Problem 1

Proof.

- i) Clearly $B \subseteq A \cup B$. Let $x \in A \cup B$. If $x \in B$, then trivially $x \in B$. Consider the case when $x \notin B$. Then $x \in A$. Since $A \subset B$, it follows $x \in B$. Therefore $A \cup B \subseteq B \implies A \cup B = B$.
- ii) Clearly $A \cap B \subseteq A$. Let $x \in A$. Since $A \subset B$, $x \in B$ meaning $x \in A \cap B$. Therefore $A \subseteq A \cap B \implies A \cap B = A$.

Problem 2

a)
$$(2,1,-3) + P = (0,2,4) \implies P = (0,2,4) - (2,1,-3) = (-2,1,7)$$

b)
$$(1,-1,4) + 2P = 3P + (2,0,5) \implies P = (1,-1,4) - (2,0,5)$$

= $(-1,-1,-1)$

Problem 3

Adding the equations gives

$$\frac{3P+Q=(1,0,1,-4)}{P-Q=(2,1,2,3)} \implies 4P=(3,1,3,-1) \implies P=\left(\frac{3}{4},\frac{1}{4},\frac{3}{4},-\frac{1}{4}\right).$$

which when plugged into the second equation

$$Q = P - (2, 1, 2, 3) = \left(-\frac{5}{4}, -\frac{3}{4}, -\frac{5}{4}, -\frac{13}{4}\right).$$

Problem 4

Yes. Choosing p = (4, 5, -3) gives $p \cdot A = 4 + 5 - 9 = 0$ and $p \cdot B = 8 - 5 - 3 = 0$.

Problem 5

Let p = (x, y).

a)
$$|p| < |p - A| \implies x^2 + y^2 < (x - 4)^2 + (y - 2)^2$$

 $\implies 0 < -8x + 16 - 4y + 4$
 $\implies y < -2x + 5$

b) The statement is the same as saying the distance from (0,0) to p to A is contant, which by definition is an ellipse with foci (0,0) and A and constant distance B. Note this is a non empty set of points since B = B0, works.

c) No such points in the plane satisfy this. The smallest possible sum is achieved when p is on the line between (0,0) and A (derived from

Eli Griffiths MATH 140C HW #1

the equations similarity to an ellipse but the point can be on the interior), but this gives a total distance of $|A| = 2\sqrt{5} > 4$. Thus the graph would be empty

Problem 6

Proof. We proceed with induction on n. Consider the base case n=1. Trivially $|p_1| \leq |p_1|$. Fix $n \in \mathbb{N}$ and assume that the statements holds. Consider the n+1 case. Note that if $s=p_{n+1}+p_n$ that

$$|p_1 + \ldots + p_n + p_{n+1}| = |p_1 + \ldots + p_{n-1} + s|$$

$$\leq |p_1| + \ldots + |p_{n-1}| + |s| \qquad (\star)$$

$$\leq |p_1| + \ldots + |p_{n-1}| + |p_n| + |p_{n+1}|$$

where (\star) follows from the induction hypothesis and the last line from the triangle inequality applied to |s|. Thus the n+1 case holds, hence the statement holds for all n.

Problem 7

Proof. By triangle inequality

$$|p| = |(p-q) + q| \le |p-q| + |q| \implies |p-q| \ge |p| - |q|$$

 \Diamond

which was to be shown.

Problem 8

Proof.

a) Note that since |u|, |v|, |w| > 0, $(|u| + |v| + |w|)^2 \ge |u|^2 + |v|^2 + |w|^2$ meaning

$$|p|^2 = u^2 + v^2 + w^2 = |u|^2 + |v|^2 + |w|^2 \le (|u| + |v| + |w|)^2.$$

Rooting both sides then gives $|p| \le |u| + |v| + |w|$.

b) Since $|p|^2 = u^2 + v^2 + w^2$ and $u^2, v^2, w^2 \ge 0$

$$|p|^2 \ge u^2 = |u|^2 \implies |u| \le |p|$$

$$|p|^2 \ge v^2 = |v|^2 \implies |v| \le |p|$$

$$|p|^2 \ge w^2 = |w|^2 \implies |w| \le |p|$$

 \Diamond

 \Diamond

Problem 9

Intersections are Convex

Proof. Let $A, B \subseteq \mathbb{R}^n$ be convex and $x, y \in A \cap B$. Then $x, y \in A$ and $x, y \in B$. Since both sets are convex, for all $\lambda \in (0, 1)$

$$\lambda x + (1 - \lambda)y \in A$$

$$\lambda x + (1 - \lambda)y \in B$$

Therefore $\lambda x + (1 - \lambda)y \in A \cap B$, hence $A \cap B$ is convex.

Unions arent always Convex

Proof. Note that any singleton $\{x\} \subseteq \mathbb{R}^n$ is convex since $\lambda x + (1 - \lambda)x = x \in \{x\}$. However, for $x \neq y$, $\{x\} \cup \{y\}$ cannot be convex, otherwise $\frac{1}{2}(x+y) \in \{x,y\}$ which would imply x=y.