

Do Rules Still Rule? Comprehensive Evaluation of a Rule-Based Question Generation System

Bernardo Leite, Henrique Lopes Cardoso

Faculty of Engineering - U. Porto, Portugal (FEUP)
Artificial Intelligence and Computer Science Laboratory (LIACC)
{bernardo.leite, hlc}@fe.up.pt

code: github.com/bernardoleite/ question-generation-port uquese

Agenda

- Introduction
- Related Work
- Question Generation Framework
- Comprehensive Evaluation
 - Study 1: Similarity between Machine-Generated and Human-Authored Questions
 - Study 2: Quality of Machine-Generated and Human-Authored Questions
- Final Remarks

Introduction → Background of Question Generation

What is Question Generation (QG)?

Were Bill Gates and Satya Nadella once colleagues?

□ Images

Who is having a birthday party?

Introduction → Background of Question Generation

What are the main applications of Question Generation?

Introduction → Motivation

Basic "ingredients" for Neural Question Generation

QA corpora: multiple question-answer pairs

Text generation neural models

Large-scale quality QA datasets **are not** available for lower-resourced languages (e.g. Portuguese)

Problem!

Introduction -> Research Goals

To perform a feasibility analysis of a traditional rule-based method for QG in a context of a lower-resourced language.

- What is the target language?
 - (European) Portuguese
- What type of questions?
 - Factoid (wh)-questions, e.g, "Who was the first King of Portugal?"
- What is the purpose of generated questions?
 - Pedagogical goal is to identify themes, main ideas, facts, causes and effects
- What are the main contributions?
 - QG Framework
 - List of rules used to find patterns
 - Evaluation and comparison between 5 main linguistic aspects for QG

Agenda

- Introduction
- Related Work
- Question Generation Framework
- Comprehensive Evaluation
 - Study 1: Similarity between Machine-Generated and Human-Authored Questions
 - Study 2: Quality of Machine-Generated and Human-Authored Questions
- Final Remarks

Related Work → Question Generation Methods

Neural Question Generation

O RNN-based [Du et al., 2017]; [Zhao et al., 2018]

Transformer-based [Dong et al., 2019]; [Xiao et al., 2020]

Rule-based Question Generation

3 linguistics aspects have been extensively explored:

Syntactic information [Liu et al., 2010]; [Heilman and Smith, 2010]

■ Semantic information [Lindberg et al., 2013]; [Mazidi and Nielsen, 2014]

■ Dependency information [Mazidi and Tarau, 2016a,b]

This research considers +2 linguistic aspects that have not been much explored:

■ Discourse connectors [Agarwal et al., 2011]

■ Relative pronouns & adverbs [Khullar et al., 2018]

Related Work → Evaluation of QG systems

Automatic Evaluation

- N-gram similarity
 - BLEU 1-4 [Papineni et al., 2002]
 - ROUGE, [Lin, 2004]
- Embedding similarity
 - BERTScore [Zhang et al., 2019]
 - BLEURT [Sellam et al., 2020]

Human Evaluation

- Well-formedness
- Answerability
- Difficulty
- 0 ...

Agenda

- Introduction
- Related Work
- Question Generation Framework
- Comprehensive Evaluation
 - Study 1: Similarity between Machine-Generated and Human-Authored Questions
 - Study 2: Quality of Machine-Generated and Human-Authored Questions
- Final Remarks

Question Generation Framework → The 4 steps

Question Generation Framework → Full Example

Passage: The year of 1917 was difficulty for all belligerents.

Generated Question: How do you characterize the year of 1917?

Question Generation Framework → More Examples

Using **syntactic** information:

Francisco Pizarro discovered the Inca Empire in South America.

Gen. Question: Who has discovered the Inca Empire in South America?

Using **semantic** information:

With a kiss, the Morning rubs out each star as it continues its walk towards the horizon.

Gen. Question: How does Morning rub out each star?

Using **relative pronouns and adverbs** information:

The Cat took the direction of the narrow paths which lead to the crossroads at the end of the world.

Gen. Question: What leads to the crossroads at the end of the world?

Using **discourse connectors** information:

The Portuguese would be in numerical advantage, because of the occupying forces dispersed...

Gen. Question: Why would the Portuguese be in numerical advantage?

