数字逻辑电路 (2020级本科生课程)

清华大学计算机系

陶品

taopin@tsinghua.edu.cn

办公室: FIT 3-531 (13717813059)

第三章 组合逻辑电路

Combinational Logic Circuit

第三章 组合逻辑电路

- 3.1 引言
- 3.2 门电路
- 3.3 常用的中规模组合逻辑电路
- 3.4 运算器与ALU
- 3.5 组合逻辑电路中的竞争与冒险问题

组合逻辑电路的分析与设计

■组合逻辑电路分析

■组合逻辑电路设计

3.3 常用的中规模组合逻辑电路

- ⇒ 3.3.1 译码器
 - 3.3.2 数据选择器
 - 3.3.3 编码器
 - 3.3.4 数据比较器
 - 3.3.5 奇偶校验器
 - 3.3.6 运算器 (算数逻辑单元 ALU)

- 3.3.1 译码器(1)
- ■译码器的功能分类:
 - □变量译码器: 用来表示输入变量状态的全部 组合

N位输入, 2^N输出, 常见的集成化译码器有2-4、3-8、4-16

- □码制译码器:如8421码变换为循环码等
- □显示译码器:控制数码管显示

3.3.1 译码器 (2)

●2-4变量译码器

》(步骤一)定义:2-4译码器是指2输入-4输出的变量译码器。2输入,4输出.对应输入的每一种组合,唯一只有一个输出为"0".

真值表

输	^		输	出	
A	В	Y ₀	Y_1	Y_2	Y_3
0	0	0	1	1	1
1	0	1	0	1	1
0	1	1	1	0	1
1	1	1	1	1	0

3.3.1 译码器 (3)

- ■2-4译码器
 - □ (步骤二) 根据真值表写出输出表达式

真值表

输	\	输 出
Α	В	$Y_0 Y_1 Y_2 Y_3$
0	0	0 1 1 1
1	0	1 0 1 1
0	1	1 1 0 1
1	1	1 1 1 0

输出表达式

$$\begin{cases} Y_0 &= \frac{==}{AB} \\ Y_1 &= \frac{AB}{AB} \\ Y_2 &= \frac{AB}{AB} \\ Y_3 &= \frac{AB}{AB} \end{cases}$$

只用与非门实现

逻辑示意图

3.3.1 译码器 (4)

- ■2-4译码器
 - □(步骤三)按照输出表达式画出逻辑图

输出表达式

$$\begin{cases} Y_0 &= \frac{AB}{AB} \\ Y_1 &= \frac{AB}{AB} \\ Y_2 &= \frac{AB}{AB} \\ Y_3 &= \frac{AB}{AB} \end{cases}$$

有没有什么问题?

3.3.1 译码器 (5)

3.3.1 译码器 (6)

- 2-4译码器
 - □ (步骤四)检查可能出现的问题,并修正设计
 - □ 集成电路的设计原则:一个输入只能按照一个

输入负载计算。

解决办法:增加一级输入缓冲

3.3.1 译码器 (7)

●2-4译码器

>集成电路由两部分组成:输入缓冲部分和译码部分。

输入缓冲部分使得对外负 载只有一个,减轻上一级 电路的负担。

输入缓冲电路 译码逻辑电路

- 3.3.1 译码器 (8)
- 画逻辑图要求:
 - □逻辑图要美观,可读性要好
- ■具体注意几个问题:
 - □逻辑图中逻辑门(或逻辑器件)布局要合理,逻辑性强
 - □逻辑图中的连线布局合理,无连接交叉 点要少
 - □相接连线的交叉点要画上连接符

3.3.1 译码器 (9)

■2-4译码器的应用举例:CPU控制四个设备

信号

级设

计要

求:

功级设要:

A0=0, A1=0时, 外设0工作 A0=1, A1=0时, 外设1工作 A0=0, A1=1时, 外设2工作

A0=1, A1=1时, 外设3工作

A0=0, A1=0时, Y0=0, Y1, Y2, Y3=1

AO=1, A1=0时, Y1=0, Y0, Y2, Y3=1

A0=0, A1=1时, Y2=0, Y0, Y1, Y3=1

A0=1, A1=1时, Y3=0, Y0, Y1, Y2=1

3.3.1 译码器 (10)

