# Theoretische Informatik Kapitel 3 – Kontextfreie Sprachen

Sommersemester 2024

Dozentin: Mareike Mutz im Wechsel mit Prof. Dr. M. Leuschel

Prof. Dr. J. Rothe



#### **REG versus CF**

#### **Theorem**

REG ist echt in CF enthalten.

#### Beweis:

- Wir wissen:  $L = \{a^m b^m \mid m \ge 1\}$  ist nicht regulär.
- Andererseits ist L kontextfrei, wie die einfache kontextfreie Grammatik  $G = (\{a, b\}, \{S\}, S, P)$  mit den Regeln

$$P = \{S \rightarrow aSb \mid ab\}$$

zeigt.

• Somit ist  $L \in CF - REG$ , also  $REG \subset CF$ .

#### Normalformen

**Ziel:** Vereinfachung kontextfreier Grammatiken (kurz kfGs).

#### Ausnahmeregelung für das leere Wort:

Für kfGs, und nur für diese, erlauben wir  $\lambda$ -Regeln, d.h., Regeln der Form  $A \to \lambda$ , auch wenn A nicht das Startsymbol ist.

Dies kann manchmal wünschenswert sein.

Für kfGs kann man dies o.B.d.A. zulassen, denn  $\lambda$ -Regeln können ungestraft wieder entfernt werden.

#### Definition ( $\lambda$ -freie Grammatik)

Eine kfG  $G = (\Sigma, N, S, P)$  heißt  $\lambda$ -frei, falls in P keine Regel

$$A \rightarrow \lambda$$

mit  $A \neq S$  auftritt.

Anmerkung: wir hatten die Umformung gesehen die eine Grammatik mit  $S \to \lambda$  als einzige verkürzende Regel so umwandelt, dass S auf keiner rechten Seite auftaucht (Sonderregel für  $\lambda$ ).

#### Theorem

Zu jeder kfG G (mit  $\lambda$ -Regeln) gibt es eine  $\lambda$ -freie kfG G' mit

$$L(G) = L(G').$$

Beispiel: Wie kann man hier  $\lambda$ -Regeln löschen? Grammatik  $G = (\Sigma, N, S, P)$  mit  $\Sigma = \{a, b\}, N = \{S, A\}$  und der Regelmenge

$$P = \{ S \rightarrow bAAb, \ A \rightarrow aA \mid \lambda \}.$$

Beispiel: Wie kann man hier  $\lambda$ -Regeln löschen? Grammatik  $G = (\Sigma, N, S, P)$  mit  $\Sigma = \{a, b, c\}$ ,  $N = \{S, A, B, C\}$  und der Regelmenge

$$P = \{ S \rightarrow ABC, \ A \rightarrow aC \mid aBB, \ B \rightarrow CC \mid b, \ C \rightarrow c \mid \lambda \}.$$

Beweis: Der Beweis beruht auf folgender Konstruktion:

Gegeben: kfG  $G = (\Sigma, N, S, P)$  mit  $\lambda$ -Regeln; o.B.d.A. sei  $\lambda \notin L(G)$ 

(andernfalls ist die Sonderregel für  $\lambda$  anzuwenden).

Gesucht:  $\lambda$ -freie kfG G' mit L(G) = L(G').

Konstruktion: 

 Bestimme die Menge

$$N_{\lambda} = \{ A \in N \mid A \vdash_{G}^{*} \lambda \}$$

sukzessive wie folgt:

- (a) Ist  $A \to \lambda$  eine Regel in P, so ist  $A \in N_{\lambda}$ .
- (b) Ist  $A \to A_1 A_2 \cdots A_k$  eine Regel in P mit  $k \ge 1$  und  $A_i \in N_\lambda$  für alle  $i, 1 \le i \le k$ , so ist  $A \in N_\lambda$ .

Beispiel: Was ist  $N_{\lambda} = \{A \in N \mid A \vdash_{G}^{*} \lambda\}$  hier?

$$P = \{ S \rightarrow ABC, \ A \rightarrow aC \mid aBB, \ B \rightarrow CC \mid b, \ C \rightarrow c \mid \lambda \}.$$

- (a) Ist  $A \to \lambda$  eine Regel in P, so ist  $A \in N_{\lambda}$ .
- (b) Ist  $A \to A_1 A_2 \cdots A_k$  eine Regel in P mit  $k \ge 1$  und  $A_i \in N_\lambda$  für alle i,  $1 \le i \le k$ , so ist  $A \in N_\lambda$ .

Füge für jede Regel der Form

$$B \rightarrow uAv \quad \text{mit } B \in N, A \in N_{\lambda} \text{ und } uv \in (N \cup \Sigma)^+$$

zusätzlich die Regel

$$B \rightarrow uv$$

zu P hinzu.

**3** Entferne alle Regeln  $A \rightarrow \lambda$  aus P.

Schritt 2 muss auch für neu generierte Regeln iterativ angewendet werden.

Dies ergibt die gesuchte  $\lambda$ -freie kfG G' mit L(G) = L(G').

Beispiel:

$$P = \{ S \rightarrow bAAb, \ A \rightarrow aA \mid \lambda \}.$$
 $P = \{ S \rightarrow ABC, \ A \rightarrow aC \mid aBB, \ B \rightarrow CC \mid b, \ C \rightarrow c \mid \lambda \}.$ 

Wir haben  $N_{\lambda} = \{A\}$  bzw  $N_{\lambda} = \{B, C\}$ . Füge für jede Regel der Form

$$B \rightarrow uAv \quad \text{mit } B \in N, \, A \in N_{\lambda} \text{ und } uv \in (N \cup \Sigma)^+$$

zusätzlich die Regel  $B \to uv$  zu P hinzu und lösche alle Regeln  $A \to \lambda$  aus P.

Beispiel: Wir betrachten die Grammatik  $G = (\Sigma, N, S, P)$  mit

- dem terminalen Alphabet  $\Sigma = \{0, 1\},\$
- dem nichtterminalen Alphabet  $N = \{S, A, B, C, D, E\}$  und
- der Regelmenge

$$P = \{ S \rightarrow ABD, \ A \rightarrow ED \mid BB, \ B \rightarrow AC \mid \lambda, \ C \rightarrow \lambda, \ D \rightarrow 0, \ E \rightarrow 1 \}.$$

- **1** Bestimme für die Grammatik G nun gemäß dem Beweis des obigen Satzes die Menge  $N_{\lambda}$ :
  - (a)  $N_{\lambda} = \{B, C\}$ , da  $B \rightarrow \lambda \in P$  und  $C \rightarrow \lambda \in P$ ;
  - (b)  $N_{\lambda} = \{A, B, C\}, \text{ da } A \rightarrow BB \in P.$
- Ergänze die Regeln gemäß dem zweiten Schritt der Konstruktion im Beweis dieses Satzes, der iterativ auch auf neue Regeln anzuwenden ist.
- Entferne alle Regeln

$$A \rightarrow \lambda$$

mit  $A \in N$  aus P.

Wir erhalten eine kontextfreie Grammatik

$$\textit{G}' = (\Sigma, \{\textit{S}, \textit{A}, \textit{B}, \textit{C}, \textit{D}, \textit{E}\}, \textit{S}, \textit{P}')$$

mit

$$P' = \{ S \rightarrow ABD \mid BD \mid AD \mid D,$$
 $A \rightarrow ED \mid BB \mid B,$ 
 $B \rightarrow AC \mid A \mid C,$ 
 $D \rightarrow 0,$ 
 $E \rightarrow 1 \}$ 

und L(G') = L(G).

(Die Regeln  $B \to AC$  und  $B \to C$  sind überflüssig, da C auf keiner linken Seite einer Regel steht, und können wieder entfernt werden.)

#### Definition (Einfache Regel)

Regeln  $A \rightarrow B$  heißen *einfach*, falls A und B Nichtterminale sind.

#### **Theorem**

Zu jeder kfG G gibt es eine kfG G' ohne einfache Regeln, so dass

$$L(G) = L(G').$$

Beispiel: Wie kann man hier einfache Regeln eliminieren? Grammatik  $G = (\Sigma, N, S, P)$  mit  $\Sigma = \{a, b\}, N = \{S, A, B\}$  und der Regelmenge

$$P = \{ S \rightarrow A, \ A \rightarrow aA \mid B, \ B \rightarrow bB \mid b \}.$$

Beispiel: Wie kann man hier einfache Regeln eliminieren? Grammatik  $G = (\Sigma, N, S, P)$  mit  $\Sigma = \{a, b\}, N = \{S, A, B\}$  und der Regelmenge

$$P = \{ S \rightarrow A,$$
  
 $A \rightarrow aA \mid B,$   
 $B \rightarrow bB \mid b \}.$ 

Ordnung der "Aufrufe":  $S \mapsto A \mapsto B$ . Zuerst alle einfachen Regeln mit B rechts ersetzen, dann alle mit A rechts.

Beispiel: Wie kann man hier einfache Regeln eliminieren? Grammatik  $G = (\Sigma, N, S, P)$  mit  $\Sigma = \{a, b, c\}, N = \{S, A, B\}$  und der Regelmenge

$$P = \{ S \rightarrow A,$$
  
 $A \rightarrow aA \mid B \mid c,$   
 $B \rightarrow bB \mid A \}.$ 

Beispiel: Wie kann man hier einfache Regeln eliminieren? Grammatik  $G = (\Sigma, N, S, P)$  mit  $\Sigma = \{a, b, c\}, N = \{S, A, B\}$  und der Regelmenge

$$P = \{ S \rightarrow A,$$
  
 $A \rightarrow aA \mid B \mid c,$   
 $B \rightarrow bB \mid A \}.$ 

Ordnung der "Aufrufe":  $S \mapsto A \mapsto B \mapsto A$ . A und B fusionieren, dann in Regel für S ersetzen.

Beweis: Der Beweis beruht auf folgender Konstruktion:

Gegeben: kfG  $G = (\Sigma, N, S, P)$  (mit einfachen Regeln).

Gesucht: kfG G' ohne einfache Regeln, so dass L(G) = L(G').

Konstruktion: • Entferne alle Zyklen

$$B_1 \rightarrow B_2, \quad B_2 \rightarrow B_3, \quad \dots, \quad B_{k-1} \rightarrow B_k, \quad B_k \rightarrow B_1$$

mit  $B_i \in N$  und ersetze alle  $B_i$  (in den verbleibenden Regeln) durch ein neues Nichtterminal B.

Beweis: Der Beweis beruht auf folgender Konstruktion:

Gegeben: kfG  $G = (\Sigma, N, S, P)$  (mit einfachen Regeln).

Gesucht: kfG G' ohne einfache Regeln, so dass L(G) = L(G').

Konstruktion: • Entferne alle Zyklen

$$B_1 \rightarrow B_2, \quad B_2 \rightarrow B_3, \quad \dots, \quad B_{k-1} \rightarrow B_k, \quad B_k \rightarrow B_1$$

mit  $B_i \in N$  und ersetze alle  $B_i$  (in den verbleibenden Regeln) durch ein neues Nichtterminal B.

(Anmerkung: Hier sind wirklich nur Zyklen gemeint, die nur aus einfachen Regeln bestehen.)

- ② Topologische Sortierung: Nummeriere die Nichtterminale als  $\{A_1, A_2, \dots, A_n\}$  so, dass aus  $A_i \to A_j$  folgt: i < j.
- § Für  $k=n-1,n-2,\ldots,1$  (rückwärts!) eliminiere die Regel  $A_k \to A_\ell$  mit  $k < \ell$  so: Sind die Regeln mit  $A_\ell$  als linker Seite gegeben durch

$$A_{\ell} \rightarrow u_1 \mid u_2 \mid \cdots \mid u_m$$

so entferne  $A_k \to A_\ell$  und füge die folgenden Regeln hinzu:

$$A_k \rightarrow u_1 \mid u_2 \mid \cdots \mid u_m$$
.

Dies liefert die gesuchte kfG G' ohne einfache Regeln mit L(G) = L(G').

Beispiel: Betrachte die Grammatik  $G = (\Sigma, N, S, P)$  mit

- dem terminalen Alphabet  $\Sigma = \{0, 1\}$ ,
- dem nichtterminalen Alphabet  $N = \{S, A, B, C, D\}$  und
- der Regelmenge

$$P = \{ S \rightarrow A \mid 0C \mid 00 \mid 0000,$$
 $A \rightarrow B \mid 11,$ 
 $B \rightarrow C \mid 1,$ 
 $C \rightarrow D,$ 
 $D \rightarrow B$  }.

 Entferne alle Zyklen über Nichtterminalsymbole gemäß dem Beweis des Satzes.

 $B \to C$ ,  $C \to D$ ,  $D \to B$  werden entfernt und alle Vorkommen von B, C, D in den restlichen Regeln werden durch B ersetzt:

$$P_1 = \{ S \rightarrow A \mid 0B \mid 00 \mid 0000,$$
  $A \rightarrow B \mid 11,$   $B \rightarrow 1 \}.$ 

2 Nummeriere die Nichtterminalsymbole: S (1), A (2), B (3).

- Eliminiere Regeln wie folgt:
  - (a)  $A \rightarrow B$  wird entfernt und dafür  $A \rightarrow 1$  hinzugefügt;
  - (b)  $S \rightarrow A$  wird entfernt und dafür  $S \rightarrow 11$  und  $S \rightarrow 1$  hinzugefügt:

$$P' = \{ S \rightarrow 1 \mid 11 \mid 0B \mid 00 \mid 0000, \ A \rightarrow 1 \mid 11, \ B \rightarrow 1 \}.$$

Die so erhaltene Grammatik  $G = (\Sigma, N', S, P')$  erfüllt

$$L(G') = L(G).$$

## Wiederholung: Normalformen für CF-Sprachen

• Kontextfreie Grammatiken (kfGs) sind Grammatiken mit Regeln der Form  $A \to A_1 A_2$  und  $A \to a$ , wobei  $A, A_1, A_2$  Nichtterminale und a ein Terminal sind.

