Solutions for Proposed Homework 7:

Part A:

4.3.23)
$$\left[T(1)\right]_{\mathfrak{U}} = \begin{bmatrix}1\\0\\0\end{bmatrix}, \ \left[T(t)\right]_{\mathfrak{U}} = \begin{bmatrix}3\\0\\0\end{bmatrix} \text{ and } \left[T(t^2)\right]_{\mathfrak{U}} = \begin{bmatrix}9\\0\\0\end{bmatrix}, \text{ so we see that}$$

$$[T]_{\mathfrak{U}} = \begin{bmatrix} 1 & 3 & 9 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

T is not an isomorphism and $\{(t-3), (t-3)^2\}$ is a basis for $\ker(T)$, while $\{1\}$ is a basis for $\operatorname{im}(T)$, so T has rank 1.

4.3.24)
$$\left[T(1)\right]_{\mathfrak{U}} = \begin{bmatrix}1\\0\\0\end{bmatrix}$$
, $\left[T(t-3)\right]_{\mathfrak{U}} = \begin{bmatrix}0\\0\\0\end{bmatrix}$ and $\left[T((t-3)^2)\right]_{\mathfrak{U}} = \begin{bmatrix}0\\0\\0\end{bmatrix}$, so

we see that

$$[T]_{\mathfrak{U}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

T is not an isomorphism and $\{(t-3), (t-3)^2\}$ is a basis for $\ker(T)$, while $\{1\}$ is a basis for $\operatorname{im}(T)$, so T has rank 1.

4.3.46) a) Since $\begin{bmatrix} 1 \end{bmatrix}_{\mathfrak{U}} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} t - 3 \end{bmatrix}_{\mathfrak{U}} = \begin{bmatrix} -3 & 1 & 0 \end{bmatrix}$, and $\begin{bmatrix} (t - 3)^2 \end{bmatrix}_{\mathfrak{U}} = \begin{bmatrix} 9 & -6 & 1 \end{bmatrix}$, we see that

$$S_{\mathfrak{B}\to\mathfrak{U}} = \begin{bmatrix} 1 & -3 & 9\\ 0 & 1 & -6\\ 0 & 0 & 1 \end{bmatrix}.$$

b)Notice that

$$\begin{bmatrix} 1 & -3 & 9 \\ 0 & 1 & -6 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 9 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & -3 & 9 \\ 0 & 1 & -6 \\ 0 & 0 & 1 \end{bmatrix}.$$

c) Similarly,

$$S_{\mathfrak{U} \to \mathfrak{B}} = \begin{bmatrix} 1 & 3 & 9 \\ 0 & 1 & 6 \\ 0 & 0 & 1 \end{bmatrix}.$$

4.3.54) Since
$$\left[T\left(\begin{bmatrix}1\\1\\-1\end{bmatrix}\right)\right]_{\mathfrak{B}} = \left[\begin{bmatrix}1\\1\\-1\end{bmatrix}\right]_{\mathfrak{B}} = \begin{bmatrix}1\\0\end{bmatrix}$$
 and $\left[T\left(\begin{bmatrix}5\\-4\\1\end{bmatrix}\right)\right]_{\mathfrak{B}} = \left[\begin{bmatrix}0\\0\\0\end{bmatrix}\right]_{\mathfrak{B}} = \begin{bmatrix}0\\0\end{bmatrix}$ (since $\begin{bmatrix}5\\-4\\1\end{bmatrix}$ is orthogonal to $\begin{bmatrix}1\\1\\-1\end{bmatrix}$), we see that

$$[T]_{\mathfrak{B}} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

5.1.12) The Triangle Inequality: If $\vec{v}, \vec{w} \in \mathbb{R}^n$, then

$$||\vec{v} + \vec{w}|| \le ||\vec{v}|| + ||\vec{w}||.$$

Proof: Recall that, by definition,

$$||\vec{v} + \vec{w}||^2 = (\vec{v} + \vec{w}) \cdot (\vec{v} + \vec{w}) = \vec{v} \cdot \vec{v} + 2\vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{w} = ||\vec{v}||^2 + 2\vec{v} \cdot \vec{w} + ||\vec{w}||^2.$$