- ■有使能端的2-4译码器
 - □由于2-4译码器的4个输出是2输入的逻辑组合,任何一种组合都会有一个输出有效
 - □要使所有输出无效(输出为高),就需要增加附加逻辑——使能(Enable)

3.3.1 译码器 (11)

- ■有使能端 \overline{E} 的2-4译码器
 - □在普通的2-4译码器中设置使能端 (Enable)

当E=0,译码器使能当E=1,译码器禁止

\overline{E}	A	В	Yo	Y ₁	Y_2	Y_3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	1	0	1	0	1	1
0	0	1	1	1	0	1
0	1	1	1	1	1	0

3.3.1 译码器 (12)

 \bullet 有使能端 E 的2-4译码器

功能表

\overline{E} A B	$Y_0 Y_1 Y_2 Y_3$
1 X X	1111
000	0111
010	1011
0 0 1	1101
0 1 1	1110

逻辑示意图

3.3.1 译码器 (13)

- ●有使能端 E 的2-4译码器
 - > 根据表达式画出逻辑图

3.3.1 译码器 (14)

- ■译码器使能端 = 的作用
 - □在集成电路中增加控制使能(Enable) 端层,是电路设计中常用的技术,使得 集成电路更加灵活、可靠。
 - □灵活:用于扩展
 - □可靠: 用于选通

3.3.1 译码器 (15)

●译码器使能端层的作用

3.3.1 译码器 (16)

■用两片2-4译码器组成3-8译码器的真值表

真 值 表

输入	输出
A B C	Y ₀ Y ₁ Y ₂ Y ₃ Y ₄ Y ₅ Y ₆ Y ₇
0 0 0	0111111
100	1011111
0 1 0	11011111
1 1 0	11101111
0 0 1	11110111
101	11111011
0 1 1	1111101
1 1 1	1111110

3.3.1 译码器 (17)

- ●用2-4译码器构成4-16译码器
 - >需要使用?片2-4译码器

答案: 5片

问题: 32-232译码器, 如何搭建?

3.3.1 译码器 (18)

- 3.3.1 译码器 (19)
- E 用作选通(作用二)
 - □为什么需要选通? 针对门电路的传输延迟造成的竞争、 冒险问题提出的。

3.3.1 译码器 (20)

■门电路的传输延迟造成会竞争、冒险

二输入与非门的输入为 A 和A 时, A 滞后于A ,则Y会出现尖峰信号 (与非门上升沿有尖峰)

理想情况: $Y = A \bullet A = 1$ γ

3.3.1 译码器 (21)

■门电路的传输延迟造成会竞争、冒险

二输入或非门的输入为 A 和 A 时, A 滞后于A ,则Y会出现尖峰信号 (或非门下降沿有尖峰)

理想情况: Y = A + A = 0

正向尖峰

3.3.1 译码器 (22)

● 踹用于选通

2-4译码器中设置二级缓冲,目的是均衡负载,但是由于信号传输的延迟,会在输出端产生"O"重叠(Overlap)和尖峰信号(有些书中称为毛刺,英文词为: Spike, Glitch)。
为消除尖峰和重叠,增加了 房

3.3.1 译码器 (23)

■若无使能端,延迟产生尖峰和零重叠问题

□ 若A B同时到来:从11变到00

3.3.1 译码器 (24)

若AB同时到来(无偏移Skew)。 从功能表上分析,AB从"11" 变到"00"时,输出应从 $Y_3=0$ 变成 $Y_0=0$, Y_1Y_2 保持为 "1"。

但是,由于门的传输延迟,造成Y₁,Y₂上出现了尖峰,同时, Y₃,Y₀有一段时间同时为"O", 即零重叠。

3.3.1 译码器 (25)

■ 当AB从"11"变到"00"时,输出应从Y₃=0变成Y₀=0。 假设AB不能同时到来,存在偏移(Skew),导致尖峰信号更宽。

t_{spike}加宽、两处出现零重叠

 $t_{\text{overlap}} = 1$ 级延迟 $t_{\text{spike}} = t_{\text{skew}} + 1$ 级延迟

3.3.1 译码器 (26)

- ■用使能端可以消除延迟产生尖峰和零重叠
 - 口在A B变化期间,输出是不稳定的,可能会出现 尖峰信号。加一个能覆盖输入变化的正脉冲 $(\overline{E}=1)$,使得A B变化期间强制 $Y_0-Y_3=1$,即 可消除输出端的干扰。

