ชื่อโครงงาน การใช้การเรียนรู้ของเครื่องสำหรับการคัดแยกโรคผิวหนัง

ชื่อผู้ทำโครงงาน นายวรันธร จันทร์สว่าง

ชั้น มัธยมศึกษาปีที่ 5 สถาบันการศึกษา โรงเรียนวิทยาศาสตร์จุฬาภรณราชวิทยาลัย ปทุมธานี

ชื่อนักวิทยาศาสตร์พี่เลี้ยง ผู้ช่วยศาสตราจารย์ ดร. วสิศ ลิ้มประเสริฐ และศาสตราจารย์ พญ.อรพรรณ โพชนุกูล

สถาบันนักวิทยาศาสตร์พี่เลี้ยง คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต และคณะ แพทยศาสตร์ มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต

> โครงการพัฒนาอัจฉริยภาพทางวิทยาศาสตร์สำหรับเด็กและเยาวชน ระดับมัธยมศึกษาตอนปลายและปริญญาตรี รุ่นที่ 22 ประจำปี 2562 สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ พ.ศ.2562

สารบัญ

		หน้า
1.	บทคัดย่อ	4
2.	บทน้ำ	5
	ความเป็นมาและความสำคัญของปัญหา	5
	วัตถุประสงค์	5
	ผลที่คาดว่าจะได้รับ	6
3.	เนื้อเรื่อง	7
	ขั้นตอน	7
	วิธีการดำเนินงาน	7
	ผลการดำเนินงาน	22
4.	บทสรุป	30
	สรุปผลการดำเนินงาน	30
	ปัญหา	32
	ข้อเสนอแนะ	32
	แนวทางการดำเนินงานต่อเนื่อง	32
5.	เอกสารอ้างอิงและภาคผนวก	33

ชื่อโครงงาน การใช้การเรียนรู้ของเครื่องสำหรับการคัดแยกโรคผิวหนัง สาขา คอมพิวเตอร์

ผู้ปฏิบัติงาน นายวรันธร จันทร์สว่าง สถาบันการศึกษา โรงเรียนวิทยาศาสตร์จุฬาภรณราชวิทยาลัย ปทุมธานี

นักวิทยาศาสตร์พี่เลี้ยง ผู้ช่วยศาสตราจารย์ ดร. วสิศ ลิ้มประเสริฐ และศาสตราจารย์ พญ.อรพรรณ โพชนุกูล สถาบันนักวิทยาศาสตร์พี่เลี้ยง คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต และคณะ แพทยศาสตร์ มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต

ระยะเวลาการปฏิบัติงาน เมษายน 2562 - มิถุนายน 2563 หน่วยงานสนับสนุน สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ

บทคัดย่อ

โรคผิวหนังมีทั้งที่เป็นอันตรายและไม่อันตราย บางประเภทไม่จำเป็นต้องไปพบแพทย์เพราะสามารถหาย เองได้ ในขณะที่โรคผิวหนังบางชนิดอาจส่งผลอันตรายต่อชีวิตได้ เมื่อพาไปพบแพทย์ ซึ่งการที่ไม่มีวิธีการในการคัด กรองส่งผลให้เกิดความแออัดในโรงพยาบาล รวมถึงทำให้แพทย์และพยาบาลมีปริมาณภาระงานที่มากเกินในแต่ละ วัน ดังนั้นการมีซอฟต์แวร์ที่สามารถช่วยในการคัดแยกโรคผิวหนังอาจส่งผลดีในหลาย ๆ กรณี จากข้อมูลเบื้องต้น จึงทำให้สนใจในการพัฒนาโมเดลสำหรับการจำแนกประเภทของโรคผิวหนัง โดยใช้การเรียนรู้ของเครื่อง ซึ่งทาง ผู้ปฏิบัติงานทำได้ดำเนินงานไป 7 ขั้นตอน จากนั้นนำความรู้ทั้งหมดมาใช้ในการดำเนินงานครั้งที่ 8 ซึ่งคือการ พัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุดข้อมูล Skin Cancer MNIST: HAM10000 โดยการใช้ Convolutional Neural Network และมีการแบ่งการทดลองออกเป็น 3 อย่าง ได้แก่ Oversampling, Class weights และ Focal loss พบว่าได้โมเดลที่ได้ค่า F1-score สูงสุด 3 อันดับแรก ได้แก่ DenseNet121-Class weights, DenseNet121-Focal loss และ ResNet50-Focal loss ซึ่งมีค่า F1-score 0.84, 0.83 และ 0.81 ตามลำดับ จากนั้นนำ Weights ไป Transfer Learning ให้กับการพัฒนาโมเดลสำหรับคัดการแยกประเภทโรค ผิวหนังในชุดข้อมูล PJ61403 พบว่าได้โมเดลที่ได้ค่า F1-score สูงสุด 3 อันดับแรก ได้แก่ DenseNet121-1, DenseNet121-2 และ ResNet50-1 ซึ่งมีค่า F1-score 0.92, 0.86 และ 0.86 ตามลำดับ จากนั้นนำมา Ensemble แบบใช้การเฉลี่ยเลขคณิต ได้ค่า F1-score 0.89

คำสำคัญ: โรคผิวหนัง, F1-score, Convolutional Neural Network, Oversampling, Class weights, Focal loss, Ensemble

บทน้ำ

ความเป็นมาและความสำคัญ

โรคภูมิแพ้เป็นโรคที่พบได้มากในประเทศไทย โดยพบในเด็กสูงถึงร้อยละ 38 และพบในผู้ใหญ่ประมาณ ร้อยละ 20 จากการศึกษาข้อมูลเกี่ยวกับโรคภูมิแพ้ในปีพ.ศ. 2559 มีผู้ป่วยโรคภูมิแพ้มากขึ้นถึง 3 - 4 เท่าเมื่อเทียบ กับ 10 ปีที่ผ่านมา และมีแนวโน้มที่จะสูงขึ้นเรื่อย ๆ เนื่องจากผู้คนมีรูปแบบการใช้ชีวิตที่เปลี่ยนไป มีการออกกำลัง กายน้อยลงส่งผลทำให้ร่างกายอ่อนแอ เกิดการติดเชื้อได้ง่าย (สำนักงานกองทุนสนับสนุนการสร้างเสริมสุขภาพ, 2559) โดยโรคภูมิแพ้อาจแสดงออกในรูปของผื่นบนร่างกาย โดยเฉพาะผื่นภูมิแพ้ผิวหนังที่จัดเป็นผื่นผิวอักเสบที่ พบได้ประมาณร้อยละ 10 - 20 ในเด็ก และร้อยละ 1 - 3 ในผู้ใหญ่ (ทีมแพทย์และเภสัชกร HonestDocs, 2562) นับว่าเป็นจำนวนที่มากและไม่ควรละเลย)

โดยทั่วไปพบว่าเมื่อเกิดภาวะผื่นภูมิแพ้ผิวหนังที่เกิดขึ้นบนร่างกาย ก็มักจะรีบไปพบแพทย์ที่โรงพยาบาล นำมาซึ่งปัญหาที่ตามมาคือ ภาวะผู้ป่วยมากเกินความสามารถในการปฏิบัติงานของแพทย์ในแต่ละวัน ส่งผลให้ แพทย์และพยาบาลมีภาระงานในปริมาณที่สูงในแต่ละวันและอาจส่งผลต่อการปฏิบัติงานของแพทย์และพยาบาล จากอาการเหนื่อยล้า และจากการศึกษาข้อมูลเกี่ยวกับผื่นภูมิแพ้ในเบื้องต้น พบว่าไม่เป็นอันตราย ดังนั้นหาก สามารถคัดกรองผู้ป่วยที่มีผื่นภูมิแพ้ที่ไม่เป็รอันตรายออกไปได้จะสามารถช่วยลดปริมาณของผู้ป่วยในโรงพยาบาล ได้ นำมาซึ่งการลดภาระงานของแพทย์และพยาบาลในโรงพยาบาลได้ นอกจากนี้แล้วหากสามารถตรวจเช็คได้ว่า โรคผิวหนังเป็นโรคประเภทที่อันตราย หรือเสี่ยงต่ออันตรายจะช่วยให้ผู้ป่วยสามารถถึงมือแพทย์ได้เร็วยิ่งขึ้น ทำให้ ลดภาวะเสี่ยงอันตรายต่อชีวิตของผู้ป่วยได้เป็นอย่างดี

การนำการเรียนรู้ของเครื่องมาใช้กับการวิเคราะห์ลักษณะและจำแนกประเภทของโรคผิวหนังเบื้องต้น เพื่อที่จะทราบถึงผื่นที่เกิดขึ้นบนร่างกาย จะทำให้มีความแม่นยำมากยิ่งขึ้น ทำให้สามารถดูแลตนเองเบื้องต้น จน ไปถึงการรักษาต่อไปเป็นไปได้อย่างถูกต้อง ผู้ปฏิบัติงานจะเริ่มจากการพัฒนาเป็นโมเดลเบื้องต้นที่สามารถคัดแยก ประเภทของโรคผิวหนังก่อน และเมื่อพัฒนาเป็นโมเดลที่สามารถจำแนกประเภทของโรคผิวหนังเบื้องต้นได้แล้ว สามารถนำโมเดลมาพัฒนาต่อเป็นเว็บแอปพลิเคชันที่สามารถจำแนกประเภทของโรคผิวหนังเบื้องต้นและบอก วิธีการดูแลตนเองเบื้องต้น หรือแนะนำว่าควรไปพบแพทย์ภายใน 24 ชั่วโมง ถ้าโรคผิวหนังที่นำมาวิเคราะห์นั้น ไม่ใช่ผื่นภูมิแพ้ผิวหนัง เพื่อให้ผู้คนนั้นสามารถใช้งานอย่างสะดวก และเข้าถึงได้ง่าย

วัตถุประสงค์

- 1. เพื่อศึกษาการใช้การเรียนรู้ของเครื่องในการพัฒนาโมเดลสำหรับการคัดแยกโรคผิวหนัง
- 2. เพื่อศึกษาผลของการตรวจวิเคราะห์ลักษณะและจำแนกประเภทของโรคผิวหนังที่ต่างประเภทกัน
- 3. เพื่อศึกษาผลของการเปรียบเทียบการใช้โมเดลของการเรียนรู้ของเครื่องที่แตกต่างกันในการคัดแยก ประเภทของโรคผิวหนัง

ผลที่คาดว่าจะได้รับ

- 1. ได้เรียนรู้การพัฒนาการโมเดลโดยการใช้การเรียนรู้ของเครื่อง
- 2. สามาถนำไปเปรียบเทียบกับงานวิจัยด้านการเรียนรู้ของเครื่อง
- 3. สามารถนำโมเดลที่ได้จากการพัฒนาในโครงงานนี้ไปต่อยอดเป็นเว็บแอปพลิเคชันสำหรับคัดโรคผิวหนัง ต่อไปเพื่อแก้ไขปัญหาต่าง ๆ ได้แก่ ลดความแออัดในโรงพยาบาล ลดมลพิษจากยานพาหนะในการ เดินทางไปโรงพยาบาล และลดภาระของแพทย์และพยาบาล

