Álgebra lineal I, Grado en Matemáticas

Febrero 2015, Primera Semana

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora.

Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

- (a) Matriz escalonada reducida
- (b) Subespacio vectorial
- (c) Matriz de cambio de base
- (d) Aplicación lineal

Ejercicio 1: (2 puntos) Dadas dos matrices $A, B \in M_{m \times n}(\mathbb{K})$ demuestre que

$$|\operatorname{rg}(A) - \operatorname{rg}(B)| \le \operatorname{rg}(A+B) \le \operatorname{rg}(A) + \operatorname{rg}(B)$$

Ejercicio 2: (3 puntos) En un espacio vectorial de dimensión 4, y respecto a una base $\mathcal{B} = \{u_1, u_2, u_3, u_4\}$, se dan los siguientes subespacios

$$U = \{(\alpha, -\beta, -\alpha, 0), \alpha, \beta \in \mathbb{K}\}$$

$$V_a \equiv \begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \end{cases}$$

- a) Determine los valores del parámetro $a \in \mathbb{K}$ para los cuales los subespacios U y V_a no sean suplementarios.
- b) En cada caso, obtenga una base y unas ecuaciones implícitas de los subespacios vectoriales $U+V_a$ y $U\cap V_a$.

Ejercicio 3: (3 puntos)

Sea $\mathcal{P}_2(x)$ el espacio vectorial de los polinomios en una variable x con coeficientes reales y grado menor o igual que 2, y E un espacio vectorial real, y $\mathcal{B} = \{u_1, u_2, u_3\}$ una base de E. Sea $f: \mathcal{P}_2(x) \to \mathbb{R}^3$ la aplicación lineal definida por

$$f(1+x+x^2) = 2u_1 + u_3$$
, $f(1+2x^2) = 3u_1 + u_2$, $f(x+x^2) = u_1 - 2u_2 + 3u_3$

- a) Calcule la matriz de f en las bases canónica o estándar de $\mathcal{P}_2(x)$ y \mathcal{B} de E.
- b) Determine si la aplicación es un isomorfismo.

Soluciones

Matriz escalonada reducida: Una matriz $A \in M_{m \times n}(\mathbb{K})$ se dice que es escalonada reducida si cumple las siguientes condiciones:

- (1) El primer elemento no nulo de cada fila (al que se denomina pivote) es un 1.
- (2) El pivote de cada fila está en una columna anterior al pivote de la fila siguiente.
- (3) Si en una columna hay un pivote, entonces el resto de elementos de la columna son 0.

Subespacio vectorial: Definiciones alternativas.

- (1) Dado un \mathbb{K} -espacio vectorial V, un subconjunto no vacío U de V se dice que es un subespacio vectorial de V si cumple $\alpha u + \beta v \in U$ para todo $u, v \in U$, $\alpha, \beta \in \mathbb{K}$.
- (2) Dado un \mathbb{K} -espacio vectorial V, un subconjunto U de V tal que $0 \in U$ se dice que es un subespacio vectorial de V si cumple $\alpha u + \beta v \in U$ para todo $u, v \in U$, $\alpha, \beta \in \mathbb{K}$.
- (3) Dado un \mathbb{K} -espacio vectorial V, un subconjunto U de V se dice que es un subespacio vectorial de V, si con las operaciones interna y externa de V tiene en sí mismo estructura de espacio vectorial sobre \mathbb{K} .

Matriz de cambio de base Dadas dos bases $\mathcal{B} = \{v_1, ..., v_n\}$ y $\mathcal{B}' = \{u_1, ..., u_n\}$ de un \mathbb{K} -espacio vectorial V, se denomina matriz de cambio de base de \mathcal{B} a \mathcal{B}' a la matriz A que satisface

$$AX = X'$$

donde

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, X' = \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix}$$

son las matrices columna correspondientes a las coordenadas de un vector cualquiera $u \in V$ en dichas bases, es decir:

$$u = x_1 v_1 + \dots + x_n v_n, \ u = x_1' u_1 + \dots + x_n' u_n.$$

Las columnas de la matriz A están formadas por las coordenadas de los vectores de la base \mathcal{B} en \mathcal{B}' , es decir si $A = (a_{ij})$, entonces

$$v_i = a_{1i}u_1 + \dots + a_{ni}u_n, \ i = 1, \dots, n.$$

Aplicación lineal Dados dos espacios vectoriales V y W sobre el mismo cuerpo \mathbb{K} , una aplicación $f:V\to W$ se dice que es lineal si cumple:

$$f(\alpha u + \beta v) = \alpha f(u) + \beta f(v)$$

para todo $u, v \in V, \alpha, \beta \in \mathbb{K}$.