抑制尖峰和零重叠的使能正信号应先于(或同时)译码器的变量输入变化前到来,正信号撤除应滞后于变量输入的变化(至少滞后1级缓冲的延迟)。

但也不能太宽, 否则速度会慢。

3.3.1 译码器 (27)

使用 展抑制零重叠和尖峰,译码器的输出波形变窄了。

3.3.1 译码器 (28)

- ●3-8译码器
 - >定义: 3-8译码器是指3输入-8输出的变量译码器。
 - > 逻辑示意图

3.3.1 译码器 (29)

- ●3-8译码器
 - > 真值表和逻辑表达式

真 值 表

输入	输 出
АВС	$Y_0 Y_1 Y_2 Y_3 Y_4 Y_5 Y_6 Y_7$
0 0 0	0 1 1 1 1 1 1 1
1 0 0	1 0 1 1 1 1 1 1
0 1 0	1 1 0 1 1 1 1 1
1 1 0	1 1 1 0 1 1 1 1
0 0 1	1 1 1 1 0 1 1 1
1 0 1	1 1 1 1 1 0 1 1
0 1 1	1 1 1 1 1 0 1
1 1 1	1 1 1 1 1 1 0

输出表达式

 $\begin{vmatrix} Y_0 &=& \overline{ABC} \\ Y_1 &=& \overline{ABC} \end{vmatrix}$ 只用 与非 门实 $Y_2 = \overline{\overline{ABC}}$ 现的 输出 $Y_3 = \overline{AB\overline{C}}$ 表达 $Y_4 = \overline{\overline{ABC}}$ 式 $Y_5 = ABC$ $Y_6 = \overline{ABC}$ $Y_7 = \overline{ABC}$

3.3.1 译码器 (30)

●3-8译码器:按照输出表达式画出3-8译码器的逻辑图

3.3.1 译码器 (31)

■用3-8译码器扩展成4-16译码器

3.3.1 译码器 (32)

- ■有多个使能端的译码器件——典型器 件
 - □器件一: 74LS(HCT, HC) 139

功能: 双2-4译码器

□器件二:74LS(HCT, HC) 138

功能: 3-8 译码器 (3个使能端)

□器件三:74 LS (HCT, HC) 154

功能: 4-16 译码器 (2个使能端)

功能表

	输	人					報	d		ļ.		
Eì	$\mathbf{E}_{2A} + \mathbf{E}_{2B}$	A	В	С	Ϋ́	Y ₁	Y2	Υ3	Y	Y 5	Y ₆	Υ ₁
×	1	X	Х	X	1	1	1	1	j	i	1	. 1
0	×	×	X	Х	1	1	1	1	1	1	i	1
1	0	0	ŋ	٥	0	1	1	1	1	1	1	1
ı	0	1	0	0	ı	0	1	1.	1]	I	1
ı	0	0	1	0	1	1	0	1	1	1	1	1
1	0	1.	1	0	1	1	1	0	1	1	1	1
1	0	0	0	1	1	1	1	1	0	1	1	1
1	0	ı	0	1	1	1	1]	1	0	1	1.
	0	0	1	1	1	1	1	1	1	1	0	1
1	0	l)	1	1	1	1	1	1	1	1	0

4-2 三输入变量译码器的逻辑图

3.3.1 译码器 (33)

■E用作扩展: 具有多个使能端的3-8译码器扩展为 4-16译码器 输入

输出

3.3.1 译码器 (34)

- ■用3-8译码器分配地址区
 - □ CPU的地址空间: A₇~A₀共有256个地址空间
 - □每个ROM有32个地址空间

用3-8译码器分配地址区(1)

用3-8译码器分配地址区 (2)

地址空间的对应关系如图:

CPU地址	空间	ROM地址空间	
00000000~00011111	(0~31)	 00000~11111	第0片ROM
00100000~00111111	(32~63)	 00000~11111	第1片ROM
01000000~01011111	(64~95)	 00000~11111	第2片ROM
01100000~01111111	(96~127)	 00000~11111	第3片ROM
10000000~10011111	(128~159)	 00000~11111	第4片ROM
10100000~10111111	(160~191)	 00000~11111	第5片ROM
11000000~11011111	(192~223)	 00000~11111	第6片ROM
11100000~11111111	(224~255)	 00000~11111	第7片ROM

