ZLAC8015DD SERVO DRIVER (SPECIAL FOR HUB SERVO MOTOR)

CANopen COMMUNICATION ROUTINE

Version	Description	Date
V1.0	-	2020-03-14

Catalog

1.OUTLINE 2	
2. CIA301 DESCRIPTION 2	
2.1 COMMUNICATION OBJECT IDENTIFIER(COB-ID)	
2.2 OBJECT DICTIONARY(OD)	
2.3 SERVICE DATA OBJECT(SDO)	
2.4. NETWORK MANAGEMENT(NMT)4	
2.5. HEARTBEAT(NMT ERROR CONTROL)5	
2.6. PROCESS DATA OBJECT(PDO)	
2.6.1 PDO COMMUNICATION PARAMETERS	6
2.6.2 PDO Mapping Parameters	7
3. CIA402 DESCRIPTION 8	
3.1. CIA402 STATE MACHINE 8	
3.2. CONTROL WORD AND STATUS WORD	
3.3. PROFILE POSITION MODE	
3.3.1 Profile Position Mode Description	11
3.3.2 Profile Position Mode Configuration Routine	14
3.4. PROFILE VELOCITY MODE	
3.4.1 Profile Velocity Mode Description	16
3.4.2 Profile Velocity Mode Configuration Routine	18
3.5. PROFILE TORQUE MODE	
3.5.1 Profile Torque Mode Description	19
3.5.2 Profile Torque Mode Configuration Routine	20
3.6. EMERGENCY STOP INSTRUCTION22	
3.7 ERROR AND CLEAR23	
APPENDIX A. OBJECT DICTIONARY24	

1.OUTLINE

This manual only gives a brief introduction to the most commonly used related concepts and precautions in the use of ZLAC8015D, so that users can understand the normal use of ZLAC8015D series products in the shortest time.

Communication Standard followed by ZLAC8015D

- CAN 2.0A Standard
- CANopen Standard protocol DS 301 V4.02
- CANopen Standard protocol DS 402 V2.01

Services supported by ZLAC8015D

- SDO Service
- PDO Service: each slave station could configure up to 4 TxPDO and 4 RxPDO
- NMT Slave Service
- Device Monitor: supports Heartbeat Message

The following description takes the driver address as 1, the baud rate as 500K.

The driver address can be set to 0-127. ZLAC8015D has 7 optional baud rates: 25kHz, 50kHz, 100kHz, 125kHz, 250kHz, 500kHz, 1MHz. Baud rate could be set through software, its default value is 500kHz.

2. CiA301 DESCRIPTION

2.1 COMMUNICATION OBJECT IDENTIFIER (COB-ID)

The communication object identifier (COB-ID) is used to specify the priority of the communication object and to identify the communication object. In CANopen protocol, it is stipulated that 11 arbitration bits are divided into the high 4 bits of the Function Code and the low 7 bits of the node address (Node-ID), which is called COB-ID (Communication Object Identifier).

	CANopen predefined master / slave connection set						
10	10 9 8 7 6 5 4 3 2 1 0						
	Function Code Node-ID						

Node-ID range is 1~127 (0 is not allowed to be used).

Object	Function Code	Node-ID	COB-ID	Object Dictionary Index
NMT(Network Management)	0000	0	0x000	-
Sync Message	0001	0	0x080	0x1005
Emergency Stop	0001	1-127	0x081-0x0FF	0x1014
TPDO1	0011	1-127	0x181-0x1FF	0x1800
RPDO1	0100	1-127	0x201-0x27F	0x1400
TPDO2	0101	1-127	0x281-0x2FF	0x1801

RPDO2	0110	1-127	0x301-0x47F	0x1401
TPDO3	0111	1-127	0x381-0x3FF	0x1802
RPDO3	1000	1-127	0x401-0x47F	0x1402
TPDO4	1001	1-127	0x481-0x4FF	0x1803
RPDO4	1010	1-127	0x501-0x57F	0x1403
RSDO Server Send	1100	1-127	0x581-0x5FF	0x1200
TSDO Client Respond	1011	1-127	0x601-0x67F	0x1200
NMT Error Control	1110	1-127	0x701-0x77F	0x1016-0x1017

2.2 OBJECT DICTIONARY(OD)

Object Dictionary is the core concept of CANopen. Every CANopen device in the network has an object dictionary. Object Dictionary is an ordered collection of data objects. These objects describe all the communication and device parameters of the device, and their positions are determined in Object Dictionary by a 16-bit index and an 8-bit subindex.

Object Dictionary supported by ZLAC8015D

Index Range	Description
0x1000-0x1A03	CiA301 Communication Object Sub-Protocol Area
0x2003-0x2030	Factory Custom Area
0x603F-0x60FF	CiA402 Motion Control Sub-Protocol Area

※See Appendix A for details

2.3 SERVICE DATA OBJECT(SDO)

SDO is used to access the Object Dictionary of a device. The visitor is called a Client, and the CANopen device whose object dictionary is accessed and provides the requested service is called a Server. The client's CAN message and the server's response CAN message always contain 8 bytes of data (although not all data bytes are necessarily meaningful). A client's request must have a response from the server.

SDO Message Format

Byte0	Byte1:2	Byte3	Byte4:7
SDO Command	Object Index	Object Sub-Index	Data

Command Word Description

Command	Function	Туре	Data Length	
2F	Setting	M->S Request	1 byte	
2B	Setting	M->S Request	2 byte	
27	Setting	M->S Request	3 byte	
23	Setting	M->S Request	4 byte	
60	Setting feedback	S->M C	onfirm	
40	Read	M->S Request	0 byte	
4F	Read feedback	S->M Answer	1 byte	

4B	Read feedback	S->M Answer	2 byte
47	Read feedback	S->M Answer	3 byte
43	Read feedback	S->M Answer	4 byte
80	Error feedback	S->M Answer	4 byte

※Eg: write data 0x2064 into the object dictionary with index 0x60FF and sub-index 3 through SDO message.

COB-ID	Byte7	Byte6	Byte5	Byte4	Byte3	Byte2	Byte1	Byte0
Client→Server								
0x601	2F	FF	60	03	64	20	00	00
Server→Client								
0x581	60	FF	60	03	00	00	00	00

2.4. NETWORK MANAGEMENT(NMT)

NMT provides network management service. This service is implemented using a master-slave communication mode (so there is only one NMT master node). Only the NMT master node can transmit NMT module control messages, all slave nodes must support the NMT module control service, and the NMT module control does not need to response. The message format is as follows:

NMT master node → NMT slave node					
COB-ID Byte 1 Byte 0					
0x000 Command Node-ID					

When Node-ID=0, all NMT slave nodes are addressed. The corresponding relationship between the value of the command word and the service is as follows:

Command	NMT Service
0x01	Start command (Put the node into operating state)
0x02	Stop command (Put the node into stop state)
0x80	Pre-operation command (Put the node into pre-operation state)
0x81	Reset node application layer (Put the node into application layer reset state)
0x82	Reset node communication (Put the node into communication reset state)

The node status is described in the following table:

Status	Description
Initialization	Initialize CAN controller after the node is powered on.
Application layer reset	Node application reset
Communication reset	Node CANopen communication reset
Pre-operational state	Node CANopen communication is in operation;
	Could communicate with SDO and NMT.
Operating state	After the node receives the start command sent by NMT master
	station, the node's PDO communication is activated.
Stop state	After the node receives the stop command from NMT master
	station, the node's PDO communication is prohibited.

2.5. HEARTBEAT(NMT ERROR CONTROL)

NMT error control is mainly used to detect whether the device in the network is online and the state of the device, including node/life protection and heartbeat. Currently, ZLAC8015D only supports the heartbeat method.

A node can be configured to generate periodic messages which are called Heartbeat messages. The heartbeat mode uses a producer (slave)-consumer (master) model. CANopen device can send heartbeat messages according to the period set by the producer's heartbeat interval object 0x1017, the unit is ms. A node in the network that always has a consumer heartbeat function monitors the producer according to the consumer time set by object 0x1016. Once the producer's heartbeat of the corresponding node is not received within the consumer heartbeat time range, the node is considered to be offline (Or there is a fault).

The CANopen slave station sends the heartbeat message according to the heartbeat production time (ms) filled in 1017h in its object dictionary, and CANopen master station (NMT master station) will check according to the heartbeat consumption time filled in its 1016h. Assuming that more than a few heartbeat consumption times, CANopen master (NMT master) has not received the heartbeat message from the slave station, it is considered that the slave station is offline or damaged.

The slave sends heartbeat messages every 0x1017 time to monitor the master of the slave (or other slaves). If the heartbeat message is not received within the consumer time, the slave is considered to be offline. $0x1017 \times 2$ should be smaller than the consumer time of the master of the slave (or other slaves), otherwise it is easy to report that the slave is offline incorrectly.

The heartbeat message format is as follows:

Heartbeat producer→Consumer				
COB-ID Byte 0				
0x700+Node-ID	State			

The status description is as follows:

State	Description
0x00	Boot-up
0x04	Stop state
0x05	Operating state
0x7F	Pre-operation state

XZLAC8015D is a heartbeat producer.

2.6. PROCESS DATA OBJECT(PDO)

PDO belongs to process data, which is used to transmit real-time data, that is, one-way transmission. It does not require the receiving node to respond with CAN messages to confirm. It belongs to the "production and consumption" model in terms of communication. The length of PDO can be less than 8 bytes, and the transmission speed is relatively fast. Each PDO information includes sending PDO (TxPDO) and receiving PDO (RxPDO) information, and its transmission mode is defined in the PDO communication parameter index. All PDO transmission data must be mapped to the corresponding index area through the

object dictionary.

