Odpowiedzi i schematy oceniania

Arkusz 14

Zadania zamknięte

Numer	Poprawna	Walantina de norminante redonie	
zadania	odpowiedź	Wskazówki do rozwiązania zadania	
1.	A.	$0.03x = 9 \Rightarrow x = 300$	
2.	D.	Podwojony kwadrat to $2a^2$.	
3.	A.	$x = \frac{\sqrt{2}(\sqrt{5} + 1)}{\sqrt{5} + 1} \Rightarrow x = \sqrt{2}$	
4.	C.	65% + 47% - 24% = 88% – procent uczniów uczących się	
		angielskiego lub rosyjskiego, zatem żadnego z tych języków nie uczy	
		się 12% uczniów, $0.12 \cdot 400 = 48$.	
5.	A	$W(x) = x^{2}(x-1) - (x-1) \Rightarrow W(x) = (x^{2}-1)(x-1) \Rightarrow$	
		$\Rightarrow W(x) = (x-1)(x+1)(x-1) \Rightarrow W(x) = (x-1)^2(x+1)$	
6.	C.	Skorzystaj z podstawowych własności logarytmów.	
7.	В.	$ax - cx = a + b \Rightarrow x(a - c) = a + b \Rightarrow x = \frac{a + b}{a - c}$	
8.	В.	Skorzystaj ze wzoru skróconego mnożenia i własności działań na	
		potęgach.	
9.	C.	$D = R \setminus \{3\} \Rightarrow x = -3 \lor x = \sqrt{3}$	
10.	D.	$y = x^2 + 2x - 24 \Rightarrow W = (-1, -25)$	
11.	C.	Rozwiązaniem nierówności jest przedział $\langle 0,11 \rangle$, zatem są to liczby	
		2, 3, 5, 7, 11.	
12.	D.	$n^2 - 9 < 0 \Rightarrow n \in (-3,3) \land n \in N_+ \Rightarrow n \in \{1,2\}$	
13.	A.	Jest to ciąg o pierwszym wyrazie $a_1 = -2$ i ilorazie $q = 2$.	
14.	D.	$\frac{45}{n} + 1 = \frac{3}{2} \Rightarrow \frac{45}{n} = \frac{1}{2} \Rightarrow n = 90$	
15.	D.	$\sin \alpha = 5\cos \alpha \Rightarrow \cos^2 \alpha + (5\cos \alpha)^2 = 1 \Rightarrow \cos \alpha = \frac{\sqrt{26}}{26}$	
16.	A.	$\alpha + \alpha + 40^{\circ} = 180^{\circ} \Rightarrow \alpha = 70^{\circ}$	

17.	A.	Suma długości dwóch dowolnych boków trójkąta jest większa od
		długości trzeciego boku.
18.	D.	$ AC = \sqrt{36 + 16} \Rightarrow AC = 2\sqrt{13} \Rightarrow a = \sqrt{26} \Rightarrow r = \frac{1}{2}\sqrt{26}$
19.	B.	$x^{2} + (y-5)^{2} = 50 \Rightarrow S = (0,5)$
20.	D.	Środek ciężkości trójkąta, to punkt przecięcia się środkowych.
21.	B.	$\frac{n(n-3)}{2} = n \Rightarrow n = 5$
22.	D.	$\bar{\Omega} = 36, \bar{A} = 4$
23.	В.	Taki graniastosłup ma dwie podstawy po 6 wierzchołków, zatem jest sześciokątny. Ma więc sześć ścian bocznych i dwie podstawy.

Zadania otwarte

Numer zadania	Modelowe etapy rozwiązywania zadania	Liczba punktów
24.	Zapisanie współczynnika kierunkowego prostej prostopadłej: $a = \frac{1}{2}.$	1
	Wyznaczenie równania szukanej prostej: $y = \frac{1}{2}$, $x - 2$.	1
25	Wykorzystanie warunku styczności okręgu i prostej oraz wyznaczenie odległości punku S od prostej $l:d(S,l)=4=r$.	1
	Zapisanie równania szukanego okręgu: $(x+2)^2 + (y-3)^2 = 16$.	1
26.	Wyznaczenie skali podobieństwa: $k=2$ i zapisanie zależności między obwodami: $L_2=2L_1$.	1
	Wyznaczenie obwodów trójkątów: $L_1 = 4, L_2 = 8$.	1
27.	Przekształcenie układu do równania: $-2x^2 - y^2 = 2$.	1
	Wykazanie sprzeczności: lewa strona równania jest zawsze niedodatnia, a prawa dodatnia.	1

