ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КИБЕРНЕТИКИ

Интерферометр Майкельсона

Работу выполнил: Шурыгин Антон Алексеевич, группа Б01-909

Долгопрудный, 2021

Содержание

1	Вве	дение и краткая теория
2	Cxe	ема установки
3	Ход	д работы
	3.1	Исследование интерференционной картины 6
	3.2	Измерение длины волны лазерного излучения
	3.3	Исследование эффекта Доплера
4	Вы	вод

Цель работы: Изучение двухлучевой интерференции, определение длины волны, проверка эффекта Доплера.

Оборудование: интерферометр Майкельсона с подвижным зеркалом, лазер, фотоумножитель, частотомер, линзы.

1 Введение и краткая теория

Интерферометр Майкельсона находит применение в спектрометрах с высоким разрешением, для абсолютных и относительных измерений длин с точностью 0,005 мкм.

Оптическая схема интерферометра приведена на рис. 1. Источником света служит лазер $\Pi\Gamma$. Лазер излучает узкий пучок света, который фокусируется линзой $\Lambda 1$. В фокусе этой линзы возникает точечный источник света S. Сферическая световая волна от источника S падает на делительный кубик ΔK и делится его диагональной гранью на две волны — отражённую 1 и проходящую 2. Волна 1 отражается от зеркала 3_1 , возвращается к кубику, частично проходит сквозь него и попадает на экран Θ . Волна 2 отражается от зеркала 3_2 , частично отражается от кубика и также попадает на экран. Световые волны 1 и 2 испускаются одним источником S, и они когерентны между собой. Эти волны создают на экране Θ интерференционную картину. Для увеличения масштаба интерференционной картины может быть использована линза Π_2 .

Зеркало 31 установлено перпендикулярно падающему лучу. Оно может перемещаться вдоль луча. Это зеркало в дальнейшем будет называться подвижным. Зеркало 32 вдоль направления падающего луча не перемещается. Его, однако, можно наклонять по отношению к лучу.

2 Схема установки

Схема экспериментальной установки приведена на рис. 2. Источником света служит гелий-неоновый лазер ЛГН-203. Его излучение обладает большой длиной когерентности, что позволяет получать хорошо различимую глазом интерференционную картину при разности хода в десятки

Рис. 1 Схема интерферометра

сантиметров. Неподвижное зеркало 32, поворачивается микрометрическими винтами Мг (относительно горизонтальной) и Мв (относительно вертикальной оси). Зеркало 31 установлено перпендикулярно падающему лучу. Оно может передвигаться вдоль луча с помощью микрометрического винта, соединённого с двигателем Дв через муфту и редуктор РД, позволяющий менять скорость движения зеркала. Двигатель питается от сети через блок питания пульта управления. Концевые контакты К1 и К2 меняют направление движения зеркала на обратное. Включение лазера и двигателя производится с пульта управления. Сигнальные лампочки указывают, в какую сторону движется зеркало.

Интерференционная картина наблюдается на экране Э. Она может быть увеличена с помощью линзы $\Lambda 2$. В этом случае на экране в увеличенном масштабе воспроизводится интерференционная картина, которая создаётся перед линзой в плоскости, сопряжённой экрану. Линза закреплена на съёмном столике, её фокусное расстояние 4,3 см.

Для регистрации изменения интенсивности света используется фотоэлектронный умножитель $\Phi \ni V$ -68, установленный непосредственно за экраном. Свет на окно $\Phi \ni V$ попадает через небольшое отверстие в центре

экрана. Для питания ФЭУ используется высоковольтный выпрямитель. Выпрямитель включается тумблером «Сеть» на пульте управления. Периодическое изменение интенсивности света, возникающее при движении зеркала 31, приводит к такому же изменению сигнала ФЭУ.

Число периодов изменения интенсивности света пересчитывается частотомером Ч3-54. Частотомер может работать в одном из трёх режимов.

- 1. Он может измерять число импульсов, поступающих на его входы (A или B) за некоторый промежуток времени (его продолжительность определяется поступлением сигналов на управляющие входы B и Γ).
- 2. С помощью частотомера можно измерять промежутки времени. Для таких измерений в прибор встроен кварцевый генератор. Частотомер измеряет время, прошедшее между поступлением сигналов на его управляющие входы, подсчитывая соответствующее число импульсов кварцевого генератора
- 3. Наконец, частотомер может измерять частоту сигнала, поступающего на его вход, сравнивая число периодов исследуемого сигнала с числом импульсов кварцевого генератора.

