

NRF24L01 RF Board

用户手册

产品简介

NRF24L01 RF Board (A) 简介

功能简介:	基于 SPI 接口的 2.4G 无线模块
典型应用:	无线数据传输,可多点通信和跳频通信
主要资源:	NRF24L01,SPI 接口
资料包括:	● 测试程序(STM32,AVR,PIC))
	● 电路原理图
	● 相关 PDF 资料

特别说明:

- 产品配置: NRF24L01 x 1pcs。(至少需有 2 个 NRF24L01 才能收发)
- 工作电压: 1.9V~3.6V。(切勿超过 3.6V)
- 通信距离: 50 米内无丢包或极少丢包。(软件设置: 250kbps, 0dBm, 低噪声放大增益; 工作环境: 空旷区域)

NRF24L01 RF Board (B) 简介

功能简介:	基于 SPI 接口的 2.4G 无线模块
最大特点:	● SPI 接口兼容部分 Open 开发板
	● 新版,阻容采用 0402 封装,大批量,质量更优
典型应用:	无线数据传输,可多点通信和跳频通信
主要资源:	NRF24L01,SPI 接口
资料包括:	● 测试程序(STM32, AVR, PIC))
	● 电路原理图
	● 相关 PDF 资料

特别说明:

- 产品配置: NRF24L01 x 1pcs。(至少需有 2 个 NRF24L01 才能收发)
- 工作电压: 1.9V~3.6V。(切勿超过 3.6V)
- 通信距离: 55 米内无丢包或极少丢包。(软件设置: 250kbps, 0dBm, 低噪声放大增益; 工作环境: 空旷区域)

NRF24L01 RF Board (C) 简介

功能简介:	基于 SPI 接口的 2.4G 无线模块
最大特点:	● 双向功放,收发一体
	● 支持 2Mbps 数据速率
	● 支持6个节点组网
	● 支持 125 个射频通道
	● 带 PA 放大,适用于超远距离传输
	● 带 LNA 低噪声放大,适用于超远距离传输
	● 可外接高灵敏度天线
	● 输出功率可软件设置
典型应用:	无线数据传输,可多点通信和跳频通信
主要资源:	NRF24L01,SPI 接口
资料包括:	● 测试程序(STM32,AVR,PIC)
	● 相关 PDF 资料

- 特别说明:
- 产品配置: NRF24L01 x 1pcs,不含天线。(至少需有 2 个 NRF24L01 才能收发,需加天线才能进行长距离通信)
- 工作电压: 1.9V~3.6V。(切勿超过 3.6V)
- 通信距离: (工作环境: 空旷区域; 硬件配置: 2DB 天线)
 - 1000 米内无丢包或极少丢包。(软件设置: 250kbps, 0dBm, 低噪声放大增益)
 - 700 米内无丢包或极少丢包。(软件设置: 1Mbps, 0dBm,低噪声放大增益)
 - 500 米内无丢包或极少丢包。(软件设置: 2Mbps, 0dBm, 低噪声放大增益)

引脚定义

NRF24L01 RF Board (A) 管脚排序

NRF24L01 RF Board (B) 管脚排序

NRF24L01 RF Board (C) 管脚排序

NRF24L01 RF Board (C)和 NRF24L01 RF Board (A)的管脚排序相同。

操作与现象

该模块通常可以兼容任何提供 SPI 接口的开发板。本手册以微雪的 Open103Z(主控芯片 STM32F103)开发板和 NRF24L01 RF Board (B)作为演示。这是因为 Open103Z 的 SPI 接口管脚排序和 NRF24L01 RF Board (B)的管脚排序相同,模块可以直接插入到 SPI 接口中。模块如果其他开发板,应根据不同的 SPI 管脚排序,使用杜邦线转接。同时也应该注意供电电压。

准备工作

- Open103Z 开发板(含电源) x 2
- NRF24L01 RF Board (B) x 2(A 型和 C 型也是可选的,但是它们的管脚排序和 B 型不同。 Open103Z 的 SPI 接口管脚排序和 NRF24L01 RF Board (B)的管脚排序相同。)
- 下载器(ST-Link, U-Link, J-Link等)

硬件连接

- 把 NRF24L01 RF Board (B)连接到 Open103Z 的 SPI-1 接口。
- 把下载器连接到 Open103Z 的 JTAG 接口。
- 连接电源。

操作步骤

把两个 NRF24L01 RF Board (B)分别连接到两个 Open103Z 的 SPI-1 接口。其中一组作为发送方,另一组作为接收方。

发送方下载程序

- 1) 把下载器连接到发送方 Open103Z 的 JTAG 接口。开发板上电。
- 2) 打开 Keil 工程\STM32\MDK_Project\NRF24L01.uvproj。
- 3) 修改 mian.c 文件中的宏定义。定位到:

//#define Send 1 //transmit
//#define Receive 0 //receive

删除 "#define Send 1 //transmit" 前面的 "//", 即修改为:

```
#define Send 1  //transmit
//#define Receive 0  //receive
```

4) 点击 Build 编译工程。编译通过后,点击 Download 下载工程。

接收方下载程序

- 1) 把下载器连接到接收方 Open103Z 的 JTAG 接口。开发板上电。
- 2) 打开 Keil 工程 NRF24L01.uvproj。
- 3) 修改 mian.c 文件中的宏定义。删除 "#define Receive 0 //receive" 前面的"//",即修改为:

```
//#define Send 1 //transmit

#define Receive 0 //receive
```

4) 点击 Build 编译工程。编译通过后,点击 Download 下载工程。

实验现象

- 发送方:按下按键发送数据。
- 接收方:点亮对应的 LED 灯。

常见问题

问: NRF24L01 RF Board (A)与 NRF24L01 RF Board (C),接口是兼容的吗?

答:接口是兼容的,区别是驱动电流不同,NRF24L01 RF Board (A)的驱动电流约为 30mA,NRF24L01 RF Board (C) 的驱动电流约为 300mA。