

Geographical, Population, Economic Data

BigData Programming Final Project Student Number: 20160796 BoSung Park

Project PurposePurpose and overall outline

TOPIC

Data Crawling and Visualization of World Data 각종 전 세계 데이터 크롤링 및 시각화 작업

Data: Demographic, Geographic, Economic

Detailed Description (6)

- ► Demographic: Age structure, Median Age
- ► Geographic: Land usage, Type of Land(water, land)
- ► Economic: GDP Composition, Unemployment Rate

Crawling Source

Indexmundi.com

- Updated data from CIA World Factbook
- Not enough visualized graph
- Cannot compare multiple countries' data
 Only provide individual country's data in separate page

Project Progress Flow Project flow

URL Collection

Input: CountryNameCode.csv

- 1.'https://www.indexmundi.com/'
 +str(mtitle)+'/demographics_prof
 ile.html'
- 2.'https://www.indexmundi.com/'+str(mtitle)+'/age_structure.html'
- 3.'https://www.indexmundi.com/'+st r(mtitle)+'/unemployment_rate.html'
- 4.'https://www.indexmundi.com/'+st r(mtitle)+'/economy_profile.html'
- 5.'https://www.indexmundi.com/'+st r(mtitle)+'/geography_profile.html'

Read country names from input file and form 150 url

Data Web Crawling

Country Data Crawling(population, geography, economy).ipynb

class population crawling:

def median_age()

def age structure()

class economy_crawling:

def Unemployment()
def GDP_composition()

Class geography_crawling:

def area_comp()
def land use()

Checktime(Decorator)
WrongDataRecord(Exception)

Data Visualization

Input File

- 1. median_age.csv
- 2. age_structure.csv
- 3. unemployment.csv
- 4. GDP_composition.csv
- 5. area_comp.csv
- 6. land_use.csv

Dataframe

- 1. Age_structure
- 2. Age_structure1
- 3. Land_use2
- 4. Area_comp2
- 5. GDP_comp2
- 6. unemployment2

7 charts

- seaborn
- plotly

Project code and result

Data Crawling

CountryNameCode.csv

```
malaysia
   japan
   india
4 china
5 thailand
6 vietnam
   cambodia
8 singapore
9 indonesia
   canada
   united_states
   united_kingdom
    germany
   france
   italy
   spain
    philippines
   south korea
    mexico
20 austria
   poland
   portuga1
   egypt
24 denmark
25 australia
26 cambodia
27 belgium
   sudan
   russia
   norway
```

```
from selenium import webdriver
class population_crawling:
                                                                                              from bs4 import BeautifulSoup
                                                                                              import urllib.request
    def age structure():
                                                                                              import re
        with open ('age_structure.csv', 'w', encoding='UTF-8', newline='') as f:
                                                                                              import time
            writer = csv. writer(f)
            writer.writerow(['country name','0-14', '15-24', '25-54', '54-64', '65+']
                                                                                              import numpy as np
                                                                                              import pandas
            pf= pandas.read csv('CountryNameCode.csv', engine='python')
                                                                                              import csv
            for i in range (30):
                mtitle=pf[pf.columns[0]].iloc[i]
                url='https://www.indexmundi.com/'+str(mtitle)+'/age_structure.html'
                print(ur1)
                Age0_14=re.compile(r'.0-14 years: \langle strong \rangle (.*) \langle br \rangle \langle strong \rangle 15.*'
                Age15 24=re.compile(r'.15-24 years: </strong>(.*) <br/> <strong>25.*')
                                                                                                      ◀정규식으로 데이터 가져오기
                Age25_54=re. compile (r'. 25-54 years: \langle \text{strong} \rangle (.*) \langle \text{br} \rangle \langle \text{strong} \rangle 55. *')
                Age54_64=re.compile(r'.55-64 years: </strong>(.*) <br/> <strong>65.*')
                 Age65=re. compile (r'. 65 years and over: \langle strong \rangle (.*) \langle br \rangle .*')
                driver-webdriver. Chrome ("C:/Users/ATIV/Downloads/chromedriver_win32/chromedriver")
                driver. get (ur1)
                soup = BeautifulSoup(driver.page_source, "html.parser")
                                                                                       ◀find_all로 div class c 가져오기
                 link = soup.find_all("div", {"class":"c"})
```

Project code and result

Data Crawling _ 정규식 표현 유의점

Project code and result

Data Crawling _ 정규식 표현

```
print(ur1)
total = re.compile(r'.<strong>total: </strong>(.*)<br/>strong>male.*')
male=re.compile(r'.<strong>male: </strong>(.*)<br/>strong>female.*')
female=re.compile(r'.<strong>female: </strong>(.*)<br/>strong>female.*')

driver=webdriver.Chrome("C:/Users/ATIV/Downloads/chromedriver_win32/chromedriver")
driver.get(ur1)
soup = BeautifulSoup(driver.page_source, "html.parser")

link = soup.find_all("div", {"class":"col-md-8 c"})
print("=============")
```

```
print(url)
HS_consumption = re.compile(r'.household consumption: </strong>(.*) <br/>\strong>[c.*] <br/>
```

```
print(ur1)
total = re.compile(r'.total: </strong>(.*)<br/></strong>land.*')
land=re.compile(r'.land: </strong>(.*) <br/> <strong>water.*')
water=re.compile(r'.water: </strong>(.*)<br/>>,*')
driver=webdriver.Chrome("C:/Users/ATIV/Downloads/chromedriver win32/chromedriver")
driver, get (url)
|soup = BeautifulSoup(driver.page_source, "html.parser")
link = soup.find_all("div", {"class":"col-md-8 c"})
agri=re.compile(r'.agricultural land: </strong>(.*) <br/>br/>arable.*')
forest=re.compile(r'.forest: </strong>(.*) <br/> <strong>other.*')
other=re.compile(r'.other: </strong>(.*)<br/>.*')
driver=webdriver.Chrome("C:/Users/ATIV/Downloads/chromedriver win32/chromedriver")
driver.get(ur1)
soup = BeautifulSoup(driver.page_source, "html.parser")
link = soup.find all("div", {"class":"col-md-8 c"})
print("======="")
```

Project code and result

Data Crawling

```
for posts in link:
    time. sleep (0.33)
    z=str(posts)
    zz=str(posts).split(' ')
    str index=0
    count = 0
    for aaa in zz:
        #index = 0
        str index+=1en(aaa)
        if word in aaa:
            count+=1
            if(count == num):
                index=aaa.find(word[len(word)-1])
                print(z[str index-len(aaa)+len(word):])
                print(z[str_index:])
                break
        str index += 1
    a=Age0_14. search(z).group(1).strip()
    b=Age15_24. search(z).group(1).strip()
    c=Age25_54. search(z). group(1). strip()
    d=Age54 64. search(z).group(1).strip()
    e=Age65. search(z).group(1).strip()
Field1=mtitle
Field3=a. split()[0][:len(a. split()[0])-1]
Field4=b. split()[0][:len(b. split()[0])-1]
Field5=c. split()[0][:len(c.split()[0])-1]
Field6=d. split()[0][:len(d. split()[0])-1]
Field7=e. split()[0][:len(e. split()[0])-1]
writer.writerow([Field1, Field3, Field4, Field5, Field6, Field7])
```

age_structure.csv

_4	Α	В	С	D	Е	F
1	country name	0-14	15-24	25-54	54-64	65+
2	japan	12.84	9.64	37.5	12.15	27.87
3	india	27.34	17.9	41.08	7.45	6.24
4	china	17.15	12.78	48.51	10.75	10.81
5	thailand	16.93	14.17	46.32	12	10.58
6	vietnam	23.55	16.23	45.56	8.55	6.12
7	cambodia	31.01	18.36	40.68	5.69	4.25
8	singapore	12.82	16.56	50.53	10.46	9.63
9	indonesia	25.02	16.99	42.4	8.58	7.01
10	canada	15.44	11.85	39.99	14.1	18.63
11	united_states	18.73	13.27	39.45	12.91	15.63
12	united_kingdom	17.53	11.9	40.55	11.98	18.04
13	germany	12.82	10.09	40.45	14.58	22.06
14	france	18.53	11.79	37.78	12.42	19.48
15	italy	13.65	9.66	42.16	12.99	21.53
16	spain	15.38	9.58	44.91	12.14	17.98
17	philippines	33.39	19.16	36.99	5.97	4.49
18	south_korea	13.21	12.66	45.52	14.49	14.12
19	mexico	26.93	17.54	40.81	7.64	7.09
20	austria	14.01	11.07	42.42	13.23	19.26
21	poland	14.76	10.7	43.48	14.21	16.86
22	portugal	15.34	11.36	41.72	12.18	19.4
23	egypt	33.29	18.94	37.6	5.95	4.22
24	denmark	16.41	13.08	38.76	12.52	19. 23
25	australia	17.8	12.79	41.45	11.83	16.14
26	cambodia	31.01	18.36	40.68	5.69	4.25
27	belgium	17.16	11.34	40.05	12.86	18.58
28	sudan	38.68	21.04	32.77	4.24	3. 27
29	russia	17.12	9.46	44.71	14.44	14.28
30	norway	18	12.58	41.01	11.71	16.71
31	saudi_arabia	26.1	18.57	46.86	5.03	3.44
22						

Project code and result

Data Crawling exception, checktime

```
@CheckTime
def get_population():
   population_crawling.age_structure()
   population_crawling.median_age()
@CheckTime
def get Unemp():
   try:
       economy_crawling.Unemployment()
   except AttributeError:
       pass
   except IndexError:
       raise WrongDataRecord("CountryNameCode.csv 파일의 나라 개수를 다시 확인해주세요")
   except:
       pass
@CheckTime
def get_GDP():
   try:
       economy_crawling.GDP_composition()
       raise ₩rongDataRecord("에러가 발생했습니다. 크롤링을 다시 시작해주세요")
@CheckTime
def get_GEO():
   try:
       geography_crawling.area_comp()
       geography crawling. land use()
   except:
       raise ♥rongDataRecord("에러가 발생했습니다. 크롤링을 다시 시작해주세요")
```

```
get GEO()
https://www.indexmundi.com/denmark/geography_profile.html
_____
https://www.indexmundi.com/australia/geography_profile.html
_____
https://www.indexmundi.com/cambodia/geography profile.html
_____
https://www.indexmundi.com/belgium/geography_profile.html
_____
https://www.indexmundi.com/sudan/geography_profile.html
_____
https://www.indexmundi.com/russia/geography profile.html
_____
https://www.indexmundi.com/norway/geography profile.html
_____
https://www.indexmundi.com/saudi_arabia/geography_profile.html
_____
실행시간 : 1101.619479894638
```

▲실행시간: 각 크롤링에 걸리는 총 시간

◀AttributeError, IndexError에 대한 처리 ErrorMsg

Project code and result

Data Frame and Visualization

Lan	م			001/
Ian	\mathbf{u}_{-}	นะ	je.	CSV

					
	country name	agriculture_land	forest	other	total
0	japan	12.5	68.5	19	100
1	india	60.5	23.1	16.4	100
2	china	54.7	22.3	23	100
3	thailand	41.2	37.2	21.6	100
4	vietnam	34.8	45.0	20.2	100
5	cambodia	32.1	56.5	11.4	100
6	singapore	1.0	3.3	95.7	100
7	indonesia	31.2	51.7	17.1	100
8	canada	6.8	34.1	59.1	100
9	united_states	44.5	33.3	22.2	100
10	united_kingdom	71.0	11.9	17.1	100
11	germany	48.0	31.8	20.2	100
12	france	52.7	29.2	18.1	100
13	italy	47.1	31.4	21.5	100

