Sumário 1 Representação Capítulo 1: Conceitos Preliminares Newton José Vieira Departamento de Ciência da Computação Universidade Federal de Minas Gerais 17 de março de 2011 Newton José Vieira Capítulo 1: Conceitos Preliminares Newton José Vieira Capítulo 1: Conceitos Preliminares Sumário Sumário 1 Representação 1 Representação 2 Prova de Teoremas 2 Prova de Teoremas 3 Conjuntos Newton José Vieira Capítulo 1: Conceitos Preliminares Newton José Vieira Capítulo 1: Conceitos Preliminares

Sumário Sumário Representação 1 Representação 2 Prova de Teoremas 2 Prova de Teoremas 3 Conjuntos 3 Conjuntos 4 Relações 4 Relações 5 Funções 4□ ト 4団 ト 4 豆 ト 4 豆 ・ り Q () Capítulo 1: Conceitos Preliminares Newton José Vieira Newton José Vieira Capítulo 1: Conceitos Preliminares Sumário Sumário 1 Representação 1 Representação 2 Prova de Teoremas 2 Prova de Teoremas 3 Conjuntos 3 Conjuntos 4 Relações 4 Relações 5 Funções 5 Funções 6 Conjuntos Enumeráveis 6 Conjuntos Enumeráveis 7 Definições Recursivas Newton José Vieira Capítulo 1: Conceitos Preliminares Newton José Vieira Capítulo 1: Conceitos Preliminares

Sumário Sumário Representação 1 Representação 2 Prova de Teoremas 2 Prova de Teoremas 3 Conjuntos 3 Conjuntos 4 Relações 4 Relações 5 Funções 5 Funções 6 Conjuntos Enumeráveis 6 Conjuntos Enumeráveis 7 Definições Recursivas 7 Definições Recursivas Indução Matemática 8 Indução Matemática Grafos 4□ → 4団 → 4 豆 → 4 豆 → 9 Q C → 4□ → 4□ → 4 = → ■ 990 Newton José Vieira Capítulo 1: Conceitos Preliminares Newton José Vieira Capítulo 1: Conceitos Preliminares Sumário Sumário 1 Representação 1 Representação 2 Prova de Teoremas 2 Prova de Teoremas 3 Conjuntos 3 Conjuntos 4 Relações 4 Relações 5 Funções 5 Funções 6 Conjuntos Enumeráveis 6 Conjuntos Enumeráveis 7 Definições Recursivas 7 Definições Recursivas Indução Matemática Indução Matemática Grafos Grafos 10 Linguagens Formais 10 Linguagens Formais 11 Gramáticas

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Sumário

- Representação
- 2 Prova de Teoremas
- 3 Conjuntos
- 4 Relações
- 5 Funções
- 6 Conjuntos Enumeráveis
- 7 Definições Recursivas
- Indução Matemática
- Grafos
- 10 Linguagens Formais
- 11 Gramáticas
- 12 Problemas de Decisão

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Capítulo 1: Conceitos Preliminares

Representação Prova de Teoremas Conjuntos Relações Funções Conjuntos Enumeráveis Definições Recursivas Indução Matemática Grafos Linguagens Formais Gramáticas

Problemas de Decisão

Características de provas de teoremas

- Estilo:
 - formal × informal:
 - conciso × prolixo.
- Prova:
 - vocabulário limitado: se ... então, contradição etc;
 - usa técnicas de prova.

Representação

Prova de Teoremas Relações Conjuntos Enumeráveis Definições Recursivas Indução Matemática Grafos Linguagens Formais Gramáticas Problemas de Decisão

A matemática entre a entidade e a representação

Entidade	Modelo matemático	Representação
mês	número inteiro no	um dos caracteres
	intervalo $[1,12]$	0 a 9, A ou B
remuneração	número real positivo	base 10
presença	vetor de números, um	sequência de
	para cada dia do mês	reais na base 10
FP	relação	"arquivo"
cálculo de FP	algoritmo	programa

Sequência de símbolos: elemento fundamental das linguagens formais.

◆ロ ト ◆部 ト ◆ 恵 ト ・ 恵 ・ り へ ②

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação Prova de Teoremas Conjuntos Relações Funções Conjuntos Enumeráveis Definições Recursivas Indução Matemática Grafos Linguagens Formais Gramáticas

Problemas de Decisão

Conectivos lógicos

Os conectivos lógicos: \neg , \lor , \land , \rightarrow , \leftrightarrow , \forall , \exists .

Conectivos lógicos

Newton José Vieira

Capítulo 1: Conceitos Preliminares

ose viena Capitalo 1. Conceitos i feinimare

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Conectivos lógicos

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas

Problemas de Decisão

Conectivos lógicos

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Conectivos lógicos

D		
Representação		
Prova de Teoremas		
Conjuntos		
Relações		
Funções		
Conjuntos Enumeráveis		
Definições Recursivas		
Indução Matemática		
Grafos		
Linguagens Formais		
Gramáticas		
Problemas de Decisão		

Quantificação

- Quantificação universal: ∀xP(x)
 - P(x) é verdadeira para todo x do <u>universo</u>.
- Quantificação existencial: $\exists x P(x)$
 - P(x) é verdadeira para algum x do <u>universo</u>.

Exemplo:

Expressar formalmente: todo número natural par ao quadrado é par.

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Contradição

Falsa para todos os valores-verdade de suas subafirmativas. Exemplos:

- $\bullet \ \alpha \land \neg \alpha$
- $\bullet \ \alpha \leftrightarrow \neg \alpha$
- $(\alpha \wedge (\alpha \rightarrow \beta)) \wedge \neg \beta$
- $P(a) \land \neg \exists x P(x)$
- $\forall x P(x) \land \exists x \neg P(x)$

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Afirmativa válida

Verdadeira para todos os valores-verdade de suas subafirmativas. Exemplos:

- \bullet $\alpha \vee \neg \alpha$
- \circ $\alpha \to \alpha$
- $\alpha \vee (\alpha \rightarrow \beta)$
- $P(a) \rightarrow \exists x P(x)$
- $\forall x P(x) \leftrightarrow \neg \exists x \neg P(x)$

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas

Problemas de Decisão

Equivalência lógica

 $\alpha \equiv \beta$ se o valor-verdade de α e β é o mesmo para todos os valores-verdade de suas subafirmativas.

Exemplos:

- $\alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$
- $\neg(\alpha \land \beta) \equiv \neg \alpha \lor \neg \beta$
- $\alpha \to \beta \equiv \neg \alpha \lor \beta$
- $\alpha \leftrightarrow \beta \equiv (\alpha \to \beta) \land (\alpha \to \beta)$

Newton José Vieira Capítulo 1: Conceitos Preliminares

Consequência lógica (implicação lógica)

 $\Gamma \Rightarrow \beta$ se β é verdadeira sempre que as afirmativas em Γ também são.

