

아파트 매매 실거래가 - Data 확인

apt	apt.head()												
	시군구	번지	본번	부 번	단지명	전용면적 (m²)	계약년 윌	계약 일	거래금액(만 원)	층	건축년 도	도로명	
0	서울특별시 강남구 개포 동	658- 1	658.0	1.0	개포6차우성아파트1동~8 동	79.97	202112	4	215,000	3	1987.0	언주로 3	
1	서울특별시 강남구 개포 동	658- 1	658.0	1.0	개포6차우성아파트1동~8 동	79.97	202204	12	220,000	4	1987.0	언주로 3	
2	서울특별시 강남구 개포 동	658- 1	658.0	1.0	개포6차우성아파트1동~8 동	79.97	202204	21	220,000	2	1987.0	언주로 3	
3	서울특별시 강남구 개포 동	658- 1	658.0	1.0	개포6차우성아파트1동~8 동	79.97	202205	27	216,000	2	1987.0	언주로 3	
4	서울특별시 강남구 개포 동	1282	1282.0	0.0	개포래미안포레스트	74.66	202109	16	253,000	2	2020.0	개포로 264	

Modeling 할 때 필요 없는 column 삭제 # Column명 변겸 # 거래 금액의 ','를 삭제하고 integer로 type 변겸

아파트 매매 실거래가 - Null 값 확인

apt.isnull().sum()	
jibun	(39)
apt_name	0
use_area	0
transaction_year_month	0
transaction_date	0
price	0
floor	0
year_of_completion	\bigcirc
gu	0
dong	0
dtype: int64	

apt.isnull().sum()	
apt_name	0
use_area	0
transaction_year_month	0
transaction_date	0
price	0
floor	0
year_of_completion	0
gu	0
dong	0
dtype: int64	

지번 변수에 결측치가 139개 있고, 분석에 유의미한 변수가 아니므로 삭제 # 완공년도의 결측치가 있는 햄 2개를 삭제

아파트 매매 실거래가 - Data

apt.head()

	jibun	apt_name	use_area	transaction_year_month	transaction_date	price	floor	year_of_completion	gu	dong
0	658-1	개포6차우성아파트1동~8동	79.97	202112	4	215000	3	1987.0	강남구	개포동
1	658-1	개포6차우성아파트1동~8동	79.97	202204	12	220000	4	1987.0	강남구	개포동
2	658-1	개포6차우성아파트1동~8동	79.97	202204	21	220000	2	1987.0	강남구	개포동
3	658-1	개포6차우성아파트1동~8동	79.97	202205	27	216000	2	1987.0	강남구	개포동
4	1282	개포래미안포레스트	74.66	202109	16	253000	2	2020.0	강남구	개포동

서울시 어린이집 정보 - Dαtα 확인

day.	day_care.head()																		
	시 군 구 명	어린이 집명	어린 이집 유형	운 명 현 황	상세주소	보 육 실 수	보육실 면적	놀 이 터 수	CCTV총 설치수	정 원	현 원	시설 위도 (좌표값)	시설 경도(좌 표값)	통학차 량운영 여부	인가일 자	제공서비 스	반 수	아 동 수	보육 교직 원수
0	동 작 구	구립아 리아어 린이집	국공 립	정 상	서울특별시 등작 구 보라매로5길 51 102호	4	103.0	0	6	33	28	37.490797	126.923171	미운영	2027- 12-31	야간연장 휴일보육 시간제보 육	7	28	12
1	구 로 구	달숲어 린이집	국공 립	정 상	서울특별시 구로 구 중앙로5길 59 고척아이파크 RD 내 관리동	6	478.0	2	0	89	0	37.566470	126.977963	NaN	2022- 09-01	장애아통 합	0	0	0
2	마 포 구	삼성아 이마루 어린이 집	국공 립	정 상	서울특별시 마포 구 백범로25길 63 염리삼성래미안 관리동	4	107.0	1	8	30	22	37.548530	126.946146	미운영	2022- 09-01	일반	7	22	10

서울시 어린이집 정보 - Dαtα 수정

```
# 필요없는 특성 지우기
                                                                                              # 필요 없는 column 삭제
drop_columns = ["상세주소", "시설 위도(좌표값)", "시설 경도(좌표값)", "보육실 면적", "제공서비스", "반수", "아동수"]
day care.drop(drop columns, axis=1, inplace=True)
                                                                                                       # column명 변경
# 컬럼명을 영어로 바꾸기
day care.columns = ["gu", "day care name", "day care type", "day care status", "nursing room num", "playground num",
               "CCTV num", "maximum num", "current num", "commuting vehicle", "permission date", "teacher num"]
# 현황이 정상인 값만 남기기
                                                                                         # 현황이 점상인 햄만 남기기
day_care = day_care[day_care["day_care_status"] == "정상"]
# 통학차량운영여부 NaN 값을 미운영으로 바꾸기
                                                                  # 톰학차량운염여부의 Null값을 미운염으로 변경
day care["commuting vehicle"], fillna("미윤영", inplace=True)
# 정원이 0인 값들 지우기
day care = day care[(day care["maximum num"] != 0)]
                                                                                      # 점원, 교직원수가 0인 햄 삭제
# 보육교직원수가 0인 값들 지우기
day care = day care[day care["teacher num"] != 0]
# 인가일자를 날자형으로 바꾸고 년도만 추출
                                                                                             # 인가일자의 년도만 추출
day_care["permission_date"] = day_care["permission_date"].apply(pd.to_datetime)
day_care["permission_year"] = day_care["permission_date"].apply(lambda x : x,year)
day_care.drop("permission_date", axis=1, inplace=True)
day care.drop([0], inplace=True) # 첫번째 데이터는 아직 개원을 만한 어린이집이므로 삭제
                                                                              # 인가일자가 현대 이후인 데이터 삭제
```

