

CHAPITRE 1 Initiation à l'Informatique

Chapitre I: Initiation à l'informatique

Plan:

- 1. Introduction à l'informatique.
- 2. Domaines d'application.
- 3. Eléments de base d'un ordinateur de bureau.
- 4. Eléments secondaires d'un ordinateur.
- 5. Composants Principaux de l'Unité Centrale (Unité Système).
- 6. Unités de mesure en Informatique.
- 7. Fonctionnement d'un ordinateur.

1. Introduction à l'informatique

Introduction

Qu'est ce que l'Informatique ?

Introduction

Qu'est ce que l'Informatique ?

L'Informatique est la science du Traitement (Analyse) <u>AUTOMATIQUE</u> de l'<u>INFORMATION</u>

Introduction

Rôle de l'Informaticien:

Résoudre des problèmes de manière automatique en utilisant un ordinateur.

Ordinateur:

Un Ordinateur est une machine de traitement de l'information.

Un ordinateur est capable de Stocker et de traiter les informations.

De nos jours l'informatique est partout!

- Vie Quotidienne. (Internet, Téléphonie).
- Médecine.
- Commerce. (Logiciel Point de vente, Stock,...etc).
- Jeux Vidéo
 (Intelligence Artificielle).
- Banque (Distributeur Automatique).
- Industrie (Automate programmable, robot).

De nos jours l'informatique est partout!

- Vie Quotidienne. (Internet, Téléphonie).
- Médecine.
- Commerce. (Logiciel Point de vente, Stock,...etc).
- Jeux Vidéo (Intelligence Artificielle).
- Banque (Distributeur Automatique).
- Industrie (Automate programmable, robot).

De nos jours l'informatique est partout!

- Vie Quotidienne. (Internet, Téléphonie).
- Médecine.
- Commerce. (Logiciel Point de vente, Stock,...etc).
- Jeux Vidéo (Intelligence Artificielle).
- Banque (Distributeur Automatique).
- Industrie (Automate programmable, robot).

De nos jours l'informatique est partout!

- Vie Quotidienne. (Internet, Téléphonie).
- Médecine.
- Commerce. (Logiciel Point de vente, Stock,...etc).
- Jeux Vidéo (Intelligence Artificielle).
- Banque (Distributeur Automatique).
- Industrie (Automate programmable, robot).

De nos jours l'informatique est partout!

- Vie Quotidienne. (Internet, Téléphonie).
- Médecine.
- Commerce. (Logiciel Point de vente, Stock,...etc).
- Jeux Vidéo (Intelligence Artificielle).
- Banque (Distributeur Automatique).
- Industrie (Automate programmable, robot).

De nos jours l'informatique est partout!

- Vie Quotidienne. (Internet, Téléphonie).
- Médecine.
- Commerce. (Logiciel Point de vente, Stock,...etc).
- Jeux Vidéo
 (Intelligence Artificielle).
- Banque (Distributeur Automatique).
- Industrie (Automate programmable, robot).

De nos jours l'informatique est partout!

- Vie Quotidienne. (Internet, Téléphonie).
- Médecine.
- Commerce. (Logiciel Point de vente, Stock,...etc).
- Jeux Vidéo (Intelligence Artificielle).
- Banque (Distributeur Automatique).
- Industrie (Automate programmable, robot).

L'unité Centrale est le boitier contenant tout le matériel électronique permettant à l'ordinateur de fonctionner

L'écran (moniteur) affiche des informations sous forme visuelle, au moyen de texte et de graphiques.

Il Existe deux types principaux d'écran : Ecran CRT et Ecran Plat.

La taille d'un écran est calculée en POUCE sur la diagonale.

$$1" = 2.54cm$$

Le clavier est utilisé principalement pour taper du texte sur l'ordinateur, il comporte des touches pour les lettres et les chiffres, ainsi que des touches spéciales (Touche de Fonction : CTRL, ALT ; Symbole : @,#...).

La souris est utilisée pour pointer sur des éléments affichés sur l'écran de l'ordinateur. Elle Comporte essentiellement deux boutons :

- Bouton Principal (généralement à gauche).
- Bouton Secondaire (à droite).