ZLAC8015D supports 4 groups of sending and receiving PDO, the related objects are as follows:

Object	COB-ID	Communication Object	Mapping Parameter
TPDO0	0x181-0x1FF	0x1800	0x1A00
	(0x180+ Node-ID)		
RPDO0	0x201-0x27F	0x1400	0x1600
	(0x200+ Node-ID)		
TPDO1	0x281-0x2FF	0x1801	0x1A01
	(0x280+ Node-ID)		
RPDO1	0x301-0x37F	0x1401	0x1601
	(0x300+ Node-ID)		
TPDO2	0x381-0x3FF	0x1802	0x1A02
	(0x380+ Node-ID)		
RPDO2	0x401-0x47F	0x1402	0x1602
	(0x400+ Node-ID)		
TPDO3	0x481-0x4FF	0x1803	0x1A03
	(0x480+ Node-ID)		
RPDO3	0x501-0x57F	0x1403	0x1603
	(0x500+ Node-ID)		

2.6.1 PDO COMMUNICATION PARAMETERS

1. PDO CAN identifier

The PDO CAN identifier is the COB-ID of the PDO, which contains control bits and identification data, to determine the bus priority of PDO. The COB-ID is located in the sub-index 01 of the communication parameters (RPDO: 1400h~1403h, TPDO: 1800h~1803h), and its highest bit determines whether the PDO is valid.

2. PDO transmission type

The PDO transmission type is located on the sub-index 02 of the communication parameters (RPDO: 1400h~1403h, TPDO: 1800h~1803h).

Asynchronous Transmission: the transmission is triggered by events, including data change, periodic event timer.

Synchronous Transmission: it's related to synchronization frames in the network.

For sub-index 02 of communication parameters (RPDO: 1400h~1403h, TPDO: 1800h~1803h), different values represent different transmission types, it defines the method of triggering TPDO transmission or processing the received RPDO. The specific correspondence is as follows:

Transmission	Synchronous T	Asynchronous	
Туре	Cyclic	Acyclic	Transmission
0		٧	
1-240	٧		
241-254		V	
254, 255			٧

Note:

1) When TPDO transmission type is 0, if the data of the mapping object changes, and a synchronization frame is received,

the TPDO is sent.

- 2) When TPDO transmission type is 1~240, and the synchronization frames with corresponding number is received, the TPDO is sent.
- 3) When TPDO transmission type is 254 or 255, and the mapping data changes, or the event timer arrives, the TPDO is sent.
- 4) When RPDO transmission type is 0~240, as long as a synchronization frame is received, the latest data of RPDO will be updated to the application. When RPDO transmission type is 254 or 255, the received data will be directly updated to the application.

XNote: ZLAC8015D only supports 254/255 transmission method at present.

3. Prohibition Time

The prohibition time is set for TPDO, and it's stored in the sub-index 03 of the communication parameter (1800h~1803h) to prevent the CAN network from being continuously occupied by the higher priority PDO. The unit of this parameter is 100us. After setting the value, the transmission interval of the same TPDO shall not be less than the time corresponding to this parameter.

Eg: if TPDO2 prohibition time is 300, the transmission interval of TPDO will not be less than 30ms.

Recommendation: when objects that change frequently (such as position feedback, speed feedback, etc.) are configured to TPDO, and TPDO transmission type is asynchronous, it is recommended to set a certain prohibition time.

4. Event timer

For asynchronous transmission TPDO (transmission type is 254 or 255), we define the Event Timer, which is located on the sub-index 05 of the communication parameter (1800h~1803h), and the unit is 500us. Event Timer can also be regarded as a trigger event, which will also trigger the corresponding TPDO transmission. If other events such as data changes occur during the timer running period, TPDO will also trigger and the event counter will be reset immediately.

2.6.2 PDO Mapping Parameters

PDO mapping parameter contains a pointer to the process data corresponding to the PDO that needs to be sent or received to point to PDO, including index, sub-index and the length of the mapping object. The data length of each PDO can be up to 8 bytes, and one or more objects can be mapped at the same time. Among them, sub-index 0 records the number of objects specifically mapped by the PDO, and sub-index 1~8 are the mapping content. The mapping parameter content is defined as follows:

Eg: map 0x6040 to 0x1A00 01:

	Byte 7	Byte 6	Byte 5	Byte 4	Byte 3	Byte 2	Byte 1	Byte 0
	2B	00	1A	01	10	00	40	60
Define	2B	Mappir	ng Area	Sub-index No.	Mapping ob	ject length	Марре	d object

Eg: configure 0x606C 03 as TPDO0, and use event trigger (254) or timer trigger (255) as the transmission mode.

Master Station (COB-ID:0x601)	Slave Station (COB-ID:0x581)	Function Description		
2F 00 1A 00 00 00 00 00	60 00 1A 00 00 00 00 00	Clear TPD01 mapping		
23 00 1A 01 20 00 6C 60 60 00 1A 01 00 00 00 00		Map 0x606C 03 to 0x1A00 01		
23 00 18 01 81 01 00 00	60 00 18 01 00 00 00 00	Set TPDO0 COB-ID is 181		
2F 00 18 02 FE 00 00 00	60 00 18 02 00 00 00 00	Set TPDO0 transmission mode to event trigger		

2F 00 18 03 88 13 00 00	60 00 18 03 00 00 00 00	Set prohibition time is 500ms		
2F 00 1A 00 01 00 00 00 60 00 1A 00 00 00 00		Start TPDO0 mapping		
2F 10 20 00 02 00 00 00	60 10 20 00 00 00 00 00	Save parameters to EEPROM		

Master Station (COB-ID:0x601)	Slave Station (COB-ID:0x581)	Function Description		
2F 00 1A 00 00 00 00 00	60 00 1A 00 00 00 00 00	Clear TPDO1mapping		
23 00 1A 01 20 00 6C 60	60 00 1A 01 00 00 00 00	Map 0x606C 03 to 0x1A00 01		
23 00 18 01 81 01 00 00	60 00 18 01 00 00 00 00	Set TPDO0 COB-ID is 181		
2F 00 18 02 FF 00 00 00	60 00 18 02 00 00 00 00	Set TPDO0 transmission mode to timer trigger		
2F 00 18 05 E8 03 00 00	60 00 18 05 00 00 00 00	Set the timer time to 500ms		
2F 00 1A 00 01 00 00 00	60 00 1A 00 00 00 00 00	Start TPDO0 mapping		
2F 10 20 00 02 00 00 00	60 10 20 00 00 00 00 00	Save parameters to EEPROM		

3. CiA402 DESCRIPTION

3.1. CiA402 STATE MACHINE

CiA402 protocol defines the standard state machine of motion control device, as well as various operating modes and their definitions in object dictionary.

State machine describes the state of the device and the possible control sequences of driver. The status of each step represents a specific internal or external behavior, and the status of the device also determines which commands could be received.

Driver state machine

* The corresponding state description of the state machine is as follows:

State Name	Description
------------	-------------

It only supplies power to the driver chip, the driver is initializing and
self-checking, the driver function is not enabled, and this state is an internal
state.
After the driver is initialized, the driver parameters are established and could be
modified. This state does not supply power to the motor. This state is the lowest
state that user can operate. This state is also the state that use will contact after
the driver is powered on.
The driver parameters could be modified, the driver function is not enabled,
waiting to enter SWITCH ON state.
Provide high voltage to the driver, the power amplifier is ready, the driver
parameters could be modified, and the driver function is not enabled.
If no fault is detected, the driver function is enabled, and the motor is powered
on. The driver parameters could be modified. According to BP [N] parameter, it is
determined whether the brake will be automatically released in this state.
The driver parameters could be modified, the emergency stop function is
enabled, the driver function is enabled, and the motor is powered on.
The driver parameters could be modified, the driver has a fault, the fault
response function is enabled, and the drive function is disabled. This state
cannot be entered manually. The driver will enter this state automatically when
a fault occurs.

Driver state machine is controlled by bit0-bit3, bit7 of the control word (object 6040h). The specific description is as follows:

X Control word switching state:

Command	Control Word				State Switch	
Command	Bit7	Bit3	Bit2	Bit1	Bit0	State Switch
Shutdown	0	Х	1	1	0	2,6,8
Switchon	0	0	1	1	1	3
Switchon +Enable operation	0	1	1	1	1	3+4
Disable voltage	0	Х	Х	0	Х	7,9,10,12
Quick stop	0	Х	0	1	Х	7,10,11
Disable Operation	0	0	1	1	1	5
Enable Operation	0	1	1	1	1	4,16
Fault reset	Ł	Х	Х	Х	Х	15
Bit marked as X is invalid.						

Each state in state machine could be displayed through bit0-bit3, bit5, bit6 of status word (object 6041h), the specific description is as follows:

$\frak{\%}$ Status word switching state

State	State word					
State	Bit6	Bit5	Bit3	Bit2	Bit1	Bit0
NOT READY TO SWITCH ON	0	Х	0	0	0	0
SWITCH ON DISABLED	1	Х	0	0	0	0

READY TO SWITCH ON	0	1	0	0	0	1
SWITCH ON	0	1	0	0	1	1
OPERATION ENABLE	0	1	0	1	1	1
QUICK STOP ACTIVE	0	0	0	1	1	1
FAULT REACTION ACTIVE	0	Х	1	1	1	1
NOT READY TO SWITCH ON	0	Х	1	0	0	0
Bit marked as X is invalid.						

