Midterm #2 Answers

Friday, November 13, 2015

Name: _		 	
	ID#: _		

PHILOSOPHY 279 Lec 03 Winter 2015

TEST #2

Friday, March 20, 2015

		(6 marks)

1. Indicate which of the following are true and which are false.

- (i) True False All satisfiable sentences are logically equivalent. A _ A
- (ii) True False No two unsatisfiable sentences are logically equivalent. (A^-A), (B^-B)
- (iii) True False All invalid sentences are logically equivalent. A
- (iv) True False All valid sentences are logically equivalent. They all have the same truth values
- (v) True False All valid arguments have valid conclusions.
- (vi) True False Only invalid arguments have invalid conclusions.
- 2. For each of the sentences on the next page in List A find its correct symbolization from List B, given the following dictionary:

(10 marks)

$$T^1$$
: –is a triangle; F^1 : –is a figure; L^1 : –is large; S^1 : –is a circle

List A:

- (A₁) Every triangle is a figure.
- (A₂) Some figures are not triangles.
- (A₃) Some large figures are triangles.
- (A₄) Some large figures are not triangles.
- (A₅) Every figure is either a triangle or a circle.
- (A₆) If all figures are triangles, then there are no circles. $\forall x \ (F_X \to T_X) \rightarrow -\exists x \ S_X$
- (A₇) No circle is a triangle.
- (A₈) If any circle is large, then some circle is large.
- (A₉) If some circle is large, then any circle is large.
- (A₁₀) Only triangles are large.

List B:

- (B₁) $\exists x(Tx \land Fx)$
- (Bz) $\forall x(Tx \rightarrow Fx)$ Every triangle is a Figure AI
- (Ba) $\forall x(Lx \rightarrow Tx)$ only triangles are large A10 (B4) $-3x(Sx \wedge Tx)$ No circle is a triangle A7
- (B_5) $-\exists x(Sx \rightarrow Tx)$
- (BE) 3x(Lx A Fx A -Tx) Some large figures are triangles ALL
- (Br) (∀x(Fx → Tx) → -3xSx) If all figures are triangles then there are no circles AG
- $(B_8) (\forall x(Fx \land Tx) \rightarrow -\exists xSx)$
- (Bg) 3x(Lx A Fx A Tx) Some large figures are triangles A3
- $(B_{10}) (\exists x(Sx \land Lx) \rightarrow \exists x(Sx \land Lx))$ (B₁₁) $(\exists x(Sx \land Lx) \rightarrow \forall x(Sx \rightarrow Lx))$
 - (B_{12}) $(\exists x(Sx \land Lx) \rightarrow \forall x(Lx \rightarrow Sx))$
 - (B13) Vx(Fx > (Tx v Sx)) Every figure is either a triangle or a circle A5
 - $(B_{14}) \ \forall x((Tx \ V \ Sx) \rightarrow Fx)$
 - (BIS) 3x(FX A -TX) Some figures are not triangles AZ

Answer:

A ₁	B2	
A ₂	B15	
	Bq	
A ₄	B6	
A ₅	B 13	
A ₆	B7	
A ₇	B4	
A ₈ A ₉ A ₁₀	B10	7-5
A ₉	BII	7
A ₁₀	B3	

3. For each of the following sentences specify an interpretation in which it is true, and another interpretation in which it is false.

(10 marks)

(i) $\exists x (Fx \land Gx)$

True: False: Domain: $\{1,2\}$ Domain: $\{1,2\}$ Ext. of $\mathbf{F^1}$: $\{1,2\}$ Ext. of $\mathbf{F^1}$: $\{1,2\}$ Ext. of $\mathbf{G^1}$: $\{1,2\}$ Ext. of $\{1,2\}$ Ex

(ii) $\exists x (Fx \lor Gx)$

True: False: Domain: $\{1, 2\}$ Domain: $\{1, 2\}$ Ext. of $\mathbf{F^1}$: \emptyset Ext. of $\mathbf{G^1}$: \emptyset Ext. of $\mathbf{G^1}$: \emptyset

(iii) $\forall x(Fx \rightarrow Gx)$

True: False: Domain: $\{1, 2\}$ Domain: $\{1, 2\}$ Ext. of $\mathbf{F^1}$: \bigcirc Ext. of $\mathbf{G^1}$: \bigcirc Ext. of $\mathbf{G^1}$: \bigcirc

(iv) ∀x ∃y Lxy

True: False: Domain: $\{1,2\}$ Domain: $\{1,2\}$ Ext. of \mathbf{L}^2 : $\left\langle \angle 1,2^3,\angle 2,1^3\right\rangle$ Ext. of \mathbf{L}^2 : \varnothing

(v) ∃y ∀x Lxy

True: False: Domain: $\{1, 2\}$ Domain: $\{1, 2\}$ Ext. of \mathbf{L}^2 : $\{2,17\}$ Ext. of \mathbf{L}^2 : \emptyset

4. Using the tree method test the following argument for validity. Identify a counterexample from an open path of a finished tree, if there is one.

(4 marks)

$$\frac{(\exists x Lxa \to P)}{\exists x (Lxa \to P)}$$

Answer: