Model-based learning

the other RL technic

Guillaume Lozenguez

@imt-lille-douai.fr

IMT Lille Douai École Mines-Télécom IMT-Université de Lille

Model-based learning

Main Idea:

- Random trajectories (a lot)
- ▶ Until each transition is visited several times.
- Compute an optimal policy.

Potentially:

- ▶ Require driving exploration
- Only incomplete exploration can be performed

Markov Decision Process

MDP: $\langle S, A, T, R \rangle$:

S: set of system's states

A : set of possible actions

 $T: S \times A \times S \rightarrow [0, 1]$: transitions

 $R: S \times A \rightarrow R: cost/rewards$

Optimal policy:

The policy π^* maximizing Bellman

Solving MDP: Value Iteration

Input: an **MDP:** $\langle S, A, T, R
angle$; precision error: ϵ ; discount factor γ ; initial V(s)

1. Repeat until the **maximal delta** < ϵ

For each state $s \in S$

- Search the action a^st maximizing the Bellman Equation
- Update $\pi(s)$ and V(s) by considering action a^*
- Compute the delta value between the previous and the new V(s)

Output: an optimal π^* and associated **V-values**.

$$V^\pi(s) = R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') imes V^\pi(s')$$

Application to 421

Python implementation - <u>playerMDP.py</u>: solver= MDP() solver.learnModel(Engine()) solver.valueIteration() player= PiPlayer(solver.policy()) Learning phase: Estimate t and r: <u>10 000</u> simulations for each couple (s, a) Value iteration: <u>3</u> iterations (directed and finit game) Average score (100 000 games): ~338 (To notice: decreasing the learning phase impact the average score)

The Curse of Dimensionality

Fonction de Transition:

Le fléau de la dimension

Factored Transition function:

Le fléau de la dimension

Factored Transition function:

Example: Zombie Dice

Eat maximum brains

without dying (3 damages)

- ▶ Players are zombies.
- ► They try to catch humans three at a time.
- Humans are dice with probability to fight back.

Example: Zombie Dice

Matrice complète

Example: Zombie Dice

Dynamic Bayesian Network (Continue)

