

Coloreo de mapas

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Teorema de los 4 colores

En 1852

Francis Guthrie, mientras coloreaba los condados de Inglaterra, observa que solo hacián falta 4 colores para hacerlo.

Comenta el problema con su hermano y este a uno de sus maestros Augustus De Morgan.

Nace la conjetura de los 4 colores

Teorema de los 4 colores: Enunciado

Enunciado:

Un plano subdividido en regiones contiguas requiere no mas de 4 colores, de tal forma que no queden regiones con el mismo color que compartan una frontera.

Se puede utilizar para diferenciar paises, provincias y otras regiones en un mapa

Condiciones:

Cada región es continua (No aplica para EEUU y Alaska)

No hay fronteras "puntuales", solo lineales (3 o más países comparten como frontera un punto en el plano)

Teorema de los 4 colores: Demostración

En 1890

Percy John Heawood prueba que se puede realizar la tarea con 5 colores.

En 1976

La conjetura fue demostrada por Kenneth Appel y Wolfgang Haken

Pero la misma su polémica y poco aceptada.

Utilizaron una computadora para – por fuerza bruta – probar 1478 casos base.

Con estas demostrar matemáticamente de forma complicada y larga la conjetura.

En 1996

Robertson, Sanders, Seymour y Thomas construyen una demostración que requiere solo 633 configuraciones y un pasos más simples de prueba

Hasta la fecha se toma esta demostración como válida

Coloreo de Mapas

Es un caso particular

De coloreo de grafos

Podemos transformar

El mapa en un grafo

Cada región

Será un nodo

Cada frontera entre regiones

Un eje entre los dos nodos

Grafo Plano

Sea

G=(V,E) un grafo

Diremos

Que G es planar (o plano) si se puede dibujar en el plano sin que sus ejes se crucen

Dado mapa con las características del teorema de los 4 colores

Su dual conforma un grafo plano

Grafo no plano

Teorema de Kuratowski

Un grafo es plano si y solo si

no contiene un subgrafo isomorfo a una subdivisión elemental de K₅ (el grafo completo de 5 vértices) o K_{3,3} (el grafo bipartito completo de 6 vértices).

una subdivisión elemental

de un grafo resulta de insertar vértices en las aristas

Determinación de planitud eficiente

En la publicación "Efficient Planarity Testing" (1974)

De John Hopcroft y Robert Tarjan

https://dl.acm.org/doi/pdf/10.1145/321850.321852

Se presentó un algoritmo

Que determina si un grafo es plano con complejidad O(V)

Corolario

Si un grafo es plano

Se puede verificar en forma eficiente en O(V)

Se puede colorear con k=4 colores

De acuerdo al teorema de los 4 colores

Limitaciones en cartografia real

Los límites de las provincias de La Pampa, Río Negro, Mendoza y Neuquén

se encuentran en un punto, en la intersección del río Colorado con el meridiano (68° 15′ O)

No cumplen con la condición del teorema de los 4 colores

Si estuviesen rodeadas por 1 provincia. El resultado seria un grafo no plano

Limitaciones en cartografía real (cont.)

Países o regiones no continuas

Presentación realizada en Junio de 2020