Контрольная работа по курсу «Сети ЭВМ и телекоммуникации

Студент Shakirov Evgeny Гр. 320201

Вариант 22

Часть І. Планирование адресного пространства IPv6

Задание 1.1:: Представить сокращенную запись адреса сети IPv6, который сформирован следующим образом:

- 1. Префикс глобальной маршрутизации установлен в соответствии с рекомендациями http://tools.ietf.org/html/rfc3849
- 2. Идентификатор подсети установлен в соответствии с номером Вашей учебной группы, который интерпретируется как десятичное число.
- 3. Старшие 5 байтов идентификатора интерфейса установлены кодами ASCII (http://ascii.org.ru/) первых пяти букв Вашего имени (в латинице).
- 4. Остальные позиции адреса установлены нулевыми значениями.

Решение 1.1 (макс. 20 баллов):

Сеть IPv6 | 2001:db8:0:4ee9:4576:6765:6e00:0/103 |

Задание 1.2: разбить сеть из п.1.1 на 47 одинаковых по размеру подсетей МАКСИМАЛЬНОЙ ДЛИНЫ и указать префиксы первой и последней подсетей.

Решение 1.2 (макс. 20 баллов):

Префикс $N_{\text{С\'{\Gamma}C},}$	$2001: \mathtt{db8:} 0: 4 \mathtt{ee9:} 4576: 6765: 6e00: 0/109$
Префикс $N_{\text{CPëPS}}$	2001:db8:0:4ee9:4576:6765:6f70:0/109

Часть II. Планирование адресного пространства IPv4

X0= целая часть (N*16)/256+10= целая часть (22*16)/256+10=11

 $X1={f octatok}$ от деления $(N*16)/256={f octatok}$ от деления (22*16)/256=96

Дано: Сеть 11.96.0.0/12

Задание **2.1.1:** разбить сеть на 16384 подсетей, указать для первых 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	96	0	0
Адрес сети	00001011	01100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

- 2. Чтобы разбить адрес сети на нужное количество подсетей, необходимо заимствовать 4 бит из 3-го октета и 8 бит из 2-го октета, а также 2 бит из 1-го октета.
- 3. Итого, получается, что сеть 11.96.0.0/12 мы разбили на 16384 подсети, в каждой из которых по 62 узлов, указываем первые 5 подсетей:

	11	96	0	0
Адрес сети дв.с	00001011	01100000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	11000000
	255	255	255	192

255	255 2	255
Адрес сети $N_1/$ Префикс N_1	11.96.0.0/26	
Адрес первого узла N_1	11.96.0.1	
Адрес последнего узла N_1	11.96.0.62	
Широковещательный адрес N_1	11.96.0.63	
Адрес сети $N_2/$ Префикс N_2	11.96.0.64/26	3
Адрес первого узла N_2	11.96.0.65	
Адрес последнего узла N_2	11.96.0.126	
Широковещательный адрес N_2	11.96.0.127	
Адрес сети $N_3/$ Префикс N_3	11.96.0.128/2	26
Адрес первого узла N_3	11.96.0.129	
Адрес последнего узла N_3	11.96.0.190	
Широковещательный адрес N_3	11.96.0.191	
Адрес сети $N_4/$ Префикс N_4	11.96.0.192/2	26
Адрес первого узла N_4	11.96.0.193	
Адрес последнего узла N_4	11.96.0.254	
Широковещательный адрес N_4	11.96.0.255	

Адрес сети $N_5/$ Префикс N_5	11.96.1.0/26
Адрес первого узла N_5	11.96.1.1
Адрес последнего узла N_5	11.96.1.62
Широковещательный адрес N_5	11.96.1.63

Дано: Сеть 11.96.0.0/12

Задание 2.1.2: разбить сеть на 500 подсетей, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	96	0	0
Адрес сети	00001011	01100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Чтобы разбить данную сеть на $(500\leqslant 2^9=512)$ подсетей необходимо заимствовать 4 бит из 3-го октета и 5 бит из 2-го октета (получается, что сеть можно разбить на 512 подсетей: $2^9=512$; оставшиеся 11 бит идут под узлы: $2^{11}-2=2046$ в каждой подсети).

	11	96	0	0
Адрес сети дв.с	00001011	01100000	00000000	00000000
Маска дв.с	11111111	11111111	11111000	00000000
	255	255	248	0

3. Указываем первую и последнюю подсети:

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	11.96.0.0/21
Адрес первого узла N_1	11.96.0.1
Адрес последнего узла N_1	11.96.7.254
Широковещательный адрес N_1	11.96.7.255

Адрес сети $N_2/$ Префикс N_2	11.111.152.0/21
Адрес первого узла N_2	11.111.152.1
Адрес последнего узла N_2	11.111.159.254
Широковещательный адрес N_2	11.111.159.255

Задание 2.2.1: разбить сеть на подсети, чтобы в каждой было по 2048 узла (с учетом адресов сети и directed broadcast), указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	96	0	0
Адрес сети	00001011	01100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=11, т.к. $2^{11}-2=2046$. Т.е. нужно выбрать такую маску, которря выделит ровно 11 бит для адресов узлов. Таким образом, исходную сеть мы сможем разбить на $2^9=1024$ подсетей по 2046 узла(ов) в каждой.

