shin,

Ta O,/

Polarization Relaxation in PZT

I. Jenkins, V. Nagarajan, S.

Aggarwal, B. Nagaraj, T.K.

Song, and R. Ramesh

Thin Film Capacitors

Y-C. Chen a

POSTERS: M PROCESSIN

Reversible and Irreversible Domain
Reversible and irreversible Domain
Wall - Contributions to the Polar-
ization in CSD Prepared
Ba 1-x PbxTiO 3 Thin Films
M. Hoffmann, D. Bolten, U.
Hasenkox, O. Lohse, and

Pt/PZT/TiO2 Gate Stack Etching by Using TiO2 Hard Mask for Metal-Ferroelectric-Insulator-Semiconductor (MFIS) FETs C.W. Chung, T-Y. Kim, C.J. Kim, and I. Chung

B-W. Kim, B-G. Yu, and K-I. Cho

Deposition of P Films by Direct MOCVD J. Goswam Wang, and

Epitaxial Grow RuO2 Thin Film

12

Page 13

Ferroelectricity Newsletter

ISIF'99 PAPERS

P. Lu, S. He, F.X. Li, and Q.X.	Fabrication of Ferroelectric YMnO	3	Developm
Jia	Thin Films for Nonvolatile Memory	·	Long Life
	Devices by MOCVD and		Delivery S
Effect of Rf Power on the Micro-	PEMOCVD		Systems
structures and Electrical Properties	G-J. Choi, W-C. Shin, and S-G.		<i>F.P. G</i>
of SBT Thin Films by Plasma-	Yoon		G.S. T
Enhanced Metalorganic Chemical			Zhang
Vapor Deposition			Desu,
W-C. Shin and S-G. Yoon			

PIEZOELECTRICITY AND PYROELECTRICITY DATABASE (PPDB)

The database used in Professor Sidney B. Lang's "

Guide to the Literature of Piezoelectricity and which appears semiannually in Ferroelectrics is now accessible on the Gordon and Breach Internet W

The current version of the Piezoelectricity and Pyroelectricity Database (PPDB) contains references to most of the publications on piezoelectricity and pyroelectricity during the period 1990-1996. The database will be updated wit an additional 500-1000 new references about twice a year. In order to make the database as comprehensive as possible, references are included even if piezoelectricity and/or pyroelectricity formed a very minor part of the contents of the publication. The current database contains 10722 references.

References are given for articles in journals, chapters in proceedings or books, books, patents, theses and reports. F bibliographic information is given so that the reader can locate the publication. Additional information such as conference presentation data, language (if other than English) and patent assignees is given where available.

The URL for accessing PPDB is

http://www.gbhap-us.com/c3/lit_guide/

Information in the PPDB can be accessed in two ways: (1) Direct search of the database on the Internet or (2) Dow loading of the entire database and a public-domain search engine to the user's computer. Full instructions are supplied.

Any problems with the PPDB or suggestions should be sent to:

Prof. Sidney B. Lang

Department of Chemical Engineering, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel fax: +972-7-647-2916; email: lang@bgumail.bgu.ac.il

Volumes 217, 218, and 219, Numbers 1 - 4 (1998) of *Ferroelectrics* contain the proceedings of

The Sixth Japanese - CIS/Baltic Symposium on Ferroelectricity

held in Noda, Japan 22 - 25 March 1998

Page 14

Spring 1999 Ferr

VERSAILLES PROJECT

VERSAILLES PROJECT ON ADVANCED MATERIALS AND STANDARDS

Mark Gee and Markys G. Cain of the National Physical Laboratory in Teddington, UK, are initiating a project to evaluate measurement methods for determining the performance related properties of electroceramics. They are planning to enlist the cooperation of measurement laboratories interested in this project.

Electroceramics, such as piezoelectric and electrostrictive materials, have the capability of converting electrical energy into mechanical energy (or vice versa). The technological importance of these materials is increasing, with widespread applications in actuator and sensor applications.

Although there has been some standardization activity

projects cannot be fully predicted in advance of the survey. However, it is expected that w carried out at least on the development of rec procedures for the following four projects:

> 1. Measurement of piezoelectric coeffic als of differing geometries and configur including the assessment of direct and c coefficients

18 of 27 10/13/02 3:24 AN

through bodies such as the IEEE, and more recently through CENELEC in the development of new standards, many of the most important properties that are required for these materials when used as sensors and actuators remain without internationally recognized test methods.

