cisco live!

IPv6 Security in the Local Area with First Hop Security (FHS)

Éric Vyncke, Distinguished Engineer @evyncke

BRKENT-3002

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 17, 2022.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKENT-3002

Agenda

- Integrity of Routing and Addressing
- Integrity of <MAC, IPv6> Addresses Bindings
- Address Availability
- More Information on First Hop Security (FHS)
- IPv6 Security Beyond Local Area
- Summary

Integrity of Routing and Addressing

StateLess Address Auto Configuration SLAAC: Rogue Router Advertisement

- Router Advertisements (RA) contains:
 - Prefix to be used by hosts
 - Data-link layer address of the router

RA w/o Any Authentication Gives Exactly Same Level of Security as DHCPv4 (None)

1. RS:

Data = Query: please send RA

2. RA:

 Data = options, prefix, lifetime, A+M+O flags

Mitigating Rogue RA: Host Isolation

- Prevent Node-Node Layer-2 communication by using:
 - Private VLANs (PVLAN) where nodes (isolated port) can only contact the official router (promiscuous port)
 - · WLAN in 'AP Isolation Mode'
 - 1 VLAN per host (SP access network with Broadband Network Gateway)
- Link-local multicast (RA, DHCP request, etc.) sent only to the local official router: no harm
 - Side effect: breaks Duplicate Address Detection (DAD)

First Hop Security: RAguard since 2010 (RFC 6105)

Port ACL

blocks all ICMPv6 RA from hosts

interface FastEthernet0/2
ipv6 traffic-filter ACCESS_PORT in

access-group mode prefer port

RAguard

```
ipv6 nd raguard policy HOST
  device-role host
ipv6 nd raguard policy ROUTER
  device-role router
vlan configuration 1
  ipv6 nd raguard attach-policy HOST
interface Ethernet0/0
  ipv6 nd raguard attach-policy ROUTER
```


General principles on FHS command interface

Each FH feature provides commands to attach policies to targets: global, VLAN, port vlan configuration 100
 ipv6 nd raguard attach-policy host device-tracking
 interface Ethernet 0/0
 ipv6 nd raguard attach-policy router

- Packets are processed by the lowest-level matching policy for each feature
 - 1. Two RA guard policies are configured: policy "host" and device-tracking on VLAN 100, policy "router" on interface Ethernet 0/0 (part of VLAN 100)
 - 2. Packets received on Ethernet 0/0 are processed by policy "router" AND by policy device-tracking "default"
 - 3. Packets received on any other port of VLAN 100 are processed by policy "host" AND by policy device-tracking "default"

Configuration examples

Step1: Configure	Step2: Attach policies to target				
policies	Vlan	Port			
ipv6 nd raguard policy HOST device-role host	vlan configuration 100-200 ipv6 nd raguard attach-policy HOST				
ipv6 nd raguard policy ROUTER device-role router		interface Ethernet0/0 ipv6 nd raguard attach-policy ROUTER			
device-tracking policy NODE tracking enable limit address-count 10 security-level guard	vlan configuration 100,101 ipv6 snooping attach-policy NODE				
device-tracking policy SERVER trusted-port tracking disable security-level glean		interface Ethernet1/0 device-tracking attach-policy SERVER			

Older CLI for NDP snooping was 'ipv6 snooping' it is now 'device-tracking'

BRKENT-3002

Device Roles

- For RA-guard, devices can have different roles
 - Host (default): can only receive RA from valid routers, no RS will be received
 - Router: can receive RS and send RA
 - Monitor: receive valid and rogue RA and all RS
 - Switch: RA are trusted and flooded to synchronize states
- For device-tracking, device can have different roles
 - Node (default):
 - Received ND are inspected (= gleaned)
 - Only valid ND are sent
 - Switch:
 - all valid ND are flooded to port to synchronize states
 - received ND from port are trusted

RA-Guard Demo Topology

https://youtu.be/1kwCaY4H9Tw (4min 24 sec)

