METHOD OF PRODUCING CASTINGS

Patent Number:

SU1306641

Publication date:

1987-04-30

Inventor(s):

NIKISHIN YURIJ A (SU); ZHARKOV DMITRIJ V (SU); PONIPARTOV NIKOLAJ I (SU);

LEBEDINSKAYA ELENA V (SU)

Applicant(s):

NIKISHIN YURIJ A (SU); ZHARKOV DMITRIJ V (SU); PONIPARTOV NIKOLAJ (SU);

LEBEDINSKAYA ELENA V (SU)

Requested

Patent:

SU1306641

Application

Number:

SU19853943635 19850816

Priority Number

(s):

SU19853943635 19850816

IPC Classification: B22D27/20

EC Classification:

Equivalents:

Abstract

Data supplied from the esp@cenet database - I2

(19) SU (11) 1306641 A 1

(SD 4 B 22 D 27/20

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 3943635/22-02

(22) 16.08.85

(46) 30.04.87. Бюл. № 16

(72) Ю.А. Никишин, Д.В. Жарков,

Н.И.Понипартов и Е.В.Лебединская

(53) 621.746.3 (088.8)

(56) Авторское свидетельство СССР № 1136369, кл. В 22 D 27/04, 1984. Патент США № 3991808.

кл. В 22 D 27/20, 1976.

(54) СПОСОБ ИЗГОТОВЛЕНИЯ ОТЛИВОК.

(57) Изобретение относится к области литейного производства, а именно к способам изготовления отливок с мелкодисперсной структурой и может быть использовано для получения отливок из жаростойких сплавов методом литья

по выплавляемым моделям. Цель изобретения - измельчение литого зерна, повышение плотности и механических свойств металла отливок. Сущность способа заключается в том, что в литейную форму,преимущественно керами∸ ческую, заливают жидкий сплав, одновременно вводя в его струю нагретые металлические добавки в виде жидко-твердой суспензии бестигельного переплава шихтовой заготовки, в качестве которой применяют гранулированный материал с мелкодисперсной структурой. Способ позволяет в 6-10 раз уменьшить размер литого зерна, повысить прочность высоколегированных сталей на 3-8% и пластичность на 15-25% за счет увеличения плотности металла. 1 з.п.ф-лы, 1 ил., 1 табл.

(19) SU (11) 1306641

Изобретение относится к литейному производству, а именно к способам приготовления отливок с мелкозернистой структурой, и может быть использовано для получения отливок из жаростойких сплавов методом литья по выплавленным моделям.

Цель изобретения - измельчение литого зерна, повышение плотности и механических свойств металла отливок. 10

Сущность способа заключается в том, что в литейную форму, преимущественно керамическую, производят заливку жидкого сплава с одновременным введением в его струю нагретых металлических добавок в виде жидкотвердой суспензии безтигельного переплава шихтовой заготовки, в качестве которой применяют гранулированный металл с мелкозернистой структурой.

На чертеже представлено устройство для осуществления способа.

Способ осуществляют следующим образом.

В нагревательной печи 1, размещен- 25 ной внутри вакуумной плавильно-заливочной камеры 2, производят нагрев 🚅 керамической формы 3 до температуры ' 1300-1600 К. Основную часть (60-80%) заливаемого в форму металла плавят в индукционной тигельной печи 4 и заливают в металлоприемную чашу 5, из которой через щелевой фильтр 6 очищенный от шлака и плен расплав поступает в рабочую полость литейной формы. Одновременно с заливкой основной части расплава из печи 4 производят оплавление шихтовой заготовки 7 в индукционном устройстве 8. Заготовку 7 предварительно получают с мелкозернистой структурой из гранупированного материала или одним из специальных методов литья, например, вакуумно-дуговой плавкой с заливкой металла в кокиль с принудительным охлаждением и вибрацией его в процессе кристаллизации. Материал заготовки 7 имеет химический состав, одинаковый с шихтой, переплавляемой в тигельной печи 4. В процессе оплавления заготовки 7 в случае необходимости ее могут дополнительно подвергать воздействию ультразвука с помощью волновода 9 с целью увеличения интенсивности отделения твердотопливных капель от заготовки и повышения содержания твердой фазы в заливаемом расплаве.

