

Jorge Eliécer Camargo Mendoza, PhD.

https://dis.unal.edu.co/~jecamargom/_jecamargom@unal.edu.co

Departamento de Ingeniería de Sistemas e Industrial Facultad de Ingeniería Universidad Nacional de Colombia Sede Bogotá

- 1 Desarrollo de Software en Machine Learning
- Metodologías clásicas vs metodologías de Machine Learning
- Tipos de metodologías en Ciencia de Datos
 - ○— 3.1 SEMMA
 - ○— 3.2 KDD
 - 3.3 CRISP DM
 - 3.4 TDSP

Objetivos de aprendizaje

Unidad 1 - Metodologías de Desarrollo de Machine Learning

Al finalizar la unidad usted deberá ser capaz de:

Entender las distintas metodologías de desarrollo de aplicaciones de Machine Learning.

Identificar las diferencias entre metodologías de desarrollo de software y las de Ciencia de Datos.

Seleccionar la metodología de desarrollo más apropiada para Ciencia de Datos.

Mapa de contenidos de la unidad

Preguntas abiertas

- ? Y ahora que tengo el modelo de ML listo ¿Quién lo pone en producción?
- ¿Nace un proyecto de desarrollo de software?
- ¿En qué se debería desarrollar el software que utiliza el modelo de ML?
- ? ¿Cada cuánto debería evaluar nuevos modelos?
- ? ¿Cada cuánto tiempo debería entrenar el modelo de ML?
- ¿Qué pasa si tengo más datos?
- ? ¿Qué pasa mis datos ahora son de mejor calidad?
- ¿Qué pasa si tengo nuevos datos pero con más atributos?

Ingeniería de Software

Arquitectura

Ingeniería de software

Zelkovitz, 1978

Estudio de los principios y metodologías para el desarrollo y mantenimiento de sistemas software.

Trata del establecimiento de los principios y métodos de la ingeniería a fin de obtener software de modo rentable, que sea fiable y trabaje en máquinas reales

Aplicación práctica del conocimiento científico al diseño y construcción de programas de computadora y a la documentación asociada requerida para desarrollar, operar y mantenerlos

Es la aplicación de un enfoque sistemático, disciplinado y cuantificable al desarrollo, operación, y mantenimiento del software.

Standard Glossary of Software Engineering Terminology

Bauer, 1973

Desarrollo de Software en Machine Learning

Machine Learning Operations (MLOps)

Ingeniería de software

Machine Learning Operations (MLOps)

Machine Learning Operations (MLOps)

MLOps

La mayoría de las metodologías plantean un proceso de manejo de datos, limpieza, modelamiento y evaluación.

Existen distintas metodologías de desarrollo en ciencia de datos.

Por lo general, este tipo de enfoques permiten definir una serie de tareas que posteriormente se pueden adaptar a una metodología de desarrollo de software.

Etapa	KDD	SEMMA	CRISP-DM	TDSP
1	Pre KDD	*	Entendimiento del negocio	Entendimiento del negocio
2	Selección	Muestreo	Entendimiento de los datos	Adquisición y entendimiento
3	Preprocesamiento	Exploración	Entendimiento de los datos	Adquisición y entendimiento
4	Transformación	Modificación	Preparación de los datos	Adquisición y entendimiento
5	Minería	Modelamiento	Modelamiento	Modelamiento
6	Interpretación	Evaluación	Evaluación	Modelamiento
7	Post KDD	*	Despliegue	Despliegue

SEMMA (Sample, Explore, Modify, Model, Assess)

Se trata de una lista de pasos secuenciales (cascada) que fue propuesta por el SAS Institute.

— El planteamiento es similar a KDD, pero con un enfoque más estadístico.

SEMMA

Sample (Muestrear)

Busca encontrar una muestra de volumen apropiado y la identificación de factores relevantes para el proceso.

Explore (Explorar)

Análisis univariado y multivariado se realiza para determinar relaciones entre los elementos y para determinar elementos faltantes en los datos. La visualización influye mucho en este proceso.

Modify (Modificar)

Tiene en cuenta lo encontrado en la exploración y busca extraer información y limpiar, preparando los datos para el modelamiento

Model (Modelar)

Es la aplicación de técnicas de minería de datos para generar un modelo.

Assess (Evaluar)

El modelo es evaluado con la finalidad de saber qué tan útil y confiable es.

Descubrimiento de Conocimiento en Bases de Datos (KDD)

El término Knowledge Discovery in Databases (KDD) fue usado por primera vez por Gregory Piatetsky-Shapiro en 1989.

Se trata de una metodología en cascada que consiste en un flujo bien definido basado en el análisis de datos.

KDD Pasos

02

03

04

05

Selection (Selección): Toma como insumo una base de datos (estructurada o no estructurada) y busca seleccionar los elementos (registros, variables o campos) relevantes para el análisis.

Preprocessing (Preprocesamiento): Parte de los datos seleccionados, busca filtrar y transformar (en el dominio de los datos) los datos seleccionados.

Transformation (Transformación): Es el proceso en el que los datos preprocesados se llevan a una representación numérica (matrices de observación y etiquetas).

Data Mining (Minería de Datos): Toma como entrada los datos preprocesados y busca extraer patrones por medio de algún modelo estadístico o de Machine Learning.

Interpretation and Evaluation (Interpretación y Evaluación): Parte de los patrones encontrados por los modelos para dar interpretatividad o evaluar el desempeño.

ORISP-DM - Cross-Industry Standard Process for Data Mining

Proceso Estándar entre Industrias para la Minería de Datos

- Se trata de un proceso cíclico que consiste en 6 fases que describen el ciclo de vida típico de ciencia de datos.
- Se publicó en 1999 como estandarización de la minería de datos en la industria y desde entonces es la metodología más típica.

CRISP-DM

Fases de CRISP-DM

Business Understanding

Data Understanding

Data Preparation

Modeling

Evaluation

Deployment

Entendimiento del Negocio: Busca comprender los objetivos del proyecto, entendimiento de las necesidades del cliente, definición de Stakeholders y creación de un problema de minería de datos.

Entendimiento de los Datos: En esta fase se comienzan a recolectar datos y se identifican: problemas de calidad, tipos de variables, subconjuntos de relevancia, interpretación de variables

Preparación de los Datos: Consiste en todas las operaciones necesarias para construir el conjunto final de datos, esto incluye transformación, limpieza de datos y Data Wrangling.

Modelamiento: Busca entrenar los modelos pertinentes al problema, clasificación, regresión, agrupamiento, reducción de dimensionalidad, entre otros.

Evaluación: Consiste en evaluar métricas (muchas veces referidas como key performance indicator) para determinar qué tan bien funciona el modelo.

Despliegue: Proceso de despliegue del modelo, está relacionado al desarrollo de software donde se busca tener algún servicio, aplicación o librería que permita aplicar el modelo entrenado.

Team Data Science Process (TDSP) - Proceso de Ciencia de Datos en Equipo

Los componentes de TDSP tienen como objetivo resolver los retos del proceso DS.

Retos del proceso de DS Componentes TDSP Se trata de una metodología que fue propuesta por Microsoft en el 2016. Ciclo de vida Estándar Organización de DS Estructura del proyecto, Organización, Es una **metodología ágil** que busca estructurar el Plantillas y Roles Colaboración Mejora de la Ejecución y Entrega de proyectos desarrollo de proyectos de Data Science en varios de DS Compartidos, Plataformas de niveles: Colaboracion, Calidad Datos y Servidores Distribuidos Herramientas de Ciclo de vida de ciencia Infraestructura y Productividad. Colaboración, Acumulación **Utilidades Compartidas** de datos de Conocimiento recursos Estructuración del Herramientas y Diagrama conceptual de TDSP. utilidades. proyecto

TDSP

Ciclo de Vida de la Ciencia de Datos

TDSP

Roles y Artefactos

Tareas

Entendimiento del negocio

Roles

Tareas

Ingesta y entendimiento de los datos

Ingesta y entendimiento de los datos

Roles

Tareas

Arquitecto de soluciones

pipeline de datos

Tareas

Aceptación

Gerente del proyecto

Reporte del proyecto

final

Roles

Tareas

TDSP

Estructura Estandarizada de Proyecto

Estructura Estandarizada de proyecto.

TDSP

Infraestructuras y Recursos

Infraestructura y Recursos para Ciencia de Datos.

Referencias

- R. S. Pressman y B. R. Maxim, Software Engineering: A practitioner's approach, 8th ed. New York, NY, USA: McGraw-Hill Education, 2015.
- Nogueira, C. Jones y Luqi, "Surfing the Edge of Chaos: Applications to Software Engineering," Monterey, CA, USA, 2000. Disponible: https://goo.gl/vXoAjK.
- I. Sommerville, Software Engineering, 10th ed. Essex, England: Pearson Education Limited, 2016.
- Modelo cascada y espiral, https://blog.comparasoftware.com/modelo-cascada-y-espiral/
- Scrum, https://desire.webs.uvigo.es/contenidos/scrum/
- University of Regina DBD. (s. f.). KDD Process/Overview. http://www2.cs.uregina.ca/%7Edbd/cs831/notes/kdd/1_kdd.html
- Hotz, N. (2023, 31 enero). What is SEMMA? Data Science Process Alliance. https://www.datascience-pm.com/semma/
- Hotz, N. (2023a, enero 19). What is CRISP DM? Data Science Process Alliance. https://www.datascience-pm.com/crisp-dm-2/
- M. (s. f.). What is the Team Data Science Process? Azure Architecture Center. Microsoft Learn. https://learn.microsoft.com/en-us/azure/architecture/data-science-process/overview

