INFRA-ESTRUTURA COMPUTACIONAL

27/04/2021 - Duração: 2:00 horas - Com consulta

Nome	Augusto Calado Bueno
:	

Responda as questões em seguida às perguntas

1. (1) Conceitue arquitetura, implementação e execução no contexto de arquitetura de computadores.

Arquitetura de um computador é a coleção de atributos de um sistema de computação na visão do programador, isto é, a estrutura conceitual e o comportamento funcional, não considerando a organização dos fluxos de dados e de controle, nem a implementação física.

2. (1) Descreva o processo de interrupção em um processador. Não é necessário detalhar o processo de execução das instruções (sugestão: restringe-se ao caso das interrupções de entrada e saída).

O processo de interrupção em um processador é um evento onde há a quebra da sequência de operações a fim de atender eventos "especiais", como eventos de entrada e saída. Há tipos de interrupções que podem preservar o endereço da próxima instrução que foi interrompida, dessa forma, quando a rotina de tratamento da interrupção terminar, o processo pode continuar de onde parou.

- 1. Sinal de interrupção emitido
- 2. Controlador, ao receber o sinal de interrupção, salva o estado atual do processador
- 3. Controlador desvia a execução do programa para a rotina de serviço de interrupção
- 4. Após a finalização da rotina de serviço de interrupção, recupera-se o estado anterior à interrupção;

3. (1) O que é a tecnologia SMART aplicada a discos?

A tecnologia *Self Monitoring Analysis and Reporting Technology* (SMART) é aplicada para controle e monitoramento da saúde de dispositivos como discos magnéticos (HDD) e discos de estado sólido (SSD). O disco possui um controlador com comandos adicionais que informam sobre as condições de certos atributos do disco indicando sua saúde. O seu principal objetivo é prevenir e antecipar falhas de hardware.

4. (1) Quais as vantagens da utilização de discos de estado sólido em lugar de discos magnéticos?

As principais vantagens são as velocidades de transmissão de dados mais altas, pois o atraso mecânico não existe nos discos de estado sólido. Pela mesma razão das altas taxas de velocidade, a durabilidade dos discos de estado sólido também é maior, pois não há partes mecânicas sujeitas a defeitos.

5. (1) Conceitue as localidades temporal e espacial.

Programas tendem a acessar uma parte pequena de seu espaço de endereçamento em um determinado intervalo de tempo. Deste modo é possível estabelecer os conceitos de localidades temporal e espacial. A *localidade temporal* refere a situação onde um item foi referenciado, então muito provavelmente ele será referenciado novamente. O conceito de *localidade espacial* refere-se a situação onde um item foi referenciado, então é muito provável que os seus vizinhos também sejam.

6. (1) Qual é a motivação para a adoção da tecnologia multi-core em lugar de simplesmente aumentar a velocidade de um processador?

Para se atingir um ganho razoável de desempenho em um processador single-core, deve-se aumentar consideravelmente a frequência de trabalho (*clock*) do processador. Isso implica em um consumo maior de energia e, também, em uma geração maior calor e como consequência direta é necessário formas extras e melhores para dissipação do calor. Ao aumentar o número de núcleos em um processador o problema do consumo de energia, geração de calor e dissipação não ocorre, o que o tornam muito mais vantajoso.

Outra vantagem que podemos comentar sobre a adoção da tecnologia multi-core é a capacidade de processamento em paralelo (execução de mais de um processo em paralelo usando os vários núcleos do processador).

7. - (1) Qual a função mais crítica: backup ou restore? Justifique.

A função mais crítica é o *restore*, pois a restauração é necessária em condições imprevistas, normalmente precisa ser rápido, e a recuperação precisa ser precisa o suficiente para recriar os dados imediatamente antes do problema ter ocorrido. O *backup* por sua vez, pode ser realizado em momentos previsíveis, e podem ser demorados.

8. - (1) Qual é a vantagem da utilização de memórias NVDIMM?

Non-volatile dual in-line memory module (NVDIMM), é uma memória de computador híbrida que retém dados durante uma interrupção do serviço, como uma queda de energia. Um exemplo de memória NVDIMM é a memória *Optane* da fabricante de processadores Intel. Uma grande vantagem de sua utilização, é a inclusão de mais um nível de memória (cache) entre as memória mais próximas do processador (caches e memória principal) e os dispositivos de armazenamento mais lentos como discos de estado sólido e discos magnéticos, permitindo diminuir a latência existente entre esses dois extremos de armazenamento.

9 - (1) Qual é a principal indicação dos sistema NAS?

Os sistemas de **Network-Attached Storage** (NAS), são dedicados ao armazenamento de dados em rede, sua principal indicação é fornecer serviços de armazenamentos de dados para os demais dispositivos conectados na rede. Uma aplicação prática é indicada que podemos citar é a ligação entre processador e discos através de uma rede local, onde as taxas de E/S não são tão elevadas.

10 - (1) Qual é a principal vantagem:

a) do raid 5 sobre o raid 1?

Uma das principais vantagens que o RAID5 tem sobre o RAID1 relaciona-se com a questão do número de discos necessário dentro do sistema . O esquema RAID1 exige o dobro do número de discos para realizar a redundância (cada disco é

inteiramente duplicado em seu espelho). O RAID5, por sua vez, é apenas uma fração do número de discos, pois a redundância é distribuída entre os discos de armazenamento.

b) do raid 1 sobre o raid 5?

Uma escrita lógica no esquema de redundância RAID1 exige duas escritas físicas, enquanto que no esquema de redundância do RAID5, além das duas escritas é necessário a execução de duas leituras para que os blocos de paridade sejam calculados. Desse modo, o esquema RAID1 demanda menos I/O do sistema que o RAID5.