ELITESGRID LOGARITHM ASSIGNMENT

- 1. $\log_9 (3\log_2 (1 + \log_3 (1 + 2\log_2 x))) = 1/2$. Find x.
- (A) 2 (B) 1 (C) ½ (D) ½
- 2. If $\log_2 X + \log_4 X = \log_{0.25} \sqrt{6}$ and x > 0, then x is
 - (A) $6^{-1/6}$ (B) $6^{1/6}$ (C) $3^{-1/3}$ (D) $6^{1/3}$

- 3. If 2^{2x+4} $17*2^{x+1}$ = -4, then which of the following is true?
- A. x is a positive value
- B. x is a negative value
- C. x can be either a positive value or a negative value
- D. None of these
- 4. If $\log_{12} 27 = a$, $\log_9 16 = b$, find $\log_8 108$
- A. 2(a+3)/3b
- B. 2(a+3)/3a
- C. 2(b+3)/3a
- D. 2(b+3)/3b
- 5. $Log_{\nu}Y + Log_{\nu}X^2 = 3$. Find $Log_{\nu}Y^3$

- A. 4 B. 3 C. 3^{1/2} D. 3^{1/16}
- 6. $\log_3 x + \log_x 3 = 17/4$. Find x

- A. 3⁴ B. 3^{1/8} C. 3^{1/6} D. 3^{1/4}
- 7. If $\log_7 \log_5 (\sqrt{x+5} + \sqrt{x}) = 0$, find the value of x

- A. 1 B. 0 C. 2 D. None of these
- 8. $\log_2[\log_7(x^2 x + 37)] = 1$, then what could be the value of x?

- A. 3 B. 4 C. 5 D. None of these

9. $\frac{1}{3} \log_3 M + 3\log_3 N = 1 + \log_{0.008} 5$, then

A.
$$M^9 = 9/N$$

C. $M^3 = 3/N$

B.
$$N^9 = 9/M$$
 D. $N^9 = 3/M$

10. $(\log_{16}25)(\log_55)(\log_54)$ is equal to

A. 1 B. 2 C. 4 D. 0

11. If log2 = 0.3010 and log3 = 0.4771, then find the approximate value of log36

- A. 2.65
- B. 1.65
- C. 1.56

D. 2.56

12. If $log_a(ab) = x$, then $log_b(ab)$ is equal to

A.
$$x/(x+1)$$

A. x/(x+1) B. 1/x C. x/(x-1) D. x/(1-x)

13. Find the value of $\{1/(\log_3 84) + 1/(\log_4 84) + 1/(\log_7 84)\}$

- **A.** 1

B. 3 C. 4 D. 2

14. If $f(x) = log\{(1-x)/(1+x)\}$, then f(x) + f(y) is

- A. f(x+y) B. $f(\frac{x+y}{1+xy})$ C. $(x+y)f(\frac{1}{1+xy})$ D. f(x) + f(y)/(1+xy)

15. Solve for x, $\log_{10} x - \log_{10} \sqrt{x} = 2\log_{x} 10$

- A. 200
- B. 100
- C. 50

D. 1000

16. If $x \ge y$ and y > 1, then the value of expression $\log_x(x/y) + \log_y(y/x)$ can never be

- A. -1
- B. 0
- C. 1
- D. -½

17. Find the value of x satisfying $\log_{10}(2^x + x - 41) = x (1 - \log_{10}5)$.

If the product of the roots of the equation, $x^{\left(\frac{3}{4}\right)(\log_2 x)^2 + \log_2 x - \left(\frac{5}{4}\right)} = \sqrt{2}$ is $\frac{1}{\sqrt[b]{a}}$

18. (where $a, b \in N$) then the value of (a + b).

Answers

- 1. A
- 2. A
- 3. C
- 4. D
- 5. B
- 6. D
- 7. D
- 8. B
- 9. B
- 10. A
- 11. C
- 12. C
- 13. A
- 14. B
- 15. B
- 16. C
- 17. 41
- 18. 19