area_comp.csv

	country name	total	land	water
0	japan	377,915	364,485	13,430
1	india	3,287,263	2,973,193	314,070
2	china	9,596,960	9,326,410	270,550
3	thailand	513,120	510,890	2,230
4	vietnam	331,210	310,070	21,140
5	cambodia	181,035	176,515	4,520
6	singapore	719.2	709.2	10
7	indonesia	1,904,569	1,811,569	93,000
8	canada	9,984,670	9,093,507	891,163
9	united_states	9,833,517	9,147,593	685,924
10	united_kingdom	243,610	241,930	1,680
11	germany	357,022	348,672	8,350
12	france	643,801	640,427	3,374
13	italy	301,340	294,140	7,200

age_structure.csv

	country name	0-14	15-24	25-54	54-64	65+
0	japan	12.84	9.64	37.50	12.15	27.87
1	india	27.34	17.90	41.08	7.45	6.24
2	china	17.15	12.78	48.51	10.75	10.81
3	thailand	16.93	14.17	46.32	12.00	10.58
4	vietnam	23.55	16.23	45.56	8.55	6.12
5	cambodia	31.01	18.36	40.68	5.69	4.25
6	singapore	12.82	16.56	50.53	10.46	9.63
7	indonesia	25.02	16.99	42.40	8.58	7.01
8	canada	15.44	11.85	39.99	14.10	18.63
9	united_states	18.73	13.27	39.45	12.91	15.63
10	united_kingdom	17.53	11.90	40.55	11.98	18.04
11	germany	12.82	10.09	40.45	14.58	22.06
12	france	18.53	11.79	37.78	12.42	19.48
12	france	18.53	11.79	37.78	12.42	19.48

Module	Plotly
Chart Type	100% horizontal bar chart

Module	Plotly
Chart Type	Combined line chart

Module	Plotly, seaborn				
Chart Type	World map, bar chart				

Project code and result

me	di.	an	ad	e.	csv
1110	uı	a 1 1_	_ug	C.	USV

GDP_composition.csv

	country na	me	total	male	femal	le	C	ountry n	ame	household consu	umption	government consumption	investment in fixed capital	investment in inventories	exports of S&G	imports of S&G
0	jap	oan	47.3	46.0	48.	.7	0	já	apan		55.9	19.5	23.5	0.2	17.8	-16.8
1	in	dia	27.9	27.2	28.	.6	1		india		58.7	11.6	27.5	4.0	18.4	-20.2
2	chi	ina	37.4	36.5	38.	4	2	C	hina		39.1	14.6	43.3	1.1	19.6	-17.7
3				36.6	38.	7	3	tha	iland		50.1	17.0	24.2	-7.0	70.4	-54.7
4			30.5	29.4	31.		4	viet	nam		68.5	6.6	24.8	2.9	98.6	-101.4
							5	camb	odia		76.4	5.4	22.0	0.9	62.8	-67.4
5				24.6	26.		6	singa	pore		34.7	11.4	23.5	1.9	179.2	-150.6
6	singap	ore	34.6	34.5	34.	.7	7	indor	esia		57.5	8.9	32.1	0.7	19.2	-18.4
-	indono no manda la v				30.	.8	8	car	nada		58.1	20.9	22.8	0.3	31.4	-33.6
U	nemploy	ym	ent.	CSV	43.	.5	9 u	ınited st	ates		69.1	17.2	16.3	0.3	12.2	-15.1
	country name	2006	2007	2008	2009	2010	2011	2012	2013	2014	65.3	19.0	16.6	0.7	30.1	-31.7
0	spain	8.4	8.2	11.0	17.0	19.0	21.0	24.0	26.	24.0	53.7	19.9	20.1	-1.0	47.3	-40.0
1	philippines	7.9	7.3	7.4	7.4	7.3	7.0	6.9	7.0	6.8	54.8	23.5	22.0	1.3	30.3	-32.0
2	south_korea	3.4	3.2	3.1	3.6	3.7	3.4	3.2	3.1	3.5	60.2	18.7	17.2	0.1	31.8	-28.0
3	mexico	3.5	3.6	3.8	5.3	5.2	5.1	4.8	4.9	4.7			N	lodule	Ploti	V
4	austria	4.7	4.4	3.8	4.7	4.4	4.1	4.3	4.9	5.0				iodaic	1 100	у
5	·	13.0	9.6	7.1	8.1	9.6	9.6	10.0	10.	8.9			Cha	art Type	Pie ch	art
6	portugal	7.6	7.9	7.5	9.4	10.0	12.0	15.0				Dlath				
7	071	10.0	9.2	8.6	9.3	9.2	10.0		IVIO	dule		Plotly				
9	denmark australia	3.9 4.7	3.7 4.3	3.4 4.2	5.9 5.5	7.4 5.2	7.5 5.0	С	har	t Type		Line graph				

