Automated Deduction in Matching Logic

FSL group

January 30, 2017

Recent success in building very fast automated theorem provers (especially for first-order theories) makes us look forward to an highly efficient automated deductive system for matching logic. This project aims at that.

1 Grammar

As in most logic, formulas of matching logic, called *patterns*, are written in a formal language, denoted as \mathcal{L} , who has a very similar grammar as first order logic.

The language \mathcal{L} in general is a many-sorted language. A signature of \mathcal{L} contains not only a finite set Σ of symbols, but also a finite nonempty set S of sorts. Each symbol $\sigma \in \Sigma$ is, of course, sorted, with a fixed nonempty arity. We write $\sigma \in \Sigma_{s_1,\ldots,s_n,s}$ when we want to emphasize that σ takes n arguments (with suggested sorts) and returns a pattern in sort s, but we hope in most cases sorting is clear from context.

The basic grammar for \mathcal{L} , as defined below, is almost identical to first-order logic, except that in \mathcal{L} there is no difference between relational (predicate) and functional symbols, and we accept first-order terms as patterns in matching logic.

$$P := x$$

$$| P_1 \to P_2$$

$$| \neg P$$

$$| \forall x.P$$

$$| \sigma(P_1, \dots, P_n).$$

For simplicity, we did not mention sorting in the grammar definition, and assume it should be clear to all readers. For example, in $P_1 \rightarrow P_2$, both patterns P_1 and P_2 should have the same sort, and that sort is the sort of $P_1 \rightarrow P_2$. The sort of $\forall x.P$ is the sort of P, where the sort of variable x does not matter. To see why it is the case, consider the pattern $\exists x.list(x, 1 \cdot 3 \cdot 5)$, which is the set of all memory configurations that has a list (1, 3, 5) in it.

Propositional connectives are always assumed, including conjunction (\land) , disjunction (\lor) , and equivalence (\leftrightarrow) . Existential quantifier $(\exists x)$ is defined by universal quantifier $(\forall x)$ in the normal way. Bottom (\bot_s) and top (\top_s) in sort s are given by $x \land \neg x$ and $\neg \bot_s$, respectively, where x is a variable in sort s. It does not matter which variable we pick.

1.1 Extension

The formal language is often extended with definedness symbols. A definedness symbol $\lceil _\rceil_{s_1}^{s_2} \in \Sigma_{s_1,s_2}$ is a *predicate* symbol, i.e., $\lceil P \rceil_{s_1}^{s_2}$ is either \top or \bot for any pattern P. We often write $\lceil P \rceil$ when sorting information can be derived from the context.

Definedness extends the formal language:

$$\lfloor P \rfloor \coloneqq \neg \lceil \neg P \rceil$$

$$P_1 = P_2 \coloneqq \lfloor P_1 \leftrightarrow P_2 \rfloor$$

$$P_1 \neq P_2 \coloneqq \neg (P_1 = P_2)$$

$$P_1 \subseteq P_2 \coloneqq \lfloor P_1 \to P_2 \rfloor$$

$$x \in P \coloneqq x \subseteq P$$

and provides convenient ways to write *predicate patterns*, patterns that is either \top or \bot . The sort of a predicate patterns is often of no importance. It is its "truth value" that is important. For example, $\lceil P \rceil$ is "true" if P is not empty, and this fact can be used in any context. This leads us to polymorphic sorting in matching logic.

1.2 Polymorphism

Predicate symbols are often polymorphic sorting. As a result, many predicate connectives are of polymorphic types, too. Predicate pattern $P_1 = P_2$ only requires P_1 and P_2 have the same sort, and its result can be of any sort. If P_1 and P_2 have different sorts, $P_1 = P_2$ is *ill-sorted*.

Polymorphism

2 Hilbert proof system

Axioms in \mathcal{L} are given by the following nine axiom schemata where P, Q, R are arbitrary patterns and x, y are variables.

