Two-level domain decomposition methods

Victorita Dolean

with: F. Nataf, P. Jolivet, P.-H. Tournier

LJLL French-Spanish summer school, Ciudad Real, 7-11 July 2025 Resources (slides and lecture notes) from https://github.com/vicdolean/domain-decomposition-notes.

1

Outline

Coarse space corrections

Coarse spaces for heterogeneous problems

Theoretical background

Numerical results and conclusion Scalability tests Coarse space corrections

Many Cores: Strong and Weak Scalability

Scalability Metrics

Strong scalability (Amdahl)

Measures how the solution time varies with the number of processors for a $\underline{\text{fixed total problem}}$ size.

Weak scalability (Gustafson)

Measures how the solution time varies with the number of processors when the <u>problem size</u> per processor is fixed.

One-Level Schwarz: Not Scalable

# Subdomains	8	16	32	64
AS	18	35	66	128

- Iteration count increases linearly with number of subdomains.
- Clear breakdown of scalability in one-level methods.

Numerics on a toy problem

Figure 1: Schwarz convergence as a solver (left) and as a preconditioner (right) for different overlaps

Weak Scaling: A Mathematical Proof

Condition Number Estimates for the Preconditioned System

Lemma

If there exist constants C₁ and C₂ such that

$$C_1\left(M_{AS}\mathbf{x},\mathbf{x}\right) \leq \left(A\mathbf{x},\mathbf{x}\right) \leq C_2\left(M_{AS}\mathbf{x},\mathbf{x}\right), \quad \forall \, \mathbf{x} \in \mathbb{R}^n$$

then

$$\lambda_{\mathsf{max}}(\mathsf{M}_{\mathsf{AS}}^{-1}\mathsf{A}) \leq \mathsf{C}_2, \quad \lambda_{\mathsf{min}}(\mathsf{M}_{\mathsf{AS}}^{-1}\mathsf{A}) \geq \mathsf{C}_1, \quad \Rightarrow \quad \kappa(\mathsf{M}_{\mathsf{AS}}^{-1}\mathsf{A}) \leq \frac{\mathsf{C}_2}{\mathsf{C}_1}.$$

- If $\kappa(M_{AS}^{-1}A)$ is independent of N, the solution time becomes independent of the number of subdomains
- ⇒ Weak scalability is achieved.

4

Why the algorithm is not scalable?

Lemma (Estimate of the largest eigenvalue)

Let $col(j) \in \{1, \dots, \mathcal{N}^c\}$ be the color of the domain j defined such that col(k) = col(l) if $(AR_k^T \mathbf{x}_k, R_l^T \mathbf{x}_l) = 0$. Then $\lambda_{max}(M_{AS}^{-1}A) \leq \mathcal{N}_c$.

Proof. Useful result (Toselli, Widlund '05)

$$(\mathsf{M}_{\mathsf{AS}}\mathbf{x},\mathbf{x}) = \min_{\{\mathbf{x}_j \in \mathbb{R}^{\mathsf{n}_j}; \mathbf{x} = \sum_{j=1}^{\mathsf{N}} \mathsf{R}_j^\mathsf{T} \mathbf{x}_j\}} \sum_{j=1}^{\mathsf{N}} (\mathsf{A}_j \mathbf{x}_j, \mathbf{x}_j), \ \mathsf{A}_j = \mathsf{R}_j \mathsf{A} \mathsf{R}_j^\mathsf{T}.$$
(1)

Let $(\mathbf{x}_i)_{1 \le i \le N}$ which achieves the minimum in (1). Then we have

$$(\mathbf{M}_{\mathsf{ASX}}, \mathbf{x}) = \sum_{j=1}^{\mathsf{N}} (\mathsf{A} \mathsf{R}_{j}^{\mathsf{T}} \mathbf{x}_{j}, \mathsf{R}_{j}^{\mathsf{T}} \mathbf{x}_{j}) = \sum_{c=1}^{\mathcal{N}^{\mathsf{C}}} \left(\mathsf{A} \sum_{\{i; \mathsf{col}(i) = c\}} \mathsf{R}_{i}^{\mathsf{T}} \mathbf{x}_{i}, \sum_{\{i; \mathsf{col}(i) = c\}} \mathsf{R}_{i}^{\mathsf{T}} \mathbf{x}_{i} \right)$$

$$\geq \frac{1}{\mathcal{N}^{\mathsf{C}}} \left(\mathsf{A} \sum_{j=1}^{\mathsf{N}} \mathsf{R}_{j}^{\mathsf{T}} \mathbf{x}_{j}, \sum_{j=1}^{\mathsf{N}} \mathsf{R}_{j}^{\mathsf{T}} \mathbf{x}_{j} \right) = \frac{1}{\mathcal{N}^{\mathsf{C}}} (\mathsf{A} \mathbf{x}, \mathbf{x}).$$
(2)

Therefore $\lambda_{\max}(M_{AS}^{-1}A) \leq \mathcal{N}_c$.

