readme

nybo

November 24, 2019

Contents

1	Norms	1
2	Tensor rank	2
3	SVD	2
4	Covar	3

Things i keep forgetting

1 Norms

def

- 1. Positivity $||x|| \ge 0$
- 2. Positive definiteness $||x|| = 0 \iff x = 0$
- 3. Homogeneity $\|\alpha x\| = |\alpha| \|x\|$ for arbitrary scalar α
- 4. Triangle inequality $||x + y|| \le ||x|| + ||y||$

Note: not sure if this holds for ever norm

The different matrix ones (Norms on $A \in \mathbb{R}^{m \times n}$)

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|$$

$$||A||_2 = \sqrt{\lambda_{\max}\left(A^T A\right)}$$

Frobenius norm, sometimes also called the Euclidean norm

$$\|\mathbf{A}\|_F \equiv \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|$$

$\text{Vector norms (Norms on } \mathbb{R}^n)$

$$|\mathbf{x}|_p \equiv \left(\sum_i |x_i|^p\right)^{1/p}$$

special case:

$$|\mathbf{x}|_{\infty} \equiv \max_{i} |x_i|$$

Tips: pretty sure think $\|\cdot\|$ usually just refers to the 2-norm.

Scalar norm (Norm on C[a,b])

$$||f||_{p} = \left(\int_{a}^{b} |f(\tau)|^{p} d\tau\right)^{\frac{1}{p}}, \quad p \in [1, \infty]$$

$$||f||_{\infty} = \sup_{a \le t \le b} |f(t)|$$

$$,$$

$$\mathcal{L}_{p} - \text{ norms}$$

$$(1)$$

 $C[0,\infty), \mathscr{L}_p$ is a Banach space

 $f \in \mathcal{L}_p \Leftrightarrow ||f||_p$ is bounded, i.e. $\exists c : ||f||_p \le c$

2 Tensor rank

rank	object
0	scalar
1	vector
2	matrix (/Dyad)
>3	tensor

Also sometimes triad, tetrad are used to refer to tensors of rank 3 and 4 respectively. Some refer to the rank of a tensor as its order or its degree.

3 SVD

Example:
$$A = \begin{bmatrix} 0 & 1 & 1 \\ \sqrt{2} & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

The SVD is defined as

$$A = P\Sigma Q^T$$

Method

Computing:

$$AA^{T} = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 6 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$
$$-\lambda^{3} + 10\lambda^{2} - 16\lambda = -\lambda (\lambda^{2} - 10\lambda + 16)$$
$$= -\lambda(\lambda - 8)(\lambda - 2)$$
 (2)

Eigenvals of AA^T are $\lambda = 8, \lambda = 2, \lambda = 0$, thus the singular values are $\sigma_1 = 2\sqrt{2}, \sigma_2 = \sqrt{2}$ (and $\sigma_3 = 0$).

Giving out the matrix

$$\Sigma = 0_{3x3} + \sigma = \begin{bmatrix} 2\sqrt{2} & 0 & 0\\ 0 & \sqrt{2} & 0\\ 0 & 0 & 0 \end{bmatrix}$$

Finding the eigenvectors $(A - \lambda I)\mathbf{x} = \mathbf{0}$, we get respetively to the egienvector who is described before: $p_1 = \left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$, $p_2 = \left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$ and $p_3 = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)$ (note: normalised vectors).

Yeilding

$$P = \begin{bmatrix} p_1{}^T p_2{}^T p_3{}^T \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$
$$A^T A = \begin{bmatrix} 2 & 2\sqrt{2} & 0 \\ 2\sqrt{2} & 6 & 2 \\ 0 & 2 & 2 \end{bmatrix}$$

With the eigenvals $\lambda=8,\lambda=2,\lambda=0$ with eigenvectors $q_1=\left(\frac{1}{\sqrt{6}},\frac{3}{\sqrt{12}},\frac{1}{\sqrt{12}}\right),q_2=\left(\frac{1}{\sqrt{3}},0,-\frac{2}{\sqrt{6}}\right)$ and $q_3=\left(\frac{1}{\sqrt{2}},-\frac{1}{2},\frac{1}{2}\right)$. (Acually can also use the formula $p_i=\frac{1}{\sigma_i}A^Tp_i$ to get the various q_i .

$$Q = \left[q_1^T q_2^T q_3^T \right] \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{3}{\sqrt{12}} & 0 & -\frac{1}{2} \\ \frac{1}{\sqrt{12}} & -\frac{2}{\sqrt{6}} & \frac{1}{2} \end{bmatrix}$$

We have then the SVD defined as

$$A = P\Sigma Q^T$$

4 Covar