Modern Data Science Methods for Educational Research

R for Data Analysis in Educational Research

Data Analysis

ผศ.ดร.สิวะโชติ ศรีสุทธิยากร อ.ดร.ประภาศิริ รัชประภาพรกุล

กาดวิชาวิจัยและจิตวิทยาการศึกษา คณะครุศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

February 12, 2023

1. Exploratory Data Analysis

Exploratory Data Analysis (EDA)

EDA เป็นกระบวนการวิเคราะห์เพื่อสำรวจข้อมูล ที่มีลักษณะเป็นกระบวนการทวนซ้ำ โดยมีวัตถุประสงค์เพื่อ

- ตั้งคำถาม/ประเด็นวิจัยจากข้อมูล
- หาคำตอบที่เหมาะสมของคำถามด้วยการใช้การจัดเตรียมข้อมูล ร่วมกับการทำทัศนภาพข้อมูล และ/หรือ การใช้สถิติวิเคราะห์
- ผลการวิเคราะห์ที่ได้อาจนำไปสู่ประเด็นคำถามวิจัยใหม่ ๆ

Figure 1: ที่มา : Max Khun, & Kjell Johnson (2019)

Exploratory Data Analysis (EDA)

- การสำรวจโครงสร้างชุดข้อมูล str()/glimpse(), head(), tail()
- 🕨 การสำรวจสภาพของตัวแปร
- การสำรวจความสัมพันธ์ระหว่างตัวแปร

ชุดข้อมูลที่ใช้เป็นตัวอย่าง

เนื้อหาส่วนนี้จะใช้ชุดข้อมูล TeacherSalaryData.csv เป็นตัวอย่างประกอบเนื้อหา

```
library(dplyr)
dat <- read.csv("TeacherSalaryData.csv",</pre>
                  header = TRUE.
                  stringsAsFactors = TRUE)
```

วัตถุประสงค์ของการวิจัย

- 1. (เชิงเปรียบเทียบ) เพื่อเปรียบเทียบค่าเฉลี่ยเงินเดือนของอาจารย์มหาวิทยาลัย ระหว่าง กลุ่มอาจารย์ที่มี ตำแหน่งทางวิชาการ สาขาวิชา และเพศแตกต่างกัน
- 2. (วิเคราะห์ความสัมพันธ์) ์เพื่อวิเคราะห์ความสัมพันธ์ระหว่างเงินเดือนของอาจารย์มหาวิทยาลัย กับ ตำแหน่งทางวิชาการ สาขาวิชา เพศ และประสบการณ์ทำงานที่แตกต่างกัน

สำรวจโครงสร้างของชุดข้อมูล

glimpse(dat)

Rows: 397

```
Columns: 7
$ X
                                                                                                    <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13
$ rank
                                                                                                    <fct> Prof, Prof, AsstProf, Prof, Prof, Ass
$ discipline
                                                                                                   $ yrs.since.phd <int> 19, 20, 4, 45, 40, 6, 30, 45, 21, 18
$ yrs.service
                                                                                                   <int> 18, 16, 3, 39, 41, 6, 23, 45, 20, 18
$ sex
                                                                                                    <fct> Male, 
                                                                                                   <int> 139750, 173200, 79750, 115000, 141500
$ salary
```

- สำรวจของแขต ค่าที่เป็นไปได้ของตัวแปรแต่ละตัว ความสมเหตุสมผลของค่าดังกล่าว
- 🕨 สำรวจการกระจายของตัวแปรแต่ละตัว
- ▶ ฟังก์ชันที่อาจนำมาใช้ในการดำเนินงาน summary(), hist(), boxplot(), barplot(), ...

