

CPI2 : ANALYSE 4 Pr. H. EL AMRI

## Table des matières

| 1        | Fonctions de plusieurs variables (8h)                                | 3    |
|----------|----------------------------------------------------------------------|------|
|          | 1.1 Limite                                                           |      |
|          | 1.1.1 Quelques propriétés                                            | . 4  |
|          | 1.2 Continuité                                                       | . 4  |
|          | 1.3 Dérivées partielles                                              | . 4  |
|          | 1.3.1 Applications partielles                                        | . 4  |
|          | 1.3.2 Gradient                                                       | . 5  |
|          | 1.4 Différentiabilité                                                | . 6  |
|          | 1.5 RAPPEL                                                           | . 6  |
|          | 1.5.1 Différentiabilité d'une fonction d'une seule variable          | . 6  |
|          | 1.6 Différentiabilité d'une fonction de plusieurs variabes           | . 7  |
|          | 1.7 Exemples                                                         | . 7  |
|          | 1.8 Quelques résultats classiques                                    | . 8  |
|          | 1.9 Opérations sur les fonctions différentiables                     |      |
|          | 1.10 Étude d'une fonction de deux variables                          | . 9  |
|          | 1.11 Points critiques, extremums                                     |      |
|          | 1.11.1 Nature d'un point critique                                    |      |
|          | 1.12 Intégrations                                                    |      |
|          | 1.13 Extrema                                                         | . 11 |
| <b>2</b> | Courbes et surfaces (6h)                                             | 13   |
| 4        | 2.1 Intégrales de surfaces                                           |      |
|          | 2.2 Formes différentielle et intégrales curviligne                   |      |
|          | 2.2 Formes differentiene et integrales curvingue                     | . 10 |
| 3        | Notions sur les équations différentielles non linéaires (4h)         | 15   |
|          | 3.1 Existence et unicité locale d'une solution du problème de Cauchy | . 15 |
|          | 3.2 (Prolongement d'une solution)                                    | . 15 |
| 4        | Transformée de Laplace (6h)                                          | 17   |
| •        | 4.1 (Transformée des fonctions usuelles)                             |      |
|          | 4.2 (Transformée des fonctions usuelles)                             |      |
|          | 4.3 (Opérations)                                                     |      |
|          | 4.4 (Transformée inverse                                             |      |
|          | 4.5 (Pôles et zéros)                                                 |      |
|          | 4.6 (Fonctions de transfert)                                         |      |
|          | 1.0 (1.011.01.01.01.01.01.01.01.01.01.01.01.0                        |      |

## Fonctions de plusieurs variables (8h)

**Définition 1.0.1.** Soit  $n \in \mathbb{N}$ , on appelle fonction de plusieurs variables toute application de  $D \subset \mathbb{R}^n$  dans  $\mathbb{R}$ .

$$\begin{cases} f: D \longrightarrow \mathbb{R} \\ x = (x_1, ..., x_n) \longrightarrow f(x) \end{cases}$$
 (1.1)

1.  $f(x,y) = x^2 + y^2$  est une fonction de deux variables définie sur  $\mathbb{R}^2$  tout entier Exemple 1.0.2.

- 2.  $f(x,y) = \frac{x}{y}$  est une fonction de deux variables définie sur  $\mathbb{R} \times \mathbb{R}^*$ .
- 3.  $f(x,y,z) = (y+\frac{1}{z})\log x$  est une fonction de 3 variables définie sur  $\mathbb{R}^{+*} \times \mathbb{R} \times \mathbb{R}^*$ .

