Optimization with Python

- Linear Programming
- Mixed-Integer Linear Programming
- Nonlinear Programming
- Mixed-Integer Nonlinear Programming
- Heuristics (GA and Particle Swarm)
- Constraint Programming

Outlines

- Installing Python and Packages
- Starting with Python
- Linear Programming (LP)
- Mixed-Integer Linear Programming (MILP)
- Nonlinear Programming (NLP)
- Mixed-Integer Nonlinear Programming (MINLP)
- Heuristics (GA and Particle Swarm)
- Constraint Programming
- Practical and good examples

What is optimization

- Search for the optimal decision
- Any problem of planning: long, medium, short term, operational
- Applied in the decision-making for investments, operations, route problems, cost reduction...
- Ex.: We want to maximize the revenue for the sale of 2 products (x and y), each product costs 1 dollar. What is the required daily production?

Constraints

```
2y <= x+8 (time of production)
```

$$2x + y \le 14$$
 (raw material)

 $\max x + y$

 $-x + 2y \le 8$

 $2x + y \le 14$

 $2x - y \le 10$

 $0 \le x \le 10$

 $0 \le y \le 10$

What is optimization

- Search for the optimal decision
- Any problem of planning: long, medium, short term, operational
- Applied in the decision-making for investments, operations, route problems, cost reduction...
- Ex.: We want to maximize the revenue for the sale of 2 products (x and y), each product costs 1 dollar. What is the required daily production?

Constraints

```
2y <= x+8 (time of production)

x (2 + y) <= 14 (raw material)

2x <= y+10 (historical sales)

x,y <= 10 (maximum daily production)
```

 $-x + 2y \le 8$ $2x + yx \le 14$ $2x - y \le 10$ 0 < x < 10

 $0 \le y \le 10$

 $\max x + y$

PROBLEM UNDERSTANDING

PROBLEM MODELING

RESOLUTION

RESULTS

What is optimization

- Search for the optimal decision
- Any problem of planning: long, medium, short term, operational
- Applied in the decision-making for investments, operations, route problems, cost reduction...
- Ex.: We want to maximize the revenue for the sale of 2 products (x and y), each product costs 1 dollar. What is the required daily production?

Constraints

```
2y <= x+8 (time of production)
```

$$2x + y \le 14$$
 (raw material)

 $\max x + y$

 $-x + 2y \le 8$

 $2x + y \le 14$

 $2x - y \le 10$

 $0 \le x \le 10$

 $0 \le y \le 10$

x and y integers

INTRODUCTION TO MATHEMATICAL MODELING

- What is mathematical modeling
- How do we solve mathematical problems?
- Type of variables
- Objective Function and Constraints
- How to model your problem?
- Some examples
- How to learn more?

WHAT IS MATHEMATICAL MODELING

Real-world problem → Mathematics

Very specific skill

I wish to minimize the total cost of logistics in a food delivery business

$$min \sum_{i} Cost(i)$$

$$Cost(i) =$$

HOW DO WE SOLVE OPTIMIZATION PROBLEMS?

First, understand the problem!

Second, convert your problem to math

Third, solve your problem

Fourth, discuss the results

TYPE OF VARIABLES

What is variable?

What is a parameter?

What is an index?

What is a set?

$$min C_1 + C_2$$

$$C_1 = 0.1P_1^2 + 0.5$$
 $C_2 = P_2 + 3$
 $P_1 + P_2 = P_T$

- Continuous
- Integer (discrete)
- Binary
- Others

OBJECTIVE FUNCTION AND CONSTRAINTS

How to define if a solution is better than other?

What defines if a solution is feasible?

$$\max x + y$$

$$-x + 2y \le 8$$

$$2x + y \le 14$$

$$2x - y \le 10$$

$$x, y \ge 0$$

HOW TO MODEL YOUR PROBLEM?

Mayke wish to define the best investments that he should make with his money. He has a **total of 100,000 USD** and the following options for investment.

- A) Low risk fund with historical gains of 5% per year
- B) Medium risk fund with historical gains 10% per year
- C) High risk fund with historical gains of 12% per year

Mayke wish to control the risk of his investments with maximum of 10% of his money in the investment with high risk, 20% in the investment with medium risk.

Which is the decision of investments in A, B, and C that **maximize the return** of investment for Mayke?

Mayke wish to define the best investments that he should make with his money. He has a **total of 100,000 USD** and the following options for investment.

- A) Low risk fund with historical gains of 5% per year
- B) Medium risk fund with historical gains 10% per year
- C) High risk fund with historical gains of 12% per year

Mayke wish to control the risk of his investments with maximum of 10% of his money in the investment with high risk, 20% in the investment with medium risk.

Which is the decision of investments in A, B, and C that **maximize the return** of investment for Mayke?

Variables and indexes

 R_A , R_B , R_C \rightarrow Return of investment A,B, and C C_A , C_B , C_C \rightarrow Invested capital in fund A, B, and C

Constraints (rules)

$$C_A + C_B + C_C = 100,000$$
 $R_A = 0.05C_A$
 $R_B = 0.10C_B$
 $R_C = 0.12C_C$
 $0 \le C_B \le 0.2 * 100,000$
 $0 \le C_C \le 0.1 * 100,000$

Objective Function

$$\max(R_A + R_B + R_C)$$

Mayke wish to define the best investments that he should make with his money. He has a **total of 100,000 USD** and the following options for investment.

- A) Low risk fund with historical gains of 5% per year
- B) Medium risk fund with historical gains 10% per year
- C) High risk fund with historical gains of 12% per year
- D) Especial fund: $10^{-6} * (C_D)^2$

Mayke wish to control the risk of his investments with maximum of 10% of his money in the investment with high risk, 20% in the investment with medium risk, and 30% in the especial fund.

Which is the decision of investments in A, B, and C that **maximize the return** of investment for Mayke?

Mayke wish to define the best investments that he should make with his money. He has a **total of 100,000 USD** and the following options for investment.

- A) Low risk fund with historical gains of 5% per year
- B) Medium risk fund with historical gains 10% per year
- C) High risk fund with historical gains of 12% per year
- D) Especial fund: $10^{-6} * (C_D)^2$

Mayke wish to control the risk of his investments with maximum of 10% of his money in the investment with high risk, 20% in the investment with medium risk, and 30% in the especial fund.

Which is the decision of investments in A, B, and C that **maximize the return** of investment for Mayke?

<u>Index</u>

 $A, B, C, D \rightarrow \text{funds}$

Variables

 C_A , C_B , C_C , C_D \rightarrow Invested capital in the fund R_A , R_B , R_C , R_D \rightarrow Return of investment from the fund

Mayke wish to define the best investments that he should make with his money. He has a **total of 100,000 USD** and the following options for investment.

- A) Low risk fund with historical gains of 5% per year
- B) Medium risk fund with historical gains 10% per year
- C) High risk fund with historical gains of 12% per year
- D) Especial fund: $10^{-6} * (C_D)^2$

Mayke wish to control the risk of his investments with maximum of 10% of his money in the investment with high risk, 20% in the investment with medium risk, and 30% in the especial fund.

Which is the decision of investments in A, B, and C that **maximize the return** of investment for Mayke?

Objective Function

$$\max R_A + R_B + R_C + R_D$$

Mayke wish to define the best investments that he should make with his money. He has a **total of 100,000 USD** and the following options for investment.

