AN48840B

Low current consumption, high sensitivity CMOS Hall IC

Alternating magnetic field operation (For low-speed rotation detection)

Overview

The AN48840B is a Hall IC (a magnetic sensor) which has 2 times or more sensitivity and a low current consumption of about one fiftieth compared with our conventional one.

In this Hall IC, a Hall element, a offset cancel circuit, an amplifier circuit, a sample and hold circuit, a Schmidt circuit, and output stage FET are integrated on a single chip housed in a small package by IC technique.

■ Features

- High sensitivity (6 mT max.) due to offset cancel circuit and a new sample and hold circuit
- Small current by using intermittent action
 (Average supply current: 56 μA typ., Sampling period: 670 μs typ.)
- Small package (SMD)
- CMOS inverter output (logic output form)

■ Applications

• Functional operation key, Mouse, Appliances for low-speed rotation detection

Unit : mm 0.22*0.10 Unit : mm 0.22*0.10 Unit : mm

■ Block Diagram

■ Pin Descriptions

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	N.C.	_	4	V _{CC}	Power supply
2	GND	Ground	5	Out	Output
3	N.C.	_			

■ Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	V _{CC}	5	V
Output voltage	V _{OUT}	5	V
Supply current	I_{CC}	5	mA
Output current	I _{OUT}	15	mA
Power dissipation *1, *2	P_{D}	60	mW
Operating ambient temperature *1	T _{opr}	-25 to +75	°C
Storage temperature *1	T _{stg}	-55 to +125	°C

Note) *1: Except for the power dissipation, operating ambient temperature and storage temperature, all ratings are for Ta = 25°C.

■ Recommended Operating Range

Parameter	Symbol	Range	Unit		
Supply voltage	V _{CC}	2.5 to 3.5	V		

\blacksquare Electrical Characteristics $~T_a = 25^{\circ}C \pm 2^{\circ}C$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operating magnetic flux density 1 *1	B_{HL}	$V_{CC} = 3 \text{ V}, V_{CC} = 2.5 \text{ V}$	0.5	_	6	mT
Operating magnetic flux density 2 *2	B_{LH}	$V_{CC} = 3 \text{ V}, V_{CC} = 2.5 \text{ V}$	-6	_	- 0.5	mT
Output voltage 1	V _{OL1}	$V_{CC} = 3 \text{ V}, I_{O} = 2 \text{ mA}, B = 6.0 \text{ mT}$	_	0.1	0.3	V
Output voltage 1	V _{OL2}	$V_{CC} = 2.5 \text{ V}, I_O = 2 \text{ mA}, B = 6.0 \text{ mT}$	_	0.1	0.3	V
Output voltage 2	V _{OH1}	$V_{CC} = 3 \text{ V}, I_{O} = -2 \text{ mA}, B = -6.0 \text{ mT}$	2.7	2.9	_	V
Output voltage 2	V _{OH2}	$V_{CC} = 2.5 \text{ V}, I_{O} = -2 \text{ mA}, B = -6.0 \text{ mT}$	2.7	2.9	_	V
Supply current 1 *3	I _{CCAVE}	$V_{CC} = 3 V$	_	56.0	85.0	μА
Supply current 2 *3	I _{CC2AVE}	$V_{CC} = 2.5 \text{ V}$	_	48.0	72.0	μА
Intermittent action time	Tsam	$V_{CC} = 3 V$	490	670	850	μS
Intermittent action time 2	Tsam2	$V_{CC} = 2.5 \text{ V}$	513	710	890	μS

Note) *1: Symbol B_{H-LS} , B_{H-LN} stands for the operating magnetic flux density where its output level varies from high to low.

Design reference data

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Hysteresis width	BW	$V_{CC} = 3 V$	_	7	_	mT
Supply current 3	I _{CCON}	$V_{CC} = 3 V$	_	1.4	2.1	mA
Supply current 4	I _{CCOFF}	$V_{CC} = 3 V$	_	2.5	_	μА
Supply current 5	I _{CC2ON}	$V_{CC} = 2.5 \text{ V}$	_	1.12	1.68	mA
Supply current 6	I _{CC2OFF}	$V_{CC} = 2.5 \text{ V}$	_	2.2	_	μА
Operating time	t _{ON}	$T_a = -25$ °C to 75°C, $V_{CC} = 3 \text{ V}$	10	26	42	μS
Stop time	t _{OFF}	$T_a = -25$ °C to 75°C, $V_{CC} = 3 \text{ V}$	258	644	1 030	μS
Operating time 2	t _{2ON}	$T_a = -25$ °C to 75°C, $V_{CC} = 2.5 \text{ V}$	11	27	43	μS
Stop time 2	t _{2OFF}	$T_a = -25$ °C to 75°C, $V_{CC} = 2.5$ V	270	674	1 078	μS

Note) It will operate normally in approximately 0.67 ms after power on.

^{*2:} $T_a = 75^{\circ}$ C. For the independent IC without a heat sink. Please use within the range of power dissipation, referring to $P_D - T_a$ curve.

^{*2}: Symbol $B_{L\text{-HS}}$, $B_{L\text{-HN}}$ stands for the operating magnetic flux density where its output level varies from low to high.

^{*3:} $I_{CC_{AVE}} = \{I_{CC_{ON}} \times t_{ON} + I_{CC_{OFF}} \times t_{OFF}\}/\{t_{ON} + t_{OFF}\}$

■ Technical Data

• Position of a Hall element (unit in mm)

Distance from a package surface to sensor part: 0.31 mm (reference value)

A Hall element is placed on the shaded part in the figure.

• Magneto-electro conversion characteristics

Direction of applied magnetic field

Operating magnetic flux density

• Power dissipation of package SMINI-5DA

• Main characterisitcs

Operating magnetic flux density — Supply voltage

■ Technical Data (continued)

• Main characterisitcs (continued)

Operating magnetic flux density — Ambient temperature

 Δ high-level output voltage — Supply voltage

Hysteresis width — Supply voltage

Low-level output voltage — Supply voltage

Sampling period — Supply voltage

