Administration d'un Intranet

- Déterminer un plan d'adressage
- Configuration des tables de routages
- Utilisation d'un NAT (Network Adressing Translation)
- Mise en place d'un pare-feux (Firewall)

© P. Sicard-Cours Réseaux 8

Administration d'un Intranet

Environnement et contraintes

- Intranet d'une entreprise
- 3 types d'utilisateurs
 - 25 cadres
 - 25 administratifs
 - 10 ateliers
- 2 machines spécialisées (SF1 et SF2) pour être des serveurs de fichiers
- Application NFS (Network File System) permettant de « voir » sur une machine locale, les fichiers sur le disque dur distant du serveur de fichier

Rappel: Le routage dans Internet

- La décision dans IP du routage:
 - Table de routage:
 - Adresse destination (partie réseau), netmask, adresse routeur voisin
 - Consultation de la table de routage à l'arrivée d'un paquet:
 - Pour chaque ligne de la table de routage (*Adr, netmask, AdrRouteur*) faire
 - \star Si (adresse destination du paquet AND netmask) = Adr alors
 - envoyer le paquet au routeur voisin d'adresse AdrRouteur
 - Pour cela faire appel à ARP pour connaître son adresse Ethernet
 - ★Sinon passer à la ligne suivante
 - Si l'adresse n'est pas dans la table alors renvoyer un paquet ICMP: "destination inaccessible" à la machine source

© P. Sicard-Cours Réseaux 5

Couche Réseau

__

Contraintes

- Cadres : accès à toutes les machines de l'Intranet, SF1, SF2 et à l'Internet
- Administratifs : Accès à toutes les machines « administratifs » et SF1
- Ateliers : Accès à toutes les machines « Ateliers » et SF2
- Réseaux Ethernet
- Routeurs à 2 ports Ethernet

© P. Sicard-Cours Réseaux 8

dministration d'un Intranet

© P. Sicard-Cours Réseaux 8

Choix de l'infrastructure réseau

- Découpage en plusieurs réseaux pour "isoler" les communications
- Diminue la charge des switchs
- Commutateurs (switch) Ethernet
 - Possibilité de les cascader si le nombre de ports est insuffisant
- Choix de la place des serveurs de fichier à discuter
- Un seul routeur en sortie:
 - sécurité, possibilités de filtrage...
 - Un port particulier vers Internet : ligne spécialisée avec un autre protocole: ADSL(PPP), ATM...
- Possibilités d'un seul routeur à 6 pattes (problème prix/performances)

© P. Sicard-Cours Réseaux 8

Administration d'un Intranet

Choix des adresses

- Adresse publique : donnée par un organisme international de gestion des adresses (A chercher sur le web *Inter NIC* (Internet Network Information Center)
- **Supposons**: 193.92.17 / 24 (classe C)
- Pour machines ne communiquant pas avec l'extérieur possibilité d'adresses privées:
 - Trois plages d'adresses privées:

• 10.0.0.0/8: 10.0.0.1 à 10.255.255.254

• 172.16.0.0/12: 172.16.0.1 à 172.31.255.254

• 192.168.0.0/16: 192.168.0.1 à 192.168.255.254

- Economie d'adresse mais si on veut changer de contraintes, il faut tout reconfigurer
- Possibilités de faire de la translation d'adresses (NAT)

© P. Sicard-Cours Réseaux 8

Administration d'un Intranet

CADRES ADMINISTRATIFS Switch Switch Switch Switch Switch Switch Switch Switch Switch Serveurs SF2 O P. Sicard-Cours Réseaux 8 Administration d'un Intranet 6

Découpage en "sous-réseaux" (Subnetting)

- On choisit d'affecter des adresses publiques à l'ensemble de l'Intranet
- 4 réseaux, 1 seule adresse publique
- Changement des netmasks
 - 2 bits de la partie machine sont attribués à la partie réseau de l'adresse
 - 2 bits de poids fort du dernier octet
 - On transforme un /24 en quatre /26