- A) Low risk fund with historical gains of 5% per year
- B) Medium risk fund with historical gains 10% per year
- C) High risk fund with historical gains of 12% per year
- D) Especial fund: $10^{-6} * (C_D)^2$

Mayke wish to control the risk of his investments with maximum of 10% of his money in the investment with high risk, 20% in the investment with medium risk, and 30% in the especial fund.

Which is the decision of investments in A, B, and C that maximize the return of investment for Mayke?

Objective Function

$$\max R_A + R_B + R_C + R_D$$

Constraints (rules)

$$C_A + C_B + C_C + C_D = 100,000$$
 $R_A = 0.05C_A$
 $R_B = 0.10C_B$
 $R_C = 0.12C_C$
 $R_D = 10^{-6}(C_D)^2$
 $0 \le C_B \le 0.2 * 100,000$
 $0 \le C_C \le 0.1 * 100,000$
 $0 \le C_D \le 0.3 * 100,000$

Mayke wish to define the best investments that he should make with his money. He has a **total of 100,000 USD** and the following options for investment.

- A) Low risk fund with historical gains of 5% per year
- B) Medium risk fund with historical gains 10% per year
- C) High risk fund with historical gains of 12% per year
- D) Especial fund: $10^{-6} * (C_D)^2$

Mayke wish to control the risk of his investments with maximum of 10% of his money in the investment with high risk, 20% in the investment with medium risk, and 30% in the especial fund.

Which is the decision of investments in A, B, and C that **maximize the return** of investment for Mayke?

Objective Function

$$\max R_A + R_B + R_C + R_D$$

Same as

$$\max \sum_{f \in F} R_f$$

Set
$$F = \{A, B, C, D\}$$

Mayke wish to define the best investments that he should make with his money. He has a **total of 100,000 USD** and the following options for investment.

- A) Low risk fund with historical gains of 5% per year
- B) Medium risk fund with historical gains 10% per year
- C) High risk fund with historical gains of 12% per year
- D) Especial fund: $10^{-6} * (C_D)^2$

Mayke wish to control the risk of his investments with maximum of 10% of his money in the investment with high risk, 20% in the investment with medium risk, and 30% in the especial fund.

Which is the decision of investments in A, B, and C that **maximize the return** of investment for Mayke?

Constraints (rules)

$$C_A + C_B + C_C + C_D = 100,000$$

$$\sum_{f \in F} C_f = 100,000$$

$$R_A = 0.05C_A$$
$$R_B = 0.10C_B$$

$$R_C = 0.12C_C$$

$$R_D = 10^{-6} (C_D)^2$$

$$R_f = return(C_f) \ \forall f$$

$$0 \le C_R \le 0.2 * 100,000$$

$$0 \le C_C \le 0.1 * 100,000$$

$$0 \le C_D \le 0.3 * 100,000$$

$$C_f^{min} \le C_f \le C_f^{max} \quad \forall f$$

Mayke wish to define the best investments that he should make with his money. He has a **total of 100,000 USD** and the following options for investment.

- A) Low risk fund with historical gains of 5% per year
- B) Medium risk fund with historical gains 10% per year
- C) High risk fund with historical gains of 12% per year
- D) Especial fund: $10^{-6} * (C_D)^2$

Mayke wish to control the risk of his investments with maximum of 10% of his money in the investment with high risk, 20% in the investment with medium risk, and 30% in the especial fund.

Which is the decision of investments in A, B, and C that **maximize the return** of investment for Mayke?

Objective Function

$$\max \sum_{f \in F} R_f$$

Constraints (rules)

$$\sum_{f \in F} C_f = 100,000$$

$$R_f = return(C_f) \quad \forall f$$

$$C_f^{min} \le C_f \le C_f^{max} \quad \forall f$$

You have a company of shoes with 3 very large machines, and you wish to minimize the total cost of production.

The total cost of production of each machine is:

A)
$$C_A = 0.1P_A^2 + 0.5P_A + 0.1$$

B)
$$C_B = 0.3P_B + 0.5$$

C)
$$C_C = 0.01P_C^3$$

where C is the cost of production of P products for each machine

In the next month, you have a <u>demand of 10,000 shoes</u>. What is the number of products that should be assigned to each machine in order to <u>minimize the total cost</u>?

You have a company of shoes with 3 very large machines, and you wish to minimize the total cost of production.

The total cost of production of each machine is:

A)
$$C_A = 0.1P_A^2 + 0.5P_A + 0.1$$

B)
$$C_B = 0.3P_B + 0.5$$

C)
$$C_C = 0.01P_C^3$$

where C is the cost of production of P products for each machine

In the next month, you have a <u>demand of 10,000 shoes</u>. What is the number of products that should be assigned to each machine in order to <u>minimize the total cost</u>?

Variables

 C_A , C_B , C_C \rightarrow Cost of production of machines A,B,C P_A , P_B , P_C \rightarrow Number of production produced by each machine (integer)

You have a company of shoes with 3 very large machines, and you wish to minimize the total cost of production.

The total cost of production of each machine is:

A)
$$C_A = 0.1P_A^2 + 0.5P_A + 0.1$$

B)
$$C_B = 0.3P_B + 0.5$$

C)
$$C_C = 0.01P_C^3$$

where C is the cost of production of P products for each machine

In the next month, you have a <u>demand of 10,000 shoes</u>. What is the number of products that should be assigned to each machine in order to minimize the total cost?

Variables

 $C_A, C_B, C_C \rightarrow$ Cost of production of machines A,B,C $P_A, P_B, P_C \rightarrow$ Number of production produced by each machine (integer)

Constraints (rules)

$$P_A + P_B + P_C = 10,000$$

 $C_A = 0.1P_A^2 + 0.5P_A + 0.1$
 $C_B = 0.3P_B + 0.5$
 $C_C = 0.01P_C^3$
 $P_A, P_B, P_C \ge 0$

Objective Function

$$\min C_A + C_B + C_C$$

You have a company of shoes with 3 very large machines, and you wish to minimize the total cost of production.

The total cost of production of each machine is:

A)
$$C_A = 0.1P_A^2 + 0.5P_A + 0.1$$

B)
$$C_B = 0.3P_B + 0.5$$

C)
$$C_C = 0.01P_C^3$$

where C is the cost of production of P products for each machine

In the next month, you have a <u>demand of 10,000 shoes</u>. What is the number of products that should be assigned to each machine in order to minimize the total cost?

Variables

 C_A , C_B , C_C \rightarrow Cost of production of machines A,B,C P_A , P_B , P_C \rightarrow Number of production produced by each machine (integer)

Constraints (rules)

$$\sum_{m} P_{m} = 10,000$$

$$C_{A} = 0.1P_{A}^{2} + 0.5P_{A} + 0.1$$

$$C_{B} = 0.3P_{B} + 0.5$$

$$C_{C} = 0.01P_{C}^{3}$$

$$P_{A}, P_{B}, P_{C} \ge 0$$

Objective Function

$$\min \sum_m C_m$$

 $m = \{A, B, C\}$

You have a company of shoes with 3 very large machines, and you wish to minimize the total cost of production.

The total cost of production of each machine is:

A)
$$C_A = 0.1P_A^2 + 0.5P_A + 0.1$$

B)
$$C_B = 0.3P_B + 0.5$$

C)
$$C_C = 0.01P_C^3$$

where C is the cost of production of P products for each machine

In the next month, you have a **demand of 10,000 shoes**. What is the number of products that should be assigned to each machine in order to **minimize the total cost**?

