Physics 30 Physics 20 Review

Kinematics

1)
$$\Delta d = 1.0 \text{ m} \\ v = 1.3 \times 10^5 \text{ m/s} \qquad \Delta t = \frac{\Delta d}{v} \\ \Delta t = ? \qquad \Delta t = \frac{1.0 \text{ m}}{1.3 \times 10^5 \text{ m/s}} \\ \Delta t = 7.7 \times 10^{-6} \text{ s}$$

2)
$$\begin{split} v_{\text{avg}} &= \frac{total\, dis\, tan\, ce}{total\, time} \\ v_{\text{avg}} &= \frac{10km + 18km + 9.8km}{7.50\, min + 14.40\, min + 5.80\, min} \\ v_{\text{avg}} &= 1.4\, \text{km/min} \end{split}$$

3)
$$\begin{aligned} v_1 &= 10 \text{ m/s} \\ v_2 &= 30 \text{ m/s} \\ \Delta t &= 10 \text{ s} \\ a &= ? \end{aligned} \qquad \vec{a} = \frac{\vec{v}_2 - \vec{v}_1}{\Delta t} \\ \vec{a} &= \frac{30_{\text{m/s}} - 10_{\text{m/s}}}{10 \text{ s}} \\ \vec{a} &= +2.0 \text{ m/s}^2 \end{aligned}$$

4)
$$\begin{aligned} v_1 &= 40 \text{ m/s} \\ v_2 &= 0 \\ \Delta t &= 4.0 \text{ s} \\ a &= ? \end{aligned} \qquad \vec{a} = \frac{\vec{v}_2 - \vec{v}_1}{\Delta t} \\ \vec{a} &= \frac{0 - 40_{\text{m/s}}}{1.0 \text{ s}} \\ \vec{a} &= -10 \frac{\text{m/s}}{\text{s}^2} \end{aligned}$$

5)
$$v_1 = 6.0 \text{ m/s}$$

 $a = -2.0 \text{ m/s}^2$
 $v_2 = ?$

a)
$$\vec{v}_2 = \vec{v}_1 + \vec{a}\Delta t$$

$$\vec{v}_2 = 6.0_{\text{m/s}} + (-2.0_{\text{s}^2})(2.0s)$$

$$\vec{v}_2 = +2.0_{\text{m/s}}$$

b)
$$\vec{v}_2 = \vec{v}_1 + \vec{a}\Delta t$$

$$\vec{v}_2 = 6.0_{\text{m/s}} + (-2.0_{\text{s}^2}^{\text{m/s}})(3.0\text{s})$$

$$\vec{v}_2 = 0_{\text{m/s}}$$

c)
$$\vec{v}_2 = \vec{v}_1 + \vec{a}\Delta t$$

$$\vec{v}_2 = 6.0_{\text{m/s}} + (-2.0_{\text{s}^2})(4.0\text{s})$$

$$\vec{v}_2 = -2.0_{\text{m/s}}$$

6)

$$v_1 = 0 \text{ m/s}$$

 $v_2 = 2.0 \times 10^7 \text{ m/s}$
 $\Delta d = 0.10 \text{ m}$
 $\Delta t = ?$
 $a = ?$

$$\vec{a} = \frac{\vec{v}_2^2 - \vec{v}_1^2}{2\Delta \vec{d}}$$

$$\vec{a} = \frac{(2.0 \times 10^7 \,\text{m/s})^2 - 0}{2(0.10 \,\text{m})}$$

$$\vec{a} = 2.0 \times 10^{15} \,\text{m/s}^2$$

$$\Delta t = \frac{\vec{v}_2 - \vec{v}_1}{\vec{a}}$$

$$\Delta t = \frac{2.0 \times 10^7 \,\text{m/s} - 0}{2.0 \times 10^{15} \,\text{m/s}^2}$$