Measurements where work is required include:

- * direct and converse piezoelectric coefficient measurement
- * high stress dielectric property measurement
- * the measurement of strain at high stresses, and
- * the measurement of degradation of materials performance under repeated electrical and mechanical loading.

Industries that would benefit from these activities are the manufacturers of materials, sensors, actuators, and any industries that incorporate devices based on these materials.

Although further practical measurement-based projects would be expected to follow, the subject of these

- 2. Measurement of piezoelectric strain cal/mechanical stress
- 3. Measurement of piezoelectric and dities at high stress
- 4. Measurement of electrical and mech piezoelectric ceramics materials.

Appropriate links would be developed with of the CENELEC committee (Alan Thomas) route forward to the development of standard prestandardization work performed in the Te Area is straightforward.

It is expected that the development of standa would proceed from Autumn 1999 with an e lifetime of 2-3 years.

Please direct any inquiries to:
Mark Gee & Markys G. Cain
National Physical Laboratory
Queens Road, Teddington, Middlesex, TW1
United Kingdom
phone: +44 181 943 6374/6599; fax: +44 18

email: markys.cain@npl.co.uk

Volume 220, Numbers 3-4 (1999) of

Ferroelectrics

is a special issue on

Ferroelectric and Related Models in Biological Systems

A collection of papers from the

Second Workshop on Nonlinear Models of Biomembrane Molecular Structures
held in Pushchino, Russia, 26 June - 1 July 1995

&

The Workshop on Condensed-state Models of Voltage-dependent Ion Channels
Kansas City, Missouri, USA, 25 February 1998

14

Page 15

Ferroelectricity Newsletter

MRS PUBLICATIONS

NEW RELEASES FROM THE MATERIALS RESEARCH SOCIETY

MRS Expands Series on Thin Films-Stresses and Mechanical Properties

The newest volume is a continuing series from the Materials Research Society, Thin Films-Stresses and Mechanical Properties VII, documents symposium reports from the 1997 MRS Fall Meeting in Boston, Massachusetts, and contains 95 papers, 646 pages.

Mechanical behavior in thin films continues to be a growing field of interest in the materials research community. This behavior can critically influence the design, performance, and reliability of thin-film structures used in every area of thin-film technology. Examples of affected areas include semiconductor and magnetic recording technology, as well as protective and hard-coating technology. As a result, it has become important to study and attempt to understand fundamental issues involved in film-substrate adhesion, the development of intrinsic stresses, and the mechanisms of plastic deformation, strain relaxation, and fracture in thin films.

This volume, the seventh in a popular series from the MRS, brings together an international group of researchers and students from industry, academia, and national laboratories to address the issues at hand. A great deal of work is directed toward improving existing, as well as developing new, mechanical property characterization techniques, such as more sensitive ultrasonic methods for elastic behavior determination and low-load indentation methods to investigate yield, creep, and fracture behavior. Experimental, theoretical, and modeling work is presented. Topics include: novel testing methods; low-load indentation; metallization and reliability; structural and mechanical stability; stresses and mechanical behavior; surface and tribological properties; adhesion; deformation mechanisms; stresses in thin films-generation mechanisms and measurement techniques; modeling and simulation; multilayered and superlattice thin films, and structure/ property/processing relationships.

Edited by Robert C. Cammarata (Naval Research Laboratory), Michael A. Nastasi (Los Alamos National Laboratory), Esteban P. Busso (Imperial College, University of

Symposium Proceedings Series. I hardcover or microfiche for \$62.0 \$71.00 (US list), and \$82.00 (No

MRS Introduces New Additi Low-Dielectric Constant Ma

The latest edition in the continuin Materials Research Society,

Materials IV, documents symp 1998 MRS Spring Meeting in San nia, and contains 49 papers, 386 p

While this volume continues the s science related to the developmen (low-k) constant materials, it part four major areas: polymeric and in dielectrics; metrology and charact integration and low-k interconnec low-k interconnects. These are im development of low-k dielectrics nects, where materials and proces tant role in controlling the structu reliability of the interconnect. The ened by invited and contributed p universities and industry, illustrati plinary nature of the field.