서울시 어린이집 정보 - Null 값 확인

day_care.isnull().	sum()
gu	0
day_care_name	0
day_care_type	0
day_care_status	0
nursing_room_num	0
playground_num	0
CCTV_num	0
maximum_num	0
current_num	0
commuting_vehicle	0
teacher_num	0
permission_year	0
dtype: int64	

Null 값이 존재하지 않음

서울시 어린이집 정보 Data

day	day_care.head()												
	gu	day_care_name	day_care_type	day_care_status	nursing_room_num	playground_num	CCTV_num	maximum_num	current_num	commuting_vehicle			
0	동 작 구	구립아리아어린 이집	국공립	정상	4	0	6	33	28	미운영			
2	마 포 구	삼성아이마루어 린이집	국공립	정상	4	1	8	30	22	미운영			
5	80 등 포 구	LG 에너지솔루 션 지정 어린이 집	직장	정상	9	1	0	108	60	미운영			
6	강 남 구	케이티앤지 어린 이집	직장	정상	4	0	8	49	8	미운영			
7	양 천 구	나연어린이집	가정	정상	3	0	3	12	6	미운영			

gu day care = day care.groupby("gu").mean()

gu_day_care = gu_day_care[columns]

gu_day_care = round(gu_day_care, 2)

day_care,groupby("gu"),describe(),T를 한 결과 모두 평균값과 중앙값의 차이가 거의 없으므로 평균으로 설정 columns = ['gu', 'nursing room num', 'playground num', 'CCTV num', 'maximum num', 'current num', 'teacher num', 'permission year'] # 통학차량운염여부가 '운염 일 경우 True, '미운염'일 경우 False로 변경

'구'로 groupby 해서 특성들을 대표값(평균값)으로 정리

gu_day_care['permission_year'] = round(gu_day_care['permission_year']) day care["commuting vehicle"] = (day care["commuting vehicle"] == "운영") gu_day_care["commuting_vehicle_sum"] = day_care.groupby("gu")["commuting_vehicle"].sum().tolist()

gu_day_care['day_care_num'] = day_care.groupby('gu').size().values

'구'로 groupby한 개수를 구한 column 추가

서울시 어린이집 정보 - New Table

gu_c	day_	care								
	gu	nursing_room_num	playground_num	CCTV_num	maximum_num	current_num	teacher_num	permission_year	commuting_vehicle_sum	day_care_num
0	강 남 구	4.78	1.16	13.31	58.40	37.31	12.43	2007.0	20	180
1	강 동 구	4.91	0.82	9.63	52.03	40.53	11.17	2009.0	58	233
2	강 북 구	5.11	0.93	8.21	52.76	38.00	10.63	2006.0	40	128
3	강 서 구	4.40	0.56	8.06	44.90	33.87	9.97	2009.0	40	308
4	관 악 구	4.63	0.76	8.63	48.16	33.57	9.83	2005.0	32	188
5	광 진 구	4.79	0.83	8.14	44.27	32.38	9.82	2006.0	22	148

서울시 공원 면적 통계 - Dαtα

par	park.head()													
	구	공원 면적 (천m²)	1인당 공원면적 (㎡)	도시공원 면적 (천㎡)	1인당 도시공원면적 (m²)	도보생활권공원 면적 (천m²)	1인당 도보생활권공원면적 (m²)							
0	종로구	11402.58	71.72	6280.66	39.50	3024.28	19.02							
1	중구	3163.83	23.50	3091.30	22.96	1344.78	9.99							
2	용산구	1777.06	7.26	760.62	3.11	1612.72	6.59							
3	성동구	3073.98	10.23	1231.01	4.10	2896.08	9.64							
4	광진구	3451.04	9.58	2985.27	8.29	1350.93	3.75							

Column명 변경

Null 값이 존재하지 않음

<pre>park.isnull().sum()</pre>	
gu	0
park_area	0
one_park_area	0
citypark_area	0
one_citypark_area	0
walkpark_area	0
one_walkpark_area	0
dtype: int64	

