Statics

Reading: Modern Robotics 5.2

This Lecture

- What joint torques keep the robot in place?
- How do singularities affect statics?

At static equilibrium, the power in the joints is equal to the power at the end-effector (taking the limit as velocity goes towards zero):

$$\dot{\theta}^T \tau = V^T F$$

Power in joint space Power in end-effector space

At static equilibrium, the power in the joints is equal to the power at the end-effector (taking the limit as velocity goes towards zero):

$$\dot{\theta}^T \tau = V^T F$$

Use the Jacobian:

$$V = J(\theta)\dot{\theta}$$

At static equilibrium, the power in the joints is equal to the power at the end-effector (taking the limit as velocity goes towards zero):

$$\dot{\theta}^T(\tau = J(\theta)^T F)$$

$$\tau = J(\theta)^T F$$

$$\tau = J(\theta)^T F$$

- Given wrench F, find the joint torques τ that apply that wrench
- Works for any Jacobian if F in same frame (i.e., if $F = F_s$ is in spatial frame, then use space Jacobian, and if $F = F_b$ is in body frame, then use body Jacobian)

To apply *F* at the end-effector, what joint torque do we need?

$$J_s(\theta) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & L_1 s_1 & L_1 s_1 + L_2 s_{12} \\ 0 & -L_1 c_1 & -L_1 c_1 - L_2 c_{12} \\ 0 & 0 & 0 \end{bmatrix}$$

 τ

To apply *F* at the end-effector, what joint torque do we need?

$$\begin{bmatrix} \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & L_1 s_1 & L_1 s_1 + L_2 s_{12} \\ 0 & -L_1 c_1 & -L_1 c_1 - L_2 c_{12} \\ 0 & 0 & 0 \end{bmatrix}^T \begin{bmatrix} m_x \\ m_y \\ m_z \\ f_x \\ f_y \\ f_z \end{bmatrix}$$

 $J_{s}(\theta)^{T}$ F_{s}

To apply *F* at the end-effector, what joint torque do we need?

$$\begin{bmatrix} \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix} = \begin{bmatrix} m_z \\ m_z + f_x L_1 s_1 - f_y L_1 c_1 \\ m_z + f_x (L_1 s_1 + L_2 s_{12}) - f_y (L_1 c_1 + L_2 c_{12}) \end{bmatrix}$$

No f_z here. No matter what f_z is applied, it does not affect the joint torque

This robot is at a **singularity** when $\theta = 0$

$$\begin{bmatrix} \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix} = \begin{bmatrix} m_z \\ m_z + f_x L_1 s_1 - f_y L_1 c_1 \\ m_z + f_x (L_1 s_1 + L_2 s_{12}) - f_y (L_1 c_1 + L_2 c_{12}) \end{bmatrix} \qquad \theta_1$$

$$\begin{array}{c|c} \theta_1 & \theta_2 & \theta_3 \\ \hline \end{array}$$

Here
$$sin(\theta_1) = sin(\theta_1 + \theta_2) = 0$$

This robot is at a **singularity** when $\theta = 0$

$$\begin{bmatrix} \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix} = \begin{bmatrix} m_z \\ m_z - f_y L_1 c_1 \\ m_z - f_y (L_1 c_1 + L_2 c_{12}) \end{bmatrix}$$

No f_x now. No matter what f_x is applied, it does not affect the joint torque

The robot passively resists wrenches in the direction of the singularity

But the robot cannot apply wrenches in the direction of the singularity

Takeaways

Wrenches are like twists, but deal with moment and force instead of angular and linear velocity.

$$V = J(\theta)\dot{\theta}$$

At singularity, cannot move along null J^T

$$\tau = J(\theta)^T F$$

At singularity, cannot control wrenches along null J^T

This Lecture

- What joint torques keep the robot in place?
- How do singularities affect statics?

Next Lecture

- We've dealt with statics...
 - ...what about dynamics?