Multi Layer Perceptron

목차

Perceptron

Multi-Layer Perceptron

Backpropagation

Activation function

퍼셉트론

뇌의 뉴런을 모방

단일 퍼셉트론

Activation function

뉴런에서 계산된 값이 임계치보다 크면 1을 출력 작은 경우 0을 출력. 다음으로 신호를 보낼지 말지를 결정.

학습 알고리즘 – Delta Rule

출력 값이 우리가 원하는 목표 값(d)과 가까워지도록 가중치를 Gradient Descent(경사하강법)를 이용하여 조정.

W(가중치)와 b(바이어스)를 임의의 값으로 초기화하나의 학습 벡터에 대한 출력 값 계산목표 값과 비교해서 허용 오차보다 크면 학습을 진행

학습 알고리즘

W, b 조정

출력 값과 목표 값의 차이가 허용 오차 보다 작을 때 W(가중치)와 b(bias) 조정

$$W_i(t+1) = W_i(t) + \alpha [d(t) - y(t)] \cdot X_i(t)$$

$$b = b + \alpha [d(t) - y(t)] \cdot X_i(t)$$

 α = learning rate

$$d(t)$$
 = 목표 값

AND OR

XOR?

다층 퍼셉트론

입력층과 출력층 사이에 1개 이상의 은닉층(hidden layer)을 추가

대부분 역전파 알고리즘을 이용하여 학습

학습 알고리즘

1. 초기화 (initialization)

while(오차의 합계 < 허용 오차):

- 2. 순전파 (feedforward)
- 3. 역전파 (backpropagation)

초기화 (initialization)

- 1. 신경망 구조 선택
- 은닉층 (hidden layer) 개수
- 은닉 뉴런 (hidden neuron)개수
- 2. 가중치, 임계 값 초기화
- 임의의 값
- 초기 값으로 학습 시간 결정

$$\begin{bmatrix} x_0 \\ x_1 \end{bmatrix} \qquad \begin{bmatrix} h_0 \\ h_1 \\ h_2 \end{bmatrix} \qquad \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}$$

$$\begin{bmatrix} w_{00} & w_{01} \end{bmatrix} \quad \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$$

$$\begin{bmatrix} w'_{00} & w'_{01} & w'_{02} \\ w'_{10} & w'_{11} & w'_{12} \end{bmatrix} \begin{bmatrix} h_0 \\ h_1 \\ h_2 \end{bmatrix} = \begin{bmatrix} a' \\ b' \end{bmatrix} \xrightarrow{\text{activation activation sign}} \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}$$

$$\begin{bmatrix} w_{00} & w_{01} \\ w_{10} & w_{11} \\ w_{20} & w_{21} \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
 activation
$$=> \begin{bmatrix} h_0 \\ h_1 \\ h_2 \end{bmatrix}$$
 (sigmoid)

$$\begin{bmatrix} w_{00} & w_{01} \\ w_{10} & w_{11} \\ w_{20} & w_{21} \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \Rightarrow \begin{array}{l} \text{activation} \\ \text{function} \\ \text{(sigmoid)} \end{array} \Rightarrow \begin{bmatrix} h_0 \\ h_1 \\ h_2 \end{bmatrix}$$

$$\mathbf{W} \qquad \mathbf{X} \qquad \qquad \mathbf{f()} \qquad \mathbf{H}$$

H = f(WX)

$$\begin{bmatrix} w'_{00} & w'_{01} & w'_{02} \\ w'_{10} & w'_{11} & w'_{12} \end{bmatrix} \begin{bmatrix} h_0 \\ h_1 \\ h_2 \end{bmatrix} = \begin{bmatrix} a' \\ b' \end{bmatrix} \overset{\text{activation}}{=>} \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}$$

W' H

f() \

Y = f(W'H)

목표: error을 줄이는 것 (loss function)

각 layer간의 weight에 대한 loss function의 gradient 를 weight 반대 방향으로 더해준다.

$$w = w - \eta * \frac{\partial E}{\partial w}$$

 η : learning rate

 $\frac{\partial E}{\partial w}$: w의 변화에 따른 E의 변화

목표: error을 줄이는 것 (loss function)

각 layer간의 weight에 대한 loss function의 gradient 를 weight 반대 방향으로 더해준다.

