

Úloha č. 2 (Termín odovzdania 16.04.2020)

Všetky definície a vety použité v tejto práci sú z prednášok predmetu MBA [1,2].

Obr. 1: Časovaný automat A_1

Príklad 1. Uvažujme automat A_1 na obrázku 1:

- (a) Obsahuje tento automat zeno beh? Dokážte, alebo vyvráťte.
- (b) Obsahuje tento automat timelock? Ak áno uveď te beh vedúci do timelocku.

(2 body)

Riešenie

(1a) Pri riešení tejto úlohy budeme vychádzať z definície hovoriacej o tom, čo to zeno beh vlastne je a taktiež z lemmy hovoriacej o podmienkach pre neexistenciu zeno behu:

DEFINÍCIA 6 [1]: Nech \mathcal{A} je časovaný automat a $\rho = c_1 \xrightarrow{s_1} c_2 \xrightarrow{s_2} c_3 \xrightarrow{s_3} \dots$ jeho časovo konvergentný nekonečný beh. ρ nazveme **zeno behom**, ak ρ obsahuje nekonečné množstvo diskrétnych krokov.

LEMMA 7 (Podmienka neexistencie zeho behu) [1]: Časový automat \mathcal{A} , kde pre každý riadiaci cyklus

$$l_0 \xrightarrow{g_1, a_1, R_1} l_1 \xrightarrow{g_2, a_2, R_2} \dots \xrightarrow{g_n, a_n, R_n} l_n = l_0$$

existujú hodiny $x \in \mathcal{C}$, také že:

- $x \in R_i$ pre nejaké $0 < i \le n$ (hodiny x sú aspoň raz resetované)
- Existuje konštanta $c \in \mathbb{N}^+$ taká že $\nu(x) < c \to \nu(x) \nvDash g_i$ pre nejaké $0 < i \le n$ (aspoň jeden krok cyklu vyžaduje beh času)

V časovanom automate na obrázku 1 existujú dva riadiace cykly, ktoré majú tvar požadovaný LEMMOU 7:

cyklus 1
$$A \rightarrow C \rightarrow A$$

- hodiny x sú resetované (x := 0)
- podmienka $1 < x \Rightarrow c = 1$

cyklus 2
$$A \rightarrow B \rightarrow C \rightarrow A$$

- hodiny x aj hodiny y sú resetované (x := 0, y := 0)
- neexistuje konštanta c podľa Lemmy 7 \Rightarrow žiadny krok cyklu si nevyžaduje beh času

Podmienka neexistencie zeno behu nie je splnená.

Príklad zeno behu v časovanom automate z obrázku 1:

$$(A; [0,0]) \xrightarrow{a_1} (B; [0,0]) \xrightarrow{a_2} (C; [0,0]) \xrightarrow{a_4} (A; [0,0]) \xrightarrow{a_1} \dots$$

Táto sekvencia diskrétnych krokov sa môže opakovať donekonečna bez nutnosti behu času a tak tento beh splňuje DEFINÍCIU 6.

(1b) DEFINÍCIA 5 (Timelock) [1]: Nech $c = (l, \nu)$ je konfigurácia časovaného automatu \mathcal{A} . $Paths_{div}(c)$ potom označuje množinu časovo divergentných behov zo stavu c. Konfiguráciu c nazveme **timelock** ak $Paths_{div}(c) = \emptyset$.

ÁNO zadaný automat z obrázku 1 obsahuje timelock. Príklad timelock-u je napríklad konfigurácia (A; [14, 14]). Prvá odchádzajúca hrana zo stavu A je $A \xrightarrow{a_1, x \leq 1, y := 0} B$, no tento krok nemožno vykonať kvôli guard-u $x \leq 1$. Ďalšia odchádzajúca hrana je $A \xrightarrow{a_3, 0 < x < 10} C$, ktorú ale taktiež nemožno kvoli jej guardu vykonať. Zároveň nám guard v lokácii A nedovoľuje neobmedzený beh času a tak $Paths_{div}((A; [14, 14])) = \emptyset$. Príklad behu vedúceho do timelock-u.

$$(A;[0,0]) \xrightarrow{14.0} (A;[14,14])$$

Príklad 2. Dokážte, že jazyky časovaných automatov¹ sú uzatvorené voči operácii zjednotenia a konkatenácie.

