Python Basics

August 20, 2025

Print

```
[2]: # Print
a="HelloWorld"
print(a)
```

HelloWorld

Naming Variables - Camel Case - myVariableName - Pascal Case - MyVariableName - Snake Case - my variable name

Data types: These are some of the most common data types you'll run into. - Text Type: str - Numeric Types: int, float - Sequence Types: list, tuple - Mapping Type: dict - Set Types: set - Boolean Type: bool

```
[3]: # Find Type type(a)
```

[3]: str

Booleans and Logical Operators

Lists: - Lists are used to store multiple items in a single variable - List items are ordered, changeable, and allow duplicate values. - List items are indexed, the first item has index [0], the second item has index [1] etc. - List items can be of any data type. - Lists can contain different data types.

```
[]: # Create a List
mylist = []
mylist = [10,20,30]
mylist[0] # print 10
```

```
len(mylist) # find the length of mylist
max(mylist)
min(mylist)

mylist.append(50)
del mylist[4] # delete the item with index 4 (5th item) -- base on index
mylist.remove(50) #delete the item with value 50 -- base on value
mylist[0:2] # mylist[index1 : index2] give a new list which from index1 to____
index2, index2 not inluce
```

Dictionaries - Dictionaries are used to store data values in key:value pairs. - Dictionary items are ordered, mutable, and do not allow duplicate keys. - Keys are unique and immutable types (e.g., string, number, tuple), while values can be of any type. - Dictionary items are accessed via keys, not by numeric index. - A dictionary can contain values of different data types.

```
[]: # Create a Dictionary in 'key' : 'value' pair
car = {
    "brand": "Ford",
    "model": "Mustang",
    "year": 1964
}

car['year'] # dic['key'] return value of this key
car.keys() # dic.keys() return all keys in a list
car.values() # dic.values() return all values in a list
car['year'] = 2022 # change value, update new value
car["Trim"] = "raptor" # add a new element
```

If- Else Statment

```
[]: # If- Else
a = 2
if a == 2:
    print("Hello.") # first line
else:
    print("Goodbye.") # second line
```

Iteration, For Loop and While Loop

```
# i += 1

for n in nums:
    print(n)

# while loop
x = 0
while x < 3:
    print(nums[x])
    x += 1</pre>
```

Create a new Function

NumPy NumPy is a Python library used for working with arrays. - It also has functions for working in domain of linear algebra, fourier transform, and matrices. - In Python we have lists that serve the purpose of arrays, but they are slow to process. - NumPy aims to provide an array object that is up to 50x faster than traditional Python lists.

```
[]: import numpy as np # create a numpy array
    arr = np.array([1, 2, 3, 4, 5])
    print(type(arr)) # return <class 'numpy.ndarray'>
    print(arr.dtype) # return int64, get datatype of an array - the value the
     →array is composed of
    np.sort(arr) # sort the array
    np.mean(arr) # find the mean of arrays
    np.arange(0,4) # create an array of values 0 through 4 np.arange(start, stop, __
     ⇔step)
    np.sqrt(arr)
    arr1 = arr * 10 # return [10,20,30,40,50]
    lst = [1, 2, 4, 4, 7]
    print(lst * 3) # return [1, 2, 4, 4, 7,1, 2, 4, 4, 7,1, 2, 4, 4, 7]
    b = np.copy(a)
                 # [0. 0. 0.] or random values
    np.empty(3)
```

 $np.argmax(arr) \rightarrow index of max np.argmin(arr) \rightarrow index of min np.argsort(arr) \rightarrow indices that would sort array <math>np.max(arr) \rightarrow max$ value $np.min(arr) \rightarrow min$ value $np.sort(arr) \rightarrow sorted$ array

Operations np.choose(indices, choices) - Construct array from index list & choice arrays. ndarray.fill(val) - Fill entire array with a value. np.prod(arr) - Product of elements.

Basic Statistics np.cov(m) \rightarrow covariance matrix np.mean(arr) \rightarrow mean np.std(arr) \rightarrow standard deviation np.var(arr) \rightarrow variance

Basic Linear Algebra np.cross(a,b) \rightarrow cross product (3D vectors) np.dot(a,b) \rightarrow dot product np.outer(a,b) \rightarrow outer product