## Wiederholung: Normalformen für CF-Sprachen

- Kontextfreie Grammatiken (kfGs) sind Grammatiken mit Regeln der Form A → A<sub>1</sub>A<sub>2</sub> und A → a, wobei A, A<sub>1</sub>, A<sub>2</sub> Nichtterminale und a ein Terminal sind.
- Wir haben einen Algorithmus kennen gelernt, der äquivalente  $\lambda$ -freie Grammatiken erzeugen kann zu einer kfG mit Regeln  $A \rightarrow \lambda$ .
- Darum erlauben wir in kfG auch Lambda-Regeln von anderen Nichtterminalen aus als dem Startsymbol

## Wiederholung: Normalformen für CF-Sprachen

- Kontextfreie Grammatiken (kfGs) sind Grammatiken mit Regeln der Form A → A<sub>1</sub>A<sub>2</sub> und A → a, wobei A, A<sub>1</sub>, A<sub>2</sub> Nichtterminale und a ein Terminal sind.
- Wir haben einen Algorithmus kennen gelernt, der äquivalente  $\lambda$ -freie Grammatiken erzeugen kann zu einer kfG mit Regeln  $A \rightarrow \lambda$ .
- Darum erlauben wir in kfG auch Lambda-Regeln von anderen Nichtterminalen aus als dem Startsymbol
- Wir können genauso auch "einfache Regeln" entfernen. Also Regeln der Form  $A \rightarrow B$  mit  $A, B \in N$

### Chomsky-Normalform

#### Definition (Chomsky-Normalform)

Eine kfG  $G = (\Sigma, N, S, P)$  mit  $\lambda \notin L(G)$  ist in *Chomsky-Normalform* (kurz CNF), falls alle Regeln in P eine der folgenden Formen haben:

- $A \rightarrow BC$  mit  $A, B, C \in N$ ;
- $A \rightarrow a$  mit  $A \in N$  und  $a \in \Sigma$ .

#### **Theorem**

Zu jeder kfG G mit  $\lambda \notin L(G)$  gibt es eine kfG G' in CNF, so dass gilt:

$$L(G) = L(G').$$

### Normalformen: Chomsky-Normalform

Beispiel: Wie könnte man hier die CNF (Regeln  $A \to BC$  oder  $A \to a$ ) erreichen? Grammatik  $G = (\Sigma, N, S, P)$  mit  $\Sigma = \{a\}$ ,  $N = \{S, A\}$  und der Regelmenge

$$P = \{ S \rightarrow AAA, \\ A \rightarrow aA \mid a \}.$$

## Chomsky-Normalform

Beweis: Der Beweis beruht auf folgender Konstruktion:

Gegeben:  $\lambda$ -freie kfG  $G = (\Sigma, N, S, P)$  ohne einfache Regeln;  $\lambda \notin L(G)$ .

Gesucht: kfG G' in CNF mit L(G) = L(G').

Konstruktion: **1** Regeln  $A \to a$  mit  $A \in N$  und  $a \in \Sigma$  sind in CNF und werden übernommen. Betrachte im Folgenden nur noch die restlichen Regeln; diese sind von der Form:

$$A \rightarrow x \quad \text{mit } x \in (N \cup \Sigma)^* \text{ und } |x| \geq 2.$$

- Füge für jedes  $a \in \Sigma$  ein neues Nichtterminal  $B_a$  zu N hinzu.
  - ersetze jedes Vorkommen von  $a \in \Sigma$  durch  $B_a$  und
  - füge zu P die Regel B<sub>a</sub> → a hinzu.

#### Chomsky-Normalform

Nicht in CNF sind nun nur noch Regeln der Form

 $A \to B_1 B_2 \cdots B_k$ , wobei  $k \ge 3$  und jedes  $B_i$  ein Nichtterminal ist.

Jede solche Regel wird ersetzt durch die Regeln:

wobei  $C_2, C_3, \ldots, C_{k-1}$  neue Nichtterminale sind.

Dies liefert die gesuchte Grammatik G' in CNF mit L(G) = L(G').  $\square$ 

Beispiel: Wir betrachten die transformierte Grammatik aus dem vorigen Beispiel. O.B.d.A. entfernen wir die Regeln

$$A \rightarrow 1 \mid 11$$

und das Nichtterminal A und erhalten die Grammatik  $G = (\Sigma, N, S, P)$  mit

- dem terminalen Alphabet  $\Sigma = \{0, 1\}$ ,
- dem nichtterminalen Alphabet  $N = \{S, B\}$  und
- der Regelmenge

$$P = \{ S \rightarrow 1 \mid 11 \mid 0B \mid 00 \mid 0000, \\ B \rightarrow 1 \}.$$

**1** Regeln  $A \to a$  mit  $A \in N$  und  $a \in \Sigma$  sind in CNF und werden übernommen. Diese zwei Regeln werden also übernommen:

$$S \rightarrow 1$$
 und  $B \rightarrow 1$ .

② Wir führen zwei neue Nichtterminalsymbole ein,  $X_1$  und  $X_0$ , und erhalten die folgende Regelmenge:

$$egin{array}{lll} P_1 &=& \{ & \mathcal{S} 
ightarrow 1 \mid X_1 X_1 \mid X_0 B \mid X_0 X_0 \mid X_0 X_0 X_0 X_0, \\ & \mathcal{B} 
ightarrow 1, \\ & X_1 
ightarrow 1, \\ & X_0 
ightarrow 0 & \}. \end{array}$$

Noch nicht in Chomsky-Normalform ist die Regel

$$S \to X_0 X_0 X_0 X_0.$$

Diese Regel ersetzen wir durch die drei Regeln

$$S \rightarrow X_0 C_2, \quad C_2 \rightarrow X_0 C_3, \quad C_3 \rightarrow X_0 X_0,$$

wobei  $C_2$  und  $C_3$  neue Nichtterminalsymbole sind.

Wir erhalten die Grammatik  $G' = (\Sigma, N', S, P')$  mit

- $\Sigma = \{0, 1\},\$
- $N' = \{S, B, X_0, X_1, C_2, C_3\}$  und
- Regelmenge

$$P' = \{ S \rightarrow 1 \mid X_1 X_1 \mid X_0 B \mid X_0 X_0 \mid X_0 C_2, \ C_2 \rightarrow X_0 C_3, \ C_3 \rightarrow X_0 X_0, \ B \rightarrow 1, \ X_1 \rightarrow 1, \ X_0 \rightarrow 0 \}$$

in CNF mit L(G) = L(G').

Gibt es eine andere kfG G'' in CNF, die nicht isomorph zu G' ist und so dass  $L(G'') = L(G) = \{1, 11, 01, 00, 0000\}$ ?

# Chomsky-Normalform: Beispiel

Gibt es eine andere kfG G'' in CNF, die nicht isomorph zu G' ist und so dass  $L(G'') = L(G) = \{1, 11, 01, 00, 0000\}$ ?

Ja, unendlich viele. Zum Beispiel:  $G'' = (\Sigma, N'', S, P'')$  wo wir  $X_1$  entfernt haben:

- $\Sigma = \{0, 1\}, N'' = \{S, B, X_0, C_2, C_3\}$  und
- Regelmenge

$$P'' = \{ S o 1 \mid BB \mid X_0B \mid X_0X_0 \mid X_0C_2, \ C_2 o X_0C_3, \ C_3 o X_0X_0, \ B o 1, \ X_0 o 0 \}$$

# Chomsky-Normalform: Beispiel

Gibt es eine andere kfG G'' in CNF, die nicht isomorph zu G' ist und so dass  $L(G'') = L(G) = \{1, 11, 01, 00, 0000\}$ ?

Anderes Beispiel:  $G''' = (\Sigma, N'', S, P''')$ :

- $\Sigma = \{0, 1\}, N'' = \{S, B, X_0, C_2, C_3\}$  und
- Regelmenge

$$P' = \{ S \rightarrow 1 \mid BB \mid X_0B \mid X_0X_0 \mid C_2X_0, \ C_2 \rightarrow C_3X_0, \ C_3 \rightarrow X_0X_0, \ B \rightarrow 1, \ X_0 \rightarrow 0 \}$$

#### Chomsky-Normalform

Bemerkung: Es sei G eine Grammatik in Chomsky-Normalform,  $w \in L(G)$  und  $w \neq \lambda$ .

• Jede Ableitung von w in G besteht aus genau 2|w|-1 Schritten. Es wird (|w|-1)-mal eine Regel der Form

$$A \rightarrow BC$$

angewandt und |w|-mal eine Regel der Form

$$A \rightarrow a$$
.

Jeder Syntaxbaum f
 ür w in G ist ein Bin
 ärbaum.

#### CNF - Binärbaum.



Quelle: https://en.wikipedia.org/wiki/Chomsky\_normal\_form

"Abstract syntax tree of the arithmetic expression  $a^2 + 4 * b$  wrt. the example grammar (top) and its Chomsky normal form (bottom)"

#### Greibach-Normalform

#### Definition (Greibach-Normalform)

Eine kontextfreie Grammatik  $G = (\Sigma, N, S, P)$  mit  $\lambda \notin L(G)$  ist in *Greibach-Normalform* (kurz GNF), falls jede Regel in P die folgende Form hat:

$$A \rightarrow aB_1B_2 \cdots B_k \quad \text{mit } k \geq 0 \text{ und } A, B_i \in N \text{ und } a \in \Sigma.$$

#### Theorem

Zu jeder kfG G mit  $\lambda \notin L(G)$  gibt es eine kfG G' in GNF, so dass

$$L(G) = L(G').$$

ohne Beweis

#### Greibach-Normalform: Beispiel

Beispiel: Die Grammatik  $G = (\Sigma, N, S, P)$  mit

- $\Sigma = \{0, 1\},\$
- $N = \{S, A\}$  und
- Regelmenge

$$P = \{ S \rightarrow 0A \mid 0SA, A \rightarrow 1 \}$$

ist offensichtlich in Greibach-Normalform, und es gilt

$$L(G) = \{0^n 1^n \mid n \ge 1\}.$$

### Greibach-Normalform: Beispiel

Beispiel: Die Grammatik  $G = (\Sigma, N, S, P)$  mit

- $\Sigma = \{0, 1\},\$
- $N = \{S, A, B\}$  und
- Regelmenge

$$P = \{ S \rightarrow 0A \mid 1B \mid 0SA \mid 1SB, \ A \rightarrow 0, \ B \rightarrow 1 \}$$

ist offensichtlich in Greibach-Normalform, und es gilt

$$L(G) = \{x \ sp(x) \mid x \in \{0, 1\}^+\}.$$

#### Greibach-Normalform

Bemerkung: Grammatiken in GNF unterscheidet man bezüglich der Längen der rechten Seiten der Produktionen.

 Man kann zeigen, dass sich jede kontextfreie Grammatik in eine äquivalente kontextfreie Grammatik in Greibach-Normalform transformieren lässt, so dass für alle Regeln

$$A \rightarrow aB_1B_2 \cdots B_k$$

stets  $k \le 2$  gilt.

• Für den Spezialfall  $k \in \{0, 1\}$  erhalten wir gerade die Definition rechtslinearer Grammatiken.

#### Greibach-Normalform

Bemerkung: Es sei G eine Grammatik in Greibach-Normalform,  $w \in L(G)$  und  $w \neq \lambda$ . Dann besteht jede Ableitung von w in G aus genau |w| Schritten.

(Es wird in jedem Ableitungsschritt genau ein Terminalsymbol von *w* abgeleitet.)

Wie könnte ein Pumping Lemma für kontextfreie Sprachen aussehen? Beispiel:  $G = (\{a, b\}, \{S\}, S, P)$  mit den Regeln

$$P = \{S \rightarrow aSb \mid ab\}$$

Wort  $aaabbb \in L(G)$ .

Wie könnte ein Pumping Lemma für kontextfreie Sprachen aussehen? Beispiel:  $G = (\{a, b\}, \{S\}, S, P)$  mit den Regeln

$$P = \{S \rightarrow aSb \mid ab\}$$

Wort  $aaabbb \in L(G)$ .

Zerlegung uvxy = aaabbb.

- $uv^0x^0y = aabb \in L$
- $uv^2x^2y = aaaabbbbb \in L$
- $uv^3x^3y = aaaaabbbbbb \in L$

Wie könnte ein Pumping Lemma für kontextfreie Sprachen aussehen? Zweites Beispiel:  $G = (\{a, b, c\}, \{S\}, S, P)$  mit den Regeln

$$P = \{S \rightarrow aSb \mid c\}$$

Wort  $aacbb \in L(G)$ .

Wie könnte ein Pumping Lemma für kontextfreie Sprachen aussehen? Zweites Beispiel:  $G = (\{a, b, c\}, \{S\}, S, P)$  mit den Regeln

$$P = \{S \rightarrow aSb \mid c\}$$

Wort  $aacbb \in L(G)$ .

Zerlegung uvwxy = aacbb.

