17.2 Powers and Roots

Arnav Patil

University of Toronto

In Calculus II, we discussed how points (x,y) may be expressed in a polar form (r,θ) . We will now discuss how being able to do the same to a complex number helps us easily find its powers and roots.

1 Polar Form

A nonzero complex number z=x+yi can be written as $z=(r\cos\theta)+i(r\sin\theta)$. We call this the polar form of the complex number z. We call r the modulus, or length of z, denoted as |z|. The angle θ is the argument of z and is denoted as $\theta=\arg z$. Remember that $\theta\pm2k\pi$ where $k\in\mathbb{Z}$ are all arguments of z.

The **principal argument** of z is in the interval $(-\pi, \pi]$ and is denoted by Arg z.

2 Multiplication and Division

Multiplying two complex numbers is given by:

$$z_1 z_2 = r_1 r_2 e^{\theta_1 + \theta_2}$$

Division of two complex numbers is given by:

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{\theta_1 - \theta_2}$$

Proofs of the above are elementary in that they were covered in kindergarten.

3 Integer Powers of z

The n^{th} power of a given complex number z is given by:

$$z^n = r^n e^{n\theta i}$$

4 De Moivre's Formula

When $z = \cos \theta + i \sin \theta$, we have |z| = 1, which yields:

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

5 Roots

See class lecture notes below because that explanation is better than the textbook.

Roots	e voll owner this much later
· Exercise > Compute all cube roots of z=-8	in the course
• Exercise > Compute all cube roots of z=-8 in the course • Fact > For any complex z \neq 0, the equation w^ = z has n complex solutions	
· First unite the given z in polar form z:	-8=8000 7000=+ 10=T1+2kT 0=88100 28100=0
	$0=8\sin\theta > \sin\theta = 0$
Now write w in polar form $w = \rho e^{i\alpha}$	
$\omega^{3} = \rho^{3}e^{3\alpha i} = 8e^{i(\pi+2k\pi)} \rightarrow \rho^{3} = 8 \rightarrow \rho = 2 \rightarrow 0$ $3\alpha = \pi + 2k\pi$ $k=0, \ \omega_{0} = 2e^{i\pi/3} = 2(\omega_{0}\pi/3 + i\sin\pi/3) = 1 + \sqrt{3}i \rightarrow 0$	P = 3 - 3
$k=1, \ \omega_1=2e^{i(\frac{\pi}{2}+\frac{\sqrt{\pi}}{3})}=2e^{iT}=-2$ sheek	Alf finding n roots, must consider w=0 to w=n-1
$k=2, \omega_z = 2e^{i(\frac{\pi}{3}+4\frac{\pi}{3})} = 2e^{i\frac{\pi}{3}} = -\sqrt{3}i-du $	

Figure 1: How to Find Roots of a Complex Number