Exemplos:

- $\{\alpha \to \beta, \alpha\} \Rightarrow \beta$
- $\{\alpha \to \beta, \neg \beta\} \Rightarrow \neg \alpha$
- $\bullet \{\alpha \to \beta, \neg \alpha \to \beta\} \Rightarrow \beta$
- $\{\alpha \to \beta, \beta \to \gamma\} \Rightarrow \alpha \to \gamma$
- $\{P(a) \Rightarrow \exists x P(x)\}$
- $\{P(a), \forall x (P(x) \rightarrow Q(x))\} \Rightarrow Q(a)$

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação Prova de Teoremas Conjuntos Relações

Funcões Conjuntos Enumeráveis Definições Recursivas Indução Matemática Grafos

Linguagens Formais Gramáticas Problemas de Decisão

Técnica de prova: direta

Prova direta da implicação

Para provar $\alpha \to \beta$:

- **1** Supor α .
- 2 Provar β .

Exemplo:

• $n \in par \rightarrow n^2 \in par$.

4□ ト 4回 ト 4 重 ト 4 重 ト 9 9 0 €

Representação Prova de Teoremas Relações Conjuntos Enumeráveis Definições Recursivas Indução Matemática Grafos Linguagens Formais Gramáticas Problemas de Decisão

Exemplos de regras de inferência

$$\begin{array}{ccc}
\alpha & & \alpha & \neg \beta \\
\alpha \to \beta & & \neg \alpha \lor \beta & \alpha \to \beta \\
\hline
\beta & & \neg \alpha & \neg \alpha
\end{array}$$

$$\begin{array}{ccc} \alpha \to \beta & \alpha \to \beta & \alpha \leftrightarrow \beta \\ \neg \alpha \to \beta & \beta \to \gamma & \beta \leftrightarrow \gamma \\ \hline \beta & \alpha \to \gamma & \alpha \leftrightarrow \gamma \end{array}$$

Relação entre \rightarrow e \Rightarrow :

se
$$\Gamma \cup \{\alpha\} \Rightarrow \beta$$
, então $\Gamma \Rightarrow \alpha \rightarrow \beta$.

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação Prova de Teoremas Conjuntos Relações Funcões Conjuntos Enumeráveis Definicões Recursivas Indução Matemática Grafos

Linguagens Formais Gramáticas Problemas de Decisão

Técnica de prova: pela contrapositiva

Prova da implicação pela contrapositiva

Para provar $\alpha \to \beta$:

- **1** Supor $\neg \beta$.
- 2 Provar $\neg \alpha$.

Exemplo:

• n^2 é par $\rightarrow n$ é par.

Técnica de prova: para universal

Prova de uma universal

Para provar $\forall x P(x)$:

- 1 Supor um x arbitrário (que não ocorre ainda).
- 2 Provar P(x).

Exemplo:

• $\forall n \in \mathbf{N}(n \text{ é par } \rightarrow n^2 \text{ é par}).$

4□ ト 4 個 ト 4 重 ト 4 重 ・ 夕 Q ()

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Prova de Teoremas Conjuntos Relações Funcões Conjuntos Enumeráveis Definições Recursivas Indução Matemática

Representação

Grafos Linguagens Formais Gramáticas Problemas de Decisão

Técnica de prova: por construção

Prova de uma existencial por construção

Para provar $\exists x \in AP(x)$:

- 1 Encontrar um $a \in A$ tal que P(a).
- 2 Provar P(a).

Exemplo:

• $\forall n \in \mathbb{N} \exists k \in \mathbb{N} \ k \text{ tem } n \text{ divisores distintos.}$

Newton José Vieira

4□ ト 4回 ト 4 重 ト 4 重 ト 9 9 0 €

Representação Prova de Teoremas Relações Conjuntos Enumeráveis Definições Recursivas Indução Matemática Grafos Linguagens Formais Gramáticas Problemas de Decisão

Técnica de prova: por contradição

Prova de uma afirmativa por contradição

Para provar α :

- **1** Supor $\neg \alpha$.
- 2 Provar uma contradição.

Exemplo:

Existe uma infinidade de números primos.

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação Prova de Teoremas Conjuntos Relações Funções Conjuntos Enumeráveis Definicões Recursivas Indução Matemática Grafos Linguagens Formais Gramáticas

Problemas de Decisão

Técnica de prova: por casos

Prova de uma afirmativa por casos

Para provar β :

- **1** Provar $\alpha_1 \vee \ldots \vee \alpha_n$.
- 2 Provar $\alpha_1 \to \beta_1, \ldots, \alpha_n \to \beta_n$

Exemplo:

 $\bullet \ \forall x, y \in \mathbf{R} \ min(x, y) + max(x, y) = x + y.$

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Técnica de prova: para bicondicional

Prova de uma bicondicional em duas partes

Para provar $\alpha \leftrightarrow \beta$:

- **1** Provar $\alpha \to \beta$.
- **2** Provar $\beta \to \alpha$.

Exemplo:

• $\forall n \in \mathbf{N} \ (n \text{ par} \leftrightarrow n^2 \text{ par}).$

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Tipos de conjuntos e conjuntos importantes

- O conjunto vazio: ∅.
- Conjuntos unitário, finito, infinito.
- N: números naturais.
- Z: números inteiros.
- R: números reais.
- Q: números racionais.

Notações importantes:

$$\{x \mid P(x)\}$$
. Exemplo: $\{k \mid k=2n+1 \text{ e } n \in \mathbb{N}\}$. $\{x \in A \mid P(x)\}$. Exemplo: $\{k \in \mathbb{R} \mid 0 \le k \le 1\}$.

Newton José Vieira Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

O que é um conjunto?

Abstração matemática que visa capturar o conceito de coleção. Lista não ordenada de **elementos** ou **membros**: $\{1,2\}=\{2,1\}$ Notação:

- $a \in A$: a pertence a A.
- $a \notin A$: a não pertence a A.

Exemplos:

- { Mercúrio, Vênus, Terra, Marte, Júpiter}
- {10, Marte, {0}, { Terra, 1, 2, 3}}

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Relações entre conjuntos

Relações básicas entre conjuntos

- **Suconjunto**: $A \subseteq B$ se e somente se $\forall x (x \in A \rightarrow x \in B)$.
- **Suconjunto próprio:** $A \subset B$ se e somente se $A \subseteq B$ e $A \neq B$.

Exemplos:

- ∅ ⊂ A
- $\emptyset \subset A$ se $A \neq \emptyset$
- ∅ ⊄ ∅

Operações sobre conjuntos

Operações básicas sobre conjuntos

- **União:** $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$
- Interseção: $A \cap B = \{x \mid x \in A \text{ e } x \in B\}.$
- **Diferença:** $A B = \{x \mid x \in A \text{ e } x \notin B\}.$
- Complemento: $\overline{A} = U A$.

4 D > 4 B > 4 E > 4 E > E 990

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais

Problemas de Decisão

Gramáticas

Exemplos de identidades

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

$$A - B = A \cap \overline{B}$$

→ □ → ← □ → ← □ → □ → ○ ○

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Igualdade

A = B se e somente se $A \subseteq B$ e $B \subseteq A$.

Prova de igualdade de conjuntos

Para provar A = B:

- ① Provar $A \subseteq B$.
- 2 Provar $B \subseteq A$.

Algumas vezes é possível provar encadeando-se \leftrightarrow s.

Exemplo:

$$\bullet \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

Newton José Vieira Capítulo 1: Conceitos Preliminares

イロト イ団ト イミト イミト

Representação Prova de Teoremas Conjuntos Relações Funções Conjuntos Enumeráveis

Definições Recursivas Indução Matemática Grafos Linguagens Formais Gramáticas Problemas de Decisão

Conjuntos disjuntos

 $A \in B$ são **disjuntos** se e somente se $A \cap B = \emptyset$.

- Exemplos:
 - $\{0,2,4\}$ e $\{1,3,5\}$
 - ∅ e A.
 - $A \in \overline{A}$.
 - \bullet $A B \in B A$.

União e interseção generalizadas

União de *n* conjuntos

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \cdots \cup A_n.$$

Interseção de *n* conjuntos

$$\bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \cdots \cap A_n.$$

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Conjunto potência; número de elementos

Conjunto potência

Conjunto potência de A: $\mathcal{P}(A) = \{X \mid X \subseteq A\}$.

Exemplo: que conjunto é $\mathcal{P}(\{1,2,3\})$?

Notação para **número de elementos** de A: |A|.

Exemplos: $|\emptyset| = 0$, $|\{\emptyset, 1, 2, \{1, 2, 3, 4, 5\}\}| = 4$, $|\mathcal{P}(A)| = 2^{|A|}$.

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas

Problemas de Decisão

Partição

Partição de um conjunto

Uma **partição** de A é o conjunto $\{B_1, \ldots, B_n\}$ tal que:

- ① $B_i \neq \emptyset$ para $1 \leq i \leq n$;
- 2 $B_i \cap B_j = \emptyset$ para $1 \le i < j \le n$; e
- **3** $\bigcup_{i=1}^{n} B_i = A$.

Exemplo: quais são as partições de $\{1,2,3\}$?

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Produto cartesiano

Par não ordenado: (a, b) ou [a, b].

Similarmente: tripla, quádrupla etc.

Produto cartesiano de dois conjuntos

$$A \times B = \{(a, b) \mid a \in A \in b \in B\}.$$

Exemplos:

- $\emptyset \times \{1, 2\} = \emptyset$.
- $\{1,2\} \times \{1,2\} = \{(1,1),(1,2),(2,1),(2,2)\}.$

Newton José Vieira

• $|A \times B| = |A| \cdot |B|$ se $A \in B$ forem finitos

Produto cartesiano de n conjuntos: A^n .

Capítulo 1: Conceitos Preliminares

O que é relação

Relação de n argumentos sobre A_1, \ldots, A_n

Um subconjunto de $A_1 \times A_2 \times ... \times A_n$.

Relação **binária**: $R \subseteq A \times B$

Domínio: A.

Contradomínio: B.

Imagem: $\{y \mid (x, y) \in R \text{ para algum } x\}$.

Notação: $(x, y) \in R$ é o mesmo que x R y.

4□ ト 4 個 ト 4 重 ト 4 重 ・ 夕 Q ()

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Capítulo 1: Conceitos Preliminares

Representação Prova de Teoremas Conjuntos Relações Funções Conjuntos Enumeráveis Definições Recursivas Indução Matemática Grafos Linguagens Formais Gramáticas Problemas de Decisão

Propriedades

Inversa de R

$$R^{-1} = \{ (y, x) \, | \, (x, y) \in R \}$$

Propriedades de uma relação binária $R \subseteq \overline{A \times A}$

• Reflexiva: $\forall x \in A[xRx]$

• Simétrica: $\forall x, y \in A [xRy \rightarrow yRx]$.

• Transitiva: $\forall x, y, z \in A[(xRy \land yRz) \rightarrow xRz]$.

4 D > 4 D > 4 E > 4 E >

Representação Prova de Teoremas Relações Funções Conjuntos Enumeráveis Definições Recursivas Indução Matemática Grafos Linguagens Formais Gramáticas Problemas de Decisão

Um exemplo de reação binária

Relação $<\subseteq \mathbf{N} \times \mathbf{N}$:

domínio: N;

• contradomínio: $\mathbf{N} - \{0\}$;

• imagem: $N - \{0\}$.

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação Prova de Teoremas Conjuntos Relações Funções Conjuntos Enumeráveis Definições Recursivas Indução Matemática Grafos Linguagens Formais Gramáticas Problemas de Decisão

Propriedades/exemplos

Considere as relações:

< sobre **N**;

 \circ < sobre **N**;

 \circ \subset sobre $\mathcal{P}(\mathbf{N})$;

■ sobre o conjunto das afirmativas da lógica proposicional.

Para cada uma diga se a mesma é reflexiva, simétrica e transitiva.

Relação de equivalência

Relação de equivalência

Aquela que é reflexiva, simétrica e transitiva.

⇒Induz classes de equivalência.

Exemplos:

- $(mod \ n) = \{(x, y) \in \mathbb{N}^2 \mid x \ mod \ n = y \ mod \ n\}$
- fazem aniversário no mesmo dia.

Que classes de equivalência induz (mod 2)? E (mod 10)?

E "fazem aniversário no mesmo dia"?

4 D > 4 B > 4 E > 4 E > E 990

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

O que é uma função

Função parcial

Uma **função** $f:A\to B$: é uma relação $f\subseteq A\times B$ tal que:

se
$$(x, y) \in f$$
 e $(x, z) \in f$ então $y = z$.

- $(x, y) \in f$ é o mesmo que f(x) = y.
- f é **indefinida** para x se não há y tal que f(x) = y.
- Função total: definida para todo argumento.
- Função $f: A \rightarrow B$ de n argumentos:

$$A = A_1 \times \ldots \times A_n$$
.

Newton José Vieira Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Fechos de uma relação

Fecho reflexivo

O **Fecho reflexivo** de $R \subseteq A \times A$ é S tal que:

- \circ $R \subseteq S$;
- S é reflexiva;
- se $R \subseteq T$ e T é reflexiva, $S \subseteq T$.

Fechos simétrico e transitivo: análogos.

