WFiIS	Kinga Jeleń Kamila Zaręba		Grupa I	
Pracownia Radiochemii	Efekt Szilarda-Chalmersa 80 Br			
Data wykonania: 30.04.2015	Data oddania: 12.05.2015	OCENA:		

WSTĘP TEORETYCZNY

Szilard i Chalmers wykazali, że wychwytowi radiacyjnemu neutronu towarzyszą specyficzne efekty chemiczne. Spowodowane one są zerwaniem pierwotnych wiązań w cząsteczce i wzajemnym oddziaływaniem powstających przy tym atomów "gorących" z otaczającymi ich cząsteczkami.

Przy napromieniowaniu cząsteczki RX zawierającej trwały izotop powolnymi neutronami dochodzi do ich wychwytu i wydzielenia energii w postaci kwantów γ oraz przemiany chemicznej:

$$RX + n \rightarrow R^*X \rightarrow R + ^*X + \gamma$$

gdzie: RX – cząstka zawierająca trwały izotop X R*X – cząstka zawierająca wzbudzone jądro X R – rodnik *X - "gorący" atom izotopu promieniotwórczego

Na skutek emisji fotonu gamma atom *X ulega odrzutowi uzyskując pęd p:

$$P = M \cdot v = \frac{E_{\gamma}}{v} = \frac{hv}{c}$$

 $gdzie: M-masa\ atomu\ *X$

Energia odrzutu Er atomu *X wynosi:

$$E_{\gamma} = \frac{Mv^2}{2} = \frac{(Mv)^2}{2M} = \frac{E_{\gamma}^2}{2Mc^2}$$

Efektywność efektu Szilarda-Chalmersa zależy do wyboru substancji wyjściowej, warunków napromieniowania i metody wydzielania, przy czym miarą tej efektywności jest wydajność izotopu promieniotwórczego i współczynnik wzbogacenia.

Wydajność izotopu promieniotwórczego – ułamek atomów tego izotopu jaki udało się oddzielić od substancji bombardowanej neutronami. Określamy ją jako:

$$W = \frac{N_M^x}{N^x}$$

gdzie:

 N^*_M - ilość atomów promieniotwórczych wydzielonych w procesie wyodrębniania N^* - ilość atomów promieniotwórczych zawartych w napromieniowanej substancji

Współczynnik wzbogacenia – stosunek aktywności właściwej produktu końcowego, otrzymanego w wyniku wzbogacenia, do aktywności właściwej substancji napromienianej:

$$F = \frac{N_M^x}{N_2} : \frac{N^x}{N_1}$$

gdzie:

 N_1 - liczba trwałych atomów w wyjściowym związku bezpośrednio po zakończeniu napromieniania N_2 - liczba trwałych atomów w preparacie otrzymanym w wyniku wzbogacenia

Retencja (zatrzymanie) – jest to część atomów promieniotwórczych zatrzymanych przez substancję napromienioną i nie wydzielanej w czasie stosownego procesu chemicznego lub fizycznego.

Wyróżniamy:

- Retencja I rodzaju gdy w wyniku przemiany jądrowej wiązania w cząsteczce nie zostaną zerwane,
- a więc atom nie opuści cząsteczki wyjściowej
 - Retencja II rodzaju związana z rekombinacja wyjściowych cząsteczek w wyniku gorących reakcji

oswobodzonego atomu promieniotwórczego.

Naturalny brom składa się z dwóch izotopów: ⁷⁹Br (50.51 %) i ⁸¹Br (49.49 %). Na skutek aktywacji bromu neutronami termicznymi zachodzą reakcje jądrowe przedstawione w tablicy poniżej.

