NP-complete Languages

Polynomial Time Reductions

Polynomial Computable function f:

There is a deterministic Turing machine M such that for any string w computes f(w) in polynomial time: $O(|w|^k)$

Observation:

$$|f(w)| = O(|w|^k)$$

since, M cannot use more than $O(|w|^k)$ tape space in time $O(|w|^k)$

Definition:

Language A is polynomial time reducible to language B

if there is a polynomial computable function f such that:

$$w \in A \iff f(w) \in B$$

Theorem:

Suppose that A is polynomial reducible to B. If $B \in P$ then $A \in P$.

Proof:

Let M be the machine that decides B in polynomial time

Machine M' to decide A in polynomial time:

- On input string w: 1. Compute f(w)
 - 2. Run M on input f(w)
 - 3. If $f(w) \in B$ accept w

Example of a polynomial-time reduction:

We will reduce the

3CNF-satisfiability problem to the

CLIQUE problem

3CNF formula: literal $(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6} \lor x_4) \land (x_4 \lor x_5 \lor x_6)$ clause

Each clause has three literals

Language:

 $3CNF-SAT = \{ w : w \text{ is a satisfiable } 3CNF \text{ formula} \}$

A 5-clique in graph G

Language:

CLIQUE = $\{ \langle G, k \rangle : \text{ graph } G \}$ contains a k-clique $\}$

Theorem: 3CNF-SAT is polynomial time reducible to CLIQUE

Proof: give a polynomial time reduction of one problem to the other

Transform formula to graph

Transform formula to graph.

Example:

$$(x_1 \lor x_2 \lor \overline{x_4}) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4}) \land (x_1 \lor x_2 \lor x_3) \land (x_2 \lor \overline{x_3} \lor \overline{x_4})$$

Create Nodes:

Clause 1

Clause 2

 (χ_1)

Clause 3

 (x_3)

$$(x_1 \lor x_2 \lor \overline{x_4}) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4}) \land (x_1 \lor x_2 \lor x_3) \land (x_2 \lor \overline{x_3} \lor \overline{x_4})$$

Add link from a literal ξ to a literal in every other clause, except the complement $\overline{\xi}$

$$(x_1 \lor x_2 \lor \overline{x_4}) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4}) \land (x_1 \lor x_2 \lor x_3) \land (x_2 \lor \overline{x_3} \lor \overline{x_4})$$

Resulting Graph

$$(x_1 \lor x_2 \lor \overline{x_4}) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4}) \land (x_1 \lor x_2 \lor x_3) \land (x_2 \lor \overline{x_3} \lor \overline{x_4}) = 1$$

$$x_1 = 1$$

$$x_2 = 0$$

$$x_3 = 0$$

$$x_4 = 1$$

The formula is satisfied if and only if the Graph has a 4-clique

End of Proof

NP-complete Languages

We define the class of NP-complete

A language L is NP-complete if:

· L is in NP, and

Every language in NP
 is reduced to L in polynomial time

Observation:

If a NP-complete language is proven to be in P then:

$$P = NP$$

An NP-complete Language

Cook-Levin Theorem:

Language SAT (satisfiability problem) is NP-complete

Proof:

Part1: SAT is in NP (we have proven this in previous class)

Part2: reduce all NP languages to the SAT problem in polynomial time

Take an arbitrary language $L \in NP$

We will give a polynomial reduction of L to SAT

Let M be the NonDeterministic Turing Machine that decides L in polyn. time

For any string w we will construct in polynomial time a Boolean expression $\varphi(M, w)$

such that: $w \in L \Leftrightarrow \varphi(M, w)$ is satisfiable

Computation path

Sequence of Configurations

initial state

1:
$$q_0 \sigma_1 \sigma_2 \cdots \sigma_n$$

2: $\succ \sigma'_1 q_i \sigma_2 \cdots \sigma_n$

2:
$$\succ \sigma_1' q_i \sigma_2 \cdots \sigma_r$$

$$n^k \ge x$$
: $\succ \sigma'_1 \cdots \sigma'_l q_a \sigma'_{l+1} \cdots \sigma'_{n^k}$ accept state

$$\mathbf{W} = \sigma_1 \sigma_2 \cdots \sigma_n$$

Maximum working space area on tape during n^k time steps

<u>Tableau of Configurations</u> $\sigma_1 | \sigma_2 | \dots |$ q_0 # σ_{2} q_i # Accept configuration $|\sigma''| |\sigma_1'| |\sigma_2'| |\sigma_3'|$ # \boldsymbol{q}_a σ_{n^k} indentical rows $|\overline{\sigma}_{n_{k}^{k}}|$ $\sigma_2' \sigma_3'$ $\ldots |q_a|$ #

