GRISEL:

Educación STEM con énfasis en EECS en la escuela secundaria

Ing. Arturo J. Miguel de Priego Paz Soldán STEM and EECS Academy E.I.R.L. (51) 987207696

Email personal: amiguel@pucp.edu.pe

- GRISEL es una plataforma de investigación científica, diseño en ingeniería y modelado matemático para la escuela secundaria basada en estándares internacionales, cursos de alta calidad, software de uso libre y hardware de bajo costo.
- Este caso de aplicación presenta una introducción a EECS (ingeniería electrónica/eléctrica e informática) mediante el descubrimiento y diseño de circuitos digitales con un aprendizaje basado en proyectos y en indagación:
 - Técnicas y enfoques de prácticas científicas y de ingeniería atendiendo a los contextos, intereses, estilos y ritmos de aprendizaje personales.
 - Resultados de aprendizaje con estudiantes de Chincha, Cusco y Puno
 - Estadísticas de percepciones de aprendizaje en matemáticas después de usar circuitos electrónicos y robots.
- Entre las conclusiones se recomienda abordar los grandes desafíos de la ingeniería y los objetivos de desarrollo sostenible desde la escuela para la comunidad.

Presentación

- Aplicaciones e impacto de EECS.
 - MIT, Department of Electrical Engineering and Computer Science
 - NAE. 2004. The Engineer of 2020: Visions of Engineering in the New Century.
- Métodos de enseñanza y aprendizaje.
 - NRC. 2000. How People Learn: Brain, Mind, Experience, and School: Expanded Edition.
 - NAE and NRC. 2014. STEM Integration in K-12 Education: Status,
 Prospects, and an Agenda for Research.
- Estándares de ciencias e ingenierías.
 - Ministry of Education, Singapore
 - NRC. 2012. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas.
 - OECD. 2017. PISA 2015 Assessment and Analytical Framework: Science, Reading, Mathematic, Financial Literacy and Collaborative Problem Solving.
 - ABET Criteria for Accrediting Engineering Programs, 2016 2017.

Fundamentos y recursos

A partir de

Observaciones, necesidades y oportunidades

Artículos, guías, prototipos, productos, presentados en conferencias, revistas, talleres.

Obtener

Prácticas matemáticas

(PISA)

- 1. Problema en contexto Formular
 - 2. Problema matemático **Aplicar**
- 3. Resultados matemáticos Interpretar
- 4. Resultados en contexto Evaluar

Prácticas científicas y de ingeniería (NRC)

- Formular preguntas y definir problemas
- Desarrollar y utilizar modelos
- 3. Planificar y ejecutar investigaciones
- Analizar e interpretar datos
- Utilizar matemáticas y razonamiento computacional
- Elaborar explicaciones y diseñar soluciones
- Argumentar a partir de evidencias
- Obtener, evaluar y comunicar información

A Framework for K-12 Science Education

Sistemas de tiempo real Patrones – Causa y efecto – Escala, proporción y cantidad – Sistemas y modelos – Energía y materia – Estructura y función – Estabilidad y cambio Administración de proyectos

Modelo de instrucción 5E (BSCS)

Diseño y Descubrimiento (Intel)

Actividades extracurriculares

Laboratorios de ciencias

Historia

Juegos

Emprendimiento

Escuela secundaria

Talleres de ingeniería

Acertijos

Un marco

Niveles cognitivos de Bloom

Evaluación

- Conocer
- Entender
- 3. **Aplicar**
 - Analizar
- 5. Sintetizar
 - Evaluar

Aprendizaje basado en proyectos

Aprendizaje basado en indagación

Modelado matemático

Enseñanza

Metacognitiva

El docente facilita datos, y herramientas.

Aprendizaje

Significativo

El estudiante analiza, hace y reflexiona

Estándares

Indagación, modelado y diseño

Cambio mental

Como equipo, el profesor y los estudiantes Investigan, diseñan, construyen y evalúan productos útiles para la sociedad

Demostraciones

Simuladores

Hojas de datos

Tutoriales

Una metodología

Science Technology Engineering Mathematics

Tarjetas de desarrollo, kits, módulos, placas

SystemVerilog VHDL

C C++ Python JAVA

Microcontroladores, lógica programable, ASIC, circuitos estándares.

Una aproximación al diseño digital

Deducción de funciones AND, OR, and XOR

Latch SR con funciones NAND

Los circuitos digitales pueden realizar funciones lógicas y aritméticas

Hay muchas maneras de realizar funciones lógicas

Monitoreo y control del nivel de agua en un tanque

Diseño de un cronómetro para calcular aceleración constante

$$a = \frac{2\left(\frac{d_2}{t_2} - \frac{d_1}{t_1}\right)}{t_2 - t_1}$$

$$a = g(sen\varphi - \mu cos\varphi)$$

Cinemática y dinámica

Diseño lógico con símbolos y bloques

Una versión para FPGA

Visualización de datos

```
TwoMechanicalSensors
```

```
1 unsigned long nStart, nStop, t;
 2
 3 /* cuando los contactos están cerrados las entradas
 4 se fijan a VCC, y cuando se abren se fijan a GND */
 5 int First = 7:
 6 int Second = 4:
 8 void setup() {
    Serial.begin(9600);
10 }
11
12 void loop()
13 {
14
     Serial.println("Una los contactos para empezar.");
15
16
    // espera que ambos contactos se cierren
17
     while (digitalRead(First) == LOW ||
18
            digitalRead(Second) == LOW) {}
19
20
     // posibles rebotes mecánicos
21
     nStart = micros();
    while (micros() - nStart < 400000) {}
22
     // espera que se abra el primer contacto
     while (digitalRead(First) == HIGH) {}
```

