قوانين التركيب الداخلي ح.بوعيون الزمرة - الحلقة - الجسم

: ''

I) تعریف و أمثلة:

1- تعریف:

(a,b) يسمى مركب العنصرين f(a,b) $a\perp b$; $a\mathsf{T}b$; a*b بونرمز له عادة ب إذا كان * قانون تركيب داخلى فى E فإننا نكتب (*,*) ونقرأ * المجموعة E مزودة بالقانون

ملاحظة: ليكن * قانون تركيب داخلي في E:

$$(\forall (a,b,c,d) \in E^4)$$

$$\begin{cases} a=b \\ c=d \end{cases} \Rightarrow a*c=b*d$$

لأن:

$$\begin{cases} a = b \\ c = d \end{cases} \Rightarrow (a, c) = (b, d) \Rightarrow f(a, c) = f(b, d)$$
$$\Rightarrow a * c = b * d$$

*) لدينا:

$$\left(\forall (a,b,c) \in E^{3}\right) \begin{cases} a=b \Rightarrow a*c=b*c \\ a=b \Rightarrow c*a=c*b \end{cases}$$

2- أمثلة:

 $\mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{Z}, \mathbb{N}$ في في تركيب داخلي في الضرب قانونا تركيب داخلي في الضرب -2 الضرب قانون تركيب داخلي في $^+$ لكنه ليس كذلك في −2

أي $(a \times b) \in \mathbb{R}^+$ فإن: \mathbb{R}^+ أي $\mathbb{R}^ \cdot (a \times b) \notin \mathbb{R}_{-}$

 V_3 و V_2 من جمع متجهتین قانون ترکیب داخلی فی کل من V_2 هر V_3

 V_3 الجداء السلمى ليس قانون تركيب داخلى فى V_2 .

 V_3 في قانون تركيب داخلي في V_3

E مجموعة غير فارغة و P(E) مجموعة أجزاء -6الاتحاد والتقاطع والفرق التماثلي قوانين تركيب داخلية في

 $F(X,\mathbb{R})$ مجموعة الدوال X جزء من \mathbb{R} . ليكن مجموعة الدوال المعرفة من X نحو \mathbb{R} . الجمع والضرب المعرفين على :کما یلی $F(X,\mathbb{R})$

$$(\forall x \in X) \qquad (f+g)(x) = f(x) + g(x)$$
$$(f \cdot g)(x) = f(x) \cdot g(x)$$

 $F(X,\mathbb{R})$ قوانین ترکیب داخلیة فی

E نحو E نحو التطبيقات من E نحو A(E,E)

Eمجموعة غير فارغة.

التركيب o المعرف على A(E,E) ب:

$$(\forall x \in E)$$
 $(fog)(x) = f(g(x))$
قانون ترکیب داخلی فی $A(E,E)$

 H_0 و المحموعة التحاكيات H_0 مجموعة التحاكيات التي مركزها O. و R_0 مجموعة الدور انات التي لها نفس المركز R_0 و H و R_0 و H و H و H و H و H و H و H و H و H و H

 $(\forall (a,b) \in \mathbb{R}^2) a *b = a^4 + a^3 - 3a^2b$

قانون تركيب داخلى فى ${\mathbb R}$.

 $E = \{1, 2, 3, 6\}$ in the integral $E = \{1, 2, 3, 6\}$

لنبين أن المضاعف المشترك الأصغر "٧" قانون تركيب داخلي

ولماذا نضع الجدول التالي الذي يسمى جدول القانون في E أو $\cdot (E,v)$ جدول

V	1	2	3	6
1	1	2	3	6
2	2	2	6	6
3	3	6	3	6
6	6	6	6	6

نلاحظ أن مركب أي عنصر من E هو عنصر من E. وبالتالي $\cdot E$ القانون $\lor \lor$ قانون تركيب داخلى في

3- جزء مستقر بالنسبة لقانون تركيب داخلي:

a) تعریف:

لَّتَكُنَ £ مجموعة مزودة بقانون تركيب داخلي *. وليكن S $(S \subset E)E$ جزءا من

> نقول إن S جزء مستقر من (E,*) إذا و فقط إذا كان: $(\forall (x,y) \in S^2) \quad x * y \in S$

(b) أمثلة:

 (\mathbb{R},\times) جزء مستقر من \mathbb{R}^+ –1

 (\mathbb{R},\times) ليس جزءا مستقر ا من $\mathbb{R}_{-}-2$

 $U = \{z \in \mathbb{C}/|z| = 1\}$: $U = \{z \in \mathbb{C}/|z| = 1\}$

$$(\forall (z, z') \in U^2): |z.z'| = |z|.|z'| = 1.1 = 1$$

 $(\forall (z,z') \in U^2): zz' \in U$

 (\mathbb{C},\times) بن مستقر من U

ملاحظة:

إذا كان S جزءا مستقرا من (E,*) فإن * قانون تركيب داخلي في ۶.

II) خاصيات قو إنين التركيب الداخلي:

1- التحميعية و التبادلية:

a) تعریف:

ليكن * قانون تركيب داخلي في E.

1) نقول إن القانون *تجميعي في E إذا وفقط إذا كان $(\forall (a,b,c) \in E^3)$ a*(b*c)=(a*b)*c

E نقول إن القانون * تبادلي في E إذا وفقط إذا كان $(\forall (a,b) \in E^2)$ a*b=b*a

إذا كان القانون * تجميعي فإن:

$$a*(b*c) = a*b*c$$

(b) أمثلة:

القوانين (1), (3), (6), (7) و (9) التي رأيناها في أمثلة قوانين التركيب الداخلية كلها تجميعية وتبادلية (الفقرة I).

. لنبين على (7) و (9):

 $: F(X,\mathbb{R})$ لنبين أن الجمع تجميعي في

أن: لنبين $F(X,\mathbb{R})$ ليكن أو يورا f + (g + h) = (f + g) + h

> (f + (g + h))(x) = ((f + g) + h)(x)يعني: ندينا:

 $(\forall x \in X)(f + (g+h))(x) = f(x) + (g+h)(x)$ = f(x) + g(x) + h(x)=(f(x)+g(x))+h(x)=(f+g)(x)+h(x)=((f+g)+h)(x)

(لأن الجمع تجميعي في ℝ).

إذن f+(g+h)=(f+g)+h ومنه الجمع تجميعي $F(X,\mathbb{R})$

T نبین أن o تجمیعی فی

 $t_{\vec{u}}o(t_{\vec{v}}ot_{\vec{w}})=(t_{\vec{u}}ot_{\vec{v}})ot_{\vec{w}}$

 $t_{\vec{u}}o(t_{\vec{v}}ot_{\vec{w}}) = t_{\vec{u}}ot_{\vec{v}+\vec{w}}$

 $=t_{\vec{\mu}+(\vec{v}+\vec{w})}=t_{(\vec{\mu}+\vec{v})+\vec{w}}=t_{\vec{\mu}+\vec{v}}ot_{\vec{w}}$ $=(t_{\vec{u}}ot_{\vec{v}})ot_{\vec{w}}$

(V_3 في V_3).

اذن:

لدينا:

 $(\forall (t_{\vec{u}}, t_{\vec{v}}, t_{\vec{w}}) \in \mathbf{T}^3); t_{\vec{u}} o(t_{\vec{v}} o t_{\vec{w}}) = (t_{\vec{u}} o t_{\vec{v}}) o t_{\vec{w}}$

 $\cdot T$ في تجميعي في o

 V_3 الجداد المتجهى ليس تجميعيا و V_3 في الجداد المتجهى الم

. لیکن $(\vec{i}, \vec{j}, \vec{h})$ معلم م.م مباشر

لدينا $\vec{i} \wedge \vec{j} = -\vec{j} \wedge \vec{i}$ الذن "۸" ليس تبادليا.

 $(\vec{i} \wedge \vec{j}) \wedge \vec{j} = \vec{h} \wedge \vec{j} = -\vec{i}$ ← لدينا $\vec{i} \wedge (\vec{j} \wedge \vec{j}) = \vec{i} \wedge \vec{0} = \vec{0}$

 $(\vec{i} \wedge \vec{j}) \wedge \vec{j} \neq \vec{i} \wedge (\vec{j} \wedge \vec{j})$ إذن V_3 (الجداد المتجهى) ليس تجميعيا في V_3 تمرين تطبيقي:

> نعتبر القانون * المعرف على ™ بما يلي: x * y = x + y + xy

ادرس تجميعية وتبادلية القانون *.

