CS 3313: Foundations of Computing Part II

http://gw-cs3313.github.io

1

Regular Languages - Summary

- Finite state machines
 - DFA, NFA
- Regular expressions
- DFA as an algorithm
 - Example: substring search (and application to DNA sequence matching) Above all: about problem solving and algorithmic thinking
- Properties of regular languages
 - Closure properties
 - Decision properties
- Pumping lemma to prove a language is not regular
 - Limits of finite state machines
 - Ex: we now know that checking syntax of programming languages cannot be done by a Finite state machine (using a^nb^n to model the property)

Course Schedule - Topics

- Part 1: Regular Languages and Finite State Automata. (Weeks 1-5).
 familiar territory but now from a math perspective
 - Finite Automatasame as Finite State Machines in Hardware!
 - Regular expressions to denote regular languages (same as Unix RegEx)
 - Properties of regular languages
- Part 2: Context Free Languages and Grammars (weeks 5-10)
 - Pushdown Automata adding simple "memory" to finite state machines
 - Formal grammars context free grammars and a parsing algorithm
- Part 3: Turing Machines and Computability
 - Turing machine model and Universal Turing machine
 - What is computable? Proving a problem is not solvable
 - Computational complexity models.

3

Recall definition: Automata

- An <u>automaton</u> is an abstract model of a digital computing device
- An automaton consists of
 - An input mechanism
 - A control unit
 - Possibly, a storage mechanism
 - · Possibly, an output mechanism
- Control unit can be in any number of internal *states*, as determined by a *next-state* or *transition* function.
- There are a finite number of states

_

Modifying Finite State Automata

- Finite Automata (Deterministic & Non-deterministic)
 - These model Finite State Machines
- Observation: no external memory
 - State can summarize past events but cannot operate as an arbitrary size memory (eg. Register/counter to store any value, buffer to store arbitrary length strings, etc.)
- Changing Finite Automata model: Add the simplest form of memory to a Finite state machine
- What is the simplest form of storage ?

/

--

Next Topic: Pushdown Automaton (PDA)

- This machine model (NFA with stack storage) is formally known as a Pushdown Automaton (PDA).
 - The default PDA definition is a non-deterministic machine from current configuration, it has number of choices for next move each choice specifies: next state, push string to stack
- The PDA is an automaton that accepts Context free languages
 - and equivalent to Context Free Grammars in language-defining power.
- Only the nondeterministic PDA defines all the CFL's.
- But the deterministic version models parsers.
 - Syntax of most programming languages have deterministic PDA's.

Intuition: PDA

- Think of an λ -NFA with the additional power that it can manipulate a stack.
- Its moves are determined by:
 - 1. The current state (of its "NFA"),
 - 2. The current input symbol (or λ), and
 - 3. The current symbol on top of its stack.

13

Intuition: PDA – (2)

- Being nondeterministic, the PDA can have a choice of next moves.
- In each choice, the PDA can:
 - 1. Change state, and also
 - Replace the top symbol on the stack by a sequence of zero or more symbols.
 - ◆ Zero symbols = "pop" and no push
 - ♦ Many symbols = "push" a string

PDA Formalism

- A PDA M= $(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ is described by:
 - 1. A finite set of *states* Q (same as before).
 - 2. An *input alphabet* Σ (same as before).
 - 3. A *stack alphabet* Γ (typically assume Γ disjoint from Σ).
 - 4. A transition function δ
 - $\delta: (Q \times (\Sigma \cup \lambda) \times \Gamma) \rightarrow 2^{(Q \times \Gamma^*)}$ (subset of Q $\times \Gamma^*$)
 - Number of choices (i.e., non-deterministic)
 - Ex: $\delta(q_1, 0, X) = \{ (q_1, XX), (q_2, \lambda) \}$
 - 5. A *start state* q_0 , in Q (same as before).
 - 6. A *start symbol* Z_0 , in Γ (to indicate bottom of stack).
 - 7. A set of *final states* $F \subseteq Q$

Need a few more definitions and notations to define acceptance....will return to this after Exam 1

15

15

Next 5 weeks

- Pushdown Automata
 - Formal definitions
 - Designing PDAs can use JFLAP again!
- Grammars Context Free grammars
 - Parse trees (there we go again with graphs and trees!!!)
 - Normal Forms for grammars
 - A simple parsing algorithm
- Equivalence of PDAs and CFGs
 - Definitions...we skip the details in this course
- Properties of Context Free Languages
 - We will pump you up again !!

Exam 1 – Thursday Feb. 10th

- Content: ALL topics on regular languages
 - Weeks 1—4
 - HW 1—3 and Quizzes 1—3
- Do you need to memorize all the theorems ?
- Will there be proofs?
- Will you have enough time ?
- Will there be a review session before the exam?
- Will you pass the exam

17

Review: When is a language regular

- A language is regular iff there is a finite state machine (DFA or NFA) or regular expression for the language
 - To prove a language is regular, you have to provide a NFA/DFA or Reg. Expr.
- To prove a language is not regular, use the pumping lemma to derive a contradiction
 - Assume language is regular
 - Use pumping lemma to show a contradiction

The Pumping Lemma for Regular Languages

For every regular language L

Number of states of DFA for L

There is an integer n, such that

For every string w in L of length $\geq n$

We can write w = xyz such that:

- 1. $|xy| \leq n$.
- 2. |y| > 0.
- 3. For all $i \ge 0$, xy^iz is in L.

Labels along first cycle on path labeled w

19

19

How do use the pumping lemma: 2 person adversarial game

- For all regular languages L, there exists n...for all w in Lthere exists xyz....
- To show a contradiction, pick a string (express in terms of n the constant of the lemma), and then find *one* value of $i \ge 0$ such that xy^iz does not belong to the language

Pumping Lemma...another example

- Can we check if a number is a prime by using a DFA?
- Formally: Is $L = \{ a^j \mid j \text{ is a prime number} \}$ regular?
 - L uses "unary" notation to represent an integer
 - Why is this useful...checking for primality is a (very) important step in crypto algorithms
- Check the tutorial video for the proof...
 - Key observation: this is an example where we need to find that exact one value of i such that xy^iz is not in L to find a contradiction using the pumping lemma

21

Is the language regular

- $L_1 = \{ a^j b^j | j > = 0 \} \cup \{ a^j b^k | j,k > = 0 \}$
- $L_2 = \{0^i 1^j 2^k 3^l \mid i+j=k+l\}$
- $L_3 = \{ w \mid w \in \{a,b,c\}^* \text{ and } |w| = 3 \ n_a(w) \text{ where } n_a(w) \text{ is number of } a \text{ 's in } w \}$

More examples...is L regular?

- $L_4 = \{a^j b^j | j \le 20 \}$
- $L_5 = \{ a^j b^k c^l | j+k+l > 5 \}$
- $L_6 = \{ a^j b^l | j > = 100 \text{ and } l <= 100 \}$

23

Pumping Lemma – Another example

- $L_7 = \{ a^k | k = j^2 \text{ for some } j > 0 \} \dots \text{ check notes/book }$
- $L_8 = \{ a^j b^k a^l | j=k \text{ or } k \text{ is not equal to } l \}$
- $L_9 = \{ a^{k!} | k > 0 \}$ (where k! is k factorial)