Article Carpenter et al. (2012) 1		r lower upper n 0.46 0.01 0.76 19	
Carpenter et al. (2012) 2 Carpenter et al. (2012) 3		0.56 0.14 0.81 19 0.38 -0.09 0.71 19	9
Carpenter et al. (2012) 4 Carpenter et al. (2012) 5		0.48 0.03 0.77 19 0.03 -0.43 0.48 19	
Carpenter et al. (2012) 6 Carpenter et al. (2012) 7	-	0.18 -0.30 0.59 19 0.47 0.02 0.76 19	
Carpenter et al. (2012) 8 Carpenter et al. (2012) 9		0.40 -0.07 0.72 19 0.45 -0.01 0.75 19	
Carpenter et al. (2012) 10 Carpenter et al. (2012) 11	 	0.46 0.01 0.76 19 0.37 -0.10 0.71 19	
Carpenter et al. (2012) 12 Carpenter et al. (2012) 13		0.36 -0.11 0.70 19 0.13 -0.34 0.55 19	
Carpenter et al. (2012) 14 Carpenter et al. (2012) 15		0.13 -0.34 0.55 19 0.01 -0.45 0.46 19	
Carpenter et al. (2012) 16 Carpenter et al. (2012) 17	-	0.01 -0.45 0.46 19 0.43 -0.03 0.74 19	
Carpenter et al. (2012) 18 Carpenter et al. (2012) 19	-	0.52 0.09 0.79 19 0.30 -0.18 0.66 19	9
Carpenter et al. (2012) 20 Dawson et al. (2009) 1		0.30 -0.18 0.66 19 0.41 0.07 0.66 32	
Dawson et al. (2009) 2 Dawson et al. (2009) 3		0.08 -0.43 0.55 16 0.09 -0.42 0.56 16	
Dawson et al. (2009) 4 Dawson et al. (2009) 5		0.21 -0.32 0.64 16 0.18 -0.35 0.62 16	
Dawson et al. (2009) 6 Hussey & Barnes-Holmes (2012) 1		0.21 -0.32 0.64 16 0.16 -0.21 0.49 30	
Hussey & Barnes-Holmes (2012) 2 Hussey & Barnes-Holmes (2012) 3		0.15 -0.22 0.48 30 -0.03 -0.39 0.33 30	
Hussey & Barnes-Holmes (2012) 4 Hussey & Barnes-Holmes (2012) 5		-0.08 -0.43 0.29 30 0.05 -0.32 0.40 30	
Hussey & Barnes-Holmes (2012) 6 Hussey & Barnes-Holmes (2012) 7	- - - 	-0.07 -0.42 0.30 30 0.04 -0.32 0.39 30	
Hussey & Barnes-Holmes (2012) 8 Hussey & Barnes-Holmes (2012) 9		0.15 -0.22 0.48 30 0.39 0.03 0.66 30	
Hussey & Barnes-Holmes (2012) 10 Hussey & Barnes-Holmes (2012) 11		0.16 -0.21 0.49 30 -0.19 -0.52 0.18 30	
Hussey & Barnes-Holmes (2012) 12 Hussey & Barnes-Holmes (2012) 13		-0.10 -0.44 0.27 30 0.17 -0.20 0.50 30	
Hussey & Barnes-Holmes (2012) 14 Hussey & Barnes-Holmes (2012) 15	-	0.41 0.06 0.67 30 0.11 -0.26 0.45 30	
Hussey & Barnes-Holmes (2012) 16 Hussey & Barnes-Holmes (2012) 17		0.29 -0.08 0.59 30 0.18 -0.19 0.51 30	
Hussey & Barnes-Holmes (2012) 18 Hussey & Barnes-Holmes (2012) 19		-0.06 -0.41 0.31 30 0.16 -0.21 0.49 30	
Hussey & Barnes-Holmes (2012) 20 Hussey & Barnes-Holmes (2012) 21		0.16 -0.21 0.49 30 -0.05 -0.40 0.32 30	
