La présentation et la rédaction interviennent pour une part importante dans la notation.

Exercice I

Ouelques questions indépendantes d'applications directes du cours.

- 1) **Complexes.** On considère l'équation : $z^2 (1+3i)z 4 + 3i = 0$ (E).
 - a) Rappeler sans calcul ce que valent la somme et le produit des racines.
 - b) Résoudre (E) (on pourra vérifier avec ci-dessus).

Dans le plan muni d'un repère orthonormé $(O, \overrightarrow{e_1}, \overrightarrow{e_2})$ prouver que les points images des racines forment, avec O, un triangle rectangle isocèle.

2) Polynômes ; fractions rationnelles. 2 questions indépendantes :

- a) Décomposer dans $\mathbb{R}[X]: P(X) = X^6 + 1$.
- b) Décomposer dans $\mathbb{R}(X)$: $F(X) = \frac{1}{X^3 1}$. Déterminer : $\int \frac{dx}{x^3 1}$.

Exercice II

Les questions sont indépendantes.

1) Prouver que :
$$\lim_{n \to +\infty} \int_0^1 e^{-nx} dx = 0$$
 et en déduire : $\lim_{n \to +\infty} \int_0^1 \frac{e^{-nx}}{1+x} dx = 0$

2) Des intégrales à calculer :

) Des intégrales à calculer :
a)
$$F = \int \frac{x}{\sqrt{9-x^2}} dx$$
; $G = \int \frac{dx}{\sqrt{9-x^2}}$; $H = \int \sqrt{9-x^2} dx$ (2 méthodes possibles, vues en cours).

b)
$$\lim_{n \to +\infty} \left(\prod_{k=1}^{n} \left(1 + \frac{k}{n} \right) \right)^{\frac{1}{n}}$$
.

c)
$$I = \int_0^1 \frac{dt}{t^2 + 4t + 8}$$
 puis $J = \int_0^{\frac{\pi}{4}} \frac{dx}{\sin^2 x + 4\sin x \cos x + 8\cos^2 x}$

Exercice III

Reprise d'un exercice fondamental vu en cours : intégrales de Wallis avec une application .

Soit, pour
$$n \in \mathbb{N}$$
, $W_n = \int_0^{\frac{\pi}{2}} \cos^n x \, dx$.

1)

a) Calculer directement W_n pour $n \in [0, 2]$.

(dans la suite , seule la connaissance de W_0 et W_1 est nécessaire)

2) Prouver : $(\forall n \in \mathbb{N} \setminus \{0,1\})$ $W_n = \frac{n-1}{n} W_{n-2}$ à l'aide d'une intégration par parties.

En déduire, par exemple, W_{10} (on pourra laisser les numérateurs et dénominateurs sous forme de produit).

- 3) (obtention d'un équivalent de $\bar{W_n}$ au voisinage de $+\infty$)
 - a) Prouver que la suite W est décroissante et strictement positive .
 - b) En partant d'une chaîne d'inégalités reliant W_n , W_{n+1} et W_{n+2} , prouver que : $W_{n+1} \underset{+\infty}{\sim} W_n$
 - c) Soit $u_n = (n+1)W_nW_{n+1}$.

Prouver que la suite u est constante, égale à $\frac{\pi}{2}$, puis en déduire : $W_n \sim \sqrt{\frac{\pi}{2n}}$.

Soit
$$I_n = \int_0^{\sqrt{n}} \left(1 - \frac{x^2}{n}\right)^n dx$$
; exprimer I_n en fonction de W_n et en déduire : $\lim_{n \to +\infty} I_n = \frac{\sqrt{\pi}}{2}$.

1