Edited by Chien Chiang (Intel Co Ho (University of Texas-Austin), (Rensselaer-Polytechnic Institute) Wetzel (Motorola Inc.), *Lo Materials IV* (ISBN: 1-55899-in the MRS Symposium Proceedi available in hardcover or microfic members), \$72.00 (US list), and \$

For further information, or to place

Materials Research Soc Customer Services Dep 506 Keystone Drive Warrendale, PA 15086

phone: +724-779-3003 fax: +724-779-8313

Page 16

Spring 1999

Ferr

PUBLICATIONS

1999 MRS Publications Catalog Supplement Now Available

The 1999 Materials Research Society (MRS) Publications Catalog Supplement , containing 72 new booksall exploring interdisciplinary research on advanced materials-is now available. The volumes span many subject areas, including biomedical materials, catalysts, ceramics and composites, computational methods, electronic materials and processing, education, glasses and insulators, materials characterization, metals and alloys, novel processing/applications, nuclear waste management, polymers, sensors, and more.

Also featured in this Supplement is the new *ings of the 12th International Zeolite Conference*With four volumes and more than 3360 pages, this proceedings is one of the largest collections on zeolite science ever assembled.

To receive a free copy of the 24-page catalog, contact the Material Research Society, Customer Services Department. (For address, phone, and fax, see previous page.)

Ferroelectric Memories Featured in

Orlando Auciello (Argonne National L
Argonne, Illinois, USA), James F. S
New South Wales, Sydney, Australia), and
Ramesh (University of Maryland, Colleg
land, USA) published an article called
Ferroelectric Memories" in the July
Physics Today

After discussing basic ferroelectric physics, explain how NVFRAMs work and give an o early developments in the field of ferroelectr Capacitor degradation and extending the pol retention time were obstacles which could on come by using thin-film technology. But that all the problems. Today there are still basic p related issues we do not completely understa authors deal with these challenges, describe state of thin-film technology and industrial fa conclude with an evaluation of the role ferro memories will play in the future. The article figures and features two boxes: "DRAMs ba als with high permittivity" and "Other applic ferroelectric materials."

Ferroelectricity Newsletter

Proceed-

including all back issues is available on Internet

http://www.sp.nps.navy.mil/projects/ferro/ferro.html

in Ad be Acrobat PDF file format

The PDF file format maintains the graphics and organization of the printed newsletter. Adobe Acrobat Reader is a helper application distributed free for Web browsers. Acrobat is available for Macintosh, Windows, DOS, SGI, and Sun SPARC operating systems.

If you want a hard copy of the newsletter, you must let us know by

fax: +831-655-3734 e-mail: liebmann@redshift.com

or rpanholzer@nps.navy.mil

mail: Hannah Liebmann, 500 Glenwood Circle, Suite 238, Monterey, CA 93940-4724 USA

16

Page 17

Ferroelectricity Newsletter

UPCOMING MEETINGS

The 15th Russian Conference on Physics of Ferroelectrics 14 - 18 September 1999 Azov, near Rostov-on-Don, Russia

Sponsored by the Ministry of General and Professional Education of Russia, the Scientific Committee of Physics of Ferroelectrics of the Russian Academy of Science, Rostov State University, Rostov State Pedagogical University, t Scientific and Research Institute of Physics at Rostov State University, and the Moscow Institute of Radio Engineer ing, Electronics and Automatics - Technical University, the 15th Russian Conference on Physics of Ferroelectrics, with the participation of foreign scientists, will be held in Azov from 14 - 18 September 1999.

