CLAIMS

What is claimed is:

1	1. A power converter comprising:
2	a shared first-side stage to receive an input;
3	a plurality of second-side converter stages coupled to the first-side stage,
4	each of second-side converter stages to generate an output; and
5	control circuitry to monitor the outputs of the second-side converter stages
6	and generate a control signal for each output, wherein the control signal turns off
7	switching elements of a corresponding one of the second-side converter stage to
8	regulate the output.
1	2. The power converter of claim 1 further comprising:
2	a switching signal generator to generate a switching signal for switching
3	on and off elements of the first-side stage, and switching on and off switching
4	elements of the plurality of second-side converter stages;
5	a plurality of second-side driver circuits, each to provide one of the
6	second-side converter stages with a combined signal corresponding with the
7	switching signal and one of the control signals, the second-side driver circuit
8	turning off switching elements of the second-side stages in response to the one
9	control signal.
1	3. The power converter of claim 2 wherein the second-side converter
2	stages each comprise a transformer and a set of second-side switching elements
3	which are alternatively turned on and off in response to the switching signal from
4	a corresponding second-side driver circuit, the second-side switching elements
5	being turned off based on the control signal to regulate the output.
1	4. The power converter of claim 3 wherein the switching signal has a duty
2	cycle of up to 50%, and the combined signal has a duty cycle of less than the
3	switching signal depending on the control signal.

1	5. The power converter of claim 2 wherein the first-side stage comprises
2	first and second switching elements which are alternatively switched on and off,
3	and wherein the plurality of second-side stages comprise a first and a second
4	second-side stage, the first second-side stage comprising third and fourth
5	switching elements which are alternatively switched on and off, the second
6	second-side stage comprising fifth and sixth switching elements which are
7	alternatively switched on and off.
1	6. The power converter of claim 5,
2	wherein the switching signal turns on the first, third and fifth switching
3	elements at substantially the same time,
4	wherein the combined signal associated with the first second-side stage
5	turns off the third switching element before the switching signal turns off the first
6	switching element,
7	wherein the combined signal associated with the second second-side stage
8	turns off the fifth switching element before the switching signal turns off the first
9	switching element.
1	7. The power converter of claim 6 further comprising:
2	a first steering diode to inhibit current from flowing from the first to the
3	second second-side stage when the third switching element is turned off before the
4	fifth switching element and while the first switching element is conducting; and
5	a second steering diode to inhibit current from flowing from the second to
6	the first second-side stage when the fifth switching element is turned off before
7	the third switching element and while the first switching element is conducting.
1	8. The power converter of claim 7 further comprising:

when the associated switching element is turned off.

2

4

a freewheeling diode associated with each of the third, fourth, fifth and

sixth switching elements to allow transformer inductive leakage current to flow

- 9. The power converter of claim 1 wherein the shared first-side stage is a high side stage to receive an input voltage that is greater than an output voltage, and the plurality of second-side stages are low-side stages.
- 1 10. The power converter of claim 1 wherein the shared first-side stage is a 2 low-side stage to receive an input voltage that is lower than an output voltage, and 3 the plurality of second side stages are high-side stages.

I	11. A power converter comprising:
2	a single set of high-side switching elements;
3	a plurality of sets of low-side switching elements coupled to the high-side
4	switching elements; and
5	control circuits to turn off the low side switching elements of at least one
6	of the sets before the high side switching elements to regulate an output.
1	12. The power converter of claim 11 further comprising:
2	steering diodes coupling the low-side switching elements with the high-
3	side switching elements, the steering diodes allowing current to flow from the
4	high-side switching elements to the low-side switching elements, the steering
5	diodes inhibiting current from flowing between the sets of low-side switching
6	elements.
1	13. The power converter of claim 12 wherein each switch of the low-side
2	sets has a corresponding one of the steering diodes.
1	14. The power converter of claim 11 further comprising:
2	a freewheeling diode associated with each switch of the low-side sets, the
3	freewheeling diodes allowing leakage current to flow from one of a plurality of
4	transformers when the associated switch it turned off.
1	15. The power converter of claim 11 wherein an input current is split
2	between the sets of low-side switching elements after flowing through one of the
3	high-side switching elements, the split based on output loading of the sets of low-
4	side switching elements.
1	16. The power converter of claim 11 further comprising:
2	a switching signal generator to generate switching signals for the high-side
3	and low-side switching elements;
4	a plurality of low-side control circuits each associated with one of the sets
5	of low-side switching elements, each low-side control circuit to monitor one of a

- plurality of outputs and to generate a control signal to change a duty-cycle of the
 low-side switching elements of the associated set.
 - 17. The power converter of claim 16 further comprising:
- a low-side driver circuit for each set of low-side switching elements, the
 low-side driver circuits to provide switching signals to the low-side switching
 elements based on the switching signals from the switching signal generator and
 one of the control signals, wherein low-side driver circuit, based on the control
 signal from the associated control circuit, changes the duty cycle of the switching
 signal provided by the low-side driver circuit to the low-side switching elements
 to regulate an associated output.
 - 18. The power converter of claim 17 wherein when a first switch of a first set of low-side switching elements is turned off before a second switch of a second set of low-side switching elements, a steering diode associated with the first switch inhibits current from flowing from a transformer associated with the first set of low-side switching elements to a transformer associated with the second set of low-side switching elements.
 - 19. The power converter of claim 17 further comprising an optical coupler to electrically isolate the low-side control circuit from the low-side driver circuitry.
 - 20. The power converter of claim 11 further comprising a plurality of transformers, each transformer associated with one of the sets of the low-side switching elements to generate one of a plurality of outputs.
- 1 21. A method comprising:

1

1

2

3

4

5

6

1

2

3

1

2

3

- 2 generating a pulse width modulated switching signal;
- switching input current through switching elements of a high-side stage in
 response to the switching signal;

5	switching a first portion of the input current through switching elements of
6	a first low-side stage in response to a first control signal and the switching signal;
7	and
8	monitoring an output of the first low-side stage to generate the first control
9	signal, the first control signal turning off the switching elements of the first low-
10	side stage to regulate the output.

22. The method of claim 21 further comprising:

switching a second portion of the input current through switching elements of a second low-side stage in response to a second control signal and the switching signal; and

monitoring an output of the second low-side stage to generate the second control signal, the second control signal turning off the switching elements of the second low-side stage to regulate the output of the second low-side stage.

23. The method of claim 22 further comprising inhibiting current from flowing between the first and second low-side stages when the switching elements of one of the low-side stages is turned off before the other.