UNIVERSITÉ de MONTPELLIER

— Faculté des sciences — Département de Mathématiques Année 2017–2018

Algèbre Linéaire et Analyse 2 HLMA203 LICENCE 1ère année Série 1 & Série 3

Contrôle Final: session 1

Date: 14 Mai 2018 **Heure**: 16h00

Durée: 3 heures (hors tiers-temps) Document et calculatrice interdits

Exercice §1 : QCM. Qualifier les assertions suivantes par **V** (vraie) ou **F** (fausse), sur la copie ; bien reporter, au préalable, une colonne avec tous les numéros (pas les assertions ellesmêmes), dans l'ordre, mêmes ceux sans réponse. Toute réponse fausse est comptée négativement.

- 1. L'ensemble des solutions d'une équation différentielle linéaire forment un espace vectoriel.
- 2. Le développement limité de exp en x=1 à l'ordre 2 est : $exp(x)=1+x+\frac{x^2}{2}+o(x^2)$.
- 3. Si A est une matrice inversible, alors $det(A^{-1}) = (det A)^{-1}$.
- 4. Les primitives de la fonction $(\ln x)^2$ (définie sur \mathbb{R}_+^*) sont les fonctions $\frac{(\ln x)^3}{3} + C$.
- 5. Si A et B sont des matrices carrées (même ordre), alors det(A B) = det(A) det(B).
- 6. L'équation différentielle $y' yy' + 2y = e^x$ est du premier ordre et linéaire.
- 7. Quel que soit le choix des bases, la matrice d'un isomorphisme est toujours carrée.
- 8. La règle de Sarrus permet de calculer le déterminant des matrices carrées de tout ordre.
- 9. Il existe une infinité de matrices carrées X d'ordre 2, telles que $X^2 = X$.
- 10. Les polynômes premiers à coefficients complexes sont tous de degré 1.

Exercice §2. Puissance d'un endomorphisme. Soient les matrices réelles suivantes :

$$A = \begin{pmatrix} 6 & -1 & -3 \\ 8 & -1 & -4 \\ 7 & -1 & -4 \end{pmatrix} \quad et \quad B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} .$$

- 1. Par récurrence, montrer que nous avons $B^n = \begin{pmatrix} 1 & n & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (-1)^n \end{pmatrix}$ pour tout entier $n \ge 1$.
- 2. Soit α l'endomorphisme de \mathbb{R}^3 dont A est la matrice dans la base canonique \mathcal{B} . Pour tout $(x, y, z) \in \mathbb{R}^3$, donner l'expression de $\alpha(x, y, z)$.
- 3. Montrer, à l'aide du déterminant, que α est bijective.
- 4. Vérifier que la famille $\mathcal{B}' = ((1,2,1),(2,3,2),(-1,-1,-2))$ est une base de \mathbb{R}^3 .
- 5. Écrire la matrice de passage P, donnée par l'application identité relativement à la base \mathcal{B}' (espace de départ) et à la base \mathcal{B} (espace d'arrivée). Calculer son inverse P^{-1} .
- 6. Appliquer le changement de bases pour montrer que B est la matrice de α relativement à la base \mathcal{B}' .
- 7. Par récurrence montrer que $A^n = PB^nP^{-1}$ pour tout entier $n \ge 1$.
- 8. En déduire l'expression de la matrice A^{2018} (puissance 2018-ième de A).

Exercice §3. Développements limités.

- 1. Rappeler les développements limités, en x=0 et à l'ordre 4, des fonctions : $\sin(x)$, $\cos(x)$, $\exp(x)$ et $\sqrt{1+x}$.
- 2. Pour la fonction $\omega(x) = \sqrt{\cos x}$, définie sur $]-\pi/2,\pi/2[$, trouver le développement limité en 0, à l'ordre 3. En déduire la valeur de ω'' en 0.
- 3. Calculer le développement limité en 0, à l'ordre 4, de $\varphi(x) = \exp(x x^2/2 + x^3/3)$. Quelle est la limite de $(\varphi(x) 1 x)/x^4$ quand $x \to 0$?

Exercice §4. Nous désirons calculer $\int_1^2 f(x)dx$, où $f(x) = \frac{x^4 - 5x^2 - x + 4}{x^3 + 3x^2 + 2x}$.

- 1. Division euclidienne : trouver des polynômes e(x) et n(x), de degrés inférieurs ou égaux à 2, tels que $f(x) = e(x) + n(x)/(x^3 + 3x^2 + 2x)$.
- 2. Montrer qu'il existe des réels α , β et γ (que l'on explicitera), tels que

$$\frac{2x^2 + 5x + 4}{x^3 + 3x^2 + 2x} = \frac{\alpha}{x} + \frac{\beta}{x+1} + \frac{\gamma}{x+2} \ .$$

- 3. En déduire toutes les primitives de f(x) sur \mathbb{R}_+^* .
- 4. Conclure.

Exercice §5. Le cosinus hyperbolique est noté $Ch: Ch(t) = (e^t + e^{-t})/2$. Calculer $\int_{-1}^{1} \frac{dt}{Ch(t)}$ à l'aide du changement de variables $u = e^t$.

Exercice §6. Soit l'équation différentielle linéaire : (\mathcal{D}) $y \in C^1(\mathbb{R}), y' + 2y = x^3 e^x$.

- 1. Trouver une primitive de $f(x) = x^3 e^x$ à l'aide uniquement d'intégrations par parties.
- 2. Résoudre l'équation homogène associée à l'équation $\mathcal{D}.$
- 3. Appliquer la méthode de la Variation de la Constante pour obtenir une solution de \mathcal{D} .
- 4. Donner toutes les solutions de l'équation différentielle \mathcal{D} .
- 5. Trouver l'unique solution \bar{y} de l'équation différentielle \mathcal{D} vérifiant $\bar{y}(0)=1/2$. Quelle est la valeur de $\bar{y}'(0)$?