서울시 공원 면적 통계 - Data

par	park.head()													
	gu	park_area	one_park_area	citypark_area	one_citypark_area	walkpark_area	one_walkpark_area							
0	종로구	11402.58	71.72	6280.66	39.50	3024.28	19.02							
1	중구	3163.83	23.50	3091.30	22.96	1344.78	9.99							
2	용산구	1777.06	7.26	760.62	3.11	1612.72	6.59							
3	성동구	3073.98	10.23	1231.01	4.10	2896.08	9.64							
4	광진구	3451.04	9.58	2985.27	8.29	1350.93	3.75							

Data 합치기

```
final = apt.copy()
final = pd.merge(final, gu_day_care, on="gu", how="left")
final = pd.merge(final, park, on="gu", how="left")
final.head()
   apt_name use_area transaction_year_month transaction_date
                                                           price floor year_of_completion gu dong nursing_room_num ... teacher_num permis
   개포6차우
                                                                                            개포
동
0 성아파트1
               79.97
                                   202112
                                                       4 215000
                                                                                 1987.0
                                                                                                              4.78 ...
                                                                                                                            12.43
     동~8동
   개포6차우
                                                                                            개포
                                                                                 1987.0
1 성아파트1
               79.97
                                   202204
                                                      12 220000
                                                                                                              4.78 ...
                                                                                                                            12.43
      동~8동
   개포6차우
2 성아파트1
                                   202204
                                                      21 220000
                                                                                 1987.0
                                                                                                              4.78 ...
                                                                                                                            12.43
               79.97
     동~8동
   개포6차우
                                                                                        강
남
구
                                                                                            개포
동
                                                                                 1987.0
3 성아파트1
                                   202205
                                                      27 216000
                                                                    2
                                                                                                              4.78 ...
                                                                                                                            12.43
               79.97
      동~8동
    개포래미
                                                                                            개포
동
                                                                                 2020.0
                                                      16 253000
                                                                                                              4.78 ...
                                                                                                                            12.43
   안포레스
                                   202109
                                                                    2
               74.66
         트
```

5 rows x 24 columns

아파트 매매 가격 데이터에 '구'가 같은 어린이집, 공원 데이터 추가 (by left join)

Dαtα 합치기 - Null 값 확인

Null 값이 존재하지 않음

Column Information

- gu:구

- dong : 돔

- apt_name : 아파트 이름

- use_area : 아파트 전용면적

- transaction_year_month : 아파트 거래년월

- transaction_date : 아파트 거래날짜

- price : 아파트 실거래가

- floor : 아파트 층

- year_of_completion : 아파트 설립일자

- nursing_room_num : 어린이집 보육실 수

- playground_num : 어린이집 놀이터 수

- CCTV_num : 어린이집 cctv개수

- mαximum_num : 어린이집 점원

- current_num : 어린이집 현원

- teacher_num : 어린이집 교직원수

- permission_year : 머린이집 인가일자

commuting_vehicle_sum : 어린이집 통학차량 운염 수

- day_care_num : 어린이집 수

- park_area : 공원 면적

- one_park_area : 1인담 공원 면적

· citypark_area : 도시곰원 면적

- one_citypark_area : 1인담 도시공원 면적

- walkpark_area : 도보샘활권공원 면적

- one_walkpark_area : 1인담 도보생활권공원 면적

Train Test Split

Data를 train set과 test set으로 분리

```
train, test = train_test_split(apt, test_size=0.2, random_state = 7916, stratify = apt['gu'])
print(train.shape, test.shape)
(257362, 24) (64341, 24)
```