$$w = w - \eta * \frac{\partial E}{\partial w}$$

 η : learning rate

 $\frac{\partial E}{\partial w}$: w의 변화에 따른 E의 변화

$$E = \frac{1}{2}(y - y')2 \qquad w_2 = w_2 - \eta * \frac{\partial E}{\partial w_2}$$

$$y' = \text{desired value}$$

$$\frac{\partial E}{\partial w_2} =$$

$$E = \frac{1}{2}(y - y')2 \qquad w_2 = w_2 - \eta * \frac{\partial E}{\partial w_2}$$

$$y' = \text{desired value (training data)}$$

$$\frac{\partial E}{\partial w_2} = (y - y') \frac{\partial y}{\partial w_2}$$

$$y = \text{sig}(w_2 h)$$

$$= (y - y') \frac{\partial}{\partial w_2} \text{sig}(w_2 h)$$

$$sig(x)' = \text{sig}(x)(1 - \text{sig}(x))$$

$$= (y - y') \text{sig}(w_2 h)(1 - \text{sig}(w_2 h)) \frac{\partial w_2 h}{\partial w_2}$$

$$= (y - y') y(1 - y) \frac{\partial w_2 h}{\partial w_2}$$

$$= (y - y') y(1 - y) h$$

$$E = \frac{1}{2}(y - y')2 \qquad w = w_1 - \eta * \frac{\partial E}{\partial w_1}$$

$$y' = desired \ value$$

$$\frac{\partial E}{\partial w_1} =$$

$$E = \frac{1}{2}(y - y')2 \qquad w = w_1 - \eta * \frac{\partial E}{\partial w_1}$$

$$y' = desired \ value$$

$$\frac{\partial E}{\partial w_1} = (y - y') \frac{\partial y}{\partial w_1}$$

$$y = sig(w_2h)$$

$$= (y - y') \frac{\partial}{\partial w_1} sig(w_2h)$$

$$sig(x)' = sig(x)(1 - sig(x))$$

$$= (y - y') y(1 - y) \frac{\partial w_2 h}{\partial w_1}$$

$$= (y - y')y(1 - y)w_2 \frac{\partial h}{\partial w_1}$$

$$h = sig(w_1x)$$

$$= (y - y')y(1 - y)w_2 \frac{\partial}{\partial w_1} sig(w_1x)$$

$$= (y - y')y(1 - y)w_2h(1 - h)x$$

$$E = \frac{1}{2}(y - y')2$$
 $w = w - \eta * \frac{\partial E}{\partial w}$

$$\frac{\partial E}{\partial w_2} = (y - y')y(1 - y)h$$

$$\frac{\partial E}{\partial w_1} = (y - y')y(1 - y)w_2h(1 - h)x$$

sigmoid sigmoid w_1 h w_2 y

즉, 뭐시기에 입력을 곱하면 loss의 기울기를 알 수 있음

$$E = \frac{1}{2}(y - y')2$$
 $w = w - \eta * \frac{\partial E}{\partial w}$

$$\frac{\partial E}{\partial w_2} = \underbrace{(y - y')y(1 - y)h}_{\delta_y}$$

$$\frac{\partial E}{\partial w_1} = \underbrace{(y - y')y(1 - y)w_2h(1 - h)x}_{\delta_h}$$

즉, 뭐시기에 입력을 곱하면 loss의 기울기를 알 수 있음 δ

$$E = \frac{1}{2}(y - y')2$$
 $w = w - \eta * \frac{\partial E}{\partial w}$

$$\frac{\partial E}{\partial w_2} = \underbrace{(y - y')y(1 - y)}_{\delta y} h$$

$$\frac{\partial E}{\partial w_1} = \underbrace{(y - y')y(1 - y)w_2h(1 - h)}_{\delta h} x$$

$$\delta_h$$

$$\delta_h = \delta_y \ sig(w_1 x)' \ w_2$$

$$\delta_2 = \delta_y \quad sig(w_2 h_1)' \quad w_3$$

$$\delta_1 = \delta_2 \quad sig(w_1 x)' \quad w_2$$

...

$$\delta_2 = \delta_y \quad sig(w_2 h_1)' \quad w_3$$

$$\frac{\partial E}{\partial \mathbf{w}_2} = \mathbf{\delta_2} h_1$$

$$\mathbf{w}_2 = \mathbf{w}_2 - \eta * (\mathbf{\delta}_2 h_1)$$

Activation function

네트워크에 비선형을 추가하기 위해 사용됨

Why?