(2 body)

Riešenie

2. Dôkazy oboch vlastností budú ukázané metódou, kedy to, že jazyky časovaných automatov sú uzatvorené voči nejakej operácii ukážeme konštrukciou automatu \mathcal{A} takého, že $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \oplus \mathcal{L}(\mathcal{A}_2)$, kde $\oplus \in \{\cdot, \cup\}$.

Teorém 2.1. Jazyky časovaných automatov sú uzatvorené voči operácii zjednotenia.

Dôkaz. Nech $\mathcal{A}_1 = (Loc_1, Act, \mathcal{C}_1, \hookrightarrow_1, Loc_{0_1}, Inv_1, AP_1, L_1, Loc_{acc_1})$ a $\mathcal{A}_2 = (Loc_2, Act, \mathcal{C}_2, \hookrightarrow_2, Loc_{0_2}, Inv_2, AP_2, L_2, Loc_{acc_2})$ sú časované automaty prijímajúce jazyky $\mathcal{L}(\mathcal{A}_1)$ a $\mathcal{L}(\mathcal{A}_2)$. Bez ujmy na obecnosti uvažujme, že $\mathcal{C}_1 \cap \mathcal{C}_2 = \emptyset$ a $Loc_1 \cap Loc_2 = \emptyset$.

Nech $\mathcal{A} = (Loc, Act, \mathcal{C}, \hookrightarrow, Loc_0, Inv, AP, L, Loc_{acc})$ je časovaný automat definovaný nasledovne:

• $Loc = Loc_1 \cup Loc_2$

• $Loc_{acc} = Loc_{acc_1} \cup Loc_{acc_2}$

• $\mathcal{C} = \mathcal{C}_1 \cup \mathcal{C}_2$

• $Inv = Inv_1 \cup Inv_2$

 $\bullet \hookrightarrow = \hookrightarrow_1 \cup \hookrightarrow_2$

 $\bullet \ AP = AP_1 \cup AP_2$

• $Loc_0 = Loc_{0_1} \cup Loc_{0_2}$

• $L = L_1 \cup L_2$

Z definície automatu \mathcal{A} je vidieť, že jazyk $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2)$.

Obr. 2: Zjednotenie dvoch časovaných automatov. Oba časované automaty budú bežať paralelne. V prípade, že časované slovo $w \in \mathcal{L}(\mathcal{A}_1)$, bude prijaté automatom \mathcal{A}_1 a ak naopak platí, že $w \in \mathcal{L}(\mathcal{A}_2)$ príjme ho automat \mathcal{A}_2 .

Teorém 2.2. Jazyky časovaných automatov sú uzatvorené voči operácii konkatenácie.

Dôkaz. Nech $\mathcal{A}_1 = (Loc_1, Act, \mathcal{C}_1, \hookrightarrow_1, Loc_{0_1}, Inv_1, AP_1, L_1, Loc_{acc_1})$ a $\mathcal{A}_2 = (Loc_2, Act, \mathcal{C}_2, \hookrightarrow_2, Loc_{0_2}, Inv_2, AP_2, L_2, Loc_{acc_2})$ sú časované automaty prijímajúce jazyky $\mathcal{L}(\mathcal{A}_1)$ a $\mathcal{L}(\mathcal{A}_2)$. Bez ujmy na obecnosti uvažujme, že $Loc_1 \cap Loc_2 = \emptyset$.

Nech $\mathcal{A} = (Loc, Act, \mathcal{C}, \hookrightarrow, Loc_0, Inv, AP, L, Loc_{acc})$ je časovaný automat definovaný nasledovne:

 $^{^{1}}$ Uvažujte jazyky nad konečnými slovami s množinou koncových stavov Loc_{acc}

• $Loc = Loc_1 \cup Loc_2$

• $Inv = Inv_1 \cup Inv_2$

• $\mathcal{C} = \mathcal{C}_1 \cup \mathcal{C}_2$

• $AP = AP_1 \cup AP_2$

• $Loc_0 = Loc_{0_1}$

 $\bullet \ L = L_1 \cup L_2$

- $Loc_{acc} = Loc_{acc}$
- $\hookrightarrow := \hookrightarrow_1 \cup \hookrightarrow_2$ $\cup \{(q, g, a, r \cup C_2, i) : i \in Loc_{0_2} \land \exists f \in Loc_{acc_1} : (q, g, a, r, f) \in \hookrightarrow_1\}$ $\setminus \{(q, g, a, r, f) \in \hookrightarrow_1 : f \in Loc_{acc_1}\}$

Z definície automatu \mathcal{A} je vidieť, že:

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \cdot \mathcal{L}(\mathcal{A}_2) = \{uv : u \in \mathcal{L}(\mathcal{A}_1) \land v \in \mathcal{L}(\mathcal{A}_2)\}$$

.

