```
from keras.models import Sequential #Empty working area
      from keras.layers import Dense #Dense layer
      from keras.layers import BatchNormalization
      dataset = loadtxt('dataset.csv', delimiter=',')
      x = dataset[:.0:8]
      y = dataset[: 8]
      print(x)
      from sklearn.preprocessing import StandardScaler
11
      sc = StandardScaler()
      x = sc.fit_transform(x)
      model = Sequential()
      model.add(Dense(12, input_dim=8, activation='relu'))
      model.add(Dense(8, activation='relu'))
     model.add(BatchNormalization())
      model.add(Dense(1, activation='sigmoid'))
```

A2 **A** 17 **%**3 **^**

from numpy import loadtxt #handle/load dataset

```
A 2 A 17 ± 3 ^ ∨
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(x, y, epochs=5, batch_size=10)
_, accuracy = model.evaluate(x, y)
print('Accuracy: %.2f' % (accuracy*100))
from sklearn.metrics import accuracy_score
import numpy as np
y_pred = model.predict(x)
pred = list()
for i in range(len(y_pred)):
    pred.append(np.argmax(y_pred[i]))
test=y
a = accuracy_score(pred_test)
predictions = model.predict_classes(x)
```

model.add(Dense(1, activation='sigmoid'))

Deep Learning Terminology - 1

Handling overfitting

- Simplifying The Model: Reduce the network's capacity by removing layers or reducing the number of elements in the hidden layers
- Apply regularization, which comes down to adding a cost to the loss function for large weights
 - ✓ L1 Regularization
 - √ L2 Regularization
- Use Dropout layers, which will randomly remove certain features by setting them to zero
- Early Stopping
- Use Data Augmentation

L1 Regularization	L2 Regularization
L1 penalizes sum of absolute values of weights.	L2 penalizes sum of square values of weights.
L1 generates model that is simple and interpretable.	L2 regularization is able to learn complex data patterns.
3. L1 is robust to outliers.	3. L2 is not robust to outliers.

Deep Learning Terminology - 2

Outliers

- Values distant from most other values. In machine learning, any of the following are outliers:
- Weights with high absolute values.
- Predicted values relatively far away from the actual values.
- Input data whose values are more than roughly 3 standard deviations from the mean.

deep learning terminology - 3

Oversampling

- Reusing the examples of a minority class in a classimbalanced dataset in order to create a more balanced training set.
- We need to be careful about over overfitting when oversampling.
- Contrast with undersampling.