Homework #1 FIM/MA 548, Spring '25

Due: 11:00 pm Friday, February 15

Instructions:

- Please submit (on Moodle) one work per group: one file that consists of your code and one pdf file where you should present/discuss the results/findings.
- NO interactions between groups.
- Each group member must make a substantial contribution to each part of the assignment.
- The work counts for 20% of your final grade.
- You can use any software (Matlab, Python, C/C++, R etc.), but Matlab is preferred. Your code must compile and be well-commented.

Problem #1 (Binomial model)

For each fixed $N \geq 1$, consider an N-step market model $(B_{k/N}^N, S_{k/N}^N)_{k=0,1,\dots,N}$ where

$$B_{k/N}^{N} = e^{\frac{rk}{N}}, \quad k = 0, ..., N$$

is a bank account with the annual (continuously compounded) risk-free rate r > -1, and

$$S_0^N = s \in (0,\infty), \ S_{k/N}^N = S_{(k-1)/N}^N R_k^N, \quad k = 1,...,N$$

is a risky stock, defined using a one-step i.i.d. random growth factors $(R_k^N)_{k=1,\dots,N}$. In particular, if we set $u^N:=e^{\mu/N+\sigma\sqrt{1/N}}$ and d:=1/u, where $\mu\in\mathbb{R}$ and $\sigma>0$ are fixed parameters, then

$$p_N := \mathbb{P}[R_k^N = u^N] = 1 - \mathbb{P}[R_k^N = d^N] = \frac{e^{r/N} - d}{u - d}, \quad k = 1, ..., N.$$

In what follows set r = 0.05, $\sigma = 0.4$, s = 100 and $\mu \in \{-0.2, 0, 0.2, (r - \sigma^2/2)\}$.

- 1. Plot $N \mapsto p_N$ and $N \mapsto p_N(1-p_N)$, and (numerically) determine $\lim_{N\to\infty} p_N$ and $\lim_{N\to\infty} p_N(1-p_N)$. How do your results depend on μ ?

 Hint: for the limits, replace ∞ by a large N_{max} ; e.g., $N_{max}=10000$.
- 2. Now investigate the convergence of Part 1. In particular, for both $N \mapsto p_N$ and $N \mapsto p_N(1-p_N)$ plot the relevant log-log graphs and show that (for large N)

$$p_N \approx (\lim_{N \to \infty} p_N) + (1/N)^{k_1} c_1, \quad p_N (1 - p_N) \approx (\lim_{N \to \infty} p_N (1 - p_N)) + (1/N)^{k_2} c_2,$$

for some $c_1, c_2 \in \mathbb{R}$ and $k_1, k_2 \in \mathbb{R}_+$.

Using the generated graphs, determine k_1 and k_2 .

- 3. Use Monte-Carlo (with 1000000 samples) to estimate the expectation and standard deviation of $\ln\left(\frac{S_1^N}{S_0^N}\right)$. Compare your estimates with $(r-\sigma^2/2)$ and σ , respectively. Produce a histogram of your generated values and suggest an appropriate limiting distribution for $\ln\left(\frac{S_1^N}{S_0^N}\right)$. Again, discuss the dependence on μ .
- 4. Using Parts 1. and 2., give a theoretical basis for your results obtained in Part 3.
- 5. Use Monte-Carlo (with 1000000 samples) to determine the time-0 no-arbitrage price of a European call with strike K=100 and maturity T=1, written on S^N with N=10000. In particular, compute

$$\mathbb{E}\left[e^{-r}(S_1^N-K)^+\right].$$

For each value of μ , produce a plot that shows the convergence (as the number of generated random numbers increases). Compare your estimates with the theoretical Black-Scholes price of the same call option (and with the same model parameters r and σ). Discuss how your results depend on μ .

Problem #2 (Confidence intervals)

Let $(Z_i)_{i=1,...N}$ be a sequence of i.i.d. random variables with $\mathbb{E}[Z_i] = \mathbb{E}[Z]$. Then the Central Limit Theorem asserts that, for large $N \geq 1$,

$$\mathbb{P}\left[\bar{Z}_N - 1.96s_N/\sqrt{N} \le \mathbb{E}[Z] \le \bar{X}_N + 1.96s_N/\sqrt{N}\right] \approx 0.95,$$

where \bar{Z}_N and s_N are the sample mean and sample standard deviation, respectively.

The goal of this exercise is to test this claim using Monte-Carlo.

(Recall how we estimated the value of π ; see Lecture 1 and the corresponding Matlab code). Fix N=1000, let (X_i,Y_i) be a a pair of i.i.d. U[0,1] random variables. Set $Z_i=1$ if $X_i^2+Y_i^2\leq 1$ and 0 otherwise. Now test the claim by generating 10000 independent values of \overline{Z}_N .

Problem #3 (Pareto distribution)

Use Monte-Carlo (with N=1000000 samples) to estimate $\mathbb{E}[X]$ and Var[X], where X follows Pareto distribution with scale parameter $\beta=1$ and shape parameter $\alpha \in \{0.5, 1.5, 3\}$:

$$f_X(x) = \frac{\alpha \beta^{\alpha}}{x^{\alpha+1}}, \quad x \ge \beta.$$

- 1. Plot the graphs of sample mean $n \mapsto \bar{X}_n$ and sample standard deviation $n \mapsto s_n$ (where $n \in \{1, ..., N\}$). Discuss the observed convergence.
- 2. Now repeat (independently) Part 1. ten more times. Discuss your findings.

Problem #4 (Value of the game)

You flip a (fair) coin repeatedly until a tail first appears. The pot starts at 1\$ and doubles every time a head appears. You win whatever is in the pot the first time you throw tails, and then the game ends. For example: $\{T\}$ (tail on the first toss) wins 1\$, $\{H, T\}$ (tail on the second toss): wins 2\$, $\{H, H, T\}$ wins 4\$ and so on.

Which would you prefer, 20\\$ for sure, or the right to play this game? To answer this question, use Monte-Carlo (with N = 1000000 samples) to estimate the value of this game, which is given by the expectation of the size of the winning pot.

Discuss your findings (and compare them with Problem #3). You could also try to increase N to check if 'better' results can be obtained.

Problem #5(Acceptance-Rejection)

Suppose X has a distribution with pdf

$$f(x) = \frac{1}{6}x^3e^{-x}, \quad x \ge 0.$$

Apply the acceptance-rejection (AR) method to simulate X using exponential distribution $Exp(\lambda)$ where $\lambda > 0$.

- 1. For each fixed λ , find the constant $c(\lambda)$ for the AR method.
- 2. Find the optimal λ^* that makes the AR method most efficient.

Problem #6 (Card deck)

A deck of 100 cards, numbered 1, 2, ..., 100, are shuffled and then turned over one card at a time. Say that a 'hit' occurs whenever card i is the i-th to be turned over, i=1,2,...,100. Write a simulation program to estimate the expectation and variance of the total number of hits. Run the program with $N=10^k,\ k=1,...6$, Monte-Carlo samples, and present your results. You can use the build-in function in your software that simulates discrete uniform distribution on $\{1,...,100\}$.