Перечень теоретических вопросов и задач для подготовки к экзамену по дисциплине «МАТЕМАТИКА» (I семестр, специальности ПОИТ, ДЭВИ, ИСиТ, ПОИБМС)

ПРОГРАММА КУРСА

- 1. Комплексные числа, действия над ними.
- 2. Различные формы представления комплексных чисел. Действия над комплексными числами в тригонометрической форме записи.
 - 3. Многочлены. Теорема Безу. Основная теорема алгебры.
 - 4. Матрицы и действия над ними.
 - 5. Определители, их основные свойства.
- 6. Обратная матрица. Необходимое и достаточное условие существования обратной матрицы. Алгоритм вычисления.
 - 7. Ранг матрицы.
 - 8. Теорема Кронекера-Капелли.
 - 9. Методы решения систем линейных алгебраических уравнений.
 - 10. Векторы. Линейные операции над векторами.
 - 11. Проекция вектора на ось, проекция вектора на вектор. Свойства проекций.
- 12. Векторный базис. Разложение произвольного вектора по базису. Координаты вектора.
 - 13. Направляющие косинусы вектора. Единичный вектор.
 - 14. Скалярное произведение векторов, его свойства и приложения.
 - 15. Векторное произведение, его свойства и приложения.
- 16. Смешанное произведение векторов, его свойства. Условие компланарности трех векторов.
 - 17. Прямая на плоскости. Различные виды уравнения прямой на плоскости.
- 18. Угол между двумя прямыми на плоскости. Условия параллельности и перпендикулярности двух прямых на плоскости.
- 19. Расстояние от точки до прямой на плоскости. Расстояние от точки до плоскости.
 - 20. Эллипс, его каноническое уравнение.
 - 21. Гипербола, ее каноническое уравнение.
 - 22. Парабола, ее каноническое уравнение.
 - 23. Плоскость. Различные виды уравнения плоскости.
 - 24. Общее уравнение плоскости, его исследование.
- 25. Угол между плоскостями. Условия параллельности и перпендикулярности двух плоскостей.
 - 26. Различные виды уравнений прямой в пространстве.
- 27. Угол между двумя прямыми в пространстве. Условия параллельности и перпендикулярности двух прямых.
- 28. Взаимное расположение прямой и плоскости. Угол между прямой и плоскостью.

- 29. Поверхности 2-го порядка. Метод сечений.
- 30. Цилиндрические поверхности.
- 31. Линейные пространства, примеры.
- 32. Понятия линейной зависимости и линейной независимости элементов линейного пространства. Базис и размерность линейного пространства, примеры.
- 33. Координаты элемента линейного пространства в заданном базисе. Преобразование координат при изменении базиса.
- 34. Подпространства линейного пространства. Операции над подпространствами.
 - 35. Линейные операторы и их матрицы.
 - 36. Действия над линейными операторами. Обратный оператор.
 - 37. Преобразование матрицы линейного оператора при замене базиса.
 - 38. Собственные значения и собственные векторы линейного оператора.
 - 39. Приведение матрицы линейного оператора к диагональной форме.
- 40. Евклидово пространство. Неравенства Коши-Буняковского и треугольни-ка.
- 41. Ортонормированный базис в евклидовом пространстве. Процесс ортогонализации Грама-Шмидта.
- 42. Самосопряженные (симметрические) операторы в евклидовом пространстве.
 - 43. Квадратичные формы и их приведение кканоническому виду.
 - 44. Знакоопределенные квадратичные формы. Критерий Сильвестра.
 - 45. Элементарные функции, их алгебраическая классификация.
 - 46. Определение предела функции.
 - 47. Односторонние пределы, их связь с пределом функции.
 - 48. Основные свойства пределов.
 - 49. Бесконечно малые функции и их свойства.
 - 50. Сравнение бесконечно малых функций.
 - 51. Эквивалентные бесконечно малые.
 - 52. Бесконечно большие функции и их свойства.
 - 53. Методы раскрытия неопределенностей.
 - 54. Первый и второй замечательные пределы.
- 55. Непрерывность функции в точке. Основные свойства функций, непрерывных в точке.
 - 56. Классификация точек разрыва.
 - 57. Свойства функций, непрерывных на отрезке. Теорема Вейерштрасса.
 - 58. Понятия производной и дифференциала, связь между ними.
 - 59. Определение производной. Основные правила дифференцирования.
- 60. Геометрический и механический смысл производной. Уравнение касательной.
 - 61. Понятие дифференцируемости, связь с производной и непрерывностью.

- 62. Производная сложной функции. Производные степенной, показательной и логарифмической функций.
- 63. Производные тригонометрических и обратных тригонометрических функций.
 - 64. Дифференцирование неявно и параметрически заданных функций.
 - 65. Свойство инвариантности формы дифференциала 1-го порядка.
 - 66. Теорема Ферма, ее геометрический смысл.
 - 67. Теорема Ролля, ее геометрический смысл.
 - 68. Теорема Лагранжа, ее геометрический смысл.
 - 69. Теорема Коши.
 - 70. Правило Лопиталя.
 - 71. Сравнение роста показательной, степенной и логарифмической функций.
 - 72. Формула Тейлора с остаточным членом в форме Лагранжа и Пеано.
- 73. Разложение функций e^x , $\sin x$, $\cos x$, $\ln(1+x)$, $(1+x)^{\alpha}$ по формуле Маклорена.
- 74. Возрастание и убывание функции. Условия монотонности дифференцируемой функции на интервале.
- 75. Экстремумы функции. Необходимое и достаточные условия существования экстремума.
 - 76. Алгоритм нахождения точек локального экстремума.
 - 77. Наибольшее и наименьшее значения функции на отрезке.
 - 78. Достаточное условие выпуклости графика функции.
 - 79. Вертикальные, горизонтальные и наклонные асимптоты кривых.

вопросы и задачи

Уровень A

МАТРИЦЫ И СИСТЕМЫ. КОМПЛЕКСНЫЕ ЧИСЛА

Вопросы.

- 1. Единичные матрицы 2-го и 3-го порядков: ...
- **2.** Нулевая матрица размера 2×3 : ...
- **3.** Матрица A^{-1} называется обратной по отношению к квадратной матрице A, если ...
- **4.** Необходимое и достаточное условие существования обратной матрицы: A^{-1} существует $\Leftrightarrow \dots$
 - 5. Обратная матрица находится по формуле ...
 - 6. Система линейных алгебраических уравнений может иметь:
- а) одно решение;
- б) ...
- в) ...
- 7. Система линейных алгебраических уравнений называется совместной, если ...

- Методы решения систем линейных алгебраических уравнений:
- a) ...
- б) ...
- в) ...
 - Формулы Крамера решения систем линейных алгебраических уравнений.
 - 10. Алгебраическая форма записи комплексного числа: ...
 - Тригонометрическая форма записи комплексного числа: ...
- 12. Связь между тригонометрической и алгебраической формами записи комплексного числа задается формулами: ...

Задачи.

Задача 1. Вычислить: a) $\frac{5-3i}{1-\frac{i}{a}}$;

б)
$$z_1 + z_2 \cdot \overline{z_3}$$
, если $z_1 = 1 + 2i$, $z_2 = 2 - i$, $z_3 = 3 + 2i$;

в)
$$\frac{(3z_1-2z_2)z_3}{z_2}$$
, если $z_1=3+i,\ z_2=2-2i,\ z_3=1-4i;$

г)
$$\frac{z_1^2+z_2+z_3}{z_2}$$
, если $z_1=2+i,\ z_2=-1-2i,\ z_3=8+7i.$

Задача 2. Найти все корни уравнения:

a)
$$x^3 - 27 = 0;$$
 6) $x^3 - 2x^2 - 6x + 4 = 0;$

a)
$$x^3 - 27 = 0$$
; 6) $x^3 - 2x^2 - 6x + 4 = 0$;
B) $x^3 - 6x^2 + 5x + 12 = 0$; 7) $x^4 + x^3 - 4x^2 + x + 1 = 0$.

a)
$$\frac{2x^3 + x^2 + 5x - 3}{6x^2 + x - 2}$$
; 6) $\frac{x^4 + 13x - 42}{x^4 - 13x^2 + 36}$.

в)
$$x^3 - 6x^2 + 5x + 12 = 0$$
; г) $x^4 + x^3 - 4x^2 + x + 1 = 3$ адача 3. Сократить дробь:

а) $\frac{2x^3 + x^2 + 5x - 3}{6x^2 + x - 2}$; б) $\frac{x^4 + 13x - 42}{x^4 - 13x^2 + 36}$.

Задача 4. Вычислить определитель $\begin{vmatrix} 3 & 1 & 2 - i \\ 2i & 0 & 3 \\ 2 & 1 - 2i & 1 \end{vmatrix}$.

Задача 5. Даны матрицы: $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 1 \\ 0 & -5 \end{pmatrix}$. Найти произведения AB и BA, если они существуют.

Задача 6. Найти
$$(2A-B)A^T$$
, если $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 1 & 1 \\ 0 & -2 & 1 \\ 2 & 3 & 0 \end{pmatrix}$.

Задача 7. Решить систему по формулам Крамера: $\begin{cases} 2x - 3y = 5, \\ x + 2v = -1 \end{cases}$

1)
$$\begin{cases} 3x + y + z = 1, \\ x - 2y + z = 2, \\ x + 4y - z = -2. \end{cases}$$
 2)
$$\begin{cases} 3x + 4y - z = 7, \\ x + 2y - 3z = 0, \\ 7x + 10y - 5z = 2; \end{cases}$$
 3)
$$\begin{cases} x_1 - 2x_2 + x_3 = 0, \\ 2x_1 + x_2 + x_3 = 3, \\ 3x_1 - x_2 + 2x_3 = 3 \end{cases}$$

4)
$$\begin{cases} 3x_1 + 2x_2 = 12, \\ x_1 - x_2 = 5, \\ x_1 + x_2 + x_3 = 2, \\ 2x_1 + 3x_3 = 7; \end{cases}$$
 5)
$$\begin{cases} x_1 - x_2 - x_4 + 2x_5 = 1, \\ x_1 + x_2 - x_3 - 3x_4 + 4x_5 = 2, \\ 6x_1 - x_3 - 2x_5 = 3, \\ 4x_1 - x_3 - 2x_4 + 2x_5 = 3. \end{cases}$$

Ответы.

1. a)
$$4+i$$
; б) $5-5i$; в) $11, 5+5i$; г) $-5, 6+2, 2i$. 2. a) $\{3; \frac{-3\pm3\sqrt{3}i}{2}\}$; б) $\{-2; 2\pm\sqrt{2}\}$; в) $\{-1; 3; 4\}$; г) $\{1; \frac{-3\pm\sqrt{5}}{2}\}$. 3. a) $\frac{x^2+x+3}{3x+2}$; б) $\frac{x^2-x+7}{x^2-x-6}$. 4. $7+16i$. 5. $BA = \begin{pmatrix} 6 & 9 & 12 \\ -20 & -25 & -30 \end{pmatrix}$.

$$3x + 2 \qquad x^2 - x - 6 \qquad (-20 - 25 - 30)$$
6.
$$\begin{pmatrix} 21 & 45 & 8 \\ 65 & 158 & 47 \\ 8 & 23 & 13 \end{pmatrix}$$
. **7.** $x = 1, y = -1$. **8.** 1) $(1; -1; -1)$; 2) несовместна; 3) $\left\{ \begin{pmatrix} \frac{6 - 3c}{5}; \frac{3 + c}{5}; c \end{pmatrix}, c \in \mathbb{R} \right\}$

 \mathbb{R} }; 4) несовместна; 5) $\{(-c_1 + 2c_2; -1 - 2c_1 + 4c_2; -3 - 6c_1 + 10c_2; c_1; c_2), c_1, c_2 \in \mathbb{R}\}$.