5

Why the Algorithm is Not Scalable?

- We have that $\lambda_{\mathsf{max}}(\mathsf{M}_{\mathsf{AS}}^{-1}\mathsf{A}) \leq \mathcal{N}_{\mathsf{c}} \ll \mathsf{N}$
- But $\lambda_{\min}(M_{AS}^{-1}A)$ decreases as N increases.
- ⇒ Condition number grows with N, breaking weak scalability.

Poisson Problem $-\Delta u = f$ with 20×20 discretisation and 2-layer overlap

# Subdomains	2 × 2	4 × 4	8 × 8
Iterations	20	36	64

How to Achieve Scalability

Root Cause of Stagnation

- Stagnation is caused by a few small eigenvalues in the spectrum of the preconditioned system.
- $\bullet \ \, \text{These small eigenvalues arise due to the } \textbf{lack of global information exchange} \ \text{in the preconditioner}.$

Classical Remedy

Introduce a coarse problem that couples all subdomains and enables global information exchange.

Adding a Coarse Space

Targeting Slow Convergence Modes

Assume we have identified the slow modes of the preconditioned system:

$$M^{-1}A\mathbf{x} = M^{-1}\mathbf{b}$$

Examples of Slow Modes

- Constant functions in the **null space of the Laplace operator**.
- Rigid body motions in linear elasticity problems.

Notation

Let Z be the rectangular matrix whose columns span these slow modes.

Correction by Minimization

We seek to correct an approximate solution \mathbf{y} with $Z\beta$:

$$\min_{\beta} \|\mathsf{A}(\mathbf{y} + \mathsf{Z}\beta) - \mathbf{b}\|_{\mathsf{A}^{-1}}$$

Correction by Minimization

We seek to correct an approximate solution \mathbf{y} with $Z\beta$:

$$\min_{\beta} \|\mathsf{A}(\mathbf{y} + \mathsf{Z}\beta) - \mathbf{b}\|_{\mathsf{A}^{-1}}$$

Equivalent Formulation

$$\min_{\beta \in \mathbb{R}^{n_c}} 2(A\mathbf{y} - \mathbf{b}, Z\beta) + (AZ\beta, Z\beta)$$

Correction by Minimization

We seek to correct an approximate solution \mathbf{y} with $Z\beta$:

$$\min_{\beta} \|\mathsf{A}(\mathbf{y} + \mathsf{Z}\beta) - \mathbf{b}\|_{\mathsf{A}^{-1}}$$

Equivalent Formulation

$$\min_{eta \in \mathbb{R}^{n_{\mathsf{c}}}} \ 2(\mathsf{A}\mathbf{y} - \mathbf{b}, \mathsf{Z}eta) + (\mathsf{A}\mathsf{Z}eta, \mathsf{Z}eta)$$

Optimal Coarse Coefficients

$$\beta = (\mathbf{Z}^{\mathsf{T}}\mathbf{A}\mathbf{Z})^{-1}\mathbf{Z}^{\mathsf{T}}(\mathbf{b} - \mathbf{A}\mathbf{y})$$

Correction by Minimization

We seek to correct an approximate solution \mathbf{y} with $Z\beta$:

$$\min_{\beta} \|\mathsf{A}(\mathbf{y} + \mathsf{Z}\beta) - \mathbf{b}\|_{\mathsf{A}^{-1}}$$

Equivalent Formulation

$$\min_{eta \in \mathbb{R}^{\mathsf{n}_{\mathsf{c}}}} \ 2(\mathsf{A}\mathbf{y} - \mathbf{b}, \mathsf{Z}eta) + (\mathsf{A}\mathsf{Z}eta, \mathsf{Z}eta)$$

Optimal Coarse Coefficients

$$\beta = (\mathbf{Z}^{\mathsf{T}}\mathbf{A}\mathbf{Z})^{-1}\mathbf{Z}^{\mathsf{T}}(\mathbf{b} - \mathbf{A}\mathbf{y})$$

$$\Rightarrow \quad \mathsf{Z}\beta = \mathsf{Z}(\mathsf{Z}^\mathsf{T}\mathsf{A}\mathsf{Z})^{-1}\mathsf{Z}^\mathsf{T}\underbrace{(\mathbf{b}-\mathsf{A}\mathbf{y})}_{\mathbf{r}}$$

Galerkin Correction

This term is known as the Galerkin correction.

