

Machine Learning Neural Networks

Dariush Hosseini

dariush.hosseini@ucl.ac.uk Department of Computer Science University College London

Lecture Overview

- 1 Lecture Overview
- 2 Introduction
- 3 Evaluation
- 4 Optimisation
- 5 Overfitting
- 6 Summary

Lecture Overview¹

By the end of this lecture you should:

- Be familiar with Neural Networks and be aware of some of their beneficial properties and empirical successes
- Understand the backpropagation approach to optimisation of neural networks
- Be aware of the high **capacity** of neural networks, their tendency to **overfit** and some practical remedies for this problem

¹ This lecture is based in large part on Roger Grosse's excellent 'Introduction to Neural Networks' notes

Lecture Overview

- 1 Lecture Overview
- 2 Introduction
- 3 Evaluation
- 4 Optimisation
- 5 Overfitting
- 6 Summary

Examples

■ **Neural Networks** have exhibited great empirical success, and great popular and commercial attention in recent years, for example:

■ Object Recognition

Neural Networks achieved superhuman performance in 2011 Now used for tasks which were impossible only a few years ago

■ Speech Recognition

All major speech recognition systems are now based on neural networks: Alexa, Siri, Cortana...

■ Medicine

Moorfields Eye Hospital / DeepMind partnership build AI system that matches world-leading experts in diagnosing a range of eye conditions, recommending the correct referral decision for over 50 eye diseases with 94% accuracy (De Fauw et al., 2018).

The Biological Neuron

- **Neural Networks** started life as an attempt to model what goes on in the brain
- The **neuron** is the basic unit of processing in the brain
- It receives chemical signals from other neurons at junctions: the synapses
- It converts these signals into electrical signals, combines them, and if the combination is strong enough, generates an **action potential**: an electrical signal that travels along the neuron's **axon**

The Biological Neuron

- The Action potential is binary: either on or off
- This signal then causes the release of chemical signals at synapses with other neurons...

The Artificial Neuron

- An **artificial model** can be viewed as a model of a biological neuron(!)
- It takes in inputs, $\mathbf{x} \in \mathbb{R}^m$, then:
 - Combines them into a weighted sum (and adds a bias term):

$$z = \mathbf{w} \cdot \mathbf{x} + b$$

- lacktriangle Passes this sum through an activation function, $\widehat{\varphi}$
- Then outputs, $a = \widehat{\phi}(z)$

The Artificial Neuron

- What form does $\widehat{\phi}$ take?
 - The Heaviside function would look most biological...
 - But a common (better behaved) approximation is the logistic sigmoid:

$$\widehat{\Phi}(z) = \frac{1}{1 + e^{-z}}$$

■ (Although there are many other forms...)

Artificial Neural Network

- An Artificial Neural Network (ANN or NN) is a combination of many of these units
- The units may vary across the network weights and activation functions might be different
- How the units are connected may be complex and is characterised by the architecture of the NN

Artificial Neural Network

- Two broad categories are:
 - Feed Forward Neural Networks (FFN)
 Where the units are arranged into a graph without any cycles
 - Recurrent Neural Networks (RNN)
 Where the graph can have cycles so that the outputs of a unit can loop back to become one of its own inputs

Architecture

- The architecture of a NN can encourage it to 'perceive' different features
- For example a **Convolutional Neural Network** (CNN) exploits the local structure of input data
 - It is particularly effective when applied to datasets such as images where local stucture edges, sub-images, etc. are manifest
- Similarly a Recurrent Neural Network (RNN) is well placed to perceive time series structure
- How many architectural models are there?

Architecture

Multilayer Perceptron

- But in this lecture we will focus on the Multilayer Perceptron (MLP), a particular form of FFN in which each layer contains some number of identical sigmoid units
- The network is **fully connected**
 - Every unit in one layer is connected to every unit in the next
- The first layer is the **input layer**
 - It takes its values from the input attributes, x_i
 - The units in such a layer are known as input units

Multilayer Perceptron

- The last layer is the output layer
 - It defines values for the output variable, y
 - A slight nuance is that for multiclassification we have a separate y_i for each class i
 - The units in such a layer are known as **output units**
- All the layers in between are the hidden layers
 - The units in such a layer are known as hidden units
- The number of layers is the depth of the MLP
- The number of units in a layer is known as the width of the MLP

Multilayer Perceptron: Diagram

Multilayer Perceptron: Diagram

$$z_i^{[1]} = \widehat{\Phi} \left(\sum_j w_{ij}^{[1]} x_j + b_i^{[1]} \right)$$
 $z_i^{[2]} = \widehat{\Phi} \left(\sum_j w_{ij}^{[2]} z_j^{[1]} + b_i^{[2]} \right)$
 $o_i = \widehat{\Phi} \left(\sum_j w_{ij}^{[3]} z_j^{[2]} + b_i^{[3]} \right)$

In general:

$$z_i^{[h]} = \widehat{\Phi} \left(\sum_j w_{ij}^{[h]} z_j^{[h-1]} + b_i^{[h]} \right)$$

Feature Learning

- Why do we select this representation?
- For 1-layer:

$$o_i = \widehat{\Phi} \left(\sum_j w_{ij}^{[2]} \widehat{\Phi} \left(\sum_k w_{jk}^{[1]} x_k + b_j^{[1]} \right) + b_i^{[2]} \right)$$

(But in general o_i is more complex)

Feature Learning

- So, o_i : $(\mathbf{x}, \mathbf{w}) \mapsto \mathbb{R}$
 - Here w is the set of all weights and bias parameters
 - So a NN is a nonlinear mapping from a set of input variables, **x**, to a set of output variables, {*o_i*}, with the functional forms controlled by the weights, **w**, which we are to learn
- The number of weights (and basis functions) are chosen in advance via our architecture
 - c.f. Gaussian Processes or Kernel methods more generally
- But these basis functions are **adaptive** (via the weights)

Feature Learning

- It turns out that such a structure can be very expressive
- Layers of the NN are said to **learn features** implicitly
- And deeper layers learn more and more complex features...without any guidance!

Feature Learning: Example²

 $^{^2\}mbox{\sc 'Visualizing}$ and Understanding Convolutional Networks' Zeiler & Fergus [2012]

Feature Learning: Example

Universality

- Why should MLP's be so expressive?
- Non-linearity of activation functions
- Linear activation functions can learn little
 - Even a deep set of layers of linear units will just result in a linear unit
- But we can prove that a shallow MLP with just one hidden layer and non-linear activation functions can learn any non-linear function of the input
- We say that an MLP is a universal function approximator

Universality

- They are very versatile...
 - ...But not necessarily compact
 - Sometimes exponentially large NN's are required to achieve function approximators
- This is one reason that deep learning is interesting:
 - One can often approximate the same function with a narrow, deep, network
 - Much more compactly than with a wide, shallow one

- Let's try to get some intuition for why the MLP acts as a Universal Function Approximator
- Consider a Boolean function
 - any such function can be represented as a disjunction of conjunctions...
 - and a disjunction of conjunctions can be implemented by an MLP with 1 hidden layer
 - Each conjunction is implemented by a hidden unit
 - Each disjunction is implemented by the output unit

- A perceptron can implement both AND and OR functions:
- For example, with $\mathbf{x} = [1, x_1, x_2]^T$ and $\mathbf{w} = [-1.5, 1, 1]^T$ we have the ingredients of an AND function:

■ Which yields the following truth table:

<i>X</i> ₁	<i>X</i> ₂	w · x	0
0	0	-1.5	0
0	1	-0.5	0
1	0	-0.5	0
1	1	0.5	1

■ ...But a perceptron can't implement a XOR function...

■ However two perceptrons in parallel can implement the two ANDs and another perceptron afterwards can OR these results together:

- The first layer maps from **x** to **z**...
- ...And in this space the data is **linearly separable** because $(x_1 = 0, x_2 = 0), (x_1 = 1, x_2 = 1)$ are both mapped to $(z_1 = 0, z_2 = 0)$
- Which yields the following truth table:

<i>X</i> ₁	<i>X</i> ₂	<i>Z</i> ₁	<i>Z</i> ₂	0
0	0	0	0	0
0	1	0	1	1
1	0	1	0	1
1	1	0	0	0

