Logistic Regression on Attrition Data set.

```
import pandas as pd
import statsmodels.api as sm
dataset=pd.read_csv("Attrition Rate Analysis.csv")
dataset.columns
Out[1]:
Index(['Age', 'Attrition', 'BusinessTravel', 'Department', 'DistanceFromHome',
    'Education', 'EducationField', 'EmployeeCount', 'EmployeeID', 'Gender',
    'JobLevel', 'JobRole', 'MaritalStatus', 'MonthlyIncome',
    'NumCompaniesWorked', 'Over18', 'PercentSalaryHike', 'StandardHours',
    'StockOptionLevel', 'TotalWorkingYears', 'TrainingTimesLastYear',
    'YearsAtCompany', 'YearsSinceLastPromotion', 'YearsWithCurrManager'],
   dtype='object')
from sklearn import preprocessing
le=preprocessing.LabelEncoder()
dataset["Attrition"]=le.fit_transform(dataset["Attrition"])
dataset["BusinessTravel"]=le.fit_transform(dataset["BusinessTravel"])
dataset["Department"]=le.fit transform(dataset["Department"])
dataset["EducationField"]=le.fit transform(dataset["EducationField"])
dataset["Gender"]=le.fit_transform(dataset["Gender"])
dataset["MaritalStatus"]=le.fit_transform(dataset["MaritalStatus"])
dataset["JobRole"]=le.fit_transform(dataset["JobRole"])
dataset1=dataset.drop(['EmployeeCount', 'EmployeeID','Over18','StandardHours'],axis=1)
dataset1.columns
Out[3]:
Index(['Age', 'Attrition', 'BusinessTravel', 'Department', 'DistanceFromHome',
    'Education', 'EducationField', 'Gender', 'JobLevel', 'JobRole',
```

```
'MaritalStatus', 'MonthlyIncome', 'NumCompaniesWorked',
    'PercentSalaryHike', 'StockOptionLevel', 'TotalWorkingYears',
    'TrainingTimesLastYear', 'YearsAtCompany', 'YearsSinceLastPromotion',
    'YearsWithCurrManager'],
   dtype='object')
dataset2=dataset1.dropna()
dataset3=dataset2.drop_duplicates()
Y=dataset3.Attrition
dataset3.columns
Out[7]:
Index(['Age', 'Attrition', 'BusinessTravel', 'Department', 'DistanceFromHome',
    'Education', 'EducationField', 'Gender', 'JobLevel', 'JobRole',
    'MaritalStatus', 'MonthlyIncome', 'NumCompaniesWorked',
    'PercentSalaryHike', 'StockOptionLevel', 'TotalWorkingYears',
    'TrainingTimesLastYear', 'YearsAtCompany', 'YearsSinceLastPromotion',
    'YearsWithCurrManager'],
   dtype='object')
X=dataset3[['Age', 'BusinessTravel', 'Department', 'DistanceFromHome',
    'Education', 'EducationField', 'Gender', 'JobLevel', 'JobRole',
    'MaritalStatus', 'MonthlyIncome', 'NumCompaniesWorked',
    'PercentSalaryHike', 'StockOptionLevel', 'TotalWorkingYears',
    'TrainingTimesLastYear', 'YearsAtCompany', 'YearsSinceLastPromotion',
    'YearsWithCurrManager']]
X1=sm.add constant(X)
Logistic_Attrition=sm.Logit(Y,X1)
```

result=Logistic_Attrition.fit()

Optimization terminated successfully.

Current function value: 0.392756

Iterations 7

result.summary()

Out[13]:

<class 'statsmodels.iolib.summary.Summary'>

....

Logit Regression Results

Dep. Variable: Attrition No. Observations: 1470

Model: Logit Df Residuals: 1450

Method: MLE Df Model: 19

Date: Wed, 12 Aug 2020 Pseudo R-squ.: 0.1108

Time: 11:53:39 Log-Likelihood: -577.35

converged: True LL-Null: -649.29

Covariance Type: nonrobust LLR p-value: 3.295e-21

=======

coef std err z P>|z| [0.025 0.975]

const 0.0650 0.717 0.091 0.928 -1.340 1.470

Age -0.0306 0.012 -2.583 0.010 -0.054 -0.007

BusinessTravel -0.0166 0.113 -0.146 0.884 -0.239 0.206

Department -0.2421 0.141 -1.720 0.085 -0.518 0.034

DistanceFromHome -0.0014 0.009 -0.145 0.884 -0.020 0.017

Education -0.0625 0.074 -0.847 0.397 -0.207 0.082

EducationField -0.0965 0.058 -1.669 0.095 -0.210 0.017

Gender 0.0869 0.155 0.560 0.576 -0.217 0.391

JobLevel	-0.0249	0.069	-0.363	0.717	-0.159	0.110		
JobRole	0.0378	0.031	1.219	0.223	-0.023	0.099		
MaritalStatus	0.5885	0.109	5.379	0.000	0.374	0.803		
MonthlyIncome	-1.868	e-06 1.6	66e-06	-1.128	0.259 -5	.11e-06	1.38e-06	
NumCompaniesWorked 0.1184 0.032 3.729 0.000 0.056 0.181								
PercentSalaryHike	e 0.01	.17 0.0	20 0.5	76 0.5	65 -0.0	0.0	52	
StockOptionLevel	-0.06	645 O.C	89 -0.7	'21 0.4	171 -0.2	240 0.1	11	
TotalWorkingYear	rs -0.0	593 0.	021 -2.	856 0.	004 -0.	.100 -0.	019	
TrainingTimesLast	:Year -0.	1465 (0.061 -2	2.406	0.016 -0	0.266 -0).027	
YearsAtCompany	0.0	136 0.0	0.4	428 0.6	669 -0.0	0.0	076	
YearsSinceLastPro	motion	0.1323	0.035	3.732	0.000	0.063	0.202	
YearsWithCurrManager -0.1396 0.038 -3.642 0.000 -0.215 -0.064								
==========	=======			======	======	======		==

=======

111111

The Variables Age, Marital Status, NumcompaniesWorked,
Totalworkingyears, TrainingTimesLastYear,
YearsSinceLastPromotion, YearsWithCurrManager
are significantly important for the Attrition rate in the company