哈工大 2010 年 春季学期

集合论与图论 试题

题号	 ==	Ξ	四	总分
分数		70 11		

学号	
姓名	

本试卷满分90分

(计算机科学与技术学院 09 级各专业)

一、填空(本题满分10分,每空各1分)

- 1. 设A, B为集合,则 $(A \setminus B) \cup B = A$ 成立的充分必要条件是什么? $(B \subseteq A)$
- 2. 设 $X = \{1, 2, \dots, n\}, Y = \{1, 2\}, 则从 X 到 Y 的满射的个数为多少? (2"-2)$
- 3. 在集合 *A* = {2,3,4,8,9,10,11} 上定义的整除关系"!"是 *A* 上的偏序关系,则最大元是什么?
- 4. 设 $A = \{a,b,c\}$,给出A上的一个二元关系,使其同时不满足自反性、反自反性、对称性、反对称和传递性的二元关系。($R = \{(a,a),(b,c),(c,b),(a,c)\}$)
- 5. 设 Σ 为一个有限字母表, Σ 上所有字(包括空字)之集记为 Σ *,则 Σ *是 否是可数集?
- 6. 含5个顶点、3条边的不同构的无向图个数为多少? (4)
- 7. 若G是一个(p,p)连通图,则G至少有多少个生成树? (3)
- 8. 如图所示图 G, 回答下列问题:
 - (1) 图 G 是否是偶图? (不是)
 - (2) 图G是否是欧拉图? (不是)
 - (3) 图 G 的色数为多少? (4)

二、简答下列各题(本题满分40分)

- 1. 设 A, B, C, D 为任意集合,判断下列等式是否成立?若成立给出证明,若不成立举出反例。(6分)
 - (1) $(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D)$;
 - (2) $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$.
- 解: (1) 不成立。例如 $A = D = \phi, B = c = \{a\}$ 即可。
 - (2) 成立。 $\forall (x,y) \in (A \cap B) \times (C \cap D)$,有 $x \in A \cap B, y \in C \cap D$,即 $x \in A, x \in B, y \in C, y \in D$ 。所以 $(x,y) \in A \times C, (x,y) \in B \times D$,因此 $(x,y) \in (A \times C) \cap (B \times D)$,从而 $(A \cap B) \times (C \cap D) \subseteq (A \times C) \cap (B \times D)$ 。反之, $\forall (x,y) \in (A \times C) \cap (B \times D)$,有 $x \in A, x \in B, y \in C, y \in D$ 。即

注意行为规范

守考场纪律

尊

主管 领导核 空

(x,y) ∈ $(A \cap B) \times (C \cap D)$, $\bigvee \overline{m} (A \times C) \cap (B \times D) \subseteq (A \cap B) \times (C \cap D)$.

因此, $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$ 。

- 2. 设 G 是无向图, 判断下列命题是否成立? 若成立给出证明, 若不成立举出 反例。(6分)
 - (1) 若图G是连通图,则G的补图 G^{c} 也是连通图。
 - (2) 若图G是不连通图,则G的补图 G^c 是连通图。
- 解: (1) G^c 不一定是连通图。
 - (2) G^c一定连通图。

因为G不连通,故G至少有两个分支,一个是 G_1 ,另外一些支构成的子图是 G_2 。对于G'中任意两个顶点u和v:

- (1) 若 $u \in V_1, v \in V_2$,则u = v不在G中邻接。由补图的定义可知:u = v必在 G^c 中邻接;

综上可知,对G中任两个顶点u和v之间都有路连接,故G是连通的。

3. 设集合 $A = \{a, b, c, d, e\}$, A 上的关系定义如下: (6分)

 $R = \{(a,a), (a,b), (a,c), (a,d), (a,e), (b,b), (b,c), (b,e), (c,c), (c,e), (d,d), (d,e), (e,e)\}.$

- (1) 写出 R 的关系矩阵; (2) 验证 (A, R) 是偏序集; (3) 画出 Hasse 图。
- 解: (1) R 所对应的关系矩阵为M₂为:

$$M_{\tilde{\mathbf{x}}} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

(2) 由关系矩阵可知:

对角线上的所有元素全为 1, 故 R 是自反的; $r_{ii} + r_{ii} \le 1$, 故 R 是反对称的;

