

Holtek 32-bit Microcontroller with ARM® Cortex™-M3 Core

HT32F1755/HT32F1765/HT32F2755 Datasheet

Revision: V1.20 Date: June 03, 2014

www.holtek.com

Table of Contents

1	General Description	6
2	Features	7
	Core	7
	On-chip Memory	7
	Flash Memory Controller	8
	Reset Control Unit	8
	Clock Control Unit	8
	Power Management	9
	Analog to Digital Converter	9
	Analog Operational Amplifier/Comparator	9
	I/O Ports	. 10
	PWM Generation and Capture Timers – GPTM	. 10
	Motor Control Timer – MCTM	. 11
	Basic Function Timer – BFTM	. 11
	Watchdog Timer	. 12
	Real Time Clock	
	Inter-integrated Circuit – I ² C	. 13
	Serial Peripheral Interface – SPI	. 13
	Universal Synchronous Asynchronous Receiver Transmitter – USART	
	Smart Card Interface – SCI	
	Peripheral Direct Memory Access – PDMA	
	Universal Serial Bus Device Controller – USB	. 15
	CMOS Sensor Interface – CSIF (HT32F2755 only)	
	Debug Support	
	Package and Operation Temperature	. 16
3	Overview	17
	Device Information	. 17
	Block Diagram	. 18
	Memory Map	. 19
	Clock Structure	. 20
	Pin Assignment	. 21

4	Electrical Characteristics	. 28
	Absolute Maximum Ratings	. 28
	Recommended DC Characteristics	. 28
	On-Chip LDO Voltage Regulator Characteristics	. 28
	Power Consumption	. 29
	Reset and Supply Monitor Characteristics	. 29
	External Clock Characteristics	. 30
	Internal Clock Characteristics	. 31
	PLL Characteristics	. 31
	Memory Characteristics	. 31
	I/O Port Characteristics	. 32
	ADC Characteristics	. 33
	Operation Amplifier/Comparator Characteristics	. 35
	GPTM/MCTM Characteristics	. 35
	I ² C Characteristics	. 36
	SPI Characteristics	. 37
	CSIF Characteristics	. 38
	USB Characteristics	. 39
5	Package Information	11
J	SAW Type 48-pin (6mm×6mm) QFN Outline Dimensions	
	48-pin LQFP (7mm×7mm) Outline Dimensions	
	64-pin LQFP (7mm×7mm) Outline Dimensions	
	100-pin LQFP (14mm×14mm) Outline Dimensions	
	100-pin EQFF (14mm* 14mm) Outline Dimensions	. 40

List of Tables

Table 1. HT32F1755/1765/2755 Series Features and Peripheral List	17
Table 2. HT32F1755/1765/2755 Pin Descriptions	24
Table 3. Absolute Maximum Ratings	28
Table 4. Recommended DC Operating Conditions	28
Table 5. LDO Characteristics	28
Table 6. Power Consumption Characteristics	29
Table 7. LVD/BOD Characteristics	29
Table 8. High Speed External Clock (HSE) Characteristics	30
Table 9. Low Speed External Clock (LSE) Characteristics	30
Table 10. High Speed Internal Clock (HSI) Characteristics	31
Table 11. Low Speed Internal Clock (LSI) Characteristics	31
Table 12. PLL Characteristics	31
Table 13. Flash Memory Characteristics	31
Table 14. I/O Port Characteristics	32
Table 15. ADC Characteristics	33
Table 16. OPA/CMP Characteristics	35
Table 17. GPTM/MCTM Characteristics	
Table 18. I ² C Characteristics	36
Table 19. SPI Characteristics	
Table 20. CSIF Characteristics	38
Table 21. USB DC Electrical Characteristics	39
Table 22. USB AC Electrical Characteristics	40

List of Figures

Figure 1. HT32F1755/1765/2755 Block Diagram	18
Figure 2. HT32F1755/1765/2755 Memory Map	19
Figure 3. HT32F1755/1765/2755 Clock Structure	20
Figure 4. HT32F1755/1765/2755 48-QFN/LQFP Pin Assignment	21
Figure 5. HT32F1755/1765/2755 64-LQFP Pin Assignment	22
Figure 6. HT32F1755/1765/2755 100-LQFP Pin Assignment	23
Figure 7. ADC Sampling Network Model	34
Figure 8. I ² C Timing Diagrams	36
Figure 9. SPI Timing Diagrams – SPI Master Mode	37
Figure 10. SPI Timing Diagrams – SPI Slave Mode and CPHA=1	38
Figure 11. USB Signal Rise Time and Fall time and Cross-Point Voltage (VCRS) Definition	40

1 General Description

The Holtek HT32F1755/1765/2755 devices are high performance and low power consumption 32-bit microcontrollers based around an ARM® CortexTM-M3 processor core. The CortexTM-M3 is a next-generation processor core which is tightly coupled with Nested Vectored Interrupt Controller (NVIC), SysTick timer, and including advanced debug support.

The HT32F1755/1765/2755 devices operate at a frequency of up to 72MHz with a Flash accelerator to obtain maximum efficiency. It provides 128KB of embedded Flash memory for code/data storage and up to 64KB of embedded SRAM memory for system operation and application program usage. A variety of peripherals, such as ADC, I²C, USART, SPI, PDMA, GPTM, MCTM, SCI, CSIF, USB2.0 FS, SWJ-DP (Serial Wire and JTAG Debug Port), etc., are also implemented in the device series. Several power saving modes provide the flexibility for maximum optimisation between wakeup latency and power consumption, an especially important consideration in low power applications.

The above features ensure that the HT32F1755/1765/2755 devices are suitable for use in a wide range of applications, especially in areas such as white goods application control, power monitors, alarm systems, consumer products, handheld equipment, data logging applications, motor control, fingerprint recognition and so on.

2 Features

Core

- 32-bit ARM® CortexTM-M3 processor core
- Up to 72MHz operation frequency
- 1.25 DMIPS/MHz (Dhrystone 2.1)
- Single-cycle multiplication and hardware division
- Integrated Nested Vectored Interrupt Controller (NVIC)
- 24-bit SysTick timer

The CortexTM-M3 processor is a general-purpose 32-bit processor core especially suitable for products requiring high performance and low power consumption microcontrollers. It offers many new features such as a Thumb-2 instruction set, hardware divider, low latency interrupt respond time, atomic bit-banding access and multiple buses for simultaneous accesses. The CortexTM-M3 processor is based on the ARMv7 architecture and supports both Thumb and Thumb-2 instruction sets

On-chip Memory

- 128KB on-chip Flash memory for instruction/data and options storage
- up to 64KB on-chip SRAM
- Supports multiple boot modes

The ARM® CortexTM-M3 processor is structured using a Harvard architecture which uses separate busses to fetch instructions and load/store data. The instruction code and data are both located in the same memory address space but in different address ranges. The maximum address range of the CortexTM-M3 is 4GB due to its 32-bit bus address width. Additionally, a pre-defined memory map is provided by the CortexTM-M3 processor to reduce the software complexity of repeated implementation for different device vendors. However, some regions are used by the ARM® CortexTM-M3 system peripherals. Refer to the ARM® CortexTM-M3 Technical Reference Manual for more information. The Figure 2. shows the memory map of the HT32F1755/1765/2755 series of devices, including Code, SRAM, peripheral, and other pre-defined regions.

Flash Memory Controller

- Flash accelerator for maximum efficiency
- 32-bit word programming with In System Programming Interface (ISP) and In Application Programming (IAP)
- Flash protection capability to prevent illegal access

The Flash Memory Controller, FMC, provides all the necessary functions and pre-fetch buffer for the embedded on-chip Flash Memory. Since the access speed of the Flash Memory is slower than the CPU, a wide access interface with a pre-fetch buffer is provided for the Flash Memory in order to reduce the CPU waiting time which will cause CPU instruction execution delays. Flash Memory word program/page erase functions are also provided.

Reset Control Unit

- Supply supervisor:
 - Power-on Reset POR
 - Brown-out Detector BOD
 - Programmable Low Voltage Detector LVD

The Reset Control Unit (RSTCU) has three kinds of reset, the power on reset, system reset and an APB unit reset. The power on reset, known as a cold reset, resets the full system during power up. A system reset resets the processor core and peripheral IP components with the exception of the SWJ-DP controller. The resets can be triggered by an external signal, internal events and the reset generators.

Clock Control Unit

- External 4 to 16MHz crystal oscillator
- External 32,768Hz crystal oscillator
- Internal 8MHz RC oscillator trimmed to ±2% accuracy at 3.3V operating voltage and 25°C operating temperature
- Internal 32kHz RC oscillator
- Integrated system clock PLL
- Independent clock gating bits for peripheral clock sources

The Clock Control unit, CKCU, provides a range of oscillator and clock functions. These include a High Speed Internal RC oscillator (HSI), a High Speed External crystal oscillator (HSE), a Low Speed Internal RC oscillator (LSI), a Low Speed External crystal oscillator (LSE), a Phase Lock Loop (PLL), a HSE clock monitor, clock prescalers, clock multiplexers and clock gating circuitry. The clocks of the AHB, APB and CortexTM-M3 are derived from the system clock (CK_SYS) which can come from the HSI, HSE or PLL. The Watchdog Timer and Real Time Clock (RTC) use either the LSI or LSE as their clock source. The maximum operating frequency of the system core clock (CK_AHB) can be up to 72MHz.

Power Management

- Single 3.3V power supply: 2.7V to 3.6V
- Integrated 1.8V LDO regulator for core and peripheral power supply
- V_{BAT} battery power supply for RTC and backup registers
- Three power domains: 3.3V, 1.8V and Backup
- Four power saving modes: Sleep, Deep-Sleep1, Deep-Sleep2, Power-Down

The Power consumption can be regarded as one of the most important issues for many embedded system applications. Accordingly the Power Control Unit, PWRCU, in these devices provides many types of power saving modes such as Sleep, Deep-Sleep1, Deep-Sleep2 and Power-Down mode. These operating modes reduce the power consumption and allow the application to achieve the best trade-off between the conflicting demands of CPU operating time, speed and power consumption.

Analog to Digital Converter

- 12-bit SAR ADC engine
- Up to 1Msps conversion rate 1µs at 56MHz, 1.17µs at 72MHz
- 8 external analog input channels
- Supply voltage range: 2.7V ~ 3.6V
- Conversion range: $V_{REF^+} \sim V_{REF^-}$

A 12-bit multi-channel ADC is integrated in the device. There are a total of 10 multiplexed channels, which include 8 external channels on which the external analog signals can be measured, and 2 internal channels. If the input voltage is required to remain within a specific threshold window, an Analog Watchdog function will monitor and detect these signals. An interrupt will then be generated to inform the device that the input voltage is not within the preset threshold levels. There are three conversion modes to convert an analog signal to digital data. The ADC can be operated in one shot, continuous and discontinuous conversion modes.

Analog Operational Amplifier/Comparator

- Two Operational Amplifiers or Comparator functions which are software configurable
- Supply voltage range: $2.7V \sim 3.6V$

Two Operational Amplifiers/Comparators (OPA/CMP) are implemented within the devices. They can be configured either as Operational Amplifiers or as Analog Comparators. When configured as comparators, they are capable of generating interrupts to the NVIC.

I/O Ports

- Up to 80 GPIOs
- Port A, B, C, D, E are mapped as 16 external interrupts EXTI
- Almost all I/O pins are 5V-tolerant except for pins shared with analog inputs

There are up to 80 General Purpose I/O pins, (GPIO), named PA0 \sim PA15 to PE0 \sim PE15 for the implementation of logic input/output functions. Each of the GPIO ports has a series of related control and configuration registers to maximise flexibility and to meet the requirements of a wide range of applications.

The GPIO ports are pin-shared with other alternative functions to obtain maximum functional flexibility on the package pins. The GPIO pins can be used as alternative functional pins by configuring the corresponding registers regardless of the input or output pins.

The external interrupts on the GPIO pins of the device have related control and configuration registers in the External Interrupt Control Unit, EXTI.

PWM Generation and Capture Timers – GPTM

- Two 16-bit General-Purpose Timers GPTM
- Up to 4-channel PWM Compare Output or Input Capture function for each GPTM
- External trigger input

The General-Purpose Timers, known as GPTM0 and GPTM1, consist of one 16-bit up/down-counter, four 16-bit Capture/Compare Registers (CCRs), one 16-bit Counter-Reload Register (CRR) and several control/status registers. They can be used for a variety of purposes including general time measurement, input signal pulse width measurement, output waveform generation such as single pulse generation, or PWM output generation. The GPTM supports an Encoder Interface using a decoder with two inputs.

Motor Control Timer – MCTM

- Single 16-bit up, down, up/down auto-reload counter
- 16-bit programmable prescaler allowing dividing the counter clock frequency by any factor between 1 and 65536
- Input Capture function
- Compare Match Output
- PWM waveform generation with Edge and Centre-aligned Modes
- Single Pulse Mode Output
- Complementary Outputs with programmable dead-time insertion
- Encoder interface controller with two inputs using quadrature decoder
- Support 3-phase motor control and hall sensor interface
- Brake input to force the timer's output signals into a reset or fixed condition

The Motor Control Timer consists of a single 16-bit up/down counter, four 16-bit CCRs (Capture/Compare Registers), single one 16-bit counter-reload register (CRR), single 8-bit repetition counter and several control/status registers. It can be used for a variety of purposes including measuring the pulse widths of input signals or generating output waveforms such as compare match outputs, PWM outputs or complementary PWM outputs with dead-time insertion. The MCTM supports an Encoder interface controller to an incremental encoder with two inputs. The MCTM is capable of offering full functional support for motor control, hall sensor interfacing and brake input.

Basic Function Timer - BFTM

- Two 32-bit compare/match count-up counters no I/O control features
- One shot mode counting stops after a match condition
- Repetitive mode restart counter after a match condition

The Basic Function Timer is a simple count-up 32-bit counter designed to measure time intervals and generate a one shot or repetitive interrupts. The BFTM operates in two functional modes, repetitive or one shot mode. In the repetitive mode the BFTM restarts the counter when a compare match event occurs. The BFTM also supports a one shot mode which forces the counter to stop counting when a compare match event occurs.

Watchdog Timer

- 12-bit down counter with 3-bit prescaler
- Interrupt or reset event for the system
- Programmable watchdog timer window function
- Registers write protection function

The Watchdog Timer is a hardware timing circuit that can be used to detect system failures due to software malfunctions. It includes a 12-bit count-down counter, a prescaler, a WDT counter value register, a WDT delta value register, interrupt related circuits, WDT operation control circuitry and a WDT protection mechanism. The Watchdog Timer can be operated in an interrupt mode or a reset mode. The Watchdog Timer will generate an interrupt or a reset when the counter counts down and reaches a zero value. If the software does not reload the counter value before a Watchdog Timer underflow occurs, an interrupt or a reset will be generated when the counter underflows. In addition, an interrupt or reset is also generated if the software reloads the counter when the counter value is greater than or equal to the WDT delta value. This means the counter must be reloaded within a limited timing window using a specific method. The Watchdog Timer counter can be stopped while the processor is in the debug mode. There is a register write protect function which can be enabled to prevent it from changing the Watchdog Timer configuration unexpectedly.

Real Time Clock

- 32-bit up-counter with a programmable prescaler
- Alarm function
- Interrupt and Wake-up event

The Real Time Clock, RTC, circuitry includes the APB interface, a 32-bit count-up counter, a control register, a prescaler, a compare register and a status register. Most of the RTC circuits are located in the Backup Domain except for the APB interface. The APB interface is located in the $V_{\rm DD18}$ power domain. Therefore, it is necessary to be isolated from the ISO signal that comes from the power control unit when the $V_{\rm DD18}$ power domain is powered off, that is when the device enters the Power-Down mode. The RTC counter is used as a wakeup timer to generate a system resume signal from the Power-Down mode.

Inter-integrated Circuit – I²C

- Support both master and slave mode with a frequency of up to 1MHz
- Provide an arbitration function and clock synchronization
- Supports 7-bit and 10-bit addressing mode and general call addressing
- Supports slave multi-addressing mode with maskable address

The I²C Module is an internal circuit allowing communication with an external I²C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line, SDA, and a serial clock line, SCL. The I²C module provides three data transfer rates: (1). 100kHz in the Standard mode, (2). 400kHz in the Fast mode and, (3). 1MHz in the Fast mode plus. The SCL period generation register is used to setup different kinds of duty cycle implementation for the SCL pulse.

The SDA line which is connected directly to the I²C bus is a bi-directional data line between the master and slave devices and is used for data transmission and reception. The I²C module also has an arbitration detect function and clock synchronization to prevent situations where more than one master attempts to transmit data to the I²C bus at the same time.

