

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Обзор методов построения объемного изображения по стереопаре

Студент: Пронин Арсений Сергеевич

Группа: ИУ7-52Б

Руководитель: Филиппов Михаил Владимирович

Цель и задачи

Цель работы — анализ методов применяемых при построении объёмного изображения по стереопаре

Задачи:

- описать термины предметной области и обозначить проблему;
- провести обзор существующих программных решений в области стерео зрения;
- выбрать критерии для их оценки и сравнить;
- выбрать наиболее предпочтительный метод.

Анализ предметной области

Задачу получения объёмного изображения по нескольким изображениям можно разбить на 3 этапа:

- поиск соответствующих точек на изображениях;
- получение трехмерных координат точек;
- построение трехмерной модели.

Проективная геометрия и однородные координаты

- точки проективной плоскости;
- прямые на проективной плоскости;
- трехмерное проективное пространство;
- проективное преобразование.

Модель проективной камеры

Триангуляция точек

Процесс определения трехмерных координат точки по координатам ее проекций в литературе называется триангуляцией (triangulation).

Пусть имеются две откалиброванные камеры с матрицами P_1 и P_2 . x_1 и x_2 — однородные координаты проекций некоторой точки пространства X. Тогда можно составить следующую систему уравнений:

$$\begin{cases} x_1 = P_1 X \\ x_2 = P_2 X \end{cases}$$

Карта глубины (depth map) — это изображение, на котором для каждого пикселя, вместо цвета, храниться его расстояние до камеры.

Существующие решения

- Алгоритм RANSAC
- Алгоритм SIFT
- Алгоритм SURF
- Метод поиска соответствующих точек, использующий DSI

Алгоритм RANSAC

Первый этап — выбор точек и подсчёт модели:

- ullet из множества исходных точек X случайным образом выбираются празличных точек;
- на основе выбранных точек вычисляются параметры θ модели P с помощью функции M, построенную модель принято называть гипотезой.

Второй этап — проверка гипотезы:

- для каждой точки проверяется её соответствие данной гипотезе с помощью функции оценки E и порога t;
- каждая точка помечается инлаером или выбросом;
- после проверки всех точек, проверяется, является ли гипотеза лучшей на данный момент, и если является, то она замещает предыдущую лучшую гипотезу.

Алгоритм SIFT

Лоу разбивает алгоритм SIFT на следующие четыре шага:

- выявление экстремумов масштабного пространства: поиск ключевых (в рамках алгоритма SIFT) точек;
- локализация ключевых точек: отбрасывание точек с низкой контрастностью или расположенных не вдоль ребёр;
- определение направления: присваивание одного или нескольких направлений для каждой ключевой точки на основе локальных направлений градиента изображения;
- дескрипторы ключевых точек: вычисление дескриптора для каждой ключевой точки.

Алгоритм SURF

Алгоритм работы SURF состоит из следующих этапов:

- масштабно-пространственное представление;
- расчет значений гессиана;
- поиск точек локальных максимумов;
- определение точки истинного максимума;
- определение ориентации опорной точки;
- формирование дескриптора опорной точки.

Метод поиска соответствующих точек, использующий DSI

DSI (disparity space image)

Задача сводится к поиску оптимального пути на полученной двумерной матрице. При этом за каждый тип движения назначается определенный штраф. Используются типы движения по горизонтали, вертикали и по диагонали.

Задача решается методом динамического программирования. Если на изображении заранее известны GCP-точки (ground control points – точки, положение и соответствие которых мы можем определить достаточно точно)

Сравнительный анализ алгоритмов

Алгоритм	Производительность в	Точность локализации	Вычисление
	реальном времени	ключевых точек	дескриптора
SIFT	средняя	высокая	да
SURF	высокая	средняя	да
Метод исп. DSI	высокая	средняя	нет

Алгоритм RANSAC исключен из сравнения, т.к. он решает другую задачу. Алгоритм RANSAC можно использовать в совокупности с одним из выше перечисленных для фильтрации полученных сопоставлений, потому что иногда сопоставляемые точки могут быть соотнесены некорректно, а RANSAC отсеивает «выпадающие» (outliers) из статистики точки.

Заключение

По итогу проделанной работы была достигнута цель – проведён анализ методов применяемых при построении объёмного изображения по стереопаре.

Также были решены все поставленные задачи, а именно:

- описаны термины предметной области и обозначена проблема;
- проведён обзор существующих программных решений в области стерео зрения;
- выбраны критерии для их оценки и проведено сравнение;
- выбран наиболее предпочтительный метод.