Математический анализ (базовый уровень) — 1 семестр

Занятие 1. Задачи по материалам вводных лекций

- I. Логика
- II. Множества и операции с ними
- III. Отношения и функция

Быстрый переход:

- → Занятие
- → Консультация
- → Самостоятельно

Источники:

[Михайлов] Михайлов А.Б. Плоткин А.И. Рисс Е.А. Яшина Е.Ю. Математический язык в задачах (2001)

Составила: Рванова А.С.

Редакторы: Лебедева А.Д., Правдин К.В.

Занятие

I. Логика

Задача 1. Какие из следующих выражений языка являются высказываниями, какие предикатами? Какие высказывания истинны? Для каждого из предикатов найдите область допустимых значений переменных и множество истинности.

- 1. Луна есть спутник Марса;
- 2. $2 + \sqrt{3} \sqrt[3]{2}$
- 3. $2 + \sqrt[3]{3} \sqrt{6} > 1000$
- 4. $x^2 2x + 6 = 0$
- 5. $x^2 2x + 2$
- 6. число 3 является корнем уравнения $x^2 5x + 6 = 0$
- 7. любое простое число p не имеет делителей, отличных от себя и 1
- 8. натуральное число n не меньше 1
- 9. да здравствует солнце, да скроется тьма
- 10. $x^2 + y^2 > 0$
- 11. $x^2 + y^2 \ge 0$
- 12. $x^2 + y^2 < 0$
- 13. $\sin^2 x + \cos^2 x = 1$
- **14.** $\sin^2 x + \cos^2 x \ge 1$
- 15. $\sin^2 x + \cos^2 x < 1$
- 16. tg $x \cdot \text{ctg } x = 1$

Задача 2. Изобразите множества истинности следующих предикатов, заданных на множестве действительных чисел:

- 1. $\overline{(|x| < 3) \land (x < 2)}$ на координатной прямой
- 2. $(x^2 + y^2 \ge 0) \to (x < y)$ на координатной плоскости
- 3. $(xy < 0) \rightarrow (x^2 + y^2 > 1)$ на координатной плоскости

Задача 3. Пусть:

P(x): «x – простое число»

Q(x): «x – чётное число»

R(x): «x – целое число»

D(x,y): «x делит y»

Сформулируйте словами следующие высказывания. Укажите, какие из них истинные, какие ложные.

- 1. $(\forall x) (P(x) \to \overline{Q(x)})$
- 2. $(\forall x) \left(\overline{P(x)} \to (\forall y) \left(P(y) \to \overline{D(x,y)} \right) \right)$

Задача 4. Установите, какие из следующих высказываний истинны, какие ложны:

- 1. $\exists x (x + 1 = x)$
- 2. $\exists x (x^2 + x + 1 = 0)$

Математический анализ (базовый уровень) — 1 семестр

- 3. $\forall x (x^2 + x + 1 > 0)$
- 4. $\forall x (x^2 6x + 8 \ge 0)$
- 5. $\exists x (x^2 6x + 8 \ge 0 \land x^2 4x + 3 > 0)$
- 6. $\exists x (x^2 x = 0 \land x^2 4x + 3 \le 0)$
- 7. $\forall x (x^2 6x + 8 \ge 0 \lor x^2 4x + 3 < 0)$
- 8. $\forall x (x^2 x 2 > 0 \lor x^2 6x + 8 \ge 0)$
- 9. $\exists x (x \in [2; 4] \rightarrow x^2 6x + 8 > 0)$
- 10. $\exists x (x \in [1; 3] \rightarrow x^2 6x + 8 > 0)$
- 11. $\forall x (x \in [2; 3] \rightarrow x^2 6x + 8 \le 0)$
- 12. $\forall x (x \in [4; 5] \rightarrow x^2 6x + 8 \ge 0)$

Задача 5. Запишите с помощью логической и подходящей математической символики следующее предложение, а также постройте отрицание к нему. Определите истинность высказывания и его отрицания, ответ обоснуйте.

Существуют такие действительные числа x и z, что для всякого действительного числа y верно равенство x+y=z.

II. Множества и операции с ними

Задача 6. Множества заданы характеристическим свойством. Задайте их перечислением элементов.

