Cut the sticks

You are given **N** sticks, where each stick is of positive integral length. A *cut operation* is performed on the sticks such that all of them are reduced *by* the length of the smallest stick.

Suppose we have 6 sticks of length

544228

then in one *cut operation* we make a cut of length 2 from each of the 6 sticks. For next *cut operation* 4 sticks are left (of non-zero length), whose length are

3226

Above step is repeated till no sticks are left.

Given length of **N** sticks, print the number of sticks that are cut in subsequent *cut operations*.

Input Format

The first line contains a single integer N.

The next line contains N integers: a_0 , a_1 ,... a_{N-1} separated by space, where a_i represents the length of i^{th} stick.

Output Format

For each operation, print the number of sticks that are cut in separate line.

Constraints

 $1 \le N \le 1000$

 $1 \le a_i \le 1000$

Sample Input #00

6 544228

Sample Output #00

6 4 2

Sample Input #01

8 12343321

Sample Output #01

Explanation

Sample Case #00 :

sticks-length	length-o	f-cut sticks-cut
544228	2	6
3226	2	4
1 4	1	2
3	3	1
	DONE	DONE

Sample Case #01

sticks-length	length-of-	-cut sticks-cut
12343321	1	8
123221	1	6
1211	1	4
1_	1	1
	DONE	DONE