Algorithmische Methoden in der Numerik - Uebung
2 $\,$

Felix Dreßler (k12105003) Elisabeth Köberle (k12110408)

16. Juni 2022

1 Aufgabe a - QRFact

```
function [A, D, pi , k ] = QRFact (A)
3
    [m,n] = size(A);
   pi = 1:n; %p=pi
 5
   |si = zeros(n,1);
   D = zeros(min(m,n),1);
8
   nq = n;
9
    for j = n:-1:1
        si(j) = dot(A(:,j),A(:,j));
        if si(j) == 0
            temp1 = pi(j); %alternative (maybe less efficient) [pi(j), pi(nq)] = deal(pi(nb), pi(nq))
                pi(j));
            pi(j) = pi(nq);
            pi(nq) = temp1;
            nq = nq-1;
        end
18
    end
    siq = si;
20
21
    for i = 1:nq%different loop iterator than in script, here i is k
22
23
        [val,piv] = max(si(pi(i:nq))./siq(pi(i:nq)));
24
25
        piv = piv+i-1;
26
27
        if val \leftarrow -1 %piv \leftarrow k wenn val \leftarrow -1
28
            k = i-1;
29
            return;
30
        end
        temp1 = pi(i);
        pi(i) = pi(piv);
34
        pi(piv) = temp1;
36
        si(pi(i)) = dot(A(i:m,pi(i)),A(i:m,pi(i)));
38
        if si(pi(i)) < m * eps^2 * siq(pi(i))</pre>
            k = i-1;
40
            return;
41
        end
42
43
        if sign(A(i,(pi(i)))) == 0 %to compensate for the different sign function
44
            D(i,1) = -sqrt(si(pi(i)));
45
46
            D(i,1) = -sign(A(i,(pi(i)))) * sqrt(si(pi(i)));
47
        end
48
49
        A(i,pi(i)) = A(i,pi(i)) - D(i,1);
        for j = i+1:nq
            gamma = dot(A(i:m,pi(j)),A(i:m,pi(i))) / (-D(i,1)*A(i,pi(i))); %dot() is
                scalarproduct
            A(i:m, pi(j)) = A(i:m, pi(j)) - gamma * A(i:m, pi(i));
            si(pi(j)) = si(pi(j)) - A(i, pi(j))^2;
            if si(pi(j)) < m * eps * siq(pi(j))
```

2 Aufgabe b - QRSolve

Unter Verwendung von den in $Aufgabe\ c$ berechneten Q und R wurde in $Aufgabe\ b$ der Vektor x berechnet.

```
function [x] = QRSolve(B,D,p,k,b)
2
3
    [\sim, n] = size(B);
4
5
   if k < n
6
       x = zeros(n:1);
7
   else
8
9
       Q = CompQ(B, p, k);
       Qt = transpose(Q);
       c= Qt * b;
       R=B (:,p) ;
13
14
       x = zeros (n,1) ;
16
       pi(p) = 1:length(p);
17
18
       x(k) = c(k)/D(k);
19
        for i=k -1: -1:1
20
            x(i) = (c(i) - dot(R(i, i+1:k)), x(i+1:k))) / D(i);
21
       x = x(pi);
23
24
   end
   end
```

3 AUFGABE C Page 4

3 Aufgabe c

3.1 CompR

```
function [R] = CompR(B,D, p , k )

R= triu ( B (: , p ));
R= full ( spdiags (D ,0 , R) );

end
```

3.2 CompQ

```
function [Q] = CompQ(B, p , k )
1
2
3
   [m, \sim] = size (B);
4
   Q= eye (m );
5
6
   for j = 1: k
7
8
        v= zeros (m ,1) ;
9
        if(j >1)
            v (1: j -1) = 0;
11
12
        v(j:m) = B (j:m, p(j));
13
14
        P= eye (m) -(2/ dot (v , v)) *( v* transpose (v ));
        Q=Q *P;
16
   end
   end
```

4 Tests

Aufgrund der besseren leserlichkeit wurde auf genauere Darstellung der Zahlen großteils verzichtet. Die Tests wurden dafür alle als Matlab Workspace gespeichert und beigelegt.

4.1 QRFact Tests

Im folgenden wird mit Matrizen der Größe 2x2, 4x2, 10x5 und 1000x100 getestet.

