Recursividade

Marco A L Barbosa malbarbo.pro.br

Departamento de Informática Universidade Estadual de Maringá

Introdução

Nós vimos como a definição adequada de tipos de dados é importante no projeto de programas.

Agora vamos explorar como a forma da definição do tipo de dado pode nos ajudar a escrever o corpo das funções.

Número natural

Considere a seguinte definição de número natural:

- · 0 é um número natural;
- Se n é um número natural, então n + 1 é um número natural.

O que esta definição tem de diferente?

No segundo caso, um número natural é definido em termos de outro número natural! Como isso é possível!?

Definições recursivas

Como é possível algo ser definido em termos de si mesmo?

É possível porque um algo maior está sendo definido em termos do mesmo tipo de algo, mas menor. Como não é possível diminuir algo infinitamente, em algum momento teremos um algo básico, que não é composto de outro algo.

Esse tipo de definição é muito utilizado na computação e matemática.

Definições recursivas

Coso bare Para de recurriro (autordynência)

Uma definição recursiva (ou definição indutiva) é uma definição que é feita em termos de si

Para estar bem formada, uma definição recursiva precisa de:

- · Pelo menos um caso base (que não depende da própria definição);
- Pelo menos um caso com autorreferência (que depende da própria definição para elementos "menores").

A partir do(s) caso(s) base, os outros elementos são definidos de forma indutiva pelos casos com autorreferência.

Definições recursivas

Definição de número natural:

- · 0 é um número natural;
- Se n é um número natural, então n+1 é um número natural.

O número 4 é natural? Vamos verificar

- Como 4 não é zero, para ele ser natural, o 3 tem que ser natural;
- ී · Como 3 não é zero, para ele ser natural, o 2 tem que ser natural;
- Como 2 não é zero, pare ele ser natural, o 1 tem que ser natural;
- Como 1 não é zero, pare ele ser natural, o 0 tem que ser natural;
 - Por definição, 0 é natural. Zo Guro Loss

Portanto, o 4 é natural. Note que foi preciso decompor o 4 até chegar no caso base.

Funções recursivas

Assim como temos definições recursivas, também temos funções recursivas.

Uma função recursiva é aquela que chama a si mesmo.

Assim como para definições recursivas, para estar bem formada, uma função recursiva precisa de:

- · Pelo menos um caso base (o valor da função é calculado diretamente);
- Pelo menos um caso com chamada recursiva (depende do valor da função para entradas menores).

es entradas da chamada } CHEGAR NO CASO BASE

Projeto de funções recursivas

Como projetar funções recursivas?

Existem várias técnicas de projeto de funções recursivas, nós vamos explorar uma delas, chamada de diminuição e conquista.

A ideia é diminuir o problema inicial gerando um novo problema, conquistar o novo problema – diretamente ou recursivamente – e estender a solução do novo problema para o problema inicial.

No início, para diminuir o problema inicial, nós vamos explorar a relação entre autorreferência na definição do tipo de dado e a chamada recursiva na função que processa o tipo de dado.

Projete uma função recursiva que some todos os números naturais menores ou iguais que um determinado *n*.

```
Como a definição de número natural tem dois casos,
def soma_naturais(n: int) -> int:
                                             vamos começar a implementação da função com dois
    Soma todos os número naturais menores
                                             casos.
    ou iguais que *n*.
    Requer que n \ge 0.
                                             if n == 0:
    Exemplos
                                                  . . .
    >>> soma naturais(0)
                                             else:
    0
                                                 n ...
    >>> soma naturais(1)
                                             Como o segundo caso da definicão de número natural
    >>> soma naturais(2)
                                             tem uma autorreferência, vamos colocar uma chamada
    >>> soma naturais(3)
                                             recursiva no segundo caso da função.
    6
    >>> soma naturais(4)
                                             if n == 0:
    10
                                                  . . .
                                             else:
    return 0
                                                 n ... soma naturais(n - 1)
```

```
def soma_naturais(n: int) -> int:
    Soma todos os número naturais menores
    ou iguais que *n*.
    Requer que n \ge 0.
    Exemplos
    >>> soma naturais(0)
    0
    >>> soma_naturais(1)
    >>> soma_naturais(2)
    >>> soma_naturais(3)
    6
    >>> soma_naturais(4)
    10
```

```
def soma naturais(n: int) -> int:
    if n == 0:
       # Qual é a soma dos naturais base
       # até n == 0?
        soma = ...
    else:
       # Tendo a soma dos naturais
       # até n - 1 e o natural n,
        # como obter a soma dos
       # naturais até n?
        soma = n ... soma_naturais(n - 1)
    return soma
```

```
def soma_naturais(n: int) -> int:
                                                      def soma_naturais(n: int) -> int:
                                                          if n == 0:
    Soma todos os número naturais menores
                                                              # Qual é a soma dos naturais
    ou iguais que *n*.
                                                              # até n == 0?
    Requer que n \ge 0.
                                                              soma = 0
    Exemplos
                                    Una lita e um
                                                          else:
    >>> soma naturais(0)
                                                              # Tendo a soma dos naturais
    0
                                                              # até n - 1 e o natural n,
                                CB-OC]
    >>> soma_naturais(1)
                                                              # como obter a soma dos
                                                              # naturais até n?
                                AR - [a,6, ..., y,3]
    >>> soma_naturais(2)
                                                              soma = n/+ soma_naturais(n - 1)
                                                          return soma
                             Ulma árrore
    >>> soma_naturais(3)
                                                                        É recuriro porque
chama a propria
Jenção dentro da Junção
    6
    >>> soma_naturais(4)
    10
```

