Chapter 1

Simplex Method

1.1 Various Forms and Conversion

1.1.1 General Form

$$\max / \min Z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$
subject to $a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n (\le \text{ or } = \text{ or } \ge) b_1$

$$a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n (\le \text{ or } = \text{ or } \ge) b_2$$

$$\dots \qquad \dots$$

$$a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n (\le \text{ or } = \text{ or } \ge) b_m$$

$$x_i \ge 0 (j = 1, 2, \dots, n)$$

1.1.2 Compact Form

$$\max / \min Z = \sum_{j=1}^{n} c_j x_j$$

subject to
$$\sum a_{ij} x_j (\le \text{ or } = \text{ or } \ge) b_i (i = 1, 2, \dots, m)$$

$$x_j \ge 0 (j = 1, 2, \dots, n)$$

Here $c_j = \text{cost coefficient}$

1.1.3 Matrix Form

$$\max / \min Z = cX$$

subject to $AX (\le \text{ or } = \text{ or } \ge)b$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}_{m \times n} \qquad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}_{n \times 1} \qquad c = \begin{pmatrix} c_1 & c_2 & \dots & c_n \end{pmatrix}_{1 \times n} \quad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}_{m \times 1}$$

1.1.4 Canonical Form

maximize
$$Z = \sum_{j=1}^{n} c_j x_j$$

subject to $\sum a_{ij} x_j \le b_i$ $(i = 1, 2, ..., m)$
 $x_j \ge 0$ $(j = 1, 2, ..., n)$

The Characteristic of the Canonical Form

- 1. All decision variables are non-negative.
- 2. All constraints are of the (\leq) type, and
- 3. Objective function is of maximization type.

1.1.5 Conversion between forms

Between maximization and minimization

We can change the type of objective function by multiplying the objective function with -1.

$$\min Z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \Leftrightarrow \max G = -Z = -c_1 x_1 - c_2 x_2 - \dots - c_n x_n$$

Between \leq and \geq

We can change the type of constraints by multiplying the constraints with -1.

$$a_1x_1 + a_2x_2 + \dots + a_nx_n \le b_1 \Leftrightarrow -a_1x_1 - a_2x_2 - \dots - a_nx_n \ge b_1$$

Between equations and inequalities

We can transform an equation to two inequalities.

$$a_1x_1 + a_2x_2 = b_1 \Leftrightarrow a_1x_1 + a_2x_2 \leq b_1 \text{ and } a_1x_1 + a_2x_2 \geq b_1 = -a_1x_1 - a_2x_2 \leq -b_1$$

Changing an unrestricted variable to restricted variable

We can change an unrestricted variable to restricted variable by introducing two additional variables. For example, let x_3 is unrestricted then by introducing two additional variables we get $x_3 = x_3' - x_3$ " then we can add the restriction to the newly introduced variable, i.e., $x_3', x_3" \ge 0$.

1.1.6 Standard Form

- 1. All the decision variables are non-negative.
- 2. All the constraints are expressed in the form of equation, except the non-negativity constraints which remain inequality (≥ 0).
- 3. The right-hand side of each constraint equation is non-negative.
- 4. The objective function is of the form maximization or minimization.

1.2 Basic Variable

Let there are n variables and there are m constants and $(n \ge m)$. If we get a unique solution by solving the system of equation of order m (by assuming remaining n-m variables to 0), then these m variables are called basic variables. Otherwise, these are called non-basic variables. Let us look at an example.

Example.

$$x_1 + x_2 + 4x_3 + 2x_4 + 3x_5 = 8$$
$$4x_1 + 2x_2 + 2x_3 + x_4 + 6x_5 = 4$$

Here, n = 5 and m = 2, so here 2 variables can be basic variable and 5-2=3 variables are non-basic variable.

1.3. SIMPLEX METHOD

Case 1: Let $x_2 = x_4 = x_5 = 0$. Then the system of equations become

$$x_1 + 4x_3 = 8$$
$$4x_1 + 2x_3 = 4$$

By solving this system we get a unique solution: $x_1 = 0$ and $x_3 = 2$. So here, x_1 , x_3 are feasible basic variables and x_2 , x_4 , x_5 are non-basic variables.

Case 2: Let $x_3 = x_4 = x_5 = 0$. Then the system of equations become

$$x_1 + 2x_2 = 8$$
$$4x_1 + 2x_2 = 4$$

By solving this system we get a unique solution: $x_1 = -6$ and $x_3 = 14$. So here, x_1 , x_2 are basic infeasible $(x_1 \ngeq 0)$ variables and x_3 , x_4 , x_5 are non-basic variables.

Case 3: Let $x_1 = x_2 = x_5 = 0$. Then the system of equations become

$$4x_3 + 2x_4 = 8$$
$$2x_3 + 2x_4 = 4$$

By solving this system we get infinitely many solutions. So these are not basic variables.

Case 4: Let $x_1 = x_3 = x_4 = 0$. Then the system of equations become

$$x_2 + 3x_5 = 8$$
$$2x_3 + 6x_4 = 4$$

There are no solution of this system. So these are not basic variables.

