Probability Theory and Mathematical Statistics 概率统计

Homework 1011-1014

邱一航 520030910155 10/12 2-41. 解:由题意可知 X 的冷郁到: : Y=X=3/3布律为 Y 1 -2 Z=XI/3布律为 Z 2 1 0.4 0.6 口 2-42. A: (1) $P(Y_1=-1)=P(X<0)=\frac{0-(-2)}{3-(-2)}=\frac{2}{5}$. $P(Y_1=1)=1-\frac{2}{5}=\frac{3}{5}$. (2) $F_{Y}(y) = P(Y_{2} \leq y) = P(X \leq 2y - 1) = F_{X}(2y - 1)$: $f_{Y_2}(y) = \frac{df_{Y_1}(y)}{dy} = f_{X_1}(2y-1) \cdot 2$ $= \begin{cases} 0, & y < -\frac{1}{2} \xrightarrow{\cancel{y}} \cancel{y} \geqslant 2 \\ = \frac{2}{5}, & -\frac{1}{2} \leqslant y < 2 \end{cases}$ 43. PG: (1) $F_{Y_1}(y) = P(Y_1 \leq y) = P(X^2 \leq y) = P(-\sqrt{y} \leq X \leq \sqrt{y}) = 2(2(\sqrt{y}) - \frac{1}{2})$ = 2 \(\frac{1}{2}\) - \| = 2 \(\frac{1}{2}\) \(\frac{1}{2\) \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{ $f_{Y_1}(y) = 2 \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{y}{2}} \cdot \frac{1}{2} \frac{1}{y} = \frac{1}{\sqrt{2\pi y}} e^{-\frac{y}{2}}$ @y≤0 f_{Y1}(y)=0 $f_{Y_1}(y) = \begin{cases} \frac{1}{\sqrt{2\pi y}} e^{-\frac{y}{2}} & (y > 0) \end{cases}$

```
y> #, F_{Y_2}(y) = P(Y_2 \le y) = P(e^{-X} \le y) = P(X \ge -\ln y)
          f_{Y_{2}}(y) = -\frac{1}{\sqrt{2\pi}} e^{-\frac{(\ln y)^{2}}{2}} = -\frac{1}{\sqrt{2\pi}} \cdot y^{-\frac{\ln y}{2}} du
             f_{Y_2}(y) = \begin{cases} -\frac{1}{\sqrt{2\pi}} y^{-\frac{d_n y}{2}} & (y > 0) \\ 0 & (y \leq 0) \end{cases}
   (3) \mathbb{H}: Y_3 = X + |X| = \begin{cases} 2X & (X > 0) \end{cases} \therefore Y_3 \in [0, +\infty)

\frac{\Phi(\frac{y}{2})}{2} \qquad (y \ge 0)

\frac{\Phi(\frac{y}{2})}{2} \qquad (y < 0)

y <0 Ht. Fr3 (y) = 0
                                                                                           2-44. 解: XER⇒YER
             F_{Y}(y) = P(Y \le y) = P(3-2X \le y) = P(X \ge \frac{3-y}{2}) = 1 - P(X < \frac{3-y}{2})
                     = 1 - F(\frac{3-y}{3} - 0).
补充1. 解: 记误差为E. 由题表知 E~U(-1,1)
        (1) P(|E| \leq 0.6) = P(E \leq 0.6) - P(E < -0.6) = \frac{1}{2} \cdot (0.6 - (-0.6 + 0)) = 0.6
            电影. Y~ B(10,0.6)
             P(Y \ge 2) = 1 - P(Y=0) - P(Y=1) = 1 - (1-0.6)^{10} - C_{10}^{1} \cdot 0.6 (1-0.6)^{9}
```

= 0.99832

(2)	记测量n次(独立测量)中误差绝对值不超过0.6m的量次数	≯Yn.
	则有 $Y_n \sim B(n, 0.6)$ $(n \ge 1)$	
	$P(Y_n \ge 1) = 1 - P(Y_n = 0) = 1 - (1 - 0.6)^n > 0.9$	\Rightarrow 0.4 ⁿ < 0.1
	: n> logo.4 0.1. n为自然级. 故 nmin = 3	t
(3)	$:: X \sim N(\mu, 0.25) , E = X - \mu. \Rightarrow E \sim N(0, 0.$	$(\sigma^2 = 0.25!$
	此时 $P(E \le ab) = 2\Phi(\frac{0.6}{0.25}) - 1 = 2\Phi(2.4) - 1 = 2$	
	- = 0.9836	
	(i) Y~B(20, 0.9836) (由起意是二项分布)	
	(ii) 记测量n次(独立测量)中误差绝对值不超过abm的次	数づ Yn.
	AU Yn~ B(n, o.9836) (n≥1)	
	$P(Y_n \ge 1) = 1 - P(Y_n = 0) = 1 - (1 - 0.9836)^n > 0.9 \Rightarrow$	0.0164 0.1
	: n> logo.01640.1 n为自然级 效 nmin = 1	
开放	1. 解:对各个地区的较绩分别计算平均值和方差,分别记为交	和吃.
	对某地区考生成绩众 (苯在 i 地区) 作以下标准化: $\alpha = \frac{\alpha}{2}$	Ti'
	这样得到的 % 间具有可比性 (将每个地区的成绩都标准的	
10 /4 4	Film	
10/14 3-1- A	P(X=0, Y=0) = P(X=1, Y=0) = P(X=0, Y=1) = P(X=3, Y=2)	= 0
ani i i i i i i i i i i i i i i i i i i	$P(X=1, Y=1) = \frac{C_3^2 C_2^1}{C_7^4} = \frac{6}{35} \qquad P(X=2, Y=0) = \frac{C_3^2}{C_7^4} = \frac{3}{35}$ $P(X=0, Y=2) = \frac{C_3^2}{C_7^4} = \frac{1}{35} \qquad P(X=2, Y=1) = \frac{C_3^2 C_2^1 C_2^2}{C_7^4}$	
-	$P(X=0, Y=2) = \frac{C_1^2}{C_3^2} = \frac{1}{35}$ $P(X=2, Y=1) = \frac{C_3^2 C_2^2 C_3^2}{C_3^4}$	$\frac{1}{2} = \frac{12}{35}$
2.	C7	

$$P(X=3, Y=0) = \frac{C_3^3 C_2^1}{C_1^4} = \frac{2}{35} \qquad P(X=3, Y=1) = \frac{C_3^3 C_2^1}{C_1^4} = \frac{2}{35}$$

$$P(X=1, Y=2) = \frac{C_3^2 C_2^2 C_2^1}{C_1^4} = \frac{6}{35} \qquad P(X=2, Y=2) = \frac{C_3^2 C_2^2 C_2^2}{C_1^4} = \frac{3}{35}$$

由此可得(X,Y)的联合分布律例:

_			0	1	2	3	
		0	0	0	3	25	
	r	1	0	35	<u>12</u> 35	35 2 35	
		2	35	35	35	0	

3-3. β : (1) $P(X=\hat{i}, Y=\hat{j}) = P(X=\hat{i}) P(Y=\hat{j} | X=\hat{i}) = \frac{1}{n} P(Y=\hat{j} | X=\hat{i})$

$$= \begin{cases} \frac{1}{n(n-1)} & i \neq j \\ 0 & i = j \end{cases} \quad (i, j \in \{1, 2, \dots, n\})$$

(2) n=3时(X,Y)的联合分布律如下:

			prod	7 1	-		
		X					
		_1	2	3]		
	1	0	7	7			
Y	2	- t	0	+	1		
	3	8	古	D	1		

3-4. AF: $P(Y_1=0, Y_2=-1)=0$, $P(Y_1=1, Y_2=-1)=P(0 \le X < 1)=\frac{1}{3}$.

$$P(Y_1=2, Y_2=-1)=\frac{1}{3}$$
 $P(Y_1=0, Y_2=1)=\frac{1}{3}$.

$$P(Y_1=1, Y_2=1)=0$$
 $P(Y_1=2, Y_2=1)=0$

(Y,, Y2) 联合公布建与 3%公布建业下。

, 12,		1000	1454	Y	L. HORD	<u> </u>
		Pij	0	1	2	$P_{i} := P(Y_2 = y)$
	Y	-1	0	13	1/3	2/3
	12	1	3	0	O	<u></u>
	P.1	ì	1/3	1/3	1 3	П
) /Y.	- ~1				

 $:= P(Y_1 = x)$

```
3-5. #: (1) 5-00 for f(xy) dxdy = for dx for ke-2x-4y dy
              = \int_{0}^{\infty} -\frac{k}{4} (o - e^{-2x}) dx = \frac{k}{2} = 1
             (2) P(0 \le X \le 2, 0 < Y \le 1) = \int_0^2 \int_0^1 f(x, y) dx dy = \int_0^2 \int_0^1 8 \cdot e^{-2X^2 - 4y} dx dy
              = \binom{2}{6} = 2(e^{-2x} - e^{-2x-4}) dx = 1 - e^{-4} - e^{-4} + e^{-8} = 1 - 2 \cdot e^{-4} + e^{-8}
             (3) P(X+Y<1) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dxdy = \int_{0}^{\infty} \int_{0}^{1-x} 8 \cdot e^{-2x-4y} dxdy
                                         = \int_0^1 2(e^{-2x} + e^{2x-4}) dx = 1 + e^{-4} + e^{-2} + e^{-2}
                                         = 1 + 2e^{-2} + e^{-4}
                                                                                                                             3-6. A: • P(X≥100), Y≥100) = F(+00,+00) - F(100,+00) - F(+00,+00) + F(100,100)
                                                   = 1-(1-e-1)-(1-e-1)+1-2e-1+e-2
                                                   = e^{-2}
                                                                                                                           3-7. 解: (1)由联合概率密度性质
 \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dxdy = \int_{0}^{2} dx \int_{0}^{\frac{x}{2}} kx dy = \int_{0}^{2} \frac{k}{2} x^{2} dx
        = \frac{k}{6} x^3 \Big|_0^2 = \frac{4}{3} k = 1 \qquad \Rightarrow k = \frac{3}{4}
                                                                                                                            x+y=2 = y=\frac{x}{2} = \frac{4}{3}, \frac{2}{3}
               P(X+Y \leq 2) = \iint_{X+Y \leq 2} f(x,y) dxdy = \int_{0}^{\frac{2}{3}} dy \int_{2y}^{2-y} \frac{3}{4} x dx
                                   = \frac{3}{8} \int_{0}^{\frac{3}{3}} \left[ (2-y)^{2} - (2y)^{2} \right] dy = \frac{3}{8} \int_{0}^{\frac{3}{3}} (-3y^{2} - 4y + 4) dy = \frac{5}{9}
       (3) f_{\mathbf{x}}(\mathbf{x}) = \int_{-\infty}^{+\infty} f(\mathbf{x}, \mathbf{y}) \, d\mathbf{y}  \mathbf{x} < 0 \mathbf{x} < 0 \mathbf{x} \neq 2 \mathbf{x} \neq 1. f_{\mathbf{x}}(\mathbf{x}) = 0
               0 < x \leq 2B^{\frac{1}{2}} \cdot f_{x}(x) = \int_{0}^{\frac{x}{2}} \frac{3}{4}x \, dy = \frac{3}{8}x^{2}
               Ø 0≤y<1 ft. f_{Y}(y) = \int_{2y}^{2} \frac{3}{4} x dx = \frac{3}{2} - \frac{3}{2} y^{2}.
```

