CPSC 340: Machine Learning and Data Mining

Convexity

Convex Functions

- Is finding a 'w' with $\nabla f(w) = 0$ good enough?
 - Yes, for convex functions.

- A function is convex if the area above the function is a convex set.
 - All values between any two points above function stay above function.

Convex Functions

• All 'w' with ∇ f(w) = 0 for convex functions are global minima.

Normal equations find a global minimum because least squares is convex.

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.
 - A convex function multiplied by non-negative constant is convex.

We showed that
$$f(w) = e^w$$
 is convex, so $f(w) = 10e^w$ is convex.

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff f''(w) ≥ 0 for all 'w'.
 - A convex function multiplied by non-negative constant is convex.
 - Norms and squared norms are convex.

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.
 - A convex function multiplied by non-negative constant is convex.
 - Norms and squared norms are convex.
 - The sum of convex functions is a convex function.

$$f(w) = |0e^{w} + \frac{\pi}{2}||w||^{2}$$
 is convex

From constant norm

earlier squared

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.
 - A convex function multiplied by non-negative constant is convex.
 - Norms and squared norms are convex.
 - The sum of convex functions is a convex function.

$$f(w) = w X_i = w_i X_{i1} + w_i X_{i2} + \cdots + w_i X_{id}$$

$$(onvex convex convex convex)$$

$$Sciend decivative of each term is 0.$$

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff f"(w) ≥ 0 for all 'w'.
 - A convex function multiplied by non-negative constant is convex.
 - Norms and squared norms are convex.
 - The sum of convex functions is a convex function.
 - The max of convex functions is a convex function

$$f(w) = ma \times \{ 1, 2w, w^2 \}$$
 is convex

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.
 - A convex function multiplied by non-negative constant is convex.
 - Norms and squared norms are convex.
 - The sum of convex functions is a convex function.
 - The max of convex functions is a convex function.
 - Composition of a convex function and a linear function is convex.

If
$$f(w) = g(xw - y)$$
 then If' is convex if 'g' is convex.

linear

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.
 - A convex function multiplied by non-negative constant is convex.
 - Norms and squared norms are convex.
 - The sum of convex functions is a convex function.
 - The max of convex functions is a convex function.
 - Composition of a convex function and a linear function is convex.
- But: not true that multiplication of convex functions is convex:
 - If f(x)=x (convex) and $g(x)=x^2$ (convex), $f(x)g(x)=x^3$ (not convex).

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.
 - A convex function multiplied by non-negative constant is convex.
 - Norms and squared norms are convex.
 - The sum of convex functions is a convex function.
 - The max of convex functions is a convex function.
 - Composition of a convex function and a linear function is convex.
- Also not true that composition of convex with convex is convex:

Even if 'f' is convex and 'g' is convex,
$$f(g(w))$$
 might not be convex.
E.g., w^2 is convex and $(w-1)^2$ is (on vex, but $(w^2-1)^2$ is not convex.

Constraints, Continuity, Smoothness

- Sometimes we need to optimize with constraints:
 - Later we'll see "non-negative least squares".

$$\frac{\min}{w \neq 0} \frac{1}{2} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$

- A vector 'w' satisfying $w \ge 0$ (element-wise) is said to be "feasible".
- Two factors affecting difficulty are continuity and smoothness.
 - Continuous functions tend to be easier than discontinuous functions.
 - Smooth/differentiable functions tend to be easier than non-smooth.
 - See the calculus review <u>here</u> if you haven't heard these words in a while.

Convexity, min, and argmin

• If a function is convex, then all critical points are global optima.

- However, convex functions don't necessarily have critical points:
 - For example, f(x) = a*x, f(x) = exp(x), etc.
- Also, more than one 'x' can achieve the global optimum:
 - For example, f(x) = c is minimized by any 'x'.