Off-Policy Optimization and Tabular Q-Learning

Mohammad Sadegh Talebi m.shahi@di.ku.dk Department of Computer Science

Recap

Recap

Policy Evaluation (PE):

- \bullet Estimating $V^\pi,$ in an unknown discounted MDP, using data collected according to a fixed π
- Data could be from dataset (offline) or via interaction (online)
- TD update:

$$V(s) \leftarrow \begin{cases} V(s) + \alpha_t \Big(r_t + \gamma V(s_{t+1}) - V(s) \Big) & s = s_t \\ V(s) & \text{else.} \end{cases}$$

• If (i) π is exploratory enough, and (ii) $(\alpha_t)_t$ satisfies Robbins-Monro conditions:

$$V \to_{t \to \infty} V^{\pi}$$
 almost surely

OPE/OPO

Two related problems:

- Off-Policy Evaluation (OPE): Estimate V^{π} of a target policy π using data collected according to some behvaior/logging policy $\pi_{\rm b}$
- Off-Policy Optimization (OPO): Find an optimal policy π^* using data collected according to some behavior policy π_b

This lecture: Two algorithms for OPO

Off-Policy Optimization

Off-Policy Optimization

Given: Data \mathcal{D} collected under some policy π_b (not necessarily fixed).

Mathematically, $\mathcal{D} = \left\{ (s_t, a_t, r_t), 1 \leq t \leq n \right\}$ where

$$a_t \sim \pi_{\mathsf{b}}(\cdot|s_t), \quad r_t \sim R(s_t, a_t), \quad s_{t+1} \sim P(\cdot|s_t, a_t)$$

Goal: Find an optimal policy π^* , or a near-optimal one.

Action-Value Function (Q-Function)

Action-Value Function

The action-value function of policy π (or simply, Q-value of π) is a mapping $Q^{\pi}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ defined as (Under the bounded reward assumption)

$$Q^{\pi}(s,a) := \mathbb{E}^{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r(s_t, a_t) \middle| s_0 = s, \mathbf{a_0} = \mathbf{a} \right].$$

- Intuitively, $Q^{\pi}(s,a)$ measures the sum of future discounted rewards (in expectation) when the agent <u>starts</u> in s and <u>takes action</u> a in the first step (possibly $a \neq \pi(s)$), and then <u>follows</u> π afterwards.
- Again, recall that we assumed bounded rewards.
- We have

$$|Q^{\pi}(s, a)| \le \frac{R_{\max}}{1 - \gamma}, \quad \forall s \in \mathcal{S}, \forall a \in \mathcal{A}$$

• For all $s \in \mathcal{S}$, $Q^{\pi}(s, \pi(s)) = V^{\pi}(s)$.

Bellman Optimality Equation

Recall

$$V^{\star} = \sup_{\pi \in \Pi^{\mathsf{HR}}} V^{\pi} = \max_{\pi \in \Pi^{\mathsf{SD}}} V^{\pi}$$

 Q^{\star} and V^{\star} are related as

$$V^{\star}(s) = \max_{a \in \mathcal{A}} Q^{\star}(s, a)$$

Theorem

 V^* and Q^* satisfy the optimal Bellman equation:

$$V^{\star}(s) = \max_{a \in \mathcal{A}} \Big(R(s, a) + \gamma \sum_{x \in \mathcal{S}} P(x|s, a) V^{\star}(x) \Big), \quad s \in \mathcal{S}$$

$$Q^{\star}(s, a) = R(s, a) + \gamma \sum_{x \in S} P(x|s, a) \max_{b \in \mathcal{A}} Q^{\star}(x, b), \quad s \in \mathcal{S}, a \in \mathcal{A}$$

Optimality Theorems

A fundamental result in the theory of discounted MDPs:

Theorem

A stationary deterministic policy π is optimal if and only if it attains the maximum in the Bellman optimality equations: For all $s \in \mathcal{S}$,

$$\pi(s) \in \operatorname*{argmax}_{a \in \mathcal{A}} \Big(R(s,a) + \gamma \sum_{x \in \mathcal{S}} P(x|s,a) V^{\star}(x) \Big) \quad \textit{or equivalently,}$$

$$\pi(s) \in \operatorname*{argmax}_{a \in \mathcal{A}} \left(\underbrace{R(s,a) + \gamma \sum_{x \in \mathcal{S}} P(x|s,a) \max_{b \in \mathcal{A}} Q^{\star}(x,b)}_{=Q^{\star}(s,a)} \right).$$

In short, the optimal policy is the greedy policy w.r.t. Q^{\star} . Hence, enough to compute/learn Q^{\star} .

Optimal Bellman Operator

The optimal Bellman operator is a mapping $\mathcal{T}: \mathbb{R}^{S \times A} \to \mathbb{R}^{S \times A}$, such that for any function $f: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$,

$$\mathcal{T} \underline{f(s, a)} := R(s, a) + \gamma \sum_{x \in \mathcal{S}} P(x|s, a) \max_{b \in \mathcal{A}} \underline{f(x, b)}, \quad s \in \mathcal{S}, a \in \mathcal{A}$$

 $\mathcal T$ applies to (or *operates on*) a function defined on $\mathcal S$ and returns another function defined on $\mathcal S$.

- Q^* satisfies $\mathcal{T}Q^* = Q^*$.
- In words, Q^* is the *unique* fixed-point of the operator \mathcal{T}^* .

CE-OPO: A Model-Based Method based on Certainty Equivalence

Known Model

When the model (MDP) is known, we simply solve the Bellman optimality equations using, e.g., VI or QVI:

QVI is quite similar to VI. It starts from Q_0 and iterates for $n \ge 1$:

$$Q_{n+1} = \mathcal{T}Q_n$$

I.e.,

$$Q_{n+1}(s, a) = R(s, a) + \gamma \sum_{x \in S} P(x|s, a) \max_{b \in A} Q_n(x, b)$$

 $\Longrightarrow Q_n$ converges to Q^* since \mathcal{T} is contractive.

CE-OPO: Certainty Equivalence OPO

Model (MDP) is unknown, so one cannot solve the Bellman optimality equations.

Idea: Estimate the MDP using data and apply the certainty equivalence principle.

- Step 1: Compute estimate \widehat{P} (of P) and \widehat{R} (of R)
- \bullet Step 2: Solve the Bellman optimality equations using \widehat{P} and \widehat{R}

Idea: Estimate the MDP using data and apply the certainty equivalence principle.

- Step 1: Compute estimate \widehat{P} (of P) and \widehat{R} (of R)
- \bullet Step 2: Solve the Bellman optimality equations using \widehat{P} and \widehat{R}

We introduce visit counts for various triplets (s, a, s').

Given a dataset $\mathcal{D} = \{(s_t, a_t, r_t), 1 \leq t \leq n\}$, define for any (s, a, s'),

$$N(s, a, s') = \sum_{t=1}^{n-1} \mathbb{I}\{s_t = s, a_t = a, s_{t+1} = s'\}$$
$$N(s, a) = \sum_{s' \in S} N(s, a, s')$$

A better choice in practice is

Idea: Estimate the MDP using data and apply the certainty equivalence principle.

- Step 1: Compute estimate \widehat{P} (of P) and \widehat{R} (of R)
- ullet Step 2: Solve the Bellman optimality equations using \widehat{P} and \widehat{R}

Smoothed Estimator for P:

$$\widehat{P}(s'|s,a) = \frac{N(s,a,s') + \alpha}{N(s,a) + \alpha S}$$

- S denotes the number of states.
- \bullet $\alpha > 0$ is an arbitrary choice controlling the level of smoothing.
- $\alpha = 0$ corresponds to Maximum Likelihood Estimator (unbiased).
- $\alpha=1/S$ corresponds to Laplace Smoothed Estimator (biased, but the bias vanishes as N(s,a) increases).
- If $\alpha = 0$, for N(s, a) = 0, define $\widehat{P}(s'|s, a) = 1/S$.

