MATH 364: Lecture 18 (10/17/2024)

Today:

* Tableau simplex in Matlab * simplex method in matrix form

You can do the computations (EROS) for the tableau simplex method in Matlab (or Python). See the web page for an example.

<u>Kecall</u> Sensitivity analysis in 2D. We have seen:

* Change in objective function coefficients (G).

Q.1 for what range of values of G does the current optimal?

2. What if G' changes beyond this range? We'll address such questions could we reoptimize quickly? about reoptimization

* Change in the right-hand side (shs) coefficients (bi).

91. For what range of values of bi does the current basis remain optimal?

2. What if bi changes beyond this range? Could we reoptimize quickly?

Now, we want to generalize to n-dimensions. We also want to consider * change in constraint coefficients (Aij) * Adding a column ...

In order to consider sensitivity analysis in higher dimensions, we first consider the sumplex method in matrix form. This way, we will formalize many more properties of the tableau sumplex method.

Simplex Method in Matrix Form

max
$$z = \overline{c'x}$$
 ? LP in standard form, after adding st. $A\overline{x} = \overline{b}$! Slack/excess/axtificial vars.

À is $m \times n$, \overline{b} is an m-vector, \overline{c} and \overline{x} are n-vectors. \overline{c} contains -M terms for artificial variables.

max
$$Z = \begin{bmatrix} -\overline{c}^T - \overline{1} \end{bmatrix} n$$
 $Z^T : \text{transpose of } \overline{c}$
 $S.t.$

$$M = \begin{bmatrix} A \\ \overline{X} \end{bmatrix} = \begin{bmatrix} \overline{b} \\ \overline{b} \end{bmatrix}$$

$$\overline{X} > \overline{O}$$

Suppose we know which variables are basic in the optimal solution. Let \overline{X}_B denote all the basic variables, and \overline{X}_N the non-basic variables.

$$n \left[\left[\overline{X} \right] = \left[\frac{\overline{X}_{B}}{\overline{X}_{N}} \right] \frac{1}{2} m$$

after possible readering of the variables. Of course, there is no harm in greatering the xis, no harm in greatering the xis, since order of addition is immaterial.

We split A and \overline{C} in the same fashion into basic and non-basic parts.

max
$$Z = \begin{bmatrix} -\overline{c_N} - |-\overline{c_N} - | \overline{x_B} \\ \overline{x_N} \end{bmatrix} n$$
S.t.
$$m \int_{\underline{x_N}} B |N| |\overline{x_N}| = \begin{bmatrix} \overline{b} \\ \overline{x_N} \end{bmatrix}$$

$$Z = \overline{C}_{B}^{T} \overline{X}_{B} + \overline{G}_{N}^{T} \overline{X}_{N}$$

$$B \overline{X}_{B} + N \overline{X}_{N} = \overline{b}$$

Starting tableau To

T*:	optimal	tableau
-----	---------	---------

Z	Σg	\times_{N}	rtis
j		?	?
Ō	I _m	?	?

To: (MH) x (n+2)

Recall: How to invert an mxm matrix A: [A Im] ERDS | Im A-1

We want to find the innerse of the (mti) x (mti) "basic" matrix $\left(\begin{bmatrix} 1 & -\overline{C}_{B}^{T} \\ \overline{0} & B \end{bmatrix} \right) \begin{bmatrix} 1 & -\overline{C}_{B}^{T} \\ \overline{0} & B \end{bmatrix} = \begin{bmatrix} 1 & \overline{0} \\ \overline{0} & \overline{1} \end{bmatrix}$

The basis matrix B itself is invertible by definition, i.e., B' exists.

$$\begin{bmatrix} 1 & -\overline{c} \\ \overline{0} & \overline{B} \end{bmatrix} = \begin{bmatrix} 1 & \overline{c} \\ \overline{0} & \overline{B}^{\overline{1}} \end{bmatrix}.$$

obs' check!
$$\begin{bmatrix}
1 & \overline{c}_{B}^{B} B^{T} \end{bmatrix}
\begin{bmatrix}
1 & -\overline{c}_{B}^{T} B^{T} B^{T$$

$$=\begin{bmatrix}1\\\bar{0}\end{bmatrix}.$$

you should check the other multiplication, i.e.,

$$\begin{bmatrix} 1 & -\overline{C}_{B} \end{bmatrix} \begin{bmatrix} 1 & \overline{C}_{DB} \end{bmatrix} = I_{m+1}, \text{ as well.}$$

$$\begin{bmatrix} 1 & \overline{c_b^T B^T} \\ \overline{0} & \overline{B} \end{bmatrix} T_0 = \begin{bmatrix} 1 & \overline{c_b^T B^T} \\ \overline{0} & \overline{B} \end{bmatrix} \xrightarrow{\underline{Z}} \begin{array}{c|c} \overline{X_B} & X_N & \text{vfis} \\ \hline 1 & -\overline{c_b^T} & -\overline{c_b^T} & 0 \\ \hline \overline{0} & \overline{D} & \overline{D} & \overline{D} \\ \hline \end{array}$$

$$= \frac{\overline{Z} \times \overline{X}_{B} \times \overline{X}_{N} \times \overline{f}_{S}}{\overline{D} \times \overline{D} \times \overline{D} \times \overline{D}} = T^{*} \text{ (optimal tableau)}$$

Hence, $z^* = \overline{c_b}B^{\dagger}\overline{b}$, and the optimal solution is given by

$$\overline{X}_{B}^{*} = \overline{B}^{1}\overline{b}, i.e., \quad \overline{X}^{*} = \begin{bmatrix} \overline{X}_{B}^{*} \\ \overline{X}_{N}^{*} \end{bmatrix} = \begin{bmatrix} \widehat{B}^{1}\overline{b} \end{bmatrix} \frac{1}{1}m$$

Hence, if we know which variables are going to be basic in the optimal tableau, we could connert the starting tableau to the optimal tableau through direct matrix multiplication.

Also, we can read off the elementary matrix from the optimal tableau!

圣	$\overline{\times}_{\mathcal{B}}$	$\overline{\varkappa}_{\!\scriptscriptstyle N}$	rhs
1		-CN + CG B N	TGB Tb
Ō	I	B'N	ВÍБ

$$N = I$$
, then the columns under \overline{X}_N are $\overline{-\overline{C}_N} + \overline{\overline{C}_R} B^{-1}$

Further, if $\bar{c}_N = \bar{0}$, we have the elementary matrix!

In particular, we can read off B-1 from under the Columns of slack and ortificial vocables in rows 1 to m in the optimal tableau!

We now look at an If for which we write down the optimal tableau "directly" when the optimal basis is given. Our goal in studying the simplex method in this matrix form is to be able to do sensitivity analysis in a general form.