Cheatsheet Analysis 1

Amos Herz

FS 2021

1 Komplexe und Reelle Zahlen

1.1 Archimedisches Prinzip

Archimedisches Prinzip

Sei $x \in \mathbb{R}$ mit x > 0 und $y \in \mathbb{R}$. Dann gibt es $n \in \mathbb{N}$ mit $y < n \cdot x$.

Supremum und Infimum

Definition: $A \subset \mathbb{R}$ heisst von oben [unten] beschränkt falls es $x \in \mathbb{R}$ gibt, sodass x > a [x < a] für alle $a \in A$. x heisst dann obere [untere] Schranke von A. Falls $x \in A$ und x obere [untere] SChranke von A, ist x das Maximum [Minimum] von A.

Supremum und Infimum

Falls $A \subset \mathbb{R}, A \neq \emptyset$ v.o.b [v.u.b] ist, gibt es eine kleinste obere Schranke [grösste untere Schranke] x von A. x heisst dann Supremum [Infimum] von A.

2 Folgen und Reihen

2.1 Konvergenz mit ϵ -Def

Definition

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge. $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen L \iff $\lim_{n\to\infty} a_n = L$ (i.e. $\exists L \in \mathbb{R}, \forall \epsilon > 0$ die Menge $n \in \mathbb{N} : a_n \notin [L - \epsilon, L + \epsilon]$ endlich ist) $\iff \forall \epsilon > 0 \ \exists N > 1 \ \forall n > N : \ |a_n - L| < \epsilon.$

Wir dürfen (o.B.d.A.) annehmen, dass ϵ durch eine Konstante $C \in \mathbb{R}$ beschränkt ist.

Divergenz

Eine Folge a_n ist divergent (notiert $\lim_{n\to\infty} a_n = \infty$) falls:

$$\forall K > 0 \exists N = N(K) \in \mathbb{N}, \text{ sodass } \forall n > N : |a_n| > K$$

2.2 Konvergenz con Folgen

Bemerkung: konvergent ⇒ beschränkt, aber nicht umgekehrt! **Bemerkung:** (a_n) konvergent \iff (a_n) beschränkt und $\liminf a_n =$ $\limsup a_n$

Einschliessungskriterium

Wenn $\lim_{n\to\infty} a_n = \alpha$, $\lim_{n\to\infty} b_n = \alpha$ und $a_n \le c_n \le b_n$, $\forall n \ge n$ k, dann $\lim_{n\to\infty} c_n = \alpha$.

Weierstrass

- Sei a_n monoton wachsend und nach oben beschränkt $\Rightarrow a_n$ konvergiert mit Grenzwert $\lim_{n\to\infty} a_n = \sup\{a_n : n \geq 1\}.$
- a_n monoton fallend und nach unten beschränkt $\Rightarrow a_n$ konvergiert mit Grenzwert $\lim_{n\to\infty} a_n = \inf\{a_n : n > 1\}.$

Cauchy-Kriterium

Eine Folge (a_n) heisst **Cauchy-Folge** falls $\forall \epsilon > 0 \ \exists N \geq 1 \ \text{sodass}$ $\forall n, m \geq N_{\epsilon} \text{ implizient, dass } |a_n - a_m| < \epsilon.$

Bemerkung: Für eine Cauchy-Folge (a_n) gilt:

- (a_n) cauchy \Rightarrow (a_n) beschränkt
- (a_n) cauchy \Leftrightarrow (a_n) konvergent

2.3 Teilfolge

Eine Teilfolge von a_n ist eine Folge b_n wobei $b_n = a_{l(n)}$ und l eine Funktion mit $l(n) < l(n+1) \quad \forall n > 1$ (z.B. l = 2n für jedes gerade Folgenglied).

Bolzano-Weierstrass

Jede beschränkte Folge besitzt eine konvergente Teilfolge.

2.4 Limes Superior und Limes Inferior

Limes superior & inferior

$$\lim_{n\to\infty}\inf x_n = \lim_{n\to\infty}\left(\inf_{m\geq n}x_m\right)$$
$$\lim_{n\to\infty}\sup x_n = \lim_{n\to\infty}\left(\sup_{m>n}x_m\right)$$

Strategie - Konvergenz von Folgen

- 1. Bei Brüchen: Grösste Potenz von n kürzen. Alle Brüche der Form $\frac{a}{n^a}$ streichen, da diese nach 0 gehen wenn $n \to 0$.
- 2. Bei Wurzeln in Summe im Nenner: Multiplizieren des Nenners und Zählers mit der Differenz der Summe im Nenner. (z.B. (a+b) mit (a-b) multiplizieren)
- 3. Bei rekursiven Folgen: Anwendung von Weierstrass zur monotonen Konvergenz
- 4. Einschliessungskriterium (Sandwich-Theorem) anwenden.
- 5. Mit bekannter Folge vergleichen.
- 6. Grenzwert durch einfaches Umformen ermitteln.
- 7. Limit per Definition der Konvergenz zeigen.
- 8. Anwendung des Cauchy-Kriteriums.
- 9. Suchen eines konvergenten Majorant.
- 10. Weinen und die Aufgabe überspringen.

Strategie - Divergenz von Folgen

- 1. Suchen einer divergenten Vergleichsfolge.
- 2. Bei alternierenden Folgen: Zeige, dass Teilfolgen nicht gleich werden $(\lim_{n\to\infty} a_{p_1(n)} \neq \lim_{n\to\infty} a_{p_2(n)})$, mit z.B. gerade/ungerade als Teilfolgen.

2.7 Reihe Konvergenz Definition

Definition

Die Reihe $\sum_{k=1}^{\infty} a_k$ ist **konvergent**, falls die Folge $(S_n)_{n\geq 1}$ der Partialsummen konvergiert. In diesem Fall definirien wir:

$$\sum_{k=1}^{\infty} a_k := \lim_{n \to \infty} S_n$$

Reihenarithmetik

Reihenarithmetik

Wenn $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ konvergent sind, dann gilt:

- $\sum_{k=1}^{\infty} (a_k + b_k)$ konvergent und $\sum_{k=1}^{\infty} (a_k + b_k) = (\sum_{k=1}^{\infty} a_k) + (\sum_{k=1}^{\infty} b_k)$ $\sum_{k=1}^{\infty} \alpha \cdot a_k$ konvergent und $\sum_{k=1}^{\infty} \alpha \cdot a_k = \alpha \cdot \sum_{k=1}^{\infty} a_k$

Absolute Konvergenz

Definition

 $\sum_{k=1}^{\infty} a_k$ heisst absolut konvergent, falls $\sum_{k=1}^{\infty} |a_k|$ konvergiert. Eine absolut konvergente Reihe ist auch konvergent, es gilt

$$|\sum_{k=1}^{\infty}a_k|\leq \sum_{k=1}^{\infty}|a_k|$$

Konvergenz von Reihen

Cauchy-Kriterium für Reihen

Die Reihe $\sum_{k=1}^{\infty} a_k$ ist genau dann konvergent, falls

$$\forall \epsilon > 0 \ \exists N \ge 1 \ \text{mit} \ |\sum_{k=n}^{m} a_k| < \epsilon, \ \forall m \ge n > N$$

Nullfolgenkriterium

Wenn für eine Folge $\lim_{n\to\infty} |a_n| \neq 0$ ist, dann divergiert $\sum_{n=0}^{\infty} a_n$.

Proof: a_n konvergiert $\Rightarrow s_n = \sum_{i=1}^n a_i$ konvergiert. Das heisst, es existiert ein Grenzwert s, sodass $\overline{\lim}_{n\to\infty} s_n = s$. Dann gilt:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (s_n - s_{n-1}) = \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1} = s - s = 0$$

Vergleichssatz

Wenn $\sum_{k=1}^{\infty}a_k$ und $\sum_{k=1}^{\infty}b_k$ Reihen mit $0\leq a_k\leq b_k, \forall k\geq K\geq$

$$\sum_{k=1}^{\infty} b_k \text{ konvergent } \implies \sum_{k=1}^{\infty} a_k \text{ konvergent}$$

$$\sum_{k=1}^{\infty} a_k \text{ divergent } \Longrightarrow \sum_{k=1}^{\infty} b_k \text{ divergent}$$

Als Vergleichsreihe (Majorant / Minorant) eignet sich oft eine Reihe der folgenden Kategorien:

- Geometrische Reihe: $\sum_{k=0}^{\infty}q^k$ divergiert für $|q|\geq 1$ und konvergiert zu $\frac{1}{1-q}$ für |q|<1
- Zeta-Funktion $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ divergiert für $s \leq 1$ und konvergiert für s > 1.

Des weiteren gilt folgendes:

- Sei $(S_n) = \sum_{k=0}^{\infty} q^k$ mit |q| < 1, dann ist (S_n) konvergent und
- $\lim_{n\to\infty} S_n = \frac{1}{1-a}$
- $(S_n) = \sum_{k=1}^n \frac{1}{k}$ konvergiert

Leibnizkriterium

Wenn $a_n \geq 0, \forall n \geq 1$ monoton fallend und $\lim_{n \to \infty} a_n = 0$ ist, dann konvergiert $S = \sum_{k=0}^{\infty} (-1)^k a_k$ und $a_1 - a_2 \le S \le a_1$.

Quotienten-/Wurzelkriterium

Sei (a_n) eine Folge mit $a_n \neq 0 \ \forall n \geq 1$. Sei:

- $q = \lim_{n \to \infty} \sup \frac{|a_{n+1}|}{|a_n|}$
- $q = \lim_{n \to \infty} \sup \sqrt[n]{|a_n|}$.

- $q < 1 \Rightarrow \sum_{n=1}^{\infty} a_n$ konvergiert absolut. $q = 1 \Rightarrow$ keine Aussage.
- $q > 1 \Rightarrow \sum_{n=1}^{\infty} a_n$ divergiert.

2.11 Potenzreihen

Definition: Eine Potenzreihe ist eine Reihe von der Form $\sum_{k=0}^{\infty} c_k$ z^k , wobei $(c_k)_{k>0}$ eine Folge ist.

Konvergenzradius

Der Konvergenzradius ρ einer Potenzreihe entrspricht:

$$\rho \begin{cases} +\infty & \text{falls } \limsup_{k \to \infty} \sqrt[k]{|c_k|} = 0 \\ \frac{1}{\limsup_{k \to \infty} \sqrt[k]{|c_k|}} & \text{falls } \limsup_{k \to \infty} \sqrt[k]{|c_k|} > 0 \end{cases}$$

Die Potenzreihe konergiert absolut für alle $|z| < \rho$ und divergiert für alle $|z| > \rho$. Der Fall $|z| = \rho$ musst jeweils noch separat geprüft

Elne Potenzreihe mit positivem Konvergenzradius ρ konvergiert gleichmässig auf $[-\rho, \rho]$, inbesondere ist $f:]-\rho, \rho[\to \mathbb{R}$ stetig.