เนื้อเรื่อง

ขั้นตอนการดำเนินงาน

- 1. การศึกษาการพัฒนาโมเดลสำหรับการคัดแยกประเภทตัวเลขในชุดข้อมูล MNIST โดยการใช้ Convolutional Neural Network
- 2. การพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุดข้อมูลโรคผื่นภูมิแพ้ผิวหนังและโรคผื่นแพ้ ผิวสัมผัส โดยการใช้ Convolutional Neural Network ฝึกสร้าง Convolutional Neural Network ตั้งแต่เริ่มต้น โดยใช้ชุดข้อมูล Skin Cancer MNIST: HAM10000
- 3. การศึกษาการพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุดข้อมูล Skin Cancer MNIST: HAM10000 โดยการใช้ Convolutional Neural Network
- 4. การพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุดข้อมูล PJ61403 โดยการแบ่งส่วนอวัยวะ
- 5. การพัฒนาโมเดลสำหรับการคัดแยกโรคผิวหนังในชุดข้อมูล PJ61403 โดยการแบ่งเป็น 2 โมเดล, การ ปรับปรุงวิธีการทำ Data Augmentation และใช้การปรับค่า Class weights ของแต่ละประเภท
- 6. การพัฒนาโมเดลสำหรับการคัดแยกโรคผิวหนังในชุดข้อมูล PJ61403 โดยการปรับปรุงวิธีการทำ Data Augmentation และใช้การปรับค่า Class weights ของแต่ละประเภท
- 7. การศึกษาการพัฒนาโมเดลสำหรับการคัดแยกประเภทภาพในชุดข้อมูล Cifar-10 โดยการใช้ Convolutional Neural Network
- 8. การพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุดข้อมูล Skin Cancer MNIST: HAM10000 โดยการใช้ Convolutional Neural Network เพื่อนำ Weights ไป Transfer Learning ให้กับการ พัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุดข้อมูล PJ61403
- 9. การศึกษาการ Ensemble โมเดล โดยการหาค่าเฉลี่ยเลขคณิตของผลการทำนายโมเดลในแต่ละประเภท

วิธีการดำเนินงาน

การดำเนินงานครั้งที่ 1 การศึกษาการพัฒนาโมเดลสำหรับการคัดแยกประเภทตัวเลขในชุดข้อมูล MNIST โดย การใช้ Convolutional Neural Network

การศึกษาวิธีการเขียนโปรแกรมภาษาไพธอน

ฝึกเขียนโปรแกรมภาษาไพธอนใน SOLOLEARN เพื่อให้เข้าใจไวยากรณ์ของภาษา
การศึกษาวิธีการพัฒนา Convolutional Neural Network
ศึกษาวิธีการเขียนโปรแกรมสำหรับการพัฒนา Convolutional Neural Network

การพัฒนาโมเดลสำหรับการคัดแยกประเภทตัวเลขในชุดข้อมูล MNIST โดยการใช้ Convolutional Neural Network

เขียนโปรแกรมพัฒนาโมเดล Convolutional Neural Network สำหรับการคัดแยกประเภทตัวเลขในชุด ข้อมูล MNIST

การดำเนินงานครั้งที่ 2 การพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุดข้อมูลโรคผื่นภูมิแพ้ ผิวหนังและโรคผื่นแพ้ผิวสัมผัส โดยการใช้ Convolutional Neural Network

การศึกษาลักษณะของผื่น, วิธีการดูแลเบื้องต้นและรวบรวมชุดข้อมูลของโรคผื่นภูมิแพ้ผิวหนังผื่น ภูมิแพ้ผิวหนังและโรคผื่นแพ้ผิวสัมผัส

ศึกษาลักษณะและวิธีการดูแลเบื้องต้นของโรคผื่นภูมิแพ้ผิวหนังและโรคผื่นแพ้ผิวสัมผัสผู้ที่มีผื่นเกิดขึ้นบน ร่างกาย โดยเข้าทำการศึกษาจากแพทย์ผู้เชี่ยวชาญในด้านผื่นภูมิแพ้ (ศ.พญ.อรพรรณ โพชนุกูล คณะแพทยศาสตร์ มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต) จากนั้นศึกษาข้อมูลจากสมาคมโรคภูมิแพ้ โรคหืด และวิทยาภูมิคุ้มกันแห่ง ประเทศ และทำการรวบรวมชุดข้อมูลโรคผื่นภูมิแพ้ผิวหนังและโรคผื่นแพ้ผิวสัมผัส

การแบ่งชุดข้อมูล

แบ่งชุดข้อมูลโรคผื่นภูมิแพ้ผิวหนังและโรคผื่นแพ้ผิวสัมผัสเป็น

- Train set ร้อยละ 80 ของทั้งหมด
- Validation set ร้อยละ 10 ของทั้งหมด
- Test set ร้อยละ 10 ของทั้งหมด

การศึกษาการทำ Data Augmentation

ศึกษาวิธีการและวิธีการเขียนโปรแกรมเพื่อเพิ่มความหลากหลายให้กับชุดข้อมูล เช่น การพลิกแนวนอน, การพลิกแนวตั้ง, การหมุนภาพตามองศาต่าง ๆ และการซูมเข้า-ออก

การพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุดข้อมูลโรคผื่นภูมิแพ้ผิวหนังและโรคผื่น แพ้ผิวสัมผัส โดยการใช้ Convolutional Neural Network

พัฒนา Convolutional Neural Network โดยปรับเปลี่ยนสถาปัตยกรรม Convolutional Neural Network ของการทดลองครั้งที่ 1

การดำเนินงานครั้งที่ 3 การศึกษาการพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุดข้อมูล Skin Cancer MNIST: HAM10000 โดยการใช้ Convolutional Neural Network การศึกษาชุดข้อมูล Skin Cancer MNIST: HAM10000

ศึกษาและทำความเข้าใจกับชุดข้อมูล จากนั้นทำการคัดแยกชุดข้อมูลเป็นโรคแต่ละประเภท ได้แก่
Actinic keratoses and intraepithelial carcinoma / Bowen's disease, Basal cell carcinoma, Benign keratosis-like lesions, Dermatofibroma, Melanoma, Melanocytic nevi และ Vascular lesions การแบ่งชุดข้อมูล

แบ่งชุดข้อมูล Skin Cancer MNIST: HAM10000 เป็น

- Train set ร้อยละ 80 ของทั้งหมด
- Validation set ร้อยละ 10 ของทั้งหมด
- Test set ร้อยละ 10 ของทั้งหมด

การพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุดข้อมูล Skin Cancer MNIST: HAM10000โดยการใช้ Convolutional Neural Network

พัฒนา Convolutional Neural Network โดยปรับเปลี่ยนสถาปัตยกรรม Convolutional Neural Network ของการทดลองครั้งที่ 2

การศึกษาการใช้ Confusion Matrix ในการประเมินผลโมเดล

ศึกษาความหมายและวิธีการเขียนโปรแกรมสร้าง Confusion Matrix เพื่อคำนวณค่า Metrics ได้แก่ Accuracy, Precision, Recall และ F1 score

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN} \qquad Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN} \qquad F1 - score = 2 \times (\frac{Precision \times Recall}{Precision + Recall})$$

Architecture	Accuracy	Precision	Recall	F1-score
Model	Accuracy _{Model}	Precision _{Model}	Recall _{Model}	F1-score _{Model}

การดำเนินงานครั้งที่ 4 การพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุดข้อมูล PJ61403 โดยการ แบ่งส่วนอวัยวะ

การศึกษาลักษณะวิธีการดูแลเบื้องต้น, และรวบรวมชุดข้อมูลของโรคผิวหนัง 10 อันดับแรกที่พบมาก ที่สุดในประเทศไทย

ศึกษาโรคผิวหนัง 10 อันดับแรกที่พบมากที่สุดในประเทศไทย โดยอ้างอิงจากสถิติของสถาบันโรคผิวหนัง ในปี พ.ศ. 2561 และรวบรวมชุดข้อมูลโดยการสร้างเว็บไซต์โดยใช้ WIX.com พร้อมกับ Google Form สำหรับให้ ผู้คนทั่วไปอัปโหลดรูปโรคผิวหนังที่ตัวเองเป็นเพื่อที่จะได้นำข้อมูลไปใช้ในการพัฒนาโมเดลต่อไป และรวบรวมชุด ข้อมูลภาพจากอินเทอร์เน็ตที่เป็นข้อมูลเปิด จากนั้นตั้งชื่อชุดข้อมูลที่ได้รวบรวมมานั้นชื่อ PJ61403

การเตรียมชุดข้อมูล

<u>ตอนที่ 1</u> รวบรวมภาพแต่ละประเภทและนำมาคัดแยก ดังนี้ โรคผิวหนังชนิดที่ไม่เป็นอันตราย ได้แก่ โรคผื่นภูมิแพ้ผิวหนัง

โรคผิวหนังชนิดอื่น ๆ ที่อาจเป็นอันตราย ได้แก่ โรคสะเก็ดเงิน, โรคต่อมไขมันอักเสบ, โรคด่างขาว และ โรคกระเนื้อ

<u>ตอนที่ 2</u> คัดแยกภาพของโรคผิวหนังแต่ละประเภทเป็นแต่ละอวัยวะ ได้แก่ แขน, ลำตัว, มือ และขา โดย ที่แต่ละอวัยวะจะแบ่งเป็นโรคผื่นภูมิแพ้ผิวหนัง และโรคผิวหนังชนิดอื่น ๆ ที่อาจเป็นอันตราย

การแบ่งชุดข้อมูล

แบ่งชุดข้อมูล PJ61403 ในแต่ละอวัยวะเป็น

- Train set ร้อยละ 80 ของทั้งหมด
- Validation set ร้อยละ 10 ของทั้งหมด
- Test set ร้อยละ 10 ของทั้งหมด

การทำ Oversampling

- การพลิกภาพ ในแนวตั้งฉาก แนวระดับ
- การหมุนภาพ 90 องศา และ 270 องศา
- การครอบตัดรูปภาพพื้นที่ 50%

การพัฒนาโมเดลสำหรับการคัดแยกโรคผิวหนังในแต่ละส่วนของอวัยวะในชุดข้อมูล PJ61403

ตอนที่ 1 พัฒนาโมเดลโดยการใช้ Support Vector Machine

พัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในแต่ละส่วนของอวัยวะในชุดข้อมูล PJ61403 โดย การ Flatten ภาพแล้วใช้ Support Vector Machine ตามโมเดลต่าง ๆ จากนั้นทำการเปรียบเทียบค่า F1-score ของแต่ละโมเดลในแต่ละอวัยวะ

