Edyta Michalska, nr. indeksu: 332350,

Wydział Matematyki, Informatyki i Mechaniki UW

Cel ćwiczenia: Modyfikacja P16 w celu poprawy wiązania z kinazą tyrozynową oraz analiza porównawcza dokowania P16 przed i po modyfikacji.

1 Wstęp

Kinazy to grupa enzymów katalizujących reakcję fosforylacji. Kinazy tyrozynowe katalizują przeniesienie grupy fosforanowej na aminokwas tyrozynę. Kinaza ABL1 zwana też według bazy Uniprot c-Abl lub p150, bierze udział w różnicowaniu komórek, podziale komórki i odpowiedzi na stres. Gen kodujący ABL1 jest protoonkogenem - jego fuzja z genem BCR może prowadzić do przewlekłej białaczki szpikowej (CML). Według bazy Uniprot ABL1 posiada 1130 aminokwasów.

Pobraliśmy z bazy PDB plik 1OPL, pochodzący z pracy [1]. Występują w nim struktury dwóch łańcuchów (A i B) monomeru białka o długości 537, zawierającego N-końcowe 531 aminokwasów ABL1. Podobnie jak w pracy [1] białko to będziemy nazywać dalej c-Abl $^{1-531}$. Dodatkowo w pobranym pliku z PDB znajdują się struktury A i B ligandu P16 białka c-Abl $^{1-531}$, będącego inhibitorem ABL1. W pliku z PDB znajduje się też kwas mirystynowy związany z łańcuchem A c-Abl $^{1-531}$.

W łańcuchu A c-Abl $^{1-531}$ brakuje aminokwasów na pozycjach 1-80 oraz 532-537 z pełnego łańcucha, natomiast w łańcuchu B brakuje aminokwasów na pozycji od 1-139, 238-251 i 519-537. Do dalszej analizy bierzemy łańcuch A c-Abl $^{1-531}$, ponieważ jest on ciągły i ma mniej brakujących aminokwasów niż łańcuch B. Ponadto, rozważamy strukturę A ligandu P16 związaną z łańcuchem A.

W łańcuchu A c-Abl¹⁻⁵³¹występują 3 domeny: sh3 obejmujący aminokwasy 80 - 140, sh2: 146 -236 i protein kinase: 254-531. Domena sh3 ma fold typu beta beczułka, domena sh2 - alfa-beta-alfa kanapka, a domena protein kinase - mieszany alfa-beta, przy czym występuje pęczek 4 helis (ang. 4-helix bundle) oraz beta-fold roll. Na Rysunku 1 przedstawiono strukturę łańcucha A z podziałem na domeny oraz ligand P16.

Rysunek 1: Struktura łańcucha A oraz ligandu P16. Domenę sh3 zaznaczono na czerwono, sh2 - na szaro, a protein kinase - na pomarańczowo. P16 zaznaczono kolorem zielonym.

Ligand P16 przedstawiono na Rysunku 2. Posiada on 4 pierścienie aromatyczne, które numerujemy jak na tym rysunku. Pierwszy pierścień ma dwa podstawniki chlorowe. Drugi pierścień zawiera azot do którego jest przyłączona grupa metylowa oraz jeden z węgli w tym pierścieniu jest połączony podwójnym wiązaniem z tlenem. Trzeci pierścień zawiera dwa azoty. Czwarty pierścień, połączony z trzecim poprzez azot, posiada podstawnik hydroksymetylowy. Tylko czwarty pierścień może swobodnie rotować. Dla pierścienia pierwszego pełna rotacja jest utrudniona przez zawadę steryczną atomów chloru z tego pierścienia i atomu tlenu z pierścienia 2.

Rysunek 2: Na obrazku a) przedstawiono wzór strukturalny P16 a na b) jego strukturę krystalograficzną z pliku PDB. Zaznaczono tez numerację pierścieni P16.

Inhibitor P16 wiąże się z domeną protein kinase w miejscu wiązania ATP, przy czym występują oddziaływania van der Waalsa z leucyną 267 i 389 oraz wiązanie wodorowe z metioniną 337. Wiązania te pokazano schematycznie na Rysunku 3.

Rysunek 3: Schematyczny rysunek oddziaływania P16 z domeną protein kinase c-Abl $^{1-531}$.

2 Dokowanie I

2.1 Opis dokowania

Wykonaliśmy dokowanie semi-giętkie (łańcuchów A) P16 do c-Abl¹⁻⁵³¹i porównaliśmy wynik ze strukturą krystalograficzną z PDB w celu sprawdzenia poprawności parametrów dokowania. Wykorzystaliśmy w tym celu program MOE.