Serial Peripheral Interface - SPI

- Supports both master and slave mode
- Frequency of up to 36MHz for master mode and 18MHz for slave mode
- FIFO Depth: 8 levels
- Multi-master and multi-slave operation

The Serial Peripheral Interface, SPI, provides an SPI protocol data transmit and receive function in both master and slave mode. The SPI interface uses 4 pins, which are the serial data input and output lines MISO and MOSI, the clock line, SCK, and the slave select line, SEL. One SPI device acts as a master device which controls the data flow using the SEL and SCK signals to indicate the start of data communication and the data sampling rate. To receive a data byte, the streamed data bits are latched on a specific clock edge and stored in the data register or in the RX FIFO. Data transmission is carried in a similar way but with a reverse sequence. The mode fault detection provides a capability for multi-master applications.

Universal Synchronous Asynchronous Receiver Transmitter – USART

- Operating frequency up to 4.5MHz
- Supports both asynchronous and clocked synchronous serial communication modes
- IrDA SIR encoder and decoder
- RS485 mode with output enable control
- Full Modem function for USART0
- Auto hardware flow control mode RTS, CTS
- FIFO Depth: 16×9 bits for both receiver and transmitter

The Universal Synchronous Asynchronous Receiver Transceiver, USART, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. The USART is used to translate data between parallel and serial interfaces, and is also commonly used for RS232 standard communication. The USART peripheral function supports five types of interrupt including Line Status Interrupt, Transmitter FIFO Empty Interrupt, Receiver Threshold Level Reaching Interrupt, Time Out Interrupt and MODEM Status Interrupt. The USART module includes a 16-byte transmitter FIFO (TX_FIFO) and a 16-byte receiver FIFO (RX_FIFO). The software can detect a USART error status by reading the Line Status Register, LSR. The status includes the type and the condition of transfer operations as well as several error conditions resulting from Parity, Overrun, Framing and Break events.

The USART includes a programmable baud rate generator which is capable of dividing the CK_AHB to produce a clock for the USART transmitter and receiver.

Smart Card Interface - SCI

- Support ISO 7816-3 standard
- Character mode
- Single transmit buffer and single receive buffer
- 11-bit ETU (Elementary Time Unit) counter
- 9-bit guard time counter
- 24-bit general purpose waiting time counter
- Parity generation and checking
- Automatic character retry on parity error detection in transmission and reception modes

The Smart Card Interface is compatible with the ISO 7816-3 standard. This interface includes Card Insertion/Removal detection, SCI data transfer control logic and data buffers, internal Timer Counters and corresponding control logic circuits to perform all the necessary Smart Card operations. The Smart Card interface acts as a Smart Card Reader to facilitate communication with the external Smart Card. The overall functions of the Smart Card interface are controlled by a series of registers including control and status registers together with several corresponding interrupts which are generated to get the attention of the microcontroller for SCI transfer status.

Peripheral Direct Memory Access - PDMA

- 12 channels with trigger source grouping
- Supports Single and block transfer mode
- 8/16/32-bit width data transfer
- Supports Address increment, decrement or fixed mode
- 4-level programmable channel priority
- Auto reload mode
- Supports trigger source: CSIF, ADC, SPI, USART, I²C, GPTM, MCTM, SCI and software

The Peripheral Direct Memory Access controller, PDMA, moves data between the peripherals (USART, SPI, ADC, GPTM, MCTM, CSIF, I²C and SCI, CPU for software mode) and the system memory on the AHB bus. Each PDMA channel has a source address, destination address, block length and transfer count. The PDMA can exclude the CPU intervention and avoid interrupt service routine execution. It improves system performance as the software does not need to join each data movement operation.

Universal Serial Bus Device Controller – USB

- Complies with USB 2.0 full-speed (12Mbps) specification
- On-chip USB full-speed transceiver
- 1 control endpoint (EP0) for control transfer
- 3 single-buffered endpoints for bulk and interrupt transfer
- 4 double-buffered endpoints for bulk, interrupt and isochronous transfer
- 1024 bytes EP-SRAM used as the endpoint data buffers

The USB device controller is compliant with USB 2.0 full-speed specification. There is one control endpoint known as Endpoint 0 and seven configurable endpoints. A 1024-byte SRAM is used as the endpoint buffers. Each endpoint buffer size is programmable using corresponding registers, which provides maximum flexibility for various applications. The integrated USB full-speed transceiver helps to minimise the overall system complexity and cost. The USB functional block also contains the resume and suspend features to meet the requirements of low-power consumption.

CMOS Sensor Interface – CSIF (HT32F2755 only)

- Up to 2048×2048 input resolution
- Supports 8-bit YUV422 and Raw RGB formats
- Up to 24MHz input pixel clock frequency
- Multi VSYNC and HSYNC settings for image capture
- Hardware window capture function
- Fractional hardware sub-sample function
- Dual FIFOs each with a capacity of 8×32 bits which can be read by the PDMA or CPU

The CMOS Sensor Interface, otherwise known as the CSIF, provides an interface for image capture from CMOS sensors. The device can be connected to the CMOS sensor directly using its CMOS Sensor Interface. The CSIF supports both Vertical SYNC and Horizontal SYNC modes for image capture implementation. The CSIF consists of window capture and sub-sampling functions together with dual FIFOs, each with a capacity of 8×32 bits, to store data which can be moved to the internal SRAM via the Peripheral Direct Memory Access circuitry, PDMA. The CSIF does not support image data conversion or decode but rather transfers the image data received from the CMOS sensor to the internal SRAM transparently.

Debug Support

- Serial Wire or JTAG Debug Port SWJ-DP
- 6 instruction comparators and 2 literal comparators for hardware breakpoint or code/literal patch
- 4 comparators for hardware watchpoints
- 1-bit asynchronous trace TRACESWO

Package and Operation Temperature

- 48/64/100-pin LQFP and 48-pin QFN packages
- Operation temperature range: -40°C to +85°C

3 Overview

Device Information

Table 1. HT32F1755/1765/2755 Series Features and Peripheral List

	Peripherals	HT32F1755	HT32F1765	HT32F2755			
Main F	lash (KB)	127	127	127			
Option	Bytes Flash (KB)	1	1	1			
SRAM	(KB)	32	64	64			
	MCTM	1					
_	GPTM	2					
Timers	BFTM	2					
κ	RTC	1					
	WDT	1					
	CSIF	_	_	1			
0	USB	1					
Communication	SCI	1					
unicat	USART	2					
ion	SPI	2					
	I ² C	2					
GPIO		Up to 80					
EXTI		16					
12-bit /		1					
Numbe	er of channels	8 Channels					
OPA/C	omparator	2					
CPU fr	equency	Up to 72MHz					
Operat	ting voltage	2.7V ~ 3.6V					
Operat	ting temperature	-40°C ~ +85°C					
Packa	ge	48/64/100-pin L	QFP and 48-pin C	QFN			

Block Diagram

NOTE: The AHB peripheral function, CSIF, is only available in the HT32F2755 device.