- $uv^0wx^0y = acb \in L$
- $uv^2wx^2y = aaacbbb \in L$
- $uv^3wx^3y = aaaacbbbbb \in L$

**Ziel:** Nachweis, dass bestimmte Sprachen nicht kontextfrei sind.

#### Theorem (Pumping-Lemma für kontextfreie Sprachen)

Sei L eine kontextfreie Sprache. Dann existiert eine (von L abhängige) Zahl  $n \ge 1$ , so dass sich alle Wörter  $z \in L$  mit  $|z| \ge n$  zerlegen lassen in

$$z = uvwxy$$
,

wobei gilt:

- **1** | |VX| ≥ 1,
- $|vwx| \leq n$ ,
- $(\forall i \geq 0) [uv^i wx^i y \in L].$

#### Beweis:

- Es sei L eine kontextfreie Sprache. Wir setzen voraus, dass  $\lambda \notin L$ .
- Es sei  $G = (\Sigma, N, S, P)$  eine kfG für L in CNF mit k Nichtterminalen.
- Wir wählen  $n = 2^{k+1}$ .
- Sei  $z \in L$  ein beliebiges Wort mit  $|z| \ge n$ .
- Der Syntaxbaum B der Ableitung

$$S \vdash_G^* z$$

ist (bis auf den letzten Ableitungsschritt) ein Binärbaum mit

$$|z| \ge n = 2^{k+1}$$

Blättern.

### Pumping-Lemma: Beweis: Lemma über Binärbäume

#### Lemma

Jeder Binärbaum  $B_k$  mit mindestens  $2^k$  Blättern besitzt mindestens einen Pfad der Länge<sup>a</sup> mindestens k.

<sup>a</sup>Die Länge eines Pfades ist die Anzahl seiner Kanten.

#### Pumping-Lemma: Beweis: Lemma über Binärbäume

Beweis: Der Beweis wird durch Induktion über k geführt.

Induktionsanfang: k = 0. Jeder Binärbaum  $B_0$  mit mindestens  $2^0 = 1$  Blatt besitzt mindestens einen Pfad der Länge mindestens 0.

**Induktionsschritt:**  $k \mapsto k + 1$ . Die Behauptung gelte für k.

- Betrachte einen beliebigen Binärbaum  $B_{k+1}$  mit mindestens  $2^{k+1}$  Blättern.
- Mindestens einer seiner Teilbäume hat mindestens  $2^{k+1}/2$  Blätter (sonst hätte  $B_{k+1}$  weniger als

$$\frac{2^{k+1}}{2} + \frac{2^{k+1}}{2} = 2^{k+1}$$

Blätter); sei  $B_k$  dieser Teilbaum.

### Pumping-Lemma: Beweis: Lemma über Binärbäume

- Nach Induktionsvoraussetzung gibt es in  $B_k$  einen Pfad  $\alpha$  der Länge mindestens k.
- Verlängert man  $\alpha$  zur Wurzel von  $B_{k+1}$ , so ergibt sich ein Pfad der Länge mindestens k+1 in  $B_{k+1}$ .



Abbildung: Beweis des Lemmas über Binärbäume

Weiter im Beweis des Pumping-Lemmas.

• Im Syntaxbaum B der Ableitung

$$S \vdash_G^* z$$

gibt es nach obigem Lemma einen Pfad der Länge mindestens k + 1.

- Fixiere einen solchen Pfad  $\alpha$  maximaler Länge.
- Nach Wahl von

$$n = 2^{k+1}$$

muss es wegen ||N|| = k auf einem solchen Pfad  $\alpha$  maximaler Länge ein Nichtterminal A geben, das doppelt vorkommt.

- Denn:
  - Ein Pfad mit Länge k + 1 hat k + 2 Knoten, davon darf der letzte ein Blatt sein.
  - Die restlichen k + 1 Knoten sind mit Nichtterminalen beschriftet.
- Diese beiden Vorkommen von A können so gewählt werden, dass die ersten beiden Eigenschaften des Pumping-Lemmas erfüllt sind.
- Dazu bestimmen wir dieses doppelte Vorkommen von A auf  $\alpha$  von unten nach oben so, dass das obere A höchstens k+1 Schritte von der Blattebene entfernt ist.
- Die Teilbäume unter diesen A induzieren eine Zerlegung von

z = uvwxy.



Abbildung: Auf einem Pfad  $\alpha$  der Länge mindestens k+1 muss es ein Nichtterminal A geben, das doppelt vorkommt.

Wir verifizieren die drei Aussagen des Pumping-Lemmas.

Da G in CNF ist, muss das obere A mittels einer Regel

$$A \rightarrow BC$$

weiter abgeleitet werden. Also ist

$$|vx| \geq 1$$
.

② Da das obere A höchstens k + 1 Schritte von der Blattebene entfernt ist, gilt

$$|vwx| \leq 2^{k+1} = n.$$

Dies folgt wieder aus dem Lemma über Binärbäume: Hätte der Teilbaum unter dem oberen A mehr als  $2^{k+1}$  Blätter, so gäbe es unter ihm einen Pfad der Länge > k+1, Widerspruch.

- Oies folgt daraus, dass stets ein Wort in L abgeleitet wird, wenn bei der Ableitung von z die Schritte zwischen den beiden Vorkommen von A (A ⊢ vAx)
  - entweder weggelassen (*i* = 0):

$$S \vdash uAy \vdash uwy$$

• oder beliebig oft wiederholt ( $i \ge 1$ ) werden:

$$S \vdash uAy \vdash uvAxy \vdash uvvAxxy \vdash \dots uv^iAx^iy \vdash uv^iwx^iy$$

Also gilt:

$$(\forall i \geq 0) [uv^i wx^i y \in L].$$

Das Pumping-Lemma für kontextfreie Sprachen ist bewiesen.

# Pumping-Lemma: Illustration

Beispiel:  $G = (\{a, b\}, \{S\}, S, P)$  mit den Regeln

$$P = \{S \rightarrow aSb \mid ab\}$$

Wort  $aabb \in L(G)$ .



#### Pumping-Lemma: Illustration

Beispiel:  $G = (\{a, b, c, d\}, \{S\}, S, P)$  mit den Regeln

$$P = \{S \rightarrow cTd, T \rightarrow aTb \mid ab\}$$

Wort caabbd  $\in L(G)$ .



Bemerkung: Man beachte, dass das Pumping-Lemma keine Charakterisierung von CF liefert, sondern lediglich eine Implikation:

$$L \in \mathrm{CF} \ \Rightarrow \ (\exists n \geq 1) \, (\forall z \in L, |z| \geq n) \, (\exists u, v, w, x, y \in \Sigma^*)$$

$$[z = uvwxy \wedge (1) \wedge (2) \wedge (3)].$$

#### Alle Sprachen

Kontextfreie Sprachen

Sprachen nach PL nicht kontextfrei

Behauptung:  $L = \{a^m b^m c^m \mid m \ge 1\}$  ist nicht kontextfrei.

Beweis: Der Beweis wird indirekt geführt.

- Angenommen,  $L \in CF$ .
- Sei n die Zahl, die nach dem Pumping-Lemma für L existiert.
- Betrachte das Wort

$$z = a^n b^n c^n$$

mit 
$$|z| = 3n > n$$
.

• Da  $z \in L$ , lässt sich z so in

$$z = uvwxy = a^n b^n c^n$$

zerlegen, dass gilt:

- $|vwx| \le n$ , d.h., vx kann nicht aus a-, b- und c-Symbolen bestehen (vx kann also höchstens zwei der drei Symbole a, b, c enthalten);
- $|vx| \geq 1$ , d.h.,  $vx \neq \lambda$ ;
- $(\forall i \geq 0) [uv^i wx^i y \in L].$
- Insbesondere gilt für i = 0:

$$uv^0wx^0y = uwy \in L$$
,

im Widerspruch zur Definition von L, denn wegen der obigen Eigenschaften kann uwy nicht die Form  $a^mb^mc^m$  haben.

Also ist die Annahme falsch und L nicht kontextfrei.

Behauptung:  $L = \{0^p \mid p \text{ ist Primzahl}\}\$ ist nicht kontextfrei.

Beweis: Der Beweis wird indirekt geführt.

- Angenommen,  $L \in CF$ .
- Sei n die Zahl, die nach dem Pumping-Lemma für L existiert und p ≥ n eine Primzahl.
- Betrachte das Wort

$$z=0^p$$

$$mit |z| = p > n.$$

• Da  $z \in L$ , lässt sich z so in

$$z = uvwxy = 0^p$$

zerlegen, dass gilt:

- $|vwx| \leq n$
- |vx| > 1 und
- $(\forall i > 0) [uv^i wx^i y \in L].$
- Insbesondere gilt für i = p + 1:

$$|uv^{p+1}wx^{p+1}y| = |uvwxy| + |v^p| + |x^p| = p + p(|v| + |x|)$$
  
=  $p + p(|vx|) = p(1 + |vx|).$ 

Da  $|vx| \ge 1$ , ist  $|uv^{p+1}wx^{p+1}y|$  keine Primzahl, im Widerspruch zur Definition von L.

• Also ist die Annahme falsch und *L* nicht kontextfrei.

Behauptung:  $L = \{0^m \mid m \text{ ist Quadratzahl}\}$  ist nicht kontextfrei.

Beweis: Siehe Übungen.

# Abschlusseigenschaften von CF

#### Theorem

#### CF ist abgeschlossen unter

- Vereinigung,
- Konkatenation,
- Iteration und
- Spiegelung,

#### ist jedoch nicht abgeschlossen unter

- Schnitt,
- Komplement und
- Differenz.

Beweis: Seien L<sub>1</sub> und L<sub>2</sub> kontextfreie Sprachen und

$$G_i = (\Sigma, N_i, S_i, P_i),$$

wobei  $i \in \{1,2\}$ , zwei kontextfreie Grammatiken mit  $N_1 \cap N_2 = \emptyset$  und

$$L(G_i) = L_i$$
.

Im Folgenden sei  $S \notin N_1 \cup N_2$  ein neues Nichtterminal.

Vereinigung: Die Grammatik

$$G = (\Sigma, N_1 \cup N_2 \cup \{S\}, S, P_1 \cup P_2 \cup \{S \rightarrow S_1 \mid S_2\})$$

leistet

$$L(G) = L_1 \cup L_2$$
.

Konkatenation: Die Grammatik

$$G = (\Sigma, N_1 \cup N_2 \cup \{S\}, S, P_1 \cup P_2 \cup \{S \rightarrow S_1 S_2\})$$

leistet

$$L(G)=L_1L_2.$$

Iteration: Die Grammatik

$$G = (\Sigma, N_1 \cup \{S, S'\}, S, P_1 \cup \{S \rightarrow \lambda \mid S', S' \rightarrow S'S' \mid S_1\}$$

leistet

$$L(G) = (L_1)^*$$
.

• *Spiegelung:* Es sei  $G = (\Sigma, N, S, P)$  eine kontextfreie Grammatik in CNF, d.h., alle Regeln in G sind von der Form

$$A \rightarrow BC$$
 oder  $A \rightarrow a$ ,

wobei  $A, B, C \in N$  und  $a \in \Sigma$ .

Um die gespiegelten Wörter zu erzeugen, drehen wir die rechten Seiten in Regeln der Form

$$A \rightarrow BC$$

um.

Wir erhalten durch  $G' = (\Sigma, N, S, P')$  mit

$$P' = \{A \rightarrow CB \mid A \rightarrow BC \in P\} \cup \{A \rightarrow a \mid A \rightarrow a \in P\}$$

eine kontextfreie Grammatik in CNF mit L(G') = sp(L(G)).

Schnitt: Die Sprachen

$$A = \{a^{i}b^{j}c^{j} \mid i, j \ge 1\}$$
 und  $B = \{a^{i}b^{j}c^{j} \mid i, j \ge 1\}$ 

sind beide kontextfrei, jedoch (nach dem Pumping-Lemma) nicht ihr Durchschnitt

$$A\cap B=\{a^ib^ic^i\mid i\geq 1\}.$$

 Komplement: folgt nach de Morgan aus dem Abschluss unter Vereinigung und dem Nicht-Abschluss unter Schnitt:

$$A \cap B = \overline{\overline{A} \cup \overline{B}}.$$





## Abschlusseigenschaften von CF: Beweis

• *Differenz:* folgt nach  $\overline{A} = \Sigma^* - A$  aus dem Nicht-Abschluss unter Komplement.



#### **Theorem**

CF ist abgeschlossen unter Schnittbildung mit REG: Es seien  $L_1$  eine kontextfreie Sprache und  $L_2$  eine reguläre Sprache. Dann ist

$$L_1 \cap L_2$$

eine kontextfreie Sprache.

#### Beweis:

- Es sei  $G = (\Sigma, N, S, P)$  eine kontextfreie Grammatik in Chomsky-Normalform mit  $L_1 = L(G)$ .
- $M = (\Sigma, Z, \delta, z_0, F)$  sei ein DFA mit  $Z = \{z_0, \dots, z_n\}$ , so dass  $L_2 = L(M)$ .

Beispiel zum Nachdenken:  $G = (\{a, b, c\}, \{S, A, B, C, D\}, S, \{S \rightarrow AD \mid CC \mid c, A \rightarrow a, D \rightarrow SB, B \rightarrow b, C \rightarrow CC \mid c\})$  und Automat für regulären Ausdruck  $a^*cb^*$ .