**Définition 1.0.3.** Soit f une fonction de n variables. On appelle domaine de définition de f l'ensemble des  $x \in \mathbb{R}^n$  pour lesquels f(x) existe.

$$D_f = \{ x \in \mathbb{R}^n, \ tel \ que \ f(x) \in \mathbb{R} \}$$

Exercice 1.0.4. Donner les domaines de définition des fonctions suivantes :

- 1.  $f_1(x,y) = \frac{x+y}{x-y}$ 2.  $f_2(x,y) = \frac{xy}{\sqrt{1-x^2-y^2}}$
- 3.  $f_3(x) = ln(cos(x))$

$$D_{f_1} = \{(x, y) \in \mathbb{R}^2, \quad x \neq y\}$$

$$D_{f_2} = \{(x, y) \in \mathbb{R}^2, \ x^2 + y^2 < 1\} = B(O, 1)$$

$$D_{f_3} = \{ x \in \mathbb{R}, -\frac{\pi}{2} + 2k\pi < x < \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z} \}$$

#### Limite 1.1

**Définition 1.1.1.** Soit f définie sur un domaine  $D \subset \mathbb{R}^n$  soit  $x_0 \in D$ .

1. On dit que f converge vers  $l \in \mathbb{R}$  quand x tend vers  $x_0$  si  $\lim_{x \to x_0} f(x) = l$ , c'est à dire :

$$\forall \varepsilon > 0, \quad \exists \eta > 0 , \quad \forall x \in D, \ \|x - x_0\| < \eta \Rightarrow |f(x) - l| < \varepsilon$$
 (1.2)

2. On dit que f converge vers  $+\infty$  quand x tend vers  $x_0$  si  $\lim_{x\to x_0} f(x) = +\infty$ , c'est à dire :

$$\forall \alpha > 0, \quad \exists \eta > 0 , \quad \forall x \in D, \quad ||x - x_0|| < \eta \Rightarrow f(x) > \alpha$$
 (1.3)

3. On dit que f converge vers  $-\infty$  quand x tend vers  $x_0$  si  $\lim_{x\to x_0} f(x) = -\infty$ , c'est à dire :

$$\forall \alpha < 0, \quad \exists \eta > 0 , \quad \forall x \in D, \ \|x - x_0\| < \eta \Rightarrow f(x) < \alpha \tag{1.4}$$

**Exercice 1.1.2.** Soit f la fonction définie par  $f(x,y) = \frac{xy}{x^2+y^2}$ .

- 1. Donner le domaine de définition de f
- 2. f admet-elle une limite quand (x, y) tend vers (0, 0)?

$$||x||_1 = |x_1| + \dots + |x_n|$$

$$||x||_2 = (|x_1|^2 + \dots + |x_n|^2)^{\frac{1}{2}}$$

$$||x||_{\infty} = max(|x_i|, i = 1, ..., n)$$

1.

$$D_f = \{(x, y) \in \mathbb{R}^2, (x, y) \neq (0, 0)\}$$

2. Sur la première bissectrice  $f(x,x) = \frac{1}{2}$  et sur la deuxième bissectrice  $f(x,-x) = -\frac{1}{2}$  La limite obtenue dépend du chemin suivi. Donc pas de limite.

#### 1.1.1 Quelques propriétés

**Théorème 1.1.3.** Soit  $f: D_1 \subset \mathbb{R}^n \longrightarrow \mathbb{R}$  et  $g: D_2 \subset \mathbb{R}^n \longrightarrow \mathbb{R}$  deux fonctions définies sur deux domaines  $D_1$  et  $D_2$  tels que  $D_1 \cap D_2$  contient une boule. Soit  $x_0 \in \overline{D_1 \cap D_2}$ .

$$Si \lim_{x \to x_0} f(x) = l \ et \lim_{x \to x_0} g(x) = l', \ alors \lim_{x \to x_0} (f+g)(x) = l + l', \ \lim_{x \to x_0} (fg)(x) = ll'$$

et

Et si  $l' \neq 0$  alors

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{l}{l'}$$

#### 1.2 Continuité

Soit f définie sur un domaine  $D \subset \mathbb{R}^n$  soit  $x_0 \in D$ . On dit que f est continue en  $x_0$  si  $\lim_{x \to x_0} f(x) = f(x_0)$ , c'est à dire :

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in D, \ \|x - x_0\| < \eta \Rightarrow |f(x) - f(x_0)| < \varepsilon$$
 (1.5)

**Exercice 1.2.1.** Soit  $f:(x,y) \in \mathbb{R}^2 \longrightarrow x+y$ . Montrer que  $\forall (x_0,y_0) \in \mathbb{R} \times \mathbb{R}$  on a  $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$  c'est à dire que la fonction f est continue sur  $\mathbb{R} \times \mathbb{R}$ .

