Presented By: Kofoworola Egbinola

# OPTIMIZING RECIPE PROMOTION WITH ML

A Data-Driven Approach to Boosting User Engagement

# Table of Contents

|      |                                        | pg. |
|------|----------------------------------------|-----|
| I    | Project Objectives and Goals           | 3   |
| II   | Dataset Overview                       | 4   |
| Ш    | EDA Highlights                         | 5   |
| IV   | Modeling Approach                      | 6   |
| V    | Model Comparison                       | 7   |
| VI   | Selected Model                         | 8   |
| VII  | Business Metric                        | 9   |
| VIII | Conclusion & Strategic Recommendations | 10  |

# Objective:

To help Tasty Bytes promote recipes that are likely to become popular, using data-driven predictions to maximize homepage impact and user engagement.

### Goals:



Predict which recipe will lead to high traffic.



Correctly predict high traffic recipes 80% of the time.



Define a business
metric to track success
post-deployment.

II. Dataset Overview 4

# **Dataset Sample:**

| recipe | calories | carbohydrate | sugar | protein | category  | servings | high_traffic |
|--------|----------|--------------|-------|---------|-----------|----------|--------------|
| 1      |          |              |       |         | Pork      | 6        | High         |
| 2      | 35.48    | 38.56        | 0.66  | 0.92    | Potato    | 4        | High         |
| 3      | 914.28   | 42.68        | 3.09  | 2.88    | Breakfast | 1        | null         |
| 4      | 97.03    | 30.56        | 38.63 | 0.02    | Beverages | 4        | High         |
| 5      | 27.05    | 1.85         | 0.8   | 0.53    | Beverages | 4        | null         |

Source: Tasty Bytes' Recipe database containing metadata, nutritional information, and traffic classification.

# Data Validation & Cleaning:

Each feature was thoroughly inspected for data quality issues such as missing values, inconsistencies, and outliers, and appropriate cleaning steps were applied to ensure reliable analysis and modeling.

# **Traffic is Slightly Skewed**

A higher proportion of recipes drive high traffic

60%

40%

# **Category Influence on Traffic**

Certain categories (e.g., Potato, Vegetable) consistently drive high traffic, with a strong, statistically significant relationship.



### **Nutritional Patterns**

High-traffic recipes generally have higher nutritional values (excluding sugar), though correlations are not statistically significant.

High-traffic recipes tend to have more calories



Carbs are slightly higher in hightraffic recipes



Slight **protein** differences exist between traffic groups



Low-traffic recipes tend to have more **sugar** 



### Goal:

Predict whether a recipe will drive traffic

— with a focus on achieving at least 80%

precision to ensure effective promotions.

### **Selected Models:**

- Logistic Regression (baseline, interpretable)
- Random Forest (ensemble, handles complexity & non-linearity)

# Target Variable:

Traffic Level (High vs. Low), derived from recipe pages views.

### **Evaluation Metrics:**

- Precision, Recall, F1-score to balance correct predictions and reduce false promotions
- ROC-AUC and PR-AUC to assess overall classification performance

V. Model Comparison

## **Key Metrics on Test Data**



© Both models met the 80% precision target, meaning most promoted recipes are likely to drive traffic.

⚠ Logistic Regression had slightly higher Precision, but lower Recall, may miss too many high-potential recipes.

Random Forest outperformed in Recall and F1 Score, making it more effective for capturing more truly high traffic recipes.

VI. Selected Model 8

### Chosen Model — Random Forest

### Why Random Forest?

- Met the business target with 80% Precision
  - ensuring effective recipe promotions
- Achieved higher Recall (0.73) and F1 Score (0.76) — better at identifying truly popular recipes
- Strong overall performance

## Strengths:

- Captures complex, non-linear relationships in the data
- Robust to overfitting and works well with mixed data types

### Random Forest's Prediction Performance



VII. Business Metric

9

# **Business Metric — Promotion Hit Rate (PHR)**

### **Definition:**

The percentage of promoted recipes that actually drive traffic

→ Measures how effective the promotion strategy is

# Why PHR Matters:

- Ensures homepage is used on recipes that truly attract traffic
- Directly aligns with the business goal of maximizing user engagement through popular content

### Formula:

 $ext{PHR} = rac{ ext{Number of promoted recipes that drove traffic}}{ ext{Total number of promoted recipes}} imes 100$ 

# **Estimated Starting Value:**

Based on the Random Forest model's 80% precision, PHR is estimated to start at ~80% if only predicted-popular recipes are promoted.

### Conclusion

Random Forest outperformed Logistic Regression with stronger recall and F1-score, achieving the 80% precision target for confident promotions. Traffic is strongly influenced by recipe categories, with Potato, Vegetable, and Pork driving the highest engagement.

# Actionable Recommendations for Tasty Bytes

- Adopt the Random Forest model for selecting recipes to promote.
- Use Promotion Hit Rate (PHR) as a core business KPI.
- Promote only recipes predicted as "high-traffic" to maximize engagement opportunities.

- Monitor PHR regularly and retrain the model when performance declines.
- Run A/B tests comparing model-guided promotions vs. current strategy.
- Enhance underperforming categories
   (e.g., Beverages) through better content,
   visuals, or SEO.

Presented By: Kofoworola Egbinola

# Thank You For Listening