#

#

#

#

2:

X:

Tableau Alphabet

$$C = \{\#\} \cup \{\text{tape alphabet}\} \cup \{\text{set of states}\}$$
$$= \{\#\} \cup \{\alpha_1, \dots, \alpha_r\} \cup \{q_1, \dots, q_t\}$$

Finite size (constant)

For every cell position i, j and for every symbol in tableau alphabet $\mathcal{S} \in \mathcal{C}$

Define variable $x_{i,j,s}$

Such that if cell i, j contains symbol sThen $x_{i,j,s} = 1$ Else $x_{i,j,s} = 0$

Examples:

						n^k -	⊹ 3							
1: (#	\Diamond	• • •	\Diamond	q_{0}	σ_1	σ_{2}	• • •	σ_n	\Diamond	• • •	\Diamond	#	
2:	#	\Diamond	• • •	\Diamond	σ_1'	q_i	σ_{2}	• • •	σ_{n}	\Diamond	• • •	\Diamond	#	
•		,	1			\		1						
<i>\</i>	K _{1,1,7}	# =	T		X _{2,}	n ^k +	3 <i>,q</i> ;	= 1						
,	< 1,1,<	<u> </u>	0		X _{2,}			= 0						

 $\varphi(M, w)$ is built from variables $X_{i,j,s}$

$$\varphi(M,w) = \varphi_{\text{cell}} \wedge \varphi_{\text{start}} \wedge \varphi_{\text{accept}} \wedge \varphi_{\text{move}}$$

When the formula is satisfied, it describes an accepting computation in the tableau of machine M on input W

makes sure that every $arphi_{\mathrm{cell}}$ cell in the tableau contains exactly one symbol

$$\varphi_{\text{cell}} = \bigwedge_{\text{all } i,j} \left[\bigvee_{s \in \mathcal{C}} \mathbf{X}_{i,j,s} \right) \wedge \left(\bigwedge_{\substack{s,t \in \mathcal{C} \\ s \neq t}} \left(\overline{\mathbf{X}_{i,j,s}} \vee \overline{\mathbf{X}_{i,j,t}} \right) \right]$$

Every cell contains at least one symbol

Every cell contains at most one symbol

Size of φ_{cell} :

$$\varphi_{\text{cell}} = \bigwedge_{\substack{\text{all } i,j}} \left[\left(\bigvee_{s \in C} \mathbf{X}_{i,j,s} \right) \wedge \left(\bigwedge_{\substack{s,t \in C \\ s \neq t}} \left(\overline{\mathbf{X}_{i,j,s}} \vee \overline{\mathbf{X}_{i,j,t}} \right) \right) \right]$$

$$(2n^{k} + 3)^{2} \times (|C| + |C|^{2})$$

 $= O(n^{2k})$

 $arphi_{ ext{start}}$

makes sure that the tableau starts with the initial configuration

$$\varphi_{\mathsf{start}} = X_{1,1,\#} \land X_{1,2,\Diamond} \land \cdots \land X_{1,n^k+1,\Diamond}$$

$$\land X_{1,n^k+2,q_0} \land X_{1,n^k+3,\sigma_1} \land \cdots \land X_{1,n^k+n+2,\sigma_n}$$

$$\land X_{1,n^k+n+3,\Diamond} \land X_{1,2n^k+2,\Diamond} \land \cdots \land X_{1,2n^k+2,\#}$$

Describes the initial configuration in row 1 of tableau

Size of φ_{start} :

$$\varphi_{\text{start}} = X_{1,1,\#} \wedge X_{1,2,\Diamond} \wedge \cdots$$

$$\wedge X_{1,n^k+1,\Diamond} \wedge X_{1,n^k+2,q_0} \wedge X_{1,n^k+3,\sigma_1} \wedge \cdots$$

$$\wedge X_{1,2n^k+2,\Diamond} \wedge X_{1,2n^k+3,\#}$$

$$\downarrow$$

$$2n^k + 3 = O(n^k)$$

 $arphi_{ ext{accept}}$

makes sure that the computation leads to acceptance

$$\varphi_{\text{accept}} = \bigvee_{\substack{\text{all } i,j\\ \text{all } q \in F}} \chi_{i,j,q}$$
Accepting states

