$$\int_1^5 \int_0^2 x^2 y^3 \, dx \, dy$$

$$\int_{1}^{5} \int_{0}^{2} x^{2} y^{3} dx dy$$

$$= \int_{1}^{5} \left(\frac{1}{3} x^{3} y^{3} \right) \Big|_{0}^{2} dy$$

$$= \int_{1}^{5} \frac{1}{3} y^{3} \left[(2x)^{3} - (0)^{3} \right] dy$$

$$= \int_{1}^{5} \frac{1}{3} y^{3} \left[(8) dy \right]$$

$$= \frac{2}{3} \int_{1}^{5} y^{3} dy$$

$$= \frac{2}{3} \left[(5x)^{4} - (1x)^{4} \right]$$

$$= 416$$

Evaluate the iterated integral.

$$\int_0^{\pi} \int_0^{\pi/4} 9 \sin(x + 4y) \, dy \, dx$$

$$\int_{0}^{\pi} \int_{0}^{\sqrt{4}} 9\sin(x+4y) dy dx$$

$$= 9 \int_{0}^{\pi} \int_{0}^{\sqrt{4}} \sin(x+4y) dy dx$$

$$= 9 \int_{0}^{\pi} \left(-\cos(x+4y)(4)\right) \int_{0}^{\sqrt{4}} dx$$

$$= -36 \int_{0}^{\pi} (os(x+4.\pi)) dx$$

$$= -36 \int_{0}^{\pi} (os(x+\pi)) dx$$

$$= -36 \left(sin(x+\pi) \right) \int_{0}^{\pi}$$

$$= -36 sin(2\pi)$$

Evaluate the iterated integral.

$$\int_{0}^{5} \int_{1}^{y} e^{2x - 3y} dx dy$$

$$\int_{0}^{5} \int_{1}^{4} e^{2x-3y} dy dy$$

$$= \int_{0}^{5} \left(\frac{1}{2} e^{2x-3y}\right) \Big|_{1}^{4} dy$$

$$= \frac{1}{2} \int_{0}^{5} \left[\left(e^{2y-3y}\right) - \left(e^{2-3y}\right) \right] dy$$

$$= \frac{1}{2} \int_{0}^{5} e^{-y} - e^{2-3y} dy$$

$$= \frac{1}{2} \left(-e^{-y} - e^{2-3y} \left(-\frac{1}{3} \right) \right) \Big|_{0}^{5}$$

$$= \frac{1}{2} \left[\left(-e^{5} + \frac{1}{3} e^{2-15} \right) - \left(-e^{6} + \frac{1}{3} e^{2} \right) \right]$$

$$= \frac{1}{2} \left(-e^{-5} + \frac{1}{3} e^{-13} + \left[-\frac{1}{3} e^{2} \right] \right)$$

Compute the volume of the region.

the region in the first octant bounded by the parabolic cylinder $z = 36 - y^2$ and the plane $x = 7$	
units ³	
Zy Plane 2 = 36-72	
Z = 36- Y2	y
$2 = 36 - \gamma^2$ when $0 \le \gamma \le 6$	
$A(x) = \int_0^6 36 - Y^2 dy$	Integrate on 2x daw First then on
$A(x) = \int_0^x 36 - y^2 dy$	First then on
	YX
xy Place px	
cue Stripz hars A area so it is the function we care about	
x = 3 function we cove about	
$y = A$ When $0 \le x \le 7$	
V=[A(y) dx	
Selve for Volume	
= 5° 5° 36-y2 dy dx	
$= \int_{0}^{7} \left(36y - \frac{1}{3}y^{3} \right) \Big _{0}^{6} dx$	
$=\int_{0}^{2} 216 - \frac{1}{3} \cdot 216 dx$	

$$= \int_0^7 |44| dx$$

$$= |44| \int_0^7 |1| dx$$

$$= |44| 7$$

$$= |008|$$

Evaluate the double integral of the function over the region.

 $\iint_D 8x^2 dA \text{ where } D \text{ is the region in the first quadrant bounded by } y = 3x \text{ and } y = x^3$

Banding	fonctions	ave i	n Leuns	OF X	so this	1 3
	regiev		eve tren	ct ban	eding fund	icus
	+ g(x)=					
91	(x) = h(x)					
	$^{3}-3x=0$					
	(x^2-3)					
	= 0 and			1/2×2		

$$V = \iint_{0}^{3} gx^{2} dA$$

$$= \int_{0}^{13} \int_{x}^{3x} gx^{2} dy dx$$

$$= \int_{0}^{13} gx^{2} \left(\frac{1}{2} \right) \int_{x}^{3x} dx$$

$$= \int_{0}^{13} gx^{2} \left(\frac{1}{2} \right) \int_{x}^{3x} dx$$

$$= \int_{0}^{13} gx^{2} \left(\frac{1}{2} \right) \int_{x}^{3x} dx$$

$$= g \int_{0}^{13} x^{2} (3x - x^{3}) dx$$

$$= g \int_{0}^{13} 3x^{3} - x^{5} dx$$

$$= g \left(\frac{3}{4} x^{4} - \frac{1}{6} x^{6} \right) \int_{0}^{15} dx$$

$$= g \left(\frac{3}{4} (13)^{4} - \frac{1}{6} (13)^{6} \right)$$

$$= g \left(\frac{3}{4} \cdot 3^{2} - \frac{1}{6} \cdot 3^{3} \right)$$

$$= g \left(\frac{3}{4} - \frac{22}{6} \right)$$

$$= 18$$

$$\bigcap_{0}^{2} \int_{y}^{2} f(x, y) dx dy$$

$$\bigcirc \int_0^2 \int_0^y f(x,y) \, dx \, dy$$

$$\bigcirc \int_{x}^{2} \int_{0}^{2} f(x, y) dx dy$$

$$\bigcirc \int_2^x \int_0^2 f(x, y) \, dx \, dy$$

$$\bigcap_{0}^{2} \int_{V}^{0} f(x, y) dx dy$$

Let f be a continuous function defined on the proper region $D=D_1\cup D_2\subset \mathbb{R}^2$ as shown in the figure.

 D_1 is the region in the first quadrant inside the circle $x^2 + y^2 = 1$, and D_2 is the region in the fourth quadrant bounded by the coordinate axes and the line y = x - 1. Determine the value of $\iint_{D_1} f(x, y) \, dA \text{ if } \iint_{D_1 \cup D_2} f(x, y) \, dA = 32 \text{ and } \iint_{D_2} f(x, y) \, dA = -10.$

$$\iint_{D_1} f(x, y) \ dA = \boxed{}$$

