Prof. Dr. R. Weissauer Dr. Mirko Rösner Blatt 8 Musterlösung Abgabe auf Moodle bis zum 22. Januar

Die obere Halbebene ist $\mathbb{H} = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$. Darauf operiert die Modulgruppe $\Gamma = \text{SL}(2, \mathbb{Z})$ durch Möbius-Transformationen

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \langle \tau \rangle = \frac{a\tau + b}{c\tau + d} \ .$$

Seien j und $\lambda(\tau) = (e_3(\tau) - e_2(\tau))/(e_1(\tau) - e_2(\tau))$ die Modulfunktionen aus der Vorlesung. Sie können bei jeder Aufgabe die Ergebnisse der vorherigen nutzen, auch wenn Sie diese nicht bearbeitet haben. Die besten vier Aufgaben werden gewertet.

- **35.** Aufgabe: $(1+1+2=4 \text{ Punkte}) \text{ Sei } \phi : \Gamma/\Gamma[2] \rightarrow \text{Bij}(\{e_1, e_2, e_3\}) \text{ der Isomorphismus aus Aufgabe 28c}).$
 - (a) Machen Sie diesen explizit, indem Sie $\phi(T)e_i$ und $\phi(S)e_i$ bestimmen für i=1,2,3.
 - (b) Bestimmen Sie Vertreter von $\Gamma/\Gamma[2]$ als Produkte von S und T.
 - (c) Zeigen Sie $\{\lambda|_{0}M \mid M \in \Gamma\} = \{\lambda, \lambda^{-1}, 1 \lambda, 1 \lambda^{-1}, (1 \lambda)^{-1}, \lambda/(1 \lambda)\}$.

Hinweis: Für eine Menge X bezeichnet Bij(X) die Gruppe der Bijektionen $X \to X$.

Lösung:

Wir schreiben $\Lambda = \mathbb{Z} \oplus \mathbb{Z}\tau$.

(a) Nach Konstruktion ist dann $e_i = \wp(\omega_i)$ für i = 1, 2, 3 mit $\omega_1 = 1/2$ und $\omega_2 = \tau/2$ sowie $\omega_3 = (1+\tau)/2$. Die Operation von Γ erhält das Gitter, daher ändert sich die \wp_{Λ} -Funktion nicht unter der Anwendung von S und T. Wegen $T(m\tau+n) = n+(m+n)\tau = m\tau+n(1+\tau)$ für reelle $n, m \in \mathbb{R}$ folgt durch Matrizenmultiplikation

$$T\omega_i = \begin{cases} \omega_3 & i = 1\\ \omega_2 & i = 2\\ \omega_1 + \tau & i = 3 \end{cases}.$$

(Nachrechnen!) Wegen $\wp(\tau + \omega_1) = \wp(\omega_1) = e_1$ folgt

$$\phi(T)e_1 = \wp(\omega_3) = e_3 ,$$

$$\phi(T)e_2 = \wp(\omega_2) = e_2 ,$$

$$\phi(T)e_3 = \wp(\tau + \omega_1) = \wp(\omega_1) = e_1 .$$

Für $S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ erhält man $S(m\tau + n) = n\tau - m$ für reelle $n, m \in \mathbb{R}$ und damit

$$S\omega_{i} = \begin{cases} \omega_{2} & i = 1\\ -\omega_{1} & i = 2\\ \omega_{3} - 1 & i = 3 \end{cases}.$$

Wie oben benutzen wir $-\omega_1 \equiv \omega_1 \pmod{\Gamma}$, dann folgt

$$\phi(S)e_1 = \wp(\omega_2) = e_2 ,$$

 $\phi(S)e_2 = \wp(-\omega_1) = e_1 ,$
 $\phi(S)e_3 = \wp(\omega_2 - 1) = e_3 .$

- (b) Ein Vertretersystem ist gegeben durch id, S, T, STS, TS, ST. Entweder explizit nachrechnen oder Bruhat-Zerlegung auf die algebraische Gruppe $GL(2, \mathbb{F}_2)$ anwenden.
- (c) Wir bestimmen den Orbit von λ unter Γ . Weil λ invariant ist unter dem Normalteiler $\Gamma(2)$, genügt es, den Orbit unter $\Gamma/\Gamma(2)$ zu bestimmen. Die λ -Funktion ist $\lambda(\tau) = (e_3 e_2)/(e_1 e_2)$. Die Terme e_i transformieren sich wie oben berechnet, daher gilt:

$$\phi(T)(\lambda) = \frac{e_1 - e_2}{e_3 - e_2} = \lambda^{-1}$$
.

Entsprechend zeigt man

$$\phi(S)(\lambda) = \phi(S)\frac{e_3 - e_2}{e_1 - e_2} = \frac{e_3 - e_1}{e_2 - e_1} = \frac{e_1 - e_2}{e_1 - e_2} - \frac{e_3 - e_2}{e_1 - e_2} = 1 - \lambda.$$

Wendet man jetzt diese Transformationen mit den Vertretern aus Teil b
 an, so erhält man den angegebenen Orbit von λ .

Achtung: Es gab einen Tippfehler in der Aufgabe. Im letzten Eintrag $1/(1-\lambda^{-1}) = -\lambda/(1-\lambda)$ stimmte das Vorzeichen nicht.

