308 Boardman Hall Orono, Maine 04469-5711 Tel: 207.581.1277

Fax: 207.581.3888 Email: luis.zambranocruzatty@maine.edu

CIE-365 Spring 2022: Homework assignment 2

Due date: 02/09/2022 at 10:00 AM Possible points: 80

Answer the following questions based on the contents of Module 2.

1. [O1] (10 points) Using phase diagrams derive equations 1, and 2:

$$\gamma_t = G_s \gamma_w (1 - n) + nS \gamma_w \tag{1}$$

$$\gamma_t = G_s \gamma_w (1 - n)(1 + w) \tag{2}$$

where γ_t is the total or moist unit weigh, G_s is the specific gravity, γ_w is the water unit weight, n is the porosity, S is the degree of saturation, and w is the water content.

- 2. [O1] (5 points) A sand has a natural water content of 5% and a total unit weight of $\gamma_t = 18.0 \text{ kN/m}^3$. The void ratios corresponding to the densest and loosest state of this soil are $e_{min} = 0.51$ and $e_{max} = 0.87$ respectively. Find the relative density and degree of saturation.
- 3. [O1] (5 points) A saturated clay encountered in a deep excavation has a water content of w = 25%. Determine the void ratio and saturated unit weight, knowing that $G_s = 2.70$.
- 4. [O1] (15 points) A laboratory test determined that the minimum and maximum void ratios of some gravel are $e_{min}=0.2$ and $e_{max}=0.95$ respectively. In a construction site, the gravel was used as fill for a 20m long retaining wall shown in figure 1. It was determined that the in-situ moist unit weight was $\gamma_t=20 \text{kN/m}^3$ with a moisture content of w=8%. a) Determine the in-situ void ratio of the gravel, b) its relative density, c) minimum and maximum dry densities. d) If the gravel is transported from its source with a relative density of $D_r=23\%$ and moisture content of w=1%, what is the volume of gravel transported from its source to the site?. Use $G_s=2.67$.

Figure 1: Sketch of retaining wall geometry for problem 4.

- 5. [O1] (3 points) Table 1 shows results obtained from a liquid limit test on a clay using the Casagrande cup device.
 - (a) Determine the liquid limit of this clay.

308 Boardman Hall Orono, Maine 04469-5711 Tel: 207.581.1277

Fax: 207.581.3888 Email: luis.zambranocruzatty@maine.edu

 Table 1: Test results for problem 5.

 Number of blows
 6
 12
 20
 28
 32

 Water content (%)
 52.5
 47.1
 43.2
 38.6
 37

- (b) If the natural water content is 38% and the plastic limit is 23%, calculate the liquidity index.
- 6. [O1] (6 points) Table 2 shows the data recorded from a liquid limit test on a clay using the Casagrande cup device.

Table 2: Test results for problem 6.

Test number Container (g)		Cont. and wet soil (g)	Cont. and dry soil (g)	Blow count
	W_c	W_w	W_d	\overline{N}
1	45.3	57.1	54.4	28
2	43.0	59.8	56.0	31
3	45.2	61.7	57.9	22
4	45.6	58.4	55.3	18

- (a) Determine the liquid limit.
- (b) If the plastic limit is 15% and the soil contains 45% clay, calculate the activity.
- (c) Is the soil active?. Do you expect swelling with moisture content changes?.
- 7. [O1] (26 points) Base on the results of sieve analysis shown in Table 3 and 4 perform the following tasks:
 - (a) Plot the GSD curves for soils A trough F in 5-cycle semilogarithmic space.
 - (b) For each of the soils determine the effective size as well as the uniformity coefficient and the coefficient of curvature.
 - (c) Determine the percentages of gravel, sand, silt, and clay according to the USCS.
 - (d) Determine the plastic index, liquidity index, and activity when possible.
 - (e) Classify each soil according to the USCS
- 8. [O1] (10 points) For the data in Table 5 ($G_s = 2.64$):
 - (a) Plot the compaction curves.
 - (b) Establish the maximum dry density and optimum water content for each test.
 - (c) Compute the degree of saturation at the optimum point for data in column A.
 - (d) Plot the 100% saturation (ZAV) curve. Also plot the 70, 80, and 90% saturation curves. Plot the line of optimums.

Note: [O1] indicates the course objective that is partially covered by this assignment.

308 Boardman Hall Orono, Maine 04469-5711 Tel: 207.581.1277

Fax: 207.581.3888 Email: luis.zambranocruzatty@maine.edu

Table 3: Sieve and hydrometer analysis results for problem 7.

Table 3: Sieve and hydrometer analysis results for problem 7.							
	Percent Passing by Weight						
U.S. Standard Sieve No. or Particle Size	Soil A	Soil B	Soil C	Soil D	Soil E	Soil F	
75 mm (3 in)	100		100				
38 (1-1/2)	70		-				
19(3/4)	49	100	91				
9.5 (3/8)	36	-	87				
No. 4	27	88	81		100		
No. 10	20	82	70	100	89		
No. 20	-	80	-	99	-		
No. 40	8	78	49	91	63		
No. 60	-	74	-	37	-		
No. 100	5	-	-	9	-		
No. 140	-	65	35	4	60		
No. 200	4	55	32	-	57	100	
$40~\mu\mathrm{m}$	3	31	27		41	99	
$20~\mu\mathrm{m}$	2	19	22		35	92	
$10~\mu\mathrm{m}$	1	13	18		20	82	
$5~\mu\mathrm{m}$	<1	10	14		8	71	
$2~\mu\mathrm{m}$	-	-	11		_	52	
$1~\mu\mathrm{m}$	-	2	10		-	39	

Table 4: Atterberg limits conducted on soil samples for problem 7.

Property	Soil A	Soil B	Soil C	Soil D	Soil E	Soil F
w_n [%]	27	14	11	8	72	_
LL [%]	13	35	35	-	28	60
PL [%]	8	29	18	NP	NP	28

Table 5: Results of compaction tests for problem 8.

	A: modified $\gamma_d \; [\mathrm{kN/m^3}] w \; [\%]$		B: standard		C: low energy		
			$\gamma_d [\mathrm{kN/m^3}] w [\%]$		$\gamma_d \; [\mathrm{kN/m^3}]$	w [%]	
•	18.37	9.3	16.59	9.3	15.96	10.9	
	18.73	12.8	16.82	11.8	16.08	12.3	
	17.69	15.5	17.22	14.3	17.07	16.3	
	16.67	18.7	17.14	17.6	16.75	20.1	
	16.10	21.1	16.53	20.8	16.16	22.4	
			15.88	23			