A Two-Level Schwarz Preconditioner

Coarse Space Correction

Let $R_0 := Z^T$ and $\mathbf{r} = \mathbf{b} - A\mathbf{y}$.

Then the coarse correction is:

$$Z\beta = R_0^T \beta = R_0^T (R_0 A R_0^T)^{-1} R_0 r$$

A Two-Level Schwarz Preconditioner

Coarse Space Correction

Let $R_0 := Z^T$ and $\mathbf{r} = \mathbf{b} - A\mathbf{y}$.

Then the coarse correction is:

$$Z\beta = R_0^T \beta = R_0^T (R_0 A R_0^T)^{-1} R_0 r$$

Two-Level Preconditioner Definition

$$M_{AS,2}^{-1} := \underbrace{R_0^T(R_0AR_0^T)^{-1}R_0}_{Coarse\ problem} + \underbrace{\sum_{i=1}^N R_i^T(R_iAR_i^T)^{-1}R_i}_{M_{AS}^{-1}}$$

A Two-Level Schwarz Preconditioner

Coarse Space Correction

Let $R_0 := Z^T$ and $\mathbf{r} = \mathbf{b} - A\mathbf{y}$.

Then the coarse correction is:

$$Z\beta = R_0^T \beta = R_0^T (R_0 A R_0^T)^{-1} R_0 r$$

Two-Level Preconditioner Definition

$$M_{AS,2}^{-1} := \underbrace{R_0^T(R_0AR_0^T)^{-1}R_0}_{\text{Coarse problem}} + \underbrace{\sum_{i=1}^{N}R_i^T(R_iAR_i^T)^{-1}R_i}_{M_{AS}^{-1}}$$

Remarks

- The structure of $M_{AS,2}^{-1}$ mimics the one-level method.
- The choice of coarse basis R₀ (or Z) is not unique.
- The coarse problem is small (O($n_C \times n_C$)); the added cost is negligible.

The Nicolaides Coarse Space (1987)

Definition. We define the coarse basis vectors Z_i as:

$$Z_i := R_i^T D_i R_i \mathbf{1}, \quad 1 \le i \le N$$

where **1** is the all-ones vector of length \mathcal{N} .

Global Structure of Z. Z contains blocks formed of one vector per subdomain:

$$Z = \begin{bmatrix} D_1 R_1 \mathbf{1} & 0 & \cdots & 0 \\ 0 & D_2 R_2 \mathbf{1} & \ddots & \\ \vdots & \ddots & \ddots & 0 \\ 0 & 0 & 0 & D_N R_N \mathbf{1} \end{bmatrix}$$

Partition of Unity. The weights D_i form a partition of unity:

$$\sum_{i=1}^N R_i^T D_i R_i = Id, \quad D_i: \mathbb{R}^{\#\mathcal{N}_i} \to \mathbb{R}^{\#\mathcal{N}_i} \text{ (diagonal)}$$

This construction ensures that each coarse basis vector is global while being defined locally

Theoretical Convergence Result

Theorem (Widlund - Dryja)

If $M_{\text{AS},2}^{-1}$ is the two-level additive Schwarz preconditioner, then

$$\kappa(\mathsf{M}_{\mathsf{AS},2}^{-1}\,\mathsf{A}) \leq \mathsf{C}\left(1+rac{\mathsf{H}}{\delta}
ight)$$

where H = size of subdomains and δ = overlap size.

Theoretical Convergence Result

Theorem (Widlund - Dryja)

If $M_{AS,2}^{-1}$ is the two-level additive Schwarz preconditioner, then

$$\kappa(\mathsf{M}_{\mathsf{AS},2}^{-1}\,\mathsf{A}) \leq \mathsf{C}\left(1+rac{\mathsf{H}}{\delta}
ight)$$

where H = size of subdomains and δ = overlap size.

