Newton's method

based on **slope** of function

Derivation

Taylor series around x_n :

 $\mathbf{Assignment}^{f(x_n)} \overset{=}{\text{Project}}^{f'(x_n)} \overset{=}{\text{Exam}}^{f} \overset{=}{\text{Help}}^0$

which gives

https://powcoder.com

Newton-Raphson iteration: Add WeChat powcoder

$$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}.$$

Again, a first order recurrence relation.

 \implies we expect problems if $f'(x_n) = 0$

Root-finding

Simple roots

Definition Assignment Project Exam Help

f has a simple root at x^* if $f(x^*) = 0$, $f'(x^*) \neq 0$. https://powcoder.com

Definition

f has a double root Add $We hat powered f''(x^*) \neq 0$.

⇒ Newton's method has trouble at a double root

Example

Convergence rates

At a simple root:

Assignment
$$Project_2$$
 Exam Help

quadratic convergenteps://powcoder.com
At a double root:

Add WeChat powcoder $e_{n+1} \sim Ce_n$

linear convergence

Definition

Order of convergence If $e_{n+1} \sim Ce_n^p \implies$ order of convergence = p

Explanation by Taylor series ...

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Can derive this more rigorously.

Linear convergence

Write $e_n = 10^{-1} \text{Assignment Project Exam Help}$ $b_n = \text{number of correct decimal digits}$ **Linear Convergence** https://powcoder.com

Adde We Chat powcoder

$$\implies b_{n+1} \approx b_n - \log_{10} C$$

→ number of correct digits increases by a constant

Quadratic Convergence

Assignment Project Exam Help

https://powcoder.com

Add Weekat posicoder

- → number of correct digits doubles each iteration!!
- ⇒ Quadratic Convergence **very desirable**

Problems with Newton's method

- f'(x) may be hard to calculate
- it may not converge :-(

Assignment Project Exam Help

Theorem

If f''(x) is C^1 then $\exists \text{https://cpowtodef.}[\text{com } \delta, x^* + \delta]$, Newton's method converges to the root x^*

 \Rightarrow converges provided we start close enough

BUT

- \blacksquare don't know x^*
- \blacksquare don't know δ
- ⇒ get close with a globally convergent method, then switch to a fast method
- \rightarrow hybrid method

Convex functions

Note: for some functions, Newton's method is guaranteed to converge

Example

https://powcoder.com

Add WeChat powcoder

Secant method

What if the derivative function. https://powcoder.com

The secant method.

For this method, use **AddctWett lighters vica dep**ot of f(x) = 0. Want to replace the pair x_0, x_1 by the pair x_1, x_2 where x_2 is a new guess. Use the straight line L from $(x_0, f(x_0))$ to $(x_1, f(x_1))$ (a **secant** of the curve y = f(x)) to give the slope.

Secant method algorithm

Just replace $f'(x_n)$ from NR method by

Assignment
$$\Pr_{X_n} = f(x_{n-1}) - f(x_{n-1})$$

which gives

https://powcoder.com

Add WeChat powcoder

Secant method:

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}.$$

Since each new guess depends on the previous two guesses \implies a second order recurrence relation.

Properties

Assignment Project Exam Help

The secant method:

https://powcoder.com
quite efficient: converges quickly towards a root :-)

- must start with twolenweschat powcoder
- don't need derivative :-)

Order of convergence

 $\begin{array}{c} \text{Using Taylor series,} \rightarrow \text{(at simple root)} \\ & \textbf{Assignment Project Exam Help} \end{array}$

$$\Rightarrow e_{n+1} \sim Ce_n e_{n-1}$$

$$\implies e_{n+1} \sim Ce_n^p \text{ where } p = \frac{1+\sqrt{5}}{2} \approx 1.618$$

Add WeChat powcoder

⇒ secant is superlinearly convergent but not quadratically convergent

(but only need 1 function evaluation/iteration; Newton needs 2)

Root-finding

Summary

Assignment Project Exam Help

```
fixed point e_{n+1} \sim Ce_n may diverge e_{n+1} https://powball.dem.eegant Newton e_{n+1} \sim Ce_n^2 simple root e_{n+1} \sim Ce_n^2 simple root secant e_{n+1} \sim Ce_n^{1.618} simple root
```

Hybrid methods

Attractive to combine **global convergence** of bisection with **speed** of another methodes i plantemer project Exam Help

— hybrid methods that switch between basic methods such that interval is always bracketing https://powcoder.com

Example

Add WeChat powcoder

MATLAB's fzero

- switches between bisection, secant and Inverse Quadratic Interpolation (faster than secant)
- needs no derivative

What about systems of nonlinear equations?

Try Newton's Method for system of 2 equations in 2 variables.

Assignment Project Exam Help

Expand in Taylor series approximation:

Add WeChat powcoder

$$f(x_{n+1}, y_{n+1}) \approx f(x_n, y_n) + \frac{\partial f}{\partial x} \mid_n (x_{n+1} - x_n) + \frac{\partial f}{\partial y} \mid_n (y_{n+1} - y_n) = 0$$

$$g(x_{n+1}, y_{n+1}) \approx g(x_n, y_n) + \frac{\partial g}{\partial x} \mid_n (x_{n+1} - x_n) + \frac{\partial g}{\partial y} \mid_n (y_{n+1} - y_n) = 0$$

or in matrix notation

$$\begin{bmatrix} f(x_n, X_n) \\ g(x_n, y_n) \end{bmatrix} gn \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} \end{bmatrix}_n P \underbrace{\frac{\partial f}{\partial y}}_{n} ect \begin{bmatrix} x_n & Y_n & Y_n \\ y_{n+1} & Y_n \end{bmatrix} p = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

where partial derivs are evaluated at (x_n, y_n) com

 \Rightarrow at each iteration, must solve a linear system of the form Add WeChat powcoder

$$J\mid_n (x_{n+1}-x_n)=-f\mid_n$$

⇒ must learn how to solve linear systems first!

Assignment Project Exam Help

End of Lecture 10

https://powcoder.com

Add WeChat powcoder