 $(\forall (x,y) \in \mathbb{R}^2) x * y = x + y + xy$ لدينا:

= v + x + vx = v *x

إذن x * y = y * x ومنه * تبادلي.

x رور ع من ۩ لنتحقق هل:

(x * y) * z = x * (y * z)

لدينا:

(x * y)*z = (x + y + xy)*z= x + y + xy + z + (x + y + xy)z= x + y + xy + z + xz + yz + xyz (1) و لدينا:

x *(y *z) = x *(y + z + yz)= x + y + z + yz + x (y + z + yz)= x + y + z + yz + xy + xz + xyz (2)

وبما أن (2) و (1) فإن * تجميعى:

 $(\forall (x,y,z) \in \mathbb{R}^3) (x*y)*z = x*(y*z)$

c) تجميعية مركب تطبيقي:

نعتبر التطبيقات من:

 $E \to F \to G \to H$

لدينا: ho(gof) = (hog)of

هذا لا يعنى أن o تجميعي.

- لنبين أن: ho(gof) = (hog)of

 $(\forall x \in E) (ho(gof))(x) = ((hog)of)(x)$

 $x \in E$ ليكن -

 $h(z) = t \mathcal{B}(y) = \mathcal{B}(x)$ نضع

لدينا:

((hog)of)(x) = (hog)(f(x)) = (hog)(y)=h(g(y))=h(z)=t

و لدينا:

(ho(gof))(x) = h((gof)(x))=h(g(f(x)))=h(g(y))=h(z)=t

إذن:

 $(\forall x \in E)((hog)of)(x) = (ho(gof))(x)$

(hog)of = ho(gof)e ais:

حالة خاصة:

A(E,E) ليكن A(E,E) مجموعة التطبيقات من E نحو A(E,E) لدينا O قانون تجميعي غير تبادلي في

2- العنصر المحايد:

a) تعریف:

آيكن * قانون تركيب داخلي في E و $e \in E$. نقول إن e عنصر محايد في E بالنسبة للقانون * أو عنصر محايد في (E,*) إذا وفقط إذاكان:

 $(\forall x \in E) e * x = x et x * e = x$

ملاحظة:

إذا كان القانون * تبادلي فإن e عنصر محايد إذا وفقط إذا كان: $(\forall x \in E) \ x *e = x$

b) أمثلة:

العدد 0 هو العنصر المحايد في كل من $(\mathbb{C},+),(\mathbb{R},+),(\mathbb{Q},+),(\mathbb{N},+)$

 \rightarrow العدد 1 هو العنصر المحايد في كل من $(\mathbb{C},\times),(\mathbb{R},\times),(\mathbb{Q},\times),(\mathbb{Z},\times),(\mathbb{N},\times)$

 $(V_3,+),(V_2,+)$: هو العنصر المحايد في كل من $\vec{0} \leftarrow$

 $(P(E), \bigcup)$ هو العنصر المحايد في \varnothing

 $(P(E),\cap)$ هو العنصر المحايد في $E \leftarrow$

 $(P(E), \Delta)$ هو العنصر المحايد في \varnothing

 $ig(F(X,\mathbb{R}),+ig)$ فو العنصر المحايد في heta:x o 0

 $(F(X,\mathbb{R}),\times)$ هو العنصر المحايد في $f:x\to 1$

التطبيق المطابق $x \to x$ عنصر محايد في \leftarrow (fold - M of - f) (A(F,F) a)

 $(fold_E = Id_E of = f) \quad (A(E, E), o)$

ملاحظة:

نعتبر القانون * المعرف على \mathbb{N}^* بما يلي: $(\forall (a,b) \in \mathbb{N}^{*2})$ $a*b=a^b$

 $(\forall a \in \mathbb{N}^*)a *1 = a^1 = a \ (1)$ لاينا:

ولدينا: 1*a=1°=1

إذن 1 ليس عنصر محايدا.

وبما أنه يحقق (1) نقول إن 1 محايد على اليمين.

تعریف:

نقول إن e عنصر محايد على اليمين في (E,*) إذا وفقط إذا $\forall x \in E$ $\exists x *e = x$

(E,*) نقول إن e عنصر محايد على اليسار في e إذا وفقط $(\forall x \in E) e * x = x$

e يكون e محايدا إذا وفقط إذا كان محايد E على اليمين وعلى راليسار.

c) وحدانية العنصر المحايد:

خاصية:

E ليكن * قانون تركيب داخلي في E. إذا كان للقانون * عنصرا محايد فإنه وحيد.

برهان:

e'نفترض أن * يقبل عنصرين محايدين e' و غنصر محايد e' الذن e'

e*e'=e إذن: e'=e عنصر محايد و e'=e إذن e'=e

ومنه العنصر المحايد وحيد. (إذا كان موجودا).

تمارين تطبيقي:

تمرین (1):

نعتبر * القانون المعرف على ۩ بما يلي:

 $(\forall (x,y) \in \mathbb{R}^2) x * y = xy - 4x - 4y + 20$

هل القانون *عنصر محايد؟

 $(\forall x \in \mathbb{R})e * x = x * e = x$: بحيث e من e من e بحيث e ونلاحظ أن e بحيث إذن يكفي أن نبحث عن e بحيث $(\forall x \in \mathbb{R})e * x = x$

لدينا:

 $(\forall x \in \mathbb{R})e *x = x \iff (\forall x \in \mathbb{R})ex - 4e - 4x + 20 - x = 0$ $\Leftrightarrow (\forall x \in \mathbb{R})x (e - 5) - 4e + 20 = 0$

$$\Leftrightarrow \begin{cases} e - 5 = 0 \\ 20 - 4 = 0 \end{cases} \Leftrightarrow \begin{cases} e = 5 \\ e = 5 \end{cases}$$

اذن e=5 هو العنصر المحايد للقانون *.

تمرین (2):

نعتبر القانون * المعرف على ۩ ب:

 $(\forall x, y \in \mathbb{R})x * y = x + 4y - 1$

هل القانون * عنصر محايد؟

 $(\forall x \in \mathbb{R}) x * e = e * x = x$ گنبخت عن e من e ننبخت عن .

 $(\forall x \in \mathbb{R})x * e = x \quad et \quad e * x = x$ يغني:

- لدينا: - الدينا

$$(\forall x \in \mathbb{R})e *x = x \iff (\forall x \in \mathbb{R})e + 4x - 1 = x$$
$$\iff (\forall x \in \mathbb{R})e + 3x - 1 = 0$$
$$\iff \begin{cases} 3 = 0 \\ e - 1 = 0 \end{cases}$$

و هذا مستحيل.

إذن * لا يقبل عنصرا محايدا في R.

3- العنصر المماثل:

a) تعریف:

ليكن * قانون تركيب داخلي في E. نفترض أن * يقبل عنصراً محايدا e.

نقول إن عنصرا x من E يقبل مماثلا بالنسبة ل * إذا وفقط إذا وجد عنصر x من x بحيث:

x * x' = x' * x = e

ملاحظة:

إذا كان القانون * تبادلي نكتفي بإحدى المتساويتين.

(b) أمثلة:

x عنصر $(\mathbb{C},+),(\mathbb{R},+),(\mathbb{Q},+),(\mathbb{Z},+)$ کل عنصر -x يقبل مماثلا هو

في $(\mathbb{C}^*,\times);(\mathbb{R}^*,\times);(\mathbb{Q}^*,\times)$ کل عنصر $(\mathbb{C}^*,\times);(\mathbb{R}^*,\times)$ في \leftarrow

. <u>-</u>

$$x.\frac{1}{x} = \frac{1}{x}.x = 1$$
 لأن:

 \cdot E مجموعة التقابلات من E نحو E

لدينا "o" قانون تركيب داخلى في B(E,E) العنصره المحايد هو التطبيق الطابق . Id

 f^{-1} كل عنصر f من B(E,E) له مماثل هو تقابله العكسى $fof^{-1} = f^{-1}of = Id_{\scriptscriptstyle F}$:نُذ

c) خاصیات:

خاصدة (1):

ليكن * قانون تركيب داخلي في E.

نفترض أن القانون * يقبل عنصرا محايدا e وتجميعي. إذا كان لعنصر x مماثل x' فإن هذا المماثل وحيد.

x'' و x'' نفتر ض أن x يقبل مماثلين

$$x * x' = x' * x = e$$
 $x * x'' = x'' * x = e$

ادینا:

$$x' = x' * e = x' * (x * x") = (x' * x) * x"$$

= $e * x'' = x"$

x' = x'' إذن

خاصية (2):

ليكن * قانون تركيب داخلي في E.