3.3.1 译码器 (35)

■用译码器完成地址分配

```
地址线有10位,可以表示2<sup>10</sup>=1K个地址空间;
地址线有20位,可以表示2<sup>20</sup>=1M个地址空间;
地址线有30位,可以表示2<sup>30</sup>=1G个地址空间;
32位地址可以表示4G地址;
16M存储器需要24位地址。
```

3.3.1 译码器 (36)

- ■译码器用作数据分配器 (Demultiplexer)
 - □数据分配: 将输入数据在地址控制下连 接到多个输出通道

Din	C_1	C_2	Y_0	Y_1	Y ₂	Y ₃
0/1	0	0	0/1	1	1	1
0/1	1	0	1	0/1	1	1
0/1	0	1	1	1	0/1	1
0/1	1	1	1	1	1	0/1

3.3.1 译码器 (37)

3.3.1 译码器 (39)

- ●4-16译码器
 - >定义: 4-16译码器是指4输入-16输出的变量译码器。
 - > 逻辑示意图

4-16译码器逻辑示意图 D为最高位, A为最低位

图 4-3 四输入变量译码器逻辑图

3.3.1 译码器 (40)

■4-16译码器

□存在的问题

- 缓冲门的负载较大:第一级缓冲门(反变量) 负载9个负载,第二级缓冲门(原变量)8 个负载
- 使能端与门的负载有16个,必须在制造芯片时增大驱动能力

3.3.1 译码器(41)

■当输入变量数增大

- □ 当译码器的输入变量数N增大时,用单级译码器不能实现
 - ✓ 译码部分与非门的输入端数会增多:输入端数为N+1(使能端)个。
 - ✓二级Buffer的每个Buffer的输出负载加重
 - ❖ 负载:第一级为2^{N-1}+1,第二级为2^{N-1},使能端为2^N
 - ❖ 例如, 当N=11时,每个译码门至少有12个输入,第一级缓冲门有1025个负载,第二级缓冲门有1024个负载,这是不可实现的。
 - >采用多级译码技术可以减少负载:用在大容量存储器片内的译码结构。

3.3.1 译码器 (41)

■多级译码

考察4-16变量译码器

$$Y_{0} = \overline{\overline{ABCD}} = \overline{(\overline{AB})} \overline{(\overline{CD})} \qquad Y_{8} = \overline{\overline{ABCD}} = \overline{(\overline{AB})} \overline{(\overline{CD})}$$

$$Y_{1} = \overline{\overline{ABCD}} = \overline{(\overline{AB})} \overline{(\overline{CD})} \qquad Y_{9} = \overline{\overline{ABCD}} = \overline{(\overline{AB})} \overline{(\overline{CD})}$$

$$Y_{2} = \overline{\overline{\overline{ABCD}}} = \overline{(\overline{AB})} \overline{(\overline{CD})} \qquad Y_{10} = \overline{\overline{\overline{ABCD}}} = \overline{(\overline{AB})} \overline{(\overline{CD})}$$

$$Y_{3} = \overline{\overline{\overline{ABCD}}} = \overline{(\overline{AB})} \overline{(\overline{CD})} \qquad Y_{11} = \overline{\overline{\overline{ABCD}}} = \overline{(\overline{AB})} \overline{(\overline{CD})}$$

$$Y_{4} = \overline{\overline{\overline{ABCD}}} = \overline{(\overline{\overline{AB})} \overline{(\overline{CD})}} \qquad Y_{12} = \overline{\overline{\overline{ABCD}}} = \overline{(\overline{\overline{AB})} \overline{(\overline{CD})}}$$

$$Y_{5} = \overline{\overline{\overline{ABCD}}} = \overline{(\overline{\overline{AB})} \overline{(\overline{CD})}} \qquad Y_{13} = \overline{\overline{\overline{ABCD}}} = \overline{(\overline{\overline{AB})} \overline{(\overline{CD})}}$$

$$Y_{6} = \overline{\overline{\overline{\overline{ABCD}}}} = \overline{(\overline{\overline{\overline{AB}})} \overline{(\overline{\overline{CD}})}} \qquad Y_{14} = \overline{\overline{\overline{\overline{ABCD}}}} = \overline{(\overline{\overline{\overline{AB}})} \overline{(\overline{\overline{CD}})}}$$

$$Y_{15} = \overline{\overline{\overline{\overline{\overline{ABCD}}}}} = \overline{(\overline{\overline{\overline{AB}})} \overline{(\overline{\overline{CD}})}}$$