Najpierw usunęliśmy P16 z kieszeni c-Abl¹⁻⁵³¹i zrobiliśmy minimalizację energii tej kieszeni przy użyciu pola siłowego Amber10. Następnie wykonaliśmy dokowanie P16 do tej kieszeni w dwóch fazach: dopasowania (placement) i uzgodnienia (refinement). W pierwszej fazie użyliśmy metody dopasowania Triangle Matcher, funkcji oceniającej London dG i 30 modów (ang. poses), natomiast w drugiej metody dopasowania Rigid Receptor, funkcji oceniającej GBVI/WSA dG i 5 modów. Dostaliśmy 5 struktur (modów) zadokowanego P16. W Tabeli 1 przedstawiono wynikowe mody, posortowane po wartości funkcji oceniającej S, wraz z informacją o parametrach oceniających jakość dokowania.

	mol	rseq	mseq	S	rmsd_refine	FP:PLIF	PLIF_ligidx	E_conf	E_place	E_score1	E_refine	E_score2
1	Say.	1	1	-9.0305	1.2601	12345	[[3,29,7,6,5,4]	-89.6828	-87.9657	-11.2424	-53.1713	-9.0305
2	CHNN O	1	1	-8.8815	1.4722	1 8 9 10 7	[[3,29,7,6,5,4]	-93.5969	-92.2669	-11.8432	-49.6183	-8.8815
3	Stat.	1	1	-8.8252	2.2242	1 8 9 10 7	[[3,29,7,6,5,4,	-96.0937	-72.8663	-13.1208	-51.0452	-8.8252
4	ONNN ONNN ONNN ONNNN	1	1	-8.7437	0.7761	2 8 9 10 7	[1,11,10,10,[35	-97.1069	-105.8405	-13.5887	-52.0024	-8.7437
5	Star	1	1	-8.7293	1.4905	8 9 10 11	[11,10,10,[3,5,	-94.0613	-94.5983	-13.6459	-49.8647	-8.7293

Tabela 1: Mody odnalezione podczas dokowania I wraz z parametrami oceny dokowania, posortowane po rosnącej wartości funkcji oceny S.

2.2 Analiza konformacyjna i ocena parametrów dokowania

Wśród wynikowych modów można wyróżnić trzy klastry konformacyjne (tzn. grupy podobnych strukturalnie modów). Do pierwszego klastra należy mod 1, do drugiego 2 i 5, a do trzeciego 3 i 4. Struktura modu 3 bardzo przypomina strukturę krystalograficzną P16, obie nałożone na siebie struktury przedstawiono na Rysunku 4. W związku z tym że dostaliśmy strukturę tak bliską tej z krystalografii, można ocenić że mamy dobre parametry dokowania. W pierwszym i drugim modzie występuje rotacja czwartego pierścienia (według numeracji z Rysunku 2) w stosunku do struktury krystalograficznej P16.

Rysunek 4: Nałożone na siebie struktury P16: z krystalografii (na biało) i modu 3 z pierwszego dokowania (na niebiesko).

2.3 Analiza energetyczna

W Tabeli 2 przedstawiono pochodzące z dokowania funkcje oceny S, energie konformacyjne E_{conf} i energie dopasowania E_{place} dla wszystkich modów z podziałem na klastry konformacyjne, oraz średnie wartości tych parametrów w obrębie klastrów. Najniższą średnią wartość funkcji oceny S posiada pierwszy klaster, a mod 1 z którego ten klaster się składa ma najniższą wartość funkcji oceny spośród wszystkich modów. Najniższą średnią wartość energii E_{conf} ma trzeci klaster, a występujące w nim mody 3 i 4 mają niższe wartości tej energii niż jakiekolwiek inne mody. Najniższą średnią wartość energii E_{place} ma trzeci klaster. Co ciekawe najniższą wartość tej energii ma mod 4 który nie należy do tego klastra.

Nr klastra	Nr modu	S [kcal/mol]	S [kcal/mol]	E_conf [kcal/mol]	E_conf [kcal/mol]	E_place [kcal/mol]	E_place [kcal/mol]	
1	1	-9.0305	-9.0305	-89.6828	-89.6828	-87.9657	-87.9657	
2	2	-8.8815	-8.8054	-93.5969	-93.8291	-92.2669	-93.4326	
2	5	-8.7293	-0.0054	-94.0613	-93.0291	-94.5983	-93.4326	
3	3	-8.8252	-8.7845	-96.0937	-96.6003	-72.8663	-89.3534	
3	4	-8.7437	-0.7045	-97.1069	-90.0003	-105.8405	-09.3534	

Tabela 2: Funkcje oceny S, energie konformacyjne E_{conf} i energie dopasowania E_{place} dla różnych modów z dokowania oraz średnie wartości tych parametrów dla danych klastrów (oznaczone symbolami z kreską u góry). Na czerwono zaznaczono najmniejsze średnie wartości różnych parametrów spośród wszystkich klastrów.