#### 1.3 Dérivées partielles

#### 1.3.1 Applications partielles

Soit  $f: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}$  une fonction de n variables. Si on fixe les n-1 variables  $x_1, x_2, ..., x_{i-1}, x_{i+1}, ..., x_n$  on peut définir les n applications dites applications partielles :

$$f_i: x \in \mathbb{R} \longrightarrow \mathbb{R}, f_i(x) = f(x_1, ..., x_{i-1}, x, x_{i+1}, ..., x_n) \in \mathbb{R}$$

Dans le cas n=2  $f:\mathbb{R}^2\longrightarrow\mathbb{R}$  on a deux applications partielles  $f_1:x\longrightarrow f_1(x)=f(x,y)$  et  $f_2:y\longrightarrow f_2(y)=f(x,y)$  Par exemple, si  $f(x,y)=\frac{xy}{x^2+y^2}$ 

$$f_1: x \longrightarrow f_1(x) = \frac{xy}{x^2 + y^2}$$

$$f_2: y \longrightarrow f_2(y) = \frac{xy}{x^2 + y^2}$$

**Théorème 1.3.1.** Si  $f: \mathbb{R}^n \longrightarrow \mathbb{R}$  est continue en  $m_0 = (x_{01}, x_{02}, ..., x_{0n})$ , les n applications partielles  $f_i$  de  $\mathbb{R}$  dans  $\mathbb{R}$  sont continues en  $x_{0i}$ .

On remarquera que la réciproque de ce théorème est fausse, comme le prouve l'exemple suivant :

**Exemple 1.3.2.** Soit  $f(x,y) = \frac{xy}{x^2 + y^2}$  pour tout  $(x,y) \neq (0,0)$  et f(0,0) = 0. Au point O(0,0) les deux fonctions partielles  $f_x$  et  $f_y$  qui sont égales à 0 sont continues; cependant f n'est pas continue en O: si l'on pose y = tx la limite en O est  $\frac{t}{1+t^2} \neq f(0,0)$  pour  $(t \neq 0)$ .

**Définition 1.3.3.** Dérivée : Soit  $f: I \subset \mathbb{R} \longrightarrow \mathbb{R}$  une fonction dérivable sur un intervalle  $I \subset \mathbb{R}$ . La dérivée de f au point  $a \in I$  est donnée par :

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
(1.6)

**Définition 1.3.4.** Soient  $f: D \subset \mathbb{R}^n \to \mathbb{R}$  et  $a \in D$ . On appelle dérivée partielle par rapport à  $x_i$ , (i = 1, ..., n) de f en  $a = (a_1, a_2, ..., a_n)$ , et on note  $\frac{\partial f}{\partial x_i}(a)$  la dérivée de la fonction partielle de f en  $a_i$ :

$$\frac{\partial f}{\partial x_i}(a) = \lim_{x_i \to a_i} \frac{f(a_1, \dots, x_i, \dots a_n) - f(a)}{x_i - a_i} = \lim_{h_i \to 0} \frac{f(a_1, \dots, a_i + h_i, \dots a_n) - f(a)}{h_i}$$
(1.7)

Remarque 1.3.5. Une fonction peut admettre toutes les dérivées partielles en un point  $a \in D$  sans être continue en ce point. Mais :

**Théorème 1.3.6.** (CONDITION SUFFISANTE DE CONTINUITÉ) Soit  $f: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}$  une fonction telle que les n fonctions  $\frac{\partial f}{\partial x_i}$  soient continues en  $a \in D$  alors f est continue en a.

