PERFORMANCE EVALUATION EXERCISES

TESTS

1. If the data is in the critical region we		
	(a)	\square Accept H_0
	(b)	\square Reject H_0
	(c)	\Box It depends on the nature of the test
	(d)	\Box It depends on the size of the test
2.	Sayir	ng that a test is of size 5% means that
	(a)	\Box The probability to accept H_0 when H_0 does not hold is ≤ 0.05
	(b)	\Box The probability to reject H_0 when H_0 it holds is ≤ 0.05
	(c)	\square Both
3.	If the	p-value of a test is small we
	(a)	\Box Accept H_0
	(b)	\square Reject H_0
	(c)	\Box It depends on the nature of the test
	(d)	\Box It depends on the size of the test
4.		have a collection of random variables X_i, Y_i which correspond to non paired simulation results configuration 1 or 2. How can you test whether the configuration plays a role or not?
	(a)	☐ With a Wilcoxon Rank Sum test
	(b)	☐ With an ANOVA test
	(c)	☐ With either
	(d)	☐ With none
5.		est whether a distribution is gaussian using a Kolmogorov-Smirnov test against the fitted distrin. We obtain a $p-$ value.
	(a)	\Box The true p -value is smaller
	(b)	\square We have obtained the true p -value
	(c)	\Box The true p -value is larger

- (d) \Box It depends on the data
- 6. We have two data sets X_i and Y_j believed to be iid and from one exponential distribution each. We want to test whether the parameter of their exponential distribution is the same.

Give the design of a corresponding likelihood ratio test. Give a formula for the p-value when m, n are large.

- 7. We have some data set $\vec{Y} = Y_{i=1:I}$ modelled with a parametric model with $\theta \in \Theta$. Let $f_{\vec{Y}}(\vec{y}|\theta)$ be the PDF of the observation $\vec{y} = y_{1:I}$. We assume that we have a method to compute $\hat{\theta}(\vec{y})$, the maximum likelihood estimator of θ for value of the data set \vec{y} .
 - (a) Give a likelihood ratio test for the test

$$H_0: \theta = \theta_0 \text{ versus } H_1: \theta \in \Theta$$

- (b) Give the pseudo-code of an algorithm to compute the p-value of this test using Monte-Carlo simulation with R runs.
- (c) We run this algorithm with R=10'000 and find p=0. Give a 99% confidence for the true p-value. What can we conclude at a size of 5% ?
- 8. We consider again the case in the previous question. Using Monte-Carlo simulation, we have obtained a 99% confidence interval $[\ell(\vec{y}), u(\vec{y})]$ for the p-value. We reject H_0 if the true p is small, but since we don't know the true p-value, we use the rejection condition $u(\vec{y}) < \alpha$. What value of α should we chose to ensure that this way of doing provides a test of size 5%?