Variables

 C_A , C_B , C_C \rightarrow Cost of production of machines A,B,C P_A , P_B , P_C \rightarrow Number of production produced by each machine (integer)

Constraints (rules)

$$\sum_{m} P_{m} = 10,000$$

$$C_{A} = 0.1P_{A}^{2} + 0.5P_{A} + 0.1$$

$$C_{B} = 0.3P_{B} + 0.5$$

$$C_{C} = 0.01P_{C}^{3}$$

$$P_{A}, P_{B}, P_{C} \ge 0$$

Objective Function

$$\min \sum_{m} C_m$$

 $m = \{A, B, C\}$

You have a company of shoes with 3 very large machines, and you wish to minimize the total cost of production.

The total cost of production of each machine is:

A)
$$C_A = 0.1P_A^2 + 0.5P_A + 0.1$$

B)
$$C_B = 0.3P_B + 0.5$$

C)
$$C_C = 0.01P_C^3$$

where C is the cost of production of P products for each machine

In the next month, you have a <u>demand of 10,000 shoes</u>. What is the number of products that should be assigned to each machine in order to minimize the total cost?

Objective Function

$$\min \sum_{m} C_m$$

Constraints (rules)

$$\sum_{m} P_{m} = 10,000$$

$$C_{A} = 0.1P_{A}^{2} + 0.5P_{A} + \beta_{A}0.1$$

$$C_{B} = 0.3P_{B} + \beta_{B}0.5$$

$$C_{C} = 0.01P_{C}^{3}$$

$$P_{A} \leq \beta_{A}M$$

$$P_{B} \leq \beta_{B}M$$

$$P_A, P_B, P_C \ge 0$$

Create a generic formulation to minimize the path from point A to B

The numbers are the distances from one point to another

Create a generic formulation to minimize the path from point A to B

The numbers are the distances from one point to another

Variables

 $x_{i,j} \rightarrow$ Binary decision on connection point i to j

Create a generic formulation to minimize the path from point A to B

The numbers are the distances from one point to another

Variables

 $x_{i,j} \rightarrow$ Binary decision on connection point i to j

Parameters

 $D_{i,j} \rightarrow$ Distance from point i to j

Create a generic formulation to minimize the path from point A to B

The numbers are the distances from one point to another

Variables

 $x_{i,j} \rightarrow$ Binary decision on connection point i to j

Parameters

 $D_{i,i} \rightarrow$ Distance from point i to j

Sets

 Ω_i^{in} \rightarrow set of nodes that connect to arcs entering node i Ω_i^{out} \rightarrow set of nodes that connect to arcs exiting node i

Example:

$$\Omega_{P1}^{in} = \{A, P2\}$$
 $\Omega_{B}^{in} = \{P1, P3\}$ $\Omega_{P1}^{out} = \{P2, B\}$ $\Omega_{A}^{out} = \{P1, P2\}$

Create a generic formulation to minimize the path from point A to B

The numbers are the distances from one point to another

Variables, Parameters and sets

 $x_{i,j} \rightarrow$ Binary decision on connection point i to j

 $D_{i,j} \rightarrow$ Distance from point i to j

 $\Omega_i^{in} \rightarrow$ set of nodes that connect to arcs entering node i

 $\Omega_i^{out} \rightarrow$ set of nodes that connect to arcs exiting node i

Objective Function

$$\min \sum_{(i,j)} x_{i,j} D_{i,j}$$

Constraints

$$\sum_{j \in \Omega_A^{out}} x_{A,j} = 1$$

$$\sum_{i \in \Omega_B^{in}} x_{i,B} = 1$$

$$\sum_{j \in \Omega_i^{out}} x_{i,j} = \sum_{j \in \Omega_i^{in}} x_{j,i} \quad \forall i \setminus \{A, B\}$$

Petter has a construction company. He needs to assign 5 of the company's teams to work in some of the constructions below:

- A) Revenue of 500, requires 1 team
- B) Revenue of 4,000, requires 3 teams
- C) Revenue of 3,000, requires 2 teams
- D) Revenue of 2,000, requires 1 team
- E) Revenue of 2,000, requires 5 teams

Select the constructions that would maximize the revenue.

- Each construction can be made just once
- Not all constructions will be selected

Petter has a construction company. He needs to assign 5 of the company's teams to work in some of the constructions below:

- A) Revenue of 500, requires 1 team
- B) Revenue of 4,000, requires 3 teams
- C) Revenue of 3,000, requires 2 teams
- D) Revenue of 2,000, requires 1 team
- E) Revenue of 2,000, requires 5 teams

Select the constructions that would maximize the revenue.

- Each construction can be made just once
- Not all constructions will be selected

Variables

 $x_o \rightarrow$ Binary decision on selecting (or not) construction o

Petter has a construction company. He needs to assign 5 of the company's teams to work in some of the constructions below:

- A) Revenue of 500, requires 1 team
- B) Revenue of 4,000, requires 3 teams
- C) Revenue of 3,000, requires 2 teams
- D) Revenue of 2,000, requires 1 team
- E) Revenue of 2,000, requires 5 teams

Select the constructions that would maximize the revenue.

- Each construction can be made just once
- Not all constructions will be selected

Variables

 $x_o \rightarrow$ Binary decision on selecting (or not) construction o

Parameters

 $R_o \rightarrow$ Revenue of construction o

 $NT_o \rightarrow$ Number of teams required for the construction o

 $NT^{max} \rightarrow$ Total number of teams (available) (5)

Petter has a construction company. He needs to assign 5 of the company's teams to work in some of the constructions below:

- A) Revenue of 500, requires 1 team
- B) Revenue of 4,000, requires 3 teams
- C) Revenue of 3,000, requires 2 teams
- D) Revenue of 2,000, requires 1 team
- E) Revenue of 2,000, requires 5 teams

Select the constructions that would maximize the revenue.

- Each construction can be made just once
- Not all constructions will be selected

Variables

 $x_o \rightarrow$ Binary decision on selecting (or not) construction o

Parameters

 $R_o \rightarrow$ Revenue of construction o

 $NT_o \rightarrow$ Number of teams required for the construction o

 $NT^{max} \rightarrow$ Total number of teams (available) (5)

Objective Function

$$\max \sum_{o} x_o R_o$$

Constraints

$$\sum_{o} x_o N T_o \le N T^{max}$$

Petter has a construction company. He needs to assign 5 of the company's teams to work in some of the constructions below:

- A) Revenue of 500, requires 1 team
- B) Revenue of 4,000, requires 3 teams
- C) Revenue of 3,000, requires 2 teams
- D) Revenue of 2,000, requires 1 team
- E) Revenue of 2,000, requires 5 teams

Select the constructions that would maximize the revenue.

- Each construction can be made just once
- Not all constructions will be selected

Solution: Constructions B and C

Variables

 $x_o \rightarrow$ Binary decision on selecting (or not) construction o

Parameters

 $R_o \rightarrow$ Revenue of construction o

 $NT_o \rightarrow$ Number of teams required for the construction o

 $NT^{max} \rightarrow$ Total number of teams (available) (5)

Objective Function

$$\max \sum_{o} x_o R_o$$

Constraints

$$\sum_{o} x_o N T_o \le N T^{max}$$

Petter has a construction company. He needs to assign 5 of the company's teams to work in some of the constructions below:

- A) Revenue of 500, requires 1 team
- B) Revenue of 4,000, requires 3 teams
- C) Revenue of 3,000, requires 2 teams
- D) Revenue of 2,000, requires 1 team
- E) Revenue of 2,000, requires 5 teams

Select the constructions that would maximize the revenue.

