

$$a)9(0) = 6.62.0.5 + 0.64.0.3 + 0.01.0.2$$
$$= 0.01 + 0.012 + 0.002 = 0.024$$

$$b)P(1N2) = P(102)N0) = 0.022 = 0.9166(6)$$

0.5.0.02 + 0.3.0.04 = 0.01+ 0.012 = 0.022

_	1	Qualid ad		
legar	Rg	A	B	
	10000	1000	8000	
	20000	14000	6000	
	20000	10000	10000	

A regian mais favorant satiende que d'eniA

(22)

P(u) =0.85

95.2 limit on windows

Cap I

 $\begin{cases}
0.2 & x \in \{2, 4, 6\} \\
4 & x \in \{5, 7\} \\
0.3 & x = 8
\end{cases}$

a)

0.2 x 2 10.2 x 4 10.7 x 6 + 9 x 5 + 9 x 7 + 0

$$2q = 0.1$$

a)
$$\frac{1}{10} + \frac{1}{5} + \frac{1}{10} = 1$$

$$\frac{1}{10} + \frac{1}{10} + \frac{1}{10} = 1$$

$$\frac{1}{10} + \frac{1}{10} + \frac{1}{10} = 1$$

6

a = 2

f(n) = 14 x x e \ 1,2,3 } $\int \frac{x^{7}}{14} = 1 \quad (-1) \frac{1}{14} \int \frac{x^{2}}{14} = 1 \quad (-1) \frac{1}{14} \left[\frac{x^{3}}{3} \right]^{3} = 1$ 14 3 - 13 = 11 137 7=1 => {(x)=/4 //4 + 1/4 = 14/ =1 $\chi=7 \Rightarrow f(\chi)=\frac{4}{14}$ n=3 -1 f(n)= 9/14 c) P(x=1/x=1) F(n) = //19 Ne 15ULZ

5/19 Re 25ULZ P(X=1NXEZ) $= \frac{1}{2} = \frac{$ (3) +(n) = 2 1 3 1 4 P(W) 0,1 0,4 0,9 1 $x=1 \quad f(h)=0,1$ $x=2 \quad f(2)=0,3$ x=4 f(4) 2 0.1

b)
$$f(x \le 2) = F(2) = 0.4$$
 $F(x > 1) = 1 - F(1) = 1 - 0.1 = 0.9$

Solved dended

 $Ax = 0 \le x \le 1$
 $1 \le x \le 2$
 $2 \le x \le 3$
 $0 = 0.00 \text{ de } x$

a)

 $\begin{cases} ax + \int_{0}^{2} -ax + 3a = 1 \\ 2 \le x \le 3 = 1 \end{cases}$
 $a = \frac{2}{2} = \frac{2}{2}$

$$\int_{0}^{1} a^{2} dx + \int_{0}^{2} a^{2} + \int_{0}^{3} a^{2} dx + \int_{0}^{3}$$

$$G = \left[\frac{1}{2} - 0\right] + \left[2a - a\right] + a\left[\left(-\frac{9}{2} + 9\right) - \left(-\frac{2^{2}}{2} + 3(2)\right)\right] - \left(-\frac{1}{2} - \frac{1}{2}\right)$$

$$(-1)^{2} + 9 + 9 = 1$$

b) Funcia distribuição
$$P(X \leq x) = \int_{-\infty}^{\infty} f(u) du$$

Flapre

$$P(X \leq G) = 0$$

$$P(X \leq M) = \begin{cases} \frac{1}{2} & \text{with } x \leq M \end{cases}$$

$$= \begin{cases} \frac{1}{2} & \text{with } x \leq M \end{cases}$$

$$= \frac{1}{2} \left[\frac{1}{2} \right]_{0}^{2}$$

$$= \frac{1}{2} \left[\frac{1}{2} \right]_{0}^{2}$$

De 26162

$$F(u) = \frac{1}{2} \ln u + \frac{1}{2} \ln u = \frac{1}{2} \ln \frac{1}{2} + \frac{1}{2} \ln \frac{1}{2} = \frac{1}{2} \ln$$

M 26 WC3

$$F(n) = \int_{0}^{1} a x dx + \int_{1}^{2} h dx + \int_{2}^{n} b_{1} x dx$$

M N >>

$$\frac{3}{4} + 3x = 1$$

$$\frac{3}{$$

 $P(\chi \angle 3) = \int_{0}^{3} (3-2) e^{-2x} = \int_{0}^{3} (2-2) e^{-2x} = \int_{0}$ 0 < x < 5 / (10-n) 5/x2/0 & : Stock remand da materia pulha A)

Resultado: S78,4 f(n) 60,05 1/ > 0,05 $\frac{1}{25} (10-u) \le 0,05$ $\frac{1}{25} (10-u) \le 6,05$ $\frac{1}{25} (10-u) \le 6,05$ 10/2 - 2/2 \(\frac{105}{10} \)

