Teoria Sygnałów w zadaniach

Tomasz Grajek, Krzysztof Wegner

Politechnika Poznańska

Wydział Elektroniki i Telekomunikacji

Katedra Telekomunikacji Multimedialnej i Mikroelektroniki

pl. M. Skłodowskiej-Curie 5

60-965 Poznań

www.et.put.poznan.pl

www.multimedia.edu.pl

Copyright © Krzysztof Wegner, 2019 Wszelkie prawa zastrzeżone ISBN 978-83-939620-1-3 Wydrukowano w Polsce

Zadanie 1. Oblicz wartość średnią okresowego sygnału f(t) przedstawionego na rysunku

W pierwszej kolejności należy opisać sygnał za pomocą wzoru.

$$f(x) = \begin{cases} A & t \in \left(0 + k \cdot T; \frac{T}{2} + k \cdot T\right) \\ 0 & t \in \left(\frac{T}{2} + k \cdot T; T + k \cdot T\right) \end{cases} \land k \in C$$
 (1)

Wartość średnią sygnału wyznaczamy z wzoru

$$\bar{f} = \frac{1}{T} \int_{T} f(t) \cdot dt \tag{2}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$\bar{f} = \frac{1}{T} \int_{T} f(t) \cdot dt =
= \frac{1}{T} \left(\int_{0}^{\frac{T}{2}} A \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot dt \right) =
= \frac{1}{T} \left(A \cdot \int_{0}^{\frac{T}{2}} dt + 0 \right) =
= \frac{1}{T} \left(A \cdot t \Big|_{0}^{\frac{T}{2}} \right) =
= \frac{A}{T} \cdot t \Big|_{0}^{\frac{T}{2}} =
= \frac{A}{T} \cdot \left(\frac{T}{2} - 0 \right) =
= \frac{A}{T} \cdot \left(\frac{T}{2} \right) =$$

Średnia wartość sygnału wynosi $\frac{A}{2}$

Zadanie 2. Oblicz wartość średnią sygnału $f(t)=\mathbf{1}(t)\cdot e^{-a\cdot t}\cdot sin\left(\frac{2\pi}{T}\cdot t\right)$ przedstawionego na rysunku

Wartość średnią sygnału wyznaczamy z wzoru

$$\bar{f} = \lim_{\tau \to \infty} \frac{1}{\tau} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} f(t) \cdot dt \tag{4}$$

Podstawiamy do wzoru wzór naszej funkcji

$$\begin{split} \bar{f} &= \lim_{\tau \to \infty} \frac{1}{\tau} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} f(t) \cdot dt \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \mathbf{1}(t) \cdot e^{-a \cdot t} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\int_{-\frac{\tau}{2}}^{0} 0 \cdot e^{-a \cdot t} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{0}^{\frac{\tau}{2}} 1 \cdot e^{-a \cdot t} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\int_{-\frac{\tau}{2}}^{0} 0 \cdot dt + \int_{0}^{\frac{\tau}{2}} e^{-a \cdot t} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(0 + \int_{0}^{\frac{\tau}{2}} e^{-a \cdot t} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\int_{0}^{\frac{\tau}{2}} e^{-a \cdot t} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \left\{ u = \sin(\frac{2\pi}{T} \cdot t) + \left(u = e^{-a \cdot t} \cdot dt \right) + \left(u = e^{-a \cdot t} \cdot dt \right) \right\} \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(-\frac{1}{a} \cdot e^{-a \cdot t} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \right) \right\} \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a \cdot t} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \right) \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a \cdot t} \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a \cdot t} \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \left\{ u = \cos(\frac{2\pi}{T} \cdot t) + \left(u = e^{-a \cdot t} \cdot dt \right) \right\} \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a \cdot t} \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a \cdot t} \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a \cdot t} \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a \cdot t} \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a \cdot t} \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) \right\} \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a \cdot t} \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a \cdot t} \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \right) \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a \cdot t} \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \right) \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a \cdot t} \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \right) \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a \cdot t} \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \right) \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a \cdot t} \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \right) \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a \cdot t} \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \right) \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a \cdot t} \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \right) \right)$$

$$\begin{split} &= \lim_{T \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) + \frac{1}{a} \cdot 1 \cdot 0 \right) \right. \\ &+ \frac{1}{a} \cdot \frac{2\pi}{T} \cdot \left(\left(-\frac{1}{a} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \cos \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) + \frac{1}{a} \cdot e^{-a \cdot 0} \cdot \cos \left(\frac{2\pi}{T} \cdot 0 \right) \right) \\ &+ \frac{1}{a} \cdot \frac{2\pi}{T} \cdot \int_{0}^{\frac{\tau}{2}} e^{-a \cdot t} \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot dt \right) \right) \\ &= \lim_{T \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) + 0 \right) \right. \\ &+ \frac{1}{a} \cdot \frac{2\pi}{T} \cdot \left(\left(-\frac{1}{a} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) + \frac{1}{a} \cdot 1 \cdot 1 \right) \right. \\ &+ \frac{1}{a} \cdot \frac{2\pi}{T} \cdot \int_{0}^{\frac{\tau}{2}} e^{-a \cdot t} \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot dt \right) \right) \\ &= \lim_{T \to \infty} \frac{1}{\tau} \left(-\frac{1}{a} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \cos \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) \right. \\ &- \frac{1}{a^{2}} \cdot \frac{T}{2\pi} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \cos \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) + \frac{1}{a^{2}} \cdot \frac{T}{2\pi} \right. \\ &+ \frac{1}{a^{2}} \cdot \frac{T^{2}}{4\pi^{2}} \cdot \int_{0}^{\frac{\tau}{2}} e^{-a \cdot t} \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot dt \right) \\ &= \begin{cases} -\frac{1}{a} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) - \frac{1}{a^{2}} \cdot \frac{T}{2\pi} \right. \\ &+ \frac{1}{a^{2}} \cdot \frac{T^{2}}{2\pi} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) - \frac{1}{a^{2}} \cdot \frac{T}{2\pi} \\ &+ \frac{1}{a^{2}} \cdot \frac{T^{2}}{2\pi} \cdot \frac{T^{2}}{2\pi} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \cos \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) + \frac{1}{a^{2}} \cdot \frac{T}{2\pi} \\ &= \int_{0}^{\frac{\tau}{2}} e^{-a \cdot t} \cdot \sin \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) - \frac{1}{a^{2}} \cdot \frac{T}{2\pi} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \cos \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) + \frac{1}{a^{2}} \cdot \frac{T}{2\pi} \\ &= \left(1 - \frac{1}{a^{2}} \cdot \frac{T^{2}}{4\pi^{2}} \right) \cdot \int_{0}^{\frac{\tau}{2}} e^{-a \cdot t} \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot dt \\ &= \begin{cases} -\frac{1}{a} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) - \frac{1}{a^{2}} \cdot \frac{T}{2\pi} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \cos \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) + \frac{1}{a^{2}} \cdot \frac{T}{2\pi} \\ &= \left(1 - \frac{1}{a^{2}} \cdot \frac{T^{2}}{4\pi^{2}} \right) \cdot \int_{0}^{\frac{\tau}{2}} e^{-a \cdot t} \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot dt \end{cases} \\ &= \begin{cases} -\frac{1}{a} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) - \frac{1}{a^{2}} \cdot \frac{T}{2\pi} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \cos \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) + \frac{1}{a^{2}} \cdot \frac{T}{2\pi} \\ &= \left(1 - \frac{1}{a^{2}} \cdot \frac{T^{2}}{2\pi} \right) \cdot \int_{0}^{\frac{\tau}{2}} e^{-a \cdot t} \cdot \sin \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) - \frac{1}{a^{2}} \cdot \frac{T$$

Średnia wartość sygnału wynosi 0

Zadanie 3. Oblicz wartość średnią sygnału $f(t) = A \cdot cos^4 (\omega_0 \cdot t)$ okresowego przedstawionego na rysunku

Wartość średnią sygnału okresowego wyznaczamy z wzoru

$$\bar{f} = \frac{1}{T} \int_{T} f(t) \cdot dt \tag{5}$$

Pierwszym krokiem jest ustalenie okresu funkcji. W naszym przypadku $T=\frac{\pi}{\omega_0}$. Podstawiamy do wzoru na wartość średnią wzór naszej funkcji

$$\begin{split} \bar{f} &= \frac{1}{T} \int_{T} f(t) \cdot dt \\ &= \frac{1}{\frac{\pi}{\omega_{0}}} \int_{-\frac{\pi}{2-\omega_{0}}}^{\frac{\pi}{2-\omega_{0}}} A \cdot \cos\left(\omega_{0} \cdot t\right)^{4} \cdot dt \\ &= \frac{\omega_{0}}{\pi} \int_{-\frac{\pi}{2-\omega_{0}}}^{\frac{\pi}{2-\omega_{0}}} A \cdot \cos\left(\omega_{0} \cdot t\right)^{4} \cdot dt \\ &= \left\{\cos(x) = \frac{e^{j \cdot x} + e^{-j \cdot x}}{2}\right\} \\ &= \frac{\omega_{0}}{\pi} \int_{-\frac{\pi}{2-\omega_{0}}}^{\frac{\pi}{2-\omega_{0}}} A \cdot \left(\frac{e^{j \cdot \omega_{0} \cdot t} + e^{-j \cdot \omega_{0} \cdot t}}{2}\right)^{4} \cdot dt \\ &= \frac{\omega_{0}}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2-\omega_{0}}}^{\frac{\pi}{2-\omega_{0}}} \left(\left(\frac{e^{j \cdot \omega_{0} \cdot t} + e^{-j \cdot \omega_{0} \cdot t}}{2}\right)^{2}\right)^{2} \cdot dt \\ &= \frac{\omega_{0}}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2-\omega_{0}}}^{\frac{\pi}{2-\omega_{0}}} \left(\frac{e^{j \cdot 2 \cdot \omega_{0} \cdot t} + e^{-j \cdot 2 \cdot \omega_{0} \cdot t} + (e^{-j \cdot \omega_{0} \cdot t})^{2}}{2^{2}}\right)^{2} \cdot dt \\ &= \frac{\omega_{0}}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2-\omega_{0}}}^{\frac{\pi}{2-\omega_{0}}} \left(\frac{e^{j \cdot 2 \cdot \omega_{0} \cdot t} + 2 \cdot e^{j \cdot \omega_{0} \cdot t} + e^{-j \cdot 2 \cdot \omega_{0} \cdot t}}{4}\right)^{2} \cdot dt \\ &= \frac{\omega_{0}}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2-\omega_{0}}}^{\frac{\pi}{2-\omega_{0}}} \left(\frac{e^{j \cdot 2 \cdot \omega_{0} \cdot t} + 2 \cdot e^{0} + e^{-j \cdot 2 \cdot \omega_{0} \cdot t}}{4}\right)^{2} \cdot dt \\ &= \frac{\omega_{0}}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2-\omega_{0}}}^{\frac{\pi}{2-\omega_{0}}} \left(\frac{e^{j \cdot 2 \cdot \omega_{0} \cdot t} + 2 \cdot e^{-j \cdot 2 \cdot \omega_{0} \cdot t}}{4}\right)^{2} \cdot dt \\ &= \frac{\omega_{0}}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2-\omega_{0}}}^{\frac{\pi}{2-\omega_{0}}} \left(\frac{e^{j \cdot 2 \cdot \omega_{0} \cdot t} + e^{-j \cdot 2 \cdot \omega_{0} \cdot t} + 2}{4}\right)^{2} \cdot dt \\ &= \frac{\omega_{0}}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2-\omega_{0}}}^{\frac{\pi}{2-\omega_{0}}} \left(\frac{e^{j \cdot 2 \cdot \omega_{0} \cdot t} + e^{-j \cdot 2 \cdot \omega_{0} \cdot t} + 2}{4}\right)^{2} \cdot dt \\ &= \frac{\omega_{0}}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2-\omega_{0}}}^{\frac{\pi}{2-\omega_{0}}} \left(\frac{e^{j \cdot 2 \cdot \omega_{0} \cdot t} + e^{-j \cdot 2 \cdot \omega_{0} \cdot t} + 2}{4}\right)^{2} \cdot dt \\ &= \frac{\omega_{0}}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2-\omega_{0}}}^{\frac{\pi}{2-\omega_{0}}} \left(\frac{e^{j \cdot 2 \cdot \omega_{0} \cdot t} + e^{-j \cdot 2 \cdot \omega_{0} \cdot t} + 2}{4}\right)^{2} \cdot dt \\ &= \frac{\omega_{0}}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2-\omega_{0}}}^{\frac{\pi}{2-\omega_{0}}} \left(\frac{e^{j \cdot 2 \cdot \omega_{0} \cdot t} + e^{-j \cdot 2 \cdot \omega_{0} \cdot t} + 2}{4}\right)^{2} \cdot dt \\ &= \frac{\omega_{0}}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2-\omega_{0}}}^{\frac{\pi}{2-\omega_{0}}} \left(\frac{e^{j \cdot 2 \cdot \omega_{0} \cdot t} + e^{-j \cdot 2 \cdot \omega_{0} \cdot t} + 2}{4}\right)^{2} \cdot dt} \\ &= \frac{\omega_{0}}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2-\omega_{0}}}^{\frac{\pi}{2-\omega_{0}}} \left(\frac{e^{j \cdot 2 \cdot \omega_{0} \cdot t} + e^{-j \cdot 2 \cdot \omega_{0} \cdot t} + 2}{4}\right)^{2} \cdot dt} \\ &= \frac{\omega_{0}}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2-\omega_{0}}}^{\frac{\pi}{2-\omega_{0}}} \left(\frac{e^{j \cdot 2 \cdot \omega_{0} \cdot t} + e^{-j \cdot 2$$

$$\begin{split} & -\frac{\omega_0}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} (e^{j2\omega_0vt})^2 + 2 \cdot e^{j2\omega_0vt} \cdot e^{-j2\omega_0vt} + (e^{-j2\omega_0vt} + 2 \cdot e^{-j2\omega_0vt} \cdot 2 + 4 \cdot dt) \\ & = \frac{\omega_0}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} e^{j2\omega_0vt} + 2 \cdot e^{j2\omega_0vt} + 2 \cdot e^{j2\omega_0vt} + 4 \cdot e^{j2\omega_0vt} + 4 \cdot e^{-j2\omega_0vt} + 4 \cdot e^{-j2\omega_0vt} + 4 \cdot dt \\ & = \frac{\omega_0}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} e^{j4\omega_0vt} + 2 \cdot e^{0} + e^{-j4\omega_0vt} + 4 \cdot e^{j2\omega_0vt} + 4 \cdot e^{-j2\omega_0vt} + 4 \cdot dt \\ & = \frac{\omega_0}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} e^{j4\omega_0vt} + 2 \cdot e^{-j4\omega_0vt} + 4 \cdot e^{j2\omega_0vt} + 4 \cdot e^{-j2\omega_0vt} + 4 \cdot dt \\ & = \frac{\omega_0}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} (e^{j4\omega_0vt} + 2 + e^{-j4\omega_0vt} + 4 \cdot e^{j2\omega_0vt} + 4 \cdot e^{-j2\omega_0vt} + 4 \cdot dt \\ & = \frac{\omega_0}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} (e^{j4\omega_0vt} + 2 + e^{-j4\omega_0vt} + 4 \cdot e^{j2\omega_0vt} + 4 \cdot e^{-j2\omega_0vt} + 4 \cdot dt \\ & = \frac{\omega_0}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} (e^{j4\omega_0vt} + 2 + e^{-j4\omega_0vt} + 4 \cdot e^{j2\omega_0vt} + 4 \cdot e^{-j2\omega_0vt} + 4 \cdot dt \\ & = \frac{\omega_0}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} (e^{j4\omega_0vt} + 2 + e^{-j4\omega_0vt} + 4 \cdot e^{j2\omega_0vt} + 4 \cdot e^{-j2\omega_0vt} + dt + \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} 4 \cdot e^{-j2\omega_0vt} \cdot dt + \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} 6 \cdot dt \\ & = \frac{\omega_0}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} (e^{j4\omega_0vt} + 2 + e^{-j4\omega_0vt} + 4 \cdot e^{j2\omega_0vt} \cdot dt + \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} 4 \cdot e^{-j2\omega_0vt} \cdot dt + \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} 6 \cdot dt \\ & = \frac{\omega_0}{\pi} \cdot A \cdot \left(\int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} (e^{j4\omega_0vt} + 2 + e^{-j4\omega_0vt} + 4 \cdot e^{j2\omega_0vt} \cdot dt + \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} 4 \cdot e^{-j2\omega_0vt} \cdot dt + \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} 6 \cdot dt \\ & = \frac{\omega_0}{\pi} \cdot A \cdot \left(\int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} (e^{j4\omega_0vt} + 2 + \omega_0vt} + e^{j2\omega_0vt} \cdot dt + \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} 4 \cdot e^{-j2\omega_0vt} \cdot dt + \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} e^{-j4\omega_0v} \cdot dt + \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} e^{-j4\omega_0v} \cdot dt + \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} e^{-j4\omega_0v} \cdot dt + \int_{-\frac{\pi}{2\omega$$

$$\begin{split} &=\frac{\omega_0}{\pi}\cdot\frac{A}{16}\cdot\left(\frac{1}{\jmath\cdot 4\cdot\omega_0}\cdot(0)+\frac{1}{-\jmath\cdot 4\cdot\omega_0}\cdot(0)+\frac{4}{\jmath\cdot 2\cdot\omega_0}\cdot(0)+\frac{4}{-\jmath\cdot 2\cdot\omega_0}\cdot(0)+6\cdot\left(\frac{\pi}{\omega_0}\right)\right)\\ &=\frac{\omega_0}{\pi}\cdot\frac{A}{16}\cdot\left(0+0+0+0+6\cdot\left(\frac{\pi}{\omega_0}\right)\right)\\ &=\frac{\omega_0}{\pi}\cdot\frac{A}{16}\cdot 6\cdot\left(\frac{\pi}{\omega_0}\right)\\ &=\frac{A}{16}\cdot 6\\ &=\frac{A}{8}\cdot 3\\ &=\frac{3}{8}\cdot A \end{split}$$

Wartość średnią sygnału wynosi $\frac{3}{8}\cdot A$

Zadanie 4. Oblicz energię sygnału okresowego $f(t) = A + B \cdot \sin\left(\frac{2\pi}{T} \cdot t\right)$ przedstawionego na rysunku

Energię sygnału okresowego wyznaczamy z wzoru

$$E = \int_{T} |f(t)|^{2} \cdot dt \tag{6}$$

Podstawiamy do wzoru wzór naszej funkcji

$$\begin{split} E &= \int_T |f(t)|^2 \cdot dt \\ &= \int_0^T \left| A + B \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \right|^2 \cdot dt \\ &= \int_0^T \left(A + B \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \right)^2 \cdot dt \\ &= \int_0^T \left(A^2 + 2 \cdot A \cdot B \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) + B^2 \cdot \sin^2 \left(\frac{2\pi}{T} \cdot t \right) \right) \cdot dt \\ &= \int_0^T A^2 \cdot dt + \int_0^T 2 \cdot A \cdot B \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot dt + \int_0^T B^2 \cdot \sin^2 \left(\frac{2\pi}{T} \cdot t \right) \cdot dt \\ &= A^2 \cdot \int_0^T dt + 2 \cdot A \cdot B \cdot \int_0^T \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot dt + B^2 \cdot \int_0^T \sin^2 \left(\frac{2\pi}{T} \cdot t \right) \cdot dt \\ &= \left\{ z = \frac{2\pi}{T} \cdot t \right\} \\ dz &= \frac{2\pi}{T} \cdot dt \quad dt = \frac{dz}{\frac{2\pi}{T}} = \frac{T}{2\pi} \cdot dz \right\} \\ &= A^2 \cdot t \Big|_0^T + 2 \cdot A \cdot B \cdot \int_0^T \sin (z) \cdot \frac{T}{2\pi} \cdot dz + B^2 \cdot \int_0^T \frac{1}{2} \cdot \left(1 - \cos \left(2 \cdot \frac{2\pi}{T} \cdot t \right) \right) \cdot dt \\ &= A^2 \cdot (T - 0) + 2 \cdot A \cdot B \cdot \frac{T}{2\pi} \cdot \int_0^T \sin (z) \cdot dz + B^2 \cdot \frac{1}{2} \cdot \int_0^T \left(1 - \cos \left(2 \cdot \frac{2\pi}{T} \cdot t \right) \right) \cdot dt \\ &= A^2 \cdot T + 2 \cdot A \cdot B \cdot \frac{T}{2\pi} \cdot \left(-\cos (z) \Big|_0^T \right) + B^2 \cdot \frac{1}{2} \cdot \left(\int_0^T 1 \cdot dt - \int_0^T \cos \left(2 \cdot \frac{2\pi}{T} \cdot t \right) \cdot dt \right) \\ &= \left\{ w = 2 \cdot \frac{2\pi}{T} \cdot t \right\} \\ dw &= 2 \cdot \frac{2\pi}{T} \cdot dt \quad dt = \frac{dw}{\frac{4\pi}{2}} = \frac{T}{4\pi} \cdot dw \right\} \\ &= A^2 \cdot T + 2 \cdot A \cdot B \cdot \frac{T}{2\pi} \cdot \left(-\cos \left(\frac{2\pi}{T} \cdot t \right) \Big|_0^T \right) + B^2 \cdot \frac{1}{2} \cdot \left(t \Big|_0^T - \int_0^T \cos (w) \cdot \frac{T}{4\pi} \cdot dw \right) \\ &= A^2 \cdot T + 2 \cdot A \cdot B \cdot \frac{T}{2\pi} \cdot \left(-\cos \left(\frac{2\pi}{T} \cdot t \right) \right) + B^2 \cdot \frac{1}{2} \cdot \left(t \Big|_0^T - \int_0^T \cos (w) \cdot \frac{T}{4\pi} \cdot dw \right) \\ &= A^2 \cdot T + 2 \cdot A \cdot B \cdot \frac{T}{2\pi} \cdot \left(-\cos \left(\frac{2\pi}{T} \cdot t \right) \right) + B^2 \cdot \frac{1}{2} \cdot \left((T - 0) - \frac{T}{4\pi} \cdot \int_0^T \cos (w) \cdot dw \right) \end{aligned}$$

$$\begin{split} &=A^2\cdot T+2\cdot A\cdot B\cdot \frac{T}{2\pi}\cdot \left(-\cos\left(2\pi\right)+\cos\left(0\right)\right)+B^2\cdot \frac{1}{2}\cdot \left(T-\frac{T}{4\pi}\cdot -\sin\left(w\right)\right)_0^T\right)\\ &=A^2\cdot T+2\cdot A\cdot B\cdot \frac{T}{2\pi}\cdot \left(-1+1\right)+B^2\cdot \frac{1}{2}\cdot \left(T+\frac{T}{4\pi}\cdot \sin\left(2\cdot \frac{2\pi}{T}\cdot t\right)\right)_0^T\right)\\ &=A^2\cdot T+2\cdot A\cdot B\cdot \frac{T}{2\pi}\cdot 0+B^2\cdot \frac{1}{2}\cdot \left(T+\frac{T}{4\pi}\cdot \left(\sin\left(2\cdot \frac{2\pi}{T}\cdot T\right)-\sin\left(2\cdot \frac{2\pi}{T}\cdot 0\right)\right)\right)\\ &=A^2\cdot T+B^2\cdot \frac{1}{2}\cdot \left(T+\frac{T}{4\pi}\cdot \left(\sin\left(4\pi\right)-\sin\left(0\right)\right)\right)\\ &=A^2\cdot T+B^2\cdot \frac{1}{2}\cdot \left(T+\frac{T}{4\pi}\cdot \left(0-0\right)\right)\\ &=A^2\cdot T+B^2\cdot \frac{1}{2}\cdot \left(T\right)\\ &=A^2\cdot T+B^2\cdot \frac{1}{2}\cdot \left(T\right) \end{split}$$

Energia sygnału wynosi $A^2 \cdot T + \frac{B^2}{2} \cdot T$

Zadanie 5. Oblicz energię sygnału okresowego f(t) przedstawionego na rysunku

W pierwszej kolejności należy ustalić wzór funkcji przedstawionej na rysunku. Jest to funkcja odcinkowa. W pierwszym okresie możemy ja opisać ogólnym równaniem prostej:

$$f(t) = a \cdot t + b \tag{7}$$

W pierwszym okresie wykres funkcji jest prostą przechodzącą przez dwa punkty: (0,0) oraz (T,A). Możemy wiec napisać układ równań rozwiązać go i znaleźć nie znane parametry a i b.

$$\begin{cases} 0 = a \cdot 0 + b \\ A = a \cdot T + b \end{cases}$$

$$\begin{cases} 0 = b \\ A = a \cdot T + b \end{cases}$$

$$\begin{cases} 0 = b \\ A = a \cdot T + 0 \end{cases}$$

$$\begin{cases} 0 = b \\ A = a \cdot T + a \end{cases}$$

A więc funkcję przedstawioną na rysunku, w pierwszy okresie można opisać wzorem

$$f(t) = \frac{A}{T} \cdot t$$

I ogólniej całą funkcję można wyrazić następującym wzorem

$$f(t) = \frac{A}{T} \cdot (t - k \cdot T) \land k \in C$$

Energię sygnału okresowego wyznaczamy z wzoru

$$E = \int_{T} |f(t)|^{2} \cdot dt \tag{8}$$

Podstawiamy do wzoru wzór naszej funkcji

$$E = \int_{T} |f(t)|^{2} \cdot dt$$

$$= \int_0^T \left| \frac{A}{T} \cdot t \right|^2 \cdot dt$$

$$= \int_0^T \left(\frac{A}{T} \cdot t \right)^2 \cdot dt$$

$$= \int_0^T \frac{A^2}{T^2} \cdot t^2 \cdot dt$$

$$= \frac{A^2}{T^2} \cdot \int_0^T t^2 \cdot dt$$

$$= \frac{A^2}{T^2} \cdot \left(\frac{1}{3} \cdot t^3 \right|_0^T \right)$$

$$= \frac{A^2}{T^2} \cdot \left(\frac{1}{3} \cdot T^3 - \frac{1}{3} \cdot 0^3 \right)$$

$$= \frac{A^2}{T^2} \cdot \left(\frac{1}{3} \cdot T^3 - 0 \right)$$

$$= \frac{A^2}{T^2} \cdot \frac{1}{3} \cdot T^3$$

$$= \frac{A^2}{T^2} \cdot \frac{1}{3} \cdot T$$

Energia sygnału wynosi $\frac{A^2}{3}\cdot T$

Zadanie 6. Oblicz energię sygnału okresowego f(t) przedstawionego na rysunku

W pierwszej kolejności należy ustalić wzór funkcji przedstawionej na rysunku. Jest to funkcja odcinkowa. W pierwszym okresie możemy ja opisać za pomocą dwuch prostych. Ogólne równanie prostej:

$$f(t) = m \cdot t + b \tag{9}$$

W pierwszym okresie w pierwszej części wykres funkcji jest prostą przechodzącą przez dwa punkty: (0,0) oraz $(a \cdot T, A)$. Możemy wiec napisać układ równań rozwiązać go i znaleźć nie znane parametry m i b.

$$\begin{cases} 0 = m \cdot 0 + b \\ A = m \cdot a \cdot T + b \end{cases}$$

$$\begin{cases} 0 = b \\ A = m \cdot a \cdot T + b \end{cases}$$

$$\begin{cases} 0 = b \\ A = m \cdot a \cdot T + 0 \end{cases}$$

$$\begin{cases} 0 = b \\ \frac{A}{a \cdot T} = m \end{cases}$$

A więc pierwszy odcinek funkcji przedstawionej na rysunku, w pierwszy okresie można opisać wzorem

$$f(t) = \frac{A}{a \cdot T} \cdot t$$

Drugi odcinek funkcji jest prostą przechodzącą przez następujące dwa punkty: $(a \cdot T, 0)$ oraz (T, -B). Możemy wiec napisać układ równań rozwiązać go i znaleźć nie znane parametry m i b.

$$\begin{cases} 0 = m \cdot a \cdot T + b \\ -B = m \cdot T + b \end{cases}$$

$$\begin{cases} -m \cdot a \cdot T = b \\ -B = m \cdot T - m \cdot a \cdot T \end{cases}$$

$$\begin{cases}
-m \cdot a \cdot T = b \\
-B = m \cdot (T - a \cdot T)
\end{cases}$$

$$\begin{cases}
-m \cdot a \cdot T = b \\
-\frac{B}{T - a \cdot T} = m
\end{cases}$$

$$\begin{cases}
\frac{B}{T - a \cdot T} \cdot a \cdot T = b \\
-\frac{B}{T - a \cdot T} = m
\end{cases}$$

$$\begin{cases}
\frac{B}{1 - a} \cdot a = b \\
-\frac{B}{T - a \cdot T} = m
\end{cases}$$

A więc drugi odcinek funkcji przedstawionej na rysunku, w pierwszy okresie można opisać wzorem

$$f(t) = -\frac{B}{T - a \cdot T} \cdot t + \frac{B}{1 - a} \cdot a$$

W związku z tym całą funkcję w pierwszym okresie można zapisać jako funkcje przedziałową

$$f(t) = \begin{cases} \frac{A}{a \cdot T} \cdot t & dla \quad t \in (0; a \cdot T) \\ -\frac{B}{T - a \cdot T} \cdot t + \frac{B}{1 - a} \cdot a & dla \quad t \in (a \cdot T; T) \end{cases}$$

I ogólniej całą funkcję można wyrazić następującym wzorem

$$f(t) = \begin{cases} \frac{A}{a \cdot T} \cdot (t - k \cdot T) & dla \quad t \in (0 + k \cdot T; a \cdot T + k \cdot T) \\ -\frac{B}{T - a \cdot T} \cdot (t - k \cdot T) + \frac{B}{1 - a} \cdot a & dla \quad t \in (a \cdot T + k \cdot T; T + k \cdot T) \end{cases} \land k \in C$$

Energię sygnału okresowego wyznaczamy z wzoru

$$E = \int_{T} |f(t)|^2 \cdot dt \tag{10}$$

Podstawiamy do wzoru wzór naszej funkcji

$$\begin{split} E &= \int_{T} |f(t)|^{2} \cdot dt \\ &= \int_{0}^{a \cdot T} \left| \frac{A}{a \cdot T} \cdot t \right|^{2} \cdot dt + \int_{a \cdot T}^{T} \left| \frac{B}{T - a \cdot T} \cdot t - \frac{B}{1 - a} \cdot a \right|^{2} \cdot dt \\ &= \int_{0}^{a \cdot T} \left(\frac{A}{a \cdot T} \cdot t \right)^{2} \cdot dt + \int_{a \cdot T}^{T} \left(\frac{B}{T - a \cdot T} \cdot t - \frac{B}{1 - a} \cdot a \right)^{2} \cdot dt \\ &= \int_{0}^{a \cdot T} \frac{A^{2}}{a^{2} \cdot T^{2}} \cdot t^{2} \cdot dt + \int_{a \cdot T}^{T} \left(\left(\frac{B}{T - a \cdot T} \cdot t \right)^{2} - 2 \cdot \frac{B}{T - a \cdot T} \cdot t \cdot \frac{B}{1 - a} \cdot a + \left(\frac{B}{1 - a} \cdot a \right)^{2} \right) \cdot dt \\ &= \frac{A^{2}}{a^{2} \cdot T^{2}} \cdot \int_{0}^{a \cdot T} t^{2} \cdot dt + \int_{a \cdot T}^{T} \left(\frac{B^{2}}{T^{2} \cdot (1 - a)^{2}} \cdot t^{2} - 2 \cdot \frac{B^{2}}{T \cdot (1 - a)^{2}} \cdot t \cdot a + \frac{B^{2}}{(1 - a)^{2}} \cdot a^{2} \right) \cdot dt \\ &= \frac{A^{2}}{a^{2} \cdot T^{2}} \cdot \left(\frac{1}{3} \cdot t^{3} \cdot dt \right|_{0}^{a \cdot T} \right) + \int_{a \cdot T}^{T} \frac{B^{2}}{T^{2} \cdot (1 - a)^{2}} \cdot t^{2} \cdot dt - \int_{a \cdot T}^{T} 2 \cdot \frac{B^{2}}{T \cdot (1 - a)^{2}} \cdot t \cdot a \cdot dt + \int_{a \cdot T}^{T} \frac{B^{2}}{(1 - a)^{2}} \cdot a^{2} \cdot dt \\ &= \frac{A^{2}}{a^{2} \cdot T^{2}} \cdot \left(\frac{1}{3} \cdot t^{3} \right|_{0}^{a \cdot T} \right) + \frac{B^{2}}{T^{2} \cdot (1 - a)^{2}} \cdot \int_{a \cdot T}^{T} t^{2} \cdot dt - \frac{2 \cdot B^{2}}{T \cdot (1 - a)^{2}} \cdot a \cdot \int_{a \cdot T}^{T} t \cdot dt + \frac{B^{2}}{(1 - a)^{2}} \cdot a^{2} \cdot \int_{a \cdot T}^{T} dt \\ &= \frac{A^{2}}{a^{2} \cdot T^{2}} \cdot \left(\frac{1}{3} \cdot (a \cdot T)^{3} - \frac{1}{3} \cdot 0^{3} \right) + \frac{B^{2}}{T^{2} \cdot (1 - a)^{2}} \cdot \left(\frac{1}{3} \cdot t^{3} \right|_{a \cdot T}^{T} \right) - \frac{2 \cdot B^{2}}{T \cdot (1 - a)^{2}} \cdot a \cdot \left(\frac{1}{2} \cdot t^{2} \right|_{a \cdot T}^{T} \right) \\ &+ \frac{B^{2}}{(1 - a)^{2}} \cdot a^{2} \cdot \left(t \right|_{a \cdot T}^{T} \right) \end{split}$$

$$\begin{split} &=\frac{A^2}{a^2 \cdot T^2} \cdot \left(\frac{1}{3} \cdot a^3 \cdot T^3 - 0\right) + \frac{B^2}{T^2 \cdot (1-a)^2} \cdot \left(\frac{1}{3} \cdot T^3 - \frac{1}{3} \cdot (a \cdot T)^3\right) \\ &- \frac{2 \cdot B^2}{T \cdot (1-a)^2} \cdot a \cdot \left(\frac{1}{2} \cdot T^2 - \frac{1}{2} \cdot (a \cdot T)^2\right) + \frac{B^2}{(1-a)^2} \cdot a^2 \cdot (T-a \cdot T) \\ &= \frac{A^2}{a^2 \cdot T^2} \cdot \frac{1}{3} \cdot a^3 \cdot T^3 + \frac{B^2}{T^2 \cdot (1-a)^2} \cdot \left(\frac{1}{3} \cdot T^3 - \frac{1}{3} \cdot a^3 \cdot T^3\right) \\ &- \frac{2 \cdot B^2}{T \cdot (1-a)^2} \cdot a \cdot \left(\frac{1}{2} \cdot T^2 - \frac{1}{2} \cdot a^2 \cdot T^2\right) + \frac{B^2}{(1-a)^2} \cdot a^2 \cdot (1-a) \cdot T \\ &= \frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{T^2 \cdot (1-a)^2} \cdot \left(1-a^3\right) \cdot \frac{1}{3} \cdot T^3 \\ &- \frac{2 \cdot B^2}{T \cdot (1-a)^2} \cdot a \cdot \left(1-a^2\right) \cdot \frac{1}{2} \cdot T^2 + \frac{B^2}{(1-a)^2} \cdot a^2 \cdot (1-a) \cdot T \\ &= \frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{(1-a)^2} \cdot (1-a) \cdot \left(1+a+a^2\right) \cdot \frac{1}{3} \cdot T \\ &- \frac{2 \cdot B^2}{(1-a)^2} \cdot a \cdot (1-a) \cdot (1+a) \cdot \frac{1}{2} \cdot T + \frac{B^2}{1-a} \cdot a^2 \cdot T \\ &= \frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{1-a} \cdot \left(1+a\right) \cdot \left(1+a+a^2\right) \cdot \frac{1}{3} \cdot T - \frac{2 \cdot B^2}{1-a} \cdot a \cdot (1+a) \cdot \frac{1}{2} \cdot T + \frac{B^2}{1-a} \cdot a^2 \cdot T \\ &= \frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{1-a} \cdot T \cdot \left(\left(1+a+a^2\right) \cdot \frac{1}{3} - 2 \cdot a \cdot (1+a) \cdot \frac{1}{2} + a^2\right) \\ &= \frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{1-a} \cdot T \cdot \left(\left(1+a+a^2\right) \cdot \frac{2}{6} - 2 \cdot a \cdot (1+a) \cdot \frac{3}{6} + a^2 \cdot \frac{6}{6}\right) \\ &= \frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{1-a} \cdot T \cdot \frac{1}{6} \cdot \left(\left(1+a+a^2\right) \cdot 2 - 2 \cdot a \cdot (1+a) \cdot 3 + a^2 \cdot 6\right) \\ &= \frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{1-a} \cdot T \cdot \frac{1}{6} \cdot \left(2+2 \cdot a + 2 \cdot a^2 - 6 \cdot a - 6 \cdot a^2 + 6 \cdot a^2\right) \\ &= \frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{1-a} \cdot T \cdot \frac{1}{6} \cdot \left(2-4 \cdot a + 2 \cdot a^2\right) \\ &= \frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{1-a} \cdot T \cdot \frac{1}{3} \cdot \left(1-2 \cdot a + a^2\right) \\ &= \frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{1-a} \cdot T \cdot \frac{1}{3} \cdot \left(1-a\right)^2 \\ &= \frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{1-a} \cdot T \cdot \frac{1}{3} \cdot \left(1-a\right)^2 \\ &= \frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{1-a} \cdot T \cdot \frac{1}{3} \cdot \left(1-a\right)^2 \\ &= \frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{3} \cdot \left(1-a\right) \cdot T \cdot \frac{1}{3} \cdot \left(1-a\right)^2 \\ &= \frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{3} \cdot \left(1-a\right) \cdot T \cdot \frac{1}{3} \cdot \left(1-a\right)^2 \\ &= \frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{3} \cdot \left(1-a\right) \cdot T \cdot \frac{1}{3} \cdot \left(1-a\right)^2 \\ &= \frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{3} \cdot \left(1-a\right) \cdot T \cdot \frac{1}{3} \cdot \left(1-a\right)^2 \end{aligned}$$

