## **Exploratory Data Analysis Report: Transaction Fraud Detection**

Objective: The primary goal of this EDA is to understand the characteristics of fraudulent versus non-fraudulent transactions to inform the development of a One-Class Classification model. This model aims to identify fraudulent transactions by learning the patterns of "normal" (non-fraudulent) transactions and flagging deviations as anomalies.

### 1. Dataset Overview

The provided dataset is a preprocessed and cleaned subset from a fraud detection competition, containing approximately 590,000 transactions and 48 features. Key feature categories include:

- Transaction details: TransactionDT (time delta), TransactionAmount.
- **Product information**: *ProductCD*.
- Card details: Card1 Card6.
- **Geographic information**: Addr1, Addr2, Dist1.
- Purchaser email domain: P emaildomain.
- Count-based features: C1 C14.
- Time-based delta features: D1 D5, D10.
- Anonymized engineered features: V0 V13.

Missing values are present in *Dist1*, *P\_emaildomain*, and several *C* and *D* columns, requiring careful handling during preprocessing.

# 2. Key Insights from Exploratory Data Analysis

#### 2.1. is Fraud Distribution & Correlation



• Severe Class Imbalance: Only **3.47%** of transactions are fraudulent, while **96.53%** are non-fraudulent. This imbalance is crucial for model training and evaluation, making One-Class Classification a suitable approach.



- Feature Correlations:
  - Most numerical features (e.g., *TransactionAmount, TransactionDT, C-features, D-features*) show **very low linear correlations** with *isFraud* (typically between 0.07 and 0.04). This implies that fraudulent patterns are likely non-linear and multi-dimensional.
  - o *C-features* (C1-C14) and some *D-features* exhibit **extremely high inter-correlations** (close to 1.00), suggesting redundancy.

#### 2.2. TransactionDT & TransactionAmount



- *TransactionAmount*: Fraudulent transactions tend to have a **higher density at lower transaction amounts** compared to non-fraudulent ones, but also show a broader spread.
- *TransactionDT*: The ratio of fraudulent transactions over time is highly volatile, with daily spikes exceeding 6-7% (compared to an overall average of 3.47%). This temporal variability is a significant indicator.

### 2.3. ProductCD



- *ProductCD* is a **highly discriminative feature**:
  - o ProductCD == 'C' has the **highest fraud rate at 11.81%**, making it a strong signal for fraud.
  - o ProductCD == 'S' also shows a relatively high fraud rate at **5.90%**.
  - o ProductCD == 'W' has the lowest fraud rate at **2.04%**.

#### 2.4. *Card1* - *Card6*

| Card 1       |          | Card 2       |          | Card 3       |          | Card 5       |          |
|--------------|----------|--------------|----------|--------------|----------|--------------|----------|
| Unique<br>ID | is Fraud |
| 9633         | 719      | 321          | 48928    | 150          | 522765   | 226          | 300308   |
| 9500         | 528      | 111          | 45189    | 185          | 53383    | 224          | 80600    |
| 15885        | 436      | 555          | 41948    | other        | 11293    | 166          | 57132    |
| 9026         | 388      | 490          | 38107    |              |          | 102          | 28950    |
| 15063        | 319      | 583          | 21798    |              |          | 117          | 25939    |
| 2616         | 314      |              |          |              |          |              |          |
| 15066        | 313      |              |          |              |          |              |          |
| 9917         | 305      |              |          |              |          |              |          |
| 5812         | 297      |              |          |              |          |              |          |
| 6019         | 294      |              |          |              |          |              |          |

- Card1 (Card ID): Specific Card1 IDs are repeatedly involved in multiple fraudulent transactions (e.g., Card1 == 9633 has 719 fraud cases), highlighting compromised cards as a source of fraud.
- *Card3* (Card Type/Code): While 150.0 is dominant, the *other* category, despite its small count, appears to have a relatively higher proportion of fraudulent transactions.

### 2.5. Addr1, Addr2 (Region, Country)



• The distribution of fraud largely mirrors the overall distribution for *Addr1* (billing region) and *Addr2* (country code). However, visually, the "others" categories for both *Addr1* and *Addr2* appear to have a slightly higher proportion of fraud, suggesting transactions from less common regions might be riskier.

