Tutorial 8

Statistical Computation and Analysis
Spring 2025

Tutorial Outline

- Hierarchical models
 - Shrinkage
- Multiple Regression

- Until now, we either had one group with a bunch of data (coin flips, number of email in the class, etc.)
- Or, we had separate groups (tips / bills on separate days).
- Sometimes, we would like to have separate groups that share information.
 - Different classes that all belong to the same school.
 - Different patients that are all in the same hospital.

Does not allow sharing information.

■ Allows for sharing information between the groups, while also allowing the separate groups.

hyperpriors Θ

- In hierarchical models, the parameters of the prior distributions are themselves given a prior distribution.
- These higher-level priors are often called hyperpriors.
 - The parameters of the prior distributions belong to a common population of parameters.

- We want to analyze the water quality in a city comprised of neighborhoods.
- Option 1: Analyze the water quality in each neighborhood separately.
 - We obtain a more detailed view of the problem and averaging can cause us to lose information.
- Option 2: Combine the data from all the neighborhoods.
 - We obtain a bigger sample size and hence a more accurate estimation.

- Option 3: Hierarchical model.
- Water samples from three neighborhoods.
- If the lead content is above a threshold the water is contaminated.
- For each neighborhood, we have 30 samples, where the value of the sample is 0 if it's contaminated and 1 if it is good.

- We are measuring the chance for a contaminated sample, or not -> binomial distribution.
- We will use a hierarchical model to share information between the

neighborhoods.

$$\mu \sim Beta\left(\alpha_{\mu}, \beta_{\mu}\right)$$
 $v \sim HN(\sigma_{v})$
 $\theta_{i} \sim Beta(\mu, v)$
 $y_{i} \sim Bernoulli(\theta_{i})$

Note: we are using the mean and precision (inverse of the standard deviation) in the beta prior.

```
coords = {"neighborhood": np.arange(len(N_samples)), "neighborhood_data": group_idx}
with pm.Model(coords = coords) as model_h1:
    # hypyerpriors
    mu = pm.Beta('mu', 1, 1)
    nu = pm.HalfNormal('nu', 10)
    # prior
    theta = pm.Beta('theta', mu=mu, nu=nu, dims = "neighborhood")
    # likelihood
    y = pm.Bernoulli('y', p=theta[group_idx], observed = data, dims = "neighborhood_data")
```

- We are going to run the model on three versions of the data:
- 1. There are 18/30 contaminated water samples in all three neighborhoods.
- 2. There are 3/30 contaminated water samples in all three neighborhoods.
- 3. There are 3/30 contaminated water samples in two neighborhoods and 18/30 in one.

Examine the posterior distributions for the prior parameters (version

1).

- For the theta
 - They all look very similar, which is expected as the data for the three neighborhoods

was the same.

Mean and HDI

■ Version 2:

Mean and HDI

■ Version 3:

Mean and HDI

Shrinkage

- In version 3, we would expect to see mean values of **0.11** for the neighborhoods with **three** contaminated samples and **0.6** for the neighborhood with **18** contaminated samples.
- Instead, we got mean values of **0.13** for the neighborhoods with **three** contaminated samples and **0.55** for the neighborhood with **18** contaminated samples.
- This is called **shrinkage**.
- The estimates have shrunk toward the common mean due to each group informing the rest, and each group being informed by the estimation of the others.

Simple Linear Regression

- Review: We began to look at a case in which the mean depends on another variable.
 - Average height as a function of age.

$$y_{i} \sim N(\mu_{i}, \sigma)$$

$$\mu_{i} = \beta_{0} + \beta_{1}x_{i}$$

$$\beta_{0} \sim Prior 0(\theta_{0})$$

$$\beta_{1} \sim Prior 1(\theta_{1})$$

$$\sigma \sim Prior 2(\theta_{\sigma})$$

- We saw the case in which there is one dependent variable and one independent variable.
- There can also be more than one independent variable.
 - For example, height as a function of both weight and age.
 - In this case: $\mu_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i}$

- Radon is a radioactive gas that can cause lung cancer and thus it is something that would be undesirable in a domicile.
 - The presence of a basement may increase the radon levels in a household as radon may enter the household more easily through the ground.
 - We have a dataset of the radon levels at homes in Minnesota as well as the county of the home, and the presence of a basement

