Magnitudes Vectoriales

Departamento de Ciencias Básicas

Curso: Mecánica

Profesora: Martha Lucía Barrera Pérez

Magnitudes Escalares y Vectoriales

Magnitudes escalares o numéricas. Aquellas que quedan definidas por un valor numérico y su correspondiente unidad. Por ejemplo, para saber la masa de un objeto no necesitamos más información que su valor y su unidad (3 Kg).

Magnitudes vectoriales. Aquellas que quedan definidas mediante tres atributos:

Módulo. Se trata del valor numérico absoluto (siempre positivo) acompañado de la unidad.

Dirección. Recta sobre la que se encuentra aplicada la magnitud.

Sentido. Uno de los dos posibles que se pueden dar a lo largo de la recta definida por la dirección.

Masa	m
Presión	Р
Trabajo	W
Tiempo	t
Temperatura	Т

Magnitudes Escalares

Fuerza	
Velocidad	$\overset{ ightharpoonup}{v}$
Aceleración	\vec{a}
Campo Eléctrico	$\overset{ ightharpoonup}{E}$
Posición	

Representación de Vectores

Tienen un punto desde el que *nace* la flecha llamado *origen o punto de aplicación*.

De igual forma, tienen otro punto donde *termina* la flecha llamado *extremo*.

La recta sobre la que "descansan" los puntos de extremo y origen se denomina *dirección o recta soporte.*

La distancia entre el *punto origen y extremo* corresponde con su *módulo o magnitud*. A mayor distancia entre ellos, el módulo será mayor.

La *punta de la flecha* determina su *sentido*, dentro de los dos posibles que se podría dibujar siguiendo su dirección, es decir hacia un lado de la recta o hacia el otro.

Representación Analítica

Todo vector se puede expresar como la suma de otros vectores que sirven de patrón o referencia. Estos vectores reciben el nombre de *vectores unitarios* ya que su *módulo vale 1* (módulo unitario). En concreto se emplean:

en un plano OXY

- $\stackrel{\stackrel{i}{i}}{\overset{}{u}} \stackrel{\longrightarrow}{u_x}$ es un vector unitario en la dirección del eje X
- $\overset{j}{\bullet}\overset{\rightarrow}{\circ}\overset{u_{y}}{\circ}$ es un vector unitario en la dirección del eje Y

Otras formas de representación posibles. Un vector con origen en el punto A = (Ax,Ay) y extremo en el punto B = (Bx,By) se puede representar analíticamente de la siguientes formas:

$$\overrightarrow{a} = \stackrel{}{a_x} \cdot \overrightarrow{i} + a_y \cdot \overrightarrow{j}$$

$$\overrightarrow{a} = \ a_x \cdot \overrightarrow{u_x} + a_y \cdot \overrightarrow{u_y}$$

$$\overrightarrow{a}=\ (a_x,a_y)$$

donde a_{xy} a_y reciben el nombre de **componentes cartesianas** del vector y se calculan de la siguiente forma:

$$a_x = B_x - A_x$$
$$a_y = B_y - A_y$$

Módulo y dirección de un Vector

Módulo y coordenadas de un vector

Si aplicamos el teorema de Pitágoras, podemos deducir que

$$|\overrightarrow{a}| = a = \sqrt{{a_x}^2 + {a_y}^2}$$

Además, si aplicamos las definiciones del seno y del coseno, podemos obtener otra forma de calcular las componentes cartesianas.

$$a_x = a \cdot \cos(\alpha) = a \cdot \sin(\beta)$$

 $a_y = a \cdot \sin(\alpha) = a \cdot \cos(\beta)$

Dirección de un vector

$$tan\alpha = \frac{a_y}{a_x}$$

Vector en 3-D

Ejercicio: Encuentre la magnitud y la dirección del vector de la figura.

Suma de Vectores

Representación gráfica

De forma gráfica, la suma de dos vectores \vec{a} y \vec{b} nos dará como resultado otro vector \vec{c} que podemos obtener mediante 2 métodos distintos: **el método de la cabeza con cola** (o del extremo con origen) y **la regla del paralelogramo**.