Obr. 3: Konkatenácia dvoch časovaných automatov. Automat \mathcal{A}_1 prečíta reťazec u, ale namiesto toho aby prešiel do koncového stavu, tak prejde do počiatočného stavu automatu \mathcal{A}_2 pričom resetuje všetky hodiny \mathcal{C}_2 . Automat \mathcal{A}_2 potom príjme reťazec v a akceptuje.

Obr. 4: Časovaný automat A_2

Príklad 3. Uvažujme automat A_2 na obrázku 4 s množinou atomických predikátov $AP = \{init, error, run\}$ a funkciou L definovanou nasledovne:

$$L(A) = \{init, run\}, L(D) = \{error\}, L(B) = L(C) = \{run\}$$

- (a) Zostavte abstrakciu založenú na regiónoch (stačí zostrojiť iba stavy dostupné z počiatočnej konfigurácie).
- (b) Rozhodnite, či je dostupný stav v ktorom platí predikát error.
- (c) Rozhodnite či platí $A_2 \vDash \exists (run \ U^{\leq 2} \ error).$
- (d) Rozhodnite či platí $(B, x = y = 0) \models \forall (run\ U^{\leq 2}\ init).$

Svoje tvrdenia zdôvodnite.

 $(4 \ body)$

Riešenie

- (3a) Abstrakcia založená na regiónoch pre časovaný automat \mathcal{A}_2 (viz Obr. 4) je zobrazená na obrázku 5. Zobrazené sú iba stavy dostupné z počiatočnej konfigurácie. Pri konštrukcii boli taktiež uvažované aj kroky, ktoré obsahujú nulový posun času.
- (3b) Túto vlastnosť môžme overiť na základe zkonštruovanej regiónovej abstrakcie. Na obrázku 5 je možné vidieť, že sú dosiahnuteľné až tri stavy v ktorých platí predikát error.

Príklad behu vedúceho do stavu spĺňajúceho predikát error (čiže do stavu D) môže vyzerať nasledovne:

$$(A; [0, 0]) \xrightarrow{mince} (B; [0, 0]) \xrightarrow{volba_kava} (C; [0, 0]) \xrightarrow{1.0, chyba} (\mathbf{D}; [\mathbf{1}, \mathbf{1}])$$

Na overenie tejto úlohy bol taktiež použitý nástroj UPPAAL². Model časovaného automatu \mathcal{A}_2 v nástroji UPPAAL je zobrazený na obrázku 6.

²UPPAAL je integrované prostredie na modelovanie, validáciu a verifikáciu systémov pracujúcich v reálnom čase, ktoré sú modelované ako siete časovaných automatov. Viac informácií viz: http://www.uppaal.org/

Obr. 5: Abstrakcia založená na regiónoch pre časovaný automat z obrázku 4.

Pri overovaní, či je stav v ktorom platí predikát error (stav D) dostupný sme použili UPPALL Verifier, kde sme zadali dotaz v tvare $E \Leftrightarrow Process.D^3$. Tento dotaz reprezentuje UPPALL notáciu formuly $\exists \diamond Process.D$, ktorá môže byť voľne preložená ako "je možné dosiahnuť stav D v automate Process.P".

Výsledok z nástroja UPPALL je možné vidieť na obrázku 7. Z obrázku je viditeľné, že spomínaná formula je platná a teda stav D (v ktorom platí predikát error) je dosiahnuteľný.

(3c) Definícia 5 [2]: Povieme, že automat splňuje formulu ϕ ($A \models \phi$) ak:

$$Init_{\mathcal{A}} \subseteq Sat(\phi)$$

kde $Init_{\mathcal{A}}$ je množina počiatočných konfigurácií: $Init_{\mathcal{A}} = \{(l,0^{|\mathcal{C}|})|l \in Loc_0)\}$ a $Sat(\phi)$ je množina konfigurácií spĺňajúcich formulu ϕ :

$$Sat(\phi) = \{(l, \nu) | l \in Loc, \nu \in \mathbb{R}^{|\mathcal{C}|}_{\geq 0}, (l, \nu) \vDash \phi\}$$

 $^{^3}$ Process je meno automatu \mathcal{A}_2 v prostredí UPPAAL.