- Wir definieren die Grammatik  $\hat{G} = (\Sigma, \hat{N}, \hat{S}, \hat{P})$  mit
  - $\hat{N} = \{A_{ij} \mid \text{für alle } A \in N, 0 \le i, j \le n\} \cup \{\hat{S}\} \text{ und }$
  - der Regelmenge

$$\hat{P}=\{A_{ij} o B_{ik}C_{kj} \ ext{ für alle } A o BC\in P,\ 0\leq i,j,k\leq n$$
  $A_{ij} o a \ ext{ für alle } A o a\in P,\ 0\leq i,j\leq n$  und  $\delta(z_i,a)=z_j$   $\hat{S} o S_{0i} \ ext{ für alle } z_i\in F$ 

$$G = (\{a,b,c\}, \{S,A,B,C,D\}, S, \{S \rightarrow AD \mid CC \mid c,A \rightarrow a,D \rightarrow SB, B \rightarrow b, C \rightarrow CC \mid c\}) \text{ und Automat für regulären Ausdruck } a^*cb^*.$$

$$Z = \{z_0,z_1\}, \, \delta(z_0,a) = z_0, \, \delta(z_0,c) = z_1, \, \delta(z_1,b) = z_1, \, F = \{z_1\}$$

$$\hat{P} = \{\hat{S} 
ightarrow S_{01}, \ A_{00} 
ightarrow a, \ B_{11} 
ightarrow b, \ C_{01} 
ightarrow c, \ S_{01} 
ightarrow A_{00} D_{01}, \ S_{01} 
ightarrow A_{01} D_{11}, \ D_{01} 
ightarrow S_{00} B_{01}, \ D_{01} 
ightarrow S_{01} B_{11}, \ D_{01} 
ightarrow S_{00} C_{01}, \ D_{01} 
ightarrow S_{01} C_{11}, \ S_{00} 
ightarrow A_{00} D_{00}, \ S_{00} 
ightarrow A_{01} D_{10}, \ D_{00} 
ightarrow S_{00} B_{00}, \ D_{00} 
ightarrow S_{01} B_{10}, \ D_{00} 
ightarrow S_{01} C_{00}, \ D_{00} 
ightarrow S_{01} C_{10}, \ \ldots \}$$

Es gilt:

$$L(\hat{G}) = L_1 \cap L_2.$$

 $\subseteq$  Es sei  $x \in L(\hat{G})$ , d.h.,  $\hat{S} \vdash_{\hat{G}} S_{0j} \vdash_{\hat{G}}^* x$ . Durch Ignorieren der Indizierung der Nichtterminale in der Ableitung  $S_{0j} \vdash_{\hat{G}}^* x$ , erhalten wir eine Ableitung für x in der Grammatik G, also  $x \in L_1$  Die Indizierung impliziert, dass  $\hat{\delta}(z_0, x) \in F$ , also

$$x \in L_2$$
.

- zu zeigen:  $L(\hat{G}) = L_1 \cap L_2$ 
  - ⊇ Nach Konstruktion von  $\hat{P}$ .  $(x \in L_2 \Rightarrow \hat{\delta}(z_0, x) = z_j \in F \Rightarrow \text{es gibt eine Folge von Indizes, so dass eine Ableitung von } S \vdash_{\hat{G}}^* x \text{ in eine Ableitung } \hat{S} \vdash_{\hat{G}} S_{0j} \vdash_{\hat{G}}^* x \text{ umgewandelt werden kann)}$

Fertig.

#### Lemma

Sei  $\Sigma = \{a, b, c\}$  und  $L' = \{w \in \Sigma^* \text{ so dass } w \text{ gleich viele } a, b \text{ und } c\text{'s enthält } \}$ . Die Sprache L' ist nicht kontextfrei.

#### Lemma

Sei  $\Sigma = \{a, b, c\}$  und  $L' = \{w \in \Sigma^* \text{ so dass } w \text{ gleich viele } a, b \text{ und } c\text{'s enthält } \}$ . Die Sprache L' ist nicht kontextfrei.

Beweis: Wir wissen, dass  $L = \{a^m b^m c^m \mid m \ge 1\}$  nicht kontextfrei ist. Deshalb führt die Annahme, dass L' kontextfrei ist zum Widerspruch, da  $L = L' \cap \{a^i b^j c^k | i, j, k \ge 1\}$ .

## Der Algorithmus von Cocke, Younger und Kasami

**Ziel:** Ein effizienter Algorithmus für das Wortproblem für kontextfreie Grammatiken.

Definition (Wortproblem)

Für  $i \in \{0, 1, 2, 3\}$  definieren wir das Wortproblem für Typ-i-Grammatiken wie folgt:

 $\operatorname{Wort}_i = \{(G, x) \mid G \text{ ist Typ-}i\text{-Grammatik und } x \in L(G)\}.$ 

## Der Algorithmus von Cocke, Younger und Kasami

#### Bemerkung:

- Später werden wir sehen:
  - (a) Wort<sub>0</sub> ist algorithmisch nicht lösbar.
  - (b) Wort<sub>1</sub> ist algorithmisch lösbar, allerdings nur mit einem exponentiellen Aufwand.
- Wort<sub>2</sub> ist sogar effizient lösbar, sofern die entsprechende kfG in Chomsky-Normalform gegeben ist.
- Oer Algorithmus von Cocke, Younger und Kasami beruht auf der Idee des dynamischen Programmierens.

## Parsing: Einfaches Beispiel

$$G = (\{a,b\},~\{S,A\},~S,~R)$$
 mit

$$R = \{S \rightarrow AS \mid b, A \rightarrow a\}$$

Ist  $aab \in L(G)$ ?

## Parsing: Einfaches Beispiel

$$G = (\{a, b\}, \{S, A\}, S, R)$$
 mit

$$R = \{S \to AS \mid b, A \to a\}$$

Ist  $aab \in L(G)$ ?

Top-down parsing: wir starten mit *S* und versuchen eine Ableitung von *aab* zu finden:

## Bottom-Up Parsing: Einfaches Beispiel

$$G = (\{a, b\}, \{S, A\}, S, R) \text{ mit}$$

$$R = \{S \to AS \mid b, A \to a\}$$

Ist  $aab \in L(G)$ ?

Bottom-Up parsing: wir starten mit *aab* und versuchen rückwärts zu *S* zu kommen:

# Bottom-Up Parsing: Einfaches Beispiel

$$G = (\{a, b\}, \{S, A\}, S, R) \text{ mit}$$

$$R = \{S \to AS \mid b, A \to a\}$$

Ist  $aab \in L(G)$ ?

Bottom-Up parsing: wir starten mit *aab* und versuchen rückwärts zu *S* zu kommen:

$$aab \dashv Aab \dashv AAb \dashv AAS \dashv AS \dashv S$$
.

# Parsing: Einfaches Beispiel

$$G = (\{a, b\}, \{S, A\}, S, R)$$
 mit

$$R = \{S \to AS \mid b, A \to a\}$$

Der CYK Algorithmus benutzt zum Bottom-Up Parsing eine Tabelle um mit beliebigen Grammatiken in CNF effizient umgehen zu können.

| ····· sonosigon onami |   |   |   |   |  |  |
|-----------------------|---|---|---|---|--|--|
| i:                    | 1 | 2 | 3 |   |  |  |
| T(i,2)                |   | - | - |   |  |  |
| T(i,1)                |   |   | - |   |  |  |
| T(i,0)                |   |   |   |   |  |  |
| Wort                  | а | а | b | 1 |  |  |

## Parsing: Einfaches Beispiel

$$G = (\{a, b\}, \{S, A\}, S, R)$$
 mit

$$R = \{S \rightarrow AS \mid b, A \rightarrow a\}$$

Der CYK Algorithmus benutzt eine Tabelle um mit beliebigen Grammatiken in CNF effizient umgehen zu können.

| i:     | 1            | 2            | 3   |
|--------|--------------|--------------|-----|
| T(i,2) | {S}          | -            | -   |
| T(i,1) | Ø            | { <b>S</b> } | -   |
| T(i,0) | { <b>A</b> } | { <b>A</b> } | {S} |
| Wort   | а            | а            | b   |

# Algorithmenentwurf mit dynamischer Programmierung

- Charakterisiere den Lösungsraum und die Struktur einer erwünschten optimalen Lösung.
- Definiere rekursiv, wie sich eine optimale Lösung (und der ihr zugeordnete Wert) aus kleineren optimalen Lösungen (und deren Werten) zusammensetzt. Dabei wird das Bellmansche Optimalitätsprinzip angewandt.
- Sonzipiere den Algorithmus bottom-up so, dass für  $n = 1, 2, 3, \ldots$  tabellarisch optimale Teillösungen (und deren Werte) gefunden werden. Beim Finden einer optimalen Teillösung k > 1 hilft dabei, dass bereits alle optimalen Teillösungen der Größe < k bereitstehen.

## Das Bellmansche Optimalitätsprinzip

Die optimale Lösung eines Problems der Größe n setzt sich aus den optimalen Teillösungen der kleineren Teilprobleme zusammen.

Bemerkung: Auch wenn das Wortproblem eigentlich nicht ein Optimierungsproblem ist, lässt sich dieses Prinzip hier anwenden.

Gegeben seien eine kfG

$$G = (\Sigma, N, S, P)$$

in CNF und ein Wort  $x \in \Sigma^*$ .

Hat

$$x = a \in \Sigma$$

die Länge 1, so kann es aus einem Nichtterminal *A* nur abgeleitet werden, indem eine Regel der Form

$$A \rightarrow a$$

angewandt wird.

Ist dagegen

$$x = a_1 a_2 \cdots a_n$$

ein Wort der Länge  $n \ge 2$ , wobei  $a_i \in \Sigma$ , so ist x aus A nur ableitbar, weil

zunächst eine Regel der Form

$$A \rightarrow BC$$

angewandt wurde,

- aus B dann das Anfangsstück von x und
- aus C das Endstück von x abgeleitet wurde.

• Es gibt also ein k mit  $1 \le k < n$ , so dass gilt: die Regel

$$A \rightarrow BC$$

ist in P und

$$B \vdash_G^* a_1 a_2 \cdots a_k$$
 und  $C \vdash_G^* a_{k+1} a_{k+2} \cdots a_n$ .

- Folglich kann das Wortproblem für ein Wort x der Länge n zurückgeführt werden auf die Lösungen des Wortproblems für zwei kleinere Wörter der Länge k und n – k.
- Der Wert von k steht dabei nicht fest, sondern es ist jeder Wert mit  $1 \le k < n$  möglich.

- Mit dynamischer Programmierung
  - beginnen wir also bei der Länge 1 und untersuchen systematisch alle Teilwörter von x auf ihre mögliche Ableitbarkeit aus einem Nichtterminal von G.
  - All diese Information werden in einer Tabelle gespeichert.
  - Wird nun ein Teilwort der Länge m ≤ n von x untersucht, so stehen die Teilinformationen über alle kürzeren Teilwörter bereits zur Verfügung.

Schritt 1: Lösungsraum und Struktur der Lösung: Sei  $G = (\Sigma, N, S, P)$  eine gegebene kfG in CNF, und sei

$$x = a_1 a_2 \cdots a_n$$

ein gegebenes Wort. Der Algorithmus von Cocke, Younger und Kasami baut eine zweidimensionale Tabelle T der Größe  $n \times n$  auf, so dass T(i,j) genau die Nichtterminale A von G enthält, so dass

$$A \vdash_G^* a_i a_{i+1} \cdots a_{i+j}$$

gilt. Dabei werden nicht alle Matrixelemente von *T* benötigt; es genügt eine untere Dreiecksmatrix.

$$G=(\{a,b\},\ \{S,A,B\},\ S,\ R)$$
 mit 
$$R=\{S o AS\mid a,$$
 
$$A o BS,$$
 
$$B o b\}$$

$$S \vdash AS$$
  $\vdash BSS$   
 $\vdash bSS$   $\vdash bASS$   
 $\vdash bBSSS$   $\vdash bbaSS$   
 $\vdash bbaaS$   $\vdash bbaaS$ 

$$G = (\{a,b\}, \{S,A,B\}, S, R) \text{ mit } R = \{S \to AS \mid a, A \to BS, B \to b\}.$$
  
 $T(i,0) = \{A \in N \mid A \to a_i \text{ ist Regel in } R\}$ 

| i:     | 1 | 2 | 3 | 4 | 5 |
|--------|---|---|---|---|---|
| T(i,1) |   |   |   |   |   |
| T(i,0) | В | В | S | S | S |
| Wort   | b | b | а | а | а |

$$G = (\{a,b\}, \{S,A,B\}, S, R) \text{ mit } R = \{S \to AS \mid a, A \to BS, B \to b\}.$$
 $T(i,1) = \{A \in N \mid A \to BC \in R \land B \in T(i,0) \land C \in T(i+1,0)\}$ 
 $A \in T(i,1) \text{ gdw } A \vdash BC \vdash a_iC \vdash a_ia_{i+1} \text{ gdw } A \vdash^* a_ia_{i+1}$ 

| i:     | 1 | 2 | 3 | 4 | 5 |
|--------|---|---|---|---|---|
| T(i,2) |   |   |   |   |   |
| T(i,1) |   | Α |   |   |   |
| T(i,0) | В | В | S | S | S |
| Wort   | b | b | а | а | а |

$$G = (\{a, b\}, \{S, A, B\}, S, R) \text{ mit } R = \{S \to AS \mid a, A \to BS, B \to b\}.$$
  
 $A \in T(i, j) \text{ gdw } A \vdash^* a_i a_{i+1} \dots a_{i+j}$ 

| i:     | 1 | 2 | 3 | 4 | 5 |
|--------|---|---|---|---|---|
| T(i,4) |   |   |   |   |   |
| T(i,3) |   |   |   |   |   |
| T(i,2) |   |   |   |   |   |
| T(i,1) |   | Α |   |   |   |
| T(i,0) | В | В | S | S | S |
| Wort   | b | b | а | а | а |

$$G = (\{a, b\}, \{S, A, B\}, S, R) \text{ mit } R = \{S \to AS \mid a, A \to BS, B \to b\}.$$
  
 $A \in T(i, j) \text{ gdw } A \vdash^* a_i a_{i+1} \dots a_{i+j}$   
 $S \in T(1, 4) \text{ gdw } S \vdash^* a_1 \dots a_5 \text{ gdw } a_1 \dots a_5 \in L(G)$ 

| i:     | 1 | 2 | 3 | 4 | 5 |
|--------|---|---|---|---|---|
| T(i,4) | S |   |   |   |   |
| T(i,3) | Α |   |   |   |   |
| T(i,2) |   | S |   |   |   |
| T(i,1) |   | Α |   |   |   |
| T(i,0) | В | В | S | S | S |
| Wort   | b | b | а | а | а |

Schritt 2: Herleitung der Rekursion: • Für 1 < i < n ist

$$T(i,0) = \{A \in N \mid A \rightarrow a_i \text{ ist Regel in } P\}.$$

 Die weiteren Einträge in die Tabelle werden Zeile für Zeile, von unten nach oben, bestimmt.