ВЕКТОРЫ

Вопросы.

- **1.** Вектор называется единичным, если ... **2.** Примеры единичных векторов орты \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} , имеющие координаты: $\overrightarrow{i}=\{1;0;0\},\,\dots$
- 3. Если известны координаты вектора $\overrightarrow{a}=\{x_a;y_a;z_a\}$, то его длина вычисляется по формуле ...
 - 4. Вектор называется нулевым, если ...

Нулевой вектор имеет координаты $\overrightarrow{0} = \{0; 0; 0\}.$

- 5. Два вектора называются коллинеарными, если ...
- 6. Условие коллинеарности двух векторов: ...
- 7. Два вектора называются ортогональными, если ...
- 8. Условие ортогональности двух векторов: ...
- 9. Три вектора называются компланарными, если ...
- 10. Условие компланарности трех векторов: ...
- 11. Скалярным произведение векторов \overrightarrow{a} и \overrightarrow{b} называется ...
- 12. Основные свойства скалярного произведения:

$$\overrightarrow{b} \cdot \overrightarrow{a} = \overrightarrow{a} \cdot \overrightarrow{b};$$
 $\overrightarrow{a} \cdot \overrightarrow{a} = |\overrightarrow{a}|^2;$
 $\overrightarrow{a} \cdot \overrightarrow{b} = 0, \text{ если } \dots$

- 13. Если известны координаты двух векеоров, то их скалярное произведение вычисляется по формуле ...
 - 14. Геометрические приложения скалярного произведения:
- а) вычисление угла между векторами;
- б) вычисление длины вектора;
- в) вычисление проекции вектора на вектор.
 - 15. Косинус угла между векторами вычисляется по формуле ...
 - 16. Физические приложения скалярного произведения.

- 17. Векторы \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} образуют правую тройку, если ...
- **18.** Векторным произведение векторов \overrightarrow{a} и \overrightarrow{b} называется ...
- 19. Основные свойства векторного произведения:

$$\overrightarrow{b} \times \overrightarrow{a} = \dots;$$

$$\overrightarrow{a} \times \overrightarrow{a} = \dots;$$

$$\overrightarrow{a} \times \overrightarrow{b} = 0$$
, если ...

- **20.** Если известны координаты двух векторов, то их векторное произведение вычисляется по формуле ...
 - 21. Геометрические приложения векторного произведения.
 - **22.** Смешанным произведением векторов \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} называется ...
 - **23.** $\overrightarrow{a} \times \overrightarrow{b} \cdot \overrightarrow{c} = 0$, если ...
- 24. Если известны координаты векторов, то их смешанное произведение вычисляются по формуле ...
 - 25. Геометрические приложения смешанного произведения.

Задачи.

 ${\bf 3a}$ дача 1. Даны векторы: $\overrightarrow{a}=\{1;2;5\},\ \overrightarrow{b}=\{3;0;4\}$. Найти:

- a) $|\overrightarrow{a}|$;
- б) координаты единичного вектора \overrightarrow{e} , сонаправленного с вектором \overrightarrow{a} ;
- в) координаты вектора \overrightarrow{c} , направленного противоположно вектору \overrightarrow{b} и имеющего длину 15;
- г) координаты вектора $3\overrightarrow{a} 2\overrightarrow{b}$.

Задача 2. Даны векторы: $\overrightarrow{a} = \overrightarrow{i} + 2\overrightarrow{j} + 5\overrightarrow{k}$, $\overrightarrow{b} = 3\overrightarrow{i} + 4\overrightarrow{k}$, $\overrightarrow{c} = \overrightarrow{j} - \overrightarrow{k}$. Найти: а) $\overrightarrow{a} \cdot \overrightarrow{b}$; б) $\overrightarrow{a} \times \overrightarrow{b}$; в) $\overrightarrow{a} \times \overrightarrow{b} \cdot \overrightarrow{c}$; г) $(2\overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{a} - \overrightarrow{b})$; д) $(2\overrightarrow{a} + \overrightarrow{b}) \times (\overrightarrow{a} - \overrightarrow{b})$.

Задача 3. Даны точки: $A(1;2;4),\ B(3;1;5),\ C(2;0;2),\ D(1;4;5).$ Найти: а) угол между \overrightarrow{AB} и $\overrightarrow{AC};$ б) площадь треугольника ABC; в) объем пирамиды ABCD.

Задача 4. Даны вершины четырехугольника: $A(1;4;0),\ B(-4;1;1),\ C(-5;-5;3),\ D(1;-2;2).$ Доказать, что его диагонали AC и BD взаимно перпендикулярны.

Задача 5. Найти работу силы $\overrightarrow{F} = -4\overrightarrow{i} + 2\overrightarrow{j} + 4\overrightarrow{k}$ при прямолинейном перемещении материальной точки из точки A(1;4;0) в точку B(4;-1;1).

Задача 6. Найти площадь параллелограмма, построенного на векторах $\overrightarrow{a}=\{4;-5;3\}$ и $\overrightarrow{b}=\{-4;0;2\}.$

Задача 7. Проверить компланарность векторов $\overrightarrow{a} = \{3; -4; 7\},$ $\overrightarrow{b} = \{1; 2; -3\}, \overrightarrow{c} = \{2; -1; 2\}.$

Задача 8. Доказать, что точки $A(1;2;0),\ B(4;3;4),\ C(2;-3;-2),\ D(3;0;1)$ лежат в одной плоскости.

Ответы.

1. a)
$$|\overrightarrow{a}| = \sqrt{30}$$
; 6) $\overrightarrow{e} = \{1/\sqrt{30}; 2/\sqrt{30}; 5/\sqrt{30}\}$; B) $\overrightarrow{c} = \{-9; 0; -12\}$; F) $3\overrightarrow{a} - 2\overrightarrow{b} = \{-3; 6; 7\}$.

2. a)
$$\overrightarrow{a} \cdot \overrightarrow{b} = 23$$
; 6) $\overrightarrow{a} \times \overrightarrow{b} = 8 \overrightarrow{i} + 11 \overrightarrow{j} - 6 \overrightarrow{k}$; B) $\overrightarrow{a} \times \overrightarrow{b} \cdot \overrightarrow{c} = 17$; \overrightarrow{r}) $(2 \overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{a} - \overrightarrow{b}) = 12$; \overrightarrow{a}) $(2 \overrightarrow{a} + \overrightarrow{b}) \times (\overrightarrow{a} - \overrightarrow{b}) = -24 \overrightarrow{i} - 33 \overrightarrow{j} + 18 \overrightarrow{k}$. **3.** a) $\arccos\left(\frac{\sqrt{6}}{9}\right)$; 6) $2, 5\sqrt{2}$; B) $7/6$. **5.** -18 . **6.** 30 .

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ

Bonpocы.

- 1. Общее уравнение прямой на плоскости.
- 2. Уравнение прямой, проходящей через две заданные точки.
- **3.** Уравнение прямой, имеющей угловой коэффициент k и проходящей через точку $(x_0; y_0)$.
- **4.** Условия параллельности и перпендикулярности двух прямых на плоскости: прямые $y = k_1 x + b_1$ и $y = k_2 x + b_2$:
- а) параллельны, если ...
- б) перпендикулярны, если ...
 - 5. Какие линии относятся к кривым 2-го порядка на плоскости?
 - 6. Определение эллипса.
 - 7. Записать каноническое уравнение эллипса. Сделать рисунок.
 - 8. Определение гиперболы.
 - 9. Записать каноническое уравнение гиперболы. Сделать рисунок.
 - 10. Определение параболы.
 - **11.** Записать каноническое уравнение параболы. Сделать рисунок. Задачи.

Задача 1. Написать уравнение прямой AB, если A(1;2), B(5;3).

Задача 2. Построить прямые:

а)
$$y = 3x - 2$$
; б) $y = 3x$; в) $y = 3$; г) $y = 0$; д) $x = 5$; е) $x = 0$.

Задача 3. Построить прямую 3x - 2y = 6, определив точки ее пересечения с осями координат.

Задача 4. Построить прямую 2x-y+5=0. Написать уравнения прямых, проходящих через точку M(2;5):

- а) параллельно этой прямой;
- б) перпендикулярно этой прямой.

Сделать рисунок.

Задача 5. Даны точки A(1;3), B(-1;2), C(2;-2). Записать уравнения:

- а) сторон треугольника ABC;
- б) медианы CM;
- в) высоты CH треугольника ABC.

Задача 6. Найти точку пересечения прямых 3x - y = 6 и x + 2y = 9.

Задача 7. Построить параболы:

а)
$$y = x^2$$
; б) $y = 2x - x^2$; в) $y = x^2 - 6x + 10$; г) $x = 4 - y^2$; д) $3x + 1 = y^2$.

Задача 8. Построить окружности: а) $x^2 + y^2 = 4$; б) $x^2 + y^2 = 4x$; в) $x^2 + y^2 = 4y$.

a)
$$x^2 + y^2 = 4$$
;

$$6) x^2 + y^2 = 4x;$$

$$x^2 + y^2 = 4y.$$

Задача 9. Построить линии:
a)
$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$
; б) $x^2 + 2y^2 = 8$; в) $x^2 - \frac{y^2}{4} = 1$; г) $x^2 - y^2 = 4$; д) $x^2 = 2y$.

Задача 10. Найти точки пересечения линий $y = 6x - x^2$ и 2x + 3y = 12. Ответы.

1.
$$x - 4y + 7 = 0$$
. **4.** a) $2x - y + 1 = 0$; б) $x + 2y - 12 = 0$. **5.** a) $x - 2y + 5 = 0$ (AB); $5x + y - 8 = 0$ (AC); $4x + 3y - 2 = 0$ (BC); б) $9x + 4y - 10 = 0$; в) $2x + y - 2 = 0$. **6.** (3; 3). **10.** (6; 0); (2/3; 32/9).

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ

Вопросы.

- 1. Общее уравнение плоскости.
- 2. Вектор нормали к плоскости это ...

Если известно общее уравнение плоскости, то координаты вектора нормали $\overrightarrow{n}=$

- Уравнение плоскости, проходящей через точку $M_0(x_0;y_0;z_0)$ и имеющей 3. вектор нормали $\overrightarrow{n} = \{A; B; C\}.$
 - 4. Уравнение плоскости, проходящей через три заданные точки.
- 5. Канонические уравнения прямой в пространстве имеют вид ... где $(x_0; y_0; z_0)$ — координаты ... а $\{m; n; p\}$ — координаты ...
 - 6. Уравнение прямой, проходящей в пространстве через две заданные точки. Задачи.

Задача 1. Даны точки: A(1;2;4), B(3;1;5), C(2;0;2). Написать:

- а) уравнение плоскости ABC;
- б) уравнение прямой AB.

