

CURSO DE CIÊNCIA DA COMPUTAÇÃO						
Disciplina: CÁLCULO I	Turma: CC2M	Data: 19/05/2023	Semestre: 2023/1	Nota:		
Avaliação: 2º BIMESTRE – TESTE	Professor(a): LUCIANA B. FIORO	Professor(a): LUCIANA B. FIOROTTI		1		
Aluno(a):			Assuntos: Derivada de uma função e regras de derivação			
Aluno(a): GABARITO						

JUSTIFIQUE TODAS AS SUAS RESPOSTAS.

1ª Questão (1,0 ponto):

$$f'(\alpha) = \frac{(\alpha^2 - 3) \cdot (\alpha + 4)' - (\alpha + 4) \cdot (\alpha^2 - 3)'}{(\alpha^2 - 3)^2}$$

Obtenha a primeira derivada da função $f(x) = \frac{x+4}{x^2-3}$.

$$f'(x) = \frac{(x^2 - 3) \cdot 1 - (x + 4) \cdot 2x}{(x^2 - 3)^2}$$

2ª Questão (1,0 ponto):

$$f'(x) = \frac{x^2 - 3 - 2x^2 - 8x}{(x^2 - 3)^2} \Rightarrow f'(x) = \frac{-x^2 - 8x - 3}{(x^2 - 3)^2}$$

Dada a função $f(x) = e^x(x^2 - 8)$, calcule f'(0) e, se existir, o valor de x tal que f'(x) = 0.

ada a função
$$f(x) = e^x(x^2 - 8)$$
, calcule $f'(0)$ e, se existir, o valor de x tal que $f'(x) = 0$.

$$f'(x) = e^x \cdot (x^2 - 8)' + (x^2 - 8) \cdot (e^x)' \quad f'(0) = e^0 \cdot (0^2 + 2 \cdot 0 - 8) \quad e^x \cdot (x^2 + 2x - 8) = 0$$

$$f'(x) = e^x \cdot 2x + (x^2 - 8) \cdot e^x \quad f'(0) = 1 \cdot (-8) \quad x^2 + 2x - 8 = 0$$

$$f'(x) = e^x \cdot (x^2 + 2x - 8) \quad f'(0) = -8 \quad x'' = -\frac{2+6}{2} = 2$$
Questão (1,0 ponto):

3ª Questão (1,0 ponto):

Seja a função
$$f(x) = 2\sqrt{x-7}$$
.
a) $u = x-7$
 $y = 2\sqrt{u} = 2u^{0.5}$
b) $f'(11) = \frac{1}{\sqrt{11-7}}$

a) Obtenha
$$f'(x)$$
.
b) Calcule $f'(11)$.
 $y' = (2u^{95})' \cdot u'$
 $y' = 2 \cdot 0.5 u^{-0.5} \cdot 1$
 $y' = (x - 7)^{-0.5}$
 $y' = \frac{1}{\sqrt{x - 7}}$
 $y' = \frac{1}{\sqrt{x - 7}}$

4ª Questão (1,0 ponto):

A função $f(x) = x^4 - 6x^3 + 10x^2$ tem ponto de máximo local em x = 2? Em caso positivo, determine-o.

f'(x) =
$$4x^3 - 18x^2 + 20x$$
 $f''(x) = 12x^2 - 36x + 20$
 $f'(x) = 4 \cdot 2^3 - 18 \cdot 2^2 + 20 \cdot 2$ $f''(x) = 12 \cdot 2^2 - 36 \cdot 2 + 20$
 $f'(x) = 32 - 72 + 40$ $f''(x) = 48 - 72 + 20 = -4 < 0$
 $f'(x) = 32 - 72 + 40$ $f''(x) = 48 - 72 + 20 = -4 < 0$
 $f'(x) = 4 \cdot 2^3 - 18 \cdot 2^2 + 20 \cdot 2$ $f''(x) = 48 - 72 + 20 = -4 < 0$
 $f''(x) = 4 \cdot 2^3 - 18 \cdot 2^2 + 20 \cdot 2$ $f''(x) = 48 - 72 + 20 = -4 < 0$

$$f(2) = 2^4 - 6 \cdot 2^3 + 10 \cdot 2^2 = 16 - 48 + 40 = 8$$
Rusporta: (218)

