בית ספר "אפי ארזי" למדעי המחשב המרכז הבינתחומי The Efi Arazi school of computer science The Interdisciplinary Center

סמסטר ב' תשע"ז Spring 2018

מבחן מועד א בלמידה ממוכנת Machine Learning Exam A

Lecturer: Prof Zohar Yakhini

Time limit: 3 hours

Additional material or calculators are not

allowed in use!

Answer 5 out of 6 from the following question (each one is 20 points)

Good Luck!

מרצה: פרופ זהר יכיני

משך המבחן: 3 שעות אין להשתמש בחומר עזר ואין להשתמש במחשבונים!

יש לענות על 5 מתוך 6 השאלות הבאות לכל השאלות משקל שווה (20 נקודות) בהצלחה!

שאלה 1 (5סעיפים)

- א. כתבי את הנוסחה של Mean Squared Error) MSE א. כתבי את הנוסחה של y=f(x)
 - ב. נתון ה-test set ו-test set הבאים:

:training set- בעזרת באחד את עב y=f(x) את משתמשת הבאים הבאים הבאים הבאים להעריך את Linear Regression .1

- Pogression 2 MM 2
- (2-nearest-neighbor רגרסיה עם) Regression 2-NN .2

למי מהאלגוריתמים תהיה טעות קטנה יותר בחישוב MSE על ה- test set?

- ג. איך היית משנה את ההגדרה של MSE loss, שהגדרת בסעיף א', כך שתוכלי לתת לכל היית משנה את ההגדרה של loss משקל w_i שונה בחישוב ה-loss?
- ד. כתבי את הפסאודו קוד של רגרסיה לינארית (linear regression), כולל צעד העדכון, העושה stochastic mode ב- gradient descent שימוש ב-

איך היית משנה את צעד העדכון כך שימזער את הפונקציה שכתבת בסעיף ג'.

ה. בכיתה ניסחנו את בעיית הרגרסיה הלינארית בעזרת המשוואה הבאה:

$$\theta^* = \operatorname{argmin} ||X\theta - y||_2^2$$

מצאי מטריצה W שבעזרתה תוכלי לעדכן את משוואת הרגרסיה הלינארית ולהגדיר פתרון פסאדו אינוורס (pseudo inverse) עבור הפונקציה שהגדרת בסעיף ג'. הסבירי את כל הצעדים. בתשובתך צייני מהי המטריצה ואת המשוואה המעודכנת.

I.D number::t.ภ

שאלה 2 (4 סעיפים)

נתונה הטבלה והגרף של קבוצת נתונים בעלי שתי תכונות רציפות x1, x2 משתי מחלקות "+" ו-"-". אנחנו משתמשים בקבוצה זו כקבוצת אימון ללמידה של עצי החלטה. עך T_N הינו עץ בינארי העושה שימוש ב-Goodness of Split לביצוע פיצולים בעץ וגדל עד שמגיע

לגובה N או שלא ניתן יותר לפיצול (המוקדם מבניהם).

לדוגמא:

.(שורש ושני בנים). T_1

בנים. ער בעל פיצול אחד בשורש ולכל היותר עוד פיצול אחד בכל אחד משני הבנים. T_2

* שימי לב שהעץ אינו חייב להיות סימטרי.

- impurity עושה שימוש בפונקציית Goodness of Split א. הסבירי מהי פונקציית ϕ ע"מ לקבוע ע"פ איזה תכונה נפצל בצומת בעץ החלטה. בהסבר יש לכלול את הנוסחה של Goodness of Split .
 - ב. האם ייתכן מצב שעץ שנבנה ע"י שימוש ב- Goodness of Split יהיה גבוה יותר מאשר עץ שנבנה בצורה אחרת ומגיע גם לעלים טהורים? אם כן, תני דוגמא שמראה זאת. אם לא, הסבירי למה לא.
 - ג. האם הפיצול הראשון בעץ T_1 הנלמד על קבוצת אימון יהיה שונה מהפיצול הראשון בעץ T_3 הנלמד על אותה קבוצת אימון? הסבירי!
 - ד. בבניית עצי החלטה מסוג T_2 ו T_2 בעזרת ה-training data הנתון מעלה, מה הטעות T_2 מי משתי השיטות המתקבלת בכל אחד משני המקרים בנפרד בשיטת leave one out? מביאה לתוצאה טובה יותר ע"פ מה שנמדד בשיטת leave one out?