3.3.1 译码器(41)

■多级译码

令
$$E = AB$$
, $F = AB$, $G = AB$, $H = AB$

$$W = \overline{CD}$$
, $X = \overline{CD}$, $Y = \overline{CD}$, $Z = \overline{CD}$, 则有:

- √A,B,C,D和它们的反变量,都出现8次,说明它们共有8个负载。
- ✓考察E,F,G,H,W,X,Y,Z,每个出现4次,意味着它们共有4个负载。
- 5说明经过变换后,负载数降低了一半。

二级译码

用两级译码电路实现4-16译码器

(2X2²表示2输入与门4个, 2X2⁴表示2输入与非门16个)

二级译码

用两级译码实现8-256译码器

- ❖负载:每个反变量 为8+1,原变量为8。 每个与门16个负载。
- ❖负载:如果用一级 译码,则每个原变量 负载为128,每个反变 量负载为129。

■大容量存储器的地址译码

地址线有10位,可以表示210=1K个地址空间; 地址线有20位,可以表示2²⁰=1M个地址空间; 地址线有30位,可以表示2³⁰=1G个地址空间; 32位地址可以表示4G地址; 16M存储器需要24位地址。

3.3.1 译码器 (42) ——变量译码器小结

- ■译码器的功能分类:
 - □变量译码器:用来表示输入变量状态的全部组合,N位输入,2^N输出。
 - 2-4译码器:设计,存在的问题:竞争与冒险 使能端,作用:扩展、消除竞争与冒险
 - 3-8译码器:应用:地址分配,数据选择
 - 多级译码器: 二级译码: 4-16译码器和8-256译码器

- 3.3.1 译码器 (43)
- ■译码器的功能分类:
 - □变量译码器
 - □码制译码器:如8421码变换为循环码等
 - □显示译码器:控制数码管显示

3.3.1 译码器 (44)

■码制译码器:将一种编码变换为另外一种编码的逻辑电路。 二一十进制译码器

3.3.1 译码器 (45)

- ■码制译码器:将一种编码变换为另外一种编码的逻辑电路。
 - 二一十进制译码器:

十进制的二进制编码(二进制编码的十进制数,也叫BCD编码: Binary-Coded to Decimal, BCD)

- 1、不完全译码的BCD译码器
- 2、完全译码的BCD译码器

3.3.1 译码器 (46)

■8-4-2-1 码表示十进制数

B D A	00	01	11	10
00 C	0	1	3	2
01	4	5	7	6
11	X	X	X	X
10	8	9	X	X

十进制数	8421码
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

3.3.1 译码器 (47)

·不完全译码的BCD 译码器的功能表

	A	В	С	D	Y_0	Y ₁	Y ₂	Y ₃	Y ₄	Y ₅	Y ₆	Y_7	Y8	Y ₉
0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
1	1	0	0	0	1	0	1	1	1	1	1	1	1	1
2	0	1	0	0	1	1	0	1	1	1	1	1	1	1
3	1	1	0	0	1	1	1	0	1	1	1	1	1	1
4	0	0	1	0	1	1	1	1	0	1	1	1	1	1
5	1	0	1	0	1	1	1	1	1	0	1	1	1	1
6	0	1	1	0	1	1	1	1	1	1	0	1	1	1
7	1	1	1	0	1	1	1	1	1	1	1	0	1	1
8	0	0	0	1	1	1	1	1	1	1	1	1	0	1
9	1	0	0	1	1	1	1	1	1	1	1	1	1	0

3.3.1 译码器 (48)

不完全译码的BCD译码器逻辑化简

当ABCD = 0101~1111时, $Y_{0\sim 9}$ 均为任意值, $Y_{0\sim 9}$ 表达式为

B D A	00	01	11	10
C (Y ₀ =0	Y ₁ =0	Y ₃ =0	Y ₂ =0
01	Y ₄ =0	Y ₅ =0	Y ₇ =0	Y ₆ =0
11	X	X	X	X
10	Y ₈ =0	Y ₉ =0	X	X

Y_0	= .	ĀBCD
Y_1	=	ABCD
Y_2	=	ABC

$$Y_{8} = \overline{AD}$$

$$Y_{9} = \overline{AD}$$

3.3.1 译码器 (49)

