Dhir Thacker | 17070122019 | CSE-1

SD lab assignment 6 (R-assignment 2)

Exploratory data analysis in R

A snippet of the 911.csv dataset

Loading the dataset and import required libraries and packages

```
r assignment 6.R ×
                   Total_calls_by_SubType ×
                                           emergency calls
🖛 🧼 🔏 🥛 Source on Save 🔍 🏸 🗸 📳
       emergency_calls <- read.csv("911.csv")</pre>
       View(emergency_calls)
   8 install.packages("Rshiny")
   9 require(dplyr)
  10 require(plyr)
  11 require(psych)
  12 require(ggplot2)
  13 require(plotly)
  14 require(tidyr)
  15 library(lubridate)
16 library(viridis)
17 install.packages(rshi)
  18 library(chron)
     library(ggmap)
      library(ggmap)
library(date)
      require(date)
```

Summarizing the data

```
## Street | Street |
```

• Checking variable classes

```
32
33 # Checking the variable class
34
35 class(emergency_calls$timeStamp)
36 class(emergency_calls$title)
37 class(emergency_calls$title)
38
37:29 (Top Level) 

Console Terminal × Jobs ×

E:/Sem_8/sd_lab/r/r_assignment_2/ 

* # Checking the variable class

> class(emergency_calls$zip)
[1] "integer"

> class(emergency_calls$timeStamp)
[1] "character"

> class(emergency_calls$title)
[1] "character"

> |
```

Cleaning data

Removing 'e' column

```
# Cleaning the data

44

45 # Removing the dummy variable ('addr' column and 'e' column)

46

47 emergency_calls <- emergency_calls[,1:8]

48 View(emergency_calls)
```


Changing class of timestamp to date

• Top 10 zipcodes with the most number of 911 calls

```
#Top 10 zipcodes for all 911 calls#

Top_10_zipcodes <-count(emergency_calls$zip)

Top_10_zipcodes <-arrange(Top_10_zipcodes,-freq)

Top_10_zipcodes <-Top_10_zipcodes[2:106,]

Top_10_zipcodes <- head(Top_10_zipcodes,10)

Top_10_zipcodes$zipcode <- Top_10_zipcodes[,1]

Top_10_zipcodes<- Top_10_zipcodes[,2:3]

view(Top_10_zipcodes)

write.csv(top_10_zipcodes, file='E:\\sem_8\\sd_lab\\r\\r_assignment_2\\Top_10_zipcodes.csv')

Top_10_zipcodes$Perc <- Top_10_zipcodes$freq/sum(Top_10_zipcodes$freq) * 100

Top_10_zipcodes$zipcode <- factor(Top_10_zipcodes$zipcode)
```

r_assignment_6.R* × Top_10_zipcodes × emergency_calls ×				
^	freq ‡	zipcode ‡	Perc ‡	
2	6979	19401	17.261080	
3	6643	19464	16.430055	
4	4854	19403	12.005342	
5	4748	19446	11.743174	
6	3174	19406	7.850218	
7	3050	19002	7.543530	
8	2990	19468	7.395133	
9	2781	19454	6.878215	
10	2635	19090	6.517115	
11	2578	19038	6.376138	

TOP 10 ZIPCODES WITH MOST NO. OF 911 CALLS

TOP 10 ZIPCODES WITH MOST PERCENTAGEOF 911 CALLS

Splitting title column into type and subtype

Splitting date column into year, month, day, hour, weekdays columns

```
# splitting the year, month, day, hour, weekdays into separate columns

emergency_calls$Year <- year(emergency_calls$timeStamp)

emergency_calls$Month <- month(emergency_calls$timeStamp)

emergency_calls$Day <- day(emergency_calls$timeStamp)

emergency_calls$Hour <- hour(emergency_calls$timeStamp)

emergency_calls$Weekday <- weekdays(emergency_calls$timeStamp)

write.csv(emergency_calls, file = 'E:\\Sem_8\\sd_lab\\r\\r_assignment_2\\Total_911_calls_date_split.csv')

emergency_calls$Year <- factor(emergency_calls$Year)

emergency_calls$Month <- factor(emergency_calls$Month)

emergency_calls$Day <- factor(emergency_calls$Day)

emergency_calls$Hour <- factor(emergency_calls$Mour)

emergency_calls$Weekday <- factor(emergency_calls$Weekday)
```


