

Mestrado em Engenharia Informática (MEI)

Perfil de Especialização **CSI** : Criptografia e Segurança da Informação

Engenharia de Segurança

Apresentações

- Nome: José Eduardo Pina Miranda
- Contactos:
 - E-mail: jose.miranda@devisefutures.com
- Apresentação dos alunos e expectativas para a disciplina

Caderno de encargos

Engenharia de Segurança

A unidade curricular de Engenharia de Segurança foca-se nas metodologias e processos que visam estabelecer a segurança dos sistemas de informação e de desenvolvimento de software seguro.

- Visa dotar os alunos de competências que incluem
 - Identificação dos riscos e levantamento de requisitos de segurança dos sistemas,
 - Metodologias e ferramentas de apoio ao desenvolvimento, e
 - Experiência com os "standards" de segurança e suas implementações.
- No final os alunos deverão:
 - Compreender os diferentes passos na implementação de um Sistema de Gestão da Segurança da Informação.
 - Realizar gestão de risco no âmbito do sistema de informação de uma organização.
 - Realizar modelos de ameaças em sistemas de "software".
 - Utilizar metodologias de desenvolvimento de software seguro no ciclo de vida de desenvolvimento do software.

Caderno de encargos – adicional 2021/22

Engenharia de Segurança

Em 2021/22 entrou em vigor um novo plano curricular, significando que:

- Este ano não foi lecionada durante o primeiro semestre do Mestrado, a disciplina onde os alunos tinham o seu primeiro contacto com a criptografia.
- O novo plano curricular da licenciatura ainda não estava em vigor no ano passado, pelo que os alunos não tiveram esse contacto com a criptografia durante o 3º ano da licenciatura.

Nessa perspetiva, a unidade curricular de Engenharia de Segurança vai também focar-se este ano na apresentação dos conceitos de criptografia.

- Visa dotar os alunos de competências que incluem
 - Identificação dos building blocks da criptografia,
 - Experiência na utilização de APIs e bibliotecas de criptografia, e
 - Integração dos building blocks criptográficos em protocolos e aplicações.
- No final os alunos deverão:
 - Saber utilizar os building blocks da criptografia,
 - Identificar riscos associados à utilização de chaves e algoritmos criptográficos,
 - Compreender o modo de escolher e integrar algoritmos criptográficos em aplicações,
 - Conhecer aplicações avançadas da criptografia.

Conteúdos Programáticos

Inclui:

- Gestão de Segurança de Informação:
 - Sistemas Gestão de Segurança de Informação [família ISO/IEC 27000): Controlos, métricas, gestão de risco, continuidade de negócio, gestão de incidentes, evidência digital.
 - Avaliação de segurança: níveis de conformidade (ITSEC e Common Criteria)
 - Potencial de Ataque: Cálculo e avaliação, de acordo com a metodologia de avaliação do Common Criteria
 - Esquemas de identificação eletrónica: nível de conformidade eIDAS.
 - Proteção de Dados e RGPD.
 - Métricas de segurança para Sistemas de informação (NIST SP800-55)
 - Trustworthy Secure Systems (NIST SP800-160)
- 2. Desenvolvimento de Software Seguro:
 - Modelação de Ameaças.
 - Boas práticas "SafeCODE"; utilização de componentes "third-party"; "Secure Software Development LifeCycle (S-SDLC)"
 - Avaliação de Garantias do "Software; "Software Assurance Maturity Model (SAMM)".
 - Qualidade do "Software": cobertura de código; interpretação abstracta; complexidade; compilação; "coding standards".
 - Teste de Segurança: guiões e "checklists"; "Application Security Verification Standard"

Conteúdos programáticos

Inclui

- Evolução da criptografia;
- Algoritmos e chaves criptográficas;
- Utilização de primitivas criptográficas em protocolos, aplicações criptográficas e documentos de identificação eletrónicos (MDL, EUDI Wallet, ...);
- Perceber a complexidade no desenvolvimento (e nas características de segurança impostas) de plataformas/aplicações de software, face aos Regulamentos UE, Leis nacionais e standards que têm de ser seguidos. Como caso de estudo, serão utilizados:
 - Regulamento UE 910/2014 (eIDAS), e DL 12/2021,
 - Lei 32/2017 e respetivas portarias regulamentares,
 - DL 89/2017 e respetivas portarias regulamentares,
 - Regulamento EU 2016/679 (Regulamento Geral de Proteção de Dados RGPD).

