A quantum algorithm for the dihedral hidden subgroup problem

Greg Kuperberg

arXiv:quant-ph/0302112

Main existing quantum algorithms

Arbitrary combinatorial search:

$$f:S\to\{0,1\}$$

with |S| = N. Find f(x) = 1 with k solutions. Quantum complexity (Grover): $\Theta(\sqrt{N/k})$. Classical time complexity: $\Theta(N/k)$.

2) Period-finding (c.f. factoring, discrete log):

 $f: \mathbb{Z} \to S$ f(x+s) = f(x)

and f is otherwise 1-to-1. Find s.

Classical complexity: $\Theta(\sqrt{s})$. Quantum complexity (Shor): $O((\log s)^{\alpha})$.

Both algorithms have interesting variations due to Ettinger, Høyer, Tapp, Heiligman, Ambainis, Hallgren, Ip, van Dam, ...

The (deterministic) hidden subgroup problem

In HSP, G is a group, H is a subgroup, and

$$f:G\to S$$

is constant on cosets Ha and otherwise 1-to-1. G is explicit rather than black-box.) We want to find H.

If G is abelian, Shor's algorithm finds H using the quantum Fourier transform.

If G is residually finite and H is normal, a quantum character transform reveals H in quantum polynomial time.

If G is dihedral and H is a reflection, the character transform reveals little.

If G is the symmetric group, HSP is harder still.

Dihedral HSP

The dihedral group:

$$D_N = \langle x, y | x^N = y^2 = xyxy = 1 \rangle$$

A reflection subgroup:

$$H = \langle x^s y \rangle.$$

The problem is to find s, the slope of H.

DHSP is equivalent to the hidden shift problem. Here

$$f: \mathbb{Z}/N o S \qquad g: \mathbb{Z}/N o S$$

are injective with

$$g(x) = f(x+s).$$

substring problem is also roughly equivalent. The shift s is the same as the slope. The $N \hookrightarrow 2N$ hidden

Complexity of DHSP

DHSP requires $\Theta(\sqrt{N})$ classical queries

finite HSP (Ettinger-Høyer-Knill). The good news: $O((\log G)^lpha)$ quantum queries suffice for any

hard subset-sum problem (Regev). The bad news: With few queries, DHSP appears to reduce to a

quantum time and query complexity. **Theorem** There is a quantum algorithm for DHSP with $2^{O(\sqrt{\log N})}$

time per query. The moral: There is a good compromise between queries and

Abelian HSP

We abbreviate a constant pure state:

$$|S\rangle = \frac{1}{\sqrt{|S|}} \sum_{s \in S} |s\rangle$$

result (by partial measurement) is the mixed state: 1. Apply $f:G\to S$ to the input $|G\rangle$ and discard the output. The

$$\rho_{G/H} = \frac{|H|}{|G|} \sum_{Ha} |Ha\rangle\langle Ha|.$$

Use a QFT to set up the measurement

$$\mathbb{C}[G] \cong \bigoplus_{\chi \in \widehat{G}} L_{\chi}.$$

Non-abelian HSP

If G is finite and non-abelian, you can still make

$$\rho_{G/H} = \frac{|H|}{|G|} \sum_{Ha} |Ha\rangle\langle Ha|.$$

HSP. You can take $ho_{G/H}$ to be the oracle instead of f. This is coherent

Or most (all?) finite G, you can compute the measurement

$$\mathbb{C}[G] \cong \bigoplus_{V} (\dim V)V,$$

where the sum is over irreps. of G (Burnside).

Non-abelian HSP

are irreps. of G/H. If H is almost normal (Grigni, Schulman, If H is normal (Hallgren, Russel, Ta-Shma), then all outcomes Vazirani, Vazirani), then the outcomes still reveal H

In many cases, character measurement reveals little. But V is of H-invariant pure states. Here it is the uniform state on V^H . has information! Its state ho_V is strongly H-invariant: a mixture

If we could choose V, we could find H with state tomography. An idea: Given V and W, do the partial measurement

$$V \otimes W \cong \bigoplus m_{V,W}^X X.$$

than V or WThe new ho_X is also strongly H-invariant! Maybe we like X better

Dihedral HSP

 $N=2^n$ and that we start with $ho_{G/H}$. Recall the case $G=D_N$ and $H=\langle x^sy\rangle$ a reflection. Assume

Using a QFT, we can set up the measurement

$$\mathbb{C}[D_N] \cong \bigoplus_k 2V_k$$

for 2-dimensional induced representations

$$V_k = L_k \oplus L_{-k}.$$

The index k is uniformly random. The state on V_k (a qubit) is:

$$|0\rangle + \omega^{ks}|1\rangle,$$

where $\omega = \exp(2\pi i/2^N)$.

The DHSP algorithm (continued)

- 2. We will obtain V_{2n-1} , which is reducible and reveals $s \mod 2$.
- 3. Given V_k and V_ℓ , we can measure

$$V_k \otimes V_\ell \cong V_{k+\ell} \bigoplus V_{k-\ell}.$$

- 4. Given $2^{O(\sqrt{n})}$ separate V_k 's, tensor them in pairs to cancel $\sim \sqrt{n}$ times to obtain V_{2n-1} . $\sim \sqrt{n}$ low bits of k. This shortens the list by a factor of 4. It requires $2^{O(\sqrt{n})}$ queries and quasilinear work in queries. Repeat
- 5. Once we know s mod 2, we can pass to $D_{N/2}$ and repeat.

Variant algorithms

If N is odd:

- 1. We can cancel high bits instead of low bits to obtain $V_{\mathbf{1}}.$
- 2. The map $x\mapsto x^2$ is a group automorphism that takes V_k to V_{2k} . So we can obtain V_{2a} for any $a.\,$
- state tomography. Or (Høyer), given one copy each, a QFT 3. Given a few copies of V_1, V_2, V_4, \ldots , we can measure N with reveals N directly.

If $N=2^nM$ with M odd, then

$$D_N \hookrightarrow D_M \times D_{2^n}$$
,

and we can combine both approaches

The bad news

For most irreps of most groups, the tensor decomposition

$$V \otimes W \cong \bigoplus_X m_{V,W}^X X$$

extracted summand, hence no clear way to climb and improve has many ($\sim \dim V$) terms. There is very little control over the

Since

$$D_2.3.5...p \hookrightarrow S_{2+3+5+...+p}$$

symmetric HSP cannot be much easier than dihedral HSP. It is probably much harder.

than lattice reduction. Regev showed that DHSP cannot be much easier or much harder

Other comments

1. DHSP is not much different from general hidden shift. E.g.:

$$\mathbb{Z}/2 \ltimes \mathbb{Z}^d \sim D_N$$

for some N.

- turally requires $O(4\sqrt{n})$ queries. 2. If you optimize the sieve (cancel low bits greedily), it conjec-
- subgroup of GL(n,2) or S_n . 4. Possible next cases of general HSP: SL(2,p), the Sylow 2-
- than general SymHSP. eral DHSP. I conjecture that graph isomorphism is much faster 5. Special DHSP (van Dam, Hallgren, Ip) seems faster than gen-