Diathesis Alternations and Selectional Restrictions in Sentence Processing: A fMRI Study

Shohini Bhattasali Cornell University

John Hale University of Georgia

55th Meeting of the Chicago Linguistic Society (CLS 55) May 17, 2019

Introduction

- Human study of natural language comprehension
- Brain areas that correspond to different aspects of sentence processing, as exemplified through verbs
- Present neuroimaging study using fMRI

Background

- Verbal argument structure
 - Diathesis alternations

Background

- Verbal argument structure
 - Diathesis alternations

break

- 1. Fred broke the window AGENT THEME
- 2. Fred broke the window with a rock AGENT THEME INSTRUMENT
- 3. The rock broke the window. INSTRUMENT THEME
- 4. The window broke. THEME
- 5. The window was broken by Fred.

 THEME

 AGENT

Background

- Verbal argument structure
 - Diathesis alternations
 - Selectional restrictions
 - pour, sing vs. make, give

General Approach

- ▶ Incorporating computational linguistics:
 - Operationalize cognitive hypotheses
 - Often based on incremental, expectation-based theories of sentence comprehension (Hale, 2001; Levy, 2008)
 - Statistical/probabilistic language models (along with information-theoretic complexity measures)
 - Estimate word-by-word comprehension difficulty during real time language processing,

Fig. 1: Schematic depiction from Armeni et al., (2017)

General Approach

- Using naturalistic stimulus:
 - Computational modeling makes it easier to study the brain responses to naturalistic stimuli (Brennan, 2016)
 - ▶ Ecologically valid stimuli
 - Complement experimental approaches with controlled task-based designs
 - Easily reusable and shareable for different research questions

Research Question

Do diathesis alternations and selectional restrictions on a verb have different neural bases?

Research Question

- ▶ Do diathesis alternations and selectional restrictions on a verb have different neural bases?
 - ▶ Use PropBank (Kingsbury, 2002) & Resnik (1996)'s selectional preference strength metric

Dataset:

- ▶ The audio stimulus was Antoine de Saint-Exupery's The Little Prince, translated by David Wilkinson and read by Nadine Eckert-Boulet.
- ▶ 1970 verbs attested in the story (401 unique); excluding modals, auxiliaries, and gerunds using the NLTK tagger & Stanford POS tagger

Fig. 2: Cover of The Little Prince

- Experimental Design:
 - ▶ Participants (n=51, 32 female) were college-aged, righthanded, native English speakers

Listened to *The Little Prince*'s audiobook for 1 hour 38 minutes across nine sections. (15,388 words total; 1,453 sentences)

Comprehension was confirmed through multiple-choice questions (90% accuracy, SD 3.7%).

Fig. 3: Pipeline adapted from Bhattasali et al. (2018)

Overview of analysis:

- ▶ The General Linear Model (GLM) typically used in fMRI data analysis is a time series linear regression (Poldrack et al., 2011).
- ▶ The regressors are convolved with the canonical HRF to create the estimated fMRI signal (BOLD), which is compared against the observed BOLD signal during passive story listening.

Fig. 4: Sample BOLD signal

Data Analysis:

- ▶ Preprocessing was carried out with AFNI version 16 and ME-ICA v3.2 (Kundu et al., 2011)
 - ▶ Images were normalized to the MNI–152 template
 - ▶ ME-ICA denoises T2* signal using ICA into BOLD and noise components from physiology, motion, scanner artifacts
- ▶ Statistical analyses carried out in SPM12 (Friston et al., 2007).
- ▶ 8 mm FWHM Gaussian smoothing kernel was applied on the contrast images from the first-level analysis to counteract inter-subject anatomical variation.
- Group-level results reported underwent FWE voxel correction for multiple comparisons which resulted in T-scores > 5.3

- ▶ GLM Regressors:
 - PropBank score: Represents the number of diathesis alternations for a verb
 - ▶ Selection preference strength: Represent selectional restrictions on a verb
 - Word rate: Indicator of spoken word offset
 - ▶ Word frequency: log-frequency in movie subtitles (Brysbaert & New, 2009)
 - ▶ f0: fundamental frequency of the narrator's voice,reflects pitch
 - ▶ RMS amplitude: intensity, an acoustic correlate of volume

PropBank scores: Calculated from PropBank (Kingsbury, 2002), which consists of all the sentences from the Penn Treebank annotated with semantic roles with higher scores indicating more diathesis alternations.

- ▶ PropBank scores
- ▶ $hang \Rightarrow 8$
 - hang, suspend, suspending
 - **hang**, exist, be
 - hang_on, wait
 - **hang_on,** maintain possession of
 - **hang_up**, terminate a phone call
 - **hang_up**, stuck on
 - ▶ hang_out, spend time socially
 - **hanging**, execution

▶ Selectional preference strength: Calculated according to Resnik (1996) by estimating verb-direct object pairs from the Gigaword (Ferraro et al., 2014) & WaCkypedia (Baroni et al., 2009) corpora and then calculating the number of different WordNet semantic classes a given verb's direct objects falls into.

$$Pr(v,c) = \frac{1}{N} \sum_{n \in \text{words}(c)} \frac{1}{|\text{classes}(n)|} freq(v,n)$$

- Selectional preference strength:
- pour: <pour, juice>, <pour, milk>, <pour, water>, ...

```
{act, action, activity}
                                         {natural object}
{animal, fauna}
                                         {natural phenomenon}
{artifact}
                                         {person, human being}
{attribute, property}
                                         {plant, flora}
{body, corpus}
                                         {possession}
{cognition, knowledge}
                                         {process}
{communication}
                                         {quantity, amount}
{event, happening}
                                         {relation}
{feeling, emotion}
                                         {shape}
{food}
                                         {state, condition}
{group, collection}
                                         {substance}
{location, place}
                                         {time}
{motive}
```

Table 1: The 25 noun semantic classes in WordNet (Miller, 1993)

Diathesis alternations vs Selectional restriction

Verb	PropBank scores	Selectional Preference Strength
pour	0.22	1
hang	0.33	0.91
call	I	0.52
catch	0.89	0.27
read	0.11	0.49
open	0.33	0.48
make	0.33	0.54
give	0.44	0.28

Table 2: Comparing diathesis alternation and selectional restriction metrics

Fig. 5: (A): Whole-brain contrasts for diathesis alternations in green (B): Whole brain contrasts for selectional restriction in blue

• Results:

- Significant clusters for the diathesis alternations were observed in the right Supramarginal Gyrus and Middle Frontal Gyrus and bilateral Precuneus
- ▶ Significant clusters for selectional restrictions were observed in the right Superior Temporal Gyrus, Inferior Frontal Gyrus, and Supplementary Motor Area

(A) Modris Frontal Gyrus Frecureus Supplementary Motor Area Cyrus Specific Specific Specific Specific Specific

Results:

- Diathesis alternations results corroborate previous neuroimaging studies related to semantic roles and subcategorization (Shetreet et al., 2006; Thompson et al., 2010; Thompson et al., 2007; Meltzer-Asscher et al., 2013)
- Previous studies were controlled, task-based, block design experiments (e.g., lexical decision); our results replicate the findings with ecologically valid stimulus

Results:

Selectional restrictions are consistent with other neuroimaging studies related to lexical-semantic processing (Kuperberg et al., 2000; Baker et al., 2001; Zempleni et al., 2007)

Conclusion

- Diathesis alternations and selectional restrictions evoke different pattern of activation in the brain
- Both metrics operationalize a degree of constraint: form and meaning
- Suggests that C-selection and S-selection have different neurobiological correlates.

Acknowledgements

Murielle Fabre

Christophe Pallier

Jonathan Brennan

This material is based upon work supported by the National Science Foundation under Grant Number 1607441.

References

Armeni, K., Willems, R. M., & Frank, S. L. (2017). Probabilistic language models in cognitive neuroscience: Promises and pitfalls. *Neuroscience & Biobehavioral Reviews*, 83, 579-588.

Bhattasali, S., Fabre, M., Luh, W. M., Al Saied, H., Constant, M., Pallier, C., ... & Hale, J. (2018). Localising memory retrieval and syntactic composition: an fMRI study of naturalistic language comprehension. *Language, Cognition and Neuroscience*, 1-20.

Brennan, J. (2016). Naturalistic sentence comprehension in the brain. *Language and Linguistics Compass*, 10(7), 299-313.

Hale, J. (2003). *Grammar, Uncertainty and Sentence Processing* (Doctoral dissertation, Johns Hopkins University).

Hale, J. (2001). A probabilistic Earley parser as a psycholinguistic model. In *Proceedings of the second meeting of the North American Chapter of the Association for Computational Linguistics on Language technologies* (pp. 1-8). Association for Computational Linguistics, Morristown, NJ, USA.

Kingsbury, P., & Palmer, M. (2002, May). From TreeBank to PropBank. In LREC (pp. 1989-1993).

Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106(3), 1126-1177.

Linzen, T., Marantz, A., & Pylkkänen, L. (2013). Syntactic context effects in visual word recognition: An MEG study. *The Mental Lexicon*, 8(2), 117-139.

Miller, G. A. (1990). Nouns in WordNet: A Lexical Inheritance system. *International journal of Lexicography*, 3(4), 245-264.

Poldrack, R. A., Mumford, J. A., & Nichols, T. E. (2011). Handbook of functional MRI data analysis. Cambridge University Press.

Resnik, P. (1996). Selectional constraints: An information-theoretic model and its computational realization. *Cognition*, 61(1-2), 127-159.

Thank you