Examenul de bacalaureat 2012 Proba E. d) Proba scrisă la FIZICA

Filiera teoretică – profilul real, Filiera tehnologică – profilul tehnic și profilul resurse naturale și protecția mediului, Filiera vocațională – profilul militar

Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

 Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

1. Tensiunea la bornele porțiunii de circuit **AB** reprezentată în figura alăturată are valoarea $U = 18 \, \text{V}$, iar intensitatea are sensul din figură. Se cunosc: $E_1 = 15 \text{ V}$, $E_2 = 6 \text{ V}$, $r_1 = r_2 = 1 \Omega$ A E_1 , r_1 Si $I = 1 \Lambda$ Valoarea rezistenței electrice a rezistorului R este egală cu: și I = 1A. Valoarea rezistenței electrice a rezistorului R este egală cu:

a. 3Ω **b.** 5Ω c. 7Ω

2. Mărimea fizică a cărei unitate de măsură poate fi scrisă în forma W·m·A⁻² este:

b. tensiunea electrică c. rezistența electrică d. rezistivitatea electrică a. energia electrică (3p)

3. Dependența de temperatură a rezistenței electrice a unui conductor cilindric este redată în figura alăturată. Se neglijează variația cu temperatura a dimensiunilor conductorului. Coeficientul termic al rezistivității materialului din care este confecționat conductorul are valoarea:

a. 0,005 K⁻¹

b. 0,002 K⁻¹

c. 0,0015 K⁻¹

d. 0.0005 K⁻¹ (3p)

4. Un generator cu rezistenţa internă r alimentează un consumator cu rezistenţa electrică R, conectat la generator prin două fire conductoare identice. Rezistența electrică a unui fir conductor este R_f . Randamentul transferului de energie de la generator la consumator este egal cu:

a.
$$\frac{R}{R_{f}+r+2R}$$
 b. $\frac{R}{2R_{f}+r}$ **c.** $\frac{2R_{f}}{2R_{f}+r+R}$ **d.** $\frac{R}{2R_{f}+r+R}$ (3p)

5. Sensul convențional al curentului electric într-un circuit simplu este: **a.** de la borna "–" la borna "+" în circuitul exterior sursei

b. de la borna "-" la borna "+" în circuitul interior sursei

c. de la borna "+" la borna "-" în circuitul interior sursei

d. același cu sensul deplasării electronilor în circuit.

(3p) (15 puncte)

II. Rezolvaţi următoarea problemă:

În figura alăturată este reprezentată schema unui circuit electric. Se cunosc parametrii celor două surse: $E_1 = 12 \,\text{V}$, $r_1 = 3 \,\Omega$ şi respectiv $E_2 = 36 \,\text{V}$,

 $r_{\!\scriptscriptstyle 2} = 6\,\Omega$. Rezistorul legat la bornele grupării celor două surse are rezistența electrică $R = 13\Omega$.

a. Determinați intensitatea curentului electric prin rezistorul R dacă întrerupătorul K este deschis;

b. Determinați intensitatea curentului electric prin rezistorul R dacă întrerupătorul K este închis;

c. Se înlocuieşte rezistorul R cu un ampermetru ideal $(R_A \cong 0)$, iar comutatorul K rămâne închis. Determinați valoarea intensității curentului indicat de ampermetru.

d. Se înlocuiește ampermetrul cu un voltmetru ideal $(R_V \to \infty)$, iar comutatorul K rămâne închis. Calculați căderea de tensiune pe rezistența internă a sursei E_2 .

III. Rezolvați următoarea problemă:

(15 puncte)

Un generator cu t.e.m. $E = 60 \,\text{V}$ alimentează montajul a cărui schemă este reprezentată în figura alăturată, în care rezistorii au rezistențele electrice $R_{\rm l}$ = 30 Ω şi respectiv $R_{\rm 2}$ = 70 Ω , iar ampermetrul şi voltmetrul au rezistenţele electrice $R_A = 4 \Omega$ și R_V . Instrumentele de măsură indică $I = 0.6 \,\mathrm{A}$ și respectiv $U_{V} = 15 \,\mathrm{V}$. Determinați:

a. puterea electrică disipată pe ampermetru;

b. energia electrică disipată de voltmetru în unitatea de timp;

c. rezistenţa internă a sursei;

d. raportul dintre puterea P_{12} disipată de rezistorii R_1 şi R_2 şi puterea totală dezvoltată de sursă.