Lukion matematiikkakilpailu 2005

Loppukilpailun tehtävien ratkaisuja

1. Olkoon ison neliön sivu a ja pienten, vasemmalta oikealle, b, c ja d. Silloin b+c+d=a. Oletetaan, että $b \geq d$. Täydennetään kuvion neliöiden keskipisteitä yhdistävät janat hypotenuusina suorakulmaiset kolmiot, joiden kateetit ovat neliöiden sivujen suuntaiset. "Vaakasuoran" kolmion pystysuoran ja vaakasuoran kateetin suhde on

$$\frac{\frac{b-d}{2}}{\frac{b}{2}+c+\frac{d}{2}} = \frac{b-d}{a+c}.$$

"Pystysuoran" kolmion lyhemmän ja pitemmän kateetin suhde puolestaan on

$$\frac{b + \frac{c}{2} - \frac{a}{2}}{\frac{c}{2} + \frac{a}{2}} = \frac{2b + c - a}{a + c} = \frac{b - d}{a + c}.$$

Kolmiot ovat siis yhdenmuotoiset. Koska kolmioiden kateetit ovat pareittain kohtisuorassa toisiaan vastaan, ovat hypotenuusatkin.

- 2. Voidaan ajatella, että pöydän ympärillä on alkuun seitsemän tuolia. Sen jälkeen kun ensimmäinen mies on istunut yhdelle näistä, voivat muut kuusi istua muille tuoleille 6! = 720 eri järjestykseen. Tuolien väleissä on 7 rakoa. Niistä viisi voidaan valita $\binom{7}{5} = 21$ eri tavalla naisten tuolien paikoiksi. Jokaista miesten istumajärjestystä ja jokaista rakojen valintaa kohden on 5! = 120 erilaista naisten istumajärjestystä. Erilaisia järjestyksiä on siis $720 \cdot 21 \cdot 120 = 1814400$.
- **3.** Olkoon (x, y, z) yhtälöryhmän ratkaisu. Voidaan olettaa, että $x \le y \le z$. Koska $t \mapsto t^3$ on aidosti kasvava funktio, niin $z = (x+y)^3 \le (y+z)^3 = x$. Siis z = x = y. x toteuttaa yhtälön $(2x)^3 = x$, joten on oltava x = 0 tai $x = \pm \frac{1}{\sqrt{8}}$. Sijoittamalla alkuperäisiin yhtälöihin nähdään, että (0, 0, 0), $\left(\frac{1}{\sqrt{8}}, \frac{1}{\sqrt{8}}, \frac{1}{\sqrt{8}}\right)$ ja $\left(-\frac{1}{\sqrt{8}}, -\frac{1}{\sqrt{8}}, -\frac{1}{\sqrt{8}}\right)$ kelpaavat ratkaisuiksi (x, y, x).
- 4. Lukujen 1379, 1793, 3719, 1739, 1397, 1937 ja 1973 jakojäännökset seitsemällä jaettaessa ovat 0, 1, 2, 3, 4, 5 ja 6. Otetaan tarkasteltavan luvun neljäksi viimeiseksi numeroksi 1, 3, 7 ja 9. Luku on siis a+1397. Jos a:n jakojäännös seitsemällä jaettaessa on b, järjestetään 1, 3, 7 ja 9 luvuksi c, jonka jakojäännös seitsemällä jaettaessa on 7-b. Luku a+c on seitsemällä jaollinen ja sen numerot ovat samat kuin alkuperäisen luvun.

5. Jonot (0) ja (0, 1) ovat sekaisin ja luettelevat joukot $\{0\}$ ja $\{0, 1\}$ toistoitta. Olkoon k > 0; oletetaan, että jokaisella n < 2k on olemassa sekaisin oleva jono, joka luettelee joukon $\{0, 1, \ldots, n\}$ toistotta. Osoitetaan, että tällöin on olemassa jonot, jotka luettelevat joukot $\{0, 1, \ldots, 2k\}$ ja $\{0, 1, \ldots, 2k + 1\}$ toistoitta. Väite seuraa tämän jälkeen induktioperiaatteesta. – Koska k < 2k, on olemassa sekaisin oleva jono (a_0, a_1, \ldots, a_k) , joka luettelee joukon $\{0, 1, \ldots, k\}$ toistoitta. Määritellään jono $(b_0, b_1, \ldots, b_{2k+1}) = (2a_0, \ldots, 2a_k, 2a_0 + 1, \ldots, 2a_k + 1)$, eli

$$b_i = \begin{cases} 2a_i, & \text{kun } i \le k \\ 2a_i + 1, & \text{kun } i > k. \end{cases}$$

Jonon ensimmäiset k+1 alkiota luettelevat joukon $\{0, 2, \ldots, 2k\}$ ja viimeiset k+1 alkiota joukon $\{1, 3, \ldots, 2k+1\}$. Jono (b_0, \ldots, b_{2k+1}) luettelee siis joukon $\{0, 1, \ldots, 2k+1\}$. Osoitetaan, että jono on sekaisin. Tarkastellaan kahta jonon alkiota b_i ja b_j . Jos toinen näistä on parillinen ja toinen pariton, niiden keskiarvo ei ole kokonaisluku eikä siis esiinny jonossa. Jos b_i ja b_j ovat parillisia, mutta niiden keskiarvo on pariton, niin b_i ja b_j ovat jonon alkupuolikkaassa ja keskiarvo loppupuolikkaassa, eikä siis b_i :n ja b_j :n välissä. Jos b_i ja b_j ovat parittomia, mutta niiden keskiarvo on parillinen, niin keskiarvo on alkupuolikkaassa ja b_i , b_j loppupuolikkaassa. Keskiarvo ei ole b_i :n ja b_j :n välissä. Jos b_i ja b_j sekä $\frac{b_i+b_j}{2}$ ovat parillisia, niin $\frac{b_i+b_j}{2}=\frac{2a_i+2a_j}{2}=2\cdot\frac{a_i+a_j}{2}=2a_m=b_m$. Koska jono (a_0,\ldots,a_k) on sekaisin, a_m ei ole a_i :n ja a_j :n välissä. Koska jonon (a_0,\ldots,a_k) järjestys on sama kuin jonon (b_0,\ldots,b_{2k+1}) :n ensimmäisen puoliskon, ei b_m ole b_i :n ja b_j :n välissä. Samoin käsitellään tapaus, jossa b_i , b_j ja $\frac{b_i+b_j}{2}$ ovat kaikki parittomia. Jos sekaisin olevasta jonosta poistetaan alkio, jää jäljelle sekaisin oleva jono. Joukon $\{0,1,\ldots,2k\}$ luetteleva sekaisin oleva jono saadaan jonosta (b_0,\ldots,b_{2k+1}) poistamalla siitä luku 2k+1.