Проект "Воздушно-инженерная школа (CanSat в России)"

Команда "Монолит"

Куратор

Черкасова Марина *7 год участия в ВИШ*

Команда

Алексеев Мирослав Программист, схемотехник

Зеленкевич Андрей

Конструктор, схемотехник

Кулиш Павел Программист

Обязательные задачи проекта

- Измерение распределения температуры и давления во время подъема и спуска
- Получение и интерпретация данных 3-х осевого акселерометра
- Обеспечение скорости спуска в пределах 5-11 м/с
- Передача данных измерений по обязательным исследовательским задачам в процессе полёта аппарата на приемную станцию
- Обеспечение работы бортового оборудования не менее 3 часов

Исследовательская задача

 Общая исследовательская задача - отработка технологий для дезактивации территории, зараженной частицами радиоактивной пыли.

Дополнительные задачи проекта

- Измерение степени радиоактивного заражения территории
- Распыление дезактивирующей жидкости
- Видеосъемка процесса распыления жидкости
- Прием телеметрии аппарата на собственной наземной станции
- Использование радиомаяка для поиска аппарата
- Измерение влажности воздуха на протяжении полёта
- Сбор данных GPS о положении аппарата в пространстве
- Бесконтактная фиксация момента отделения от РН
- Световая индикация состояния миссии
- Сохранение телеметрии на SD карту
- Подача звукового сигнала (писк) для облегчения поиска аппарата
- Построение траектории полета аппарата (после приземления)

Схема деления аппарата

Компоновочная схема аппарата

Система распыления дезактивирующей жидкости

Предназначена для дезактивации территории, зараженной частицами радиоактивной пыли.

- Механизм с компрессором состоит из:
 - ёмкости с жидкостью
 - резиновых трубок, обеспечивающих подачу жидкости из емкости к распылителю
 - распылителя жидкости
 - электродвигателя для распылителя
 - > компрессора
 - ➤ клапана

Плюсы конструкции:

-легче обеспечить герметичность -меньше деталей нужно изготавливать самостоятельно

Минусы конструкции:

- -высокая масса
- -меньшая скорость истечения жидкости

Система распыления дезактивирующей жидкости

Предназначена для дезактивации территории, зараженной частицами радиоактивной пыли.

- Механизм с поршнем состоит из:
 - ёмкости с жидкостью
 - резиновых трубок, обеспечивающих подачу жидкости из емкости к распылителю
 - распылителя жидкости
 - > электродвигателя для распылителя
 - электродвигателя с валом для поршня

Плюсы конструкции:

- -меньшая масса
- -компактность конструкции

Минусы конструкции:

-большинство деталей нужно изготавливать самостоятельно -сложно обеспечить герметичность

Исследование радиационной обстановки

Счетчик Гейгера-Мюллера СБМ 20-1

Программа полета

Алгоритм работы аппарата

Схема подключения электронных компонентов

Схема распределения питания

Мощность, Вт

Мощность, Вт

Компрессор

Поршень

Энергобаланс

Компрессор

Поршень

Масса и стоимость варианта с компрессором

Наименование	Количество, шт.	Цена за 1 шт., руб.	Цена общая, руб.	Масса 1 шт., гр.	Масса общая, гр.
Конструктор РЛ	1,00	15 000,00	15 000,00	48,00	48,00
Блок бортового дозиметра (СБМ-20-1)	1,00	2 131,00	2 131,00	10,00	10,00
Емкость с жидкостью	1,00	0,00	0,00	60,00	60,00
Фоторезистор VT93N1	1,00	49,00	49,00	1,20	1,20
Пищалка Active Buzzer	1,00	260,00	260,00	2,00	2,00
Поисковой маяк Rockwell IBeacon Mini	1,00	3 975,00	3 975,00	12,00	12,00
Мотор для распрыскивателя	1,00	510,00	510,00	2,60	2,60
Водный насосос 370-А	1,00	650,00	650,00	58,00	58,00
Электроклапан	1,00	108,00	108,00	4,70	4,70
Переключатель SS-12D11	1,00	131,00	131,00	1,50	1,50
Повышающий DC-DC на 12B	1,00	99,00	99,00	2,00	2,00
Аккумулятор ROBITON LP103450UN	1,00	630,00	630,00	51,00	51,00
Антена GPS G165	1,00	190,00	190,00	5,00	5,00
Рым-болт	1,00	155,00	155,00	3,00	3,00
Камера SQ11	1,00	763,00	763,00	8,50	8,50
SD Card	1,00	500,00	500,00	2,00	2,00
Переключатель SK-12F14	1,00	55,00	55,00	0,80	0,80
Светодиодный модуль КҮ-009	1,00	50,00	50,00	1,30	1,30
Парашют	1,00	0,00	0,00	15,00	15,00
Конструкция	1,00	0,00	0,00	60,00	60,00
Итог			25 256,00		348,60

