5.A Invariant Subspaces

Definition: invariant subspace

Suppose $T \in \mathcal{L}(V)$. A subspace U of V is called *invariant* under T if $u \in U$ implies $Tu \in U$.

Definition: eigenvalue

Suppose $T \in \mathcal{L}(V)$. A number $\lambda \in \mathbb{F}$ is called an *eigenvalue* of T if there exists $v \in V$ such that $v \neq 0$ and $Tv = \lambda v$.

Equivalent conditions to be an eigenvalue

Suppose *V* is finite-dimensional, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbb{F}$. Then TFAE:

- (a) λ is an eigenvalue of T.
- (b) $T \lambda I$ is not injective.
- (c) $T \lambda I$ is not surjective.
- (d) $T \lambda I$ is not invertible.

Definition: eigenvector

Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$ is an eigenvalue of T. A vector $v \in V$ is called an *eigenvector* of T corresponding to λ if $v \neq 0$ and $Tv = \lambda v$.

Linearly independent eigenvectors

Let $T \in \mathcal{L}(V)$. Suppose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T and v_1, \ldots, v_m are corresponding eigenvectors. Then v_1, \ldots, v_m is linearly independent.

Number of eigenvalues

Suppose V is finite-dimensional. Then each operator on V has at most dim V distinct eigenvalues.

Definition: $T|_U$ and T/U

Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V invariant under T.

• The *restriction operation* $T|_{U} \in \mathcal{L}(U)$ is defined by

$$T|_{U}(u) = Tu \ \forall \ u \in U.$$

• The *quotient operator* $T/U \in \mathcal{L}(V/U)$ is defined by

$$(T/U)(v+U) = Tv + U \ \forall \ v \in V.$$

5.B Eigenvectors and Upper-Triangular Matrices

Definition: T^m

Suppose $T \in \mathcal{L}(V)$ and m is a positive integer.

• T^m is defined by

$$T^m = \underbrace{T \cdots T}_{m \text{ times}}$$

- T^0 is defined to be the identity operator I on V.
- If *T* is invertible with inverse T^{-1} , then T^{-m} is defined by

$$T^{-m} = (T^{-1})^m$$
.

Definition: p(T)

Suppose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$ is a polynomial given by

$$p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_m z^m$$

for $z \in \mathbb{F}$. Then p(T) is the operator defined by

$$p(T) = a_0 I + a_1 T + a_2 T^2 + \dots + a_m T^m$$
.

Definition: product of polynomials

If $p,q\in\mathcal{P}(\mathbb{F})$, then $pq\in\mathcal{P}(\mathbb{F})$ is the polynomial defined by

$$(pq)(z)=p(z)q(z)$$

for $z \in \mathbb{F}$.

6.A Inner Products and Norms

Definition: norm

The length of a vector x is called the **norm** of x denoted ||x|| The norm is non-linear.

$$||x||=\sqrt{x_1^2+\cdots+x_n^2}.$$

Definition: dot product

For $x, y \in \mathbb{R}^n$, the *dot product* of x and y, denoted $x \cdot y$ (or x.y) is defined by

$$x \cdot y = x_1 y_1 + \cdots + x_n y_n,$$

where $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$.

Note that the dot product of two vectors in \mathbb{R}^n is a scalar (number (i.e. 1, 7, 5.3, π)), not another vector.

$$x \cdot x = ||x||^2 \quad \forall \ x \in \mathbb{R}^n$$

dot product properties For a dot product on \mathbb{R}^n ,

- (a) $x \cdot x \ge 0 \ \forall \ x \in \mathbb{R}^n$
- (b) $x \cdot x = 0 \iff x = 0$
- (c) For a fixed $y \in \mathbb{R}^n$, the map from $\mathbb{R}^n \to \mathbb{R}$ that sends $x \in \mathbb{R}^n$ to $x \cdot y$ is linear
- (d) $x \cdot y = y \cdot x \ \forall \ x, y \in \mathbb{R}^n$ (commutative)

Definition: Re z, Im z

Suppose z = a + bi where $a, b \in \mathbb{R}$.

