CS 5003: Parameterized Algorithms

Lectures 36-39

Krithika Ramaswamy

IIT Palakkad

Weighted Independent Set

Instance: A tree T with positive integral weights on its vertices and an integer k

Question: Does there exist an independent set of T of weight at least k?

- Root T at an arbitrary vertex
- * For a vertex v, let T_v denote the subtree of T rooted at v

- Root T at an arbitrary vertex
- * For a vertex v, let T_v denote the subtree of T rooted at v

* $\Lambda(h)$ = max possible wt of an IS in T_h that does not contain h

- Root T at an arbitrary vertex
- * For a vertex v, let T_v denote the subtree of T rooted at v

* $\Gamma(e)$ = max possible wt of an IS in T_e

- Root T at an arbitrary vertex
- * For a vertex v, let T_v denote the subtree of T rooted at v

 $\Gamma(d)$ = max possible wt of an IS not containing d in T_d

* Suppose v has v₁, v₂, ..., v_q as its children

- * $\Gamma(v)$ = max possible wt of an IS in T_v
- * $\Lambda(v)$ = max possible wt of an IS in T_v that does not contain v
 - * $\Lambda(v) = \Gamma(v_1) + \ldots + \Gamma(v_q)$
 - * $\Gamma(v) = \max \{\Lambda(v), w(v) + \Lambda(v_1) + ... + \Lambda(v_q)\}$
- * Computing $\Lambda(v)$ and $\Gamma(v)$ for leaves is easy

Linear time algorithm

Weighted Independent Set

Instance: A graph G with positive integral weighting on its vertices, a nice tree

decomposition (T, B) of G and an integer k

Question: Does there exist an independent set of G of weight at least k?

Parameter: w(T)

- For a node t in T
 - * Let V_t be the union of all bags in the subtree of T rooted at t
- * For every t in T and every $S \subseteq B(t)$
 - * Let $\Gamma(t, S)$ denote the max possible wt of an IS S* s.t
 - * $S \subseteq S^* \subseteq V_t$
 - * $S^* \cap B(t) = S$
 - * If S* does not exist then $\Gamma(t, S) = -\infty$

Leaf node:

t

$$\Gamma(t,\varnothing)=0$$

Introduce node:

$$\Gamma(t, S) = \Gamma(t', S)$$
 if v is not in S

$$\Gamma(t, S) = w(v) + \Gamma(t', S\setminus\{v\})$$
 if v is in S

second formula is correct as t and t' intersection which is B(t') is a seperator which separates {v} and the

Forget node:

$$\Gamma(t, S) = \max \{ \Gamma(t', S), \Gamma(t', S \cup \{v\}) \}$$

Join node:

$$\Gamma(t, S) = \Gamma(t_1, S) + \Gamma(t_2, S) - w(S)$$

Analysis:

- * For any node t in T, IB(t)I <= w(T) + 1
- * At node t, we compute $2^{|B(t)|} \le 2^{(w(T)+1)}$ values of $\Gamma(t, .)$
 - * For a fixed S, computing $\Gamma(t, S)$ is polynomial time
- * No. of nodes in T is O(w(T)*n)
- * $\Gamma(\text{root}, \emptyset)$ is the required answer

2w(t) n⁰⁽¹⁾ time algorithm

Theorem: Weighted Independent Set parameterized by the treewidth of the input graph is FPT.

Pominating Set on Trees

Pefinition: A dominating set in G is a set S of vertices such that NLS1 = V(G)

Pominating Set

Instance: A tree T and an integer k

Question: Does there exist a dominating set of T of size at most k?

Dominating Set on Trees

- Root T at an arbitrary vertex
- * For a vertex v, let T_v denote the subtree of T rooted at v
- * Suppose v has v_1, v_2, \ldots, v_q as its children
 - * Let $\Gamma(v)$ denote the min possible size of a Dom Set in T_v
 - * Let $\Lambda(v)$ denote the min possible size of a set in T_v that dominates every vertex in T_{v} -v
 - * Let $\Delta(v)$ denote the min possible size of a Dom Set in T_v that contains v
 - * $\Delta(\mathbf{v}) = 1 + \Lambda(\mathbf{v}_1) + \ldots + \Lambda(\mathbf{v}_q)$
 - * $\Lambda(v) = \min \{\Gamma(v_1) + ... + \Gamma(v_q), 1 + \Lambda(v_1) + ... + \Lambda(v_q)\}$
 - * $\Gamma(v) = \min \{1 + \Lambda(v_1) + \ldots + \Lambda(v_q), \min \{\Delta(v_i) + \Sigma_{i\neq j} \Gamma(v_j) : i \in [q] \} \}$
- * Computing $\Lambda(.)$, $\Delta(.)$ and $\Gamma(.)$ for leaves is easy

Linear time algorithm

Pominating Set

Instance: A graph G, a nicer tree decomposition (T, B) of G and an integer k

Question: Does there exist a dominating set of T of size at most k?

