1. A, B を集合, $U \subset B$ を部分集合とする. また, $f: A \to B$ を写像とする. このとき $f^{-1}(U)$ の定義を答えよ. (解答例)

$$f^{-1}(U) := \{ x \in A \mid f(x) \in U \}.$$

2. A, B を集合, $b \in B$ とする. また, $f: A \to B$ を写像とする. このとき $f^{-1}(b)$ の定義を答えよ. (解答例)

$$f^{-1}(b) := \{x \in A \mid f(x) = b\}.$$

3. $(X, d_X), (Y, d_Y)$ を距離空間とする. 写像 $f: X \to Y$ が点 $x_0 \in X$ で連続であることと

任意の
$$\varepsilon>0$$
 に対して、ある $\delta_{\varepsilon}>0$ が存在して、 $U(x_0,\delta_{\varepsilon})\subset f^{-1}(U(f(x_0),\varepsilon))$

が成り立つことは同値であることを示せ.

(解答例)

 $f: X \to Y$ が点 x_0 で連続であると仮定する. 任意に $\varepsilon > 0$ を取ると, 仮定より

ある
$$\delta_{\varepsilon} > 0$$
 が存在して, $d_X(x,x_0) < \delta_{\varepsilon} \Longrightarrow d_Y(f(x),f(x_0)) < \varepsilon$

が成り立つ. このとき $U(x_0, \delta_{\varepsilon}) \subset f^{-1}(U(f(x_0), \varepsilon))$ が成り立つ. 実際,

$$x \in U(x_0, \delta_{\varepsilon}) \iff d_X(x, x_0) < \delta_{\varepsilon} \quad (: 近傍の定義)$$
 $\implies d_Y(f(x), f(x_0)) < \varepsilon \quad (: 仮定)$
 $\implies f(x) \in U(f(x_0), \varepsilon) \quad (: 近傍の定義)$
 $\iff x \in f^{-1}(U(f(x_0), \varepsilon)) \quad (: 逆像の定義)$

である.

次に, $x_0 \in X$ に対して

任意の
$$\varepsilon > 0$$
 に対して、ある $\delta_{\varepsilon} > 0$ が存在して、 $U(x_0, \delta_{\varepsilon}) \subset f^{-1}(U(f(x_0), \varepsilon))$

が成り立つと仮定する. このとき

$$d_X(x,x_0) < \delta_{\varepsilon} \iff x \in U(x_0,\delta_{\varepsilon}) \quad (: 近傍の定義)$$

$$\implies x \in f^{-1}(U(f(x_0),\varepsilon)) \quad (: 仮定)$$

$$\iff f(x) \in U(f(x_0),\varepsilon) \quad (: 逆像の定義)$$

$$\iff d_Y(f(x),f(x_0)) < \varepsilon \quad (: 近傍の定義)$$

が成り立つ. 以上より示された.

 $4. \ (X,d_X),(Y,d_Y)$ を距離空間とする. 写像 $f:X \to Y$ が連続写像ならば

$$(X,d_X)$$
 の任意の点列 $\{x_n\}_{n\geq 1}$ に対して、 $\lim_{n\to\infty}x_n=x$ ならば $\lim_{n\to\infty}f(x_n)=f(x)$

が成り立つことを示せ. (実は逆も成り立つ. 次回講義内で証明します.)

(解答例)

任意に $x_0\in X$ を取り, (X,d_X) の任意の点列 $\{x_n\}_{n\geq 1}$ が $\lim_{n\to\infty}x_n=x_0$ を満たすとする. また, 任意に $\varepsilon>0$ を取る. このとき仮定より

ある
$$\delta_{\varepsilon} > 0$$
 が存在して, $d_X(x,x_0) < \delta_{\varepsilon} \Longrightarrow d_Y(f(x),f(x_0)) < \varepsilon$

が成り立つ. さらに $\lim_{n \to \infty} x_n = x_0$ であるから, 点列の収束の定義より

ある
$$N_{\delta_{\varepsilon}} \in \mathbb{N}$$
 が存在して, $N_{\delta_{\varepsilon}} < n \Longrightarrow d_X(x_n, x_0) < \delta_{\varepsilon}$

が成り立つ. 以上より

$$N_{\delta_{\varepsilon}} < n \iff d_X(x_n, x_0) < \delta_{\varepsilon} \implies d_Y(f(x), f(x_0)) < \varepsilon$$

を得る. これは $\lim_{n\to\infty} f(x_n) = f(x)$ であることに他ならない.