نفترض أن القانون * يقبل عنصرا محايدا e وتجميعي. إذا كان لعنصرين بعوب مماثلان ' بعو بن فإن: بر به يقبل مماثلا

· v'*x' 98

(x * y)' = y' * x' يعنى:

برهان:

لدينا:

$$(x * y)*(y'*x')$$

= $x * (y * y)*x' = x * e * x'$
= $(x * e)*x' = x * x' = e$

(y'*x')*(x*y)=e د نفس الطريقة نجد:

استنتاج:

B(E,E) من $g \mathcal{F}$ ليكن

 g^{-1} هو f^{-1} ومماثل g هو

 $. g^{-1}of^{-1}$ هو fog مماثل

ونعلم أن مماثل fog هو أن مماثل

 $(fog)^{-1} = g^{-1}of^{-1}$!ذن:

تمرین:

نعتبر القانون * المعرف على ™ بما يلي: x * y = xy - 4x - 4y + 20

من خلال ما سبق 5 هو العنصر المحايد.

- حدد العناصر التي تقبل مماثلا.

 $x \in \mathbb{R}$ ليكن

لنتحقق هل x يقبل مماثلا.

لنبحث عن x' بحیث x * x' = 5 (القانون تبادلی).

 $x *x' = 5 \Leftrightarrow xx' - 4x - 4x' + 20 = 5$ لاينا: $\Leftrightarrow x'(x-4) = 4x-15$

 $x \neq 4$ اذا کان +

 $\frac{4x-15}{x-4}$ فإن: $\frac{4x-15}{x-4}$ ومنه x يقبل مماثلا هو

x=4 إذا كان \leftarrow فإن o=1 ومنه 4 لا يقبل مماثلا

 $\mathbb{R} - \{4\}$ إذن مجموعة العناصر التي تقبل مماثلا هي:

 $\frac{4x-15}{x-4}$: والمماثل هو

4- العنصر المنتظم:

a) تعریف:

E من a انون تركيب داخلي في E. نقول إن عنصرا a من aمنتظم إذا و فقط إذا كان:

$$\left(\forall (x,y) \in E^2\right) \begin{cases} a*x = a*y \Rightarrow x = y \\ x*a = y*a \Rightarrow x = y \end{cases}$$

ملاحظة:

إذا كان القانون * تبادلي فإن أحد الاستلز امين كاف.

(b) أمثلة:

منتظمة $\mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{Z}, \mathbb{N}$ منتظمة \rightarrow $a+x=a+y \Rightarrow x=y$ بالنسبة للجمع لأن:

فی کل من $a \neq 0$ کل عنصر $C, \mathbb{R}, \mathbb{Q}, \mathbb{Z}, \mathbb{N}$ فی کل من $A \neq 0$ کل عنصر $ax = ay \Rightarrow x = y$ للضرب لأن:

ليكن * قانون تركيب داخلي في E، تجميعي.

 $a \in E$ العنصر المحايد في (E,*). ليكن e

- بین أنه إذا كان a يقبل مماثلا فإن a منتظم.

a' كفترض أن a يقبل مماثلا

$$\left(\forall (x,y)\in E^2\right)$$
 :نبین أن a منتظم أي:

$$a*x = a*y \Rightarrow x = y$$

 $x*a = y*a \Rightarrow x = y$

لدينا:

$$a*x = a*y \Rightarrow a'*(a*x) = a'*(a*y)$$
$$\Rightarrow (a'*a)*x = (a'*a)*y$$
$$\Rightarrow e*x = e*y$$

 $\Rightarrow x = y$ $x *a = y *a \Rightarrow x = y$ وبنفس الطريقة نبين أن: إذن a منتظم.

III) التشاكل:

1- تعريف وأمثلة:

a) تعریف:

ليكن * قانون تركيب داخلي في E.

و T قانون تركيب داخلي في F.

 $f:E\to F$ نحو (F,T) کل تطبیق خاند نسمی تشاکل من يحقق ما يلي:

 $\cdot (\forall (x,y) \in E^2): f(x*y) = f(x) Tf(y)$

$f:(\mathbb{R},+) o(\mathbb{R},+)$: نعتبر التطبيق-1 $x \rightarrow ax$ لنبین أن f تشاكل. $(\forall (x, y) \in \mathbb{R}^2) f(x+y) = f(x) + f(y)$ يعنى: - أدبنا: = f(x) + f(y)اذن: $(\forall (x,y) \in \mathbb{R}^2) f(x+y) = f(x) + f(y)$ $(\mathbb{R},+)$ نحو $(\mathbb{R},+)$ نحو الذن f $f: \mathbb{Q} \to \mathbb{R}$ نعتبر -2 $(a \in \mathbb{R}^*_+)$ $r \rightarrow a^r$ (\mathbb{R},\times) نحو $(\mathbb{Q},+)$ نحو f أنحو أبين أن - ليكن r و r من \mathbb{Q} . $f(r+r') = f(r) \times f(r')$: ننبین أن لدبنا: $f(r+r') = a^{r+r'} = a^r \times a^{r'} = f(r) \times f(r')$ $(V(r,r') \in \mathbb{Q}^2) f(r+r') = f(r).f(r')$ إذن: (\mathbb{R},\times) نحو $(\mathbb{Q},+)$ نحو fتمارين تطبيقية: تمرين 1: نعرف في \mathbb{R}^2 جمع زوجين وجداء زوجين بما يلي: (x, y) + (x', y') = (x + x', y + y')(x, y).(x', y') = (xx' - yy', xy' + x'y) $f: \mathbb{C} \to \mathbb{R}^2$ ونعتبر التطبيق $z = a + ib \rightarrow (a,b)$ $(\mathbb{R}^2,+)$ نحو $(\mathbb{C},+)$ نحو f أنحو (\mathbb{R}^2,\times) نحو (\mathbb{C},\times) نحو f انحو f $(\mathbb{R}^2,+)$ نحو $(\mathbb{C},+)$ نحو (+) نخو (+)z'=a'+ib' et z=a+ib ليكن لنبين أن: لدينا: إذن:

f(x+y) = a(x+y) = ax + ay

f(z+z') = f(z) + f(z')z + z' = (a+ib) + (a'+ib')=(a+a')+i(b+b')f(z+z') = (a+a',b+b')=(a,b)+(a',b')=f(z)+f(z') $(\mathbb{R}^2,+)$ نحو $(\mathbb{C},+)$ نحو (f)

 $(\mathbb{R}^2,+)$ نحو $(\mathbb{C},+)$ نحو (+)

f(z.z') = f(z).f(z') البكن z = a + ib ليكن

z' = a' + ib'لدينا:

z.z' = (a+ib).(a'+ib') = (aa'-bb')+i(ab'+a'b)إذن:

> f(z.z') = (aa' - bb', ab' + a'b)و لدينا:

f(z).f(z') = (a,b).(a',b')=(aa'-bb',ab'+a'b)f(z.z') = f(z).f(z') إذن (\mathbb{R}^2,\times) نحو (\mathbb{C},\times) نحو f ومنه f

 $A = \{f_{(ab)} : x \to ax + b \mid (a,b) \in \mathbb{R}^2\}$ نعتبر المجموعة T القانون IR^2 بمايلي على التطبيق (a,b)T(a',b')=(aa',ab'+b)و نعتبر

 $\varphi:(A,\circ)\to(IR,T)$

 $f_{(a,b)} \rightarrow (a,b)$

بین أن φ تشاكل

یکون φ تشاکل من (A,o) نحو (\mathbb{R}^2,T) إذا وفقط إذا کان: $(\forall (f_{(a,b)}, f_{(a',b')}) \in A^2)$:

 $\varphi(f_{(a,b)}of_{(a',b')}) = \varphi(f_{(a,b)})T\varphi(f_{(a',b')})$

 $(\forall x \in \mathbb{R}) \left(f_{(a,b)} o f_{(a',b')} \right) (x) = f_{(a,b)} \left(f_{(a',b')} (x) \right)$ لدينا $=f_{(a,b)}(a'x+b')$ =a(a'x+b')+b=aa'x + ab' + b

اذن:

 $\varphi(f_{(ab)}of_{(a'b')}) = (aa',ab'+b)$ = (a,b)T(a',b') $= \varphi(f_{(a,b)})T\,\varphi(f_{(a'b')})$

ومنه: ϕ تشاكل

2- خاصبات:

خاصية 1

(F,T) نحو (E,*) نحو لیکن (E,*) نحو (F,T) جزء مستقر من f(E)

. تشاكل $f:(E,*) \to (F,T)$

(F,T) ننبین أن f(E) مستقر من

 $f(E) \subset F$ لدينا (*

x'Ty' $\in f(E)$: نبین أن f(E) من $y' \not = x$

الدينا y من E من E من E من E دينا E دينا E من E دينا E x' = f(x) $\mathcal{Y}' = f(x)$

اذن:

x'Ty' = f(x)Tf(y) = f(x * y)

 $x * y \in E$ ولدينا

 $x'Ty' \in f(E)$ يعنى: $f(x*y) \in f(E)$

f(E) مستقر من f(E)

ملاحظة:

إذا كان f تشاكل من (E,*) نحو (F,T) فإن f قانون تركيب داخلی فی f(E) داخلی

خاصية (2):

 $f:(E,*)\to (F,T)$ نشاكلا.

