Map

Model - Based MLMBTRL Q-Learning

SARSA Policy Sarsh Actor Critic

Model-Free

- 1. Additional Actor Critic
- 2. Advanced Exploration
- 3. Entropy Regularization 4. Wisdom

V Off-Policy

$$a = \underset{a}{\operatorname{arg\,max}} Q(s, a) + c\pi_{\theta}(a \mid s) \frac{\sqrt{N(s)}}{1 + N(s, a)}$$

- 1. Use π_{θ} and U_{ϕ} in MCTS
- 2. Learn π_{θ} and U_{ϕ} from tree

$$a = \underset{a}{\operatorname{arg\,max}} Q(s, a) + c\pi_{\theta}(a \mid s) \frac{\sqrt{N(s)}}{1 + N(s, a)}$$

- 1. Use π_{θ} and U_{ϕ} in MCTS
- 2. Learn π_{θ} and U_{ϕ} from tree

$$\ell(\theta) = -\mathbb{E}_s \left[\sum_{a} \pi_{\text{MCTS}}(a \mid s) \log \pi_{\theta}(a \mid s) \right]$$

$$\pi_{\text{MCTS}}(a \mid s) \propto \underline{N(s, a)^{\eta}}$$

$$a = \underset{a}{\operatorname{arg\,max}} Q(s, a) + c\pi_{\theta}(a \mid s) \frac{\sqrt{N(s)}}{1 + N(s, a)}$$

- 1. Use π_{θ} and U_{ϕ} in MCTS
- 2. Learn π_{θ} and U_{ϕ} from tree

$$\ell(\theta) = -\mathbb{E}_s \left[\sum_{a} \pi_{\text{MCTS}}(a \mid s) \log \pi_{\theta}(a \mid s) \right]$$
$$\pi_{\text{MCTS}}(a \mid s) \propto N(s, a)^{\eta}$$

$$\ell(\mathbf{\Phi}) = \frac{1}{2} \mathbb{E}_s \left[\left(U_{\mathbf{\Phi}}(s) - U_{\text{MCTS}}(s) \right)^2 \right]$$

$$U_{\text{MCTS}}(s) = \max_{a} Q(s, a)$$

$$a = \underset{a}{\operatorname{arg\,max}} Q(s, a) + c\pi_{\theta}(a \mid s) \frac{\sqrt{N(s)}}{1 + N(s, a)}$$

Continuous Actions: Deep Deterministic Policy Gradient

$$Q_{\phi}(s,a)$$

$$\pi_{\phi}(s) = \underset{a}{\operatorname{argmax}} Q_{\phi}(s,a)$$

$$l(\phi) = \underset{(s,a,r,s')\sim D}{\text{E}} \left[(r + \gamma Q_{\overline{\phi}}(s,\pi_{\overline{\phi}}(s')) - Q_{\phi}(s,a))^{2} \right]$$

$$U(\phi) = \underset{s\sim D}{\text{E}} \left[Q_{\phi}(s,\pi_{\overline{\phi}}(s)) \right]$$

$$V(\theta) = \underset{s\sim D}{\text{E}} \left[V_{\phi} Q_{\phi}(s,\pi_{\overline{\phi}}(s)) \right]$$

