Grafer

Anvendelser av grafer

- Brukes for datasett med ikke-lineære og ikkehierarkiske forbindelser mellom dataobjektene
- Forbindelsene i en graf er ofte usystematiske
- Typisk anvendelser er modellering av nettverk:
 - Veisystemer/rutekart
 - Prosesser
 - Sosiale forhold
 - Organisasjonsmodeller
 - Internett / LAN

Flyruter

Veikart med avstandsangivelse

Molekylmodell

Nettverk for signalbehandling

Venner på Facebook

Grafer: Definisjon

- En graf G består av en mengde V med <u>noder</u> (vertices) sammen med en mengde E med <u>kanter</u> (edges), G = (V, E)
- En kant er et par (v, w) av noder, som angir at det er en <u>forbindelse</u> mellom nodene
- Hvis det er en kant mellom nodene v og w, dvs. at (v, w) ∈ E, sier vi at de to nodene er naboer i grafen G

Rettede og urettede grafer

- En graf er <u>rettet</u> hvis kantene er ordnede par:
 - Kantene er énveis
 - En kant (v, w) angir at det er en forbindelse fra v til w, men ikke fra w til v
- Grafen er <u>urettet</u> hvis kantene ikke er ordnet:
 - Kantene er toveis
 - En kant (v, w) angir at det er en forbindelse både fra v til w og fra w til v

Sammenhengende urettede grafer

- En <u>vei</u> i grafen er en sekvens av noder der hver node er nabo til neste node i sekvensen
- En <u>cykel</u> er en vei med minst 3 noder, der siste node på veien er nabo med første
- En urettet graf er <u>sammenhengende</u> hvis det finnes en vei fra enhver node i grafen til enhver annen node, ellers er den <u>usammenhengende</u>
- En urettet graf kalles for et <u>tre</u> hvis den er sammenhengende og uten cykler

Sammenhengende, urettet graf

- Noder: 0, 1, 2, 3, 4, 5, 6
- Kanter: (0, 1), (1, 2), (1, 3), (2, 3), (2, 4), (4, 6), (5, 6)
- Vei: 0, 1, 2, 4, 6, 5
- Cykel: 1, 3, 2

Usammenhengende, urettet graf

Tre

Grafen er sammenhengende og uten cykler: Et tre

Samenhengende rettede grafer

- Kantene i grafen har en retning:
 - Må ha to kanter for å ha forbindelse begge veier mellom to noder
- Veiene i grafen blir rettede (har en retning)
- En rettet graf er <u>sterkt sammenhengende</u> hvis det finnes en rettet vei fra enhver node til enhver annen node i grafen
- En rettet graf er <u>svakt sammenhengende</u> hvis det finnes en vei fra enhver node til enhver annen node i den tilsvarende urettede grafen

Svakt sammenhengende rettet graf

Sterkt sammenhengede rettet graf

Vektede grafer

- Hver kant har en lengde (eller kostnad)
- En kant består av tre deler:
 - To noder
 - En verdi som angir kantlengden
- En vektet graf kan være enten rettet eller urettet
- Veiene i grafen har en vektet veilengde*:
 - Summen av lengdene av alle kantene langs veien

Urettet vektet graf

Rettet vektet graf

Antall kanter i en graf med *n* noder

- Anta at det aldri er mer enn én kant fra en node til enhver annen node i grafen (?)
- Maksimalt antall kanter er da n²
- Grafer og nettverk er oftest "tynt befolket", dvs, at antall kanter er mye mindre enn n^2 , vanligvis O(n)
- Sparse graph: Antall kanter er O(n)
- Dense graph: Antall kanter er $O(n^2)$
- Viktig at implementasjon av grafer og grafalgoritmer er effektive når grafen er "sparse"

3-D dense graph

Datastruktur for grafer

- Trenger å lagre:
 - Dataene i hver node
 - Hvilke noder som er naboer i grafen (kantene)
 - Evt. lengde/kostnad for hver kant for vektet graf
- Rettede og urettede grafer lagres på samme måte:
 - En urettet kant (v, w) lagres som de to rettede kantene (v, w) og (w, v)
- To standard måter å lagre grafen på:
 - Nabomatrise
 - Nabolister

Nabomatriser *

- Nummererer de n nodene i en graf, fra 0 til n-1
- Hele grafen kan representeres med en todimensjonal boolsk n x n tabell/matrise G der:
 - G[i][j] er true hvis og bare hvis det går en kant fra node i til node j, og false ellers
- For vektede grafer kan det brukes en matrise med kantlengder (heltall eller reelle tall), der:
 - G[i][j] er lik kantlengden hvis det går en kant fra node i til node j, ellers lik "uendelig" (ingen kant)