●不完全译码的BCD译码器逻辑图

3.3.1 译码器 (50)

● 完全译码的BCD译码器 当输入ABCD出现0101~1111时,译码器输出Y_{0~9}均为 "1", Y_{0~9}表达式为

	A	В	С	D	Y_0	Y ₁	Y ₂	Y ₃	Y ₄	Y ₅	Y ₆	Y_7	Y ₈	Y ₉
0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
1	1	0	0	0	1	0	1	1	1	1	1	1	1	1
2	0	1	0	0	1	1	0	1	1	1	1	1	1	1
3	1	1	0	0	1	1	1	0	1	1	1	1	1	1
4	0	0	1	0	1	1	1	1	0	1	1	1	1	1
5	1	0	1	0	1	1	1	1	1	0	1	1	1	1
6	0	1	1	0	1	1	1	1	1	1	0	1	1	1
7	1	1	1	0	1	1	1	1	1	1	1	0	1	1
8	0	0	0	1	1	1	1	1	1	1	1	1	0	1
9	1	0	0	1	1	1	1	1	1	1	1	1	1	0
	0	1	0	1	1	1	1	1	1	1	1	1	1	1
_	1	1	0	1	1	1	1	1	1	1	1	1	1	1
不	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	1	0	1	1	1	1	1	1	1	1	1	1	1	1
用	0	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1	1	1	1	1	1

(a) 功能表

$$\begin{cases} Y_0 = \overline{ABCD} \\ Y_1 = \overline{ABCD} \\ Y_9 = \overline{ABCD} \end{cases}$$

3.3.1 译码器 (51)

· 完全译码的BCD译码器逻辑图

- 3.3.1 译码器 (52)
- ■译码器的功能分类:
 - □变量译码器
 - □码制译码器
 - □显示译码器:控制数码管显示

3.3.1 译码器 (53)

■显示译码器

□一个七段数码管有7个控制端输入a~g,分别对应与数码管的7段。有些数码管是8个输入,在右下方有一个小数点。

a b f g b c d c f g

3.3.1 译码器 (54)

■显示译码器

- ▶七段数码管分为共阳极显示和共阴极显示两种
- 》一般来说,共阳极显示的数码管有一个管脚为 "低",则对应的段点 亮,为"高"则天。
- 》共阴极显示的数码管有一个管脚为"高",则对应的段点亮,为"低"则
- > 我们教材用共阳极显

示数码管讲解

3.3.1 译码器 (55)

■显示译码器

- ▶ 当a=0时, a段亮, a=1时, a段天。
- > 其它变量相同。
- ▶ 7段数码管可以显示从0~9的数字。要显示0时, g=1,其它变量=0; 显示2时, a,b,g,e,d=0,其它变量=1。
- ▶显示0~9中的任何一个分别对 应于a~g的一组编码

3.3.1 译码器 (56)

■显示译码器

□数字逻辑电路中用BCD码表示十进制数

>在BCD码和7段数码管编码之间需要一个显示译码器。

3.3.1 译码器 (57)

<u>a</u>																
$f \mid g \mid b$	17	+	į		1_1	_ j		-	1						1_	
ec	Li	1						*							•	
\overline{d}	0	1	2	3	4	5.	6	7	8	9	10	11	12	13	14	15

显示数字	A	В	С	D	a	b	С	d	е	f	g
0	0	0	0	0	0	0	0	0	0	0	1
1	1	0	0	0	1	0	0	1	1	1	1
2	0	1	0	0	0	0	1	0	0	1	0
3	1	1	0	0	0	0	0	0	1	1	0
4	0	0	1	0	1	0	0	1	1	0	0
5	1	0	1	0	0	1	0	0	1	0	0
6	0	1	1	0	1	1	0	0	0	0	0
7	1	1	1	0	0	0	0	1	1	1	1
8	0	0	0	1	0	0	0	0	0	0	0
9	1	0	0	1	0	0	0	1	1	0	0
A	0	1	0	1	1	1	1	0	0	1	0
В	1	1	0	1	1	1	0	0	1	1	0
С	0	0	1	1	1	0	1	1	1	0	0
D	1	0	1	1	0	1	1	0	1	0	0
Е	0	1	1	1	1	1	1	0	0	0	0
F	1	1	1	1	1	1	1	1	1	1	1

