LA-Chapter 2

Matrix algebra

OUR GOAL

- Matrices
- Special matrices
- Operations on matrices:
 - Addition
 - Difference
 - Transposition
 - Scalar multiplication
 - Matrix multiplication
- Inverse of a square matrix
- Matrices and linear systems of equations
- Matrices and linear transformations

Definition

An mxn matrix is rectangular array of numbers

- (m x n): size of the matrix m by n
- $A = [a_{ij}] // a_{ij}$ is called (i, j)-entry

Matrices - examples

- A 2x3 matrix // 2 rows, 3 columns
- Read: two by three matrix

$$A = \begin{bmatrix} 7 & -3 & 1/2 \\ 3 & -5 & 0 \end{bmatrix}$$
 (1,3)-entry $a[1,3] = 1/2$ $a_{13} = 1/2$

120	250	305	
207	140	419	
_ 29	120	190	

3 x 3 matrix, a **square** matrix

3 x 1 matrix column matrix

Special matrices

Zero matrix 0_{mxn}

$$O_{2\times3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Main diagonal of a matrix

$$\begin{bmatrix} 3 & -1 & 7 \\ 0 & 2 & 3 \\ -2 & 4 & -1 \end{bmatrix}, \begin{bmatrix} -4 & 1 & 0 \\ -2 & 3 & 5 \end{bmatrix}$$

Identity matrices

Identity matrix: square matrix $[a_{ij}]$ where $a_{ij} = 1$ if i = j and $a_{ij} = 0$ if $i \neq j$

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Triangular matrices, diagonal matrices

Upper triangular matrix
$$\begin{bmatrix} 3 & 13 & 7 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Lower triangular matrix
$$\begin{bmatrix} 3 & 0 & 0 \\ 11 & -1 & 0 \\ 0 & 3 & 2 \end{bmatrix}$$

Transpose of a matrix

mother	Bob	Alice	Minh	Nam
Eva	0	1	0	0
Susan	1	0	0	0
Lan	0	0	1	1

son/daughter	Eva	Susan	Lan
Bob	0	1	0
Alice	1	0	0
Minh	0	0	1
Nam	0	0	1

Transpose of a matrix

- The **transpose** of an mxn matrix $[a_{ij}]$ is an nxm matrix $[a_{ij}]$
- Notation: A^T // the transpose of A
- Example

$$A = \begin{bmatrix} 2 & 3 & -1 \\ 1 & 5 & 0 \end{bmatrix}$$

Then,

$$A^T = \begin{bmatrix} 2 & 1 \\ 3 & 5 \\ -1 & 0 \end{bmatrix}$$

Symmetric matrices

• Square matrix $[a_{ij}]$ where $a_{ij} = a_{ji}$ or $A^T = A$

$$A = \begin{bmatrix} -1 & 2 & 5 \\ 2 & 3 & 7 \\ 5 & 7 & 4 \end{bmatrix}$$

$$A^{T} = A = \begin{bmatrix} -1 & 2 & 5 \\ 2 & 3 & 7 \\ 5 & 7 & 4 \end{bmatrix}$$

Matrix Operations

- Addition
- Scalar multiplication
- Matrix multiplication

Addition. Difference Scalar multiplication

day 1

	Peanuts	Hot Dogs	Soda
South stand	Γ110	230	280]
North stand	300	155	280] 389] 201]
West stand	L 35	117	201

Properties

Suppose A, B, C are mxn matrices, k is a number:

```
1. A + B = B + A // commutative law
2. A + (B + C) = (A + B) + C // associative law
3. k(A + B) = kA + kB // distributive law
4. (A + B)^{T} = A^{T} + B^{T}
```

Matrix multiplication - introduction

	peanuts	soda	hot dogs
group A	8	5	12
group B	15	7	13

selling price	store 1	store 2	store 3	store 4
peanuts	2	2.5	2	2.5
soda	2.5	2	2.75	2
hot dogs	3	3	2.5	3

$$8x2.5 + 5x2 + 12x3 = 66$$
\$

	store 1	store 2	store 3	store 4
group A	64.5	66	59.75	66
group B	86.5	87.5	81.75	90.5