- f(E) فإن T تجميعي في E فإن E تجميعي في *
 - f(E) في T تبادلي في E فإن E تبادلي في *
- *) إذا كان ل * عنصر محايد e في E فإن T يقبل مماثلا
 - (f(x))' = f(x') يعني: f(x') هو (f(E),T)

. تشاكل $f:(E,*)\to (F,T)$

 \rightarrow نفترض أن * تجميعي في E لنبين أن + تجميعي في + $\cdot f(E)$

 $\cdot x' T(y'Tz') = (x'Ty')Tz'$ لنبين أن $\cdot f(E)$ من $\cdot z', y', x'$

لدينا E من z, y, x اذن يوجد z, y, x من $z', y', x' \in f(E)$

$$x' = f(x); y' = f(y); z' = f(z)$$

إذن:

إذن:

$$(x'Ty')Tz' = (f(x)Tf(y))Tf(z)$$

$$= f(x*y)Tf(z)$$

$$= f[(x*y)*z]$$

$$= f[x*(y*z)] = f(x)Tf(y*z)$$

$$= f(x)T(f(y)Tf(z))$$

$$(x'Ty')Tz' = x'T(y'Tz')$$

(E) ومنه T تجميعي في

 $\cdot f(E)$ بنفس الطريقة نبين أن \mathbf{T} تبادلي في +

f(e) أن ينبين أن e عنصر محايد في (E,*) لنبين أن ef(E) عنصر محاید فی

x'Tf(e) = f(e)Tx' = x' : لبين أن f(E) من x'

x' = f(x) بحیث E من E من E بحیث $X' \in f(E)$ لدینا f(e) Tx' = x' بنفس الطريقة نجد:

f(E) هو العنصر المحايد في f(e)

f(x') أن ين أن (E,*) في (E,*) أن (E,*)(f(E),T) في f(x) هو مماثل

> $f(x)\operatorname{T} f(x') = f(x')\operatorname{T} f(x) = f(e)$ يعنى: لدينا:

 $f(x) \operatorname{T} f(x') = f(x * x') = f(e)$

f(x')Tf(x) = f(x'*x) = f(e)

f(E) في f(x) هو مماثل f(x) في

ملاحظة:

ا اِذَا كَانِ $f:(E,*) \to (F,T)$ ينقل خاصيات $f:(E,*) \to (F,T)$ $\cdot f(E)$ في E إلى \bullet

وإذا كان f شمولى فإن f(E) = F وبالتالى f ينقل خاصيات * في E إلى T في F.

2) نقول إن مجموعتين $F \mathcal{E}$ منشاكلتان إذا وفقط إذا وجد تشاكل F من E من

- ونقول إن F & متشاكلتان تقابليا إذا وفقط إذا وجد تشاكل $\cdot F$ نحو E

(IV) الزمرة: Groupe

لَكُن G مجموعة مزودة بقانون تركيب داخلي * نقول إن (G,st) زمرة Gإذا وفقط إذا تحققت الشروط التالية:

G * " تجميعي في G \to " * " يقبل عنصرا محايدا.

كل عنصرمن G يقبل مماثلا. \leftarrow

(G,*) زمرة.

(G,*) زمرة تبادلية أو أبيلية G إذا كان * " تبادلية أو أبيلية G.Abelien)

اذا کانت G منتهیهٔ. نقول إن (G,*) زمرهٔ منتهیهٔ. G

 \rightarrow يمكن أن نرمز للقانون " * " بالجمع " + " (دون أن يكون هو الجمع المعتاد) وفي هذه الحالة نرمز للعنصر المحايد ب " 0 ". ونرمز لمماثلُ

→ يمكن أن نرمز للقانون " * " بالضرب " . " (دون أن يكون هو الضرب الاعتيادي). وفي هذه الحالة نرمز للعنصر المحايد ب 1. ولمماثل $x^{-1} - x$

2 - أمثلة:

کل من $(\mathbb{C},+),(\mathbb{R},+),(\mathbb{Q},+),(\mathbb{Z},+)$ زمرهٔ تبادلیهٔ.

. کل من $(\mathbb{C}^*, \times), (\mathbb{R}^*, \times), (\mathbb{Q}^*, \times)$ زمر تبادلیة \leftarrow

 $(V_3,+)$ و $(V_3,+)$ زمرة تبادلية. $(V_3,+)$

زمرة تبادلية. $ig(Fig(X,\mathbb{R}ig),+ig) \leftarrow$

مجموعة التقابلات)، زمرة غير تبادلية. $(B(E,E),o) \leftarrow$

کل من $(R_o,o),(H_o,o),(T,o)$ زمر تبادلیة. \leftarrow

و $(P(E), \bigcirc)$ لیسا زمرتین. $(P(E), \cap)$

. زمرة تبادلية $\left(P(E),\Delta
ight) \leftarrow$

3- خاصیات

خاصية (1):

لَّتَكُنُ (G,*) زمرة. لدينا ما يلي:

→ " * " تجميعي.

→ " * " يقبل عنصرا محايدا.

G في X' كل عنصر X من G يقبل مماثلا X

G من G من کل عنصر G من کل عنصر G

 $(\forall (a, x, y) \in G^3)$ $a * x = a * y \Leftrightarrow x = y \leftarrow$

 $x*a = y*a \Leftrightarrow x = y$

نلخص هذه الخاصية بقولنا: يمكن الاختزال في زمرة وبدون شروط.

خاصية (2):

G نمرهٔ ولیکن (G,*) زمرهٔ ولیکن نکت

کل من المعادلتين: a*x=b(2) و a*x=b(1) کل من المعادلتين

برهان:

برهان:

*) لدينا $\emptyset
eq H$ لأنها تضم العنصر المحايد.

H فنبين أن e هو العنصر المحايد في e

 \dot{H} ليكن \dot{e}' العنصر المحايد في

e = e' نابین أن

 $x \in H$ لږکن

(1) x*e'=x اذن: H هو العنصر المحايد في e' اذن

ولدينا G إذن $x\in G$ ولدينا $H\subset G$ ولدينا

.(2)x*e=x

x*e' = x*e من (1) و (2) من (1)

e'=e :إذن

. H هو العنصر المحايد في e

G في $X \in H$ و X مماثل $X \in H$

H لنبين أن x^{\prime} ينتمي ل

H لیکن x'' مماثل x فی

x*x' = x*x'' الدينا $\begin{cases} x*x' = e \\ x*x'' = e' = e \end{cases}$

x' = x'' إذن

 $x' \in H$ ومنه

G و y' مماثل y في Y (*

 $x^*y' \in H$ لنبين أن

. $y' \in H$ ومن خلال ما سبق $y \in H$ لدينا

G إذن $x^*y' \in H$ إذن $x^*y' \in H$ إذن $y' \in H$

خاصية (2):

G ليكن $(G,^*)$ زمرة. و H جزء سن

تكون H زمرة جزئية ل (G,*) إذا وفقط إذا كان:

. H ≠Ø (*

 $(\forall (x,y) \in H^2) x * y' \in H (*$

حيث y مماثل y في G.

برهان:

(G,*) نفترض أن H زمرة جزئية ل(G,*).