Energia sygnału wynosi $\frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{3} \cdot (1-a) \cdot T$

Zadanie 7. Oblicz energię sygnału f(t) przedstawionego na rysunku

$$f(t) = \begin{cases} -A \cdot e^{a \cdot t} & dla \quad t \in (-\infty; 0) \\ A \cdot e^{-a \cdot t} & dla \quad t \in (0; \infty) \end{cases}$$
 (11)

Energię sygnału nieokresowego wyznaczamy z wzoru

$$E = \lim_{\tau \to \infty} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} |f(t)|^2 \cdot dt \tag{12}$$

Podstawiamy do wzoru na enargie wzór naszej funkcji

$$\begin{split} E &= \lim_{\tau \to \infty} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} |f(t)|^2 \cdot dt \\ &= \lim_{\tau \to \infty} \left(\int_{-\frac{\tau}{2}}^{0} \left| -A \cdot e^{a \cdot t} \right|^2 \cdot dt + \int_{0}^{\frac{\tau}{2}} \left| A \cdot e^{-a \cdot t} \right|^2 \cdot dt \right) \\ &= \lim_{\tau \to \infty} \left(\int_{-\frac{\tau}{2}}^{0} \left(-A \cdot e^{a \cdot t} \right)^2 \cdot dt + \int_{0}^{\frac{\tau}{2}} \left(A \cdot e^{-a \cdot t} \right)^2 \cdot dt \right) \\ &= \lim_{\tau \to \infty} \left(\int_{-\frac{\tau}{2}}^{0} \left(-A \right)^2 \cdot \left(e^{a \cdot t} \right)^2 \cdot dt + \int_{0}^{\frac{\tau}{2}} \left(A \right)^2 \cdot \left(e^{-a \cdot t} \right)^2 \cdot dt \right) \\ &= \lim_{\tau \to \infty} \left(\int_{-\frac{\tau}{2}}^{0} A^2 \cdot e^{2 \cdot a \cdot t} \cdot dt + \int_{0}^{\frac{\tau}{2}} A^2 \cdot e^{-2 \cdot a \cdot t} \cdot dt \right) \\ &= \lim_{\tau \to \infty} \left(A^2 \cdot \int_{-\frac{\tau}{2}}^{0} e^{2 \cdot a \cdot t} \cdot dt + A^2 \cdot \int_{0}^{\frac{\tau}{2}} e^{-2 \cdot a \cdot t} \cdot dt \right) \\ &= \lim_{\tau \to \infty} A^2 \cdot \left(\int_{-\frac{\tau}{2}}^{0} e^{2 \cdot a \cdot t} \cdot dt + \int_{0}^{\frac{\tau}{2}} e^{-2 \cdot a \cdot t} \cdot dt \right) \\ &= \left\{ \begin{aligned} z &= 2 \cdot a \cdot t & w &= -2 \cdot a \cdot t \\ dz &= 2 \cdot a \cdot dt & dw &= -2 \cdot a \cdot dt \\ dt &= \frac{dz}{2 \cdot a} & dt &= \frac{dw}{-2 \cdot a} \end{aligned} \right\} \\ &= \lim_{\tau \to \infty} A^2 \cdot \left(\int_{-\frac{\tau}{2}}^{0} e^z \cdot \frac{dz}{2 \cdot a} + \int_{0}^{\frac{\tau}{2}} e^w \cdot \frac{dw}{-2 \cdot a} \right) \\ &= \lim_{\tau \to \infty} \frac{A^2}{2 \cdot a} \cdot \left(\int_{-\frac{\tau}{2}}^{0} e^z \cdot dz - \int_{0}^{\frac{\tau}{2}} e^w \cdot dw \right) \\ &= \lim_{\tau \to \infty} \frac{A^2}{2 \cdot a} \cdot \left(e^z \big|_{-\frac{\tau}{2}}^{0} - e^w \big|_{0}^{\frac{\tau}{2}} \right) \end{aligned}$$

$$\begin{split} &= \lim_{\tau \to \infty} \frac{A^2}{2 \cdot a} \cdot \left(e^{2 \cdot a \cdot t} \Big|_{-\frac{\tau}{2}}^0 - e^{-2 \cdot a \cdot dt} \Big|_{0}^{\frac{\tau}{2}} \right) \\ &= \lim_{\tau \to \infty} \frac{A^2}{2 \cdot a} \cdot \left(\left(e^{2 \cdot a \cdot 0} - e^{-2 \cdot a \cdot \frac{\tau}{2}} \right) - \left(e^{-2 \cdot a \cdot \frac{\tau}{2}} - e^{-2 \cdot a \cdot 0} \right) \right) \\ &= \lim_{\tau \to \infty} \frac{A^2}{2 \cdot a} \cdot \left(\left(e^0 - e^{-a \cdot \tau} \right) - \left(e^{-a \cdot \tau} - e^0 \right) \right) \\ &= \lim_{\tau \to \infty} \frac{A^2}{2 \cdot a} \cdot \left(1 - e^{-a \cdot \tau} - e^{-a \cdot \tau} + 1 \right) \\ &= \lim_{\tau \to \infty} \frac{A^2}{2 \cdot a} \cdot \left(2 - 2 \cdot e^{-a \cdot \tau} \right) \\ &= \lim_{\tau \to \infty} \frac{A^2}{2 \cdot a} \cdot 2 \cdot \left(1 - e^{-a \cdot \tau} \right) \\ &= \lim_{\tau \to \infty} \frac{A^2}{a} \cdot \left(1 - e^{-a \cdot \tau} \right) \\ &= \frac{A^2}{a} \end{split}$$

Energia sygnału wynosi $\frac{A^2}{a}$

Zadanie 8. Oblicz wartość energii okresowego sygnału f(t) przedstawionego na rysunku

Zaczynamy od zapisania wzoru funkcji przedstawionej na rysunku

$$f(x) = \begin{cases} A & t \in \left(0 + k \cdot T; \frac{T}{3} + k \cdot T\right) \\ 0 & t \in \left(\frac{T}{3} + k \cdot T; T + k \cdot T\right) \end{cases} \land k \in C$$
 (13)

Energię sygnału nieokresowego wyznaczamy z wzoru

$$E = \int_{T} |f(t)|^2 \cdot dt \tag{14}$$

Podstawiamy do wzoru na enargie wzór naszej funkcji dla pierwszego okresu k=0

$$E = \int_{T} |f(t)|^{2} \cdot dt$$

$$= \int_{0}^{\frac{T}{3}} |A|^{2} \cdot dt + \int_{\frac{T}{3}}^{T} |0|^{2} \cdot dt$$

$$= \int_{0}^{\frac{T}{3}} A^{2} \cdot dt + \int_{\frac{T}{3}}^{T} 0 \cdot dt$$

$$= A^{2} \cdot \int_{0}^{\frac{T}{3}} dt + 0$$

$$= A^{2} \cdot t|_{0}^{\frac{T}{3}}$$

$$= A^{2} \cdot \left(\frac{T}{3} - 0\right)$$

$$= A^{2} \cdot \frac{T}{3}$$

Energia sygnału wynosi $A^2 \cdot \frac{T}{3}$

Zadanie 9. Oblicz wartość energii sygnału $f(t) = A \cdot sin^2 (\omega_0 \cdot t)$ okresowego przedstawionego na rysunku

Energię sygnału okresowego wyznaczamy ze wzoru

$$E = \int_{T} |f(t)|^{2} \cdot dt \tag{15}$$

Podstawiamy do wzoru na enargie wzór naszej funkcji dla pierwszego okresu k=0

$$\begin{split} E &= \int_{T} |f(t)|^{2} \cdot dt \\ &= \int_{0}^{T} \left| A \cdot \sin^{2} \left(\omega_{0} \cdot t \right) \right|^{2} \cdot dt \\ &= \int_{0}^{T} A^{2} \cdot \sin^{4} \left(\omega_{0} \cdot t \right) \cdot dt \\ &= \left\{ \sin(x) = \frac{e^{jx} - e^{-jx}}{2 \cdot j} \right\} \\ &= \int_{0}^{T} A^{2} \cdot \left(\frac{e^{j\omega_{0} \cdot t} - e^{-j\omega_{0} \cdot t}}{2 \cdot j} \right)^{4} \cdot dt \\ &= \int_{0}^{T} A^{2} \cdot \left(\frac{e^{j\omega_{0} \cdot t} - e^{-j\omega_{0} \cdot t}}{2 \cdot j} \right)^{4} \cdot dt \\ &= \int_{0}^{T} A^{2} \cdot \frac{\left(e^{j\omega_{0} \cdot t} - e^{-j\omega_{0} \cdot t} \right)^{4}}{\left(2 \cdot j \right)^{4}} \cdot dt \\ &= \begin{cases} n = 0 : & 1 & 1 & 1 \\ n = 1 : & 1 & 1 & 1 \\ n = 2 : & 1 & 2 & 1 \\ n = 3 : & 1 & 3 & 3 & 1 \\ n = 4 : & 1 & 4 & 6 & 4 & 1 \end{cases} \\ &= \int_{0}^{T} A^{2} \cdot \frac{1 \cdot \left(e^{j\omega_{0} \cdot t} \right)^{4} \cdot \left(-e^{-j\omega_{0} \cdot t} \right)^{6} + 4 \cdot \left(e^{j\omega_{0} \cdot t} \right)^{3} \cdot \left(-e^{-j\omega_{0} \cdot t} \right)^{1} + 6 \cdot \left(e^{j\omega_{0} \cdot t} \right)^{2} \cdot \left(-e^{-j\omega_{0} \cdot t} \right)^{1} \cdot \left(-e^{-j\omega_{0} \cdot t} \right)^{1} \cdot \left(-e^{-j\omega_{0} \cdot t} \right)^{2} + 4 \cdot \left(e^{j\omega_{0} \cdot t} \right)^{1} \cdot \left(-e^{-j\omega_{0} \cdot t} \right)^{2} \\ &= \int_{0}^{T} A^{2} \cdot \frac{e^{4j\omega_{0} \cdot t} \cdot e^{-0j\omega_{0} \cdot t} - 4 \cdot e^{3j\omega_{0} \cdot t} \cdot e^{-j\omega_{0} \cdot t} + 6 \cdot e^{2j\omega_{0} \cdot t} \cdot e^{-2j\omega_{0} \cdot t} - 4 \cdot e^{2j\omega_{0} \cdot t} + 6 \cdot e^{0j\omega_{0} \cdot t} - 4 \cdot e^{2j\omega_{0} \cdot t} + 6 \cdot e^{0j\omega_{0} \cdot t} + 6 \cdot e^$$

$$\begin{split} &= \int_{0}^{T} A^{2} \cdot \frac{e^{4j \cdot 2\phi_{0}t} + e^{-4j \cdot 2\phi_{0}t} - 4 \cdot e^{2j \cdot 2\phi_{0}t} - 4 \cdot e^{2j \cdot 2\phi_{0}t} + 6}{16} \cdot dt \\ &= \frac{A^{2}}{16} \cdot \int_{0}^{T} \left(e^{4j \cdot 2\phi_{0}t} + e^{-4j \cdot 2\phi_{0}t} - 4 \cdot e^{2j \cdot 2\phi_{0}t} - 4 \cdot e^{-2j \cdot 2\phi_{0}t} + 6 \right) dt \\ &= \frac{A^{2}}{16} \cdot \left(\int_{0}^{T} e^{4j \cdot 2\phi_{0}t} \cdot dt + \int_{0}^{T} e^{-4j \cdot 2\phi_{0}t} \cdot dt - 4 \cdot \int_{0}^{T} e^{2j \cdot 2\phi_{0}t} \cdot dt - 4 \cdot \int_{0}^{T} e^{-2j \cdot 2\phi_{0}t} \cdot dt + 6 \cdot \int_{0}^{T} dt \right) \\ &= \begin{cases} z_{1} - 4 \cdot j \cdot \omega_{0} \cdot t + dz_{2} - 4 \cdot j \cdot \omega_{0} \cdot t + dz_{3} - 2 \cdot j \cdot \omega_{0} \cdot t + 24 - 2 \cdot j \cdot \omega_{0} \cdot t \\ dt - \frac{1}{4j \cdot 2\phi_{0}} \cdot dz_{1} + dt - \frac{1}{4j \cdot 2\phi_{0}} \cdot dz_{2} - 4 \cdot j \cdot \omega_{0} \cdot dt + dz_{3} - 2 \cdot j \cdot \omega_{0} \cdot dt + dz_{4} - 2 \cdot j \cdot \omega_{0} \cdot dt \\ dt - \frac{1}{4j \cdot 2\phi_{0}} \cdot dz_{1} + dt - \frac{1}{4j \cdot 2\phi_{0}} \cdot dz_{2} + dt - \frac{1}{2j \cdot 2\phi_{0}} \cdot dz_{3} + dt - \frac{1}{2j \cdot 2\phi_{0}} \cdot dz_{4} \\ dt - \frac{1}{4j \cdot 2\phi_{0}} \cdot dz_{1} + dt - \frac{1}{4j \cdot 2\phi_{0}} \cdot dz_{1} + \frac{1}{4j \cdot 2\phi_{0}} \cdot dz_{2} + dt - \frac{1}{2j \cdot 2\phi_{0}} \cdot dz_{3} - dt - \int_{0}^{T} e^{2i \cdot 2} \cdot dz_{4} \\ - \frac{A^{2}}{16} \cdot \left(\frac{1}{4 \cdot j \cdot 2\phi_{0}} \cdot \int_{0}^{T} e^{2i \cdot 2} \cdot dz_{1} + \frac{1}{4 \cdot j \cdot 2\phi_{0}} \cdot \int_{0}^{T} e^{2i \cdot 2} \cdot dz_{2} - dt - \frac{1}{2j \cdot 2\phi_{0}} \cdot dz_{3} - dt - \int_{0}^{T} e^{2i \cdot 2} \cdot dz_{3} \\ - \frac{A^{2}}{16} \cdot \left(\frac{1}{4 \cdot j \cdot 2\phi_{0}} \cdot e^{2i \cdot 2} \right) - \frac{1}{4 \cdot j \cdot 2\phi_{0}} \cdot e^{2i \cdot 2} \cdot dz_{2} - dt - \frac{1}{2j \cdot 2\phi_{0}} \cdot e^{2j \cdot 2\phi_{0}} \cdot dz_{3} - dt - \frac{1}{2j \cdot 2\phi_{0}} \cdot dz_{3} \\ - \frac{A^{2}}{16} \cdot \left(\frac{1}{4 \cdot j \cdot 2\phi_{0}} \cdot e^{2i \cdot 2} \right) - \frac{1}{4 \cdot j \cdot 2\phi_{0}} \cdot e^{2i \cdot 2} \cdot dz_{3} - dt - \frac{1}{4j \cdot 2\phi_{0}} \cdot e^{2i \cdot 2\phi_{0}} \cdot dz_{3} \\ - \frac{A^{2}}{16} \cdot \left(\frac{1}{4 \cdot j \cdot 2\phi_{0}} \cdot e^{2i \cdot 2\phi_{0}} \right) - \frac{1}{4 \cdot j \cdot 2\phi_{0}} \cdot e^{2i \cdot 2\phi_{0}} \cdot e^{2i \cdot 2\phi_{0}} \right) - \frac{4}{2 \cdot j \cdot 2\phi_{0}} \cdot e^{2i \cdot 2\phi_{0}} \cdot dz_{3} \\ - \frac{A^{2}}{16} \cdot \left(\frac{1}{4 \cdot j \cdot 2\phi_{0}} \cdot \left(e^{4j \cdot 2\phi_{0}} \right) - \frac{1}{4 \cdot j \cdot 2\phi_{0}} \cdot \left(e^{4j \cdot 2\phi_{0}} \right) - e^{4j \cdot 2\phi_{0}} \right) - \frac{4}{2 \cdot j \cdot 2\phi_{0}} \cdot \left(e^{2j \cdot 2\phi_{0}} \right) - \frac{4}{2 \cdot j \cdot 2\phi_{0}} \cdot \left(e^{2j \cdot 2\phi_{0}} \right) - \frac{4}{2 \cdot j \cdot 2\phi_{0}} \cdot \left(e^{2j \cdot 2\phi_{0}} \right) - \frac{4}{2 \cdot j \cdot 2\phi_{0}} \cdot \left(e^{2j \cdot 2\phi$$

$$=\frac{A^2}{4}\cdot\frac{3\pi}{\omega_0}$$

Energia sygnału wynosi $\frac{A^2}{4}\cdot\frac{3\pi}{\omega_0}$

Zadanie 10. Wyznacz współczynniki trygonometrzycznego szeregu fouriera dla okresowego sygnału f(t) przedstawionego na rysunku

W pierwszej kolejności należy opisać sygnał za pomocą wzoru.

$$f(x) = \begin{cases} A & t \in \left(0 + k \cdot T; \frac{T}{2} + k \cdot T\right) \\ 0 & t \in \left(\frac{T}{2} + k \cdot T; T + k \cdot T\right) \end{cases} \land k \in C$$
 (16)

Współczynnik a_0 wyznaczamy ze wzoru

$$a_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{17}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$a_{0} = \frac{1}{T} \int_{T} f(t) \cdot dt =$$

$$= \frac{1}{T} \left(\int_{0}^{\frac{T}{2}} A \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot dt \right) =$$

$$= \frac{1}{T} \left(A \cdot \int_{0}^{\frac{T}{2}} dt + 0 \right) =$$

$$= \frac{1}{T} \left(A \cdot t \Big|_{0}^{\frac{T}{2}} \right) =$$

$$= \frac{A}{T} \cdot t \Big|_{0}^{\frac{T}{2}} =$$

$$= \frac{A}{T} \cdot \left(\frac{T}{2} - 0 \right) =$$

$$= \frac{A}{T} \cdot \left(\frac{T}{2} \right) =$$

Wartość współczynnika a_0 wynosi $\frac{A}{2}$

Współczynnik a_k wyznaczamy ze wzoru

$$a_k = \frac{2}{T} \int_T f(t) \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \tag{19}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$a_{k} = \frac{2}{T} \int_{T} f(t) \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt$$

$$= \frac{2}{T} \int_{0}^{\frac{T}{2}} A \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt$$

$$= \frac{2 \cdot A}{T} \int_{0}^{\frac{T}{2}} \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt$$

$$= \begin{cases} z = k \cdot \frac{2\pi}{T} \cdot t \\ dz = k \cdot \frac{2\pi}{T} \cdot dt \\ dt = \frac{dz}{k^{\frac{2\pi}{T}}} \end{cases}$$

$$= \frac{2 \cdot A}{T} \int_{0}^{\frac{T}{2}} \cos(z) \cdot \frac{dz}{k \cdot \frac{2\pi}{T}}$$

$$= \frac{2 \cdot A}{T \cdot k \cdot \frac{2\pi}{T}} \int_{0}^{\frac{T}{2}} \cos(z) \cdot dz$$

$$= \frac{A}{t \cdot \pi} \sin(z) \Big|_{0}^{\frac{T}{2}}$$

$$= \frac{A}{k \cdot \pi} \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \Big|_{0}^{\frac{T}{2}}$$

$$= \frac{A}{k \cdot \pi} \left(\sin\left(k \cdot \frac{2\pi}{T} \cdot \frac{T}{2}\right) - \sin\left(k \cdot \frac{2\pi}{T} \cdot 0\right)\right)$$

$$= \frac{A}{k \cdot \pi} \left(\sin(k \cdot \pi) - \sin(0)\right)$$

$$= \frac{A}{k \cdot \pi} \left(\sin(k \cdot \pi) - 0\right)$$

$$= \frac{A}{k \cdot \pi} \cdot \sin(k \cdot \pi)$$

$$= \frac{A}{k \cdot \pi} \cdot \sin(k \cdot \pi)$$

$$= \frac{A}{k \cdot \pi} \cdot 0$$

$$= 0$$

Wartość współczynnika a_k wynosi 0

Współczynnik b_k wyznaczamy ze wzoru

$$b_k = \frac{2}{T} \int_T f(t) \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \tag{21}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$b_{k} = \frac{2}{T} \int_{T} f(t) \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt$$

$$= \frac{2}{T} \int_{0}^{\frac{T}{2}} A \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt$$

$$= \frac{2 \cdot A}{T} \int_{0}^{\frac{T}{2}} \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt$$

$$= \begin{cases} z = k \cdot \frac{2\pi}{T} \cdot t \\ dz = k \cdot \frac{2\pi}{T} \cdot dt \\ dt = \frac{dz}{k \cdot \frac{2\pi}{T}} \end{cases}$$

$$= \frac{2 \cdot A}{T} \int_{0}^{\frac{T}{2}} \sin(z) \cdot \frac{dz}{k \cdot \frac{2\pi}{T}}$$

$$= \frac{2 \cdot A}{T \cdot k \cdot \frac{2\pi}{T}} \int_{0}^{\frac{T}{2}} \sin(z) \cdot dz$$

$$= -\frac{A}{k \cdot \pi} \cos(z) \Big|_{0}^{\frac{T}{2}}$$

$$= -\frac{A}{k \cdot \pi} \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \Big|_{0}^{\frac{T}{2}}$$

$$= -\frac{A}{k \cdot \pi} \left(\cos\left(k \cdot \frac{2\pi}{T} \cdot \frac{T}{2}\right) - \cos\left(k \cdot \frac{2\pi}{T} \cdot 0\right)\right)$$

$$= -\frac{A}{k \cdot \pi} \left(\cos\left(k \cdot \pi\right) - \cos\left(0\right)\right)$$

$$= -\frac{A}{k \cdot \pi} \left(\cos\left(k \cdot \pi\right) - 1\right)$$

$$= \frac{A}{k \cdot \pi} \left(1 - \cos\left(k \cdot \pi\right)\right)$$

Wartość współczynnika b_k wynosi $\frac{A}{k \cdot \pi} (1 - \cos(k \cdot \pi))$

Ostatecznie współczynniki trygonometrycznego szeregu fouriera dla funkcji przedstawionej na rysunku przyjmują wartości

$$a_0 = \frac{A}{2}$$

$$a_k = 0$$

$$b_k = \frac{A}{k \cdot \pi} \left(1 - \cos(k \cdot \pi) \right)$$
(23)

Możemy wyznaczyć kilka wartości współczynników a_k i b_k

k	1	2	3	4	5	6
a_k	0	0	0	0	0	0
b_k	$\frac{2 \cdot A}{\pi}$	0	$\frac{2 \cdot A}{3 \cdot \pi}$	0	$\frac{2 \cdot A}{5 \cdot \pi}$	0

Podstawiając to wzoru aproksymacyjnego funkcje f(t) możemy wyrazić jako

$$f(t) = a_0 + \sum_{k=1}^{\infty} \left[a_k \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) + b_k \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \right]$$
 (24)

W przypadku sumowania do $k_{\max}=1$ otrzymujemy

W przypadku sumowania do $k_{\max}=3$ otrzymujemy

W przypadku sumowania do $k_{\max}=5$ otrzymujemy

W przypadku sumowania do $k_{\max}=11$ otrzymujemy

W przypadku sumowania do $k_{max}=21$ otrzymujemy

W granicy sumowania do $k_{max}=\infty$ otrzymujemy oryginalny sygnał.

Zadanie 11. Wyznacz współczynniki trygonometrzycznego szeregu fouriera dla okresowego sygnału f(t) przedstawionego na rysunku

W pierwszej kolejności należy opisać sygnał za pomocą wzoru.

$$f(x) = \begin{cases} -A & t \in \left(-\frac{T}{4} + k \cdot T; 0 + k \cdot T\right) \\ A & t \in \left(0 + k \cdot T; \frac{T}{4} + k \cdot T\right) & \land k \in C \\ 0 & t \in \left(\frac{T}{4} + k \cdot T; \frac{3 \cdot T}{4} + k \cdot T\right) \end{cases}$$
(25)

Współczynnik a_0 wyznaczamy ze wzoru

$$a_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{26}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$a_{0} = \frac{1}{T} \int_{T} f(t) \cdot dt =$$

$$= \frac{1}{T} \left(\int_{-\frac{T}{4}}^{0} -A \cdot dt + \int_{0}^{\frac{T}{4}} A \cdot dt + \int_{\frac{T}{4}}^{\frac{3 \cdot T}{4}} 0 \cdot dt \right) =$$

$$= \frac{1}{T} \left(\int_{-\frac{T}{4}}^{0} -A \cdot dt + \int_{0}^{\frac{T}{4}} A \cdot dt + 0 \right) =$$

$$= \frac{1}{T} \left(-A \cdot \int_{-\frac{T}{4}}^{0} dt + A \cdot \int_{0}^{\frac{T}{4}} dt + 0 \right) =$$

$$= \frac{1}{T} \left(-A \cdot t \Big|_{-\frac{T}{4}}^{0} + A \cdot t \Big|_{0}^{\frac{T}{4}} \right) =$$

$$= \frac{1}{T} \left(-A \cdot \left(0 - \left(-\frac{T}{4} \right) \right) + A \cdot \left(\frac{T}{4} - 0 \right) \right) =$$

$$= \frac{1}{T} \left(-A \cdot \frac{T}{4} + A \cdot \frac{T}{4} \right) =$$

$$= \frac{1}{T} (0) =$$

$$= 0$$

Wartość współczynnika a_0 wynosi 0

Współczynnik a_k wyznaczamy ze wzoru

$$a_k = \frac{2}{T} \int_T f(t) \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \tag{28}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie $k=0\,$

$$\begin{split} a_k &= \frac{2}{T} \int_T f(t) \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \\ &= \frac{2}{T} \left(\int_{-\frac{T}{4}}^0 -A \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt + \int_0^{\frac{T}{4}} A \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{\frac{T}{4}}^{\frac{3T}{4}} 0 \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \frac{2}{T} \left(-A \cdot \int_{-\frac{T}{4}}^0 \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt + A \cdot \int_0^{\frac{T}{4}} \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{\frac{T}{4}}^{\frac{3T}{4}} 0 \cdot dt \right) \\ &= \begin{cases} z &= k \cdot \frac{2\pi}{T} \cdot t \\ dz &= k \cdot \frac{2\pi}{T} \cdot dt \\ dt &= \frac{dt}{k^{\frac{2\pi}{2}}} \end{cases} \\ &= \frac{2}{T} \left(-A \cdot \int_{-\frac{T}{4}}^0 \cos(z) \cdot \frac{dt}{k \cdot \frac{2\pi}{T}} + A \cdot \int_0^{\frac{T}{4}} \cos(z) \cdot \frac{dt}{k \cdot \frac{2\pi}{T}} + 0 \right) \\ &= \frac{2}{T} \left(-\frac{A}{k \cdot \frac{2\pi}{T}} \cdot \int_{-\frac{T}{4}}^0 \cos(z) \cdot dt + \frac{A}{k \cdot \frac{2\pi}{T}} \cdot \int_0^{\frac{T}{4}} \cos(z) \cdot dt \right) \\ &= \frac{2}{T} \cdot \frac{A}{k \cdot \frac{2\pi}{T}} \cdot \left(-\sin(z) |_{-\frac{T}{4}}^0 + \sin(k \cdot \frac{2\pi}{T} \cdot t) |_0^{\frac{T}{4}} \right) \\ &= \frac{2 \cdot A}{k \cdot 2\pi} \cdot \left(-\sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) |_{-\frac{T}{4}}^0 + \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) |_0^{\frac{T}{4}} \right) \\ &= \frac{2 \cdot A}{k \cdot 2\pi} \cdot \left(-\left(\sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) - \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \right) + \left(\sin\left(k \cdot \frac{2\pi}{T} \cdot \frac{T}{4}\right) - \sin\left(k \cdot \frac{2\pi}{T} \cdot 0\right) \right) \right) \\ &= \frac{A}{k \cdot 2\pi} \cdot \left(-\left(\sin\left(0 - \sin\left(-k \cdot \frac{2\pi}{4}\right)\right) + \left(\sin\left(k \cdot \frac{2\pi}{4}\right) - \sin\left(0\right)\right) \right) \\ &= \frac{A}{k \cdot \pi} \cdot \left(-\left(0 - \sin\left(-k \cdot \frac{\pi}{2}\right) + \sin\left(k \cdot \frac{\pi}{2}\right) \right) \\ &= \frac{A}{k \cdot \pi} \cdot \left(-\sin\left(k \cdot \frac{\pi}{2}\right) + \sin\left(k \cdot \frac{\pi}{2}\right) \right) \\ &= \frac{A}{k \cdot \pi} \cdot \left(-\sin\left(k \cdot \frac{\pi}{2}\right) + \sin\left(k \cdot \frac{\pi}{2}\right) \right) \\ &= \frac{A}{k \cdot \pi} \cdot \left(-\sin\left(k \cdot \frac{\pi}{2}\right) + \sin\left(k \cdot \frac{\pi}{2}\right) \right) \end{aligned}$$

Wartość współczynnika a_k wynosi 0

Współczynnik b_k wyznaczamy ze wzoru

$$b_k = \frac{2}{T} \int_T f(t) \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \tag{30}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$\begin{split} b_k &= \frac{2}{T} \int_T f(t) \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \\ &= \frac{2}{T} \left(\int_{-\frac{T}{4}}^0 - A \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt + \int_0^{\frac{T}{4}} A \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{\frac{T}{4}}^{\frac{3T}{4}} 0 \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \frac{2}{T} \left(-A \cdot \int_{-\frac{T}{4}}^0 \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt + A \cdot \int_0^{\frac{T}{4}} \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{\frac{T}{4}}^{\frac{3T}{4}} 0 \cdot dt \right) \\ &= \begin{cases} z &= k \cdot \frac{2\pi}{T} \cdot t \\ dz &= k \cdot \frac{2\pi}{T} \cdot dt \\ dt &= \frac{dz}{k \cdot \frac{2\pi}{T}} \end{cases} \\ &= \frac{2}{T} \left(-A \cdot \int_{-\frac{T}{4}}^0 \sin(z) \cdot \frac{dz}{k \cdot \frac{2\pi}{T}} + A \cdot \int_0^{\frac{T}{4}} \sin(z) \cdot \frac{dz}{k \cdot \frac{2\pi}{T}} + 0 \right) \\ &= \frac{2}{T} \left(-\frac{A}{k \cdot \frac{2\pi}{T}} \cdot \int_{-\frac{T}{4}}^0 \sin(z) \cdot dz + \frac{A}{k \cdot \frac{2\pi}{T}} \cdot \int_0^{\frac{T}{4}} \sin(z) \cdot dz \right) \\ &= \frac{2}{T} \cdot \frac{A}{k \cdot \frac{2\pi}{T}} \cdot \left(-\int_{-\frac{T}{4}}^0 \sin(z) \cdot dz + \int_0^{\frac{T}{4}} \sin(z) \cdot dz \right) \\ &= \frac{A}{k \cdot \pi} \cdot \left(\cos(z)|_{-\frac{T}{4}}^0 - \cos(z)|_0^{\frac{T}{4}} - \cos(z)|_0^{\frac{T}{4}} \right) \\ &= \frac{A}{k \cdot \pi} \cdot \left(\left(\cos\left(k \cdot \frac{2\pi}{T} \cdot t\right)\right)_{-\frac{T}{4}}^0 - \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \right) \\ &= \frac{A}{k \cdot \pi} \cdot \left(\left(\cos(0) - \cos\left(-k \cdot \frac{\pi}{2}\right)\right) - \left(\cos\left(k \cdot \frac{\pi}{2}\right) - \cos(0)\right)\right) \\ &= \frac{A}{k \cdot \pi} \cdot \left(\cos(0) - \cos\left(-k \cdot \frac{\pi}{2}\right) - \cos\left(k \cdot \frac{\pi}{2}\right) + \cos(0)\right) \\ &= \frac{A}{k \cdot \pi} \cdot \left(1 - \cos\left(k \cdot \frac{\pi}{2}\right) - \cos\left(k \cdot \frac{\pi}{2}\right) + 1\right) \\ &= \frac{A}{k \cdot \pi} \cdot \left(1 - \cos\left(k \cdot \frac{\pi}{2}\right)\right) \\ &= \frac{2 \cdot A}{k \cdot \pi} \cdot \left(1 - \cos\left(k \cdot \frac{\pi}{2}\right)\right) \\ &= \frac{2 \cdot A}{k \cdot \pi} \cdot \left(1 - \cos\left(k \cdot \frac{\pi}{2}\right)\right) \\ &= \frac{2 \cdot A}{k \cdot \pi} \cdot \left(1 - \cos\left(k \cdot \frac{\pi}{2}\right)\right) \\ &= \frac{2 \cdot A}{k \cdot \pi} \cdot \left(1 - \cos\left(k \cdot \frac{\pi}{2}\right)\right) \\ &= \frac{2 \cdot A}{k \cdot \pi} \cdot \left(1 - \cos\left(k \cdot \frac{\pi}{2}\right)\right) \\ &= \frac{2 \cdot A}{k \cdot \pi} \cdot \left(1 - \cos\left(k \cdot \frac{\pi}{2}\right)\right) \\ &= \frac{2 \cdot A}{k \cdot \pi} \cdot \left(1 - \cos\left(k \cdot \frac{\pi}{2}\right)\right) \\ &= \frac{2 \cdot A}{k \cdot \pi} \cdot \left(1 - \cos\left(k \cdot \frac{\pi}{2}\right)\right) \end{aligned}$$

Wartość współczynnika b_k wynosi $\frac{2\cdot A}{k\cdot \pi}\cdot \left(1-\cos\left(k\cdot\frac{\pi}{2}\right)\right)$

Ostatecznie współczynniki trygonometrycznego szeregu fouriera dla funkcji przedstawionej na rysunku przyjmują wartości

$$a_0 = 0$$

$$a_k = 0$$

$$b_k = \frac{2 \cdot A}{k \cdot \pi} \cdot \left(1 - \cos\left(k \cdot \frac{\pi}{2}\right)\right)$$
(32)

Możemy wyznaczyć kilka wartości współczynników \boldsymbol{a}_k i \boldsymbol{b}_k

k	1	2	3	4	5	6
a_k	0	0	0	0	0	0
b_k	$\frac{2\cdot A}{\pi}$	$\frac{2\cdot A}{\pi}$	$\frac{2 \cdot A}{3 \cdot \pi}$	0	$\frac{2 \cdot A}{5 \cdot \pi}$	$\frac{2 \cdot A}{3 \cdot \pi}$

Podstawiając to wzoru aproksymacyjnego funkcje f(t) możemy wyrazić jako

$$f(t) = a_0 + \sum_{k=1}^{\infty} \left[a_k \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) + b_k \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \right]$$
 (33)

W przypadku sumowania do $k_{\max}=1$ otrzymujemy

W przypadku sumowania do $k_{\max}=2$ otrzymujemy

W przypadku sumowania do $k_{max}=3$ otrzymujemy

W przypadku sumowania do $k_{max}=5$ otrzymujemy

W przypadku sumowania do $k_{\max}=6$ otrzymujemy

W przypadku sumowania do $k_{\max}=11$ otrzymujemy

W przypadku sumowania do $k_{\max}=21$ otrzymujemy

W granicy sumowania do $k_{max} = \infty$ otrzymujemy oryginalny sygnał.