2.4 Analiza oddziaływań

W Tabeli 3 wymieniono oddziaływania różnych modów z dokowania z wnęką c-Abl¹⁻⁵³¹oraz takie oddziaływania dla struktury krystalograficznej.

	Czy uczestniczy w wiązaniu?											
Aminikwas/		DDD										
cząsteczka	MOD 1	MOD 2	MOD 3	MOD 4	MOD 5	PDB						
GLY 268	+											
TYR 272	+											
GLY 340	+		+	+								
LEU 389	+					+						
MET 337		+	+	+	+	+						
LEU 267		+				+						
ASN 341					+							

Tabela 3: Oddziaływania różnych modów P16 z wnęką c-Abl¹⁻⁵³¹. Mody z pierwszego klastra zostały zaznaczone kolorem czerwonym, drugiego - zielonym, a trzeciego - niebieskim. W kolumnie PDB podano dla porównania oddziaływania dla struktur z pliku PDB.

Najczęściej, bo w 4 z 5 modów, zostało zachowane oddziaływanie z metioniną 337 ze struktury krystalograficznej. Pozostałe oddziaływania z tej struktury wystąpiły tylko w pojedynczych modach. W trzech modach pojawiło się nowe oddziaływanie z glicyną 340, natomiast pozostałe nowe oddziaływania pojawiły się tylko w pojedynczych modach. W klastrze trzecim w obu modach wystąpiły oddziaływania z tymi samymi aminokwasami, natomiast w modach z klastra drugiego powtórzyło się tylko oddziaływanie metioniną 337 a pozostałe oddziaływania były różne. Najwięcej, bo aż 4 oddziaływania ma mod 1, podczas gdy pozostałe mody mają po 2 oddziaływania.

2.5 Wybór modów do dynamiki molekularnej

Dokonaliśmy wyboru modów w obrębie każdego klastra do potencjalnej przyszłej dynamiki molekularnej, kierując się wartościami parametrów jakości dokowania: funkcji oceny S, energii dopasowania E_{place} i energii konformacyjnej E_{conf} , liczbą wiązań z c-Abl¹⁻⁵³¹, oraz podobieństwem do struktury krystalograficznej P16.

- W pierwszym klastrze jest jeden mod więc go bierzemy.
- W drugim klastrze najniższą wartość S uzyskał mod 2, ale mod 5 uzyskał niższe wartości E_{conf} i E_{place} . Jak widać z Tabeli 3, oba mody mają dwa oddziaływania z c-Abl¹⁻⁵³¹. W modzie 2 zachowały się 2 wiązania ze struktury krystalograficznej (z metioniną 337 oraz leucyną 267), z kolei w modzie 5 tylko jedno (z metioniną 337). Do dynamiki molekularnej bierzemy mod 2 oraz 5.
- W trzecim klastrze niższą wartość funkcji oceny S uzyskał mod 3, ale mod 4 uzyskał niższe wartości E_{conf} i E_{place} . Oba mody mają 2 oddziaływania z c-Abl¹⁻⁵³¹(w tym jedno, z metioniną 337, zachowane z krystalografii). Dodatkowo mod 3 ma strukturę bardziej przypominającą tą z krystalografii. Do dynamiki molekularnej bierzemy mod 3 oraz 4.

3 Modyfikacja ligandu

Dokonaliśmy modyfikacji ligandu P16 w kieszeni c-Abl $^{1-531}$, podstawiając jeden z wodorów w jego pierścieniu 1 grupą $-CH_2(CO)NH_2$. Modyfikacja ta miała na celu zwiększenie liczby oddziaływań ligandu z białkiem, poprzez utworzenie oddziaływania wodorowego między tlenem dodanej grupy a wodorem lizyny 290. Na Rysunku 5 przedstawiono schematycznie zmodyfikowany ligand z krystalografii z zaznaczonymi oddziaływaniami z wnęką c-Abl $^{1-531}$.

Rysunek 5: Schamatyczny rysunek oddziaływań zmodyfikowanego P16 z wnęką c-Abl¹⁻⁵³¹.

4 Dokowanie II

4.1 Opis dokowania

Do zminimalizowanej energetycznie wnęki c- Abl^{1-531} zadokowaliśmy zmodyfikowany ligand, używając parametrów takich jak przy pierwszym dokowaniu z jedyną różnicą taką że w drugiej fazie dokowania wybraliśmy 30 zamiast 5 modów.