สำรวจการแจกแจงของตัวแปร : สถิติพื้นฐาน

summary(dat)

ra	nk	discipline	yrs.si	nce.phd	yrs.se	ervice
AssocProf	: 64	A:181	Min.	: 1.00	Min.	: 0.00
${\tt AsstProf}$: 67	B:216	1st Qu	.:12.00	1st Qu.	: 7.00
Prof	:266		Median	:21.00	Median	:16.00
			Mean	:22.31	Mean	:17.61
			3rd Qu	.:32.00	3rd Qu.	:27.00
			Max.	:56.00	Max.	:60.00

salary

Min. : 57800 1st Qu.: 91000 Median :107300 Mean :113706 3rd Qu.:134185

สำรวจการแจกแจงของตัวแปร : สถิติพื้นฐาน

- # install.packages("psych")
- library(psych)
- # calculate descriptive stat
- describe(dat)

	vars	n	mean	sd	median	trimmed
rank*	1	397	2.51	0.76	3	2.63
${\tt discipline*}$	2	397	1.54	0.50	2	1.55
<pre>yrs.since.phd</pre>	3	397	22.31	12.89	21	21.83
yrs.service	4	397	17.61	13.01	16	16.51
sex*	5	397	1.90	0.30	2	2.00
salary	6	397	113706.46	30289.04	107300	111401.61
	ma	ax :	range skew	kurtosis	s s	e
rank*		3	2 -1.14	-0.31	0.0	4
${\tt discipline*}$		2	1 -0.18	-1.97	0.0	3

สำรวจการแจกแจงของตัวแปร : ตัวแปรต่อเนื่อง

```
par(mfrow=c(2,3))
hist(dat$salary, col="steelblue", border="white")
hist(dat$yrs.since.phd, col="steelblue", border="white")
hist(dat$yrs.service, col="steelblue", border="white")
boxplot(dat$salary, horizontal = TRUE)
boxplot(dat$yrs.since.phd, horizontal = TRUE)
boxplot(dat$yrs.service, horizontal = TRUE)
```


สำรวจการแจกแจงของตัวแปร : ตัวแปรจัดประเภท

```
tab rank <- table(dat$rank)</pre>
```

tab rank

```
AssocProf AsstProf
                      Prof
      64
               67
                       266
```

- tab_discipline <- table(dat\$discipline)</pre>
- tab discipline

```
181 216
```

- tab sex <- table(dat\$sex)
- tab sex

สำรวจการแจกแจงของตัวแปร : ตัวแปรจัดประเภท

ดำเนินการจัดกระทำข้อมูล

ใส่ label ให้กับ discipline

```
dat$discipline <- factor(dat$discipline,
                         levels = c("A","B"),
                         labels = c("Pure Science",
                                     "Applied Science"))
```

สลับ level ของตำแหน่งวิชาการให้เป็นไปตาบลำดับ

```
dat <- dat %>%
        mutate(rank = factor(rank,
                              levels = c("AsstProf".
                                          "AssocProf".
                                          "Prof")))
```

การสำรวจความสัมพันธ์ระหว่างตัวแปร

จำแนกตามประเภทของตัวแปร

- ความสัมพันธ์ระหว่างตัวแปรตามกับตัวแปรอิสระ
- ความสัมพันธ์ระหว่างตัวแปรคิสระ

จำแนกตามประเภทของข้อมูล

- ความสัมพันธ์ระหว่างตัวแปรเชิงปริมาณกับตัวแปรเชิงปริมาณ
- ความสัมพันธ์ระหว่างตัวแปรเชิงปริมาณกับตัวแปรจัดประเภท
- ความสัมพันธ์ระหว่างตัวแปรจัดประเภทกับตัวแปรจัดประเภท

วัตถุประสงค์ลักษณะที่ 1 : เชิงเปรียบเทียบ

เพื่อเปรียบเทียบค่าเฉลี่ยเงินเดือนของอาจารย์มหาวิทยาลัย ระหว่าง กลุ่มอาจารย์ที่มี ตำแหน่งทางวิชาการ สาขาวิชา และเพศแตกต่างกัน

- สำรวจความสัมพันธ์ (วิเคราะห์เปรียบเทียบ) เงินเดือน จำแบกตาบตำแหน่งวิชาการ สาขาวิชา และเพศ
- สำรวจความสัมพันธ์ระหว่างตำแหน่งวิชาการ สาขาวิชา และเพศ

ฟังก์ชัน plot ()

ฟังก์ชัน plot () เป็น generic graphic function ซึ่งสามารถใช้ plot แผนภาพที่แตกต่างกันได้ โดยขึ้นกับลักษณะข้อมูลที่นำเข้าในฟังก์ชัน

