CLASSIFICATION

ROAD MAP

- Basic concepts and Decision Trees
- Inferring rudimentary rules
- Covering rules
- Experiments with Weka

EXAMPLE

- A credit card company receives thousands of applications for new cards. Each application contains information about an applicant,
 - age
 - has_job
 - own_house
 - credit rating
 - etc.

Age	Has_Job	Own_House	Credit_Rating	Class
young	false	false	fair	No
young	false	false	good	No
young	true	false	good	Yes
young	true	true	fair	Yes
young	false	false	fair	No
middle	false	false	fair	No
middle	false	false	good	No
middle	true	true	good	Yes
middle	false	true	excellent	Yes
middle	false	true	excellent	Yes
old	false	true	excellent	Yes
old	false	true	good	Yes
old	true	false	good	Yes
old	true	false	excellent	Yes
old	false	false	fair	No

Problem: to decide whether an application should be approved, or to classify applications into two categories, approved and not approved.

AN EXAMPLE APPLICATION

- An emergency room in a hospital measures 15 variables (e.g., blood pressure, age, heart rate, etc) of newly admitted patients.
- A decision is needed: whether to send a new patient to an intensivecare unit based on the mortality risk.
- Problem: to predict high-risk patients and distinguish them from low-risk patients.

CLASSIFICATION

- Definition:
- Given a collection of records (training set)

• Each record is by characterized by a tuple (x,y), where x is the attribute set and y is the class label

- x: attribute, predictor, independent variable, input
- y: class, response, dependent variable, output

Our focus:

Each row = a datapoint

- learn a target function Model
- Use the learned function to predict the values of a discrete class attribute
 - e.g., approve or not-approved, and high-risk or low risk.

ID	Age	Has_Job	Own_House	Credit_Rating	Class	
1	young	false	faise	fair	No	7
2	young	false	false	good	No] i
3	young	true	false	good	Yes	L
4	young	true	true	fair	Yes	1 _
5	young	false	false	fair	No	1 -
6	middle	false	false	fair	No	Π_
7	middle	false	false	good	No	1 -
8	middle	true	true	good	Yes	1
9	middle	false	true	excellent	Yes	1
10	middle	false	true	excellent	Yes	1
11	old	false	true	excellent	Yes	1
12	old	false	true	good	Yes	1
13	old	true	false	good	Yes	1
14	old	true	false	excellent	Yes	1
15	old	false	false	fair	No	1

Features / variables / attributes

Label

= class

category

ID	Age	Has_Job	Own_House	Credit_Rating	Class					
1	young	false	false	fair	No					
2	young	false	false	good	No					
3	young	true	false	good	Yes					
4	young	true	true	fair	Yes					
5	young	false	false	fair	No	predict				
6	middle	false	false	fair	No	·	Α	11 1-1	0	0 - 11 D - 1
7	middle	false	false	good	No	model /	Age	Has_Job	Own_house	Credit-Rating
8	middle	true	true	good	Yes	model / model /	young	false	false	good
9	middle	false	true	excellent	Yes	function				•
10	middle	false	true	excellent	Yes	Turicuon				
11	old	false	true	excellent	Yes					
12	old	false	true	good	Yes					
13	old	true	false	good	Yes					
14	old	true	false	excellent	Yes					
15	old	false	false	fair	No					

In real life, it may not follow i.i.d assumption of the supervised learning (classification problem).

Accuracy of correctly classify a datapoint = 8/10 = 80%

SUPERVISED LEARNING PROCESS: TWO STEPS

- Learning (training): learn a model via the training data
- Testing: test the model via test data and evaluate the model accuracy

AN EXAMPLE

- Data: loan application data
- Task: predict whether a loan should be approved or not.
- Performance measure: accuracy

No learning: put all test data to the majority class (i.e., Yes):

Accuracy =
$$8/15 = 53\%$$

With the learned model, we can do better than 53%.

FUNDAMENTAL ASSUMPTION OF LEARNING

Classification (supervised learning)

Assumption: the distribution of training data is identical to the distribution of test data.

■ To achieve good accuracy on the test data, training data must be sufficiently large.

ROAD MAP

- Basic concepts and Decision Trees
- Inferring rudimentary rules
- Covering rules
- Experiments with Weka

Defaulted **Status** Income **Borrower Owner EXAMPLE OF A DECISION TREE** No 80K Married Splitting Attributes Marital status Home Marital **Annual Defaulted** Home Owner **Status** Income Borrower Owner No Yes, Single 125K No Yes Home owner Married 100K No No NO MarSt 3 No 70K No Single Married Single, Divorced Yes Married 120K 4 No Income Vo Income NO 5 No Divorced 95K Yes ×108 € < 80K. > 80K No 6 No Married 60K Yes Divorced 220K No YES NO 85K 8 No Single Yes Married 75K 9 No

Model: Decision Tree

Home

Marital

Annual

11

Training Data

Yes

Single

10

No

APPLY MODEL TO TEST DATA

Start from the root of tree.

Test Data

Home Marital Owner Status				
No	Married	80K	?	

APPLY MODEL TO TEST DATA

Defaulted

Borrower

. .

APPLY MODEL TO TEST DATA

ANOTHER EXAMPLE OF DECISION TREE

categorical continuous

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

There could be more than one tree that fits the same data!

DECISION TREE CLASSIFICATION TASK

Training Set

Tree Induction algorithm Induction Learn Model **Model Apply** Decision Model Tree **Deduction**

Tast Sat

DECISION TREE INDUCTION

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ,SPRINT

ID	Age	Has_Job	Own_House	Credit_Rating	Class
1	young	false	false	fair	No
2	young	false	false	good	No
3	young	true	false	good	Yes
4	young	true	true	fair	Yes
5	young	false	false	fair	No
6	middle	false	false	fair	No
7	middle	false	false	good	No
8	middle	true	true	good	Yes
9	middle	false	true	excellent	Yes
10	middle	false	true	excellent	Yes
11	old	false	true	excellent	Yes
12	old	false	true	good	Yes
13	old	true	false	good	Yes
14	old	true	false	excellent	Yes
15	old	false	false	fair	No

A DECISION TREE FROM THE LOAN DATA

Decision nodes and leaf nodes (classes)

USE THE DECISION TREE

IS THE DECISION TREE UNIQUE?

- No. There could be many trees.
- We want smaller (easy to understand) and accurate tree (good performance).

FROM A DECISION TREE TO A SET OF RULES

- A decision tree can
 be converted to a
 set of rules (if condition)
- Each path from the root to a leaf is a rule.


```
Own_house = true → Class = Yes [sup=6/15, 5 \cdot P \cdot V = # Own_house = false, Has_job = true → Class = Yes [sup=5/15, 5 \cdot P \cdot V = # Own_house = false, Has_job = false → Class = No [sup=4/15, 5 \cdot P \cdot V = # \cdot P \cdot P \cdot P \cdot V = # \cdot P \cdot P \cdot V = # \cdot P \cdot P
```

ALGORITHM FOR DECISION TREE LEARNING

- Basic algorithm (greedy divide-and-conquer)
 - given categorical attributes/features
 - tree is constructed in a top-down recursive manner
 - at start, all the training examples are at the root
 - examples are partitioned recursively based on selected attributes
 - attributes are selected based on information gain

ALGORITHM FOR DECISION TREE LEARNING

- When to stop partitioning
 - All examples for a given node belong to the same class
 - There are no remaining attributes for further partitioning
 - There are no examples left

