Матан. Лекция 2

Сергей Григорян

6 сентября 2024 г.

1 Некот. обозначения

- $a < b \iff a \le b \land a \ne b$
- $a \ge b \iff b \le a$
- $a > b \iff b < a$
- $\bullet \ a b = a + (-b)$
- $\frac{a}{b} = a * b^{-1} (b \neq 0)$

2 Чем занимаемся дальше

Все дальнейшее сводим к аксиомам:

Пример. 1. $\forall a \in R : a * 0 = 0$

Доказательство.

$$a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0 | -a \cdot 0.$$
$$a * 0 + (-a * 0) = a * 0 + (a * 0 + (-a * 0)).$$
$$0 = a * 0 + 0 = a * 0.$$

2. (-1)*a+1*a=((-1)+1)*a=0*a=0

Пример. 1. $\forall a, b \in R(a \le b \Rightarrow -b \le -a)$

$$-b = a - a - b \le b - a - b = -a.$$

2. $\forall a \in R \setminus \{0\} : (a^2 > 0)$

Доказательство. a) $a > 0 \Rightarrow a^2 > 0$

b)
$$a < 0 \Rightarrow -a > 0 \Rightarrow (-a)(-a) > 0 \Rightarrow -(-a^2) = a^2$$

Задача 2.1. $P = \{x \in R \colon 0 < x\}$

Док-те, что :

- 1) $x, y \in P \Rightarrow x + y, x * y \in P$
- 2) $\forall x \in R \setminus \{0\} (x \in P \lor -x \in P)$

Определение 2.1. $|x| = x \iff x \ge 0$ или $-x \iff x < 0$

Пример. 1. Если $a \in \mathbb{R}$ и $M \ge 0$, то $(|a| \le M \iff -M \le a \le M)$

Доказательство. $|a| \leq M \Rightarrow -|a| \geq M$

- a) $a \ge 0, -M \le 0 \le a = |a| \le M$
- b) $a < 0, -M \le -|a| = a < 0 \le M$

2. $\forall a, b \in R(|a+b| \le |a| + |b|)$

Доказательство.

$$-|a| \le a \le |a|, -|b| \le b \le |b|.$$

$$-(|a| + |b|) \le a + b \le |a| + |b|.$$

todo

3 Множество №

Определение 3.1. Мн-во $S\subset\mathbb{R}$ наз-ся индуктивным, если $1\in S$ и $(x\in S\Rightarrow x+1\in S)$

<u>Замечание</u>. \mathbb{N} - пересечение всех индуктивных мн-в.

На определении $\mathbb N$ основан **принцип мат. индукции.**

Пусть $P(n), n \in \mathbb{N}$. Если P(1) - истина и $(\forall n(P(n)$ - ист. $\Rightarrow P(n+1)$ - ист.)). То P(n) - истина для $\forall n \in N$ $S = \{n \in \mathbb{N} \colon P(n)$ - истина $\} \subset \mathbb{N}$ - индуктивно. $\Rightarrow S = \mathbb{N}$

<u>Замечание</u>. *Если* $x,y \in \mathbb{N}, x < y, \ mo \ y - x = n \in N, \ в частности, <math>y = x + n \geq x + 1$

Теорема 3.1. Пусть $A \subset N$ - непустое, тогда $\exists m = min(A)(m \in A : \forall n \in A(m \le n))$

Доказательство.

Предположим, что в A нет мин. эл-та. Рассм. $M = \{x \in \mathbb{N} : \forall n \in A(x < n)\}$ $1 \in M \ (1 \not\in A)$ Пусть $x \in M$. Предпл., что $x + 1 \not\in M$: $x + 1 \not\in M \iff \exists m \in A : (x + 1 \ge m)$ По опр-ю $x \in M \Rightarrow x < m \Rightarrow x + 1 \le m \Rightarrow m = min(A)!!!$ Итак $1 \in M(x \in M \Rightarrow x + 1 \in M) \Rightarrow M \subset \mathbb{N} \Rightarrow M = \mathbb{N} \Rightarrow A = \emptyset!!!$

