Agents that Plan Ahead: Search

Russell and Norvig: Chapter 3.1-3.4, 3.5-3.6

CSE 240: Winter 2023

Lecture 2

Announcements

Announcements

- Assignment 1 is up
- Prof. Marinescu lecturing on Thursday.
 - I am planning to hold office hours on Thursday (might be subject to change).
- Use slack (#questions)

Recap and Upcoming

Today

- Uninformed search strategies
 - ID-DFS
 - Uniform Cost Search UCS
- Informed search strategies
 - Heuristics functions
 - Greedy Search algorithms
 - A* search algorithm

Review: Depth First Search

Strategy: expand deepest node first Implementation: Fringe is a LIFO stack

Breadth First Search

Strategy: expand shallowest node first Implementation: Fringe is a FIFO queue

Iterative Deepening DFS

- Idea: get DFS's space advantage with BFSs time / shallow-solution advantages
 - Run a DFS with depth limit 1. If no solution...
 - Run a DFS with depth limit 2. If no solution....
 - Run a DFS with depth limit 3
- Isn't that wastefully redundant?
 - Generally most work happens in the deepest level searched, so not so bad!

Iterative Deepening

Iterative deepening uses DFS as a subroutine:

- 1. Do a DFS which only searches for paths of length 1 or less.
- 2. If "1" failed, do a DFS which only searches paths of length 2 or less./
- 3. If "2" failed, do a DFS which only searches paths of length 3 or less.and so on.

Algorithm	1	Complete	Optimal	Time	Space
DFS	w/ Path Checking	Y	N	$O(b^{m+1})$	O(bm)
BFS		Υ	N*	$O(b^{s+1})$	$O(b^s)$
ID		Υ	N*	$O(b^{s+1})$	O(bs)

Cost-Sensitive Search

Notice that BFS finds the shortest path in terms of number of transitions. It does not find the least-cost path.

We will quickly cover an algorithm which does find the least-cost path.

Uniform Cost Search

Uniform Cost Search

Expand cheapest node first:

High level Strategy

- Explored: states we have found the optimal path to
- Frontier: states we have seen, still figuring out how to get there cheaply
- Unexplored: states we have not seen

Algorithm

```
function UNIFORM-COST-SEARCH(problem) returns a solution, or failure
  node \leftarrow a node with STATE = problem.INITIAL-STATE, PATH-COST = 0
  frontier \leftarrow a priority queue ordered by PATH-COST, with node as the only element
  explored \leftarrow an empty set
  loop do
      if EMPTY? (frontier) then return failure
      node \leftarrow Pop(frontier) /* chooses the lowest-cost node in frontier */
      if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
      add node.State to explored
      for each action in problem.ACTIONS(node.STATE) do
          child \leftarrow \text{CHILD-NODE}(problem, node, action)
         if child.State is not in explored or frontier then
              frontier \leftarrow Insert(child, frontier)
          else if child.State is in frontier with higher Path-Cost then
             replace that frontier node with child
```

UCS Example

Analysis of UCS

Theorem: correctness-

When a state s is popped from the frontier and moved to explored, its priority is PastCost(s), the minimum cost to s.

Proof:

Uniform Cost Search (UCS) Properties

- What nodes does UCS expand?
 - Processes all nodes with cost less than cheapest solution!
 - If that solution costs C^* and arcs cost at least ϵ , then the "effective depth" is roughly C^*/ϵ
 - Takes time $O(b^{C^*/\epsilon})$ (exponential in effective depth)
- How much space does the fringe take?
 - Has roughly the last tier, so $O(b^{C^*/\epsilon})$
- • Is it complete?
 - Assuming best solution has a finite cost and minimum arc cost is positive, yes!
- Is it optimal?
 - Yes! (Proof in textbook)

Uniform Cost Search

Algorithm	1	Complete	Optimal	Time	Space
DFS	w/ Path Checking	Y	N	$O(b^{m+1})$	O(bm)
BFS		Y	N	$O(b^{s+1})$	$O(b^s)$
UCS		γ*	Υ	$O(b^{C*/\epsilon})$	$O(b^{C*/\epsilon})$

* UCS can fail if actions can get arbitrarily cheap

Uniform Cost Issues

• Remember: explores increasing cost contours

• The good: UCS is complete and optimal!

- The bad:
 - Explores options in every "direction"
 - No information about goal location

Search Heuristics

- Any estimate of how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance

CE 3: Heuristic brainstorm

- Heuristic for a specific search problem.
- Doesn't have to be optimal (just start thinking about it)
- Example: get a fruit and cereal from the grocery store.
- Heuristic: dist(fruit) + dist(cereal)

Example of a Heuristic Function

Greedy Search

Best First / Greedy Search

Expand the node that seems closest...

What can go wrong?

A* Search

Combining UCS and Greedy

$$f(n) = g(n)$$

Uniform-cost orders by path cost, or backward cost g(n)

Node	Fringe	f(n)
S	s->a	1
s->a	s->a->b	2
s->a	s->a->d	4
s->a	s->a->e	6

Example: Teg Grenager

Combining UCS and Greedy

$$f(n) = h(n)$$

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

Node	Fringe	f(n)
S	s->a	5
s->a	s->a->b	6
s->a	s->a->d	2
s->a	s->a->e	1

Example: Teg Grenager

Combining UCS and Greedy

$$f(n) = g(n) + h(n)$$

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

Node	Fringe	f(n)
S	s->a	6
s->a	s->a->b	8
s->a	s->a->d	6
s->a	s->a->e	7

A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

Another Wav to Implement A*

Run UCS with modified edge costs in order to account for closeness to the goal state

$$Cost'(s,a) = Cost(s,a) + h(succ(s,a)) - h(s)$$

Intuition: add a penalty for how much action 'a' takes us away from the end state

$$Cost'(C, B) = Cost(C, B) + h(B) - h(C) = 1 + (3 - 2) = 2$$

When should A* terminate?

• Should we stop when we enqueue a goal?

No: only stop when we dequeue a goal

Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

Admissible Heuristics

• A heuristic *h* is admissible (optimistic) if:

$$h(n) \leq h^*(n)$$

- where $h^*(n)$ is the true cost to a nearest goal
- Example:

Coming up with admissible heuristics is most of what's involved in using A* in practice.

Consistent Heuristic

A heuristic h is "consistent" if

- Cost' $(s,a) = Cost(s,a) + h(succ(s,a)) h(s) \ge 0$ $h(s_{end}) = 0$

Correctness of A*

- If h is consistent, A* returns the minimum cost path
- Consider any path
- Key identity:

$$\sum_{i=1}^{L} \mathsf{Cost}'(s_{i-1}, a_i) = \sum_{i=1}^{L} \mathsf{Cost}(s_{i-1}, a_i) + \underbrace{h(s_L) - h(s_0)}_{\mathsf{constant}}$$
 modified path cost original path cost

 Therefore, A* solves the original problem using UCS and therefore the algorithm has complete

Efficiency of A*

A* explores all states satisfying $f(s) \le f(s_{end}) - h(s)$

$$f(s) \le f(s_{end}) - h(s)$$

- Interpretation: the larger h(s), the better
- Proof: A* explores all nodes 's' such that

$$f(s) + h(s) \le f(s_{end}) + h(s_{end})$$

$$f(s) + h(s) \le f(s_{end})$$

$$f(s) \le f(s_{end}) - h(s)$$

Recap

Week 2

- Solving problems by searching (cont.)
 - Informed search strategies
 - Heuristics functions
- Search in complex environments
 - Hill climbing, simulated annealing, local beam search, evolutionary algorithm.