Dipawali

July 16, 2025

```
[83]: import matplotlib.pyplot as plt
      import seaborn as sns
      import matplotlib.ticker as mtick
      import numpy as np
      import pandas as pd
      from sklearn.model selection import train test split
      from sklearn.linear_model import LinearRegression
      from sklearn.metrics import mean_absolute_error
 [6]: dt = pd.read_csv('Diwali Sales Data.csv', encoding='ISO-8859-1')
 [6]: dt.head()
 [6]:
         User ID
                  Cust_name Product_ID Gender Age Group
                                                          Age
                                                               Marital_Status
      0 1002903
                  Sanskriti P00125942
                                                   26-35
                                             F
                                                           28
      1 1000732
                     Kartik P00110942
                                             F
                                                   26-35
                                                           35
                                                                             1
      2 1001990
                      Bindu P00118542
                                             F
                                                   26-35
                                                           35
                                                                             1
      3 1001425
                     Sudevi P00237842
                                                                             0
                                             М
                                                    0 - 17
                                                           16
      4 1000588
                       Joni P00057942
                                             М
                                                   26-35
                                                           28
                                                                             1
                  State
                             Zone
                                         Occupation Product_Category
                                                                      Orders
      0
            Maharashtra
                                         Healthcare
                          Western
                                                                Auto
                                                                            1
         Andhra Pradesh
                         Southern
                                               Govt
                                                                Auto
                                                                            3
      1
                                                                            3
          Uttar Pradesh
                          Central
                                         Automobile
                                                                Auto
      3
              Karnataka Southern
                                                                Auto
                                                                            2
                                       Construction
      4
                Gujarat
                          Western Food Processing
                                                                Auto
                                                                            2
          Amount Status
                          unnamed1
      0 23952.0
                     NaN
                               NaN
      1 23934.0
                     NaN
                               NaN
      2 23924.0
                               NaN
                     NaN
      3 23912.0
                     NaN
                               NaN
      4 23877.0
                     NaN
                               NaN
[10]: dt.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11251 entries, 0 to 11250

```
Data columns (total 15 columns):
      #
          Column
                            Non-Null Count
                                             Dtype
          _____
                             _____
      0
          User_ID
                             11251 non-null
                                             int64
          Cust_name
      1
                             11251 non-null
                                             object
      2
          Product_ID
                                             object
                             11251 non-null
      3
          Gender
                             11251 non-null
                                             object
      4
          Age Group
                             11251 non-null
                                             object
      5
                             11251 non-null int64
          Age
      6
          Marital_Status
                             11251 non-null int64
      7
          State
                             11251 non-null object
      8
          Zone
                             11251 non-null
                                             object
      9
          Occupation
                             11251 non-null
                                             object
          Product_Category
                            11251 non-null
                                             object
                             11251 non-null
      11
          Orders
                                             int64
                             11239 non-null float64
      12
         Amount
      13
          Status
                             0 non-null
                                             float64
      14 unnamed1
                             0 non-null
                                             float64
     dtypes: float64(3), int64(4), object(8)
     memory usage: 1.3+ MB
[11]: dt.isnull().sum()
                              0
[11]: User_ID
      Cust_name
                              0
      Product_ID
                              0
      Gender
                              0
                              0
      Age Group
                              0
      Age
      Marital_Status
                              0
      State
                              0
      Zone
                              0
      Occupation
                              0
      Product_Category
                              0
      Orders
                              0
      Amount
                             12
      Status
                          11251
      unnamed1
                          11251
      dtype: int64
     0.0.1 Drop the column 'Status' and 'unnamed1'
[15]: dt= dt.drop(columns= ['Status', 'unnamed1'])
```

0.0.2 In the Amount column, 12 missing values replaced by median

