Rowan Lochrin MATH415B - Klaus Lux 4/22/18 Homework 10

1 Chapter 22

28 Draw the subfield lattice of $GF(3^{18})$ and of $GF(2^{30})$.

32 Let f(x) be a cubic irreducible over Z_p , where p is a prime. Prove that the splitting field f(x) over Z_p has order p^3 or p^6 .

Proof. Let f(a) = 0 where $a \in E$, some extension field of Z_p , then in $Z_p(a)$, f(x) = (x - a)g(x) where g(x) is a degree two polynomial in $Z_p(a)$ if g(x) is reducible then f(x) splits completely in $Z_p(a)$ and because $Z_p(a) \approx Z_p[x]/ < f(x) >$, $|Z_p(a)| = p^3$. If g(x) is not reducible in $Z_p(a)$, let g(b) = 0 where $b \in E$ then f(x) splits completely in $Z_p(a)(b) = Z_p(a,b)$. Because $Z_p(a)(b) \approx Z_p(a)[x]/ < g(x) >$, $|Z_p[x]| = p^6$

35 Suppose that F is a field of order 125 and $F^* = <\alpha>$. Show that $\alpha = -1$. Because F is a finite filed $F^* \approx Z_{124}$. Because $<\alpha> = Z_{124}$, $\alpha^i = 1$ for some $i \le 124$ if

$$\{\alpha^1,...,\alpha^{124}\} = \{\alpha^1,...,\alpha^{i-1},1,1\alpha,...\} = \{\alpha^1,...,\alpha^i\} = Z_{124}$$

So i = 124 and $\alpha^{124} = (\alpha^{62})^2 = 1$ meaning $\alpha^{62} = 1$ or -1, and by the above it can't be the former.

2 Chapter 23

10 Prove that it is impossible to construct a 40° angle.

Proof. Note that construction a 40° angle would imply that you were also able to create a line of length $\cos 40^{\circ}$. Consider the trig identity

$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$$

Plugging in 40° can see that

$$0 = \cos^3 40^\circ - 3\cos 40^\circ + \frac{1}{2}$$

So $\cos 40^{\circ}$ is a zero of the polynomial

$$8x^3 + 6x + 1$$

Meaning $[Q(\cos 40^\circ): Q] = 3$. So there cannot be a series of finite field extensions of degree 2 that include $\cos 40^\circ$.

3 Chapter 32

5 Let E be an extension field of a field F and let H be a subgroup of Gal(E/F). Show that the fixed field of H is indeed a field.

For all $\phi \in H$ if $\phi(a) = a$ and $\phi(b) = b$.

$$\phi(a+b) = \phi(a) + \phi(b) = a+b$$

$$\phi(a-b) = \phi(a) - \phi(b) = a-b$$

$$\phi(ab) = \phi(a)\phi(b) = ab$$

$$\phi(ab^{-1}) = \phi(a)\phi(b)^{-1} = ab^{-1}$$

7 Let $f(x) \in F[x]$ and let the zeros of f(x) be $a_1, a_2, ..., a_n$. If $K = F(a_1, a_2, ..., a_n)$, show that Gal(K/F) is isomorphic to a group of permutations of the a_i 's. Because we know that all elements of F are fixed under $\phi \in Gal(K/F)$ so $\phi(0) = 0$, and

$$\phi(p(a_i)) = \phi(c_0 + c_1 a_i + c_2 a_i^2 + \dots + c_n a_i^n)$$

$$= \phi(c_0) + \phi(c_1 a_i) + \phi(c_2 a_i)^2 + \dots + \phi(c_n a_i)^n$$

$$= \phi(c_0) + \phi(c_1)\phi(a_i) + \phi(c_2)\phi(a_i^2) + \dots + \phi(c_n)\phi(a_i^n)$$

$$= c_0 + c_1\phi(a_i) + c_2\phi(a_i)^2 + \dots + c_n\phi(a_i)^n$$

$$= p(\phi(a_i)) = 0$$

Meaning that every member of Gal(K/F) must send every a_i to another root of p. So every automorphism of Gal(K/F) corresponds to a permutation of the a_i 's.

10 Let $E = Q(\sqrt{2}, \sqrt{5})$. What is the order of the group Gal(E/Q)? What is the order of $Gal(Q\sqrt{10}/Q)$?

By the first part of the fundamental theorem of Galois theory, $[Q(\sqrt{2}, \sqrt{5}): Q] = |Gal(Q(\sqrt{2}, \sqrt{5})/Q|$ and

$$[Q(\sqrt{2},\sqrt{5}):Q] = [Q(\sqrt{2},\sqrt{5}):Q(\sqrt{2})][Q(\sqrt{2}):Q]$$

Clearly $[Q(\sqrt{2}):Q] = 2$ we can see $\{1, \sqrt{5}, \sqrt{10}\}$ is a basis for $Q(\sqrt{2}, \sqrt{5})$ over $Q(\sqrt{2})$ so $[Q(\sqrt{2}, \sqrt{5}): Q(\sqrt{2})] = 3$ meaning $|Gal(Q(\sqrt{2}, \sqrt{5})/Q)| = 6$. Also $[Q(\sqrt{10}):Q] = 2$ so $|Gal(Q(\sqrt{10})/Q)| = 2$.

11 Suppose that F is a field of characteristic 0 and E is the splitting field for for some polynomial over F. If Gal(E/F) is isomorphic to $Z_{20} \oplus Z_2$, determine the number of subfields L of E there are such that

1. [L:F]=4.

Because there is a one-to-one correspondence between subgroups fields of E containing F and the number of subgroups of Gal(E/F) given by $L \to Gal(E/L)$ and because [E:L] = |Gal(E/L)| we seek to find the number of subfields L such that [E:F] = [E:L][L:F]. By part one of the fundamental therome [E:F] = |Gal(E/F)| = 40 so we seek to find subfields L such that [E:L] = 10. So we need only to count the subgroups of $Z_{20} \oplus Z_2$ of order 10 to determine the the number of such subfields. There are 3 subgroups of $Z_{20} \oplus Z_2$ of order 10.

2. [L:F] = 25.

By part one of the fundamental theorem of Galois theory [L:F] = |Gal(E/F)|/|Gal(L/F)| because $|Gal(E/F)| = |Z_{20} \oplus Z_{2}| = 40$ clearly there is no integer n such that 25 = 40/n so there are no such subfields.

- 3. Gal(E/L) is isomorphic to Z_5 . There is only one subgroup of Gal(E/F) isomorphic to Z_5 .
- 16 Let p be a prime. Suppose that $|Gal(E/F)| = p^2$ draw all possible subfield lattices for fields between E and F.

For every subfield lattice between E and F there exists a corresponding subgroup lattice of Gal(E/F) by lagrange's theorem the only possible subgroups of a group of order p^2 are of order p or 1. So the only three possible subfield lattices between F and E are one with p intermediate fields $P_1, ..., P_p$ such that $[P_i : F] = [E : P_i] = p$, one with one intermediate field P with [P : F] = p, and the one with no intermediate fields.