FOUNDATIONS OF OPTIMIZATION: IE6001

Two Phase Simplex Algorithm

Napat Rujeerapaiboon Semester I, AY2022/2023

Initial Basic Feasible Solution

- In STEP 0 the simplex algorithm requires an initial BFS and the corresponding basic representation.
- One can show that finding a feasible solution is in general as hard as finding an optimal solution!
- ⇒ How to construct an initial BFS?
 - In general, an initial BFS can be found by using a variant of the simplex algorithm.
 - In some special cases, an initial BFS can be constructed "manually".

Problems with an "All Slack Basis"

minimize
$$x_0 = c_1x_1 + c_2x_2 + \ldots + c_nx_n$$

subject to:

Problems with an "All Slack Basis"

minimize
$$x_0 = c_1x_1 + c_2x_2 + \ldots + c_nx_n$$
 subject to:

 \Rightarrow This is a basic representation for $I = \{n+1, \ldots, n+m\}$. The corresponding BS is feasible if $b_i \ge 0$, $i = 1, \ldots, m$.

Consider a system with

- · equalities,
- ">" inequalities and
- "<" inequalities,

and assume that all variables and RHS's are nonnegative.

$$x_1 + x_2 + x_3 = 10$$

 $2x_1 - x_2 \ge 2$
 $x_1 - 2x_2 + x_3 \le 6$
 $x_i \ge 0 \ \forall i = 1, ..., 3$

Standardise the system by

- adding slack variables and
- subtracting surplus variables.

$$x_1 + x_2 + x_3 = 10$$

 $2x_1 - x_2 - x_4 = 2$
 $x_1 - 2x_2 + x_3 + x_5 = 6$
 $x_i \ge 0 \ \forall i = 1, ..., 5$

⇒ No basic representation! Only slack variables behave like basic variables!

Idea: Add new artificial variables to those constraints that were originally equalities and ">" inequalities.

The artificial variables behave like basic variables.

⇒ We have found a basic representation!

But this system is not equivalent to the original one!

Important Observation:

Any nonnegative FS $(x_1, \ldots, x_5, \xi_1, \xi_2)$ for

with $\xi_1 = \xi_2 = 0$ provides a nonnegative FS (x_1, \dots, x_5) for

To find such a solution, we solve the auxiliary LP:

minimize
$$\zeta = \xi_1 + \xi_2$$

subject to:

The initial BFS for this LP is given by $\xi_1 = 10$, $\xi_2 = 2$, $x_5 = 6$ (basic variables) and $x_1 = \cdots = x_4 = 0$ (nonbasic variables).

- To solve the auxiliary LP with the simplex algorithm, we need a basic representation for the initial BFS.
- However, the objective function value $\zeta = \xi_1 + \xi_2$ is expressed in terms of the basic variables ξ_1 and ξ_2 .
- To express ζ as a function of the nonbasic variables, we add all equations with artificial variables to the objective.

- The auxiliary LP is feasible and bounded by construction $(\zeta = \xi_1 + \xi_2 \ge 0 \text{ cannot drop indefinitely!}).$
- ⇒ The simplex algorithm must terminate in STEP 1 with an optimal BFS. There are two cases:
 - $\zeta = 0$ at optimality: this implies that $\xi_1 = \xi_2 = 0$, and the optimal BFS of the auxiliary LP provides a BFS for the original system.
 - $\zeta > 0$ at optimality: the auxiliary LP has no feasible solution with $\xi_1 = \xi_2 = 0 \Rightarrow$ the original system has no BFS \Rightarrow it is infeasible!

Solve the auxiliary LP with the simplex algorithm.

BV	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	ξ_1	ξ_2	RHS
ζ	3		1	-1				12
ξ_1	1	1	1			1		10
ξ_2	2	-1		-1			1	2
<i>X</i> ₅	1	-2	1		1			6

Solve the auxiliary LP with the simplex algorithm.

BV	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	ξ_1	ξ_2	RHS
$\overline{\zeta}$	3		1	-1				12
ξ_1	1	1	1			1		10
ξ_2	2	-1		-1			1	2
<i>X</i> ₅	1	-2	1		1			6
ζ		1 1/2	1	1/2			$-1\frac{1}{2}$	9
ξ_1		1 ½	1	$\frac{1}{2}$		1	$-\frac{1}{2}$	9
<i>X</i> ₁	1	$-\frac{1}{2}$		$-\frac{1}{2}$			$\frac{1}{2}$	1
<i>X</i> ₅		$-1\frac{1}{2}$	1	$\frac{1}{2}$	1		$-\frac{1}{2}$	5

Solve the auxiliary LP with the simplex algorithm.

