Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики **Кафедра «Прикладная математика»**

ОТЧЁТ ПО ЛАБОРАТОРНЫМ РАБОТАМ ПО ДИСЦИПЛИНЕ «МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

Выполнил студент группы 3630102/70201

Крупкина Дарья

Проверил к. ф.-м. н., доцент

Баженов Александр Николаевич

Санкт-Петербург 2020

Содержание

Пос		2
1.1	Задание 1	2
Teo	рия	2
2.1	Распределения	2
2.2	Выборочные числовые характеристики	3
	2.2.1 Характеристики положения	3
	2.2.2 Характеристики рассеяния	3
Pea	лизация	4
Рез	ультаты	4
4.1	Характеристики положения и рассеяния	4
Обо	уждение	5
При	ложения	6
пис	сок таблиц	
1	Нормальное распределение	4
2		4
3		
4		5
5	Равномерное распределение	5
	1.1 Теот 2.1 2.2 Реал 4.1 Обс При	Теория 2.1 Распределения 2.2 Выборочные числовые характеристики 2.2.1 Характеристики положения 2.2.2 Характеристики рассеяния Реализация Результаты 4.1 Характеристики положения и рассеяния Обсуждение Приложения 1 Нормальное распределение 2 Распределение Коши 3 Распределение Лапласа 4 Распределение Пуассона

1 Постановка задачи

Для 5 распределений:

- 1. N(x, 0, 1) нормальное распределение
- 2. C(x,0,1) распределение Коши
- 3. $L(x,0,\frac{1}{\sqrt{2}})$ распределение Лапласа
- 4. P(k, 10) распределение Пуассона
- 5. $U(x, -\sqrt{3}, \sqrt{3})$ равномерное распределение

1.1 Задание 1

Сгенерировать выборки размером 10, 50 и 1000 элементов.

Для каждой выборки вычислить следующие статистические характеристики положения данных: \bar{x} , med x, z_R , z_Q , z_{tr} . Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов:

$$E(x) = \bar{x} \tag{1}$$

Вычислить оценку дисперсии по формуле:

$$D(x) = \bar{x^2} - \bar{x}^2 \tag{2}$$

Представить полученные данные в виде таблиц.

2 Теория

2.1 Распределения

1. Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} \tag{3}$$

2. Распределение Коши

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1} \tag{4}$$

3. Распределение Лапласа

$$L(x,0,\frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|} \tag{5}$$

4. Распределение Пуассона

$$P(k,10) = \frac{10^k}{k!}e^{-10} \tag{6}$$

5. Равномерное распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & |x| \le \sqrt{3} \\ 0 & |x| > \sqrt{3} \end{cases}$$
 (7)

2.2 Выборочные числовые характеристики

С помощью выборки образуются её числовые характеристики. Это числовые характеристики дискретной случайной величины X^* , принимающей выборочные значения $x_1, x_2...x_n$.

2.2.1 Характеристики положения

1. Выборочное среднее

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{8}$$

2. Выборочная медиана

$$medx = \begin{cases} x_{(l+1)} \text{ при } n = 2l + 1 \\ \frac{x_{(l)} + x_{(l+1)}}{2} \text{ при } n = 2l \end{cases}$$
 (9)

3. Полусумма экстремальных выборочных элементов

$$z_R = \frac{x_{(1)} + x_{(2)}}{2} \tag{10}$$

4. Полусумма квартилей Выборочная квартиль

$$z_p$$

порядка р определяется формулой

$$z_p = \begin{cases} x_{([np]+1)} \text{ при пр дробном} \\ x_{(np)} \text{ при пр целом} \end{cases}$$
 (11)

Полусумма квартилей

$$z_Q = \frac{x_{1/4} + x_{3/4}}{2} \tag{12}$$

5. Усечённое среднее

$$z_{tr} = \frac{1}{n - 2r} \sum_{i=r+1}^{n-r} x_{(i)}, r \approx \frac{n}{4}$$
 (13)

2.2.2 Характеристики рассеяния

Выборочная дисперсия

$$D = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \tag{14}$$

3 Реализация

Лабораторная работа выполнена с помощью встроенных средств языка программирования Python в среде разработки PyCharm. Использованы библиотеки numpy для генерации выборки и tabulate для удобного представления табличных данных. Исходный код лабораторной работы приведён в приложении в виде ссылки на репозиторий GitHub.

