Computational Techniques Coursework 5

Solution 1

Using the l_1 norm, we can find the condition number using

$$\operatorname{cond}(A) = \|A^{-1}\|_1 \|A\|_1$$

To find A^{-1} , we need to use the inverse matrix of a 2 imes 2 matrix

$$A^{-1} = \frac{1}{\frac{1}{15} - \frac{1}{16}} \begin{bmatrix} \frac{1}{5} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{1}{3} \end{bmatrix}$$
$$= 240 \cdot \begin{bmatrix} \frac{1}{5} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{1}{3} \end{bmatrix}$$
$$= \begin{bmatrix} 48 & -60 \\ -60 & 80 \end{bmatrix}$$

Then we find $\|A^{-1}\|_1$ and $\|A\|_1$

$$||A^{-1}|| = 140$$
$$||A|| = \frac{7}{12}$$

Hence the condition number of A using the l_1 norm is $\frac{245}{3}$

i) The condition of A under l_1 norm is shown above. The condition number of A is a relatively small figure($\frac{245}{3} \approx = 81.67$), so this matrix is well-conditioned. The output size will change according to the input with a factor of $\frac{245}{3}$.

ii) The l_{∞} norm of A is $\frac{7}{12}$ and the l_2 norm of A is $\frac{\sqrt{497}}{30\sqrt{2}}$. The corresponding condition numbers of A are as follows

$$egin{split} ext{cond}_{l_2}(A) &= rac{\sqrt{497}}{30\sqrt{2}} \cdot \sqrt{15904} = rac{1988}{30} = rac{994}{15} \ & ext{cond}_{l_{\infty}}(A) = rac{7}{12} \cdot 140 = rac{245}{3} \end{split}$$

Solution 2

Using l_{∞} norm of A, we can find the condition number of A as follows

$$\operatorname{cond}(A) = ||A||_{\infty} ||A^{-1}||_{\infty} = 4 \cdot 3 = 12$$

Solution 3

Using the l_1 norm of A, we can find its condition number as follows

$$A^{-1} = -rac{1}{13} egin{bmatrix} 6 & 1 & 6 \ 1 & -2 & 1 \ 6 & 1 & 19 \end{bmatrix}$$

$$\operatorname{cond}(\mathbf{A}) = ||A||_1 ||A^{-1}||_1 = 5 \cdot 0 = 0$$

Solution 4

To show that x_n converges to 1, we need to prove that $orall \epsilon>0 \exists N\in\mathbb{R} \ s.\ t.\ orall n>N, |x_n-1|<\epsilon.$

We know that

$$|1 + \frac{1}{n} - 1| < \epsilon$$
 $\frac{1}{n} < \epsilon$ $\frac{1}{\epsilon} < n$

Let $N=\lceil \frac{1}{\epsilon} \rceil$, then this value of N can always satisfy the statement above.

Hence, the sequence \boldsymbol{x}_n converges to $\boldsymbol{1}$

Solution 5

Using the Cauchy-test, we need to show that $orall \epsilon>0 \exists N\in R$ such that $orall n>m>N, |a_n-a_m|<\epsilon$

$$|a_n-a_m|<\epsilon \ |\sum_{i=1}^nrac{1}{i}-\sum_{i=1}^mrac{1}{i}|<\epsilon \ \sum_{i=m+1}^nrac{1}{i}<\epsilon$$

No matter how big N is, we can always know that

$$\sum_{i=m+1}^n \frac{1}{i} > \sum_{i=m+1}^n \frac{1}{n}$$

Hence we can always find a smaller value ϵ than $|a_n-a_m|$, which proves that there is no N satisfying the given condition and the series diverges.

