Capítulo III

Autômatos Finitos e Conjuntos Regulares

Geradores X Reconhecedores

```
Gramáticas Tipo 0 → Máquinas de Turing
G. Sensíveis ao Contexto → Aut. Lim. Lineares
G. Livres de Contexto → Autômatos de Pilha
Gramáticas Regulares → Autômatos Finitos
```

Autômatos Finitos

- São reconhecedores de linguagens regulares
- Tipos de Autômatos Finitos:
 - Autômato Finito Determinístico (AFD)
 - Autômato Finito Não Determinístico(AFND)

III.1 – Autômatos Finitos Determinísticos (AFD)

```
Definição formal: M = (K, Σ, δ, qo, F), onde:
K → É um conjunto finito não vazio de Estados;
Σ → É um Alfabeto, finito, de entrada;
δ → Função de Mapeamento (ou de transição)
definida em: K x Σ → K
qo → ∈ K, é o Estado Inicial
F → ⊆ K, é o conjunto de Estados Finais
Exemplo: Seja M = (K, Σ, δ, qo, F), onde:
K = {q0, q1}
Σ = { a, b}
δ = {δ(q0, a)=q0, δ(q0, b)=q1, δ(q1, b)= q1, δ(q1, a)= - }
qo = q0
F = {q1}
```

- Que sentenças são aceitas (reconhecidas) por M?
- Qual a Linguagem aceita (reconhecida) por M?

Representações de AF

- Alem da representação formal, um AF pode também ser representado por:
 - o Diagrama de Transição
 - Tabela de Transições

Sentenças Aceitas (reconhecidas) por um A.F. M:

$$\delta(qo, x) = p \mid p \in F$$

Linguagem Aceita por M:

$$T(M) = \{ x \mid \delta(qo, x) = p \land p \in F \}$$

III.2 - A.F.N.D.

Definição: $M = (K, \Sigma, \delta, qo, F)$, onde:

 $K, \Sigma, qo, F \rightarrow$ mesma definição dos A.F.D.

$$\delta \rightarrow K \times \Sigma = \rho(K)$$
, onde $\rho(K) \subseteq K$

	Vantagem	Desvantagem
AFD	Implementação Trivial / eficiência	Representação menos natural de algumas L.R.
	1 1 1 1 ID	Implementação complexa / ineficiência

Exemplos: Construa um AFND M |

a)
$$T(M) = \{ (a, b) *abb \}$$

b)
$$T(M) = \{ (0, 1) * (00 | 11) (0, 1) * \}$$

c) Construa AFD \equiv AFND dos itens a) e b)

III.3 – Transformação de AFND para AFD

<u>Teorema 3.1</u>: "Se \underline{L} é um conjunto aceito por um A.F.N.D., então \exists um A.F.D. que aceita \underline{L} "

Para provar o Teorema 3.1, precisamos:

- 1 Construir um AFD M' a partir de um dado AFND M
- 2 Mostrar que $M' \equiv M$

Prova:

1 – Dado um AFND M = (K, Σ , δ , qo, F), construir um A.F.D. M' = (K', Σ , δ ', qo', F') como segue:

$$1 - \mathbf{K'} = \{ \rho(\mathbf{k}) \}$$

$$2 - qo' = [qo]$$

$$3-F'=\{\rho(K)\mid \rho(K)\cap F\neq \phi\}$$

 $4 - Para cada \rho(K) \subset K'$

faça
$$\delta'(\rho(K),a) = \rho'(K)$$
, onde

$$\rho'(K) = \{p \mid para \ algum \ q \in \rho(K), \delta(q, a) = p\};$$

2 – Para mostrar que $M' \equiv M$, basta mostrar que T(M') = T(M).

Exemplo: Seja M um A.F.N.D. definido por:

δ	a	b
→qo	qo,q1	qo
q1		q2
q2		q3
*q3		

III.4 - Relação entre GR e AF

Teorema 3.2: "Se G = (Vn, V_T, P, S) é uma G.R., então
$$\exists$$
 um A.F. M = (K, Σ , δ , qo, F) | T(M) = L(G)".