$$\Delta t = 1.0 \times 10^{-8} \,\text{s}$$

7)
$$v_1 = 500 \text{ m/s}$$

$$v_2 = 0$$

$$a = -9.81 \text{ m/s}^2$$

$$\Delta d = ?$$

$$\Delta t = ?$$

a)
$$\Delta t = \frac{\vec{v}_2 - \vec{v}_1}{\vec{a}}$$

$$\Delta t = \frac{0 - 500_{\text{m/s}}}{-9.81 \text{m/s}^2}$$

$$\Delta t = 51s$$

b)
$$\Delta \vec{d} = \frac{\vec{v}_1 + \vec{v}_2}{2} \Delta t$$

$$\Delta \vec{d} = \frac{500_{\text{m/s}} + 0}{2} (51s)$$

$$\Delta \vec{d} = 1.3 \times 10^4 \text{m}$$

8)
$$v_1 = +9.0 \text{ m/s}$$

$$\Delta d = -80 \text{ m}$$

$$a = -9.81 \text{ m/s}^2$$

$$v_2 = ?$$

$$\Delta t = ?$$

calculate the velocity just before it hits the ground

$$\vec{v}_{2}^{2} = \vec{v}_{1}^{2} + 2\vec{a}\Delta\vec{d}$$

$$\vec{v}_{2} = -\sqrt{\vec{v}_{1}^{2} + 2\vec{a}\Delta\vec{d}}$$

$$\vec{v}_{2} = -\sqrt{(9.0_{\text{m/s}})^{2} + 2(-9.81_{\text{s}^{2}}^{\text{m/s}})(-80\text{m})}$$

$$\vec{v}_{2} = -40.6_{\text{s}}^{\text{m/s}}$$

Now we can calculate the total time

$$\begin{split} \Delta t &= \frac{\vec{v}_2 - \vec{v}_1}{\vec{a}} \\ \Delta t &= \frac{-40.6_{\text{m/s}} - 9.0_{\text{m/s}}}{-9.81 \text{m/s}^2} \\ \Delta t &= 5.1 \text{s} \end{split}$$

9)
$$v_1 = 0 \text{ m/s}$$

$$\Delta d = -20 \text{ m}$$

$$a = -9.81 \text{ m/s}^2$$

$$v_2 = ?$$

$$\Delta t = ?$$

calculate the velocity just before it hits the ground

$$\vec{v}_{2}^{2} = \vec{v}_{1}^{2} + 2\vec{a}\Delta\vec{d}$$

$$\vec{v}_{2} = -\sqrt{\vec{v}_{1}^{2} + 2\vec{a}\Delta\vec{d}}$$

$$\vec{v}_{2} = -\sqrt{0 + 2(-9.81\%)(-20m)}$$

$$\vec{v}_{2} = -19.6\%$$

calculate the time

$$\Delta t = \frac{\vec{v}_2 - \vec{v}_1}{\vec{a}}$$

$$\Delta t = \frac{-19.6 - 0}{-9.81 \text{m/s}^2}$$

$$\Delta t = 2.0 \text{ s}$$

10)
$$v_1 = +11 \text{ m/s}$$

$$a = -9.81 \text{ m/s}^2$$

$$v_2 = 0$$

$$\Delta d = ?$$

$$\Delta t = ?$$

calculate the time up

$$\Delta t = \frac{\vec{v}_2 - \vec{v}_1}{\vec{a}}$$

$$\Delta t = \frac{0 - 11_{\text{m/s}}}{-9.81_{\text{s}^2}^{\text{m/s}^2}}$$

$$\Delta t = 1.12s$$

total time

$$\Delta t = 1.12 \text{ s x 2}$$

 $\Delta t = 2.2 \text{ s}$

$$\vec{v}_{2}^{2} = \vec{v}_{1}^{2} + 2\vec{a}\Delta\vec{d}$$

$$\Delta\vec{d} = \frac{\vec{v}_{2}^{2} - \vec{v}_{1}^{2}}{2\vec{a}}$$

$$\Delta\vec{d} = \frac{0 - 11_{\text{m/s}}}{2(-9.81_{\text{m/s}}^{2})}$$

$$\Delta\vec{d} = 6.2\text{m}$$

11)
$$v_1 = +19.62 \text{ m/s}$$

$$\Delta d = -117.82 \text{ m}$$

$$a = -9.81 \text{ m/s}^2$$

$$v_2 = ?$$

 $\Delta t = ?$

calculate the velocity just before it hits the ground

$$\vec{V}_2^2 = \vec{V}_1^2 + 2\vec{a}\Delta\vec{d}$$

$$\vec{v}_{_2}=-\sqrt{\vec{v}_{_1}^2+2\vec{a}\Delta\vec{d}}$$

$$\vec{v}_2 = -\sqrt{(19.62_\text{m/s})^2 + 2(-9.81 \text{m/s}^2)(-117.82 \text{m})}$$

