

Chapitre VII – Calcul intégral

Bacomathiques -- https://bacomathiqu.es

TABLE DES MATIÈRES	
I - Calcul d'aire	1
1. Qu'est-ce qu'une intégrale?	
2. Théorème fondamental de l'analyse	
3. Signe de l'intégrale	3
II - Propriétés de l'intégrale	5
1. Propriétés algébriques	5
2. Linéarité	5
3. Relation de Chasles	6
III - Calculs d'intégrale	7
1. Intégration par parties	7
2. Intégrales de fonctions paires et impaires	8
3. Intégrales de fonctions périodiques	9
4. Valeur moyenne d'une fonction	10
5. Aire entre deux courbes	10
6. Primitive s'annulant en a	10

I - Calcul d'aire

1. Qu'est-ce qu'une intégrale?

Dans un repère orthogonal (O; I; J), on prend un point A = (1; 1) et on appelle **Unité d'Aire** (U.A.) l'aire du rectangle formé par les points O, I, A et J.

Soient a et b deux réels avec $a \le b$ et f une fonction continue sur [a;b]. L'**intégrale** de la fonction f sur [a;b] notée $\int_a^b f(x) \, \mathrm{d}x$ représente l'aire entre la courbe de f et l'axe des abscisses délimitée par les droites d'équation x=a et x=b et est exprimée en **U.A.**.

On dit que les réels a et b sont les **bornes** de l'intégrale.

2. Théorème fondamental de l'analyse

Pour calculer l'intégrale d'une fonction, il faut d'abord trouver la primitive de celle-ci (voir le cours sur les primitives).

À RETENIR : THÉORÈME FONDAMENTAL DE L'ANALYSE 📍

Soient une fonction f continue sur un intervalle I et deux réels a et b appartenant à I.

Alors
$$\int_a^b f(x) dx = [F(x)]_a^b = F(b) - F(a)$$
 où F est une primitive de f sur I .

À LIRE : EXEMPLE 99

On veut calculer l'aire entre la courbe d'une fonction f définie pour tout $x \in \mathbb{R}$ par f(x) = 2x + 1, et l'axe des abscisses sur l'intervalle [1; 4] :

1^{re} **étape** : On cherche une primitive de f. On trouve $F(x) = x^2 + x = x(x+1)$.

2^e **étape**: On calcule l'intégrale. On a
$$\int_1^4 2x + 1 dx = [x(x+1)]_1^4 = 4(4+1) - 1(1+1) = 20 - 2 = 18$$
 U.A.

À LIRE : AUTRE EXEMPLE 99

On veut calculer l'aire entre la courbe d'une fonction f définie pour tout $x \in \mathbb{R}$ par f(x) = x, et l'axe des abscisses sur l'intervalle [-2; 2]:

 $\mathbf{1}^{\text{re}}$ étape : On cherche une primitive de f. On trouve pour tout $x \in \mathbb{R}$, $F(x) = \frac{x^2}{2}$.

2e **étape** : On calcule l'intégrale. On a
$$\int_{-2}^{2} x \, dx = \left[\frac{x^2}{2}\right]_{-2}^{2} = \frac{4}{2} - \frac{4}{2} = 0$$
 U.A.

Ce résultat est logique car l'aire au-dessus de la courbe de la fonction f sur [-2;0] est égale à l'aire sous la courbe de f sur [0;2] (voir les propriétés sur les intégrales des fonctions impaires).

3. Signe de l'intégrale

De manière générale, le signe de l'intégrale d'une fonction sur un intervalle dépend du signe de cette fonction sur cet intervalle.

À RETENIR : RELATION SIGNE DE L'INTÉGRALE - SIGNE DE LA FONCTION 📍

Soient une fonction f continue sur un intervalle I = [a; b].

— Si
$$f > 0$$
 sur I , alors $\int_a^b f(x) dx > 0$.

— Si
$$f < 0$$
 sur I , alors $\int_a^b f(x) dx < 0$.

