## Lab Report-8

## Entry counter system using Up-Down Counter

#### Sai Akshita-EE24BTECH11054 Sai Akhila-EE24BTECH11055

#### April 6, 2025

## Contents

| - | 1 Objective |                                                              |    |  |  |  |  |
|---|-------------|--------------------------------------------------------------|----|--|--|--|--|
| 2 | Con         | mponents Required                                            | 3  |  |  |  |  |
| 3 | Circ        | cuit network Connections                                     | 3  |  |  |  |  |
|   | 3.1         | Sketch of the Core-counting circuit                          | 3  |  |  |  |  |
|   | 3.2         | Incrementing/Decrementing circuit and clock-pulse generating |    |  |  |  |  |
|   |             | circuit                                                      | 4  |  |  |  |  |
|   | 3.3         | JK flip-flop connections for units digit                     | 6  |  |  |  |  |
|   |             | 3.3.1 1st IC 7476(for bits $Q_0$ and $Q_1$ )                 | 6  |  |  |  |  |
|   |             | 3.3.2 2nd IC 7476(for bits $Q_2$ and $Q_3$ )                 | 7  |  |  |  |  |
|   | 3.4         | JK flip-flop connections for tens digit                      | 8  |  |  |  |  |
|   |             | 3.4.1 1st IC 7476(for bits $Q_0$ and $Q_1$ )                 | 8  |  |  |  |  |
|   |             | 3.4.2 2nd IC 7476(for bits $Q_2$ and $Q_3$ )                 | 9  |  |  |  |  |
|   | 3.5         | Flip Flops to Decoder                                        | 9  |  |  |  |  |
|   | 3.6         | Decoder to seven-segment display                             | 10 |  |  |  |  |
| 4 | Log         | ic                                                           | 10 |  |  |  |  |
|   | 4.1         | Excitation Table for JK Flip-Flop                            | 10 |  |  |  |  |
|   | 4.2         | Excitation Table for T Flip-Flop                             | 11 |  |  |  |  |
|   | 4.3         | Truth Table for incrementing logic                           | 11 |  |  |  |  |
|   | 4.4         | K-maps for J and K of each flip-flop(Incrementation)         | 12 |  |  |  |  |
|   | 4.5         | Truth table for Decrementing Logic                           | 14 |  |  |  |  |
|   | 4.6         | K-maps for J and K of each flipflop<br>(Decrementation)      | 15 |  |  |  |  |

| <b>5</b> | Wo  | rking l | Principle of circuit                                     | 16 |
|----------|-----|---------|----------------------------------------------------------|----|
|          |     | 5.0.1   | Working of DIR                                           | 16 |
|          | 5.1 | Imple   | mentation with Push Buttons                              | 16 |
|          |     | 5.1.1   | Two-Button Configuration                                 | 17 |
|          |     | 5.1.2   | Single-Button Toggle Configuration                       | 17 |
|          |     | 5.1.3   | Role of Resistors                                        | 17 |
|          | 5.2 | Worki   | ng Principle of clock-pulse generation circuit and DIR . | 18 |
|          |     | 5.2.1   | Working of clock pulse for units and tens digit          | 18 |
|          |     | 5.2.2   | Logic behind the CLOCK of tens digit                     | 18 |
|          | 5.3 | T-Flip  | p-flop sub circuit and Decoder and 7-segment setup       | 18 |
|          |     | 5.3.1   | T-Flip-flop sub circuit for units digit                  | 18 |
|          |     | 5.3.2   | T-Flip-flop sub circuit for tens digit                   | 19 |
|          |     | 5.3.3   | Decoder and 7-segment display                            | 19 |
| 6        | Cor | clusio  | n                                                        | 19 |

### 1 Objective

To design and implement a digital up/down counter that displays the number of people currently in the mess during peak lunch hours.

