NASSAU COUNTY INTERSCHOLASTIC MATHEMATICS LEAGUE

Suggested Solutions

Contest #5

2008-2009

25. Let the numbers be x and x + 14. Then,
$$\frac{x+x+14}{2} = \sqrt{x(x+14)} + 1$$
; $x+6 = \sqrt{x^2+14x}$; $x^2 + 12x + 36 = x^2 + 14x$; $x=18$.

Answer: 32

26.
$$\frac{\log 2^7}{\log 2^{-2}} = \frac{7 \log 2}{-2 \log 2} = -\frac{7}{2} = -3.5$$
.

Answer: -3.5

27. The diagonal, d, of a rectangular prism with dimensions l, w, and h is $d = \sqrt{t^2 + w^2 + h^2}$. Let the third dimension be h. $h = \sqrt{26^2 - \left[\left(4\sqrt{19}\right)^2 + \left(8\sqrt{3}\right)^2\right]} = \sqrt{180}$

Answer: $6\sqrt{5}$

28. 399.91 = 400 - .09 and 159999.9919 = 160000 - .0081.

$$\frac{400 - 0.09}{160000 - .0081} = \frac{20^2 - (.3)^2}{20^4 - (.3)^4} = \frac{1}{20^2 - (.3)^2} = \frac{1}{400.09}$$

Answer: $\frac{100}{40009}$

29. Drop an altitude to the side of length $\sqrt{29}$, separating the side into two segments of lengths x and $\sqrt{29}$ – x. Let the altitude have length h. Then, $h^2 = 17 - x^2$ and $h^2 = 20 - (29 - 2x\sqrt{29} + x^2)$.

$$17 - x^2 = -x^2 + 2x\sqrt{29} - 9$$
 and $x = \frac{13}{\sqrt{29}}$; $h = \frac{18}{\sqrt{29}}$. The area is $(0.5) \left(\frac{18}{\sqrt{29}}\right) \left(\sqrt{29}\right)$.

An altitude may be dropped to either of the other two sides. The answer yielded will be the same.

Answer: 9

30. $\sin \theta \cos \theta = \frac{1}{4}$; $\frac{1}{2} \sin 2\theta = \frac{1}{4}$; $\sin 2\theta = \frac{1}{2}$; $2\theta = 30^{\circ}$ or 150° .

Answer: 15 and 75 or 15° and 75°