Reakcja	Przekrój	E _γ [MeV]	E _β (max)	T _{1/2} powstałego
jądrowa	czynny [b]		[MeV]	izotopu
79 Br $(\mathbf{n},\gamma)^{80}$ mBr	2.6±0.2	0.037 (40 %)		4.4 h
		0.049 (0.3 %)		
79 Br $(n,\gamma)^{80}$ Br	8.4±0.3		β 2.0 (80 %)	17.6 min
			β+1.0 (1.0 %)	
81 Br (n,γ) 82Br	3.0±0.3	0.776 (83 %)		35.4 h
		0.554 (72 %)		
		0.619 (39 %)		
		0.698 (28 %)		

WYKONANIE ĆWICZENIA

- Po otrzymaniu trzech naczynek z bromobenzenem, naświetlanym neutronami termicznymi przez około 15h, przelałyśmy wszystko do cylindra i odmierzyłyśmy 100 cm³ roztworu.
- I. Całość wlałyśmy do rozdzielacza i dodałyśmy $10\,cm^3$ 1% wodnego roztworu Na_2SO_3 Wstrząsałyśmy całość przez około 8 minut , a następnie oddzieliłyśmy frakcje wodną.
- II. Ekstrakcję przeprowadziłyśmy trzykrotnie pozostawiając przy tym frakcje wodną z pierwszej i trzeciej do pomiarów.
- III. Następnie pobrałyśmy po 4 *cm*³ obu frakcji i przy pomocy licznika scyntylacyjnego zmierzyłyśmy widmo amplitudowe izotopów obecnych we frakcji.
- IV. Zaraz po zakończeniu trzeciej frakcji, resztę pozostawiłyśmy na czas 60 min, aby mógł powstać i zostać uwolniony z cząstki C_6H_5Br izomer ^{80}Br .
- V. Po tym czasie dodałyśmy do roztworu $10 \, cm^3 \, 11\%$ wodnego roztworu Na_2SO_3 i powtórzyłyśmy ekstrakcję.
- VI. Następnie zmierzyłyśmy tło naczyńka pomiarowego. Pobrałyśmy 4 cm³ frakcji wodnej po czwartej ekstrakcji i przy pomocy licznika G-M mierzyłyśmy liczbę zliczeń przez 20 minut.
 - Jeden pomiar trwał 100 sekund a przerwa pomiędzy kolejnymi pomiarami wynosiła 20 sekund. Wszystkie pomiary trwały 20 minut.

OPRACOWANIE WYNIKÓW

1. Identyfikacja izotopów bromu obecnych we frakcji wodnej pochodzącej z pierwszej ekstrakcji. Porównanie stężenia ^{80m}Br we frakcjach wodnych z pierwszej i trzeciej ekstrakcji (porównanie powierzchnie pod pikiem głównym).

Po przeprowadzeniu trzech ekstrakcji z naświetlonego bromobenzenu zmierzyłyśmy widmo amplitudowe izotopów obecnych we frakcji wodnej z pierwszej i trzeciej ekstrakcji.

Na wykresie zaobserwowałyśmy jeden wyraźny pik przy I ekstrakcji.

Dla III ekstrakcji pik ten jest już niemal niewidoczny.

Należy się spodziewać, że pik odpowiada kwantom z rozpadu ^{80m} *Br*.

Zmierzyłyśmy położenie tego piku oraz powierzchnię pod nim. Czas każdego pomiaru to 100 s. Wyniki przedstawia poniższa tabelka.

Tabela 1. Liczba zliczeń dla frakcji wodnej z I i III ekstrakcji.

		l ekstrakcja	III ekstrakcja
l off mouleon	kanał	19	19
Left marker	energia [keV]	22,9	22,9
Right marker	kanał	33	33
	energia [keV]	45	45
Centroid	kanał	27	27
Centrola	energia [keV]	35,9	35,5
Ar	ea	16040	95
Niepew	ność %	0,85	13,56
Inte	gral	17444	144

Biorąc pod uwagę wszystkie izotopy bromu można stwierdzić z dużą pewnością, że pik ten odpowiada ^{80m}Br (Energia promieniowania γ pochodzącego od izotopu ^{80m}Br wynosi 37keV).

Porównując pola pod pikiem głównym widać, że stężenie radioizotopu ^{80m}Br po pierwszej ekstrakcji jest ok 169 razy większa niż po trzeciej ekstrakcji. Jest to zgodne z przewidywaniami teoretycznymi., ponieważ świadczy to o coraz mniejszej zawartości tego izotopu w fazie wodnej, oraz o bardziej oczyszczonej z bromu ^{80m}Br frakcji organicznej.

