MA1521 CALCULUS FOR COMPUTING

Wang Fei

matwf@nus.edu.sg

Department of Mathematics Office: S17-06-16 Tel: 6516-2937

Chapter 3: Sequences and Series	2
Definition	3
Limit of Sequence	7
Limit Laws	9
Monotonic Sequences	4
Examples	7
Series	9
Geometric Series	0
Telescoping Series	5
Ratio Test	7
Root Test	0
Power Series	3
Convergence of Power Series	5
Convergence Theorem	8
Power Series Representation4	3
Differentiation of Power Series	6
Taylor Series	8
Test for Divergence	3
Comparison Test	5
<i>p</i> -Series	7
Limit Comparison Test	5
Alternating Series	8
Absolute Convergence	1

What is a Sequence?

- Let's look at some examples of sequences:
 - \circ Positive integers: $1, 2, 3, \ldots, n, \ldots$
 - Constant sequence: $1, 1, 1, \ldots, 1, \ldots$
- **Definition**. A **sequence** is a list of numbers written in a definite order:

$$a_1, a_2, a_3, \ldots, a_n, \ldots$$

- \circ a_1 : the 1^{st} term; a_2 : the 2^{nd} term; ..., a_n : the n^{th} term.
- The sequence is denoted by $\{a_n\}_{n=1}^{\infty}$, or simply $\{a_n\}$.
 - $\circ \quad \{n\}_{n=1}^{\infty}, \, \{1\}_{n=1}^{\infty}, \, \{2^n\}_{n=1}^{\infty} \text{ and } \left\{\frac{(-1)^{n+1}}{\sqrt{n}}\right\}_{n=1}^{\infty}.$

3/78

What is a Sequence?

• Consider the sequence $a_1, a_2, a_3, \ldots, a_n, \ldots$

- It defines a function $f: \mathbb{Z}^+ \to \mathbb{R}$, $f(n) = a_n$.
- Conversely, given a function $f: \mathbb{Z}^+ \to \mathbb{R}$, it defineds a sequence $\{a_n\}_{n=1}^{\infty}$ such that $a_n = f(n)$.
- Therefore, we have an alternative definition for sequence:
 - \circ A sequence is a function $\mathbb{Z}^+ \to \mathbb{R}$.

 $\bullet \quad \left\{\cos\frac{n\pi}{6}\right\}_{n=1}^{\infty}.$

5/78

Examples

There are some sequences which cannot be defined by giving a simple formula for the terms, $n \mapsto a_n$.

$$\circ \quad \sqrt{2}, \sqrt{\sqrt{2}+2}, \sqrt{\sqrt{\sqrt{2}+2}+2}, \dots$$

•
$$a_1 = \sqrt{2}, a_2 = \sqrt{a_1 + 2}, a_3 = \sqrt{a_2 + 2}, \dots$$

• $a_1 = \sqrt{2}$ and $a_n = \sqrt{a_{n-1} + 2}$ for $n \ge 2$.

•
$$a_1 = \sqrt{2}$$
 and $a_n = \sqrt{a_{n-1} + 2}$ for $n \ge 2$.

$$\circ \quad 0,1,1,2,3,5,8,13,21,34,55,\ldots.$$

$$\bullet \quad F_0 = 0, F_1 = 1 \text{ and } F_n = F_{n-1} + F_{n-2} \text{ for } n \geq 2.$$

- It is the Fibonacci sequence.
 - Leonardo da Pisa, (1170s or 1180s–1250) Italian mathematician.

•
$$F_n = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n\sqrt{5}}$$
.

Limit of Sequence

- Since a sequence can be viewed as a function, we can similarly talk about the limit of sequence.
- $\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$ Example.

- $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \frac{7}{8}, \frac{8}{9}, \frac{9}{10}, \frac{10}{11}, \frac{11}{12}, \frac{12}{13}, \frac{13}{14}, \frac{14}{15}, \frac{15}{16}, \dots$ As n gets larger, the term $a_n = \frac{n}{n+1}$ approaches 1.

We may use the similar notation as for function,

$$\lim_{n \to \infty} \frac{n}{1+n} = 1.$$

7 / 78

Limit of Sequence

- **Definition**. Let $\{a_n\}$ be a sequence.
 - The limit of $\{a_n\}$ is L if " a_n is arbitrarily close to L by taking n sufficiently large".
 - It is denoted by $\lim_{n \to \infty} a_n = L$. $\circ \quad \{a_n\} \text{ is called } \begin{cases} \text{convergent}, & \text{if } \lim_{n \to \infty} a_n \text{ exists}, \\ \text{divergent}, & \text{otherwise}. \end{cases}$
- **Definition**. Let $\{a_n\}$ be a sequence.
 - The limit of $\{a_n\}$ is ∞ (resp. $-\infty$) if " a_n is arbitrarily large (resp. arbitrarily negatively large) by taking n sufficiently large". It is denoted by $\lim_{n\to\infty}a_n=\infty$ (resp. $-\infty$).
 - **Remark.** If $\lim a_n = \pm \infty$, then $\{a_n\}$ is divergent.

- $\bullet \quad \text{We have known that } \lim_{x\to\infty}\frac{x}{x+1}=1.$
 - Can we use this fact to show that $\lim_{n\to\infty} \frac{n}{n+1} = 1$?

• $\lim_{x\to\infty}\cos\frac{\pi x}{6}$ does not exist.

Can we conclude that $\lim_{n \to \infty} \cos \frac{\pi n}{6}$ does not exist as well?

9/78

Limit Laws for Sequences

- Theorem. Let f be a function and $\{a_n\}$ be the sequence such that $a_n=f(n)$ for all n.
 - $\circ \quad \text{If } \lim_{x \to \infty} f(x) = L \text{, then } \lim_{n \to \infty} a_n = L.$
- **Example**. Evaluate $\lim_{n\to\infty} \frac{\ln n}{n}$.
 - $\circ \quad \text{Let } f(x) = \frac{\ln x}{x}, \, (x>0). \text{ Then } f(n) = a_n \text{ for all } n. \\ \lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{1/x}{1} = 0 \Rightarrow \lim_{n \to \infty} \frac{\ln n}{n} = 0.$
- **Example**. Evaluate $\lim_{n\to\infty} \sqrt[n]{n}$.
 - $\circ \quad \text{Let } f(x) = x^{1/x} \text{, } (x > 0) \text{. Then } f(n) = \underline{a}_n \text{ for all } n.$

$$\lim_{x \to \infty} x^{1/x} = \lim_{x \to \infty} e^{\frac{\ln x}{x}} = \exp\left[\lim_{x \to \infty} \frac{\ln x}{x}\right] = e^0 = 1.$$

$$\Rightarrow \lim_{n \to \infty} \sqrt[n]{n} = 1.$$

- We CANNOT use the theorem for the following cases:
 - Evaluate $\lim_{n\to\infty} \frac{n!}{n^n}$
 - Let $f(x) = \cdots$?
 - n! is only defined for natural numbers. It cannot be extended easily to a function on real numbers.
 - $\circ \quad \text{Evaluate } \lim_{n \to \infty} \sin n\pi.$
 - Let $f(x) = \sin x\pi$. Then $f(n) = q_n$ for all n.
 - $\lim_{x\to\infty} f(x) \text{ doesn't exist. So } \lim_{n\to\infty} a_n \text{ doesn't exist?}$ However, $\sin n\pi = 0$ for all n. $\lim_{n\to\infty} \sin n\pi = 0$.