- ถ้า x และ y เป็นตัวแปรเชิงปริมาณทั้งคู่ ฟังก์ชันจะให้แผนภาพการกระจาย (scatter plot)
- ถ้า x เป็นตัวแปรจัดประเภท และ y เป็นตัวแปรเชิงปริมาณ จะให้ boxplot เจิงเราโรยรแพียรเ
- ถ้า x เป็นตัวแปรจัดประเภท และ y เป็นตัวแปรจัดประเภท จะให้ mosaic plot

```
plot(x, y,
     col = "black",
     pch = 16,
     xlab = "x variable",
     vlab = "v variable")
```

Boxplot เปรียบเทียบเงินเดือนตามตัวแปรอิสระ

ความสัมพับธ์ระหว่างตัวแปรตามกับตัวแปรอิสระ

```
par(mfrow = c(2,2), mar=c(3,3,1,1))
plot(x = dat rank, y = dat salary,
     xlab = "", ylab = "salary")
plot(x = dat discipline, y = dat salary,
    xlab = "", ylab = "salary")
plot(x = dat\$sex, y = dat\$salary,
    xlab = "", ylab = "salary")
```

ความสัมพันธ์ระหว่างตัวแปรตามกับตัวแปรอิสระ

สถิติพื้นฐานของเงินเดือนจำแนกตาม discipline

ความสัมพันธ์ระหว่างตัวแปรตามกับตัวแปรอิสระ

```
dat %>% group_by(discipline) %>%
     summarise(mean = mean(salary),
               sd = sd(salary),
3
               min = min(salary),
4
               max = max(salary))
5
```

```
# A tibble: 2 \times 5
 discipline
                    mean sd min
                                         max
  <fct>
                   <dbl> <dbl> <int> <int>
1 Pure Science 108548, 30538, 57800 205500
2 Applied Science 118029. 29459. 67559 231545
```

สถิติพื้นฐานของเงินเดือนจำแนกตาม discipline

ความสัมพับธ์ระหว่างตัวแปรตามกับตัวแปรอิสระ

```
dat %>% group_by(rank) %>%
    summarise(mean = mean(salary),
               sd = sd(salary),
3
               min = min(salary),
               max = max(salary))
5
```

```
# A tibble: 3 \times 5
```

```
rank
                   sd
                           min
              mean
                                  max
 <fct>
            <dbl> <dbl> <int> <int>
1 AsstProf 80776. 8174. 63100 97032
2 AssocProf 93876, 13832, 62884 126431
           126772. 27719. 57800 231545
3 Prof
```

Exploring Interaction Effects (1)

```
interaction.plot(x.factor = dat$rank,
                    trace.factor = dat$discipline,
                    response = dat$salary,
3
                    xlab = "rank",
                    ylab = "salary",
                    col = c("steelblue", "orange"),
                    lwd = 2,
                    trace.label = "discipline",
8
                    tvpe = "b")
```

Exploring Interaction Effects (1)

Exploring Interaction Effects (2)

```
par(mfrow=c(1,2))
   interaction.plot(x.factor = dat$sex,
                     trace.factor = dat$discipline,
3
                     response = dat$salary,
                     xlab = "rank",
                     vlab = "salary",
                     col = c("steelblue", "orange"),
                     lwd = 2,
8
                     trace.label = "discipline",
                     type = "b")
10
   interaction.plot(x.factor = dat$sex,
11
                     trace.factor = dat$rank,
12
                     response = dat$salary,
13
                     xlab = "rank".
14
                     ylab = "salary",
15
```


rank

rank

สรุปผลการสำรวจ

- เงินเดือนของอาจารย์บหาวิทยาลัย บีแนวโบ้บแตกต่างกันได้ตาม ตำแหน่งวิชาการ สาขาวิชา และเพศ
- มีแนวโน้มว่า จะอิทธิพลปฏิสัมพันธ์ของตำแหน่งวิชาการ และ เพศ ต่อเงินเดือนอาจารย์

Note: ตารางแจกแจงความถี่สองทาง

table(dat\$rank, dat\$discipline)

	Pure	Science	Applied	Science
AsstProf		24		43
AssocProf		26		38
Prof		131		135

table(dat\$rank, dat\$sex)

	Female	Male
AsstProf	11	56
AssocProf	10	54
Prof	18	248

table(dat \$ discipline datteav)

```
par(mfrow=c(1,2))
plot(dat$rank, dat$discipline, xlab = " ", ylab = " ")
plot(dat$discipline, dat$rank, xlab = " ", ylab = " ")
```