Zadanie 12. Wyznacz współczynniki trygonometrzycznego szeregu fouriera dla okresowego sygnału f(t) przedstawionego na rysunku

W pierwszej kolejności należy ustalić wzór funkcji przedstawionej na rysunku. Jest to funkcja odcinkowa. W pierwszym okresie możemy ja opisać ogólnym równaniem prostej:

$$f(t) = a \cdot t + b \tag{34}$$

W pierwszym okresie wykres funkcji jest prostą przechodzącą przez dwa punkty: (0,0) oraz (T,A). Możemy wiec napisać układ równań rozwiązać go i znaleźć nie znane parametry a i b.

$$\begin{cases} 0 = a \cdot 0 + b \\ A = a \cdot T + b \end{cases}$$

$$\begin{cases} 0 = b \\ A = a \cdot T + b \end{cases}$$

$$\begin{cases} 0 = b \\ A = a \cdot T + 0 \end{cases}$$

$$\begin{cases} 0 = b \\ A = a \cdot T + a \end{cases}$$

A więc funkcję przedstawioną na rysunku, w pierwszy okresie można opisać wzorem

$$f(t) = \frac{A}{T} \cdot t$$

I ogólniej całą funkcję można wyrazić następującym wzorem

$$f(t) = \frac{A}{T} \cdot (t - k \cdot T) \wedge k \in C$$

Współczynnik a_0 wyznaczamy ze wzoru

$$a_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{35}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$a_0 = \frac{1}{T} \int_T f(t) \cdot dt$$

$$= \frac{1}{T} \int_0^T \frac{A}{T} \cdot t \cdot dt$$

$$= \frac{A}{T^2} \int_0^T t \cdot dt$$

$$= \frac{A}{T^2} \cdot \frac{1}{2} \cdot t^2 \Big|_0^T$$

$$= \frac{A}{T^2} \cdot \frac{1}{2} \cdot \left(T^2 - 0^2\right)$$

$$= \frac{A}{T^2} \cdot \frac{1}{2} \cdot T^2$$

$$= \frac{A}{2}$$

Wartość współczynnika a_0 wynosi $\frac{A}{2}$

Współczynnik a_k wyznaczamy ze wzoru

$$a_k = \frac{2}{T} \int_T f(t) \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \tag{36}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$\begin{split} a_k &= \frac{2}{T} \int_T f(t) \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \\ &= \frac{2}{T} \int_0^T \frac{A}{T} \cdot t \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \\ &= \frac{2 \cdot A}{T^2} \int_0^T t \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \\ &= \left\{ \begin{array}{ll} u &= t & dv &= \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \\ du &= dt & v &= \frac{T}{k \cdot 2\pi} \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \right\} \\ &= \frac{2 \cdot A}{T^2} \cdot \left(t \cdot \frac{T}{k \cdot 2\pi} \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right)\right) \Big|_0^T - \int_0^T \frac{T}{k \cdot 2\pi} \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \\ &= \frac{2 \cdot A}{T^2} \cdot \left(\left(T \cdot \frac{T}{k \cdot 2\pi} \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot T\right) - 0 \cdot \frac{T}{k \cdot 2\pi} \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot 0\right)\right) + \frac{T^2}{(k \cdot 2\pi)^2} \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \Big|_0^T \\ &= \frac{2 \cdot A}{T^2} \cdot \left(\frac{T^2}{k \cdot 2\pi} \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot T\right) + \frac{T^2}{(k \cdot 2\pi)^2} \cdot \left(\cos\left(k \cdot \frac{2\pi}{T} \cdot T\right) - \cos\left(k \cdot \frac{2\pi}{T} \cdot 0\right)\right)\right) \\ &= 2 \cdot A \cdot \left(\frac{1}{k \cdot 2\pi} \cdot \sin\left(k \cdot 2\pi\right) + \frac{1}{(k \cdot 2\pi)^2} \cdot \left(\cos\left(k \cdot 2\pi\right) - \cos\left(0\right)\right)\right) \\ &= 2 \cdot A \cdot \left(\frac{1}{k \cdot 2\pi} \cdot 0 + \frac{1}{(k \cdot 2\pi)^2} \cdot (1 - 1)\right) \\ &= 2 \cdot A \cdot \left(0 + \frac{1}{(k \cdot 2\pi)^2} \cdot 0\right) \\ &= 2 \cdot A \cdot 0 \\ &= 0 \end{split}$$

Wartość współczynnika a_k wynosi 0

Współczynnik b_k wyznaczamy ze wzoru

$$b_k = \frac{2}{T} \int_T f(t) \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \tag{38}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$\begin{split} b_k &= \frac{2}{T} \int_T f(t) \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \\ &= \frac{2}{T} \int_0^T \frac{A}{T} \cdot t \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \\ &= \frac{2 \cdot A}{T^2} \int_0^T t \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \\ &= \begin{cases} u &= t \quad dv \quad \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \\ du &= dt \quad v \quad -\frac{T}{k \cdot 2\pi} \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \end{cases} \\ &= \frac{2 \cdot A}{T^2} \cdot \left(-t \cdot \frac{T}{k \cdot 2\pi} \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \right) \Big|_0^T + \int_0^T \frac{T}{k \cdot 2\pi} \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \frac{2 \cdot A}{T^2} \cdot \left(-\left(T \cdot \frac{T}{k \cdot 2\pi} \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot T\right) - 0 \cdot \frac{T}{k \cdot 2\pi} \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot 0\right) \right) + \frac{T^2}{(k \cdot 2\pi)^2} \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \Big|_0^T \right) \\ &= \frac{2 \cdot A}{T^2} \cdot \left(-\left(\frac{T^2}{k \cdot 2\pi} \cdot \cos\left(k \cdot 2\pi\right) \right) + \frac{T^2}{(k \cdot 2\pi)^2} \cdot \left(\sin\left(k \cdot \frac{2\pi}{T} \cdot T\right) - \sin\left(k \cdot \frac{2\pi}{T} \cdot 0\right) \right) \right) \\ &= 2 \cdot A \cdot \left(-\left(\frac{1}{k \cdot 2\pi} \cdot 1\right) + \frac{1}{(k \cdot 2\pi)^2} \cdot (\sin\left(k \cdot 2\pi\right) - \sin\left(0\right) \right) \right) \\ &= 2 \cdot A \cdot \left(-\frac{1}{k \cdot 2\pi} + \frac{1}{(k \cdot 2\pi)^2} \cdot (0 - 0) \right) \\ &= 2 \cdot A \cdot \left(-\frac{1}{k \cdot 2\pi} + \frac{1}{(k \cdot 2\pi)^2} \cdot 0 \right) \\ &= 2 \cdot A \cdot \left(-\frac{1}{k \cdot 2\pi} + \frac{1}{(k \cdot 2\pi)^2} \cdot 0 \right) \\ &= 2 \cdot A \cdot \left(-\frac{1}{k \cdot 2\pi} + \frac{1}{(k \cdot 2\pi)^2} \cdot 0 \right) \\ &= -\frac{2 \cdot A}{k \cdot 2\pi} \\ &= -\frac{A}{k \cdot 2\pi} \end{aligned}$$

Wartość współczynnika b_k wynosi $-\frac{A}{k \cdot \pi}$

Ostatecznie współczynniki trygonometrycznego szeregu fouriera dla funkcji przedstawionej na rysunku przyjmują wartości

$$a_0 = \frac{A}{2}$$

$$a_k = 0$$

$$b_k = -\frac{A}{k \cdot \pi}$$

$$(40)$$

Możemy wyznaczyć kilka wartości współczynników a_k i b_k

k	1	2	3	4	5	6
a_k	0	0	0	0	0	0
b_k	$-\frac{A}{\pi}$	$-\frac{A}{2\cdot\pi}$	$-\frac{A}{3\cdot\pi}$	$-\frac{A}{4\cdot\pi}$	$-\frac{A}{5\cdot\pi}$	$-\frac{A}{6\cdot\pi}$

Podstawiając to wzoru aproksymacyjnego funkcje f(t) możemy wyrazić jako

$$f(t) = a_0 + \sum_{k=1}^{\infty} \left[a_k \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) + b_k \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \right]$$
 (41)

W przypadku sumowania do $k_{\max}=1$ otrzymujemy

W przypadku sumowania do $k_{max}=2$ otrzymujemy

W przypadku sumowania do $k_{max}=3$ otrzymujemy

W przypadku sumowania do $k_{max}=7$ otrzymujemy

W przypadku sumowania do $k_{\max}=11$ otrzymujemy

W granicy sumowania do $k_{max}=\infty$ otrzymujemy oryginalny sygnał.

Zadanie 13. Wyznacz współczynniki trygonometrzycznego szeregu fouriera dla okresowego sygnału f(t) przedstawionego na rysunku

W pierwszej kolejności należy opisać sygnał za pomocą wzoru:

$$f(x) = \begin{cases} A \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) & t \in \left(0 + k \cdot T; \frac{T}{2} + k \cdot T\right) \\ 0 & t \in \left(\frac{T}{2} + k \cdot T; T + k \cdot T\right) \end{cases} \land k \in C$$

$$(42)$$

Współczynnik a_0 wyznaczamy ze wzoru

$$a_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{43}$$

$$a_{0} = \frac{1}{T} \int_{T} f(t) \cdot dt$$

$$= \frac{1}{T} \left(\int_{0}^{\frac{T}{2}} A \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + \frac{1}{T} \int_{\frac{T}{2}}^{T} 0 \cdot dt \right)$$

$$= \frac{A}{T} \left(\int_{0}^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + 0 \right)$$

$$= \frac{A}{T} \int_{0}^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt$$

$$= \begin{cases} z &= \frac{2\pi}{T} \cdot t \\ dz &= \frac{2\pi}{T} \cdot dt \\ dt &= \frac{dz}{\frac{2\pi}{T}} \end{cases}$$

$$= \frac{A}{T} \int_{0}^{\frac{T}{2}} \sin(z) \cdot \frac{dz}{\frac{2\pi}{T}}$$

$$= \frac{A}{T \cdot \frac{2\pi}{T}} \int_{0}^{\frac{T}{2}} \sin(z) \cdot dz$$

$$= \frac{A}{2\pi} \cdot \left(-\cos(z) |_{0}^{\frac{T}{2}} \right)$$

$$= -\frac{A}{2\pi} \cdot \left(\cos\left(\frac{2\pi}{T} \cdot t\right) |_{0}^{\frac{T}{2}} \right)$$

$$= -\frac{A}{2\pi} \cdot \left(\cos\left(\frac{2\pi}{T} \cdot t\right) - \cos\left(\frac{2\pi}{T} \cdot 0\right) \right)$$

$$= -\frac{A}{2\pi} \cdot (\cos(\pi) - \cos(0))$$

$$= -\frac{A}{2\pi} \cdot (-1 - 1)$$

$$= -\frac{A}{2\pi} \cdot (-2)$$

$$= \frac{A}{\pi}$$

Wartość współczynnika a_0 wynosi $\frac{A}{\pi}$

Współczynnik a_k wyznaczamy ze wzoru

$$a_k = \frac{2}{T} \int_T f(t) \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \tag{44}$$

$$\begin{split} a_k &= \frac{2}{T} \int_T f(t) \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \\ &= \frac{2}{T} \cdot \left(\int_0^{\frac{T}{2}} A \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \frac{2}{T} \cdot \left(A \cdot \int_0^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot dt \right) \\ &= \begin{cases} \cos\left(x\right) &= \frac{e^{j \cdot x} + e^{-j \cdot x}}{2j} \\ \sin\left(x\right) &= \frac{e^{j \cdot x} - e^{-j \cdot x}}{2j} \end{cases} \\ &= \frac{2}{T} \cdot \left(A \cdot \int_0^{\frac{T}{2}} \frac{e^{j \cdot \frac{2\pi}{T} \cdot t} - e^{-j \cdot \frac{2\pi}{T} \cdot t}}{2j} \cdot \frac{e^{j \cdot k \cdot \frac{2\pi}{T} \cdot t} + e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t}}{2} \cdot dt + 0 \right) \\ &= \frac{2}{T} \cdot \left(\frac{A}{2 \cdot 2j} \cdot \int_0^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot t} - e^{-j \cdot \frac{2\pi}{T} \cdot t} \right) \cdot \left(e^{j \cdot k \cdot \frac{2\pi}{T} \cdot t} + e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt \right) \\ &= \frac{2}{T} \cdot \frac{A}{2 \cdot 2j} \cdot \int_0^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{j \cdot k \cdot \frac{2\pi}{T} \cdot t} + e^{j \cdot k \cdot \frac{2\pi}{T} \cdot t} - e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt \\ &= \frac{A}{T \cdot 2j} \cdot \int_0^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot t + j \cdot k \cdot \frac{2\pi}{T} \cdot t} + e^{j \cdot \frac{2\pi}{T} \cdot t - j \cdot k \cdot \frac{2\pi}{T} \cdot t} - e^{-j \cdot \frac{2\pi}{T} \cdot t - j \cdot k \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt \\ &= \frac{A}{T \cdot 2j} \cdot \int_0^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot t \cdot (1 + k)} + e^{j \cdot \frac{2\pi}{T} \cdot t \cdot (1 - k)} - e^{-j \cdot \frac{2\pi}{T} \cdot t \cdot (1 - k)} \right) \cdot dt \\ &= \frac{A}{T} \cdot \int_0^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot t \cdot (1 + k)} - e^{-j \cdot \frac{2\pi}{T} \cdot t \cdot (1 + k)} + e^{j \cdot \frac{2\pi}{T} \cdot t \cdot (1 - k)} \right) \cdot dt \\ &= \frac{A}{T} \cdot \int_0^{\frac{T}{2}} \left(\sin\left(\frac{2\pi}{T} \cdot t \cdot (1 + k)\right) + \sin\left(\frac{2\pi}{T} \cdot t \cdot (1 - k)\right) \right) \cdot dt \\ &= \frac{A}{T} \cdot \left(\int_0^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t \cdot (1 + k)\right) \cdot dt + \int_0^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t \cdot (1 - k)\right) \cdot dt \right) \\ &= \frac{A}{T} \cdot \left(\int_0^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t \cdot (1 + k)\right) \cdot dt + \int_0^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t \cdot (1 - k)\right) \cdot dt \right) \end{split}$$

$$\begin{cases} z_1 &= \frac{\pi}{T} \cdot t \cdot (1+k) & z_2 &= \frac{2\pi}{T} \cdot t \cdot (1-k) \\ dz_1 &= \frac{2\pi}{T} \cdot (1+k) \cdot dt & z_2 &= \frac{2\pi}{T} \cdot (1-k) \cdot dt \\ dt &= \frac{dz_1}{2\pi} \cdot (1+k) \cdot dt &= \frac{dz_2}{2\pi} \cdot (1-k) \cdot k \neq 1 \\ dt &= \frac{dz_1}{2\pi} \cdot (1+k) \cdot k \neq -1 \quad dt &= \frac{dz_2}{2\pi} \cdot (1-k) \cdot k \neq 1 \\ \end{cases}$$

$$= \frac{A}{T} \cdot \left(\frac{1}{2\pi} \cdot \left(\frac{1}{2\pi} \cdot (1+k) \cdot \int_0^{T} \sin(z_1) \cdot \frac{dz_1}{2\pi} \cdot (1-k) \cdot \left(-\cos(z_2) \right) \frac{z}{T} \cdot (1-k) \right) \\ = \frac{A}{T} \cdot \left(\frac{1}{2\pi} \cdot (1+k) \cdot \left(-\cos(z_1) \right)_0^2 \right) + \frac{1}{2\pi} \cdot (1-k) \cdot \left(-\cos(z_2) \right)_0^{T} \right) \\ = \frac{A}{T} \cdot \left(\frac{1}{2\pi} \cdot (1+k) \cdot \left(\cos\left(\frac{2\pi}{T} \cdot t \cdot (1+k)\right) \right) \right) + \frac{1}{2\pi} \cdot (1-k) \cdot \left(\cos\left(\frac{2\pi}{T} \cdot t \cdot (1-k)\right) \right) \\ = \frac{A}{T} \cdot \left(\frac{1}{2\pi} \cdot (1+k) \cdot \left(\cos\left(\frac{2\pi}{T} \cdot \frac{T}{T} \cdot (1+k)\right) - \cos\left(\frac{2\pi}{T} \cdot 0 \cdot (1+k)\right) \right) \\ = \frac{A}{T} \cdot \left(\frac{-1}{2\pi} \cdot (1+k) \cdot \left(\cos\left(\frac{2\pi}{T} \cdot \frac{T}{T} \cdot (1+k)\right) - \cos\left(\frac{2\pi}{T} \cdot 0 \cdot (1+k)\right) \right) \\ = \frac{A}{T} \cdot \left(\frac{-1}{2\pi} \cdot (1+k) \cdot \left(\cos\left(\frac{2\pi}{T} \cdot \frac{T}{T} \cdot (1+k)\right) - \cos\left(\frac{2\pi}{T} \cdot 0 \cdot (1+k)\right) \right) \right) \\ = \frac{A}{T} \cdot \left(\frac{-1}{2\pi} \cdot (1+k) \cdot \left(\cos\left(\pi \cdot (1+k)\right) - \cos(0) \right) \\ = \frac{A}{T} \cdot \left(\frac{-1}{2\pi} \cdot (1+k) \cdot \left(\cos\left(\pi \cdot (1+k)\right) - \cos(0) \right) \right) \\ = \frac{A}{2\pi} \cdot \left(\frac{1}{1+k} \cdot (1 - \cos\left(\pi \cdot (1+k)\right) - \cos\left(\pi \cdot (1+k)\right) \right) \\ = \frac{A}{2\pi} \cdot \left(\frac{1-k}{1+k} \cdot (1 - \cos\left(\pi \cdot (1+k)\right) + \frac{1}{1-k} \cdot (1 - \cos\left(\pi \cdot (1-k)\right) \right) \right) \\ = \frac{A}{2\pi} \cdot \left(\frac{1-c}{1+k} \cdot (1 - \cos\left(\pi \cdot (1+k)\right) + \frac{1}{1-k} \cdot (1 - \cos\left(\pi \cdot (1-k)\right) \right) \\ = \frac{A}{2\pi} \cdot \left(\frac{1-c}{1+k} \cdot (1 - \cos\left(\pi \cdot (1+k)\right) + \frac{1}{1-k} \cdot (1 - \cos\left(\pi \cdot (1-k)\right) \right) \right) \\ = \frac{A}{2\pi} \cdot \left(\frac{1-c}{1+k} \cdot (1 - \cos\left(\pi \cdot (1+k)\right) + \frac{1}{1-k} \cdot (1 - \cos\left(\pi \cdot (1-k)\right) \right) \\ = \frac{A}{2\pi} \cdot \left(\frac{1-c\cos\left(\pi \cdot (1+k)\right) - k + k \cdot \cos\left(\pi \cdot (1+k)\right) + 1 - \cos\left(\pi \cdot (1-k)\right) + k - k \cdot \cos\left(\pi \cdot (1-k)\right) }{(1+k) \cdot (1-k)} \right) \\ = \frac{A}{2\pi} \cdot \left(\frac{1-\cos\left(\pi \cdot (1+k)\right) - k + k \cdot \cos\left(\pi \cdot (1+k)\right) + 1 - \cos\left(\pi \cdot (1-k)\right) + k - k \cdot \cos\left(\pi \cdot (1-k)\right) }{(1+k) \cdot (1-k)} \right) \\ = \frac{A}{2\pi} \cdot \frac{2-\cos\left(\pi \cdot (1+k)\right) - \cos\left(\pi \cdot (1+k)\right) - \cos\left(\pi \cdot (1+k)\right) - \cos\left(\pi \cdot (1-k)\right) - \cos\left(\pi \cdot (1-k)\right) }{1-k^2} \\ = \frac{A}{2\pi} \cdot \frac{2+2\cos\left(\kappa \cdot \pi\right)}{1-k^2} \\ = \frac{A}{2\pi} \cdot \frac{1+\cos\left(\kappa \cdot \pi\right)}{1-k^2} \\ = \frac{A}{2\pi} \cdot \frac{1+\cos\left(\kappa \cdot \pi\right)}{1-k^2}$$

Wartość współczynnika a_k wynosi $\frac{A}{\pi}\cdot\frac{1+cos(k\cdot\pi)}{1-k^2}$ dla $k\neq 1$ a_k dla k=1 musimy wyznaczyć raz jeszcze tak wiec wyznaczmy wprost a_1

$$\begin{split} a_1 &= \frac{2}{T} \int_T f(t) \cdot \cos\left(1 \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \\ &= \frac{2}{T} \cdot \left(\int_0^{\frac{T}{2}} A \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot \cos\left(1 \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot \cos\left(1 \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt\right) \\ &= \frac{2}{T} \cdot \left(A \cdot \int_0^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot dt\right) \\ &= \begin{cases} \cos(x) &= \frac{e^{x^2} + e^{-y^2}}{2} \\ \sin(x) &= \frac{e^{x^2} + e^{-y^2}}{2} \end{cases} \end{cases} \\ &= \frac{2}{T} \cdot \left(A \cdot \int_0^{\frac{T}{2}} e^{y^2 \frac{2\pi}{T} \cdot t} - e^{-y^2 \frac{2\pi}{T} \cdot t} \cdot e^{y^2 \frac{2\pi}{T} \cdot t} + e^{-y^2 \frac{2\pi}{T} \cdot t} \right) \cdot dt + 0 \\ &= \frac{2}{T} \cdot \left(A \cdot \int_0^{\frac{T}{2}} \left(e^{y^2 \frac{2\pi}{T} \cdot t} - e^{-y^2 \frac{2\pi}{T} \cdot t}\right) \cdot \left(e^{y^2 \frac{2\pi}{T} \cdot t} + e^{-y^2 \frac{2\pi}{T} \cdot t}\right) \cdot dt \right) \\ &= \frac{2}{T} \cdot \left(A \cdot \int_0^{\frac{T}{2}} \left(e^{y^2 \frac{2\pi}{T} \cdot t} - e^{-y^2 \frac{2\pi}{T} \cdot t}\right) \cdot \left(e^{y^2 \frac{2\pi}{T} \cdot t} + e^{-y^2 \frac{2\pi}{T} \cdot t}\right) \cdot dt \right) \\ &= \frac{2}{T} \cdot \left(A \cdot \int_0^{\frac{T}{2}} \left(e^{y^2 \frac{2\pi}{T} \cdot t} - e^{-y^2 \frac{2\pi}{T} \cdot t}\right) \cdot \left(e^{y^2 \frac{2\pi}{T} \cdot t} - e^{-y^2 \frac{2\pi}{T} \cdot t}\right) \cdot dt \right) \\ &= \frac{2}{T} \cdot \left(A \cdot \int_0^{\frac{T}{2}} \left(e^{y^2 \frac{2\pi}{T} \cdot t} + e^{y^2 \frac{2\pi}{T} \cdot t} - e^{-y^2 \frac{2\pi}{T} \cdot t} \cdot e^{-y^2 \frac{2\pi}{T} \cdot t}\right) \cdot dt \right) \\ &= \frac{A}{T \cdot 2y} \cdot \int_0^{\frac{T}{2}} \left(e^{y^2 \frac{2\pi}{T} \cdot t} + e^{y^2 \frac{2\pi}{T} \cdot t} - e^{-y^2 \frac{2\pi}{T} \cdot t}\right) \cdot dt \\ &= \frac{A}{T \cdot 2y} \cdot \int_0^{\frac{T}{2}} \left(e^{y^2 \frac{2\pi}{T} \cdot t} + e^{y^2 \frac{2\pi}{T} \cdot t} - e^{-y^2 \frac{2\pi}{T} \cdot t} - e^{-y^2$$

$$= -\frac{A}{4\pi} \cdot \left(\cos\left(\frac{4\pi}{T} \cdot \frac{T}{2}\right) - \cos\left(\frac{4\pi}{T} \cdot 0\right)\right)$$

$$= -\frac{A}{4\pi} \cdot \left(\cos\left(2\pi\right) - \cos\left(0\right)\right)$$

$$= -\frac{A}{4\pi} \cdot (1 - 1)$$

$$= -\frac{A}{4\pi} \cdot 0$$

$$= 0$$

A wiec wartość współczynnika a_1 wynosi 0 Współczynnik b_k wyznaczamy ze wzoru

$$b_k = \frac{2}{T} \int_T f(t) \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \tag{45}$$

$$\begin{split} & = \begin{cases} z_1 &= \frac{2\pi}{T} \cdot t \cdot (1+k) & z_2 &= \frac{2\pi}{T} \cdot t \cdot (1-k) \\ dz_1 &= \frac{2\pi}{T} \cdot (1+k) \cdot dt & z_2 &= \frac{2\pi}{T} \cdot (1-k) \cdot dt \\ dt &= \frac{dz_1}{dz_1} \cdot (1+k) \cdot k \neq -1 & dt &= \frac{dz_2}{\frac{T}{T} \cdot (1-k)} \cdot k \neq 1 \\ \\ & = -\frac{A}{T} \cdot \left(\int_0^{\frac{T}{2}} \cos(z_1) \cdot \frac{dz_1}{\frac{T}{T} \cdot (1+k)} - \int_0^{\frac{T}{2}} \cos(z_2) \cdot \frac{dz_2}{\frac{2\pi}{T} \cdot (1-k)} \right) \\ & = -\frac{A}{T} \cdot \left(\frac{1}{2\frac{T}{T} \cdot (1+k)} \cdot \int_0^{\frac{T}{2}} \cos(z_1) \cdot dz_1 - \frac{1}{\frac{2\pi}{T} \cdot (1-k)} \cdot \int_0^{\frac{T}{2}} \cos(z_2) \cdot dz_2 \right) \\ & = -\frac{A}{T} \cdot \left(\frac{1}{2\frac{T}{T} \cdot (1+k)} \cdot \left(\sin(z_1) \Big|_0^{\frac{T}{2}} \right) - \frac{1}{2\frac{T}{T} \cdot (1-k)} \cdot \left(\sin(z_2) \Big|_0^{\frac{T}{2}} \right) \right) \\ & = -\frac{A}{T} \cdot \left(\frac{1}{2\frac{T}{T} \cdot (1+k)} \cdot \left(\sin\left(\frac{2\pi}{T} \cdot t \cdot (1+k)\right) \Big|_0^{\frac{T}{2}} \right) - \frac{1}{2\frac{T}{T} \cdot (1-k)} \cdot \left(\sin\left(\frac{2\pi}{T} \cdot t \cdot (1-k)\right) \Big|_0^{\frac{T}{2}} \right) \right) \\ & = -\frac{A}{T} \cdot \left(\frac{1}{2\frac{T}{T} \cdot (1+k)} \cdot \left(\sin\left(\frac{2\pi}{T} \cdot \frac{T}{2} \cdot (1+k)\right) - \sin\left(\frac{2\pi}{T} \cdot 0 \cdot (1+k)\right) \right) \right) \\ & - \frac{1}{2\pi} \cdot \left(\frac{1}{2T} \cdot \left(\frac{1}{T} \cdot \frac{T}{2} \cdot (1-k) \right) - \sin\left(\frac{2\pi}{T} \cdot 0 \cdot (1-k)\right) \right) \right) \\ & = -\frac{A}{T} \cdot \left(\frac{1}{2\frac{T}{T} \cdot (1+k)} \cdot \left(\sin(\pi \cdot (1+k)) - \sin(0) \right) \right) \\ & - \frac{1}{2\frac{T}{T} \cdot (1-k)} \cdot \left(\sin(\pi \cdot (1-k)) - \sin(0) \right) \right) \\ & = -\frac{A}{T} \cdot \left(\frac{1}{2\frac{T}{T} \cdot (1+k)} \cdot (0-0) \right) \\ & = -\frac{A}{T} \cdot \left(\frac{1}{2\frac{T}{T} \cdot (1+k)} \cdot 0 - \frac{1}{2\frac{T}{T} \cdot (1-k)} \cdot 0 \right) \\ & = -\frac{A}{T} \cdot \left(\frac{1}{2\frac{T}{T} \cdot (1+k)} \cdot 0 - \frac{1}{2\frac{T}{T} \cdot (1-k)} \cdot 0 \right) \\ & = -\frac{A}{T} \cdot 0 - 0 \right) \\ & = -\frac{A}{T} \cdot 0 \\ & = 0 \end{aligned}$$

Wartość współczynnika b_k wynosi 0 dla $k \neq 1$ b_k dla k = 1 musimy wyznaczyć raz jeszcze tak wiec wyznaczmy wprost b_1

$$b_{1} = \frac{2}{T} \int_{T} f(t) \cdot \sin\left(1 \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt$$

$$= \frac{2}{T} \cdot \left(\int_{0}^{\frac{T}{2}} A \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot \sin\left(1 \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot \sin\left(1 \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt\right)$$

$$= \frac{2}{T} \cdot \left(A \cdot \int_{0}^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot dt\right)$$

$$= \left\{\sin\left(x\right) = \frac{e^{j \cdot x} - e^{-j \cdot x}}{2j}\right\}$$

$$\begin{split} &=\frac{2}{T}\cdot\left(A\cdot\int_{0}^{\frac{T}{2}}\frac{e^{r\frac{2\pi}{T}\cdot t}-e^{-r\frac{2\pi}{T}\cdot t}}{2J}\cdot e^{r\frac{2\pi}{T}\cdot t}-e^{-r\frac{2\pi}{T}\cdot t}\right)\cdot dt +0 \\ &=\frac{2}{T}\cdot\left(\frac{A}{2J\cdot 2J}\cdot\int_{0}^{\frac{T}{2}}\left(e^{r\frac{2\pi}{T}\cdot t}-e^{-r\frac{2\pi}{T}\cdot t}\right)\cdot \left(e^{r\frac{2\pi}{T}\cdot t}-e^{-r\frac{2\pi}{T}\cdot t}\right)\cdot dt \right) \\ &=\frac{T}{T}\cdot\frac{A}{2J\cdot 2J}\cdot\int_{0}^{\frac{T}{2}}\left(e^{r\frac{2\pi}{T}\cdot t}\cdot e^{j\frac{2\pi}{T}\cdot t}-e^{j\frac{2\pi}{T}\cdot t}\cdot e^{-j\frac{2\pi}{T}\cdot t}-e^{-r\frac{2\pi}{T}\cdot t}\cdot e^{-r\frac{2\pi}{T}\cdot t}-e^{-r\frac{2\pi}{T}\cdot t}\cdot e^{j\frac{2\pi}{T}\cdot t}+e^{-r\frac{2\pi}{T}\cdot t}+e^{-r\frac{2\pi}{T}\cdot t}\cdot e^{-r\frac{2\pi}{T}\cdot t}\right)\cdot dt \\ &=\frac{A}{T\cdot J\cdot 2J}\cdot\int_{0}^{\frac{T}{2}}\left(e^{r\frac{2\pi}{T}\cdot t}\cdot e^{j\frac{2\pi}{T}\cdot t}-e^{r\frac{2\pi}{T}\cdot t}-e^{j\frac{2\pi}{T}\cdot t}-e^{-r\frac{2\pi}{T}\cdot t}-e^{-r\frac$$

A wiec wartość współczynnika b_1 wynosi $\frac{A}{2}$

Ostatecznie współczynniki trygonometrycznego szeregu fouriera dla funkcji przedstawionej na rysunku przyjmują wartości

$$a_{0} = \frac{A}{\pi}$$

$$a_{1} = 0$$

$$a_{k} = \frac{A}{\pi} \cdot \frac{1 + \cos(k \cdot \pi)}{1 - k^{2}}$$

$$b_{1} = \frac{A}{2}$$

$$b_{k} = 0$$

$$(46)$$

Możemy wyznaczyć kilka wartości współczynników \boldsymbol{a}_k i \boldsymbol{b}_k

k	1	2	3	4	5	6
a_k	0	$-\frac{2}{3}\frac{A}{\pi}$	0	$-\frac{2}{15}\frac{A}{\pi}$	0	$-\frac{2}{35}\frac{A}{\pi}$
b_k	$\frac{A}{2}$	0	0	0	0	0

Podstawiając to wzoru aproksymacyjnego funkcje f(t) możemy wyrazić jako

$$f(t) = a_0 + \sum_{k=1}^{\infty} \left[a_k \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) + b_k \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \right]$$
(47)

W przypadku sumowania do $k_{max} = 1$ otrzymujemy

W przypadku sumowania do $k_{max} = 2$ otrzymujemy

W przypadku sumowania do $k_{max} = 4$ otrzymujemy

W przypadku sumowania do $k_{\max}=6$ otrzymujemy

W przypadku sumowania do $k_{\max}=12$ otrzymujemy

W granicy sumowania do $k_{max}=\infty$ otrzymujemy oryginalny sygnał.

