Sal No.: 09/771,812 Docket No.: 4739

## In the Claims:

## Claims 1-41 (Cancelled)

- 42. (Currently Amended): A process for carrying out the water-gas shift reaction, comprising contacting an input gas stream comprising CO and H<sub>2</sub>O with employing a low-pyrophoricity water-gas shift reaction catalyst; wherein the low-pyrophoricity water-gas shift reaction catalyst consists essentially of emprises alumina support particles with a mesh size of 12 or greater and a BET surface area of at least 10 m<sup>2</sup>/g impregnated with:
  - (i) 0.5 to 25% by weight of an oxide of Ce, calculated as CeO<sub>2</sub>, impregnated in the support particles, and
  - (ii) between 4 and 14% by weight catalytic agent wherein the catalytic agent is Cu or an oxide thereof, calculated as CuO.
- 43. (Currently Amended): A process for carrying out the water-gas shift reaction, comprising contacting an input gas stream comprising CO and H<sub>2</sub>O with employing a low-pyrophoricity water-gas shift reaction catalyst; wherein the low-pyrophoricity water-gas shift reaction catalyst consists essentially of comprises alumina support particles with a mesh size of 12 or greater and a BET surface area of at least 10 m<sup>2</sup>/g impregnated with:
  - (i) 0.5 to 25% by weight of an oxide of cerium, calculated as CeO<sub>2</sub> impregnated in the support particles;
  - (ii) 0.5 to 10% by weight of an oxide of chromium, calculated as Cr<sub>2</sub>O<sub>3</sub>, impregnated in the support particles; wherein the combined concentration of the oxides of cerium and chromium is between 0.5 to 35% by weight; and
  - (iii) between 4 and 14% by weight catalytic agent, wherein the catalytic agent is copper or an oxide thereof, calculated as CuO.

## 44. (Cancelled)



45. (New): A process for carrying out the water-gas shift reaction, comprising contacting an input gas stream comprising CO and H<sub>2</sub>O with a low-pyrophoricity water-gas shift

al No.: 09/771,812 Docket No.: 4739

reaction catalyst; wherein the low-pyrophoricity water-gas shift reaction catalyst consists essentially of alumina support particles with a mesh size of 12 or greater and a BET surface area of at least 10 m<sup>2</sup>/g impregnated with:

- (i) 0.5 to 15% by weight of an oxide of chromium, calculated as  $Cr_2O_3$ , impregnated in the support particles, and
- (ii) between 4 and 14% by weight catalytic agent wherein the catalytic agent is Cu or an oxide thereof, calculated as CuO.
- 46. (New): The process of claim 42, wherein the input gas stream comprises:
  - (i) between about 1% by volume and about 10% by volume CO,
  - (ii) at least 10% by volume hydrogen, and
  - (iii) at least 10% by volume  $H_2O$ ; and wherein the input gas stream has a space velocity of at least 500 hr<sup>-1</sup> VHSV.
- 47. (New): The process of claim 43, wherein the input gas stream comprises:
  - (i) between about 1% by volume and about 10% by volume CO,
  - (ii) at least 10% by volume hydrogen, and
  - (iii) at least 10% by volume  $H_2O$ ; and wherein the input gas stream has a space velocity of at least 500 hr<sup>-1</sup> VHSV.
- 48. (New): The process of claim 45, wherein the input gas stream comprises:
  - (i) between about 1% by volume and about 10% by volume CO,
  - (ii) at least 10% by volume hydrogen, and
  - (iii) at least 10% by volume H<sub>2</sub>O; and wherein the input gas stream has a space velocity of at least 500 hr<sup>-1</sup> VHSV.