Capacitate en Octave Guía de Ejercicios 3

Daniel Millán, Nicolás Muzi, Gabriel Rosa, Petronel Schoeman, Juan Cruz Luffi

CONICET

ES

Facultad de Ciencias Aplicadas a la Industria, UNCuyo San Rafael 5600, Argentina Noviembre de 2019

Realice preguntas y no tenga miedo de experimentar (como simple usuario no debería poder realizar demasiados *estragos*).

Ejercicio 1. Dado los vectores u = (1, 1, 0) y v = (1, 1, 1), se pide:

1. Calcular la norma de cada vector, la cual se calcula como

$$\|\boldsymbol{u}\| = \sqrt{u_1^2 + u_2^2 + u_3^2}.$$

2. El ángulo que forman u y v, para ello emplee el hecho de

$$\boldsymbol{u} \cdot \boldsymbol{v} = \|\boldsymbol{u}\| \|\boldsymbol{v}\| \cos(\theta).$$

Ejercicio 2. Genere un vector x que contenga 10000 valores de la distribución normal.

- 1. Transforme los valores almacenados en \boldsymbol{x} para que la media sea 100 y la desviación estándar 5, llame al nuevo vector \boldsymbol{y} .
- 2. Para el nuevo vector y calcule la media de la muestra, la desviación estándar y la varianza.

- 3. Determine el valor mínimo y máximo, el valor de la mediana y del primer y tercer cuartilo de y. Ayuda: doc quantile.
- 4. Compare los resultados previos con los obtenidos mediante el comando statistics(x).

Ejercicio 3. Modelo de petróleo refinado.

Una compañía petrolera dispone de tres refinerías de petróleo. Estas se denominan de la siguiente forma: Refinería 1, Refinería 2 y Refinería 3. Cada refinería produce tres productos basados en el crudo: Alquitrán, Gasóleo y Gasolina. Supongamos que, de un barril de petróleo, se sabe que:

- la primera refinería produce 4 litros de alquitrán, 2 de gasóleo, y 1 de gasolina.
- la segunda refinería produce 2 litros de alquitrán, 5 de gasóleo y 2.5 de gasolina.
- y la tercera refinería produce 2 litros de alquitrán, 2 de gasóleo y 5 de gasolina.

Supongamos que hay una demanda de estos productos de la siguiente manera: 600 litros de alquitrán, 800 litros de gasóleo y 1000 litros de gasolina.

¿Cuántos barriles de crudo necesitará cada refinería para satisfacer la demanda?.

Ejercicio 4. Escalas de temperatura.

Las escalas de temperatura Fahrenheit (F) y Celsius (C) se relacionan a través de una ecuación lineal. Sabiendo que el punto de congelación del agua es a $0^{\circ}C$ o a $32^{\circ}F$, y que el punto de ebullición se alcanza a $100^{\circ}C$ o a $212^{\circ}F$, se pide:

- 1. Halla la relación lineal entre ambas escalas.
- 2. Representa la función cuya expresión has hallado en el apartado anterior usando vectores y el comando plot.
- 3. ¿Existe alguna temperatura en la cual un termómetro en grados Celsius proporcione la misma lectura que un termómetro en grados Fahrenheit?

Para responder a esta pregunta puedes derivar las expresiones y verificar mediante la interpretación gráfica de la situación.

Ejercicio 5. Se requiere analizar el movimiento de una partícula que tiene una trayectoria helicoidal en 3D. La posición de la partícula en el espacio, r(t), se encuentra parametrizada en función del tiempo como r(t) = (x(t), y(t), z(t)), donde:

$$x(t) = \frac{t}{2}\cos(t), \quad y(t) = \frac{t}{2}\sin(t), \quad z(t) = t.$$

- 1. Grafique el movimiento de la partícula en 3D en el intervalo de tiempo comprendido entre 0 y 3π . Para ello utilice N=100,1000,10000 intervalos de tiempo equiespaciados $[t_i,t_{i+1}],\ i=1,2,\ldots,N-1$. ¿Qué observa?
- 2. Aproxime la longitud de la curva que realiza la trayectoria de la partícula. Para ello puede sumar las distancias entre las posiciones consecutivas de la partícula a instantes de tiempo t_i y t_{i+1} .