18.335 Problem Set 3

Due Friday, 26 March 2021.

Problem 1: QR and orthogonal bases

- (a) Trefethen, problem 10.4.
- (b) Trefethen, problem 28.2,

Problem 2: Schur fine

In class, we will show that any square $m \times m$ matrix A can be factorized as $A = QTQ^*$ (the *Schur factorization*), where Q is unitary and T is an upper-triangular matrix (with the same eigenvalues as A, since the two matrices are similar).

- (a) A is called "normal" if $AA^* = A^*A$. Show that this implies $TT^* = T^*T$. From this, show that T must be diagonal. Hence, any normal matrix (e.g. unitary or Hermitian matrices) must be unitarily diagonalizable.
- (b) Given the Schur factorization of an arbitary A (not necessarily normal), describe an algorithm to find the eigenvalues and eigenvectors of A, assuming for simplicity that all the eigenvalues are distinct. The flop count (count of real \pm, \times, \div ; assume that your matrices are all real) should be asymptotically $Km^3 + O(m^2)$; give the constant K.

Problem 3: Distribution and association

Suppose you want to compute $x^T(AB+CD)y$, where $x,y \in \mathbb{R}^m$ and $A,B,C,D \in \mathbb{R}^{m \times m}$ for m=1000. You code it up in Julia in two ways:

- x' * (A*B + C*D) * yx'*A*B*y + x'*C*D*y
- (a) Which of these two would you expect to be faster, and why? (Note that * in Julia is "left-associative:" performed from left to right, unless you change the order with parentheses.)
- (b) Try it and see if it maches your prediction.

A good package for benchmarking in Julia is BenchmarkTools.jl—install it with] add BenchmarkTools, load it with using BenchmarkTools, allocate random inputs and time them with e.g. @btime \$x' * (\$A*\$B + \$C*\$D) * \$y; the \$ signs tell the benchmark to evaluate the global variables like x before benchmarking to avoid an artificial slowdown (global variables are otherwise slow in Julia).

Problem 4: Caches and backsubstitution

In this problem, you will consider the impact of caches (again in the ideal-cache model from class) on the problem of *backsubstitution*: solving Rx = b for x, where R is an $m \times m$ upper-triangular matrix (such as might be obtained by Gaussian elimination). The simple algorithm you probably learned in previous linear-algebra classes (and reviewed in the book, lecture 17) is (processing the rows from bottom to top):

$$x_m = b_m/r_{mm}$$
 for $j = m-1$ down to 1 $x_j = (b_j - \sum_{k=j+1}^m r_{jk}x_k)/r_{jj}$

Suppose that X and B are $m \times n$ matrices, and we want to solve RX = B for X—this is equivalent to solving Rx = b for n different right-hand sides b (the n columns of B). One way to solve the RX = B for X is to apply the standard backsubstitution algorithm, above, to each of the n columns in sequence.

- (a) Give the asymptotic cache complexity Q(m,n;Z) (in asymptotic Θ notation, ignoring constant factors) of this algorithm for solving RX = B.
- (b) Suppose m = n. Propose an algorithm for solving RX = B that achieves a better asymptotic cache complexity (by cache-aware/blocking or cache-oblivious algorithms, your choice). Can you gain the factor of $1/\sqrt{Z}$ savings that we showed is possible for square-matrix multiplication?