## 2.6. Dist1 (Distance between billing and cardholder address)





Dist1 is a strong indicator of fraud: Fraudulent transactions show a much higher median Dist1 and a broader distribution compared to non-fraudulent ones. There's a prominent peak for fraudulent transactions at a distance of approximately 400, suggesting fraudsters use cards from a different location.

## 2.7. P\_emaildomain (Purchaser email domain)



• Among the top domains, *gmail.com* has the highest fraud ratio at **4.31%**, followed by *others* (3.22%) and *yahoo.com* (2.25%). This suggests fraudsters may prefer common, easily accessible email services.

## 2.8. *C1 - C14* (Count Features)



- C3 (Failed Login/Payment Attempts), C7 (Past Declined Transactions/Disputes), and C8 (Account Logins/Authentications) are highly promising fraud indicators. Fraudulent transactions consistently show higher values in these features, indicating more suspicious activity (e.g., more failed attempts, more logins).
- High multicollinearity exists among many C-features, implying they measure similar aspects of activity.

# 2.9. D1 - D5, D10 (Time-based Delta Features)



- Fraudulent transactions tend to have **higher median values and a broader spread** for most *D*-columns (time deltas since previous activities). This suggests fraudulent transactions often occur with a larger time delta, potentially indicating the use of older or less frequently used accounts/cards.
- For fraudulent transactions, *yahoo.com* email domains are associated with a slightly longer average *D5* (time since last transaction using the same email/browser).

### 2.10. *V-columns* (Anonymized Features)

 As in preprocessing steps, these features have undergone PCA and are expected to contain complex predictive signals crucial for the One-Class Classification model.

# 3. Overall Implications for One-Class Classification

The EDA highlights that while linear relationships with fraud are weak, several features exhibit distinct patterns for fraudulent transactions. An OCC model can leverage these insights:

- 1. **Imbalance Handling**: OCC is inherently suited for the severe class imbalance, focusing on learning the distribution of the majority (non-fraudulent) class.
- 2. **Key Anomaly Drivers**: *ProductCD* ('C' and 'S'), *Dist1* (higher values, especially around 400), and *C3*, *C7*, *C8* (higher count values) are strong candidates for defining "anomalous" behavior.
- 3. **Complex Patterns**: The low linear correlations suggest that OCC models, particularly those capable of capturing non-linear boundaries (e.g., Isolation Forest, One-Class SVM), will be effective in identifying deviations from normal multi-dimensional patterns.
- 4. **Temporal & Behavioral Anomalies**: The volatility in fraud ratio and the distinct *D*-feature patterns for fraud suggest that temporal and behavioral anomalies (e.g., unusual time gaps between activities) are important.
- 5. **Multicollinearity and Outliers**: OCC models are robust to multicollinearity and are designed to detect outliers, which are prevalent in this dataset.

# 4. Next Steps for One-Class Classification

#### 1. Feature Engineering:

- o Create interaction features (e.g., *ProductCD* and *Dist1*).
- Derive cyclical time features (*TransactionDT* as day of week, hour of day) and time-windowed aggregates.
- O Aggregate features by *Card1*, *Addr1*, *P\_emaildomain* (e.g., average *TransactionAmount*, fraud rate for that group).
- Explore sums or ratios for *C* and *D* columns.

- 2. **Handling Categorical Features**: Apply One-Hot Encoding for *ProductCD*, *Card4*, *Card6*. For high-cardinality features like *P\_emaildomain*, *Addr1*, *Addr2*, consider grouping less frequent categories into "other" or using target encoding.
- 3. **Scaling**: Numerical features should be scaled (e.g., *StandardScaler*) as many OCC algorithms are distance-based.
- 4. **Model Selection**: Evaluate algorithms like Isolation Forest, One-Class SVM, or Local Outlier Factor (LOF).
- 5. **Evaluation:** Focus on metrics like Precision, Recall, F1-score, and AUC-PR (Precision-Recall curve) for the minority class (fraud), as accuracy will be misleading.
- 6. **Thresholding:** Carefully tune the anomaly score threshold to balance false positives and false negatives based on business requirements.

This EDA provides a strong foundation for developing an effective One-Class Classification system for transaction fraud detection.