© P. Sicard-Cours Réseaux 8

Sous-réseaux

- La partie réseau est appelé **Prefixe**
- Netmask: 255.255.255.192
- 4 réseaux:
 - 193.92.17**.0 /26**
 - 193.92.17**.64/26**
 - 193.92.17**.128/26**
 - 193.92.17**.192/26**
- Nombre de machines par réseau : 64 2 = 62
 - Adresse partie machine
 - à 0 interdit (désigne un réseau)
 - à 11..111 interdit (broadcast)

© P. Sicard-Cours Réseaux 8

Administration d'un Intranet

Sous réseaux de tailles variables

- Supposons que le nombre de machine cadre est de 100
- Au lieu de quatre /26: un /25, un /26 et deux /27
 - 0:0/25
 - 111: 224 /27
 - 110 : 192 /27
 - 10:128/26
- Plages d'adresses ?
- Nombre de machines sur chaque sous réseau ?

Sous-réseaux

- Exemple pour le réseau 193.92.17**.128/26**
 - 1ère adresse machine: 10 000001=129 (en binaire)
 - dernière adresse: 10 111110=190
- Plages d'adresses /26:
 - 193.92.17.1 à 193.92.17.62
 - 193.92.17**.65** à 193.92.17**.126**
 - 193.92.17**.129** à 193.92.17**.190**
 - 193.92.17**.193** à 193.92.17**.254**

© P. Sicard-Cours Réseaux 8

© P. Sicard-Cours Réseaux 8

Administration d'un Intranet 10

Administration d'un Intranet 12

Plan d'adressage

Configuration routage

- Donner les tables de routage des machines et des routeurs en respectant les contraintes
- Mettre des noms à la place des adresses
 - /etc/hosts et /etc/networks
 - Réseaux:
 - cadre 193.92.17.0/26
 - admin 193.92.17.64/26
 - atelier 193.92.17.128/26
 - serveurs 193.92.17.192/26
- Format d'une table de routage :

Adresse réseau destination / Netmask / Adresse du routeur voisin

- Le Netmask est donné en décimal ou en notation /nombre de bits de la partie réseau (taille du préfixe)

© P. Sicard-Cours Réseaux 8

Administration d'un Intranet 1

Tables de routage

- Les netmasks ne sont pas donnés: tous /26 : 255.255.255.192
- Machines "cadre":
 - A l'origine: cadre direct
 - Connexion directe sur le réseau cadre après la configuration de l'interface
 - Une ligne par défaut:
 - Default R2C
 - Quelle que soit l'adresse destination envoyer à R2C
 - Defaut : adresse 0.0.0.0 Netmask 0.0.0.0
- Routeur 2:
 - cadre direct
 - serv direct
 - admin R3S
 - atelier R4S
 - default R1S
 - Defaut pour l'accès à Internet
- Ping sur Internet? ping sur machine atelier?

Administration d'un Intranet 15

Plan d'adressage avec des noms

Tables de routage

- Machines atelier :
 - atelier direct
 - Default R4At
- Machines atelier:
 - Accède aussi à SF2 avec le default
 - Les paquets à destination de l'Internet sont aussi envoyés sur le réseau (charge inutile)
- Il vaut donc mieux préciser les réseaux auxquels l'atelier peut accéder
 - De plus possibilité de mettre une adresse de machine dans la table de routage:
 - SF2 /32 R4At
 - Attention Netmask change: /32 c'est à dire 255.255.255.255

© P. Sicard-Cours Réseaux 8

Tables de routage

- ping depuis cadre sur machine atelier?
- Contrainte unidirectionnelle impossible au niveau routage
 - Si cadre accède à l'atelier alors l'atelier accède au cadre
- donc possibilité pour l'atelier avec contraintes seulement sur le serveur de fichier et cadre
 - atelier direct
 - SF2 R4At (netmask 255.255.255.255)
 - cadre R4At
- Table de routage de R4:
 - serv direct
 - atelier direct
 - cadre R2S

