Notes on Physics 531: Intro Quantum Mechanics Harry Luo

_				
C	Oπ	110	ni	ŀ۵
•				

Contents	
I Algebra on Hilbert space ${\mathcal H}$. 2
1.1 Braket Notation and properties	
1 1	
1.2 Operators and Operations	
1.3 Matrix Algebra	. 4

1 Algebra on Hilbert space ${\mathcal H}$

1.1 Braket Notation and properties

1.1.1 Kets and Bras

• **Ket** $|\psi\rangle$: represents a quantum state vector in a Hilbert space \mathcal{H} . It's a column vetor in Dirac notation:

$$|\psi\rangle = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_N \end{pmatrix} = c_1 |\varphi_1\rangle + c_2 |\varphi_2\rangle + \dots + c_N |\varphi_N\rangle, \tag{1}$$

with $|\varphi_i\rangle$ are basis vectors in the Hilbert space.

• Bra $\langle \varphi |$: represents a linear functional that maps kets to complex numbers. It's a row vector, the conjugate transpose of the corresponding ket:

$$\langle \varphi | = | \varphi \rangle^{\dagger} = (c_1^* \ c_2^* \ \dots \ c_N^*). \tag{2}$$

1.1.2 Inner Product

• **Def:** The inner product of a bra $\langle \varphi |$, ket $|\psi \rangle$ is denoted as $\langle \varphi | \psi \rangle$. This results in a complex number. It represents the projection of state $|\psi \rangle$ onto state φ .

$$\langle \varphi | \psi \rangle = \begin{pmatrix} \varphi_1^* & \varphi_2^* & \dots & \varphi_N^* \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_N \end{pmatrix} = \sum_{i=1}^N \varphi_i^* \psi_i = c_1 \varphi_1^* + c_2 \varphi_2^* + \dots + c_N \varphi_N^*. \tag{3}$$

1.1.2.1 Properties of the inner product

• Conjugate symmetry (Hermitian property)

$$\langle \varphi | \psi \rangle = \langle \psi | \varphi \rangle^*. \tag{4}$$

• Linearity in the second argument:

$$\langle \varphi | a\psi_1 + b\psi_2 \rangle = a \langle \varphi | \psi_1 \rangle + b \langle \varphi | \psi_2 \rangle. \tag{5}$$

· Anti-linearity in the first argument:

$$\langle a\varphi_1 + b\varphi_2 | \psi \rangle = a^* \langle \varphi_1 | \psi \rangle + b^* \langle \varphi_2 | \psi \rangle. \tag{6}$$

• Positive-definiteness: The inner product of a state with itself is a non-negative real number, and it is zero if and only if the state is the zero vector.

$$\langle \psi | \psi \rangle \ge 0, \qquad \langle \psi | \psi \rangle = 0 \Leftrightarrow | \psi \rangle = 0.$$
 (7)

• For orthonormal basis states $|i\rangle$, $|j\rangle$,

$$\langle i|j\rangle = \delta_{ij}. \tag{8}$$

1.2 Operators and Operations

1.2.1 Outer product

• Def: The outer product of a ket $|\psi\rangle$ and a bra $\langle\varphi|$ is denoted as $|\psi\rangle\langle\varphi|$. This results in a **linear operator**.

$$|\psi\rangle\langle\varphi| = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_N \end{pmatrix} (\varphi_1^* \ \varphi_2^* \ \dots \ \varphi_N^*) = \begin{pmatrix} \psi_1\varphi_1^* & \psi_1\varphi_2^* & \dots & \psi_1\varphi_N^* \\ \psi_2\varphi_1^* & \psi_2\varphi_2^* & \dots & \psi_2\varphi_N^* \\ \vdots \\ \psi_N\varphi_1^* & \psi_N\varphi_2^* & \dots & \psi_N\varphi_N^* \end{pmatrix}. \tag{9}$$

• The outer product operator $\langle \psi | \varphi \rangle$ acts on a ket $| \chi \rangle$ to give another ket:

$$(\langle \psi | \varphi \rangle) | \chi \rangle = | \psi \rangle (\langle \varphi | \chi \rangle) = \langle \varphi | \chi \rangle | \psi \rangle, \tag{10}$$

where $\langle \varphi | \chi \rangle$ is a complex number, and it scales the state $| \psi \rangle$.