Avaliação

- A. Avaliação prática 1 (10%)
 - Ficha de trabalho sobre tema da aula teórica (nota mínima: 8 valores) efetuada pelo grupo de trabalho.
- B. Avaliação prática 2 (85%)
 - PA Projeto de análise de um tema, com elaboração de relatório, assim como exposição do trabalho;
 - PD1 Projeto para consolidação dos conceitos básicos de criptografia;
 - PD2 Projeto de desenvolvimento que inclui componentes de identificação do "Software Assurance Maturity Model (SAMM)" da equipa, RGPD PIA, compliance com boas práticas de desenvolvimento e, o desenvolvimento em si.
- C. Participação individual (5%)
 - Participação individual nos projetos e no acompanhamento presencial.
- Classificação final: 0,1 * A + 0,85 * (0,3 * PA + 0,3 * PD1 + 0,4 * PD2) + 0,05 * C
 - Condição para aproveitamento nesta disciplina: Classificação final >= 9,5 valores
 - O grupo de trabalho poderá ter entre 3 e 5 elementos, sendo recomendado que seja constituído por 3 elementos.
 - Note que se o grupo tiver mais do que 3 elementos, a avaliação prática 1 e a avaliação prática 2 terão componentes suplementares de trabalho.

Modo de funcionamento

- Cópia dos slides, exercícios, avisos, fichas de trabalho, projetos, ...
 - Github (https://github.com/uminho-mei-engseg-21-22/EngSeg),
- Grupos de trabalho
 - Cada grupo enviará o nome dos seus elementos, nº de aluno, endereço de e-mail e utilizador no github, por e-mail para o docente;
 - A numeração do Grupo de Trabalho será efetuada por ordem de chegada do mail;
 - O docente criará um repositório para cada Grupo, por baixo de https://github.com/uminho-mei-engseg-21-22, para onde convidará os elementos do Grupo, sendo esse repositório o local que cada Grupo utilizará para os trabalhos práticos.
- Slack
 - O canal de slack "Engenharia de Segurança" é utilizado para deixar avisos, assim como para apoio aos alunos;
 - Para se juntarem ao canal, sigam
 https://join.slack.com/t/engenhariadeseguranca/shared_invite/zt-13v385mtc-5e0dMtLLCDfMTtW5y~W7kw (link expira a 14 de Março).

Modo de funcionamento

A UC de Engenharia de Segurança foi pensada para ser efetuada em modo remoto durante todo o semestre, tendo sido colocado o *focus* no acompanhamento presencial da progressão dos alunos.

Desse modo,

- Aulas teóricas e fichas de trabalho (avaliação prática 1) serão disponibilizadas semanalmente antes do dia da aula no Github da disciplina, podendo os alunos assistirem à aula no horário que mais lhes convier.
- Enunciados dos projetos da avaliação prática 2 disponibilizados no Github durante esta semana (PA), e até final do mês (PD1 e PD2).
- Acompanhamento presencial:
 - Todas as terças-feiras das 09h00 12h00, durante o 2º semestre em https://us02web.zoom.us/j/82946412862?pwd=MFIPdGFzSnVuTW1hSVRzelFjRVVBdz09
 - Será utilizado para reuniões com os Grupos de Trabalho todas as semanas (preferencialmente, ou de 2 em 2 semanas, dependendo do número de Grupos de Trabalho), para discussão e acompanhamento dos projetos de avaliação prática 2, assim como dúvidas sobre as aulas teóricas e avaliação prática 1.
 - Será indicado a cada Grupo de Trabalho a time slot que lhe caberá, sendo a presença do Grupo de Trabalho obrigatória, e devendo já ter planeado os pontos que quer abordar.

