Text-Independent Speaker Recognition Using Gaussian Mixture Models

Eduardo Martins Barros de Albuquerque Tenório

Centro de Informática Universidade Federal de Pernambuco Trabalho de Graduação em Engenharia da Computação

embat@cin.ufpe.br

Recife, 25 de Junho de 2015

Conteúdo

- Introdução
- Sistemas de Reconhecimento de Locutor
- Extração de Características
- Modelos de Mistura Gaussiana
- Experimentos
- Conclusão

Conteúdo

- Introdução
- 2 Sistemas de Reconhecimento de Locutor
- Extração de Características
- 4) Modelos de Mistura Gaussiana
- Experimentos
- Conclusão

Reconhecimento de Locutor

- Identificação Determina a identidade de um locutor dentro de um conjunto não unitário
 - 1 para N
 - Problema de conjunto fechado
 - Verificação Determina se o locutor é quem diz ser
 - 1 para 1
 - Problema de conjunto aberto

Dependência de texto

Com Teste ∈ Treinamento

- Diversos graus de dependência
- Teste ∉ Treinamento ⇒ Retreinamento

Sem Teste ≠ Treinamento

- Características não textuais
- Presentes em diferentes sotaques e até gibberish

Este trabalho é focado em **reconhecimento de locutor independente de texto**

Modelos de Mistura Gaussiana

GMM Combinação de Gaussianas

UBM GMM gerado por diversas locuções de fundo

AGMM GMM adaptado a partir de um UBM

FGMM GMM fracionário utilizando FCM

- Taxas de **sucesso** para identificação
 - Diferentes tamanhos de mistura (M)
 - ullet Diferentes tamanhos de características $(oldsymbol{\Delta})$

- Taxas de **sucesso** para identificação
 - Diferentes tamanhos de mistura (M)
 - Diferentes tamanhos de características (Δ)
- Comparar identificações utilizando GMM e FGMM

- Taxas de sucesso para identificação
 - Diferentes tamanhos de mistura (M)
 - Diferentes tamanhos de características (Δ)
- Comparar identificações utilizando GMM e FGMM
- Taxas de falsa detecção e falsa rejeição para verificação
 - Diferentes tamanhos de mistura (M)
 - Diferentes tamanhos de características (Δ)

- Taxas de sucesso para identificação
 - Diferentes tamanhos de mistura (M)
 - Diferentes tamanhos de características (Δ)
- Comparar identificações utilizando GMM e FGMM
- Taxas de falsa detecção e falsa rejeição para verificação
 - Diferentes tamanhos de mistura (M)
 - Diferentes tamanhos de características (Δ)
- Comparar verificações utilizando GMM e AGMM

Conteúdo

- Introdução
- Sistemas de Reconhecimento de Locutor
- 3 Extração de Características
- 4 Modelos de Mistura Gaussiana
- Experimentos
- Conclusão

Identificação

Modelagem Para cada locutor $S_j \in \mathcal{S}$

- Extrair X_k dos sinais Y_k falados por S_j
- Treinar um λ_j para cada \mathcal{S}_j através dos \mathbf{X}_k

Teste Para um locutor desconhecido ${\cal S}$

- ullet Extrair old X do sinal old Y falado por ${\mathcal S}$
- $i = \arg_j \max p(\mathbf{X}|\lambda_j) \implies \mathcal{S} \leftarrow \mathcal{S}_i$

Verificação

Modelagem Para todos os $\mathcal{S}_j \in \mathcal{S}$

- ullet Extrair $old X_k$ dos sinais $old Y_k$ falados por cada $\mathcal S_j$
- Treinar um λ_{bkg} através dos \mathbf{X}_k de todos os \mathcal{S}_j
- ullet Modelar um λ_j para cada \mathcal{S}_j

Teste S diz ser $S_C \in S$

- Extrair **X** do sinal **Y** falado por S_C
- $\Lambda(\mathbf{X}) \geq \theta \implies aceita$

Conteúdo

- Introdução
- 2 Sistemas de Reconhecimento de Locutor
- 3 Extração de Características
- Modelos de Mistura Gaussiana
- Experimentos
- Conclusão