По мере оплавления заготовку 7 постепенно опускают вниз. Расплав с поверхности заготовки стекает в воронку 10, из которой попадает в центральную часть основного потока, поступающего в рабочую полость формы через щелевой фильтр. Расплав при поступлении в воронку имеет температуру не выше температуры ликвидуса сплава. За счет быстрого прогрева керамической оболочки, оформляющей воронку 10, основным расплавом, поступающим перегретым из тигельной печи, и образованию разряжения в нижней части воронки при омывании ее снизу потоком металла, суспензия из металлических добавок свободно поступает в рабочую полость формы без затвердевания в горловине воронки даже при относительно низкой температуре предварительного нагрева керамической оболочки (1300 К). После заполнения полости жидким металлом плавление шихтовой заготовки и заливку расплава прекращают.

Дальнейшие операции по изготовлению отливки производят известным методом литья по выплавляемым моделям.

И р и м е р. Сталь ВНП-1 в %:С 0,06, 30 Сг 13,8, Ni 7,5, Мо 1,0, Мп 0,4, Si 0,2 выплавляют из свежих шихтовых материалов в вакуумной установке ИСВ-0,16 с заливкой в кокиль мерных шихтовых заготовок размерами 50×300 мм.

35 Плавление и кристаллизацию стали производят при остаточном давлении аргона в плавильной камере 150 мм.рт.ст. После расплавления металла производят раскисление жидкой ванны углеродом в количестве 0,01 % и ферроцерием в количестве 0,2 % от веса шихты.

Полученные мерные шихтовые заготовки одинакового химического состава переплавляют в опытной вакуумной плавильно-заливочной установке типа УППФЗ, оснащенной дополнительно индукционным устройством бестигельной плавки. При этом основную массу металла, расходуемого на получение ли-50 того блока, плавят в индукционной тигельной печи емкостью 15 кг. После доведения температуры стали в тигеле до 1888 К (температура заливки по серийной технологии) расплав залива-55 ют с массовой скоростью 8000 г/с в форму с литниковой системой, оснащенной щелевым фильтром кольцевого типа с отверстиями шириной 1,5 мм. Форма на основе электрокорунда имеет температуру 1373 К.

Одновременно с плавкой шихты в тигельной печи проводят предварительный нагрев шихтовой заготовки в устройстве бестигельной плавки при проводимой мощности 10-15 кВт. За 1,5 мин до слива металла из тигеля в форму включают формированный разогрев заготовки при максимальной мощности на индукторе 80 кВт. Для обеспечения синхронного заполнения формы металлом тигельного и бестигельного переплавов слив металла из тигеля начинают после нагрева нижней торцовой час-15 грев над температурой ликвидуса уже ти шихтовой заготовки в устройстве бестигельной плавки до температуры 1678 К, которая на 30 град. ниже температуры солидуса. Массовая скорость оплавления и стекания струи бестигельного переплава составляет 200-230 г/с. Температура расплава в струе бестигельного переплава 1738-1728 К, т.е. в пределах 10 град. ниже температуры ликвидуса, равной 1738 К. Количество 25 твердой фазы в расплаве составляет 20-25% (по диаграмме состояния). Общая масса литейного блока, состоящего из трех вертикально расположенных плит 100х30х150 мм и литниковой системы, 14,5 кг.

Для сравнения заливают формы с введением добавки в виде механически обработанного и нагретого до 1573 К прутка ф 18 мм в горловину литейной воронки Ø 40 мм. Отливки исследуют на прочность металла (методом гидростатического взвешивания), определяют размеры литого (первичного) зерна 40 км. и механические свойства (на вырезанных из отливок образцах).

