Wersja:	$oldsymbol{A}$	Numer indeksu:		Grupa ¹ : s. 4 s. 105	s. 5 s. 139	s. 103 s. 140	s. 104 s. 141			
	Logika dla informatyków									
Kolokwium nr 3, 19 stycznia 2018 Czas pisania: 30+60 minut										
Zadanie 1 (2 punkty). Rozważmy funkcję $f: \mathbb{R} \to \mathbb{R}$ zdefiniowaną wzorem $f(x) = x^2$. Jeśli istnieje taki zbiór $Y \subseteq \mathbb{R}$, że przeciwobraz $f^{-1}[Y]$ jest przedziałem domkniętym $[0,4]$, to w prostokąt poniżej wpisz dowolny taki zbiór. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taki zbiór nie istnieje.										

Zadanie 2 (2 punkty). Rozważmy relację równoważności \simeq na zbiorze wszystkich funkcji $\mathbb{N}^{\mathbb{N}}$ daną wzorem $f \simeq g \overset{\mathrm{df}}{\Longleftrightarrow} f(42) = g(42)$ oraz funkcję $I: \mathbb{N} \to \mathbb{N}$ daną wzorem I(n) = n. W prostokąty poniżej wpisz odpowiednio moc zbioru klas abstrakcji relacji \simeq oraz taką formułę φ , że $[I]_{\simeq} = \{g \in \mathbb{N}^{\mathbb{N}} \mid \varphi\}.$

$$|\mathbb{N}^{\mathbb{N}}/_{\cong}| = \boxed{ \qquad \qquad [I]_{\simeq} = \{g \in \mathbb{N}^{\mathbb{N}} \mid \boxed{ \qquad \qquad } \}$$

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Numer indeksu:	(Grupa ¹ :			
Wersja: A		s. 4	s. 5	s. 103	s. 104
Weisja. A		s. 105	s. 139	s. 140	s. 141

Zadanie 6 (5 punktów). Rozważmy relację \simeq na parach liczb naturalnych zadaną wzorem

$$\langle m_1, n_1 \rangle \simeq \langle m_2, n_2 \rangle \stackrel{\text{df}}{\iff} m_1 + n_2 = n_1 + m_2.$$

Nietrudno zauważyć, że \simeq jest relacją równoważności; w tym zadaniu nie trzeba tego dowodzić. Jaka jest moc klasy abstrakcji $[\langle 0,0\rangle]_{\simeq}$? Uzasadnij odpowiedź.

Zadanie 7 (5 punktów). Korzystając z twierdzenia Cantora-Bernsteina udowodnij, że zbiór tych nieskończonych ciągów zero-jedynkowych, które mają nieskończenie wiele jedynek

$$\mathcal{N} = \{ \alpha \in \{0,1\}^{\mathbb{N}} \mid \alpha^{-1}(\{1\}) \text{ jest nieskończony} \}$$

ma moc continuum.

Zadanie 8 (5 punktów). Rozważmy funkcję $F: \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N}) \to (\{0,1\} \times \{0,1\})^{\mathbb{N}}$, która dla $X,Y \subseteq \mathbb{N}$ jest zdefiniowana wzorem

$$F(X,Y): \mathbb{N} \to \{0,1\} \times \{0,1\}$$

$$(F(X,Y))(n) = \begin{cases} \langle 0,0\rangle, & \text{gdy } n \notin X \text{ i } n \notin Y, \\ \langle 0,1\rangle, & \text{gdy } n \notin X \text{ i } n \in Y, \\ \langle 1,0\rangle, & \text{gdy } n \in X \text{ i } n \notin Y, \\ \langle 1,1\rangle, & \text{gdy } n \in X \text{ i } n \in Y. \end{cases}$$

Udowodnij, że F jest różnowartościowa.

¹Proszę zakreślić właściwą grupę ćwiczeniową.

	Numer indeksu:	(Grupa ¹ :								
Worgie:			s. 4	s. 5	s. 103	s. 104					
Wersja: D			s. 105	s. 139	s. 140	s. 141					
Logika dla informatyków											
Kolokwium nr 3, 19 stycznia 2018 Czas pisania: 30+60 minut											
Zadanie 1 (2 punkty). Rozważmy relację równoważności \simeq na zbiorze wszystkich funkcji $\mathbb{N}^{\mathbb{N}}$											
daną wzorem $f \simeq g \stackrel{\mathrm{df}}{\iff} f(42) = g(42)$ oraz funkcję $f_0 : \mathbb{N} \to \mathbb{N}$ daną wzorem $f_0(n) = 0$. W prostokąty poniżej wpisz odpowiednio moc klasy abstrakcji $[f_0]_{\simeq}$ oraz taką formułę φ , że $[f_0]_{\simeq} = \{g \in \mathbb{N}^{\mathbb{N}} \mid \varphi\}$.											
$ [f_0]_{\simeq} =$	$[f_0]_{\simeq} = \{g \in$	$\in \mathbb{N}^{\mathbb{N}}$				}					
Zadanie 2 (2 punkty). Jeśli istnieją takie zbiory A, B , dwie różne funkcje $f_1, f_2 : A \to B$ oraz funkcja $g: B \to A$, że $gf_1 = gf_2 = I_A$, gdzie I_A jest identycznością na zbiorze A , to w prostokąt poniżej wpisz dowolne takie zbiory i funkcje. W przeciwnym przypadku wpisz uzasadnienie, że takie funkcje nie istnieją.											

¹Proszę zakreślić właściwą grupę ćwiczeniową.

		Numer indeksu:	Grupa ¹ :			
Wersja:	\mathbf{D}		s. 4	s. 5	s. 103	s. 104
			s. 105	s. 139	s. 140	s. 141

Zadanie 6 (5 punktów). Korzystając z twierdzenia Cantora-Bernsteina udowodnij, że rodzina nieskończonych podzbiorów zbioru liczb naturalnych

$$\mathcal{N} = \{X \in \mathcal{P}(\mathbb{N}) \mid X \text{ jest nieskończony} \}$$

ma moc continuum.

Zadanie 7 (5 punktów). Rozważmy relację \simeq na parach liczb naturalnych zadaną wzorem

$$\langle m_1, n_1 \rangle \simeq \langle m_2, n_2 \rangle \iff m_1 + n_2 = n_1 + m_2.$$

Nietrudno zauważyć, że \simeq jest relacją równoważności; w tym zadaniu nie trzeba tego dowodzić. Jaka jest moc zbioru klas abstrakcji tej relacji? Uzasadnij odpowiedź.

Zadanie 8 (5 punktów). Rozważmy funkcję $F: \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N}) \to (\{0,1\} \times \{0,1\})^{\mathbb{N}}$, która dla $X,Y \subseteq \mathbb{N}$ jest zdefiniowana wzorem

$$F(X,Y): \mathbb{N} \to \{0,1\} \times \{0,1\}$$

$$(F(X,Y))(n) = \begin{cases} \langle 0,0\rangle, & \text{gdy } n \notin X \text{ i } n \notin Y, \\ \langle 0,1\rangle, & \text{gdy } n \notin X \text{ i } n \in Y, \\ \langle 1,0\rangle, & \text{gdy } n \in X \text{ i } n \notin Y, \\ \langle 1,1\rangle, & \text{gdy } n \in X \text{ i } n \in Y. \end{cases}$$

Udowodnij, że F jest "na".

 $^{^{1}\}mathrm{Proszę}$ zakreślić właściwą grupę ćwiczeniową.