Análisis de elementos sujetos a carga axial

Esfuerzo normal:

Es generado cuando la viga está sometida a un momento flector, es decir, cuando actúa una fuerza transversal sobre ella. Se mide con las unidades de [Pa] ó [psi].

$$\epsilon = \frac{\triangle L}{L_0} \tag{1}$$

$$\sigma = \frac{P}{A} = E\epsilon \tag{2}$$

Donde:

Variable	Definición	Unidad
ϵ	Deformación unitaria	[]
L	Longitud del elemento	[m] ó $[in]$
P	Fuerza axial aplicada	$[N]$ ó $[lb_f]$
A	Área transversal a la fuerza	$[m^2]$ ó $[in^2]$
<i>E</i>	Módulo de elasticidad o módulo de Young	[Pa] ó $[psi]$

Esfuerzo cortante:

Es generado cuando hay una fuerza cortante en la sección transversal la viga. Se mide con las unidades de [Pa] ó [psi].

Cortante simple:

$$\tau = \frac{P}{A} \tag{3}$$

Cortante doble:

$$\tau = \frac{P}{2A} \tag{4}$$

Donde:

Variable	Definición	Unidad
\overline{P}	Fuerza perpendicular cortante	$[N]$ ó $[lb_f]$
A	Área de corte	$[m^2]$ ó $[in^2]$

Esfuerzo por aplastamiento:

Es generado cuando una fuerza se transmite a través de superficies de contacto pequeñas, como en uniones con pernos o pasadores, donde el perno presiona el material. Se mide con las unidades de [Pa] ó [psi].

$$\sigma_B = \frac{P}{A} \tag{5}$$

Donde:

Variable	Definición	Unidad
P	Fuerza perpendicular cortante	$[N]$ ó $[lb_f]$
<i>A</i>	Área proyectada del barreno	$[m^2]$ ó $[in^2]$

Deformación axial:

Se genera cuando un elemento está sometido a una carga axial centrada, generando una deformación uniforme (extensión o compresión) a lo largo de su longitud. Se mide con las unidades de [m] ó [in].

$$\delta = \frac{PL}{AE} \tag{6}$$

Donde:

Variable	Definición	Unidad
P	Fuerza axial aplicada	$[N]$ ó $[lb_f]$
L	Longitud del elemento	$[N]$ ó $[lb_f]$
A	Área transversal a la fuerza	m^2 ó $[in^2]$
E	Módulo de elasticidad o módulo de Young	[Pa] ó $[psi]$

Modulo de Poisson:

Se aplica cuando un material es sometido a una carga axial y, como resultado, además de extenderse o comprimirse en la dirección de la carga, también cambia de tamaño en la dirección perpendicular a la carga.

$$\epsilon_x = \frac{\sigma_x}{E} - \frac{\nu \sigma_y}{E} - \frac{\nu \sigma_z}{E} \tag{7}$$

$$\epsilon_y = -\frac{\sigma_x}{E} + \frac{\sigma_y}{E} - \frac{\nu \sigma_z}{E} \tag{8}$$

$$\epsilon_z = -\frac{\nu \sigma_x}{E} - \frac{\nu \sigma_y}{E} + \frac{\sigma_z}{E} \tag{9}$$

Donde:

Variable	Definición	Unidad
σ	Esfuerzo aplicado	$[m^2]$ ó $[in^2]$
ν	Modulo de Poisson	[]
E	Módulo de elasticidad o módulo de Young	[Pa] ó $[psi]$

Análisis de elementos sujetos a torsión

Relación de engranajes:

Análisis estatico:

$$\frac{T_A}{r_A} = \frac{T_B}{r_B} \tag{10}$$

Análisis cinematico:

$$r_A \omega_A = r_B \omega_B \tag{11}$$

$$r_A \phi_A = r_B \phi_B \tag{12}$$

Donde:

Variable	Definición	Unidad
\overline{T}	Torque aplicado	$[N \cdot m]$ ó $[lb_f \cdot in]$
r	Radio de eje sometido a torsion	[m] ó $[in]$
ω	Velocidad angular	$\left[\frac{rad}{s}\right]$
ϕ	Desplazamiento angular	[rad]

Momento polar de inercia (J):

Es generado cuando una sección estructural está sometida a torsión (giro alrededor de su eje longitudinal).