BV	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	ξ_1	ξ_2	RHS
ζ		1 1/2	1	1 2			$-1\frac{1}{2}$	9
ξ_1		$1\frac{1}{2}$	1	<u>1</u> 2		1	$-\frac{1}{2}$	9
<i>X</i> ₁	1	$-\frac{1}{2}$		$-\frac{1}{2}$			$\frac{\overline{1}}{2}$	1
<i>X</i> 5		$-1\frac{7}{2}$	1	<u>1</u>	1		$-\frac{1}{2}$	5
ζ						-1	<u>-1</u>	0
<i>X</i> ₂		1	<u>2</u>	$\frac{1}{3}$			$-\frac{1}{3}$	6
<i>X</i> ₁	1		$\frac{1}{3}$	$-\frac{1}{3}$			$\frac{1}{3}$	4
<i>X</i> 5			¹ / ₃ 2	<u>ĭ</u>	1		_ <u>1</u>	14

This is a BFS for the original system!

Two Phase Simplex: Phase 1

- **Step 1:** Modify the constraints so that all RHS's are nonnegative (constraints with negative RHS \times 1).
- **Step 2:** Identify now all equality and ≥ constraints. In Step 4 we will add artificial variables to these constraints.
- **Step 3:** Standardise inequalities: for \leq constraints, add slacks; for \geq constraints, subtract excesses.
- **Step 4:** Add now artificial variables ξ_i to all \geq or equality constraints identified in Step 2.
- **Step 5:** Let ζ be the sum of all artificial variables and derive the basic representation of ζ .
- **Step 6:** Find minimum value of ζ using the simplex algorithm.

Two Phase Simplex: Phase 2

Case 1: $\zeta^* > 0$

⇒ The original LP is infeasible.

Case 2: $\zeta^* = 0$ and all ξ_i are nonbasic at optimality.

- ⇒ Remove all artificial columns from the optimal Phase 1 tableau.
- \Rightarrow Derive the basic representation of x_0 (original objective) w.r.t. optimal index set of Phase 1.
- ⇒ Solve the original LP with the simplex algorithm (Phase 2). The final basis of Phase 1 is the initial basis of Phase 2. The optimal solution to Phase 2 is the optimal solution to the original LP.

Two Phase Simplex: Phase 2

Case 3: $\zeta^* = 0$ and at least one ξ_i is basic at optimality.

- \Rightarrow As $\zeta^* = 0$ we conclude that all $\xi_i = 0$.
- ⇒ We have found a degenerate BFS for the original problem and a basic representation for the auxiliary problem.
- \Rightarrow As the BFS is degenerate, we can pivot on any $y_{pq} \neq 0$ corresponding to an artificial ξ_p and an original variable x_q without changing the BFS!

min
$$x_0 = 2x_1 + 3x_2$$

subject to
$$\frac{1}{2}x_1 + \frac{1}{4}x_2 \le 4$$
 $x_1 + 3x_2 \ge 20$
 $x_1 + x_2 = 10$
and
$$x_1, x_2 \ge 0$$

Steps 1-4 of Phase 1 transform the equality constraints to:

Initial BFS for Phase 1:

Basic variables: $x_3 = 4, \ \xi_2 = 20, \ \xi_3 = 10$

Nonbasic variables: $x_1 = x_2 = x_4 = 0$

In Step 5 of Phase 1 define $\zeta = \xi_2 + \xi_3$ and derive the basic representation for ζ w.r.t. the basic variables x_3 , ξ_2 and ξ_3 .

In Step 6 of Phase 1 we solve the auxiliary LP.

minimize
$$\zeta = 30 - 2x_1 - 4x_2 + s_4$$
 subject to:

BV	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	ξ_2	ξ_3	RHS
$\overline{\zeta}$	2	4		-1			30
<i>X</i> 3	1 2	$\frac{1}{4}$	1				4
ξ_2	1	3		-1	1		20
<u>ξ</u> 3	1	1				1	10

BV	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	ξ_2	ξ_3	RHS
$\overline{\zeta}$	2	4		-1			30
<i>X</i> 3	<u>1</u> 2	$\frac{1}{4}$	1				4
ξ_2	1	3		-1	1		20
<i>X</i> 3 ξ2 ξ3	1	1				1	10
ζ	2 3			1 3	$-\frac{4}{3}$		10 3
<i>X</i> 3	<u>5</u>		1	<u>1</u> 12	$-\frac{1}{12}$		$\frac{7}{3}$
<i>X</i> ₂	<u>1</u>	1		$-\frac{1}{3}$	<u>1</u>		2 <u>0</u>
χ ₃ χ ₂ _ ξ ₃	2 3 ₅ 21 32 3			$\frac{\frac{1}{3}}{3}$	$-\frac{1}{3}$	1	10 3 7 3 20 3 10 3

