電腦數值機類編

實習一 (a)

B03702030 吳懿峰 2017.03.04

(a)、運用 Excel 帶入公式計算黑洞半徑

太陽質 量倍數	M 黑洞質量 (kg)	G 重力常數	c 光速(m/s)	r 黑洞半徑(m)
3.2	6.36512E+30	6.67E-11	2.998E+08	9.450E+03
4	7.9564E+30	6.67E-11	2.998E+08	1.181E+04
5	9.9455E+30	6.67E-11	2.998E+08	1.477E+04
6	1.19346E+31	6.67E-11	2.998E+08	1.772E+04
7	1.39237E+31	6.67E-11	2.998E+08	2.067E+04
8	1.59128E+31	6.67E-11	2.998E+08	2.362E+04
9	1.79019E+31	6.67E-11	2.998E+08	2.658E+04
10	1.9891E+31	6.67E-11	2.998E+08	2.953E+04
100	1.9891E+32	6.67E-11	2.998E+08	2.953E+05
1000	1.9891E+33	6.67E-11	2.998E+08	2.953E+06
10000	1.9891E+34	6.67E-11	2.998E+08	2.953E+07

步驟說明

- 1. 在黑洞質量 M 設定方程式=太陽質量倍數*1.9891*1E+30
- 2. 輸入重力常數 G=6.67E-11
- 3. 輸入光速 c=2.998E+08
- 4. 在黑洞半徑 r 欄設定方程式=2*M*G/(c*c)
- 5. 將太陽質量倍數依序填入所要求倍數
- 6. 將各表格向下拉即可得結果如上述附圖

心得發現

將上述整理之表格以折線圖呈現

發現黑洞半徑與其質量之關係是從 3.2 單位的太陽質量開始 以 2G/c²為正斜率之一直線

問題二、 如果地球成為一個 黑洞,其半徑為何? 事實上,地球不可能成為一個黑洞,因為黑洞的生成是源自極大質量的超巨星能量耗盡塌陷,而地球只是一顆行星,內部能量不足以成為一個黑洞。但如果我們假設有一個與地球質量相等且能量足夠成為黑洞的星球,其黑洞半徑算式為: 2*6.00E+24*G/c²,經由 excel 計算可得半徑 r= 8.908E-03

問題三、本題的心得或想法

在實習一 (a)中,其操作仍屬基本,僅需輸入幾個簡單的算式便能知道結果,看來這只是這堂課的暖身! 比較難的地方反而在於製作圖表部分,如何達到比較清晰明瞭的表達方式的確讓我花了較多的時間,最後成功做出底座標對數刻度為 10 的圖表,也順便教了不會的同學,也算是學到了不錯的一課!