Laboratorio di Calcolo Numerico Lezione 5

Trasformazioni di Householder

Una trasformazione di Householder su \mathbb{R}^m è una matrice ortogonale della forma $H_v = I - \frac{2vv^T}{||v||_2^2}$ per un certo vettore $v \in \mathbb{R}^m$. Fissato $x \in \mathbb{R}^m$, esistono due scelte di $v \in \mathbb{R}^m$ che determinano una H_v tale per cui

 $H_v \cdot x$ è un multiplo di e_1 (primo vettore della base canonica); queste sono:

$$v = x \pm ||x||_2 e_1.$$

In particolare, a meno di riorganizzare le operazioni, $v=(v_1,\ldots,v_m)^T$ è uguale a xtranne per il primo elemento, che vale

$$v_1 = x_1 - ||x||_2$$

oppure

$$v_1 = x_1 + ||x||_2.$$

In una di queste, il denominatore soffre di errori di cancellazione; quale? (dipende dal segno di x_1 e da come scegliamo di calcolare v).

Esercizio 1. Scrivere una funzione function v = householder_vector(x) che calcoli v tale che H_v mandi x in un multiplo di e_1 evitando errori di cancellazione (cioè scegliendo il segno giusto).

La fattorizzazione QR

Data $A \in \mathbb{R}^{m \times n}$, con $m \geq n$, la fattorizzazione QR è una decomposizione A = QR

- $Q \in \mathbb{R}^{m \times m}$ è una matrice ortogonale (i.e., $Q^TQ = I$).
- $R \in \mathbb{R}^{m \times n}$ è rettangolare e triangolare superiore.

Reminder: Per calcolare la (o, per essere più precisi, una) fattorizzazione QR di A si possono usare le matrici elementari di Householder seguendo un procedimento di triangolarizzazione simile a quello che avviene nell'eliminazione di Gauss. In particolare si applicano n trasformazioni di Householder a sinistra (n-1) nel caso m=n0 in modo da avere che

$$H_n \cdot \dots \cdot H_1 \cdot A = R = \begin{bmatrix} * & \dots & * \\ & \ddots & \vdots \\ & & * \end{bmatrix}$$

e
$$Q = H_1^T \cdot \dots \cdot H_n^T$$
 è ortogonale.

Esercizio 2. Facendo uso della funzione householder_vector, implementata al punto precedente, scrivere una funzione [Q,R] = my_qr(A) che calcoli la fattorizzazione. Si testi la correttezza dell'algoritmo su matrici di propria scelta o generate casualmente. In particolare si verifichi che

• la fattorizzazione "ricostruisca" A, ovvero che

restituisca un valore piccolo.

• La matrice Q sia ortogonale, ovvero che

$$norm(Q' * Q - eye(size(Q, 1)))$$

restituisca un valore piccolo.

• R sia triangolare superiore.

Problemi lineari ai minimi quadrati

A lezione abbiamo visto che il problema lineare ai minimi quadrati

$$\min_{x \in \mathbb{R}^n} ||Ax - b||_2 \tag{1}$$

può essere risolto con due strategie:

• risolvendo il sistema delle equazioni normali

$$A^T A x = A^T b$$

con il metodo dell'eliminazione di Gauss.

• Con il metodo QR per problemi ai minimi quadrati, ovvero risolvendo il sistema triangolare $R_1x = c_1$ (di dimensione $n \times n$) in cui

$$A = QR, \qquad R = \begin{bmatrix} R_1 \\ 0 \end{bmatrix}, \qquad Q^T b = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}.$$

Esercizio 3. Si implementino le funzioni

```
function [x, res] = mq_normali(A, b)
function [x, res] = mq_qr(A, b)
```

che risolvono il problema (1) con le due strategie descritte sopra. I due metodi devono restituire sia la soluzione ottima x che il valore minimo del residuo. Si osservi che nel caso nel metodo QR, il valore ottimo del residuo corrisponde a $||c_2||_2$.

Si testino le due funzioni su problemi dove A e b sono generati casualmente, per dimensioni m ed n a scelta.

Esercizio 4. Si esegua il seguente condice per generare la matrice A ed il vettore b.

```
m = 10;
n = 5;
A = zeros(m,n);
for j = 1:n
         A = A + randn(m,1)*randn(1,n)*10^(-2*(j-1));
end
b = randn(m, 1);
```

Si risolva il problema ai minimi quadrati (1) con entrambi i metodi implementati al punto precedente e si confrontino le due soluzioni trovate. Quanto sono diverse? Quale dei due restituisce la soluzione migliore? Perchè?