Target Data 확인

target 값(price) 의 plot

Independent Variables 확인

train data의 histogram 확인

log(X)의 histogram # 원 데이터와 큰 차이를 보이지 않음

X^2 의 histogram # skewed한 결과가 나타남

-> 원 데이터가 더 좋음 -> tuning을 하지 않고 사용

Correlation Matrix

```
plt.figure(figsize=(12, 8))
corr_matrix = train.corr()
sns.heatmap(corr matrix, annot=True, fmt=".2f")
<AxesSubplief >
                                                                                                                                 -1.0
                use area -1.00-0.09 0.00 0.60 0.11-0.01 0.13 0.13 0.19 0.16 0.16 0.17 0.12-0.15-0.10-0.04-0.02-0.03-0.01 0.09 0.09
 - 0.8
                             0.19 0.00 <mark>1.00</mark> 0.17 0.02 0.21 0.33 0.42 0.34 0.31 0.37 0.23 <mark>0.33</mark>-0.11-0.05-0.07 0.02 0.02 0.32 0.24
                   floor -0.11-0.00 0.00 0.17 1.00 0.18 0.04 0.04 0.04 0.05 0.06 0.05 0.01 -0.06-0.04-0.07-0.05-0.05-0.04 0.02 0.03
      year of completion -0.01 0.08 0.01 0.02 0.18 1.00 0.19 0.05 0.12 0.16 0.19 0.13 0.10 -0.04 0.14 0.10 -0.04 0.12 0.07 0.00 0.09
                                                                                                                                 - 0.6
      nursing room num -0.13 0.01-0.00 0.21 0.04 0.19 1.00 0.65 0.76 0.90 0.89 0.79 0.46 0.05 0.46 0.01 0.16 0.17-0.02 0.08 0.18
         playground num -0.13 0.00-0.00 0.33 0.04 0.05 0.65 1.00 0.75 0.76 0.54 0.68 0.06 0.29-0.52 0.00 0.13 -0.03 0.07 0.19 0.37
                                                                                                                                  - 0.4
              CCTV num -0.19 -0.00-0.00 0.42 0.04 0.12 0.76 0.75 1.00 0.91 0.77 0.92 0.40 -0.34-0.44 0.04 0.17 0.01 0.18 0.29 0.45
         maximum num -0.16 0.01-0.00 0.34 0.05 0.16 0.90 0.76 0.91 1.00 0.89 0.93 0.36 0.20 0.55 0.06 0.15 0.14 0.06 0.16 0.37
            current num -0.16-0.00-0.00 0.31 0.06 0.19 0.89 0.54 0.77 0.89 1.00 0.87
                                                                                 58-0.10-0.35-0.23-0.08-0.31-0.16 0.26 0.31
                                                                                                                                  - 0.2
           teacher num -0.17-0.00-0.00 0.37 0.05 0.13 0.79 0.68 0.92 0.93 0.87 1.00 0.41-0.31-0.45-0.07 0.12 -0.13 0.07 0.32 0.52
         permission year -0.12-0.01 0.00 0.23 0.01 0.10 0.46 0.06 0.40 0.36 0.58 0.41 1.00 0.05 0.26 0.19-0.24-0.30-0.33 0.50 0.17
 commuting vehicle sum =0.15 0.01 0.00 0.33 0.06 0.04 0.05 0.29 0.34 0.20 0.10 0.31 0.05 1.00 0.39 0.20 0.06 0.02 0.17 0.20 0.50
                                                                                                                                  - 0.0
          day care num -0.10-0.01 0.01 -0.11-0.04-0.14-0.46-0.52-0.44-0.55-0.35-0.45 0.26 0.39 1.00 0.09-0.26 0.21-0.05 0.41 0.23
              park area -0.04 0.01 0.00 -0.05-0.07-0.10 0.01 0.00 0.04 -0.06-0.23-0.07-0.19 0.20 0.09 1.00 0.85 0.81 0.76 0.13-0.19
                                                                                                                                  - -0.2
          one park area -0.02 0.02 0.02 0.00 -0.07-0.05-0.04 0.16 0.13 0.17 0.15-0.08 0.12-0.24 0.06-0.26 0.85 1.00 0.56 0.70 -0.23 0.09
       one citypark area -0.01 0.01 0.01 0.02 -0.04 -0.07 -0.02 0.07 0.18 0.06 -0.16 0.07 0.33 -0.17 -0.05 0.76 0.70 0.92 1.00 0.20 -0.05
                                                                                                                                  - -0.4
                                                                  maximum num
                                                                           mnu_nacher_num
                                                         playground_num
```

Correlation Matrix

```
corr_matrix = train.corr()
corr_matrix['price'].sort_values(ascending=False)
price
                          1.000000
use_area
                          0.595160
                          0.424423
CCTV_num
teacher_num
                          0.374944
                          0.339786
maximum_num
playground num
                          0.328529
walkpark_area
                          0.315364
                          0.305761
current_num
                          0.239233
one_walkpark_area
                          0.230042
permission_year
                          0.208940
nursing_room_num
transaction_vear_month
                          0.191856
floor
                          0.169619
one_citypark_area
                          0.023741
year_of_completion
                          0.023361
                          0.017898
citypark_area
                          0.000832
transaction_date
park_area
                         -0.050086
one_park_area
                         -0.072148
day_care_num
                         -0.114949
commuting_vehicle_sum
                         -0.329761
Name: price, dtype: float64
```

변수 선택 기준 # 상관계수가 0.2 이상 # 줌요한 변수라고 판단이 되는 경우

Multicolinearity 확인

Multicolinearity가 높게 나온 경우

cctv수 & 보육실수 # cctv수 & 놀이터수 / 정원 # 보육실수 / 교직원수 #보육실수 / 정원 & 놀이터수 등

이 값들은 담연하게도 어린이 집의 정원이 많으면 보육실수, 놀이터수, ccvtv 수, 교직원 수가 많게 나올 수 밖에 없음

train set과 test set을 합친 후 변수 선택 # 변수 선택이 완료된 후 다시 train set과 test set 분리

Variable 선택

(321703, 24)

