- 1. Bestimme bei den nachfolgenden Experimenten die Wahrscheinlichkeitsverteilung und die Verteilungsfunktion:
 - a) Man würfelt mit einem Würfel einmal. X ist die Augenzahl.
 - b) Man würfelt mit zwei Würfeln. X ist die grösste Augenzahl die erscheint.
 - c) Man würfelt mit zwei Würfeln. X ist die Augensumme.
 - d) Eine Münze wird 4 mal geworfen X= Anzahl Kopf.
- 2. Von 5 nebeneinanderliegenden Feldern mit den Rängen 1 bis 5 sollen 2 Felder zufällig zufällig angekreuzt werden. Die ZV X sei die Summe der beiden Ränge. Beispiel:

1	2	3	4	5
Χ		Χ		

Bestimme die Verteilungsfunktion von X und skizziere sie.

3. Eine stetige Zufallsvariable X hat die Verteilungsfunktion

$$F(x) = \begin{cases} 0 & \text{für} \quad x < 0 \\ x/6 - x^2/144 & \text{für} \quad 0 \le x \le 12 \\ 1 & \text{für} \quad x > 12 \end{cases}$$

- a) Berechne die zugehörige Dichtefunktion f(x). Skizziere deren Graph.
- b) Bestimmen Sie folgende Wahrscheinlichkeiten:

$$b_1) P(X < -2)$$

b₂)
$$P(X \le 1)$$

b₃)
$$P(X > 6)$$

- c) Berechne den Median von X.
- 4. Als Modell für die Lebenszeit eines Systems oder eines Organismus wird oft die **Exponentialverteilung** verwendet. Die Zufallsvariable ist die Zeit T. Die

 $\mbox{Verteilungsfunktion ist dabei definiert als} \quad F(t) = \begin{cases} 1 - e^{-c \cdot t} & \mbox{für } t \geq 0 \\ 0 & \mbox{sonst} \end{cases} \qquad \mbox{$c > 0$ ist ein}$

Parameter.

F(t) bedeutet dann die Wahrscheinlichkeit, dass das System den Zeitpunkt t nicht erlebt. 1- F(t) bedeutet die Überlebenswahrscheinlichkeit des Zeitpunktes t.

- a) bestimme durch ableiten die Dichte f(t).
- b) Zeichne F(t) und f(t) qualitativ richtig, oder auch mit EXCEL für c= 1/4.
- c) Formuliere als Wahrscheinlichkeiten P: F(t) = P(?) und 1- F(t) = P(?) und schraffiere sie als Flächen unter der Dichte.
- 5. Die Lebenszeit eines Gerätes sei exponentiell verteilt mit c = 0.02. t ist die Zeit in Jahren.
 - a) Mit welcher Wahrscheinlichkeit lebt das Gerät länger als 50 Jahre?
 - b) Nach welcher Zeit sind 25% aller Geräte, die zur Zeit t=0 produziert wurden, noch funktionstüchtig?
 - c) wie gross muss c sein damit der Median 20 Jahre beträgt?

Lösungen Uebung 9

1)

b)			d)		
Χ	Р	Pkum = F(X)	Χ	Р	F(x)
1	1/36	1/36	0	1/16	1/16
2	3/36	4/36	1	4/16	5/16
3	5/36	9/36	2	6/16	11/16
4	7/36	16/36	3	4/16	15/16
5	9/36	25/36	4	1/16	1
6	11/36	1			

2)

Χ	3	4	5	6	7	8	9
р	0.1	0.1	0.2	0.2	0.2	0.1	0.1
F(x)	0.1	0.2	0.4	0.6	0.8	0.9	1.0

$$f(x) = \frac{1}{6} - \frac{1}{72}x$$
 für $0 \le x \le 12$
 $f(x) = 0$ sonst

$$f(x) = 0$$
 sonst

4) a)
$$f(t) = \begin{cases} c \cdot e^{-ct} & t \ge 0 \\ 0 & sonst \end{cases}$$
 c)
$$F(t) = P(T \le t)$$
 1-F(t) = P(T > t)

c)
$$F(t) = P(T \le t)$$

$$1-F(t) = P(T > t)$$