Características Ideais

- Natural e frequente na fala
- Facilmente mensurável
- ↑ variação inter-locutor e ↓ variação intra-locutor
- Constante no tempo e n\u00e3o afet\u00e1vel pela sa\u00fade
- Robusta a ruído razoável e a transmissão
- Difícil de ser produzido artificialmente
- Não ser facilmente modificável pelo locutor

Mel-Frequency Cepstrum Coefficients

Simula a função da cóclea

Escala Mel Logaritmica

• $f_{mel} = 2595 \log_{10}(1 + \frac{f}{700})$

Pre-emphasis Realça as frequências altas (opcional)

- $s_{emph}[n] = s[n] \alpha \cdot s[n-1]$
- $\alpha \in [0.95, 0.98]$, escolhido $\alpha = 0.97$

Framing Divide o sinal em janelas superpostas

- Janela de Hamming
- Largura de 20 milissegundos
- Deslocamento de 10 milissegundos

|FFT|² Calcula o **espectro de potência**

Mel-filterbank Espectro em Hz ⇒ espectro em mels

Na escala mel, as larguras são iguais

dB Calcula a sonoridade

ullet espectro em mels \Longrightarrow espectro logarítmico

DCT Coeficientes espectrais ⇒ coeficientes **cepstrais**

•
$$c_n = \sum_{k=1}^K S_k \cdot \cos \left[n \left(k - \frac{1}{2} \right) \frac{\pi}{K} \right], n = 1, 2, ..., L$$

CMS Normaliza os MFCCs para reduzir perturbações

•
$$c_n = c_n - \frac{1}{T} \sum_{t=1}^{T} c_{n,t}$$

\triangle s Novos c_n derivados dos antigos c_n (opcional)

Conteúdo

- Introdução
- 2 Sistemas de Reconhecimento de Locutor
- 3 Extração de Características
- Modelos de Mistura Gaussiana
- Experimentos
- Conclusão

Definição

GMM
$$p(\mathbf{x}|\lambda) = \sum_{i=1}^{M} w_i p_i(\mathbf{x})$$

Gaussiana $p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})' \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}$
 $\lambda = \{(w_i, \boldsymbol{\mu}_i, \mathbf{\Sigma}_i)\}, i = 1, ..., M$
 $\mathbf{\Sigma}$ diagonal $\implies \sigma^2$

Dada uma sequência X

- $p(\mathbf{X}|\lambda) = \prod_{t=1}^{T} p(\mathbf{x}_t|\lambda).$
- ullet Função não linear de λ
- Estimar com o Expectation-Maximization (EM)

Expectation-Maximization

Estimar $\lambda^{(k+1)}$ a partir de λ^k

Obedecer
$$p(\mathbf{X}|\lambda^{(k+1)}) \geq p(\mathbf{X}|\lambda^{(k)})$$

Calcular E-Step e M-Step para cada k até convergir

E-Step
$$P(i|\mathbf{x}_t) = \frac{w_i p_i(\mathbf{x}_t)}{\sum_{k=1}^{M} w_k p_k(\mathbf{x}_t)}$$

M-Step Adaptar os parâmetros

Pesos
$$\overline{w}_i = \frac{1}{T} \sum_{t=1}^{T} P(i|\mathbf{x}_t, \lambda)$$

Médias
$$\overline{\mu}_i = \frac{\sum_{t=1}^T P(i|\mathbf{x}_t, \lambda)\mathbf{x}_t}{\sum_{t=1}^T P(i|\mathbf{x}_t, \lambda)}$$

Variâncias
$$\overline{\sigma}_{i}^{2} = \frac{\sum_{t=1}^{T} P(i|\mathbf{x}_{t},\lambda)\mathbf{x}_{t}^{2}}{\sum_{t=1}^{T} P(i|\mathbf{x}_{t},\lambda)} - \overline{\mu}_{i}^{2}$$

Expectation-Maximization

$$M=8$$
 e $\Delta=0$

Inicialização k-means com 1 iteração

Limiar 10^{-3}

Universal Background Model

Utiliza locuções de todos os locutores registrados Realça características comuns

 ${f X}$ específico a ${\cal S} \implies \uparrow \Lambda({f X})$

Escolhido o tipo (b)

Adapted Gaussian Mixture Model

Adaptação λ_{bkg} treinado $\Longrightarrow \lambda_j$ para cada \mathcal{S}_j Modelagem mais rápida que EM Composto de *E-Step* e *MAP-Step*

E-Step Semelhante ao E-Step do EM

•
$$n_i = \sum_{t=1}^T P(i|\mathbf{x}_t)$$

•
$$E_i(\mathbf{x}) = \frac{1}{n_i} \sum_{t=1}^{T} P(i|\mathbf{x}_t) \mathbf{x}_t$$

•
$$E_i(\mathbf{x}^2) = \frac{1}{n_i} \sum_{t=1}^{T} P(i|\mathbf{x}_t) \mathbf{x}_t^2$$

MAP-Step Adapta os parâmetros

Pesos
$$\hat{w}_i = [\alpha_i n_i / T + (1 - \alpha_i) w_i] \gamma$$

Médias $\hat{\mu}_i = \alpha_i E_i(\mathbf{x}) + (1 - \alpha_i) \mu_i$
Variâncias $\hat{\sigma}_i^2 = \alpha_i E_i(\mathbf{x}^2) + (1 - \alpha_i) (\sigma_i^2 + \mu_i^2) - \hat{\mu}_i^2$

Adapted Gaussian Mixture Model

 γ normaliza os pesos

Coeficiente
$$\alpha_i = \frac{n_i}{n_i + r}$$

- $\alpha_i \rightarrow 0 \implies$ manter os antigos parâmetros
- ullet $lpha_i
 ightarrow 1 \implies$ adaptar para os novos parâmetros

Adapted Gaussian Mixture Model

γ normaliza os pesos

Coeficiente
$$\alpha_i = \frac{n_i}{n_i + r}$$

- $\alpha_i \rightarrow 0 \implies$ manter os antigos parâmetros
- ullet $lpha_i
 ightarrow 1 \Longrightarrow$ adaptar para os novos parâmetros

Pesos, médias e variâncias adaptados

Fractional Gaussian Mixture Model

GMM com **\Sigmu** fracionário

Fractional Gaussian Mixture Model

GMM com **\Sigmu** fracionário

•
$$\sigma^2 = E[(X^r - \mu^r)^2]$$

$$\bullet \ \overline{\sigma}_i^2 = \frac{\sum_{t=1}^T P(i|\mathbf{x}_t, \lambda) (\mathbf{x}_t^r - \overline{\mu}_i^r)^2}{\sum_{t=1}^T P(i|\mathbf{x}_t, \lambda)}$$

Fractional Gaussian Mixture Model

GMM com **\Sigmu** fracionário

•
$$\sigma^2 = E[(X^r - \mu^r)^2]$$

$$\bullet \ \overline{\sigma}_i^2 = \frac{\sum_{t=1}^T P(i|\mathbf{x}_t, \lambda) (\mathbf{x}_t^r - \overline{\mu}_i^r)^2}{\sum_{t=1}^T P(i|\mathbf{x}_t, \lambda)}$$

Problema C

GMM com **\Sigmu** fracionário

•
$$\sigma^2 = E[(X^r - \mu^r)^2]$$

$$\bullet \ \overline{\sigma}_i^2 = \frac{\sum_{t=1}^T P(i|\mathbf{x}_t, \lambda) (\mathbf{x}_t^r - \overline{\mu}_i^r)^2}{\sum_{t=1}^T P(i|\mathbf{x}_t, \lambda)}$$

Problema C

Antes
$$c_n = c_n + (1 - \min_t c_{n,t})$$

Depois
$$\mu_n = \mu_n - (1 - \min_t c_{n,t})$$

GMM com **\Sigmu** fracionário

•
$$\sigma^2 = E[(X^r - \mu^r)^2]$$

$$\bullet \ \overline{\sigma}_i^2 = \frac{\sum_{t=1}^T P(i|\mathbf{x}_t, \lambda) (\mathbf{x}_t^r - \overline{\mu}_i^r)^2}{\sum_{t=1}^T P(i|\mathbf{x}_t, \lambda)}$$

Problema C

Antes
$$c_n = c_n + (1 - \min_t c_{n,t})$$

Depois
$$\mu_n = \mu_n - (1 - \min_t c_{n,t})$$

Piora quando $r\downarrow$

E quando $r \uparrow$

Conteúdo

- Introdução
- 2 Sistemas de Reconhecimento de Locutor
- 3 Extração de Características
- Modelos de Mistura Gaussiana
- 6 Experimentos
- 6 Conclusão

Base MIT Mobile Device Speaker Verification Corpus

Base MIT Mobile Device Speaker Verification Corpus 54 locuções/locutor em 3 níveis de ruído

Base MIT Mobile Device Speaker Verification Corpus

54 locuções/locutor em 3 níveis de ruído

Baixo Escritório calmo

Médio Saguão de edifício

Alto Cruzamento movimentado

```
Base MIT Mobile Device Speaker Verification Corpus
```

54 locuções/locutor em 3 níveis de ruído

Baixo Escritório calmo

Médio Saguão de edifício

Alto Cruzamento movimentado

3 sessões distintas

Enroll 1 Treinamento dos modelos

Enroll 2 Teste de detecção (e identificação)

Imposter Teste de rejeição

Base MIT Mobile Device Speaker Verification Corpus

54 locuções/locutor em 3 níveis de ruído

Baixo Escritório calmo

Médio Saguão de edifício

Alto Cruzamento movimentado

3 sessões distintas

Enroll 1 Treinamento dos modelos

Enroll 2 Teste de detecção (e identificação)

Imposter Teste de rejeição

Session	Training	Test	#female	#male
Enroll 1	Х		22	26
Enroll 2		Х	22	26
Imposter		Х	17	23

Implementação

Codificação

Linguagem Python 3.4.3

Codificação

Linguagem Python 3.4.3

Frameworks NumPy 1.8.1, SciPy 0.14.0 e Matplotlib 1.4

Codificação

Linguagem Python 3.4.3

Frameworks NumPy 1.8.1, SciPy 0.14.0 e Matplotlib 1.4

Parâmetros A implementação utilizou:

Codificação

Linguagem Python 3.4.3

Frameworks NumPy 1.8.1, SciPy 0.14.0 e Matplotlib 1.4

Parâmetros A implementação utilizou:

- # filtros = 26
- # coefficientes = 19
- Δ s de ordem 0, 1 e 2, com K=2
- Energy appending e CMS
- r = 16 para AGMM
- $threshold = 10^{-3}$ no EM
- M = 8, 16, 32, 64, 128

Implementação

Percalços

Inicialização Em 2 passos

Inicialização Em 2 passos

- Escolha de médias aleatórias
- *k-means* \implies Novas médias + pesos e variâncias

Inicialização Em 2 passos

- Escolha de médias aleatórias
- k-means \implies Novas médias + pesos e variâncias

Variâncias Podem reduzir significativamente

Inicialização Em 2 passos

- Escolha de médias aleatórias
- k-means \implies Novas médias + pesos e variâncias

Variâncias Podem reduzir significativamente

- $\sigma_{min}^2 = 0.01$
- $\sigma^2 < \sigma_{\min}^2 \implies \sigma^2 \leftarrow \sigma_{\min}^2$

Inicialização Em 2 passos

- Escolha de médias aleatórias
- k-means \implies Novas médias + pesos e variâncias

Variâncias Podem reduzir significativamente

- $\sigma_{min}^2 = 0.01$
- $\sigma^2 < \sigma_{min}^2 \implies \sigma^2 \leftarrow \sigma_{min}^2$

 $\overline{Monotonic}$ FGMM viola $\log p(\mathbf{X}|\lambda^{(k+1)}) \geq \log p(\mathbf{X}|\lambda^k)$

Inicialização Em 2 passos

- Escolha de médias aleatórias
- k-means \implies Novas médias + pesos e variâncias

Variâncias Podem reduzir significativamente

•
$$\sigma_{min}^2 = 0.01$$

•
$$\sigma^2 < \sigma_{min}^2 \implies \sigma^2 \leftarrow \sigma_{min}^2$$

 $\overline{Monotonic}$ FGMM viola $\log p(\mathbf{X}|\lambda^{(k+1)}) \ge \log p(\mathbf{X}|\lambda^k)$

•
$$|1-r| \implies \downarrow$$
 estimação

Δ	М	Office	Hallway	Intersection	All
	8	41.55	52.66	42.48	64.66
l	16	46.76	55.79	45.64	72.65
0	32	50.08	58.68	47.53	77.93
	64	50.08	57.52	47.22	80.52
	128	47.84	52.93	44.48	81.21
	8	44.41	53.28	43.98	66.20
	16	50.58	61.30	50.81	78.12
1	32	53.78	65.20	53.09	85.03
	64	54.21	64.43	52.43	87.85
	128	52.82	59.53	49.42	88.46
	8	45.02	56.06	46.60	68.56
	16	50.62	62.81	50.89	79.32
2	32	54.44	65.39	54.98	85.69
	64	56.33	63.93	54.67	89.54
	128	52.47	62.00	51.08	89.97

$$r = r_0 + (-1)^u \delta$$

$$r = r_0 + (-1)^u \delta$$

- $r_0 = 1$, $u \in \{0, 1\}$
- $\delta \in \{0.01, 0.05\}$

$$r = r_0 + (-1)^u \delta$$

- $r_0 = 1$, $u \in \{0, 1\}$
- $\delta \in \{0.01, 0.05\}$
- $\uparrow |1-r| \implies \downarrow$ representação

SSFGMM Single Speaker FGMM

$$r = r_0 + (-1)^u \delta$$

- $r_0 = 1$, $u \in \{0, 1\}$
- $\delta \in \{0.01, 0.05\}$

 $\uparrow |1-r| \implies \downarrow$ representação

$$r = 0.95$$

Δ	М	Office	Hallway	Intersection	All
	8	38.70	44.41	32.37	50.50
	16	41.63	46.37	32.56	62.35
0	32	47.72	48.53	37.46	68.06
	64	43.75	50.31	37.27	72.80
	128	38.62	42.75	31.06	72.15
	8	33.37	31.67	26.35	44.87
	16	41.13	42.32	26.62	54.71
1	32	44.95	47.92	30.29	64.47
	64	43.13	43.36	31.64	70.95
	128	33.14	37.15	21.10	73.84
	8	32.21	33.49	26.66	43.02
	16	41.09	42.40	31.10	54.67
2	32	46.33	44.14	31.75	66.78
	64	40.93	43.60	33.53	72.72
	128	39.16	37.89	23.26	73.53

SSFGMM Single Speaker FGMM

r = 0.95

$$r = 0.99$$

Δ	М	Office	Hallway	Intersection	All
	8	41.55	51.31	41.13	63.70
	16	47.42	56.13	45.10	71.64
0	32	48.73	56.98	43.83	78.32
	64	49.61	55.52	43.21	80.83
	128	47.15	50.69	38.93	81.13
	8	43.90	52.16	43.09	65.90
	16	49.31	58.68	47.22	76.85
1	32	52.16	60.42	48.73	83.37
	64	53.94	60.03	48.77	86.03
	128	49.88	54.63	45.83	87.15
	8	43.87	55.25	43.94	66.63
	16	49.65	60.61	48.11	77.97
2	32	53.28	62.77	52.20	84.14
	64	53.40	61.11	51.93	88.31
	128	50.23	54.17	46.03	88.43

SSFGMM Single Speaker FGMM

r = 0.99

$$r = 1$$

Δ	М	Office	Hallway	Intersection	All
	8	40.86	52.01	41.32	64.47
	16	47.69	56.52	44.79	72.22
0	32	49.50	57.72	47.61	77.74
	64	50.00	57.95	45.68	81.25
	128	48.65	53.43	42.63	81.67
	8	44.25	53.97	45.60	66.94
	16	50.42	62.00	50.54	78.24
1	32	54.28	63.54	53.86	84.45
	64	55.09	64.81	52.85	87.31
	128	53.32	59.99	50.46	88.85
	8	44.37	57.06	47.30	69.64
ı	16	50.89	62.81	52.12	78.78
2	32	54.90	65.01	56.29	86.00
	64	56.06	64.70	56.56	89.16
	128	52.55	60.73	49.58	90.66

