

Онлайн-курс

ВВЕДЕНИЕ В ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ

1. Функции одного аргумента и их точки минимума

Автор: Шевляков Артём Николаевич

Точки минимума функции

Ну, что вы помните из школы?

Есть функция f(x) аргумента x. Можешь найти ее точки минимума и максимума?

А зачем? Мы же нейронными сетями будем заниматься?

Понимаешь, любой мозг (искусственный и натуральный) есть результат некоторой минимизации и поиска оптимальной структуры.

OK. Значит, будем учиться искать минимумы и максимумы. Это же как-то связано с производной, верно?

Сначала определение минимума

Точка a называется **локальным минимумом** функции f(x), если существует окрестность точки a, что значение f(a) < f(b) для любой точки b из этой окрестности.

Сначала определение минимума

Точка a называется **глобальным минимумом** функции f(x), если f(a) < f(b) для любой точки b из области определения функции.

А что точки максимума?

Можно не уметь искать точки максимума, так как точки максимума функции f(x) являются точками минимума функции -f(x). И наоборот.

Ищем точки минимума, как в школе

- Есть функция f(x).
- Находим ее производную f'(x).
- Решаем уравнение f'(x)=0.
- Корни этого уравнения кандидаты на звание «локального минимума».

Как же всё просто!

Ищем точки минимума, как в школе. Пример

- Есть функция $f(x) = \frac{1}{3} x^3 x$.
- Находим ее производную $f'(x)=x^2-1$.
- Решаем уравнение $x^2-1=0$.
- Корни этого уравнения *x=-1, x=1*. Точка x=1 локальный минимум, (да-да, в этой точке производная меняет знак с на +).

Но есть небольшая проблемка...

Указанный метод поиска точек минимума не работает, если...

- производная определена не всюду

(особенно весело, когда производная не определена как раз в точке минимума);

например: f(x)=|x|;

Но есть небольшая проблемка...

Указанный метод поиска точек минимума не работает, если...

- уравнение f'(x)=0 не может быть точно решено;

например: $f(x)=x^6+x^5+x^2+x$

н.г. чернышевский

что делать?

огиз-гослитиздат-1947

DZONCU

Метод градиентного спуска

Итак, школьный метод не всегда работает

Что же делать?

Созерцать!

Обычный мячик под действием силы тяжести скатывается в самую глубокую область поверхности.

Неужели мы тупее мячика и не сможем смоделировать такое движение по графику функции?

Моделируем поведение шарика

Выберем длину шага *h* (например, *h*=0.01). Сделав шаг такой длины наш шарик будет останавливаться и думать, в какую сторону ему дальше катиться.

Пусть шарик находится в точке с координатой a. Тогда новая a точка равна:

$$a := a - f'(a) \cdot h$$

После этого процесс повторяется, мы получаем новую позицию для шарика итд.

Моделируем поведение шарика

В общем случае этот процесс можно описать формулой. Пусть a_n - координата шарика после n шагов. Тогда координата шарика на следующем шаге равна:

$$a_{n+1} := a_n - h \cdot f'(a_n)$$

Стандартное значение шага h=0.01.

Когда нужно остановиться?

Когда значение $f'(a_n)$ будет (примерно) равно 0. Либо когда пройдет заданное заранее максимальное число итераций.

Пример

Пусть $f(x)=x^3-x$. Начальное положение $a_0=0$, шаг h=0.1, $f'(x)=3x^2-1$.

Следующая координата равна:

$$a_1 = a_0 - f'(a_0)h = 0 - (-1)0.1 = 0.1$$

Далее:

$$a_2 = a_1 - f'(a_1)h = 0.1 - (-0.97)0.1 = 0.197$$

Потом:

$$a_3 = 0.197 - (-0.88)0.1 = 0.28$$

и так далее...

Посмотрим результат процесса на графике функции...

Пример

Мы действительно по шагам подходим к точке минимума!

