1.12 Theorem. Let $a, b, c, d, n \in \mathbb{Z}$ with n > 0. If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$.

Proof. Let $a, b, c, d, n \in \mathbb{Z}$ with n > 0 be given such that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. By definition, $n \mid (a - b)$ and $n \mid (c - d)$. We may choose $t, u \in \mathbb{Z}$ such that a - b = nt and c - d = nu. Adding both equations

$$a - b + c - d = nt + nu$$
$$= n(t + u).$$

By CPI, we may choose $z \in \mathbb{Z}$ such that t+u=z. Using algebra, (a+c)-(b+d)=nz. By definition, $n \mid [(a+c)-(b+d)]$. Therefore, $a+c \equiv b+d \pmod{n}$.