- $(K1) P \rightarrow (Q \rightarrow P)$
- (K2) $(P \to (Q \to R)) \to ((P \to Q) \to (P \to R))$
- (K3) $(\neg P \rightarrow \neg Q) \rightarrow (Q \rightarrow P)$
- (K4) $\forall x.(P \rightarrow Q) \rightarrow (P \rightarrow \forall x.Q)$ if x does not occur free in P
- (K5) $\exists y.x = y$
- (K6) $\exists y.Q = y \to (\forall x.P(x) \to P[Q/x])$ if Q is free for x in P
- (K7) $P_1 = P_2 \to (Q[P_1/x] \to Q[P_2/x])$
- (M1) $x \in y = (x = y)$
- (M2) $x \in \neg P = \neg (x \in P)$

- (M3) $x \in P \land Q = (x \in P) \land (x \in Q)$
- (M4) $x \in \exists y.P = \exists y.x \in P$ where x is distinct from y
- (M5) $x \in \sigma(\ldots, P_i, \ldots) = \exists y. y \in P_i \land x \in \sigma(\ldots, y, \ldots)$

Inference rules include

- (Modus Ponens) From P and $P \rightarrow Q$, deduce Q.
- (Universal Generalization) From P, deduce $\forall x.P$.
- (Membership Introduction) From P, deduce $\forall x.(x \in P)$, where x does not occur free in P.
- (Membership Elimination) From $\forall x.(x \in P)$, deduce P, where x does not occur free in P.

Theorem 1 (Soundness of $K_{\mathcal{L}}$). Theorems of $K_{\mathcal{L}}$ are valid.

We provide some metatheorems of $K_{\mathcal{L}}$.

Proposition 2 (Tautology). For any propositional tautology $\mathcal{A}(p_1, \ldots, p_n)$ where p_1, \ldots, p_n are propositional variables,

$$\vdash \mathcal{A}(P_1,\ldots,P_n).$$

Proof. Omit proof here.

Remark Proposition 2 makes any metatheorem of propositional logic a metatheorem of $K_{\mathcal{L}}$.

Proposition 3 (Variable Substitution). $\vdash \forall x.P \rightarrow P[y/x]$.

Proposition 4 (Functional Substitution). $\vdash \exists y. (Q = y) \rightarrow (P[Q/x] \rightarrow \exists x. P(x)).$

Proposition 5 (\vee -Introduction). $\vdash P \text{ implies} \vdash P \vee Q$.

Proof. Use Proposition 2 and Modus Ponens. Note that in general, $\vdash P \lor Q$ does not imply $\vdash P$ or $\vdash Q$.

Proposition 6 (\land -Introduction and Elimination). $\vdash P$ and $\vdash Q$ iff $\vdash P \land Q$.

Proof. Use Proposition 2 and Modus Ponens.

Proposition 7 (Equality Introduction). $\vdash P = P$.

Proof. Use Membership Introduction and Proposition 2. □

Proposition 8 (Equality Replacement). $\vdash P_1 = P_2$ and $\vdash Q[P_1/x]$ implies $\vdash Q[P_2/x]$.

Proof. Use Axiom (K7) and Modus Ponens. □

Proposition 9 (Equality Establishment). $\vdash P \leftrightarrow Q \text{ implies} \vdash P = Q$.

Proof. Use Membership Axoims and ∨-Introduction.

Corollary 10. $\vdash P \text{ implies} \vdash P = \top$.

Proposition 11. $\vdash x \in [y]$.

Proof.

$$\vdash x \in \lceil y \rceil$$

if $\vdash \forall x.(x \in \lceil y \rceil)$ (K5, K6, and Modus Ponens)
iff $\vdash \lceil y \rceil$.

Proposition 12. $\vdash P \rightarrow \lceil P \rceil$.

Proof.

$$\begin{split} & \vdash P \to \lceil P \rceil \\ & \text{iff} \vdash \forall x.(x \in P \to \lceil P \rceil) \\ & \text{iff} \vdash x \in P \to \lceil P \rceil \\ & \text{iff} \vdash x \in P \to x \in \lceil P \rceil \\ & \text{iff} \vdash x \in P \to \exists y.(y \in P \land x \in \lceil y \rceil) \\ & \text{iff} \vdash x \in P \to \neg \forall y.(y \notin P \lor x \notin \lceil y \rceil) \\ & \text{iff} \vdash \forall y.(y \notin P \lor x \notin \lceil y \rceil) \to x \notin P \\ & \text{if} \vdash x \notin P \lor x \notin \lceil x \rceil \to x \notin P \\ & \text{iff} \vdash x \in P \to x \in P \land x \in \lceil x \rceil \\ & \text{iff} \vdash x \in P \to x \in \lceil x \rceil \\ & \text{iff} \vdash x \in P \to x \in \lceil x \rceil \\ & \text{iff} \vdash x \in P \to x \in \lceil x \rceil \end{split}$$

Remark Similarly we can show $\vdash \lfloor P \rfloor \rightarrow P$.