2.12 Doppelreihen

Definition: Gegeben eine Doppelfolge $(a_{ij})_{i,j\geq 0}$ so können $\sum_{i=0}^{\infty}\sum_{j=0}^{\infty}a_{ij}=A_0+A_1+\dots$ und $\sum_{j=0}^{\infty}\sum_{i=0}^{\infty}a_{ij}=B_0+B_1+\dots$ beide konvergent sein mit verschiedenen Grenzwerten. Wir nennen $\sum_{i,j>0} a_{ij}$ eine Doppelreihe. Wenn die Reihe bsolut konvergiert, so sind beide Grenzwerte gleich und jere Anordnung knyergiert zum selben Grenzwert.

Das Cauchy Produkt

Das Cauchy Produkt zweier Reihen $\sum_{i=0}^{\infty} a_i$ und $\sum_{i=0}^{\infty} b_i$ ist die

$$\sum_{n=0}^{\infty} \sum_{j=0}^{\infty} (a_{n-j} \cdot b_j) = a_0 b_0 + (a_0 b_1 + a_1 b_0) + \dots$$

Falls beide Reihen absolut konvergieren, so konvergiert auch das Cauchy Produkt und es gilt:

$$\sum_{n=0}^{\infty} \left(\sum_{j=0}^{n} a_{n-j} b_j \right) = \left(\sum_{i=0}^{\infty} a_i \right) \left(\sum_{j=0}^{\infty} b_j \right)$$

2.13 Integral Test

Integral Test

Sei f(x) eine stetige, positive und monoton fallende Funktion auf $[k, \infty[$ und $f(n) = a_n$:

$$\int_{k}^{\infty} f(x) \, dx \text{ konvergiert } \Rightarrow \sum_{n=k}^{\infty} a_{n} \text{ konvergiert }$$

$$\int_{k}^{\infty} f(x) \; \mathrm{d}x \; \mathrm{divergiert} \; \Rightarrow \sum_{n=k}^{\infty} a_{n} \; \mathrm{divergiert}$$

2.13.1 Strategie - Konvergenz von Reihen

- 1. Ist der Partialsummen nach oben beschränkt? Wenn Ja, konvergiert die Reihe
- 2. Ist Reihe ein bekannter Typ? (Teleskopieren, Geometrische/Harmonis Reihe, Zetafunktion, ...)
- 3. Ist $\lim_{n\to\infty} a_n = 0$? Wenn nein, divergiert die Reihe (Nullfol*qekriterium*)
- 4. Quotientenkriterium & Wurzelkriterium anwenden
- 5. Vergleichssatz anwenden, Vergleichsreihen suchen
- 6. Leibnizkriterium anwenden

3 Funktionen und Stetigkeit

3.1 Stetigkeit Definitionen

Sei $f: D \to \mathbb{R}^d, x \to f(x)$ eine Funktion in $D \subseteq \mathbb{R}^d$.

Definition

f ist in $x_0 \in D$ stetig, falls für jede Folge $(a_n)_{n\geq 1}$ mit $\lim_{n\to\infty} a_n = x_0$ folgendes gilt:

$$f(\lim_{n\to\infty} a_n) = f(x_0) = \lim_{n\to\infty} f(a_n)$$

f ist stetig auf D, falls sie in jedem $x_0 \in D$ stetig ist.

ϵ -Definition

Punktweise stetig: $f: D \to \mathbb{R}$ ist stetig in einem Punkt x_0

$$\forall \epsilon > 0, \exists \delta > 0, \forall x \in D : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon$$

Gleichmässig stetig:

$$\forall \epsilon > 0, \exists \delta > 0, \forall x, x_0 : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon$$

Bemerkung: In der punktweisen Stetigkeit ist das δ von x_0 und ϵ abhängig $(delta(\epsilon, x_0))$, während in der gleichmässigen Stetigkeit das δ nur von ϵ abhängen darf $(\delta(\epsilon))$.

Falls f und q den gleichen Definitions-/Bildbereich haben und in x_0 stetig sind, dann sind auch

$$f+g, \lambda \cdot f, f \cdot g, \frac{f}{g}, |f|, \max(f,g), \min(f,g)$$

stetig in x_0 .

Bemerkung: Polynomiale Funktionen und trigonometrsiche (sin und cos) Funktionen) sind auf \mathbb{R} stetig.

Zwischenwertsatz

Zwischenwertsatz

Wenn $I \subseteq \mathbb{R}$ ein Intervall, $f: I \to \mathbb{R}$ und $a, b \in I$ ist, dann gibt es für jedes c zwischen f(a) und f(b) ein a < z < b mit f(z) = c.

Wird häufig verwendet um zu zeigen, das eine Funktion einen gewissen Wert annimmt.

Daraus folgt, dass ein Polynom mit ungeradem Grad mindestens eine Nullstelle in $\mathbb R$ besitzt.

3.3 Min-Max Satz

Ein Intervall $I \in \mathbb{R}$ ist kompakt, falls es von der Form I = [a,b] mit $a \leq b$ ist.

Min-Max-Satz

Sei $f:I=[a,b]\to\mathbb{R}$ stetig auf einem kompakten Intervall I. Dann gibt es $u,v\in I$ mit

$$f(u) \le f(x) \le f(v), \forall x \in I$$

Insbesondere ist f beschränkt.

3.4 Satz über die Umkehrabbildung

Satz über die Umkehrabbildung

Sei $f:I\to\mathbb{R}$ stetig und streng monoton und sei $J=f(I)\subseteq\mathbb{R}$. Dann ist $f^{-1}:J\to I$ stetig und streng monoton.

Stetigkeit der Verknüpfung

Sei $f: D_1 \to D_2, g: D_2 \to \mathbb{R}$ und $x_0 \in D_1$. Falls f in x_0 und g in $f(x_0)$ stetig ist, dann ist $g \odot f: D_1 \to \mathbb{R}$ in x_0 stetig.

Die reelle Exponentialfunktion

 $\exp:\mathbb{R}\to]0,+\infty[$ ist streng monoton wachsend, stetig und surjektiv. Auch die Umkehrfunktion ln $:]0,+\infty[\to\mathbb{R}$ hat diese Eigenschaften.

3.5 Konvergenz von Funktionenfolgen

Punktweise Konvergenz

Die Funktionenfolge (f_n) konvergiert punktweise gegen eine Funktion $f:D\to\mathbb{R}$ falls für alle $x\in D$ gilt, dass

$$\lim_{n \to \infty} f_n(x) = f(x)$$

Alternativ:

$$\forall \epsilon > 0, \forall x \in D, \exists N \geq 1, \forall n \geq N : |f_n(x) - f(x)| < \epsilon$$

Gleichmässige Konvergenz

Die Folge (f_n) konvergiert gleichmässig in D gegen f falls gilt

$$\forall \epsilon > 0, \exists N > 1, \forall n > N, \ \forall x \in D : |f_n(x) - f(x)| < \epsilon$$

Die Funktionenfolge (g_n) ist gleichmässig konvergent, falls für alle $x \in D$ der Grenzwert $\lim_{n \to \infty} g_n(x) = g(x)$ existiert und die Folge (g_n) gleichmässig gegen g konvergiert.

Bemerkung: In uniform convergence, N does **not** depend on x, we hve to find one which works for all x. On the other hand, for pointwise convergence, N can depend on both ϵ and x.

Bemerkung: Wenn eine Funktionenfolge aus stetigen Funktionen besteht und gleichmässig gegen eine Funktion f konvergiert, dann ist f stetig.

3.5.1 Strategie: Konvergenz von Funktionenfolgen

- 1. Punktweiser Limes von f_n auf D finden.
- 2. Prüfe auf gleichmässige Konvergenz:
 - i Indirekte Methode: f unstetig bedeutet keine gleichmässige Konvergenz, f stetig, monoton wachsend und D kompakt bedeuted gleichmässige Konvergenz.
 - ii Direkte Methode: Berechne $\sup_{x\in D} |f_n(x) f(x)|$ (evtl. Ableitung von $|f_n(x) f(x)|$ gleich Null setzen). Danach Limes für $n\to\infty$ von $\sup_{x\in D} |f_n(x) f(x)|$ berechnen, falls dieser Null ist, so konvergiert f_n gleichmässig.
- 3. Prüfe auf **nicht** gleichmässige Konvergenz:
 - (a) Assume $\lim_{n\to\infty} f_n(x) = f(x)$.
 - (b) Choose x and n for which $|f_n(x) f(x)| \ge \epsilon$ for some ϵ .

3.6 Konvergenz von FunktionenReihen

Die Reihe $\sum_{k=1}^{\infty} f_k(x)$ konvergiert gleichmässig, falls die durch $S_n(x) = \sum_{k=0}^n f_k(x)$ definierte Funktionenfolge gleichmässig konvergiert.

Sei f_n eine Folge stetiger Funktionen. Ausserdem ist $|f_n(x)| \le c_n \quad \forall x \in D \text{ und } \sum_{n=0}^{\infty} c_n \text{ konvergiert.}$ Dann konvergiert die Reihe $\sum_{n=0}^{\infty} f_n(x)$ gleichmässig und deren Grenzwert ist eine in D stetige Funktion.

3.7 Potenzreihen

Potenzreihe

Potenzreihen sind Reihen der Form $\sum_{n=0}^{\infty} a_n x^n$. Eine Potenzreihe mit Entwicklungspunkt x_0 wird als $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ definiert.

