A Combinatorial Presentation of the Operad of Plane Graphs

Malin Altenmüller

Ross Duncan 1,2

STRINGS 3 in Birmingham, 4 September 2019

Diagrams for Monoidal Categories

- string diagrams graphical language for monoidal categories
- represented by graphs (Selinger, 2011)
 - · SMC: directed acyclic graphs
 - · traced: can contain cycles
 - · autonomous: wires can go the other way
- diagram equality -> graph isomorphism
- equational reasoning via rewrite rules
 - -> double pushout graph rewriting

Diagrams for non-symmetric Monoidal Categories

Non-symmetric case:

- printing circuits: crossings not possible
- quantum circuits: crossing not for free
- most general case: can add structure on top

Representation:

- no crossing wires
- represented by plane graphs

Implementation:

This project is being implemented in Agola

Definition:

- graph G = (V, E) consisting of vertices and edges
- embedding of G: drawing of G on a surface S
- G planar if there exists an embedding into the plane without crossing edges. The embedding is called plane.

planor graph:

plane embedding of G:

A PRO can be represented as open plane graph:

Plane Graphs with a Boundary Vertex (1)

4/23

Encoding the dangling input and output wires:

- introduce a new vertex ∂G , the boundary vertex
- making the boundary part of the graph

- boundary vertex part of the plane graph
- connecting parallel graphs
- nice way to represent plane graphs combinatorically

Definition:

- rotation of a vertex $v \in V$:

 cyclic ordered List of adjacent vertices
- rotation system: rotation for all vertices in the graph

Here: rotation in clockwise direction

V1: V2, V3

V2: V1, V3

V3: V1, V4, V2

V4: V3

Rotation Systems (2)

Lemma:

A rotation system uniquely defines a (cellular) embedding of a graph (Youngs, 1963)

Proof:

Rotation Systems (3)

Example:

V1: in, V1, V1, V3

V2: in, v3, out

V3: V1, out, V2

in: V2, V1

out: V3, V2

- cottegorically: inputs and outputs non-cyclic ordered lists
- combinatorically: boundary vertex as cyclic ordered list
- special case: multiple self loops (later, maybe)

boundary and inner vertices

Building Graphs - Base Cases (1)

Single vertex:

v: in, in, out

in: V, V

out: V

empty graph:			identit	identity:		
: : : : : : : : : : : : : : : : : : : :		: :::				
	in: []			in: out		
	out:[]			out: in		

cap and cup are self loops at the boundary vertex (so is the identity!)

- make names of vertices disjoint
- new rotation system: union of both rotation systems
- new boundary vertex: draw extra edge and contract it

Example:

V₂

V4: in, V4, V4, out

in: Va

out: V1

V2: in, out, out

in : V2

out: V2, V2

V1: in, V1, V1, out

V2: injout, out

in: V2, V4

out: V1, V2, V2

- identify edges at the composition boundary
- update rotation systems on both sides
- new boundary vertex: inputs from the left outputs from the right

Example:

V₁: in, v₂, out V₂: in, out, out

in: V2, V1 out: V1, V2, V2 V3: in, in, out in: out, v3, V3

out: V3, in

 V_4 : in, V_4 , V_4

 V_2 : in, V_3 , out

V3: V2, V1, out

in: 1/21/4

out: V3, V2

Special cases for sequential composition:

- longer paths:

- cycles:

This representation of plane graphs with a boundary vertex defines a strict monoidal category, where

- the objects are lists of types of wires
- the morphisms are graphs
- parallel and sequential composition as defined above

Now: How does rewriting work?

Graph Rewriting - Double Pushout Approach

18/23

 $V_{1}: in, V_{1}, V_{1}, V_{3}$

V2: in, v3, out

V3: V1, Out, V2

in : V2, V1

out: V3, V2

 V_{4} : in, V_{4} , V_{4} , V_{5} : V_{6} : out V_{3} : V_{4} , out, V_{5} : in : V_{4} , V_{4}

out: V3, V6

Graph Rewriting

Lemma:

Graph rewriting (as defined above) preserves planarity.

Proof:

- LHS of rewrite rule is a connected graph
 - => can be contracted to a single vertex (edge contraction preserves planarity)
- substitution of a plane graph for a vertex preserves planounity

Operads

here: coloured operad (= multicategory)

An operad consists of:

- a collection of objects
- a collection of morphisms which take multiple inputs
- Composition operation:

- identity x ------x

- objects: connectivity of graph variables
- morphisms: graphs

This is a symmetric operad

$$\Theta = \frac{(y_1)}{(y_2)}$$

Similar idea to the operad of wiring diagrams (Spivak, 2013)

- composition is substitution for a graph variable

Plane graphs with a boundary vertex form an operacl, where the composition operation is substitution.

- representing non-symmetric monoidal categories
- combinatorial presentation via rotation systems

Future work:

- more complex types of wires
- adding geometry information
- cooperads: substitution becomes patternmentahing

Thank you for your attention!

References

- Selinger, P. (2011). A survey of Graphical languages for Monoidal Categories, pages 289-355. Springer Berlin Heidelberg.
- Spivak, D. (2013). The Operad of Wiring Diagrams: Formalizing a Graphical Language for Databases, Rocursion and Plug-and-Play Circuits.

 CORR, abs/1305,0297.
- Youngs, J.W.T. (1963). Minimal Imbeddings and the Genus of a Graph. Journal of Mouthematics and Mechanics, 12(2): 303-315.

Extra: Self Loops

- need to distinguish

and

rotation systems [v,v,v,v,v]

[1,1,1,1,1,1]

- introduce pointers to other [YYYYYY] end of edge

[\(\lambda'\la

(validity check: well formed bracketing of pointers. LV, V, V, V, V] is not plane!)

- works for both inner vertices and the boundary