Load data

	Unnamed: 0	idnum	state	state2	stfips	zip	region	typebldg	floor	room	•••	pcterr	adjwt	dupflag	zipflag	cntyfips	county	fips	Uppm	county_code
0	0	5081.0	MN	MN	27.0	55735	5.0	1.0	1.0	3.0		9.7	1146.499190	1.0	0.0	1.0	AITKIN	27001.0	0.502054	0
1	1	5082.0	MN	MN	27.0	55748	5.0	1.0	0.0	4.0		14.5	471.366223	0.0	0.0	1.0	AITKIN	27001.0	0.502054	0
2	2	5083.0	MN	MN	27.0	55748	5.0	1.0	0.0	4.0		9.6	433.316718	0.0	0.0	1.0	AITKIN	27001.0	0.502054	0
3	3	5084.0	MN	MN	27.0	56469	5.0	1.0	0.0	4.0		24.3	461.623670	0.0	0.0	1.0	AITKIN	27001.0	0.502054	0
4	4	5085.0	MN	MN	27.0	55011	3.0	1.0	0.0	4.0		13.8	433.316718	0.0	0.0	3.0	ANOKA	27003.0	0.428565	1
914	914	5995.0	MN	MN	27.0	55363	5.0	1.0	0.0	4.0		4.5	1146.499190	0.0	0.0	171.0	WRIGHT	27171.0	0.913909	83
915	915	5996.0	MN	MN	27.0	55376	5.0	1.0	0.0	7.0		8.3	1105.956867	0.0	0.0	171.0	WRIGHT	27171.0	0.913909	83
916	916	5997.0	MN	MN	27.0	55376	5.0	1.0	0.0	4.0		5.2	1214.922779	0.0	0.0	171.0	WRIGHT	27171.0	0.913909	83
917	917	5998.0	MN	MN	27.0	56297	5.0	1.0	0.0	4.0		9.6	1177.377355	0.0	0.0	173.0	YELLOW MEDICINE	27173.0	1.426590	84
918	918	5999.0	MN	MN	27.0	56297	5.0	1.0	0.0	4.0		8.0	1214.922779	0.0	0.0	173.0	YELLOW MEDICINE	27173.0	1.426590	84

 Start with assessing the effect only of the presence of a basement on the radon levels.

Define our model


```
c_basement = {"basement": b_codes, "data": np.arange(len(r))}
with pm.Model(coords=c_basement) as m_basement:
b_i = pm.Data('b_i', b_idx, dims="data")
β_0 = pm.Normal('β_0', mu=μ_0, sigma=σ_0)
β_b = pm.Normal('β_b', mu=0, sigma=σ_b, dims="basement")

μ_r = pm.Deterministic('μ_r', β_0 + β_b[b_i], dims="data")
σ_r = pm.Gamma('σ_r', mu=μ_σ_r, sigma=σ_σ_r)
r_obs = pm.Normal('r_obs', mu=μ_r, sigma=σ_r, observed=r, dims="data")
```

- Prior predictive check
 - Our priors look reasonable given the sampled datasets
 - Now we can sample

Our inference data object

Examine our sampling and posterior

Examine our sampling and posterior

We can see that the four chains overlap.

- And diagnostics
 - They fulfil the criteria we learned

	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat	
β_0	0.014	0.011	1126.0	1365.0	1.0	
β_b[N]	0.014	0.010	1149.0	1415.0	1.0	
β_b[Y]	0.014	0.011	1121.0	1385.0	1.0	
σ_r	0.001	0.000	1392.0	1371.0	1.0	

Posterior Predictive Checks

- Posterior Inference
 - The appears to be less radon in houses without basements.

- Now let's add the effect of the county.
 - Examine data (colors show the different counties)

Create model for the multiple regression.

What we had for only the basement

Adding in county (still need prior)

Create model for the multiple regression.

