

Theoretische Grundlagen der Informatik

Tutorium 10

Institut für Kryntographie und Sicherheit

Best of Übungsblatt 4

- Abgaben: 13 von 21 (61.9%)
- Mindestens 50% Punkte: 10 von 13 (76.92%)
- Durchschnittliche erreichte Punktzahl: 8.5
 - (nach Aufrunden auf halbe Punkte)

Aufgabenverteilung

Aufgabe 1: Gesamt: 23.75P (durchscnittlich 1.82) Aufgabe 2: Gesamt: 36.25P (durchschnittlich 2.78) Aufgabe 3: Gesamt: 14.25P (durchschnittlich 1.1) Aufgabe 4: Gesamt: 35.25P (durchschnittlich 2.71)

NP-Schwere

Wie zeige ich, dass L NP-schwer ist?

- Formal: $\forall L' \in NP$: $L' \leq L$
 - Das sind ganz schön viele L'
- Wir nutzen Transitivität der Reduzierbarkeit in polynomieller Zeit
 - $\blacksquare \exists L_0 \forall L' \in \mathit{NP} \colon L' \leq L_0 \leq L \Rightarrow L' \leq L$
 - $L' \leq L_0$ gilt für alle NP-schweren L_0

Zu zeigen: $\exists L_0 \in NP$ -schwer: $L_0 \leq L \Rightarrow L \in NP$ -schwer

■ Erinnerung: NPC ⊂ NP-schwer

Reduzierung

 $L_0 \leq L$

- \Leftrightarrow Reduziere L_0 auf L
- \Leftrightarrow L ist mindestens so schwer wie L_0
- \Leftrightarrow Ich kann eine Transformation $f: L_0 \to L$ mit folgenden Eigenschaften angeben:
 - Die Lösung der erzeugten Instanz induziert eine Lösung der Eingabeinstanz
 - Bei Entscheidungsproblem bedeutet dies bspw. dass die erzeugte Instanz genau dann lösbar ist (ein sog. "Ja-Instanz") wenn die Eingabeinstanz lösbar ist.
 - Die f ist von geringerer Komplexität als die Probleme
 - Bei NP-Problemen darf die Transformation bspw. nur polynomiell Zeit benötigen und muss deterministisch sein.

Bei Entscheidungsproblemen? Gibts noch mehr?

Die Meisten Entscheidungsprobleme existieren in 3 Formen:

- Enscheidungsproblem
 - Existiert eine Lösung für das Problem?
 - "Kann ich diesen Graphen mit 3 Farben färben?"
- Suchproblem
 - Suche eine Lösung für das Problem
 - "Wie sieht eine Dreifärbung für diesen Gaphen aus?"
- Optimierungsproblem
 - Welchen "Grad" hat die beste Lösung für dieses Problem?
 - "Wie viele Farben benötige ich mindestens um den Graphen zu färben?"

- Umwandlung der Probleme zueinander in der Regel einfach
- In dieser Vorlesung hauptsächlich Entscheidungsprobleme

Finden Sie den Fehler im folgenden "Beweis" für $\mathbf{P} \neq \mathbf{NP}$! Betrachten Sie folgenden Algorithmus für SAT:

- Durchlaufe für die gegebene Formel ϕ alle möglichen Belegungen der Variablen mit den Wahrheitswerten
- Akzeptiere ϕ , wenn eine der durchlaufenen Belegungen ϕ erfüllt

Dieser Algorithmus hat eine mit der Anzahl der Variablen exponentiell wachsende Laufzeit. Daher hat das Problem SAT einen exponentiellen Aufwand und kann nicht in $\bf P$ liegen. Weil aber SAT in $\bf NP$ liegt, muß also $\bf P \neq \bf NP$ gelten.

1. Zeigen Sie, dass es unter der Voraussetzung $\mathbf{P} = \mathbf{NP}$ möglich ist, für eine aussagenlogische Formel ϕ in polynomieller Zeit eine erfüllende Belegung der Variablen zu finden, falls eine solche Belegung existiert!

HALF-CLIQUE

Wiederholung: CLIQUE

Enthält der Graph G = (V, E) einen Teilmenge $V' \subseteq V$ mit $|V'| \ge n$, bei der jeder Knoten eine Kante zu jedem anderen Knoten des Teilgraphs hat?

HALF-CLIQUE

Enthält der Graph G = (V, E) eine CLIQUE mit $|V'| \ge |V|/2$?

Gegeben ist das folgende Problem:

HALF-CLIQUE:

Gegeben: Ein ungerichteter Graph G = (V, E)

Gesucht: Gibt es eine Teilmenge $V' \subseteq V$

 $mit \ \forall \ v, w \in V', v \neq w : (v, w) \in E \ und \ |V'| \ge |V|/2$

Beweisen Sie, dass HALF-CLIQUE NP-vollständig ist!

