

Neural Network: An inspiration from Human Brain

Network of neurons in Human Brain

Structure of a biological neuron

Salient features of a biological neuron

#	Feature
1	The body of the neuron is called the <i>soma</i> that acts as a processing element to receive numerous signals through the dendrites simultaneously.
2	The strengths of the incoming signals are modified by the synaptic gaps.
3	The role of the soma, i.e., the processing element of a neuron, is simple. It sums up the weighted input signals and if the sum is sufficiently high, it transmits an output signal through the axon. The output signal reaches the receiving neurons in the neighbourhood through the axon terminals.
4	The weight factors provided by the synaptic gaps are modified over time and experience This phenomenon, perhaps, accounts for development of skills through practice, or loss of memory due to infrequent recall of stored information.

Artificial Neuron

An artificial neuron is a computational model based on the structure and functionality of a biological neuron. It consists of a processing output element, a number of inputs and weighted edges connecting each input to the processing element.

Structure of an artificial neuron

 x_i The i^{th} input unit.

 w_i The weight associated with the interconnection between input unit x_i and the output.

Y_in The total (or net) input to the output

Y_out Signal transmitted by the output. It is known as the activation of Y_in

The net input *Y*_in obtained as

$$y_{in} = x_{1}w_{1} + x_{2}w_{2} + \dots + x_{m}w_{m} = \sum_{i=1}^{m} x_{i} w_{i}$$

The output signal transmitted by Y_in is a function of the net input y_in. Hence

$$y_out = f(y_in) = \begin{cases} 1, & \text{if } y_in > \theta, \\ 0, & \text{if } y_in \le \theta. \end{cases}$$

$$y_{out} = f(y_{in}) = \begin{cases} 1, & \text{if } \sum_{i=1}^{m} x_i w_i > \theta, \\ 0, & \text{if } \sum_{i=1}^{m} x_i w_i \leq \theta. \end{cases}$$

Structure of a single-layer feed forward ANN

$$y_{in_{j}} = x_{1}w_{1j} + x_{2}w_{2j} + \dots + x_{mj}w_{mj} = \sum_{i=1}^{m} x_{i}w_{mj}$$

In general, the net input y_in_j to the output unit Y_j is given by

$$y_{-in_{j}} = [x_{1}...x_{m}] \times \begin{bmatrix} w_{1j} \\ \vdots \\ w_{mj} \end{bmatrix} = X.W$$

$$W = \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1j} \\ w_{21} & w_{22} & \cdots & w_{2j} \\ \vdots & \vdots & \cdots & \vdots \\ w_{m1} & w_{m2} & \cdots & w_{mj} \end{bmatrix}$$

Classification is the process of identifying the class to which a given pattern belongs. For example, let us consider the set S of all 3-bit patterns. We may divide the patterns of S into two classes A and B where A is the class of all patterns having more 0s than 1s and B the converse. Therefore

 $S = \{000, 001, 010, 011, 100, 101, 110, 111\}$

 $A = \{000, 001, 010, 100\}$

 $B = \{011, 101, 110, 111\}$

Row #	Patt	tern		Class
0	0	0	0	Α
1	0	0	1	A
2	0	1	0	A
3	0	1	1	В
4	1	0	0	A
5	1	0	1	В
6	1	1	0	В
7	1	1	1	B

```
Procedure Classify (x, A, B)

Begin

n<sub>0</sub> = n<sub>1</sub> = 0; /* initialize counts */

/* count 0s and 1s in x */

For i ← 1 to 3 do

If the i<sup>th</sup> bit is 0 Then

n<sub>0</sub> **; Else n<sub>1</sub> **;

End-if

End-for

If n<sub>0</sub> > n<sub>1</sub> Then Return A;

Else Return B;

End-if

End-procedure
```

Solving using O(n) time complexity.