Modelling สำหรับวัตถุประสงค์ลักษณะแรก

Job 1: independent-sample t-test

Job 3: three-ways ANOVA

Job 2: One-Way ANOVA

Job 4: Three-Way ANOVA 2

Job1: Independent-sample t-test

สมมุติฐานการทดสอบ

$$H_0: \mu_{applied} \le \mu_{pure}$$

$$H_1:\ \mu_{applied}>\mu_{pure}$$

Job1: Independent-sample t-test

```
dat %>% group_by(discipline) %>%
    summarise(mean = mean(salary),
               sd = sd(salary),
3
               min = min(salary),
               max = max(salary))
5
```

```
# A tibble: 2 \times 5
  discipline
                                   min
                     mean
                              sd
                                          max
  <fct>
                    <dbl> <dbl> <int> <int>
1 Pure Science 108548, 30538, 57800 205500
2 Applied Science 118029. 29459. 67559 231545
```

```
#install.packages("ggpubr")
  library(ggpubr)
  ggboxplot(data = dat, x = "discipline", y = "salary",
             color = "discipline")
4
```


Job1: Independent-sample t-test

• ข้าเตลนการวิเคราะห์

Independent sample t-test

Separated variances t-test

$$t^* = \frac{(\overline{x}_1 - \overline{x}_2) - 0}{\sqrt{S_1^2 + \frac{S_2^2}{n_1}}} \\ df = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2 \left(\frac{1}{n_1} - 1\right) + \left(\frac{S_2^2}{n_2}\right) \left(\frac{1}{n_2} - 1\right)}$$

#install.packages("car")

Job1: Levene's Test for equality of variances

```
library(car)
leveneTest(salary ~ discipline, data = dat)
Levene's Test for Homogeneity of Variance (center = median)
       Df F value Pr(>F)
group 1 0.0458 0.8306
      395
```

Job1: Syntax for t-test

```
# two-sided test
  t.test(salary ~ discipline ,data=dat,
         var.equal = TRUE)
3
  # one-sided test
  t.test(salary ~ discipline, data=dat,
         var.equal = FALSE,
         alternative = "greater")
```

Job1: Independent-sample t-test output

```
t.test(salary ~ discipline, data=dat,
       var.equal = FALSE,
       alternative = "less")
```

Welch Two Sample t-test

```
data: salary by discipline
t = -3.1306, df = 377.83, p-value = 0.00094
alternative hypothesis: true difference in means between g
95 percent confidence interval:
     -Inf -4487.034
```

sample estimates:

mean in group Pure Science mean in group Applied Science 108548.4 118028.

Job1: Assumptions check

independent sample t-test มีข้อตกลงเบื้องต้นที่สำคัญดังนี้

- Independence
- Normality
- Homogeneity of variances

Job1: Assumptions check

shapiro.test(dat\$salary)

Shapiro-Wilk normality test

data: dat\$salary W = 0.95988, p-value = 6.076e-09

Job1: Assumptions check

```
par(mfrow=c(1,2))
hist(dat$salary, col="steelblue", border = "white")
qqnorm(dat$salary)
```



```
ตำแหน่ง
                              เงินเดือน
วิชาการ
```

```
dat %>% group by(rank) %>%
      summarise(mean = mean(salary),
               sd = sd(salary),
3
               min = min(salary),
4
               max = max(salary))%>%
    arrange(desc(mean))
```

Job2: Independent-sample F-test (One-Way ANOVA)

```
# A tibble: 3 x 5
  rank
                         sd
                              min
               mean
                                     max
  <fct>
              <dbl>
                      <dbl> <int>
                                   <int.>
            126772. 27719.
                            57800 231545
1 Prof
 AssocProf
             93876.
                    13832.
                            62884 126431
             80776.
3 AsstProf
                     8174. 63100
                                   97032
```

Job2: Independent-sample F-test (One-Way ANOVA)

Note: Between Group Variance > Within Group Variance

Note: Between Group Variance ≈ Within Group Variance

Job2: Calculate F-test for Overall hypothesis

```
H_0: \mu_1 = \mu_2 = \mu_3
H_1: not H_0
# calculate analysis of variance
fit <- aov(salary ~ rank, data= dat)
summary(fit)
```

```
Sum Sq Mean Sq F value Pr(>F)
             Df
              2 1.432e+11 7.162e+10 128.2 <2e-16 ***
rank
Residuals 394 2.201e+11 5.586e+08
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 '
ผลการวิเคราะห์ข้างต้นสรุปว่า ...
```