The Cauchy-Schwartz inequality implies that $\vec{v} \cdot \vec{w} \leq ||\vec{v}||||\vec{w}||$, so we conclude that

$$||\vec{v} + \vec{w}||^2 \le ||\vec{v}||^2 + 2||\vec{v}||||\vec{w}|| + ||\vec{w}||^2 = (||\vec{v}|| + ||\vec{w}||)^2.$$

Since, $||\vec{v} + \vec{w}|| \ge 0$ and $||\vec{v}|| + ||\vec{w}|| \ge 0$, this implies that

$$||\vec{v} + \vec{w}|| \le ||\vec{v}|| + ||\vec{w}||.$$

5.1.28) Let $\mathfrak{B} = \begin{pmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} \end{pmatrix}$ and let V be the subspace of \mathbb{R} spanned by \mathfrak{B} . Notice

that each element of \mathfrak{B} has length 2 and that distinct elements are ornogonal. Therefore if we

scale each vector in \mathfrak{B} by $\frac{1}{2}$ we obtain an orthonormal basis $\mathfrak{C} = \begin{pmatrix} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \end{pmatrix}$ for V.

Therefore the projection of $\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$ to V is given by

$$\begin{pmatrix} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{pmatrix} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} + \begin{pmatrix} \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{pmatrix} \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix} + \begin{pmatrix} \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{pmatrix} \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{3}{4} \\ \frac{1}{4} \\ -\frac{1}{4} \\ \frac{1}{4} \end{bmatrix}.$$

5.1.32) The 2×2 matrix $G = \begin{bmatrix} \vec{v}_1 \cdot \vec{v}_1 & \vec{v}_1 \cdot \vec{v}_2 \\ \vec{v}_2 \cdot \vec{v}_1 & \vec{v}_2 \cdot \vec{v}_2 \end{bmatrix}$ is not invertible if and only if it has rank less than 2, which occurs if and only if its determinant

$$(\vec{v}_1 \cdot \vec{v}_1)(\vec{v}_2 \cdot \vec{v}_2) - (\vec{v}_1 \cdot \vec{v}_2)^2 = ||\vec{v}_1||^2 ||\vec{v}_2||^2 - (\vec{v}_1 \cdot \vec{v}_2)^2 = 0.$$

However, by the Cauchy-Schwartz inequality, this occurs if and only if \vec{v}_1 and \vec{v}_2 are parallel. Therefore, G is invertible if and only if \vec{v}_1 and \vec{v}_2 are not parallel.

Part B:

Problem 1:

Let V and W be vector spaces and let $\mathcal{B} = (b_1, \ldots, b_n)$ be an ordered basis for V. Let $f : \mathcal{B} \to W$ is a function. If $\vec{v} \in V$ be arbitrary, then, since \mathcal{B} is an ordered basis of V, there exist unique scalars $c_1, \ldots, c_n \in \mathbb{R}$ such that $\vec{v} = \sum_{i=1}^n c_i \vec{b}_i$. We then define $T : V \to W$ by setting

$$T(\vec{v}) = \sum_{i=1}^{n} c_i f(\vec{b}_i).$$

In particular, T is an extension of the function f since $T(b_i) = f(b_i)$ for all i.

Suppose that $\vec{x}, \vec{y} \in V$ and that $\vec{x} = \sum_{i=1}^n c_i \vec{b}_i$ and $\vec{y} = \sum_{i=1}^n d_i \vec{b}_i$. Then $\vec{x} + \vec{y} = \sum_{i=1}^n (c_i + d_i) \vec{b}_i$, so

$$T(\vec{v} + \vec{w}) = T\left(\sum_{i=1}^{n} c_i \vec{b}_i + \sum_{i=1}^{n} d_i \vec{b}_i\right) = T\left(\sum_{i=1}^{n} (c_i + d_i) \vec{b}_i\right)$$