x1	х2	х3	y_in	y_out
Ø	0	Ø	Ø	Ø
Ø	0	1	1	Ø
Ø	1	Ø	1	Ø
Ø	1	1	2	1
1	Ø	Ø	1	Ø
1	0	1	2	1
1	1	Ø	2	1
1	1	1	3	1

$$y_{i} = \sum_{i=1}^{3} x_{i} w_{i1} = x_{1} w_{11} + x_{2} w_{21} + x_{3} w_{31}$$
$$= x_{1} + x_{2} + x_{3}$$

$$y_out_1 = f(y_in_1) =$$

$$\begin{cases} 1, & \text{if } y_in_1 \ge 2, \\ 0, & \text{otherwise.} \end{cases}$$

$$y_{-}in_{2} = \sum_{i=1}^{3} x_{i}w_{i2} = x_{1}w_{12} + x_{2}w_{22} + x_{3}w_{32}$$
$$= -x_{1} - x_{2} - x_{3}$$

$$y_out_2 = f(y_in_2) = \begin{cases} 1, & \text{if } y_in_2 \ge -1, \\ 0, & \text{otherwise.} \end{cases}$$

x1	х2	х3	y_ini	l y_in2	y_out1(in1>=2 1 else 0)	y_out2(yin2>=-1 1	else 0)
0	0	Ø	Ø	Ø	Ø		1	
0	0	1	1	1	0		1	
0	1	Ø	1	-1	Ø		1	
0	1	1	2	-2	1		Ø	
1	0	Ø	1	- 1	Ø		1	
1	0	1	2	-2	1		Ø	
1	1	Ø	2	-2	1		Ø	
1	1	1	3	-3	1		0	

THE MCCULLOCH-PITTS NEURAL MODEL

Structure of a McCulloch-Pitts neuron

1	There are two kinds of input units, excitatory, and inhibitory the excitatory inputs are shown as inputs $X_1,, X_m$ and the inhibitory inputs are $X_{m+1},, X_{m+n}$. The excitatory inputs are connected to the output unit through positively weighted links. Inhibitory inputs have negative weights on their connecting paths to the output unit.

- All excitatory weights have the same positive magnitude w and all inhibitory weights have the same negative magnitude -v.
- The activation $y_out = f(y_in)$ is binary, i.e., either 1 (in case the neuron fires), or 0 (in case the neuron does not fire).
- The activation function is a binary step function. It is 1 if the net input y_i in is greater than or equal to a given threshold value θ , and 0 otherwise.

The net input y_in to the neuron Y is given by

$$y_{in} = \sum_{i=1}^{m} x_i \times w + \sum_{j=m+1}^{n} x_j \times (-v) = w \sum_{i=1}^{m} x_i - v \sum_{i=m+1}^{n} x_j$$

If θ be the threshold value, then the activation of Y, i.e., y_out , is obtained as

$$y_out = f(y_in) = \begin{cases} 1, & \text{if } y_in \ge \theta, \\ 0, & \text{otherwise.} \end{cases}$$

MCCULLOCH-PITTS vs PERCEPTRON

ax+by+c=0

Let us consider, for example, two sets of points on a two-dimensional Cartesian plane $A = \{a, b, c\} = \{(-1, 3), (1, 2), (3, 3)\}, \text{ and } B = \{p, q, r\} = \{(0, -1), (2, 1), (3, 0)\}.$

х0	x1	x2	w0 w1	w2	yin	yout
1	-1	3	-1 -1/3	1	7/3	Α
1	1	2	-1 -1/3	1	2/3	Α
1	3	3	-1 -1/3	1	1	Α
1	Ø	- 1	-1 -1/3	1	-2	В
1	2	1	-1 -1/3	1	-2/3	В
1	3	Ø	-1 -1/3	1	-2	В

Multilayer Feed Forward ANNs

The expressions for the net inputs to the hidden layer units and the output units are obtained

as
$$Y_{in} = X \cdot W^{T}$$

$$Z_{in} = Y_{out} \cdot V^{T}$$

$$X_{in} = Y_{out} \cdot V^{T}$$

 $X = [x_1, x_2, ..., x_m], X$ is the input vector,

 $Y_{in} = [y_{in}, y_{in}, \dots, y_{in}]$, is the net input vector to the hidden layer,

