2019 Fall EECS205002 Linear Algebra

Name: ID:

2020/01/08 Quiz 8

- 1. (4 points) True or False
 - (a) A matrix is singular if and only if it has zero eigenvalues.
 - (b) A defective matrix must have at least two identical eigenvalues.
 - (c) If $B = S^{-1}AS$ and (λ, \vec{x}) is an eigenpair of A, $(\lambda, S\vec{x})$ is an eigenpair of B.
 - (d) The eigenvectors of a real symmetric matrix are orthogonal to each other.
 - (e) The sum of all eigenvalues of a matrix equals to the trace of the matrix.
 - (f) If an eigenvector of a real matrix A is complex, its conjugate must be also A's eigenvector.
 - (g) An $n \times n$ matrix is diagonalizable if and only if it has n distinct eigenvalues.
 - (h) All the eigenvalues of a real symmetric matrix are real.
- 2. (2 points) If a 2×2 matrix A has eigenvalues/eigenvectors as follows, what is A?

$$\left(\lambda_1 = 1, x_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}\right), \left(\lambda_2 = -4, x_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}\right)$$

3. (2 points) Can the matrix $A = \begin{bmatrix} \alpha + 1 & 1 \\ 0 & 2\alpha \end{bmatrix}$ be defective? If yes, what α should be? If not, what are the eigenvectors of A (expressing them in terms of functions of α)?

4. (2 points) Let u be a unit vector in \mathbb{R}^n and $H = I - 2uu^T$. Show the eigenvalues of H are either 1 or -1.

5.	5. (5 points bonus) Gaussian elimination is a versatile numerical method in linapplications or proofs you have learned in this semester that use Gaussian elimethed form.	near algebra. List all the mination or (reduced) row