Figure 1. HT32F1755/1765/2755 Block Diagram

Memory Map

Figure 2. HT32F1755/1765/2755 Memory Map

Clock Structure

Figure 3. HT32F1755/1765/2755 Clock Structure

Pin Assignment

Figure 4. HT32F1755/1765/2755 48-pin QFN/LQFP Pin Assignment

Figure 5. HT32F1755/1765/2755 64-LQFP Pin Assignment

Figure 6. HT32F1755/1765/2755 100-LQFP Pin Assignment

Table 2. HT32F1755/1765/2755 Pin Descriptions

PA0 1 1 1 AI/O — PA0 ADC_INO SCI_CLK GT1_CH0 G PA1 2 2 2 AI/O — PA1 ADC_IN1 SCI_DIO GT1_CH1 G PA2 3 3 3 AI/O — PA2 ADC_IN2 URO_TX GT1_CH2 G PA3 4 4 4 AI/O — PA3 ADC_IN3 URO_RX GT1_CH3 G PA4 5 5 5 AI/O — PA4 ADC_IN4 UR1_RTS SPI1_SEL S	AF3 (HT32F2755) GT1_CH0 GT1_CH1 GT1_CH2 GT1_CH3 SPI1_SEL					
PA1 2 2 2 AI/O — PA1 ADC_IN1 SCI_DIO GT1_CH1 G PA2 3 3 3 AI/O — PA2 ADC_IN2 UR0_TX GT1_CH2 G PA3 4 4 4 AI/O — PA3 ADC_IN3 UR0_RX GT1_CH3 G PA4 5 5 5 AI/O — PA4 ADC_IN4 UR1_RTS /TXE SPI1_SEL S	GT1_CH1 GT1_CH2 GT1_CH3 SPI1_SEL					
PA2 3 3 AI/O — PA2 ADC_IN2 UR0_TX GT1_CH2 G PA3 4 4 4 AI/O — PA3 ADC_IN3 UR0_RX GT1_CH3 G PA4 5 5 5 AI/O — PA4 ADC_IN4 UR1_RTS /TXE SPI1_SEL S	GT1_CH2 GT1_CH3 SPI1_SEL					
PA3 4 4 4 AI/O — PA3 ADC_IN3 UR0_RX GT1_CH3 G PA4 5 5 5 AI/O — PA4 ADC_IN4 UR1_RTS /TXE SPI1_SEL S	GT1_CH3 SPI1_SEL					
PA4 5 5 5 AI/O — PA4 ADC_IN4 UR1_RTS SPI1_SEL S	SPI1_SEL					
PA4 5 5 5 AI/O — PA4 ADC_IN4 /TXE SPIT_SEL S						
	SPI1_SCK					
PA5 6 6 6 AI/O — PA5 ADC_IN5 UR1_CTS SPI1_SCK S						
PA6 7 7 7 AI/O — PA6 ADC_IN6 UR1_TX SPI1_MOSI S	SPI1_MOSI					
PA7 8 8 8 AI/O — PA7 ADC_IN7 UR1_RX SPI1_MISO S	SPI1_MISO					
PA8 — 9 I/O 5V-T PA8 SPI1_SEL UR0_RTS /TXE —	_					
PA9 — — 10 I/O 5V-T PA9 SPI1_SCK UR0_CTS /SCK —	_					
PA10 — — 11 I/O 5V-T PA10 SPI1_MOSI UR0_TX —	_					
PA11 — — 12 I/O 5V-T PA11 SPI1_MISO UR0_RX —	_					
PA12 — — 13 I/O 5V-T PA12 GT1_CH0 — —	_					
VDD33_1 9 9 14 P — 3.3V voltage for digital I/O						
VSS33_1 10 10 15 P — Ground reference for digital I/O						
USBDP 11 11 16 AI/O — USB Differential data bus conforming to the Universal standard	USB Differential data bus conforming to the Universal Serial Bus standard					
USBDM 12 17 AI/O — USB Differential data bus conforming to the Universal standard	al Serial Bus					
PA13 — — 18 I/O 5V-T PA13 GT1_CH1 — —						
PA14 — — 19 I/O 5V-T PA14 GT1_CH2 — —	_					
PA15 — — 20 I/O 5V-T PA15 GT1_CH3 — —	_					
PB0 — 13 21 I/O 5V-T PB0 GT0_CH0 UR1_RTS SPI0_SEL S	SPI0_SEL					
PB1 — 14 22 I/O 5V-T PB1 GT0_CH1 UR1_CTS /SCK SPI0_SCK S	SPI0_SCK					
PB2 — 15 23 I/O 5V-T PB2 GT0_CH2 UR1_TX SPI0_MOSI S	SPI0_MOSI					
PB3 — 16 24 I/O 5V-T PB3 GT0_CH3 UR1_RX SPI0_MISO S	SPI0_MISO					
NC — 25 — No connection						
VLDOOUT 13 17 26 P — LDO 1.8V output It is recommended to connect a capacitor, denoted as close as possible between this pin and VSSLDO	s C _{LDO} , as					
VLDOIN 14 18 27 P — LDO 3.3V power input Connected to the power switch circuitry for the international domain	LDO 3.3V power input Connected to the power switch circuitry for the internal backup					
VSSLDO 15 19 28 P — LDO ground reference						
nRST 16 20 29 I 5V- (BK) T_PU External reset pin and external wakeup pin in Power-E	Down mode					
VBAT 17 21 30 P — VDD 3.3V for backup domain						

		Pins	'		10		n			
Pin Name	48 QFN LQFP	64 LQFP	100 LQFP	Type (Note1)	Level (Note2)	Default Function (AF0)	AF1	AF2	AF3 (HT32F1755) (HT32F1765)	AF3 (HT32F2755)
XTAL- 32KIN	18	22	31	AI/O (BK)	_	XTAL32KIN	PB4	_		
XTAL- 32KOUT	19	23	32	AI/O (BK)	_	XTAL32KOUT	PB5	_	_	_
RTCOUT	20	24	33	I/O (BK)	5V-T	RTCOUT	PB6_ WAKEUP	_	_	_
PB7	_	25	34	I/O	5V-T	PB7	GT0_ETI	I2C1_ SDA	UR0_DTR	UR0_DTR
PB8	_	_	35	I/O	5V-T	PB8	UR0_RTS /TXE	_	_	_
PB9	_	_	36	I/O	5V-T	PB9	UR0_CTS /SCK	_	_	_
PB10	_	_	37	I/O	5V-T	PB10	UR0_TX	_	_	_
XTALIN	21	26	38	AI/O	_	XTALIN	PB11	_	_	_
XTALOUT	22	27	39	AI/O	_	XTALOUT	PB12	_	_	_
VDD33 2	23	28	40	Р		3.3V voltage f	or digital I/O			
VSS33 2	24	29	41	Р	_	Ground refere		I I/O		
PB13	_	_	42	I/O	5V-T	PB13	UR0 RX	_	_	_
PB14	_	_	43	I/O	5V-T	PB14	UR1_CTS /SCK	GT1_ETI	_	_
PB15	_	_	44	I/O	5V-T	PB15	UR1_RTS /TXE	_	_	_
PC0	_	30	45	I/O	5V-T	PC0	SPI1_SEL	GT1_ CH0	I2C1_SCL	I2C1_SCL
PC1	_	31	46	I/O	5V-T	PC1	SPI1_SCK	GT1_ CH1	I2C1_SDA	I2C1_SDA
PC2	_	32	47	I/O	5V-T	PC2	SPI1_ MOSI	GT1_ CH2	UR0_RI	UR0_RI
PC3	_	33	48	I/O	5V-T	PC3	SPI1_ MISO	GT1_ CH3	UR0_DCD	UR0_DCD
PC4	_	_	49	I/O	5V-T	PC4	UR1_TX	I2C0_ SCL	_	_
PC5	_	_	50	I/O	5V-T	PC5	UR1_RX	I2C0_ SDA	_	_
PC6	_	_	51	I/O	5V-T	PC6	I2C1_SCL	SCI_ CLK	_	_
PC7	_	_	52	I/O	5V-T	PC7	I2C1_SDA	SCI_DIO	_	_
PC8	25	34	53	I/O	5V-T_ PU	PC8_BOOT0	CKOUT	_	UR0_TX	UR0_TX
PC9	26	35	54	I/O	5V-T_ PU	PC9_BOOT1		_	_	_
PC10	27	36	55	I/O	5V-T	PC10	SCI_DET	MT_ETI	UR0_RX	UR0_RX
PE11	28	37	56	I/O	5V-T	JTDO_ TRACESWO	PE11	_	_	_

