Lecture 3c. Basis Expansion.

COMP90051 Statistical Machine Learning

Semester 2, 2020 Lecturer: Ben Rubinstein

This lecture

- Linear regression
 - Simple model (convenient maths at expense of flexibility)
 - * Often needs less data, "interpretable", lifts to non-linear
 - * Derivable under all Statistical Schools: Lect 2 case study
 - This week: Frequentist + Decision theory derivations
 - **Later in semester: Bayesian approach
 - * Convenient optimisation: Training by "analytic" (exact) solution
- Basis expansion: Data transform for more expressive models

Basis Expansion

Extending the utility of models via data transformation

Basis expansion for linear regression

- Real data is likely to be non-linear
- What if we still wanted to use a linear regression?
 - Simple, easy to understand, computationally efficient, etc.
- How to marry non-linear data to a linear method?

If you can't beat'em, join'em

Transform the data

- The trick is to transform the data: Map data into another features space, s.t. data is linear in that space
- Denote this transformation $\varphi \colon \mathbb{R}^m \to \mathbb{R}^k$. If x is the original set of features, $\varphi(x)$ denotes new feature set
- Example: suppose there is just one feature x, and the data is scattered around a parabola rather than a straight line

Example: Polynomial regression

No worries, mate: define

$$\varphi_1(x) = x$$
$$\varphi_2(x) = x^2$$

• Next, apply linear regression to φ_1 , φ_2

$$y = w_0 + w_1 \varphi_1(x) + w_2 \varphi_2(x) = w_0 + w_1 x + w_2 x^2$$

and here you have quadratic regression

- More generally, obtain polynomial regression if the new set of attributes are powers of x
- Similar idea basis of autoregression for time series

Example: linear classification

- Example binary classification problem: Dataset not linearly separable
- Define transformation as

$$\varphi_i(x) = ||x - z_i||$$
, where z_i some pre-defined constants

• Choose $\mathbf{z}_1 = [0,0]'$, $\mathbf{z}_2 = [0,1]'$, $\mathbf{z}_3 = [1,0]'$, $\mathbf{z}_4 = [1,1]'$

x_1	x_2	y
0	0	Class A
0	1	Class B
1	0	Class B
1	1	Class A

there exist weights that make new data separable, e.g.:

w_1	W_2	W_3	w_4
1	0	0	1

$arphi_1$	$arphi_2$	$arphi_3$	$arphi_4$
0	1	1	$\sqrt{2}$
1	0	$\sqrt{2}$	1
1	$\sqrt{2}$	0	1
$\sqrt{2}$	1	1	0

The transformed data is linearly separable!

$\varphi'w$	у
$\sqrt{2}$	Class A
2	Class B
2	Class B
$\sqrt{2}$	Class A

Radial basis functions

- Previous example: motivated by approximation theory where sums of RBFs approx. functions
- A radial basis function is a function of the form $\varphi(x) = \psi(\|x z\|)$, where z is a constant

- Examples:
- $\varphi(\mathbf{x}) = \|\mathbf{x} \mathbf{z}\|$
- $\varphi(\mathbf{x}) = \exp\left(-\frac{1}{\sigma}\|\mathbf{x} \mathbf{z}\|^2\right)$

Challenges of basis expansion

- Basis expansion can significantly increase the utility of methods, especially, linear methods
- In the above examples, one limitation is that the transformation needs to be defined beforehand
 - Need to choose the size of the new feature set
 - * If using RBFs, need to choose z_i
- Regarding z_i , one can choose uniformly spaced points, or cluster training data and use cluster centroids
- Another popular idea is to use training data $oldsymbol{z}_i \equiv oldsymbol{x}_i$
 - * E.g., $\varphi_i(x) = \psi(||x x_i||)$
 - Nowever, for large datasets, this results in a large number of features → computational hurdle

Further directions

- There are several avenues for taking the idea of basis expansion to the next level
 - Will be covered later in this subject
- One idea is to *learn* the transformation φ from data
 - * E.g., Artificial Neural Networks
- Another powerful extension is the use of the kernel trick
 - "Kernelised" methods, e.g., kernelised perceptron
- Finally, in sparse kernel machines, training depends only on a few data points
 - * E.g., SVM

Summary

- Basis expansion
 - Extending model expressiveness via data transformation
 - Examples for linear and logistic regression
 - Theoretical notes

Next time:

First/second-order iteration optimisation; Logistic regression - linear probabilistic model for

classification.