DFT Concept & TetraMAX

Advisor: Prof. YU-CHENG FAN

Presenter: JIAN-PING, WANG

2023.03.20

Outline

- DFT Concept
- ▶ Tetramax
- Practice

DFT Concept

- Design For Testability
- ▶ What is testing?
- Testing is a process of determining whether a device is good or not.
- Testing includes <u>test pattern generation</u>, <u>application</u> and <u>output</u> evaluation.
- Why testing?
- In order to guarantee the product quality, reliability, performances, etc.
- Cost is the most important.

Test Circuit Design Flow

Test Circuit Design Flow

Overview of DFT Compiler Flow

Automatic Test Pattern Generator(ATPG)

- Generate the test patterns for target fault model and keep the number of test pattern as small as possible
- We will use Synopsys **Tetramax** EDA tool to automatically generate test pattern
- Besides, "fault coverage" of the testing circuits can also be estimated

ATPG Flow in TetraMAX

TetraMAX ATPG Command Modes

BUILD mode:

- Initial mode
- ▶ Read in design, libraries, models
- Construct ATPG simulation model in preparation for DRCs

DRC mode:

- ▶ Testability Design Rule Checks (DRCs) are performed
- Successful conclusion of DRCs sets mode to "TEST"

TEST mode:

- ▶ ATPG, fault Simulation, Fault Diagnosis are performed
- ▶ Test program files, simulation testbenches, etc. written out

Lab practice

Objective

- Understand the baseline DFT Compiler flow.
- Learn how to use TetraMAX after we generated the STIL procedure file and synthesized netlist from DFT Compiler.

Practice

- copy dft folder from /home/standard/multimedia2023/dft .
- Paste to your folder
- Open Design vision
 - Command: dv
- ▶ Read aftersyn.ddc file

Scripts for DFT

- □ Create test protocol and Perform pre-DFT DRC
 - create_port -dir in SCAN_IN
 - create_port -dir out SCAN_OUT
 - create_port -dir in SCAN_EN
 - set_dft_signal -view exist -type ScanClock -timing {45 55} -port clk
 - set_dft_signal -view exist -type Reset -active_state 1 -port reset
 - create_test_protocol
 - dft_drc

□ Perform Test-Ready Compile

compile -scan -map_effort high -area_effort high boundary_optimization

■ Specify test components

- set_scan_configuration -chain_count 1 -clock_mixing mix_clocks_not_edges -internal_clocks single -add_lockup false
- set_dft_signal -view spec -port SCAN_IN -type ScanDataIn
- set_dft_signal -view spec -port SCAN_OUT -type ScanDataOut
- set_dft_signal -view spec -port SCAN_EN -type ScanEnable
 -active_state 1
- set_scan_path chain1 -scan_data_in SCAN_IN -scan_data_out SCAN_OUT

- □ Preview the scan synthesis, if it is ok, then insert scan.
 - preview_dft -show all
 - insert_dft

- □ Check scan rules after scan inserting and report the result.
 - dft_drc -coverage_estimate

What was the test coverage reported? __98__%

- How many scan chains dis you get? ___1_
 - report_scan_path -view existing_dft -chain all
- How many flip-flops are in each chain? ___75___
 - report_scan_path -view existing_dft -cell all

- Save synthesized netlist & STIL procedure file
 - write -format verilog -hier -out chip_scan.vg
 - write_test_protocol -out chip_scan.spf
 - Now you can close Design Vision

How to open Tetramax

- In terminal, please key in "tmax &", and then Tetramax GUI will display.
- ▶ Fill the scripts in "BUILD>" column

Scripts for Tetramax

- Set messages
 - set_messages -log chip.log -replace
- Read in library and netlist file
 - read_netlist tsmc18.v
 - read_netlist chip_scan.vg

Scripts for Tetramax(cont.)

- Build the fault simulation model
 - run_build_model STI_DAC
- Run design rule checking using STIL procedure file
 - set_rules C4 ignore
 - run_drc chip_scan.spf
- □ Add fault list
 - add_faults -all

Scripts for Tetramax(cont.)

■ Run ATPG

- set_pat -internal
- run_atpg -auto
- set_faults -fault_coverage
- set_faults -summary verbose
- report_summaries
- many natterns needed? 105

IIIally	patierns needed?	123_	
•	1		

- □ What is the test coverage? ____98.06__%
- What is the fault coverage? ___95.22____

Uncollapsed Stuck Fault Sur	-	-
fault class	code	#faults
Detected detected_by_simulation detected by implication	DT DS	1130 (1060) (70)
Possibly detected Undetectable	PT UD	0
undetectable-redundant ATPG untestable atpg_untestable-not_detected	UR AU AN	(7) 5 (5)
Not detected	MD	0
total faults test coverage		

Pattern Summary Report #basic scan patterns

Test Coverage =

Fault Coverage =

Thanks for your attention!