1. Übung Maß- und Wahrscheinlichkeitstheorie 2 WS2019

- 1. (X_n) sei eine Folge von unabhängigen Zufallsvariablen mit $\mathbb{P}(X_n=1)=\mathbb{P}(X_n=-1)=1/2,\ (a_n)$ eine Folge von reellen Zahlen. Zeigen Sie, dass $\sum_n a_n X_n$ genau dann fast sicher konvergiert, wenn die Reihe $\sum_n a_n^2$ konvergiert.
- $2. \ X$ sei standardnormalverteilt.
 - (a) Bestimmen Sie $\mathbb{E}(e^{tX})$ für $t \in \mathbb{R}$.
 - (b) Wenden Sie die Markov-Ungleichung auf e^{tX} an, um eine obere Schranke für $\mathbb{P}(X \geq x)$ (x>0) zu erhalten. Was ist die kleinste Schranke, die man so erhält?
- 3. Ein fairer Würfel wird wiederholt geworfen, X_n sei die Augenzahl beim n-ten Wurf. Bestimmen Sie

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n} X_i}{n}$$

und

$$\lim_{n \to \infty} \left(\prod_{i=1}^{n} X_i \right)^{1/n}$$

(überzeugen Sie sich auch, dass diese Grenzwerte mit Wahrscheinlichkeit 1 existieren).

- 4. In einem Spiel kann auf die Ausgänge $1, \ldots, m$ gesetzt werden, die mit Wahrscheinlichkeiten p_1, \ldots, p_m gezogen werden. Wird i gezogen, weren die Einsätze auf i m-fach zurückgezahlt, alle anderen Einsätze verfallen. Eine Spielerin teilt ihr Kapital K (mit Anfangswert K_0) in jeder Runde so auf, dass sie Kq_i auf i setzt, wobei q_1, \ldots, q_n Zahlen mit $q_i > 0$ und $\sum_i q_i = 1$ sind.
 - (a) Zeigen Sie: für das Kapital K_n der Spielerin nach n Runden gilt

$$K_n = K_0 m^n \prod_{j=1}^n q_{X_j},$$

wobei (X_j) eine Folge von unabhängigen Zufallsvariablen mit

$$\mathbb{P}(X_i = i) = p_i$$

ist.

(b) Bestimmen Sie

$$\lim_{n\to\infty}\frac{\log K_n}{n}.$$

(c) Für welche Wahl von q_1, \dots, q_n ist dieser Grenzwert maximal?

- 5. Für welche Werte von $p\in\mathbb{R}$ gibt es ein signiertes Maß μ auf $(\mathbb{N},2^{\mathbb{N}})$ mit $\mu(\{x\})=x^p(-1)^x$?
- 6. Auf $([0,1],\mathfrak{B})$ ist durch

$$\mu([0,x]) = F(x) = x^2 - x^3, \ 0 \le x \le 1$$

eine signierte Maßfunktion gegeben. Bestimmen Sie eine Hahn- und die Jordanzerlegung von μ (betrachten Sie F').

7. Für welche (reellen) Werte von p gibt es eine signierte Maßfunktion auf $([0,1],\mathfrak{B})$ mit

$$\mu([0, x]) = x^p \sin(1/x)[x > 0]?$$