Proposition 13. $\vdash \forall x.(x \in P) = \lfloor P \rfloor$, where x occurs free in P.

Proof. By Proposition 9 and 6, it suffices to show

$$\vdash \forall x. (x \in P) \to \lfloor P \rfloor \tag{1}$$

and

$$\vdash \lfloor P \rfloor \to \forall x. (x \in P). \tag{2}$$

To show (1),

$$\vdash \forall x.(x \in P) \rightarrow \lfloor P \rfloor$$

$$\text{iff} \vdash \forall x.[x \land P] \rightarrow \neg \lceil \neg P \rceil$$

$$\text{iff} \vdash [\neg P] \rightarrow \exists x. \neg [x \land P]$$

$$\text{iff} \vdash \forall y.(y \in (\lceil \neg P \rceil \rightarrow \exists x. \neg [x \land P]))$$

$$\text{if} \vdash \forall y \in (\lceil \neg P \rceil \rightarrow \exists x. \neg [x \land P])$$

$$\text{iff} \vdash \exists z_1.(z_1 \notin P \land y \in [z_1]) \rightarrow$$

$$\exists x. \neg (\exists z_2.(z_2 = x \land z_2 \in P \land y \in [z_2]))$$

$$\text{iff} \vdash \exists z_1.(z_1 \notin P \land \top) \rightarrow \qquad \text{(Proposition 11, 8, and Corollary 10)}$$

$$\exists x. \neg (\exists z_2.(z_2 = x \land z_2 \in P \land \top))$$

$$\text{iff} \vdash \exists z_1.(z_1 \notin P) \rightarrow \exists x. \neg (\exists z_2.(z_2 = x \land z_2 \in P))$$

$$\text{iff} \vdash \forall x.(\exists z_2.(z_2 = x \land z_2 \in P)) \rightarrow \forall z_1.(z_1 \in P)$$

$$\text{if} \vdash \forall x.(\exists z_2.(z_2 = x \land z_2 \in P)) \rightarrow (z_1 \in P)$$

$$\text{if} \vdash \forall x.(\exists z_2.(z_2 = x \land z_2 \in P)) \rightarrow (z_1 \in P).$$

$$\text{Since} \vdash \forall x.(\exists z_2.(z_2 = x \land z_2 \in P)) \rightarrow \exists z_2.(z_2 = z_1 \land z_2 \in P), \text{ it suffices to show}$$

$$\vdash \exists z_2.(z_2 = z_1 \land z_2 \in P) \rightarrow (z_1 \in P)$$

$$\text{iff} \vdash z_1 \notin P \rightarrow \forall z_2.(z_2 \neq z_1 \lor z_2 \notin P)$$

$$\text{iff} \vdash \forall z_1 \notin P \rightarrow z_2 \neq z_1 \lor z_2 \notin P)$$

$$\text{if} \vdash z_1 \notin P \rightarrow z_2 \neq z_1 \lor z_2 \notin P)$$

$$\text{if} \vdash z_1 \notin P \rightarrow z_2 \neq z_1 \lor z_2 \notin P$$

$$\text{if} \vdash z_1 \notin P \rightarrow z_2 \neq z_1 \lor z_2 \notin P$$

$$\text{if} \vdash z_2 = z_1 \land z_2 \in P \rightarrow z_1 \in P.$$

And we proved (1).

Similarly, to show (2),

$$\vdash \lfloor P \rfloor \to \forall x.(x \in P)$$
iff $\vdash \exists x. \neg \lceil x \land P \rceil \to \lceil \neg P \rceil$
iff $\vdash \forall y.(y \in \exists x. \neg \lceil x \land P \rceil \to \lceil \neg P \rceil)$
iff $\vdash y \in \exists x. \neg \lceil x \land P \rceil \to \lceil \neg P \rceil$
iff $\vdash \exists x. \neg \exists z_2.(z_2 = x \land z_2 \in P) \to \exists z_1.(z_1 \notin P)$
iff $\vdash \forall z_1.(z_1 \in P) \to \exists z_2.(z_2 = x \land z_2 \in P)$
iff $\vdash x \in P \to \exists z_2.(z_2 = x \land z_2 \in P)$.