Für i = 1, 2, ..., n - 1 enthält T(i, j) genau die Nichtterminale  $A \in N$ , für die es eine Regel

$$A \rightarrow BC$$

in P und ein  $k \in \{0, 1, \dots, j-1\}$  (also in den darunterliegenden Zeilen von T) gibt mit

$$B \in T(i,k)$$
 und  $C \in T(i+k+1,j-k-1)$ .

• Inhaltlich heißt das, dass es eine Ableitung

$$A \vdash_G BC$$

gibt sowie darauf folgende Ableitungen

$$B \vdash_G^* a_i a_{i+1} \cdots a_{i+k}$$
 und  $C \vdash_G^* a_{i+k+1} a_{i+k+2} \cdots a_{i+j}$ ,

insgesamt also

$$A \vdash_G BC \vdash_G^* a_i a_{i+1} \cdots a_{i+k} C$$
  
 $\vdash_G^* a_j a_{j+1} \cdots a_{j+k} a_{j+k+1} a_{i+k+2} \cdots a_{j+i}.$ 

• In der obersten Tabellenposition T(1, n-1) steht nach Definition das Startsymbol S genau dann, wenn gilt

$$S \vdash_G^* a_1 a_2 \cdots a_{1+(n-1)} = a_1 a_2 \cdots a_n = x.$$

Also kann man die Entscheidung, ob  $x \in L(G)$ , daran ablesen, ob S in der Position

$$T(1, n-1)$$

der Tabelle enthalten ist.

# CYK-Algorithmus in Pseudocode (Schritt 3)

```
CYK(G, x) { //G = (\Sigma, N, S, P) ist kfG in CNF und x = a_1 a_2 \cdots a_n \in \Sigma^*
  for (i = 1, 2, ..., n) { T(i, 0) = \{A \in N \mid A \to a_i \text{ ist Regel in } P\}; }
  for (i = 1, 2, ..., n - 1) {
     for (i = 1, 2, ..., n - i) {
          T(i,j) = \emptyset;
         for (k = 0, 1, ..., j - 1) {
            T(i,j) = T(i,j) \cup \{A \in N \mid \text{es gibt eine Regel } A \to BC \text{ in } P
                       und B \in T(i, k) und C \in T(i + k + 1, j - k - 1);
  if (S \in T(1, n-1)) return "x \in L(G)";
  else return "x \notin L(G)";
```

#### **CYK-Algorithmus**

#### Bemerkung:

• Die Komplexität des Algorithmus von Cocke, Younger und Kasami ist wegen der drei ineinander verschachtelten for-Schleifen

$$\mathcal{O}(n^3)$$
.

### **CYK-Algorithmus**

#### Bemerkung:

 Die Komplexität des Algorithmus von Cocke, Younger und Kasami ist wegen der drei ineinander verschachtelten for-Schleifen

$$\mathcal{O}(n^3)$$
.

• Indem man rückverfolgt, *weshalb* das Startsymbol S schließlich in die Tabellenposition T(1, n-1) kommt, erhält man den Syntaxbaum der entsprechenden Ableitung.

## CYK-Algorithmus: Beispiel

Beispiel: Gegeben sei die Grammatik G' mit den folgenden Regeln:

$$S \rightarrow ab \mid aSb \mid aSbb$$
.

Umformen in CNF ergibt zunächst die Grammatik G'' mit den Regeln:

$$S \rightarrow AB \mid ASB \mid ASBB, \quad A \rightarrow a, \quad B \rightarrow b$$

und schließlich die Grammatik G in CNF mit den Regeln:

$$S \rightarrow AB \mid AC \mid DE$$

$$C \rightarrow SB$$
,

$$D \rightarrow AS$$
.

$$E \rightarrow BB$$
,

$$A \rightarrow a$$

$$B \rightarrow b$$
.

# CYK-Algorithmus: Beispiel

Offenbar ist

$$L(G) = \{a^m b^n \mid 1 \le m \le n < 2m\}.$$

Betrachte das Wort

$$x = aaabbbb$$

in  $\Sigma^*$ , wobei  $\Sigma = \{a, b\}$ . Dieses Wort x gehört zu L(G), und eine Ableitung (eine so genannte Linksableitung) ist:

$$S \vdash_G DE \vdash_G ASE \vdash_G aSE \vdash_G aACE$$
  
 $\vdash_G aaCE \vdash_G aaSBE \vdash_G aaABBE$   
 $\vdash_G aaaBBE \vdash_G aaabBE \vdash_G aaabbE$   
 $\vdash_G aaabbBB \vdash_G aaabbbB \vdash_G aaabbbb.$ 

# CYK-Algorithmus: Beispiel

Der Algorithmus von Cocke, Younger und Kasami erzeugt dann Zeile für Zeile, von unten nach oben, die folgende Tabelle:

| i | 1    | 2    | 3 | 4 | 5 | 6 | 7 |
|---|------|------|---|---|---|---|---|
| 6 | S,C  |      |   |   |   |   |   |
| 5 | S, D | С    |   |   |   |   |   |
| 4 | D    | S, C |   |   |   |   |   |
| 3 |      | S    |   |   |   |   |   |
| 2 |      | D    | С |   |   |   |   |
| 1 |      |      | S | Ε | Ε | Ε |   |
| 0 | Α    | Α    | Α | В | В | В | В |
| j | а    | а    | а | b | b | b | b |

Der Eintrag S an der Position T(1, n-1) signalisiert, dass x = aaabbbb in L(G) ist.



#### Kellerautomaten

**Ziel:** Automatenmodell zur Charakterisierung von CF.

Dazu erweitern wir das NFA-Modell um einen Speicher (Keller bzw. Stack), der nach dem Lifo-Prinzip ("Last in – first out") arbeitet.



Abbildung: Ein Kellerautomat

### Kellerautomaten

#### Definition (Kellerautomat (PDA))

Ein (nichtdeterministischer) Kellerautomat (kurz PDA für push-down automaton) ist ein 6-Tupel  $M = (\Sigma, \Gamma, Z, \delta, z_0, \#)$ , wobei

- Σ das Eingabe-Alphabet ist,
- Γ das Kelleralphabet,
- Z eine endliche Menge von Zuständen,
- $\delta: Z \times (\Sigma \cup \{\lambda\}) \times \Gamma \to \mathfrak{P}_e(Z \times \Gamma^*)$  die Überführungsfunktion  $(\mathfrak{P}_e(Z \times \Gamma^*)$  ist die Menge aller *endlichen* Teilmengen von  $Z \times \Gamma^*$ ),
- $z_0 \in Z$  der Startzustand,
- $\# \in \Gamma$  das Bottom-Symbol im Keller.

#### Kellerautomaten



Abbildung: Arbeitsweise eines Kellerautomaten

## Kellerautomaten: Arbeitsweise

•  $\delta$ -Übergänge  $(z', B_1B_2 \cdots B_k) \in \delta(z, a, A)$  schreiben wir auch so:

$$zaA \rightarrow z'B_1B_2\cdots B_k$$
.

Dies heißt: Wird

- im Zustand  $z \in Z$
- das Eingabesymbol  $a \in \Sigma$  gelesen und
- ist  $A \in \Gamma$  das Top-Symbol im Keller,

so geht M über

- in den Zustand z',
- der Lesekopf rückt ein Feld nach rechts auf dem Eingabeband und
- das Top-Symbol A im Keller wird ersetzt durch die Kellersymbole

$$B_1B_2\cdots B_k$$

wobei B<sub>1</sub> das neue Top-Symbol ist.

## Kellerautomaten: Arbeitsweise

• POP-Operation: lst k = 0 in

$$zaA \rightarrow z'B_1B_2 \cdots B_k$$

so wird A aus dem Keller "gePOPt".

• PUSH-Operation: Ist k = 2 und  $B_1B_2 = BA$  in

$$zaA \rightarrow z'B_1B_2 \cdots B_k$$

so wird B in den Keller "gePUSHt".

•  $z\lambda A \to z'B_1B_2\cdots B_k$  heißt dasselbe wie oben, nur dass hier kein Eingabesymbol gelesen wird und der Lesekopf stehen bleibt.

## Unterschiede zwischen PDA und NFA

- Akzeptierung erfolgt durch leeren Keller statt durch Endzustand (obwohl dies äquivalent auch möglich wäre).
- Takte (d.h. Rechenschritte) ohne Lesen eines Eingabesymbols sind beim PDA mit Regeln der Form

$$z\lambda A \rightarrow z'B_1B_2\cdots B_k$$

- möglich. (Für NFAs gibt es auch ein äquivalentes Modell mit  $\lambda$ -Übergängen, so genannte  $\lambda$ -NFAs.)
- Daher ist auch nur ein Startzustand nötig (man kann, wenn gewünscht, von diesem in jeden anderen Zustand gelangen, ohne ein Symbol der Eingabe zu verarbeiten).

# Sprache eines Kellerautomaten

#### Definition

Sei  $M = (\Sigma, \Gamma, Z, \delta, z_0, \#)$  ein PDA.

- $\mathfrak{K}_M = Z \times \Sigma^* \times \Gamma^*$  ist die Menge aller *Konfigurationen* von *M*.
- Ist  $k = (z, \alpha, \gamma)$  eine Konfiguration aus  $\mathfrak{K}_M$ , so ist im aktuellen Takt der Rechnung von M:
  - $z \in Z$  der aktuelle Zustand von M;
  - $\alpha \in \Sigma^*$  der noch zu lesende Teil des Eingabeworts;
  - $\gamma \in \Gamma^*$  der aktuelle Kellerinhalt.

Für jedes Eingabewort  $w \in \Sigma^*$  ist  $(z_0, w, \#)$  die entsprechende Startkonfiguration von M.

# Sprache eines Kellerautomaten

• Auf  $\mathfrak{K}_M$  definieren wir wie folgt eine binäre Relation

$$\vdash_{M} \subseteq \mathfrak{K}_{M} \times \mathfrak{K}_{M}.$$

- Intuitiv: Für  $k, k' \in \mathfrak{R}_M$  gilt  $k \vdash_M k'$  genau dann, wenn k' aus k durch eine Anwendung von  $\delta$  hervorgeht.
- Formal: Für Zustände  $z,z'\in Z$ , Symbole  $a_1,a_2,\ldots,a_n\in \Sigma$  und Kellersymbole  $A_1,A_2,\ldots,A_m,B_1,B_2,\ldots,B_k\in \Gamma$  ist

$$\begin{cases} (z, a_1 a_2 \cdots a_n, A_1 A_2 \cdots A_m) \vdash_M \\ \\ (z', a_2 \cdots a_n, B_1 B_2 \cdots B_k A_2 \cdots A_m) \\ \\ \text{falls } (z', B_1 B_2 \cdots B_k) \in \delta(z, a_1, A_1) \\ \\ (z', a_1 \cdots a_n, B_1 B_2 \cdots B_k A_2 \cdots A_m) \\ \\ \text{falls } (z', B_1 B_2 \cdots B_k) \in \delta(z, \lambda, A_1). \end{cases}$$

# Sprache eines Kellerautomaten

• Sei  $\vdash_M^*$  die reflexive und transitive Hülle von  $\vdash_M$ , d.h., für  $k, k' \in \mathfrak{K}_M$  gilt

$$k \vdash_{M}^{*} k'$$

genau dann, wenn k' aus k durch endlich-fache Anwendung von  $\delta$  hervorgeht.

• Die vom PDA M akzeptierte Sprache ist definiert durch

$$L(M) = \{ w \in \Sigma^* \mid (z_0, w, \#) \vdash_M^* (z, \lambda, \lambda) \text{ für ein } z \in Z \}.$$

Wir bezeichnen für jedes  $z \in Z$  die Konfiguration  $(z, \lambda, \lambda)$  als Endkonfiguration für den PDA M.

