Hydridic Reductions

from chapter(s) _____ in the recommended text

A. Introduction

B. Mechanism

$$H^{+}$$
 \longrightarrow H^{+}

easy

hard

easy

hard

easy to reduce hard to reduce them

tosylates are tosyl groups are ionic chemoselective reductions

do not tend

C. Substrate Scope

One Reduction

amide anion

alkoxide

alkoxide

alkoxide

$$\searrow \sim$$
 NH₂

sulfone

imine

$$\bigcirc$$
N \bigcirc

$$\begin{array}{c}
O \\
NH_2
\end{array}$$

$$\begin{array}{c}
(i) 2H^- \\
(ii) 2H^+ \\
-H_2O
\end{array}$$

amine

Difference Between Hydridic Reductions Of Amides And Esters

а

alkoxide

b

C

tetrahedral intermediate

$$H^{-}$$
 H^{+}
 H^{+}
 H^{+}
 $Alcohol$

mechanism **b**.

Because the amine anion is not a good leaving group.

D. NADH: A Hydride Source In Vivo

NADH full name: Reduced nicotinamide adenine dinucleotide

by-product full name: Nicotinamide adenine dinucleotide (NAD)

is NAD.