Group Analysis

Alexa Morcom Edinburgh SPM course, 2013

Thanks to Jesper Anderson, Tom Nichols, Jean Daunizeau, Stephan Kiebel & other SPM authors for slides

Overview of SPM

Overview

Making the group inferences we want

- Optimising the GLM
- The two-stage GLM
- Two methods of RFX inference

2-stage GLM

Single subject

Each subject's scans are modelled separately Single subject parameter estimates 1st level

Single subject contrasts of parameter estimates taken to 2nd level as (spm_con*.img) 'con images'

 $\overline{\downarrow}$

Group/s of subjects

For a given effect, the whole group is modelled Parameter estimates apply to group effect/s

2nd level

Group level contrasts of 2nd level parameter estimates are used to form statistics

Overview

- Hierarchical models
- Mixed-effects models
- Random effects (RFX) models
- Variance components

... All the same

Refer to dealing with multiple sources of variation and making the inferences we want, i.e. generalising to a population

Why isn't this easy?

- Multiple levels of model
- Multiple components of error in each

The GLM revisited

N: number of scans

p: number of regressors

Model is specified by

- Design matrix X
- 2. Assumptions about ε

Ordinary Least Squares revisited

Find
$$\hat{\beta}$$
 that minimises $\|y - X\beta\|^2 = \varepsilon^T \varepsilon$

The Ordinary Least Squares parameter estimates are:

$$\left| \hat{\beta} = (X^T X)^{-1} X^T y \right|$$

Estimation is **direct** – multiply data by the (pseudo) inverse of X

This is only valid if errors are i.i.d. — if there is a single error covariance component, the variance s².

$$\varepsilon \sim N(0, \sigma^2 I)$$

Because covariance affects the statistics...

Covariance and non-sphericity

Classical inference is about what is surprising

- A statistic tests an effect's size relative to its expected behaviour under null hypothesis
- Degrees of freedom must reflect how related (correlated) different observations are
- If observations covary, there are fewer independent observations than we think, so significance of statistics can be overrated

Variance

Length of men

 μ =180cm, σ =14cm (σ ²=200)

Weight of men

 μ =80kg, σ =14kg (σ ²=200)

Each 1-dimensional variable is completely characterised by μ (mean) and σ^2 (variance)

i.e. can calculate $p(I|\mu,\sigma^2)$ for any I and $p(w|\mu,\sigma^2)$ for any w

Variance-covariance matrix

Can also view length and weight as a
 2-dimensional random variable (p(I,w)).

$$\mu = \begin{bmatrix} 180 \\ 80 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} 200 & 100 \\ 100 & 200 \end{bmatrix}$$

$$p(I, w|\mu, \Sigma)$$

Length and weight are related – i.e., covary

What is (and isn't) sphericity?

sphericity => i.i.d. error covariance It is a multiple of the identity matrix: $Cov(e) = \sigma^2I$

$$Cov(e) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Examples of non-sphericity:

Covariance and statistics

$$T = \frac{c^T \hat{\beta}}{\sqrt{\text{var}(c^T \hat{\beta})}} = \frac{c^T \hat{\beta}}{\sqrt{\hat{\sigma}^2 c^T (X^T X)^{-1} c}} \sim t_{N-p}$$
 = variance estimate

contrast of

- How good an estimator (precise) is effect β ?
- How much do we think the betas covary? a precise (low) C_{β} maximises T
- The df are also a function of C_{ε} & design matrix X...

Covariance and degrees of freedom

- Measure departure from sphericity (episilon)
- Evaluate significance of sum of squares ratios using F with (approx) Greenhouse-Geisser df – i.e. fewer Heights & weights

$$\Sigma = \begin{bmatrix} 200 & 100 \\ 100 & 100 \\ 100 & 100 \end{bmatrix} \quad \epsilon = 0.8$$

= Satterthwaite correction (SPSS) (in theory sl. liberal – but see Mumford & Nichols, 2009)

The rain in Bergen

12 months for 100 years

A simple GLM: model monthly rainfall using mean Data from whole 20th century

The rain in Bergen

How much do the following observations tell us?