Qual é o fecho reflexivo de <? Qual é o fecho simétrico de <?

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Exemplos de funções

$$ullet$$
 + : $\mathbf{N} \times \mathbf{N} \to \mathbf{N}$ (total)

•
$$/: \mathbf{N} \times \mathbf{N} \to \mathbf{N}$$
 (parcial)

Composição de funções

Composição: $g \circ f(x) = g(f(x))$.

Exemplo:

Sejam $f: \mathbf{Z} \to \mathbf{N}$ tal que f(n) = |n| + 1

 $g: \mathbf{N} \to \mathbf{Z}$ tal que g(n) = 1 - n.

• $g \circ f : \mathbf{Z} \to \mathbf{Z}$ é tal que

$$(g \circ f)(n) = g(f(n)) = g(|n|+1) = 1 - (|n|+1) = -|n|.$$

• $f \circ g : \mathbf{N} \to \mathbf{N}$ é tal que

 $(f \circ g)(n) = f(g(n)) = f(1-n) = |1-n| + 1.$

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação

Prova de Teoremas Conjuntos Relações

Conjuntos Enumeráveis

Funcões Definições Recursivas Inducão Matemática Grafos Linguagens Formais

Gramáticas Problemas de Decisão

O que é conjunto enumerável

Cardinalidade

card(A) = card(B) se existe uma função bijetora de A para B.

 \implies card(A) = card(B) se |A| = |B|, caso A e B sejam finitos.

 \implies A é **infinito** se existe $X \subset A$ tal que card(X) = card(A).

Conjunto enumerável

A é enumerável se card (A) = card(N).

Conjunto **contável**: finito ou enumerável.

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação Prova de Teoremas Relações

Conjuntos Enumeráveis Definições Recursivas Indução Matemática

Grafos Linguagens Formais Gramáticas Problemas de Decisão

Tipos de funções

Uma função total $f: A \rightarrow B$ é:

• Injetora: se $\forall x, y [x \neq y \rightarrow f(x) \neq f(y)]$.

Ex: $f: \mathbf{N} \to \mathbf{N}$ tal que f(n) = 2n.

• **Sobrejetora**: se B é a imagem de f.

Ex: $g : \mathbf{Z} \to \mathbf{N}$ tal que g(n) = |n|.

• Bijetora: se é injetora e sobrejetora.

Ex: $h: \mathbf{Z} \to \mathbf{N}$ tal que h(n) = 2n se n > 0, e

h(n) = -(2n+1) se n < 0.

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação Prova de Teoremas Conjuntos Relações Funcões

Conjuntos Enumeráveis

Definições Recursivas Indução Matemática Grafos Linguagens Formais Gramáticas Problemas de Decisão

Um exemplo de conjunto enumerável

O conjunto **Z** é enumerável:

Um teorema facilitador

As seguintes afirmativas são equivalentes:

- A é contável.
- 2 Existe função injetora de A para \mathbf{N} .
- $A = \emptyset$ ou existe função sobrejetora de **N** para A.

Newton José Vieira

Capítulo 1: Conceitos Preliminares

4□ ト 4 個 ト 4 重 ト 4 重 ・ 夕 Q ()

Representação Prova de Teoremas Conjuntos Relações Funcões Conjuntos Enumeráveis Definições Recursivas Indução Matemática Grafos Linguagens Formais Gramáticas Problemas de Decisão

Resultados importantes

- 1 Todo subconjunto de conjunto contável é contável.
- 2 $A \times B$ é contável se A e B são contáveis.
- 3 $A \cup B$ é contável se A e B são contáveis.

Representação Prova de Teoremas Relações

Conjuntos Enumeráveis

Definições Recursivas Indução Matemática Grafos Linguagens Formais

Gramáticas Problemas de Decisão

Mais um exemplo de conjunto enumerável

O conjunto dos racionais positivos, QP, é enumerável:

f(i,j) = (i+j)(i+j-1)/2 + i é bijetora. Logo, existe uma função sobrejetora de N para QP!

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação Prova de Teoremas Conjuntos Relações Funcões Conjuntos Enumeráveis Definicões Recursivas

Indução Matemática Grafos Linguagens Formais Gramáticas Problemas de Decisão

Provando que um conjunto não é contável

Para provar que um conjunto infinito não é enumerável:

usar o método da diagonalização de Cantor.

 $\mathcal{P}(\mathbf{N})$ não é enumerável:

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
I to an a series Francisco
Linguagens Formais
Gramáticas

Outro conjunto não contável

O conjunto das funções $f: \mathbf{N} \to \mathbf{N}$ não é contável:

4□ ト 4 個 ト 4 重 ト 4 重 ・ 夕 Q ()

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação Prova de Teoremas Conjuntos Relações Funções Conjuntos Enumeráveis Definições Recursivas Inducão Matemática Grafos

Linguagens Formais Gramáticas Problemas de Decisão

Definição recursiva dos naturais

O conjunto **N** pode ser definido assim:

- **a)** $0 \in \mathbb{N}$;
- **b)** se $n \in \mathbb{N}$, então $s(n) \in \mathbb{N}$;
- c) só pertence a N o número que pode ser obtido de acordo com (a) e (b).

Representação Prova de Teoremas Relações Conjuntos Enumeráveis Definições Recursivas Indução Matemática Grafos Linguagens Formais

Gramáticas Problemas de Decisão

O que é definição recursiva

Definição recursiva do conjunto A

- (a) **Base**: especificação de $B \subset A$.
- (b) Passo recursivo: como obter elementos de A a partir de elementos de A.
- (c) **Fechamento**: só pertencem a A os referidos em (a) e (b).

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めの○

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação Prova de Teoremas Conjuntos Relações Funções Conjuntos Enumeráveis Definições Recursivas Indução Matemática Grafos Linguagens Formais Gramáticas Problemas de Decisão

Definição recursiva de fatorial

A função fatorial, $fat: \mathbf{N} \to \mathbf{N}$ é definida recursivamente por:

- a) fat(0) = 1;
- **b)** $fat(n) = n \times fat(n-1)$, para n > 1.

Definição recursiva de soma

Definição recursiva da função $+: \mathbf{N} \times \mathbf{N} \to \mathbf{N}$:

- a) n + 0 = n, para todo $n \in \mathbb{N}$;
- **b)** m + s(n) = s(m + n), para todo $m, n \in \mathbb{N}$.

4□ ト 4 個 ト 4 重 ト 4 重 ・ 夕 Q ()

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Capítulo 1: Conceitos Preliminares

Representação Prova de Teoremas Conjuntos Relações Funcões Conjuntos Enumeráveis Definições Recursivas Indução Matemática Grafos Linguagens Formais Gramáticas Problemas de Decisão

Indução fraca

Baseada na validade de $[P(0) \land \forall n(P(n) \rightarrow P(n+1))] \rightarrow \forall nP(n)$:

Princípio de indução fraca

Se

1
$$P(0)$$
, e

então $\forall nP(n)$.

