# Universidade Federal do Paraná

Loirto Alves dos Santos Luiz Henrique Pires de Camargo

Vírus de computador

Uma abordagem do código polimórfico

## Universidade Federal do Paraná

# Loirto Alves dos Santos Luiz Henrique Pires de Camargo

## Vírus de computador

Uma abordagem do código polimórfico

Monografia apresentada junto ao curso de Ciência da Computação, do Departamento de Informática, do Setor de Ciências Exatas, como requisito parcial para a obtenção do título de Bacharel.

Orientador: Prof. Dr. Bruno Müller Junior



# Agradecimentos

- A Deus
- A nosso esforço e dedicação que, apesar de serem poucos, nos valeram muito.
- Aos professores pela paciência e dedicação

## Resumo

Este trabalho tem por finalidade realizar um estudo sobre alguns algoritmos e técnicas de polimorfismo utilizadas para criar vírus de computador e o quanto elas tornam difícil - e algumas vezes até mesmo impossível - a detecção do código malicioso.

Palavras-chave: Vírus, Vírus de computador, Vírus polimórfico, polimorfismo.

# **Abstract**

This paper aims to conduct a study of some algorithms and techniques used to create polymorphic computer viruses and how they make it difficult - and sometimes even impossible - to detect the malicious code.

Keywords: Virus, Computer Virus, Polymorphic virus, Polymorphism.

# Sumário

| Αį      | Agradecimentos<br>Resumo<br>Abstract |                          |   |  |  |  |  |
|---------|--------------------------------------|--------------------------|---|--|--|--|--|
| Re      |                                      |                          |   |  |  |  |  |
| ΑI      |                                      |                          |   |  |  |  |  |
| Sumário |                                      |                          |   |  |  |  |  |
| 1       | Intro                                | dução                    | 1 |  |  |  |  |
| 2       | Rev                                  | visão bibliográfica      |   |  |  |  |  |
|         | 2.1                                  | Antivírus                | 2 |  |  |  |  |
|         | 2.2                                  | História                 | 2 |  |  |  |  |
|         | 2.3                                  | Antivirus e SO           | 2 |  |  |  |  |
|         |                                      | 2.3.1 DOS                | 3 |  |  |  |  |
|         |                                      | 2.3.2 Windows            | 3 |  |  |  |  |
|         |                                      | 2.3.3 Linux              | 3 |  |  |  |  |
|         | 2.4                                  | Técnicas de detecção     | 4 |  |  |  |  |
|         |                                      | 2.4.1 Virus de pendrive  | 4 |  |  |  |  |
|         |                                      | 2.4.2 Virus de macro     | 4 |  |  |  |  |
|         |                                      | 2.4.3 Virus Polimórficos | 5 |  |  |  |  |

| 3  | Des                              | Descrição conceitual do trabalho |                            |    |  |
|----|----------------------------------|----------------------------------|----------------------------|----|--|
| 4  | Deta                             | alhes d                          | o trabalho                 | 7  |  |
| 5  | 5 Conclusão                      |                                  |                            |    |  |
| Re | ferêr                            | ncias B                          | ibliográficas              | 9  |  |
| A  | A Estrutura de Arquivos PE e ELF |                                  |                            |    |  |
|    | A.1                              | Arquiv                           | o PE                       | 11 |  |
|    |                                  | A.1.1                            | Estrutura de arquivo PE    | 11 |  |
|    |                                  | A.1.2                            | PE - Cabeçalho             | 12 |  |
|    |                                  | A.1.3                            | Tabela de Seções           | 12 |  |
|    |                                  | A.1.4                            | Páginas de imagem          | 13 |  |
|    |                                  | A.1.5                            | Importação                 | 13 |  |
|    |                                  | A.1.6                            | Exportação                 | 14 |  |
|    |                                  | A.1.7                            | Correção                   | 14 |  |
|    |                                  | A.1.8                            | Recursos                   | 14 |  |
|    |                                  | A.1.9                            | Debug                      | 14 |  |
|    | A.2                              | Arquiv                           | o ELF                      | 14 |  |
|    |                                  | A.2.1                            | A estrutura do arquivo ELF | 15 |  |

|          | _ |  |  |  |
|----------|---|--|--|--|
|          | 1 |  |  |  |
|          |   |  |  |  |
|          |   |  |  |  |
| l        |   |  |  |  |
| Capítulo |   |  |  |  |
| Capitalo | _ |  |  |  |

# Introdução

Nossa vida moderna é extremamente dependente de computadores: desktops, notebooks, netbooks, PDA, celulares, satélites, veículos, microondas, televisores, gps, bancos, energia elétrica, comunicações ..., enfim, uma gama enorme de exemplos poderiam ser citados. Dentro deste contexto, os virus de computador (e suas variações) são uma ameaça real à qual todos - direta ou indiretamente - estamos expostos.