Konvergenzradius

Der Konvergenzradius einer Potenzreihe um einen Entwicklungspunkt x_0 ist die grösste Zahl r, so dass die Potenzreihe für alle x mit $|x-x_0| < r$ konvergiert. Falls die Reihe für alle x konvergiert, ist der Konvergenzradius r unendlich. Sonst:

$$r = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \frac{1}{\lim_{n \to \infty} \sup \sqrt[n]{|a_n|}}$$

3.7.1 Definitionen per Potenzreihen

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 $r = \infty$

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \qquad r = \infty$$

$$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$
 $r = \infty$

$$\ln(x+1) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{k}$$
 $r = 1$

3.8 Grenzwerte von Funktionen

Häufungspunkt

 $x_0 \in \mathbb{R}$ ist ein Häufungspunkt der Menge D falls:

$$\forall \delta > 0 : (|x_0 - \delta, x_0 + \delta| \setminus \{x_0\}) \cap D \neq \emptyset$$

Grenzwert - Funktionen

Wenn $f: D \to \mathbb{R}, x_0 \in \mathbb{R}$ ein Häufungspunkt von D ist, dann ist $A \in \mathbb{R}$ der Grenzwert von f(x) für $x \to x_0$ ($\lim_{x \to x_0} f(x) = A$), falls $\forall \epsilon > 0 \; \exists \delta > 0$, so dass:

$$\forall x \in D \cap (|x_0 - \delta, x_0 + \delta[\setminus \{x_0\}) : |f(x) - A| < \epsilon$$

Alternativ:

$$|f(x) - A| < \epsilon$$
 whenever $0 < |x - x_0| < \delta$

Beispiel: Prove that $\lim_{x\to 1}(x^2+3)=4$.

Proof: Begin by letting $\varepsilon>0$ be given. Find $\delta>0$ (dependent on ε) so that if $0<|x-1|<\delta$, then $|f(x)-4|<\varepsilon$. Begin with $|f(x)-4|<\varepsilon$ and solve for |x-1|.

 $\Rightarrow \ldots \Rightarrow |x-1||x+1| < \varepsilon.$

Assume now $\delta \le 1 \Rightarrow |x-1| < \delta \le 1 \Rightarrow -1 < x-1 < 1 \Rightarrow 0 < x < 2$ so that 1 < |x+1| < 3.

Follows $|x-1||x+1| < |x-1| \cdot 3 < \varepsilon \Rightarrow |x-1| < \frac{\epsilon}{3}$.

Take now $\delta = \min\{1, \frac{\epsilon}{3}\}$. Thus if $0 < |x-1| < \delta$, it follows that $|f(x) - 10| < \epsilon$.

$$\mathbf{Limes} \to -\infty/+\infty$$

$$\lim_{x \to -\infty} [\lim_{x \to +\infty}] f(x) = L$$

$$\Leftrightarrow |f(x) - L| < \epsilon \ \forall x \in D \ \text{with} \ x < K[x > K]$$

3.9 Linksseitiger und Rechtsseitiger Grenzwert

Sei $f: D \to \mathbb{R}$ und $x_0 \in D$ ein Häufungspunkt von $D \cap]x_0, +\infty[$. Falls der Grenzwert der eingeschränkten Funktion f im Bereich $D \cap]x_0, +\infty[$ für $x \to x_0$ existiert, wird er mit $\lim_{x \to x_0^+} f(x)$ bezeichnet und nennt sich **rechtsseitiger Grenzwert** von f bei x_0 . Das Analoge gilt für

den linksseitigen Grenzwert.

Wir erweitern diese Definition auf $\lim_{x\to x_0^+} f(x) = +\infty$ falls gilt:

$$\forall \epsilon > 0, \exists \delta > 0, \forall x \in D \cap]x_0, x_0 + \delta[: f(x) < \frac{1}{\epsilon}$$

und analog für $\lim_{x\to x_0^+}f(x)=-\infty$

$$\forall \epsilon > 0, \exists \delta > 0, \forall x \in D \cap]x_0, x_0 + \delta[: f(x) < \frac{1}{-\epsilon}]$$

Für den linksseitigen Grenzwert gilt das Analoge.

Alternativ: Man sagt $\lim_{x\to x_0^+} f(x) = L$ falls gilt:

$$\forall \epsilon \ \exists \delta \ |f(x) - L| < \epsilon \ \text{whenever} \ 0 < x - a < \delta \ (\text{oder} \ a < x < a + \delta)$$

Man sagt $\lim_{x\to x_0^+} f(x) = L$ falls gilt:

$$\forall \epsilon \ \exists \delta \ |f(x) - L| < \epsilon \ \text{whenever} \ -\delta < x - a < 0 \ (\text{oder} \ a - \delta < x < a)$$

4 Ableitungen

4.1 Differenzierbarkeit

Differenzierbar

f ist in x_0 differenzierbar, falls der Grenzwert

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

existiert. Wenn dies der Fall ist, wird der Grenzwert mit $f'(x_0)$ oder $\frac{\mathrm{d}f}{\mathrm{d}x}(x_0)$ bezeichnet. f ist **differenzierbar**, falls f für jedes Häufungspunkt $x_0 \in D$ differenzierbar ist.

Bemerkung: Die Tangente zu x_0 ist definiert durch: $g(x) := f'(x_0) \cdot (x - x_0) + f(x_0)$.

Differenzierbarkeit nach Weierstrass

 $f:D\to R$ ist in x_0 differenzierbar $(x_0$ Haufungspunkt von $D)\Longleftrightarrow$ Es gibt $c\in\mathbb{R}$ und $r:D\to\mathbb{R}$ mit:

1.
$$f(x) = f(x_0) + c(x - x_0) + r(x)(x - x_0)$$

2.
$$r(x_0) = 0$$
, r stetig in x_0 .

Falls f differenzierbar ist, dann ist $c = f'(x_0)$ eindeutig bestimmt.

Variation: Eine kunktion f ist genau dann in x_0 differenzierbar falls eine Funktion $\phi(x) = f'(x_0) + r(x)$ gibt, so dass $f(x) = f(x_0) + \phi(x)(x - x_0)$, $\forall x \in D$ und ϕ in x_0 stetig ist. In diesem fall gilt $\phi(x_0) = f'(x_0)$.

Bemerkung: Die Tangentengleichung von f im Punkt $(x_0, f(x_0))$ ist $y = f(x_0) + f'(x_0)(x - x_0)$.

Höhere Ableitungen

- 1. Für $n \geq 2$ ist f n-mal differenzierbar in D falls $f^{(n-1)}$ in D differenzierbar ist. Dann ist $f^{(n)} = (f^{(n-1)})'$ die n-te Ableitung von f.
- 2. f ist n-mal stetig differenzierbar in D, falls sie n-mal differnzierbar und $f^{(n)}$ in D stetig ist.
- 3. f ist in D glatt, falls sie $\forall n \geq 1$ n-mal differenzierbar ist ("unendlich differenzierbar").

Bemerkung: $\exp(x), \sin(x), \cos(x), \sinh(x), \cosh(x),$

 $\tanh(x), \ln(x), \arcsin(x), \arccos(x), \operatorname{arccot}(x), \arctan(x)$ und alle Polynome sind glatte Funktionen. $\tan(x)$ ist auf $\mathbb{R}\setminus\{\pi/2+k\pi\}$, $\cot(x)$ auf $\mathbb{R}\setminus\{k\pi\}$ glatt.

Zeigen, dass eine Funktion in x_0 nicht differenzierbar ist:

- $\lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0} = \pm \infty$
- f nicht stetig in $x_0 \Rightarrow f$ nicht differenzierbar in x_0
- $\lim_{x \to x_0^+} \frac{f(x) f(x_0)}{x x_0} \neq \lim_{x \to x_0^-} \frac{f(x) f(x_0)}{x x_0}$

Beispiel: Zeige, dass \sqrt{x} nicht in $x_0=0$ differenzierbar ist: $\lim_{h\to 0} \frac{\sqrt{h}}{h} = \lim_{h\to 0} \frac{1}{\sqrt{h}} = +\infty$, daher nicht differenzierbar in $x_0=0$

4.2 Ableitungsregeln

Linearität der Ableitung

$$(\alpha \cdot f(x) + g(x))' = \alpha \cdot f'(x) + g'(x)$$

Produktregel

$$(f(x) + g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Quotientenregel

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2}$$

Kettenregel

$$(f(g(x)))' = g'(x) \cdot f'(g(x))$$

Potenzregel

$$(c \cdot x^a)' = c \cdot a \cdot x^{a-1}$$

Umkehrfunktion

Sei f(x) differenzierbar und invertierbar.

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Rule de L'Hôpital

Für Grenzwerte, die auf einen unbestimmten Ausdruck der Form $\frac{0}{0}$ oder $\frac{\infty}{\infty}$ führen, gilt:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

4.3 Hohereableitungsregeln

Sei $f, q: D \to \mathbb{R}$ n-mal differenzierbar.

Linearität der Ableitung

$$(f+g)^{(n)} = f^{(n)} + g^{(n)}$$

Produktregel

$$(f \cdot g)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(k)} \cdot g^{(n-k)}$$

Bemerkung: $\frac{f}{g}$ ist *n*-mal differenzierbar falls $g(x) \neq 0, \forall x \in D$ und $(g \circ f)$ ist *n*-mal differenzierbar.

4.4 Sätze zur Ableitung

Satz von Rolle

Sei $f:[a,b]\to\mathbb{R}$ stetig und in]a,b[differenzierbar. Wenn f(a)=f(b), dann gibt es ein $\xi\in]a,b[$ mit $f'(\xi)=0.$

Mittelwertsatz (Lagrange)

Sei $f:[a,b]\to\mathbb{R}$ stetig und in]a,b[differenzierbar. Dann gibt es $\xi\in]a,b[$ mit $f(b)-f(a)=f'(\xi)(b-a)\Leftrightarrow f'(\xi)=\frac{f(b)-f(a)}{b-a}.$

4.5 Taylorreihen

Jede glatte, d.h. beliebig oft differenzierbare, Funktion $f \in C^{\infty}$ kann als Potenzreihe angenähert werden.

Taylor-Polynom

Das n-te Talyor-Polynom $T_n f(x; a)$ an einer Entwicklungsstelle a ist definiert als:

$$T_n f(x; a) := \sum_{k=0}^n \frac{f^{(k)(a)}}{n!} \cdot (x - a)^k$$

=
$$f(a) + f'(a) \cdot (x - a) + \frac{f''(a)}{2} \cdot (x - a)^2 + \dots$$

mit Rest:

$$\frac{f^{n+1}(\xi)}{(n+1)}(x-a)^{n+1}$$
 für ein $\xi \in]a,x[$

Taylorreihe

Die unendliche Reihe

$$Tf(x;a) := T_{\infty} = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} \cdot (x-a)^n$$

wird Taylorreihe von f an Stelle a genannt.

Bemerkung: Sei $\sum_{n=0}^{\infty} c_n x^n$ eine Potenzreihe mit positivem Konvergenzradius p > 0. Dann ist $f(x) = \sum_{n=0}^{\infty} c_l (x - x_0)^n$ auf $]x_0 - p, x_0 + p[$ differenzierbar und $f'(x) = \sum_{k=1}^{\infty} k c_k (x - x_0)^{k-1}$ für alle $x \in]x_0 - p, x_0 + p[$.