Zadanie 14. Wyznacz współczynniki zespolonego szeregu fouriera dla okresowego sygnału f(t) przedstawionego na rysunku

W pierwszej kolejności należy opisać sygnał za pomocą wzoru.

$$f(x) = \begin{cases} A & t \in \left(0 + k \cdot T; \frac{T}{2} + k \cdot T\right) \\ 0 & t \in \left(\frac{T}{2} + k \cdot T; T + k \cdot T\right) \end{cases} \land k \in C$$
 (48)

Współczynnik F_0 wyznaczamy ze wzoru

$$F_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{49}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$F_{0} = \frac{1}{T} \int_{T} f(t) \cdot dt =$$

$$= \frac{1}{T} \left(\int_{0}^{\frac{T}{2}} A \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot dt \right) =$$

$$= \frac{1}{T} \left(A \cdot \int_{0}^{\frac{T}{2}} dt + 0 \right) =$$

$$= \frac{1}{T} \left(A \cdot t \Big|_{0}^{\frac{T}{2}} \right) =$$

$$= \frac{A}{T} \cdot t \Big|_{0}^{\frac{T}{2}} =$$

$$= \frac{A}{T} \cdot \left(\frac{T}{2} - 0 \right) =$$

$$= \frac{A}{T} \cdot \left(\frac{T}{2} \right) =$$

Wartość współczynnika F_0 wynosi $\frac{A}{2}$

Współczynnik F_k wyznaczamy ze wzoru

$$F_k = \frac{1}{T} \int_T f(t) \cdot e^{k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \tag{51}$$

$$F_{k} = \frac{1}{T} \int_{T} f(t) \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt$$

$$= \frac{1}{T} \int_{0}^{\frac{T}{2}} A \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt$$

$$= \frac{A}{T} \int_{0}^{\frac{T}{2}} e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt$$

$$= \frac{A}{T} \int_{0}^{\frac{T}{2}} e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt$$

$$= \begin{cases} z = -j \cdot k \cdot \frac{2\pi}{T} \cdot t \\ dz = -j \cdot k \cdot \frac{2\pi}{T} \cdot dt \\ dt = \frac{dz}{-j \cdot k \cdot \frac{2\pi}{T}} \end{cases}$$

$$= \frac{A}{T} \int_{0}^{\frac{T}{2}} e^{z} \cdot \frac{dz}{-j \cdot k \cdot \frac{2\pi}{T}}$$

$$= -\frac{A}{T \cdot j \cdot k \cdot \frac{2\pi}{T}} \int_{0}^{\frac{T}{2}} e^{z} \cdot dz$$

$$= -\frac{A}{j \cdot k \cdot 2\pi} e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \Big|_{0}^{\frac{T}{2}}$$

$$= -\frac{A}{j \cdot k \cdot 2\pi} \left(e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot \frac{T}{2}} - e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot 0} \right)$$

$$= -\frac{A}{j \cdot k \cdot 2\pi} \left(e^{-j \cdot k \cdot \pi} - e^{0} \right)$$

$$= -\frac{A}{j \cdot k \cdot 2\pi} \left(e^{-j \cdot k \cdot \pi} - 1 \right)$$

$$= j \cdot \frac{A}{k \cdot 2\pi} \cdot \left(e^{-j \cdot k \cdot \pi} - 1 \right)$$

Wartość współczynnika F_k wynosi $j \cdot \frac{A}{k \cdot 2\pi} \cdot \left(e^{-j \cdot k \cdot \pi} - 1\right)$

Współczynniki zespolonego szeregu fouriera dla funkcji przedstawionej na rysunku przyjmują wartości

$$F_0 = \frac{A}{2}$$

$$F_k = \jmath \cdot \frac{A}{k \cdot 2\pi} \cdot \left(e^{-\jmath \cdot k \cdot \pi} - 1 \right)$$
(53)

Możemy wyznaczyć kilka wartości współczynników F_k

k	-5	-4	-3	-2	-1	0	1	2	3	4	5
F_k	$j \cdot \frac{A}{5\pi}$	0	$j \cdot \frac{A}{3\pi}$	0	$j \cdot \frac{A}{\pi}$	0	$-\jmath\cdot\frac{A}{\pi}$	0	$-\jmath \cdot \frac{A}{3\pi}$	0	$-\jmath\cdot rac{A}{5\pi}$
$ F_k $	$\frac{A}{5\pi}$	0	$\frac{A}{3\pi}$	0	$\frac{A}{\pi}$	0	$\frac{A}{\pi}$	0	$\frac{A}{3\pi}$	0	$\frac{A}{5\pi}$
$Arg\{F_k\}$	π	0	π	0	π	0	$-\pi$	0	$-\pi$	0	$-\pi$

Podstawiając to wzoru aproksymacyjnego funkcje f(t) możemy wyrazić jako

$$f(t) = \sum_{k=-\infty}^{\infty} F_k \cdot e^{j \cdot k \cdot \frac{2\pi}{T} \cdot t}$$
 (54)

W przypadku sumowania od $k_{\min} = -1$ do $k_{\max} = 1$ otrzymujemy

W przypadku sumowania od $k_{\min}=-3$ do $k_{\max}=3$ otrzymujemy

W przypadku sumowania od $k_{\min} = -5$ do $k_{\max} = 5$ otrzymujemy

W przypadku sumowania od $k_{\min} = -11$ do $k_{\max} = 11$ otrzymujemy

W przypadku sumowania od $k_{min}=-21$ do $k_{max}=21$ otrzymujemy

W granicy sumowania od $k_{min}=-\infty$ do $k_{max}=\infty$ otrzymujemy oryginalny sygnał.

Zadanie 15. Wyznacz współczynniki zespolonego szeregu fouriera dla okresowego sygnału f(t) przedstawionego na rysunku

W pierwszej kolejności należy opisać sygnał za pomocą wzoru.

$$f(x) = \begin{cases} -A & t \in \left(-\frac{T}{4} + k \cdot T; 0 + k \cdot T\right) \\ A & t \in \left(0 + k \cdot T; \frac{T}{4} + k \cdot T\right) & \land k \in C \\ 0 & t \in \left(\frac{T}{4} + k \cdot T; \frac{3 \cdot T}{4} + k \cdot T\right) \end{cases}$$
(55)

Współczynnik F_0 wyznaczamy ze wzoru

$$F_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{56}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$F_{0} = \frac{1}{T} \int_{T} f(t) \cdot dt =$$

$$= \frac{1}{T} \left(\int_{-\frac{T}{4}}^{0} -A \cdot dt + \int_{0}^{\frac{T}{4}} A \cdot dt + \int_{\frac{T}{4}}^{\frac{3 \cdot T}{4}} 0 \cdot dt \right) =$$

$$= \frac{1}{T} \left(\int_{-\frac{T}{4}}^{0} -A \cdot dt + \int_{0}^{\frac{T}{4}} A \cdot dt + 0 \right) =$$

$$= \frac{1}{T} \left(-A \cdot \int_{-\frac{T}{4}}^{0} dt + A \cdot \int_{0}^{\frac{T}{4}} dt + 0 \right) =$$

$$= \frac{1}{T} \left(-A \cdot t \Big|_{-\frac{T}{4}}^{0} + A \cdot t \Big|_{0}^{\frac{T}{4}} \right) =$$

$$= \frac{1}{T} \left(-A \cdot \left(0 - \left(-\frac{T}{4} \right) \right) + A \cdot \left(\frac{T}{4} - 0 \right) \right) =$$

$$= \frac{1}{T} \left(-A \cdot \frac{T}{4} + A \cdot \frac{T}{4} \right) =$$

$$= \frac{1}{T} (0) =$$

Wartość współczynnika F_0 wynosi 0

Współczynnik F_k wyznaczamy ze wzoru

$$F_k = \frac{1}{T} \int_T f(t) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt$$
 (58)

$$\begin{split} F_k &= \frac{1}{T} \int_T f(t) \cdot e^{-jk \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{1}{T} \left(\int_{-\frac{T}{4}}^0 - A \cdot e^{-jk \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_0^{\frac{T}{4}} A \cdot e^{-jk \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{4}}^{\frac{3\cdot T}{4}} 0 \cdot e^{-jk \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{1}{T} \left(-A \cdot \int_{-\frac{T}{4}}^0 e^{-jk \cdot \frac{2\pi}{T} \cdot t} \cdot dt + A \cdot \int_0^{\frac{T}{4}} e^{-jk \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{4}}^{\frac{3\cdot T}{4}} 0 \cdot dt \right) \\ &= \begin{cases} z &= -j \cdot k \cdot \frac{2\pi}{T} \cdot t \\ dz &= -j \cdot k \cdot \frac{2\pi}{T} \cdot dt \\ dt &= \frac{dt}{-jk \cdot \frac{2\pi}{T}} \end{cases} \\ &= \frac{1}{T} \left(-A \cdot \int_{-\frac{T}{4}}^0 e^z \cdot \frac{dt}{-j \cdot k \cdot \frac{2\pi}{T}} + A \cdot \int_0^{\frac{T}{4}} e^z \cdot \frac{dt}{-j \cdot k \cdot \frac{2\pi}{T}} + 0 \right) \\ &= \frac{1}{T} \left(-\frac{A}{-j \cdot k \cdot \frac{2\pi}{T}} \cdot \int_{-\frac{T}{4}}^0 e^z \cdot dt + \frac{A}{-j \cdot k \cdot \frac{2\pi}{T}} \cdot \int_0^{\frac{T}{4}} e^z \cdot dt \right) \\ &= \frac{1}{T} \cdot \frac{A}{j \cdot k \cdot \frac{2\pi}{T}} \cdot \left(e^z \Big|_{-\frac{T}{4}}^0 - e^z \Big|_0^{\frac{T}{4}} \right) \\ &= \frac{A}{j \cdot k \cdot 2\pi} \cdot \left(\left(e^{-jk \cdot \frac{2\pi}{T} \cdot t} - e^{-jk \cdot \frac{2\pi}{T} \cdot t} \right) \Big|_0^{\frac{T}{4}} \right) \\ &= \frac{A}{j \cdot k \cdot 2\pi} \cdot \left(\left(e^{-jk \cdot \frac{2\pi}{T} \cdot t} - e^{-jk \cdot \frac{2\pi}{T} \cdot t} \right) - \left(e^{-jk \cdot \frac{2\pi}{T} \cdot t} - e^{-jk \cdot \frac{2\pi}{T} \cdot t} \right) \right) \\ &= \frac{A}{j \cdot k \cdot 2\pi} \cdot \left(\left(1 - e^{jk \cdot \frac{2\pi}{T}} \right) - \left(e^{-jk \cdot \frac{2\pi}{T} \cdot t} - e^{0} \right) \right) \\ &= \frac{A}{j \cdot k \cdot 2\pi} \cdot \left(1 - e^{jk \cdot \frac{2\pi}{T}} - e^{-jk \cdot \frac{2\pi}{T}} \right) \right) \\ &= \frac{A}{j \cdot k \cdot 2\pi} \cdot \left(1 - e^{jk \cdot \frac{2\pi}{T}} - e^{-jk \cdot \frac{2\pi}{T}} \right) \right) \\ &= \frac{A}{j \cdot k \cdot 2\pi} \cdot \left(1 - e^{jk \cdot \frac{2\pi}{T}} - e^{-jk \cdot \frac{2\pi}{T}} \right) \right) \\ &= \frac{A}{j \cdot k \cdot 2\pi} \cdot \left(1 - e^{jk \cdot \frac{2\pi}{T}} - e^{-jk \cdot \frac{2\pi}{T}} \right) \\ &= \frac{A}{j \cdot k \cdot 2\pi} \cdot \left(1 - e^{jk \cdot \frac{2\pi}{T}} - e^{-jk \cdot \frac{2\pi}{T}} \right) \right) \\ &= \frac{A}{j \cdot k \cdot 2\pi} \cdot \left(1 - e^{jk \cdot \frac{2\pi}{T}} - e^{-jk \cdot \frac{2\pi}{T}} \right) \\ &= \frac{A}{j \cdot k \cdot 2\pi} \cdot \left(1 - e^{jk \cdot \frac{2\pi}{T}} - e^{-jk \cdot \frac{2\pi}{T}} \right) \\ &= \frac{A}{j \cdot k \cdot 2\pi} \cdot \left(1 - e^{jk \cdot \frac{2\pi}{T}} - e^{-jk \cdot \frac{2\pi}{T}} \right) \\ &= \frac{A}{j \cdot k \cdot 2\pi} \cdot \left(1 - e^{jk \cdot \frac{2\pi}{T}} - e^{-jk \cdot \frac{2\pi}{T}} \right) \\ &= \frac{A}{j \cdot k \cdot \pi} \cdot \left(1 - e^{jk \cdot \frac{2\pi}{T}} - e^{-jk \cdot \frac{2\pi}{T}} \right) \\ &= \frac{A}{j \cdot k \cdot \pi} \cdot \left(1 - e^{jk \cdot \frac{2\pi}{T}} - e^{-jk \cdot \frac{2\pi}{T}} \right) \\ &= \frac{A}{j \cdot k \cdot \pi} \cdot \left(1 - e^{jk \cdot \frac{2\pi}{T}} - e^{-jk \cdot \frac{2\pi}{T}} \right) \\ &= \frac{A}{j \cdot$$

Wartość współczynnika F_k wynosi $j \cdot \frac{A}{k \cdot \pi} \cdot (\cos(k \cdot \frac{\pi}{2}) - 1)$

Ostatecznie współczynniki zespolonego szeregu fouriera dla funkcji przedstawionej na rysunku przyjmują wartości

$$F_0 = 0$$

$$F_k = j \cdot \frac{A}{k \cdot \pi} \cdot \left(\sin\left(k \cdot \frac{\pi}{2}\right) - 1 \right)$$
(59)

Możemy wyznaczyć kilka wartości współczynników ${\cal F}_k$

k	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
F_k	$-j \cdot \frac{A}{3\pi}$	$j \cdot \frac{A}{5\pi}$	0	$j \cdot \frac{A}{3\pi}$	$j \cdot \frac{A}{\pi}$	$j \cdot \frac{A}{\pi}$	0	$-\jmath\cdot\frac{A}{\pi}$	$-\jmath\cdot\frac{A}{\pi}$	$-j \cdot \frac{A}{3\pi}$	0	$-j \cdot \frac{A}{5\pi}$	$j \cdot \frac{A}{3\pi}$
$ F_k $	$\frac{A}{3\pi}$	$\frac{A}{5\pi}$	0	$\frac{A}{3\pi}$	$\frac{A}{\pi}$	$\frac{A}{\pi}$	0	$\frac{A}{\pi}$	$\frac{A}{\pi}$	$\frac{A}{3\pi}$	0	$\frac{A}{5\pi}$	$\frac{A}{3\pi}$

Podstawiając to wzoru aproksymacyjnego funkcje f(t) możemy wyrazić jako

$$f(t) = \sum_{k = -\infty}^{\infty} F_k \cdot e^{k \cdot \frac{2\pi}{T} \cdot t}$$
 (60)

W przypadku sumowania od $k_{\min} = -1$ do $k_{\max} = 1$ otrzymujemy

W przypadku sumowania od $k_{min}=-2$ do $k_{max}=2$ otrzymujemy

W przypadku sumowania od $k_{min} = -3$ do $k_{max} = 3$ otrzymujemy

W przypadku sumowania od $k_{min}=-5$ do $k_{max}=5$ otrzymujemy

W przypadku sumowania od $k_{min}=-6$ do $k_{max}=6$ otrzymujemy

W przypadku sumowania od $k_{\min} = -11$ do $k_{\max} = 11$ otrzymujemy

W przypadku sumowania od $k_{\min} = -21$ do $k_{\max} = 21$ otrzymujemy

W granicy sumowania od $k_{min}=-\infty$ do $k_{max}=\infty$ otrzymujemy oryginalny sygnał.

Zadanie 16. Wyznacz współczynniki zespolonego szeregu fouriera dla okresowego sygnału f(t) przedstawionego na rysunku

W pierwszej kolejności należy ustalić wzór funkcji przedstawionej na rysunku. Jest to funkcja odcinkowa. W pierwszym okresie możemy ja opisać ogólnym równaniem prostej:

$$f(t) = a \cdot t + b \tag{61}$$

W pierwszym okresie wykres funkcji jest prostą przechodzącą przez dwa punkty: (0,0) oraz (T,A). Możemy wiec napisać układ równań rozwiązać go i znaleźć nie znane parametry a i b.

$$\begin{cases} 0 = a \cdot 0 + b \\ A = a \cdot T + b \end{cases}$$

$$\begin{cases} 0 = b \\ A = a \cdot T + b \end{cases}$$

$$\begin{cases} 0 = b \\ A = a \cdot T + 0 \end{cases}$$

$$\begin{cases} 0 = b \\ \frac{A}{T} = a \end{cases}$$

A więc funkcję przedstawioną na rysunku, w pierwszy okresie można opisać wzorem

$$f(t) = \frac{A}{T} \cdot t$$

I ogólniej całą funkcję można wyrazić następującym wzorem

$$f(t) = \frac{A}{T} \cdot (t - k \cdot T) \land k \in C$$

Współczynnik a_0 wyznaczamy ze wzoru

$$F_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{62}$$

$$F_0 = \frac{1}{T} \int_T f(t) \cdot dt$$

$$= \frac{1}{T} \int_0^T \frac{A}{T} \cdot t \cdot dt$$

$$= \frac{A}{T^2} \int_0^T t \cdot dt$$

$$= \frac{A}{T^2} \cdot \frac{1}{2} \cdot t^2 \Big|_0^T$$

$$= \frac{A}{T^2} \cdot \frac{1}{2} \cdot \left(T^2 - 0^2\right)$$

$$= \frac{A}{T^2} \cdot \frac{1}{2} \cdot T^2$$

$$= \frac{A}{2}$$

Wartość współczynnika F_0 wynosi $\frac{A}{2}$

Współczynnik F_k wyznaczamy ze wzoru

$$F_k = \frac{1}{T} \int_T f(t) \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt$$
 (63)

$$\begin{split} F_k &= \frac{1}{T} \int_T f(t) \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{1}{T} \int_0^T \frac{A}{T} \cdot t \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{1 \cdot A}{T^2} \int_0^T t \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{1 \cdot A}{T^2} \int_0^T t \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \begin{cases} u &= t \quad dv &= e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ du &= dt \quad v &= \frac{T}{-j \cdot k \cdot 2\pi} \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \\ \end{cases} \\ &= \frac{A}{T^2} \cdot \left(t \cdot \frac{T}{-j \cdot k \cdot 2\pi} \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \right)_0^T - \int_0^T \frac{T}{-j \cdot k \cdot 2\pi} \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{A}{T^2} \cdot \left(\left(T \cdot \frac{T}{-j \cdot k \cdot 2\pi} \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot T} - 0 \cdot \frac{T}{-j \cdot k \cdot 2\pi} \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot 0} \right) + \frac{T^2}{(-j \cdot k \cdot 2\pi)^2} \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \right) \\ &= \frac{A}{T^2} \cdot \left(\frac{T^2}{-j \cdot k \cdot 2\pi} \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot T} + \frac{T^2}{-(k \cdot 2\pi)^2} \cdot \left(e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot T} - e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot 0} \right) \right) \\ &= A \cdot \left(\frac{1}{-j \cdot k \cdot 2\pi} - \frac{1}{(k \cdot 2\pi)^2} \cdot (1 - 1) \right) \\ &= A \cdot \left(\frac{1}{-j \cdot k \cdot 2\pi} - \frac{1}{(k \cdot 2\pi)^2} \cdot (1 - 1) \right) \\ &= A \cdot \left(\frac{1}{-j \cdot k \cdot 2\pi} - \frac{1}{(k \cdot 2\pi)^2} \cdot 0 \right) \\ &= A \cdot \left(\frac{1}{-j \cdot k \cdot 2\pi} - 0 \right) \\ &= \frac{A}{-j \cdot k \cdot 2\pi} \end{aligned}$$

$$= \jmath \cdot \frac{A}{k \cdot 2\pi}$$

Wartość współczynnika F_k wynosi $\jmath \cdot \frac{A}{k \cdot 2\pi}$

Ostatecznie współczynniki zespolonego szeregu fouriera dla funkcji przedstawionej na rysunku przyjmują wartości

$$F_0 = \frac{A}{2}$$

$$F_k = \jmath \cdot \frac{A}{k \cdot 2\pi}$$
(64)

Możemy wyznaczyć kilka wartości współczynników F_k

k	-5	-4	-3	-2	-1	0	1	2	3	4	5
F_k	$-\jmath \cdot \frac{A}{10 \cdot \pi}$	$-\jmath \cdot \frac{A}{8 \cdot \pi}$	$-\jmath \cdot \frac{A}{6 \cdot \pi}$	$-\jmath \cdot \frac{A}{4 \cdot \pi}$	$-\jmath \cdot \frac{A}{2 \cdot \pi}$	$\frac{A}{2}$	$j \cdot \frac{A}{2 \cdot \pi}$	$j \cdot \frac{A}{4 \cdot \pi}$	$j \cdot \frac{A}{6 \cdot \pi}$	$j \cdot \frac{A}{8 \cdot \pi}$	$j \cdot \frac{A}{10 \cdot \pi}$
$ F_k $	$\frac{A}{10 \cdot \pi}$	$\frac{A}{8 \cdot \pi}$	$\frac{A}{6 \cdot \pi}$	$\frac{A}{4 \cdot \pi}$	$\frac{A}{2 \cdot \pi}$	$\frac{A}{2}$	$\frac{A}{2 \cdot \pi}$	$\frac{A}{4 \cdot \pi}$	$\frac{A}{6 \cdot \pi}$	$\frac{A}{8 \cdot \pi}$	$\frac{A}{10 \cdot \pi}$
$Arg\left(F_{k}\right)$	$-\frac{\pi}{2}$	$-\frac{\pi}{2}$	$-\frac{\pi}{2}$	$-\frac{\pi}{2}$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	$\frac{\pi}{2}$	$\frac{\pi}{2}$	$\frac{\pi}{2}$	$\frac{\pi}{2}$

Podstawiając to wzoru aproksymacyjnego funkcje f(t) możemy wyrazić jako

$$f(t) = \sum_{k=-\infty}^{\infty} F_k \cdot e^{j \cdot k \cdot \frac{2\pi}{T} \cdot t}$$
 (65)

W przypadku sumowania od $k_{min} = -1$ do $k_{max} = 1$ otrzymujemy

W przypadku sumowania od $k_{\min}=-2$ do $k_{\max}=2$ otrzymujemy

W przypadku sumowania od $k_{min} = -3$ do $k_{max} = 3$ otrzymujemy

W przypadku sumowania od $k_{\min} = -7$ do $k_{\max} = 7$ otrzymujemy

W przypadku sumowania od $k_{\min} = -11$ do $k_{\max} = 11$ otrzymujemy

W granicy sumowania od $k_{min}=-\infty$ do $k_{max}=\infty$ otrzymujemy oryginalny sygnał.

Zadanie 17. Wyznacz współczynniki zespolonego szeregu fouriera dla okresowego sygnału f(t) przedstawionego na rysunku

W pierwszej kolejności należy opisać sygnał za pomocą wzoru:

$$f(x) = \begin{cases} A \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) & t \in \left(0 + k \cdot T; \frac{T}{2} + k \cdot T\right) \\ 0 & t \in \left(\frac{T}{2} + k \cdot T; T + k \cdot T\right) \end{cases} \land k \in C$$
 (66)

Współczynnik F_0 wyznaczamy ze wzoru

$$F_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{67}$$

$$F_{0} = \frac{1}{T} \int_{T} f(t) \cdot dt$$

$$= \frac{1}{T} \left(\int_{0}^{\frac{T}{2}} A \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + \frac{1}{T} \int_{\frac{T}{2}}^{T} 0 \cdot dt \right)$$

$$= \frac{A}{T} \left(\int_{0}^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + 0 \right)$$

$$= \frac{A}{T} \int_{0}^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt$$

$$= \begin{cases} z &= \frac{2\pi}{T} \cdot t \\ dz &= \frac{2\pi}{T} \cdot dt \\ dt &= \frac{dz}{\frac{2\pi}{T}} \end{cases}$$

$$= \frac{A}{T} \int_{0}^{\frac{T}{2}} \sin(z) \cdot \frac{dz}{\frac{2\pi}{T}}$$

$$= \frac{A}{T \cdot \frac{2\pi}{T}} \int_{0}^{\frac{T}{2}} \sin(z) \cdot dz$$

$$= \frac{A}{2\pi} \cdot \left(-\cos(z) \Big|_{0}^{\frac{T}{2}} \right)$$

$$= -\frac{A}{2\pi} \cdot \left(\cos\left(\frac{2\pi}{T} \cdot t\right) \Big|_{0}^{\frac{T}{2}} \right)$$

$$= -\frac{A}{2\pi} \cdot \left(\cos\left(\frac{2\pi}{T} \cdot t\right) - \cos\left(\frac{2\pi}{T} \cdot 0\right) \right)$$

$$\begin{split} &= -\frac{A}{2\pi} \cdot (\cos(\pi) - \cos(0)) \\ &= -\frac{A}{2\pi} \cdot (-1 - 1) \\ &= -\frac{A}{2\pi} \cdot (-2) \\ &= \frac{A}{\pi} \end{split}$$

Wartość współczynnika F_0 wynosi $\frac{A}{\pi}$

Współczynnik F_k wyznaczamy ze wzoru

$$F_k = \frac{1}{T} \int_T f(t) \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \tag{68}$$

$$\begin{split} F_k &= \frac{1}{T} \int_T f(t) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{1}{T} \cdot \left(\int_0^{\frac{T}{2}} A \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{1}{T} \cdot \left(A \cdot \int_0^{\frac{T}{2}} \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot dt \right) \\ &= \left\{ \sin \left(x \right) \right. &= \frac{e^{\jmath \cdot x} - e^{-\jmath \cdot x}}{2\jmath} \right\} \\ &= \frac{1}{T} \cdot \left(A \cdot \int_0^{\frac{T}{2}} \frac{e^{\jmath \cdot \frac{2\pi}{T} \cdot t} - e^{-\jmath \cdot \frac{2\pi}{T} \cdot t}}{2\jmath} \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt + 0 \right) \\ &= \frac{1}{T} \cdot \left(\frac{A}{2\jmath} \cdot \int_0^{\frac{T}{2}} \left(e^{\jmath \cdot \frac{2\pi}{T} \cdot t} - e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \right) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{1}{T} \cdot \frac{A}{2\jmath} \cdot \int_0^{\frac{T}{2}} \left(e^{\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} - e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt \\ &= \frac{A}{T \cdot 2\jmath} \cdot \int_0^{\frac{T}{2}} \left(e^{\jmath \cdot \frac{2\pi}{T} \cdot t} - \jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} - e^{-\jmath \cdot \frac{2\pi}{T} \cdot t - \jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left(\int_0^{\frac{T}{2}} e^{\jmath \cdot \frac{2\pi}{T} \cdot t \cdot (1 - k)} - e^{-\jmath \cdot \frac{2\pi}{T} \cdot t \cdot (1 + k)} \right) \cdot dt \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left(\int_0^{\frac{T}{2}} e^{\jmath \cdot \frac{2\pi}{T} \cdot t \cdot (1 - k)} \cdot dt - \int_0^{\frac{T}{2}} e^{-\jmath \cdot \frac{2\pi}{T} \cdot t \cdot (1 + k)} \cdot dt \right) \\ &= \left\{ dz_1 - \jmath \cdot \frac{2\pi}{T} \cdot (1 - k) \cdot dt - dz_2 - \jmath \cdot \frac{2\pi}{T} \cdot (1 + k) \cdot dt \right\} \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left(\int_0^{\frac{T}{2}} e^{2\imath \cdot t} \cdot \frac{dz_1}{\jmath \cdot \frac{2\pi}{T} \cdot (1 - k)} - \int_0^{\frac{T}{2}} e^{2\imath \cdot t} \cdot \frac{dz_2}{\jmath \cdot \frac{2\pi}{T} \cdot (1 + k)} \right) \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left(\int_0^{\frac{T}{2}} e^{2\imath \cdot t} \cdot \frac{dz_1}{\jmath \cdot \frac{2\pi}{T} \cdot (1 - k)} - \int_0^{\frac{T}{2}} e^{2\imath \cdot t} \cdot \frac{dz_2}{\jmath \cdot \frac{2\pi}{T} \cdot (1 + k)} \right) \right\} \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left(\frac{1}{\jmath \cdot \frac{2\pi}{T} \cdot (1 - k)} \cdot \int_0^{\frac{T}{2}} e^{2\imath \cdot t} \cdot dz_1 - \frac{1}{\jmath \cdot \frac{2\pi}{T} \cdot (1 + k)} \cdot \int_0^{\frac{T}{2}} e^{2\imath \cdot t} \cdot dz_2 \right) \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left(\frac{1}{\jmath \cdot \frac{2\pi}{T} \cdot (1 - k)} \cdot \int_0^{\frac{T}{2}} e^{2\imath \cdot t} \cdot dz_1 - \frac{1}{-\jmath \cdot \frac{2\pi}{T} \cdot (1 + k)} \cdot \int_0^{\frac{T}{2}} e^{2\imath \cdot t} \cdot dz_2 \right) \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left(\frac{1}{\jmath \cdot \frac{2\pi}{T} \cdot (1 - k)} \cdot \int_0^{\frac{T}{2}} e^{2\imath \cdot t} \cdot dz_1 - \frac{1}{-\jmath \cdot \frac{2\pi}{T} \cdot (1 + k)} \cdot \int_0^{\frac{T}{2}} e^{2\imath \cdot t} \cdot dz_1 \right) \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left(\frac{1}{\jmath \cdot \frac{2\pi}{T}$$

$$\begin{split} &=\frac{A}{T\cdot 2g\cdot y\cdot \frac{2\pi}{T}}\cdot\left(\frac{1}{1-k}\cdot\int_{0}^{\frac{1}{2}}e^{z_{1}}\cdot dz_{1}+\frac{1}{1+k}\cdot\int_{0}^{\frac{1}{2}}e^{z_{2}}\cdot dz_{2}\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{1}{1-k}\cdot e^{z_{1}}\Big[\frac{1}{r}+\frac{1}{1+k}\cdot e^{z_{2}}\Big]\frac{T}{2}\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{1}{1-k}\cdot e^{y\cdot \frac{2\pi}{T}\cdot(1-k)\cdot t}\Big[\frac{T}{0}+\frac{1}{1+k}\cdot e^{-y\cdot \frac{2\pi}{T}\cdot(1+k)\cdot t}\Big]\frac{T}{2}\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{1}{1-k}\cdot \left(e^{y\cdot \frac{2\pi}{T}\cdot(1-k)\cdot \frac{T}{2}}-e^{y\cdot \frac{2\pi}{T}\cdot(1-k)\cdot t}\right)+\frac{1}{1+k}\cdot \left(e^{-y\cdot \frac{2\pi}{T}\cdot(1+k)\cdot \frac{T}{2}}-e^{-y\cdot \frac{2\pi}{T}\cdot(1+k)\cdot 0}\right)\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{1}{1-k}\cdot \left(e^{y\cdot \pi\cdot(1-k)}-e^{0}\right)+\frac{1}{1+k}\cdot \left(e^{-y\cdot \pi\cdot(1+k)}-e^{0}\right)\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{1+k}{(1-k)\cdot(1+k)}\cdot \left(e^{y\cdot \pi\cdot(1-k)}-1\right)+\frac{1-k}{(1-k)\cdot(1+k)}\cdot \left(e^{-y\cdot \pi\cdot(1+k)}-1\right)\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{(1+k)\cdot \left(e^{y\cdot \pi\cdot(1-k)}-1\right)}{(1-k)\cdot(1+k)}+\frac{(1-k)\cdot \left(e^{-y\cdot \pi\cdot(1+k)}-1\right)}{(1-k)\cdot(1+k)}\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{(1+k)\cdot \left(e^{y\cdot \pi\cdot(1-k)}-1\right)+(1-k)\cdot \left(e^{-y\cdot \pi\cdot(1+k)}-1\right)}{(1-k)\cdot(1+k)}\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{e^{y\cdot \pi\cdot(1-k)}-1+k\cdot e^{y\cdot \pi\cdot(1-k)}-k+e^{-y\cdot \pi\cdot(1+k)}-1-k\cdot e^{-y\cdot \pi\cdot(1+k)}+k}{1-k^{2}}\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{e^{y\cdot \pi\cdot(1-k)}-2+k\cdot e^{y\cdot \pi\cdot(1-k)}-k+e^{-y\cdot \pi\cdot(1+k)}-k\cdot e^{-y\cdot \pi\cdot(1+k)}+k}{1-k^{2}}\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{e^{y\cdot \pi\cdot(1-k)}-2+k\cdot e^{y\cdot \pi\cdot(1-k)}-k-e^{-y\cdot \pi\cdot k}-k\cdot e^{-y\cdot \pi\cdot k}-k\cdot e^{-y\cdot \pi\cdot k}}{1-k^{2}}\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{e^{y\cdot \pi\cdot k}-2+k\cdot e^{y\cdot \pi\cdot k}-e^{-y\cdot \pi\cdot k}+e^{-y\cdot \pi\cdot k}-k\cdot e^{-y\cdot \pi\cdot k}-k\cdot e^{-y\cdot \pi\cdot k}}{1-k^{2}}\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{e^{y\cdot \pi\cdot k}-2-k\cdot e^{-y\cdot \pi\cdot k}-e^{-y\cdot \pi\cdot k}+k\cdot e^{-y\cdot \pi\cdot k}}{1-k^{2}}\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{e^{y\cdot \pi\cdot k}-2-k\cdot e^{-y\cdot \pi\cdot k}-e^{-y\cdot \pi\cdot k}+k\cdot e^{-y\cdot \pi\cdot k}}{1-k^{2}}\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{e^{y\cdot \pi\cdot k}-2-k\cdot e^{-y\cdot \pi\cdot k}-e^{-y\cdot \pi\cdot k}+k\cdot e^{-y\cdot \pi\cdot k}}{1-k^{2}}\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{e^{y\cdot \pi\cdot k}-2-k\cdot e^{-y\cdot \pi\cdot k}-e^{-y\cdot \pi\cdot k}+k\cdot e^{-y\cdot \pi\cdot k}}{1-k^{2}}\right)\\ &=\frac{A}{4\cdot\pi}\cdot\left(\frac{e^{y\cdot \pi\cdot k}-2}{1-k^{2}}\right)\\ &=\frac{A}{4\cdot\pi}\cdot\left(\frac{e^{y\cdot \pi\cdot k}-2}{1-k^{2}}\right)\\ &=\frac{A}{4\cdot\pi}\cdot\left(\frac{e^{y\cdot \pi\cdot k}-2}-2}{1-k^{2}}\right)\\ &=\frac{A}{4\cdot\pi}\cdot\left(\frac{e^{y\cdot \pi\cdot k}-2}-2}{1-k^{2}}\right)\\ &=\frac{A}{4\cdot\pi}\cdot\left(\frac{e^{y\cdot \pi\cdot k}-2}-2}{1-k^{2}}\right)\end{aligned}$$