- Si f change de signe sur I, on ne connaît pas directement le signe de l'intégrale. Le signe dépend de la partie de l'aire qui est la plus "grande".
- Soit g une fonction définie sur I avec f > g sur I, alors $\int_a^b f(x) \, \mathrm{d}x > \int_a^b g(x) \, \mathrm{d}x$.

Ainsi, cette intégrale sera positive :

Et cette intégrale sera négative :

Page 4 sur 10

II - Propriétés de l'intégrale

1. Propriétés algébriques

À RETENIR : PROPRIÉTÉS 📍

Soient une fonction f continue sur un intervalle I et deux réels a et b appartenant à I.

$$-\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$
$$-\int_{a}^{a} f(x) dx = 0$$

2. Linéarité

À RETENIR : LINÉARITÉ DE L'INTÉGRALE 📍

Soient une fonction f continue sur un intervalle I et deux réels a et b appartenant à I. Soit λ un réel quelconque.

$$-\int_{a}^{b} f(x) + g(x) dx = \int_{b}^{a} f(x) dx + \int_{b}^{a} g(x) dx$$
$$-\int_{a}^{b} \lambda f(x) dx = \lambda \int_{b}^{a} f(x) dx$$

3. Relation de Chasles

À RETENIR : RELATION DE CHASLES 🕈

Soient une fonction f continue sur un intervalle I et deux réels a et b appartenant à I. Pour tout $c \in I$, on a $\int_a^b f(x) \, \mathrm{d}x = \int_a^c f(x) \, \mathrm{d}x + \int_c^b f(x) \, \mathrm{d}x$.

On veut calculer
$$I = \int_{-2}^4 f(x) \, \mathrm{d}x$$
 où $f(x) = |x| = \begin{cases} -x & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$.

1^{re} **étape** : On sépare l'intégrale à l'aide de la relation de Chasles :

$$I = \int_{-2}^{4} f(x) dx = \int_{-2}^{0} -x dx + \int_{0}^{4} x dx.$$

$$I = \int_{-2}^{4} f(x) dx = \int_{-2}^{0} -x dx + \int_{0}^{4} x dx.$$

$$2^{e} \text{ étape : On calcule l'intégrale :}$$

$$I = \int_{-2}^{0} -x dx + \int_{0}^{4} x dx = \left[-\frac{x^{2}}{2} \right]_{-2}^{0} + \left[\frac{x^{2}}{2} \right]_{0}^{4} = 0 - \left(-\frac{2^{2}}{2} \right) + \left(\left(\frac{4^{2}}{2} \right) - 0 \right) = 10 \text{ U.A.}$$

III - Calculs d'intégrale

1. Intégration par parties

Il peut arriver que vous ayez à intégrer un produit de fonctions. En classe de Terminale, il est possible de faire appel à une technique appelée **intégration par parties** pour en venir à bout.

À RETENIR : INTÉGRATION PAR PARTIES 📍

Soient u et v deux fonctions dérivables sur un intervalle I et soient a et b appartenant à I.

Alors
$$\int_{a}^{b} u'(x)v(x) dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u(x)v'(x) dx.$$

DÉMONSTRATION: INTÉGRATION PAR PARTIES

Comme $(u \times v)' = u'v + uv'$, on a que la fonction $u \times v$ est une primitive de la fonction u'v + uv' sur I. Or, par la relation de Chasles :

$$\int_{a}^{b} u'(x)v(x) + u(x)v'(x) dx = \int_{a}^{b} u'(x)v(x) dx + \int_{a}^{b} u(x)v'(x) dx$$

Donc, avec ce que l'on a fait au tout début, on a bien :

$$\int_{a}^{b} u'(x)v(x) dx + \int_{a}^{b} u(x)v'(x) dx = [u(x)v(x)]_{a}^{b}$$

C'est-à-dire

$$\int_{a}^{b} u'(x)v(x) dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u(x)v'(x) dx$$

À LIRE : EXEMPLE 99

En utilisant cette technique, calculons $I = \int_0^1 x e^x dx$. Nous souhaitons faire disparaître le "x", on va donc poser $u'(x) = e^x$ et v(x) = x (afin de dériver x).

