Measurement uncertainty assessment for building energy simulation

Antoine Caucheteux

antoine.caucheteux@cerema.fr

Summary

- Some metrology
- Uncertainty assessment : methods
- Sampling theory in statistics
- Exercises : indoor temperature

Ressources

Some metrology

Eléments de métrologie

Measure:

The dimensions, quantity, or capacity of something as ascertained by comparison with a standard

Mesurer

« action d'évaluer une grandeur d'après son rapport avec une grandeur de même espèce, prise comme unité de référence »

Measure = Comparison

Measurand (Mesurande)
"quantity intended to be measured"

« grandeur que l'on veut mesurer »

Measurement (Mesurage)

"process of experimentally obtaining one or more quantity

values that can reasonably be attributed to a quantity"

« ensemble d'opération ayant pour but de déterminer une valeur d'une grandeur »

Measured quantity value (Valeur mesurée)
"measured value of a quantity /
quantity value representing a measurement result"
« valeur d'une grandeur issue d'un mesurage »

True value (Valeur vraie)

"quantity value consistent with the definition of a quantity"

« valeur d'une grandeur compatible avec la définition de la grandeur »

value that would be obtained with a perfect measurement process (which do not exist) => the value we never know !!

Measurement result (résultat de mesure)

" set of quantity values being attributed to a measurand together with any other available relevant information"

" ensemble de valeurs attribuées à un mesurande, complété par toute autre nformation pertinente disponible"

Trueness and precision (justesse et répétabilité)

precise but not true true but not precise not true and not precise

precise and true

Definitions: error

Measurement **error** (Erreur de mesure):
difference between measured quantity value and true value
« Différence entre la valeur mesurée et la valeur vraie »

2 component of measurement error:

Systematic error (erreur systématique):
constant component of error of replicate measurments
composante constante de l'erreur de mesurage répétés

Random error (erreur aléatoire):
unpredictable manner variation of replicate measurements
variation imprévisible de mesurage répétés

Definitions: uncertainty

Measurement Uncertainty (incertitude de mesure): non-negative parameter characterizing the dispersion of the quantity values being attributed to a measurand,

« paramètre non négatif qui caractérise la dispersion des valeurs attribuées à un mesurande »

measurement truness (justesse de mesure) = systematic uncertainty

measurement precision (fidélité de mesure) = random uncertainty

uncertainty and probability distribution

Probability distribution (loi de probabilité)

- Décrit le comportement d'un phénomène aléatoire
- Exemple : uniform or normal distribution

Uncertainty

- « paramètre qui caractérise la dispersion des valeurs (...) »
- Exemple : standard deviation

uncertainty and probability distribution

The most common distributions:

- Uniform (range, min, max)
- Triangular
- Normal (average and standar deviatio)

Normal distribution properties:

-
$$P(\mu - \sigma < X < \mu + \sigma) = 67\%$$

-
$$P(\mu - 2\sigma < X < \mu + 2\sigma) = 95\%$$

-
$$P(\mu - 3\sigma < X < \mu + 3\sigma) = 99\%$$

Methods:

GUM

(Guide to the expression of Uncertainty in Measurements)

Method A:

based on statistical analysis of measured quantity

Method B:

Based on other means (all available information)

Components of uncertainty

- Measurement process, including :
 - the sensors
 - data acquisition configuration (recording frequency, pulse value, etc.)
- Sampling / number of sensors (ex : temperature)
- Gap between measured physical quantity and needed quantity (occupant number vs internal gains / energy consumption vs gaz volume)

Components of uncertainty

Adding uncertainties (σ):

with the assumption of uncorrelated uncertainties:

Addition of variance (square of standard deviation)

$$\sigma^2 = \Sigma \sigma_i^2$$

1st Exemple

```
Airtightness in new buildings
With R:
"simurex18 permea.R"
data in "permaData.Rdata" (or .txt)
```

context:

- building energy computing in design phase
- what it is needed :
 - average
 - standard deviation
 - distribution shape

Sampling in statistics Eléments de métrologie

Definitions:

Population : a group of experimental data, person, etc.
Unit : undecomposable elementary unit of the population

A population could be finite (dim=N) or infinite It is made of units that have one or several properti(es)

For example:

- population = people registered on electoral list properties (x_i) = ages, socio economic category, quantity under study (y) = voting intention
- population = French adults properties (x_i) = age, genre, quantity under study (y) = height,

Definitions:

sampling = selection of a fraction of units (n) from a population (N or infinite)

aims: assess a quantity of population (sum, average, proportion) from a sample

simple random sampling : every unit of the population has the same probability to be selected

From sample to population :

estimate of the average:

$$\mu_{pop} \approx \mu_{sample}$$

uncertainty of the estimate:

$$\sigma(\mu_{pop}) \approx \sqrt{(1-n/N)/(n-1)} \sigma_{sample}$$

with N ~
$$\infty$$
 : $\sigma(\mu_{pop}) \approx \sigma_{sample} / \sqrt{(n-1)}$

rigorously with n > 30, whatever the probability distribution

From sample to population :

estimate of the standard deviation

(that we want to know for Uncertainty propagation in BES):

$$\sigma_{pop} \approx n * \sigma_{sample} / (n-1)$$

if pop follow a normal distribution, and n > 30:

$$\sigma_{\text{sample}}^2 \sim N(\sigma_{\text{pop}}^2, \sigma_{\text{pop}}^2 \sqrt{2/n})$$

Different ways of sampling:

Among the properties of the units, some are under study (y = voting intention) others are only descriptive supplementary information (x = socio economic category)

Stratified sampling:

- the population is divided into homogeneous groups,
- random sampling are made in each group
- sample size of each group can be made proportionally to the number of unit of each group in the population

1st Exemple

Airtightness in new buildings

random sampling

- take 100, or 500 samples from the dataset
- compute average
- do this 100 times and draw the density plot (of average)

stratified sampling

Indoor temperature measurement for Building Energy Simulation

What to measure?

