Homework 1

Roman Garipov M3138 10.09.2019

1 Задача №1

Докажите по определению, что $\frac{n^3}{6} - 7n^2 = \Omega(n^3)$.

 $\frac{n^3}{6}-7n^2=\Omega(n^3)$ значит, что $\exists \ c>0, n\in\mathbb{N}: \forall \ n_0>n, f(n_0)\geqslant cg(n_0).$ Чтобы показать, что это правда, достаточно найти такие c и n, что выполняется определение.

Выберем
$$c=\frac{1}{36}$$
. Тогда получим : $\frac{n^3}{6}-7n^2\geqslant\frac{n^3}{36}$ $n^3-42n^2\geqslant\frac{n^3}{6}$; $\frac{5}{6}n^3-42n^3\geqslant0$; $5n^3-252n^2\geqslant0$; $n^2(5n-252)\geqslant0$ $5n-252\geqslant0$; $n\geqslant\frac{252}{5}$; $n\geqslant50.4$; $n\geqslant51$.

Мы нашли такие c и n, что определение выполняется, следовательно доказали равенство.

2 Задача №2

3 Задача №3

Докажите или опровергните, что $\log(n!) = \Theta(n\log(n))$. По определению $f(n) = \Theta(g(n))$ значит, что :

$$\exists c_1 > 0, c_2 > 0, N \in \mathbb{N} : \forall n > N, c_1 g(n) \le f(n) \le c_2 g(n)$$

Рассмотрим левое неравенство и запишем его в следующем виде:

$$c_1 n \log(n) \leq \log(n!)$$
 Преобразуем $\log_a(b) = \frac{\log_c(b)}{\log_c(a)}$, получаем
$$\log_a(b) \log_c(a) = \log_c(b)$$

$$\log_2(n!) = \log_2(n) \log_n(n!)$$

$$c_1 n \log_2(n) \leq \log_2(n) \log_n(n!)$$

$$c_1 n \leq \log_n(n!)$$

$$n^{c_1 n} \leq n^{\log_n(n!)}$$

$$n^{c_1 n} \leq n!$$

Для $c \ge 1$ это всегда неверно.

Если решать это неравенство для какого-то конкретного 0 < c < 1, то мы получим ограничение сверху на n, так как всегда найдется n такое, что : $n^{c_1 n} \ge n!$. Следовательно, это не будет выполнятся для какого-то аргумента, начиная с какого-то N. Значит, $\log(n!) \ne \Theta(n \log(n))$

Задача №4

Найти \mathcal{O} и Ω для $T(n) = 2T(\frac{n}{2}) + \frac{n}{\log(n)}$.

4.1 \mathcal{O}

Я утверждаю, что $T(n) = \mathcal{O}(n \log(n))$. Докажем по индукции. База n = 2, T(2) = 2

Предположение индукции : Для всех $n_0 < n, T(n_0) \le c n_0 \log(n_0)$. Докажем, что и для n это утверждение верно.

$$T(n) = 2T(\frac{n}{2}) + \frac{n}{\log(n)} \le 2c\frac{n}{2}\log(\frac{n}{2}) + \frac{n}{\log(n)} \text{ (по предположению индукции)}$$

$$T(n) = 2T(\frac{n}{2}) + \frac{n}{\log(n)} \le cn(\log(n) - 1) + \frac{n}{\log(n)} = cn\log(n) - cn + \frac{n}{\log(n)} \text{ .}$$

$$cn\log(n) - cn + \frac{n}{\log(n)} \le cn\log(n) \text{ (Домножим обе части неравенства на } \log(n))$$

$$cn\log^2(n) - cn\log(n) + n \le cn\log^2(n).$$

 $n \le cn \log(n)$. Например, При c=1 получаем верное неравенство.

4.2 Ω

Докажем, что $T(n)=2T(\frac{n}{2})+\frac{n}{\log(n)}=\Omega(n)$ А именно, что $T(n)=2T(\frac{n}{2})+\frac{n}{\log(n)}\geq cn.$

База индукции : n = 2, T(2) = 2

Предположение индукции : $T(n) = 2T(\frac{n}{2}) + \frac{n}{\log(n)} \geq cn$

$$T(n) = 2T(\frac{n}{2}) + \frac{n}{\log(n)} \ge 2\frac{cn}{2} + \frac{n}{\log(n)} \ge cn$$

 $T(n) = 2T(\frac{n}{2}) + \frac{n}{\log(n)} \ge 2\frac{cn}{2} + \frac{n}{\log(n)} \ge cn$ $cn + \frac{n}{\log(n)} \ge cn$. Например, при c = 1 это правда.

Что и требовалось доказать.