I.D number:	:1.5	מסי
THE HUMBER	 	V /-

מס׳ מחברת:____:Notebook No

שאלה 3 (5 סעיפים)

- $x^2 + 9y^2 = 1$ עם האילוץ x + 4y א. מצאי את המינימום והמקסימום של הפונקציה
 - ב. בהינתן ה dataset הבא (פונקציית ה-XOR):

X1	X2	Ý
+1	+1	-1
+1	-1	+1
-1	+1	+1
-1	-1	-1

השתמשי בלמה הבאה להראות שה-dataset הנ"ל אינו ניתן להפרדה לינארית. אין צורך להוכיח את הלמה.

<u>למה</u>:

 $z,z'\in\mathbb{R}^2$ על 2 נקודת $y\in\{-1,+1\}$ נניח שמפריד לינארי חוזה פרדיקציה (h(z)=h(z')=y). אזי, המפריד ייתן את אותה פרדיקציה על כל נקודות ביניים, כלומר:

$$\forall \alpha \in [0,1] \quad h((1-\alpha)z + \alpha z') = y$$

- ג. מצאי מיפוי ϕ למרחב עם ממד לבחירתך, אשר ממפה את ה-dataset ג. מצאי מיפוי למרחב עם ממד לבחירתך, אשר ממפריד הלינארי בממד החדש. החדש הוא יהיה ניתן להפרדה לינארית ומצאי את המפריד הלינארי בממד החדש.
- ד. בהינתן המיפוי $x\in (-1,+1)$ עבור $\varphi(x)=(1,x,x^2,x^3,...,x^N)$ ד. בהינתן המיפוי $\varphi(x)=(1,x,x^2,x^3,...,x^N)$ לשהו. הראי שלמיפוי φ קיימת פונקציית קרנל γ 0 לשהו. הראי שלמיפוי γ 1 לשהו. הראי
 - ה. הראי שהפונקציה $K(x,y)=\frac{1}{1-xy}$ עבור (-1,+1) עבור (-1,+1) הקטע הפתוח בין 1- ל 1+), הראי שהפונקציית קרנל עם מיפוי מתאים הממפה למרחב אינסופי.

שאלה 4 (4 סעיפים)

נתונה קבוצת מופעים S שאנו רוצים לחלק ל-k קבוצות (כלומר לבצע clustering). להלן אלגוריתם k-means). להלן אלגוריתם אשר נקרא k-means ודומה ל

Initialize $c_1, ..., c_k$ randomly

Loop:

Assign all n samples to their closest c_i and create k clusters $S_1,\,\ldots,\,S_k$

For each cluster S_i ($1 \le i \le k$) define a new c_i :

 b_i = the center of the cluster (average point)

if $|S_i| > 2$ (if the number of samples in S_i is larger than 2):

x =the sample with the highest distance from b_i

 c_i = the center of the cluster without x

else:

 $c_i = b_i$

Until no change in $c_1, ..., c_k$

Return $c_1, ..., c_k$

instance	X ₁	X 2
p 1	1	0
p ₂	0	1
р3	2	1
p ₄	1	2
- p 5	6	6

- א. איזה פונקציה שואף אלגוריתם k-means א. להביא למינימום? כתבי נוסחה.
- ב. נניח כי הקבוצה S מונה 5 מופעים בעלי 2 תכונות כנתון בטבלה. הריצי את האלגוריתמים k-means-outlier מאבר לחלוקה לשתי קבוצות (כלומר k-means לחלוקה לשתי קבוצות (כלומר c₂=(2,2) בתור מאתחלים את הריצה עם c₁=(0,0) ו- c₂=(2,2) בתור קבוצת המרכזים הראשונית (המלצה: ראשית ציירי את המופעים על מישור דו ממדי). בכל שלב צייני מי המרכזים ומה חלוקת המופעים לכל קבוצה. אין צורך להראות את כל החישובים בכל שלב.
- ג. האם אלגוריתם k-means-outlier מתכנס? אם כן, הוכיחי שהאלגוריתם מתכנס. אם לא, הראי דוגמה שבה האלגוריתם אינו מתכנס.
 - ד. להלן פסאדו קוד לגרסה של Fuzzy K-Means (הידוע גם בכינויו):

