CÀLCUL INTEGRAL EN DIVERSES VARIABLES

EXAMEN PARCIAL

Març 2012

- 1. a) (3 punts) Si $E \subset \mathbf{R}^n$ és un conjunt mesurable, i $f: E \to \overline{\mathbf{R}}$ una funció mesurable, definiu, quan tingui sentit, $\int_E f$.
 - b) (3'5 punts) Sigui $f:[0,1]\to \mathbf{R}$ definida com $f(x)=\begin{cases} 0, & \text{si } x\in \mathbf{Q}\\ 3, & \text{si } x\in \mathbf{R}\setminus \mathbf{Q} \end{cases}$ Justifiqueu l'existència i calculeu $\int_{[0,1]}f.$
 - c) (3.5 punts) Enuncieu el teorema de Fubini en \mathbb{R}^2 .
- **2.** a) (5 punts) Proveu que les equacions u = x y, $v = e^x + e^y$, defineixen un canvi de variables entre \mathbf{R}^2 i $\mathbf{R} \times (0, +\infty)$.
 - b) (5 punts) Calculeu $\int_A f$, essent la funció $f(x,y)=(x-y)(e^x+e^y)^2$, i el conjunt mesurable $A=\{(x,y)\in {\bf R}^2|\ 1< x-y<2,\ 8< e^x+e^y-x+y<10\}$
- **3.** a) (3 punts) Expliqueu el canvi a coordenades cilíndriques en \mathbb{R}^3 .
 - b) (7 punts) Estudieu, en termes del paràmetre $a \in \mathbf{R}$, la integrabilitat de la funció

$$f_a(x, y, z) = \frac{z}{|x^2 + y^2 + z^2 - 2|^a}$$

sobre el conjunt mesurable $A = \{(x,y,z) \in \mathbf{R}^3 | \ x > 0, y > 0, z > 0, \ 1 < x^2 + y^2 + z^2 < 3 \}$

ENTREGUEU ELS EXERCICIS EN FULLS SEPARATS

POSEU EL NOM EN TOTS ELS FULLS