Lecture 27: Laplace-Stieltjes Transforms, Convolution Theorem and the Renewal Function

Concepts checklist

At the end of this lecture, you should be able to:

- Define and evaluate Laplace-Stieltjes transforms;
- State the Convolution Theorem and apply it appropriately;
- Define the renewal function (or mean-value function).

Laplace-Stieltjes Transform

In renewal theory, we make extensive use of Laplace-Stieltjes transforms.

Definition 27. Let X be a non-negative random variable with distribution function F(x). Then, the Laplace-Stieltjes transform of X is given by

$$\widehat{F}(s) = \int_0^\infty e^{-sx} \mathrm{d}F(x).$$

Note: $\widehat{F}(s) = \mathbb{E}(e^{-sX})$.

Example 25.

$$F(t) = \begin{cases} 0 & \text{if } t < 0 \\ \frac{1}{2}(1 - e^{-t}) & \text{if } 0 \le t < 1 \\ 1 & \text{if } t \ge 1 \end{cases}$$

Then,

$$\begin{split} \widehat{F}(s) &= \int_0^\infty e^{-st} \mathrm{d}F(t) \\ &= \int_0^1 e^{-st} \left(\frac{1}{2}e^{-t} \mathrm{d}t\right) + \left[1 - \frac{1}{2}(1 - e^{-1})\right] e^{-s} + \int_1^\infty e^{-st} \left(0 \mathrm{d}t\right) \\ &= -\frac{1}{2} \frac{1}{s+1} e^{-(s+1)t} \Big|_0^1 + \left[\frac{1}{2} + \frac{1}{2}e^{-1}\right] e^{-s} \\ &= \frac{1}{s+1} \left(\frac{1}{2} - \frac{1}{2}e^{-(s+1)}\right) + \left[\frac{1}{2}e^{-s} + \frac{1}{2}e^{-(s+1)}\right]. \end{split}$$

Convolution Theorem

The most important result on Laplace-Stieltjes transforms for renewal theory is the Convolution Theorem.

Definition 28. If X and Y are independent random variables then the random variable Z = X + Y is known as the convolution of X and Y. By conditioning on the value of Y, we can see that Z has the distribution function

$$F_Z(z) = \int_0^z F_X(z - y) \mathrm{d}F_Y(y),$$

where $F_W(\cdot)$ is the distribution function for the random variable W, for W=X,Y,Z.

Theorem 25 (Convolution Theorem). For independent random variables X and Y, the random variable Z = X + Y has the Laplace-Stieltjes transform

$$\widehat{F}_Z(s) = \widehat{F}_X(s)\widehat{F}_Y(s).$$

More generally, for independent random variables X_i where $i \in \{1, 2, ..., n\}$, the random variable $Z := \sum_{i=1}^{n} X_i$, has the Laplace-Stieltjes transform

$$\widehat{F}_Z(s) = \prod_{i=1}^n \widehat{F}_{X_i}(s).$$

Example 26. Distribution of waiting time

If we define S_n to be the time until the *n*th event in a stochastic process, $S_n = X_1 + X_2 + \cdots + X_n$, where all the X_i are i.i.d., then

 $F_n(t) = \Pr(S_n \leq t)$ is the waiting time distribution function.

Then, using the Convolution Theorem we have

$$\widehat{F}_n(s) = \prod_{i=1}^n \widehat{F}_{X_i}(s) = \left(\widehat{F}(s)\right)^n,$$

where $\widehat{F}(s)$ is the Laplace-Stieltjes transform of the distribution function of each of the random variables X_i .

Remark: The main purpose of renewal theory is to derive information about the counting process and the waiting time process from the inter-event time distribution F(t). The above result is an example of this for the waiting time process $F_n(t)$.

Letting $P_n(t) = \Pr(N(t) = n)$, and since the events $\{N(t) < n\}$ and $\{S_n > t\}$ are equivalent, we have

$$P_n(t) = \Pr(N(t) \ge n) - \Pr(N(t) \ge n + 1)$$

= $\Pr(S_n \le t) - \Pr(S_{n+1} \le t)$
= $F_n(t) - F_{n+1}(t)$.

Definition 29. The renewal function (or mean-value function) M(t) is defined as

$$M(t) = \mathbb{E}[N(t)] = \sum_{n=0}^{\infty} n P_n(t).$$

 $\equiv M(t)$ is the expected number of events that have occurred by time t.

Note: It can also be shown (not trivial, and omitted) that if F(0) < 1, then $M(t) < \infty$ for t > 0.

Letting $\widehat{M}(s) = \int_0^\infty e^{-st} dM(t)$, we have

$$\widehat{M}(s) = \sum_{n=1}^{\infty} \left(\widehat{F}(s)\right)^n,$$

and since $\hat{F}(s) < 1$ because

$$\widehat{F}(s) = \int_0^\infty e^{-st} dF(t) < \int_0^\infty 1 dF(t) = 1,$$

and F(0) < 1 means that there must be some contribution to both of the above integrals for a positive value of t, for which $e^{-st} < 1$ for s > 0, we have

$$\widehat{M}(s) = \frac{\widehat{F}(s)}{1 - \widehat{F}(s)}.$$

Example 27. Poisson process

$$F(t) = 1 - e^{-\lambda t} \quad \Rightarrow \widehat{F}(s) = \frac{\lambda}{\lambda + s}$$
$$\Rightarrow \widehat{M}(s) = \frac{\frac{\lambda}{\lambda + s}}{1 - \frac{\lambda}{\lambda + s}} = \frac{\lambda}{s}$$
$$\Rightarrow M(t) = \lambda t,$$

which is exactly what we expect, as N(t) is Poisson distributed with parameter λt .