11 / 78

Limit Laws for Sequences

- **Theorem**. Let $\{a_n\}$ and $\{b_n\}$ be convergent sequences.
 - $\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n.$
 - $\lim_{n \to \infty} (c \, a_n) = c \lim_{n \to \infty} a_n.$

 - $\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n.$ $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}, \text{ if } \lim_{n \to \infty} b_n \neq 0.$
- $\lim_{n \to \infty} a_n \Leftrightarrow \lim_{n \to \infty} a_{2n-1} = \lim_{n \to \infty} a_{2n} = L.$ Theorem.
- **Theorem**. Suppose $a_n \leq b_n$ for all integer n.
 - $\circ \quad \text{If } \lim_{n \to \infty} a_n = L \text{ and } \lim_{n \to \infty} b_n = M \text{, then } L \leq M.$
- **Squeeze Theorem**. Suppose $a_n \leq b_n \leq c_n$ for all n.
 - $\circ \quad \text{If } \lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L \text{, then } \lim_{n \to \infty} b_n = L.$

Limit Laws for Sequences

- **Example.** If $\lim_{n\to\infty}|a_n|=0$ then $\lim_{n\to\infty}a_n=0$.
 - $\circ \quad \text{Note that } -|a_n| \leq a_n \leq |a_n| \text{ for all } n,$ $\lim_{n\to\infty}(-|a_n|)=-\lim_{n\to\infty}|a_n|=0=\lim_{n\to\infty}|a_n|.$ o By Squeeze Theorem $\lim_{n\to\infty}a_n=0.$

 - $\circ \quad \text{E.g., } \lim_{n \to \infty} \left| \frac{(-1)^n}{n} \right| = \lim_{n \to \infty} \frac{1}{n} = 0 \Rightarrow \lim_{n \to \infty} \frac{(-1)^n}{n} = 0.$
- **Example.** Evaluate $\lim_{n\to\infty}\frac{n!}{n^n}$

$$\circ \quad \frac{n!}{n^n} = \underbrace{\frac{1 \cdot 2 \cdot 3 \cdot \cdots (n-1) \cdot n}{\underbrace{n \cdot n \cdot n \cdot n \cdot n}}}_{\text{n times}} = \frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \cdot \cdots \frac{n-1}{n} \cdot \frac{n}{n}.$$

$$\circ \quad 0 \leq \frac{n!}{n^n} \leq \frac{1}{n}. \quad \lim_{\substack{n \to 0 \\ n \to 0}} 0 = 0 \\ \lim_{n \to 0} \frac{1}{n} = 0 \end{cases} \Rightarrow \lim_{\substack{n \to \infty \\ n \to \infty}} \frac{n!}{n^n} = 0.$$

13 / 78

Monotonic Sequences

- Similarly as increasing/decreasing functions, we can talk about increasing/decreasing sequences.
- **Definition**. Let $\{a_n\}$ be a sequence.
 - $\circ \quad \{a_n\} \text{ is called } \left\{ \begin{array}{ll} \text{increasing} & \text{if } a_n < a_{n+1} \text{ for all } n, \\ \text{decreasing} & \text{if } a_n > a_{n+1} \text{ for all } n. \end{array} \right.$
 - \circ $\{a_n\}$ is called monotonic

if it is either increasing or decreasing.

 $\left\{\frac{n}{n+1}\right\}$ increases; $\left\{\frac{10-n}{10}\right\}$ decreases; $\left\{\sin\frac{n\pi}{6}\right\}$ neither.

• Show that the sequence $a_n = \frac{3}{n+5}$ is decreasing.

- i). $n < n+1 \Rightarrow n+5 < (n+1)+5$ $\Rightarrow \frac{3}{n+5} > \frac{3}{(n+1)+5} \Rightarrow a_n > a_{n+1}$.
- ii). $a_n a_{n+1} = \frac{3}{n+5} \frac{3}{n+6} = \frac{3}{(n+5)(n+6)} > 0.$
- iii). $\frac{a_{n+1}}{a_n} = \frac{3}{n+6} / \frac{3}{n+5} = \frac{n+5}{n+6} < 1$, $(a_n > 0)$.
- iv). Let $f(x) = \frac{3}{x+5}$. $f'(x) = -\frac{3}{(x+5)^2} < 0$ for x > 0.
 - f is decreasing on $\mathbb{R}^+ \Rightarrow \{a_n\}$ is decreasing.

15 / 78

Examples

- Determine if $a_n = \frac{n}{n^2 + 1}$ is increasing or decreasing.
 - $\circ \quad \mathbf{Let} \ f(x) = \frac{x}{x^2 + 1}.$
 - $f'(x) = \frac{1 x^2}{(x^2 + 1)^2} < 0 \text{ for } x > 1.$
 - $\circ \quad f \text{ is decreasing on } [1,\infty) \Rightarrow \{a_n\} \text{ is decreasing.}$
- Determine if $a_n = \frac{n!}{n^n}$ is increasing or decreasing.

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)!/(n+1)^{n+1}}{n!/n^n} = \frac{(n+1)!n^n}{n!(n+1)^{n+1}}$$
$$= \frac{n^n}{(n+1)^n} = \left(\frac{n}{n+1}\right)^n < 1.$$

• Therefore, $\{a_n\}$ is decreasing.

- Consider a segment of length 1.
 - o Cut half in the first day.
 - o Cut half of the remaining in the second day.
 - o In general, cut half of the remaining everyday.

$$a_1 = \frac{1}{2}, a_2 = \frac{1}{4}, a_3 = \frac{1}{8}, \dots, a_n = \frac{1}{2^n}, \dots$$

How much have we cut by the $n^{\rm th}$ day?

- \circ We shall evaluate the sum of the first n terms:
 - $S_n = a_1 + a_2 + \dots + a_n = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}$.

17 / 78

Examples

• Consider an 8×8 chessboard.

- \circ Put 1 gain of rice in the first square of the chessboard.
- o Doubling the number in the next square.
- How much rice do we need to fill in the chessboard?

$$\circ$$
 $a_1 = 1, a_2 = 2, a_3 = 4, \dots, a_n = 2^{n-1}, \dots$

$$a_1 = 1, a_2 = 2, a_3 = 4, \dots, a_n = 2^{n-1}, \dots$$

 $S_{64} = a_1 + a_2 + \dots + a_{64} = 1 + 2 + 4 + 8 + \dots + 2^{63}.$

Series

- Let $\{a_n\}_{n=1}^{\infty}$ be a sequence. Then the sum of the first n terms of $\{a_n\}$ forms a new sequence
 - $\circ S_1 = a_1;$

 - $S_1 = a_1 + a_2;$ $S_2 = a_1 + a_2;$ $S_3 = a_1 + a_2 + a_3;$ $S_4 = a_1 + a_2 + a_3;$

$$\circ$$
 $S_n = a_1 + a_2 + \dots + a_n = \sum_{i=1}^n a_i.$

 $\{S_n\}$ is called the sequence of **partial sums** of $\{a_n\}$.

$$\circ \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{i=1}^n a_i := \sum_{n=1}^\infty a_n.$$

This quantity is called an infinite series, or simply series.

$$\circ \quad \sum_{n=1}^{\infty} a_n \text{ is } \left\{ \begin{array}{ll} \text{convergent}, & \text{if } \{S_n\} \text{ is convergent}, (\text{hội tụ}) \\ \text{divergent}, & \text{if } \{S_n\} \text{ is divergent. (phân kì)} \end{array} \right.$$

19/78

Examples

- Let us consider the examples shown at the beginning.
 - **Example 1**. $a_n = \frac{1}{2^n}$. Then $\sum_{n=1}^{\infty} a_n$ is convergent.
 - Then $S_n = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} = 1 \frac{1}{2^n}$.
 - $\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 \frac{1}{2^n} \right) = 1.$
 - \circ **Example 2**. $a_n = 2^{n-1}$. Then $\sum_{n=1}^{\infty} a_n$ is divergent.

 - Then $S_n = 1 + 2 + 2^2 + \dots + 2^{n-1} = 2^n 1$. $\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n = \lim_{n \to \infty} (2^n 1) = \infty$.
- They are special cases of **geometric series**.

The Geometric Series

- Consider the geometric sequence $(a \neq 0)$.
 - \circ $a_1 = a, a_2 = ar, a_3 = ar^2, \dots, a_n = ar^{n-1}, \dots$
 - \circ a is the scalar factor, r is the common ratio.
- $\sum_{n=1}^{\infty} ar^{n-1}$ is called a **geometric series**.

 - $S_n = a + ar + ar^2 + \dots + ar^{n-2} + ar^{n-1}.$ $S_n = ar + ar^2 + ar^3 + \dots + ar^{n-1} + ar^n.$

Then $(1-r)S_n = a - ar^n = a(1-r^n)$.

- $$\begin{split} \circ & S_n = \left\{ \begin{array}{ll} \frac{a(1-r^n)}{1-r}, & \text{if } r \neq 1, \\ na, & \text{if } r = 1. \end{array} \right. \\ \circ & \sum\limits_{n=1}^{\infty} ar^{n-1} = \lim\limits_{n \to \infty} S_n = \left\{ \begin{array}{ll} \frac{a}{1-r}, & \text{if } |r| < 1, \\ \text{divergent}, & \text{if } |r| \geq 1. \end{array} \right. \end{split}$$

21 / 78

Examples

- Is the series $\sum_{n=1}^{\infty} 2^{2n} 3^{1-n}$ convergent?
 - $\circ \quad \frac{a_{n+1}}{a_n} = \frac{2^{2(n+1)}3^{1-(n+1)}}{2^{2n}3^{1-n}} = \frac{4}{3} > 1.$
 - $\circ \quad \text{Then } \sum_{n=1}^{\infty} 2^{2n} 3^{1-n} = \sum_{n=1}^{\infty} 4 \left(\frac{4}{3}\right)^{n-1} \text{ is divergent.}$
- Is $\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \cdots + x^n + \cdots$ convergent?
 - \circ Geometric series of scalar factor 1, common ratio x.
 - $\circ \quad \textstyle\sum\limits_{n=0}^{\infty} x^n = \left\{ \begin{array}{ll} \displaystyle\frac{1}{1-x}, & \text{if } |x| < 1, \\ \text{divergent}, & \text{if } |x| \geq 1. \end{array} \right.$
 - \circ The Taylor series for $\frac{1}{1-r}$ about 0.

