Kartesische Produkte

Es sei $n \in \mathbb{N}$ und M_i eine Menge für alle $i \in \underline{n}$. Wir setzen $M := \bigcup_{i \in \underline{n}} M_i$.

Definition

 $M_1 \times \cdots \times M_n := \{ f : \underline{n} \to M \mid f(i) \in M_i \text{ für alle } i \in \underline{n} \}$, und nennen $M_1 \times \cdots \times M_n$ das kartesische Produkt von M_1, \ldots, M_n .

Schreibweisen

- ▶ Für $f \in M_1 \times \cdots \times M_n$ schreiben wir (x_1, \dots, x_n) oder $(x_i)_{i \in \underline{n}}$ mit $x_i := f(i)$ für $1 \le i \le n$.
- ▶ $M_1 \times \cdots \times M_n$ ist also die Menge aller n-Tupel $(x_1, \dots, x_n) = (x_i)_{i \in \underline{n}} \in M^n$ mit $x_i \in M_i$ für $i \in \underline{n}$.

Familien

Es seien M, I Mengen.

Definition

Es seien I und M Mengen.

Eine Abbildung $f: I \to M$ wird gelegentlich auch mit $(x_i)_{i \in I}$ notiert, wobei $x_i := f(i)$ ist für $i \in I$.

In diesem Fall heißt $(x_i)_{i \in I}$ eine durch I indizierte Familie in M.

Beispiele

- ▶ Für $I = \mathbb{N}$ ist $(x_i)_{i \in I}$ eine Folge in M.
- ▶ Für $I = \underline{n}$ ist $(x_i)_{i \in I}$ ein n-Tupel in M.

Kartesische Produkte (Forts.)

Es sei I eine Menge und M_i eine Menge für alle $i \in I$. Wir setzen $M := \bigcup_{i \in I} M_i$.

Definition

Die Menge

$$\prod_{i \in I} M_i := \{(x_i)_{i \in I} \in M^I \mid x_i \in M_i \text{ für alle } i \in I\}$$

heißt das kartesische Produkt der Mengen M_i , $i \in I$.

Beispiel

Sei $I = \mathbb{N}$ und $M_i := \{x \in \mathbb{R} \mid x \leq i\}$ für $i \in \mathbb{N}$. $\prod_{i \in \mathbb{N}} M_i = \{(x_i)_{i \in \mathbb{N}} \mid x_i \leq i \text{ für alle } i \in \mathbb{N}\}.$

Bild und Urbild

Es sei $f: M \to N$ eine Abbildung.

Definition

$$f(X) := \{f(x) \mid x \in X\}$$

= \{y \in N \| \text{ es gibt ein } x \in M \text{ mit } y = f(x)\}.

Bild von X unter f.

- ▶ f(M): Bild von f.
- Y ⊂ N:

$$f^{-1}(Y) := \{x \in M \mid f(x) \in Y\}$$

Urbild von Y unter f.

▶ $f^{-1}(\{y\})$ mit $y \in N$: die Fasern von f.

Bild und Urbild (Forts.)

Beispiele

- $f: \{1, 2, 3, 4\} \rightarrow \{5, 6, 7, 8, 9\}, 1 \mapsto 5, 2 \mapsto 8, 3 \mapsto 5, 4 \mapsto 9$
 - $f(\{1,2,3\}) =$
 - ▶ Bild von f =
 - $f^{-1}({5,9}) =$
 - $f^{-1}(\{5\}) =$
 - ► Sei A die Menge der jetzt in diesem Hörsaal anwesenden Personen.

Setzte $J := A \to \mathbb{Z}$, $p \mapsto Geburtsjahr von <math>p$.

Die Faser $J^{-1}(\{2000\})$ ist die Menge der Personen aus A, die im Jahr 2000 geboren sind.

Bild und Urbild (Forts.)

Bemerkung

Es sei $f: M \rightarrow N$ eine Abbildung.

Die nicht-leeren Fasern von f bilden eine Partition von M.

Es sei $f: M \to N$ eine Abbildung.

Definition

- ▶ f heißt surjektiv, falls f(M) = N.
- ▶ f heißt *injektiv*, falls für alle $x, x' \in M$ gilt: $f(x) = f(x') \Rightarrow x = x'$.
- ▶ f heißt bijektiv, falls f injektiv und surjektiv ist.

Beispiel

- ▶ $\{1,2,3\} \to \{4,5\}$, $1 \mapsto 4$, $2 \mapsto 4$, $3 \mapsto 5$
- $\blacktriangleright \ \{1,2\} \quad \rightarrow \{4,5,6\}, \ 1 \mapsto 4, \ 2 \mapsto 5$
- ▶ $\{1,2,3\} \rightarrow \{4,5,6\}, 1 \mapsto 5, 2 \mapsto 6, 3 \mapsto 4$
- ▶ $\{1,2,3\} \rightarrow \{4,5,6\}, 1 \mapsto 5, 2 \mapsto 6, 3 \mapsto 5$

Beispiel

 $f: \mathbb{Q} \to \mathbb{Q}$, $x \mapsto -2x + 3$ ist bijektiv.

Beispiel

```
Abb_{ini}(\{1,2\},\{3,4,5\})
= \{(1 \mapsto 3, 2 \mapsto 4), (1 \mapsto 3, 2 \mapsto 5), (1 \mapsto 4, 2 \mapsto 3),
       (1 \mapsto 4, 2 \mapsto 5), (1 \mapsto 5, 2 \mapsto 3), (1 \mapsto 5, 2 \mapsto 4)
Abb_{suri}(\{1,2,3\},\{4,5\})
= \{(1 \mapsto 4, 2 \mapsto 4, 3 \mapsto 5), (1 \mapsto 4, 2 \mapsto 5, 3 \mapsto 4),
       (1 \mapsto 4, 2 \mapsto 5, 3 \mapsto 5), (1 \mapsto 5, 2 \mapsto 4, 3 \mapsto 4),
       (1 \mapsto 5, 2 \mapsto 4, 3 \mapsto 5), (1 \mapsto 5, 2 \mapsto 5, 3 \mapsto 4)
Abb<sub>bii</sub>({1, 2, 3}, {4, 5, 6})
= \{(1 \mapsto 4, 2 \mapsto 5, 3 \mapsto 6), (1 \mapsto 4, 2 \mapsto 6, 3 \mapsto 5),
       (1 \mapsto 5, 2 \mapsto 4, 3 \mapsto 6), (1 \mapsto 5, 2 \mapsto 6, 3 \mapsto 4),
       (1 \mapsto 6, 2 \mapsto 4, 3 \mapsto 5), (1 \mapsto 6, 2 \mapsto 5, 3 \mapsto 4)
```

Beispiele

- $ightharpoonup f: \mathbb{Z} \to \mathbb{Z}, z \mapsto 2z \text{ ist}$
- ▶ $f: \mathbb{R} \to \mathbb{R}, x \mapsto 2x$ ist
- ▶ $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ ist
- ▶ Hashfunktionen, z.B. md5 : $\{\text{Texte}\} \rightarrow \{0,1\}^{128}$

▶ Verschlüsselungsfunktionen, z.B. crypt : $\{0,1\}^k \rightarrow \{0,1\}^k$, sind injektiv