因此 R 是传递的。

综上可知: 故 R 是 A 上的偏序关系, 从而 (A, R) 是偏序集。

- (3) (A,R)对应的 Hasse 图如图所示。
- 4. 设A是有限集合, $f: A \rightarrow A$ 。则(3分)
 - (1) 若 f 是单射,则 f 必是满射吗? 反之如何?
 - (2) 若 A 是无限集合, 结论又如何?
- 解: (1) f 是单射,则 f 必是满射; 反之也成立;
 - (2) 若 A 是无限集合,结论不成立。

举例: 令 N={1, 2, 3, ···}, 则

- (1) 设 $s:N\to N$, $\forall n\in N, S(n)=n+1$ 。显然、 S是单射,但不是满射。
- (2) 设 $t: N \to N$, $\forall n \in N, t(1) = 1, t(n) = n 1, n \ge 2$. 显然, T 是满射, 但不是单射。
- 5. (4分)
 - (1) 根据你的理解给出关系的传递闭包的定义:
 - (2) 设 $A = \{a,b,c,d\}$, A上的关系 $R = \{(a,b),(b,c),(c,a)\}$, 求关系 R 的传递闭包 R^+ 。
- 解: (1) 设R是集合A上的二元关系,则A上包含R的所有传递关系的交称为 关系R的传递闭包。
 - (2) $R^+ = \{(a,a),(b,b),(c,c),(a,b),(a,c),(b,a),(b,c),(c,a),(c,b)\}$
- 6. 由 6 个顶点, 12 条边构成的平面连通图 G 中, 每个面由几条边围成? 说明理由。(4 分)
- 解:每个面由3条边围成。

在图G中,p=6,q=12,根据欧拉公式p-q+f=2,得f=8。

因为简单平面连通图的每个面至少由3条边围成,所以假设存在某个面由大于

3条边围成,则有: 3f < 2q,即24 < 24,矛盾。

故每个面至多由3条面围成,于是G中每个面由3条边围成的。

7. 设G = (V, E) 是至少有一个顶点不是孤立点的图。若 $\forall v \in V$, $\deg v$ 为偶数,则G 中是否必有圈?说明理由。(4分)

解: G中必有圈。

令P是G中的一条最长的路, $P: v_1v_2\cdots v_n$,则由 $\deg v_1 \geq 2$ 知,必有某个顶点u 与 v_i 邻接。由于P是最长路,所以u 必是 v_3, v_4, \cdots, v_n 中的某个 $v_i, i \geq 3$ 。于是, $v_1v_2\cdots v_iv_1$ 是G 的一个回路。

- 8. 设T 是一个有 n_0 个叶子的二元树,出度为 2 的顶点为 n_2 ,则 n_0 与 n_2 有何关系? 说明理由。(4分)
- 解: n_0 与 n_2 的关系为: $n_0 = n_2 + 1$

曲
$$\sum_{v \in V} id(v_i) = \sum_{v \in V} od(v_i) = q$$
 且 $q = p - 1$, 得 $2 \times n_2 + 1 \times (p - n_2 - n_0) = p - 1$,

得
$$n_0 = n_2 + 1$$
。

- (1) 画出邻接矩阵为 A 的有向图 D 的图解;
- (2) 写出 D的可达矩阵 R;
- (3) 写出计算两顶点之间长为k的有向通道条数的计算方法。

$$\begin{array}{c|cccc}
 & 11111 \\
 & 11111 \\
 & 00111 \\
 & 00111 \\
 & 00111
\end{array}$$
(3) $(A^*)_{ij}$.

解: (1)

- 三、证明下列各题(本题满分40分,每小题各5分)
- 1. 设G是一个(p,q)图,证明:G是树 $\Leftrightarrow G$ 无圈且p=q+1。

证: ⇒因为 G 是树, 所以 G 是无圈;

其次对 G 的顶点数 p 进行归纳证明 p=q+1。

当p为1或2时,连通图G中显然有p=q+1。

假设对一切少于p个顶点的树结论成立;

今设 G 是有 p 个顶点树,从 G 中去掉任一条边 x,则 G-x 恰有两个支。由归纳假设,每个支中顶点数与边数之间有关系式: p_1 = q_1 +1, p_2 = q_2 +1。

