Oil Profitability Analysis

By Ammanuel F. WoldeAregay

AGENDA

Introduction

Assess the production value data

Build a predictive model

Share insights

Final tips & takeaways

Problem Statement

The Primary Goal:

- Analyze oil and gas production across different countries other than U.S.
- Determine which areas are the most profitable for future investment.
- The analysis will consider like production trends in those areas.

Raw Data Sample

:	country_name	type	product	flow	year	value
0	Australia	Balance	Crude oil	Industrial Production	2021	18029.678
1	Austria	Balance	Crude oil	Industrial Production	2021	561.852
2	Belgium	Balance	Crude oil	Industrial Production	2021	0.000
3	Canada	Balance	Crude oil	Industrial Production	2021	266630.180
4	Chile	Balance	Crude oil	Industrial Production	2021	340.997

2376 Rows 6 Columns

Data Wrangling

Original dataset had 2376 rows and Rows 6 columns

- Drop unnecessary columns
- Assess the raw data
- Display data samples to understand its structure
- Data Cleaning: Identify and handle missing values
- Target Variable: Production value

Analyzing Feature (Independent Variables) Distributions

Analyzing Feature (Independent Variables)Distributions outside of U.S.

Comparing values by product outside of U.S.

Comparing values by Flow features outside of U.S.

Yearly distributions of production values outside of U.S.

- Analyzing features for outliers
 - Canada has exaggerated outlier compared to other countries

Modeling Evaluation

- Compared models:
- Linear Regression
 - ***** Evaluation:
 - Mean Absolute Error: 803.25
 - Mean Squared Error: 1213187.81
 - R² Score: 0.39

- **Random Forest Regressor**
 - **Evaluation:**
 - Mean Absolute Error: 515.6194
 - Mean Squared Error: 828804.4951
 - R² Score: 0.59

Predictions vs. Actual Values Evaluation

Model Residuals Plot Evaluation

Model Residuals Distribution Evaluation

Takeaways & Final Tips

- * Random Forest Regressor is the preferred model with R² of 0.59.
- An R² score of 0.59 indicates that your model explains 59% of the variance in the target variable, which means the model is performing moderately well but leaves a significant amount of unexplained variance (41%). This can be acceptable in certain contexts, especially for complex real-world problems and when we have limited data, as in our case.

- ❖ Acquire more data for better model performance
- Test more parameters

THANK YOU Ammanuel F. WoldeAregay