Projetos de avaliação prática 2

2 projetos:

- PA Projeto análise de um tema, com elaboração de relatório, assim como exposição do trabalho, com entrega de relatório até 20/03/2022.
 - Disponibilizado no Github durante esta semana.
- PD1 Projeto para consolidação dos conceitos básicos de criptografia,
 com entrega final até 02/05/2022.
 - Disponibilizado no Github até final deste mês.
- PD2 Projeto de desenvolvimento, com entrega final até 15/06/2022.
 - Note que este projeto tem componentes que são entregues anteriormente, em data a indicar.
 - Disponibilizado no Github até final deste mês.

Programa

- Criptografia:
 - Resenha história
 - Criptografia de chave simétrica
 - Criptografia de chave pública
 - Hashing
 - Timestamping
- Criptografia Aplicada:
 - Algoritmos e tamanho de chaves Legacy, Futuro;
 - Gerador de número aleatórios / pseudo-aleatórios
 - Secret sharing/splitting Shamir
 - Authenticated encryption
- Protocolos/aplicações criptográficas
 - SSL/TLS
 - SSH
 - TOR
 - Voto eletrónico
- Documentos de identificação eletrónicos
 - Cartão de Cidadão
 - Passaporte Eletrónico
 - Documentos de identificação desmaterializados (MDL, EUDI Wallet)
- Esteganografia
- Regulamento 910/2014 (eIDAS) e DL 12/2021
 - prestadores qualificados
 - serviços qualificados de confiança
 - notificação eIDs
- Lei 32/2017 e respetivas portarias regulamentares (Chave Móvel Digital assinatura server-side)
- DL 89/2017 e respetivas portarias regulamentares (SCAP Sistema de certificação de atributos profissionais)
- Regulamento 2016/679 (Regulamento Geral de Proteção de Dados)

Programa

- Vulnerabilidades de software, ataques e intrusões:
 - Vulnerabilidades de Software;
 - Vulnerabilidades de Aplicações Web (de acordo com OWASP)
 - Sistemas de Classificação de Vulnerabilidades (CWE, CVE, CVSS, OVAL, CVRF)
- Testes de software:
 - Modelos de ameaças/ataques;
 - Blackbox testing;
 - Whitebox testing;
 - Análise estática (incluindo Lint)
 - Análise dinâmica
 - Análise híbrida
- Infraestrutura para desenvolvimento de software de qualidade:
 - IDE;
 - Sistema de controlo de versões;
 - Gestor de repositórios;
 - Gestor de qualidade de código fonte;
 - Gerador de documentação;
 - Ferramentas de integração contínua.
- Ciclo de vida de desenvolvimento de software seguro Secure Software Development Life Cycle (S-SDLC) -:
 - Modelos de ciclo de vida de desenvolvimento de software;
 - Análise de Riscos;
 - Standards e Metodologias de desenvolvimento de software seguro;
 - (Rational) Unified Process aplicado aos participantes no processo de desenvolvimento de software de uma PME;
 - Modelo de Maturidade.

Bibliografia

- Segurança no Software (2ª Edição Atualizada e Aumentada), Miguel Pupo Correia, Paulo Jorge Sousa, FCA Editora Informática Lda, 2017
- Threat Modeling: Designing for Security, Adam Shostack, John Wiley&Sons Inc, 2014
- Hacking: The Art Of Exploitation, 2nd Edition, Jon Erickson, No Starch Press, US, 2008
- Software Security: Building Security In, Gary R. McGraw, Pearson Education (US), 2006
- The Web Application Hacker's Handbook: Finding and Exploiting Security Flaws, Dafydd Stuttard and Marcus Pinto,
 Wiley, 2011
- OWASP Testing Guide v4, https://www.owasp.org/images/1/19/OTGv4.pdf, OWASP, 2015
- OWASP Top 10 2017 The Ten Most Critical Web Application Security Risks, https://owasp.org/www-project-top-ten/, OWASP,
- Software Assurance Maturity Model (SAMM) v. 1.5, https://www.owasp.org/images/6/6f/SAMM_Core_V1-5_FINAL.pdf, OWASP, 2017
- An Introduction to Information Security. Michael Nieles, Kelley Dempsey, Victoria Pillitteri. NIST-800-12 Revision 1, (https://csrc.nist.gov/publications/detail/sp/800-12/rev-1/final), 2017
- Systems Security Engineering Considerations for a Multidisciplinary Approach in the Engineering of Trustworthy Secure Systems, Ron Ross, Michael McEvilley, Janet Carrier Oren. NIST-SP-800-160 (https://csrc.nist.gov/publications/detail/sp/800-160/final), 2016.
- ISO/IEC 27002:2013 Information technology -- Security techniques -- Code of practice for information security controls, http://www.smartassessor.com/Uploaded/1/Documents/ISO-2017-standard.pdf, 2013.