Задача 2. Написать уравнение плоскости, проходящей через точку A(1;2;4) перпендикулярно прямой $\frac{x-1}{2}=\frac{y+3}{-5}=\frac{z-4}{0}$.

Задача 3. Написать уравнение плоскости, проходящей через точку A(3;2;-1)

перпендикулярно прямой
$$\begin{cases} x=2t+1,\\ y=5,\\ z=6-t. \end{cases}$$

Задача 4. Написать уравнение прямой, проходящей через точку A(1;2;4)перпендикулярно плоскости 2x - y - 5 = 0.

Задача 5. Найти точку пересечения прямой $\frac{x-1}{2} = \frac{y+3}{5} = \frac{z-4}{6}$ и плоскости 2x - y + 3z - 16 = 0.

Ответы.

1. a)
$$4x + 5y - 3z - 2 = 0$$
; 6) $\frac{x-1}{2} = \frac{y-2}{-1} = \frac{z-4}{1}$. **2.** $2x - 5y + 8 = 0$. **3.** $2x - z - 7 = 0$. **4.** $\frac{x-1}{2} = \frac{y-2}{-1} = \frac{z-4}{0}$. **5.** $(3; 2; 4)$.

ЛИНЕЙНЫЕ ПРОСТРАНСТВА. ЛИНЕЙНЫЕ ОПЕРАТОРЫ

Вопросы.

- 1. Определение линейного пространства.
- 2. Понятия линейной зависимости и линейной независимости элементов линейного пространства.
 - 3. Базис линейного пространства.
 - 4. Координаты элемента линейного пространства в заданном базисе.
- **5.** Как составляется матрица перехода от одного базиса линейного пространства к другому?
 - 6. Понятие линейного оператора.
 - 7. Как составляется матрица линейного оператора?
- 8. Что называется собственным вектором и собственным значением линейного оператора?
 - 9. Что называется собственным вектором и собственным значением матрицы?
 - 10. Что называется характеристическим уравнением матрицы?
 - 11. Как найти собственные значения матрицы?
 - 12. Понятие евклидова пространства.
 - 13. Норма вектора евклидова пространства, ее свойства.
 - 14. Ортонормированный базис.
 - 15. Квадратичная форма.
 - 16. Канонический вид квадратичной формы.
 - 17. Матрица квадратичной формы.

Задачи.

Задача 1. Даны векторы $\overline{x_1} = (1;1;2;-1), \quad \overline{x_2} = (3;5;0;5), \overline{x_3} = (0;0;1;-1), \quad \overline{x_4} = (0;5;6;-1)$ в \mathbb{R}^4 . Проверить, являются ли они линейно зависимыми.

Задача 2. В линейном пространстве квадратных матриц 2-го порядка найти координаты матрицы $A = \begin{pmatrix} 7 & 0 \\ -7 & 5 \end{pmatrix}$ в базисе $\overline{A_1} = \begin{pmatrix} 4 & -2 \\ -5 & 4 \end{pmatrix}$, $\overline{A_2} = \begin{pmatrix} 2 & -2 \\ 2 & -2 \end{pmatrix}$, $\overline{A_3} = \begin{pmatrix} -1 & 0 \\ 1 & -2 \end{pmatrix}$, $\overline{A_4} = \begin{pmatrix} 3 & -2 \\ -4 & 1 \end{pmatrix}$.

Задача 3. Найти координаты элемента $\overline{x} = x^2 + 4x + 16$ в базисе $\overline{e_1} = x^2 + x + 1$, $\overline{e_2} = x^2 + 2x + 4$, $\overline{e_3} = x^2 + 3x + 9$.

Задача 4. Можно ли представить многочлен $\overline{y}=x^3+6x^2+6x+4$ в виде линейной комбинации многочленов $\overline{y_1}=x^3+x^2+x+1,\ \overline{y_2}=x^3+x^2+x,\ \overline{y_3}=x^2+x+1?$

Задача 5. Можно ли представить матрицу $A = \begin{pmatrix} 0 & -4 \\ -3 & 6 \end{pmatrix}$ в виде линейной — $\begin{pmatrix} 1 & 1 \\ \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ \end{pmatrix} = \begin{pmatrix} 0 & 3 \\ \end{pmatrix}$

комбинации матриц $\overline{A_1} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $\overline{A_2} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$, $\overline{A_3} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\overline{A_4} = \begin{pmatrix} 0 & 3 \\ 0 & 0 \end{pmatrix}$?

Задача 6. Пусть $\overline{x}=(x_1;x_2;x_3)^T,\ f(\overline{x})=(2x_1;x_2+5x_3;-x_1),g(\overline{x})=(x_1-x_2;x_3+x_2;0).$ Найти явный вид операторов $2f+3g,\ fg,\ gf.$

Задача 7. Пусть $\overline{x} = (x_1; x_2; x_3)^T$, $f(\overline{x}) = (2x_1; x_2 + 5x_3; x_2 - x_1), g(\overline{x}) = (x_1 - x_2; x_3 + x_2; x_1)$. Найти явный вид операторов gf, $2f - g^2$.

Задача 8. Какие из векторов

$$\overline{x_1} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$
, $\overline{x_2} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$, $\overline{x_3} = \begin{pmatrix} 4 \\ -8 \end{pmatrix}$, $\overline{x_4} = \begin{pmatrix} 5 \\ 10 \end{pmatrix}$ являются собственными векто-

рами линейного оператора f с матрицей $A = \begin{pmatrix} 1 & -1 \\ -6 & 2 \end{pmatrix}$?

Задача 9. Какие из векторов

$$\overline{x_1} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \ \overline{x_2} = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}, \ \overline{x_3} = \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix}, \ \overline{x_4} = \begin{pmatrix} 5 \\ 5 \\ 5 \end{pmatrix}$$
 являются собственными

векторами линейного оператора f с матрицей $A = \begin{pmatrix} 0 & 0 & 3 \\ 3 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}$?

Задача 10. Найти собственные значения матрицы:

a)
$$A = \begin{pmatrix} 2 & 4 \\ -1 & -3 \end{pmatrix}$$
; 6) $A = \begin{pmatrix} 0 & 1 & 2 \\ 4 & 0 & 1 \\ 3 & -1 & 1 \end{pmatrix}$.

Ответы.

1. Линейно зависимы. **2.** (-9;0;-16;9). **3.** (1;-3;3). **4.** $\overline{y}=-\overline{y_1}+2\overline{y_2}+5\overline{y_3}$. **5.** Невозможно. **6.** $(2f+3g)(\overline{x})=(7x_1-3x_2;5x_2+13x_3;-2x_1),\ fg(\overline{x})=(2x_1-2x_2;x_3+x_2;-x_1+x_2)\ gf(\overline{x})=(2x_1-x_2-5x_3;x_1+x_2+5x_3;0)$. **7.** $gf(\overline{x})=(2x_1-x_2-3x_3;-x_1+2x_2+3x_3;2x_1),\ (2f-g^2)(\overline{x})=(3x_1+2x_2+x_3;-x_1+x_2+5x_3;-3x_1+3x_2)$. **8.** $\overline{x_1};\ \overline{x_4}$. **9.** $\overline{x_2};\ \overline{x_4}$. **10.** a) -2;1; б) -3;1;3.

ПРЕДЕЛЫ И НЕПРЕРЫВНОСТЬ

Вопросы.

- 1. Определение предела функции: $\lim_{x \to x_0} f(x) = A \Leftrightarrow \dots$
- **2.** ε -окрестность точки A это ...
- **3.** Проколотая δ -окрестность точки x_0 это ...
- **4.** Функция $\alpha(x)$ называется бесконечно малой при $x \to x_0$, если ...
- **5.** Функция f(x) называется бесконечно большой при $x \to x_0$, если ...
- 6. Связь между бесконечно большими и бесконечно малыми функциями: если $\alpha(x)$ бесконечно малая при $x \to x_0$, то $\frac{1}{\alpha(x)} = \dots$; если f(x) бесконечно большая при $x \to x_0$, то $\frac{1}{f(x)} = \dots$
 - 7. Определение эквивалентных бесконечно малых, примеры.
 - 8. 1-й замечательный предел: ...
 - 9. 2-й замечательный предел: ...
 - 10. 7 видов неопределенностей: ...
 - **11.** Функция f(x) называется непрерывной в точке x_0 , если ...
 - 12. Основные элементарные функции: ...
 - 13. Элементарная функция это...
 - 14. Примеры элементарных функций: ...

- 15. Свойство непрерывности элементарных функций внутри их области определения.
 - Три условия непрерывности функции в точке.
 - 17. Классификация точек разрыва.
- **18.** Точка x_0 называется точкой устранимого разрыва функции f(x), если ... Изобразить графически.
- **19.** Точка x_0 называется точкой неустранимого разрыва функции f(x), если ... Изобразить графически.
- Точка x_0 называется точкой разрыва 2-го рода функции f(x), если ... Изобразить графически.
 - 21. Теорема Вейерштрасса.

 $3a \partial a uu$.

Задача 1. Вычислить пределы:

a)
$$\lim_{x \to 1 \pm 0} \frac{3-x}{x-1}$$
;

6)
$$\lim_{x \to 2\pm 0} \frac{x^2 - 5x}{(x-2)^2};$$

a)
$$\lim_{x \to 1 \pm 0} \frac{3-x}{x-1}$$
; 6) $\lim_{x \to 2 \pm 0} \frac{x^2 - 5x}{(x-2)^2}$; B) $\lim_{x \to 3 \pm 0} \frac{x^2 - 5x}{x^2 - 5x + 6}$.

Задача 2. Вычислить пределы:

a)
$$\lim_{x \to 1} \frac{x^2 + x - 2}{x - 1}$$
;

a)
$$\lim_{x \to 1} \frac{x^2 + x - 2}{x - 1}$$
;
 6) $\lim_{x \to 2} \frac{x^2 - 3x + 2}{2x^2 + x - 10}$;
 B) $\lim_{x \to 3} \frac{x^3 - 27}{x^2 - 6x + 9}$.

B)
$$\lim_{x\to 3} \frac{x^3 - 27}{x^2 - 6x + 9}$$

Задача 3. Вычислить пределы:

a)
$$\lim_{x \to \infty} (3x^3 - 5x);$$

o)
$$\lim_{x \to \infty} \frac{1}{3x^3 - 5x}$$
, b) $\lim_{x \to \infty} \frac{1}{3x^3 - 5x}$

б)
$$\lim_{x \to \infty} \frac{1}{3x^3 - 5x}$$
; в) $\lim_{x \to \infty} \frac{6x^3 - 5x + 2}{3x^3 - 5x}$; г) $\lim_{x \to \infty} \frac{6x^3 - 5x + 2}{x^2 + 2x + 1}$; д) $\lim_{x \to \infty} \frac{x^2 + 4}{3x^3 - 5x}$.