Nabomatrise for urettet graf

For urettede grafer blir nabomatrisen symmetrisk om hoveddiagonalen, G[i][j] = G[j][i] (redundans)

	0	1	2	3	4	5	6
0	Т	Т	F	F	F	F	F
1	Т	Т	Т	Т	F	F	F
2	F	Т	Т	Т	Т	F	F
3	F	Т	Т	Т	F	F	F
4	F	F	Т	F	Т	F	Т
5	F	F	F	F	F	Т	Т
6	F	F	F	F	Т	Т	Т

Nabomatrise for rettet graf

Rettede grafer har usymmetrisk nabomatrise

(nodene nummereres med start i 1 i figuren ovenfor)

Nabo- / kantmatrise for vektet graf

	0	1	2	3	4	5	6
0	0	2	∞	1	∞	∞	∞
1	∞	0	∞	3	10	∞	∞
2	4	∞	0	∞	∞	5	∞
3	∞	∞	2	0	2	8	4
3	∞	∞	2 ∞	0	2 0	8 ∞	4 6
			∞				

Nabolister *

• Nabomatriser bruker $O(n^2)$ hukommelse, sløsing med plass siden de fleste grafer er "sparse"

Nabolister:

- Grafen representeres som en array med lister, én liste for hver node i grafen
- Listen for en node inneholder nodens direkte naboer i grafen
- Rettede og urettede grafer kan behandles likt, urettede kanter lagres to ganger
- Nabolisten for en "sparse" graf med med n noder krever O(n) hukommelse

Nabolister for en rettet, vektet graf

Lagring av grafdata på filer

- Naboliste-formatet er velegnet til lagre en graf som en tekstfil
- Nodene nummereres fra 0 til n 1
- Legger antall noder i grafen, n, først på filen
- Deretter én linje for hver node, med:
 - Nodenummer
 - Dataene som er lagret i noden
 - Antall naboer
 - En liste med nodenummere for alle naboene
 - I tillegg kantlengder for vektede grafer

Eksempel, lagring av rettet graf

a	1	1
b	2	2 3
С	1	3
d	1	4
e	1	0
	b c d	b 2 c 1 d 1

Eksempel, lagring av urettet graf

7					
0	0	1	1		
1	1	3	0	2	3
2	2	3	1	3	4
3	3	2	1	2	
4	4	2	2	6	
5	5	1	6		
6	6	2	4	5	

Eksempel, lagring av urettet graf

17						
0	Α	2	3	5		
1	В	4	2	4	5	8
2	C	2	1	5		
3	D	2	0	12		
4	Ε	4	1	5	9	12
5	F	4	0	1	2	4
6	G	2	8	10		
7	Н	3	11	12	13	
8	Ι	3	1	6	10	
9	J	3	4	15	16	
10	K	2	6	8		
11	L	2	7	16		
12	M	4	3	4	7	16
13	N	1	7			
14	0	1	15			
15	Р	2	9	14		
16	0	3	9	11	12	

Uvektet graf: Enkel implementasjon

- Noder med data som bare er enkel tekst-streng
- Representerer grafen som en Java-klasse med:
 - En array med dataene i hver node
 - En nabomatrise, der rettede og urettede grafer lagres på samme måte
- Leser inn hele grafen fra fil ved opprettelse av et nytt graf-objekt – ingen metoder for innsetting eller fjerning av data i grafen
- Java-kode: enkelGraf.java

Eksempel, lagring av urettet, vektet graf


```
5
0 1 2 1 2 3 5
1 2 4 0 2 2 14 3 5 4 4
2 3 2 1 14 4 34
3 4 3 0 5 1 5 4 58
4 5 3 1 4 2 34 3 58
```

Fil: vgraf_5.txt

Eksempel, lagring av rettet, vektet graf


```
7
0 V0 2 1 2 3 1
1 V1 2 3 3 4 10
2 V2 2 0 4 5 5
3 V3 4 2 2 4 2 5 8 6 4
4 V4 1 6 6
5 V5 0
6 V6 1 5 1
```

Fil: vgraf_7.txt

Vektet graf: Enkel implementasjon

- Noder med data som bare er enkel tekst-streng
- Representerer grafen som en Java-klasse med:
 - En array med dataene i hver node
 - En vekt-/kantlengde-matrise, der rettede og urettede kanter lagres på samme måte
 - "Ingen kant" representeres med verdien "uendelig"
- Leser inn hele grafen fra fil ved opprettelse av et nytt graf-objekt – ingen metoder for innsetting eller fjerning av data i grafen
- Java-kode: enkelVektetGraf.java