Topics

- * Physical properties of ferroelectrics
- * Phase transitions and critical phenomena
- * Structure and dynamics of crystal lattice
- * Relaxor ferroelectrics
- * Surface phenomena, nanocrystals, incommensurate phases, etc.
- * Domain structure and processes of switching

* Physical properties and processes in ceramics and compound materials

Forms of Presentati n

- * Plenary presentation (40 minutes)
- * Original presentation (15 minutes)
- * Poster presentation
- * Official languages are Russian and English

Organizing Committee:

- K. S. Alexandrov (Krasnoyarsk) chairman
- A. A. Grekov (Rostov-on-Don) vice-chairman
- V. P. Sakhnenko (Rostov-on-Don) vice-chairman
- I. N. Chugueva (Moscow) scientific secretary
- E. V. Bursian (St. Petersburg)
- T. R. Volk (Moscow)
- S. A. Gridnev (Voronez)
- V. V. Lemanov (St. Petersburg)
- V. K. Malinovsky (Novosibyrsk)
- A. S. Sygov (Moscow)
- B. A. Strukov (Moscow)
- A. V. Shilnikov (Volgograd)
- L. A. Shuvalov (Moscow)
- V. Y. Shur (Ekaterinburg)

Contact

344090, Russia, Rostov-on-Don, Stachky Ave., 194, Institute of Physics of Rostov State University

phone: 7(86-32)28-06-76; 22-16-42; 28-50-66

fax: 7(86-32)28-50-44 email: pan@ip.rsu.ru

Page 18

Spring 1999 Ferr

UPCOMING MEETINGS

Piezotechnique 99 14 - 18 September 1999 Az v, near Rostov-on-D n, Russia This international conference covering scientific and practical aspects of fundamental problems of piezoelectricity and its applications is sponsored by the Ministry of General and Professional Education of Russia, the Russian Space Agency, Rostov State University, the Scientific & Technological Bureau Piezopribor at Rostov State University, as well as the Scientific and Research Institute of Physics at Rostov State University.

Topics

- * Theoretical modeling and design of piezoelectric transducers and devices
- * Application of materials for piezotechnique devices
- * Theoretical and experimental investigations on physics of piezoelectric transducers, on polarization processes, and technological aspects of piezomaterials processing
- * Piezoelectric materials science
- * Special instruments for investigation and testing of piezomaterials, sensors and piezoelectric transducers
- * Detecting and transforming devices, nondestructive testing devices, filters, drives, piezomotors, piezotransformers, ultrasound systems, medical equipment and household appliances
- * New directions of piezotechnique (smart materials, hybrid structures, nontraditional piezoelectric systems, nanotechnology, etc.)
- * Exhibition of piezoelectric products (materials, technologies, active elements, devices), presentation and sale of scientific and technical materials (monographs, proceedings, advertisement prospects etc.)

Exhibitions and Company Participation

Domestic and foreign piezoelectric companies are welcome to participate. Companies could present a talk as well as exhibit samples of their products.

Proceedings

The presentations will be published before the beginning of the conference as

Conference Proceed

Organizing Committee

A. E. Panich (Rostov-on-Don) - chairman

V. P. Sakhnenko (Rostov-on-Don) - chairman

A. V. Gorish (Moscow) - vice-chairman

V. K. Dolya (Rostov-on-Don) - vice-chairman

V.Y. Topolov (Rostov-on-Don) - scientific secretary

The 15th Russian Conference on Physics of Ferroelectrics

is held simultaneously with

Piezo

pants of Piezotechnique 99 can attend the 15th Russian Conference on Physics and Ferroelectrics without additional fee.

Contact

Institute of Physics, Rostov State University

Stachki Ave., 194, Rostov-on-Don, 344090, Russia

phone: 7(8632)28-0676; 22-1642; 28-5066; fax. 7(8632)28-5044; 28.5112

email: pan@ip.rsu.ru

18

24 of 27 10/13/02 3:24 AM

Ferroelectricity Newsletter

UPCOMING MEETINGS

Materials Research Society 1999 Fall Meeting 29 November - 3 December 1999 Boston, Massachusetts, USA

The Fall 1999 Materials Research Society Meeting will highlight recent and significant advances in the understand and synthesis of materials. More than 40 technical symposia will cover a wide range of topics in materials science, including self-assembled and nanostructured materials, surfaces and interfaces, thin-film materials and processes, s materials including biological applications, semiconductor devices, ceramics, structural materials, and materials modeling.

New symposia will be offered in many exciting areas, such as biomineralization, the materials science of food, complex fluids, superplasticity, molecular electronics, and smart materials. Popular ongoing series of symposia wil continue in nitride semiconductors, ferroelectric thin films, nanophase and nanocomposite materials, high-temperat superconductors, the materials science of MEMS devices, interfacial engineering and epitaxy, and nuclear waste management. Symposia on computer modeling and calculations in materials science will provide a forum for interation between theorists and experimentalists. Strong interaction among the symposia will highlight the interdisciplinary nature of materials science.