5. Eléments Secondaires d'un Ordinateur de bureau.

Eléments Secondaire d'un Ordinateur de bureau (Périphériques)

L'imprimante permet de transférer des données de l'ordinateur sur du papier

Un Scanner permet de transformer un document en une image lisible par ordinateur. (Numérisation)

Les haut-parleurs sont utilisés pour lire du son provenant de l'ordinateur. Ils peuvent être intégrés à l'unité système ou connectés à l'aide de câbles

Eléments Secondaire d'un Ordinateur de bureau (Périphériques)

Il existe principalement deux types de périphériques :

- Les Périphériques d'entrée : Permettent à l'utilisateur de faire rentrer des informations à l'ordinateur.
- Les périphériques de Sortie : Permettent à l'ordinateur d'envoyer des données à l'utilisateur.

6. Composants Principaux de l'Unité Centrale

Composants Principaux de l'Unité Centrale :

L'Unité Centrale est constituée principalement de :

- Processeur.
- Les Mémoires (Mémoire principale : Mémoire Vive RAM, Mémoire Morte ROM / Mémoires Secondaires).
- Carte Graphique.
- Carte Son.
- Alimentation.

• ...

Composants Principaux de l'Unité Centrale :

Processeur:

Représente le cerveau d'un ordinateur, Il est caractérisée par sa fréquence exprimée en Hertz (Hz).

```
1Khz (KiloHertz) = 10<sup>3</sup> Hz
1Mhz (MégaHertz) = 10<sup>6</sup> Hz.
1Ghz (GigaHertz) = 10<sup>9</sup> Hz.
```

Composants Principaux de l'Unité Centrale :

• Les Mémoires : Permettent de stocker de l'information de manière temporaire ou durable. Un ordinateur utilise principalement :

La Mémoire Principale :

(RAM [Random Access Memory] Mémoire Vive, Volatile :Tout son contenu est effacé lorsqu'elle n'est plus sous alimentation électrique.

(ROM [Read **O**nly **M**emory] Mémoire Morte : est une mémoire non volatile,, c'està-dire, elle ne s'efface pas lorsqu'elle n'est plus alimentée en électricité et dont le contenu est défini lors de la fabrication.

Les Mémoires Secondaires : elles permettent de stocker de l'information de manière permanente.

Disque Dur

Clé USB Carte Mémoire

7. Unités de Mesure en Informatique

Unité de Mesure en Informatique:

L'unité de mesure en informatique est le **bit** (Binary Digit). Un bit ne peut avoir que deux valeurs : **0** ou **1**.

Toute information traitée par un ordinateur est une suite de bits (ex : **1001111001110011**.....)

1 Octet (Byte) est un groupement de 8 bits.

- 1 Octet = 8 bits.
- 1 Kilo-octet (Ko) = 1024 octets
- 1 Méga-octet (Mo) = 1024 Kilo-octets.
- 1 Giga-octet (Go) = 1024 Méga-octets
- 1 Téra-Octet (To) = 1024 Giga-Octets.
- 1 Péta-Octet (Po) = 1024 Téra-Octets.

Les deux principaux constituant d'un ordinateur sont :

- La mémoire Principale.
- Le processeur.

La **mémoire principale** permet de stocker de l'information :

- Données.
- Programme. (suite d'instructions).

Le **processeur** exécute pas à pas les instructions du programme.

1- La Mémoire Principale :

Une mémoire est constituée d'un ensemble de cases mémoire binaires (Mot Mémoire) de taille **fixe** (8bits,16 bits,32 bits,...etc).

Cases Mémoires 8 bits

1	0	1	1	1	0	1	0
1	1	1	0	0	0	0	1
1	1	0	1	0	0	1	1
1	1	0	0	0	0	1	0
0	1	1	1	1	1	1	1
1	0	1	0	0	1	0	1
0	1	0	1	0	0	1	0
1	1	1	0	0	1	0	1

1^{ère} Case : **10111010**

2^{ème} Case: 1110001

3^{ème} Case: 1101011

4^{ème} Case: **1100010**

5^{ème} Case: **0111111**

 $6^{\grave{e}me}$ Case : 10100101

7^{ème} Case: **01010010**

8^{ème} Case: **11100101**

1- La Mémoire Principale :

Une mémoire est constituée d'un ensemble de cases mémoire binaires (Mot Mémoire) de taille **fixe** (8bits,16 bits,32 bits,...etc).

