

مَا اللهُ ا

PHYSICLIGIE RESPIRATORE :

+ Exprime le nombre de fois la question a été posée dans les examens

Résumé basé sur les QCM des années précédentes

Fait par: Saad BARAKA

(G:barsaad2004@gmail.com

ANATUMIE DE L'APPAREIL RESPIRATOIRE

ET VENTILATION

La Ventilation (+++)	-Assure de déplacement de l'air de l'environnement externe vers les alvéoles et des alvéoles vers l'atmosphèreN'assure pas les échangés des gaz respiratoires entre le sang et l'alvéole -Dépend de l'élasticité des poumons -Est effectuée grâce au muscles respiratoires -Change en cas d'atteinte pleurale -Est le résultat de mouvements successifs d'inspiration et expiration
Les muscles respiratoires	-Le déplacement de 1cm mobilise 250 cm2 d'air
(+++)	-Responsable de 75% de la ventilation -les muscles intercostaux externes sont des muscles inspiratoires
	-Le sterno-cléido-mastoïdien est un muscle expiratoire qui relève le sternum
Surfactant pulmonaire (++++)	-Mixture complexe de lipides et de protéines -Sécrétée par les pneumocytes de type 2 -Permet l'augmentation de la compliance pulmonaire -Permet la diminution de la tension superficielle a la surface alvéolaire -Permet d'éviter la déstresse respiratoire
L'inspiration (+++)	-Fait intervenir le diaphragme -Phénomène actif et automatique -Entraine une augmentation de volume du thorax -Ne Fait pas intervenir les muscles intercostaux internes -Fait intervenir les muscles intercostaux externes -Ne fait pas toujours intervenir les muscles inspiratoires accessoires
L'expiration (+++++)	 Phénomène passif Devient actif en cas d'expiration forcée =Intervention des muscles d'abdomen Fait intervenir les muscles intercostaux internes Ne fait pas intervenir le diaphragme Entraine une diminution du volume du thorax
Volume expiratoire maximal par seconde (++)	Volume d'aire mobilise en une seconde par une expiration forcée et rapide.

Capacité résiduelle fonctionnelle (++)	Le volume d'air contenu dans les poumons après une expiration normale.
Volume résiduel (++++)	Le volume d'air contenu dans les poumons après une expiration forcée.
Les volumes mobilisables (+++)	-Volume courant Vt -Volume de réserve inspiratoire -Volume de réserve expiratoire -Capacité inspiratoire -Capacité expiratoire -Capacité vitale
Les volumes non mobilisables (+++++)	-Volume inspiratoire maximal par seconde - Volume expiratoire maximal par seconde - Capacité pulmonaire totale - Capacité résiduelle fonctionnelle - Volume résiduel
Capacité vitale (++)	-Le volume d'air mobilisé par une expiration profonde après une inspiration profonde (où Inspiration profonde après expiration profonde)
Capacité pulmonaire totale (++)	-Le volume d'air contenu dans les poumons après une inspiration profonde.

pression partielle est plus élevée

-Réglée par la loi de Fick

-Ne dépend pas de la tension superficielle

-Ne correspond pas au transport des gaz

LA DIFFUSION ALVÉOLO-CAPILLAIRE = HÉMATOSE

A propos de la diffusion alvéolo-capillaires : (++++++) :	Les facteurs qui influencent la diffusion sont : (+++)	La diffusion libre de CO(DLCO) dépend du : (++++)
-Correspond aux échanges gazeux à travers la membrane alvéolo capillaireest proportionnelle à la solubilité du gaz dans les milieux, au gradient (concentration/Pression), à une constante de diffusion (D) et au temps de contact est inversement proportionnelle à la masse	1- Nature du gaz 2- Le gradient de pression au niveau de la MAC 3- L'épaisseur de la MAC 4- La surface de contact air-sang 5- Le temps de contact air-sang	 L'âge (DLCO diminue avec l'âge) Le sexe La surface corporelle La fixation du CO sur l'hémoglobine Hb
moléculaire -L'O2 passe de l'alvéole vers le sang car sa pression partielle est plus élevée au niveau de l'alvéole	Au cours de l'effort (++):	La diffusion :
-Le CO2 diffuse du sang vers l'alvéole sang, car sa		

- Augmentation des capillaires -augmentation des alvéoles ventilés -La capacite de diffusion augmente au cours de l'effort et perfusés -augmentation de la capacité de la diffusion.

Mouvement naturel qui fait passer des molécules de gaz du milieu le plus "concentré" vers le milieu le moins "concentré"

LE TRANSPORT DES GAZ

L'Hémoglobine (++):

- -Tétramère de masse moléculaire : 68000 KDa Présent exclusivement dans les GR.
- -Sont affinités pour le CO est supérieure a celle pour l'O2

L'affinité de Hb pour l'O2

- -Proportionnelle au pH
- -Dépend de la P50
- -Inversement proportionnelle a a la température ,2-3DPG et PCO2

Une oxygénation correcte des tissus dépend de plusieurs facteurs (+++++++):

- 1- La qualité de l'hématose (échanges gazeux)
- 2-Le débit cardiaque
- 3-La concentration sanguine en hémoglobine
- 4-La courbe de dissociation de l'hémoglobine

Le transport d'O2 dans le sang (+++):

Se fait sous forme dissoute et combinée dans les hématies

- -Est proportionnelle a la PaO2
- -Dépend de la qualité d'hématose et la concentration sanguine en Hb
- -Sa forme combinée est la principale

LES SYNDRUMES RESPIRATURES :

Syndrome obstructif
(++++++)

-Le VEMS est abaissée – Le VR peut être augmente

-La CV est normale ou légèrement diminuée - La CPT est normale

-Les débits sont diminués - Un rapport de Tiffeneau diminué - Le DEP est abaissé

Syndrome restrictif
(++++++)

Une CPT Diminuée – Un VEMS/CV Diminuée – La capacité vital (Vt, VRI, VRE) est diminuée – Les volumes sont diminuées

-Un VEMS Normal – Les débits sont normaux - VR/CPT normal

Leeeeeeess gooo !!

CONTRÔLE DE LA RESPIRATION

Régulation chimique :

Chémorécepteurs centraux : (++++)	Chémorécepteurs	Mécanorécepteurs	Mécanorécepteurs
	périphériques :	pharyngés :	pulmonaires :
	(+++++)	(++++)	(++++++)
-Situés à la surface ventrale du bulbeStimulés par les ions H+ (PCO2) présent dans le LCRNe sont pas sensibles à la PaO2Stimulent les neurones inspiratoires.	-Situés dans les corpuscules carotidiens -Sensibles à l'augmentation de PaO2 et la variation du pH -Leur influx passe par le X	-Sont situés dans la paroi pharyngéeSont sensibles à l'étirementSont responsable du réflexe dilatateur du pharynx:	-Situés dans le parenchyme et les voies aériennesSensibles à l'étirementInflux transite par le X, arrive aux centres bulbairesInformation sur le niveau d'inflation pulmonaire -Permettent l'interruption de l'inspiration