2022 年春代数几何进阶期末试题

习题 1. 1. 设 X 为零维 Noether 概形,证明: $X = \{x_1, \dots, x_n\}$ 为有限集合,且其上的拓扑为离散拓扑。

- 2. X 同上,证明: $\mathcal{O}_X(X) \simeq \bigoplus_{i=1}^n \mathcal{O}_{X,x_i}$.
- 3. 设 A 为零维 Noether 环, 其素理想为 P_1, \dots, P_n . 证明: $A \simeq \bigoplus_{i=1}^n A_{P_i}$.

习题 2. 设 $C \simeq V_+(x^2+y^2+z^2)$ 为 $\mathbb{P}^2_{\mathbb{Z}}$ 的闭子概形. 试写出 C 上的两个闭点 x_1,x_2 , 使得态射 $C \to \operatorname{Spec} \mathbb{Z}$ 在 x_1 处光滑,在 x_2 处不光滑. 简要说明你的理由.

习题 3. 设 A 为整环, K 为其分式域, 设 $x_0 \in X := \operatorname{Spec} A$. 令 F 为 X 上 如下定义的层:

$$\mathcal{F}(U) = \begin{cases} K, \not \Xi \ x_0 \in U; \\ 0, \not \Xi \ x_0 \notin U. \end{cases}$$

F 以自然的方式看作 \mathcal{O}_X -模层. 当 x_0 满足什么条件时 F 为拟凝聚的 (quasi-coherent) ?

习题 4. 设 k 为域, 本题的目标是确定 \mathbb{A}_k^n 和 \mathbb{P}_k^n 的仿射开子集.

- 1. 证明 \mathbb{A}^n_k 和 \mathbb{P}^n_k 的主开集 (不等于 \mathbb{P}^n_k) 均为仿射的.
- 2. 设 $X = \bigcup_{i}^{m} D(f_{i})$ 为 \mathbb{A}_{k}^{n} 的有限个主开集之并. 证明 $\mathcal{O}_{\mathbb{A}_{k}^{n}}(X) = k[T_{1},\ldots,T_{n}]_{f}$, 其中 $f = \gcd\{f_{i}\}_{i}$. 进而证明 \mathbb{A}_{k}^{n} 的仿射开子集均为主开集.

- 9. 证明 \mathbb{P}_{k}^{n} 的维数为 n-1 的不可约闭子集均为超曲面,即形如 $V_{+}(F)$,F 为齐次多项式.
- 4. 设 X 为 \mathbb{P}_k^n 的仿射开子集. 证明 $\mathbb{P}_k^n \setminus X$ 的每个不可约分支均为 n-1 维的, 进而证明 X 为 \mathbb{P}_k^n 的主开集.

习题 5. 设 $n \geq 2$ 为正整数, $N := n^2 - 1$. 令 $\mathbb{A}^N := Spec \mathbb{Z}[x_1, \cdots, x_N]$ 为 N 维仿射空间, $SL_n := Spec \mathbb{Z}[\{x_{i,j}\}_{1 \leq i,j \leq n}, \P/(\P \det(x_{i,j}) - 1))$ 为 n 阶特殊线性群概形.

- 1. 证明存在 $SL_n(\mathbb{F}_p) := Mor(Spec \mathbb{F}_p, SL_n)$ 与 \mathbb{F}_p 上 n 阶特殊线性群 $(\mathbb{P} \mathbb{F}_p)$ 上行列式为 1 的 $n \times n$ 方阵形成的群) 之间的双射.
- 2. 证明对几乎所有的素数 p, $\#SL_n(\mathbb{F}_p) \neq \#\mathbb{A}^N(\mathbb{F}_p)$, 其中 #S 代表集合 S 中的元素个数.
- 3. 证明: 如果存在概形同构 $SL_n \times_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{A}^N \times_{\mathbb{Z}} \mathbb{Q}$,那么存在正整数 $M \neq 1$ 使得 $SL_n \times_{\mathbb{Z}} \mathbb{Z}[1/M] \cong \mathbb{A}^N \times_{\mathbb{Z}} \mathbb{Z}[1/M]$.
- 4. 证明 $SL_n \times_{\mathbb{Z}} \mathbb{Q}$ 与 $\mathbb{A}^N \times_{\mathbb{Z}} \mathbb{Q}$ 作为概形不同构.

习题 6. 设 k 为代数封闭域, C 为 k 上的不可约射影曲线 (即 C \rightarrow Spec k 为射影 (projective) 态射, 且 C 为不可约的一维概形), X 为分离的 (seperated) k-概形。设 $f: C \rightarrow X$ 为 k-概形态射, 并且 f 不是常值态射 (即 f 的像不是一个点)。我们的目标是证明 f 为仿射态射 (affine morphism).

- 1. 证明 f 为闭映射.
- 2. 证明 f 的每个纤维均为有限集.
- 3. 设 Z 为 C 的有限子集,证明:存在 Z 在 C 中的开领域 W,存在 $z_1, z_2 \in Z$,以及 $g \in \mathcal{O}_C(W)$,使得 $g(z_1) = 0$, $g(z_2) \neq 0$.

提示: 利用 $C \subset \mathbb{P}_{L}^{n}$.

4. 设 U 为 X 的仿射开子集,令 $V:={
m Spec}\ f_*{\cal O}_C(U)$. 证明: $f|_{f^{-1}(U)}:f^{-1}(U)\to U$ 等于以下复合态射:

$$f^{-1}(U) \to V \to U.$$

将态射 $f^{-1}(U) \to V$ 记为 g. 证明 g 诱导层的同构: $\mathcal{O}_V \xrightarrow{\sim} g_*\mathcal{O}_{f^{-1}(U)}$.

5. 证明 $f^{-1}(U) \to V$ 为同构, 进而证明 f 为仿射态射.