3.3.1 译码器 (58)

- ■显示译码器
 - □写出各个变量的逻辑表达式
 - B 写a的逻辑表达式

	y 00	01	11	10
C 00	0	1	0	0
01	1	0	0	1
11	1	0	1	1
10	0	0	1	1

$$a = BD + \overline{AC} + A\overline{BCD}$$

3.3.1 译码器 (59)

- ■显示译码器
 - □写出各个变量的逻辑表达式

В				
D^{A}	, 00	01	11	10
C 00	0	0	0	0
01	0	1	0	1
11	0	1	1	1
10	0	0	1	1

$$b = BD + \overline{ABC} + \overline{ABC}$$

3.3.1 译码器 (60)

■显示译码器

用同样的方法写出各个变量的逻辑表达式

$$a = BD + AC + ABCD$$

$$b = BD + ABC + ABC$$

$$c = ABC + CD$$

$$d = ABC + ABC + ABC$$

$$e = A + BC$$

$$f = ACD + AB + BC$$

$$g = BCD + ABC$$

3.3.1 译码器 (61)

- ■显示译码器
 - □显示译码器控制功能输入:LT, RBI, BI/RBO
 - □主要用于对数码管的测试和其他一些应用。

- 3.3.1 译码器 (63) ——小结
- ■译码器的功能分类:
 - □变量译码器
 - □码制译码器
 - □显示译码器:控制数码管显示

3.3 常用的中规模组合逻辑电路

- 3.3.1 译码器
- → 3.3.2 数据选择器
 - 3.3.3 编码器
 - 3.3.4 数据比较器
 - 3.3.5 奇偶校验器
 - 3.3.6 运算器 (算数逻辑单元 ALU)

3.3.2 数据选择器(1)

- ■数据选择器
 - □在选择控制的信号作用下,能从多个输入数据中选择一个或多个作为输出。
 - □多输入单输出数据选择器
 - □多输入多输出数据选择器

3.3.2 数据选择器(2)

- ■4选1数据选择器
 - □4输入, 1输出, 2个选择控制

S ₁	S ₀	Υ
0	0	D_0
0	1	D_1
1	0	D ₂
1	1	D_3

$$Y = \overline{S_0} \overline{S_1} D_0 + S_0 \overline{S_1} D_1 + \overline{S_0} S_1 D_2 + S_0 S_1 D_3$$

3.3.2 数据选择器(3)

■4选1数据选择器逻辑图

$$Y = S_{0}S_{1}D_{0} + S_{0}S_{1}D_{1} + S_{0}S_{1}D_{2} + S_{0}S_{1}D_{3}$$

$$S_{0} + Y_{0}S_{1}D_{1} + Y_{0}S_{1}D_{2} + S_{0}S_{1}D_{3}$$

3.3.2 数据选择器(4)

- ■4选1数据选择器逻辑图
 - □如果设计使能端,需要加在什么地方?

3.3.2 数据选择器(5)

- ●有使能端的双4选1数据选择器
 - > 注意输出结构,提供1正1反两个输出

选择器扩展:用双4 选1选择器扩展成16 选1选择器

16选1功能表

两种不同的扩展方案, 从功能表上分析, 可以先选低两位, 也可以先选高两位。

S_3	S ₂	$S_{\scriptscriptstyle 1}$	S ₀	Y
S ₃	S ₂ 0	0	0	Y ₀
		0	1	Y ₀ Y ₁ Y ₂ Y ₃ Y ₄
		1	0	Y ₂
		1	1	Y ₃
0	1	0	0	Y ₄
		0	1	Y ₅
		1	0	Y ₆
		1	1	Y ₅ Y ₆ Y ₇
1	0	0	0	Y ₈
		0	1	Y ₉
		1	0	Y ₁₀
		1	1	Y ₁₁
1	1	0	0	Y ₁₁ Y ₁₂ Y ₁₃ Y ₁₄
		0	1	Y ₁₃
		1	0	Y ₁₄
		1	1	Y ₁₅

选择器扩展:用双4选1选择器(无使能端)扩展成16选1选择器

两级选择结构

逻辑结构: S₁ S₀控制第一层选择, S₃ S₂控制第二层选择。

选择器扩展:用双4选1选择器(有使能端)扩展成16选1选择器

高两位控制端经译码后分别控制数据选择器的使能端E,

84 以实现扩展。输出级是三态门,因此可以"线与"。

- 3.3.3 数据选择器(6)
- ■同学们想一想,还有没有其它扩展 方法?