$$= \sum_{i=1}^{n} (c_i + d_i) f(\vec{b}_i) = \left(\sum_{i=1}^{n} c_i f(\vec{b}_i)\right) + \left(\sum_{i=1}^{n} d_i f(\vec{b}_i)\right) = T(\vec{x}) + T(\vec{y})$$

so T respects addition. If $k \in \mathbb{R}$, $\vec{x} \in V$ and $\vec{x} = \sum_{i=1}^n c_i \vec{b}_i$, then $k\vec{x} = \sum_{i=1}^n kc_i \vec{b}_i$, so

$$T(k\vec{x}) = T\left(k\sum_{i=1}^{n} c_{i}\vec{b}_{i}\right) = T\left(\sum_{i=1}^{n} kc_{i}\vec{b}_{i}\right) = \sum_{i=1}^{n} kc_{i}f(\vec{b}_{i}) = k\sum_{i=1}^{n} c_{i}f(\vec{b}_{i}) = kT(\vec{x}),$$

which implies that T respects scalar multiplication. Therefore, T is a linear transformation.

Finally, to see that T is unique, suppose the linear map $S: V \to W$ also has the property that S agrees with f on \mathcal{B} . Then for all $\vec{v} = \sum_{i=1}^{n} c_i \vec{b_i} \in V$ we have

$$S(\vec{v}) = S\left(\sum_{i=1}^{n} c_{i} \vec{b}_{i}\right) = \sum_{i=1}^{n} c_{i} S(\vec{b}_{i}) = \sum_{i=1}^{n} c_{i} f(\vec{b}_{i}) = \sum_{i=1}^{n} c_{i} T(\vec{b}_{i}) = T\left(\sum_{i=1}^{n} c_{i} \vec{b}_{i}\right) = T(\vec{v}).$$

Problem 2:

Let $T:\to W$ be a linear transformation and let \mathcal{B} and \mathcal{C} be ordered bases for V.

(a) TRUE If $T: V \to W$ is a linear transformation and $\ker[T]_{\mathcal{B}} = \{ [\vec{v}]_{\mathcal{B}} : \vec{v} \in \ker(T) \}.$

Proof: Suppose that $\vec{x} \in \ker[T]_{\mathcal{B}}$. Let $\vec{v} \in V$ be the unique vector in V such that $[\vec{v}]_{\mathcal{B}} = \vec{x}$. Then by definition of $[T]_{\mathcal{B}}$ and of $\ker[T]_{\mathcal{B}}$, respectively,

$$[T(\vec{v})]_{\mathcal{B}} = [T]_{\mathcal{B}}[\vec{v}]_{\mathcal{B}} = [T]_{\mathcal{B}}\vec{x} = \vec{0}.$$

Since $[T(\vec{v})]_{\mathcal{B}} = \vec{0}$, $T(\vec{v}) = \vec{0}_V$. Thus, $\vec{x} = [\vec{v}]_{\mathcal{B}}$ for some $\vec{v} \in \ker T$, which proves that $\ker[T]_{\mathcal{B}} \subseteq \{[\vec{v}]_{\mathcal{B}} : \vec{v} \in \ker T\}$.

Now suppose that $\vec{x} \in \{[\vec{v}]_{\mathcal{B}} : \vec{v} \in \ker T\}$. Then there exists a vector $\vec{v} \in V$ such that $\vec{x} = [\vec{v}]_{\mathcal{B}}$ and

$$[T]_{\mathcal{B}}\vec{x} = [T]_{\mathcal{B}}[\vec{v}]_{\mathcal{B}} = [T(\vec{v})]_{\mathcal{B}} = [\vec{0}_V]_{\mathcal{B}} = \vec{0},$$

hence $\vec{x} \in \ker[T]_{\mathcal{B}}$. Therefore, $\{[\vec{v}]_{\mathcal{B}} : \vec{v} \in \ker T\} \subseteq \ker[T]_{\mathcal{B}}$ and the proof is complete.

