On the Number Density of Very High Redshift Quasars (VHzQs), or, "What do I point JWST at??"

NPR

January 11, 2018

Abstract

This is a sample document which demonstrates some of the basic features of LATEX. You can easily reformat it for different document or bibliography styles.

1 Section Heading

Survey	Area (deg^2)	N_{Q}	Magnitude Range	z-range	Reference
$\overline{\text{GOODS}(+\text{SDSS})}$	0.1 + (4200)	13(+656)	$22.25 < z_{850} < 25.25$	3.5 < z < 5.2	?
VVDS	0.62	130	$17.5 < I_{AB} < 24.0$	0 < z < 5	?
COMBO-17	0.8	192	R < 24	1.2 < z < 4.8	?
$COSMOS^a$	1.64	8	22 < i' < 24	$3.7 \lesssim z \lesssim 4.7$?
COSMOS	1.64	b_0	22 < i' < 24	$4.5 \lesssim z \lesssim 5.5$?
COSMOS	1.64	155	$16 \le I_{\mathrm{AB}} \le 25$	3 < z < 5	?
$NDWFS+DFS^c$	4	24	$R \le 24$	3.7 < z < 5.1	?
SFQS^d	4	414	g < 22.5	z < 5	?
$BOSS^e + MMT$	14.5 + 3.92	1 877	$g \lesssim 23$	0.7 < z < 4.0	?
$2\mathrm{SLAQ}^f$	105	5 645	18.00 < g < 21.85	$z \le 2.1$?
SDSS^g	182	39	$i \le 20$	3.6 < z < 5.0	?
SDSS+2SLAQ	192	$10 \ 637$	18.00 < g < 21.85	0.4 < z < 2.6	?
SDSS Main+Deep	195	6	$z_{ m AB} < 21.80$	$z \sim 6$?
BOSS Stripe 82	220	$5\ 476$	i>18.0 and $g<22.3$	2.2 < z < 3.5	?
CFHQS^h	500	19	z' < 22.63	5.74 < z < 6.42.	?
$2\mathrm{QZ}^i$	700	$23\ 338$	$18.25 < b_{\rm J} < 20.85$	0.4 < z < 2.1	??
SDSS DR3	1622	$15 \ 343$	$i \le 19.1 \text{ and } i \le 20.2$	0.3 < z < 5.0	?
${ m BOSS\ DR9}$	2236	$^{j}{f 23} {f 201}$	g < 22.00 or r < 21.85	2.2 < z < 3.5	this paper
SDSS DR7	6248	$57\ 959$	$i \le 19.1 \text{ and } i \le 20.2$	0.3 < z < 5.0	?
SDSS Type 2	6293	887	$L_{\mathrm{OIII}} \geq 10^{8.3} L_{\odot}$	z < 0.83	?
$SDSS DR6^k$	8417	$\gtrsim 850,000$	i < 21.3	$z \sim 2$ and $z \sim 4.25$?

Table 1: Selected optical quasar luminosity function measurements.

^aCosmic Evolution Survey (?).

^bNo Type-1 quasars were identified, though a low-luminosity $z \sim 5.07$ Type-2 quasar was discovered.

^cNOAO Deep Wide-Field Survey (?) and the Deep Lens Survey (?).

^dSDSS Faint Quasar Survey.

 $[^]e\mathrm{The}$ "boss 21" area on the SDSS Stripe 82 field.

 $f_{2dF-SDSS}$ LRG And QSO Survey (?).

 $^{^{}g}$ Photometric sample from SDSS; spectroscopic confirmation from SDSS and other telescopes.

 $^{{}^{}h}$ Canada-France High-z Quasar Survey (?)

ⁱ2dF Quasar Redshift Survey (?).

^jFrom our "uniform" sample defined in Section ??

 $^{^{}k}$ From a catalog of >1,000,000 photometrically classified quasar candidates.

1.1 Subsection heading

The QLF is defined as the number density of quasars per unit luminosity. It is often described by a double power-law (???, hereafter, R06) of the form

$$\Phi(L,z) = \frac{\phi_*^{(L)}}{(L/L^*)^{\alpha} + (L/L^*)^{\beta}}$$
(1)

with a characteristic, or break, luminosity L_* . An alternative definition of this form of the QLF gives the number density of quasars per unit magnitude,

$$\Phi(M,z) = \frac{\phi_*^{(M)}}{10^{0.4(\alpha+1)[M-M^*(z)]} + 10^{0.4(\beta+1)[M-M^*(z)]}}$$
(2)

The dimensions of Φ differ in the two conventions. We have followed R06 such that α describes the faint end QLF slope, and β the bright end slope. The α/β convention in some other works (e.g., ?) is in the opposite sense from our definition. Evolution of the QLF can be encoded in the redshift dependence of the break luminosity, ϕ_* , and also potentially in the evolution of the power-law slopes.

References