28.	Zapisanie równania wynikającego z treści zadania: $\frac{x}{2-x} = \frac{\sqrt{3}}{3}$,	1
	gdzie x – mniejsza odległość wierzchołków obu kwadratów.	
	Rozwiązanie równania: $x = \sqrt{3} - 1$.	1
29.	Wykorzystanie wzoru na tangens do przekształcenia	1
	wyrażenia: $W = \left(\frac{\sin \alpha}{\cos \alpha} + \frac{\cos \alpha}{\sin \alpha}\right) \sin \alpha \cos \alpha$.	
	Sprowadzenie do wspólnego mianownika wyrażenia w	1
	pierwszym nawiasie i wykorzystanie jedynki trygonometrycznej	
	do obliczenia wartości wyrażenia:	
	$W = \frac{\sin^2 \alpha + \cos^2 \alpha}{\sin \alpha \cos \alpha} \sin \alpha \cos \alpha = 1.$	
30.	Wprowadzenie oznaczeń:	1
	x, y – odpowiednio cena hurtowa przewodnika i mapy,	
	0,2x, 025y – odpowiednio zysk z jednego przewodnika i jednej	
	mapy.	
	Zapisanie układu równań: $\begin{cases} 20x + 30y = 1020 \\ 20 \cdot 0.2x + 30 \cdot 0.25y = 240 \end{cases}$	2 (po 1 punkcie
	$20 \cdot 0.2x + 30 \cdot 0.25y = 240$	za każde
		równanie)
	Rozwiązanie układu równań: $\begin{cases} x = 15 \\ y = 24 \end{cases}$	1
	y = 24	
31.	(y = 24) Wyznaczenie wysokości trójkąta: $h = d(C, AB) = 3$.	1
31.	()	1
31.	Wyznaczenie wysokości trójkąta: $h = d(C, AB) = 3$.	1 1 1
31.	Wyznaczenie wysokości trójkąta: $h=d(C,AB)=3$. Wyznaczenie długości boku trójkąta: $a=2\sqrt{3}$.	-
31.	Wyznaczenie wysokości trójkąta: $h = d(C, AB) = 3$. Wyznaczenie długości boku trójkąta: $a = 2\sqrt{3}$. Wprowadzenie oznaczeń: $A = \left(x, \frac{3}{4}x + 1\right), B = \left(x_1, \frac{3}{4}x_1 + 1\right)$.	1
31.	Wyznaczenie wysokości trójkąta: $h = d(C, AB) = 3$. Wyznaczenie długości boku trójkąta: $a = 2\sqrt{3}$. Wprowadzenie oznaczeń: $A = \left(x, \frac{3}{4}x + 1\right), B = \left(x_1, \frac{3}{4}x_1 + 1\right)$. Zapisanie równania wynikającego z treści zadania:	1
31.	Wyznaczenie wysokości trójkąta: $h = d(C, AB) = 3$. Wyznaczenie długości boku trójkąta: $a = 2\sqrt{3}$. Wprowadzenie oznaczeń: $A = \left(x, \frac{3}{4}x + 1\right), B = \left(x_1, \frac{3}{4}x_1 + 1\right)$. Zapisanie równania wynikającego z treści zadania: $\sqrt{(x+1)^2 + \left(\frac{3}{4}x + 1 - 4\right)^2} = 2\sqrt{3}$.	1

	$A = \left(\frac{4 - 4\sqrt{3}}{5}, \frac{8 - 3\sqrt{3}}{5}\right), B = \left(\frac{4 + 4\sqrt{3}}{5}, \frac{8 + 3\sqrt{3}}{5}\right).$	
32.	Wykonanie rysunku z oznaczeniami lub wprowadzenie	1
	dokładnych oznaczeń oraz wyznaczenie krawędzi podstawy:	
	a, h – odpowiednio krawędź podstawy i wysokość	
	graniastosłupa,	
	d – dłuższa przekątna rombu,	
	$a=4\sqrt{3}.$	
	Wyznaczenie dłuższej przekątnej rombu: $d = 12$.	1
	Wyznaczenie wysokości graniastosłupa: $h = 12\sqrt{3}$.	1
	Wyznaczenie pola podstawy graniastosłupa: $P_p = 24\sqrt{3}$.	1
	Wyznaczenie objętości graniastosłupa: $V = 864$.	1