อวัยวะ	F1-score _{Linear}	F1-score _{Sigmoid}	F1-score _{Polynomial}	F1-score _{RBF}
แขน	F1-score _{Linear-แขน}	F1-score _{Sigmoid-แขน}	F1-score _{Polynomial-แขน}	F1-score _{RBF-แขน}
ลำตัว	F1-score _{Linear-ลำตัว}	F1-score _{Sigmoid-ลำตัว}	F1-score _{Polynomial-ลำตัว}	F1-score _{RBF-ลำตัว}
มือ	F1-score _{Linear-มือ}	F1-score _{Sigmoid-มือ}	F1-score _{Polynomial-มือ}	F1-score _{RBF-มือ}
ขา	F1-score _{Linear-ขา}	F1-score _{Sigmoid-ขา}	F1-score _{Polynomial-ขา}	F1-score _{RBF-ขา}

ตอนที่ 2 พัฒนาโมเดลโดยการใช้ Convolutional Neural Network

พัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในแต่ละส่วนของอวัยวะในชุดข้อมูล PJ61403 โดย การใช้ Convolutional Neural Network จากการใช้สถาปัตยกรรมที่ใช้ในการแข่งขัน ILSVRC ที่มีการใช้ขนาด รูป 224*224 pixels ด้วยการเทรนใหม่ทั้งหมด จากนั้นทำการเปรียบเทียบค่า F1-score ของแต่ละโมเดลในแต่ละ อวัยวะ

อวัยวะ	F1-score _{VGG16}	F1-score _{ResNet50}	F1-score _{MobileNet}	F1-score _{DenseNet121}	F1-score _{NASNetMobile}
แขน	F1-score _{vGG16-แขน}	F1-score _{ResNet50-แขน}	F1-score _{MobileNet-แขน}	F1-score _{DenseNet121-แขน}	F1-score _{NASNetMobile-แขน}
ลำตัว	F1-score _{vGG16-ลำตัว}	F1-score _{ResNet50-ลำตัว}	F1-score _{MobileNet-ลำตัว}	F1-score _{DenseNet121-ลำตัว}	F1-score _{NASNetMobile-ลำตัว}
มือ	F1-score _{vGG16-มือ}	F1-score _{ResNet50-มือ}	F1-score _{MobileNet-มือ}	F1-score _{DenseNet121-มือ}	F1-score _{NASNetMobile-} มือ
ขา	F1-score _{vGG16-ขา}	F1-score _{ResNet50-ขา}	F1-score _{MobileNet-ขา}	F1-score _{DenseNet121-ขา}	F1-score _{NASNetMobile-ชา}

การดำเนินงานครั้งที่ 5 การพัฒนาโมเดลสำหรับการคัดแยกโรคผิวหนังในชุดข้อมูล PJ61403 โดยการ แบ่งเป็น 2 โมเดล, การปรับปรุงวิธีการทำ Data Augmentation และใช้การปรับค่า Class weights ของแต่ ละประเภท

การเตรียมชุดข้อมูล

ครอบภาพให้เหลือเฉพาะแค่บริเวณที่เป็นโรค จากนั้นแบ่งภาพ ดังนี้

<u>ตอนที่ 1</u> สำหรับการพัฒนาโมเดลที่ 1 เพื่อแยกโรคผิวหนังชนิดที่ไม่เป็นอันตรายกับโรคผิวหนังชนิดอื่น ๆ ที่อาจเป็นอันตราย ดังนี้

โรคผิวหนังชนิดที่ไม่เป็นอันตราย ได้แก่ โรคผื่นภูมิแพ้ผิวหนัง

โรคผิวหนังชนิดอื่น ๆ ที่อาจเป็นอันตราย ได้แก่ โรคสะเก็ดเงิน, โรคต่อมไขมันอักเสบ, โรคด่างขาว, โรคกระเนื้อ

<u>ตอนที่ 2</u> สำหรับการพัฒนาโมเดลที่ 2 เพื่อแยกโรคผิวหนังชนิดอื่น ๆ ที่อาจเป็นอันตราย ได้แก่ โรคสะเก็ด
เงิน. โรคต่อมไขมันอักเสบ. โรคด่างขาว และโรคกระเนื้อ

การแบ่งชุดข้อมูล

แบ่งชุดข้อมูล PJ61403 ทั้ง 2 ตอนเป็น

- Train set ร้อยละ 80 ของทั้งหมด
- Validation set ร้อยละ 10 ของทั้งหมด
- Test set ร้อยละ 10 ของทั้งหมด

การทำ Data Augmentation

- การพลิกภาพ ในแนวตั้งฉาก และแนวระดับ
- การซูมภาพ 70%, 80%, 90%, 110%, 120% และ 130%
- การหมุนภาพแบบสุ่มระหว่าง 0 360 องศา
- การเลื่อนพิกเซลความสูงและความกว้าง 30%

โดยที่ทุกขั้นตอนจะใช้การสะท้อนพิกเซลในการเติมพิกเซลที่มีค่าเป็น 0 ในภาพที่ได้จากการทำ Data Augmentation แบบนี้ abcddcba|abcd|dcbaabcd

การศึกษาการปรับ Class weights

ศึกษาการคำนวณ Class weights ของแต่ละประเภทและปรับเพื่อให้เกิดความสมดุลของจำนวนภาพในแต่ละ ประเภท โดยใช้สมการนี้

$$W_j = \frac{n}{k \times n_j}$$

โดย W_j คือ Class weights ของภาพแต่ละประเภท n คือ จำนวนภาพทั้งหมด k คือ จำนวนประเภท n_j คือ จำนวนภาพของประเภท j

การพัฒนาโมเดลสำหรับการคัดแยกโรคผิวหนัง

<u>ตอนที่ 1</u> พัฒนาโมเดลที่ 1 สำหรับการคัดแยกโรคผิวหนังชนิดที่ไม่เป็นอันตรายกับโรคผิวหนังชนิดอื่น ๆ ที่ อาจเป็นอันตราย

1.1 พัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุดข้อมูล PJ61403 ในตอนที่ 1 โดยการ Flatten ภาพแล้วใช้ ใช้ Support Vector Machine ตามโมเดลต่าง ๆ และการปรับ Class weights ของแต่ละ ประเภท จากนั้นทำการเปรียบเทียบค่า F1-score ของแต่ละโมเดล

Kernel	Accuracy	Precision	Recall	F1-score
Linear-1	Accuracy _{Linear-1}	Precision _{Linear-1}	Recall _{Linear-1}	F1-score _{Linear-1}
Polynomial-1	Accuracy _{Poly-1}	Precision _{Poly-1}	Recall _{Poly-1}	F1-score _{Poly-1}
Radial Basis Function-1	Accuracy _{RBF-1}	Precision _{RBF-1}	Recall _{RBF-1}	F1-score _{RBF-1}
Sigmoid-1	Accuracy _{Sigmoid-1}	Precision _{Sigmoid-1}	Recall _{Sigmoid-1}	F1-score _{Sigmoid-1}

1.2 พัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุดข้อมูล PJ61403 ในตอนที่ 1 โดยการใช้ Convolutional Neural Network จากการใช้สถาปัตยกรรมที่ใช้ในการแข่งขัน ILSVRC ที่มีการใช้ขนาดรูป 224*224 pixels ด้วยการเทรนใหม่ทั้งหมด และการปรับ Class weights ของแต่ละประเภท จากนั้นทำการ เปรียบเทียบค่า F1-score ของแต่ละโมเดล

Architecture	Accuracy	Precision	Recall	F1-score
VGG16-1	Accuracy _{VGG16-1}	Precision _{VGG16-1}	Recall _{vGG16-1}	F1-score _{vGG16-1}
ResNet50-1	Accuracy _{ResNet50-1}	Precision _{ResNet50-1}	Recall _{ResNet50-1}	F1-score _{ResNet50-1}
MobileNet-1	Accuracy _{MobileNet-1}	Precision _{MobileNet-1}	Recall _{MobileNet-1}	F1-score _{MobileNet-1}
DenseNet121-1	Accuracy _{DenseNet121-1}	Precision _{DenseNet121-1}	Recall _{DenseNet121-1}	F1-score _{DenseNet121-1}
NASNetMobile-1	Accuracy _{NASNetMobile-1}	Precision _{NASNetMobile-1}	Recall _{NASNetMobile-1}	F1-score _{NASNetMoible-1}

<u>ตอนที่ 2</u> พัฒนาโมเดลที่ 2 สำหรับคัดแยกโรคผิวหนังชนิดอื่น ๆ ที่อาจเป็นอันตราย

2.1 พัฒนาโมเดลโดยการใช้ Support Vector Machine

พัฒนาโมเดลสำหรับคัดแยกประเภทโรคผิวหนังในชุดข้อมูล PJ61403 ในตอนที่ 2 โดยการ Flatten ภาพ แล้วใช้ Support Vector Machine ตามโมเดลต่าง ๆ และการปรับ Class weights ของแต่ละประเภท จากนั้น ทำการเปรียบเทียบค่า F1-score ของแต่ละโมเดล

Kernel	Accuracy	Precision	Recall	F1-score
Linear-2	Accuracy _{Linear-2}	Precision _{Linear-2}	Recall _{Linear-2}	F1-score _{Linear-2}
Polynomial-2	Accuracy _{Poly-2}	Precision _{Poly-2}	Recall _{Poly-2}	F1-score _{Poly-2}
Radial Basis Function-2	Accuracy _{RBF-2}	Precision _{RBF-2}	Recall _{RBF-2}	F1-score _{RBF-2}
Sigmoid-2	Accuracy _{Sigmoid-2}	Precision _{Sigmoid-2}	Recall _{Sigmoid-2}	F1-score _{Sigmoid-2}

2.2 พัฒนาโมเดลโดยการใช้ Convolutional Neural Network

พัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุดข้อมูล PJ61403 ในตอนที่ 2 โดยการใช้ Convolutional Neural Network จากการใช้สถาปัตยกรรมที่ใช้ในการแข่งขัน ILSVRC ที่มีการใช้ขนาดรูป 224*224 pixels ด้วยการเทรนใหม่ทั้งหมด และการปรับ Class weights ของแต่ละประเภท จากนั้นทำการ เปรียบเทียบค่า F1-score ของแต่ละโมเดล

Architecture	Accuracy	Precision	Recall	F1-score
VGG16-2	Accuracy _{VGG16-2}	Precision _{VGG16-2}	Recall _{vGG16-2}	F1-score _{VGG16-2}
ResNet50-2	Accuracy _{ResNet50-2}	Precision _{ResNet50-2}	Recall _{ResNet50-2}	F1-score _{ResNet50-2}
MobileNet-2	Accuracy _{MobileNet-2}	Precision _{MobileNet-2}	Recall _{MobileNet-2}	F1-score _{MobileNet-2}
DenseNet121-2	Accuracy _{DenseNet121-2}	Precision _{DenseNet121-2}	Recall _{DenseNet121-2}	F1-score _{DenseNet121-2}
NASNetMobile-2	Accuracy _{NASNetMobile-2}	Precision _{NASNetMobile-2}	Recall _{NASNetMobile-2}	F1-score _{NASNetMoible-2}

การดำเนินงานครั้งที่ 6 การพัฒนาโมเดลสำหรับการคัดแยกโรคผิวหนังในชุดข้อมูล PJ61403 โดยการ ปรับปรุงวิธีการทำ Data Augmentation และใช้การปรับค่า Class weights ของแต่ละประเภท การเตรียมชุดข้อมูล