Заготовки образцов для механических испытаний термообрабатывают по режиму: закалка с температуры 1400 К, 45 охлаждение на воздухе, обработка холодом при -60° C, отпуск при 873 К.

Результаты исследований свойств отливок из стали ВНЛ-1 приведены в таблице.

Сравнение полученных результатов показывает, что применение нового способа изготовления отливок обеспечивает измельчение зерна, повышение 10 плотности и механических стойств металла в отливках.

Кроме того, ввод металлических добавок в расплав в виде жидко-твердой суспензии позволяет снять перев процессе заливки (с 150 до 50 град.), что способствует снижению пригара отливок.

Применение способа позволяет в 20 6-10 раз кменьшить размер литого зерна, повысить прочность высоколегированных сталей на 3-8% и пластичность на 15-25% за счет увеличения плотности металла.

Формула изобретения

1. Способ изготовления отливок, включающий заливку в литейную форму, преимущественно керамическую, жидкого сплава с одновременным введением в его струю нагретых металлических добавок, отличающийся тем, что, с целью измельчения литого 35 зерна, повышения плотности и механических свойств металла отливок в качестве металлической добавки используют жидкотвердую суспензию безтигельного переплава шихтовой заготов-

2. Способ по п.1, отличаю щ ийся тем, что в качестве шихтовой заготовки используют гранулированный материал с мелкозернистой структурой.

		r		_				
Технология заливки		Плотность метапла,	Средний Ф литых	Механические свойства				
~	**************	г/см ³	зерен, мм	് _{ള,} M∏a	σ _{q2} ,MΠa	8,2	ψ,%.	КС МДж/м ²
. Из	тигельной печи с добавкой сус- пензии бести- гельного пере- плава	7,848	0,2-0,8	1160	950	20,0	57 , 6	1,26
•		7,855	0,3-0,9	1165	1010	20,0	59,2	1,50
		7,850	0,2-1,0	1112	947	23,2	60,0	1,06
		7,850	0,3-1,5	1125	975	24,0	56.5	0.95

Продолжение табли									
Технология заливки	Плотность металла, г/см³	Средний ф литых зерен, мм	Механические свойства						
			о, MПа	σ _{α ε ,} ΜΠa	8,2	ψ,%	KC МДж/м²		
•	7,846	0,3-1,5	1148	1020	22,8	60,0	1,05		
٠.	7,857	0,1-0,7	1135	905	26,4	58,6	1,31		
	7,853	0,2-0,9	1137	960	23,0	63,0	1,40		
Среднее	7,851	0,23-1,0	4 1139	971	22,8	59,3	1,22		
Из тигельной печи с введением	7,825	3,5-7,0	1095	930	18,2	52,5.	0,93		
прутка в рас- плав (прототип)	7,846	1,5-5,0	1120	965	19,0	51,0	1,02		
, , , , , , , , , , , , , , , , , , , ,	7,820	2,5-6,5	1105	894	17,5	53,0	0,85		
	7,836	0,5-4,0	1080	885	16,4	52,0	1,05		
	7,841	1,0-5,5	1140	1010	20;5	56,0	1,10		
	7,817	4,0-8,5	1075	854	14,0	47,0	0,75		
• .	7,820	3,5-7,5	1097	910	14,5	50,0	.0,90		
Среднее	7,829	2,3-6,4	1102	921	17,1	51,6	0,94		

Составитель В.Андреев Техред М.Ходанич Корректор Е.Рошко

Редактор Э.Слиган

Заказ 1482/8

Тираж 741 Подписное ВНИИПИ Государственного комитета СССР по делам изобретений и открытий 113035, Москва, Ж-35, Раушская наб., д. 4/5

Производственно-полиграфическое предприятие, г.Ужгород, ул.Проектная,4