TD 3 – Inverse problems and approximation

Mathematics of data

02/10/24

Exercise 1.

Part 1. Let $f_0 \in \mathbb{R}^n$ be a discrete signal. We observe the signal $y := f_0 \star h + \varepsilon$, where $h \in \mathbb{R}^n$ is a low-pass filter and $\varepsilon \in \mathbb{R}^n$ is noise. For some $\lambda \in \mathbb{R}_+^*$, we look for

$$\operatorname{argmin}_{f \in \mathbb{R}^n} \frac{1}{2} \left\| f \star h - y \right\|^2 + \frac{\lambda}{2} \left\| f \right\|^2.$$

1. Using the Fourier decomposition, prove that for an optimal $f \in \mathbb{R}^n$,

$$\hat{f}_k = \frac{\overline{\hat{h}_k}}{|\hat{h}_k|^2 + \lambda} \hat{y}_k,$$

where $\overline{\hat{h}_k}$ denotes the complex conjugate of \hat{h}_k .

2. Why does $\lambda > 0$ improve the deconvolution in presence of noise?

Part 2. For $f \in \mathbb{R}^n$, denote $Gf := (f_i - f_{i-1})_i$ (considering indexes modulo n).

- 1. What is the adjoint operator $G^{\top}: \mathbb{R}^n \to \mathbb{R}^n$ for the canonical inner product? (i.e. $\langle Gf, u \rangle = \langle f, G^{\top}u \rangle$)
- 2. Show that G, G^{\top} and $L := GG^{\top}$ are discrete convolution operators and give their associated filters g, \tilde{g} and ℓ .
- 3. Compute the discrete Fourier coefficients \hat{g} . Express \hat{g} and \hat{l} as a function of \hat{g} .

Part 3. We now consider the problem

$$\operatorname{argmin}_{f \in \mathbb{R}^n} \frac{1}{2} \|f \star h - y\|^2 + \frac{\lambda}{2} \|Gf\|^2.$$

1. Using the Fourier decomposition and the results from part 2, prove that for an optimal $f \in \mathbb{R}^n$,

$$\hat{f}_k = \frac{\overline{\hat{h}_k}}{|\hat{h}_k|^2 + \lambda \hat{\ell}_k} \hat{y}_k.$$

2. How does this expression differ from part 1?

Exercise 2. For an arbitrary $y \in [0,1]$, consider $f := 1_{[y,1]} \in L^2([0,1])$, the indicator function of the interval [y,1]. Denote $\langle f,g \rangle := \int_0^1 fg$ the inner product and $||f||^2 := \langle f,f \rangle$.

1. For $M \in \mathbb{N}^*$, denote $\theta_k := \sqrt{M} 1_{\left[\frac{k}{M}, \frac{k+1}{M}\right[}$ for $0 \le k < M$. Show that $(\theta_k)_k$ is an orthonormal family and give the expression for the linear approximation

$$f_M := \sum_k \langle f, \theta_k \rangle \, \theta_k.$$

- 2. Bound $||f f_M||$ as a function of M, independently of y, using a bound as sharp as possible.
- 3. Denote $\theta \coloneqq 1_{[0,1]}$ and $\psi \coloneqq 1_{[0,1/2[} 1_{[1/2,1[}$ (it is called the Haar wavelet). Denote, for $j \le 0$, and $0 \le n < 2^{-j}$ the wavelet functions as $\psi_{j,n} \coloneqq \frac{1}{2^{j/2}} \psi(2^{-j}x n)$. Draw the wavelets $\psi_{-1,1}$ and $\psi_{-2,3}$.

1

4. For some $j_{\min} < 0$, show that

$$\{\theta\} \cup \{\psi_{j,n} : 0 \ge j \ge j_{\min} \text{ and } 0 \le n < 2^{-j}\}$$

is an orthogonal family. What is the space spanned by this family?

- 5. For each j, what is the set Σ_j of index n where $\langle f, \psi_{j,n} \rangle$ is non-zero? For these $n \in \Sigma_j$, bound $|\langle f, \psi_{j,n} \rangle|$ as a function of j.
- 6. For T > 0 define the non-linear approximation of f as

$$\hat{f} \coloneqq \langle f, \theta \rangle \, \theta + \sum_{|\langle f, \psi_{j,n} \rangle| > T} \langle f, \psi_{j,n} \rangle \, \psi_{j,n}.$$

Bound as a function of T the number M of non-zero coefficients

$$M := |\{(j, n) : |\langle f, \psi_{j, n} \rangle| > T\}|.$$

7. Defining $j_0 := \lfloor \log_2(T^2) \rfloor$ a cutoff scale, we define an approximation using

$$\tilde{f}_T := \langle f, \theta \rangle \, \theta + \sum_{j \ge j_0, n \in \Sigma_j} \langle f, \psi_{j,n} \rangle \, \psi_{j,n}.$$

Show that $\|f - \hat{f}_T\| \le \|f - \tilde{f}_T\|$.

8. Bound $||f - \tilde{f}_T||$ as a function of j_0 and then as a function of M. Compare the decay with M of $||f - f_M||$ and $||f - \hat{f}_T||$.

If you have finished all the exercises, you can move on to the TP3 on github.com/vcastin/teaching