Лекція 26. Випадкові процеси

26.1. Основні поняття. Випадкова функція, її перерізи

Нехай $\Omega = \{\omega\}$ - простір елементарних подій (наслідків) деякого стохастичниго експерименту E, а $\xi(\omega)$ - випадкова величина (ВВ), задана на цьому просторі, тобто кожному значенню $\omega \in \Omega$ поставлено у відповідність певне число $x \in R = (-\infty; +\infty)$.

Якщо кожному $\omega \in \Omega$ поставлена у відповідність числова функція x = x(t) від деякого детермінованого (невипадкового) числового параметра $t \in T$ (T - множина значень параметра), то кажуть, що задана випадкова функція $\xi(t)$.

За умови, що в ролі параметра t виступає час, випадкову функцію називають випадковим процесом (ВП) $\xi(\omega,t)$.

Залежно від того, якою буде множина T, дискретною чи неперервною, за аналогією з ВВ розрізнюють ВП дискретного типу (ДВП) і неперервного типу (НВП). Множину T називають областю визначення (існування) ВП, а множину ВВ, яка описує процес, — фазовим простором.

При фіксованому моменті часу $t_i \in T$ випадковий процес $\xi(\omega, t_i)$ перетворюється у випадкову величину, $\xi(\omega, t_i) = \xi_{t_i}(\omega)$ та називається **перерізом ВП у точці** t_i , тобто вся випадкова функція $\xi(t)$, $t \in T$ - це сукупність усіх перерізів:

$$\xi(\omega,t)\Big|_{t=t_i}$$
 – ВП при $t=t_i$ \iff $\xi(\omega,t_i)=\xi_{t_i}(\omega)$ – переріз ВП.

При фіксованій елементарній події ω_k , що рівносильно проведенню експерименту, отримуємо невипадкову (детерміновану) функцію $\xi(\omega_k,t)=x_k(t)$, яку називають *траєкторією (реалізацією, вибірковою функцією)* ВП $\xi(t)$, це конкретний вигляд, який може прийняти випадкова функція в процесі експерименту:

$$\xi(\omega,t)\big|_{\omega=\omega_k}$$
 – ВП при $\omega=\omega_k$ \iff $\xi(\omega_k,t)=x_k(t)$ – траєкторія ВП.

Необмежену кількість ВП без змістового наповнення (абстрактних) можна отримати з різних типів функції однієї змінної f(x) при x = t, якщо числові параметри (константи) тлумачити як ВВ (const — вироджена ВВ):

$$y = ax + b \implies x(t) = At + B$$
, де $A, B - BB$, $t \in T$;
 $y = \sin kx \implies x(t) = \sin Kt$, де $K - BB$, $t \in T$;

Hanpuклад, нехай $f_0(t), f_1(t), f_2(t), \ldots$ – звичайні невипадкові функції, а u_1, u_2, \ldots – випадкові величини (випадкові параметри), тоді $\xi(t) = f_0(t) + u_1 f_1(t) + u_2 f_2(t) + \ldots$ – випадкова функція, а при заданих u_1, u_2, \ldots – деяка реалізація випадкового процесу.

26.2. Закони розподілу випадкових процесів

Елементарною випадковою функцією називається функція аргументу t, в якій залежність від t подається звичайною невипадковою функцією, яка як параметри містить одну або кілька звичайних, незалежних від t випадкових величин.

Випадковий процес $\xi(t)$ являє собою сукупність усіх перерізів за всіх можливих значень t, тому для його задання необхідно розглянути багатовимірну випадкову величину $(\xi(t_1), \xi(t_2), ..., \xi(t_n))$, утворену з усіх перерізів цього процесу.

Закон сумісного розподілу n перерізів $\xi(t_i)$, $i=\overline{1,n}$, називають nвимірним законом розподілу ВП $\xi(t)$.

Одновимірною функцією розподілу $F_1(x,t)$ значень ВП $\xi(t)$ при фіксованому t називається функція розподілу перерізу ВВ та має закон розподілу ймовірностей, який можна подати функцією розподілу ймовірностей, а саме:

$$F_1(x,t) = P(\xi(t) < x)$$
 (26.1)

Ця функція характеризує лише властивості одного, окремо вибраного перерізу випадкового процесу $\xi(t)$, але не дає інформації про спільний розподіл двох і більше перерізів.

Одновимірний закон розподілу достатньо повно характеризує процес у тому випадку, коли його значення при різних значеннях аргументу розглядаються ізольовано одне від одного.

Якщо переріз $\xi(t)$ - неперервна BB, то у точках диференційованості функції розподілу перерізу ВП існує відповідна *щільність перерізу*:

$$f_1(x;t) = \frac{dF_1(x;t)}{\partial x}.$$
 (26.2)

Аналогічно з випадковою величиною: $F_1(x,t) = \int_{-\infty}^{x} f_1(u;t) du$.

Якщо переріз $\xi(t)$ - випадкова величина дискретного типу зі значеннями $x_1(t), x_2(t), ..., x_m(t),$ то закон розподілу ВВ описується переліком ймовірностей:

$$P(\xi(t) = x_i(t)) = p_i(t) = F_1(x_{i+1}(t)) - F_1(x_i(t)), \text{ ge } \sum_{i=1}^m p_i(t) = 1.$$
 (26.3)

Якщо зафіксувати два значення аргументу t_1 і t_2 , то в цьому разі два перерізи утворюють систему двох випадкових величин $(\xi(t_1), \xi(t_2))$. Функція розподілу системи буде

$$F_2(x_1, x_2; t_1, t_2) = P(\xi(t_1) < x_1, \xi(t_2) < x_2).$$

Отже, функція розподілу ймовірностей для двох перерізів уже залежатиме від чотирьох аргументів: x_1, x_2, t_1, t_2 .

Для неперервного випадкового процесу $\xi(t)$ за фіксованого значення t_1 закон розподілу ймовірностей для неперервної випадкової величини $\xi(t_1)$, що утворює переріз, можна подати щільністю ймовірностей $f(x,t_1)$, а для двох

перерізів закон розподілу системи можна подати щільністю ймовірностей $f_2(x_1, x_2; t_1, t_2)$, яку в цьому разі *називають двовимірною*.

Двовимірна щільність розподілу визначається як похідна від функції розподілу: $f_2(x_1,x_2;t_1,t_2)=\frac{d^2F_2(x_1,x_2;t_1,t_2)}{\partial x_1\partial x_2}$

Функція розподілу визначається інтегруванням щільності розподілу:

$$F_2(x_1, x_2; t_1, t_2) = \int_{-\infty}^{x_2} \int_{-\infty}^{x_1} f_2(u_1, u_2; t_1, t_2) du_1 du_2$$

Багатовимірна функція розподілу має 2n - змінних з n - аргументів (x_n) та n - параметрів (t_n) .

Якщо функція розподілу випадкового процесу $\xi(t)$ є неперервною по всіх аргументам x_k , $k=\overline{1,n}$, то на ряду з функцією розподілу можна використовувати щільність ймовірностей $p(x_1,...,x_n;t_1,...,t_n)$ у вигляді

$$p(x_1,...,x_n;t_1,...,t_n) = \frac{\partial^n F(x_1,...,x_n;t_1,...,t_n)}{\partial x_1 \cdot \partial x_2 \cdot ... \cdot \partial x_n}.$$

Найчастіше при дослідженні випадкових процесів використовують не закони розподілу, а основні характеристики випадкових процесів, які частково характеризують відповідний стохастичний процес.