Numerical Validation

# Subdomains	8	16	32	64
AS (1-level)	18	35	66	128
AS + Nicolaides	20	27	28	27

Theoretical Convergence Result

Theorem (Widlund - Dryja)

If $M_{AS,2}^{-1}$ is the two-level additive Schwarz preconditioner, then

$$\kappa(\mathsf{M}_{\mathsf{AS},2}^{-1}\,\mathsf{A}) \leq \mathsf{C}\left(1+rac{\mathsf{H}}{\delta}
ight)$$

where H = size of subdomains and δ = overlap size.

Numerical Validation

# Subdomains	8	16	32	64
AS (1-level)	18	35	66	128
AS + Nicolaides	20	27	28	27

Limitation

Fails for highly heterogeneous problems.

 \Rightarrow We need larger and possibly adaptive coarse spaces.

Motivation

Context

Solving large discretized PDE systems with strongly heterogeneous coefficients:

- High contrast
- · Multiscale structure

Example

Darcy pressure equation with P¹ finite elements:

$$\mathbf{A}\mathbf{u} = \mathbf{f}, \quad \mathsf{cond}(\mathbf{A}) \sim \frac{\alpha_{\mathsf{max}}}{\alpha_{\mathsf{min}}} \cdot \mathbf{h}^{-2}$$

Goal: Robust Solvers

Iterative methods that remain effective:

- As mesh size $h \rightarrow 0$
- · For high coefficient contrast

Applications

- Flow in layered / stochastic media
- · Structural mechanics
- Electromagnetics

GenEO: Adaptive Spectral Coarse Space

What is GenEO?

GenEO constructs an adaptive coarse space for:

- · Highly heterogeneous Darcy problems
- Compressible elasticity problems

It uses local spectral analysis to capture slow-to-converge error modes.

To accelerate convergence of iterative solvers by improving global information flow.

Local Generalized Eigenproblem (EVP)

For each subdomain j, find:

$$\mathsf{A}_{\mathsf{j}}^{\mathsf{Neu}}\phi_{\mathsf{j},\mathsf{k}} = \frac{\lambda_{\mathsf{j},\mathsf{k}}\mathsf{D}_{\mathsf{j}}\mathsf{R}_{\mathsf{j}}\mathsf{A}\mathsf{R}_{\mathsf{j}}^{\mathsf{T}}\mathsf{D}_{\mathsf{j}}\cdot\phi_{\mathsf{j},\mathsf{k}}$$

where:

$$\phi_{j,k} \in \mathbb{R}^{\mathcal{N}_j}, \quad \frac{\lambda_{j,k}}{0} \geq 0$$

GenEO: Coarse Mode Selection and Convergence

Mode Selection (via Threshold τ)

Choose eigenmodes per subdomain with:

$$\lambda_{j,k} \le \tau \quad \Rightarrow \quad Z := \left(R_j^\mathsf{T} D_j \, \phi_{j,k} \right)$$

- $\lambda_{j,k} = 0 \Rightarrow$ Nicolaides coarse space (zero-energy modes)
- Smaller $\tau \leadsto$ fewer, high-impact modes
- Adaptivity to material contrast and geometry

Theoretical Guarantee (Spillane et al. - 2014)

Under mild assumptions, for all j with 0 $<\mu_{\rm j,m_{\rm j+1}}<\infty$:

$$\kappa(\mathsf{M}_{\mathsf{AS},2}^{-1}\mathsf{A}) \leq (1+\mathsf{k}_0)\left[2+\mathsf{k}_0(2\mathsf{k}_0+1)(1+1/\tau)\right]$$

Recommended threshold:

$$au := \left(\max_{\mathsf{j}} rac{\mathsf{H}_{\mathsf{j}}}{\delta_{\mathsf{j}}}
ight)^{-1}$$

Numerical Results: Darcy Problem

Test case: Channels and inclusions **Contrast:** $1 \le \alpha(x) \le 1.5 \times 10^6$

- · Highly heterogeneous permeability
- Two-level method with GenEO coarse space
- · Comparison with and without Metis partitioning

Upper row: permeability $\alpha(x)$ and solution. Lower row: two domain decompositions (uniform and METIS).

Convergence with and without Spectral Coarse Spaces

Key takeaway

The GenEO coarse space drastically improves convergence and makes iteration robust w.r.t the heterogeneity.