Beispiel: Die Sprache

$$L = \{a^m b^m \mid m \ge 1\}$$

ist kontextfrei. Ein Kellerautomat, der L erkennt, ist definiert durch

$$M = (\{a,b\}, \{A,\#\}, \{z_0,z_1\}, \delta, z_0,\#),$$

wobei die Überführungsfunktion  $\delta$  durch die folgenden Regeln gegeben ist:

| <i>z</i> <sub>0</sub> <i>a</i> # | $\rightarrow$ | <i>z</i> <sub>0</sub> <i>A</i> # | $z_1\lambda \#$   | $\rightarrow$ | $z_1\lambda$ |
|----------------------------------|---------------|----------------------------------|-------------------|---------------|--------------|
| z <sub>0</sub> aA                | $\rightarrow$ | $z_0AA$                          | z <sub>1</sub> bA | $\rightarrow$ | $z_1\lambda$ |
| $z_0bA$                          | $\rightarrow$ | $z_1\lambda$                     |                   |               |              |

• Beispielsweise ist  $aabb \in L(M) = L$ , denn:

$$(z_0, aabb, \#)$$
  $\vdash_M$   $(z_0, abb, A\#)$   
 $\vdash_M$   $(z_0, bb, AA\#)$   
 $\vdash_M$   $(z_1, b, A\#)$   
 $\vdash_M$   $(z_1, \lambda, \#)$   
 $\vdash_M$   $(z_1, \lambda, \lambda)$ 

• Andererseits ist  $abb \notin L(M) = L$ , denn:

$$(z_0, abb, \#)$$
  $\vdash_M$   $(z_0, bb, A\#)$   $\vdash_M$   $(z_1, b, \#)$   $\vdash_M$   $(z_1, b, \lambda)$ 

und keine weitere Regel ist anwendbar, da der Keller leer ist, also kein Top-Symbol existiert. Da die Eingabe jedoch nicht vollständig verarbeitet wurde, wird nicht akzeptiert.

 Die Überführungsfunktion von M ist sogar "deterministisch"
 (die formale Definition kommt später), denn jede Konfiguration hat nur eine mögliche Folgekonfiguration.

Beispiel: Der folgende PDA ist jedoch "echt nichtdeterministisch":

$$M' = (\{a, b\}, \{A, B, \#\}, \{z_0, z_1\}, \delta, z_0, \#),$$

wobei die Überführungsfunktion  $\delta$  gegeben ist durch:

| <i>z</i> <sub>0</sub> <i>a</i> # | $\rightarrow$ | <i>z</i> <sub>0</sub> <i>A</i> # | z <sub>0</sub> aA        | $\rightarrow$ | $z_1\lambda$ |
|----------------------------------|---------------|----------------------------------|--------------------------|---------------|--------------|
| z <sub>0</sub> aA                | $\rightarrow$ | $z_0AA$                          | $z_0bB$                  | $\rightarrow$ | $z_1\lambda$ |
| z <sub>0</sub> aB                | $\rightarrow$ | z <sub>0</sub> AB                | <i>z</i> <sub>0</sub> λ# | $\rightarrow$ | $z_1\lambda$ |
| z <sub>0</sub> b#                | $\rightarrow$ | z <sub>0</sub> B#                | z <sub>1</sub> aA        | $\rightarrow$ | $z_1\lambda$ |
| $z_0bA$                          | $\rightarrow$ | $z_0BA$                          | z <sub>1</sub> bB        | $\rightarrow$ | $z_1\lambda$ |
| z <sub>0</sub> bB                | $\rightarrow$ | z <sub>0</sub> BB                | $z_1\lambda \#$          | $\rightarrow$ | $z_1\lambda$ |

Beispiel: Der folgende PDA ist jedoch "echt nichtdeterministisch":

$$M' = (\{a, b\}, \{A, B, \#\}, \{z_0, z_1\}, \delta, z_0, \#),$$

wobei die Überführungsfunktion  $\delta$  gegeben ist durch:

| <i>z</i> <sub>0</sub> <i>a</i> # | $\rightarrow$ | <i>z</i> <sub>0</sub> <i>A</i> # | z <sub>0</sub> aA        | $\rightarrow$ | $z_1\lambda$ |
|----------------------------------|---------------|----------------------------------|--------------------------|---------------|--------------|
| z <sub>0</sub> aA                | $\rightarrow$ | $z_0AA$                          | $z_0bB$                  | $\rightarrow$ | $z_1\lambda$ |
| z <sub>0</sub> aB                | $\rightarrow$ | z <sub>0</sub> AB                | <i>z</i> <sub>0</sub> λ# | $\rightarrow$ | $z_1\lambda$ |
| z <sub>0</sub> b#                | $\rightarrow$ | z <sub>0</sub> B#                | z <sub>1</sub> aA        | $\rightarrow$ | $z_1\lambda$ |
| $z_0bA$                          | $\rightarrow$ | $z_0BA$                          | z <sub>1</sub> bB        | $\rightarrow$ | $z_1\lambda$ |
| z <sub>0</sub> bB                | $\rightarrow$ | z <sub>0</sub> BB                | $z_1\lambda \#$          | $\rightarrow$ | $z_1\lambda$ |

Es gilt

$$L(M') = \{ w sp(w) \mid w \in \{a, b\}^* \},$$

wobei sp(w) die Spiegelung des Wortes w ist.

• M' hat nichtdeterministische Übergänge:

 Der Nichtdeterminismus wird hier benötigt, um die Wortmitte zu raten. Es gibt keinen deterministischen PDA, der L(M') erkennt.

Drei mögliche Folgen von Konfigurationen bei Eingabe abba sind:

$$\vdash (z_1, abba, \lambda) \\ (z_0, abba, \#) \vdash (z_0, bba, A\#) \vdash (z_0, ba, BA\#) \vdash (z_0, a, BBA\#) \vdash (z_0, \lambda, ABBA\#) \\ \vdash (z_1, a, A\#) \vdash (z_1, \lambda, \#) \vdash (z_1, \lambda, \lambda)$$

- Der obere Pfad führt zur Nicht-Akzeptierung, da das Eingabeband nicht leer, aber ohne Top-Symbol im leeren Keller keine weitere Regel anwendbar ist.
- Der mittlere Pfad führt zur Nicht-Akzeptierung, da der Keller nicht leer, aber keine weitere Regel anwendbar ist.
- Der untere Pfad führt zur Akzeptierung. (M wechselt nach Abarbeitung der Hälfte des Wortes in den Zustand z<sub>1</sub> und vergleicht den Kellerinhalt zeichenweise mit der zweiten Hälfte der Eingabe.)

#### **Theorem**

L ist kontextfrei  $\iff$  es gibt einen Kellerautomaten M mit L(M) = L.

Beweis: (
$$\Rightarrow$$
) Sei  $L \in CF$ , und sei  $G = (\Sigma, N, S, P)$  eine kfG mit  $L(G) = L$ .

**Idee:** • Wir konstruieren einen Kellerautomaten M mit L(M) = L:

$$M = (\Sigma, N \cup \Sigma, \{z\}, \delta, z, S).$$

 Der Kellerautomat M simuliert bei Eingabe x auf dem Keller eine Linksableitung (d.h., es wird stets das am weitesten links stehende Nichtterminal ersetzt) von x in G.

Die Überführungsfunktion  $\delta$  ist wie folgt definiert:

• Ist  $A \to q$  eine Regel in P mit  $A \in N$  und  $q \in (N \cup \Sigma)^*$ , so sei

$$(z,q) \in \delta(z,\lambda,A).$$

Das heißt, lässt sich eine Regel der Grammatik auf das Top-Symbol im Keller anwenden, so tue dies, ohne ein Eingabesymbol zu lesen.

Für jedes a ∈ Σ sei

$$(z, \lambda) \in \delta(z, a, a).$$

Das heißt, ist das Top-Symbol im Keller ein Terminalzeichen *a*, das auch links in der Eingabe steht, so wird *a* aus dem Keller "gePOPt".

Beispiel:  $G = (\{a,b\}, \{S\}, S, \{S \rightarrow aSb, S \rightarrow ab\}).$ Die Überführungsfunktion  $\delta$  für  $M = (\{a,b\}, \{a,b,S\}, \{z\}, \delta, z, S)$  ist daher wie folgt:

- $\delta(z, a, a) = \{(z, \lambda)\}, \delta(z, b, b) = \{(z, \lambda)\}$
- $\delta(z, \lambda, S) = \{(z, aSb), (z, ab)\}$

Der PDA ist ein nicht-deterministischer "Top-Down Recursive Descent Parser" für die Grammatik.

Originalbeweis im Skript:

$$L(M) = L(G) = L$$
 da für alle  $x \in \Sigma^*$  gilt:

$$x \in L(G) \iff S \vdash_G^* x$$
 $\iff$  es gibt eine Folge von Konfigurationen von  $M$  mit
$$(z, x, S) \vdash_M \dots \vdash_M (z, \lambda, \lambda)$$
 $\iff (z, x, S) \vdash_M^* (z, \lambda, \lambda)$ 
 $\iff x \in L(M).$ 

Somit ist: L(M) = L(G) = L.

Originalbeweis im Skript:

$$L(M) = L(G) = L$$
 da für alle  $x \in \Sigma^*$  gilt:

$$x \in L(G) \iff S \vdash_G^* x$$
 $\iff$  es gibt eine Folge von Konfigurationen von  $M$  mit
$$(z, x, S) \vdash_M \dots \vdash_M (z, \lambda, \lambda)$$
 $\iff (z, x, S) \vdash_M^* (z, \lambda, \lambda)$ 
 $\iff x \in L(M).$ 

Somit ist: L(M) = L(G) = L.

Dieser Schritt ist nicht ganz so einfach:

$$S \vdash_{G}^{*} x \iff (z, x, S) \vdash_{M} \cdots \vdash_{M} (z, \lambda, \lambda)$$

(es gibt zB  $\lambda$  und normale Regeln in M).

- Writing is nature's way of letting you know how sloppy your thinking is.
   Dick Guindon
- Mathematics is nature's way of letting you know how sloppy your writing
  is. Formal mathematics is nature's way of letting you know how sloppy
  your mathematics is.

#### Leslie Lamport, Specifying Systems



1. Draw some circles

2. Draw the rest of the fucking owl

Wir wollen ausführlicher beweisen, dass L(M) = L(G). (Im Buch von Hopcroft et al. sind dies über zwei Seiten mit zwei Beweisrichtungen.)

Definition (Linksableitung ⊢<sub>Im</sub>)

Sei  $G = (\Sigma, N, S, P)$ . Wir haben  $vA\gamma \vdash_{lm} v\alpha\gamma$  gdw.  $A \to \alpha \in P$ ,  $A \in N$ ,  $v \in \Sigma^*$  und  $\gamma \in (\Sigma \cup N)^*$ .

Ist G in CNF, und  $S \vdash_{lm}^* vA\gamma$  so haben wir  $\gamma \in N^*$ .

#### Lemma

$$x \in L(G) \iff S \vdash_{lm}^* x.$$

Der Beweis wird etwas einfacher, wenn wir annehmen, dass *G* in CNF ist.

#### Lemma

Sei  $G = (\Sigma, N, S, P)$  eine Grammatik in CNF und M der konstruierte PDA. Sei  $A, B, C \in N$ , dann gilt:

$$A \vdash_{lm} BC \iff A \to BC \in P$$
 $\iff (z, BC) \in \delta(z, \lambda, A)$ 
 $\iff (z, w, A) \vdash_{M} (z, w, BC)$ 

Ein Ableitungsschritt in G mit  $A \to BC$  entspricht genau einem Rechenschritt im PDA M. (Anm.: Eingabe  $w \in \Sigma^*$  ist beliebig.)

Der Beweis wird etwas einfacher, wenn wir annehmen, dass *G* in CNF ist.

Lemma 2 über einen Linkableitungsschritt für *G* in CNF:

#### Lemma

Sei  $G = (\Sigma, N, S, P)$  eine Grammatik in CNF und M der konstruierte PDA. Sei  $A \in N$ ,  $a \in \Sigma$  dann gilt:

$$A \vdash_{Im} a \iff A \rightarrow a \in R$$
 $\iff (z, a) \in \delta(z, \lambda, A) \land (z, \lambda) \in \delta(z, a, a)$ 
 $\iff (z, a, A) \vdash_{M} (z, a, a) \vdash_{M} (z, \lambda, \lambda)$ 

Ein Ableitungsschritt in G mit  $A \rightarrow a$  entspricht genau zwei Rechenschritten im PDA M.

#### Lemma

Sei  $v \in \Sigma^*$ , und  $A \in N$ ,  $a \in \Sigma$  dann gilt:

$$A \vdash_{lm}^{*} v \iff (z, v, A) \vdash_{M}^{*} (z, \lambda, \lambda).$$

Beweis ( $\Rightarrow$ ) per Induktion über die Anzahl n der Ableitungsschritte  $\vdash_{lm}$ . Induktionsanfang n=1. Es muss eine Regel  $R\to a$  verwendet werden und wir haben v=a.