Agenda

- Introduction
- Related Work
- Question Generation Framework
- Comprehensive Evaluation
 - Study 1: Similarity between Machine-Generated and Human-Authored Questions
 - Study 2: Quality of Machine-Generated and Human-Authored Questions
- Final Remarks

Study 1

RQ1. Are rule-based generated questions similar to those written by humans?

Study 2

RQ2. Are rule-based generated questions comparable to those written by humans in terms of well-formedness and answerability?

RQ3. How well can humans distinguish questions generated by a machine from those written by a person?

Research Question

RQ. 1 Are rule-based generated questions similar to those written by humans?

Results

		BLEU 4		$ROUGE_L$		BERTScore	
Aspect	Nr.	Worst	Best	Worst	Best	Worst	Best
Syn.	30	8.61	27.39	17.80	47.16	75.10	83.39
Sem.	30	8.28	30.33	19.76	51.16	77.40	85.54
Dep.	30	14.09	43.64	25.99	61.23	80.98	90.38
Rel.	30	7.52	25.46	14.90	48.44	74.75	82.85
Disc.	30	13.10	35.06	26.91	57.69	75.67	85.30
Overall	150	10.79	32.33	21.07	53.14	76.78	85.49

Neural QG	≈12 to ≈25	≈32 to ≈53	≈75 to ≈90
-----------	------------	------------	------------

- Dependency information yields consistently better results
- Relative Pronouns & Adverbs yields consistently worst results
- Scores are quantitatively aligned with those obtained in the literature

Research Questions

RQ. 2 Are rule-based generated questions comparable to those written by humans in terms of <u>well-formedness</u> and <u>answerability</u>?

RQ. 3 How well can humans <u>distinguish</u> questions generated by a machine from those written by a person?

Procedure

- 98 machine-generated + 97 human-written questions
- Each question has been rated by >= 3
- Inquiry metrics

Well-formedness - How well-formed is this question item?

Answerability - How many answers does the question have?

Distinguishability - What is the question provenance?

[1-5] [One, Two+ (ambiguous), None]

[Human, Machine, Doubt]

Research Question

RQ. 2 Are rule-based generated questions comparable to those written by humans in terms of <u>well-formedness</u> and <u>answerability</u>?

Results → *Well-formedness*

- Human: **4.12** ±.86 || Machine: **3.24** ±1.32
- Human-authored questions fall short?
- Machine-generated questions is still above the scale's avg.

Research Question

RQ. 2 Are rule-based generated questions comparable to those written by humans in terms of <u>well-formedness</u> and <u>answerability</u>?

Results → *Well-formedness*

Detailed values per linguistic aspect

Research Question

RQ. 2 Are rule-based generated questions comparable to those written by humans in terms of <u>well-formedness</u> and <u>answerability</u>?

Results → **Answerability**

	Question provenance		
Responses	Human-authored	Machine-generated	
One answer	(84)	(65)	
Two or more answers (ambiguous)	Ĭ,	Ĭ	
None (badly formulated question)	3	20	
None (answer not in the excerpt)	5	4	

Research Question

RQ. 3 How well can humans <u>distinguish</u> questions generated by a machine from those written by a person?

Results -- Distinguishability

Over half of the cases (52%) where participants **cannot distinguish** or present **doubts** between question provenance.

	Question provenance		
Responses	HA	MG	
Human-authored	118	76	
Doubt	91	54	
Machine-generated	(114)	192	

Final Remarks

RQ1. Are rule-based generated questions similar to those written by humans? For *n*-gram and embedding similarity metrics, they are aligned in SOTA.

RQ2. Are rule-based generated questions comparable to those written by humans in terms of well-formedness and answerability?

Yes, when exploring dependency information as a linguistic aspect.

RQ3. How well can humans distinguish questions generated by a machine from those written by a person?

In most cases humans did not distinguish or have doubts.

Do Rules Still Rule? Comprehensive Evaluation of a Rule-Based Question Generation System

Bernardo Leite, Henrique Lopes Cardoso

Faculty of Engineering - U. Porto, Portugal (FEUP)
Artificial Intelligence and Computer Science Laboratory (LIACC)
{bernardo.leite, hlc}@fe.up.pt