3.2. CONTROL WORD AND STATUS WORD

The start and stop control commands and state description of the driver are mainly realized through the control word 6040h and the status word 6041h. Therefore, the skilled use of the control word and status word is very necessary. The following table briefly describes the definition of the control word and status word.

Control	Common	Function Description
Word	Command	
	00	Initialization step 0: At this time, the low 4-bit status of 6041 is 0000, motor is released;
	06	Initialization step 1: At this time, the low 4-bit status of 6041 is 0001, motor is released;
	07	Initialization step 2: At this time, the low 4-bit status of 6041 is 0011, motor is enabled;
6040h	0F	Initialization step 3: At this time, the low 4-bit status of 6041 is 0111, motor is enabled;
	0F	Start command in Profile Velocity Mode (6061 = 3);
	0F->1F	Start command in Profile Torque Mode (6061 = 4);
	0F->1F	Absolute motion start command in position mode (6061 = 1);
	4F->5F	Relative motion start command in position mode (6061 = 1);

Status	Bit	Function Description		
Word	Definition			
		6040=0: xxxx xxxx xxxx 0000		
	Bit0~Bit3	6040=6: xxxx xxxx xxxx 0001		
		6040=7: xxxx xxxx xxxx 0011		
		6040=F: xxxx xxxx xxxx 0111		
	Bit7	0: driver is normal;		
	DIL7	1: driver alarms;		
6041h	Bit8	0: torque is not completed;		
00.12	BILO	1: torque has been completed;		
	Bit11	0: the status of Bit4 at 6040h is 0;		
	BILLI	1: the status of Bit4 at 6040h is 1;		
	D:+42	0: motor release;		
	Bit13	1: motor is enabled;		
	Bit14	0: motor is stopped;		
	DIL14	1: motor is running;		
	Bit15	0: The motion is not in position in position mode;		
	DILIO	1: The motion is in position in position mode.		

Eg: Initialize the driver after power-on. After initialization, it enters the normal operation state. This

WEB: www.zlingkj.com

operation is generally performed after power-on.

Master station	Slave station	Status word of slave station
00: 01 00	NMT initialization	NMT initialization
601:	581:	6041:
2B 40 60 00 00 00 00 00	60 40 60 00 00 00 00 00	xxxx xxxx xxxx 0000
601:	581:	6041:
2B 40 60 00 06 00 00 00	60 40 60 00 00 00 00 00	xxxx xxxx xxxx 0001
601:	581:	6041:
2B 40 60 00 07 00 00 00	60 40 60 00 00 00 00 00	xxxx xxxx xxxx 0011
601:	581:	6041:
2B 40 60 00 0F 00 00 00	60 40 60 00 00 00 00 00	xxxx xxxx xxxx 0111

CANopen sets the operation mode of the driver through the object 6060h (Mode of Operation) and reflects the current operation mode status of the driver through the object 6061h (Mode of operation display). ZLAC8015D series driver currently supports 3 operation modes: Profile Position Mode, Profile Velocity Mode, and Profile Torque Mode.

※ Driver Operation Mode:

Index	Sub-Index	Name	Туре	Attribute	PDO	Parameter Range	Default	
					Mapping			
						0: undefined		
6060h	00	Mades of energtion	10	D\A/	NO	1: Profile Position	0	
606011	Oh 00 Modes_of_operation		18	RW	NO	Mode	0	
						3: Profile Velocity		
						Mode		
						4: Profile Torque		
						Mode		

3.3. PROFILE POSITION MODE

3.3.1 Profile Position Mode Description

Profile position mode is realized by an S-shaped acceleration and deceleration curve. User could set several parameters such as initial speed, maximum speed, acceleration time, deceleration time, and total pulse number through the bus to achieve precise position control. The S-shaped acceleration / deceleration curve is shown in the figure below.

Profile position mode acceleration/deceleration curve

When the total pulse number set by user is small, the motor may need to decelerate before it accelerates to the maximum speed (that is, the motor does not accelerate to the maximum speed set by the user during actual operation). The speed curve is shown in the figure below. The solid line in the figure shows the actual running curve of the motor, and the dotted line is the curve that motor needs to run, to accelerate to the set maximum speed. The theoretical total pulse number is the minimum total pulse number calculated according to the user-set parameters (initial speed, maximum speed, acceleration time, deceleration time). When the total pulse number set by the user is less than the theoretical total pulse number, the motor will run as shown by the solid line in the figure.

Profile position mode acceleration/deceleration curve (not accelerated to the set maximum speed)

Control word and status word

The control word in Profile position mode is controlled by bit4 -bit6, bit8:

Byte	Name	Function Description
		0: No assumed target position;
Bit4	New set-point	1: Assumed target position;
Diag	Characa actions a distal.	0: Complete the current position and then start the next position;
Bit5	Change set immediately	1: Interrupt the current position and start the next position;

1	ZLTECH
1.0	

Bit6	ABS/REL	0: The target position is an absolute value;
Віго	AB5/REL	1: The target position is a relative value;
D:+0	Halt	0: Terminate current position;
Bit8	Пан	1: Set deceleration to stop;

Note: According to the above table , the control word of absolute position motion command is 0x0F->0x1F, and the control word of relative position motion command is 0x4F->0x5F.

💥 Bit10, Bit12, Bit15 of status word display the driver status

Byte	Name	Function Description
D:+10	Target reached	0: Halt = 0 target position has not been reached;
Bit10	Target reached	Halt = 1 motor is decelerating;
		1: Halt = 0 reach the target position;
		Halt = 1 motor speed is 0;
D:+12	Cat paint asknowledge	0: The target position is pending;
Bit12	Set-point acknowledge	1: The target position has taken effect;
D:+4.5	David	0: Not in position;
Bit15	Pend	1: In position.

※ Related Object Dictionary Content

Index	Sub-Index	Name	Description	Туре	Attribute	PDO	Defaults
						mapping	
6040h	00	Controlword	Controlword	U16	RW	YES	0
6060h	00	Modes_of_operation	0: Undefined;	18	RW	YES	0
			1: Profile position mode;				
			3: Profile velocity mode;				
			4: Profile torque mode;				
607Ah	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Target_position (left)	Range of total pulse number	132	RW	YES	0
			in pofile position mode				
			operation:				
			relatively:				
			-0x7FFFFFFF~0x7FFFFFFF				
			absolute:				
			-0x3FFFFFFF~0x3FFFFFFF				
	02	Target_position (right)	Range of total pulse number	132	RW	YES	0
			in profile position mode				
			operation:				
			relatively:				
			-0x7FFFFFFF~0x7FFFFFFF				
			absolute:				
			-0x3FFFFFFF~0x3FFFFFFF				
6081h	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Profile_velocity (left)	Maximum speed in profile	U32	RW	YES	120r/min
			position mode;				

WZL	TECH
1.0	

			Range: 1-1000r/min;				
	02	Profile_velocity (right)	Maximum speed in position	U32	RW	YES	120r/min
			mode;				
			Range: 1-1000r/min;				
6083h	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Profile_acceleration	Acceleration time;	U32	RW	YES	500ms
		(left)	Range: 0-32767ms;				
	02	Profile_acceleration	Acceleration time;	U32	RW	YES	500ms
		(right)	Range: 0-32767ms;				
6084h	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Profile_deceleration	Deceleration time;	U32	RW	YES	500ms
		(left)	Range: 0-32767ms;				
	02	Profile_deceleration	Deceleration time;	U32	RW	YES	500ms
		(right)	Range: 0-32767ms;				

3.3.2 Profile Position Mode Configuration Routine

Make the motor run relatively based on the parameters (acceleration time 100ms, deceleration time 100ms, maximum speed 60r / min, total pulse number 3200).

Profile position mode initialization:

Master Station (COB-ID:0x601)	Slave Station (COB-ID:0x581)	Function Description
2F 60 60 00 01 00 00 00	60 60 60 00 00 00 00 00	Set profile position mode
23 83 60 01 64 00 00 00	60 83 60 01 00 00 00 00	Set the left motor
		Acceleration time 100ms
23 83 60 02 64 00 00 00	60 83 60 01 00 00 00 00	Set the right motor
		Acceleration time 100ms
23 84 60 01 64 00 00 00	60 84 60 01 00 00 00 00	Set the left motor
		Deceleration time 100ms
23 84 60 02 64 00 00 00	60 84 60 01 00 00 00 00	Set the right motor
		Deceleration time 100ms
23 81 60 01 3C 00 00 00	60 81 60 01 00 00 00 00	Set the left motor
		Maximum speed 60r/min
23 81 60 02 3C 00 00 00	60 81 60 01 00 00 00 00	Set the right motor
		Maximum speed 60r/min
2B 40 60 00 06 00 00 00	60 40 60 00 00 00 00 00	Enable motor
2B 40 60 00 07 00 00 00	60 40 60 00 00 00 00 00	
2B 40 60 00 0F 00 00 00	60 40 60 00 00 00 00 00	

Relative position control of the left motor:

Master Station (COB-ID:0x601)	Slave Station (COB-ID:0x581)	Function Description
23 7A 60 01 00 7D 00 00	60 7A 60 01 00 00 00 00	Set the left motor
		Target position 32000

2B 40 60 00 4F 00 00 00	60 40 60 00 00 00 00 00	Start relative movement
2B 40 60 00 5F 00 00 00	60 40 60 00 00 00 00 00	
23 7A 60 01 00 83 FF FF	60 7A 60 01 00 00 00 00	Set the left motor
		Target position-32000
2B 40 60 00 4F 00 00 00	60 40 60 00 00 00 00 00	Start relative movement
2B 40 60 00 5F 00 00 00	60 40 60 00 00 00 00 00	
2B 40 60 00 00 00 00 00	60 40 60 00 00 00 00 00	Stop motor

Relative position control of the right motor:

Master Station (COB-ID:0x601)	Slave Station (COB-ID:0x581)	Function Description
23 7A 60 02 00 7D 00 00	60 7A 60 02 00 00 00 00	Set the right motor
		Target position 32000
2B 40 60 00 4F 00 00 00	60 40 60 00 00 00 00 00	Start relative movement
2B 40 60 00 5F 00 00 00	60 40 60 00 00 00 00 00	
23 7A 60 02 00 83 FF FF	60 7A 60 01 00 00 00 00	Set the right motor
		Target position-32000
2B 40 60 00 4F 00 00 00	60 40 60 00 00 00 00 00	Start relative movement
2B 40 60 00 5F 00 00 00	60 40 60 00 00 00 00 00	
2B 40 60 00 00 00 00 00	60 40 60 00 00 00 00 00	Stop motor

Absolute position control of the left motor:

Master Station (COB-ID:0x601)	Slave Station (COB-ID:0x581)	Function Description
23 7A 60 01 00 7D 00 00	60 7A 60 01 00 00 00 00	Set the left motor
		Target position 32000
2B 40 60 00 0F 00 00 00	60 40 60 00 00 00 00 00	Start absolute movement
2B 40 60 00 1F 00 00 00	60 40 60 00 00 00 00 00	
23 7A 60 01 00 83 FF FF	60 7A 60 01 00 00 00 00	Set the left motor
		Target position-32000
2B 40 60 00 0F 00 00 00	60 40 60 00 00 00 00 00	Start absolute movement
2B 40 60 00 1F 00 00 00	60 40 60 00 00 00 00 00	
2B 40 60 00 00 00 00 00	60 40 60 00 00 00 00 00	Stop motor

Absolute position control of the right motor:

Master Station (COB-ID:0x601)	Slave Station (COB-ID:0x581)	Function Description
23 7A 60 02 00 7D 00 00	60 7A 60 02 00 00 00 00	Set the right motor
		Target position 32000
2B 40 60 00 0F 00 00 00	60 40 60 00 00 00 00 00	Start absolute movement
2B 40 60 00 1F 00 00 00	60 40 60 00 00 00 00 00	
23 7A 60 02 00 83 FF FF	60 7A 60 02 00 00 00 00	Set the right motor
		Target position-32000
2B 40 60 00 0F 00 00 00	60 40 60 00 00 00 00 00	Start absolute movement

2B 40 60 00 1F 00 00 00	60 40 60 00 00 00 00 00	
2B 40 60 00 00 00 00 00	60 40 60 00 00 00 00 00	Stop motor

Relative position control of both motors:

Master Station (COB-ID:0x601)	Slave Station (COB-ID:0x581)	Function Description
23 7A 60 01 00 7D 00 00	60 7A 60 01 00 00 00 00	Set the left motor
		Target position 32000
23 7A 60 02 00 7D 00 00	60 7A 60 02 00 00 00 00	Set the right motor
		Target position 32000
2B 40 60 00 4F 00 00 00	60 40 60 00 00 00 00 00	Start relative movement
2B 40 60 00 5F 00 00 00	60 40 60 00 00 00 00 00	
23 7A 60 01 00 83 FF FF	60 7A 60 01 00 00 00 00	Set the left motor
		Target position-32000
23 7A 60 02 00 83 FF FF	60 7A 60 02 00 00 00 00	Set the right motor
		Target position-32000
2B 40 60 00 4F 00 00 00	60 40 60 00 00 00 00 00	Start relative movement
2B 40 60 00 5F 00 00 00	60 40 60 00 00 00 00 00	
2B 40 60 00 00 00 00 00	60 40 60 00 00 00 00 00	Stop motors

Absolute position control of both motors:

Master Station (COB-ID:0x601)	Slave Station (COB-ID:0x581)	Function Description
23 7A 60 01 00 7D 00 00	60 7A 60 01 00 00 00 00	Set the left motor
		Target position 32000
23 7A 60 02 00 7D 00 00	60 7A 60 02 00 00 00 00	Set the right motor
		Target position 32000
2B 40 60 00 0F 00 00 00	60 40 60 00 00 00 00 00	Start absolute movement
2B 40 60 00 1F 00 00 00	60 40 60 00 00 00 00 00	
23 7A 60 01 00 83 FF FF	60 7A 60 01 00 00 00 00	Set the left motor
		Target position-32000
23 7A 60 02 00 83 FF FF	60 7A 60 02 00 00 00 00	Set the right motor
		Target position-32000
2B 40 60 00 0F 00 00 00	60 40 60 00 00 00 00 00	Start absolute movement
2B 40 60 00 1F 00 00 00	60 40 60 00 00 00 00 00	
2B 40 60 00 00 00 00 00	60 40 60 00 00 00 00 00	Stop motors

 \times Note: In position control, the switch of control word will control both motors at the same time, so when controlling a single motor, the target position of the other motor should be given 0

3.4. PROFILE VELOCITY MODE

3.4.1 Profile Velocity Mode Description

The acceleration curve in Profile velocity mode is shown in the figure below. Differ from Profile position mode, Profile velocity mode only needs to set 3 parameters: initial speed (address 200800h), target speed (address 608100h), acceleration time (address 608300h). After the motor accelerates to the maximum speed according to set 3 parameters, it will run uniformly at the maximum speed.

Profile Velocity Mode acceleration curve

Control word and Status word

\frak{M} Control word in profile velocity mode is controlled by bit8

Acceleration Time(ms)

Byte	Name	Function Description
D:+0	Bit8 Halt	0: Implement motion;
вітв		1: Stop motion.

💥 Bit10 and Bit12 of status word display driver status

Byte	Name	Function Description
D:+10	Torget reached	0: Halt = 0 target speed has not been reached;
Bit10	Target reached	Halt = 1 motor is decelerating;
		1: Halt = 0 reach target speed;
		Halt = 1 motor speed is 0;
D:+12	Canad	0: Speed is not 0;
Bit12	Speed	1: Speed is 0.

X Related Object Dictionary Content

Index	Sub-	Name	Description	Туре	Attribute	PDO	Defaults
	Index					mappin	
						g	
200Fh	00	Synchronous/asynchronous	0: Asynchronous control	U16	RW	YES	0
		control flag	1: Synchronization control	016			
6040h	00	Controlword	Control word	U16	RW	YES	0
6060h	00	Modes_of_operation	0: Undefined;	18	RW	YES	0
			1: Profile position mode;				
			3: Profile Velocity mode;				
			4: Profile torque mode;				
6083h	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Profile_acceleration (left)	Acceleration time;	U32	RW	YES	500ms
			Range: 0-32767ms;				
	02	Profile_acceleration (right)	Acceleration time;	U32	RW	YES	500ms
			Range: 0-32767ms;				
6084h	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2

WEB: www.zlingkj.com

	01	Profile_deceleration (left)	Deceleration time;	U32	RW	YES	500ms
			Range: 0-32767ms;				
	02	Profile_deceleration (right)	Deceleration time;	U32	RW	YES	500ms
			Range: 0-32767ms;;				
60FFh	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Target_velocity (left)	Target speed in profile	132	RW	YES	0
			velocity mode;				
			range: -1000-1000r/min;				
	02	Target_velocity (right)	Target speed in profile	132	RW	YES	0
			velocity mode;				
			range: -1000-1000r/min;				
	03	Left and right target speed	The current movement	U32(I1	RO	YES	0
		combination	speed of the motor,	6+I16)			
		Low 16 is the left motor	unit is 0.1r/min				
		High 16 is the right motor					

3.4.2 Profile Velocity Mode Configuration Routine

Make the motor run based on the parameters (acceleration time 100ms, deceleration time 100ms, maximum speed 60r/min).

💥 Assume that the slave station number of the driver is 1. CANopen instruction control is described in the following table:

Profile velocity mode asynchronous control initialization:

Master Station (COB-ID:0x601)	Slave Station (COB-ID:0x581)	Function Description
2F 0F 20 00 00 00 00 00	60 0F 20 00 00 00 00 00	Set asynchronous control
2F 60 60 00 03 00 00 00	60 60 60 00 00 00 00 00	Set profile velocity mode
23 83 60 01 64 00 00 00	60 83 60 01 00 00 00 00	Set the left motor
		Acceleration time 100ms
23 83 60 02 64 00 00 00	60 83 60 02 00 00 00 00	Set the right motor
		Acceleration time 100ms
23 84 60 01 64 00 00 00	60 84 60 01 00 00 00 00	Set the left motor
		Deceleration time 100ms
23 84 60 02 64 00 00 00	60 84 60 02 00 00 00 00	Set the right motor
		Deceleration time 100ms
2B 40 60 00 06 00 00 00	60 40 60 00 00 00 00 00	Enable motor
2B 40 60 00 07 00 00 00	60 40 60 00 00 00 00 00	
2B 40 60 00 0F 00 00 00	60 40 60 00 00 00 00 00	

Velocity control of the left motor:

Master Station (COB-ID:0x601)	Slave Station (COB-ID:0x581)	Function Description
23 FF 60 01 00 64 00 00	60 FF 60 01 00 00 00 00	Set the left motor
		Target speed 100rpm
23 FF 60 01 9C FF FF FF	60 FF 60 01 00 00 00 00	Set the left motor
		Target speed -100rpm
2B 40 60 00 00 00 00 00	60 40 60 00 00 00 00 00	Stop motor

Velocity control of the right motor:

Master Station (COB-ID:0x601)	Slave Station (COB-ID:0x581)	Function Description
23 FF 60 02 00 64 00 00	60 FF 60 02 00 00 00 00	Set the right motor
		Target target speed 100rpm
23 FF 60 02 9C FF FF FF	60 FF 60 02 00 00 00 00	Set the right motor
		Target speed -100rpm
2B 40 60 00 00 00 00 00	60 40 60 00 00 00 00 00	Stop motor

Profile velcity mode synchronization control initialization:

Master Station (COB-ID:0x601)	Slave Station (COB-ID:0x581)	Function Description	
2F 0F 20 00 01 00 00 00	60 0F 20 00 00 00 00 00	Set synchronization control	
2F 60 60 00 03 00 00 00	60 60 60 00 00 00 00 00	Set profile velocity mode	
23 83 60 01 64 00 00 00	60 83 60 01 00 00 00 00	Set the left motor	
		Acceleration time 100ms	
23 83 60 02 64 00 00 00	60 83 60 02 00 00 00 00	Set the right motor	
		Acceleration time 100ms	
23 84 60 01 64 00 00 00	60 84 60 01 00 00 00 00	Set the left motor	
		Deceleration time 100ms	
23 84 60 02 64 00 00 00	60 84 60 02 00 00 00 00	Set the right motor	
		Deceleration time 100ms	
2B 40 60 00 06 00 00 00	60 40 60 00 00 00 00 00	Enable motor	
2B 40 60 00 07 00 00 00	60 40 60 00 00 00 00 00		
2B 40 60 00 0F 00 00 00	60 40 60 00 00 00 00 00		

Synchronous velocity control:

Master Station (COB-ID:0x601)	Slave Station (COB-ID:0x581)	Function Description
23 FF 60 03 00 64 00 00	60 FF 60 03 00 00 00 00	Set synchronization control
		Target speed 100rpm
23 FF 60 03 9C FF 9C FF	60 FF 60 03 00 00 00 00	Set synchronization control
		Target speed -100rpm
2B 40 60 00 00 00 00 00	60 40 60 00 00 00 00 00	Stop motors

*X*Note: Synchronous target speed: low 16 is the left motor, high 16 is the right motor.

3.5. PROFILE TORQUE MODE

3.5.1 Profile Torque Mode Description

In Profile torque mode, the value of operation mode object 6060h needs to be set to 4. When the operation mode status reads the register of object 6061h as 4, the relevant operations of HM operation mode can be performed. The objects involved in this mode are as follows:

Control word and Status word

X Control word in profile torque mode is controlled by bit8

Type Name	Function Description
-----------	----------------------

Bit8	Halt	0: Implement motion;
Dito		1: Stop motion.

💥 Bit10 and Bit12 of status word display driver status

Туре	Name	Function Description	
Dit0 Tayroo attained		0: torque has not been attained;	
Bit8	Torque attained	1: attain torque;	
Bit10	Target reached	0: Halt = 0 target torque has not been reached;	
BILTO	Target reached	Halt = 1 motor is acceleration;	
		1: Halt = 0 reach target torque;	
		Halt = 1 motor speed is 0;	

X Related Object Dictionary Content

Index	Sub-	Name	Description	Туре	Attribute	PDO	Defaults
	Index					mapping	
200Fh	00	Synchronous/asynchronou	0: Asynchronous control	U16	RW	YES	0
		s control flag	1: Synchronization control	016			
6040h	00	Controlword	Control word	U16	RW	YES	0
6060h	00	Modes_of_operation	0: Undefined;	18	RW	YES	0
			1: Profile position mode;				
			3: Profile Velocity mode;				
			4: Profile torque mode;				
6071h	00	Number of sub-indexes	Number of sub-indexes	U16	RW	NO	2
	01	Target_torque (left)	Unit: mA	I16	RW	YES	0
			Range: -30000~30000;				
	02	Target_torque (right)	Unit: mA	I16	RW	YES	0
			Range: -30000~30000;				
	03	Left and right target	Unit: mA	U32(I1	RW	YES	0
		torque combination	Range: -30000~30000;	6+116)			
		Low 16 is the left motor					
		High 16 is the right motor					
6087h	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Torque_slope (left)	Current/1000/second;	U32	RW	YES	300ms
			Unit: mA/s;				
	02	Torque_slope (right)	Current/1000/second;	U32	RW	YES	300ms
			Unit: mA/s;				

3.5.2 Profile Torque Mode Configuration Routine

Complete torque work, target torque is 100mA.

lepha Assume that the slave station number of the driver is 1. CANopen instruction control is described in the following table:

Profile torque mode asynchronous control initialization:

Master Station (COB-ID:0x601)	Slave Station (COB-ID:0x581)	Function Description
2F 0F 20 00 00 00 00 00	60 0F 20 00 00 00 00 00	Set asynchronous control

2F 60 60 00 04 00 00 00	60 60 60 00 00 00 00 00	Set profile torque mode
23 87 60 01 64 00 00 00	60 87 60 01 00 00 00 00	Set the left motor
		Torque slope 100mA/s
23 87 60 02 64 00 00 00	60 87 60 02 00 00 00 00	Set the right motor
		Torque slope 100mA/s
2B 40 60 00 06 00 00 00	60 40 60 00 00 00 00 00	Enable motor
2B 40 60 00 07 00 00 00	60 40 60 00 00 00 00 00	
2B 40 60 00 0F 00 00 00	60 40 60 00 00 00 00 00	

Torque control of the left motor:

Master Station (COB-ID:0x601)	Slave Station (COB-ID:0x581)	Function Description		
2B 71 60 01 E8 03 00 00	60 71 60 01 00 00 00 00	Set the left motor		
		Target torque 1000mA/s		
2B 71 60 01 18 FC FF FF	60 71 60 01 00 00 00 00	Set the left motor		
		Target torque -1000mA/s		
2B 40 60 00 00 00 00 00	60 40 60 00 00 00 00 00	Stop motor		

Torque control of the right motor:

Master Station (COB-ID:0x601)	Slave Station (COB-ID:0x581)	Function Description		
2B 71 60 02 E8 03 00 00	60 71 60 02 00 00 00 00	Set the right motor		
		Target torque 1000mA/s		
2B 71 60 02 18 FC FF FF	60 71 60 02 00 00 00 00	Set the right motor		
		Target torque -1000mA/s		
2B 40 60 00 00 00 00 00	60 40 60 00 00 00 00 00	Stop motor		

**Note: The left/right target torque is 16-bit data, the SDO write command word is 0x2B, the synchronization target torque is 32-bit data, and the SDO write command word is 0x23.

Profile torque mode synchronization control initialization:

Master Station (COB-ID:0x601)	Slave Station (COB-ID:0x581)	Function Description	
2F 0F 20 00 01 00 00 00	60 0F 20 00 00 00 00 00	Set synchronization control	
2F 60 60 00 04 00 00 00	60 60 60 00 00 00 00 00	Set profile torque mode	
23 87 60 01 64 00 00 00	60 87 60 01 00 00 00 00	Set the left motor	
		Torque slope 100mA/s	
23 87 60 02 64 00 00 00	60 87 60 02 00 00 00 00	Set the right motor	
		Torque slope 100mA/s	
2B 40 60 00 06 00 00 00	60 40 60 00 00 00 00 00	Enable motor	
2B 40 60 00 07 00 00 00	60 40 60 00 00 00 00 00		
2B 40 60 00 0F 00 00 00	60 40 60 00 00 00 00 00		

Synchronous torque control:

Master Station (COB-ID:0x601)	Slave Station (COB-ID:0x581)	Function Description	
2B 71 60 03 E8 03 E8 03	60 71 60 03 00 00 00 00	Set synchronization control	
		Target torque 1000mA/s	

2B 71 60 03 18 FC 18 FC	60 71 60 03 00 00 00 00	Set synchronization control
		Target torque -1000mA/s
2B 40 60 00 00 00 00 00	60 40 60 00 00 00 00 00	Stop motors

*X*Note: Synchronous target speed: low 16 is the left motor, high 16 is the right motor.

3.6. EMERGENCY STOP INSTRUCTION

The emergency stop can be controlled by an external input signal, or it could be achieved by switching the state of the control word through communication.

