

Lecture 1

Lecturer: Michel X. Goemans

Scribe: Nick Harvey

1 Nonbipartite Matching

Our first topic of study is matchings in graphs which are not necessarily bipartite. We begin with some relevant terminology and definitions. A *matching* is a set of edges that share no endvertices. A vertex v is *covered* by a matching if v is incident with an edge in the matching. A matching that covers every vertex is known as a *perfect matching* or a *1-factor* (i.e., a spanning regular subgraph in which every vertex has degree 1). We will let $\nu(G)$ denote the cardinality of a maximum matching in graph G . A *vertex cover* is a set C of vertices such that every edge is incident with at least one vertex in C . The minimum cardinality of a vertex cover is denoted $\tau(G)$. The following simple proposition relates matchings and vertex covers.

Proposition 1 *If M is a matching and C is a vertex cover then $|M| \leq |C|$.*

Proof: For each edge in M , at least one of the endvertices must be in C , since C covers every edge. Since the edges in M do not share any endvertices, we must have $|M| \leq |C|$. \square

This proposition implies that $\nu(G) = \max_M |M| \leq \min_C |C| = \tau(G)$, so $\nu(G) \leq \tau(G)$. König showed that in fact equality holds if G is a bipartite graph with no isolated vertices. Unfortunately if G is not bipartite then we may have $\nu(G) < \tau(G)$. For example, if G is the cycle on three vertices then $\nu(G) = 1$ but $\tau(G) = 2$. We will give another upper-bound for $\nu(G)$ after introducing some more definitions.

If $G = (V, E)$ is a graph and $U \subseteq V$, $G - U$ denotes the subgraph of G obtained by deleting the vertices of U and all edges incident with them. Let $o(G - U)$ denote the number of components of $G - U$ that contain an odd number of vertices. Let M be a matching in $G - U$ and consider a component of $G - U$ with an odd number of vertices. There must be at least one unmatched vertex v in this component, since any matching necessarily covers an even number of vertices. Treating M as a matching in G , it is possible that we could increase the size of M by matching v with some vertex in U . However, we can add at most $|U|$ edges to M in this manner, since the vertices in U will eventually all be matched. Thus any matching in G must have least $o(G - U) - |U|$ unmatched vertices. This argument shows that the maximum size of a matching is upper-bounded by $(|V| + |U| - o(G - U))/2$, for any subset U . The following theorem strengthens this result.

Theorem 2 (Tutte-Berge Formula) *Let $G = (V, E)$ be a graph. Then*

$$\nu(G) = \max_M |M| = \min_{U \subset V} (|V| + |U| - o(G - U))/2,$$

where the maximization is over all matchings M in G .

Proof: We will consider the case that G is connected. If G is not connected, the result follows by adding the formulas for the individual components. The proof proceeds by induction on the order of G . If G has at most one vertex then the result holds trivially. Otherwise, suppose that G has at least two vertices. We consider two cases.

Case 1: G contains a vertex v that is covered by *all* maximum matchings. The subgraph $G - v$ cannot have a matching of size $\nu(G)$, otherwise that would give a maximum matching for G that leaves v unmatched. Thus $\nu(G - v) = \nu(G) - 1$. By induction the result holds for the graph

$G - v$, so there exists a set $U' \subset V - v$ that achieves equality in the Tutte-Berge Formula. Defining $U = U' \cup \{v\}$, we see that

$$\begin{aligned}\nu(G) &= \nu(G - v) + 1 \\ &= (|V - v| + |U'| - o(G - v - U'))/2 + 1 \\ &= ((|V| - 1) + (|U| - 1) - o(G - U))/2 + 1 \\ &= (|V| + |U| - o(G - U))/2\end{aligned}$$

Case 2: For every vertex $v \in G$, there is a maximum matching that does not cover v . We will prove that each maximum matching leaves exactly one vertex uncovered. Suppose to the contrary, that is, each maximum matching leaves at least two vertices uncovered. We choose a maximum matching M and its two uncovered vertices u and v such that we minimize $d(u, v)$, the distance between vertices u and v . If $d(u, v) = 1$ then the edge uv can be added to M to obtain a larger matching, which is a contradiction.