W wyniku dokowania otrzymaliśmy 28 modów. Na Rysunku 6 zamieściliśmy odpowiadające im parametry oceniające dokowanie.

	mol	rseq	mseq	S	rmsd	rmsd_refine	FP:PLIF	PLIF_ligidx	E_conf	E_place	E_score1	E_refine	E_score2
1	ligand_pozmiani	1	1	-8.1393	2.1451	1.8451	1 2 3 4 5	[[12,18,17,15,1	-110.3074	-68.9769	-11.9282	-24.0692	-8.1393
2	ligand_pozmiani	1	1	-7.8749	2.1808	1.1388	7 8 2 3 4	[33,33,10,10,[7	-111.3833	-88.7197	-11.8908	-23.2110	-7.8749
3	ligand_pozmiani	1	1	-7.8565	2.0101	1.0252	9 10 1 7 8	[1,1,[12,18,17,	-114.0299	-101.8221	-11.8634	-25.2385	-7.8565
4	ligand_pozmiani	1	1	-7.7789	2.2511	0.9870	7 8 4 6	[33,33,[3,4,5,6	-94.5911	-90.8583	-13.6866	-22.2841	-7.7789
5	ligand_pozmiani	1	1	-7.7644	1.5729	1.4442	1 2 3 4 6	[[12,18,17,15,1	-112.6520	-80.2519	-11.5341	-21.5999	-7.7644
6	ligand_pozmiani	1	1	-7.2189	2.9890	1.9128	4 6	[[5,6,7,8,29,39	-118.7144	-69.4436	-11.7431	-9.6769	-7.2189
7	ligand_pozmiani	1	1	-6.8333	5.5871	2.4494	11 2 4 12	[32,23,[6,7,8,9	-126.8147	-100.9147	-13.1731	-30.0777	-6.8333
8	ligand_pozmiani	1	1	-6.8227	10.9455	1.3267	14 2 4 6	[1,10,[13,14,21	-127.8404	-80.2030	-12.0636	-24.9145	-6.8227
9	ligand_pozmiani	1	1	-6.8050	5.5360	1.4506	2 4 12 13	[23,[6,7,8,9,10	-125.4628	-59.8084	-12.0779	-29.2138	-6.8050
10	ligand_pozmiani	1	1	-6.7072	4.6381	1.1145	15 16 17 2	[33,23,23,16,16	-106.5634	-84.3522	-11.6595	-19.1634	-6.7072
11	ligand_pozmiani	1	1	-6.6770	5.5580	2.1443	11 2 4 6	[32,23,[7,8,9,1	-125.6116	-83.0843	-12.8702	-28.1369	-6.6770
12	ligand_pozmiani	1	1	-6.5534	5.5889	2.0226	2 4 6	[23,[6,7,8,9,10	-123.9463	-67.2946	-11.5776	-24.9780	-6.5534
13	ligand_pozmiani	1	1	-6.4153	11.0852	1.4100	11 20 4 6	[1,1,[15,16,22,	-126.9408	-61.3470	-13.2558	-9.5009	-6.4153
14	ligand_pozmiani	1	1	-6.3732	5.2482	2.7711	4 12 13 6	[[6,7,8,9,10,11	-110.3885	-93.6164	-13.5988	-22.8724	-6.3732
15	ligand_pozmiani	1	1	-6.2993	5.8578	1.4883	21 22 2 4	[1,1,23,[9,10,1	-126.0539	-80.5847	-11.6195	-24.8558	-6.2993
16	ligand_pozmiani	1	1	-6.2717	1.9995	0.8697	15 2 3 4 5	[33,10,10,[6,7,	-120.0240	-119.9008	-13.0624	-6.5884	-6.2717
17	ligand_pozmiani	1	1	-6.2262	5.1183	2.7400	4 5 12 13	[[8,9,10,11,12,	-110.8229	-67.3357	-12.2268	-21.2851	-6.2262
18	ligand_pozmiani	1	1	-6.1239	1.7092	1.2795	11 2 4 6	[32,10,[6,7,8,2	-108.0334	-99.5400	-12.8602	-6.9163	-6.1239
19	ligand_pozmiani	1	1	-6.1173	10.1567	1.0586	24 4 6	[[21,27,26,25,2	-78.4993	-86.1669	-11.8439	-3.2738	-6.1173
20	ligand_pozmiani	1	1	-6.0596	5.3493	2.4054	1 4 6	[[21,27,26,25,2	-112.3451	-71.5965	-11.8229	-17.4235	-6.0596
21	ligand_pozmiani	1	1	-5.9744	1.6214	1.5805	2 4 6	[10,[2,3,4,6,7,	-113.1203	-77.6372	-12.3423	-3.1966	-5.9744
22	ligand_pozmiani	1	1	-5.2459	2.0573	1.3723	24 15 2 3	[[3,29,7,6,5,4]	-96.7548	-64.5189	-11.8717	1.9864	-5.2459
23	ligand_pozmiani	1	1	-5.1483	2.9255	2.1551	9 4 6	[1,[3,4,5,6,7,8	-116.0198	-88.6425	-11.6272	13.8982	-5.1483
24	ligand_pozmiani	1	1	-5.0091	1.0843	1.1698	24 11 2 3	[[3,29,7,6,5,4]	-112.4734	-97.6140	-11.7803	4.8875	-5.0091
25	ligand_pozmiani	1	1	-4.9430	3.0137	1.7101	9 4 6	[1,[3,4,5,6,7,8	-120.0345	-101.4563	-12.2061	12.7433	-4.9430
26	ligand_pozmiani	1	1	-4.3049	1.9434	1.1752	9 2 4 6	[1,10,[3,4,5,6,	-83.4684	-83.6944	-11.5148	15.1883	-4.3049
27	ligand_pozmiani	1	1	-3.3193	2.9303	1.1186	25 26 16 4	[[3,29,7,6,5,4]	-101.3562	-108.4640	-12.6396	31.9518	-3.3193
28	ligand_pozmiani	1	1	-3.2361	3.0663	0.7611	7 4 6	[33,[2,3,4,5,6,	-92.0408	-84.6696	-11.8408	25.4241	-3.2361