#### 1.3.2 Gradient

**Définition 1.3.7.** Soit  $f: D \subset \mathbb{R}^n \to \mathbb{R}$  et  $a \in D$ 

1. On appelle gradient de f en a le vecteur

$$gradf(a) = \nabla f(a) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

$$(1.8)$$

2. On appelle divergence de f en a le scalaire

$$div f(a) = \nabla \cdot f(a) = \frac{\partial f}{\partial x_1} + \frac{\partial f}{\partial x_2} + \dots + \frac{\partial f}{\partial x_n}$$
(1.9)

#### 1.4 Différentiabilité

**Définition 1.4.1.** Soit  $f: D \subset \mathbb{R}^n \longrightarrow une$  fonction. Soit  $x_0 \in D$  tel que il existe une boule  $B(x_0, r) \subset D$  On dit que f dérivable ou différentiable au point  $x_0$  si :

$$\exists (l_1, l_2, ..., l_n) \in \mathbb{R}^n \ telque$$

$$f(x_0 + (h_1, h_2, ..., h_n)) = f(x_0) + l_1 h_1 + l_2 h_2 + ... + l_n h_n + ||h|| \varepsilon(h)$$

$$= 0$$

 $avec \lim_{h \to (0,0,\dots,0)} \varepsilon(h) = 0$ 

Exemple 1.4.2. La dérivée de  $f(x,y) = 3x \cos y + 4y \cos x$  au point (0,0)

$$f((0,0) + (h,k)) = f(h,k) = 3h\cos k + 4k\cos h = 3h(1 - \frac{k^2}{2} + \varepsilon(k^2)) + 4k(1 - \frac{h^2}{2} + \varepsilon(h^2))$$

$$= 3h - 3h\frac{k^2}{2} + h\varepsilon(k^2) + 4k - 3k\frac{h^2}{2} + k\varepsilon(h^2)$$

$$= 3h + 4k - 3h\frac{k^2}{2} + h\varepsilon(k^2) - 3k\frac{h^2}{2} + k\varepsilon(h^2)$$

#### 1.5 RAPPEL

1. Pour tous  $x=(x_1,x_2,...,x_n),y=(y_1,y_2,...,y_n)\in\mathbb{R}^n$  on note le produit scalaire de x et y par :

$$x.y = x_1y_1 + x_2y_2 + \dots + x_ny_n = \sum_{i=1}^n x_iy_i$$

2. Pour tout  $x \in \mathbb{R}^n$  on note sa norme euclidienne par :

$$||x|| = \sqrt{x \cdot x} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

3. On désigne par o(h) toute fonction  $o: h \in \mathbb{R}^n \to o(h) \in \mathbb{R}$  telle que

$$\lim_{h\to 0} o(h) = 0$$

#### 1.5.1 Différentiabilité d'une fonction d'une seule variable

**Définition 1.5.1.** Soit  $f: D \subset \mathbb{R} \to \mathbb{R}$  une fonction. Soit  $a \in D$  tel que  $\exists r > 0$  vérifiant  $]a - r, a + r[\subset D]$ . On dit que f est différentaible en a si:

1.  $\exists l \in \mathbb{R} \ tel \ que : \forall h \in \mathbb{R} \ v\'{e}rifiant \ a+h \in D \ on \ a :$ 

$$f(a+h) = f(a) + lh + ho(h)$$
 avec  $\lim_{h\to 0} o(h) = 0$ .

2. Le réel l'est appelé la dérivée de la fonction f au point a. On le note

$$l = f'(a)$$
.

3. Et la fonction

$$\left\{ \begin{array}{c} f': D \subset \mathbb{R} \to \mathbb{R} \\ a \to f'(a) \end{array} \right..$$

est appelée la fonction dérivée de la fonction f.

4. On a aussi pour tout  $x \in D$ :

$$f(x) = f(a) + l(x - a) + (x - a)o(x - a)$$
 avec  $\lim_{x \to a} o(x - a) = 0$ .