Representação Prova de Teoremas Relações Conjuntos Enumeráveis Definições Recursivas Indução Matemática Grafos Linguagens Formais Gramáticas Problemas de Decisão

Definição recursiva da linguagem proposicional

Definição recursiva da linguagem LP da lógica proposicinal:

- a) cada variável proposicional pertence a LP;
- **b)** se α e β pertencem a LP, então também pertencem a LP:
 - $\bullet \neg \alpha$:
 - \bullet $(\alpha \land \beta)$;
 - \bullet ($\alpha \vee \beta$);
 - $(\alpha \rightarrow \beta)$:
 - \bullet ($\alpha \leftrightarrow \beta$).

(Cláusula de fechamento implícita.)

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação Prova de Teoremas Conjuntos Relações Funções Conjuntos Enumeráveis Definições Recursivas Indução Matemática Grafos Linguagens Formais Gramáticas Problemas de Decisão

Estrutura de demonstração por indução fraca

- ① Provar P(0).
- 2 Seja n > 0 arbitrário.
- 3 Suponha (P(n) (hipótese de indução).
- 4 Provar P(n+1).
- **5** Concluir $\forall nP(n)$.

Uso de indução fraca

Exemplos:

- $\sum_{k=0}^{n} k = n(n+1)/2.$
- $n! > 2^n$ para todo n > 4.

4□ ト 4 個 ト 4 重 ト 4 重 ・ 夕 Q ()

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação Prova de Teoremas Conjuntos Relações Funções Conjuntos Enumeráveis Definições Recursivas Indução Matemática Grafos Linguagens Formais Gramáticas Problemas de Decisão

Estrutura de demonstração por indução forte

- ① Seja $n \ge 0$ arbitrário.
- 2 Suponha $\forall k < n P(k)$ (hipótese de indução).

Newton José Vieira

- 3 Provar P(n+1).
- **4** Concluir $\forall nP(n)$.

Representação Prova de Teoremas Relações Conjuntos Enumeráveis Definições Recursivas Indução Matemática Linguagens Formais Gramáticas

Problemas de Decisão

Indução forte:

Baseada na validade de $\forall n(\forall k < nP(k) \rightarrow P(n)) \rightarrow \forall nP(n)$:

Princípio de indução forte

Se

 $\bullet \forall n (\forall k < nP(k) \rightarrow P(n))$

então $\forall nP(n)$.

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めの○

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação Prova de Teoremas Conjuntos Relações Funções Conjuntos Enumeráveis Definicões Recursivas Indução Matemática Grafos Linguagens Formais Gramáticas Problemas de Decisão

Uso de indução forte

Função de Fibonacci:

a)
$$F_0 = 0$$
; $F_1 = 1$;

b)
$$F_n = F_{n-1} + F_{n-2}$$
 para $n > 2$.

Exemplos:

•
$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right].$$

•
$$na(\alpha) = na(\beta)$$
 para toda $\alpha \in LP$.

O que é grafo

Grafo

Um grafo é um par (V, A), sendo V um conjunto de vértices e A um conjunto de arestas.

Grafo dirigido: as arestas são pares ordenados.

Grafo não dirigido: as arestas são pares não ordenados.

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação Prova de Teoremas Conjuntos Relações Funções Conjuntos Enumeráveis Definições Recursivas Inducão Matemática Grafos Linguagens Formais Gramáticas Problemas de Decisão

Exemplo de grafo não dirigido

• Vértices: {Brasil, Bolívia, ...}.

• Arestas: {{Bolívia, Chile}, {Bolívia, Brasil}, ...}.

Newton José Vieira Capítulo 1: Conceitos Preliminares

Representação Prova de Teoremas Relações Conjuntos Enumeráveis Definições Recursivas Indução Matemática Grafos Linguagens Formais Gramáticas

Problemas de Decisão

Exemplo de grafo dirigido

• Vértices: {*A*, *B*, *C*, *D*, *E*, *F*}.

• Arestas: $\{(B,B),(B,C),(B,D),(D,E),...\}$

Newton José Vieira Capítulo 1: Conceitos Preliminares

Representação Prova de Teoremas Conjuntos Relações Funções Conjuntos Enumeráveis Definições Recursivas Indução Matemática Grafos

Linguagens Formais Gramáticas Problemas de Decisão

Grafos rotulados

Grafos podem ter **rótulos** associados a suas arestas e/ou vértices.

Grafo dirigido rotulado

Um grafo dirigido rotulado é uma tripla (V, A, R), sendo V um conjunto de vértices, A um conjunto de arestas rotuladas, e

R um conjunto de rótulos.

Um exemplo de grafo dirigido rotulado

• Vértices: $\{a, b, c, d, e, f\}$.

• Arestas: $\{(a,4,b),(a,9,b),(b,3,b),\ldots\}$.

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Caminhos

- Caminho nulo: caminho de comprimento zero.
- Caminho **fechado**: aquele em que $v_0 = v_n$.
- **Ciclo**: caminho fechado sem vértices e arestas repetidos, exceto v_0 e v_n .
- Laço: ciclo de comprimento 1.
- Caminho simples: caminho sem vértices repetidos.
- Grafo acíclico: grafo sem ciclos.
- Grafo **conexo**: aquele em que existe caminho de qualquer vértice a qualquer outro.

Newton José Vieira Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas

Problemas de Decisão

Alguns conceitos importantes

Grau de um vértice

Número de arestas incidentes ao vértice.

Caminho de comprimento n de a para b

Sequência de vértices e arestas $v_0x_1v_1x_2v_2...v_{n-1}x_nv_n$ tal que:

•
$$v_0 = a$$
:

$$v_n = b$$
: e

$$x_i = (v_{i-1}, v_i).$$

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Árvore

Uma árvore é um grafo acíclico conexo.

Árvore com raiz

Uma árvore com raiz é uma tripla (V, A, r) tal que

- **a)** $(\{v\}, \emptyset, v)$ é árvore;
- **b)** se (V, A, r) é uma árvore, $v \in V$ e $v' \notin V$, então $V \cup \{v'\}, A \cup \{\{v, v'\}\}, r)$ é árvore;
- c) nada mais é árvore.

Exemplo de árvore com raiz

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais

Linguagens Formais Gramáticas Problemas de Decisão

Conceitos iniciais

Alfabeto

Conjunto finito não vazio (de símbolos).

Exemplos:

- {1}.
- {0,1}.
- {a,b,c}.
- Conjunto dos caracteres do teclado.

