Deep Speaker Recognition: Modular or Monolithic?

Gautam Bhattacharya, Jahangir Alam, Patrick Kenny

Abstract Version

1. Introduction

- Goal
 - In this work, they analyze the performance of end-to-end deep speaker recognizers on two popular text-independent tasks: NIST-SRE 2016 and VoxCeleb.
 - NIST-SRE 2016 → https://www.nist.gov/itl/iad/mig/speaker-recognition-evaluation-2016
 - VoxCeleb → https://www.robots.ox.ac.uk/~vgg/data/voxceleb/

Feature Extraction Modeling Resemblance Measurement Threshold Accept Reject Reject

2. Related Works

- Two tasks and approaches
 - X-vector [Snyder et al, 2018] model has established as the state-of-the-art in recent NIST evaluations.
 - Speaker embeddings are used to train a probabilistic linear discriminant analysis (PLDA) classifier.

→ Modular

Layer	Layer context	Total context	Input x output
frame1	[t-2, t+2]	5	120x512
frame2	$\{t-2, t, t+2\}$	9	1536x512
frame3	$\{t-3, t, t+3\}$	15	1536x512
frame4	$\{t\}$	15	512x512
frame5	$\{t\}$	15	512x1500
stats pooling	[0, T)	T	1500Tx3000
segment6	{0}	T	3000x512
segment7	{0}	T	512x512
softmax	{0}	T	512xN

- ResNet models have been widely adopted for learning speaker embedding models, especially for the VoxCeleb task [Chung et al, 2016] [Cai et al, 2018]
 - → Monolithic

3. Proposed Methods

Modular framework

- They propose a modular approach that draws inspiration from the x-vector/PLDA recipe.
- Unlike the x-vector model, their approach uses a second neural network instead of PLDA.

Procedures

- Step 1: Train a speaker embedding model by minimizing the softmax loss. → extract speaker embeddings from entire training dataset.
- Step 2: Train a small classifier using the embeddings extracted in step 1 as input. → extract speaker embeddings from this second model to perform speaker verification.

3. Proposed Methods

- Main factors
 - Deep residual neural network feature extractor (step 1)
 - Self-attention (step 1)
 - Large margin loss function (step 2)
 - Feature normalization (step 2)

• The Technical details and result → in the paper!