Without using the Cauchy-test, we can say that

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = 1 + (\frac{1}{2}) + (\frac{1}{3} + \frac{1}{4}) + (\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}) + \dots$$

$$> 1 + (\frac{1}{2}) + (\frac{1}{4} + \frac{1}{4}) + (\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}) + \dots$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \dots = \infty$$

Solution 6

i) The matrix M and vector \vec{c} are as follows

$$egin{aligned} ec{v}_{n+1} &= \mathbf{M} ec{v}_n + ec{c} \ egin{bmatrix} a_{n+1} \ b_{n+1} \end{bmatrix} &= \mathbf{M} egin{bmatrix} a_n \ b_n \end{bmatrix} + ec{c} \ egin{bmatrix} a_{n+1} \ b_{n+1} \end{bmatrix} &= egin{bmatrix} lpha & 0 \ 0 & eta \end{bmatrix} egin{bmatrix} a_n \ b_n \end{bmatrix} + egin{bmatrix} 1 \ 2 \end{bmatrix} \end{aligned}$$

Therefore

$$M = egin{bmatrix} lpha & 0 \ 0 & eta \end{bmatrix}, ec{c} = egin{bmatrix} 1 \ 2 \end{bmatrix}$$

ii) We can prove that $ec v_n$ will converge as $n o\infty$ by showing that $f(ec v)={f M}ec v+ec c$ is a contraction.

$$egin{aligned} \|f(ec{v}_1) - f(ec{v}_2)\| &= \|\mathbf{M}ec{v}_1 + ec{c} - \mathbf{M}ec{v}_2 - ec{c}\| \ &= \|\mathbf{M}(ec{v}_1 - ec{v}_2)\| \ &\leq \|\mathbf{M}\| \|ec{v}_1 - ec{v}_2\| \end{aligned}$$

Since lpha, eta < 1, we have $\|M\|_1 < 1$ and $\|M\|_\infty < 1$. Using either of the two (consistent) norm we can confirm that $d(f(\vec{v}_1), f(\vec{v}_2)) \leq \sigma(\vec{v}_1, \vec{v}_2)$, where $\sigma < 1$. This proves that $f(\vec{v})$ is a contraction. By the Fixed Point Theorem, there exists a \vec{v}_n such that $\vec{v}_n = \mathbf{M} \vec{v}_n + \vec{c}$.

$$egin{bmatrix} a_n \ b_m \end{bmatrix} = egin{bmatrix} lpha & 0 \ 0 & eta \end{bmatrix} egin{bmatrix} a_n \ b_n \end{bmatrix} + egin{bmatrix} 1 \ 2 \end{bmatrix} \ egin{bmatrix} (1-lpha)a_n \ (1-eta)b_n \end{bmatrix} = egin{bmatrix} 1 \ 2 \end{bmatrix} \ egin{bmatrix} a_n \ b_n \end{bmatrix} = egin{bmatrix} rac{1}{1-lpha} \ rac{2}{1-eta} \end{bmatrix}$$

Hence $ec{v}_n$ converges to $\left[egin{array}{c} rac{1}{1-lpha} \ rac{2}{1-eta} \end{array}
ight]$ when $n o\infty$.

The reason that a_n and b_n converge is as follows

$$a_n = \alpha a_{n-1} + 1 = \alpha(\alpha a_{n-2} + 1) + 1$$

= $\alpha^2 a_{n-2} + \alpha + 1$
= $\alpha^3 a_{n-3} + \alpha^2 + \alpha + 1$
= $\alpha^{n-1} a_1 + \alpha^{n-2} + \alpha^{n-3} + \dots + 1$

When $n\to\infty$, $\alpha^{n-1}\to 0$ and $\alpha^{n-2}+\alpha^{n-3}+\ldots+1=\frac{1}{1-\alpha}$. Hence $a_n=\frac{1}{1-\alpha}$ when $n\to\infty$. Same reasoning for the convergence of b_n .

iii) From the information given in the question, we have

$$egin{aligned} a_{n+1} &= lpha a_n + 1 \ b_{n+1} &= eta b_n + 2 \ c_{n+1} &= a_{n+1} + b_{n+1} = lpha a_n + eta b_n + 3 = (lpha - eta) a_n + eta (a_n + b_n) + 3 = (lpha - eta) a_n + eta c_n + 3 \end{aligned}$$

Hence we can construct the linear system

$$egin{bmatrix} a_{n+1} \ b_{n+1} \ c_{n+1} \end{bmatrix} = egin{bmatrix} lpha a_n & 0 & 0 \ 0 & eta b_n & 0 \ (lpha - eta) a_n & 0 & eta c_n \end{bmatrix} + egin{bmatrix} 1 \ 2 \ 3 \end{bmatrix} \ = egin{bmatrix} lpha & 0 & 0 \ 0 & eta & 0 \ 0 & eta & 0 \end{bmatrix} egin{bmatrix} a_n \ b_n \ c_n \end{bmatrix} + egin{bmatrix} 1 \ 2 \ 3 \end{bmatrix}$$

which proves the statement.

