代数整数是单位根的一个刻画

林洁*

1 问题

在代数数论中有一个有趣的小练习:

命题 1 一个代数整数 α 是单位根当且仅当它所有的共轭模为 1.

用初等的语言描述,命题1即为:

命题 1′ p(x) 是一个首一整系数多项式, α 是它的根. 若 p 所有的根模都为 1, 则 α 为单位根. 特别地, 若还已知 p 不可约, 则 p 是分圆多项式.

而用矩阵的语言, 该命题又等价于:

命题 1" r 是一个正整数, $g \in GL_r(\mathbb{Z})$. 若 g 有 r 个不同的复特征根 $\lambda_1, \ldots, \lambda_r$, 且 $|\lambda_1| \leq 1, \ldots, |\lambda_r| \leq 1$, 则存在正整数 N, 使得 $g^N = 1$. 从而 $\lambda_1^N = \ldots = \lambda_r^N = 1$.

下面我们给出该命题的三种证明,其中证明 1,2 需要简单的代数数论知识,而证明 3 只需要数学分析和高等代数知识.

2 证明

证明 1: (采用命题1的记号)

记 α 在 \mathbb{Q} 上的最小多项式为 $P(x) = x^r + c_1 x^{r-1} + \ldots + c_r$, 并记 $Gal(\mathbb{Q}(\alpha)/\mathbb{Q}) = \sigma_1, \ldots, \sigma_r$, 其中 $\sigma_1(\alpha) = \alpha$. 则由条件, $\forall \ 1 \leq i \leq r, \ |\sigma_i(\alpha)| = 1$. 从而 $\forall \ n \in \mathbb{N}$, $\forall \ 1 \leq i \leq r, \ |\sigma_i(\alpha^n)| = 1$.

记
$$P_n(x) = \prod_{i=1}^r (x - \sigma_i(\alpha^n)) = x^r + c_{1n}x^{r-1} + \ldots + c_{rn}$$
. 则

$$|c_{kn}| = |\sum_{\substack{1 \le i_1 < \dots \\ < i_k \le r}} \sigma_{i_1}(\alpha^n) \dots \sigma_{i_k}(\alpha^n)|$$

$$\leq \sum_{\substack{1 \le i_1 < \dots \\ < i_k \le r}} |\sigma_{i_1}(\alpha^n) \dots \sigma_{i_k}(\alpha^n)| = {r \choose k},$$

^{*}基数 71

 $\forall n \in \mathbb{N}, \forall 1 < k < r.$

注意到 P_n 是整系数多项式, 故对任意给定的 n, $c_{nk} (1 \le k \le r)$ 的选择都是有限的. 从而 $\{P_n\}_{n=0}^{\infty}$ 是有限集. 进一步地, 由 $P_n(\alpha^n) = 0$ 知 $\{\alpha^n\}_{n=0}^{\infty}$ 也是有限集.

故 $\exists n_1 < n_2, s.t. \alpha^{n_1} = \alpha^{n_2}, \ \mathbb{P} \alpha^{n_2-n_1} = 1, \alpha$ 是单位根.

证明 2: (沿用证明1中记号)

假设 α 不是单位根,则 $\{\alpha^n\}_{n=1}^{\infty}$ 在单位圆周上稠密 (请读者自行证明). 故 $\exists n \in \mathbb{N}, s.t. |1-\alpha^n| < \frac{1}{2r}.$

注意到 $\prod_{i=1}^{r} (1 - \sigma_i(\alpha^n)) \neq 0$ (否则 $\exists i, \sigma_i(\alpha)$ 是单位根, 那么 α 也是单位根, 与假设矛盾), 从而 $\prod_{i=1}^{r} |1 - \sigma_i(\alpha^n)| \geq 1$. 但 $\prod_{i=1}^{r} |1 - \sigma_i(\alpha^n)| = |1 - \alpha^n| \prod_{i=2}^{r} |1 - \sigma_i(\alpha^n)| \leq |1 - \alpha^n| \prod_{i=2}^{r} (1 + |\sigma_i(\alpha)|) = 2^{r-1} |1 - \alpha^n| < 1/2$, 矛盾. 故假设不成立, 原命题得证.

在继续证明三之前, 我们先回顾一下范数等价定理. 这是数学分析大二上的内容, 这里就不证明了.

定理 2 \mathbb{R}^n (或 \mathbb{C}^n)中的范数都是等价的. 从而在任何范数下, \mathbb{R}^n (或 \mathbb{C}^n)的单位闭球总是紧的.

而在下面的情况中,两个范数等价只需简单的不等式放缩即可证明.

证明 3:(采用命题 1" 中记号)

首先, 由于 $\lambda_1, \ldots, \lambda_r$ 互不相同知存在可逆方阵 T, 使得 $T^{-1}gT = diag(\lambda_1, \ldots, \lambda_r)$. 我们在 $M_n(\mathbb{C})$ 中定义范数如下: 对 $x \in M_n(\mathbb{C})$, 以 x_{ij} 表示其第 ij 位分量, 定义

$$||x|| = ||T^{-1}xT||_{\infty} := \sup_{1 \le i,j \le r} |(T^{-1}xT)_{ij}|,$$

则 $\|\cdot\|$ 是 $M_n(\mathbb{C})$ 中范数 (请读者自行验证).

另一方面, $\{g^n\}_{n=0}^{\infty}$ 是 || || 下的离散集. 事实上, 更一般地, $GL_r(\mathbb{Z})$ 是 $M_r(\mathbb{Z})$ 在 || || 下的离散集. 这是由于 $GL_r(\mathbb{Z})$ 是 $M_r(\mathbb{Z})$ 在 || || $_{\infty}$ 下的离散集, 而 || || $_{\infty}$ 与 || || 是等价的.

综合两方面, 离散集 $\{g^n\}_{n=0}^{\infty}$ 包含在一个紧集内, 故它是有限集. 即 $\exists n_1 < n_2, s.t.$ $g^{n_1} = g^{n_2}$, 由 g 可逆得到 $g^{n_2-n_1} = 1$. 得证.

参考文献

- [1] 冯克勤 著; 代数数论, 科学出版社, 北京, 2000.
- [2] 巴黎高师考题, 2006年