Definition 1 (Degenerate Solution). If at least one of the basic feasible solution is zero then that solution is degenerate solution.

So, Case 1: of above example is a degenerate solution $[\because x_1 = 0]$ and Case 2: of above example is a non-degenerate solution $[\because x_1, x_2 \neq 0]$.

1.3 Simplex Method

Problem 1.3.1.

maximize
$$Z = 3x_1 + 2x_2$$

subject to $-x_1 + 2x_2 \le 4$
 $3x_1 + 2x_2 \le 14$
 $x_1 - 2x_2 \le 3$
 $x_1, x_2 \ge 0$

Steps:

- Transform the problem into standard form.
- For basic variable: check if the slack variables are basic or not
- $c_B \rightarrow$ coefficient of basis in objective function
- Tab: table number
- Basis: basic variables
- c_j constants of objective function (cost coefficient)

¹If a variable/solution satisfies all constraints and non-negativity condition then it will be a feasible solution.

- \bar{c}_j row = $c_j \sum c_B A_j$ (here A_j is the coefficient in the j-th column)
- Z calculation: $Z = \sum c_B Z_j$
- Pivot column: maximization: max in \bar{c}_i row; minimization: min in \bar{c}_i row (purple in table)
- Pivot row: check positive ratio of constants and pivot column, i.e., ratio = $\frac{\text{constants}}{\text{pivot column}}$ and select minimum ratio as pivot row, same for maximization and minimization problem. (green in table)
- Intersection of pivot column and pivot row is pivot element (blue in table)
- For next iteration make the pivot element 1 and other element in pivot column 0 by doing row operations.
- Unbounded check: If ratio in pivot column is all negative then the problem is unbounded.
- For Optimal solution check:
 - In maximization, no positive element should appear in \bar{c}_j row
 - In minimization, no negative element should appear in \bar{c}_j row
- Alternative solution check: If any non-basic variable is zero in final \bar{c}_i row then alternative solution exists.

Solution. First we need to transform the problem into standard form. Standard form:

maximize
$$Z = 3x_1 + 2x_2$$

subject to $-x_1 + 2x_2 + s_1 = 4$
 $3x_1 + 2x_2 + s_2 = 14$
 $x_1 - 2x_2 + s_3 = 3$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

Taking $x_1 = x_2 = 0$, $S_1 = 4$, $S_2 = 14$, $S_3 = 3$ are the initial basic feasible variables.

		$c_j \rightarrow$	3	2	0	0	0	Constant/
Tab	c_B	basis	$\overline{x_1}$	x_2	S_1	S_2	S_3	Solution
I	0	S_1	-1	2	1	0	0	4
	0	S_2	3	2	0	1	0	14
	0	S_3	1	-1	0	0	1	3
		$\bar{c_j}$ row		2	0	0	0	Z=0
II	0	S_1	0	1	1	0	1	7
	0	S_2	0	5	0	1	-3	5
	3	x_1	1	-1	0	0	1	3
		$\bar{c_j}$ row		5	0	0	-3	Z=9
	0	S_1	0	0	1	-1/5	8/5	6
	2	x_2	0	1	0	1/5	-3/5	1
III	3	x_1	1	0	0	1/5	2/5	4
		$\bar{c_j}$ row	0	0	0	-1	0	Z=14
IV	0	S_1	0	0	5/8	-1/8	1	15/4
	2	x_2	0	1	3/8	1/8	0	13/4
	3	x_1	1	0	-1/4	1/4	0	5/2
		$\bar{c_j}$ row	0	0	0	-1	0	Z=14

So,
$$(x_1, x_2) = (4, 1)$$
, $Z_{max} = 14$
 $(x_1, x_2) = (5/2, 13/4)$, $Z_{max} = 14$
Solution:

$$\{(x_1, x_2) = \lambda(4, 1) + (1 - \lambda)(5/2, 13/2), 0 < \lambda < 1\}$$

1.3. SIMPLEX METHOD 5

Problem 1.3.2.

maximize
$$Z = 5x_1 + 4x_2$$

subject to $6x_1 + 4x_2 \le 24$
 $x_1 + 2x_2 \le 6$
 $-x_1 + x_2 \le 1$
 $x_2 \le 2$
 $x_1, x_2 \ge 0$

Solution. First we need to transform the problem into standard form. Standard form:

maximize
$$Z = 5x_1 + 4x_2$$

subject to $6x_1 + 4x_2 + S_1 = 24$
 $x_1 + 2x_2 + S_2 = 6$
 $-x_1 + x_2 + S_3 = 1$
 $x_2 + S_4 = 2$
 $x_1, x_2, S_1, S_2, S_3, S_4 \ge 0$

Taking $x_1 = x_2 = 0$ we get, $S_1 = 24$, $S_2 = 6$, $S_3 = 1$, $S_4 = 2$. So S_1 , S_2 , S_3 , S_4 are initial basic feasible variables.