$\ensuremath{\mathbb{X}}$ Related Object Dictionary Content

Index	Sub-	Name	Description	Туре	Attribute	PDO	Defaults
	Index					mapping	
2003h	00	Input signal status	2 input signal level status	U16	RO	YES	0
			Bit0-Bit1: X0-X1 input level				
			status;				
2030h	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	8
	01	Input terminal effective	Bit0: Input terminal X0	U16	RW	YES	0
		level	control bit;				
			Bit1: Input terminal X1				
			control bit;				
			Bit2-Bit15: Reserved;				
			0: Default;				
			1: Level inversion;				
			The driver defaults to the				
			input terminal level rising				
			edge or high level active;				
	02	Function selection of	0: Undefined;	U16	RW	YES	9
		input terminal X0	1-6: NC;				
		terminal	9: Emergency stop signal;				
	03	Function selection of		U16	RW	YES	0
		input terminal X1					
		terminal					
	06	Output terminal	Bit0: Control bit of output	U16	RW	YES	0
		effective level	terminal Y0;				
			Bit1: Control bit of output				
			terminal Y1;				
			0: Default;				
			1: Level inversion;				
			The driver defaults to the				
			input terminal level rising				
			edge or high level active;				
	07	Function selection of	Brake state:	U16	RW	YES	0
		output terminal Y0	0: open				

	terminal	1: Close				
08	Function selection of	Brake state:	U16	RW	YES	0
	output terminal Y1	0: open				
	terminal	1: Close				

Emergency Stop Instruction:

Master Station	Slave Station	Function Description	
(COB-ID:0x601)	(COB-ID:0x581)		
2B 40 60 00 0F 01 00 00	60 40 60 00 00 00 00 00	The motor stops and remains	
		enabled	
2B 40 60 00 0F 00 00 00	60 40 60 00 00 00 00 00	Motor enable (release emergency	
		stop state)	

3.7 ERROR AND CLEAR

ZLAC8015D supports protections such as overvoltage and overcurrent. All fault information can be obtained by reading object 0x603F.

0x603F	Function Desription		
0x0000 0000h	No error		
0x0000 0001h	Over-voltage		
0x0000 0002h	Under-voltage		
0x0000 0100h	EEPROM read and write error		
0x0004 0004h	Over-current		
0x0008 0008h	Overload		
0x0010 0010h	Current out of tolerance		
0x0020 0020h	Encoder out of tolerance		
0x0040 0040h	Velocity out of tolerance		
0x0080 0080h	Reference voltage error		
0x0200 0200h	Hall error		

*X*Note: No error/over-voltage/under-voltage/EEPROM read and write error are common faults are error for both motors. Other errors are divided into left and right drives. The high 16 bits of the error code are left driver, and the low 16 bits are right driver.

Clear error:

Master Station (COB-ID:0x601)	Slave Station (COB-ID:0x581)	Function Description
2B 40 60 00 80 00 00 00	60 40 60 00 00 00 00 00	Clear error

WEB: www.zlingkj.com

APPENDIX A. OBJECT DICTIONARY

ZLAC8015D series bus type servo driver parameter register includes 3 parts: 1000h-1FFFh register defined by CIA301, 2000h-2FFFh register defined by the manufacturer and 6000h-6FFFh register defined by CIA402.

1000h-1FFFh register is CANopen related basic communication parameter defined by CIA301, including SDO, PDO, and mapping register.

2000h-2FFFh register is a manufacturer-defined register content, subdivision and current modification could be implemented within this group of parameters.

6000h-6FFFh register is motion parameter related to motion control defined by CIA402, including profile position mode, profile velocity mode, profile torque mode, other operation mode registers, and related motion parameter registers.

Index	Sub-	Name	Description	Туре	Attrib	PDO	Defaults
	inde				utes	mapping	
	х						
		CiA301 Bas	ic Communication Paran	neter G	roup		
1000h	00	Device Type	This device supports CiA301,	U32	RO	NO	0X000401
			CiA402 protocol				92
1001h	00	Error Register	Driver current error status	U8	RO	NO	0
1005h	00	COB ID SYNC	COB identifier of	U32	RW	NO	0x80
			synchronization message				
1009h	00	Manufacturer Hardware	Hardware version	U16	RO	NO	-
		Version					
100Ah	00	Manufacturer Software	Software version	U16	RO	NO	-
		Version					
1014h	00	COB ID EMCY	EMNC Emergency Message	U32	RW	NO	0x80
			СОВ				
1017h	00	Producer Heartbeat	Producer heartbeat interval,	U16	RW/S	NO	0
		Time	unit: ms				
1018h	00	Number of entries	Number of entries	U8	RO	NO	5
	01	Vendor Id	Vendor ID	U32	RO	NO	0x0100
	02	Product Code	Supplier Product Number	U32	RO	NO	0x0001
1200h	00	Number of entries	Number of entries	U8	RO	NO	2
	01	COB ID Client to Server	COB ID Client to Server	U32	RO	NO	600h+Nod
							e-ID
	02	COB ID Server to Client	COB ID Server to Client	U32	RO	NO	580h+Nod
							e-ID
1400h	00	Number of entries	Number of sub-indexes	U8	RO	NO	5
	01	COB ID	RPDO0 COB ID	U32	RO	NO	200+Node
							-ID
	02	Transmission Type	Transmission Type	U8	RW/S	NO	FFh
	03	Inhibit Time	Inhibit Time	U16	RW/S	NO	0

	04	Compatibility Entry	Compatibility Entry	U8	RW	NO	0
	05	Event Timer	Event Timer	U16	RW/S	NO	0
1401h	00	Number of entries	Number of sub-indexes	U8	RO	NO	5
	01	COB ID	RPDO1 COB ID	U32	RO	NO	300+Node
							-ID
	02	Transmission Type	Transmission Type	U8	RW/S	NO	FFh
	03	Inhibit Time	Inhibit Time	U16	RW/S	NO	0
	04	Compatibility Entry	Compatibility Entry	U8	RW	NO	0
	05	Event Timer	Event Timer	U16	RW/S	NO	0
1402h	00	Number of entries	Number of sub-indexes	U8	RO	NO	5
	01	COB ID	RPDO2 COB ID	U32	RO	NO	400+Node
							-ID
	02	Transmission Type	Transmission Type	U8	RW/S	NO	FFh
	03	Inhibit Time	Inhibit Time	U16	RW/S	NO	0
	04	Compatibility Entry	Compatibility Entry	U8	RW	NO	0
	05	Event Timer	Event Timer	U16	RW/S	NO	0
1403h	00	Number of entries	Number of sub-indexes	U8	RO	NO	5
	01	COB ID	RPDO3 COB ID	U32	RO	NO	500+Node
							-ID
	02	Transmission Type	Transmission Type	U8	RW/S	NO	FFh
	03	Inhibit Time	Inhibit Time	U16	RW/S	NO	0
	04	Compatibility Entry	Compatibility Entry	U8	RW	NO	0
	05	Event Timer	Event Timer	U16	RW/S	NO	0
1600h	00	Number of entries	Number of entries	U8	RO	NO	1
	01	PDO Mapping Entry	Map to 6040h register	U32	RW/S	NO	60400010
							h
	02	PDO Mapping Entry_2	Unmapped	U32	RW/S	NO	-
	03	PDO Mapping Entry_3	Unmapped	U32	RW/S	NO	-
	04	PDO Mapping Entry_4	Unmapped	U32	RW/S	NO	-
1601h	02	PDO Mapping Entry_2	Unmapped	U32	RW/S	NO	-
	03	PDO Mapping Entry_3	Unmapped	U32	RW/S	NO	-
	04	PDO Mapping Entry_4	Unmapped	U32	RW/S	NO	=
	02	PDO Mapping Entry_2	Unmapped	U32	RW/S	NO	=
	03	PDO Mapping Entry_3	Unmapped	U32	RW/S	NO	-
1602h	00	Number of entries	Number of entries	U8	RO	NO	0
	01	PDO Mapping Entry	Unmapped	U32	RW/S	NO	-
	02	PDO Mapping Entry_2	Unmapped	U32	RW/S	NO	-
	03	PDO Mapping Entry_3	Unmapped	U32	RW/S	NO	-
	04	PDO Mapping Entry_4	Unmapped	U32	RW/S	NO	-
1603h	00	Number of entries	Number of entries	U8	RO	NO	0
	01	PDO Mapping Entry	Unmapped	U32	RW/S	NO	-
	02	PDO Mapping Entry_2	Unmapped	U32	RW/S	NO	-
	03	PDO Mapping Entry_3	Unmapped	U32	RW/S	NO	-

	04	PDO Mapping Entry_4	Unmapped	U32	RW/S	NO	=
1800h	00	Number of entries	Number of sub-indexes	U8	RO	NO	5
	01	COB ID	TPDO0 COB ID	U32	RO	NO	180+Node -ID
	02	Transmission Type	Transmission Type	U8	RW/S	NO	FFh
	03	Inhibit Time	Inhibit Time	U16	RW/S	NO	0
	04	Compatibility Entry	Compatibility Entry	U8	RW	NO	0
	05	Event Timer	Event Timer	U16	RW/S	NO	0
1801h	00	Number of entries	Number of sub-indexes	U8	RO	NO	5
	01	COB ID	TPDO1 COB ID	U32	RO	NO	280+Node -ID
	02	Transmission Type	Transmission Type	U8	RW/S	NO	FFh
	03	Inhibit Time	Inhibit Time	U16	RW/S	NO	0
	04	Compatibility Entry	Compatibility Entry	U8	RW	NO	0
	05	Event Timer	Event Timer	U16	RW/S	NO	0
1802h	00	Number of entries	Number of sub-indexes	U8	RO	NO	5
	01	COB ID	TPDO2 COB ID	U32	RO	NO	380+Node -ID
	02	Transmission Type	Transmission Type	U8	RW/S	NO	FFh
	03	Inhibit Time	Inhibit Time	U16	RW/S	NO	0
	04	Compatibility Entry	Compatibility Entry	U8	RW	NO	0
	05	Event Timer	Event Timer	U16	RW/S	NO	0
1803h	00	Number of entries	Number of sub-indexes	U8	RO	NO	5
	01	COB ID	TPDO3 COB ID	U32	RO	NO	480+Node -ID
	02	Transmission Type	Transmission Type	U8	RW/S	NO	FFh
	03	Inhibit Time	Inhibit Time	U16	RW/S	NO	0
	04	Compatibility Entry	Compatibility Entry	U8	RW	NO	0
	05	Event Timer	Event Timer	U16	RW/S	NO	0
1A00h	00	Number of entries	Number of entries	U8	RO	NO	0
	01	PDO Mapping Entry	Unmapped	U32	RW/S	NO	-
	02	PDO Mapping Entry_2	Unmapped	U32	RW/S	NO	-
	03	PDO Mapping Entry_3	Unmapped	U32	RW/S	NO	-
	04	PDO Mapping Entry_4	Unmapped	U32	RW/S	NO	-
1A01h	00	Number of entries	Number of entries	U8	RO	NO	0
	01	PDO Mapping Entry	Unmapped	U32	RW/S	NO	-
	02	PDO Mapping Entry_2	Unmapped	U32	RW/S	NO	-
	03	PDO Mapping Entry_3	Unmapped	U32	RW/S	NO	-
	04	PDO Mapping Entry_4	Unmapped	U32	RW/S	NO	-
1A02h	00	Number of entries	Number of entries	U8	RO	NO	0
	01	PDO Mapping Entry	Unmapped	U32	RW/S	NO	-
	02	PDO Mapping Entry_2	Unmapped	U32	RW/S	NO	-
	03	PDO Mapping Entry_3	Unmapped	U32	RW/S	NO	-