Integrity of MAC-IPv6 Addresses Bindings

Discover Endpoint Addresses (no animation)

Discover Endpoint Addresses: Preference

Binding table

Each entry has a preference based on:

- Configuration: server, node
- Learning method: static, DHCP, DAD, ...
- Credentials: 802.1X

Enforce/Validate Endpoint Addresses

Enforce/Validate Endpoint Addresses

Configuration Example


```
device-tracking policy NODE
     tracking enable
     limit address-count 10
     security-level inspect
device-tracking policy SERVER
     trusted-port
     tracking disable
     security-level glean
```

Security level:

- **glean**: only build the binding table
- inspect: as glean + drop wrong NA
- guard: as inspect + drop RA & DHCP server messages

vlan configuration 1 device-tracking attach-policy NODE interface Ethernet0/3 device-tracking attach-policy **SERVER**

BRKENT-3002

Device-Binding Demo Topology

https://youtu.be/REL1AmqnFFc (5 min 17 sec)

BRKENT-3002

Address Availability

Denial of Address Initialization

Mitigating Denial of Address Initialization

DoS attack: denial of Address assignment

Vulnerability: attacker hacks DHCP server role

DoS attack mitigation: DHCP Guard

DHCP-

server

Denial of address assignment

 Port ACL: blocks all DHCPv6 "server" messages on client-facing ports

interface FastEthernet0/2
 ipv6 traffic-filter CLIENT_PORT in
 access-group mode prefer port

DHCP guard: deep DHCP packet inspection

ipv6 dhcp guard policy CLIENT
 device-role client

ipv6 nd raguard policy SERVER
 device-role server

vlan configuration 100 ipv6 dhcp guard attach-policy CLIENT vlan 100

interface FastEthernet0/0
ipv6 dhcp quard attach-policy SERVER

- Source

- Prefix list

- CGA credentials

DoS attack: denial of address resolution

Destination Guard

- Mitigate prefix-scanning attacks and Protect ND cache
- Useful at last-hop router and L3 distribution switch
- Drops packets for destinations without a binding entry

BRKENT-3002

More Information on FHS

More demos on Youtube

Demo	Title	link
Router theft & mitigations	Cisco IPv6 Router Advertisement (RA) Guard Demo	https://www.youtube.com/watch?v=fE- TQ0ekffU
Address theft & mitigations	Cisco IPv6 snooping Demo	https://www.youtube.com/watch?v=KL4NwRr8n 6w
DoS attack on ND cache & mitigation	Cisco IPv6 Destination Guard Demo	http://www.youtube.com/watch?v=QDyqV7u4H SY
Misdirect & mitigation	Cisco IPv6 Source Guard Demo	http://www.youtube.com/watch?v=- vOY0xXLoj0

Monitoring (done via SYSLOG)

Address Theft (IP)	%SISF-4-IP_THEFT: IP Theft A=2001::DB8::1 V=100 I=Et0/0 M=0000.0000.0000 New=Et1/0
Address Theft (MAC)	%SISF-4-MAC_THEFT: MAC Theft A=2001::DB8::1 V=100 I=Et1/0 M=0000.0000.0000 New=Et1/0
Address Theft (MAC/IP)	%SISF-4-MAC_AND_IP_THEFT: MAC_AND_IP Theft A=2001::DB8::1 V=100 I=Et0/0 M=0000.0000.0000 New=Et1/0
DHCP Guard	%SISF-4-PAK_DROP: Message dropped A=2001::DB8::1 G=2001:2DB::2 V=2 I=Gi3/0/24 P=DHCPv6::REP Reason=Packet not authorized on port
RA Guard	%SISF-4-PAK_DROP: Message dropped A=2001::DB8:2 G=- V=1 I=Gi3/2 P=NDP::RA Reason=Message unauthorized on port

Many FHS Features

- RA-Guard
 - Only trusted routers can send RA
- · Device tracking
 - Learn the MAC/IP addresses binding and enforce it (first talker wins)
- DHCPv6 Guard
 - Block DHCP packet from non trusted DHCP servers
- Destination Guard
 - Block ingress packet whose destination is unknown (not in the binding table learned by device tracking)