1.2.2 Norm and Normalization

- Norm of a state $|\varphi\rangle$ is defined as $\|\psi\| = \sqrt{\langle \psi | \psi \rangle}$. It's a real, non-negative number representing the length of the state vector.
- Normalized State: a state $|\psi\rangle$ is normalized if its norm is 1, i.e., $\|\psi\| = \sqrt{\langle \psi | \psi \rangle} = 1$, which means $\langle \psi | \psi \rangle = 1$. Quantum states are generally normalized to represent probabilities correctly.
- Normalization Process: If $|\psi\rangle$ is not normalized and $|\psi|\neq 0$, we can normalize it to obtain a new state $|\psi'\rangle$ by dividing by its norm:

$$|\psi'\rangle = \frac{|\psi\rangle}{\|\psi\|} = \frac{|\psi\rangle}{\sqrt{\langle\psi|\psi\rangle}}.$$
 (11)

It follows that $\langle \psi' | \psi' \rangle = \left\langle \frac{\psi}{\|\psi\|} \middle| \frac{\psi}{\|\psi\|} \right\rangle = \frac{1}{(\|\psi\|)^2} \langle \psi | \psi \rangle = \frac{1}{\langle \psi | \psi \rangle} \langle \psi | \psi \rangle = 1.$

1.2.3 Linearity

- Linearity of Ket space: The set of all possible kets forms a vector space, meaning that if $|\psi\rangle \wedge |\varphi\rangle$ are kets, and a, b are complex numbers, then $a|\psi\rangle + b|\varphi\rangle$ is also a valid ket.
- Linearity of a Bra space: Similarly, bras also form a vector pace.
- Linear Operators: Operator A in quantum mechanics are liear operators, meaning they satisfy

$$A(a|\psi\rangle + b|\varphi\rangle) = a(A|\psi\rangle) + b(A|\varphi\rangle) \tag{12}$$

In braket nottaion, applying a operator A o a ket $|\psi\rangle$ results in a new ket $A|\psi\rangle$. Similarly, applying it to a bra $\langle \varphi | A^{\dagger}$, where A^{\dagger} is the agjoint of A.

1.2.4 Tensor Product of states and spaces

- Composite systems: For a system composed of two subsystems with states $|\psi\rangle_A$ in space \mathcal{H}_A and $|\varphi\rangle_B$ in space \mathcal{H}_B , the combined system's state is described by the tensor product $|\psi\rangle_A\otimes|\varphi\rangle_B$ or simply $|\psi\rangle_A|\varphi\rangle_B$ or $|\psi,\varphi\rangle$.
- Tensor product of kets: If $|\psi\rangle=\sum_i a_i|i\rangle$ and $|\varphi\rangle=\sum_i b_j|j\rangle$ then :

$$|\psi\rangle\otimes|\varphi\rangle = \left(\sum_i a_i|i\rangle\right)\otimes\left(\sum_j b_j|j\rangle\right) = \sum_{i,j} a_i b_j(|i\rangle\otimes|j\rangle) \equiv \boxed{\sum_{i,j} a_i b_j|i,j\rangle} \ . \tag{13}$$

- Tensor product of Bras: Similarly, for bras $\langle \psi |_A$ and $\langle \varphi |_B$, the combined bra is $\langle \psi |_A \otimes \langle \varphi |_B = \langle \psi , \varphi |_A$
- Inner product in Tensor product space

$$(\langle \psi |_A \otimes \langle \varphi |_B)(|\chi \rangle_A \otimes |\omega \rangle_B) = \langle \psi |_A |\chi \rangle_A \cdot \langle \varphi |_B |\omega \rangle_B = \langle \psi |\chi \rangle \langle \varphi |\omega \rangle. \tag{14}$$

1.2.5 Observables and Expectation Value

• **Observable**: A physical observable is represented by a Hermitian operator O (i.e. $O^{\dagger} = O$).

• **Expectation Value:** The expectation value of an observable O in a state $|\psi\rangle$ is given by

$$\langle O \rangle_{\psi} = \langle \psi | O | \psi \rangle. \tag{15}$$

This is the average value we expect to obtain if we measure the observable O when the system is in state $|\psi\rangle$.

• Calculation of Expectation Value: If $O=\sum_i \lambda_i |i\rangle\langle i|$ is the spectral decomposition of O , then

$$\langle \psi | O | \psi \rangle = \langle \psi | \left(\sum_{i} \lambda_{i} | i \rangle \langle i | \right) | \psi \rangle = \sum_{i} \lambda_{i} |\langle i | \psi \rangle|^{2}. \tag{16}$$

Here, λ_i are the eigenvalues and $|i\rangle$ are the corresponding eigenvectors of O. $\|\langle i|\psi\rangle^2\|$ is the probability of obtaining the eigenvalue λ_i when measuring O in state $|\psi\rangle$.

