Αυ	iiiiiii HEAD ===== ¿¿¿¿ ıfgabenstellung	įįį main	Test Deck	blatt	Test
C	ontents				
1	Bezeichnungen				1 1 2 2 . 2
4	Modellierung des Holms 4.1 Annahmen zur Modellierun 4.2 Analytische Lösung der Mo	_			
5	Zusammenfassung				3
6	Quellenverzeichnis				3
7	Abbildungsverzeichnis				3
8	Anhang				3
1	Bezeichnungen				
La	phabetische Ordnung! teinisch vor griechisch, jeweils Gr t. Großbuchstaben)	оß- vor Kleinbuchs	staben		
B $F_{p_{i}}$: Festlager : Loslager _{ruef} : Prüfkraft an der Flügelspitz : Kraftaufnahme der Querkraftb				
(la	t. Kleinbuchstaben)				
l_1 l_2	Länge des freien Endes Abstand der Lager A und B Abstand zwischen Lager B und Abstand zwischen den Querkraf				

s: Halbspannweite

w: Absenkung der Flügelspitze in negative z-Richtung

2 Hauptteil

TEst Hauptteil

3 Grundlagen

3.1 Glasfaser

Test

4 Modellierung des Holms

4.1 Annahmen zur Modellierung

Das Koordinatensystem des Flügels entspricht dem Flugzeugkoordinatensystem, sodass die Balkenlängskoordinate durch y definiert ist. Der Koordinatenursprung ist im Lager A positioniert.

Der Holm inkl. des Holmstummels wird für die Belastung durch eine Prüfkraft F_{pruef} in negative z-Richtung als Biegebalken ausgelegt. Dafür ist er an zwei Stellen gelagert, dem Lager A und Lager B, dabei repräsentieren sie die Verstiftungen (siehe Bauteil "U-Profil"). Um eine Überbestimmung des Systems zu vermeiden, wird das Lager B als Loslager angenommen. Die Querkraftbolzen werden nicht durch ein Lager, sondern durch eine zusätzlich angreifende Kraft F_Q simuliert, da keine Absenkung, sondern nur eine Kraftaufnahme der Wurzelrippen möglich ist.

Als Randbedingungen der Modellierung sind die Halbspannweite s und die Absenkung w gegeben. Für die Absenkung w soll eine Sicherheit j=1,1 gesetzt werden. Zwischen Lager A und B wird die Länge l_1 angenommen, zwischen Lager B und der Wurzelrippe C die Länge l_2 . Die verbleibende Länge bis zur Flügelspitze, an der die Prüfkraft F_{pruef} wirkt, wird l_3 bezeichnet. Die Halbspannweite s wird beginnend in der mitte der Verstiftungen bis zur Flügelspitze gemessen. Das Holmstummelende wird ab dem Lager A mit l_0 als Länge definiert. Diese Länge ist jedoch unerheblich für die Model-

[with=1]test

Figure 1: Modellierung des Holms

lierung, sondern wird erst für die Massenbestimmung benötigt.

Anhand der Randbedingungen und der Einspannvorrichtung für den Versuchsaufbau ergeben sich folgende Längen:

$$s = 0,848m\tag{1}$$

$$l_0 = 0,03m (2)$$

$$l_1 = 0,076m (3)$$

$$l_2 = 0,037m (4)$$

$$l_3 = s - \frac{l_1}{2} - l_2 = 0,773m \tag{5}$$

$$w_{j=1,1} = \frac{1}{i} * w = \frac{1}{1,1} * 0,022m = 0,02m$$
 (6)

4.2 Analytische Lösung der Modellierung

5 Zusammenfassung

Test Zusammenfassung

6 Quellenverzeichnis

Test Quellenverzeichnis

7 Abbildungsverzeichnis

8 Anhang

Test Anhang