Answers

Let's plot and manipulate this tree:

- 1) represent this tree in Newick format.
- 2) Save the <u>Newick</u> string in a text file, then open it (File->Open) in <u>FigTree</u>

Does the tree look the same? Try to make it look similar (select branch, use "Rotate")!

Newick: "((\$1:0.4,(\$2:0.1,\$3:0.1):0.2):0.2,(\$4:0.1,\$5:0.1):0.3);"

1) Run MAFFT of the primate-mtDNA-unaligned.fasta file

```
Making a distance matrix ..
    1 / 12
done.
Constructing a UPGMA tree (efffree=0) ...
   19 / 12
done.
Progressive alignment 1/2...
STEP
        11 / 11 f
done.
Making a distance matrix from msa..
    0 / 12
done.
Constructing a UPGMA tree (efffree=1) ...
   10 / 12
done.
Progressive alignment 2/2...
STEP
      11 / 11 f
done.
disttbfast (nuc) Version 7.520
alg=A, model=DNA200 (2), 1.53 (4.59), -0.00 (-0.00), noshift, amax=0.0
0 thread(s)
Strategy:
 FFT-NS-2 (Fast but rough)
 Progressive method (guide trees were built 2 times.)
```

2) Compare aligned and unaligned files: what's the difference?

Unaligned Aligned

>Gorilla AAGCTTCACCGGCGCAGTTGTTCTTATAATTGCCCACGGACTTACATCATCATTATTATT ACTCCAAACCCTACTCCCACTAATAGCCCTTTGATGACTTCTGGCAAGCCTCGCCAACCT CGCCTTACCCCCCACCATTAACCTACTAGGAGAGCTCTCCGTACTAGTAACCACATTCTC CTGATCAAACACCACCCTTTTACTTACAGGATCTAACATACTAATTACAGCCCTGTACTC ACCCTCATTTACACGAGAAAACATCCTCATATTCATGCACCTATCCCCCATCCTCCTC ATCCCTCAACCCCGATATTATCACCGGGTTCACCTCCTGTAAATATAGTTTAACCAAAAC ATCAGATTGTGAATCTGATAACAGAGGCTCACAACCCCTTATTTACCGAGAAAGCTCGTA AGAGCTGCTAACTCATACCCCCGTGCTTGACACATGGCTTTCTCAACTTTTAAAGGATA ACAGCTATCCATTGGTCTTAGGACCCAAAAATTTTGGTGCAACTCCAAATAAAAGTAATA ACCTTCATCAATCCTAACAAAAAAGCTCATACCCCCATTACGTAAAATCTATCGTCGCA TCCACCTTTATCATCAGCCTCTTCCCCACAACAATATTTCTATGCCTAGACCAAGAAGCT ATTATCTCAAGCTGACACTGAGCAACAACCCAAACAATTCAACTCTCCCTAAGCTT

>Gorilla aagcttcaccqqcqcaqttqttcttataattqcccacqqacttacatcatcattattatt actocaaaccctactcccactaatagccctttgatgacttctggcaagcctcgccaacct cgccttacccccaccattaacctactaggagagctctccgtactagtaaccacattctc ctgatcaaacaccacccttttacttacaggatctaacatactaattacagccctgtactc acceteatttacacgagaaaacatceteatattcatgcacetatececcatceteete atccctcaaccccgatattatcaccgggttcacctcctgtaaatatagtttaaccaaaac atcagattgtgaatctgataacagaggctcaca-accccttatttaccgagaaagg-tcg taagagctgctaactcatacccccqtgcttgacaacatggctttctcaacttttaaagga taacagctatccattggtcttaggacccaaaaattttggtgcaactccaaataaaagtaa taactatgtacgctaccataaccaccttagccctaacttccttaattccccctatcctta ccaccttcatcatcctaacaaaaaagctcatacccccattacgtaaaatctatcgtcg catccacctttatcatcagcctcttccccacaacaatatttctatgcctagaccaagaag ctattatctcaagctgacactgagcaacaacccaaacaattcaactctccctaagctt

The IMPORTANT difference is that in the aligned file all sequences have the same length, and gap characters "-" have been added

