Name: Tri Nguyen Due date: 01/25

Problem 1

Let χ_0 be the principal character mod 3, that is

$$\chi_0(n) = \begin{cases} 1, & \gcd(n,3) = 1 \\ 0, & \text{otherwise} \end{cases}$$

Define

$$\chi(n) = \begin{cases} 1, & n \equiv 1 \pmod{3} \\ -1, & n \equiv 2 \pmod{3} \\ 0, & \text{otherwise} \end{cases}$$

Prove that χ_0 and χ are completely multiplicative functions. Verify the identity

$$\mathbb{1} = \frac{1}{2}(\chi_0 + \chi)$$

Proof.

Let $m, n \in \mathbb{Z}$ be arbitrary integers. We consider the following cases:

1. At least one of m, n is divisible by 3. WLOG, we can assume $3 \mid m$. Then it is clear that $3 \mid mn$. By definition, we must have $\chi_0(m) = \chi(m) = 0$ and $\chi_0(mn) = \chi(mn) = 0$. Thus we have

$$\chi(m)\chi(n) = 0 \cdot \chi(n) = 0 = \chi(mn)$$
 and $\chi_0(m)\chi_0(n) = 0 \cdot \chi(n) = 0 = \chi(mn)$.

- 2. Both m, n are coprime to 3. There will be then two subcases
 - $m \equiv n \pmod{3}$. Then clearly we have $\chi_0(m) = \chi_0(n) = 1$ and $\chi(m) = \chi(n)$. Moreover $mn \equiv 1 \pmod{3}$, thus $\chi(mn) = \chi_0(mn) = 1$. In particular, we have

$$\chi(m)\chi(n) = 1 \cdot 1 = 1 = \chi(mn)$$
 and $\chi_0(m)\chi_0(n) = 1 \cdot 1 = 1 = \chi(mn)$.

• $m \not\equiv n \pmod{3}$. We can further assume that $m \equiv 1 \pmod{3}$ and $n \equiv 2 \pmod{3}$. clearly

$$\chi_0(m)\chi_0(n) = 1 \cdot 1 = 1 = \chi_0(mn),$$

as gcd(mn, 3) = 1.

On the other hand, $mn \equiv 1 \cdot (-1) \equiv 2 \pmod{3}$, thus

$$\chi(m)\chi(n)=1\cdot (-1)=-1=\chi(mn)$$

In conclustion, χ and χ_0 are completely multiplicative. To verify the given identity, we consider the following cases

(a) $m \not\equiv 1 \pmod{3}$: Then $\mathbb{1}(m) = 0$. On the other hand, we have

$$\frac{1}{2}(\chi(m) + \chi_0(m)) = \begin{cases} 0 + 0, & m \equiv 0 \pmod{3} \\ -1 + 1, & m \equiv 2 \pmod{3} \end{cases} = 0$$

(b) $m \equiv 1 \pmod{3}$: Then $\mathbb{1}(m) = 1 = 1/2(\chi(m) + \chi_0(m))$

Thus we are done. \Box

Problem 2

For s > 1, define the L function

$$L(s,\chi) := \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = \sum_{k=0}^{\infty} \frac{1}{(3k+1)^s} - \sum_{k=0}^{\infty} \frac{1}{(3k+2)^s} = 1 - \frac{1}{2^s} + \frac{1}{4^s} - \frac{1}{5^s} + \dots$$

Show that

$$\frac{1}{2} \le L(s, \chi) \le 1$$

for s > 1, and hence show that

$$\frac{1}{2}\log L(s,\chi_0) + \frac{1}{2}\log L(s,\chi) \to \infty \quad \text{ as } s \to 1^+,$$

where

$$L(s, \chi_0) := \sum_{n=1}^{\infty} \frac{\chi_0(n)}{n^s}.$$

Proof. It can be easily seen that

$$\sum_{k=1}^{\infty} \left| \frac{\chi(k)}{k^s} \right| < \sum_{k=1}^{\infty} \frac{1}{k^s} < \infty$$

for s > 1. Thus, the series $L(s, \chi)$ converges absolutely for fixed s > 1. In particular, we can rearrange the term of the series without changing its values. Note that

$$L(s,\chi) = 1 - \frac{1}{2^s} + \frac{1}{4^s} - \frac{1}{5^s} + \dots = 1 - \sum_{k=0}^{\infty} \left(\frac{1}{(3k+2)^s} - \frac{1}{(3k+4)^s} \right) \le 1,$$

and

$$L(s,\chi) = 1 - \frac{1}{2^x} + \frac{1}{4^x} - \frac{1}{5^x} + \ldots = 1 - \frac{1}{2^s} + \sum_{k=1} \left(\frac{1}{(3k+1)^s} - \frac{1}{(3k+2)^s} \right) > 1 - \frac{1}{2^s} \ge \frac{1}{2},$$