We proved (2).

Remark If *x* occurs free in *P*, the result does not hold. For example, let *P* be upto(x) where $upto(\cdot)$ is interpreted to $upto(n) = \{0, 1, ..., n\}$ on \mathbb{N} .

Remark From Membership Introduction and Elimination inference rules and Proposition 13, $\vdash P$ iff $\vdash \lfloor P \rfloor$.

Proposition 14 (Classification Reasoning). *For any P and Q, from* $\vdash P \rightarrow Q$ *and* $\vdash \neg P \rightarrow Q$ *deduce* $\vdash Q$.

Proof. From $\vdash \neg P \rightarrow Q$ deduce $\vdash \neg Q \rightarrow P$. Notice that $\vdash P \rightarrow Q$, so we have $\vdash \neg Q \rightarrow Q$, i.e., $\vdash \neg \neg Q \lor Q$ which concludes the proof.

Corollary 15. For any P_1 , P_2 , and Q are patterns with $\vdash P_1 \lor P_2$, from $\vdash P_1 \to Q$ and $\vdash P_2 \to Q$, deduce $\vdash Q$.

Definition 16 (Predicate Pattern). A pattern P is called a predicate pattern or a predicate if $\vdash (P = \top) \lor (P = \bot)$.

Remark Predicate patterns are closed under all logic connectives.

Remark For any P, $\lceil P \rceil$ is a predicate pattern.

Proposition 17.
$$\vdash (\lceil P \rceil = \bot) = (P = \bot) \ and \vdash (\lfloor P \rfloor = \top) = (P = \top).$$

Proof. It is easy to prove one derivation from the other, so we only prove the first one. By Proposition 9, it suffices to prove

$$\vdash (\lceil P \rceil = \bot) \to (P = \bot) \tag{3}$$

and

$$\vdash (P = \bot) \to (\lceil P \rceil = \bot) \tag{4}$$

The proof of (4) is trivial and we left it as an exercise. We now prove (3) through the following backward reasoning.

$$\vdash (\lceil P \rceil = \bot) \to (P = \bot)$$
iff
$$\vdash \forall y.(y \in ((\lceil P \rceil = \bot) \to (P = \bot)))$$
if
$$\vdash y \in ((\lceil P \rceil = \bot) \to (P = \bot))$$
iff
$$\vdash (y \in (\lceil P \rceil = \bot) \to (y \in (P = \bot)).$$
 (5)

While for any pattern Q,

So we continue to prove (5) by showing

$$\begin{split} & \vdash (y \in (\lceil P \rceil = \bot)) \to (y \in (P = \bot)) \\ \text{iff} & \vdash \neg \exists z. (z \in \lceil P \rceil) \to \neg \exists z. (z \in P) \\ \text{iff} & \vdash \exists z. (z \in P) \to \exists z. (z \in \lceil P \rceil) \\ \text{iff} & \vdash \exists z. (z \in P) \to \exists z. (\exists z_1. (z_1 \in P \land z \in \lceil z_1 \rceil)) \\ \text{iff} & \vdash \exists z. (z \in P) \to \exists z. \exists z_1. (z_1 \in P) \\ \text{iff} & \vdash \exists z_1. (z_1 \in P) \to \exists z. \exists z_1. (z_1 \in P). \end{split}$$

And we finish the proof by noticing the fact that for any pattern Q and variable x,

$$\vdash Q \rightarrow \exists x.Q.$$

Proposition 18. For any predicate P, \vdash $(P \neq \top) = (P = \bot)$ and \vdash $(P \neq \bot) = (P = \top)$.

Proof. We only prove the first derivation, by showing both

$$\vdash (P \neq \top) \to (P = \bot) \tag{6}$$

and

$$\vdash (P = \bot) \to (P \neq \top). \tag{7}$$

Proving (7) is trivial. We now prove (6), which is also trivial by transforming disjunction to implication. \Box

Proposition 19. For any pattern Q and any predicate pattern P, $\vdash P \lor Q$ iff $\vdash P \lor \lfloor Q \rfloor$.