Rain on 4 consecutive days in June

Rain on the same day in May, June, July and August

...which is more likely to indicate a wet summer?

Can we determine the patterns of correlation?

The rain in Bergen

 $\hat{\mathbf{E}}$ $\hat{\mathbf{E}}^{\mathbf{T}}$ \mathbf{S}

Estimate based on 100 years

True Σ – as if there were not 100*365=36500 data points, but 2516!

$$e_t = ae_{t-1} + \mathcal{E}_t \text{ with } \mathcal{E}_t \sim N(0, \sigma^2)$$

Pre-whitening

- Use an enhanced noise model with multiple error covariance components
- Estimate components AR (1) + white noise
- Specify a filter matrix W to whiten the data 'undoing' the serial correlations

$$Wy = WX\beta + We$$

$$Wy = WX\beta + We$$
 $We \sim N(0, \sigma^2W^2V)$

SPM prewhitening model: AR(1) + white noise

- AR(1) cannot be estimated precisely at each voxel
- But precision is critical, or estimates are worse than OLS – biased AND imprecise
- Use spatial regularisation pool estimation over active voxels, defined using 1st pass OLS estimate (P < .001)
- + White noise voxel-specific variance s²

$$e_t = ae_{t-1} + \mathcal{E}_t \text{ with } \mathcal{E}_t \sim N(0, \sigma^2)$$

Once data are 'pre-whitened', estimation can proceed using Ordinary Least Squares

- The parameter estimates are again optimal unbiased and minimum variance
- •The df are also correct, if we want to do our statistical inference at the first level

Take-home message (1)

•If error structure is complex with multiple components of covariance – not just i.i.d. – our inference depends on modelling the error structure

•What does this have to do with 2-level models?

Why isn't this easy?

- Multiple levels of model
- Multiple components of error in each

Fixed vs. random effects

Fixed effects:

Intra-subjects variation suggests all these subjects different from zero

☐ Random effects:

Inter-subjects variation suggests population not different from zero

Fixed effects

- Only source of variation (over sessions)
 - is measurement error
- ☐ True response magnitude is *fixed*

Fixed effect modelling in SPM

- ☐ Grand GLM (single level) approach (model all subjects at once)
- ☐ Good:
 - max df
 - > simple model
- ☐ Bad:
 - assumes common variance over subjects at each voxel

Fixed vs. random effects

Summary

- Fixed effect inference: "I can see this effect in this cohort"
- •Random effect inference: "If I were to sample a new cohort from the same population I would get the same result"

•Fixed isn't 'wrong', but is not usually of interest

Random effects

- ☐ Two sources of variation
 - measurement errors
 - response magnitude (over subjects)
- Response magnitude is *random*
 - > each subject/session has random magnitude

Random effects

- ☐ Two sources of variation
 - measurement errors
 - response magnitude (over subjects)
- Response magnitude is *random*
 - each subject/session has random magnitude
 - but note, population mean magnitude is *fixed*

Why bother with two stages?

- We want to make an inference to the population, not a single subject, so why do we care?
- Why can't we just do group stats on data for each voxel, as in SPSS?
- We could, if data Y were simple values per voxel precisely known.
- Instead, we have estimates of individual subjects' effects – so more than 1 covariance component

Hierarchical models

Does hair length differ by gender?

2 sources of variability

Within-subject: σ^2 w

Between-subjects: σ^2 B

To generalise across this sample, combine data from hairs measured in all subjects, get σ^2 FFX

To generalise to population, use estimates of hair length for each subject, get $\sigma^2_{\rm MFX}$

MIX of between/ within variability

Hierarchical models

Why bother with two stages?

Why can't we just do group stats on the data from each voxel?