		Pins				Description					
Pin Name	48 QFN LQFP	64 LQFP	100 LQFP	Type (Note1)	IO Level (Note2)	Default Function (AF0)	AF1	AF2	AF3 (HT32F1755) (HT32F1765)	AF3 (HT32F2755)	
PE12	29	38	57	I/O	5V- T_PU	JTCK_ SWCLK	PE12	_	<u>—</u>	_	
PE13	30	39	58	I/O	5V- T_PU	JTMS/ SWDIO	PE13	_	_	_	
PE14	31	40	59	I/O	5V- T_PU	JTDI	PE14	MT_CH0	UR1_TX	CSIF_ HSYNC	
PE15	32	41	60	I/O	5V- T_PU	JTRST	PE15	MT_ CH0N	UR1_RX	CSIF_ VSYNC	
VDD33_3	_	42	61	Р		3.3V voltage f	or digital I/O				
VSS33_3	_	43	62	Р	_	Ground refere	nce for digita	I I/O			
PC11	33	44	63	I/O	5V-T	PC11	I2C0_SCL	MT_CH1	UR0_RTS /TXE	CSIF_PCK	
PC12	34	45	64	I/O	5V-T	PC12	I2C0_SDA	MT_ CH1N	UR0_CTS /SCK	CSIF_MCK	
PC13	_	46	65	I/O	5V-T	PC13	SCI_CLK	MT_CH0	UR1_RTS /TXE	UR1_RTS /TXE	
PC14	_	47	66	I/O	5V-T	PC14	SCI_DIO	MT_ CH0N	UR1_CTS /SCK	UR1_CTS /SCK	
PC15	_	48	67	I/O	5V-T	PC15	SCI_DET	GT0_ETI	UR0_DSR	UR0_DSR	
PD0	_	_	68	I/O	5V-T	PD0	GT0_CH0	SPI0_ SEL	UR0_DTR	UR0_DTR	
PD1	_	_	69	I/O	5V-T	PD1	GT0_CH1	SPI0_ SCK	UR0_RI	UR0_RI	
PD2	_	_	70	I/O	5V-T	PD2	GT0_CH2	SPI0_ MOSI	UR0_DCD	UR0_DCD	
PD3	_	_	71	I/O	5V-T	PD3	GT0_CH3	SPI0_ MISO	<u>-</u>	_	
PD4	_	_	72	I/O	5V-T	PD4	SPI1_SEL	_	_	_	
PD5	_	_	73	I/O	5V-T	PD5	SPI1_SCK	_	_	_	
PD6	_	_	74	I/O	5V-T	PD6	SPI1_ MOSI	_	_	_	
PD7	_	_	75	I/O	5V-T	PD7	SPI1_ MISO	_	_	_	
VDD33_3	35	_	_	Р	_	3.3V voltage f	or digital I/O				
VSS33_3	36	_	_	Р	_	Ground refere	nce for digita	I I/O			
PD8	37	49	76	I/O	5V-T	PD8	SPI0_SEL	MT_CH2	GT1_CH0	CSIF_D0	
PD9	38	50	77	I/O	5V-T	PD9	SPI0_SCK	MT_ CH2N	GT1_CH1	CSIF_D1	
PD10	39	51	78	I/O	5V-T	PD10	SPI0_ MOSI	MT_CH3	GT1_CH2	CSIF_D2	
PD11	40	52	79	I/O	5V-T	PD11	SPI0_ MISO	MT_BRK	GT1_CH3	CSIF_D3	
PD12		53	80	I/O	5V-T	PD12	MT_CH0	I2C0_ SCL	GT1_ETI	GT1_ETI	

	Pins				10			Description	n		
Pin Name	48 QFN LQFP	64 LQFP	100 LQFP	Type (Note1)	Level (Note2)	Default Function (AF0)	AF1	AF2	AF3 (HT32F1755) (HT32F1765)		
PD13	_	54	81	I/O	5V-T	PD13	MT_CH0N	I2C0_ SDA	GT0_ETI	GT0_ETI	
PD14	_	_	82	I/O	5V-T	PD14	MT_CH1	SCI_ CLK	_	_	
PD15	_	_	83	I/O	5V-T	PD15	MT_CH1N	SCI_DIO	_	_	
PE0	_	_	84	I/O	5V-T	PE0	MT_CH2	_	_	_	
VDD33_4	_	55	85	Р	_	3.3V voltage for	or digital I/O				
VSS33_4	_	56	86	Р		Ground refere	nce for digita	I I/O			
PE1	_	_	87	I/O	5V-T	PE1	MT_CH2N	_	_	_	
PE2	_	_	88	I/O	5V-T	PE2	MT_CH3	_	_	_	
PE3	_	_	89	I/O	5V-T	PE3	MT_BRK	_	_		
PE4	_	_	90	I/O	5V-T	PE4	MT_ETI	_	_	_	
PE5	41	57	91	AI/O	_	PE5	CN0	GT0_ CH0	SPI1_SEL	CSIF_D4	
PE6	42	58	92	AI/O	_	PE6	CP0	GT0_ CH1	SPI1_SCK	CSIF_D5	
PE7	43	59	93	AI/O	_	PE7	AOUT0	GT0_ CH2	SPI1_ MOSI	CSIF_D6	
PE8	44	60	94	AI/O	_	PE8	CN1	GT0_ CH3	SPI1_ MISO	CSIF_D7	
PE9	45	61	95	AI/O	_	PE9	CP1	GT0_ETI	I2C1_SCL	I2C1_SCL	
PE10	46	62	96	AI/O	_	PE10	AOUT1	GT1_ETI	I2C1_SDA	I2C1_SDA	
VDDA	47	63	97	Р	_	3.3V analog v	oltage for AD	C and OPA	VComparator		
VREF+	_	_	98	Р	_	ADC positive reference voltage has to be lower or equal to VDDA					
VREF-	_	_	99	Р	_	ADC negative reference voltage has to be directly connected to VSSA					
VSSA	48	64	100	Р	_	Ground refere	nce for the A	DC and OF	PA/Comparato	or	

NOTES: 1. I = input, O = output, A = Analog port, P = power supply, PU = pull-up, BK = Back-up domain.

- **2.** 5V-T = 5V tolerant.
- **3.** The GPIOs are in an AF0 state after a V_{DD18} power on reset (POR) except for the RTCOUT pin of in the Backup Domain I/O. The RTCOUT pin is reset by the Backup Domain power-on-reset (PORB) or by a Backup Domain software reset (BAK_RST bit in BAK_CR register).
- **4.** The backup domain of I/O pins has drive current capability limitation of < 1mA @ V_{BAT} = 3.3V.

Electrical Characteristics

Absolute Maximum Ratings

The following table shows the absolute maximum ratings of the device. These are stress ratings only. Stresses beyond absolute maximum ratings may cause permanent damage to the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

Table 3. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
V_{DD33}	External main supply voltage	V _{SS} - 0.3	V _{SS} + 3.6	V
V_{DDA}	External analog supply voltage	V _{SSA} - 0.3	V _{SSA} + 3.6	V
V_{BAT}	External battery supply voltage	V _{SS} - 0.3	V _{SS} + 3.6	V
V_{LDOIN}	External LDO supply voltage	V _{SS} - 0.3	V _{SS} + 3.6	V
\/	Input voltage on 5V-tolerant I/O	V _{SS} - 0.3	V _{SS} + 5.5	V
V_{IN}	Input voltage on other I/O	V _{SS} - 0.3	V _{DD33} + 0.3	V
T _A	Ambient operating temperature range	-40	+85	°C
T _{STG}	Storage temperature range	-55	+150	°C
TJ	Maximum junction temperature	_	125	°C
P _D	Total power dissipation	_	500	mW
V _{ESD}	Electrostatic discharge voltage (human body mode)	-4000	+4000	V

Recommended DC Characteristics

Table 4. Recommended DC Operating Conditions

 $T_A = 25$ °C, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD33}	I/O Operating voltage	_	2.7	3.3	3.6	V
V_{DDA}	Analog operating voltage	_	2.7	3.3	3.6	V
V_{BAT}	Battery supply operating voltage	_	2.7	3.3	3.6	V
V _{LDOIN}	LDO operating voltage	_	2.7	3.3	3.6	V

On-Chip LDO Voltage Regulator Characteristics

Table 5. LDO Characteristics

 $T_A = 25$ °C, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{LDOOUT}	Internal regulator output voltage	V _{LDOIN} = 3.3V Regulator input	1.71	1.8	1.89	V
I _{LDOOUT}	Output current	V _{LDOIN} = 2.7V Regulator input	_	_	200	mA
C _{LDO}	External filter capacitor value for internal core power supply	The capacitor value is dependent on the core power current consumption	2.2	_	10	μF

Power Consumption

Table 6. Power Consumption Characteristics

 $T_A = 25$ °C, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Supply current (Run mode)	V_{DD33} = V_{BAT} = 3.3V, HSE = 8MHz, PLL = 144MHz, f_{HCLK} = 72MHz, f_{PCLK} = 72MHz, All peripherals enabled	_	60	72	mA
		$V_{\text{DD33}} = V_{\text{BAT}} = 3.3 \text{V}$, HSE = 8MHz, PLL = 144MHz, $f_{\text{HCLK}} = 72 \text{MHz}$, $f_{\text{PCLK}} = 72 \text{MHz}$, All peripherals disabled		27	34	mA
I _{DD}	Supply current (Sleep mode)	V_{DD} = V_{BAT} = 3.3V, HSE = 8MHz, PLL = 144MHz, f_{HCLK} = 0MHz, f_{PCLK} = 72MHz, All peripherals enabled	_	42	50	mA
		$V_{DD33} = V_{BAT} = 3.3V$, HSE = 8MHz, PLL = 144MHz, $f_{HCLK} = 0$ MHz, $f_{PCLK} = 72$ MHz, All peripherals disabled	_	9	12	mA
	Supply current (Deep-Sleep1 mode)	V_{DD33} = V_{BAT} = 3.3V, All clock off (HSE/PLL/f _{HCLK}), LDO in low power mode, LSI on, RTC on	_	58	90	μА
	Supply current (Deep-Sleep2 mode)	V_{DD33} = V_{BAT} = 3.3V, All clock off (HSE/PLL/f _{HCLK}), LDO off (DMOS on), LSI on, RTC on	_	18	25	μΑ
		$V_{DD33} = V_{BAT} = 3.3V$, LDO off, LSE on, LSI off, RTC on	_	_	_	μΑ
	Supply current	$V_{DD33} = V_{BAT} = 3.3V$, LDO off, LSE on, LSI off, RTC off	_		_	μΑ
	(Power-Down mode)	$V_{DD33} = V_{BAT} = 3.3V$, LDO off, LSE off, LSI on, RTC on	_	_	_	μΑ
	,	$V_{DD33} = V_{BAT} = 3.3V$, LDO off, LSE off, LSI on, RTC off	_	5	6	μΑ
I _{BAT}	Battery supply current (Power- Down mode)	V_{DD33} not present, V_{BAT} = 3.3V, LDO off, LSE off, LSI on, RTC on	_	4	_	μΑ
IBAI		V_{DD33} not present, V_{BAT} = 3.3V, LDO off, LSE off, LSI on, RTC off	_	3.9	_	μA

