ME 8710: Assignment 7

Question 1:

Q1)

A. DFS

3	2			10			14	15	16	17	18	19	20_
4	(S) 1_	7	8	9	11	12	13						21
5	6												22
									(G) 31	30	29	28	23
													24
											27	26	25

Number of Steps: 21

Total Number of Nodes: 31

B. BFS

6	2			10			17	21	26	30	34	38	42
5	(S)	3	7	9	11	13	15	18	22	27	31	35	39
	1												
8	4			12			19						43
				14			23		(G) 46 ↑				45
									46				
41				16					44				
37	33	29	25	20	24	28	32	36	40				

Number of Steps: 15

Total Number of Nodes: 46

C. A*

	2			9			16	19	22	26	30		
5	(S)	3	6	8	10	12	14	17	20	23	27	31	
	1												
7	4			11			18						
				13			21		(G) 37				
									37				
				15					36				
			29	25	28	32	33	34	35				

Number of Steps: 15

Total Number of Nodes: 37

node	g(n)	horizontal cells	vertical cells	h(n)	f(n)	
1	0	8	2	9.998	9.998	expand to node 2,3,4,5
2	1	8	3	10.997	11.997	expand to node 24
3	1	7	2	8.998	9.998	expand to node 6
4	1	8	1	8.999	9.999	expand to node 7
5	1	9	2	10.998	11.998	
6	2	6	2	7.998	9.998	expand to node 8
7	2	9	1	9.999	11.999	
8	3	5	2	6.998	9.998	expand to node 9,10,11
9	4	5	3	7.997	11.997	
10	4	4	2	5.998	9.998	expand to node 12
11	4	5	1	5.999	9.999	expand to node 13
12	5	3	2	4.998	9.998	expand to node 14
13	5	5	0	5.000	10.000	expand to node 15
14	6	2	2	3.998	9.998	expand to node 16,17,18
15	6	5	1	5.999	11.999	expand to node 25
16	7	2	3	4.997	11.997	
17	7	1	2	2.998	9.998	expand to node 19,20
18	7	2	1	2.999	9.999	expand to node 21
19	8	1	3	3.997	11.997	
20	8	0	2	1.998	9.998	expand to node 22,23
21	8	2	0	2.000	10.000	
22	9	0	3	2.997	11.997	expand to node 26
23	9	1	2	2.998	11.998	expand to node 27
24	2	9	3	11.997	13.997	
25	7	5	2	6.998	13.998	expand to node 28,29
26	10	1	3	3.997	13.997	expand to node 30
27	10	2	2	3.998	13.998	expand to node 31
28	8	4	2	5.998	13.998	expand to node 32
29	8	6	2	7.998	15.998	
30	11	2	3	4.997	15.997	
31	11	3	2	4.998	15.998	
32	9	3	2	4.998	13.998	expand to node 33
33	10	2	2	3.998	13.998	expand to node 34
34	11	1	2	2.998	13.998	expand to node 35
35	12	0	2	1.998	13.998	expand to node 36
36	13	0	1	0.999	13.999	expand to node 37
37	14	0	0	0.000	14.000	solution reached

a). A^* will guarantee the solution for the above problem.

node	g(n)	horizontal cells	vertical cells	h(n)	f(n)	
1	0	6	2	8.000	8.000	expand to node 2,3,4
2	1	6	3	9.000	10.000	expand to node 8
3	1	6	1	7.000	8.000	х
4	1	5	2	7.000	8.000	expand to node 5
5	2	5	1	6.000	8.000	expand to node 6
6	3	5	0	5.000	8.000	expand to node 7
7	4	6	0	6.000	10.000	expand to node 9
8	2	5	3	8.000	10.000	expand to node 10
9	5	6	1	7.000	12.000	
10	3	4	3	7.000	10.000	


```
if dfs(current path): # recursive call
                                                                        return True
                                                      else:
                                                                        current path.pop() # backtrack
 # result a list of coordinates which should be taken in order to reach the goal
 result = [(0, 0)]
 if dfs(result):
                                                                                                                                                                                                 BFS Implementation Output
                   print("Success!")
                   print(result)
else:
                   print("Failure!")
 Success!
[(0, 0), (0, 1), (0, 2), (0, 3), (1, 3), (2, 3), (2, 2), (3, 2), (3, 1), (3, 0), (4, 0), (5, 0), (5, 1), (6, 1), (6, 2), (6, 2), (6, 2), (7, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8, 2), (8,
3), (6, 4), (5, 4), (4, 4), (3, 4), (3, 5), (2, 5), (1, 5), (0, 5), (0, 6), (0, 7), (1, 7), (2, 7), (3, 7), (4, 7), (5, 7), (6, 7)
7), (7, 7)]
```

LI'V HEW ULL'ELLLUH

current path.append((new row, new col))

```
path = search(maze,cost, start, end)
      print(path)
  [[0, -1, -1, -1, -1, -1], [1, 2, 3, 4, 5, -1], [-1, -1, -1, -1, 6, 7], [-1, -1, -1, -1, -1, 8], [-1, -1, -1, -1, -1, 9]]
]: |print('\n'.join([''.join(["{:" ">3d}".format(item) for item in row])
        for row in path]))
                                        A Star Implementation Output
    0 -1 -1 -1 -1
    1 2 3 4 5 -1
   -1 -1 -1 -1 6 7
   -1 -1 -1 -1 8
   -1 -1 -1 -1 9
```

```
bi directional search(input_1, 2, 4)
[2, 0, 1, 4] Bi Directional Output
```