Wartość współczynnika F_k wynosi $\frac{A}{2 \cdot \pi} \cdot \frac{e^{-j \cdot \pi \cdot k} + 1}{1 - k^2}$ dla $k \neq 1 \land k \neq -1$ F_k dla k = 1 musimy wyznaczyć wspołczynnik raz jeszcze tak wiec wyznaczmy wprost F_1

$$F_{1} = \frac{1}{T} \int_{T} f(t) \cdot e^{-\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt$$

$$= \frac{1}{T} \cdot \left(\int_{0}^{\frac{T}{2}} A \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot e^{-\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot e^{-\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right)$$

$$\begin{split} &= \frac{1}{T} \cdot \left(A \cdot \int_{0}^{\frac{T}{2}} \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-j\frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot dt \right) \\ &= \left\{ \sin \left(x \right) \right. = \frac{e^{jx} - e^{-jx^2}}{2j} \right\} \\ &= \frac{1}{T} \cdot \left(A \cdot \int_{0}^{\frac{T}{2}} \frac{e^{j\frac{2\pi}{T} \cdot t}}{2j} \cdot e^{-j\frac{2\pi}{T} \cdot t} \cdot dt + 0 \right) \\ &= \frac{1}{T} \cdot \left(\frac{A}{2j} \cdot \int_{0}^{\frac{T}{2}} \left(e^{j\frac{2\pi}{T} \cdot t} - e^{-j\frac{2\pi}{T} \cdot t} \right) \cdot e^{-j\frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{1}{T} \cdot \frac{A}{2j} \cdot \int_{0}^{\frac{T}{2}} \left(e^{j\frac{2\pi}{T} \cdot t} - e^{-j\frac{2\pi}{T} \cdot t} - e^{-j\frac{2\pi}{T} \cdot t} \cdot e^{-j\frac{2\pi}{T} \cdot t} \right) \cdot dt \\ &= \frac{A}{T \cdot 2j} \cdot \int_{0}^{\frac{T}{2}} \left(e^{j\frac{2\pi}{T} \cdot t} - e^{-j\frac{2\pi}{T} \cdot t} - e^{-j\frac{2\pi}{T} \cdot t} \cdot e^{-j\frac{2\pi}{T} \cdot t} \right) \cdot dt \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} \left(e^{j\frac{2\pi}{T} \cdot t} - e^{-j\frac{2\pi}{T} \cdot t} - e^{-j\frac{2\pi}{T} \cdot t} \right) \cdot dt \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\frac{2\pi}{T} \cdot t} \cdot (1-1) - e^{-j\frac{2\pi}{T} \cdot t} \cdot (1+1) \right) \cdot dt \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\frac{2\pi}{T} \cdot t} \cdot (1-1) \cdot dt - \int_{0}^{\frac{T}{2}} e^{-j\frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} e^{-j\frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{0} \cdot dt - \int_{0}^{\frac{T}{2}} e^{-j\frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} dt - \int_{0}^{\frac{T}{2}} e^{-j\frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} dt - \int_{0}^{\frac{T}{2}} e^{-j\frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\left(\frac{T}{2} - 0 \right) + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot e^{-j\frac{4\pi}{T} \cdot t} \right) \Big|_{0}^{\frac{T}{2}} \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\left(\frac{T}{2} - 0 \right) + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot e^{-j\frac{4\pi}{T} \cdot t} \right) \Big|_{0}^{\frac{T}{2}} \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\left(\frac{T}{2} - 1 \right) + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot \left(e^{-j\frac{2\pi}{T}} - e^{-j\frac{4\pi}{T} \cdot t} \right) \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\frac{T}{2} + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot \left(e^{-j\frac{2\pi}{T}} - e^{0} \right) \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\frac{T}{2} + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot \left(e^{-j\frac{2\pi}{T}} - e^{0} \right) \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\frac{T}{2} + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot \left(1 - 1 \right) \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\frac{T}{2} + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot \left(1 - 1 \right) \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\frac{T}{2} + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot \left(1 - 1 \right)$$

$$= \frac{A}{T \cdot 2\jmath} \cdot \left(\frac{T}{2} + 0\right)$$

$$= \frac{A}{T \cdot 2\jmath} \cdot \frac{T}{2}$$

$$= \frac{A}{4\jmath}$$

$$= -\jmath \cdot \frac{A}{4}$$

A wiec wartość współczynnika F_1 wynosi $-\jmath\cdot\frac{A}{4}$

 F_k dla k=-1 musimy wyznaczyć wspołczynnik raz jeszcze tak wiec wyznaczmy wprost F_{-1}

$$\begin{split} F_{-1} &= \frac{1}{T} \int_{T} f(t) \cdot e^{-j \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{1}{T} \cdot \left(\int_{0}^{\frac{T}{2}} A \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-j \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot e^{-j \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{1}{T} \cdot \left(A \cdot \int_{0}^{\frac{T}{2}} \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot dt \right) \\ &= \left\{ \sin \left(x \right) = \frac{e^{j \cdot x} - e^{-j \cdot x}}{2j} \right\} \\ &= \frac{1}{T} \cdot \left(A \cdot \int_{0}^{\frac{T}{2}} \frac{e^{j \cdot \frac{2\pi}{T} \cdot t} - e^{-j \cdot \frac{2\pi}{T} \cdot t}}{2j} \cdot e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt + 0 \right) \\ &= \frac{1}{T} \cdot \left(\frac{A}{2j} \cdot \int_{0}^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot t} - e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{1}{T} \cdot \frac{A}{2j} \cdot \int_{0}^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{j \cdot \frac{2\pi}{T} \cdot t} - e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{j \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt \\ &= \frac{A}{T \cdot 2j} \cdot \int_{0}^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot t - e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot t^{j \cdot 2\pi} \cdot t \right) \cdot dt \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot (1 + 1) \cdot dt - \int_{0}^{\frac{T}{2}} e^{-j \cdot \frac{2\pi}{T} \cdot t \cdot (1 - 1)} \cdot dt \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} e^{-j \cdot \frac{2\pi}{T} \cdot t \cdot 0} \cdot dt \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{4\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} e^{0} \cdot dt \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{4\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} e^{0} \cdot dt \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{4\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} 1 \cdot dt \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{4\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} dt \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{4\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} dt \right) \end{aligned}$$

$$\begin{split} &= \frac{A}{T \cdot 2\jmath} \cdot \left(\frac{1}{\jmath \cdot \frac{4\pi}{T}} \cdot \int_{0}^{\frac{T}{2}} e^{z} \cdot dz - \int_{0}^{\frac{T}{2}} dt\right) \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left(\frac{1}{\jmath \cdot \frac{4\pi}{T}} \cdot e^{z} \Big|_{0}^{\frac{T}{2}} - t \Big|_{0}^{\frac{T}{2}}\right) \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left(\frac{1}{\jmath \cdot \frac{4\pi}{T}} \cdot e^{-\jmath \cdot \frac{4\pi}{T} \cdot t} \Big|_{0}^{\frac{T}{2}} - \left(\frac{T}{2} - 0\right)\right) \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left(\frac{1}{\jmath \cdot \frac{4\pi}{T}} \cdot \left(e^{-\jmath \cdot \frac{4\pi}{T} \cdot \frac{T}{2}} - e^{-\jmath \cdot \frac{4\pi}{T} \cdot 0}\right) - \left(\frac{T}{2} - 0\right)\right) \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left(\frac{1}{\jmath \cdot \frac{4\pi}{T}} \cdot \left(e^{-\jmath \cdot 2\pi} - e^{0}\right) - \frac{T}{2}\right) \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left(\frac{1}{\jmath \cdot \frac{4\pi}{T}} \cdot \left(1 - 1\right) - \frac{T}{2}\right) \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left(0 - \frac{T}{2}\right) \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left(0 - \frac{T}{2}\right) \\ &= -\frac{A}{4\jmath} \\ &= \jmath \cdot \frac{A}{4} \end{split}$$

A wiec wartość współczynnika F_{-1} wynosi $\jmath \cdot \frac{A}{4}$

Ostatecznie współczynniki zespolonego szeregu fouriera dla funkcji przedstawionej na rysunku przyjmują wartości

$$F_{0} = \frac{A}{\pi}$$

$$F_{k} = \frac{A}{2 \cdot \pi} \cdot \frac{e^{-\jmath \cdot \pi \cdot k} + 1}{1 - k^{2}}$$

$$F_{-1} = \jmath \cdot \frac{A}{4}$$

$$F_{1} = -\jmath \cdot \frac{A}{4}$$
(69)

Możemy wyznaczyć kilka wartości współczynników F_k

F_k	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
F_k	$-\frac{A}{35\pi}$	0	$-\frac{A}{15\pi}$	0	$-\frac{A}{3\pi}$	$-\jmath\cdot\frac{A}{4}$	$\frac{A}{\pi}$	$j \cdot \frac{A}{4}$	$\frac{A}{3\pi}$	0	$\frac{A}{15\pi}$	0	$\frac{A}{35\pi}$
$ F_k $	$\frac{A}{35\pi}$	0	$\frac{A}{15\pi}$	0	$-\frac{A}{3\pi}$	$\frac{A}{4}$	$\frac{A}{\pi}$	$\frac{A}{4}$	$\frac{A}{3\pi}$	0	$\frac{A}{15\pi}$	0	$\frac{A}{35\pi}$

Podstawiając to wzoru aproksymacyjnego funkcje f(t) możemy wyrazić jako

$$f(t) = \sum_{k=-\infty}^{\infty} F_k \cdot e^{j \cdot k \cdot \frac{2\pi}{T} \cdot t}$$
 (70)

W przypadku sumowania od $k_{\min} = -1$ do $k_{\max} = 1$ otrzymujemy

W przypadku sumowania od $k_{min}=-2$ do $k_{max}=2$ otrzymujemy

W przypadku sumowania od $k_{\min} = -4$ do $k_{\max} = 4$ otrzymujemy

W przypadku sumowania od $k_{\min}=-6$ do $k_{\max}=6$ otrzymujemy

W przypadku sumowania od $k_{\min} = -12$ do $k_{\max} = 12$ otrzymujemy

W granicy sumowania od $k_{min}=-\infty$ do $k_{max}=\infty$ otrzymujemy oryginalny sygnał.

Zadanie 18. Wyznacz wszystkie współczynniki zespolonego szeregu fouriera dla okresowego sygnału f(t) będącego przekształceniem sygnału cosinusoidalnego przedstawionego na rysunku.

W pierwszej kolejności należy opisać sygnał za pomocą wzoru:

$$f(x) = \begin{cases} A \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) & t \in \left(0 + k \cdot T; \frac{T}{2} + k \cdot T\right) \\ 0 & t \in \left(\frac{T}{2} + k \cdot T; T + k \cdot T\right) \end{cases} \land k \in C$$
 (71)

Współczynnik F_0 wyznaczamy ze wzoru

$$F_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{72}$$

$$F_{0} = \frac{1}{T} \int_{T} f(t) \cdot dt$$

$$= \frac{1}{T} \left(\int_{0}^{\frac{T}{2}} A \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot dt \right)$$

$$= \frac{1}{T} \left(A \cdot \int_{0}^{\frac{T}{2}} \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + 0 \right)$$

$$= \frac{A}{T} \cdot \int_{0}^{\frac{T}{2}} \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot dt$$

$$= \begin{cases} z &= \frac{2\pi}{T} \cdot t \\ dz &= \frac{2\pi}{T} \cdot dt \\ dt &= \frac{1}{\frac{2\pi}{T}} \cdot dz \\ dt &= \frac{T}{2\pi} \cdot dz \end{cases}$$

$$= \frac{A}{T} \cdot \int_{0}^{\frac{T}{2}} \cos(z) \cdot \frac{T}{2\pi} \cdot dz$$

$$= \frac{A}{T} \cdot \frac{T}{2\pi} \cdot \int_{0}^{\frac{T}{2}} \cos(z) \cdot dz$$

$$= \frac{A}{T} \cdot \frac{T}{2\pi} \cdot \sin(z) \Big|_{0}^{\frac{T}{2}}$$

$$= \frac{A}{2\pi} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \Big|_{0}^{\frac{T}{2}}$$

$$= \frac{A}{2\pi} \cdot \left(\sin\left(\frac{2\pi}{T} \cdot \frac{T}{2}\right) - \sin\left(\frac{2\pi}{T} \cdot 0\right)\right)$$

$$= \frac{A}{2\pi} \cdot (\sin(pi) - \sin(0))$$

$$= \frac{A}{2\pi} \cdot (0 - 0)$$

$$= \frac{A}{2\pi} \cdot 0$$

$$= 0$$

Wartość współczynnika F_0 wynosi 0

Współczynnik F_k wyznaczamy ze wzoru

$$F_k = \frac{1}{T} \int_T f(t) \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \tag{73}$$

$$\begin{split} F_k &= \frac{1}{T} \int_T f(t) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{1}{T} \left(\int_0^{\frac{T}{2}} A \cdot \cos \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{1}{T} \left(A \cdot \int_0^{\frac{T}{2}} \cos \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot dt \right) \\ &= \left\{ \cos \left(x \right) = \frac{e^{\jmath \cdot x} + e^{-\jmath \cdot x}}{2} \right\} \\ &= \frac{1}{T} \left(A \cdot \int_0^{\frac{T}{2}} \frac{e^{\jmath \cdot \frac{2\pi}{T} \cdot t} + e^{-\jmath \cdot \frac{2\pi}{T} \cdot t}}{2} \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt + 0 \right) \\ &= \frac{A}{2 \cdot T} \cdot \int_0^{\frac{T}{2}} \left(e^{\jmath \cdot \frac{2\pi}{T} \cdot t} + e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \right) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{A}{2 \cdot T} \cdot \int_0^{\frac{T}{2}} \left(e^{\jmath \cdot \frac{2\pi}{T} \cdot t} - \jmath \cdot k \cdot \frac{2\pi}{T} \cdot t + e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} - \jmath \cdot k \cdot \frac{2\pi}{T} \cdot t \right) \cdot dt \\ &= \frac{A}{2 \cdot T} \cdot \int_0^{\frac{T}{2}} \left(e^{\jmath \cdot \frac{2\pi}{T} \cdot (1 - k) \cdot t} + e^{-\jmath \cdot \frac{2\pi}{T} \cdot (1 + k) \cdot t} \right) \cdot dt \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_0^{\frac{T}{2}} e^{\jmath \cdot \frac{2\pi}{T} \cdot (1 - k) \cdot t} \cdot dt + \int_0^{\frac{T}{2}} e^{-\jmath \cdot \frac{2\pi}{T} \cdot (1 + k) \cdot t} \cdot dt \right) \\ &= \begin{cases} z_1 = \jmath \cdot \frac{2\pi}{T} \cdot (1 - k) \cdot t & z_2 = -\jmath \cdot \frac{2\pi}{T} \cdot (1 + k) \cdot t \\ dz_1 = \jmath \cdot \frac{2\pi}{T} \cdot (1 - k) \cdot dt & dz_2 = -\jmath \cdot \frac{2\pi}{T} \cdot (1 + k) \cdot dt \\ dt = \frac{1}{\jmath \cdot \frac{2\pi}{T} \cdot (1 - k)} \cdot dz_1 & dt = \frac{1}{-\jmath \cdot \frac{2\pi}{T} \cdot (1 + k)} \cdot dz_2 \end{cases} \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_0^{\frac{T}{2}} e^{z_1} \cdot \frac{1}{\jmath \cdot \frac{2\pi}{T} \cdot (1 - k)} \cdot \int_0^{\frac{T}{2}} e^{z_1} \cdot dz_1 + \frac{1}{-\jmath \cdot \frac{2\pi}{T} \cdot (1 + k)} \cdot \int_0^{\frac{T}{2}} e^{z_2} \cdot dz_2 \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{\jmath \cdot \frac{2\pi}{T} \cdot (1 - k)} \cdot \int_0^{\frac{T}{2}} e^{z_1} \cdot dz_1 - \frac{T}{\jmath \cdot 2\pi \cdot (1 + k)} \cdot \int_0^{\frac{T}{2}} e^{z_2} \cdot dz_2 \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{\jmath \cdot 2\pi \cdot (1 - k)} \cdot \int_0^{\frac{T}{2}} e^{z_1} \cdot dz_1 - \frac{T}{\jmath \cdot 2\pi \cdot (1 + k)} \cdot \int_0^{\frac{T}{2}} e^{z_2} \cdot dz_2 \right) \end{aligned}$$

$$\begin{split} &= \frac{A}{2 \cdot T} \cdot \frac{T}{J \cdot 2\pi} \cdot \left(\frac{1}{(1-k)} \cdot \int_0^{\frac{T}{2}} e^{z_1} \cdot dz_1 - \frac{1}{(1+k)} \cdot \int_0^{\frac{T}{2}} e^{z_2} \cdot dz_2\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot e^{z_1} |_0^{\frac{T}{2}} - \frac{1}{(1+k)} \cdot e^{z_2} |_0^{\frac{T}{2}}\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot e^{J \cdot \frac{2\pi}{T} \cdot (1-k) \cdot t} |_0^{\frac{T}{2}} - \frac{1}{(1+k)} \cdot e^{J \cdot \frac{2\pi}{T} \cdot (1+k) \cdot t} |_0^{\frac{T}{2}}\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot \left(e^{J \cdot \frac{2\pi}{T} \cdot (1-k) \cdot \frac{T}{2}} - e^{J \cdot \frac{2\pi}{T} \cdot (1-k) \cdot 0}\right) - \frac{1}{(1+k)} \cdot \left(e^{-J \cdot \frac{2\pi}{T} \cdot (1+k) \cdot \frac{T}{2}} - e^{-J \cdot \frac{2\pi}{T} \cdot (1+k) \cdot 0}\right)\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot \left(e^{J \cdot \pi \cdot (1-k)} - e^{0}\right) - \frac{1}{(1+k)} \cdot \left(e^{J \cdot \pi \cdot (1+k)} - 1\right)\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot \left(e^{J \cdot \pi} \cdot e^{-J \cdot k \cdot \pi} - 1\right) - \frac{1}{(1+k)} \cdot \left(e^{J \cdot \pi} \cdot e^{-J \cdot k \cdot \pi} - 1\right)\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot \left(-1 \cdot e^{-J \cdot k \cdot \pi} - 1\right) - \frac{1}{(1+k)} \cdot \left(-1 \cdot e^{-J \cdot k \cdot \pi} - 1\right)\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot \left(-1 \cdot e^{-J \cdot k \cdot \pi} - 1\right) - \frac{1}{(1+k)} \cdot \left(-1 \cdot e^{-J \cdot k \cdot \pi} - 1\right)\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{\left(-e^{-J \cdot k \cdot \pi} - 1\right) \cdot \left(1+k\right)}{(1-k) \cdot \left(1+k\right)} - \frac{\left(-e^{-J \cdot k \cdot \pi} - 1\right) \cdot \left(1-k\right)}{(1-k) \cdot \left(1+k\right)}\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{\left(-e^{-J \cdot k \cdot \pi} - 1 - k \cdot e^{-J \cdot k \cdot \pi} - k - e^{-J \cdot k \cdot \pi} - 1 + k \cdot e^{-J \cdot k \cdot \pi} + k}{(1-k) \cdot \left(1+k\right)}\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{\left(-e^{-J \cdot k \cdot \pi} - 1 - k \cdot e^{-J \cdot k \cdot \pi} - k + e^{-J \cdot k \cdot \pi} - 1 + k \cdot e^{-J \cdot k \cdot \pi} - k}{(1-k) \cdot \left(1+k\right)}\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{\left(-e^{-J \cdot k \cdot \pi} - 1 - k \cdot e^{-J \cdot k \cdot \pi} - k + e^{-J \cdot k \cdot \pi} + 1 - k \cdot e^{-J \cdot k \cdot \pi} - k}{1-k^2}\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{\left(-e^{-J \cdot k \cdot \pi} - 1 - k \cdot e^{-J \cdot k \cdot \pi} - k + e^{-J \cdot k \cdot \pi} + 1 - k \cdot e^{-J \cdot k \cdot \pi} - k}{1-k^2}\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{\left(-e^{-J \cdot k \cdot \pi} - 1 - k \cdot e^{-J \cdot k \cdot \pi} - k + e^{-J \cdot k \cdot \pi} + 1 - k \cdot e^{-J \cdot k \cdot \pi} - k}{1-k^2}\right) \\ &= -\frac{A \cdot k}{J \cdot 2\pi} \cdot \left(\frac{e^{-J \cdot k \cdot \pi} + 1}{1-k^2}\right) \end{aligned}$$

Wartość współczynnika F_k wynosi $-\frac{A \cdot k}{j \cdot 2\pi} \cdot \left(\frac{e^{-j \cdot k \cdot \pi} + 1}{1 - k^2}\right)$.

Dla k=1 i k=-1 trzeba wyzanczyć wartość współczynnika raz jeszcze wprost ze wzoru

$$\begin{split} F_1 &= \frac{1}{T} \int_T f(t) \cdot e^{-\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{1}{T} \left(\int_0^{\frac{T}{2}} A \cdot \cos \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot e^{-\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{1}{T} \left(A \cdot \int_0^{\frac{T}{2}} \cos \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot dt \right) \\ &= \left\{ \cos \left(x \right) = \frac{e^{\jmath \cdot x} + e^{-\jmath \cdot x}}{2} \right\} \\ &= \frac{1}{T} \left(A \cdot \int_0^{\frac{T}{2}} \frac{e^{\jmath \cdot \frac{2\pi}{T} \cdot t} + e^{-\jmath \cdot \frac{2\pi}{T} \cdot t}}{2} \cdot e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt + 0 \right) \\ &= \frac{A}{2 \cdot T} \cdot \int_0^{\frac{T}{2}} \left(e^{\jmath \cdot \frac{2\pi}{T} \cdot t} + e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \right) \cdot e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{A}{2 \cdot T} \cdot \int_0^{\frac{T}{2}} \left(e^{\jmath \cdot \frac{2\pi}{T} \cdot t} - \jmath \cdot \frac{2\pi}{T} \cdot t} + e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} - \jmath \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt \end{split}$$

$$\begin{split} &= \frac{A}{2 \cdot T} \cdot \int_{0}^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot (1-1) \cdot t} + e^{-j \cdot \frac{2\pi}{T} \cdot (1+1) \cdot t} \right) \cdot dt \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot 0 \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} e^{-j \cdot \frac{2\pi}{T} \cdot 2 \cdot t} \cdot dt \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{0} \cdot dt + \int_{0}^{\frac{T}{2}} e^{-j \cdot \frac{4\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} 1 \cdot dt + \int_{0}^{\frac{T}{2}} e^{-j \cdot \frac{4\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} dt + \int_{0}^{\frac{T}{2}} e^{-j \cdot \frac{4\pi}{T} \cdot t} \cdot dt \right) \\ &= \left\{ \begin{aligned} z &= -j \cdot \frac{4\pi}{T} \cdot t \\ dt &= \frac{1}{-j \cdot \frac{4\pi}{T}} \cdot dt \\ dt &= \frac{1}{-j \cdot \frac{4\pi}{T}} \cdot dt \end{aligned} \right\} \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} dt + \int_{0}^{\frac{T}{2}} e^{z} \cdot \frac{1}{-j \cdot \frac{4\pi}{T}} \cdot dz \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(t|_{0}^{\frac{T}{2}} - \frac{1}{j \cdot \frac{4\pi}{T}} \cdot e^{z}|_{0}^{\frac{T}{2}} \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\left(\frac{T}{2} - 0 \right) - \frac{1}{j \cdot \frac{4\pi}{T}} \cdot e^{-j \cdot \frac{4\pi}{T} \cdot t}|_{0}^{\frac{T}{2}} \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{2} - \frac{1}{j \cdot \frac{4\pi}{T}} \cdot \left(e^{-j \cdot \frac{4\pi}{T} \cdot \frac{T}{2}} - e^{-j \cdot \frac{4\pi}{T} \cdot 0} \right) \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{2} - \frac{1}{j \cdot \frac{4\pi}{T}} \cdot \left(e^{-j \cdot 2\pi} - e^{0} \right) \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{2} - \frac{1}{j \cdot \frac{4\pi}{T}} \cdot \left(1 - 1 \right) \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{2} - \frac{1}{j \cdot \frac{4\pi}{T}} \cdot \left(1 - 1 \right) \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{2} - \frac{1}{j \cdot \frac{4\pi}{T}} \cdot 0 \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{2} - \frac{1}{j \cdot \frac{4\pi}{T}} \cdot 0 \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{2} - 0 \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{2} - 0 \right) \end{aligned}$$

Wartość współczynnika F_1 wynosi $\frac{A}{4}$.

$$\begin{split} F_{-1} &= \frac{1}{T} \int_T f(t) \cdot e^{-\jmath \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{1}{T} \left(\int_0^{\frac{T}{2}} A \cdot \cos \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-\jmath \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot e^{-\jmath \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) \end{split}$$

$$\begin{split} &= \frac{1}{T} \left(A \cdot \int_{0}^{\frac{T}{2}} \cos \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot dt \right) \\ &= \left\{ \cos \left(x \right) = \frac{e^{j \cdot x} + e^{-j \cdot x}}{2} \right\} \\ &= \frac{1}{T} \left(A \cdot \int_{0}^{\frac{T}{2}} \frac{e^{j \cdot \frac{2\pi}{T} \cdot t} + e^{-j \cdot \frac{2\pi}{T} \cdot t}}{2} \cdot e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt + 0 \right) \\ &= \frac{A}{2 \cdot T} \cdot \int_{0}^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot t} + e^{-j \cdot \frac{2\pi}{T} \cdot t} \right) \cdot e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{A}{2 \cdot T} \cdot \int_{0}^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot t + j \cdot \frac{2\pi}{T} \cdot t} + e^{-j \cdot \frac{2\pi}{T} \cdot t + j \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt \\ &= \frac{A}{2 \cdot T} \cdot \int_{0}^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot t + j \cdot \frac{2\pi}{T} \cdot t} + e^{-j \cdot \frac{2\pi}{T} \cdot t + j \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot 2 \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} e^{-j \cdot \frac{2\pi}{T} \cdot 0 \cdot t} \cdot dt \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} e^{0} \cdot dt \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} \frac{4\pi}{T} \cdot dt + \int_{0}^{\frac{T}{2}} dt + \int_{0}^{\frac{T}{2}} dt \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} \frac{4\pi}{T} \cdot dt + \int_{0}^{\frac{T}{2}} e^{j \cdot \frac{4\pi}{T} \cdot 0} \right) + \frac{T}{2} \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} \frac{4\pi}{T} \cdot (e^{j \cdot \frac{4\pi}{T} \cdot T} \cdot e^{j \cdot \frac{4\pi}{T} \cdot 0} \right) + \frac{T}{2} \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} \frac{4\pi}{T} \cdot dt + \int_{0}^{\frac{$$

$$=\frac{A}{4}$$

Wartość współczynnika F_{-1} wynosi $\frac{A}{4}$.

Tak wiec ostatecznie współczynniki zespolonego szeregu fouriera

$$F_{0} = 0$$

$$F_{1} = \frac{A}{4}$$

$$F_{-1} = \frac{A}{4}$$

$$F_{k} = -\frac{A \cdot k}{j \cdot 2\pi} \cdot \left(\frac{e^{-j \cdot k \cdot \pi} + 1}{1 - k^{2}}\right)$$

$$(74)$$

Możemy wyznaczyć kilka wartości współczynników F_k

k	-5	-4	-3	-2	-1	0	1	2	3	4	5
F_k	0	$j \cdot \frac{4 \cdot A}{15 \cdot \pi}$	0	$j \cdot \frac{2 \cdot A}{3 \cdot \pi}$	$\frac{A}{4}$	0	$\frac{A}{4}$	$-\jmath \cdot \frac{2 \cdot A}{3 \cdot \pi}$	0	$-j \cdot \frac{4 \cdot A}{15 \cdot \pi}$	0
$ F_k $	0	$\frac{4 \cdot A}{15 \cdot \pi}$	0	$\frac{2 \cdot A}{3 \cdot \pi}$	$\frac{A}{4}$	0	$\frac{A}{4}$	$\frac{2 \cdot A}{3 \cdot \pi}$	0	$\frac{4 \cdot A}{15 \cdot \pi}$	0
$Arg\left\{ F_{k}\right\}$	0	π	0	π	0	0	0	$-\pi$	0	$-\pi$	0

Podstawiając to wzoru aproksymacyjnego funkcje f(t) możemy wyrazić jako

$$f(t) = \sum_{k=-\infty}^{\infty} F_k \cdot e^{j \cdot k \cdot \frac{2\pi}{T} \cdot t}$$
 (75)

W przypadku sumowania od $k_{min}=-1$ do $k_{max}=1$ otrzymujemy

W przypadku sumowania od $k_{min}=-2$ do $k_{max}=2$ otrzymujemy

W przypadku sumowania od $k_{min}=-4$ do $k_{max}=4$ otrzymujemy

W przypadku sumowania od $k_{\min} = -10$ do $k_{\max} = 10$ otrzymujemy

W przypadku sumowania od $k_{\min} = -20$ do $k_{\max} = 20$ otrzymujemy

W granicy sumowania od $k_{min}=-\infty$ do $k_{max}=\infty$ otrzymujemy oryginalny sygnał.

Zadanie 19. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku oraz narysuj jego widmo amplitudowe i fazowe

W pierwszej kolejności opiszmy sygnał za pomocą sygnałów elementarnych:

$$f(t) = A \cdot \Pi(\frac{t}{\tau}) \tag{76}$$

Transformatę Fouriera obliczamy ze wzoru:

$$F(j\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$$
 (77)

$$\begin{split} F(\jmath\omega) &= \int_{-\infty}^{\infty} f(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{\infty} A \cdot \Pi(\frac{t}{\tau}) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{-\frac{\tau}{2}} 0 \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} A \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{\frac{\tau}{2}}^{\infty} 0 \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{-\frac{\tau}{2}} 0 \cdot dt + \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} A \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{\frac{\tau}{2}}^{\infty} 0 \cdot dt \\ &= 0 + \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} A \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + 0 \\ &= A \cdot \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \begin{cases} z &= -\jmath \cdot \omega \cdot t \\ dz &= -\jmath \cdot \omega \cdot dt \\ dt &= \frac{1}{-\jmath \cdot \omega} \cdot dz \end{cases} \\ &= A \cdot \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \cdot e^{z} \cdot \frac{1}{-\jmath \cdot \omega} \cdot dz \\ &= A \cdot \frac{1}{-\jmath \cdot \omega} \cdot \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \cdot e^{z} \cdot dz \\ &= A \cdot \frac{1}{-\jmath \cdot \omega} \cdot e^{z} \Big|_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \\ &= A \cdot \frac{1}{-\jmath \cdot \omega} \cdot e^{-\jmath \cdot \omega \cdot t} \Big|_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \\ &= \frac{A}{-\jmath \cdot \omega} \cdot \left(e^{-\jmath \cdot \omega \cdot \frac{\tau}{2}} - e^{-\jmath \cdot \omega \cdot (-\frac{\tau}{2})} \right) \end{split}$$

$$= \frac{A}{j \cdot \omega} \cdot \left(e^{j \cdot \omega \cdot \frac{\tau}{2}} - e^{-j \cdot \omega \cdot \frac{\tau}{2}} \right)$$

$$= \left\{ sin(x) = \frac{e^{j \cdot x} - e^{-j \cdot x}}{2 \cdot j} \right\}$$

$$= \frac{2 \cdot A}{\omega} \cdot sin\left(\omega \cdot \frac{\tau}{2}\right)$$

$$= \left\{ \frac{sin(x)}{x} = Sa(x) \right\}$$

$$= A \cdot \tau \cdot Sa\left(\omega \cdot \frac{\tau}{2}\right)$$

Transformata sygnału $f(t)=A\cdot\Pi(\frac{t}{\tau})$ to $F(\jmath\omega)=A\cdot\tau\cdot Sa\left(\omega\cdot\frac{\tau}{2}\right)$ Narysujmy widmo sygnału $f(t)=A\cdot\Pi(\frac{t}{\tau})$ czyli:

$$F(j\omega) = A \cdot \tau \cdot Sa\left(\omega \cdot \frac{\tau}{2}\right) \tag{78}$$

Widmo amplitudowe obliczamy ze wzoru:

$$M(\omega) = |F(j \cdot \omega)| \tag{79}$$

Widmo fazowe obliczamy ze wzoru:

$$\Phi(\omega) = arctg(\frac{Im\{F(j \cdot \omega)\}}{Re\{F(j \cdot \omega)\}})$$
(80)

Zadanie 20. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku oraz narysuj jego widmo amplitudowe i fazowe

$$f(t) = \begin{cases} 0 & dla & t \in (-\infty, 0) \\ A \cdot e^{-a \cdot t} & dla & t \in (0, \infty) \end{cases}$$
(81)

Transformatę Fouriera obliczamy ze wzoru:

$$F(j\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$$
 (82)

$$\begin{split} F(\jmath\omega) &= \int_{-\infty}^{\infty} f(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{0} 0 \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{0}^{\infty} A \cdot e^{-a \cdot t} \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{0} 0 \cdot dt + \int_{0}^{\infty} A \cdot e^{-a \cdot t} \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= 0 + \int_{0}^{\infty} A \cdot e^{-a \cdot t} \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{0}^{\infty} A \cdot e^{-a \cdot t} \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{0}^{\infty} A \cdot e^{-a \cdot t} \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= A \cdot \int_{0}^{\infty} e^{-(a + \jmath \cdot \omega) \cdot t} \cdot dt \\ &= \lim_{\tau \to \infty} A \cdot \int_{0}^{\tau} e^{-(a + \jmath \cdot \omega) \cdot t} \cdot dt \\ &= \left\{ \begin{aligned} z &= -(a + \jmath \cdot \omega) \cdot t \\ dz &= -(a + \jmath \cdot \omega) \cdot dt \\ dt &= \frac{1}{-(a + \jmath \cdot \omega)} \cdot dz \end{aligned} \right. \\ &= \lim_{\tau \to \infty} A \cdot \int_{0}^{\tau} e^{z} \cdot \frac{1}{-(a + \jmath \cdot \omega)} \cdot dz \\ &= A \cdot \frac{1}{-(a + \jmath \cdot \omega)} \cdot \lim_{\tau \to \infty} \int_{0}^{\tau} e^{z} \cdot dz \\ &= A \cdot \frac{1}{-(a + \jmath \cdot \omega)} \cdot \lim_{\tau \to \infty} e^{z} \Big|_{0}^{\tau} \\ &= \frac{A}{-(a + \jmath \cdot \omega)} \cdot \lim_{\tau \to \infty} \left. e^{-(a + \jmath \cdot \omega) \cdot \tau} - e^{-(a + \jmath \cdot \omega) \cdot 0} \right) \end{aligned}$$

$$\begin{split} &= \frac{A}{-(a+\jmath\cdot\omega)} \cdot \lim_{\tau\to\infty} \left(e^{-(a+\jmath\cdot\omega)\cdot\tau} - e^{0}\right) \\ &= \frac{A}{-(a+\jmath\cdot\omega)} \cdot \lim_{\tau\to\infty} \left(e^{-(a+\jmath\cdot\omega)\cdot\tau} - 1\right) \\ &= \frac{A}{-(a+\jmath\cdot\omega)} \cdot \left(\lim_{\tau\to\infty} e^{-(a+\jmath\cdot\omega)\cdot\tau} - 1\right) \\ &= \frac{A}{-(a+\jmath\cdot\omega)} \cdot \left(\lim_{\tau\to\infty} e^{-a\cdot\tau+\jmath\cdot\omega\cdot\tau} - 1\right) \\ &= \frac{A}{-(a+\jmath\cdot\omega)} \cdot \left(\lim_{\tau\to\infty} e^{-a\cdot\tau} \cdot e^{\jmath\cdot\omega\cdot\tau} - 1\right) \\ &= \frac{A}{-(a+\jmath\cdot\omega)} \cdot \left(\lim_{\tau\to\infty} e^{-a\cdot\tau} \cdot \lim_{\tau\to\infty} e^{\jmath\cdot\omega\cdot\tau} - 1\right) \\ &= \frac{A}{-(a+\jmath\cdot\omega)} \cdot \left(0 \cdot \lim_{\tau\to\infty} e^{\jmath\cdot\omega\cdot\tau} - 1\right) \\ &= \frac{A}{-(a+\jmath\cdot\omega)} \cdot \left(0 - 1\right) \\ &= \frac{A}{a+\jmath\cdot\omega} \end{split}$$

Transformata sygnału f(t) to $F(\jmath\omega) = \frac{A}{a+\jmath\cdot\omega}$

Wyznaczmy jawnie część rzeczywistą i urojoną transformaty:

$$F(\jmath\omega) = \frac{A}{(a+\jmath\cdot\omega)}$$

$$= \frac{A}{(a+\jmath\cdot\omega)} \cdot \frac{(a-\jmath\cdot\omega)}{(a-\jmath\cdot\omega)}$$

$$= \frac{A\cdot(a-\jmath\cdot\omega)}{(a^2+\omega^2)}$$

$$= \frac{A\cdot a}{(a^2+\omega^2)} - \jmath\cdot\frac{A\cdot\omega}{(a^2+\omega^2)}$$
(83)

Widmo amplitudowe obliczamy ze wzoru:

$$M(\omega) = |F(j\omega)|$$

$$= \sqrt{\left(\frac{A \cdot a}{(a^2 + \omega^2)}\right)^2 + \left(\frac{-A \cdot \omega}{(a^2 + \omega^2)}\right)^2}$$

$$= \sqrt{\frac{A^2 \cdot (a^2 + \omega^2)}{(a^2 + \omega^2)^2}}$$

$$= \sqrt{\frac{A^2}{(a^2 + \omega^2)}}$$

$$= \frac{A}{\sqrt{a^2 + \omega^2}}$$
(84)

Widmo fazowe obliczamy ze wzoru:

Zadanie 21. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku

W pierwszej kolejności należy ustalić wzór funkcji przedstawionej na rysunku. Wykorzystując sygnały elementarne możemy napisać:

$$f(t) = A \cdot \Lambda(\frac{t}{t_0}) \tag{86}$$

Transformatę Fouriera obliczamy ze wzoru:

$$F(j\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$$
 (87)

Do obliczenia całki potrzebujemy jawnej postaci równań opisujących proste na odcinkach $(-t_0, 0)$ oraz $(0, t_0)$

Ogólne równanie prostej to:

$$f(t) = m \cdot t + b \tag{88}$$

Dla pierwszego zakresu wartości t wykres funkcji jest prostą przechodzącą przez dwa punkty: $(-t_0,0)$ oraz (0,A). Możemy więc napisać układ równań, rozwiązać go i wyznaczyć parametry prostej m i b.

