1

Assignment 12

Utkarsh Surwade AI20MTECH11004

Download latex-tikz codes from

https://github.com/utkarshsurwade/Matrix_Theory_EE5609/tree/master/codes

1 Problem

Let N be a 2×2 complex matrix such that $N^2 = 0$. Prove that either N = 0 or N is similar over \mathbb{C} to

$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \tag{1.0.1}$$

2 Explanation

Statement	Solution
	Let $\mathbf{N} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ (2.0.1) Since $\mathbf{N}^2 = 0$ (2.0.2)
	Since $\mathbf{N}^2 = 0$ (2.0.2)
	If $\begin{pmatrix} a \\ c \end{pmatrix}$, $\begin{pmatrix} b \\ d \end{pmatrix}$ are linearly independent then N is diagonalizable to $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
	If $PNP^{-1} = 0$ (2.0.3)
	then $\mathbf{N} = \mathbf{P}^{-1}\mathbf{0P} = 0$ (2.0.4)
Proof that	So in this case N itself is the zero matrix.
N = 0	This contradicts the assumption that $\begin{pmatrix} a \\ c \end{pmatrix}, \begin{pmatrix} b \\ d \end{pmatrix}$ are linearly independent.
	\therefore we can assume that $\binom{a}{c}$, $\binom{b}{d}$ are linearly dependent if both are
	equal to the zero vector
	then $N = 0$. (2.0.5)

Assuming $\begin{pmatrix} b \\ d \end{pmatrix}$ as the zero vector	Therefore we can assume at least one vector is non-zero. Therefore $\mathbf{N} = \begin{pmatrix} a & 0 \\ c & 0 \end{pmatrix}$
	So $\mathbf{N}^2 = 0$ (2.0.6) $\Rightarrow a^2 = 0$ (2.0.7) $\therefore a = 0$ (2.0.8) Thus $\mathbf{N} = \begin{pmatrix} a & 0 \\ c & 0 \end{pmatrix}$ (2.0.9)
	In this case N is similar to $\mathbf{N} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ via the matrix $\mathbf{P} = \begin{pmatrix} c & 0 \\ 0 & 1 \end{pmatrix}$
Assuming $\begin{pmatrix} a \\ c \end{pmatrix}$ as the zero vector	Therefore $\mathbf{N} = \begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix}$
	Then $\mathbf{N}^2 = 0$ (2.0.10) $\Rightarrow d^2 = 0$ (2.0.11) $\therefore d = 0$ (2.0.12) Thus $\mathbf{N} = \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$ (2.0.13) In this case \mathbf{N} is similar to $\mathbf{N} = \begin{pmatrix} 0 & 0 \\ b & 0 \end{pmatrix}$ via the matrix $\mathbf{P} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, which is similar to $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ as above.
Hence	we can assume neither $\begin{pmatrix} a \\ c \end{pmatrix}$ or $\begin{pmatrix} b \\ d \end{pmatrix}$ is the zero vector.

Consequences of linear independence	Since they are linearly dependent we can assume,
	$ \binom{b}{d} = x \binom{a}{c} (2.0.14) $
	$\therefore \mathbf{N} = \begin{pmatrix} a & ax \\ c & cx \end{pmatrix}$
	(2.0.15)
	$\therefore \mathbf{N}^2 = 0 \qquad (2.0.16)$
	$\implies a(a + cx) = 0 \qquad (2.0.17)$ $c(a + cx) = 0 \qquad (2.0.18)$
	ax(a + cx) = 0 (2.0.19)
	cx(a + cx) = 0 (2.0.20)
Proof that N is similar over \mathbb{C} to $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	We know that at least one of a or c is not zero. If $a = 0$ then $c \neq 0$, it must be that $x = 0$. So in this case $\mathbf{N} = \begin{pmatrix} 0 & 0 \\ c & 0 \end{pmatrix}$ which is similar to $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ as before.
	If $a \neq 0$ (2.0.21)
	then $x \neq 0$ (2.0.22)
	else $a(a + cx) = 0$ (2.0.23)
	$\implies a = 0 \qquad (2.0.24)$
	Thus $a + cx = 0$ (2.0.25)
	Hence $\mathbf{N} = \begin{pmatrix} a & ax \\ \frac{-a}{x} & -a \end{pmatrix}$ (2.0.26)
	This is similar to $\begin{pmatrix} a & a \\ -a & -a \end{pmatrix}$ via $\mathbf{P} = \begin{pmatrix} \sqrt{x} & 0 \\ 0 & \frac{1}{\sqrt{x}} \end{pmatrix}$. And $\begin{pmatrix} a & a \\ -a & -a \end{pmatrix}$ is similar to $\begin{pmatrix} 0 & 0 \\ -a & 0 \end{pmatrix}$ via $\mathbf{P} = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$ And this finally is similar to $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ as before.
	And $\begin{pmatrix} a & a \\ -a & -a \end{pmatrix}$ is similar to $\begin{pmatrix} 0 & 0 \\ -a & 0 \end{pmatrix}$ via $\mathbf{P} = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$
	And this finally is similar to $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ as before.
Conclusion	Thus either $\mathbf{N} = 0$ or \mathbf{N} is similar over \mathbb{C} to $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

TABLE 1: Solution summary