《数据库系统》—— 关系模型

关系代数 (上)

讲解人: 陆伟

关系模型的特征

关系操作(Relational manipulation)

- The data manipulation on relational model is in fact the manipulation on relation or set.
- The relational algebra and relational calculus are two formal, non-user-friendly languages but they have been used as the basis for other higher-level Data Manipulation Languages (DMLs) for relational database.
- The relational algebra and relational calculus are equivalent to one another.

Relations are closed under the algebra

Both the operands and the results are relations.

□并(Union)

- The union to two relations R and S defines a relation that contains all the tuples of R, or S, or both R and S, duplicate tuples being eliminated.
- R and S must be union-compatible. the arities (degree) of the two relations must be equivalent
- $-R \cup S = \{t \mid t \in R \lor t \in S\}$

R

Α	В	С
3	6	7
2	5	7
7	2	3
4	4	3

S

Α	В	С
3	4	5
7	2	3

 $R \cup S$

Α	В	С
3	6	7
2	5	7
7	2	3
4	4	3
3	4	5

■差(Difference)

- The set difference operation defines a relation consisting of the tuples that are in relation R, but not in S.
- R and S must be union-compatible.
- $-R-S=\{t \mid t \in R \land t \notin S\}$

R

Α	В	С
3	6	7
2	5	7
7	2	3
4	4	3

S

Α	В	С
3	4	5
7	2	3

R-S

Α	В	С
3	6	7
2	5	7
4	4	3

S-R

Α	В	С
3	4	5

□交(Intersection)

- The intersection operation defines a relation consisting of the set of all tuples that are in both R and S.
- R and S must be union-compatible.
- $R \cap S = \{t \mid t \in R \land t \in S\}$
- $R \cap S = R (R S)$

R

Α	В	С
3	6	7
2	5	7
7	2	3
4	4	3

S

Α	В	С
3	4	5
7	2	3

 $R \cap S$

Α	В	С
7	2	3

- ■笛卡尔积(Cartesian product)
 - The Cartesian product operation defines a relation that is the concatenation of every tuple of relation R with every tuple of relation S.

$$R \times S = \{t \mid t = \langle t_r, t_s \rangle \land t_r \in R \land t_s \in S\}$$

- Let the arities of R and S be m and n. Let cardinalities of R and S be k1 and k2.
- The arity (degree) of the new relation will be m+n
- The cardinality of the new relation will be $k1 \times k2$

R

Α	В
а	1
b	2

S

С	D	Е
а	10	X
b	10	X
b	20	У
С	10	У

 $R \times S$

A	В	С	D	Е
а	1	а	10	X
а	1	b	10	X
а	1	b	20	У
а	1	С	10	У
b	2	а	10	X
b	2	b	10	X
b	2	b	20	У
b	2	С	10	У

关于本讲内容

祝各位学习愉快!

感谢观看!

讲解人: 陆伟