Lista 2 - MAE0560

Guilherme N°USP: 8943160 e Leonardo N°USP: 9793436

Capítulo 4

Exercício 2

A tabela abaixo apresenta os dados de um estudo que teve por objetivo avaliar os efeitos adversos de um medicamento administrado em dosagens crescentes para avaliar a dor (incluído um grupo placebo).

Dosagens	Efeitos	Efeitos Adversos		
Dosagens	Não	Sim	Totais	
Placebo	26	6	32	
$Dose_1$	26	7	33	
$Dose_2$	23	9	32	
$Dose_3$	18	14	32	
$Dose_4$	9	25	34	

(a) Represente os dados graficamente

Resolução

Gráfico1: Mosaico

(b) Estabeleça as hipoóteses de interesse, teste-as e tire conclusões

Resolução

$$\begin{cases} H_0: p_{ij} = (p_{i+})(p_{+j}), \ para \ i = 1, ..5 \ e \ j = 1, 2 \\ H_1: p_{ij} \neq (p_{i+})(p_{+j}), \ para \ pelo \ menos \ um \ par \ (i,j) \end{cases}$$

Assim obtemos o seguinte resultado:

```
##
## Pearson's Chi-squared test
##
## data: dados
## X-squared = 29.124, df = 4, p-value = 7.378e-06
```

Como temos um p-value < 0.0001, podemos dizer que não existe homegeneidade entre as dosagens e os efeitos adversos.

Como temos a variável efeitos adversos que é dicotômica e a variavel dosagem que é ordinal é possível considerar escores para tais variáveis, assim considerando a=(0,1) e escores c=(0,1,2,3,4), pode-se testar:

$$\left\{ \begin{array}{l} H_0: Ausencia\ de\ tendencia\ linear\ (r_{ac}=0) \\ H_1: Presenca\ de\ tendencia\ linear\ (r_{ac}\neq 0) \end{array} \right.$$

Assim obtemos o seguinte resultado:

Table 1: Teste de tendência linear

rac	QSC	p-valor
0.391568	24.83873	6e-07

Como temos um p-value < 0.0001, podemos dizer que existe tendência linear de que conforme aumentamos a dosagem os efeitos adversos tendem a aumentar.

Exercício 4

Os dados na Tabela 4.12 são de um estudo sobre o grau de sofrimento de garotos devido aos seus pesadelos (1 = mínimo a 4 intenso).

(a) Para esse estudo, investigue a existência de associação entre a idade e o grau de sofrimento dos garotos. Utilize a média de cada faixa etária para obter o vetor escores associado à variável idade.

Idade(anos)	Gra	u de	Totais		
idade(anos)	1	2	3	4	Totals
5 - 7	7	4	3	7	21
8 - 9	10	15	11	13	49
10 - 11	23	9	11	7	50
12 - 13	28	9	12	10	59
14 - 15	32	5	4	3	44

Resolução

Será testado a hipótese nula de haver ausência de associação (independência):

$$\begin{cases} H_0: r_{ac} = 0 \\ H_1: r_{ac} \neq 0 \end{cases}$$

Table 2: Teste de tendência linear

rac	QSC	p-valor
-0.2801432	17.42261	2.99e-05

Pelo resultado, o p-valor é suficientemente pequeno para se rejeitar H_0 , logo, existe associação entre idade e grau de sofrimento.

Capítulo 5

Exercício 1

Os dados mostrados na Tabela 5.6 são de um estudo sobre a presença de resfriado em crianças de duas regiões (urbana e rural). Os pesquisadores visitaram as crianças diversas vezes, observando a presença de sintomas de resfriado. A resposta registrada foi o número de períodos em que cada criança exibiu esses sintomas.

Sexo	Região	Períodos com resfriado			Totais
Sexo	negiao	0	1	2	Totals
Feminino	Urbana	45	64	71	180
	Rural	80	104	116	300
Masculino	Urbana	84	124	82	290
	Rural	106	117	87	310

(a) Represente os dados graficamente

Resolução

Gráfico mosaico

Sexo e Região

(b) Teste a existência de associação entre região e perídos com resfriado, controlando pela variável sexo.

Resolução

A hipótese a ser testada é:

$$\left\{ \begin{array}{l} H_0: \bar{F_1}=\bar{F_2} \\ H_1: \bar{F_1}\neq \bar{F_2} \end{array} \right.$$

Se H_0 não é rejeitada não há associação entre as variâveis. Portanto, obtem-se a estatística de teste e o respectivo p-valor do teste desejado:

Table 3: Teste de Associação

QSMH	p-valor
0.73789	0.39034

Utilizando $\alpha=5\%$, não rejeita-se H_0 , logo não há evidências de não haver associação entre as variáveis região e período com resfriado.