Ejercicio 1: La demostración está en la página 34 del libro.

Ejercicio 2: En un espacio vectorial de dimension 4, y respecto a una base $\mathcal{B} = \{u_1, u_2, u_3, u_4\}$, se dan los siguientes subespacios

$$U = \{(\alpha, -\beta, -\alpha, 0), \alpha, \beta \in \mathbb{K}\}$$

$$V_a \equiv \begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \end{cases}$$

- a) Determine los valores del parámetro $a \in \mathbb{K}$ para los cuales los subespacios U y V_a no sean suplementarios.
- b) En cada caso, obtenga una base y unas ecuaciones implícitas de los subespacios vectoriales $U+V_a$ y $U\cap V_a$.

Solucion: Para que los subespacios U y V_a no sean suplementarios tienen que ocurrir que $U+V_a\neq E$, siendo E el espacio vectorial total, o bien que $U\cap V_a\neq 0$. Vemos que ambos subespacios tienen dimensión 2: U porque está dado en paramétricas y depende de dos parámetros, y V_a porque tiene dos ecuaciones implícitas independientes -independientemente del valor de a- y dim $V_a=4-n^o$ ecuaciones. Utilizando la fórmula de dimensiones:

$$\dim U + V_a = \dim U + \dim V_a - \dim(U \cap V_a) = 4 - \dim(U \cap V_a)$$

por lo que podemos afirmar que U y V_a son suplementarios si y sólo si $U \cap V_a \neq 0$, en cuyo caso $\dim U + V_a < 4$.

Tomamos una base de U: $\{u_1 = (1, 0, -1, 0), (0, 1, 0, 0)\}$

y una base de V_a :

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \end{cases} \rightarrow \begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ +x_2 + (a-1)x_3 - x_4 = 0 \end{cases}$$

Dando valores 0 y 1 a x_3 y x_4 obtenemos como base

$$\{v_1 = (-2, 1, 0, 1), v_2 = (a - 2, 1 - a, 1, 0)\}\$$

Estudiamos en que casos $\dim(U + V_a) = \operatorname{rg}(u_1, u_2, v_1, v_2) < 4$ para lo cual tenemos que calcular el rango de la matriz formada por las coordenadas de dichos vectores que son un sistema generador de $U + V_a$.

$$\operatorname{rg}\left(\begin{array}{cccc} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & 1 & 0 & 1 \\ a - 2 & 1 - a & 1 & 0 \end{array}\right) \overset{Gauss}{=} \operatorname{rg}\left(\begin{array}{cccc} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & a - 1 & 0 \end{array}\right) < 4 \Leftrightarrow a = 1.$$

Así, concluimos que U y V_a no son suplementarios si y sólo si a=1.

b) Caso $a \neq 1$: U y V_a son suplementarios, luego $U + V_a = E$ por lo que este subespacio vectorial no tiene ecuaciones implícitas. Una base de $U + V_a$ es $\{u_1, u_2, v_1, v_2\}$. La intersección $U \cap V_a = 0$, por lo que no tiene base y sus ecuaciones implícitas son $\{x_1 = x_2 = x_3 = x_4 = 0\}$.

Caso a=1: una base de $U+V_1$ está formada por los vectores u_1,u_2,v_1 o equivalentemente por los tres primeros vectores de la última matriz. Unas ecuaciones implícitas de $U+V_1$ vienen determinadas

por la condición

$$\operatorname{rg}\left(\begin{array}{cccc} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 1 \\ x_1 & x_2 & x_3 & x_4 \end{array}\right) = 3 \Leftrightarrow \det\left(\begin{array}{cccc} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 1 \\ x_1 & x_2 & x_3 & x_4 \end{array}\right) = 0 \Leftrightarrow x_1 + x_3 + 2x_4 = 0.$$

Para obtener una base de la intersección, como sabemos que $\dim(U \cap V_1) = \dim U + \dim V_1 - \dim(U + V_1) = 4 - 3 = 1$, basta observar que el vector $v_2 = (-1, 0, 1, 0)$ pertenece a U y a V_1 , por lo que forma la base deseada. Las ecuaciones de $U \cap V_1$ quedan determinadas por la condición

$$\operatorname{rg}\left(\begin{array}{ccc} -1 & 0 & 1 & 0 \\ x_1 & x_2 & x_3 & x_4 \end{array}\right) = 1 \Leftrightarrow x_1 + x_3 = 0, \ x_2 = x_4 = 0. \qquad \Box$$

