Def: Inferencia

Construir un modelo sobre una base de datos experimentales y extraer conclusiones.

Def: Muestra

Variable aleatoria X, definida sobre $(\Omega, \mathcal{A}, \mathbb{P})$ con distribución $\mathcal{F}_X(x) = \mathbb{P}_{(X \le x)}$ que se desconoce (al menos parcialmente).

X → "Observable" del experimento aleatorio

Muestra aleatoria:

$$X_1, X_2, ... X_n$$
 todas iid a X .

Muestra observada:

$$X_1, X_2, ... X_n$$

Con:

$$\mathcal{F}_{X_1,X_2,\dots,X_n}(x_1,x_2,\dots,x_n) = \mathbb{P}_{(X_1 \le x_1,X_2 \le x_2,\dots,X_n \le x_n)} = \prod_{i=1}^n \mathcal{F}_{X_i}(x_i)$$

Def: MODELOS PARAMETRICOS

Familia paramétrica de distribuciones:

 $\mathcal{F} = \{F_{\theta}(x) : \theta \in \Theta\}$ sera una familia de distribuciones de probabilidad parametrizadas por un espacio paramétrico Θ .

Def: FUNCION DE VEROSIMILITUD

$$\mathcal{L}_{(\theta)} = \prod_{i=1}^n f_{\theta}(x_i)$$
 si \underline{x} es continuo

$$\mathcal{L}_{(\theta)} = \prod_{i=1}^n p_{\theta}(x_i)$$
 si \underline{X} es discreto

Def: FAMILIA PARAMETRICA REGULAR

Una familia paramétrica es Regular si:

- 1. El soporte de $f_{\theta}(x)$ no depende de θ
- 2. $f_{\theta}(x)$ es derivable con respecto a $\theta \ \forall x$
- 3. El conjunto paramétrico $\Theta \in \mathbb{R}^p$ es abierto

Def: FAMILIAS EXPONENCIALES

Una familia de distribuciones es una familia exponencial si su función de densidad/probabilidad se puede escribir como:

$$f_{\theta}(x) = A_{(\theta)} \cdot e^{\sum_{i=1}^{k} C_i(\theta) \cdot r_i(x)} \cdot h_{(x)}$$

Donde:

 $C_i(\theta)$: $\Theta \in \mathbb{R}$

 $A(\theta)$: $\Theta \in \mathbb{R}^+$

 $r_i(x)$: $\mathbb{R}^q \in \mathbb{R}$

h(x): $\mathbb{R}^q \in \mathbb{R}^+$

Def: ESTADISTICOS

Un estadístico es cualquier función medible $T_n = T(\underline{X})$ con valores en un espacio euclídeo de dimensión finita.

Fácil: Dada una m.a. \underline{X} , un estadístico es una función de la m.a. que, evaluada en los valores observados, debe poder resultar en un valor numérico.

Obs: esta función NO puede depender de parámetros desconocidos.

Def: ESTADISTICOS SUFICIENTES

Un estadístico $T = r_{(X)}$ es suficiente para θ si:

 $p_{\underline{X}|T=t}(\underline{x})$ o $f_{\underline{X}|T=t}(\underline{x})$ es independiente de θ , para todo t.

Def: TEOREMA DE FACTORIZACION

Sean dos funciones h y g tales que:

$$f_{\theta}(x) = g_{(r(\underline{x}),\theta)} \cdot h_{(\underline{x})}$$

T = r(X) es un estadístico suficiente de X

Def: TEOREMA DE ESTADISTICOS PARA FLIAS EXPONENCIALES

Sean $X_1, X_2, ..., X_n$ una m.a. de una distribución perteneciente a una flia exponencial a k parámetros., entonces el estadístico suficiente para θ basado en la m.a. será:

$$T = \left(\sum_{i=1}^{n} r_1(X_i), \sum_{i=1}^{n} r_2(X_i), \dots, \sum_{i=1}^{n} r_k(X_i)\right)$$

Def: ESTIMADOR DE MAXIMA VEROSIMILITUD

A partir de $\mathcal{L}_{(\theta)}$ busco el valor de θ que maximiza dicha función.

Def: PRINCIPIO DE INVARIANZA

Suponiendo $\lambda = q(\theta)$ una función biunívoca de θ . Si $\hat{\theta}$ es el EMV de θ , entonces $\hat{\lambda} = q(\hat{\theta})$

Def: BONDAD DE LOS ESTIMADORES

Se mide con:

$$\mathcal{R}(\theta, \widehat{\theta}) = ECM(\widehat{\theta}) = \mathbb{E}_{\left[(\theta - \widehat{\theta})^{2}\right]} = Var_{\theta}(\widehat{\theta}) + \mathfrak{B}(\widehat{\theta})^{2}$$