Variable 선택

```
drop_features = ['apt_name', 'gu', 'dong', 'transaction_year_month', 'transaction_date', 'year_of_completion', 'commuting_yehicle_sum',
                 'day_care_num', 'permission_year', 'park_area', 'one_park_area', 'citypark_area', 'one_citypark_area']
all data = all data.drop(drop features, axis = 1)
                                                                                                                            # 변수 선택
X_train = all_data[~pd.isnull(all_data['price'])]
                                                    # price의 null값을 이용해 X_train과 X_test로 분리
X_test = all_data[pd.isnull(all_data['price'])]
X train.shape. X test.shape
((257362, 11), (64341, 11))
# 타깃값(count) 제거, 특성만 가져오기
v train = X train['price']
X_train = X_train.drop(['price'], axis = 1)
                                               # target값(price)을 제거
X test = X test.drop(['price'], axis = 1)
print(X train.shape, v train.shape, X test.shape)
(257362, 10) (257362,) (64341, 10)
print(target.shape)
(64341.)
```


Linear Regression

```
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
log_y = np.log(y_train)
                               # y값을 log 변환
lin_reg.fit(X_train, log_y)
LinearRegression()
from sklearn.model_selection import cross_val_score
# 교차 검증
scores = cross_val_score(lin_reg, X_train, log_y, scoring = 'neg_mean_squared_error', cv = 5)
-scores.mean()
0.18072040742132023
                         # train mse = 0.18072040742132023
```

Polynomial Regression

```
from sklearn.preprocessing import PolynomialFeatures
poly_features = PolynomialFeatures(degree=2, include_bias=False)
X_train_poly = poly_features.fit_transform(X_train)
X_train.shape, X_train_poly.shape
((257362, 10), (257362, 65))
# 다항회귀 (정규방정식)
lin_reg = LinearRegression()
# 교차검증
scores = cross_val_score(lin_reg, X_train_poly, log_y, scoring = 'neg_mean_squared_error', cv = 5)
-scores.mean()
0.13458429551660994
```

점규밤점식 이용 # train mse = 0.13458429551660994

Polynomial Regression

```
from sklearn.linear_model import SGDRegressor
from sklearn.preprocessing import StandardScaler
```

```
# 다항회귀 (경사하강법)
# Poly(제곱특성추가) -> SGDRegressor(경사하강법)

sgd_reg = SGDRegressor(penalty = 'None', random_state = 7916)

poly_features = PolynomialFeatures(degree=2, include_bias=False)
X_train_poly = poly_features.fit_transform(X_train)

# 교차검증
scores = cross_val_score(sgd_reg, X_train_poly, log_y, scoring = 'neg_mean_squared_error', cv = 5)
-scores.mean()
```

6,590614218899053e+43

경사하감법 이용 # train mse = 6.590614218899053e+43

```
from sklearn.linear model import Ridge
from sklearn.model selection import GridSearchCV
ridge = Bidge()
ridge_params = {'alpha': [0.01, 0.05, 0.1, 1, 2, 3, 4, 10]}
gridsearch ridge = GridSearchCV(ridge, ridge params, scoring = 'neg mean squared error', cv = 5, n iobs = -1)
gridsearch ridge.fit(X train, log v)
GridSearchCV(cv=5, estimator=Ridge(). n_iobs=-1.
             param_grid={'alpha': [0.01, 0.05, 0.1, 1, 2, 3, 4, 10]},
             scoring='neg mean squared error')
gridsearch_ridge.best_params_
{'alpha': 0.1}
cvres = gridsearch_ridge.cv_results_
for mean_score, params in zip(cvres['mean_test_score'], cvres['params']):
    print(-mean_score, params)
0.1807204074077289 {'alpha': 0.01}
0.1807204073560647 {'alpha': 0.05}
0.1807204072975609 {'alpha': 0.1}
                                                                      \# \{alpha = 0.1\}
0.18072040739787493 {'alpha': 1}
0.18072041006734557 {'alpha': 2}
                                                         # train mse = 0.1807204072975609
0.18072041542155765 {'alpha': 3}
0.18072042345236378 {'alpha': 4}
0.18072052739285716 {'alpha': 10}
```

Lasso

```
from sklearn.linear model import Lasso
Tasso = Lasso()
lasso_params = \{'alpha': [0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1]\}
gridsearch lasso = GridSearchCV(lasso, lasso params, scoring = 'neg mean squared error', cv = 5, n jobs = -1)
gridsearch lasso.fit(X train, log v)
GridSearchCV(cv=5, estimator=Lasso(), n iobs=-1.
            param_grid={'alpha': [0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5,
            scoring='neg_mean_squared_error')
gridsearch_lasso.best_params_
{'alpha': 0.0001}
cvres = gridsearch_lasso.cv_results_
for mean_score, params in zip(cvres['mean_test_score'], cvres['params']):
   print(-mean_score, params)
                                                                       \# \{alpha = 0.0001\}
0.1807230080705341 {'alpha': 0.0001}
0.18097913619268927 {'alpha': 0.001}
                                                          # train mse = 0.1807230080705341
0.1883657128835511 {'alpha': 0.01}
0.19260633936299607 {'alpha': 0.05}
0.19732680820082193 {'alpha': 0.1}
0.19868997035712072 {'alpha': 0.2}
0.20666071753316134 {'alpha': 0.5}
0.2127306755308894 {'alpha': 1}
```