Exercício 3

Os dados na Tabela 5.8 são de um estudo que teve por objetivo avaliar os efeitos adversos de um medicamento administrado para aliviar a dor em pacientes com um de dois diagnósticos. Foram avaliadas quatro dosagens do medicamento mais um placebo

Diagnóstico	Dosagem	Efeitos adversos		Totais
Diagnostico	Dosagem	Não	Sim	Totals
I	Placebo	26	6	32
	$Dose_1$	26	7	33
	$Dose_2$	23	9	32
	$Dose_3$	18	14	32
	$Dose_4$	9	25	34
II	Placebo	26	6	32
	$Dose_1$	12	20	32
	$Dose_2$	13	20	33
	$Dose_3$	1	31	32
	$Dose_4$	1	31	32

(a) Considerando somente os pacientes com diagnóstico I, teste a existência de associação entre dosagens e efeitos adversos

Resolução

Será utilizada a estatística Q_s que possui distribuição aproximada qui-quadrado com s-1 graus de liberdade:

$$\left\{ \begin{array}{l} H_0: \bar{F_1} = \bar{F_2} = ... = \bar{F_s} \\ H_1: pelo \ menos \ uma \ igualdade \ falsa \end{array} \right.$$

Table 4: Teste de tendência linear

rac	QSC	p-valor
0.391568	24.83873	6e-07

Ao observar o p-valor, rejeita-se a hipótese nula de não haver associação entre dosagem e efeitos adversos em pacientes com diagnóstico I.

(b) Faça o mesmo considerando os pacientes com diagnóstico II.

Resolução

Será utilizada a estatística Q_s que possui distribuição aproximada qui-quadrado com s-1 graus de liberdade:

$$\left\{ \begin{array}{l} H_0: \bar{F_1} = \bar{F_2} = \ldots = \bar{F_s} \\ H_1: pelo \ menos \ uma \ igualdade \ falsa \end{array} \right.$$

Table 5: Teste de tendência linear

rac	QSC	p-valor
0.5718972	52.33063	0

Ao observar o p-valor, rejeita-se a hipótese nula de não haver associação entre dosagem e efeitos adversos em pacientes com diagnóstico II.

(c) Avalie a associação de interesse controlando pelo diagnóstico.

Resolução

Para o problema pode ser usada a estatística da correlação estendida de Mantel-Haenszel, mas para facilitar as contas será utilizada a estatística Q_s , que possui distribuição aproximada qui-quadrado com s-1 graus de liberdade, pois esta possui um resultado equivalente:

$$\left\{ \begin{array}{l} H_0: \bar{F}_1 = \bar{F}_2 = \ldots = \bar{F}_s \\ H_1: pelo \ menos \ uma \ igualdade \ falsa \end{array} \right.$$

Table 6: Teste de tendência linear

rac	QSC	p-valor
0.4559289	67.14238	0

Ao observar o p-valor, rejeita-se a hipótese nula de não haver associação entre dosagem e efeitos adversos controlado pelo diagnóstico.

Exercício 4

Um estudo de coorte foi realizado com o objetivo de verificar o efeito de fumo voluntário sobre o risco de câncer de pulmão. O fato de os próprios indivíduos estarem expostos ao fumo passivo foi considerado no delineamento. Os dados estão na Tabela 5.9.

Fumo Passivo Fumo	Fumo voluntário	Câncer de pulmão		Totais
	rumo volumano	Sim	Não	Totals
Sim	Sim	120	80	200
	Não	111	155	266
Não	Sim	161	130	291
	Não	117	124	241

(a) Avalie a existência de associação entre fumo voluntário e câncer de pulmão, controlando por fumo passivo.

Resolução

Para verificar a associação entre fumo voluntário e câncer de pulmão, controlando por fumo passivo, será utilizado o teste de Mantel-Haenszel, onde:

$$\left\{ \begin{array}{l} H_0: \bar{F_{h1}} = \bar{F_{h2}} \\ H_1: \bar{F_{h1}} \neq \bar{F_{h2}} \end{array} \right.$$

```
##
## Mantel-Haenszel chi-squared test without continuity correction
##
## data: tab
## Mantel-Haenszel X-squared = 14.422, df = 1, p-value = 0.0001461
## alternative hypothesis: true common odds ratio is not equal to 1
## 95 percent confidence interval:
## 1.263955 2.090024
## sample estimates:
## common odds ratio
## 1.625329
```

Rejeita-se H_0 , logo, há evidências de associação entre fumo voluntário e câncer de pulmão, controlando por fumo passivo.