Induktionsschritt  $(n-1) \mapsto n$ .  $A \vdash_{lm} BC \vdash_{lm}^* \beta \gamma$ , wobei  $B \vdash_{lm}^* \beta$  und  $C \vdash_{lm}^* \gamma$ . Per Induktionsannahme haben wir

• 
$$B \vdash_{lm}^* \beta \iff (z, \beta, B) \vdash_{M}^* (z, \lambda, \lambda) \Rightarrow (z, \beta\sigma, B\rho) \vdash_{M}^* (z, \sigma, \rho)$$

• 
$$C \vdash_{lm}^* \gamma \iff (z, \gamma, A) \vdash_{M}^* (z, \lambda, \lambda)$$

Daraus folgt:  $(z, \beta \gamma, A) \vdash_M (z, \beta \gamma, BC) \vdash_M^* (z, \gamma, C) \vdash_M^* (z, \lambda, \lambda)$ 

#### Lemma

Sei  $v \in \Sigma^*$ , und  $A \in N$ ,  $a \in \Sigma$  dann gilt:

$$A \vdash_{lm}^{*} v \iff (z, v, A) \vdash_{M}^{*} (z, \lambda, \lambda).$$

Anmerkung: der Beweis in die Rückrichtung ( $\Leftarrow$ ) erfolgt auch per Induktion mit gleicher Zerlegung, ist aber etwas subtiler:

 $(z, \beta, B\rho) \vdash_M^* (z, \lambda, \rho) \Leftarrow (z, \beta\sigma, B\rho) \vdash_M^* (z, \sigma, \rho)$  gilt, (d.h., wir können unverbrauchte Eingabe  $\sigma$  einfach entfernen, da Symbole nie auf die Eingabe zurück-gepusht werden) aber

 $(z, \beta, B) \vdash_{M}^{*} (z, \lambda, \lambda) \Leftarrow (z, \beta, B_{\rho}) \vdash_{M}^{*} (z, \lambda, \rho)$  gilt nicht (da man noch  $\lambda$  Regeln auf  $\rho$  anwenden kann).

#### Lemma

Sei  $v \in \Sigma^*$ , und  $A \in N$ ,  $a \in \Sigma$  dann gilt:

$$A \vdash_{lm}^{*} v \iff (z, v, A) \vdash_{M}^{*} (z, \lambda, \lambda).$$

Anmerkung: der Beweis in die Rückrichtung ( $\Leftarrow$ ) ist etwas subtiler: Deshalb verlangen wir, dass bei  $(z, \beta\gamma, A) \vdash_M (z, \beta\gamma, BC) \vdash_M \ldots (z, \beta_i\gamma, \beta_i'C) \ldots \vdash_m (z, \gamma, C) \vdash_M^* (z, \lambda, \lambda)$  folgendes gilt:  $\forall i : \beta_i \neq \lambda$ , d.h. wir nehmen für  $\gamma$  den ersten Zeitpunkt wo B komplett vom Stack verschwunden ist. Dies garantiert, dass  $(z, \beta, B) \vdash_M^* (z, \lambda, \lambda)$ .

Aus dem Lemma folgt für A = S dass L(M) = L(G).

(⇐) Im Beweis der Rückrichtung von

L ist kontextfrei  $\Leftrightarrow$  es gibt einen Automaten M mit L(M) = L

wird eine kfG

$$G = (\Sigma, N, S, P)$$

aus einem gegebenen PDA

$$M = (\Sigma, \Gamma, Z, \delta, z_0, \#)$$

konstruiert.

O.B.d.A. gelte  $k \le 2$  für alle  $\delta$ -Regeln der Form

$$zaA \rightarrow z'B_1B_2 \cdots B_k$$
.

Denn gilt etwa k > 2 in einer  $\delta$ -Regel der Form

$$zaA \rightarrow z'B_1B_2 \cdots B_k$$

dann wähle neue Zustände

$$z_1, z_2, \ldots, z_{k-2}$$

und ersetze diese  $\delta$ -Regel durch die folgenden neuen  $\delta$ -Regeln:

$$zaA \rightarrow z_1B_{k-1}B_k$$
 $z_1\lambda B_{k-1} \rightarrow z_2B_{k-2}B_{k-1}$ 
 $\vdots$ 
 $z_{k-2}\lambda B_2 \rightarrow z'B_1B_2.$ 

Beispiel: Sei PDA M =  $({a,b}, {S}, {z_1}, \delta, z_1, S)$  mit

- $\delta(z_1, a, S) = \{(z_1, SSS)\}$  (also  $z_1 aS \to z_1 SSS$ )
- $\delta(z_1, b, S) = \{(z_1, \lambda)\} \text{ (also } z_1 bS \to z_1 \lambda)$

$$(z_1, abbb, S) \vdash_M (z_1, bbb, SSS) \vdash_M (z_1, bb, SS) \vdash_M (z_1, b, S) \vdash_M (z_1, \lambda, \lambda)$$

Wie könnte eine Grammatik G aussehen, so dass  $\vdash_G$  genau  $\vdash_M$  entspricht?

Beispiel: Sei PDA M =  $(\{a, b, c\}, \{S\}, \{z_1, z_2\}, \delta, z_1, S)$  mit

- $\delta(z_1, a, S) = \{(z_1, SS)\}$  (also  $z_1 aS \to z_1 SS$ )
- $\delta(z_1, b, S) = \{(z_2, \lambda)\}$  (also  $z_1 bS \rightarrow z_2 \lambda$ )
- $\delta(z_2, c, S) = \{(z_2, \lambda)\}$  (also  $z_2 c S \rightarrow z_2 \lambda$ )

$$(z_1, abc, S) \vdash_M (z_1, bc, SS) \vdash_M (z_2, c, S) \vdash_M (z_2, \lambda, \lambda)$$

Wie könnte eine Grammatik G aussehen, so dass  $\vdash_G$  genau  $\vdash_M$  entspricht?

Um die Arbeitsweise des PDA M auf einem Wort x mittels einer Grammatik G zu simulieren, verwenden wir in G Variablen (Nichtterminale), die (bis auf das Startsymbol S) Tripel aus  $Z \times \Gamma \times Z$  sind, d.h.,

$$N = \{S\} \cup Z \times \Gamma \times Z$$
.

Ist etwa  $(z_{\ell}, \gamma, z_r) \in N$  mit  $z_{\ell}, z_r \in Z$  und  $\gamma \in \Gamma$ , so ist

- $z_{\ell} \in Z$  der Zustand vor einer Folge von Rechenschritten des PDA M,
- $\gamma \in \Gamma$  das dabei verarbeitete Kellersymbol,
- $z_r \in Z$  der Zustand, wenn  $\gamma$  aus dem Keller "gePOPt" wird.

Aus der Variablen  $(z_{\ell}, \gamma, z_r)$  sollen alle Zeichenreihen erzeugt werden können, die bewirken, dass  $\gamma$  vom Stack entfernt wird, während der Automat vom Zustand  $z_{\ell}$  in den Zustand  $z_r$  übergeht.

Das heißt, wir simulieren Zustands- und Kelleränderung von M in den Nichtterminalen von G.

*P* besteht aus genau den folgenden Regeln, wobei stets  $z, z', z_1, z_2 \in Z$ ,  $A, B, C \in \Gamma$  und  $a \in \Sigma \cup \{\lambda\}$  gilt:

- - Vom Startsymbol in G wollen wir alle Nichtterminale erreichen, die bedeuten, dass der PDA M seinen Keller leert, wenn er mit der Startkonfiguration beginnt.
  - (Der dabei erreichte Zustand z ist beliebig.)
- $(z, A, z') \rightarrow a, \text{ falls } (z', \lambda) \in \delta(z, a, A).$ 
  - Falls der Kellerautomat die Möglichkeit hat, im Zustand z das Zeichen a aus der Eingabe zu lesen, A aus dem Keller zu entfernen und in Zustand z' überzugehen, so realisieren wir dies durch die Regel  $(z, A, z') \rightarrow a$  in der Grammatik.

- (z, A, z') → a(z<sub>1</sub>, B, z'), falls (z<sub>1</sub>, B) ∈ δ(z, a, A).
  Falls der Kellerautomat die Möglichkeit hat, im Zustand z das Zeichen a aus der Eingabe zu lesen, A aus dem Keller zu entfernen, B auf den Keller zu schreiben und in Zustand z<sub>1</sub> überzugehen, so realisieren wir dies durch die Regeln (z, A, z') → a(z<sub>1</sub>, B, z') in der Grammatik.
- (z, A, z') → a(z<sub>1</sub>, B, z<sub>2</sub>)(z<sub>2</sub>, C, z'), falls (z<sub>1</sub>, BC) ∈ δ(z, a, A).
  Falls der Kellerautomat die Möglichkeit hat, im Zustand z das Zeichen a aus der Eingabe zu lesen, A aus dem Keller zu entfernen, BC auf den Keller zu schreiben und in Zustand z<sub>1</sub> überzugehen, so realisieren wir dies durch die Regel (z, A, z') → a(z<sub>1</sub>, B, z<sub>2</sub>)(z<sub>2</sub>, C, z') in der Grammatik.

Beispiel: Sei PDA M =  $(\{a, b, c\}, \{S\}, \{z_1, z_2\}, \delta, z_1, S)$  mit

• 
$$\delta(z_1, a, S) = \{(z_1, SS)\}$$
 (also  $z_1 aS \to z_1 SS$ )

• 
$$\delta(z_1, b, S) = \{(z_2, \lambda)\}$$
 (also  $z_1 bS \to z_2 \lambda$ )

• 
$$\delta(z_2, c, S) = \{(z_2, \lambda)\}$$
 (also  $z_2 cS \rightarrow z_2 \lambda$ )

$$(z_1, abc, S) \vdash_M (z_1, bc, SS) \vdash_M (z_2, c, S) \vdash_M (z_2, \lambda, \lambda)$$

Wir haben  $G = (\{a, b, c\}, N, \{S\}, P)$  mit  $N = \{S\} \cup Z \times \{S\} \times Z$  und P:

- $S \rightarrow (z_1, S, z_1) \mid (z_1, S, z_2)$
- $(z_1, S, z_2) \to b$
- $\bullet \ (z_2,S,z_2) \rightarrow c$
- $(z_1, S, y) \rightarrow a(z_1, S, x)(x, S, y)$  für  $x, y \in \{z_1, z_2\}$  also
  - $\bullet \ (z_1,S,z_1) \to \textit{a}(z_1,S,z_1)(z_1,S,z_1) \mid \textit{a}(z_1,S,z_2)(z_2,S,z_1)$
  - $\bullet \ (z_1,S,z_2) \to a(z_1,S,z_2)(z_2,S,z_2) \mid a(z_1,S,z_1)(z_1,S,z_2)$
- $S \vdash_G (z_1, S, z_2) \vdash_G a(z_1, S, z_2)(z_2, S, z_2) \vdash_G ab(z_2, S, z_2) \vdash_G abc$

Beispiel: Sei PDA M =  $(\{a, b, c\}, \{S\}, \{z_1, z_2\}, \delta, z_1, S)$  mit

- $z_1bS \rightarrow z_2\lambda$  und  $z_2cS \rightarrow z_2\lambda$

$$(z_1, abc, S) \vdash_M (z_1, bc, SS) \vdash_M (z_2, c, S) \vdash_M (z_2, \lambda, \lambda)$$

Version von G die besser zu lesen ist:  $G = (\{a, b, c\}, N, \{S\}, P)$  mit

$$N = \{S, S_{(1,1)}, S_{(1,2)}, S_{(2,1)}, S_{(2,2)}\}$$
 und  $P$ :

- $S \to S_{(1,1)} \mid S_{(1,2)}$
- $S_{(1,2)} \to b$
- ullet  $S_{(2,2)} 
  ightarrow c$
- $\bullet \ \ S_{(1,1)} \to aS_{(1,1)}S_{(1,1)} \mid aS_{(1,2)}S_{(2,1)}$
- $\bullet \; \; S_{(1,2)} \to aS_{(1,2)}S_{(2,2)} \; | \; aS_{(1,1)}S_{(1,2)}$
- $S \vdash_G S_{(1,2)} \vdash_G aS_{(1,2)}S_{(2,2)} \vdash_G abS_{(2,2)} \vdash_G abc$

Die Regeln von G sind so beschaffen, dass eine Rechnung von M bei Eingabe x durch eine Linksableitung von x simuliert wird.

Die Korrektheit der Regeln liefert das folgende Lemma:

#### Lemma

Für alle  $(z, A, z') \in N$  und alle  $x \in \Sigma^*$  gilt:

$$(z, A, z') \vdash_G^* x \iff (z, x, A) \vdash_M^* (z', \lambda, \lambda).$$

( $\Leftarrow$ ) Der Beweis wird durch Induktion über die Anzahl n der Rechenschritte von M geführt.

#### Induktionsanfang: n = 1. Es gilt

$$(z,A,z') \vdash_G a \iff (z,A,z') \to a \text{ ist Regel in } P$$
 $\iff (z',\lambda) \in \delta(z,a,A) \text{ wegen (2)}$ 
in der Konstruktion von  $P$ 
 $\iff (z,a,A) \vdash_M (z',\lambda,\lambda).$ 

Induktionsschritt:  $(n-1) \mapsto n$ . Sei n > 1, und die Behauptung gelte für n-1.

Folglich ist x = ay mit  $a \in \Sigma \cup \{\lambda\}$ , und es gilt:

$$(z, ay, A) \vdash_M (z_1, y, \alpha) \vdash_M^{n-1} (z', \lambda, \lambda)$$

für einen geeigneten Zustand  $z_1 \in Z$  und Kellerinhalt  $\alpha \in \{\lambda, B, BC\}$  und der Regel  $zaA \to z_1\alpha$  in  $\delta$ .

Unterscheide die folgenden drei Fälle.

**Fall 1:**  $\alpha = \lambda$ . Dieser Fall kann nicht eintreten, da  $(z_1, y, \lambda)$  keine Folgekonfiguration hat.

**Fall 2:**  $\alpha = B$ . Nach Induktionsvoraussetzung gilt:

$$(z_1, y, \alpha) \vdash_{M}^{n-1} (z', \lambda, \lambda),$$

was  $(z_1, B, z') \vdash_G^* y$  impliziert. Außerdem muss es wegen

$$(z, ay, A) \vdash_{M} (z_1, y, \alpha)$$

eine  $\delta$ -Regel der Form  $(z_1, B) \in \delta(z, a, A)$  geben.