Remarque 1.5.2. Si une fonction f est dérivable en un point a alors

1.

$$\lim_{h \to 0} \frac{f(a+h) - f(a) - lh}{h} = \lim_{h \to 0} o(h) = 0$$

2.

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = l + \lim_{h \to 0} o(h) = l = f'(a)$$

3. f est continue en a : En effet

$$\lim_{x \to a} f(x) = \lim_{x \to a} (f(a) + l(x - a) + (x - a)o(x - a)) = f(a).$$

#### 1.6 Différentiabilité d'une fonction de plusieurs variabes

**Définition 1.6.1.** Soit  $f: D \subset \mathbb{R}^n \to \mathbb{R}$  une fonction. Soit  $a \in D$  tel que  $\exists r > 0$  vérifiant  $B(a, r) \subset D$ . On dit que f est différentiable en a si :

1.  $\exists L \in \mathbb{R}^n \text{ tel que } \forall h \in \mathbb{R}^n \text{ v\'erifiant } a+h \in D \text{ on } a :$ 

2.

$$f(a+h) = f(a) + L.h + ||h|| o(h)$$
 avec  $\lim_{h \to 0} o(h) = 0$ .

3. Le vecteur l'est appelé dérivée de la fonction f au point a. On le note

$$L = f'(a).$$

4. On aura aussi  $\forall x \in D$  on a:

$$f(x) = f(a) + L(x - a) + ||x - a|| o(x - a)$$
 avec  $\lim_{x \to a} o(x - a) = 0$ .

5. Et on note

$$f'(a) = \nabla f(a)$$

Remarque 1.6.2. Si une fonction f est dérivable en un point a alors on :

1.

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - L.h|}{\|h\|} = \lim_{h \to 0} |o(h)| = 0$$

2. f est continue en a : En effet

$$\lim_{x \to a} f(x) = \lim_{x \to a} (f(a) + L \cdot (x - a) + ||x - a|| o(x - a)) = f(a)$$

#### 1.7 Exemples

**Exemple 1.7.1.** On considère la fonction f définie par f(x,y) = xy On calcule la drivée de f en en un point (a,b) en utilisant la définition

$$f(a+h,b+k) = (a+h)(b+k) = ab + ak + bh + hk$$
$$= f(a,b) + bh + ak + \sqrt{h^2 + k^2} \frac{hk}{\sqrt{h^2 + k^2}}$$

$$= f(a,b) + bh + ak + \sqrt{h^2 + k^2}o(h,k)$$
 avec  $o(h,k) = \frac{hk}{\sqrt{h^2 + k^2}}$ 

(o(h,k) tend vers 0 quand (h,k) tend vers (0,0) (exo))

Conclusion: 
$$f'(a,b) = \nabla f(a,b) = \begin{pmatrix} b \\ a \end{pmatrix}$$

**Exemple 1.7.2.**  $f(x, y) = \sin(xy)$ 

$$f(a+h,b+k) = \sin((a+h)(b+k)) = \sin(ab+ak+bh+hk)$$

$$= \sin(ab)\cos(ak+bh+hk) + \cos(ab)\sin(ak+bh+hk)$$

$$= (\sin(ab)(1-\|(h,k)\|o(h,k)) + \cos(ab)(ak+bh-\|(h,k)\|o(h,k))$$

$$= \sin(ab) + \cos(ab)(ak+bh) + \|(h,k)\|o(h,k)$$

 $D'où \nabla f(a,b) = (b\cos(ab), a\cos(ab))$ 

#### 1.8 Quelques résultats classiques

**Définition 1.8.1.** Soit f une fonction diférentiable en  $a = (a_1, a_2, ..., a_n)$ . On définit

1. Le gradient de f en a : C'est le vecteur

$$gradf(a) = \nabla f(a) = \left(\frac{\partial f}{\partial x_1}(a), \frac{\partial f}{\partial x_2}(a), ..., \frac{\partial f}{\partial x_n}(a)\right)$$