4 Результаты

4.1 Характеристики положения и рассеяния

Для каждого распределения представлена таблица с характеристиками положения и рассеяния при разном количестве элементов в каждой выборке.

Normal	\bar{x}	med x	z_R	\mathbf{z}_Q	\mathbf{z}_{tr}
E(z),n=10	0.01	0	0	0	0.1
D(z),n=10	0.09771	0.136526	0.186216	0.126364	0.082124
E(z),n=100	0	-0.01	0	0.01	0.01
D(z),n=100	0.010648	0.016442	0.093827	0.013404	0.012451
E(z),n=1000	0	0	-0.01	0	0.002
D(z),n=1000	0.001005	0.00158	0.056531	0.001282	0.001221

Для нормального распределения: $\bar{x} < z_{tr} < z_Q < \mathrm{med} \ \mathrm{x} < z_R$

Таблица 1: Нормальное распределение

Cauchy	\bar{x}	med x	z_R	z_Q	z_{tr}
E(z),n=10	0	0	0	0	0.2
D(z),n=10	82.8888	0.339818	1919.89	5.5024	0.312427
E(z),n=100	0	0	0	0.02	0.01
D(z),n=100	8990.57	0.026074	22405472.991	0.054921	0.026573
E(z),n=1000	0	0	0	0.001	0
D(z),n=1000	419.205	0.002649	100945872.922	0.005206	0.002739

Для распределения Коши: med х $< z_{tr} < z_Q < \bar{x} < z_R$

Таблица 2: Распределение Коши

Laplace	\bar{x}	med x	z_R	z_Q	z_{tr}
E(z),n=10	0	0	0	0.3	0.08
D(z),n=10	0.110879	0.071834	0.442918	0.132898	0.053184
E(z),n=100	0.002	0.002	0	0.01	0.001
D(z),n=100	0.009859	0.005493	0.417455	0.010056	0.005564
E(z),n=1000	0.0006	-0.0002	0	0	0.0008
D(z),n=1000	0.000987	0.000521	0.40844	0.000959	0.000595

Для распределения Лапласа: med х $< z_{tr} < z_Q < ar{x} < z_R$

Таблица 3: Распределение Лапласа

Poisson	\bar{x}	med x	z_R	z_Q	z_{tr}
E(z),n=10	10	0	0	0	8.5
D(z),n=10	0.996434	1.37897	1.95149	1.37112	0.8385
E(z),n=100	10	9.8	0	9.9	9.6
D(z),n=100	0.098871	0.20679	1.03208	0.144564	0.114634
E(z),n=1000	10.003	9.991	11.6	10	9.843
D(z),n=1000	0.008686	0.003238	0.685078	0.001244	0.009499

Для распределения Пуассона: $z_Q < \mathrm{med} \ \mathrm{x} < \bar{x} < z_{tr} < z_R$

Таблица 4: Распределение Пуассона

Uniform	\bar{x}	med x	z_R	z_Q	\mathbf{z}_{tr}
E(z),n=10	0.01	0	0	0.3	0.1
D(z),n=10	0.094894	0.222508	0.042818	0.125652	0.117092
E(z),n=100	0	0	0	0.02	0.02
D(z),n=100	0.01057	0.030889	0.000626	0.015162	0.019939
E(z),n=1000	0	-0.002	0	0.001	0
D(z),n=1000	0.000956	0.002874	0.000007	0.001467	0.001886

Для равномерного распределения: $z_R < \bar{x} < z_Q < z_{tr} < \mathrm{med} \ \mathrm{x}$

Таблица 5: Равномерное распределение

5 Обсуждение

По полученным результатам можно сделать вывод, что для распределения Коши D(z) быстро возрастает с ростом размера выборки, по которой берется z_R или \bar{x} , что отличает его от других типов распределений, для которых дисперсия убывает с увеличением размера выборки.

Также для распределения Коши в качестве характеристики положения неразумно брать среднее или полусумму экстремалей.

6 Приложения

Kод программы на GitHub, URL: https://github.com/DariaKrup/Statistics

Список литературы

[1] Вероятностные разделы математики. Учебник для бакалавров технических направлений.//Под ред. Максимова Ю.Д.