$$\vec{v}_2 = -51.9 \, \text{m/s}$$

calculate the total time

$$\Delta t = \frac{\vec{v}_2 - \vec{v}_1}{\vec{a}}$$

$$\Delta t = \frac{-51.9_{\text{m/s}} - 19.62_{\text{m/s}}}{-9.81_{\text{s}^2}^{\text{m/s}}}$$

$$\Delta t = 7.29 s$$

12) vertical

$$v_1 = 0 \text{ m/s}$$

$$\Delta d = -117.82 \text{ m}$$

$$a = -9.81 \text{ m/s}^2$$

$$\Delta t = ?$$

$$\vec{\Delta d} = \vec{v}_1 \Delta t + \tfrac{1}{2} \vec{a} \Delta t^2$$

$$\Delta \vec{d} = 0 + \frac{1}{2} \vec{a} \Delta t^2$$

$$\Delta t = \sqrt{\frac{2(-117.82\,\text{m})}{-9.81 \frac{\text{m}}{\text{y}_s^2}}}$$

$$\Delta t = 4.90\,\text{s}$$

horizontal

$$\Delta d = v \Delta t$$

$$\Delta d = 19.62 \, \text{m/s} (4.90 \, \text{s})$$

$$\Delta d = 96.2 \, m$$

Vectors

h

$$sin14.6 = \frac{h}{2830}$$

$$h = 713 \, m$$

2)

 $R = \sqrt{35.0^2 + 72.0^2}$

R = 80.0 km/h

$$\theta = tan^{-1} \left(\frac{72.0}{35.0} \right) = 64.1^{\circ} \text{ W of S}$$

 $\vec{R} = 80.0 \, \text{km/h} \, @ \, 64.1^{\circ} \, \text{W of S}$

Note that the vectors add up to

zero.

 $F_{_E} = \sqrt{315^2 + 475^2}$

$$F_{\scriptscriptstyle E} = 570\,N$$

$$\theta = tan^{-1} \left(\frac{475}{315} \right) = 56^{\circ} \text{ W of N}$$

$$\vec{F}_{E} = 570 \, \text{N} \, @ \, 56^{\circ} \, \text{W of N}$$

4)

 $v_x = 67.0\cos 38$

$$v_x = 52.8 \, \text{m/s} \, \text{east}$$

$$v_v = 67.0 \sin 38$$

$$v_y = 41.2 \text{ m/s} \text{ south}$$

Calculate the components of the wind vector and then add them to the airplane vector

$$v_{w\,x} = 60.6\,\text{km/h}\,\text{east}$$

$$v_{wv} = 70 \sin 30$$

$$v_{wy} = 35.0 \, \text{km/h} \, \text{south}$$

$$R = \sqrt{(120 + 60.6)^2 + 35.0^2}$$

$$R = 184 \text{km/h}$$

$$\theta = \tan^{-1} \left(\frac{35.0}{102 + 60.6} \right) = 11^{\circ} \, \text{S of E}$$

 $\vec{R} = 184 \, \text{km/h} \, @ \, 11^{\circ} \, \text{Sof E}$

6)

Calculate the components of each vector and then add them together.

$$R_x = 39.0 \text{ N east} + 0$$

$$R_x = 39.0 \text{ N east}$$

$$R_y = 22.5 \text{ N north} + 75 \text{ N north}$$

$$R_y = 97.5 \text{ N north}$$

$$R = \sqrt{39.0^2 + 97.5^2}$$

$$R = 105N$$

$$\theta = tan^{-1} \left(\frac{39.0}{97.5} \right) = 22^{\circ} E of N$$

$$\vec{R} = 105 \, \text{N} \, @ \, 22^{\circ} \, \text{E} \, \text{of} \, \text{N}$$

Calculate the components of each vector and then add them together.