- Evaluate $\frac{1}{\sqrt{11}} + \frac{1}{\sqrt{33}} + \frac{1}{\sqrt{99}} + \frac{1}{\sqrt{297}} + \cdots$
 - \circ This is a geometric series with common ratio $r = \frac{1}{\sqrt{3}}$

$$\circ \quad \frac{1}{\sqrt{11}} + \frac{1}{\sqrt{33}} + \frac{1}{\sqrt{99}} + \frac{1}{\sqrt{297}} + \dots = \frac{\frac{1}{\sqrt{11}}}{1 - \frac{1}{\sqrt{3}}}$$

- Evaluate $\sum_{n=1}^{\infty} \frac{3^{n-1} + 3^{n+1}}{5^n}.$
 - $\sum_{n=1}^{\infty} \frac{3^{n-1}}{5^n} = \sum_{n=1}^{\infty} \frac{1}{5} \left(\frac{3}{5}\right)^{n-1} = \frac{\frac{1}{5}}{1 \frac{3}{5}} = \frac{1}{2}.$ $\sum_{n=1}^{\infty} \frac{3^{n+1}}{5^n} = \sum_{n=1}^{\infty} \frac{9}{5} \left(\frac{3}{5}\right)^{n-1} = \frac{\frac{9}{5}}{1 \frac{3}{5}} = \frac{9}{2}.$
 - \circ Answer = 1/2 + 9/2 = 5.

23 / 78

Examples

- · Recall that
 - $\circ \quad \text{Geometric series} = \frac{\text{leading term}}{1 \text{common ratio}} \text{ for } |\text{ratio}| < 1.$
- $\bullet \quad \mbox{Find the range of } x \mbox{ for which the series converges.}$

$$\circ \sum_{n=1}^{\infty} \left(\frac{2x-1}{3} \right)^{n-2} = \frac{\frac{3}{2x-1}}{1 - \frac{2x-1}{3}} = \frac{9}{(2x-1)(4-2x)}.$$

• It converges $\Leftrightarrow \left| \frac{2x-1}{3} \right| < 1 \Leftrightarrow -1 < x < 2.$

$$\circ \sum_{n=1}^{\infty} \frac{2^{n-1} + 2^n + 2^{n+1}}{(x+1)^n} = \frac{\frac{7}{x+1}}{1 - \frac{2}{x+1}} = \frac{7}{x-1}.$$

• It converges $\Leftrightarrow \left| \frac{2}{x+1} \right| < 1 \Leftrightarrow x < -3 \text{ or } x > -1.$

• Is the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ convergent?

$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}.$$

$$S_n = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{n(n+1)}$$

$$= \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right)$$

$$+ \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= 1 - \frac{1}{n+1}.$$

$$\circ \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1.$$

25 / 78

Telescoping Series

- The partial sum of a **telescoping series** has only a fixed number of terms after cancelation. Such evaluation is called the **method of differences**.
- Example. Evaluate $\sum_{n=1}^{\infty} \frac{n}{(n+1)!}$

$$\frac{n}{(n+1)!} = \frac{(n+1)-1}{(n+1)!} = \frac{n+1}{(n+1)!} - \frac{1}{(n+1)!} = \frac{1}{n!} - \frac{1}{(n+1)!}$$

$$S_n = \frac{1}{2!} + \frac{2}{3!} + \dots + \frac{n}{(n+1)!}$$

$$= \left(\frac{1}{1!} - \frac{1}{2!}\right) + \left(\frac{1}{2!} - \frac{1}{3!}\right) + \dots + \left(\frac{1}{n!} - \frac{1}{(n+1)!}\right)$$

$$= \frac{1}{1!} - \frac{1}{(n+1)!}.$$

$$\sum_{n=1}^{\infty} \frac{n}{(n+1)!} = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 - \frac{1}{(n+1)!} \right) = 1.$$

The Ratio Test

- Consider the series $\sum_{n=1}^{\infty} a_n$. Can we know its convergence by checking the ratio of consecutive terms?
 - $\circ \quad \text{If } \left| \frac{a_{n+1}}{a_n} \right| = L \text{ for all } n \text{, then } \sum_{n=1}^{\infty} |a_n| \text{ is a geometric series with common ratio } L.$
 - $\sum_{n=1}^{\infty} |a_n|$ is convergent \Leftrightarrow if |L| < 1.
 - o If $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L$, then $\sum_{n=1}^{\infty}|a_n|$ is "more or less the same" as the geometric series of common ratio L.
 - Do we have a result of convergence for $\sum\limits_{n=1}^{\infty}a_n$ similar as that for the geometric series?

27 / 78

The Ratio Test

• Theorem. Let $\sum_{n=1}^{\infty} a_n$ be a series.

Suppose $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L$, where $0\leq L\leq\infty$.

- $\circ \quad \text{If } 0 \leq L < 1 \text{, then } \sum_{n=1}^{\infty} a_n \text{ is convergent.}$
- $\quad \circ \quad \text{If } 1 < L \leq \infty \text{, then } \sum_{n=1}^{\infty} a_n \text{ is divergent.}$
- \circ If L=1, the convergence of $\sum\limits_{n=1}^{\infty}a_{n}$ is inconclusive.
- Note.
 - $\circ \quad \text{The ratio test does not work if } \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \neq L, \infty.$
 - $\circ \quad \text{The ratio test does not work if } \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1.$

• $\sum_{n=1}^{\infty} \frac{(-1)^n n^3}{3^n}$ is convergent.

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(-1)^{n+1} (n+1)^3 / 3^{n+1}}{(-1)^n n^3 / 3^n} \right| = \frac{(n+1)^3}{3n^3}.$$

$$\left| \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)^3}{3n^3} = \lim_{n \to \infty} \frac{(1+\frac{1}{n})^3}{3} = \frac{1}{3}.$$

• $\sum_{n=1}^{\infty} \frac{n^n}{n!}$ is divergent.

$$\circ \left| \frac{a_{n+1}}{a_n} \right| = \frac{(n+1)^{n+1}/(n+1)!}{n^n/n!} = \frac{(n+1)^n}{n^n}.$$

$$\circ \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

•
$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

29 / 78

The Root Test

- Let $\sum_{n=1}^{\infty} a_n$ be a series.
 - $\circ \quad \text{If } \sqrt[n]{|a_n|} = L \text{, then } |a_n| = L^n,$
 - $\sum_{n=1}^{\infty} |a_n|$ is a geometric series of common ratio L.
 - $\circ \quad \text{If } \lim_{n \to \infty} \sqrt[n]{|a_n|} = L \text{, then } |a_n| \text{ is } \text{``similar" to } L^n,$
 - $\sum_{n=1}^{\infty} |a_n|$ is thus "more or less the same" as $\sum_{n=1}^{\infty} L^n$.
 - We can guess that the root test should have the same conclusion as the ratio test.
 - They should have the same advantage, as well as the same disadvantage.
 - However, sometimes the root test works better.

The Root Test

• Theorem. Let $\sum\limits_{n=1}^{\infty}a_n$ be a series.

Suppose $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L$, where $0 \le L \le \infty$.

