ECE231: Electronics Cheatsheet

Dov Kruger

Basic Formulas

Ohm's Law:

$$V = IR$$

$$P = IV = I^{2}R = \frac{V^{2}}{R}$$

fritzing

Series Resistance:

$$R_{eq} = R_1 + R_2 + R_3 + \dots$$

Parallel Resistance:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

$$R_{eq} = \frac{R_1 R_2}{R_1 + R_2} \text{ (for 2 resistors)}$$

Voltage Divider:

$$V_c = V_a \frac{R_a}{R_a + R_b} + V_b \frac{R_b}{R_a + R_b}$$

for
$$V_a = 0$$
, $V_c = V_b \frac{R_a}{R_a + R_b}$

Capacitor Energy:

$$E = \frac{1}{2}CV^2$$

Series Capacitance:

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$$

Parallel Capacitance:

$$C_{eq} = C_1 + C_2 + C_3 + \dots$$

RC Circuit Charging:

$$V_C(t) = V_S(1 - e^{-t/\tau})$$
$$I(t) = \frac{V_S}{R}e^{-t/\tau}$$

RC Circuit Discharging:

$$V_C(t) = V_0 e^{-t/\tau}$$
$$I(t) = -\frac{V_0}{R} e^{-t/\tau}$$

where $\tau = RC$ (time constant)

Passive Components

Resistor (US)	*	Resistor (IEC)	þ
Capacitor	\pm	Electrolytic Cap	+
Battery	======================================	Voltage Source	+
Earth Ground	<u></u>	Signal Ground	\downarrow
LED	₹%	Diode	\

Logic Gates

AND	
OR	
NOT	-
NAND	
NOR	
XOR.	1

Transistors

NPN BJT	\downarrow
PNP BJT	*
n-MOSFET	45
p-MOSFET	45
n-FET	G P
p-FET	<u>G</u> ()

IC Pinouts

2

3

4

5

6

13

12

11

9

8

7432 (Quad OR)

555 Timer

ATmega328 (DIP)

ATmega328 (Quad)

Common Values

- Resistor Colors: Black(0), Brown(1), Red(2), Orange(3), Yellow(4), Green(5), Blue(6), Violet(7), Gray(8), White(9)
- Standard Resistors: 1.0, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2 $(\times 10^n)$

Power Supply

• TTL Logic: VCC = 5V, VSS = 0V

• CMOS Logic: VDD = 3.3V or 5V, VSS = 0V

• **Arduino:** 5V, 3.3V, GND