所以, $p=p_1+p_2=q_1+q_2+2=(q_1+q_2+1)+1=q+1$ 。

←只须证明 G 连通即可。

假设 G 不连通,则必有 k 个支且 k \geq 2。由于每个支都是连通的且无回路,故每个支都是树。于是,对每个支都有 $p_i = q_i + 1, i = 1, 2, \cdots, k$ 。于是, $p = \sum_{i=1}^k p_i = \sum_{i=1}^k q_i + k = q + k$ 。由假设 k \geq 2,这与 p=q+1 相矛盾。因此,G 是连通的。即 G 是树。

2. 设 $f: X \to Y$, 证明: f 是单射 $\Leftrightarrow \forall F \in 2^X, f^{-1}(f(F)) = F$ 。

证: (1) $\Rightarrow \forall x \in f^{-1}(f(F))$,则 $f(x) \in f(F)$,于是F 中必存在 x_1 ,使得 $f(x) = f(x_1)$ 。因为 f 是单射,故必有 $x = x_1$ 。即 $x \in F$,所以 $f^{-1}(f(F)) \subseteq F$ 。 反过来, $\forall x \in F, f(x) \in f(F)$,从而有 $x \in f^{-1}(f(F))$,所以 $F \subseteq f^{-1}(f(F))$ 。 因此 $f^{-1}(f(F)) = F$ 。

3. 设G是一个 $p(p \ge 3)$ 个顶点的图。u 和v是G 的两个不邻接的顶点,并且 $\deg u + \deg v \ge p$ 。

证明: G 是哈密顿图 \Leftrightarrow G+uv 是哈密顿图。

证明: ⇒显然成立。

试 题:

 \leftarrow 假设 G 不是哈密顿图,则有题意知在 G 中必有一条从 u 到 v 的哈密顿路。不妨设此路为 $uv_2v_3\cdots v_{n-1}v$,令 degv,=k, degv,=l,则在 G 中与 u 邻接的项点为 u_{i1} , u_{i2} ,…,

 u_{ik} ,其中 $2=i_1 < i_2 < \cdots < i_k \le p-1$ 。这时顶点 $u_{k+1} (r=2)$, $3\cdots$,k)不能与顶点 v_p 邻接。因为此时 G 有哈密顿回路 $uv_2 \cdots v_{k+1} vv_{p+1} \cdots v_{ip} u$,因此 v_p 至少与 u_r $v_2 < \cdots$, v_{p+1} 中的 k 个顶点不邻接。于是, $1 \le p-1-k$,从而 $k+1 \le p-1$,与题设矛盾,故 G 是哈密顿图。

4. 设R是A上的一个二元关系,证明: R是对称的 $\Leftrightarrow R = R^{-1}$ 。

证: $\Rightarrow \forall (x,y) \in R$,由R的对称性有 $(y,x) \in R$,即 $(x,y) \in R^{-1}$,从而 R \subseteq R $^{-1}$ 反之, $\forall (y,x) \in R^{-1}$,则 $(x,y) \in R$ 。由R的对称性有: $(y,x) \in R$,从而 R $^{-1}$ \subseteq R 故 R=R $^{-1}$

 $\Leftarrow \forall x, y \in X$, 若 $(x,y) \in R$, 由 R = R⁻¹, 得 $(x,y) \in R^{-1}$, 即 $(y,x) \in R$, 故 R 是对称的。

5. 设R是A上的一个二元关系,令 $S = \{(a,b) | \exists c \in A, 使得<math>(a,c) \in R$ 且 $(c,b) \in R\}$ 。

证明: 若R是A上的等价关系,则S也是A上的等价关系;

证: 因为R是自反的,所以 $\forall a \in A$,有 $(a,a) \in R$ 。根据S的定义,有 $(a,a) \in S$,所以 S 是自反的;

 $\Xi(a,b) \in S$,则 $\exists c \in A$,使得 $(a,c) \in R$ 且 $(c,b) \in R$ 。因为R 是对称的,所以 $(b,c) \in R$ 且 $(c,a) \in R$,根据S 的定义有 $(b,a) \in S$,所以S 是对称的;

若 $(a,b) \in S$, $(b,c) \in S$,则 $\exists d \in A$,使得 $(a,d) \in R$ 且 $(d,b) \in R$ 。因为 R 是传递的,所以 $(a,b) \in R$ 。

则 $\exists e \in A$, 使得 $(b,e) \in R$ 且 $(e,c) \in R$ 。因为R是传递的,所以 $(b,c) \in R$ 。

