Math 135: Introduction to Set Theory Autumn 2000 Final Examination

20 December 2000 5:00pm - 8:00pm

This exam counts as forty percent of your course grade. There are nine questions.

1. Complete the following definitions. If your definition involves a term introduced in this course, you must define that term as well.
a. The set X is a <i>subset</i> of the set Y if and only if
b. If a and b are sets then the set c is the <i>ordered pair</i> of a and b if and only if
c. The set R is a <i>relation</i> between the sets A and B if and only if
d. The set x is $transitive$ if and only if
e. The set α is an <i>ordinal</i> if and only if

- 2. State the following axioms. Your statement should be presented in the formal language of set theory, though you may explain your formal answer using mathematical English.
 - Union Axiom
 - Power Set Axiom
 - Replacement Axiom

3. Suppose that A and B are two sets and $f: \mathcal{P}A \to \mathcal{P}B$ is a function satisfying

$$X \subseteq Y \subseteq A \Rightarrow f(X) \subseteq f(Y)$$

Define $L := \bigcap \{X \subseteq A \mid f(X) \subseteq X\}$. Show that f(L) = L.

- **4.** Let $A \subseteq \omega$ be a set of natural numbers satisfying $\bigcup A = A$. Show that either $A = \emptyset$ or $A = \omega$.
- **5.** Show that if $r \in \mathbb{R}$ is positive (ie r > 0), then there is some $s \in \mathbb{R}$ with $s \cdot s = r$.
- **6.** For $X \subseteq \mathbb{R}$, let $\mathcal{C}(X,\mathbb{R})$ be the set of continuous functions from X to \mathbb{R} . Calculate $\|\mathcal{C}(\mathbb{R},\mathbb{R})\|$. (Hint: You may use any basic fact about continuity that you know from calculus. Show that if $E:\mathbb{Q} \to \mathbb{R}$ is the standard embedding of the rationals into the real numbers and $r:\mathcal{C}(\mathbb{R},\mathbb{R}) \to \mathcal{C}(E(\mathbb{Q}),\mathbb{R})$ is the restriction map, $f \mapsto f \upharpoonright_{E(\mathbb{Q})}$, then r is injective.)
- 7. Without using any other form of the axiom of choice show directly that Zorn's Lemma implies that every surjective function has a right inverse.
- **8.** Show that for any set a one has rank $\mathcal{P}a = (\operatorname{rank} a)^+$.
- 9. Compute $(\omega + 1)^4$.