

Vidyavardhini's College of Engineerin & Department of Computer Engineerin

Experime	nt No	o. 1 1			
Program	to	demonstrate	data	frame	cre
Manipula	tion ı	ısing Pandas			
Date of Po	erfori	mance:			

Department of Computer Engineerin

Experiment No

Title: Program to demonstrate data frame creation and Manipulati

Aim: To study and implement data frame creation and Manipulati

Objective: To introduce Pandas package

Theor

Pandas is an open-source library that is built on top of NumPy library. It is that offers various data structures and operations for manipulating nume series. It is mainly popular for importing and analyzing data much easier. P has high-performance & productivity

Installation of Pandas

If you have <u>Python</u> and <u>PIP</u> already installed on a system, then installation of I Install it using this command:

C:\Users\Your Name>pip install pandas

If this command fails, then use a python distribution that already has Pandas ir Anaconda, Spyder etc.

Import Pandas

Once Pandas is installed, import it in your applications by adding the import k import pandas

Now Pandas is imported and ready to use.

Example

Department of Computer Engineerin

```
'Fruit': ["Orange", "apple", "m
'passings': [8, 3
}
myvar = pandas.DataFrame(my
print(myv
```

OUTPUT:

```
Fruit passings
O Orange 8
1 apple 3
2 mango 2
```

Pandas is usually imported under the pd alias.

alias: In Python alias are an alternate name for referring to the same thing.

Create an alias with the as keyword while importing:

import pandas as pd

Now the Pandas package can be referred to as pd instead of pandas.

Example

```
import pandas as pd

mydataset = {
  'Fruit': ["Orange", "apple", "mango"],
  'passings': [8 , 3 , 2]
}

myvar = pd.DataFrame(mydataset)
```


Department of Computer Engineerin

Example

import pandas as pd

print(nd version)

Output:

2.0.3

What is a Seri

A Pandas Series is like a column in a table.

It is a one-dimensional array holding data of any type.

Example

Create a simple Pandas Series from a list:

import pandas as pd

$$a = [1, 7, 2]$$

myvar = pd.Series(a)

print(myvar)

0 1 7

dtype: int64

Labels

If nothing else is specified, the values are labeled with their index number. Firs 0, second value has index 1 etc.

Department of Computer Engineerin

print(myvar[0])
1

Create Labels

With the index argument, you can name your own labels.

Example

Create your own labels:

```
import pandas as pd
a = [7, 5, 8]
myvar = pd.Series(a, index = ["a", "b", "c"])
print(myvar)
```

a 7 b 5 c 8 dtype: int64

When you have created labels, you can access an item by referring to the label

Example

Return the value of "y":

```
nrint(myvar["v"])
```


Vidyavardhini's College of Engineering & Department of Computer Engineerin

```
import pandas a
```

To select only some of the items in the dictionary, use the index argument and items you want to include in the Series.

Example

day3

390

dtype: int64

```
Create a Series using only data from "day1" and "day2":
```

```
import pandas as pd
```

```
calories = {"day1": 420, "day2": 380, "day3": 390}

myvar = pd.Series(calories, index = ["day1", "day2"])
```

print(myvar)

day1	420
day2	380
dtype:	int64

DataFrames

Data sets in Pandas are usually multi-dimensional tables, called DataFrames.

Series is like a column, a DataFrame is the whole table.

Department of Computer Engineerin

```
"duration": [50, 40
myvar = pd.DataFrame
print(myv
```

	calories	duration
ø	420	50
1	380	40
2.	300	45

Read CSV Files

A simple way to store big data sets is to use CSV files (comma

CSV files contains plain text and is a well know format that can be read by a Randas

In our examples we will be using a CSV file call-

Examp

```
Load the CSV into a DataFrame:
```

import pandas as pd

df = pd.read csv('data

print(df.to strir.

Exampl

Print the DataFrame without the to string() method:

```
import pandas a
```

```
df = pd.read csv('data.csv')
```

print(df)

Vidyavardhini's College of Engineering & Department of Computer Engineerin

max rows

The number of rows returned is defined in Pandas or

You can check your system's maximum rows with the pd.options.display.max row

Example

Check the number of maximum returned rows:

import pandas as pd

print(pd.options.display.max rows)

```
import pandas as pd
print(pd.options.display.max_rows)
60
```

Example

Increase the maximum number of rows to display the entire DataFrame:

```
import pandas as pd
pd.options.display.max_rows = 9999
df = pd.read_csv('data.csv')
print(df)
```

Code:

import pandas as pd

Department of Computer Engineerin

print("Manipulated DataFrame:") print(df)

	roll-no	quiz1-marks	quiz2-marks	quiz3-marks	total	
3	1	10	8	9	27	
	2	8	6	8	22	
2	3	7	4	6	17	
3	4	9	7	9	25	
ŀ	5	6	6	8	20	
	•••		***			
8	69	5	2	7	14	
9	70	4	4	1	9	
10	71	6	0	3	9	
1	72	7	8	1	16	
70	73	8	0	9	17	
	rows x 5	columns]				
73 Mani	rows x 5	columns]		quiz3-marks	total	Averag
73 Mani	rows x 5	columns]		quiz3-marks 9	total 27	
73 Mani	rows x 5 pulated roll-no	columns] DataFrame: quiz1-marks	quiz2-marks			9.00000
73 Mani	rows x 5 pulated roll-no 1	columns] DataFrame: quiz1-marks 10	quiz2-marks 8	9	27	Averag 9.00000 9.00000 8.66666
73 Mani } 32	rows x 5 pulated roll-no 1 33	columns] DataFrame: quiz1-marks 10	quiz2-marks 8 8	9 10	27 27	9.00000 9.00000 8.66666
73 ani 32 31 2	rows x 5 pulated roll-no 1 33 62	columns] DataFrame: quiz1-marks 10 9	quiz2-marks 8 8 8	9 10 10	27 27 26	9.00000 9.00000 8.66666 8.33333
73 Mani	rows x 5 pulated roll-no 1 33 62 13	columns] DataFrame: quiz1-marks 10 9 8	quiz2-marks 8 8 8 9	9 10 10 8	27 27 26 25	9.00000 9.00000 8.66666 8.33333 8.33333
73 Mani) 32 51 12 3	rows x 5 pulated roll-no 1 33 62 13 4	columns] DataFrame: quiz1-marks 10 9 8 8	quiz2-marks 8 8 8 9 7	9 10 10 8 9 	27 27 26 25 25	9.00000 9.00000 8.66666 8.33333 8.33333
73 ani 32 31 2 3 3 4 59	rows x 5 pulated roll-no 1 33 62 13 4 70 71	columns] DataFrame: quiz1-marks 10 9 8 8	quiz2-marks 8 8 8 9 7	9 10 10 8 9	27 27 26 25 25	9.00000 9.00000 8.66666 8.33333 8.33333 3.00000 3.00000
73 tani) 32 51 2 39 70	rows x 5 pulated roll-no 1 33 62 13 4 70	columns] DataFrame: quiz1-marks 10 9 8 8 9	quiz2-marks 8 8 8 9 7	9 10 10 8 9 	27 27 26 25 25 	9.00000 9.00000 8.66666 8.33333 8.33333 3.00000 2.66666
73 ani 32 31 2 3 3 4 59	rows x 5 pulated roll-no 1 33 62 13 4 70 71	columns] DataFrame: quiz1-marks 10 9 8 8 9 4	quiz2-marks 8 8 8 9 7 4 0	9 10 10 8 9 1	27 27 26 25 25 9	9.00000 9.00000 8.66666 8.33333 8.33333 3.00000 3.00000