Proof. (\Leftarrow) is obtained immediately by the remark of Proposition 12. We now prove (\Rightarrow).

Because $\vdash Q = \top \lor Q \neq \top$, it suffices to show

$$\vdash Q = \top \to (P \lor \lfloor Q \rfloor = \top) \tag{8}$$

and

$$\vdash Q \neq \top \to (P \lor \lfloor Q \rfloor = \top) \tag{9}$$

by Corollary 15, and the fact that $\vdash P \lor \lfloor Q \rfloor = \top$ and $\vdash \top$ imply $\vdash P \lor \lfloor Q \rfloor$. The proof of (8) is straightforward as follows.

$$\begin{split} \vdash Q &= \top \to (P \lor \lfloor Q \rfloor = \top) \\ \text{if} & \vdash Q &= \top \to (P \lor \lfloor \top \rfloor = \top) \\ \text{if} & \vdash Q &= \top \to (\top = \top) \\ \text{if} & \vdash \top. \end{split}$$

The proof of (9) needs more effort:

$$\begin{split} & \vdash Q \neq \top \rightarrow (P \lor \lfloor Q \rfloor = \top) \\ \text{iff} & \vdash (Q = \top) \lor (P \lor \lfloor Q \rfloor = \top) \\ \text{iff} & \vdash (\lfloor Q \rfloor = \top) \lor (P \lor \lfloor Q \rfloor = \top) \\ \text{iff} & \vdash \lfloor Q \rfloor \neq \top \rightarrow (P \lor \lfloor Q \rfloor = \top) \\ \text{iff} & \vdash \lfloor Q \rfloor = \bot \rightarrow (P \lor \lfloor Q \rfloor = \top) \\ \text{iff} & \vdash \lfloor Q \rfloor = \bot \rightarrow (P \lor \bot = \top) \\ \text{iff} & \vdash \lfloor Q \rfloor = \bot \rightarrow (P = \top) \\ \text{iff} & \vdash Q = \top \lor P = \top. \end{split}$$

Notice that *P* is a predicate pattern, so it suffices to show

$$\vdash P = \top \rightarrow (Q = \top \lor P = \top),$$

whose validity is obvious, and

$$\vdash P = \bot \rightarrow (O = \top \lor P = \top),$$

which is proved by showing

$$\vdash P = \bot \to Q = \top. \tag{10}$$

Because $\vdash P \lor Q$, it suffices to show

$$\begin{split} \vdash P &= \bot \to (P \lor Q) \to (Q = \top) \\ \text{if} &\vdash P = \bot \to (\bot \lor Q) \to (Q = \top) \\ \text{iff} &\vdash P = \bot \to Q \to (Q = \top) \\ \text{if} &\vdash Q \to (Q = \top) \\ \text{iff} &\vdash (Q \neq \top) \to \neg Q \\ \text{iff} &\vdash (|Q| = \bot) \to \neg Q. \end{split}$$

Notice we have $\vdash Q \rightarrow \lfloor Q \rfloor$, which means $\vdash \neg \lfloor Q \rfloor \rightarrow \neg Q$, so it suffices to show

$$\begin{split} & \vdash (\lfloor Q \rfloor = \bot) \to \neg \lfloor Q \rfloor \\ \text{iff} & \vdash (\lfloor Q \rfloor = \bot) \to \neg \bot \\ \text{iff} & \vdash (\lfloor Q \rfloor = \bot) \to \top \\ \text{iff} & \vdash \top. \end{split}$$

And this concludes the proof.

Proposition 20 (Deduction Theorem). *If* $\Gamma \cup \{P\} \vdash Q$ *and the derivation does not use* $\forall x$ -Generalization where x is free in P, then $\Gamma \vdash \lfloor P \rfloor \rightarrow Q$.

Proof. The proof is by induction on n, the length of the derivation of Q from $\Gamma \cup \{P\}$.

Base step: n=1, and Q is an axiom, or P, or a member of Γ . If Q is an axiom or a member of Γ , then $\Gamma \vdash Q$ and as a result, $\Gamma \vdash \lfloor P \rfloor \to Q$. If Q is P, then $\Gamma \vdash \lfloor P \rfloor \to Q$ by Proposition 12.