2. Wydzielenie $^{80\text{m}}Br$ uwolnionego z cząsteczki w wyniku przejścia izomerycznego. Identyfikacja izotopu. Obliczenie czasu, w którym będzie maksymalne stężenie $^{80\text{m}}Br$.

W przypadku dwóch izotopów promieniotwórczych, a mianowicie izotopu macierzystego A oraz pochodnego B, podstawowe równanie wyrażające szybkość zmian ilości atomów izotopu pochodnego (N_B) ma postać:

$$\frac{dN_{B}}{dt} = \lambda_{A}N_{A} - \lambda_{B}N_{B}$$

gdzie: λ oznacza stałą rozpadu promieniotwórczego Scałkowanie odpowiednie przekształcenie tego równania prowadzi do wzoru:

$$N_{B} = \frac{T_{1/2(A)}(N_{A})^{0}}{T_{1/2(A)} - T_{1/2(B)}} \left\{ e^{-\lambda_{A}t} - e^{-\lambda_{B}t} \right\}$$

przy założeniu, że w momencie t=0 nie ma atomów izotopu promieniotwórczego pochodnego, tzn. $(N_B)_0=0$.

W przypadku przeprowadzanego doświadczenia ten warunek jest praktycznie spełniony, gdyż po trzykrotnej ekstrakcji. tylko niewielka liczba atomów bromu, które uległy efektowi Szilarda - Chalmersa pozostanie we frakcji organicznej. Izotop pochodny osiąga maksymalną aktywność po czasie:

$$t_{\text{max}} = \frac{2,303}{\lambda_2 - \lambda_1} \log \frac{\lambda_1}{\lambda_2}$$

Po podstawieniu danych, otrzymujemy, że $t_{max} = 74 \, minuty$.

3. Zmierzenie widma frakcji wodnej z czwartej ekstrakcji w celu kontroli obecności $^{80\mathrm{m}}Br$.

Tabela 2. Wyniki pomiarów po czwartek ekstrakcji.

Left marker [keV]	Right marker [keV]	Centroid [keV]	Area	Niepewność [zliczenia]	Integral
22,9	45	35	82+-17,94%	14,71	174

Energia promieniowania γ pochodzącego od izotopu ^{80m} Br wynosi 37 keV. Na tej podstawie możemy stwierdzić obecność izotopu ^{80m} Br w próbce.

Widmo frakcji wodnej uzyskanej w czwartej ekstrakcji pozwoliło nam stwierdzić że stężenie izomeru ^{80m}Br jest mniejsze niż po III ekstrakcji. Powierzchnia piku odpowiadającego izotopowi ^{80m}Br zmierzona po czwartej ekstrakcji wynosi 82.

4. Wyznaczenie czasu połowicznego rozpadu ^{80}Br .

Przeprowadziłyśmy pomiar tła licznika G-M. Czas pomiaru wynosił t= 100s.

	Left marker	Right marker
energia	60keV	700keV
kanał	30	350

Tabela 3. Wyniki pomiaru tła.

	C	Centroid			,,	
I.p.	kanał	energia	Area	+-	Niepewność [zliczenia]	Integral
1	139	277,2keV	7	308,00%	21,56	47
2	116	231,5keV	0	0,00%	0,00	49
3	158	316,3keV	4	545,00%	21,80	44
4	155	309,8keV	10	215,00%	21,50	50
5	129	259keV	41	15,62%	6,41	41

Na podstawie powyższej tabeli wyznaczyłyśmy średnie tło pochodzące od naczynia pomiarowego oraz jego niepewność (z kwadratów odchyłków średniej).

Średnia liczba	Niepewność
zliczeń (tło)	Mic pe Wilosc
46,2	6,80

Dla próbki wyznaczamy czasu połowicznego rozpadu. W tym celu wykonujemy pomiar aktywności przez 100s w odstępach 20s. Czynność tą wykonujemy przez 20 minut. Do późniejszych obliczeń wykorzystujemy wzory:

$$N = N^0 e^{-\Lambda t}$$
$$T_{1/2} = \frac{\ln 2}{\Lambda}$$

gdzie: N-aktywność próbki po czasie t $N_0-początkowa aktywność próbki$ $\lambda-stała rozpadu promieniotwórczego$

Po przekształceniach otrzymamy :
$$\frac{N}{N_0} = e^{-\lambda t}$$
, czyli $\ln \frac{N}{N_0} = \lambda t$

Ostatnie przekształcenie to wzór prostej, w której argumentem jest czas, a wartością logarytm z ilorazu liczby zliczeń.

