Esame del 22 gennaio 2018

- 1) Dato il circuito di figura:
 - determinare la tensione di uscita v_{OUT} con $v_s = 0$ V;
 - tracciare l'andamento temporale della v_{OUT} quando v_s è un segnale di tensione sinusoidale di ampiezza picco-picco pari a 1V, valor medio nullo e frequenza pari a 1 kHz.

Esame del 15 febbraio 2018

1) Dato il circuito in figura, in cui V_{IN} ha l'andamento ad impulso di tensione riportato nel grafico, determinare e tracciare l'evoluzione temporale della tensione di uscita V_{OUT} .

$$M = \{V_t = 1 \text{ V}; K = 0.5 \text{ mA/V}^2; \lambda = 0\}$$

 $V_{DD} = 5\text{V}; \qquad R_D = 1\text{k}\Omega; \qquad R_S = 2\text{k}\Omega; \qquad R_I = 3\text{k}\Omega, \qquad R_2 = 3\text{k}\Omega, \qquad R_3 = 5\text{k}\Omega, \qquad C = 10\text{nF}$

Op Amp ideale $L^{+} = |L^{-}| = 12 \text{ V}$

1) Del circuito seguente, considerando in ingresso il gradino di tensione riportato in figura, e considerando l'op-amp ideale, calcolare e graficare (indicando i valori di tensione e gli istanti di tempo corretti) l'andamento nel tempo della tensione di uscita V_{OUT} . (Considerare il condensatore inizialmente scarico: $V_C(0)=0$ V)

Amplificatori Operazionali ideali con
$$L^+ = -L^- = 12$$
V \boldsymbol{Q}_I : [$V_T = 1$ V; $K = 0.5$ mA/V²; $\lambda = 0$] $R_D = 6$ k Ω ; $R_S = 4$ k Ω ; $R_I = 4$ k Ω ; $R_2 = 8$ k Ω ; $C = 0.5$ μ F $V_{DD} = 10$ V;

18 giugno 2018 V. 1

- 1) Del circuito seguente, con V_I una tensione continua pari a 1V e i_{in} un "piccolo segnale" di corrente, determinare i valori di R_S e R_I per avere rispettivamente:
 - la tensione di uscita in continua $V_{OUT} = 6V$
 - l'amplificazione di transresistenza per piccoli segnali $R_m = v_{out}/i_{in} = 9 \text{ k}\Omega$.

$$Q_I = \{ V_t = 1 \text{ V}; K = 0.5 \text{ mA/V}^2; \lambda = 0 \}$$

 $V_I = 1 \text{ V}; V_{DD} = 12 \text{ V}; C = \infty; R_D = 3 \text{k}\Omega$

Considerare l'amplificatore operazionale ideale, con tensione di alimentazione pari a $\pm V_{DD}$.

$$R_S = ?$$
; $R_1 = ?$

18 giugno 2018 V. 2

- 1) Del circuito seguente, con V_I una tensione continua pari a 2V e i_{in} un "piccolo segnale" di corrente, determinare i valori di R_S e R_I per avere rispettivamente:
 - la tensione di uscita in continua $V_{OUT} = 5V$
 - l'amplificazione di transresistenza per piccoli segnali $R_m = v_{out}/i_{in} = 10 \text{ k}\Omega$.

$$Q_I = \{V_t = 2 \text{ V}; K = 0.25 \text{ mA/V}^2; \lambda = 0\}$$

 $V_I = 2\text{V}; V_{DD} = 10\text{V}; C = \infty; R_D = 5\text{k}\Omega$

Considerare l'amplificatore operazionale ideale, con tensione di alimentazione pari a $\pm V_{DD}$.

$$R_S = ?$$
; $R_1 = ?$

1) Dato il circuito in figura, determinare il punto di lavoro del transistor M (I_D ; V_{GS} ; V_{DS}) per:

$$V_{IN} = 0V;$$

 $V_{IN} = 3,33V$
 $V_{IN} = 5V$

17 settembre 2018

- Dato il circuito in figura, in cui v_{in} è un generatore di piccolo segnale, determinare:
 - a. R_{SI} e R_{DI} in modo tale che g_{mI} =2mA/V e V_{DSI} =4V;
 - b. la tensione di uscita in continua V_{OUT} ;
 - c. il guadagno v_{out}/v_{in} a centro banda.

$$M_1=M_2=\{V_t=1 \text{ V}; K=0.5 \text{ mA/V}^2; \lambda=0\}$$

 $V_{DD}=5\text{V}; V_{IN}=2\text{V}; R_{D2}=2.5\text{k}\Omega; R_{S2}=0.5\text{k}\Omega ; C=\infty$

Esame del 27 ottobre 2018

- 1) Dato il circuito di figura, calcolare i valori di R_D e R_I che determinano:
 - la tensione di uscita in continua $V_{OUT} = 0V$;
 - il guadagno di tensione per piccoli segnali $A_v = v_{out}/v_{sig} = -4$

$$V_{DD} = 12 \text{V}, I = 2 \text{mA}$$
 $R_G = 10 \text{k}\Omega, \qquad C_I = C_2 = \infty$
 $Q_I: \{V_T = 2 \text{V}, K = 0.5 \text{mA/V}^2, \lambda = 0\}$
Op Amp ideale $L^+ = |L^-| = 12 \text{ V}$
 $R_D = ?? \qquad R_I = ??$