- Each construction can be made just once
- Not all constructions will be selected
- Construction C can only be selected if A is selected
- Construction D can only be selected if A and C are selected

Variables

 $x_o \rightarrow$ Binary decision on selecting (or not) construction o

Parameters

 $R_o \rightarrow$ Revenue of construction o

 $NT_o \rightarrow$ Number of teams required for the construction o

 $NT^{max} \rightarrow$ Total number of teams (available) (5)

Objective Function

$$\max \sum_{o} x_o R_o$$

$$\sum_{o} x_o N T_o \le N T^{max}$$

Petter has a construction company. He needs to assign 5 of the company's teams to work in some of the constructions below:

- A) Revenue of 500, requires 1 team
- B) Revenue of 4,000, requires 3 teams
- C) Revenue of 3,000, requires 2 teams
- D) Revenue of 2,000, requires 1 team
- E) Revenue of 2,000, requires 5 teams

Select the constructions that would maximize the revenue.

- Each construction can be made just once
- Not all constructions will be selected
- Construction C can only be selected if A is selected
- Construction D can only be selected if A and C are selected

Solution: Constructions A, C, and D

Variables

 $x_o \rightarrow$ Binary decision on selecting (or not) construction o

Parameters

 $R_o \rightarrow$ Revenue of construction o

 $NT_o \rightarrow$ Number of teams required for the construction o

 $NT^{max} \rightarrow$ Total number of teams (available) (5)

Objective Function

$$\max \sum_{o} x_o R_o$$

$$\sum_{o} x_o N T_o \le N T^{max}$$

$$x_C \leq x_A$$

$$x_D \leq x_A$$

$$x_D \leq x_C$$

Petter has a construction company. He needs to assign 5 of the company's teams to work in some of the constructions below:

- A) Revenue of 500, requires 1 team
- B) Revenue of 4,000, requires 3 teams
- C) Revenue of 3,000, requires 2 teams
- D) Revenue of 2,000, requires 1 team
- E) Revenue of 2,000, requires 5 teams

Select the constructions that would maximize the revenue.

- Each construction can be made just once
- Not all constructions will be selected
- Construction C can only be selected if A is selected
- Construction D can only be selected if A and C are selected

Variables

 $x_o \rightarrow$ Binary decision on selecting (or not) construction o

Parameters

 $R_o \rightarrow$ Revenue of construction o

 $NT_o \rightarrow$ Number of teams required for the construction o

 $NT^{max} \rightarrow$ Total number of teams (available)

Objective Function

$$\max \sum_{o} x_o R_o$$

$$\sum_{o} x_o N T_o \le N T^{max}$$

$$x_C \leq x_A$$

$$x_D \leq x_A * x_C$$
 (???)

Mark wishes to define the scheduling of costumers that he must attend in the next 3 days.

The list of jobs (demands) with the duration of job and its profit is defined below:

- A) duration 2h, profit 200 USD
- B) duration 3h, profit 500 USD
- C) duration 5h, profit 300 USD
- D) duration 2h, profit 100 USD
- E) duration 6h, profit 1,000 USD
- F) duration 4h, profit 300 USD

Mark wants to maximize the profit for the next 3 days working 6h per day. Which demands he should attend per day?

- Neglect the traveling time
- Each demand only can be attended once

Mark wishes to define the scheduling of costumers that he must attend in the next 3 days.

The list of jobs (demands) with the duration of job and its profit is defined below:

- A) duration 2h, profit 200 USD
- B) duration 3h, profit 500 USD
- C) duration 5h, profit 300 USD
- D) duration 2h, profit 100 USD
- E) duration 6h, profit 1,000 USD
- F) duration 4h, profit 300 USD

Mark wants to maximize the profit for the next 3 days working 6h per day. Which demands he should attend per day?

- Neglect the traveling time
- Each demand only can be attended once

Variables

 $x_{i,d} \rightarrow \text{Binary decision on attending (or not) job } j \text{ in day } d$

Parameters

 $P_i \rightarrow$ Profit for the job

 $D_i \rightarrow$ Duration of the job in hours

 $Th \rightarrow$ Number of hours in a working day (6)

Mark wishes to define the scheduling of costumers that he must attend in the next 3 days.

The list of jobs (demands) with the duration of job and its profit is defined below:

- A) duration 2h, profit 200 USD
- B) duration 3h, profit 500 USD
- C) duration 5h, profit 300 USD
- D) duration 2h, profit 100 USD
- E) duration 6h, profit 1,000 USD
- F) duration 4h, profit 300 USD

Mark wants to maximize the profit for the next 3 days working 6h per day. Which demands he should attend per day?

- Neglect the traveling time
- Each demand only can be attended once

Variables

 $x_{i,d} \rightarrow \text{Binary decision on attending (or not) job } j \text{ in day } d$

Parameters

 $P_i \rightarrow$ Profit for the job

 $D_i \rightarrow$ Duration of the job in hours

 $Th \rightarrow$ Number of hours in a working day (6)

Objective Function

$$\max \sum_{j} \sum_{d} x_{j,d} P_{j}$$

$$\sum_{j} x_{j,d} Dj \le Th \ \forall d$$

$$\sum_{d} x_{j,d} \le 1 \quad \forall j$$

Mark wishes to define the scheduling of costumers that he must attend in the next 3 days.

The list of jobs (demands) with the duration of job and its profit is defined below:

- A) duration 2h, profit 200 USD
- B) duration 3h, profit 500 USD
- C) duration 5h, profit 300 USD
- D) duration 2h, profit 100 USD
- E) duration 6h, profit 1,000 USD
- F) duration 4h, profit 300 USD

Solution: Profit Total = 2100.0

Job E in day 1 (duration 6, profit 1000)

Job B in day 2 (duration 3, profit 500)

Job D in day 2 (duration 2, profit 100)

Job A in day 3 (duration 2, profit 200)

Job F in day 3 (duration 4, profit 300)

Variables

 $x_{i,d} \rightarrow \text{Binary decision on attending (or not) job } j \text{ in day } d$

Parameters

 $P_i \rightarrow$ Profit for the job

 $D_i \rightarrow$ Duration of the job in hours

 $Th \rightarrow$ Number of hours in a working day (6)

Objective Function

$$\max \sum_{j} \sum_{d} x_{j,d} P_{j}$$

$$\sum_{j} x_{j,d} Dj \le Th \ \forall d$$

$$\sum_{d} x_{j,d} \le 1 \quad \forall j$$

Mark wishes to define the scheduling of costumers that he must attend in the next 3 days.

The list of jobs (demands) with the duration of job and its profit is defined below:

- A) duration 2h, profit 200 USD
- B) duration 3h, profit 500 USD
- C) duration 5h, profit 300 USD
- D) duration 2h, profit 100 USD
- E) duration 6h, profit 1,000 USD
- F) duration 4h, profit 300 USD

Mark wants to maximize the profit for the next 3 days working 6h per day. Which demands he should attend per day?

- Neglect the traveling time
- Each demand only can be attended once
- Mark wish to do a maximum of 1 job per day

Variables

 $x_{i,d} \rightarrow \text{Binary decision on attending (or not) job } j \text{ in day } d$

Parameters

 $P_i \rightarrow$ Profit for the job

 $D_i \rightarrow$ Duration of the job in hours

 $Th \rightarrow$ Number of hours in a working day (6)

Objective Function

$$\max \sum_{j} \sum_{d} x_{j,d} P_{j}$$

$$\sum_{j} x_{j,d} Dj \le Th \quad \forall d$$

$$\sum_{d} x_{j,d} \le 1 \quad \forall j$$

Mark wishes to define the scheduling of costumers that he must attend in the next 3 days.

