ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

ONE LOVE. ONE FUTURE.

Nội dung chính

- Perceptron learning
- Multilayer Perceptron
 - Activation Function
 - Forward, Backward Propagation
- Ứng dụng bài toán thực tế

Perceptron Learning

$$H = XW^{(1)} + b^{(1)} \ O = HW^{(2)} + b^{(2)}$$

$$O = \Big(XW^{(1)} + b^{(1)}\Big)W^{(2)} + b^{(2)} = XW^{(1)}W^{(2)} + b^{(1)}W^{(2)} + b^{(2)} = XW + b$$

$$H = f\left(XW^{(1)} + b^{(1)}
ight) \ O = HW^{(2)} + b^{(2)}$$

• Hàm kích hoạt f(.) đưa tính phi tuyến vào mô hình

Activation Function

Activation Function

Activation Function

Forward Propagation

Thực hiện tính toán lần lượt từ lớp đầu tiên đến lớp cuối cùng

$$egin{aligned} a^{(0)} &= x \ z^{(i)} &= a^{(i-1)} W^{(i)} + b^{(i)}; i = 1, \dots, n \ a^{(i)} &= f\left(z^{(i)}
ight); i = 1, \dots, n \end{aligned}$$

Backward Propagation

 Backpropagation giúp tính gradient ngược từ layer cuối cùng đến layer đầu tiên bằng cách sử dụng quy tắc chuỗi:

$$rac{df}{dx} = rac{df}{du}rac{du}{dx}$$

Backward Propagation

$$egin{aligned} rac{dJ}{dW^{(i)}} &= rac{dJ}{dz^{(i)}} rac{dz^{(i)}}{dW^{(i)}} = rac{dJ}{dz^{(i)}} a^{(i-1)} \ &= rac{dJ}{da^{(i)}} rac{da^{(i)}}{dz^{(i)}} a^{(i-1)} \ &= rac{dJ}{dz^{(i+1)}} rac{dz^{(i+1)}}{da^{(i)}} f'\left(z^{(i)}
ight) a^{(i-1)} \ &= rac{dJ}{dW^{(i+1)}} rac{1}{a^{(i)}} W^{(i+1)} f'\left(z^{(i)}
ight) a^{(i-1)} \end{aligned}$$

Vanishing Gradient

$$egin{align*} rac{d}{dx} sigmoid\left(x
ight) = sigmoid\left(x
ight) \left(1 - sigmoid\left(x
ight)
ight) \leqslant 0.25 \ rac{d}{dx} tanh\left(x
ight) = 1 - tanh^2\left(x
ight) \leqslant 1 \ rac{d}{dx} ReLU\left(x
ight) = egin{bmatrix} 1 & x \geqslant 0 \ 0 & x < 0 \end{bmatrix} \end{aligned}$$

- Universal Approximation Theorem: Mô hình MLP với 1 hidden layer và 1 activation function phù hợp có thể xấp xỉ bất kỳ hàm liên tục nào trên tập dữ liệu giới hạn
- Trong các bài toán thực tế, mô hình MLP với 2 hoặc 3 hidden layer
 là đủ

- Điểm mạnh của MLP:
 - Có thể dùng trong cả bài toán phân loại lẫn hồi quy
 - Có thể xấp xỉ mọi hàm liên tục (trên lý thuyết)
- Điểm yếu của MLP:
 - Khó mở rộng, tăng hidden layer làm tăng độ phức tạp của mô hình, dẫn đến tăng thời gian, kéo theo overfitting
 - Khó giải thích

- Bộ dữ liệu: Digit Recognizer
- Gồm dữ liệu 70000 dữ liệu của bức ảnh các chữ số viết tay
- Tỉ lệ train:test là 3:2

```
46324815667524613477960319832
07821294683247116780049546343
66561279440366173191173720955
   49275202775963902263101565
  839819619224862113324603579
632548439201819627244241702
94053581286039286135500082692
5741675984610932944069694780
379783305560825290517+266541
479218494234775760628052479
64616937576588975478914596139
59260845787240445189322432142
     894917801203791533289
     6799122831235743443412
```


HUST hust.edu.vn fb.com/dhbkhn

THANK YOU!