RecSys рекомендации фильмов

Авторы проекта - студенты МОВС:

Владислав Панфиленко

Лилия Хорошенина

Проделанная работа

Данные

~34 млн. 86,5 тыс.

оценок

УНИКОЛЬНЫХ фильмов с оценкой ~331 тыс.

УНИКОЛЬНЫХ пользователей поставили оценку

Количество оценок по жанрам, ΜΛΗ.

Количество выпущенных фильмов, шт.

EDA

Количество оценок по годам

Динамика оценок пользователей по 5-бальной шкале, млн.

Пользователи, у которых больше всего оценок, в

Предобработка данных

Сплит по данным

- Для модели брали **20** последних оценок пользователя в тест, оставшиеся в трейн;
- Среди пользователей отбирали только тех, у кого было **более 20 оценок** за все время, что соответствует 0,4 квантилю.

Сплит по данным в млн. строк и % от всех данных

Модель

При разработке модели мы учли, что все пользователи делятся на:

- ((ХОЛОДНЫХ)) ПО КОТОРЫМ У НАС НЕТ ИНФОРМАЦИИ;
- ((известных)) по которым есть информация.

IMDb-формула («холодные» пользователи):

$$w = \frac{Rv + Cm}{v + m}$$

- w взвешенный рейтинг по фильму
- v количество оценок по фильму
- m минимальное количество оценок, необходимое для попадания в число 250 лучших фильмов
- R средняя оценка фильма
- С среднее число оценок

Применение ML-моделей (пользователи с данными):

Нами были рассмотрены 3 основные модели классического ML, подходящие под задачу рекомендательных систем:

- KNN
- iALS
- LightFM

KNN: rectools + implicit

Для **KNN** были проанализированы 3 метода сходства между пользователями:

- Косинусное расстояние (Cosine);
- Mepa TF-IDF;
- Mepa Okapi BM25.

Наилучший результат на MAP@10 показал TF-IDF.

Более подробная информация: recsyc_part1/KNN.ipynb

iALS: implicit

Для **iALS** также был произведен подбор гиперпараметров, среди которых были:

- Кол-во факторов (factors);
- Кол-во итераций (iterations);
- Коэффициент регуляризации (regularization);
- Веса положительного класса (alpha).

Более подробная информация: recsyc part1/iALS.ipynb

Качество модели iALS: ~1.1

Наилучшими гиперпараметрами были выбраны:

- factors = 3
- iterations=50
- regularization = 1.0
- alpha=4.0

Данная модель показала **наилучшее качество**.

Для начала было проанализировано качество модели на двух **функциях потерь**:

- WARP взвешенный приближенный ранг;
- BPR байесовский ранг.

Затем были проанализированы различия в использовании оптимизаторов для обучения:

- · Adagrad;
- · Adadelta.

Более подробная информация: recsyc_part1/LightFM.ipynb

Сравнение loss-функций WARP и BPR

Сравнение оптимизаторов Adagrad и Adadelta

Качество модели на MAP@10: ~7.7

Микросервис

Постарались учесть простой клиентский путь, для этого разработали систему последовательных сообщений, которые учитывают статус нахождения пользователя с помощью системы конечного автомата FSM.

Старт бота Авторизация Если пользователь Если пользователь ((ХОЛОДНЫЙ)) существующий I. Авторизация Запрашиваем id Если id не Eсли id находит/не валидный цифра Переход к Рекомендация Предсказание фильма фильмов по существующему II. Основной пользователю функционал Пользователь выбирает жанр Выдача

Пример работа бота

Постарались сделать удобство пользования интуитивно понятным

Для начала работы бота необходимо нажать на «Старт»

Далее пользователь пользуется кнопками снизу

DL часть – Deep FM

описание архитектуры

Архитектура DeepFM (Deep Factorization Machine) объединяет преимущества двух различных подходов для прогноза кликабельности (CTR):

- факторизационных машин (FM);
- глубоких нейронных сетей (DNN).

Оба компонента (FM и DNN) получают один и тот же набор входных данных. Это позволяет им обучаться параллельно и использовать одни и те же признаки для своих расчетов

Архитектура Deep FM

DL часть - Deep FM

результаты

Гиперпараметры:

- Batch size = 8224
- n_epochs = 5
- learning_rate = 1e-6
- embedding_size = 64
- hidden_size = [64, 64]
- num_classes = 2 (if rating >3, 1, else 0)
- dropuot = [0.5, 0.5]
- оптимизатор: ADAM
- критерий: binary_cross_entropy
- Метрика качества: map@k

Более подробная информация: DeepFM.ipynb