Module	Plotly					
Chart Type	Pie chart					

import matplotlib.pyplot as plt

Dataframe visualization

Demographic Data seaborn

```
# 주피터에 포함시키기
%matplotlib inline
import seaborn as
                  ▼각 국가마다 팔레트 안에 색 지정
pkmn_type_colors = ['#78C850', # japan
                  '#F08030', # india
                  '#6890F0', # china
                 '#A8B820', # thailand
                 '#A8A878', # vietnam
                 '#A040A0', # cambodia
                 '#F8D030', # singapore
                 '#E0C068', # indonesia
                 '#EE99AC', # canada
                 '#C03028', # united states
                 '#F85888', # united_kingdom
                 '#B8A038', # germany
                 '#705898', # france
                 '#98D8D8', # spain
                 '#7038F8', # philippines
                 '#5BC7E5', # south_korea
                 '#1c9ca5', # mexico
                 '#6840A0', # poland
                 '#52206a', # portugal
                 '#6A1748', # egypt
                  '#5BC7E5', # denmark
                 '#09CAFF', # australia
                 '#5BC7E5', # cambodia
                 '#e2ceae', # belgium
                 '#5BC7E5', # sudan
                  '#E55BAD', # russia
                  '#dc0e88', # norway
                 '#E5D05B', # saudi_arabia
```

```
sns.set(style="ticks")
plt. xticks(rotation=-40)
age_structure1= age_structure.sort_values(by='65+', ascending = False)
age_graph1= sns.barplot(x='country name', y='65+', data=age_structure1, palette=pkmn_type_colors)
age graph1. figure. set size inches (20, 9)
age graphl.axes.set title('Aged Population by Country', fontsize=34,color="b",alpha=0.5)
age_graph1.set_xlabe1("Country Name", size = 20, color="r", alpha=0.5)
age_graph1.set_ylabe1("Population % over 65", size = 20, color="g", alpha=0.5)
age graph1.tick params(labelsize=14,labelcolor="black")
                          ▼google color picker
      Colour picker
         #330b27
        rgb(51, 11, 39)
             Show colour values
```

Dataframe visualization

Demographic Data seaborn

▼subplot으로 각 age group 정보 보여주기

```
import seaborn as sns
from matplotlib.gridspec import GridSpec
sns.set(style="whitegrid")
#sns.set_color_codes("Spectral")
plt.figure(2, figsize=(33,24))
the_grid = GridSpec(2, 2)
plt.subplot(the grid[0, 1], title='Population % over 65+')
sns.barplot(x='country name', y='65+', data=age structure1, palette=pkmn type colors)
plt.xticks(rotation=-50)
plt.subplot(the_grid[0, 0], title='%Age 25-54')
sns.barplot(x='country name', y='25-54', data=age structure1, palette=pkmn type colors)
plt.xticks(rotation=-50)
plt.subplot(the grid[1, 1], title='%Age 15-24')
sns.barplot(x='country name', y='15-24', data=age structure1, palette=pkmn type colors)
plt.xticks(rotation=-50)
plt.subplot(the_grid[1, 0], title='%Age 54-64')
sns.barplot(x='country name', y='54-64', data=age_structure1, palette=pkmn_type_colors)
plt.xticks(rotation=-50)
plt. suptitle ('Age Structure', fontsize=30, color="b", alpha=0.5)
age_graph1.tick_params(labelsize=9, labelcolor="blue")
```