Nach (3) in der Konstruktion von P gibt es in P eine Regel der Form

$$(z,A,z') \rightarrow a(z_1,B,z').$$

Somit ergibt sich insgesamt:

$$(z, A, z') \vdash_G a(z_1, B, z') \vdash_G^* ay = x,$$

also  $(z, A, z') \vdash_{G}^{*} x$ .

**Fall 3:**  $\alpha = BC$ . Die Konfigurationenfolge

$$(z_1, y, BC) \vdash_M^* (z', \lambda, \lambda)$$

kann in zwei Teile zerlegt werden:

$$(z_1, y, BC) \vdash_M \dots (z_i, \alpha_i, \gamma_i C) \dots \vdash_M (z_2, y_2, C) \vdash_M^* (z', \lambda, \lambda),$$

wobei  $y = y_1 y_2$  für ein geeignetes  $y_1$  und  $\forall i : \alpha_i \neq \lambda$ . Für dieses  $y_1$  gilt:

$$(z_1, y_1, B) \vdash_M^* (z_2, \lambda, \lambda).$$

Außerdem muss es wegen des ersten Schritts

$$(z, ay, A) \vdash_M (z_1, y, BC)$$

eine  $\delta$ -Regel der Form  $(z_1, BC) \in \delta(z, a, A)$  geben.

Nach (4) in der Konstruktion von *P* gibt es in *P* also eine Regel der Form

$$(z,A,z') \rightarrow a(z_1,B,z_2)(z_2,C,z').$$

Insgesamt ergibt sich:

$$(z, A, z') \vdash_G a(z_1, B, z_2)(z_2, C, z')$$
  
 $\vdash_G^* ay_1(z_2, C, z')$   
 $\vdash_G^* ay_1y_2 = ay = x,$ 

also  $(z, A, z') \vdash_G^* x$ .

( $\Rightarrow$ ) Der Beweis wird durch Induktion über k geführt, die Länge der Linksableitung von x.

<u>Induktionsanfang</u>: k = 1. Siehe den Induktionsanfang (n = 1) im Beweis von  $(\Leftarrow)$  des Lemmas.

Induktionsschritt:  $(k-1) \mapsto k$ . Sei k > 1, und die Behauptung gelte für k-1. Wir unterscheiden wieder drei Fälle.

**Fall 1:**  $(z, A, z') \vdash_G a \vdash_G^* x$ . Dann gilt x = a, im Widerspruch zu k > 1.

Fall 2: 
$$(z, A, z') \vdash_G a(z_1, B, z') \vdash_G^{k-1} ay = x$$
.

Dann ist  $(z_1, B) \in \delta(z, a, A)$ .

Nach Induktionsvoraussetzung gilt:

$$(z_1, y, B) \vdash_M^* (z', \lambda, \lambda).$$

Somit ergibt sich:

$$(z,x,A) = (z,ay,A) \vdash_M (z_1,y,B) \vdash_M^* (z',\lambda,\lambda).$$

Fall 3:  $(z, A, z') \vdash_G a(z_1, B, z_2)(z_2, C, z') \vdash_G^{k-1} ay = x$ . Dann ist  $(z_1, BC) \in \delta(z, a, A)$ .

Nach Induktionsvoraussetzung gilt für  $y = y_1 y_2$ :

$$(z_1, y_1, B) \vdash_M^* (z_2, \lambda, \lambda);$$
  
 $(z_2, y_2, C) \vdash_M^* (z', \lambda, \lambda).$ 

Somit ergibt sich:

$$(z, x, A) = (z, ay_1y_2, A) \vdash_M (z_1, y_1y_2, BC)$$
  
 $\vdash_M^* (z_2, y_2, C)$   
 $\vdash_M^* (z', \lambda, \lambda).$ 

Das Lemma ist bewiesen.

Aus dem Lemma ergibt sich L(G) = L(M) so:

$$x \in L(M) \iff (z_0, x, \#) \vdash_M^* (z, \lambda, \lambda)$$
 für ein  $z \in Z$ 
 $\iff (z_0, \#, z) \vdash_G^* x$  für ein  $z \in Z$ , nach dem Lemma
 $\iff S \vdash_G^* x \text{ wegen (1) in der Konstruktion von } P$ 
 $\iff x \in L(G).$ 

Der Satz ist bewiesen.

# Beispiel: $kfG \Rightarrow PDA$

Beispiel: Wir betrachten die Grammatik

$$G = (\Sigma, N, S, R)$$

aus einem früheren Beispiel mit

- $\Sigma = \{*, +, (,), a\},$
- $N = \{S\}$  und
- Regeln

$$R = \{S \to S + S \mid S * S \mid (S) \mid a\}.$$

G erzeugt die Sprache aller verschachtelten Klammerausdrücke mit den Operationen + und \* und einem Zeichen a.

### Beispiel: $kfG \Rightarrow PDA$

Konstruiere einen PDA M mit L(M) = L(G) wie folgt:

$$M = (\Sigma, N \cup \Sigma, \{z\}, \delta, z, S)$$

mit der folgenden Überführungsfunktion  $\delta$ :

| $z\lambda S$ | $\rightarrow$ | zS + S | z((   | $\rightarrow$ | $z\lambda$ |
|--------------|---------------|--------|-------|---------------|------------|
| $z\lambda S$ | $\rightarrow$ | zS*S   | z))   | $\rightarrow$ | $z\lambda$ |
| $z\lambda S$ | $\rightarrow$ | z(S)   | Z * * | $\rightarrow$ | $z\lambda$ |
| $z\lambda S$ | $\rightarrow$ | za     | z++   | $\rightarrow$ | $z\lambda$ |
|              |               |        | zaa   | $\rightarrow$ | $z\lambda$ |

# Beispiel: kfG ⇒ PDA

Eine Ableitung von w = (a \* a) + a in G und M:

| kfG <i>G</i> |           | PDA M         |              |                   |  |
|--------------|-----------|---------------|--------------|-------------------|--|
| $S \vdash_G$ | S + S     | (z,(a*a)+a,S) | $\vdash_{M}$ | (z,(a*a)+a,S+S)   |  |
| $\vdash_{G}$ | (S) + S   |               | $\vdash_{M}$ | (z,(a*a)+a,(S)+S) |  |
|              |           |               | $\vdash_{M}$ | (z,a*a)+a,S)+S)   |  |
| $\vdash_{G}$ | (S*S) + S |               | $\vdash_{M}$ | (z,a*a)+a,S*S)+S) |  |
| $\vdash_{G}$ | (a*S)+S   |               | $\vdash_{M}$ | (z,a*a)+a,a*S)+S) |  |
|              |           |               | $\vdash_{M}$ | (z,*a)+a,*S)+S)   |  |
|              |           |               | $\vdash_{M}$ | (z,a)+a,S)+S)     |  |
| $\vdash_{G}$ | (a*a)+S   |               | $\vdash_{M}$ | (z,a)+a,a)+S)     |  |
|              |           |               |              |                   |  |

# Beispiel: $kfG \Rightarrow PDA$

| kfG G                  | PDA M                            |
|------------------------|----------------------------------|
|                        |                                  |
| $\vdash_{G} (a*a) + S$ | $\vdash_{M} (z,a)+a,a)+S$        |
|                        | $\vdash_{M} (z,)+a,)+S$          |
|                        | $\vdash_{M} (z,+a,+S)$           |
|                        | $\vdash_{M} (z, a, S)$           |
| $\vdash_G (a*a)+a$     | $\vdash_{M} (z, a, a)$           |
|                        | $\vdash_{M} (z,\lambda,\lambda)$ |

# Beispiel: PDA ⇒ kfG

Beispiel: Wir betrachten den Kellerautomaten  $M = (\Sigma, \Gamma, Z, \delta, z_0, \#)$  mit

- Eingabealphabet  $\Sigma = \{a, b\}$ ,
- Kelleralphabet  $\Gamma = \{A, B, \#\},\$
- Zustandsmenge  $Z = \{z_0, z_1\}$  und
- ullet Überführungsfunktion  $\delta$  mit den folgenden Regeln:

| $z_0 a \# \rightarrow$ | <i>z</i> <sub>0</sub> <i>A</i> # | $z_0aA \rightarrow$          | $z_1\lambda$ | $z_0aA \rightarrow$  | $z_0AA$  | z <sub>0</sub> bB        | $\rightarrow$ | $z_1\lambda$ |
|------------------------|----------------------------------|------------------------------|--------------|----------------------|----------|--------------------------|---------------|--------------|
| $z_0aB \rightarrow$    | $z_0AB$                          | $z_0\lambda\#$ $\rightarrow$ | $z_1\lambda$ | $z_0b\# \rightarrow$ | $z_0B\#$ | z <sub>1</sub> aA        | $\rightarrow$ | $z_1\lambda$ |
| $z_0bA \rightarrow$    | $z_0BA$                          | $z_1bB \rightarrow$          | $z_1\lambda$ | $z_0bB \rightarrow$  | $z_0BB$  | <i>z</i> <sub>1</sub> λ# | $\rightarrow$ | $z_1\lambda$ |

Es gilt

$$L(M) = \{ w sp(w) \mid w \in \{a, b\}^* \}.$$

### Beispiel: PDA $\Rightarrow$ kfG

Konstruiere eine Grammatik  $G = (\Sigma, \{S\} \cup Z \times \Gamma \times Z, S, P)$  mit L(G) = L(M) wie folgt. P besteht aus genau den folgenden Regeln:

- - $S \to (z_0, \#, z_0)$
  - $S \to (z_0, \#, z_1)$
- $(z, A, z') \rightarrow a$ , falls  $(z', \lambda) \in \delta(z, a, A)$ ; d.h.,
  - $(z_0, A, z_1) \rightarrow a$ , da  $(z_1, \lambda) \in \delta(z_0, a, A)$
  - $(z_0, B, z_1) \rightarrow b$ , da  $(z_1, \lambda) \in \delta(z_0, b, B)$
  - $(z_0, \#, z_1) \rightarrow \lambda$ , da  $(z_1, \lambda) \in \delta(z_0, \lambda, \#)$
  - $(z_1, A, z_1) \rightarrow a$ , da  $(z_1, \lambda) \in \delta(z_1, a, A)$
  - $(z_1, B, z_1) \rightarrow b$ , da  $(z_1, \lambda) \in \delta(z_1, b, B)$
  - $(z_1, \#, z_1) \rightarrow \lambda$ , da  $(z_1, \lambda) \in \delta(z_1, \lambda, \#)$
- $(z, A, z') \rightarrow a(z_1, B, z')$ , falls  $(z_1, B) \in \delta(z, a, A)$ ; d.h., hier keine

# Beispiel: PDA ⇒ kfG

- **4**  $(z, A, z') \rightarrow a(z_1, B, z_2)(z_2, C, z')$ , falls  $(z_1, BC) \in \delta(z, a, A)$ ; d.h.,
  - $(z_0, \#, z') \rightarrow a(z_0, A, z_2)(z_2, \#, z'), \quad z', z_2 \in \{z_0, z_1\},$ da  $(z_0, A\#) \in \delta(z_0, a, \#)$
  - $(z_0, A, z') \rightarrow a(z_0, A, z_2)(z_2, A, z'), \quad z', z_2 \in \{z_0, z_1\},$ da  $(z_0, AA) \in \delta(z_0, a, A)$

  - $(z_0, \#, z') \rightarrow b(z_0, B, z_2)(z_2, \#, z'), \quad z', z_2 \in \{z_0, z_1\},$ da  $(z_0, B\#) \in \delta(z_0, b, \#)$

  - $\bullet \ (z_0,B,z') \to b(z_0,B,z_2)(z_2,B,z'), \quad z',z_2 \in \{z_0,z_1\}, \\ \mathsf{da}\ (z_0,BB) \in \delta(z_0,b,B)$

Da  $z', z_2 \in \{z_0, z_1\}$ , sind hier  $6 \cdot 4 = 24$  Regeln angegeben.

# Beispiel: PDA ⇒ kfG

#### Eine Ableitung von w = abba in M und G:

| PDA M             |                       |                            | kfG <i>G</i> |              |                                              |  |
|-------------------|-----------------------|----------------------------|--------------|--------------|----------------------------------------------|--|
|                   |                       |                            | S            | $\vdash_{G}$ | $(z_0, \#, z_1)$                             |  |
| $(z_0, abba, \#)$ | $\vdash_{\mathit{M}}$ | (z <sub>0</sub> , bba, A#) |              | $\vdash_{G}$ | $a(z_0, A, z_1)(z_1, \#, z_1)$               |  |
|                   | $\vdash_{M}$          | (z <sub>0</sub> , ba, BA#) |              | $\vdash_{G}$ | $ab(z_0, B, z_1)(z_1, A, z_1)(z_1, \#, z_1)$ |  |
|                   | $\vdash_{M}$          | $(z_1,a,A\#)$              |              | $\vdash_{G}$ | $abb(z_1, A, z_1)(z_1, \#, z_1)$             |  |
|                   | $\vdash_{M}$          | $(z_1,\lambda,\#)$         |              | $\vdash_{G}$ | $abba(z_1, \#, z_1)$                         |  |
|                   | $\vdash_{M}$          | $(z_1,\lambda,\lambda)$    |              | $\vdash_{G}$ | abba                                         |  |