Idea: Estimate the MDP using data and apply the certainty equivalence principle.

- Step 1: Compute estimate \widehat{P} (of P) and \widehat{R} (of R)
- \bullet Step 2: Solve the Bellman optimality equations using \widehat{P} and \widehat{R}

Smoothed Estimator for R:

$$\widehat{R}(s, a) = \frac{\alpha + \sum_{t=1}^{n-1} r_t \mathbb{I}\{s_t = s, a_t = a\}}{\alpha + N(s, a)}$$

- $\alpha \geq 0$ is an arbitrary choice controlling the level of smoothing.
- ullet $\alpha=0$ corresponds to Maximum Likelihood Estimator (unbiased).

Idea: Estimate the MDP using data and apply the certainty equivalence principle.

- Step 1: Compute estimate \widehat{P} (of P) and \widehat{R} (of R)
- \bullet Step 2: Solve the Bellman optimality equations using \widehat{P} and \widehat{R}

Using \widehat{P} and \widehat{R} , we can solve empirical Bellman optimality equations:

$$\widehat{Q}^{\star}(s,a) = \widehat{R}(s,a) + \gamma \sum_{x \in \mathcal{S}} \widehat{P}(x|s,a) \max_{b \in \mathcal{A}} \widehat{Q}^{\star}(x,b)$$

or

$$\widehat{Q}^{\star} = \widehat{\mathcal{T}} \widehat{Q}^{\star}$$

 $\widehat{\mathcal{T}}$ is the empirical Bellman operator.

 $\widehat{Q}^{\star} = \widehat{\mathcal{T}} \widehat{Q}^{\star}$ can be solved using QVI.

CE-OPO: Certainty Equivalence OPO

CE-OPO: Certainty Equivalence OPO

- input: $\mathcal{D} = \{(s_t, a_t, r_t)\}_{1 \le t \le n}, \alpha \text{ (optional)}$
- Compute estimates $\widehat{P}(s'|s,a)$ and $\widehat{R}(s,a)$ for all (s,a,s')
- ullet Find $\widehat{\pi}^{\star}$, the optimal policy in the empirical MDP $\widehat{M}=(\mathcal{S},\mathcal{A},\widehat{P},\widehat{R}).$
- output: $\widehat{\pi}^{\star}$

 \widehat{M} could be solved using VI, PI, or QVI.

CE-OPO: Asymptotic Convergence

$$\begin{split} \widehat{P}(s'|s,a) &\longrightarrow_{N(s,a) \to \infty} P(s'|s,a) \quad \text{almost surely} \\ \widehat{R}(s,a) &\longrightarrow_{N(s,a) \to \infty} R(s,a) \quad \text{almost surely} \end{split}$$

If π_b is exploratory enough in the sense that $N(s,a) \to_{n\to\infty} \infty$ for all (s,a), then

 \widehat{P} and \widehat{R} converge to P and R as $n\to\infty.$ Thus, we can show

$$\widehat{\mathcal{T}} \longrightarrow_{n \to \infty} \mathcal{T} \qquad \widehat{Q}^{\star} \longrightarrow_{n \to \infty} Q^{\star} \quad \text{almost surely}$$

which guarantees

$$\widehat{\pi}^{\star} \longrightarrow_{n \to \infty} \pi^{\star}$$
 almost surely

Theorem

If all state-action pairs are visited infinitely often under π_b , then \widehat{Q}^\star converges to Q^\star almost surely:

$$\mathbb{P}\Big(\lim_{n\to\infty}\widehat{Q}^{\star} = Q^{\star}\Big) = 1$$

Strong guarantee, but only asymptotically (unfortunately).