แบ่งภาพชุดข้อมูล PJ61403 เป็นโฟลเดอร์ ได้แก่ โรคผื่นภูมิแพ้ผิวหนัง, โรคสะเก็ดเงิน, โรคต่อมไขมัน อักเสบ, โรคด่างขาว และโรคกระเนื้อ

การแบ่งชุดข้อมูล

แบ่งชุดข้อมูล PJ61403 เป็น

- Train set ร้อยละ 80 ของทั้งหมด
- Validation set ร้อยละ 10 ของทั้งหมด
- Test set ร้อยละ 10 ของทั้งหมด

การทำ Data Augmentation

- การพลิกภาพ ในแนวตั้งฉาก และแนวระดับ
- การซูมภาพ 60%, 70%, 80%, 90%, 110%, 120% และ 130%
- การหมุนภาพแบบสุ่มระหว่าง 0 360 องศา
- การเลื่อนพิกเซลความสูงและความกว้าง 30%

โดยที่ทุกขั้นตอนจะใช้การสะท้อนพิกเซลในการเติมพิกเซลที่มีค่าเป็น 0 ในภาพที่ได้จากการทำ Data Augmentation แบบนี้ abcddcba|abcd|dcbaabcd

การพัฒนาโมเดลสำหรับการคัดแยกโรคผิวหนัง

ตอนที่ 1 พัฒนาโมเดลโดยการใช้ Support Vector Machine

พัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุดข้อมูล PJ61403 โดยการ Flatten ภาพแล้วใช้ Support Vector Machine ตามโมเดลต่าง ๆ และการปรับ Class weights ของแต่ละประเภท จากนั้นทำการ เปรียบเทียบค่า F1-score ของแต่ละโมเดล

Kernel	Accuracy	Precision	Recall	F1-score
Linear	Accuracy _{Linear}	Precision _{Linear}	Recall _{Linear}	F1-score _{Linear}
Polynomial	Accuracy _{Poly}	Precision _{Poly}	Recall _{Poly}	F1-score _{Poly}
Radial Basis Function	Accuracy _{RBF}	Precision _{RBF}	Recall _{RBF}	F1-score _{RBF}
Sigmoid	Accuracy _{Sigmoid}	Precision _{Sigmoid}	Recall _{Sigmoid}	F1-score _{Sigmoid}

ตอนที่ 2 พัฒนาโมเดลโดยการใช้ Convolutional Neural Network

พัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุดข้อมูล PJ61403 โดยการใช้ Convolutional Neural Network จากการใช้สถาปัตยกรรมที่ใช้ในการแข่งขัน ILSVRC ที่มีการใช้ขนาดรูป 224*224 pixels ด้วย การเทรนใหม่ทั้งหมด และการปรับ Class weights ของแต่ละประเภท จากนั้นทำการเปรียบเทียบค่า F1-score ของแต่ละโมเดล

Architecture	Accuracy	Precision	Recall	F1-score
VGG16	Accuracy _{VGG16}	Precision _{VGG16}	Recall _{VGG16}	F1-score _{VGG16}
ResNet50	Accuracy _{ResNet50}	Precision _{ResNet50}	Recall _{ResNet50}	F1-score _{ResNet50}
MobileNet	Accuracy _{MobileNet}	Precision _{MobileNet}	Recall _{MobileNet}	F1-score _{MobileNet}
DenseNet121	Accuracy _{DenseNet121}	Precision _{DenseNet121}	Recall _{DenseNet121}	F1-score _{DenseNet121}
NASNetMobile	Accuracy _{NASNetMobile}	Precision _{NASNetMobile}	Recall _{NASNetMobile}	F1-score _{NASNetMoible}

การดำเนินงานครั้งที่ 7 การศึกษาการพัฒนาโมเดลสำหรับการคัดแยกประเภทภาพในชุดข้อมูล Cifar-10 โดย การใช้ Convolutional Neural Network

การแบ่งชุดข้อมูล

แบ่งชุดข้อมูล Cifar-10 เป็น

- Train set ร้อยละ 70 ของทั้งหมด
- Validation set ร้อยละ 20 ของทั้งหมด
- Test set ร้อยละ 10 ของทั้งหมด

การศึกษาการพัฒนาโมเดลสำหรับการคัดแยกประเภทภาพในชุดข้อมูล Cifar-10 โดยการใช้ Convolutional Neural Network

ฝึกการพัฒนา Convolutional Neural Network โดยการใช้ Transfer Learning และการ Fine Tuning ได้แก่ Hyperparameter tuning, Regularization และ Optimization

Architecture	Accuracy	Precision	Recall	F1-score
Model	Accuracy _{Model}	Precision _{Model}	Recall _{Model}	F1-score _{Model}

การดำเนินงานครั้งที่ 8 การพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุดข้อมูล Skin Cancer MNIST: HAM10000 โดยการใช้ Convolutional Neural Network เพื่อนำ Weights ไป Transfer Learning ให้กับการพัฒนาโมเดลสำหรับคัดการแยกประเภทโรคผิวหนังในชุดข้อมูล PJ61403 การเตรียมชุดข้อมูล

มีการเปลี่ยนแปลงประเภทในชุดข้อมูล PJ61403 โดยการเพิ่มประเภทผิวหนังปกติ และตัดโรคด่างขาว ออกไปเนื่องจากมีจำนวนที่น้อย จากนั้นครอปรูปให้เหลือบริเวณที่เป็นโรค

การแบ่งชุดข้อมูล

แบ่งชุดข้อมูล Skin Cancer MNIST: HAM10000 เป็น

- Train set ร้อยละ 63 ของทั้งหมด
- Validation set ร้อยละ 27 ของทั้งหมด
- Test set ร้อยละ 10 ของทั้งหมด

การทำ Data Augmentation

- การพลิกภาพ ในแนวตั้งฉาก และแนวระดับ
- การซูมภาพ 90% และ 110%
- การหมุนภาพแบบสุ่มระหว่าง 0 360 องศา
- การเลื่อนพิกเซลความสูงและความกว้าง 10%

โดยที่ทุกขั้นตอนจะใช้การสะท้อนพิกเซลในการเติมพิกเซลที่มีค่าเป็น 0 ในภาพที่ได้จากการทำ Data Augmentation แบบนี้ abcddcba|abcd|dcbaabcd

การพัฒนาโมเดลสำหรับการคัดแยกโรคผิวหนัง

ตอนที่ 1 การพัฒนาโมเดลสำหรับการคัดแยกโรคผิวหนังในชุดข้อมูล Skin Cancer MNIST: HAM10000 โดยการใช้ Convolutional Neural Network จากการใช้สถาปัตยกรรมที่ใช้ในการแข่งขัน ILSVRC ที่มีการใช้ ขนาดรูป 224*224 pixels และใช้เทคนิคต่าง ๆ ด้วยการเทรนใหม่ทั้งหมด จากนั้นทำการเปรียบเทียบค่า F1-score ของแต่ละโมเดล

1.1 ใช้การ Oversampling

Architecture	Accuracy	Precision	Recall	F1-score
VGG16	Accuracy _{VGG16}	Precision _{vGG16}	Recall _{vGG16}	F1-score _{VGG16}
ResNet50	Accuracy _{ResNet50}	Precision _{ResNet50}	Recall _{ResNet50}	F1-score _{ResNet50}
DenseNet121	Accuracy _{DenseNet121}	Precision _{DenseNet121}	Recall _{DenseNet121}	F1-score _{DenseNet121}

1.2 ใช้การปรับ Class weights ของแต่ละประเภท

Architecture	Accuracy	Precision	Recall	F1-score
VGG16	Accuracy _{VGG16}	Precision _{VGG16}	Recall _{VGG16}	F1-score _{VGG16}
ResNet50	Accuracy _{ResNet50}	Precision _{ResNet50}	Recall _{ResNet50}	F1-score _{ResNet50}
DenseNet121	Accuracy _{DenseNet121}	Precision _{DenseNet121}	Recall _{DenseNet121}	F1-score _{DenseNet121}

1.3 ใช้ Focal loss

Architecture	Accuracy	Precision	Recall	F1-score
VGG16	Accuracy _{VGG16}	Precision _{VGG16}	Recall _{vGG16}	F1-score _{VGG16}
ResNet50	Accuracy _{ResNet50}	Precision _{ResNet50}	Recall _{ResNet50}	F1-score _{ResNet50}
DenseNet121	Accuracy _{DenseNet121}	Precision _{DenseNet121}	Recall _{DenseNet121}	F1-score _{DenseNet121}

ตอนที่ 2 การพัฒนาโมเดลสำหรับการคัดแยกโรคผิวหนังในชุดข้อมูล Skin Cancer MNIST: HAM10000 โดยการใช้ Convolutional Neural Network จากการใช้สถาปัตยกรรมที่ใช้ในการแข่งขัน ILSVRC ที่มีการใช้ ขนาดรูป 224*224 pixels และใช้เทคนิคต่าง ๆ ด้วยการ Transfer Learning จาก Pre-Trained Weights ของ ImageNet และการ Fine Tuning จากนั้นทำการเปรียบเทียบค่า F1-score ของแต่ละโมเดล

2.1 ใช้การ Oversampling

Architecture	Accuracy	Precision	Recall	F1-score
VGG16	Accuracy _{VGG16}	Precision _{VGG16}	Recall _{VGG16}	F1-score _{vGG16}
ResNet50	Accuracy _{ResNet50}	Precision _{ResNet50}	Recall _{ResNet50}	F1-score _{ResNet50}
DenseNet121	Accuracy _{DenseNet121}	Precision _{DenseNet121}	Recall _{DenseNet121}	F1-score _{DenseNet121}

2.2 ใช้การปรับ Class weights ของแต่ละประเภท

Architecture	Accuracy	Precision	Recall	F1-score
VGG16	Accuracy _{VGG16}	Precision _{VGG16}	Recall _{vGG16}	F1-score _{vGG16}
ResNet50	Accuracy _{ResNet50}	Precision _{ResNet50}	Recall _{ResNet50}	F1-score _{ResNet50}
DenseNet121	Accuracy _{DenseNet121}	Precision _{DenseNet121}	Recall _{DenseNet121}	F1-score _{DenseNet121}

2.3 ใช้ Focal loss

Architecture	Accuracy	Precision	Recall	F1-score
VGG16	Accuracy _{VGG16}	Precision _{VGG16}	Recall _{VGG16}	F1-score _{VGG16}
ResNet50	sNet50 Accuracy _{ResNet50}		Recall _{ResNet50}	F1-score _{ResNet50}
DenseNet121	Accuracy _{DenseNet121}	Precision _{DenseNet121}	Recall _{DenseNet121}	F1-score _{DenseNet121}

<u>ตอนที่ 2.5</u> ทำการตัดโรคผิวหนังประเภท Melanocytic nevi ในชุดข้อมูล Skin Cancer MNIST:

HAM10000 ออก ทำให้เหลือโรคผิวหนัง 6 ประเภท เพื่อช่วยแก้ปัญหาในเรื่องความไม่สมดุลของชุดข้อมูล จากนั้น
พัฒนาโมเดลสำหรับการคัดแยกโรคผิวหนังในชุดข้อมูล PJ61403 โดยการใช้ Convolutional Neural Network
จากการใช้สถาปัตยกรรมที่ใช้ในการแข่งขัน ILSVRC ที่มีการใช้ขนาดรูป 224*224 pixels และใช้เทคนิคต่าง ๆ
ด้วยการเทรนใหม่ทั้งหมด จากนั้นทำการเปรียบเทียบค่า F1-score ของแต่ละโมเดล

2.5.1 ใช้การ Oversampling

Architecture	Accuracy	Precision	Recall	F1-score
VGG16	Accuracy _{VGG16}	Precision _{VGG16}	Recall _{vGG16}	F1-score _{VGG16}
ResNet50	Accuracy _{ResNet50}	Precision _{ResNet50}	Recall _{ResNet50}	F1-score _{ResNet50}
DenseNet121	Accuracy _{DenseNet121}	Precision _{DenseNet121}	Recall _{DenseNet121}	F1-score _{DenseNet121}

2.5.2 ใช้การปรับ Class weights ของแต่ละประเภท

Architecture	Accuracy	Precision	Recall	F1-score
VGG16	Accuracy _{VGG16}	Precision _{vGG16}	Recall _{vGG16}	F1-score _{VGG16}
ResNet50	Accuracy _{ResNet50}	Precision _{ResNet50}	Recall _{ResNet50}	F1-score _{ResNet50}
DenseNet121	Accuracy _{DenseNet121}	Precision _{DenseNet121}	Recall _{DenseNet121}	F1-score _{DenseNet121}

2.5.3 ใช้ Focal loss

Architecture	Accuracy	Precision	Recall	F1-score
VGG16	Accuracy _{VGG16}	Precision _{VGG16}	Recall _{VGG16}	F1-score _{VGG16}
ResNet50	Accuracy _{ResNet50}	Precision _{ResNet50}	Recall _{ResNet50}	F1-score _{ResNet50}
DenseNet121	Accuracy _{DenseNet121}	Precision _{DenseNet121}	Recall _{DenseNet121}	F1-score _{DenseNet121}

จากนั้นทำการเลือกโมเดลที่มีค่า F1-score สูงที่สุดมา 3 โมเดลแรกในแต่ละตอน แล้วพิจารณาว่าโมเดลนั้นมีการ เทคำตอบหรือไม่ โดยการคำนวณจากการใช้ส่วนเบี่ยงเบนเฉลี่ยของโมเดลตามสูตรนี้

$$M.D. = \frac{\sum_{i=1}^{N} |X_i - \bar{X}|}{N}$$

โดย M.D. คือ ส่วนเบี่ยงเบนเฉลี่ย

 $ar{X}$ คือ ค่าเฉลี่ยเลขคณิต

 X_i คือ คะแนนของข้อมูลแต่ละตัว

N คือ จำนวนข้อมูล

น้ำค่า F1-score ของแต่โมเดลมาลบและบวกด้วยค่าส่วนเบี่ยงเบนเฉลี่ย จะได้

ค่าต่ำสุด = F1-score - M.D.

ค่าสูงสุด = F1-score + M.D.

พิจารณาว่าในแต่ละโมเดลจำนวนประเภทที่มีค่า F1-score เกินค่าต่ำสุดกับค่าสูงสุดเป็นจำนวนเท่าไหร่ แล้วทำ การเลือกโมเดลที่มีการเทคำตอบของแต่ละประเภทน้อยที่สุดเพื่อนำไป Transfer Learning ต่อในตอนที่ 4

Model	F1-score	จำนวนประเภทที่มีการเทคำตอบ
Best-Model-1	F1-score _{Best-Model-1}	Best-Model-1 _n
Best-Model-2	F1-score _{Best-Model-2}	Best-Model-2 _n
Best-Model-3	F1-score _{Best-Model-3}	Best-Model-3 _n

แบ่งชุดข้อมูล PJ61403 เป็น

- Train set ร้อยละ 50 ของทั้งหมด
- Validation set ร้อยละ 25 ของทั้งหมด
- Test set ร้อยละ 25 ของทั้งหมด

การทำ Data Augmentation

- การพลิกภาพ ในแนวตั้งฉาก และแนวระดับ
- การซูมภาพ 90% และ 110%
- การหมุนภาพแบบสุ่มระหว่าง 0 360 องศา
- การเลื่อนพิกเซลความสูงและความกว้าง 10%

โดยที่ทุกขั้นตอนจะใช้การสะท้อนพิกเซลในการเติมพิกเซลที่มีค่าเป็น 0 ในภาพที่ได้จากการทำ Data Augmentation แบบนี้ abcddcba|abcd|dcbaabcd

ตอนที่ 4 การพัฒนาโมเดลสำหรับการคัดแยกโรคผิวหนังในชุดข้อมูล PJ61403 โดยการใช้
Convolutional Neural Network จากการใช้สถาปัตยกรรมที่ใช้ในการแข่งขัน ILSVRC ที่มีการใช้ขนาดรูป
224*224 pixels และใช้เทคนิคต่าง ๆ ด้วยการ Transfer Learning Weights จากการทดลองตอนที่ 3 จากนั้น
ทำการ Fine Tuning และเปรียบเทียบค่า F1-score ของแต่ละโมเดล

Architecture	Accuracy	Precision	Recall	F1-score
Model-X1	Accuracy _{Model-X1}	Precision _{Model-X1}	Recall _{Model-X1}	F1-score _{Model-X1}
Model-X2	Accuracy _{Model-X2}	Precision _{Model-X2}	Recall _{Model-X2}	F1-score _{Model-X2}
Model-X3	Accuracy _{Model-X3}	Precision _{Model-X3}	Recall _{Model-X3}	F1-scores _{Model-X3}

การดำเนินงานครั้งที่ 9 การศึกษาการ Ensemble โมเดล โดยการหาค่าเฉลี่ยเลขคณิตของผลการทำนาย โมเดลในแต่ละประเภท

การศึกษาการ Ensemble โมเดล

ศึกษาหลักการทำงานและวิธีการเขียนโปรแกรมการ Ensemble โมเดล โดยการหาค่าเฉลี่ยเลขคณิตของ ผลการทำนายโมเดลในแต่ละประเภทที่จะได้เป็นความน่าจะเป็น จากนั้นนำโมเดล Model-X1, Model-X2, และ Model-X3 มาทำการ Ensembel ตามที่ได้ศึกษาไว้

$$\bar{X} = \frac{\sum X}{n}$$

โดย $ar{X}$ = ค่าเฉลี่ยเลขคณิตของผลทำนาย

X = ผลการทำนายของโมเดล

 $m{n}$ = จำนวนโมเดล

ผลการดำเนินงาน

ผลการดำเนินงานครั้งที่ 1 การศึกษาการพัฒนาโมเดลสำหรับการคัดแยกประเภทตัวเลขในชุดข้อมูล MNIST โดยการใช้ Convolutional Neural Network

ทดสอบด้วย Test set ได้ค่า accuracy 0.99

ผลการดำเนินงานครั้งที่ 2 การพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุดข้อมูลโรคผื่นภูมิแพ้ ผิวหนังและโรคผื่นแพ้ผิวสัมผัส โดยการใช้ Convolutional Neural Network

ทดสอบด้วย Test set ได้ค่า accuracy 0.50

ผลการดำเนินงานครั้งที่ 3 การศึกษาการพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุดข้อมูล Skin Cancer MNIST: HAM10000 โดยการใช้ Convolutional Neural Network

กราฟแสดงจำนวนภาพโรคผิวหนังแต่ละประเภทในชุดข้อมูล Skin Cancer MNIST: HAM10000

3.1 กราฟแสดงชุดข้อมูลแต่ละโรคผิวหนัง

จากกราฟ 3.1 พบว่าจำนวนชุดข้อมูลโรคผิวหนังไม่มีความสมดุลและมีจำนวนที่ไม่มาก

Architecture	Accuracy	Precision	Recall	F1-score
Model	0.72	0.61	0.32	0.36

ผลการดำเนินงานครั้งที่ 4 การพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุดข้อมูล PJ61403 โดย การแบ่งส่วนอวัยวะ

<u>ตอนที่ 1</u> ตารางการเปรียบเทียบค่า F1-score ของการพัฒนาโมเดลสำหรับการคัดแยกประเภทโรค ผิวหนังในแต่ละส่วนของอวัยวะในชุดข้อมูล PJ61403 ตามโมเดลต่าง ๆ

อวัยวะ	F1-score _{Linear}	F1-score _{Sigmoid}	F1-score _{Polynomial}	F1-score _{RBF}
แขน	0.65	0.47	0.66	0.65
ลำตัว	0.48	0.26	0.26	0.29
มือ	0.65	0.26	0.38	0.45
ชา	0.58	0.26	0.26	0.26

<u>ตอนที่ 2</u> ตารางการเปรียบเทียบค่า F1-score ของการพัฒนาโมเดลสำหรับการคัดแยกประเภทโรค ผิวหนังในแต่ละส่วนของอวัยวะในชุดข้อมูล PJ61403 โดยใช้สถาปัตยกรรมที่ใช้ในการแข่งขัน ILSVRC ที่มีการใช้ ขนาดรูป 224*224 pixels

อวัยวะ	F1-score _{VGG16}	F1-score _{ResNet50}	F1-score _{MobileNet}	F1-score _{DenseNet121}	F1-score _{NASNetMobile}
แขน	0.33	0.54	0.33	0.84	0.62
ลำตัว	0.33	0.42	0.33	0.77	0.83
มือ	0.33	0.75	0.33	0.94	0.90
ขา	0.33	0.53	0.33	0.83	0.69

ผลการดำเนินงานครั้งที่ 5 การพัฒนาโมเดลสำหรับการคัดแยกโรคผิวหนังในชุดข้อมูล PJ61403 โดยการ แบ่งเป็น 2 โมเดล, การปรับปรุงวิธีการทำ Data Augmentation ใช้การปรับค่า Class weights ของแต่ละ ประเภท

<u>ตอนที่ 1</u> พัฒนาโมเดลที่ 1 สำหรับการคัดแยกโรคผิวหนังชนิดที่ไม่เป็นอันตรายกับโรคผิวหนังชนิดอื่น ๆ ที่อาจเป็นอันตราย

1.1 ตารางการเปรียบเทียบค่า Metrics ของการพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุด ข้อมูล PJ61403 โดยการใช้ Support Vector Machine ตามโมเดลต่าง ๆ และการปรับ Class weights ของแต่ ละประเภท

Kernel	Precision	Recall	F1-score
Linear	0.65	0.67	0.65
Sigmoid	0.47	0.69	0.56
Polynomial	0.47	0.69	0.56
RBF	0.47	0.69	0.56

1.2 ตารางการเปรียบเทียบค่า Metrics ของการพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุด ข้อมูล PJ61403 โดยการใช้ Convolutional Neural Network จากการใช้สถาปัตยกรรมที่ใช้ในการแข่งขัน ILSVRC ที่มีการใช้ขนาดรูป 224*224 pixels ด้วยการเทรนใหม่ทั้งหมด และการปรับ Class weights ของแต่ละ ประเภท