- The *real part* of z, denoted Re z, is defined by Re z = a.
- The *imaginary part* of z, denoted Im z, is defined by Im z = b.

Thus for every $z \in \mathbb{C}$, we have

$$z = \text{Re } z + (\text{Im } z)i$$
.

Definition: complex conjugate

Suppose $z \in \mathbb{C}$. The *complex conjugate* of $z \in \mathbb{C}$, denoted \overline{z} , is defined by

$$\bar{z} = \text{Re } z - (\text{Im } z)i$$
.

Definition: absolute value

Suppose $z \in \mathbb{C}$. The *absolute value* of $z \in \mathbb{C}$, denoted |z|, is defined by

$$|z| = \sqrt{(\text{Re } z)^2 + (\text{Im } z)^2}.$$

Complex properties

• sum of z and \bar{z}

$$z + \overline{z} = 2 \operatorname{Re} z$$

• difference of z and \bar{z}

$$z - \overline{z} = 2(\operatorname{Im} z)i$$

• product of z and \bar{z}

$$z\bar{z} = |z|^2$$

· additivity and multiplicativity of complex conjugate

$$\overline{w+z} = \overline{w} + \overline{z}$$
 and $\overline{wz} = \overline{w}\overline{z}$

• conjugate of a conjugate

$$\overline{\overline{z}} = z$$

• real and imaginary parts are bounded by |z|

$$|\operatorname{Re} z| \le |z|$$
 and $|\operatorname{Im} z| \le |z|$

• absolute value of a complex conjugate

$$|\bar{z}| = \bar{z}$$

· multiplicativity of absolute value

$$|wz| = |w||z|$$

• Triangle Inequality

$$|w + z| \le |w| + |z|$$

Recall that for $\lambda = a + bi$ where $a, b \in \mathbb{R}$, then

• The absolute value of λ , denoted $|\lambda|$, is defined as

$$|\lambda| = \sqrt{a^2 + b^2}.$$

• The complex conjugate of λ , denoted $\bar{\lambda}$, is defined as

$$\bar{\lambda} = a - bi$$
.

• The absolute value squared is defined as

$$|\lambda|^2 = \lambda \bar{\lambda}$$

For $z = (z_1, ..., z_n) \in \mathbb{C}^n$, we define the norm of z by

$$||z|| = \sqrt{|z_1|^2 + \dots + |z_n|^2}.$$

These absolute values are needed because we want ||z|| to be a nonnegative scalar. Note that

$$||z||^2 = z_1 \overline{z_1} + \dots + z_n \overline{z_n}.$$

We want to think of $||z||^2$ as an inner product of z with itself, like we did in \mathbb{R}^n . The equation above suggests that for $w = (w_1, \dots, w_n) \in \mathbb{C}^n$, the inner product of w with z should be

$$\langle w, z \rangle = w_1 \overline{z_1} + \cdots + w_n \overline{z_n}$$

$$\langle z, w \rangle = z_1 \overline{w_1} + \cdots + z_n \overline{w_n}$$

If $\lambda \in \mathbb{C}$ then the notation $\lambda \geq 0$ means that λ is a non-negative real number.

We use the common notation $\langle u, v \rangle$ with angle brackets tod enote an inner product. Parenthesis can also be used, but then (u, v) becomes confusing.

