S.I. Unidad 1

Introducción a los sistemas microinformáticos

Índice

- 1. Informática e información
 - A. Simbología y codificación
- 2. Sistemas de numeración
 - A. Sistema decima
 - B. Sistema binario
 - c. Sistema hexadecimal
- 3. Representación interna de la información
 - A. Medida de la información
 - B. Representación de datos alfabéticos y alfanuméricos
- 4. Puertas lógicas
- 5. Elementos funcionales de un ordenador

Índice

1. Informática e información

A. Simbología y codificación

2. Sistemas de numeración

- A. Sistema decimal
- B. Sistema binario
- c. Sistema hexadecimal

3. Representación interna de la información

- A. Medida de la información
- B. Representación de datos alfabéticos y alfanuméricos
- 4. Puertas lógicas
- 5. Elementos funcionales de un ordenador

Ivens Huertas 2

1. Informática e información

INFORMÁTICA

Informática

=

Información + Automática

1. Informática e información

ELEMENTOS DE UN SISTEMA DE COMUNICACIÓN

7

- Emisor
- Receptor
- Medio o canal

Para que exista comunicación, emisor y receptor deben entenderse

Mensaje o datos

Ivens Huertas 5

1. Informática e información

• ELEMENTOS DE UN SISTEMA DE COMUNICACIÓN

- ¿Quién sería el emisor, receptor, medio y mensaje?
 - Dos amigos hablando en la calle
 - Noticia en la radio
 - Un ordenador descargando un archivo de Internet

Ivens Huertas

1. Informática e información

- Simbología y codificación
 - Ejemplos de códigos
 - Abecedario

Ivens Huertas

Código Morse

1. Informática e información

• Simbología y codificación

1. Informática e información

- Simbología y codificación
 - ¿Qué pasa dentro del ordenador?
 - Impulsos eléctricos
 - 2 estados
 - Código con 2 símbolos: 0 y 1
 - 0 = ausencia de corriente
 - 1 = paso de corriente

Código Binario: símbolos 0 y 1

Ivens Huertas

9

- Informática e información

Sistemas de numeración

- Sistema decimal
- Sistema binario
- Sistema hexadecimal
- Representación interna de la información
- **Puertas lógicas**
- Elementos funcionales de un ordenador

Ivens Huertas

Sistemas de codificación

- Sistema decimal
 - 10 dígitos (0 hasta 9) → cantidad
 - Posición → magnitud
 - Ejemplo:

2. Sistemas de numeración

- Sistema decimal
 - Ejemplo:

10

 $5 \times 1000 + 9 \times 100 + 3 \times 10 + 9 \times 1$

$$5 \times 10^3 + 9 \times 10^2 + 3 \times 10^1 + 9 \times 10^0$$

5939

- Sistema binario
 - Decimal -> 10 dígitos -> sistema en base 10
 - Binario -> 2 dígitos -> sistema en base 2
 - A los dígitos binarios les llamamos bits
 - Un bit puede tomar el valor de 0 o 1

Ivens Huertas 13

Decimal		Bin	ario	
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

2. Sistemas de numeración

- Sistema binario
 - Empezamos a contar...

Ivens Huertas 14

2. Sistemas de numeración

- Sistema binario
 - - Subíndice -> Base a la que corresponde
 - Ejemplo:

$$3_{10} = 11_2$$

 $8_{10} = 1000_2$

- Sistema binario
 - Hasta qué número podemos contar con **n** bits:

Max n^{o} decimal representable con n bits= $2^{n} - 1$

2. Sistemas de numeración

- Sistema binario
 - Ejemplo: 5 bits

$$2^5 - 1$$

$$32 - 1$$

31

(Podremos contar desde el 0 hasta el 31)

Dispondremos de 32 números distintos

En la calculadora se debe usar la tecla

Ivens Huertas 17

18

2. Sistemas de numeración

- Sistema binario
 - Ejemplo: 8 bits

$$2^{8} - 1$$
 $256 - 1$
 255

(Podremos contar desde el 0 hasta el 255)

Dispondremos de 256 números distintos

2. Sistemas de numeración

Sistema binario

- Conversión binario-decimal
 - Estructura de pesos
 - El bit más a la derecha es el bit menos significativo
 - El bit más a la izquierda es el bit más significativo

$$\dots 2^4 \ 2^3 \ 2^2 \ 2^1 \ 2^0$$

- Sistema binario
 - Ejercicio.

