TD4. Espace probabilité

Exercice 1. On souhaite démontrer qu'il n'existe pas de probabilité \mathbb{P} sur l'espace probabilisé $([0,1],\mathcal{P}([0,1]))$ telle que,

- pour $0 \le a < b \le 1$, $\mathbb{P}([a, b]) = b a$;
- pour $a \in \mathbf{R}$ et $E \subset [0,1]$ tels que $a+E \subset [0,1]$, on a $\mathbb{P}(E+a) = \mathbb{P}(E)$.

On raisonne par l'absurde et on suppose qu'une telle probabilité existe.

- a) Montrer que $x \sim y$ si $x y \in \mathbf{Q}$ définie une relation d'equivalence sur \mathbf{R} .
- b) Considère l'espace quotient $[1/3, 2/3]/_{\sim}$. Pour chaque classe d'equivalence $c \in [1/3, 2/3]/_{\sim}$, on choisit $x_c \in [1/3, 2/3]$ tel que $x_c \in c$. On pose

$$X = \{x_c \in [1/3, 2/3] : c \in [1/3, 2/3]/_{\sim}\}.$$

Pour $r \in \mathbf{Q} \cap [-1/3, 1/3]$, on pose

$$X_r = \{x + r : x \in X\}.$$

Montrer que

- si $r, r' \in \mathbf{Q} \cap [-1/3, 1/3]$, on a $X_r \cap X_{r'} = \emptyset$,
- $[1/3, 2/3] \subset \bigcup_{r \in \mathbf{Q} \cap [-1/3, 1/3]} X_r \subset [0, 1].$
- c) Conclure.

Soit \mathcal{B} la tribu sur [0,1] engendrée par [a,b] avec $0 \leq a < b \leq 1$. En théorie de la mesure, on va construire une telle probabilité \mathbb{P} sur \mathcal{B} . La tribu \mathcal{B} est appelée tribu de Borel. La probabilité \mathbb{P} est appelée la mesure de Lebesgue.

Exercice 2. Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'événements d'un espace probabilisable (Ω, \mathcal{A}) .

- a) Montrer que l'ensemble B des éléments de Ω qui appartient à une infinité d'événements A_n et l'ensemble C des éléments de Ω qui appartient à tous les événements A_n sauf un nombre fini sont des événements, en exprimant à l'aide des symboles \cap et \cup .
 - **Notation**: $B = \overline{\lim}_{n \to \infty} A_n$ et $C = \underline{\lim}_{n \to \infty} A_n$. On dit que la suite $(A_n)_{n \in \mathbb{N}}$ converge, si $\overline{\lim}_{n \to \infty} A_n = \underline{\lim}_{n \to \infty} A_n$. Dans ce cas, on note simplement $\lim_{n \to \infty} A_n$.
- b) Montrer que si la suite $(A_n)_{n \in \mathbb{N}}$ converge, alors

$$\lim_{n \to \infty} \mathbb{P}(A_n) = \mathbb{P}\left(\lim_{n \to \infty} A_n\right).$$

Exercice 3. Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'événements d'un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

a) (**Premier lemme de Borel-Cantelli**) On suppose que la série $\sum_n \mathbb{P}(A_n)$ converge. Montrer que l'événement $\bigcap_{k=0}^{\infty} \bigcup_{p=k}^{\infty} A_p$ est négligeable.

- b) (Second lemme de Borel-Cantelli) On suppose que la série $\sum_n \mathbb{P}(A_n)$ diverge et que les événements A_n sont mutuellement indépendants. Montrer que l'événement $\bigcap_{k=0}^{\infty} \bigcup_{p=k}^{\infty} A_p$ est presque sûr.
- c) En déduire que si les événements A_n sont mutuellement indépendants, alors la probabilité de l'événement $\bigcap_{k=0}^{\infty} \bigcup_{p=k}^{\infty} A_p$ ne peut être que 0 ou 1.

Exercice 4. Une pièce de monnaie amène pile avec la probabilité p (0 et la face avec la probabilité <math>q = 1 - p. On la lance une infinité de fois. Montrer que, pour tout $m \ge 1$, il apparaît une infinité de séquences de m piles consécutifs de la façon presque sûre.

Exercice 5. Soit A_1, \ldots, A_n des événements d'un espace probabilité $(\Omega, \mathcal{A}, \mathbb{P})$. Montrer que

$$\mathbb{P}\left(\bigcup_{i=1}^n A_i\right) \leq \min_{1 \leq k \leq n} \left(\sum_{i=1}^n \mathbb{P}(A_i) - \sum_{1 \leq i \leq n, i \neq k} \mathbb{P}(A_i \cap A_k)\right).$$

Exercice 6. Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'événements d'un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, mutuellement indépendants. On suppose que, pour tout $n \in \mathbb{N}$, $\mathbb{P}(A_n) = \frac{1}{(n+2)^2}$.

- a) Calculer $\mathbb{P}(\bigcup_{n\in\mathbb{N}}A_n)$.
- b) Calculer la probabilité qu'un seul des événements A_n se réalise.

Exercice 7. Soit A_1, A_2, \dots, A_n des événements d'un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

- a) Montrer que $\mathbb{P}(A_1 \cup A_2) \cdot \mathbb{P}(A_1 \cap A_2) \leq \mathbb{P}(A_1) \cdot \mathbb{P}(A_2)$.
- b) Pour $k \in [1, n]$, on considère l'événement C_k : appartenir à A_i pour au moins k valeurs de l'indice i entre 1 et n. Montrer que

$$\prod_{k=1}^{n} \mathbb{P}(C_k) \le \prod_{k=1}^{n} \mathbb{P}(A_k)$$

Exercice 8. Soit b et n deux entiers naturels non nuls. Une urne contient b boules blanches et n boules noires. On tire au harsard et sans remise les boules jusqu'à ce qu'on obtienne pour la première fois une boule d'une couleur diffférente des précédentes. Celle-ci est alors remise dans l'urne. On reprend alors la procédure au début. On continue ainsi jusqu'au tirage de la dernière boule (si à la fin, il ne reste plus que des boules d'une seule couleurs, on les tire toutes). Montrer que la probalitié que la dernière boule tirée soit blanche est $\frac{1}{2}$.

Indication : on pourra raisonner par récurrence sur n + b.

Exercice 9. Un avions comporte n siège $(n \ge 2)$. Chacun des n passagers a une place qui est réservée.

- Le premier passager arrive. Il est distrait et s'installe à une place choisie au hasard.
- Les passagers suivants quand ils arrivent s'installent à leur place sauf si celle-ci est déjà occupée, auquel cas ils choisissent une place au hasard parmi les places restantes.

Déterminant la probabilité que le *n*-ième passager s'installe à sa place.