УДК 534.87

АЛГОРИТМЫ СЖАТИЯ ЗВУКОВЫХ СИГНАЛОВ НА ОСНОВЕ *U*-ПРЕОБРАЗОВАНИЯ

© 2012 г.

В.Е. Гай, В.А. Утробин

Нижегородский государственный технический университет им. Р.Е. Алексеева

iamuser@inbox.ru

Поступила в редакцию 10.09.2012

Предлагаются методы сжатия звуковых сигналов на основе интегрально-дифференциального преобразования. Эффективность предложенных методов подтверждается результатами вычислительных экспериментов.

Ключевые слова: цифровая обработка сигналов, теория активного восприятия, отношение сигнал/шум.

Постановка задачи

Задача сжатия сигналов является одной из актуальных задач обработки сигналов. В работе предлагается несколько алгоритмов сжатия сигналов, основанных на U-преобразовании [1].

Под сжатием данных понимается алгоритмическое преобразование данных, выполняемое с целью уменьшения их объёма. Основная характеристика алгоритма сжатия — коэффициент сжатия, определяемый как отношение объёма исходных несжатых данных к объёму сжатых. Таким образом, чем больше коэффициент сжатия, тем эффективнее алгоритм. Эффективность сжатия также оценивается разницей между исходным и сжатым сигналом. Для этого в работе используются два показателя: отношение сигнал / шум, и показатель, вычисляемый на основе интегрально-дифференциального преобразования [2].

U-преобразование

Предлагаемое решение задачи сжатия звуковых сигналов основано на использовании *U*-преобразования звукового сигнала [1]. *U*-преобразование сигнала заключается в формировании многоуровневого (грубо-точного) представления сигнала с помощью фильтров Уолша системы Хармута, причём:

1) для построения каждого уровня разложения используются фильтры одинаковой длины, которые масштабируются до размера анализи-

руемого участка сигнала;

2) сначала фильтры применяются ко всему сигналу, затем – к его частям.

Прямое U-преобразование записывается следующим образом:

$$D = U(f)$$
,

где $D = \{D_{ij}\}, D_{ij} - j$ -й спектр, находящийся на i-м уровне разложения, $i \in [0; J-1], J$ – количество уровней разложения, $j \in [0; M_i-1], M_i$ – количество элементов на i-ом уровне разложения. Существует несколько алгоритмов построения U-разложения сигнала:

- 1) алгоритм формирования K-ичного дерева разложения сигнала (параметры алгоритма: J количество уровней разложения, K количество сегментов на i уровне, на которые разбивается сигнал на (i-1)-м уровне), в вершине дерева расположено разложение исходного сигнала, $M_i = K^i 1$;
- 2) алгоритм построения разложения сигнала на одном уровне с использованием сегмента произвольной длины (параметр алгоритма: L длина сегмента);
- 3) алгоритм построения разложения сигнала на одном уровне, при формировании которого сигнал разбивается на заданное количество сегментов (параметр алгоритма: M количество сегментов, на которое разбивается сигнал).

Обратное U-преобразование записывается следующим образом:

$$S' = U^{-1}[D],$$

где S' — сигнал, полученный после выполнения

обратного преобразования, U^{-1} — оператор обратного преобразования.

Предлагаемые алгоритмы

Алгоритм сжатия 1. Разработанный алгоритм основан на обнулении коэффициентов разложения U сигнала и состоит из следующих шагов:

- 1) построение U-разложения D сигнала S (формируется один уровень разложения, длина сегмента L, L = W, W количество используемых фильтров);
- 2) модификация разложения D: в каждом спектре разложения D обнуляются указанные коэффициенты;
- 3) выполнение обратного преобразования: генерация сигнала S'.

Предположим, что разложение сигнала формируется с использованием 4 фильтров, тогда существует 15 вариантов обнуления коэффициентов фильтров (от 0000 до 1110, нумерация коэффициентов фильтров следующая: 0123).