Hussey & Barnes-Holmes (2012) 22 Hussey & Barnes-Holmes (2012) 23		0.08 -0.29 0.43 30 -0.07 -0.42 0.30 30	
Hussey & Barnes-Holmes (2012) 24 Hussey & Barnes-Holmes (2012) 25	<u> </u>	0.25 -0.12 0.56 30 0.07 -0.30 0.42 30	
Hussey & Barnes-Holmes (2012) 26 Hussey & Barnes-Holmes (2012) 27		-0.30 -0.60 0.07 30 -0.08 -0.43 0.29 30	
Hussey & Barnes-Holmes (2012) 28 Hussey & Barnes-Holmes (2012) 29	- 	0.00 -0.36 0.36 30 0.05 -0.32 0.40 30	
Hussey & Barnes-Holmes (2012) 30 Nicholson & Barnes-Holmes (2012a) 1		-0.14 -0.48 0.23 30 0.44 0.09 0.69 30	
Nicholson & Barnes-Holmes (2012a) 2 Nicholson & Barnes-Holmes (2012a) 3	- - -	0.13 -0.24 0.47 30 0.41 0.06 0.67 30	
Nicholson & Barnes-Holmes (2012a) 4 Nicholson & Barnes-Holmes (2012a) 5		0.04 -0.32 0.39 30 0.47 0.13 0.71 30	
Nicholson & Barnes-Holmes (2012a) 6 Nicholson & Barnes-Holmes (2012b) 1	<u> </u>	0.04 -0.32 0.39 30 -0.09 -0.46 0.31 26	
Nicholson & Barnes-Holmes (2012b) 2 Nicholson & Barnes-Holmes (2012b) 3		0.05 -0.34 0.43 26 0.40 0.01 0.68 26	
Nicholson & Barnes-Holmes (2012b) 4 Nicholson & Barnes-Holmes (2012b) 5		0.41 0.03 0.69 26 0.23 -0.17 0.57 26	
Nicholson & Barnes-Holmes (2012b) 6 Nicholson & Barnes-Holmes (2012b) 7	-	0.47 0.10 0.73 26 0.24 -0.16 0.57 26	
Nicholson & Barnes-Holmes (2012b) 8 Nicholson & Barnes-Holmes (2012b) 9		0.41 0.03 0.69 26 0.45 0.08 0.71 26	
Nicholson & Barnes-Holmes (2012b) 10 Nicholson, Dempsey et al. (2014) 1		0.27 -0.13 0.60 26 0.43 0.08 0.69 29	
Nicholson, Dempsey et al. (2014) 2 Nicholson, Dempsey et al. (2014) 3	-	0.44 0.09 0.69 29 0.28 -0.10 0.59 29	
Nicholson, Dempsey et al. (2014) 4 Nicholson, Dempsey et al. (2014) 5		0.14 -0.24 0.48 29 0.27 -0.11 0.58 29	
Nicholson, Dempsey et al. (2014) 6 Nicholson, Dempsey et al. (2014) 7		0.38 0.02 0.66 29 0.23 -0.15 0.55 29	
Nicholson, Dempsey et al. (2014) 8 Nicholson, Dempsey et al. (2014) 9		0.21 -0.17 0.54 29 0.12 -0.26 0.47 29	
Nicholson, Dempsey et al. (2014) 10 Nicholson, Dempsey et al. (2014) 11		0.42 0.06 0.68 29 0.31 -0.06 0.61 29	
Nicholson, Dempsey et al. (2014) 12 Nicholson, Dempsey et al. (2014) 13	- - - - - - - - - - 	0.09 -0.29 0.44 29 0.28 -0.10 0.59 29	
Nicholson, Dempsey et al. (2014) 14 Nicholson, Dempsey et al. (2014) 15		0.08 -0.30 0.43 29 0.20 -0.18 0.53 29	
Nicholson, Dempsey et al. (2014) 16 Nicholson, Dempsey et al. (2014) 17	+ + + + + + + + + + + + + + + + + + +	0.00 -0.37 0.37 29 -0.07 -0.43 0.30 29	