Job2: Multiple comparison

การทดสอบเพื่อเปรียบเทียบค่าเฉลี่ยรายคู่มีหลายวิธีการ

- TukeyHSD()
- pairwise.t.test()
- ScheffeTest()

Job2: Calculate Tukey HSD

TukeyHSD(fit)

```
Tukey multiple comparisons of means 95% family-wise confidence level
```

```
Fit: aov(formula = salary ~ rank, data = dat)
```

\$rank

	diff	lwr	upr	p adj
AssocProf-AsstProf	13100.45	3382.195	22818.71	0.0046514
Prof-AsstProf	45996.12	38395.941	53596.31	0.0000000
Prof-AssocProf	32895.67	25154.507	40636.84	0.0000000

Job2: Calculate Bonferroni

```
pairwise.t.test(x = datsalary, g = datrank,
                  pool.sa = TRUE, p.adjust.method = "bonferro
2
```

Pairwise comparisons using t tests with pooled SD

data: dat\$salary and dat\$rank

AsstProf AssocProf

AssocProf 0.0049

<2e-16 <2e-16 Prof

P value adjustment method: bonferroni

```
# c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY"
    "fdr", "none")
```

Job2: Calculate Scheffe's test

- #install.packages("DescTools")
- library(DescTools)
- ScheffeTest(fit)

Posthoc multiple comparisons of means: Scheffe Test 95% family-wise confidence level

\$rank

```
diff
                              lwr.ci
                                       upr.ci
                                                pval
AssocProf-AsstProf 13100.45 2950.615 23250.29 0.0070 **
                  45996.12 38058.423 53933.83 <2e-16 ***
Prof-AsstProf
Prof-AssocProf
                  32895.67 24810.728 40980.62 <2e-16 ***
```

Job2: Assumption Checking

- Normality
- Homogeneity of variances

Job2: Assumption Checking

```
par(mfrow=c(1,2))
plot(fit, 1:2)
```


Job2: Welch's F-test

```
oneway.test(salary ~ rank, data = dat, var.equal = F)
```

One-way analysis of means (not assuming equal variances

```
data: salary and rank
```

$$F = 271.44$$
, num df = 2.00, denom df = 177.19, p-value < 2.5

Job3: Three-Way ANOVA

Job3: Summary Stat

```
dat %>% gather(rank, discipline, sex,
                  key = "ind",
2
                  value = "value")%>%
3
    group_by(ind, value) %>%
    summarise(mean = mean(salary),
               sd = sd(salary))
```

Job3: Summary Stat

```
# A tibble: 7 x 4
# Groups: ind [3]
  ind
           value
                                mean
                                         sd
  <chr>
           <chr>
                               <dbl> <dbl>
1 discipline Applied Science 118029. 29459.
2 discipline Pure Science
                             108548. 30538.
             AssocProf
                              93876. 13832.
3 rank
                              80776. 8174.
4 rank
             AsstProf
                             126772. 27719.
5 rank
            Prof
6 sex
            Female
                             101002. 25952.
7 sex
             Male
                             115090. 30437.
```

Job3: Summary Stat

```
ggdotplot(data = dat, x = "rank", y = "salary",
       add = c("mean_se","dotplot"),
       col = "rank",
       binwidth = 0.2)
```


Job3: Calculate F-test for Three-Way ANOVA

```
fit3 <- aov(salary ~ rank + discipline + sex ,
               data = dat)
2
  summary(fit3)
```

```
Sum Sq Mean Sq F value Pr(>F)
            Df
             2 1.432e+11 7.162e+10 139.707 < 2e-16 ***
rank
discipline
             1 1.843e+10 1.843e+10 35.953 4.59e-09 ***
             1 6.941e+08 6.941e+08 1.354
                                              0.245
sex
Residuals
           392 2.009e+11 5.126e+08
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
Signif. codes:
```