Parameter: w(T)

For every edge {u, v} in G, there is exactly one introduce edge node with label uv

- For a node t in T,
 - * Let V_t be the union of all bags in the subtree of T rooted at t
 - * Let E_t be the edges in $G[V_t]$ introduced in the subtree of T rooted at t
 - * Let G_t denote the subgraph of G with vertex set V_t and edge set E_t
- * For a node t in T and a partition of B(t) into 3 sets X, Y and Z
 - Let $\Gamma(t, X, Y, Z)$ denote the min possible size of a set S^* in G_t s.t
 - ***** X ⊆ S*
 - * S^* dominates every vertex in $V_t \setminus Z$
 - * $Y \cap S^* = \emptyset$ and $Z \cap S^* = \emptyset$

Leaf node:

 $\Gamma(t, \varnothing, \varnothing, \varnothing) = 0$

polynomial time

Introduce vertex node:

 $V_{t'} = V_t \setminus \{v\}$ and $E_{t'} = E_t$ v is isolated in G_t

 $\Gamma(t, X, Y, Z) = \infty \text{ if } v \text{ is in } Y$

v is nowhere in V(t'), thus edge containing it hasn't be

 $\Gamma(t, X, Y, Z) = \Gamma(t', X, Y, Z \setminus \{v\})$ if v is in Z

polynomial time

 $\Gamma(t, X, Y, Z) = 1 + \Gamma(t', X \setminus \{v\}, Y, Z)$ if v is in X

reasoning same as for the one.

Forget node:

v has to be dominated!

$$Y = Y' \setminus \{v\}$$

 $\Gamma(t, X, Y, Z) = \min \{ \Gamma(t', X', Y', Z') : v \notin Z', X = X' \setminus \{v\}, Y \subseteq Y' \}$

polynomial time

Join node:

 $2^{w(t)} n^{0(1)}$ time

Actually, $Y = Y1 \cup Y2Zi = B(t) \setminus (X \cup Yi)$

 $\Gamma(t, X, Y, Z) = \min \{ \Gamma(t_1, X, Y_1, Z_1) + \Gamma(t_2, X, Y_2, Z_2) - |X| : Y \subseteq Y_1 \cup Y_2 \}$

Introduce edge node:

 $V_{t'} = V_t$ and $E_t = E_{t'} \cup \{\{u,v\}\}$

u \in X => v is already dominated

If $v \in Y$ and $u \in X$ then,

 $\Gamma(t, X, Y, Z) = \min \{ \Gamma(t', X, Y, Z), \min \{ \Gamma(t', X, Y', Z') : Y \setminus \{v\} \subseteq Y', Z \subseteq Z'\} \}$

If $v \in X$ and $u \in Y$ then,

 $\Gamma(t,X,Y,Z)=\min\{\Gamma(t',X,Y,Z),\min\{\Gamma(t',X,Y',Z'):Y\setminus\{u\}\subseteq Y',Z\subseteq Z'\}\}$ Otherwise,

 $\Gamma(t, X, Y, Z) = \Gamma(t', X, Y, Z)$ if $v \in X$ and $u \in X$ or $v \notin X$ and $u \notin X$

polynomial time

Analysis:

- * For any node t in T, IB(t)I <= w(T) + 1
- * At node t, we compute $3^{|B(t)|} \le 3^{(w(T)+1)}$ values of $\Gamma(t, ..., ...)$
 - * For a fixed (X, Y, Z), compute $\Gamma(t, X, Y, Z)$ in
 - * 2w(t) time if t is a join node
 - * Polynomial time if t is not a join node

3w(t) 2w(t) n⁰⁽¹⁾ time algorithm

Theorem: Dominating Set parameterized by the treewidth of the input graph is FPT.

Join node:

 $\Gamma(t, X, Y, Z) = \min \{ \Gamma(t_1, X, Y_1, Z_1) + \Gamma(t_2, X, Y_2, Z_2) - |X| : Y \subseteq Y_1 \cup Y_2 \}$

The min of $4^{w(t)}$ values is $\Gamma(t, X, Y, Z)$

Analysis:

- * For any node t in T, |B(t)| <= w(T) + 1
- * At a non-join node t, we compute $3^{|B(t)|} \le 3^{(w(T)+1)}$ values of $\Gamma(t, ., ., .)$
 - * For a fixed (X, Y, Z), compute $\Gamma(t, X, Y, Z)$ in polynomial time
- * For a join node t, $4^{w(t)}$ time to compute $\Gamma(t, ., ., .)$

4w(t) n⁰⁽¹⁾ time algorithm

Theorem: Dominating Set parameterized by the treewidth of the input graph is FPT.