Масса и стоимость варианта с поршнем

Наименование	Количество, шт.	Цена за 1 шт., руб.	Цена общая, руб.	Масса 1 шт., гр.	Масса общая, гр.
Конструктор РЛ	1,00	15 000,00	15 000,00	48,00	48,00
Блок бортового дозиметра (СБМ-20-1)	1,00	2 131,00	2 131,00	10,00	10,00
Емкость с жидкостью	1,00	0,00	0,00	60,00	60,00
Фоторезистор VT93N1	1,00	49,00	49,00	1,20	1,20
Пищалка Active Buzzer	1,00	260,00	260,00	2,00	2,00
Поисковой маяк Rockwell IBeacon Mini	1,00	3 975,00	3 975,00	12,00	12,00
Мотор для распрыскивателя	1,00	510,00	510,00	2,60	2,60
Мотор с валом для поршня	1,00	292,00	292,00	50,00	50,00
Переключатель SS-12D11	1,00	131,00	131,00	1,50	1,50
Повышающий DC-DC на 12B	1,00	99,00	99,00	2,00	2,00
Аккумулятор ROBITON LP103450UN	1,00	630,00	630,00	51,00	51,00
Антена GPS G165	1,00	190,00	190,00	5,00	5,00
Рым-болт	1,00	155,00	155,00	3,00	3,00
Камера SQ11	1,00	763,00	763,00	8,50	8,50
SD Card	1,00	500,00	500,00	2,00	2,00
Переключатель SK-12F14	1,00	55,00	55,00	0,80	0,80
Светодиодный модуль КҮ-009	1,00	50,00	50,00	1,30	1,30
Парашют	1,00	0,00	0,00	15,00	15,00
Конструкция	1,00	0,00	0,00	60,00	60,00
Итог			24 790,00		335,90

Возможные нештатные ситуации

Nº	Нештатная ситуация	Последствия	Выход из нештатной ситуации	Способы предотвращения
1	Потеря аппарата	Полное или частичное невыполнение миссий	нет	Использование аккумуляторов, заряд которых проверяем перед стартом
2	Нераскрытие парашюта	Потеря аппарата	нет	Правильный расчёт парашюта Качественное изготовление Грамотная укладка парашюта
3	Отказ двигателя	Частичное невыполнение миссии	нет	Грамотная сборка механики
4	Отказ радио-модуля	Потеря телеметрии	Использование SD носителя для резервного копирования данных	Проверка радио-модуля на земле
5	Ошибка в определении момента отделения от ракеты	Частичное невыполнение миссии	Использование показания нескольких датчиков	Тестовая отладка при испытаниях

Расчет парашюта

$$M = 349 гр$$

$$V = 8 \text{ M/c}$$

$$g = 9.81 \text{ m/c}^2$$

$$\rho = 1,225 \text{ kg/m}^3$$

$$C = 1,2$$

$$S = 2Mg/C\rho V^2 = 0.073M^2$$

$$D = 4S/\pi = 0,3047M$$

М – масса аппарата

V - скорость спуска 5-11

g – ускорение свободного падения

ρ – плотность воздуха

С – коэффициент аэродинамического сопротивления парашюта 1.2-1.3

S – площадь парашюта

D – диаметр купола парашюта

Обмен данными

Команда "Монолит"

Спасибо за внимание!

Куратор

Черкасова Марина

Команда

Алексеев Мирослав Программист, схемотехник

Зеленкевич Андрей

Конструктор, схемотехник

Кулиш Павел Программист

Дополнительные задачи проекта

- Измерение степени радиоактивного заражения территории
- Распыление дезактивирующей жидкости
- Видеосъемка процесса распыления жидкости
- Прием телеметрии аппарата на собственной наземной станции
- Использование радиомаяка для поиска аппарата
- Измерение влажности воздуха на протяжении полёта
- Сбор данных GPS о положении аппарата в пространстве
- Бесконтактная фиксация момента отделения от РН
- Световая индикация состояния миссии
- Сохранение телеметрии на SD карту
- Подача звукового сигнала (писк) для облегчения поиска аппарата
- Построение траектории полета аппарата (после приземления)

Энергопотребление компонентов аппарата

Устройство	Потребление в рабочем режиме, А	Напряжение питания, В	Мощность, Вт
Микроконтроллер STM32F401RE	0,0234	3,3	0,07722
Датчик температуры DS18B20	0,001	3,3	0,0033
Датчик давления и влажности ВМЕ280	0,0000036	3,3	0,00001188
Трехосевые акселерометр и гироскоп LSM6DS3	0,0009	3,3	0,00297
Трехосевой магнитометр LIS3MDL	0,0002	3,3	0,00066
GPS модуль ATGM336H	0,05	3,3	0,165
Радиомодуль NRF24I01p	0,13	3,3	0,429
MicroSD карта	0,02	3,3	0,066
Мотор FF-M10TA-06230=7.6mm	0,09	3,3	0,297
Блок бортового дозиметра (СБМ-20-1)	0,012	5,1	0,0612
Пищалка Active Buzzer	0,01	5,1	0,051
Фоторезистор VT93N1	0,0006	3,3	0,00198
Водный Насос 370-А	0,15	12	1,8
Мотор с редуктором и валом N20	0,17	12	2,04
Светодиодный модуль КҮ-009	0,02	5,1	0,102
Электроклапан	0,2	5,1	1,02

План-график работ

№	Сроки	Содержание работ
1	Ноябрь - декабрь	Определение дополнительных миссий аппарата, постановка задач
2	Декабрь - январь	Выбор способов решения поставленных задач, определение состава аппарата
3	Январь	Разработка модели аппарата, подбор комплектующих
4	Февраль	Разработка ПО, доработка модели аппарата, подготовка к зимней сессии
5	Март	Изготовление элементов конструкции аппарата, доработка ПО, испытание распрыскивающей системы
6	Апрель	Разработка ПО для взаимодействия всех систем, сборка аппарата, пайка микросхем
7	Май	Сборка тестовой модели аппарата, проведение наземных и летных испытаний, проверка работы всех систем
8	Июнь	Разбор телеметрии с испытаний, устранение недочетов, сборка финальной модели аппарата