Architecture	Precision	Recall	F1-score
VGG16	0.09	0.29	0.13
ResNet50	0.50	0.50	0.50
MobileNet	0.81	0.75	0.76
DenseNet121	0.66	0.71	0.65
NASNetMobile	0.88	0.88	0.88

<u>ตอนที่ 2</u> พัฒนาโมเดลที่ 2 เพื่อแยกโรคผิวหนังชนิดอื่น ๆ ที่อาจเป็นอันตราย

2.1 ตารางการเปรียบเทียบค่า Metrics ของการพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุด ข้อมูล PJ61403 โดยการใช้ Support Vector Machine ตามโมเดลต่าง ๆ และการปรับ Class weights ของแต่ ละประเภท

Kernel	Precision	Recall	F1-score
Linear	0.62	0.69	0.65
Sigmoid	0.19	0.44	0.27
Polynomial	0.19	0.44	0.27
RBF	0.19	0.44	0.27

2.2 ตารางการเปรียบเทียบค่า Metrics ของการพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุด ข้อมูล PJ61403 โดยการใช้ Convolutional Neural Network จากการใช้สถาปัตยกรรมที่ใช้ในการแข่งขัน ILSVRC ที่มีการใช้ขนาดรูป 224*224 pixels ด้วยการเทรนใหม่ทั้งหมด และการปรับ Class weights ของแต่ละ ประเภท

Architecture	Precision	Recall	F1-score
VGG16	0.22	0.47	0.30
ResNet50	0.63	0.42	0.31
MobileNet	0.67	0.74	0.68
DenseNet121	0.78	0.63	0.60
NASNetMobile	0.91	0.89	0.87

ผลการดำเนินงานครั้งที่ 6 การพัฒนาโมเดลสำหรับการคัดแยกโรคผิวหนังในชุดข้อมูล PJ61403 โดยการ ปรับปรุงวิธีการทำ Data Augmentation และใช้การปรับค่า Class weights ของแต่ละประเภท

<u>ตอนที่ 1</u> ตารางการเปรียบเทียบค่า Metrics ของการพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนัง ในชุดข้อมูล PJ61403 โดยการ Flatten ภาพแล้วใช้ Support Vector Machine ตามโมเดลต่าง ๆ และการปรับ Class weights ของแต่ละประเภท

Kernel	Accuracy	Precision	Recall	F1-score
Linear	0.60	0.60	0.57	0.56
Polynomial	0.60	0.58	0.54	0.54
RBF	0.47	0.44	0.39	0.38
Sigmoid	0.38	0.09	0.25	0.14

ตอนที่ 2 ตารางการเปรียบเทียบค่า Metrics ของการพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนัง ในชุดข้อมูล PJ61403 โดยการใช้ Convolutional Neural Network จากการใช้สถาปัตยกรรมที่ใช้ในการแข่งขัน ILSVRC ที่มีการใช้ขนาดรูป 224*224 pixels ด้วยการเทรนใหม่ทั้งหมด และการปรับ Class weights ของแต่ละ ประเภท

Architecture	Accuracy	Precision	Recall	F1-score
VGG16	0.27	0.07	0.25	0.11
ResNet50	0.27	0.07	0.25	0.11
MobileNet	0.38	0.34	0.29	0.19
DenseNet121	0.38	0.70	0.40	0.35
NASNetMobile	0.73	0.83	0.71	0.74

ผลการดำเนินงานครั้งที่ 7 การศึกษาการพัฒนาโมเดลสำหรับการคัดแยกประเภทภาพในชุดข้อมูล Cifar-10 โดยการใช้ Convolutional Neural Network

Architecture	Accuracy	Precision	Recall	F1-score
Model	0.86	0.86	0.86	0.86

ผลการดำเนินงานครั้งที่ 8 การพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุดข้อมูล Skin Cancer MNIST: HAM10000 โดยการใช้ Convolutional Neural Network เพื่อนำ Weights ไป Transfer Learning ให้กับการพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุดข้อมูล PJ61403

การพัฒนาโมเดลสำหรับการคัดแยกโรคผิวหนัง

<u>ตอนที่ 1</u> ตารางการเปรียบเทียบค่า Metrics ของการการพัฒนาโมเดลสำหรับการคัดแยกโรคผิวหนังใน ชุดข้อมูล Skin Cancer MNIST: HAM10000 โดยการใช้ Convolutional Neural Network จากการใช้ สถาปัตยกรรมที่ใช้ในการแข่งขัน ILSVRC ที่มีการใช้ขนาดรูป 224*224 pixels และใช้เทคนิคต่าง ๆ ด้วยการเทรน ใหม่ทั้งหมด

1.1 ใช้การ Oversampling

Architecture	Accuracy	Precision	Recall	F1-score
VGG16	0.82	0.70	0.70	0.69
ResNet50	0.79	0.70	0.73	0.69
DenseNet121	0.85	0.80	0.74	0.75

1.2 ใช้การปรับ Class weights ของแต่ละประเภท

Architecture	Accuracy	Precision	Recall	F1-score
VGG16	0.76	0.62	0.71	0.65
ResNet50	0.81	0.67	0.74	0.70
DenseNet121	0.82	0.66	0.75	0.69

1.3 ใช้ Focal loss

Architecture	Accuracy	Precision	Recall	F1-score
VGG16	0.83	0.75	0.68	0.71
ResNet50	0.85	0.75	0.73	0.73
DenseNet121	0.87	0.82	0.74	0.77

ตารางการเปรียบเทียบจำนวนที่มีการเทคำตอบของโมเดลที่มีค่า F1-score สูงสุด 3 อันดับแรกของตอนที่ 1

Model	F1-score	จำนวนประเภทที่มีการเทคำตอบ
DenseNet121-Focal loss	0.77	5
DenseNet121-Oversampling	0.75	3
ResNet50-Focal loss	0.73	3

ตอนที่ 2 ตารางการเปรียบเทียบค่า Metrics ของการพัฒนาโมเดลสำหรับการคัดแยกโรคผิวหนังในชุด ข้อมูล Skin Cancer MNIST: HAM10000 โดยการใช้ Convolutional Neural Network จากการใช้ สถาปัตยกรรมที่ใช้ในการแข่งขัน ILSVRC ที่มีการใช้ขนาดรูป 224*224 pixels และใช้เทคนิคต่าง ๆ ด้วยการ Transfer Learning จาก Pre-Trained Weights ของ ImageNet และการ Fine Tuning

2.1 ใช้การ Oversampling

Architecture	Accuracy	Precision	Recall	F1-score
VGG16	0.81	0.74	0.67	0.69
ResNet50	0.79	0.65	0.69	0.66
DenseNet121	0.81	0.72	0.75	0.72

2.2 ใช้การปรับ Class weights ของแต่ละประเภท

Architecture	Accuracy	Precision	Recall	F1-score
VGG16	0.52	0.38	0.62	0.41
ResNet50	0.70	0.55	0.71	0.60
DenseNet121	0.77	0.61	0.72	0.64

2.3 ใช้ Focal loss

Architecture	Accuracy	Precision	Recall	F1-score
VGG16	0.80	0.74	0.61	0.65
ResNet50	0.79	0.75	0.54	0.59
DenseNet121	0.84	0.78	0.67	0.72

ตอนที่ 2.5 ตารางการเปรียบเทียบค่า Metrics ของการพัฒนาโมเดลสำหรับการคัดแยกโรคผิวหนังในชุด ข้อมูล PJ61403 โดยการใช้ Convolutional Neural Network จากการใช้สถาปัตยกรรมที่ใช้ในการแข่งขัน ILSVRC ที่มีการใช้ขนาดรูป 224*224 pixels และใช้เทคนิคต่าง ๆ ด้วยการเทรนใหม่ทั้งหมด โดยมีการตัดโรค ผิวหนังประเภท Melanocytic nevi ในชุดข้อมูล Skin Cancer MNIST: HAM10000 ออกทำให้เหลือโรคผิวหนัง 6 ประเภท เพื่อช่วยแก้ปัญหาในเรื่องความไม่สมดุลของชุดข้อมูล

2.5.1 ใช้การ Oversampling

Architecture	Accuracy	Precision	Recall	F1-score
VGG16	0.77	0.81	0.75	0.78
ResNet50	0.77	0.78	0.79	0.78
DenseNet121	0.83	0.81	0.80	0.80

2.5.2 ใช้การปรับ Class weights ของแต่ละประเภท

Architecture	Accuracy	Precision	Recall	F1-score
VGG16	0.77	0.76	0.79	0.77
ResNet50	0.81	0.82	0.81	0.80
DenseNet121	0.84	0.85	0.83	0.84

2.5.3 ใช้ Focal loss

Architecture	Accuracy	Precision	Recall	F1-score
VGG16	0.77	0.77	0.71	0.73
ResNet50	0.83	0.82	0.80	0.81
DenseNet121	0.83	0.86	0.81	0.83

ตารางการเปรียบเทียบจำนวนที่มีการเทคำตอบของโมเดลที่มีค่า F1-score สูงสุด 3 อันดับแรกของตอนที่ 2.5

Model	F1-score	จำนวนประเภทที่มีการเทคำตอบ
DenseNet121-Class weights	0.84	2
DenseNet121-Focal loss	0.83	2
ResNet50-Focal loss	0.81	3

ตอนที่ 3 ตารางการเปรียบเทียบค่า Metrics ของการพัฒนาโมเดลสำหรับการคัดแยกโรคผิวหนังในชุด ข้อมูล PJ61403 โดยการใช้ Convolutional Neural Network จากการใช้สถาปัตยกรรมที่ใช้ในการแข่งขัน ILSVRC ที่มีการใช้ขนาดรูป 224*224 pixels และใช้เทคนิคต่าง ๆ ด้วยการ Transfer Learning Weights จากการทดลองตอนที่ 2.5 จากนั้นทำการ Fine Tuning

Architecture	Accuracy	Precision	Recall	F1-score
DenseNet121-1	0.92	0.93	0.92	0.92
DenseNet121-2	0.86	0.88	0.86	0.86
ResNet50-1	0.84	0.85	0.85	0.84