Кстати, после 13-ти итераций мы придем в точку с координатой a_{13} =0.57, при этом точная точка минимума 0.577

Пример

Информацию о шагах нашего алгоритма приведем в виде таблицы

a _n	0.1	0.197	0.285	0.361	0.422	0.469	0.503	0.527	0.544	0.555	0.563	0.568	0.571
f'(a _n)	-0.97	-0.884	-0.756	-0.609	-0.466	-0.34	-0.241	-0.167	-0.112	-0.076	-0.049	-0.032	-0.022
f(a _n)	-0.1	-0.19	-0.26	-0.31	-0.35	-0.37	-0.38	-0.38	-0.38	-0.38	-0.38	-0.38	-0.38

Можно заметить:

- производная (по модулю) уменьшается и приближается к 0;
- значения функции уменьшаются;
- точка a_n приближается к истинной точке минимума;
- расстояние между соседними точками a_n уменьшается.

$$a_{n+1} := a_n - h \cdot f'(a_n)$$

Метод градиентного спуска

Такой способ нахождения точки минимума называется градиентным спуском (ГС). И он работает, даже когда школьный метод ломается.

Например, если
$$f(x)=|x|$$
, то $f'(x)=\begin{cases} 1, & x>0 \\ -1, & x<0 \end{cases}$ и ГС работает.

Для a_0 =1,h=0.1 имеем a_1 =1-1*0.1=0.9, a_2 =0.9-1*0.1=0.8, a_3 =0.8-1*0.1=0.7 и тд.

В конечном итоге мы придём в истинную точку минимума x=0.

- всё зависит от расположения начальной точки $a_{\it o}$ -

- слишком маленький шаг *h* плох;

- слишком большой шаг *h* плох;

- точность зависит от длины шага *h*;

Пусть
$$f(x)=x^2$$
, $f'(x)=2x$, $a_0=-2$, $h=1$.

Тогда
$$a_1 = -2 - 2 \cdot (-2) \cdot 1 = 2$$

$$a_2 = 2 - 2 \cdot 2 \cdot 1 = -2$$

Мы зациклились!

плохое поведение на плато функции f(x).

На плато f'(x) по модулю почти равна нулю (это еще называют **затуханием градиента**). Нет стимула хоть куда сделать шаг.

Шарик, кстати, по плато тоже не катится))))

Например, функция f(x)=1/x имеет плато при больших значениях x.

В частности, значение производной $f'(x)=-1/x^2$ в точке 10 равно: -0.01

- **взрыв градиента**, когда значение f'(a) очень велико.

Это означает, что следующий шаг будет очень большой (это следует из формулы a:=a-f'(a)*h)!

очень большая по модулю f'(x) в левой точке

Преимущества ГС

- Других общих методов нахождения точек минимума у нас нет.
- Проблемы с выбором *h* вполне решаемы: мы можем изменять величину *h* на каждой итерации. На первых итерациях *h* может быть достаточно большим, и потом плавно уменьшаться.
- Метод может работать, даже когда производная неизвестна! См. след. слайд.

Численное дифференцирование

Пусть δ – небольшое положительное число. Тогда производная в точке a приближенно равна:

$$f'(a) \approx \frac{f(a+\delta) - f(a)}{\delta}$$

Например, для $f(x)=x^3$ при $\delta=0.05$ в точке a=1 имеем:

$$f'(1) \approx \frac{f(1+0.05)^3 - 1^3}{0.05} = 3.15$$

Истинное значение $(f'(x)=3x^2)$ равно: $3*1^2=3$

Численное дифференцирование

А еще более точная формула для дифференцирования такая:

$$f'(a) \approx \frac{f(a-2\delta) - 8f(a-\delta) + 8f(a+\delta) - f(a+2\delta)}{12\delta}$$

Например, для $f(x)=x^3$ при $\delta = 0.05$ в точке a=1 имеем:

$$f'(1) \approx \frac{f(1-2\cdot0.05)^3 - 8(1-0.05)^3 + 8(1+0.05)^3 - (1+2\cdot0.05)^3}{12\cdot0.05}$$
$$f'(1) \approx 3.01$$

Что достаточно близко к истинному значению (f'(1)=3).

Выводы

Выводы:

- Мы изучили новый метод нахождения точки минимума градиентный спуск.
- Обсудили его плюсы и минусы.
- Показали на примерах, как градиентный спуск итеративно ищет точку минимума.