$$V_{\phi}(s,\pi_{\overline{\phi}}(s))$$

$$V_{\phi}(s,\pi_{\overline{\phi}}(s))$$

$$V_{\phi}(s,\pi_{\overline{\phi}}(s))$$

$$V_{\phi}(s,\pi_{\overline{\phi}}(s))$$

$$V_{\phi}(s,\pi_{\overline{\phi}}(s))$$

$$V_{\phi}(s,\pi_{\overline{\phi}}(s))$$

Is Exploration Important? Montezuma's Revenge

Is Exploration Important? Theory

		Algorithm	Regret	Time	Space
	Model-based	UCRL2 $[10]^{-1}$	at least $\tilde{\mathcal{O}}(\sqrt{H^4S^2AT})$	$\Omega(TS^2A)$	$\mathcal{O}(S^2AH)$
		Agrawal and Jia $[1]$ ¹	at least $\tilde{\mathcal{O}}(\sqrt{H^3S^2AT})$		
		UCBVI $[5]$ ²	$\mathcal{\tilde{O}}(\sqrt{H^2SAT})$	$\tilde{\mathcal{O}}(TS^2A)$	
		vUCQ $[12]^2$	$\tilde{\mathcal{O}}(\sqrt{H^2SAT})$		
	Model-free	Q-learning (ε -greedy) [14] (if 0 initialized)	$\Omega(\min\{T, A^{H/2}\})$	$\mathcal{O}(T)$	$\mathcal{O}(SAH)$
		Delayed Q-learning $[\overline{25}]$ ³	$\tilde{\mathcal{O}}_{S,A,H}(T^{4/5})$		
		Q-learning (UCB-H)	$\tilde{\mathcal{O}}(\sqrt{H^4SAT})$		
		Q-learning (UCB-B)	$\tilde{\mathcal{O}}(\sqrt{H^3SAT})$		
		lower bound	$\Omega(\sqrt{H^2SAT})$	-	

• In General, $R^+(s,a) = R(s,a) + B(s,a)$ • UCB: $B(s,a) = c\sqrt{\frac{\log N(s)}{N(s,a)}}$ \leftarrow

$$ullet$$
 UCB: $B(s,a) = c\sqrt{rac{\log N(s)}{N(s,a)}}$ $ullet$

Example 1: Learn Pseudocount

Example 1: Learn Pseudocount

$$B(s,a)pprox rac{1}{\sqrt{\hat{N}(s)}}$$
 where $\hat{N}(s)$ is a learned function approximation

Example 1: Learn Pseudocount

 $B(s,a)pprox rac{1}{\sqrt{\hat{N}(s)}}$ where $\hat{N}(s)$ is a learned function approximation

Example 1: Learn Pseudocount

 $B(s,a)pprox rac{1}{\sqrt{\hat{N}(s)}}$ where $\hat{N}(s)$ is a learned function approximation

MONTEZUMA'S REVENGE

Example 1: Learn Pseudocount

 $B(s,a)pprox rac{1}{\sqrt{\hat{N}(s)}}$ where $\hat{N}(s)$ is a learned function approximation

Example 1: Learn Pseudocount

 $B(s,a)pprox rac{1}{\sqrt{\hat{N}(s)}}$ where $\hat{N}(s)$ is a learned function approximation

Example 2: Learn a function of the state and action

Example 2: Learn a function of the state and action

$$B(s,a) = \|\hat{f}_{ heta}(s,a) - f^*(s,a)\|^2$$

Example 2: Learn a function of the state and action

$$B(s,a) = \|\hat{f}_{ heta}(s,a) - f^*(s,a)\|^2$$

Example 2: Learn a function of the state and action

$$B(s,a) = \|\hat{f}_{ heta}(s,a) - f^*(s,a)\|^2$$

What should f^* be?

Example 2: Learn a function of the state and action

$$B(s,a) = \|\hat{f}_{ heta}(s,a) - f^*(s,a)\|^2$$

What should f^* be?

Example 2: Learn a function of the state and action

$$B(s,a) = \|\hat{f}_{ heta}(s,a) - f^*(s,a)\|^2$$

What should f^* be?

• $f^*(s, a) = s'$ (Next state prediction)

Example 2: Learn a function of the state and action

$$B(s,a) = \|\hat{f}_{ heta}(s,a) - f^*(s,a)\|^2$$

What should f^* be?

• $f^*(s,a) = f_{\phi}(s,a)$ where f_{ϕ} is a random neural network.

Example 2: Learn a function of the state and action

$$B(s,a) = \|\hat{f}_{ heta}(s,a) - f^*(s,a)\|^2$$

What should f^* be?

