

HPC cluster Initiation

www.southgreen.fr

https://southgreenplatform.github.io/trainings

i-Trop Presentation

Ndomassi TANDO, Ingénieur systèmes Animateur plateau, RMQ

Christine TRANCHANT-DUBREUIL, Bioinformaticienne

Aurore COMTE, Bioinformaticienne

Julie ORJUELA-BOUNIOL, Bioinformaticienne

Valérie NOEL, Bioinformaticienne

Bruno GRANOUILLAC, Systèmes d'information

outh Green i-Trop Presentation

EURO-QUALITY SYSTEM ISO 9001

Provisioning of softwares and HPC ressources

Analysis software and IS development

Plateau bioinformatique

Help and support to IRD teams

Training to north and South

Requests/incidents/Howtos

Request forms:

https://bioinfo.ird.fr/index.php/en/cluster-2/

- Accounts
- Softwares
- Projects
- Incidents: contact <u>bioinfo@ird.fr</u>
- Howtos:

https://bioinfo.ird.fr/index.php/en/tutorials-howtos-i-t
rop-cluster/

Slurm Tutorials:

https://bioinfo.ird.fr/index.php/en/tutorials-slurm/

ARCHITECTURE

A Cluster?

- A logical unit composed of several servers
- A powerful unique machine
- Allow to obtain high computing performance
- A bigger capacity storage
- More reliable
- A better ressources availabilty

A cluster?

- A logical unit composed of several servers
- A powerful unique machine
- Allow to obtain high computing performance
- A bigger capacity storage
- More reliable
- A better ressources availabilty

A cluster?

- A logical unit composed of several servers
- A powerful unique machine
- Allow to obtain high computing performance
- A bigger capacity storage
- More reliable
- A better ressources availabilty

Cluster components

- Master Node
 Handle resources and jobs
 priorities
- Computing nodes
 Resources (CPU or RAM memory)

Cluster components

- Master Node
 Handle resources and jobs
 priorities
- Computing nodes
 Resources (CPU or RAM memory)

NAS Server(s)Storage

Architecture: components role

1 Master Node

bioinfo-master.ird.fr

Role:

- Launch and prioritize jobs on computing nodes
- Accessible from the Internet
- Connection :

ssh login@bioinfo-master.ird.fr

Architecture: components role

1 Master Node

bioinfo-master.ird.fr

Role:

- Launch and prioritize jobs on computating nodes
- Accessible from the Internet
- Connection :

ssh login@bioinfo-master.ird.fr

27 computing nodes

nodeX X: 0..26

Role:

- Used by the master to execute jobs
- Not accessible from the Internet
- node0 to node26

Practice

Step 1: Connection, qhost

Go to the Practice 1 of github

Analyses steps of the cluster

Step 1 salloc/srun ou sbatch

Partitions	Use	RAM on nodes	Core on nodes
short	Short Jobs < 1 day (higher priority, interactive jobs)	48 to 64 GB	12 cores
normal	Short Jobs max 7 64 Go to 96 GB days		12 to 24 cores
r900	Short Jobs max 7 32GB days		16 cores /scratch 117GB
long	45 days >long jobs > 3 days	48 GB	12 to 24 cores
highmem	Jobs with more memory needs	144 GB	12 to 24 cores
supermem	Jobs with much more memory needs	1TB	40 cores
gpu	Need for analyses on GPU cores	192GB	24 cpus and 8 GPUs cores

Particular case: gpu partition

- Partition to work on GPUs processors : basecalling, MiniOn etc...
- Restricted access to gpu_account group
- Request access with arguments to do here:

https://itrop-glpi.ird.fr/plugins/formcreator/front/formlist.php

outh Green How do I choose the partition?

How do I choose the partition?

outh Green How do I choose the partition?

outh Green How do I choose the partition?

uth Green How do I choose the partition?

outh Green How do I choose the partition?

Green How do I choose the partition?

South Green Which partition to choose?