2. La différentiable de f en a :

$$df(a) = \frac{\partial f}{\partial x_1}(a)dx_1 + \frac{\partial f}{\partial x_2}(a)dx_2 + \dots + \frac{\partial f}{\partial x_n}(a)dx_n = \sum_{i=1,n} \frac{\partial f}{\partial x_i}(a)dx_i$$

3. La divergence de f en a :

$$divf(a) = \frac{\partial f}{\partial x_1}(a) + \frac{\partial f}{\partial x_2}(a) + \dots + \frac{\partial f}{\partial x_n}(a) = \sum_{i=1,n} \frac{\partial f}{\partial x_i}(a)$$

4. On dit que a est un point critique de f si

$$\nabla f(a) = 0$$

**Théorème 1.8.2.** 1. Si f est diférentiable en  $a = (a_1, a_2, ..., a_n)$  alors elle est continue en a.

2. Si f est diférentiable en  $a = (a_1, a_2, ..., a_n)$  alors f admet des dérivées partielles en a et on a :

$$f'(a) = \nabla f(a) = (\frac{\partial f}{\partial x_1}(a), \frac{\partial f}{\partial x_2}(a), ..., \frac{\partial f}{\partial x_n}(a)$$

3. Si f est différentiable en a, alors la dérivée selon toute direction  $v=(v_1,v_2,...,v_n)$  (de norme 1) de f en a existe et on a:

$$f'_v(a) = v \cdot \nabla f(a) = v_1 \frac{\partial f}{\partial x_1}(a) + v_2 \frac{\partial f}{\partial x_2}(a) + \dots + v_n \frac{\partial f}{\partial x_n}(a)$$

4.

$$\frac{\partial f}{\partial x_i}(a) = f'_{e_i}(a) = \text{dérivée selon la direction } e_i = (0, 0, ..., 1, 0, 0...0)$$

5. Si f est de classe C¹ dans un voisinage de a (c'est à dire les dérivées partielles existent et sont continues) alors f est différentiable en a.

#### 1.9 Opérations sur les fonctions différentiables

#### Théorème 1.9.1. Somme, Produit et quotient

Soient f et g deux fonctions différentiables en un point a. Alors :

1. f + g est différentiable en a, et on a

$$\nabla (f+g)(a) = \nabla f(a) + \nabla g(a)$$
  
$$d(f+g)(a) = df(a) + dg(a)$$

2. fg est différentiable en a, et on a

$$\nabla (fg)(a) = g(a)\nabla f(a) + f(a)\nabla g(a)$$
  
$$d(fg)(a) = g(a)df(a) + f(a)dg(a)$$

3. Si de plus  $g(a) \neq 0$  alors  $\frac{f}{g}$  est différentiable et on a:

$$\nabla \left(\frac{f}{g}\right)(a) = \frac{g(a)\nabla f(a) - f(a)\nabla g(a)}{g(a)^2}$$
$$d\left(\frac{f}{g}\right)(a) = \frac{g(a)df(a) - f(a)dg(a)}{g(a)^2}$$

Théorème 1.9.2. Composées de fonctions différentiables Soient  $f:D\subset\mathbb{R}^n\to\mathbb{R}$  différentiable en  $a\in D$  et  $\varphi:\mathbb{R}\to\mathbb{R}$  différentiable en f(a).

Alors  $\varphi o \ f : D \subset \mathbb{R}^n \to \mathbb{R}$  est différentiable en a et on a

$$(\varphi \circ f)'(a) = \nabla(\varphi \circ f)(a) = \varphi'(f(a))f'(a) = \varphi'(f(a))\nabla f(a)$$

