E. Area($\triangle ABE$)= $\frac{1}{4}$ Area($\triangle ABC$). To find Area($\triangle ABY$), find ratio of bases AY to AE. Add parallel to AE from C, extend BF to G. $\triangle AYF \sim \triangle CGF$ gives $AY = 3CG \triangle BYE \sim \triangle BGC$ gives CG = 4YE so AY = 12YE and Area($\triangle ABY$) = (12/13) Area($\triangle ABE$) = 3/13 Area($\triangle ABC$). Removing 3 of these leaves Area($\triangle XYZ$) = (4/13) Area($\triangle ABC$)= (4/13) $169\sqrt{3}$.

F. The k^{th} term in the expansion will be given by $\binom{10}{k} (4x^n)^{10-k} (\frac{x^{-3}}{2})^k$

 $=C(x^{10n-nk-3k})$, where C is a numerical constant. x^0 insures that this is a constant term $\rightarrow k = 10n/(n+3) = 10 - 30/(n+3)$ Thus, n+3 must be a divisor of 30 = (2)(3)(5) The factors of 30 are: 1, 2, 3, 5, 6, 10, 15 and 30 so n may be 2, 3, 7, 12, and 27. The total is 51.