Switching Logic

- The LAN switch has one primary job is forwarding frames to the correct destination (MAC) address.
- ❖ All Ethernet frames have a destination and source MAC address. Both are 6-Bytes long.

Building a MAC Address Table

IVIAC AUUIESS IADIE				
Vlan	Mac Address	Туре	Ports (Outgoing Interface)	
1	0001.6426.b880	DYNAMIC	Fa0/1	
1	0050.0fd5.11de	DYNAMIC	Fa0/24	
1	0090.2b08.5acd	DYNAMIC	Fa0/9	
1	00e0.8fa1.969e	DYNAMIC	Fa0/16	

Forwarding Known Unicast Frames

IVIAL AUUIESS IADIE				
Vlan	Mac Address	Туре	Ports (Outgoing Interface)	
1	0001.6426.b880	DYNAMIC	Fa0/1	
1	0050.0fd5.11de	DYNAMIC	Fa0/24	
1	0090.2b08.5acd	DYNAMIC	Fa0/9	
1	00e0.8fa1.969e	DYNAMIC	Fa0/16	

Forwarding Known Unicast Frames

PC3IP: 192.168.1.3 MAC:00e0.8fa1.969e

Flooding Unknown Unicast Frames

Flooding Broadcast Frames

Verification Commands

RouterA# show mac address-table
RouterA# show mac address-table dynamic
RouterA# show mac address-table count
RouterA# show mac address-table aging-time
RouterA# clear mac address-table dynamic
RouterA# show interfaces status

❖ A broadcast domain is a logical division of a computer network, in which all nodes can reach each other by broadcast at the data link layer.

- ❖ A collision domain is a network segment connected by a shared medium or through repeaters and hubs where simultaneous data transmissions collide with one another.
- ❖ A network collision occurs when more than one device attempts to send a frame on a network segment at the same time.
- Only one device in the collision domain may transmit at any one time, and the other devices in the domain listen to the network and wait for transmitting.
- ❖ Because only one device may be transmitting at any one time, total network bandwidth is shared among all devices on the collision domain.
- ❖ Collisions decrease network efficiency on a collision domain as collisions require devices to abort transmission and retransmit at a later time.
- collisions are resolved using carrier sense multiple access with collision detection (CSMA/CD) in which the competing frame are discarded and re-sent one at a time.
- ❖ A network switch eliminate collisions. By connecting each device directly to a port on the switch and operates the port in *full duplex mode*, thus each port on a switch becomes its own collision domain

One Collision Domain

One Collision Domain

One Collision Domain