NOTES: 1. HSE is the high speed external oscillator. HSI means 8MHz high speed internal oscillator.

- **2.** LSE means low speed external oscillator. LSI means 32.768KHz low speed internal oscillator.
- 3. RTC means real time clock.
- 4. Code = while (1) { 208 NOP } executed in Flash.

Reset and Supply Monitor Characteristics

Table 7. LVD/BOD Characteristics

 $T_A = 25$ °C, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{BOD}	Brown Out Detector Voltage	_	_	2.6	_	V
		LVDS (Note1) = '00'	_	2.7	_	V
	Voltage of Low Voltage Detector	LVDS (Note1) = '01'	_	2.8	_	V
V_{LVD}		LVDS (Note1) = '10'		2.9	_	V
		LVDS (Note1) = '11'	_	3.0	_	V
V _{POR}	Power On Reset Voltage	_	_	1.36	_	V

NOTE: LVDS field is in PWRCU LVDCSR register.

External Clock Characteristics

Table 8. High Speed External Clock (HSE) Characteristics

 $T_A = 25$ °C, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE}	High Speed External oscillator frequency (HSE)	V _{DD33} = 3.3V	4	_	16	MHz
C _{HSE}	Recommended load capacitance on XTALIN and XTALOUT pins	_	_	TBD	_	pF
R _{FHSE}	Recommended external feedback resistor between XTALIN and XTALOUT pins	_	_	1.0	_	МΩ
D _{HSE}	HSE Oscillator Duty cycle	_	40	_	60	%
I _{DDHSE}	HSE Oscillator Operating Current	V _{DD33} = 3.3V, T _A = 25°C	_	0.96	_	mA
I _{STBHSE}	HSE Oscillator Standby current	$V_{DD33} = 3.3V, T_A = 25^{\circ}C$	_	_	0.1	μΑ
tsunse	HSE Oscillator Startup time	V _{DD33} = 3.3V, T _A = 25°C	_	_	4	ms

Table 9. Low Speed External Clock (LSE) Characteristics

 $T_A = 25$ °C, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE}	Low Speed External oscillator frequency (LSE)	V _{DD33} = V _{BAT} = 3.3V	_	32.768	_	kHz
C _{LSE}	Recommended load capacitance on XTAL32KIN and XTAL32KOUT pins	_	_	TBD	_	pF
R _{FLSE}	Recommended external feedback resistor between XTAL32KIN and XTAL32KOUT pins	_	_	10	_	МΩ
D _{LSE}	LSE Oscillator Duty cycle	_	40		60	%
I _{DDLSE}	LSE Oscillator Operating Current	$V_{DD33} = V_{BAT} = 3.3V$, LSESM = 0 (Normal startup mode)	_	1.7	_	μA
I _{STBLSE}	LSE Oscillator Standby current	$V_{DD33} = V_{BAT} = 3.3V$, LSESM = 1 (Fast startup mode)	_	3	8	μΑ
t _{SULSE}	LSE Oscillator Startup time	$V_{DD33} = V_{BAT} = 3.3V$, LSESM = 1 (Fast startup mode)	_	200	_	ms

NOTE: The following PCB layout guidelines are recommended to increase the stability of the crystal circuit for the HSE/LSE clock:

- 1. The crystal oscillator should be located as close as possible to the MCU to minimise trace length thus reducing parasitic capacitance.
- 2. Use a ground plane as a shield under the crystal circuit to reduce the effects of noise interference.
- 3. Route high frequency signals away from crystal oscillator area to prevent crosstalk.

Internal Clock Characteristics

Table 10. High Speed Internal Clock (HSI) Characteristics

 $T_A = 25$ °C, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	High Speed Internal Oscillator Frequency (HSI)	$V_{DD33} = 3.3V,$ $T_A = -40^{\circ}C \sim +85^{\circ}C$	_	8		MHz
ACCHSI	HSI Oscillator Frequency accuracy	Factory-trimmed, $V_{DD33} = 3.3V$, $T_A = -40^{\circ}C \sim +85^{\circ}C$	-5	_	+5	%
D _{HSI}	HSI Oscillator Duty cycle	$V_{DD33} = 3.3V, f_{HSI} = 8MHz$	35	_	65	%
I _{DDHSI}	HSI Oscillator Operating Current	$V_{DD33} = 3.3V, f_{HSI} = 8MHz$	_	0.92	_	mA
t _{suhsi}	HSI Oscillator Startup time	V _{DD33} = 3.3V, f _{HSI} = 8MHz, HSIRCBL = 0 (HSI Ready Counter Bits Length 7 Bits)	_	17		μs

NOTE: HSIRCBL field is in PWRCU HSIRCR register.

Table 11. Low Speed Internal Clock (LSI) Characteristics

 $T_A = 25$ °C, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSI}	Low Speed Internal Oscillator Frequency(LSI)	$V_{DD33} = V_{BAT} = 3.3V,$ $T_A = -40^{\circ}C \sim +85^{\circ}C$	25	32	43	kHz
I _{DDLSI}	LSI Oscillator Operating Current	$V_{DD33} = V_{BAT} = 3.3V,$ $T_A = 25^{\circ}C$		1.0	2	μA
tsulsi	LSI Oscillator Startup time	$V_{DD33} = V_{BAT} = 3.3V,$ $T_A = 25^{\circ}C$		35	_	ms

PLL Characteristics

Table 12. PLL Characteristics

 $T_A = 25$ °C, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f_{PLLIN}	PLL input clock	_	4		16	MHz
f_{PLL}	PLL output clock	_	8		144	MHz
tLOCK	PLL lock time	_	_	TBD	_	ms

Memory Characteristics

Table 13. Flash Memory Characteristics

 $T_A = 25$ °C, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
N _{ENDU}	Number of guaranteed program /erase cycles before failure. (Endurance)	T _A = -40°C ~ +85°C	20	_	_	kcycles
T _{RET}	Data retention time	T _A = 25°C	100	_	_	Years
t _{PROG}	Word programming time	$T_A = -40^{\circ}C \sim +85^{\circ}C$	20	_	40	μs
terase	Page erase time	$T_A = -40^{\circ}C \sim +85^{\circ}C$	20	_	40	ms
t _{MERASE}	Mass erase time	$T_A = -40^{\circ}C \sim +85^{\circ}C$	20	_	40	ms

I/O Port Characteristics

Table 14. I/O Port Characteristics

 $T_A = 25$ °C, unless otherwise specified.

