

Vavuniya Campus of the University of Jaffna First Examination in Information and Communication Technology - 2018 Second Semester - April / May 2020

ICT1233 Operating Systems

Answer Five Questions Only

Time Allowed: Three hours

1.	(a)	Give any three factors that determine the performance of a computer.	[15%]
	(b)	Give any three disadvantages of Batch Systems.	[15%]
	(e)	Give any three types of Operating system with suitable example for each of the	
		types.	[15%]
	(d)	Give any three advantages of Graphical User Interface in operating systems.	[15%]
	(e)	Explain briefly the term kernel.	[10%]
	(f)	Differentiate process and thread.	[20%]
	(g)	Give any two Process Control System Call.	[10%]
2.	(a)	State what is meant by Unauthorized access.	[20%]
	(b)	List any four key aspect of a good password with suitable examples.	[20%]
	(c)	Give the Operating System facilities in securing the resources of a computer.	[20%]
	(d)	State any five attributes of a file stored in a computer,	[10%]
	(e)	Give the significant difference between "Absolute Path" and "Relative Path" in	
		file storage.	[15%]
	(f)	Briefly describe about "Disk Caching" in file management.	[15%]

(a)	Write down the re	sponsibilities of a	memory 1	nanager.			[10%]
(b)	Describe the follow	ving memory repl	acement a	lgorithms	::		
	i. First fit	ij. Best	t fit		iii. Wor	st fit	[15%]
(c)	Differentiate the te	chniques paging	and segn	entation	ı in mem	ory manageme	ent.
				٠.			[10%]
(d)	Explain the conce	pt of Virtual me	mory.				[10%]
(e)	Describe a virtual	address generate	d by the (CPU tran	slated in	to a physical	ad-
	dress, with the aid	of a suitable diag	gram.	٠.			[25%]
(f)	The following is a s	mapshot of memor	y allocatio	on of a sys	tem havi	ng processes:A	,C,F,G
	and H with free sl	ot indicated in sh	ades.				· . ·
ð	100 4	50 550	650	900	1035 118	6 1586	
	A	C	F	6	H		

Figure 1: Memory Allocation

Which of the above holes in the system are taken by the process I 200kB, process J 300kB using the following memory replacement polices.

i. First fit,

3.

- ii. Best fit, and
- iii. Worst fit:

[30%]

4. (a) Describe the properties of good process scheduling algorithms.

[15%]

(b) Differentiate "precuptive scheduling" and "non-precuptive scheduling".

[10%]

(c) There are five processes arrived in a system. The processes arrival time and burst time are given in the following table:

Process	Atrival Time (ms)	Burst Time(ms)		
P_1	0	12		
P_2	2	4		
P_3	5	2		
P_4	8	10		
Ps	10	6		

- i. Draw the Cantt chart for the following scheduling for processes:
 - A. First Come First Serve (FCFS)
 - B. Shortest Job First (SJF)
 - C. Round Robin (preemptive and quantum = 4ms).

[45%]

- ii. Find the following for each of the above scheduling:
 - A. turnaround time for each process.

[15%]

B. average wait time for each scheduling.

[15%]

5. (a) State the necessary and sufficient condition for the occurrence of deadlock.

[20%]

(b) Distinguish the occurrence of deadlock and starvation.

[20%]

- (c) A system with five resources (R₁, R₂, R₃, R₄, R₅) and five processes (P₁, P₂, P₃, P₄, P₅) such that R₁ is allocated to P₂, R₂ is allocated to P₁, R₃ is allocated to P₅, R₄ is allocated to P₃ and R₅ is allocated to P₄. P₁ requested R₁, P₂ requested R₃, R₄ and R₅, P₃ requested R₅, and P₄ requested R₂.
 - i. Draw the wait-for graph, to show that the system is whether in deadlock or not.

[15%]

ii. Give step-by-step procedures to recover from deadlock.

[15%]

[Question 5 continues on next page.]

(d) A computer system with $R_1=20,\ R_2=2,\ R_3=3$, allocated to five processes is shown in the following table.

Process	max-need			Allocated		
	R_1	R_2	R_3	R_1	R_2	R_3
P_1	100	2	5	70	2	3
P_2	50	3	5	35	1	2
P_3	120	4	7	25	1	3
P4	150	2	8	20	1	2
P_5	130	3	4	10		3.

Apply Dijkstra's Bankers algorithm to find a safe sequence.

[30%]

6. (a) Describe each of the following terms in process scheduling:

[20%]

- i. Critical region.
- ii. Busy waiting.
- (b) Draw the five-state process model and briefly describe each of the states and transitions.

[45%]

(c) Write down four conditions that are necessary for a good solution of mutual exclusion.

[20%]

(d) The lock variable is a solution to prevent mutual exclusion in operating systems. Describe how is it possible to allow two processes to enter their critical region at the same time.

[15%]