Exemplo: exponencial

Projete uma função recursiva que receba como entrada um número $a \neq 0$ e um número natural n e calcule o valor a^n .

Exemplo: exponencial

```
Como a definição de número natural tem dois casos.
def potencia(a: float, n: int) -> float:
                                               vamos comecar a implementação da função com dois
   Calcula *a* elevado a *n*.
                                                casos.
   Requer que a != 0 e n >= 0.
   Exemplos
                                               if n == 0:
   >>> potencia(2.0, 0)
                                                    a ...
   1.0
                                               else:
   >>> potencia(2.0, 1)
                                                    a ... n ...
   2.0
   >>> potencia(2.0, 2)
                                                Como o segundo caso da definição de número natural
   4 0
                                                tem uma autorreferência, vamos colocar uma
   >>> potencia(2.0. 3)
   8 0
                                                chamada recursiva no segundo caso da função.
   >>> potencia(3.0. 3)
   27.0
                                               if n == 0:
   >>> potencia(3.0. 4)
                                                    a ...
   81.0
                                               else:
                                                    a ... n ... potencia(a, n - 1)
   return 0.0
```

```
def potencia(a: float, n: int) -> float:
    Calcula *a* elevado a *n*.
    Requer que a != 0 e n >= 0.
    Exemplos
    >>> potencia(2.0, 0)
    1.0
    >>> potencia(2.0. 1)
    2.0
    >>> potencia(2.0. 2)
    4.0
    >>> potencia(2.0. 3)
    8.0
    >>> potencia(3.0. 3)
    27.0
    >>> potencia(3.0. 4)
    81.0
```

```
def potencia(a: float, n: int) -> float:
    if n == 0:
        # Oual é o valor de a^n
        # quando n == 0?
        an = a \dots
    else:
        # Tendo a potência a^(n - 1),
        # o valor de a e n. como
        # calcular a^n?
        an = a \dots n \dots potencia(a. n - 1)
    return an
```

Exemplo: exponencial

def potencia(a: float, n: int) -> float:

Calcula *a* elevado a *n*.

```
if n == 0:

# Qual é o valor de a^n

# quando n == 0?
     Reguer gue a != 0 e n >= 0.
                                                                                                        an = 1.0
     Exemplos
     >>> potencia(2.0, 0)
                                                                                                 else:
                                                                                                       # Tendo a potência a^(n - 1),
# o valor de a e n, como
# calcular a^n?
an = a * potencia(a, n - 1)
    >>> potencia(2.0, 1)
// >>> potencia(2.0, 2)
4.0 

>>>> potencia(2.0, 3)
                                                                                                 return an
                                                                           Quando chegamos no casa base, não chamamos mais a função. A, tem-se o return. A prentir dese ponto, as resportas das funções arteriores são retornado chamada.

Chamada da rimeio chamada.

Caso base

cromada da rimejão resultados.

Caso base
     >>> potencia(3.0, 3)
   127.0
  \neq >>> potencia(3.0, 4)
   81.0
                                                                                                                                                                                    16/39
```

def potencia(a: float, n: int) -> float:

Aspectos importantes no projeto de funções recursivas

Quando estamos projetando funções recursivas, temos que considerar dois aspectos:

- A chamada recursiva deve ser feita para uma entrada "menor", dessa forma, temos a certeza que o caso base será alcançado e a função terminará;
- Devemos **confiar na chamada recursiva**, isto é, que ela produz a resposta correta, e nos preocuparmos apenas em como utilizar essa resposta para calcular o resultado da função.