Códigos

```
fisher.test(dat,alternative = "less") # teste de fisher no R
# teste de fisher na mão
x <- numeric()</pre>
for (i in 0:14){
  x[i] < -(choose(26,i)*choose(13,26-i)/choose(39,26))
sum(x)
# item b
c <- t(matrix(c(5,2,2,0,</pre>
                 0,1,0,1,
                 0,2,3,4),4,3))
fisher.test(c)
# item c
UncertCoef(dat)
# exercício 3
GoodmanKruskalGamma(matrix(c(11,05,0,14,34,07,2,13,11),3,3))
# Capitulo 4
# Exercício 2
# item a
dados \leftarrow matrix(c(26,26,23,18,9,6,7,9,14,25), nc=2,
                 dimnames = list(c("Placebo", "Dose_1", "Dose_2", "Dose_3", "Dose_4"),
                                   c("Não","Sim")))
mosaicplot(dados,main="", xlab="Dosagens", ylab="Efeitos adversos",
            col=gray.colors(2))
title("Gráfico1: Mosaico")
# item b
chisq.test(dados,correct=F)
x \leftarrow c(rep(0,32), rep(1,33), rep(2,32), rep(3,32), rep(4,34))
y \leftarrow c(rep(0,26), rep(1,6), rep(0,26), rep(1,7), rep(0,23),
       rep(1,9), rep(0,18), rep(1,14), rep(0,9), rep(1,25))
rac <- cor(y,x)</pre>
n \leftarrow length(x)
QCS <-(n-1)*rac^2
p <- 1-pchisq(QCS,1)</pre>
```

```
cbind(rac, QCS, p)
# exercício 4
x < -c(rep(6,21), rep(8.5,49), rep(10.5,50), rep(12.5,59), rep(14.5,44))
y < -c(rep(1,7), rep(2,4), rep(3,3), rep(4,7),
     rep(1,10),rep(2,15),rep(3,11),rep(4,13),
     rep(1,23), rep(2,9), rep(3,11), rep(4,7),
     rep(1,28),rep(2,9), rep(3,12),rep(4,10),
     rep(1,32), rep(2,5), rep(3,4), rep(4,3))
rac<-cor(y,x)</pre>
n<-length(x)</pre>
QCS<-(n-1)*rac^2
p<-1-pchisq(QCS,1)
cbind(rac, QCS, p)
# Capitulo 5
# exercício 1
# item a
dados<- matrix(c(45,80,84,106,64,104,124,117,71,116,82,87),nc=3)
colnames(dados) <- c("0","1","2")</pre>
rownames(dados) <- c("Fem Urbana", "Fem Rural", "Masc Urbana", "Masc Rural")
mosaicplot(dados, main="", xlab="Sexo e Região", ylab="Períodos com resfriado",
           col=gray.colors(3))
title("Gráfico mosaico")
# item b
escore < -c(0,1,2)
fb11<-(sum(dados[1,]*escore))/sum(dados[1,])
fb12<-(sum(dados[2,]*escore))/sum(dados[2,])
fb21<-(sum(dados[3,]*escore))/sum(dados[3,])
fb22<-(sum(dados[4,]*escore))/sum(dados[4,])
fm1 < -sum(c(sum(dados[1,]), sum(dados[3,]))*c(fb11, fb21))
esp1 < (c(sum(dados[1:2,1]), sum(dados[1:2,2]), sum(dados[1:2,3])))/sum(dados[1:2,1])
mu1<-sum(escore*esp1)</pre>
esp2 < -(c(sum(dados[3:4,1]), sum(dados[3:4,2]), sum(dados[3:4,3])))/sum(dados[3:4,])
mu2<-sum(escore*esp2)</pre>
mu < -sum(c(sum(dados[1,]), sum(dados[3,]))*c(mu1, mu2))
v1<- sum(((escore-mu1)^2)*esp1)
v2<- sum(((escore-mu2)^2)*esp2)
vfma < -(sum(dados[1,])*sum(dados[2,])*v1)/(sum(dados[1:2,])-1)
vfmb < -(sum(dados[3,])*sum(dados[4,])*v2)/(sum(dados[3:4,])-1)
vfm<- sum(c(vfma, vfmb))</pre>
QSMH < -((fm1-mu)^2)/vfm
p<-1-pchisq(QSMH,1)
round(c(QSMH,p),digits=5)
# Exercicio 3
```

```
# item a
x < -c(rep(0,32), rep(1,33), rep(2,32), rep(3,32), rep(4,34))
y < -c(rep(0,26), rep(1,6),
     rep(0,26), rep(1,7),
     rep(0,23), rep(1,9),
     rep(0,18), rep(1,14),
     rep(0,9), rep(1,25))
rac<-cor(y,x)</pre>
n<-length(x)
QCS<-(n-1)*rac^2
p<-1-pchisq(QCS,1)
cbind(rac, QCS, p)
# item b
x < -c(rep(0,32), rep(1,32), rep(2,33), rep(3,32), rep(4,32))
y < -c(rep(0,26), rep(1,6),
     rep(0,12), rep(1,20),
     rep(0,13), rep(1,20),
     rep(0,1), rep(1,31),
     rep(0,1), rep(1,31))
rac<-cor(y,x)</pre>
n<-length(x)</pre>
QCS<-(n-1)*rac^2
p<-1-pchisq(QCS,1)
cbind(rac, QCS, p)
# item c
x < -c(rep(0,64), rep(1,65), rep(2,65), rep(3,64), rep(4,66))
y < -c(rep(0,52), rep(1,12), rep(0,38), rep(1,27), rep(0,36),
     rep(1,29), rep(0,19), rep(1,45), rep(0,10), rep(1,56))
rac<-cor(y,x)</pre>
n<-length(x)
QCS<-(n-1)*rac^2
p<-1-pchisq(QCS,1)</pre>
cbind(rac,QCS,p)
# Exercício 4
tab<-array(c(120,111,80,155,161,117,130,124),dim=c(2,2,2))
mantelhaen.test(tab, correct=F)
```