(b) TRUE $\operatorname{im}[T]_{\mathcal{B}} = \{ [\vec{v}]_{\mathcal{B}} : \vec{v} \in \operatorname{im}(T) \}.$

Proof: Suppose that $\vec{y} \in \text{im}[T]_{\mathcal{B}}$. Then there exists a vector $\vec{x} \in \mathbb{R}^n$ such that $[T]_{\mathcal{B}}\vec{x} = \vec{y}$, by definition of the image of $[T]_{\mathcal{B}}$. Let \vec{v} be the unique vector in V for which $[\vec{v}]_{\mathcal{B}} = \vec{x}$, and let $\vec{w} = T(\vec{v})$. Then $\vec{w} \in \text{im } T$, and

$$\vec{y} = [T]_{\mathcal{B}}\vec{x} = [T]_{\mathcal{B}}[\vec{v}]_{\mathcal{B}} = [T(\vec{v})]_{\mathcal{B}} = [\vec{w}]_{\mathcal{B}}$$

implying that $\vec{y} \in \{ [\vec{w}]_{\mathcal{B}} : \vec{w} \in \operatorname{im}(T) \}$. Thus, $\operatorname{im}[T]_{\mathcal{B}} \subseteq \{ [\vec{w}]_{\mathcal{B}} : \vec{w} \in \operatorname{im}(T) \}$.

On the other hand, suppose that $\vec{y} \in \{[\vec{w}]_{\mathcal{B}} : \vec{w} \in \text{im}(T)\}$. Then $\vec{y} = [\vec{w}]_{\mathcal{B}}$ for some $\vec{w} \in \text{im}\,T$. By definition of the image of T, there exists a vector $\vec{v} \in V$ such that $T(\vec{v}) = \vec{w}$. Let $\vec{x} = [\vec{v}]_{\mathcal{B}} \in \mathbb{R}^n$. Then

$$\vec{y} = [\vec{w}]_{\mathcal{B}} = [T(\vec{v})]_{\mathcal{B}} = [T]_{\mathcal{B}}[\vec{v}]_{\mathcal{B}} = [T]_{\mathcal{B}}\vec{x}$$

and we conclude $\vec{y} \in \text{im}[T]_{\mathcal{B}}$. Therefore, $\{[\vec{w}]_{\mathcal{B}} : \vec{w} \in \text{im}(T)\} \subseteq \text{im}\,T_{\mathcal{B}}$ and our proof is complete.

- (c) FALSE $\ker[T]_{\mathcal{B}}$ need not be the same as $\ker[T]_{\mathcal{C}}$. Counterexample: Consider the map $T: \mathcal{P}_1 \to \mathcal{P}_1$ given by T(ax+b) = b. If $\mathcal{B} = (x,1)$, then $\ker[T]_{\mathcal{B}} = \operatorname{span}\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, but if $\mathcal{C} = (1,x)$, then $\ker[T]_{\mathcal{C}} = \operatorname{span}\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
- (d) FALSE If $\vec{v}, \vec{w} \in V$, $[\vec{v}]_{\mathcal{B}} \cdot [\vec{w}]_{\mathcal{B}}$ need not be the same as $[\vec{v}]_{\mathcal{C}} \cdot [\vec{w}]_{\mathcal{C}}$.

 Counterexample: Consider the ordered bases $\mathcal{B} = (1)$ and $\mathcal{C} = (2)$ for \mathbb{R} . Then if $\vec{v} = \vec{w} = 2$, then

$$[\vec{v}]_{\mathcal{B}}\cdot[\vec{w}]_{\mathcal{B}}=2\cdot2=4\neq1=1\cdot1=[\vec{v}]_{\mathcal{C}}\cdot[\vec{w}]_{\mathcal{C}}.$$

