CS & IT

Discrete maths
GRAPH THEORY

Lecture No. 1

By- SATISH YADAV SIR

TOPICS TO BE COVERED

01 Definition of Graph

. . .

02 Handshaking Lemma

. . .

03 Types of Graphs

...

04 No of Graphs

. . .

05 Simple Graphs theorem

Graph Them:

$$V_{4}$$
 V_{4}
 V_{4}
 V_{4}
 V_{4}
 V_{4}
 V_{5}
 V_{1}
 V_{2}
 V_{3}
 V_{4}
 V_{4}
 V_{5}
 V_{7}
 V_{8}
 V_{8}
 V_{9}
 V_{1}
 V_{1}
 V_{2}
 V_{3}
 V_{4}
 V_{4}
 V_{4}
 V_{5}
 V_{7}
 V_{8}
 V_{8}
 V_{8}
 V_{9}
 V_{1}
 V_{1}
 V_{2}
 V_{3}
 V_{4}
 V_{5}
 V_{7}
 V_{8}
 V_{8}
 V_{8}
 V_{9}
 V_{1}
 V_{2}
 V_{3}
 V_{4}
 V_{5}
 V_{7}
 V_{8}
 V_{8}
 V_{9}
 V_{1}
 V_{2}
 V_{3}
 V_{4}
 V_{5}
 V_{7}
 V_{8}
 V_{9}
 V_{1}
 V_{2}
 V_{3}
 V_{4}
 V_{8}
 V_{7}
 V_{8}
 V_{8

each edge must be associated with unorder poir of vertices.

$$G = (V, E, \psi)$$

$$V = \{ \dots \}$$

$$E = \{ \dots \}$$

end vertices ::

movdered pair of vertices are called end vertices.

100p/self-loop: e3→(v3.v3)

if end vertices are same edge is called loop.

ledges:

2 or more edges associated with same end vertices called as II edges.

in cident point:
meeting point of verten & edge.

Degree/valency (d(vi))

no of edges incident on a vertex is called degree of vertex

$$d(y) = 1$$
.
 $d(yz) = 3$.

Degree 0

Pendantverten Degree 1.

null Graph ..

Set afrisolated vertices

$$d(v_1)=1$$
 $d(v_2)=3$ $d(v_3)=4$.
 $d(v_4)=3$ $d(v_5)=3$.

= 1+3+4+3+3=14.
=
$$2 \times 7$$
 (no. of edges)

Thm1: Sum of degrees of au vertices is equals to twice the no of edges.

$$\sum d(vi) = axe_1$$

 $\sum d(vi) = even$

odd degree
$$\geq d(vi) = even$$
.

O1 02. + e1. e2. = even.

Odd + even.

= odd \neq even.

d(vi) = I. odd degreevente d(vz) = 2. even degree vertex.

$$0 + 0 = even$$
 $1 + 3 = 4$
 $0 + 0 = odd$
 $1 + 3 + 5 = 9$

Thm2 no of odd dequee vertices in a grouph must be even.

odd degrees vertices=2, odv=2. odv=0.

3-20	1007	lledges	
Simple Graph.	X	X	
multiquaph	*		
Pseudograph.			

Thm3: manimum degree in simple Graph < n-1.

Total vertices = n.

Thm4: maximum no of edges in simple Graph < n(n-1)

Total vertices = 4.

degrees of one vertices = n-1.

$$n \times (n-) = 2e$$

$$e = \frac{n(n-1)}{2}$$

note: Dequees of all vertices are n-1 then it will have exactly n(n-1) edges.

e=n(n-1) edges -> Degrees gall vertices are n-1.

> 10 vertices, all degrees are 9. 10 × 9/2 = 45 edges

-> 10v, 45 edges -> degrees of all -19

Total vertices = 4.

How many graphs are possible = ?

$$n = 4.$$

$$no.of edges = \frac{4 \times 3}{2} = 6.$$

Total vertices = 4.

Total vertices = n.

$$\frac{\mathcal{U}(v-1)}{\mathcal{O}(v)}$$

$$6c_0 + 6c_1 + 6c_2 + 6c_3 + 6c_4 + 6c_5 + 6c_6 = 26$$

How many graphs are possible with atleast 2 edges & 4 vertices.

What will be total no of vertices if 4v will have 3 degrees.

6v will have 2 degrees.

L' remaining vertices will have alegree 3.

La dedges? Total no of versices = 10+6+4

Σd(vi)=2e.

Remaining vertices = n

4 vx3 + 6 vx2 + 7 vx3 = 2e.

12+12+32=2×27

3n=54-24. 3n=30 2=10

In Graph 15 edges & degrees of each verten is at least 3: What will be maximum no of vertices?

$$S(s) \leq \frac{2e}{2x}$$

$$3 \leq \frac{2x}{x}$$

$$n \le 30/3$$
 $n \le 10$
 $(1284767890) \le 10$

minimum degree (S(G))
manimum degree (D(G))

$$\Delta(G) = 3$$

$$\delta(G) = 2$$

$$\delta(G) = \frac{2e}{n} = \Delta(G) - \frac{1}{2}$$

$$= \underbrace{2+2+2+2}_{4}$$

$$S(s) < 2e/n < \Delta(s) - E$$

$$\mathcal{S}(Q) = \frac{26}{26} = \mathcal{O}(Q) - I \cdot \mathcal{S}(Q) < \mathcal{O}(Q) - I \cdot \mathcal{S}(Q) - I \cdot \mathcal{S}(Q) < \mathcal{O}(Q) - I \cdot \mathcal{S}(Q) < \mathcal{O}(Q) - I \cdot \mathcal{S}(Q) < \mathcal{O}(Q) - I \cdot \mathcal{S}(Q) - I \cdot \mathcal{S}$$

Craph in has 14 vertices à 27 edges.

Degree of each verten of 6 is 3,40r5

There are six vertices of degree 4.

How many vertices of 6 have degree 3?

vertices=12 edges = 31

Degree of each vertex 4006

How many vertices
of degree 4?

03

N = 25e = 62

Degree of each vertex is 3,4,5 or 6

2 v will have degree 4

11 v will have degree 6

How many vertices of 69 have degree 5%

11 vertices

at most 5.

Degree of each ventenis atleast 3

no of edges lie between.

and ____