Задача 4. Вычислить пределы:

6)
$$\lim_{x \to \infty} \left(\frac{4x^2}{x+6} - \frac{4x^4}{x^3 - 2x + 6} \right);$$

 $\lim_{x \to 1} \frac{\sqrt{5 - 4x} - x}{x - 1};$

a)
$$\lim_{x \to 1} \left(\frac{3x^2}{x - 1} - \frac{3x^3}{x^2 - 1} \right);$$

B) $\lim_{x \to \infty} \left(\frac{5x^4 - 2x}{5x^2 - 3x + 7} - x^2 \right);$
 $\lim_{x \to 2} \frac{\sqrt{x + 7} - 3}{\sqrt{x + 2} - 2};$

Задача 5. Вычислить пределы:

a)
$$\lim_{x \to 0} \frac{\sin 2x}{3x}$$

$$6) \lim_{x \to 0} \frac{\sin 3x}{\tan 4x};$$

$$\Gamma$$
) $\lim_{x\to 0} \frac{\sin^2 x}{x}$

д)
$$\lim_{x\to 0} \frac{\sin 2x \operatorname{tg} 3x}{3x^2};$$
ж)
$$\lim_{x\to 0} \frac{3\arcsin 2x}{\sin 3x};$$

e)
$$\lim_{x \to 0} \frac{\sin 3x \cos 2x}{\operatorname{tg} x};$$
3)
$$\lim_{x \to 0} \frac{1 - \cos 3x}{3x \sin 2x}.$$

$$3) \lim_{x \to 0} \frac{1 - \cos 3x}{3x \sin 2x}$$

Задача 6. Вычислить пределы:

a)
$$\lim_{x\to 0} \frac{\cos x}{x}$$
;

$$6) \lim_{x \to 0} \frac{\operatorname{tg} x}{x}$$

$$\mathrm{B}) \lim_{x \to 0} \frac{\mathrm{ctg}\,x}{x}$$

a)
$$\lim_{x\to 0} \frac{\cos x}{x}$$
; б) $\lim_{x\to 0} \frac{\operatorname{tg} x}{x}$; в) $\lim_{x\to 0} \frac{\operatorname{ctg} x}{x}$; г) $\lim_{x\to \infty} \frac{\sin x}{x}$; д) $\lim_{x\to \infty} \frac{\cos x}{x}$.

$$\exists x \in \mathbb{R} \frac{\cos x}{x}.$$

a)
$$\lim_{x\to 0} (1+2x)^{3/x}$$
;

Задача 7. Вычислить пределы: a)
$$\lim_{x\to 0} (1+2x)^{3/x}$$
; б) $\lim_{x\to \infty} \left(1+\frac{2}{x}\right)^{x/3}$.

Задача 8. Исследовать функцию на непрерывность:

a)
$$y = \frac{1}{x - 2}$$
;

$$6) \ y = \frac{x^2 - 4}{x - 2};$$

а)
$$y = \frac{1}{x-2}$$
; б) $y = \frac{x^2-4}{x-2}$; в) $y = \begin{cases} x-2 & \text{при } x \leqslant 2, \\ x^2-4 & \text{при } x > 2. \end{cases}$

Задача 9. Исследовать на непрерывность и построить график функции:

а)
$$f(x) = \begin{cases} x^2 & \text{при } x < 0, \\ \sqrt{x} & \text{при } 0 \le x < 2, \\ x + 2 & \text{при } x > 2; \end{cases}$$
 б) $f(x) = \begin{cases} \sin x & \text{при } x < 0, \\ 2 & \text{при } x = 0, \\ x^2 & \text{при } x > 0. \end{cases}$

Ответы. 1. а)
$$\lim_{x\to 1\pm 0} \frac{3-x}{x-1} = \frac{3-1}{\pm 0} = \pm \infty$$
; б) $\lim_{x\to 2\pm 0} \frac{x^2-5x}{(x-2)^2} = \frac{-6}{(\pm 0)^2} = -\infty$; в) $\lim_{x\to 3\pm 0} \frac{x^2-5x}{x^2-5x+6} = \lim_{x\to 3\pm 0} \frac{x^2-5x}{(x-2)(x-3)} = \frac{-6}{(3-2)(\pm 0)} = \mp \infty$. 2. а) 3; б) 1/9; в) ∞ . 3. а) ∞ ; б) 0; в) 2; г) ∞ ; д) 0. 4. а) ∞ ; б) -24 ; в) ∞ ; г) -3 ; д) 2/3. 5. а) 2/3; б) 3/4; в) 8; г) 0; д) 2; е) 3; ж) 2; з) 3/4. 6. а) ∞ ; б) 1; в) ∞ ; г) 0; д) 0. 7. а) e^6 ; б) $e^{2/3}$. 8. а) точка $x=2$ — точка неустранимого разрыва; б) точка $x=0$ — точка устранимого разрыва.

ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ

Вопросы.

- **1.** Приращение функции y = f(x) в точке x_0 , отвечающее приращению аргумента Δx : $\Delta y = ...$
 - **2.** Определение производной функции y = f(x) в точке x_0 .
 - 3. Геометрический смысл производной.
 - **4.** Уравнение касательной к графику функции y = f(x) в точке с абсциссой x_0 .
 - 5. Механический (физический) смысл производной.
 - 6. Основные правила дифференцирования.
 - 7. Таблица производных.
 - 8. Понятие дифференцируемости функции в точке и на промежутке.
- Связь дифференцируемости функции в точке и существования конечной производной.
 - 10. Связь дифференцируемости и непрерывности функции в точке.
- 11. Верно ли, что если функция имеет производную в точке, то она дифференцируема в этой точке? Верно ли обратное утверждение?
- 12. Верно ли, что если функция имеет производную в точке, то она непрерывна в этой точке? Верно ли обратное утверждение?
 - 13. Связь дифференциала и производной выражается формулой: ...
 - 14. Правило Лопиталя.
- **15.** Функция y = f(x) называется возрастающей на (a; b), если ... Функция y = f(x) называется убывающей на (a; b), если ...

16. Достаточное условие монотонности дифференцируемой функции на интервале. Пусть функция y = f(x) дифференцируема на (a; b). Если ..., то f(x)возрастает на (a; b). Если ..., то f(x) убывает на (a; b).

17. Точка x_0 называется точкой локального максимума функции f(x), если ... Точка x_0 называется точкой локального минимума функции f(x), если ...

18. Необходимое условие экстремума. Если точка x_0 является точкой локального экстремума функции y = f(x), то ...

19. Достаточное условие экстремума. Пусть точка x_0 является критической точкой функции y = f(x) (т. е. ...). Если ..., то x_0 — точка локального максимума. Если ..., то x_0 — точка локального минимума.

20. Алгоритм нахождения наибольшего и наименьшего значений непрервной функции на отрезке.

 $3a \partial a uu$.

Задача 1. Проверить, удовлетворяет ли функция $y = e^x + 3e^{3x} + 6x$ уравнению y'' - 4y' + 3y = 18x - 24.

Задача 2. Проверить, удовлетворяет ли функция $y = e^{-2x} \cos 3x$ уравнению y'' + 4y' + 13y = 0.

Задача 3. Найти y', если: a) $y = \ln \sin x$; б) $y = \ln \left(x + \sqrt{x^2 - 4} \right)$.

Задача 4. Найти y'', если: a) $y = \ln \sin x$; б) $y = \ln \left(x + \sqrt{x^2 - 4}\right)$.

Задача 5. Найти y''', если $y = \sin^2 x$. **Задача 6.** Найти y'(0), если $y = e^{-3x^2} \sin 2x$.

Задача 7. Найти y''(1), если $y = \frac{-3x^2}{x-2}$.

Задача 8. Найти $\frac{\mathrm{d} y}{\mathrm{d} x}$, если:

a)
$$y = x^2 \sin \frac{1}{x} - 3^{\lg^3 2x} + \ln 5$$
;

6)
$$y = \frac{x^2 - 4x + 5}{x - 3} + 5\sqrt{\arcsin\frac{x}{5}} - \sqrt[3]{x - 2}$$

B)
$$y = (8x - 3) \operatorname{ctg} x^2 + \operatorname{arctg} \sqrt{1 + 2^{-x^3}} + \sqrt{2};$$

r)
$$y = \cos^4 \frac{x}{2} + \sqrt[4]{\tan^3 \frac{1}{x}};$$

д) $y = x \ln^2 \arccos \sqrt{x}$.

Задача 9. Найти дифференциалы:

a) d
$$(3x^2 e^{5-x});$$
 6) d $(\frac{\sin 2t}{t});$ B) d $(\sqrt[4]{u^3-2}).$

Задача 10. Найти уравнения касательных к графику функции $y = x - \frac{1}{m}$ в точках пересечения его с осью абсцисс.

Задача 11. Написать уравнение касательной к линии $y = x^3 + 2x$ в точке M(1;3).

Задача 12. Определить точки, в которых касательная ЛИНИИ $y = 2x^3 - 3x^2 - 12x + 7$ параллельна оси абсцисс.

Задача 13. Определить, в какой точке касательная к параболе $y=x^2+3x-5$ параллельна прямой 7x - y + 3 = 0.

Задача 14. Найти наибольшее и наименьшее значения функции:

- а) $y = x^4 2x^2$ на отрезке [0; 2];
- б) $y = (x+1) e^{3-x}$ на отрезке [-1; 2]

Задача 15. Найти точки экстремума функции $y = \frac{x^2 - 2x + 4}{x^2}$.

Задача 16. Найти интервалы выпуклости и вогнутости функции $y = x^2(x +$ 6).

Задача 17. Вычислить пределы:

a)
$$\lim_{x \to 1} \frac{\sqrt{5-4x}-x}{x-1}$$
; 6) $\lim_{x \to \infty} \frac{x^3-2x+5}{3x^2+4x}$; b) $\lim_{x \to 0} \frac{\ln(2x^2+1)}{\sin^2 3x}$.

6)
$$\lim_{x \to \infty} \frac{x^3 - 2x + 5}{3x^2 + 4x}$$

B)
$$\lim_{x\to 0} \frac{\ln(2x^2+1)}{\sin^2 3x}$$

Ответы.

1. Удовлетворяет. 2. Удовлетворяет. 3. а) $y' = \operatorname{ctg} x$; б) $y' = \frac{1}{\sqrt{r^2 - 4}}$. 4. а) $y'' = -\frac{1}{\sin^2 x}$;

6) $y'' = -\frac{x}{\sqrt{(x^2 - 4)^3}}$. 5. $y''' = -4\sin 2x$. 6. 2. 7. 24. 8. a) $\frac{dy}{dx} = 2x\sin \frac{1}{x} - \cos \frac{1}{x} - 3^{\operatorname{tg}^3 2x} \cdot \frac{6\operatorname{tg}^2 2x}{\cos^2 2x} \cdot \ln 3$;

6)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2 - 6x + 7}{(x - 3)^2} + \frac{5}{2\sqrt{25 - x^2}\sqrt{\arcsin\frac{x}{5}}} - \frac{1}{3\sqrt[3]{(x - 2)^2}};$$

B)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = 8\operatorname{ctg}x^2 - \frac{2x(8x-3)}{\sin^2 x^2} - \frac{3x^22^{-x^3}}{2(2+2^{-x^3})\sqrt{1+2^{-x^3}}};$$

B)
$$\frac{\mathrm{d} y}{\mathrm{d} x} = 8 \operatorname{ctg} x^{2} - \frac{2x(8x - 3)}{\sin^{2} x^{2}} - \frac{3x^{2}2^{-x^{3}}}{2(2 + 2^{-x^{3}})\sqrt{1 + 2^{-x^{3}}}};$$
F)
$$\frac{\mathrm{d} y}{\mathrm{d} x} = -2 \sin \frac{x}{2} \cos^{3} \frac{x}{2} - \frac{3}{4 \cos^{2} \frac{1}{x} \sqrt[4]{\operatorname{tg} \frac{1}{x}}};$$
F)
$$\frac{\mathrm{d} y}{\mathrm{d} x} = \ln^{2} \arccos \sqrt{x} - \frac{\sqrt{x} \ln \arccos \sqrt{x}}{\sqrt{1 - x} \arccos \sqrt{x}}.$$

9. a) d
$$(3x^2 e^{5-x}) = (6x - 3x^2) e^{5-x} dx$$
; 6) d $(\frac{\sin 2t}{t}) = \frac{2t \cos 2t - \sin 2t}{t^2} \cdot dt$; B) d $(\sqrt[4]{u^3 - 2}) = \frac{2t \cos 2t - \sin 2t}{t^2}$

 $\frac{3u^2 d u}{4\sqrt[4]{(u^3-2)^3}}$. **10.** График пересекает ось Ox в точках x=1 и x=-1. Уравнение касательной в точке (1;0): y=2x-2; уравнение касательной в точке (-1;0): y=2x+2. **11.** y=5x-2. **12.** (-1;14);(2;-13). **13.** (2;5). **14.** a) $y_{\text{наиб}}=y(2)=8,\ y_{\text{наим}}=y(1)=-1;$ б) $y_{\text{наиб}}=y(0)=-1$ e^3 , $y_{\text{наим}} = y(-1) = 0$. **15.** $y_{\text{max}} = y(0) = -2$, $y_{\text{min}} = y(4) = 6$. **16.** График является выпуклым вверх на $(-\infty; -2)$ и выпуклым вниз на $(-2; +\infty)$. 17. а) -2; б) ∞ ; в) 2/9.

ЗАДАЧИ И ТЕОРЕТИЧЕСКИЕ УПРАЖНЕНИЯ

Уровень Б

МАТРИЦЫ И СИСТЕМЫ. КОМПЛЕКСНЫЕ ЧИСЛА

Вопросы.

1. Показать, что $z \cdot \overline{z} \in \mathbb{R}$ для всех $z \in \mathbb{C}$.

2. Дан определитель
$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
. Чему равно значение выражения:

2. Дан определитель
$$\Delta = \begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
. (1) $a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} - a_{22} \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + a_{23} \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix}$; (2) $a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - a_{23} \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} + a_{33} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$; (3) $b_1 \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - b_2 \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} + b_3 \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$; (4) $a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23}$? Ответ обосновать

2)
$$a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - a_{23}\begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} + a_{33}\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$
;

3)
$$b_1 \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - b_2 \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} + b_3 \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$
;

4) $a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23}$? Ответ обосновать.

3. Верно ли равенство:

1)
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = - \begin{vmatrix} a_{12} & 2a_{11} & a_{13} \\ a_{22} & 2a_{21} & a_{23} \\ a_{32} & 2a_{31} & a_{33} \end{vmatrix};$$
 2) $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = - \begin{vmatrix} a_{11} & a_{12} - 2a_{11} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = - \begin{vmatrix} a_{11} & a_{12} - 2a_{11} & a_{13} \\ a_{21} & a_{22} - 2a_{21} & a_{23} \\ a_{31} & a_{32} - 2a_{31} & a_{33} \end{vmatrix}$?

4. Пусть даны матрицы $A_{2\times 2}$ и $B_{4\times 2}$. Как найти матрицу X, если XA=B? Какой размер будет иметь матрица X?

5. Как найти матрицу X, если AXB = C, где A и B — квадратные матрицы 2го и 3-го порядков соответственно? Какой размер будет иметь матрица X? Ответ обосновать.

6. Пусть $O_{2\times 3}$ — нулевая матрица размера $2\times 3,\ A_{n\times m}$ — матрица размера $n \times m$. При каких значениях n и m существует и чему равно: a) A + O; б) $A \cdot O$? Указать размеры итоговых матриц.

 $3a \partial a uu$.

Задача 1. Вычислить $(1+\sqrt{3}i)^{10}$, используя правила действия над комплексными числами в тригонометрической форме записи.

Задача 2. Найти все корни 4-й степени из числа $-1 + \sqrt{3}i$.

Задача 3. Найти все корни уравнения: а) $z^4 + 81 = 0$; б) $z^4 + z^2 + 1 = 0$.

Задача 4. Найти
$$A^T(A+2B)$$
, если $A = \begin{pmatrix} -3 & 2i & 7 \\ 0 & 2 & 1-i \end{pmatrix}$, $B = \begin{pmatrix} i-1 & 2 & 0 \\ -2 & 0 & 1+3i \end{pmatrix}$.

Задача 5. Решить систему:
$$\begin{cases} X+Y=\begin{pmatrix} 1 & 1\\ 0 & 1 \end{pmatrix},\\ 2X+3Y=\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}. \end{cases}$$
 Задача 6. Найти A^2 , если $A=\begin{pmatrix} 1 & 2 & 2\\ 2 & 1 & -2\\ 2 & -2 & 1 \end{pmatrix}.$

Задача 6. Найти
$$A^2$$
, если $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}$.

Задача 7. Найти $\begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix}^n$.

Задача 8. Вычислить определитель:

1)
$$\begin{vmatrix} 3 & 1 & 2 & 4 \\ 0 & 0 & -1 & 6 \\ 2 & 1 & 3 & 1 \\ 2 & -2 & 3 & 1 \end{vmatrix}$$
; 2) $\begin{vmatrix} 213 & 186 & 162 & 137 \\ 344 & 157 & 295 & 106 \\ 419 & 418 & 419 & 418 \\ 417 & 416 & 417 & 416 \end{vmatrix}$; 3) $\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$;

4)
$$\begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{vmatrix}$$
, если α , β , γ — корни уравнения $x^3 + px + q = 0$.

ча 9. Определить ранг матрицы:

1)
$$A = \begin{pmatrix} -3 & 2 & 7 \\ 6 & -4 & 1 \\ 3 & -2 & 8 \end{pmatrix}$$
; 2) $A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 7 & 8 & 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 & 17 & 18 \\ 19 & 20 & 21 & 22 & 23 & 24 \\ 25 & 26 & 27 & 28 & 29 & 30 \end{pmatrix}$.

Задача 10. Найти
$$A^{-1}$$
, если $A = \begin{pmatrix} 2 & 3 & 0 \\ -1 & 5 & 1 \\ 3 & 0 & 0 \end{pmatrix}$.

Задача 11. При каких значениях λ существует A^{-1} для матрицы

$$A = \begin{pmatrix} 1 & \lambda - 5 & 2 \\ 0 & 1 & 4 \\ \lambda & 0 & 0 \end{pmatrix}?$$

Задача 12. Решить уравнение:

1)
$$AX = B$$
, если $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 5 & 5 & 2 & 19 \\ 11 & 15 & 4 & 47 \end{pmatrix}$;

2)
$$AXB = C$$
, если $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 4 & 5 \\ 6 & 7 \end{pmatrix}$, $C = \begin{pmatrix} 14 & 17 \\ 34 & 41 \end{pmatrix}$.

Задача 13. Решить невырожденную систему линейных уравнений $\begin{cases}
-x + 2y = 8, \\
3x + y + z = 2,
\end{cases}$

1) методом Крамера; 2) матричным методом.

ВЕКТОРЫ

Теоретические упражнения.

- **1.** Чему равны скалярные произведения $\overrightarrow{b} \cdot \overrightarrow{a}$ и $\overrightarrow{b} \cdot \left(3\overrightarrow{a} 2\overrightarrow{b} \right)$, если известно, что $\overrightarrow{a} \cdot \overrightarrow{b} = -3$?
- **2.** Чему равны векторные произведения $\overrightarrow{b} \times \overrightarrow{a}$ и $\overrightarrow{b} \times \left(3\overrightarrow{a} 2\overrightarrow{b}\right)$, если известно, что $\overrightarrow{a} \times \overrightarrow{b} = 3\overrightarrow{j} - 2\overrightarrow{k}$?

 - **3.** Чему равно смешанное произведение $\overrightarrow{k} \times \overrightarrow{j} \cdot \overrightarrow{i}$? **4.** Чему равно смешанное произведение $\overrightarrow{a} \times \overrightarrow{b} \cdot \overrightarrow{c}$, если $\overrightarrow{b} \times \overrightarrow{c} \cdot \overrightarrow{a} = 4$?

5. Чему равно смешанное произведение $\overrightarrow{a} \times \overrightarrow{b} \cdot \overrightarrow{c}$, если $\overrightarrow{b} \times \overrightarrow{a} \cdot \overrightarrow{c} = 5$? $3a\partial a u$.

Задача 1. Даны векторы своими координатами в базисе $(\overrightarrow{i}; \overrightarrow{j}; \overrightarrow{k})$: $\overrightarrow{a} = \{3; -2; -1\}; \overrightarrow{b} = \{-1; 1; -2\}; \overrightarrow{c} = \{2; 1; -3\}; \overrightarrow{d} = \{11; -6; 5\}$. Найти координаты вектора $\overrightarrow{d} = \{11; -6; 5\}$ в базисе $(\overrightarrow{a}; \overrightarrow{b}; \overrightarrow{c})$.

Задача 2. Даны точки: $A(1;2;4),\ B(3;1;5),\ C(2;0;2),\ D(1;4;5).$ Найти:

- а) проекцию пр $_{\overrightarrow{AC}}\left(\overrightarrow{AB}-2\overrightarrow{BD}\right)$;
- б) направляющие косинусы вектора \overrightarrow{AC} .

Задача 3. Вершины треугольника ABC находятся в точках A(0;2;6), B(3;4;5), C(-3;2;2). Найти:

- а) внешний угол треугольника при вершине C;
- б) длину высоты BH.

Задача 4. Найти высоту SH пирамиды с вершинами $A(1;-1;2),\ B(3;6;0),\ C(3;0;2),\ S(4;5;1).$

 $\overrightarrow{b} = \overrightarrow{\alpha} \overrightarrow{i} + 6 \overrightarrow{j} + 9 \overrightarrow{k}$: а) ортогональны; б) коллинеарны?

Задача 6. При каких значениях α треугольник ABC будет равнобедренным, если $\overrightarrow{AB} = 4\overrightarrow{i} + 3\overrightarrow{j} - 12\overrightarrow{k}$, $\overrightarrow{AC} = \alpha \overrightarrow{i}$?

Задача 7. Векторы \overrightarrow{a} и \overrightarrow{b} образуют угол $\varphi = \frac{\pi}{6}$, $|\overrightarrow{a}| = 2$, $|\overrightarrow{b}| = \sqrt{3}$. Пусть $\overrightarrow{p} = \overrightarrow{a} - 2\overrightarrow{b}$ и $\overrightarrow{q} = \overrightarrow{a} + \overrightarrow{b}$. Найти:

- 1) скалярное произведение $\overrightarrow{a} \cdot \overrightarrow{b}$;
- 2) скалярное произведение $\overrightarrow{p} \cdot \overrightarrow{q}$;
- 3) угол между векторами \overrightarrow{p} и \overrightarrow{q} ;
- 4) площадь параллелограмма, построенного на векторах \overrightarrow{p} и \overrightarrow{q} ;
- 5) при каких значениях α векторы $\overrightarrow{m} = \overrightarrow{a} \alpha \overrightarrow{b}$ и $\overrightarrow{n} = 2\overrightarrow{a} + \alpha \overrightarrow{b}$ ортогональны;
- 6) при каких значениях α векторы $\overrightarrow{u} = 8\overrightarrow{a} \alpha \overrightarrow{b}$ и $\overrightarrow{v} = 2\alpha \overrightarrow{a} \overrightarrow{b}$ коллинеарны.