4.1.1 2x2 Matrix

```
>> A1=randMatrix(2,2,2)
2
3
              A1 =
4
              0.5377
                       -2.2588
5
6
               1.8339
                         0.8622
7
              >> [B1,D1,p1,k1] = QRFact(A1)
8
9
              B1 =
               2.4487
                        -0.1918
                         4.8203
               1.8339
13
              D1 =
               -1.9111
17
18
               -2.4102
19
20
              p1 =
22
               1
                     2
24
25
26
               k1 =
27
28
               2
```

4.1.2 4x2 Matrix

```
>> A2 = randMatrix(4,2,2)
2
3
              A2 =
4
5
              0.3188
                         3.5784
6
              -1.3077
                         2.7694
              -0.4336
                         -1.3499
8
              0.3426
                         3.0349
9
10
              >> [B2,D2,p2,k2] = QRFact(A2)
12
```

```
14
               1.7738
                           0.5881
15
               -1.3077
                           10.5562
               -0.4336
                           -0.6189
17
               0.3426
                           2.4573
18
19
20
               D2 =
21
               -1.4550
               -5.5823
24
               p2 =
26
27
28
                       2
29
30
               k2 =
               2
```

4.1.3 10x5 Matrix

```
A3 = randMatrix(10,5,5)
2
3
              A3 =
4
              0.7254
                         0.7172
                                   -1.0689
                                              0.3192
                                                        -1.2141
6
              -0.0631
                          1.6302
                                   -0.8095
                                               0.3129
                                                         -1.1135
              0.7147
                         0.4889
                                   -2.9443
                                             -0.8649
                                                        -0.0068
8
              -0.2050
                          1.0347
                                     1.4384
                                               -0.0301
                                                          1.5326
9
              -0.1241
                          0.7269
                                    0.3252
                                               -0.1649
                                                         -0.7697
              1.4897
                        -0.3034
                                   -0.7549
                                               0.6277
                                                         0.3714
                         0.2939
                                                        -0.2256
              1.4090
                                   1.3703
                                               1.0933
12
                        -0.7873
                                   -1.7115
                                              1.1093
                                                         1.1174
              1.4172
13
              0.6715
                                             -0.8637
                                                        -1.0891
                         0.8884
                                   -0.1022
14
              -1.2075
                         -1.1471
                                    -0.2414
                                               0.0774
                                                          0.0326
16
              >> [B3,D3,p3,k3] = QRFact(A3)
17
18
              B3 =
19
20
              3.7619
                        -0.4257
                                   1.5019
                                             -0.9862
                                                        -0.0047
21
              -0.0631
                         -1.2958
                                    0.6194
                                               0.5266
                                                        -4.0112
22
              0.7147
                         0.4595
                                  -6.4680
                                              0.5611
                                                         0.2229
23
                          4.5881
                                               0.5911
              -0.2050
                                    0.7601
                                                         1.4667
24
              -0.1241
                          0.1682
                                    0.5374
                                              -1.8159
                                                         -0.8096
25
              1.4897
                        -0.1315
                                   -0.0490
                                              0.0594
                                                         0.8503
26
              1.4090
                        0.0244
                                   2.2497
                                              0.0118
                                                         0.2274
27
              1.4172
                        -0.0580
                                   -1.3203
                                              0.8758
                                                         1.5730
28
                         0.0407
                                    0.6771
              0.6715
                                             -1.2240
                                                        -0.8732
29
              -1.2075
                         -1.0379
                                    -0.9361
                                               0.5721
                                                         -0.3556
30
              D3 =
34
              -3.0365
```

```
2.8775
35
36
                3.9304
37
                -2.4170
38
                1.6228
39
40
41
                p3 =
42
                        5
                               3
                                      2
43
                                             4
44
45
46
                k3 =
47
48
```

4.1.4 1000x100 Matrix

Dieser Test wird aus übersichtlichkeitsgründen nicht im PDF angeführt. Beiliegend ist jedoch die Matlab Workspace-Datei TestsQRFact.mat in der alle Tests mit Inputs und Outpus abgespeichert sind.

