Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа №4 по дисциплине «Методы машинного обучения» на тему

«Создание рекомендательной модели.»

Выполнил: студент группы ИУ5-21М Хуан Яовэнь

Москва — 2022 г.

1. Цель лабораторной работы:

Изучение разработки рекомендательных моделей.

2. Задание:

- 1. Выбрать произвольный набор данных (датасет), предназначенный для построения рекомендательных моделей.
- 2. Опираясь на материалы лекции, сформировать рекомендации для одного пользователя (объекта) двумя произвольными способами.
- 3. Сравнить полученные рекомендации (если это возможно, то с применением метрик).

3. Ход выполнения работы

Импорт библиотек

In [4]:

```
import numpy as np
import pandas as pd
from typing import Dict
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity, euclidean_distances, manhattan_distances
from surprise import SVD, Dataset, Reader
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib_venn import venn2
%matplotlib inline
sns.set(style="ticks")
```

Чтение данных

```
In [116]:
```

```
df_anime_all=pd.read_csv('anime.csv')
```

In [117]:

```
df_anime_all.head()
```

Out[117]:

	anime_id	name	genre	type	episodes	rating	members
0	32281	Kimi no Na wa.	Drama, Romance, School, Supernatural	Movie	1	9.37	200630
1	5114	Fullmetal Alchemist: Brotherhood	Action, Adventure, Drama, Fantasy, Magic, Mili	TV	64	9.26	793665
2	28977	Gintama°	Action, Comedy, Historical, Parody, Samurai, S	TV	51	9.25	114262
3	9253	Steins;Gate	Sci-Fi, Thriller	TV	24	9.17	673572
4	9969	Gintama'	Action, Comedy, Historical, Parody, Samurai, S	TV	51	9.16	151266

In [118]:

```
df_anime_all.shape
```

Out[118]:

(12294, 7)

In [119]:

```
df_rating=pd. read_csv('rating. csv')
df_rating. head()
```

Out[119]:

	user_id	anime_id	rating
0	1	20	-1
1	1	24	-1
2	1	79	-1
3	1	226	-1
4	1	241	-1

In [120]:

```
df_rating.shape
```

Out[120]:

(7813737, 3)

In [121]:

```
# Оставляем только аниме, которые есть в df_rating anime_ids = df_rating[df_rating['anime_id'].notnull()]['anime_id'] df_anime_all[df_anime_all['anime_id'].isin(anime_ids)]
```

In [122]:

```
df_anime_all.shape, df_anime.shape
```

Out[122]:

```
((12294, 7), (11197, 7))
```

Выбор идентификаторов для связи таблиц

In [123]:

```
venn2([set(df_rating['anime_id'].unique()), set(df_anime['anime_id'].unique())])
```

Out[123]:

<matplotlib venn. common.VennDiagram at 0x1c4081a9e80>

Векторизация описания фильмов

In [124]:

```
df_anime_with_genre = df_anime[df_anime['genre'].notnull()]
df_anime_with_genre = df_anime_with_genre[~df_anime_with_genre['genre'].str.isspace()]
```

In [125]:

```
anime_id=df_anime_with_genre['anime_id'].values
anime_id[0:5]
```

Out[125]:

```
array([32281, 5114, 28977, 9253, 9969], dtype=int64)
```

In [126]:

```
anime_name=df_anime_with_genre['name'].values
anime_name[0:5]
```

Out[126]:

```
In [127]:
genre=df anime with genre['genre'].values
genre[0:5]
Out[127]:
array(['Drama, Romance, School, Supernatural',
       'Action, Adventure, Drama, Fantasy, Magic, Military, Shounen',
       'Action, Comedy, Historical, Parody, Samurai, Sci-Fi, Shounen',
       'Sci-Fi, Thriller',
       'Action, Comedy, Historical, Parody, Samurai, Sci-Fi, Shounen'],
      dtype=object)
In [128]:
type=df anime with genre['type']. values
type[0:5]
Out[128]:
array(['Movie', 'TV', 'TV', 'TV'], dtype=object)
In [129]:
%%time
tfidfv = TfidfVectorizer()
genre matrix = tfidfv.fit transform(genre)
genre_matrix
Wall time: 66.1 ms
Out[129]:
<11165x47 sparse matrix of type '<class 'numpy.float64'>'
```

3.1 Фильтрация на основе содержания

with 38734 stored elements in Compressed Sparse Row format>

Рекомендации в зависимости от жанров аниме

In [130]:

```
class SimpleKNNRecommender:
  def __init__(self, X_matrix, X_ids, X_name, X_genre, X_type):
      Входные параметры:
      X matrix - обучающая выборка (матрица объект-признак)
      X ids - массив идентификаторов аниме
      X name — массив названий аниме
      X_genre - массив жанров аниме
      X type - массив типов аниме
      self._X_matrix = X_matrix
      self.df = pd.DataFrame(
         {'id': pd. Series(X ids, dtype='int'),
         'name': pd. Series(X name, dtype='str'),
         'genre': pd. Series (X genre, dtype='str'),
         'type':pd.Series(X_type, dtype='str'),
         'dist': pd. Series([], dtype='float')})
  def recommend for single object(self, K: int, \
            X matrix object, cos flag = True, manh flag = False):
      Метод формирования рекомендаций для одного объек
      Входные параметры:
      К – количество рекомендуемых соседей
      X_matrix_object - строка матрицы объект-признак, соответс
      cos flag – флаг вычисления косинусного расстояния
      manh flag - флаг вычисления манхэттэнского расстояния
      Возвращаемое значение: К найденных соседей
      scale = 1000000
      # Вычисляем косинусную близость
      if cos flag:
         dist = cosine_similarity(self._X_matrix, X_matrix_object)
         self.df['dist'] = dist * scale
         res = self.df.sort_values(by='dist', ascending=False)
         # Не учитываем рекомендации с единичным расстоя
         # так как это искомый объект
         res = res[res['dist'] < scale]
      else:
         if manh flag:
            dist = manhattan distances(self. X matrix, X matrix object)
            dist = euclidean_distances(self._X_matrix, X_matrix_object)
         self.df['dist'] = dist * scale
         res = self.df.sort_values(by='dist', ascending=True)
         # Не учитываем рекомендации с единичным расстояі
         # так как это искомый объект
         res = res[res['dist'] > 0.0]
      # Оставляем К первых рекомендаций
      res = res. head(K)
      return res
```

In [131]:

```
你的名字 = 0
anime_name[你的名字]
```

Out[131]:

'Kimi no Na wa.'

In [132]:

```
genre[你的名字]
```

Out[132]:

'Drama, Romance, School, Supernatural'

In [21]:

```
你的名字_matrix=genre_matrix[你的名字]
你的名字_matrix
```

Out[21]:

In [22]:

skr1 = SimpleKNNRecommender(genre_matrix, anime_id, anime_name, genre, type)

In [23]:

rec1 = skrl.recommend_for_single_object(15, 你的名字_matrix) rec1

Out[23]:

	id	name	genre	type	dist
1089	14669	Aura: Maryuuin Kouga Saigo no Tatakai	Comedy, Drama, Romance, School, Supernatural	Movie	955003.572763
1177	10067	Angel Beats!: Another Epilogue	Drama, School, Supernatural	Special	874531.136996
1465	20903	Harmonie	Drama, School, Supernatural	Movie	874531.136996
860	2787	Shakugan no Shana II (Second)	Action, Drama, Fantasy, Romance, School, Super	TV	868452.470792
1573	6572	Shakugan no Shana S	Action, Drama, Fantasy, Romance, School, Super	OVA	868452.470792
968	355	Shakugan no Shana	Action, Drama, Fantasy, Romance, School, Super	TV	868452.470792
4442	2105	Touka Gettan	Drama, Romance, Supernatural	TV	853905.126056
4952	1039	Mizuiro (2003)	Drama, Romance, Supernatural	OVA	853905.126056
5046	1607	Venus Versus Virus	Drama, Romance, Supernatural	TV	853905.126056
1925	713	Air Movie	Drama, Romance, Supernatural	Movie	853905.126056
4148	26019	Rokujouma no Shinryakusha!?	Comedy, Romance, School, Supernatural	Special	847437.449244
2261	12175	Koi to Senkyo to Chocolate	Drama, Romance, School	TV	837715.129688
1406	2129	True Tears	Drama, Romance, School	TV	837715.129688
3466	9988	Otome wa Boku ni Koishiteru: Futari no Elder	Drama, Romance, School	OVA	837715.129688
6061	2179	Tokimeki Memorial: Forever With You	Drama, Romance, School	OVA	837715.129688