• $f^*(s, a) = s'$ (Next state prediction)

 $ullet f^*(s,a) = f_\phi(s,a)$ where f_ϕ is a random neural network.

"Random Network
Distillation"

Example 3: Thompson Sampling

1. Maintain a distribution over Q

- 1. Maintain a distribution over Q
- 2. Sample Q

- 1. Maintain a distribution over Q
- 2. Sample Q from state,
- 3. Act according to \hat{Q}

- 1. Maintain a distribution over $Q \leftarrow Hard$
- 2. Sample Q
- 3. Act according to *Q*

Example 3: Thompson Sampling

- 1. Maintain a distribution over $Q \leftarrow Hard$
- 2. Sample Q
- 3. Act according to *Q*

• Bootstrapping with multiple *Q* networks

Example 3: Thompson Sampling

- 1. Maintain a distribution over $Q \leftarrow Hard$
- 2. Sample Q
- 3. Act according to *Q*

- ullet Bootstrapping with multiple Q networks
- Dropout

Example 4: Go-Explore

Example 4: Go-Explore

"First return, then explore"

Example 4: Go-Explore

"First return, then explore"

Example 4: Go-Explore

"First return, then explore"

Example 4: Go-Explore

"First return, then explore"

(Uber Al Labs)

Soft Actor Critic: Entropy Regularization

Intrinsic

Soft Actor Critic: Entropy

Regularization
$$U(\pi) = E\left[\sum_{t=0}^{\infty} \gamma^{t} \left(r_{t} + \alpha \mathcal{H}(\pi(\cdot \mid s_{t}))\right)\right]$$

Soft Actor Critic: Entropy Regularization

$$U(\pi) = E\left[\sum_{t=0}^{\infty} \gamma^t \left(r_t + lpha \mathcal{H}(\pi(\cdot \mid s_t))
ight)
ight]$$

$$V(\mathbf{s}_t) = \mathbb{E}_{\mathbf{a}_t \sim \pi} \left[Q(\mathbf{s}_t, \mathbf{a}_t) - \log \pi(\mathbf{a}_t | \mathbf{s}_t) \right]$$

Soft Actor Critic: Entropy Regularization

$$U(\pi) = E\left[\sum_{t=0}^{\infty} \gamma^t \left(r_t + lpha \mathcal{H}(\pi(\cdot \mid s_t))
ight)
ight]$$

$$V(\mathbf{s}_t) = \mathbb{E}_{\mathbf{a}_t \sim \pi} \left[Q(\mathbf{s}_t, \mathbf{a}_t) - \log \pi(\mathbf{a}_t | \mathbf{s}_t) \right]$$

iterative
$$\mathcal{T}^{\pi}Q(\mathbf{s}_{t},\mathbf{a}_{t}) \triangleq r(\mathbf{s}_{t},\mathbf{a}_{t}) + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p}\left[V(\mathbf{s}_{t+1})\right]$$

Soft Actor Critic: Entropy Regularization

$$oldsymbol{\mathcal{J}} U(\pi) = E\left[\sum_{t=0}^{\infty} \gamma^t \left(r_t + lpha \mathcal{H}(\pi(\cdot \mid s_t))
ight)
ight]$$

$$V(\mathbf{s}_{t}) = \mathbb{E}_{\mathbf{a}_{t} \sim \pi} \left[Q(\mathbf{s}_{t}, \mathbf{a}_{t}) - \log \pi(\mathbf{a}_{t} | \mathbf{s}_{t}) \right]$$

$$\mathcal{T}^{\pi}Q(\mathbf{s}_{t}, \mathbf{a}_{t}) \triangleq r(\mathbf{s}_{t}, \mathbf{a}_{t}) + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p} \left[V(\mathbf{s}_{t+1}) \right]$$

$$\pi_{\text{new}} = \arg \min_{\pi' \in \Pi} D_{\text{KL}} \left(\pi'(\cdot | \mathbf{s}_{t}) \, \left\| \frac{\exp \left(Q^{\pi_{\text{old}}}(\mathbf{s}_{t}, \cdot) \right)}{Z^{\pi_{\text{old}}}(\mathbf{s}_{t})} \right)$$

