Leveraging MaxFP-Growth Algorithm for Market Basket Analysis

An academic exploration of efficient association rule mining techniques for retail transaction data

Introduction & Objectives

Market Basket Analysis

Discover patterns in customer purchasing behavior by identifying which items are frequently bought together, enabling targeted cross-selling strategies

FP-Qrowth Algorithm

More efficient than Apriori by eliminating candidate generation, using a compact FP-tree structure to mine patterns

MaxFP Extension

Focus on maximal frequent itemsets to reduce redundancy and provide a concise representation of the pattern space

Our goal: Implement and evaluate the MaxFP-Growth algorithm on retail transaction data to discover actionable association rules for business decision-making

Key Terminology

Basic Concepts

- Transaction: A set of items purchased together (one row in retail.dat)
- **Item:** An integer code representing a product (no descriptions in FIMI)
- **Itemset:** A collection of items, e.g., {39, 48}
- Support: Absolute (count) or relative (count/total transactions)

Pattern Types

- **Frequent itemset:** Itemset with support ≥ minimum threshold
- Maximal frequent itemset: Not a subset of any other frequent itemset
- **Closed itemset:** No superset has the same support (reference only)

Association Rule (A \rightarrow B)

Implies that when A occurs, B likely occurs

Confidence

 $conf(A \rightarrow B) = support(A \cup B) / support(A)$

Lift

 $lift(A \rightarrow B) = conf(A \rightarrow B) / support(B)$

Values ≥1 indicate positive correlation

Dataset Characteristics

FIMI retail.dat Statistics

• Total transactions: 88,162

• Unique items: 16,470

• Basket size: mean 10.31, median 8, min 1, max 76

Note the significant skew in item frequencies: items 39 and 48 appear in over 47% of transactions, creating challenges for meaningful rule extraction

Made with **GAMMA**

Data Preprocessing

Standard FIMI Preprocessing Steps

- 1. Parse transactions by splitting on whitespace
- 2. Remove sentinel values (-1, -2) and empty strings
- 3. Eliminate duplicate items within each transaction
- 4. Convert items to string format for compatibility with libraries
- Use sparse matrix representation for one-hot encoding to conserve memory

Support threshold conversion for our dataset (N=88,162):

min_support	support_count
0.005	441
0.01	882
0.02	1,764

FP-Growth Algorithm

1. Initial Scanning

Count support of individual items and retain only those meeting the minimum threshold

3. Conditional Pattern Mining

For each item (least to most frequent), extract conditional pattern bases and recursively build conditional FP-trees

2. FP-Tree Construction

Sort items by descending frequency within each transaction and build a prefix tree with counts at nodes

4. Pattern Generation

Combine prefix patterns to generate complete frequent itemsets

MaxFP-Growth Implementation

Two Valid Approaches:

Post-Processing Approach

Run standard FP-Growth to find all frequent itemsets, then filter to keep only maximal itemsets (those not a subset of any other frequent itemset)

- Easier to implement
- Meets assignment requirements

Direct Mining Approach

Use specialized algorithms like FPmax or MAFIA that directly mine maximal patterns with stronger pruning techniques

- More efficient for large datasets
- Not required for this assignment

Key insight: While maximal itemsets provide a concise representation of the pattern space, they don't preserve support information for subsets, which may limit rule generation options.

Experimental Design & Parameters

Parameter Selection Rationale

- min_support = 0.005-0.01: Balances between finding meaningful patterns and computational efficiency
- min_confidence = 0.6-0.8: Ensures rules have reasonable predictive power
- min_lift = 1.2: Filters out rules that merely reflect the influence of extremely popular items
- max_length = 3-4: Focuses on interpretable patterns while avoiding combinatorial explosion

Parameter Effects

- ↑ min_support: ↓ patterns & rules, ↑ performance
- ↑ min_confidence: eliminates weak rules but may retain misleading high-support/low-lift rules
- ↑ min_lift: keeps truly useful rules but may remove reasonable patterns with rare consequents
- → max_length: improves interpretability but may miss higherorder interactions

(i) For sparse retail data with super-frequent items (like our dataset), carefully balancing these parameters is crucial to extract meaningful patterns without being overwhelmed by trivial or misleading associations.

Results & Analysis

Pattern Discovery Statistics

Distribution of 20 Maximal Frequent Itemsets

Top Association Rules by Lift

Rule	Support	Confidence	Lift
36 → {38, 39}	2.60%	0.662	4.798
170 → {38, 39}	2.70%	0.652	4.719
{170, 39} → 38	2.70%	0.981	4.711
170 → 38	4.05%	0.978	4.699
110 → 38	3.64%	0.975	4.685

Key insight: Items 38, 39, 170, and 110 form a strongly correlated cluster (lift ~4.7), suggesting a significant cross-selling opportunity.

Business Recommendations & Limitations

1

Cross-Selling Opportunities

The strong association cluster (items 38, 39, 170, 110) with lift values ~4.7 represents a prime opportunity for bundle promotions or strategic product placement

2

Model Validation

Implement 80/20 train/test split validation to ensure rule stability and statistical significance testing (Fisher/Chi-square) to confirm non-random associations

3

Limitations

FIMI dataset lacks item descriptions, making business interpretation challenging; super-frequent items (39, 48) can create misleading rules with high confidence but lift near 1.0

4

Future Directions

Explore closed itemsets for more efficient pattern representation; implement direct MaxFP mining algorithms; develop minimal non-redundant rule bases for cleaner insights