Definition: inner product

An *inner product* on V is a function that takes each ordered pair (u, v) of elements of V to a number $\langle u, v \rangle \in \mathbb{F}$ and has the following properties:

positivity:

$$\langle v, v \rangle \ge 0 \ \forall \ v \in V$$

definiteness:

$$\langle v, v \rangle = 0 \iff v = 0$$

additivity in the first slot:

$$\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle \quad \forall \quad u, v, w \in V$$

homogeneity in the first slot:

$$\langle \lambda u, v \rangle = \lambda \langle u, v \rangle \quad \forall \quad \lambda \in \mathbb{F} \text{ and } u, v \in V$$

conjugate symmetry:

$$\langle u, v \rangle = \overline{\langle v, u \rangle} \ \forall \ u, v \in V$$

Note: $x = \bar{x} \ \forall \ x \in \mathbb{R}$

Examples:

A **Euclidean inner product** on \mathbb{F}^n is defined by

$$\langle (w_1,\ldots,w_n), (z_1,\ldots,z_n) \rangle = w_1\overline{z_1} + \cdots + w_n\overline{z_n}.$$

If c_1, \ldots, c_n are all positive numbers, then an inner product can be defined on \mathbb{F}^n by

$$\langle (w_1,\ldots,w_n), (z_1,\ldots,z_n) \rangle = c_1 w_1 \overline{z_1} + \cdots + c_n w_n \overline{z_n}$$

An inner product can be defined on the vector space of continuous real-valued functions on the interval [-1, 1] by

$$\langle f,g\rangle = \int_{-1}^{1} f(x)g(x) dx.$$

An inner product can be defined on $\mathcal{P}(\mathbb{R})$ by

$$\langle p, q \rangle = \int_0^\infty p(x)q(x)e^{-x} dx$$

Definition: inner product space

An *inner product space* is a vector space *V* along with an inner product on *V*.

Unless otherwise stated, you can assume the inner product on \mathbb{F}^n is defined as

$$\langle w, z \rangle = w_1 \overline{z_1} + \cdots + w_n \overline{z_n}$$

Notation: For the rest of this chapter, V denotes an inner product space over \mathbb{F} .

Basic properties of an inner product

- (a) For each fixed $u \in V$, the function that takes v to $\langle v, u \rangle$ is a linear map from V to \mathbb{F} .
- (b) $\langle 0, u \rangle = 0 \ \forall \ u \in V$
- (c) $\langle u, 0 \rangle = 0 \ \forall \ u \in V$
- (d) $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle \ \forall \ u, v, w \in V$
- (e) $\langle u, \lambda v \rangle = \overline{\lambda} \langle u, v \rangle \quad \forall \quad \lambda \in \mathbb{F} \text{ and } u, v \in V$
- (f) $\langle u, v \rangle = 0 \iff \langle v, u \rangle = 0 \ \forall \ u, v \in V$

Definition: norm

For $v \in V$, the **norm** of v, denoted ||v||, is defined by

$$\|v\| = \sqrt{\langle v, v \rangle}.$$

In other words, $||v||^2 = \langle v, v \rangle$.

Basic properties of the norm

Suppose $v \in V$. Then

- (a) $||v|| = 0 \iff v = 0$.
- (b) $\|\lambda v\| = |\lambda| \|v\| \quad \forall \ \lambda \in \mathbb{F}$.

Examples:

(a) If $(z_1, \ldots, z_n) \in \mathbb{F}^n$ (with the usual Euclidean inner product), then

$$||(z_1,\ldots,z_n)|| = \sqrt{|z_1|^2 + \cdots + |z_n|^2}.$$

(b) In the vector space of continuous real-valued functions on [1, -1] (with the inner product defined as $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) \, dx$), then

$$||f|| = \sqrt{\int_{-1}^{1} (f(x))^2 dx}.$$

Definition: orthogonal

Two vectors $u, v \in V$ are called *orthogonal* if $\langle u, v \rangle = 0$.

Instead of saying "u and v are orthogonal", we sometimes say "u is orthogonal to v".

For two vectors $u, v \in \mathbb{R}^2$, then

$$\langle u, v \rangle = ||u|| \, ||v|| \cos \theta,$$

where θ is the angle between the two vectors. If $\theta = 90^\circ = \frac{\pi}{2}$ radians then $\cos \theta = 0$. That is, if u and v are perpendicular the inner product is 0.

Orthogonality and 0

- (a) 0 is orthogonal to every vector in V.
- (b) 0 is the only vector in *V* that is orthogonal to itself.

Pythagorean Theorem

If u and v are orthogonal vectors in V. Then

$$||u + v||^2 = ||u||^2 + ||v||^2$$

The converse is true if V is a real inner product space. That is, if $||u + v||^2 = ||u||^2 + ||v||^2$ then u and v are orthogonal.

An orthogonal decomposition

Suppose
$$u, v \in V$$
, with $v \neq 0$. Set $c = \frac{\langle u, v \rangle}{\|v\|^2}$ and $w = u - \frac{\langle u, v \rangle}{\|v\|^2}v$. Then

$$\langle w, v \rangle = 0$$
 and $u = cv + w$.

Cauchy-Schwarz Inequality

Suppose $u, v \in V$. Then

$$|\langle u, v \rangle| \leq ||u|| ||v||$$
.

Further, this is an *equality* if and only if *u* and *v* are scalar multiples of one another.

Triangle Inequality

Suppose $u, v \in V$. Then

$$||u + v|| \le ||u|| + ||v||$$
.

This is an equality if and only if u, v are a nonnegative multiples of the other.

Parallelogram Equality

Suppose $u, v \in V$. Then

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2).$$

6.B Orthonormal Bases

Definition: orthonormal

• A lost of vectors is valled *orthonormal* if each vector in the list has norm 1 and is orthogonal to all the other vectors in the list.

• In other words, a list e_1, \ldots, e_m of vectors in V is orthonormal if

$$\langle e_j, e_k \rangle = \begin{cases} 1 & \text{if } j = k, \\ 0 & \text{if } j \neq j. \end{cases}$$

Example, the standard basis in \mathbb{F}^n .

The norm of an orthonormal linear combination

If e_1, \ldots, e_m is an orthonormal list of vectors in V, then

$$||a_1e_e + \cdots + a_me_m||^2 = |a_1|^2 + \cdots + |a_m|^2$$

for all $a_1, \ldots, a_m \in \mathbb{F}$.

Corollary: An orthonormal list is linearly independent

Every orthonormal list of vectors is linearly independent.

Definition: orthonormal basis

An *orthonormal basis* of *V* is an orthonormal list of vectors in *V* that is also a basis of *V*.

For example, the standard basis is an orthonormal basis of \mathbb{F}^n .

An orthonormal list of the right length is an orthonormal basis

Every orthonormal list of vectors in V with length dim V is an orthonormal basis of V.

Writing a vector as linear combination of orthonormal basis

Suppose e_1, \ldots, e_n is an orthonormal basis of V and $v \in V$. Then

$$v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_n \rangle e_n$$

and

$$||v||^2 = |\langle v, e_1 \rangle|^2 + \cdots + |\langle v, e_n \rangle|^2$$
.

Gram-Schmidt Procedure

Suppose v_1, \ldots, v_m is a linearly independent list of vectors in V. Let $e_1 = \frac{v_1}{\|v_1\|}$.

For
$$j = 2, ..., m$$
, define e_j inductively by

$$e_{j} = \frac{v_{j} - \langle v_{j}, e_{1} \rangle e_{1} - \cdots - \langle v_{j}, e_{j-1} \rangle e_{j-1}}{\|v_{j} - \langle v_{j}, e_{1} \rangle e_{1} - \cdots - \langle v_{j}, e_{j-1} \rangle e_{j-1}\|}.$$

Then e_1, \ldots, e_m is an orthonormal list of vectors in V such that

$$\operatorname{span}(v_1,\ldots,v_i)=\operatorname{span}(e_1,\ldots,e_i)$$

for j = 1, ..., m.

Existance of orthonormal basis

Every finite-dimensional inner product space has an orthonormal basis.

Corollary: Orthonormal list extends to orthonormal basis

Suppose V is finite-dimensional. Then every orthonormal list of vectors in V can be extended to an orthonormal basis of V.

Upper-triangular matrix with respect to orthonormal basis

Suppose $T \in \mathcal{L}(V)$. If T has an upper-triangular matrix with respect to some basis of V, then T has an upper-triangular matrix with respect to some orthonormal basis of V.

Schur's Theorem

Suppose V is a finite-dimensional complex vector space and $T \in \mathcal{L}(V)$. Then T has an upper-triangular matrix with respect to some orthonormal basis of V.

Because linear maps into a scalar field play a special role, we give them a special name.

Definition: linear functional

A *linear functional* on V is a linear map from V to \mathbb{F} . In other words, a linear function is an element of $\mathcal{L}(V,\mathbb{F})$.

Riesz Representation Theorem

Suppose V is finite-dimensional and φ is a linear functional on V. Then there is a unique vector $u \in V$ such that

$$\varphi(v) = \langle v, u \rangle \ \forall \ v \in V,$$

where

$$u = \overline{\varphi(e_1)}e_1 + \cdots + \overline{\varphi(e_n)}e_n.$$

6.C Orthogonal Complements and Minimization Problems

Definition: orthogonal complement, U^{\perp}

If U is a subset of V, then the *orthogonal complement* of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U:

$$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}.$$

For example, if U is a line in \mathbb{R}^3 then U^{\perp} is the plain containing 0 that is perpendicular to U. If U was a plane in \mathbb{R}^3 then U^{\perp} is a line passing through 0 that is perpendicular to U.

Basic properties of orthogonal complement

- (a) If *U* is a subset of *V*, then U^{\perp} is a subspace of *V*.
- (b) $\{0\}^{\perp} = V$.
- (c) $V^{\perp} = \{0\}.$
- (d) If U is a subset of V, then $U \cap U^{\perp} \subseteq \{0\}$.
- (e) If U and W are subsets of V and $U \subseteq W$, then $W^{\perp} \subseteq U^{\perp}$.

Direct sum of a subspace and its orthogonal complement

Suppose U is a finite-dimensional subspace of V. Then

$$V = U \oplus U^{\perp}$$

Dimension of the orthogonal complement

Suppose V is finite-dimensional and U is a subspace of V. Then

$$\dim U^{\perp} = \dim V - \dim U.$$

The orthogonal complement of the orthogonal complement

Suppose U is a finite-dimensional subspace of V. Then

$$U = (U^{\perp})^{\perp}$$
.

Definition: orthogonal projection, P_U

Suppose U is a finite-dimensional subspace of V. The *orthogonal projection* of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows:

For $v \in V$, write v = u + w, where $u \in U$ and $w \in U^{\perp}$. Then $P_{U}v = u$.

Properties of the orthogonal projection P_U

Suppose *U* is a finite-dimensional subspace of *V* and $v \in V$. Then

- (a) $P_U \in \mathcal{L}(V)$
- (b) $P_{U}u = u \ \forall \ u \in U$
- (c) $P_U w = 0 \ \forall \ w \in U^{\perp}$
- (d) range $P_U = U$
- (e) null $P_U = U^{\perp}$
- (f) $v P_U v \in U^{\perp}$
- (g) $P_U^2 = P_U$

- (h) $||P_U v|| \le ||v||$
- (i) for every orthonormal basis e_1, \ldots, e_m of U,

$$P_U v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$

Minimizing the distance to a subspace

Suppose *U* is a finite-dimensional subspace of $V, v \in V$, and $u \in U$. Then

$$||v - P_{II}v|| \leq ||v - u||$$
.

Furthurmore, the inequality is an equality if and only if $u = P_U v$.

7.A Self-Adjoint and Normal Operators

Definition: *adjoint,* T^*

Suppose $T \in \mathcal{L}(V, W)$. The *adjoint* of T is the function $T^* : W \to V$ such that

$$\langle Tv, w \rangle = \langle v, T^*w \rangle$$

for every $v \in V$ and every $w \in W$.