where s > 1. In conclusion, we have

$$1/2 \le L(s,\chi) \le 1$$

Using formulae (14) for the principal character of the note, we get

$$L(s,\chi_0) \ge \frac{\Phi(3)}{3^x} \sum_{k=1}^{\infty} \frac{1}{k^s} \longrightarrow \infty,$$

as $s \to 1^+$. Moreover, $L(s,\chi)$ is bounded as $s \to 1^+$, as shown above, we can conclude that

$$L(s,\chi_0)\cdot L(s,\chi)\to\infty$$
 as $s\to 1^+$,

which clearly shows that

$$\frac{1}{2}\log L(s,\chi_0) + \frac{1}{2}\log L(s,\chi) \to \infty \quad \text{as } s \to 1^+,$$

as desired.

Problem 3

Show that

$$\frac{1}{2}\log L(s,\chi_0) + \frac{1}{2}\log L(s,\chi) = \sum_{p} \sum_{k=1}^{\infty} \frac{\mathbb{1}(p^k)}{kp^{ks}}$$

for s > 1, where the sum extends over all primes p.

Proof. Since χ and χ_0 are real-valued, we can safely taking the logarithm without the need to taking care of complex logarithm. Using the Taylor's expansion for \log , we get

$$\log L(s,\chi) = -\sum_{p} \log(1 - \chi(p)p^{-s}) = \sum_{p} \sum_{k=1}^{\infty} \frac{\chi(p^{k})p^{-ks}}{k}$$

and

$$\log L(s, \chi_0) = -\sum_{p} \log(1 - \chi_0(p)p^{-s}) = \sum_{p} \sum_{k=1}^{\infty} \frac{\chi_0(p^k)p^{-ks}}{k}$$

As shown above, we have that $1 = \frac{\chi + \chi_0}{2}$, thus

$$\log L(s,\chi_0) + \log L(s,\chi) = \sum_{p} \sum_{k=1}^{\infty} \frac{[\chi(p^k) + \chi_0(p^k)]p^{-ks}}{k} = \sum_{p} \sum_{k=1}^{\infty} 2 \cdot \frac{\mathbb{1}(p^k)p^{-ks}}{k},$$

which implies

$$\frac{1}{2}\log L(s,\chi_0) + \frac{1}{2}\log L(s,\chi) = \sum_{p} \sum_{k=1}^{\infty} \frac{\mathbb{1}(p^k)}{kp^{ks}},$$

for s > 1.

Problem 4

Putting everything together, we conclude that the series

$$\sum_{p \equiv 1 \pmod{3}} \frac{1}{p}$$

diverges.

Proof. It can be easily seen that the double sum in problem 3 is the Taylor expansion of the function $\log(L(s,1))$ with s>1. By problem 2 we have

$$\log(L(s,1)) \longrightarrow \infty$$
 as $x \to 1^+$

Taking the exponent of $\log(L(s, 1))$ and use the definition, we get

$$\log L(s, 1) = \sum_{p=3t+1} \frac{1}{p^s} + \underbrace{\sum_{p=3t+1} \sum_{k=2}^{\infty} \frac{1}{kp^{ks}}}_{E(x)}$$

If we can show that the latter double sum is bounded, then we are done. This sum can be estimated in the exactly the same way in the note as follows

$$\sum_{k=2}^{\infty} \frac{1}{kp^{ks}} < \sum_{k=2}^{\infty} \left(\frac{1}{p^s}\right)^s = \frac{1}{p^s(p-1)} < \frac{1}{p-1} - \frac{1}{p}$$

Summing over all primes $p \equiv 1 \pmod{3}$, we get

$$E(x) = \sum_{p=3t+1} \sum_{k=2}^{\infty} \frac{1}{kp^{ks}} < \sum_{p=3t+1} \left(\frac{1}{p-1} - \frac{1}{p} \right) < \sum_{n \in \mathbb{Z}_{\geq 1}} \left(\frac{1}{n} - \frac{1}{n+1} \right) = 1$$

In particular, we have

$$\log(L(s,\mathbb{1})) = \sum_{p=3t+1} \frac{1}{p^s} + E(x) \longrightarrow \infty \quad \text{ as } \quad x \to 1^+$$

As $E(x) \in (0,1)$ letting $s \to 1^+$ yields

$$\sum_{p\equiv 1 \pmod{3}} \frac{1}{p} = \infty,$$

which means the series $\sum_{p\equiv 1\pmod 3}\frac1p$ diverges, as desired.