Для получения управляющих сигналов используется геркон Γ (герметичный магнитоуправляемый контакт). Схема работает следующим образом. На отсчётной головке микрометрического винта зеркала 3_1 закреплён небольшой магнит. Головка вращается вместе с винтом. После срабатывания концевого контакта K_1 зеркало начинает двигаться к экрану. При приближении магнита к геркону вырабатывается управляющий сигнал, который подаётся через схему пульта управления на вход B частотомера. Частотомер начинает счёт импульсов. Сигнал на окончание счёта подаётся на вход Γ после того, как с помощью геркона зарегистрировано 3_2 оборота ходового винта. После срабатывания концевого контакта K_2 зеркало начинает движение от экрана. На этом участке движения счёт импульсов не производится. Один оборот микрометрического винта приводит к перемещению зеркала на 1 мм. Таким образом, полное перемещение зеркала 3_1 составляет L=32 мм.

Рис. 2 Схема интерферометра

3 Ход работы

3.1 Исследование интерференционной картины

Совместим центр креста с центром колец, наметим положение 5-6-ти первых тёмных колец и измерьте их диаметры.

Убедимся в справедливости формулы:

$$r_n \approx \sqrt{\frac{2nL(L-\alpha)}{m_0}}$$

Для этого построим график зависимости квадрата радиуса кольца от его номера. По наклону полученной прямой найдём величину $\frac{L(L-\alpha)}{m_0}$. Сравним найденное число с результатом теоретического расчёта.

Таким образом, получаем, что величина $\frac{2L(L-\alpha)}{m_0}\approx 0.2.$

Согласно рис. 1,

$$L = OS_1 = BS_1 + OB$$
, $L - -\alpha = OS_2 = BS_2 + OB$
 $BS_1 = 2 \cdot BC + SB$, $BS_2 = 2 \cdot BD + SB$

Проведите расчёт, принимая SB = 5 см, BC = 26 см (для среднего положения зеркала), BD = 22 см, расстояние от делительного кубика до линзы $\Pi_2-16,5$ см, расстояние от линзы до экрана — 15 см, фокусное расстояние линзы $\Pi_2-4,3$ см.

Кроме того, порядок интерференции равен:

$$m_0 = \frac{a}{\lambda}$$

Причем α - это расстояние между изображениями источника S на экране, она же разность хода между лучами 1 и 2.

Разность хода в интерферометре Майкельсона определяем как удвоенная разность плеч:

$$a = 2 \cdot (BC - BD) = 8 \text{ cm}$$

Тогда $m_0 \approx 125000$.

$$L = 2 \cdot BC + SB + OB = 2 \cdot 26 + 5 + 16.5 + 15 = 88.5 \text{ cm}.$$

$$L - \alpha = 2 \cdot BD + SB + OB = 2 \cdot 22 + 5 + 16.5 + 15 = 80.5$$
 cm.

Таким образом, получаем что:

$$\frac{2 \cdot 88.5 \cdot 80.5}{125000} \approx 0.13$$

Получим на экране картину вертикальных полос. Для этого уведите центр пятна в сторону по горизонтали (O \to O' на рис. 1), сместив микрометр $\mathrm{M_B}$ на 0,08–0,09 мм от исходного положения. Измерим ширину полосы в центре экрана (в т. О) и расстояние O'O на экране. Зная OS_1 , оцените угол поворота зеркала и смещение изображения источника света ($\mathrm{S}_2\mathrm{S}_2'$). Угол поворота зеркала вдвое меньше угла $\frac{\mathrm{OO}'}{\mathrm{OS}_1}$.