Prova: a - Mostrar que M existe b - Mostrar que T(M) = L(G)

- a) Defina M, como segue:
 - $1 K = Vn \cup \{A\}$, onde A é um símbolo novo

$$2 - \Sigma = V_T$$

$$3 - qo = S$$

$$4 - F = \{A, S\} \text{ se } S \rightarrow \varepsilon \in P$$

 $\{A\} \text{ se } S \rightarrow \varepsilon \notin P$

5 – Construa δ de acordo com as regras a, b e c.

a) Se B
$$\rightarrow$$
 a \in P \Rightarrow δ (B, a) = A

b) Se B
$$\rightarrow$$
 a C \in P \Rightarrow δ (B, a) = C

- c) Para todo $a \in VT$, $\delta(A, a) = -$ (indefinido)
- **b)** Para mostrar que T(M)=L(G), deve-se mostrar:

$$-L(G) \subseteq T(M)$$

$$2 - T(M) \subseteq L(G)$$

Exemplos:

1)
$$S \rightarrow a S \mid b B$$

 $B \rightarrow b B \mid c$
2) $S \rightarrow b A \mid a B \mid b \mid \epsilon$
 $A \rightarrow b A \mid a B \mid b$
 $B \rightarrow b B \mid a C$
 $C \rightarrow b C \mid a A \mid a$

1

Teorema 3.3: "Se M = (K,
$$\Sigma$$
, δ , qo, F) é um A. F., então \exists uma G.R. G = (Vn, Vt, P, S) | L(G) = T(M)"

Prova:
$$a - Mostrar$$
 que G existe $b - Mostrar$ que $L(G) = T(M)$

a) Seja
$$M = (K, \Sigma, \delta, qo, F)$$
 um A.F.D..
Construa uma G.R. $G=(Vn, V_T, P, S)$, como segue:

$$1 - Vn = K$$

$$2 - Vt = \Sigma$$

$$3 - S = qo$$

4 – Defina P, como segue:

a) Se
$$\delta(B, a) = C$$
 então adicione $B \rightarrow aC$ em P

b) Se
$$\delta(B, a) = C \wedge C \in F$$
, adicione $B \rightarrow a$ em P

c) Se qo
$$\in$$
 F,

então
$$\varepsilon \in T(M)$$
.

Neste caso,
$$L(G) = T(M) - \{\epsilon\}$$
, portanto, construa uma $GR \ G_1 \mid L(G_1) = L(G) \ U \ \{\epsilon\}$
Senão $\epsilon \notin T(M)$ e $L(G) = T(M)$

b) Para mostrar que L(G) = T(M), devemos mostrar que:

$$1 - T(M) \subseteq L(G)$$

$$2 - L(G) \subseteq T(M)$$

Exemplos:

δ	a	b
*→S	A	В
A	S	C
В	C	S
C	В	A

δ	a	b	b
→S	S	B	-
В	-	B	A
*A	-	-	-

III.5 - Minimização de Autômatos Finitos

<u>Definição</u>: Um AFD M = $(K, \Sigma, \delta, qo, F)$ é <u>mínimo</u> se:

- 1 Não possui estados <u>inacessíveis (inalcançáveis)</u>;
- 2 Não possui estados mortos;
- 3 Não possui estados <u>equivalentes</u>.

Alg. para Construção das Classes de Equivalência

- 1 − Crie, um estado φ para representar as indefinições;
- 2 Divida K em duas CE : F e K-F;
- 3 Aplique a lei de formação de CE, até que nenhuma nova CE seja formada

Algoritmo para construção do A.F. Mínimo

Entrada: Um A.F.D. $M = (K, \Sigma, \delta, qo, F);$ Saída: Um AFD Mínimo $M' = (K', \Sigma, \delta', qo', F') \mid M' \equiv M;$ Método:

- 1 Elimine os estados Inacessíveis;
- 2 Elimine os estados Mortos;
- 3 Construa todas as CE de M.
- 4 Construa M', como segue:
 - a) $K' = \{ CE \}$
 - b) qo' = CE que contiver qo;
 - c) $F' = \{ [q] | \exists p \in F \text{ em } [q] \}$
 - d) $\delta' = \delta'([p], a) = [q] \Leftrightarrow \delta(p_1, a) = q_1 \text{ est\'a em}$ $M \land p_1 \in [p] \land q_1 \in [q]$

Exemplo: Minimize o seguinte A.F.D.