CE-OPO: Pros and Cons

Disadvantages of the model-based solution:

- ullet Often leads to large variance in the estimation of Q^{\star}
- Computational complexity is $O(S^3)$, and space complexity is $O(S^2)$.
- May not be easily converted to an incremental procedure.

Model-Free Method for OPO: Tabular Q-Learning (and Friends)

Bellman Optimality Equations

Bellman optimality equations (using Q):

$$Q^{\star}(s, a) = R(s, a) + \gamma \sum_{x \in \mathcal{S}} P(x|s, a) \max_{b} Q^{\star}(x, b)$$

$$\mathcal{T}Q^{\star} = Q^{\star}$$

Equivalently, Q^{\star} is the root of functional $F(Q)=\mathcal{T}Q-Q$, namely the solution to the nonlinear system:

$$F(Q) = \mathcal{T}Q - Q = 0$$
, where $Q \in \mathbb{R}^{S \times A}$

- **Known model**: Find the root of *F* using VI (or Q-iteration).
- Unknown model: We have only samples from R and P (as in TD).

We need a root finding method from noisy measurements.

Stochastic Approximation

Stochastic Approximation (SA) is method to find the root of an increasing function from noisy measurements.

The setting:

- ullet At the n-th iteration, you select x_n
- You get a noisy measurement $y_n = h(x_n) + \xi_n$
- ullet ξ_n is a noise with zero-mean but may depend on the selected point x_n
- $\mathbb{E}[\xi_n|\xi_1,\ldots,\xi_{n-1}]=0$

Robbins-Monro Algorithm (1951)

SA proposed by Robbins & Monro in (1951)

$$x_{n+1} = x_n - \alpha_n y_n = x_n - \alpha_n (h(x_n) + \xi_n), \quad n \ge 1$$

with $(\alpha_n)_n$ satisfying the Robbins-Monro conditions:

$$\alpha_n > 0$$
, $\sum_{n=1}^{\infty} \alpha_n = \infty$, and $\sum_{n=1}^{\infty} \alpha_n^2 < \infty$

Theorem

Under the following assumptions

- **2** $\mathbb{E}[\|\xi_n\|^2|\xi_1,\ldots,\xi_{n-1}] \leq K(1+\|x_n\|^2)$, almost surely for some K
- 6 h is Lipschitz

$$\lim x_n = x^* \qquad \text{almost surely.}$$

Example

Solving $h(x) = x^2 - 1 = 0$ through noisy samples from h using SA

SA for
$$F(Q) = \mathcal{T}Q - Q$$

We apply SA to $F(Q) = \mathcal{T}Q - Q$.

- Consider a sample (s_t, a_t, r_t, s_{t+1}) .
- We show that $Y_t = r_t + \gamma \max_{a'} Q(s_{t+1}, a') Q(s_t, a_t)$, conditioned on (s_t, a_t) and Q is an unbiased sample from $F(Q)(s_t, a_t)$.

$$\begin{split} \mathbb{E}[Y_t|Q,s_t,a_t] &= \mathbb{E}\Big[r_t + \gamma \max_{a'} Q(s_{t+1},a') - Q(s_t,a_t) \Big| Q,s_t,a_t \Big] \\ &= \underbrace{\mathbb{E}\Big[r_t \Big| Q,s_t,a_t \Big]}_{=R(s_t,a_t)} + \gamma \mathbb{E}\Big[\max_{a'} Q(s_{t+1},a') \Big| Q,s_t,a_t \Big] - Q(s_t,a_t) \\ &= R(s_t,a_t) + \gamma \sum_{x \in \mathcal{S}} \underbrace{P(x|s_t,a_t)}_{a'} \max_{a'} Q(s_{t+1},a') - Q(s_t,a_t) \\ &= \mathcal{T}Q(s_t,a_t) - Q(s_t,a_t) = F(Q)(s_t,a_t) \end{split}$$

Hence, $\mathbb{E}[Y_t|\mathcal{H}_{t-1}] = F(Q)(s_t, a_t)$.

