Dataset Description

369 155 Slices per Volumes Volume

Volume 100 Slice 40

4 Image
variants per
slice
(Native, T1,
T2, T2-Flair)
+
1 image mask
per slice

Total number of volumes: 369

Total number of slices: 57195

Volumes with no positive slices: 0 (0.0)

Volumes with at least one positive slice: 369 (1.0)

Negative slices: 32773 (0.5730046332721391)

Positive slices: 24422 (0.4269953667278608)

Sample Images

Slices of similar number correspond to same parts of the brain

Different variants highlight different structures for the same slice

Sample Masks

Mask labels have each pixel as 4 possible values (identified by green, red, blue and black) above, which indicate (ET)
GD-enhancing tumor, (ED) peritumoral edema, (NCR) necrotic and non-enhancing tumor core, and normal

Data Exploration

Q: How many positive slices does each volume have?

A: Each volume has between ~20 and ~100 positive slices. Most volumes have around ~60 to ~80 positive slices

Data Exploration

Q: Is the dataset balanced with respect to the different mask classes?

A: No. The vast majority of pixels is "Normal", probably techniques are needed to deal with this.

Q: Ignoring the "Normal" class, is the dataset balanced?

A: Not perfectly balanced, but the number of pixels of each class is comfortably within the same order of magnitude.

Data Exploration

Q: Is the distribution of image pixel values measurably different between positive vs negative slices?

A: Distribution of pixel values is quite different between the different image variants, but the difference between positive and negative images is extremely sutil at best. In all 4 variants though, the positive images seem to have higher pixel brightness upper bounds.

ML technique: U-Net Architecture

U-Net Architecture

Encoder

Decoder

Downsampling:

- Convolutional Layers: extract and learn hierarchical features from the 3D data
- Active Functions: ReLU
- **Pooling Layers:** put between convolutional layers, reduce the dimensions of the volume and downsample the data
- Increasing Feature Channels: number of feature channels doubles after max pooling

Upsampling:

- Upsampling Layers: increase the spatial dimensions of the feature maps
- Convolutional Layers: process the merged feature maps; refine the upsampled features
- Active Functions: ReLU
- **Decreasing Feature Channels:** number of feature channels halves after each upsampling step; transitioning from a deep feature representation to the final segmented output

U-Net Architecture

Skip Connections

- Concatenation between symmetrical stages of encoder/ decoder
- Retain high-resolution features and spatial information

Bottleneck

- A narrow and deep layer that connects the encoder and the decoder
- Spatial information from the input image is compressed into a more abstract feature representation.

U-Net Architecture

Activation Function: rectified linear unit ReLU

- Introduces non-linearity into the model that helps the NN to learn more complex data.
- Simple and computationally efficient.
- Sets all negative values in the output to zero, while leaving the positive values as-is.

Loss Function: pixel-wise binary cross-entropy

- Calculates the cross-entropy between the predicted probability distribution and the true probability distribution for each pixel in the image.
- Penalizes misclassification of foreground pixels, more heavily than background pixels.

$$E = \sum_{\mathbf{x} \in \Omega} w(\mathbf{x}) \log(p_{\ell(\mathbf{x})}(\mathbf{x}))$$

Potential Training Strategy

- Stochastic gradient descent with momentum and weight decay.
- Momentum adds a fraction of the previous update to the current update in order to speed up the convergence of the optimization algorithm.
- Weight decay adds a penalty term to the loss function to have the model use smaller weights.