Un **ESTIMADOR ÓPTIMO** para θ será $\hat{\theta}$ tal que

$$ECM(\hat{\theta}^*) \leq ECM(\hat{\theta}), \forall \theta$$

Un **ESTIMADOR INSESGADO** para θ será $\hat{\theta}$ tal que

$$\mathbb{E}_{\theta} \big[\widehat{\theta} \big] = \theta, \forall \theta$$

Un **ESTIMADOR ASINTOTICAMENTE INSESGADO** para θ será $\hat{\theta}$ tal que

$$\lim_{n o \infty} \mathbb{E}_{\theta} [\widehat{\theta}] = \theta$$
, $\forall \theta$

Con un **ESTIMADOR SESGADO** el sesgo se define como:

$$\mathfrak{B}(\widehat{\theta}) = \mathbb{E}_{[\widehat{\theta}]} - \theta$$

Def: CONSISTENCIA

Dada una sucesión de estimadores $\widehat{\theta}_n$ de θ , decimos que $T=\widehat{\theta}$ es (débilmente) **consistente** si $\forall \mathcal{E}>0$

$$\mathbb{P}(|T-\theta| > \mathcal{E}) \xrightarrow{n \to \infty} 0$$

Def: TEOREMA DE CONSISTENCIA

Dada una sucesión de estimadores $\hat{\theta}_n$ de θ . Si $Var_{\theta}(\hat{\theta}) \to 0$ y $\mathbb{E}_{\theta}(\hat{\theta}) \to \theta$, entonces $\hat{\theta}_n$ es débilmente consistente

Def: ESTIMADORES ASINOTITCAMENTE NORMALES

Se dice que $\hat{\theta}_n$ es una sucesión de estimadores asintóticamente normales si $\sqrt{n} \cdot \left(\hat{\theta}_n - q(\theta)\right)$ converge en distribución a una normal con media cero y varianza $q'(\theta)/I(\theta)$.

 $I(\theta)$ se llama al **Numero de información de Fischer** y se calcula como:

$$I(\theta) = \mathbb{E}\left[\left(\frac{d}{d\theta}\ln\left(f_{\theta}(X)\right)\right)^{2}\right]$$

$$I(\theta) = -\mathbb{E}\left[\frac{d^2}{d\theta^2}\ln\left(f_{\theta}(X)\right)\right]$$

(solo para familias regulares)

Def: ESTIMADORES ASINOTITCAMENTE NORMALES

Bajo ciertas condiciones muy generales, sea $\hat{\theta}_n(\underline{X})$ un EMV de θ consistente y sea $q(\theta)$ derivable con $q'(\theta) \neq 0 \ \forall \theta$, entonces $q'(\hat{\theta}_n)$ es asintóticamente normal para estimar $q(\theta)$.

Si $\sqrt{n} \cdot \sqrt{I(\theta)} \cdot (\hat{\theta}_n - \theta) \sim^a \mathcal{N}(0,1)$ y $\hat{\theta}_n$ es un estimador consistente para $\hat{\theta}$, Entonces vale que:

$$\sqrt{n} \cdot \sqrt{I(\hat{\theta}_n)} \cdot (\hat{\theta}_n - \theta) \sim^a \mathcal{N}(0,1)$$

Def: TEOREMA CHI CUADRADO

Si X_1, X_2, \dots, X_n son iid con $X_i \sim \mathcal{X}_{v_i}^2$, entonces $Y = \sum_{i=1}^n X_i$ tendrá distribución \mathcal{X}_{v}^2 , con:

$$\nu = \sum_{i=1}^{n} \nu_i$$

Def: COROLARIO CHI CUADRADO

Se llama distribución \mathcal{X}^2 con n grados de libertad a la distribución de

$$U = \sum_{i=1}^{n} Z_i^2 \text{ donde } Z_1, Z_2, ..., Z_n \sim \mathcal{N}(0,1)$$

Def: DISTRIBUCION T DE STUDENT

Sean $Z \sim \mathcal{N}(0,1)$ y $U \sim \mathcal{X}_n^2$, entonces si Z y U son independientes:

$$T = \frac{Z}{\sqrt{U/n}} \sim t_n$$

Def: DISTRIBUCION F DE FISHER - SNEDECOR

Sean U y V v.a. indep con distribución $\mathcal{X}_{n_1}^2$ y $\mathcal{X}_{n_2}^2$ respectivamente. Entonces:

$$F = \frac{U/n_1}{V/n_2} \sim \mathfrak{F}_{n_1, n_1}$$

Def: TEOREMAS

Sean
$$X_1, X_2, \dots, X_n \sim^{iid} \mathcal{N}(\mu, \sigma^2)$$

$$1-Z = \sqrt{n} \frac{(\bar{X}-\mu)}{\sigma} \sim \mathcal{N}(0,1)$$

$$2-W = \sum_{i=1}^{n} \frac{(X_i - \bar{X})^2}{\sigma^2} \sim \mathcal{X}_{n-1}^2$$

3-Z y W son independientes.

4-Si
$$S^2=\sum_{i=1}^n \frac{(X_i-\bar{X})^2}{n-1}$$
, entonces:
$$T=\sqrt{n}\frac{(\bar{X}-\mu)}{S}{\sim}t_{n-1}$$