The list of jobs (demands) with the duration of job and its profit is defined below:

- A) duration 2h, profit 200 USD
- B) duration 3h, profit 500 USD
- C) duration 5h, profit 300 USD
- D) duration 2h, profit 100 USD
- E) duration 6h, profit 1,000 USD
- F) duration 4h, profit 300 USD

Mark wants to maximize the profit for the next 3 days working 6h per day. Which demands he should attend per day?

- Neglect the traveling time
- Each demand only can be attended once
- Mark wish to do a maximum of 1 job per day

Variables

 $x_{j,d} \rightarrow \text{Binary decision on attending (or not) job } j \text{ in day } d$

Parameters

 $P_i \rightarrow$ Profit for the job

 $D_i \rightarrow$ Duration of the job in hours

 $Th \rightarrow$ Number of hours in a working day (6)

Objective Function

$$\max \sum_{j} \sum_{d} x_{j,d} P_{j}$$

$$\sum_{j} x_{j,d} Dj \le Th \quad \forall d$$

$$\sum_{d} x_{j,d} \le 1 \quad \forall d$$

$$\sum_{i} x_{j,d} \le 1 \quad \forall d$$

HOW TO LEARN MORE?

Try to solve exercises from books

Try to read articles and REALLY understand the proposed models

PRACTICE!!!

$\sum_{\beta \in \Omega_{g,J,1}^{G,J,l}} \tilde{Q}_{\beta,J_{d}}^{E} - \sum_{\beta \in \Omega_{g,J,J,n}^{J,J,+}} \mathcal{Q}_{l,J_{d}}^{L} + \sum_{\beta \in \Omega_{g,J,n,n}^{J,J,+}} \mathcal{Q}_{l,J_{d}}^{L} + \hat{Q}_{l,J_{d}}^{L}$	SH nJ _d	$\alpha^C_{i,t_j} + \beta^C_{i,t_j} = 1, \forall \epsilon \in \Omega^C, t_j$: 0	(23)
$= \sum_{J \in \Omega^{D}} \left(\underline{\mathcal{O}}_{dJ_{d}}^{D^{mec}} - \mathcal{Q}_{dJ_{d}}^{I,S} \right), \forall n, \forall i_{d} \left(\lambda_{nq} \right)$	(6)	$\beta^C_{\epsilon,i_j} = 0, \forall \epsilon \in \Omega^{C+}, \forall t_j$	(24)
Storage device constraints ($\Psi^{(l)}$):		$\beta_{c_2,i_2}^C = \alpha_{c,i_2}^C, \text{ if replaces } \epsilon_2 : \forall \epsilon, \forall i_2, \forall \epsilon_2 \in \Omega^C, \forall \epsilon \in \Omega$	(25)
$\boldsymbol{u}_{n,t_d}^P = \boldsymbol{u}_{n,(t_d-1)}^P - P_{n,t_d}^{TT}, \forall n, \forall t \; (\boldsymbol{\lambda}_n)$	(7)	$\beta_{\epsilon,t_j}^C = 0$, if does not exist a $\epsilon 2$ to replace $\epsilon, \forall \epsilon, \forall t_j$	(26)
$x_{n,t_d}^{ST} \ a_n^{Pmin} \leq a_{n,t_d}^P \leq \ x_{n,t_d}^{ST} \ a_n^{Pmin} \ \forall n, \forall t_d \ (\phi_n)$	(8)	$\alpha_{i, j_j}^C, \beta_{i, j_j}^C, x_{i, j_j}^C$ as binary, $\forall \epsilon, \forall t_j$	(27)
$x_{n,l_{d}}^{ST} \; P_{n}^{STmin} \leq P_{n,l_{d}}^{ST} \leq x_{n,l_{d}}^{ST} \; P_{n}^{STmax}, \forall n, \forall t_{d} \; \left(\phi_{je}\right)$	(9)	Uncertainty constraints (Ψ^{an}) : $P_{g,t}^{E,an} \leq P_{g,t}^{E,an} \leq P_{g,t}^{E,an}, \forall g, \forall t$	(28)
Operational constraints (Ψ^{op}) : $0 \le P_{d,f_g}^{J,S} \le P_{d,f_g}^{D^{oper}}, \forall d, \forall t_d \ (\phi_{DP})$	(10)	$\underline{P}_{d,i}^{D^{men}} \leq \overline{P}_{d,i}^{D^{men}} \leq \overline{P}_{d,i}^{D^{men}}, \forall d, \forall i$	(29)
$\tan \left(p f_{d,i_d}\right) \left(P_{d,i_d}^{D^{min}} - P_{d,i_d}^{I,S}\right) = \underline{Q}_{d,i_d}^{D^{min}} - Q_{d,i_d}^{I,S}, \forall d, \forall i_d \left(\tan \left(p f_{d,i_d}\right) P_{d,i_d}^{E} = \underline{Q}_{d,i_d}^{E}, \forall g \in \Omega_{ejf}^{E}, \forall i_d \left(\lambda_{z}^{pf} \right) \right)$	$\begin{pmatrix} \lambda_d^{\rho/} \end{pmatrix}$ (11) (12)	$\frac{\sum\limits_{\mathcal{K}} x_{bj}^{E} \left(P_{bj}^{E,mo} - P_{bj}^{E,mo} \right)}{\sum\limits_{\mathcal{K}} x_{bj}^{E} \left(P_{bj}^{E,mo} - P_{bj}^{E,mo} \right)} \leq \Gamma^{G}, \forall t$	(30)
$\begin{split} \mathbf{x}_{b,l_{I}}^{E} P_{b,l_{I}}^{E:me} &\leq P_{b,l_{I}}^{E} \leq \mathbf{x}_{b,l_{I}}^{E} P_{b,l_{I}}^{E:me}, \forall g, \forall t_{I} \left(\phi_{EP} \right) \\ \mathbf{x}_{b,l_{I}}^{E} Q_{b,l_{I}}^{E:me} &\leq Q_{b,l_{I}}^{E} \leq \mathbf{x}_{b,l_{I}}^{EI} Q_{b,l_{I}}^{E:me}, \forall g, \forall t_{I} \left(\phi_{EQ} \right) \end{split}$	(13)	$\frac{\sum_{d} \left(P_{d,l}^{Dosc} - \underline{P}_{d,l}^{Dosc} \right)}{\sum_{d} \left(\overline{P}_{d,l}^{Dosc} - \underline{P}_{d,l}^{Dosc} \right)} \leq \Gamma^{D}, \forall t$	(31)
$Q_{n,l_{d}}^{SH} = x_{n,l_{d}}^{CP} \hat{Q}_{n}^{SH}, \forall n \in \Omega_{n}^{CP+}, \forall l_{d} \left(\lambda_{Q}\right)$	(15)	$\bar{P}_{bJ}^{E^{max}} = \bar{Q}_{bJ}^{E^{max}} \left(\bar{P}_{bJ}^{E^{max}} / \bar{Q}_{bJ}^{E^{max}} \right), \forall g, \forall t$	(32)
$-P_{i}^{L,mov} \leq P_{i,t_{d}}^{L} \leq P_{i}^{L,mov}, \forall I, \forall t_{d} \; (\phi_{I})$	(16)	$\tilde{P}_{d,l}^{D^{min}} = \tilde{Q}_{d,l}^{D^{min}} \left(\tilde{P}_{d,l}^{D^{min}} / \tilde{Q}_{d,l}^{D^{min}} \right), \forall d, \forall l$	(33)