Rysunek 6: Parametry oceny dokowania drugiego, posortowane po rosnącej wartości funkcji oceny S.

4.2 Analiza konformacyjna

Trzy spośród uzyskanych modów (o numerach 8, 13 i 19) zadokowały się odwrotnie, więc nie bierzemy ich do dalszej analizy. Pozostałe mody zostały podzielone na klastry konformacyjne w sposób pokazany w Tabeli 4.

Nr klastra	Numery modów
1	1, 2, 3, 4, 16
2	5, 21
3	6, 23, 25
4	7, 9, 11, 12
5	10, 28
6	14, 17
7	15
8	18, 24
9	20
10	22, 26
11	27

Tabela 4: Podział modów z dokowania II na klastry konformacyjne.

4.3 Analiza energetyczna

W Tabeli 5 przedstawiono wartości $S,\,E_{conf},\,$ i E_{place} dla modów z drugiego dokowania, z podziałem na klastry konformacyjne, oraz średnie wartości tych parametrów w obrębie klastrów. Najniższą średnią wartość funkcji oceny S (-7.5847 kcal/mol) posiada pierwszy klaster, E_{conf} - klaster siódmy (-126.0539 kcal/mol), a E_{place} - klaster ósmy (-98.5770 kcal/mol).

Nr klastra	Nr modu	S [kcal/mol]	S [kcal/mol]	E_conf [kcal/mol]	E_conf [kcal/mol]	E_place [kcal/mol]	E_place [kcal/mol]		
	1	-8.1393		-110.3074		-68.9769			
	2	-7.8749		-111.3833		-88.7197			
1	3	-7.8585	-7.5847	-114.0299	-110.0671	-101.8221	-94.0576		
	4	-7.7789		-94.5911		-90.8683			
	16	-6.2717		-120.0240		-119.9008			
2	5	-7.7644	-6.8694	-112.6520	-112.8862	-80.2519	-78,9446		
2	21	-5.9744	-0.0094	-113.1203	-112.0002	-77.6372	-70.9440		
	6	-7.2189		-118.7144		-69.4436			
3	23	-5.1483	-5.7701	-116.0198	-118.2562	-88.6425	-86.5141		
	25	-4.9430		-120.0345		-101.4563			
	7	-6.8333		-126.8147		-100.9147			
4	9	-6.8050	-6.7172	-125.4628	-125.4589	-59.8084	-77.7755		
4	11	-6.6770	-0.7172	-125.6116	-125.4569	-83.0843	-11.1155		
	12	-6.5534		-123.9463		-67.2946			
5	10	-6.7072	-4.9717	-106.5634	-99.3021	-84.3522	-84.5109		
5	28	-3.2361	-4.9717	-92.0408	-99.3021	-84.6696	-84.5109		
6	14	-6.3732	-6.2997	-110.3885	-110.6057	-93.6164	-80.4761		
В	17	-6.2262	-6.2997	-110.8229	-110.6057	-67.3357	-80.4761		
7	15	-6.2993	-6.2993	-126.0539	-126.0539	-80.5847	-80.5847		
8	18	-6.1239	E EGGE	-108.0334	-110.2534	-99.5400	-98,5770		
8	24	-5.0091	-5.5665	-112.4734	-110.2534	-97.6140	-98.5770		
9	20	-6.0596	-6.0596	-112.3451	-112.3451	-71.5965	-71.5965		
10	22	-5.2459	4 775 4	-96.7548	00 1116	-64.5189	74.1067		
10	26	-4.3049	-4.7754	-83.4684	-90.1116	-83.6944	-74.1067		
11	27	-3.3193	-3.3193	-101.3562	-101.3562	-84.6696	-84.6696		