Type analysis

List of total calls by type

	_	_	_
Α	В	C	D
	Туре	Total_calls	;
1	EMS	48877	
2	Fire	14920	
3	Traffic	35695	
▶	Total_calls_by_type (+		

o List of total calls by zip

```
# list of total calls by zip

Total_calls_by_zip <- summarise(group_by(emergency_calls, zip), Total_calls=n())
write.csv(Total_calls_by_zip, file='E:\\Sem_8\\sd_lab\\r\\r_assignment_2\\Total_calls_by_zip.csv')</pre>
```

Α	В	С	D
	zip	Total calls	_
1	17752	1	
2	18036	2	
3	18041	414	
4	18054	326	
5	18056	6	
6	18070	54	
7	18073	736	
8	18074	435	
9	18076	306	
10	18092	14	
11	18103	4	
12	18914	66	
13	18915	118	
14	18927	2	
15	18932	11	
16	18936	254	
17	18951	10	
18	18960	34	
19	18964	1287	
20	18966	44	
21	18969	672	
22	18974	215	
23	18976	45	
24	19001	1514	
25	19002	3050	
← →	Total_calls	s_by_zip	(

List of total calls by date

list of total calls by date

Total_calls_by_date <- summarise(group_by(emergency_calls, Year,Month,Day), Total_calls = n())
write.csv(Total_calls_by_date, file='E:\\Sem_8\\sd_lab\\r\\r_assignment_2\\Total_calls_by_date.csv')</pre>

А	В	С	D	Е
	Year	Month	Day	Total_calls
1	2015	12	10	115
2	2015	12	11	396
3	2015	12	12	403
4	2015	12	13	319
5	2015	12	14	447
6	2015	12	15	421
7	2015	12	16	377
8	2015	12	17	388
9	2015	12	18	346
10	2015	12	19	279
11	2015	12	20	271
12	2015	12	21	430
13	2015	12	22	448
14	2015	12	23	524
15	2015	12	24	445
16	2015	12	25	323
· ·	Total_calls	s_by_date	①	225

TOTAL NO.OF 911 CALLS MADE EACH DAY BY DIFFERENT TYPES

Important analysis plots

- Subtype analysis
 - o Top 10 subtypes overall

```
# Top 10 Subtypes overall

Top_10_subtypes <- arrange(Total_calls_by_SubType,-Total_calls)
Top_10_subtypes <- head(Top_10_subtypes,10)
View(Top_10_subtypes)

Top_10_subtypes$Perc <- Top_10_subtypes$Total_calls/sum(Top_10_subtypes$Total_calls) * 100
View(Top_10_subtypes)

ggplot(Top_10_subtypes, aes(reorder(SubType, Total_calls), Total_calls, fill = SubType)) +
    geom_bar(stat = "identity") + theme(legend.position = "none") +
    ggtitle("911 Emergency Calls by Top 10 SubType") + xlab("Subtype") + ylab("Number of 911 Calls")</pre>
```


Top subtypes by traffic

```
# Top subtypes by Traffic#

Total_calls_by_Traffic <- summarise(group_by(Emergency_Calls,Type,SubType),Total = n())
Total_calls_by_Traffic <- subset(Total_calls_by_Traffic,Total_calls_by_Traffic$Type=="Traffic")

View(Total_calls_by_Traffic)

ggplot(Total_calls_by_Traffic, aes(reorder(SubType, Total), Total, fill = SubType)) +
    geom_bar(Stat = "identity") + theme(legend.position = "none") +
    ggtitle("911 Emergency Calls by Top SubType within Traffic") + xlab("Subtype") + ylab("Number of 911 Calls")

Subtype_by_weekdays <- summarise(group_by(Emergency_Calls,Weekday, SubType), Total = n())

Subtype_by_weekdays <- subset(Subtype_by_weekdays,Subtype_by_weekdays$weekday != "Sunday"

& Subtype_by_weekdays != "Saturday")
```

r_assi	gnment_6.R	Total_calls_by_Traffic ×	Total_calls
	Type ‡	SubType ‡	Total ‡
1	Traffic	DEBRIS/FLUIDS ON HIGHWAY -	67
2	Traffic	DISABLED VEHICLE -	7702
3	Traffic	HAZARDOUS ROAD CONDITIONS -	1086
4	Traffic	ROAD OBSTRUCTION -	3144
5	Traffic	VEHICLE ACCIDENT -	23066
6	Traffic	VEHICLE FIRE -	553
7	Traffic	VEHICLE LEAKING FUEL -	77

Subtype by weekdays

Hourly spike by Traffic subtype