Installing Python and Packages

How to start with Python

WinPython

Portable

https://winpython.github.io/

Anaconda

Python distribution platform https://www.anaconda.com/

Python Installation

https://www.python.org/

Installing Python

- Windows:
 - Go to https://www.python.org/
 - Download and install
 - Check version!
 - Update PIP
- Linux
 - Check your version: python --version

Packages

Command Prompt: pip install PACKAGE_NAME

IDE Spyder

pip install spyder

Jupyter Notebook

pip install jupyterlab

If For While

Inline commands

Functions

Numpy

Pandas

Pandas
Reading from Excel
and some functions

Matplotlib

Linear Programming (LP)

Introduction

$$\max x + y$$

$$-x + 2y \le 8$$

$$2x + y \le 14$$

$$2x - y \le 10$$

$$0 \le x \le 10$$

$$0 \le y \le 10$$

Solver

VS

Framework

Solver vs Framework

Or-Tools

https://developers.google.com/optimization

Scip

https://www.scipopt.org/

Download and instal SCIP

Install package PYSCIPOPT
Set environment variable SCIPOPTDIR

Package documentation https://github.com/SCIP-Interfaces/PySCIPOpt

Gurobi

https://www.gurobi.com/
Download and install Gurobi
Activate Gurobi

CPLEX

https://www.ibm.com/products/ilogcplex-optimization-studio Download and install

GLPK

http://sourceforge.net/projects/winglpk/
Download
Add GLPK/win64 to the
environment variable PATH

Pyomo

pip install pyomo

Documentation https://pyomo.readthedocs.io/

PulP

pip install cython pip install pulp

More information in https://github.com/coin-or/pulp

Which solver should I choose?

Which framework and solver

Framework (AML)	Linear Problems	Nonlinear Problems	How easy to start with	How easy to configure a new solver and about documentation
Pyomo	Х	X	High	High
Ortools	Х		Very High	Low
PuLP	Х		High	High
SCIP	Х	Х	Very High	Not possible / Low
SciPy	Х	Х	Low	Medium

Solver	Linear Problemas	Nonlinear	Free / Commercial
Gurobi	X		COMMERCIAL
Cplex	X		COMMERCIAL
СВС	X		FREE
GLPK	X		FREE
IPOPT		X	FREE
SCIP	X	X	FREE
Baron		X	COMMERCIAL

Exercise

Show the optimal solution and processing time for the following problem:

$$min -4x - 2y$$

$$x + y \le 8$$

$$8x + 3y \ge -24$$

$$-6x + 8y \le 48$$

$$3x + 5y \le 15$$

$$x \le 3$$

$$y \ge 0$$

Try to solve it by your self

Check the solution in the resource of this class

Estimated time: 30min

Observation: Use the package time to compute the processing time

Using different solvers

CBC:

https://projects.coin-or.org/Cbc

https://bintray.com/coin-or/download/Cbc/

Arrays and Summations

Arrays and Summation

Power Generation (Pg)

ID	Cost	Power Generation
0	0,10	20 kW
1	0,05	10 kW
2	0,30	40 kW
3	0,40	50 kW
4	0,01	5 kW

Load Points (Pd)

ID	Load Demand
0	50 kW
1	20 kW
2	30 kW

*Only generators 0 and 3 can provide power to load point 0

$$\min \sum_{i_g=0}^4 C_g(i_g) P_g(i_g)$$

$$\sum_{i_g=0}^{4} P_g(i_g) = \sum_{i_c=0}^{2} P_d(i_d)$$

$$P_d(0) \le P_g(0) + P_g(3)$$

$$P_g(i_g) \ge 0 \quad \forall i_g$$

$$P_g(i_g) \le P_g(i_g)^{LIM} \ \forall i_g$$

Print your model, constraints, and summary

Pyomo constraint rules

Some NonLinear equations

binary * continuosb * x

- continuos² x ** 2

Mixed-Integer Linear Programming (MILP)

 $\max x + y$

$$-x + 2y \le 8$$

$$2x + y \le 14$$

$$2x - y \le 10$$

$$0 \le x \le 10$$

$$0 \le y \le 10$$

 $\max x + y$

$$-x + 2y \le 7$$

$$2x + y \le 14$$

$$2x - y \le 10$$

$$0 \le x \le 10$$

$$0 \le y \le 10$$

$$\max x + y$$

$$-x + 2y \le 7$$

$$2x + y \le 14$$

$$2x - y \le 10$$

$$0 \le x \le 10$$

$$0 \le y \le 10$$

x as integer

MILP

Pyomo

model.x = pyo.Var(within=Integers)

model.x = pyo.Var(within=Binary)

https://pyomo.readthedocs.io/en/stable/p yomo modeling components/Sets.html#p redefined-virtual-sets

MILP

Ortools

Change the Solver (from GLOP to):

CBC

Gurobi

Cplex

x = solver.IntVar(0,10,'x')

MILP

x = model.addVar('x', vtype='INTEGER')

Exercise

Find the optimal solution for the following problem

$$\min \sum_{i=1}^{5} x_i + y$$
Tip 1
$$\sum_{i=1}^{5} x_i + y \le 20$$

$$x_i + y \ge 15, \forall i$$
Tip 2
$$\sum_{i=1}^{5} i \cdot x_i \ge 10$$

$$x_5 + 2y \ge 30$$

$$x_i, y \ge 0$$

$$x_i \text{ integer, } \forall i$$

Try to solve it by your self

Check the solution in the next class

Estimated time: 1 hour

Nonlinear Programming (NLP)

 $\max x + y$

$$-x + 2y \le 8$$

$$2x + y \le 14$$

$$2x - y \le 10$$

$$0 \le x \le 10$$

$$0 \le y \le 10$$

 $\max x + xy$

$$-x + 2yx \le 8$$

$$2x + y \le 14$$

$$2x - y \le 10$$

$$0 \le x \le 10$$

$$0 \le y \le 10$$

NLP

Search for ipopt binaries
https://www.coin-or.org/download/binary/lpopt

Unzip in C:\

Pyomo

```
opt = SolverFactory(
'ipopt',
executable='C:\\ipopt\\bin\\ipopt.exe')
```


Exercise

Find the optimal solution for the following problem

$$\max \cos(x + 1) + \cos(x) \cos(y)$$
$$-5 \le x \le 5$$
$$-5 \le y \le 5$$

Explore the following options

model.x = pyo.Var(initialize=N) N can be any number (0) opt.options['tol'] = N N can be any number (1e-6)

Try to solve it by yourself

Check the solution in the next class

Estimated time: 20 min

Mixed-Integer Nonlinear Programming (MINLP)

 $\max x + y$

$$-x + 2y \le 8$$

$$2x + y \le 14$$

$$2x - y \le 10$$

$$0 \le x \le 10$$

$$0 \le y \le 10$$

$$\max x + xy$$

$$-x + 2yx \le 8$$

$$2x + y \le 14$$

$$2x - y \le 10$$

$$0 \le x \le 10$$

$$0 \le y \le 10$$

x integer

Pyomo: Couenne

MINLP

https://projects.coin-or.org/Couenne

https://www.coinor.org/download/binary/Couenne/

Unzip in C:\

opt = SolverFactory('couenne',
 executable='C:\\couenne\\bin\\couenne.exe')

MINLP

Decomposition Pyomo + MindtPy

opt = SolverFactory('mindtpy')

opt.solve(model, mip_solver='gurobi',
nlp_solver='ipopt')

