1. (a) 所有不同的状态数 n=100×100×4×100×4×101×2×901=29/2032000000 Log_n=41.4

: n至少为 42

(b) 1. 14 bits 2. 2 bits

2 bits

3. 7 bits — 共43个bit 4. 2 bits

5. 7bits

6. 1 bit 7. 4+6 bits

(c) 因为b的方式更易于理解和解码

(b) 一共需要3个比特

3. $8x_2^4 = 128$ by tes

4.

只需2个比特即可

Q, A[I:0]是11,WE状态为0、

b. $\log_2 60 = 5.9$,故MAR应有6位,addressability仍为3bits C. $2^6-60=4$,所以还可以加4个地址

b. 16个bit

2个bit

5.

C. $16 \times 2^2 = 64 \text{ bit} = 8 \text{ byte}$

01 .					
	WE	A[1:0]	Di[15:0]	D[15:0]	Read/Write
	0	01	xFADE	×4567	Read
	1	10	xDEAD	×DEAD	Write
	O	00	xBEEF	x0123	Read
		44	ייבינים		\A/-:+-

这是一个倒计时器

(2) RO - NOT RI

(3) Ro ← Ro+1

(4) Ro←Ro+Rz (5) N=1

(7) 如果 R2>=R1, R4←1 否则 R4←0

(1) $R_0 \leftarrow O$

12.

 $(2) R5 \leftarrow R_1 AND (00001)$

(3) N=1, P=1(4) $R_0 \leftarrow R_0 + 1$

(5) 如果R₁是奇数, R₀←() 如果R₁是偶数, R₀←|