Merlin

Overview of the Merlin Tool and Process Samir Ahmed, Douglas Densmore, Swapnil Bhatia Tuesday March 6th

Overview of Tools

Client side Mage Editor [Flex] Magelet [Server] Server side Merlin [Java] optMage [Perl]

Why Merlin?

Overview

 Merlin attempts to optimized the Oligo selection process for MAGE.

Oligo Homology with genome

Oligos Homology with other oligos

Why Merlin?

Oligo Selection Process

- A target mutation is used to define an oligo for generation.
- For a given target mutation are several $(10^1 \text{ to } 10^2)$ possibilities.
- For a set of target mutations there are millions of permutations

Why Merlin?

Problem Definition

Given a set of target mutations, Construct a set of oligos that minimize genome homology and oligo pool homology without compromising recombination efficiency.

- optMage used as the benchmark
- Free Energy is not over threshold

Scoring Terms

- ΔG: Free Energy Score
 - Value to quantify the energy associated with secondary structure formation
- B_G: Blast Genome Score
 - Value to quantify an individual oligo's homology to the genome, excluding the desired region to be mutated
- B_o: Blast Oligo Score
 - Value to quantify an individual oligo's homology to the remainder of the oligos in the selection pool

Oligo Terms

- Target Mutation : Desired insertion, deletion or mismatch
- LP, RP: Left and Right start position of the genome
- $\mathbf{b_{5'}}$, $\mathbf{b_{3'}}$: Buffer regions between 5' and 3' ends [bp]
- **t**_i: Target region length [bp]
- L : Desired Length of Oligo
- Span: Entire region of interest for a given mutation to the genome
- Margin: Margin of flexibility for selecting oligos

Oligo Visualized

Number of Possible Oligos = Margin Length

Mistarget Terms

- Mistarget: Regions that could be aligned with undesired regions of the genome or other oligos
- Mistarget scores are calculated from BLAST results (in different ways)
- Mistarget scores are used to calculate B_G and B_o

High Level Overview

optMage

- Creates an Oligo at b₅
- Shifts target towards 3'
- Stops when ∆G below threshold

High Level Overview Merlin

- Oligo Score (ΔG, B_G, B_o)
- Every possible ΔG , B_G score is calculated
- B_o is calculated for entire spans
- Heuristic algorithm to minimize Oligo Score
- Uses lexicographical ordering to compare scores

Merlin Stage 1

1 : Calculate ΔG , B_G for every possible oligo

Merlin Stage 2

2: BLAST Every Span against each other

^{*} We will use a linear scaling to approximate mistarget score

Merlin Stage 3

3: Oligo Score Minimization Heuristic

Given a pool of k spans with n_k possible oligo for a given span,

For all k, calculate local B_o values for each oligo*.

Find the span with the lowest cumulative Bo Score $\sum_{0}^{n_{k}} B_{0}$

Select that oligo with the minimal score (ΔG , B_G , B_o)

Lock the selected oligo

Repeat until all oligos in span have been 'locked'

Merlin Heuristic by Example

Create an Artificial Genome to Show Heuristic Intuition

> No fixed matches CCATACCGTCCTAATTCTTCGGTTATGTTTCCGATGTAGGAGTGAGCCTA CCTGCCTTTGCGTCTTGATACCAATGAAAAACCTATGCACTTTGTACAGG GTGCCATCGGGTTTCTGAACTCTCAGATAGTGGGGATCCCGGGTAAAGAC CTATATCTGCGGTCCAACTTAGGCATAAACCTCCATGCTACCTAGTCAGA CCCACCCGCACGGGTAAATATGGCACGCGTCCGACCTGGTTCCTGGCG TTCTACGCTGCCACGTGTTCATTAACTGTTGTT**TGGTAGCACAAAAGTAT TACCATGGTCCTAGAAG**TTCGGCACAGTTAGTTCGAGCCTAATGTCACAA ATGACGCAGAACGCCAATGAGTGCCAGACATTAGGTGGAGTTCAGTTCGG TAACGGAGAGACTCTGCGGCGTACTTAATTATGCATTTGAAACGCGCCCA AGTGACGCTAGGCAAGTCAGAGCAGGTTCCCGTGTTAGCTTGAGGGTAAA CCATACCGTCCTAATTCTTCGGTTATGTTTCCGATGTAGGAGTGAGCCTA CCTGCCTTTGCGTCTTGATACCAATGAAAAACCTATGCACTTTGTACAGG GTGCCATCGGGTTTCTGAACTCTCAGATAGTGGGGATCCCGGGTAAAGAC CTATATCTGCGGTCCAACTTAGGCATAAACCTC*CATGCTACCTAGTCAGA* **CCCACCCGCACGGGGT**AAATATGGCACGCGTCCGACCTGGTTCCTGGCG TTCTACGCTGCCACGTGTTCATTAACTGTTGTT**TGGTAGCACAAAAGTAT** *TACCATGGTCCTAGAAG*TTCGGCACAGTTAGTTCGAGCCTAATGTCACAA ATGACGCAGAACGCCAATGAGTGCCAGACATTAGGTGGAGTTCAGTTCGG TAACGGAGAGACTCTGCGGCGTACTTAATTATGCATTTGAAACGCGCCCA AGTGACGCTAGGCAAGTCAGAGCAGGTTCCCGTGTTAGCTTGAGGGTAAA

A & C

A&B

3 Oligo Visual Explanation

3 Oligo Visual Explanation

Redefine the span to represent the optimal Oligo

3 Oligo Visual Explanation

Recalculate the Blast Oligo Scores for the remainder Of the Oligos, to update what has been affected Oligo B

Merlin Live Example

Now using an real MAGE test sample

Gene Name	e Sens	e Repl	licore LP	RP	Mutation Sequence
pps -	2	1785091	1785181	М	CATCATcatcatCATCAT
tktA -	2	3079612	3079702	М	CATCATcatcatCATCAT
aroF -	2	2739127	2739217	Μ	CATCATcatcatCATCAT
aroG +	1	784811	784901	М	CATCATcatcatCATCAT
aroH +	2	1786414	1786504	М	CATCATcatcatCATCAT
aroD +	2	1772665	1772755	Μ	CATCATcatcatCATCAT
aroE -	2	3428815	3428905	М	CATCATcatcatCATCAT
ydiB +	2	1771768	1771858	М	CATCATcatcatCATCAT
aroK -	2	3517041	3517131	М	CATCATcatcatCATCAT
aroL +	1	405584	405674	М	CATCATcatcatCATCAT
aroA +	1	957990	958080	Μ	CATCATcatcatCATCAT
aroC -	2	2445450	2445540	Μ	CATCATcatcatCATCAT
trpE -	1	1320925	1321015	М	CATCATcatcatCATCAT
trpD -	1	1319363	1319453	М	CATCATcatcatCATCAT
trpC -	1	1317764	1317854	М	CATCATcatcatCATCAT
trpA -	1	1315201	1315291	Μ	CATCATcatcatCATCAT
trpB -	1	1316394	1316484	Μ	CATCATcatcatCATCAT
crp +	2	3484097	3484187	Μ	CATCATcatcatCATCAT

Switches

- Blast Scoring Method
 - Sum of raw bitscore
 - Expected value of alignment
- Free Energy Threshold
 - Below threshold is zero
 - Below threshold is negative
- Framework for adding more switches exists

Comparison Results vs Runtime

- Slower than optMage
- BLAST is time consuming
- Can be parallelized for time efficiency
- B_G and B_O results provide us with more complete analysis

Comparison Why Merlin?

 By design cannot be worse than optMage

Could drastically reduce B_G score