Determinar el valor decimal del número entero binario 1101101

$$1101101_{2}$$

$$1\times2^{6} + 1\times2^{5} + 0\times2^{4} + 1\times2^{3} + 1\times2^{2} + 0\times2^{1} + 1\times2^{0}$$

$$64 + 32 + 0 + 8 + 4 + 0 + 1$$

$$109_{10}$$

Ivens Huertas

21

23

2. Sistemas de numeración

- Sistema binario
 - Conversión decimal-binario
 - Método por división sucesiva
 - Ir dividiendo el número decimal entre 2 hasta que no se pueda continuar (cociente entero = 0)
 - Los restos generados en cada división forman el número binario
 - El primer resto es el bit menos significativo
 - El último resto es el bit más significativo

Ivens Huertas 22

2. Sistemas de numeración

- Sistema binario
 - Ejemplo: convertir el número decimal 12 a binario

2. Sistemas de numeración

• Sistema binario

Ivens Huertas

101102

25

- Sistema binario
 - Ejercicio: convierte los siguientes números decimales a binario usando divisiones

a)
$$13 = 1101$$

Ivens Huertas

2. Sistemas de numeración

- Sistema binario
 - Ejercicio: pasa a binario los siguientes números decimales

Ivens Huertas

26

2. Sistemas de numeración

- Sistema binario
 - Aritmética binaria
 - Suma binaria
 - Reglas básicas:

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 0$$
 (con acarreo)

2. Sistemas de numeración

- Sistema binario
 - Ejemplo.

- Sistema binario
 - Ejemplo.

Ivens Huertas

2. Sistemas de numeración

- Sistema binario
 - Ejercicio. Realiza las siguientes sumas binarias. Comprueba el resultado en decimal.

a)
$$11 + 11$$
= 110 $(3+3=6)$ b) $100 + 10$ = 110 $(4+2=6)$ c) $111 + 11$ = 1010 $(7+3=10)$ d) $110 + 100$ = 1010 $(6+4=10)$

e) 1111 + 1100 = 11011 (15+12=27)

29 Ivens Huertas 30

2. Sistemas de numeración

- Sistema binario
 - Aritmética binaria
 - Resta binaria
 - Reglas básicas:

- Sistema binario
 - Ejemplo.

- Sistema binario
 - Ejemplo.

2. Sistemas de numeración

- Sistema binario
 - Aritmética binaria
 - Multiplicación binaria
 - Se realiza igual que con los números decimales, pero usando bits

Ivens Huertas

33

Ivens Huertas

34

2. Sistemas de numeración

- Sistema binario
 - Ejemplo.

11 × 01

2. Sistemas de numeración

Ejemplo.

11 × 11

- Sistema binario
 - ✓ Ejercicio. Realiza las siguientes multiplicaciones binarias. Comprueba el resultado en decimal.

a)
$$111 \times 101 = 100011 \quad (7 \times 5 = 35)$$

b)
$$1011 \times 1001 = 1100011 \quad (11 \times 9 = 99)$$

c)
$$1101 \times 1010 = 10000010 (13 \times 10 = 130)$$

2. Sistemas de numeración

- Sistema hexadecimal
 - 16 dígitos y caracteres alfabéticos
 - 10 dígitos numéricos + 6 caracteres alfabéticos

Ivens Huertas 38

2. Sistemas de numeración

39

37

Sistema hexadecimal

Ivens Huertas

Ivens Huertas

- Conversión binario-hexadecimal
 - Agrupando en bloques de 4 bits, empezando por la derecha, y convirtiendo a hexadecimal

Hexadecimal	0	1	2	3	4	5	6	7
Binario	0000	0001	0010	0011	0100	0101	0110	0111
Hexadecimal	8	9	Α	В	С	D	E	F