Rysunek 7: Funkcje oceny S, energie konformacyjne E_{conf} i energie dopasowania E_{place} dla różnych modów z dokowania II oraz średnie wartości tych parametrów dla klastrów. Na czerwono zaznaczono najniższe średnie wartości różnych parametrów spośród wszystkich klastrów.

4.4 Analiza oddziaływań

W Tabeli 3 wymieniono oddziaływania różnych modów z dokowania II z wnęką c-Abl $^{1-531}$.

		Czy uczestniczy w wiązaniu?																							
Aminikwas/	Nr modu																								
cząsteczka	1	1 2 3 4 5 6 7 9 10 11 12 14 15 16 17 <mark>18 20 21 22 23 24</mark> 25 <mark>26</mark>													26	27	28								
ASN 341	+													+	+									+	
MET 337	+	+	+		+		+	+	+	+	+		+	+		+		+	+		+		+		
VAL 275	+		+		+												+								
GLU 305		+	+	+														+					+		+
GLY 268			+																	+		+	+	+	
MET 309						+			+					+					+						
ASP 344							+	+				+			+							+		+	
LYS 290							+			+						+					+			+	
THR 334							+			+															
ILE 332																									
ASP 400									+																
GLU 335									+															+	
GLU 277													+												
LEU 267																			+		+				

Tabela 5: Tabela oddziaływań różnych modów z drugiego dokowania z wnęką c- Abl^{1-531} . Mody z różnych klastrów zaznaczono różnymi kolorami.

Najczęściej, bo w 16 z 25 modów, występuje oddziaływanie z metioniną 337, które występuje też w strukturze krystalograficznej P16. Jednak w modach 7, 9, 10, 11, 12, i 15 nie jest to takie samo oddziaływanie, bo oryginalne oddziaływanie było wiązaniem wodorowym z azotem 3 pierścienia a w tych modach jest to wiązanie wodorowe z chlorem pierwszego pierścienia. W pozostałych przypadkach jest to takie samo oddziaływanie.

Z pozostałych oddziaływań ze struktury krystalograficznej dla dwóch modów zachowały się oddziaływania z z leucyną 267 o takim samym charakterze jak w strukturze z krystalografii. Oddziaływanie z leucyną 389 ze struktury krystalograficznej nie zachowało się dla żadnego z modów

Oddziaływanie z lizyną 290 które chcieliśmy utworzyć poprzez modyfikaję ligandu występuje tylko dla modów 7, 11, 18, 24 i 27, ale tylko dla pierwszych 4 z nich jest to oddziaływanie wodorowe między tlenem z dodanej grupy a wodorem lizyny tak w modelu stworzonym w Sekcji 3. Dla modu 27 jest to oddziaływanie van der Waalsa między wodorem lizyny a pierwszą grupą aromatyczną zmodyfikowanego P16. W modzie 24 zachowało się łącznie najwięcej, bo 3 z 4 oddziaływań z modelu z Sekcji 3. Łącznie najwięcej, bo aż 5 oddziaływań ma mod 27.

4.5 Wybór modów do dynamiki molekularnej

Wybraliśmy mody do dynamiki molekularnej w obrębie każdego klastra na podstawie funkcji oceny S, energii dopasowania E_{place} , energii konformacyjnej E_{conf} , liczby wiązań z c-Abl¹⁻⁵³¹, i liczby zachowanych wiązań z początkowego modelu strukturalnego złożonego z P16 z krystalografii z dodaną grupą jak opisano w Sekcji 3. W Tabeli 6 przedstawiono wybrane do dynamiki mody oraz parametry wzięte pod uwagę przy ich wyborze.