- Source Guard
 - block packets with invalid source IPv6 addresses (learned from device tracking of NDP & DHCP), mainly for layer-2 switches
- · Prefix Guard
 - block packets with invalid source IPv6 addresses (learned DHCP prefix delegation), mainly for CPE
- · RA Throttler
 - Reduce the amount of multicast RA as multicast is bad for Wi-Fi (battery lifetime, reliance, and performance)
- ND Suppress Multicast:
 - Rewrite the destination MAC address from multicast to unicast for some traffic (also based on the binding learned by device tracking)

IPv6 First Hop Security Platform Support

Feature/Plat form	Catalys t 6500 Series	Cataly st 4500 Series	Catalys t 2K/3K Series	ASR10 00 Router	7600 Router	Cataly st 3850	Wireless LAN Controll er (Flex 7500, 5508, 2500, WISM-2)	Nexus 7k	Nexus 3k/Nex us 9k	Nexus ACI	Meraki
RA Guard	15.0(1)S Y	15.1(2)S G	15.0.(2)S E		15.2(4)S	15.0(1)E X	7.2	NX-OS 8.0	7.0(3)	3.0	MR 27
Device- tracking	15.0(1)S Y ¹	15.1(2)S G	15.0.(2)S E	XE 3.9.0S	15.2(4)S	15.0(1)E X	7.2	NX-OS 8.0	7.0(3)	3.0	
DHCPv6 Guard	15.2(1)S Y	15.1(2)S G	15.0.(2)S E		15.2(4)S	15.0(1)E X	7.2	NX-OS 8.0	7.0(3)	3.0	
Source/Prefix Guard	15.2(1)S Y	15.2(1)E	15.0.(2)S E ²	XE 3.9.0S	15.3(1)S		7.2				
Destination Guard	15.2(1)S Y	15.1(2)S G	15.2(1)E	XE 3.9.0S	15.2(4)S						
RA Throttler	15.2(1)S Y	15.2(1)E	15.2(1)E			15.0(1)E X	7.2				
ND Multicast Suppress	15.2(1)S Y	15.1(2)S G	15.2(1)E	XE 3.9.0S		15.0(1)E X	7.2				MR27

Note 1: IPv6 Snooping support in 15.0(1)SY does not extend to DHCP or data packets; only ND packets are snooped

Note 2: Only IPv6 Source Guard is supported in 15.0(2)SE; no support for Prefix Guard in that release

Note 3: No support on virtual switches

BRKENT-3002

Roadmap

IPv6 Security Beyond the Local Area?

IPv6 Security Beyond the Local Area?

- IPv6 differs from IPv4 mainly in:
 - NDP vs. ARP: this class was about securing the difference
 - Extension Headers: a large topic, see also BRKSEC-2044 "Secure operations of an IPv6 network"

- I.e., beyond local area, normal security BCP are similar:
 - Anti-spoofing with uRPF checks
 - Infrastructure ACL
 - Routing security
 - VPN, firewalls, IDS, ...

Summary

Summary

- IPv6 NDP/DHCP are vastly different than IPv4 ARP/DHCP
 - A common approach can work for both
 - Trusted devices (AP, switches, fabric, ...) can learn dynamic states and enforce the binding

- Do not forget that
 - an IPv6 network exists as soon as you have an IPv6 host, no need for IPv6 Internet
 - If there are 2 IPv6, then one can attack the other one
 - I.e., please deploy IPv6 FHS NOW

Technical Session Surveys

- Attendees who fill out a minimum of four session surveys and the overall event survey will get Cisco Live branded socks!
- Attendees will also earn 100 points in the Cisco Live Game for every survey completed.
- These points help you get on the leaderboard and increase your chances of winning daily and grand prizes.

Cisco learning and certifications

From technology training and team development to Cisco certifications and learning plans, let us help you empower your business and career. www.cisco.com/go/certs

(CLCs) are prepaid training vouchers redeemed directly with Cisco.