4.6 Kurvendiskussion und Varie

4.7 Surjektivität und injektivität

Definition

Es seien X und Y Mengen, sowie $f: X \to Y$ eine Abbildung. **Surjektivität**: Die Abbildung f heißt surjektiv, wenn es zu jedem $y \in Y$ (mindestens) ein $x \in X$ mit f(x) = y gibt.

Injektivität: Die Abbildung f heißt surjektiv, wenn es zu jedem Element $y \in Y$ höchstens ein (also eventuell gar kein) Element $x \in X$ gibt, das darauf zielt, wenn also nie zwei oder mehr verschiedene Elemente der Definitionsmenge auf dasselbe Element der Zielmenge abgebildet werden: $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.

Injektivität zeigen

f injektiv $\Leftrightarrow f$ streng monoton $\Leftrightarrow f' > 0$ oder f' < 0.

Surjektivität zeigen

- 1. $\lim_{x\to\infty} f(x) = b$ und $\lim_{x\to-\infty} f(x) = a$ zeigen
- 2. Sei nun $y \in]a, b[$ beliebig. Wegen der Grenzwerte von f gilt: $\exists x_1 < x_2 : f(x_1) < y < f(x_2)$. Mit dem Zwischenwertsatz gilt dann: $\exists c \in [x_1, x_2] : f(c) = y$ und somit ist f surjektiv.

4.7.1 Konvexität und Konkavität

Definition

fist [streng] konvex (auf I) falls f für alle $x \leq [<]y, x, y \in I$ und $\lambda \in [0,1]:$

$$f(\lambda x + (1 - \lambda)y) \le [<] \quad \lambda f(x) + (1 - \lambda)f(y)$$

Bemerkungen

- 1. Die Summe zweier konvexer Funktionen ist konvex
- 2. f ist genau dann konvex, falls f für $x_0 < x < x_1$ in I gilt:

$$\frac{f(x) - f(x_0)}{x - x_0} \le \frac{f(x_1) - f(x)}{x_1 - x}$$

3. Die Funktion f ist genau dann [streng] konvex, falls f' [streng] monoton wachsend ist.

Bemerkung: Alle Aussagen gelten auch für $\mathbf{Konkavit}$ ät, wir müssen nur das Ungleichzeichen umkehren

4.7.2 Begriffe und Korollare

Es gilt:

- $f'(x) = 0 \forall x \Rightarrow f(x)$ konstant
- $f'(x) = g'(x) \forall x \Rightarrow \exists c \in \mathbb{R} \text{ s.t. } f(x) = g(x) + c$
- $f'(x) > (>) \ 0 \forall x \Rightarrow f(x)$ (strikt) monoton wachsend
- $f'(x) \leq (<) \ 0 \forall x \Rightarrow f(x)$ (strikt) monoton fallend

Kritische Punkte

Punkte in welchen f'(x) = 0 gilt oder f'(x), f(x) nicht existieren, nennen wir kritische Punkte.

Bemerkung:

- n gerade und x_0 lokale Extremstelle $\Rightarrow f^{(n+1)}(x_0) = 0$
- n ungerade und $f^{(n+1)}(x_0) > 0 \Rightarrow x_0$ eine strikt lokale Minimalstelle
- n ungerade und $f^{(n+1)}(x_0) < 0 \Rightarrow x_0$ eine strikt lokale Maximalstelle

4.7.3 Komplette Kurvendiskussion

Symmetrie:

- Achsensymmetrisch/Gerade:
- $\forall x \in D : f(-x) = f(x)$
- Punktsymmetrisch/Ungerade: $\forall x \in D : f(-x) = -f(x)$

Grenzverhalten:

- Limes für $x \to +\infty$ und $x \to -\infty$ bestimmen
- Limes für alle kritische Punkte bestimmen

Nullstellen:

- Punkte berechnen wo f(x) = 0 gilt
- Punkte bestimmen wo f(0) = a gilt

Extremstellen:

- 1. Berechnung aller kritischen Punkte (u.a. (Grenz-) Werte des Intervalls)
- 2. Berechnung der ersten Ableitung und der Punkte, wo $f'(x_E) = 0$ gilt.
- 3. Berechnung der zweiten Ableitung und von $f''(x_E) = a$:
 - a < 0: lokales Maximum
 - a > 0: lokales Minimum
 - a = 0: keine Assage moglich

Settelpunkte: Berechnung der Punkte wo gilt:

- $f''(x_S) = 0$
- $f'''(x_S) \neq 0$
- $f'(x_S) \neq 0$

Wendelpunkte: Berechnung der Punkte wo gilt:

- $f''(x_W) = 0$
- $f'''(x_S) \neq 0$

• $f'(x_S) = 0$

Krümmung: Berechnung der Zweiten Ableitung:

- $f''(x) > 0 \rightarrow \text{linksgekrümmt (konvex)}$
- $f''(x) < 0 \rightarrow \text{rechtsgekrümmt (konkav)}$

5 Integrale

5.1 Riemann-Integral

Partitionierung

Wir teilen das Intervall I=[a,b] in n Teilintervalle auf. Das gibt uns eine Menge von Grenzpunkten $x_0...x_n$. Es gilt also: $P:=x_0=a,x_1,...,x_{n-1},x_n=b$.

Ein Teilintervall I_i ist gegeben durch $I_i = [x_{i-1}, x_i]$.

Stützstelle

Aus jedem Teilintervall I_i wählen wir einen Punkt ξ_i . Das gibt uns die Menge der Stützstellen $\xi_1...\xi_n$.

 $\xi = \xi_1 ... \xi_n$, wobei $\xi_i \in I_i = [x_{i-1}, x_i]$.

Riemann-Summe

Gegeben sei eine stetige Funktion $f(x):[a,b]\to\mathbb{R}$, sowie eine Partitionierung P in n Teile und Stützstellen ξ . Dann ist die Riemannsche Summe definiert durch:

$$S(f, P, \xi) := \sum_{i=1}^{n} f(\xi_i) \cdot (x_i - x_{i-1})$$

Ober- und Untersumme

Mithilfe der Parition können wir nun die Unertsumme/Obersumme einer Funktion definirien:

$$s(f, P) = \sum_{i=1}^{n} f_i \delta_i, \quad f_i = \inf_{x_{i-1} \le x \le x_i} f(x)$$

$$S(f, P) = \sum_{i=1}^{n} F_i \delta_i, \quad F_i = \sup_{x_{i-1} \le x \le x_i} f(x)$$

wobei $\delta_i = x_i - x_{i-1}$.

Sei nun $\mathcal{P}(I)$ die Menge alle Partitionen von I, definieren wir:

$$s(f) = \sup_{P \in \mathcal{P}(I)} s(f,P) \text{ und } S(f) = \inf_{P \in \mathcal{P}(I)} S(f,P)$$

Riemann-integrierbar

 $f:[a,b]\to\mathbb{R}$ ist Riemann-integrierbar, falls s(f)=S(f). In diesem Fall bezeichnen wir den gemeinsamen Wert als:

$$s(f) := \int_a^b f(x) \, \mathrm{d}x = S(f)$$

 ${\bf Alternativ:}\ f$ ist genau dann integrierbar wenn gilt:

$$\forall \epsilon > 0, \exists P: |s(f,P) - S(f,P)| < \epsilon$$

Bemerkung: Sei $\xi_i \in [x_{i-1}, x_i]$ und $m = \max_{1 \le i \le n} \{x_i - x_{i-1}\}$.

$$\lim_{m \to 0} \sum_{i=1}^{n} f(\xi_i) \cdot \delta_i = \int_a^b f(x) \, dx$$

often benutzen wir $\delta_i = \frac{b-a}{n}$ und $\xi_i = a + \left(\frac{b-a}{n}\right)i$ so dass:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(\xi_i) \cdot \delta_i$$

Bemerkung:

- f stetig in $[a,b] \implies f$ integrierbar über [a,b]
- f monoton in $[a,b] \implies f$ integrierbar über [a,b]

Wenn f, g beschränkt und integrierbar sind, dann sind

$$f + g, \lambda \cdot f, f \cdot g, |f|, \max(f, g), \min(f, g), \frac{f}{g}$$

integrierbar.

Beispiel: Zu zeigen: $f(x) = x^2, x \in [0,1]$ ist Riemann-inetgrierbar. Beweis: Wählen wir $P = [x_0, x_1, \dots, x_n]$ mit $x_k = \frac{k}{n}, k = 0, 1, \dots, n$ Da f wachsend in [0,1] für $k=1,2,\ldots,n$:

$$f_i = x_{k-1}^2 = \left(\frac{k-1}{n}\right)^2, \quad F_i = x_k^2 = \left(\frac{k}{n}\right)^2, \quad \delta_i = \frac{1}{n}$$

Jetzt:

$$s(f,P) = \sum_{k=1}^{n} \left(\frac{k-1}{n}\right)^2 \cdot \frac{1}{n} = \dots = \frac{1}{3} - \frac{3n-1}{6n^2}$$

und

$$S(f,P) = \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{2} \cdot \frac{1}{n} = \dots = \frac{1}{3} + \frac{3n-1}{6n^{2}}$$

Da $s(f,P) \leq \frac{1}{3} \leq S(f,P)$ und $S(f,P)-s(f,P)=\frac{1}{n}\to 0$ für $n\to +\infty, f$ ist Rieman-integrierbar.

Sätze & Umgleichungen

Umgleichungen

- $f(x) < g(x), \forall x \in [a, b] \rightarrow \int_{a}^{b} f(x) dx < \int_{a}^{b} g(x) dx$
- $\left| \int_a^b f(x) \, dx \right| \le \int_a^b |f(x)| \, dx$
- $\left| \int_a^b f(x)g(x) \, dx \right| \le \sqrt{\int_a^b f^2(x) \, dx} \sqrt{\int_a^b g^2(x) \, dx}$

Mittelwertsatz

Wenn $f:[a,b]\to\mathbb{R}$ stetig ist, dann gibt es $\xi\in[a,b]$ mit $\int_a^b f(x) \, \mathrm{d}x = f(\xi)(b-a).$

Daraus folgt auch, dass wenn $f, g : [a, b] \to \mathbb{R}$ wobei f stetig, g beschränkt und integrierbar mit $q(x) > 0, \forall x \in [a, b]$ ist, dann gibt

$$\xi \in [a, b]$$

$$\int_a^b f(x)g(x) dx = f(\xi) \int_a^b g(x) dx$$

5.3Stammfunktionen

Stammfunktion

Eine Funktion $F:[a,b]\to\mathbb{R}$ heisst Stammfunktion von f, falls F (stetig) differenzierbar in [a, b] ist und F' = f in [a, b] gilt.