					Liczb	a wiązań
Nr klastra	Nr modu	s	E conf	E_place	41.1	zachowanych
		[kcal/mol]	[kcal/mol]	[kcal/mol]	wszystkich	z modelu
	1	-8.1393	-110.3074	-68.9769	3	1
	2	-7.8749	-111.3833	-88.7197	2	1
1	3	-7.8585	-114.0299	-101.8221	4	1
	4	-7.7789	-94.5911	-90.8683	1	0
	16	-6.2717	-120.0240	-119.9008	3	1
2	5	-7.7644	-112.6520	-80.2519	2	1
2	21	-5.9744	-113.1203	-77.6372	2	1
	6	-7.2189	-118.7144	-69.4436	1	0
3	23	-5.1483	-116.0198	-88.6425	1	0
	25	-4.9430	-120.0345	-101.4563	2	0
	7	-6.8333	-126.8147	-100.9147	4	1
4	9	-6.8050	-125.4628	-59.8084	2	0
4	11	-6.6770	-125.6116	-83.0843	3	1
	12	-6.5534	-123.9463	-67.2946	1	0
5	10	-6.7072	-106.5634	-84.3522	4	0
5	28	-3.2361	-92.0408	-84.6696	1	0
6	14	-6.3732	-110.3885	-93.6164	1	0
В	17	-6.2262	-110.8229	-67.3357	2	0
7	15	-6.2993	-126.0539	-80.5847	2	0
8	18	-6.1239	-108.0334	-99.5400	2	2
0	24	-5.0091	-112.4734	-97.6140	3	3
9	20	-6.0596	-112.3451	-71.5965	1	0
10	22	-5.2459	-96.7548	-64.5189	3	2
10	26	-4.3049	-83.4684	-83.6944	3	1
11	27	-3.3193	-101.3562	-84.6696	5	0

Tabela 6: Na niebiesko zaznaczono mody wzięte do dalszej dynamiki. Na czerwono zaznaczono najniższe wartości parametrów $S,\,E_{conf}$ i E_{place} w każdym klastrze. Model to ligand z krystalografii po modyfikacji.

- W pierwszym klastrze najmniejszą wartość S uzyskał mod 1, najniższe wartości E_{conf} i E_{place} mod 16, a największą liczbę wiązań (4) mod 3. W modach 1, 2, 3 i 16 zostało zachowane jedno wiązanie ze struktury krystalograficznej z metioniną 337. Do dalszej dynamiki bierzemy mod 1 (ze względu na najmniejszą wartość S w całym klastrze oraz wśród wszystkich modów) oraz mod 16 (ze względu na najmniejszą wartość E_{place} w całym klastrze oraz wśród wszystkich modów).
- W drugim klastrze najniższą wartość S i E_{place} uzyskał mod 5. Mod 21 uzyskał niższą wartość E_{conf} , ale różnica między tymi wartościami dla obu modów jest nieznaczna. Oba mody mają taką samą liczbę wiązań (2), w tym jedno zostało zachowane ze struktury krystalograficznej z metioniną 337. Do dalszej dynamiki bierzemy mod 5.
- W trzecim klastrze najniższą wartość S uzyskał mod 6, natomiast mod 25 ma najniższe wartości E_{conf} i E_{place} oraz największą liczbę wiązań (2). W żadnym z modów nie zostało zachowane wiązanie z naszego modelu. Do dalszej dynamiki bierzemy mody 6 oraz 25.
- W czwartym klastrze najniższe wartości parametrów $S,\,E_{conf}$ i E_{place} oraz największą liczbę wiązań uzyskał mod 7 i to on zostaje wybrany do dalszej dynamiki. Dla modów

7 oraz 9 zostało zachowane wiązanie z lizyną 290 powstałe po modyfikacji ligandu z krystalografii.

- W piątym klastrze najniższe wartości S i E_{conf} , a także największą liczbę wiązań uzyskał mod 10. Z kolei mod 28 posiada najmniejszą wartość E_{place} , ale różnica między tymi wartościami dla obu modów jest nieznaczna. W żadnym z modów nie zostało zachowane wiązanie z naszego modelu. Do dalszej dynamiki wybieramy mod 10.
- W szóstym klastrze najniższą wartość S oraz E_{place} ma mod 14. Natomiast najniższą wartość E_{conf} ma mod 17, ale różnica między tymi wartościami dla obu modów jest nieznaczna. W żadnym z modów nie zostało zachowane wiązanie z naszego modelu. Do dalszej dynamiki bierzemy mod 14.
- Siódmy klaster zawiera tylko jeden mod (nr 15), który wybieramy do dalszej dynamiki.
- W ósmym klastrze najniższą wartość S oraz E_{place} ma mod 18. Natomiast najniższą wartość E_{conf} i największą liczbę wiązań ma mod 24. Oba mody zachowały wiązanie z lizyną 290 oraz metioniną 337 z naszego modelu, a dodatkowo mod 24 zachował wiązanie z leucyną 267. Do dalszej dynamiki wybieramy mod 18 oraz 24.
- Dziewiąty klaster zawiera tylko jeden mod (nr 20), który bierzemy do dalszej dynamiki.
- W dziesiątym klastrze mod 22 posiada najmniejsze wartości S i E_{conf} , z kolei mod 26 ma najmniejszą wartość E_{place} . Oba mody mają taką samą liczbę wiązań (3). W porównaniu z naszym modelem: w modzie 22 zostały zachowane 2 wiązania z metioniną 337 i leucyną 267, w modzie 26 zostało zachowane 1 wiązanie z metioniną 337. Do dalszej dynamiki wybieramy mody 22 i 26.
- Jedenasty klaster zawiera tylko jeden mod (nr 27), który bierzemy do dalszej dynamiki.