من خلال الخاصية السابقة لدينا:

 $H \neq \emptyset$

و G مماثل y' مماثل y' في $(\forall (x,y) \in H^2) x^* y' \in H$

) تعرض ان

(II) $(\forall (x,y) \in H^2) x * y' \in H H \neq \emptyset$

.(G,*) لنبين أن H زمرة جزئية ل

 $a \in H : a$ إذن يوجد $H \neq \emptyset$ لدينا -1

 $(a,a)\in H^2$ لدينا

 $a*a' \in H$:(II) إذن من خلال

 $e \in H$ يعنى:

 $x \in H$ ليكن -2

 $e^*x' \in H$ اذن: $(e,x) \in H^2$ لدينا

 $x' \in H$ يعنى:

 $(\forall x \in H)$: $x' \in H$ إذن

 $(1) \Leftrightarrow a * x = b$

 $\Leftrightarrow a'*a*x = a'*b$

 $\Leftrightarrow e^* x = a' * b$

 $\Leftrightarrow x = a' * b$

a'*b هو G إذن (1) نقبل حلا وحيدا في

 $b^*a':G$ وحيدا في b^*a' الطريقة نجد أن (2) تقبل حلا وحيدا في

استنتاج:

 $a \in G$ زمرة. وليكن (G,*)

g:G
ightarrow G f:G
ightarrow G نعتبر التطبيق

 $x \to x^*a$ $x \to a^*x$

التطبيقان £ g تقابلان.

4- زمرة جزئية: Sous - groupe

a) تعریف:

(G,*) لَتَكَن (G,*) زمرة. و H جزء مستقر من

:G نقول إن (H,*) زمرة جزئية ل (G,*) أو H زمرة جزئية ل

إذا وفقط إذا كان (*,*) زسرة.

<u>b) أمثلة:</u>

 $(\mathbb{R},+)$ زمرة جزئية ل $(\mathbb{Q},+)$ \leftarrow

 (\mathbb{C}^*,\times) زمرهٔ جزئیهٔ ل $(\mathbb{R}^*,\times) \leftarrow$

ية المستوى. B(P,P) مجموعة تقابلات المستوى.

کل من $(R_o,o),(H_o,o),(T,o)$ زمرهٔ

(B(P,P),o)

e ليكن (G,*) زمرة عنصرها المحايد \leftarrow

 $.\left(G,st
ight)$ لدينا $\left(\left\{e
ight\},
ight.$ زمرة جزئية ل

(G,*) زمرة جزئية ل(G,*) و

وكل زمرة جزئية H تخالف هتين الزمرتين تسمى زمرة جزئية فعلية non trivial)

ملاحظة:

يمكن لزمرة $\,G\,$ أن تكون غير تبادلية لكن الزمرة الجزئية تبادلية.

- مثال: (B(P,P),o) غير تبادلية.

لكن (T,o) تبادلية.

c) خاصیات:

<u>خاصية (1):</u>

لتكن (G,*) زمرة عنصرها المحايد e ولتكن (G,*) زمرة جزئيك (G,*)

(G,*)

لدينا ما يلي:

 $H \neq \emptyset \leftarrow$

H هو العنصر المحايد في $e \leftarrow$

 $x' \in H$ اذا کان $X \in H$ و x' مماثل x في $x \in H$ اذا کان $x \in H$

 $(\forall (x,y) \in H^2): x * y' \in H \leftarrow$

حيث 'y مماثل y في G.

 $= |z_1| \times \frac{1}{|z_2|} = 1$ $|z_1| = 1$ צٰנ $|z_2|=1$ $z_1 \times z_2^{-1} \in U$ إذن: $(\mathbb{C}^*, imes)$ وبالتالي فإن U زمرة جزئية ل ومنه فإن (U, imes) زمرة تبادلية. تمرین (2): ليكن $n \in \mathbb{N}$ نعتبر المجموعة: $n\mathbb{Z} = \{nk \mid k \in \mathbb{Z}\}$ بين أن $(n\mathbb{Z},+)$ زمرة تبادلية. *) لنبين أن: $(n\mathbb{Z},+)$ زمرة تبادلية. لدينا $\mathbb{Z} \subset \mathbb{Z}$. ونعلم أن $(\mathbb{Z},+)$ زمرة تبادلية . $(\mathbb{Z},+)$ زمرهٔ جزئیهٔ ل $(\mathbb{Z},+)$ زمرهٔ جزئیهٔ ل $n\mathbb{Z} \neq \emptyset$ ($n\mathbb{Z} \neq 0$). $n\mathbb{Z} \neq 0$). $x-y \in n\mathbb{Z}$:ليكن $x \in y$ من $x \in x$ ليكن $x \in x$ الدينا x_2 من y الآن يوجد k_2 بحيث: y بحيث $x = nk_1$ y nkإذن: $x - y = nk_1 - nk_2 = n(k_1 - k_2)$ $k_3 = k_1 - k_2 \in \mathbb{Z}$ $x - y \in n\mathbb{Z}$ إذن: $(\forall (x,y) \in n\mathbb{Z}^2): x-y \in n\mathbb{Z}$ وبالتالي $(n\mathbb{Z},+)$ زمرة جزئية ل $(+,\mathbb{Z})$. إذن $(n\mathbb{Z},+)$ زمرة تبادلية. تمرین (3): e يُنكن (G,.) زمرة عنصرها المحايد $a \in G$ ليكن (centralisateur de a) $C_a = \{x \in G \mid a.x = x.a\}$ نضع: $Z(G) = \{x \in G / (\forall y \in G) : x.y = y.x\}$ (centre de G) $Z\left(G,.
ight)$ بين أن C_{a} و $Z\left(G
ight)$ و رمرتان جزئيتان ل (G,.) نبين أن: C_a زمرة جزئية ل(G,.)a.e = e.a = a : $e \in C_a$ إذن e.a = a.e $C_a \neq \emptyset$ $x.y^{-1} \in C_a$:ليكن $x.y^{-1} \in C_a$ من $y.y \in X$ ليكن $x.y^{-1} \in C_a$ $a.(x.y^{-1}) = (x.y^{-1}).a$

G في X هو مماثل X في H يكن عبر y من -3 . $y' \in H$ اسبق نستنتج أن ما سبق من خلال ما $x^*(y')' \in H$:فجد (II) فجد ومن $(x, y') \in H^2$ $x * y \in H$ يعنى: اذن H جزء مستقر. $\, . \, H \,$ ومنه القانون * قانون تركيب داخلي في 4- لنبين أن (H,*) زمرة: H ون st تجمیعی فی G اذن st تجمیعی فی $(\forall x \in H): e * x = x * e = x$ $e \in H$ H العنصر المحايد في e $x \in H$ ليكن – لدينا $x \in G$ ائن x يعنى: $X \in G$ لدينا الدينا $X \in G$ $x' \in H$ ومن خلال ما سدق لدينا x * x' = x' * x = eإذن x' هو مماثل x في H . وبالتالي (H,*) زمرة جزئية. ملاحظة: 1- *) إذا رمزنا للقانون " * " ب " + " فإن الخاصية المميزة تصبح: $H \neq \emptyset$ - $(\forall (x,y) \in H^2) x - y \in H -$ *) إذا رمزنا للقانون * ب " × " فإن الخاصية المميزة تصبح: $H \neq \emptyset$ - $(\forall (x,y) \in H^2)x.y^{-1} \in H$ $H \subset G$ زمرة و G, *) لككن G, *تكون (H,*) زمرة جزئية ل (G,*) إذا وفقط إذا كان: $H \neq \emptyset$ (* $(\forall (x,y) \in H^2) x + y \in H$ (* (G مماثل x') $(\forall x \in H): x' \in H$ (* تمارين تطبيقية: تمرین (1): $U = \{z \in \mathbb{C} / |z| = 1\}$ نعتبر المجموعة: بين أن (U, imes) زمرة تبادلية. (U,\times) نبين أن (U,\times) زمرة تبادلية: نعلم أن (\mathbb{C}^*, \times) زمرة تبادلية. $(\mathbb{C}^*, imes)$ إذن يكفي أن نبين أن (U, imes) زمرة جزئية ل → لدينا: $(\forall z \in U): |z| = 1$ $z \neq 0$ (اذن: $z \in \mathbb{C}^*$:إذن $U \in \mathbb{C}^*$ اذن: $U \neq \emptyset$ لائن $U \neq 0$ لدينا $U \neq 0$ $z_1 \times z_2^{-1} \in U$:ليكن $z_2 \not z_2$ من U نبين أن $z_2 \not z_3$

 $|z_1 \times z_2^{-1}| = |z_1| \times \frac{1}{z}$

لدينا :

