Fundamentals of Database Systems

Seventh Edition

Chapter 6

Basic SQL

Learning Objectives

- **6.1** SQL Data Definition and Data Types
- **6.2** Specifying Constraints in SQL
- **6.3** Basic Retrieval Queries in SQL
- 6.4 INSERT, DELETE, and UPDATE Statements in SQL
- **6.5** Additional Features of SQL

Basic SQL

SQL language

 Considered one of the major reasons for the commercial success of relational databases

SQL

- The origin of SQL is relational predicate calculus called tuple calculus (see Chapter 8) which was proposed initially as the language SQUARE.
- SQL Actually comes from the word "SEQUEL" which was the original term used in the paper: "SEQUEL TO SQUARE" by Chamberlin and Boyce. IBM could not copyright that term, so they abbreviated to SQL and copyrighted the term SQL.
- Now popularly known as "Structured Query language".
- SQL is an informal or practical rendering of the relational data model with syntax

SQL Data Definition, Data Types, Standards

Terminology:

Table, **row**, and **column** used for relational model terms relation, tuple, and attribute

- CREATE statement
 - Main SQL command for data definition

SQL Data Definition, Data Types, Standards

The language has features for:

Data definition,

Data Manipulation,

Transaction control (Transact-SQL, Ch 20),

Indexing (Ch 17),

Security specification (Grant and Revoke- see Ch 30),

Active databases (Ch 26),

Multi-media (Ch 26),

Distributed databases (Ch 23) etc.

SQL Standards

 SQL has gone through many standards: starting with SQL-86 or SQL 1.A. SQL-92 is referred to as SQL-2.

 Later standards (from SQL-1999) are divided into core specification and specialized extensions.

The extensions are implemented for different applications – such as

data mining, data warehousing, multimedia etc.

SQL Standards

- SQL-2006 added XML features (Ch 13);
- In 2008 they added Object-oriented features (Ch 12).

 SQL-3 is the current standard which started with SQL-1999. It is not fully implemented in any RDBMS.

Schema and Catalog Concepts in SQL

 We cover the basic standard SQL syntax – there are variations in existing RDBMS systems

SQL schema

- Identified by a schema name
- Includes an authorization identifier and descriptors for each element
- Schema elements include
 - Tables, constraints, views, domains, and other constructs
- Each statement in SQL ends with a semicolon

Schema and Catalog Concepts in SQL

- CREATE SCHEMA statement
 - CREATE SCHEMA COMPANY AUTHORIZATION 'Jsmith';

Catalog

- Named collection of schemas in an SQL environment
- SQL also has the concept of a cluster of catalogs.

The CREATE TABLE Command in SQL (1 of 3)

- Specifying a new relation
 - Provide name of table
 - Specify attributes, their types and initial constraints

- Can optionally specify schema:
 - CREATE TABLE COMPANY.EMPLOYEE ...

or

- CREATE TABLE EMPLOYEE ...

The CREATE TABLE Command in SQL (2 of 3)

Base tables (base relations)

 Relation and its tuples are actually created and stored as a file by the DBMS

Virtual relations (views)

 Created through the CREATE VIEW statement. Do not correspond to any physical file.

COMPANY Relational Database Schema

Figure 5.7 Referential integrity constraints displayed on the COMPANY relational database schema.

Figure 5.6 One Possible Database State for the COMPANY Relational Database Schema (1 of 2)

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date	
Research	5	333445555	1988-05-22	
Administration	4	987654321	1995-01-01	
Headquarters	1	888665555	1981-06-19	

DEPT LOCATIONS

<u>Dnumber</u>	Dlocation		
1	Houston		
4	Stafford		
5	Bellaire		
5	Sugarland		
5	Houston		

Figure 5.6 One Possible Database State for the COMPANY Relational Database Schema (2 of 2)

WORKS_ON

Essn	<u>Pno</u>	Hours	
123456789	1	32.5	
123456789	2	7.5	
666884444	3	40.0	
453453453	1	20.0	
453453453	2	20.0	
333445555	2	10.0	
333445555	3	10.0	
333445555	10	10.0	
333445555	20	10.0	
999887777	30	30.0	
999887777	10	10.0	
987987987	10	35.0	
987987987	30	5.0	
987654321	30	20.0	
987654321	20	15.0	
888665555	20	NULL	

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

The CREATE TABLE Command in SQL (3 of 3)

- Some foreign keys may cause errors
 - Specified either via:
 - Circular references
 - Or because they refer to a table that has not yet been created
 - DBA's have ways to stop referential integrity enforcement to get around this problem.

Attribute Data Types and Domains in SQL (1 of 4)

- Basic data types
 - Numeric data types
 - Integer numbers:

INTEGER

INT

SMALLINT

Floating-point (real) numbers:

FLOAT or REAL

DOUBLE PRECISION

Attribute Data Types and Domains in SQL (1 of 4)

- Basic data types
 - Character-string data types
 - Fixed length:

```
CHAR (n)
CHARACTER (n)
```

Varying length:

```
VARCHAR (n)

CHAR VARYING (n)

CHARACTER VARYING (n)
```

Attribute Data Types and Domains in SQL (2 of 4)

- Bit-string data types
 - Fixed length: BIT (n)
 - Varying length: BIT VARYING (n)
- Boolean data type
 - Values of TRUE or FALSE or NULL

Attribute Data Types and Domains in SQL (2 of 4)

- DATE data type
 - Ten positions
 - Components are YEAR, MONTH, and DAY in the form YYYY-MM-DD
 - Multiple mapping functions available in RDBMSs to change date formats

Attribute Data Types and Domains in SQL (3 of 4)

- Additional data types
 - Timestamp data type

Includes the DATE and TIME fields

- Plus a minimum of six positions for decimal fractions of seconds
- Optional WITH TIME ZONE qualifier

Attribute Data Types and Domains in SQL (3 of 4)

- Additional data types
 - INTERVAL data type
 - Specifies a relative value that can be used to increment or decrement an absolute value of a date, time, or timestamp

An interval is defined as the difference between two dates and times.

year-month interval that expresses intervals in terms of years and number of months.

day-time interval that expresses intervals in terms of days, minutes, and seconds.

 DATE, TIME, Timestamp, INTERVAL data types can be cast or converted to string formats for comparison.

Attribute Data Types and Domains in SQL (4 of 4)

Domain

- Name used with the attribute specification
- Makes it easier to change the data type for a domain that is used by numerous attributes
- Improves schema readability
- Example:
 - CREATE DOMAIN SSN TYPE AS CHAR (9);

TYPE

 User Defined Types (UDTs) are supported for objectoriented applications. (See Ch 12) Uses the command:

Learning Objectives

- **6.1 SQL Data Definition and Data Types**
- **6.2** Specifying Constraints in SQL
- **6.3** Basic Retrieval Queries in SQL
- 6.4 INSERT, DELETE, and UPDATE Statements in SQL
- **6.5** Additional Features of SQL

Specifying Constraints in SQL

Basic constraints:

- Relational Model has 3 basic constraint types that are supported in SQL:
 - Key constraint: A primary key value cannot be duplicated
 - Entity Integrity Constraint: A primary key value cannot be null
 - Referential integrity constraints: The "foreign key "
 must have a value that is already present as a
 primary key, or may be null.

Specifying Attribute Constraints

Other Restrictions on attribute domains:

- Default value of an attribute
 - DEFAULT <value>
- NULL is not permitted for a particular attribute (NOT NULL)
- CHECK clause
 - Dnumber INT NOT NULL CHECK (Dnumber > 0
 AND Dnumber < 21);</pre>

Specifying Key and Referential Integrity Constraints

- PRIMARY KEY clause
 - Specifies one or more attributes that make up the primary key of a relation
 - Dnumber INT PRIMARY KEY;

Specifying Key and Referential Integrity Constraints

- UNIQUE clause
 - Specifies alternate (secondary) keys (called CANDIDATE keys in the relational model).
 - Dname VARCHAR (15) UNIQUE;

Specifying Key and Referential Integrity Constraints (2 of 2)

- FOREIGN KEY clause
 - Default operation: reject update on violation
 - Attach referential triggered action clause
 - Options include SET NULL, CASCADE, and SET DEFAULT
 - Action taken by the DBMS for SET NULL or SET DEFAULT is the same for both ON DELETE and ON UPDATE
 - CASCADE option suitable for "relationship" relations

Giving Names to Constraints

- Using the Keyword CONSTRAINT
 - Name a constraint
 - Useful for later altering

Figure 6.2 Default Attribute Values and Referential Integrity Triggered Action Specification

CREATE TABLE EMPLOYEE

(Fname VARCHAR(15) NOT NULL,

Minit CHAR,

Lname VARCHAR(15) NOT NULL, Ssn CHAR(9) NOT NULL,

Bdate DATE,

Address VARCHAR(30),

Sex CHAR,

Salary DECIMAL(10,2),

Super_ssn CHAR(9),

Dno INT NOT NULL,

PRIMARY KEY (Ssn)

CONSTRAINT EMPSUPERFK

FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn)

ON DELETE SET NULL

ON UPDATE CASCADE.

CONSTRAINT EMPDEPTFK

FOREIGN KEY(Dno) REFERENCES DEPARTMENT(Dnumber)

ON DELETE SET DEFAULT **ON UPDATE** CASCADE);

Specifying Constraints on Tuples Using CHECK

- Additional Constraints on individual tuples within a relation are also possible using CHECK
- CHECK clauses at the end of a CREATE TABLE statement
 - Apply to each tuple individually
 - CHECK (Dept_create_date <=
 Mgr_start_date);</pre>

CREATE TABLE DEPARTMENT

(Dname VARCHAR(15) NOT NULL,
Dnumber INT NOT NULL,
Mgr_ssn CHAR(9) NOT NULL,
Mgr_start_date DATE,
PRIMARY KEY (Dnumber),
UNIQUE (Dname),
FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn));

CREATE TABLE DEPT_LOCATIONS

(Dnumber INT NOT NULL, Dlocation VARCHAR(15) NOT NULL,

PRIMARY KEY (Dnumber, Dlocation),

FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber));

CREATE TABLE PROJECT

(Pname VARCHAR(15) NOT NULL, Pnumber INT NOT NULL.

Plocation VARCHAR(15),

Dnum INT NOT NULL,

PRIMARY KEY (Pnumber),

UNIQUE (Pname),

FOREIGN KEY (Dnum) REFERENCES DEPARTMENT(Dnumber));

```
        CREATE TABLE WORKS_ON

        ( Essn
        CHAR(9)
        NOT NULL,

        Pno
        INT
        NOT NULL,

        Hours
        DECIMAL(3,1)
        NOT NULL,

        PRIMARY KEY (Essn, Pno),
        NOT NULL,

        FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn),
        FOREIGN KEY (Pno) REFERENCES PROJECT(Pnumber) );
```

NOT NULL.

NOT NULL.

CREATE TABLE DEPENDENT

(Essn CHAR(9)

Dependent_name VARCHAR(15)

Sex CHAR, Bdate DATE,

Relationship VARCHAR(8),

PRIMARY KEY (Essn, Dependent_name),

FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn));

Learning Objectives

- **6.1 SQL Data Definition and Data Types**
- **6.2** Specifying Constraints in SQL
- 6.3 Basic Retrieval Queries in SQL
- 6.4 INSERT, DELETE, and UPDATE Statements in SQL
- **6.5** Additional Features of SQL

Basic Retrieval Queries in SQL

- SELECT statement
 - One basic statement for retrieving information from a database
- SQL allows a table to have two or more tuples that are identical in all their attribute values
 - Unlike relational model (relational model is strictly set-theory based)
 - Multiset or bag behavior
 - Tuple-id may be used as a key

The SELECT-FROM-WHERE Structure of Basic SQL Queries (1 of 2)

Basic form of the SELECT statement:

```
SELECT <attribute list>
FROM 
WHERE <condition>;
```

where

- <attribute list> is a list of attribute names whose values are to be retrieved by the query.
- is a list of the relation names required to process the query.
- <condition> is a conditional (Boolean) expression that identifies the tuples to be retrieved by the query.

The SELECT-FROM-WHERE Structure of Basic SQL Queries (2 of 2)

Logical comparison operators

- Projection attributes
 - Attributes whose values are to be retrieved
- Selection condition
 - Boolean condition that must be true for any retrieved tuple. Selection conditions include join conditions (see Ch 8) when multiple relations are involved.

Basic Retrieval Queries (1 of 2)

(a) Bdate Address
1965-01-09 731Fondren,
Houston, TX

(b)

Fname	Lname	Address		
John	Smith	731 Fondren, Houston, TX		
Franklin	Wong	638 Voss, Houston, TX		
Ramesh	Narayan	975 Fire Oak, Humble, TX		
Joyce	English	5631 Rice, Houston, TX		

Query 0. Retrieve the birth date and address of the employee(s) whose name is 'John B. Smith'.

Q0: SELECT Bdate, Address

FROM EMPLOYEE

WHERE Fname='John' AND Minit='B' AND Lname='Smith';

Query 1. Retrieve the name and address of all employees who work for the 'Research' department.

Q1: SELECT Fname, Lname, Address

FROM EMPLOYEE, DEPARTMENT

WHERE Dname='Research' AND Dnumber=Dno;

Basic Retrieval Queries (2 of 2)

(c)	Pnumber	Dnum	Lname	Address	Bdate
	10	4	Wallace	291Berry, Bellaire, TX	1941-06-20
	30	4	Wallace	291Berry, Bellaire, TX	1941-06-20

Query 2. For every project located in 'Stafford', list the project number, the controlling department number, and the department manager's last name, address, and birth date.

O2: SELECT Pnumber, Dnum, Lname, Address, Bdate
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE Dnum=Dnumber AND Mgr_ssn=Ssn AND

Plocation='Stafford';

Ambiguous Attribute Names

- Same name can be used for two (or more) attributes in different relations
 - As long as the attributes are in different relations
 - Must qualify the attribute name with the relation name to prevent ambiguity

Q1A: SELECT Fname, EMPLOYEE.Name, Address

FROM EMPLOYEE, DEPARTMENT

WHERE DEPARTMENT.Name='Research' AND

DEPARTMENT.Dnumber=EMPLOYEE.Dnumber;

Aliasing, Renaming and Tuple Variables (1 of 2)

- Aliases or tuple variables
 - –Declare alternative relation names E and S to refer to the EMPLOYEE relation twice in a query:

Query 8. For each employee, retrieve the employee's first and last name and the first and last name of his or her immediate supervisor.

O8: SELECT E.Fname, E.Lname, S.Fname, S.Lname
FROM EMPLOYEE AS E, EMPLOYEE AS S
WHERE E.Super_ssn = S.Ssn;

 Recommended practice to abbreviate names and to prefix same or similar attribute from multiple tables.

Aliasing, Renaming and Tuple Variables (2 of 2)

The attribute names can also be renamed

```
EMPLOYEE AS E(Fn, Mi, Ln, Ssn, Bd, Addr, Sex, Sal, Sssn, Dno)
```

- Note that the relation EMPLOYEE now has a variable name E which corresponds to a tuple variable
- The "AS" may be dropped in most SQL implementations

Unspecified WHERE Clause and Use of the Asterisk (1 of 2)

- Missing WHERE clause
 - Indicates no condition on tuple selection
- Effect is a CROSS PRODUCT
 - Result is all possible tuple combinations (or the Algebra operation of Cartesian Product
 – see Ch 8) result

Queries 9 and 10. Select all EMPLOYEE Ssns (Q9) and all combinations of EMPLOYEE Ssn and DEPARTMENT Dname (Q10) in the database.

Q9: SELECT Ssn

FROM EMPLOYEE;

Q10: SELECT Ssn, Dname

FROM EMPLOYEE, DEPARTMENT;

Unspecified WHERE Clause and Use of the Asterisk (2 of 2)

- Specify an asterisk (*)
 - Retrieve all the attribute values of the selected tuples
 - The * can be prefixed by the relation name; e.g., EMPLOYEE *

```
Q1C:
      SELECT
      FROM
                 EMPLOYEE
      WHERE
                 Dno=5;
Q1D:
      SELECT
      FROM
                 EMPLOYEE, DEPARTMENT
                 Dname='Research' AND Dno=Dnumber;
      WHERE
Q10A:
      SELECT
      FROM
                 EMPLOYEE, DEPARTMENT;
```

Tables as Sets in SQL (1 of 2)

- SQL does not automatically eliminate duplicate tuples in query results
- For aggregate operations (See sec 7.1.7) duplicates must be accounted for
- Use the keyword DISTINCT in the SELECT clause
 - Only distinct tuples should remain in the result

Query 11. Retrieve the salary of every employee (Q11) and all distinct salary values (Q11A).

Q11: SELECT ALL Salary

FROM EMPLOYEE;

Q11A: SELECT DISTINCT Salary

FROM EMPLOYEE;

Tables as Sets in SQL (2 of 2)

- Set operations
 - UNION, EXCEPT (difference), INTERSECT
 - Corresponding multiset operations: UNION ALL, EXCEPT ALL, INTERSECT ALL)
 - Type compatibility is needed for these operations to be valid

Query 4. Make a list of all project numbers for projects that involve an employee whose last name is 'Smith', either as a worker or as a manager of the department that controls the project.

```
DISTINCT Pnumber
     (SELECT
Q4A:
      FROM
                 PROJECT, DEPARTMENT, EMPLOYEE
      WHERE
                 Dnum=Dnumber AND Mgr ssn=Ssn
                 AND Lname='Smith')
      UNION
     SELECT
                 DISTINCT Pnumber
      FROM
                 PROJECT, WORKS ON, EMPLOYEE
      WHERE
                 Pnumber=Pno AND Essn=Ssn
                 AND Lname='Smith');
```

Substring Pattern Matching and Arithmetic Operators

- LIKE comparison operator
 - Used for string pattern matching
 - % replaces an arbitrary number of zero or more characters
 - underscore (_) replaces a single character
 - Examples: WHERE Address LIKE '%Houston,TX%';
 - WHERE Ssn LIKE ' 1 8901';
- BETWEEN comparison operator

E.g., in Q14:

WHERE(Salary BETWEEN 30000 AND 40000) AND Dno = 5;

Arithmetic Operations

- Standard arithmetic operators:
 - Addition (+), subtraction (-), multiplication (*), and division
 (/) may be included as a part of **SELECT**
- Query 13. Show the resulting salaries if every employee working on the 'ProductX' project is given a 10 percent raise.

C13: SELECT E.Fname, E.Lname, 1.1 * E.Salary AS Increased_sal
FROM EMPLOYEE AS E, WORKS_ON AS W, PROJECT AS P
WHERE E.Ssn = W.Essn AND W.Pno = P.Pnumber AND
P.Pname = 'ProductX';

Ordering of Query Results

- Use ORDER BY clause
 - Keyword **DESC** to see result in a descending order of values
 - Keyword ASC to specify ascending order explicitly
 - Typically placed at the end of the query

ORDER BY D.Dname DESC, E.Lname ASC, E.F name ASC

Basic SQL Retrieval Query Block

Learning Objectives

- **6.1 SQL Data Definition and Data Types**
- 6.2 Specifying Constraints in SQL
- 6.3 Basic Retrieval Queries in SQL
- 6.4 INSERT, DELETE, and UPDATE Statements in SQL
- **6.5** Additional Features of SQL

INSERT, DELETE, and UPDATE Statements in SQL

- Three commands used to modify the database:
 - INSERT, DELETE, and UPDATE
- INSERT typically inserts a tuple (row) in a relation (table)
- UPDATE may update a number of tuples (rows) in a relation (table) that satisfy the condition
- DELETE may also update a number of tuples (rows) in a relation (table) that satisfy the condition

INSERT

- In its simplest form, it is used to add one or more tuples to a relation
- Attribute values should be listed in the same order as the attributes were specified in the CREATE TABLE command
- Constraints on data types are observed automatically
- Any integrity constraints as a part of the DDL specification are enforced

The INSERT Command

 Specify the relation name and a list of values for the tuple. All values including nulls are supplied.

```
U1: INSERT INTO EMPLOYEE

VALUES ('Richard', 'K', 'Marini', '653298653', '1962-12-30', '98

Oak Forest, Katy, TX', 'M', 37000, '653298653', 4 );
```

 The variation below inserts multiple tuples where a new table is loaded values from the result of a query.

U3B:	INSERT INTO	WORKS_ON_INFO (Emp_name, Proj_name,
		Hours_per_week)
	SELECT	E.Lname, P.Pname, W.Hours
	FROM	PROJECT P, WORKS_ON W, EMPLOYEE E
	WHERE	P.Pnumber=W.Pno AND W.Essn=E.Ssn;

Bulk Loading of Tables

- Another variation of INSERT is used for bulk-loading of several tuples into tables
- A new table TNEW can be created with the same attributes as T and using LIKE and DATA in the syntax, it can be loaded with entire data.
- EXAMPLE:

```
CREATE TABLE D5EMPS LIKE EMPLOYEE

(SELECT E.*

FROM EMPLOYEE AS E

WHERE E.Dno=5)

WITH DATA;
```

DELETE

- Removes tuples from a relation
 - Includes a WHERE-clause to select the tuples to be deleted
 - Referential integrity should be enforced
 - Tuples are deleted from only one table at a time (unless CASCADE is specified on a referential integrity constraint)
 - A missing WHERE-clause specifies that all tuples in the relation are to be deleted; the table then becomes an empty table
 - The number of tuples deleted depends on the number of tuples in the relation that satisfy the WHERE-clause

The DELETE Command

- Removes tuples from a relation
 - Includes a WHERE clause to select the tuples to be deleted. The number of tuples deleted will vary.

U4A: DELETE FROM EMPLOYEE

WHERE Lname='Brown';

U4B: DELETE FROM EMPLOYEE

WHERE Ssn='123456789';

U4C: DELETE FROM EMPLOYEE

WHERE Dno=5;

U4D: DELETE FROM EMPLOYEE;

UPDATE (1 of 3)

- Used to modify attribute values of one or more selected tuples
- A WHERE-clause selects the tuples to be modified
- An additional SET-clause specifies the attributes to be modified and their new values
- Each command modifies tuples in the same relation
- Referential integrity specified as part of DDL specification is enforced

UPDATE (2 of 3)

 Example: Change the location and controlling department number of project number 10 to 'Bellaire' and 5, respectively

U5: UPDATE PROJECT

SET Plocation = 'Bellaire', Dnum = 5

WHERE Pnumber = 10;

UPDATE (3 of 3)

 Example: Give all employees in the 'Research' department a 10% raise in salary.

U6:UPDATE EMPLOYEE
SET SALARY = SALARY *1.1
WHERE DNO IN (SELECT DNUMBER
FROM DEPARTMENT
WHERE DNAME='Research')

- In this request, the modified SALARY value depends on the original SALARY value in each tuple
 - The reference to the SALARY attribute on the right of
 refers to the old SALARY value before modification
 - The reference to the SALARY attribute on the left of = refers to the new SALARY value after modification

Learning Objectives

- **6.1 SQL Data Definition and Data Types**
- **6.2** Specifying Constraints in SQL
- 6.3 Basic Retrieval Queries in SQL
- 6.4 INSERT, DELETE, and UPDATE Statements in SQL
- **6.5** Additional Features of SQL

Additional Features of SQL (1 of 2)

- Techniques for specifying complex retrieval queries (see Ch 7)
- Writing programs in various programming languages that include SQL statements: Embedded and dynamic SQL, SQL/CLI (Call Level Interface) and its predecessor ODBC, SQL/PSM (Persistent Stored Module) (See Ch 10)
- Set of commands for specifying physical database design parameters, file structures for relations, and access paths, e.g., CREATE INDEX

Additional Features of SQL (2 of 2)

- Transaction control commands (Ch 20)
- Specifying the granting and revoking of privileges to users (Ch 30)
- Constructs for creating triggers (Ch 26)
- Enhanced relational systems known as object-relational define relations as classes. Abstract data types (called User Defined Types- UDTs) are supported with CREATE TYPE
- New technologies such as XML (Ch 13) and OLAP (Ch 29) are added to versions of SQL

Summary

SQL

- A Comprehensive language for relational database management
- Data definition, queries, updates, constraint specification, and view definition

Covered:

- Data definition commands for creating tables
- Commands for constraint specification
- Simple retrieval queries
- Database update commands