An accept state should appear somewhere in the tableau

Size of φ_{accept} :

$$\varphi_{\text{accept}} = \bigvee_{\substack{\text{all } i,j\\ \text{all } q \in F}} X_{i,j,q}$$

$$= \bigvee_{\substack{\text{all } i,j\\ \text{all } q \in F}} X_{i,j,q}$$

$$= \bigvee_{\substack{\text{all } i,j\\ \text{all } q \in F}} X_{i,j,q}$$

$$= \bigvee_{\substack{\text{all } i,j\\ \text{all } q \in F}} X_{i,j,q}$$

makes sure that the tableau move gives a valid sequence of configurations

is expressed in terms of legal windows

Tableau

Window

a	q_1	Ь
q_2	а	C

2x6 area of cells

Possible Legal windows

а	q_1	b
q_2	а	С

а	q_1	Ь
a	a	q_2

а	a	q_1
a	a	Ь

a	Ь	a
а	Ь	q_2

Legal windows obey the transitions

Possible illegal windows

а	Ь	a
a	а	а

a	q_1	Ь
$q_{\scriptscriptstyle 1}$	a	a

b	\boldsymbol{q}_1	Ь
q_2	Ь	q_2

$$\varphi_{\text{move}} = \bigwedge_{\text{all i, j}} (\text{window (i, j) is legal})$$

window (i,j) is legal:

$$i \ a \ q_1 \ b \ i \ a \ q_1 \ b \ i \ a \ a \ q_1 \ q_2 \ a \ c \ a \ a \ q_2 \ a \ a \ b \ ((is legal) \lor (is legal) \lor (is legal))$$

all possible legal windows in position (i,j)

$$i \begin{bmatrix} a & q_1 & b \\ q_2 & a & c \\ (is legal) \end{bmatrix}$$

Formula:

$$X_{i,j,a} \wedge X_{i,j+1,q_1} \wedge X_{i,j,b}$$

 $\wedge X_{i+1,j,q_2} \wedge X_{i+1,j+1,a} \wedge X_{i+1,j+2,c}$

Size of φ_{move} :

Size of formula for a legal window in a cell i,j: 6

X Number of possible legal windows in a cell i,j: at most $|C|^6$

X Number of possible cells: $(2n^k + 3)n^k$

Size of $\varphi(M, w)$:

$$\varphi(M, w) = \varphi_{\text{cell}} \land \varphi_{\text{start}} \land \varphi_{\text{accept}} \land \varphi_{\text{move}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$O(n^{2k}) + O(n^{k}) + O(n^{2k}) + O(n^{2k})$$

$$= O(n^{2k})$$

it can also be constructed in time $O(n^{2k})$ polynomial in n

$$\varphi(M, w) = \varphi_{\text{cell}} \wedge \varphi_{\text{start}} \wedge \varphi_{\text{accept}} \wedge \varphi_{\text{move}}$$

we have that:

 $w \in L \Leftrightarrow \varphi(M, w)$ is satisfiable

```
Since,
w \in L \Leftrightarrow \varphi(M, w) is satisfiable
and
\varphi(M, w) is constructed
in polynomial time
```

L is polynomial-time reducible to SAT

END OF PROOF

Observation 1:

The $\varphi(M,w)$ formula can be converted to CNF (conjunctive normal form) formula in polynomial time

But can be converted to CNF using distributive laws

Distributive Laws:

$$P \wedge (Q \vee R) = (P \wedge Q) \vee (P \wedge R)$$

$$P \vee (Q \wedge R) = (P \vee Q) \wedge (P \vee R)$$

Observation 2:

The $\varphi(M,w)$ formula can also be converted to a 3CNF formula in polynomial time

$$(a_1 \vee a_2 \vee \cdots \vee a_l)$$

$$(a_1 \vee a_2 \vee z_1) \wedge (\overline{z_1} \vee a_3 \vee z_2) \wedge (\overline{z_2} \vee a_4 \vee z_3) \wedge \cdots \wedge (\overline{z_{l-3}} \vee a_{l-1} \vee z_l)$$

From Observations 1 and 2:

CNF-SAT and 3CNF-SAT are NP-complete languages

(they are known NP languages)

Theorem:

If: a. Language A is NP-complete

b. Language B is in NP

c. A is polynomial time reducible to B

Then: B is NP-complete

Proof:

```
Any language L in NP
is polynomial time reducible to A.
Thus, L is polynomial time reducible to B
(sum of two polynomial reductions,
gives a polynomial reduction)
```

Corollary: CLIQUE is NP-complete

Proof:

- a. 3CNF-SAT is NP-complete
- b. CLIQUE is in NP (shown in last class)
- c. 3CNF-SAT is polynomial reducible to CLIQUE (shown earlier)

Apply previous theorem with A=3CNF-SAT and B=CLIQUE