Section 7 Sequences, Series and Proof by Induction

- Sequences
- Series
- Proof by Induction

Section 7 Sequences, Series and Proof by Induction

- Sequences
- Series
- Proof by Induction

The 3-step method of Proof by Induction

Base case Verify that the result is true when n = 1 so that $1 \in S$.

Induction hypothesis For some arbitrarily fixed integer $k \geq 1$, assume that the result is true for all the integers 1, 2, ..., k.

Induction step *Use the hypothesis that the result is true when* n = 1, 2, ..., k *to prove that the result also holds when* n = k + 1.

Section 7 Sequences, Series and Proof by Induction

Series

Theorem 2.1 Let n be a positive integer. Then

(a)
$$\sum_{r=1}^{n} 1 = n$$
.

(b)
$$\sum_{r=1}^{n} r = n(n+1)/2$$
.

(c)
$$\sum_{r=1}^{n} r^2 = n(n+1)(2n+1)/6$$
.

(d)
$$\sum_{r=0}^{n} x^r = \frac{x^{n+1}-1}{x-1}$$
, for any $x \in \mathbb{R}$ with $x \neq 1$.

Question 9

(a) Calculate the terms u_3 and u_4 of the sequence defined for $n \geq 2$ by the recurrence relation

$$u_{n+1} = u_n + 3u_{n-1},$$

when
$$u_1 = 1$$
 and $u_2 = 4$.

[2]

(b) For each of the following sequences, find a recurrence relation that gives u_{n+1} in terms of u_n.

- (i) 12, 1.2, 0.12, 0.012, 0.0012, ...;
- (ii) 3, 7, 11, 15, 19,

(c) Use the formula $\sum_{r=1}^{n} r = n(n+1)/2$ to evaluate the following sums.

(i)
$$1+2+3+\cdots+100$$
; [2]

(ii)
$$21 + 22 + 23 + \cdots + 100$$
;

[2]

(iii) $5+10+15+20+25+\cdots+100$.

Question 8 (a) A sequence is defined by the recurrence relation

$$x_{n+2} = 3x_{n+1} - 2x_n$$

and initial terms and $x_1 = 1$ and $x_2 = 3$.

Calculate x₃ and x₄, showing your working.

(ii) Prove by induction that $x_n = 2^n - 1$ for all $n \ge 1$.

(b) Evaluate
$$\sum_{n=1}^{50} (5n-2)$$
.

[2]

Question 7 (a) A sequence is given by the recurrence relation

$$u_{n+1} = u_n + n \quad and u_1 = 0.$$

Calculate u₃, u₄, and u₅.

[2]

(ii) Use induction to prove that

$$u_n = \frac{n(n-1)}{2} \text{ for all } n \geq 1.$$

[5]

(b) Write the following in \sum notation

$$1+4+7+10+...+(3n-2).$$

Evaluate this when n = 100.

[3]

Question 6 (a) Consider the sequence given by 1, 4, 7, 10, 13, ...State a recurrence relation which expresses the nth term, u_n , in terms of the (n-1)th term, u_{n-1} . [2]

- (b) Another sequence is defined by the recurrence relation $u_n = u_{n-1} + 2n 1$ and $u_1 = 1$.
 - Calculate u₂, u₃, u₄ and u₅.
 - (ii) Prove by induction that $u_n = n^2$ for all $n \ge 1$.

(iii) Find the sum of the first 50 terms of this sequence.

You may assume the formula for
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
, [8]

Question 5 Let the sequence u_n be defined by the recurrence relation

$$u_{n+1} = u_n + 2n$$
, $forn = 1, 2, 3, ... and let u_1 = 1$.

(a) Calculate u₂, u₃, u₄ and u₅, showing all your working. [2]

(b) Prove by mathematical induction that the nth term, where $n \geq 0$, is given by

$$u_n = n^2 - n + 1.$$

(c) Showing all your working, find the sum of the first 100 terms of this sequence.

Question 3

- (a) (i) Write down the first three and last three terms of the series given by ∑_{k=1}³³ (3k − 1).
 - (ii) Write the terms of this sequence as a recurrence relation that gives u_{n+1} in terms of u_n and give the value of the initial term. [3]

(b) Write the following series in ∑ notation:

(i)
$$2+5+8+...200$$

(ii)
$$101 + 104 + 107 + ... + 299$$
.

Use the formula $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ to evaluate the first of these two sums. [4]

(c) It can be proved by induction that the seies 3 + 7 + 11 + ... has the sum to r terms given by S_r , where

$$S_r = 2r^2 + r.$$

Use this result to evaluate the following sums:

(i)
$$3 + 7 + 11 + ... + 399$$

(ii)
$$403 + 407 + 411... + 999$$
. [3]