- $\circ \quad \text{If } 0 \leq L < 1 \text{, then } \sum_{n=1}^{\infty} a_n \text{ is convergent,}$
- $\quad \text{o} \quad \text{If } 1 < L \leq \infty \text{, then } \sum_{n=1}^{\infty} a_n \text{ is divergent.}$
- $\circ\quad \mbox{If }L=1\mbox{, the convergence of }\sum_{n=1}^{\infty}a_{n}\mbox{ is inconclusive}.$
- Example. $\sum_{n=1}^{\infty} \left(\frac{2n+3}{3n+2}\right)^n$ is convergent.

$$\circ \sqrt[n]{\left(\frac{2n+3}{3n+2}\right)^n} = \frac{2n+3}{3n+2} = \frac{2+\frac{3}{n}}{3+\frac{2}{n}} \to \frac{2}{3} \text{ as } n \to \infty.$$

31 / 78

Examples

 $\bullet \quad \sum_{n=1}^{\infty} \frac{n^n}{3^{1+3n}} \text{ is divergent.}$

$$\circ \lim_{n \to \infty} \sqrt[n]{\frac{n^n}{3^{1+3n}}} = \lim_{n \to \infty} \frac{n}{\sqrt[n]{3} \cdot 3^3} = \infty.$$

• The root test may work better than the ratio test.

$$\circ 1 + 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \cdots$$

$$\circ \quad a_{2n-1} = a_{2n} = \frac{1}{2^{n-1}}.$$

•
$${}^{2n-1}\sqrt{a_{2n-1}} = \frac{1}{2^{n-1}\sqrt{2^{n-1}}} = \frac{1}{2^{\frac{n-1}{2n-1}}} \to \frac{1}{\sqrt{2}},$$

•
$$\sqrt[2n]{a_{2n}} = \frac{1}{\sqrt[2n-1]{2^{n-1}}} = \frac{1}{2^{\frac{n-1}{2n}}} \to \frac{1}{\sqrt{2}}.$$

o By root test the series is convergent, but the ratio test does not work.

Power Series

• Consider the geometric series

$$\circ \sum_{n=0}^{\infty} r^n = 1 + r + r^2 + r^3 + \dots + r^n + \dots$$

We have seen that $\sum\limits_{n=0}^{\infty}r^n=\left\{ egin{array}{ll} \dfrac{1}{1-r}, & \mbox{if } |r|<1, \\ \mbox{divergent}, & \mbox{if } |r|\geq 1. \end{array}
ight.$

 $\qquad \text{viewed as function: } \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}, \, -1 < x < 1.$

33 / 78

Power Series

• A power series about 0 is a series of the form

$$\circ \sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots,$$

 c_i 's are constants, called **coefficients**, and x is a variable.

• In general, a power series about a is a series

$$\circ \sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \cdots$$

- Remark. By convention we write $(x-a)^0=1$ for all x.
 - $\circ \quad \text{In particular, } \sum_{n=0}^{\infty} c_n (a-a)^n = c_0.$
 - $\circ \sum_{n=0}^{\infty} c_n (x-a)^n$ is convergent at x=a at least.
 - \circ How to find all x so that the power series is convergent?

- Check the convergence of $\sum_{n=0}^{\infty} a_n$, where $a_n = \frac{x^n}{\sqrt{n}}$.
 - \circ To check whether $\sum\limits_{n=0}^{\infty}a_{n}$ is convergent, use ratio test.
 - $\bullet \quad \left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{x^{n+1}/\sqrt{n+1}}{x^n/\sqrt{n}} \right| = \sqrt{\frac{n}{n+1}} |x|.$
 - $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \sqrt{\frac{n}{n+1}} |x| = 1 \cdot |x| = |x|.$
 - $\circ \quad \sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}} \text{ is } \left\{ \begin{array}{ll} \text{convergent,} & \text{if } |x| < 1, \\ \text{divergent,} & \text{if } |x| > 1. \end{array} \right.$
 - \circ We will learn how to determine the convergence at $x=\pm 1$ soon.

35 / 78

Examples

- $\sum_{n=0}^{\infty} \frac{x^n}{2^n}$ is convergent on (-2,2).
 - $\circ \quad \sum_{n=0}^{\infty} \frac{x^n}{2^n} = \sum_{n=0}^{\infty} \left(\frac{x}{2}\right)^n \text{ is a geometric series of ratio } \frac{x}{2}.$

It is convergent $\Leftrightarrow \left|\frac{x}{2}\right| < 1 \Leftrightarrow |x| < 2.$

• $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ is convergent on \mathbb{R} .

$$\circ \lim_{n \to \infty} \left| \frac{x^{n+1}/(n+1)!}{x^n/n!} \right| = \lim_{n \to \infty} \frac{|x|}{n+1} = 0.$$

• $\sum_{n=0}^{\infty} n! x^n$ is convergent at x=0 only.

$$\circ \lim_{n \to \infty} \left| \frac{(n+1)! x^{n+1}}{n! x^n} \right| = \lim_{n \to \infty} (n+1) |x| = \begin{cases} \infty, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Convergence Theorem for Power Series

• Theorem. Let $\sum_{n=0}^{\infty} c_n x^n$ be a power series.

Then its convergence is described by one of the following three possibilities:

- (i) The series is convergent on \mathbb{R} ;
- (ii) The series is convergent at x = 0 only;
- (iii) There is a number R>0 such that
 - \circ the series is convergent if |x| < R,
 - the series is divergent if |x| > R.
- · Remark.
 - The convergence at $x = \pm R$ is inconclusive.
 - For case (i), we may write $R = \infty$;
 - \circ For case (ii), we may write R=0.

37 / 78

Convergence Theorem for Power Series

- Theorem. Let $\sum_{n=0}^{\infty} c_n (x-a)^n$ be a power series.
 - \circ Then for some $0 \le R \le \infty$
 - the series is convergent if |x a| < R;
 - the series is divergent if |x a| > R.
- Remark. The convergence of the power series at x = a + R and x = a R is inconclusive.
- Definition.
 - \circ R is called the radius of convergence.

Radius of Convergence

- Let $\sum_{n=0}^{\infty} c_n(x-a)^n$ be a power series.
 - The radius of convergence R exists $(0 \le R \le \infty)$, but how to evaluate R?
- Consider the ratio: $\left| \frac{c_{n+1}(x-a)^{n+1}}{c_n(x-a)^n} \right| = \left| \frac{c_{n+1}}{c_n} \right| \cdot |x-a|.$

Then
$$\lim_{n\to\infty} \left| \frac{c_{n+1}(x-a)^{n+1}}{c_n(x-a)^n} \right| = L \cdot |x-a|$$
.

39 / 78

Radius of Convergence

- Consider the root: $\sqrt[n]{|c_n(x-a)^n|} = \sqrt[n]{|c_n|} \cdot |x-a|$.

Then
$$\lim_{n\to\infty} \sqrt[n]{|c_n(x-a)^n|} = L \cdot |x-a|$$
.

 $\begin{array}{ll} \circ & \text{Suppose} \lim\limits_{n \to \infty} \sqrt[n]{|c_n|} = L. \\ & \text{Then} \lim\limits_{n \to \infty} \sqrt[n]{|c_n(x-a)^n|} = L \cdot |x-a|. \\ \circ & \text{The series is } \left\{ \begin{array}{ll} \operatorname{convergent}, & \text{if } L \cdot |x-a| < 1, \\ \operatorname{divergent}, & \text{if } L \cdot |x-a| > 1. \\ \\ \therefore & R = L^{-1} = \frac{1}{\lim\limits_{n \to \infty} \sqrt[n]{|c_n|}}. \end{array} \right.$

$$\therefore R = L^{-1} = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|c_n|}}$$

- Remark.
 - $\circ \quad \text{If } L=0 \text{, then } R=\infty \text{;} \quad \text{if } L=\infty \text{, then } R=0.$
 - $\circ \quad \text{The formulas hold only when } \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| \text{ or } \lim_{n \to \infty} \sqrt[n]{|c_n|} \text{ exists (or equals ∞)}.$

•
$$\sum_{n=0}^{\infty} \frac{(2x-5)^n}{n^2}$$
. $c_n = \frac{2^n}{n^2}$. $R = 2^{-1} = 1/2$.

$$\circ \lim_{n \to \infty} \frac{c_{n+1}}{c_n} = \lim_{n \to \infty} \frac{2^{n+1}/(n+1)^2}{2^n/n^2} = \lim_{n \to \infty} \frac{2n^2}{(n+1)^2}$$

$$= \lim_{n \to \infty} \frac{2}{(1 + \frac{1}{n})^2} = 2.$$

•
$$\sum_{n=0}^{\infty} \frac{n^2(x-3)^{n+1}}{5^n}$$
. $c_{n+1} = \frac{n^2}{5^n}$. $R = (\frac{1}{5})^{-1} = 5$

$$\circ \lim_{n \to \infty} \frac{c_{n+1}}{c_n} = \lim_{n \to \infty} \frac{n^2/5^n}{(n-1)^2/5^{n-1}} = \lim_{n \to \infty} \frac{n^2}{5(n-1)^2}$$

$$= \lim_{n \to \infty} \frac{1}{5(1-\frac{1}{n})^2} = \frac{1}{5}.$$

41 / 78

Examples

•
$$\sum_{n=0}^{\infty} \frac{3^{2n-1}(2x+1)^n}{n!}$$
. $c_n = \frac{3^{2n-1}2^n}{n!}$. $R = \infty$.