- 1. $A = \{ a \mid a \text{месяц года, в название которого входят 4 и только 4 различные буквы } \}$
- 2. $B = \{x \mid 5x = x 8\}$
- 3. $C = \{x \mid x \in \mathbb{N} \land x^2 = 4\}$
- 4. $D = \{ x \mid x \in \mathbb{Z} \land x^2 = 4 \}$

Задача 7. Какие из высказываний истинны, а какие ложны:

- 1. $\{1; \{2; 3\}\} = \{1; 2; 3\}$
- 2. $\{\{1\}; \{2\}\} = \{1; 2\}$
- 3. $\{1,2\}\subset\{\{1,2,3\},\{1,3\},1,2\}$
- 4. $\{1,2\} \in \{\{1,2,3\},\{1,3\},1,2\}$
- 5. $\{1,3\} \in \{\{1,2,3\},\{1,3\},1,2\}$
- 6. $\{1,3\} \subset \{\{1,2,3\},\{1,3\},1,2\}$
- 7. $\emptyset \in \{\{1,2,3\},\{1,3\},1,2\}$
- 8. $\emptyset \subset \{\{1,2,3\},\{1,3\},1,2\}$

Задача 8. Даны множества $A=(-\infty;3],\ B=(2;5).$ Найдите $\bar{A},\ \bar{B},\ A\backslash B,\ B\backslash A,\ A\cap B,\ A\cup B,\ A\Delta B$ (симметрическая разность $(A\backslash B)\cup (B\backslash A)$).

Задача 9. Пусть множество $A = \{2,4,6\}$, $B = \{3,5,7\}$. Найдите множества $A \times B$, $B \times A$, A^2 , B^2 .

Задача 10. Найдите декартово произведение множеств A и B и изобразите его элементы на координатной плоскости:

- 1. $A = \{x \mid x \in \mathbb{R}, x > 0\}, B = \{y \mid y \in \mathbb{R}, y > 0\}$
- 2. $A = \{x \mid x \in \mathbb{R}, x = 0\}, B = \{y \mid y \in \mathbb{R}, y > 0\}$
- 3. $A = \{x \mid x \in \mathbb{R}, x = 2\}, B = \{y \mid y \in \mathbb{R}\}$
- 4. $A = \{x \mid x \in \mathbb{R}, 1 \le x \le 2\}, B = \{y \mid y \in \mathbb{R}, 0 \le y \le 1\}$
- 5. $A = \mathbb{N}, B = \mathbb{N}$
- 6. $A = \mathbb{Z}$, $B = \mathbb{Z}$
- 7. $A = \mathbb{R}, B = \mathbb{R}$

III. Отношения и функция

Задача 11. Пусть множество $A = \{-5, -1, 1, 2, 3, 4, 5, 6\}$. Найдите область определения и область значений бинарного отношения ρ . Постройте граф и график бинарного отношения ρ .

- 1. $\rho = \{(x, y) \mid x, y \in A \land 2x y = 3\}$
- 2. $\rho = \{(x, y) \mid x, y \in A \land x : y\}$

Задача 12. Определите, какими свойствами (рефлексивность, симметричность, транзитивность) обладают следующие бинарные отношения. Какое из данных отношений является отношением эквивалентности?

- 1. параллельность прямых на плоскости
- 2. перпендикулярность прямых
- 3. пересечение прямых
- 4. отношение делимости на множестве целых чисел

Задача 13. Множество X – множество квадратов на плоскости, Y – множество окружностей на той же плоскости. Каждому квадрату соответствует вписанная окружность. Является ли это соответствие отображением? Если да, то является ли это отображение инъекцией, сюръекцией, биекцией?

Задача 14. Найти образ множества $A = \begin{bmatrix} \frac{\pi}{6}, \frac{\pi}{3} \end{bmatrix}$ при отображении $y = \sin x$.

Задача 15. Найти прообраз множества B = [0, 9] при отображении $y = x^2$.