Boolean Functions and the MLP

- In general, for Boolean functions with 2 inputs:
 - For each input combination where the output is 1, we define a hidden unit that checks for that particular conjunction of the inputs
 - The next layer then performs a disjunction between these
- But what if there are *d* inputs?
 - Up to 2^d hidden units may be necessary
 - We can still approximate the function with a two layer MLP....But we end up with a cumbersome lookup table
 - This architecture is not **compact** and not good at **generalisation**

Continuous Functions and the MLP

- How can we approximate continuous functions?
- We'll focus on the 2 hidden layer case:
 - For each input case / region, we can delimit that region by hyperplanes on all sides using hidden weights in the first hidden layer
 - A hidden unit in the next layer then ANDs them together to **bound** the region
 - Then the weight of the connection from that hidden unit to the output unit is set equal to the desired function value
 - The results is a **piecewise constant approximation**
 - Its accuracy may be increased by increasing the number of hidden units which is equivalent to placing a finer grid over the inputs

Lecture Overview

- 1 Lecture Overview
- 2 Introduction
- 3 Evaluation
- 4 Optimisation
- 5 Overfitting
- 6 Summary

Evaluation

- So how do we learn all the weights in the MLP architecture and attempt to learn any function?
- First we need to define an evaluation function
- NN's are very flexible, and can accommodate a variety of evaluation functions as usual we need to pick one for the task at hand
- Let's take a look at three canonical cases, for a *H* hidden layer network:

Regression

- Here we have one output, $o^{(i)}$
- And we set this output to be a **linear function** of units in the last hidden layer:

$$o^{(i)} = \sum_{i} w_{j}^{[H+1]} z_{j}^{[H](i)} + b^{[H+1]}$$

■ Then set evaluation function to be the squared loss:

$$L = \frac{1}{2} \sum_{i=1}^{n} (o^{(i)} - y^{(i)})^{2}$$

Binary Classification

- Here we have one output, $o^{(i)}$
- And we set this output to be a **logistic sigmoid function** of units in the last hidden layer:

$$o^{(i)} = \frac{1}{1 + e^{-\left(\sum_{j} w_{j}^{[H+1]} z_{j}^{[H](i)} + b^{[H+1]}\right)}}$$

■ Then set evaluation function to be the cross entropy:

$$L = -\sum_{i=1}^{n} y^{(i)} \ln(o^{(i)}) + (1 - y^{(i)}) \ln(1 - o^{(i)})$$

Multi-Classification

■ Here we have K 'initial' outputs, $\{\widetilde{o}_k^{(i)}\}_{k=1}^K$, from the last hidden layer:

$$\widetilde{o}_{k}^{(i)} = \sum_{j} w_{kj}^{[H+1]} z_{j}^{[H](i)} + b_{k}^{[H+1]}$$

And we push these through a softmax function to generate the final output units:

$$o_k^{(i)} = \frac{\exp \widetilde{o}_k^{(i)}}{\sum_{j=1}^K \exp \widetilde{o}_j^{(i)}}$$

Then set evaluation function to be the cross entropy:

$$L = -\sum_{i=1}^{n} \sum_{k=1}^{K} y_k^{(i)} \ln(\widetilde{o}_k^{(i)})$$

Forward Propagation

- In order to calculate each of these evaluation functions then clearly we need to evaluate $o^{(i)}$ for each of our training examples
- \bullet $o^{(i)}$ is calculated as a **forward pass** through the network:
 - **x**⁽ⁱ⁾ is passed through the first hidden layer where $\{\mathbf{z}^{[1](i)}\}$ is calculated
 - The set $\{\mathbf{z}^{[1](i)}\}$ is passed through the second hidden layer where $\{\mathbf{z}^{[2](i)}\}$ is calculated
 - And so on until the output layer
- This process of evaluation is often termed the forward propagation of information through the network

Lecture Overview

- 1 Lecture Overview
- 2 Introduction
- 3 Evaluation
- 4 Optimisation
- 5 Overfitting
- 6 Summary

Optimisation

- In order to set values on the weights we need to optimise our loss function L
- In common with, for example, logistic regression, in general we cannot optimise L for a NN analytically
- So let's apply a numerical technique, **gradient descent**:

Optimisation

■ Recall that for a general representation of the weights, w, gradient descent looks like:

$$\mathbf{w}_{(t+1)} \leftarrow \mathbf{w}_{(t)} - \alpha \nabla_{\mathbf{w}} \mathsf{L}|_{\mathbf{w} = \mathbf{w}_{(t)}}$$

Here α is the learning rate And \mathbf{w} is just a shorthand for *all* the weights and biases in the network

■ So what we really need to calculate is:

$$\frac{\partial L}{\partial w_{ii}^{[h]}}, \frac{\partial L}{\partial b_i^{[h]}} \qquad \forall i, j, h$$

Optimisation

- This amounts to a large amount of derivatives to calculate how should we proceed?
- Finite Difference is one approach...But it's expensive and would require many passes through the network to approach optimality
- Is there a more efficient approach?
- We could try to apply the **Chain Rule**. For f(u) where u = u(v):

$$\frac{\partial f}{\partial v} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial v}$$

This is the foundation for a key optimisation technique for NN's: the backpropagation algorithm

Backpropagation

- Since $L = \sum_{\tilde{i}=1}^{n} L^{(\tilde{i})}$, where $L^{(\tilde{i})}$ is the loss associated with a single example...
- lacksquare ...Then let's begin by calculating the derivative of $\mathsf{L}^{(\widetilde{i})}$...
- ...We can then sum these later to calculate the aggregate derivative of L
- So, for a network with H hidden layers, let's start by calculating the derivative of $L^{(i)}$ with respect to the weights in some layer h

Backpropagation³

■ Let us recall that, for a hidden layer, the activations are given by:

$$z_i^{[h]} = \widehat{\Phi}\left(a_i^{[h]}\right) \tag{1}$$

$$a_i^{[h]} = \sum_j \left(w_{ij}^{[h]} z_j^{[h-1]} + b_i^{[h]} \right) \tag{2}$$

■ Then, using the chain rule:

$$\frac{\partial \mathsf{L}}{\partial w_{ij}^{[h]}} = \frac{\partial \mathsf{L}}{\partial a_i^{[h]}} \frac{\partial a_i^{[h]}}{\partial w_{ij}^{[h]}} = \delta_i^{[h]} \frac{\partial a_i^{[h]}}{\partial w_{ij}^{[h]}}$$

■ Where $\delta_i^{[h]}$ are known as the **errors**:

$$\delta_i^{[h]} = \frac{\partial \mathsf{L}}{\partial a_i^{[h]}} \tag{3}$$

³Henceforth we drop the superscript (\tilde{i}) to avoid cluttered notation. Furthermore, we concentrate on taking derivatives w.r.t. $w_{ij}^{[h]}$, a similar analysis obtains for $b_{i}^{[h]}$

Backpropagation

■ Now, from expression(2), $\frac{\partial a_i^{[h]}}{\partial w_{ij}^{[h]}} = z_j^{[h-1]}$, so:

$$\frac{\partial L}{\partial w_{ij}^{[h]}} = \delta_i^{[h]} z_j^{[h-1]} \tag{4}$$

In other words the derivative we seek is equivalent to:

(value of $\boldsymbol{\delta}$ for the unit at the output end of weight)

(value of z for the unit at the input end of the weight)

■ Thus we need only calculate $\delta_i^{[h]}$ for each hidden and output unit in the network:

■ For the output units for the loss functions in which we are interested (for example the squared loss or the cross entropy), we have:

$$\delta_i^{[H+1]} = o - y \tag{5}$$

- Why?...Recall the output definition for each of the loss functions:
 - Regression:

$$o = a^{[H+1]}$$

■ Binary Classification:

$$o = \frac{1}{1 + e^{-a[H+1]}}$$

■ Multi-Classification:

$$o_k = \frac{e^{-a_k^{[H+1]}}}{\sum_{i=1}^K e^{-a_i^{[H+1]}}}$$

■ For the hidden units we use the chain rule:

$$\delta_{i}^{[h]} = \frac{\partial L}{\partial a_{i}^{[h]}} = \sum_{k} \frac{\partial L}{\partial a_{k}^{[h+1]}} \frac{\partial a_{k}^{[h+1]}}{\partial a_{i}^{[h]}}$$
$$= \sum_{k} \delta_{k}^{[h+1]} \frac{\partial a_{k}^{[h+1]}}{\partial a_{i}^{[h]}}$$
(6)

Where k runs over all the units to which unit i sends connections

■ Now we need to find an expression for $\frac{\partial a_i^{[h+1]}}{\partial a_i^{[h]}}$

■ Using expressions (1 & 2) and the chain rule:

$$\frac{\partial a_k^{[h+1]}}{\partial a_i^{[h]}} = \frac{\partial a_k^{[h+1]}}{\partial z_i^{[h]}} \frac{\partial z_i^{[h]}}{\partial a_i^{[h]}}$$
$$= w_{ki}^{[h+1]} \widehat{\Phi}' \left(a_i^{[h]} \right)$$

■ Substituting this into expressions (6) gives:

$$\delta_i^{[h]} = \widehat{\Phi}' \left(a_i^{[h]} \right) \sum_k w_{ki}^{[h+1]} \delta_k^{[h+1]} \tag{7}$$

■ In other words, the value of δ for a particular hidden unit, h, can be obtained by propagating the δ 's backwards from higher up the network:

■ If we recursively apply expression (7) we can generate δ 's for the entire NN

Backprop Algorithm

Algorithm 1 Backprop

- 1: **initialise:** $\{w_{ii}^{[h]}, b_i^{[h]}\} \quad \forall i, j, h$
- 2: **apply:** input vector $\mathbf{x}^{(i)}$ to network and **forward propagate** to generate $o_i^{(i)}, z_i^{[h](i)} \forall i, h$ in network, using:

$$\begin{aligned} & z_i^{[h](\widetilde{i})} = \widehat{\varphi} \left(a_i^{[h](\widetilde{i})} \right) \\ & a_i^{[h](\widetilde{i})} = \sum_j \left(w_{ij}^{[h]} z_j^{[h-1](\widetilde{i})} + b_i^{[h]} \right) \end{aligned}$$

3: **evaluate:** $\delta_{\underline{j}}^{[H+1](\widetilde{i})}$ for all output units, using:

$$\delta_i^{[H+1](\widetilde{i})} = o_i^{(\widetilde{i})} - y^{(\widetilde{i})}$$

4: **backpropagate:** δ 's to obtain $\delta_i^{[h](\widetilde{i})}$ for each hidden unit in the network, using:

$$\delta_i^{[h](\widetilde{i})} = \widehat{\Phi}'\left(a_i^{[h](\widetilde{i})}\right) \sum_k w_{ki}^{[h+1]} \delta_k^{[h+1](\widetilde{i})}$$

5: evaluate: all derivatives, using:

$$\frac{\partial \mathsf{L}^{(\tilde{i})}}{\partial w_{i}^{[h]}} = \delta_{i}^{[h](\tilde{i})} z_{j}^{[h-1](\tilde{i})}$$

6: return:

$$\frac{\partial L}{\partial w_{ij}^{[h]}} = \sum_{\tilde{i}=1}^{n} \frac{\partial L^{(\tilde{i})}}{\partial w_{ij}^{[h]}}$$

Backpropagation: Flexibility

- Note that Backprop is a generic algorithm that works regardless of the activation function (subject to smoothness) or loss function (subject to structure)
- It can accommodate a variety of activation functions within the same network...
- ...Things just get more fiddly!

Why Backprop?

■ Efficiency:

- 1 forward pass takes $\mathcal{O}(|\mathbf{w}|)$
- 1 backward pass takes $\mathfrak{O}(|\mathbf{w}|)$

■ Compare with finite difference:

- Each forward pass takes $O(|\mathbf{w}|)$ and we need to perform $|\mathbf{w}|$ of these for each unit we perturb
- This efficiency is $O(|\mathbf{w}|^2)$

Batch or Stochastic Gradient Descent?