Bemerkung: "f integrierbar" impliziert nicht, dass eine Stammfunktion existiert. Beispiel:

$$f(x) = \begin{cases} 0, & \text{für } x \le 0\\ 1, & \text{für } x > 0 \end{cases}$$

Hauptsatz Differential-/Integralrechnung

Sei a < b und $f: [a, b] \to \mathbb{R}$ stetig. Die Funktion

$$F(x) = \int_{a}^{x} f(t) dt, \ a \le x \le b$$

ist in [a, b] stetig differenzierbar und

$$F'(x) = f(x) \ \forall x \in [a, b]$$

Eine äquivalente Darstellung wäre:

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a)$$

Integrationsregeln

Sei $I \subset R$ ein Intervall und $f: I \to \mathbb{R}$ stetig. Dann gilt:

1. Seien $a, b, c \in \mathbb{R}$, sodass das abgeschlossene Intervall mit Endpunkten a + c, b + c in I enthalten ist:

$$\int_{a+c}^{b+c} f(x) dx = \int_{a}^{b} f(t+c)dt$$

2. Seien $a, b, c \in R$, sodass das abgeschlossene Intervall mit Endpunkten $a \cdot c, b \cdot c$ in I enthalten ist:

$$\int_{a}^{b} f(ct) dt = \frac{1}{c} \int_{ac}^{bc} f(x) dx$$

Linearität

$$\int u \cdot f(x) + v \cdot g(x) \, dx = u \int f(x) \, dx + v \int g(x) \, dx$$

Gebietsadditivität

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx, \ c \in [a, b]$$

Partielle Integration

$$\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx$$

- Grundsätzlich gilt: Polynome ableiten (q(x)), wo das Integral periodisch ist (sin, $\cos, e^x,...$) integrieren (f'(x))
- Teils ist es nötig, mit 1 zu multiplizieren, um partielle Integration anwenden zu können (z.B. $\int \log(x) dx$)
- Muss eventuell mehrmals angewendet werden

Substitution

Um $\int_a^b f(g(x)) dx$ zu berechnen: Ersetze g(x) durch u und integriere $\int_{a(a)}^{g(b)} f(u) \frac{du}{a'(x)}$

$$\int_{\phi(a)}^{\phi(b)} f(x) dx = \int_{a}^{b} f(\phi(t))\phi'(t)dt$$

- q'(x) muss sich irgendwie herauskürzen, sonst nutzlos.
- Grenzen substituieren nicht vergessen.
- Alternativ kann auch das unbestimmte Integral berechnet werden und dann u wieder durch x substituiert werden.

Partialbruchzerlegung

Seien p(x), q(x) zwei Polynome. $\int \frac{p(x)}{q(x)}$ wird wie folgend berech-

- 1. Falls deg(p) > deg(q), führe eine Polynomdivision durch. Dies führt zum Integral $\int a(x) + \frac{r(x)}{a(x)}$
- 2. Berechne die Nullstellen von q(x).
- 3. Pro Nullstelle: Einen Partialbruch erstellen.
 - Einfach, reell: $x_1 \to \frac{A}{x-x_1}$
 - *n*-fach, reell: $x_1 \to \frac{A_1}{x-x_1} + \ldots + \frac{A_r}{(x-x_1)^r}$

 - Einfach, komplex: $x^2 + px + q \rightarrow \frac{Ax + B}{x^2 + px + q}$ n-fach, komplex: $x^2 + px + q \rightarrow \frac{A_1x + b_1}{x^2 + px + q} + \dots$
- 4. Parameter A_1, \ldots, A_n (bzw. B_1, \ldots, B_n) bestimmen. (x jeweils gleich Nullstelle setzen, umformen und lösen).

5.5 Integration von konvergenten Reihen

Sei $f_n:[a,b]\to\mathbb{R}$ eine Folge von beschränkten, integrierbaren Funktionen, die gleichmässig gegen eine Funktion $f:[a,b]\to\mathbb{R}$ konvergiert. Dann ist f beschränkt, integrierbar und es gilt:

$$\lim_{n \to \infty} \int_a^b f_n(x) \, \mathrm{d}x = \int_a^b \lim_{n \to \infty} f_n(x) \, \mathrm{d}x = \int_a^b f(x) \, \mathrm{d}x$$

Weiter gilt, wenn $\sum_{n=0}^{\infty} f_n$ auf [a,b]gleichmässig konvergiert

$$\sum_{n=0}^{\infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \sum_{n=0}^{\infty} f_n(x) dx$$

Sei nun $f(x) = \sum c_k x^k$ eine Potenzreihe mit positivem Konvergenzradius $\rho > 0$. Dann ist für jedes $0 < r < \rho$, f auf [-r, r] integrierbar und es gilt $\forall x \in [-\rho, \rho]$:

$$\int_{0}^{x} f(t)dt = \sum_{n=0}^{\infty} \frac{c_k}{k+1} x^{k+1}$$

5.6 Euler-McLaurin Formel

Die Formel hilft Summen wie $1^l + 2^l + 3^l + ... + n^l$ abzuschatzen. Fur die Formel brauchen wir die Bernoulli Polynome $B_n(x)$, sowie die Bernoulli Zahlen $B_n(0)$. Wir brauchen dafur Polynome welche durch die folgenden Eigenschaften bestimmt sind:

1.
$$P'_k = P_{k-1}, k > 1$$

2.
$$\int_0^1 P_k(x) dx = 0, \forall k \ge 1$$

Für das k-te Bernoulli Polynom gilt: $B_k(x)=k!P_k(x)$. Wir definieren weiter $B_0=1$ und alle anderen Bernoulli Zahlen rekursiv: $B_{k-1}=\sum_{i=0}^{k-1}\binom{i}{i}B_i=0$.

Somit erhalten wir für das Bernoulli Polynom folgenden Definition:

$$B_k(x) = \sum_{i=0}^k \binom{k}{i} B_i x^{k-i}$$

Bernoulli Polynome und Zahlen:

n	$B_n(x)$	B_n
0	1	1
1	$x - \frac{1}{2}$ $x^2 - x + \frac{1}{6}$	$\pm \frac{1}{2}$
2	$x^2 - x + \frac{1}{6}$	$\frac{1}{6}$
3	$x^3 - \frac{3}{2}x^2 + \frac{1}{2}x$	0
4	$x^4 - 2x^3 + x^2 - \frac{1}{30}$	$-\frac{1}{30}$
5	$x^5 - \frac{5}{2}x^4 + \frac{5}{3}x^3 - \frac{1}{6}x$	0
6	$x^{3} - \frac{3}{2}x^{2} + \frac{1}{2}x$ $x^{4} - 2x^{3} + x^{2} - \frac{1}{30}$ $x^{5} - \frac{5}{2}x^{4} + \frac{5}{3}x^{3} - \frac{1}{6}x$ $x^{6} - 3x^{5} + \frac{5}{2}x^{4} - \frac{1}{2}x^{2} + \frac{1}{42}$	$\frac{1}{42}$

Nun definieren wir noch:

$$\tilde{B}_k(x) = \begin{cases} B_k(x) & \forall x : 0 \le x < 1 \\ B_k(x-n) & \forall x : n \le x < n+1 \end{cases}$$

Somit kommen wir aud die Euler-McLaurin Summationsformel:

Euler-McLaurin Summationsformel

Sei $f:[0,n] \to \mathbb{R}$ k-mal stetig differenzierbar. Dann gilt: Für k=1:

$$\sum_{i=1}^{n} f(i) = \int_{0}^{n} f(x) dx + \frac{1}{2} (f(n) - f(0)) + \int_{0}^{n} \tilde{B}_{1}(x) f'(x) dx$$

Für k > 1:

$$\sum_{i=1}^{n} f(i) = \int_{0}^{n} f(x) dx + \frac{1}{2} (f(n) - f(0)) +$$

$$\sum_{j=2}^{k} \frac{(-1)^{j} B_{j}}{j!} (f^{(j-1)}(n) + f^{(j-1)}(0)) + \tilde{R}_{k}$$

wobei

$$\tilde{R}_k = \frac{(-1)^{k-1}}{k!} \int_0^n \tilde{B}_k(x) f^{(k)}(x) \, dx$$

Example

$$1^l+2^l+3^l+\ldots+n^l$$
wobe
i $l\geq 1, l\in \mathbb{N}$

Angewandt auf $f(x) = x^l$ und k = l + 1 folgt für alle $l \ge 1$:

$$1^{l} + 2^{l} + 3^{l} + \dots + n^{l} = \frac{1}{l+1} \sum_{j=0}^{l} (-1)^{j} B_{j} {l+1 \choose j} n^{l+1-j}$$

5.7 Stirling'sche Formel

Die Stirling'sche Formel macht eine Aussage über das Verhalten der Fakultät:

$$n! \approx \frac{\sqrt{2\pi n} \cdot n^n}{e^n}$$
 bzw. $\lim_{n \to \infty} \frac{n!}{\sqrt{2\pi n} \cdot n^n} = 1$

Wir benützen jetzt die Euler-McLaurin FOrmel um eine präzise Aussage zuerhalten:

$$n! = \frac{\sqrt{2\pi n} \cdot n^n}{e^n} \cdot \exp\left(\frac{1}{12n} + R_3(n)\right)$$

wobei

$$|R_3(n)| \le \frac{\sqrt{3}}{216} \cdot \frac{1}{n^2} \quad \forall n \ge 1$$

5.8 Uneigentliche Integral

Uneigentliche Integral

Sei $f[a,\infty[\to \mathbb{R}$ beschränkt und integrierbar auf [a,b] für alle a < b. Falls:

$$\lim_{b \to \infty} \int_{a}^{b} f(x) \, \mathrm{d}x$$

existiert, wir bezeichnen den Grenzwert mit

$$\int_{a}^{\infty} f(x) \, \mathrm{d}x$$

und sagen, dass f auf $[a, \infty[$ integrierbar ist.

Auch hier können wir das Minoranten / Majoranten Kriterium verwenden. Weiter gilt, dass wenn die Funktion $f:[1,\infty[\to [0,\infty[$ monoton fallend ist. Die Reihe genau dann konvergiert, wenn $\int_1^\infty f(x) \;\mathrm{d}x$ konvergiert.