δ	a	b
* → A	G	В
В	${f F}$	${f E}$
\mathbf{C}	C	G
* D	A	\mathbf{H}
E	${f E}$	A
${f F}$	B	\mathbf{C}
* G	G	\mathbf{F}
H	H	D

Exercícios:

1)

<u> </u>			
δ	a	b	c
* → S	A	B,F	S,F
A	S,F	C	A
В	A	•	B,S,F
C	S,F	•	A,C
* F	-	•	-

2)

<u> </u>		
δ	0	1
→S	A,D	E
A	A , B	C,E
В	В	•
C	A , B	•
D	B,D	C
*E	E	E

3)

<u> </u>			
δ	a	b	
→ q0	q1	q2	
q1	q3	•	
q2	•	q4	
q2 * q3	q3	q3	
*q4	q4	q4	

4)

<u>-, </u>			
δ	a	b	C
* → S	A,C	A,D	B, C
*A	A	A	В
*B	A	A	-
*C	C	D	C
* D	C	-	C

III.6 – Conjuntos e Expressões Regulares

Conjuntos Regulares (C.R.)

```
 \begin{array}{lll} 1-(*\ definição\ matemática\ (primitiva)\ *) \\ & Seja\ \Sigma\ um\ alfabeto\ qualquer. \\ & Definimos\ um\ C.R.\ sobre\ \Sigma,\ como\ segue: \\ & a-\varphi\ é\ um\ C.R.\ sobre\ \Sigma; \\ & b-\{\epsilon\}\ é\ um\ C.R.\ sobre\ \Sigma; \\ & c-\{a\},\ para\ todo\ a\in\Sigma,\ é\ um\ C.R.\ sobre\ \Sigma; \\ & d-Se\ P\ e\ Q\ são\ C.R.\ sobre\ \Sigma,\ então: \\ & 1-P\cup Q & (união), \\ & 2-P.Q\ (ou\ PQ) & (concatenação), \\ & 3-P\ * & (fechamento). \\ & Também\ são\ C.R.\ sobre\ \Sigma; \\ & e-Nada\ mais\ é\ C.R. \end{array}
```

- 2 Linguagens geradas por <u>Gramáticas Regulares</u>.
- 3 Linguagens reconhecidas por <u>Autômatos Finitos</u>.
- 4 Linguagens denotados por Expressões Regulares.

Expressões Regulares (E.R.)

Definição:

```
1 - φ é uma E.R. e denota o C.R. φ
2 - ε é uma E.R. e denota o C.R. {ε}
3 - a ∈ Σ, é uma E.R. e denota o C.R. { a }
4 - Se p e q são E.R. denotando P e Q, então:
a - (p | q) é uma E.R. denotando P ∪ Q
b - (p.q) ou (pq) é uma E.R. denotando PQ
c - (p)* é uma E.R. denotando P*
5 - Nada mais é E.R.
```

Observações:

```
1 – ordem de precedência: 1) * 2) . 3) |
```

2 – abreviaturas usuais:

$$p^{+} = pp^{*}$$

$$p^{?} = p \mid \epsilon$$

$$p^{\pounds}q = p(qp)^{*}$$

Relação entre E.R. e C.R.

- 1 Para todo C.R. ∃ uma E.R. que o denota
- 2 Para toda E.R. é possível construir seu C.R.
- $3 E1 \equiv E2 \Leftrightarrow elas denotam o mesmo C.R.$

III.6.1 – Autômatos Finitos com ε-transições

AFND-ε: $M = (K, \Sigma, \delta, qo, F)$, onde:

 $K, \Sigma, qo, F \rightarrow mesma definição dos A.F.D.$

 $\delta \rightarrow K \times \Sigma \cup \{ \epsilon \} = \rho(K)$, onde $\rho(K) \subseteq K$

Observações:

- ε-transições permitem movimentos independentes da entrada;
- O uso de ε-transições não incrementa a expressividade dos AF;
- Todo AFND-ε possui um AFND equivalente;

III.6.2 – Correspondência entre ER e AF

Para mostrarmos que toda ER possui um AF correspondente, é suficiente mostrarmos que toda ER básica $(\Phi, \epsilon, a, (\alpha \mid \beta), (\alpha \cdot \beta))$ e α^* - onde α , β são ERs quaisquer) possui um AF correspondente:

1 - AF representando a ER " ϕ " (M|T(M) = ϕ)

2 – AF representando a ER " ϵ " (M|T(M) = { ϵ })

3 - AF representando a ER "a" $(M|T(M) = \{a\})$

4 – AF representando a ER " $\alpha \mid \beta$ " (M|T(M) = { $\alpha \mid \beta$ })

5 – AF representando a ER " α . β " (M|T(M) = { α . β })