Eigenvalues and eigenvectors (Elasticity)

#Z per subd.	AS	AS+Z _{Nico}	AS+Z _{Geneo}
$max(m_i - 1, 1)$			273
m _i	614	543	36
m _i + 1			32

m_i is given automatically by the chosen criterion

Logarithmic scale

Additive Schwarz – Abstract Finite Dimensional Reformulation

Global Space and Bilinear Form

Let $\mathcal{H}_0:=\mathbb{R}^{\#\mathcal{N}}$ and A is the system matrix. Let:

$$a(\mathbf{U}, \mathbf{V}) := \mathbf{V}^T A \mathbf{U}$$

Additive Schwarz – Abstract Finite Dimensional Reformulation

Global Space and Bilinear Form

Let $\mathcal{H}_0 := \mathbb{R}^{\#\mathcal{N}}$ and A is the system matrix. Let:

$$a(\mathbf{U}, \mathbf{V}) := \mathbf{V}^T A \mathbf{U}$$

Product Space and Local Bilinear Form

Define the product space:

$$\mathcal{H}_P := \prod_{i=1}^N \mathbb{R}^{\#\mathcal{N}_i} \quad \text{with} \quad b(\mathcal{U}, \mathcal{V}) := \sum_{i=1}^N \boldsymbol{V}_i^T (R_i A R_i^T) \boldsymbol{U}_i$$

Additive Schwarz - Abstract Finite Dimensional Reformulation

Global Space and Bilinear Form

Let $\mathcal{H}_0 := \mathbb{R}^{\#\mathcal{N}}$ and A is the system matrix. Let:

$$a(\mathbf{U}, \mathbf{V}) := \mathbf{V}^T A \mathbf{U}$$

Product Space and Local Bilinear Form

Define the product space:

$$\mathcal{H}_P := \prod_{i=1}^N \mathbb{R}^{\#\mathcal{N}_i} \quad \text{with} \quad b(\mathcal{U}, \mathcal{V}) := \sum_{i=1}^N \boldsymbol{V}_i^T (R_i A R_i^T) \boldsymbol{U}_i$$

Assembly Operator

$$\mathcal{R}_{AS}:\mathcal{H}_{P}\rightarrow\mathcal{H}_{0},\quad\mathcal{R}_{AS}(\mathcal{U}):=\sum_{i=1}^{N}R_{i}^{T}\boldsymbol{U}_{i}$$

Additive Schwarz - Abstract Finite Dimensional Reformulation

Global Space and Bilinear Form

Let $\mathcal{H}_0 := \mathbb{R}^{\#\mathcal{N}}$ and A is the system matrix. Let:

$$a(\mathbf{U}, \mathbf{V}) := \mathbf{V}^T A \mathbf{U}$$

Product Space and Local Bilinear Form

Define the product space:

$$\mathcal{H}_P := \prod_{i=1}^N \mathbb{R}^{\#\mathcal{N}_i} \quad \text{with} \quad b(\mathcal{U}, \mathcal{V}) := \sum_{i=1}^N \boldsymbol{V}_i^T (R_i A R_i^T) \boldsymbol{U}_i$$

Assembly Operator

$$\mathcal{R}_{AS}: \mathcal{H}_P \rightarrow \mathcal{H}_0, \quad \mathcal{R}_{AS}(\mathcal{U}) := \sum_{i=1}^N R_i^T \boldsymbol{U}_i$$

Conclusion

The additive Schwarz preconditioner is:

$$M_{AS}^{-1} = \mathcal{R}_{AS} B^{-1} \mathcal{R}_{AS}^*$$

Fictitious Space Lemma (FSL)

Let $\mathcal{H}_0,\,\mathcal{H}_P$ be Hilbert spaces with symmetric, positive definite bilinear forms

$$a:\mathcal{H}_0\times\mathcal{H}_0\to\mathbb{R},\quad b:\mathcal{H}_P\times\mathcal{H}_P\to\mathbb{R},$$

and let $\mathcal{R}:\mathcal{H}_P \to \mathcal{H}_0$ be a linear operator.