ผลการดำเนินงานครั้งที่ 9 การ Ensemble โมเดล โดยการหาค่าเฉลี่ยเลขคณิต

	Accuracy	Precision	Recall	F1-score
Ensemble	0.90	0.90	0.89	0.89

บทสรุป

สรุปผลการปฏิบัติงาน

ก่อนปฏิบัติงานทางผู้ปฏิบัติงานไม่มีพื้นฐานด้านการเรียนรู้ของเครื่องรวมถึงมีพื้นฐานการเขียนโปรแกรม เพียงเล็กน้อยจึงนำไปสู่การดำเนินงานครั้งที่ 1 คือเริ่มจากการฝึกเขียนโปรแกรมภาษาไพธอนจากนั้นก็เรียนรู้ วิธีการเขียนโปรแกรมด้านการเรียนรู้ของเครื่องโดยใช้ Convolutional Neural Network เพื่อคัดแยกตัวเลขในชุด ข้อมูล MNIST แล้วจึงค่อยเริ่มลงมือปฏิบัติงานในการดำเนินครั้งที่ 2 ซึ่งก็คือเก็บชุดข้อมูลโรคผื่นภูมิแพ้ผิวหนังผื่น ภูมิแพ้ผิวหนังและโรคผื่นแพ้ผิวสัมผัส ซึ่งมีจำนวนเพียงแค่ 90 ภาพ เพื่อนำมาพัฒนาโมเดล เมื่อทดสอบโมเดลได้ค่า accuracy 0.59 จึงนำไปสู่การดำเนินครั้งที่ 3 เพื่อที่ทดสอบสมมติฐาน ว่าถ้ามีชุดข้อมูลที่เกี่ยวกับโรคผิวหนังมาก ขึ้นจะทำให้มีค่า accuracy สูงขึ้นหรือไม่ แต่เนื่องจากชุดข้อมูลนี้มีความไม่สมดุล ทำให้พบว่าข้อมูลที่มีความไม่ สมดุลจะส่งผลต่อการทำนายโมเดล โดยโมเดลจะเทคำตอบไปประเภทที่มีจำนวนมาก ซึ่งจะทราบได้จากการใช้ Confusion Matrix แล้วคำนวณออกมาเป็นค่า Metrics ต่าง ๆ ได้แก่ Preicision, Recall และ F1-score การ ดำเนินครั้งที่ 4 เนื่องจากรูปของแต่ละอวัยวะมีความแตกต่างกัน เช่น แขนจะมีลักษณะเป็นท่อนยาว, ลำตัวจะมี ลักษณะเรียบ และมือจะมีนิ้วแยกออกมา แต่เมื่อทำการแบ่งส่วนเป็นอวัยวะจะทำให้ชุดข้อมูลนั้นแบ่งเป็นหลาย ส่วนที่มีจำนวนในแต่ละส่วนน้อยลง ผู้ปฏิบัติงานจึงใช้ Support Vector Machine ในการคัดแยกเนื่องจากเป็นวิธี ที่เหมาะกับชุดข้อมูลที่ไม่มาก จากนั้นจึงใช้ Convolutional Neural Network เพื่อเปรียบเทียบว่าวิธีการใดให้ ผลลัพธ์ที่ดีกว่ากัน ซึ่งผลลัพธ์ที่ได้คือจาก Convolutional Neural Network ดีกว่า จากนั้นทางผู้ปฏิบัติงานมี ความคิดว่า จะไม่แบ่งเป็นอวัยวะ แต่จะใช้วิธีครอปรูปให้เหลือเพียงบริเวณที่มีโรคเท่านั้นเพื่อตัดส่วนที่ไม่จำเป็น ของภาพออกไป จึงนำไปสู่การดำเนินงานครั้งที่ 5 โดยแบ่งเป็น 2 โมเดล โมเดลแรกเพื่อแยกระหว่างโรคกับโรค ผิวหนังอื่นๆ และโมเดลที่ 2 ซึ่งในการดำเนินการครั้งที่ 5 นี้ ได้เปลี่ยนวิธีการ Data Augmentation จากการเติม ค่าพิกเซลที่มีค่า 0 แบบ abcddcba|abcd|dcbaabcd และใช้วิธีการปรับ Class weights เพื่อแก้ปัญหาชุดข้อมูล ไม่สมดุล จากนั้นการดำเนินการต่อครั้งที่ 6 โดยได้มีการคัดแยกภาพในชุดข้อมูลบางส่วนที่ไม่มีความชัดเจนออก ไม่ มีการแยกโมเดล และใช้วิธีการปรับ Class weights เพื่อแก้ปัญหาชุดข้อมูลไม่สมดุล จากนั้นพัฒนาโมเดล ผลที่ได้ คือ Convolutional Neural Network ให้ผลที่ดีกว่า Support Vector Machine แต่เมื่อตรวจสอบ Grad-CAM พบว่าโมเดลมองจุดที่ไม่ใช่โรค แต่เป็นอย่างอื่นแทน เช่น มุมภาพ และขอบภาพ จากกดำเนินครั้งที่ 4 ถึง 6 จะ สังเกตได้ว่าค่า F1-score ที่ได้จาก Convolutional Neural Network ให้ผลที่ดีกว่า Support Vector Machine เนื่องจากการใช้ Support Vector Machine ในโครงงานนี้เป็นเพียงแค่การนำภาพมา Flatten ไม่ได้เป็นการทำ Feature Extraction แต่ Convolutional Neural Network สามารถทำ Feature Extraction เองได้จึงได้ค่า F1-score ที่ดีกว่า จากนั้นผู้ปฏิบัติงานจึงพักการดำเนินครั้งที่ 7 เพื่อหาเทคนิคที่จะเพิ่มเติม ได้แก่ Hyperparameter tuning, Regularization และ Optimization จากนั้นนำความรู้ที่สะสมมาตั้งแต่การ ดำเนินงานครั้งที่ 1 จนถึงการดำเนินงานครั้งที่ 7 เพื่อนำมาใช้ในการดำเนินครั้งที่ 8 การ ซึ่งในตอนที่ 1 ที่เป็นการ

เทรนใหม่หมดพบว่าโมเดลที่ได้ค่า F1-score สูงสุด 3 อันดับแรก ได้แก่ และ ซึ่งเมื่อทำการตรวจสอบว่าโมเดลมี การเทคำตอบหรือไม่โดยการใช้ส่วนเบี่ยงเบนเฉลี่ย พบว่าทั้ง 3 โมเดล มีการเทคำตอบไปโมเดลละ 4, 3 และ 3 ประเภทตามลำดับ เนื่องจากเมื่อเราตั้งค่าขนาด Batch เพียงแค่ 32 ซึ่งถ้าตอนสุ่มภาพเข้าเวลาเทรน ประเภทที่มี จำนวนมากกว่าก็จะมีโอกาสที่จะอยู่ใน Batch นั้นมาก และในบางครั้งอาจจะมีแค่ประเภทเดียวหรืออาจจะมี ประเภทอื่นอยู่ด้วยแต่มีเพียงจำนวนน้อยที่อยู่ใน Batch ทำให้เน็ตเวิร์คตอบเพียงแค่ประเภทที่มีมากเท่านั้น ทาง ผู้ปฏิบัติงานจึง นำการดำเนินงานตอนที่ 1 มาปรับปรุงเป็นตอนที่ 2 โดยการ Fine Tuning และเมื่อเปรียบเทียบค่า F1-score ในตอนที่ 1 และตอนที่ 2 จะพบว่าตอนที่ 1 จะมีค่า F1-score ที่สูงกว่าและสาเหตุคือการที่ชุดข้อมูลไม่ เหมาะกับการ Transfer Learning จาก Pre-Trained Weights ของ ImageNet เนื่องจาก ImageNet เป็นชุด ข้อมูลที่เกี่ยวกับสิ่งของทั่วไป เช่น สุนัข รถยนต์ และเครื่องบิน แต่ชุดข้อมูล Skin Cancer MNIST: HAM10000 เป็นชุดข้อมูลโรคผิวหนัง ทำให้ features จากการเปรียบเทียบของตอนที่ 1 และตอนที่ 2 ทำให้เกิดตอนที่ 3 คือ การเทรนใหม่ทั้งหมด แต่มีการตัดโรคผิวหนังประเภท Melanocytic nevi ในชุดข้อมูล Skin Cancer MNIST: HAM10000 ออก ทำให้เหลือโรคผิวหนัง 6 ประเภท เพื่อช่วยแก้ปัญหาในเรื่องความไม่สมดุลของชุดข้อมูล ได้ โมเดลที่มีค่า F1-score สูงสุด 3 อันดับแรก ได้แก่ DenseNet121-Class weights, DenseNet121-Focal loss และ ResNet50-Focal loss ซึ่งจะสังเกตได้ว่าจะเป็นโมเดลที่ได้จากการปรับ Class weights และใช้ Focal loss เพราะการปรับ Class weights จะเพิ่มค่า W_i ของ Cross Entropy ซึ่งจะได้เป็น $CE(p_t) = -W_i \mathrm{log}\left(p_t
ight)$ เป็นการถ่วงน้ำหนักให้ของประเภทที่มีจำนวนข้อมูลที่น้อยจะมีค่า W_i ที่มาก และประเภทที่มีจำนวนข้อมูลที่มาก จะมี $W_{m{j}}$ น้อย จึงทำให้เน็ตเวิร์กพยายามตอบจำนวนข้อมูลที่น้อยให้ถูก เพราะถ้าตอบผิดค่า loss จะเพิ่มขึ้นส่วน ด้วย การใช้ Focal loss ซึ่งมีสมการคือ $FL(p_t) = -1(-p_t)^\gamma \log{(p_t)}$ ค่าน้ำหนักของค่า loss ในแต่ละ ้ ตัวจะขึ้นอยู่กับผลการทำนายซึ่งคือความน่าจะเป็นของประเภทนั้นๆ หมายความว่าถ้าเน็ตเวิร์กมีความมั่นใจมาก ์ ซึ่งหมายถึงมีความน่าจะเป็นมาก ทำให้ค่า loss ต่ำลง แต่ถ้าความน่าจะเป็นน้อย ค่า loss ก็จะเพิ่มขึ้น หมายความ ว่าถ้าค่า loss สูงคือชุดข้อมูลมีความยาก ทำให้เน็ตเวิร์คสนใจกับข้อมูลที่ยากมากยิ่งขึ้น แต่การใช้การ Oversampling คือการสุ่มสร้างข้อมูลเพิ่มซึ่งข้อมูล 1 ตัวอย่าง อาจสร้างเพิ่มเป็นจำนวนที่มากและมีภาพที่ซ้ำกัน ทำให้ Train accuracy มีค่าสูง แต่ Validation accuracy ไม่มีการพัฒนาเนื่องจาก Oversampling แค่ Train set และเมื่อทำการทดสอบว่าโมเดลมีการเทคำตอบหรือไม่ ผลปรากฏว่ามีการเทคำตอบแค่ 2, 2 และ 3 ประเภท ซึ่งถือว่าโมเดลที่ได้จากการดำเนินงานครั้งที่ 8 ตอนที่ 3 มีคุณภาพดีกว่า และเมื่อทำ Grad-CAM พบกว่าโมเดล ้มองภาพโรคผิวหนังได้ถูกจุด จากนั้นนำโมเดลที่ได้จากการดำเนินงานครั้งที่ 8 ตอนที่ 3 ไปทำการ Transfer Learning รวมถึง Fine Tuning ต่อให้ได้โมเดลสำหรับการคัดแยกโรคผิวหนังในชุดข้อมูล PJ61403 ทำให้ได้โมเดล ้ที่มีค่า F1-score 0.84, 0.92 และ 0.86 เมื่อทำ Grad-CAM พบกว่าโมเดลมองภาพโรคผิวหนังได้ถูกจุด จากนั้น เมื่อได้ 3 โมเดลจากการดำเนินครั้งที่ 8 ตอนที่ 3 มาก็นำไปสู่การดำเนินงานครั้งที่ 9 ซึ่งก็คือการนำผลการทำนาย มาเฉลี่ยแบบเลขคณิตกันได้ค่า F1-score 0.89