Algorithm 1 Soft Actor-Critic

```
Initialize parameter vectors \psi, \bar{\psi}, \theta, \phi.
for each iteration do
     for each environment step do
          \mathbf{a}_t \sim \pi_{\phi}(\mathbf{a}_t|\mathbf{s}_t)
          \mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1}|\mathbf{s}_t,\mathbf{a}_t)
          \mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathbf{s}_t, \mathbf{a}_t, r(\mathbf{s}_t, \mathbf{a}_t), \mathbf{s}_{t+1})\}\
     end for
     for each gradient step do
          \psi \leftarrow \psi - \lambda_V \hat{\nabla}_{\psi} J_V(\psi)
          \theta_i \leftarrow \theta_i - \lambda_Q \hat{\nabla}_{\theta_i} J_Q(\theta_i) \text{ for } i \in \{1, 2\}
          \phi \leftarrow \phi - \lambda_{\pi} \hat{\nabla}_{\phi} J_{\pi}(\phi)
          \psi \leftarrow \tau \psi + (1-\tau)\bar{\psi}
     end for
end for
```

Algorithm 1 Soft Actor-Critic

```
Initialize parameter vectors \psi, \overline{\psi}, \theta, \phi.
for each iteration do
      for each environment step do
            \mathbf{a}_t \sim \pi_{\phi}(\mathbf{a}_t|\mathbf{s}_t)
            \mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1}|\mathbf{s}_t,\mathbf{a}_t)
            \mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathbf{s}_t, \mathbf{a}_t, r(\mathbf{s}_t, \mathbf{a}_t), \mathbf{s}_{t+1})\}
                                                                                                                      J_V(\psi) = \mathbb{E}_{\mathbf{s}_t \sim \mathcal{D}} \left[ \frac{1}{2} \left( V_{\psi}(\mathbf{s}_t) - \mathbb{E}_{\mathbf{a}_t \sim \pi_{\phi}} \left[ Q_{\theta}(\mathbf{s}_t, \mathbf{a}_t) - \log \pi_{\phi}(\mathbf{a}_t | \mathbf{s}_t) \right] \right)^2 \right]
      end for
      for each gradient step do
           \psi \leftarrow \psi - \lambda_V \hat{\nabla}_{\psi} J_V(\psi)
           \theta_i \leftarrow \theta_i - \lambda_Q \hat{\nabla}_{\theta_i} J_Q(\theta_i) \text{ for } i \in \{1, 2\}
            \phi \leftarrow \phi - \lambda_{\pi} \hat{\nabla}_{\phi} J_{\pi}(\phi)
            \psi \leftarrow \tau \psi + (1-\tau)\bar{\psi}
      end for
end for
```

Algorithm 1 Soft Actor-Critic

Initialize parameter vectors ψ , $\bar{\psi}$, θ , ϕ .

for each iteration do

for each environment step do

$$\mathbf{a}_{t} \sim \pi_{\phi}(\mathbf{a}_{t}|\mathbf{s}_{t})$$

$$\mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1}|\mathbf{s}_{t}, \mathbf{a}_{t})$$

$$\mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathbf{s}_{t}, \mathbf{a}_{t}, r(\mathbf{s}_{t}, \mathbf{a}_{t}), \mathbf{s}_{t+1})\}$$

end for

for each gradient step do

$$\psi \leftarrow \psi - \lambda_V \hat{\nabla}_{\psi} J_V(\psi)$$

$$\theta_i \leftarrow \theta_i - \lambda_Q \hat{\nabla}_{\theta_i} J_Q(\theta_i) \text{ for } i \in \{1, 2\}$$

