

El sistema Informático. Concepto y componentes.

- Concepto:
 - □ Sistema: Conjunto de elementos interrelacionados para la consecución de un fin concreto.
 - Informática: proviene de la unión de las palabras información + automática. Por tanto, hace referencia a la automatización del tratamiento de la información.
 - □ **Sistema Informático**: conjunto de partes interrelacionadas que hacen posible el tratamiento automático de la información.
- Componentes de un sistema informático:
 - Componente físico, o hardware: placas, circuitos, conectores, cables, etc.....
 - □ Componente lógico, o software:
 - Software de base: Sistema Operativo + utilidades
 - Software de aplicación: programas de usuario, ...
 - □ Componente humano: personas

Clasificación de los sistemas informáticos.

Ciasilicación de los sistemas imbilitaticos.			
	Por	USO:	
		Sistemas informáticos de uso general: varios tipos de aplicaciones.	
		Sistemas informáticos de uso específico : han sido desarrollados para ser utilizados con un fin concreto, o una aplicación específica.	
	Por	prestaciones:	
		Supercomputadores : Gran capacidad de cálculo. Entorno técnico-científico. Hasta 1000 billones de cálculos por segundo (1000 teraflops).	
		Grandes computadores, o mainframes : dan soporte a grandes redes, con miles de usuarios. Por ejemplo los sistemas de transacciones bancarios.	
		Miniordenadores : Soportan cientos de usuarios conectados desde terminales. Fueron los primeros servidores para las aplicaciones de medianas y grandes empresas, a lo que se conectaban terminales "tontos", pero actualmente han sido sustituidos por las estaciones de trabajo.	
		Estaciones de trabajo: equipos de usuario de altas prestaciones, que suelen estar dedicados a aplicaciones específicas, como diseño, CAD, Tratamiento de Video, etc	
		Microordenadores : ordenadores de usuario, que pueden ser profesionales, personales, equipos de escritorio, portátiles, etc Estos equipos, cada vez son más potentes y económicos, lo que hace que en ocasiones tengan prestaciones superiores a las Estaciones de Trabajo, estando el uso de éstas limitado a entornos muy específico.	

- "Máquinas para procesar datos"
- 3000 a.C.: ábaco inventado por los chinos

Evolución de los Sistemas Informáticos.

PASCALINA

- ☐ 1642 por el francés Blaise Pascal
- El principio se conserva: algunos pluviómetros y cuentakilómetros.
- Discos asociados con números del 0 al 9
- □ Cuando una rueda daba una vuelta completa, avanzaba la otra
- ☐ Leibnitz: restar, multiplicar y dividir
- Los matemáticos de la época se posicionaron en contra

- Charles Babbage
 - □ <u>Máquina diferencial</u> (1822 –1833)
 - Cálculos logarítmicos: no llegó a funcionar
 - □ <u>Máquina Analítica</u> (1833 –1842)
 - Considerada primer computador
 - □ Procesador aritmético: cálculos
 - □ Unidad de control: qué tarea realizar
 - Mecanismo de salida
 - Memoria
 - No llegó a funcionar

- Joseph Jacquard
 - ☐ Telar con **tarjetas perforadas**: 1804
 - Una tarjeta perforada es una superficie de papel, cartón o plástico con perforaciones distribuidas de forma que suministran información en binario.
- Herman Hollerith
 - Censo basado en tarjetas perforadas: 1890
 - TabulatingMachine Company
 - ComputingTabulatingRecoringCompany1911
 - International BussinesMachines Corporation1924 (IBM)

- Por entonces ya estaba muy claro que el sistema binario, basado en ceros y unos, es el que daba soporte al ordenador. Se hacían necesarios dispositivos electrónicos que permitiesen almacenar esa información. A ese tipo de dispositivos se les llamó dispositivos biestables y la evolución electrónica de los mismos fue determinante en los siguientes pasos que se dieron.
- Debido a los rápidos avances en el mundo de la electrónica, impulsados por la segunda guerra mundial, a partir de los años cuarenta, la historia de los ordenadores se clasifica por distintas etapas llamadas generaciones caracterizadas por los diferentes componentes que dan soporte a los biestables.