$$\begin{cases} 0 = m \cdot (-t_0) + b \\ A = m \cdot 0 + b \end{cases}$$

$$\begin{cases} -b = m \cdot (-t_0) \\ A = b \end{cases}$$

$$\begin{cases} \frac{b}{t_0} = m \\ A = b \end{cases}$$

$$\begin{cases} A = b \\ \frac{A}{t_0} = m \end{cases}$$

Równianie prostej dla t z zakresu $(-t_0, 0)$ to:

$$f(t) = \frac{A}{t_0} \cdot t + A$$

Dla drugiego zakresu wartości t wykres funkcji jest prostą przechodzącą przez dwa punkty: (0, A) oraz $(t_0, 0)$. Możemy więc napisać układ równań, rozwiązać go i wyznaczyć parametry prostej m i b.

$$\begin{cases}
0 = m \cdot t_0 + b \\
A = m \cdot 0 + b
\end{cases}$$

$$\begin{cases}
-b = m \cdot t_0 \\
A = b
\end{cases}$$

$$\begin{cases}
-\frac{b}{t_0} = m \\
A = b
\end{cases}$$

$$\begin{cases}
A = b \\
-\frac{A}{t_0} = m
\end{cases}$$

Równianie prostej dla t z zakresu $(0, t_0)$ to:

$$f(t) = -\frac{A}{t_0} \cdot t + A$$

Podsumowując, sygnal f(t) możemy opisać jako:

$$f(t) = A \cdot \Lambda(\frac{t}{t_0}) = \begin{cases} 0 & dla & t \in (-\infty; -t_0) \\ \frac{A}{t_0} \cdot t + A & dla & t \in (-t_0; 0) \\ -\frac{A}{t_0} \cdot t + A & dla & t \in (0; t_0) \\ 0 & dla & t \in (t_0; \infty) \end{cases}$$
(89)

$$\begin{split} F(\jmath\omega) &= \int_{-\infty}^{\infty} f(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{-t_0} 0 \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{-t_0}^{0} \left(\frac{A}{t_0} \cdot t + A\right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &+ \int_{0}^{t_0} \left(-\frac{A}{t_0} \cdot t + A\right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{t_0}^{\infty} 0 \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{-t_0} 0 \cdot dt + \int_{-t_0}^{0} \frac{A}{t_0} \cdot t \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{-t_0}^{0} A \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &+ \int_{0}^{t_0} -\frac{A}{t_0} \cdot t \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{0}^{t_0} A \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{t_0}^{\infty} 0 \cdot dt \\ &= 0 + \frac{A}{t_0} \cdot \int_{-t_0}^{0} t \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + A \cdot \int_{0}^{0} e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &- \frac{A}{t_0} \cdot \int_{0}^{t_0} t \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + A \cdot \int_{0}^{t_0} e^{-\jmath \cdot \omega \cdot t} \cdot dt + 0 \\ &= \begin{cases} u &= t \quad dv \quad = e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ du &= dt \quad v \quad = \frac{1}{-\jmath \cdot \omega} \cdot e^{-\jmath \cdot \omega \cdot t} \end{cases} \\ &= \frac{A}{t_0} \cdot \left(t \cdot \frac{1}{-\jmath \cdot \omega} \cdot e^{-\jmath \cdot \omega \cdot t} \right)_{-t_0}^{0} - \int_{-t_0}^{0} \frac{1}{-\jmath \cdot \omega} \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \right) \\ &+ A \cdot \left(\frac{1}{-\jmath \cdot \omega} \cdot e^{-\jmath \cdot \omega \cdot t} \right)_{-t_0}^{0} \end{split}$$

$$\begin{split} &-\frac{A}{t_0} \cdot \left(t \cdot \frac{1}{-j \cdot \omega} \cdot e^{-j\omega t} \Big|_0^{t_0} - \int_0^{t_0} \frac{1}{-j \cdot \omega} \cdot e^{-j\omega t} \cdot dt\right) \\ &+ A \cdot \left(\frac{1}{-j \cdot \omega} \cdot e^{-j\omega t} \Big|_0^{t_0}\right) \\ &= \frac{A}{t_0} \cdot \left(0 \cdot e^{-j\omega \cdot 0} - (-t_0) \cdot \frac{1}{-j \cdot \omega} \cdot e^{-j\omega \cdot (-t_0)} + \frac{1}{j \cdot \omega} \left(\frac{1}{-j \cdot \omega} \cdot e^{-j\omega t} \Big|_{-t_0}^{0}\right)\right) \\ &+ \frac{A}{-j \cdot \omega} \cdot \left(e^{-j\omega \cdot 0} - e^{-j\omega \cdot (-t_0)}\right) \\ &- \frac{A}{t_0} \cdot \left(t_0 \cdot \frac{1}{-j \cdot \omega} \cdot e^{-j\omega \cdot t_0} - 0 \cdot e^{-j\omega \cdot 0} + \frac{1}{j \cdot \omega} \left(\frac{1}{-j \cdot \omega} \cdot e^{-j\omega \cdot t} \Big|_0^{t_0}\right)\right) \\ &+ \frac{A}{-j \cdot \omega} \cdot \left(e^{-j\omega \cdot t_0} - e^{-j\omega \cdot 0}\right) \\ &= \frac{A}{t_0} \cdot \left(0 - t_0 \cdot \frac{1}{j \cdot \omega} \cdot e^{j\omega \cdot t_0} - \frac{1}{j^2 \cdot \omega^2} \left(e^{-j\omega \cdot 0} - e^{-j\omega \cdot (-t_0)}\right)\right) \\ &- \frac{A}{j \cdot \omega} \cdot \left(t_0 \cdot \frac{1}{-j \cdot \omega} \cdot e^{-j\omega \cdot t_0} - 0 - \frac{1}{j^2 \cdot \omega^2} \left(e^{-j\omega \cdot t_0} - e^{-j\omega \cdot 0}\right)\right) \\ &- \frac{A}{j \cdot \omega} \cdot \left(e^{-j\omega \cdot t_0} - 1\right) \\ &= -\frac{A}{j \cdot \omega} \cdot e^{j\omega \cdot t_0} - \frac{A}{t_0 \cdot j^2 \cdot \omega^2} + \frac{A}{t_0 \cdot j^2 \cdot \omega^2} \cdot e^{j\omega \cdot t_0} - \frac{A}{j \cdot \omega} \cdot e^{j\omega \cdot t_0} \\ &+ \frac{A}{j \cdot \omega} \cdot e^{-j\omega \cdot t_0} + \frac{A}{t_0 \cdot j^2 \cdot \omega^2} \cdot \left(e^{j\omega \cdot t_0} + e^{-j\omega \cdot t_0}\right) \\ &= \frac{2 \cdot A}{t_0 \cdot j^2 \cdot \omega^2} + \frac{A}{t_0 \cdot j^2 \cdot \omega^2} \cdot \left(e^{j\omega \cdot t_0} + e^{-j\omega \cdot t_0}\right) \\ &= \frac{2 \cdot A}{t_0 \cdot \omega^2} \cdot \frac{A}{t_0 \cdot \omega^2} \cdot \left(e^{j\omega \cdot t_0} + e^{-j\omega \cdot t_0}\right) \\ &= \frac{2 \cdot A}{t_0 \cdot \omega^2} \cdot \left(1 - \cos(\omega \cdot t_0)\right) \\ &= \left\{ \frac{\sin^2(x)}{t_0 \cdot \omega^2} \cdot \left(1 - 1 + 2 \cdot \sin^2(x)\right) \\ &= \frac{2 \cdot A}{t_0 \cdot \omega^2} \cdot \left(1 - 1 + 2 \cdot \sin^2(x)\right) \\ &= \frac{4 \cdot t_0}{t_0 \cdot \omega^2} \cdot \sin^2(\frac{\omega \cdot t_0}{2}\right) \\ &= \frac{4 \cdot t_0}{t_0 \cdot \omega^2} \cdot \sin^2(\frac{\omega \cdot t_0}{2}\right) \\ &= \frac{4 \cdot t_0}{t_0 \cdot \omega^2} \cdot \sin^2(\frac{\omega \cdot t_0}{2}\right) \\ &= \frac{4 \cdot t_0}{t_0 \cdot \omega^2} \cdot \sin^2(\frac{\omega \cdot t_0}{2}\right) \\ &= \frac{4 \cdot t_0}{t_0 \cdot \omega^2} \cdot \sin^2(\frac{\omega \cdot t_0}{2}\right) \\ &= \frac{4 \cdot t_0}{t_0 \cdot \omega^2} \cdot \sin^2(\frac{\omega \cdot t_0}{2}\right) \\ &= \frac{4 \cdot t_0}{t_0 \cdot \omega^2} \cdot \sin^2(\frac{\omega \cdot t_0}{2}\right) \\ &= \frac{4 \cdot t_0}{t_0 \cdot \omega^2} \cdot \sin^2(\frac{\omega \cdot t_0}{2}\right) \\ &= \frac{4 \cdot t_0}{t_0 \cdot \omega^2} \cdot \sin^2(\frac{\omega \cdot t_0}{2}\right) \end{aligned}$$

Transformata sygnału $f(t)=A\cdot\Lambda(\frac{t}{t_0})$ to $F(\jmath\omega)=A\cdot t_0\cdot Sa^2(\frac{\omega\cdot t_0}{2})$

Zadanie 22. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku

$$f(t) = \begin{cases} 0 & dla \quad t \in (-\infty; 0) \\ e^{-a \cdot t} \cdot \sin(\omega_0 \cdot t) & dla \quad t \in (0; \infty) \end{cases}$$

$$(90)$$

Transformatę Fouriera obliczamy ze wzoru:

$$F(j\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$$
 (91)

$$\begin{split} F(\jmath\omega) &= \int_{-\infty}^{\infty} f(t) \cdot e^{-\jmath \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{0} 0 \cdot e^{-\jmath \omega \cdot t} \cdot dt + \int_{0}^{\infty} e^{-a \cdot t} \cdot \sin(\omega_{0} \cdot t) \cdot e^{-\jmath \omega \cdot t} \cdot dt \\ &= \left\{ \sin(x) = \frac{e^{\jmath \cdot x} - e^{-\jmath \cdot x}}{2 \cdot \jmath} \right\} \\ &= \int_{-\infty}^{0} 0 \cdot dt + \int_{0}^{\infty} e^{-a \cdot t} \cdot \left(\frac{e^{\jmath \cdot \omega_{0} \cdot t} - e^{-\jmath \cdot \omega_{0} \cdot t}}{2 \cdot \jmath} \right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= 0 + \lim_{\tau \to \infty} \frac{1}{2 \cdot \jmath} \left(\int_{0}^{\tau} e^{-a \cdot t} \cdot e^{\jmath \cdot \omega_{0} \cdot t} \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt - \int_{0}^{\tau} e^{-a \cdot t} \cdot e^{-\jmath \cdot \omega_{0} \cdot t} \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \right) \\ &= \lim_{\tau \to \infty} \frac{1}{2 \cdot \jmath} \left(\int_{0}^{\tau} e^{(-a + \jmath \cdot \omega_{0} - \jmath \cdot \omega) \cdot t} \cdot dt - \int_{0}^{\tau} e^{(-a - \jmath \cdot \omega_{0} - \jmath \cdot \omega) \cdot t} \cdot dt \right) \\ &= \left\{ \begin{aligned} z &= \left(-a + \jmath \cdot \omega_{0} - \jmath \cdot \omega \right) \cdot t & w &= \left(-a - \jmath \cdot \omega_{0} - \jmath \cdot \omega \right) \cdot t \\ dt &= \left(-a + \jmath \cdot \omega_{0} - \jmath \cdot \omega \right) \cdot dt & dw &= \left(-a - \jmath \cdot \omega_{0} - \jmath \cdot \omega \right) \cdot dt \end{aligned} \right. \\ &= \lim_{\tau \to \infty} \frac{1}{2 \cdot \jmath} \int_{0}^{\tau} e^{z} \cdot \frac{dz}{\left(-a + \jmath \cdot \omega_{0} - \jmath \cdot \omega \right)} - \lim_{\tau \to \infty} \frac{1}{2 \cdot \jmath} \int_{0}^{\tau} e^{w} \cdot \frac{dw}{\left(-a - \jmath \cdot \omega_{0} - \jmath \cdot \omega \right)} \\ &= \frac{1}{2 \cdot \jmath \cdot \left(-a + \jmath \cdot \omega_{0} - \jmath \cdot \omega \right)} \cdot \lim_{\tau \to \infty} \int_{0}^{\tau} e^{z} \cdot dz - \frac{1}{2 \cdot \jmath \cdot \left(-a - \jmath \cdot \omega_{0} - \jmath \cdot \omega \right)} \cdot \lim_{\tau \to \infty} \int_{0}^{\tau} e^{w} \cdot dw \\ &= \frac{1}{2 \cdot \jmath \cdot \left(-a + \jmath \cdot \omega_{0} - \jmath \cdot \omega \right)} \cdot \lim_{\tau \to \infty} e^{z} \Big|_{0}^{\tau} - \frac{1}{2 \cdot \jmath \cdot \left(-a - \jmath \cdot \omega_{0} - \jmath \cdot \omega \right)} \cdot \lim_{\tau \to \infty} e^{w} \Big|_{0}^{\tau} \\ &= \frac{1}{2 \cdot \jmath \cdot \left(-a + \jmath \cdot \omega_{0} - \jmath \cdot \omega \right)} \cdot \lim_{\tau \to \infty} e^{\left(-a + \jmath \cdot \omega_{0} - \jmath \omega \right) \cdot t} \Big|_{0}^{\tau} \end{aligned}$$

$$\begin{split} &= \frac{1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \lim_{\tau \to \infty} \left(e^{(-a + j \omega_0 - j \omega) \cdot \tau} - e^{(-a + j \omega_0 - j \omega) \cdot 0} \right) \\ &- \frac{1}{2 \cdot j \cdot (-a - j \cdot \omega_0 - j \cdot \omega)} \cdot \lim_{\tau \to \infty} \left(e^{(-a - j \omega_0 - j \omega) \cdot \tau} - e^{(-a - j \omega_0 - j \omega) \cdot 0} \right) \\ &= \frac{1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \left(\lim_{\tau \to \infty} \left(e^{-a \cdot \tau} \cdot e^{(j \omega_0 - j \omega) \cdot \tau} \right) - \lim_{\tau \to \infty} 1 \right) \\ &- \frac{1}{2 \cdot j \cdot (-a - j \cdot \omega_0 - j \cdot \omega)} \cdot \left(\lim_{\tau \to \infty} \left(e^{-a \cdot \tau} \cdot e^{(-j \omega_0 - j \omega) \cdot \tau} \right) - \lim_{\tau \to \infty} 1 \right) \\ &= \frac{1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \left(\lim_{\tau \to \infty} \left(e^{-a \cdot \tau} \cdot e^{(-j \omega_0 - j \omega) \cdot \tau} \right) - 1 \right) \\ &- \frac{1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \left(\lim_{\tau \to \infty} \left(e^{-a \cdot \tau} \right) \cdot \lim_{\tau \to \infty} e^{(-j \omega_0 - j \omega) \cdot \tau} - 1 \right) \\ &= \frac{1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \left(0 \cdot \lim_{\tau \to \infty} e^{(-j \omega_0 - j \omega) \cdot \tau} - 1 \right) \\ &= \frac{1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \left(0 \cdot \lim_{\tau \to \infty} e^{(-j \omega_0 - j \omega) \cdot \tau} - 1 \right) \\ &= \frac{1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \left(0 \cdot \lim_{\tau \to \infty} e^{(-j \omega_0 - j \omega) \cdot \tau} - 1 \right) \\ &= \frac{-1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} + \frac{1}{2 \cdot j \cdot (-a - j \cdot \omega_0 - j \cdot \omega)} \\ &= \frac{-(2 \cdot j \cdot (-a - j \cdot \omega_0 - j \cdot \omega)) + 2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega) + 2 \cdot j \cdot (-a - j \cdot \omega_0 - j \cdot \omega)} \\ &= \frac{2 \cdot j \cdot a + 2 \cdot j^2 \cdot \omega_0 + 2 \cdot j^2 \cdot \omega - 2 \cdot j \cdot a + 2 \cdot j^2 \cdot \omega_0 - 2 \cdot j^2 \cdot \omega}{4 \cdot j^2 \cdot (a^2 + 2 \cdot a \cdot j \cdot \omega - j^2 \cdot \omega_0^2 + j^2 \cdot \omega^2)} \\ &= \frac{\omega_0}{4 \cdot j^2 \cdot (a^2 + 2 \cdot a \cdot j \cdot \omega - j^2 \cdot \omega_0^2 + j^2 \cdot \omega^2)} \\ &= \frac{\omega_0}{\omega_0^2 + (a^2 + 2 \cdot a \cdot j \cdot \omega - \omega^2)} \\ &= \frac{\omega_0}{\omega_0^2 + (a^2 + 2 \cdot a \cdot j \cdot \omega - \omega^2)} \\ &= \frac{\omega_0}{\omega_0^2 + (a^2 + 2 \cdot a \cdot j \cdot \omega - \omega^2)} \end{aligned}$$

Transformata sygnalu f(t) to $F(j\omega) = \frac{\omega_0}{\omega_0^2 + (a + j \cdot \omega)^2}$

Widmo amplitudowe obliczamy ze wzoru:

$$M(\omega) = |F(j\omega)|$$

$$= \left| \frac{\omega_0}{\omega_0^2 + (a+j\cdot\omega)^2} \right|$$

$$= \left| \frac{\omega_0}{\omega_0^2 + a^2 + 2 \cdot a \cdot j \cdot \omega + (j \cdot \omega)^2} \right|$$

$$= \left| \frac{\omega_0}{\omega_0^2 + a^2 + 2 \cdot a \cdot j \cdot \omega - \omega^2} \right|$$

$$= \left| \frac{\omega_0}{\omega_0^2 - \omega^2 + a^2 + j \cdot 2 \cdot a \cdot \omega} \right|$$

$$= \left\{ \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|} \right\}$$

$$= \frac{|\omega_0|}{|\omega_0^2 - \omega^2 + a^2 + j \cdot 2 \cdot a \cdot \omega|}$$

$$= \left\{ |a + \jmath \cdot b| = \sqrt{a^2 + b^2} \right\}$$
$$= \frac{\omega_0}{\sqrt{\left(\omega_0^2 - \omega^2 + a^2\right)^2 + \left(2 \cdot a \cdot \omega\right)^2}}$$

Widmo fazowe obliczamy ze wzoru:

$$\begin{split} &\Phi(\omega) = arg \left(\frac{\omega_0}{\omega_0^2 + (a + \jmath \cdot \omega)^2} \right) \\ &= arg \left(\frac{\omega_0}{\omega_0^2 + a^2 + 2 \cdot a \cdot \jmath \cdot \omega + (\jmath \cdot \omega)^2} \right) \\ &= arg \left(\frac{\omega_0}{\omega_0^2 + a^2 + 2 \cdot a \cdot \jmath \cdot \omega - \omega^2} \right) \\ &= arg \left(\frac{\omega_0}{\omega_0^2 - \omega^2 + a^2 + \jmath \cdot 2 \cdot a \cdot \omega} \right) \\ &= \left\{ arg \left(\frac{z_1}{z_2} \right) = arg \left(z_1 \right) - arg \left(z_2 \right) \right\} \\ &= arg \left(\omega_0 \right) - arg \left(\omega_0^2 - \omega^2 + a^2 + \jmath \cdot 2 \cdot a \cdot \omega \right) \\ &= \left\{ arg \left(a + \jmath \cdot b \right) = arctg \left(\frac{b}{a} \right) \right\} \\ &= arctg \left(\frac{0}{\omega_0} \right) - arctg \left(\frac{2 \cdot a \cdot \omega}{\omega_0^2 - \omega^2 + a^2} \right) \\ &= arctg \left(0 \right) - arctg \left(\frac{2 \cdot a \cdot \omega}{\omega_0^2 - \omega^2 + a^2} \right) \\ &= 0 - arctg \left(\frac{2 \cdot a \cdot \omega}{\omega_0^2 - \omega^2 + a^2} \right) \\ &= -arctg \left(\frac{2 \cdot a \cdot \omega}{\omega_0^2 - \omega^2 + a^2} \right) \end{split}$$

Zadanie 23. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku oraz narysuj jego widmo amplitudowe i fazowe

W pierwszej kolejności opiszmy sygnał za pomocą sygnałów elementarnych:

$$f(t) = A \cdot \delta(t - t_0) - A \cdot \delta(t + t_0) \tag{92}$$

Transformatę Fouriera obliczamy ze wzoru:

$$F(j\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$$
 (93)

$$F(\jmath\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= \int_{-\infty}^{\infty} (A \cdot \delta(t - t_0) - A \cdot \delta(t + t_0)) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= \int_{-\infty}^{\infty} A \cdot \delta(t - t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt - \int_{-\infty}^{\infty} A \cdot \delta(t + t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= A \cdot \int_{-\infty}^{\infty} \delta(t - t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt - A \cdot \int_{-\infty}^{\infty} \delta(t + t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= \left\{ \int_{-\infty}^{\infty} \delta(t - t_0) \cdot f(t) \cdot dt = f(t_0) \right\}$$

$$= A \cdot e^{-\jmath \cdot \omega \cdot t_0} - A \cdot e^{-\jmath \cdot \omega \cdot (-t_0)}$$

$$= A \cdot e^{-\jmath \cdot \omega \cdot t_0} - A \cdot e^{\jmath \cdot \omega \cdot t_0}$$

$$= A \cdot \left(e^{-\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right)$$

$$= A \cdot \left(e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right)$$

$$= -A \cdot \left(e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right)$$

$$= -A \cdot \left(e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right)$$

$$= \left\{ \sin(x) = \frac{e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0}}{2 \cdot \jmath} \right\}$$

$$= \left\{ \sin(x) = \frac{e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0}}{2 \cdot \jmath} \right\}$$

$$= -2 \cdot \jmath \cdot A \cdot \sin(\omega \cdot t_0)$$

Transformata sygnału $f(t) = A \cdot \delta(t - t_0) - A \cdot \delta(t + t_0)$ to $F(\jmath \omega) = -2 \cdot \jmath \cdot A \cdot \sin(\omega \cdot t_0)$ Narysujmy widmo sygnału $f(t) = A \cdot \delta(t - t_0) - A \cdot \delta(t + t_0)$ czyli:

$$F(j\omega) = -2 \cdot j \cdot A \cdot \sin(\omega \cdot t_0) \tag{94}$$

Widmo amplitudowe obliczamy ze wzoru:

$$M(\omega) = |F(j \cdot \omega)| \tag{95}$$

Widmo fazowe obliczamy ze wzoru:

$$\Phi(\omega) = arctg(\frac{Im\{F(j \cdot \omega)\}}{Re\{F(j \cdot \omega)\}})$$
(96)

Zadanie 24. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku oraz narysuj jego widmo amplitudowe i fazowe

$$f(t) = \begin{cases} 0 & t \in (-\infty; -t_0) \\ A \cdot \cos\left(\frac{2\pi}{t_0} \cdot t\right) & t \in (-t_0; t_0) \\ 0 & t \in (t_0; \infty) \end{cases}$$

$$(97)$$

Transformatę Fouriera obliczamy ze wzoru:

$$F(j\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$$
 (98)

$$\begin{split} F(\jmath\omega) &= \int_{-\infty}^{\infty} f(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{-t_0} 0 \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{-t_0}^{t_0} A \cdot \cos\left(\frac{2\pi}{t_0} \cdot t\right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{t_0}^{\infty} 0 \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \left\{\cos(x) = \frac{e^{\jmath \cdot x} + e^{-\jmath \cdot x}}{2}\right\} \\ &= \int_{-\infty}^{-t_0} 0 \cdot dt + \int_{-t_0}^{t_0} A \cdot \frac{e^{\jmath \cdot \frac{2\pi}{t_0} \cdot t} + e^{-\jmath \cdot \frac{2\pi}{t_0} \cdot t}}{2} \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{t_0}^{\infty} 0 \cdot dt \\ &= 0 + \frac{A}{2} \cdot \int_{-t_0}^{t_0} \left(e^{\jmath \cdot \frac{2\pi}{t_0} \cdot t} + e^{-\jmath \cdot \frac{2\pi}{t_0} \cdot t}\right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + 0 \\ &= \frac{A}{2} \cdot \int_{-t_0}^{t_0} \left(e^{\jmath \cdot \frac{2\pi}{t_0} \cdot t} \cdot e^{-\jmath \cdot \omega \cdot t} + e^{-\jmath \cdot \frac{2\pi}{t_0} \cdot t} \cdot e^{-\jmath \cdot \omega \cdot t}\right) \cdot dt \\ &= \frac{A}{2} \cdot \int_{-t_0}^{t_0} \left(e^{\jmath \cdot \frac{2\pi}{t_0} \cdot t} - \jmath \cdot \omega \cdot t + e^{-\jmath \cdot \frac{2\pi}{t_0} \cdot t} - \jmath \cdot \omega \cdot t\right) \cdot dt \\ &= \frac{A}{2} \cdot \int_{-t_0}^{t_0} \left(e^{\jmath \cdot \left(\frac{2\pi}{t_0} - \omega\right) \cdot t} + e^{-\jmath \cdot \left(\frac{2\pi}{t_0} + \omega\right) \cdot t}\right) \cdot dt \\ &= \frac{A}{2} \cdot \left(\int_{-t_0}^{t_0} e^{\jmath \cdot \left(\frac{2\pi}{t_0} - \omega\right) \cdot t} \cdot dt + \int_{-t_0}^{t_0} e^{-\jmath \cdot \left(\frac{2\pi}{t_0} + \omega\right) \cdot t} \cdot dt\right) \\ &= \begin{cases} z_1 = \jmath \cdot \left(\frac{2\pi}{t_0} - \omega\right) \cdot t & z_2 = -\jmath \cdot \left(\frac{2\pi}{t_0} + \omega\right) \cdot t \\ dz_1 = \jmath \cdot \left(\frac{2\pi}{t_0} - \omega\right) \cdot dt & dz_2 = -\jmath \cdot \left(\frac{2\pi}{t_0} + \omega\right) \cdot dt \end{cases} \\ dt = \frac{1}{\jmath \cdot \left(\frac{2\pi}{t_0} - \omega\right) \cdot dz_1} & dt = \frac{1}{-\jmath \cdot \left(\frac{2\pi}{t_0} + \omega\right) \cdot dz_2} \end{cases}$$

$$\begin{split} &=\frac{A}{2} \cdot \left(\int_{-t_0}^{t_0} e^{\pm i \cdot \frac{1}{J \cdot \left(\frac{2\pi}{4n} - \omega \right)} \cdot dz_1 + \int_{-t_0}^{t_0} e^{\pm i \cdot \frac{1}{J \cdot \left(\frac{2\pi}{4n} + \omega \right)} \cdot dz_2 \right)} \\ &=\frac{A}{2} \cdot \left(\frac{1}{J \cdot \left(\frac{2\pi}{4n} - \omega \right)} \cdot \int_{-t_0}^{t_0} e^{\pm i \cdot \frac{1}{J \cdot \left(\frac{2\pi}{4n} + \omega \right)} \cdot \int_{-t_0}^{t_0} e^{\pm i \cdot \frac{1}{J \cdot \left(\frac{2\pi}{4n} + \omega \right)} \cdot dz_2 \right)} \\ &=\frac{A}{2} \cdot \left(\frac{1}{J \cdot \left(\frac{2\pi}{4n} - \omega \right)} \cdot e^{\pm i \cdot \frac{1}{1 \cdot t_0}} + \frac{1}{-J \cdot \left(\frac{2\pi}{4n} + \omega \right)} \cdot e^{\pm i \cdot \frac{1}{1 \cdot t_0}} \right) \\ &=\frac{A}{2} \cdot \left(\frac{1}{J \cdot \left(\frac{2\pi}{4n} - \omega \right)} \cdot e^{2 \cdot \left(\frac{2\pi}{4n} - \omega \right)} \cdot e^{J \cdot \left(\frac{2\pi}{4n} + \omega \right)} \cdot e^{-J \cdot \left(\frac{2\pi}{4n} + \omega \right)}$$

Transformata sygnału f(t) to $F(j\omega) = A \cdot t_0 \cdot \left(Sa\left(\left(\frac{2\pi}{t_0} - \omega \right) \cdot t_0 \right) + Sa\left(\left(\frac{2\pi}{t_0} + \omega \right) \cdot t_0 \right) \right)$

Narysujmy widmo sygnału f(t) czyli:

$$F(j\omega) = A \cdot t_0 \cdot \left(Sa\left(\left(\frac{2\pi}{t_0} - \omega \right) \cdot t_0 \right) + Sa\left(\left(\frac{2\pi}{t_0} + \omega \right) \cdot t_0 \right) \right)$$
(99)

Widmo amplitudowe obliczamy ze wzoru:

$$M(\omega) = |F(j \cdot \omega)| \tag{100}$$

Widmo fazowe obliczamy ze wzoru:

$$\Phi(\omega) = arctg(\frac{Im\{F(j \cdot \omega)\}}{Re\{F(j \cdot \omega)\}})$$
(101)

Zadanie 25. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku wykorzystując twierdzenia opisujące własciwości transformacji Fouriera. Wykorzystaj informację o tym, że $\mathcal{F}\{\Pi(t)\} = Sa\left(\frac{\omega}{2}\right)$.

W pierwszej kolejności należy ustalić wzór funkcji przedstawionej na rysunku. Wykorzystując sygnały elementarne możemy napisać:

$$f(t) = A \cdot \Lambda(\frac{t}{t_0}) \tag{102}$$

Wyznaczmy pochodną sygnału f(t), czyli sygnał $g(t) = \frac{\partial}{\partial t} f(t)$.

Sygnał g(t) można opisać, wykorzystując sygnały elementarne:

$$g(t) = \frac{A}{t_0} \cdot \Pi(\frac{t - (-\frac{t_0}{2})}{t_0}) - \frac{A}{t_0} \cdot \Pi(\frac{t - \frac{t_0}{2}}{t_0})$$
(103)

Można sprawdzić, że całkując sygnał g(t) otrzymamy sygnał f(t), czyli:

$$f(t) = \int_{-\infty}^{t} g(x) \cdot dx \tag{104}$$

Skoro tak jest, to transformatę sygnału f(t) mozna wyznaczyć z twierdzenia o całkowaniu sygnału, w tym przypadku całkować będziemy sygnał g(t):

$$F(j\omega) = \frac{1}{j \cdot \omega} \cdot G(j\omega) + \pi \cdot \delta(\omega) \cdot G(0)$$
(105)

Z powyzszego równania widać, że musimy znać $G(j\omega)$, czyli transformatę sygnału g(t):

$$g(t) = \frac{A}{t_0} \cdot \Pi(\frac{t - (-\frac{t_0}{2})}{t_0}) - \frac{A}{t_0} \cdot \Pi(\frac{t - \frac{t_0}{2}}{t_0})$$
(106)

Ponieważ transformacja Fouriera jest przekształceniem liniowym, dlatego można wyznaczyć osobno transformaty poszczególnych prostokątów, czyli:

$$g(t) = g_1(t) - g_2(t) (107)$$

gdzie:

$$g_1(t) = \frac{A}{t_0} \cdot \Pi(\frac{t - (-\frac{t_0}{2})}{t_0})$$
$$g_2(t) = \frac{A}{t_0} \cdot \Pi(\frac{t - \frac{t_0}{2}}{t_0})$$

Wyznaczmy transformtę sygnału $g_1(t)$, czyli $G_1(j\omega)$.

Z tablic matematycznych wiemy, że: $\mathcal{F}\{\Pi(t)\} = Sa\left(\frac{\omega}{2}\right)$.

$$\begin{split} \Pi(t) & \xrightarrow{\mathcal{F}} Sa\left(\frac{\omega}{2}\right) \\ & \Pi(\frac{t}{t_0}) \xrightarrow{\mathcal{F}} \frac{1}{\left|\frac{1}{t_0}\right|} \cdot Sa\left(\frac{\frac{\omega}{1}}{\frac{t_0}{t_0}}\right) \\ & \Pi(\frac{t}{t_0}) \xrightarrow{\mathcal{F}} t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \\ & \Pi(\frac{t - \left(-\frac{t_0}{2}\right)}{t_0}) \xrightarrow{\mathcal{F}} e^{-\jmath \cdot \omega \cdot \left(-\frac{t_0}{2}\right)} \cdot t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \\ & \Pi(\frac{t - \left(-\frac{t_0}{2}\right)}{t_0}) \xrightarrow{\mathcal{F}} e^{\jmath \cdot \omega \cdot \frac{t_0}{2}} \cdot t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \\ & \frac{A}{t_0} \cdot \Pi(\frac{t - \left(-\frac{t_0}{2}\right)}{t_0}) \xrightarrow{\mathcal{F}} A \cdot e^{\jmath \cdot \omega \cdot \frac{t_0}{2}} \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \\ & \frac{A}{t_0} \cdot \Pi(\frac{t - \left(-\frac{t_0}{2}\right)}{t_0}) \xrightarrow{\mathcal{F}} A \cdot e^{\jmath \cdot \omega \cdot \frac{t_0}{2}} \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \end{split}$$

Transformata sygnału $g_1(t)$ to:

$$G_1(j\omega) = \mathcal{F}\{g_1(t)\} = A \cdot e^{j \cdot \omega \cdot \frac{t_0}{2}} \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right)$$
(108)

Teraz wyznaczmy transformtę sygnału $g_2(t)$, czyli $G_2(j\omega)$.

$$\Pi(t) \xrightarrow{\mathcal{F}} Sa\left(\frac{\omega}{2}\right)$$

$$\Pi(\frac{t}{t_0}) \xrightarrow{\mathcal{F}} \frac{1}{\left|\frac{1}{t_0}\right|} \cdot Sa\left(\frac{\frac{\omega}{1}}{\frac{t_0}{t_0}}\right)$$

$$\Pi(\frac{t}{t_0}) \xrightarrow{\mathcal{F}} t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right)$$

$$\Pi(\frac{t - (\frac{t_0}{2})}{t_0}) \xrightarrow{\mathcal{F}} e^{-\jmath \cdot \omega \cdot (\frac{t_0}{2})} \cdot t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right)$$

$$\Pi(\frac{t - \frac{t_0}{2}}{t_0}) \xrightarrow{\mathcal{F}} e^{-\jmath \cdot \omega \cdot \frac{t_0}{2}} \cdot t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right)$$

$$\begin{split} &\frac{A}{t_0} \cdot \Pi(\frac{t - \frac{t_0}{2}}{t_0}) \xrightarrow{\mathcal{F}} & \frac{A}{t_0} \cdot e^{-\jmath \cdot \omega \cdot \frac{t_0}{2}} \cdot t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \\ &\frac{A}{t_0} \cdot \Pi(\frac{t - \frac{t_0}{2}}{t_0}) \xrightarrow{\mathcal{F}} & A \cdot e^{-\jmath \cdot \omega \cdot \frac{t_0}{2}} \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \end{split}$$

Transformata sygnału $g_2(t)$ to:

$$G_2(j\omega) = \mathcal{F}\{g_2(t)\} = A \cdot e^{-j \cdot \omega \cdot \frac{t_0}{2}} \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right)$$
(109)

Czyli transformata sygnału g(t) to:

$$G(\jmath\omega) = \mathcal{F}\{g(t)\} = A \cdot e^{\jmath \cdot \omega \cdot \frac{t_0}{2}} \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) - A \cdot e^{-\jmath \cdot \omega \cdot \frac{t_0}{2}} \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right)$$

$$G(\jmath\omega) = A \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot \left(e^{\jmath \cdot \omega \cdot \frac{t_0}{2}} - e^{-\jmath \cdot \omega \cdot \frac{t_0}{2}}\right)$$

$$G(\jmath\omega) = A \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot \left(e^{\jmath \cdot \omega \cdot \frac{t_0}{2}} - e^{-\jmath \cdot \omega \cdot \frac{t_0}{2}}\right)$$

$$\left\{sin(x) = \frac{e^{\jmath \cdot x} - e^{-\jmath \cdot x}}{2 \cdot \jmath}\right\}$$

$$G(\jmath\omega) = A \cdot 2 \cdot \jmath \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot sin\left(\frac{\omega \cdot t_0}{2}\right)$$

Mamy wyznaczoną transformatę $G(j\omega)$. Teraz, z twierdzenia o całkowaniu sygnału, możemy wyznaczyc transformatę sygnału f(t):

$$F(j\omega) = \frac{1}{j \cdot \omega} \cdot G(j\omega) + \pi \cdot \delta(\omega) \cdot G(0)$$
(110)

$$\begin{split} F(\jmath\omega) &= \frac{1}{\jmath \cdot \omega} \cdot G(\jmath\omega) + \pi \cdot \delta(\omega) \cdot G(0) \\ &= \frac{1}{\jmath \cdot \omega} \cdot A \cdot 2 \cdot \jmath \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot sin\left(\frac{\omega \cdot t_0}{2}\right) + \pi \cdot \delta(\omega) \cdot G(0) \\ \begin{cases} G(0) &= A \cdot 2 \cdot \jmath \cdot Sa\left(\frac{0 \cdot t_0}{2}\right) \cdot sin\left(\frac{0 \cdot t_0}{2}\right) \\ G(0) &= A \cdot 2 \cdot \jmath \cdot Sa(0) \cdot sin(0) \\ G(0) &= A \cdot 2 \cdot \jmath \cdot 1 \cdot 0 \\ G(0) &= 0 \end{cases} \\ &= \frac{1}{\jmath \cdot \omega} \cdot A \cdot 2 \cdot \jmath \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot sin\left(\frac{\omega \cdot t_0}{2}\right) \\ &= \left\{\frac{sin(x)}{x} = Sa(x)\right\} \\ &= \frac{A \cdot 2 \cdot t_0}{\omega \cdot t_0} \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot sin\left(\frac{\omega \cdot t_0}{2}\right) \\ &= A \cdot t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \\ &= A \cdot t_0 \cdot Sa^2(\frac{\omega \cdot t_0}{2}) \end{split}$$

Transformata sygnału $f(t)=A\cdot\Lambda(\frac{t}{t_0})$ to $F(\jmath\omega)=A\cdot t_0\cdot Sa^2(\frac{\omega\cdot t_0}{2})$

Zadanie 26. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku wykorzystując twierdzenia opisujące własciwości transformacji Fouriera.

