Diseño Digital de Bajo Consumo

Docentes:

- Juan P. Oliver
- Leonardo Steinfeld
- Francisco Veirano
- Federico Favaro

Introducción

- Diseño electrónico digital
 - Hasta 1990-1992
 - Área
 - Velocidad
 - A partir de 1990-1992
 - Área
 - Velocidad
 - Consumo

- Consumo solo en nichos específicos:
 - relojes pulsera
 - marcapasos
 - audífonos
 - calculadoras portátiles
 - circuitos de aplicación militar
 - algunos sistemas alimentados a baterías
- La década de los '90 fue explosiva en el crecimiento de los dispositivos portátiles:
 - PDAs
 - laptops
 - GPSs
 - pero sobre todo: telefonía móvil

Introducción

- 1990-1992
 - Nivel de integración CMOS y frecuencias de reloj alcanzan decenas de Watts
- Nacen las conferencias dedicadas al bajo consumo:
 - 1993 Low-Power Electronics Conference (Arizona)
 - 1994 Workshop on Low-Power Design (Napa, CA)
 - 1995 ISLPED (International Symposium on Low Power Electronics and Systems), nace de la fusión de las dos anteriores, y se organiza anualmante
 - 1990-1992 Proyecto PATMOS (Power and Timing Modelling for Optimisation and Specification), Europa, dio lugar a la creación de una conferencia anual que se mantiene hasta la actualidad.

International Technology Roadmap for Semiconductors (ITRS)

- 2011 "Power consumption is now the major technical problem facing the semiconductor industry" [1]
- 2013 "The heterogeneous integration of multiple technologies in a limited space (e.g., GPS, phone, tablet, mobile phones, etc.) has truly revolutionized the semiconductor industry by shifting the main goal of any design **from a performance driven approach** to a reduced power driven approach. In few words, in the past performance was the one and only goal; today minimization of power consumption drives IC design." [2]
 - [1] "The International Technology Roadmap for Semiconductors," 2011 Edition, Design Chapter, 2011. [Online]. Available: http://www.itrs.net/Links/2011itrs/2011Chapters/2011Design.pdf.
 - [2] "The International Technology Roadmap for Semiconductors," 2013 Edition, Executive Summary, 2013. [Online]. Available: http://www.itrs.net/Links/2013ITRS/Home2013.htm.

Datos de consumo (alto)

- ENIAC (1944) 100 kHz, 18.000 vacuum tubes, 20 tons, 150.000 watts.
- Whirlwind IBM (1952) 75.000 tubes, 275 tons, 750.000 watts.
- PDP 8 minicomputer from Digital (1965), 780 watts
- PC Server 600 to 1500 watts
 - Intel I9 (2017), 160 watts
 - Xilinx Alveo U250 Data Center Accelerator Card (2018), 225 watts
- PC Desk 300 to 500 watts

Datos de consumo (medio)

Raspberry Pi 3 B+

Pi State	Power Consumption
Idle	350 mA (1.9 W)
ab -n 100 -c 10 (uncached)	950 mA (5.0 W)
400% CPU load (stresscpu 4)	980 mA (5.1 W)

Modem 3G (Huawei E226)

Estado de la conexión	Normal (mW)	Baja Señal (mW)	% incremento
Desconectado	261	261	0
Idle	936	1120	20
Navegando (speedtest)	1917	2653	38
Ping (64B)	1058	1120	6
Ping (2000B)	1887	2623	39
Upload (90MB)	1933	2163	12
Upload (700MB)	1933	3267	69

Datos de consumo (bajo)

- Low power microcontroller MSP432 (ARM 32 bits, float)
 - 16mW @ 48MHz (100uA/MHz @ 3.3V)
 - 2.64 4.29mW LPM0: CPU off, flash RAM not been accessed, all periphereals inactive
 - < 3.3uW RAM retention with RTC
- Pacemakers: about 10-15 uwatts
- Electrónica de ultra bajo consumo nanowatts

Batería o Red eléctrica

- Sistemas a batería
 - Energía total
 - Tiempo entre recargas
 - Podría haber limitaciones de picos de potencia durante un cierto tiempo
- Sistemas conectados a la red eléctrica
 - Costo kW-h

Densidad de energía

	Densidad Energetic	a (kJ/kg)	Peso eq. 1kg	Petroleo (kg)
	Min	Max	42000	42000
Petroleo	42000	46000	1	0,91
	(Gasoil)	(Gasolina, Gas)		
Pb-acid	108	180	389	233
Ni-Cd	162	288	259	146
Ni-MH	216	396	194	106
Ni-Zn	252	288	167	146
Na-NiCl2	432	432	97	97
Pila alcalina	288	576	146	73
Li-ion	324	648	130	65
Li-Po	360	468	117	90
Li-PO4 (lithium phosphate)	432	504	97	83
LMP (lithium metal polymer)	396	396	106	106
Li-Air*	5400	9000	8	5
Ni-Li**	3366	3366	12	12

^{*} En desarollo (http://www.almaden.ibm.com/st/smarter_planet/battery/)

Duty cycle

Source: Intelligence at the Edge Part 2: Reduced Time to Insight, Ian Beavers https://www.analog.com/en/technical-articles/intelligence-at-the-edge-part-2-reduced-time-to-insight.html