IMG_8139

The N protein of coronavirus is multipurpose. Among several functions, it plays a role in complex formation with the viral genome, facilitates M protein interaction needed during virion assembly, and enhances the transcription efficiency of the virus (55, 56). It contains three highly conserved and distinct domains, namely, an NTD, an RNA-binding domain or a linker region (LKR), and a CTD (57). The NTD binds with the 3' end of the viral genome, perhaps via electrostatic interactions, and is highly diverged both in length and sequence (58). The charged LKR is serine and arginine rich and is also known as the SR (serine and arginine) domain (59). The LKR is capable of direct interaction with in vitro RNA interaction and is responsible for cell signaling (60, 61). It also modulates the antiviral response of the host by working as an antagonist for interferon (IFN) and RNA interference (62). Compared to that of SARS-CoV, the N protein of SARS-CoV-2 possess five amino acid mutations, where two are in the intrinsically dispersed region (IDR; positions 25 and 26), one each in the NTD (position 103), LKR (position 217), and CTD (position 334) (16). nsps and Accessory Proteins m~ 4 seem .