 $Z_i = [z_i n_1, z_i n_2, ..., z_i n_r]$, is the net input vector to the output layer,

 $Y_out = [y_out_1, y_out_2, ..., y_out_n]$, is the output vector from the hidden layer,

W and V are the weight matrices for the interconnections between the input layer, hidden layer, and output layer respectively.

layer, and output layer respectively.
$$W = \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1n} \\ w_{21} & w_{22} & \cdots & w_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ w_{m1} & w_{m2} & \cdots & w_{mn} \end{bmatrix} \text{ and } V = \begin{bmatrix} v_{11} & v_{12} & \cdots & v_{1r} \\ v_{21} & v_{22} & \cdots & v_{2r} \\ \vdots & \vdots & \cdots & \vdots \\ v_{n1} & v_{n2} & \cdots & v_{nr} \end{bmatrix}$$

Non Linear Separability

Solving the XOR problem with two decision lines

						Zin = x0	0* v0	+ x1*	/1 +	x2*	۷2 + Y	out*wv
x0	x1	x2	wØ	W1	w2	Yin Yout	W٧	٧Ø	٧1	٧2	Zin	Zout
1	Ø	Ø	-1.5	1	1	-1.5 0	-2	-0.5	1	1	-0.5	Ø
1	0	1	-1.5	1	1	-0.5 0	-2	-0.5	1	1	+0.5	1
1	1	Ø	-1.5	1	1	-0.5 0	-2	-0.5	1	1	+0.5	1
1	1	1	-1.5	1	1	+0.5 1	-2	-0.5	1	1	-0.5	Ø

XOR problem revisited

Activation Function

$$(x) = \begin{cases} 1, & \text{if } x > \theta, \\ 0, & \text{otherwise.} \end{cases}$$

 $g(x) = \frac{1}{1 + e^{-\alpha x}}$

Binary Sigmoid function

$$g(x) = \begin{cases} +1, & \text{if } x > \theta, \\ -1, & \text{otherwise} \end{cases}$$

$$g(x) = \frac{1 - e^{-\sigma x}}{1 + e^{-\sigma x}}$$

Bipolar Sigmoid function

ReLU (Rectified Linear Unit) Activation Function

R(z) is zero when z is less than zero and R(z) is equal to z when z is above or equal to zero.

LEARNING BY NEURAL NETS

Learning

Hebb Net
Perceptron Learning Rule
Delta / LMS (Least Mean Square)
Winner-takes-all

#	Learning Rule	Formula for Δw _i
1	Hebb	$\Delta w_{i} = x_{i} \times t$
2	Perceptron	$\Delta w_{i} = \eta \times (t - y_out) \times x_{i},$
3	Delta/LMS/Widrow-Hoff	$\Delta w_{i} = \eta \times (t - y_{in}) \times x_{i}$
4	Winner-takes-all	$\Delta w_{ij} = \eta \times [x_i - w_{ij} (old)]$

Hebb Rule

The Hebb rule is one of the earliest learning rules for ANNs. According to this rule the weight adjustment is computed

HebbNet

--47

[$\Delta w(k) = x(k) * t$] t=target output [Bipolar input & target]

$$w(k+1) = w(k) + \Delta w(k)$$
 [calculate new weight] $\Delta w(k) = x(k) * t$ [adjustment of weight]

	Input Patt	Output	
X ₀	x ₁	t	
+1	1	1	1
+1	1	-1	-1
+1	-1	1	-1
+1	-1	-1	-1

Logical AND

xØ	х1	x2	t	ΔωØ	$\Delta w 1$	∆w2	wø	W1	W2	
							Ø	Ø	Ø	
1	1	1	1	1	1	1	1	1	1	
1	1	-1	- 1	- 1	-1	1	0	Ø	2	
1	- 1	1	- 1	- 1	1	- 1	- 1	1	1	x2+x1-1=0
1	- 1	- 1	- 1	- 1	1	1	-2	2	2	x2+x1-1=0

Learning the logical AND function using Hebb Rule

Perceptron Learning Rule

The perceptron learning rule is informally stated as:

Learning the logical AND function using

	Input Patt	erns	Output
X ₀	x ₁	X ₂	t
+1	1	1	1
+1	1	-1	-1
+1	-1	1	-1
+1	-1	-1	-1

There's several variants of this equation, e.g. $\Delta w(k) = \eta^* x(k)^* (t-Yout)$

When trying to understand why they are equivalent, notice that the only possible values for y and y' are 1 and -1. So if t=Yout then (t-Yout) is zero and our update rule does nothing. Otherwise, (t-Yout) is equal to either 2 or -2, with the sign matching that of the correct answer (t). The factor of 2 is irrelevant, because we can tune η to whatever we wish.

Perceptron Learning Rule

The net inputs to the perceptrons are

$$\begin{bmatrix} y_{-i}n_{1} \\ \vdots \\ y_{-i}n_{j} \\ \vdots \\ y_{-i}n_{n} \end{bmatrix} = \begin{bmatrix} w_{01} & \cdots & w_{i1} & \cdots & w_{m1} \\ \vdots & & \vdots & & \vdots \\ w_{0j} & \cdots & w_{ij} & \cdots & w_{mj} \\ \vdots & & & \vdots & & \vdots \\ w_{0n} & \cdots & w_{in} & \cdots & w_{mn} \end{bmatrix} \times \begin{bmatrix} x_{0} \\ \vdots \\ x_{i} \\ \vdots \\ x_{m} \end{bmatrix}$$
or,

$$Y in^{T} = W^{T} \times X^{T}$$

For such an ANN, the adjustment Δw_{ij} of the weight w_{ij} is given by

$$\Delta w_{ij} = \eta \times (t_i - y_out_i) \times x_i$$

Let us assume the following matrix notations:

$$\Delta W = \begin{bmatrix} \Delta w_{01} & \Delta w_{02} & \cdots & \Delta w_{0n} \\ \Delta w_{11} & \Delta w_{12} & \cdots & \Delta w_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ \Delta w_{m1} & \Delta w_{m2} & \cdots & \Delta w_{mn} \end{bmatrix}, T = \begin{bmatrix} t_1 & \cdots & t_n \end{bmatrix},$$

$$X = [x_0, ..., x_m], and Y_out = [y_out_1, ..., y_out_n].$$

Then the expression of the perceptron learning rule for the architecture becomes

$$[\Delta W]^{\mathsf{T}} = \eta \times [T - Y_{out}]^{\mathsf{T}} \times X$$

Adaline using LMS rule

$$W(k+1) = W(k) + \Delta W(k)$$

 $\Delta W(k) = Eta * (t- Yin)* x(k)$

Learning the logical AND function using LMS

*	Input Pattern		Net input	Target Error output		Weight Adjustments			Weights			
	X ₀	X ₁	Х,	y_in	t	t — y_in	ΔW_0	ΔW_1	ΔW_2	W ₀	W ₁	W ₂
0										.3	.3	.3
1	1	1	1	.9	1	.1	.02	.02	.02	.32	.32	.32
2	1	1	-1	.32	-1	-1.32	264	264	.264	.056	.056	.584
3	1	-1	1	.584	-1	-1.584	317	.317	317	261	.373	.267
4	1	-1	-1	901	-1	099	02	.02	.02	281	.393	.287

Performance of the net after LMS learning

Inpu	t Patte	ern	Net input	Output	Target Output		
X ₀	X ₁	X ₂	$y_in = \Sigma w_i x_i$	y_out	t		
1 1 1		.399 > 0	1	1			
1	1	-1	175 < 0	-1	-1		
1	-1	1	387 < 0	-1	-1		
1 -1 -1		961 < 0	-1	-1			
		x ₀ x ₁ 1 1 1 1 1 -1	1 1 1 1 1 -1 1 -1 1	x_0 x_1 x_2 $y_i = \Sigma w_i x_i$ 1 1 1 .399 > 0 1 1 -1175 < 0 1 -1 1387 < 0	x_0 x_1 x_2 $y_i = \Sigma w_i x_i$ $y_i out$ 1 1 1 .399 > 0 1 1 1 -1175 < 0 -1 1 -1 1387 < 0 -1		