- 1^a Generación (1940 1956)
 - Uso de válvulas de vacío
 - Computadores con fines militares y científicos
 - Ocupaban habitaciones enteras
 - ENIAC: 167 m² y operaba con un total de 17.468 válvulas electrónicas o tubos de vacío que a su vez permitían realizar cerca de 5000 sumas y 300 multiplicaciones por segundo
 - Origen de los BUGs
 - IBM 704:
 - John Backus: FORTRAN

- 2ª Generación (1956 1963)
 - Aparición del transistor
 - Más pequeñas y menor consumo
 - Fines comerciales
 - IBM 7090 se vende a grandes empresas
 - Mainframes
 - Tambor magnético

- 3ª Generación (1964 1971)
 - Integración en chips
 - SSI: decenas de transistores
 - MSI: cientos
 - Almacenamiento: Discos magnéticos y flexibles
 - Monitor
 - Lenguajes de programación:
 - Basic (64)
 - Pascal (70)
 - · C (71)
 - ARPANET: 1969

- 3ª Generación (1964 1971)
 - System/360 de IBM
 - Permite intercambiar periféricos y programas
 - Hasta entonces, cajas cerradas incompatibles con el resto
 - Golpe maestro de IBM
 - Juzgada por monopolio de 1969 a 1983

- 4ª Generación (1971 1981)
 - LSI: hasta 10.000 transistores
 - Microprocesador
 - Intel 80386 (i386)
 - UNIX 1971
 - Personal Computers (PCs)
 - Xerox Alto
 - Apple II (DOS: Disk Operating System)
 - IBM PC (BIOS, MS-DOS)

Generaciones.

Xerox Alto (1971)

Apple II (1977)

Generaciones.

IBM PC (1981)

- 5ª Generación (1982 1991)
 - VLSI: 100.000 transistores
 - Ley de Moore: cada 18 meses se duplica el número de transistores en un circuito integrado.
 - Computadores personales abaratados
 - Commodore 64
 - ZX Spectrum
 - Amstrad
 - Macintosh (1984). Apple lanza la GUI
 - Intel 486 (1989)
 - CERN: proyecto World Wide Web (1991)
 - Primer kernel de Linux (v0.01)
 - MS Windows (extensión de MS-DOS) 1985

- 6ª Generación (1992 actualidad)
 - ULSI 1.000.000 de transistores
 - GLSI >1.000.000 de transistores
 - Windows 95: producto separado de MS-DOS
 - Primera distribución de Linux: MMS (1992)
 - Debian 1993. Fue la 3ª tras Slackware
 - Pentium: 1993
 - Google: 1998

Generaciones.

- 7ª Generación (2002 Multicore, Movilidad)
 - Límite de escala de integración
 - No se puede aumentar la frecuencia de reloj
 - · Hay que disminuir el consumo de energía
 - Ubuntu (2004)
- 8ª Generación??
 - Computación cuántica
 - Movilidad total

https://www.youtube.com/watch?v=rBdGPTLfskl

Medidas de Información

- 1 Bit (es la unidad mínima de almacenamiento, 0/1)
- 8 Bits = 1 Byte
- 1024 Bytes = 1 Kilobyte (un archivo de texto plano, 20 kb)
- 1024 Kilobytes = 1 Megabyte (un mp3, 3 mb)
- 1024 Megabytes = 1 Gigabyte (una película en DivX, 1 gb)
- 1024 Gigabytes = 1 Terabyte (800 películas, 1 tb)
- 1024 Terabytes = 1 Petabyte (toda la información de Google, entre 1 y 2 petabytes)
- 1024 Petabytes = 1 Exabyte (Internet ocupa entre 100 y 300 Exabytes)
- 1024 Exabytes = 1 Zettabyte (a partir de aqui no existen comparativas reales)
- 1024 Zettabytes = 1 YottaByte
- 1024 YottaBytes = 1 Brontobyte
- 1024 Brontobytes = 1 GeopByte
- 1024 GeopBytes = 1 Saganbyte
- 1024 Saganbytes = 1 Jotabyte

Estructura funcional de un Sistema Informático. Arquitectura de Von Neumann

- John Von Neumann se interesó por el problema de ENIAC, que necesitaba un recableado de la máquina para cada nueva tarea
- Si los datos se pueden almacenar ¿por qué no almacenamos también el control?
 - □ Unidades permanentemente cableadas
 - □ El control se lee como si fuesen datos y se ejecuta mediante la unidad de control

Estructura funcional de un Sistema Informático. Arquitectura de Von Neumann.