$$\begin{array}{ll}
 & \sum_{n=0}^{\infty} \frac{c_{n+1}}{c_n} = \lim_{n \to \infty} \frac{3^{2n+1} 2^{n+1} / (n+1)!}{3^{2n-1} 2^n / n!} \\
 & = \lim_{n \to \infty} \frac{18}{n+1} = 0.
\end{array}$$

•
$$\sum_{n=0}^{\infty} \sqrt{n^n} \left(\frac{1}{2}x - 1\right)^n$$
. $c_n = \frac{\sqrt{n^n}}{2^n}$. $R = 0$.

$$\circ \lim_{n \to \infty} \sqrt[n]{c_n} = \lim_{n \to \infty} \sqrt[n]{\frac{\sqrt{n^n}}{2^n}} = \lim_{n \to \infty} \frac{\sqrt{n}}{2} = \infty.$$

Power Series Representation

Recall the geometric series

$$\circ \quad \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots = \frac{1}{1-x} \text{ for } |x| < 1.$$

$$\circ \quad \frac{1}{1-x} \text{ is represented as power series } \sum_{n=0}^{\infty} x^n \text{ if } |x| < 1.$$

$$\circ \sum_{n=0}^{\infty} x^n$$
 is a power series representation of $\frac{1}{1-x}$.

• Find a power series representation of $\frac{1}{1 + r^2}$ about 0.

$$\circ \quad \text{Note that } \frac{a}{1-r} = \sum_{n=0}^{\infty} ar^n.$$

$$\begin{array}{l} \circ \quad \frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum\limits_{n=0}^{\infty} (-x^2)^n = \sum\limits_{n=0}^{\infty} (-1)^n x^{2n}. \\ \circ \quad \text{The identity holds} \Leftrightarrow |x^2| < 1 \Leftrightarrow |x| < 1. \end{array}$$

43 / 78

Examples

• Find a power series representation of $\frac{x^3}{x + 2}$ at 0.

$$\circ \quad \frac{x^3}{x+2} = \frac{\frac{x^3}{2}}{1+\frac{x}{2}} = \sum_{n=0}^{\infty} \frac{x^3}{2} \left(-\frac{x}{2}\right)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^{n+3}$$

$$\circ$$
 The identity holds $\Leftrightarrow \left|-\frac{x}{2}\right| < 1 \Leftrightarrow |x| < 2$.

Find a power series representation of $\frac{1}{1-x}$ at -1.

$$\frac{1}{1-x} = \frac{1}{2-(x+1)} = \frac{\frac{1}{2}}{1-\frac{x+1}{2}} = \sum_{n=0}^{\infty} \frac{1}{2} \left(\frac{x+1}{2}\right)^n$$
$$= \sum_{n=0}^{\infty} \frac{(x+1)^n}{2^{n+1}}.$$

 $\quad \text{ The identity holds} \Leftrightarrow \left| \frac{x+1}{2} \right| < 1 \Leftrightarrow |x+1| < 2.$

• Find a power series representation of $\frac{1}{x^2 + 3x + 2}$ at 0.

$$\circ \quad \frac{1}{x^2 + 3x + 2} = \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}.$$

•
$$\frac{1}{x+1} = \frac{1}{1-(-x)} = \sum_{n=0}^{\infty} (-x)^n = \sum_{n=0}^{\infty} (-1)^n x^n$$
.

$$\frac{1}{x+2} = \frac{\frac{1}{2}}{1+\frac{x}{2}} = \sum_{n=0}^{\infty} \frac{1}{2} \left(\frac{-x}{2}\right)^n$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^n.$$

$$\circ \quad \text{Then } \frac{1}{x^2 + 3x + 2} = \sum_{n=0}^{\infty} \left[1 - \frac{1}{2^{n+1}} \right] (-1)^n x^n.$$

The radius of convergence $R = \min\{1, 2\} = 1$.

45 / 78

Differentiation of Power Series

- $\sum_{n=0}^{\infty} c_n x^n$ is a function.
 - o Is it differentiable? If yes, what is the derivative?
- Power series is a "generalization" of polynomial. Consider polynomial $P(x) = a_0 + a_1x + \cdots + a_nx^n$.
 - o It is continuous and differentiable,
 - $P'(x) = a_1 + 2a_2x + \dots + na_nx^{n-1}$.
- Theorem. (Term by Term Differentiation)

Suppose $\sum\limits_{n=0}^{\infty}c_{n}x^{n}$ has radius of convergence R>0.

 $\circ \quad \text{Then } f(x) = \sum_{n=0}^{\infty} c_n x^n \text{ is differentiable on } |x| < R.$

•
$$f'(x) = \sum_{n=0}^{\infty} (c_n x^n)' = \sum_{n=1}^{\infty} n c_n x^{n-1}.$$

- $\bullet \quad \text{Recall that } \sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \text{ for } |x| < 1.$
 - \circ Differentiate with respect to x:

•
$$\sum_{n=1}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2}$$
. $\sum_{n=1}^{\infty} nx^n = \frac{x}{(1-x)^2}$.

- Differentiate again with respect to x:
 - $\sum_{n=1}^{\infty} n^2 x^{n-1} = \frac{1+x}{(1-x)^3}$. $\sum_{n=1}^{\infty} n^2 x^n = \frac{x(1+x)}{(1-x)^3}$.
- \circ They converge for |x| < 1. Let x = 1/2. We have

•
$$\sum_{n=1}^{\infty} \frac{n}{2^n} = \frac{\frac{1}{2}}{(1-\frac{1}{2})^2} = 2 = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \cdots$$

•
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n} = \frac{\frac{1}{2}(1+\frac{1}{2})}{(1-\frac{1}{2})^3} = 6 = \frac{1}{2} + \frac{4}{4} + \frac{9}{8} + \frac{16}{16} + \cdots$$

47 / 78

The Coefficient of Power Series Representation

- Suppose $\sum\limits_{n=0}^{\infty}c_{n}x^{n}$ has radius of convergence R>0.
 - Then $f(x) = \sum_{n=0}^{\infty} c_n x^n$ is differentiable if |x| < R.

$$f'(x) = \sum_{n=1}^{\infty} c_n n x^{n-1},$$

$$f''(x) = \sum_{n=2}^{\infty} c_n n(n-1) x^{n-2},$$

$$f'''(x) = \sum_{n=3}^{\infty} c_n n(n-1)(n-2) x^{n-3},$$

.....

$$f^{(k)}(x) = \sum_{n=k}^{\infty} c_n n(n-1) \cdots (n-(k-1)) x^{n-k}.$$

$$\circ \ \left[f^{(n)}(0) = c_n n(n-1) \cdots (n-(n-1)) = c_n n! \right]$$

Taylor Series and Maclaurin Series

- **Theorem**. Suppose f has a power series representation $\sum_{n=0}^{\infty} c_n x^n$ of radius of convergence R>0,
 - Then $c_n = \frac{f^{(n)}(0)}{n!}$, and $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$.

Such series is called the **Maclaurin series** of f.

- Theorem. Suppose f has a power series representation $\sum_{n=0}^{\infty} c_n (x-a)^n$ of radius of convergence R>0,
 - Then $c_n = \frac{f^{(n)}(a)}{n!}$ and $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$.

Such series is called the **Taylor series** of f at a.

• Power series representation, if exists, is unique (R > 0).

49 / 78

Examples

- $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots + x^n + \dots$
 - $\circ \quad c_n = 1 \text{ for all } n \text{, and } c_n = \frac{f^{(n)}(0)}{n!} \Rightarrow f^{(n)}(0) = n!.$
- $\frac{x^3}{x+2} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^{n+3} = \sum_{n=3}^{\infty} \frac{(-1)^{n-3}}{2^{n-2}} x^n.$

$$c_n = \begin{cases} 0, & n \le 2, \\ \frac{(-1)^{n-3}}{2^{n-2}}, & n \ge 3. \end{cases} f^{(n)}(0) = \begin{cases} 0, \\ \frac{(-1)^{n-3}n!}{2^{n-2}}. \end{cases}$$

• Note. $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ holds only if the power series representation of f(x) exists.

Example. Let
$$f(x) = \left\{ \begin{array}{ll} e^{-1/x^2}, & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{array} \right.$$

 $\circ f^{(n)}(0) = 0$ for all n, but f(x) is not the zero function.

• Find the Maclaurin series of $f(x) = e^x$.

$$f'(x) = e^x, f''(x) = e^x, \dots, f^{(n)}(x) = e^x, \dots$$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$$

• Find the Taylor series of $f(x) = e^{2x-1}$ at x = 1.

$$\circ e^{2x-1} = e^{2(x-1)+1} = e \cdot e^{2(x-1)} = \sum_{n=0}^{\infty} \frac{e^{2n}(x-1)^n}{n!}.$$

• What is $f^{(2011)}(1)$?

•
$$f^{(2011)}(1) = 2011! c_{2011} = 2011! \frac{e \cdot 2^{2011}}{2011!} = e \cdot 2^{2011}.$$

51 / 78

Examples

• Find the Maclaurin series of $f(x) = \sin x$.

f(x)	f'(x)	f''(x)	$f^{(3)}(x)$
$\sin x$	$\cos x$	$-\sin x$	$-\cos x$
f(0)	f'(0)	f''(0)	$f^{(3)}(0)$
0	1	0	-1
$f^{(4)}(x)$	$f^{(5)}(x)$	$f^{(6)}(x)$	$f^{(7)}(x)$
$\sin x$	$\cos x$	$-\sin x$	$-\cos x$
$f^{(4)}(0)$	$f^{(5)}(0)$	$f^{(6)}(0)$	$f^{(7)}(0)$
0	1	\cap	1

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}.$$

$$\cos x = (\sin x)' = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}.$$

$$\circ \quad \cos x = (\sin x)' = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

Test for Divergence

- Let $\sum\limits_{n=1}^{\infty}a_n$ be a convergent series. Suppose that $\sum\limits_{n=1}^{\infty}a_n$ converges to L. Let $S_n=a_1+a_2+\cdots+a_{n-1}+a_n$
 - - $S_{n-1} = a_1 + a_2 + \dots + a_{n-1}$ for $n \ge 2$.

Then we have $S_n - S_{n-1} = a_n$.

- $\therefore \lim_{n \to \infty} a_n = \lim_{n \to \infty} S_n \lim_{n \to \infty} S_{n-1} = L L = 0.$
- We proved: "If $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n\to\infty} a_n = 0$."
- Test for Divergence.
 - $\circ \quad \text{If } \lim_{n \to \infty} a_n \text{ does not exist or } \lim_{n \to \infty} a_n \text{ exists but } \neq 0,$
 - \circ then $\sum_{n=0}^{\infty} a_n$ is divergent.

53 / 78

Examples

• Is the series $\sum_{n=1}^{\infty} \frac{n^2}{5n^2+4}$ convergent?

$$\circ \lim_{n \to \infty} \frac{n^2}{5n^2 + 4} = \lim_{n \to \infty} \frac{1}{5 + 4/n^2} = \frac{1}{5} \neq 0.$$

$$\therefore \sum_{n=1}^{\infty} \frac{n^2}{5n^2 + 4} \text{ is divergent.}$$

• Consider the geometric series $\sum_{n=1}^{\infty} ar^{n-1}$, $(a \neq 0)$.

$$\circ \lim_{n \to \infty} ar^{n-1} = \left\{ \begin{array}{ll} 0, & \text{if } |r| < 1, \\ a, & \text{if } r = 1, \\ \text{does not exist}, & \text{otherwise}. \end{array} \right.$$

$$\therefore \sum_{n=1}^{\infty} ar^{n-1} \text{ is divergent if } |r| \ge 1.$$

• Note. If $\lim_{n \to \infty} a_n = 0$, test for divergence is inconclusive.

- Is the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{4^n+1}}$ convergent?
 - $\circ \lim_{n\to\infty} \frac{1}{\sqrt{4^n+1}} = 0 \Rightarrow \text{No Conclusion}.$
 - We see that $\frac{1}{\sqrt{4^n+1}} < \frac{1}{\sqrt{4^n}} = \frac{1}{2^n}$.

 $\sum_{n=1}^{\infty} \frac{1}{2^n}$ is convergent "\implies\" terms of $\sum_{n=1}^{\infty} \frac{1}{2^n}$ are "small".

- The terms of $\sum_{n=1}^{\infty} \frac{1}{\sqrt{4^n+1}}$ are "smaller".
- It seems that $\sum_{n=1}^{\infty} \frac{1}{\sqrt{4^n+1}}$ is convergent as well.
- Is the "comparison" true? Does it hold in general?

55 / 78

The Comparison Test

- Theorem. Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be series such that
 - $\circ \quad 0 \leq a_n \leq b_n \text{ for all } n. \text{ (Or for all } n \geq N)$

Then
$$\left\{\begin{array}{ll} \sum\limits_{n=1}^{\infty}b_n \text{ converges} & \Rightarrow & \sum\limits_{n=1}^{\infty}a_n \text{ converges.} \\ \sum\limits_{n=1}^{\infty}a_n \text{ diverges} & \Rightarrow & \sum\limits_{n=1}^{\infty}b_n \text{ diverges.} \end{array}\right.$$

- **Example**. Is the series $\sum_{n=1}^{\infty} \frac{5}{2^n + 4n + 3}$ convergent?

 - $\begin{array}{l} \circ \quad \frac{5}{2^n+4n+3} \leq \frac{5}{2^n} \text{ for all } n. \\ \circ \quad \sum\limits_{n=1}^{\infty} \frac{1}{2^n} \text{ converges} \Rightarrow \sum\limits_{n=1}^{\infty} \frac{5}{2^n} = 5 \sum\limits_{n=1}^{\infty} \frac{1}{2^n} \text{ converges}. \end{array}$ $\Rightarrow \sum_{n=1}^{\infty} \frac{5}{2^n + 4n + 3}$ converges.

p-Series

- **Question**. For what values of p, is the p-series $\sum_{p=1}^{\infty} \frac{1}{n^p}$ convergent?
 - o Use the test for divergence:
 - $\bullet \quad \lim_{n \to \infty} \frac{1}{n^p} = \begin{cases} 0, & \text{if } p > 0, \\ 1, & \text{if } p = 0, \\ \infty, & \text{if } p < 0. \end{cases}$
 - $\therefore \sum_{n=1}^{\infty} \frac{1}{n^p}$ is divergent if $p \le 0$.
 - However, we cannot use the test for divergence to conclude whether $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 0.

57 / 78

Harmonic Series

The **Harmonic series** is the p-series when p = 1:

$$H = \sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} + \dots$$

- \circ Consider the partial sum of the first 2^n terms:

 - $H_1 = 1$; $H_2 = 1 + \frac{1}{2}$;

•
$$H_4 = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) \ge 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right)$$

•
$$H_8 = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right)$$

 $> 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right)$
 $= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{3}{2}.$

Harmonic Series

The **Harmonic series** is the p-series when p = 1:

$$H = \sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} + \dots$$

 \circ Consider the partial sum of the first 2^n terms:

•
$$H_{2^n} = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \dots + \left(\frac{1}{2^{n-1}+1} + \dots + \frac{1}{2^n}\right)$$

 $> 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \dots + \left(\frac{1}{2^n} + \dots + \frac{1}{2^n}\right)$
 $= 1 + \underbrace{\frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2}}_{n \text{ copies}} = 1 + \frac{n}{2}.$

$$\circ \lim_{n \to \infty} \left(1 + \frac{n}{2} \right) = \infty.$$

$$\therefore \ \ \sum_{n=1}^{\infty} \frac{1}{n} = \lim_{n \to \infty} H_{2^n} = \infty. \ \ \text{So} \ \sum_{n=1}^{\infty} \text{ is divergent}.$$

59 / 78

p-Series

• Theorem. The p-series

$$\circ \quad \sum_{n=1}^{\infty} \frac{1}{n^p} \text{ is } \left\{ \begin{array}{ll} \text{convergent} & \text{if } p > 1, \\ \text{divergent} & \text{if } p \leq 1. \end{array} \right.$$

$$\circ \quad \text{If } p \leq 1, \, \frac{1}{n^p} \geq \frac{1}{n}. \, \sum_{n=1}^{\infty} \frac{1}{n} \, \text{diverges} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^p} \, \text{diverges}.$$

o The proof of the second statement is omitted.

