第6.3节 统计量与抽样分布

- 一、统计量
- 二、抽样分布
- 三、例题

一、常见分布

6.3.1 U统计量及其分布

设总体 $X \sim N(\mu, \sigma^2), X_1, X_2, \cdots, X_n$ 为它

的一个样本,则样本均值 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$ 是

正态分布的线性组合且服从正态分布,并且它的数学期望和方差分别为

$$E(\overline{X}) = E(\frac{1}{n}\sum_{i=1}^{n}X_{i}) = \frac{1}{n}\sum_{i=1}^{n}E(X_{i}) = E(X) = \mu,$$

$$D\overline{X} = D(\frac{1}{n}\sum_{i=1}^{n} X_i) = \frac{1}{n^2}\sum_{i=1}^{n} D(X_i) = \frac{1}{n}D(X) = \frac{\sigma^2}{n}$$

即
$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n}).$$

注:由上面的性质可知,n越大, \bar{x} 越向总体的期望 μ 集中。

定理**6.4** 若总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \dots, X_n 是它的一个样本,则统计量

$$U = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N (0,1)$$

其中 $U = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$ 称为U统计量.

定义 对于总体X和给定的 $\alpha(0 < \alpha < 1)$,若存在 x_{α} ,使

$$P\{X > x_{\alpha}\} = \alpha,$$

则称 x_{α} 为X的分布的上侧 α 分位数.

正态分布的上侧分位数ua

设X服从标准正态分布N(0,1),N(0,1)的上

$$\alpha$$
 分位点 u_{α} 满足 $P\{X > u_{\alpha}\} = \frac{1}{\sqrt{2\pi}} \int_{u_{\alpha}}^{+\infty} e^{-\frac{x^2}{2}} dx$

$$=1-P\{X\leq u_{\alpha}\}=1-\Phi(u_{\alpha})=\alpha$$
即

$$\Phi(u_{\alpha}) = 1 - \alpha$$

给定 α ,由附表2可查得 u_{α} 的值.

$$u_{0.05} = 1.645,$$

附表2-1

$$u_{0.025} = 1.96,$$

附表2-2

根据正态分布的对称性知

$$u_{1-\alpha} = -u_{\alpha}$$
.

6.3.2 χ^2 分布

定义 设 X_1, X_2, \dots, X_n 相互独立,同服从N(0, 1) 分布,则称统计量 $\chi_n^2 = X_1^2 + X_2^2 + \dots + X_n^2$ 服从自由 度为 n 的 χ^2 分布,记为 $\chi_n^2 \sim \chi^2(n)$.

自由度:

指 $\chi_n^2 = X_1^2 + X_2^2 + \cdots + X_n^2$ 中右端包含独立变量的个数.

χ²(n)分布的概率密度为

$$f(x) = \begin{cases} \frac{1}{\frac{n}{2}} x^{\frac{n}{2} - 1} e^{-\frac{x}{2}} & x > 0\\ 2^{\frac{n}{2}} \Gamma(\frac{n}{2}) & & \\ 0 & & \\ & & \\ \end{cases}$$

其中
$$\Gamma\left(\frac{n}{2}\right)$$
是 Γ 函数

$$\Gamma(x) = \int_{0}^{+\infty} e^{-t} t^{x-1} dt \, \text{在} \, \frac{n}{2} \, \text{处的取值}$$

$\chi^2(n)$ 分布的概率密度曲线如图.

χ^2 分布的性质

性质 $1(\chi^2)$ 分布的可加性)

设 $\chi_1^2 \sim \chi^2(n_1)$, $\chi_2^2 \sim \chi^2(n_2)$, 并且 χ_1^2 , χ_2^2 独立, 则 $\chi_1^2 + \chi_2^2 \sim \chi^2(n_1 + n_2)$.

(此性质可以推广到多个随机变量的情形)

设 $\chi_i^2 \sim \chi^2(n_i)$, 并且 χ_i^2 $(i = 1, 2, \dots, m)$ 相互

独立,则
$$\sum_{i=1}^{m} \chi_i^2 \sim \chi^2(n_1 + n_2 + \cdots + n_m)$$
.

性质2 (χ^2) 分布的数学期望和方差)

若 $\chi^2 \sim \chi^2(n)$, 则 $E(\chi^2) = n$, $D(\chi^2) = 2n$.

证明 因为 $X_i \sim N(0,1)$, 所以 $E(X_i^2) = D(X_i) = 1$,

$$D(X_i^2) = E(X_i^4) - [E(X_i^2)]^2 = 3 - 1 = 2, i = 1, 2, \dots, n.$$

故
$$E(\chi^2) = E\left(\sum_{i=1}^n X_i^2\right) = \sum_{i=1}^n E(X_i^2) = n,$$

$$D(\chi^2) = D\left(\sum_{i=1}^n X_i^2\right) = \sum_{i=1}^n D(X_i^2) = 2n.$$

性质3 设 $\chi_n^2 \sim \chi^2(n)$,则对任意x,有

$$\lim_{n \to \infty} P\{\frac{\chi_n^2 - n}{\sqrt{2n}} \le x\} = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

证明 由假设和定义, $\chi_n^2 = \sum_{i=1}^n X_i^2$, 其中 X_1, X_2, \dots, X_n

独立且每个 $X_i \sim N(0,1)$,因而 $X_1^2, X_2^2, \dots, X_n^2$ 独立同分布,

且

$$E(X_i^2) = 1,$$
 $D(X_i^2) = 2$ $(i = 1, 2, \dots, n)$

由中心极限定理得

$$\lim_{n \to \infty} P\{\frac{\chi_n^2 - n}{\sqrt{2n}} \le x\} = \lim_{n \to \infty} P\{\frac{\sum_{i=1}^n X_i^2 - n\mu}{\sqrt{n\sigma}} \le x\} = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

即 χ^2 分布的极限分布是正态分布,也即,当n很大时

$$\frac{\chi_n^2-n}{\sqrt{2n}}$$
近似服从 $N(0,1)$.进而 $\chi_n^2 \sim N(n,2n)$.

例1 设 X_1, X_2, \dots, X_6 为来自正态总体 N(0,1)的一组样本,求 C_1, C_2 使得

$$Y = C_1(X_1 + X_2)^2 + C_2(X_3 + X_4 + X_5 + X_6)^2$$

服从 χ^2 分布.

解
$$X_1 + X_2 \sim N(0,2)$$
,则 $\frac{X_1 + X_2}{\sqrt{2}} \sim N(0,1)$

同理

$$X_3 + X_4 + X_5 + X_6 \sim N(0,4), \text{M} \frac{X_3 + X_4 + X_5 + X_6}{\sqrt{4}} \sim N(0,1)$$

且
$$\frac{X_1 + X_2}{\sqrt{2}}$$
 与 $\frac{X_3 + X_4 + X_5 + X_6}{\sqrt{4}}$ 相互独立

所以(
$$\frac{X_1 + X_2}{\sqrt{2}}$$
)²+($\frac{X_3 + X_4 + X_5 + X_6}{\sqrt{4}}$)² ~ χ^2 (2)

则
$$C_1 = 1/2$$
, $C_2 = 1/4$.

χ^2 分布的上侧分位数 $\chi^2_{\alpha}(n)$

对于给定的正数 α , $0 < \alpha < 1$, 称满足条件

$$P\{\chi^2 > \chi_\alpha^2(n)\} = \alpha$$

的点 $\chi^2_{\alpha}(n)$ 为 $\chi^2(n)$ 分布的上侧 α 分位数 (分位点).

对于不同的 α ,n,可以通过查表求得上 α 分位点的值.

概率论与数理统计

$$\chi^2_{0.1}(25) = 34.382$$
. 附表4-3

附表4只详列到 n=45 为止.

在Matlab中求解

注: 当n充分大时, $\chi_{\alpha}^{2}(n) \approx \frac{1}{2}(u_{\alpha} + \sqrt{2n-1})^{2}$

 u_{α} 是标准正态分布的上 α 分位点。

利用上公式,

可以求得n > 45时,上 α 分位点的近似值.

例 (1) 已知 $\chi^2 \sim \chi^2(8)$, 求 $\chi^2_{0.90}$ 及 $\chi^2_{0.05}$

(2) 已知 $\chi^2 \sim \chi^2(70)$, 求 $\chi^2_{0.95}$

解: (1) 直接查表可得

 $\chi^2_{0.90}$ (8)= 3.490; $\chi^2_{0.05}$ (8) = 15.507.

(2)自由度n=70较大,此时 2渐近于正态分布,近似公式为

 $\chi_{0.95}^2(70) \approx \frac{1}{2} (u_{0.95} + \sqrt{2 \times 70 - 1})^2$

其中 $u_{0.95}$ 为标准正态分布的上 100α 百分位点,其中 α 为0.95,

即
$$P\{U > u_{\alpha}\} = \alpha.$$
此处 $u_{0.95} = -1.645.$

所以
$$\chi_{0.95}^2(70) \approx \frac{1}{2}(u_{0.95} + \sqrt{139})^2 \approx 51.46$$

定理 设 $(X_1, X_2, ..., X_n)$ 为来自总体 $X \sim N(\mu, \sigma)$ 的 样本,则

$$\frac{(n-1)S^{2}}{\sigma^{2}} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$$

2. t 分布

定义 设 $X \sim N(0,1), Y \sim \chi^2(n), 且 X, Y$

独立,则称随机变量 $T = \frac{X}{\sqrt{Y/n}}$ 服从自由度为 n

的 t 分布, 记为 $T \sim t(n)$.

t分布又称学生氏(Student)分布.

t(n)分布的概率密度函数为

随机数演示

分布函数与密度函数演示

$$h(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}, \quad -\infty < t < +\infty$$

t分布的概率密度曲线如图

显然图形是关于

t=0对称的.

当n充分大时,其图 形类似于标准正态 变量概率密度的图 形.

因为
$$\lim_{n\to\infty} h(t) = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}},$$

所以当n足够大时t分布近似于N(0,1)分布,

但对于较小的 n, t分布与N(0,1)分布相差很大.

t 分布具有下列性质:

性质1 设 $T \sim t(n)$ 则当 n > 时有

$$E(T) = 0 D(T) = \frac{n}{n-2}$$

性质2 设 $T \sim t(n)$, p(t)是T的分布密度,

则

$$\lim_{n\to\infty} p(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$$

此性质说明,当 $n \to \infty$ 时,**T**分布的极限 分布是标准正态分布。

例2 设 $X \sim N(\mu, \sigma^2), \frac{Y}{\sigma^2} \sim \chi^2(n), \mathbb{1}X, Y$ 相互独立,试求

$$T = \frac{X - \mu}{\sqrt{Y/n}}$$

的概率分布.

解 因为 $X \sim N(\mu, \sigma^2)$,所以 $\frac{X - \mu}{\sigma} \sim N(0,1)$

又
$$\frac{Y}{\sigma^2} \sim \chi^2(n)$$
,且 X,Y 独立,则 $\frac{X-\mu}{\sigma}$ 与 $\frac{Y}{\sigma^2}$ 独立,

由定理5.7得

$$T = \frac{X - \mu}{\sqrt{Y/n}} = \frac{(X - \mu)/\sigma}{\sqrt{(Y/\sigma^2)/n}} \sim t(n)$$

t分布的上侧分位数 $t_{\alpha}(n)$

对于给定的 α , $0 < \alpha < 1$, 称满足条件

$$P\{t > t_{\alpha}(n)\} = \int_{t_{\alpha}(n)}^{+\infty} f(t)dt = \alpha$$

的点 $t_{\alpha}(n)$ 为t(n)分布的上侧 α 分位数(或分位点).

可以通过查表求

得上侧α分位数的值.

由分布的对称性知

$$t_{1-\alpha}(n) = -t_{\alpha}(n).$$

当n > 45时, $t_{\alpha}(n) \approx u_{\alpha}$.

概率论与数理统计

$$t_{0.05}(10) = 1.8125,$$

附表3−1

$$t_{0.025}(15) = 2.1315.$$

附表3-2

在Matlab中求解

• 对于给定的 α (0< α <1),称满足条件

$$P\left\{\left|t\right|>t_{\alpha/2}\right\}=\alpha,t\sim t(n)$$

的点 $t_{\alpha/2}$ 为t分布的双侧 α 分位点.

注: $t_{\alpha}(n) = -t_{1-\alpha}(n)$.

例2: (1) $t \sim t(10), \alpha = 0.05, 求 双侧 \alpha 分位点$

(2) $t \sim t(12), \alpha = 0.01, 求 双侧 \alpha 分位点$

(3) $t \sim t(25)$, 求 λ 使 $P\{|t| \leq \lambda\} = 0.80$

解: (1)

(2)

 $n = 12, \alpha = 0.01, \frac{\alpha}{2} = 0.005,$ $\hat{\Xi}$ $\hat{\Xi}$

即 $P\{|t| > 3.0545\} = 0.01$.

• (3) $P\{|t| \le \lambda\} = 1 - P\{|t| > \lambda\}, \text{ if } P\{|t| > \lambda\} = 0.20,$ $Z = 25, \alpha = 0.20, \frac{\alpha}{2} = 0.10,$ Z = 3.163.

4. F分布

定义 设 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2), 且X, Y$ 独立,则

称随机变量 $F = \frac{X/n_1}{Y/n_2}$ 服从自由度为 (n_1, n_2) 的 F 分布,

记为 $F \sim F(n_1, n_2)$.

 $F(n_1, n_2)$ 分布的概率密度为

$$F(n_1, n_2)$$
分布的概率密度为
$$\psi(y) = \begin{cases} \Gamma\left(\frac{n_1 + n_2}{2}\right) \left(\frac{n_1}{n_2}\right)^{\frac{n_1}{2}} y^{\frac{n_1}{2} - 1} \\ \Gamma\left(\frac{n_1}{2}\right) \Gamma\left(\frac{n_2}{2}\right) \left[1 + \left(\frac{n_1 y}{n_2}\right)\right]^{\frac{n_1 + n_2}{2}}, \quad y > 0 \end{cases}$$

$$0, \qquad \qquad \downarrow \downarrow \downarrow$$

F分布的概率密度曲线如图

F分布有以下性质

(1) 若 $F \sim F(n_1, n_2)$, $则 \frac{1}{F} \sim F(n_2, n_1).$

(2)
$$E(F) = \frac{n_2}{n_2 - 2}, (n_2 > 2),$$

$$D(F) = \frac{2n_2^2(n_1 + n_2 - 2)}{n_1(n_2 - 2)^2(n_2 - 4)}, \quad (n_2 > 4)$$

(3) 设 $F \sim F(n_1, n_2)$,则当 $n_2 > 4$ 时,对任意x有

$$\lim_{n_1 \to \infty} P\{\frac{F - E(F)}{\sqrt{D(F)}} \le x\} = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

这说明F分布极限分布也是正态分布.

例3 已知 $T \sim t(n)$, 试证 $T^2 \sim F(1,n)$. 证明 因为 $T \sim t(n)$, 由定义 5.7有

$$T = \frac{X}{\sqrt{Y/n}}$$

其中 $X \sim N(0,1), Y \sim \chi^2(n), 且X, Y$ 独立,那么 $X^2 \sim \chi^2(1), 且X^2 与 Y$ 独立,

由定义有
$$T^2 = \frac{X^2}{Y/n} \sim F(1,n)$$

由F分布的性质知 $\frac{1}{T^2} \sim F(n,1)$

(4) F分布的上侧分位数 $F_{\alpha}(n_1,n_2)$ 概率论与数理统计

对于给定的 α , $0 < \alpha < 1$, 称满足条件

$$P\{F > F_{\alpha}(n_1, n_2)\} = \alpha$$

的点 $F_{\alpha}(n_1,n_2)$ 为 $F(n_1,n_2)$ 分布的上 α 分位数.

求 $F_{\alpha}(n_1,n_2)$ 的值,可通过查表完成.

$$F_{0.025}(8,7) = 4.90,$$
 附表5-1

$$F_{0.05}(30,14) = 2.31$$
. 附表5-2

在Matlab中求解

F分布的上α分位点具有如下性质:

$$F_{1-lpha}(n_1,n_2)=rac{1}{F_lpha(n_2,n_1)}.$$
证明 因为 $F\sim F(n_1,n_2),$

所以
$$1-\alpha = P\{F > F_{1-\alpha}(n_1, n_2)\}$$

$$= P\left\{\frac{1}{F} < \frac{1}{F_{1-\alpha}(n_1, n_2)}\right\} = 1 - P\left\{\frac{1}{F} \ge \frac{1}{F_{1-\alpha}(n_1, n_2)}\right\}$$

$$=1-P\left\{\frac{1}{F}>\frac{1}{F_{1-\alpha}(n_1,n_2)}\right\},\,$$

故
$$P\left\{\frac{1}{F}>\frac{1}{F_{1-\alpha}(n_1,n_2)}\right\}=\alpha,$$

因为
$$\frac{1}{F} \sim F(n_2, n_1)$$
,所以 $P\left\{\frac{1}{F} > F_{\alpha}(n_2, n_1)\right\} = \alpha$,

比较后得
$$\frac{1}{F_{1-\alpha}(n_1,n_2)} = F_{\alpha}(n_2,n_1),$$

$$\mathbb{P}F_{1-\alpha}(n_1,n_2) = \frac{1}{F_{\alpha}(n_2,n_1)}.$$

用来求分布表中未列出的一些上 α 分位点.

例
$$F_{0.95}(12,9) = \frac{1}{F_{0.05}(9,12)} = \frac{1}{2.8} = 0.357$$
.

• 例5: (1) 求 $P\{F(8,7) > F_{0.05}(8,7)\} = 0.05$ 中的 $F_{0.05}(8,7)$

(2) 求
$$P\{F(7,8) > F_{0.95}(7,8)\} = 0.95$$
中的 $F_{0.95}(7,8)$

• 解: (1) 对应 $n_1 = 8, n_2 = 7, \alpha = 0.05$ 查表得 $F_{0.05}(8,7)=3.73$

(2) 应用
$$F_{\alpha}(n_{1}, n_{2}) = \frac{1}{F_{1-\alpha}(n_{2}, n_{1})}$$

和(1)中结果得

$$F_{0.95}(7.8) = \frac{1}{F_{0.05}(8,7)} = \frac{1}{3.73} \approx 0.268$$

一、基本定理

定理5.7 设 X_1, X_2, \cdots, X_n 相互独立,且

$$X_i \sim N(\mu_i, \sigma_i^2)$$
 $(i = 1, 2, \dots, n)$

则它们的任一确定的线性函数

$$\sum_{i=1}^{n} C_{i}X_{i} \sim N(\sum_{i=1}^{n} C_{i}\mu_{i}, \sum_{i=1}^{n} C_{i}^{2}\sigma_{i}^{2}).$$

其中 C_1, C_2, \cdots, C_n 为不全为零的常数.

推论1

 \mathcal{C}^{1} 设 X_1, X_2, \dots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的样本,则样本的任一确定的线 性函数

$$\sum_{i=1}^{n} C_{i} X_{i} \sim N(\mu \sum_{i=1}^{n} C_{i}, \sigma^{2} \sum_{i=1}^{n} C_{i}^{2}).$$

其中 C_1, C_2, \cdots, C_n 为不全为零的常数.

推论2

设 X_1, X_2, \dots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的样本, \overline{X} 是样本均值,则有 $\overline{X} \sim N(\mu, \sigma^2/n)$.

推论3 设 X_1, X_2, \dots, X_n 与 Y_1, Y_2, \dots, Y_n 分别是

来自两个独立的正态总体 $N(\mu_1,\sigma_1^2),N(\mu_2,\sigma_2^2)$

的样本,设
$$\overline{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i, \overline{Y} = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_i$$
 分别是这两

个样本的均值,则有

$$\overline{X} - \overline{Y} \sim N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$$

或

$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}} \sim N(0,1)$$

关于正态总体 $N(\mu, \sigma^2)$ 的样本均值和 样本方差有以下重要定 理.

定理1

设 X_1, X_2, \dots, X_n 是总体 $N(\mu, \sigma^2)$ 的样本, \bar{X}, S^2 分别是样本均值和样本方差,则有

(1)
$$\frac{(n-1)S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2 \sim \chi^2(n-1);$$

(2) \bar{X} 与 S^2 独立.

推论1 设 $(X_1, X_2, ..., X_n)$ 为来自总体 $X \sim N(\mu, \sigma^2)$ 的

证明: 由条件可知

 $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$,标准化后得 $\frac{X-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$

又 $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$,且 $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$ 与 $\frac{(n-1)S^2}{\sigma^2}$ 相互 独立,于是按t分布的定义

$$\frac{\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2} \cdot \frac{1}{n-1}}} = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$$

推论2: 设(X_1 , X_2 , ..., X_{nl})和(Y_1 , Y_2 , ..., Y_{n2}) 分别是来自总体 $N(\mu_1$, σ^2)和 $N(\mu_2$, σ^2)的样本, 且它们相互独立,则统计量

$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_W \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

其中 $S_W = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$, S_1^2 , S_2^2 分别为2个样本的样本方差。

证明:由于

即
$$=\frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sigma\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\sim N(0,1).$$

曲于
$$\frac{(n_1-1)S_1^2}{\sigma^2}$$
~ $\chi^2(n_1-1),\frac{(n_2-1)S_2^2}{\sigma^2}$ ~ $\chi^2(n_2-1),$

且相互独立,

故有χ²分布的可加性得

$$V = \frac{(n_1 - 1)S_1^2}{\sigma^2} + \frac{(n_2 - 1)S_2^2}{\sigma^2} \sim \chi^2(n_1 + n_2 - 2),$$

从而,由t分布的定义得

$$\frac{U}{\sqrt{\frac{V}{(n_1 + n_2 - 2)}}} = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_W \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

概率论与数理统计

推论3:设 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2), 从X, Y 中分别抽取容量为<math>\mathbf{n}_1, \mathbf{n}_2$ 的样本,且2样本互相独立,对应样本均值为 $\overline{X,Y}$,样本方差为 S_x^2 , S_y^2 。试证:

$$\frac{S_X^2/\sigma_1^2}{S_Y^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$

- 证明: 由于 $\frac{(n_1-1)S_X^2}{\sigma_1^2} \sim \chi^2(n_1-1), \frac{(n_2-1)S_Y^2}{\sigma_2^2} \sim \chi^2(n_2-1),$
- · 且相互独立,故由F分布的定义可知:

$$\frac{\frac{(n_1-1)S_X^2}{\sigma_1^2}/(n_1-1)}{\frac{(n_2-1)S_Y^2}{\sigma_2^2}/(n_2-1)} = \frac{S_X^2/\sigma_1^2}{S_Y^2/\sigma_2^2} \sim F(n_1-1,n_2-1)$$

例题

例1 设 X_1, X_2, X_3, X_4 来自总体 $N(0, \sigma^2)$ 的样本,

则统计量

$$T = \frac{X_1 + X_2}{\sqrt{X_3^2 + X_4^2}}$$
的分布为?

解
$$X_1 + X_2 \sim N(0,2\sigma^2)$$
, 于是 $\frac{X_1 + X_2}{\sqrt{2\sigma^2}} \sim N(0,1)$

$$\frac{X_3}{\sqrt{\sigma^2}}$$
与 $\frac{X_4}{\sqrt{\sigma^2}}$ 独立同分布于 $N(0,1)$,于是

$$\frac{X_3^2}{\sigma^2} + \frac{X_4^2}{\sigma^2} \sim \chi^2(2)$$

由t分布的定义

$$\frac{\frac{X_1 + X_2}{\sqrt{2\sigma^2}}}{\sqrt{\frac{X_3^2 + X_4^2}{\sigma^2 \cdot 2}}} \sim t(2) \quad \mathbb{P} \quad \frac{X_1 + X_2}{\sqrt{X_3^2 + X_4^2}} \sim t(2)$$

例2 设总体 $X \sim N(0, \sigma^2), (X_1, X_2, \cdots X_n, X_{n+1}, \cdots X_{n+m})$ 是来自容量为n+m的一个样本,试求统计量

$$T = \frac{\sqrt{m} \sum_{i=1}^{n} X_{i}}{\sqrt{n} \sqrt{\sum_{i=n+1}^{n+m} X_{i}^{2}}}$$
的概率分布。

解 由于 $X_1, X_2, \cdots X_{n+m}$ 独立且 $\frac{X_i}{\sigma} \sim N(0,1), 则有$

$$\sum_{i=1}^{n} \left(\frac{X_{i}}{\sigma}\right) \sim N(0,n), \quad \mathbf{R} \quad \frac{\sum_{i=1}^{n} {X_{i}/\sigma}}{\sqrt{n}} \sim N(0,1)$$

$$\mathbb{L} \sum_{i=n+1}^{n+m} \left(\frac{X_i}{\sigma} \right)^2 \sim \chi^2(m)$$

又因 $\sum_{i=1}^{n} (\frac{X_i}{\sigma}) / \sqrt{n}$ 与 $\sum_{i=n+1}^{n+m} (\frac{X_i}{\sigma})^2$ 相互独立,再由t分布

的定义。得
$$\frac{\sum\limits_{i=1}^{n}(X_{i}/_{i}\sigma)/\sqrt{n}}{\sqrt{\sum\limits_{i=n+1}^{n+m}(X_{i}/\sigma)^{2}/m}} \sim t(m)$$

$$\mathbb{P} T = \frac{\sqrt{m} \sum_{i=1}^{n} X_{i}}{\sqrt{n} \sqrt{\sum_{i=n+1}^{n+m} X_{i}^{2}}} \sim t(m)$$

例3 设 $(X_1, X_2 \cdots X_n)$ 为来自正态总体 $N(0, \sigma^2)$ 的样本, $U = \overline{X}/S_n$ 为样本均值和样本标准差,试求 统计量 \overline{X} 和 S_n 的分布密度.

解: 由定理1的推论1知

$$\frac{\overline{X}}{S_n/\sqrt{n-1}} = \frac{\overline{X}}{S_n}\sqrt{n-1} \sim t(n-1)$$

先求U的分布函数F(u):

$$F(u) = P\{U \le u\} = P\{\frac{\overline{X}}{S_n} \le u\}$$

$$= P\{\frac{\overline{X}}{S_n}\sqrt{n-1} \le \sqrt{n-1} u\} = F_{t(n-1)}(\sqrt{n-1} u)$$

所以, U的分布密度为

$$p(u) = F'(u) = F'_{t(n-1)}(\sqrt{n-1} \ u) \cdot \sqrt{n-1}$$
$$= p_{t(n-1)}(\sqrt{n-1} \ u) \cdot \sqrt{n-1}$$

$$= \frac{\Gamma(\frac{n}{2})}{\sqrt{(n-1)n}\Gamma(\frac{n-1}{2})} \left[1 + \frac{(\sqrt{n-1} u)^2}{n-1}\right]^{-\frac{n}{2}} \cdot \sqrt{n-1}$$

$$=\frac{\Gamma(\frac{n}{2})}{\sqrt{\pi}\Gamma(\frac{n-1}{2})}(1+u^2)^{-\frac{n}{2}}$$

附表2-1

标准正态分布表

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0		_	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0	1.64	15	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0			0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7710	0.1737	0.7707	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9278	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9430	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545

附表2-2

标准正态分布表

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9715	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9508	0.9616	0.9625	0.9633
1.8	0.9641	0.9648	0.9656	0.9664	0.9671	0.9678	0.9586	0.9693	0.9700	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9762	0.9767
2.0	0.9772	0.9778	0.9			9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9	1 (16	9842	0.9846	0.9850	0.9854	0.9853
2.2	0.9861	0.9864	0.9	1.9	70	9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9			9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9990	0.9993	0.9995	0.9997	0.9698	0.9998	0.9999	0.9999	1.0000

附表4-1

χ^2 分布表

n	$\alpha = 0.25$	0.10	0.05	0.025	0.01	0.005
1	1.323	2.706	3.841	5.024	6.635	7.879
2	2.773	4.605	5.991	7.378	9.210	10.597
3	4.108	6.251	7.815	9.348	11.345	12.838
4	5.385	7.7		11.143	13.277	14.860
5	6.626	9.2	7.535	12.833	15.086	16.750
6	7.841	10.6		14.449	16.812	18.548
7	9.037	12.017	14.067	16.013	18.475	20.278
8	10.219	13.362	15.507	17.535	20.090	21.955
9	11.389	14.684	16.919	19.023	21.666	23.589
10	12.549	15.987	18.307	20.483	23.209	25.188
11	13.701	17.275	19.675	21.920	24.725	26.757
12	14.845	18.549	21.026	23.337	26.217	28.299
13	15.984	19.812	22.362	24.736	27.688	29.891
14	17.117	20.064	23.685	26.119	29.141	31.319
15	18.245	22.307	24.996	27.488	30.578	32.801
16	19.369	23.542	26.296	28.845	32.000	34.267

χ^2 分布表

概率论与数理统计

n	$\alpha = 0.995$	0.99	0.975	0.95	0.90	0.75
11			0.001	0.004	0.016	0.102
2	0.010	0.020	0.051	0.103	0.211	0.575
3	0.072	0.115	0.216	0.352	0.584	1.213
4	0.207	0.297	0.484	0.711	1.064	1.923
5	0.412	0.554	0.831	1.145	1.610	2.675
6	0.676	0.872	1.237	2 2 4		3.455
7	0.989	1.239	1.690	3.24	/	4.255
8	1.344	1.646	2.180			5.071
9	1.735	2.088	2.700	5.325	4.168	5.899
10	2.156	2.558	3.247	3.940	4.865	6.737
11	2.603	3.053	3.816	4.575	5.578	7.584
12	3.074	3.571	4.404	5.226	6.304	8.438
13	3.565	4.107	5.009	5.892	7.042	9.299
14	4.075	4.660	5.629	6.571	7.790	10.165
15	4.601	5.229	6.262	7.261	8.547	11.037
16	5.142	5.812	6.908	7.962	9.312	11.912

附表4-3

χ^2 分布表

n	$\alpha = 0.25$	0.10	0.05	0.025	0.01	0.005
17	20.489	24.769	27.587	30.191	33.409	35.718
18	21.605	25.989	28.869	31.526	34.805	37.156
19	22.718	27.204	30.144	32.852	36.191	38.582
20	23.828	28.412	31 410	34,170	37.566	39.997
21	24.935	29.615	24.20	79	38.932	41.401
22	26.039	30.813	34.382	4 781	40.289	42.796
23	27.141	32.007)76	41.638	44.181
24	28.241	33.196	36.415	39.364	42.980	45.559
25	29.339	34.382	37.652	40.646	44.314	46.928
26	30.435	35.563	38.885	41.923	45.642	48.290
27	31.528	36.741	40.113	43.194	46.963	49.645
28	32.620	37.916	41.337	44.461	48.278	50.993
29	33.711	39.087	42.557	45.712	49.588	52.336
30	34.800	40.256	43.773	46.979	50.892	53.672
31	35.887	41.422	44.985	48.232	52.191	55.003
32	36.973	42.585	46.194	49.480	53.486	56.328

附表3-1

t 分布表

n	$\alpha = 0.25$	0.10	0.05	0.025	0.01	0.005
1	1.0000	3.0777	6.3138	12.7062	31.8207	63.6574
2	0.8165	1.8856	2.9200	4.3027	6.9646	9.9248
3	0.7649	1.6377	2.3534	3.1824	4.5407	5.8409
4	0.7407	1.5332	2.1318	2.7764	3.7469	4.6041
5	0.7267	1.4759	2.0150	2.5706	3.3649	4.0322
6	0.7176	1.4398	1.9432	1 013	27	3.7074
7	0.7111	1.4149	1.8946	1.812	80	3.4995
8	0.7064	1.3968	1.8595)65	3.3554
9	0.7027	1.3830	1.8331	2.2622	2.8214	3.2498
10	0.6998	1.3722	1.8125	2.2281	2.7638	3.1693
11	0.6974	1.3634	1.7959	2.2010	2.7181	3.1058
12	0.6955	1.3562	1.7823	2.1788	2.6810	3.0545
13	0.6938	1.3502	1.7709	2.1604	2.6503	3.0123
14	0.6924	1.3450	1.7613	2.1448	2.6245	2.9768
15	0.6912	1.3406	1.7531	2.1315	2.6025	2.9467
16	0.6901	1.3368	1.7459	2.1199	2.5835	2.9208

附表3-2

t 分布表

n	α =0.25	0.10	0.05	0.025	0.01	0.005
1	1.0000	3.0777	6.3138	12.7062	31.8207	63.6574
2	0.8165	1.8856	2.9200	4.3027	6.9646	9.9248
3	0.7649	1.6377	2.3534	3.1824	4.5407	5.8409
4	0.7407	1.5332	2.1318	2.7764	3.7469	4.6041
5	0.7267	1.4759	2.0150	2.5706	3.3649	4.0322
6	0.7176	1.4398	1.9432	2.4469	3.1427	3.7074
7	0.7111	1.4149	1.8946	2.3646	2.9980	3.4995
8	0.7064	1.3968	1.8595	2.3060	2.8965	3.3554
9	0.7027	1.3830	1 8331	2.2622	2.8214	3.2498
10	0.6998	1.37	1215	2.2281	2.7638	3.1693
11	0.6974	1.36	2.1315	2.2010	2.7181	3.1058
12	0.6955	1.35		2.1788	2.6810	3.0545
13	0.6938	1.3502	1.7709	2.1604	2.6503	3.0123
14	0.6924	1.3450	1.7613	2.1448	2.6245	2.9768
15	0.6912	1.3406	1.7531	2.1315	2.6025	2.9467
16	0.6901	1.3368	1.7459	2.1199	2.5835	2.9208

附表5-1

F分布表

 $\alpha = 0.025$

n_1	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	120	∞
1	647.8	799.5	864.2	899.6	921.8	937.1	948.2	956.7	963.3	968.6	976.7	984.9	993.1	997.2	1001	1006	1014	1018
2	38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.39	39.40	39.41	39.43	39.45	39.46	39.46	39.47	39.49	39.50
3	17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.47	14.42	14.34	14.25	14.17	14.12	14.08	14.04	13.95	13.90
4	12.22	10.65	9.98	9.60	9.36	9.20	9.07	8.98	8.90	8.84	8.75	8.66	8.56	8.51	8.46	8.41	8.31	8.26
5	10.01	8.43	7.76	7.39	7.15	6.98	6.85	6.76	6.68	6.62	6.52	6.43	6.33	6.28	6.23	6.18	6.07	6.02
6	8.81	7.26	6.60	6.23	5.99	5.82	5.70	5.60	5.52	5.46	5.37	5.27	5.17	5.12	5.07	5.01	4.90	4.85
7	8.07	6.54	5.89	5.52	5.29	5.12	4.99	4,90	4.82	4.76	4.67	4.57	4.47	4.42	4.36	4.31	4.20	4.14
8	7.57	6.06	5.42	5.50	4.82	4.65	4.53	4.	4.36	4.30	4.20	4.10	4.00	3.59	3.89	3.84	3.73	3.67
9	7.21	5.71	5.08	4.72	4.48	4.23	4.20	4.	4.03	3.96	3.87	3.77	3.67	3.61	3.56	3.51	3.39	3.33
10	6.94	5.46	4.83	4.47	4.24	4.07	3.95	3.	3.78	3.72	3.62	3.52	3.42	3.37	3.31	3.26	3.14	3.08
11	6.72	5.26	4.63	4.28	4.04	3.88	3.76	3.	9	3.53	3.43	3.33	3.23	3.17	3.12	3.06	2.94	2.88
12	6.55	5.10	4.47	4.12	3.89	3.73	3.61					3.18	3.07	3.02	2.96	2.91	2.79	2.72
13	6.41	4.97	4.35	4.00	3.77	3.60	3.48		A	$\mathbf{\Omega}$		3.05	2.95	2.89	2.84	2.78	2.66	2.60
14	6.30	4.86	4.24	3.89	3.66	3.50	3.38		4.	90		2.95	2.84	2.79	2.73	2.67	2.55	2.49
15	6.20	4.77	4.15	3.80	3.58	3.41	3.29					2.86	2.76	2.70	2.64	2.59	2.46	2.40
16	6.12	4.69	4.08	3.73	3.50	3.34	3.22	5.12	3.03	2.99	2.09	2.79	2.68	2.63	2.57	2.51	2.38	2.32
17	6.04	4.62	4.01	3.66	3.44	3.28	3.16	3.06	2.98	2.92	2.82	2.72	2.62	2.56	2.50	2.44	2.32	2.25
18	5.95	4.56	3.95	3.61	3.38	3.22	3.10	3.01	2.93	2.87	2.77	2.67	2.56	2.50	2.44	2.38	2.26	2.19
19	5.92	4.51	3.90	3.56	3.33	3.17	3.05	2.96	2.88	2.82	2.72	2.62	2.51	2.45	2.39	2.33	2.20	2.13

附表5-2

F分布表

 $\alpha = 0.05$

n_1	1	2	3	4	5	6	7	8	9	10	15	20	24	30	40	60	120	∞
1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	24.05	241.9	245.9	248.0	249.1	250.1	151.1	252.2	253.3	254.3
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.50
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
		362		198	36.52	100				8.30	0.22	20.000	200		17/96	364		
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.36
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	2.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
9	3.12	4.26	3.81	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
							NO. 31										1	
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	200	207	2.72		2.61	2.57	2.53	2.49	2.45	2.40
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.			4		2.51	5.47	2.43	2.38	2.34	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2. 2. 2.		2.3			2.42	2.38	2.34	2.30	2.25	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.	4	4.0		L	2 35	2.31	2.27	2.22	2.18	2.13
230								The state of the s										
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.					2.29	2.25	2.20	2.16	2.11	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
18	4.41	5.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88