#### 2 Components Required

- 7-Segment Display (2-digit, Common Anode are used)
- Push Buttons (for simulation purposes if sensors are unavailable)
- Power Supply (5V DC for microcontroller and display)
- Breadboards and Jumper Wires
- Resistors  $(1 k\Omega, 100 \Omega)$  for display connections)
- 2x 7447 Decoder
- 4x IC 7476(8-JK Flip Flops)
- IC 7432 for OR Gate (as required)
- IC 7408 for AND Gate (as required)
- IC 7404 for inverting gate (as required)
- IC 7486 for XOR gate (combining with not for XNOR)
- IC 7411 for 3-input AND gate (as required)
- IC 7421 for 4-input AND gate (as required)
- IC 7420 for 4-input NAND gate (as required)

#### 3 Circuit network Connections

#### 3.1 Sketch of the Core-counting circuit

This consists of Incrementing/Decrementing circuit, clock-pulse generating circuit, and sub-circuit consisting of T-flipflops which compute binary output of counter.



Figure 1: Binary Core-counting circuit

# 3.2 Incrementing/Decrementing circuit and clock-pulse generating circuit

To navigate the incrementation or decrementation in count, the following circuit is built.



Figure 2: clock-pulse generation circuit

## 3.3 JK flip-flop connections for units digit

## 3.3.1 1st IC 7476(for bits $Q_0$ and $Q_1$ )

| Pin | Description                                                                   |
|-----|-------------------------------------------------------------------------------|
| 1   | Clock for 1st flip-flop                                                       |
| 2   | $\overline{\text{PRESET}} = 1 \text{ (For 1st flip-flop)}$                    |
| 3   | $\overline{\text{CLEAR}} = 1 \text{ (For 1st flip-flop)}$                     |
| 4   | $J_0 = 1$ (should be connected to 5V)                                         |
| 5   | Vcc = 5V                                                                      |
| 6   | Clock for 2nd flip-flop                                                       |
| 7   | $\overline{\text{PRESET}} = 1 \text{ (For 2nd flip-flop)}$                    |
| 8   | $\overline{\text{CLEAR}} = 1 \text{ (For 2nd flip-flop)}$                     |
| 9   | $J_1 = Q_0.\overline{Q_3}.DIR + \overline{Q_0.\overline{Q_3}}.\overline{DIR}$ |
| 10  | $\overline{Q_1}$                                                              |
| 11  | $Q_1$                                                                         |
| 12  | $K_1 = Q_0.\overline{Q_3}.DIR + \overline{Q_0.\overline{Q_3}}.\overline{DIR}$ |
| 13  | Ground (0V)                                                                   |
| 14  | $\overline{Q_0}$                                                              |
| 15  | $Q_0$                                                                         |
| 16  | $K_0 = 1$ (should be connected to 5V)                                         |

Table 1: Pin Configuration Table

# 3.3.2 2nd IC 7476(for bits $Q_2$ and $Q_3$ )

| Pin | Description                                                                             |
|-----|-----------------------------------------------------------------------------------------|
| 1   | Clock for 3rd flip-flop                                                                 |
| 2   | $\overline{\text{PRESET}} = 1 \text{ (For 3rd flip-flop)}$                              |
| 3   | $\overline{\text{CLEAR}} = 1 \text{ (For 3rd flip-flop)}$                               |
| 4   | $J_2 = Q_0.Q_1.DIR + \overline{Q_0.Q_1}.\overline{DIR}$                                 |
| 5   | Vcc = 5V                                                                                |
| 6   | Clock for 4th flip-flop                                                                 |
| 7   | $\overline{\text{PRESET}} = 1 \text{ (For 4th flip-flop)}$                              |
| 8   | $\overline{\text{CLEAR}} = 1 \text{ (For 4th flip-flop)}$                               |
| 9   | $J_3 = (Q_0.Q_1.Q_2 + Q_0.Q_3).DIR + \overline{(Q_0.Q_1.Q_2 + Q_0.Q_3)}.\overline{DIR}$ |
| 10  | $\overline{Q_1}$                                                                        |
| 11  | $Q_3$                                                                                   |
| 12  | $K_3 = (Q_0.Q_1.Q_2 + Q_0.Q_3).DIR + \overline{(Q_0.Q_1.Q_2 + Q_0.Q_3)}.\overline{DIR}$ |
| 13  | Ground (0V)                                                                             |
| 14  | $\overline{Q_2}$                                                                        |
| 15  | $Q_2$                                                                                   |
| 16  | $K_2 = Q_0.Q_1.DIR + \overline{Q_0.Q_1}.\overline{DIR}$                                 |