$$\phi \leftarrow \phi - \lambda_\pi \hat{\nabla}_{\phi} J_\pi(\phi)$$

$$\bar{\psi} \leftarrow \tau \psi + (1 - \tau)\bar{\psi}$$

end for

end for

$$J_V(\psi) = \mathbb{E}_{\mathbf{s}_t \sim \mathcal{D}} \left[\frac{1}{2} \left(V_{\psi}(\mathbf{s}_t) - \mathbb{E}_{\mathbf{a}_t \sim \pi_{\phi}} \left[Q_{\theta}(\mathbf{s}_t, \mathbf{a}_t) - \log \pi_{\phi}(\mathbf{a}_t | \mathbf{s}_t) \right] \right)^2 \right]$$

$$J_Q(\theta) = \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \mathcal{D}} \left[\frac{1}{2} \left(Q_{\theta}(\mathbf{s}_t, \mathbf{a}_t) - \hat{Q}(\mathbf{s}_t, \mathbf{a}_t) \right)^2 \right]$$

Algorithm 1 Soft Actor-Critic

Initialize parameter vectors ψ , $\bar{\psi}$, θ , ϕ .

for each iteration do

for each environment step do

$$\mathbf{a}_{t} \sim \pi_{\phi}(\mathbf{a}_{t}|\mathbf{s}_{t})$$

$$\mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1}|\mathbf{s}_{t}, \mathbf{a}_{t})$$

$$\mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathbf{s}_{t}, \mathbf{a}_{t}, r(\mathbf{s}_{t}, \mathbf{a}_{t}), \mathbf{s}_{t+1})\}$$

end for

for each gradient step do

$$\psi \leftarrow \psi - \lambda_V \hat{\nabla}_{\psi} J_V(\psi)$$

$$\theta_i \leftarrow \theta_i - \lambda_Q \hat{\nabla}_{\theta_i} J_Q(\theta_i) \text{ for } i \in \{1, 2\}$$

$$\phi \leftarrow \phi - \lambda_{\pi} \hat{\nabla}_{\phi} J_{\pi}(\phi)$$

$$\bar{\psi} \leftarrow \tau \psi + (1 - \tau)\bar{\psi}$$

end for

end for

$$J_{V}(\psi) = \mathbb{E}_{\mathbf{s}_{t} \sim \mathcal{D}} \left[\frac{1}{2} \left(V_{\psi}(\mathbf{s}_{t}) - \mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\phi}} \left[Q_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t}) - \log \pi_{\phi}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right] \right]$$

$$J_{Q}(\theta) = \mathbb{E}_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim \mathcal{D}} \left[\frac{1}{2} \left(Q_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t}) - \hat{Q}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right)^{2} \right]$$

$$\hat{Q}(\mathbf{s}_{t}, \mathbf{a}_{t}) = r(\mathbf{s}_{t}, \mathbf{a}_{t}) + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p} \left[V_{\tilde{\psi}}(\mathbf{s}_{t+1}) \right]$$

