SOLUTION OF FINAL EXAM MATH H54

Part I: Problems (1)-(9), each worth 14 points, maximum capped at 80 points.

Part II: Problems (10)-(12), each worth 10 points, maximum capped at 20 points.

(1) (14 points) Let $\{\vec{v}_1,\ldots,\vec{v}_n\}$ be a linearly independent set of vectors in a real vector space V. Prove that

$$\{\vec{v}_1 + \vec{v}_2, \vec{v}_2 + \vec{v}_3, \dots, \vec{v}_{n-1} + \vec{v}_n, \vec{v}_n + \vec{v}_1\}$$

is linearly independent if and only if n is odd (not divisible by 2).

(Note: This is equivalent to show that the set of vectors is linearly independent if n is odd, and is linearly dependent if n is even.)

Solution. If n is even, then we have

$$(\vec{v}_1 + \vec{v}_2) + (\vec{v}_3 + \vec{v}_4) + \dots + (\vec{v}_{n-1} + \vec{v}_n) = (\vec{v}_2 + \vec{v}_3) + (\vec{v}_4 + \vec{v}_5) + \dots + (\vec{v}_n + \vec{v}_1),$$

which implies that the set $\{\vec{v}_1 + \vec{v}_2, \vec{v}_2 + \vec{v}_3, \dots, \vec{v}_{n-1} + \vec{v}_n, \vec{v}_n + \vec{v}_1\}$ is linearly dependent.

If n is odd, we'd like to show that $\{\vec{v}_1 + \vec{v}_2, \vec{v}_2 + \vec{v}_3, \dots, \vec{v}_{n-1} + \vec{v}_n, \vec{v}_n + \vec{v}_1\}$ is linearly independent. Suppose there exists $a_1, \dots, a_n \in \mathbb{R}$ such that

$$0 = a_1(\vec{v}_1 + \vec{v}_2) + a_2(\vec{v}_2 + \vec{v}_3) + \dots + a_n(\vec{v}_n + \vec{v}_1)$$

= $(a_n + a_1)\vec{v}_1 + (a_1 + a_2)v_2 + \dots + (a_{n-1} + a_n)\vec{v}_n$,

we'd like to show that $a_1 = \cdots = a_n = 0$. Since $\{\vec{v}_1, \ldots, \vec{v}_n\}$ is linearly independent, the above relation implies that

$$a_n + a_1 = a_1 + a_2 = \dots = a_{n-1} + a_n = 0.$$

Hence

$$(a_1 + a_2) + (a_3 + a_4) + \dots + (a_{n-2} + a_{n-1}) = 0.$$

Therefore

$$a_1 + a_2 + \dots + a_n = a_1.$$

Similarly, one can show that

$$a_1 + a_2 + \cdots + a_n = a_i$$
 for each $1 \le i \le n$.

Hence we have $a_1 = a_2 = \cdots = a_n = 0$.

(2) (14 points) Let A be a real symmetric positive-definite matrix, and let B be a real anti-symmetric matrix (i.e. $B=-B^T$). Prove that A+B is invertible. (Hint: Show that $\vec{x}^T(A+B)\vec{x}=\vec{x}^TA\vec{x}$.) (Hint: Show that if $(A+B)\vec{x}=\vec{0}$ then $\vec{x}=\vec{0}$.)

Solution. It suffices to show that " $(A+B)\vec{x}=\vec{0}$ implies $\vec{x}=\vec{0}$ ". First, notice that $\vec{x}^TB\vec{x}=0$ for any \vec{x} , since $\vec{x}^TB\vec{x}=-\vec{x}^TB^T\vec{x}=-(\vec{x}^TB^T\vec{x})^T=-\vec{x}^TB\vec{x}$. Now, suppose that $(A+B)\vec{x}=\vec{0}$ for some \vec{x} , then

$$\vec{x}^T A \vec{x} = \vec{x}^T (A + B) \vec{x} = 0.$$

Since A is positive-definite, this implies that $\vec{x} = \vec{0}$.

- (3) Let A and B be two real square matrices.
 - (a) (7 points) Suppose that $\lambda \neq 0$ is an eigenvalue of AB. Prove that λ also is an eigenvalue of BA. (Note: One needs to show that there exists a NONZERO vector \vec{v} such that $BA\vec{v} = \lambda \vec{v}$.) (Hint: Similar idea as in practice problem #13 might help.)
 - (b) (7 points) Does the same statement hold for $\lambda = 0$? Prove your answer. (Hint: What does it mean for a matrix to have 0 as an eigenvalue?)

Solution. (a) Let $\lambda \neq 0$ be an eigenvalue of AB and let $\vec{v} \neq \vec{0}$ be an eigenvector of λ , i.e. $AB\vec{v} = \lambda \vec{v}$. Then we have

$$BA(B\vec{v}) = BAB\vec{v} = B(\lambda\vec{v}) = \lambda(B\vec{v}).$$

Notice that $B\vec{v} \neq \vec{0}$: if $B\vec{v} = \vec{0}$, then $\vec{0} = A(B\vec{v}) = \lambda \vec{v}$; but we know that $\lambda \vec{v} \neq \vec{0}$ since $\lambda \neq 0$ and $\vec{v} \neq \vec{0}$. Therefore, we have λ is an eigenvalue of BA with an eigenvector given by $B\vec{v} \neq \vec{0}$.

(b) Yes. $\lambda = 0$ is an eigenvalue of AB if and only if AB is not invertible, which is equivalent to $\det(AB) = 0$; and we have $\det(AB) = \det(A) \det(B) = \det(BA)$.

(4) (14 points) Let A be a real $n \times n$ matrix. Prove that there exists a real $n \times n$ matrix B such that BA = 0 (the zero matrix) and $\operatorname{rank}(A) + \operatorname{rank}(B) = n$. (Hint: First show that there exists an invertible matrix P such that PA is the reduced echelon form of A.) (Hint: Then find a square matrix C such that C(PA) = 0 and $\operatorname{rank}(A) + \operatorname{rank}(C) = n$. Such C should not be hard to construct, using the fact that PA is of reduced echelon form.) (Hint: Finally, show that B = CP has the desired properties.)

Solution. Recall that there exists an invertible matrix P such that PA is the reduced echelon form of A (the matrix P is a product of elementary matrices which correspond to elementary row operations). Let $r = \operatorname{rank}(A)$. Then the last (n-r) rows of PA are all zeros. Define an $n \times n$ matrix Q as follows:

$$\begin{bmatrix} 0_{(n-r)\times r} & \mathbb{I}_{n-r} \\ 0_{r\times r} & 0_{r\times (n-r)} \end{bmatrix},$$

where the upper-right part of Q is an identity matrix of size (n-r), and the remaining entries are all zeros. Then it's clear that QPA = 0. We define B := QP. Then we have BA = 0 and $\operatorname{rank}(B) = \operatorname{rank}(QP) = \operatorname{rank}(Q) = n - r$ since P is invertible.

- (5) (14 points) Let V_1, V_2, V_3 be real vector spaces, and $T: V_1 \to V_2$, $S: V_2 \to V_3$ be linear transformations. Prove that the following two statements are equivalent to each other:
 - (a) $\operatorname{Im}(S \circ T) = \operatorname{Im}(S)$;
 - (b) $Ker(S) + Im(T) = V_2$.

Recall that $S \circ T$ denotes the composition (first apply T, then apply S), and Ker (resp. Im) denotes the kernel (resp. image) of a linear transformation. (Hint: First show that $\operatorname{Im}(S \circ T) \subseteq \operatorname{Im}(S)$ always holds, therefore statement (a) is equivalent to $\operatorname{Im}(S) \subseteq \operatorname{Im}(S \circ T)$.) (Hint: Similarly, show that statement (b) is equivalent to $V_2 \subseteq \operatorname{Ker}(S) + \operatorname{Im}(T)$.) (Hint: Write down precisely the meaning of $\operatorname{Im}(S) \subseteq \operatorname{Im}(S \circ T)$. It shouldn't be hard to show that it is equivalent to $V_2 \subseteq \operatorname{Ker}(S) + \operatorname{Im}(T)$.)

Solution. Statement (a) is equivalent to: "for any $x \in V_2$, there exists $y \in V_1$ such that S(x) = S(T(y))", which is equivalent to: "for any $x \in V_2$, there exists $y \in V_1$ such that $x - T(y) \in \text{Ker}(S)$ ", which is equivalent to: "for any $x \in V_2$, there exists $y \in V_1$ and $z \in \text{Ker}(S)$ such that x = T(y) + z", which is equivalent to: "for any $x \in V_2$, there exists $w \in \text{Im}(T)$ and $z \in \text{Ker}(S)$ such that x = w + z", which is equivalent to Statement (b).

- (6) Let V be a finite dimensional real inner product space, and let $W \subseteq V$ be a subspace.
 - (a) (7 points) Define $T_W \colon V \to W$ to be the orthogonal projection onto W. Prove that for any $\vec{v}_1, \vec{v}_2 \in V$, one has $\langle \vec{v}_1, T_W(\vec{v}_2) \rangle = \langle T_W(\vec{v}_1), \vec{v}_2 \rangle$.
 - (b) (7 points) Conversely, suppose $T\colon V\to V$ is a linear transformation such that $T^2=T$ and $\langle \vec{v}_1,T(\vec{v}_2)\rangle=\langle T(\vec{v}_1),\vec{v}_2\rangle$ holds for any $\vec{v}_1,\vec{v}_2\in V$. Prove that T is the orthogonal projection onto its image $\mathrm{Im}(T)$. (Note: $T^2=T\circ T$ denotes the composition of T with itself.) (Hint: Plug in $\vec{v}_1=T(\vec{v})$ for any $\vec{v}\in V$, and use the condition $T^2=T$.)

Solution. (a) Note that $\vec{v}_1 - T_W(\vec{v}_1) \in W^{\perp}$, hence $\langle \vec{v}_1, T_W(\vec{v}_2) \rangle = \langle T_W(\vec{v}_1), T_W(\vec{v}_2) \rangle$. Similarly, we also have $\langle T_W(\vec{v}_1), \vec{v}_2 \rangle = \langle T_W(\vec{v}_1), T_W(\vec{v}_2) \rangle$.

(b) Denote $W := \operatorname{Im}(T)$. Our goal is to show that $T = T_W$. For any $\vec{v}_1, \vec{v}_2 \in V$, we have $\langle T(\vec{v}_1), T(\vec{v}_2) \rangle = \langle T^2(\vec{v}_1), \vec{v}_2 \rangle = \langle T(\vec{v}_1), \vec{v}_2 \rangle$

since $T^2 = T$. Therefore, we have $\vec{v} - T(\vec{v}) \in W^{\perp}$ for any $\vec{v} \in V$. Hence

$$\vec{v} = T(\vec{v}) + (\vec{v} - T(\vec{v}))$$

is the unique orthogonal decomposition of \vec{v} with $T(\vec{v}) \in W$ and $\vec{v} - T(\vec{v}) \in W^{\perp}$. This proves that $T(\vec{v}) = T_W(\vec{v})$ is the orthogonal projection of \vec{v} onto W. Since this is true for any $\vec{v} \in V$, we conclude that $T = T_W$.

(7) (14 points) Let V be the set consisting of 5×5 real matrices with the property that the entries in each row and column sum to zero. More concretely, a 5×5 matrix $A = [a_{ij}]$ belongs to the set V if and only if

$$a_{i1} + a_{i2} + \dots + a_{i5} = 0$$
 and $a_{1j} + a_{2j} + \dots + a_{5j} = 0$ for any $1 \le i, j \le 5$.

It is not hard to see that V is a vector space. Find the dimension of V, and prove your answer. (Hint: Construct a linear transformation from the vector space of 5×5 matrices to another vector space, such that V is its kernel. Then apply the rank-nullity theorem to obtain the dimension of V.) (Note: 15 is not the correct dimension; watch out if there is any redundant equation.)

Solution. dim V = 16. Consider the linear map

$$T: \operatorname{Mat}_{5\times 5} \to \mathbb{R}^9, \quad A \mapsto (c_1(A), c_2(A), \dots, c_5(A), r_1(A), \dots, r_4(A)),$$

where $c_i(A)$ denotes the sum of entries in the *i*-th column of A, and $r_i(A)$ denotes the sum of entries in the *i*-th row of A.

T is surjective since for any $(c_1, c_2, \ldots, c_5, r_1, \ldots, r_4) \in \mathbb{R}^9$ we have

$$T\left(\begin{bmatrix} r_1 & 0 & 0 & 0 & 0 \\ r_2 & 0 & 0 & 0 & 0 \\ r_3 & 0 & 0 & 0 & 0 \\ r_4 & 0 & 0 & 0 & 0 \\ c_1 - r_1 - r_2 - r_3 - r_4 & c_2 & c_3 & c_4 & c_5 \end{bmatrix}\right) = (c_1, c_2, \dots, c_5, r_1, \dots, r_4).$$

The kernel of T is the vector space V, since $c_1(A) = c_2(A) = \cdots = c_5(A) = 0$ and $c_1(A) = \cdots = c_4(A) = 0$ imply that $c_1(A) = 0$. Hence the rank-nullity theorem gives

$$\dim V = \dim \text{Mat}_{5\times 5} - \dim T(\text{Mat}_{5\times 5}) = 25 - 9 = 16.$$

(8) (14 points) Let W_1 and W_2 be two subspaces of an n-dimensional real vector space V, satisfying $\dim(W_1) + \dim(W_2) = n$. Prove that there exists a linear transformation $T: V \to V$ such that

$$Ker(T) = W_1$$
 and $Im(T) = W_2$.

(Hint: Let $\{\vec{v}_1,\ldots,\vec{v}_k\}$ be a basis of W_1 . To construct the transformation T, you might want to use the fact that $\{\vec{v}_1,\ldots,\vec{v}_k\}$ can be extended to a basis $\{\vec{v}_1,\ldots,\vec{v}_k,\ldots,\vec{v}_n\}$ of V.)

Solution. Let $\{\vec{a}_1,\ldots,\vec{a}_k\}$ be a basis of W_1 and let $\{\vec{b}_1,\ldots,\vec{b}_{n-k}\}$ be a basis of W_2 . Recall that one can find vectors $\{\vec{a}_{k+1},\ldots,\vec{a}_n\}\subseteq V$ so that $\mathcal{B}=\{\vec{a}_1,\ldots,\vec{a}_k,\vec{a}_{k+1},\ldots,\vec{a}_n\}$ is a basis of V. This gives the coordinate mapping

$$[-]_{\mathcal{B}} \colon V \to \mathbb{R}^n,$$

where $[v]_{\mathcal{B}} = \vec{x} \in \mathbb{R}^n$ if $\vec{v} = x_1 \vec{a}_1 + \dots + x_n \vec{a}_n$. We define another linear transformation $S \colon \mathbb{R}^n \to V$ by

$$S(\vec{x}) := x_{k+1}\vec{b}_1 + x_{k+2}\vec{b}_2 + \dots + x_n\vec{b}_{n-k}.$$

We claim the composition $T := S \circ [-]_{\mathcal{B}}$ satisfies the desired properties.

First, $\vec{v} \in \text{Ker}(T)$ if and only if $[\vec{v}]_{\mathcal{B}} \in \text{Ker}(S)$ since the coordinate mapping is invertible. Since $\{\vec{b}_1,\ldots,\vec{b}_{n-k}\}$ is linearly independent, the vector $\vec{x}=[\vec{v}]_{\mathcal{B}}$ lies in Ker(S) if and only if $x_{k+1}=\cdots=x_n=0$, which is equivalent to $\vec{v} \in \text{Span}\{a_1,\ldots,a_k\}=W_1$. Therefore we have $\text{Ker}(T)=W_1$.

Second, since the coordinate mapping is invertible, we have Im(T) = Im(S). It's clear that $\text{Im}(S) = \text{Span}\{\vec{b}_1, \dots, \vec{b}_{n-k}\} = W_2$.

(9) (14 points) Let \vec{u} and \vec{v} be two vectors in \mathbb{R}^n . Then $\vec{u}\vec{v}^T$ is an $n \times n$ matrix. Prove that

$$\det(\mathbb{I}_n + \vec{u}\vec{v}^T) = 1 + \langle \vec{u}, \vec{v} \rangle.$$

Here $\langle -, - \rangle$ denotes the standard inner product on \mathbb{R}^n , and \mathbb{I}_n denotes the $n \times n$ identity matrix. (Hint: Induction on n.)

Solution. Prove by induction. The statement is clearly true for n = 1. Now suppose the statement is true for sizes less than n.

$$\mathbb{I}_n + \vec{u}\vec{v}^T = \begin{bmatrix}
1 + u_1v_1 & u_1v_2 & \cdots & u_1v_n \\
u_2v_1 & 1 + u_2v_2 & \cdots & u_2v_n \\
\vdots & \vdots & \ddots & \vdots \\
u_nv_1 & u_nv_2 & \cdots & 1 + u_nv_n
\end{bmatrix}.$$

We compute its determinant by cofactor expansion along the first row. The first term is

$$(1+u_1v_1)\det\begin{bmatrix} 1+u_2v_2 & \cdots & u_2v_n \\ \vdots & \ddots & \vdots \\ u_nv_2 & \cdots & 1+u_nv_n \end{bmatrix} = (1+u_1v_1)(1+u_2v_2+u_3v_3+\cdots+u_nv_n)$$

by induction hypothesis. The second term in the cofactor expansion is

$$-u_{1}v_{2} \det \begin{bmatrix} u_{2}v_{1} & u_{2}v_{3} & \cdots & u_{2}v_{n} \\ u_{3}v_{1} & 1 + u_{3}v_{3} & \cdots & u_{3}v_{n} \\ \vdots & \vdots & \ddots & \vdots \\ u_{n}v_{1} & u_{n}v_{3} & \cdots & 1 + u_{n}v_{n} \end{bmatrix}$$

$$= -u_{1}v_{2} \left(\det \begin{bmatrix} 1 + u_{2}v_{1} & u_{2}v_{3} & \cdots & u_{2}v_{n} \\ u_{3}v_{1} & 1 + u_{3}v_{3} & \cdots & u_{3}v_{n} \\ \vdots & \vdots & \ddots & \vdots \\ u_{n}v_{1} & u_{n}v_{3} & \cdots & 1 + u_{n}v_{n} \end{bmatrix} - \det \begin{bmatrix} 1 & u_{2}v_{3} & \cdots & u_{2}v_{n} \\ 0 & 1 + u_{3}v_{3} & \cdots & u_{3}v_{n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & u_{n}v_{3} & \cdots & 1 + u_{n}v_{n} \end{bmatrix} \right)$$

$$= -u_{1}v_{2} \left((1 + u_{2}v_{1} + u_{3}v_{3} + \cdots + u_{n}v_{n}) - (1 + u_{3}v_{3} + \cdots + u_{n}v_{n}) \right)$$

$$= -u_{1}v_{1}u_{2}v_{2}$$

again by induction hypothesis. Similarly, one can show that the remaining cofactor expansions along the first row give $-u_1v_1u_3v_3, \ldots, -u_1v_1u_nv_n$. Hence

$$\det(\mathbb{I}_n + \vec{u}\vec{v}^T) = (1 + u_1v_1)(1 + u_2v_2 + u_3v_3 + \dots + u_nv_n) - u_1v_1(u_2v_2 + \dots + u_nv_n)$$

$$= 1 + u_1v_1 + \dots + u_nv_n$$

$$= 1 + \langle \vec{u}, \vec{v} \rangle.$$

(10) (10 points) Find the unique real-valued function $y(t): \mathbb{R} \to \mathbb{R}$ satisfying

$$y''(t) - 4y'(t) + 3y(t) = 3t - 7$$
 for all $t \in \mathbb{R}$,

and the initial conditions

$$y(0) = 1$$
 and $y'(0) = 7$.

Solution. $y(t) = 2e^{3t} + t - 1$.

(11) (10 points) Find the unique triple of real-valued functions $x_1(t), x_2(t), x_3(t) \colon \mathbb{R} \to \mathbb{R}$ satisfying

$$x_1'(t) = x_2'(t) = x_3'(t) = x_1(t) + x_2(t) + x_3(t)$$
 for all $t \in \mathbb{R}$,

and the initial conditions

$$x_1(0) = 0$$
, $x_2(0) = 5$, and $x_3(0) = 4$.

Solution.
$$\begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} = \begin{bmatrix} 3e^{3t} - 3 \\ 3e^{3t} + 2 \\ 3e^{3t} + 1 \end{bmatrix}$$
.

(12) (10 points) Find the unique real-valued function $u(x,t)\colon [0,\pi]\times\mathbb{R}_{\geq 0}\to\mathbb{R}$ on the domain $0\leq x\leq \pi$ and $t\geq 0$, satisfying

$$\begin{cases} u_t(x,t) = 3u_{xx}(x,t) & \text{for all } 0 < x < \pi \text{ and } t > 0, \\ u(0,t) = u(\pi,t) = 0 & \text{for all } t > 0, \\ u(x,0) = x(\pi - x) & \text{for all } 0 < x < \pi. \end{cases}$$

Solution.

$$u(x,t) = \sum_{k=0}^{\infty} \frac{8}{(2k+1)^3 \pi} \sin\left((2k+1)x\right) e^{-3(2k+1)^2 t}.$$