Задача 8. Какой угол образуют единичные векторы \overrightarrow{m} и \overrightarrow{n} , если векторы $\overrightarrow{p} = \overrightarrow{m} + 3\overrightarrow{n}$ и $\overrightarrow{q} = 2\overrightarrow{m} - 7\overrightarrow{n}$ ортогональны?

Задача 9. Найти вектор \overrightarrow{x} , удовлетворяющий условиям:

- 1) $\overrightarrow{x}||\overrightarrow{a} = \{12; -16; -15\}$ и образует острый угол с осью $Ox, |\overrightarrow{x}| = 50;$
- 2) $\overrightarrow{x} \perp \overrightarrow{a} = \{3; 1; -1\}, \ \overrightarrow{x} \perp \overrightarrow{b} = \{0; 4; 2\}, \ |\overrightarrow{x}| = \sqrt{54}.$

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ

Задачи.

Задача 1. Даны координаты вершин треугольника: A(3;-2), B(3;4), C(-6;2). Найти уравнения высоты CH, медианы AM и угол между ними.

Задача 2. Даны координаты вершин треугольника: A(2;-2), B(2;4), C(-6;2). Найти координаты точки пересечения высот треугольника.

Задача 3. Найти координаты точки, симметричной точке (4;1) относительно прямой 4x + 3y + 6 = 0.

Задача 4. Даны уравнения оснований трапеции: 12x + 5y - 26 = 0 и 12x + 5y - 52 = 0. Найти длину ее высоты.

Задача 5. Даны уравнения одной из сторон ромба x-3y+10=0 и одной из его диагоналей x+4y-4=0. Диагонали ромба пересекаются в точке K(0;1). Найти уравнения остальных сторон ромба.

Задача 6. В треугольнике ABC известны уравнения стороны AB: 4x+y-12=0 и высот AH: 5x-4y-15=0 и BK: 2x+2y-9=0. Найти уравнения двух других сторон и третьей высоты.

Задача 7. Известны уравнения двух сторон прямоугольника 5x-4y-15=0, 4x+5y-9=0 и координаты одной из его вершин (-2;2). Найти уравнения двух других сторон.

Задача 8. Построить линии:

1)
$$x^2 + 2y^2 = 10$$
; 2) $4y^2 - 9x^2 = 1$; 3) $2y^2 - 6x - 20 = 0$.

Задача 9. Составить каноническое уравнение и построить эллипс, центр симметрии которого совпадает с началом координат, а фокусы лежат на оси Ox, если его большая полуось a = 3, а точка M(-2; 5/3) принадлежит эллипсу.

Задача 10. Составить каноническое уравнение и построить гиперболу, центр симметрии которой совпадает с началом координат, а фокусы лежат на оси Ox, если уравнения ее асимптот $y=\pm \frac{3x}{4}$, а один из фокусов имеет координаты (-10;0).

Задача 11. Составить уравнение линии, каждая точка которой равноудалена от точки A(0;2) и от прямой y-4=0.

Задача 12. Составить уравнение линии, расстояния каждой точки которой от точки A(4;0) и от прямой 5x+8=0 относятся как 3:4.

Задача 13. Привести к каноническому виду уравнение кривой 2-го порядка, сделать рисунок:

1)
$$3x^2 + 2y^2 + 12x - 20y = 10$$
; 2) $3x^2 - 2y^2 - 6x - 20y = 0$; 3) $2y^2 - 6x - 20y = 0$.

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ

 $3a \partial a uu$.

Задача 1. Две грани куба лежат на плоскостях 6x+10y-2z+1=0 и 3x+5y-z-2=0. Найти объем куба.

Задача 2. Найти уравнение плоскости, параллельной плоскости 3x + 5y - z - 2 = 0 и отстоящей от нее на расстояние 2.

Задача 3. Проверить, лежат ли на одной прямой точки $A(3;0;1),\ B(0;2;4),\ C(1;4/3;3).$

Задача 4. При каком значении m прямая $\frac{x+1}{3} = \frac{y-2}{m} = \frac{z+3}{-2}$ параллельна плоскости x-3y+6z+7=0?

$$3$$
адача 5. Найти угол между прямыми: 1) $\frac{x-1}{2}=\frac{y+3}{-5}=\frac{z-4}{0}$ и $\frac{x+3}{-12}=\frac{y-1}{3}=\frac{z}{4};$

2)
$$\begin{cases} x = 3t - 2, \\ y = 0, \\ z = 3 - t \end{cases}$$
 If
$$\begin{cases} x = 2t + 1, \\ y = 0, \\ z = t - 4. \end{cases}$$

ча 6. Написать уравнение плоскости:

- а) если точки $M_1(3;4;2)$ и $M_2(-1;6;0)$ симметричны относительно нее;
- б) проходящей через точки $M_1(3;4;2)$ и $M_2(-1;6;0)$ параллельно оси Oy;
- в) проходящей через точку M(3;4;2) и ось Oy;
- г) проходящей через точку M(1;0;2) и перпендикулярной плоскостям 3x + 5y - z - 2 = 0 и x + z - 2 = 0;
- д) проходящей через точку M(3;1;2) и прямую $\begin{cases} x=3t-2,\\ y=0,\\ z=3-t \end{cases}$
- е) проходящей через точку M(3;4;2) и параллельной прямым $\frac{x-12}{4}=\frac{y-9}{3}=z-1$ и $\frac{x+2}{3}=\frac{y+2}{2}=z+3;$

 $\frac{4}{3}$ ж) проходящей через прямые $\frac{x-12}{4} = \frac{y-9}{3} = z-1$ и $\frac{x+2}{3} = \frac{y+2}{2} = z+3$. Задача 7. Написать канонические уравнения прямой $\begin{cases} 5x+y+z=0, \\ 2x+3y-2z+5=0. \end{cases}$

Задача 8. Написать уравнения прямой, проходящей через точку M(-3;2;2)параллельно плоскостям 5x + y + z = 0 и 2x + 3y - 2z + 5 = 0.

Задача 9. Найти точку, симметричную точке A(1;3;-4) относительно плоскости 3x + y - 2z = 0.

Задача 10. Найти проекцию точки A(1;4;-3) на плоскость x-y-2z+5=0.

1)
$$4x^2+y^2+z^2=4$$
; 2) $y=x^2+z^2$; 3) $x^2+z^2=y^2$; 4) $x^2+z^2-y^2=4$

Задача 11. Назвать и построить поверхность:
1)
$$4x^2+y^2+z^2=4;$$
 2) $y=x^2+z^2;$ 3) $x^2+z^2=y^2;$ 4) $x^2+z^2-y^2=4;$ 5) $x^2+z^2=4z;$ 6) $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1;$ 7) $\frac{x^2}{a^2}+\frac{y^2}{b}=1;$ 8) $\frac{x^2}{a^2}+\frac{y}{b^2}=1.$

ЛИНЕЙНЫЕ ПРОСТРАНСТВА. ЛИНЕЙНЫЕ ОПЕРАТОРЫ

 $3a \partial a uu$.

Задача 1. Даны векторы $\overline{x_1} = (1; 2; 0; 6), \overline{x_2} = (2; 0; 3; 1), \overline{x_3} = (3; 2; 3; 7), \overline{x_4} =$ (7;2;9;9) в \mathbb{R}^4 . Проверить, являются ли они линейно зависимыми.

Задача 2. Даны векторы $\overline{x_1} = (1; 1; 1; 1; 1; 7), \overline{x_2} = (3; 2; 1; 1; -3; -2), \overline{x_3} =$ $(0;1;2;2;6;23), \overline{x_4}=(5;4;3;3;-1;12)$ в \mathbb{R}^6 . Проверить, являются ли они линейно зависимыми.

Задача 3. Даны векторы $\overline{x_1} = (1; 2; 0; 6), \overline{x_2} = (2; 0; 3; 1), \overline{x_3} = (3; 2; 3; 7), \overline{x_4} =$ (7;2;9;9) в \mathbb{R}^4 . Определить, является ли вектор $\overline{x_4}$ элементом линейной оболочки $<\overline{x_1}, \ \overline{x_2}, \ \overline{x_3}>.$

Задача 4. Даны векторы $\overline{x_1} = (1; 1; 1; 1; 1; 7), \ \overline{x_2} = (3; 2; 1; 1; -3; -2), \ \overline{x_3} = (0; 1; 2; 2; 6; 23), \ \overline{x_4} = (5; 4; 3; 3; -1; 12)$ в \mathbb{R}^6 . Найти размерность и базис линейной оболочки $< \overline{x_1}, \ \overline{x_2}, \ \overline{x_3}, \ \overline{x_4} >$ этих векторов; определить координаты векторов $\overline{x_1}, \ \overline{x_2}, \ \overline{x_3}, \ \overline{x_4}$ в указанном базисе.

Задача 5. Даны векторы $\overline{x_1}=(1;1;1), \ \overline{x_2}=(1;2;3), \ \overline{x_3}=(2;1;0), \ \overline{x_4}=(3;4;5).$ Доказать равенство линейных оболочек: $<\overline{x_1}, \ \overline{x_2}>=<\overline{x_3}, \ \overline{x_4}>.$

Задача 6. Найти матрицы перехода от базиса $\{x^2; x; 1\}$ к базису $\{(x-2)^2; x-2; 1\}$ и от базиса $\{(x-2)^2; x-2; 1\}$ к базису $\{x^2; x; 1\}$.

Задача 7. Дана матрица $T=\begin{pmatrix}3&-2\\1&2\end{pmatrix}$ перехода от базиса $\{\overline{e_1};\ \overline{e_2}\}$ к базису $\{\overline{e_1'};\ \overline{e_2'}\}$. Найти координаты вектора $\overline{a}=4\overline{e_1'}+\overline{e_2'}$ в базисе $\{\overline{e_1};\ \overline{e_2}\}$ и координаты вектора $\overline{b}=5\overline{e_1}+7\overline{e_2}$ в базисе $\{\overline{e_1'};\ \overline{e_2'}\}$.

Задача 8. Найти матрицу перехода от базиса $\{\overline{a_1}; \overline{a_2}\}$ к базису $\{\overline{b_1}; \overline{b_2}\}$ по указанным разложениям этих векторов в базисе $\{\overline{e_1}; \overline{e_2}\}$: $\overline{a_1} = \overline{e_1} + 4\overline{e_2}$; $\overline{a_2} = 3\overline{e_1} + 5\overline{e_2}$; $\overline{b_1} = 7\overline{e_1} + \overline{e_2}$; $\overline{b_2} = \overline{e_2}$.

Задача 9. Найти матрицу перехода от базиса $\{\overline{e_1}; \overline{e_2}; \overline{e_3}\}$ к базису $\{\overline{a}; \overline{b}; \overline{c}\}$ и от базиса $\{\overline{a}; \overline{b}; \overline{c}\}$ к базису $\{\overline{e_1}; \overline{e_2}; \overline{e_3}\}$, если $\overline{a} = 2\overline{e_1} + 2\overline{e_3}; \overline{b} = 3\overline{e_3} - \overline{e_2}; \overline{c} = 3\overline{e_1} + \overline{e_3}$.