Algorithm 1 Soft Actor-Critic

```
Initialize parameter vectors \psi, \psi, \theta, \phi.
for each iteration do
                                                                                     Vy Qo to
       for each environment step do
              \mathbf{a}_t \sim \pi_{\phi}(\mathbf{a}_t|\mathbf{s}_t)
              \mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1}|\mathbf{s}_t,\mathbf{a}_t)
             \mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathbf{s}_t, \mathbf{a}_t, r(\mathbf{s}_t, \mathbf{a}_t), \mathbf{s}_{t+1})\}
       end for
                                                                                                                                         J_V(\psi) = \mathbb{E}_{\mathbf{s}_t \sim \mathcal{D}} \left[ \frac{1}{2} \left( V_{\underline{\psi}}(\mathbf{s}_t) - \mathbb{E}_{\mathbf{a}_t \sim \pi_{\phi}} \left[ Q_{\theta}(\mathbf{s}_t, \mathbf{a}_t) - \log \pi_{\phi}(\mathbf{a}_t | \mathbf{s}_t) \right] \right)^2 \right]
       for each gradient step do
                                                                                                                                                              J_Q(\theta) = \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim D} \left[ \frac{1}{2} \left( Q_{\theta}(\mathbf{s}_t, \mathbf{a}_t) - \hat{Q}(\mathbf{s}_t, \mathbf{a}_t) \right)^2 \right]
              \psi \leftarrow \psi - \lambda_V \nabla_{\psi} J_V(\psi)
             \theta_i \leftarrow \theta_i - \lambda_Q \hat{\nabla}_{\theta_i} J_Q(\theta_i) \text{ for } i \in \{1, 2\}
                                                                                                                                                                                                         \hat{Q}(\mathbf{s}_t, \mathbf{a}_t) = r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p} \left[ V_{\bar{\psi}}(\mathbf{s}_{t+1}) \right]
              \phi \leftarrow \phi - \lambda_{\pi} \nabla_{\phi} J_{\pi}(\phi)
              \psi \leftarrow \tau \psi + (1-\tau)\psi
                                                                                                                                                                  J_{\pi}(\phi) = \mathbb{E}_{\mathbf{s}_{t} \sim \mathcal{D}} \left[ D_{KL} \left( \pi_{\phi}(\cdot | \mathbf{s}_{t}) \mid \frac{\exp(Q_{\theta}(\mathbf{s}_{t}, \cdot))}{Z_{\theta}(\mathbf{s}_{t})} \right) \right]
       end for
end for
```

Advantages:

Stable

- Stable
- Learns many near-optimal policies

- Stable
- Learns many near-optimal policies
- Exploration

- Stable
- Learns many near-optimal policies
- Exploration
- Insensitivity to hyperparameters
- Off-Policy

Advantages:

Disadvantages

Stable

• Sensitive to α Solution = Entropy

- Learns many near-optimal policies α
- Exploration
- Insensitivity to hyperparameters
- Off-Policy

Dicadvantage

```
    St; Algorithm 1 Soft Actor-Critic

    Le Input: \theta_1, \theta_2, \phi
                                                                                                                                        ▶ Initial parameters
                \theta_1 \leftarrow \theta_1, \theta_2 \leftarrow \theta_2
                                                                                                                 Initialize target network weights

    Ex

                                                                                                                   ▷ Initialize an empty replay pool
                for each iteration do
• Ins
                     for each environment step do

    Of

                           \mathbf{a}_t \sim \pi_{\phi}(\mathbf{a}_t | \mathbf{s}_t)
                                                                                                                    > Sample action from the policy
                                                                                                     Sample transition from the environment
                            \mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)
                           \mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathbf{s}_t, \mathbf{a}_t, r(\mathbf{s}_t, \mathbf{a}_t), \mathbf{s}_{t+1})\}\
                                                                                                         Store the transition in the replay pool
                      end for
                      for each gradient step do
                           \theta_i \leftarrow \theta_i - \lambda_O \hat{\nabla}_{\theta_i} J_O(\theta_i) \text{ for } i \in \{1, 2\}
                                                                                                              ▶ Update the Q-function parameters
                           \phi \leftarrow \phi - \lambda_{\pi} \hat{\nabla}_{\phi} J_{\pi}(\phi)

    □ Update policy weights

                   \alpha \leftarrow \alpha - \lambda \hat{\nabla}_{\alpha} J(\alpha)
                                                                                                                                     \bar{\theta}_i \leftarrow \tau \theta_i + (1 - \tau)\bar{\theta}_i \text{ for } i \in \{1, 2\}
                                                                                                                   Update target network weights
                      end for
                end for
            Output: \theta_1, \theta_2, \phi
                                                                                                                                Optimized parameters
```

Wisdom

Deep RL: The Dream

writeup

who p

settem

witespi

Video:

Witter.

Kommi

Statel Kampr

Recurrid stude

Esselle I.

