Concentric Tube Robot – A Modular Design for Achieving Two Controllable Sections and a Stereo Tracking System

Dang The Hung¹, Carlo Alberto Seneci¹, Christos Bergeles¹

¹ King's College London

Introduction

Background:

- Concentric Tube Robot (CTR) is slender and flexible, making it advantageous for navigating through complex areas during surgical operations [1], [2].
- When two "balanced" nitinol tubes are rotated, the combined curvature changes, adding more flexibility to the system [3].
- Researchers at KCL previously developed a system with one balanced pair of nitinol tubes, creating a single controllable section.
- No 3D tracking system for entire CTR is available.

Aims:

- Add a second independently controllable section to the system.
- Develop a 3D stereo tracking for entire CTR.

Methods

Design and Manufacture

Design and manufacturing process for balanced pairs

Arrangement of straight and curve sections in nitinol tube system

Modular design for the actuation system

Stereo tracking

Tracking protocol

Results

Design and Manufacture outcomes

Finite elements analysis results and final slot patterns

Balanced pair 1 and 2

(The red arrows indicate the start and the end of each balanced pair)

Decoupling of the second independent controllable section

Stereo tracking performance

Segmentation

Conclusion

The project achieved the initial targets:

- Successfully developed an original design that adds a second independently controllable section to the system.
- Created a novel 3D tracking system for entire CTR.

However, the tracking system requires further improvement in precision and in its ability to detect subtle changes in the tube configurations.