EEL 316 Major Test Semester II 2007-2008

Answer all questions (Q.1: 30 marks, Q.2: 30 marks, Q.3: 10 marks)

Full Marks: 70

1. Orthogonal signals $\phi_1(t)$, $\phi_2(t)$, $\phi_3(t)$ over a signaling interval [0, T), each having energy E_{ϕ} , are converted to another set of signals $\{s_1(t), s_2(t)\}$ by the transformation

$$s_i(t) = \phi_i(t) - \frac{\alpha\phi_1(t) + 2\alpha\phi_2(t) + (3 - 3\alpha)\phi_3(t)}{3}, \quad i = 1, 2,$$

where $0 < \alpha < 1$. Binary equiprobable signaling is performed over an AWGN channel with noise p.s.d. $N_0/2$ using the signals $s_1(t)$ and $s_2(t)$.

- (a) What is the dimension of the signal space $\{s_1(t), s_2(t)\}$? Starting with $s_1(t)$, obtain an orthonormal basis for the signal space. [6]
- (b) Obtain the SEP for coherent reception in terms of E_{ϕ} and N_0 . Calculate this SEP when $E_{\phi}/N_0 = 20$.
- (c) Calculate the value of α for which the signals $s_1(t)$ and $s_2(t)$ are orthogonal. [6]
- (d) Let $s_3(t) = \beta s_2(t)$, where $\beta > 0$. For the value of α found in (c), calculate the value of β such that $s_1(t)$ and $s_3(t)$ have the same energy. [4]
- (c) For the value of α found in (c) and the value of β found in (d), binary equiprobable signaling is performed over an AWGN channel with noise p.s.d. $N_0/2$ using the signals $s_1(t)$ and $s_3(t)$.
 - i. Obtain the SEP for coherent reception in terms of E_{ϕ} and N_0 . Calculate this SEP when $E_{\phi}/N_0 = 20$. [4]
 - ii. Obtain the SEP for noncoherent reception in terms of E_{ϕ} and N_0 . Calculate this SEP when $E_{\phi}/N_0 = 20$. [4]
- 2. The requirement of a communication system using M-ary PSK signaling with $M \ge 2$ (M is a power of 2) and equal apriori probabilities over an AWGN chauncl is that the SEP $P_e \le 10^{-8}$ at an SNR $E_s/N_0 = 15$ dB.
 - (a) Calculate $M_{max,PSK}$, the maximum value of M that can be used. What is the approximate value of P_e for $M = M_{max,PSK}$ when $E_s/N_0 = 20$ dB? [6]
 - (b) Find the union bound on P_e for $M = M_{max,PSK}$ as a function of E_s/N_0 . [4]
 - (c) If the system switches to noucoherent M-ary orthogonal FSK, then what is the minimum SNR in dB at which the target SEP of 10^{-8} will be reached for $M = M_{max,PSK}$? [4]
 - (d) If the system switches to M-ary PAM, then what is $M_{max,PAM}$, the maximum value of M at which the SEP is $\leq 10^{-8}$ at an SNR of 20 dB? [6]
 - (e) If the system switches to M-ary square QAM, where $M = M_{max,PAM}^2$, then calculate the SEP at an SNR of 20 dB. [6]
 - (f) Find the bandwidth efficiencies in (a), (c), (d), and (e). [4]

- 3. An analog signal is sampled, quantized, and encoded into a binary PCM wave. The number of representation levels used is 32. A synchronizing pulse is added at the end of each codeword representing a sample of the analog signal. The resulting PCM wave is transmitted over a channel of bandwidth 15 kHz using a quaternary PAM system with raised cosine spectrum. Information is transmitted through the channel at the rate of 48 kbits/sec.
 - (a) Find the rolloff factor of the raised cosine pulse. [6]
 - (b) Find the rate at which the analog signal is sampled. What is the maximum possible value for the highest frequency component of the analog signal? [4]

Some Formulae

$$\bullet \ \operatorname{rect}\left(\frac{t}{T}\right) = \left\{ \begin{array}{ll} 1 & \text{if} \ |t| \leq \frac{T}{2}, \\ \\ 0 & \text{if} \ |t| > \frac{T}{2}, \end{array} \right. & \operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$$

• Fourier Transform pairs:

$$\mathrm{rect}\left(\frac{t}{T}\right) \leftrightarrow T \operatorname{sinc}\left(fT\right)\,, \qquad \exp(\jmath 2\pi f_0 t) \leftrightarrow \delta(f-f_0)\,, \qquad G(t) \leftrightarrow g(-f)$$

- MAP receiver: $\hat{i} = \arg \left\{ \max_{i} |-||\underline{x} \underline{s}_{i}||^{2} + N_{0} \ln p_{i} \right\}$
- If $X \sim \mathcal{N}(0, 1)$, then its p.d.f.

$$f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, \quad -\infty < x < \infty, \quad \text{ and } \Pr[X > x] = \int_x^\infty f_X(y)dy = Q(x) = 1 - Q(-x)$$

• Use the approximation $Q(x) \approx \frac{1}{x\sqrt{2\pi}}e^{-\frac{x^2}{2}}$, $x \ge 2.5$, wherever applicable.

$$\bullet \ P_e = \frac{1}{\pi} \int_0^{\frac{\pi(M-1)}{M}} \exp \left(-\frac{E_s}{N_0} \frac{\sin^2 \left(\frac{\pi}{M} \right)}{\sin^2 \phi} \right) d\phi$$

•
$$P_e = \frac{(M-1)}{M} \operatorname{erfc} \left(\sqrt{\frac{d^2 E}{N_0}} \right) , \quad \frac{E_{av}}{E} = \frac{(M^2-1)}{3} d^2$$

•
$$P_e = \sum_{i=1}^{M-1} \frac{(-1)^{i+1}}{(i+1)} \binom{M-1}{i} e^{-\frac{i}{(i+1)} \frac{E_1}{N_0}}$$

•
$$P_e \approx \mathrm{erfc}\left(\sqrt{\frac{E_s}{N_0}}\sin\left(\frac{\pi}{M}\right)\right)$$
 for large SNR, 4 and higher