3.3.2 数据选择器(7)

■数据选择器用于总线发送控制

3.3.2 数据选择器(8)

- ■译码器与数据选择器实现逻辑函数
 - □译码器:可以看成是N个输入变量组成的2N个最小项。
 - □如果再加一级与非门,可组成"与非-与非"逻辑,也可表达"与-或"逻辑。 即可用译码器实现"与-或"逻辑函数。
- ■如何用译码器实现如下函数:

$$F = ABC + ABC + ABC = m_1 + m_2 + m_7$$

3.3.2 数据选择器(9)

- 3.3.2 数据选择器(10)
- ■译码器与数据选择器实现逻辑函数
 - □数据选择器:逻辑结构就是与-或表达式。
 - 如: 4选1选择器: $Y = \overline{S_0}\overline{S_1}D_0 + S_0\overline{S_1}D_1 + \overline{S_0}S_1D_2 + S_0S_1D_3$
 - □数据选择器可以看成是N个控制端的2N个最小项和2N个输入组成的"与-或"表达式。选择某些输入为"1",就是选中这些最小项组成逻辑函数。

3.3.2 数据选择器(11)

- 译码器与数据选择器实现逻辑函数
 - >用八选一数据选择器实现3变量函数:

器功能的卡诺图

(c) 八选一数据选择器实现 三变量函数的连接图

注意对应关系

3.3.2 数据选择器(12)

- ●译码器与数据选择器实现逻辑函数
 - >8选1数据选择器可以实现4变量函数:

例:
$$F = AC + BN + ACN$$

思: 3个变量用在选择控制端

总共4个变量,3个用在选择端,另一个变量怎么办?

1个变量在数据输入端!

3.3.2 数据选择器(13)

●译码器与数据选择器实现逻辑函数:8选1数据

选择器可以实现4变量函数 F = AC + BN + ACN

 \Rightarrow A=S₀, B=S₁, C=S₂

$S_0 S_1 S_2$	输入	函数F的值
0 0 0	D_0	$F = A\overline{C} + \overline{B}\overline{N} + \overline{ACN} = \overline{N}$
1 0 0	D_1	$F = A\overline{C} + \overline{BN} + \overline{ACN} = 1$
0 1 0	D_2	$F = A\overline{C} + \overline{BN} + \overline{ACN} = 0$
1 1 0	D_3	$F = A\overline{C} + \overline{BN} + \overline{ACN} = 1$
0 0 1	D_4	$F = A\overline{C} + \overline{BN} + \overline{ACN} = 1$
1 0 1	D_5	$F = A\overline{C} + \overline{BN} + \overline{ACN} = \overline{N}$
0 1 1	D_6	$F = A\overline{C} + \overline{B}\overline{N} + \overline{ACN} = N$
921 1 1	D_7	$F = \overrightarrow{AC} + \overrightarrow{BN} + \overrightarrow{ACN} = 0$

■作业: 4.3, 4.5, 4.6, 4.10, 4.15, 4.22

分析图 4-85 所示逻辑电路,列出 K=1, K=0 时,输出的逻辑表达式,写出功能表, 说明电路的逻辑功能。 B_2 B_1 - B_0 -图 4-85

4.10 在宿舍只有一盏灯,同住在此宿舍的3位同学要求在各自床头安装开关均能独立地控制灯的关或开。用最少的门电路设计一个控制电路满足3位同学的要求。

4.15 用 3 个 2 输入 4 输出变量译码器实现一个非完全译码的 BCD 译码器(不再用其他门)。

- 4.22 设计一个 10 选 1 数据选择器,要求:
 - (1) 用门电路实现;
- (2) 用集成电路实现——只能用一块 8 选 1 数据选择器和一块 4 位 2 选 1 数据选择器。