Homework 19: Eigenspaces

Assignments should be **stapled** and written clearly and legibly. Problem 4 is optional.

1. $\S5.1$, #5(a)(b)(d), 7, 21, 25(a)(c).

For Problem 21, there is no need to refer to any tables, as the instructions suggest, and calculations are not required.

- 2. The vector $\mathbf{x} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$ is an eigenvector for $A = \begin{bmatrix} 3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5 \end{bmatrix}$.
 - (a) Find the eigenvalue λ which corresponds to **x**. Show your work.
 - (b) Let λ be the eigenvalue you found in (a). Is it possible to find another eigenvector \mathbf{y} corresponding to eigenvalue λ such that $\{\mathbf{x}, \mathbf{y}\}$ is linearly independent? Justify. Hint: Find the dimension of the λ -eigenspace of A.
- 3. Let $A = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}$, and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be given by $T(\mathbf{x}) = A\mathbf{x}$.
 - (a) Find all eigenvalues of A.
 - (b) Find a basis B such that $[T]_B$ is diagonal.
 - (c) Find $[T]_B$.
 - (d) Express A in the form $A = PDP^{-1}$ for some diagonal matrix D and invertible matrix P.
- 4. (Optional) §5.2, #15, 27.