Chaque case mémoire est repérée par son adresse (binaire).

Adresse	Cases Mémoires 8 bits								
000	1	0	1	1	1	0	1	0	
001	1	1	1	0	0	0	0	1	
010	1	1	0	1	0	0	1	1	
011	1	1	0	0	0	0	1	0	
100	0	1	1	1	1	1	1	1	
101	1	0	1	0	0	1	0	1	
110	0	1	0	1	0	0	1	0	
111	1	1	1	0	0	1	0	1	

1ère Case : 10111010 est à l'adresse 000
2ème Case : 11100001 est à l'adresse 001
3ème Case : 11010011 est à l'adresse 010
4ème Case : 11000010 est à l'adresse 011
5ème Case : 01111111 est à l'adresse 100
6ème Case : 10100101 est à l'adresse 101

7^{ème} Case : **0 1 0 1 0 0 1 0** est à l'adresse **110**

8^{ème} Case : **1 1 1 0 0 1 0 1** est à l'adresse **111**

1- La Mémoire Principale :

La mémoire principale est caractérisée par :

- Taille en bits d'une case mémoire (mot mémoire). m
- Taille en bits d'une adresse mémoire. a

Nombre de cases mémoire = 2^a

Taille Totale de la mémoire = Nombre de cases * m

1- La Mémoire Principale :

Opérations sur la mémoire principale :

LECTURE (**R**EAD) notée **R**:

Le processeur demande à la mémoire quelle est la valeurs d'une case mémoire. Le contenu de l'emplacement lu reste inchangé.

ECRITURE (WRITE) notée W:

le processeur donne une valeur et une adresse, et la mémoire range la valeur à l'emplacement indiqué par l'adresse

1- La Mémoire Principale :

Opérations sur la mémoire principale : Exemple « LECTURE »

Adresse	Cases Mémoires 8 bits								
000	1	0	1	1	1	0	1	0	
001	1	1	1	0	0	0	0	1	
010	1	1	0	1	0	0	1	1	
011	1	1	0	0	0	0	1	0	
100	0	1	1	1	1	1	1	1	
101	1	0	1	0	0	1	0	1	
110	0	1	0	1	0	0	1	0	
111	1	1	1	0	0	1	0	1	

Lecture de l'adresse 101

- (1) Le processeur envoie une demande de Lecture (R)
- (2) Le processeur envoi l'adresse de la case qu'il veut lire.
- (3) la mémoire envoi la valeur lue au processeur.

1- La Mémoire Principale :

Opérations sur la mémoire principale : Exemple « ECRITURE »

Ecriture de la valeur 10101010 à l'adresse 111

- (1) Le processeur envoie une demande d'ECRITURE (**W**)
- (2) Le processeur envoie la valeur qu'il veut écrire.
- (3) Le processeur envoie l'adresse.
- (4) La mémoire Range la valeur dans l'adresse indiquée.

	Adresse	Cases Mémoires 8 bits								
(4)	000	1	0	1	1	1	0	1	0	
	001	1	1	1	0	0	0	0	1	
	010	1	1	0	1	0	0	1	1	
	011	1	1	0	0	0	0	1	0	
	100	0	1	1	1	1	1	1	1	
	101	1	0	1	0	0	1	0	1	
	110	0	1	0	1	0	0	1	0	
	111	1	0	1	0	1	0	1	0	

2- Le Processeur:

Le processeur:

Il exécute les instructions pas à pas du **programme**.

Il est divisé en deux partie :

- 1- Unité de Commande & contrôle : Permet de charger les instructions du programme vers le processeur
- **2- Unité de Traitement :** Appelée Unité Arithmétique et Logique (U.A.L) : Exécute les instructions et traite les données.

ARCHITECTURE DE VON NEUMANN

2- Le Processeur:

L'Unité de Traitement = <u>Unité Arithmétique et Logique (U.A.L)</u>

Exécute les instructions et traite les données.

Il existe plusieurs type d'opérations :

- Opérations Arithmétiques : Addition (+), Soustraction (-), Multiplication (X), Division (/),...etc.
- Opérations Logiques : ET,OU,NON,XOR,NOR,...etc.
- Opérations de Comparaison : =, \neq , \leq , \geq ...etc.

....