Задача 10. Записать матрицы линейных операторов $f(\overline{x}) = \overline{x} \times \overline{a}$ и $g(\overline{x}) = \overline{a} \times \overline{x}$, где $\overrightarrow{a} = 2\overrightarrow{i} + \overrightarrow{j} - 3\overrightarrow{k}$.

Задача 11. Пусть $\overline{x} = (x_1; x_2; x_3)^T$, $f(\overline{x}) = (7x_1 + 4x_3; 4x_2 - 9x_3; 3x_1 + x_2)$. Найти матрицы операторов f и f^2 и явный вид оператора f^2 .

Задача 12. Пусть $\overline{x} = (x_1; x_2; x_3)^T$, $f(\overline{x}) = (x_2 - 6x_3; 3x_1 + 7x_3; x_1 + x_2 - x_3)$, $g(\overline{x}) = (x_1 - x_2 + x_3; 3x_2 - 7x_3; -x_3)$. Найти матрицы операторов f и g, а также матрицы и явный вид операторов 2f + g, $(2f + g)^2$, fg - gf.

Задача 13. Даны два базиса $\{\overline{e_1}; \ \overline{e_2}\}$ и $\{\overline{e'_1}; \ \overline{e'_2}\}$ линейного пространства и матрица $A_f = \begin{pmatrix} 3 & -2 \\ 1 & 2 \end{pmatrix}$ линейного оператора в базисе $\{\overline{e_1}; \ \overline{e_2}\}$. Найти матрицу этого линейного оператора в базисе $\{\overline{e'_1}; \ \overline{e'_2}\}$, если $\overline{e'_1} = \overline{e_1} + \overline{e_2}; \ \overline{e'_2} = \overline{e_1} - \overline{e_2}$.

Задача 14. Даны два базиса $\{\overline{e_1}; \overline{e_2}; \overline{e_3}\}$ и $\{\overline{e_1'}; \overline{e_2'}; \overline{e_3'}\}$ линейного пространства

и матрица $A_f=\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$ линейного оператора в базисе $\{\overline{e_1};\ \overline{e_2};\ \overline{e_3}\}.$ Найти

матрицу этого линейного оператора в базисе $\{\overline{e_1'}; \ \overline{e_2'}; \ \overline{e_3'}\}$, если $\overline{e_1'} = 2\overline{e_1} - \overline{e_2} + 2\overline{e_3}; \ \overline{e_2'} = -2\overline{e_1} + \overline{e_2} - \overline{e_3}; \ \overline{e_3'} = -5\overline{e_1} + 3\overline{e_2} + \overline{e_3}.$

Задача 15. Найти собственные значения и собственные векторы линейного оператора f, имеющего в некотором базисе матрицу:

a)
$$A = \begin{pmatrix} 1 & 4 \\ 3 & 1 \end{pmatrix}$$
; 6) $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$; B) $A = \begin{pmatrix} 4 & -1 & -2 \\ 2 & 1 & -2 \\ 1 & -1 & 1 \end{pmatrix}$.

Задача 16. Проверить, что данную матрицу нельзя привести к диагональному виду:

a)
$$A = \begin{pmatrix} 3 & 2 \\ 0 & 3 \end{pmatrix}$$
; 6) $A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix}$.

 ${f 3a}$ дача 17. В базисе $\{\overline{e_1}; \overline{e_2}\}$ линейный оператор f задается матрицей $A_f=$ $\begin{pmatrix} 0 & 2 \\ 3 & 1 \end{pmatrix}$. Найти базис, в котором матрица оператора f примет диагональный вид.

Задача 18. Записать канонический вид квадратичной формы:

a)
$$q(x;y) = x^2 + y^2 + 4xy;$$

6)
$$q(x;y) = 9x^2 + 6y^2 - 4xy;$$

B)
$$q(x;y) = 14x^2 + 21y^2 + 24xy$$
;

$$q(x;y;z) = x^2 + y^2 + z^2 + 4xy + 4xz + 4yz;$$

д)
$$q(x; y; z) = x^2 + y^2 + 5z^2 - 6xy + 6xz + 6yz;$$

e)
$$q(x; y; z) = 7x^2 + 6y^2 + 5z^2 - 4xy - 4yz$$
.

Задача 19. Установить с помощью критерия Сильвестра, является ли данная квадратичная форма знакоопределенной:

a)
$$q(x;y) = 4x^2 + 3y^2 + 2xy;$$

$$6) \ q(x;y) = 9x^2 + 6y^2 - 4xy;$$

B)
$$q(x;y) = 14x^2 + 21y^2 + 24xy;$$

$$\Gamma(x;y;z) = x^2 + y^2 + z^2 + 4xy + 4xz + 4yz;$$

д)
$$q(x; y; z) = x^2 + y^2 + 5z^2 - 6xy + 6xz + 6yz;$$

e)
$$q(x; y; z) = xy - 4yz + 6xz$$
.

ПРЕДЕЛЫ И НЕПРЕРЫВНОСТЬ

Теоретические упражнения.

1. Доказать по определению, что: 1)
$$\lim_{x\to 0} \frac{1}{x} = \infty$$
; 2) $\lim_{x\to 1} \frac{1}{2x+1} = \frac{1}{3}$.
2. Какие значения может принимать предел $\lim_{x\to a} \frac{(x-a)^n P(x)}{(x-a)^m Q(x)}$, где $P(a) \neq 0$,

2. Какие значения может принимать предел
$$\lim_{x \to a} \frac{(x-a)^n P(x)}{(x-a)^m Q(x)}$$
, где $P(a) \neq 0$ $Q(a) \neq 0$?

3. Пусть
$$\lim_{x \to x_0} f(x) \cdot g(x) = 4$$
, $\lim_{x \to x_0} f(x) = 0$. Чему равен $\lim_{x \to x_0} g(x)$?

4. Пусть
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 4$$
, $\lim_{x \to x_0} f(x) = 0$. Чему равен $\lim_{x \to x_0} g(x)$?

5. Изобразить графически функцию y = f(x), удовлетворяющую условиям:

1)
$$f(2) = 3$$
, $\lim_{x \to 2} f(x) = 2$, $\lim_{x \to +\infty} f(x) = -\infty$;

1)
$$f(2) = 3$$
, $\lim_{x \to 2} f(x) = 2$, $\lim_{x \to +\infty} f(x) = -\infty$;
2) $f(1) = 3$, $\lim_{x \to 1-0} f(x) = 1$, $\lim_{x \to 1+0} f(x) = 2$, $\lim_{x \to \pm \infty} f(x) = 2$.

Пусть x_0 — точка разрыва функции y = f(x). а) Следует ли отсюда, что точка x_0 не входит в область определения этой функции? б) Следует ли отсюда, что не существует $\lim_{x\to x_0} f(x)$? в) Следует ли отсюда, что $\lim_{x_0\to 0} f(x) \neq \lim_{x_0\to 0} f(x)$? Ответ обосновать.

7. Функция f(x) непрерывна на отрезке [a;b], причем $f(a) \cdot f(b) < 0$. Следует ли отсюда, что уравнение f(x) = 0: а) имеет корень на [a; b]; б) имеет единственный корень на [a;b]? Ответ обосновать.

8. Используя свойства непрерывных функций, показать, что уравнение $x^5-3x=1$ имеет по крайней мере один корень, заключенный между 1 и 2. $3a\partial a uu$.

Задача 1. Найти односторонние пределы:

a)
$$\lim_{x \to \pm 0} \frac{3^x + 5}{x(x-1)};$$
 6) $\lim_{x \to 2 \pm 0} 2^{\frac{1}{x-2}};$ b) $\lim_{x \to \pm 0} (x+2)e^{1/x};$ г) $\lim_{x \to 1 \pm 0} \frac{\ln x - 2}{1-x}.$

Задача 2. Вычислить пределы:

a)
$$\lim_{x \to +\infty} (3x+1)2^{x/2};$$
 6) $\lim_{x \to \pm \infty} \left(3+\frac{1}{x}\right)^x;$ B) $\lim_{x \to +\infty} 3^{-2x^2+x};$ г) $\lim_{x \to 0} \frac{\sin x - \operatorname{tg} x}{x^3};$ д) $\lim_{x \to 0} \left(\frac{1}{x}\operatorname{ctg} 2x - \frac{1}{x\sin 2x}\right);$ e) $\lim_{x \to \pm \infty} \left(\sqrt{x^2+3x+6}-x\right);$ ж) $\lim_{x \to 0} \left(1-2x^2\right)^{(x+1)/x^2};$ 3) $\lim_{x \to \infty} \left(\frac{3-2x}{4-2x}\right)^{x-5};$ и) $\lim_{x \to 0} \left(\frac{3-2x}{3+4x}\right)^{1/x};$ к) $\lim_{x \to 0} (\cos x)^{\frac{1}{2x^2+3x^3}};$ л) $\lim_{x \to -2} \left(3+5x+2x^2\right)^{1/(x+2)};$ м) $\lim_{x \to -1} \left(5+3x-x^2\right)^{3/(1-x^2)};$ н) $\lim_{x \to 0} \frac{\ln x - \ln 3}{x-3};$ о) $\lim_{x \to \infty} x \left(e^{1/x}-1\right);$ п) $\lim_{x \to 0} \frac{\ln (1+2\sin^2 x)}{\sqrt[3]{1+3x^2}-1}.$

Задача 3. Найти $\lim_{x \to \infty} \left(\frac{x^2 + 1}{x + 1} - ax - b \right)$ в зависимости от a и b.

Задача 4. При каких значениях a и b предел $A = \lim_{x \to \infty} \frac{3x^2 - ax^4}{bx^4 + 6x^2 + 1}$ равен: а) A = 0; б) A = 3; в) $A = \infty$?

Задача 5. При каких значениях a и b предел $A = \lim_{x \to \infty} \frac{ax^4 + bx^2 + 2x + 3}{4x^2 + 5x + 6}$ равен: a) A = 0; б) A = 3; в) $A = \infty$?

Задача 6. При каких значениях a и b предел $A = \lim_{x \to 2} \frac{(x-2)(x-a)}{x-b}$ равен:

a) A = 0; 6) A = 3; B) $A = \infty$?

Задача 7. Вычислить предел $\lim_{x \to \pm \infty} \frac{3^x + 1}{3^x - 1}$.

Задача 8. Вычислить пределы $\lim_{x\to 0} f(x)$, $\lim_{x\to \infty} f(x)$, если $f(x) = \frac{2x+3\cos x-3}{3x-2\sin x}$.