- Training NN's can be expensive, even using Backprop
- Added to this, the capacity of NN's necessitates training on large datasets
- For these reasons we often prefer to use SGD (recall our comparisons of these methods in the *Linear Regression Lecture*)...
- ...Here we apply our updates on an example-by-example basis, rather than across the batch
- This makes for a faster, though locally less stable, convergence

Problems

- Recall the problems associated with numerical optimisation from the *Linear Regression Lecture*
- We have all of these in NN training...and more...
- Much of the work in NN's early in this iteration of their popularity has surrounded identifying and developing workarounds for these problems
- Let's examine some of them:

Non-Convexity

- This is the elephant in the room: NN's, because they are the result of performing both positive and negative summations on convex (or non-convex) activation functions, do not result in convex loss functions
- So Gradient Descent has no reason to converge
- The function which we are attempting to optimise is, in general, riddled with multiple local minima and saddle points

Non-Convexity

- How can we resolve this?
- We can't without enumerating all minima we can't know that we're at a globally optimal point rather than just a local one
- One workaround is to re-run Gradient Descent several times for different random intialisations of w and select the best optimum from amongst them...But it's just a heuristic

Symmetries

- How do we initialise the weights when performing Gradient Descent?
- What if we initialise $\mathbf{w} = 0$?
 - Then all hidden activations will be the same...
 - ...And all weights feeding into a hidden unit will have identical derivatives
 - So then weights will have identical values in the next step
 - The complexity reduces to one neuron!
- We can resolve this problem by symmetry breaking via **random** initialisation

Learning Rate Size⁴

- Recall from the *Linear Regression Lecture*
 - For α too small, convergence is **slow**
 - \blacksquare For α too large, we get **divergence**
- The solution is to treat α as a hyperparameter and then tune it

⁴Geron, 'Hands-on Machine Learning With Scikit-Learn & Tensorflow' [2017]

Fluctuations

- A feature of stochastic gradient descent is that the cost function won't necessarily monotonically decrease
- The stochastic gradients are noisy and sometimes push us in the wrong direction
- This is more manifest as we approach an optimal point further away we generally take big enough steps to swamp this fluctuation noise
- A solution is **learning rate decay**: we set $\alpha = \alpha_{(t)} = \alpha_{(0)}e^{-t/\tau}$
 - lacksquare τ is the decay scale
 - lacktriangle Implicitly this will result in an lpha which exhibits rapid but late decay

Dead Units

■ If we have moved to a region where the activation of a unit changes little, i.e. $\widehat{\Phi}'\left(a_i^{[h]}\right) \approx 0$, then by expression (7):

$$\delta_i^{[h]} \approx 0 \qquad \Longrightarrow \qquad \frac{\partial \mathsf{L}}{\partial w_{ii}^{[h]}} \approx 0 \quad \forall j$$

- This means that we have become stuck on a kind of plateau on the loss surface which it will take a long time to escape from
- Learning will slow down
- If we look at a histogram of activations we can see whether we have a big problem

Dead Units

- A solution is to carefully pick random initialisations so that activations are away from their dead points
- An alternative solution is to pick activation units which have fewer dead regions
- So long as our units are non-linear then we can do this!

Activation Units

■ Sigmoid:

■ ReLu:

■ Leaky ReLu:

Bad Conditioning⁵

- Again, recall from the *Linear Regression Lecture* the problem of scaling:
- For unbalanced curvature the gradient of the largest parameter will dominate the update leading to slow convergence

⁵Geron, 'Hands-on Machine Learning With Scikit-Learn & Tensorflow' [2017]

Bad Conditioning

- This is a particular issue for NN's, which exhibit very irregular loss surfaces
- But scaling is at least a partial solution:
 - It can't change a fundamentally highly non-convex surface...
 - ...But it can remove the curvature issues due to inputs with different scales

Recap

■ Representation:

$$\mathcal{F} = \left\{ \left\{ o_i(\mathbf{x}) = \widehat{\boldsymbol{\varphi}}^{\left[H+1\right]} \left(\sum_{j=1}^{n_H} w_{ij}^{\left[H\right]} \, \widehat{\boldsymbol{\varphi}}^{\left[H\right]} \left(\sum_{k=1}^{n_{H}-1} w_{jk}^{\left[H-1\right]} \, \widehat{\boldsymbol{\varphi}}^{\left[H-1\right]} \left(\sum_{l=1}^{n_{H}-2} w_{kl}^{\left[H-2\right]} \ldots \right) \right) \right) \right\}_{i=1}^{l} \left| \left\{ \widehat{\boldsymbol{\varphi}}^h \right\}_{h=1}^{H+1}, \mathbf{w} \right\}$$

Here I is the number of output units (usually 1 for regression and binary classification)

■ Evaluation:

$$L = \frac{1}{2} \sum_{i=1}^{n} (o^{(i)} - y^{(i)})^2$$
, etc.

