30

5

10

ABSTRACT

A method for analog representation of the amplitudes of a vector in which a \slash set of single-stranded nucleic acid oligomers E_i and $\underline{E}_i \backslash \text{represents}$ each m-component vector $m{v} = \Sigma_i \ V_i \ m{e_i}$, where $m{k}_i$ and E_i are each in 1:1 correspondence with the basis vectors \mathbf{e}_i , $i=1,2,\ldots,m$ in an abstract m-dimensional vector space. The E_i and \underline{E}_i oligomers have complementary sequences, and represent the i-th component of ${m v}$ for which the amplitude $V_{\rm i}$ is positive and negative, respectively. The condentration of each of the oligomers \boldsymbol{E}_1 or \underline{E}_i is proportional to the magnitude of the amplitude V_i of the i-th component of ${f v.} ackslash$ The oligomers independently comprise subunits selected from the group consisting of deoxyribonucleotides, ribonucleotides, and analogs of deoxyribonucleotides or ribonucleotides, and an χ single oligomer can comprise one, or a combination of two or hore, of said different types of subunits. The invention als ϕ includes methods for analog representation of the operations of vector addition and vector and matrix algebra that are implemented using vectors that are represented by sets of oligomer's E_i and \underline{E}_i as described above. analog neural network, for which $\$ the data of each neuronal unit is represented by a set of olligomers E_i and \underline{E}_i as described above; and interconnections and signaling between neuronal units are represented by sets of biochemical reactions that are analog representations of operations of vector and matrix algebra as $\operatorname{described} \backslash \operatorname{above}$. Application of a saturating function to a signal from \flat ne or more neuronal units to produce an output is represented by hybridizing a set of oligomers selected by such a set of bi γ chemical reactions and E_i oligomers, and an output of the neural network is represented by a set of oligomers that specilfically hybridize to such a sub-stoichiometric set of E_i and $\underline{E}_i \ \diamondsuit{} \text{oligomers.}$