Задача 9. Выяснить, существует ли предел:

1)
$$\lim_{x \to 1} f(x)$$
, если $f(x) = \begin{cases} x & \text{при } x < 1, \\ \frac{\sqrt{x} - 1}{x^2 - 3x + 2} & \text{при } x \geqslant 1; \end{cases}$
2) $\lim_{x \to 2} f(x)$, если $f(x) = \begin{cases} \frac{3x^2 - 5x - 2}{\sqrt{2 + x} - x} & \text{при } x \geqslant 2, \\ \frac{1}{x - 2} & \text{при } x \leqslant 2. \end{cases}$

Задача 10. Выяснить, существует ли предел $\lim_{x\to 0} f(x)$, если:

1)
$$f(x) = \begin{cases} \frac{e^x - 1}{2x} & \text{при } x > 0, \\ \frac{\sqrt{1 + x} - 1}{\sin x} & \text{при } x < 0; \end{cases}$$
 2) $f(x) = \begin{cases} \frac{e^{x^2} - 1}{x \sin 2x} & \text{при } x \neq 0, \\ 2 & \text{при } x = 0. \end{cases}$

Задача 11. Исследовать на непрерывность и построить график функции:

1)
$$f(x) = \begin{cases} x+3 & \text{при } x < -1, \\ 2x^2 & \text{при } -1 < x < 1, \\ 2/x & \text{при } x \geqslant 1; \end{cases}$$
 2) $f(x) = \begin{cases} \frac{1}{1-x} & \text{при } x < 1, \\ x & \text{при } 1 \leqslant x < 2, \\ 2 & \text{при } x \geqslant 2; \end{cases}$

Задача 12. Найти точки разрыва функции f(x) и определить их характер; выяснить поведение функции при $x \to \infty$ и построить схематически график:

1)
$$f(x) = 3^{1/(x-2)^2}$$
; 2) $f(x) = \frac{1}{2^x - 1}$; 3) $f(x) = \frac{1}{x^2 - 4x + 3}$;
4) $f(x) = \frac{x - 2}{2x^2 - 3x - 2}$; 5) $f(x) = \frac{x^2 - 3x + 2}{x^2 - 1}$.

4)
$$f(x) = \frac{x-2}{2x^2 - 3x - 2}$$
; 5) $f(x) = \frac{x^2 - 3x + 2}{x^2 - 1}$.

Задача 13. (Б+) Исследовать на непрерывность функцию; указать характер графика этой функции в окрестности точки разрыва:

1)
$$f(x) = \frac{\sin x}{x}$$
; 2) $f(x) = \frac{x}{\sin x}$; 3) $f(x) = \frac{\cos x}{x}$; 4) $f(x) = \arctan \frac{1}{x-2}$; 5) $f(x) = \begin{cases} \sin \frac{\pi}{2x} & \text{при } x \neq 0, \\ 1 & \text{при } x = 0. \end{cases}$

Задача 14. Будет ли функция
$$f(x) = \begin{cases} \frac{\sqrt{x+1}-1}{\sqrt{x}} & \text{при } x>0, \\ 0 & \text{при } x\leqslant 0; \end{cases}$$
 в точке $x=0$?

При каком значении a функция $f(x) = \begin{cases} e^x & \text{при } x < 0, \\ a + x & \text{при } x \geqslant 0; \end{cases}$ Задача 15. непрерывна? Построить график этой функции.

ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ

Теоретические упражнения.

- (Б+) Показать, что если f(x) имеет производную при x=a, то $\lim_{x \to a} \frac{xf(a) - af(x)}{x - a} = f(a) + af'(a).$
- **2.** Показать, что функция $y = \sqrt[3]{x^2}$ непрерывна, но не дифференцируема в точке $x_0 = 0$.

- Пусть u = u(x) и v = v(x) дифференцируемые функции. Доказать формулу: $(u^v)' = v \cdot u^{v-1} \cdot u' + u^v \cdot \ln u \cdot v'$.
- **4.** Построить график какой-либо функции y = f(x), у которой в окрестности точки x_0 : a) $dy = \Delta y$; б) $dy > \Delta y$; в) dy = 0.
- **5.** Привести пример графика функции y = f(x) в окрестности точки x_0 , если x_0 не является точкой экстремума, $f'(x_0) = \infty$, $f''(x_0 - 0) > 0$, $f''(x_0 + 0) < 0$.
- **6.** Привести пример графика функции y = f(x) на интервале (a; b), если f(x) > 0, f'(x) > 0, f''(x) > 0 при $x \in (a; b)$.
- 7. Что можно сказать о существовании наклонных и горизонтальных асимптот графика функции y = f(x), если:

1)
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \infty; \quad \lim_{x \to -\infty} \frac{f(x)}{x} = 0; \qquad 2) \lim_{x \to \infty} \frac{f(x)}{x} = 0; \quad \lim_{x \to \infty} f(x) = 0;$$

- 3) $\lim_{x\to\infty}\frac{f(x)}{x}=-1;\quad \lim_{x\to\infty}\left(f(x)+x\right)=\infty?$ 8. Точка x_0 является точкой разрыва функции y=f(x). Обязательно ли прямая $x = x_0$ является вертикальной асимптотой графика функции y = f(x)? Ответ обосновать.
- Привести пример графика функции y = f(x), если прямая y = x является асимптотой графика при $x \to +\infty$ и график является выпуклым вверх на интервале $(0; +\infty)$.
- **10.** Привести пример графика непрерывной функции y = f(x), для которой $\lim_{x\to +0}f(x)=-\infty,\ x_0=5$ является точкой локального максимума и прямая y=0является горизонтальной асимптотой при $x \to +\infty$.
- Является ли точка x_0 точкой экстремума функции $y = f(x), f(x_0) =$ $f'(x_0) = f''(x_0) = 0, \ f'''(x_0) > 0$?
- 12. Является ли точка x_0 точкой экстремума функции $y = f(x), f(x_0) =$ $f'(x_0) = 0, \ f''(x_0) > 0$?
 - **13.** Будет ли справедлива теорема Ферма для отрезка [a;b]?
 - 14. Показать, что все условия теоремы Ролля существенны. $3a \partial a uu$.

Задача 1. Найти производную по определению:

1)
$$y = 2x^2 - 3x$$
; 2) $y = \sqrt{2x+1}$; 3) $y = \frac{3}{x-1}$; 4) $y = \cos 2x$.

Задача 2. (Б+) Показать, что функция $f(x) = \begin{cases} x \sin \frac{1}{x}, & \text{при } x \neq 0, \\ 0 & \text{при } x = 0 \end{cases}$ явля-

ется непрерывной при всех x, но не является дифференцируемой при x=0.

Задача 3. Найти y', y'' функции $y = \ln\left(\frac{2x-1}{2} + \sqrt{x^2-x+1}\right) + \ln 2.$

Задача 4. Найти y', если функции задана уравнением:

1)
$$x^3+y^3=\mathrm{e}^{xy};$$
 2) $y^3-y^2+2y=\cos\frac{x}{y};$ 3) $\ln(x-2y)=\frac{x}{x-2y}.$ Задача 5. Найти y',y'' , если функции задана уравнением $x^3y^2+5xy+4=0.$

Задача 6. Найти
$$y'$$
, если: 1) $y=(x^2-3x)^{\ln 2x};$ 2) $y=x^{\frac{x}{x-1}}.$ Задача 7. Найти $\frac{d^2y}{dx^2}$, если: 1) $\begin{cases} x=1-t+t^2, \\ y=1+t^3; \end{cases}$ 2) $\begin{cases} x=\operatorname{arctg} t, \\ y=t^2/2; \end{cases}$

Задача 8. Определить, под каким углом кривая $y = \frac{x-1}{x^2+1}$ пересекает ось абсцисс.

Задача 9. Доказать, что касательные к линии $y = \frac{1+3x^2}{3+x^2}$, проведенные в точках, для которых y = 1, пересекаются в начале координат

Задача 10. Провести касательную к гиперболе $y = \frac{x+9}{x+5}$ так, чтобы она прошла через начало координат.

 ${f 3agaya}\;{f 11.}\;\;({f B}+)\;{f H}$ айти углы, под которыми пересекаются линии

$$x^2 - 9x + y^2 = 0$$
 и $\begin{cases} x = 3t^2, \\ y = 3t - t^3. \end{cases}$

Задача 12. (Б+) При каком значении a функция f(x) будет непрерывна? Найти f'(x), если:

1)
$$f(x) = \begin{cases} \frac{\sqrt{x+1}-1}{\sqrt{x}} & \text{при } x > 0, \\ a & \text{при } x \leq 0; \end{cases}$$
 2) $f(x) = \begin{cases} \frac{x}{4+e^{1/x}} & \text{при } x \neq 0, \\ a & \text{при } x = 0; \end{cases}$

Задача 13. Найти наибольшее и наименьшее значения функции:

- а) $y = x^2 \ln x$ на отрезке [1; e];
- б) $y = \sqrt[3]{x+1} \sqrt[3]{x-1}$ на отрезке [0;1]; в) $y = 4 x \frac{1}{x^2}$ на отрезке [1;4].

Задача 14. Найти точки экстремума функции : а) $y = \sqrt{2x - x^2}$; б) $y = \sqrt[3]{x^2} - x$; в) $y = x \ln^2 x$; г) $y = x^2 e^{-x}$; д) $y = x - \arctan x$.

6)
$$y = \sqrt[3]{x^2} - x$$
;

$$B) y = x \ln^2 x;$$

$$y = x^2 e^{-x};$$

$$y = x - \operatorname{arctg} x$$

Задача 15. Найти интервалы монотонности функции: а) $y = \frac{x^2 - 6x - 1}{x - 4}$;

б)
$$y = \frac{1}{\sqrt{2x - x^2}};$$
 в) $y = \sqrt[3]{x + 1} - \sqrt[3]{x - 1};$ г) $y = \frac{e^{-x}}{x + 1};$ д) $y = \frac{\ln^2 x}{x}.$

Задача 16. Найти интервалы выпуклости и точки перегиба графика функ-

a)
$$y = x^5 - 10x^2 + 3x$$
; 6) $y = \frac{x^3}{12 + x^2}$; b) $y = e^{x(1-x)}$; $y = \frac{\ln x}{\sqrt{x}}$.

Задача 17. Найти асимптоты графика функции:
a)
$$y = \frac{1}{x^2 + 3x - 4}$$
; б) $y = \frac{x^3}{(x+1)^2}$; в) $y = \frac{\ln(2x+1)}{x+1}$; г) $y = e^{1/x} - 1$.

Задача 18. Исследовать функцию и построить ее график: a)
$$y = (x-2)(x+1)^2$$
; б) $y = \frac{x^2+x-6}{x+2}$; в) $y = \frac{x+3}{(x+2)^2}$;

г)
$$y = \frac{e^{-x}}{1-x}$$
; д) $y = x^2 \ln x$; е) $y = x^2 e^{-x}$; ж) $y = \frac{x}{2} + 2 \arctan x$.

3)
$$\lim_{x \to 3} (x^2 - x - 6)^{\sqrt{x+1}-2}$$
; 4) $\lim_{x \to 3+0} \left(\frac{x-3}{x}\right)^{x^2-9}$.

Задача 19. Найти пределы: 1) $\lim_{x\to 0} (\mathrm{e}^x + 2x)^{1/x}$; 2) $\lim_{x\to +\infty} (\mathrm{e}^x + 2x)^{1/x}$; 3) $\lim_{x\to 3} \left(x^2 - x - 6\right)^{\sqrt{x+1}-2}$; 4) $\lim_{x\to 3+0} \left(\frac{x-3}{x}\right)^{x^2-9}$. Задача 20. (Б+) Найти предел $\lim_{x\to 0} \frac{x^2 \sin\frac{1}{x}}{\sin x}$ и показать, что он не может быть вычислен по правилу Лопиталя вычислен по правилу Лопиталя.