 The other technical conditions of SA can be verified. (Technical and tedious, so omitted here.)

SA for
$$F(Q) = \mathcal{T}Q - Q$$

Application of SA to $F(Q) = \mathcal{T}Q - Q$:

The Q-Learning (QL) update rule:

$$\underbrace{Q(s_t, a_t)}_{\text{new value}} \leftarrow \underbrace{Q(s_t, a_t)}_{\text{new value}} + \underbrace{\alpha_t \bigg(r_t + \gamma \max_{b \in \mathcal{A}} Q(s_{t+1}, b) - Q(s_t, a_t) \bigg)}_{\text{correction}}$$

And Q(s, a) unchanged if $(s, a) \neq (s_t, a_t)$.

QL: Learning Rate

To guarantee convergence, learning rates $(\alpha_t)_{t\geq 1}$ must satisfy the *Robbins-Monro* conditions:

$$\alpha_t > 0, \qquad \sum_{t=1}^{\infty} \alpha_t = \infty, \qquad \sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

(I.e., a positive sequence that is square-summable-but-not-summable.)

Examples:

- $\alpha_t = \frac{1}{t+1}$,
 - $\alpha_t = \frac{c}{t^a}$ for $a \in (\frac{1}{2}, 1]$
 - $\alpha_t = \alpha_t(s,a) = \frac{1}{N_t(s,a)+1}$, where $N_t(s,a)$ is the number of times (s,a) is sampled in the first t-1 rounds —i.e., learning rate can be personalized to (s,a), assuming that Robbins-Monro conditions could be met.

QL

input: $\mathcal{D} = \{(s_t, a_t, r_t)\}_{1 \leq t \leq n}$, $(\alpha_t)_{t \geq 1}$

initialization: Select Q_1 arbitrarily

for t = 1, ..., n - 1:

- $\delta_t = r_t + \gamma \max_{b \in \mathcal{A}} Q_t(s_{t+1}, b) Q_t(s_t, a_t)$
- Update:

$$Q_{t+1}(s,a) = \begin{cases} Q_t(s,a) + \alpha_t \delta_t & (s,a) = (s_t, a_t) \\ Q_t(s,a) & \text{else.} \end{cases}$$

output: Greedy policy w.r.t. Q_n

• Q_n is an estimate of Q^* , giving an estimate $\widehat{\pi^*}$ of the optimal policy:

$$\widehat{\pi^{\star}}(s) \in \operatorname*{argmax}_{a \in A} Q_n(s, a)$$

QL: Asymptotic Convergence

Theorem

If all state-action pairs are visited infinitely often in \mathcal{D} and $(\alpha_t)_{t\geq 1}$ satisfies the Robbins-Monro conditions, then Q_t converges to the true value function Q^* almost surely:

$$\mathbb{P}\left(\forall s \in \mathcal{S}, a \in \mathcal{A}, \lim_{t \to \infty} Q_t(s, a) = Q^{\star}(s, a)\right) = 1$$

In other words, if π_b (used to collect \mathcal{D}) is exploratory enough, Q_t converges to Q^* , in the following sense:

$$\mathbb{P}\left(\exists \mathcal{D}, \exists (s, a) : \lim_{t \to \infty} Q_t(s, a; \mathcal{D}) \neq Q^*(s, a)\right) = 0$$

I.e., datasets for which $Q_{\infty} \neq Q^{\star}$ will occur with probability 0.

On Behavior Policy

- (Asymptotic) convergence requires that state-action pairs are visited infinitely often.
- \bullet The behavior policy $\pi_{\rm b}$ could change during the learning, as long as it is kept exploratory enough.
 - E.g., ε -greedy policy (for some $\varepsilon > 0$)

$$\pi_{\varepsilon\text{-greedy}}(s) = \begin{cases} \operatorname{argmax}_a Q_t(s,a) & \text{w.p. } 1-\varepsilon \\ \operatorname{sample uniformly at random from } \mathcal{A} & \text{w.p. } \varepsilon \end{cases}$$

Note that $\pi_{\varepsilon\text{-greedy}}(s)$ is non-stationary.

• E.g., Boltzmann's policy (a.k.a. softmax):

at state
$$s$$
, select action $a \in \mathcal{A}$ w.p.
$$\frac{e^{\eta Q_t(s,a)}}{\sum_{b \in \mathcal{A}} e^{\eta Q_t(s,b)}}$$

where $\eta>0$ is a parameter controlling exploration.

• Incremental QL (cf. the very last slides)

QL: Advantages

- QL is model-free: It does not require to estimate a model of the MDP, and only relies on collected experience.
- QL can be incremental (unlike the model-based methods).
- \bullet Space complexity is O(SA) and computational complexity, per round, is O(A). Much cheaper than the model-based method.

QL: Non-Asymptotic Convergence

- Asymptotic convergence results often do not tell us much information about the speeds of convergence.
- We are interested in knowing what happens with small datasets. So we study the non-asymptotic convergence.

Sample complexity for OPO

Given $\delta \in (0,1)$ and $\varepsilon > 0$, define the PAC off-policy sample complexity as the number $SC(\varepsilon,\delta)$ of samples from the MDP such that for all $n \geq SC(\varepsilon,\delta)$,

$$||Q^{\star} - Q_n||_{\infty} \le \varepsilon$$
, with probability $\ge 1 - \delta$

Two Definitions

Two notions arising in sample complexity of OPO:

Cover Time t_{cover} . Given $t_1>0$, let $t_2>t_1$ denote the first time step such that all (s,a) pairs are visited at least once with probability at least $\frac{1}{2}$. Then, $t_{\mathrm{cover}}=t_2-t_1$ defines the cover time of M.

- $t_{\text{cover}} \geq SA$.
- A quantity related to $\pi_{\rm b}$.

Effective Horizon. Given $\varepsilon > 0$, the effective horizon is

$$H_{\mathsf{eff}} := \frac{-1}{1 - \gamma} \log(\varepsilon(1 - \gamma))$$

• Truncating ∞ -horizon to H_{eff} would bring at most ε error to V^{\star} .

QL: Non-Asymptotic Convergence

Theorem (Even-dar & Mansour (2003))

Let $\delta \in (0,1)$ and $\varepsilon \in (0,\frac{1}{1-\gamma}]$, and assume that n satisfies:

$$n \geq c \cdot \frac{\left[t_{\mathit{cover}}\right]^{H_{\mathit{eff}}}}{\varepsilon^2 (1 - \gamma)^4} \log \left(\frac{SAn}{\delta}\right) \log \left(\frac{SA}{\varepsilon \delta (1 - \gamma)^2}\right)$$

where c is a universal constant. Then, QL with $\alpha_t(s,a) = \frac{1}{N_t(s,a)+1}$ satisfies:

$$||Q^* - Q_n||_{\infty} \le \varepsilon$$
, with probability $\ge 1 - \delta$.

Essentially, it establishes a sample complexity for QL proportional to

$$\widetilde{O}\left(\frac{\left[t_{\mathsf{cover}}\right]^{H_{\mathsf{eff}}}}{\varepsilon^2(1-\gamma)^4}\right)$$

where $\widetilde{O}(\cdot)$ hides poly-log terms.

QL: Non-Asymptotic Convergence

Theorem (Li et al. (2020))

Let $\delta \in (0,1)$ and $\varepsilon \in (0,\frac{1}{1-\alpha}]$, under QL one has:

$$||Q^* - Q_n||_{\infty} \le \varepsilon$$
, with probability $\ge 1 - \delta$.

provided that

$$\begin{split} n &\geq c \cdot \frac{t_{\text{cover}}}{\varepsilon^2 (1 - \gamma)^5} \log^2 \left(\frac{SAn}{\delta} \right) \log \left(\frac{1}{\varepsilon (1 - \gamma)^2} \right) \\ \alpha_t &= \frac{c'}{\log(SAn/\delta)} \min \left(\frac{(1 - \gamma)^4 \varepsilon^2}{\gamma^2}, 1 \right) \end{split}$$

where c, c' are universal constants.