اذن: C_a من y اذن

تمرين:

$$(G,.)$$
 زمرة. $f_a:G o G$ زمرة نعتبر التطبيق: $G\to G$ نعتبر التطبيق: $x o a.x.a^{-1}$ ($G,.$) بين أن f_a تشاكل تقابلي من $(G,.)$ إلى $(1$

$$F = \{ f_a / a \in G \}$$

. F يين أن " o " قانون تركيب داخلي في (a

$$h:G o F$$
 نعتبر التطبيق (b $a o f_a$

ig(F,oig) نحو ig(G,.ig) نحو h تشاكل شمولي من نحو h

استنتج أن (F,o) زمرة. \leftarrow

$$(G,.)$$
 نحو $(G,.)$ نحو $(G,.)$ نحو ($G,.$) نحو ($G,$

$$f_a(x.y) = f_a(x).f_a(y)$$
 : نبین آن

$$f_a(x.y) = a.x.y.a^{-1}$$
 : للينا

=
$$a.x.e.y.a^{-1}$$

= $a.x.a^{-1}.a.y.a^{-1}$
= $(a.x.a^{-1}).(a.y.a^{-1})$
= $f_a(x).f_a(y)$

. إذن f_a كشاكل

:لنبين أن f_a تقابل(*

$$f_a\left(x
ight)=y$$
 . لابحث عن x من $y\in G$ لوکن .

$$f_a(x) = y \Leftrightarrow a.x.a^{-1} = y$$
 : لدينا

$$\Leftrightarrow a^{-1}.a.x.a^{-1} = a^{-1}.y.a$$

$$\Leftrightarrow e.x.a^{-1}.a = a^{-1}.y.a$$

$$\Leftrightarrow x.a^{-1}.a = a^{-1}.y.a$$

$$\Leftrightarrow x = a^{-1}.y.a \in G$$

 $x=a^{-1}.y.a$ إذن كل عنصر y من G من y يقبِل سابق وحيد لذن f_a وأذن f_a

 $.\left(G,.
ight)$ ومنه f_a نحو قابلي من نحو ومنه ومنه ومنه نحو

. F فانون تركيب داخلي في o " قانون تركيب داخلي في (a (2

 $f_a o f_b \in F$ ليكن f_b من f من f من أن

 $: f_a o f_h(x)$ نيكن $x \in G$ ليكن

$$f_{a}of_{b}(x) = f_{a}(f_{b}(x))$$

$$= f_{a}(b.x.b^{-1})$$

$$= a.b.xb^{-1}.a^{-1} = a.b.x.(a.b)^{-1} = f_{ab}(x)$$

$$(\forall x \in G): f_{a}of_{b}(x)f_{ab}(x)$$

$$!نن$$

$$\begin{cases} x.a = a.x (1) \\ y.a = a.y (2) \end{cases}$$

$$(y.a)^{-1} = (a.y)^{-1} \qquad :(2)$$

$$(y.a)^{-1} = y^{-1} a^{-1}$$

$$\vdots$$

$$(y.a)^{-1} = y^{-1} a^{-1}$$

$$\vdots$$

$$(x.a) = a.x \\ a^{-1}.y^{-1} = y^{-1}.a^{-1} \end{cases}$$

$$x.a.a^{-1}.y^{-1} = a.x.y^{-1}.a^{-1}$$

$$x.y^{-1} = a.x.y^{-1}.a^{-1}$$

$$x.y^{-1}.a = a.x.y^{-1}.a^{-1}.a$$

$$x.y^{-1}.a = a.x.y^{-1}.a$$

$$x.y^{-1}.a = a.x.y^{-1}.e$$

$$y.y^{-1}.a = a.x.y^{-1}.e$$

$$y.y.y.a = a.x.y^{-1}.e$$

$$y.y.a =$$

و بنفس الطريقة السابقة نجد:

$$(a.b^{-1}).y = y.(a.b^{-1})$$

إذن:

$$(\forall y \in G)$$
: $(a.b^{-1}).y = y.(a.b^{-1})$

 $ab^{-1} \in Z(G)$ إذن

Z(G,.) ومنه Z(G) زمرة جزئية ل

5- تشاكل زمرة:

خاصيه:

نكن
$$(G,*)$$
 زمرة. E مجموعة مزودة بقانون تركيب داخلي E . و

 $f:(G,*) \to (E,T)$ کشاکل. لاینا ما یلی:

زمرة. (f(G),T) (*

رمرة تبادلية فإن
$$(f(G), \mathsf{T})$$
 زمرة تبادلية فإن $(G, *)$

*) إذا كان
$$f$$
 تشاكل شمولي، فإن: E إذا كان f إذن: $f(G) = E$ زمرة. نقول إن التشاكل يحول زمرة إلى زمرة.

Moutamadris.ma

 $f_a o f_b = f_{ab} \qquad :$

 $a\,b\in G$ إذن $egin{cases} a\in G \ b\in G \end{cases}$

$$f_{ab} \in F$$
 إذن

$$\left(\forall \left(f_a,f_b\right)\in F^2\right)\colon f_aof_b\in F$$
 وبالثالي

 $\cdot F$ قانون تركيب داخلي في \circ .

(F,o) نحو (G,.) نحو h کشاکل شمولي من (G,h) نحو (b

$$h(ab) = h(a)oh(b)$$
 : ليكن ab من b من b لنبين أن

$$h(ab) = f_{ab} = f_a o f_b = h(a) o h(b)$$
 : لدينا .

a الأقل على الأقل f_a من f_a من على الأقل G_a الأقل G_a من G_a من G_a

(F,o) نحو (G,.) نحو شمولي من (G,a) نحو

انبين أن
$$(F,o)$$
 زمرة. $(*$

. لدينا
$$(G,.)$$
 زمرة –

$$-$$
و h تشاكل شمولي من $G,.)$ نحو (F,o) .

إذن (F,o) زمرة.

V) الحلقة:

1) توزيعية قانون بالنسبة الآخر.

ر) دوريعب

 $T_{\mathscr{I}}$ لَّـكن E مجموعة مزودة بقانونها تركيب داخليين * ℓ

نقول إن T توزيعي بالنسبة ل * إذا وفقط إذا كان:

$$(\forall (x, y, z) \in E^3)xT(y*z) = (xTy)*(xTz)(1)$$

$$(x*y)Tz = (xTz)*(yTz)(2)$$

ملاحظة:

 *) إذا كان القانون ${
m T}$ تبادلي فإن إحدى الخاصيتين (1) أو (2) كافية.

*) إذا تحققت الخاصية (1) نقول إن T توزيعي بالنسبة ل * على اليمين.

أمثلة:

. $\mathbb{C},\mathbb{R},\mathbb{Z},\mathbb{Q},\mathbb{N}$ نا النسبة للجمع في كل من \mathbb{C}

2- الجمع ليس توزيعيا بالنسبة للضرب:

$$x + (y \times z) \neq (x + y) \times (x + z)$$

-3 الاتحاد توزيعي بالنسبة للتقاطع. والتقاطع توزيعي بالنسبة للاتحاد في -9 . $P\left(E\right)$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

 $F\left(X,\mathbb{R}
ight)$ الضرب توزيعي بالنسبة للجمع في -4

2) تعریف حلقة:

تعریف:

لَّذَكُن A مجموعة مزودة بقانوني تركيب داخليين * ℓ نقول إن

حْلَقَة إذا وفقط إذا تحققت الشروط التالية: (A,*,T)

- *) (*,*) زمرة تبادلية.
 - *) T تجميعي.
- *) T توزيعي بالنسبة ل *

ملاحظات:

- (*) إذا كان القانون T تبادلي. نقول إن الحلقة A تبادلية.
- *) إذا كان القانون T عنصر محايد، نقول إن الحلقة A واحدية.
- *) نرمز عادة للقانون * + " + " وللقانون T + " ونرمز في هذه الحالة للعنصر المحايد + + 0 أو + 0 ويسمى صفر حلقة. ونرمز للعنصر

المحايد ل ${
m T}$ ب ${
m I}_{A}$ ويعتمى تنظر خطة. وترس سنتم المحايد ل ${
m T}$

3) أمثلة:

 $(\mathbb{C},+, imes),(\mathbb{R},+, imes),(\mathbb{Q},+, imes),(\mathbb{Z},+, imes)$ حلقه تبادلیهٔ و و احدیهٔ.

