БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Лабораторная работа №2

Решение систем линейных уравнений, нахождение определителя и обратной матрицы методом квадратного корня

Выполнил: Студент 2 курса 5 группы ФПМИ Карасик Семён

Руководитель: Радкевич Елена Владимировна

Оглавление

Лабора	аторная работа №2	. 1
	тановка задачи	
	псание метода нахождения решений системы алгебраических уравнений методом	
квад	цратного корня	.3
	ождение определителя матрицы	
	ождение обратной матрицы	
	ечание для несимметричной исходной матрицы	
	тинг программы	
	дные данные	
	ходные данные	

Постановка задачи

Решить систему линейных уравнений методом квадратного корня. Вычислить определитель системы. Найти ей обратную матрицу. Проверить обратную матрицу. Вывести невязку.

Описание метода нахождения решений системы алгебраических уравнений методом квадратного корня

Метод квадратного корня служит для решения СЛАУ с симметричной матрицей. То есть Ax = f , где $A = A^T$, при этом A - положительно определена.

Любую симметричную матрицу можно представить в виде $A = S^T S$, где S верхняя треугольная матрица со строго положительными элементами на главной диагонали. Тогда наше уравнение принимает вид: $S^T S x = f$, тогда можем разбить данное уравнение на два:

- 1. Ly = f
- $2. \quad Sx = y$

Так как матрица S^T является нижней треугольной, легко получить формулу для вычисления у:

$$y_i = \frac{f_i - \sum_{k=1}^{i-1} s_{ki} y_k}{s_{ii}}$$
, $i = \overline{1, n}$

И х:

$$x_{j} = \frac{y_{j} - \sum_{k=j+1}^{n} S_{jk} x_{k}}{S_{jj}}$$
 , $j = \overline{n,1}$

В случае унитарной матрицы A($A\!=\!A^*\!=\!(\overline{A})^{\! T}$) разложение принимает вид $A\!=\!S^{\! T}DS$

Приведем формулы для нахождения матриц S и D:

$$d_{ii} = sign(a_{ii} - \sum_{k=1}^{i-1} |s_{ki}|^2 d_{kk}) \quad i = \overline{1, n}$$

$$s_{ii} = \sqrt{\left|a_{ii} - \sum_{k=1}^{i-1} |s_{ki}|^2 d_{kk}\right|} \quad i = \overline{1, n}$$

$$s_{ij} = \frac{a_{ij} - \sum_{k=1}^{i-1} \overline{s_{ki}} d_{kk} s_{kj}}{s_{ii} d_{ii}}, \quad j = \overline{i+1, n}$$

$$s_{ii} = 0, j < i$$

Нахождение определителя матрицы

$$detA = det(S^*DS) = detS^* detD detS = det^2 S detD = \prod_{i=1}^n s_{ii}^2 d_{ii}$$

Нахождение обратной матрицы

 $AX = E => X = A^{-1}$, поэтому для нахождения обратной матрицы достаточно решить п уравнений, правая часть которых последовательно равна $(1,0,\dots,0)^T,(0,1,0,\dots,0)^T,\dots,(0,\dots,0,1)^T$

Замечание для несимметричной исходной матрицы

Метод квадратного корня применим только для симметричных матриц, если исходная матрица G не является симметричной, то можем удовлетворить условиям для применения метода квадратного корня следующим образом: $G^TG=G^Tf$, тогда $A=G^TG$ будет симметричной матрицей, при этом корни уравнения не изменятся. Существуют следующие связи между A и G: $|detG|=\sqrt{detA}$

$$|detG| = \sqrt{detA}$$
$$G^{-1} = A^{-1}G^{T}$$

Листинг программы

```
//lab2, v20. Simon Karasik, course 2, group 5.
                                                            int n = a.size(), m = v.size();
#include <fstream>
                                                            Vector res = Vector(v.size(), 0);
#include <iostream>
                                                            for (int i = 0; i < n; i++)
#include <iomanip>
                                                               for (int j = 0; j < m; j++)
#include <algorithm>
                                                                 res[i] += a[i][j] * v[j];
#include <vector>
                                                            return res;
#include <cmath>
#include <stdexcept>
                                                          void printVector(const Vector & v, ostream & os, bool
using namespace std;
                                                                     useScientific = false) {
                                                            if (useScientific) {
typedef vector<double> Vector;
                                                               os << scientific;
typedef vector</br>
Vector> Matrix;
                                                               for (int i = 0; i < v.size(); i++)
const double EPS = 10E-4:
                                                                 os \ll v[i] \ll '\t';
bool eq(double x, double y) {
                                                               os << setprecision(4) << fixed;
  return abs(x - y) < EPS;
                                                               for (int j = 0; j < v.size(); j++)
                                                                 os << setw(8) << v[i];
Matrix loadIdentity(int n) {
                                                            os << endl;
  Matrix mat(n);
  for (int i = 0; i < n; i++) {
                                                          void printMatrix(const Matrix & mat, ostream & os,
     mat[i] = Vector(n, 0);
                                                                     bool useScientific = false) {
                                                            for (int i = 0; i < mat.size(); i++)
     mat[i][i] = 1;
                                                               printVector(mat[i], os, useScientific);
  return mat;
Matrix loadMatrix(int n, int m) {
                                                          double sqr(double x) {
                                                            return x * x;
  Matrix mat(n);
  for (int i = 0; i < n; i++)
     mat[i] = Vector(m, 0);
                                                          Matrix transpose(const Matrix & mat) {
  return mat:
                                                            int n = \text{mat.size}(), m = \text{mat}[0].\text{size}();
Matrix operator*(const Matrix & a, const Matrix & b)
                                                            Matrix res = loadMatrix(m, n);
                                                            for (int i = 0; i < n; i++)
  if (a[0].size() != b.size())
                                                               for (int j = 0; j < m; j++)
     throw invalid argument("Bad size of
                                                                 res[i][i] = mat[i][i];
matricies."):
                                                            return res:
  int n = a.size(), m = b[0].size(), l = a[0].size();
  Matrix p = loadMatrix(n, m);
  for (int i = 0; i < n; i++)
                                                          int sgn(double x) {
     for (int j = 0; j < m; j++) {
                                                                  if (x > 0)
        double sum = 0;
                                                                          return 1;
        for (int k = 0; k < 1; k++)
                                                                  else if (x < 0)
          sum += a[i][k] * b[k]
                                                                          return -1;
                                                                  else
        p[i][j] = sum;
                                                                          return 0;
     }
  return p;
                                                          Vector squareRootMethod(
                                                                  const Matrix & a,
Vector operator*(const Matrix & a, const Vector & v)
                                                                  const Vector & f,
                                                                  double & det,
  if (a[0].size() != v.size())
                                                                  Matrix & s,
     throw invalid argument("Bad size.");
                                                                  Vector & d,
```

```
Vector & y)
        int n = a.size();
                                                            int main() {
        s = loadIdentity(n);
                                                              ifstream fin("input.txt");
  d = Vector(n);
                                                              ofstream fout("output.txt");
        for (int i = 0; i < n; i++) {
                                                              fin >> n;
                 double t = 0;
                                                              Matrix a = loadMatrix(n, n);
                 for (int k = 0; k < i; k++)
                                                              Vector f = Vector(n);
                          t += sqr(s[k][i]) * d[k];
                                                              for (int i = 0; i < n; i++)
                 d[i] = sgn(a[i][i] - t);
                                                                 for (int j = 0; j < n; j++)
                                                                    fin >> a[i][j];
                 s[i][i] = sqrt(abs(a[i][i] - t));
                                                              for (int i = 0; i < n; i++)
                                                                 fin >> f[i];
                 for (int j = i + 1; j < n; j++) {
                          double t = 0;
                                                                    f = transpose(a) * f;
                          for (int k = 0; k < i; k++)
                                                              a = transpose(a) * a;
                                  t += s[k][i] * d[k] *
                                                                    double det;
s[k][j];
                                                                    Matrix s;
                          s[i][j] = (a[i][j] - t) / (s[i][i] *
                                                                    Vector d, y;
d[i]);
                                                                    const Vector x = squareRootMethod(a, f, det,
                                                            s, d, y);
                                                              det = sqrt(det);
                                                              Vector error = a * x;
        y = Vector(n, 0);
                                                              for (int i = 0; i < x.size(); i++)
        for (int i = 0; i < n; i++) {
                                                                 error[i] = f[i];
                 double t = 0;
                                                                    fout << "A^T * A:" << endl;
                 for (int k = 0; k < i; k++)
                          t += s[k][i] * y[k];
                                                                    printMatrix(a, fout);
                                                              fout << "A^T * f:" << endl;
                 y[i] = (f[i] - t) / s[i][i];
        }
                                                              printVector(f, fout);
                                                                    fout << "S:" << endl;
        Vector x(n, 0);
                                                                    printMatrix(s, fout);
        for (int j = n - 1; j \ge 0; j - 0) {
                                                                    fout << "diag(D):" << endl;
                 double t = 0;
                                                                    printVector(d, fout);
                                                                    fout << "y:" << endl;
                 for (int k = j + 1; k < n; k++)
                          t += d[k] * s[j][k] * x[k];
                                                                    printVector(y, fout);
                                                              fout << "x:" << endl;
                 x[j] = (y[j] - t) / (d[j] * s[j][j]);
                                                              printVector(x, fout);
                                                              fout << "|detA| = " << det << endl;
                                                              fout << "error of x:" << endl;
        det = 1;
        for (int i = 0; i < n; i++)
                                                              printVector(error, fout, true);
                 det *= d[i] * sqr(s[i][i]);
                                                                    return 0;
        return x;
}
```

Входные данные

```
input.txt:
5
0.4974 0.0000 -0.1299 0.0914 0.1523
-0.0305 0.3284 0.00000 -0.0619 0.0203
0.0102 -0.0914 0.5887 0.0112 0.0355
0.0305 0.0000 -0.0741 0.5887 0.0000
0.0203 -0.0305 0.1472 -0.0122 0.4263
1.5875 -1.7590 1.4139 1.7702 -2.07675
```

Выходные данные

```
output.txt
A^T * A:
 0.2498 -0.0116 -0.0579 0.0652 0.0842
 -0.0116 0.1171 -0.0583 -0.0210 -0.0096
 -0.0579 -0.0583 0.3906 -0.0507 0.0639
 0.0652 -0.0210 -0.0507 0.3590 0.0079
 0.0842 -0.0096 0.0639 0.0079 0.2066
A^T * f:
  0.8695 -0.6435 0.1893 1.3373 -0.6290
S:
 0.4998 -0.0231 -0.1158 0.1304 0.1684
 0.0000 0.3415 -0.1786 -0.0526 -0.0166
 0.0000 0.0000 0.5876 -0.0766 0.1368
 0.0000 0.0000 0.0000 0.5774 -0.0078
 0.0000 0.0000 0.0000 0.0000 0.3990
diag(D):
  1.0000 1.0000 1.0000 1.0000 1.0000
у:
  1.7398 -1.7668 0.1281 1.7791 -2.3937
x:
  5.0010 -3.9554 2.0057 3.0003 -5.9993
error of x:
2.2204e-16 1.1102e-16 0.0000e+00 0.0000e+00 -1.1102e-16
|detA| = 2.3103e-02
```