SSFGMM Single Speaker FGMM

r = 1

$$r = 1.01$$

Δ	М	Office	Hallway	Intersection	All
	8	40.16	52.51	43.02	61.69
	16	46.88	57.10	47.80	71.84
0	32	49.92	59.30	49.11	76.66
	64	50.19	58.95	48.92	79.94
	128	48.38	55.56	45.22	81.52
	8	43.36	54.90	45.18	65.28
	16	49.58	61.07	53.74	76.74
1	32	55.02	66.44	56.64	83.60
	64	56.02	66.28	56.25	88.00
	128	55.17	62.23	54.32	89.51
	8	45.10	53.74	47.22	66.44
	16	50.81	64.31	53.59	78.05
2	32	56.56	67.09	58.49	84.72
	64	56.10	66.90	58.33	89.74
	128	55.02	63.54	56.33	90.55

SSFGMM Single Speaker FGMM

r = 1.01

$$r = 1.05$$

Δ	М	Office	Hallway	Intersection	All
	8	22.22	33.02	34.80	30.71
	16	32.52	41.32	42.67	42.32
0	32	40.78	51.20	48.92	52.70
	64	46.68	56.56	53.51	62.19
	128	49.15	59.57	55.13	69.91
	8	18.56	23.88	26.97	22.15
	16	28.20	39.00	39.78	32.87
1	32	38.39	51.58	50.46	50.08
	64	49.11	63.46	58.33	62.96
	128	57.99	66.32	59.41	75.96
	8	17.52	25.15	28.43	19.41
	16	28.94	38.27	42.44	34.30
2	32	40.74	50.31	49.38	49.88
	64	50.42	61.23	58.87	63.77
	128	57.68	67.52	62.00	77.55

Identificação

SSFGMM Single Speaker FGMM

$$r = 1.05$$

Δ	М	Office	Hallway	Intersection	All
0	8	22.88	19.06	22.30	14.81
	16	21.49	16.71	21.49	11.19
	32	21.14	16.05	20.94	9.61
	64	21.18	16.98	21.34	8.87
	128	21.49	19.33	23.74	8.60
	8	23.15	17.67	21.34	13.93
	16	20.80	15.78	18.33	10.07
1	32	19.06	15.31	18.45	7.87
	64	19.02	15.28	18.87	6.72
	128	20.14	17.79	20.37	6.79
	8	22.42	17.52	22.03	13.92
	16	20.22	15.32	18.20	10.06
2	32	19.48	15.20	17.36	7.75
	64	18.67	15.82	18.48	6.25
	128	19.80	17.94	21.26	6.40

SSGMM Single Speaker GMM

M = 8

Δ	М	Office	Hallway	Intersection	All
0	8	25.38	21.00	23.66	18.21
	16	23.14	18.40	21.49	14.39
	32	21.71	17.13	20.99	12.93
	64	20.64	16.55	19.98	11.61
	128	19.79	15.82	20.07	11.29
	8	25.31	21.83	24.73	18.59
	16	22.61	17.52	20.80	14.20
1	32	21.07	16.28	19.52	11.30
	64	18.90	14.51	17.44	9.58
	128	17.44	13.46	16.62	7.80
	8	24.11	21.13	22.68	18.87
	16	21.99	17.63	19.47	13.59
2	32	20.29	15.51	17.67	10.57
	64	18.71	13.77	17.01	8.91
	128	17.48	12.43	15.97	7.56

Δ	М	Office	Hallway	Intersection	All
0	8	23.68	19.32	23.84	16.09
	16	21.57	17.71	22.96	13.46
	32	20.72	16.48	23.38	11.42
	64	20.52	18.51	24.16	11.07
	128	21.95	19.96	26.04	10.72
	8	23.42	19.33	23.45	15.39
	16	21.26	16.24	20.76	12.19
1	32	19.56	15.50	19.98	9.72
	64	18.22	15.24	20.33	8.22
	128	17.52	15.69	20.56	7.75
	8	22.49	18.40	22.49	14.62
	16	20.87	16.24	19.99	11.56
2	32	19.48	14.93	18.75	9.30
	64	19.25	15.36	19.02	7.94
	128	19.29	16.55	19.28	7.25

