UNIOESTE Ciência da Computação

Sistemas Digitais Circuitos Sequenciais

Prof. Jorge Habib El Khouri Prof. Antonio Marcos Hachisuca

2020/2021

Referências Bibliográficas

- 1. Digital Fundamentals, Thomas L. Floyd; Editora: Pearson; Edição: 11; Ano: 2015;
- 2. Sistemas Digitais Princípios e Aplicações, Ronald J. Tocci; Editora: Pearson; Edição: 11; Ano: 2011;
- 3. Computer Organization and Design, David A. Patterson; Editora: Elsevier; Edição: 1; Ano: 2017
- 4. Digital Design: Principles and Practices, John F. Wakerly; Editora: Pearson; Edição: 5; Ano: 2018;
- 5. Guide to Assembly Language Programming in Linux, Sivarama P. Dandamudi; Editora: Springer; Edição: 1; Ano: 2005.
- 6. Fundamentals of Logic Design, Roth Jr, Charles H; Kinney, Larry L; Seventh Edition. Editora: Cengage Learning, Ano: 2013.

Sumário

- 1. Revisão Sistemas de Numeração
- 2. Revisão Representação de Dados
- 3. Revisão Operações com Binários
- 4. Álgebra Booleana
- 5. Simplificação de Expressões
- 6. Mapa de Karnaugh
- 7. Elementos Lógicos Universais
- 8. Circuitos Combinacionais
- 9. <u>Circuitos Sequenciais</u>

- 1. Latches
- 2. Flip-Flop
- 3. Registradores
- 4. Contadores
- 5. Máquina de Estados
- 6. Memória RAM

Circuitos Combinacionais

- Um <u>circuito combinacional</u> consiste em portas lógicas cujas saídas, em qualquer momento, são determinadas pela combinação dos valores das entradas
- Para n variáveis de entrada, existem 2^n combinações de entrada binária possíveis
- Para cada combinação binária das variáveis de entrada, existe uma saída possível

Circuitos Combinacionais vs circuitos sequenciais

- Os circuitos combinacionais não possuem memória interna
 - O valor de saída depende apenas dos valores atuais de entrada
- Os <u>circuitos sequenciais</u> contem lógica combinacional, e elementos de memória (usados para armazenar estados de circuito)
 - As saídas dependem dos valores de entrada atuais e dos valores de entrada anteriores (mantidos nos elementos de memória)

Circuitos Combinacionais vs circuitos sequenciais

• Exemplo de um circuito sequencial:

- Observe que há um feedback (retro alimentação ou realimentação) da saída X para uma das entradas da porta OR;
- Neste caso faremos a distinção de X em dois momentos, sendo X_i o estado atual e X_{i-1} o estado anterior;

- Inicialmente a entrada A e a saída X_i estão com o valor 0;
- Logo, podemos montar a equação e a tabela verdade para este circuito:

$$X_i = A + X_{i-1}$$

A	X_{i-1}	X_i
0	0	0
1	0	1
0	1	1
1	1	1

http://compscinet.org/hausen/courses/circuitos/

https://tinyurl.com/yduylodm

• Determine a equação e a tabela verdade para o seguinte circuito, considerando inicialmente A=0 e X=1:

X_i	=	$\overline{A + \overline{X}_{i-1}}$
X_i	=	$\bar{A} \cdot X_{i-1}$

A	X_{i-1}	X_i
0	0	1
1	0	0
0	1	0
1	1	0

• Determine a equação e a tabela verdade para o seguinte circuito, considerando inicialmente A=B=P=Q=0:

https://tinyurl.com/ygppooaw

• Construa a tabela verdade do circuito abaixo para as saídas Q e P, considerando a seguinte sequência de estados para as entradas:

$$\checkmark R = 1, S = 0;$$

$$\checkmark$$
 $R = 0, S = 0;$

$$\checkmark$$
 $R = 0, S = 1;$

$$\checkmark R = 0, S = 0$$

• Desconsidere o estado R = 1, S = 1.