Obr. 6: Automat A_2 z obrázku 4 v nástroji UPPAAL. Modré výrazy znázorňujú reset hodín a zelené výrazy sú guard-y jednotlivých prechodov.

Obr. 7: Výsledok overenia úlohy (3b) v prostredí Uppaal.

Keďže automat \mathcal{A}_2 má iba jednu počiatočnú konfiguráciu môžme overované tvrdenie previesť na tvar:

$$(A, x = y = 0) \vDash \exists (run \ U^{\leq 2} \ error)$$

Teraz z Definície 2 [2] hovoriacej o relácii splniteľnosti vieme, že konfigurácia s spĺňa formulu $\exists \phi$ ak $\pi \vDash \phi$ pre **nejakú** cestu $\pi \in Paths_{div}(s)$.

Takže aby zadané tvrdenie bolo pravdivé musí v časovanom automate \mathcal{A}_2 existovať časovo divergentná cesta z počiatočnej konfigurácie, ktorá spĺňa formulu $(run\ U^{<2}\ error)$.

Podľa DEFINÍCIE 3 z [2] teda musí platiť, že (1) existuje časový okamih $t \in (0,2)$ v ktorom platí atomická podmienka error a zároveň (2) pre ľubovoľný časový okamih menší ako t platí formula $run \lor error$.

Príklad takéhoto behu je na obrázku 8. V tomto behu je časový okamih t v ktorom platí atomická podmienka error rovný 1, čiže patrí do intervalu (0,2), a tým je

splnená prvá podmienka z Definície 3.

Zároveň platí aj druhá podmienka DEFINÍCIE 3, keď že pre ľubovoľný časový okamih menší ako 1 platí atomická podmienka run.

- Obr. 8: Dôkaz, že časovaný automat \mathcal{A}_2 spĺňa formulu $\exists (run\ U^{\leq 2}\ error)$. Krúžok značí začiatok platnosti atomickej podmienky, krížik znamená koniec platnosti atomickej podmienky a šípka trvanie jej platnosti.
- (3d) Podobne ako v predchádzajúcom bode, na to aby sme rozhodli či platí

$$(B, x = y = 0) \vDash \forall (run \ U^{<2} \ init)$$

použijeme Definíciu 2 z [2]. Tentokrát pre zmenu použijeme časť hovoriacu o tom, že aby konfigurácia (B, x = y = 0) splňovala formulu $\forall (run\ U^{<2}\ init)$ tak musí platiť, že $\pi \models (run\ U^{<2}\ init)$ pre **všetky** cesty $\pi \in Paths_{div}(B, x = y = 0)$.

To, že zadané tvrdenie nie je pravdivé ukážeme formou dokazovania protipríkladom. To znamená, že nájdeme časovo divergentný beh vedúci z konfigurácie (B; [0, 0]), ktorý nespĺňa formulu $(run\ U^{<2}\ init)$.

Príklad takéhoto behu je na obrázku 9. Z tohto behu môžme vidieť, že už prvá podmienka z DEFINÍCIE 3 (uvedenej vyššie) nie je splnená keďže neexistuje časový okamih z intervalu (0,2) v ktorom by platila atomická formula init. Z toho vyplýva, že zadané tvrdenie **neplatí**.

To že všetky divergentné cesty z konfigurácie (B; [0,0]) nespĺňajú formulu $(run\ U^{<2}\ init)$ môžme vidieť aj z regiónovej abstrakcie na obrázku 5. Môžme si všimnúť, že ak sa časovaný automat \mathcal{A}_2 raz dostane zo stavu (B; [0,0]) do niektorého stavu spĺňajúceho predikát error už nikdy sa nedostane do stavu v ktorom by platil predikát init.

Obr. 9: Dôkaz, že konfigurácia (B, x = y = 0) nespĺňa formulu $\forall (run\ U^{<2}\ init)$.

Literatúra

- [1] Rogalewicz, A.: Časované automaty Abstrakce založená na regionech (prednáška MBA). marec 2020. URL https://www.fit.vutbr.cz/study/courses/MBA/private/prednasky/TA-1.pdf
- [2] Rogalewicz, A.: *Časované automaty Logika TCTL* (prednáška MBA). marec 2020. URL https://www.fit.vutbr.cz/study/courses/MBA/private/prednasky/TA-2.pdf