SSAGMM Single Speaker AGMM Adaptação Pesos e médias

Δ	М	Office	Hallway	Intersection	All
0	8	25.58	21.17	23.68	18.21
	16	23.23	18.09	21.83	14.74
	32	21.84	16.82	21.03	12.73
	64	20.56	16.20	19.78	11.23
	128	19.95	15.28	19.14	10.84
	8	25.54	21.60	24.88	18.36
	16	22.84	17.32	21.07	14.35
1	32	21.14	16.09	19.52	11.42
	64	19.52	14.40	17.71	9.53
	128	17.90	13.19	16.47	7.84
	8	24.27	20.76	22.61	18.56
	16	22.18	16.98	19.68	13.62
2	32	20.22	15.36	17.64	10.49
	64	18.72	13.47	16.95	8.96
	128	17.55	12.46	15.74	7.52

SSAGMM Single Speaker AGMM Adaptação Pesos e médias

SSAGMM Single Speaker AGMM Adaptação Pesos e médias M=16

SSAGMM Single Speaker AGMM Adaptação Pesos e médias M=128

Δ	М	Office	Hallway	Intersection	All
0	8	23.96	19.49	23.84	16.04
	16	21.92	17.33	22.64	13.50
	32	20.87	16.51	22.88	11.69
	64	20.41	17.51	23.23	11.07
	128	20.84	18.06	23.92	10.30
	8	23.35	19.06	23.58	15.51
	16	21.76	16.16	20.76	12.35
1	32	19.64	15.47	19.98	9.99
	64	18.44	15.16	19.98	8.49
	128	17.55	15.01	19.68	7.80
	8	22.65	18.36	22.38	14.78
	16	21.03	16.06	19.99	11.77
2	32	19.71	14.67	18.44	9.44
	64	19.14	15.01	18.49	7.99
	128	18.94	15.78	18.71	7.37

Conteúdo

- Introdução
- 2 Sistemas de Reconhecimento de Locutor
- 3 Extração de Características
- 4 Modelos de Mistura Gaussiana
- Experimentos
- Conclusão

GMM é uma ótima modelagem para reconhecimento de locutor independente de texto

GMM é uma ótima modelagem para reconhecimento de locutor independente de texto

Identificação com FGMM apresentou resultados inferiores ao esperado

GMM é uma ótima modelagem para reconhecimento de locutor independente de texto

Identificação com FGMM apresentou resultados inferiores ao esperado

- Investigar melhor a teoria
- Problema de calibragem do r?

GMM é uma ótima modelagem para reconhecimento de locutor independente de texto

Identificação com FGMM apresentou resultados inferiores ao esperado

- Investigar melhor a teoria
- Problema de calibragem do r?

Verificação com GMM apresenta bons resultados

GMM é uma ótima modelagem para reconhecimento de locutor independente de texto

Identificação com FGMM apresentou resultados inferiores ao esperado

- Investigar melhor a teoria
- Problema de calibragem do r?

Verificação com GMM apresenta bons resultados

- Testar com valores maiores de M
- Utilizar outras bases

GMM é uma ótima modelagem para reconhecimento de locutor independente de texto

Identificação com FGMM apresentou resultados inferiores ao esperado

- Investigar melhor a teoria
- Problema de calibragem do r?

Verificação com GMM apresenta bons resultados

- Testar com valores maiores de M
- Utilizar outras bases

Verificação com AGMM é uma boa alternativa

GMM é uma ótima modelagem para reconhecimento de locutor independente de texto

Identificação com FGMM apresentou resultados inferiores ao esperado

- Investigar melhor a teoria
- Problema de calibragem do r?

Verificação com GMM apresenta bons resultados

- Testar com valores majores de M
- Utilizar outras bases

Verificação com AGMM é uma boa alternativa

- Boas modelagens sempre adaptam as médias
- Testar com diferentes valores de r

Dúvidas?