Chapter 3. Growth of Functions

Growth of functions

- A way to describe behavior of functions in the limit
 -- asymptotic efficiency.
- Growth of functions.
- Focus on what's important by abstracting away low-order terms and constant factors.
- How to indicate running times of algorithms?
- A way to compare "sizes" of functions:

Figure 3.1 Graphic examples of the Θ , O, and Ω notations. In each part, the value of n_0 shown is the minimum possible value; any greater value would also work. (a) Θ -notation bounds a function to within constant factors. We write $f(n) = \Theta(g(n))$ if there exist positive constants n_0 , c_1 , and c_2 such that to the right of n_0 , the value of f(n) always lies between $c_1g(n)$ and $c_2g(n)$ inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write f(n) = O(g(n)) if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or below cg(n). (c) Ω -notation gives a lower bound for a function to within a constant factor. We write $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or above cg(n).

Asymptotic Notation

O-notation

```
O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \}
such that 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.
```

g(n) is an asymptotic upper bound for f(n).

Example:

Also,

$$2n^2 = O(n^3)$$
, with $c=1$ and $n_0=2$.
also, $2n^2 = O(n^2)$, with $c=2$ and $n_0=0$.

Examples of functions in $O(n^2)$:

$$n^2$$
, $n^2 + n$, $n^2 + 1000n$, $1000n^2 + 1000n$

$$n$$
, $n/1000$, $n^{1.9999}$, $n^2/\lg \lg \lg n$

.. continued

Ω -notation

```
\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \}
such that 0 \le c g(n) \le f(n) for all n \ge n_0\}.
```

g(n) is an **asymptotic lower bound** for f(n).

Example:

$$\sqrt{n} = \Omega(\lg n)$$
, with $c=1$ and $n_0=16$.

Examples of functions in $\Omega(n^2)$:

$$n^2$$
, $n^2 + n$, $n^2 - n$, $1000n^2 + 1000n$, $1000n^2 - 1000n$,

Also,

$$n^3$$
, $n^{2.0000}$, $n^2 \lg \lg \frac{2^{2^4}}{3}n$,

.. continued

Θ-notation

```
\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2 \text{ and } n_0 \} such that 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}.
```

g(n) is an **asymptotic tight bound** for f(n).

Example:

$$n^2/2 - 2n = \Theta(n^2)$$
, with $c_1 = 1/4$, $c_2 = 1/2$ and $n_0 = 8$.
Also, $2n^2 = \Theta(n^2)$, with $c_1 = 1$, $c_2 = 3$ (or $c_1 = c_2 = 2$) and $n_0 = 0$.

Theorem:

$$f(n) = \Theta(g(n)) \text{ iff } f = O(g(n)) \text{ and } f = \Omega$$

$$(g(n)).$$

.. continued

o-notation

```
o(g(n)) = \{f(n) : \text{ for all constants } c > 0, \text{ there exist a constant } n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0\}.
```

g(n) is an asymptotic strict upper bound for f(n).

Another view: $\lim_{n\to\infty}\frac{f(x)}{g(x)}=0$

Example:

$$n^{1.9999} = o(n^2)$$
, $n^2 \neq o(n^2)$ (just like $n^2 \neq 0$), $n^2/1000 \neq o(n^2)$

ω -notation

 $\omega(g(n)) = \{f(n) : \text{ for all constants } c > 0, \text{ there exist a constant } n_0 > 0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0\}.$

g(n) is an asymptotic strict lower bound for f(n).

Another view: $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$.

Example:

$$n^{2.0001} = \omega(n^2), \quad n^2 \lg n = \omega(n^2), \quad n^2 \neq \omega(n^2)$$

Comparisons of Functions

Related Properties:

Transitivity:

```
f(n) = \Theta(g(n)) and g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n)).
Same for O, \Omega, o, and \omega.
```

Reflexivity:

$$f(n) = \Theta(f(n)).$$

Same for O and Ω .

Symmetry:

$$f(n) = \Theta(g(n))$$
 if and only if $g(n) = \Theta(f(n))$.

Transpose symmetry:

```
f(n) = O(g(n)) if and only if g(n) = \Omega(f(n)).

f(n) = \omega(g(n)) if and only if g(n) = \omega(f(n)).
```

Comparisons:

```
f(n) is asymptotically smaller than g(n) if f(n) = o(g(n)). f(n) is asymptotically larger than g(n) if f(n) = \omega(g(n)).
```

Standard notations and common functions

Monotonicity:

```
f(n) is monotonically increasing if m \le n \Rightarrow f(m) \le f(n).

f(n) is monotonically decreasing if m \le n \Rightarrow f(m) \ge f(n).

f(n) is strictly increasing if m < n \Rightarrow f(m) < f(n).

f(n) is strictly decreasing if m < n \Rightarrow f(m) > f(n).
```

Floor and Ceilings: $x-1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x+1$

Modular arithmetic: $a \mod n = a - \lfloor a/n \rfloor n$

Polynomials: $p(n) = \sum_{i=0}^{d} a_i n^i$

Exponentials:

Logarithms:

Factorials: -- refer to the textbook (p52-55).