MINLP

SCIP

Genetic Algorithm

pip install geneticalgorithm

https://pypi.org/project/genet
icalgorithm/

MINLP

MINLP

Particle Swarm

pip install pyswarm

https://pythonhosted.org/pyswarm/

https://developers.google.com/opti
mization/cp/integer opt cp

Maximize 2x + 2y + 3z subject to

$$x + \frac{7}{2}y + \frac{3}{2}z \le 25$$

 $3x - 5y + 7z \le 45$
 $5x + 2y - 6z \le 37$
 $x, y, z \ge 0$

x, y, z integers

Constraint Programming (CP)

https://developers.google.com/opti
mization/cp/integer opt cp

Maximize 2x + 2y + 3z subject to

$$x + \frac{7}{2}y + \frac{3}{2}z \le 25$$

 $3x - 5y + 7z \le 45$
 $5x + 2y - 6z \le 37$
 $x, y, z \ge 0$

x, y, z integers

Special Cases

- Linear or NonLinear Models
- Special NonLinear Models
- Linearizations

SCOP

Second-Order Cone Programming

Pyomo + Gurobi

SCOP Example

Suppose that you have 3 machines to manufacture shoes, and the cost of each machine is:

$$C_1 = 0.01n_1^2 + 2n_1$$

 $C_2 = 6n_2$
 $C_3 = 7n_3$

where C_i is cost for production of machine i, n_i is the number of shoes manufactured in machine i

Each machine has a limit of production of 1.000 shoes.

For a total production of 2.100 shoes, how many shoes should each machine made in order to minimize the total cost?

$$\min C_1 + C_2 + C_3$$

$$n_1 + n_2 + n_3 = 2100$$

 $C_1 = 0.01n_1^2 + 2n_1$
 $C_2 = 6n_2$
 $C_3 = 7n_3$
 $0 \le n_1, n_2, n_3 \le 1000$
 n_1, n_2, n_3 as integers

https://www.gurobi.com/resource/
non-convex-quadratic-optimization/

NonConvex QP

NonConvex Quadratic Programming

NonConvex QP Example

Suppose that you have 3 machines to manufacture shoes, and the cost of each machine is:

$$C_1 = 0.01n_1^2 + 2n_1$$
 $C_2 = 6n_2 n_1$ $C_3 = 7n_3$

$$C_2 = 6n_2 \mathbf{n_1}$$

$$C_3 = 7n_3$$

where C_i is cost for production of machine i, n_i is the number of shoes manufactured in machine i

Each machine has a limit of production of 1.000 shoes.

For a total production of 2.100 shoes, how many shoes should each machine made in order to minimize the total cost?

$$\min C_1 + C_2 + C_3$$

$$n_1 + n_2 + n_3 = 2100$$

 $C_1 = 0.01n_1^2 + 2n_1$
 $C_2 = 6n_2n_1$
 $C_3 = 7n_3$
 $0 \le n_1, n_2, n_3 \le 1000$
 n_1, n_2, n_3 as integers

https://developers.google.com/optimization/routing/vrp

Routing Problems

OR-TOOLS VRP

Binary * Continuos

$$C = b * x$$

b is binary

$$-b * M \le C \le b * M$$

$$-(1-b) * M \le C - x \le (1-b) * M$$

$$b \text{ is binary}$$

Binary * Continuos

$$C = b * x$$

b is binary

$$-0 * M \le C \le 0 * M$$
$$-(1-0) * M \le C - x \le (1-0) * M$$

Linearization

BigM

Binary * Continuos

C = b * xb is binary

$$0 \le C \le 0$$
$$-M \le C - x \le M$$

Linearization BigM Binary * Continuos

C = b * xb is binary

Similar to

C = 0 x can be any value

Binary * Continuos

$$C = b * x$$

b is binary

$$-1 * M \le C \le 1 * M$$
$$-(1-1) * M \le C - x \le (1-1) * M$$

Binary * Continuos

$$C = b * x$$

b is binary

$$-M \le C \le M$$
$$0 \le C - x \le 0$$

Binary * Continuos

$$C = b * x$$

b is binary

$$-M \le C \le M$$
$$C - x = 0$$

Binary * Continuos

C = b * xb is integer

Similar to

C can be any value

$$C = x$$

Binary*Continuous Example

Suppose that you have 3 machines to manufacture shoes, and the cost of each machine is:

$$C_1=2n_1$$

$$C_2 = 6n_2$$

$$C_1 = 2n_1$$
 $C_2 = 6n_2$ $C_3 = 7n_3$

where C_i is cost for production of machine i, n_i is the number of shoes manufactured in machine i

Each machine has a limit of production of 1.000 shoes.

Machine 2 has a start cost of 1000.

For a total production of 2.100 shoes, how many shoes should each machine made in order to minimize the total cost?

$$\min C_1 + C_2 + C_3$$

$$n_1 + n_2 + n_3 = 2100$$

$$C_1 = 2n_1$$

$$C_2 = b * (6n_2 + 1000)$$

$$n_2 \le b * 1000$$

$$C_3 = 7n_3$$

$$0 \le n_1, n_2, n_3 \le 1000$$

$$n_1, n_2, n_3 \text{ as integers}$$

b as binary b=1 represents that machine 2 is ON b=0 represents that machine 2 is OFF

$$-b * M \le C_2 \le b * M$$

-(1-b) * M \le C_2 - (6n_2 + 1000) \le (1-b) * M

Linearization

Binary * Binary

$$C = b_1 * b_2$$

 b_1 and b_2 are binaries

Similar to

$$C = z$$

$$z \le b_1$$

$$z \le b_2$$

$$z \ge b_1 + b_2 - 1$$

 z, b_1, b_2 are binaries

Binary*Binary Example

Suppose that you have 3 machines to manufacture shoes, and the cost of each machine is:

$$C_1=2n_1$$

$$C_1 = 2n_1$$
 $C_2 = 6n_2$ $C_3 = 7n_3$

$$C_3 = 7n_3$$

where C_i is cost for production of machine i, n_i is the number of shoes manufactured in machine i

Each machine has a limit of production of 1.000 shoes.

Machine 2 can only be ON if Machine 1 is ON

For a total production of 2.100 shoes, how many shoes should each machine made in order to minimize the total cost?

$$\min C_1 + C_2 + C_3$$

$$n_1 + n_2 + n_3 = 2100$$

$$C_1 = 2n_1$$

$$n_1 \le b_1 * 1000$$

$$C_2 = 6n_2$$

$$n_2 \le b_1 * b_2 * 1000$$

$$C_3 = 7n_3$$

$$0 \le n_1, n_2, n_3 \le 1000$$

$$n_1, n_2, n_3 \text{ as integers}$$

$$b_1, b_2 \text{ as binary}$$

 b_i =1 represents that machine i is ON b_i =0 represents that machine i is OFF

$$n_2 \le z * 1000$$
 $z \le b_1$
 $z \le b_2$
 $z \ge b_1 + b_2 - 1$
 $z \ as \ binary$

Binary*Binary Example

A good alternative would be using b2<b1, as the following example.

Using this alternative, you do not need to use b2*b1; however, for this class, I will continue with b2*b1 so we can practice how to work with the multiplication of two binaries variables

$$\min C_1 + C_2 + C_3$$

$$n_1 + n_2 + n_3 = 2100$$

$$C_1 = 2n_1$$

$$n_1 \le b_1 * 1000$$

$$C_2 = 6n_2$$

$$n_2 \le b_2 * 1000$$

$$b_2 \le b_1$$

$$C_3 = 7n_3$$

$$0 \le n_1, n_2, n_3 \le 1000$$

$$n_1, n_2, n_3 \text{ as integers}$$

$$b_1, b_2 \text{ as binary}$$

Advanced Features for Pyomo

Case Study

Suppose you have 4 machines on your computer's factory

You have to define the number of computers that each machine must produce during the next **10 hours** in order to maximize the total production. The objective function of our problem is given by

$$max \sum_{m} \sum_{t} x_{m,t}$$

where $x_{m,t}$ represents the number of computers produced by a machine m at hour t.