Funções recursivas com arranjos

Podemos projetar funções recursivas que operam em arranjos de forma similar a funções que operam com números naturais. Considere a seguinte definição de lista:

Um arranjo é:

[head][tail] Lo Restante da listo. Lo CB (pode ser listo segio os opinicio demento de sumo listo.

- Vazio; ou
- · Um elemento seguido de um arranjo (resto do arranjo)

Assim como a definição de número natural, essa definição de arranjo também tem autorreferência (é indutiva).

Portanto, para implementar uma função que processa um arranjo, podemos usar a mesma estratégia que usamos para implementar funções recursivas que processam números naturais.

Exemplo: soma

```
def soma(lst: list[int]) -> int:
    Soma os elementos de *lst*.
    Exemplos
    >>> soma([])
    0
    >>> soma([6])
    6
    >>> soma([3, 6])
    9
    >>> soma([7, 3, 6])
    16
    return 0
```

Como a definição de lista tem dois casos, vamos começar a implementação da função com dois casos.

Como o segundo caso da definição de lista tem uma autorreferência, isto é, lst[1:] é uma lista, vamos fazer uma chamada recursiva para lst[1:].

```
else:
    lst[0] ... soma(lst[1:])
```

```
def soma(lst: list[int]) -> int:
    Soma os elementos de *lst*.
    Exemplos
    >>> soma([])
    0
    >>> soma([6])
    6
    >>> soma([3, 6])
    9
    >>> soma([7, 3, 6])
    16
```

```
def soma(lst: list[int]) -> int:
    if lst == []:
        # Qual é a soma dos elementos
        # de uma lista vazia?
        s = ...
    else:
        # Sabendo a soma do resto da lista
        # e o valor do primeiro elemento,
        # como obter a soma da lista?
        s = lst[0] \dots soma(lst[1:])
    return s
```

Exemplo: soma

```
def soma(lst: list[int]) -> int:
                                                    def soma(lst: list[int]) -> int:
                                                        if lst == []:
    Soma os elementos de *lst*.
                                                            # Qual é a soma dos elementos
                                                            # de uma lista vazia?
    Exemplos
    >>> soma([])
                                                             s = 0
                                                        else:
    0
    >>> soma([6])
                                                            # Sabendo a soma do resto da lista
    6
                                                            # e o valor do primeiro elemento,
    >>> soma([3, 6])
                                                            # como obter a soma da lista?
                                                            s = lst[0] + soma(lst[1:])
    >>> soma([7, 3, 6])
                                                        return s
    16
```

Projete uma função recursiva que conte quantas vezes um determinado número aparece em uma lista de números.

To Nsar una Junção somethante pra fagor suma lista aou a nome dos times sem repetir.

```
Como a definição de lista tem dois casos, vamos
def freq(v: int, lst: list[int]) -> int:
                                                    comecar a implementação da função com dois
   Conta quantas vezes *v* aparece
                                                    casos.
   em *lst*.
                                                    if lst == []:
   Exemplos
                                                        V ...
   >>> freq(1, [])
                                                    else:
                                                        # v e as partes de lst
   >>> freq(1, [7])
                                                        v ... lst[0] ... lst[1:]
   0
   >>> freq(1, [1, 7, 1])
                                                    Como o segundo caso da definição de lista tem
   2
                                                    uma autorreferência, isto é. lst[1:] é uma lista.
   >>> freg(4, [4, 1, 7, 4, 4])
                                                    vamos fazer uma chamada recursiva para
                                                    lst[1:].
   return 0
                                                    else:
```

v ... lst[0] ... freq(v, lst[1:])

```
def freq(v: int, lst: list[int]) -> int:
                                                    def freq(v: int, lst: list[int]) -> int:
                                                        if lst == []:
   Conta quantas vezes *v* aparece
                                                            # Quantas vezes v aparece
   em *lst*.
                                                            # na lista vazia?
                                                            cont = v ...
   Exemplos
                                                        else:
   >>> freq(1, [])
                                                            # Sabendo a quantidade de vezes
                                                            # que v aparece em lst[1:],
   0
   >>> freq(1, [7])
                                                            # como determinar a quantidade
   0
                                                            # de vezes que v aparece em lst?
   >>> freg(1, [1, 7, 1])
                                                            cont = ...
   2
                                                            v ... lst[0] ... freq(v, lst[1:])
   >>> freq(4, [4, 1, 7, 4, 4])
                                                        return cont
   3
```

```
def freq(v: int, lst: list[int]) -> int:
                                                    def freq(v: int, lst: list[int]) -> int:
                                                        if lst == []:
   Conta quantas vezes *v* aparece
                                                            # Quantas vezes v aparece
                                                            # na lista vazia?
   em *lst*.
                                                            cont = 0
   Exemplos
                                                        else:
   >>> freq(1, [])
                                                            # Sabendo a quantidade de vezes
                                                            # que v aparece em lst[1:],
   >>> freq(1, [7])
                                                            # como determinar a quantidade
   0
                                                            # de vezes que v aparece em lst?
   >>> freg(1, [1, 7, 1])
                                                            if v == lst[0]:
   2
                                                                cont = 1 + freq(v, lst[1:])
   >>> freq(4, [4, 1, 7, 4, 4])
                                                            else:
   3
                                                                cont = freq(v, lst[1:])
                                                        return cont
```