Консультация

I. Логика

Задача 16. Опровергните с помощью контрпримера следующие высказывания

- 1. $(\forall x) ((0.2^x > 0.0016) \rightarrow (x > 4))$ или $\forall x: 0.2^x > 0.0016 \Rightarrow x > 4$
- 2. «Любые равные углы являются вертикальными»

Задача 17. Запишите следующие высказывания в виде формул с кванторами, предварительно введя обозначения для используемых предикатов:

- 1. Все рыбы умеют плавать.
- 2. Некоторые реки впадают в Каспийское море.
- 3. По крайней мере, одно четное число делится на 8.
- 4. Не все птицы умеют летать.
- 5. Ни одна собака не умеет мяукать.
- 6. Кто хочет, тот добьется.
- 7. Если где-нибудь сверкнула молния, то когда-нибудь загремит гром.
- 8. Если кто-нибудь может испечь пирожки, то и Коля может.

Задача 18. Запишите утверждение в импликативной форме. Выделите разъяснительную часть, условие, заключение. Запишите высказывание в виде формулы с кванторами, введя обозначения для используемых предикатов. Постройте предложения:

- обратное
- противоположное
- контрапозитивное (обратное противоположному, противоположное обратному)

определите истинность каждого (ложные опровергните с помощью контрпримера):

- 1. «Диагонали ромба перпендикулярны»
- 2. «Сумма двух нечётных чисел чётное число»

Задача 19. Для каждого из следующих условий выясните, является ли оно необходимым и является ли оно достаточным для того, чтобы выполнялось неравенство $x^2 - 2x - 8 \le 0$:

- 1. x = 0
- 2. $x \ge -3$
- 3. x > -2
- 4. $x \ge -1$ u $x \le 3$
- 5. $x \ge -1$ и x < 10
- 6. $-2 < x \le 10$
- 7. $-2 \le x \le 4$
- 8. $x^2 x 12 \le 0$

Математический анализ (базовый уровень) — 1 семестр

II. Множества и операции с ними

Задача 20. Выясните, какие из следующих высказываний истинны, а какие ложны:

- 1. $\emptyset \subset \{\emptyset\}$
- 2. $\emptyset \in \{\emptyset\}$
- 3. $\emptyset = \{\emptyset\}$
- 4. $\emptyset \subset \{\emptyset; \{\emptyset\}\}$
- 5. $\emptyset \in \{\emptyset; \{\emptyset\}\}$
- 6. $\{\emptyset\} \in \{\{\emptyset\}\}\$
- 7. $\{\emptyset\} \subset \{\{\emptyset\}\}\$
- 8. $\emptyset \in \{\{\emptyset\}\}$

Задача 21. Какие из следующих пар множеств связаны между собой отношением включения:

- 1. $A = \{x \mid x \in \mathbb{N}, x > 2\}, B = \{y \mid y \in \mathbb{N}, y > 2\}$
- 2. $A = \{x \mid x \in \mathbb{R}, x > 0\}, B = \{y \mid y \in \mathbb{N}, y > 0\}$
- 3. $A = \{x \mid x \in \mathbb{N}, \ x^2 > 4\}, \ B = \{y \mid y \in \mathbb{N}, \ y^2 > 5\}$
- 4. А множество многоугольников с периметром 4,

B – множество квадратов с площадью 1.

Задача 22. Докажите равенства:

- **5.** $A \setminus (A \setminus B) = A \cap B$
- 6. $(A \backslash B) \cup (\bar{A} \backslash \bar{B}) = (A \cup B) \backslash (A \cap B)$

III. Отношения и функция

Задача 23. (продолжение <u>Задача 11</u>) Пусть множество $A = \{-5, -1, 1, 2, 3, 4, 5, 6\}$. Найдите область определения и область значений бинарного отношения ρ . Постройте граф и график бинарного отношения ρ .

3. $x \rho y - \langle x \rangle u y$ имеют одинаковые остатки при делении на 3»

Задача 24. На множестве $A = \{a, b, c, d, e, f\}$ задано отношение $\rho: (x, y) \in \rho$, если от $x \kappa y$ идет стрелка:

- 1. Дорисуйте одну из стрелок так, чтобы ho стало рефлексивным.
- 2. Дорисуйте одну из стрелок так, чтобы ho стало симметричным.
- 3. Дорисуйте две стрелки так, чтобы ho стало транзитивным.
- 4. Можно ли убрать две стрелки так, чтобы ρ стало транзитивным?
- 5. Сотрите две стрелки так, чтобы ρ стало антисимметричным.
- 6. Можно ли добавить одну или несколько стрелок так, чтобы ρ стало антисимметричным?

