Machine Learning and Data Mining I (DS 4400)

Midterm II Sample Questions Instructor: Ehsan Elhamifar

- 1) Show that the Euclidean distance from a point x to the hyperplane $w^{\top}x + b = 0$ is given by $\frac{|w^{\top}x + b|}{\|w\|_2}$.
- 2) Assume we have a binary variable $x \in \{0,1\}$ with $p(x=1) \triangleq \theta$. Thus, the variable x has a Bernoulli distribution, i.e., $p(x|\theta) = \theta^x (1-\theta)^{1-x}$. Our goal is to estimate the value of θ given N observations $\{x^i\}_{i=1}^N$. Assume we have prior information about the parameter θ , i.e., we are given $p(\theta)$. Assume θ has a Beta distribution with parameters $\alpha, \beta > 0$, i.e.,

$$p(\theta) = \frac{1}{B} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1},\tag{1}$$

where B is a normalizing constant. We know that the mode (maximum) of (1) is given by $(\alpha - 1)/(\alpha + \beta - 2)$. Compute the posterior distribution $p(\eta|x^{(1)}, \dots, x^{(N)})$ and the MAP estimation of θ given the observations.

- 3) Consider the problem of separating data $\mathcal{D} = \{(\boldsymbol{x}^1, y^1), \dots, (\boldsymbol{x}^N, y^N)\}$ from two classes with labels $\{-1, +1\}$, using the hyperplane $\boldsymbol{w}^{\top} \boldsymbol{x} = 0$. a) Derive an optimization on \boldsymbol{w} in order to find the maximum geometric margin hyperplane. b) Write down the Lagrangian of the optimization.
- **4)** Consider a binary classification problem in one-dimensional space where the sample contains four data points $S = \{(1, -1), (-1, -1), (2, 1), (-2, 1)\}$ as shown in Fig. 1.

Figure 1: Red points represent instances from class +1 and blue points represent instances from class -1.

- **A.** Define $H_t = [t, \infty)$. Consider a class of linear separateors $\mathcal{H} = \{H_t : t \in \mathbb{R}\}$, i.e., for $\forall H_t \in \mathcal{H}, H_t(x) = 1 \text{ if } x \geq t \text{ otherwise } -1$. Is there any linear separator $H_t \in \mathcal{H}$ that achieves 0 classification error on this sample? If yes, show one of the linear separators that achieves 0 classification error on this example. If not, briefly explain why there cannot be such linear separator.
- **B.** Now consider a feature map $\phi: \mathbb{R} \to \mathbb{R}^2$ where $\phi(x) = (x, x^2)$. Apply the feature map to all the instances in sample S to generate a transformed sample $S' = \{(\phi(x), y) : (x, y) \in S\}$. Let $\mathcal{H}' = \{ax_1 + bx_2 + c \geq 0 : a^2 + b^2 \neq 0\}$ be a collection of half-spaces in \mathbb{R}^2 . More specifically, $H_{a,b,c}((x_1,x_2)) = 1$ if $ax_1 + bx_2 + c \geq 0$ otherwise -1. Is there any half-space $H' \in \mathcal{H}'$ that achieves 0 classification error on the transformed sample S'? If yes, give the equation of the maxmargin linear separator and compute the corresponding margin.

C. What is the kernel corresponding to the feature map $\phi(\cdot)$ in the last question, i.e., give the kernel function $K(x,z): \mathbb{R} \times \mathbb{R} \to R$.

5) Consider a two-layer neural network to learn a function $f: X \to Y$, where $X = [X_1, X_2]$ consists of two features. The weights w_1, \ldots, w_6 can be arbitrary. There are two possible choices for the function implemented by each unit in this network:

- **S**: sigmoid function, $S(z) = \frac{1}{1 + \exp(-z)}$,
- **–** L: linear function, L(z) = cz,

where in both cases $z = \sum_i w_i X_i$. Assign proper activation functions (**S** or **L**) to each unit in the following graph so that we can generate functions of the form $f(X_1, X_2) = \frac{1}{1 + \exp(\beta_1 X_1 + \beta_2 X_2)}$ at the output of the neural network Y. Derive β_1 and β_2 as a function of w_1, \ldots, w_6 .