(1) Surjectivity: \mathcal{R} is onto \mathcal{H}_0 , i.e.,

$$\forall u \in \mathcal{H}_0, \quad \exists u_P \in \mathcal{H}_P \text{ such that } \mathcal{R}u_P = u.$$

(2) Continuity (upper bound): There exists $c_R > 0$ such that

$$a(\mathcal{R}u_P,\mathcal{R}u_P) \leq \textcolor{red}{c_R} \cdot b(u_P,u_P) \quad \forall u_P \in \mathcal{H}_P.$$

(3) Stable Decomposition (lower bound): There exists $c_T > 0$ such that for every $u \in \mathcal{H}_0$,

$$\exists u_P \in \mathcal{H}_P \text{ with } \mathcal{R}u_P = u \quad \text{and} \quad \textbf{c}_{\textbf{T}} \cdot b(u_P, u_P) \leq a(u, u).$$

Then the following **spectral estimate** holds:

$$\boldsymbol{c_T} \cdot \boldsymbol{a}(\boldsymbol{u}, \boldsymbol{u}) \; \leq \; \boldsymbol{a}(\mathcal{R} \boldsymbol{B}^{-1} \mathcal{R}^* \boldsymbol{A} \boldsymbol{u}, \, \boldsymbol{u}) \; \leq \; \boldsymbol{c_R} \cdot \boldsymbol{a}(\boldsymbol{u}, \boldsymbol{u}) \quad \forall \boldsymbol{u} \in \mathcal{H}_0$$

In other words, the spectrum of the preconditioned operator $M^{-1}:=\mathcal{R}B^{-1}\mathcal{R}^*$ with respect to A lies in the interval $Spec(M^{-1}A)\subset [c_T,\,c_R]$

Estimate for the One-Level ASM

Goal

Use the Fictitious Space Lemma to bound the eigenvalues of the preconditioned operator $M_{ASM}^{-1}A$.

Upper bound (continuity constant c_R): Let \mathcal{N}_c = max number of neighbors of a subdomain.

$$\Rightarrow$$
 $c_R := \mathcal{N}_c$

Lower bound (stability constant c_T): Let \mathcal{M}_c = max overlap multiplicity. Define:

$$\tau_1 := \min_i \min_{\boldsymbol{U}_i \neq 0} \frac{\boldsymbol{U}_i^T \boldsymbol{A}_i^{\text{Neu}} \boldsymbol{U}_i}{\boldsymbol{U}_i^T \boldsymbol{D}_i \boldsymbol{R}_i \boldsymbol{A} \boldsymbol{R}_i^T \boldsymbol{D}_i \boldsymbol{U}_i} \quad \Rightarrow \quad \boldsymbol{c}_T := \frac{\tau_1}{\mathcal{M}_c}$$

Spectral Estimate

$$\frac{\tau_1}{\mathcal{M}_c} \leq \lambda(\mathsf{M}_{\mathsf{ASM}}^{-1}\mathsf{A}) \leq \mathcal{N}_c$$

Caution: τ_1 can be very small for heterogeneous problems.

Analysis of other variants using FSL

ASM theory for a SPD matrix A (summary)

• Algebraic reformulation

$$M_{RAS}^{-1} := \sum_{i=1}^N R_i^T D_i A_i^{-1} R_i$$

• Symmetric variant

$$M_{AS}^{-1} := \sum_{i=1}^{N} R_i^T A_i^{-1} R_i$$

• Adaptive Coarse space with prescribed targeted convergence rate.

Aim: develop a similar theory and computational framework for Optimised variants of RAS (ORAS)

et B_i be the matrix of the Robin subproblem in each subdomain $1 \leq i \leq N$

Optimized multiplicative, additive, and restricted additive Schwarz preconditioning (St Cyr et al, 2007)

$$M_{ORAS}^{-1} := \sum_{i=1}^{N} R_i^T D_i B_i^{-1} R_i$$

• Symmetric variants:

$$\begin{split} M_{OAS}^{-1} &:= \sum_{i=1}^{N} R_i^T B_i^{-1} R_i \text{ (Natural but K.O.)} \\ M_{SORAS}^{-1} &:= \sum_{i=1}^{N} R_i^T D_i B_i^{-1} D_i R_i \text{ (O.K.)} \end{split}$$

Analysis of other variants using FSL

ASM theory for a SPD matrix A (summary)

• Algebraic reformulation

$$M_{RAS}^{-1} := \sum_{i=1}^N R_i^T D_i A_i^{-1} R_i$$

• Symmetric variant

$$M_{AS}^{-1} := \sum_{i=1}^{N} R_i^T A_i^{-1} R_i$$

• Adaptive Coarse space with prescribed targeted convergence rate.