▼median age 정보 보여주기

```
import seaborn as sns
from matplotlib.gridspec import GridSpec
sns.set(style="whitegrid")
#sns.set_color_codes("Spectral")
plt.figure(3, figsize=(20,15))
the grid = GridSpec(3, 3)
median_age1= median_age.sort_values(by='total', ascending = False)
plt.subplot(the_grid[0, 1], title='Total Median Age')
sns.barplot(x='country name', y='total', data=median_age1, palette=pkmn_type_colors)
plt.xticks(rotation=-40)
plt.subplot(the_grid[0, 0], title='Femal Median Age')
sns.barplot(x='country name', y='female', data=median age1, palette=pkmn type colors)
plt.xticks(rotation=-40)
plt.subplot(the grid[0, 2], title='Male Median Age')
sns.barplot(x='country name', y='male', data=median age1, palette=pkmn type colors)
plt.xticks(rotation=-40)
plt.suptitle('Median Age', fontsize=30,color="b",alpha=0.5)
```

Dataframe visualization

Demographic Data seaborn

Median Age

각 age group 정보 subplot▼

import plotly

Dataframe visualization

Economic Data Unemployment Rate (plotly)

```
import csv
import pandas as pd

import plotly.plotly as py
import plotly.graph_objs as go

unemployment = pd.read_csv('unemployment.csv')
unemployment1 = unemployment.T
unemployment1.iloc[:, 3]
year = ['2006','2007','2008','2009','2010','2011','2012','2013','2014']
```

```
◀데이터 처리
unemployment1 = unemployment. T
unemployment1.iloc[:, 3]
country = unemployment1 iloc[ 0 . . . ]
unemployment2 = unemployment1.iloc[1:,:]
unemployment2
spain = unemployment2.iloc[:, 0]
philippines= unemployment2.iloc[:, 1]
south_korea=unemployment2.iloc[:, 2]
mexico=unemployment2.iloc[:, 3]
austria=unemployment2.iloc[:, 4]
poland=unemployment2.iloc[:, 5]
portugal=unemployment2.iloc[:, 6]
egypt=unemployment2.iloc[:, 7]
denmark=unemployment2.iloc[:, 8]
australia=unemployment2.iloc[:, 9]
unemployment
```

◀plotly 계정 연결

```
trace6 = go.Scatter(
    name = 'portugal',
    line = dict(
       color = ('rgb(200, 800, 400)'),
        width = 4
trace7 = go. Scatter(
    x = year,
    y = egypt,
    name = 'egypt',
    line = dict(
       color = ('rgb(2, 600, 400)'),
        width = 4
trace8 = go.Scatter(
    x = year,
    y = denmark,
    name = 'denmark',
    line = dict(
        color = ('rgb(2, 100, 4)'),
        width = 4
data = [trace0, trace1, trace2, trace3, trace4, trace5, trace6, trace7, trace8]
layout = dict(title = 'Unemployment Rate Change',
             xaxis = dict(title = 'Year'),
             yaxis = dict(title = 'Unemployment %'),
fig = dict(data=data, layout=layout)
py.iplot(fig, filename='legend-names')
```

Dataframe visualization

Economic Data Unemployment Rate (plotly)

Unemployment Rate Change

Dataframe visualization

Economic Data GDP composition (plotly)

```
import pandas as pd
GDP_comp = pd. read_csv('GDP_composition.csv')
GDP comp1 = GDP comp. T
GDP comp2= GDP comp1.iloc[ 1: , ]
print("
print("Get GDP composition")
print ("Category: 1. household consumption, 2. gov comsumption 3. inv in fc 4. inv in inventories 5. expoert of S&G 6. imports of S&G")
a = input("type the country name: ")
                                                                        fig =
for i in range (0, 30):
                                                                           "data": [
    if GDP_comp1.iloc[:, i][0] == a:
                                                                              "values": GDP_comp2.iloc[:, i],
        print()
                                                                              "labels":
        print (GDP_comp1.iloc[:, i])
                                                                                "household consumption",
                                                                                "gov consumption",
                                                                                "investment in fixed capital",
 ◀국가 이름을 input으로 받아서 해당 국가
                                                                                                                             "lavout":
                                                                                "investment in inventories",
                                                                                                                                  "title": "GDP Composition" + " " + str(a),
                                                                                "exports of S&G",
 데이터 pie chart로 나타냄(donut)
                                                                                                                                  "grid": {"rows": 1, "columns": 1},
                                                                                "imports of S&G",
                                                                                                                                  "annotations": [
                                                                                marker': {'colors': ['rgb(244, 66, 241)',
                                                                                                                                          "font": {
                                                                                                        rgb(244, 65, 143)
                                                                                                                                             "size": 20
                                                                                                        rgb(226, 0, 98),
                                                                                                        'rgb(145, 21, 97)'
                                                                                                                                          "showarrow": False,
                                                                                                        'rgb(186, 24, 75)'
                                          Market로 색 지정가능▶
                                                                                                                                         "text": "GDP",
                                                                                                     rgb(186, 24, 183)']
                                                                                                                                         x'': 0.50
                                                                               domain": {"column": 0},
                                                                                                                                         "y": 0.5
                                                                              "name": "GDP".
                                                                              "hoverinfo": "label+percent+name",
                                                                              "hole": .4,
                                                                               'type": "pie"
                                                                                                                           py. iplot(fig, filename='donut')
```

Dataframe visualization

Economic Data GDP composition (plotty)

Get GDP composition

type the country name: vietnam

Category: 1. household consumption, 2 gov comsumption 3 inv in fc 4. inv in inventories 5. expoert of S&G 6. imports of S&G

해당 국가이름 입력

country name	vietnam
household consumption	68.5
government consumption	6.6
investment in fixed capital	24.8
investment in inventories	2. 9
exports of S&G	98.6
imports of S&G	-101.4
Name: 4, dtype: object	

▲해당 정보표시

마우스 위치에 따른 정보 표시▶

Dataframe visualization

Geographic Data land_use (plotly)

	country name	agriculture_land	forest	other	total
29	saudi_arabia	80.7	0.5	18.8	100
10	united_kingdom	71.0	11.9	17.1	100
1	india	60.5	23.1	16.4	100
17	mexico	54.9	33.3	11.8	100
2	china	54.7	22.3	23	100
14	spain	54.1	36.8	9.1	100
23	australia	53.4	19.3	27.3	100
12	france	52.7	29.2	18.1	100
19	poland	48.2	30.6	21.2	100
11	germany	48.0	31.8	20.2	100
13	italy	47.1	31.4	21.5	100
9	united_states	44.5	33.3	22.2	100
25	belgium	44.1	22.4	33.5	100
3	thailand	41.2	37.2	21.6	100

▲agriculture_land 기준으로 sort 시킨 데이터 이용

Dataframe visualization

Geographic Data area_comp(plotly)

area_comp1['land%'] = area_comp1['land'].div(area_comp1['total'])*100 area_comp1['water%'] = area_comp1['water'].div(area_comp1['total'])*100 area_comp2 = area_comp1. sort_values(by='land%', ascending = False) area comp2

▲column 두개 추가

	country name	total	land	water	land%	water%
29	saudi_arabia	2149690.0	2149690.0	0.0	100.000000	0.000000
3	thailand	513120.0	510890.0	2230.0	99.565404	0.434596
12	france	643801.0	640427.0	3374.0	99.475925	0.524075
21	egypt	1001450.0	995450.0	6000.0	99.400869	0.599131
15	philippines	300000.0	298170.0	1830.0	99.390000	0.610000
20	portugal	92090.0	91470.0	620.0	99.326746	0.673254
10	united_kingdom	243610.0	241930.0	1680.0	99.310373	0.689627
23	australia	7741220.0	7682300.0	58920.0	99.238880	0.761120
25	belgium	30528.0	30278.0	250.0	99.181080	0.818920
17	mexico	1964375.0	1943945.0	20430.0	98.959975	1.040025
14	spain	505370.0	498980.0	6390.0	98.735580	1.264420

```
y agr = 1 and use2['agriculture 1 and']
y_land = area_comp2['land%']
x_agr = land_use2['country name']
x_land = area_comp2['country name']
trace0 = go.Bar(
    x=y_agr,
    y=x_agr,
    marker=dict(
        color='rgba(244, 66, 185, 0.6)',
        line=dict(
            color='rgba(244, 66, 185, 1.0)',
            width=1).
    name='argriculture land',
    orientation='h',
trace1 = go. Scatter(
    x=y_1and,
    y=x_1and,
    mode='lines+markers',
    line=dict(
```

Subplot 두개로 다른 두 정보 한번에 볼 수 있게

```
# Creating two subplots
fig = tools.make subplots(rows=1, cols=2, specs=[[{}0, {}0]], shared xaxes=True,
                          shared_yaxes=False, vertical_spacing=0.001)
fig.append_trace(trace0, 1, 1)
fig.append_trace(trace1, 1, 2)
fig['layout'].update(layout)
py.iplot(fig, filename='area composition and land_use')
```

Dataframe visualization

Geographic Data area_comp(plotly)

Dataframe visualization

Demographic Data ploty, My_choromap

```
scl = [
      [0.0, 'rgb(20, 0, 14)'],
      [0.2, 'rgb(79, 7, 61)'],
      [0.4, 'rgb(206, 30, 153)'],
      [0.6, 'rgb(239, 93, 195)'],
      [0.8, 'rgb(239, 184, 223)'],
      [1.0, 'rgb(252, 244, 250)']
]
```

◀색깔 강도 설정

```
meta_data = dict(type = 'choropleth',
          locations = age_structure['country name'],
          colorscale = scl,
          reversescale = True,
          locationmode = 'country names',
          z = age structure['65+'],
          marker= dict(line=dict(color='black',
                       width=1)),
          text = age_structure['country name'],
          hoverlabel= dict(bgcolor= '#e209ac',
                           font=dict(family='Times New Roman',
                                      color='white')),
           colorbar = {'title':'Aged Rate', 'nticks':9}
         nict(title = Global Choropieth Plot by Aged Kate(65+%) ,
             geo = dict(showframe = True,
                      projection = {'type': 'equirectangular'})) |
My_choromap = go.Figure(data = [meta_data], layout=layout)
py.iplot(My_choromap)
```

	country name	0-14	15-24	25-54	54-64	65+
0	japan	12.84	9.64	37.50	12.15	27.87
1	india	27.34	17.90	41.08	7.45	6.24
2	china	17.15	12.78	48.51	10.75	10.81
3	thailand	16.93	14.17	46.32	12.00	10.58
4	vietnam	23.55	16.23	45.56	8.55	6.12
5	cambodia	31.01	18.36	40.68	5.69	4.25
6	singapore	12.82	16.56	50.53	10.46	9.63
7	indonesia	25.02	16.99	42.40	8.58	7.01
8	canada	15.44	11.85	39.99	14.10	18.63
9	united_states	18.73	13.27	39.45	12.91	15.63
10	united_kingdom	17.53	11.90	40.55	11.98	18.04
11	germany	12.82	10.09	40.45	14.58	22.06
12	france	18.53	11.79	37.78	12.42	19.48
13	italy	13.65	9.66	42.16	12.99	21.53
14	spain	15.38	9.58	44.91	12.14	17.98
15	philippines	33.39	19.16	36.99	5.97	4.49
16	south_korea	13.21	12.66	45.52	14.49	14.12
17	mexico	26.93	17.54	40.81	7.64	7.09
10	quatria	44.04	44.07	40.40	40.00	40.00

Visualization Dataframe visualization

Global Choropleth Plot By Aged Rate(65+%)

Visualization Dataframe visualization

Global Choropleth Plot By Aged Rate(15-24%)

Dataframe visualization

Global Choropleth Plot / Economically Active Population (25-54%)

PlotlyRequestError: Hi there, you've reached the threshold of 100 combined image exports and chart saves per 24h period. If you need to raise your daily limit, please consider upgrading to a paid plan.