© P. Sicard-Cours Réseaux 8

Administration d'un Intranet 1

Tables de routage

- SF2:
 - serv direct
 - cadre R2S
 - atelier R4S
- Routeur 1:
 - serv direct
 - 100.0.0.0 direct
 - cadre R2S
 - default RExt

Tables de routage

- Routeur 3:
 - admin direct
 - serv direct
 - cadre R2S
- Machines admin
 - admin direct
 - SF1 R3Ad (netmask 255.255.255.255)
 - cadre R3Ad
- SF1:
 - serv direct
 - cadre R2S
 - admin R3S

© P. Sicard-Cours Réseaux 8

Administration d'un Intranet 18

Problème de boucle

- Que se passe t-il si un paquet arrivant sur R1 depuis l'extérieur est à destination d'une adresse de Admin ?

© P. Sicard-Cours Réseaux 8

dministration d'un Intranet 19

© P. Sicard-Cours Réseaux 8

Routage automatique

- Par exemple RIP
- Quel intérêt ?
- Que faire pour palier à une défaillance de R2?
- Contenu des paquets RIP?

© P. Sicard-Cours Réseaux 8

Administration d'un Intranet 21

NAT STATIQUE: principe

- Une adresse publique associée à chaque adresse privée
- Plage d'adresse publique 195.0.0.248/29
- Exemple d'associations Nat:
 - 10.0.0.1 195.0.0.249
 - 10.0.0.2 195.0.0.250

© P. Sicard-Cours Réseaux 8

Administration d'un Intranet 23

La translation d'adresse (NAT)

- Le routeur de sortie va modifier l'entête IP de tout paquet provenant d'une machine interne en remplaçant l'adresse source IP privée par une adresse publique
- Vue de l'extérieur, le routeur se fait passer pour la machine source
- Deux types de NAT : statique et dynamique
 - Statique la correspondance @ Privée / @ publique est fixe
 - Dynamique : elle peut changer dans le temps

NAT dynamique ou IP masquerading : principe

- Permet d'attribuer dynamiquement lors des connexions des adresses IP publiques aux adresses privées
- L'adresse source des paquets devient l'adresse externe du routeur
- Problème : En cas de plusieurs connexions en parallèle comment le routeur peut il diriger les paquets vers la bonne machine ?

© P. Sicard-Cours Réseaux 8

L'association connexion/@privée

• Se fait au moment du premier paquet qui sort en se rappelant le numéro de port source (mémorisation dans une table)

Mémorisation dans la table NAT:

2354 10.0.0.1 5555 10.0.0.2

© P. Sicard-Cours Réseaux 8

Administration d'un Intranet 25

Nat Dynamique

- Une seule adresse publique suffit pour un nombre quelconque de machines dans l'Intranet
- On ne peut pas initier une connexion depuis l'extérieur
- Comment avoir un serveur WEB par exemple dans l'Intranet ?

L'association connexion/@privée

- Problème : si plusieurs connexions avec le même port source en même temps ?
- Attribution d'un port source virtuel unique à chaque connexion

Port source 5001 @Source 195.0.0.254 Port source 2354
@IPSource 10.0.0.2

Mémorisation dans la table NAT:

2354 10.0.0.1 5000 2354 10.0.0.2 5001

© P. Sicard-Cours Réseaux 8

Administration d'un Intranet 26

Le port forwarding

- Utiliser dans la NAT dynamique pour rendre une machine accessible depuis l'extérieur
- On mets en dur dans la table NAT du routeur
 - port fixe: port privée/ adresse privée
 - Par exemple 21: 21/10.0.0.1 (port d'un serveur FTP)
 - Les paquets arrivant de l'extérieur vers (195.0.0.254, 21) seront redirigés vers (10.0.0.1, 21)
 - Problème si deux serveurs FTP sur 2 machines différentes ?
- Le "port mapping" consiste à changer de port sur la machine interne
 - Par exemple : **80: 8080/10.0.0.1**
 - Un serveur http est lancé sur 10.0.0.1 sur le port 8080