	$c_j \rightarrow$		5	4	0	0	0	0	Constant/
Tab	c_B	basis	$\overline{x_1}$	x_2	S_1	S_2	S_3	$\overline{S_4}$	Solution
Ι	0	S_1	6	4	1	0	0	0	24
	0	S_2	1	2	0	1	0	0	6
	0	S_3	-1	1	0	0	1	0	1
	0	S_4	0	1	0	0	0	1	2
		$\bar{c_j}$ row	5	4	0	0	0	0	Z=0
	5	x_1	1	2/3	1/6	0	0	0	4
	0	S_2	0	4/3	-1/6	1	0	0	2
II	0	S_3	0	5/3	1/6	0	1	0	5
11	0	S_4	0	1	0	0	0	1	2
		$\bar{c_j}$ row	0	2/3	-5/6	0	0	0	Z=20
	5	x_1	1	0	1/4	1/2	0	0	3
III	4	x_2	0	1	-1/8	3/4	0	0	3/2
	0	S_3	0	0	3/8	-5/4	1	0	5/2
	0	S_4	0	0	1/8	-3/4	0	1	1/2
		$\bar{c_j}$ row	0	0	-3/4	-11/2	0	0	Z=21

So,
$$(x_1, x_2) = (5, 4), Z_{\text{max}} = 21$$

1.3.1 Artificial Variables Technique for Finding the first basic feasible solution

There are two technique to find first basic feasible solutions by using artificial variables. They are

- (i) The big M method/M-technique/Method of penalty
- (ii) Two phase method

The big M method

When the constraints are of $(\geq \text{ or } =)$ types then we may not get basic feasible solution easily. For this type of problem we use big M method to ensure that we get basic initial feasible solution.

Problem 1.3.3. Solve the following LPP:

minimize
$$Z = -3x_1 + x_2 + x_3$$

subject to $x_1 - 2x_2 + x_3 \le 11$
 $-4x_1 + x_2 + 2x_3 \ge 3$
 $2x_1 - x_3 = -1$
 $-x_1, x_2, x_3 \ge 0$

Solution. Standard form:

minimize
$$Z = -3x_1 + x_2 + x_3$$

subject to $x_1 - 2x_2 + x_3 + x_4 11$
 $-4x_1 + x_2 + 2x_3 - x_5 = 3$
 $2x_1 - x_3 = -1$
 $-x_1, x_2, x_3, x_4, x_5 \ge 0$

Taking $x_1 = x_2 = 0$ we get, $x_3 = 1$, $x_4 = 10$, $x_5 = -1$. But this is not basic feasible solution as $x_5 \ngeq 0$. So we need to use big M method.

Standard form:

minimize
$$Z = -3x_1 + x_2 + x_3 + M(x_6 + x_7)$$
 subject to
$$x_1 - 2x_2 + x_3 + x_4 11$$

$$-4x_1 + x_2 + 2x_3 - x_5 + x_6 = 3$$

$$2x_1 - x_3 + x_7 = -1$$

$$-x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0$$

M is a large positive number.

Taking $x_1 = x_2 = x_3 = x_5 = 0$ we get, $x_4 = 11$, $x_6 = 3$, $x_7 = 1$. This is a basic feasible solution.

m i		$c_j \rightarrow$	-3	1	1	0	0	M	M	Constant/
Tab	c_B	basis	x_1	x_2	x_3	x_4	x_5	x_6	x_7	Solution
	0	x_4	1	-2	1	1	0	0	0	11
	M	x_6	-4	1	2	0	-1	1	0	3
Ι	M	x_7	2	0	1	0	0	0	1	1
		$\bar{c_j}$ row	-3 + 6M	1-M	1-3M	0	M	0	0	Z = 4M
	0	x_4	3	-2	0	1	0	0	1	10
	M	x_6	0	1	0	0	-1	1	-2	1
II	1	x_3	-2	0	1	0	0	0	1	1
		$\bar{c_j}$ row	-1	1-M	0	0	M	0	3M - 1	Z = 1 + M
	0	x_4	3	0	0	1	-2	2	-5	12
	1	x_2	0	1	0	0	-1	1	-2	1
III	1	x_3	-2	0	1	0	0	0	1	1
		$\bar{c_j}$ row	-1	0	0	0	1	M-1	M+1	Z=2
	-3	x_1	1	0	0	1/3	-2/3	2/3	-5/3	4
IV	1	x_2	0	1	0	0	-1	1	-2	1
	1	x_3	0	0	1	2/3	-4/3	4/3	-7/3	9
		$\bar{c_j}$ row	0	0	0	1/3	1/3	M - 1/3	M - 2/3	Z = -2

So,
$$(x_1, x_2, x_3) = (4, 1, 9), Z_{\min} = -2$$

- In minimization: The sign of M in objective function is positive (+)
- In maximization: The sign of M in objective function is negative (-)

1.3. SIMPLEX METHOD 7

- Add artificial variables in only (\geq or =) type of constraints
- There can be three cases in the c_B column
 - No M is present in c_B column then the solution is optimal solution.
 - -M is present in c_B column, but the coefficient is 0 in 'solution' column then the solution is optimal solution.
 - -M is present in c_B column, and the coefficient is non-zero in 'solution' column then the solution is non-optimal solution even though the solution maintains the optimal test for stopping the simplex method.