## 15. Error analysis for ODE IVP solvers.

### Numerical Analysis E2021

Institute of Mathematics Aalborg University





# Errors in ODE problems

Numerical Analysis E2021

#### Errors In ODE Problems

Order Of Euler's Method When solving ODEs numerically, we get errors from two sources:

- ► Discretisation error: a property of the differential equation and the applied method.
  - Local: the error that would be made in one step if the previous values were exact and if there were no roundoff error.
  - Global: the difference between the computed solution, still ignoring roundoff, and the true solution.
- Roundoff error: a property of the computer hardware and the program used.

Numerical Analysis E2021

#### Errors In ODE Problems

Order Of Euler's Method Let *u* be a function given by

$$u'_n = f(t, y_n),$$
  
$$u_n(t_n) = y_n.$$

Then the local resp. global discretisation errors are given by

$$d_n = y_{n+1} - u_n(t_{n+1}), \quad e_n = y_n - y(t_n).$$

We say that an ODE solver is of order p if  $d_n = \mathcal{O}(h_n^{p+1})$ .



## Order of Euler's method

## Numerical Analysis

Order Of Fuler's Method

Recall Fuler's method

$$y_{n+1} = y_n + h_n f(t_n, y_n).$$

Assume the local solution  $u_n(t)$  has a continuous second derivative. Then, using Taylor series near the point  $t_n$ ,

$$u_n(t) = u_n(t_n) + (t - t_n)u'_n(t_n) + \mathcal{O}((t - t_n)^2).$$

Now, by using the differential equation and the initial condition defining  $u_n(t)$ , we obtain

$$u_n(t_{n+1}) = y_n + h_n f(t_n, y_n) + \mathcal{O}(h_n^2).$$

Consequently, we have

$$d_n = y_{n+1} - u_n(t_{n+1}) = \mathcal{O}(h_n^2),$$

thus Fuler's method is of order 1.



# Order and global error

### Numerical Analysis

Order Of Fuler's

Consider the global discretisation error at a fixed point  $t_f$ . As accuracy requirements increase, the step size  $h_n$  decreases, thus the total number of steps N required to reach  $t_f$ increases. Rough estimate:

$$N \approx (t_f - t_0)/h$$
,

where h is the average step size. We roughly have that if the local error is  $\mathcal{O}(h^{p+1})$ , then the global error is  $N \cdot \mathcal{O}(h^{p+1}) = \mathcal{O}(h^p).$ 

This explains the use of p + 1 as the exponent in the definition of order.

MATLAB demo of exercise 7.7.