Job3: Calculate Multiple Comparison

TukeyHSD(fit3)

```
Tukey multiple comparisons of means
  95% family-wise confidence level
```

```
Fit: aov(formula = salary ~ rank + discipline + sex, data =
```

\$rank

diff	lwr	upr	p adj
13100.45	3790.209	22410.70	0.0029189
45996.12	38715.029	53277.22	0.0000000
32895.67	25479.514	40311.83	0.000000
	13100.45 45996.12	13100.45 3790.209 45996.12 38715.029	diff lwr upr 13100.45 3790.209 22410.70 45996.12 38715.029 53277.22 32895.67 25479.514 40311.83

\$discipline

diff lwr

Job3: Calculate Multiple Comparison

ScheffeTest(fit3)

Posthoc multiple comparisons of means: Scheffe Test 95% family-wise confidence level

\$rank

```
diff
                      lwr.ci upr.ci pval
Prof-AsstProf
             45996.12 36417.6681 55574.58 <2e-16 ***
             32895.67 23139.5373 42651.81 <2e-16 ***
Prof-AssocProf
```

\$discipline

diff lwr.ci upr.ci Applied Science-Pure Science 13599.82 6538.587 20661.06 7.3

```
par(mfrow=c(1,2))
plot(fit3, 1:2)
```


Job3: Assumptions Checking

```
Levene's Test for Homogeneity of Variance (center = median)
      Df F value Pr(>F)
group 11 9.047 2.064e-14 ***
     385
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '
```

leveneTest(salary ~ rank*discipline*sex , data = dat)

Job4: Three-Way ANOVA 2

Job4: Summary Stat

```
dat %>% group_by(rank, sex) %>%
    summarise(mean = mean(salary),
            sd = sd(salary))
3
    A tibble: 6 \times 4
              rank [3]
  # Groups:
    rank
                                 sd
              sex
                        mean
    <fct> <fct>
                       <dbl> <dbl>
  1 AsstProf Female 78050, 9372,
  2 AsstProf Male
                      81311. 7901.
  3 AssocProf Female
                      88513.
                             17965.
  4 AssocProf Male
                      94870. 12891.
  5 Prof
              Female 121968. 19620.
                     127121. 28214.
  6 Prof
              Male
```

Job4: Boxplot

```
ggboxplot(data = dat, x = "discipline", y = "salary",
          col = "sex")
```


Job4: interaction plot

```
interaction.plot(x.factor = dat$discipline,
                    trace.factor = dat$sex.
                    response = dat$salary,
3
                    col = c("steelblue", "orange"),
                    lwd = 2.
5
                    trace.label = "discipline",
                    type = "b")
```

Job4: interaction plot

Job4: calculate ANOVA with interaction

```
fit job4<-aov(salary ~ rank + discipline + sex + discipline
                 data = dat)
2
  summary(fit job4)
```

```
Sum Sq Mean Sq F value Pr(>F)
               Df
                2 1.432e+11 7.162e+10 139.629
rank
                                              < 2e-16 ***
discipline
                1 1.843e+10 1.843e+10 35.933 4.65e-09 ***
                1 6.941e+08 6.941e+08 1.353
                                                0.245
sex
discipline:sex
                1 4.001e+08 4.001e+08
                                       0.780
                                                0.378
Residuals
              391 2.005e+11 5.129e+08
Signif. codes:
                       0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
```

Job4: Simple Effect Analysis

```
library(phia)
  testInteractions(fit job4,
                    fixed = "discipline",
3
                    across = "sex",
                    adjustment = "bonferroni")
```

F Test.

```
P-value adjustment method: bonferroni
                 Value Df Sum of Sq F Pr(>F)
  Pure Science -8173.9 1 1.0612e+09 2.0691 0.3022
Applied Science -1390.0 1 3.6372e+07 0.0709 1.0000
```

Residuals 391 2.0054e+11

Value Df Sum of Sc

```
testInteractions(fit job4,
                    fixed = "sex",
2
                    across = "discipline",
3
                    adjustment = "bonferroni",
                    pairwise = "discipline")
```

F Test:

P-value adjustment method: bonferroni

Pure Science-Applied Science: Female -19812 1 3.7968e+09 1 1.4839e+10

Pure Science-Applied Science: Male -13028 Residuals 391 2.0054e+1

Pure Science-Applied Science : Female * Pure Science-Applied Science: Male ***