

主动学习和图谱挖掘 在金融反欺诈中的应用实践

王婷

宜人贷数据科学家

人工智能基础课

"通俗易懂的人工智能入门课,,

AI技术内参

你的360度人工智能信息助理

ES SE BIT (III)

免费试读

关注落地技术,探寻AI应用场景

- 14万AI领域垂直用户
- 8000+社群技术交流人员,不乏行业内顶级技术专家
- 每周一节干货技术分享课
- AI—线领军人物的访谈
- AI大会的专家干货演讲整理
- 《AI前线》月刊
- AI技能图谱
- 线下沙龙

扫码关注带你涨姿势

[北京站] 2018

会议: 2018年4月20-22日 / 培训: 2018年4月18-19日

北京·国际会议中心

购票中,每张立减1360元

团购享受更多优惠

识别二维码了解更多

2018 · 深圳站

从2012年开始算起,InfoQ已经举办了9场ArchSummit全球架构师峰会,有来自Microsoft、Google、Facebook、Twitter、LinkedIn、阿里巴巴、腾讯、百度等技术专家分享过他们的实践经验,至今累计已经为中国技术人奉上了近干场精彩演讲。

限时7折报名中, 名额有限, 速速报名吧!

2012.08.10-12 深圳站

2018.07.06-09 深圳站

会议: 07.06-07.07 培训: 07.08-07.09

个人介绍

- 王婷, 计算机专业博士, 近5年从事数据挖掘、大规模社交网络分析、 社会计算、知识图谱等机器学习算 法实践工作
- 现任宜人贷数据科学家,从事反欺 诈建模工作,与团队设计实现了 "先知"反欺诈平台系统,已成功 申请2项反欺诈技术专利

TABLE OF CONTENTES

AI+反欺诈的机会和挑战

主动学习框架提升对欺诈的认知

图谱挖掘预防黑天鹅欺诈事件

反欺诈是防范风险的重中之重

人群团体化

方式多样化

P2P 欺诈

地区集中化

工具智能化

实时反欺诈的挑战与机会

挑战:

- 对于群体性事件只有事后调查,没有主动拦截
 - 需要疑似欺诈自动提报机制
 - 案件的认知缺乏实时性
 - 案件调查可用的数据多,需筛选
- 缺乏从单用户到多用户的高效分析工具

机会:

- •打通了以APP SDK 为基础的实时数据流
- 用历史数据搭建了反欺诈模型
- •可为反欺诈团队定制工具
- 让反欺诈专家的认识及时的渗透进反欺诈模型

建立数据驱动反欺诈能力

先知-反欺作云平台

反欺诈云平台

实时数据采集

SDK用户行为数据

消费数据

通话数据

三方数据

实时数据处理

欺诈评分模型

知识 规则引擎

团伙挖掘

实时欺诈发现

欺诈用户预警

欺诈 调查 工具

中介发现

团伙监控&预警

先日-核心能力

- Ensemble Learning
- Active Learning
- Deep Learning

- 模型 规则 预警 引擎
- 反欺诈规则
- 规则组合策略
- 规则引擎

- 中介挖掘
- 团伙监控
- 用户预警
- Unsupervised Learning
- Semi-Supervised Learning

团伙 挖掘 调查工具

• 预警异常信息提示

• 用户详情:身份、设备、地理、通话、支付等一系列信息展示

• 搜索: 注册、进件、关系图谱等

• 团伙信息展示

TABLE OF CONTENTES

AI+反欺诈的机会和挑战

主动学习框架提升对欺诈的认知

图谱挖掘预防黑天鹅欺诈事件

机器学习三大类

监督学习

数据类型:**有标签**

效果要求:较高

目标明确

模型稳定性较好

标签获取需要成本

常见模型:SVM/DT/XNN

无监督学习

数据类型:无标签

效果要求:中等

目标不太明确

模型稳定性较差

不需要标记标签成本

常见模型: Cluster

半监督学习

数据类型:部分有标签

效果要求:较高

目标明确

模型稳定性较好

需要少量标记

常见模型:半监督SVM、Label Propagation、PULearning

标注数据获取的挑战

标注获取成本高: 好坏样本不均衡

• 在个人信贷领域,每笔贷款可高达20万元

	良好还款	坏账		
审批通过	+ 3% 利润	- 100% 本金		
拒贷	没	没有信息		

- 挑战:每一个负面案例都要用资金的损失换来
 - 好坏样本比例不均衡
 - 样本量小
 - 好坏案例维度分离不清晰
 - 好坏样本都由多人群组成

Yanmin Sun, "Cost-Sensitive Boosting for Classification of Imbalanced Data", Ph.D. Thesis, Waterloo, Ontario, Canada, 2007 (181 pages)

标注获取周期长:

• 例: 2017年2月10日放款

日期	事件	观测	
2017/02/10	放款		
2017/03/10	第一期还款	还款良好	
2017/04/10	第二期还款	还款良好	
2017/05/10	第三期还款	一期未还: M1	
2017/06/10	第四期还款	两期未还: M2 → 信用模型负样本	
2017/07/10	第五期还款	三期未还: M3	
2017/08/10	第六期还款	四期未还: 坏账→ 欺诈模型负样本	

- 如果2月放款,开始有两期良好还款:
 - 列入信用模型负样本需要到6月才有足够表现
 - 列入欺诈模型负样本需要到8月才有足够表现

主动学习帮助获取真实欺诈标注

专家

主动学习帮助缩短观测周期

减短观测周期:

- 挑战:欺诈案例的观测周期长达7个月,怎样能减短这个周期?
- 方案:
 - 和线下反欺诈团队紧密合作,用"主动学习"方法,提前人工核查可疑案件,并反馈标注

学习引擎-反欺诈模型技术

•机器学习技术:GBDT、RF等模型调参+模型集成Stacking

•深度学习技术:应用于时序特征提取

•图谱挖掘技术:应用于图特征提取

学习引擎-自动化学习

•实时新增欺诈标注,快速反馈回模型训练(6个月->1天)

选择引擎-模型提报

选择引擎-规则提接

TABLE OF CONTENTES

Al+反欺诈的机会和挑战

主动学习框架提升对欺诈的认知

图谱挖掘预防黑天鹅欺诈事件

团伙挖掘

黑名单用户

灰名单用户

二次规则最高拒贷

信审最高拒贷

贷后逾期用户(MOB6 M4+)

贷后逾期用户(M1+)

其他

标签传播算法(SLPA)

人工调查案例

电话	已有标签	新标签	调查信息
7870	黑名单	黑名单	中介
0050	黑名单	黑名单	同行
2180	黑名单	黑名单	中介
3392	灰名单	灰名单	同行
8421	未标注	灰名单	同行
7777	未标注	未标注	通话设置
3990	未标注	灰名单	同行,办理无抵押贷款
9803	未标注	灰名单	可以办理贷款
6081	未标注	灰名单	同行
0440	未标注	灰名单	办理抵押贷款
5988	未标注	未标注	通话设置
0643	未标注	灰名单	可以办理银行贷款
5143	未标注	灰名单	可以办理无抵押贷款
9203	未标注	灰名单	同行
3595	未标注	灰名单	同行,办理无抵押贷款

团伙的生命周期

团伙动态演变

团伙的动态演变

Intermittent
Dynamic
Communities

$$D_1$$
 C_{11} $-- \Longrightarrow C_{31}$ $\longrightarrow C_{41}$

$$D_2$$
 C_{12} $-- \bowtie C_{42}$

Some dynamic communities will not observed at all time steps after birth. (Palla et al, '07)

团伙快速增长的风险监控

总结:AI+反欺诈带来商业价值

60%~ 欺诈认定率

反欺诈模型

反欺诈规则

2亿元+

欺诈团伙提报

调查工具

- 1.采集SDK数据用于识别欺诈事件
- 2.使用机器学习反欺诈建模技术融合多种模型
- 3.结合人工调查与机器学习主动学习欺诈标注
- 4.构建知识图谱应用于中介识别和团伙监控