Aim: develop a similar theory and computational framework for Optimised variants of RAS (ORAS)

Let B_i be the matrix of the Robin subproblem in each subdomain $1 \leq i \leq N$

Optimized multiplicative, additive, and restricted additive Schwarz preconditioning (St Cyr et al, 2007)

$$M_{ORAS}^{-1} := \sum_{i=1}^N R_i^T D_i B_i^{-1} R_i$$

• Symmetric variants:

$$\begin{split} M_{OAS}^{-1} &:= \sum_{i=1}^{N} R_i^T B_i^{-1} R_i \text{ (Natural but K.O.)} \\ M_{SORAS}^{-1} &:= \sum_{i=1}^{N} R_i^T D_i B_i^{-1} D_i R_i \text{ (O.K.)} \end{split}$$

One level SORAS

Application of FSL

ullet Let $H:=\mathbb{R}^{\#\mathcal{N}}$ and the a-bilinear form:

$$a(\mathbf{U}, \mathbf{V}) := \mathbf{V}^T A \mathbf{U}.$$

where A is the matrix of the problem we want to solve.

• H_D is a product space and b a bilinear form

$$H_D := \prod_{i=1}^N \mathbb{R}^{\#\mathcal{N}_i} \text{ and } b(\mathcal{U},\mathcal{V}) := \sum_{i=1}^N \boldsymbol{V}_i^T B_i \boldsymbol{U}_i, \; .$$

ullet The linear operator $\mathcal{R}_{\mathsf{SORAS}}$ is defined as

$$\mathcal{R}_{SORAS}: H_D \longrightarrow H, \ \mathcal{R}_{SORAS}(\mathcal{U}) := \sum_{i=1}^N R_i^T D_i \boldsymbol{U}_i.$$

We have: $M_{SORAS}^{-1} = \mathcal{R}_{SORAS} B^{-1} \mathcal{R}_{SORAS}^*$.

Estimate for the one level SORAS

• Let k_0 be the maximum number of neighbours of a subdomain and γ_1 be defined as:

$$\gamma_1 := \max_{1 \leq i \leq N} \max_{\boldsymbol{U}_i \in \mathbb{R}^{\#\mathcal{N}_i} \setminus \{0\}} \frac{\left(R_i^T D_i \boldsymbol{U}_i\right)^T A \left(R_i^T D_i \boldsymbol{U}_i\right)}{\boldsymbol{U}_i^T B_i \boldsymbol{U}_i}$$

We can take $c_R := k_0 \gamma_1$.

 \bullet Let k_1 be the maximum multiplicity of the intersection between subdomains and τ_1 be defined as:

$$\tau_1 := \min_{1 \leq i \leq N} \min_{\boldsymbol{\mathsf{U}}_i \in \mathbb{R}^{\#\mathcal{N}_i} \setminus \{0\}} \frac{\boldsymbol{\mathsf{U}}_i^\mathsf{T} \boldsymbol{\mathsf{A}}_i^\mathsf{Neu} \boldsymbol{\mathsf{U}}_i}{\boldsymbol{\mathsf{U}}_i^\mathsf{T} \boldsymbol{\mathsf{B}}_i \boldsymbol{\mathsf{U}}_i} \ .$$

We can take $c_T := \frac{\tau_1}{k_1}$. Then

$$\frac{\tau_1}{k_1} \leq \lambda(\mathsf{M}_{\mathsf{SORAS}}^{-1}\,\mathsf{A}) \leq k_0\,\gamma_1\,.$$

Nearly Incompressible Elasticity

Material model:

- · Young's modulus: E
- Poisson ratio: ν
- · Lamé parameters:

$$\lambda = \frac{\mathsf{E}
u}{(1 +
u)(1 - 2
u)}, \qquad \mu = \frac{\mathsf{E}}{2(1 +
u)}$$

Discretization: Mixed finite elements (Taylor–Hood: $\mathbb{P}_2^d - \mathbb{P}_1$)

 $\textbf{Variational problem:} \ \text{Find} \ (\textbf{u}_h, \textbf{p}_h) \in \mathcal{V}_h := \mathbb{P}_2^d \cap H_0^1(\Omega) \times \mathbb{P}_1 \ \text{such that for all } (\textbf{v}_h, \textbf{q}_h) \in \mathcal{V}_h :$

$$\begin{cases} \int_{\Omega} 2\mu\, \boldsymbol{\varepsilon}(\boldsymbol{u}_h) : \boldsymbol{\varepsilon}(\boldsymbol{v}_h) - \int_{\Omega} p_h \, \nabla \cdot \boldsymbol{v}_h = \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v}_h \\ - \int_{\Omega} \nabla \cdot \boldsymbol{u}_h \, q_h - \int_{\Omega} \frac{1}{\lambda} p_h q_h = 0 \end{cases}$$

Matrix form:

$$A \boldsymbol{U} = \begin{bmatrix} \boldsymbol{H} & \boldsymbol{B}^T \\ \boldsymbol{B} & -\boldsymbol{C} \end{bmatrix} \begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{p} \end{bmatrix} = \begin{bmatrix} \boldsymbol{f} \\ \boldsymbol{0} \end{bmatrix} = \boldsymbol{F}$$

Note: A is symmetric but indefinite due to the mixed formulation (saddle-point problem).