Optimisation:

Backpropagation & (Stochastic) Gradient Descent

Lecture Overview

- 1 Lecture Overview
- 2 Introduction
- 3 Evaluation
- 4 Optimisation
- 5 Overfitting
- 6 Summary

Overfitting

- NN's, because of their **capacity** are prone to **overfitting**
- In order to combat this we adopt **regularisation** procedures
- As well as the usual regularisation approaches we will see that there are a handful which are unique to NN's

Weight Decay

- This is the name given by the NN community to traditional regularisation
- A penalty term is added to the loss function:
 - For example ℓ_2 regularisation will result in a modified loss function:

$$\widetilde{L} = L + \frac{\lambda}{2} \| \boldsymbol{w} \|^2$$

■ Where L is the usual empirical loss function

Weight Decay

■ If we optimise this using Gradient Descent then an extra term will appear in each update, such that, for all *i*, *j* in the network:

$$w_{ij(t+1)} \longleftarrow w_{ij(t)} - \alpha \frac{\partial L}{\partial w_{ij}} \Big|_{w_{ij} = w_{ij(t)}} - \alpha \lambda w_{ij(t)}$$

$$\longleftarrow (1 - \alpha \lambda) w_{ij(t)} - \alpha \frac{\partial L}{\partial w_{ij}} \Big|_{w_{ij} = w_{ij(t)}}$$

■ In other words the weights experience a decay modulation, $(1 - \alpha \lambda)$, each iteration

Reducing Capacity

- We can treat the number of layers and the number of units/layer in an NN as tunable hyperparameters, and attempt to regularise on this basis
- In addition we can introduce a bottleneck
 - This is a layer with fewer units than its neighbouring layers
 - Linear Units are perfectly adequate for this function
 - They can't increase the ability of the NN to learn more complex functions...
 - ...But they can, in some sense, extract the important information from a layer in the NN and express it more efficiently

Reducing Capacity

■ Bottlenecks significantly reduce the number of parameters

Early Stopping

- Typically when adopting an iterative numerical procedure for optimisation we speak of **epochs**
- An epoch is a full training cycle
 - For example, one update in batch gradient descent...
 - ...or *n* updates in stochastic gradient descent

Early Stopping⁶

■ In NN training we often see the following form of **training curves**:

⁶Geron, 'Hands-on Machine Learning With Scikit-Learn & Tensorflow' [2017]

Early Stopping

- In other words, as NN's are trained for longer they begin to fit the training data too well, and hence **overfit**
- Early stopping is a procedure designed to eliminate this by observing loss v number of epochs on a validation and ending training accordingly

Data Augmentation

- Another way of remedying overfitting is by providing more training examples!
- Data Augmentation seeks to generate such additional data
- This is a domain specific technique

Data Augmentation⁷

- In image data for example it is possible to manipulate the original image in a number of ways which result in useful pseudo-novel training data:
 - rotation
 - distortion
 - translation

⁷ https://developers.google.com/machine-learning/practica/image-classification/preventing-overfitting

Lecture Overview

- 1 Lecture Overview
- 2 Introduction
- 3 Evaluation
- 4 Optimisation
- 5 Overfitting
- 6 Summary

Comments

- Neural Networks have been startlingly successful in recent years
- Part of the reason for this is that they allow us to learn almost any function
- But they are also poorly understood
- The representation which they offer is can be off-putting
 - it is far from the intuitive transparency of a decision tree

Comments

- But more significantly they represent a non-convex problem
 - GD and SGD have no reason to work
 - But when combined with the bag-of-tricks which we have discussed they often do...
 - Why this should happen is an open question...

Summary

- Neural Networks are Universal Function Approximators which offer access to a rich function class, and which have enjoyed tremendous empirical success on certain tasks in recent years
- It is possible to train them at scale with a combination of the backpropagation algorithm and stochastic gradient descent together with a set of tweaks which combine to make learning more efficient
- Because of their high capacity Neural Networks have the potential to overfit and this must be controlled via more or less ad hoc regularisation techniques