We can show that c_n converges by showing that $ec{w}_n$ converges

Again, we will show that $f(ec{w}_n) = \mathbf{M}'ec{w}_n + ec{c}'$ is a contraction

$$egin{aligned} \|f(ec{w}_1) - f(ec{w}_2)\| &= \|\mathbf{M}'ec{w}_1 + ec{c}' - \mathbf{M}'ec{w}_2 - ec{c}'\| \ &= \|\mathbf{M}'(ec{w}_1 - ec{w}_2)\| \ &\leq \|\mathbf{M}'\| \|ec{w}_1 - ec{w}_2\| \end{aligned}$$

By choose a consistent norm such as l_{∞} norm, we can show that $\|M'\| < 1$.

$$l_{\infty} = \max_i \sum_j w_{ij} = lpha < 1$$

which means tht $f(ec{w})$ is a contraction and that there exists a $ec{w}_n$ such that $ec{w}_n = \mathbf{M}' ec{w}_n + ec{c}'$

$$(\mathbf{I}_3 - \mathbf{M}') \vec{w}_n = \vec{c}'$$

$$\begin{bmatrix} 1 - lpha & 0 & 0 \\ 0 & 1 - eta & 0 \\ eta - lpha & 0 & 1 - eta \end{bmatrix} \begin{bmatrix} a_n \\ b_n \\ c_n \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} (1 - lpha) a_n \\ (1 - eta) b_n \\ (eta - lpha) a_n + (1 - eta) c_n \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} a_n \\ b_n \\ c_n \end{bmatrix} = \begin{bmatrix} \frac{1}{1 - lpha} \\ \frac{2}{1 - eta} \\ \frac{3 - \frac{eta - lpha}{1 - eta}}{1 - eta} \end{bmatrix} = \begin{bmatrix} \frac{1}{1 - lpha} \\ \frac{2}{1 - eta} \\ \frac{3 - 2lpha - eta}{(1 - lpha)(1 - eta)} \end{bmatrix}$$

Hence c_n will converges to $rac{3-2lpha-eta}{(1-lpha)(1-eta)}$ when $n o\infty$

Solution 7

Metric space is a non-empty set S of points together with a mapping $d: S \times S \to \mathbb{R}$ satisfying the following properties

$$d(x, x) = 0$$

 $d(x, y) > 0 ext{ if } x \neq y$
 $d(x, y) = d(y, x)$
 $d(x, y) \leq d(x, z) + d(z, y)$

The norm of the difference between two vectors satisfies those properties. Let A, B and C be three different matrices, then

$$\begin{split} \|A-A\| &= \|\mathbf{0}\| = 0 \\ \|A-B\| &> 0 \end{split} \qquad \text{(by the definition of norm e.g.} \sum_{ij} (x_{ij}^p)^{\frac{1}{p}}) \\ \|A-B\| &= \|B-A\| \qquad \text{(since the norms are taken with absolute values)} \\ \|A-C\| &\leq \|A-B\| + \|B-C\| \qquad \text{(by triangular inequality)} \end{split}$$

We now prove that $(\mathbf{I} - \mathbf{M})\mathbf{G}_n = \mathbf{I} - \mathbf{M}^{n+1}$

$$(\mathbf{I} - \mathbf{M})\mathbf{G}_n = \mathbf{G}_n - \mathbf{M}\mathbf{G}_n$$