根据S的定义有 $(a,c) \in S$ 。所以S是传递的。

综上可知: S是等价关系。

6. 利用康托对角线法证明: 若 A 可数,则 24 不可数。

证: 因为 $2^4 \sim Ch(A) = \{ f f : A \in \{ 0 \} \}$,所以只须证明 Ch(A) 不可数即可。 $\forall f \in Ch(A)$, f 可表为 0 , 1 的无穷序列。若 Ch(A) 可数,则 Ch(A) 的元素可排列成无重复项的无穷序列 f_1, f_2, f_3, \cdots 。每个 f_i 可表成 0 , 1 的无穷序列 f_i , f_{i2}, f_{i3}, \cdots 。 用对角线法构造一个 0 , 1 序列 g_1, g_2, g_3, \cdots : 若 $f_{11} = 0$,则 $g_1 = 1$; 若 $f_{11} = 1$ 则 $g_1 = 0$ 。 一般地,若 $f_{ii} = 0$,则 $g_i = 1$; 如果 $f_{ii} = 1$,则 $g_i = 0$, $i = 1, 2, 3, \cdots$,则 g_1, g_2, \cdots 确定的函数 $g \in Ch(A)$,但 $g \neq f_i, i = 1, 2, \cdots$,矛盾。所以, 2^4 不可数。

7. 设G=(V,E)是一个(p,q)图,若G是一个K-正则偶图,证明、 $p \ge 2K$ 。

证:因为G中无三角形且G为K-正则图,所以 $Kp=2q\le 2\,(p/2)^2=p^2/2$,因此, $p\ge 2K$ 。

8. 设G是顶点p≥11的平面图,证明:G的补图G'是非平面图

证: 反证法: 假设图G的补图G6也是平面图,令G = (p,q),G6 = (p_1,q_1) ,则 $p = p_1$,而 $q + q_1 = p(p-1)/2$ (1)

又因为G和G°都是平面图,故 $q \le 3p-6$, $q_1 \le 3p-6$ 。相加得:

$$q + q_1 \le 6p - 12 \tag{2}$$

由(1),(2)的得: $q+q_1=p(p-1)$) $2\leq 6p-12$,展开有: $p^2-13p+24\leq 0$,于是 p<11。与题设矛盾,所以 G^c 不是平面图。

注意行为规范

尊

守

考

场

纪

律

哈工大 2011 年 春季学期 集合论与图论考试题

题号	-	=	III	四	总分
分数					

学号	
姓名	

本试卷满分 100 分

(计算机学院、英才学院 10 级)

一、填空(本题满分 10 分,每空各 1 分)「

- 1.设 $f: X \to Y, g: Y \to Z$,若 $g \circ f$ 是单射,则f 与g 哪个是单射? (f
- **2.**集合 $A = \{a,b,c,d\}$, A 上的关系 $R = \{(a,b),(b,c),(c,a)\}$, 则 R^+ 等于什么?

($R^+ = \{(a,a),(b,b),(c,c),(a,b),(a,c),(b,a)(b,c),(c,a),(c,b)\}$

- 3.设X 是集合, |X| = n,则反自反或对称的关系有多少?($2^{n^2-n} + 2^{(n^2+n)/2-2^{(n^2-n)/2}}$)
- 4. 设 $\{A_1, A_2, \dots, A_n\}$ 是集合 A 的划分,若 $A_i \cap B \neq \emptyset$, $1 \leq i \leq n$,则 $A \cap B$ 的划分是什么? $(A_1 \cap B, A_2 \cap B, \dots, A_n \cap B)$
- 5.集合 $A = \{1, 2, 3, 4, 6, 12\}$ 上的整除关系"|"是 A 上偏序关系,画出 Hasse 图。

(

6.什么是无穷集合?

(凡能与自身真子集对等的集合都称为无穷集合)

7.设G为p阶简单无向图,p>2且p为奇数,G和G的补图G^c中度数为

奇数的顶点的个数是否一定相等?

(一定)

8.已知 p 阶简单无向图 G 中有 q 条边,各顶点的度数均为 3, 又 2p = q + 3,

则图G在同构的意义下是否唯一?

(不唯一)

9. 若G是一个(p,q)连通图,则G至少有多少个圈?

