Tuning neural networks for initial wave type classification of detections at 3-component seismic stations in automatic processing

Radek Hofman, Ronan Le Bras, Helmuth Breitenfellner, Cahya Wirawan, Elena Tomuta

International Data Centre
Preparatory Commission for the Comprehensive
Nuclear-Test-Ban Treaty Organization

The views expressed herein are those of the author(s) and do not necessarily reflect the views of the CTBT Prep. Comm.

Problem statement

- ► Initial wave type (iwt) is determined using StaPro (Station Processing) software for all IMS arrivals detected at IDC
 - ▶ iwt∈{noise, regional S (Sn, Lg, Rg, Sx), regional P (Pn, Pg, Px), teleseismic (P, tx)}
 - initial wave type is further refined to more specific wave types
- ► For 3-component (3-C) stations the system relies on a cascade of three binary classifiers implemented as neural networks (NNs)
- ➤ Current NN weights were derived in 2002 using data from a single station (STKA) and are applied to **all** 3-C stations worldwide
- We now have much more station specific data reviewed by analysts
- Our goal is to investigate if the classification performance of 3-C seismic stations can be improved by re-training using more station-specific data

Neural networks in StaPro

- ▶ The system comprises of a cascade of three binary classifiers
 - ► Step 1: the system tries to distinguish between noise **N** and a signal {regS, regP, tele}
 - ► Step 2: if signal: is it regS or {regP, tele}?
 - ► Step 3: if {regP, tele}: is it regP or tele?
- ► All three classifiers are implemented as a multilayer perceptron (neural network)
- ► After NN classification, there is a revision stage of possible T→regP change and regS refinement using a Bayesian model
- SERENO, T. and PATNAIK, G., Initial Wave-type Identification with Neural Networks and its Contribution to Automated Processing in IMS Version 3.0, Technical Report, SAIC-93/1219, 1993
- 2. WANG, J., Adaptive training of neural networks for automatic seismic phase identification. Monitoring the Comprehensive Nuclear-Test-Bant Treaty: Data Processing and Infrasound (2002): 1021-1041.

Cascade of three binary classifiers

Figure 19. A schematic representation of our neural network approach to solving the 4-class initial wave-type identification problem is shown.

^{*}Figure from (Sereno and Patnaik, 1993)

Multilayer perceptron topology

 All three NNs in the cascade have the same topology

- input layer of size 15
- ▶ hidden layer of size 6
- output layer of size 2
- All layers are dense with sigmoid activation
- ► Total 110 tunable weights

^{*}Figure from (Sereno and Patnaik, 1993)

Inputs (classification features)

iwt is determined using a set of features computed along with detection of arrivals:

#	Feature	Description	Source	Norm.
1	period	Dominant period of the detected phase	ARRIVAL	
2	rect	Signal rectilinearity	APMA	
3	plans	Signal planarity	APMA	
4	inang₁	Long-axis incidence angle	APMA	/90
5	inang ₃	Short-axis incidence angle	APMA	/90
6	hmxmn	Ratio of the maximum to minimum horizontal amplitude	APMA	\log_{10}
7	hvratp	Ratio of horizontal-to-vertical power	APMA	\log_{10}
8	hvrat	Similar to <i>hvratp</i> , measured at the time of max 3C amplitude	APMA	\log_{10}
9	$N_{\rm \tiny after} - N_{\rm \it before}$	Diff. between the no. of arrivals before and after within $\pm 60s$	on the fly	/10
10	$T_{after} - T_{before}$	Mean time diff. between arrivals before and after within $\pm 60s$	on the fly	/100
11	$htov_1$	Horiz. to vert. power ratio in oct. freq. band centered at 0.25 Hz	AMP3C	\log_{10}
12	$htov_2$	Horiz. to vert. power ratio in oct. freq. band centered at 0.5 Hz	AMP3C	\log_{10}
13	$htov_3$	Horiz. to vert. power ratio in oct. freq. band centered at 1.0 Hz	AMP3C	\log_{10}
14	$htov_4$	Horiz. to vert. power ratio in oct. freq. band centered at 2.0 Hz	AMP3C	\log_{10}
15	$htov_5$	Horiz. to vert. power ratio in oct. freq. band centered at 4.0 Hz	AMP3C	\log_{10}

A brief history

- ► According to *Sereno and Patnaik*, (1993), the iwt classification system was created in early 1990s (as en extension of a two class system P vs. S) and became part of IMS v3 (IMS stands here for *Intelligent Monitoring System*)
- ► Station-specific weights were trained using analyst-reviewed data for two 3C stations which had enough data
- ► For the rest of stations "average" weights yielded by training using data from multiple stations were produced
- Around 2002 the weights have been re-trained using data from STKA station, see (J. Wang, 2002)
- ► Since then, these weights are used as weights for all 3C stations in IMS (IMS stands here for *International Monitoring System*)
- $ightharpoonup m_b$ SNR screening was introduced later to improve classification performance

m_b SNR screening

- ► Currently, there is a m_b SNR screening prepended to NN classifier in StaPro
- ► All 3-C arrivals are checked by this screening and labeled as noise if a simple condition is met
- ► For each station, there is a given threshold in configuration file m_b^{min} , detection is labeled as noise if $m_b < m_b^{min}$
- ▶ Its purpose is to (probably) identify noise phases using m_b and not let them into NN classification where significant amount of them is classified as an associated phase
- ▶ **Drawback:** this simple criterion labels also significant number of associated phases as noise (increases *N-phase rate*) and they do not enter NN classification

m_b SNR screening – evaluation of effects

- ► Results are produced using current URZ OPS weights without (left) and with (right) *m_b* SNR
- ▶ 17999 arrivals detected Jan May 2017 (1581 associated in LEB, 16418 noise phases)

old weights without m_b SNR					
	N	S	Р	Т	
N	4289	99	9	108	
S	2371	134	0	138	
Р	3305	30	266	277	
Т	6452	9	34	477	
accuracy 28.7 % (assoc. 55.5 %)					
N-phase rate 13.6%					

old weights with m_b SNR						
	N	S	Р	Т		
N	8312	113	35	167		
S	1743	124	0	128		
Р	2097	26	237	244		
Т	4265	9	37	461		
accuracy 50.7 % (assoc. 51.9 %)						
N-phase rate 19.9 %						