3) Run MAFFT also on the SARS-CoV-2 sequences. Why does it take longer?

```
othread = 0
nthreadpair = 0
nthreadth = 8
openalty ex = 0
stacksize: 8192 kb
generating a scoring matrix for nucleotide (dist=200) ... done
Gap Penalty = -1.53, +0.00, +0.00
Making a distance matrix ..
 101 / 136
done.
Constructing a UPGMA tree (efffreend) ...
  138 / 136
Progressive alignment 1/2...
STEP 135 / 135 f
Making a distance matrix from msa..
 198 / 136
done.
Constructing a UPGMA tree (efffree=1) ...
  138 / 136
done.
Progressive alignment 2/2...
STEP 135 / 135 f
disttbfast (nuc) Version 7.520
alg=A, model=DNA288 (2), 1.53 (4.59), -0.88 (-0.80), noshift, amax=8.8
 FFT-NS-2 (Fast but rough)
 Progressive method (guide trees were built 2 times.)
If unsure which option to use, try 'mafft --auto input > output'.
For more information, see 'mafft --help', 'mafft --man' and the mafft page.
 The default gap scoring scheme has been changed in version 7.110 (2013 Oct).
 It tends to insert more gaps into gap-rich regions than previous versions.
To disable this change, add the --leavegappyregion option.
```

We now have more (136 vs 11) and longer (30,000 vs 100s of bp) genomes, hence the longer runtime. Higher divergence also leads to longer runtime

1) Run IQ-TREE 2 with GTR substitution model on the alignments we previously generated

Computing ML distances based on estimated model parameters Computing ML distances took 0.800700 sec (of wall-clock time) Computing RapidNl tree took 0.800045 sec (of wall-clock time) Log-likelihood of RapidNl tree: -5958.376	0.888672 sec(of CPU time) Diotopoo motrix coloulation and NI
INITIALIZING CANDIDATE TREE SET	
Generating 98 parsimony trees 0.866 second Computing log-likelihood of 97 initial trees 0.845 second Current best score: -8945.484	Estimate initial parsimony trees
Do NMI search on 20 best initial trees Estimate model parameters (spoilton = 0.00) BETTER TREE FOUND at Iteration i: -5044.645 Iteration 20 / Logit: -5944.65 / Time: Ohiomico Iteration 20 / Logit: -5944.65 / Time: Ohiomico Finish initialing condidate tree set (1) Current best tree score: -5944.645 / CPU time: 8.167 Number of Iterations: 20	Optimize parsimony trees with ML
OPTIMIZING CANDIDATE TREE SET	Opullize parsimony frees with ML
Iteration 20 / Logit - 5944.05 / Time: Ohiomics (oninens) Editeration 40 / Logit - 5944.05 / Time: Ohiomics (oninens) Editeration 80 / Logit - 5944.05 / Time: Ohiomics (oninens) Editeration 80 / Logit - 5944.05 / Time: Ohiomics (oninens) Editeration 80 / Logit - 5944.05 / Time: Ohiomics (oninens) Editeration 70 / Logit - 5944.05 / Time: Ohiomics (oninens) Editeration 80 / Logit - 5944.05 / Time: Ohiomics (oninens) Editeration 80 / Logit - 5944.05 / Time: Ohiomics (ohiomics) Editeration 80 / Logit - 5944.05 / Time: O	
FINALIZING TREE SEARCH	
Performs final model parameters optimization Strinate model parameters (epsilon = 0.000) 1. Initial log-likelihood: -9044.463 Optimal log-likelihood: -9044.463 Optimal log-likelihood: -9044.643 Optimal log-likelihood: -9044.63 Date parameters: A-C: 18 80640 A-C: 28.5357 A-T: 5.68546 Base fregoments: 14 5.25 C: 0.384 C: 0.266 T: 6.266 BSST SOURCE FORMO: -9044.63 counds (6.001.56c) BSST SOURCE FORMO: -9044.63 counds (6.001.56c)	c-d: 2.88889° C-T: 35.28844 G-T: 1.80000 Model optimization
Total number of iterations: 182 CPU time used for tree search: 0.661 sec (00:00:05) Wall-clock time used for tree search: 0.481 sec (00:00:05) Total CPU time used: 0.692 sec (00:00:05) Total wall-clock time used: 0.625 sec (00:00:05) Total wall-clock time used: 0.625 sec (00:00:05)	Summary
Maximum-likelihood tree: /Users/demaio/Desktop/presen Likelihood distances: /Users/demaio/Desktop/presen	ntations/2021/phylogenetics/naterials/81-foundations/primate-ntDML_naffr-aligned_intreedTB.idtree trations/2021/phylogenetics/naterials/81-foundations/primate-ntDML_naffr-aligned_intreedTB.idtree trations/2021/phylogenetics/naterials/81-foundations/intra-trations/intra-tradits_naffr-aligned_intreedTmL_naffix Output

