Assignment-3

刘行逸

20251016

1

Phase-I:

	z	a_1	x_1	x_2	s_1	s_2	s_3	
	1	1	0	0	$0 \\ -1 \\ 0 \\ 0$	0	0	0
$\overline{a_1}$	0	1	2	1	-1	0	0	2
s_2	0	0	1	3	0	1	0	2
s_3	0	0	0	1	0	0	1	4

Phase-II:

	z	x_1	x_2	s_1	s_2	s_3	
	1	-3	1	0	0	0	0
$\overline{x_1}$	0	2	1	-1	0	0	2
s_2	0	0	5	1	2	0	2
s_3	0	0	1	-1 1 0	0	1	4

		z	x_1	x_2	s_1	s_2	s_3	
		$1 \times 2 = 2$	0	$1 \times 2 + 1 \times 3 = 5$	$(-1) \times 3 = -3$	0	0	$2 \times 3 = 6$
	x_1	0	2	1	-1	0	0	2
*	s_2	0	0	5	1	2	0	2
	s_3	0	0	1	0	0	1	4

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ s_1 \\ s_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ 4 \end{pmatrix}$$
$$\begin{pmatrix} x_1 \\ s_1 \\ s_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix}$$

$$\therefore$$
 $x_1 = 2$, $x_2 = 0$, $\max(3x_1 - x_2) = \frac{12}{2} = 6$