ElasticNet

```
from sklearn.linear model import ElasticNet
elastic = ElasticNet()
elastic params = {'alpha': [0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1]}
gridsearch_elastic = GridSearchCV(elastic, elastic_params, scoring = 'neg_mean_squared_error', cv = 5, n_jobs = -1)
gridsearch_elastic.fit(X_train, log y)
GridSearchCV(cv=5. estimator=ElasticNet(). n iobs=-1.
            param_grid={'alpha': [0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1]}.
            scoring='neg_mean_squared_error')
gridsearch elastic.best params
{'alpha': 0.001}
cvres = gridsearch_elastic.cv_results_
for mean_score, params in zip(cvres['mean_test_score'], cvres['params']):
    print(-mean_score, params)
                                                                              \# \{alpha = 0.001\}
0.18084413448041486 {'alpha': 0.001}
0.184975762863777 {'alpha': 0.01}
                                                                 # train mse = 0.18084413448041486
0.19124012875794721 {'alpha': 0.05}
0.1928663683512557 {'alpha': 0.1}
0.19733617583935376 {'alpha': 0.2}
0.1997509249054698 {'alpha': 0.5}
0.20670993767099444 {'alpha': 1}
```

Decision Tree(1)

```
from sklearn.tree import DecisionTreeRegressor
tree reg = DecisionTreeRegressor(random state=7916)
tree params = {'max features' : [2, 4, 6, 8, 10], 'max depth' : [10, 15, 20]}
gridsearch tree = GridSearchCV(tree reg. tree params, scoring='neg mean squared error', cv=5, n jobs=-1)
gridsearch tree.fit(X train, log v)
GridSearchCV(cv=5, estimator=DecisionTreeRegressor(random state=7916).
            n iobs=-1.
            param grid={'max depth': [10, 15, 20].
                        'max_features': [2, 4, 6, 8, 10]},
            scoring='neg_mean_squared_error')
gridsearch tree.best params
{'max_depth': 15, 'max_features': 10}
cvres = gridsearch tree.cv results
for mean_score, params in zip(cvres['mean_test_score'], cvres['params']):
    print(-mean score, params)
0.11487183161593748 {'max_depth': 10, 'max_features': 2}
0.10969240983620512 {'max depth': 10, 'max features': 4}
                                                                              # {max_depth: 15, max_features: 10}
0.10615512597111434 {'max depth': 10, 'max features': 6}
0.10383601613669557 {'max depth': 10, 'max features': 8}
                                                                             # train mse = 0.08326235831588577
0.10200807469009603 {'max_depth': 10, 'max_features': 10}
0.09692246014852732 {'max_depth': 15, 'max_features': 2}
0.09469887662502886 {'max_depth': 15, 'max_features': 4}
0.09017243267935694 {'max_depth': 15, 'max_features': 6}
```

0.08645867334017861 {'max_depth': 15, 'max_features': 8} 0.08326235831588577 {'max_depth': 15, 'max_features': 10} 0.09801115503097967 {'max_depth': 20, 'max_features': 2} 0.09592863038340424 {'max_depth': 20, 'max_features': 4} 0.09200732940088843 {'max_depth': 20, 'max_features': 6} 0.08892846373828527 {'max_depth': 20, 'max_features': 8} 0.08502185289684881 {'max_depth': 20, 'max_features': 10}

Decision Tree(2)

```
best_model_tree = gridsearch_tree,best estimator
best_model_tree
DecisionTreeRegressor(max_depth=15, max_features=10, random_state=7916)
sorted(zip(best_model_tree.feature_importances_, X_train.columns), reverse = True)
[(0.6146105430435348, 'use_area'),
(0.1972381418777127, 'CCTY_num'),
 (0.10177582046377515, 'teacher_num').
 (0.02247488383404033, 'floor').
 (0.01522945917084668, 'current_num'),
 (0.013198929620090767, 'walkpark_area'),
 (0.012032288496765764, 'playground_num'),
 (0.011600445667100983, 'one_walkpark_area'),
 (0,006063645094064736, 'maximum_num'),
 (0.005775842732068011, 'nursing_room_num')]
```

Random Forest(1)

```
from sklearn.ensemble import RandomForestRegressor
rnd forest = BandomForestBegressor(random state=7916)
rf params = {'n estimators': [100, 120, 140]}
gridsearch_forest = GridSearchCV(rnd_forest, rf_params, scoring = 'neg_mean_squared_error', cv = 5, n_jobs = -1)
gridsearch forest.fit(X train, log v)
GridSearchCV(cv=5, estimator=RandomForestRegressor(random_state=7916),
            n_iobs=-1, param_grid={'n_estimators': [100, 120, 140]}.
            scoring='neg mean squared error')
                                                # {'max_depth': 20, 'max_features': 10, 'n_estimators': 220}
gridsearch forest.best params
                                                              # train mse = 0.0729584701779201
{'n estimators': 140}
cyres = gridsearch forest.cv results
for mean_score, params in zip(cvres['mean_test_score'], cvres['params']):
   print(-mean_score, params)
0.07700034640991632 {'n_estimators': 100}
0.07695854565748539 {'n_estimators': 120}
0.07692742043158787 {'n estimators': 140}
```

