## Short Course. Análisis No Supervisado

Víctor Aceña Gil Data Science Lab. UBJC

Enero 2023





### Índice



- 1 Entender el problema. Objetivos de negocio
- 2 Técnicas
- Paso a paso funcional
- Para recordar

# Entender el problema. Objetivos de negocio

### ¿Qué es el Análisis No Supervisado?



El aprendizaje automático que utiliza datos no etiquetados se denomina aprendizaje no supervisado.

- A veces, la tarea consiste en encontrar cualquier relación que exista el conjunto de datos (reglas de asociación).
- Los algoritmos de agrupación o Clustering examinan datos para encontrar grupos de observaciones que sean más similares entre sí que los objetos de otros grupos.

#### Ciclo de la Ciencia de Datos





### Objetivos de negocio



El análisis clustering es una herramienta potente generalmente utilizada para agrupar y segmentar observaciones o clientes en función de sus similitudes.

• En un entorno empresarial, este análisis puede utilizarse para obtener información valiosa sobre el comportamiento y las preferencias de los clientes, que luego puede utilizarse para mejorar las estrategias de marketing, optimizar las ventas y la distribución, y aumentar la satisfacción general de los clientes. Al identificar grupos de clientes similares, las empresas pueden dirigirse a grupos específicos con promociones y ofertas a medida, lo que se traduce en esfuerzos de marketing más eficaces y eficientes. Además, el análisis clustering puede utilizarse para identificar nuevos segmentos de mercado potenciales y oportunidades de expansión.

### Objetivos de negocio



- **Segmentación del mercado**: La agrupación puede utilizarse para segmentar un mercado en diferentes grupos de clientes con características o comportamientos similares.
- **Perfiles de clientes**: El clustering puede utilizarse para crear perfiles de clientes basados en sus datos demográficos, historial de compras y otra información relevante.
- **Gestión de inventarios**: El clustering puede utilizarse para agrupar productos similares y optimizar las decisiones de gestión de inventario.



- Evaluación de riesgos: El clustering puede utilizarse para identificar y agrupar clientes o transacciones con mayor riesgo de impago o fraude.
  - Detección de fraudes: El clustering puede utilizarse para identificar patrones de comportamiento fraudulento agrupando transacciones o clientes con características sospechosas.
- Detección de anomalías: La agrupación puede utilizarse para detectar valores atípicos o anomalías en grandes conjuntos de datos, como tráfico de red, datos de sensores, etc.
- Sistemas de recomendación: La agrupación puede utilizarse para crear sistemas de recomendación que sugieran productos o servicios a los clientes en función de su historial de compras u otras características.

# **Técnicas**



**K-means:** Se trata de un algoritmo muy utilizado que divide un conjunto de datos en k grupos, cada uno de ellos definido por la media (o "centroide") de los puntos del grupo.

- Fácil de entender y aplicar
- Sensible a la ubicación inicial de los centroides y puede no funcionar bien con conglomerados no esféricos o circulares.

**Agrupaciones jerárquicas:** Se construye un árbol jerárquico de conglomerados, donde cada nodo del árbol representa un conglomerado y las hojas representan puntos de datos individuales.

 Puede utilizarse para identificar clusters anidados y puede manejar bien clusters no esféricos.



## DBSCAN (Agrupación espacial de aplicaciones con ruido basada en la densidad):

Agrupa las observaciones que están muy cercanas y separa aquellas que están más alejadas.

 No requiere que se especifique de antemano el número de clusters y puede manejar clusters de diferentes formas y densidades.

Gaussian Mixture Model (GMM): Se trata de un modelo probabilístico que asume que los datos se generan a partir de una mezcla de distribuciones gaussianas.

 Puede utilizarse para identificar conglomerados de diferentes formas y tamaños, así como para estimar la densidad.



Algoritmo de Expectation-Maximization (EM) Se trata de un método que funciona con datos incompletos o inciertos, en el que la información que falta se infiere a partir de los datos.

• Se puede utilizar para estimar los parámetros de un modelo GMM.

Éstas son algunas de las técnicas de agrupación más populares y utilizadas, pero existen muchos otros algoritmos y enfoques. La elección de la técnica dependerá de las características específicas de los datos y de los objetivos del análisis.

#### **Prácticas**



Enlace al material: aquí.

# Paso a paso funcional



- Preparación de los datos: Recoger y preprocesar los datos que se utilizarán para el análisis. Esto incluye la limpieza de los datos, el tratamiento de los valores faltantes y la transformación de los datos si es necesario. EDA.
- Selección de características: Seleccionar las características o variables que se utilizarán para el análisis. Este paso es importante para garantizar que las variables utilizadas son pertinentes e informativas.
- Distancia o métrica de similitud: Seleccionar una distancia o métrica de similitud que se utilizará para medir la similitud o disimilitud entre las observaciones. Las métricas más utilizadas son la distancia Euclídea, la distancia Manhattan y la similitud coseno.
- **Seleccionar el número de grupos**: Decidir el número de grupos que se desea formar. Pueden emplearse técnicas como el método del codo, la puntuación de silueta, etc.



- Entrenamiento del modelo: Entrenar el modelo de clustering utilizando los datos seleccionados, las características y la métrica de distancia. Se pueden utilizar diferentes algoritmos como K-means, Hierarchical, DBSCAN, etc.
- **Evaluación**: Evaluar el rendimiento del modelo de clustering comparando los clusters predichos con las etiquetas verdaderas o utilizando métricas como la puntuación de silueta o el índice de Davies-Bouldin.
- Interpretación: Interpretar los resultados del análisis de clustering analizando las características de los clusters e identificando patrones o tendencias en los datos.
- Visualización: Visualizar los resultados del análisis no supervisado utilizando diagramas y gráficos para ayudar a comunicar las lecciones aprendidas.

Los pasos pueden variar dependiendo del algoritmo de clustering específico utilizado, el conjunto de datos y el problema que se esté intentando resolver.

## Para recordar

17 / 18

### **Cheat Sheet**



Clustering Cheat Sheet: aquí.