 $f:]a, b] \to \mathbb{R}$ ist integrierbar, falls:

$$\lim_{\epsilon \to 0^+} \int_{a+\epsilon}^b f(x) \, \mathrm{d}x$$

existiert. In diesem Fall wird der Grenzwert mit $\int_a^b f(x) \; \mathrm{d}x$ bezeichnet.

5.9 Gamma Funktion

DIe Gamma Funktion wir dafür gebraucht um die Funktion $n \mapsto (n-1)!$ zu interpolieren. Für s>0 definieren wir:

$$\Gamma(s) := \int_0^\infty e^{-x} x^{s-1} dx = (s-1)!$$

Die Gamma Funktion konvergiert für alle s>0 und hat folgende weiter Eingeschaften:

- 1. $\Gamma(1) = 1$
- 2. $\Gamma(s+1) = s\Gamma(s)$
- 3. Γ ist logaritmisch konvex, d.h.:

$$\Gamma(\lambda x + (2 - \lambda)y) \le \Gamma(x)^{\lambda} \Gamma(y)^{1 - \lambda}$$

für alle x, y > 0 und $0 \le \lambda \le 1$

Die Gamma Funktion ist die einzige Funktion $]0,\infty[\to]0,\infty[$ die (1),(2) und (3) erfüllt. Zudem gilt:

$$\Gamma(x) = \lim_{n \to \infty} \frac{n! n^x}{x(x+1)...(x+n)} \quad \forall x > 0$$

6 Verschiedene Aufgaben

1. Zeige, dass das Chuchy Produkt der beiden ditergenten Reihen $2+2+2^2+2^3+2^4+\cdots$ und $-1+1+1+1+\cdots$ absolut

konvergiert.

Beweis: Wir definieren:

$$a_i = \begin{cases} 2, & i = 0 \\ 2^i, & i = 1, 2, 3, 4, \dots \end{cases}$$

und

$$b_j = \begin{cases} -1, & j = 0\\ 1, & j = 1, 2, 3, 4, \dots \end{cases}$$

und berechnen

$$\sum_{n=0}^{\infty} \left(\sum_{j=0}^{n} a_{n-j} \cdot b_{j} \right) = a_{0} \cdot b_{0} + \sum_{n=1}^{\infty} \left(\sum_{j=0}^{n} a_{n-j} \cdot b_{j} \right)$$

$$= a_{0} \cdot b_{0} + \sum_{n=1}^{\infty} (-2^{n} + 2^{n-1} + 2^{n-2} + \cdots + 2^{1} + 2)$$

$$= -2 + \sum_{n=1}^{\infty} (-2^{n} + 2^{n-1} + 2^{n-2} + \cdots + 2^{1} + 2)$$

$$= -2 + \sum_{n=1}^{\infty} (1 + (1 + 2 + 2^{2} + \cdots + 2^{n-1}) - 2^{n})$$

$$= -2 + \sum_{n=1}^{\infty} \left(1 + \frac{1 - 2^{n}}{1 - 2} - 2^{n} \right)$$

$$= -2 + \sum_{n=1}^{\infty} \underbrace{\left(1 - (1 - 2^{n}) - 2^{n} \right)}_{=0}$$

$$= \sum_{n=0}^{\infty} c_{n}, \text{ mit } c_{0} = -2 \text{ und } c_{n} = 0 \text{ } \forall n \geq 1$$

Offensichtlich konvergiert also das Cauchy produkt $\sum_{n=0}^{\infty} c_n$ 2. Zeige, dast für a < 0 gilt

. 8.7

$$\lim_{x \to 0^+} x^a = +\infty$$

Beweis: Wir gehen ähnlich vor wie im Beispiel 3.54. Aus Beispiel 3.53 wissen wir, dass für jedes $n \in \mathbb{N}$ existiert ein $\delta(n) > 0$ so, dass

$$0 < x < \delta(n) \Longrightarrow \ln(x) < -n$$

Jetzt ist aber a<0, somit erhalten wir nach multiplizieren mit a die neue Ungleichung

$$a \ln(x) > -an$$

Da exp streng monoton ist, erhalten wir:

$$x^n = \exp\left(\ln\left(x^n\right)\right) = \exp\left(a\ln(x)\right) > \exp(-an)$$

und da -an > 0, crhalten wir $\lim_{n \to \infty} \exp(-an) = +\infty$. Nun sei x_n cine positive Nullfolge die gegen 0 strebt. Ohne den Grenzwert von x_n^4 zu verändern, können wit annehmen, dase $0 < x_n < \delta(n)$. Dann erhalten wir

$$\lim_{n \to \infty} (x_a)^n > \lim_{n \to \infty} \exp(-an) = +\infty$$

Daraus schliessen wir

$$\lim_{x \to 0^+} x^n = +\infty$$

3. Sei $f:[0,1]\to\mathbb{R}$ definiert durch

$$f(x) = \begin{cases} 0, & x = 0 \text{ oder } x \in \mathbb{RQ} \\ \frac{1}{q}, & x = \frac{p}{q} \text{ , mit } p, q \in \mathbb{N}_{>0} \text{ teilerfremd} \end{cases}$$

Zeige, dass f integrierbar ist.

Beweis: Erste Beobachtung: jedes Interval $[x_{i-1},x_i]$ beinhaltet eine irrationale Zahl, solange $x_{i-1} \neq x_i$. Damit ist für jede Partition P von [0,1] die Untersumme s(f,P) gleich 0. Sei $\varepsilon > 0$ und $n \in \mathbb{N}$ so dass $\frac{1}{n} < \frac{\varepsilon}{n}$ und B_n die Menge aller "koprimen Brüche" mit Nenner kleiner gleich n:

$$B_{\mathbf{a}} = \left\{ 1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4} + \frac{1}{5}, \dots, \frac{1}{n}, \dots, \frac{n-1}{n} \right\}$$

Setze $m = \#B_n$, wähle k > m und $P = \{x_0 \dots, x_k\}$ eine Partition mit

$$\max_{1 \le i \le k} |x_i - x_{i-1}| < \frac{e}{4m},$$

So eine Partition existiert immer, solange wir k gross genug wählen. Mit der Notation aus der Vorlesung gilt somit

$$P = P_{\frac{\varepsilon}{4m}}$$

Da B_n aus m -vielen Elementen besteht, gibt es höchsten 2m-viele Intervalle $[x_{i-1}, x_i]$, die B_n schneiden.

Falls $x \notin B_a$. dann ist x entweder irrational (dann folgt f(x) = 0), 0, oder ein Bruch $\frac{p}{q}$ mit p,q teilerfremd und q > n (siehe Defini-

tion von $B_n!$). Aufjedenfall gilt dann $f(x) < \frac{1}{n}$.

Wir schätzen nun die Obwerumme S(f, P) von oben ab:

$$S(f,P) = \sum_{i=1}^{k} (x_i - x_{i-1}) \cdot \sup_{\substack{x \in |x_i, x_{i-1}| \\ = f_i}} f(x)$$

$$= \sum_{i \text{ mit}[x_{i-1}, x_i] \cap B_n \neq 0} (x_i - x_{i-1}) \cdot f_i + \text{ Die erste Sum-}$$

$$+ \sum_{j \text{ mit}[x_{j-1}, x_j] \cap B_n \neq 0} (x_j - x_{j-1}) \cdot f_j$$
me läuft höchstens über $2m$ Indizes, da es höchstens sovie-

me läuft höchstens über 2m Indizes, da es höchstens soviele Intervalle gibt, die B_n schneiden, und es gilt $f_i \leq 1$ (weil $f(x) \leq 1$). In der zweiten Summe können wir f_i mit $\frac{1}{n}$ abschätzen, da das Intervall B_m nicht schneidet und wir f(y) für Element

auserthalb von B_n mit $\frac{1}{n}$ oben abgesehätzt haben. Auserdem gilt

$$\sum_{i \operatorname{mit}(x_{i-1}, x_i) \cap B_n = 0} (x_j - x_{j-1}) \le \sum_{j=1}^k (x_j - x_{j-1})$$
$$= x_k - x_0 = 1 - 0 = 1$$

Wir werfen alles zusammen und erhalten:

$$S(f, P) \le 2m \cdot \frac{\varepsilon}{4m} \cdot 1 + 1 \cdot \frac{1}{n}$$
$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$
$$= \varepsilon$$

Damit wäre $S(f,P)-s(f,P)<\varepsilon, P=P_{\frac{\varepsilon}{4m}}$ gezeigt, und Satz 5.8 besagt nun, dass f integrierbar ist.

4. Beweise, dasa falls

$$\sum_{n=0}^{\infty} a_n x^n$$

positive Konvergenzradius besitzt, so ist der Komvergenaradius von

$$\sum_{n=0}^{\infty} \frac{a_n x^n}{n!}$$

gleich $+\infty$

Beweis: Per Definition, ist die Annahme, das $\limsup_{n\to\infty} \sqrt[n]{a_n}$ existiert. Zur Erinnerung

$$\limsup_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sup_{k > n} \sqrt[k]{a_n}$$

Per Definition ist der Konvergenaradius ρ von

$$\sum_{n=0}^{\infty} \underbrace{\frac{a_n}{n!}}_{b_n} x^n$$

gleich $+\infty$, genau dann wenn

$$\limsup_{n \to \infty} \sqrt[n]{|b_n|} = 0$$

Wir zeigen als letzeres:

$$\lim_{n \to \infty} \sup \sqrt[n]{|b_n|} = \lim_{n \to \infty} \sup_{k \ge n} \sqrt[k]{|b_k|}$$
$$= \lim_{n \to \infty} \sup_{k \ge n} |a_k|^{\frac{1}{k}} \cdot k!^{-\frac{1}{k}}$$

Mit der Stirling'schen Formel gilt

$$k!^{-1} \approx \left(\frac{\sqrt{2\pi k}k^k}{e^k}\right) = \frac{(2\pi k)^{-\frac{k}{2}}e}{k} = \frac{e}{(\sqrt{2\pi k})^k \cdot k} \to 0$$

für $k \to \infty$. Ausserdem existiert

$$\lim_{n \to \infty} \sup_{k \ge n} \sqrt[k]{|a_k|}$$

per Annahme, und somit ist die Folge c_n beschränkt. Also existiert eine $C \in \mathbb{R}$ mit $c_n < C$ für alle n, und daher können wir abschätzen:

$$\limsup_{n \to \infty} \sqrt[4]{|b_n|} = \lim_{n \to \infty} \sup_{k \ge n} |a_k|^{\frac{1}{k}} \cdot k!^{-\frac{1}{k}}$$

$$\leq \lim_{n \to \infty} C \cdot k!^{-\frac{1}{k}}$$

$$= C \lim_{n \to \infty} \sup_{k \ge n} k!^{-\frac{1}{k}}$$

$$= C \cdot \lim_{n \to \infty} \sup_{n \to \infty} n!^{-\frac{1}{n}}$$

$$= C \cdot \lim_{n \to \infty} n!^{-\frac{1}{n}}$$

$$= 0.$$

Im vorletzten Schritt haben wir verwenden, dass limsup und lim übereinstimmen wenn der Grenzwert existiert.

