Measures of spread continued and relationships between two quantitative variables

Overview

Quick review:

• Standard deviations, z-scores, percentiles

Boxplots

Scatter plots

Correlation

Review and continuation of measures of spread...

Review: z-scores

The z-scores tells how many standard deviations a value is from the mean

$$z\text{-score}(x_i) = \frac{x_i - \bar{x}}{s}$$

Which statistic is most impressive?

Z-score FGPct = 0.868

Z- score Points = 2.698

Z-score Assists = 1.965

Z-score Steals = 1.771

The normal pillow

Question: What percent of the pillow's mass is ± 2 standard deviations from the mean?

Answer: 95%

Review: quantiles (percentiles)

The **p**th **percentile** is a quantitative value **x** which is greater than p percent of the data

Histogram of Ages of people arrested for marijuana use

60th percentile value is 23 i.e., 60% of the arrests were of ages 23 or less

The quantile universe

Five-Number Summary = (minimum, Q_1 , median, Q_3 , maximum)

 $Q_1 = 25^{th}$ percentile, $Q_3 = 75^{th}$ percentile

Range = maximum – minimum

Interquartile range (IQR) = $Q_3 - Q_1$

As a rule of thumb, we call a data value an **outlier** if it is:

Smaller than: $Q_1 - 1.5 * IQR$

Larger than: $Q_3 + 1.5 * IQR$

Box plots

A **box plot** is a graphical display of the five-number summary and consists of:

- 1. Drawing a box from Q₁ to Q₃
- 2. Dividing the box with a line (or dot) drawn at the median
- 3. Draw a line from each quartile to the most extreme data value that is not and outlier
 - 4. Draw a dot/asterisk for each outlier data point.

Box plot of the number of hot dogs eaten by the men's contest winners 1980 to 2010

R: boxplot(v)

Box plots extract key statistics from histograms

Box plots extract key statistics from histograms

Question: which Box plot goes with which histogram?

Box plots extract key statistics from histograms

Question: which Box plot goes with which histogram?

Comparing quantitative variables across categories

Often one wants to compare quantitative variables across categories

Side-by-Side graphs are a way to visually compare quantitative variables across different categories

Side-by-side box plots

Side-By-Side (Comparative) Boxplots

Age of Best Actor/Actress Oscar Winners (1970-2001)

Box plots don't capture everything

Do you think the box plots for these distributions look similar?

Box plots don't capture everything

Side-by-size boxplots in R

Try it yourself, create histograms and boxplots for this data:

```
> download_data("distribution_vs_boxplot.Rda")
> load("distribution_vs_boxplot.Rda")
> boxplot(x1, x2, x3, x4)
```

Relationships between two quantitative variables

Two quantitative variables

In 1968, Joseph Fraumeni published a paper published in the Journal of the National Cancer Institute that examined the relationship between smoking and different types of cancer.

State	Cig per capita	Bladder	Lung	Kidney	Leukemia
AL	18.2	2.9	17.05	1.59	6.15
AZ	25.82	3.52	19.8	2.75	6.61
AR	18.24	2.99	15.98	2.02	6.94
CA	28.6	4.46	22.07	2.66	7.06
CT	31.1	5.11	22.83	3.35	7.2
DE	33.6	4.78	24.55	3.36	6.45
DC	40.46	5.6	27.27	3.13	7.08

Relationship between smoking and lung cancer

JOURNAL OF THE NATIONAL CANCER INSTITUTE

Scatterplot

A **scatterplot** graphs the relationship between two variables

Each axis represents the value of one variables

Each point the plot shows the value for the two variables for a single data case

If there is an explanatory and response variable, then the explanatory variable is put on the x-axis and the response variable is put on the y-axis.

Relationship between smoking and lung cancer

Relationship between cigarettes sold and cancer deaths

Questions when looking at scatterplots

Do the points show a clear trend?

Does it go upward or downward?

How much scatter around the trend?

Does the trend seem be linear (follow a line) or is it curved?

Are there any outlier points?

Questions when looking at scatterplots

Do the points show a clear trend?

Does it go upward or downward?

How much scatter around the trend?

Does the trend seem be linear (follow a line) or is it curved?

Are there any outlier points?

Smoking and cancer

Relationship between cigarettes sold and cancer deaths

Positive, negative, no correlation

Do the points show a clear trend?

Does it go upward or downward?

How much scatter around the trend?

Does the trend seem be linear (follow a line) or is it curved?

Are there any outlier points?

The correlation coefficient

The **correlation** is measure of the strength and direction of a <u>linear</u> <u>association</u> between two variables

$$r = \frac{1}{(n-1)} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$$

- The correlation for a sample is denoted with r
- The correlation in the population is denoted with ρ
 (the Greek letter rho)

Smoking and lung cancer correlation?

The **correlation** is measure of the strength and direction of a <u>linear</u> association between two variables

Properties of the correlation

Correlation as always between -1 and 1: $-1 \le r \le 1$

The sign of r indicates the direction of the association

Values close to \pm 1 show strong linear relationships, values close to 0 show no linear relationship

Correlation is symmetric: r = cor(x, y) = cor(y, x) $r = \frac{1}{(n-1)} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_x}\right) \left(\frac{y_i - \overline{y}}{s_y}\right)$

Florida lakes

Correlation game

Florida lakes

Correlation game

Let's calculate some correlations

Is there an associate between cigarettes sold per capita and other types of cancer?

- Bladder cancer (BLAD)
- Kidney cancer (KID)
- Leukemia (LEUK)

```
# load the data
> download_data("smoking_cancer.Rda")
> load("smoking_cancer.Rda")

# create a scatter plot and calculate the correlation
> plot(smoking$CIG, smoking$LUNG)
> cor(smoking$CIG, smoking$LUNG)
```

Correlation caution #1

A strong positive or negative correlation does not (necessarily) imply a cause and effect relationship between two variables

Correlation caution #2

A correlation near zero does not (necessarily) mean that two variables are not associated. Correlation only measures the strength of a <u>linear</u> relationship.

Body temperature as a function of time of the day

Ice cream sales and temperature

Correlation caution #3

Correlation can be heavily influenced by outliers. Always plot your data!

With Palm Beach r = 0.61

Without Palm Beach r = .78

Anscombe's quartet (r = 0.81)

For next class – practice problems

Lock5 exercises first edition: 2.153, 2.155, 2.159, 2.177

Lock5 exercises second edition: 2.165, 2.167, 2.170, 2.191