Milestone 1: DDGI Minecraft

Helen Liu, Janine Liu, Spencer Webster-Bass

Overview

Goal: Generate a real-time dynamic Minecraft-inspired scene illuminated by Dynamic Diffuse Global Illumination (DDGI) Probes as described in this paper.

- Sample light info at probe locations to approximate indirect lighting at any point in scene
- Generate and trace rays from light probes, shade the resulting buffer, and update the buffer every frame.

 Pros: handles dynamic lighting and geometry and prevents light leaking

Example Dynamic Scene with Diffuse Global Illumination (Source: paper)

Placement of probes in scene (Source: paper)

Light leaking problem in Unreal Engine 4. (Source: online)

Vulkan API

- Started with CIS565 Vulkan
 Examples: experimented with implementing path tracer from scratch
- Looked into using Vulkan ray-tracing extension
- Started with forward rendering compute-based Vulkan pathtracer source code

Base Code

Rendering Modes

Direct Lighting (multiple samples)

Direct Lighting (unsampled)

Indirect Lighting (one sample, does not yet account for visibility)

Combined

Camera Movement

Movement controls with WASD

- Rotate with Mouse

- Standard FPS camera

Goals for Milestone 2

- Probe Implementation
 - Generate rays from singular probe and save info to a texture
 - Disperse and visualize probes in the scene
 - Implement an algorithm to find surrounding probes for every pixel
- Scene generation
 - darkly lit cave
 - sparse internal lights
 - external light (holes in ceiling)
- Try RTX extension again :(

Example of cave scene we want to achieve (Source: Website)