حلقة تبادلية وواحدية. $(F(X,\mathbb{R}),+, imes)$ حكم حاصة -2

4) خاصیات:

خاصية (1):

e لتكن (A,*,T) حلقة صفرها

 $(\forall a \in A): a T e = e T a = e$ لدينا

ملاحظة:

: الخاصية تصبح الخاصية الخاصية تصبح إذا رمزنا ل $(A,+,\times)$ ب(A,*,T) الخاصية تصبح $(\forall a\in A): a\times 0=0\times a=0$

يرهان:

 $(e^*e=e$ لأن $aT(e^*e)=aTe$

(aTe)*(aTe)=aTe يعني:

(aTe)*(aTe) = (aTe)*e يعنى:

يعني: $a \operatorname{T} e = e$ زمرة)

aTe = e إذن:

 $e\mathrm{T}a=e$ وبنفس الطريقة نبين أن

eTa = aTe = e

خاصية (2):

e مفرها (A,*,T) منفرها

a' نرمز لa' لمماثل a' في

 $(\forall (a,b) \in A^2): a\mathsf{T}b' = a'\mathsf{T}b = (a\mathsf{T}b)'$: للينا

ملاحظه:

إذا رمزنا ل $(A, +, \times)$ ب (A, *, T) الخاصية تصبح:

 $(\forall (a,b) \in A^2): a \times (-b) = (-a) \times b = -(a.b)$

برهان:

(aTb)' = aTb' :نبین أن

يعني: e = (a T b) * (a T b') = e يعني:

- لدينا :

$$(aTb)*(aTb') = aT(b*b')$$

$$= aTe$$

$$= e$$

(aTb)' = aTb'

(aTb)' = a'Tb بنفس الطريقة نبين أن 5) العناصر القابلة للمماثلة:

تعریف:

 \mathcal{E} لَتَكُن (A, *, T) حلقة واحدية وحدتها

نقول إن عنصرا a من A قابل للمماثلة أو يقبل مقلوبا إذا كان له مماثل بالنسبة للقانون T في A.

خاصية:

 \mathcal{E} لَدُكن (A,*,T) حلقة واحدية وحدتها

ولتكن U مجموعة العناصر القابلة للمماثلة.

لدينا: (U, T) زمرة.

 $arepsilon \in U$ لأن U
eq arnothing -

. U قانون تركيب داخلي في ${
m T}$

 $(xTy) \in U$. ليكن $y \in Y$ من $y \in U$ ليكن $y \in Y$

(A,T) لدينا y''y من U إذن يقبلان مماثلين x''y في y''y

. y"Tx" له مماثل هو xTy إذن

xT $y \in U$ إذن

. U قانون تركيب داخلي في ${
m T}$

.U يا تجميعي في A ياذن تجميعي في T

 $(\forall a \in U)$: $\varepsilon Ta = aT\varepsilon = a$

 $\varepsilon \in U$,

U . U هو العنصر المحايد في

(U, T) لنبين أنه يقبل مماثلا $x \in U$ في $x \in U$.

(A,T) في $x^{"}$ الذن يقبل مماثلا $x \in U$

 $x'' \in U$ إذن x'' يقبل مماثلا هو x''

(U,T) في X'' الله هو أن X الله X

وبالتالى (U,T) زمرة.

6) قواسم الصفر في حلقة:

 $\theta: x \to 0$: صفرها $\left(F(\mathbb{R}, \mathbb{R}), +, \times\right)$ نعتبر الحلقة

 $f: x \to |x| - x$ ونعتبر الدالتين:

 $g: x \to |x| + x : g$

لدينا :

$$(\forall x \in \mathbb{R}) : (f.g)(x) = f(x).g(x)$$

$$= (|x| - x)(|x| + x)$$

$$= |x|^2 - x^2$$

$$= x^2 - x^2 = 0 = \theta(x)$$

 $(\forall x \in \mathbb{R}) \quad f.g = \theta$ إذن: $f \neq \theta$, $g \neq \theta$, $f \cdot g = \theta$ $(F(\mathbb{R},\mathbb{R}),+,.)$ قاسمين للصفر في الحلقة g

> تعریف (1): آيكن (A,*,T) حلقة صفرها م

نقول إن عنصرا a من A قاسم للصفر إذا وفقط إذا كان:

 $a T b = 0_A$ بحیث: $b \neq 0_A$ ویوجد $a \neq 0_A$

لَّدُكن (A,*,T) حلقة

نقول إن الحلقة (A,*,T) كاملة (intègre) إذا كانت لا تحتوي علم

ملاحظة:

 0_A نعتبر الحلقة $(A,+,\times)$ صفرها

:يكون a قاسم للصفر إذا كان-1

 $a \times b = 0_{\scriptscriptstyle A}$ ويوجد $b \neq 0_{\scriptscriptstyle A}$ ويوجد $a \neq 0_{\scriptscriptstyle A}$

(A,*,T) كاملة إذا وفق إذا كان-2

 $(\forall (x, y) \in A^2)$ $\begin{cases} x \neq 0_A \\ y \neq 0_A \end{cases} \Rightarrow x.y \neq 0_A$

 $(\forall (x, y) \in A^2) x. y = 0_A \Rightarrow \begin{cases} x = 0_A \\ y = 0. \end{cases}$

دلقهٔ $(\mathbb{C},+,\times);(\mathbb{R},+,\times);(\mathbb{Q},+,\times);(\mathbb{Z},+,\times)$ حلقهٔ -1 كاملة.

. حلقة غير كاملة $(F(\mathbb{R},\mathbb{R}),+,\times)$ حلقة غير كاملة

7) حلقتان هامتان:

a) حلقة المصفوفات المربعة:

→ حلقة المصفوفات المربعة من الرتبة 2:

ى مصفوفة مربعة من الرتبة 2 بمعاملات حقيقية كل جدول على شكل: \mathbb{R} من d,c,b,a حیث d,c,b,a من d

 $M_{\,2}(\mathbb{R})$ ونرمز لمجموعة هذه المصفوفات ب

- نعرف على $M_2(\mathbb{R})$ الجمع والضرب كما يلى:

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} + \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a+a' & b+b' \\ c+c' & d+d' \end{pmatrix} (\leftarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} aa'+cb' & ac'+cd' \\ ba'+db' & bc'+dd' \end{pmatrix} (\leftarrow \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} aa'+cb' & ac'+cd' \\ ba'+db' & bc'+dd' \end{pmatrix} (\leftarrow \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a'' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a'' & b'' \\ c'' & d''$$

خاصية:

حلقة غير تبادلية وواحدية. $(M_2(\mathbb{R}),+, imes)$

$$0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 صفر ها المصفوفة المنعدمة:

وحدتها المصفوفة الوحدة: $I=egin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ وغير كاملة.

→ حلقة المصفوفات المربعة من الرتبة 3:

عريف:

نسمي مصفوفة مربعة من الرتبة 3 بمعاملات حقيقية كل جدول على شكل:

$$a_{ij} \in \mathbb{R}$$
 حبث
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

 $M_3(\mathbb{R})$ ب ونرمز المجموعة هذه المصفوفات

نعرف الجمع والضرب في $M_3(\mathbb{R})$ بما يلي:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{vmatrix} = \begin{vmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \\ a_{31} + b_{31} & a_{32} + b_{32} & a_{33} + b_{33} \end{vmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} \\ a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} \\ a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} \end{pmatrix}$$

باستعمال الترميز يمكن أن نعرف الجمع والضرب كما يلي: نعتدر المصفوفة:

$$\begin{split} B = & \left(b_{ij} \right)_{\substack{1 \leq i \leq 3 \\ 1 \leq j \leq 3}} \qquad ; \qquad A = \left(a_{ij} \right)_{\substack{1 \leq i \leq 3 \\ 1 \leq j \leq 3}} \\ S = & \left(S_{ij} \right)_{\substack{1 \leq i \leq 3 \\ 1 \leq j \leq 3}} \quad \text{a. } A + B \text{ i.i.} \end{split}$$

$$S_{ii} = a_{ii} + b_{ii}$$
 :حث

$$C = \left(C_{ij}
ight)_{\substack{1 \leq i \leq 3 \ 1 \leq j \leq 3}}$$
 ولدينا $A.B$ هي المصفوفة *

$$C_{ij} = \sum_{k=1}^{3} a_{ik} b_{jk}$$
 حيث

مثال:

$$\begin{pmatrix} 1 & 1 & 2 \\ 2 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 1 & -2 \\ 1 & 2 & -1 \\ 1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 7 & -1 \\ -2 & 2 & -2 \\ 3 & 3 & 2 \end{pmatrix}$$

خاصية:

لمصفوفة $(M_3(\mathbb{R}),+, imes)$ حلقة غير تبادلية، غير كاملة وواحدية صفرها المصفوفة

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 وحدثها $0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$: أمنعدمة:

$\mathbb{Z}/n\mathbb{Z}$ الطقة (b)

سبق وأن عرفنا الجمع والضرب في $\mathbb{Z}/n\mathbb{Z}$ كما يلي: $\overline{x}+\overline{y}=\overline{x+y}$ $\overline{x},\overline{y}=\overline{x,y}$

خاصية:

 $\overline{1}$ علقة تبادلية واحدية صفرها $\overline{0}$ وحدتها $\overline{1}$

ملاحظة

:) نعتبر (x,+,x) لدينا (*

$$\overline{2}.\overline{3} = \overline{0}$$

$$\overline{2} \neq \overline{0} \neq \overline{3} \neq \overline{0}$$

إذن $\overline{2}$ و $\overline{3}$ قاسمان للصفر.