Table 2: Pin Configuration Table

## 3.4 JK flip-flop connections for tens digit

## 3.4.1 1st IC 7476(for bits $Q_0$ and $Q_1$ )

| Pin | Description                                                                   |
|-----|-------------------------------------------------------------------------------|
| 1   | Clock for 1st flip-flop (From $Q_0.Q_3.CLK$ )                                 |
| 2   | $\overline{\text{PRESET}} = 1 \text{ (For 1st flip-flop)}$                    |
| 3   | $\overline{\text{CLEAR}} = 1 \text{ (For 1st flip-flop)}$                     |
| 4   | $J_0 = 1$ (should be connected to 5V)                                         |
| 5   | Vcc = 5V                                                                      |
| 6   | Clock for 2nd flip-flop (From $Q_0.Q_3.CLK$ )                                 |
| 7   | $\overline{\text{PRESET}} = 1 \text{ (For 2nd flip-flop)}$                    |
| 8   | $\overline{\text{CLEAR}} = 1 \text{ (For 2nd flip-flop)}$                     |
| 9   | $J_1 = Q_0.\overline{Q_3}.DIR + \overline{Q_0.\overline{Q_3}}.\overline{DIR}$ |
| 10  | $\overline{Q_1}$                                                              |
| 11  | $Q_1$                                                                         |
| 12  | $K_1 = Q_0.\overline{Q_3}.DIR + \overline{Q_0.\overline{Q_3}}.\overline{DIR}$ |
| 13  | Ground (0V)                                                                   |
| 14  | $\overline{Q_0}$                                                              |
| 15  | $Q_0$                                                                         |
| 16  | $K_0 = 1$ (should be connected to 5V)                                         |

Table 3: Pin Configuration Table

## 3.4.2 2nd IC 7476(for bits $Q_2$ and $Q_3$ )

| Pin | Description                                                                             |
|-----|-----------------------------------------------------------------------------------------|
| 1   | Clock for 3rd flip-flop (From $Q_0.Q_3.CLK$ )                                           |
| 2   | $\overline{\text{PRESET}} = 1 \text{ (For 3rd flip-flop)}$                              |
| 3   | $\overline{\text{CLEAR}} = 1 \text{ (For 3rd flip-flop)}$                               |
| 4   | $J_2 = Q_0.Q_1.DIR + \overline{Q_0.Q_1}.\overline{DIR}$                                 |
| 5   | Vcc = 5V                                                                                |
| 6   | Clock for 4th flip-flop (From $Q_0.Q_3.CLK$ )                                           |
| 7   | $\overline{\text{PRESET}} = 1 \text{ (For 4th flip-flop)}$                              |
| 8   | $\overline{\text{CLEAR}} = 1 \text{ (For 4th flip-flop)}$                               |
| 9   | $J_3 = (Q_0.Q_1.Q_2 + Q_0.Q_3).DIR + \overline{(Q_0.Q_1.Q_2 + Q_0.Q_3)}.\overline{DIR}$ |
| 10  | $\overline{Q_1}$                                                                        |
| 11  | $Q_3$                                                                                   |
| 12  | $K_3 = (Q_0.Q_1.Q_2 + Q_0.Q_3).DIR + \overline{(Q_0.Q_1.Q_2 + Q_0.Q_3)}.\overline{DIR}$ |
| 13  | Ground (0V)                                                                             |
| 14  | $\overline{Q_2}$                                                                        |
| 15  | $Q_2$                                                                                   |
| 16  | $K_2 = Q_0.Q_1.DIR + \overline{Q_0.Q_1}.\overline{DIR}$                                 |

Table 4: Pin Configuration Table

## 3.5 Flip Flops to Decoder

| Output bit | 7447 Pin |
|------------|----------|
| $Q_0$      | A        |
| $Q_1$      | В        |
| $Q_2$      | С        |
| $Q_3$      | D        |

Table 5: Connections from output bits (IC 7476) to 7447 Decoder

• The output bits  $Q_0$  to  $Q_3$  represent the BCD of a number.

