Nume:

Grupa:

EXAMEN LA ALGORITMI FUNDAMENTALI VARIANTA 1

Vecinii unui vârf în toate problemele următoare se consideră în <u>ordine lexicografică</u>. Pentru graful din imaginea din stânga rezolvați cerințele 1-7 și justificați răspunsurile

1) (0,5p) Definiți noțiunea de drum (lant) hamiltonian. Care dintre următoarele secvențe reprezintă un drum (lanț) hamiltonian? (pot fi mai multe sau nici una)

- a) 423605178
- b) 781423605
- c) 871423605
- d) 0 4 2 3 6 1 7 8 5S

2) (0,5p) Exemplificați (cu explicații) cum funcționează parcurgerea în adâncime **df(2),** ilustrând si arborele df asociat

DATA:

- 3) (0,75p) Un nod al unui graf conex se numește nod critic dacă prin eliminarea lui graful nu mai este conex. Descrieți pe scurt un algoritm eficient de determinare a nodurilor critice din graf și exemplificați-l (cu explicații) pe graful alăturat ignorând orientarea arcelor (înlocuind fiecare arc xy cu muchia xy).
- **4) (0,75p)** Este graful eulerian? Dacă nu adăugați un număr minim de arce astfel încât graful format să fie eulerian (fără a avea bucle sau arce multiple), descriind și

strategia după care ați adăugat arcele. Indicați un circuit (ciclu) eulerian în graful obținut. Enunțați o condiție necesară și suficientă ca un graf orientat să fie eulerian.

- **5) (0,5p)** Care dintre următorii 4 algoritmi pot fi folosiți pentru a calcula distanța de la 7 la 5? (pot fi mai multe variante corecte)
 - a) Dijkstra
 - b) Bellman-Ford
 - c) Floyd-Roy-Warshall
 - d) Algoritmul pentru drum minim in DAG (DAG = graf fără circuite)
- **6) (0,5p)** Exemplificați (cu explicații) pașii algoritmului lui Kruskal pentru graful neorientat obținut din acest graf (din imaginea din stânga sus) ignorând orientarea arcelor (înlocuind fiecare arc **xy** cu muchia **xy**)
- 7) (0,5p) Care sunt componentele tare conexe ale acestui graf. Argumentați!

CERINȚĂ - Minim 2,7 p din primele 7 subiecte

8) (1p) În rețeaua de transport din figura alăturată pe un arc e sunt trecute valorile f(e)/c(e) reprezentând flux/capacitate. Sursa este vârful s=S, iar destinația t=D. Ilustrați pașii algoritmului Ford-Fulkerson pentru această rețea pornind de la fluxul indicat și alegând la fiecare pas un s-t lanț f-nesaturat de lungime minimă (algoritmul Edmonds-Karp). Indicați o tăietură (s-t tăietură) minimă în rețea (se vor indica vârfurile din bipartiție, arcele directe, arcele inverse) și determinați capacitatea acestei tăieturi. Justificați răspunsurile.

9) (1.5p) Pentru n >= 3 notăm cu Wn graful "roata" compus dintr-un ciclu elementar cu n

varfuri și un al n+1-lea varf conectat prin cate o muchie de toate varfurile ciclului. (In stanga este reprezentat W5)

- a. Demonstrati ca pentru orice $3 \le m \le n+1$ graful Wn continue un ciclu elementar cu m varfuri.
- b. Determinați pentru fiecare m cu 3 <=m <= n+1 cate cicluri elementare cu m vârfuri are Wn (justificați).

10) (0,5p) Descrieți pe scurt algoritmul de determinare a distanței de editare între două cuvinte și explicați relațiile de recurență pentru calculul acestei distanțe. Ilustrați algoritmul pentru cuvintele "**castor**" si "**farsor**",

scriind matricea cu valorile subproblemelor și explicând cum au fost acestea calculate.

11) (0,5p) Descrieți algoritmul de 6-colorare a vârfurilor unui graf neorientat conex planar. Cu ce noduri nu poate incepe colorarea grafului conform algoritmului descris? De ce?

12) (1,5p) Gretel vrea sa ajunga de acasă la oricare casuta din padure . Taramul de basm fiind un taram cu multe căsuțe și drumuri unidirectionale pline de firimituri între ele. Taramul de basm e astfel conceput ca sa nu poți ajunge de la o casuta înapoi la ea. Ea știe câte firmituri

găsește pe orice drum din pădure. Ea isi doreste în drumul sau sa culeaga cat mai multe firimituri. Ajutati-o pe gretel să ajungă la casuta N cu cat mai multe firimituri.

(0,75 soluție corectă + 0,75 discuții complexitate)