CURSO DE CIÊNCIA DA COMPUTAÇÃO							
Disciplina: CÁLCULO I	Turma: CC2M	Data: 19/05/2023	Semestre: 2023/1	Nota:			
Avaliação: 2º BIMESTRE — TESTE	Professor(a): LUCIANA B. FIORO						
Aluno(a):			Assuntos: Derivada de uma função e regras de derivação				
Aluno(a): 6ABAR1TO							

JUSTIFIQUE TODAS AS SUAS RESPOSTAS.

1ª Questão (1,0 ponto):

 $f'(\alpha) = \frac{(\alpha^2 4) \cdot (\alpha + 3)' - (\alpha + 3) \cdot (\alpha^2 4)'}{(\alpha^2 4)^2}$

Obtenha a primeira derivada da função $f(x) = \frac{x+3}{x^2-4}$.

 $f'(x) = \frac{(x^2 4) \cdot 1 - (x + 3) \cdot 2x}{(x^2 4)^2}$

 $f'(\alpha) = \frac{x^2 4 - 2x^2 - 6x}{(x^2 4)^2} \Rightarrow f'(\alpha) = \frac{-x^2 - 6x - 4}{(x^2 4)^2}$

2ª Questão (1,0 ponto):

Dada a função $f(x) = e^x(x^2 - 3)$, calcule f'(0) e, se existir, o valor de x tal que f'(x) = 0.

$$f'(x) = e^{x}. (x^{2}-3)' + (x^{2}-3) \cdot (e^{x})' | f'(0) = e^{0}. (0^{2}+2\cdot0-3)| e^{x}. (x^{2}+2x-3) = 0$$

$$f'(x) = e^{x}. 2x + (x^{2}-3) \cdot e^{x} | f'(0) = 1 \cdot (-3) | x^{2}+2x-3 = 0$$

$$f'(x) = e^{x}. (x^{2}+29c-3) | f'(0) = -3 | \Delta = 4+12 | x' = -2+4 = 1$$

$$A = 16 | x'' = -2+4 = -3$$
33 Questão (1 Quento):

3ª Questão (1,0 ponto):

a) u= x+5 Seja a função $f(x) = 2\sqrt{x+5}$.

a) Obtenha f'(x).

 $y = 2\sqrt{u} = 2u^{0.5}$ $y' = (2\sqrt{u})' \cdot u'$ $y' = 2 \cdot 0.5u^{-0.5} \cdot 1$ $y' = (x+5)^{-0.5} \cdot 1$ $y' = \frac{1}{\sqrt{x+5}}$ where the provided $y' = \frac{1}{\sqrt{x+5}}$

$$y' = 2.0,5 \mu^{-0.5}$$
 $y' = (x+5)^{-0.5}$
 $y' = (x+5)^{-0.5}$

4ª Questão (1,0 ponto):

b) Calcule f'(11).

A função $f(x) = x^4 - 6x^3 + 10x^2$ tem ponto de máximo local em x = 2? Em caso positivo, determine-o.

$$f'(x) = 4x^{3} - 18x^{2} + 20x$$

$$f''(x) = 4x^{3} - 18x^{2} + 20x$$

$$f''(x) = 4x^{2} - 36x + 20$$

$$f''(x) = 4x^{2} - 36x + 20$$

$$f'(2) = 32 - 72 + 40$$
 $f''(2) = 48 - 72 + 20 = -4 < 0$

logo em se=2 teremos um pento de máximo local.

$$f(2) = 2^4 - 6 \cdot 2^3 + 10 \cdot 2^2 = 16 - 48 + 40 = 8$$

Resposta: (2,8)