	11	96	0	0
Адрес сети дв.с	00001011	01100000	00000000	00000000
Маска дв.с	11111111	11111111	11111000	00000000
	255	255	248	0

3. Указываем последние 5 подсетей:

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	11.111.216.0/21
Адрес первого узла N_1	11.111.216.1
Адрес последнего узла N_1	11.111.223.254
Широковещательный адрес N_1	11.111.223.255

Адрес сети $N_2/$ Префикс N_2	11.111.224.0/21
Адрес первого узла N_2	11.111.224.1
Адрес последнего узла N_2	11.111.231.254
Широковещательный адрес N_2	11.111.231.255
$lacksquare$ Адрес сети $N_3/$ Префикс N_3	11.111.232.0/21
Адрес первого узла N_3	11.111.232.1
Адрес последнего узла N_3	11.111.239.254
Широковещательный адрес N_3	11.111.239.255
$oxedsymbol{\Lambda}$ дрес сети $N_4/$ Префикс N_4	11.111.240.0/21
$egin{aligned} { m Aдреc} \ { m Cetu} \ N_4/\ { m Префикс} \ N_4 \ \\ { m Aдреc} \ { m первого} \ { m yзла} \ N_4 \ \\ \end{gathered}$	11.111.240.0/21 11.111.240.1
,	,
Λ дрес первого узла N_4	11.111.240.1
Адрес первого узла N_4 Адрес последнего узла N_4	11.111.240.1
Адрес первого узла N_4 Адрес последнего узла N_4 Широковещательный адрес N_4	11.111.240.1 11.111.247.254 11.111.247.255
Адрес первого узла N_4 Адрес последнего узла N_4 Широковещательный адрес N_4 Адрес сети $N_5/$ Префикс N_5	11.111.240.1 11.111.247.254 11.111.247.255 11.111.248.0/21

Задание 2.2.2: разбить сеть на подсети, чтобы в каждой было не менее 1000 АКТИВНЫХ узлов, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	96	0	0
Адрес сети	00001011	01100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=10, т.к. $2^{10}-2=1022 \geqslant 1000$.

	11	96	0	0
Адрес сети дв.с	00001011	01100000	00000000	00000000
Маска дв.с	11111111	11111111	11111100	00000000
	255	255	252	0

3. Указываем первую и последнюю подсети

Адрес сети $N_1/$ Префикс N_1	11.96.0.0/22
Адрес первого узла N_1	11.96.0.1
Адрес последнего узла N_1	11.96.3.254
Широковещательный адрес N_1	11.96.3.255
Адрес сети $N_2/$ Префикс N_2	11.111.252.0/22
Λ дрес первого узла N_2	11.111.252.1

Широковещательный адрес N_2 11.111.255.255

Залание 2.2.3: разбить сеть на подсети, чтобы в каждой было

Задание 2.2.3: разбить сеть на подсети, чтобы в каждой было не менее 400 АКТИВНЫХ узлов, указать для ПОСЛЕДНИХ 5 подсетей:

11.111.255.254

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.3(макс. 15 баллов):

Адрес последнего узла N_2

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	96	0	0
Адрес сети	00001011	01100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=9, т.к. $2^9-2=510$.

	11	96	0	0
Адрес сети дв.с	00001011	01100000	00000000	00000000
Маска дв.с	11111111	11111111	11111110	00000000
	255	255	254	0

3. Указываем последние 5 подсетей:

Адрес сети $N_1/$ Префикс N_1	11.111.246.0/23
Адрес первого узла N_1	11.111.246.1
Адрес последнего узла N_1	11.111.247.254
Широковещательный адрес N_1	11.111.247.255
$oxedsymbol{A}$ дрес сети $N_2/$ Префикс N_2	11.111.248.0/23
Адрес первого узла N_2	11.111.248.1
Адрес последнего узла N_2	11.111.249.254
Широковещательный адрес N_2	11.111.249.255
$oxedsymbol{\Lambda}$ дрес сети $N_3/$ Префикс N_3	11.111.250.0/23
Адрес первого узла N_3	11.111.250.1
Адрес последнего узла N_3	11.111.251.254
Широковещательный адрес N_3	11.111.251.255
$oxedsymbol{\Lambda}$ Адрес сети $N_4/$ Префикс N_4	11.111.252.0/23
Адрес первого узла N_4	11.111.252.1
Адрес последнего узла N_4	11.111.253.254
Широковещательный адрес N_4	11.111.253.255
$oxedsymbol{\Lambda}$ дрес сети $N_5/$ Префикс N_5	11.111.254.0/23
Адрес первого узла N_5	11.111.254.1
Адрес последнего узла N_5	11.111.255.254
Широковещательный адрес N_5	11.111.255.255