```
[54]: dt['Amount'] = dt['Amount'].fillna(value = dt['Amount'].median())
     dt
[55]:
[55]:
              User_ID
                          Cust_name Product_ID Gender Age Group
                                                                          Marital_Status
                                                                     Age
      0
              1002903
                          Sanskriti
                                      P00125942
                                                      F
                                                             26 - 35
                                                                      28
                                                                                        0
      1
                             Kartik P00110942
                                                             26-35
                                                                                         1
              1000732
                                                      F
                                                                      35
      2
              1001990
                              Bindu P00118542
                                                      F
                                                             26 - 35
                                                                      35
                                                                                         1
      3
              1001425
                             Sudevi P00237842
                                                              0-17
                                                                                        0
                                                      М
                                                                      16
                                                             26-35
      4
              1000588
                                Joni P00057942
                                                      Μ
                                                                      28
                                                                                         1
      11246
                                     P00296942
                                                             18-25
              1000695
                            Manning
                                                                      19
                                                                                         1
                                                      М
      11247
              1004089
                        Reichenbach
                                      P00171342
                                                             26-35
                                                                                        0
                                                      Μ
                                                                      33
      11248
              1001209
                              Oshin
                                      P00201342
                                                      F
                                                             36 - 45
                                                                      40
                                                                                        0
      11249
              1004023
                             Noonan
                                      P00059442
                                                      М
                                                             36 - 45
                                                                      37
                                                                                        0
      11250
              1002744
                            Brumley
                                      P00281742
                                                      F
                                                             18-25
                                                                      19
                                                                                        0
                        State
                                    Zone
                                                Occupation Product_Category
                                                                                Orders
      0
                 Maharashtra
                                Western
                                                Healthcare
                                                                         Auto
                                                                                     1
      1
                                                                                     3
              Andhra Pradesh
                               Southern
                                                      Govt
                                                                         Auto
      2
               Uttar Pradesh
                                                                                     3
                                Central
                                                Automobile
                                                                         Auto
      3
                                                                                     2
                   Karnataka
                               Southern
                                              Construction
                                                                         Auto
      4
                     Gujarat
                                Western
                                         Food Processing
                                                                         Auto
                                                                                     2
                 Maharashtra
      11246
                                Western
                                                  Chemical
                                                                       Office
                                                                                     4
      11247
                     Haryana
                               Northern
                                                Healthcare
                                                                  Veterinary
                                                                                     3
      11248
              Madhya Pradesh
                                                                       Office
                                                                                     4
                                Central
                                                   Textile
                                                                       Office
      11249
                   Karnataka
                               Southern
                                               Agriculture
                                                                                     3
      11250
                 Maharashtra
                                                Healthcare
                                                                       Office
                                                                                     3
                                Western
               Amount
                        Status
                                unnamed1
      0
              23952.0
                           NaN
                                      NaN
      1
              23934.0
                           NaN
                                      NaN
      2
              23924.0
                                      NaN
                           NaN
      3
              23912.0
                           NaN
                                      NaN
      4
              23877.0
                           NaN
                                      NaN
      11246
                370.0
                           NaN
                                      NaN
      11247
                367.0
                           NaN
                                      NaN
      11248
                                      NaN
                213.0
                           NaN
      11249
                206.0
                           NaN
                                      NaN
      11250
                188.0
                           NaN
                                      NaN
```

[11251 rows x 15 columns]

0.1 Analysis

0.1.1 1. Total sales amount

```
[56]: total_amount = dt['Amount'].sum()
      fig, ax = plt.subplots()
      ax.axis('off') # Hide axis lines and ticks
      ax.text(
         0.5, 0.5,
                                              # Position in the middle of the plot
         f'Total Sales Amount\n${total_amount:,.2f}', # Text with formatting
                                             # Font size
         fontsize=20,
         ha='center', va='center',
                                           # Center alignment
                                            # Bounding box around text
         bbox=dict(
             boxstyle='round',
             facecolor='lightblue',
             edgecolor='gray',
                                           # border color
             linewidth=1
                                           # border width
         )
      plt.show()
```

Total Sales Amount \$106,346,440.43

0.1.2 2. Total Number of Order

```
[57]: total_order = dt['Orders'].sum()
      total_amount = dt['Amount'].sum()
      fig, ax = plt.subplots()
      ax.axis('off')
      ax.text(
          0.5, 0.5,
          f'Total Orders\n{total_order:,}',
          fontsize=20,
          ha='center', va='center',
          bbox=dict(
              boxstyle='round',
              facecolor='lightblue',
              edgecolor='gray',
              linewidth=1
          )
      )
     plt.show()
```

Total Orders 28,007

0.1.3 3. Average order value

Average Order Value \$3,797.14

0.1.4 4. Total Customer

Total Unique Customer 3,755

0.1.5 5. Sales by gender

```
[60]: import matplotlib.pyplot as plt
gender_sales = dt.groupby('Gender')['Amount'].sum()
plt.figure(figsize=(6, 6))
plt.pie(
    gender_sales,
    labels=gender_sales.index,
    startangle=90,
    autopct=lambda pct: f'{pct:.1f}%\n(${pct * gender_sales.sum() / 100:,.0f})'
)

plt.title('Sales Distribution by Gender')
plt.axis('equal')
plt.show()
```

Sales Distribution by Gender

0.1.6 6. Sales by age group

0.1.7 7. Sales by marital status

0.1.8 8. Sales by age group and gender

0.1.9 9. Zone sale data