2) Now let IQ-TREE 2 investigate which model best fits the data (ModelFinder). Does IQ-TREE 2 select a model with rate variation?

		requires 1 MB				
		test up to 286				
	Model .	-LnL	df	AIC	AICc	BIC
1	GTR+F	5944.739	29	11947.478	11949.483	12886.683
2	GTR+F+I	5760.157	30	11580.314	11582.459	11724.31
3	GTR+F+G4	5721.595	36	11503.190	11505.335	11647.19
4	GTR+F+I+G4	5722.005	31	11506.011	11508.302	11654.81
5	GTR+F+R2	5726.477	31	11514.953	11517.244	11663.75
6	GTR+F+R3	5721.563	33	11509.127	11511.724	11667.53
16	SYM+G4	5822.223	27	11698.446	11700.184	11828.05
17	SYM+I+04	5821.899	28	11698.198	11700.067	11832.603
29	TVM+F+G4	5721.740	29	11501.480	11503.485	11640.685
30	TVM+F+I+G4	5722.135	30	11504.270	11586.415	11648.27
42	TVMe+64	5871.328	26	11794.656	11796.268	11919.463
43	TV96e+I+G4	5870.562	27	11795.124	11796.862	11924.72
55	T1M3+F+G4	5728.695	28	11513.398	11515.258	11647.79
56	T1M3+F+I+G4	5729.225	29	11516.451	11518.455	11655.65
68	TIM3e+G4	5896.584	25	11843.168	11844.658	11963.17
69	T1M3e+I+G4	5895.803	26	11843.605	11845.217	11968.41
81	TIM2+F+G4	5723.844	28	11503.688	11505.557	11638.89
82	T1M2+F+I+G4	5724.338	29	11506.676	11508.681	11645.88
94	T1M2e+64	5828.207	25	11786.414	11787.984	11826.41
95	TIM2e+I+G4	5827.271	26	11786.542	11708.154	11831.34
.07	TIM+F+G4	5729.896	28	11514.193	11516.062	11648.59
89.	T1M+F+I+G4	5729.512	29	11517.025	11519.029	11656.23
29	TIMe+G4	5891.368	25	11832.719	11834.210	11952.72
121	TIMe+I+G4	5890.105	26	11832.209	11833.821	11957.01
133	TPM3u+F+04	5728,784	27	11511.488	11513.146	11641.01
34	TP963u+F+1+G4	5729.223	28	11514.446	11516.315	11648.85
46	TP963+F+G4	5728.784	27	11511.408	11513.146	11641.01
147	TPM3+F+I+G4	5729,223	28	11514.446	11516.315	11648.85
159	TPM2u+F+G4	5723.970	27	11501.940	11503.677	11631.54
60	TPM2u+F+I+G4	5724,449	28	11504.898	11586.767	11639.38
172	TPM2+F+G4	5723.964	27	11501.928	11503.666	11631.53
73	TP902+F+I+G4	5724.449	28	11504.898	11586.767	11639.38
85	K3Pu+F+G4	5729.080	27	11512,161	11513.899	11641.76
86	K3Pu+F+1+G4	5729.584	28	11515.008	11516.877	11649.41
.98	K3P+G6	5944.214	24	11936.428	11937.803	12051.63
99	K3P+I+04	5943,350	25	11936,699	11938,198	12856.78
211	TN+F+G4	5730.635	27	11515.269	11517.007	11644.87
112	TN+F+I+G4	5731.187	28	11518.374	11528.243	11652.77
124	TNe+G4	5988,735	24	11849,471	11850,845	11964.67
25	TNe+I+G4	5899.938	25	11849.861	11851.352	11969.86
237	HKY+F+Q4	5730.635	26	11513.271	11514.883	11638.07
38	HKY+F+I+G4	5731.191	27	11516.382	11518,120	11645.98
258	K2P+G4	5952.992	23	11951.985	11953.248	12862.38
151	K2P+I+04	5952.671	24	11953.343	11954.717	12868.54
263	F81+F+04	6127.854	25	12384,189	12385,600	12424.11
	F81+F+I+G4	6124.888	26	12301.777	12303.389	12426.58
264	30+64					
	JC+G4 JC+I+64	6278.172	22	12590.343	12591.500	12695.94