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais

Gramáticas Problemas de Decisão

Terminologia associada a árvores

- Filhos, pais, irmãos, descendente, ancestral.
- Vértice interno, folha.
- Nível de um vértice; altura da árvore.
- Árvore dirigida; ordenada.
- Fronteira de uma árvore.

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Conceitos iniciais

Palavra (string) em um alfabeto Σ

Sequência finita de símbolos de Σ .

Exemplos de palavras em $\{0, 1\}$:

 \bullet λ (a palavra vazia), 0, 1, 00, 01, 10, 11, 000 etc.

Comprimento de uma palavra w

|w| = número de símbolos de w.

4日 > 4日 > 4 豆 > 4 豆 > 4

Notação

aⁿ abrevia *n* as em seguência.

Exemplos:

•
$$1^0 = \lambda$$
.

$$0^4 = 0000.$$

$$\bullet$$
 1³01² = 111011.

•
$$1^{1000} = ops...$$

 Σ^* é o conjunto de todas as palavras sobre Σ .

Exemplos:

•
$$\{0,1\}^* = \{\lambda,0,1,00,01,10,11,\ldots\}.$$

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Capítulo 1: Conceitos Preliminares

Representação Prova de Teoremas Conjuntos Relações Funcões Conjuntos Enumeráveis Definições Recursivas Inducão Matemática Grafos Linguagens Formais Gramáticas Problemas de Decisão

Operações sobre conjuntos se aplicam a linguagens

Sejam as linguagens L_1 sobre Σ_1 e L_2 sobre Σ_2 . Então:

- $L_1 \cup L_2$ é uma linguagem sobre $\Sigma_1 \cup \Sigma_2$;
- $L_1 \cap L_2$ é uma linguagem sobre $\Sigma_1 \cap \Sigma_2$:
- $L_1 L_2$ é uma linguagem sobre Σ_1 ;
- $\overline{L_1} = \Sigma_1^* L_1$ é uma linguagem sobre Σ_1 ;
- $\mathcal{P}(L_1)$ é um conjunto de linguagens sobre Σ_1 ;
- $\mathcal{P}(\Sigma_1^*)$ é o conjunto de todas as linguagens sobre Σ_1 .

Prova de Teoremas Relações Conjuntos Enumeráveis Definições Recursivas Indução Matemática Grafos Linguagens Formais Gramáticas

Problemas de Decisão

Linguagem

Linguagem de alfabeto Σ

Uma linguagem sobre Σ é um subconjunto de Σ^* .

Exemplos de linguagens sobre $\{0, 1\}$:

- Ø.
- \bullet { λ }.
- $\{\lambda, 0\}.$
- $\{w \in \Sigma^* | 1 < |w| < 5\}.$
- $\{0^n \mid n \text{ é um número primo}\}$
- $\{0^n 1^n | n \in \mathbb{N}\}.$
- \bullet {0, 1}*.

4□ → 4□ → 4 = → 1 = 990

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação Prova de Teoremas Conjuntos Relações Funcões Conjuntos Enumeráveis Definições Recursivas Indução Matemática Linguagens Formais Gramáticas

Problemas de Decisão

Concatenação

Concatenação de palavras

A concatenação de $x = a_1 a_2 \dots a_m$ e $y = b_1 b_2 \dots b_n$ é $xy = a_1 a_2 \dots a_m b_1 b_2 \dots b_n$.

Exemplos:

- se x = 001 e y = 10, então xy = 00110
- $\lambda w = w\lambda = w$ para qualquer palavra w.
- x(yz) = (xy)z para quaisquer palavras x, y e z. Assim, pode-se escrever sem parênteses: xyz.

Uma operação e uma propriedade de palavras

Reverso

O reverso de $w = a_1 a_2 \dots a_n$ é $w^R = a_n a_{n-1} \dots a_1$.

Exemplos: $\lambda^R = \lambda$; $a^R = a$; $(abcaabb)^R = bbaacba$.

Palíndromo

Uma palavra w tal que $w = w^R$.

Exemplos: λ , a, bb, ccc, aba, baab, abcba.

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Concatenação de linguagens

Concatenação de L_1 e L_2

$$L_1L_2 = \{xy \mid x \in L_1 \text{ e } y \in L_2\}.$$

Exemplos: Sejam $L_1 = \{ w \in \{0, 1\}^* \mid |w| = 5 \}$ e $L_2 = \{ 0y \mid y \in \{0, 1\}^* \}$

- $\bullet \ \emptyset L_1 = \emptyset; \qquad \{\lambda\} L_1 = L_1;$
- $L_1L_1 = \{w \in \{0,1\}^* \mid |w| = 10\};$
- $L_1L_2 = \{w \in \{0, 1\}^* \mid |w| > 6 \text{ e o sexto símbolo de } w \notin 0\};$
- $L_2L_1 = \{w \in \{0,1\}^* \mid |w| \ge 6 \text{ e } w \text{ começa com } 0\};$
- $L_2L_2=\{0y\,|\,y\in\{0,1\}^*\text{ e }y\text{ cont\'em no m\'inimo um }0\}$.

Newton José Vieira Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Prefixos, sufixos e subpalavras de uma palavra

Prefixo, sufixo, subpalavra

Prefixo de w: palavra x tal que w = xy.

Sufixo de w: palavra y tal que w = xy.

Subpalavra de w: palavra z tal que w = xzy.

Exemplos:

- Prefixos de abc: λ , a, ab e abc.
- Sufixos de abc: λ , c, bc e abc.
- Subpalavras de abc: λ , a, b, c, ab, bc e abc.

←□ → ←□ → ← = → = → ○ ← →

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas

Fecho de Kleene de uma linguagem

 L^n designa $LL \dots L$ (n vezes). $L^0 = \{\lambda\}$ (por que?).

Fecho de Kleene de L

 L^* , pode ser definida recursivamente assim:

- a) $\lambda \in L^*$;
- **b)** se $x \in L^*$ e $y \in L$, então $xy \in L^*$.

Pode-se mostrar que:

$$L^* = \bigcup_{n \in \mathbf{N}} L^n = L^0 \cup L^1 \cup L^2 \cup \dots = \{\lambda\} \cup L \cup LL \cup \dots.$$

Newton José Vieira Capítulo 1: Conceitos Preliminares

Fecho positivo de Kleene de uma linguagem

Fecho positivo de Kleene de L

$$L^+ = LL^*$$

Pode-se mostrar que:

$$L^+ = \bigcup_{n \ge 1} L^n = L^1 \cup L^2 \cup \dots = L \cup LL \cup \dots.$$

Segue diretamente das definições que $L^* = L^+ \cup \{\lambda\}$.