ปัญหา

- ผู้ปฏิบัติงานมีประสบการณ์ด้านคอมพิวเตอร์เพียงเล็กน้อยทำให้ต้องใช้เวลาในการเรียนรู้
- ชุดข้อมูลมีจำนวนน้อยและไม่มีคุณภาพ เนื่องจากเป็นข้อมูลทางด้านการแพทย์ ซึ่งเป็นข้อมูลที่ต้องทำการ
 ทำเรื่องขออนุญาติจากทางโรงพยาบาลและคนไข้ก่อน แต่การติดต่อนั้นเป็นไปด้วยความลำบาก

ข้อเสนอแนะ

- สามาถนำไปเปรียบเทียบกับงานวิจัยด้านการเรียนรู้ของเครื่อง
- สามารถนำโมเดลที่ได้จากการพัฒนาในโครงงานนี้ไปต่อยอดเป็นเว็บแอปพลิเคชันสำหรับคัดโรคผิวหนัง ต่อไปเพื่อแก้ไขปัญหาต่าง ๆ ได้แก่ ลดความแออัดมนโรงพยาบาล ลดมลพิษจากยานพาหนะในการ เดินทางไปโรงพยาบาล และลดภาระของแพทย์และพยาบาล

แนวทางการดำเนินงานต่อเนื่อง

- ใช้การปรับ Class weight ร่วมกับ Focal loss
- Preprocess ภาพก่อนการพัฒนาโมเดล เช่น การทำ Histogram Equalization
- ต่อยอดการทำ Data Augmentation โดยใช้ PCA Color Augmentation เป็นพื้นฐาน เพื่อให้ชุดข้อมูล มีความหลากหลายทางสีผิวมากขึ้น
- ใช้เทคนิค One Shot Learning เนื่องจากเหมาะกับชุดข้อมูลที่มีจำนวนน้อย
- เปลี่ยนจากการเทรนโมเดลด้วยภาพ RGB เป็น HSV
- ขอ Dataset จากสถาบันโรคผิวหนังแห่งชาติ เก็บชุดข้อมูลโดยเก็บเป็น VDO เพื่อมาแบ่งเป็นทีละภาพ
- เพิ่มการคัดแยกโรคผิวหนังด้วยการใช้การตอบคำถามร่วมกับการใช้ Classifier

เอกสารอ้างอิง

- ธนาวุฒิ ประกอบผล. (2552). **โครงข่ายประสาทเทียม**. ม*ฉก.วิชาการ*, 12(24), 73-87.
- ธีรศักดิ์ คำแก้ว. (2557). **การศึกษาความพึงพอใจของพนักงานที่ใช้แอพพลิเคชั่นสั่งสินค้าผ่านทาง โทรศัพท์มือถือ: กรณีศึกษาร้านโซล จังหวัดชลบุรี**. (ออนไลน์). สืบค้นได้จาก:
 http://dspace.bu.ac.th/bitstream/123456789/1951/1/theerasak_kamk.pdf. [15 กันยายน 2562].
- สมาคมแพทย์ผิวหนังแห่งประเทศไทย สมาคมโรคภูมิแพ้และวิทยาภูมิคุ้มกันแห่งประเทศไทย ชมรมแพทย์ผิวหนัง เด็กแห่งประเทศไทย. (ม.ป.ป.). **แนวทางการดูแลรักษาโรคผื่นภูมิแพ้ผิวหนัง**. (ออนไลน์). สืบค้นได้ จาก: http://www.dst.or.th/files_news/Atopic_Dermatitis_2010.pdf. [17 พฤษภาคม 2562].
- อุดมศักดิ์ เลิศสุชาตวนิช และพิเชษฐ์ สืบสายพรหม. (2556). **การประยุกต์ใช้เทคโนโลยีการประมวลภาพ สำหรับประเมินระดับความรุนแรงของโรคข้าว**. (ออนไลน์). สืบค้นได้จาก:
 http://www.lib.ku.ac.th/KUCONF/2556/KC5101046.pdf. [3 ธันวาคม 2561].
- Agnieszka Mikołajczyk and Michał Grochowski. (2018). **Data augmentation for improving deep learning in image classification problem.** International Interdisciplinary PhD
 Workshop, 9-12 May 2018
- Andrew et al. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile

 Vision Applications. (Online). from https://arxiv.org/pdf/1704.04861.pdf. Retrieved 11

 September 2019.
- Barret et al. (2018). Learning Transferable Architectures for Scalable Image Recognition. (Online). from https://arxiv.org/pdf/1707.07012.pdf. Retrieved 11 September 2019.
- Christian et al. (2014). **Going deeper with convolutions**. (Online). from https://arxiv.org/pdf/1409.4842.pdf. Retrieved 11 September 2019.
- Gao et al. (2017). **Densely Connected Convolutional Networks**. (Online). from https://arxiv.org/pdf/1608.06993.pdf. Retrieved 11 September 2019.
- ISAAC. (2003). **ISAAC MANUAL**. (Online). from: http://isaac.auckland.ac.nz/phases/phaseone/phaseonemanual.pdf. Retrieved 18 September 2019.
- Kaiming et al. (2015). Deep Residual Learning for Image Recognition. (Online). from https://arxiv.org/pdf/1512.03385.pdf. Retrieved 15 September 2019.
- Karen Simonyan and Andrew Zisserman. (2015). VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION. (Online). from

- https://arxiv.org/pdf/1409.1556.pdf. Retrieved 8 September 2019.
- Luke Taylor and Geoff Nitschke. (2018). Improving Deep Learning with Generic Data

 Augmentation. IEEE Symposium Symposium Series on Computational Intelligence

 SSCI 2018, 18-21 November 2018.
- Ovidiu M. Şerban. (2013). Detection and integration of affective feedback into distributed interactive systems. (Online). from https://www.researchgate.net/publication/281015715_Detection_and_integration_of_affective_feedback_into_distributed_interactive_systems. Retrieved 19 September 2019.
- Philipp Tschandl et al. (2018). The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. (Online). from https://arxiv.org/abs/1803.10417.pdf. Retrieved 12 September 2019.
- Tsung-Yi Lin et al. (2017). **Focal Loss for Dense Object Detection.** (Online). from https://arxiv.org/abs/1708.02002.pdf. Retrieved 15 May 2020.

ภาคผนวก

ผลการดำเนินงานครั้งที่ 4 การพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุดข้อมูล PJ61403 โดย การแบ่งส่วนอวัยวะ (เพิ่มเติม)

<u>ตอนที่ 1</u> ตารางการเปรียบเทียบค่า Metrics ของการพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนัง ในแต่ละส่วนของอวัยวะในชุดข้อมูล PJ61403 โดยการ Flatten ภาพแล้วใช้ Support Vector Machine ตาม โมเดลต่าง ๆ จากนั้นทำการเปรียบเทียบค่า F1-score ของแต่ละโมเดลในแต่ละอวัยวะ

แขน

Kernel	Accuracy	Precision	Recall	F1-score
Linear	0.65	0.67	0.68	0.65
Sigmoid	0.48	0.58	0.56	0.47
Polynomial	0.70	0.67	0.65	0.66
RBF	0.65	0.67	0.68	0.65

ลำตัว

Kernel	Accuracy	Precision	Recall	F1-score
Linear	0.50	0.48	0.48	0.48
Sigmoid	0.35	0.17	0.50	0.26
Polynomial	0.35	0.17	0.50	0.26
RBF	0.35	0.42	0.48	0.29

มือ

Kernel	Accuracy	Precision	Recall	F1-score
Linear	0.65	0.67	0.68	0.65
Sigmoid	0.35	0.17	0.50	0.26
Polynomial	0.42	0.69	0.56	0.38
RBF	0.48	0.70	0.60	0.45

ขา

Kernel	Accuracy	Precision	Recall	F1-score
Linear	0.60	0.59	0.59	0.58
Sigmoid	0.35	0.17	0.50	0.26
Polynomial	0.35	0.17	0.50	0.26
RBF	0.35	0.17	0.50	0.26

ตอนที่ 2 ตารางการเปรียบเทียบค่า Metrics ของการพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนัง ในแต่ละส่วนของอวัยวะในชุดข้อมูล PJ61403 โดยการใช้ Convolutional Neural Network จากการใช้ สถาปัตยกรรมที่ใช้ในการแข่งขัน ILSVRC ที่มีการใช้ขนาดรูป 224*224 pixels ด้วยการเทรนใหม่ทั้งหมด จากนั้น ทำการเปรียบเทียบค่า F1-score ของแต่ละโมเดลในแต่ละอวัยวะ

แขน

โมเดล	Accuracy	Precision	Recall	F1-score
VGG16	0.50	0.25	0.50	0.33
ResNet50	0.61	0.78	0.61	0.54
MobileNet	0.50	0.25	0.50	0.33
DenseNet121	0.84	0.85	0.84	0.84
NASNetMobile	0.62	0.62	0.62	0.62

ลำตัว

Architecture	Accuracy	Precision	Recall	F1-score
VGG16	0.50	0.25	0.50	0.33
ResNet50	0.52	0.57	0.52	0.52
MobileNet	0.50	0.25	0.50	0.33
DenseNet121	0.77	0.77	0.77	0.77
NASNetMobile	0.83	0.87	0.83	0.83

มือ

Architecture	Accuracy	Precision	Recall	F1-score
VGG16	0.50	0.25	0.50	0.33
ResNet50	0.76	0.84	0.76	0.75
MobileNet	0.50	0.25	0.50	0.33
DenseNet121	0.94	0.95	0.94	0.94
NASNetMobile	0.91	0.90	0.90	0.90

ขา

Architecture	Accuracy	Precision	Recall	F1-score
VGG16	0.50	0.25	0.50	0.33
ResNet50	0.54	0.54	0.54	0.53
MobileNet	0.50	0.25	0.5	0.33
DenseNet121	0.83	0.83	0.83	0.83
NASNetMobile	0.69	0.70	0.69	0.69

ภาพตัวอย่าง Grad-CAM จากการดำเนินงานครั้งที่ 6 การพัฒนาโมเดลสำหรับการคัดแยกโรคผิวหนังในชุด ข้อมูล PJ61403 โดยการปรับปรุงวิธีการทำ Data Augmentation และใช้การปรับค่า Class weights ของ แต่ละประเภท

ภาพตัวอย่าง Grad-CAM จากการดำเนินงานครั้งที่ 8 การพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนัง ในชุดข้อมูล Skin Cancer MNIST: HAM10000 โดยการใช้ Convolutional Neural Network เพื่อนำ Weights ไป Transfer Learning ให้กับการพัฒนาโมเดลสำหรับการคัดแยกประเภทโรคผิวหนังในชุดข้อมูล PJ61403

ตอนที่ 2.5 โมเดล DenseNet121-Class weights

ภาพตัวอย่างการใช้โมเดล โมเดล DenseNet121-Class weights ที่ได้จากการทดลองตอนที่ 2.5

<u>ตอนที่ 3 โ</u>มเดล DenseNet121-1