Clustering Problem using ANN

3 input 2 output clustering network

- 1. For each output unit Y_j , j=1 to n, compute the squared Euclidean distance as $D(j) = \sum_{i=1}^{m} (w_{ij} x_i)^2.$ m-input n-output clustering network are given
- 2. Let Y_{J} be the output unit with the smallest squared Euclidean distance D(J).
- 3. For all output units within a specified neighbourhood of $Y_{\mathtt{J}}$, update the weights as follows :

$$w_{ij}(new) = w_{ij}(old) + \eta \times [x_i - w_{ij}(old)]$$

Let us consider a set of six patterns. Input $[S = \{a (-1, 1), b (-1, 2), c (1, 0), d (1, 2), e (2, -1), f(2, 2)\}]$ Output [C1 C2 C3]

A clustering problem showing the expected clusters

the initial distribution of (randomly chosen) weights be

$$W = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \end{bmatrix} = \begin{bmatrix} 0 & -1 & 2 \\ 2 & 0 & 1 \end{bmatrix}$$

This means that the exemplars, or code vectors, are initially $C_1 = (w_{11}, w_{21}) = (0, 2)$, $C_2 = (w_{12}, w_{22}) = (-1, 0)$, and $C_3 = (w_{13}, w_{23}) = (2, 1)$.

Clusters are formed on the basis of the distances between a pattern and a code vector. For example, to determine the cluster for the pattern a (-1, 1) we need to compute the Euclidean distance between the point a and each code vector C_1 , C_2 , C_3 . The pattern is then clustered with nearest among the three code vectors. Let D_1 , D_2 , D_3 be the squares of the Euclidean distances between a pattern and C_1 , C_2 , C_3 respectively. For a (-1, 1) the computations of D_1 , D_2 , D_3 are as follows.

$$D_1 = (w_{11} - x_1)^2 + (w_{21} - x_2)^2 = (0+1)^2 + (2-1)^2 = 2$$

$$D_2 = (w_{12} - x_1)^2 + (w_{22} - x_2)^2 = (-1+1)^2 + (0-1)^2 = 1$$

$$D_3 = (w_{13} - x_1)^2 + (w_{23} - x_2)^2 = (2+1)^2 + (1-1)^2 = 9$$

Since D_2 is the minimum among these the pattern a (-1, 1) the corresponding exemplar C_2 is declared the winner and the pattern is clustered around the code vector C_2 . Similar computations for the pattern b (-1, 2) are given below.

$$D_1 = (w_{11} - x_1)^2 + (w_{21} - x_2)^2 = (0+1)^2 + (2-2)^2 = 1$$

$$D_2 = (w_{12} - x_1)^2 + (w_{22} - x_2)^2 = (-1+1)^2 + (0-2)^2 = 4$$

$$D_3 = (w_{13} - x_1)^2 + (w_{23} - x_2)^2 = (2+1)^2 + (1-2)^2 = 10$$

In this case D_1 is the minimum making C_1 the winner. <u>Table 6.13</u> summarizes the initial clustering process yielding the clusters $C_1 = \{b, d\}$, $C_2 = \{a\}$ and $C_3 = \{c, e, f\}$ (<u>Fig. 6.43</u>). The minimum distance is indicated by a pair of parentheses.

Fig. 6.46. Clusters formed after the 2nd epoch

#	Training Patterns	Square Distance	d Euclide e	ean	Winner -	New Code Vectors				
		D,	D ₂	D ₃		C ₁ (W ₁₁ , W ₂₁)	C ₂ (W ₁₂ , W ₂₂)	C ₃ (W ₁₃ , W ₂₃)		
0						(0, 2)	(-1, 0)	(2, 1)		
1	a (-1, 1)	2	(1)	9	C ₂	(0, 2)	(-1, .5)	(2, 1)		
2	b (-1, 2)	(1)	2.25	10	C,	(5, 2)	(-1, .5)	(2, 1)		
3	c (1, 0)	6.25	4.25	(2)	C ₃	(5, 2)	(-1, .5)	(1.5, .5)		
4	d (1, 2)	(2.25)	6.25	2.5	C,	(.25, 2)	(-1, .5)	(1.5, .5)		
5	e (2, -1)	12.06	11.25	(2.5)	C ₃	(.25, 2)	(-1, .5)	(1.75,25)		
6	f(2, 2)	(3.06)	11.25	5.13	C,	(1.13, 2)	(-1, .5)	(1.75,25)		