Задача 25. Определите, какими свойствами (рефлексивность, симметричность, транзитивность) обладают следующие бинарные отношения. Какое из данных отношений является отношением эквивалентности?

- 1. отношение делимости на множестве натуральных чисел
- 2. отношение взаимной простоты на множестве натуральных чисел
- 3. отношение лежать по одну сторону от данной прямой (между точками плоскости)
- 4. иметь одинаковый цвет глаз на множестве живущих на планете людей

Задача 26. Является ли соответствие $f \subseteq A \times B$ функцией? Если да, то является ли функция инъективной, сюръективной, биективной? Найдите область определения и область значений функции. Существует ли обратная функция f^{-1} ?

- **1.** $A = \{a, b, c, d\}, B = \{1, 2, 3\}, f = \{(a, 2); (b, 3); (d, 3)\}$
- 2. $A = \{a, b, c, d\}, B = \{1, 2, 3\}, f = \{(a, 2); (b, 3); (c, 3); (d, 1)\}$
- 3. $A = \{a, b, c, d\}, B = \{1, 2, 3\}, f = \{(a, 2); (a, 3); (b, 2); (c, 3); (d, 1)\}$
- 4. $A = \left[\frac{\pi}{2}; 2\pi\right], B = \mathbb{R}, f(x) = \cos x$
- 5. $A = \begin{bmatrix} -1 & 1 \end{bmatrix}, B = \begin{bmatrix} -\frac{\pi}{4}, \frac{\pi}{4} \end{bmatrix}, f(x) = \operatorname{arctg} x$

Задача 27. Найдите образ f(A) множества A при отображении $f(x) = x^2 - 4x - 12$, A = (-1; 7).

Задача 28. Даны функции $f(x) = \sin x$, $g(x) = \sqrt{x+1}$. Найдите $f \circ g$, $g \circ f$. Укажите область определения и область значений данных и найденных функций.

Задача 29. Обратима ли функция f? Если обратима, найдите обратную функцию. Если необратима, измените область определения и область значений и найдите обратную функцию.

- 1. $f: \mathbb{R} \to \mathbb{R}, f(x) = \cos x$
- 2. $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x^2 + 1$

Самостоятельно

I. Логика

Задача 30. Какие из следующих предложений являются предикатами? Какие предикаты являются тожественно истинными (тождествами), тождественно ложными (невыполнимыми), выполнимыми?

- 1. натуральное число x делится на 3
- 2. существует натуральное число x, которое делится на 3
- 3. всякое вещественное число x удовлетворяет условию $\sin^2 x + \cos^2 x = 1$
- 4. всякое число x меньше y
- 5. оба корня уравнения $x^2 3x + 2 = 0$ положительны
- 6. один из корней уравнения $x^2 + ax + 2 = 0$ отрицателен
- 7. x + y = y + x
- 8. неравенство $x^2 10x + \sqrt{a} \ge 0$ не имеет отрицательных решений

Задача 31. Приведите примеры таких $a \in \mathbb{R}$, для которых истинны, и примеры таких $a \in \mathbb{R}$, для которых ложны следующие высказывания:

- 1. $\exists x < 0 (x^2 + ax + a = 0)$
- 2. $\forall x \in [0; 1] (x^2 + x + a < 0)$
- 3. $\forall x > 7 (x^2 + ax + 1 > 0)$
- 4. $\exists x \in [1; 2] (x^2 + ax + 1 < 0)$
- 5. $\forall x \in [3; 4] (x^2 + ax + a > 0)$
- 6. $\exists x \in [a; a+1] (x^2 x 2 < 0)$
- 7. $\forall x \in [a; a+1] (x^2 + ax + 1 < 0)$
- 8. $\exists x \in [a; a+1] (x^2 + ax + 1 > 0)$
- 9. $\forall x \in [a; a+1] (x^2 + ax + 1 > 0)$