 $R_x = 156.2 \text{ km east} + 53.6 \text{ km east}$

 $R_x = 209.8$ km east

 $R_y = 186.1 \text{ km north} + 19.5 \text{ km south}$

 $R_y = 166.6 \text{ km north}$

$$R = \sqrt{209.8^2 + 166.6^2}$$

R = 268 km

$$\theta = tan^{-1} \left(\frac{166.6}{209.8} \right) = 38^{\circ} \, Nof \, E$$

 $\vec{R} = 268 \text{ km} @ 38^{\circ} \text{ Nof E}$

Circular Motion

$$\begin{split} v &= \frac{\Delta d}{\Delta t} = \frac{2\pi r}{T} & F_T = F_c = \frac{4\pi^2 m r}{T^2} \\ v &= \frac{2\pi (2.8\,m)}{0.98\,s} & F_T = \frac{4\pi^2 (1.0\,kg)(2.8\,m)}{(0.98\,s)^2} \\ v &= 18\,\text{m/s} & F_T = 1.2\times10^2\,\text{N} \end{split}$$

2)

$$F_{f} = F_{c} = \frac{mv^{2}}{r}$$

$$F_{f} = \frac{(822 \text{kg})(28.0 \text{m/s})^{2}}{105 \text{m}}$$

$$F_{f} = 6.14 \times 10^{3} \text{ N}$$

3)
$$F_{T} = F_{c} = \frac{4\pi^{2}mr}{T^{2}}$$

$$F_{T} = \frac{4\pi^{2}(1.7kg)(0.60m)}{(1.1s)^{2}}$$

$$F_{T} = 33N$$

Dynamics

The car's tires exert a force on the pavement directed backwards. Newton's 3rd
Law results in an opposite and equal reaction force of the pavement pushing the car forward. The car accelerating forward is a result of Newton's 2nd Law where an unbalanced force results in an acceleration. When the car reaches the speed limit, the forward force balances the frictional forces which, according to Newton's 1st Law, results in constant velocity.

2)
$$\vec{a} = \frac{\vec{F}}{m}$$

$$\vec{a} = \frac{(30.0 \text{Nsouth})}{(10.0 \text{kg})}$$

$$\vec{a} = 3.00 \text{m/s}^2 \text{ south}$$

3)
$$\vec{a} = \frac{\vec{v}_2 - \vec{v}_1}{\Delta t} \qquad \qquad \vec{F} = m\vec{a}$$

$$\vec{a} = \frac{-2.5_{m/s} - 0}{8.7s} \qquad \qquad \vec{F} = 22kg(-0.287 \frac{m}{s^2})$$

$$\vec{a} = -0.287 \frac{m}{s^2} \qquad \qquad \vec{F} = -6.3N$$

4)
$$\vec{a}_g = \frac{\vec{F}_g}{m}$$

$$\vec{a}_g = \frac{36.0 \text{ N}}{22.0 \text{ kg}}$$

$$\vec{a}_g = 1.64 \text{ m/s}^2$$

8) constant speed → a = 0
 a = 0 → F_{net} = 0
 ∴ The forces acting on the helicopter (lift, weight, air resistance) add up to zero.

$$\cos 21 = \frac{W}{L}$$

$$L = \frac{W}{L} = \frac{5.38 \times 10}{L}$$

$$L = \frac{W}{\cos 21} = \frac{5.38 \times 10^4 \text{ N}}{\cos 21}$$
$$L = 5.76 \times 10^4 \text{ N}$$

$$tan 21 = \frac{R}{W}$$

$$R = W tan 21 = 5.38 \times 10^4 N tan 21$$

$$R=2.07{\times}10^4N$$

In order for the tanker to go directly forward, $T_1 = T_2$

$$\xleftarrow{R} \xrightarrow{D} \xrightarrow{T_x} \xrightarrow{T_x} \xrightarrow{T_x}$$

$$\begin{split} \vec{F}_{net} &= m\vec{a} \\ 2T_x + D - R &= m\vec{a} \\ 2T\cos 30 + D - R &= m\vec{a} \\ T &= \frac{m\vec{a} - D + R}{2\cos 30} \\ T &= \frac{1.50 \times 10^8 kg(0.00200 \frac{m}{s^2}) - 7.50 \times 10^4 N + 4.00 \times 10^4 N}{2\cos 30} \\ T &= 1.53 \times 10^5 N \end{split}$$