1st Epoch

#	Training	Square	d Euclidea	n Distance	Winner	New Code Vectors					
	Patterns	D,	D ₂	D ₃		C ₁ (W ₁₁ , W ₂₁)	C ₂ (W ₁₂ , W ₂₂)	C ₃ (W ₁₃ , W ₂₃)			
0						(1.13, 2)	(-1, .5)	(1.75,25)			
1	a (-1, 1)	5.54	(.25)	9.13	C ₂	(1.13, 2)	(-1, 1.5)	(1.75,25)			
2	b (-1, 2)	4.54	(.25)	12.63	C ₂	(1.13, 2)	(-1, 1.75)	(1.75,25)			
3	c (1, 0)	4.02	7.06	(.63)	C ₃	(1.13, 2)	(-1, 1.75)	(1.38,13)			
4	d (1, 2)	(.02)	4.06	4.68	C,	(1.07, 2)	(-1, 1.75)	(1.38, -,13)			
5	e (2, -1)	9.86	16.63	(1.14)	C ₃	(1.07, 2)	(-1, 1.75)	(1.69,57)			
6	f(2, 2)	(.86)	9.06	6.7	C,	(1.56, 2)	(-1, 1.75)	(1.69,57)			

2nd Epoch

Perceptron training loop ADALINE training loop Aggregation Aggregation Threshold function function Threshold w_1 function w_1 function X_1 w_2 X_1 w_2 Output Output $\left(\hat{y} = b + \sum_{i=1}^{n} w_i x_i \middle| f(\hat{y})\right)$ $\hat{y}' = \in -1, 1$ $\hat{y} = \in -1, 1$ w_3 w_3 X_2 X_2 $w_{n,k}$ $error = y - \hat{y}$ X_n X_n $w_{k+1} = w_k + \overline{\Delta w_k}$ $\Delta w = \eta(error)x_k$ $w_{k+1} = w_k - \eta(2*error_k)x_k$ $error = (\hat{y} - y)^2$

Error computation

Input units

Weight update

Input units

Weight update

Error computation

MADALINE

Several ADALINEs arranged in a multilayer net is known as Many ADALINES, or Many Adaptive Linear Neurons, or MADALINE in short

two input, one output, one hidden layer with two hidden units MADALINE

In MADALINE (MR-I) algorithm, only the weights of the hidden units are modified during the training and the weights for the inter-connections from the hidden units to the output unit are kept unaltered.

MADALINE MR-I Algorithms

Procedure MADALINE-MR-I-Learning

- Initialize v, v, v with 0.5 and other weights w, w, w, w, Step 1. w., and w., by small random values. All bias inputs are set to 1.
- Set the learning rate h to a suitable value. Step 2.
- For each bipolar training pair s : t, do Steps 4-6 Step 3.
- Activate the input units: $x_1 = s_1$, $x_2 = s_3$, all biases are set to Step 4. 1 permanently.
- Step 5. Propagate the input signals through the net to the output unit Y. Step 7. Test for stopping condition. It can be any one of the following: 5.1 Compute net inputs to the hidden units.

$$z_{-}in_{1} = 1 \times w_{01} + x_{1} \times w_{11} + x_{2} \times w_{21}$$

 $z_{-}in_{2} = 1 \times w_{21} + x_{1} \times w_{22} + x_{2} \times w_{22}$

5.2 Compute activations of the hidden units z out, and z out, using the bipolar step function

$$z_{-} out = \begin{cases} 1, & \text{if } z_{-} in \ge 0 \\ -1, & \text{if } z_{-} in < 0. \end{cases}$$

