On fine differentiability properties of horizons and applications to Riemannian geometry

Piotr T. Chruściel*
Département de Mathématiques
Faculté des Sciences
Parc de Grandmont
F37200 Tours, France

Joseph H. G. Fu[†]
Department of Mathematics
University of Georgia
Athens, GA 30602, USA

Gregory J. Galloway[‡]
Department of Mathematics
University of Miami
Coral Gables FL 33124, USA

Ralph Howard[§]
Department of Mathematics
University of South Carolina
Columbia S.C. 29208, USA

November 21, 2000

Abstract

We study fine differentiability properties of horizons. We show that the set of end points of generators of a n-dimensional horizon \mathcal{H} (which is included in a (n+1)-dimensional space-time M) has vanishing n-dimensional Hausdorff measure. This is proved by showing that the set of end points of generators at which the horizon is differentiable has the same property. For $1 \leq k \leq n+1$ we show (using deep results of Alberti) that the set of points where the convex hull of the set of generators leaving the horizon has dimension k is "almost a C^2 manifold of dimension n+1-k": it can be covered, up to a set of vanishing (n+1-k)-dimensional Hausdorff measure, by a countable number of C^2 manifolds. We use our Lorentzian geometry results to derive information about the fine differentiability properties of the distance function and the structure of cut loci in Riemannian geometry.