© P. Sicard-Cours Réseaux 8

dministration d'un Intranet 27

© P. Sicard-Cours Réseaux 8

Sécurité

- Pare-feux: filtrage à mettre en place sur le routeur 1
- Acces List
- Liste d'interdictions ou d'autorisations suivant les adresses ou numéro de port, source et destination
 - Filtrage par machines (adresse IP source ou destination)
 - Filtrage par applications (numéro de port source ou destination)
 - Deux hypothèses possibles : tout ce qui n'est pas spécifié est soit interdit, soit autorisé
- Une *Acces list* est associée à une interface (valable pour les paquets arrivant ou sortant par cette interface)

© P. Sicard-Cours Réseaux 8

Administration d'un Intranet 29

Sécurité

• Autre exemple d'Acces List pour autoriser les cadres seulement à naviguer sur les serveurs WEB d'Internet

```
cadre/* /*/80 autorisé
*/* /*/* interdit
```

• Il existe d'autres types de filtres, par exemple sur le flag ACK de l'entête TCP (seul le paquet de demande de connexion porte le flag ACK à 0)

Utile par exemple pour interdire un client extérieur d'initier une connexion dans l'Intranet

Exemple d'Acces list

- * veut dire «pour tout»
- Exemple sur l'interface extérieure de R1 pour les paquet sortants:

Adr source / Adr Destination / Port source / Port destination

```
cadre/* /*/* autorisé
*/* /*/* interdit
```

Règle 1 : on laisse passer tous les paquets provenant des machines cadres

Règle 2: Tous les autres paquets sont détruits

• Cela résout le problème du bouclage sur R1 pour les destinations différentes des machines cadres

© P. Sicard-Cours Réseaux 8

Administration d'un Intranet 30

Aide à l'Administration Le protocole DHCP (Dynamic Host Configuration Protocol)

- Intérêt:
 - Limiter le travail de l'administrateur système/réseau
 - Aucune action nécessaire sur une machine pour sa configuration réseau
 - Permet à une machine d'obtenir automatiquement son adresse IP afin de configurer son accès au réseau
 - Permet d'attribuer les adresses IP de façon dynamique
 - Utiliser par exemple par les fournisseurs d'accès pour attribuer des adresses aux clients
 - Le serveur DHCP connaît la plage d'adresses disponible et les affecte au fur et à mesure des demandes

© P. Sicard-Cours Réseaux 8

Administration d'un Intranet 31

© P. Sicard-Cours Réseaux 8

Le protocole DHCP

• Possibilité de plusieurs serveur DHCP sur le réseau

© P. Sicard-Cours Réseaux 8

dministration d'un Intranet

33

Configuration d'un serveur DHCP

- Paramètres du serveur DHCP (démon dhcpd sous les Unix)
 - Plage d'adresse IP à attribuer (souvent on donne la première et la dernière)
 - Adresses IP fixes (listes des adresses IP/Ethernet)
 - Un masque de sous-réseau pour ces adresses
 - Durée du bail DHCP
 - Adresse du serveur DNS
 - Nom du Domain

.5

© P. Sicard-Cours Réseaux 8

Administration d'un Intranet

Exemple de capture

• Contenu du DHCP Ack

• Client IP address: 0.0.0.0 (0.0.0.0)

• Your (client) IP address: 10.53.17.163 (10.53.17.163)

• Next server IP address: 10.53.17.1 (10.53.17.1)

• Relay agent IP address: 0.0.0.0 (0.0.0.0)

• Client hardware address: 00:03:93:ed:b5:eb

· Server host name not given

Boot file name not given

Magic cookie: (OK)

Option 53: DHCP Message Type = DHCP ACK

Option 54: Server Identifier = 10.53.17.1

• Option 51: IP Address Lease Time = 10 minutes

• Option 1: Subnet Mask = 255.255.255.0

Option 3: Router = 10.53.17.1

© P. Sicard-Cours Réseaux 8

Option 6: Domain Name Server = 10.53.17.1

Option 15: Domain Name = "cybertable.com"

End Option