Trigonometrie

7.1 Hyperbol Funktionen

1.
$$\sinh(x) := \frac{e^x - e^{-x}}{2} : \mathbb{R} \to \mathbb{R}$$

1.
$$\sinh(x) := \frac{e^x - e^{-x}}{2} : \mathbb{R} \to \mathbb{R}$$

2. $\cosh(x) := \frac{e^x + e^{-x}}{2} : \mathbb{R} \to [1, \infty[$

3.
$$\tanh(x) := \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}} : \mathbb{R} \to [-1, 1[$$

7.2 Regeln

7.2.1 Periodizität

- $\sin(\alpha + 2\pi) = \sin(\alpha)$ $\cos(\alpha + 2\pi) = \cos(\alpha)$
- $tan(\alpha + \pi) = tan(\alpha)$ $cot(\alpha + \pi) = cot(\alpha)$

7.2.2 Parität

- $\sin(-\alpha) = -\sin(\alpha)$ $\cos(-\alpha) = \cos(\alpha)$
- $tan(-\alpha) = -tan(\alpha)$ $cot(-\alpha) = -cot(\alpha)$

7.2.3 Ergänzung

- $\sin(\pi \alpha) = \sin(\alpha)$ $\cos(\pi \alpha) = -\cos(\alpha)$
- $\tan(\pi \alpha) = -\tan(\alpha)$ $\cot(\pi \alpha) = -\cot(\alpha)$

7.2.4 Komplemente

- $\sin(\pi/2 \alpha) = \cos(\alpha)$ $\cos(\pi/2 \alpha) = \sin(\alpha)$
- $\tan(\pi/2 \alpha) = -\tan(\alpha)$ $\cot(\pi/2 \alpha) = -\cot(\alpha)$

7.2.5 Doppelwinkel

- $\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$
- $\cos(2\alpha) = \cos^2(\alpha) \sin^2(\alpha) = 1 2\sin(\alpha)$
- $\tan(2\alpha) = \frac{2\tan(\alpha)}{1-\tan^2(\alpha)}$

7.2.6 Addition

- $\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$
- $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) \sin(\alpha)\sin(\beta)$
- $\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 \tan(\alpha)\tan(\beta)}$

7.2.7 Subtraktion

- $\sin(\alpha \beta) = \sin(\alpha)\cos(\beta) \cos(\alpha)\sin(\beta)$
- $\cos(\alpha \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$
- $\tan(\alpha \beta) = \frac{\tan(\alpha) \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}$

7.2.8 Multiplikation

- $\sin(\alpha)\sin(\beta) = -\frac{\cos(\alpha+\beta)-\cos(\alpha-\beta)}{2}$ $\cos(\alpha)\cos(\beta) = \frac{\cos(\alpha+\beta)+\cos(\alpha-\beta)}{2}$
- $\sin(\alpha)\cos(\beta) = \frac{\sin(\alpha+\beta) + \sin(\alpha-\beta)}{2}$

7.2.9 Potenzen

- $\sin^2(\alpha) = \frac{1}{2}(1 \sin(2\alpha))$
- $\cos^2(\alpha) = \frac{1}{2}(1 + \cos(2\alpha))$
- $\tan^2(\alpha) = \frac{1-\cos(2\alpha)}{1+\cos(2\alpha)}$

7.2.10 Diverse

- $\sin^2(\alpha) + \cos^2(\alpha) = 1$
- $\sinh^2(\alpha) \cosh^2(\alpha) = 1$
- $\sin(z) = \frac{e^{iz} e^{-iz}}{2}$ und $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$

Wichtige Werte

deg	0°	30°	45°	60°	90°	180°
rad	0	$\frac{\pi}{6}$ $\frac{\sqrt{3}}{2}$ $\frac{1}{2}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	$+\infty$	0

Nütziche Sätze

Bogenlänge

$$\mathcal{L} = \int_a^b \sqrt{1 + (f'(x))^2}$$

Bernoulli Ungleichung

$$(1+x)^n \ge 1 + n \cdot x \quad \forall n \in \mathbb{N}, x > -1$$

Young'sche Ungleichung

$$\forall \epsilon > 0, \forall x, y \in \mathbb{R} : 2|xy| \le \epsilon x^2 + \frac{1}{\epsilon}y^2$$

Binomialsatz

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

8.1 Komplexe Zahlen

$$z = a + b \cdot i$$

$$z = r(\cos \omega + i \sin \omega) = r \operatorname{cis} \omega = r \cdot e^{i\omega}$$

Exponent: $z^n = r^n e^{in\omega}$

For the following let $z_1 = a + i \cdot b$ and $z_2 = c + i \cdot d$.

Addition/Subtraktion

$$z_1 + z_2 = (a+c) + (b+d)i$$
, $z_1 - z_2 = (a-c) + (b-d)i$

Multiplikation

$$z_1 \cdot z_2 = (ac + bdi^2) + (ad + bc)i = (ac - bd) + (ad + bc)i$$

Division

$$\frac{z_1}{z_2} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i$$

8.2 Exponential-Funktion und Logarithmus

- $e \approx 2.72, \ln(1) = 0, \ln(e) = 1$
- $\exp(x) > 0, \forall x \in \mathbb{R} \text{ und } \exp(x) > 1, \forall x > 0$
- $1 + x < e^x$
- $(1+x)^n > 1 + nx$ (Bernoullische Ungleichung)
- $|a+b| \le |a| + |b|$ (Dreiecksungleichung)
- $\log(x) \le \sqrt{x}, \forall x > 0$
- $\ln(a \cdot b) = \ln(a) + \ln(b)$ und $\ln\left(\frac{a}{b}\right) = \ln(a) \ln(b)$
- $\ln(a^b) = b \cdot \ln(a)$ und $\log_a(x) = \frac{\ln(x)}{\ln(a)}$
- $e^{\ln(x)} = x$ und $\ln(e^x) = x$
- $x^a = e^{a \ln(x)}$

8.3 Bekannte Taylorreihen

$$e^{x} = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^{n} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \mathcal{O}(x^{5})$$

$$\sin(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \mathcal{O}(x^{9})$$

$$\sinh(x) = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \frac{x^{7}}{7!} + \mathcal{O}(x^{9})$$

$$\cos(x) = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \mathcal{O}(x^{8})$$

$$\cosh(x) = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \frac{x^{6}}{6!} + \mathcal{O}(x^{8})$$

$$\tan(x) = x + \frac{x^{3}}{3} + \frac{2x^{5}}{15} + \mathcal{O}(x^{6})$$

$$\tanh(x) = x - \frac{x^{3}}{3} + \frac{2x^{5}}{15} + \mathcal{O}(x^{6})$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} \mathcal{O}(x^{5})$$

$$(1+x)^{\alpha} = 1 + \alpha x - \frac{\alpha(\alpha-1)}{2} x^{2} + \mathcal{O}(x^{3})$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{x^{3}}{16} - \mathcal{O}(x^{4})$$

8.4 Wichtige Reihen

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$

$$\sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6}$$

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$

9 Tabellen

9.1 Typische Grenzwerte

$\lim_{x \to +\infty} \frac{1}{x} = 0$	$\lim_{x \to +\infty} 1 + \frac{1}{x} = 1$
$\lim_{x \to -\infty} e^x = +\infty$	$\lim_{x \to -\infty} e^x = 0$
$\lim_{x \to -\infty} e^{-x} = 0$	$\lim_{x \to -\infty} e^{-x} = +\infty$
$\lim_{x \to +\infty} \frac{e^x}{x^m} = +\infty$	$\lim_{x \to -\infty} x e^x = 0$
$\lim_{x \to +\infty} \ln(x) = +\infty$	$\lim_{x \to 0} \ln(x) = -\infty$
$\lim_{x \to +\infty} (1+x)^{\frac{1}{x}} = 1$	$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$
$\lim_{x \to +\infty} (1 + \frac{1}{x})^b = 1$	$\lim_{x \to 0} (1 + \frac{1}{x})^b = +\infty$
$\lim_{x \to +\infty} x^a q^x = 0, \forall 0 \le q < 1$	$\lim_{x \to +\infty} n^{\frac{1}{n}} = 1$
$\lim_{x \to \pm \infty} (1 + \frac{1}{x})^x = e$	$\lim_{x \to \pm \infty} (1 - \frac{1}{x})^x = \frac{1}{e}$
$\lim_{x \to \pm \infty} (1 + \frac{k}{x})^{mx} = e^{km}$	$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$
$\lim_{x \to 0} \frac{1}{\cos(x)} = 1$	$\lim_{x \to 0} \frac{\cos(x) - 1}{x} = 0$
$\lim_{x \to 0} x \log(x) = 0$	$\lim_{x \to 0} \frac{\log(1) - x}{x} = 1$
$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$	$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$
$\lim_{x \to 0} \frac{x}{\arctan(x)} = 1$	$\lim_{x \to +\infty} \arctan(x) = \frac{\pi}{2}$
$\lim_{x \to +\infty} \left(\frac{x}{x+k} \right)^x = e^{-k}$	$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$
$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln(a) \forall a > 0$	$\lim_{x \to 0} \frac{e^{ax} - 1}{x} = a$
$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$	$\lim_{x \to +\infty} \frac{\log(x)}{x^a} = 0$
$\lim_{x \to +\infty} \sqrt[x]{x} = 1$	$\lim_{x \to +\infty} \frac{2x}{2^x} = 0$