Donc par la formule d'intégration par parties :

$$I = \left[\underbrace{e^{\mathsf{x}}}_{=u} \underbrace{x}_{=v}\right]_{0}^{1} - \int_{0}^{1} \underbrace{e^{\mathsf{x}}}_{=u} \times \underbrace{1}_{=v'} dx = e - \left[e^{\mathsf{x}}\right]_{0}^{1} = 1.$$

Il vous faudra un peu de pratique pour savoir quelle fonction il faut dériver et quelle fonction il faut primitiver.

2. Intégrales de fonctions paires et impaires

À RETENIR : INTÉGRALE D'UNE FONCTION PAIRE 📍

Soit f une **fonction paire** continue sur un intervalle I (comme $x \mapsto x^2$).

On a la relation suivante pour tout $a \in I$ (-a doit aussi être dans I) :

$$\int_{-a}^{a} f(x) dx = 2 \times \int_{0}^{a} f(x) dx = 2 \times \int_{-a}^{0} f(x) dx.$$

À LIRE : EXEMPLE 99

Cette relation peut se retrouver visuellement, l'aire du côté gauche par rapport à (Oy) est égale à l'aire de l'autre côté de (Oy), et les deux sont positives; on peut donc les additionner pour retrouver l'aire totale :

À RETENIR : INTÉGRALE D'UNE FONCTION IMPAIRE 🕈

Soit f une **fonction impaire** continue sur un intervalle I (comme $x \mapsto x^3$).

On a la relation suivante pour tout $a \in I$ (-a doit aussi être dans I):

$$\int_{-a}^{a} f(x) \, \mathrm{d}x = 0.$$

À LIRE : EXEMPLE 99

De même, on peut retrouver cette relation visuellement, l'aire du côté gauche par rapport à (Oy) est négative et égale à l'aire de l'autre côté de (Oy) qui est positive, les deux s'annulent donc :

3. Intégrales de fonctions périodiques

À RETENIR : INTÉGRALE D'UNE FONCTION PÉRIODIQUE

Soit f une **fonction périodique** de période T (comme cos avec $T=2\pi$) continue sur chacune de ses périodes, on a la relation suivante pour tout $a \in \mathbb{R}$:

$$\int_0^T f(x) \, \mathrm{d}x = \int_a^{a+T} f(x) \, \mathrm{d}x$$

4. Valeur moyenne d'une fonction

À RETENIR : VALEUR MOYENNE 🕈

Soient f une fonction continue sur un intervalle [a;b]. La valeur moyenne M de f sur [a;b] est donnée par $M=\frac{1}{b-a}\int_a^b f(x)\,\mathrm{d}x$.

5. Aire entre deux courbes

À RETENIR : DIFFÉRENCE D'AIRES 📍

Soient f et g deux fonctions continues sur un intervalle [a;b]. Si on a $f \ge g$ sur cet intervalle, alors l'aire entre les deux courbes est donnée par $\int_a^b f(x) - g(x) dx$.

6. Primitive s'annulant en a

À RETENIR : EXISTENCE D'UNE PRIMITIVE S'ANNULANT EN UN POINT

Soient une fonction f continue sur un intervalle I et un réel $a \in I$. La primitive de f sur I qui vaut 0 en a (notée F_a) est donnée par $F_a: x \mapsto \int_a^x f(t) \, dt$.

DÉMONSTRATION : EXISTENCE D'UNE PRIMITIVE

Soit F une autre primitive de f. Alors on a pour tout $x \in I$, $F_a(x) = \int_a^x f(t) dt = F(x) - F(a)$ par le théorème fondamental de l'analyse.

Donc pour tout $x \in I$, $F'_a(x) = F'(x) - 0 = f(x)$, donc on a bien que F_a est une primitive de f.

De plus,
$$F_a(a) = \int_a^a f(t) dt = 0.$$

Enfin, comme les primitives d'une fonction continue sur un intervalle diffèrent d'une constante près, on a bien l'unicité de F_a .