إذن $(\mathbb{Z}/n\mathbb{Z},+, imes)$ حلقة غير كاملة.

*) نعتبر (x,+,x) حیث n أولی.

 $(\forall \overline{x}, \overline{y} \in \mathbb{Z}/n\mathbb{Z})$

$$\overline{x}.\overline{y} = \overline{0} \Rightarrow \overline{x.y} = \overline{0}$$

$$\Rightarrow xy \equiv 0[n]$$

$$\Rightarrow n/xy$$

$$\Rightarrow n/x \text{ if } n/y$$

$$\Rightarrow x \equiv 0[n] \text{ if } y \equiv 0[n]$$

$$\Rightarrow \overline{x} = \overline{0} \text{ if } \overline{y} = \overline{0}$$

$$\text{(i.i.)} (\mathbb{Z}/n\mathbb{Z}, +, \times) \text{ which is all } x \neq 0$$

) نعتبر الحلقة (x,+,x) حيث n غير أولي. $(\mathbb{Z}/n\mathbb{Z},+,x)$

إذن n يقبل قاسم فعلى موجب n.

 $n=n_1+n_2$ يعني:

 n_1 قاسم فعلي موجب إذن n_2 قاسم فعلي موجب . $n_1 \not\equiv 0 \begin{bmatrix} n \end{bmatrix}$ لدينا $n \times n_1 \not\equiv 1$ إذن $n \times n_1$ يعني $1 < n_1 < n$ و $n_2 \not\equiv 0 \begin{bmatrix} n \end{bmatrix}$ و $n \times n_2 \not\equiv 1$

$$\overline{n_2}
eq \overline{0}$$
 يعني: $n - \overline{0} \neq \overline{0}$ يعني:
$$n_1.n_2 = n$$
 ولاينا:
$$\overline{n_1.n_2} = \overline{n}$$
 يعنى:

 $\overline{n}_1.\overline{n}_2 = \overline{0}$ عني:

إذن \overline{n}_2 $g\overline{n}_1$ قاسمان للصفور. $(\mathbb{Z}/n\mathbb{Z},+, imes)$ حلقة غير كاملة.

خاصية

الحلقة $(\mathbb{Z}/n\mathbb{Z},+, imes)$ كاملة إذا وفقط إذا كان n أولي.

تمرين:

 $n \in \mathbb{N}^*$ ، $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ نعتبر الحلقة معتبر العناصر القابلة للمماثلة.

- لدينا :

(قابلة للمماثلة)
$$\Leftrightarrow$$
 $(\exists \overline{x}' \in \mathbb{Z}/n\mathbb{Z}) : \overline{x}.\overline{x}' = \overline{1}$

$$\Leftrightarrow (\exists x' \in \mathbb{Z}) : x.x' \equiv 1[n]$$

$$\Leftrightarrow$$
 $(\exists x', k \in \mathbb{Z}) : xx' = 1 + nk$

$$\Leftrightarrow$$
 $(\exists x', k \in \mathbb{Z}): xx' - nk = 1$

$$\Leftrightarrow x \land n = 1$$

إذن مجموعة العناصر التي تقبل مقلوبا هي:

$$U = \{ \overline{x} \in \mathbb{Z} / n\mathbb{Z} / x \land n = 1 \}$$

ملاحظة:

. لدينا (U, imes) زمرة تبادلية

VI) الجسم: Corps

1) تعریف:

T مجموعة مزودة بقانوني تركيب داخليين st و k

نقول إن (K,*,T) جسم إذا وفقط إذا تحقق ما يلى:

) (K,,T) دلقة واحدية.

*) كل عنصر يخالف صفر الحلقة يقبل مماثلا بالنسبة ل T.

ملاحظة:

المان القانون T تبادلي نقول إن الجسم K تبادلي. -1

-2 یکون (K,*,T) جسما إذا وفقط إذا کان:

زمرة.
$$(K - \{0_k\}, T)$$
 زمرة.

2) أمثلة:

ادلی. $(\mathbb{C},+,\times),(\mathbb{R},+,\times),(\mathbb{Q},+,\times)$ جسم تبادلی. -1

p نعتبر الحلقة $p(\mathbb{Z}/p\mathbb{Z},+,\times)$ حيث ولى.

لذبين أنها جسم.

– لدينا $(\mathbb{Z}/p\mathbb{Z},+,\times)$ حلقة واحدية.

 $\overline{x} \neq \overline{0}$ ليكن –

 $p \times x$ يعنى $x \neq 0 [p]$

 $p \wedge x = 1$ وبما أن p أولى فإن

اذن حسب Bezout يوجد V بحيث:

pu + xv = 1

 $\overline{p}.\overline{u} + \overline{x}.\overline{v} = \overline{1}$ $\overline{x}.\overline{v} = \overline{1}$ يعنى:

 \overline{v} بقبل مماثلا هو \overline{x}

اذن کل عنصر $\overline{x} \neq \overline{0}$ یقبل مقلوبا.

ومنه $(\mathbb{Z}/p\mathbb{Z},+,\times)$ جسم.

خاصية:

اذا کان p أولي فإن $(\mathbb{Z}/p\mathbb{Z},+, imes)$ جسم تبادلی.

 $(M, (\mathbb{R}), +, \times)$ نعتبر الحلقة -3

- لدينا $(M_2(\mathbb{R}),+, imes)$ حلقة واحدية.

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 is a range of the interval $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

لنتحقق هل A تقبل مقلوبا.

$$A.A'=A'.A=I$$
 : نبحث عن $A'=egin{pmatrix} a & c \\ b & d \end{pmatrix}$ نبحث عن

لددنا :

$$A.A' = I \Leftrightarrow \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}. \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\Leftrightarrow \begin{pmatrix} a+b & c+d \\ a+b & c+d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\Leftrightarrow \begin{cases} a+b=1 \\ c+d=0 \\ a+b=0 \\ c+d=0 \end{cases}$$

و هذا مستحيل.

A' إذن A لا تقبل مقلوبا

ومنه $(M_2(\mathbb{R}),+, imes)$ لیس جسما .

وبنفس نجد أن $(M_3(\mathbb{R}),+, imes)$ ليس جسما.

3) خاصیات:

خاصية (1):

الدكن $(K,+,\times)$ جسما.

. لدينا كل عنصر من $\{0_k\}$ منتظم بالنسبة للضرب

$$(\forall a \in K - \{0_k\})(\forall (x, y) \in K^2):$$

$$\begin{cases} a.x = a.y \Rightarrow x = y \\ x.a = y.a \Rightarrow x = y \end{cases}$$

. ليكن (K,+, imes) جسما

 $(\forall (x, y) \in K^2): x.y = 0_k \Rightarrow x = 0_k \text{ if } y = 0_k$ استنتاج: كل جسم هو حلقة كاملة.

. ليكن $(K,+,\times)$ جسما

 $a \times x = b$ is in its in $a \times x = b$

. $x = a^{-1}b$ إذا كان $a \neq 0$ فإن المعادلة تقبل حلا وحيدا *

 $a=0_k$ إذا كان $a=0_k$ و $b\neq 0_k$ و إن المعادلة ليس لها حل.

S=K و b=0 فإن a=0

 $x \times a = b$ قانسية للمعادلة الشيء بالنسبة المعادلة

 $(\overline{0} = \overline{p})$

$$L = egin{cases} f_a: \mathbb{R}
ightarrow \mathbb{R} \ x
ightarrow ax / a \in \mathbb{R} \ \end{cases}$$
 بين أن: $(L,+,o)$ جسم تبادلي. (2)

$$E=egin{cases} M_{(a,b)}=egin{pmatrix} a & b \ -b & a+b \end{pmatrix}/a,b\in\mathbb{R} \end{pmatrix}$$
 نعتبر بين أن $(E,+, imes)$ جسم تبادلي.