Problem 3:

a) Suppose that $A, B \in \mathbb{R}^{2 \times 2}$ and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $B = \begin{bmatrix} e & f \\ g & h \end{bmatrix}$. Then $A + B = \begin{bmatrix} a + e & b + f \\ c + g & d + h \end{bmatrix}$ and

$$T(A+B) = \begin{bmatrix} a+e & 0 & b+f \\ 0 & 0 & 0 \\ c+g & 0 & d+h \end{bmatrix} = \begin{bmatrix} a & 0 & b \\ 0 & 0 & 0 \\ c & 0 & d \end{bmatrix} + \begin{bmatrix} e & 0 & f \\ 0 & 0 & 0 \\ g & 0 & h \end{bmatrix} = T(A) + T(B)$$

so T respects addition. Similarly, if $k \in \mathbb{R}$, $A \in \mathbb{R}^{2 \times 2}$ and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then $kA = \begin{bmatrix} ka & kbf \\ kc & kd \end{bmatrix}$ and

$$T(kA) = \begin{bmatrix} ka & 0 & kb \\ 0 & 0 & 0 \\ kc & 0 & kd \end{bmatrix} = k \begin{bmatrix} a & 0 & b \\ 0 & 0 & 0 \\ c & 0 & d \end{bmatrix} = kT(A)$$

so T respects scalar multiplication. Since T respects addition and scalar multiplication, it is a linear transformation.

b)
$$\left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\} \text{ is a basis for } \text{im}(T). \text{ So,}$$

is a basis for $[im(T)]_{\mathfrak{B}}$.

Since T is injective, $\ker T = \{\vec{0}\}$, and, by convention, its basis is empty. Similarly, the basis for $[\ker T]_{\mathfrak{B}}$ is empty.

c) Since
$$\left[T\left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\right)\right]_{\mathfrak{B}_{3}} = \left[\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}\right]_{\mathfrak{B}_{3}} = \vec{e}_{1}, \left[T\left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\right)\right]_{\mathfrak{B}_{3}} = \left[\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}\right]_{\mathfrak{B}_{3}} = \vec{e}_{3},$$

$$\left[T\left(\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}\right)\right]_{\mathfrak{B}_{3}} = \left[\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}\right]_{\mathfrak{B}_{3}} = \vec{e}_{7}, \text{ and } \left[T\left(\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\right)\right]_{\mathfrak{B}_{3}} = \left[\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}\right]_{\mathfrak{B}_{2}} = \vec{e}_{9}, \text{ we see }$$

that if

then $[T(A)]_{\mathcal{B}_3} = C[A]_{\mathcal{B}_2}$ for all $A \in \mathbb{R}^{2 \times 2}$.

Problem 4:

- (a) First notice that $\vec{0} \in V$, since V is a subspace of \mathbb{R}^n and that $\vec{0} \in V^{\perp}$, so $\vec{0} \in V^{\perp}$. On the other hand, if $\vec{v} \in V \cap V^{\perp}$, then $\vec{v} \cdot \vec{v} = 0$, so $\vec{v} = \vec{0}$. Therefore, $V \cap V^{\perp} = \{\vec{0}\}$.
- (b) First we show that $V \subseteq (V^{\perp})^{\perp}$: Let $\vec{v} \in V$. Then, \vec{v} is perpendicular to every vector in V^{\perp} , so $\vec{v} \in (V^{\perp})^{\perp}$. Now, we notice that by Theorem 5.1.8, part c of the book,

$$\dim(V^{\perp})^{\perp} = n - \dim(V^{\perp}) = n - (n - \dim V) = \dim V.$$

Hence, since $V \subseteq (V^{\perp})^{\perp}$ and they are subspaces of the same dimension, they must be equal.

- (c) Let's prove the forward direction. Assume $V \subseteq W$, and let $\vec{x} \in W^{\perp}$. Then, $\vec{x} \cdot \vec{w} = 0$ for all $\vec{w} \in W$, and since $V \subseteq W$, that implies that $\vec{x} \cdot \vec{v} = 0$ for all $\vec{v} \in V$. Hence, $\vec{x} \in V^{\perp}$. Let's prove the backwards direction. Assume that $W^{\perp} \subseteq V^{\perp}$. By the forward direction, which we just proved, this implies that $(V^{\perp})^{\perp} \subseteq (W^{\perp})^{\perp}$, and the result follows from part (b).
- (d) Let $\vec{x} \in V^{\perp} \cap W^{\perp}$, we want to show that $\vec{x} \in (V + W)^{\perp}$, that is, that for all $\vec{y} \in V + W$, we have that $\vec{x} \cdot \vec{y} = 0$.

