ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 09 gennaio 2014

Esercizio A

$R_1 = 10 \text{ k}\Omega$	$R_8 = 740 \text{ k}\Omega$	$V_{cc} \downarrow V_{cc} \downarrow$
$R_2 = 10 \text{ k}\Omega$	$R_{10} = 3 \text{ k } \Omega$	R_2 R_6 R_7 R_{10}
$R_3 = 10 \text{ k}\Omega$	$R_{11} = 30 \text{ k }\Omega$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$R_4 = 250 \ \Omega$	$C_1 = 1 \mu F$	$\begin{bmatrix} Q_1 & V_{cc} \\ R_1 & \end{bmatrix} = \begin{bmatrix} Q_1 & V_{cc} \\ R_2 & \end{bmatrix} $
$R_5 = 750 \; \Omega$	$C_2 = 100 \text{ nF}$	$V_i \stackrel{\uparrow}{=} R_3 \stackrel{\downarrow}{>} P_3 $
$R_6 = 6 \text{ k}\Omega$	$C_3 = 4.7 \text{ nF}$	
$R_7 = 500 \Omega$	$V_{CC} = 18 \text{ V}$	

 Q_1 è un transistore MOS a canale n resistivo, con la corrente di drain in saturazione data da $I_{DS} = k(V_{GS}-V_T)^2$ con k=1 mA/V 2 e $V_T=1$ V. Q_2 è un transistore BJT BC109B resistivo con $h_{re}=h_{oe}=0$. Con riferimento all'amplificatore in figura:

- 1) Calcolare il valore delle resistenze R_9 in modo che, in condizioni di riposo, la tensione sul collettore di Q_2 sia $V_C = 12$ V. Determinare, inoltre il punto di riposo dei due transistori e verificare la saturazione di Q_1 . (R: $R_9 = 1096496.35 \Omega$)
- 2) Determinare il guadagno V_U/V_i alle frequenze per le quali C_1 , C_2 e C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -1.907$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1} = 159.15$ Hz; $f_{p1} = 363.78$ Hz; $f_{z2} = 3.602$ Hz; $f_{p2} = 4.4137$ Hz; $f_{z3} = 0$ Hz; $f_{p3} = 1026.144$ Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \overline{AB}(\overline{C}D + \overline{D}E) + D(\overline{C} + \overline{B}E + \overline{A}E)$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 500 \Omega$	$R_5 = 500 \Omega$
$R_2 = 1 \text{ k}\Omega$	$R_6 = 1 \text{ k}\Omega$
$R_3 = 3 \text{ k}\Omega$	C = 100 nF
$R_4 = 10 \text{ k}\Omega$	$V_{CC} = 5 \text{ V}$

Il circuito IC_1 è un NE555 alimentato a V_{CC} = 5V, Q_1 ha una R_{on} = 0 e V_T =1V, Q_2 ha una R_{on} = 0 e V_T = - 1V e gli inverter sono ideali. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 23612.07 Hz)