

Object detection and localization

Tahereh Hematian pour fard

Data 606: Capstone

Dr. Chaojie Wang, Nov 22nd, 2022

Outlines

- ☐ Data generator
- ☐ Machine Learning Dataset preparation
- ☐ Neural Network architecture
- ☐ Hyper-parameters for training the model
- Predictions
- ☐ Challenging objects
- References

Object Detection and Localization

Object Classification is the task of identifying that picture is a dog

Object Localization involves the class label as well as a bounding box to show where the object is located.

Application

- ☐ Self-driving cars
- ☐ Video surveillance
- ☐ Climate change
- **□** And ...

- ☐ Synthetic data
- **□** 10000 images
- ☐ Size of each image is 64*64
- ☐ At most 3 objects

Machine Learning Dataset preparation

☐ Average value: 196.25

☐ Standard deviation: 18.41

$$x_{\text{stand}} = \frac{x - \text{mean}(x)}{\text{standard deviation }(x)}$$

Neural Network Architecture

- ☐ DenseNet 200
- **✓** Cornell University
- **✓** Tsinghua University
- ✓ Facebook AI Research (FAIR)

Hyper-parameters for training the model

- \square N-ep = 100
- \Box Batches = 64
- \Box Learning rate = 0.001
- \Box Optimizer = Adam

```
# model configuration for training
myModel.compile(
   optimizer = keras.optimizers.Adam(learning_rate=0.001,
                                      beta 1=0.9,
                                      beta 2=0.999,
                                      epsilon=1e-07,
                                      amsgrad=False,
                                      name='Adam'),
   loss = {'class output': keras.losses.CategoricalCrossentropy(),
            'score confidence': keras.losses.CategoricalHinge(), #MeanSquaredError(), #AbsoluteSquaredError
            'score coords': rmse }, # keras.losses.MeanSquaredError
   metrics = {'class output': ['accuracy'],
               'score confidence': ['accuracy'],
               'score coords': ['accuracy']},
   loss_weights = {'class_output': 2, 'score_confidence': 1, 'score_coords': 4})
```

Predictions

- ☐ Identification of bounding boxes, intersection over union (IoU)
- ☐ Classification of the identified object (Confusion matrix)

Bounding box predictions

☐ Intersection over Union (IoU)

Classification Metric

Confusion matrix

precision		recall f1-score	
	0.99	0.99	0.99
+r	0.93	0.94	0.94
+g	0.93	0.93	0.93
+b	0.94	0.93	0.93
#r	0.95	0.95	0.95
#g	0.93	0.94	0.94
or	0.94	0.93	0.94
og	0.95	0.91	0.93
ob	0.92	0.94	0.93

Challenging objects

☐ Recurrent Neural Network

Conclusion

- ☐ Synthetic data with 10000 images and at most 3 objects
- ☐ DensNet200: deep neural network with 200 layers
- ☐ IoU metric: 70%
- □ Confusion matrix: 92%

References

- □ <u>https://arxiv.org/abs/1608.06993</u>
- https://github.com/MarcoFosci/Computer_Vision/blob/master/Shape_Detection/Different_CNN_archit_ectures/test_Part_II_.ipynb

Thank you