Let $\vec{y} \in V + W$. There exists $\vec{v} \in V$ and $\vec{w} \in W$ such that $\vec{y} = \vec{v} + \vec{w}$. Since $\vec{x} \in V^{\perp}$, we have that $\vec{x} \cdot \vec{v} = 0$, and since $\vec{x} \in W^{\perp}$, we also have that $\vec{x} \cdot \vec{w} = 0$. Hence,

$$\vec{x} \cdot \vec{y} = \vec{x} \cdot \vec{v} + \vec{x} \cdot \vec{w} = 0,$$

which shows $(V+W)^{\perp} \subseteq V^{\perp} \cap W^{\perp}$.

Conversely, we note that $V \subseteq V + W$ and $W \subseteq V + W$. By part (c), this implies that $(V + W)^{\perp} \subseteq V^{\perp}$ and $(V + W)^{\perp} \subseteq W^{\perp}$. Hence, $(V + W)^{\perp} \subseteq V^{\perp} \cap W^{\perp}$.

Therefore, $(V+W)^{\perp} = V^{\perp} \cap W^{\perp}$.

Problem 5:

(a) TRUE For every subspace V of \mathbb{R}^n , the orthogonal projection $\operatorname{proj}_V: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is a projection. $\operatorname{Proof:}$ By Theorem 5.1.4 in the book, we know that proj_V is a linear transformation. Recall that $\operatorname{proj}_V(\vec{x}) = \vec{x}^{||}$, where $\vec{x}^{||}$ is the only vector in V such that $\vec{x} - \vec{x}^{||}$ is in V^{\perp} . Since $\vec{x}^{||} - \vec{x}^{||} = \vec{0} \in V^{\perp}$, we have that

$$\operatorname{proj}_{V}(\operatorname{proj}_{V}(\vec{x})) = \operatorname{proj}_{V}(\vec{x}^{||}) = \vec{x}^{||} = \operatorname{proj}_{V}(\vec{x})$$

for all $\vec{x} \in \mathbb{R}^n$.

(b) TRUE For every projection $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ and basis \mathcal{B} of \mathbb{R}^n , the \mathcal{B} -matrix $[T]_{\mathcal{B}}$ of T is a projection matrix, meaning that $([T]_{\mathcal{B}})^2 = [T]_{\mathcal{B}}$.

Proof: Let A be the $n \times n$ matrix such that $T(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^n$. Since T is a projection, we have that $A^2 = A$. Let S be the change of basis matrix from \mathfrak{B} to the standard basis \mathcal{E} . Then $[T]_{\mathfrak{B}} = S^{-1}AS$, so

$$([T]_{\mathfrak{B}})^2 = (S^{-1}AS)^2 = S^{-1}ASS^{-1}AS = S^{-1}AS = [T]_{\mathfrak{B}}.$$

(c) FALSE If $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is a projection and $V = \operatorname{im} T$, T need not agree with proj_V . Counterexample: Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the linear transformation given by the matrix

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

We have that $A^2 = A$, so T is a projection. We have that $\operatorname{im}(T)$ is the x-axis. However, the projection onto the x-axis has standard matrix

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

so T is not the orthogonal projection onto im(T).

Alternatively, we can see that $\ker(T) = \operatorname{span}\left(\begin{bmatrix} 1 \\ -1 \end{bmatrix}\right)$, but $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ is not perpendicular to the x-axis, so T is not the orthogonal projection onto $\operatorname{im}(T)$.

(d) TRUE. For every vector space W and projection $T:W\longrightarrow W$, if T is surjective then T is the identity map on W.

Proof: Let $\vec{x} \in W$. Since T is surjective, there exists $\vec{y} \in W$ such that $T(\vec{y}) = \vec{x}$. Applying T to both sides of the equation, and using that $T(T(\vec{y})) = T(\vec{y}) = \vec{x}$, we get that $\vec{x} = T(\vec{x})$. Hence, T is the identity transformation.