Respetando la dirección y sentido de ambos vectores,

- Desplazamos el vector \vec{b} de tal forma que su origen se encuentre a continuación del extremo de \vec{a}
- \vec{c} será el segmento recto que podamos dibujar desde el origen de \vec{a} hasta el extremo de \vec{b}

Suma gráfica de mas de 2 vectores (M. Polígono)

Método del paralelogramo

La podemos aplicar si los vectores no tienen la misma dirección:

- Se sitúan los vectores \vec{a} y \vec{b} con los orígenes en el mismo punto
- Desde el extremo de cada uno se dibuja una paralela al otro vector. Al final podremos ver un paralelogramo.
- \vec{c} será el vector que parte desde el origen común de \vec{a} y \vec{b} a través de la diagonal del paralelogramo.

suma de vectores con distinta dirección

Representación Analítica

La suma de dos vectores \vec{a} y \vec{b} , da como resultado otro vector \vec{c} , cuyas componentes son la suma de las respectivas componentes de \vec{a} y \vec{b}

$$\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}$$

$$\vec{b} = b_x \vec{i} + b_y \vec{j} + b_z \vec{k}$$

$$\vec{a} + \vec{b} = (a_x + b_x) \vec{i} + (a_y + b_y) \vec{j} + (a_z + b_z) \vec{k}$$

Opuesto de un vector

Se llama **opuesto de un vector** \vec{a} , a otro vector en la que sus componentes tienen el signo contrario a las del dicho vector.

$$\overrightarrow{a\prime} = \ -\overrightarrow{a} = \left(-a_x
ight) \cdot \overrightarrow{i} + \left(-a_y
ight) \cdot \overrightarrow{j}$$

Ejercicio

Dados los siguientes vectores:

Resuelva en el siguiente orden:

- a) La representación gráfica de la suma de ambos vectores.
- b) La representación analítica de la suma de ambos vectores.
- c) La representación analítica del opuesto del vector u
- d) ¿El módulo de la suma de dos vectores es igual a la suma de los módulos de cada vector individualmente?

Diferencia o resta de Vectores

Representación gráfica

De forma gráfica, la resta de dos vectores \vec{a} y \vec{b} nos dará como resultado otro vector $\vec{c} = \vec{a} - \vec{b}$ que podemos expresar como una suma: la suma de \vec{a} con el opuesto de \vec{b}

representación de un vector y su opuesto

El opuesto de un vector es otro vector que tiene:

- el mismo módulo
- la misma dirección
- sentido contrario

$$\overrightarrow{c} = \overrightarrow{a} - \overrightarrow{b} = \overrightarrow{a} + \left(-\overrightarrow{b} \right)$$

la resta de los vectores a y b es la suma de a y el opuesto de b

representación de los vectores a y b

Representación analítica

La resta de dos vectores \vec{a} y \vec{b} nos dará como resultado otro vector $\vec{c} = \vec{a} - \vec{b}$ cuyas componentes son la diferencia de las respectivas componentes de \vec{a} y \vec{b}

$$\overrightarrow{c} = \overrightarrow{a} - \overrightarrow{b} = \left(a_x - b_x
ight) \cdot \overrightarrow{i} + \left(a_y - b_y
ight) \cdot \overrightarrow{j}$$

Ejercicio

Dados los siguientes vectores:

$$\overrightarrow{a} = -7 \cdot \overrightarrow{i} + 5 \cdot \overrightarrow{j}$$

$$\overrightarrow{b} = \overrightarrow{i} + 2 \cdot \overrightarrow{j}$$

- a) Calcule analíticamente el opuesto del vector \vec{a} y del vector \vec{b} .
- b) Calcule analíticamente el vector \vec{c} , que se obtiene como resultado de restar el vector \vec{a} y el vector \vec{b} .
- c) Encuentre el resultado de la operación anterior de manera gráfica

Producto de un Vector por un Escalar

Representación gráfica

Al multiplicar un vector \vec{a} por un escalar (número) λ , obtenemos un nuevo vector $\vec{b} = \lambda \vec{a}$ que tiene las siguientes características:

- La dirección de \vec{a} y \vec{b} son la misma
- Si λ es:
- Positivo: \vec{a} y \vec{b} tendrán el mismo sentido
- Negativo: \vec{a} y \vec{b} tendrán distinto sentido.

