University of Toronto Scarborough Department of Computer & Mathematical Sciences

FINAL EXAMINATION

MATB41H – Techniques of the Calculus of Several Variables I

Examiner: E. Moore Date: December 16, 2015

Start Time: 2:00PM Duration: 3 hours

1. [12 points]

(a) Carefully complete the following definition:

Let $f: U \subset \mathbb{R}^n \to \mathbb{R}^k$ be a given function. We say that f is differentiable at $\mathbf{a} \in U$ if \cdots

- (b) Carefully state the following theorems.
 - i. The Chain Rule for functions of more than one variable.
 - ii. The Extreme Value Theorem.
 - iii. The Change of Variables Theorem for multiple integrals.
- 2. [5 points] Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x,y) = \begin{cases} \frac{2x^2 - 2xy + 4y^2}{x^2 + 2y^2} & , \text{ if } (x,y) \neq (0,0) \\ 2 & , \text{ if } (x,y) = (0,0) \end{cases}.$$

Determine all values of (x, y) for which f(x, y) is continuous.

- 3. [5 points] Let S be the surface defined by the equation $z = \sqrt{\frac{5 + x^2 + 2y^4}{y^2 + x^4}}$. Find the tangent plane to S at the point (1, -1, 2).
- 4. [7 points] Let $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$.
 - (a) Find the eigenvalues of A.
 - (b) If A is the Hessian matrix for $f: \mathbb{R}^2 \to \mathbb{R}$ at a critical point in the domain of f, use the eigenvalues from part (a) to classify the critical point.

5. [10 points]

- (a) Compute the 4th degree Taylor polynomial about the origin of $f(x,y) = e^{y^2} \sin(x+y)$.
- (b) Find the linear approximation to the function $f(x,y) = \frac{x+2}{4y-2}$ at the point (2,3) and use it to estimate f(2.1,2.9).

- 6. [8 points] Let $f(x, y, z) = x^3 + x^2 + y^2 + z^2 xy + xz$. Find all the critical points of f. Characterize each critical point as a local maximum, a local minimum, or a saddle point.
- 7. [9 points] Find the points on the intersection of the paraboloid $z = x^2 + y^2$ and the plane x + y + z = 12 that are closest to and farthest from the origin.

Justify your answer including an explanation of why global extrema do exist.

8. [10 points] Find the maximum value of $x^2 - 4x + y^2 - 2y + z^2 - 4z - 1$ on the solid ball $x^2 + y^2 + z^2 \le 9$.

Justify your answer including an explanation of why global extrema do exist.

- 9. [5 points] Let $f: \mathbb{R}^3 \to \mathbb{R}^4$ be given by $f(x,y,z) = (xy^2, yz^2, x^2z, xyz)$ and let $g: \mathbb{R}^4 \to \mathbb{R}$ be given by g(x,y,z,w) = xy + zw. Use the Chain Rule to compute the gradient of $g \circ f$.
- 10. **[15 points]**
 - (a) Evaluate $\int_D e^{x+y} dA$, where D is the region bounded by y=x-1 and y=12-x for $2 \le y \le 4$.
 - (b) Evaluate $\int_0^1 \int_{x^{2/3}}^1 x e^{y^4} dy dx$.
 - (c) Integrate f(x,y) = x+1 over the interior of the triangle with vertices (1,1), (3,5) and (5,3).
- 11. [8 points] Find the volume of the solid B bounded by the parabolic cylinder $x = (y-4)^2 + 3$ and the planes z = x + 2y 4, z = x + 4y 7 and x + 2y = 11.
- 12. [8 points] Evaluate $\int_B z \ dV$, where B is the region bounded by the planes z=0 and z=1 and the surface $(z+1)\sqrt{x^2+y^2}=1$.
- 13. [8 points] Let B be the first octant region bounded by $z = x^2 + y^2 + 16$, $z = \sqrt{x^2 + y^2}$ and $x^2 + y^2 = 4$. Use cylindrical or spherical polars to describe B and set up a triple integral to find the volume of B. What is the volume of B?