- **36.** Aufgabe: (2+2=4 Punkte) Wir entwickeln die Eisensteinreihen als Fourierreihen.
- (a) Zeigen Sie für ganze $k \geq 2$ und $\tau \in \mathbb{H}$ die Reihenentwicklung

$$(-1)^k \sum_{n \in \mathbb{Z}} (\tau + n)^{-k} = \frac{(2\pi i)^k}{(k-1)!} \sum_{n=1}^{\infty} n^{k-1} \exp(2\pi i n \tau) .$$

Hinweis: Zeigen Sie zunächst den Fall k=2. Aufgaben 48, 49 aus FT1 sind nützlich.

(b) Sei G_k die Eisensteinreihe zur vollen Modulgruppe von geradem Gewicht $k \geq 4$. Für jedes $\tau \in \mathbb{H}$ gilt dann

$$G_k(\tau) = 2\zeta(k) + \frac{2(2\pi i)^k}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}(n) e^{2\pi i \tau n}$$
.

Hier ist $\sigma_k(n)=\sum_{d|n}d^k$ ist die Teilersumme der k-ten Potenzen und $\zeta(k)=\sum_{n=1}^\infty n^{-k}$ für $k\geq 2.$

Hinweis: Verwenden Sie eine geeignete Summationsreihenfolge.

Lösung: Siehe Freitag und Busam:Funktionentheorie", Kapitel VII, Abschnitt 1. Die Fourierentwicklung ist Satz 1.3.

37. Aufgabe: (4 Punkte) Seien (X, \mathfrak{U}_X) und (Y, \mathfrak{U}_Y) topologische Räume. Wir erklären die Produkttopologie $\mathfrak{U}_{X\times Y}$ auf $X\times Y$ als die Topologie erzeugt von der Basis

$$\mathcal{B} = \{ U \times V \mid U \in \mathfrak{U}_X, V \in \mathfrak{U}_Y \} .$$

Zeigen Sie: Die Produkttopologie auf $\mathbb{R} \times \mathbb{R}$ ist gleich der Euklidischen Topologie.

Skizze: Wir müssen zeigen, dass die beiden Topologien übereinstimmen. Die Produkttopologie ist hier die Topologie der ∞ -norm, die Euklidische Topologie ist die der 2-Norm. Nach dem Satz über Normäquivalenz sind alle Normen auf \mathbb{R}^n äquivalent, also stimmen die Topologien überein. (Ein expliziter Beweis ist auch möglich, aber umständlich.)

38. Aufgabe: (4 Punkte) Sei $f:(X,\mathfrak{U}_X)\to (Y,\mathfrak{U}_Y)$ eine stetige Abbildung topologischer Räume. Zeigen Sie: Ist M eine quasikompakte Teilmenge von X, dann ist auch f(M) quasikompakt.

 $f(M) = \bigcup_{i \in I} U_i$ eine beliebige offene Überdeckung von f(M), dann ist $M = f^{-1}(f(M)) = \bigcup_{i \in I} f^{-1}(U_i)$ eine Überdeckung von M. Weil f stetig ist, ist $f^{-1}(U_i)$ wiederum offen. Da M quasikompakt ist, gibt es eine endliche Teilüberdeckung $M = \bigcup_{j=1}^N f^{-1}(U_{i_j})$ mit $i_j \in I$. Wenden wir darauf f an, erhalten wir

$$f(M) = f(\bigcup_{j=1}^{N} f^{-1}(U_i) = \bigcup_{j=1}^{N} f(f^{-1}(U_i)) = \bigcup_{j=1}^{N} U_i$$
.

Dies ist die gesuchte endliche Teilüberdekung voon f(M).

- **39.** Aufgabe: (4 Punkte) Sei (X, \mathfrak{U}_X) ein topologischer Raum. Wir versehen $X \times X$ mit der Produkttopologie. Zeigen Sie, dass folgende Aussagen äquivalent sind:
 - (a) Die Diagonale $\Delta X = \{(x, x) \in X \times X \mid x \in X\}$ ist abgeschlossen in $X \times X$.
 - (b) (X, \mathfrak{U}_X) ist separiert.

Lösung: $b) \implies a$). Seien $(r,s) \in X \times X$ beliebig mit $r \neq s$. Wegen (b) Separiertheit gibt es offene Umgebungen $r \in R \in \mathfrak{U}_X$ und $s \in S \in \mathfrak{U}_X$ mit $R \cap S = \emptyset$. Also ist $R \times S \subseteq X \times X$ disjunkt zu ΔX . Nach Konstruktion der Produkttopologie ist $V_{r,s} = R \times S$ offen in der Produkttopologie und in $X \times X \setminus \Delta X$ enthalten. Also hat (r,s) eine offene Umgebung $V_{r,s}$. Damit ist $X \times X \setminus \Delta X = \bigcup_{r \neq s} V_{r,s}$ als Vereinigung offener Teilmengen wiederum offen, also ist ΔX abgeschlossen. $a) \implies b$). Seien $r,s \in X$ beliebig mit $r \neq s$. Dann ist $(r,s) \notin \Delta X$. Wegen a) gibt es eine offene Umgebung $V_{r,s}$ von (r,s) in $X \times X$. Weil die Produkttopologie von Produkten der Form $R \times S$ mit $R,S \in \mathfrak{U}_X$ erzeugt wird, können wir annehmen $V=R \times S$. Wegen $(r,s) \in R \times S$ gilt $r \in R$ und $s \in S$. Außerdem ist $R \times S \subseteq X \times X \setminus \Delta X$, daher sind R und S disjunkt. Weil r und s beliebig waren, ist X separiert.