El módulo de \vec{b} será el valor absoluto de λ veces el módulo de \vec{a} o lo que es lo mismo

$$|\overrightarrow{b}| = |\lambda| \cdot |\overrightarrow{a}|$$

Producto de un escalar por un vector

De esto se desprende una ecuación muy interesante. Y es que, cualquier vector puede expresarse como un producto de un escalar y otro vector. El producto entre su módulo y el vector unitario (modulo 1) que coincide con la dirección y sentido de dicho vector.

$$\overrightarrow{a} = \left| \overrightarrow{a} \right| \cdot \overrightarrow{u_a} = \left| \overrightarrow{a} \right| \cdot \overrightarrow{u_a}$$

Representación analítica

El producto de un vector \vec{a} por un escalar λ , nos da como resultado otro vector cuyas componentes son el producto escalar de λ por cada una de las componentes del vector \vec{a}

$$\lambda \cdot \overrightarrow{a} = \left(\lambda \cdot a_x
ight) \cdot \overrightarrow{i} + \left(\lambda \cdot a_y
ight) \cdot \overrightarrow{j}$$

Calculo del vector unitario

Como vimos anteriormente, todo vector se puede expresar como $\vec{a}=a.\overrightarrow{u_a}$. Partiendo de esta ecuación se obtiene que: $\overrightarrow{u_a}=\left(\frac{a_x}{a}\right)\cdot\overrightarrow{u_x}+\left(\frac{a_y}{a}\right)\cdot\overrightarrow{u_y}$

Ejercicio

Dado el vector: $\vec{a} = 3 \cdot \vec{i} + 4 \cdot \vec{j}$

- a) Halle $2.\vec{a}$
- b) b) Calcule el vector unitario de \vec{a}

Producto Punto o Producto Escalar

Representación Gráfica del Producto Escalar

El cálculo del producto escalar de estos dos vectores se simplifica cuando estos son perpendiculares o paralelos entre si:

- Si son perpendiculares, el ángulo forma 90° y el producto es 0
- -Si son paralelos, tenemos dos posibilidades:
- Si tienen el mismo sentido, el producto escalar es la multiplicación de sus módulos
- Si NO tiene el mismo sentido, el producto escalar es la multiplicación de sus módulos añadiéndole el signo negativo.

Producto punto (casos particulares)

Si \overrightarrow{a} y \overrightarrow{b} son perpendiculares ($\alpha = 90^{\circ}$)

Si \overrightarrow{a} y \overrightarrow{b} son paralelos y con el mismo sentido ($\alpha = 0^{\circ}$)

Si \overrightarrow{a} y \overrightarrow{b} son paralelos y con el distinto sentido ($\alpha = 180^{\circ}$)

$$\overrightarrow{a} \cdot \overrightarrow{b} = a \cdot b \cdot \cos(180) = -a \cdot b$$

Interpretación Geométrica del Producto Escalar

El producto escalar de dos vectores \vec{a} y \vec{b} no nulos, se puede entender como el producto del módulo de \vec{b} por el valor de la proyección de \vec{a} sobre la recta que define la dirección de \vec{b} .

Observe como el producto escalar es el producto del valor de la proyección del vector a sobre el vector b por el módulo del vector b.

$$\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \cos(\alpha)$$

$$\vec{a} \cdot \vec{b} = |\vec{b}| \, |\vec{a}| cos(\alpha)$$

Representación Analítica del Producto Escalar

El producto escalar de dos vectores \vec{a} y \vec{b} , devuelve un escalar que se obtiene como la suma de las multiplicaciones una a una de las componentes cartesianas de los 2 vectores \vec{a} y \vec{b} . En el caso de vectores en tres dimensiones, podemos usar la expresión:

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos(\alpha)$$

$$\vec{a} = a_x \hat{\imath} + a_y \hat{\jmath} + a_z \hat{k}$$

$$\vec{b} = b_x \hat{\imath} + b_y \hat{\jmath} + b_z \hat{k}$$

$$\overrightarrow{a} \cdot \overrightarrow{b} = \left(a_x \cdot b_x\right) + \left(a_y \cdot b_y\right) + \left(a_z \cdot b_z\right)$$

Ejercicio

Dados los vectores:

$$\overrightarrow{a} = -\overrightarrow{i} + 3 \cdot \overrightarrow{j}$$
 $\overrightarrow{b} = 2 \cdot \overrightarrow{i} - 2 \cdot \overrightarrow{j}$
 $\overrightarrow{c} = -4 \cdot \overrightarrow{i} - \overline{j}$

Halle:

- a) $\vec{a} \cdot \vec{b}$
- \vec{b}) $\vec{b} \cdot \vec{c}$

Encuentre el ángulo entre

- a) \vec{a} y \vec{b}
- b) \vec{b} y \vec{c}

Producto Cruz o Producto Vectorial

- El producto vectorial de un vector \vec{a} y otro \vec{b} , denotado como $\vec{a} \times \vec{b}$, es un vector \vec{r} tal que:
- Módulo: $|\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin(\alpha)$
- *Dirección*: Es perpendicular al plano que definen ambos vectores
- Sentido: Queda definido por cualquiera de las siguientes reglas:
 - \circ Regla del sacacorchos o del tornillo. El sentido es el mismo sentido de avance de un sacacorchos o tornillo que girase desde \vec{a} hasta \vec{b} por el camino más corto
 - Regla de la mano derecha con la palma. También puedes utilizar la palma de tu mano, orientándola desde \vec{a} hasta \vec{b} por el camino más corto. El dedo pulgar determina el sentido del producto, tal y como se ve en la figura de la siguiente diapositiva
 - Regla de la mano derecha con tres dedos. Otra opción es utilizar tu mano derecha y los dedos índice \vec{a} corazón o medio \vec{b} y pulgar $\vec{a} \times \vec{b}$, tal y como se ve en la figura de la siguiente diapositiva

Sentido del producto cruz

- Regla del sacacorchos o del tornillo

- Regla de la mano derecha con la palma

- Regla de la mano derecha con tres

dedos

Propiedades del Producto Cruz

- El producto vectorial no es conmutativo $\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}$
- Es anti-conmutativo $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$

• Expresión analítica

$$\vec{a} = a_x \hat{\imath} + a_y \hat{\jmath} + a_z \hat{k}$$

$$\vec{b} = b_x \hat{\imath} + b_y \hat{\jmath} + b_z \hat{k}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

$$=(a_y\cdot b_z-b_y\cdot a_z)\stackrel{
ightarrow}{\cdot i}+(a_z\cdot b_x-b_z\cdot a_x)\stackrel{
ightarrow}{\cdot j}+(a_x\cdot b_y-b_x\cdot a_y)\stackrel{
ightarrow}{\cdot k}$$

Ejercicio

Dados los vectores

$$\vec{a} = 3\hat{\imath} + 2\hat{\jmath}$$
 y

$$\vec{b} = (2,-1)$$

Encuentre $\vec{a} \times \vec{b}$

Interpretación geométrica del producto cruz

Área del paralelogramo

$$\left| \overrightarrow{a} \times \overrightarrow{b} \right| = \left| \overrightarrow{a} \right| \cdot \left| \overrightarrow{b} \right| \cdot \sin(\alpha)$$

$$|\overrightarrow{a} \times \overrightarrow{b}| = a \cdot \underbrace{b \cdot \sin(\alpha)}_{b} = a \cdot h = \text{Área del paralelogramo}$$

Ejercicio

Halle el área del paralelogramo formado por dos vectores sabiendo que:

- los vectores tienen igual origen
- sus módulos son 9 m y 4 m respectivamente
- forman un ángulo de 45° entre sí

Producto Cruz en 3D

Universidad Autónoma de Bucaramanga

.

.

¡GRACIAS!