Niveau: Première année de PCSI

COLLE 24 = SÉRIES NUMÉRIQUES

Connaître son cours:

Soit $(u_n)_n \in \mathbb{C}^{\mathbb{N}}$, montrer les propriétés suivantes :

- La suite $(u_n)_n$ et la série de terme général $(u_n u_{n-1})_n$ sont de même nature.
- Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites d'éléments de \mathbb{R}^+ telles que $u_n \sim v_n$. Montrer que la série de terme général $(u_n)_{n\in\mathbb{N}}$ converge si, et seulement si, la série de terme général $(v_n)_{n\in\mathbb{N}}$ converge.
- Si la série de terme général u_n converge absolument, alors elle converge.

Exercices:

Exercice 1. (*)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments de \mathbb{R}^+ et $(v_n)_{n\in\mathbb{N}}$ la suite déterminée par : $v_n = u_{2n} + u_{2n+1}$ Montrer :

$$\sum u_n$$
 converge $\Leftrightarrow \sum v_n$ converge

Exercice 2. (**)

Calculer pour $x \in]-1;1[$

$$\sum_{n=1}^{+\infty} \frac{x^n}{(1-x^n)(1-x^{n+1})}$$

Exercice 3. (*)

Déterminer en fonction du paramètre $\alpha \in \mathbb{R}$ la nature de la séries de terme général :

$$u_n = \frac{\ln n}{n^\alpha}$$

Exercice 4. (**)/(***)

Soit (u_n) une suite de réels strictement positifs.

(a) Pour tout $n \in \mathbb{N}$, on pose

$$v_n = \frac{u_n}{1 + u_n}$$

Montrer que $\sum u_n$ et $\sum v_n$ sont de même nature.

(b) Même question avec

$$v_n = \frac{u_n}{u_1 + \dots + u_n}$$

On pourra étudier $\ln(1-v_n)$ dans le cadre de la divergence.

Niveau: Première année de PCSI

Exercice 5. (**)

Soient $\alpha>0$ et (u_n) une suite de réels strictement positifs vérifiant

$$u_n^{1/n} = 1 - \frac{1}{n^\alpha} + o\left(\frac{1}{n^\alpha}\right)$$

La série de terme général u_n converge-t-elle?

Exercice 6. (***)

Soient

$$u_n = \frac{1}{3^n n!} \prod_{k=1}^n (3k - 2)$$
 et $v_n = \frac{1}{n^{3/4}}$.

(a) Montrer que pour n assez grand,

$$\frac{u_{n+1}}{u_n} \ge \frac{v_{n+1}}{v_n}$$

(b) En déduire que $\sum u_n$ diverge.