- La arquitectura de Von Neumann corresponde al diseño básico de los primeros ordenadores, y el esquema sigue siendo conceptualmente válido hoy día.
- Siguiendo la arquitectura de Von Neuman, un ordenador está formado por los siguientes componentes:
- Unidad aritmética (o aritmético-lógica). ALU.
- Unidad de control.
- Memoria principal +registros
- Unidad de entrada y salida
- Buses de datos y control

Estructura funcional de un Sistema Informático. Arquitectura de Von Neumann

- Programa: conjunto de instrucciones que son almacenadas secuencialmente en posiciones o direcciones sucesivas de memoria, y que serán ejecutadas unas detrás de otras.
- <u>Funcionamiento</u> de un ordenador
 - □ Extraer instrucciones de memoria
 - □ Interpretar las instrucciones
 - □ Extraer de memoria los datos usados en la instrucción
 - □ Enviar los datos a la ALU
 - □ Almacenar los resultados en memoria

Ciclo de ejecución de una instrucción

De forma muy general, los pasos principales que se sigue la CPU para la ejecución de cada instrucción son los siguientes:

- 1. Buscar la instrucción en la memoria principal: la búsqueda se realiza a partir del valor almacenado en el contador de programa.
- 2. Decodificar la instrucción
- 3. Ejecutar la instrucción
- 4. Almacenar o guardar resultados: El resultado generado por la operación es almacenado en la memoria principal o enviado a un dispositivo de salida dependiendo de la instrucción.
- **El ciclo de búsqueda:** Los pasos 1 y 2 del ciclo de instrucción se conocen como ciclo de búsqueda (*fetch*). Estos pasos son idénticos en todas las instrucciones.
- **El ciclo de ejecución:** Los pasos 3 y 4 del ciclo de instrucción se conocen como ciclo de ejecución. Estos pasos cambiarán con cada tipo de instrucción.
 - 1 Hertzio = 1 Ciclo por segundo.
 - 1 Mhz = 1.000.000 Ciclos por segundo.

Actualmente, la velocidad máxima de las CPU es de 3.000 Mhz (**3 GHz**), y para conseguir mayores velocidades, se aumenta el número de núcleos de CPU.

Práctica: Simulador Von Neumann

- Visita la página http://vnsimulator.altervista.org/
- En grupos de dos alumnos, introducir en memoria un programa con al menos siete operaciones, y cinco variables. Las operaciones admitidas son:

 - MUL X/num: multiplica el valor del acumulador por X o por un número
 - STO X: almacena el valor del acumulador en X
 - DIV X/num: divide el valor del acumulador por X o por un número
 - SUB X: sustrae x al valor del acumulador
 - JMP Y: salto de programa a la posición de memoria Y
 - HLT: finaliza la ejecución

 HLT: finaliza la ejecución
- Muestra el resultado a profesor.

Componentes físicos. El procesador

- Es el componente principal de un ordenador, ya que realiza todas las operaciones necesarias para su funcionamiento: ejecutar <u>programas</u> y realizar los <u>cálculos</u> necesarios.
- Se compone de Unidad de control (UC) y Unidad Aritmético lógica (UAL ó ALU):
 - □ Unidad de control (UC):
 - Analiza e interpreta las instrucciones del programa que se ejecuta
 - Controla al resto de componentes físicos mediante órdenes.
 - Atiende interrupciones
 - Incluye los siguientes elementos:
 - Contador de programa: contiene la dirección de memoria donde se encuentra la siguiente instrucción a ejecutar.
 - Registro de Instrucción: contiene la instrucción que se está ejecutando en ese instante.
 - Decodificador: extrae los códigos de operación y las direcciones de memoria requeridas por la Unidad de Control.
 - Secuenciador: sincroniza al resto de componentes, con los pulsos de reloj.
 - Reloj: emite impulsos que sirven de referencia al resto de componentes.