Bibliografia

- Regulamento UE 910/2014 (eIDAS) relativo à identificação eletrónica e aos serviços de confiança para as transações eletrónicas no mercado interno, http://eur-lex.europa.eu/legal-content/PT/TXT/PDF/?uri=CELEX:32014R0910&from=PT, 2014
- Analysis of standards related to Trust Service Providers Mapping of requirements of eIDAS to existing standards
 v.1.1, https://www.enisa.europa.eu/publications/tsp standards 2015/at download/fullReport, ENISA, 2016
- Regulamento Geral de Proteção de Dados (RGPD) Regulamento (UE) 2016/679 relativo à proteção das pessoas singulares no que diz respeito ao tratamento de dados pessoais e à livre circulação desses dados, http://eur-lex.europa.eu/legal-content/PT/TXT/PDF/?uri=CELEX:32016R0679&from=PT, 2016
- CEN/TS 419241-1:2017 Trustworthy Systems Supporting Server Signing Part 1:General System Security Requirements, 2017
- CEN/TS 419241-2:2017 Trustworthy Systems Supporting Server Signing Part 2:Protection profile for QSCD for Server Signing, 2017
- Cryptographic Mechanisms: Recommendations and Key Lengths, https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf, BSI TR-02102-1, 2018
- NIST Special Publication 800-57 Part 1 Revision 4 Recommendation for Key Management Part 1: General, Elaine Barker, http://dx.doi.org/10.6028/NIST.SP.800-57pt1r4, NIST, 2016
- Algorithms, key size and parameters report, http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-size-and-parameters-report-2014/at download/fullReport, ENISA, 2014
- Data Hiding: Exposing Concealed Data in Multimedia, Operating Systems, Mobile Devices and Network Protocols, Michael T. Raggo, Chet Hosmer, Syngress Media, 2013
- Information Hiding, Stefan Katzenbeisser, Fabien Peticolas, Artech House Publishers, 2016

Bibliografia

- Common Criteria for Information Technology Security Evaluation Part 1: Introduction and general model, https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf, 2017
- Common Criteria for Information Technology Security Evaluation Part 2: Security functional components, https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R5.pdf, 2017
- Common Criteria for Information Technology Security Evaluation Part 3: Security assurance components, https://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5.pdf, 2017
- Common Methodology for Information Technology Security Evaluation Evaluation methodology, https://www.commoncriteriaportal.org/files/ccfiles/CEMV3.1R5.pdf, 2017
- Configuração do RUP com Vista à Simplificação dos Elencos Processuais em PMEs de Desenvolvimento de Software, Pedro Borges, Tese de Mestrado, Universidade do Minho, 2007
- Security Engineering 2nd Edition, Ross Anderson, http://www.cl.cam.ac.uk/~rja14/book.html, Wiley, 2008
- Secrets and Lies: Digital Security in a Networked World, Bruce Schneier, John Wiley&Sons Inc, 2004
- Sunshine on Secure Software: Baking Security into your SDLC Process, Sunny Wear, BookBabym 2013
- Secure Software Development: A Security Programmer's Guide, Jason Grembi, Cengage Learning, 2008
- Security Engineering: A Guide to Building Dependable Distributed Systems, Ross Anderson, Wiley, 2008.

