Assignment 9 Abhishek Agrahari 190123066

```
Code
clc;
clear;
L = 0.5:
T = 1:
h = 0.1;
r = 0.25;
k = 0.0025;
Nx = 5;
Nt = 400;
u = zeros(Nx+1, Nt+1);
err = zeros(Nx+1, Nt+1);
pos = zeros(1,Nx+1);
time = zeros(1,Nt+1);
for n = 1:Nx+1
  u(n,1) = 0;
  pos(n) = (n-1)*h;
end
for n = 1:Nt+1
  time(n) = (n-1)*k;
end
MMI = zeros(Nx+1, Nx+1);
for i = 1:Nx+1
  MMI(i,i) = 1;
end
aar = zeros(1,Nx);
bbr = zeros(1,Nx+1);
ccr = zeros(1,Nx);
aar(1:Nx-1) = r;
aar(Nx) = 2*r;
bbr(1:Nx+1) = 1.-2.*r;
ccr(2:Nx) = r;
ccr(1) = 2*r;
MMr = diag(bbr, 0) + diag(aar, -1) + diag(ccr, 1);
Cr = zeros(1,Nx+1);
Cr(Nx+1) = 2*h*r;
for j = 2:Nt+1
  u(1:Nx+1,j) = MMI \setminus MMr*u(1:Nx+1,j-1) + MMI \setminus transpose(Cr);
end
for j = 1:Nt+1
  for i = 1:Nx+1
     err(i, j) = abs(act(i,j,h,k)-u(i,j));
  end
end
figure(1);
surf(time,pos,u);
shading interp;
xlabel('Time');
ylabel('Position');
title('Explicit Scheme: U(x,t)');
```

```
figure(2);
surf(time, pos, err);
shading interp;
xlabel('Time');
vlabel('Position');
title('Explicit Scheme: Error value');
fprintf('Time \t x=0 \ t \ x=0.1 \ t \ x=0.2 \ t \ x=0.3 \ t \ x=0.4 \ t \ x=0.5 \ n')
for t = 1:Nt+1
  actt = (t-1)*k;
  if actt == 0.01 || actt == 0.05 || actt == 0.5 || actt == 1
       fprintf('%.2f \t %10f \t %5f \t %5f \t %5f \t %5f \t %5f \n',actt, u(1,t), u(2,t),u(3,t), u(4,t),
u(5,t), u(6,t);
  end
end
function val = act(i,i,h,k)
  t = (i-1)*k;
  x = (i-1)*h;
  val = 2*t;
  val = val + 1/2*((12*x*x-1)/6);
  sum = 0;
  TOL = 10^{(-10)};
  n = 1;
  while term(x,t,n) > TOL
     sum = sum + term(x,t,n);
     n = n + 1;
  end
  val = val - sum;
end
function val = term(x,t,n)
  val = ((-1)^n*exp(-4*pi*pi*n*n*t)*cos(2*n*pi*x))/n^2;
  val = val/(pi*pi);
end
```

Output

Time	x=0	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	
0.01	0.000000	0.000000	0.000781	0.007812	0.036719	0.109375	
0.05	0.029064	0.036381	0.059353	0.100657	0.163615	0.250924	
0.50	0.915000	0.925000	0.955000	1.005000	1.075000	1.165000	
1.00	1.915000	1.925000	1.955000	2.005000	2.075000	2.165000	

Observations

Values of the error is more for lower valus of time and x. As time increases error goes to zero.

Code

```
clc;
clear;
L = 0.5;
T = 1;
Nt = 100;
k = 0.01;
Nx = 5;
h = 0.1;
r = 1;
u = zeros(Nx+1, Nt+1);
err = zeros(Nx+1, Nt+1);
pos = zeros(1,Nx+1);
time = zeros(1,Nt+1);
for n = 1:Nx+1
  u(n,1) = 0;
  pos(n) = (n-1)*h;
for n = 1:Nt+1
  time(n) = (n-1)*k;
end
aal = zeros(1,Nx);
bbl = zeros(1,Nx+1);
ccl = zeros(1,Nx);
aal(1:Nx-1) = -r;
aal(Nx) = -2*r;
bbl(1:Nx+1) = 2.+2.*r;
ccl(2:Nx) = -r;
ccl(1) = -2*r;
MMI = diag(bbl,0) + diag(aal,-1) + diag(ccl,1);
aar = zeros(1,Nx);
bbr = zeros(1,Nx+1);
```

```
ccr = zeros(1,Nx);
aar(1:Nx-1) = r;
aar(Nx) = 2*r;
bbr(1:Nx+1) = 2.-2.*r;
ccr(2:Nx) = r;
ccr(1) = 2*r;
MMr = diag(bbr, 0) + diag(aar, -1) + diag(ccr, 1);
Cr = zeros(1,Nx+1);
Cr(Nx+1) = 4*h*r;
for j = 2:Nt+1
  u(1:Nx+1,j) = MMI \setminus MMr*u(1:Nx+1,j-1) + MMI \setminus transpose(Cr);
end
for j = 1:Nt+1
  for i = 1:Nx+1
     err(i, j) = abs(act(i,j,h,k)-u(i,j));
end
figure(1);
surf(time,pos,u);
shading interp;
xlabel('Time');
ylabel('Position');
title('Crank Nicolson Scheme: U(x,t)');
figure(2);
surf(time, pos, err);
shading interp;
xlabel('Time');
vlabel('Position'):
title('Crank Nicolson Scheme: Error value');
fprintf('Time \t x=0 \ t \ x=0.1 \ t \ x=0.2 \ t \ x=0.3 \ t \ x=0.4 \ t \ x=0.5 \ n')
for t = 1:Nt+1
  actt = (t-1)*k;
  if actt == 0.01 || actt == 0.05 || actt == 0.5 || actt == 1
       fprintf('%.2f \t %10f \t %5f \t %5f \t %5f \t %5f \t %5f \n',actt, u(1,t), u(2,t),u(3,t), u(4,t),
u(5,t), u(6,t));
  end
end
function val = act(i,j,h,k)
  t = (i-1)*k:
  x = (i-1)*h;
  val = 2*t;
  val = val + 1/2*((12*x*x-1)/6);
  sum = 0;
  TOL = 10^-7:
  n = 1;
  while term(x,t,n) > TOL
     sum = sum + term(x,t,n);
     n = n + 1;
  end
  val = val - sum;
end
function val = term(x,t,n)
  val = ((-1)^n*exp(-4*pi*pi*n*n*t)*cos(2*n*pi*x))/n^2;
  val = val/(pi*pi);
end
```

<u>Output</u>

Time	x=0	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5
0.01	0.000319	0.000638	0.002233	0.008293	0.030941	0.115470
0.05	0.030141	0.037255	0.059672	0.100351	0.162706	0.249891
0.50	0.915000	0.925000	0.955000	1.005000	1.075000	1.165000
1.00	1.915000	1.925000	1.955000	2.005000	2.075000	2.165000

Observations

Values of the error is more for lower valus of time and x. As time increases error goes to zero. Although the order for error in Explicit scheme is $O(k + h^2)$ and Crank nicolson is $O(k^2 + h^2)$, the order of error comes out to be same in both.