Essentially, it establishes a sample complexity for QL proportional to

$$\widetilde{O}igg(rac{t_{\mathsf{cover}}}{arepsilon^2(1-\gamma)^5}igg)$$

QL: Overestimation Bias

QL could exhibit weak empirical performance due overestimation bias.

Overestimation bias stems from the term

$$\max_{b \in \mathcal{A}} Q_t(s_{t+1}, b)$$

to approximate $\max_{b \in \mathcal{A}} Q^{\star}(s_{t+1}, b)$ in the update equation of QL.

• It is one major reason behind slow convergence of QL in practice.

Could we update Q_t in a wiser way?

Idea: $\max_{b \in \mathcal{A}} Q^*(s_{t+1}, b)$ is related to the classical problem of Estimating the Maximum Expected Value. So let's use a wiser such estimate.

Estimating the Maximum Expected Value

Consider r.v.'s X_1, \ldots, X_m with $\mathbb{E}[X_i] = \mu_i$.

- We wish to estimate $\mu_{\star} = \max_{i} \mathbb{E}[X_{i}]$.
- Distributions of X_i, \ldots, X_m unknown.
- We have a set S_i of i.i.d. samples from each X_i .

Maximum Estimator (ME): We construct $\widehat{\mu}_i := \widehat{\mu}_i(S_i) = \frac{1}{|S_i|} \sum_{x \in S_i} x$, and set

$$\widehat{\mu}_{\star}^{\mathsf{ME}} := \max_{i} \widehat{\mu}_{i}.$$

 $\widehat{\mu}_{\star}^{\mathsf{ME}} \text{ is positively biased since: } \mathbb{E}[\widehat{\mu}_{\star}^{\mathsf{ME}}] = \mathbb{E}[\max_{i}\widehat{\mu}_{i}] \geq \max_{i}\mathbb{E}[\widehat{\mu}_{i}] = \max_{i}\mu_{i} = \mu_{\star}$

Double Estimator (DE): Randomly partition each sample set as $S_i = S_i^A \cup S_i^B$.

$$\bar{i} \in \operatorname{argmax}_{\bar{i}} \widehat{\mu}_i(S^A_i) \qquad \text{Then} \qquad \widehat{\mu}_{\star}^{\text{DE}} := \widehat{\mu}_{\bar{i}}(S^B_{\bar{i}}).$$

It can be shown that $\widehat{\mu}_{\star}^{\rm DE}$ is negatively biased.

Combining Double Estimator with QL

The Double Estimator could be incorporated into QL:

- Let's maintain two estimates of Q-values Q^A and Q^B , each updates using half of the samples from \mathcal{D} :
- Update for Q^A

$$Q_{t+1}^A(s,a) = \begin{cases} Q_t^A(s,a) + \alpha_t \Big(r_t + \gamma Q_t^B(s_{t+1}, \overline{\mathbf{a}}) - Q_t^A(s,a) \Big) & (s,a) = (s_t, a_t) \\ Q_t^A(s,a) & \text{else.} \end{cases}$$

with $\overline{a} = \operatorname{argmax}_b Q_t^A(s_{t+1}, b)$.

• A similar update will be made for Q^B

The corresponding algorithm is called Double QL (van Hasselt, 2010).