(q-p+1)

主管导核字

10. 设T 是一个有 n_0 个叶子的二元树,出度为 2 的顶点为 n_2 ,则 n_0 与 n_2

满足什么关系?

(n0=n2+1)

- 二、简答下列问题(本题满分30分,1-6小题3分,7-9小题4分)
- 1.设A,B是集合,则 $A\Delta B=B$ 充分必要条件是什么?说明理由。(3分)

答案: A=Φ。

2.设 $f:X\to Y,C,D\subseteq Y$,则 $f^{-1}(C\Delta D)$ 与 $f^{-1}(C)\Delta f^{-1}(D)$ 满足什么关系?说明理由。

解:相等。 $f^{-1}(C\Delta D) = f^{-1}((C \setminus D) \cup (D \setminus C)) = f^{-1}(C \setminus D) \cup f^{-1}(D \setminus C) =$ = $(f^{-1}(C) \setminus f^{-1}(D)) \cup (f^{-1}(D) \setminus f^{-1}(C)) = f^{-1}(C)\Delta f^{-1}(D)$.

- 3. 写出无向树的特征性质 (至少5个)。(3分)
 - (1) G是树;
 - (2) G 的任两个不同顶点间有唯一的一条路联结;
 - (3) G 是连通的且 p=q+1;
 - (4) G 中无回路且 p=q+1;
 - (5) G中无回路且任加一条边,得到有唯一回路的图;
 - (6) G 是连通的, 并且若 p≥3, 则 G 不是 K_a。又若 G 的任两个不邻接的 顶点间加一条边,则得到一个恰有唯一的一个回路的图;
 - (7) G是极小连通图。
- 4. 设G是一个(p,q)图、若 $q \ge p-1$,则 $k(G) \le \lceil 2q/p \rceil$ 与 $k(G) \le \lceil 2p/q \rceil$ 哪个正确?

说明理由。(3分)

答案: k(G)≤[2q/p]。

5. K₅ 是否是可平面图?说明理由。(3分)

 $\mathbf{M}: K_s$ 不是平面图。

若K。是可平面图,则由欧拉公式成立有,5-10+f=2,即f=7。

而每个面至少 3 条边,所以 3f \leq 2q ,从而 21 \leq 20,矛盾。因此,K,不是可平面图。

6. 已知有向图
$$D$$
 的邻接矩阵 $A = \begin{pmatrix} 0111\\1010\\0001\\0000 \end{pmatrix}$,则(3 分)

- (1) 画出邻接矩阵为A的有向图D的图解;
- (2)写出D的可达矩阵R;
- (3)写出计算两顶点之间长为 k 的有向通道条数的计算方法。

(1)
$$(2) R = \begin{pmatrix} 1111 \\ 1111 \\ 0011 \\ 0001 \end{pmatrix} (3) (A^{k})_{ij} \circ$$

7.每个自补图有多少个顶点?说明理由。(4分)

解:每个自补图都有4n或4n+1个顶点

因为每个自补图G的对应的完全图的边数必为偶数,即q = p(p-1)/2为偶数。而当p = 1,2,3时,图G无自补图,只有 $p \ge 4$ 时,图G才有自补图。于是p可写成如下形式:4n,4n+1,4n+2,4n+3,其中n为正整数;代入q = p(p-1)/2中,只有4n,4n+1才能使q为偶数,故每个自补图必有4n或4n+1个顶点。

- 8. 设 $N = \{1, 2, 3, \dots\}$, 试构造两个映射 f 和 $g: N \to N$, 使得 $gf = I_N$ 但 $fg \neq I_N$ 。 (4分) 解: $f: N \to N$, $\forall n \in N$, f(n) = n + 1; $g: N \to N$, $\forall n \in N$, g(1) = 1, g(n) = n 1, $n \ge 2$ 。
- 9. 设 $f:A \rightarrow B, H \subseteq A$,令H 在A 中的余集 $H^c = A \setminus H$,则(4分)
 - (1) 当 f 是单射时,给出 $f(H^c)$ 和 $(f(H))^c$ 之间的关系,并给予证明。
 - (2) 当 f 是满射时,给出 $f(H^c)$ 和 $(f(H))^c$ 之间的关系,并给予证明。

[(1)(2)任选一种情况证明即可]