2- Le Processeur:

L'Unité de Traitement = <u>Unité Arithmétique et Logique (U.A.L)</u>

2- Le Processeur:

L'Unité de Traitement = <u>Unité Arithmétique et Logique (U.A.L)</u>

L'UAL possède 3 (A,B et F) entrées.

2- Le Processeur:

L'Unité de Traitement = <u>Unité Arithmétique et Logique (U.A.L)</u>

2- Le Processeur:

L'Unité de Traitement = <u>Unité Arithmétique et Logique (U.A.L)</u>

2- Le Processeur:

L'Unité de Traitement = <u>Unité Arithmétique et Logique (U.A.L)</u>

L'UAL possède 3 (A,B et F) entrées et 2 sorties (R et D):

• Entrée **F** : Représente le code de l'opération à exécuter (ex : + , - , X,...etc).

2- Le Processeur:

L'Unité de Traitement = <u>Unité Arithmétique et Logique (U.A.L)</u>

- Entrée **F** : Représente le code de l'opération à exécuter (ex : + , , X,...etc).
- Les Entrées : A et B, représente les données (opérandes) de l'opération.

2- Le Processeur:

L'Unité de Traitement = <u>Unité Arithmétique et Logique (U.A.L)</u>

- Entrée **F** : Représente le code de l'opération à exécuter (ex : + , , X,...etc).
- Les Entrées : A et B, représente les données (opérandes) de l'opération.
- Sortie R : Résultat de l'opération.

2- Le Processeur:

L'Unité de Traitement = <u>Unité Arithmétique et Logique (U.A.L)</u>

- Entrée **F** : Représente le code de l'opération à exécuter (ex : + , , X,...etc).
- Les Entrées : A et B, représente les données (opérandes) de l'opération.
- Sortie R : Résultat de l'opération.
- Sortie D: indicateur d'erreur.

3 - Communication Processeur - Mémoire :

Les informations échangées entre le processeur et la mémoire principale circulent sur un **BUS**

Il existe 3 types de bus :

- BUS de Contrôle: Bus UNIDIRECTIONNEL, il permet d'indiquer s'il s'agit d'une opération de Lecture (R) ou d'Ecriture (W)
- BUS d'adresse: Bus UNIDIRECTIONNEL il permet d'envoyer une adresse du processeur vers la mémoire principale.
- BUS de Donnée : Bus BIDIRECTIONNEL, il permet d'envoyer des données (valeurs) soit :
 - Du processeur vers la mémoire : ECRITURE.
 - De la mémoire vers le processeur : **LECTURE.**

3 - Communication Processeur - Mémoire :

3 – Communication Processeur – Mémoire : Exemple LECTURE

Adresse	Cases Mémoires 8 bits								
000	1	0	1	1	1	0	1	0	
001	1	1	1	0	0	0	0	1	
010	1	1	0	1	0	0	1	1	
011	1	1	0	0	0	0	1	0	
100	0	1	1	1	1	1	1	1	
101	1	0	1	0	0	1	0	1	
110	0	1	0	1	0	0	1	0	
111	1	1	1	0	0	1	0	1	

Lecture de l'adresse 101

- (1) Le processeur envoie une demande de Lecture (R) sur le BUS DE CONTROLE
- (2) Le processeur envoi l'adresse de la case qu'il veut lire sur le BUS D'ADRESSE.
- (3) la mémoire envoi la valeur lue au processeur sur le BUS DE DONNEES

3 – Communication Processeur – Mémoire : Exemple ECRITURE

Ecriture de la valeur 10101010 à l'adresse 111

(1)	Le processeur envoie une demande
	d'ECRITURE (W) sur le BUS DE
	CONTROLE

- (2) Le processeur envoie la valeur qu'il veut écrire sur le BUS DE DONNEE
- (3) Le processeur envoie l'adresse sur le BUS D'ADRESSE.
- (4) La mémoire Range la valeur dans l'adresse indiquée.

	Adresse Cases Mémoires 8 bits							:S	
(4)	000	1	0	1	1	1	0	1	0
	001	1	1	1	0	0	0	0	1
	010	1	1	0	1	0	0	1	1
	011	1	1	0	0	0	0	1	0
	100	0	1	1	1	1	1	1	1
	101	1	0	1	0	0	1	0	1
	110	0	1	0	1	0	0	1	0
	111	1	0	1	0	1	0	1	0