W pierwszej kolejności należy ustalić wzór funkcji przedstawionej na rysunku. Wykorzystując sygnały elementarne możemy napisać:

$$f(t) = A \cdot \Lambda(\frac{t}{t_0}) \tag{111}$$

Wyznaczmy pochodną sygnału f(t), czyli sygnał $g(t) = \frac{\partial}{\partial t} f(t)$.

Można sprawdzić, że całkując sygnał g(t) otrzymamy sygnał f(t), czyli:

$$f(t) = \int_{-\infty}^{t} g(x) \cdot dx \tag{112}$$

Skoro tak jest, to transformatę sygnału f(t) mozna wyznaczyć z twierdzenia o całkowaniu sygnału, w tym przypadku całkować będziemy sygnał g(t):

$$F(j\omega) = \frac{1}{j \cdot \omega} \cdot G(j\omega) + \pi \cdot \delta(\omega) \cdot G(0)$$
(113)

Pytanie, czy można dalej uproście sygnał g(t) dokonując jego rózniczkowania. Wyznaczmy pochodną sygnału g(t), czyli drugą pochodną sygnału f(t):

$$h(t) = \frac{\partial}{\partial t}g(t) = \frac{\partial^2}{\partial t^2}f(t)$$
(114)

Sygnał h(t) można opisać, wykorzystując sygnały elementarne:

$$h(t) = \frac{A}{t_0} \cdot \delta(t - (-t_0)) - \frac{2 \cdot A}{t_0} \cdot \delta(t) + \frac{A}{t_0} \cdot \delta(t - (t_0))$$
(115)

Można sprawdzić, że całkując sygnał g(t) otrzymamy sygnał f(t), czyli:

$$g(t) = \int_{-\infty}^{t} h(x) \cdot dx \tag{116}$$

Skoro tak jest, to transformatę sygnału f(t) mozna wyznaczyć z twierdzenia o całkowaniu sygnału, w tym przypadku całkować będziemy sygnał g(t):

$$G(j\omega) = \frac{1}{j \cdot \omega} \cdot H(j\omega) + \pi \cdot \delta(\omega) \cdot H(0)$$
(117)

Z powyzszego równania widać, że musimy znać $H(j\omega)$, czyli transformatę sygnału h(t):

$$h(t) = \frac{A}{t_0} \cdot \delta(t - (-t_0)) - \frac{2 \cdot A}{t_0} \cdot \delta(t) + \frac{A}{t_0} \cdot \delta(t - (t_0))$$
(118)

Ponieważ transformacja Fouriera jest przekształceniem liniowym, dlatego można wyznaczyć osobno transformaty poszczególnych delt Diraca, czyli:

$$\begin{split} H(\jmath\omega) &= \mathcal{F}\{h(t)\} \\ &= \mathcal{F}\left\{\frac{A}{t_0} \cdot \delta(t - (-t_0)) - \frac{2 \cdot A}{t_0} \cdot \delta(t) + \frac{A}{t_0} \cdot \delta(t - (t_0))\right\} \\ &= \mathcal{F}\left\{\frac{A}{t_0} \cdot \delta(t - (-t_0))\right\} - \mathcal{F}\left\{\frac{2 \cdot A}{t_0} \cdot \delta(t)\right\} + \mathcal{F}\left\{\frac{A}{t_0} \cdot \delta(t - (t_0))\right\} \\ &= \frac{A}{t_0} \cdot \mathcal{F}\left\{\delta(t - (-t_0))\right\} - \frac{2 \cdot A}{t_0} \cdot \mathcal{F}\left\{\delta(t)\right\} + \frac{A}{t_0} \cdot \mathcal{F}\left\{\delta(t - (t_0))\right\} \\ &= \begin{cases} \delta(t) \xrightarrow{\mathcal{F}} 1 \\ \delta(t - (-t_0)) \xrightarrow{\mathcal{F}} 1 \cdot e^{-\jmath \cdot \omega \cdot (-t_0)} \\ \delta(t - (t_0)) \xrightarrow{\mathcal{F}} 1 \cdot e^{-\jmath \cdot \omega \cdot (-t_0)} \end{cases} \\ &= \frac{A}{t_0} \cdot e^{-\jmath \cdot \omega \cdot (-t_0)} - \frac{2 \cdot A}{t_0} \cdot 1 + \frac{A}{t_0} \cdot e^{-\jmath \cdot \omega \cdot t_0} \\ &= \frac{A}{t_0} \cdot \left(e^{\jmath \cdot \omega \cdot t_0} - 2 + e^{-\jmath \cdot \omega \cdot t_0}\right) \\ &\left\{\cos(x) = \frac{e^{\jmath \cdot x} + e^{-\jmath \cdot x}}{2}\right\} \end{split}$$

$$= \frac{A}{t_0} \cdot (2 \cdot \cos(\omega \cdot t_0) - 2)$$
$$= \frac{2 \cdot A}{t_0} \cdot (\cos(\omega \cdot t_0) - 1)$$

Czyli transformata sygnału h(t) to:

$$H(j\omega) = \frac{2 \cdot A}{t_0} \cdot (\cos(\omega \cdot t_0) - 1) \tag{119}$$

Mamy wyznaczoną transformatę $H(\jmath\omega)$. Teraz, z twierdzenia o całkowaniu sygnału, możemy wyznaczyć transformatę $G(\jmath\omega)$:

$$G(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot H(\jmath\omega) + \pi \cdot \delta(\omega) \cdot H(0)$$

$$= \frac{1}{\jmath \cdot \omega} \cdot \frac{2 \cdot A}{t_0} \cdot (\cos(\omega \cdot t_0) - 1) + \pi \cdot \delta(\omega) \cdot H(0)$$

$$\begin{cases} H(0) = \frac{2 \cdot A}{t_0} \cdot (\cos(0 \cdot t_0) - 1) \\ H(0) = \frac{2 \cdot A}{t_0} \cdot (\cos(0) - 1) \\ H(0) = \frac{2 \cdot A}{t_0} \cdot (1 - 1) \\ H(0) = 0 \end{cases}$$

$$= \frac{2 \cdot A}{\jmath \cdot \omega \cdot t_0} \cdot (\cos(\omega \cdot t_0) - 1)$$

Mamy wyznaczoną transformatę $G(j\omega)$. Teraz, kolejny raz z twierdzenia o całkowaniu sygnału, możemy wyznaczyć transformatę $F(j\omega)$:

$$\begin{split} F(\jmath\omega) &= \frac{1}{\jmath \cdot \omega} \cdot G(\jmath\omega) + \pi \cdot \delta(\omega) \cdot G(0) \\ &= \frac{1}{\jmath \cdot \omega} \cdot \frac{2 \cdot A}{\jmath \cdot \omega \cdot t_0} \cdot (\cos(\omega \cdot t_0) - 1) + \pi \cdot \delta(\omega) \cdot G(0) \\ \begin{cases} G(0) &= \frac{2 \cdot A}{\jmath \cdot 0 \cdot t_0} \cdot (\cos(0 \cdot t_0) - 1) \\ G(0) &= \frac{0}{0}!!! \\ G(0) &= \int_{-\infty}^{\infty} g(t) \cdot dt = \int_{-t_0}^{0} \frac{A}{t_0} \cdot dt + \int_{0}^{t_0} (-\frac{A}{t_0}) \cdot dt \\ G(0) &= \frac{A}{t_0} \cdot (0 - (-t_0)) - \frac{A}{t_0} \cdot (t_0 - 0) = A - A \\ G(0) &= 0 \end{cases} \\ &= \frac{1}{\jmath \cdot \omega} \cdot \frac{2 \cdot A}{\jmath \cdot \omega \cdot t_0} \cdot (\cos(\omega \cdot t_0) - 1) \\ &= \frac{2 \cdot A}{\jmath^2 \cdot \omega^2 \cdot t_0} \cdot (\cos(\omega \cdot t_0) - 1) \\ &= \frac{2 \cdot A}{\omega^2 \cdot t_0} \cdot (1 - \cos(\omega \cdot t_0)) \\ &\left\{ \sin^2(x) &= \frac{1}{2} - \frac{1}{2} \cdot \cos(2 \cdot x) \\ \cos(2 \cdot x) &= 1 - 2 \cdot \sin^2(x) \right\} \end{split}$$

$$\begin{split} &= \frac{2 \cdot A}{\omega^2 \cdot t_0} \cdot \left(1 - 1 + 2 \cdot \sin^2\left(\frac{\omega \cdot t_0}{2}\right)\right) \\ &= \frac{4 \cdot A}{\omega^2 \cdot t_0} \cdot \sin^2\left(\frac{\omega \cdot t_0}{2}\right) \\ &= \left\{\frac{\sin(x)}{x} = Sa(x)\right\} \\ &= A \cdot t_0 \cdot Sa^2(\frac{\omega \cdot t_0}{2}) \end{split}$$

Transformata sygnału $f(t)=A\cdot\Lambda(\frac{t}{t_0})$ to $F(\jmath\omega)=A\cdot t_0\cdot Sa^2(\frac{\omega\cdot t_0}{2})$

Zadanie 27. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku za pomocą twierdzeń.

$$f(t) = \begin{cases} 0 & t \in (-\infty; -t_0) \\ A & t \in (-t_0; t_0) \\ 0 & t \in (t_0; \infty) \end{cases}$$
 (120)

W pierwszej kolejności wyznaczamy pochodna sygnału f(t)

$$g(t) = f'(t) = \begin{cases} 0 & t \in (-\infty; -t_0) \\ 0 & t \in (-t_0; t_0) \\ 0 & t \in (t_0; \infty) \end{cases} + A \cdot \delta(t + t_0) - A \cdot \delta(t - t_0)$$
(121)

czyli po prostu

$$g(t) = f'(t) = A \cdot \delta(t + t_0) - A \cdot \delta(t - t_0)$$

$$\tag{122}$$

Wyznaczanie transformaty sygnału g(t) złożonego z delt diracka jest znacznie prostsze.

$$G(j\omega) = \int_{-\infty}^{\infty} g(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$$
 (123)

$$G(\jmath\omega) = \int_{-\infty}^{\infty} g(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= \int_{-\infty}^{\infty} (A \cdot \delta(t + t_0) - A \cdot \delta(t - t_0)) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= \int_{-\infty}^{\infty} \left(A \cdot \delta(t + t_0) \cdot e^{-\jmath \cdot \omega \cdot t} - A \cdot \delta(t - t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \right) \cdot dt$$

$$\begin{split} &= \int_{-\infty}^{\infty} A \cdot \delta(t+t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt - \int_{-\infty}^{\infty} A \cdot \delta(t-t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= A \cdot \int_{-\infty}^{\infty} \delta(t+t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt - A \cdot \int_{-\infty}^{\infty} \delta(t-t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \left\{ \int_{-\infty}^{\infty} \delta(t-t_0) \cdot f(t) \cdot dt = f(t_0) \right\} \\ &= A \cdot e^{-\jmath \cdot \omega \cdot (-t_0)} - A \cdot e^{-\jmath \cdot \omega \cdot t_0} \\ &= A \cdot e^{\jmath \cdot \omega \cdot t_0} - A \cdot e^{-\jmath \cdot \omega \cdot t_0} \\ &= A \cdot \left(e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right) \\ &= A \cdot \left(e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right) \\ &= A \cdot 2 \cdot \jmath \cdot \frac{e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0}}{2 \cdot \jmath} \\ &= \left\{ \sin \left(x \right) = \frac{e^{\jmath \cdot x} - e^{-\jmath \cdot x}}{2 \cdot \jmath} \right\} \\ &= A \cdot 2 \cdot \jmath \cdot \sin \left(\omega \cdot t_0 \right) \\ &= \jmath \cdot 2 \cdot A \cdot \sin \left(\omega \cdot t_0 \right) \end{split}$$

Transformata sygnału g(t) to $G(j\omega) = j \cdot 2 \cdot A \cdot \sin(\omega \cdot t_0)$

Następnie możemy wykorzystać twierdzenie o całkowaniu aby wyznaczyć transformatę sygnału f(t) na podstawie transformaty sygnału g(t) = f'(t)

$$g(t) \xrightarrow{\mathcal{F}} G(\jmath\omega)$$

$$f(t) = \int_{-\infty}^{t} g(\tau) \cdot d\tau \xrightarrow{\mathcal{F}} F(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot G(\jmath\omega) + \pi \cdot \delta(\omega) \cdot G(0)$$

Podstawiając obliczona wcześniej transformatę $G(j\omega)$ sygnału g(t) otrzymujemy transformatę $F(j\omega)$ sygnału f(t)

$$\begin{split} F(\jmath\omega) &= \frac{1}{\jmath \cdot \omega} \cdot G(\jmath\omega) + \pi \cdot \delta(0) \cdot G(0) \\ &= \frac{1}{\jmath \cdot \omega} \cdot \jmath \cdot 2 \cdot A \cdot \sin\left(\omega \cdot t_0\right) + \pi \cdot \delta(0) \cdot \jmath \cdot 2 \cdot A \cdot \sin\left(0 \cdot t_0\right) \\ &= \frac{1}{\omega} \cdot 2 \cdot A \cdot \sin\left(\omega \cdot t_0\right) + \pi \cdot \delta(0) \cdot \jmath \cdot 2 \cdot A \cdot \sin\left(0\right) \\ &= \frac{1}{\omega} \cdot 2 \cdot A \cdot \sin\left(\omega \cdot t_0\right) \cdot \frac{t_0}{t_0} + \pi \cdot \delta(0) \cdot \jmath \cdot 2 \cdot A \cdot 0 \\ &= 2 \cdot A \cdot t_0 \cdot \frac{\sin\left(\omega \cdot t_0\right)}{\omega \cdot t_0} + 0 \\ &= \left\{ Sa\left(x\right) = \frac{\sin(x)}{x} \right\} \\ &= 2 \cdot A \cdot t_0 \cdot Sa\left(\omega \cdot t_0\right) \end{split}$$

Ostatecznie transformata sygnału f(t) jest równa $F(j\omega) = 2 \cdot A \cdot t_0 \cdot Sa(\omega \cdot t_0)$.

Zadanie 28. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku za pomocą twierdzeń.

W pierwszej kolejności trzeba wyznaczyć jawną postać równań opisujących funkcję f(t).

W tym celu wyznaczamy równanie prostej na odcinku $(-t_0,t_0)$

Ogólne równanie prostej to:

$$f(t) = m \cdot t + b \tag{124}$$

Dla rozważanego zakresu wartości t wykres funkcji jest prostą przechodzącą przez dwa punkty: $(-t_0,0)$ oraz (t_0,A) . Możemy więc napisać układ równań, rozwiązać go i wyznaczyć parametry prostej m i b.

$$\begin{cases} 0 = m \cdot (-t_0) + b \\ A = m \cdot t_0 + b \end{cases}$$

$$\begin{cases} -b = m \cdot (-t_0) \\ A = m \cdot t_0 + b \end{cases}$$

$$\begin{cases} \frac{b}{t_0} = m \\ A = \frac{b}{t_0} \cdot t_0 + b \end{cases}$$

$$\begin{cases} \frac{b}{t_0} = m \\ A = b + b \end{cases}$$

$$\begin{cases} \frac{b}{t_0} = m \\ A = 2 \cdot b \end{cases}$$

$$\begin{cases} \frac{b}{t_0} = m \\ \frac{A}{2} = b \end{cases}$$

Równianie prostej dla t z zakresu $(-t_0, t_0)$ to:

$$f(t) = \frac{A}{2 \cdot t_0} \cdot t + \frac{A}{2}$$

Podsumowując, sygnal f(t) możemy opisać jako:

$$f(t) = \begin{cases} 0 & t \in (-\infty; -t_0) \\ \frac{A}{2 \cdot t_0} \cdot t + \frac{A}{2} & t \in (-t_0; t_0) \\ 0 & t \in (t_0; \infty) \end{cases}$$
 (125)

W pierwszej kolejności wyznaczamy pochodna sygnału f(t)

$$g(t) = f'(t) = \begin{cases} 0 & t \in (-\infty; -t_0) \\ \frac{A}{2 \cdot t_0} & t \in (-t_0; t_0) - A \cdot \delta(t - t_0) \\ 0 & t \in (t_0; \infty) \end{cases}$$
(126)

Funkcja g(t) składa się z dwóch sygnałów $g_1(t)$ i $g_2(t)$

$$g(t) = g_1(t) + g_2(t) (127)$$

$$g_1(t) = \begin{cases} 0 & t \in (-\infty; -t_0) \\ \frac{A}{2 \cdot t_0} & t \in (-t_0; t_0) \\ 0 & t \in (t_0; \infty) \end{cases}$$
 (128)

$$g_2(t) = -A \cdot \delta(t - t_0) \tag{129}$$

Wyznaczenie transformaty sygnału $g_2(t)$ złożonego z delty diracka jest znacznie prostsze.

$$G_2(j\omega) = \int_{-\infty}^{\infty} g_2(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$$
 (130)

Podstawiamy do wzoru na transformatę wzór naszej funkcji

$$G_{2}(\jmath\omega) = \int_{-\infty}^{\infty} g_{2}(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= \int_{-\infty}^{\infty} (-A \cdot \delta(t - t_{0})) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= -A \cdot \int_{-\infty}^{\infty} \delta(t - t_{0}) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= \left\{ \int_{-\infty}^{\infty} \delta(t - t_{0}) \cdot f(t) \cdot dt = f(t_{0}) \right\}$$

$$= -A \cdot e^{-\jmath \cdot \omega \cdot t_{0}}$$

Transformata sygnału $g_2(t)$ to $G_2(j\omega) = -A \cdot e^{-j \cdot \omega \cdot t_0}$

Funkcja $g_1(t)$ jest jeszcze zbyt złożona tak wiec wyznaczamy pochodną raz jeszcze

$$h(t) = g_1'(t) = \begin{cases} 0 & t \in (-\infty; -t_0) \\ 0 & t \in (-t_0; t_0) \\ 0 & t \in (t_0; \infty) \end{cases} + \frac{A}{2 \cdot t_0} \delta(t + t_0) - \frac{A}{2 \cdot t_0} \delta(t - t_0)$$

$$(131)$$

czyli po prostu

$$h(t) = g_1'(t) = \frac{A}{2 \cdot t_0} \delta(t + t_0) - \frac{A}{2 \cdot t_0} \delta(t - t_0)$$
(132)

Wyznaczanie transformaty sygnału h(t) złożonego z delt diracka jest znacznie prostsze.

$$H(j\omega) = \int_{-\infty}^{\infty} h(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$$
 (133)

Podstawiamy do wzoru na transformatę wzór naszej funkcji

$$\begin{split} H(\jmath\omega) &= \int_{-\infty}^{\infty} h(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{\infty} \left(\frac{A}{2 \cdot t_0} \cdot \delta(t + t_0) - \frac{A}{2 \cdot t_0} \cdot \delta(t - t_0) \right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{\infty} \left(\frac{A}{2 \cdot t_0} \cdot \delta(t + t_0) \cdot e^{-\jmath \cdot \omega \cdot t} - \frac{A}{2 \cdot t_0} \cdot \delta(t - t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \right) \cdot dt \\ &= \int_{-\infty}^{\infty} \frac{A}{2 \cdot t_0} \cdot \delta(t + t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt - \int_{-\infty}^{\infty} \frac{A}{2 \cdot t_0} \cdot \delta(t - t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \frac{A}{2 \cdot t_0} \cdot \int_{-\infty}^{\infty} \delta(t + t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt - \frac{A}{2 \cdot t_0} \cdot \int_{-\infty}^{\infty} \delta(t - t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \left\{ \int_{-\infty}^{\infty} \delta(t - t_0) \cdot f(t) \cdot dt = f(t_0) \right\} \\ &= \frac{A}{2 \cdot t_0} \cdot e^{-\jmath \cdot \omega \cdot (-t_0)} - \frac{A}{2 \cdot t_0} \cdot e^{-\jmath \cdot \omega \cdot t_0} \\ &= \frac{A}{2 \cdot t_0} \cdot \left(e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right) \\ &= \frac{A}{2 \cdot t_0} \cdot \left(e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right) \\ &= \frac{A}{2 \cdot t_0} \cdot \left(e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right) \\ &= \frac{A}{t_0} \cdot j \cdot \frac{e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0}}{2 \cdot j} \\ &= \left\{ \sin(x) = \frac{e^{\jmath \cdot x} - e^{-\jmath \cdot x}}{2 \cdot j} \right\} \\ &= \frac{A}{t_0} \cdot j \cdot \sin(\omega \cdot t_0) \\ &= j \cdot \frac{A}{t_0} \cdot \sin(\omega \cdot t_0) \end{split}$$

Transformata sygnału h(t) to $H(j\omega) = j \cdot \frac{A}{t_0} \cdot \sin(\omega \cdot t_0)$

Następnie możemy wykorzystać twierdzenie o całkowaniu aby wyznaczyć transformatę sygnału $g_1(t)$ na podstawie transformaty sygnału $h(t) = g'_1(t)$

$$h(t) \xrightarrow{\mathcal{F}} H(\jmath\omega)$$

$$g_1(t) = \int_{-\infty}^t h(\tau) \cdot d\tau \xrightarrow{\mathcal{F}} G_1(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot H(\jmath\omega) + \pi \cdot \delta(\omega) \cdot H(0)$$

Podstawiając obliczona wcześniej transformatę $H(j\omega)$ sygnału h(t) otrzymujemy transformatę $G_1(j\omega)$ sygnału $g_1(t)$

$$G_{1}(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot H(\jmath\omega) + \pi \cdot \delta(0) \cdot H(0)$$

$$= \frac{1}{\jmath \cdot \omega} \cdot \jmath \cdot \frac{A}{t_{0}} \cdot \sin(\omega \cdot t_{0}) + \pi \cdot \delta(0) \cdot \jmath \cdot \frac{A}{t_{0}} \cdot \sin(0 \cdot t_{0})$$

$$= \frac{1}{\omega} \cdot \frac{A}{t_{0}} \cdot \sin(\omega \cdot t_{0}) + \pi \cdot \delta(0) \cdot \jmath \cdot \frac{A}{t_{0}} \cdot \sin(0)$$

$$= A \cdot \frac{\sin(\omega \cdot t_{0})}{\omega \cdot t_{0}} + \pi \cdot \delta(0) \cdot \jmath \cdot \frac{A}{t_{0}} \cdot 0$$

$$= A \cdot \frac{\sin(\omega \cdot t_{0})}{\omega \cdot t_{0}} + 0$$

$$= \left\{ Sa(x) = \frac{\sin(x)}{x} \right\}$$

$$= A \cdot Sa(\omega \cdot t_{0})$$

Ostatecznie transformata sygnału $g_1(t)$ jest równa $G_1(j\omega) = A \cdot Sa(\omega \cdot t_0)$. Korzystając z jednorodności transformaty Fouriera

$$g_1(t) \xrightarrow{\mathcal{F}} G_1(\jmath\omega)$$

$$g_2(t) \xrightarrow{\mathcal{F}} G_2(\jmath\omega)$$

$$g(t) = \alpha \cdot g_1(t) + \beta \cdot g_2(t) \xrightarrow{\mathcal{F}} G(\jmath\omega) = \alpha \cdot G_1(\jmath\omega) + \beta \cdot G_2(\jmath\omega)$$

można wyznaczyć transformatę Fouriera $G(j\omega)$ funkcji g(t)

$$G(\jmath\omega) = G_1(\jmath\omega) + G_2(\jmath\omega)$$

$$= A \cdot Sa(\omega \cdot t_0) - A \cdot e^{-\jmath \cdot \omega \cdot t_0}$$

$$= A \cdot \left(Sa(\omega \cdot t_0) - e^{-\jmath \cdot \omega \cdot t_0} \right)$$

Znając transformatę $G(\jmath\omega)$ i korzystając z twierdzenia o całkowaniu można wyznaczyć transformatę $F(\jmath\omega)$ funkcji f(t)

$$g(t) \xrightarrow{\mathcal{F}} G(\jmath\omega)$$

$$f(t) = \int_{-\infty}^{t} g(\tau) \cdot d\tau \xrightarrow{\mathcal{F}} F(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot G(\jmath\omega) + \pi \cdot \delta(\omega) \cdot G(0)$$

Podstawiając otrzymujemy

$$F(j\omega) = \frac{1}{j \cdot \omega} \cdot G(j\omega) + \pi \cdot \delta(0) \cdot G(0)$$

$$\begin{split} &= \frac{1}{j \cdot \omega} \cdot A \cdot \left(Sa\left(\omega \cdot t_0\right) - e^{-j \cdot \omega \cdot t_0} \right) + \pi \cdot \delta(0) \cdot A \cdot \left(Sa\left(0 \cdot t_0\right) - e^{-j \cdot 0 \cdot t_0} \right) \\ &= \frac{A}{j \cdot \omega} \cdot \left(Sa\left(\omega \cdot t_0\right) - e^{-j \cdot \omega \cdot t_0} \right) + \pi \cdot \delta(0) \cdot A \cdot \left(Sa\left(0\right) - e^0 \right) \\ &= \frac{A}{j \cdot \omega} \cdot \left(Sa\left(\omega \cdot t_0\right) - e^{-j \cdot \omega \cdot t_0} \right) + \pi \cdot \delta(0) \cdot A \cdot (1 - 1) \\ &= \frac{A}{j \cdot \omega} \cdot \left(Sa\left(\omega \cdot t_0\right) - e^{-j \cdot \omega \cdot t_0} \right) + \pi \cdot \delta(0) \cdot A \cdot 0 \\ &= \frac{A}{j \cdot \omega} \cdot \left(Sa\left(\omega \cdot t_0\right) - e^{-j \cdot \omega \cdot t_0} \right) + 0 \\ &= \frac{A}{j \cdot \omega} \cdot \left(Sa\left(\omega \cdot t_0\right) - e^{-j \cdot \omega \cdot t_0} \right) \end{split}$$

Ostatecznie transformata sygnału f(t) jest równa $F(\jmath\omega) = \frac{A}{\jmath\cdot\omega}\cdot \left(Sa\left(\omega\cdot t_0\right) - e^{-\jmath\cdot\omega\cdot t_0}\right)$.

Zadanie 29. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku za pomocą twierdzeń.

W pierwszej kolejności trzeba wyznaczyć jawną postać równań opisujących funkcję f(t).

W tym celu wyznaczamy równanie prostej na odcinku $(-t_0, t_0)$

Ogólne równanie prostej to:

$$f(t) = m \cdot t + b \tag{134}$$

Dla rozważanego zakresu wartości t wykres funkcji jest prostą przechodzącą przez dwa punkty: $(-t_0, A)$ oraz $(t_0, -A)$. Możemy więc napisać układ równań, rozwiązać go i wyznaczyć parametry prostej m i b.

$$\begin{cases} A = m \cdot (-t_0) + b \\ -A = m \cdot t_0 + b \end{cases}$$

$$\begin{cases} A = -m \cdot t_0 + b \\ -A = m \cdot t_0 + b \end{cases}$$

$$\begin{cases} A - A = -m \cdot t_0 + b + m \cdot t_0 + b \\ -A = m \cdot t_0 + b \end{cases}$$

$$\begin{cases} 0 = 2 \cdot b \\ -A = m \cdot t_0 + b \end{cases}$$

$$\begin{cases} 0 = b \\ -A = m \cdot t_0 + b \end{cases}$$

$$\begin{cases} 0 = b \\ -A = m \cdot t_0 + 0 \end{cases}$$

$$\begin{cases} 0 = b \\ -A = m \cdot t_0 \end{cases}$$

$$\begin{cases} 0 = b \\ -A = m \cdot t_0 \end{cases}$$

$$\begin{cases} 0 = b \\ -A = m \cdot t_0 \end{cases}$$

Równianie prostej dla t z zakresu $(-t_0, t_0)$ to:

$$f(t) = -\frac{A}{t_0} \cdot t$$

Podsumowując, sygnal f(t) możemy opisać jako:

$$f(t) = \begin{cases} 0 & t \in (-\infty; -t_0) \\ -\frac{A}{t_0} \cdot t & t \in (-t_0; t_0) \\ 0 & t \in (t_0; \infty) \end{cases}$$
 (135)

W pierwszej kolejności wyznaczamy pochodna sygnału f(t)

$$g(t) = f'(t) = \begin{cases} 0 & t \in (-\infty; -t_0) \\ -\frac{A}{t_0} & t \in (-t_0; t_0) \\ 0 & t \in (t_0; \infty) \end{cases} + A \cdot \delta(t + t_0) + A \cdot \delta(t - t_0)$$
(136)

Funkcja g(t) składa się z dwóch sygnałów $g_1(t)$ i $g_2(t)$

$$g(t) = g_1(t) + g_2(t) (137)$$

$$g_1(t) = \begin{cases} 0 & t \in (-\infty; -t_0) \\ -\frac{A}{t_0} & t \in (-t_0; t_0) \\ 0 & t \in (t_0; \infty) \end{cases}$$
 (138)

$$g_2(t) = A \cdot \delta(t + t_0) + A \cdot \delta(t - t_0) \tag{139}$$

Wyznaczenie transformaty sygnału $g_2(t)$ złożonego z delt diracka jest znacznie prostsze.

$$G_2(j\omega) = \int_{-\infty}^{\infty} g_2(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$$
 (140)

Podstawiamy do wzoru na transformatę wzór naszej funkcji

$$G_{2}(\jmath\omega) = \int_{-\infty}^{\infty} g_{2}(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= \int_{-\infty}^{\infty} (A \cdot \delta(t+t_{0}) + A \cdot \delta(t-t_{0})) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= A \cdot \int_{-\infty}^{\infty} (\delta(t+t_{0}) + \delta(t-t_{0})) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= A \cdot \left(\int_{-\infty}^{\infty} \delta(t+t_{0}) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{-\infty}^{\infty} \delta(t-t_{0}) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \right)$$

$$= \left\{ \int_{-\infty}^{\infty} \delta(t-t_{0}) \cdot f(t) \cdot dt = f(t_{0}) \right\}$$

$$= A \cdot \left(e^{-\jmath \cdot \omega \cdot (-t_{0})} + e^{-\jmath \cdot \omega \cdot t_{0}} \right)$$

$$= A \cdot \left(e^{\jmath \cdot \omega \cdot t_{0}} + e^{-\jmath \cdot \omega \cdot t_{0}} \right)$$

$$= A \cdot \left(e^{\jmath \cdot \omega \cdot t_{0}} + e^{-\jmath \cdot \omega \cdot t_{0}} \right)$$

$$= 2 \cdot A \cdot \frac{e^{\jmath \cdot \omega \cdot t_{0}} + e^{-\jmath \cdot \omega \cdot t_{0}}}{2}$$

$$= \left\{ \cos(x) = \frac{e^{\jmath \cdot x} + e^{-\jmath \cdot x}}{2} \right\}$$

$$= 2 \cdot A \cdot \cos(\omega \cdot t_{0})$$

Transformata sygnału $g_2(t)$ to $G_2(j\omega) = 2 \cdot A \cdot \cos(\omega \cdot t_0)$

Funkcja $g_1(t)$ jest jeszcze zbyt złożona tak wiec wyznaczamy pochodną raz jeszcze

$$h(t) = g_1'(t) = \begin{cases} 0 & t \in (-\infty; -t_0) \\ 0 & t \in (-t_0; t_0) - \frac{A}{t_0} \delta(t + t_0) + \frac{A}{t_0} \delta(t - t_0) \\ 0 & t \in (t_0; \infty) \end{cases}$$
(141)

czyli po prostu

$$h(t) = g_1'(t) = -\frac{A}{t_0}\delta(t+t_0) + \frac{A}{t_0}\delta(t-t_0)$$
(142)

Wyznaczanie transformaty sygnału h(t) złożonego z delt diracka jest znacznie prostsze.

$$H(j\omega) = \int_{-\infty}^{\infty} h(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$$
 (143)

Podstawiamy do wzoru na transformatę wzór naszej funkcji

$$\begin{split} H(\jmath\omega) &= \int_{-\infty}^{\infty} h(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{\infty} \left(-\frac{A}{t_0} \cdot \delta(t+t_0) + \frac{A}{t_0} \cdot \delta(t-t_0) \right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{\infty} \left(-\frac{A}{t_0} \cdot \delta(t+t_0) \cdot e^{-\jmath \cdot \omega \cdot t} + \frac{A}{t_0} \cdot \delta(t-t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \right) \cdot dt \\ &= -\int_{-\infty}^{\infty} \frac{A}{t_0} \cdot \delta(t+t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{-\infty}^{\infty} \frac{A}{t_0} \cdot \delta(t-t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= -\frac{A}{t_0} \cdot \int_{-\infty}^{\infty} \delta(t+t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \frac{A}{t_0} \cdot \int_{-\infty}^{\infty} \delta(t-t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \left\{ \int_{-\infty}^{\infty} \delta(t-t_0) \cdot f(t) \cdot dt = f(t_0) \right\} \\ &= -\frac{A}{t_0} \cdot e^{-\jmath \cdot \omega \cdot (-t_0)} + \frac{A}{t_0} \cdot e^{-\jmath \cdot \omega \cdot t_0} \\ &= -\frac{A}{t_0} \cdot \left(e^{\jmath \cdot \omega \cdot t_0} + \frac{A}{t_0} \cdot e^{-\jmath \cdot \omega \cdot t_0} \right) \\ &= -\frac{A}{t_0} \cdot \left(e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right) \\ &= -\frac{A}{t_0} \cdot \left(e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right) \\ &= -\frac{2 \cdot A}{t_0} \cdot \jmath \cdot \frac{e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0}}{2 \cdot \jmath} \\ &= \left\{ \sin\left(x\right) = \frac{e^{\jmath \cdot x} - e^{-\jmath \cdot x}}{2 \cdot \jmath} \right\} \\ &= -\frac{2 \cdot A}{t_0} \cdot \jmath \cdot \sin\left(\omega \cdot t_0\right) \\ &= -\jmath \cdot \frac{2 \cdot A}{t_0} \cdot \sin\left(\omega \cdot t_0\right) \end{split}$$