Otherwise, $d(u, v) \geq 2$ so we may fix an intermediate vertex t on some shortest $u-v$ path. By the assumption of the present case, there is a maximum matching N that does not cover t . Furthermore, we may choose N such that its symmetric difference with M is minimal. If N does not cover u then (N, u, t) contradicts our choice of (M, u, v) . Thus N covers u and, by symmetry, v as well. Since N and M both leave at least two vertices uncovered, there exists a second vertex $x \neq t$ that is covered by M but not by N . Let xy be the edge in M that is incident with x . If y is also uncovered by N then $N + xy$ is a larger matching than N , a contradiction. So let yz be the edge in N that is incident with y , and note that $z \neq x$. Then $N + xy - yz$ is a maximum matching that does not cover t and has smaller symmetric difference with M than N does. This contradicts our choice of N , so each maximum matching must leave exactly one vertex uncovered. Then $\nu(G) = (|V| - 1)/2$. The Tutte-Berge Formula then follows by choosing $U = \emptyset$. \square

A natural question to ask next is: Given a graph G , what is a set $U \subset V(G)$ giving equality in the Tutte-Berge Formula? Such a set is provided by the **Edmonds-Gallai Decomposition** of G . This decomposition partitions $V(G)$ into three sets: $D(G)$ is the set of all vertices v such that there is some maximum matching that leaves v uncovered, $A(G)$ is the neighbour set of $D(G)$, and $C(G)$ is the set of all remaining vertices.

Theorem 3 *The set $U = A(G)$ gives equality in the Tutte-Berge Formula. The set $D(G)$ contains all vertices in odd components of $G - U$, and $C(G)$ contains all vertices in even components of $G - U$.*

Let $G[D(G)]$ be the subgraph of G induced by $D(G)$. It turns out that every connected component H of $G[D(G)]$ is *factor critical*, meaning that $H - v$ has a perfect matching for every $v \in V(H)$. Thus for any odd component in $G[D(G)]$ we can actually choose any particular vertex to be left uncovered.

The Edmonds-Gallai Decomposition of a graph can be found as a byproduct of Edmonds' algorithm for finding a maximum matching. Before describing this algorithm, we need some more basic results. Let M be a matching in a graph G . An *alternating path* (relative to M) is a path P whose edges are alternately in M and not in M . An *augmenting path* for M is an alternating path with both endvertices uncovered by M . Let M' be the matching obtained by switching M -edges and non- M -edges along path P (i.e., $M' = M \Delta E(P)$). Then $|M'| = |M| + 1$, which explains why P is called an augmenting path.

Theorem 4 (Berge) *M is a maximum matching if and only if G contains no M -augmenting path.*

Proof: The “only if” direction is trivial, since any augmenting path can be used to increase the size of M . To prove the other direction, suppose that M is not maximum and let N be a maximum matching chosen with minimum symmetric difference with M . Consider the subgraph spanned by

$M \cup N$. Each vertex has degree at most 2, so the subgraph is a disjoint union of paths and cycles. There are no cycles or paths with equal number of edges from N and M , since $N \Delta M$ is minimum. There are no paths with more N -edges than M -edges otherwise N would not be maximum. It follows that every component is an augmenting path for M . \square

Theorem 4 implies the following approach for finding a maximum matching: start with an empty matching and repeatedly find augmenting paths to increase its size. **Edmonds' Algorithm** uses this approach and gives a specific method for finding augmenting paths. Consider a graph $G = (V, E)$ and a matching M in G . Let X be the set of uncovered vertices in G . To find an augmenting path for M , it will be helpful to define an auxiliary directed graph G' with vertex set V and arc set $A = \{uv \mid \exists x \in V \text{ such that } ux \in E \text{ and } xv \in M\}$. Observe that a directed path in G' corresponds to an (even length) alternating path in G . Furthermore, if there is an augmenting path for M then there is a directed path in G' starting at a vertex in X and ending at a neighbour of X . Unfortunately, the converse does not necessarily hold: G may contain a directed path in G' starting at a vertex in X and ending at a neighbour of X that does *not* correspond to an augmenting path. Such a path must necessarily have a prefix that is a *flower*, as shown in this figure.

The dotted arcs show a directed path in the auxiliary graph that starts at a vertex in X and ends at a neighbour of set X but does not correspond to an augmenting path. The graph contains flower, which consists of a *stem* and a *blossom*. The stem is simply an alternating path and the blossom is an odd-length cycle.