Zur Erinnerung:

Das als **NP**-vollständig bekannte Problem CLIQUE ist definiert durch:

CLIQUE:

Gegeben: Ein ungerichteter Graph G = (V, E) und $k \in \mathbb{N}$

Gesucht: Gibt es eine Teilmenge $V' \subseteq V$

 $\mathsf{mit} \ \forall \ \mathsf{v}, \mathsf{w} \in \mathsf{V}', \mathsf{v} \neq \mathsf{w} : (\mathsf{v}, \mathsf{w}) \in \mathsf{E} \ \mathsf{und} \ |\mathsf{V}'| \geq \mathsf{k}$

Hamiltonkreis

Kurzdefinition

Enthält der gegebene Graph einen Kreis, d.h. gibt es einen Pfad der durch jeden Knoten exakt einmal geht und vom Startknoten wieder zum Startknoten führt (Start- und Endknoten wird nur einmal gezählt).

Formal

Gegeben: Ein ungerichteter Graph G = (V, E).

Gesucht: Besitzt G einen Hamiltonkreis? (Dies ist eine Permutation π der Knotenindizes $(v_{\pi(1)}, v_{\pi(2)}, ..., v_{\pi(n)})$, sodass für i = 1, ..., n-1 gilt:

$$\{v_{(1)}, v_{(2)}, \dots, v_{\pi(n)}\}$$
, soldass for $i = 1, \dots, n = 1$

$$\{v_{\pi(i)}, v_{\pi(i+1)}\} \in E$$
) und außerdem $\{v_{\pi(n)}, v_{\pi(1)}\} \in E$).

Beispiel

Gibt es in diesem Graphen einen Hamiltonkreis?

Travelling Salesman

Kurzdefinition

Geben sie einen Kreis des gegeben vollständig verbundenen Graphen mit Kantenlängen an, sodass dessen Gesamtkantenlänge minimal ist.

Formal

Gegeben: Ein Graph $G = (V, V \times V)$, eine Gewichtungsfunktion $d: V \times V \to \mathbb{N}$ und ein Parameter k

Gesucht: Besitzt G einen einfacher Kreis $C = (v_1, v_2, ..., v_n, v_1)$, sodass n = |V| und $\sum_{(u,v) \in C} d(u,v) \le k$.

Beispiel

Wie lang ist die kürzeste Route und durch welche Kanten geht sie?

Gegeben sind folgende Probleme:

Hamilton-Kreis

Gegeben: Ein ungerichteter Graph G = (V, E).

Gesucht: Besitzt G einen Hamiltonkreis? (Dies ist eine Permutation π der

Knotenindizes ($v_{\pi(1)}, v_{\pi(2)}, ..., v_{\pi(n)}$), sodass für i = 1, ..., n-1 gilt:

$$\{v_{\pi(i)}, v_{\pi(i+1)}\} \in E$$
) und außerdem $\{v_{\pi(n)}, v_{\pi(1)}\} \in E$).

TSP Enscheidungsproblem

Gegeben: Ein Graph $G = (V, V \times V)$, eine Gewichtungsfunktion

 $d: V \times V \rightarrow \mathbb{N}$ und ein Parameter k

Gesucht: Besitzt G einen einfacher Kreis $C = (v_1, v_2, ..., v_n, v_1)$, sodass

n = |V| und $\sum_{(u,v) \in C} d(u,v) \le k$.

Zeigen Sie, dass TSP NP-Vollständig ist, wobei das Hamiltonkreisproblem auch NP-Vollständig ist. Benutzen Sie für den Beweis die Reduktion Hamiltonkreisproblem \leq_p TSP.

Gegeben sei folgender Graph:

Gibt es einen Hamiltonkreis? Wandeln Sie hierzu das Problem in ein TSP um und finden Sie eine optimale Rundtour.

Immer hilfreich: Mehr Probleme

- NP-Probleme
 - Sat
 - \bullet n-Sat (n > 3)
 - n-Color (n ≥ 3)
 - Partition
 - Clique
 - Bin-Packing
 - Traveling Salesman (TSP)
 - Knapsack
 - Vertex Cover
 - Dominating Set
 - Independent Set
 - Hamilton Kreis
 - Super Mario Bros.

Bis zum nächsten Mal!

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

WE'D LIKE EXACTLY \$ 15, 05 WORTH OF APPETIZERS, PLEASE. ... EXACTLY? UHH ... HERE, THESE PAPERS ON THE KNAPSACK PROBLEM MIGHT HELP YOU OUT. LISTEN. I HAVE SIX OTHER TABLES TO GET TO -- AS FAST AS POSSIBLE OF COURSE. WANT SOMETHING ON TRAVELING SALESMAN?

Lizenzen

Dieses Werk ist unter einem "Creative Commons Namensnennung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland"-Lizenzvertrag lizenziert. Um eine Kopie der Lizenz zu erhalten, gehen Sie bitte zu http://creativecommons.org/licenses/by-sa/3.0/de/ oder schreiben Sie an Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.

Davon ausgenommen sind das Titelbild, welches aus der März-April 2002 Ausgabe von American Scientist erschienen ist und ohne Erlaubnis verwendet wird, sowie das KIT Beamer Theme, Hierfür gelten die Bestimmungen der jeweiligen Urheber,