BV	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	ξ_2	ξ_3	RHS
ζ	2 3 ₅ 21 32 3			<u>1</u> 3	$-\frac{4}{3}$		10 3 7 3 20 3 10 3 10 3
<i>X</i> ₃	12		1	1 <u>1</u>	$-\frac{1}{12}$		$\frac{7}{3}$
<i>X</i> 3 <i>X</i> 2 ξ3	$\frac{1}{3}$	1		$-\frac{1}{3}$	$\frac{1}{3}$		$\frac{20}{3}$
ξ_3	$\frac{2}{3}$			<u>1</u> 3	$-\frac{1}{3}$	1	10 3
ζ					-1	-1	0
<i>X</i> ₃			1	$-\frac{1}{8}$	<u>1</u> 8	$-\frac{5}{8}$	$\frac{1}{4}$
<i>X</i> ₃ <i>X</i> ₂		1		$-\frac{1}{2}$	<u>1</u> 2	$-\frac{1}{2}$	¹ / ₄ 5
X ₁	1			$\frac{1}{2}$	$-\frac{1}{2}$	- <u>2</u> 3 2	5

 $\zeta^* = 0 \Rightarrow \text{Phase 1 concluded.}$

BFS found in Phase 1:

Basic variables: $x_3 = \frac{1}{4}, x_2 = 5, x_1 = 5$

Nonbasic variable: $x_4 = \xi_2 = \xi_3 = 0$

There are no artificial variables in the basis ⇒ Case 2

We can drop the columns of all artificial variables: ξ_2 and ξ_3 are no longer needed!

In Phase 2 we first derive the basic representation of $x_0 = 2x_1 + 3x_2$ w.r.t. the basic variables x_1 , x_2 and x_3 .

Use Rows 2 and 3 of the optimal Phase 1 tableau to eliminate x_1 and x_2 from Row 0 of Phase 2 (objective x_0).

Row 0:
$$x_0 - 2x_1 - 3x_2 = 0$$

 $+3 \times (\text{Row 2}):$ $3x_2 - \frac{3}{2}x_4 = 15$
 $+2 \times (\text{Row 3}):$ $2x_1 + x_4 = 10$
 $=: x_0 - \frac{1}{2}x_4 = 25$
 $\Rightarrow x_0 = 2x_1 + 3x_2 = 25 + \frac{1}{2}x_4$

We now begin Phase 2 with following basic representation:

The corresponding BFS is optimal!

IN THIS CASE: Phase 2 requires no further pivots. IN GENERAL: Continue with the simplex algorithm.

Increase b_2 from 20 to 36 \Rightarrow LP becomes infeasible.

minimize
$$x_0 = 2x_1 + 3x_2$$

subject to:

and

$$x_1, x_2 \ge 0$$

After Steps 1-5 we find the auxiliary LP:

minimize
$$\zeta = \xi_2 + \xi_3$$

subject to:

Initial BFS for Phase 1:

Basic variables: $x_3 = 4, \ \xi_2 = 36, \ \xi_3 = 10$

Nonbasic variables: $x_1 = x_2 = x_4 = 0$

Find the basic representation of ζ w.r.t. this basis.

Row 0
$$\zeta$$
 $-\xi_2 - \xi_3 = 0$
 $+ \text{Row 2}$ $x_1 + 3x_2 - x_4 + \xi_2 = 36$
 $+ \text{Row 3}$ $x_1 + x_2 + \xi_3 = 10$
 $= \zeta + 2x_1 + 4x_2 - x_4 = 46$
 $\Rightarrow \zeta = \xi_2 + \xi_3 = 46 - 2x_1 - 4x_2 + x_4$

Solve the auxiliary LP with the simplex algorithm.

BV	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	ξ_2	ξ_3	RHS
$\overline{\zeta}$	2	4		-1			46
<i>X</i> ₃	1 2	1/4	1				4
ξ_2	1	3		-1	1		36
_ξ3	1	1				1	10

Solve the auxiliary LP with the simplex algorithm.

BV	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	ξ_2	ξ_3	RHS
$\overline{\zeta}$	2	4		-1			46
<i>X</i> ₃	$\frac{1}{2}$	$\frac{1}{4}$	1				4
x_3 ξ_2	1	3		-1	1		36
ξ_3	1	1				1	10
$\overline{\zeta}$	-2			-1		-4	6
<i>X</i> ₃	$\frac{1}{4}$		1			$-\frac{1}{4}$	6 32 6
Χ ₃ ξ ₂ Χ ₂	$\begin{vmatrix} \frac{1}{4} \\ -2 \end{vmatrix}$			-1	1	$-\dot{3}$	6
<i>X</i> ₂	1	1				1	10

In Row 0 of Tableau 2 no variable has a positive coefficient.

 \Rightarrow Optimal Phase 1 tableau with $\zeta^* = 6 > 0 \Rightarrow$ no FS.