### 1.10 Étude d'une fonction de deux variables

On se place dans  $\mathbb{R}^2$  et on étudie une fonction f. Soit  $(a,b) \in D_f$  Alors

$$f(a+h,b+k) = f(a,b) + \frac{\partial f}{\partial x}(a,b)h + \frac{\partial f}{\partial y}(a,b)k + \frac{1}{2}\left(\frac{\partial^2 f}{\partial x^2}(a,b)h^2 + 2\frac{\partial^2 f}{\partial x \partial y}(a,b)hk + \frac{\partial^2 f}{\partial y^2}(a,b)k^2\right) + \|(h,k)\|^2 o(h,k)$$

$$= f(a,b) + \nabla f(a,b).(h,k) + \frac{1}{2} \begin{pmatrix} \frac{\partial^2 f}{\partial x^2}(a,b) & \frac{\partial^2 f}{\partial x \partial y}(a,b) \\ \\ \frac{\partial^2 f}{\partial x \partial y}(a,b) & \frac{\partial^2 f}{\partial y^2}(a,b) \end{pmatrix} \begin{pmatrix} h \\ k \end{pmatrix} \cdot \begin{pmatrix} h \\ k \end{pmatrix}$$

On pose pour simplifier

$$\alpha = \frac{\partial^2 f}{\partial x^2}(a,b) \ , \ \beta = \frac{\partial^2 f}{\partial y^2}(a,b) \ , \ \gamma = \frac{\partial^2 f}{\partial x \partial y}(a,b)$$

Alors

$$f(a+h, b+k) = f(a, b) + \nabla f(a, b) \cdot (h, k) + \frac{1}{2}(\alpha h^2 + 2\gamma hk + \beta k^2) + RESTE$$

#### 1.11 Points critiques, extremums

**Définition 1.11.1.** Soit  $f: D \in \mathbb{R}^n \longrightarrow \mathbb{R}$  une fonction et  $a \in D$ .

1. a est dit extremum local de f si il existe un voisinage V de a

$$f(x) \le f(a) \ \forall x \in V, \ maximum \ relatif$$

ou

$$f(x) \ge f(a) \ \forall x \in V, minimum relatif$$

2. a est dit extremum absolu de f si :

$$f(x) \le f(a) \ \forall x \in D, \ maximum \ absolu$$

ou

$$f(x) \ge f(a) \ \forall x \in D, minimum absolu$$

3. Si f différentiable en a, a est dit point critique de f si  $\nabla f(a) = 0$ ).

**Théorème 1.11.2.** Soit a un point critique d'une fonction f. Alors si  $\nabla^2 f(a) \neq 0$  alors a est un extremum de f.

#### 1.11.1 Nature d'un point critique

Remarque 1.11.3. Si(a,b) est un point critique alors

$$f(a+h,b+k) - f(a,b) = \frac{1}{2}(\alpha h^2 + 2\gamma hk + \beta k^2) + RESTE$$
$$= \frac{1}{2}k^2 \left(\alpha \left(\frac{h}{k}\right)^2 + 2\gamma \frac{h}{k} + \beta\right) + RESTE$$

On pose  $\frac{h}{k} = \lambda$  alors

$$f(a+h,b+k) - f(a,b) = \frac{1}{2}k^2(\alpha\lambda^2 + 2\gamma\lambda + \beta) + RESTE$$

Et la position de f(a+h,b+k) par rapport à celle de f(a,b) ne dépend que du signe du polynôme du deuxième degré

$$\alpha\lambda^2 + 2\gamma\lambda + \beta$$

Théorème 1.11.4. Si

$$\left(\frac{\partial^2 f}{\partial x \partial y}(a,b)\right)^2 < \frac{\partial^2 f}{\partial x^2}(a,b)\frac{\partial^2 f}{\partial y^2}(a,b)$$

alors

Si

1. (a,b) est un minimum si  $\frac{\partial^2 f}{\partial x^2}(a,b) > 0$ 

2. (a,b) est un maximum si  $\frac{\partial^2 f}{\partial x^2}(a,b) < 0$ 

 $\left(\frac{\partial^2 f}{\partial x \partial y}(a,b)\right)^2 > \frac{\partial^2 f}{\partial x^2}(a,b)\frac{\partial^2 f}{\partial y^2}(a,b)$ 

alors le point (a,b) n'est ni maximum ni minimum, f(a+h,b+k)-f(a,b) change de signe en fonction de  $\lambda$  donc en fonction de h et k.