Why re-training effort?

- ▶ Is it correct to use weights derived using a single station data globally?
- ► Can we do better if the weights were derived for each station individually using station specific data?
- ightharpoonup Nowadays, there is much more analyst-reviewed data than before (\sim 13 years for URZ)
- ► Re-training means just a change in configuration of StaPro if we keep the original topology of NNs then no code changes are needed
- ▶ Possible problems with m_b SNR screening

Ingredients needed for successful re-training

- 1. **Training data** For neural network it holds true the more, the better
- 2. Back-propagation algorithm The algorithm for NN training
 - ▶ We do not have the original C code used for training. However, the generic nature of NNs and our domain knowledge allows us to implement back-propagation algorithm
- 3. A way to translate weights from re-training into StaPro configuration files
 - We need to produce an alternate weights file and replace with it the original one in StaPro
- 4. A simulated pipeline which can be run with the alternate weight file
 - ► This gives us an alternate iwt classification which we can evaluate against analyst-reviewed data in a test set

Ingredients needed for successful re-training

- 1. Training data We chose to start with URZ station
 - ▶ It is one of the most data rich stations and its current iwt classification performance is around 50%
- 2. Back-propagation algorithm We use Python library Keras backed by Theano
- 3. A way to translate weights from re-training into StaPro configuration files
 - ▶ We analyzed the C code and created a script putting the new weights into a weights file template in the right order
- 4. A simulated pipeline which can be run with the alternate weight file
 - We are able to run StaPro using the Station Tuning framework

Experiment setting

▶ Performance of iwt determination at 3-C stations varies significantly:

▶ We selected URZ to be retrained — a highly contributing station with above average iwt classification error

Dataset description

- ► **Training dataset**: analyst reviewed URZ automatic arrivals **2003 2016**
 - ➤ Signal phases are all automatic arrivals associated to LEB (arrivals) with re-timing < 2 seconds (29252 arrivals)
 - Noise phases are selected randomly from all automatic arrivals classified as noise and not associated to LEB
 - Training data is split on training and validation data in ratio 9:1
 - Dataset is highly imbalanced we employed weighted loss during training
- ► Test dataset: analyst reviewed URZ automatic arrivals Jan May 2017

Dataset used by Wang, (2002) comprised of \sim 1500 phases for all 4 classes

Dataset insights - density

Density plot of all features in training dataset. Some densities are multimodal.

Dataset insights - correlation

Test set results

- ▶ Offline comparison of confusion matrices for old and new weights Jan May 2017
- ► Test set results indicate that we can improve both classification accuracy and N-phase rate at the same time by re-training (without the need of m_b SNR screening)

N S P T N S P T N S N 8312 113 35 167 9740 48 12 43 9740 48 S 1743 124 0 128 2477 220 2 221 2477 220	T 43		
	43		
S 1742 124 0 128 2477 220 2 221 2477 220			
3 1/43 124 0 128 24// 220 2 221 24// 220	221		
P 2097 26 237 244 991 2 195 68 1948 3 2	l 191		
T 4265 9 37 461 3209 2 100 669 2252 1	546		
50.7% (51.9%) 60.1% (68.5%) 59.8% (64.	59.8% (64.5%)		
N-phase rate: 19.9% N-phase rate: 6.5% N-phase rate	N-phase rate: 6.5%		

Test in automatic processing on DVL pipeline

- ▶ 2018/07/25: weights in DVL, m_b SNR screening turned off for URZ (m_b^{min} set to 0)
- ► Evaluation performed on arrivals between 2018/08/01 and 2018/09/30 (2 months, 4243 arrivals, 494 associated to LEB)
- DVL and OPS arrivals matched by proximity in time and azimuth

OPS : old weights, m_b SNR, reg. P \rightarrow T refined				DVL : new weights, reg. P→T refined				
	N	S	Р	Т	N	S	Р	Т
Ν	1879	33	9	48	2042	8	3	11
S	439	56	2	39	719	83	2	64
Р	497	2	76	83	503	1	84	60
Т	934	1	10	135	485	0	8	170
50.6% (54.0%)				56.1% (68.2%)				
N-phase rate: 17.0%				N-phase rate: 4.5%				

Conclusion and future plans

- ► Classification accuracy of both noise and associated phases increased after retraining using station specific data
- ▶ At the same time, number of associated phases classified as noise in automatic processing decreased mainly due to removal of m_b SNR screening criterion
- ▶ New URZ weights will be evaluated on TST automatic pipeline
- Retraining of other stations will follow
- Possible research directions:
 - ▶ Replace the cascade of three NNs with a single classifier for all four classes
 - ▶ Do not use pre-computed features but classify on the level of samples using recurrent or convolution networks