Symbol	Parameter	(Conditions	Min	Тур	Max	Unit
		3.3V IO		_	_	3	μA
I _{IL}	Low level input current	5V-tolerant IO	V _I = 0V, On-chip pull-up resister disabled.	_	_	3	μΑ
		Reset pin	resister disabled.	_	_	3	μΑ
		3.3V IO		_	_	3	μA
I _{IH}	High level input current	5V-tolerant IO	V _I = V _{DD33} , On-chip pull- down resister disabled.	_	_	3	μA
		Reset pin	down resister disabled.	_	_	3	μΑ
		3.3V IO		-0.3	_	0.8	V
V_{IL}	Low level input voltage	5V-tolerant IO		-0.3	_	0.8	V
		Reset pin		-0.3	_	0.8	V
		3.3V IO		2	_	3.6	V
V_{IH}	High level input voltage	5V-tolerant IO		2	_	5.5	V
		Reset pin		2	_	5.5	V
		3.3V IO		_	400	_	mV
V_{HYS}	Schmitt Trigger Input Voltage Hysteresis	5V-tolerant IO		_	400	_	mV
	voltage Hysteresis	Reset pin		_	400	_	mV
		3.3V IO 4mA dr	rive, V _{OL} = 0.4V	4	_	_	mA
		3.3V IO 8mA dr	rive, V _{OL} = 0.4V	8	_	_	mA
	Low level output current (GPO Sink current)	5V-tolerant 8m/	A drive IO, V _{OL} =0.4V	8	_	_	mA
		5V-tolerant 12m	A drive IO, V _{OL} =0.4V	12	_	_	mA
		Backup Domain V _{OL} = 0.4V, PB4	IO drive @ V _{BAT} =3.3V, -, PB5, PB6	_	_	1	mA
		3.3V I/O 4mA d	rive, V _{OH} =V _{DD33} - 0.4V	4			mA
		3.3V I/O 8mA d	rive, V _{OH} =V _{DD33} - 0.4V	8	_	_	mA
I _{OH}	High level output current	5V-tolerant I/O V _{OH} = V _{DD33} - 0.4	-	8	_	_	mA
ЮН	(GPO Source current)	5V-tolerant I/O V _{OH} = V _{DD33} - 0.4		12	_	_	mA
			1O drive@V _{BAT} =3.3V, 4V, PB4, PB5, PB6	_	_	1	mA
		3.3V 4mA drive	IO, I _{OL} = 4mA	_	_	0.4	V
	La	3.3V 8mA drive	IO, I _{OL} = 8mA	_	_	0.4	V
V_{OL}	Low level output voltage	5V-tolerant 8m/	A drive IO, I _{OL} =8mA	_		0.4	V
		5V-tolerant 12m	A drive IO, I _{OL} =12mA	_	_	0.4	V
		3.3V 4mA drive	IO, I _{OH} = 4mA	V _{DD33} - 0.4V			V
		3.3V 8mA drive	IO, I _{OH} = 8mA	V _{DD33} - 0.4V			V
V_{OH}	High level output voltage	5V-tolerant 8m/	A drive IO, I _{OH} =8mA	V _{DD33} - 0.4V	_	_	V
		5V-tolerant 12n I _{OH} =12mA	nA drive IO,	V _{DD33} - 0.4V	_	_	V

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{PU}	Internal pull-up resistor	3.3V I/O	34	_	74	kΩ
		5V-tolerant I/O	38	_	89	kΩ
R _{PD}	Internal pull-down resistor	3.3V I/O	29	_	86	kΩ
		5V-tolerant I/O	35	_	107	kΩ

ADC Characteristics

Table 15. ADC Characteristics

 $T_A = 25$ °C, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Operating voltage	_	2.7	3.3	3.6	V
V _{ADCIN}	A/D Converter input voltage range	_	0	_	V_{REF^+}	V
V_{REF}	A/D Converter Reference voltage	_	_	V_{DDA}	V_{DDA}	V
I _{ADC}	Current consumption	V _{DDA} = 3.3V	_	1	TBD	mA
I _{ADC_DN}	Power down current consumption	V _{DDA} = 3.3V	_	1	10	μA
f _{ADC}	A/D Converter clock	_	0.7	_	14	MHz
fs	Sampling rate	_	0.05	_	1	MHz
f _{ADCCONV}	A/D Converter conversion time	_	_	14	_	1/f _{ADC} Cycles
Rı	Input sampling switch resistance	_	_	_	1	kΩ
Cı	Input sampling capacitance	No pin/pad capacitance included	_	_	5	pF
t _{su}	Start up time	_	_	_	1	μs
N	Resolution	_	_	12	_	bits
INL	Integral Non-linearity error	$f_S = 1MHz$, $V_{DDA} = 3.3V$	_	±2	±5	LSB
DNL	Differential Non-linearity error	f _S = 1MHz, V _{DDA} = 3.3V	_	_	±1	LSB
Eo	Offset error	_	_	_	±10	LSB
E _G	Gain error	_	_	_	±10	LSB

NOTES: 1. Guaranteed by design, not tested in production.

2. The figure below shows the equivalent circuit of the A/D Converter Sample-and-Hold input stage where C_I is the storage capacitor, RI is the resistance of the sampling switch and R_S is the output impedance of the signal source V_S. Normally the sampling phase duration is approximately, 1.5/f_{ADC}. The capacitance, C_I, must be charged within this time frame and it must be ensured that the voltage at its terminals becomes sufficiently close to V_S for accuracy. To guarantee this, R_S may not have an arbitrarily large value.

Figure 7. ADC Sampling Network Model

The worst case occurs when the extremities of the input range (0V and V_{REF}) are sampled consecutively. In this situation a sampling error below 1/4 LSB is ensured by using the following equation:

$$R_S < \frac{1.5}{f_{ADC}C_L \ln(2^{N+2})} - R_I$$

where f_{ADC} is the ADC clock frequency and N is the ADC resolution (N = 12 in this case). A safe margin should be considered due to the pin/pad parasitic capacitances, which are not accounted for in this simple model.

If, in a system where this A/D Converter is used, there are no rail-to-rail input voltage variations between consecutive sampling phases, Rs may be larger than the value indicated by the equation above.

Operation Amplifier/Comparator Characteristics

Table 16. OPA/CMP Characteristics

 $T_A = 25$ °C, unless otherwise specified.

Cymphal	Doromotor	Conditions	Min	Turn	Mov	Hoit
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DDA}	Operating voltage	_	2.7	3.3	3.6	V
I _{OPA/CMP}	Typical operating current	_	_	230	_	μA
I _{OPA/CMP_DN}	Power down supply current	Assign registers OPAEN = 0 and EN_OPAOP = 0	_	_	0.1	μA
V _{IOS}	Input offset voltage	V _{DDA} = 3.3V, AnOF[5:0] = '100000'	-15	_	15	mV
		V _{DDA} = 3.3V, After calibration	-1	_	1	mV
V _{IOS_DRIFT}	Input offset voltage drift	$T_A = -40^{\circ}C \sim +85^{\circ}C$	_	_	0.04	mV/°C
RINPUT	Input resistance	_	_	10	_	МΩ
GV	Voltage Gain	_	60	100	_	dB
	Unit Cain Dandwidth	$R_L = 100k\Omega$	_	1.3 —		NALIZ
Ut	Unit-Gain Bandwidth	R _L = 100kΩ, C _L = 100pF	_	1.24	_	MHz
V _{CM}	Common mode voltage range	$V_{DDA} = 3.3V$	V _{SSA}	_	V _{DDA} - 1.2	V
Vov	OPA output voltage swing	$V_{DDA} = 3.3V$	V _{SSA} + 0.3	_	V _{DDA} - 0.5	V
t _{RT}	Comparator response time	V _{DDA} = 3.3V; Input Overdrive = ±10mV	_	1	_	μs
SR	Slew Rate	V _{DDA} = 3.3V; Output capacitor load C _L =100pF	_	1.6	_	V/µs

NOTE: Guaranteed by design, not tested in production.

GPTM/MCTM Characteristics

Table 17. GPTM/MCTM Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f_{TM}	Timer clock source for GPTM and MCTM	_	_	_	72	MHz
t _{RES}	Timer resolution time	_	1	_	_	f _{TM}
f _{EXT}	External signal frequency on channel 1 ~ 4	_	_	_	1/2	f _{TM}
RES	Timer resolution	_	_	_	16	bits

I²C Characteristics

Table 18. I²C Characteristics

Cumbal	Parameter	Standa	rd Mode	Fast Mode		Fast Mode Plus		Linit
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
f _{SCL}	SCL clock frequency	_	100	_	400	_	1000	kHz
t _{SCL(H)}	SCL clock high time	4.5	_	1.125	_	0.45	_	μS
t _{SCL(L)}	SCL clock low time	4.5	_	1.125	_	0.45	_	μS
t _{FALL}	SCL and SDA fall time	_	1.3	_	0.34	_	0.135	μS
t _{RISE}	SCL and SDA rise time	_	1.3	_	0.34	_	0.135	μS
$t_{\text{SU(SDA)}}$	SDA data setup time	500	_	125	_	50	_	ns
t _{H(SDA)}	SDA data hold time	500	_	125	_	50	_	ns
t _{SU(STA)}	START condition setup time	500	_	125	_	50	_	ns
t _{H(STA)}	START condition hold time	500	_	125	_	50	_	ns
t _{SU(STO)}	STOP condition setup time	500	_	125	_	50	_	ns

NOTES: **1.** Guaranteed by design, not tested in production.