解: 由定理知, $(f(H^c))=f(A|H) \supseteq f(A)|f(H)$ 。

若 f 是满射,即 f(A) = B,有 $f(H^c) \supseteq (f(H))^c$ 。

若 f 是单射时, 有 $f(H^c) \subseteq (f(H))^c$ 。

因为 $\forall y \in f(H^c)$,故存在 $x \in H^c$,使得 y = f(x),从而 $x \notin H$;由 f 是单射,有 $f(x) \notin f(H)$ (否则存在 $x_1 \in H$,使 $f(x_1) = f(x)$ 矛盾),即 $y \in (f(H))^c$ 。于是 $f(H^c) \subseteq (f(H))^c$ 。

三、证明下列各题(本题满分60分,每小题各6分)

1.设A,B是两个集合, $B\neq\emptyset$,试证:若 $A\times B=B\times B$,则A=B。

证: $\forall x \in A$,因为 $B \neq \emptyset$,故在B中任取一元素 y,必有 $(x,y) \in A \times B$,因而 $(x,y) \in B \times B$,故 $x \in B$ 。从而 $A \subseteq B$ 。

反之, $\forall x \in B$,因为 $B \neq \emptyset$,故在B中任取一元素 y,必有 $(x,y) \in B \times B$,因而 $(x,y) \in A \times B$,故 $x \in A$ 。从而 $B \subseteq A$ 。 于是A = B。

2.设 $f: X \to Y$, 证明: f 是单射 $\Leftrightarrow \forall F \in 2^X, f^{-1}(f(F)) = F$ 。

证: $\Rightarrow \forall x \in f^{-1}(f(F))$,则 $f(x) \in f(F)$,于是F中必存在x,,使得

 $f(x) = f(x_1)$ 。因为 f 是单射,故必有 $x = x_1$ 。即 $x \in F$,所以 $f^{-1}(f(F)) \subseteq F$ 。

反过来, $\forall x \in F, f(x) \in f(F)$,从而有 $x \in f^{-1}(f(F))$,所以 $F \subseteq f^{-1}(f(F))$ 。 因此 $f^{-1}(f(F)) = F$ 。

⇐ 假设 f 不是单射,则 $\exists x_1, x_2 \in X, x_1 \neq x_2$,但 $f(x_1) = f(x_2) = y$ 。令 $F = \{x_1\}$,

于是 $f^{-1}(f(F)) = f^{-1}(f(\{x_1\}) = f^{-1}(\{y\}) = \{x_1, x_2\}, \ \mathbb{D}\{x_1, x_2\} = F = \{x_1\}, \ \mathcal{F}$ 盾。

因此,f为单射。

3. 设R 是A 上的一个自反关系,证明:

R 是等价关系 \Leftrightarrow 若 $(a,b) \in R$ 且 $(a,c) \in R$,则 $(b,c) \in R$ 。

证: ⇒ R 是 A 上的等价关系。

若 $(a,b) \in R$ 且 $(a,c) \in R$, 由R的对称性有: $(b,a) \in R$ 且 $(a,c) \in R$,

由R的传递性有: $(b,c) \in R$ 。

 \leftarrow R 是自反的, 故 $\forall a \in A$ 有 $(a,a) \in R$ 。

若(a,b)∈ R,由(a,a)∈ R有(b,a)∈ R,所以 R是对称的。

若(a,b)∈ R且(b,c)∈ R, 由 R的对称性有:

(b,a)∈ R且(b,c)∈ R,故由题意得(a,c)∈ R,所以 R是传递。

因此, R是A上的等价关系。

4. 设R是A上的二元关系,证明: R是传递的 $\Leftrightarrow R \circ R \subseteq R$

⇒ $\forall (a,c) \in R$ R , 则∃ $b \in A$, 使得 $(a,b) \in R$ 且 $(b,c) \in R$, 由 R 的传递性知:

 $(a,c) \in R$,于是 $RR \subseteq R$ 。

 $\Leftarrow \forall (a,b) \in R$ 且 $(b,c) \in R$,有 $(a,c) \in R$ R $\subseteq R$,故 R 是传递的。

5.令 $N = \{1, 2, 3, \cdots\}$, $S = \{f | f : N \rightarrow \{0, 1\}\}$, 利用康托对角线法证明 S 是不可数集。