Rules	Partition	Tools example	comments
basecalling, demultiplexing,			
correction	gpu	medaka, guppy, machine learning tools	Restricted access
			Target genome > 400 Mb (rice genome
assembling >100G RAM	supermem	miniasm, flye, raven, smartdenovo	doesn't need 100 GB)
			Target genome for more than 400 Mb (>10
genomicsbd (gatk) > 100G RAM	supermem	GATK genomicsDB	samples)
assembling => 35G et < 120G RAM	highmemplus	miniasm, flye, raven, smartdenovo	Target genome between 100 and 400 Mb
assembling => 35G et < 100G RAM	highmem	miniasm, flye, raven, smartdenovo	Target genome between 100 and 400 Mb
Pops structure	long		
simulations	long		
metagenomic	normal	quiime2, frogs	
			Need a lot of cores not too many RAM
mapping	normal	bwa, minimap2, hisat2	Tool number of cores = number of cores to reserve
			Need a lot of cores not too many RAM
	_	GATK haplotypecaller, samtools	Tool number of cores = number of cores
genotypage	normal	mpileup, bcftools	to reserve
stats	normal	R	
Scripts tests	short	bash, python, R	

Architecture: components role

1 Master node

bioinfo-master.ird.fr

Role:

- Launch and prioritize jobs on computing nodes
- Accessible from the Internet

27 computing nodes

nodeX

Role:

- Used by the master to execute jobs
- Not accessible from the Internet

3 NAS servers

bioinfo-nas.ird.fr (nas)

bioinfo-nas2.ird.fr (nas2)

bioinfo-nas3.ird.fr (nas3)

Role:

- Store users data
- Accessible from the Internet
- To transfer data: via filezilla or scp

cluster i-Trop disk partitions

bioinfo-nas.ird.fr

bioinfo-nas2.ird.fr

bioinfo-nas3.ird.fr

Illustration legend:

Local Hard drives in full cylinders

Virtual links to physical hard drives (empty cylinders)

Analyses steps of the cluster

Step 1 Step 2 mkdir

Practice

Step 2:qrsh, partition

Go to the Practice2 of the github

Data transfer on i-Trop cluster

Data transfer on i-Trop cluster

/home and/or /teams or /data2

Hostname: bioinfo-nas.ird.fr

Login: cluster account

bioinfo-nas.ird.fr

Password: cluster

password Port : **22** /data

Hostname: bioinfo-nas2.ird.fr

Login : cluster account

Password : bioinfo-nas2.ird.fr cluster password Port : 22

/data3

Hostname: bioinfo-nas3.ird.fr

Login: cluster account

bioinfo-nas3.ird.fr

Password : cluster password

Port : **22**

Analyses steps of the cluster

Copy your data from your PC/MAC to the nas serve if they are not on the cluster

Practice

Step 3: filezilla

Go to the Practice3 of the github

Copy with scp

Copy between 2 remote servers :

scp -r source destination

Syntax if the source is remote :

scp -r server_name:/path/file_to_copy local_folder

• Syntax if the destination is remote:

scp -r /path/file_to_copy server_name:/path/remote_folder

Ex: scp -r nas:/home/tando/folder//scratch/tando/

Analyses steps of the cluster

Practice

Step 4: scp to nodes

Go to the Practice4 of the github

Module Environment

- > Allow to choose the version of software you want to use
- 2 types of softwares: bioinfo: includes all the bioinformatics softwares (example BEAST) system: includes all the system softwares(example JAVA)
- Overcome the environment variables

Module Environment

- 5 types of commands :
- See the available modules :

module avail

Obtain infos on a particular module:

module whatis + module name

Load a module :

module load + modulename

List the loaded module :

module list

• Unload a module:

module unload + modulename

Unload all the modules :

module purge

Analyses steps of the cluster

Load softwares with modules environment

Step 5 module

Practice

Step 5: module environment

Go to the Practice5 of the github

Analyses steps of the cluster

Step 5 Step 6

Launch a command from the prompt

- Load the software version to launch
- Launch the data analysis

\$~ command <options> <arguments>

With command: the command to launch

Practice

Step6: launch the analysis

Go to the Practice6 of the github

Transfer your results to the nas servers

Copy between 2 remote servers :

```
scp -r source destination
```

• Syntax if the source is remote:

```
scp -r server_name:/path/file_to_copy local_folder
```

Syntax if the destination is remote :

```
scp -r /path/file_to_copy server_name:/path/remote_folder
```


Analyses steps of the cluster

Step 5 Step 6 Step 7 scp

Practice

Step 7: Retrieve the results

Go to the Practice7 of the github

Delete results from scratchs

- Scratch= temporary spaces
- Verify that the copy is OK before
- Use rm command

```
cd /scratch
rm -rf nom_rep
```


