Teoria dos Grafos

Teoria dos Grafos

Teoria dos Grafos

Muitos sistemas do mundo real podem ser vistos como uma coleção de objetos (vértices) que estão relacionados entre si.

 Infraestrutura de tráfego: ruas, vias férreas, linhas aéreas, etc.

Teoria dos Grafos

Berilhes

Muitos sistemas do mundo real podem ser vistos como uma coleção de objetos (vértices) que estão relacionados entre si.

- Infraestrutura de tráfego: ruas, vias férreas, linhas aéreas, etc.
- Comunidades sociais: laços familiares, comunidades on-line.

Teoria dos Grafos

Berilhes

Muitos sistemas do mundo real podem ser vistos como uma coleção de objetos (vértices) que estão relacionados entre si.

- Infraestrutura de tráfego: ruas, vias férreas, linhas aéreas, etc.
- Comunidades sociais: laços familiares, comunidades on-line.
- Redes de comunicação: Internet, redes de telefonia móvel.

Teoria dos Grafos

Teoria dos Grafos

Figura: Internet

Teoria dos Grafos

Teoria dos Grafos

Rerilhes

Figura: Rede Gênica

Teoria dos Grafos

Teoria dos Grafos

Berilhes

 Um grafo é um objeto matemático, assim como um conjunto, uma função e muitos outros também são objetos matemáticos.

Teoria dos Grafos

Berilhes

 Um grafo é um objeto matemático, assim como um conjunto, uma função e muitos outros também são objetos matemáticos.

Definição

Um grafo G = (V, E) é um conjunto de vértices V, e um conjunto de arestas E, no qual cada aresta é um par ordenado ou desordenado de vértice.

Teoria dos Grafos

Teoria dos Grafos

Rede	Vértices	Aresta (i,j)
Malha viária	Cidades	Estrada entre as cidades i e j
Código fonte de um programa	Linhas de código	Linha <i>j</i> pode ser a próxima linha executada depois da linha <i>i</i>
Interações humanas	Pessoas	A pessoa <i>i</i> se relaciona, de alguma forma, com a pessoa <i>j</i>

Alguns conceitos básicos

Teoria dos Grafos

Alguns conceitos básicos

Teoria dos Grafos

Berilhes

Definições

- Um grafo G'=(V',E') é um subgrafo de G=(V,E) se $V'\subseteq V$ e $E'\subseteq E$.
- O complemento \overline{G} de um grafo G, possui o mesmo conjunto de vértices de G, mas $e \in E(\overline{G})$ se e somente se $e \notin E(G)$.
- Para qualquer grafo G e vértice $v \in V(G)$ o conjunto de vizinhos N(v) de v é o conjunto de vértices (diferentes de v) adjacentes à v. Ou seja,

Definições

- Um grafo G'=(V',E') é um subgrafo de G=(V,E) se $V'\subseteq V$ e $E'\subseteq E$.
- O complemento \overline{G} de um grafo G, possui o mesmo conjunto de vértices de G, mas $e \in E(\overline{G})$ se e somente se $e \notin E(G)$.
- Para qualquer grafo G e vértice $v \in V(G)$ o conjunto de vizinhos N(v) de v é o conjunto de vértices (diferentes de v) adjacentes à v. Ou seja,

$$N(v) = \{ w \in V(G) \mid v \neq w, (v, w) \in E(G) \}.$$

Grau de um vértice

Teoria dos Grafos

Berilhes

O número de arestas incidentes em um vértice v é chamado de grau de v, e é denotado por grau(v).

Grau de um vértice

Teoria dos Grafos

- O número de arestas incidentes em um vértice v é chamado de grau de v, e é denotado por grau(v).
- Laços, isto é, arestas unindo um vértice a si mesmo são contados duas vezes.

Grau de um vértice

Teoria dos Grafos

Berilhes

- O número de arestas incidentes em um vértice v é chamado de grau de v, e é denotado por grau(v).
- Laços, isto é, arestas unindo um vértice a si mesmo são contados duas vezes.

<u>Te</u>orema

Para todos os grafos
$$G$$
, $\sum_{v \in V(G)} grau(v) = 2 |E(G)|$.