CAÍDA LIBRE				
Т	Н	g		error
0,285	0,42	10,34	9,77	5,85
0,286	0,395	9,66	9,77	-1,14
0,297	0,392	8,89	9,77	-9,03
0,3	0,405	9,00	9,77	-7,88

```
27
     // registra e informa el momento de inicio
28
     nStart = micros();
29
     Serial.print("Inicia en ");
     Serial.print(nStart/1000);
30
     Serial.println(" milisegundos.");
31
     // espera que se abra el segundo contacto
    while (digitalRead(Second) == HIGH) {}
     // registra e informa el momento final
     nStop = micros();
    Serial.print("Inicia en ");
38
39
     Serial.print(nStop/1000);
     Serial.println(" milisegundos.");
42
    // calcula e informa el tiempo transcurrido
43
     t = nStop - nStart;
    Serial.print("Tiempo transcurrido: ");
44
45
     Serial.print(t/1000);
     Serial.println(" milisegundos.");
46
     Serial.println("");
47
48
     Serial.println("");
49 }
50
```

Una versión con microcontroladores

- Colegio Nacional José Pardo y Barreda, Chincha
 - Kit para experimentos de cinemática, 2006
 - Primer puesto en concurso de electrónica para escolares, Universidad Ricardo Palma, Lima, 2008
- I.E. Ramón Castilla, Pucyura, Cusco
 - Controlador de tráfico en carretera, 2016
 - Contador de vehículos
 - Pulsera con sensor de obstáculo
- Colegio de secundaria en Chucuito, Puno
 - Bastón electrónico para invidentes.
 - Finalista, Desafío STEM Latinoamérica, 2017

Primer puesto en concurso de sesiones de aprendizaje,
 Universidad Católica San Pablo, Arequipa, 2017

Proyectos escolares

- Workshop: Approaching STEM Education with an Emphasis on EECS for High School Students: Practical Cases for Teaching and Learning Math with Science and Engineering. Redesigning Pedagogy International Conference, Singapore, 17 19 March 2021 (accepted).
- Teaching and Learning STEM in Peruvian High Schools with an Emphasis on Electrical Engineering and Computer Science. EPiC Series in Education Science Volume 3, 2020, Pages 174-177. Proceedings of the MIT LINC 2019 Conference.
- Workshop: Teaching and Learning Electrical Engineering and Computer Science in High School with a STEM Approach. 21th International Conference on Interactive Collaborative Learning, Kos, Greece, 2018.
- Out-of-School STEM Education and Project-Based Learning with Emphasis in Electrical Engineering and Computer Science for Peruvian High School Students", WEEF & GEDC, Seoul, 2016.
- A Framework for K-12 Engineering Education at Low Budget Institutions. Engineering Leaders Conference on Engineering Education, Doha, 2014.
- A Builder and Simulator Program with Interactive Virtual Environments for the Discovery and Design of Logic Digital Circuits. 43rd Annual Frontiers in Education Conference, Oklahoma, 2013.

Publicaciones y talleres

Retos y Desafíos

- Grandes retos para la ingeniería de la NAE
- Objetivos de desarrollo sostenible de la ONU
- Sistemas educativos

- Cursos gratuitos (MOOC) y referencias técnicas (notas de aplicación, seminarios web, tutoriales) de alta calidad.
- Entendimiento de cómo aprendemos
- Electrónica de alto desempeño y bajo costo.
- Herramientas de cómputo gratuitas.

Desafíos y oportunidades

STEM and EECS Academy

Aprendizaje constructivo, significativo y metacognitivo STEM con énfasis en EECS.

Los estudiantes aprenden a:

- Analizar, diseñar, construir y verificar circuitos electrónicos y programas de computadora aplicando el diseño en ingeniería y la indagación científica.
- Identificar y resolver problemas del mundo real desarrollando emprendimientos con estándares de administración.

Embedded Systems

Digital Signal Processing

Artificial Intelligence

Machine Learning

Entrepreneurship

Making a better world

Engineering Design, Scientific Inquiry, Mathematical Modeling

- Considere un aprendizaje basado en proyectos de ingeniería y en indagación científica para resolver problemas reales y significativos conectando diferentes conceptos, ciencias y tecnologías.
- Comience con circuitos integrados discretos para establecer los conceptos básicos, las aplicaciones cotidianas y los retos tecnológicos. Luego proceda hacia la lógica programable y los microcontroladores para manejar la complejidad y la flexibilidad en el diseño digital.
- Utilice tanto hardware como simuladores y herramientas académicas e industriales.

"The function of education is to teach one to think intensively and to think critically." "Intelligence plus character: that is the goal of true education."

Martin Luther King Jr.

"Example is not the main thing in influencing others. It is the only thing."

Albert Schweitzer

Conclusiones