5.3 Compute net input to the output unit

$$y_in = 1 \times v_0 + z_out_1 \times v_0 + z_out_2 \times v_2$$

5.4 Find the activation of the output unit y-out using the same activation function as in Step 5.2, i.e.,

$$y \quad \text{out} = \begin{cases} 1, & \text{if } y - in \ge 0 \\ -1, & \text{if } y - in < 0. \end{cases}$$

- Step 6. Adjust the weights of the hidden units, if required, according to the following rules:
 - If (y out = t) then the net yields the expected result. Weights need not be updated.
 - ii) If (y out # t) then apply one of the following rules whichever is applicable.

Case I: t = 1

Find the hidden unit z whose net input z in is closest to 0. Adjust the weights attached to z, according to the formula

$$w_{ij}$$
 (new) = w_{ij} (old) + $h \times (1 - z_i n_j) \times x_i$, for all i.

Case II: t = -1

Adjust the weights attached to those hidden units z, that have positive net input.

$$w_{ij}$$
 (new) = w_{ij} (old) + $h \times (-1 - z_i n_j) \times x_i$, for all 1.

- No change of weight occurs in Step 6.
- The weight adjustments have reached an acceptable level.
- iii) A predefined number of iterations have been carried out.

If the stopping condition is satisfied then stop. Otherwise go to Step 3.

MADALINE training for the XOR function)

Bipolar training set for XOR function

$$\eta = 0.5$$

$$V_0 = V_1 = V_2 = 0.5$$

#	X ₀	<i>X</i> ₁	X ₂	t	z_in,	z_in,	z_out,	z_out,	y_in	y_out	W _{ot}	W ₁₁	W ₂₁	w _{ez}	W ₁₂	W ₂₂
100	- 10		2		1	2		2	<i>J</i>)						
0											.2	.3	.2	.3	.2	.1
1	1	1	1	-1	.7	.6	1	1	1.5	1	65	55	65	5	6	− .7
2	1	1	-1	1	55	4	-1	-1	5	-1	65	55	65	.2	.1	-1.4
3	1	-1	1	1	− .75	-1.3	-1	-1	5	-1	.23	-1.43	.13	.2	.1	-1.4
4	1	-1	-1	-1	1.56	1.5	1	1	1.5	1	-1.05	− .15	1.41	-1.05	1.35	− .15
	Epoch #1															
0											-1.05	−.15	1.41	-1.05	1.35	- .15
1	1	1	1	-1	.21	.15	1	1	1.5	1	-1.66	76	.8	-1.63	.77	73
2	1	1	-1	1	-3.22	− .13	-1	-1	- .5	-1	-1.66	76	.8	-2.07	.33	29
3	1	-1	1	1	− .1	-1.45	-1	-1	5	-1	-2.11	31	.35	-2.07	.33	29
4	1	-1	-1	-1	-2.15	-2.11	-1	-1	5	-1					-	
								Epoc	h #2							
0											-2.11	31	.35	-2.07	.33	29
1	1	1	1	-1	-2.07	-2.03	-1	-1	5	-1						
2	1	1	-1	1	-2.77	-1.45	-1	-1	5	-1	-2.11	31	.35	84	1.56	-1.52
3	1	-1	1	1	-1.45	-3.92	-1	-1	5	-1	88	-1.54	.88	84	1.56	-1.52
4	1	-1	-1	-1	22	88	-1	-1	5	-1						
								Epoc	h#3							
0											88	-1.54	.88	84	1.56	-1.52
1	1	1	1	-1	-1.54	8	-1	-1	5	-1						
2	1	1	-1	1	-3.3	2.24	-1	1	.5	1						
3	1	-1	1	1	1.54	-3.92	1	-1	.5	1						
4	1	-1	-1	-1	22	88	-1	-1	5	-1						
								Epoc	h #4							

Epoch #4

THE BACKPROPAGATION ALGORITHM

Backpropagation is a supervised learning method where the net repeatedly adjusts its interconnection weights on the basis of the error, or deviation from the target output, in response to the training patterns.