Ejercicio 3: Sea $\mathcal{P}_2(x)$ el espacio vectorial de los polinomios en una variable x con coeficientes reales y grado menor o igual que 2, y E un espacio vectorial real, y $\mathcal{B} = \{u_1, u_2, u_3\}$ una base de E. Sea $f: \mathcal{P}_2(x) \to \mathbb{R}^3$ la aplicación lineal definida por

$$f(1+x+x^2) = 2u_1 + u_3$$
, $f(1+2x^2) = 3u_1 + u_2$, $f(x+x^2) = u_1 - 2u_2 + 3u_3$

- a) Calcule la matriz de f en las bases canónica o estándar de $\mathcal{P}_2(x)$ y \mathcal{B} de E.
- b) Determine si la aplicacion es un isomorfismo. medskip

Solución:

(a) Nos dan las imágenes de tres vectores de $\mathcal{P}_2(x)$, a saber: $p_1 = 1 + x + x^2$, $p_2 = 1 + 2x^2$ y $p_3 = x + x^2$. Dichos vectores forman una base, por lo que f queda completamente definida.

La matriz de f respecto a las bases $B' = \{1, x, x^2\}$ y $B = \{u_1, u_2, u_3\}$ es aquella cuyas columnas son las coordenadas en B de los vectores f(1), f(x) y $f(x^2)$.

■ **Método 1**: Calculamos las coordenadas de los vectores de B respecto a la base $B'' = \{p_1, p_2, p_3\}$:

$$\begin{vmatrix}
1 = p_1 - p_3 \\
x = \frac{1}{2}p_1 - \frac{1}{2}p_2 + \frac{1}{2}p_3 \\
x^2 = -\frac{1}{2}p_1 + \frac{1}{2}p_2 + \frac{1}{2}p_3
\end{vmatrix} \rightarrow \begin{cases}
\text{Coordenadas en } B'' \\
(\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}) \\
(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2})
\end{cases}$$

Ahora podemos calcular sus imágenes utilizando la linealidad de f:

$$f(1) = f(p_1) - f(p_3) = (2, 0, 1) - (1, -2, 3) = (1, 2, -2)$$

$$f(x) = \frac{1}{2}f(p_1) - \frac{1}{2}f(p_2) + \frac{1}{2}f(p_3) = \dots = (0, \frac{-3}{2}, 1)$$

$$f(x^2) = -\frac{1}{2}f(p_1) + \frac{1}{2}f(p_2) + \frac{1}{2}f(p_3) = \dots = (1, \frac{-1}{2}, 1)$$

Así que, la matriz de f en las bases \mathcal{B}' y \mathcal{B} es

$$M_{B',B}(f) = \begin{pmatrix} 1 & 0 & 1 \\ 2 & -3/2 & -1/2 \\ -2 & 1 & 1 \end{pmatrix}$$

■ **Método 2**: Con los datos del enunciado sabemos que la matriz de f en las bases $\mathcal{B}'' = \{p_1, p_2, p_3\}$ y B es

$$M_{\mathcal{B}'',\mathcal{B}}(f) = \begin{pmatrix} 2 & 3 & 1 \\ 0 & 1 & -2 \\ 1 & 0 & 3 \end{pmatrix}$$

Si llamamos $C(\mathcal{B}',\mathcal{B}'')$ a la matriz de cambio de base de \mathcal{B}' a \mathcal{B}'' , entonces se tiene que

$$M_{\mathcal{B}',B}(f) = M_{B'',B}(f) \cdot C(\mathcal{B}',\mathcal{B}'')$$

Por otro lado

$$C(\mathcal{B}', \mathcal{B}'') = C(\mathcal{B}'', \mathcal{B}')^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix}^{-1}$$

luego

$$M_{\mathcal{B}',B}(f) = M_{B'',B}(f) \cdot C(\mathcal{B}'',\mathcal{B}')^{-1} = \begin{pmatrix} 2 & 3 & 1 \\ 0 & 1 & -2 \\ 1 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 2 & -\frac{3}{2} & -\frac{1}{2} \\ -2 & 2 & 1 \end{pmatrix}.$$

(b) Para que f sea un isomorfismo, dado que los subespacios vectoriales de origen y de llegada tienen la misma dimensión, es suficiente probar que la aplicación es inyectiva o sobreyectiva. Por ejemplo, vemos que es sobreyectiva ya que dim $Im f = \operatorname{rg}(M_{\mathcal{B}',B}(f)) = 3 = \dim \mathbb{R}^3$.