Some machines have dependencies on others and the constraints are (for each t)

$$2x_{2,t} - 8x_{3,t} \le 0 \tag{1}$$

$$x_{2,t} - 2x_{3,t-2} + x_{4,t} \ge 1 \tag{2}$$

And the capacity production is given by (for all t)

$$\sum_{m} x_{m,t} \le 50 \tag{3}$$

$$x_{1,t} + x_{2,t-1} + x_{3,t} + x_{4,t} \le 10 \tag{4}$$

$$0 \le x_{m,t} \le 10 \tag{5}$$

Solve the problem and find the optimal production of computers for each machine for each hour of the next 10 hours.

Note the $x_{2,t-1}$, in the last constraint, represents the second machine at hour t-1 Obs.: Constraints (2) and (4) does not exist for t<3 and t<2, respectively

Case Study

$$max \sum_{m} \sum_{t} x_{m,t}$$

$$2x_{2,t} - 8x_{3,t} \le 0$$

$$\forall t$$

$$x_{2,t} - 2x_{3,t-2} + x_{4,t} \ge 1$$

$$\forall t > 2$$

$$\sum_{m} x_{m,t} \le 50$$

$$\forall t$$

$$x_{1,t} + x_{2,t-1} + x_{3,t} + x_{4,t} \le 10$$

$$0 \le x_{m,t} \le 10$$

$$\forall m, \forall t$$

 $\forall t > 1$

Solver progress

opt.solve(model, tee=True)

Gap Limit

opt.options['MIPgap'] = 0.0001

https://www.gurobi.com/documentation/9.1/refman/mipgap2.html

Time Limit

opt.options['TimeLimit'] = 60

Inequallity

 $A \le x \le B$

model.C = pyo.Constraint(pyo.inequality(A,x,B))

summation

$$\sum_{m}\sum_{t}x_{m,t}$$

pyo.summation(x)

pyo.Param(initialize=VALUE)

pyo.Set(initialize=LIST)

pyo.RangeSet(BEGIN,END)

Constraint's Rules

```
1 model.C1 = pyo.Constraint(expr = 2*x + 2*y == 0)
2 model.C2 = pyo.Constraint(expr = x - 3*y >= 5)
```

SAME AS

```
model.C1 = pyo.Constraint(rule=myrule1)
model.C2 = pyo.Constraint(rule=myrule2)

def myrule1(model):
    return 2*model.x + 2*model.y == 0

def myrule2(model):
    return model.x - 3*model.y >= 5
```

Rules in the Objective Function

pyo.Objective(expr = pyo.summation(x), sense=pyo.maximize)

SAME AS

pyo.Objective(rule=myobj, sense=pyo.maximize)

def myobj(model):
 return pyo.summation(model.x)

Constraint's Rules with indexes

```
model.C1 = pyo.ConstraintList()
for t in model.setT:
model.C1.add(expr = 2*x[2,t] - 8*x[3,t] <= 0)
```

SAME AS

model.C1 = pyo.Constraint(model.setT, rule=myrule)

def myrule(model, t):
 return 2*model.x[2,t] - 8*model.x[3,t] <= 0</pre>

https://pyomo.readthedocs.io/en/stable/ working_models.html#warm-starts

Warmstart

```
instance.y[0] = 1
instance.y[1] = 0

opt = pyo.SolverFactory("cplex")

results = opt.solve(instance, warmstart=True)
```

Differential Algebraic Equations (DAE)

https://pyomo.readthedocs.io/en/stable/modeling extensions/dae.html

```
Required imports
>>> from pyomo.environ import *
>>> from pyomo.dae import *
>>> model = ConcreteModel()
>>> model.s = Set(initialize=['a','b'])
>>> model.t = ContinuousSet(bounds=(0,5))
>>> model.l = ContinuousSet(bounds=(-10,10))
>>> model.x = Var(model.t)
>>> model.y = Var(model.s,model.t)
>>> model.z = Var(model.t,model.l)
Declare the first derivative of model.x with respect to model.t
>>> model.dxdt = DerivativeVar(model.x, withrespectto=model.t)
Declare the second derivative of model.y with respect to model.t
Note that this DerivativeVar will be indexed by both model.s and model.t
>>> model.dydt2 = DerivativeVar(model.y, wrt=(model.t,model.t))
Declare the partial derivative of model.z with respect to model.l
Note that this DerivativeVar will be indexed by both model.t and model.l
>>> model.dzdl = DerivativeVar(model.z, wrt=(model.l), initialize=0)
Declare the mixed second order partial derivative of model.z with respect
to model.t and model.l and set bounds
>>> model.dz2 = DerivativeVar(model.z, wrt=(model.t, model.l), bounds=(-10, 10))
```

Practical Examples

Fence in the Garden

What is the largest area that we can fence in a garden using 100 meters of fence? Define the dimensions of this garden as well.

Note: The garden is already fenced by a wall of rocks in one of its sides.

max xy

$$2x + y \le 100$$

Maximize Revenue

A car rental company wish to to maximize its revenue.

From the historical sales data, it is known that practicing a rent price (p) between 50 and 200 dollar, the number of cars rented per day is N(p) = 1001-5p.

What is the rent price that maximizes the daily revenue? And what is the expected number of cars to be rented?

$$\max p N$$

$$N = 1001 - 5p$$

$$50 \le p \le 200$$

$$N \text{ integer}$$

Route Optimization

Route Optimization

$$\min \sum x_{ij} D_{x_{ij}}$$

Which is the best route from point 1 to point 7?

$$\sum_{out} x_{ij} = 1 \quad origin \ node$$

$$\sum_{in} x_{ij} = 1 \quad destination \ node$$

$$\sum_{out} x_{ij} \le 1 \quad \forall node/(origin, destination)$$

$$\sum_{in} x_{ij} \le 1 \quad \forall node/(origin, destination)$$

$$\sum_{in} x_{ij} = \sum_{out} x_{ij} \quad \forall node/(origin, destination)$$

all x_{ij} binary

Linear Optimal Power Flow: Power Systems

What are the optimal values for the generation power units in the following system? Consider the objective function as the minimization of the power generation cost.

$$\min \sum_{g} C_g P_g$$

$$\sum_{g \in \Omega_n^G} P_g - \sum_{l \in \Omega_{n=l(s)}^L} P_l + \sum_{l \in \Omega_{n=l(r)}^L} P_l = \sum_{d \in \Omega_n^D} P_d \quad \forall n$$

$$P_l = B_l (\theta_{l(n=s)} - \theta_{l(n=r)}) \quad \forall l$$

$$0 \le P_g \le P_g^{max} \quad \forall g$$

$$-P_l^{max} \le P_l \le P_l^{max} \quad \forall l$$

$$-\pi \le \theta_n \le \pi \quad \forall n$$

$$\theta_n = 0 \quad n: ref(0)$$

Congratulations!!

Challenges:

https://math.libretexts.org/Courses/Mount Royal University/MATH 1200%3A Calculus for Scientists I/3%3A Applications of Derivatives/3.6%3A Applied Optimization Problems