4.2 QRSolve Tests

4.2.1 Test 1

```
>> b1 = randMatrix(3,1,1)
 2
 3
              b1 =
4
 5
              1.4188
6
              -1.9819
 7
              -0.2029
8
9
              >> A1 = randMatrix(3,3,3)
              A1 =
12
13
              -1.2212
                         -1.7193
                                    -1.2536
                                    -1.8723
14
              -0.0602
                          0.1326
15
                         -0.2888
                                   -0.8403
              -1.6034
16
17
              >> [B1,D1,p1,k1] = QRFact(A1)
18
19
              B1 =
20
21
              -3.2377
                          1.2670
                                    1.4834
22
              -0.0602
                          0.1428
                                    -3.7142
23
              -1.6034
                          2.3929
                                   0.5151
24
25
26
              D1 =
27
              2.0164
28
              1.8928
29
30
              -1.1964
31
32
              p1 =
34
              1 3
36
37
38
              k1 =
39
40
              3
41
42
              >> x1 = QRSolve(B1, D1, p1, k1, b1)
43
44
              x1 =
45
              -0.1169
46
47
              -1.4422
              0.9601
48
49
50
              >> A1 * x1
51
              ans =
              1.4188
              -1.9819
```

```
-0.2029
56
57
58
              x1alt = linsolve(A1, b1)
60
              x1alt =
61
62
               -0.1169
63
               -1.4422
64
               0.9601
65
               >> format long
66
67
               >> F_abs = norm(x1 - x1alt)
68
69
              F_abs =
70
71
               4.284169974453670e-16
72
73
               >> F_rel = F_abs / norm(x1)
74
75
               F_rel =
76
77
               2.467087919033295e-16
```

4.2.2 Test 2

Test wurde mit einer 100x100 Matrix durchgeführt, die jedoch nur Rang 99 hat. Wie erwartet ist das Ergebnis der 0 Vektor.

```
A2 = randMatrix(100, 100, 99)
2
3
4
5
               [B2,D2,p2,k2] = QRFact(A2)
6
7
8
9
               b2 = randMatrix(100, 1, 1)
11
               x2 = QRSolve(B2, D2, p2, k2, b2)
13
14
               x2 =
17
               []
```

4.2.3 Test 3

```
>> A3 = randMatrix(5,5,5)
3
             A3 =
5
             1.6703
                       0.9527
                                 -0.5493
                                            1.1881
                                                      -0.3618
6
             -1.5417
                        0.1314
                                 -0.3175
                                            -1.2128
                                                       -0.4264
7
                                                       0.3871
             -0.2720
                       -1.7419
                                  -0.5827
                                            -0.3812
             0.3416
                       0.6678
                                 -0.1642
                                            1.3227
                                                       0.9028
```

```
0.4844
                        0.8982 -0.9351
                                              0.3853
9
                                                        0.7178
11
              >> b3 = randMatrix(5,1,1)
12
              b3 =
14
              1.7361
16
              -1.0088
17
              -0.1800
18
              -2.0265
19
              0.4089
20
21
              >> [B3,D3,p3,k3] = QRFact(A3)
22
23
              B3 =
24
25
              4.0350
                       -1.0681
                                  0.3292
                                            -1.9437
                                                       -0.2553
26
              -1.5417
                       -0.0763 -0.4769
                                            0.6954
                                                      -1.7814
27
              -0.2720
                        -0.1612 -1.8231
                                             0.3048
                                                       0.3800
28
              0.3416
                        3.1299
                                 -0.1800
                                            -0.4438
                                                        0.9118
29
              0.4844
                                 -0.9020
                                            -1.2232
                                                        0.7306
                        1.6687
30
              D3 =
34
              -2.3647
              1.3144
36
              1.1435
              -2.0098
38
              0.6116
39
40
              p3 =
41
42
43
              1
                   5
                          3
                                 2
                                       4
44
45
46
              k3 =
47
48
49
50
              >> x3 = QRSolve(B3, D3, p3, k3, b3)
52
              x3 =
54
              2.3944
              0.1683
56
              -0.0477
              -2.1173
58
              -0.1821
59
60
              >> x3alt = linsolve(A3,b3)
61
              x3alt =
62
63
              2.3944
64
65
              0.1683
66
              -0.0477
67
              -2.1173
68
              -0.1821
```

```
69
70
              >> format long
71
              >> F_abs = norm(x3 - x3alt)
72
73
              F_abs =
74
75
              7.157831469485814e-16
76
77
              >> F_rel = F_abs / norm(x3)
78
79
              F_rel =
80
81
              2.232497222110345e-16
```

4.2.4 Test 4

```
>> A4 = randMatrix(100, 100, 100)
2
3
4
              >> b4 = randMatrix(100,1,1)
5
6
7
8
9
              >> [B4,D4,p4,k4] = QRFact(A4)
11
12
              >> x4 = QRSolve(B4, D4, p4, k4, b4)
13
14
16
17
              >> x4alt = linsolve(A4,b4)
18
19
20
21
              >> F_abs = norm(x4 - x4alt)
23
              F_abs =
24
25
              1.951423563331391e-12
26
27
              >> F_rel = F_abs / norm(x4)
28
29
              F_rel =
30
              4.991915427983470e-14
```

4.3 CompR, CompQ Tests

Für diese Tests wurden die Matrizen aus den Tests für QRFact verwendet.