Double QL

input: $\mathcal{D} = \{(s_t, a_t, r_t)\}_{1 \leq t \leq n}, (\alpha_t)_{t \geq 1}$ initialization: Select Q_1^A, Q_1^B arbitrarily

for t = 1, ..., n-1:

- \bullet Set update-A = True w.p. 0.5
- if update-A:

$$\begin{split} & - \overline{a} = \operatorname{argmax}_a Q_t^A(s_{t+1}, a) \\ & - \delta_t = r_t + \gamma Q_t^B(s_{t+1}, \overline{a}) - Q_t^A(s_t, a_t) \\ & - \text{Update: } Q_{t+1}^A(s, a) = \begin{cases} Q_t^A(s, a) + \alpha_t \delta_t & (s, a) = (s_t, a_t) \\ Q_t^A(s, a) & \text{else.} \end{cases} \end{split}$$

else:

$$\begin{split} & - \overline{a} = \operatorname{argmax}_a Q_t^B(s_{t+1}, a) \\ & - \delta_t = r_t + \gamma Q_t^A(s_{t+1}, \overline{a}) - Q_t^B(s_t, a_t) \\ & - \text{ Update: } Q_{t+1}^B(s, a) = \begin{cases} Q_t^B(s, a) + \alpha_t \delta_t & (s, a) = (s_t, a_t) \\ Q_t^B(s, a) & \text{else.} \end{cases} \end{split}$$

output: Policy greedy w.r.t. $Q_n^A + Q_n^B$

• Q_n is an estimate of Q^* , giving an estimate $\widehat{\pi^*}$ of the optimal policy:

$$\widehat{\pi^{\star}}(s) \in \operatorname*{argmax}_{a \in \mathcal{A}} Q_n^A(s, a) + Q_n^B(s, a)$$

Double QL vs. QL

Double QL vs. QL in a simple MDP(Source: Sutton & Barto):

- ullet 4 states: A,B and two terminal states denoted by \square
- At A: Two actions ('left' and 'right'), each with r=0
- At B: Multiple actions, each with $r \sim \mathcal{N}(-0.1, 1)$
- $\bullet \Longrightarrow \pi^{\star}(A) = \mathsf{right}$

However, OPO methods may choose 'left' since maximization bias making B appear to have a positive value.

Double QL vs. QL

Double QL vs. QL in a simple MDP (Source: Sutton & Barto): Averaged over 10000 runs. $\pi_{\rm b}$, is ε -greedy with $\varepsilon=0.1$.

- QL initially learns 'left' much more often than 'right'
- In contrast, Double QL is less affected by maximization bias.

Off-Policy vs. Offline

Off-Policy Learning/Optimization \(\neq \) Offline RL

- In offline RL, the goal is to learn an optimal policy (or a near-optimal one) from a dataset we're offline; no further exploration.
- Offline RL ⊂ OPO
- Note that OPO could take place in an online fashion (but behavior must be generated off-the-target-policy)

Historical Account

- Christopher Watkins presented QL in 1989 in his PhD thesis.
- In 1994, Tsitsiklis established the almost sure convergence of QL by showing its relation to SA. See the paper for a detailed proof of asymptotic convergence guarantee and verification of SA conditions (Tsitsiklis, 1994).
- Non-asymptotic convergence of QL was done in (Even-dar & Mansour, 2003).
 State-of-the-art is (Li et al., 2020).
- Double QL is presented in (van Hasselt, 2010).
- Research on improved sample complexity of QL as well as improved variants is ongoing.

References

- O. Watkins. Learning from delayed rewards. PhD thesis at King's College, 1989.
- Q H. Robbins and S. Monro. A stochastic approximation method. The annals of mathematical statistics, 1951.
- 3 J. Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Machine Learning, 1994.
- E. Even-Dar and Y. Mansour. Learning rates for Q-learning. Journal of machine learning Research, 2003.
- G. Li, Y. Wei, Y. Chi, Y. Gu, and Y. Chen. Sample complexity of asynchronous Q-learning: Sharper analysis and variance reduction. Advances in Neural Information Processing Systems, 2020.
- 6 H. van Hasselt. Double Q-learning. Advances in Neural Information Processing Systems, 2010.

