Chapter09 RREF

- 1. RREF v.s. Linear Combination
 - a) Column Correspondence Theorem
 - i) If a_j is a linear combination of other columns of A \rightarrow r_j is a linear combination of the corresponding columns of R with the same coefficient
 - j) The RREF of augmented matrix [A b] is [R b']

Ax = b and Rx = b' have the same solution set

The RREF of matrix A is R

Ax = 0 and Rx = 0 have the same solution set

- k) The relations between the rows are changed
- b) Span
 - i) The span of the rows are the same
 - j) The span of the columns are different
- 2. RREF v.s. Independent
 - a) The pivot columns are independent
 - b) The non-pivot columns are the linear combination of the pivot columns
 - c) All columns are independent, every column in RREF(A) is standard vector
 - d) More than m vectors in \mathbb{R}^m must be dependent
- 3. RREF v.s. Rank
 - a) Num of independent columns = num of nonzero rows
 - b) $Rank(A) \leq min(m, n)$
 - c) If m < n, the columns of A are dependent
 - d) Rank = num of basic variables
 - e) Nullity = num of free variables
- 4. RREF v.s. Span
 - a) Rank A \neq Rank [A b] \rightarrow Ax = b is inconsistent
 - b) Ax = b is consistent for every b \rightarrow Rank A = num of rows Every b is in the span of the columns of A Every b belongs to $Span\{a_1,a_2,\ldots,a_n\}$ $Span\{a_1,a_2,\ldots,a_n\}=R^m$ m independent vectors can span R^m