Bemerkung: $\lim_{n\to\infty} \sqrt[n]{x} = 1$ für $\forall x > 0$

9.2 Ableitungen und Stammfunktionen

	I
F(x)	F'(x) = f(x)
c	0
x^a	$a \cdot x^{a-1}$
$\frac{1}{a+1}x^{a+1}$	x^a
$\frac{1}{a \cdot (n+1)} (ax+b)^{n+1}$	$(ax+b)^n$
$\frac{x^{\alpha+1}}{\alpha+1}$	$x^{\alpha}, \alpha \neq -1$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$\sqrt[n]{x}$	$\frac{1}{n}x^{\frac{1}{n}-1}$
$\frac{2}{3}x^{\frac{3}{2}}$	\sqrt{x}
$\frac{n}{n+1}x^{\frac{1}{n}+1}$	$\sqrt[n]{x}$
e^x	e^x
$\ln(x)$	$\frac{1}{x}$
$\log_a x $	$\frac{1}{x \ln a} = \log_a(e) \frac{1}{x}$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
$\tan(x)$	$\frac{1}{\cos^2(x)} = 1 + \tan^2(x)$
$\cot(x)$	$\frac{1}{-\sin^2(x)}$
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos(x)$	$\frac{-1}{\sqrt{1-x^2}}$
$\arctan(x)$	$\frac{1}{1+x^2}$
$\sinh(x)$	$\cosh(x)$
$\cosh(x)$	$\sinh(x)$
$\tanh(x)$	$\frac{1}{\cosh^2(x)} = 1 - \tanh^2(x)$
$\operatorname{arcsinh}(x)$	$\frac{1}{\sqrt{1+x^2}}$
$\operatorname{arccosh}(x)$	$\frac{1}{\sqrt{x^2-1}}$
$\operatorname{arctanh}(x)$	$\frac{1}{1-x^2}$
$\frac{1}{f(x)}$	$\frac{-f'(x)}{(f(x))^2}$

F(x)	F'(x) = f(x)
a^{cx}	$a^{cx} \cdot c \ln a$
x^x	$x^x \cdot (1 + \ln x) x > 0$
$(x^x)^x$	$(x^x)^x(x+2x\ln(x)) x>0$
$x^{(x^x)}$	$x^{(x^x)}(x^{x-1} + \ln x \cdot x^x(1 + \ln x))$
$\frac{1}{a}\ln(ax+b)$	$\frac{1}{ax+b}$
$\frac{ax}{c} - \frac{ad - bc}{c^2} \ln cx + d $	$\frac{ax+b}{cx+d}$
$\frac{1}{2a}\ln\left \frac{x-a}{x+a}\right $	$\frac{1}{x^2 - a^2}$
$\frac{x}{2}f(x) + \frac{a^2}{2}\ln(x + f(x))$	$\sqrt{a^2 + x^2}$
$\frac{x}{2}\sqrt{a^2 - x^2} - \frac{a^2}{2}\arcsin\frac{x}{ a }$	$\sqrt{a^2-x^2}$
$\frac{x}{2}f(x) - \frac{a^2}{2}\ln(x + f(x))$	$\sqrt{x^2-a^2}$
$\ln(x + \sqrt{x^2 \pm a^2})$	$\frac{1}{\sqrt{x^2 \pm a^2}}$
$\arcsin(\frac{x}{ a })$	$\frac{1}{\sqrt{a^2 - x^2}}$
$\frac{1}{a}\arctan(\frac{x}{a})$	$\frac{1}{x^2 + a^2}$
$-\frac{1}{a}\cos(ax+b)$	$\sin(ax+b)$
$\frac{1}{a}\sin(ax+b)$	$\cos(ax+b)$
$-\ln \cos(x) $	tan(x)
$\ln \sin(x) $	$\cot(x)$
$\ln\left \tan\left(\frac{x}{2}\right)\right $	$\frac{1}{\sin(x)}$
$\ln\left \tan\left(\frac{x}{2}+\frac{\pi}{4}\right)\right $	$\frac{1}{\cos(x)}$
$\frac{1}{2}(x-\sin(x)\cos(x))$	$\sin^2(x)$
$\frac{1}{2}(x+\sin(x)\cos(x))$	$\cos^2(x)$
$\tan(x) - x$	$\tan^2(x)$
$-\cot(x)-x$	$\cot^2(x)$
$x\arcsin(x) + \sqrt{1-x^2}$	$\arcsin(x)$
$x\arccos(x) - \sqrt{1-x^2}$	$\arccos(x)$
$x\arctan(x) - \frac{1}{2}\ln(1+x^2)$	$\arctan(x)$
$\ln(\cosh(x))$	$\tanh(x)$

F(x)	F'(x) = f(x)
$\ln f(x) $	$\frac{f'(x)}{f(x)}$
$x \cdot (\ln x - 1)$	$\ln x $
$\frac{1}{n+1}(\ln x)^{n+1} n \neq -1$	$\frac{1}{x}(\ln x)^n$
$\frac{1}{2n}(\ln x^n)^2 n \neq 0$	$\frac{1}{x} \ln x^n$
$\ln \ln x x > 0, x \neq 1$	$\frac{1}{x \ln x}$
$\frac{1}{b \ln a} a^{bx}$	a^{bx}
$\frac{cx-1}{c^2} \cdot e^{cx}$	$x \cdot e^{cx}$
$\frac{x^{n+1}}{n+1} \left(\ln x - \frac{1}{n+1} \right) n \neq -1$	$x^n \ln x$
$\frac{e^{cx}(c\sin(ax+b)-a\cos(ax+b))}{a^2+c^2}$	$e^{cx}\sin(ax+b)$
$\frac{e^{cx}(c\cos(ax+b)+a\sin(ax+b))}{a^2+c^2}$	$e^{cx}\cos(ax+b)$

9.3 Trigonometrische Ansätze

f(x)	$\mathbf{F}(\mathbf{x})$
$\int_a^b \frac{1}{x^2 + 1} dx$	$[arctan(x)]_a^b$
$\int_a^b \frac{1}{1-x^2} dx$	$[arctanh(x)]_a^b$
$\int_{a}^{b} \frac{1}{\sqrt{x^2 + 1}} dx$	$[arcsinh(x)]_a^b$
$\int_a^b \frac{-1}{\sqrt{1-x^2}} dx$	$[arcos(x)]_a^b$
$\int_a^b \frac{1}{\sqrt{1-x^2}} dx$	$[arcsin(x)]_a^b$
$\int_{a}^{b} \frac{1}{\sqrt{x^2 - 1}} dx$	$[arcosh(x)]_a^b$
$\int_a^b \frac{1}{\sin^2(x)} dx$	-cot(x)
$\int_a^b \frac{1}{\cos^2(x)} dx$	tan(x)
$\int_{a}^{b} \sqrt{1+x^2} dx$	$\frac{arcsinh(x)+x-\sqrt{x^2+1}}{2}$
$\int_0^{\pi/2} \cos(x)$	1
$\int_0^{\pi/2} \cos^2(x)$	$\frac{\pi}{4}$
$\int_0^{\pi/2} \sin(x)$	1
$\int_0^{\pi/2} \sin^2(x)$	$\frac{\pi}{4}$

9.4 Ableitungen

$\mathbf{F}(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$	$\mathbf{f'}(\mathbf{x})$
-	$(f^{-1})'(y_0)$	$\frac{1}{f'(x_0)}$
$\frac{x^{-a+1}}{a+1}$	$\frac{1}{x^a}$	$\frac{a}{x^{a+1}}$
$\frac{x^{a+1}}{a+1}$	$x^a (a \neq 1)$	$a \cdot x^{a-1}$
$\frac{1}{k \ln(a)} a^{kx}$	a^{kx}	$ka^{kx}\ln(a)$
$\ln x $	$\frac{1}{x}$	$-\frac{1}{x^2}$
$\frac{2}{3}x^{2/3}$	\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$-\cos(x)$	$\sin(x)$	$\cos(x)$
$\sin(x)$	$\cos(x)$	$-\sin(x)$
$\frac{1}{2}(x - \frac{1}{2}\sin(2x))$	$\sin^2(x)$	$2\sin(x)\cos(x)$
$\frac{1}{2}(x + \frac{1}{2}\sin(2x))$	$\cos^2(x)$	$-2\sin(x)\cos(x)$
$-\ln \cos(x) $	$\tan(x)$	$\frac{1}{\cos^2(x)}$ $1 + \tan^2(x)$
$\cosh(x)$	$\sinh(x)$	$\cosh(x)$
$\log(\cosh(x))$	tanh(x)	$\frac{1}{\cosh^2(x)}$
$\ln \sin(x) $	$\cot(x)$	$-\frac{1}{\sin^2(x)}$
$\frac{1}{c} \cdot e^{cx}$	e^{cx}	$c \cdot e^{cx}$
$x(\ln x -1)$	$\ln x $	$\frac{1}{x}$
$\frac{1}{2}(\ln(x))^2$	$\frac{\ln(x)}{x}$	$\frac{1-\ln(x)}{x^2}$
$\frac{x}{\ln(a)}(\ln x -1)$	$\log_a x $	$\frac{1}{\ln(a)x}$

9.5 Integrale

$\mathbf{f}(\mathbf{x})$	$\mathbf{F}(\mathbf{x})$
$\int f'(x)f(x) \mathrm{d}x$	$\frac{1}{2}(f(x))^2$
$\int \frac{f'(x)}{f(x)} \mathrm{d}x$	$\ln f(x) $
$\int_{-\infty}^{\infty} e^{-x^2} \mathrm{d}x$	$\sqrt{\pi}$
$\int (ax+b)^n \mathrm{d}x$	$\frac{1}{a(n+1)}(ax+b)^{n+1}$
$\int x(ax+b)^n dx$	$\frac{(ax+b)^{n+2}}{(n+2)a^2} - \frac{b(ax+b)^{n+1}}{(n+1)a^2}$
$\int (ax^p + b)^n x^{p-1} \mathrm{d}x$	$\frac{(ax^p+b)^{n+1}}{ap(n+1)}$
$\int (ax^p + b)^{-1}x^{p-1} \mathrm{d}x$	$\frac{1}{ap}\ln ax^p+b $
$\int \frac{ax+b}{cx+d} \mathrm{d}x$	$\frac{ax}{c} - \frac{ad - bc}{c^2} \ln cx + d $
$\int \frac{1}{x^2 + a^2} \mathrm{d}x$	$\frac{1}{a} \arctan \frac{x}{a}$
$\int \frac{1}{x^2 - a^2} \mathrm{d}x$	$\frac{1}{2a} \ln \left \frac{x-a}{x+a} \right $
$\int \sqrt{a^2 + x^2} \mathrm{d}x$	$\frac{x}{2}\sqrt{a^2+x^2} + \frac{a^2}{2}\ln(x+\sqrt{a^2+x^2})$

10 Graphen