And the code:


```
c_county = {"basement": b_codes, "county": c_codes, "data": np.arange(len(r))}
with pm.Model(coords=c county) as m county1:
  b i = pm.Data('b i', b idx, dims="data")
  c_i = pm.Data('c_i', c_idx, dims="data")
  \beta 0 = pm.Normal('\beta 0', mu=\mu 0, sigma=\sigma 0)
  \beta_b = pm.Normal('\beta_b', mu=0, sigma=\sigma_b, dims="basement")
  \beta c = pm.Normal('\beta c', mu=0, sigma=\mu \sigma c, dims="county")
  \mu_r = pm.Deterministic('\mu_r', \beta_0 + \beta_c[c_i] + \beta_b[b_i], dims="data")
  \sigma_r = pm.Gamma('\sigma_r', mu=\mu_\sigma_r, sigma=\sigma_\sigma_r)
  r obs = pm.Normal('r obs', mu=μ r, sigma=σ r, observed=r, dims="data")
```

- Now we do:
 - Prior predictive checks
 - Sample
 - Diagnostics

	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat
β_0	0.015	0.008	1136.0	2080.0	1.00
β_b[N]	0.014	0.008	1260.0	2204.0	1.00
β_b[Y]	0.014	0.007	1208.0	2186.0	1.00
β_c[AITKIN]	0.007	0.006	2658.0	2461.0	1.00
β_c[ANOKA]	0.006	0.003	615.0	1326.0	1.01
β_c[WILKIN]	0.009	0.011	4971.0	2470.0	1.00
β_c[WINONA]	0.007	0.004	1201.0	2273.0	1.00
β_c[WRIGHT]	0.007	0.004	1184.0	2407.0	1.00
$\beta_c[\texttt{YELLOW MEDICINE}]$	0.007	0.008	4190.0	3117.0	1.00
σ_r	0.000	0.000	4784.0	3175.0	1.00

Posterior Predictive Check

 Examine the average levels of radon for the different counties and those predicted by the model.

- We can also separate for the estimates for houses with and without basements separately:
 - The mean of all the data is closer to that of only the basements (the majority of the data)

• Effect of basement (increases radon levels)

• We can compare between the results when including and not including the county data.

Create hierarchical model for the multiple regression.

And the code:

```
c county = {"basement": b codes, "county": c codes, "data": np.arange(len(r))}
with pm.Model(coords=c county) as m county:
  b_i = pm.Data('b_i', b_idx, dims="data")
  c i = pm.Data('c i', c idx, dims="data")
  \sigma c = pm.Gamma('\sigma c', mu=\mu \sigma c, sigma=\sigma \sigma c)
  \beta = pm.Normal('\beta 0', mu=\mu 0, sigma=\sigma 0)
  \beta_b = pm.Normal('\beta_b', mu=0, sigma=\sigma_b, dims="basement")
  \beta c = pm.Normal('\beta c', mu=0, sigma=\sigma c, dims="county")
  \mur = pm.Deterministic('\mur', \beta0 + \betac[c_i] + \betab[b_i], dims="data")
  \sigma_r = pm.Gamma('\sigma_r', mu=\mu_\sigma_r, sigma=\sigma_\sigma_r)
  r_obs = pm.Normal('r_obs', mu=μ_r, sigma=σ_r, observed=r, dims="data")
```

```
\begin{array}{c} \alpha,\beta \\ \text{gamma} \\ \\ \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} \\ \\ \\ y_i \\ \end{array}
```

- Now we do:
 - Prior predictive checks
 - Sample
 - Diagnostics

	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat
β_0	0.013	0.007	1381.0	2478.0	1.0
β_b[N]	0.013	0.007	1430.0	2277.0	1.0
β_b[Y]	0.013	0.007	1406.0	2420.0	1.0
β_c[AITKIN]	0.004	0.004	4473.0	3031.0	1.0
β_c[ANOKA]	0.002	0.002	3329.0	2528.0	1.0
β_c[WINONA]	0.002	0.003	5350.0	2819.0	1.0
β_c[WRIGHT]	0.003	0.003	3667.0	3194.0	1.0
$\beta_c[YELLOW\ MEDICINE]$	0.004	0.004	4760.0	2851.0	1.0
σ_c	0.002	0.001	909.0	1402.0	1.0
σ_r	0.000	0.000	3939.0	3220.0	1.0
90 rows × 5 columns					

Posterior Predictive Check

Average levels of radon for the different counties and those predicted

by the model.

• Effect of basement for this model:

Compare the Three Models

Only the basement

Multiple Regression

Multiple Hierarchical Regression $\mu_{\mu_{-}^{D}}$

Compare the Models

- The hierarchical linear regression led to:
 - A larger difference between the estimate of radon levels in houses with and without basements.
 - More certainty in the estimates (narrower HDIs).
 - This is true for both the comparison with the multiple regression (not hierarchical) model and the simple model including only basement information.