2. Sistemas de numeración

40

- Sistema hexadecimal
 - ✓ Ejercicio. Convierte de binario a hexadecimal los siguientes números:

a)
$$1011110101_2$$
 = $2F5_{16}$

b)
$$10001100_2 = 8C_{16}$$

c)
$$10111_2 = 17_{16}$$

d)
$$11101_2 = 1D_{16}$$

$$e) 1111111011_2 = 1FB_{16}$$

- Sistema hexadecimal
 - Conversión hexadecimal-binario
 - Cada dígito hexadecimal será un grupo de 4 bits

Hexadecimal	0	1	2	3	4	5	6	7
Binario	0000	0001	0010	0011	0100	0101	0110	0111
Hexadecimal	8	9	Α	В	С	D	E	F
Binario	1000	1001	1010	1011	1100	1101	1110	1111

Ivens Huertas 41

- Ciata man have desired

- Sistema hexadecimal
 - Ejercicio. Convierte de hexadecimal a binario los siguientes números:

a)
$$60_{16}$$
= 1100000_2 b) 91_{16} = 10010001_2 c) $A0_{16}$ = 10100000_2 d) $2D1_{16}$ = 1011010001_2 e) $94B_{16}$ = 100101001011_2

2. Sistemas de numeración

 $f) 5E8_{16} = 10111101000$

Ivens Huertas 42

2. Sistemas de numeración

- Sistema hexadecimal
 - Conversión hexadecimal-decimal
 - Estructura de pesos

2. Sistemas de numeración

- Sistema hexadecimal
 - Ejercicio. Determinar el valor decimal del número entero hexadecimal C7A3

$$12 \times 16^3 + 7 \times 16^2 + 10 \times 16^1 + 3 \times 16^0$$

- Sistema hexadecimal
 - Conversión decimal-hexadecimal
 - Al igual que hacíamos con la conversión binariodecimal, iremos dividiendo, pero esta vez, entre 16

2. Sistemas de numeración

- Sistema hexadecimal
 - Ejemplo: convertir el número decimal 650 a hexadecimal

iMucho cuidado con ese "10"!

$$650 / 16 = 40 \rightarrow \text{resto} = 10 \rightarrow A$$

 $40 / 16 = 2 \rightarrow \text{resto} = 8$
 $2 / 16 = 0 \rightarrow \text{resto} = 2$
STOP!

28A₁₆

Ivens Huertas 45

2. Sistemas de numeración

- Sistema hexadecimal
 - Ejercicio. Convierte de decimal a hexadecimal los siguientes números:

b)
$$74_{10} = 4A_{16}$$

c)
$$211_{10} = D3_{16}$$

d)
$$689_{10} = 2B1_{16}$$

$$e) 999_{10} = 3E7_{16}$$

$$f) 3112_{10} = C28_{16}$$

Ivens Huertas 46

Decimal		E	Binari	0		Hexadecimal
0	0	0	0	0	0	0
1	0	0	0	0	1	1
2	0	0	0	1	0	2
3	0	0	0	1	1	3
4	0	0	1	0	0	4
5	0	0	1	0	1	5
6	0	0	1	1	0	6
7	0	0	1	1	1	7
8	0	1	0	0	0	8
9	0	1	0	0	1	9
10	0	1	0	1	0	Α
11	0	1	0	1	1	В
12	0	1	1	0	0	С
13	0	1	1	0	1	D
14	0	1	1	1	0	Е
15	0	1	1	1	1	F
16	1	0	0	0	0	10

 En general, para convertir de cualquier base a otra, podemos ayudarnos convirtiendo a decimal o a binario

Ivens Huertas 49

3. Representación interna de la información

- Medida de la información
 - Bit: Unidad mínima de almacenamiento en informática. Queda representado por un 0 o un 1
 - Byte: Agrupación de 8 bits
 - El ordenador suele trabajar con agrupaciones de bits múltiplos de 2
 - 2, 4, 8, 16, 32, 64, 128,...

Índice

- Informática e información
 - A. Simbología y codificación

- A. Sistema decimal
- R Sistema hinario
- c. Sistema hexadecima

3. Representación interna de la información

- A. Medida de la información
- B. Representación de datos alfabéticos y alfanuméricos
- 4. Puertas lógicas
- 5. Elementos funcionales de un ordenador

Ivens Huertas 50

3. Representación interna de la información

_

- Medida de la información
 - Equivalencia de medidas en múltiplos de bits
 - En informática se utiliza el sistema binario
 - Potencias de 2
 - En el Sistema Internacional de Medidas (o sistema métrico)
 - Potencias de 10

Medida de la información

Unidades de información (del byte)						
Sistema Internacional (de	cimal)	ISO/IEC 80000-13 (I	binario)			
Múltiplo (símbolo)	SI	Múltiplo (símbolo)	ISO/IEC			
kilobyte (kB)	10 ³	kibibyte (KiB)	2 ¹⁰			
megabyte (MB)	10 ⁶	mebibyte (MiB)	2 ²⁰			
gigabyte (GB)	10 ⁹	gibibyte (GiB)	2 ³⁰			
terabyte (TB)	10 ¹²	tebibyte (TiB)	2 ⁴⁰			
petabyte (PB)	10 ¹⁵	pebibyte (PiB)	2 ⁵⁰			
exabyte (EB)	10 ¹⁸	exbibyte (EiB)	2 ⁶⁰			
zettabyte (ZB)	10 ²¹	zebibyte (ZiB)	2 ⁷⁰			
vottabyte (YB)	10 ²⁴	vobibyte (YiB)	2 ⁸⁰			

53 Ivens Huertas

Cada escalón:

- Sistema Internacional = 1000

3. Representación interna de la información

- Medida de la información
 - Capacidad de un dispositivo
 - Múltiplos de **byte**:
 - kilobyte, megabyte, gigabyte,...
 - Capacidad de una línea de transmisión de datos
 - Múltiplos de bit:
 - kilobit, megabit, gigabit,...

3. Representación interna de la información

- ✓ Ejercicio. Expresa en gigabits y en megabytes las siquientes cantidades, tanto por el Sistema Internacional de medidas como con el sistema binario:
 - 3 TB
 - 2 ZB
 - 7 PB
 - ¿Cuántos MB y GB, según el Sistema Internacional de medidas y según el sistema binario, son 10.000.000.000 bits?

Ivens Huertas 56

- Representación de datos alfabéticos y alfanuméricos
 - Las computadoras
 - Sólo trabajan con números
 - Caracteres = Asignación de un número a cada carácter
 - Universalización de unos pocos códigos de entrada/salida
 - ASCII
 - Unicode
 - BCD
 - EBCDIC
 - ...

57 Ivens Huertas

• Representación de datos alfabéticos y alfanuméricos

ASCII

(American Standard Code for Information Interchange)

3. Representación interna de la información

- Código de caracteres basado en el alfabeto latino, tal como se usa en el inglés moderno y en otras lenguas occidentales
- Cada carácter = 7 bits
- Caracteres ingleses más corrientes
 - Problema:
 - Caracteres especiales y caracteres específicos de otras lenguas

Ivens Huertas 58

3. Representación interna de la información

- ASCII
 - Reserva los primeros 32 códigos (numerados del 0 al 31 en decimal) y el 127 para caracteres de control

- El carácter 9 representa la tabulación horizontal
- El carácter 10 representa la función "nueva línea" (LF, line feed), que hace que una impresora avance el papel

3. Representación interna de la información

- ASCII
 - Los códigos del 32 al 126 se conocen como caracteres **imprimibles**
 - Letras (a, b, c, ... A, B, C,...)
 - Dígitos (0, 1, ..., 9)
 - Signos de puntuación (!, ?, . ,...)
 - Símbolos (\$, %, &,...)

Tabla ASCII	00	NULL	(carácter nulo)
Iabia ASCII	01	SOH	(inicio encabezado)
	02	STX	(inicio texto)
	03	ETX	(fin de texto)
	04	EOT	(fin transmisión)
	05	ENQ	(consulta)
	06	ACK	(reconocimiento)
	07	BEL	(timbre)
	08	BS	(retroceso)
	09	HT	(tab horizontal)
	10	LF	(nueva línea)
	11	VT	(tab vertical)
	12	FF	(nueva página)
	13	CR	(retorno de carro)
	14	SO	(desplaza afuera)
C	15	SI	(desplaza adentro)
Caracteres	16	DLE	(esc.vínculo datos)
de control	17	DC1	(control disp. 1)
	18	DC2	(control disp. 2)
	19	DC3	(control disp. 3)
	20	DC4	(control disp. 4)
	21	NAK	(conf. negativa)
	22	SYN	(inactividad sínc)
	23	ETB	(fin bloque trans)
	24	CAN	(cancelar)
	25	EM	(fin del medio)
	26	SUB	(sustitución)
	27	ESC	(escape)
	28	FS	(sep. archivos)
	29	GS	(sep. grupos)
	30	RS	(sep. registros)
	31	US	(sep. unidades)
	127	DEL	(suprimir)

	32	espacio	64	@	96	•
	33	!	65	Α	97	а
	34	"	66	В	98	b
	35	#	67	С	99	C
	36	\$	68	D	100	d
	37	%	69	E	101	е
	38	&	70	F	102	f
	39	'	71	G	103	g
	40	(72	Н	104	h
	41)	73	I	105	i
	42	*	74	J	106	j
	43	+	75	K	107	k
	44	,	76	L	108	- 1
	45	-	77	M	109	m
	46		78	N	110	n
S	47	1	79	0	111	0
s	48	0	80	Р	112	р
٦	49	1	81	Q	113	q
	50	2	82	R	114	r
	51	3	83	s	115	S
	52	4	84	Т	116	t
	53	5	85	U	117	u
	54	6	86	V	118	V
	55	7	87	W	119	w
	56	8	88	X	120	X
	57	9	89	Υ	121	у
	58	:	90	Z	122	Z
	59	;	91	[123	{
	60	<	92	Ĭ	124	i i
	61	=	93	1	125	}
	62	>	94	۸	126	~
	63	?	95	_		

Caractere

imprimible

3. Representación interna de la información

- ASCII extendido
 - ASCII no contemplaba ni caracteres especiales ni específicos de otras lenguas
 - Ejemplos:
 - Ç, ñ, acentos, diéresis, ...
 - ©, ±, ½, ...
 - ASCII extendido se extiende a 8 bits -> 256 caracteres diferentes
 - Existe un código ASCII extendido para cada país (sólo la parte extendida, la estándar es común)

Ivens Huertas 62

Tabla ASCII extendida

Ó \perp Ô Ò Õ Û Ù 1/2 Estos caracteres se añaden a los É = de la tabla ASCII estándar Æ ô nbsp

3. Representación interna de la información

- ASCII extendido
 - Ejercicio: codifica en ASCII extendido la palabra "Tiza"

T i z a

105 122 97

Ojo: hemos de utilizar los 8 bits para cada carácter, aunque tengamos ceros a la izquierda

ASCII extendido

Ejercicio: descifra el siguiente mensaje codificado en ASCII extendido: 010100000110100101100011011111

Al ser ASCII extendido, agrupamos de 8 en 8 bits

01010000011010010110001101101111

80 105 99 111

Pico

Ivens Huertas 65

3. Representación interna de la información

Unicode

 Código estándar internacional que se utiliza en la mayoría de los sistemas operativos

- Muchas más posibilidades comparado con ASCII, que utilizaba hasta 8 hits
- Puede procesar la información que abarca la mayor parte de los idiomas del mundo

Ivens Huertas 66

3. Representación interna de la información

- Unicode
 - Es compatible con la mayoría de:
 - Sistemas operativos actuales
 - Navegadores de Internet
 - Permite que una aplicación se oriente a varios idiomas sin necesidad de volverla a diseñar
 - ASCII tenía una tabla específica para cada país

3. Representación interna de la información

68

- Unicode
 - Incluye todos los caracteres de uso común en la actualidad
 - La última versión = 145.000 caracteres
 - Alfabetos
 - Sistemas ideográficos
 - Colecciones de símbolos (matemáticos, técnicos, musicales,...)
 - iY la cifra crece en cada versión!

Ivens Huertas 67 Ivens Huertas

Ejercicios

1. Tenemos un fichero de texto codificado en ASCII extendido.

Descifra cual es el texto que contenía si la secuencia de bits es la siguiente:

0100 0111 0110 0001 0111 0100 0110 1111

2. Codifica en ASCII extendido expresado en binario el siguiente texto:

Hola.

