Overheads: - Outline Handout: EAS template

## Feedback on Midterm

Recap before Break Electrophilic Aromatic Substitution

## 5 Types of E<sup>+</sup>:



What if there is already a group on the benzene ring?



⇒ Any alkyl (R) or aryl (Ar) group on benzene ring directs E<sup>+</sup> to ortho and para Why? Stabilization of C<sup>+</sup> intermediate ⇒ Must look at 3 resonance forms for C<sup>+</sup>

write in this H to remind yourself not to make 5 bonds! \*\* only e<sup>-</sup> move, never > 4 bonds only ortho & para have a 3° C<sup>+</sup> resonance form : more stable gives only ortho and para Result: 1) R-

react faster than benzene (3° > 2° :: ~600 x faster)

R group is activating (faster) and ortho-para directing

## Other Activating Groups

- all electron-donating groups can stabilize C<sup>+</sup>
- : speed up reaction and all direct o/p

eg OH: - alcohols are strongly electron-donating lone pairs on O can do resonance with C<sup>+</sup>



\*\*Practice at home: Draw res. Forms for m & p, show only o & p have "extra" res. form

## Activating Groups: Table 19.1/16.1 in old book

$$\begin{array}{c} \text{-OH; -OR} \\ \text{-NH}_2; \text{-NR}_2 \end{array} \right\} \text{ strongly activating} \\ \text{-} \begin{array}{c} \textbf{O} \\ \textbf{-} \textbf{HN-C-R} \end{array} \text{ (amide, like lab)} \\ \text{-} \begin{array}{c} \textbf{O} \\ \textbf{O} \\ \textbf{-} \textbf{O-C-R} \end{array} \right\} \text{ moderately activating} \quad \begin{array}{c} \text{(e$^-$ also do resonance with C=O, $...$ less to donate)} \\ \text{-R; -Ar - weakly activating} \end{array}$$

Electron-Withdrawing groups are <u>deactivating</u>:

- remove e<sup>-</sup> from ring :: C<sup>+</sup> <u>less</u> stable, slower reaction

**Deactivating Groups**: 2 types:

1) Halogens: ring is  $\delta^+$  : reacts ~ 50x slower than benzene

BUT: Ione pairs can still donate to stabilize o & p