Fourier seies: Le consider continous 2π -periodic functions $f: \mathbb{R} \to \mathbb{C}$ with complex values, or equivalently functions on $S' = \mathbb{R}/2\pi\mathbb{Z}$, with L^2 irre product $\langle f,g \rangle = \frac{1}{2\pi} \int_0^T (x) g(x) dx$. The complex exponentials $e_n(x) = e^{inx}$, $n \in \mathbb{Z}$ satisfy $\langle e_i, e_j \rangle = \delta_{ij}$ -orthonormality.

Del: The fourier deflictents of f are $c_n(f) = \langle e_n, f \rangle = \frac{1}{2\pi} \int_0^{2\pi} e^{-inx} f(x) dx$.

I the Fourier series of f is $\sum_{n \in \mathbb{Z}} c_n e_n = \sum_{n \in \mathbb{Z}} c_n(f) e^{inx}$

Q: (Fourier, Dirichlet, Féjer,...) does the Fourier seies accurately represent f?

(19. does it converge? to f?)

Def: Trigonometric polynomials = the vector space of finite linear combinations of en.

- ** Clearly his is an algebra, complex conji invariant, and separates points of S¹, which is compact: hence by Stone-We'estrass, trig-polynomials are dense in $(C^0(S^1), |I-I|_{ab})$... hence also in L^2 -norm $(||f||_{L^2} = (\frac{1}{2\pi} \int |f|^2 dx)^{1/2} \leq \sup |f|)$.
- * The nth fourier show $f_n = s_n(f) = \sum_{-n}^{n} c_k e^{ikx} = \sum_{-n}^{n} \langle e_k, f \rangle e_k$ is the orthogonal projection of f onto $V_n = span(e_{-n}, ..., e_n)$ for $\langle \cdot, \cdot \rangle$.

 Indeed: $\langle e_j, f_n \rangle = \sum_{k=-n}^{n} c_k \langle e_j, e_k \rangle = c_j = \langle e_j, f \rangle$, so $\langle e_j, f f_n \rangle = 0$ $\forall -n \leq j \leq n$.

 Thus: $\forall g \in V_n$, $\|f f_n\|_{L^2} \leq \|f g\|_{L^2}$ the point of V_n closet to f for $\|\cdot\|_{L^2}$.

 (This fillows from $(f f_n) \perp V_n$: $(f g) = (f f_n) + (f_n g) \Rightarrow \|f g\|^2 = \|f f_n\|^2 + \|f g\|^2$) $\geq \|f f_n\|^2$.

 $\frac{1}{2} \frac{1}{2\pi} \frac{1}{2\pi} \int_{0}^{2\pi} |f(x)|^{2} dx \qquad (2) \frac{1}{2\pi} \int_{0}^{2\pi} |f(x)|^{2} dx \qquad (3) \int_{0}^{2\pi} |f(x)|^{2} dx \qquad (4) \int_{0}^{2\pi} |f(x)|^{2} dx \qquad (5) \int_{0}^{2\pi} |f(x)|^{2} dx \qquad (6) \int_{0}^{2\pi} |f(x)|^{2} dx$

- Pf: (1) Since trig polynomials = $\bigcup V_n$ are dense in $(C^{\circ}(S^{\circ}), \|\cdot\|_{L^2})$, $\forall \varepsilon > 0$ $\exists N$ st $\exists g \in V_n$ with $\|f g\|_{L^2} < \varepsilon$.

 Now for $n \ge N$, $g \in V_n \subset V_n$ and $f_n = closet$ point to f, so $\|f f_n\|_{L^2} \le \|f g\|_{L^2} < \varepsilon$. This shows $f_n f_n \in L^2$.
- (2) since $f_n \in V_n$ and $f_n \in V_n^{\perp}$, $\|f\|_{L^2}^2 = \|f_n\|_{L^2}^2 + \|f_n\|_{L^2}^2$ where $\|f_n\|_{L^2}^2 = \|\frac{\sum_{k=1}^n c_k e_k}{\sum_{k=1}^n c_k e_k}\|^2 = \sum_{k=1}^n |c_k|^2$ by orthonormality, and $\|f_n\|_{L^2}^2 \to 0$ by the first part. D

Conllay: if $f,g \in C^{o}(S^{1})$ have same tourier series then $\frac{1}{2\pi}\int |f-g|^{2}dx = \sum |c_{n}(f)-c_{n}(g)|^{2} = 0$. hence f=g.

* The fact that $f_{n} \to f$ in L^{2} is the best approximation (in L^{2} norm) of f by thig. polynomials,

the fact that $f_n \to f$ in L^2 is the best approximation (in L^2 norm) of f by thig. polynomials and that this, polynomials are dense in $\|\cdot\|_{ao}$ (so \exists this, polynomials as f uniformly) makes one hope that $f_n \to f$ uniformly or at least pointuise... also not!

Fact: $\exists f \in C^0(S^1)$ st. The Torier peies of f does not converge $(s_n(f)(0))$ unbounded!)

(but the example is hard to construct)

Then (Dirichlet) if f is C1 han $f_n = s_n(f) \longrightarrow f$ uniformly.