# Revisão bibliográfica

### 2.1 Antivírus

Os antivirus<sup>4</sup> são softwares criados para analisar, detectar, eliminar e impedir os virus informáticos ou ao menos diminuir a intensidade do ataque. Foram criados pela necessidade de que os virus impediam a utilização do sistema. Os virus atuais são mais poderosos, e ainda existem outros não tão fortes que são utilizados como piada ou somente para incomodar, se espalhar pelos computadores sem fazer mal à máquina e sim à paciência do usuário.

## 2.2 História

O primeiro antivirus foi criado em 1988 por Denny Yanuar Ramdhani. Era uma vacina ao virus Brain, um virus de boot, além de remover o virus imunizava o sistema contra uma nova infecção. A forma de desinfectar era remover as entradas do virus no pc e já bloqueava ests fraquezas para impedir um novo ataque. Ainda em 1988 um virus foi projetado para infectar com a "ajuda"da BBS, nisto John McAfee, desenvolveu o VirusScan, primeira vacina para o virus.

## 2.3 Antivirus e SO

Por enquanto existe uma dependência dos virus para com os sistemas operacionais, pois afetam o modo em que o executável interage com o sistema, e pedidos

2.3. Antivirus e SO 3

especiais são feitos pelo próprio SO e cada qual o faz de forma diferente, ou seja um virus que funciona em windows nunca funcionaria em linux, só se fossem chamadas suas APIs, como feito pelo wine no sistema linux, e mesmo assim não teria todo o potencial de infecção, já que é preparado para a estrutura do sistema para o qual foi projetado.

#### 2.3.1 DOS

No sistema DOS o anti-virus não funciona em "tempo real", somente como scanner, normalmente era colocado no boot do sistema para varrer o sistema em busca de novas infecções, e outras verificações somente se chamado pelo usuário. Sendo infectado no meio de uma tarefa o virus já se propagou e danificou diversas areas e somente será percebido na nova execução do antivirus.

#### 2.3.2 Windows

Já no windows o antivírus protege as principais formas de ataque, para este sistema. continua a utilizar o scanner, como no DOS. Ganhou a função de monitoramento, com diversas ferramentas para encontrar padrões de virus. A cada executável aberto há esta verificação, o que compromete o desempenho do computador. A cada periodo pré-determinado há uma varredura sobre os arquivos do sistema para verificar arquivos infectados, remove o virus e tenta manter a integridade do arquivo. Se encontra um padrão de infecção mas ainda não existe "vacina"para remoção diversos sistemas de proteção utilizam a ferramenta de "quarentena", ou seja mantém o arquivo infectado em um espaço que não pode ser "alcançado"pelo usuário até que possa restaurar o arquivo, ou ao menos conheça o virus.

#### 2.3.3 Linux

Não são muito populares neste sistema. Por enquanto não há uma grande preocupação, nem pela parte de usuários e nem pela parte de desenvolvedores. O que existe hoje são alguns sistemas que detectam virus para windows pelo linux, para fazer uma manutenção do sistema. E mesmo assim não são tão "potentes" quanto os de windows, não há muita preocupação em desenvolve-los.

## 2.4 Técnicas de detecção

São diversas as técnicas de detecção dentre elas: Heuristica: Que significa descobrir. Estuda o comportamento, estrutura e caracteristicas para analisar se é perigoso ao sistema ou inofensivo. Emulação: Abre o arquivo em uma virtualização do sistema, e analisa os efeitos sobre o sistema. Arquivo monitorado: Mantém um arquivo no sistema e o monitora, se ele modificar alguma caracteristica é porque o sistema foi infectado. E então o antivirus toma as precauções necessárias. Assinatura do virus: Com um trecho de código do virus tem-se sua assinatura, quando tenta detectar o virus busca-as para analisar se já não existe dentro do banco de dados do antivirus. Temos o falso positivo, o antivirus com base no comportamente do arquivo o considera infectado, o que dificulta para usuários comuns identificarem as anomalias e utilizar com segurança o sistema.

### 2.4.1 Virus de pendrive

No sistema operacional windows eles se utilizam do arquivo autorun.inf para se autoexecutar e infectar a máquina. sua limpeza é simples, existem alguns antivirus que alteram o conteudo do autorun e tiram a permissão de gravação do arquivo, e alguns usuários criam um diretorio com onome autorun.inf e isso impede de criar o tal arquivo. os virus em si funcionam de forma interessante, temos por exemplo o conficker q apos infectar o pc ele passa a infectar td pendrive q nel for utilizado, assim como enquanto conectado a internet ele baixa diversos outros virus e com isso acaba com o sistema e arquivos do usuario. sua prevenção é simples e sua remoção é complicada. ou seja se todos fossem informados de como o virus funciona a prevenção seria óbvia e este tipo de virus seria obsoleto.

#### 2.4.2 Virus de macro

Os virus de macro são utilizados dentro de, aparentemente, inofensiveis arquivos estilo "office"são scripts executados automaticamente para facilitar a visualização dos arquivos e fazer eles executarem o que teriam de executar, os criadores de virus aproveitam que macros tem poder de execução e infectam os arquivos colocando dentre a macro código malicioso que o usuário previamente nem notará, e após execução do arquivo já estará infectado e infectará outros. A maior praga disso esta nas apre-

sentações de slides, como foi muito difundido por e-mails para passar imagens com animações. O virus se instala dentro destes arquivos e o usuário desconhece que por trás de tudo que está visualizando um virus acabou de se instalar em sua máquina.

### 2.4.3 Virus Polimórficos

Ainda não existe uma forma eficaz para se detectar este tipo de virus, eles não tem um padrão a ser identificado. O que se faz é criar um arquivo de vitima e este fica sempre sendo monitorado, mas o bom virus polimorfico já está residente em memória e faz o sistema "ver"o arquivo como inalterado e com isso não há mais nada a ser feito. seria uma limpeza manual, sem o auxilio de outra maquina seria inviavel, enquanto o virus se infecta o usuario tentaria localiza-lo e deleta-lo uma guerra perdida.

Capítulo 3

Descrição conceitual do trabalho

Capítulo 4

Detalhes do trabalho



# Conclusão

# Referências Bibliográficas

- [1] Mental Driller. Interview with the mental driller/29a, março de 2002. Disponível em http://www.thehackademy.net/madchat/vxdevl/interviews/mentaldriller% 2301.txt.
- [2] Mark A. Ludwig. *The Giant Black Book of Computer Viruses*. American Eagle Publications, Inc, Post Office Box 1507. Show Low, Arizona, 1 edition, 1995.
- [3] Peter Szor. Hunting for metamorphic. Disponível em http://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf.
- [4] Peter Szor. *The Art of Computer Virus Research and Defense*. Addison Wesley Professional, fevereiro de 2005.
- [5] Wikipedia. Computer virus Wikipedia, The Free Encyclopedia, 2012. [Online; acessado em 11-Abr-2012].. Disponível em http://en.wikipedia.org/w/index.php?title=Computer\_virus&oldid=486444876.





# Estrutura de Arquivos PE e ELF

## A.1 Arquivo PE

O formato de arquivo PE (Portable Executable Format File) é o último utilizado para plataforma Microsoft.

## A.1.1 Estrutura de arquivo PE.

| DOS 2 - Cabeçalho EXE compatível    |                                     |
|-------------------------------------|-------------------------------------|
| Não utilizado                       |                                     |
| OEM - Identificador                 | Seção DOS 2.0 (para compatibilidade |
| OEM - Info                          | com DOS somente)                    |
| Offset para cabeçalho PE            |                                     |
| DOS 2.0 Stub Program & Reloc. Table |                                     |
| Não utilizado                       |                                     |
| PE - Cabeçalho                      | Palavras limitadas a 8 bytes        |
| Tabela de seções                    |                                     |
| Image Pages                         |                                     |
| · Info de Importação                |                                     |
| · Info de Exportação                |                                     |
| · Info de correção                  |                                     |
| · Info de recursos                  |                                     |
| · Info de debug                     |                                     |

A.1. Arquivo PE

### A.1.2 PE - Cabeçalho

Temos no cabeçalho uma estrutura dividida em campos com palavras de 4 bytes, enfatizamos alguns deles abaixo:

Tipo de CPU: o campo informa qual o tipo de CPU para a qual o executavel foi projetado.

Número de Seções: o campo informa o número de entradas na tabela de seções.

Marca de Tempo/Data: Armazena a data de criação ou modificação do arquivo.

Flags: Bits para informar qual o tipo de arquivo ou quando há erros em sua estrutura.

LMAJOR/LMINOR: maior e menor versao do linkador para o executável.

Seção de alinhamento: O valor de alinhamento das seções. Deve ser múltiplo de 2 dentre 512 e 256M. O valor padrão é 64K.

OS MAJOR/MINOR = Versões limitantes (maior e menor) do sistema operacional.

Tamanho da Imagem: Tamanho virtual da imagem, contando todos os cabeçalhos. E o tamanho total deve ser multiplo da seção de alinhamento.

Tamanho do Cabeçalho: Tamanho total do cabeçalho. O tamanho combinado de cabeçalho do DOS, cabeçalho do PE e a tabela de seções.

FILE CHECKSUM: Checksum do arquivo em si, é setado como 0 pelo linkador.

Flags de DLL: Indica qual o tipo de leitura que deve ser feita, processos de inicialização e terminação de leitura e de threads.

Tamanho reservado da pilha: tamanho de pilha reservado ao programa, o valor real é o valor efetivo, se o valor reservado não tiver no sistema ele será paginado.

Tamanho efetivo da pilha: tamanho efetivo.

Tamanho Reservado da HEAP: Tamanho reservado a HEAP.

Tamanho efetivo da HEAP: Valor efetivo para a HEAP.

### A.1.3 Tabela de Seções

O número de entradas da tabela de seções e dado pelo campo de número de seções que está no cabeçalho. A entradas se iniciam em 1. Segue imediatamente

A.1. Arquivo PE

o cabeçalho do PE. A ordem de dados e memória é selecionado pelo ligador. Os endereços virtuais para s seções são confirmados pelo ligador de forma crescente e adjacente, e devem sem multiplos da Seção de alinhamento, que também é fornecida no cabeçalho do PE. Abaixo alguns de uma seção nesta tabela, divididos em palavras de 8 bytes:

Nome da Seção: Campo com 8 bytes nulos para representar o nome da seção em ASCII.

Tamanho virtual: O tamanho virtual é o alocado quando a seção é lida.

Tamanho físico: O tamanho de dados inicializado no arquivo para a seção. É multiplo do campo de alinhamento do arquivo do cabeçalho do PE e deve ser menor ou igual ao tamanho virtual.

Offset físico: Offset para apntar a primeira página da seção. É relativo ao inicio do arquivo executavel.

Flags da seção: Flags para sinalizar se a seção é de código, se está inicializada ou não, se deve ser armazezada, compartilhada, paginável, de leitura ou para escrita.

### A.1.4 Páginas de imagem

A página de imagens contém todos os dados inicializados e todas as seções. As seções são ordenadas pelo endereço virtual reservado a elas. o Offset que aponta para a primeira página é especificado na tabela de seções como visto na subseção acima. Cada seção inicia com um multiplo da seção de alinhamento.

### A.1.5 Importação

A informação de importação inicia com uma tabela de diretórios de importação que descreve a parte principal da informação de importação. A tabela de diretórios de importação contém informação de endereços que são utilizados nas referencias de correção para pontos de entrada com uma DLL. A tabela de diretórios de importação consiste de um vetor de entradas de diretórios, uma entrada para cada referencia a DLL. A última entrada é nula o que indica o fim da tabela de diretórios.

A.2. Arquivo ELF

### A.1.6 Exportação

A informação de exportação inicia com a tablela de diretórios de exportação que descreve a parte principal da informação de exportação. A tabela de diretórios de exportação contém informação de endereços que são utilizados nas referencias de correção para os pontos de entrada desta imagem.

### A.1.7 Correção

A tabela de correção contém todas as entradas de correção da imagem. O tamanho total de dados de correção no cabeçalho é o número de bytes na tabela de correção. A tabela de correção é dividida em blocos de correção. Cada bloco representa as correções para um página de 4K bytes. Correções que são resolvidados pelo ligador necessitam ser processadas pelo carregador, a menos que a imagem não possa ser carregada na Base de imagens especificada no cabeçalho do PE.

#### A.1.8 Recursos

Recursos são indexados por uma arvore binária ordenada. O design como um todo pode chegar a 2<sup>31</sup> nivéis, entretanto, NT utiliza somente 3 niveis: o mais alto com o *tipo*, no subsequente *nome*, depois a *língua*.

### A.1.9 Debug

A informação de debug é definido por um debugador que não é controlado pelo PE ou pelo ligador. Somente é definido pelo PE os dados da tabela de diretório de debug.

## A.2 Arquivo ELF

Explicação

A.2. Arquivo ELF

# A.2.1 A estrutura do arquivo ELF

## Arquivo Realocável

| Cabeçalho ELF                              |
|--------------------------------------------|
| Tabela do cabeçalho do programa (opcional) |
| seção 1                                    |
| seção 2                                    |
|                                            |
| seção n                                    |
| Tabela de cabeçalho de seção               |

## Arquivo Carregável

| Cabeçalho ELF                          |
|----------------------------------------|
| Tabela do cabeçalho do programa        |
| Segmento 1                             |
|                                        |
| Segmento 2                             |
|                                        |
| Tabela de cabeçalho de seção(opcional) |