Aniket Das

KC Block, Salt Lake
Kolkata - 700098, West Bengal, India
aniketd@iitk.ac.in | aniket.das@aalto.fi
Webpage: https://aniket1998.github.io/
Github: https://github.com/Aniket1998/
+91-8013546451

Undergraduate, Electrical Engineering and Mathematics, IIT Kanpur

EDUCATION

Indian Institute of Technology Kanpur, India

Aug' 17 - Jun' 22 (Expected)

BTech in Electrical Engineering and BS in Mathematics (Double Major)

GPA: 9.1/10 (5 Semesters)

Aalto University, Finland

GPA: 4.8/5.0 (2 Semesters)

Year-long Academic Exchange in Aalto University School of Science

Jan' 20 - Jan' 21

Research

Interests

Optimization, High Dimensional Statistics, Approximate Inference, Gradient-based MCMC, Continuous Time Deep Learning, Generative Models

Publications

Yatin Dandi, Aniket Das, Soumye Singhal, Vinay P. Namboodiri, Piyush Rai "Jointly Trained Image and Video Generation using Residual Vectors" *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, 2020 [Paper]

Avinandan Bose*, **Aniket Das***, Yatin Dandi*, Piyush Rai "NeurInt : Learning to Interpolate through Neural ODEs" *International Conference on Computer Vision 2021 (ICCV'21)* [Under Review]

Aniket Das, Prateeti Mukherjee, Debashis De "Missing Data Imputation at Edge through Continuous-Discrete Bayesian Filtering of Stochastic Differential Equations" *Information Fusion* [Under Review]

Avik Pal*, **Aniket Das*** "TorchGAN: A Flexible Framework for GAN Training and Evaluation" *Journal of Open Source Software (JOSS)* [Under Review] [Preprint]

* indicates equal contribution

Work Experience

Research Assistant, IIT Kanpur

Prof. Piyush Rai, CSE, IIT Kanpur

Mar '19 - Present

- Developing an extension of the Model Agnostic Meta Learning (MAML) algorithm for meta-learning of continuous time dynamical systems, and deriving theoretical guarantees for the same
- Investigating results from SDE theory to improve the performance of Stochastic Gradient MCMC and Particle VI algorithms
- Previously worked on generative models for joint image and video generation (Published, WACV'20) and on non-parametric generative models for images using Second Order Neural ODEs (Submitted, ICCV'21)

Research Assistant, Aalto University

Dr. Markus Heinonen and Prof. Harri Lahdesmaki, Aalto University

Mar '20 - Sep'20

- Developed approximate inference and adversarial learning algorithms for continuous-time generative models governed by Ordinary and Stochastic Differential Equations
- Particular focus on Adversarial Learning of Second Order ODE based generative models for high dimensional time series, and Bayesian Inference in SDE models

SELECTED PROJECTS

Nonparametric Models for Image Generation and Interpolation

Prof. Piyush Rai, IIT Kanpur

Oct '20 - Mar '21

- Developed a generative model for images that learns a distribution of smooth continuous-time interpolation trajectories for a given source-target pair and generates images by subsampling random interpolation curves drawn from the trajectory distribution
- Parameterised the conditional distribution of interpolation trajectories with Probabilistic Second Order Neural ODEs and formulated the resultant model as a modified Generative Adversarial Network with a nonparametric data-dependent prior for the latent code
- Benchmarked against appropriate GAN and Bidirectional GAN baselines that employ a fixed latent code prior and obtained significant improvements in image generation and interpolation
- Work is submitted to the International Conference on Computer Vision (ICCV) 2021

Probabilistic Models for Joint Image and Video Generation

Prof. Piyush Rai and Prof. Vinay P. Namboodiri, IIT Kanpur: [Paper] Mar '19 - July '19

- Developed a hierarchical probabilistic model for joint image and video generation that generates a summary frame for the video, and models individual frames by adding residual vectors to the summary frame representation at each timestep
- Developed an analogous hierarchy for models that disentangle content from motion by adding a residual content vector to the content summary representation at every timestep
- Designed VAE and GAN variants of the proposed models and observed significant improvements in both image and video generation when benchmarked against appropriate baselines
- Paper published at the Winter Conference on Applications of Computer Vision (WACV) 2020

OTHER PROJECTS

Continuous-Discrete Bayesian Filtering for Stochastic Differential Equations

Prof. Simo Sarkka, Aalto University [Code] [Report]

Feb '20 - Apr '20

- Studied the theory of Brownian Motion, Continuous-time Markov Chains, Stochastic Differential Equations (SDEs), Ito Calculus and the Fokker Planck PDE
- Investigated the continuous-time Bayesian Filtering problem for SDEs, and studied the Kushner-Stratonovich and Zakai Equations for likelihood calculation in SDE models
- Studied and implemented exact and approximate Kalman Filters for various Continuous-Discrete State Space Models

TorchGAN: A Flexible Framework for GAN Training and Evaluation

Independent Open Source Project: [Code] [Docs] [Preprint]

Dec'18 - Sep'19

- Developed a lightweight customizable PyTorch framework for training and evaluation of Generative Adversarial Networks (GANs)
- Wrote efficient implementations of various GAN models, losses, evaluation metrics and stability enhancement features, and designed a customizable framework for effortlessly extending them
- Project hosted on Github has over 1200 stars. Paper is currently submitted to the Journal of Open Source Software (JOSS)

Relevant Coursework

Computer Science Introduction to Programming, Data Structures and Algorithms,

Advanced Algorithms*, Toolkit for Theoretical Computer Science[®]

Machine Learning and Statistics

Optimization in ML*, Kernel Methods and Learning Theory*, Probabilistic ML, Bayesian Filtering and State Space Models*,

Statistical Signal Processing, ML for Signal Processing,

Probability and Statistics

Mathematics Functional Analysis*, Measure Theory*, Real Analysis[®],

Stochastic Processes, Linear Algebra and ODE, Dynamical Systems*, Partial Differential Equations*, Complex Variables,

Scientific Computing[®]

^{* -} Course done at Aalto University @ - Ongoing Course