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Descrevendo linguagens por meio das operações vistas

- o conjunto das palavras que começam com 0: {0}{0,1}*;
- o conjunto das palavras que contêm 00 ou 11:
 {0,1}*{00,11}{0,1}*;
- o conjunto das palavras que terminam com 0 seguido de um número ímpar de 1s consecutivos: {0,1}*{01}{11}*;
- o conjunto das palavras de tamanho par que começam com 0 ou terminam com 0: ({0,1}{0,1})* ∩ [{0}{0,1}* ∪ {0,1}*{0}];
- o conjunto anterior: $[\{0\}\{0,1\}(\{0,1\}\{0,1\})^*] \cup [\{0,1\}(\{0,1\}\{0,1\})^*\{0\}];$

Newton José Vieira Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Exemplificando fechos de Kleene

•
$$\emptyset^* = \{\lambda\}$$
, e $\emptyset^+ = \emptyset$;

•
$$\{\lambda\}^* = \{\lambda\}^+ = \{\lambda\};$$

•
$$\{0\}^* = \{0^n \mid n \in \mathbb{N}\} \in \{0\}^+ = \{0^n \mid n \ge 1\};$$

•
$$\{00\}^* = \{w \in \{0\}^* \mid |w| \text{ é par}\} \text{ e}$$

 $\{00\}^+ = \{w \in \{0\}^* \mid |w| \text{ é par e } |w| \ge 2\}.$

$$\{01,1\}^* = \{w \in \{0,1\}^* \mid \text{todo 0 em } w \text{ é seguido de 1}\}.$$

•
$$\{\lambda, 00, 11\}^* = \{\lambda, 00, 11\}^+ = \{\lambda\} \cup \{00, 11\}^+$$
.

4 D > 4 B > 4 E > 4 E > 9 Q (>

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Exemplos de linguagens não tão "fáceis"

- o conjunto das palavras com um prefixo de um ou mais 0s seguido (imediatamente) de um sufixo de 1s de mesmo tamanho: $\{0^n1^n \mid n \geq 1\}$;
- o conjunto das palavras formadas por concatenações de palavras da forma $0^n 1^n$ para $n \ge 1$: $\bigcup_{k \ge 1} \{0^n 1^n \mid n \ge 1\}^k$.
- o conjunto das palavras de tamanho par com as duas metades idênticas: $\{xx \mid x \in \{0,1\}^*\}$.

Definição recursiva de linguagens

- Σ* é enumerável.
- Logo, pode-se fazer uma definição recursiva de uma linguagem.

Exemplo:

- a) $\lambda \in L$;
- b) se $x \in L$ então $0x1 \in L$.
- **Gramática**: formalismo, que permite o uso de recursão, especialmente projetado para a definição de linguagens.

4□ > 4 @ > 4 E > 4 E > E 990

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Um exemplo de derivação

Derivação (geração) de 110A10A a partir de 0ABB0AB:

$$0ABB0AB \Rightarrow 10AB0AB$$
 (aplicando-se a regra $0AB \rightarrow 10A$)
 $\Rightarrow 110A0AB$ (aplicando-se a regra $0AB \rightarrow 10A$)

$$\Rightarrow$$
 110*A*10*A* (aplicando-se a regra 0*AB* \rightarrow 10*A*)

4□ > 4□ > 4 = > 4 = > = 90

to lo Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Conceitos envolvidos em gramáticas

- Alfabeto de **terminais**: alfabeto da linguagem definida. Exemplo: $\Sigma = \{0, 1\}$.
- Alfabeto de **variáveis** (não terminais): de símbolos auxiliares. Exemplo: $\Gamma = \{A, B\}$.
- **Regra**: par ordenado (u, v), tradicionalmente escrito na forma $u \to v$. Exemplo: $0AB \to 10A$.

◆ロト ◆昼 ト ◆ 壹 ト ○ 夏 ・ ○ へ ○ ○

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Definição informal de gramática

- Uma gramática é constituída de uma variável de partida e um conjunto de regras.
- Toda derivação deve iniciar pela variável de partida.
- Forma sentencial: palavra constituída de terminais e/ou variáveis.
- Sentença: forma sentencial constituída de terminais apenas.
- Linguagem gerada: sentenças que podem ser derivadas.

Notação: L(G) é a linguagem gerada pela gramática G.

Dois exemplos de gramática

A gramática de variável P e as duas regras a seguir gera $\{0\}^*$:

$$2P \rightarrow \lambda$$

A gramática de variável P e as duas regras a seguir gera $\{0^n1^n \mid n \geq 0\}$:

$$2P \rightarrow \lambda$$

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas

Problemas de Decisão

Newton José Vieira

Um exemplo de derivação

$$P \Rightarrow aAbc$$
 (regra 1)
 $\Rightarrow abc$ (regra 3)

Isso mostra que abc $\in L(G)$.

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas

Problemas de Decisão

Um outro exemplo de gramática

Seja a gramática G constituída pela variável de partida P e pelas regras:

- ② $A \rightarrow aAbC$
- $\mathbf{3}$ $A \rightarrow \lambda$
- 4 $Cb \rightarrow bC$
- $\mathbf{5}$ $\mathbf{C} \mathbf{c} \to \mathbf{c} \mathbf{c}$

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas

Problemas de Decisão

Outra derivação

$$P \Rightarrow aAbc$$
 (regra 1)

- \Rightarrow aaAbCbc (regra 2)
- \Rightarrow aaaAbCbCbc (regra 2)
- \Rightarrow aaabCbCbc (regra 3)
- \Rightarrow aaabb*CC*bc (regra 4)
- \Rightarrow aaabbCbCc (regra 4)
- \Rightarrow aaabbCbcc (regra 5)
- \Rightarrow aaabbbCcc (regra 4)
- \Rightarrow aaabbbccc (regra 5)

Logo, $a^3b^3c^3 \in L(G)$. O que é L(G)?

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Definição de gramática

Gramática

Uma gramática é uma quádrupla (V, Σ, R, P) , em que:

- a) V é um conjunto finito de elementos denominados variáveis;
- **b)** Σ é um alfabeto; $V \cap \Sigma = \emptyset$;
- c) $R \subseteq (V \cup \Sigma)^+ \times (V \cup \Sigma)^*$ é um conjunto finito de pares ordenados chamados regras; e
- **d)** $P \in V$ é uma variável conhecida como variável de partida.

4□ ト 4 個 ト 4 重 ト 4 重 ・ 夕 Q ()

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação Prova de Teoremas Conjuntos Relações Funções Conjuntos Enumeráveis Definições Recursivas Indução Matemática Grafos

Linguagens Formais Gramáticas Problemas de Decisão

Derivação em vários passos

 $x \stackrel{*}{\Rightarrow} y$, se existe $n \ge 0$ tal que $x \stackrel{n}{\Rightarrow} y$.

 $x \stackrel{+}{\Rightarrow} y$, se existe $n \ge 1$ tal que $x \stackrel{n}{\Rightarrow} y$.

