kandi työotsikkko

Topias Karjalainen

11. maaliskuuta 2020

Sisältö

1	Johdanto	2
	Yleisiä tuloksia 2.1 Perusmääritelmiä	4
3	Metropolis–Hastings algoritmi	6

Luku 1

Johdanto

Tilastotieteissä frekventistinen koulukunta oli pitkään vallitseva koulukunta. Bayesiläinen päättely ei päässyt leviämään, sillä toisin kuin frekventistinen koulukunta, Bayesiläisyys ei tarjonnut suurinpaan osaan kysymyksiä analyyttisiä ratkaisuja. Vasta tietokoneiden aikakautena Markovin ketju Monte Carlo -menetelmät (MCMC-menetelmät) ovat antaneet mahdollisuuden ratkaista posteriori-jakaumat monimutkaisemmilta malleilta.

Tässä kanditutkielmassa aion selventää MCMC-menetelmien teoriaa, sekä esittää yleisimmät kaksi algoritmia: Gibbs- ja Metropolis-Hastings algoritmit.

Luku 2

Yleisiä tuloksia

2.1 Perusmääritelmiä

Määritellään ensiksi todennäköisyys.

Määritelmä 2.1. σ -algebra. Olkoot Ω mielivaltainen epätyhjä joukko. Sigma-algebra perusjoukolla Ω on sen osajoukkojen joukkoperhe \mathcal{F} , joka toteuttaa ehdot:

- 1. $\emptyset \in \mathcal{F}$
- 2. jos $A \in \mathcal{F}$, $niin A^c \in \mathcal{F}$
- 3. jos jos $A_k \in \mathcal{F}, \ kaikilla \ k \in K,$ missä Kon numeroituva joukko, niin $\bigcup_{k \in K} A_k \in \mathcal{F}$

Määritelmä 2.2. Kuvaus \mathbf{P} liittää kuhunkin tapahtumaan A todennäköisyyden, joka on luku suljetulla välillä [0,1] ja sille pätee:

- 1. $P(\Omega) = 1$
- 2. Jos A on tapahtuma, niin sen komplementtitapahtuman A^c todennäköisyys on $\mathbf{P}(A^c)=1-\mathbf{P}(A)$
- 3. Jos $(A_k)_{k\in\mathbb{N}}$ ovat erillisiä tapahtumia, niin

$$\mathbf{P}(\bigcup_{k\in\mathbb{N}}A_k)=\sum_{k\in\mathbb{N}}\mathbf{P}(A_k)$$

Määritelmä 2.3. Kolmikkoa $(\Omega, \mathcal{F}, \mathbf{P})$ kutsutaan todennäköisyysavaruudeksi.

Määritelmä 2.4. Satunnaismuuttuja X on (lähes) mielivaltainen kuvaus $X:\Omega\to S,$ jossa S on tilajoukko.

2.2 Markovin ketjut

2.2.1 Äärellinen tilajoukko

Määritelmä 2.5. Jono $(X_n: n=1,2,3,...)$ satunnaismuuttujia on diskreettiaikainen stokastinen prosessi.

Merkintä 2.6. Merkitään stokastista prosessia merkinnällä $\{X_n\}_{n\in T}$

Määritelmä 2.7. Stokastinen prosessi $\{X_n\}$ on *Markovin ketju*, jos kaikilla alkuhetkillä m, n ja tiloilla $i, j \in S$ on voimassa

(2.8)
$$\mathbf{P}(X_{n+1} = j | X_0 = i_0, X_1 = i_1, ..., X_{n-1} = i_{n-1}, X_n = i) = \mathbf{P}(X_{n+1} = j | X_n = i)$$

ja siirtymätodennäköisyyksille on voimassa

(2.9)
$$p_{ij} = \mathbf{P}(X_{n+1} = j | X_n = i) = \mathbf{P}(X_{m+1} = j | X_m = i)$$

Yhtälöä 2.8 kutsutaan Markovin-ehdoksi ja yhtälöä 2.9 taas kutsutaan stationarisuusehdoksi, mikä tarkoittaa, että siirtymätodennäköisyys tilojen i ja j välillä ei riipu ajasta m ja n, vaan pelkästään tiloista i ja j.