Исследования показали, что обнуление нулевого коэффициента разложения сигнала приведёт к потере информации о форме сигнала (после обнуления сохраняется только высокочастотная составляющая сигнала). Таким образом, для решения задачи сжатия с помощью обнуления коэффициентов нельзя использовать комбинации, в которых обнулён нулевой коэффициент.

При использовании 10, 11 и 12 комбинаций в получаемые сигналы вносятся артефакты. Можно отметить, что чем больше число знакоперемен (переходов через ноль) у фильтра, тем более высокочастотную составляющую он позволяет выделить из сигнала. Таким образом, не рекомендуется обнулять спектральные коэффициенты, полученные с применением нулевого и первого фильтров, в противном случае, это приведёт не только к огрублению формы сигнала и сглаживанию высокочастотной составляющей, но и к внесению в сигнал различных артефактов. Таким образом, при сжатии сигнала будут использованы следующие комбинации спектральных коэффициентов: 1000 (9), 1100 (13), 1101 (14), 1110 (15). Сжатие в предлагаемом алгоритме осуществляется за счёт того, что выполняется хранение только некоторых элементов спектра.

Алгоритм сжатия 2. Разработанный алгоритм основан на огрублении сигнала:

1) построение U-представления D сигнала S (формируется один уровень разложения, длина

сегмента – $L, L = P \cdot W, P$ – целое число);

- 2) выполнение обратного преобразования и генерация сигнала S': меняя длину сегмента L, можно генерировать сигнал S' с различной степенью «огрубления».
- 3) интерполяция сжатого сигнала до размера исходного сигнала.

При использовании данного алгоритма сжатие выполняется за счёт того, что по сегменту сигнала длиной L генерируется W коэффициентов (W < L).

В качестве третьего алгоритма сжатия можно предложить алгоритм, основанный на комбинации первого и второго алгоритмов. В таком алгоритме одновременно будет выполняться обнуление коэффициентов и огрубление сигнала.

Вычислительный эксперимент

Рассмотрим результаты сжатия сигналов, полученные на основе предложенных алгоритмов. Исследование алгоритма проводится на двух тестовых сигналах (см. рис. 1).

Рис. 1. Тестовые сигналы

Разработанные алгоритмы. В табл. 1 приведены результаты экспериментов по сжатию сигналов на основе предложенных алгоритмов. В столбце $\ll P$ » указано значение параметра P второго алгоритма, в столбце $\ll I$ » — номер используемой комбинации 4 фильтров.

Таблица 1 Результаты сжатия сигналов на основе предложенных алгоритмов

P	Ι	K	1		2		
			ОСШ	U	ОСШ	U	
1	9	4	25.48	0.43	6.83	0.33	
1	13	2	32.43	0.65	9.36	0.50	
1	14	1.33	47.77	0.85	12.37	0.74	
1	15	1.33	32.56	0.80	12.91	0.76	
2	9	8	20.39	0.51	5.64	0.37	
2	13	4	27.44	0.60	6.65	0.40	
2	14	2.67	31.36	0.92	7.17	0.59	
2	15	2.67	27.71	0.58	7.64	0.50	
2	16	2	32.36	0.98	8.25	0.66	
3	9	12	13.23	0.56	4.87	0.39	
3	13	6	14.23	0.72	4.96	0.47	
3	14	4	14.31	0.89	4.77	0.54	
3	15	4	14.24	0.72	4.77	0.48	
3	16	3	14.34	0.94	4.59	0.54	
4	9	16	15.44	0.54	4.87	0.39	
4	13	8	22.46	0.66	5.61	0.44	
4	14	5.33	25.64	0.88	5.97	0.52	
4	15	5.33	23.98	0.67	6.10	0.50	
4	16	4	31.00	0.96	6.49	0.57	

Предложенные алгоритмы вносят искажения в сжатый сигнал, в случае, если сигнал содержит быстро изменяющиеся по амплитуде участки (для некоторых значений параметров алгоритмов). Например, на рис. 2a, δ показан один из неудачных результатов сжатия: после сжатия была искажена форма сигнала, причём для другого сигнала (см. рис. 2a, ϵ) описанного эффекта не отмечено.

