Número Primos

Trabalho 2 - Segurança em Computação (INE5429)

Universidade Federal de Santa Catarina

Número Primos

Trabalho 2 - Segurança em Computação (INE5429)

Universidade Federal de Santa Catarina

Felipe de Campos Santos 17200441 09/07/2021

Objetivo

Este trabalho teve como objetivo a geração de números primos, de maneira pseudo-aleatória, nos tamanhos de 40, 56, 80, 128, 168, 224, 256, 512, 1024, 2048, 4096 (expresso em bits). Para isso, utilizamos de geradores de números pseudo-aleatórios com os algoritmos:

- Blum Blum Shub;
- Lehmer (também conhecido como Park-Miller)

Depois de gerado o número, fazemos um teste de primalidade nele, utilizando os algoritmos:

- Teste de primalidade de Miller-Rabin;
- Teste de primalidade de <u>Fermat;</u>

Foram escolhidos estes algoritmos pela facilidade de entendimento, e consequentemente de implementação, visto que seus algoritmos são mais sucintos e simples. As outras opções vistas pelo aluno envolviam algoritmos com mais passos, o que tornava o entendimento mais difícil e o código mais propício a erros.

Como a finalidade deste trabalho é conhecer alguns dos algoritmos e técnicas de geração de números pseudo-aleatórios e testes de primalidade e não a implementação do melhor e mais rápido gerador, a escolha foi baseada no que seria mais simples de entender e replicar.

Além disso, a implementação foi feita em python pela familiaridade do aluno e simplicidade da linguagem.

Código

Os códigos e arquivos de resultados de testes estão disponibilizados no github;

Geração de Números Pseudo-Aleatórios

Os dados de geração são exportados para um arquivo .csv, para facilitar a análise dos mesmos.

O arquivo usado para o teste pode ser encontrado no github

Abaixo, a tabela resultado de uma rodada de geração no computador do aluno:

Blum Blum Shub

BITS	TEMPO (s)
40	0.002997
56	0.005001
80	0.006000
128	0.010999
168	0.013000
224	0.017037
256	0.023000
512	0.043995
1024	0.091991
2048	0.181040
4096	0.361042

Lehmer

BITS	TEMPO (s)
40	0.002000
56	0.002000
80	0.004000
128	0.006000
168	0.009002
224	0.009998
256	0.012000
512	0.027016
1024	0.063958
2048	0.129961
4096	0.261001

Colocando os resultados em um gráfico, podemos fazer uma comparação:

Assim fica fácil ver que, apesar de pequena a diferença, o algoritmo Park-Miller (no gráfico representado com o nome LEH, de Lehmer) é mais rápido.

Vale lembrar que esses resultados podem variar, visto que o tempo levado para a geração é influenciado pelo computador em que está rodando.

Visto que o algoritmo de Blum Blum Shub pode ser resumido em $x(n+1) = x(n)^2 \mod M$, até que n+1 = k, onde k é o número de bits desejado podemos dizer que sua complexidade é de O(k), onde k é o número de bits desejado. Olhando o código, fica mais claro:

```
def algorithm(self):
    self.num = pow(self.num, 2) % self.m
    return self.num

def calculate(self):
    result = ""
    for _ in range(self.size):
        rnd = self.algorithm()
        b = rnd % 2
        result += str(b)
    self.num = int(result, 2)
    self.result = result
    return result
```

O algoritmo roda "size" vezes.

O mesmo pode ser replicado para o algoritmo de Park-Miller

```
def algorithm(self):
    self.num = (self.a * self.num) % self.m
    return self.num

def calculate(self):
    result = ""
    for _ in range(self.size):
        rnd = self.algorithm()
        b = rnd % 2
        result += str(b)
    self.num = int(result, 2)
    self.result = result
    return result
```

Como ambos tem complexidade linear e semelhante, podemos dizer que os resultados de tempo obtidos fazem sentido.

Vale ressaltar que, para Park-Miller, os parâmetros iniciais usados são os propostos pelos autores, segundo a <u>página na Wikipedia</u>.

Teste de Primalidade

Para os testes de primalidade, foram usados uma sequência pré-definida de números primos e não primos, com os mesmos tamanhos dos números gerados pseudo-aleatoriamente.

O arquivo usado para o teste pode ser encontrado no github

Os resultados de tempo, junto com o resultado esperado e obtido do teste, foram exportados para um arquivo .csv para facilitar a análise. Abaixo, os resultados médios de tempo para testes esperados verdadeiros e testes esperados falsos para os dois algoritmos

Testes esperados verdadeiros

Miller-Rabin

BITS	TEMPO (s)
40	0.000501
80	0.001999
128	0.004999
168	0.007501
224	0.014500
256	0.014499
512	0.071000
1024	0.383999

Fermat

BITS	TEMPO (s)
40	0.000498
80	0.002004
128	0.004976
168	0.007519
224	0.013483
256	0.014024
512	0.068486
1024	0.378479

Testes esperados falsos

B 4		
N /I i I	or Dobin	
11//111	ler-Rabir	
1 4 1 1 1	CI I (UDII	

BITS	TEMPO (s)
40	0.0005
80	0.0005
128	0.0005
168	0.0005
224	0.0005
256	0.0005
512	0.0015
1024	0.005

Fermat

BITS	TEMPO (s)
40	0
80	0
128	0
168	0.000499
224	0.000499
256	0.000499
512	0.001499
1024	0.004999

Apesar de extremamente próximos, para números grandes o algoritmo de Fermat se mostrou um pouco mais rápido, o que faz sentido analisando a complexidade dos algoritmos, apresentados na própria página da wikipedia, como segue:

- Fermat: O(k log²n), sendo n o número testado e k o número de vezes que o algoritmo é rodado para um valor 'a' aleatório.
- Miller-Rabin: O(k log³n), sendo *n* o número testado e *k* o número de vezes que o algoritmo é rodado.

Resultados finais

Para os testes finais, o aluno escolheu os algoritmos:

- Lehmer / Park-Miller, para geração de números pseudo-aleatorios
- Fermat, para o teste de primalidade

devido aos resultados de testes anteriores.

O arquivo usado para o teste final pode ser encontrado no github

O teste feito retornou todos os primos no período de 35.6s aproximadamente, nos arquivos "generated_primes.csv" e "generated_primes.txt" do github é possível ver os tempos e os números que foram retornados do teste.

No tabela abaixo temos os tempos necessários para se achar um primo com "bits" digitos binários, e no gráfico abaixo podemos ver a curva dos tempos necessários para gerar os números com seus respectivos bits de tamanho.

BITS	TEMPO (s)
40	0.000974
56	0.002
80	0.007034
128	0.020005
168	0.033997
224	0.175004
256	0.090036
512	0.097998
1024	3.636036
2048	6.202995
4096	25.40896
TOTAL	35.66504

Com isso, é finalizado o trabalho sobre geração de números pseudo-aleatorios e de verificação de primalidade, concluindo que a geração de números primos de até 512bits de tamanho podem levar tempos insignificantes em computadores atuais, mas a partir de números de 1024 o tempo já passa a crescer significantemente.

Referências

https://asecuritysite.com/encryption/blum#:~:text=Blum%20Blum%20Shub%20uses%20the,the%20difficulty%20in%20factorizing%20M

https://en.wikipedia.org/wiki/Fermat primality test

https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test

https://pt.wikipedia.org/wiki/Blum_Blum_Shub

https://en.wikipedia.org/wiki/Lehmer_random_number_generator

https://jeremykun.com/2016/07/11/the-blum-blum-shub-pseudorandom-generator/