4.3.1 2x2 Matrix

```
>> R1 = CompR(B1,D1,p1,k1)
 2
 3
              R1 =
4
              -1.9111 -0.1918
 5
6
              0 -2.4102
 7
 8
              >> Q1 = CompQ(B1, p1, k1)
 9
              Q1 =
              -0.2813
                        0.9596
12
13
              -0.9596
                       -0.2813
14
15
              >> F_rel1 = norm(Q1*R1-A1(:,p1))/norm(A1)
16
17
              F_rel1 =
18
19
              9.1373e-17
20
              >> [Q1alt,R1alt,e1alt] = qr(A1,'vector')
22
              Q1alt =
24
25
              -0.9343
                        0.3566
26
              0.3566
                        0.9343
27
28
29
              R1alt =
30
              2.4178 0.1516
              0 1.9051
33
34
              elalt =
36
37
              2 1
38
39
              >> F_rellalt = norm(Qlalt*Rlalt-Al(:,elalt))/norm(Al)
40
41
              F_rel1alt =
42
              4.5686e-17
43
```

4.3.2 4x2 Matrix

```
1 >> R2 = CompR(B2,D2,p2,k2)
2 R2 = 4
```

```
-1.4550 0.5881
5
                 -5.5823
6
              0
7
              0
                        0
              0
                        0
8
9
             \Rightarrow Q2 = CompQ(B2,p2,k2)
             Q2 =
13
14
              -0.2191
                                             -0.5993
                      -0.6641
                                  0.3896
                       -0.4014
                                 -0.1764
                                            0.0016
              0.8987
16
                       0.2732
              0.2980
                                   0.8983
                                             0.1723
17
                       -0.5685
                                  0.1011
                                             0.7818
              -0.2355
18
19
             >> F_rel2 = norm(Q2*R2-A2(:,p2))/norm(A2)
20
21
             F_rel2 =
23
             2.2812e-16
24
             >> [Q2alt,R2alt,e2alt] = qr(A2,'vector')
26
27
             Q2alt =
28
29
              -0.6375
                        0.2875
                                  0.3544
                                             -0.6208
30
              -0.4934
                        -0.8517
                                  -0.1760
                                             0.0118
                       -0.3250
             0.2405
                                  0.9067
                                             0.1202
              -0.5407
                         0.2937
                                   0.1460
                                              0.7746
34
             R2alt =
36
              -5.6132
37
                       0.1525
                1.4470
38
39
                        0
                        0
40
             0
41
42
43
             e2alt =
44
             2 1
45
46
47
             >> F_rel2alt = norm(Q2alt*R2alt-A2(:,e2alt))/norm(A2)
48
49
             F_rel2alt =
             1.1206e-16
```

4.3.3 10x5 Matrix

```
>> R3 = CompR(B3, D3, p3, k3)
2
3
            R3 =
4
5
             -3.0365
                     -0.0047
                                 1.5019 -0.4257 -0.9862
6
             0
                  2.8775
                            0.6194
                                     -1.2958
                                                 0.5266
7
                            3.9304
             0
                       0
                                     0.4595
                                                 0.5611
                                     -2.4170
                                                 0.5911
                       0
                                 0
```