Задача 32. Какие из следующих высказываний истинны:

- 1. для того чтобы число делилось на 12, достаточно, чтобы оно делилось на 3
- 2. для того чтобы число делилось на 5, необходимо, чтобы оно оканчивалось нулем
- 3. для того чтобы число делилось на 4, необходимо, чтобы оно делилось на
- 4. для того чтобы число делилось на 2, достаточно, чтобы оно оканчивалось нулем
- 5. для того чтобы $\sin \alpha$ был равен $\frac{1}{2}$, необходимо, чтобы α было равно $\frac{\pi}{6}$
- 6. для того чтобы уравнение $ax+\stackrel{\circ}{b}=0$ имело положительный корень, достаточно, чтобы выполнялось неравенство ab<0
- 7. для того чтобы четырехугольник был ромбом, достаточно чтобы его диагонали были взаимно перпендикулярными

8. для того чтобы четырехугольник был параллелограммом, необходимо, чтобы какие-либо две его противоположные стороны были равны

Задача 33. Определить, какое из предложений A и B является для другого необходимым, достаточным, необходимым и достаточным условием. Сформулировать результат в подходящих терминах: «Если ..., то ...», «... тогда и только тогда ...», «... необходимо для...», «... достаточно для...», «... необходимо и достаточно...»

А: Прямые l_1 и l_2 расположены в одной плоскости.

В: Прямые l_1 и l_2 параллельны.

II. Множества и операции с ними

Задача 34. Пусть $U = \{1; 2; 3; 4; 5; 6; 7; 8; 9\}$ - универсальное множество, $A = \{1; 2; 3; 4; 5\}$. Найдите множество X, если известно, что:

- 1. $X \setminus A = \{6, 7\}, A \cap X = \{1, 3, 5\}$
- 2. $A \setminus X = \{2, 4\}, ... X \setminus A = \{6, 7\};$
- 3. $A \cup X = \{1, 2, 3, 4, 5, 6, 7, 8\}, A \setminus X = \{1, 4, 5\},$
- **4.** $A \cup X = \{1, 2, 3, 4, 5, 6, 7\}, A \cap X = \{1, 2\}$
- 5. $A \setminus X = \{3, 4\}, A \cup X = \{1, 2, 3, 4, 5, 6\};$
- 6. $\bar{X} \setminus A = \{7, 8, 9\}, \bar{A} \cup X = \{2, 4, 5, 6, 7, 8, 9\}$

Задача 35. Пусть $A = \{1; 2; 3\}$, $B = \{3; 4\}$, $C = \{1; 4\}$, $D = \{1; 2\}$. Перечислите элементы следующих множеств:

- 1. $A \times B$
- 2. $(B \cup C) \times (B \cap C)$
- 3. $(A \times C) \setminus (D \times C)$
- 4. $(A \times B) \cap (B \times C)$

III. Отношения и функция

Задача 36. Множество X – положительные числа, Y – множество треугольников. Каждому числу х соответствует треугольник у, периметр которого равен х. Является ли это соответствие отображением? Если да, то является ли это отображение инъекцией, сюръекцией, биекцией?

Задача 37. Между множествами $A = \{0, 5, -7, 13\}$ и $B = \{x, y, z, t\}$ установлено соответствие:

- 1. $\rho_1 = \{(0, x); (5, x); (-7, y); (13, z)\}$
- 2. $\rho_2 = \{(0, y); (-7, x); (-7, y); (13, z); (5, x)\}$
- 3. $\rho_3 = \{(0, z); (5, x); (13, t); (-7, y)\}$

Является ли соответствие отображением? Если да, то является ли это отображение инъекцией, сюръекцией, биекцией?

Задача 38. Запишите $\varphi \circ f$. Существует ли $f \circ \varphi$? Ответ обоснуйте.

х	-3	-2	-1	0	1	2	3
f(x)	9	4	1	0	1	4	9

x	0	1	4	9	16
$\varphi(x)$	-3	-2	1	6	13

Задача 39. Выясните, являются ли графиками каких-либо числовых функций вида y = f(x) следующие множества точек на координатной плоскости.

Задачи для практических занятий Математический анализ (базовый уровень) — 1 семестр