Random Forest(2)

```
best model forest = gridsearch forest.best estimator
best model forest
RandomForestRegressor(n_estimators=140, random_state=7916)
sorted(zip(best model forest.feature importances . X train.columns), reverse = True)
[(0.608575816880071, 'use_area'),
 (0.22275457305917637, 'CCTV_num'),
                                                    # random forest model \stackrel{\square}{\sim} black box model
 (0.05799867691133111, 'floor').
 (0.019287299360374262, 'current_num'),
                                                     # feature importance를 확인하는 것이 중요
 (0.018949525542086267, 'one_walkpark_area'),
 (0.018648489831402156, 'maximum_num'),
 (0.016804220709392224, 'teacher_num').
 (0.014131990108862031, 'playground_num'),
 (0.011699584298100307, 'walkpark_area').
 (0.011149823299204163, 'nursing room num')]
```

Gradient Boosting (Ensemble)

```
from sklearn.ensemble import GradientBoostingBegressor
gbrt_params = {'learning_rate': [0.01, 0.02, 0.03, 0.04], #각 트리의 기어도
              'n estimators': [1000, 1500].
              'subsample': [0.9, 0.5, 0.2].
              'max depth': [2, 4, 6, 8]}
abrt = GradientBoostingBegressor()
gridsearch_gbrt = GridSearchCV(gbrt, gbrt_params, scoring = 'neg_mean_squared_error', cv = 5, n_iobs = -1)
gridsearch gbrt.fit(X train, log v)
GridSearchCV(cv=5, estimator=GradientBoostingRegressor(), n_jobs=-1,
            param_grid={'learning_rate': [0.01, 0.02, 0.03, 0.04],
                                                                                 # {'learning_rate': 0.04, 'max_depth': 8,
                        'max_depth': [2, 4, 6, 8],
                        'n estimators': [1000, 1500].
                                                                                  'n_estimators': 1500, 'subsample': 0.5}
                        'subsample': [0.9, 0.5, 0.2]},
            scoring='neg mean squared error')
                                                                                 # train mse = 0.07059033032043774
gridsearch_gbrt.best_params_
{'learning_rate': 0.04, 'max_depth': 8, 'n_estimators': 1500, 'subsample': 0.5}
cvres = gridsearch gbrt.cv results
for mean score, params in zip(cvres['mean test score'], cvres['params']):
   print(-mean score, params)
```

Gradient Boosting (Ensemble)

```
best_model_gbrt = gridsearch_gbrt.best_estimator_
sorted(zip(best_model_gbrt.feature_importances_, X_train.columns), reverse = True)
[(0.5985527661716553, 'use_area'),
 (0.2090611626501374, 'CCTV_num'),
 (0.03459397859901509, 'floor'),
 (0.03125444789522308, 'maximum_num'),
 (0.026732005392210993, 'one_walkpark_area'),
 (0.026218544756001577, 'teacher_num'),
 (0.02255562453814107, 'playground_num'),
 (0.018892869139067583, 'current_num'),
 (0.017468469362051042, 'walkpark_area').
(0.014970193580823757, 'nursing room num')]
```

Voting (Ensemble)

```
from sklearn.ensemble import VotingRegressor
```

0.1333027429108106

random forest best model의 hyper parameter 이용 # train mse = 0.1333027429108106

Bagging (Ensemble)

```
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import BaggingRegressor
rnd_forest = RandomForestRegressor(max_depth=20, max_features=10, n_estimators=220, random_state=7916)
bag reg = BaggingRegressor(rnd forest, n jobs=-1, random state=7916)
scores = cross_val_score(bag_reg, X_train, log_y, scoring = 'neg_mean_squared_error', cv = 3)
-scores.mean()
0.0751410186533898
```

random forest best model의 hyper parameter 이용 # train mse = 0.0751410186533898

Linear SVR (Support Vector Regressor)

```
from sklearn.svm import LinearSVR

svm_reg = LinearSVR()

scores = cross_val_score(svm_reg, X_train, log_y, scoring = 'neg_mean_squared_error', cv = 5)
    -scores.mean()
2.9375196592384363
```

train mse = 2.9375196592384363

Final Model - Gradient Boosting

```
# target 값에 log를 취함
log target = np.log(target)
gbrt = GradientBoostingRegressor(learning_rate=0.04, max_depth=8, n_estimators=1500, subsample=0.5, random_state=7916)
abrt.fit(X train, log v)
GradientBoostingRegressor(learning_rate=0.04, max_depth=8, n_estimators=1500,
                         random_state=7916, subsample=0.5)
v_pred = gbrt.predict(X_test)
mean_squared_error(log_target, v_pred)
0.06930499418814444
```

