

Deep Learning

Text-Based Sentiment Analysis based on IMDb movie reviews

Sykallou Sofia - 2022202204009

Pouli Stavroula - 2022202204008

What is text-based sentiment analysis?

Branch of natural language processing (NLP)

Identifies the emotional tone behind a body of text

- ✓ positive sentiment
- ✓ negative sentiment
- √ (or neutral)

The IMDb Dataset

- Data source: <u>Kaggle</u>
- Contains 50K Movie Reviews
 - 25.000 positive labeled reviews
 - 25.000 negative labeled reviews

Features

Review

The text content of the movie reviews.

Sentiment

Indicates whether the review is positive or negative.

Data cleaning and preprocessing Duplicate Values

- There are 418 duplicate values in our dataset.
- After deleting them, the dataset consisted of 49.582 instances.

Data cleaning and preprocessing

Label transformation

Data cleaning and preprocessing Label transformation

	review	sentiment
0	One of the other reviewers has mentioned that	positive
1	A wonderful little production. The	positive
2	I thought this was a wonderful way to spend ti	positive
3	Basically there's a family where a little boy	negative
4	Petter Mattei's "Love in the Time of Money" is	positive

	review	sentiment
0	One of the other reviewers has mentioned that	1
1	A wonderful little production. The	1
2	I thought this was a wonderful way to spend ti	1
3	Basically there's a family where a little boy	0
4	Petter Mattei's "Love in the Time of Money" is	1

Data cleaning and preprocessing Stemming

- Reduces words to their base or root form, known as a stem.
- Removes suffixes or affixes from words to normalize them and group similar words together.
- Stemming algorithms
 - Porter
 - Snowball
 - Lancaster

Data cleaning and preprocessing

Transformations and removals

Before performing stemming, we defined a word mapping dictionary: informal contractions or abbreviations are transformed to their corresponding expanded form.

Exploratory analysis Top 20 most common words and bigrams

Exploratory analysis Distribution of the lengths of the reviews

Exploratory analysis Word clouds

Exploratory analysis Characters and words in the reviews

Represent words as dense vectors Word2Vec model

- To discover the semantic relationships between words
- To analyze the context of each word and generate word embeddings
- The model will learn the relationships between words based on their positions
- After executing the above process, the vocabulary's length is equal to 24221 words.

Tokenization and padding

Tokenization

Breaking down a sequence of text into smaller units called tokens

Padding

Ensure that all sequences have the same length

Embedding matrix

Store the embedding vectors in a matrix.

If the model contains the word, then retrieve the embedding vector

Model selection

Split the dataset

Training set - 80% of the data (39.665 records)

Test set - 20% of the data (9.917 records)

Model selection RNN (Recurrent Neural Network)

• RNN Loss: 35%

• RNN Accuracy: 84%

embedding (Embedding) (None, 750, 100) 3500000 simple_rnn (SimpleRNN) (None, 100) 20100 dense (Dense) (None, 32) 3232 dense 1 (Dense) (None, 1) 33
dense (Dense) (None, 32) 3232
dense 1 (Dense) (None. 1) 33
uense_1 (sense) (none; 1)

Model selection LSTM (Long Short-Term memory)

LSTM Loss: 30%

• LSTM Accuracy: 87%

Layer (type)	Output Shape	Param #
================== embedding_1 (Embedding)		3500000
lstm (LSTM)	(None, 750, 64)	42240
dropout (Dropout)	(None, 750, 64)	Ø
lstm_1 (LSTM)	(None, 32)	12416
dropout_1 (Dropout)	(None, 32)	ø
dense_2 (Dense)	(None, 1)	33
ense_2 (Dense) ====================================		

Model selection BiLSTM (Bidirectional LSTM)

BiLSTM Loss: 28%

• BiLSTM Accuracy: 88%

```
Model: "Sentiment Model LSTM Bidirectional"
 Layer (type)
                             Output Shape
                                                        Param #
 embedding_2 (Embedding)
                             (None, 750, 100)
                                                        3500000
 bidirectional (Bidirectiona (None, 750, 70)
 1)
 global max pooling1d (Globa (None, 70)
 lMaxPooling1D)
 dense_3 (Dense)
                             (None, 40)
                                                        2840
 dropout_2 (Dropout)
                             (None, 40)
 dense 4 (Dense)
                             (None, 20)
                                                        820
 dropout_3 (Dropout)
                             (None, 20)
 dense 5 (Dense)
                             (None, 1)
                                                        21
Total params: 3,541,761
Trainable params: 41,761
Non-trainable params: 3,500,000
```


Model evaluation

Confusion matrix

Classification report

All the evaluation metrics for our (classification) problem.

- uses the true labels (y_test) and the predicted labels (y_pred)
- creates a report with the
 - precision
 - recall
 - f1-score
 - support

	precision	recall	f1-score	support	
0	0.84	0.86	0.85	4939	
1	0.86	0.83	0.85	4978	
accuracy			0.85	9917	
macro avg	0.85	0.85	0.85	9917	
weighted avg	0.85	0.85	0.85	9917	
	precision	recall	f1-score	support	
0	0.87	0.88	0.87	4939	
1	0.88	0.87	0.87	4978	
accuracy			0.87	9917	
macro avg	0.87	0.87	0.87	9917	
weighted avg	0.87	0.87	0.87	9917	
	precision	recall	f1-score	support	
ø	0.91	0.84	0.87	4939	
1	0.85	0.92	0.89	4978	
accuracy			0.88	9917	
macro avg	0.88	0.88	0.88	9917	
weighted avg	0.88	0.88	0.88	9917	

ROC AUC Curves

ROC curve: represents the performance of a binary classification model.

AUC: represents the overall performance of the classification model.

Winner model BiLSTM

The BiLSTM model process the input sequence both forward and backwards.
As a result, the model can better interpret the overall sentiment of the text by capturing contextual information from both past and future situations.

Thank you

any questions?