Física Nuclear y de Partículas Grado en Física UNED

Tema 8: El Modelo Estándar de partículas elementales

César Fernández Ramírez Departamento de Física Interdisciplinar Universidad Nacional de Educación a Distancia (UNED)

Contextualización dentro de la asignatura

- Bloque I. Estructura nuclear
 - Tema 1: Principales características del núcleo atómico
 - Tema 2: La interacción nuclear. El deuterón y la interacción nucleón-nucleón
 - Tema 3: Modelos nucleares
- Bloque II. Radioactividad y desintegraciones nucleares
 - Tema 4: Desintegración nuclear
 - Tema 5: Desintegraciones α , β y γ
- · Bloque III. Reacciones nucleares e interacción radiación-materia
 - Tema 6: Reacciones nucleares
 - Tema 7: Interacción radiación-materia
- Bloque IV. Física subnuclear
 - Tema 8: El Modelo Estándar de partículas elementales
 - Tema 9: Quarks y hadrones

Cronograma

	L	М	Х	J	V	S	D
Octubre		1	2	3	4	5	6
	7	8	9	10	11	12	13
	14	15	16	17	18	19	20
	21	22	23	24	25	26	27
	28	29	30	31			
Noviembre					1	2	3
	4	5	6	7	8	9	10
	11	12	13	14	15	16	17
	18	19	20	21	22	23	24
	25	26	27	28	29	30	
Diciembre							1
	2	3	4	5	6	7	8
	9	10	11	12	13	14	15
	16	17	18	19	20	21	22
	23	24	25	26	27	28	29
	30	31					
Enero			1	2	3	4	5
	6	7	8	9	10	11	12
	13	14	15	16	17	18	19
	20	21	22	23	24	25	26
	27	28	29	30	31		

Bloque I	
	Tema 1
	Tema 2
	Tema 3
Bloque II	
	Tema 4
	Tema 5
Bloque III	
	Tema 6
	Tema 7
Bloque IV	
	Tema 8
	Tema 9

Material disponible

- · Material disponible en el repositorio Github de la asignatura
 - https://github.com/cefera/FNyP
 - Esta presentación:
 - ./Presentaciones/Tema8.pdf
 - Código en Python asociado:
 - ./Notebooks/Tema8.ipynb

Esquema

Unidades naturales

$$\hbar = c = 1$$

Objetivos específicos

fermiones quarks leptones u d e v_e c s μ v_{μ} b t τ v_{τ} bosones mediadores masa γ g Z W H

~

Vértices de interacción

 Diagramas de Feyman de los vértices de interacción para el Modelo Estándar de Partículas elementales

Masa inercial y Higgs

- La interacción con el Higgs proporciona la masa inercial de las partículas, es decir, «genera su oposición al movimiento»
- Si una partícula no interacciona con el Higgs, su masa inercial es cero y se mueve a la velocidad de la luz en el vacío

Oscilaciones de neutrinos

Desintegración doble β

- Recordando el Tema 5
- $A(Z,N) \to A(Z+2,N-2) + 2e^- + 2\bar{\nu}_e$
- Este proceso permite profundizar en la naturaleza del neutrino
 - Desintegración doble β sin neutrinos

$$^{82}_{34}$$
Se \rightarrow^{82}_{36} Kr + 2e⁻ + 2 $\bar{\nu}_e$
 $^{82}_{34}$ Br \rightarrow^{82}_{36} Kr + e⁻ + $\bar{\nu}_e$

Decaimiento doble beta

Resumen