

Ethylene Glycol Toxicity (2)

Component of antifreeze and solvents.

<u>Symptoms</u>: Neurologic and cardiopulmonary abnormalities, flank pain, and renal failure.

Needle shaped oxalate crystals in urine.

<u>Treatment</u>:

- -Administration of ethanol or fomepizole
- -Administration of folic acid, thiamine, and pyridoxine.
- -Hemodialysis for removal of toxic metabolites and parent compound.

Lactic Acidosis (2)

Cause: Increase in lactate production or Decrease in lactate utilization.

Treatment:

- -Correction of the underlying disorder & reversal of circulatory failure is the 1ry therapy.
- -NaHCO3 administration indicated if severe acidosis pH <7.1 or loss of buffering capacity (HCO3<5 mEq/L).
- -Hemodialysis may be indicated in resistant cases.
- -Alternative therapies:

Carbicarb: equimolar mixture of sodium carbonate and sodium bicarbonate.

Dichloroacetate: activates pyruvate dehydrogenase and increases oxidation of pyruvate.

Renal **(2)**

(UAG +ve)

	Distal (RTA Type 1)	Proximal (RTA Type 2)	Hyporeninemic/ Hypoaldosteronism (RTA Type 4)	
Defect	 Idiopathic Familial Sjogren syndrome Hypercalciuria, RA, SCA, Amphotericin Impaired distal tubule H+ excretion 	 Idiopathic, Multiple myeloma Carbonic anhydrase inhibitor Heavy metals Hypocalcemia, Vit D deficiency Impaired proximal tubule HCO3⁻ absorption +/- glycosuria, aminoaciduria, phosphaturia 	 Diabetes ACE inhibitor Tubulointerstitial nephritis NSAIDS Heparin Adrenal insufficiency (Obstrucuropathy) K+sparing diuretics Aldosterone deficiency/ resistance 	
Plasma HCO3 ⁻	Variable; usually severe < 10 mEq/L	Less severe, 12-20 mEq/L	> 15 mEq/L	
Urine PH	> 5.3	> 5.3 if serum HCO3 ⁻ above reabsorptive threshold < 5.3 if serum HCO3 ⁻ below reabsorptive threshold	< 5.3	

Plasma K+	Low	Low	High
UAG	+ve	Variable	+ve
Associated Condition	Renal stones	RicketsOsteomalaciaFanconi syndrome	None
Treatment	Alkali therapy	Alkali therapy or Thiazide (in resistant cases)	Treat the cause

Note

! IV HCO3 (1)

Isotonic sodium bicarbonate 1.26%. (HCO3 $^-$ =150 & Na+ = 150)

Hypertonic sodium bicarbonate 8.4%. (HCO3 $^-$ =1000 & Na+ = 1000)

- I -Isotonic (1.26%) sodium bicarbonate may be used to correct acidosis associated with renal failure or to induce a forced alkaline diuresis.
- -The hypertonic (8.4%) solution (1mEq HCO3 ⁻/mL) is rarely required in intensive care practice to raise blood pH in severe metabolic acidosis.
- I -Excessive administration may cause hyperosmolality, hypernatraemia, hypokalaemia & sodium overload.
- I -Fluid and potassium deficit should be corrected first.
- Both arterial and venous values should be monitored. (2)
- -Continuous or intermittent hemodialysis may also be used to correct severe, refractory acidosis (2)
- In the setting of a combined metabolic and respiratory acidosis, correction of the respiratory acidosis component should be addressed prior to administration of bicarbonate or initiation of hemodialysis.-threatening acidosis. (2)

References:

- (1) Oxford Handbook of Critical Care 3rd edition
- (2) Washington Manual of Critical Care