5 – AF representando a ER " α *" (M|T(M) = { α *})

OBS. Figuras extraídas de J.L.M.Rangel Neto (COPPE/UFRJ-PUC/RJ)

III.6.3 - Transformação de ER para AF

Diferentes métodos (estratégias):

- Método de Thompson
- Método de De Simoni (Adap. de Rennes/AHO)

III.6.3.1 - Método de Thompson

- Consiste em:
 - 1 Decompor uma ER em suas sub-expressões constituintes;
 - 2 Construir o AFNDε de cada subexpressão;
 - 3 Compor o AFNDε final (usando ε-transições)
- Exemplo:

III.6.3.2 - Método de De Simone

• Consiste em:

- 1 Construir uma árvore binária costurada correspondente a ER, onde os nodos internos representam os operadores e os nodos folhas representam os operandos;
- 2 Numerar os nodos folha de 1 a n;
- 3 Compor o estado inicial do AF com o número das folhas alcançadas no percurso da Árvore, de acordo com as rotinas "Descer" e "Subir", a partir do nodo raiz;
- 3.1 Caso o percurso atinja o final da Árvore, inclua " λ " na composição do estado;
- 4 Definir as transições do estado inicial, com os símbolos dos nodos folha "i" que compõe esse estado, como sendo um estado composto pelos nodos alcançados a partir do caminhamento na árvore a partir da costura de cada nodo "i", usando as rotinas "Descer" e "Subir";
- 4.1 Caso o percurso atinja o final da Árvore, inclua " λ " na composição do estado;
- 5 Repetir o passo 4 para todos os estados novos criados;
- 6 Definir como finais, os estados que contenham "λ"

• Exemplos:

Rotinas Descer:

Rotinas Subir:

III.7 – Lema do Bombeamento para Linguagens Regulares - "Pumping Lemma"

Objetivo: demonstrar que algumas linguagens não são regulares.

Lema do Bombeamento : Se L é uma LR, então existe uma constante $n \ge 1$ | para todo $w \in L$, $|w| \ge n$, podemos escrever w como x y z onde:

- $|xy| \le n$
- $y \neq \varepsilon$
- $xy^iz \in L$ para qualquer $i \ge 0$

Idéia geral: O "Lema do Bombeamento", ou "Pumping Lemma", nos diz que qualquer sentença w de uma linguagem regular pode ser decomposta em três partes: w = xyz, de maneira que a repetição (o bombeamento) de y, qualquer número de vezes, resulta em sentenças xy z que também pertencem à linguagem; ou seja, as sequências xz, xyz, xyyz, ..., também serão sentenças da linguagem em questão.

Para mostrar que uma linguagem **não é regular**, basta encontrar uma sentença w qualquer pertencente à linguagem, que não satisfaça o lema do bombeamento – isto é, não possa ser decomposta em xyz de forma que seja possível *bombear* y e continuar na linguagem.

Exemplos:

III.8 – Propriedades e Prob. de Decisão de CR

Propriedades Básicas de C.R.

- 1 União
- 2 Concatenação
- 3 Fechamento
- **4** − Complemento: Se $L_1 \subseteq \Sigma^*$ é CR $\Rightarrow \Sigma^*$ L_1 também é CR
- 5 Intersecção: Se L1 e L2 são CR ⇒ L1 ∩ L2 também é CR

Problemas de Decisão sobre C.R.

- $1 Membership : x \in T(M)$?
- $2 \text{Emptiness} : T(M) = \varphi$?
- 3 Finiteness : T(M) é finita?
- 4 Containment : T(M1) ⊆ T(M2)?
- 5 Equivalencia : T(M1) = T(M2)?
- 6 Intersecção Vazia : T(M1) ∩ T(M2) = φ ?

III.9 – Implementação de Autômatos Finitos

Formas básicas para implementação de A.F.:

- Implementação Específica
- Implementação Geral (ou genérica);

III.10 - AF com saída

A funcionalidade dos AF pode ser estendida (sem alterar a classe de linguagens reconhecida), atribuindo-se ações (significados):

- Às Transições (Máquinas de Mealy);
- Aos estados (Máquinas de Moore)

III.11 – Aplicações de A.F. e E.R.

- 1 Compiladores Análise Léxica
- 2 Editores de texto busca/substituição
- 3 Reconhecimento de padrões
- 4 Outras: S.O, Redes, Hipertexto, Robótica, Criptografia, ...