Série 3 théorie des jeux

Calcul de l'équilibre mixte de NASH

Exercice 1.

1) $\Sigma_i = \{(\sigma_{i1}, \sigma_{i2}, ., \sigma_{in}): \sum_{j=1}^n \sigma_{ij} = 1 \ et \ \sigma_{ij} \geq 0 \}$ soient $\sigma_i \ et \ \sigma'_i \in \Sigma_i$ alors pour que l'ensemble Σ_i soit convexe il faudrait que d'après la définition du cours: $t\sigma_i + (1-t)\sigma'_i = \sigma''_i \in \Sigma_i \ \forall t \in [0,1]$ Les coordonnées de σ''_i sont de la forme : $\sigma''_{ij} = t\sigma_{ij} + (1-t)\sigma'_{ii} \geq 0$

$$et \sum_{j=1}^{n} \sigma''_{ij} = 1 \Rightarrow \sum_{j=1}^{n} (t\sigma_{ij} + (1-t)\sigma'_{ij}) = t\sum_{j=1}^{n} \sigma_{ij} + (1-t)\sum_{j=1}^{n} \sigma'_{ij} = t + (1-t) = 1$$

2) Soit $s_k \in S_i$ une stratégie pure du joueur i, on suppose que s_k^- n'est pas un point extrémal donc s'ecrit combinaison convexe de deux stratégies de Σ_i :

$$\begin{aligned} \mathbf{s}_{\mathbf{k}} &= t\sigma_{i} + (1 - \mathbf{t})\sigma_{i}', \text{où } s_{k} = \left(0, 0, ..., \frac{1}{k}, 0, ..., 0\right), \sigma_{i} = \left(\sigma_{i1}, \sigma_{i2}, ..., \sigma_{in}\right) \\ &et \ \sigma_{i}' = \left(\sigma_{i1}', \sigma_{i2}', ..., \sigma_{in}'\right) et \ 0 < t < 1 \end{aligned}$$

Donc nous obtenons les équations:

$$\begin{cases} t\sigma_{ik} + (1-t)\sigma'_{ik} = 1 \ (I) \\ t\sigma_{ij} + (1-t)\sigma'_{ij} = 0 \ pour \ j = 1, ..., n \ j \neq k \ (II) \end{cases}$$

Les équations (II) comme $0 < t < 1 \Rightarrow \sigma_{ij} = \sigma'_{ij} = 0 \ \forall j \neq k \Rightarrow$

 $\sigma_{ik} = \sigma'_{ik} = 1$ (car distributions de probabilités) $\Rightarrow \sigma_i = \sigma'_i = s_k$ donc c'est un point extrémal, (Absurde).

Exercice 2.

1/2	Gauche	Droite	
Gauche	(4,2)	(5,1)	
Droite	(6,0)	(3,3)	

Par invariance au support: $\sigma_1 = (p, 1-p)$ et $\sigma_2 = (q, 1-q)$:

$$u_2(\sigma_1, G) = u_2(\sigma_1, D) \Rightarrow 2p + 0(1 - p) = p + 3(1 - p) \Rightarrow p = \frac{3}{4}$$

Exercice 3.

1/2	E1	E2
E1	(2,2)	(4,6)
E2	(6,4)	(3,3)

Le choix est indifférent donc de Probabilité $\frac{1}{2}$

Par invariance de support sachant que $\ \sigma_1=(p,1-p)\ et\ \sigma_2=(q,1-q)$: $u_1(E1,\sigma_2)=u_1(E2,\sigma_2)\Rightarrow 2q+4(1-q)=6q+3(1-q)\Rightarrow q=\frac{1}{5}$ Donc (a) est vraie.

Exercice 4.

$$BR1 = \{(D, G); (G, D)\} \cap BR2 = \{(G, G), (D, D)\} = \emptyset$$

Donc pas d'équilibre de Nash en pures,

Par invariance de support on trouve l'équilibre en mixte $((\frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, \frac{1}{2}))$,

Exercice 5.

1/2	G	D
g	(1,1)	(1,1)
d	(-1,-1)	(2,0)

Deux équilibres de Nash en pures (g, G) et (d, D),

 $spit(\sigma_1, \sigma_2) = ((p, 1-p), (q, (1-q)))$ un profil de stratégies mixtes de ce jeu:

$$u_1(\sigma_1, \sigma_2) = (3q - 1)p + (-3q + 2)$$

donc la fonction meilleur réponse du joueur 1 :

$$p(q) = \begin{cases} 1 \text{ si } q > \frac{1}{3} \\ [0,1] \text{si } q = \frac{1}{3} \\ 0 \text{ sinon} \end{cases}$$

De même

 $u_2(\sigma_1, \sigma_2) = (p-1)q + p$ la fonction meillure réponse du joueur 2 :

$$q(p) = \begin{cases} 0 \text{ si } 0 \le p < 1 \\ [0,1] \text{ si } p = 1 \end{cases}$$

Exercice 6.

(Devoir à remettre)