Corrected Akaike Information Criterion: TVM+F+G4
Bayesiam Information Criterion: TVM2+F+G4
Best-fit model: TPM2+F+G4 chosen according to BIC

All model information printed to /Users/demais/Desktop/presentations/2023/phylogenetics/materials/01-foundations/primate-atDNA_mafft-aligned_iqtreeModelSelection.model.gz CPU time for ModelFinder: 0.095 seconds (00:8e:10)
Mail-clock time for ModelFinder: 1.0095 seconds (00:8e:10)

IQ-TREE 2 selects a model with rate variation ("G4")

2) Now let IQ-TREE 2 investigate which model best fits the data (ModelFinder). Does the tree differ from before? How and why?

IQ-TREE 2 selects a model with rate variation ("G4")

2) Now let IQ-TREE 2 investigate which model best fits the data (ModelFinder). Does the tree differ from before? How and why?

IQ-TREE 2 selects a model with rate variation ("G4")

- 1) Create an input xml file using BEAUti
 - Open BEAUti
 - File->"Import data"; or, drag alignment file onto BEAUti window
 - Sites-> select GTR substitution model
 - Trees-> Yule process
 - Click "Generate BEAST File"

- 2) Run the xml file in BEAST
 - Give BEAST the .xml file created by BEAUti; or from the command line: beast primate-mtDNA-mafft-aligned-BEAST.xml
 - Click "Generate BEAST File"

- 3) Analyse the output in Tracer
 - File->"Import trace file"-> pick .log file created by BEAST; or just drag it on Tracer the window

- 3) Analyse the output in Tracer Small ESS values (<100, in red) mean that the MCMC needs to run longer
 - BEAUti->MCMC-> Length of chain
 - File->"Import trace file"-> pick .log file created by BEAST; or just drag it on Tracer the window

- 3) Analyse the output in Tracer
 - Pick as input the .trees file created by BEAST. Choose output name

- 3) Analyse the output in Tracer
 - Pick as input the tree file created by TreeAnnotator

4) Compare to maximum likelihood branch support

- 3) Analyse the output in Tracer
 - Pick as input the tree file created by TreeAnnotator

4) Compare to maximum likelihood branch support

- 1) Create an input xml file using BEAUti
 - Open BEAUti
 - File->"Import data"; or, drag alignment file onto BEAUti window
 - Sites-> select GTR substitution model
 - Trees-> Yule process
 - Click "Generate BEAST File"

- 2) Include time and location data
 - Tips->"Import dates"; select given "dates.txt" file
 - Traits->"Import traits"; select given "locations.txt" file
 - Traits->"Create partition from trait"

Reduce the number of MCMC steps if you don't want to wait 20 minutes

- MCMC->"Length of chain"->1,000,000
- Click "Generate BEAST File"

Now you can run BEAST with the new xml file

- Give BEAST the .xml file created by BEAUti; or from the command line: beast primate-mtDNA-mafft-aligned-BEAST.xml
- Click "Generate BEAST File"

Check results in Tracer

- File->"Import trace file"-> pick .log file created by BEAST; or just drag it on Tracer the window
- A proper analysis will need to run longer than 1,000,000 MCMC steps

Process the output in TreeAnnotator

■ Pick as input the .trees file created by BEAST. Choose output name

Visualize tree in Figtree

Pick as input the tree file created by TreeAnnotator