Teoria dos Grafos

	_	
Tipo de Grafo		

Teoria dos Grafos

Tipo de Grafo	
Dirigido ou não dirigido?	Redes viárias entre cidades
	Redes viárias urbanas
	-

Teoria dos Grafos

Tipo de Grafo		
Dirigido ou não dirigido?	Redes viárias entre cidades	não dirigido
	Redes viárias urbanas	
_		

Teoria dos Grafos

Berilhes

Tipo de Grafo Redes viárias entre cidades não dirigido Dirigido ou não dirigido? Redes viárias urbanas dirigido

Teoria dos Grafos

Tipo de Grafo	-	
Dirigido ou não dirigido?	Redes viárias entre cidades	não dirigido
	Redes viárias urbanas	dirigido
Ponderado ou não ponderado?	Grau de separação entre duas pessoas	
	Caminho mais curto	

Teoria dos Grafos

Berilhes

Tipo de Grafo

Redes viárias entre cidades não dirigido

Redes viárias urbanas dirigido

Ponderado ou não ponderado?

Grau de separação entre duas pessoas Não ponderado

Caminho mais curto

Teoria dos Grafos

Berilhes

Tipo de Grafo

Dirigido ou não dirigido?	Redes viárias entre cidades	não dirigido
8	Redes viárias urbanas	dirigido
Ponderado ou não ponderado?	Grau de separação entre duas pessoas	Não ponderado
	Caminho mais curto	Ponderado

Teoria dos Grafos

Berilhes

Tipo de Grafo Redes viárias entre cidades não dirigido Dirigido ou não dirigido? Redes viárias urbanas dirigido Grau de separação entre duas pessoas Não ponderado Ponderado ou não ponderado? Caminho mais curto Ponderado Cíclico ou acíclico? Árvores

Teoria dos Grafos

Berilhes

Tipo de Grafo

Dirigido ou não dirigido?	Redes viárias entre cidades	não dirigido
zingiao ea nao amgiao.	Redes viárias urbanas	dirigido
Ponderado ou não ponderado?	Grau de separação entre duas pessoas	Não ponderado
, , , , , , , , , , , , , , , , , , , ,	Caminho mais curto	Ponderado
Cíclico ou acíclico?	Árvores	Áciclico

Teoria dos Grafos

Berilhes

Tipo de Grafo Redes viárias entre cidades não dirigido Dirigido ou não dirigido? Redes viárias urbanas dirigido Grau de separação entre duas pessoas Não ponderado Ponderado ou não ponderado? Caminho mais curto Ponderado Cíclico ou acíclico? Árvores Áciclico Internet Esparso ou denso? Rede gênica

Teoria dos Grafos

Berilhes

Tipo de Grafo

Dirigido ou não dirigido?	Redes viárias entre cidades	não dirigido
	Redes viárias urbanas	dirigido
Ponderado ou não ponderado?	Grau de separação entre duas pessoas	Não ponderado
ronderado ou não ponderado:	Caminho mais curto	Ponderado
Cíclico ou acíclico?	Árvores	Áciclico
Esparso ou denso?	Internet	Denso
	Rede gênica	

Teoria dos Grafos

Berilhes

Tipo de Grafo

Dirigido ou não dirigido?	Redes viárias entre cidades	não dirigido
	Redes viárias urbanas	dirigido
Ponderado ou não ponderado?	Grau de separação entre duas pessoas	Não ponderado
Tonderado ou hao ponderado:	Caminho mais curto	Ponderado
Cíclico ou acíclico?	Árvores	Áciclico
Esparso ou denso?	Internet	Denso
	Rede gênica	Esparso

Teoria dos Grafos

Rerilhes

 A forma mais simples que um ser humano tem de representar um grafo é por meio de um desenho,

Teoria dos Grafos

Rerilhes

- A forma mais simples que um ser humano tem de representar um grafo é por meio de um desenho,
- no qual, normalmente, os vértices são representados por pequenos círculos rotulados e arestas são linhas entre os círculos, no caso de arestas dirigidas estas são representadas por setas.

Teoria dos Grafos

Rerilhes

- A forma mais simples que um ser humano tem de representar um grafo é por meio de um desenho,
- no qual, normalmente, os vértices são representados por pequenos círculos rotulados e arestas são linhas entre os círculos, no caso de arestas dirigidas estas são representadas por setas.