What the model says?

Figure 5.4.1-7: Star network for a zone with three surfaces.

What to measure?

Measure the temperature that corresponds the most to the model:

- the average temperature of the zone?
- the average temperature in the building?
- the temperature that corresponds to heat exchanges?
 - for convection, air flows, radiation?

What to measure Back to fundamentals

In the transmission heat exchanges through building fabrics, many phenomenon are involved:

- Radiation,
- Convection
- Conduction

Air temperature is (only) involved in convection,

So the question is: what is the air temperature that have to be measured in a building for convection exchange assessment.

What to measure Back to fundamentals

In heat transfer theory, the characteristic fluid temperature has to be:

"the temperature of the fluid far away from the surface, often identified as T_{infinite} "

In the building, it could be

the temperature of air far away enough from the surface but still realistic for convection exchanges.

What to measure Back to fundamentals

The temperature of air far away enough from the surface but still realistic for convection exchanges.

And 2 difficulties:

- The temperature in the building (in any room) is not really homogeneous
- The building envelope is not really homogeneous

What to measure what happens in a building

From natural heat flows...

out measuring point

boundary layer

What to measure what happens in a building

... or more artificial heat island

occupant

What to measure what happens in a building

Sometimes, there's a heater

Increase of temperature along the wall

Case study

Case study

Recent building (2012) wood and concrete.

Case study

Unoccupied office (room 105)

Case study

Meeting room: 50 m2

- Average for each sensors for 2 month
- Then standard deviation of the averages

Temperature in buildings / in a room

```
With R: "simurex18.R"
```

data in "mesures.Rdata"

```
or - temp room 105.txt
```

- temp meeting room.txt
- temp building.txt

aims:

What is the uncertainty of measured temperature?
for
Building energy performance assessment
/ BES calibration

1st step: define what is the problem

What is the quantity of interest?

- average temperature of a building
- average temperature in a room

How is it measure?

- many temperature sensors (n)
 - ≠ entire knowledge
 - = a sample of the total volume

1st step: define what is the problem

What are their uncertainties?

- for measurement in a room with 1 sensor
- for measurement in the building with n sensors

How to extract them from measured data?

- precision / trueness ??
- distribution shape?

How to take it into account in BES?

2nd step: Observations

- time serie plot
- density plot
- boxplot

Influence of position in a room:

- mean = f(height)
- mean = f(distance from outdoor)

3rd step: compute the quantity of interest average at each time step

- office / meeting room / building

4th step: extract standard deviation of the sample

- at each time step
- of the average

Trueness (~ systematic error)
Precision (~ random error)

5th step: compute uncertainty

- from standard error
- applying sampling theory

```
Trueness (~ systematic error )
Precision (~ random error )
```

6th step: uncertainty propagation in BES

- compute average time serie
- sample a systematic error to add to time serie

next step with Jeanne Goffart on wednesday

Statistical approach

What is the error made in the assessment of the average temperature of the building by measuring with n sensors?

Assumption of sampling theory (And its limits...)

- Random location of sensors (in the building / in each room)
- for some uses, the distribution of the temperature for any subvolume of the building needs to be Normal

2 ways to solve the problem:

- Building considered as a whole,
- Statistical stratification considering rooms as subsets

cf. "measuring building indoor temperature for energy performance assessment, definition proposal and uncertainties" IEA EBCAnnex 71, april 2018 meeting.

Statistical approach building as a whole

The average temperature can be approximated by the average of the sample's n measurements.

The uncertainty on the average follows a student distribution that can be approximate by a normal distribution (n>30):

$$\frac{n-1}{n-3}\frac{\sigma_{sam}}{\sqrt{(n-1)}}$$

Where σ_{sam} is the standard deviation of the measured sample.

Statistical approach statistical stratification

Each room is considered as a subset. The uncertainty of the average temperature can be decomposed in:

- Differences between rooms (σ_{room})
- Room's unhomogeneity (sensor location in a room: σ_{loc})

Statistical approach statistical stratification

with:

- N_{bui} the number of room in the building,
- n the number of rooms where there is a measure
- n' the number of sensors in the same room

The uncertainty in the average temperature became:

$$\sigma_{bui} = \sqrt{(\frac{n-1}{n-3})^2 * \frac{N_{bui}-n}{n*(N_{bui}-1)} * \sigma_{sam-room}^2} + (\frac{n'-1}{n'-3})^2 \frac{\sigma_{loc}^2}{n'}$$