Exercice 1.11.5. Que se passe t-il si

$$\left(\frac{\partial^2 f}{\partial x \partial y}(a, b)\right)^2 = \frac{\partial^2 f}{\partial x^2}(a, b)\frac{\partial^2 f}{\partial y^2}(a, b) ?$$

**Exercice 1.11.6.** Déterminer les extremums locaux des fonctions  $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$  suivantes et donner leur nature :

1. 
$$f(x,y) = x^2 + xy + y^2 - 3x - 6y$$

2. 
$$f(x,y) = x^2 + 2y^2 - 2xy - 2y + 5$$

3. 
$$f(x,y) = x^3 + y^3$$

4. 
$$f(x,y) = (x-y)^2 + (x+y)^3$$

5. 
$$f(ax, y) = y^2 - x^2 + \frac{x^4}{2}$$

6. 
$$f(x,y) = x^3 + y^3 - 3xy$$

7. 
$$f(x,y) = x^4 + y^4 - 4(x-y)^2$$

8. 
$$f(x,y) = 2x^3 + 6xy - 3y^2 + 2$$

9. 
$$f(x,y) = y(x^2 + (\log y)^2)$$
 (donner le domaine de définition)

10. 
$$f(x,y) = x^4 + y^4 - 4xy$$

Exercise 1.11.7. Soit  $f(x,y) = y^2 - x^2y + x^2$  et  $D = \{(x,y) \in \mathbb{R}^2; x^2 - 1 \le y \le 1 - x^2\}$ 

- 1. Représenter D et trouver une paramétrisation de  $\Gamma$ , le bord de D.
- 2. Justifier que f admet un maximum et un minimum sur D.
- 3. Déterminer les points critiques de f.
- 4. Déterminer le minimum et le maximum de f sur  $\Gamma$ .
- 5. En déduire le minimum et le maximum de f sur D.

Exercice 1.11.8. Pour chacun des exemples suivants, démontrer que f admet un maximum sur K, et déterminer ce maximum.

1. 
$$f(x,y) = xy(1-x-y)$$
 et  $K = \{(x,y) \in \mathbb{R}^2; x,y \ge 0, x+y \le 1\}$ 

2. 
$$f(x,y) = x - y + x^3 + y^3$$
 et  $K = [0,1] \times [0,1]$ 

3. 
$$f(x,y) = \sin x \sin y \sin(x+y) \ et \ K = [0, \frac{\pi}{2}]^2$$

#### 1.12 Intégrations

**Définition 1.12.1.** Soit  $f:D=[a,b]\times [c,d]\longrightarrow \mathbb{R}$  une fonction continue. On dit f est intégrable sur D si

$$\int_{c}^{d} f(x,y)dy \quad existe \quad \forall x \in [a,b]$$

et

$$\int_a^b \left( \int_c^d f(x,y) dy \right) dx \quad existe.$$

 $On \ note:$ 

$$\iint_D f(x,y)dxdy = \int_a^b \left( \int_c^d f(x,y)dy \right) dx = \int_c^d \left( \int_a^b f(x,y)dx \right) dy$$

#### 1.13 Extrema

## Courbes et surfaces (6h)

- 2.1 Intégrales de surfaces
- 2.2 Formes différentielle et intégrales curviligne

# Notions sur les équations différentielles non linéaires (4h)

- 3.1 Existence et unicité locale d'une solution du problème de Cauchy
- 3.2 (Prolongement d'une solution)

## Transformée de Laplace (6h)

- 4.1 (Transformée des fonctions usuelles)
- 4.2 (Transformée des fonctions usuelles)
- 4.3 (Opérations)
- 4.4 (Transformée inverse
- 4.5 (Pôles et zéros)
- 4.6 (Fonctions de transfert)