The proof was convolution - redefine, for periodic furtions, $(f*g)(x) = \frac{1}{2\pi} \int_0^x f(t)g(x-t) dt$. It note $c_n e_n(x) = \frac{1}{2\pi} (\int f(t)e^{-int} dt) e^{inx} = (f*e_n)(x)$.

So: $s_n(f) = \sum_{-n}^{n} e_k e_k = f \times (\sum_{-n}^{n} e_k) = f \times D_n$ where

$$D_{n}(x) = \sum_{-n}^{n} e^{ikx} = \frac{e^{i(n+\frac{1}{2})x} - e^{i(n+\frac{1}{2})x}}{e^{ix/2} - e^{-ix/2}} = \frac{\sin(n+\frac{1}{2})x}{\sin(\frac{k}{2})}$$
 Dirichlet kernel

Dirichlet's proof shed's his convolution for FEC' to prove cuit convergence.

The fact that convergence can sometimes fail makes it remarkable that $\forall f \in C^o$, f can be recovered from the partial sums $s_n(f) = f_n = \sum_{n=0}^{\infty} c_k e^{ikx}$...

Then (Féjer): If $f \in C^0(S^1)$ then $S_0(f) + ... + S_{n-1}(f)$ converges uniformly to f.

The reason is that this process amounts to convolution with the Féjer kernel $F_n = \frac{D_0 + \dots + D_{n-1}}{n}$, which actually approximates identity (in the sense seen last time) unlike D_n .

Differentiation in several rariables

Def: $|U \subset \mathbb{R}^n$ open, $f: U \to \mathbb{R}^m$ is differentiable at $x \in U$ if \exists linear map $L: \mathbb{R}^n \to \mathbb{R}^m$ st. $\lim_{v \to 0} \frac{|f(x+v) - f(x) - Lv|}{|v|} = 0$ (also write: f(x+v) = f(x) + Lv + o(|v|)) o(|v|) nears: $\langle\langle v|v \rangle\rangle = f(x) + Lv + o(|v|)$ The differential of f at x is then $\inf_{x \to \infty} |f(x)| = \lim_{x \to$

- Conceptually, the input of Df(x) is a tangent vector to U at x, and output Df(x) v is a tangent vector at f(x).
- Nahrd norm on $Hom(\mathbb{R}^n, \mathbb{R}^m)$: The operator norm $\|L\| = \sup_{v \neq 0} \frac{|Lv|}{|v|} (= \sup_{v \neq 0} \{|Lv|/|v| \leq 1\})$
 - · Say $f \in C^1(U, \mathbb{R}^m)$ is f is differtiable $\forall x \in U$ and $Df: U \rightarrow Hom(\mathbb{R}^n, \mathbb{R}^n)$ is contimons.

As a matrix, the entire of Df(x) are the partial derivatives $\frac{\partial f_i}{\partial x_j} = \text{derivative of } f_i$ as $\frac{\partial}{\partial x_j}$ then $(Df(x)V)_i = \sum_j \frac{\partial f_i}{\partial x_j} V_j$ (keeping other $x_k = \text{cont.}$) Then: | fe C1(U, Rm) iff \(\forall i, j \rightarrow{\forall}{\partial}\) exists and is continuous. =) is clear, but \Leftarrow is more subtle: The existence of $\frac{\partial f_i}{\partial x_i}$ does not imply the differentiably $\frac{\partial f_i}{\partial x_i}$ or even the continuity of f! $\underbrace{E_{X}} : f(x,y) = \frac{x^{3}}{x^{2} + y^{2}}, \quad f(0,0) = 0 \implies f(x,0) = x \quad \frac{\partial f}{\partial x}(0,0) = 1$ $f(0,y) = 0 \quad \frac{\partial f}{\partial y}(0,0) = 0$ However $f(t,t) = \frac{t}{2} \neq t + o(H)!$ so if Df(0) exist, it mays $(v_1, v_2) \mapsto v_1$. $\frac{Pf}{=}$: enough to consider $f = f_i : U - IR$ one compared a since. Applying mean value theorem succesively, for $x \in U$ and $v \in \mathbb{R}^n$ st. $B_{|v|}(x) \subset U$: $f(x_1+v_1,...,x_n+v_n) = f(x_1+v_1,...,x_{n-1}+v_{h-1},x_n) + \frac{\partial f}{\partial x_n}(x_1+v_1,...,x_{n-1}+v_{h-1},y_n) v_n$ for some $y_n \in (x_n, x_n + v_n)$, by near val. ham for $\partial f/\partial x_n$. = ... (apply mean val. hm. to of/skmi, ..., of successively) $= f(x_1,...,x_n) + \sum_{j=1}^{n} \frac{\partial f}{\partial x_j} (x_1 + v_1,...,x_{j-1} + v_{j-1},y_j,x_{j+1}...x_n) \cdot V_j$ All these points are within distance |V| of K, so using continuity of $\partial f/\partial x$; we get that for $|V| \to 0$ this is well approximated (within o(|V|) by $f(x) + \sum \frac{\partial f}{\partial x_i}(x) y_i$. Here f is differentiable and $Df(x) = \left(\frac{\partial f}{\partial x_i} \dots \frac{\partial f}{\partial x_n}\right)$, which depends continuously on x. \square . Usual rules of differentiation hold, in particular Then (chain rule): if g is differentiable at $x \in \mathbb{R}^n$ and f is differentiable at $g(x) \in \mathbb{R}^n$. Then fog is differentiable at x and $D(f \circ g)(x) = Df(g(x)) \circ Dg(x)$ $\frac{Pf}{r}: g(x+v) = g(x) + Dg(x)v + r(v) \quad \text{wher} \quad r(v) = o(|v|) \quad \text{(i.e. lim } \frac{|r(v)|}{|v|} = 0).$ so $f \cdot g(x+v) = f(g(x)+w) = f(g(x)) + \mathcal{I}f(g(x)) + o(|w|)$ $= f(g(x)) + Df(g(x)) \cdot Dg(x) v + o(|v|).$ · Mean value the dan't hold, eg. f: R - R2 $f(2n) = f(0) \neq f(0) + 2n f'(t)$ $t \mapsto (ast, sin t)$ ¥t € [º,२n]. However re have the mean value inequality:

 $\frac{Thm:}{f: U \rightarrow \mathbb{R}^m} \text{ differ highle at every pinh of the line segment}$ $[a,b] = \{tb + (1-t)a / t \in [0,1]\} \Rightarrow |f(b) - f(a)| \leq |b-a| \cdot \sup_{x \in [a,b]} |f(x)| = |f(b) - f(a)| \leq |b-a| \cdot \sup_{x \in [a,b]} |f(b) - f(a)| \leq |b-a| \cdot \sup_{x \in [a,b]} |f(b) - f(a)| \leq |b-a| \cdot \sup_{x \in [a,b]} |f(b) - f(a)| \leq |b-a| \cdot \sup_{x \in [a,b]} |f(b) - f(a)| \leq |b-a| \cdot \sup_{x \in [a,b]} |f(b) - f(a)| \leq |b-a| \cdot \sup_{x \in [a,b]} |f(a)| \cdot \lim_{x \in [a,b]} |f(a)| = |f(a)| \cdot \lim_{x \in [a,b]} |f(a)| \cdot \lim_{x$ $\frac{PF:}{V = \frac{1}{2}} = \frac{1}{2} = \frac{$ then $g'(t) = \langle u, Df(a+tv) v \rangle$ so $|g'(t)| \leq ||Df(a+tv)||$. The result then Follows from the single-variable mean value ineq. for g on [0, 16-al]. 0 • Higher order derivatives: f is C^2 if Df: $U o Hom(\mathbb{R}^n, \mathbb{R}^m) \simeq \mathbb{R}^{n \times m}$ is C^2 , etc. The main important fact about higher partial derivatives is: $\frac{\text{Prop}}{\text{prop}}$ if $\left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)$ exist and are entiruous then $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$ Pf: enough to consider the case of f(x, y). For h and k small \$0, consider $\frac{1}{hk}\left(f(x+h,y+k)-f(x+h,y)-f(x,y+k)+f(x,y)\right)$ whing this in terms of g(x,y) = f(x,y+k) - f(x,y), this is $\frac{1}{h}(g(x+h,y) - g(x,y))$ so by mean value than for $\frac{\partial g}{\partial k}$, $\exists h_1 \in (0,h)$ st. this equals $\frac{\partial g}{\partial x}(x+h_1,y)=\frac{1}{k}\left(\frac{\partial f}{\partial x}(x+h_1,y+k)-\frac{\partial f}{\partial x}(x+h_1,y)\right).$ In turn, by mean value than for $\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$, $\exists k_1 \in (0,k)$ str. his equals $\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) \left(X + h_1, y + k_4 \right)$. Doing the same calculation in opposite order shows = $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) (x + h_2, y + k_2)$ for some Since these 2nd desiratives are continuous by $h_2 \in (0,h)$, $k_1 \in (0,k)$.

assumption, taking limits as $h,k \to 0$ gives the result. • Hence: the Hensian matrix $H = \left(\frac{\partial^2 F}{\partial x_i \partial x_j}\right)$ is symmetric. and should be interpreted as a symmetric bilinear form on tangent vectors. If $f \in C^2$ then $f(x+v) = f(x) + \mathcal{D}f(x) \cdot v + \frac{1}{2} H(x) (v, v) + o(|v|^2) \qquad \text{(b.s. on, Taylor!)}.$

Because of the local appreximation f(x+v) = f(x) + Df(x)v + r(v),

the behavior of Df(x) governs that of f near x. In particular:

if Df(x) is injective then f is injective on a (suff-small) neighborhood of x.

if Df(x) is sujective then f maps a neighborhood of x sujectively onto a hold of f(x).

When both hold, f is a local diffeomorphism, by the inverse function theorem.

Del: ||a| map $f: U \rightarrow V$ between open subsets of $||R|^n$ is a diffeomorphism if it is a homeomorphism and both f and f^{-1} are C^1 .