MATH 302

Chapter 5

SECTION 5.5: THE METHOD OF UNDETERMINED COEFFICIENT II

Contents

When The Force Function Is A Trig. Function Case I	
When The Force Function Is Polynomial Times Trig. Function	6
When The Force Function Is Poly., Expo., Trig. Functions Recap	8 10

Created by: Pierre-Olivier Parisé Fall 2022

WHEN THE FORCE FUNCTION IS A TRIG. FUNCTION

We consider the following first basic case:

$$ay'' + by' + cy = F\cos\omega x + G\sin\omega x$$

where F, G and α are fixed real numbers.

Case I

When $\cos \omega x$ and $\sin \omega x$ are not solution to the complementary equation ay'' + by' + cy = 0.

EXAMPLE 1. Find the general solution to

$$y'' - 2y' + y = 5\cos 2x + 10\sin 2x.$$

Case II

When $\cos \omega x$ or $\sin \omega x$ are solutions to the complementary equation.

EXAMPLE 2. Find the general solution to

$$y'' + 4y = 8\cos 2x + 12\sin 2x.$$

WHEN THE FORCE FUNCTION IS POLYNOMIAL TIMES TRIG. FUNCTION

We consider the following second basic case:

$$ay'' + by' + cy = F(x)\cos\omega x + G(x)\sin\omega x$$

where ω is a fixed real number and $F,\,G$ are two polynomials.

There are still two cases: weither $\cos \omega x$ and $\sin \omega x$ are or are not solutions to the complementary equation.

EXAMPLE 3. Find the general solution to

$$y'' + 3y' + 2y = (16 + 20x)\cos x + 10\sin x.$$

WHEN THE FORCE FUNCTION IS POLY., EXPO., TRIG. FUNCTIONS

We now consider the more general case

$$ay'' + by' + c = e^{\alpha x} (F(x) \cos \omega x + G(x) \sin \omega x)$$

where α , ω are real numbers with $\omega \neq 0$ and F, G are polynomials.

There are also two cases: weither $e^{\alpha x}\cos\omega x$ and/or $e^{\alpha x}\sin\omega x$ are or are not solutions to the complementary equation.

EXAMPLE 4. Find the general solution of

$$y'' + 2y' + 5y = e^{-x} ((6 - 16x)\cos 2x - (8 + 8x)\sin 2x).$$

Recap

A particular solution of

$$ay'' + by' + cy = e^{\alpha x} (F(x) \cos \omega x + G(x) \sin \omega x)$$

where $\omega \neq 0$ has the form

• when $e^{\alpha x}\cos\omega x$ and $e^{\alpha x}\sin\omega x$ are not solutions to the complementary equation,

$$y_{par}(x) = e^{\alpha x} (A(x) \cos \omega x + B(x) \sin \omega x),$$

with A(x) and B(x) are polynomials of the same degree as the biggest degree between F(x) and G(x)

• When $e^{\alpha x}\cos\omega x$ and $e^{\alpha x}\sin\omega x$ are solutions to the complementary equation,

$$y_{par}(x) = xe^{\alpha x} (A(x)\cos \omega x + B(x)\sin \omega x),$$

with A(x) and B(x) are polynomials of the same degree as the highest degree between the polynomials F(x) and G(x).