Määritelmä 2.10. Satunnaismuuttujan X_0 jakaumaa kutsutaan alkujakaumaksi.

Lause 2.11. Ajanhetkellä $n \ge 1$ polun $(i_0, ... i_n)$ todennäköisyys on

(2.12)
$$P(X_0 = i_0, ..., X_n = i_n) = p_{i_0} p_{i_0, i_1} p_{i_1, i_2} ... p_{i_{n-1}, i_n}$$

Todistus. Käyttäen ehdollisen todennäköisyyden kaavaa, saadaan 2:lle tapahtumalle

$$P(A_0, A_1) = P(A_0)P(A_1|A_0)$$

Jos tapahtumia on kolme, saadaan

$$\mathbf{P}(A_0, A_1, A_2) = \mathbf{P}(A_0)\mathbf{P}(A_1|A_0)\mathbf{P}(A_2|A_1, A_0)$$

neljä

$$P(A_0, A_1, A_2, A_3) = P(A_0)P(A_1|A_0)P(A_2|A_1, A_0)P(A_3|A_2, A_1, A_0)$$

ja n

(2.13)
$$\mathbf{P}(A_0, ..., A_n) = \mathbf{P}(A_0)\mathbf{P}(A_1|A_0)...\mathbf{P}(A_n|A_{n-1}, ...A_0)$$

Tämä on yleinen ehdollinen todennäköisyys. Merkataan $A_n := (X_i = i_n)$. Koska käsittelemme Markovin ketjua, niin yhtälö 2.8 pätee, jolloin yhtälöstä 2.13 saadaan

$$\mathbf{P}(X_0 = i_0, ..., X_n = i_n) = \mathbf{P}(X_0 = i_0)\mathbf{P}(X_1 = i_1|X_0 = i_0)...\mathbf{P}(X_n = i_n|X_{n-1} = i_{n-1})$$

jossa $\forall n=0,1,2,...,n: \mathbf{P}(X_n=i_n|X_{n-1}=i_{n-1})$ on siirtymätödennäköisyys p_{i_{n-1},i_n} jolloin tulos seuraa substituoimalla termit.

Merkintä 2.14.

(2.15)
$$p_{ij}^{(m)} := \mathbf{P}(X_m = j | X_0 = i), \ i, j \in S, m \in T$$

on siirtymätodennäköisyys tilasta i tilaan j, kun aikaa kuluu m yksikköä.

Määritelmä 2.16. Siirtymämatriisi on matriisi

(2.17)
$$\mathbf{P}^{(m)} := (p_{ij}^{(m)})_{i,j} = \begin{pmatrix} p_{00}^{(m)} & p_{01}^{(m)} & \dots & p_{0n}^{(m)} \\ p_{10}^{(m)} & p_{11}^{(m)} & \dots & p_{1n}^{(m)} \\ \vdots & & \ddots & \vdots \\ p_{n0}^{(m)} & p_{n1}^{(m)} & \dots & p_{nn}^{(m)} \end{pmatrix}$$

Lause 2.18. Kaikilla ajanhetkillä on voimassa

$$(2.19) \boldsymbol{P}^{(m)} = \boldsymbol{P}^m$$

Todistus. Todistus on melko pitkä, joten ohitetaan se.

Määritelmä 2.20. Todennäköisyysjakauma $\pi = (\pi)_{i \in S}$ on Markovin ketjun $\{X_n\}$ tasapainojakauma, jos

(2.21)
$$\sum_{i \in S} \pi_i p_{ij} = \pi_j, \forall j \in S$$

Yhtälö 2.21 voidaan kirjoittaa myös muotoon

$$\pi \mathbf{P} = \pi$$

Esimerkki 2.23. Pohditaan lyhyttä esimerkkiä, jossa tilajoukko on $S = {\text{"sataa", "paistaa"}}$. Määritellään siirtymätodennäköisyydet siirtymämatriisilla

$$\mathbf{P}^{(1)} = \begin{pmatrix} 0.7 & 0.3 \\ 0.2 & 0.8 \end{pmatrix}$$

Tämä voidaan visualisoida seuraavanlaisesti:

Luku 3 Metropolis–Hastings algoritmi

Kirjallisuutta