Analog Devices

AD-96TOF1-EBZ Calibration Guide

Rev0

Contents

System Overview	2
Calibration Overview	
Calibration Pipeline	
Physical Setup	
Calibration Configuration	
EEPROM configuration	
Calibrate and store to EEPROM Example	C

System Overview

The AD-96TOF1-EBZ is a pulsed Time-of-Flight (ToF) system. Is consists of a CCD sensor, illumination source (VCSEL), and an analog front-end (AFE) with a ToF processor. To calculate depth a target scene is illuminated, the returned light is captured by the CCD sensor. The AFE reads the captured data and processes it to depth. The depth data is transferred over to the Arrow board and which can display the data in VGA resolution.

There are 3 modes that can be programmed into the AFE to operate the camera at different ranges. Each mode operates on different firmware located in the config/BM_Kit/ directory of the calibration folder.

Calibration Overview

Calibration is required for the AD-96TOF1-EBZ to map depth output of the system to the real world. The accuracy of depth is dependent on the calibration environment as well as the target environment conditions.

Depth calibration is performed by placing a target at the known distance in from of the TOF system. The system runs the specific mode that is being calibrated. During calibration the illumination pulse of the system is delayed relative to the capture time to simulate different distances, this is referred to as a sweep. The captured data is used to generate a **gain**, **offset**, and **look-up table**. Each mode requires its own calibration and parameters.

Calibration Pipeline

The following procedure takes place when running a calibration: ("params" are configurable in json files specified in later in this document)

- 1) Firmware specified from the .json file is loaded into the system
- 2) The system is turned on and allowed to run for a certain warmup period
- 3) The sweep starts and a specified number of depth frames are collected for each sweep step
- 4) Calibration parameters are calculated and stored into new firmware files
- 5) Firmware files are stored to "results_path"/"unique_id"/"mode"/latest/lf_files

The user can run these files directly from Example.py or can load these files into EEPROM and then run from Example.py

Physical Setup

To run a linear calibration a target is placed a known distance away from the ToF system. The reflectivity of the target is dependent on the final use case of the system. For the AD-96TOF1-EBZ calibration a target of 98% reflectivity for 940nm wavelength light is used. It is also important to keep the target parallel to the sensor. Please use Calibration_Assembly_Doc.pdf a reference to any calibration setup.

Setting up the correct environment is essential for a valid calibration. One major factor that leads to incorrect calibration is multipath. This occurs when light bounces off multiple surfaces and returns to the sensor. This corrupts the data read from the sensor and therefore shifts the final depth value. While completely removing this effect is difficult, steps can be taken to reduce its error contribution.

The preferred method to reduce the effect of multipath is to calibrate the sensor in an open room. The sides of the path in between the system and the target should be empty with the closest object being meters away. This can be achieved in an open and empty room. The floor or bench which the system and target sit on should be covered in low reflectivity material.

As shown in the Calibration_Assembly_Doc.pdf, another method is to cover any surfaces on the sides of the path between the system and the target with low reflectivity material. This method is used when there is no access to open space. If the sides and bench spaces are not covered and are highly reflective, the calibration will likely be inaccurate.

While the methods above can be used as general guidelines, the best results are determined by use case. It is recommended to run calibration in the target environment to achieve better accuracy.

Figure 1 : Example of open room setup

Figure 2: Example of closed space setup

Calibration Configuration

To run a calibration first it is necessary to enter the correct parameters to a config file provided with each set of firmware files. The config file is in json format. Each mode comes with a recommended calibration config file (sweep_config_mode.json) in the firmware directory.