Induction step: Let n > 1. Suppose that if P' can be deduced from $\Gamma \cup \{P\}$ without using $\forall x$ -Generalization where x is free in P, in a derivation containing fewer than n steps, then $\Gamma \vdash [P] \rightarrow P'$.

Case 1: Q is an axiom, or P, or a member of Γ . Precisely as in the Base step, we show that $\vdash [P] \to Q$.

Case 2: Q follows from two previous patterns in the derivation by an application of Modus Ponens. These two patterns must have the forms Q_1 and $Q_1 \rightarrow Q$, and each one can certainly be deduced from $\Gamma \cup \{P\}$ by a derivation with fewer than n steps, by just omitting the subsequent members from the original derivation from $\Gamma \cup \{P\} \vdash Q$. So we have $\Gamma \cup \{P\} \vdash Q_1$ and $\Gamma \cup \{P\} \vdash Q_1 \rightarrow Q$, and, applying the hypothesis of induction, $\Gamma \vdash [P] \rightarrow Q_1$ and $\Gamma \vdash [P] \rightarrow Q$. It follows immediately that $\Gamma \vdash [P] \rightarrow Q$.

Case 3: Q follows from a previous pattern in the derivation by an application of $\forall x_i$ -Generalization where x_i does not occur free in P. So Q is $\forall x_i.Q_1$, say, and Q_1 appears previously in the derivation. Thus $\Gamma \cup \{P\} \vdash Q_1$, and the derivation has fewer than n steps, so $\Gamma \vdash \lfloor P \rfloor \to Q_1$, since there is no application of Universal Generalization involving a free variable of P. Also x_i cannot occur free in P, as it is involved in an application of Universal Generalization in the deduction of Q from $\Gamma \cup \{P\}$. So we have a derivation of $\Gamma \vdash \lfloor P \rfloor \to Q$ as follows.

$$\begin{split} & \Gamma \vdash \lfloor P \rfloor \to Q \\ & \text{iff} \quad \Gamma \vdash \lfloor P \rfloor \to \forall x_i.Q_1 \\ & \text{if} \quad \Gamma \vdash \forall x_i.(\lfloor P \rfloor \to Q_1) \\ & \text{if} \quad \Gamma \vdash \lfloor P \rfloor \to Q_1. \end{split}$$

So $\Gamma \vdash \lfloor P \rfloor \rightarrow Q$ as required.

Case 4: Q follows from a previous pattern in the derivation by an application of Membership Introduction. So Q is $\forall x_i.(x_i \in Q_1)$ with x_i is free in Q_1 , say, and Q_1 appears previously in the derivation. Thus $\Gamma \cup \{P\} \vdash Q_1$, and the derivation has fewer than n steps, so $\Gamma \vdash \lfloor P \rfloor \to Q_1$, since there is no application of Universal Generalization involving a free variable of P. So we have a derivation of $\Gamma \vdash \lfloor P \rfloor \to Q$ as follows.

$$\begin{split} \Gamma \vdash \lfloor P \rfloor &\to Q \\ \text{iff} \quad \Gamma \vdash \lfloor P \rfloor &\to \forall x_i. (x_i \in Q_1) \\ \text{iff} \quad \Gamma \vdash \lfloor P \rfloor &\to \lfloor Q_1 \rfloor, \end{split}$$

which follows by the hypothesis of induction $\Gamma \vdash \lfloor P \rfloor \to Q_1$ and the fact that $\Gamma \vdash Q_1 \to \lfloor Q_1 \rfloor$ (by the Remark in Proposition 12).