9	0	0	0	0 1.62	228				
10	0	0	0	0	0				
11	0	0	0	0	0				
12	0	0	0	0	0				
13	0	0	0	0	0				
14	0	0	0	0	0				
15 16	>> 03 = Comp(R3 n3 k3)								
17	\Rightarrow Q3 = CompQ(B3,p3,k3)								
18	Q3 =								
19									
20			-0.1141	-0.0500	0.2462	-0.3985	-0.4760	-0.4206	
0.1		1194 0.3		0 4000	0 5650	0 2017	0 1566	0 0007	
21		-0.3869 3001 -0.2	-0.1529	-0.4998	0.5659	0.3017	0.1566	0.0997	
22	-0.2354	-0.0028		-0.2846	-0.3437	-0.0747	0.4742	-0.1845	
			0990						
23	0.0675	0.5327	0.2562	-0.6769	0.0076	-0.0422	-0.1075	-0.0992	
			3993						
24		-0.2674		-0.1438	0.0246	0.1095	0.0050	0.5769	
25	-0.67 -0.4906	16 0.312 0.1283		0.1385	0.0052	0.7773	-0.2156	-0.2018	
20		0.1203		0.1303	0.0032	0.7773	0.2130	0.2010	
26	-0.4640	-0.0792	0.5384	0.1049	0.1930	-0.1720	0.6139	-0.1323	
	-0.	0023 0.3	1275						
27	-0.4667	0.3876	-0.3182	0.1397	0.3333	-0.2805	-0.1240	0.5259	
90			0337	0 1020	0 5470	0.0164	0 1070	0 2104	
28	-0.2211	-0.3788 5527 0.2	0.1182 2551	-0.1030	-0.5470	0.0164	-0.1078	0.3184	
29	0.3977	0.0120		0.3572	0.2298	0.1346	0.2492	-0.0186	
20			6888	0.3372	0.2230	0.1310	0.2192	0.0100	
30									
31	>> F_rel3 = norm(Q3*R3-A3(:,p3))/norm(A3)								
32									
33 34	F_rel3 =								
35	4.7262e-1	6							
36									
37	>> [Q3alt,R3alt,e3alt] = qr(A3,'vector')								
38									
39	Q3alt =								
40 41	0 2512	-0.3896	0 1020	0 0500	0 2462	0 4275	0 2117	0 5051	
41		1097 0.2		-0.0300	0.2462	-0.4373	-0.2117	-0.5951	
42		-0.3632		-0.4998	0.5659	0.3197	0.0105	0.1914	
	0.	2934 -0.3	1773						
43		0.0991		-0.2846	-0.3437	0.0292	0.5331	-0.0704	
4.4		1457 0.0							
44		0.4887		-0.6769	0.0076	-0.0606	-0.0196	-0.1645	
45		0729 0.3 -0.2816		-0 1/138	0 0246	0 0270	-0.0534	0 4917	
10		04 0.379		0.1430	0.0240	0.0270	0.0334	0.4517	
46		0.1565		0.1385	0.0052	0.7380	-0.2776	-0.2266	
		1132 0.3							
47		-0.1265		0.1049	0.1930	-0.0459	0.6585	0.0184	
40		0526 0.0		0 1005	0 2222	0.0560	0 1055	0.4550	
48		0.4515 1312 0.0		0.1397	0.3333	-0.3563	-0.1957	0.4559	
49		-0.3790		-0.1030	-0.5470	-0.0433	-0.1913	0.2757	
10		5207 0.3		0.1000	0.5170	0.0155	0.1713	0.2737	
1									

```
-0.0568 0.0198 -0.4483 0.3572 0.2298 0.1598 0.2865 -0.0016
50
                   0.2585
                          0.6637
            R3alt =
54
             4.2529 0.4174 -1.0723 0.0856 0.2470
56
                2.8470
                           0.1622
                                   -1.3215
                                              0.4976
57
                                    0.5637
                      0
                           2.8362
                                              1.1207
                                    -2.4170
58
                                              0.5911
             0
                      0
                                0
59
            0
                      0
                                0
                                         0
                                              1.6228
                      0
60
            0
                                0
                                         0
                                                   0
61
            0
                      0
                                0
                                         0
                                                   0
62
            0
                      0
                                0
                                         0
                                                   0
                      0
                                0
63
            0
                                         0
                                                   0
                      0
                                0
                                         0
64
            0
                                                   0
65
66
67
            e3alt =
68
                 5
                      1
                            2
69
70
71
            >> F_rel3alt = norm(Q3alt*R3alt-A3(:,e3alt))/norm(A3)
72
73
            F_rel3alt =
74
75
             3.8923e-16
```

4.3.4 1000x100 Matrix

```
1
              >> R4 = CompR(B4, D4, p4, k4)
2
3
4
5
              >> Q4 = CompQ(B4, p4, k4)
6
8
9
              >> F_rel4 = norm(Q4*R4-A4(:,p4))/norm(A4)
11
12
              F_rel4 =
13
14
              2.0532e-15
16
              >> [Q4alt,R4alt,e4alt] = qr(A4,'vector')
17
18
19
20
              >> F_rel4alt = norm(Q4alt*R4alt-A4(:,e4alt))/norm(A4)
21
22
              F_rel4alt =
23
24
              5.5636e-16
```