- To represe tthe BCD equivalent of a number on Seven-Segment display, decoder is used.
- We use 2 decoders in the entire circuit (one for a digit) to convert BCD to seven segment display.

#### 3.6 Decoder to seven-segment display

| 7447 Pin       | Seven-Segment Display Segment |
|----------------|-------------------------------|
| $\overline{a}$ | a                             |
| $\overline{b}$ | b                             |
| $\overline{c}$ | c                             |
| $\overline{d}$ | d                             |
| $\overline{e}$ | e                             |
| $\overline{f}$ | f                             |
| $\overline{g}$ | g                             |

Table 6: Connections from 7447 Decoder to Seven-Segment Display

## 4 Logic

#### 4.1 Excitation Table for JK Flip-Flop

| $Q_n$ | $Q_{n+1}$ | J | K |
|-------|-----------|---|---|
| 0     | 0         | 0 | X |
| 0     | 1         | 1 | X |
| 1     | 0         | X | 1 |
| 1     | 1         | X | 0 |

Table 7: Excitation Table for JK Flip-Flop

Table 8: Excitation Table for T Flip-Flop

| Present State $(Q_n)$ | Next State $(Q_{n+1})$ | T Input |
|-----------------------|------------------------|---------|
| 0                     | 0                      | 0       |
| 0                     | 1                      | 1       |
| 1                     | 0                      | 1       |
| 1                     | 1                      | 0       |

## 4.2 Excitation Table for T Flip-Flop

### 4.3 Truth Table for incrementing logic

| $\mathbf{Q3}$ | $\mathbf{Q2}$ | Q1 | $\mathbf{Q0}$ | J3 | <b>K</b> 3 | J2 | <b>K2</b> | J1 | K1 | J0 | <b>K</b> 0 | NS3 | NS2 | NS1 | NS0 |
|---------------|---------------|----|---------------|----|------------|----|-----------|----|----|----|------------|-----|-----|-----|-----|
| 0             | 0             | 0  | 0             | 0  | X          | 0  | X         | 0  | X  | 1  | X          | 0   | 0   | 0   | 1   |
| 0             | 0             | 0  | 1             | 0  | X          | 0  | X         | 1  | X  | X  | 1          | 0   | 0   | 1   | 0   |
| 0             | 0             | 1  | 0             | 0  | X          | 0  | X         | X  | 0  | 1  | X          | 0   | 0   | 1   | 1   |
| 0             | 0             | 1  | 1             | 0  | X          | 1  | X         | X  | 1  | X  | 1          | 0   | 1   | 0   | 0   |
| 0             | 1             | 0  | 0             | 0  | X          | X  | 0         | 0  | X  | 1  | X          | 0   | 1   | 0   | 1   |
| 0             | 1             | 0  | 1             | 0  | X          | X  | 0         | 1  | X  | X  | 1          | 0   | 1   | 1   | 0   |
| 0             | 1             | 1  | 0             | 0  | X          | X  | 0         | X  | 0  | 1  | X          | 0   | 1   | 1   | 1   |
| 0             | 1             | 1  | 1             | 1  | X          | X  | 1         | X  | 1  | X  | 1          | 1   | 0   | 0   | 0   |
| 1             | 0             | 0  | 0             | X  | 0          | 0  | X         | 0  | X  | 1  | X          | 1   | 0   | 0   | 1   |
| 1             | 0             | 0  | 1             | X  | 1          | 0  | X         | 0  | X  | X  | 1          | 0   | 0   | 0   | 0   |
| 1             | 0             | 1  | 0             | X  | X          | X  | X         | X  | X  | X  | X          | X   | X   | X   | X   |
| 1             | 0             | 1  | 1             | X  | X          | X  | X         | X  | X  | X  | X          | X   | X   | X   | X   |
| 1             | 1             | 0  | 0             | X  | X          | X  | X         | X  | X  | X  | X          | X   | X   | X   | X   |
| 1             | 1             | 0  | 1             | X  | X          | X  | X         | X  | X  | X  | X          | X   | X   | X   | X   |
| 1             | 1             | 1  | 0             | X  | X          | X  | X         | X  | X  | X  | X          | X   | X   | X   | X   |
| 1             | 1             | 1  | 1             | X  | X          | X  | X         | X  | X  | X  | X          | X   | X   | X   | X   |