Analyses steps of the cluster

rm

Practice

Step8: Data deletion

Go to the Practice8 of the github

Scripts to visualize/delete données temporary data

- Scripts location: /opt/scripts/scratch-scripts
- Visualize data on scratchs: scratch_use.sh

sh /opt/scripts/scratch-scripts/scratch_use.sh

• Delete data on scratchs: clean scratch.sh

sh /opt/scripts/scratch-scripts/clean_scratch.sh

South Green Main Slurm commands Main Slurm commands

Commande	Description	Exemple
sruntime=0X:00pty bash -i	Interactive way to connect to a node for X minutes	sruntime=02:00:00pty bash -i Connection for 2h
sbatch	Launch a analyses in background via a script	sbatch script.sh
sinfo	Informations on partitions	sinfo
scancel	Deletion of job with <job_id></job_id>	scancel 1029
squeue	Infos on all jobs	squeue -u tando
scontrol show job <job_id></job_id>	Infos on the active job <job_id></job_id>	scontrol show job 1029
sacct -j <job_id></job_id>	Infos on the finished job <job_id></job_id>	sacct -j 1029

More infos here: https://southgreenplatform.github.io/tutorials//cluster-itrop/Slurm/#part-2

South Green Options of sbatch, srun, salloc commands

Options	Description	Exemple
job-name= <name></name>	Name the job	sbatchjob-name=tando_blast
-p <partition></partition>	Choose a partition	sbatch -p highmem
nodelist= <nodex></nodex>	Choose a particular node	sbatch -p normalnodelist=node14
-n <nb_tasks></nb_tasks>	Launch several instance of a command	srun -n 4
-c <nb_cpu_per_task></nb_cpu_per_task>	Allocate the number of cpus per task	srun -n 4 -c 2 hostname
mail-user= <emailaddress></emailaddress>	Send a email	sbatch mail-user=ndomassi.tando@ird.fr
mail-type= <event></event>	Send a email when: END: end of the job FAIL: abortion BEGIN: beginning of job ALL: all events	sbatchmail-type=BEGIN

BONUS

LAUNCH A JOB

Advantages

- Scheduler choose resources automatically
- Use up to 24 cores at the same time
- Possibility to configure this choice
- Jobs launch in background
 - → possibility to turn off your PC/MAC
 - → automatic results retrieving

Launch a batch job

- Execute a script via Slurm
- Use:

\$~ sbatch script.sh

with script.sh: the name of the script

South Green Options of sbatch, srun, salloc commands

Options	Description	Exemple
job-name= <name></name>	Name the job	sbatchjob-name=tando_blast
-p <partition></partition>	Choose a partition	sbatch -p highmem
nodelist= <nodex></nodex>	Choose a particular node	sbatch -p normalnodelist=node14
-n <nb_tasks></nb_tasks>	Launch several instance of a command	srun -n 4
-c <nb_cpu_per_task></nb_cpu_per_task>	Allocate the number of cpus per task	srun -n 4 -c 2 hostname
mail-user= <emailaddress></emailaddress>	Send a email	sbatch mail-user=ndomassi.tando@ird.fr
mail-type= <event></event>	Send a email when: END: end of the job FAIL: abortion BEGIN: beginning of job ALL: all events	sbatchmail-type=BEGIN

#!/bin/bash

Bash scripts syntax

First part of the script (in green): sge execution options with the key word #SBATCH

Bash scripts syntax

In the 2nd part of the script: the command to execute

nom_variable1="value_variable1" nom_variable2="value_variable2"

sleep 30 hostname

Practice

Launch a script with sbatch

Go to the Practice9 of the github

Satisfaction survey

Thank you to fill up the form at this URL:

https://itrop-survey.ird.fr/index.php/562934?lang=fr

Citations

If you use i-Trop Bioinformatics resources.

Thank you for citing with:

"The authors acknowledge the IRD itrop HPC (South Green Platform) at IRD montpellier

for providing HPC resources that have contributed to the research results reported within this paper.

URL: https://bioinfo.ird.fr/- http://www.southgreen.fr"

Projects

 Include a budget for bioinformatics resources in your answer to projects funding

- A need in hard drives, renew machines etc...
- Available quotations

 Contact <u>bioinfo@ird.fr</u>: help, needs definition, quotations...

Thank you for your attention!

Le matériel pédagogique utilisé pour ces enseignements est mis à disposition selon les termes de la licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Partage dans les Mêmes Conditions (BY-NC-SA) 4.0 International:

http://creativecommons.org/licenses/by-nc-sa/4.0/