$$Q_{i} = \overline{R + P_{i-1}} = \overline{R} \cdot \overline{P}_{i-1}$$
$$P_{i} = \overline{S + Q_{i-1}} = \overline{S} \cdot \overline{Q}_{i-1}$$

✓
$$R = 1, S = 0;$$

✓ $R = 0, S = 0;$
✓ $R = 0, S = 1;$
✓ $R = 0, S = 0$

$$\begin{aligned} Q_i &= \bar{R} \cdot \bar{P}_{i-1} = 0 \\ P_i &= \bar{S} \cdot \bar{Q}_{i-1} = \bar{Q}_{i-1} = 1 \end{aligned}$$

$$\checkmark$$
 $R = 1, S = 0;$

$$\checkmark$$
 $R = 0, S = 0;$

$$\checkmark$$
 $R = 0, S = 1;$

$$\checkmark R = 0, S = 0$$

$$Q_i = \bar{R} \cdot \bar{P}_{i-1} = \bar{P}_{i-1} = 0$$

 $P_i = \bar{S} \cdot \bar{Q}_{i-1} = \bar{Q}_{i-1} = 1$

R	S	Q_i	P_i
1	0	0	1
0	0	0	1

$$\checkmark$$
 $R = 1, S = 0;$

$$\checkmark$$
 $R = 0, S = 0;$

$$\checkmark$$
 $R = 0, S = 1;$

$$\checkmark R = 0, S = 0$$

$$Q_i = \overline{R} \cdot \overline{P}_{i-1} = \overline{P}_{i-1} = 1$$

$$P_i = \overline{S} \cdot \overline{Q}_{i-1} = 0$$

R	S	Q_i	P_i
1	0	0	1
0	0	0	1
0	1	1	0

$$\checkmark$$
 $R = 1, S = 0;$

$$\checkmark$$
 $R = 0, S = 0;$

$$\checkmark$$
 $R = 0, S = 1;$

$$\checkmark R = 0, S = 0$$

$$Q_i = \overline{R} \cdot \overline{P}_{i-1} = \overline{P}_{i-1} = 1$$

$$P_i = \overline{S} \cdot \overline{Q}_{i-1} = \overline{Q}_{i-1} = 0$$

R	S	Q_i	P_i
1	0	0	1
0	0	0	1
0	1	1	0
0	0	1	0

- A saída P é sempre a negação da saída Q ($P = \overline{Q}$);
- De forma geral a tabela verdade ficará:

R	S	Q_i	$\overline{Q_i}$
1	0	0	1
0	1	1	0
0	0	Q_{i-1}	\bar{Q}_{i-1}

• Este circuito é denominado *latch R–S*;

• Qual o comportamento para a seguinte entrada?

$$\checkmark$$
 $R = 1, S = 1$

R	S	Q_i	$\overline{Q_i}$
1	0	0	1
0	0	0	1
1	1	0	0

$$Q_i = \overline{R} \cdot \overline{P}_{i-1} = 0$$
$$P_i = \overline{S} \cdot \overline{Q}_{i-1} = 0$$

• Qual o comportamento para a seguinte entrada?

$$\checkmark R = 0, S = 0$$

R	S	Q_i	$\overline{Q_i}$
1	0	0	1
0	0	0	1
1	1	0	0
0	0	?	?

$$Q_i = \bar{R} \cdot \bar{P}_{i-1} = \bar{P}_{i-1} = 1 = 0 = 1$$

 $P_i = \bar{S} \cdot \bar{Q}_{i-1} = \bar{Q}_{i-1} = 1 = 0 = 1$

- Este circuito é denominado de *Latch;*
- Latch é um tipo de dispositivo de armazenamento temporário que possui dois estados estáveis (biestável);

R	S	Q_i	$\overline{Q_i}$	Função
1	0	0	1	Reset Q
0	1	1	0	Set Q
0	0	Q_{i-1}	\bar{Q}_{i-1}	Mantém $\it Q$
1	1	?	?	Estado proibido