证:假设从 N 到 $\{0, 1\}$ 的所有映射之集可数,则可排成无重复项的无穷序列 f_1, f_2, f_3, \cdots 。每个函数 f_i 确定了一个 0, 1 序列 $a_{ii}, a_{i2}, a_{i3}, \cdots$ 。构造序列 $b_1, b_2, b_3, \cdots, b_i = 1$,若 $a_{ii} = 0$; 否则 $b_i = 0$ 。该序列对应的函数 $f(i) = b_i$, $i \in N$,不为

 f_1, f_2, \cdots 任一个,矛盾。

6. 设G = (V, E) 是一个有p 个顶点的图。若对G 的任两个不邻接的顶点u 和v ,

有 $\deg u + \deg v \ge p-1$,证明: G 是连通的。

证: 若G 不连通,则G 至少有两个支。设 $G_1=(V_1,E_1)$ 是其中的一个支,其他各支构成的 子图为 $G_2=(V_2,E_2)$, $|V_1|=n_1,|V_2|=p-n_1$,则任意 $\forall u\in V_1,v\in V_2$,有

$$\deg u \le n_1 - 1, \deg v \le p - n_1 - 1.$$

于是, $\deg u + \deg v \le (n_1 - 1) + (p - n_1 - 1) = p - 2$ 。

这与假设相矛盾,所以G是连通的。

7. 证明:完全图 K_a 中至少存在彼此无公共边的两条哈密顿圈和一条哈密顿路。

证: 在 K_9 中, $\forall v \in V$, $\deg v = 8 \geq p/2$,由定理可知,必有一条哈密顿国路 C_1 ;令 G_1 为 K_9 中删除 C_1 中全部边之后的图,则 G_1 中每个顶点的度均为 $\deg v \neq 6 \geq p/2$,故 G_1 仍为哈密顿图,因而存在 G_1 中的哈密顿回路 C_2 ,显然 C_1 与 C_2 无公共边。再设 C_2 为 G_1 中删除 C_2 中的全部边后所得图,则 G_2 每个顶点的度均为 $\deg v = 4$ 。又由定理可知 G_2 为半哈密顿图,因而 G_3 中存在哈密顿路。设L为 G_3 中的一条哈密顿路,显然 C_1 , C_2 , L无公共边。

- 8. 设G是一棵树且 $\Delta(G)$ ≥k,证明:G中至少有k个度为1的顶点。
- 证: 设T 中有p 个顶点,s 个树叶,则T 中其余p-s 个顶点的度数均大于等于2,且至少有一个顶点的度大于等于k。由握手定理可得:

$$2q = 2p - 2 = \sum_{i=1}^{p} deg(v_i) \ge 2(p - s - 1) + k + s$$
,有 $s \ge k$ 。

所以T中至少有k个树叶。

9. 证明:一个没有有向圈的有向图中至少有一个入度为零的顶点。

证: 设 D=(V,A)是一个没有有向回路的有向图。考察D中任一条最长的有向路的第一个顶点 v,则 id(v)=0。因为若 $id(v)\neq 0$,则必有一个顶点 u 使得 $(u,v)\in A$ 。于是,若 u 不在此最长路上,则此最长路便不是D中的最长路,这是与前面的假设相矛盾。若 u 在此最长路上,则 u 中有有向回路,这与定理的假设矛盾。因此 id(v)=0。

10. 设G是一个没有三角形的平面图,证明:G是 4-可着色的

证: (1) 假设 $\forall v \in V$, $\deg(v) \ge 4$, 则由握手定理有: $4p \le 2q$; 由于 G 是一个没有

三角形的平面图,故 $q \le 2p-4$,即 $4p \le 4p-8$,矛盾。故假设不成立,即G中存在一个顶点v,使得 $\deg(v) \le 3$ 。

(2)对顶点 p进行归纳。

当p=1,2,3,4时,显示成立。

假设当p=k时,G是4-可着色的。

当 p=k+1时,由于G 是一个没有三角形的平面图,故由(1)可知: $\exists v \in V$,使得 $\deg(v) \le 3$ 。于是 $G-v=G_1$ 便是一个具有k 个顶点没有三角形的平面图,由归纳假设, G_1 是 4-可着色的。

由于 $deg(v) \le 3$,故在 G 中用不同于与 v 相邻接的那些顶点在 G 中着色时所用的颜色 为 v 着色, G 的其它顶点着色同 G 的 4-可着色,这就得到了 G 一个 4-可着色。

注意行为规范

澊

守

老

场

纪

律

哈工大 2012 年 春季学期

集合论与图论考试题

题号	()	=	四	总分
分数	Š. :			

学号	
姓名	

本试卷满分 100 分

(计算机学院11级)

- 一、填空(本题满分10分)
- 1. 求方程: $A\Delta X = B$ 的解。
- 2. 设 $X = \{1, 2, \dots, m\}$, $Y = \{a, b\}$, 求 X 到 Y 的满射的个数。
- 3. 给定集合 S = {1,2,3,4,5}, 找出 S 上的等价关系 R, 此关系 R 能产生划分为 {1,2}, {3}, {4,5}。
- 4. 在 A T {2,3,4,8,9,10,11} 上定义的整除关系是偏序关系,则极大元是什么。
- 5. 什么是可数集合?
- 6. 图 G 是欧拉图当且仅当图 G 是
- 7. 若图 G 是自补图,则它所对应的完全图的边数一定是_____数。
- 8. 每棵树的中心含有多少个顶点?
- 9. 把平面分成 p 个区域,每两个区域都相邻,问 p 最大为多少? ____

主管领标

- 10. 若D=(V,A)是单向连通的当且仅当D中有一条 _____
- 二、简答下列各题(本题满分30分)
- 1. 设R是复数集合A上的一个二元关系且满足 $xRy \Leftrightarrow x-y=a+bi$, a,b为非负整数,试确定R的性质。(自反、反自反、对称、反对称、传递)

- 2. 如图所示是彼德森图G,回答问题:
 - (1) 图 G 是否是偶图? (2) 图 G 是否是平面图? (3) 图 G 的色数是多少?

- 3. 下列命题是否成立? 若成立请证明之, 若不成立请举反例。
 - (1) $(A \setminus B) \cup C = A \setminus (B \setminus C)$; (2) $A \cup (B \setminus C) = (A \cup B) \setminus C$;

(1) 说明 f, g是否是单射、满射或双射?

(2) 求 $f(N \times \{1\}), f^{-1}(\{0\})$ 。

- 5. (1) 根据你的理解给出二元关系 R 传递闭包 R⁺ 的定义;
 - (2) 若R是集合A上的反对称关系,则R⁺一定是反对称的吗? 举例说明。

6. (下列两题任选一题)

- (1) 已知 a,b,c,d,e,f,g7个人中,a会讲英语;b会讲英语和汉语;c会讲英语、意大利语和俄语;d会讲汉语和日语;e会讲意大利语和德语;f会讲俄语、日语和法语;g会讲德语和法语。能否将他们的座位安排在圆桌旁,使得每个人都能与他身边的人交谈?
- (2) 今要将6个人分成3组(每组2个人)去完成3项任务,已知每个人至少与其余5个人中的3个人能相互合作,问:
 - (1)能否使得每组2个人都能相互合作? (2)你能给出几种方案?

7. 设T是一个有 n_0 个叶子的二元树,出度为2的顶点为 n_2 ,则 n_0 和 n_2 有何关系? 说明理由。

8. 设G是一个(p,q)图,若 $q \ge p$,则G中一定有圈吗?说明理由。

三、证明下列各题(本题满分60分)

1. 设A,B是两个集合, $B\neq\emptyset$,试证: 若 $A\times B=B\times A$,则A=B。

2. 证明:在52个整数中,必有两个整数,使得这两个整数之和或差能被100整除。

4. 任选一题

试 题:

- (1) 设R是集合A上的一个自反的和传递的关系; T是A上的一个关系,使得 $(a,b) \in T \Leftrightarrow (a,b) \in R$ 且 $(b,a) \in R$ 。证明: T是A上的等价关系。
- (2) 设R.S是A上的等价关系,证明: $R \square S$ 是等价关系 $\Leftrightarrow R \square S = S \square R$ 。

6. 若G是一个恰有两个奇度顶点u和v的无向图,证明: G连通 $\Leftrightarrow G+uv$ 连通。

7. 任选一题

- (1) 证明: 任一非平凡树中至少有两个度为1的顶点。
- (2) 证明: 恰有两个顶点度数为1的树必为一条通路。

10. 用数学归纳法证明:每个比赛图中必有有向哈密顿路。