Can we use ratio test to check its convergence?

$$\circ \left| \frac{a_{n+1}}{a_n} \right| = \frac{1/(n+1)^p}{1/n^p} = \frac{n^p}{(n+1)^p}.$$

$$\begin{vmatrix} a_{n+1} \\ a_n \end{vmatrix} = \frac{1/(n+1)^p}{1/n^p} = \frac{n^p}{(n+1)^p}.$$

$$\begin{vmatrix} a_{n+1} \\ a_n \end{vmatrix} = \lim_{n \to \infty} \frac{n^p}{(n+1)^p} = \lim_{n \to \infty} \frac{1}{(1+\frac{1}{n})^p} = 1.$$

 \circ However, the convergence of $\sum_{n=1}^{\infty} \frac{1}{n^p}$ depends on p.

The Root Test

• Can the root test do better for p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$?

$$\circ \lim_{n \to \infty} \sqrt[n]{\frac{1}{n^p}} = \frac{1}{\left(\lim_{n \to \infty} \sqrt[n]{n}\right)^p} = \frac{1}{1^p} = 1.$$

$$\lim_{n \to \infty} \sqrt[n]{n} = \lim_{x \to \infty} x^{1/x} = \lim_{x \to \infty} e^{\frac{\ln x}{x}}$$

$$= \exp\left(\lim_{x \to \infty} \frac{\ln x}{x}\right) = \exp\left(\lim_{x \to \infty} \frac{1/x}{1}\right) = \exp(0) = 1.$$

- $\bullet \quad \text{In fact, if } \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L \text{ then } \lim_{n \to \infty} \sqrt[n]{|a_n|} \text{ must exist and equal } L.$
 - \circ Hence, if one of the ratio test or root test has the limit 1, **DO NOT** try the other test since it does not work too.

61 / 78

Examples

- Note. In order to use the Comparison Test for a (positive) series, we shall first "guess"
 - o whether it is convergent or divergent.
 - o If we guess it is convergent,
 - find a (positive) convergent series whose terms are bigger than the terms of the given series.
 - o If we guess it is divergent,
 - find a (positive) divergent series whose terms are smaller than the terms of the given series.
- Example. Is $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ convergent?

$$\frac{\ln n}{n} \geq \frac{1}{n} \text{ if } n \geq 3. \quad \sum_{n=1}^{\infty} \frac{1}{n} \text{ diverges} \Rightarrow \sum_{n=1}^{\infty} \frac{\ln n}{n} \text{ diverges}.$$

• **Example**. Is $\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$ convergent?

$$\circ \quad \frac{\ln n}{n^2} > \frac{1}{n^2}. \quad \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ converges} \Rightarrow \text{No conclusion!}$$

$$\circ \quad \frac{\ln n}{n^2} < \frac{n}{n^2}. \quad \sum_{n=1}^{n-1} \frac{1}{n} \text{ diverges} \Rightarrow \text{No conclusion!}$$

Let's compare $\ln n$ and \sqrt{n} :

$$f(x) = \ln x - \sqrt{x}. \ f'(x) = \frac{2 - \sqrt{x}}{2x} < 0 \ \text{if} \ x > 4.$$

$$For \ n \ge 4, \ln n - \sqrt{n} \le \ln 4 - \sqrt{4} \approx -0.6 < 0.$$

• For
$$n \ge 4$$
, $\ln n - \sqrt{n} \le \ln 4 - \sqrt{4} \approx -0.6 < 0$.

$$\frac{\ln n}{n^2} < \frac{\sqrt{n}}{n^2} = \frac{1}{n^{3/2}} \text{ for all } n \ge 4.$$

$$\circ \quad \sum_{n=1}^{\infty} \frac{1}{n^{3/2}} \text{ converges} \Rightarrow \sum_{n=1}^{\infty} \frac{\ln n}{n^2} \text{ converges.}$$

63 / 78

Examples

• Is the series $\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$ convergent?

$$\qquad \text{It is "similar" to the convergent series } \sum_{n=1}^{\infty} \frac{1}{2^n}.$$

$$\frac{1}{2^n-1}>\frac{1}{2^n}\Rightarrow$$
 Inconclusive by comparison test.

$$\circ \quad \frac{1}{2^n - 1} \le \frac{1}{2^n - 2^{n-1}} = \frac{1}{2^{n-1}}.$$

$$\circ \quad \frac{1}{2^n - 1} \le \frac{2^n}{2^n - 2^{n-1}} = \frac{1}{2^{n-1}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{2^{n-1}} \text{ is convergent} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{2^n - 1} \text{ is convergent}.$$

• Is the series $\sum_{n=1}^{\infty} \frac{2n^2 + 3n}{\sqrt{5 + n^5}}$ convergent?

The Limit Comparison Test

- Theorem. Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be series of positive terms.
 - (a) Suppose $\lim_{n=\infty} \frac{a_n}{b_n} = c$ is a positive real number.
 - $\circ \sum_{n=1}^{\infty} b_n$ is convergent $\Leftrightarrow \sum_{n=1}^{\infty} a_n$ is convergent.
 - (b) Suppose $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$.
 - (c) Suppose $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$.
 - $\circ \quad \sum_{n=1}^{\infty} b_n \text{ is divergent} \Rightarrow \sum_{n=1}^{\infty} a_n \text{ is divergent.}$
 - $\circ \sum_{n=1}^{\infty} a_n$ is convergent $\Rightarrow \sum_{n=1}^{\infty} b_n$ is convergent.

65 / 78

Examples

• Is the series $\sum_{n=1}^{\infty} \frac{2n^2 + 3n}{\sqrt{5 + n^5}}$ convergent?

$$\circ \lim_{n \to \infty} \frac{(2n^2 + 3n)/\sqrt{5 + n^5}}{1/\sqrt{n}} = \lim_{n \to \infty} \frac{2 + \frac{3}{n}}{\sqrt{\frac{5}{n^5} + 1}} = 2.$$

- $\circ \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is divergent $\Rightarrow \sum_{n=1}^{\infty} \frac{2n^2 + 3n}{\sqrt{5 + n^5}}$ is divergent.
- Is the series $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^2}$ convergent?

$$\circ \lim_{n \to \infty} \frac{1/n}{1/(\ln n)^2} = \lim_{n \to \infty} \frac{(\ln n)^2}{n} = \lim_{x \to \infty} \frac{(\ln x)^2}{x}$$

$$2 \ln x \cdot \frac{1}{2} = 2 \ln x$$

$$= \lim_{x \to \infty} \frac{2 \ln x \cdot \frac{1}{x}}{1} = \lim_{x \to \infty} \frac{2 \ln x}{\frac{1}{x}} = \lim_{x \to \infty} \frac{2}{x} = 0.$$

 $=\lim_{\substack{x\to\infty\\x\to\infty}}\frac{2\ln x\cdot\frac{1}{x}}{1}=\lim_{\substack{x\to\infty\\x\to\infty}}\frac{2\ln x}{x}=\lim_{\substack{x\to\infty\\x\to\infty}}\frac{2}{x}=0.$ $\circ\quad\sum_{n=1}^{\infty}\frac{1}{n}\text{ is divergent}\Rightarrow\sum_{n=2}^{\infty}\frac{1}{(\ln n)^2}\text{ is divergent}.$

- Is the series $\sum_{n=2}^{\infty} \left(\frac{1}{\sqrt{n}} \sin \frac{1}{n} \right)$ convergent?
 - $\circ \lim_{n \to \infty} \frac{\frac{1}{\sqrt{n}} \sin \frac{1}{n}}{\frac{1}{x}} = \lim_{n \to \infty} \frac{\sin \frac{1}{n}}{\frac{1}{x}} = \lim_{x \to 0^+} \frac{\sin x}{x} = 1.$
 - $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n}}$ converges $\Rightarrow \sum_{n=2}^{\infty} \frac{1}{\sqrt{n}} \sin \frac{1}{n}$ converges.
- Is the series $\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^2}$ convergent?
 - $\begin{array}{ll} \circ & \lim_{n \to \infty} \frac{(\sin^2 n)/n^2}{1/n^2} = \lim_{n \to \infty} \sin^2 n. & \text{No Conclusion!} \\ \circ & \frac{\sin^2 n}{n^2} \leq \frac{1}{n^2}. & \text{So} \sum_{n=1}^{\infty} \frac{\sin^2 n}{n^2} \text{ is convergent.} \end{array}$

67 / 78

Alternating Harmonic Series

- How about the series whose terms are not all positive?
- Is alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ convergent?

 $+\frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \frac{1}{9} - \frac{1}{10} + \frac{1}{11} - \frac{1}{12} + \cdots$

• Let us check the graph of $S_n = a_1 + a_2 + \cdots + a_n$:

The Alternating Series Test

- **Definition**. An **alternating series** is a series whose terms are alternatively *positive* and *negative*.
- Leibniz Alternating Series Test.
 - Let $\sum_{n=1}^{\infty} a_n$ be an alternating series. Suppose
 - $\lim_{n \to \infty} |a_n| = 0$, and $\{|a_n|\}$ is decreasing.
 - Then the series $\sum_{n=1}^{\infty} a_n$ is convergent.
- Example.
 - The alternating Harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ is convergent;
 - \circ although the Harmonic series $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ is divergent.

