IPA 주관 인공지능센터 기본(fundamental) 과정

• GitHub link: here

• E-Mail: windkyle7@gmail.com

In [1]:

```
import pandas as pd
from sklearn.datasets import load wine
wine = load wine()
data = pd.DataFrame(wine.data, columns=wine.feature names)
target = pd.DataFrame(wine.target, columns=['target'])
dataset = pd.concat([data, target], axis=1)
```

In [2]:

```
dataset.info()
dataset.describe()
```

```
RangeIndex: 178 entries, 0 to 177
Data columns (total 14 columns):
alcohol
                                178 non-null float64
malic acid
                                178 non-null float64
                                178 non-null float64
ash
alcalinity of ash
                                178 non-null float64
magnesium
                                178 non-null float64
                               178 non-null float64
total phenols
                                178 non-null float64
flavanoids
nonflavanoid phenols
                               178 non-null float64
                               178 non-null float64
proanthocyanins
color_intensity
                               178 non-null float64
                               178 non-null float64
od280/od315_of_diluted_wines 178 non-null float64
                                178 non-null float64
proline
                                178 non-null int64
target
dtypes: float64(13), int64(1)
```

<class 'pandas.core.frame.DataFrame'>

memory usage: 19.5 KB

Out[2]:

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	no
count	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	
mean	13.000618	2.336348	2.366517	19.494944	99.741573	2.295112	2.029270	
std	0.811827	1.117146	0.274344	3.339564	14.282484	0.625851	0.998859	
min	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	
25%	12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.205000	
50%	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.135000	
75%	13.677500	3.082500	2.557500	21.500000	107.000000	2.800000	2.875000	

 max
 14.830000 alcohol
 5.800000 alcohol
 3.230000 alcohol
 162.000000 total_phenols
 15.080000 play

 magnesium
 total_phenols
 flavanoids
 no

```
In [3]:
```

```
import pandas_profiling as pp
profile = pp.ProfileReport(dataset)
profile
```

Out[3]:

Overview

Dataset info

14	Number of variables
178	Number of observations
0.0%	Total Missing (%)
19.5	Total size in memory
KiB	Total Size III Memory
112.4 B	Average record size in
112110	memory

Variables types

Numeric	14
Categorical	0
Boolean	0
Date	0
Text (Unique)	0
Rejected	0
Unsupported	0

Warnings

• <u>target</u> has 59 / 33.1% zeros Zeros

Variables

alcalinity_of_ash

63
35.4%
0.0%
0
0.0%
0
95
0.6
30
1%

Distinct cou	nt 126
Unique (%	%) 70.8%
Missing (%) 0.0%
Missing	(n) 0
Infinite (°	%) 0.0%
Infinite ((n) 0
Mean	13.001
Minimum	11.03
Maximum	14.83
Zeros (%)	0.0%

ash

Numeric

Distinct coun	t 79
Unique (%	44.4%
Missing (%	0.0%
Missing (n) 0
Infinite (%	0.0%
Infinite (n) 0
Mean	2.3665
Minimum	1.36
l aximum	3.23
Zeros (%)	0.0%

Toggle details

color_intensity Numeric

Distinct cou	nt 132
Unique (%	%) 74.2%
Missing (°	%) 0.0%
Missing ((n) 0
Infinite (°	%) 0.0%
Infinite ((n) 0
Mean	5.0581
	4.00

flavanoids

Numeric

Distinct cour	t 132
Distinct coun	t 132
Unique (%	74.2%
Missing (%	0.0%
Missing (r	1) 0
Infinite (%	0.0%
Infinite (n	n) 0
Mean	2.0293
Minimum	0.34
Maximum	5.08
Zeros (%)	0.0%
Ы	

Toggle details

hue

Numeric

Distinct coun	t 78
Unique (%	43.8%
Missing (%	0.0%
Missing (n) 0
Infinite (%	0.0%
Infinite (n) 0
Mean	0.95745
Minimum	0.48
Maximum	1.71
Zeros (%)	0.0%

Toggle details

magnesium Numeric

Distinct count	53
Unique (%)	29.8%
Missing (%)	0.0%
Missing (n)	0
1-41-15-7073	0.007

malic_acid Numeric **Distinct count** 133 Unique (%) 74.7% 0.0% Missing (%) Missing (n) Infinite (%) 0.0% Infinite (n) Mean 2.3363 Minimum 0.74 Maximum 5.8 Zeros (%) 0.0%

Toggle details

nonflavanoid_phenols

Numeric	
Distinct count	t 39
Unique (%)	21.9%
Missing (%	0.0%
Missing (n) 0
Infinite (%	0.0%
Infinite (n) 0
Mean	0.36185
Minimum	0.13
Maximum	0.66
Zeros (%)	0.0%

Toggle details

od280/od315_of_diluted_wines

Numeric

Distinct count 122

Numeric **Distinct count** 101 Unique (%) 56.7% 0.0% Missing (%) Missing (n) Infinite (%) Infinite (n) Mean 1.5909 **Minimum** 0.41

proanthocyanins

Maximum 3.58 Zeros (%) 0.0%

Toggle details

proline Numeric

68.0% 0.0%
0.0%
0
_
0.0%
0
46.89
278
1680
0.0%

Toggle details

Numeric			
Distinct cour	3	3	
Unique (%	1.7%	, D	
Missing (%	6)	0.0%	ó
Missing (n)	()
Infinite (%	6)	0.0%	Ó
Infinite (i	n)	()
Mean	0.93	882	
Minimum		0	
Maximum		2	
Zeros (%)	33.	1%	

total_phenols Numeric

Numeric				
Distinct cou	nt	97		
Unique (%	%) 54.	5%		
Missing (°	%)0.	0%		
Missing (n)	0		
Infinite (°	%)0.	0.0%		
Infinite (n)	0		
Mean	2.2951			
Minimum	0.98			
Maximum	3.88			
Zeros (%)	0.0%			
	м			

Toggle details

Correlations

Sample

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflava
0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	
1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	
2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	
2	14 27	1 05	2 50	16 Q	113 በ	2 25	2 40	

```
. . . . . .
alcohol malic_acid
                      ash
                            alcalinity_of_ash
                                              magnesium
                                                            total_phenols
                                                                            flavanoids
                                                                                        nonflava
  13.24
                2.59
                      2.87
                                         21.0
                                                     118.0
                                                                      2.80
                                                                                  2.69
                                                                                              ٠
```

In [4]:

```
with open('profile.html', 'w', encoding='utf8') as html:
   html.write(profile.to_html())
```

In []:

```
%%javascript
IPython.notebook.kernel.restart();
```

In [1]:

```
import pandas as pd
from sklearn.datasets import load_wine

wine = load_wine()
data = pd.DataFrame(wine.data, columns=wine.feature_names)
target = pd.DataFrame(wine.target, columns=['target'])
dataset = pd.concat([data, target], axis=1)
```

In [2]:

```
%matplotlib inline dataset.boxplot()
```

Out[2]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fd6a47d4ba8>

т∽ гот.

```
III [3]:
```

```
import seaborn as sns
sns.pairplot(dataset, vars=dataset.columns[:-1], hue='target')
```

Out[3]:

<seaborn.axisgrid.PairGrid at 0x7fd6a43cf048>

In [4]:

 $\label{eq:dataset.proline} \mbox{\tt dataset.proline.map(lambda x: (x-dataset.proline.mean())/dataset.proline.std())} \\$

In [5]:

```
sns.heatmap(dataset.corr(), annot=True)
```

Out[5]:

<matplotlib.axes. subplots.AxesSubplot at 0x7fd699470c88>

In [6]:

```
from sklearn.decomposition import PCA

pca = PCA()

X = pd.DataFrame(pca.fit_transform(dataset.iloc[:, :-1]))
y = dataset.target
```

In [7]:

```
from sklearn.model_selection import cross_val_score
from sklearn.neighbors import KNeighborsClassifier

cross_val_score(KNeighborsClassifier(), X, y, cv=10)
```

Out[7]:

```
array([0.73684211, 0.88888889, 0.77777778, 0.94444444, 0.88888889, 0.94444444, 0.72222222, 1. , 0.76470588, 0.875 ])
```