平成 27 年度^春学期末試験問題·解答

試験実施日 平成 27 年 7月 28 日 3 時限

出題者記入欄

試 験 科 目 名 解析基礎	出題者名佐藤弘康				
試験時間 <u>60</u> 分	平常授業	自 火 曜日 3	_時限		
持ち込みについて 可 可、不可のいずれかに○印をつけ 持ち込み可のものを○で囲んでください					
教科書 ・ 参考書 ・ ノート (手書きのみ ・ コピーも可) ・ 電卓 ・ 辞書 その他 ()					
本紙以外に必要とする用紙 解答用紙 <u>0</u> 枚 計算用紙 <u>0</u> 枚					
通信欄					

受験者記入欄

学	科	学 年	クラス	学籍番号	氏	名

採点者記入欄

採点欄	評価

- 次の間に答えなさい.
 - (1) 105°を弧度法で表しなさい.
 - (2) $-\frac{\pi}{3}$ を六十分法(度数法)で表しなさい.
 - (3) -777° は第何象限の角が答えなさい.

2 次の値を求めなさい.

$$(1) \sin \frac{25\pi}{6}$$

(2) $\cos \frac{7\pi}{12}$

- $\boxed{\bf 3}$ $0 < \theta < \pi$, $\cos \theta = -\frac{1}{3}$ のとき、次の値を求めなさい。
 - (1) $\sin \theta$

(2) $\cos \frac{\theta}{2}$

 $oxed{4}$ 角 heta $an heta = -rac{3}{4}$ を満たす第 4 象限の角とする.この とき, $\cos heta$ の値を求めなさい.

- **5** 半径 5 の円で,中心角 72° に対する弧の長さを求めなさい.
- | | 7 | 次の関数のグラフの概形を描きなさい.
 - $(1) \ y = \sin(2x)$

- 6 △ABCにおいて、次の各間に答えなさい。
 - (1) b=3, c=5, $A=60^{\circ}$ のとき, a を求めなさい.

 $(2) \ y = \cos\left(x - \frac{\pi}{2}\right)$

- (2) a=4, b=5, c=6 のとき, $\triangle ABC$ の外接円の半 径を求めなさい.
- $(3) \ y = 2\sin^2 x$

8 方程式

 $\sin x + \sin 2x = \cos x + \cos 2x$

を満たす x をすべて求めなさい. ただし, $0 \le x \le 2\pi$ とする.