Examen de Física I (Febrer, 2009)

Llicenciatura de Química Universitat Autònoma de Barcelona

Exercici 1

Es llença una pedra des d'una finestra d'un edifici, que està a una altura h = 10 m, amb una velocitat inicial $v_0 = 9$ m/s que forma un angle de $\theta_0 = 30^{\circ}$ amb l'horitzontal.

- 1. En el punt on l'alçada de la trajectòria de la pedra es màxima....
 - a) l'acceleració s'anul·la
 - b) la component horitzontal de la velocitat s'anul·la
 - c) la component vertical de la velocitat s'anul·la *

- 2. L'alçada màxima assolida per la pedra val...
 - a) 15 m
 - b) 7 m
 - c) 11 m *
 - d) 18 m
- 3. El temps que tarda la pedra en arribar al terra és aproximadament:
 - el doble del que tarda en assolir l'alçada màxima
 - b) 3 segons
 - c) 4 segons
 - d) 2 segons *
- 4. La distància R del punt on xoca la pedra amb el terra i l'edifici val aproximadament:
 - a) 15 m *
 - b) 7 m
 - c) 11 m
 - d) 18 m
- 5. El mòdul de la velocitat en el punt on xoca la pedra amb el terra és aproximadament:
 - 17 m/s *
 - 9 m/sb)
 - 35 m/sc)
 - d) es manté constant a llarg de tota la trajectòria

Exercici 2

Un cos es mou cap a la dreta sobre una superfície horitzontal amb un coeficient de fregament de $\mu = 0.2$ i recorre una longitud L = 5 m fins a aturar-se. La velocitat inicial del cos és v_i . Preneu com a sentit positiu la direcció del moviment.

- 6. El temps que tarda el cos en aturar-se és ...
 - a) $v_i/(\mu g) *$
 - b) $\sqrt{(L/(\mu g))}$
 - c) L/v_i
 - d) $L/\mu v_i$
- 7. L'acceleració val aproximadament ...
 - a) 4.0 m/s^2
 - b) $-2.0 \text{ m/s}^2 *$
 - c) -4.4 m/s^2
 - d) 5.0 m/s^2
- 8. La velocitat inicial val aproximadament ...
 - a) 2.1 m/s
 - b) -2.1 m/s
 - c) -4.4 m/s
 - d) 4,4 m/s *
- 9. Les forces que actuen sobre el cos
 - a) són totes conservatives
 - b) cap és conservativa
 - c) realitzen un treball total negatiu *
 - d) realitzen un treball total nul

Es deixa caure un bloc de 3 kg des d'una altura de 5 m a sobre d'una molla de constant elàstica K = 3955 N/m. Quan el bloc està en repòs a baix de tot, la molla es comprimeix fins a 25 cm. Determina: a) energia cinètica del bloc al contactar amb la molla, i b) la velocitat del bloc si la molla està comprimida 15 cm.

- 10. En aquest exemple ...
 - a) es conserva l'energia cinètica
 - b) es conserva l'energia potencial
 - c) es conserva l'energia mecànica *
 - d) cap de les respostes anteriors és certa
- 11. Desprès de contactar la massa amb la molla, l'energia potencial és:
 - a) simplement l'energia potencial gravitatòria
 - b) simplement l'energia potencial elàstica de la molla
 - c) les dues a la vegada *
 - d) cap de les respostes anteriors és certa
- 12. Al contactar amb la molla, l'energia cinètica val aproximadament:
 - a) 200 J
 - b) 150 J*
 - c) 100 J
 - d) 50 J

- 13. Quan la molla està completament comprimida (fins 25 cm), l'energia potencial elàstica és aproximadament:
 - a) 124 J *
 - b) 247 J
 - c) 989 J
 - d) 494 J
- 14. L'acceleració del cos quan la molla està completament comprimida val...
 - a) $9.8 \text{ m/s}^2 \text{ cap a dalt}$
 - b) $9.8 \text{ m/s}^2 \text{ cap a baix}$
 - c) $252 \text{ m/s}^2 \text{ cap a dalt}$
 - d) $323 \text{ m/s}^2 \text{ cap a dalt } *$
- 15. La velocitat del bloc quan la molla està comprimida 15 cm val aproximadament:
 - a) 8.6 m/s *
 - b) 17.2 m/s
 - c) 10,15 m/s
 - d) 0 m/s

Considereu la corba d'energia potencial de la figura.

- 16. Si la partícula es troba en el punt D, experimenta una força...
 - a) nul·la
 - b) dirigida cap als valors negatius de y *
 - c) dirigida cap als valors positius de y
 - d) impossible de determinar

- 17. Podem considerar que...
 - a) els punts A i D són punts d'equilibri inestable
 - b) els punts B i C són punts d'equilibri estable
 - c) en aquesta corba hi ha només un punt d'equilibri i és estable *
 - d) no hi ha punts d'equilibri en aquesta corba

Suposem que la partícula es troba a la posició y = 1 m i la seva energia mecànica val 6 J.

- 18. Llavors....
 - a) l'energia cinètica es nul·la
 - b) l'energia potencial és nul·la
 - c) l'energia cinètica val 2 J *
 - d) l'energia potencial val 2 J
- 19. Quan la partícula passa per la posició y = 2 m...
 - a) la seva energia potencial val 2 J *
 - b) la seva energia cinètica val 2 J
 - c) la seva energia mecànica val 5 J
 - d) cap de les respostes anteriors és certa

- 20. Si la partícula està a y = 4m i es mou cap a la dreta disminuirà...
 - a) la seva energia potencial
 - b) la seva energia mecànica
 - c) la seva energia cinètica *
 - d) cap de les respostes anteriors és certa

Una massa de 100 kg, inicialment en repòs, explota emetent un fragment gran ($m_1 = 90$ kg) cap a la esquerra i un altre fragment petit ($m_2 = 10$ kg) cap a la dreta. Sabent que l'energia cinètica del fragment petit és de 5 J ...

- 21. En qualsevol sistema de partícules aïllat, ...
 - a) es conserven el moment lineal i el moment angular *
 - b) es conserven el moment lineal i l'energia cinètica
 - c) només es conserva el moment lineal
 - d) es conserven el moment lineal, el moment angular i l'energia cinètica
- 22. El moment lineal del fragment petit val
 - a) 0.1 kg m s^{-1}
 - b) 1 kg m s⁻¹
 - c) $10 \text{ kg m s}^{-1}*$
 - d) 100 kg m s⁻¹
- 23. La velocitat del fragment gran és un factor...
 - a) 10/100 la velocitat del fragment petit
 - b) 10/90 la velocitat del fragment petit *
 - c) 100/10 la velocitat del fragment petit
 - d) 90/10 la velocitat del fragment petit
- 24. L'energia cinètica del fragment gran és
 - a) 0,45 J
 - b) 0,56 J *
 - c) 56 J
 - d) 45 J

Exercici 6

Un objecte consisteix en quatre masses puntuals idèntiques unides mitjançant varetes molt lleugeres formant una rectangle de costats 2a i 2b (ver figura). El sistema gira al voltant d'un eix central situat a una distancia a de cadascuna de les quatre masses puntuals amb una velocitat angular ω .

- 25. La força que fa una vareta horitzontal sobre una massa m quan l'objecte gira amb velocitat angular ω és...
 - a) $m \omega a^2$
 - b) $m \omega^2 a^*$
 - c) $4 \text{ m } \omega a^2$
 - d) $4 \text{ m } \omega^2 a^2$

- 26. El moment d'inèrcia *I* del sistema respecte de l'eix vertical de la figura val...
 - a) $2 \text{ m} (a^2 + b^2)$
 - b) $2 \text{ m } a^2$
 - c) $4 \text{ m } a^2 *$
 - d) $4 \text{ m} (a^2+b^2)$
- 27. El moment angular *L* respecte de l'eix de la figura i l'energia cinètica de rotació del sistema valen, respectivament...
 - a) $I\omega i I\omega^2/2$, on I és el moment d'inèrcia calculat a la qüestió anterior *
 - b) $I\omega^2$ i $I\omega^2/2$, on I és el moment d'inèrcia calculat a la qüestió anterior
 - c) $I\omega^2$ i $I\omega/2$, on I és el moment d'inèrcia calculat a la qüestió anterior
 - d) cap de les respostes anteriors és certa

Considerem que l'objecte parteix d'una velocitat angular ω , i les varetes horitzontals (de longitud 2a) es contrauen a la meitat (no hi ha forces externes)...

- 28. En aquest procés...
 - a) el moment angular L canvia, perquè el moment d'inèrcia I canvia
 - b) el moment angular L canvia, però el moment d'inèrcia I no canvia
 - c) el moment angular L no canvia, però el moment d'inèrcia I sí *
 - d) el moment angular L no canvia, i el moment d'inèrcia I tampoc
- 29. La velocitat angular de l'objecte desprès d'aquest procés, ω_f...
 - a) és igual a la inicial
 - b) és la meitat de la inicial
 - c) és el doble de la inicial
 - d) és el quàdruple de la inicial *

Exercici 7

Un planeta té la massa de la Terra i un radi doble del de la Terra.

- 30. La gravetat a la superfície d'aquest planeta val
 - a) $2,45 \text{ m/s}^2 *$
 - b) 4.9 m/s^2
 - c) 9.8 m/s^2
 - d) $19,6 \text{ m/s}^2$
- 31. La velocitat d'escapament d'un objecte d'un planeta v_e s'obté imposant que
 - a) es conserva l'energia cinètica
 - b) es conserva l'energia potencial
 - c) es conserva l'energia mecànica i a l'infinit val 0 *
 - d) es conserva l'energia mecànica i a l'infinit és negativa
- 32. La velocitat d'escapament a la Terra és de 11,2 km/s. En aquest planeta val...
 - a) $5,6 \, \text{km/s}$
 - b) 7.9 km/s *
 - c) 15,8 km/s
 - d) 22.4 km/s

Quan bufen vents molt forts, poden arrencar la teulada de les cases a causa de la diferència de pressions entre l'exterior i l'interior. *Nota:* considereu que el fluid és ideal. La densitat de l'aire és aproximadament 1 g/l.

- 33. En un fluid ideal...
 - a) a més velocitat del fluid més pressió
 - b) a més velocitat del fluid menys pressió *
 - c) la pressió és independent de la velocitat
 - d) cap de les respostes anteriors és certa
- 34. Si el vent bufa amb una velocitat de 30 m/s, la diferència de pressions entre l'interior i l'exterior d'una casa val...
 - a) 1 atm
 - b) 45 mmHg
 - c) $450 \text{ N/m}^2 *$
 - d) 45 kPa
- 35. La velocitat mínima que hauria de tenir el vent per arrencar una teulada horitzontal de 200 m² de superfície i una massa de 4000 kg és
 - a) 22 m/s
 - b) 28 m/s *
 - c) 50 km/h
 - d) cap de les respostes anteriors és certa