Tabela 4. Wyniki 10 pomiarów dla próbki po czwartej ekstrakcji.

l.p	Czas [s]	Area	+-	Niepewność [zliczenia]	Integral
1	100	583	6,57%	38,30	665
2	220	565	16,12%	91,08	646
3	340	488	9,75%	47,34	648
4	460	394	11,82%	46,57	554
5	580	376	10,99%	41,32	496
6	700	311	16,14%	50,20	512
7	820	282	17,69%	49,91	483
8	940	343	11,93%	41,16	463
9	1060	287	14,02%	40,18	407
10	1180	300	11,48%	34,44	380

Ze względu na mniejszy rozrzut statystyczny, a tym samym większą wiarygodność, wyznaczanie czasu połowicznego rozpadu ^{80}Br będzie bazowało na wartości Integral.

Niepewność u(N-tho) została obliczona z prawa przenoszenia błędów:

$$u(N-tlo) = \sqrt{u(N)^2 - u(tlo)^2}$$

Niepewność czasu przyjęłyśmy 0,2 sekundy.

Tabela 5. Wyniki po odjęciu tła wraz z niepewnościami.

l.p	Czas [s]	Liczba zliczeń N	Liczba zliczeń – tło N-tło	In(N-tło)	Niepewność liczby zliczeń u(N)	Niepewność liczby zliczeń po odjęciu tła u(N-tło)
1	100	665	619	6,43	41	41
2	220	646	600	6,40	97	97
3	340	648	602	6,40	58	59
4	460	554	508	6,23	60	60
5	580	496	450	6,11	49	50
6	700	512	466	6,14	75	75
7	820	483	437	6,08	77	78
8	940	463	417	6,03	50	50
9	1060	407	361	5,89	51	51
10	1180	380	334	5,81	38	39

Wyniki zaznaczone na żółty kolor zostały przez nas odrzucone ze względu na zbyt duży rozrzut punktów. Z pozostałych wyników stworzyłyśmy wykres zależności ln(N-tło) od czasu.

Wykres 1. Zależność ln(N-tło) od czasu.

Wartość parametru a w równaniu krzywej regresji odpowiada naszej λ. Stąd otrzymujemy:

$$T_{1/2} = \frac{\ln 2}{\lambda}$$
, czyli $T_{1/2} = \frac{0.693}{0.0006} = 1155 s = 19.25 min$

Otrzymany przez nas wynik nie różni się znacząco od wartości tablicowej połowicznego rozpadu ⁸⁰Br, który wynosi 17,7 min.

WNIOSKI

Celem ćwiczenia była identyfikacja izotopu zawartego we frakcji wodnej próbki na podstawie energii kwantów γ emitowanej przez niego. Udało nam się z dość dobrą dokładnością rozpoznać na podstawie widma ^{80m}Br .

Wyznaczyłyśmy także energie kwantów pochodzących od ⁸⁰Br, które kolejno wynosiły 35,9 [keV] dla pierwszej ekstrakcji oraz 35,5 [keV] dla trzeciej ekstrakcji, co w granicach niepewności zgadza się z wartościami tablicowymi (37 [keV]). Ustaliłyśmy także stosunek zawartości ^{80m}Br w próbkach po kolejnych ekstrakcjach.

Udało się nam prawie poprawnie wyznaczyć czasu połowicznego rozpadu, który w naszym wypadku wyniósł 19,25min, a powinien 17,7 min. Różnica wynosi zatem 93 sekundy. Może to być wynikiem niedokładności aparatury lub brakiem precyzji wykonywania pomiarów.

Ponadto, przeprowadzone doświadczenie pozwoliło na wzmocnienie doświadczenia w pracy ze sprzętem laboratoryjnym (rozdzielacz, pipety, zlewki) oraz ugruntowanie dobrej praktyki laboratoryjnej w kontekście bezpieczeństwa i higieny pracy, gdyż praca na podobnym stanowisku miała miejsce przy okazji wykonywania poprzednich doświadczeń.