STAT 3006: TUTORIAL 1

- 1. Bayesian Estimator.
- Shortest Confidence Interval.

BAYESIAN STATISTICS

- Three features of Bayesian statistics:
- Likelihood function $L(\theta | X_1, X_2, ..., X_n)$, where $X_1, X_2, ..., X_n \sim p(x | \theta)$.
- Prior distribution $\pi(\theta)$ for θ (our initial knowledge about θ).
 - Expert advice
 - Previous study
- Posterior distribution $\pi(\Theta|X_1, X_2, ..., X_n)$ for Θ .
 - Bayes rule
- Remark:
 - M.L.E. = $\operatorname{argmax} L(\Theta | X_1, X_2, \dots, X_n)$ (frequentist).
 - Posterior mean = the mean of the posterior distribution $\pi(\Theta|X_1, X_2, ..., X_n)$ (Bayesian).
 - Why use posterior mean?
 - Posterior mean minimizes the Bayesian risk $\int \int (\delta \theta)^2 p(X|\theta) \pi(\theta) \ dX d\theta$.

TWO IMPORTANT NOTES

• Prior and posterior are about Θ (parameters of interest)

•Likelihood function is about the sample $X_1, X_2, ..., X_n$.

CONJUGATE PRIOR

- (*) Prior and posterior belong to the same distribution family.
- When condition (*) holds, we always refer to $\pi(\theta)$ as a conjugate prior for $p(x|\theta)$.

• Examples:

- Normal distribution is conjugate for normal distribution.
- Gamma distribution is conjugate for exponential distribution.
- Gamma distribution is conjugate for poisson distribution.
- Beta distribution is conjugate for Bernoulli distribution.

Remark:

- When we calculate $\pi(\Theta|X_1,X_2,...,X_n)$, we only focus on the part that involves Θ . The part is called kernel.
- Once we have derived the kernel, we can determine which distribution the posterior distribution is.

NORMAL IS CONJUGATE FOR NORMAL

- $X_1, X_2, ..., X_n \sim N(\mu, 1)$
- Prior $\mu \sim N(a, b^2)$
 - The parameters in the prior (a and b) are called hyper-parameters.
 - Hyper-parameters are selected based on our experiences.
- Posterior $\pi(\mu|X_1, X_2, ..., X_n) \propto e^{-\frac{(\mu \eta)^2}{2\tau^2}}$
 - $\eta = \frac{\frac{a}{b^2} + n \, \bar{X}}{\frac{1}{b^2} + n}$, $\tau^2 = \frac{1}{n + \frac{1}{b^2}}$
 - The kernel is a normal kernel
 - The posterior distribution of μ is a normal distribution with mean η and variance τ^2 .

GAMMA IS CONJUGATE FOR EXPONENTIAL

- $X_1, X_2, \dots, X_n \sim Exp(\lambda)$
- $\lambda \sim \text{Gamma}(\alpha, \beta); \ \pi(\lambda) \propto \lambda^{\alpha-1} e^{-\beta \lambda}.$
- Posterior distribution is $Gamma(n + \alpha, \sum X_i + \beta)$.

GAMMA IS CONJUGATE FOR POISSON

- $X_1, X_2, ..., X_n \sim Poi(\lambda)$
- $\lambda \sim \text{Gamma}(\alpha, \beta); \ \pi(\lambda) \propto \lambda^{\alpha-1} e^{-\beta \lambda}.$
- Posterior distribution is $Gamma(\sum X_i + \alpha, n + \beta)$.

BETA IS CONJUGATE FOR BERNOULLI

- $X_1, X_2, ..., X_n \sim Ber(\lambda)$
- $\lambda \sim Beta(a,b); \pi(\lambda) \propto \lambda^{a-1}(1-\lambda)^{b-1}.$
- Posterior distribution is Beta($\sum X_i + a, n \sum X_i + b$).

• From the four examples, can you see the relationship between Bayesian estimator and MLE?

BISECTION METHOD

• Find a zero point for a univariate and continuous function.

Algorithm:

```
INPUT: continuous and univariate function f and interval [a,b] with f(a)f(b) < 0.

INITIALIZE: a^{(0)} \leftarrow a and b^{(0)} \leftarrow b, and t \leftarrow 0.

Repeat

calculate c^{(t)} \leftarrow \frac{a^{(t)} + b^{(t)}}{2};

If f(c^{(t)}) \cdot f(a^{(t)}) < 0, let a^{(t+1)} \leftarrow a^{(t)} and b^{(t+1)} \leftarrow c^{(t)};

else if f(c^{(t)}) \cdot f(b^{(t)}) < 0, let a^{(t+1)} \leftarrow c^{(t)} and b^{(t+1)} \leftarrow b^{(t)};

else break;

t \leftarrow t + 1;

Until |a^{(t)} - b^{(t)}| < \epsilon.

OUTPUT: a^{(t)}, b^{(t)} in the last iteration. c^{(t)} \leftarrow \frac{a^{(t)} + b^{(t)}}{2} is the final answer.
```

THE SHORTEST CONFIDENCE INTERVAL

- Problem: we have a density function f(y), and we want to find the interval [a,b] with the smallest length satisfying $\int_a^b f(y) dy = \alpha$. (α is large, e.g. 0.95.)
- Details to calculate the [a,b] can be found in the lecture note, but why the shortest confidence interval must satisfy $f(a) = f(b) = some \lambda$?
- Assume there exists a number m s.t. f(x) is strictly increasing when x < m, and f(x) is strictly decreasing when x > m.
- If one interval $[a^*, b^*]$ satisfy $\int_{a^*}^{b^*} f(y) dy = \alpha$ and $f(a^*) = f(b^*)$, then for any other interval [a,b] with $\int_a^b f(y) dy = \alpha$, we always have $b^* a^* > b^* a^*$.
- Proof:...