Московский Энергетический Институт

(технический университет)

Кафедра Электротехники и Интроскопии

Выпускная работа

по направлению подготовки бакалавров технических наук

Тема: определение типа и параметров дефектов труб нефте- и газопроводов с использованием нейронной сети типа многослойный персептрон

Работу выполнил:

студент группы А15-00

Мартынов Н. С.

Научный руководитель:

Лунин В. П.

Решаемые задачи

- Исследование возможности применения прогрессивных методов обучения искусственных нейронных сетей типа многослойный персептрон с целью применения в задачах классификации и параметризации дефектов
- Исследование различных аспектов и схем их использования
- Выработка практических рекомендаций

Внутритрубный магнитный дефектоскоп

- 1 щетки намагничивающей системы
- 2 датчики
- 3 центрирующие чаши
- 4 амортизатор
- 5 одометр

Схема магнитной системы снаряда-дефектоскопа

Пример экспериментального сигнала (внутренняя коррозия)

Примеры модельных сигналов

Примеры модельных сигналов

Схема обработки данных

Архитектура программной системы

<u>Для определения типа дефекта и его параметров используются</u> признаки, характеризующие поле рассеяния:

- 1. Разность максимального и минимального значения осевой составляющей поля.
- 2. Площадь сечения осевой составляющей поля по уровню 0,7 от максимума.
- 3. Количество датчиков, среди показаний которых есть значения превышающие уровень 0,7 от максимума.
- 4. Площадь сечения осевой составляющей поля по уровню 0,6 от максимума.
- 5. Количество датчиков, среди показаний которых есть значения превышающие уровень 0,6 от максимума.
- 6. Площадь сечения осевой составляющей поля по уровню 0,5 от максимума.
- 7. Количество датчиков, среди показаний которых есть значения превышающие уровень 0,5 от максимума.
- 8. Отношение второго к шестому элементов вектора признаков.
- 9. Отношение осей эллипса, полученного при сечении осевой составляющей поля по уровню 0,6 от максимума.
- 10. Значение максимальной гармоники при разложении показаний датчика, выдавшего максимальное показание, в ряд Фурье.
- 11. Номер максимальной гармоники.
- 12. Ширина спектра по уровню 0,5 от максимума.
- 13. Разность максимального и минимального значения угловой составляющей поля.

Структура нейронной сети

Математический аппарат нейронных сетей

Значение на выходе нейрона $y_{m,n} = F(S_{m,n})$

Сигмоидальная функция активации $y = 1 / (1 - e^{-c^*x})$

Взвешенная сумма
$$S_{m,n} = \sum_{ni} (y_{m-1,ni} * w_{m,n,ni}) - T_{m,n}$$

Инициализация весов w_im_m = 1 / $\sqrt{Nn_{m-1}}$

Кодирование входных данных $x_n' = (x_n - mean_n) / (dev_n)$

Групповое обучение $\partial E/\partial W = 1$ / Nmp * $\sum_k \partial E/\partial W_k$

Среднеквадратическая ошибка $E_k = 1 / Nn_{Nm-1} * \sum_n (y_{Nm-1,n} - out_{k,n})$

Обратное распространение ошибки

$$\delta_{m,n} = F'(S_{m,n}) * \sum_{ni} \delta_{m+1,ni} * w_{m+1,ni,n}$$

$$\partial E/\partial w_{m,n,ni} = \delta_{m,n} * y_{m-1,ni}$$

Resilient error backpropagation (RPROP)

$$\begin{split} & \left[\Delta \Delta \mathbf{w}_{ij}(t\text{-}1)^* \eta^+ \text{, если } \partial \mathbf{E} / \partial \mathbf{w}_{ij}(t\text{-}1)^* \partial \mathbf{E} / \partial \mathbf{w}_{ij}(t) > 0, \\ \Delta \Delta \mathbf{w}_{ij}(t) &= \left\{ \Delta \Delta \mathbf{w}_{ij}(t\text{-}1)^* \eta^- \text{, если } \partial \mathbf{E} / \partial \mathbf{w}_{ij}(t\text{-}1)^* \partial \mathbf{E} / \partial \mathbf{w}_{ij}(t) < 0, \\ & \left[\Delta \Delta \mathbf{w}_{ij}(t\text{-}1) \text{, иначе} \right. \\ & \text{где } 0 < \eta^- < 1 < \eta^+ \end{split}$$

i)
$$\frac{\text{Если }\partial E/\partial w_{m,n,ni}}{\Delta \Delta w_{m,n,ni}} \overset{\text{t * }}{\partial E}/\partial w_{m,n,ni}} \overset{\text{t-1}}{\Delta \Delta w_{m,n,ni}} > 0$$

$$\Delta \Delta w_{m,n,ni} = \min(\Delta \Delta_{+} * \Delta \Delta w_{m,n,ni}, \Delta \Delta_{max})$$