1.2.6 Identity Operator

• Completeness relation For a complete orthonormal basis $\{|i\rangle\}$ of the Hilbert space, the identity operator can be written as

$$I = \sum_{i} |i\rangle\langle i|. \tag{17}$$

This is known as the completeness relation or closure relation.

• Action of Identity Operator: For any state $|\psi\rangle$, $I|\psi\rangle = |\psi\rangle$.

$$I|\psi\rangle = \left(\sum_{i} |i\rangle\langle i|\right)|\psi\rangle = \sum_{i} |i\rangle\left(\langle i|\psi\rangle\right) = \sum_{i} \langle i|\psi\rangle|i\rangle = |\psi\rangle \tag{18}$$

This shows that the identity operator leaves any state unchanged.

1.2.7 Projection Operators

• **Def**: A projection operator P_{ψ} onto a normalized state $|\psi\rangle$ is given by the outer product

$$P_{\psi} = |\psi\rangle\langle\psi|. \tag{19}$$

• Properties of Projection Operators

• Hermitian: $P_{\psi}^{\dagger} = P_{\psi}$

• Idempotent: $P_{\psi}^{2} = P_{\psi}$

• Projects onto $|\psi\rangle$: for any state $|\varphi\rangle$, $P_{\psi}|\varphi\rangle = \langle \psi|\varphi\rangle |\psi\rangle$. This is the projection of $|\varphi\rangle$ onto the direction of $|\psi\rangle$.

• **Projection onto a subspace:** If we have an orthonormal basis $\{|\psi_i\rangle\}_{i=1}^k$ for a subspace, the projection operator onto this subspace is

$$P_{\text{subspace}} = \sum_{i=1}^{k} |\psi_i\rangle\langle\psi_i| \tag{20}$$

In this lense we can see the completeness relation as the sum of projection operators onto each basis state $|i\rangle$ of a complete orthonormal basis $\{|i\rangle\}$. This ensures that any vector in the space can be represented as a linear combinitation of these basis vectors.

1.3 Matrix Algebra

• Important note: Multiplicative Commutation is generally not valid! Most other algebra rules hold.

1.3.1 The commutator and the anticommutator

• **Commutator**: For any two operators A and B, the commutator is defined as:

$$[A, B] = AB - BA. \tag{21}$$

- Useful properties:
 - **Antisymmetry**: [A, B] = -[B, A].
 - **Bilinearity**: [aA + bB, C] = a[A, C] + b[B, C] and similarly [C, aA + bB] = a[C, A] + b[C, B].
 - Jacobi Identity: [A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0.
- Anticommutator: For any two operators A and B, the anticommutator is defined as:

$$\{A, B\} = AB + BA. \tag{22}$$

- Useful properties:
 - **Symmetry**: $\{A, B\} = \{B, A\}$.
 - Combination with the commutator: In many contexts, operators are expressed in terms of both the commutator and the anticommutator to capture distinct symmetry properties.

1.3.2 Transpose, Adjoint; Hermitian and Unitary.

- **Transpose**: The transpose of an operator A, denoted as A^T , is obtained by swapping its rows and columns. For a matrix representation of A with elements A_{ij} , the transpose A^T has elements A_{ji} .
 - Properties of Transpose:
 - Involution: $(A^T)^T = A$
 - Linearity: $(A + B)^T = A^T + B^T$
 - Scalar Multiplication: $(cA)^T = cA^T$ for any scalar c
 - Product reversal: $(AB)^T = B^T A^T$
- Adjoint: The adjoint (or Hermitian conjugate) of an operator A, denoted as A^{\dagger} , is the complex conjugate transpose of A. For a matrix representation of A with elements A_{ij} , the adjoint A^{\dagger} has elements $(A_{ji})^*$.
 - ▶ Properties of Adjoint:
 - Involution: $(A^{\dagger})^{\dagger} = A$
 - Linearity: $(A + B)^{\dagger} = A^{\dagger} + B^{\dagger}$
 - Scalar Multiplication: $(cA)^{\dagger} = c^*A^{\dagger}$ for any scalar c
 - Scalar Multiplication: $(AB)^\dagger = B^\dagger A^\dagger$
 - If *A* is **Hermitian**, then $A = A^{\dagger}$
 - If *A* is **unitary**, then $A^{\dagger}A = AA^{\dagger} = I$