Literature Survey

Review of Existing Systems:

Sr. No.	System / Paper	Authors / Source	Key Features	Limitations
1	Drug Quality Verification System using AI	International Journal (2021)	Uses ML models to check medicine authenticity using chemical and lab test data	Requires lab data; not user-friendly for the general public
11 / 1	^ ^	Startup Case Study	App scans barcodes and provides WHO/FDA info about the drug	Only works if barcodes or QR codes are present; not helpful in rural areas
3	AI-Based Pharma Monitoring	IEEE Xplore (2022)	Predicts medicine stability under various storage conditions	Lacks an interactive frontend for general user access
4	Deep Learning for Fake Medicine Detection	ResearchGate Paper	Uses neural networks to detect composition mismatches in counterfeit medicines	High computational cost; requires cloud processing
5	Web Application for Expiry Date & Purity Checks	GitHub Project	Predicts drug quality using expiry date and purity data	Limited features; no advanced ML or safety scoring logic

Limitations of Existing Systems:

- Many tools require professional knowledge or lab-level data input, which makes them difficult to use for common users.
- Systems like barcode scanners are not effective when medicines are loose or unpackaged common in rural areas.
- Most research is focused on backend ML modeling and lacks a practical web interface for real-time use.

- Limited support for alternative medicine types (like Ayurveda or Homeopathy) in current solutions.
- High-end models (like deep learning) can be slow and require strong internet or servers, which may not be suitable in lowresource settings.

Our system tries to overcome these limitations by offering a lightweight, AI-based solution that works with basic input features and gives quick results through a simple web interface.