5 Porównanie dokowania I i II

W dokowaniu II wszystkie mody otrzymały wyższe wartości funkcji oceniającej S od najwyższej wartości tej funkcji dla modów z dokowania I. Pierwszy klaster w dokowaniu pierwszym miał średnią wartość tej funkcji -9.0305 ([kcal/mol]), czyli mniej niż -7.5847 dla drugiego dokowania.

Prawie wszystkie wartości energii konformacyjnej E_{conf} modów z drugiego dokowania były niższe od najniższej wartości tej energii z pierwszego dokowania (-97.1069 dla modu 4). Wyższe wartości tej energii zanotowano jedynie dla klastrów 4, 22, 26 i 28. Dla pierwszego klastra średnia wartość tej energii -110.0671 w dokowaniu II jest niższa od średniej wartości tej energii -89.6828 w dokowaniu I. Podobnie, najniższa średnia wartość tej energii w klastrze 7 (-126.0539) dla dokowania II jest dużo niższa od najniższej średniej wartości tej energii -96.6003 dla klastra 3 w dokowaniu I.

Energie dopasowania E_{place} w drugim dokowaniu były dla niektórych modów niższe od najniższej wartości tej energii z dokowania I a dla niektórych modów wyższe od najwyższej wartości z pierwszego dokowania. Dla pierwszego klastra w pierwszym dokowaniu średnia wartość tej energii wyniosła -87.9657, czyli więcej niż -94.0576 w drugim dokowaniu. Podobnie, najniższa średnia wartość tej energii -93.4326 dla drugiego klastra w dokowaniu I jest wyższa od najniższej takiej średniej wartości -98.5770 dla klastra 8 w dokowaniu II.

Dla modów o najniższych wartościach funkcji oceny S, mod 1 z dokowania I miał 4 wiązania a z dokowania II mniej bo 3. Natomiast najwieksza liczba 5 wiązań dla modu 17

z drugiego dokowania jest większa od największej liczby 4 wiązań dla modu 1 z pierwszego dokowania.

W obu dokowaniach najczęściej zachowanym oddziaływaniem z krystalografii było oddziaływanie z metioniną 337. Oddziaływanie z leucyną 267 zachowało się w obu przypadkach w niewielu modach, a z leucyną 389 zachowało się tylko dla modu 1 z dokowania I.

6 Wnioski

W porównaniu do ligandu sprzed modyfikacji po modyfikacji dostaliśmy mody o gorszych wartościach funkcji oceny S, ale typowo lepszych wartościach energii konformacyjnej i dopasowania. Mody z dokowania po modyfikacji mają też porównywalną liczbę wiązań do modów z dokowania dla oryginalnego ligandu.

7 Podsumowanie

Modyfikacja nie poprawiła powinowactwa ligandu do wnęki c-Abl $^{1-531}$ w sposób jednoznaczny. Pomimo typowo niższych wartości energii konformacyjnej i dopasowania zmodyfikowanego ligandu, powstałe mody miały wyższe wartości funkcji oceny S, a liczby oddziaływań nie były typowo ani zdecydowanie większe ani mniejsze niż dla modów ligandu modyfikacją.

W celu weryfikacji przydatności zmodyfikowanej cząsteczki do dalszych badań można przeprowadzić dynamikę molekularną ze strukturami początkowymi równymi zaproponowanym modom z drugiego dokowania. Dynamika ta pozwoli na lepsze dopasowanie się ligandu do struktury c-Abl $^{1-531}$.

Literatura

[1] B. Nagar et al. Structural basis for the autoinhibition of c-abl tyrosine kinase. *Cell*, 112(3):859–871, 2003.