Рис. З Зависимость радиуса кольца от его номера.

	n	1	2	3	4	5	6
ĺ	r_n	5	7	8	9	10	11,5

Таблица 1

3.2 Измерение длины волны лазерного излучения

Из таблицы получим среднее значение N=72101 полос, за время 42.9 с (см. измерения в пункте 3). Тогда по формуле $\nu=\frac{\lambda N}{2T}$, где $\nu=\frac{L}{T}$ легко получить длину волны лазера $\lambda=\frac{2L}{N}=887.6$ нм

Из таблицы получим среднее значение N = 72101 полос, за время 42.9 с (см. измерения в пункте 3). Тогда по формуле $\nu=\frac{\lambda N}{2T}$, где $\nu=\frac{L}{T}$ легко получить длину волны лазера $\lambda=\frac{2L}{N}=887.6$ нм

3.3 Исследование эффекта Доплера

Для измерения длины лазерного излучения совместим центр интерференционной картины с отверстием в экране, и будем смотреть на

Рис. 4 Наблюдение интерференционных колец

Рис. 5 Наблюдение интерференционной полосы

Iter., n	Num of stripes, n
1	63546
2	61519
3	71886
4	67316
5	79701
6	82690
7	65397
8	85791
9	85138
10	58032

Таблица 2

показания частотомера в режиме счета импульсов. Скорость двигателя установим на 1 (максимальную). Как видно из полученной таблицы, количество прошедших через $\Phi \ni V$ импульсов сильно отличается ввиду внешних колебаний системы.

Для измерения эффекта Доплера, сначала измерим время движения зеркала по измеряемому участку ($L=32~{\rm mm}$), откуда получим скорость движения зеркала, а затем проведем несколько (в нашем случае 6) измерений частоты колебания интенсивности света на Φ ЭУ при движении зеркала в каждую сторону. Повторим измерения для трех разных скоростей двигателя.

Построим график разности частот при движении в разные стороны от квадрата скорости, откуда получаем угол наклона $\frac{\Delta v}{v^2} = 289 \cdot 10^6 \ \mathrm{m}^{-2}$ с

При малых скоростях формула (1) позволяет нам выразить длину волны лазера

$$N \pm \Delta N = 2 \frac{vt}{\lambda} \frac{1}{1 \pm \frac{v}{c}} \tag{1}$$

$$\pm \Delta N = 2 \frac{vt}{\lambda} (\mp \frac{v}{c}) \tag{2}$$

$$\lambda = 4 \frac{v^2}{\Delta vc} \tag{3}$$

Таким образом получаем $\lambda = 2.3 \cdot 10^{-8}$ нм.

Результат, естественно, не совпадает длиной лазера ни в каком приближении. Такая большая ошибка происходит ввиду того, что эффект Доплера вносит поправку порядка отношения скорости к скорости света, которая в данном случае настолько мала, что на много порядков перекрывается погрешностями - т.е. мы наблюдаем разность частот обусловленную вибрацией установки, а следовательно не можем применять формулу, использованную нами для получения длины волны.

	1	2	3	4	5	6	$\overline{\nu}$	
ν, \rightarrow	3000	2964	2877	2912	2888	2832	2912.2	
ν,\leftarrow	2622	2562	2536	2564	2563	2592	2573.2	
Время движения зеркала: 42.9 с								

Таблица 3 Измерение номера дифракционной картины от координаты линзы

	1	2	3	4	5	6	$\overline{ u}$	
$ u, \rightarrow $	1233	1213	1246	1192	1222	1211	1219.5	
ν,\leftarrow	1269	1254	1226	1249	1232	1230	1243.3	
Время движения зеркала: 82.6 с								

Таблица 4 Измерение номера дифракционной картины от координаты линзы

	1	2	3	4	5	6	$\overline{ u}$	
u, ightarrow	466	440	485	434	446	446	452.8	
$v, \leftarrow $ 447 423 435 430 430 455 436,7								
Время движения зеркала: 229.1 с								

Таблица 5 Измерение номера дифракционной картины от координаты линзы

Рис. 6 Зависимость для анализа эффекта Доплера.

4 Вывод

Выл изучен интерферометр Майкельсона, были проведены наблюдения интерференции на установке - как визуальные, так и с помощью ФЭУ. В данной работе основную часть погрешности вносит факт вибраций установки, который не мог быть устранен в рамках работы. Остальные погрешности либо пренебрежимо малы (как приборные погрешности), либо вносят несущественный вклад по сравнению с неидеальностью установки.