El procesador (II)

- Unidad Aritmético-Lógica (UAL o ALU):
 - Realiza todas las operaciones, las cuales pueden ser:
 - □ Aritméticas: sumas, restas, ...
 - □ Lógicas: comparación, ...
 - Recibe los datos con los que debe operar la UC, y almacena los resultados en memoria principal.
 - Su velocidad es de millones de instrucciones por segundo (MIPS)
 - Se compone de:
 - Circuito operacional: es el que verdaderamente realiza todas las operaciones. El tipo de operación a realizar, se indica a través de microórdenes.
 - □ Registros de entrada (a y b).
 - Registro de estado: almacena información sobre la última operación realizada
 - Acumulador: almacena los resultados de las operaciones

Componentes físicos. Memoria

Jerarquía	de memoria
-----------------------------	------------

- □ **Registros:** memoria muy cercana al procesador. Es la más rápida y cara.
- □ **Caché:** Es una memoria intermedia entre el procesador y la memoria principal, y se suele localizar dentro dentro del mismo chip que el procesador. Muy rápida, cara y en los procesadores modernos se divide en varios niveles L1, L2, ...
- RAM (Random Access Memory): es una memoria de acceso rápido, aunque no tanto como las anteriores. Se pierde si no hay alimentación de energía, al igual que en las anteriores. Permite lectura y escritura por parte del procesador. La memoria principal de un ordenador siempre es RAM.
- ROM (Read Only Memory): se utiliza para cargar datos básicos y de configuración del ordenador. Por ejemplo, la configuración de arranque. No precisa alimentación de energía. Hay variedades como EPROM (erasableprogrammable), Flash, etc...
- Memoria secundaria: todos aquellos dispositivos que se utilizan para almacenar datos y programas cuando éstos no se encuentran en la memoria principal: discos duros, disquetes, CD's, pendrives, etc... Tiene como ventajas, que no es volátil y también que su coste es bajo. El principal inconveniente radica en la velocidad.
- La memoria principal es una parte fundamental, ya que tanto los programas como los datos deben estar cargados en memoria para poder ser ejecutados y procesados respectivamente
- Se puede visualizar como una matriz, dónde cada posición almacena un byte (8bits).

Componentes físicos. Bus del sistema

- El Bus del sistema es el encargado de comunicar al resto de componentes del ordenador.
- Está formado por un conjunto de circuitos los cuales permiten la comunicación de la UCP con el resto de elementos.
- La transmisión a través del Bus se realiza en paralelo.
- El Bus del sistema lo componen tres elementos:
 - Bus de datos
 - Bus de control
 - Bus de direcciones

Arquitecturas microprocesador: RISC vs CISC

CISC

- □ Amplio juego de instrucciones
- Instrucciones complejas
- □ Unidad de control microprogramada

RISC

- □ Reducido juego de instrucciones
- Instrucciones sencillas
- □ Unidad de control cableada

Arquitecturas RISC/CISC.

- Procesadores MIPS
 - MIPS Technologies
 - Procesador RISC
 - Routers Cisco, Nintendo 64, PSX, PS2 y PSP
- Procesadores PowerPC
 - Motorola, IBM y Apple
 - Procesador del Macintosh hasta el 2006
 - RISC
 - Xenon processor: Xbox 360
 - Cell processor: Sony PS3
- Procesadores Intel (x86)
 - Juego de instrucciones CISC
 - Traducción hardware a RISC
 - Matienen CISC por retrocompatibilidad (legacy applications)

Componentes lógicos de un ordenador.

- El <u>componente lógico</u> de un ordenador está formado por el software y los datos.
- Software de un ordenador:
 - □ **Software de base**: está formado principalmente por el sistema operativo, lo que normalmente se considera como el conjunto de programas mínimo imprescindible para el funcionamiento del sistema. Es un puente entre el Hw y el usuario.
 - □ **Software de aplicación**: son los programas que se instalan en los ordenadores, y que pueden ser de varios tipos: aplicación sectorial, aplicación funcional, genéricos, de desarrollo, de ocio, etc.
- Información o datos: la informática es la ciencia que se encarga del tratamiento automático de la información. El ordenador está fabricado a partir de circuitos electrónicos, y para poder representar la información, se utilizan códigos específicos, ya que los circuitos únicamente trabajan con 0 y 1 (ausencia o presencia de señal eléctrica). Existen numerosos códigos para la representación alfanumérica y también varios sistemas de numeración.