Teoria dos Grafos

- A forma mais simples que um ser humano tem de representar um grafo é por meio de um desenho,
- no qual, normalmente, os vértices são representados por pequenos círculos rotulados e arestas são linhas entre os círculos, no caso de arestas dirigidas estas são representadas por setas.

Representação (cont.)

Teoria dos Grafos

Berilhes

Matriz de Adjacências

Representação (cont.)

Teoria dos Grafos

Berilhes

- Matriz de Adjacências
 - se nós representamos os vértices a, b, c, d, e, f por 0, 1, 2, 3, 4, 5, a matriz de adjacências para o grafo da Figura 3 é

Berilhes

- Matriz de Adjacências
 - se nós representamos os vértices a, b, c, d, e, f por 0, 1, 2, 3, 4, 5, a matriz de adjacências para o grafo da Figura 3 é

$$M = \left[\begin{array}{cccccc} 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{array} \right]$$

Representação (cont.)

Teoria dos Grafos

Rerilhes

Lista de Adjacências

(b) Lista de Adjacências

Comparação entre representações

Teoria dos Grafos

	Matriz de Adjacências	Listas de Adjacências
Espaço	$\Theta(V^2)$	$\Theta(V+E)$
Tempo para testar se (u, v) em E	O(1)	O(V)
Tempo para testar se $u o v$ em E	O(1)	O(V)
Tempo para listar todos os vértices adjacentes à <i>v</i>	<i>O</i> (<i>V</i>)	$O(1+\mathit{grau}(v))$
Tempo para listar todas as arestas	$\Theta(V^2)$	$\Theta(V+E)$
Tempo para adicionar uma aresta	$\Theta(1)$	$\Theta(1)$
Tempo para remover uma aresta	$\Theta(1)$	O(V)

Teoria dos Grafos

Berilhes

Definições

Um grafo acíclico (sem ciclos) conectado não dirigido é chamado de árvore, e um conjunto de árvores é chamado de floresta.

Teoria dos Grafos

Definições

Um grafo acíclico (sem ciclos) conectado não dirigido é chamado de árvore, e um conjunto de árvores é chamado de floresta.

■ Em um grafo não dirigido conectado *G* existe pelo menos um caminho entre qualquer par de vértices

Teoria dos Grafos

Definições

Um grafo acíclico (sem ciclos) conectado não dirigido é chamado de árvore,

e um conjunto de árvores é chamado de floresta.

- Em um grafo não dirigido conectado *G* existe pelo menos um caminho entre qualquer par de vértices
- e a ausência de ciclos implica que existe no máximo um caminho entre qualquer par de vértices em G.

Teoria dos Grafos

Definições

Um grafo acíclico (sem ciclos) conectado não dirigido é chamado de árvore,

e um conjunto de árvores é chamado de floresta.

- Em um grafo não dirigido conectado *G* existe pelo menos um caminho entre qualquer par de vértices
- e a ausência de ciclos implica que existe no máximo um caminho entre qualquer par de vértices em *G*.
- Assim se G é uma árvore, existe exatamente um caminho entre todo par de vértices em G.

Teoria dos Grafos

Definições

Um grafo acíclico (sem ciclos) conectado não dirigido é chamado de árvore,

e um conjunto de árvores é chamado de floresta.

- Em um grafo não dirigido conectado *G* existe pelo menos um caminho entre qualquer par de vértices
- e a ausência de ciclos implica que existe no máximo um caminho entre qualquer par de vértices em *G*.
- Assim se G é uma árvore, existe exatamente um caminho entre todo par de vértices em G.
- Uma árvore com n vértices tem exatamente (n-1) arestas.

Árvore Geradora

Teoria dos Grafos

Definição

UMA ÁRVORE GERADORA para um grafo conectado G é um subgrafo de G que é uma árvore contendo todo vértice de G.

Árvore Geradora

Teoria dos Grafos

Definição

UMA ÁRVORE GERADORA para um grafo conectado G é um subgrafo de G que é uma árvore contendo todo vértice de G.

Definição

Se G não é conectado, um conjunto consistindo de uma árvore geradora para cada componente é chamado de FLORESTA GERADORA.