Case 5: Q follows from a previous pattern in the derivation by an application of Membership Elimination. The previous pattern must have the form $\forall x_i.(x_i \in Q)$, and can be deduced from $\Gamma \cup \{P\}$ by a derivation with fewer than n steps, by just omitting

the subsequent members from the original derivation from $\Gamma \cup \{P\} \vdash Q$. So we have $\Gamma \cup \{P\} \vdash \forall x_i.(x_i \in Q)$, and, applying the hypothesis of induction, $\Gamma \vdash \lfloor P \rfloor \rightarrow \forall x_i.(x_i \in Q)$. So we have a derivation of $\Gamma \vdash \lfloor P \rfloor \rightarrow Q$ as follows.

$$\begin{array}{ll} \Gamma \vdash \lfloor P \rfloor \to Q \\ \text{iff} & \Gamma \vdash \neg \lfloor P \rfloor \lor Q \\ \text{iff} & \Gamma \vdash \neg \lfloor P \rfloor \lor \lfloor Q \rfloor & \text{(Proposition 19)} \\ \text{iff} & \Gamma \vdash \neg \lfloor P \rfloor \lor \forall x_i.(x_i \in Q) \\ \text{iff} & \Gamma \vdash \lfloor P \rfloor \to \forall x_i.(x_i \in Q), \end{array}$$

which is the hypothesis of induction. And this concludes our inductive proof.

Corollary 21 (Closed-form Deduction Theorem). *If* P *is closed,* $\Gamma \cup \{P\} \vdash Q$ *implies* $\Gamma \vdash \lfloor P \rfloor \rightarrow Q$.

Theorem 22 (Frame Rule). Let $\sigma \in \Sigma$ be a symbol in the signature. From $P_1 \to P_2$, deduce $\sigma(P_1) \to \sigma(P_2)$. In its most general form, $P_1 \to P_2$ deduces $\sigma(Q_1, \ldots, P_1, \ldots, Q_n) \to \sigma(Q_1, \ldots, P_2, \ldots, Q_n)$.

Proof. we write $\sigma(Q_1, \dots, P_i, \dots, Q_n)$ as $\sigma(P_i, \vec{Q})$ for short, for any $i \in \{1, 2\}$.

$$\begin{split} &\vdash \sigma(P_1, \vec{Q}) \rightarrow \sigma(P_2, \vec{Q}) \\ \text{iff} &\vdash y \in (\sigma(P_1, \vec{Q}) \rightarrow \sigma(P_2, \vec{Q})) \\ \text{iff} &\vdash (y \in \sigma(P_1, \vec{Q})) \rightarrow (y \in \sigma(P_2, \vec{Q})) \\ \text{iff} &\vdash \exists z_1 . \exists \vec{z} . (z_1 \in P_1 \land \vec{z} \in \vec{Q} \land y \in \sigma(z_1, \vec{z})) \\ &\rightarrow \exists z_2 . \exists \vec{z} . (z_2 \in P_2 \land \vec{z} \in \vec{Q} \land y \in \sigma(z_2, \vec{z})) \\ \text{iff} &\vdash \exists z_1 . \exists \vec{z} . (z_1 \in P_1 \land \vec{z} \in \vec{Q} \land y \in \sigma(z_1, \vec{z})) \\ &\rightarrow z_1 \in P_2 \land \vec{z} \in \vec{Q} \land y \in \sigma(z_1, \vec{z})) \\ \text{iff} &\vdash \exists z_1 . \exists \vec{z} . (z_1 \in P_1 \rightarrow z_1 \in P_2) \\ \text{if} &\vdash \exists z_1 . (z_1 \in P_1 \rightarrow z_1 \in P_2) \\ \text{if} &\vdash P_1 \rightarrow P_2. \end{split}$$

Corollary 23 (Frame Rule as Implication). $\vdash \lfloor P \rightarrow Q \rfloor \rightarrow (\sigma(P) \rightarrow \sigma(Q))$

3 Inference rules

Axioms

$$\frac{\cdot}{\Gamma \vdash A}$$

where A is an axiom.

Inclusion

$$\frac{\cdot}{\Gamma \vdash P}$$

where $P \in \Gamma$.

Modus Ponens

$$\frac{\Gamma \vdash Q \to P \quad \Gamma \vdash Q}{\Gamma \vdash P}$$

Closed-Form Deduction Theorem

$$\frac{\Gamma \cup \{P\} \vdash Q}{\Gamma \vdash P \to Q}$$

where P is closed.

Universal Generalization

$$\frac{\Gamma \vdash P}{\Gamma \vdash \forall x.P} \ (\forall x)$$

Conjunction Splitting

$$\frac{\Gamma \vdash P \quad \Gamma \vdash Q}{\Gamma \vdash P \land Q}$$