-2/25

-2/25 x 2 8,75

(3)
$$E(x)=6$$
 $E(x^{2})=6$
 $E(x)=6$
 $E(x)=6$

$$\frac{P(X > 1/3)}{\sqrt{3}} = \frac{1}{\sqrt{3}} \frac{2}{\sqrt{(x^2 + 2x)}} - \frac{3}{\sqrt{4}} \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}}$$

$$= \frac{3}{\sqrt{4}} \left[\frac{x^3 + x^2}{\sqrt{3}} \right]^{\frac{1}{3}} = \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} \frac{3}{\sqrt{3}}$$

$$\frac{P(X > 1/3)}{\sqrt{4}} = \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} \frac{3}{\sqrt{3}}$$

$$\frac{P(X > 1/3)}{\sqrt{3}} = \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}}$$

$$\frac{P(X > 1/3)}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$\frac{P(X$$

$$\frac{1}{2} \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu \right)^{2} \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x^{2} + 2 u \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu \right)^{2} \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x^{2} + 2 u \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu \right)^{2} \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} = \frac{3}{2} \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} = \frac{3}{2} \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} = \frac{3}{2} \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu^{2} \\
= \int_{0}^{2} \sqrt{\frac{1}{2}} \left(x - \mu^{2} \right) - \mu$$

F(u) = 9514-4x5 0 < x < 1 1 721 a) P(\21/2) = F(1/2) = 5(1/2)4-4(1/2)5 P(XZ3) = 1-F(3/3) = 1-(5(3)4-4(3)5) P(1/2 X 22/3) = F(2/3) -F(1/2) = F(x) = f(x) = 20 / x4-x5 = 20 / 400 5 - x67/ $= 20 \left(\frac{1}{5} - \frac{1}{6} \right) = 20 \left(\frac{6}{5} - \frac{5}{30} \right)$ $|ar(x)| = \left(\frac{1}{\sqrt{30}}\right)^2 \int_{-\infty}^{\infty} (u \, du) du = \frac{20}{30} \left(\frac{1}{30}\right)^{-\frac{20}{30}}$

J+D2 flul du - E(X)2

f(n)= \(-0,04+b \) 10 \(\text{215} \)
0 0.vdir Y= nod segrale holo extraite

Y= nod primera pola extraita

merlor dos 2 numeros oxtraitos (21) Extração san reposição X="nota hola extraíde" Y="menos no das Tholas"

19	2 .	X	У	
/	2	2	1	fxy (2,1)
	3	3	X	f(xy (3,1)
2	1	1	1	Fxy(1,1)
	3	3	2	fxy(3,2)
3	7	1	1	fxy (1,1)
ے -	2	2	2	£X4/2,2)

× 11	1	2	f(x=y))=P(1,1)+f(z,z)
2	1/6	46	P/	= 3/6 = 10,5
3	1/6	16		

Fx(n) = /4 n2 052 62 d) f(n) = 1/2 x c= x = 2 Pr(1) = 10 y L0 2y 01 y = 1 fxy(x,y)=fx(n).fy(y)= /2 x-2y= xy=fxy(x,y)

fxy(x,y) = x=x-y x>0, y>0 100 + 00 Ke-x-4 = 1(=) 1-00 1-00 Ke-x. e-y dxdy(=) +00 +00 +00 +00 -1 $\int \mathbb{R} e^{-2y} = 1$ $\int \mathbb{R} e^{-2y} = 1$ Jo do -x-Ydndy - Kery - K Jo K. E. J. D. K. E. J. Z. K. P. E. J. D. O.

Txy(n,y)= } (1-e-54) (1-e-34) a) venficar se as namiqueis X e y sai indépendente Fxy(x141 = Fx(N). Fy(y). Fx(u) = lim Fx4(u14)= 1-e-54 | Fy(y)= lim Fx4(u1y) = 1- 2-34 Fxy(u,y)=(1-e-5x)(1-e-34) = Fxy(x1y) são s.a. indipud fx(n)=(Fx(n))=1-e-5x =75e-5x $f_{y}(y) = [F_{y}(y)] = 1 - e^{-3y} = 3e^{-3y}$

VIV	11	12	1		1001	
X T	12	1+	18	70	7 m 1	
10	(7)	X	/ x	N	4×	-0151
45	011	N	\neg	ン	8,113H	0,1875
20	011	011	×	0.12	0,41 X	0,4625
fy(4) (0	0	0	-0	1	0,0
0	1615	0,21	roner	50,32	5	

4n + 0,1+3n +0,4+n =1

8n = 1-0,5

012+x+011+2x+3x+012+2x=7

U=0,0625

8x + 0.5 = 1 x = 1 - 0.5 x = 0.5/8

XIY	X462	1264617	144/18	1847 420]	4720
XL10	0	0	0	0	0
106 X L 15	0	0,0625	9125	0/1875	0,25
156X120	0	0,1625	_	1000000	•
X>ZO	0				

32				
$f_X(u_1) = $	2x1 05x161	f x2(x	1) = \ 72 0 CX26	<u>ا</u>
	12 x2 são V.a		tis	
farazlus	(NZ) = 241. 71	oen161,	0 < UZ < 3	
E(XI) =	P			

$$\int_{-\infty}^{+\infty} c(x^2 + 7x) dx = \log \int_{0}^{1} x^2 + 2x dx = 1$$

$$(2)(\frac{1^{3}+1^{2}}{3}+1)(\frac{1}{2})(\frac{1$$

b)
$$P(x)/3 = \frac{1}{4} \left(\frac{x^3 + x^2}{3} \right)$$

$$= \frac{1}{4} \left[\frac{1}{3} + 1 - \left(\frac{1}{3} \right)^{3} + \frac{1}{4} \right] = \frac{1}{4} \left[\frac{1}{3} + \frac{1}{13} - \left(\frac{1}{4} \right)^{7} + \frac{1}{4} \right]$$

$$P(\frac{1}{3} < \chi < \frac{2}{3}) = \int_{3}^{2} \frac{1}{4} (n^{2} + 2n) dn$$