Learn

Train

Certify

Cisco U.

IT learning hub that guides teams and learners toward their goals

Cisco Digital Learning

Subscription-based product, technology, and certification training

Cisco Modeling Labs

Network simulation platform for design, testing, and troubleshooting

Cisco Learning Network

Resource community portal for certifications and learning

Cisco Training Bootcamps

Intensive team & individual automation and technology training programs

Cisco Learning Partner Program

Authorized training partners supporting Cisco technology and career certifications

Cisco Instructor-led and Virtual Instructor-led training

Accelerated curriculum of product, technology, and certification courses

Cisco Certifications and Specialist Certifications

Award-winning certification program empowers students and IT Professionals to advance their technical careers

Cisco Guided Study Groups

180-day certification prep program with learning and support

Cisco Continuing Education Program

Recertification training options for Cisco certified individuals

Here at the event? Visit us at The Learning and Certifications lounge at the World of Solutions

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

For Even More Information

Internet Engineering Task Force (IETF) E. Levy-Abegnoli G. Van de Velde Request for Comments: 6105 Category: Informational Cisco Systems ISSN: 2070-1721 C. Popoviciu Technodyne J. Mohacsi NIIF/Hungarnet February 2011 IPv6 Router Advertisement Guard

> Internet Engineering Task Force (IETF) Request for Comments: 6620 Category: Standards Track ISSN: 2070-1721

E. Nordmark Cisco Systems M. Bagnulo UC3M E. Levy-Abeqnoli Cisco Systems May 2012

FCFS SAVI: First-Come, First-Served Source Address Validation Improvement for Locally Assigned IPv6 Addresses

F. Gont

Huawei Technologies

February 2014

Internet Engineering Task Force (IETF) Request for Comments: 7113 Updates: 6105

Category: Informational

ISSN: 2070-1721

Implementation Advice for IPv6 Router Advertisement Guard (RA-Guard)

BRKENT-3002

Other IPv6 Learning Opportunities this Week

- Verifying your Systems Transition to IPv6
 - Mon 13 8:00 AM: BRKIPV-2000
- · Let's Deploy IPv6 NOW
 - Mon 13 2:30 PM: BRKENT-2109
- Sharing Experience on IPv6 Deployments in Enterprise
 - · Tue 14 10:30 AM: IBOIPV-2000
- IPv6 What Do you Mean there isn't a Broadcast?
 - Tue 14 2:30 PM: BRKENT-1616

- Secure Operations for an IPv6 Network
 - Mon 13 1 PM: BRKSEC-2044
- IPv6 Security in the Local Area with First Hop Security
 - · Tue 14 4 PM: BRKENT-3002
- · IPv6 Powering the World of IoT
 - Wed 15 1 PM: BRKENT-2122

- · Learning IPv6 in the Enterprise for Fun and (fake) Profit: A Hands-On Lab
 - Mon 13 1 PM: LTRENT-2016
- IPv6 Routing and Services Lab
 - HOLIPV-3600.a
- · IPv6 Routing, SD-WAN and Services Lab
 - Tue 14 1 PM: I TRFNT-2052

BRKSFC-2044

Other IPv6 Learning Opportunities this Week

- Experience the Journey to IPv6-Only With Cisco Meraki
 - Tue 14 1:00 PM: BRKIPV-1752
- Let's Discuss the IPv6 Implementation of Meraki
 - Wed 15 2:30 PM: IBOIPV-2001
- · Cisco Routing Meraki Access with IPv6 (CRMAv6) A Practical Guide
 - Wed 15 4:00 PM: BRKIPV-2751
- Migrating a Large Cisco Enterprise Wireless Network to IPv6 by Facebook
 - Wed 15 4 PM: CSSGEN-2000
- IPv6 Enabled Software Defined Wireless Access Design , Deploy and Troubleshoot
 - On demand BRKENS-2834

Thank you

cisco live!

