þ	<pre>import numpy as np from scipy.io import wavfile from scipy.signal import lfilter, convolve, fftconvolve plt.style.use('bmh') ### UTILITIES ###</pre>
	# Sound player function that plays array "x" with a sample rate "rate", and labels it with "label" def sound(x, rate=8000, label=''): from IPython.display import display, Audio, HTML display(HTML(' <style> table, th, td {border: 0px; }</style> '+ '+ '+ Audio(x, rate=rate)repr_html_()[3:] + '
#	# Function that normalizes a signal def normalize_signal(x): return x / np.max(np.abs(x)) # Function that plots the spectrogram of a sound def plot_spectrogram(input_sound, fs, title="Spectrogram"): plt.title(title) plt.specgram(input_sound, Fs=fs, cmap="winter")
C	<pre>plt.xlabel('Time [sec]') plt.ylabel('Frequency [Hz]') plt.show() def plot_filter_spectrogram(filter,</pre>
	<pre>spec_title="Spectrogram"): plt.subplots_adjust(hspace=0.5) # Plot the filter's response plt.subplot(211) plt.plot(filter) plt.title(filter_title) plt.xlabel("samples") plt.ylabel("amplitude") # Plot the spectrogram plt.subplot(212) plt.title(spec_title) plt.specgram(input_sound, Fs=fs, cmap="winter") plt.xlabel('Time [sec]') plt.ylabel('Frequency [Hz]')</pre>
f f i	<pre>plt.show() # Load the input sound fname = 'loop.wav' fs, input_sound = wavfile.read(f'./data/{fname}') input_sound = normalize_signal(input_sound) sound(input_sound, rate=fs, label=fname) plot_spectrogram(input_sound, fs, title=f"Spectrogram of {fname}")</pre>
	Spectrogram of loop.wav
	2000 - 1 2 3 4 5 6 7
1	Fart 1. Designing simple reverb using filters The simplest forms of reverbs can be designed using simple delays, comb and allpass filters. We will design one of each to get started. a) A room with a single wall. For this reverb we will assume that we have a room that only has one reflective wall as shown below. Design a filter that simulates what the microphone will record. figure out the right filter in the case where $d_i = [0.1]$
k	meters, and in the case where $d_i = [1, 10]$ meters. Let me know what the differences between these sounds are. To keep things simple, round the delays to an integer number and make up an approximate gain loss due to propagation and the wounce. $d_i = [1, 10]$ $d_i =$
#	# Returns a filter that simulates a single wall's reflections def single_wall(dist_vec, reflect_gain, fs): total_dist = np.sqrt((dist_vec[0] / 2)**2 + dist_vec[1]**2) * 2 # Pythagoras * 2 samples = int(total_dist / 343 * fs) # Convert to number of samples filter = np.zeros(int(samples))
f	<pre>filter[0] = 1 filter[-1] = reflect_gain return filter # Simulate a single wall in close position filter = single_wall([0.1, 1], reflect_gain, fs) single_wall_close = convolve(input_sound, filter)</pre>
	<pre>sound(single_wall_close,</pre>
f	# Simulate a single wall in far position filter = single_wall([1, 10], reflect_gain, fs) single_wall_far = convolve(input_sound, filter) sound(single_wall_far, rate=fs, label=f'{fname} with single wall in far position') plot_filter_spectrogram(
ļ	filter, single_wall_far, fs, filter_title="Impulse response simulation of single wall in far position", spec_title=f"Spectrogram of {fname} with single wall in far position") loop.wav with single wall in close position Description Des
	Impulse response simulation of single wall in close position 1.00 9 0.75 0.50 0.25
	Spectrogram of loop.wav with single wall in close position [\frac{2}{2}\frac{1}{5}\text{15000}\frac{1}{5}15
	15000 - 10000 - 1 2 3 4 5 6 7 Time [sec]
.1	Impulse response simulation of single wall in far position 1.00 90.75 0.50 0.25
•	Spectrogram of loop.wav with single wall in far position
	15000 10000 1 2 3 4 5 6 7 Time [sec]
k	Now we will use a room geometry as shown below. Design the proper filter again, for $d_i = [0.1, 1]$ meters and then for $d_i = [1, 10]$ meters. Comment on the audible differences between these two settings.
r #	### PART 1B ### reflect_gain = 0.6 # Returns a filter that simulates 2 parallel walls' reflections thef parallel_walls(dist_vec, reflect_gain, fs): dist1 = np.sqrt((dist_vec[0] / 2)**2 + dist2 = np.sqrt((dist_vec[0] / 4)**2 + dist_vec[1]**2) * 2 # Pythagoras * 2 dist2 = np.sqrt((dist_vec[0] / 4)**2 + dist_vec[1]**2) * 4 samples1 = int(dist1 / 343 * fs) # Convert to number of samples samples2 = int(dist2 / 343 * fs)
#	<pre>filter = np.zeros(int(samples2)) filter[0] = 1 filter[int(samples1)] = reflect_gain filter[-1] = reflect_gain return filter</pre> # Simulate parallel walls in close position
f	filter = parallel_walls([0.1, 1], reflect_gain, fs) parallel_walls_close = convolve(input_sound, filter) sound(parallel_walls_close,
f	fs, filter_title= "Impulse response simulation of parallel walls in close position", spec_title=f"Spectrogram of {fname} with parallel walls in close position") # Simulate parallel walls in far position filter = parallel_walls([1, 10], reflect_gain, fs) parallel_walls_far = convolve(input_sound, filter)
	<pre>sound(parallel_walls_far,</pre>
14	Impulse response simulation of parallel walls in close position 1.00
	0.75 0.50 0.00 0.00 0.00 0.00 0.00 0.00
	20000 - 1 1 2 3 4 5 6 7
ļ	Time [sec] loop.wav with parallel walls in far position Parallel walls in far position
	0.75 0.50 0.25 0.00 0 1000 2000 3000 4000 5000 samples
	Spectrogram of loop.wav with parallel walls in far position 20000 - 15000 - 10000 - 1
(Time [sec] Conclusions Close Position Far Position
r	The audio seems to have lost some of it's power end thump and feels a little hazy to me. There is a much more apparent fast echo which can be heard very clearly with the snare and hi-hats. The audio seems like it has reduced in quality even further than in the single wall scenario almost as though a lot of frequencies have been scooped out using an equalizer. The audio seems like it has reduced in quality even further than in the single wall scenario almost as though a lot of a few sweet spots where the echo sounded nice and "musical". The audio seems like it has reduced in quality even further than in the single wall simulation and in opinion a little too much. While tweaking the reflection gain, I was about a few sweet spots where the echo sounded nice and "musical". The audio seems like it has reduced in quality even further than in the single wall simulation and in opinion a little too much. While tweaking the reflection gain, I was about a few sweet spots where the echo sounded nice and "musical". There is a much more apparent fast echo which can be heard very clearly with the snare and hi-hats. There is a much more apparent fast echo which can be heard very clearly with the snare and hi-hats. The audio seems like it has reduced in quality even further than in the single wall simulation and in opinion a little too much. While tweaking the reflection gain, I was about a few sweet spots where the echo sounded nice and "musical".
r #	<pre>### PART 1C ### reflect_gain = 0.2 # Returns an all-pass filter def allpass(delay, fs, g, input_sound=None): # Initialize the numerator and denominator of the filter samples = int(delay * fs) a = np.zeros(samples + 1)</pre>
	<pre>b = np.zeros(samples + 1) # Set the coefficients a[0] = 1 b[0] = g a[samples] = g b[samples] = 1 if input_sound is not None:</pre>
f	<pre>return lfilter(b, a, input_sound) else: return b, a # I tuned the delay and reflect_gain parameters to get a nice sound filtered_sound = allpass(0.15, fs, reflect_gain, input_sound) sound(filtered_sound, rate=fs, label=f"{fname} with all-pass filter") plot_spectrogram(filtered_sound,</pre>
i b y	<pre>fs, title=f"Spectrogram of {fname} with all-pass filter") impulse = np.zeros(10) impulse[0] = 1 b, a, = allpass(0.15, fs, reflect_gain) y = lfilter(b, a, impulse) put.plot(y) put.title("Impulse Response of All-Pass Filter")</pre>
þ	plt.xlabel("Sample") plt.ylabel("Amplitude") plt.show() loop.wav with all-pass filter Spectrogram of loop.wav with all-pass filter
	20000 - 至 15000 -
	Fedural 15000
	Impulse Response of All-Pass Filter
	0.175 0.150 0.100 0.000
	0.050 - 0.025 - 0.025
	0.000 0 2 4 6 8 Sample Part 2. Schroeder reverberators Now we will combine multiple filters to make a more serious sounding reverb. Implement the structure shown below.
	Comb Comb Allpass Allpass Output
T c	Comb Try to find the necessary parameters for the above structure that makes it sound as good as possible (not too busy, not too subtle). Hint: There is no right answer! Try a few things, see what sounds best and explain why you used the parameters decided to use. As you come across some bad sounding cases, describe what the problem was.
#	<pre>### PART 2 ### # Returns a comb filter def comb_filter(delay, fs, g, input_sound=None): # Initialize the numerator and denominator of the filter samples = int(delay * fs) a = np.zeros(samples + 1) b = np.zeros(samples + 1) # Set the coefficients</pre>
	<pre>a[0] = 1 b[0] = 1 a[samples] = g if input_sound is not None: return lfilter(b, a, input_sound) else: return b, a</pre>
	# Setting the parameters for the Schroeder reverberators comb_1 = comb_filter(0.01, fs, .6, input_sound) comb_2 = comb_filter(0.009, fs, .2, input_sound) comb_3 = comb_filter(0.015, fs, .7, input_sound) comb_4 = comb_filter(0.02, fs, .3, input_sound) comb_sum = comb_1 + comb_2 + comb_3 + comb_4 allpass_1 = allpass(0.037, fs, .6, comb_sum)
# 6	allpass_1 = allpass(0.037, fs, .6, comb_sum) allpass_2 = allpass(0.03, fs, .6, allpass_1) # Adding the input sound to the Schroeder reverberators effected_sound = input_sound + allpass_2 sound(effected_sound, rate=fs, label=f"{fname} with Schroeder reverberators") plot_spectrogram(effected_sound,
14	Spectrogram of {fname} with Schroeder reverberators Spectrogram of loop.wav with Schroeder reverberators 20000
	20000 -
	Sooo
а	1 2 3 4 5 6 7 Time [sec] I found that to try an minimize the reflections in this reverb sound, I had to keep the delay of the allpass filters < 0.04. I kept messing around with various combinations of delays and gains, and I found that this combination sounded really cool to adds a slight metallic sound to the input, but I thing the timbre is very unique and is something I would add to my own productions. I would characterize the reverb as very short and tight. Part 3. Applying a real room response
] M S	To apply a more realistic filter we need to use a real room response. Download the St. Andrew's church room impulse response (Stereo) from: [https://openairlib.net/?page_id=683] Make sure that the sound you will convolve with it will be at the same sampling rate. This impulse response captures that church's RIR using two channels. To synthesize a sound in that room you need to convolve it with the impulse response. If you sound is a single-channel recording, you can simply convolve it with each of the two impulse responses and then use the resulting outputs as the left and right channel. You will notice that using the scipy.signal.lfilter command for this
	operation can take very long to compute. For faster convolutions we need to perform this filtering in the frequency domain (using the fast convolution algorithm that we mentioned in the filtering lecture). The function numpy.convolve automatic does that (if you use an up to date version), otherwise you can directly use scipy.signal.fftconvolve. Verify that the resulting output sounds like it has been placed inside a church. finame_RR = "st-andrews-church (stereo).wav" fs_RR, curch_response = wavfile.read(f'./data/{fname_RR}') left_channel = curch_response[:, 0] right_channel = curch_response[:, 1]
f 1 r	left convolved - fftconvolvo(loft charrel described)
f l r c	left_convolved = fftconvolve(left_channel, input_sound) right_convolved = fftconvolve(right_channel, input_sound) convolved_sound = np.array([left_convolved, right_convolved]) sound(convolved_sound, rate=fs_RR, label=f"{fname} convolved with {fname_RR}") loop.wav convolved with st-andrews-church (stereo).wav