Matrix multiplication

•
$$A_{m \times n}$$
. $B_{n \times p} = C_{m \times p}$ //suitable size

• The entry $c_{ij} = (row i of A).(column j of B)$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

$$\begin{pmatrix} 1 & 2 \\ 0 & -1 \\ -2 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & -1 & 2 \\ 1 & 2 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 3 \cdot 2 & 4 & 1 & 2 \\ -1 & -2 & -1 & 0 \\ -2 & 0 & 2 & -4 \end{pmatrix}$$

Some Properties

1. A(B + C) = AB + AC //distributive law 2. A(BC) = (AB)C //associative law 3. $(AB)^T = B^TA^T$

Note:

- In general, AB ≠ BA → Not commutative
- $AB = 0 \implies A = 0 \text{ or } B = 0$
- $AB = AC \implies B = C$

The inverse of a matrix

B is called the **inverse** of an nxn matrix A if

$$AB = BA = I_n$$

Denoted by A-1

Example

•
$$A^{-1} = \frac{1}{-5} \begin{bmatrix} -4 & 3 \\ -1 & 2 \end{bmatrix}$$

-4.2 - 3.(-1) = -5// determinant of A, denoted by det(A)

The Inversion Algorithm

The Inversion algorithm:

For example,
$$\begin{array}{c} [\mathbf{A} \mid \mathsf{I}_{\mathsf{n}}] \to \dots \to [\mathsf{I}_{\mathsf{n}} \mid \mathbf{A}^{-1}] \\ & & \\ 1 \quad -1 \quad 2 \quad 1 \quad 0 \quad 0 \\ & & \\ \end{array}$$

$$\begin{pmatrix}
1 & -1 & 2 & 1 & 0 & 0 \\
0 & -1 & 3 & 0 & 1 & 0 \\
0 & 2 & -5 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{-r_2}
\begin{pmatrix}
1 & -1 & 2 & 1 & 0 & 0 \\
0 & 1 & -3 & 0 & -1 & 0 \\
0 & 2 & -5 & 0 & 0 & 1
\end{pmatrix}$$

Exercise

Find (x, y) such that

$$\begin{pmatrix} -2 & 1 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$$

Linear equation and matrix multiplication

$$AX = B$$

$$\Leftrightarrow X = A^{-1}B$$

$$\Leftrightarrow X = \begin{pmatrix} -2 & -1 \\ -3 & -2 \end{pmatrix} \begin{pmatrix} -1 \\ 5 \end{pmatrix} = \begin{pmatrix} -3 \\ -7 \end{pmatrix} \Rightarrow x = -3, y = -7$$

Matrix and linear transformation

Example of a transformation

Matrix and linear transformation

Example of a transformation

$$S(x, y) = ?$$

Find the matrix of S?

Suppose T is a linear transformation given by the matrix

$$\begin{pmatrix} 1 & -2 & 1 \\ 3 & 0 & 2 \end{pmatrix}$$

Find T(1, 2, -3).

$$T(1, 2, -3) = T\begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 1 \\ 3 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} -6 \\ -3 \end{pmatrix}$$

The composition of transformations

Given
$$T(x, y) = (x, y-x)$$

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y - x \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$

And S(x, y) = (x-y, y)

$$S\binom{x}{y} = \binom{x-y}{y} - \cdots + \binom{1}{0} - \binom{1}{1}$$

Find the composite transformation

$$(T \circ S)(x, y) \text{ defined by}$$

$$(T \circ S)(x, y) = T(S(x, y))$$

Theorem

If the matrix of T is A, then the matrix of T-1 is A-1

Example. Given T(x, y) = (x - y, -x + 2y), find T^{-1} , the inverse of T.
Solution.

$$T\binom{x}{y} = \binom{x-y}{-x+2y} \text{ has the matrix } \binom{1}{-1} \quad \frac{-1}{2}$$

$$\rightarrow$$
 T⁻¹ has the matrix $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$

Note that
$$(T \circ T^{-1}) \binom{x}{y} = \binom{x}{y}$$

Summary

- Matrices
- Special matrices
- Operations on matrices:
 - Addition
 - Difference
 - Transposition
 - Scalar multiplication
 - Matrix multiplication
- Inverse of a square matrix
- Matrices and linear systems of equations
- Matrices and linear transformations

• Thanks