Leila Erbay ID: 260672158

Collaborated with: Name: Richard Gao ID: 2606729805

Assignment 2 Question 2

Prove: rev_append l1 l2 = rev_append' l1 l2

Because let rev_append' l1 l2 = append (rev l1) l2

Final Proof: rev_append l1 l2 = append (rev l1) l2

Lemma: append li l2 = li @ l2

Base Case: li = []

 \Rightarrow append [] l2

 \Rightarrow l2 by append

⇒[]@l2

 \Rightarrow l2 by @ operator

Step Case: li = h :: t

IH: append $t l_2 = t @ l_2$ for all l_2

Prove that: append (h::t) = (h::t) @ l2

append (h::t)

 \Rightarrow h::append (tl2) by append

 \Rightarrow h::(t@l2) by I.H.

 \Leftarrow (h::t) @ l2 by transitivity

Main Proof:

rev_append l1 l2 = append (rev l1) l2

Base Case:

rev_append[]l2

 \Rightarrow l₂

by rev_append

append (rev []) l2

 \Rightarrow append [] l2

 \Rightarrow l2

by rev

by append

Step Case:

$$li = h :: t$$

I.H.:

rev_append t l2' = append (rev t) l2'

for all l2

Prove that:

rev_append (h::t) l2

 \Rightarrow rev_append t (h::l2)

by rev_append

⇒ rev_append t l2'

by rev_append

by I.H.

append (rev (h::t)) l2

 \Rightarrow append ((rev t) @ [h]) l2

by rev

 \Rightarrow ((rev t) @ [h]) @ l2

by lemma

 \Rightarrow (rev t) @ ([h] @ l2)

by associativity of @

 \Rightarrow (rev t) @ (h::l2)

by unrolling def. of @

 \Rightarrow append (rev t) l2'

by lemma

← rev_append t l2'

by I.H.