 $= \mathbf{I} + \mathbf{M} + \mathbf{M}^2 + \mathbf{M}^3 + \dots + \mathbf{M}^n - (\mathbf{M} + \mathbf{M}^2 + \mathbf{M}^3 + \dots + \mathbf{M}^{n+1})$
 $= \mathbf{I} + (\mathbf{M} - \mathbf{M}) + (\mathbf{M}^2 - \mathbf{M}^2) + \dots + (\mathbf{M}^n - \mathbf{M}^n) - \mathbf{M}^{n+1}$
 $= \mathbf{I} - \mathbf{M}^{n+1}$

For any submultiplicative matrix norm, we have

$$\|Ax\| \leq \|A\| \|x\|$$

Hence for \mathbf{M}^n we have

$$\|\mathbf{M}^n\| \le \|\mathbf{M}^{n-1}\| \|\mathbf{M}\| \le \|\mathbf{M}^{n-2}\| \|\mathbf{M}\| \|\mathbf{M}\| \le \ldots \le \|\mathbf{M}\|^n$$

Since $\|\mathbf{M}\| < 1$, when $n \to \infty$, $\|\mathbf{M}\|^n \to 0$ and hence $\|\mathbf{M}^n\| \to 0$, which means that \mathbf{M}^n is the zero matrix.

From the previous equation of $(\mathbf{I}-\mathbf{M})\mathbf{G}_n=\mathbf{I}-\mathbf{M}^{n+1}$, when $n o\infty$, it becomes

$$egin{aligned} (\mathbf{I} - \mathbf{M}) \mathbf{G}_{\infty} &= \mathbf{I} - \mathbf{0} \\ \mathbf{G}_{\infty} &= (\mathbf{I} - \mathbf{M})^{-1} \end{aligned}$$

Solution 8

In order to use the matrix \mathbf{M}^2 , we need to construct $\vec{v}_{n+1} = \mathbf{M}^2 \vec{v}_{n-1}$.

To prove the convergence of $ec{v}_n$, we need to show that $f(ec{v}) = \mathbf{M}^2 ec{v}$ is a contraction

$$egin{aligned} \|f(ec{v}_1) - f(ec{v}_2)\| &= \|\mathbf{M}^2 ec{v}_1 - \mathbf{M}^2 ec{v}_2\| \ &= \|\mathbf{M}^2 (ec{v}_1 - ec{v}_2)\| \ &\leq \|\mathbf{M}^2\| \|ec{v}_1 - ec{v}_2\| \end{aligned}$$

We now show that $\|\mathbf{M}^2\| < 1$ by choosing a suitable norm

$$\mathbf{M}^2 = egin{bmatrix} 0.75 & 0.2 \ 1 & 0 \end{bmatrix} egin{bmatrix} 0.75 & 0.2 \ 1 & 0 \end{bmatrix} = rac{1}{80} egin{bmatrix} 61 & 12 \ 60 & 16 \end{bmatrix}$$

We then choose the consistent l_∞ norm of the matrix and hence $\|\mathbf{M}^2\|_\infty = rac{76}{80} < 1$

This proves that $f(\vec{v}_n)$ is a contraction and by the Fixed Point Theorem, ther exists a \vec{v}_n such that $\vec{v}_n=\mathbf{M}^2\vec{v}_n$

$$\begin{bmatrix} x_{n+1} \\ x_n \end{bmatrix} = \frac{1}{80} \begin{bmatrix} 61 & 12 \\ 60 & 16 \end{bmatrix} \begin{bmatrix} x_{n+1} \\ x_n \end{bmatrix}$$

$$80 \begin{bmatrix} x_{n+1} \\ x_n \end{bmatrix} = \begin{bmatrix} 61 & 12 \\ 60 & 16 \end{bmatrix} \begin{bmatrix} x_{n+1} \\ x_n \end{bmatrix}$$

$$\Rightarrow \begin{cases} 80x_{n+1} = 61x_{n+1} + 12x_n \\ 80x_n = 60x_{n+1} + 16x_n \end{cases}$$

$$\Rightarrow \begin{cases} x_{n+1} = \frac{76}{79}x_n \\ x_n = 0 \end{cases}$$

$$\Rightarrow x_{n+1} = x_n = 0$$

Hence $ec{v}_{\infty}=ec{0}$ and $x_{\infty}=0$