The following parameters are typically adjusted:

- verify_sweep : Allows you to check if the calibration was done correctly by redoing the sweep with the calibration parameters
- unique id : Allows user to specify between cameras or experiments
- frame_count : Changes the number of frames collected per sweep step
- warmup_time : Specify how long the camera warms up before calibration
- target_distance : Specify the distance of the target from the sensor in mm

The parameters available in the config file are shown below. (Supported parameters are highlighted, **do not modify** unhighlighted parameters)

Parameter	Value	Description
mode	string – ("near", "mid", "far")	Specifies which mode is
		calibrated
calibrate	bool	Run calibration
verify_sweep	bool	Run calibration verification
calib_type	string – ("Sweep")	Calibration Type
verification_type	string – ("Sweep")	Verification Type
calculate_metrics	bool	Generate metrics (Only works
		with verify sweep)
firmware_path	string – (Path to firmware from	Firmware path
	calibrate_single_mode.py)	
unique_id	string – (Numerical Values only)	Specify Unique ID
repeat_num_filename	string	
hpt_data_filename	string	
data_filename	string	
non_linear_off_lf_file	string	
non_linear_off_calib_lf_file	string	
seq_info_filename	string	
pulse_count_min	int	
pulse_count_max	int	
raw_frame_height	int	
raw_frame_width	int	
window_x	int	
window_y	int	
frame_height	int	
frame_width	int	
frame_count	int	Specify how many frames are
		captured per simulated distance
warmup_time	int	Specify how warmup time
		before calibration

depth_conv_gain	int	
sw_gain	float	
sw_offset	float	
min_delay	int	
max_delay	int	
target_distance	int (mm)	Distance to target from sensor
min_dist	int (mm)	Calibration start distance
max_dist	int (mm)	Calibration end distance
verify_min_dist	int (mm)	Verify start distance
verify_max_dist	int (mm)	Verify end distance
dist_interval	float (mm)	
dist_step	float (mm)	Specify calibration resolution
		must be in integer multiples of
		dist_interval
round_dist_range_to_interval		
rail_port		
rail_offset		
rail_min_dist		
rail_max_dist		
rail_dist_step		
results_path	string – (Path from	Specify where results are saved
	calibrate_single_mode.py)	
verify_mode		
depth_perc_err_threshold		

EEPROM configuration

To store a calibrated files to EEPROM the eeprom_config.json in the calibration folder must be modified. The json parameters are shown below:

Parameter	Value	Description
mode	string – ("near", "mid", "far")	Specifies which mode is being
		stored to eeprom
firmware_path	string	Specifies path to firmware with
		calibrated parameters
cal_map_path	string	Specifies path to store
		calibration data which is
		currently on EEPROM

Calibrate and store to EEPROM Example

The following steps runs through a near mode calibration with target at 300mm

- Set up software environment as specified in the readme.txt file
- Place target 300mm away from the sensor
- Modify the following parameters in the sweep_config_near.json file (located in firmware path)
 - unique_id: "0001"target_distance: 300
 - results_path: "saved_results"
- Open terminal and run following commands

sudo ./config.sh
cd python_workspace/calibration/
sudo ../py36tofcalib/bin/python calibrate_single_mode.py config/BM_Kit/Near/sweep_config_near.json

- The calibrated firmware and data will be stored in saved_results/0001/near/
- In eeprom_config.json enter the following:
 - "mode": "near"
 - "firmware_path": "saved_results/0001/near/latest/lf_files"
- From the previously opened terminal run the following command

sudo ../py36tofcalib/bin/python eeprom_replace_cal.py config/eeprom_config.json

Calibrated firmware is now stored in EEPROM

Changing Pulse Count

- Set up software environment as specified in the readme.txt file
- Configure the following file: calibration/config/pc_config.json

Parameter	Value	Description
firmware_config_json_path	string	Specifies path to the
		sweep_config.json file used to
		calibrate firmware
target_ir	int	Target IR value which the pulse
		count will move towards
start_pc	int	Starting pulse count value
max_pc	int	Max pulse count value

- Place target in front of sensor
- Run the following command:

sudo ./config.sh
cd python_workspace/calibration/
sudo ../py36tofcalib/bin/python find_pc.py config/pc_config.py

- Now you can load the firmware from the same path to test
- Run a calibration to get correct depth values