FYS: AI in Healthcare

Unsupervised Learning Part 2

John Lalor

October 16, 2018

Admin

- Assignment 4 graded
- Assignment 5 follow-up
 - https://www.umass.edu/peoplefinder/
- Source control follow-up
- Midterm posted

Student developer packs

Github: https://education.github.com/pack

Bitbucket: https://bitbucket.org/product/education

Midterm

Due: Friday, November 9 at 5:00pm Instructions posted on Piazza

Midterm

Due: Friday, November 9 at 5:00pm

Instructions posted on Piazza

Course tasks

- 1. AIHC in the media
- 2. ML Understanding
- 3. Personal health technology
- 4. Medical decision making

Midterm

Due: Friday, November 9 at 5:00pm

Instructions posted on Piazza

Course tasks

- 1. AIHC in the media
- 2. ML Understanding
- 3. Personal health technology
- 4. Medical decision making

UMass tasks

- 1. Academic advising
- 2. Meet your professors
- 3. Time management skills
- 4. Building good study habits

Dimensionality Reduction

Today

Dimensionality Reduction

Principal Components Analysis

Autoencoders

Word embeddings

PCA

Principal Components Analysis

- Transformation of data to align with important directions
- Reduce dimensionality by dropping least important directions
- Start with most important direction, add features until you hit a threshold

https://towards datascience.com/a-one-stop-shop-for-principal-component-analysis-5582 fb 7e0 a 9c a 100 fb 100 f

Principal Components Analysis

Principal Components Analysis

https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

PCA Algorithm

- 1. Start with your data matrix X
- 2. Zero-mean and (maybe) normalize the columns: $X \rightarrow Z$
- 3. Decompose $Z^{\top}Z$ into PDP^{-1}
 - P: matrix of eigenvectors
 - D: diagonal matrix of eigenvalues
- 4. sort P based on the eigenvalues in D: $P \rightarrow P^*$
- 5. $Z^* = ZP^*$
 - Z^* columns of Z^* are independent of each other
- 6. Keep the desired number of features from Z^*

https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

Choosing Components

Choosing Components

https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

Autoencoders

Autoencoders

Nelwamondo, Fulufhelo V., Dan Golding, and Tshilidzi Marwala. "A dynamic programming approach to missing data estimation using neural networks." Information Sciences 237 (2013): 49-58.

Autoencoders

$$z = \sigma(W_e x + b_e)$$
$$x' = \sigma(W_d z + b_d)$$
$$L(x, x') = \sum_{i} (x - x')^2$$

Nelwamondo, Fulufhelo V., Dan Golding, and Tshilidzi Marwala. "A dynamic programming approach to missing data estimation using neural networks." Information Sciences 237 (2013): 49-58.

Denoising Autoencoders

$$z = \sigma(W_e \tilde{x} + b_e)$$
$$x' = \sigma(W_d z + b_d)$$
$$L(x, x') = \sum (x - x')^2$$

http://www.opendeep.org/v0.0.5/docs/tutorial-your-first-model

Sparse Autoencoders

Makhzani, Alireza, and Brendan Frey. "K-sparse autoencoders." ICLR 2014.

Word Embeddings

Before Word Embeddings: Bag of Words

D1: "Patient has a fever, otherwise not sick"

D2: "Patient very sick, not a fever though"

	patient	fever	very	sick	not	otherwise
D1	1	1	0	1	1	1
D2	1	1	1	1	1	0

Before Word Embeddings: Bag of Words

D1: "Patient has a fever, otherwise not sick"

D2: "Patient very sick, not a fever though"

	patient	fever	very	sick	not	otherwise	
D1	1	1	0	1	1	1	0
D2	1	1	1	1	1	0	0

Word Embeddings: Word2Vec

Tomas Mikolov et al. Efficient estimation of word representations in vector space. ICLR Workshop, 2013.

Medical Word Embeddings

TOP 10 SIMILAR WORDS TO 'DIABETES' USING WORD2VEC MODELS

PubMed	MedHelp	Wikipedia	
T2DM	diabeties	chemotherapy	
prediabetes	diabetis	asthma	
mellitus	lupus	schizophrenia	
TIDM	Diabetes	hypertension	
T2D	RA	radiotherapy	
IDDM	diabetese	neonatal	
DM2T	anemia	diabetic	
DMT2	diabetic	infertility	
DM2	diabites	malaria	
TID	hypoglycemia	prognosis	

Huang, Jian, Keyang Xu, and VG Vinod Vydiswaran. "Analyzing Multiple Medical Corpora Using Word Embedding." Healthcare Informatics (ICHI), 2016 IEEE International Conference on. IEEE, 2016.

Medical Word Embeddings

Huang, Jian, Keyang Xu, and VG Vinod Vydiswaran. "Analyzing Multiple Medical Corpora Using Word Embedding." Healthcare Informatics (ICHI), 2016 IEEE International Conference on. IEEE, 2016.

Activity: Dimensionality Reduction

Student Features

- Major
- Dorm/Residence
- Favorite TV show
- Age
- Hobby

- Favorite course at UMass
- Number of siblings
- Programming language
- Home state/region
- Best dining hall meal