● H(X) = f(g(i...(X))) -> H(x) = WX -> 아무리 층이 많아도 선형함수

Activation function 추가

- 각 층의 출력 결과를 비선형화 하고 다음 층에 넘겨줌.
- H(X) = activationfunction(f(activationfunction(g(activationfunction(i ... (X))))))

단층 퍼셉트론에서는 출력값 영역을 나누는 선이 직선 형태로 표현되기 때문에 XOR을 표현할 수 없다.

그래서 층을 하나 더 쌓아서 (input -> NAND, OR -> AND -> output) XOR을 표현하게 되는데, 이게 가능했던 이유는 활성화 함수로 비선형 함수인 계단 함수를 사용해 결과값의 영역을 나누는 선이 곡선으로 표현될 수 있었기 때문이다.

이렇게 기본적인 연산을 조합해 더욱 복잡한 연산을 표현하기 위해서는 비선형 함수가 필요하다.

Activation function 종류

활성 함수에 따라 학습 성능이 달라진다.

step function

sigmoid

hyperbolic tangent

ReLU

softmax

...

Activation function – step function

$$step(x) = \begin{cases} 1 & x \ge 0 \\ 0 & otherwise \end{cases}$$

임계 값 기준으로 활성화 되거나 혹은 비활성화 되는 형태

Activation function

뉴런에서 계산된 값이 임계치보다 크면 1을 출력 작은 경우 0을 출력. 다음으로 신호를 보낼지 말지를 결정.

Activation function – sigmoid(1)

$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$

미분이 편하다 : sigmoid(x)' = sigmoid(x)(1 - sigmoid(x))

결과 값이 [0, 1] 사이로 제한 – 입력이 작을 때 0, 클 때 1에 수렴 • 확률 값을 리턴한다.

역전파 신경망에 많이 쓰임

가중치나 바이어스를 조금 변화 시켰을 때

출력이 조금씩 변화 하도록 만들 수 있다.

Activation function – sigmoid(2)

Gradient Vanishing (그래디언트가 죽는 현상 -> 학습이 되지 않는다) 지수함수라서 계산이 복잡하다.

Gradient Vanishing

- 이전 레이어로 전파되는 그래디언트가 0에 가까워지는 현상.
 - ∘ 양 극단의 미분값이 o에 가깝기 때문
- 레이어를 깊게 쌓으면 파라미터의 업데이트가 제대로 이루어지지 않음.

중심값이 o이 아니다.

Activation function – hyperbolic tangent

$$tanh(x) = \frac{e^{2x}-1}{e^{2x}+1} = 2$$
sigmoid(2x) - 1
결과값 범위 : (-1,1)

시그모이드 확장버젼

출력범위가 sigmoid에 비해 더 넓고, 미분계수 최대값이 sigmoid의 4배. => 더 빠르게 수렴하여 학습

동일한 Gradient Vanishing 문제

Activation function – ReLU

$$ReLU(x) = \begin{cases} x & x \ge 0 \\ 0 & otherwise \end{cases}$$

0에서 확 꺾이기 때문에 비선형.

계산이 매우 효율적

Sigmoid 보다 계산 속도가 빠르다

But. 음수가 나온 노드는 학습이 불가능 (dying ReLU)

- -> 간단한 네트워크에서는 성능 저하
- -> leaky ReLU와 같은 다른 ReLU 존재

But. 0에서 미분 불가능

Activation function — Leaky ReLU

 $Leaky ReLU(x) = \begin{cases} x & x \ge 0 \\ 0.01x & otherwise \end{cases}$

ReLU 함수의 변형으로 음수에 대해 1/10로 값을 줄여서 사용하는 함수

Activation function - softmax

$$\sigma(\mathbf{z})_{j} = \frac{e^{z_{j}}}{\sum_{k=1}^{K} e^{z_{k}}}$$
 j = 1,2,..., K

입력 받은 값을 출력으로 0~1 사이의 정규화 된 값

출력 값들의 총합은 항상 1

주로 출력 노드에서 사용.

분류, 강화 학습에 사용된다.

vs sigmoid?

sigmoid는 해당 뉴런으로 들어오는 입력들과 bias에 의해 출력이 결정 softmax는 다른 뉴런의 출력 값들 과의 상대적인 비교를 통해 출력이 결정