Numerical tests (with FreeFem++)

Figure 2: 2D Elasticity: Sandwich of steel $(E_1, \nu_1) = (210 \cdot 10^9, 0.3)$ and rubber $(E_2, \nu_2) = (0.1 \cdot 10^9, 0.4999)$.

Metis partitioning

Table 1: 2D Elasticity. GMRES iteration counts

		AS	SORAS	AS+CS(Z	EM)	SORAS +C	S(ZEM)	AS-Ger	iEO	SORAS -G	enEO-2
Nb DOFs	Nb subdom	iteration	iteration	iteration	dim	iteration	dim	iteration	dim	iteration	dim
35841	8	150	184	117	24	79	24	110	184	13	145
70590	16	276	337	170	48	144	48	153	400	17	303
141375	32	497	++1000	261	96	200	96	171	800	22	561
279561	64	++1000	++1000	333	192	335	192	496	1600	24	855
561531	128	++1000	++1000	329	384	400	384	++1000	2304	29	1220
1077141	256	++1000	++1000	369	768	++1000	768	++1000	3840	36	1971

Strong scalability in two and three dimensions (with FreeFem++ and HPDDM)

Stokes problem with automatic mesh partition. Driven cavity problem

	N	Factorization	Deflation	Solution	# of it.	Total	# of d.o.f.
	1 024	$79.2\mathrm{s}$	$229.0\mathrm{s}$	$76.3\mathrm{s}$	45	$387.5\mathrm{s}$	
3D	2048	$29.5\mathrm{s}$	$76.5\mathrm{s}$	$34.8\mathrm{s}$	42	$143.9\mathrm{s}$	$50.63 \cdot 10^6$
3D	4096	$11.1\mathrm{s}$	$45.8\mathrm{s}$	$19.8\mathrm{s}$	42	$80.9\mathrm{s}$	50.63 · 10°
	8192	$4.7\mathrm{s}$	$26.1\mathrm{s}$	$14.9\mathrm{s}$	41	$56.8\mathrm{s}$	
2D	1 024	$5.2\mathrm{s}$	$37.9{\rm s}$	$51.5\mathrm{s}$	51	$95.6\mathrm{s}$	
	2048	$2.4\mathrm{s}$	$19.3 {\rm s}$	$22.1\mathrm{s}$	42	$44.5\mathrm{s}$	$100.13 \cdot 10^6$
	4096	$1.1\mathrm{s}$	$10.4\mathrm{s}$	$10.2\mathrm{s}$	35	$22.6\mathrm{s}$	100.13 · 10
	8192	$0.5\mathrm{s}$	$4.6\mathrm{s}$	$6.9\mathrm{s}$	38	$12.7\mathrm{s}$	

Peak performance: 50 millions d.o.f's in 3D in 57 sec.

IBM/Blue Gene Q machine with 1.6 GHz Power A2 processors. Hours provided by an IDRIS-GENCI project.

Weak scalability for heterogeneous elasticity (with FreeFem++ and HPDDM)

Rubber Steel sandwich with automatic mesh partition

(a) Timings of various simulations

Conclusion

Summary

We presented a unified spectral framework for domain decomposition:

- Projection-based coarse spaces from generalized eigenproblems
- Guaranteed convergence for:
 - Additive Schwarz (AS)
 - Optimized and Symmetric Optimized Schwarz (OAS, SORAS)
 - Block Newton-Neumann (BNN, see Lecture Notes)
- · Fully implemented in:
 - **HPDDM** C++/MPI library
 - FreeFem++ plugin ffddm

Many of the concepts, algorithms, and theoretical results presented are covered in greater depth in the book: An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation, Victorita Dolean, Pierre Jolivet, Frédéric Nataf, SIAM, 2015.

It is freely available at:

https://www.ljll.fr/nataf/OT144DoleanJolivetNataf_full.pdf