- **Q1** Show that $[\overline{\mathbb{Q}} : \mathbb{Q}] = \infty$.
- **Q2** Let $F \subseteq K \subseteq L$ be fields. Show that if L/F is separable, then both K/F and L/K are separable.
- **Q3** Let F be a field and A be a subset of F[x]. An algebraic field extension K of F is called a *splitting field for* A *over* F if
 - (i) every polynomial in A splits completely in K[x],
 - (ii) if $F \subseteq E \subseteq K$ and every polynomial in A splits completely in E[x], then E = K.
 - (a) Suppose that $A = \{f_1(x), f_2(x), \dots, f_n(x)\} \subseteq F[x]$. Let $f(x) = \prod_{j=1}^n f_j(x)$ and K be a splitting field of $f(x) \in F[x]$. Show that K is a splitting field of A over F.
 - (b) Let $S \subseteq \overline{F}$ be the subset consisting of roots of polynomials in A. Show that F(S) is a splitting field of A over F.
 - (c) Suppose that K is a splitting field of A over F. Show that there exists a field isomorphism φ: K → F(S) such that φ|_F = id_F.
 (Hint: Prop 5 on Apr 13 can be useful.)
- **Q4** Let F be a field of characteristic p. Show that if K/F is a finite inseparable field extension, then $p \mid [K:F]$.