Representação Prova de Teoremas Relações Funções Conjuntos Enumeráveis Definições Recursivas Indução Matemática Grafos Linguagens Formais Gramáticas

Problemas de Decisão

Derivação em *n* passos

A relação $\stackrel{n}{\Rightarrow}$ é definida recursivamente assim para uma gramática G:

- a) $x \stackrel{0}{\Rightarrow} x$ para toda forma sentencial x de G;
- **b)** se $w \stackrel{n}{\Rightarrow} xuy$ e $u \rightarrow v$ é regra de G, então $w \stackrel{n+1}{\Rightarrow} xvy$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ り९○

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação Prova de Teoremas Conjuntos Relações Funções Conjuntos Enumeráveis Definicões Recursivas Indução Matemática Grafos Linguagens Formais Gramáticas Problemas de Decisão

A linguagem gerada por uma gramática

Seja $G = (V, \Sigma, R, P)$.

 $L(G) = \{ w \in \Sigma^* \mid P \stackrel{*}{\Rightarrow} w \}.$

Esquema de derivação/Exemplo

$$P \Rightarrow aAbc \qquad (regra 1)$$

$$\stackrel{k}{\Rightarrow} aa^{k}A(bC)^{k}bc \qquad (regra 2, k vezes; k \ge 0)$$

$$\Rightarrow aa^{k}(bC)^{k}bc \qquad (regra 3)$$

$$\Rightarrow a^{k+1}(bC)^{k-1}b^{2}Cc \qquad (regra 4, 1 vez)$$

$$\stackrel{?}{\Rightarrow} a^{k+1}(bC)^{k-2}b^{3}C^{2}c \qquad (regra 4, 2 vezes)$$

$$\vdots$$

$$\stackrel{k}{\Rightarrow} a^{k+1}b^{k+1}C^{k}c \qquad (regra 4, k vezes)$$

$$\stackrel{k}{\Rightarrow} a^{k+1}b^{k+1}c^{k+1} \qquad (regra 5, k vezes)$$

Logo, conclui-se que $\{a^nb^nc^n\mid n\geq 1\}\subseteq L(G)$. Newton José Vieira Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Notação simplificada

Duas regras com o mesmo lado esquerdo:

$$u \rightarrow v e u \rightarrow v'$$

podem ser escritas assim:

$$u \rightarrow v \mid v'$$

As regras 2 e 3 do exemplo seriam podem ser expressas assim:

Newton José Vieira

$$A
ightarrow \mathtt{a} A\mathtt{b} C \,|\, \lambda$$

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Equivalência de gramáticas

Gramáticas equivalentes

Duas gramáticas G e G' são ditas equivalentes quando L(G) = L(G').

4日 → 4日 → 4 三 → 4 三 → 9 9 ○

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Um outro exemplo de gramática

 $G = (V, \Sigma, R, E)$, em que:

•
$$V = \{E, T, N, D\};$$

$$\bullet \ \Sigma = \{+,-,(,),0,1,2,3,4,5,6,7,8,9\};$$

• R contém as regras:

$$E \to E + T | E - T | T$$

$$T \to (E) | N$$

$$N \to DN | D$$

$$D \to 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$$

Exemplo de derivação

Gerando sequência de somas e/ou subtrações de Ts:

$$E \Rightarrow E + T$$
 (regra $E \rightarrow E + T$)
 $\Rightarrow E - T + T$ (regra $E \rightarrow E - T$)
 $\Rightarrow E - T - T + T$ (regra $E \rightarrow E - T$)
 $\Rightarrow T - T - T + T$ (regra $E \rightarrow T$)

 \implies recursão à esquerda.

4 D > 4 B > 4 E > 4 E > E 990

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática

Grafos Linguagens Formais Gramáticas

Gramáticas Problemas de Decisão

Exemplo de derivação

$$E \Rightarrow E + T$$
 (regra $E \rightarrow E + T$)
 $\Rightarrow T + T$ (regra $E \rightarrow T$)
 $\Rightarrow (E) + T$ (regra $T \rightarrow (E)$)

 \implies a variável E aparece (recursivamente) na forma sentencial entre "(" e ")".

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas

Problemas de Decisão

Exemplo de derivação

Gerando sequência de 4 dígitos:

$$N \Rightarrow DN$$
 (regra $N \rightarrow DN$)
 $\Rightarrow DDN$ (regra $N \rightarrow DN$)
 $\Rightarrow DDDN$ (regra $N \rightarrow DN$)
 $\Rightarrow DDDD$ (regra $N \rightarrow D$)

⇒ recursão à direita.

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 9 0 0 0

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

O que é problema de decisão

Problema de decisão

Um problema de decisão é uma questão que faz referência a um conjunto finito de parâmetros e que, para valores específicos dos parâmetros, tem como resposta *sim* ou *não*.

Exemplos de problemas de decisão

- a) determinar se o número 123654789017 é um número primo;
- **b)** determinar se um número natural *n* é um número primo;
- c) determinar se existe um ciclo em um grafo G;
- d) determinar se uma palavra w é gerada por uma gramática G.

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Solução para um problema de decisão

Solução

Uma solução para um PD, denominada **procedimento de decisão**, é um *algoritmo* que, para qualquer instância do PD, retorna a resposta correta.

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Instâncias de um problema de decisão

Instância de um PD: cada questão obtida dando aos parâmetros valores específicos.

Exemplo: o PD "determinar se um número natural n é um número primo" tem um conjunto infinito de instâncias:

- determinar se 0 é um número primo;
- determinar se 1 é um número primo;
- determinar se 2 é um número primo;
- e assim por diante.

O PD "determinar se 123654789017 é um número primo" tem uma única instância.

Newton José Vieira

Capítulo 1: Conceitos Preliminares

Representação
Prova de Teoremas
Conjuntos
Relações
Funções
Conjuntos Enumeráveis
Definições Recursivas
Indução Matemática
Grafos
Linguagens Formais
Gramáticas
Problemas de Decisão

Problema decidível

Problema decidível

Um PD que tem solução é dito ser *decidível*, e um PD que não tem solução, *indecidível*.

⇒ Todo PD com conjunto finito de instâncias é decidível!

《日》《國》《夏》《夏》 - 夏 -

Restrição de um problema de decisão

Restrição de um PD

Um PD obtido de outro, P, restringindo-se o conjunto de valores possíveis de um ou mais parâmetros de P.

Exemplos:

- "determinar se 123654789017 é um número primo" é uma restrição de "determinar se um número natural *n* é um número primo".
- "determinar se uma palavra w é gerada por uma gramática G_0 sensível ao contexto, é uma restrição de "determinar se uma palavra w é gerada por uma gramática G_0 ".

Newton José Vieira Capítulo 1: Conceitos Preliminares