```
[64]: zone_sales = dt.groupby('Zone')['Amount'].sum().reset_index()
plt.figure(figsize=(8,5))
ax = sns.barplot(data=zone_sales, x='Zone', y='Amount')
plt.title('Sales by Zone')
```

```
plt.xticks(rotation=45)
plt.ylabel('Sales Amount')
add_values_on_bars(ax)
ax.get_yaxis().set_major_formatter(mtick.StrMethodFormatter('{x:,.0f}'))
sns.despine(top=True, right=True)
plt.show()
```


0.1.10 10. Sales by occupation

0.1.11 11. Top Product Categories by Sales

0.1.12 12. Most Ordered Product Categories

0.2 Machine Learning

0.2.1 Linear Regression to predit the sales amount on the basis of 'Age Group', 'Marital_Status', 'Zone', 'Occupation', 'Product_Category', 'Orders'

```
[68]: X = dt[['Gender', 'Age Group', 'Marital_Status', 'Zone', 'Occupation',

¬'Product_Category', 'Orders']]
[69]:
      y= dt[['Amount']]
[70]:
     X
[70]:
             Gender Age Group
                                Marital Status
                                                       Zone
                                                                   Occupation \
      0
                  F
                         26-35
                                               0
                                                    Western
                                                                   Healthcare
      1
                  F
                         26-35
                                               1
                                                   Southern
                                                                          Govt
      2
                  F
                                                    Central
                         26 - 35
                                               1
                                                                   Automobile
      3
                  М
                                                   Southern
                                                                 Construction
                          0 - 17
      4
                  Μ
                         26 - 35
                                                    Western
                                                             Food Processing
                                               •••
      11246
                                                    Western
                                                                     Chemical
                  Μ
                         18 - 25
                                               1
      11247
                         26-35
                                               0
                                                  Northern
                                                                   Healthcare
                  М
      11248
                  F
                         36 - 45
                                               0
                                                    Central
                                                                      Textile
      11249
                  М
                         36-45
                                               0
                                                   Southern
                                                                  Agriculture
                  F
      11250
                         18-25
                                                    Western
                                                                   Healthcare
             Product_Category
                                 Orders
      0
                          Auto
                                      1
```

```
1
                    Auto
                                3
2
                                3
                    Auto
3
                    Auto
                                2
                                2
4
                    Auto
11246
                 Office
                                4
                                3
11247
             Veterinary
                                4
11248
                 Office
                 Office
                                3
11249
11250
                 Office
                                3
```

[11251 rows x 7 columns]

```
[71]: y
[71]:
               Amount
      0
              23952.0
      1
              23934.0
      2
              23924.0
      3
              23912.0
      4
              23877.0
      11246
                370.0
      11247
                367.0
      11248
                213.0
      11249
                206.0
      11250
                188.0
```

[11251 rows x 1 columns]

- 0.2.2 Train test split
- 0.2.3 Converting the categorical values (Gender, Age Group, Marital_Status, State, Zone, Occupation, Product_Category) into numerical, linear regression only works with numerical value

```
[72]: X_encoded = pd.get_dummies(X, columns=['Gender','Age_\]

Group','Marital_Status','Zone', 'Occupation', 'Product_Category', 'Orders'])
```

0.2.4 Splits data into training (90%) and testing (10%) sets, random_state=42 ensures reproducible results, X_train, y_train will be used to train the model, X_test, y_test will be used to evaluate the model

```
[73]: X_train, X_test, y_train, y_test = train_test_split(X_encoded,y, test_size = 0. 

-1, random_state=42)
```

0.2.5 Creates a Linear Regression model.

[82]: plt.scatter(y_test, y_prediction)

plt.show()

```
[98]: | lr_model = LinearRegression()
[75]: lr_model
[75]: LinearRegression()
     0.2.6 Fits the model to the training data (learns the relationship between X and y).
[76]: lr_model.fit(X_train, y_train)
[76]: LinearRegression()
     0.2.7 Uses the trained model to predict target values for test data, outputs predicted
            values for y based on the test features.
[78]: y_prediction = lr_model.predict(X_test)
[79]: y_prediction
[79]: array([[ 7638.25],
             [ 6338.75],
             [7711.25],
             [ 6470.25],
             [ 9970.25],
             [13739.25]])
```


0.2.8 Calculates Mean Squared Error (MSE) between actual and predicted values.

[111]: 0.6700461488675988

0.2.10 $\,$ Final Result - 67% of variance is explained by the model. 67% accurate

[]: