Business Analytics

Session 3b. Generalization and Bias-Variance Tradeoff

Renyu (Philip) Zhang

New York University Shanghai

Spring 2019

Generalization

Population v.s. Sample

- We have a sample data $\mathcal{D} = \{X_{ij}, Y_i : 1 \leq i \leq n, 1 \leq j \leq p\}$.
- The sample data comes from a population.
 - Think about surveys: Understand the broader population through a (much) smaller sample.
- Both the sample and the population comes from some probablistic data generating process.
- Generalization: Use the sample to reason about the data generate process and the population.

Regression and Classification in a Unified Framework

• Goal: Given data $\mathcal{D} = \{X_{ij}, Y_i : 1 \leq i \leq n, 1 \leq j \leq p\}$, fit a model $\hat{f}(\cdot)$, such that

the generalization error $\mathbb{E}[\mathcal{L}(\mathbf{Y} - \hat{\mathbf{f}}(\mathbf{X}))]$ is minimized,

where $\mathcal{L}(\cdot)$ is a loss/error function, and the expectation is taken with respect to the distribution that generates the data.

• Loss function $\mathcal{L}(\cdot)$: $(\mathbf{Y} - \hat{\mathbf{f}}(\mathbf{X}))^2$, $|\mathbf{Y} - \hat{\mathbf{f}}(\mathbf{X})|$, $\mathbf{1}\{\mathbf{Y} \neq \hat{\mathbf{f}}(\mathbf{X})\}$, etc.

Train-Validate-Test

- 1. Separate data into three groups: training, validation and testing.
- 2. Training: Use training data to build different candidates of models $\hat{f}_1(\cdot), \hat{f}_2(\cdot), \dots, \hat{f}_L(\cdot)$.
- 3. Validation: Use validation data to estimate the generalization error $\mathbb{E}[\mathcal{L}(\mathbf{Y} \hat{\mathbf{f}}_i(\mathbf{X}))]$ of each model i, and pick up the best one with the smallest generalization error, $\hat{\mathbf{f}}_*(\cdot)$.
- 4. Testing: Use the tesing data to assess the performance of the chosen model $\hat{f}_*(\cdot)$.

The estimated error on the testing data is an unbiased estimation of the generalization error.

k-fold Cross Validation

- Alternative approach: k-fold cross validation (CV).
- CV is more stable (with smaller variance), requires fewer data, and slower than the train-validation-test approach.
- In practice, we often use k=5 to 10.
- Stratification: Relative class frequencies in each fold reflect relative class frequencies on the whole dataset.

Bias-Variance Decomposition

- Assume the data (X_i, Y_i) are generated according to $Y_i = f(X_i) + \epsilon_i$ where $\mathbb{E}(\epsilon_i) = 0$. We want to find $\hat{f}(\cdot)$ (from data) so that $Y_i \approx \hat{f}(X_i)$ and the error is as small as possible.
- Bias-Variance decomposition with squared error:

$$\underbrace{\mathbb{E}(\mathbf{Y}_{i} - \hat{\mathbf{f}}(\mathbf{X}_{i}))^{2}}_{\text{Squared Error}} = \underbrace{\text{Var}(\hat{\mathbf{f}}(\mathbf{X}_{i}))}_{\text{Variance}} + \underbrace{\mathbb{E}(\hat{\mathbf{f}}(\mathbf{X}_{i}) - \mathbf{f}(\mathbf{X}_{i}))^{2}}_{\text{Bias}} + \underbrace{\text{Var}(\mathbf{Y}_{i})}_{\text{Noise}}$$

- Variance: How much your model will change if you train on a different data set? Measures overfitting.
- Bias: What is the inherent error with your model even if you have infinitely many training data?
 Measures underfitting.
- Noise: How big is the intrinsic noise?

Bias-Variance Tradeoff

 More "complex" model overfits the training data, variance ↑ and bias ↓.

 Less "complex" model underfits the training data, variance ↓ and bias ↑.

k-NN for Different Number of Neighbors

Addressing Over-fitting: Regularization

- Regularization means to penalize overly complex models.
 - The fitted model will not over fit the training data.
- Examples:

Lasso linear regression:
$$\min_{\hat{\beta}} \textit{SSE} + \alpha \sum_{j=1}^p |\hat{\beta}_j|$$

Ridge linear regression:
$$\min_{\hat{\beta}} \textit{SSE} + \alpha \sum_{j=1}^p |\hat{\beta}_j|^2$$

Lasso logistic regression:
$$\max_{\hat{\beta}} \text{Log-Likelihood} + \alpha \sum_{j=1}^{p} |\hat{\beta}_{j}|$$

Ridge logistic regression:
$$\max_{\hat{\beta}} \mathsf{Log-Likelihood} + \alpha \sum_{i=1}^p |\hat{\beta}_j|^2$$

- The parameter $\alpha \geq 0$ trades off bias (under-fitting) and variance (over-fitting).
 - The larger the α , the more we penalize over-fitting.

Lasso (L_1) and Ridge (L_2) Regularizations

$$f(x) = (2x - 1)^2$$

 $f(x) + L2 = (2x - 1)^2 + \alpha x^2$
 $f(x) + L1 = (2x - 1)^2 + \alpha |x|$

- lacktriangle Lasso and Ridge regressions will yield coefficients \hat{eta} that "shrink" to zero.
- The most explanatory covariates will be retained.
- Lasso typically yields a much smaller subset of nonzero coefficients than ridge or OLS (i.e., fewer nonzero entries in $\hat{\beta}$).
- Use train-valid-test or cross validation to tune the parameter α .

Homework

• Finish Homework 3 (NO need to submit it).

• Read "The Analytics Edge", Chapters 8.