Eje redondo sólido:

$$J = \frac{\pi}{2}r^4 = \frac{\pi}{32}d^4 \tag{13}$$

Eje redondo tubular:

$$J = \frac{\pi}{2} \left(r_1^4 - r_2^4 \right) = \frac{\pi}{32} \left(d_1^4 - d_2^4 \right) \tag{14}$$

Donde:

Variable	Definición	Unidad
\overline{r}	Radio de eje sometido a torsion	[m] ó $[in]$
d	Diametro de eje sometido a torsion	[m] ó $[in]$

Esfuerzo cortante por torsión:

Es generado cuando hay un momento de torsión T aplicado sobre el eje longitudinal de la viga.

$$\tau = \frac{Tc}{J} \tag{15}$$

Donde:

Variable	Definición	Unidad
\overline{T}	Torque aplicado	$[N \cdot m]$ ó $[lb_f \cdot in]$
c	Distancia desde el eje neutro hasta la fibra extrema	[m] ó $[in]$
J	Momento po- lar de inercia de la sección transversal	$[m^2]$ ó $[in^2]$

Deformacion por torsion:

Es generado cuando la viga es sometida a un momento torsional, es decir, cuando se aplica una fuerza que genera un giro en torno al eje longitudinal de la viga. Se mide en [rad] ó $[\circ]$.

$$\phi = \frac{TL}{GJ} \tag{16}$$

Donde:

Variable	Definición	Unidad
T	Torque aplicado	$[N \cdot m]$ ó $[lb_f \cdot in]$
L	Longitud de la viga	[m] ó $[in]$
G	Módulo de rigidez del material x	[Pa] ó $[psi]$
J	Momento po- lar de inercia de la sección transversal	$[m^4]$ ó $[in^4]$

Análisis de elementos sujetos a flexión

Momento de inercia (I):

Es generado cuando una sección estructural está sometida a flexión. Se mide en $[m^4]$ ó $[in^4]$

Viga con forma rectangular:

$$I_x = \frac{bh^3}{12} \tag{17}$$

$$I_y = \frac{hb^3}{12} \tag{18}$$

Viga con forma redonda:

$$I_x = I_y = \frac{\pi}{4}r^4 = \frac{\pi}{64}d^4 \tag{19}$$

Donde:

Variable	Definición	Unidad
b	Longitud de la base del rectángulo	[m] ó $[in]$
h	Longitud de la altura del rectángulo	[m] ó $[in]$
r	Radio de eje sometido a flexión	[m] ó $[in]$
d	Diámetro de eje sometido a flexión	[m] ó $[in]$

Esfuerzo normal:

Es generado cuando la viga está sometida a un momento flector, es decir, cuando actúa una fuerza transversal sobre ella. Se mide con las unidades de [Pa] ó [psi].

$$\sigma = \frac{M(x)c}{I} \tag{20}$$

Donde:

Variable	Definición	Unidad
M(x)	Ecuación de momento flector en sección x	$[N\cdot m]$ ó $[lb_f\cdot in]$
c	Distancia desde el eje neutro hasta la fibra extrema	[m] ó $[in]$
I	Momento de in- ercia	$[m^4]$ ó $[in^4]$

Esfuerzo cortante:

Es generado cuando hay una fuerza cortante en la sección transversal la viga. Se mide con las unidades de [Pa] ó [psi].

Viga con forma rectangular:

$$\tau = \left(\frac{3}{2}\right) \left(\frac{V(x)}{A}\right) \tag{21}$$

Viga con forma redonda:

$$\tau = \left(\frac{4}{3}\right) \left(\frac{V(x)}{A}\right) \tag{22}$$

Viga con forma redonda hueca:

$$\tau = \frac{2V(x)}{A} \tag{23}$$

Donde:

Variable	Definición	Unidad
V(x)	Ecuacion de fuerza cortante en sección x	$[N]$ ó $[lb_f]$
A	Área transversal a la fuerza	$[m^2]$ ó $[in^2]$

Deformacion por flexión:

Es generada cuando una viga es sometida a un momento flector, es decir, cuando una fuerza transversal actúa sobre la viga en un punto determinado. Se mide en [m] ó [in].

$$EI\frac{d^2y}{dx^2} = M(x) \tag{24}$$

$$\frac{dy}{dx} = \frac{1}{EI} \int M(x)dx + C_1 \tag{25}$$

$$y(x) = \frac{1}{EI} \iint M(x)dxdx + C_1x + C_2 \qquad (26)$$

Donde:

Variable	Definición	Unidad
\overline{E}	Modulo de Young	[Pa] ó $[psi]$
I	Momento de in- ercia	$[m^4]$ ó $[in^4]$
M(x)	Ecuación de momento flector en sección x	$[N\cdot m]$ ó $[lb_f\cdot in]$