Videó átméretező megvalósítása FPGA-val

Készítette: Gilicze Márton

Konzulens: Szántó Péter

Miért van erre szükség?

- Az átméretezés számos videó feldolgozó folyamatban merül fel igényként
- Ezek a folyamatok jellemzően FPGA-n jól megvalósíthatóak
- A létező megoldások drágák
 - Jobbra: Retrotink 4K-pro
 - Cyclone-V FPGA
 - 750 USD
 - Retro játékkonzolok kimenetét upscaleli

Hogyan méretezünk át egy képet?

- Két fő megközelítés
 - Forward mapping: lyukak keletkezhetnek
 - Backward mapping: visszafele gondolkodunk (ezt alkalmaztam a feladatban)

Képátméretezési technikák

- Bilineáris interpoláció:
 - Környező 4 pixel értékének távolságtól függő átlagát vesszük

- Ez minimálisan 6 szorzással valósítható meg
 - \circ (X X₁) * Q₁₂ , (X₂ X) * Q₂₂ , (X X₁) * Q₁₁ , (X₂ X) * Q₂₁
 - $\circ (Y Y_2) * R_2 , (Y_1 Y) * R_1$

Bilineáris interpoláció

- Vízszíntes és függőleges irányban meghatározzuk a scale factort -> kimenet/bemenet
- Minden kimeneti képponthoz meghatározzuk a hozzá tartozó bemeneti képpontokat

Képátméretezési technikák

- Polyphase interpoláció:
 - Hasonlóan előzőhöz, meghatározzuk a kimeneti pixel bemeneti képen levő helyzetét
 - Több sor és oszlopnyi környező pixelt használunk (taps)
 - Separable filter -> 1D-s interpolációra való felbontás

Polyphase filter

 Az együtthatók a pixelek fázisaitól függenek, melyeket előre generálunk

Lehetséges architektúra

- Sorokat beolvassuk bufferekbe
- Először függőleges, majd vízszíntes interpoláció

Sorbufferek

- Ahhoz hogy a filterek a megfelelő sorokból kapják a bemeneti pixeleket, buffereket kell létrehozni.
- A buffer az interface a bejövő adatok, és a filter bemenetei között
- A buffer tartalmazza a filter által aktuálisan használt adatokat
- Miközben a következőleg használt sorok beolvasására is képes

Sorbufferek megvalósítása

- Egy cirkuláris bufferbe írjuk/olvassuk a megfelelő sorokat, bilineáris esetet látjuk
- Amint a megfelelő sorok elérhetőek, olvas a filter
- Amint van hely új sort beolvasni, írjuk a buffert

-dlnValid

Eredmények - Bilineáris

Upscale: 512x512

Upscale and downscale: 800x150

Projekt helyzete

- Megvalósított részegységek:
 - Bilineáris filter
 - Sorbufferek
 - Test bench
- Jelenleg fejlesztés alatt:
 - Polyphase filter
- Jövő fejlesztések:
 - Axi stream interface készítése
 - Implementálás valós hardveren

Köszönöm szépen a figyelmet!