- É possível construir um circuito *Latch* utilizando portas *NAND*;
- Neste caso as entradas serão ativas em LOW;

\bar{S}	\bar{R}	Q_i	$\overline{Q_i}$	Função
1	0	0	1	Reset Q
0	1	1	0	Set Q
1	1	Q_{i-1}	\bar{Q}_{i-1}	Mantém $\it Q$
0	0	?	?	Estado proibido

- Uma aplicação típica de um $Latch \, \bar{S} \bar{R} \,$ é na eliminação de ruídos decorrentes do bouncing (trepidação) no momento que se comuta o contato de chaves mecânicas;
- Imaginem uma situação semelhante, em uma automação residencial, onde as portas possuem sensores que indicam se está aberta ou fechada;
- Normalmente são contatos que se encostam quando a porta é fechada, fazendo com que uma corrente elétrica seja conduzida indicando o estado atual;
- Ou em uma lógica negativa quando um circuito é interrompido;
- O que ocorre na prática é uma trepidação no momento do contato, fazendo com que uma sequência de sinais espúrios seja enviada ao sistema de monitoramento (uma avalanche de abre-fecha até estabilizar);

• Uma aplicação típica de um $Latch \, \bar{S} - \bar{R} \,$ é na eliminação de ruídos decorrentes do bouncing (trepidação) no momento que se comuta o contato de chaves mecânicas;

• Uma aplicação típica de um $Latch \, \bar{S} - \bar{R} \,$ é na eliminação de ruídos decorrentes do bouncing (trepidação) no momento que se comuta o contato de chaves mecânicas;

• Descreva o funcionamento do seguinte circuito:

Posição da Chave	X_a	X_b
Α		
В		

- A família dos Latches inclui diversos tipos:
 - ✓ Basic *Latch S–R*;
 - ✓ Gated Latch S-R ou Latch S-R com Enable ou Latch S-R Sensível a Nível;
 - ✓ Gated D Latch;

- Gated Latch S–R ou Latch S–R com Enable ou Latch S–R Sensível a Nível:
 - ✓ Um $Gated\ Latch$ requer uma entrada de habilitação, EN (G também é usado para designar uma entrada de habilitação);

26

- Gated Latch S-R ou Latch S-R com Enable ou Latch S-R Sensível a Nível:
 - \checkmark As entradas S e R controlam o estado desejado para a Latch quando um nível HIGH for aplicado à entrada EN.
 - ✓ O estado da Latch será modificado apenas quando EN estiver em ALTO;
 - ✓ Enquanto permanecer em ALTO, a saída será controlada pelas entradas S e R;
 - ✓ O estado *inválido* ocorre quando, estando *EN* em *HIGH*, *S* e *R* também estão em *HIGH*.

i. Determine a forma de onda para a saída Q, considerando as entradas S, R e EN indicadas no gráfico:

33

ii. Determine a forma de onda para a saída Q, considerando as entradas S, R e EN indicadas no gráfico:

39

40

iii. Considere o seguinte circuito lógico:

Pede-se:

- ✓ Implementar no circuitjs;
- ✓ Obter o gráfico da entrada do clock (CLK) e da saída X;
- ✓ Explicar o comportamento;
- ✓ Implementar em outra ferramenta de simulação (digital, logisim,...) e comparar o comportamento;

iii. Considere o seguinte circuito lógico:

iii. Considere o seguinte circuito lógico:

iv. Considerar o seguinte circuito que combina o circuito anterior com o *Gated Latch S–R*:

Pede-se:

- ✓ Implementar no circuitjs;
- ✓ Obter o gráfico da entrada do clock (CLK) e dos pontos EN, S, R e Q;
- ✓ Efetuar alguns comandos em S e R (exemplo abaixo) e observar a resposta em Q;
- ✓ Explicar o comportamento;
- ✓ Implementar em outra ferramenta de simulação (digital, logisim,...) e comparar o comportamento;

Pede-se:

- ✓ Implementar no circuitjs;
- ✓ Obter o gráfico da entrada do clock (CLK) e dos pontos EN, S, R e Q;
- ✓ Efetuar alguns comandos em S e R (exemplo abaixo) e observar a resposta em Q;
- ✓ Explicar o comportamento;
- ✓ Implementar em outra ferramenta de simulação (digital, logisim,...) e comparar o comportamento;

46

iv. Considere o seguinte circuito lógico:

Pede-se:

- ✓ Implementar no circuitjs;
- ✓ Obter o gráfico da entrada do clock (CLK) e da saída X;
- ✓ Explicar o comportamento;
- ✓ Implementar em outra ferramenta de simulação (digital, logisim,...) e comparar o comportamento;

iv. Considere o seguinte circuito lógico:

- A família dos Latches inclui diversos tipos:
 - ✓ Basic Latch S–R;
 - ✓ Gated Latch S-R ou Latch S-R com Enable ou Latch S-R Sensível a Nível;
 - ✓ *Gated D Latch*;

• Gated D Latch:

✓ A principal diferença com o Latch S-R está na entrada única além do EN;

• Gated D Latch:

- \checkmark A entrada é chamada de entrada D (dados);
- ✓ Quando a entrada D está em HIGH e a entrada EN em HIGH, o Latch será ativado;
- ✓ Quando a entrada D estiver em LOW e EN em HIGH, o Latch será reinicializado Reset (a saída Q segue a entrada D quando EN está em HIGH);
- ✓ Não há a preocupação de evitar o estado S = 1 e R = 1;

iii. Utilize tabela verdade para o funcionamento desses circuitos. Qual a relação com um Latch S-R? O que acontece para cada circuito quando S=R=1?

iv. Implementar um Registrador de armazenamento de 4 bits utilizando *D Latch*:

iv. Implementar um Registrador de armazenamento de 4 bits utilizando *D Latch*:

- v. Implementar uma Memória $4 \times 4 \ bits$ utilizando $D \ Latch$:
 - ✓ A memória deverá fazer interface com um barramento;
 - ✓ A entrada e saída de dados é feita através do barramento;
 - ✓ Uma entrada \overline{RD}/WR (integrada ou separada) definirá se uma informação será transferida de memória para a saída ou da entrada para a memória;
 - ✓ Uma entrada \overline{CS} serve para habilitar/desabilitar o Chip;

vi. Implementar um circuito de $4\ bits$ que fornece o maior entre dois inteiros. Segue um esboço da arquitetura:

Considerar as seguintes especificações:

- ✓ Os *Registradores* e *Buffers* utilizam *Latch D*;
- ✓ A interface entre os componentes é feita através do barramento;
- ✓ A interface *Inputs* aceita um inteiro de 4 bits;
- ✓ A interface *Controls* aceita códigos binários que definem as configurações:
 - \triangleright Selecionar SOURCE (INPUT | R | X | Y = 00, 01, 10, 11);
 - > Selecionar *DEST* $(A \mid B \mid X \mid Y = 00, 01, 10, 11);$
 - \triangleright $OP = \overline{DISABLE}/ENABLE = PULSE;$
- √ Uma lógica de controle fará a coordenação dos sinais;

- \triangleright Selecionar *SOURCE* (*INPUT* | *R* | *X* | *Y* = 00, 01, 10, 11);
- Selecionar *DEST* $(A \mid B \mid X \mid Y = 00, 01, 10, 11);$
- \triangleright $OP = \overline{(DISABLE)}/ENABLE = PULSE;$

X = X > Y?X:Y	CONTROLES
X = Input	$INPUT = X_0; SRC = 00; DST = 10; OP = ENABLE-DISABLE;$
Y = Input	$INPUT = Y_0; SRC = 00; DST = 11; OP = ENABLE-DISABLE;$
A = X	SRC = 10; DST = 00; OP = ENABLE-DISABLE;
B = Y	SRC = 11; DST = 01; OP = ENABLE-DISABLE;
X = R	SRC = 01; DST = 10; OP = ENABLE-DISABLE;

 \triangleright Certificar que o circuito opera corretamente quando DST == SRC.