In [24]:

rec2 = skr1.recommend_for_single_object(15, 你的名字_matrix, cos_flag = False) rec2

Out[24]:

	id	name	genre	type	dist
1089	14669	Aura: Maryuuin Kouga Saigo no Tatakai	Comedy, Drama, Romance, School, Supernatural	Movie	299988.090553
1465	20903	Harmonie	Drama, School, Supernatural	Movie	500936.848323
1177	10067	Angel Beats!: Another Epilogue	Drama, School, Supernatural	Special	500936.848323
1573	6572	Shakugan no Shana S	Action, Drama, Fantasy, Romance, School, Super	OVA	512927.927116
860	2787	Shakugan no Shana II (Second)	Action, Drama, Fantasy, Romance, School, Super	TV	512927.927116
968	355	Shakugan no Shana	Action, Drama, Fantasy, Romance, School, Super	TV	512927.927116
5046	1607	Venus Versus Virus	Drama, Romance, Supernatural	TV	540545.787042
4442	2105	Touka Gettan	Drama, Romance, Supernatural	TV	540545.787042
1925	713	Air Movie	Drama, Romance, Supernatural	Movie	540545.787042
4952	1039	Mizuiro (2003)	Drama, Romance, Supernatural	OVA	540545.787042
4148	26019	Rokujouma no Shinryakusha!?	Comedy, Romance, School, Supernatural	Special	552381.300835
3235	18045	Koi to Senkyo to Chocolate Special	Drama, Romance, School	Special	569710.225135
202	28725	Kokoro ga Sakebitagatterunda.	Drama, Romance, School	Movie	569710.225135
6061	2179	Tokimeki Memorial: Forever With You	Drama, Romance, School	OVA	569710.225135
6057	756	School Days ONA	Drama, Romance, School	ONA	569710.225135

In [25]:

Out[25]:

	id	name	genre	type	dist
1089	14669	Aura: Maryuuin Kouga Saigo no Tatakai	Comedy, Drama, Romance, School, Supernatural	Movie	386313.304825
1177	10067	Angel Beats!: Another Epilogue	Drama, School, Supernatural	Special	701457.461391
1465	20903	Harmonie	Drama, School, Supernatural	Movie	701457.461391
4952	1039	Mizuiro (2003)	Drama, Romance, Supernatural	OVA	772527.740002
4442	2105	Touka Gettan	Drama, Romance, Supernatural	TV	772527.740002
5046	1607	Venus Versus Virus	Drama, Romance, Supernatural	TV	772527.740002
1925	713	Air Movie	Drama, Romance, Supernatural	Movie	772527.740002
6061	2179	Tokimeki Memorial: Forever With You	Drama, Romance, School	OVA	826581.218191
6057	756	School Days ONA	Drama, Romance, School	ONA	826581.218191
3839	18053	Koi to Senkyo to Chocolate: Ikenai Hazuki-sensei	Drama, Romance, School	Special	826581.218191
202	28725	Kokoro ga Sakebitagatterunda.	Drama, Romance, School	Movie	826581.218191
491	6351	Clannad: After Story - Mou Hitotsu no Sekai, K	Drama, Romance, School	Special	826581.218191
3845	17585	Myself ; Yourself Specials	Drama, Romance, School	Special	826581.218191
5152	1624	To Heart 2 Special	Drama, Romance, School	Special	826581.218191
3466	9988	Otome wa Boku ni Koishiteru: Futari no Elder	Drama, Romance, School	OVA	826581.218191

Можно увидеть,все три расчета расстояния дают правильные результаты. Рекомендуемое аниме содержит ключевое слово того же жанра.

3.2 Коллаборативная фильтрация

In [26]:

```
len(df_rating['user_id'].unique())# Количество уникальных пользовател
```

Out[26]:

73515

In [27]:

```
len(df_rating['anime_id'].unique())# Количество уникальных аниме
```

Out [27]:

11200

In [28]:

```
def create_utility_matrix(data):
   itemField = 'anime_id'
   userField = 'user id'
   valueField = 'rating'
   userList = data[userField].tolist()
   itemList = data[itemField].tolist()
   valueList = data[valueField].tolist()
   users = list(set(userList))
   items = list(set(itemList))
   users_index = {users[i]: i for i in range(len(users))}
   pd_dict = {item: [0.0 for i in range(len(users))] for item in items}
   for i in range(0, data. shape[0]):
       item = itemList[i]
       user = userList[i]
        value = valueList[i]
       pd_dict[item][users_index[user]] = value
   X = pd. DataFrame(pd_dict)
   X.index = users
   itemcols = list(X.columns)
   items index = {itemcols[i]: i for i in range(len(itemcols))}
   return X, users index, items index
```

In [29]:

```
%%time
user_item_matrix, users_index, items_index = create_utility_matrix(df_rating)
```

Wall time: 2min 33s

In [30]:

```
user_item_matrix
```

Out[30]:

	32768	1	5	6	7	8	32775	32776	32777	32778	 32755	32756	32757
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0
4	0.0	0.0	0.0	-1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0
5	0.0	0.0	0.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0
73512	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0
73513	0.0	9.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0
73514	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0
73515	0.0	10.0	10.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0
73516	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0

73515 rows × 11200 columns

→

Проверьте пользователей, которые оценили аниме «你的名字»

In [133]:

```
print(df_rating.loc[df_rating['anime_id']==32281,['user_id','rating']])
```

	user_id	rating
8271	99	5
11961	152	10
19665	244	10
22985	271	10
23382	278	-1
7758439	73042	9
7763841	73099	10
7764599	73109	9
7791788	73311	7
7792479	73319	8

[2199 rows x 2 columns]

Выбрать пользователей, которые дали 10 баллов для «你的名字», в качестве тестовых объектов для рекомендательной системы.

Выбрать user_id = 73099

In [156]:

```
user_item_matrix__test = user_item_matrix.loc[[73099]]
user_item_matrix__test
```

Out[156]:

	32768	1	5	6	7	8	32775	32776	32777	32778	 32755	32756	32757
73099	0.0	10.0	10.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0

1 rows × 11200 columns

In [157]:

```
user_item_matrix__train = user_item_matrix.loc[:73515]
user_item_matrix__train
```

Out[157]:

	32768	1	5	6	7	8	32775	32776	32777	32778	 32755	32756	32757
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0
4	0.0	0.0	0.0	-1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0
5	0.0	0.0	0.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0
		•••									 		
73511	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0
73512	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0
73513	0.0	9.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0
73514	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0
73515	0.0	10.0	10.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0

73514 rows × 11200 columns

Построение модели на основе SVD

```
In [158]:
```

```
%%time
U, S, VT = np.linalg.svd(user_item_matrix__train.T)
V = VT.T
```

MemoryError: Unable to allocate 40.3 GiB for an array with shape (73514, 73514) and data type float64

Из-за огромного объема данных и нехватки памяти при расчете в качестве тестового набора сейчас выбрано всего 1000 групп.

In [159]:

```
user_item_matrix__train = user_item_matrix.loc[:1000]
user_item_matrix__train
```

Out[159]:

	32768	1	5	6	7	8	32775	32776	32777	32778	 32755	32756	32757	32
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	
4	0.0	0.0	0.0	-1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	
5	0.0	0.0	0.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	
996	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	
997	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	
998	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	
999	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	
1000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	

1000 rows × 11200 columns

→

```
In [160]:
```

```
%%time
U, S, VT = np.linalg.svd(user_item_matrix__train.T)
V = VT.T
```

Wall time: 5.34 s

In [161]:

```
U. shape# 用户和潜在因素之间的关系矩阵
```

Out[161]:

(11200, 11200)

In [162]:

V. shape# 对象和潜在因素之间的关系矩阵

Out[162]:

(1000, 1000)

In [163]:

S. shape

Out[163]:

(1000,)

In [164]:

```
Sigma = np.diag(S)# 对角奇异值矩阵
Sigma.shape
```

Out[164]:

(1000, 1000)

```
In [165]:
```

```
Sigma
```

```
Out[165]:
```

In [166]:

```
r=3
Ur = U[:, :r]
Sr = Sigma[:r, :r]
Vr = V[:, :r]
```

In [167]:

```
# 新用户和潜在因素之间的关系矩阵
test_user = np.mat(user_item_matrix__test.values)
test_user.shape, test_user
```

Out[167]:

```
((1, 11200), matrix([[ 0., 10., 10., ..., 0., 0., 0.]]))
```

In [168]:

```
tmp = test_user * Ur * np.linalg.inv(Sr)
tmp
```

Out[168]:

```
matrix([[ 0.0776233 , -0.01761988, -0.06338172]])
```

In [169]:

```
test_user_result = np.array([tmp[0,0], tmp[0,1], tmp[0,2]])
test_user_result
```

Out[169]:

```
array([ 0.0776233 , -0.01761988, -0.06338172])
```

```
In [170]:
```

```
\cos \sin = \cos \sin \arcsin (Vr, \text{ test user result. reshape}(1, -1))
\cos_{\sin}[:10]
Out[170]:
array([[-0.40546416],
       [ 0.35577201],
       [ 0.84163232],
       [0.00909248],
       [ 0.94357332],
       [ 0.09480675],
       [0.45676532],
       [-0.35388716],
       [0.51941178],
       [-0.0445435]
In [171]:
cos_sim_list = cos_sim.reshape(-1, cos_sim.shape[0])[0]
cos_sim_list[:10]
Out[171]:
array([-0.40546416, 0.35577201, 0.84163232,
                                                 0.00909248,
                                                               0.94357332,
        0.09480675,
                     0. 45676532, -0. 35388716,
                                                 0.51941178, -0.0445435 ])
```

In [172]:

```
recommended_user_id = np.argsort(-cos_sim_list)[0]
recommended_user_id
```

Out[172]:

349

In [173]:

```
anime_list = list(user_item_matrix.columns)
def anime_recommend(ind):
   try:
        anime_id = anime_list[ind]
        flt rating = df rating[df rating['anime id'] == anime id]
        rating = flt_rating['anime_id'].values[0]
        anime rating = df anime[df anime['anime id'] == rating]
        res = anime rating['name'].values[0]
        return res
    except:
       return ''
```

In [180]:

```
# Аниме, которые оценивал текущий пользователь user_id=152:
i=1
for idx, item in enumerate(np.ndarray.flatten(np.array(test_user))):
    if item > 0:
        anime_name = anime_recommend(idx)
        print(' {} - {} - {} '.format(idx, anime_name, item))
        if i==20:
            break
        else:
            i+=1
```

```
1 - Cowboy Bebop - 10.0
2 - Cowboy Bebop: Tengoku no Tobira - 10.0
3 - Trigun - 9.0
15 - Initial D Fourth Stage - 7.0
16 - Monster - 7.0
21 - School Rumble - 5.0
27 - Neon Genesis Evangelion - 7.0
29 - Neon Genesis Evangelion: The End of Evangelion - 8.0
37 - Ghost in the Shell - 9.0
39 - Rurouni Kenshin: Meiji Kenkaku Romantan - 7.0
53 - Chobits - 7.0
60 - Azumanga Daioh - 7.0
65 - Full Metal Panic! - 8.0
66 - Full Metal Panic? Fumoffu - 8.0
67 - Full Metal Panic! The Second Raid - 8.0
70 - Mahou Shoujo Lyrical Nanoha - 7.0
71 - Mahou Shoujo Lyrical Nanoha A's - 7.0
73 - Shuffle! - 7.0
91 - Last Exile - 7.0
95 - Air - 7.0
```

In [178]:

In []:

```
# Аниме, которые оценивал наиболее схожий пользователь i=1
recommended_user_item_matrix = user_item_matrix.loc[[recommended_user_id+1]]
for idx, item in enumerate(np. ndarray. flatten(np. array(recommended_user_item_matrix))):
    if item > 0:
        anime_name = anime_recommend(idx)
        print(' {} - {} - {} '. format(idx, anime_name, item))
        if i==20:
            break
        else:
            i+=1
```

```
16 - Monster - 8.0
27 - Neon Genesis Evangelion - 9.0
29 - Neon Genesis Evangelion: The End of Evangelion - 8.0
37 - Ghost in the Shell - 8.0
430 - Perfect Blue - 8.0
821 - Suzumiya Haruhi no Yuuutsu - 8.0
1282 - Danganronpa 3: The End of Kibougamine Gakuen - Kibou-hen - 8.0
1419 - Shelter - 8.0
1480 - Death Note - 9.0
1520 - Code Geass: Hangyaku no Lelouch - 8.0
1629 - Byousoku 5 Centimeter - 7.0
1871 - Paprika - 8.0
1922 - Tengen Toppa Gurren Lagann - 10.0
1945 - Darker than Black: Kuro no Keiyakusha - 8.0
2085 - Clannad - 8.0
2150 - Toki wo Kakeru Shoujo - 8.0
2491 - Kara no Kyoukai 1: Fukan Fuukei - 7.0
2655 - Evangelion: 1.0 You Are (Not) Alone - 9.0
2773 - Code Geass: Hangyaku no Lelouch R2 - 10.0
3430 - Evangelion: 2.0 You Can (Not) Advance - 9.0
```

Список литературы

[1] Гапанюк Ю. Е. Лабораторная работа «Создание рекомендательной модели.» [Электронный ресурс] лекция «Введение в обработку текстов и графов знаний.»