Tutorial sessions in selected areas will provide introductions to new fields. There will be an exhibition of products and services of interest to the materials community, and the popular Symposium X series will feature topics on the forefront of materials science.

Sample of Symposia

- * T: Structure and electronic properties of ultrathin dielectric films on silicon and related structures
- * V: Thin Films-Stresses and mechanical properties VIII
- * Y: Ferroelectric thin films VIII
- * Z: Thin films for optical waveguide devices

Abstracts

For all abstracts submitted by email, fax, or mail, the deadline is 7 June 1999 Because th submit an abstract is via the MRS Website-the choice of more than 90 percent of submitting authors-the deadlin for abstracts submitted via the Website will be extended until 21 June 1999

For specific technical information, c ntact any of the 1999 Fall Meeting Chairs

Paul D. Bristowe, Department of Materials Science and Metallurgy, Cambridge University, Pembroke Str Cambridge CB2 3QZ, UK; phone: +44-1223-334305; fax: +44-1223-334567; email:pdb1000@cus.cam.ac.uk

David G. Grier, James Franck Institute and Department of Physics, University of Chicago, 5640 S. Ellis A Chicago, IL 60637, USA; phone: +773-702-9176; fax: +773-702-5863; email: grier@fafnir.uchicago.edu

Fernando A. Ponce, Department of Physics and Astronomy, Arizona State University, PO Box 871504, T AZ, USA; phone: +602-965-3561; fax: +602-965-9004; email: ponce@asu.edu

Ellen D. Williams , Department of Physics, University of Maryland, College Park, MD 20742-4111, USA phone: +301-405-8349; fax: +301-314-9465; email: williams@surface.umd.edu

Website

www.mrs.org

Page 20

Spring 1999 Ferr

CALENDAR OF EVENTS 1999

		CALENDAR OF EVENTS 1999
Jun 7-10	*	Transducers '99: The 10th International Conference on Solid-State Sensors and Actuators, Sendai, Japan (see Ferroelectricity Newsletter, Vol. 6, No. 3, p.17)
Jun 20-25	*	Gordon Research Conference on Thin Films and Crystal Growth Mechanisms, Plymouth State College, Plymouth, New Hampshire, USA Gordon Research Conferences, University of Rhode Island, PO Box 984, West Kingston, RI 02894-0984; phone: +401-783-4011; email: grc@grcmail.grc.uri.edu Website: http://www.grc.uri.edu
Jun 24-26	*	3rd Korea-Japan Conference on Ferroelectrics, Kyungju, Korea (see Ferroelectricity Vol. 6, Nr. 4, p. 35)
Jul 12-16	*	9th European Meeting on Ferroelectricity (EMF-9), Prague, Czech Republic (see Newsletter . Vol. 6, No. 3, p. 18)
Jul 31- Aug 1	*	Short Course on Crystal Growth, Tucson, Arizona, USA (see Ferroelectricity Newslett No. 3, p. 19)
Aug 1-6	*	11th American Conference on Crystal Growth and Epitaxy, Tucson, Arizona, USA (see <i>Newsletter</i> , Vol. 6, No. 3, p. 19)
Aug 4-13	*	18th International Union of Crystallography and General Assembly, Glasgow, Scotland

26 of 27 10/13/02 3:24 AN

Aug 29-	*	7th International Conference on Ferroelectric Liquid Crystals (FLC 99), Darmstadt, Germany
Sep 3		(see Ferroelectricity Newsletter, Vol. 7, No. 1, p. 23)
Sep 14-18	*	15th Russian Conference on Physics of Ferroelectrics, Rostov-on-Don, Russia (see p. 17)
Sep 14-18	*	Piezotechnique 99, Rostov-on-Don, Russia (see p. 18)
Sep 30- Oct 2	*	European Conference on Macromolecular Physics (EPS'99), Potsdam, Germany (see <i>Newsletter</i> , Vol. 7, No. 1, p. 23)
Nov. 29- Dec. 3	*	MRS 1999 Fall Meeting, Boston, Massachusetts, USA (see p. 19)