69 / 78

Examples

• Is the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3+1}$ convergent?

$$\circ \quad \text{Let } f(x) = \frac{x^2}{x^3 + 1} \Rightarrow f'(x) = \frac{x(2 - x^3)}{(x^3 + 1)^2}$$

- f'(x) < 0 if $x > \sqrt[3]{2} \Rightarrow \{|a_n|\}_{n=2}^{\infty}$ is decreasing.
- $\therefore \quad \sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3 + 1} \text{ is convergent.}$
- However, $\sum_{n=1}^{\infty} \frac{n^2}{n^3 + 1}$ is divergent, (compare $\sum_{n=1}^{\infty} \frac{1}{n}$).
- It seems that the condition that " $\sum |a_n|$ converges" is "stronger" than the condition that " $\sum a_n$ converges".

Absolute Convergence

- Let $\sum_{n=1}^{\infty} a_n$ be a series. We can consider a new series
 - $\circ \sum_{n=1}^{\infty} |a_n| = |a_1| + |a_2| + \dots + |a_n| + \dots.$
- Theorem. $\sum_{n=1}^{\infty} |a_n|$ is converges $\Rightarrow \sum_{n=1}^{\infty} a_n$ converges.
- Examples.
 - $\circ \quad \textstyle\sum_{n=1}^{\infty} \frac{1}{n^2} \text{ converges} \Rightarrow \textstyle\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} \text{ converges}.$
 - $\circ \quad \text{If } \sum_{n=1}^{\infty} |a_n| \text{ is divergent, then } \sum_{n=1}^{\infty} a_n \text{ is } \text{inconclusive}.$
 - $\sum\limits_{n=1}^{\infty}1$ diverges, and $\sum\limits_{n=1}^{\infty}(-1)^n$ diverges.
 - $\bullet \quad \sum\limits_{n=1}^{\infty} \frac{1}{n} \text{ diverges, but } \sum\limits_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \text{ converges.}$

71 / 78

Absolute Convergence

- **Definition**. Let $\sum_{n=1}^{\infty} a_n$ be a series.
 - It is absolutely convergent if $\sum_{n=1}^{\infty} |a_n|$ is convergent.
 - \circ It is conditionally convergent if $\sum\limits_{n=1}^{\infty}|a_n|$ is divergent and $\sum\limits_{n=1}^{\infty}a_n$ is convergent.
- Examples
 - $\circ \quad \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \text{ is conditionally convergent.}$
 - $\circ \quad \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} \text{ is absolutely convergent.}$
 - $\circ \quad \sum_{n=1}^{\infty} (-1)^n \text{ is divergent.}$

Proof of Absolute Convergence Theorem

• **Proof**. Separate positive and negative terms in $\sum_{n=1}^{\infty} a_n$.

							n=1			
a_n :	1,	1,	-4,	-5,	1,	-3,	-1,	2,	1,	7,
a_n^+ :	1,	1,	0,	0,	1,	0,	0,	2,	1,	7,
a_n^- :	0,	0,	4,	5,	0,	3,	1,	0,	0,	0,

$$\circ \quad a_n^+ = \left\{ \begin{array}{ll} a_n, & \text{if } a_n \geq 0, \\ 0, & \text{if } a_n < 0. \end{array} \right. \ a_n^- = \left\{ \begin{array}{ll} 0, & \text{if } a_n \geq 0, \\ -a_n, & \text{if } a_n < 0. \end{array} \right.$$

- $0 \le a_n^+ \le |a_n|$ and $0 \le a_n^- \le |a_n|$. $a_n^+ + a_n^- = |a_n|$ and $a_n^+ a_n^- = a_n$.
- Suppose $\sum_{n=1}^{\infty} |a_n|$ is convergent.
- $0 \leq a_n^+, a_n^- \leq |a_n| \Rightarrow \sum\limits_{n=1}^\infty a_n^+$ and $\sum\limits_{n=1}^\infty a_n^-$ are convergent.
 - $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_n^+ \sum_{n=1}^{\infty} a_n^-$ is convergent.

73 / 78

Examples

- Example. Is $\sum_{n=1}^{\infty} \frac{\cos n}{n^2}$ convergent?
 - $\circ \quad \sum_{n=1}^{\infty} \left| \frac{\cos n}{n^2} \right| \le \sum_{n=1}^{\infty} \frac{1}{n^2}.$
 - $\circ \quad \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ is convergent (}p\text{-series).}$
 - $\Rightarrow \sum_{n=1}^{\infty} \left| \frac{\cos n}{n^2} \right|$ is convergent by comparison test.
 - $\Rightarrow \sum_{n=1}^{\infty} \frac{\cos n}{n^2}$ is convergent by absolute convergence test.
- Example. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^p}.$
 - $\circ \quad \text{It is} \left\{ \begin{array}{ll} \text{absolutely convergent,} & \text{if } p > 1, \\ \text{divergent,} & \text{if } p \leq 0, \\ \text{conditionally convergent,} & \text{if } 0$

• Given
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
. Evaluate $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$.

• $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \frac{1}{6^2} + \cdots$

= $\left(1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots\right) - \left(\frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{6^2} + \cdots\right)$

= $\left(\frac{\pi^2}{6} - \frac{1}{4} \cdot \frac{\pi^2}{6}\right) - \left(\frac{1}{4} \cdot \frac{\pi^2}{6}\right) = \frac{\pi^2}{8} - \frac{\pi^2}{24} = \frac{\pi^2}{12}$.

• $\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \cdots = \frac{\pi^2}{6}$

= $\left(1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots\right) + \left(\frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{6^2} + \cdots\right)$

= $\left(1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots\right) + \frac{1}{4} \cdot \left(1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots\right) \frac{\pi^2}{6}$

75 / 78

Example

• Can we evaluate $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ similarly?

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \dots$$

$$= \left(1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots\right) - \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \dots\right)$$

•
$$\lim_{n \to \infty} \frac{1/(2n-1)}{1/n} = \lim_{n \to \infty} \frac{n}{2n-1} = \frac{1}{2}.$$

•
$$\lim_{n \to \infty} \frac{1/(2n)}{1/n} = \lim_{n \to \infty} \frac{n}{2n} = \frac{1}{2}.$$

By limit comparison test with $\sum_{n=1}^{\infty} \frac{1}{n}$,

•
$$\sum_{n=1}^{\infty} \frac{1}{2n-1} = \sum_{n=1}^{\infty} \frac{1}{2n}$$
 are divergent.

Conditional Convergence affects Rearrangement

- Theorem. Let $\sum_{n=1}^{\infty} a_n$ be a convergent series.
 - \circ If $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, then every rearrangement has the same sum.
 - \circ If $\sum_{n=1}^{\infty} a_n$ is **conditionally convergent**, then different rearrangements may have different sum.
 - Moreover, for any L (a real number or $\pm \infty$), there is a rearrangement of $\sum_{n=1}^{\infty} a_n$ whose sum is L.
- This theorem shows that if the series is conditionally convergent, we should not evaluate the sum by rearranging (infinitely many) terms.

77 / 78

Example

• Find a rearrangement of $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ whose sum is 1.

$$1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \frac{1}{15} + \frac{1}{17} + \dots = \infty.$$

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \frac{1}{10} + \frac{1}{12} + \frac{1}{14} + \frac{1}{16} + \frac{1}{18} + \dots = \infty.$$

- 1. If $S_n \ge 1$, add the negative terms until partial sum is < 1.
- 2. If $S_n < 1$, add the positive terms until partial sum is ≥ 1 .

 $\begin{array}{l} \bullet \quad S_1 = 1.0000.S_2 = 0.5000.S_3 = 0.8333.S_4 = 1.0333.S_5 = 0.7833.S_6 = 0.9262.S_7 = \\ 1.0373.S_8 = 0.8706.S_9 = 0.9615.S_{10} = 1.0385.S_{11} = 0.9135.S_{12} = 0.9801.S_{13} = \\ 1.0390.S_{14} = 0.9390.S_{15} = 0.9916.S_{16} = 1.0392.S_{17} = 0.9559.S_{18} = 0.9994. \quad \text{In fact,} \\ \sum\limits_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = \ln 2. \end{array}$