0,8

0,6

0,4

Вейвлет-сжатие. В табл. 2 приведены результаты экспериментов по сжатию сигналов на основе вейвлет-преобразования [3]. В столбце «Сигнал» указан номер тестового сигнала, в столбце «К» –коэффициент сжатия, в столбце «ОСШ» — оценка качества сжатия на основе отношения сигнал / шум, в столбце «U» — расстояние между исходным и сжатым сигналом [2], вычисленное на основе U-преобразования.

Таблица 2 Результаты сжатия на основе вейвлет-преобразования («coif2»)

Сигнал	K	ОСШ	U
1	2	31.65	0.71
2	2	66.72	1.00
3	2	41.56	0.99
4	2	45.96	0.99
5	2	3.42	0.76
6	2	1.01	0.47

Алгоритм сжатия на основе классического преобразования Уолша. В табл. 3 приведены результаты экспериментов по сжатию сигналов на основе классического преобразования Уолша [4].

Таблица 3 Результаты сжатия (классический алгоритм)

Сигнал	K	ОСШ	U	Сигнал	K	ОСШ	U
1	4	25.48	0.36	2	4	-1.03	0.33
1	2	32.43	0.61	2	2	2.93	0.50
1	1.3	32.56	0.78	2	1.3	7.23	0.75

Рис. 2. Результат сжатия сигналов: сигнал 1: а) $P=1,\,I=15;\,$ б) $P=4,\,I=9;\,$ сигнал 2: в) $P=1,\,I=15;\,$ г) $P=4,\,I=9$

Выводы по результатам экспериментов:

- 1) предложенные алгоритмы сжатия обеспечивают результат сжатия не хуже, чем алгоритм сжатия на основе вейвлет-преобразования, а в ряде случаев показывают лучшие результаты;
- 2) при применении первого алгоритма сжатия наилучший результат обеспечивает использование 14 и 15 комбинаций обнуления коэффициентов;
- 3) при использовании второго алгоритма сжатия увеличение значения параметра P приводит к снижению качества сигнала после сжатия.

Заключение

В работе описаны разработанные алгоритмы сжатия звуковых сигналов, основанные на *U*-преобразовании. Предложенные алгоритмы сравниваются с классическим алгоритмом сжатия на основе преобразования Уолша и алгоритмом сжатия на основе вейвлет-преобра-

зования.

Дальнейшие исследования в области применения U-преобразования к сжатию сигналов будут направлены на повышение коэффициента сжатия за счёт предварительной сегментации сигнала и отдельной последующей обработки каждого сегмента.

Список литературы

- 1. Утробин В.А. Физические интерпретации элементов алгебры изображения // Успехи физических наук. 2004. Т. 174. № 10. С. 1089–1104.
- 2. Gai V.E. Signal comparison algorithm in terms of a priory uncertainty // Proceedings of 8th Open German-Russian Workshop «Pattern recognition and Image understanding» (OGRW-8-2011, November 21-26, 2011). Nizhni Novgorod, 2011. P. 75–78.
- 3. Donoho D.L., Johnstone I.M. Ideal spatial adaptation by wavelet shrinkage $/\!/$ Biometrika. 1994. V. 81. P. 425–455.
- 4. Beer T. Walsh transforms // American Journal of Physics. 1981. V. 49. Issue 5. P. 301–330.

AUDIO SIGNAL COMPRESSION ALGORITHMS BASED ON THE U-TRANSFORM

V.E. Gai, V.A. Utrobin

Audio signal compression methods based on the integral-differential conversion are proposed. The effectiveness of the proposed methods is proved by the results of computing experiments.

Keywords: digital signal processing, theory of active perception, signal-to-noise ratio.