Derechos de imágenes

- Flaticon. (s.f.). Relations icon. [Icono]. https://www.flaticon.com/free-icon/relations_1807303
- Flaticon. (s.f.). Broom icon. [Icono]. https://www.flaticon.com/free-icon/broom_2954880
- Flaticon. (s.f.). Data mining icon. [Icono]. https://www.flaticon.com/free-icon/data-mining_1991040
- Flaticon. (s.f.). Planning icon. [Icono]. https://www.flaticon.com/free-icon/planning_1322237
- Flaticon. (s.f.). Code icon. [Icono]. https://www.flaticon.com/free-icon/code_2920242
- Flaticon. (s.f.). Compile icon. [Icono]. https://www.flaticon.com/free-icon/compile_8185151
- Flaticon. (s.f.). Testing icon. [Icono]. https://www.flaticon.com/free-icon/testing_6403594
- Flaticon. (s.f.). Version icon. [Icono]. https://www.flaticon.com/free-icon/version_8083300
- Flaticon. (s.f.). Deployment icon. [Icono]. https://www.flaticon.com/free-icon/deployment_1508763
- Flaticon. (s.f.). Cogwheel icon. [Icono]. https://www.flaticon.com/free-icon/cogwheel_1988036
- Flaticon. (s.f.). Data server icon. [Icono]. https://www.flaticon.com/free-icon/data-server_2717155
- Flaticon. (s.f.). Shapes icon. [Icono]. https://www.flaticon.com/free-icon/shapes_1215843
- Flaticon. (s.f.). Update icon. [Icono]. https://www.flaticon.com/free-icon/update_9517843
- Flaticon. (s.f.). Craftswoman free icon. [Icono]. https://www.flaticon.com/free-icon/craftswoman_7879067
- Flaticon. (s.f.). Pottery free icon. [Icono]. https://www.flaticon.com/free-icon/pottery_5903201
- Flaticon. (s.f). Artist free icon. [Icono]. https://www.flaticon.com/free-icon/artist_3271406

Derechos de imágenes

- Flaticon. (s.f.). Painting free icon. [Icono]. https://www.flaticon.com/free-icon/painting_3370596
- Flaticon. (s.f.). Code free icon. [Icono]. https://www.flaticon.com/free-icon/code_2920242
- Flaticon. (s.f.). Social Science free icon. [Icono]. https://www.flaticon.com/free-icon/social-science_4459306
- Flaticon. (s.f.). Architect free icon. [Icono]. https://www.flaticon.com/free-icon/architect_5757029
- Flaticon. (s.f.). Building free icon. [Icono]. https://www.flaticon.com/free-icon/building_717940
- Flaticon. (s.f.). Programmer free icon. [Icono]. https://www.flaticon.com/free-icon/programmer_644658
- Flaticon. (s.f.). Software free icon. [Icono]. https://www.flaticon.com/free-icon/software_3950815
- Flaticon. (s.f.). File free icon. [Icono]. https://www.flaticon.com/free-icon/file_3155758
- Flaticon. (s.f.). Man free icon. [Icono]. https://www.flaticon.com/free-icon/man_4202843
- Flaticon. (s.f.). Girl free icon. [Icono]. https://www.flaticon.com/free-icon/girl_4202836
- Flaticon. (s.f.). Boy free icon. [Icono]. https://www.flaticon.com/free-icon/boy_4202831
- Flaticon. (s.f.). Binary free icon. [Icono]. https://www.flaticon.com/free-icon/binary_2592364
- Wikimedia. (2021, 3 agosto). Logo of Microsoft Azure. [Logo]. https://upload.wikimedia.org/wikipedia/commons/f/fa/Microsoft_Azure.svg
- WORLDVECTORLOGO. (s.f.). Hadoop vector. [Logo]. https://cdn.worldvectorlogo.com/logos/hadoop.svg

¡Gracias por su atención!

Jorge Eliécer Camargo Mendoza, PhD.

https://dis.unal.edu.co/~jecamargom/

jecamargom@unal.edu.co

Departamento de Ingeniería de Sistemas e Industrial Facultad de Ingeniería Universidad Nacional de Colombia Sede Bogotá

39

Facultad de

INGENIERÍA

Profesor

Jorge Eliécer Camargo Mendoza, PhD

Asistente docente

Juan Sebastián Lara Ramírez

Coordinador de virtualización

Edder Hernández Forero

Diagramadores PPT

Mario Andrés Rodríguez Triana Rosa Alejandra Superlano Esquibel

Diseño gráfico

Clara Valeria Suárez Caballero Milton R. Pachón Pinzón

