Fisica 2 – Corso di Laurea Triennale in Ingegneria Industriale

7 gennaio 2020

Seconda Prova Parziale – compito C

Cognome (stampatello)	•••••	•••••		••••
Nome (stampatello)				
Numero di Matricola		•••••	CFU	
Registrato su ESSE3 (barrare la risposta).	SI'	NO		
Corso di Laurea e anno di iscrizione				

Problema 1. Due solenoidi, lunghi entrambi L = 50 cm, hanno raggi $R_1 = 4$ cm e $R_2 = 2$ cm e sono coassiali. I numeri totale di spire sono sul primo $N_1 = 15000$ spire e sul secondo $N_2 = 10000$. Supponendo che nel solenoide interno la corrente vari secondo la legge $i_2(t) = i_0 e^{-t/\tau}$, con $\tau = 5$ s e $i_0 = 15$ A:

a) Calcolare la f.e.m. indotta sul solenoide esterno all'istante $t_1 = 2$ s;

PER 6 CFU: Calcolare, all'istante t_1 , l'ampiezza del campo elettrico E_{max} indotto ad una distanza $r_1 = 3$ cm dall'asse dei solenoidi allo stesso istante di tempo tenendo conto solo della variazione di flusso prodotta dal solenoide interno.

Problema 2. Una lente divergente di focale f = -20 cm è posta ad una distanza D = 30 cm da uno specchio sferico concavo di raggio in modulo pari a R = 40 cm. Se un'oggetto è posto alla distanza $p_1 = 20$ cm dalla lente, trovare dove lo specchio forma l'immagine finale di tale oggetto.

PER 6 CFU: Calcolare anche la posizione q_3 dell'immagine formata dai raggi riflessi dallo specchio che attraversano la lente.

Problema 3 Una corda tesa di massa m=30 g i cui estremi fissi distano L=60 cm vibra con frequenza fondamentale v=30 Hz e l'ampiezza dei ventri è $A_0=1.5$ cm. Calcolare: a) la velocità c di un'onda trasversale sulla corda; b) la tensione T della corda; c) di quanto bisogna aumentare la tensione per raddoppiare la frequenza di vibrazione; d) la velocità massima di un punto della corda posta su un ventre.

.

Problema 4. Una pellicola di alcol dello spessore d = 471 nm ($n_a = 1.36$) ricopre una lastrina di vetro ($n_v = 1.51$). Se si illumina la pellicola con luce bianca (400-750 nm) calcolare a quali lunghezze d'onda si osservano massimi e minimi di intensità nella luce riflessa.

- 1) Vanno consegnati i fogli con lo svolgimento e il testo stampato.
- 2) <u>Ogni foglio consegnato deve riportare nome e cognome in stampatello e il numero di matricola.</u>
- 3) Non consegnate la brutta copia.
- 4) E' obbligatorio riportare i passaggi algebrici utilizzati per arrivare alla soluzione finale corredati di un breve commento scritto che li descriva.
- 5) <u>In caso di ritiro va consegnato solo il testo stampato con scritto "Ritirato" e la firma.</u>