	•						
	04	PDO Mapping Entry_4	Unmapped	U32	RW/S	NO	-
1A03h	00	Number of entries	Number of entries	U8	RO	NO	0
	01	PDO Mapping Entry	Unmapped	U32	RW/S	NO	-
	02	PDO Mapping Entry_2	Unmapped	U32	RW/S	NO	-
	03	PDO Mapping Entry_3	Unmapped	U32	RW/S	NO	-
	04	PDO Mapping Entry_4	Unmapped	U32	RW/S	NO	-
		Fa	ictory custom parameter	rs			
<mark>2000h</mark>	00	Communication	Driver and host	U16	RW	YES	1000
		power-down protection	communication power-down				
		time	time setting				
			Unit: ms				
			Range: 0-32767;				
<mark>2001h</mark>	00	RS485 custom driver	When the external dial switch	U16	RW	YES	4
		node number	is 0, it can be set to 4~127;				
			When the external dial switch				
			is 1-3, this bit is invalid				
<mark>2002h</mark>	00	RS485 custom	0: 256000bps	U16	RW	YES	2
		communication	1: 128000bps				
		baudrate	2: 115200bps				
			3: 57600bps				
			4: 38400bps				
			5: 19200bps				
			6: 9600bps				
<mark>2003h</mark>	00	Input signal status	2 input signal level status;	U16	RO	YES	0
			Bit0 – Bit1: X0 ~ X1 input level				
			status;				
<mark>2004h</mark>	00	Output signal status	2 output signal level status;	U16	RO	YES	0
			Bit0 ~ Bit1: Y0 ~ Y1 output				
			status;				
<mark>2005h</mark>	00	Clear postion feedback	Clear position feedback in	U16	RW	YES	0
			profile position mode				
			0: Invalid;				
			1: Cleared position feedback.				
			Not save				
			High 8 bits: (left)				
			Low 8 bits: (right)				
<mark>2006h</mark>	00	Clear the current	Clear the current position in	U16	RW	YES	0
		position in absolute	absolute position mode				
		position mode	0: Invalid;				
			1: Clear the current position;				
			High 8 bits: (left)				
			Low 8 bits: (right)				
<mark>2007h</mark>	00	Shaft lock method	0: Not enable, not lock the	U16	RW	YES	0

		1	shaft;				
			1: Not enable, lock the shaft;				
<mark>2008h</mark>	00	Motor max speed	Motor max working speed	U16	RW	YES	1000
200811		Wotor max speed	Unit: r/min;	010	IXVV	TLS	1000
			Range: 1-1000r/min;				
<mark>2009h</mark>	00	Register parameter	0: Invalid;	U16	RW	YES	0
200311		setting	1: Restore factory settings;	010	1000	123	
200Ah	00	CAN custom driver	When the external dial switch	U16	RW	YES	
ZOOAII		node number	is set to 0, it can be set from 4	010	1000	123	4
		node namber	to 127;				
200Bh	00	CAN custom	0: 1000 Kbit/s	U16	RW	YES	1
200011		communication	1: 500 Kbit/s	010	'``	123	1
		baudrate	2: 250 Kbit/s				
		badarate	3: 125 Kbit/s				
			4: 100 Kbit/s				
			5: 50 Kbit/s				
			6: 25 Kbit/s				
200Ch	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Motor pole pair	4-64	U16	RW	YES	15
		number (left)					
	02	Motor pole pair	4-64	U16	RW	YES	15
		number (right)					
200Dh	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Starting speed (left)	The initial speed at which the	U16	RW	YES	1r/min
			movement started;				
			Unit The initial speed at				
			which the movement started;				
			Unit: r/min;				
			Range: 1-256r/ min;				
	01	Starting speed (right)	The initial speed at which the	U16	RW	YES	1r/min
			movement started;				
			Unit The initial speed at				
			which the movement started;				
			Unit: r/min;				
			Range: 1-256r/ min;				
<mark>200Eh</mark>	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Encoder wire number	0-4096	U16	RW	YES	1024
		setting (left)					<u></u>
	02	Encoder wire number	0-4096	U16	RW	YES	1024
		setting (right)					<u></u>
200Fh	00	Synchronous/asynchron	0: Asynchronous control	1116	RW	YES	0
		ous control flag	1: Synchronous control	U16			
<mark>2010h</mark>	00	Whether the parameter	Whether the communication	U16	RW	YES	0
i	1						

			updated to EEPROM				
			0: Invalid;				
			1: Parameters with attribute				
			RW / S are updated to				
			EEPROM synchronously;				
2011h	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
201111	01						0
	01	Offset angle of motor	Unit: 1°;	116	RW	YES	
	02	and Hall (left)	Range: -360-+360	14.6	DVA	VEC	
	02	Offset angle of motor	Unit: 1°;	I16	RW	YES	0
20421	00	and Hall (right)	Range: -360-+360	114.6	200		
<mark>2012h</mark>	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Overload factor (left)	Range: 0-300,	U16	RW	YES	200
			Unit: %				
	02	Overload factor (right)	Range: 0-300,	U16	RW	YES	200
			Unit: %				
<mark>2013h</mark>	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Motor temperature	Unit: 0.1°C;	U16	RW	YES	800
		protection threshold	Range: 0-1200				
		(left)					
	02	Motor temperature	Unit: 0.1°C;	U16	RW	YES	800
		protection threshold	Range: 0-1200				
		(right)					
<mark>2014h</mark>	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Rated current (left)	Driver rated output current	U16	RW	YES	150
			Unit: 0.1A;				
			Range: 0-150				
	02	Rated current (right)	Driver rated output current	U16	RW	YES	150
			Unit: 0.1A;				
			Range: 0-150				
<mark>2015h</mark>	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Maximum current (left)	Maximum driver output	U16	RW	YES	300
			current				
			Unit: 0.1A;				
			Range: 0-300				
	02	Maximum current	Maximum driver output	U16	RW	YES	300
		(right)	current				
			Unit: 0.1A;				
			Range: 0-300				
<mark>2016h</mark>	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Overload protection	Driver overload protection	U16	RW	YES	300
		time (left)	time				
			Unit: 10ms;				
			Range: 0-6553		1		
l			Marige. 0 0000				l l

		time (right)	time				
			Unit: 10ms;				
			Range: 0-6553				
2017h	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Out of tolerance alarm	Encoder tolerance threshold	U16	RW	YES	409
		threshold (left)	Unit: *10counts;				
			Range: 1-6553				
	02	Out of tolerance alarm	Encoder tolerance threshold	U16	RW	YES	409
		threshold (right)	Unit: *10counts;				
			Range: 1-6553				
<mark>2018h</mark>	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	L speed smoothing	0-30000	U16	RW	YES	50
		coefficient					
	02	R speed smoothing	0-30000	U16	RW	YES	50
		coefficient					
<mark>2019h</mark>	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	L current loop	0-30000	U16	RW	YES	600
		proportional coefficient					
	02	R current loop	0-30000	U16	RW	YES	600
		proportional coefficient					
<mark>201Ah</mark>	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	L current loop integral	0-30000	U16	RW	YES	300
		gain					
	02	R current loop integral	0-30000	U16	RW	YES	300
		gain					
<mark>201Bh</mark>	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	L feedforward output	0-30000	U16	RW	YES	100
		smoothing coefficient					
	02	R feedforward output	0-30000	U16	RW	YES	100
		smoothing coefficient					
<mark>201Ch</mark>	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	L torque output smooth	0-30000	U16	RW	YES	100
		coefficient					
	02	R torque output	0-30000	U16	RW	YES	100
		smooth coefficient					
<mark>201Dh</mark>	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	L speed proportional	0-30000	U16	RW	YES	500
		gain Kp				1	
	02	R speed proportional	0-30000	U16	RW	YES	500
		gain Kp				1	
<mark>201Eh</mark>	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	L speed integral gain Ki	0-30000	U16	RW	YES	100
	02	R speed integral gain Ki	0-30000	U16	RW	YES	100

