PMTH332 Assignment 4

Jayden Turner (SN 220188234)

25 August 2018

Question 1

Let M and N be normal subgroups of G such that $M \subseteq N \subseteq G$. Consider $N/M \subseteq G/M$. If M is a maximal normal subgroup of G, then either

$$N=G$$
 or $N=M$ $\Longrightarrow N/M=G/M$ $\Longrightarrow N/M=M/M=\{M\}$

Therefore the only two normal subgroups of G/M are G/M and $\{M\}$, which is the identity element. Therefore G/M is simple.

Suppose $M \subseteq G$ and G/M is simple. If $M \subseteq N \subseteq G$, then $N/M \subseteq G/M$. As G/M is simple, either $N/M = G/M \implies N = G$ or $N/M = \{M\} \implies N = M$. Therefore M is a maximal normal subgroup of G.

Question 2

Let $m = \operatorname{ord}(a_1, ..., a_n)$. Then

$$(a_1, ..., a_n)^m = (a_1^m, ..., a_n^m) = (e_1, ..., e_n)$$
 (1)

where e_i is the identity element of group G_i . Therefore, for each a_i , there exists an integer q_i such that $m = q_i \operatorname{ord}(a_i)$. As m is the smallest positive integer such that (1) holds, m must be the least common multiple of the orders of each a_i . That is,

$$ord(a_1, ..., a_n) = lcm(ord(a_1), ..., ord(a_n))$$

Question 3

Consider the group

$$(\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z}) = \{(a,b)|a \in \mathbb{Z}/m\mathbb{Z}, b \in \mathbb{Z}/m\mathbb{Z}\}$$
 (2)

This group has mn elements and is cyclic. By the result of Question 2, the order of (2) is d = lcm(m, n).

By the classification of cyclic groups, this group is isomorphic to $\mathbb{Z}/mn\mathbb{Z}$ if and only if the order d=mn. That is, if and only if $d=\operatorname{lcm}(m,n)=mn=\operatorname{lcm}(m,n)\operatorname{gcd}(m,n)$. Therefore, $(\mathbb{Z}/m\mathbb{Z})\times(\mathbb{Z}/n\mathbb{Z})\cong\mathbb{Z}/mn\mathbb{Z}$ if and only if $\operatorname{gcd}(m,n)=1$.

Question 4

The prime factorisation of 324 is $324 = 2^2 \cdot 3^4$. By the first Sylow theorem, G has subgroups of orders $2, 2^2 = 4, 3, 3^2 = 9, 3^3 = 27$ and $3^4 = 81$. Let H be a subgroup of G of order 10. Then there is an element $g \in G$ of order 10. By Corollary 6.17, it must hold that $\operatorname{ord}(g)||G|$. However, $10 \nmid 324$, so this is a contradiction, and G has no subgroups of order 10.