1. Some interesting problem (smallsat swarm)

- 1. Some interesting problem (smallsat swarm)
- 2. Spend weeks theorizing about the exact-right cost function and dynamics

- 1. Some interesting problem (smallsat swarm)
- 2. Spend weeks theorizing about the exact-right cost function and dynamics
- 3. Decide RL can solve all of your problems

- 1. Some interesting problem (smallsat swarm)
- 2. Spend weeks theorizing about the exact-right cost function and dynamics
- 3. Decide RL can solve all of your problems
- 4. Fire up open-ai baselines

- 1. Some interesting problem (smallsat swarm)
- 2. Spend weeks theorizing about the exact-right cost function and dynamics
- 3. Decide RL can solve all of your problems
- 4. Fire up open-ai baselines
- 5. Does it work??

popenai / baselines

- 1. Some interesting problem (smallsat swarm)
- 2. Spend weeks theorizing about the exact-right cost function and dynamics
- 3. Decide RL can solve all of your problems
- 4. Fire up open-ai baselines
- 5. Does it work??

Using Deep RL for your problem

- 1. Some interesting problem (smallsat swarm)
- 2. Spend weeks theorizing about the exact-right cost function and dynamics
- 3. Decide RL can solve all of your problems
- 4. Fire up open-ai baselines
- 5. Does it work??

□ openai / baselines

Why not?

Using Deep RL for your problem

- 1. Some interesting problem (smallsat swarm)
- 2. Spend weeks theorizing about the exact-right cost function and dynamics
- 3. Decide RL can solve all of your problems
- 4. Fire up open-ai baselines
- 5. Does it work??

□ openai / baselines

Why not?

• Hyperparameters?

Using Deep RL for your problem

- 1. Some interesting problem (smallsat swarm)
- 2. Spend weeks theorizing about the exact-right cost function and dynamics
- 3. Decide RL can solve all of your problems
- 4. Fire up open-ai baselines
- 5. Does it work??

□ openai / baselines

Why not?

- Hyperparameters?
- Reward scaling?

Deep RL that matters

Using Deep RL for your problem

- 1. Some interesting problem (smallsat swarm)
- 2. Spend weeks theorizing about the exact-right cost function and dynamics
- 3. Decide RL can solve all of your problems
- 4. Fire up open-ai baselines
- 5. Does it work??

□ openai / baselines

Why not?

- Hyperparameters?
- Reward scaling?
- Not enough training time????

Algorithms

"simply multiplying the rewards generated from an environment by some scalar"

"simply multiplying the rewards generated from an environment by some scalar"

"simply multiplying the rewards generated from an environment by some scalar"

Statistical Significance

Statistical Significance

"Unfortunately, in recent reported results, it is not uncommon for the top-N trials to be selected from among several trials (Wu et al. 2017; Mnih et al. 2016)"

Statistical Significance

"Unfortunately, in recent reported results, it is not uncommon for the top-N trials to be selected from among several trials (Wu et al. 2017; Mnih et al. 2016)"

Figure 5: TRPO on HalfCheetah-v1 using the same hyperparameter configurations averaged over two sets of 5 different random seeds each. The average 2-sample t-test across entire training distribution resulted in t = -9.0916, p = 0.0016.

Codebases

(According to Sergey Levine)

Sample Efficiency

(According to Sergey Levine)

Sample Efficiency

(According to Sergey Levine)

Sample Efficiency Ease of Use /Stability

Fewer Somples

(According to Sergey Levine)

Sample
Efficiency

Fase of Use

/stability

More Stable (?)

(According to Sergey Levine)

Sample
Efficiency

Fewer Somples

More Stable (?)

Model-Based RL

(According to Sergey Levine)

Sample
Efficiency

Fewer Somples

More Stable (?)

Model-Based RL

> Model-Based Deep RL

(According to Sergey Levine)

Sample

Efficiency

/stability

More Stable (?)

Model-Based

RL

Off-Policy

Q-Learning

Model-Based Deep RL

(According to Sergey Levine)

Actor Critic

Deep RL

Where Does RL Work?

Where Does RL Work?

Cooling servers

Where Does RL Work?

- Cooling servers
- Winning at Go