$$\Delta w_{m,n,ni} = -\text{SGN}(\partial E/\partial w_{m,n,ni}) * \Delta \Delta w_{m,n,ni}$$

$$W_{m,n,ni} = W_{m,n,ni} + \Delta w_{m,n,ni} \overset{\text{t}}{\Delta E}/\partial w_{m,n,ni} \overset{\text{t-1}}{\Delta E} = 0$$
ii)
$$\frac{\text{Если }\partial E/\partial w_{m,n,ni}}{\Delta E/\partial w_{m,n,ni}} \overset{\text{t * }}{\Delta E}/\partial w_{m,n,ni} \overset{\text{t-1}}{\Delta E} = 0$$

$$\Delta \Delta w_{m,n,ni} = \max(\Delta \Delta_{-} * \Delta \Delta w_{m,n,ni}, \Delta \Delta_{min})$$

$$\partial E/\partial w_{m,n,ni} \overset{\text{t-1}}{\Delta E} = 0$$
iii)
$$\frac{\text{Если }\partial E/\partial w_{m,n,ni}}{\Delta E/\partial w_{m,n,ni}} \overset{\text{t * }}{\Delta E}/\partial w_{m,n,ni} \overset{\text{t-1}}{\Delta E} = 0$$

$$\Delta w_{m,n,ni} = -\text{SGN}(\partial E/\partial w_{m,n,ni}) * \Delta \Delta w_{m,n,ni}$$

$$w_{m,n,ni} = w_{m,n,ni} + \Delta w_{m,n,ni}$$

$$\partial E/\partial w \overset{\text{t-1}}{\Delta E} = \partial E/\partial w \overset{\text{t}}{\Delta E}$$

13

Simulated annealing RPROP (SARPROP)

$$\partial E/\partial w_{ij}^{SARPROP} = \partial E/\partial w_{ij} - k_1 * w_{ij} * 2^{-T*epoch}$$

ЕСЛИ
$$\partial E/\partial w_{ij}(t-1)^*\partial E/\partial w_{ij}(t) > 0$$
 ТОГДА
$$\Delta_{ij}(t) = min(\ \Delta_{ij}(t-1)^*\eta^+, \Delta_{max}\)$$

$$\Delta w_{ij}(t) = w_{ij}(t) + \Delta w_{ij}(t)$$

$$\partial E/\partial w_{ij}(t-1) = \partial E/\partial w_{ij}(t)$$
 ИНАЧЕ ЕСЛИ $\partial E/\partial w_{ij}(t-1)^*\partial E/\partial w_{ij}(t) < 0$ ТОГДА
$$EСЛИ\ \Delta_{ij}(t-1) < k_2^*error^2\ TОГДА$$

$$\Delta_{ij}(t) = \Delta_{ij}(t-1)^*\eta^- + k_3^*r^*error^*2^{-T^*epoch}$$
 ИНАЧЕ
$$\Delta_{ij}(t) = \Delta_{ij}(t-1)^*\eta^-$$

$$\Delta_{ij}(t) = max(\ \Delta_{ij}(t-1)^*\eta^-, \Delta_{min}\)$$

$$\partial E/\partial w_{ij}(t-1) = 0$$
 ИНАЧЕ
$$\Delta w_{ij}(t) = -sign(\ \partial E/\partial w_{ij}(t)\) * \Delta_{ij}(t)$$

$$w_{ij}(t+1) = w_{ij}(t) + \Delta w_{ij}(t)$$

$$\partial E/\partial w_{ii}(t-1) = \partial E/\partial w_{ii}(t)$$

Выбор числа нейронов скрытого слоя

$$E_G \Rightarrow E_L + \varepsilon(p/h, E_L)$$

$$2[K/2]N =$$

15

Зависимость ошибки обобщения от числа нейронов в скрытом слое

16

Зависимость ошибки обобщения от числа итераций при обучении на различных наборах данных

Использование в обучающем наборе экспериментальных данных

Зависимость ошибки классификации экспериментальных дефектов от числа нейронов при обучении на модельных и экспериментальных данных

Раздельная и совмещенная схемы классификации

Исследование раздельной схемы классификации

Зависимость ошибки классификации от числа нейронов скрытого слоя для раздельной схемы (модельные дефекты)

Зависимость ошибки классификации от числа нейронов скрытого слоя для раздельной схемы (дефекты с тестовой трубы) 21

Ошибка классификации полигонных дефектов

Выводы

- •Разработана программная система с использованием искусственной нейронной сети типа многослойный персептрон, позволяющая определять тип и параметры дефекта по вектору признаков.
- •Установлено, что оптимальной является раздельная схема классификации и параметризации, а также, что использование улучшенных схем, таких как алгоритмы RPROP и SARPROP, позволяет значительно улучшить качество обучения нейронной сети.