Table 9: Truth Table for Incrementation

## 4.4 K-maps for J and K of each flip-flop(Incrementation)



Figure 3: JK values of 1st IC7476



Figure 4: JK values of 2nd IC7476

## 4.5 Truth table for Decrementing Logic

| $Q_3$ | $\mathbf{Q2}$ | Q1 | $\mathbf{Q0}$ | J3 | <b>K</b> 3 | J2 | <b>K2</b> | J1 | <b>K</b> 1 | J0 | <b>K</b> 0 | NS3 | NS2 | NS1 | NS0 |
|-------|---------------|----|---------------|----|------------|----|-----------|----|------------|----|------------|-----|-----|-----|-----|
| 1     | 1             | 1  | 1             | X  | X          | X  | X         | X  | X          | X  | X          | X   | X   | X   | X   |
| 1     | 1             | 1  | 0             | X  | X          | X  | X         | X  | X          | X  | X          | X   | X   | X   | X   |
| 1     | 1             | 0  | 1             | X  | X          | X  | X         | X  | X          | X  | X          | X   | X   | X   | X   |
| 1     | 1             | 0  | 0             | X  | X          | X  | X         | X  | X          | X  | X          | X   | X   | X   | X   |
| 1     | 0             | 1  | 1             | X  | X          | X  | X         | X  | X          | X  | X          | X   | X   | X   | X   |
| 1     | 0             | 1  | 0             | X  | X          | X  | X         | X  | X          | X  | X          | X   | X   | X   | X   |
| 1     | 0             | 0  | 1             | X  | 0          | 0  | X         | 0  | X          | X  | 1          | 1   | 0   | 0   | 0   |
| 1     | 0             | 0  | 0             | X  | 1          | 1  | X         | 1  | X          | 1  | X          | 0   | 1   | 1   | 1   |
| 0     | 1             | 1  | 1             | 0  | X          | X  | 0         | X  | 0          | X  | 1          | 0   | 1   | 1   | 0   |
| 0     | 1             | 1  | 0             | 0  | X          | X  | 0         | X  | 1          | 1  | X          | 0   | 1   | 0   | 1   |
| 0     | 1             | 0  | 1             | 0  | X          | X  | 0         | 0  | X          | X  | 1          | 0   | 1   | 0   | 0   |
| 0     | 1             | 0  | 0             | 0  | X          | X  | 1         | 1  | X          | 1  | X          | 0   | 0   | 1   | 1   |
| 0     | 0             | 1  | 1             | 0  | X          | 0  | X         | X  | 0          | X  | 1          | 0   | 0   | 1   | 0   |
| 0     | 0             | 1  | 0             | 0  | X          | 0  | X         | X  | 1          | 1  | X          | 0   | 0   | 0   | 1   |
| 0     | 0             | 0  | 1             | 0  | X          | 0  | X         | 0  | X          | X  | 1          | 0   | 0   | 0   | 0   |
| 0     | 0             | 0  | 0             | 1  | X          | 0  | X         | 0  | X          | 1  | X          | 1   | 0   | 0   | 1   |

Table 10: Truth Table for Decrementation

## 4.6 K-maps for J and K of each flipflop(Decrementation)



Figure 5: JK values of 3rd IC7476



Figure 6: JK values of 4th IC7476

#### 5 Working Principle of circuit

#### 5.0.1 Working of DIR

The DIR signal acts as a control input to decide the counting direction:

- DIR = 1 (High): The counter increments.
- DIR = 0 (Low): The counter decrements.

