

COURSE OVERVIEW

By the end of this course, students will be able to:

- Collect, extract, query, clean, and aggregate data for analysis
- Perform visual and statistical analysis on data using Python and its associated libraries and tools
- Build, implement, and evaluate data science problems using appropriate machine learning models and algorithms
- Use appropriate data visualization tools to communicate findings
- Create clear and reproducible reports to stakeholders
- Identify big data problems and understand how distributed systems and parallel computing technologies are solving these challenges
- Apply question, modeling, and validation problem-solving processes to datasets from various industries in order to provide insight into real-world problems and solutions

WEEK 1: MATH, & PROGRAMMING FUNDAMENTALS

Project 1	Students will apply their skills in NumPy and Python in order to answer several questions provided from a clean dataset.
Python & NumPy	Demonstrate introductory programming concepts using Python and NumPy as a tool to navigate data sources and collections
UNIX	Utilize UNIX commands to navigate file systems and modify files
git	Maintain a git repository in order to keep track of changes and iterations as your project evolves.
Descriptive Statistics	Define and apply descriptive statistic fundamentals
Intro to Plotting and Visualization	Practice using <u>plot.ly</u> , iPython notebook and Tableau to plot and visualize data

WEEK 2: EDA, PANDAS & SCIPY

Project 2	Students will use Pandas to apply advanced NumPy and Python skills in order to acquire, parse, mine, and refine data from a larger, messier dataset
Experiment Design	$Plan\ experimental\ study\ design\ with\ a\ well\ thought\ out\ problem\ statement\ and\ data\ framework$
Pandas & Pivot Tables	Use Pandas to read, clean, parse, and plot data using functions such as boolean, indexing, math series, joins, and others
SciPy	Review statistical testing concepts (p-values, confidence intervals, lambda functions, correlation/causation) with SciPy

WEEK 3: LINEAR REGRESSIONS, SCI-KIT-LEARN, GRADIENT DESCENT, & MODEL FIT

Project 3	Using a provided dataset, students will create a Linear Regression model and an executive summary writeup of their findings.
Linear regression, stats models, and scikit learn	Use scikit learn and statsmodels to run linear regression models and evaluate model fit
Bias-Variance Tradeoff	$Understand\ bias-variance\ trade-off\ to\ evaluate\ machine\ learning\ models$
Gradient Descent	Look behind the hood at the math and theory of how gradient descent helps to optimize the loss function for models
Regularization & Optimization	Learn to apply regularization and optimization when evaluating model fit

WEEK 4: CLASSIFICATION, KNN, AND WEB SCRAPING

Project 4	Students will build a logistic regression model while applying all of the skills learned during Weeks 1-3.
Web Scraping	Learn to scrape data using popular scraping tools
kNN	Begin to look at classification models through an application of the kNN algorithm
Data Visualization	Dive deeper into Tableau and <u>plot.ly</u> to create more robust plots and visualizations
Intro to Capstone Project	Get introduced to the final project. Begin to plan your experiment design and look for data sources

WEEK 5: SQL, DATABASES, & LOGISTIC **REGRESSIONS**

Project 5	Students will build a logistic regression classification model using data pulled from a remote database.
SQL & Remote Databases	Get introduced to different types of databases, review SQL commands, and practice connecting to and pulling data from a remote database
Feature Selection	Use feature selection to deepen knowledge of model evaluation
Logistic Regressions	Build, evaluate, and refine a logistic regression model for a given business case study

WEEK 6: APIS, TREES & ENSEMBLE METHODS

Project 6	Students will build a decision tree and a random forest model using data pulled from a remote database.
JSON & APIs	Learn to pull JSON data from APIs as another potential data source
Ensemble Models	Build and evaluate ensemble models, using decision trees, random forests, bagging, and boosting

WEEK 7: PCA, CLUSTERING, K-MEANS & AWS

Project 7	Students will apply skills from Weeks 1-6 while building a PostgresSQL database and performing a PCA ("principal components analysis").
Clustering	Define clustering and it's advantages and disadvantages from classification models
K-Means	Practice building and evaluating a k-means algorithm
PCA	Convert a set of observations or variables into principal components in order to improve predictive analysis.
Intro to AWS	Learn to access and deploy databases to AWS

WEEK 8: Bayesian **INFERENCE & LDA**

Capstone Project, Part 1	During the first part of the capstone project, students will select and verify topics and datasets, in order to develop problem statements, goals, and success criteria.
Bayesian Methods	Build a linear regression model with bayesian methods
LDA	Refine data using latent dirichlet allocation (LDA)

WEEK 9: WORKING WITH TIME SERIES

Capstone Project,
Part 2
During the second part of the capstone project, students will create their own database, acquire and clean their data, and perform exploratory data analysis using real world tools and processes.

Time Series &
Analyze and visualize time series data using Pandas, plot.ly and Tableau

Time Series & Analyze and visual Autocorrelation

ARIMA Model

Use the ARIMA model to make predictions with time series data

WEEK 10: SVMS, NAIVE BAYES & INTRO TO BIG DATA

Capstone Project,
Part 3

During the third part of the capstone project, students will build and tune a predictive model from their data using machine learning algorithms to analyze, classify, and plot their data.

SVMs & Naive Bayes Learn how concepts like SVMs and Naive Bayes can simplify the process of analyzing data for supervised learning algorithms

Hadoop, Hive, Spark Get introduced to the history and use of Hadoop as well as the ad

Get introduced to the history and use of Hadoop as well as the advantages and disadvantages of using parallel or distributed systems to store, access, and analyze big data

WEEK 11 - 12: JOB PREP & CAPSTONE

Capstone Project, Part 4 & 5

Students will create a detailed technical model notebook to share with peer audiences, while adapting their findings into a visual narrative for non-technical stakeholders.

Interview Prep

Practice data science case studies to prep for job interviews