WZLTECH

201Fh	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	L speed feedforward	0-30000	U16	RW	YES	1000
	02	R speed feedforward gain Kf	0-30000	U16	RW	YES	1000
<mark>2020h</mark>	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	L position proportional gain Kp	0-30000	U16	RW	YES	50
	02	R position proportional gain Kp	0-30000	U16	RW	YES	50
2021h	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	L position feedforward gain Kf	0-30000	U16	RW	YES	200
	02	R position feedforward gain Kf	0-30000	U16	RW	YES	200
2022h	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	L speed observer coefficient 1	0-30000	U16	RW	YES	1000
	02	R speed observer coefficient 2	0-30000	U16	RW	YES	1000
2023h	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	L speed observer coefficient 2	0-30000	U16	RW	YES	750
	02	R speed observer coefficient 2	0-30000	U16	RW	YES	750
2024h	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	L speed observer coefficient 3	0-30000	U16	RW	YES	350
	02	R speed observer coefficient 3	0-30000	U16	RW	YES	350
2025h	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	L speed observer coefficient 4	0-30000	U16	RW	YES	1000
	02	R speed observer coefficient 4	0-30000	U16	RW	YES	1000
2030h	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	8

1	ZLI	ECH	
1.0			

	01	Input terminal effective	Bit0: Input terminal X0	U16	RW	YES	0
	01	level	control bit;	010	11.00	11.5	
		ICVCI	Bit1: Input terminal X1				
			control bit;				
			·				
			Bit2- Bit15: Reserved;				
			0: Default;				
			1: level inversion;				
			The driver's default input				
			terminal level rising edge or				
			high level is valid;				
	02	Input terminal X0	0: undefined;	U16	RW	YES	9
		terminal function	1-6: NC;				
		selection	9: emergency stop signal;				
	03	Input terminal X1		U16	RW	YES	0
		terminal function					
		selection					
	04	NC		U16	RW	YES	0
	05	NC		U16	RW	YES	0
	06	Output terminal	Bit0: Output terminal Y0	U16	RW	YES	0
		effective level	control bit;				
			Bit1: Output terminal Y1				
			control bit;				
			0: default;				
			1: level inversion;				
			The driver's default input				
			terminal level rising edge or				
			high level is valid;				
	07	Output terminal Y0	Brake state	U16	RW	YES	0
		terminal function	0: Open				
		selection	1: Close				
	08	Output terminal Y1	Brake state	U16	RW	YES	0
		terminal function	0: Open				
		selection	1: Close				
2031h	00	Software version	Factory default	U16	RO	NO	-
2032h	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Motor temperature	Unit: 0.1°C;	U16	RO	YES	800
	01	(left)	Range: 0-1200°C			1.20	
	02	Motor temperature	Unit: 0.1°C;	U16	RO	YES	800
	02	(right)	Range: 0-1200°C	010	1.0	11.5	000
2033h	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
203311	00						0
	01	Motor status register	The driver controls the motor	U16	RO	YES	
		(left)	motion state				
			0: The motor is stationary;				
			1: Motor is running;				

02 U16 RO YES 0 The driver controls the motor Motor status register (right) motion state 0: The motor is stationary; 1: Motor is running; 2034h 00 Number of sub-indexes Number of sub-indexes U16 RO NO 2 0 01 U16 RO YES Hall input state (left) 0-7; If 0 or 7 appears, it is a Hall 02 Hall input state (right) 0-7; U16 RO YES 0 If 0 or 7 appears, it is a Hall 2035h 00 Unit: 0.01V U16 RO YES 0 Bus voltage CiA 402 Parameter 603Fh 00 Error_code Factory-defined drive error U16 RO YES conditions. 0000h: no errors; FF01h: overvoltage; FF02h: overcurrent; FF04h: missing phase; FF08h: Internal reference voltage error; FF10h: EEPROM read and write errors; 6040h 00 Controlword Control word U16 RW YES 0 6041h 00 U16 RO YES 0 Statusword Status word 605Ah 00 Quick_stop_option_c Driver processing method 116 RW NO 5 ode after quick stop command. 5: Stop normally , maintain quick stop status; 6: Decelerate to stop emergencely and maintain quick stop state; 7: Emergency stop, maintain quick stop state; 605Bh 00 116 RW NO 1 $Shutdown_option_co$ Driver processing method de after the close command 0: invalid; 1: Stop normally, go to ready to switch on state; 605Ch 00 Driver processing mode after 116 RW NO 1 Disable_operation_op tion code the disable operation command 0: Invalid;

1: Stop normally, switch to

1	ZLTECH
1.0	

			switched on state;				
605Dh	00	Disable_operation_op	Driver processing mode after	I16	RW	NO	1
		tion_code	the disable operation				
			command				
			0: Invalid;				
			1: Stop normally , switch to				
			switched on state;				
6060h	00	Modes_of_operation	0: undefined;	18	RW	YES	0
			1: position mode;				
			3: speed mode;				
			6: Return to origin mode;				
6061h	00	Modes_of_operation_	0: undefined;	18	RO	YES	0
		display	1: position mode;				
			3: speed mode;				
			6: Return to origin mode;				
6064h	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Position_actual_value	Actual position feedback,	132	RO	YES	0
		(left)	unit: count;				
	02	Position_actual_value	Actual position feedback,	132	RO	YES	0
		(right)	unit: count;				
606Ch	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Velocity_actual_value	Current motor speed,	132	RO	YES	0
		(left)	Unit: r / min				
	02	Velocity_actual_value	Current motor speed,	132	RO	YES	0
		(right)	Unit: r / min				
	03	Left motor and right	Current motor speed,	U32(I1	RO	YES	0
		motor speed actual	Unit: r / min	6+116)			
		value combination					
		Low 16 is the left					
		motor,					
		High 16 is the right					
		motor					
6071h	00	Number of sub-indexes	Number of sub-indexes	U16	RW	NO	2
	01	Target torque (left)	Unit: mA	I16	RW	YES	0
			Range: -30000~30000;				
	02	Target torque (right)	Unit: mA	I16	RW	YES	0
			Range: -30000~30000;;				
	03	Left moroe and right	Unit: mA	U32(I1	RW	YES	0
		motor target torque	Range: -30000~30000;	6+116)			
		combination					
		Low 16 is the left					
		motor,					
		High 16 is the right					
		motor					

TEL: +86-0755-29799302

WEB: www.zlingkj.com

(1)	ZLTECH
4.0	

6077h	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Torque actual value	Unit: 0.1A	I16	RO	YES	0
		(left)	Range: -600~600;				
	02	Torque actual value	Unit: 0.1A	I16	RO	YES	0
		(right)	Range: -600~600;				
	03	Left motor and right	Unit: 0.1A	U32(I1	RW	YES	0
		motor torque actual	Range: -600~600;	6+116)			
		value combination					
		Low 16 is the left					
		motor,					
		High 16 is the right					
		motor					
607Ah	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Target_position (left)	Total number of pulses in	132	RW	YES	0
			profile position mode;				
			Range:				
			Relative:				
			-0x7FFFFFFF~0x7FFFFFFF				
			Absolute:				
			-0x3FFFFFFF~0x3FFFFFFF				
	02	Target_position (right)	Total number of pulses in	132	RW	YES	0
			profile position mode;				
			Range:				
			Relative:				
			-0x7FFFFFFF°0x7FFFFFFF				
			Absolute:				
			-0x3FFFFFFF~0x3FFFFFFF				
6081h	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Profile_velocity (left)	Max speed in profile position	U32	RW	YES	120r/min
			mode;				
			Range: 1-1000r/min;				
	02	Profile_velocity (right)	Max speed in profile position	U32	RW	YES	120r/min
			mode;				
			Range: 1-1000r/min;				
6082h	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	End_velocity (left)	Start / stop speed in profile	U32	RW	YES	1r/min
			position mode;				
			Range: 1-250r/min;				
	02	End_velocity (right)	Start / stop speed in profile	U32	RW	YES	1r/min
			position mode;				
			Range: 1-250r/min;				
6083h	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Profile_acceleration	Acceleration time;	U32	RW	YES	500ms
		(left)	Range: 0-32767ms;	<u> </u>	<u> </u>		

	02	Profile_acceleration	Acceleration time;	U32	RW	YES	500ms
		(right)	Range: 0-32767ms;				
6084h	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Profile_deceleration	Deceleration time;	U32	RW	YES	500ms
		(left)	Range: 32767ms;				
	02	Profile_deceleration	Deceleration time;	U32	RW	YES	500ms
		(right)	Range: 32767ms;				
6085h	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Quick_stop_deceleratio	Deceleration time;	U32	RW	YES	10ms
		n (left)	Range: 0-32767ms;				
	02	Quick_stop_deceleratio	Deceleration time;	U32	RW	YES	10ms
		n (right)	Range: 0-32767ms;				
6087h	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Torque Slope (left)	Current/1000/second;	U32	RW	YES	300ms
			Unit: mA/s;				
	02	Torque Slope (right)	Current/1000/second;	U32	RW	YES	300ms
			Unit: mA/s;				
60FFh	00	Number of sub-indexes	Number of sub-indexes	U16	RO	NO	2
	01	Target_velocity (left)	Target speed in profile	132	RW	YES	0
			velocity mode;				
			Range: -1000-1000r/min;				
	02	Target_velocity (right)	Target speed in profile	132	RW	YES	0
			velocity mode;				
			Range: -1000-1000r/min;				
	03	Left and right target	Target speed in profile	U32(I1	RO	YES	0
		speed combination	velocity mode;	6+116)			
		Low 16 is the left motor	Range: -1000-1000r/min;				
		High 16 is the right					
		moto					

Note:

• U16 means unsigned 16 bits; I16 means signed 16 bits; U32 means unsigned 32 bits; I32 means signed 32 bits.