TRABAJO #1 - ALMACENAMIENTO Y RECUPERACIÓN DE INFORMACIÓN

Integrantes: Ricardo Gandica, Samuel Ceballos, Daniela Niño

Parte 1: Ingesta de datos

Creamos un bucket de S3 llamado clima-colombia:

Creamos una instancia de EC2:

Nos conectamos a la instancia de EC2 y descargamos los datasets:

```
AbuntuBip.177.31.45.97.5 wget https://raw.githubusercontent.com/sceballosp/trabajos-ari-sti880/master/trabajo-1/Humedad.csv
--2023.90.96.08.031331- https://raw.githubusercontent.com/sceballosp/trabajos-ari-sti880/master/trabajo-1/Humedad.csv
lesolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.111.133, 185.199.108.133, 185.199.109.133, ...
onnecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.111.133|1443... connected.
HTP request sent, awaiting response... 200 0K
ength: 771820910 (24M) [text/plain]
aving to: 'Humedad.csv'
                                                                                                                                                               100%[=====
                                                                                                                                                                                                                                                                                                                                                                                                                                                       buntugip-172-31-45-97: $ wget https://raw.githubusercontent.com/sceballosp/trabajos-ari-st1800/master/trabajo-1/Temperatura.csv
-2023-09-04 00:14:00-- https://raw.githubusercontent.com/sceballosp/trabajos-ari-st1800/master/trabajo-1/Temperatura.csv
esolving raw.githubusercontent.com (raw.githubusercontent.com) 185.199.108.133, 185.199.113, 185.199.111.133, ...
onnecting to raw.githubusercontent.com (raw.githubusercontent.com) 185.199.108.133 | 443... connected.
ITP request sent, awaiting response... 200 OK
ength: 79184394 (70H) [text/plain]
aving to: 'Temperatura.csv'
                                                                                                                                                               100%[=======
```

Copiamos los datasets en el bucket clima-colombia en la respectiva carpeta de cada uno:

dountumip 172-31 45-97: \$ aws \$3 cp Humedad.csv \$3://clima-colombia/raw-data/humedad/dataset.csv pload: _/Humedad.csv to \$3://clima-colombia/raw-data/humedad/dataset.csv buntumip-172-31-45-97: \$ aws \$3 cp Temperatura.csv \$3://clima-colombia/raw-data/temperatura/dataset.csv pload: _/Temperatura.csv to \$3://clima-colombia/raw-data/temperatura/dataset.csv

En el bucket clima-colombia nos deben aparecer los datos:

• Los datos de humedad deben aparecer en las carpetas raw-data/humedad/

• Los datos de temperatura deben aparecer en las carpetas raw-data/temperatura/

Parte 2: Modificar y catalogar los datos

Creamos una base de datos en Glue llamada clima-colombia:

Creamos un ETL job para pasar los datos de humedad de la carpeta raw-data a la carpeta trusted-data en el bucket clima-colombia de S3 y para crear un catálogo en Glue a partir de los datos en trusted-data:

Creamos un ETL job para pasar los datos de temperatura de la carpeta raw-data a la carpeta trusted-data en el bucket clima-colombia de S3 y para crear un catálogo en Glue a partir de los datos en trusted-data:

Corremos los ETL jobs y en la base de datos de Glue nos deben aparecer las dos tablas:

Tabla de humedad

Tabla de temperatura

También nos deben aparecer los datos en el bucket clima-colombia de S3:

• Los datos de humedad deben aparecer en las carpetas trusted-data/humedad/

Los datos de temperatura deben aparecer en las carpetas trusted-data/temperatura/

Parte 3: Consultas desde Athena

Hacemos consultas desde Athena usando los catálogos:

Join entre las dos tablas

 Join entre las dos tablas y contar el número de registros donde la temperatura es mayor a 23° y la humedad es mayor a 60%

Parte 4: Consultas desde Redshift

Creamos la base de datos externa:

Creamos una tabla con los datos de temperatura los cuales se encuentran en el bucket clima-colombia de S3 en las carpetas trusted-data/temperatura/:

Hacemos una consulta a la tabla temperatura:

Creamos una tabla nativa para los datos de humedad:

Cargamos los datos a la tabla humedad usando los datos que se encuentran en el bucket clima-colombia de S3 en las carpetas trusted-data/humedad/:

Hacemos una consulta a la tabla humedad:

Hacemos una consulta usando la tabla externa temperatura y la tabla nativa humedad:

Parte 5: Implementación de cluster EMR

Entramos al servicio de EMR y creamos un cluster con la siguiente configuración:

Parte 5.1: Consultas desde Hive

Consultamos los datos usando los catálogos de Glue:

• Join entre las dos tablas

 Join entre las dos tablas y contar el número de registros donde la temperatura es mayor a 23° y la humedad es mayor a 60%

Desde Hive creamos una base de datos llamada clima_colombia_hive (en esta se pondrán los datos leídos desde S3):

Leemos los datos de temperatura desde S3 y los añadimos a la base de datos clima_colombia_hive:

Hacemos consultas desde la base de datos clima_colombia_hive:

• Join entre las dos tablas

 Join entre las dos tablas y contar el número de registros donde la temperatura es mayor a 23° y la humedad es mayor a 60%

Si entrenamos a Glue y vemos las bases de datos, podremos ver los catálogos que creamos desde Hive:

Parte 5.2: Ambiente de procesamiento

Creamos un ambiente de procesamiento de pyspark en el cluster de EMR y desde allí accedimos a los datos en S3 mediante SparkSQL:

Parte 5.3: HDFS

Copiamos los archivos del bucket clima-colombia a HDFS:

Name Name Image: property of the pro

run-1693800186725-part-block-0-r-00000-snappy.parquet run-1693800186725-part-block-0-r-00001-snappy.parquet

Información adicional

Bucket de clima-colombia: s3://clima-colombia/

GitHub: https://github.com/sceballosp/trabajos-ari-st1800/tree/master/trabajo-1/

 Jupyter notebook del ambiente de procesamiento: https://github.com/sceballosp/trabajos-ari-st1800/tree/master/trabajo-1/code/emr/pyspark