- ...that could be valid but would not be optimal
- Hierarchical models deal with mixed sources of variance, not just between-subject variance
- Model both scan-to-scan and subject-to-subject variability
- More than 1 variance component (nonsphericity) at the group level

Hierarchical models

Hierarchical models

Two approaches in SPM

- 1. Simple summary statistic Holmes & Friston
- 2. Non-sphericity modelling at group level

- Pros and cons assumptions vs. flexibility
 - Subject variances equivalent
 - Subject design matrices equivalent
 - (2) enables a wide range of 2nd level models

Simple summary statistic approach ('HF')

Simple summary statistic approach ('HF')

Assumptions

- Distribution normal, independent subjects
- Homogeneous variance
 - Subjects' residual errors same
 - Subjects' design matrices same

- 2 covariance components
- Collapse into 1 if these elements of the group level covariance are homogenous over subjects

Simple summary statistic approach ('HF')

Use only a single image per subject

- Limited to 1- or 2-sample t-tests at the 2nd level
- Balanced designs

- Limitation = strength
 - No 2nd level sphericity assumption
 - 'Partitioned' error term @ 2nd level

HF - efficiency

- If assumptions true
 - Optimal, fully efficient
- If σ^2_{FFX} differs between subjects
 - Reduced efficiency

HF - validity

- If assumptions true
 - Exact P-values
- If σ^2_{FFX} differs btw subj.
 - Standard errors not OK
 - Est. of σ_{RFX}^2 may be biased
 - df not OK
 - Here, 3 Ss dominate
 - DF < 5 = 6-1

HF – robustness

- In practice, validity & efficiency are excellent
 - For the one sample case, HF is very robust

 Potential concern with 2-sample or correlation if outliers/ large imbalance

A more flexible summary statistic approach

- Model within-level just as at 1st level
- Represent different sources of covariance using linear combination of basis functions
- Multiple covariance components
- Same estimation using prewhitening approach, and cross-voxel 'pooling'

Errors are independent
 but not identical

Errors are not independent and not identical

Error Covariance

Errors can be Independent but Non-Identical when...

1) One parameter but from different groups – 2-sample t-test e.g. patients and control groups

Error can be Non-Independent and Non-Identical when...

- 1)Several contrasts per subject are taken to 2nd level
- e.g. Repeated Measures ANOVA
- 2) Omnibus test is needed across several basis functions characterising the hemodynamic response
- e.g. F-test combining HRF, temporal derivative and dispersion regressors

residuals covariance matrix Errors are not independent and not identical 0.7 0.6 Q_k 's:

Assumptions

- Needed for cross-voxel pooling, homogenous across 'active' voxels
- Within subject covariance still homogenous
- HF plus pooled variance at 2nd level

Advantages

- Fast relative to 'full' mixed-effects procedures
- Flexibility of possible 2nd level models

Summary

fMRI models need to take account of

- Multiple sources of variability at each level
- Hierarchical nature of data

Estimation & correction for resulting nonsphericity

- Some assumptions
- If correct, optimise estimation & inference
- SPM enables very flexible 2nd level models

2-stage GLM

Single subject

Each has an independently acquired set of data
These are modelled separately
Models account for within subjects variability
Parameter estimates apply to individual subjects

1st level

Single subject **contrasts of parameter estimates** taken forward to 2nd level as (spm_con*.img) **'con images'**

Ţ

Group/s of subjects To make population inferences, 2nd level models account for **between subjects variability**Parameter estimates apply to group effect/s

2nd level

Statistics compare contrasts of 2nd level parameter estimates to 2nd level error

Bibliography

- Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier, 2007.
- Generalisability, Random Effects & Population Inference. Holmes & Friston, NeuroImage, 1999.
- Classical and Bayesian inference in neuroimaging: theory. Friston et al., NeuroImage, 2002.
- * Classical and Bayesian inference in neuroimaging: variance component estimation in fMRI. Friston et al., NeuroImage, 2002.
- Simple group fMRI modeling and inference.
 Mumford & Nichols, Neuroimage, 2009 [ALSO ON POWER]
- Flexible factorial tutorial by Glascher and Gitelman www.sbirc.ed.ac.uk/cyril/cp_fmri.html