{learning_rate = 0.04, max_depth = 8, n_estimators = 1500, subsample = 0.5} # test mse = 0.06930499418814444

Final Model - Gradient Boosting

```
data = np.c_[(log_target, y_pred)]
data = pd.DataFrame(data, columns=['log_target', 'y_pred'])
data
       log_target
                  y_pred
    0 11.138959 11.345376
    1 11.482466 11.436821
    2 11.678440 11.964233
    3 11.407565 11.612626
                                    # target 값과 prediction 값 비교를 위해 테이블 생성
    4 11.348051 10.931428
64336 10.976782 11.082403
       10.993732 11.189953
64338 10.896739 11.097455
      10.922335 11.235841
64340 11.016988 11.182772
64341 rows x 2 columns
```

Final Model - Gradient Boosting

```
plt.plot(data.iloc[:50, 0], label = 'log_target')
plt.plot(data.iloc[:50, 1], label = 'y_pred')
plt.legend()
plt.show()
```


Random Forest

```
rnd_forest = RandomForestRegressor(n_estimators=220, max_depth=20, max_features=10, random_state=7916)
rnd_forest.fit(X_train, log_y)
RandomForestRegressor(max_depth=20, max_features=10, n_estimators=220, random_state=7916)

y_pred = rnd_forest.predict(X_test)
```

```
mean_squared_error(log_target, y_pred)
```

0.07015279714123512

```
# {max_depth = 20, max_features = 10, n_estimators = 220}
# test mse = 0.07015279714123512
```

Linear Regression

```
lin_reg = LinearRegression()
lin_reg.fit(X_train, log_y)
LinearRegression()
y_pred = lin_reg.predict(X_test)
mean_squared_error(log_target, y_pred)
0.17907320704468227
```

test mse = 0.17907320704468227

Polynomial Regression

```
poly_features = PolynomialFeatures(degree=2, include_bias=False)
X_train_poly = poly_features.fit_transform(X_train)
X_train.shape, X_train_poly.shape
lin_reg_poly = LinearRegression()
lin_reg_poly.fit(X_train_poly, log_y)
LinearRegression()
X_test_poly = poly_features.fit_transform(X_test)
v_pred = lin_reg_poly.predict(X_test_poly)
mean_squared_error(log_target, y_pred)
0.13370975594612017
              # test mse = 0.13370975594612017
```

```
ridge = Ridge(alpha=0.1, random_state=7916)
ridge.fit(X_train, log_y)
Ridge(alpha=0.1, random_state=7916)
y_pred = ridge.predict(X_test)
mean_squared_error(log_target, y_pred)
0.17907321527937733
                     # \{alpha = 0.1\}
           # test mse = 0.17907321527937733
```

Lasso

```
lasso = Lasso(alpha=0.0001, random_state=7916)
lasso.fit(X_train, log_y)
Lasso(alpha=0.0001, random_state=7916)
y_pred = lasso.predict(X_test)
mean_squared_error(log_target, y_pred)
0.179079231813746
                 \# \{alpha = 0.0001\}
           # test mse = 0.179079231813746
```

ElasticNet

```
elastic = ElasticNet(alpha=0.001, random_state=7916)
elastic.fit(X_train, log_y)
ElasticNet(alpha=0.001, random_state=7916)
y_pred = elastic.predict(X_test)
mean_squared_error(log_target, y_pred)
0.17922363511430414
                         \# \{alpha = 0.001\}
                 # test mse = 0.17922363511430414
```

Decision Tree Regressor

```
tree_reg = DecisionTreeRegressor(random_state=7916, max_depth=15, max_features=10)

tree_reg.fit(X_train, log_y)

DecisionTreeRegressor(max_depth=15, max_features=10, random_state=7916)

y_pred = tree_reg.predict(X_test)

mean_squared_error(log_target, y_pred)

0.0808250427113568
```

```
# {max_depth = 15, max_features = 10}
# test mse = 0.0808250427113568
```

Linear SVR

```
lin_svr = LinearSVR()
lin_svr.fit(X_train, log_y)
LinearSVR()
y_pred = lin_svr.predict(X_test)
mean_squared_error(log_target, y_pred)
0.4841539298846815
             # test mse = 0.4841539298846815
```


Conclusion

Model	Train MSE	Test MSE
Gradient Boosting	0.07059033032043774	0.06930499418814444
Random Forest	0.07692742043158787	0.07015279714123512
Linear Regression	0.18072040742132023	0.17907320704468227
Polynomial Regression	0.13458429551660994	0.13370975594612017
Ridge	0.1807204072975609	0.17907321527937733
Lasso	0.1807230080705341	0.179079231813746
ElasticNet	0.18084413448041486	0.17922363511430414
Decision Tree	0.08326235831588577	0.0808250427113568
Linear SVR	2.9375196592384363	0.4841539298846815

Final Model
Gradient Boosting
Best Train MSE
Best Test MSE

전체적으로 Train MSE와 Test MSE가 비슷한 겸햠섬을 가지고 있음