2. To achieve standard mode 100kHz, the peripheral clock frequency must be higher than 2MHz. To achieve fast mode 400kHz, the peripheral clock frequency must be higher than 8MHz. To achieve fast mode plus mode 1MHz, the peripheral clock frequency must be higher than 20MHz.

Figure 8. I²C Timing Diagrams

SPI Characteristics

Table 19. SPI Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{SCK}	SCK clock frequency	_	_	_	f _{PCLK} /4	MHz
t _{SCK(H)}	SCK clock high time	_	f _{PCLK} /8	_	_	ns
t _{SCK(L)}	SCK clock low time	_	f _{PCLK} /8	_	_	ns
SPI Master	r mode					
t _{V(MO)}	Data output valid time	_	_	_	5	ns
t _{H(MO)}	Data output hold time	_	2	_	_	ns
t _{SU(MI)}	Data input setup time	_	5	_	_	ns
t _{H(MI)}	Data input hold time	_	5	_	_	ns
SPI Slave	mode					
t _{SU(SEL)}	SEL enable setup time	_	4 t _{PCLK}	_	_	ns
t _{H(SEL)}	SEL enable hold time	_	2 t _{PCLK}	_	_	ns
t _{A(SO)}	Data output access time	_	_	_	3 t _{PCLK}	ns
t _{DIS(SO)}	Data output disable time	_	_	_	10	ns
t _{V(SO)}	Data output valid time	_	_	_	25	ns
t _{H(SO)}	Data output hold time	_	15	_	_	ns
t _{SU(SI)}	Data input setup time	_	5	_	_	ns
t _{H(SI)}	Data input hold time	_	4	_	_	ns

Figure 9. SPI Timing Diagrams - SPI Master Mode

Figure 10. SPI Timing Diagrams – SPI Slave Mode and CPHA=1

CSIF Characteristics

Table 20. CSIF Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{MCK}	CSIF_MCK clock frequency output	_	_		36	MHz
f PCK	CSIF_PCK clock frequency input	_	_		24	MHz
r _F	APB clock and CSIF_PCK clock input frequency ratio	f _{PCLK} /f _{PCK}	_	_	3	_

USB Characteristics

The USB interface is USB-IF certified – Full Speed.

Table 21. USB DC Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	USB Operating voltage	_	3.0	_	3.6	V
V _{DI}	Differential input sensitivity	USBDP-USBDM	0.2			V
V _{CM}	Common mode voltage range	_	0.8		2.5	V
Vse	Single-ended receiver threshold	_	0.8		2.0	V
VoL	Pad output low voltage	R _ι of 1.5kΩ to V _{DD}	0	_	0.3	V
V _{OH}	Pad output high voltage	KL OI 1.3K11 IO VDD	2.8	_	3.6	V
V _{CRS}	Differential output signal cross-point voltage	_	1.3	_	2.0	V
Z _{DRV}	Driver output resistance	_	_	10	_	Ω
C _{IN}	Transceiver pad capacitance	_	_	_	20	pF

NOTES: 1. Guaranteed by design, not tested in production.

- **2.** To be compliant with the USB 2.0 full-speed electrical specification, the USBDP pin should be pulled up with a $1.5k\Omega$ external resistor to a 3.0 to 3.6V voltage supply.
- **3.** The USB functionality is ensured down to 2.7V but not the full USB electrical characteristics which will experience degradation in the 2.7 to 3.0V V_{DD} voltage range.
- **4.** R_L is the load connected to the USB driver USBDP.

Figure 11. USB Signal Rise Time and Fall time and Cross-Point Voltage (V_{CRS}) Definition

Table 22. USB AC Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Tr	Rise time	C _L = 50pF	4	_	20	ns
T _f	Fall time	C _L = 50pF	4	_	20	ns
T _{r/f}	Rise time / fall time matching	$T_{r/f} = T_r / T_f$	90	_	110	%

5 Package Information

Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the package information.

Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- <u>Further Package Information</u> (include Outline Dimensions, Product Tape and Reel Specifications)
- Packing Meterials Information
- Carton information

Rev. 1.20 41 of 46 June 03, 2014

SAW Type 48-pin (6mm×6mm) QFN Outline Dimensions

Symbol	Dimensions in inch				
Symbol	Min.	Nom.	Max.		
A	0.028	0.030	0.031		
A1	0.000	0.001	0.002		
A3	_	0.008 BSC	_		
b	0.006	0.008	0.010		
D	_	0.236 BSC	_		
E	_	0.236 BSC	_		
е	_	0.016 BSC	_		
D2	0.173	0.177	0.181		
E2	0.173	0.177	0.181		
L	0.014	0.016	0.018		
K	0.008	_	_		

Cumbal	Dimensions in mm				
Symbol	Min.	Nom.	Max.		
A	0.700	0.750	0.800		
A1	0.000	0.020	0.050		
A3	_	0.203 BSC	_		
b	0.150	0.200	0.250		
D	_	6.000 BSC	_		
Е	_	6.000 BSC	_		
е	_	0.40 BSC	_		
D2	4.40	4.50	4.60		
E2	4.40	4.50	4.60		
L	0.35	0.40	0.45		
K	0.20	_	_		

48-pin LQFP (7mm×7mm) Outline Dimensions

Cumbal	Dimensions in inch				
Symbol	Min.	Nom.	Max.		
А	_	0.354 BSC	_		
В	_	0.276 BSC	_		
С	_	0.354 BSC	_		
D	_	0.276 BSC	_		
Е	_	0.020 BSC	_		
F	0.007	0.009	0.011		
G	0.053	0.055	0.057		
Н	_	_	0.063		
I	0.002	_	0.006		
J	0.018	0.024	0.030		
K	0.004	_	0.008		
α	0°	_	7°		

Cymphal	Dimensions in mm				
Symbol	Min.	Nom.	Max.		
А	_	9.00 BSC	_		
В	_	7.00 BSC	_		
С	_	9.00 BSC	_		
D	_	7.00 BSC	_		
E	_	0.50 BSC	_		
F	0.17	0.22	0.27		
G	1.35	1.40	1.45		
Н	_	_	1.60		
I	0.05	_	0.15		
J	0.45	0.60	0.75		
K	0.09	_	0.20		
α	0°	_	7°		

64-pin LQFP (7mm×7mm) Outline Dimensions

Cumbal	Dimensions in inch				
Symbol	Min.	Nom.	Max.		
А	_	0.354 BSC	_		
В	_	0.276 BSC	_		
С	_	0.354 BSC	_		
D	_	0.276 BSC	_		
Е	_	0.016 BSC	_		
F	0.005	0.007	0.009		
G	0.053	0.055	0.057		
Н	_	_	0.063		
I	0.002	_	0.006		
J	0.018	0.024	0.030		
K	0.004	_	0.008		
α	0°	_	7°		

Cumbal	Dimensions in mm				
Symbol	Min.	Nom.	Max.		
A	_	9.0 BSC	_		
В	_	7.0 BSC	_		
С	_	9.0 BSC	_		
D	_	7.0 BSC	_		
E	_	0.4 BSC	_		
F	0.13	0.18	0.23		
G	1.35	1.40	1.45		
Н	_	_	1.60		
I	0.05	_	0.15		
J	0.45	0.60	0.75		
K	0.09	_	0.20		
α	0°	_	7°		

100-pin LQFP (14mm×14mm) Outline Dimensions

Symbol	Dimensions in inch			
	Min.	Nom.	Max.	
A	_	0.630 BSC	_	
В	_	0.551 BSC	_	
С	_	0.630 BSC	_	
D	_	0.551 BSC	_	
E	_	0.020 BSC	_	
F	0.007	0.009	0.011	
G	0.053	0.055	0.057	
Н	_	_	0.063	
1	0.002	_	0.006	
J	0.018	0.024	0.030	
K	0.004	_	0.008	
α	0°	_	7°	

Symbol	Dimensions in mm			
	Min.	Nom.	Max.	
A	_	16.00 BSC	_	
В	_	14.00 BSC	_	
С	_	16.00 BSC	_	
D	_	14.00 BSC	_	
E	_	0.50 BSC	_	
F	0.17	0.22	0.27	
G	1.35	1.40	1.45	
Н	_	_	1.60	
1	0.05	_	0.15	
J	0.45	0.60	0.75	
K	0.09	_	0.20	
α	0°	_	7°	

Copyright[©] 2014 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.