#### 5.1 Implementation with Push Buttons

Push buttons play a crucial role in manually controlling the DIR signal. The common configurations are:

#### 5.1.1 Two-Button Configuration

Two push buttons can be used:

- Increment Button (UP): When pressed, it sets DIR = 1 and triggers a clock pulse. Pressing the UP button generates a pulse that signifies an increment.
- DIR=1, The output function is the boolean logic associated with DIR, results in enabling  $J_1 = K_1 = Q_0.\overline{Q_3}$ , and similar will happen for  $J_2 = K_2$  and  $J_3 = K_3$ .
- Decrement Button (DOWN): When pressed, it sets DIR = 0 and triggers a clock pulse. Pressing the DOWN button generates a pulse that signifies a decrement.
- DIR=0, The the output function is the boolean logic associated with DIR, results in enabling  $J_1 = K_1 = \overline{Q_0}Q_1 + \overline{Q_0Q_1}(Q_2 + Q_3)$ , and similar will happen for  $J_2 = K_2$  and  $J_3 = K_3$ .

#### 5.1.2 Single-Button Toggle Configuration

A single push button can toggle the DIR state:

- Pressing the button flips DIR from 0 to 1 (increment mode) and vice versa.
- A debounce circuit or software debouncing had been setup to ensure a stable transition.

#### 5.1.3 Role of Resistors

- The  $100\Omega$  resistor between push button of DOWN and NOT gate acts as a current-limiting resistor to prevent excessive current when the DOWN button is pressed.
- The  $15k\Omega$  pull-down resistors ensure the logic state of the gates remains LOW when no buttons are pressed, avoiding floating inputs.

# 5.2 Working Principle of clock-pulse generation circuit and DIR

#### 5.2.1 Working of clock pulse for units and tens digit

- For the flip flops contributing to units digit, the clock pulse is given directly from clock-pulse generator circuit, so as to increment/decrement the digit.
- For the flip flops contributing to tens digit, the clock signal is given by the **AND** of  $Q_0,Q_3$ , and the CLK generated by the clock-pulse generator circuit.

#### 5.2.2 Logic behind the CLOCK of tens digit

- Incrementing: When the units digit reaches 9 and the UP button is pushed, the tens digit has to increase by 1. The BCD equivalent of 9 is 1001, which means the **AND** of  $Q_0, Q_3$ , and the CLK goes from 1 to 0, causing negative edge trigger and DIR becoming 1 results in incrementation of the tens digit.
- Since the 4-bits of units digit are synchronous, the units digit automatically resets to 0.
- **Decrementing:**When the units digit reach 0 and the DOWN button is pushed, the tens digit has to decrease by 1. The BCD equivalent of 9 is 1001, which means the **AND** of  $Q_0, Q_3$ , and the CLK goes from 1 to 0,causing negative edge trigger and DIR becoming 0 results in decrementation of the tens digit.
- Since the 4-bits of units digit are synchronous, the units digit automatically resets to 9.

# 5.3 T-Flip-flop sub circuit and Decoder and 7-segment setup

#### 5.3.1 T-Flip-flop sub circuit for units digit

- Each flip-flop receives CLOCK from clock-pulse generator circuit.
- Since we are using T-flip-flops, for IC 7476, both J and K are given same logic.

- Each flip flop input requires corresponding logic, it it listed in logic section. The logic is provided using whatever ICs are required.
- The outputs  $Q_0$  to  $Q_3$  for each digit are generated by 4 flip-flops whose manual connections and logic are mentioned above.

#### 5.3.2 T-Flip-flop sub circuit for tens digit

- Each flip-flop receives CLOCK from the **AND** of  $Q_0, Q_3$  and CLK generated from clock-pulse generator circuit.
- Since we are using T-flip-flops, for IC 7476, both J and K are given same logic.
- Each flip flop input requires corresponding logic, it it listed in logic section. The logic is provided using whatever ICs are required.
- The outputs  $Q_0$  to  $Q_3$  for each digit are generated by 4 flip-flops whose manual connections and logic are mentioned above.

#### 5.3.3 Decoder and 7-segment display

- The outputs  $Q_0$  to  $Q_3$  for each digit are generated by 4 flip-flops whose manual connections and logic are mentioned above.
- For each digit, each of  $Q_0$  to  $Q_3$  outputs are sent to IC 7447 decoder and from there, the corresponding number is displayed on seven-segment display.

#### 6 Conclusion

Hence, we can implement a double digit partially synchronous counter using Boolean logic and T-Flip-Flops.