Initialize $c_1, ..., c_k$ randomly

Loop:

Calculate a distance vector for each sample with distances to each cluster For each sample j, convert the distance vector to probability vector

$$w_i = (w_{i1}, ..., w_{ik})$$

For each cluster S_i ($1 \le i \le k$) define a new c_i :

$$c_i = \frac{\sum_{j=1}^n w_{ji} x_j}{\sum_{i=1}^n w_{ii}}$$

Until no change in $c_1, ..., c_k$

Return $c_1, ..., c_k$

.Fuzzy K-Means-Outlier כתבי הצעה לפסאדו קוד לגרסה של אלגוריתם

שאלה 5 (4 סעיפים)

א. $h: X \to \{-1, +1\}$ של היפותזות X ומרחב דוגמאות א. תני דוגמא למרחב דוגמאות א. בינאריות), כך ש:

$$VC(H) = 2018$$

ב. להלן 3 הנוסחאות ל- sample complexity שנלמדן בכיתה:

$$m \ge \frac{1}{\varepsilon} \left(\ln|H| + \ln \frac{1}{\delta} \right) \quad \bullet$$

$$m \ge \frac{1}{\varepsilon} \left(\ln|H| + \ln \frac{1}{\delta} \right) \quad \bullet$$

$$m \ge \frac{1}{\varepsilon^2} \left(\ln 2|H| + \ln \frac{1}{\delta} \right) \quad \bullet$$

$$m \ge \frac{1}{\epsilon} \left(8 \cdot VC(H) \log_2 \frac{13}{\epsilon} + 4 \log_2 \frac{2}{\delta} \right)$$

A= נגדיר קבוצה, $N\geq 2$ כאשר $N\in\mathbb{N}$ יהי X=[0,1] imes[0,1] נגדיר קבוצה ואת מרחבי ההיפותזות הבאים: $\{\frac{1}{N}, \frac{2}{N}, \dots, 1\}$

$$H_1 = \{h: h(x_1, x_2) = +1 \iff x_1 \in [0, a] \land x_2 \in [0, a], a \in A\}$$
 •

$$H_2 = \{h: h(x_1, x_2) = +1 \iff x_1 \in [0, a] \land x_2 \in [0, b], \ a, b \in A\}$$

$$H_3 = \{h: h(x_1, x_2) = +1 \iff x_1 \in [0, a] \land x_2 \in [0, b], \ a, b \in [0, 1]\}$$

כל היפותזה היא מלבן המקביל לצירים בעל קודקוד בראשית הצירים (instance יסווג כחיובי אם ורק אם הוא נופל בתוך מלבן בעל הקודקודים [(0,0), (a,0), (a,b), (0,b)]).

לכל אחד מהמקרים הבאים, השתמשי באחת מהנוסחאות לחישוב כמות ה-instances הנדרשת להבטיח טעות של 0.1 בהסתברות של לפחות 95%:

- H_{2} בעזרת מרחב ההיפותזות, H_{3} במרחב שנמצא במרחב ללמוד קונספט, \mathcal{C} , שנמצא במרחב ללמוד מנסים ללמוד
- H_{2} בעזרת מרחב ההיפותזות H_{1} בעזרת מרחב הויפותזות C .
- H_3 בעזרת מרחב ההיפותזות H_3 , שנמצא במרחב H_3 בעזרת מרחב הופותזות C.

שאלה 6 (4 סעיפים)

נתון בדיקת איכות המורכב משתי תכונות כמותיות x1 ו-x2.

ידזע, בהתבסס על היסטורית מדידות ארוכת טווח, שההתפלגות המותנית של הערכים של תכונות ידזע, בהתבסס על היסטורית מדידות ארוכת טווח, שההתפלגות המחלקות (Classes) ו- B = bad -ו G = good אלו בכל אחת מהמחלקות (לתכונה ע"י (E = bad -i G = good הראשונה

$$f(x_1|G) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-2)^2}{2}\right)$$
$$f(x_1|B) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-5)^2}{2}\right)$$

ולתכונה השנייה

$$f(x_2|G) = \begin{cases} \frac{1}{3} & 0 \le x_2 \le 1\\ \frac{2}{3} & 2 \le x_2 \le 3\\ 0 & otherwise \end{cases}$$

$$f(x_2|B) = \begin{cases} e^2 & 3 - \frac{1}{e^2} \le x_2 \le 3\\ 0 & otherwise \end{cases}$$

מומלץ (אבל לא חובה) שתשרטטי לעצמך את ההתפלגויות של הערכים בכל אחת מהתכונות, לטובת הבנה טובה יותר.

- א. מה תהיה הפרדיקציה לפי ML במקרים (הנפרדים) הבאים:
 - $x_2 = 2.9$ למוצר מסוים התקבל במדידה הערך 1.
 - $x_1 = 3$ למוצר אחר התקבל במדידה הערך 2
- ב. בהינתן הסתברות prior כלשהי (P(B), הגדירי את הנוסחה לחישוב prior ב. באבחון זה.
- מה הערך המינימלי של P(B), כדי שהפרדיקציה לפי Naïve Bayes MAP, ע"פ הנתונים בסעיף א2', תהיה PB?
- ג. הניחי שבנוסף למדידה בסעיף א2' נמדד גם הערך 2.99. מה הניחי שבנוסף למדידה בסעיף א2' נמדד גם הערך אמינימלי של (P(B), כדי שהפרדיקציה לפי Naïve Bayes MAP, כדי שהפרדיקציה לפי $^{\circ}$ 8
- מה P(B)=0.9 במקרה נוסף, נמדדו הערכים $x_2=0.975\left(3-\frac{1}{e^2}\right)$, $x_1=6$ במקרה נוסף, נמדדו הערכים פרדיקציה לפי Naïve Bayes MAP במקרה זה? האם את חושבת שתוצאה זו מייצגת הטיה או חסרון של גישת הסיווג הנ"ל? איך תתגברי על בעיה זו?

בהצלחה!

Standard formula sheet - IDC 2018

1. Distributions:

Normal
$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

Bernoulli trials -
$$B(n,p)$$
 $P(X=k) = {n \choose k} p^k (1-p)^{n-k}$

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

$$P(X = k) = (1 - p)^{k-1}p$$

2. Decision Trees:

Gini
$$Gini(S) = 1 - \sum_{i=1}^{c} \left(\frac{|S_i|}{|S|} \right)^2$$

Entropy
$$Entropy(S) = -\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log \frac{|S_i|}{|S|}$$

3. Gradient descent and update steps:

Linear regression
$$\theta_j \coloneqq \theta_j - \alpha \frac{1}{m} \sum_{d \in D} (h_{\theta}(x^{(d)}) - y^{(d)}) \cdot x_j^{(d)}$$

$$w_j := w_j - \eta \sum_{d \in D} (o^{(d)} - t^{(d)}) x_j^{(d)}$$

If
$$o^{(d)} \cdot t^{(d)} < 0$$
 then:

$$\alpha_j = \alpha_j + \eta$$

4. Logistic regression:

$$P(h(x) = 1) = \frac{1}{1 + e^{-w^T x}}$$

5. <u>SVM</u>:

Primal objective function
$$\frac{1}{2}\|w\|^2 + \gamma \sum_d \xi_d - \sum_d \alpha_d (t_d(w^Tx_d + w_0) - 1 + \xi_d) - \sum_d \mu_d \xi_d$$

s.t
$$\alpha_d \ge 0$$
 $\mu_d \ge 0$

$$\sum_{d} \alpha_{d} - 1/2 \sum_{d} \sum_{e} \alpha_{d} \alpha_{e} t_{d} t_{e} x_{d}^{T} x_{e}$$

s.t
$$\sum_d \alpha_d t_d = 0$$
, $0 \le \alpha_d \le \gamma$

6. EM (for Bernoulli distributions):

New
$$w_{A_j} = \frac{1}{N} \sum_{i=1}^{N} r(x_i, A_j)$$

$$p_{A_j} = \frac{1}{(New w_{A_j})N} \sum_{i=1}^{N} r(x_i, A_j) v(i)$$