4 Множества \mathbb{Z} и \mathbb{Q}

$$\mathbb{Z} = -\mathbb{N} \cup \{0\} \cup \mathbb{N}$$

$$\mathbb{Q} = \{\frac{m}{n} : m \in \mathbb{Z} \land n \in \mathbb{N}\}$$

Пример (Применение аксиомы непрерывности).

$$A = \{ a \in \mathbb{R} : a > 0 \land a^2 < 2 \} \ni 1.$$
$$B = \{ b \in \mathbb{R} : b > 0 \land b^2 > 2 \} \ni 2.$$

 Π усть $a \in A, b \in B$

$$0 < b^2 - a^2 = (b - a)(b + a) \Rightarrow 0 < b - a \Rightarrow a < b.$$

По аксиоме непрерывности $\exists c \in \mathbb{R} \colon \forall a \in A, b \in B \colon (a \leq c \leq b)$

B част-ти 1 < c < 2. Покажем, что $c^2 = 2$

Предпл. что $c^2 < 2 \iff c \in A$. Пусть $\varepsilon \in (0;1)$; тогда:

$$(c+\varepsilon)^2 = c^2 + \varepsilon(2c+\varepsilon) < c^2 + 5\varepsilon.$$

$$\varepsilon \le \frac{2-c^2}{5}.$$

$$(c+\varepsilon)^2 < c^2 + 5\varepsilon \le c^2 + 2 - c^2 = 2 \Rightarrow c + \varepsilon \in A!!!.$$

Аналогичным образом, доказываем, что $c^2 > 2$ не выполн-ся.

$$\Rightarrow c^2 = 2$$

5 Точные грани числовых мн-в

Определение 5.1. Пусть $E \subset \mathbb{R}$ - непусто.

 $\overline{\mathsf{Ч}}$ исло M наз-ся **верхней гранью** мн-ва E, если $\forall x \in E(x \leq M)$

Мн-во E наз-ся **ограниченным сверху**, если \exists хотя бы одна верхняя грань для E.

Число M наз-ся **нижней гранью** мн-ва E, если $\forall x \in E(x \ge M)$

Мн-во E наз-ся **ограниченным снизу**, если \exists хотя бы одна нижняя грань для E.

Мн-во E ограничено, если E ограничено сверху или снизу.

Задача 5.1. Док-ть:
$$E$$
 - огранич. $\iff \exists C > 0 \colon \forall x \in E(|x| \leq C)$

Определение 5.2. Пусть $E \subset \mathbb{R}$ - непустое числовое мн-во. Наименьшая из верхних граней мн-ва E наз-ся точной верхней гранью (супремумом) мн-ва E (sup E)

Наибольшая из нижних граней мн-ва E наз-ся **точной нижней гранью (инфимумом)** мн-ва E (inf E)

<u>Замечание</u>. Определение точных граней можно записать на языке нерств:

$$c = \sup E \iff .$$
 (1)

- 1) $\forall x \in E(x \leq c);$
- 2) $\forall \varepsilon > 0 \exists x \in E(x > c \varepsilon)$

$$b = \inf E \iff .$$
 (2)

- 1) $\forall x \in E(x > b)$;
- 2) $\forall \varepsilon > 0, \exists x' \in E(x' < b + \varepsilon)$

Действ-но, 1) в (1) означает, что c - верх. грань E. 2) в (1) означ, что любое c' < c не явл. верх. гр. E. Сл-но, c - точная верхняя грань E. Аналогично для (2).

Теорема 5.1 (Принцип полноты Вейрштрасса). Всякое непустое огр. сверху (снизу) мн-во имеет точную верхнюю (нижнюю) грань.

Доказательство. Пусть E - мн-во, огр. сверху. Тогда пусть C - мн-во верхних граней E. Если у него есть минимум, то он, очевидно, и является E. Покажем, что он есть.

По опр. $C=\{x\in R\colon \forall y\in E(x\geq y)\}\iff$ мн-во C лежит правее мн-ва E. Сл-но, для мн-в C,E выполняется аксиома непрерывности, т. е.:

$$\exists x \colon \forall c \in C, e \in E \colon e \le x \le c.$$