Projete uma função recursiva que verifique se os elementos de uma lista estão em ordem não decrescente.

```
Como a definição de lista tem dois casos, vamos
def em ordem(lst: list[int]) -> bool:
                                                    começar a implementação da função com dois
    Produz True se os elementos de *1st* estão
                                                    casos.
    em ordem não decrescente, False caso
    contrário.
                                                    if lst == []:
    Exemplos
                                                         . . .
    >>> em ordem([])
                                                    else:
    True
                                                        # as partes de lst
    >>> em ordem([3])
                                                        lst[0] ... lst[1:]
    True
    >>> em ordem([3, 4])
                                                    Como o segundo caso da definição de lista tem
    True
                                                    uma autorreferência, isto é. lst[1:] é uma lista.
    >>> em ordem([4. 3])
    False
                                                    vamos fazer uma chamada recursiva para
    >>> em ordem([3, 3, 5, 6, 6])
                                                    lst[1:].
    True
    >>> em ordem([3, 3, 5, 4, 6])
                                                    else:
    False
                                                        lst[0] ... em_ordem(lst[1:])
    return False
```

```
def em ordem(lst: list[int]) -> bool:
   Produz True se os elementos de *lst* estão
   em ordem não decrescente. False caso
   contrário.
                                                    else:
   Exemplos
   >>> em ordem([])
   True
   >>> em ordem([3])
   True
   >>> em ordem([3, 4])
   True
   >>> em ordem([4, 3])
   False
   >>> em_ordem([3, 3, 5, 6, 6])
   True
   >>> em ordem([3, 3, 5, 4, 6])
   False
```

```
if lst == []:
    # Os elementos de uma lista
    # vazia estão em ordem?
    ordem = ...
    # Sabendo se os elementos de lst[1:]
    # estão em ordem, como determinar
    # se lst está em ordem?
    ordem = ...
    lst[0] ... em_ordem(lst[1:])
return ordem
```

```
def em ordem(lst: list[int]) -> bool:
                                                     if lst == []:
                                                         # Os elementos de uma lista
    Produz True se os elementos de *lst* estão
                                                         # vazia estão em ordem?
    em ordem não decrescente. False caso
                                                         ordem = True
    contrário.
                                                     else:
                                                         # Sabendo se os elementos de lst[1:]
    Exemplos
    >>> em ordem([])
                                                         # estão em ordem, como determinar
                                                         # se lst está em ordem?
    True
                                                         if len(lst) == 1:
    >>> em ordem([3])
                                                             ordem = True
    True
    >>> em ordem([3, 4])
                                                         else:
    True
                                                             ordem = lst[0] <= lst[1] and em ordem(lst[1:])</pre>
    >>> em ordem([4, 3])
                                                     return ordem
    False
                                                     Podemosimplificar? Sim!
    >>> em_ordem([3, 3, 5, 6, 6])
    True
                                                     return len(lst) < 2 or \
    >>> em ordem([3, 3, 5, 4, 6])
                                                                lst[0] <= lst[1] and em ordem(lst[1:])</pre>
    False
```

Diminuição lógica

Apesar das funções soma, freq e em_ordem funcionarem corretamente, elas não são eficientes.

Isto porque a operação de slice (lst[1:]) cria uma nova lista copiando todos os elementos da lista a partir do índice 1, ou seja, estamos diminuindo a lista (problema) fisicamente.

Para resolver esse problema, podemos diminuir a lista de forma lógica ao invés de forma física.

