CPT_S 260 Intro to Computer Architecture Lecture 25

Digital Design IV March 9, 2022

Ganapati Bhat
School of Electrical Engineering and Computer Science
Washington State University

Recap: Rules of Boolean Algebra

Associative Law of multiplication

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

Distributive Law of multiplication

$$A + BC = (A + B) \cdot (A + C)$$

Annulment law:

$$A \cdot 0 = 0$$
$$A + 1 = 1$$

• Identity law:

$$A \cdot 1 = A$$
$$A + 0 = A$$

Recap: Rules of Boolean Algebra

Complement law:

$$A + \bar{A} = 1$$
$$A \cdot \bar{A} = 0$$

Double negation law:

$$\bar{\bar{A}} = A$$

Absorption law:

$$A \cdot (A + B) = A$$

 $A + AB = A$
 $A + \bar{A}B = A + B$

• Idempotent law:

$$A + A = A$$

 $A \cdot A = A$

Recap: De Morgan's Laws

- Transformation rules that help simplification of negations
- Statement:

$$\frac{\overline{AB} = \overline{A} + \overline{B}}{(A+B)} = \overline{A} \cdot \overline{B}$$

Sum of Products

- Minterm Expressions
- If input is 0 we take the complement of the variable
- If input is 1 we take the variable as is
- To get the desired canonical SOP expression we will add the minterms (product terms) for which the output is 1

$$F = \bar{A}B + A\bar{B} + AB$$

A	В	F	Minterm
0	0	0	A'B'
0	1	1	A'B
1	0	1	AB'
1	1	1	AB

Product of Sums

- Maxterm Expressions
- If input is 1, we take the complement of the variable
- If input is 0, we take the variable as is
- To get the desired canonical POS expression we will multiply the maxterms (sum terms) for which the output is 0

$$F = (A + B)$$

Α	В	F	Maxterm
0	0	0	A + B
0	1	1	A + B
1	0	1	$\overline{A} + B$
1	1	1	$\overline{A} + \overline{B}$

Designing a Simple ALU (Arithmetic Logic Unit)

Adder Algorithm

Truth Table for the above operations:

A	В	Cin	Sum Cout
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Adder Algorithm

	1	0	0	1
	0	1	0	1
Sum	1 🔍	1、	1 🔨	0
Carry	0	<u>0</u>	_ 0	1

Truth Table for the above operations:

A	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Equations:

Sum = Cin
$$.\overline{A} .\overline{B} +$$

B $.\overline{Cin} .\overline{A} +$
A $.\overline{Cin} .\overline{B} +$
A $.\overline{B} .\overline{Cin}$

Carry Out Logic

Equations:

Sum = Cin $.\overline{A} .\overline{B} +$ B $.\overline{Cin} .\overline{A} +$ A $.\overline{Cin} .\overline{B} +$ A $.\overline{B} .\overline{Cin}$

Cout = A . B . Cin +
A . B . Cin +
A . Cin . B +
B . Cin . A
= A . B +
A . Cin +
B . Cin +

Carry Out Logic

$$C_{out} = A \cdot B \cdot Cin + A \cdot B \cdot \overline{Cin} + A \cdot Cin \cdot \overline{B} + B \cdot Cin \cdot \overline{A}$$

$$= A \cdot B \cdot (Cin + \overline{Cin}) + A \cdot Cin \cdot \overline{B} + A \cdot B \cdot Cin + B \cdot Cin \cdot \overline{A} + A \cdot B \cdot Cin$$

$$= A \cdot B + A \cdot Cin \cdot (B + \overline{B}) + B \cdot Cin \cdot (A + \overline{A})$$

Full-Adder (3 inputs, 2 outputs)

Full-Adder Truth Table:

X	Υ	Ζ	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Same as the previous example:

$$S = X \overline{Y} \overline{Z} + \overline{X} Y \overline{Z} + \overline{X} \overline{Y} Z + X Y Z$$

 $C = X Y + X Z + Y Z$

4-bit Ripple-Carry Binary Adder

A four-bit Ripple Carry Adder made from four 1-bit Full Adders:

32-bit Ripple Carry Adder

1-bit ALUs are connected
"in series" with the
carry-out of 1 box
going into the carry-in
of the next box

Designing a Simple ALU (Arithmetic Logic Unit)

1-Bit ALU with Add, Or, And

Multiplexor selects between Add, Or, And operations

Incorporating Subtraction

- Must invert bits of B and add a 1
 - Include an inverter
- Carryln for the first bit is 1
- The Carryln signal (for the first bit) can be the same as the Binvert signal

Incorporating NOR

Comparator: Equality

Symbol

Implementation

Perform a – b and confirm that the result is all zero's

Incorporating beq

■ Perform a – b and

- Confirm that the
- Result is all zero's

Incorporating slt

- Perform a b and check the sign
- New signal (Less) that is zero for ALU boxes 1-31
- The 31st box has a unit to detect overflow and sign – the sign bit serves as the Less signal for the 0th box

Incorporating slt

