

Question 7:

Given: A \triangle ABC in which D, E and F are the mid points of BC, AC and AB respectively.

DE, EF and FD are joined to getfour triangles.

To Prove: Four triangle AFE, BFD, FDE and EDC are Congruent. Proof: Since F,E are mid point of AB and AC

So,
$$EF = \frac{1}{2}BC$$

[By Mid point Theorem]

Similarly

$$FD = \frac{1}{2}AC$$

and

$$ED = \frac{1}{2}AB$$

Now, in $\triangle AFE$ and $\triangle BFD$, we have

$$AF = FB$$

$$FE = \frac{1}{2}BC = BD$$

$$FD = \frac{1}{2}AC = AE$$

Thus by Side-Side-Side criterion of congruence, we have

∴ ΔAFE≅ ΔBFD

[By SSS]

Again, in $\triangle BFD$ and $\triangle FED$, we have

FE | BC

i.e.

FE | BD and AB | ED

i.e.

FB | ED, by Mid point Theorem.

So, BDEF is a parallelogram.

 FD being a diagonal divides the parallelogram into two congruent triangles

∴ ∆BFD ≅ ∆FDE

Similarly we can prove FECD is a parallelogram.

So, $\Delta FED \cong \Delta EDC$

Thus, all the four triangles ΔBFD , ΔFDE , ΔFED and ΔEDC are congruent to each other.

********* END *******