The adjoint is a linear map

If $T \in \mathcal{L}(V, W)$, then $T^* \in \mathcal{L}(W, V)$.

Properties of the adjoint

- (a) $(S+T)^* = S^* + T^*$ for all $S, T \in \mathcal{L}(V, W)$
- (b) $(\lambda T)^* = \bar{\lambda} T^*$ for all $\lambda \in F$ and $T \in \mathcal{L}(V, W)$
- (c) $(T^*)^* = T$ for all $T \in \mathcal{L}(V, W)$
- (d) $I^* = I$, where I is the identity operator on V
- (e) $(ST)^* = T^*S^*$ for all $T \in \mathcal{L}(V, W)$ and $S \in \mathcal{L}(W, U)$ (here U is an inner product space over \mathbb{F}).

Null space and range of T^*

- (a) $\operatorname{null} T^* = (\operatorname{range} T)^{\perp}$
- (b) range $T^* = (\text{null } T)^{\perp}$
- (c) null $T = (\text{range } T^*)^{\perp}$
- (d) range $T = (\text{null } T^*)^{\perp}$

Definition: conjugate transpose

The *conjugate transpose* of an *m*-by-*n* matrix is the *n*-by-*m* matrix obtained by transposing the matrix and taking the complex conjugate of each entry.

The matrix of T^*

Let $T \in \mathcal{L}(V, W)$. Suppose e_1, \ldots, e_n is an orthonormal basis of V and f_1, \ldots, f_m is an orthonormal basis of W. Then

$$\mathcal{M}(T^*, (f_1, \ldots, f_m), (e_1, \ldots, e_n))$$

is the conjugate transpose of

$$\mathcal{M}(T,(e_1,\ldots,e_n),(f_1,\ldots,f_m))$$

Definition: self-adjoint

An operator $T \in \mathcal{L}(V)$ is called **self-adjoint** if $T = T^*$. In other words, $T \in \mathcal{L}(V)$ is self-adjoint if and only if

$$\langle Tv, w \rangle = \langle v, Tw \rangle$$

for all $v, w \in V$.

Eigenvalues of self-adjoint operators are real

Every eigenvalue of a self-adjoint operator is real

Over \mathbb{C} , Tv is orthogonal to v for all v only for the 0 operator

Suppose V is a complex inner product space and $T \in \mathcal{L}(V)$. Suppose

$$\langle Tv, v \rangle = 0$$

for all $v \in V$. Then T = 0.

Over \mathbb{C} , $\langle Tv, v \rangle$ is real for all v only for self-adjoint operators

Suppose V is a complex inner product space and $T \in \mathcal{L}(V)$. Then T is self-adjoint if and only if

$$\langle Tv, v \rangle \in \mathbb{R}$$

for every $v \in V$.

If $T = T^*$ and $\langle Tv, v \rangle = 0$ for all v, then T = 0

Suppose T is a self-adjoint operator on V such that

$$\langle Tv, v \rangle = 0$$

for all $v \in V$. Then T = 0.

Definition: *normal*

An operator on an inner product space is called *normal* if it commutes with its adjoint. In other words, $T \in \mathcal{L}(V)$ is normal if

$$TT^* = T^*T$$
.

T is normal if and only if $||Tv|| = ||T^*v||$ for all v

An operator $T \in \mathcal{L}(V)$ is normal if and only if

$$||Tv|| = ||T^*v||$$

for all $v \in V$.

For T normal, T and T^* have the same eigenvectors

Suppose $T \in \mathcal{L}(V)$ is normal and $v \in V$ is an eigenvector of T with eigenvalue λ . Then v is also an eigenvector of T^* with eigenvalue $\bar{\lambda}$.

Orthogonal eigenvectors for normal operators

Suppose $T \in \mathcal{L}(V)$ is normal. Then the eigenvectors of T corresponding to distinct eigenvalues are orthogonal.