A ideia é usar um parâmetro extra i que indica de onde a soma deve começar. Na primeira chamada i = 0, na chamada recursiva usamos i + 1. O caso base é atingindo quando i == len(lst).

```
def soma_inc(lst: list[int], i: int) -> int:
                                                    def soma_inc(lst: list[int], i: int) -> int:
                                                        if i >= len(lst):
   Soma os elementos de *lst* a partir
                                                            # Qual é a soma dos elementos
   de *i*, isto é, soma os elementos
                                                            # de lst a partir de i?
   de *lst[i:]*.
                                                            s = 0
   Requer que 0 <= i <= len(lst).
                                                        else:
   >>> soma inc([7, 3, 6], 0)
                                                            # Tendo a soma dos elementos de
   16
                                                            # lst a partir de i + 1 (chamada
   >>> soma inc([7, 3, 6]. 1)
                                                            # recursiva) e lst[i], como
                                                            # obter a soma dos elementos
   >>> soma inc([7, 3, 6], 2)
                                                            # de lst a partir de i?
   6
                                                            s = lst[i] + soma inc(lst. i + 1)
   >>> soma_inc([7, 3, 6], 3)
                                                        return s
    0
```

Exemplo: soma com índice decrementando

Ao invés de cortar a lista, mantemos ela e acumentamos o úndice do elemento da dista que varnos uras.

Ao invés de começar o parâmetro extra com 0 e incrementar na chamada recursiva, podemos começar com len(lst) e decrementar na chamada recursiva.

Desse forma, o parâmetro extra funciona como um **tamanho lógico** para **lst** e podemos pensar em recursão com lista da mesma forma que pensamos em recursão com número natural.

Vamos chamar o parâmetro de ${\bf n}$ ao invés de ${\bf i}$ para destacar a relação com o tamanho.

```
def soma dec(lst: list[int], n: int) -> int:
   Soma os primeiro *n* elementos de *lst*,
   isto é, soma os elementos de *lst[:n]*.
   Requer que 0 <= n <= len(lst)
   >>> soma dec([7, 3, 6], 0)
   0
   >>> soma dec([7, 3, 6], 1)
   >>> soma dec([7, 3, 6], 2)
   10
   >>> soma dec([7. 3. 6]. 3)
   16
```

```
def soma dec(lst: list[int], n: int) -> int:
    if n == 0:
        # Qual é a soma de lst, sendo
        # que o "tamanho" (n) de lst é 0?
        S = 0
    else:
        # Tendo a soma dos elementos
        # de lst sem o "último" elemento
        # de lst (chamada recursiva)
        # e o último elemento (lst[n-1]).
        # como obtemos a soma de todos os
        # elementos de lst[:n]?
        s = lst[n - 1] + soma dec(lst, n - 1)
    return s
```

Limitações

A técnica de diminuição e conquista sempre funciona? Ou seja, se aplicarmos a ideia de diminuir e conquistar conseguimos projetar um algoritmo para resolver qualquer problema?

Não!

Mas então, quando podemos aplicar a técnica de projeto de diminuição e conquista?

- Quando conseguimos resolver o caso base;
- Quando a solução do problema menor pode ser estendida para a solução do problema inicial.

Limitações

Podemos aplicar a técnica de diminuição e conquista para projetar uma função que encontre todos os divisores de um número natural *n*?

Conseguimos resolver o caso base? Sim.

Tendo os divisores de n-1, podemos encontrar os divisores de n? Sabendo os divisores de 9 (1,3,9), podemos determinar os divisores de 10 (1,2,5,10)? Não!

Ou seja, a solução do problema menor não pode ser estendida para o problema inicial.

Vocês verão em outras disciplinas outras estratégias que permitirão superar essa limitação.

Revisão

Definições recursivas são aquelas feitas em termos de si mesmas. Para ser bem formada uma definição recursiva precisa de:

- · Pelo menos um caso base;
- · Pelo menos um caso com autorreferência.

Funções recursivas são aquelas que chamam a si mesmas. Para ser bem formada uma função recursiva precisa de:

- · Pelo menos um caso base:
- Pelo menos um caso com chamada recursiva.

Revisão

Vimos como empregar definições e funções recursivas para projetar funções utilizando a técnica de diminuição e conquista.

A ideia é diminuir o problema inicial, conquistar o problema menor – diretamente ou recursivamente – e estender a solução do problema menor para o problema inicial.

A forma mais direta de diminuir um problema é explorar a relação entre autorreferência na definição do tipo de dado e recursão na função: onde tem autorreferência tem recursão.

Revisão

Aplicamos essa forma de diminuir o problema tanto para números naturais quanto para arranjos.

Para arranjos usamos diminuição lógica para para evitar que arranjos sejam criados com a operação de subarranjo ([1:]) nas chamadas recursivas. Fizemos a diminuição a partir do início e do fim.

A estratégia de diminuição e conquista não pode ser usada para resolver qualquer problema. Se não conseguimos definir como diminuir o problema ou estender a solução do problema menor para o problema inicial, então não podemos utilizar a técnica de diminuição e conquista.