Transformata sygnału h(t) to $H(\jmath\omega)=-\jmath\cdot\frac{2\cdot A}{t_0}\cdot\sin\left(\omega\cdot t_0\right)$

Następnie możemy wykorzystać twierdzenie o całkowaniu aby wyznaczyć transformatę sygnału $g_1(t)$ na podstawie transformaty sygnału $h(t) = g'_1(t)$

$$h(t) \xrightarrow{\mathcal{F}} H(\jmath\omega)$$

$$g_1(t) = \int_{-\infty}^{t} h(\tau) \cdot d\tau \xrightarrow{\mathcal{F}} G_1(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot H(\jmath\omega) + \pi \cdot \delta(\omega) \cdot H(0)$$

Podstawiając obliczona wcześniej transformatę $H(j\omega)$ sygnału h(t) otrzymujemy transformatę $G_1(j\omega)$ sygnału $g_1(t)$

$$G_{1}(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot H(\jmath\omega) + \pi \cdot \delta(\omega) \cdot H(0)$$

$$= \frac{1}{\jmath \cdot \omega} \cdot \left(-\jmath \cdot \frac{2 \cdot A}{t_{0}} \cdot \sin(\omega \cdot t_{0}) \right) + \pi \cdot \delta(\omega) \cdot \left(-\jmath \cdot \frac{2 \cdot A}{t_{0}} \cdot \sin(0 \cdot t_{0}) \right)$$

$$= -\frac{1}{\omega} \cdot \frac{2 \cdot A}{t_{0}} \cdot \sin(\omega \cdot t_{0}) - \pi \cdot \delta(\omega) \cdot \jmath \cdot \frac{2 \cdot A}{t_{0}} \cdot \sin(0)$$

$$= -2 \cdot A \cdot \frac{\sin(\omega \cdot t_{0})}{\omega \cdot t_{0}} - \pi \cdot \delta(\omega) \cdot \jmath \cdot \frac{2 \cdot A}{t_{0}} \cdot 0$$

$$= -2 \cdot A \cdot \frac{\sin(\omega \cdot t_{0})}{\omega \cdot t_{0}} - 0$$

$$= \left\{ Sa(x) = \frac{\sin(x)}{x} \right\}$$

$$= -2 \cdot A \cdot Sa(\omega \cdot t_{0})$$

Ostatecznie transformata sygnału $g_1(t)$ jest równa $G_1(j\omega) = -2 \cdot A \cdot Sa(\omega \cdot t_0)$. Korzystając z jednorodności transformaty Fouriera

$$g_1(t) \xrightarrow{\mathcal{F}} G_1(\jmath\omega)$$

$$g_2(t) \xrightarrow{\mathcal{F}} G_2(\jmath\omega)$$

$$g(t) = \alpha \cdot g_1(t) + \beta \cdot g_2(t) \xrightarrow{\mathcal{F}} G(\jmath\omega) = \alpha \cdot G_1(\jmath\omega) + \beta \cdot G_2(\jmath\omega)$$

można wyznaczyć transformatę Fouriera $G(j\omega)$ funkcji g(t)

$$G(\jmath\omega) = G_1(\jmath\omega) + G_2(\jmath\omega)$$

$$= -2 \cdot A \cdot Sa(\omega \cdot t_0) + 2 \cdot A \cdot cos(\omega \cdot t_0)$$

$$= -2 \cdot A \cdot (Sa(\omega \cdot t_0) - cos(\omega \cdot t_0))$$

Znając transformatę $G(\jmath\omega)$ i korzystając z twierdzenia o całkowaniu można wyznaczyć transformatę $F(\jmath\omega)$ funkcji f(t)

$$g(t) \xrightarrow{\mathcal{F}} G(j\omega)$$

$$f(t) = \int_{-\infty}^{t} g(\tau) \cdot d\tau \xrightarrow{\mathcal{F}} F(j\omega) = \frac{1}{j \cdot \omega} \cdot G(j\omega) + \pi \cdot \delta(\omega) \cdot G(0)$$

Podstawiając otrzymujemy

$$\begin{split} F(\jmath\omega) &= \frac{1}{\jmath \cdot \omega} \cdot G(\jmath\omega) + \pi \cdot \delta(\omega) \cdot G(0) \\ &= \frac{1}{\jmath \cdot \omega} \cdot \left(-2 \cdot A \cdot \left(Sa\left(\omega \cdot t_0\right) - \cos\left(\omega \cdot t_0\right) \right) \right) + \pi \cdot \delta(\omega) \cdot \left(-2 \cdot A \cdot \left(Sa\left(0 \cdot t_0\right) - \cos\left(0 \cdot t_0\right) \right) \right) \\ &= -\frac{2 \cdot A}{\jmath \cdot \omega} \cdot \left(Sa\left(\omega \cdot t_0\right) - \cos\left(\omega \cdot t_0\right) \right) - \pi \cdot \delta(\omega) \cdot 2 \cdot A \cdot \left(Sa\left(0\right) - \cos\left(0\right) \right) \\ &= -\frac{2 \cdot A}{\jmath \cdot \omega} \cdot \left(Sa\left(\omega \cdot t_0\right) - \cos\left(\omega \cdot t_0\right) \right) - \pi \cdot \delta(\omega) \cdot 2 \cdot A \cdot (1-1) \\ &= -\frac{2 \cdot A}{\jmath \cdot \omega} \cdot \left(Sa\left(\omega \cdot t_0\right) - \cos\left(\omega \cdot t_0\right) \right) - \pi \cdot \delta(\omega) \cdot 2 \cdot A \cdot 0 \\ &= -\frac{2 \cdot A}{\jmath \cdot \omega} \cdot \left(Sa\left(\omega \cdot t_0\right) - \cos\left(\omega \cdot t_0\right) \right) - 0 \\ &= -\frac{2 \cdot A}{\jmath \cdot \omega} \cdot \left(Sa\left(\omega \cdot t_0\right) - \cos\left(\omega \cdot t_0\right) \right) \end{split}$$

Ostatecznie transformata sygnału f(t) jest równa $F(j\omega) = -\frac{2\cdot A}{j\cdot \omega}\cdot (Sa\left(\omega\cdot t_0\right)-\cos\left(\omega\cdot t_0\right)).$

Zadanie 30. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku za pomocą twierdzeń.

Sygnal f(t) możemy opisać jako:

$$f(t) = \begin{cases} 0 & t \in (-\infty; -1) \\ 1 - t^2 & t \in (-1; 1) \\ 0 & t \in (1; \infty) \end{cases}$$
 (144)

W pierwszej kolejności wyznaczamy pochodną sygnału f(t)

$$g(t) = f'(t) = \begin{cases} 0 & t \in (-\infty; -1) \\ -2 \cdot t & t \in (-1; 1) \\ 0 & t \in (1; \infty) \end{cases}$$
 (145)

Można sprawdzić, że całkując sygnał g(t) otrzymamy sygnał f(t), czyli:

$$f(t) = \int_{-\infty}^{t} g(x) \cdot dx \tag{146}$$

Skoro tak jest, to transformatę sygnału f(t) mozna wyznaczyć z twierdzenia o całkowaniu sygnału, w tym przypadku całkować będziemy sygnał g(t):

$$F(j\omega) = \frac{1}{j \cdot \omega} \cdot G(j\omega) + \pi \cdot \delta(\omega) \cdot G(0)$$
(147)

Pytanie, czy można dalej uproście sygnał g(t) dokonując jego rózniczkowania. Wyznaczmy pochodną sygnału g(t), czyli drugą pochodną sygnału f(t):

$$h(t) = \frac{\partial}{\partial t}g(t) = \frac{\partial^2}{\partial t^2}f(t)$$
 (148)

$$h(t) = g'(t) = \begin{cases} 0 & t \in (-\infty; -1) \\ -2 & t \in (-1; 1) \\ 0 & t \in (1; \infty) \end{cases} + 2 \cdot \delta(t+1) + 2 \cdot \delta(t-1)$$
(149)

Funkcja h(t) składa się z dwóch sygnałów $h_1(t)$ i $h_2(t)$

$$h(t) = h_1(t) + h_2(t) (150)$$

$$h_1(t) = \begin{cases} 0 & t \in (-\infty; -1) \\ -2 & t \in (-1; 1) \\ 0 & t \in (1; \infty) \end{cases}$$
 (151)

$$h_2(t) = 2 \cdot \delta(t+1) + 2 \cdot \delta(t-1)$$
 (152)

Wyznaczenie transformaty sygnału $h_2(t)$ złożonego z delt Diracka jest znacznie prostsze.

$$H_2(j\omega) = \int_{-\infty}^{\infty} h_2(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$$
 (153)

Podstawiamy do wzoru na transformatę wzór naszej funkcji

$$H_{2}(\jmath\omega) = \int_{-\infty}^{\infty} h_{2}(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= \int_{-\infty}^{\infty} (2 \cdot \delta(t+1) + 2 \cdot \delta(t-1)) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= 2 \cdot \int_{-\infty}^{\infty} (\delta(t+1) + \delta(t-1)) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= 2 \cdot \left(\int_{-\infty}^{\infty} \delta(t+1) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{-\infty}^{\infty} \delta(t-1) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \right)$$

$$= \left\{ \int_{-\infty}^{\infty} \delta(t-t_{0}) \cdot f(t) \cdot dt = f(t_{0}) \right\}$$

$$= 2 \cdot \left(e^{-\jmath \cdot \omega \cdot (-1)} + e^{-\jmath \cdot \omega \cdot 1} \right)$$

$$= 2 \cdot \left(e^{\jmath \cdot \omega} + e^{-\jmath \cdot \omega} \right)$$

$$= 2 \cdot \left(e^{\jmath \cdot \omega} + e^{-\jmath \cdot \omega} \right)$$

$$= 4 \cdot \cos(\omega)$$

Transformata sygnału $h_2(t)$ to $G_2(j\omega) = 4 \cdot \cos(\omega)$

Funkcja $h_1(t)$ jest jeszcze zbyt złożona, więc wyznaczamy pochodną raz jeszcze

$$i(t) = h'_1(t) = \begin{cases} 0 & t \in (-\infty; -1) \\ 0 & t \in (-1; 1) \\ 0 & t \in (1; \infty) \end{cases} - 2\delta(t+1) + 2\delta(t-1)$$

$$(154)$$

,czyli po prostu:

$$i(t) = h_1'(t) = -2\delta(t+1) + 2\delta(t-1)$$
(155)

Wyznaczanie transformaty sygnału i(t) złożonego z delt Diracka jest znacznie prostsze.

$$I(j\omega) = \int_{-\infty}^{\infty} i(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$$
 (156)

Podstawiamy do wzoru na transformatę wzór naszej funkcji

$$\begin{split} I(\jmath\omega) &= \int_{-\infty}^{\infty} i(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{\infty} \left(-2 \cdot \delta(t+1) + 2 \cdot \delta(t-1) \right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= 2 \cdot \int_{-\infty}^{\infty} \left(-\delta(t+1) + \delta(t-1) \right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= 2 \cdot \left(\int_{-\infty}^{\infty} -\delta(t+1) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{-\infty}^{\infty} \delta(t-1) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \right) \\ &= \left\{ \int_{-\infty}^{\infty} \delta(t-t_0) \cdot f(t) \cdot dt = f(t_0) \right\} \\ &= 2 \cdot \left(-e^{-\jmath \cdot \omega \cdot (-1)} + e^{-\jmath \cdot \omega \cdot 1} \right) \\ &= 2 \cdot \left(-e^{\jmath \cdot \omega} + e^{-\jmath \cdot \omega} \right) \\ &= -2 \cdot \left(e^{\jmath \cdot \omega} - e^{-\jmath \cdot \omega} \right) \cdot \frac{2 \cdot \jmath}{2 \cdot \jmath} \\ &= -4 \cdot \jmath \cdot \frac{e^{\jmath \cdot \omega} - e^{-\jmath \cdot \omega}}{2 \cdot \jmath} \\ &= \left\{ \sin\left(x \right) = \frac{e^{\jmath \cdot x} - e^{-\jmath \cdot x}}{2 \cdot \jmath} \right\} \\ &= -4 \cdot \jmath \cdot \sin\left(\omega \right) \end{split}$$

Transformata sygnału i(t) to $I(\jmath\omega)=-4\cdot\jmath\cdot\sin\left(\omega\right)$

Następnie możemy wykorzystać twierdzenie o całkowaniu, aby wyznaczyć transformatę sygnału $h_1(t)$ na podstawie transformaty sygnału $i(t) = h_1'(t)$

$$i(t) \xrightarrow{\mathcal{F}} I(\jmath\omega)$$

$$h_1(t) = \int_{-\infty}^{t} i(\tau) \cdot d\tau \xrightarrow{\mathcal{F}} H_1(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot I(\jmath\omega) + \pi \cdot \delta(\omega) \cdot I(0)$$

Podstawiając obliczoną wcześniej transformatę $I(j\omega)$ sygnału i(t) otrzymujemy transformatę $H_1(j\omega)$ sygnału $h_1(t)$

$$H_1(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot I(\jmath\omega) + \pi \cdot \delta(\omega) \cdot I(0)$$

$$\begin{cases} I(0) = -4 \cdot \jmath \cdot \sin(0) \\ I(0) = -4 \cdot \jmath \cdot 0 \\ I(0) = 0 \end{cases}$$

$$= \frac{1}{\jmath \cdot \omega} \cdot (-4 \cdot \jmath \cdot \sin(\omega)) + 0$$

$$= -4 \cdot \frac{\sin(\omega)}{\omega}$$

$$= \left\{ Sa(x) = \frac{\sin(x)}{x} \right\}$$

$$= -4 \cdot Sa(\omega)$$

Ostatecznie transformata sygnału $h_1(t)$ jest równa $H_1(\jmath\omega) = -4 \cdot Sa(\omega)$. Korzystając z liniowości transformacji Fouriera

$$h_1(t) \xrightarrow{\mathcal{F}} H_1(\jmath\omega)$$

$$h_2(t) \xrightarrow{\mathcal{F}} H_2(\jmath\omega)$$

$$h(t) = \alpha \cdot h_1(t) + \beta \cdot h_2(t) \xrightarrow{\mathcal{F}} H(\jmath\omega) = \alpha \cdot H_1(\jmath\omega) + \beta \cdot H_2(\jmath\omega)$$

można wyznaczyć transformatę Fouriera $H(j\omega)$ funkcji h(t)

$$H(\jmath\omega) = H_1(\jmath\omega) + H_2(\jmath\omega)$$
$$= -4 \cdot Sa(\omega) + 4 \cdot cos(\omega)$$
$$= 4 \cdot (cos(\omega) - Sa(\omega))$$

Znając transformatę $H(j\omega)$ i korzystając z twierdzenia o całkowaniu można wyznaczyć transformatę $G(j\omega)$ funkcji g(t)

$$h(t) \xrightarrow{\mathcal{F}} H(\jmath\omega)$$

$$g(t) = \int_{-\infty}^{t} h(\tau) \cdot d\tau \xrightarrow{\mathcal{F}} G(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot H(\jmath\omega) + \pi \cdot \delta(\omega) \cdot H(0)$$

Podstawiając odpowiednie dane otrzymujemy:

$$G(j\omega) = \frac{1}{j \cdot \omega} \cdot H(j\omega) + \pi \cdot \delta(\omega) \cdot H(0)$$

$$\begin{cases} H(0) = 4 \cdot (\cos(0) - Sa(0)) \\ H(0) = 4 \cdot (1 - 1) \\ H(0) = 4 \cdot 0 \\ H(0) = 0 \end{cases}$$

$$= \frac{1}{j \cdot \omega} \cdot (4 \cdot (\cos(\omega) - Sa(\omega))) + 0$$

$$= \frac{4}{j \cdot \omega} \cdot (\cos(\omega) - Sa(\omega))$$

Ostatecznie transformata sygnału g(t) jest równa $G(j\omega) = \frac{4}{j\cdot\omega}\cdot(\cos{(\omega)} - Sa{(\omega)}).$

Znając transformatę $G(\jmath\omega)$ i kolejny raz korzystając z twierdzenia o całkowaniu można wyznaczyć transformatę $F(\jmath\omega)$ funkcji f(t)

$$g(t) \xrightarrow{\mathcal{F}} G(\jmath\omega)$$

$$f(t) = \int_{-\infty}^{t} g(\tau) \cdot d\tau \xrightarrow{\mathcal{F}} F(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot G(\jmath\omega) + \pi \cdot \delta(\omega) \cdot G(0)$$

Podstawiając odpowiednie dane otrzymujemy:

$$F(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot G(\jmath\omega) + \pi \cdot \delta(\omega) \cdot G(0)$$

$$\begin{cases}
G(0) = \frac{4}{\jmath \cdot 0} \cdot (\cos(0) - Sa(0)) \\
G(0) = \frac{0}{0}!!! \\
G(0) = \int_{-\infty}^{\infty} g(t) \cdot dt = \int_{-1}^{1} (-2) \cdot t \cdot dt = (-2) \cdot \frac{t^{2}}{2} \Big|_{-1}^{1} \\
G(0) = (-2) \cdot \left(\frac{1}{2} - \frac{1}{2}\right) = (-2) \cdot 0 \\
G(0) = 0
\end{cases}$$

$$= \frac{1}{\jmath \cdot \omega} \cdot \frac{4}{\jmath \cdot \omega} \cdot (\cos(\omega) - Sa(\omega)) + 0$$

$$= \frac{4}{\jmath^{2} \cdot \omega^{2}} \cdot (\cos(\omega) - Sa(\omega))$$

$$= \frac{4}{(-1) \cdot \omega^{2}} \cdot (\cos(\omega) - Sa(\omega))$$

$$= \frac{4}{\omega^{2}} \cdot (Sa(\omega) - \cos(\omega))$$

Ostatecznie transformata sygnału f(t) jest równa $F(j\omega) = \frac{4}{\omega^2} \cdot (Sa(\omega) - cos(\omega))$.

Zadanie 31. Oblicz transformatę Fouriera sygnału $f(t) = Sa(\omega_0 \cdot t) \cdot sin(\omega_0 \cdot t)$ za pomocą twierdzeń, wiedząc że transformata sygnału $\Pi(t)$ jest rowna $Sa(\frac{\omega}{2})$.

$$f(t) = Sa(\omega_0 \cdot t) \cdot sin(\omega_0 \cdot t) \tag{157}$$

$$\Pi(t) \xrightarrow{F} Sa\left(\frac{\omega}{2}\right) \tag{158}$$

W pierwszej kolejności można funkcję f(t) rozpisać następująco

$$f(t) = Sa(\omega_0 \cdot t) \cdot sin(\omega_0 \cdot t)$$

$$= \left\{ sin(x) = \frac{e^{\jmath \cdot x} - e^{-\jmath \cdot x}}{2 \cdot \jmath} \right\}$$

$$= Sa(\omega_0 \cdot t) \cdot \frac{e^{\jmath \cdot \omega_0 \cdot t} - e^{-\jmath \cdot \omega_0 \cdot t}}{2 \cdot \jmath}$$

$$= \frac{1}{2 \cdot \jmath} \cdot \left(Sa(\omega_0 \cdot t) \cdot e^{\jmath \cdot \omega_0 \cdot t} - Sa(\omega_0 \cdot t) \cdot e^{-\jmath \cdot \omega_0 \cdot t} \right)$$

$$= \left\{ f_1(t) = Sa(\omega_0 \cdot t) \cdot e^{\jmath \cdot \omega_0 \cdot t} \right\}$$

$$= \frac{1}{2 \cdot \jmath} \cdot (f_1(t) - f_2(t))$$

Należy zauważyć iż funkcja $f_1(t)$ i $f_2(t)$ jest złożeniem funkcji Sa i funkcji wykładniczych.

$$f_1(t) = Sa(\omega_0 \cdot t) \cdot e^{\jmath \cdot \omega_0 \cdot t} = g(t) \cdot e^{\jmath \cdot \omega_0 \cdot t}$$

$$f_2(t) = Sa(\omega_0 \cdot t) \cdot e^{-\jmath \cdot \omega_0 \cdot t} = g(t) \cdot e^{-\jmath \cdot \omega_0 \cdot t}$$

Znając transformatę sygnału $g(t) = Sa\left(\omega_0 \cdot t\right)$ możemy skorzystać z twierdzenia o przesunięciu w dziedzinie częstotliwości.

$$g(t) \xrightarrow{\mathcal{F}} G(\jmath\omega)$$

$$f(t) = g(t) \cdot e^{\jmath \cdot \omega_0 \cdot t} \xrightarrow{\mathcal{F}} F(\jmath\omega) = G(\jmath(\omega - \omega_0))$$

Aby wyznaczyć transformatę sygnału g(t) możemy skorzystać z twierdzenia o symetrii. Znając transformatę $H(\jmath\omega)$ sygnału h(t) można wyznaczyć transformatę $G(\jmath\omega)$ sygnału g(t)

$$h(t) \xrightarrow{\mathcal{F}} H(\jmath\omega)$$
$$g(t) = H(t) \xrightarrow{\mathcal{F}} G(\jmath\omega) = 2\pi \cdot h(-\omega)$$

Tak wiec zacznijmy od transformaty sygnału prostokątnego $h(t)=\Pi(t)$ i wyznaczymy transformatę funkcji Sa

$$h(t) = \Pi(t) \xrightarrow{F} H(\jmath\omega) = Sa\left(\frac{\omega}{2}\right)$$
$$g_1(t) = H(t) = Sa\left(\frac{t}{2}\right) \xrightarrow{F} G_1(\jmath\omega) = 2\pi \cdot h(-\jmath\omega) = \pi \cdot \Pi\left(-\omega\right) = 2\pi \cdot \Pi\left(\omega\right)$$

Wyznaczyliśmy transformatę funkcji $g_1(t)$. Jednak funkcja $g_1(t)$ nie ma takiej samej postaci jak funkcja g(t)

$$g(t) = Sa (\omega_0 \cdot t)$$

$$= Sa \left(\omega_0 \cdot t \cdot \frac{2}{2}\right)$$

$$= Sa \left(2 \cdot \omega_0 \cdot \frac{t}{2}\right)$$

$$= Sa \left(\frac{2 \cdot \omega_0 \cdot t}{2}\right)$$

$$= \left\{a = 2 \cdot \omega_0\right\}$$

$$= Sa \left(\frac{a \cdot t}{2}\right)$$

$$= g_1(a \cdot t)$$

Znając transformatę funkcji $g_1(t)$ możemy wyznaczyć transformatę funkcji $g(t) = g_1(a \cdot t)$ za pomocą twierdzenia o zmianie skali.

$$g_1(t) \xrightarrow{\mathcal{F}} G_1(\jmath\omega)$$

$$g(t) = g_1(\alpha \cdot t) \xrightarrow{\mathcal{F}} G(\jmath\omega) = \frac{1}{|\alpha|} \cdot G_1(\jmath\frac{\omega}{\alpha})$$

Podstawiając wyznaczoną transformatę $G_1(j\omega)$

$$G(\jmath\omega) = \frac{1}{|\alpha|} \cdot G_1(\jmath\frac{\omega}{\alpha})$$

$$= \left\{\alpha = 2 \cdot \omega_0\right\}$$

$$= \frac{1}{|2 \cdot \omega_0|} \cdot G_1(\frac{\omega}{2 \cdot \omega_0})$$

$$= \left\{G_1(\jmath\omega) = 2\pi \cdot \Pi(\omega)\right\}$$

$$= \frac{1}{2 \cdot \omega_0} \cdot 2\pi \cdot \Pi\left(\frac{\omega}{2 \cdot \omega_0}\right)$$

$$= \frac{\pi}{\omega_0} \cdot \Pi\left(\frac{\omega}{2 \cdot \omega_0}\right)$$

Tak wiec transformata sygnału $g(t)=Sa\left(\omega_0\cdot t\right)$ jest równa $G(\jmath\omega)=\frac{\pi}{\omega_0}\cdot\Pi\left(\frac{\omega}{2\cdot\omega_0}\right)$ Kolejnym krokiem jest wyznaczenie transformaty dwóch sygnałów

$$f_1(t) = Sa(\omega_0 \cdot t) \cdot e^{\jmath \cdot \omega_0 \cdot t}$$

$$f_2(t) = Sa(\omega_0 \cdot t) \cdot e^{-\jmath \cdot \omega_0 \cdot t}$$

Korzystając z twierdzenie o przesunięciu w dziedzinie częstotliwości

$$g(t) \xrightarrow{\mathcal{F}} G(\jmath\omega)$$

$$f_1(t) = g(t) \cdot e^{\jmath \cdot \omega_0 \cdot t} \xrightarrow{\mathcal{F}} F_1(\jmath\omega) = G(\jmath(\omega - \omega_0))$$

otrzymujemy wprost

$$F_1(j\omega) = G(j(\omega - \omega_0))$$
$$= \frac{\pi}{\omega_0} \cdot \Pi\left(\frac{\omega - \omega_0}{2 \cdot \omega_0}\right)$$

$$F_2(j\omega) = G(j(\omega + \omega_0))$$
$$= \frac{\pi}{\omega_0} \cdot \Pi\left(\frac{\omega + \omega_0}{2 \cdot \omega_0}\right)$$

Ostatecznie korzystając z liniowości transformaty Fouriera

$$f_1(t) \xrightarrow{\mathcal{F}} F_1(\jmath\omega)$$

 $f_2(t) \xrightarrow{\mathcal{F}} F_2(\jmath\omega)$

$$f(t) = \alpha \cdot f_1(t) + \beta \cdot f_2(t) \xrightarrow{\mathcal{F}} F(\jmath \omega) = \alpha \cdot F_1(\jmath \omega) + \beta \cdot F_2(\jmath \omega)$$

otrzymujemy

$$F(j\omega) = F_1(j\omega) - F_2(j\omega)$$

$$= \frac{1}{2 \cdot j} \cdot \left(\frac{\pi}{\omega_0} \cdot \Pi\left(\frac{\omega - \omega_0}{2 \cdot \omega_0}\right) - \frac{\pi}{\omega_0} \cdot \Pi\left(\frac{\omega + \omega_0}{2 \cdot \omega_0}\right)\right)$$

Transformata Fouriera sygnału f(t) jest równa $F(j\omega) = \frac{1}{2\cdot j} \cdot \left(\frac{\pi}{\omega_0} \cdot \Pi\left(\frac{\omega - \omega_0}{2\cdot \omega_0}\right) - \frac{\pi}{\omega_0} \cdot \Pi\left(\frac{\omega + \omega_0}{2\cdot \omega_0}\right)\right)$

Zadanie 32. Oblicz transformatę Fouriera sygnału $f(t) = Sa^2(\omega_0 \cdot t) \cdot cos(\omega_0 \cdot t)$ za pomocą twierdzeń, wiedząc że transformata sygnału $\Lambda(t)$ jest rowna $Sa^2(\frac{\omega}{2})$.

$$f(t) = Sa^{2}(\omega_{0} \cdot t) \cdot \cos(\omega_{0} \cdot t) \tag{159}$$

$$\Lambda(t) \xrightarrow{F} Sa^2\left(\frac{\omega}{2}\right) \tag{160}$$

W pierwszej kolejności można funkcję f(t) rozpisać następująco

$$\begin{split} f(t) &= Sa^2 \left(\omega_0 \cdot t\right) \cdot \cos\left(\omega_0 \cdot t\right) \\ &= \left\{\cos\left(x\right) = \frac{e^{\jmath \cdot x} + e^{-\jmath \cdot x}}{2}\right\} \\ &= Sa^2 \left(\omega_0 \cdot t\right) \cdot \frac{e^{\jmath \cdot \omega_0 \cdot t} + e^{-\jmath \cdot \omega_0 \cdot t}}{2} \\ &= \frac{1}{2} \cdot \left(Sa^2 \left(\omega_0 \cdot t\right) \cdot e^{\jmath \cdot \omega_0 \cdot t} + Sa^2 \left(\omega_0 \cdot t\right) \cdot e^{-\jmath \cdot \omega_0 \cdot t}\right) \\ &= \left\{ \begin{aligned} f_1(t) &= Sa^2 \left(\omega_0 \cdot t\right) \cdot e^{\jmath \cdot \omega_0 \cdot t} \\ f_2(t) &= Sa^2 \left(\omega_0 \cdot t\right) \cdot e^{-\jmath \cdot \omega_0 \cdot t} \end{aligned} \right\} \\ &= \frac{1}{2} \cdot \left(f_1(t) + f_2(t)\right) \end{split}$$

Należy zauważyć iż funkcja $f_1(t)$ i $f_2(t)$ jest złożeniem funkcji Sa^2 i funkcji wykładniczych.

$$f_1(t) = Sa(\omega_0 \cdot t) \cdot e^{\jmath \cdot \omega_0 \cdot t} = g(t) \cdot e^{\jmath \cdot \omega_0 \cdot t}$$

$$f_2(t) = Sa(\omega_0 \cdot t) \cdot e^{-\jmath \cdot \omega_0 \cdot t} = g(t) \cdot e^{-\jmath \cdot \omega_0 \cdot t}$$

Znając transformatę sygnału $g(t) = Sa\left(\omega_0 \cdot t\right)$ możemy skorzystać z twierdzenia o przesunięciu w dziedzinie częstotliwości.

$$g(t) \xrightarrow{\mathcal{F}} G(\jmath\omega)$$

$$f(t) = g(t) \cdot e^{j \cdot \omega_0 \cdot t} \xrightarrow{\mathcal{F}} F(j\omega) = G(j(\omega - \omega_0))$$

Aby wyznaczyć transformatę sygnału g(t) możemy skorzystać z twierdzenia o symetrii. Znając transformatę $H(\jmath\omega)$ sygnału h(t) można wyznaczyć transformatę $G(\jmath\omega)$ sygnału g(t)

$$h(t) \xrightarrow{\mathcal{F}} H(\jmath \omega)$$

$$g(t) = H(t) \xrightarrow{\mathcal{F}} G(\jmath \omega) = 2\pi \cdot h(-\omega)$$

Tak wiec zacznijmy od transformaty sygnału prostokątnego $h(t)=\Pi(t)$ i wyznaczymy transformatę funkcji Sa

$$h(t) = \Lambda(t) \xrightarrow{F} H(\jmath\omega) = Sa^{2}\left(\frac{\omega}{2}\right)$$
$$g_{1}(t) = H(t) = Sa^{2}\left(\frac{t}{2}\right) \xrightarrow{F} G_{1}(\jmath\omega) = 2\pi \cdot h(-\jmath\omega) = \pi \cdot \Lambda\left(-\omega\right) = 2\pi \cdot \Lambda\left(\omega\right)$$

Wyznaczyliśmy transformatę funkcji $g_1(t)$. Jednak funkcja $g_1(t)$ nie ma takiej samej postaci jak funkcja g(t)

$$g(t) = Sa^{2} (\omega_{0} \cdot t)$$

$$= Sa^{2} \left(\omega_{0} \cdot t \cdot \frac{2}{2}\right)$$

$$= Sa^{2} \left(2 \cdot \omega_{0} \cdot \frac{t}{2}\right)$$

$$= Sa^{2} \left(\frac{2 \cdot \omega_{0} \cdot t}{2}\right)$$

$$= \left\{a = 2 \cdot \omega_{0}\right\}$$

$$= Sa^{2} \left(\frac{a \cdot t}{2}\right)$$

$$= g_{1}(a \cdot t)$$

Znając transformatę funkcji $g_1(t)$ możemy wyznaczyć transformatę funkcji $g(t)=g_1(a\cdot t)$ za pomocą twierdzenia o zmianie skali.

$$g_1(t) \xrightarrow{\mathcal{F}} G_1(\jmath\omega)$$

$$g(t) = g_1(\alpha \cdot t) \xrightarrow{\mathcal{F}} G(\jmath\omega) = \frac{1}{|\alpha|} \cdot G_1(\jmath\frac{\omega}{\alpha})$$

Podstawiając wyznaczoną transformatę $G_1(j\omega)$

$$G(\jmath\omega) = \frac{1}{|\alpha|} \cdot G_1(\jmath\frac{\omega}{\alpha})$$

$$\begin{split} &= \left\{ \alpha = 2 \cdot \omega_0 \right\} \\ &= \frac{1}{|2 \cdot \omega_0|} \cdot G_1(\frac{\omega}{2 \cdot \omega_0}) \\ &= \left\{ G_1(\jmath \omega) = 2\pi \cdot \Lambda(\omega) \right\} \\ &= \frac{1}{2 \cdot \omega_0} \cdot 2\pi \cdot \Lambda\left(\frac{\omega}{2 \cdot \omega_0}\right) \\ &= \frac{\pi}{\omega_0} \cdot \Lambda\left(\frac{\omega}{2 \cdot \omega_0}\right) \end{split}$$

Tak wiec transformata sygnału $g(t) = Sa\left(\omega_0 \cdot t\right)$ jest równa $G(\jmath\omega) = \frac{\pi}{\omega_0} \cdot \Lambda\left(\frac{\omega}{2\cdot\omega_0}\right)$ Kolejnym krokiem jest wyznaczenie transformaty dwóch sygnałów

$$f_1(t) = Sa^2 (\omega_0 \cdot t) \cdot e^{\jmath \cdot \omega_0 \cdot t}$$

$$f_2(t) = Sa^2 (\omega_0 \cdot t) \cdot e^{-\jmath \cdot \omega_0 \cdot t}$$

Korzystając z twierdzenie o przesunięciu w dziedzinie częstotliwości

$$g(t) \xrightarrow{\mathcal{F}} G(\jmath\omega)$$

$$f_1(t) = g(t) \cdot e^{\jmath \cdot \omega_0 \cdot t} \xrightarrow{\mathcal{F}} F_1(\jmath\omega) = G(\jmath(\omega - \omega_0))$$

otrzymujemy wprost

$$F_1(j\omega) = G(j(\omega - \omega_0))$$
$$= \frac{\pi}{\omega_0} \cdot \Lambda\left(\frac{\omega - \omega_0}{2 \cdot \omega_0}\right)$$

$$F_2(j\omega) = G(j(\omega + \omega_0))$$
$$= \frac{\pi}{\omega_0} \cdot \Lambda\left(\frac{\omega + \omega_0}{2 \cdot \omega_0}\right)$$

Ostatecznie korzystając z liniowości transformaty Fouriera

$$f_1(t) \xrightarrow{\mathcal{F}} F_1(\jmath\omega)$$

$$f_2(t) \xrightarrow{\mathcal{F}} F_2(\jmath\omega)$$

$$f(t) = \alpha \cdot f_1(t) + \beta \cdot f_2(t) \xrightarrow{\mathcal{F}} F(\jmath\omega) = \alpha \cdot F_1(\jmath\omega) + \beta \cdot F_2(\jmath\omega)$$

otrzymujemy

$$F(j\omega) = F_1(j\omega) - F_2(j\omega)$$

$$= \frac{1}{2} \cdot \left(\frac{\pi}{\omega_0} \cdot \Lambda \left(\frac{\omega - \omega_0}{2 \cdot \omega_0}\right) - \frac{\pi}{\omega_0} \cdot \Lambda \left(\frac{\omega + \omega_0}{2 \cdot \omega_0}\right)\right)$$

Transformata Fouriera sygnału f(t) jest równa $F(j\omega) = \frac{1}{2} \cdot \left(\frac{\pi}{\omega_0} \cdot \Lambda\left(\frac{\omega - \omega_0}{2 \cdot \omega_0}\right) - \frac{\pi}{\omega_0} \cdot \Lambda\left(\frac{\omega + \omega_0}{2 \cdot \omega_0}\right)\right)$