Nicholson, Dempsey et al. (2014) 18 Nicholson, Dempsey et al. (2014) 19		0.06 -0.31 0.42 29 -0.04 -0.40 0.33 29	
Nicholson, Dempsey et al. (2014) 20 Nicholson, Dempsey et al. (2014) 21		-0.04 -0.40 0.33 29 0.21 -0.17 0.54 29	
Nicholson, Dempsey et al. (2014) 22 Nicholson, McCourt et al. (2013) 1		0.19 -0.19 0.52 29 0.56 0.23 0.78 27	
Nicholson, McCourt et al. (2013) 2 Nicholson, McCourt et al. (2013) 3	-	0.43 0.06 0.70 27 0.18 -0.21 0.52 27	
Nicholson, McCourt et al. (2013) 4 Nicholson, McCourt et al. (2013) 5		0.17 -0.22 0.52 27 0.03 -0.35 0.41 27	7
Nicholson, McCourt et al. (2013) 6 Nicholson, McCourt et al. (2013) 7		-0.01 -0.39 0.37 27 0.50 0.15 0.74 27	
Nicholson, McCourt et al. (2013) 8 Nicholson, McCourt et al. (2013) 9		0.40 0.02 0.68 27 0.25 -0.14 0.58 27	7
Nicholson, McCourt et al. (2013) 10 Parling et al. (2012) 1		0.16 -0.23 0.51 27 0.43 0.07 0.69 28	3
Parling et al. (2012) 2 Parling et al. (2012) 3		0.47 0.12 0.72 28 0.24 -0.15 0.56 28	3
Parling et al. (2012) 4 Parling et al. (2012) 5		0.11 -0.27 0.46 28 0.05 -0.35 0.44 25	5
Parling et al. (2012) 6 Parling et al. (2012) 7		0.30 -0.11 0.62 25 0.05 -0.35 0.44 25	5
Parling et al. (2012) 8 Parling et al. (2012) 9	-	0.31 -0.10 0.63 25 0.37 0.01 0.64 30)
Parling et al. (2012) 10 Parling et al. (2012) 11 Parling et al. (2012) 12		0.06 -0.31 0.41 30 0.27 -0.10 0.57 30 0.02 -0.34 0.38 30)
Parling et al. (2012) 13	-	0.12 -0.27 0.48 27	7
Parling et al. (2012) 14 Parling et al. (2012) 15 Parling et al. (2012) 16		0.20 -0.19 0.54 27 0.08 -0.31 0.45 27 0.34 -0.05 0.64 27	7
Parling et al. (2012) 16 Timko et al. (2010; Study 1) 1 Timko et al. (2010; Study 1) 2		-0.09 -0.36 0.19 50 0.15 -0.13 0.41 50)
Timko et al. (2010; Study 1) 2 Timko et al. (2010; Study 1) 3 Timko et al. (2010; Study 1) 4		0.16 -0.12 0.42 50 0.24 -0.04 0.49 50)
Timko et al. (2010; Study 1) 5 Timko et al. (2010; Study 1) 6	} ——■——	0.29)
Timko et al. (2010; Study 1) 7 Timko et al. (2010; Study 1) 8		0.29)
Timko et al. (2010; Study 1) 9 Timko et al. (2010; Study 1) 10		-0.03 -0.31 0.25 50 0.11 -0.17 0.38 50)
Timko et al. (2010; Study 1) 11 Timko et al. (2010; Study 1) 12	□ □ □ □	0.15 -0.13 0.41 50 0.16 -0.12 0.42 50	
Timko et al. (2010; Study 1) 13 Timko et al. (2010; Study 1) 14	-	-0.01 -0.29 0.27 50 -0.17 -0.43 0.11 50)
Timko et al. (2010; Study 1) 15 Timko et al. (2010; Study 1) 16		-0.01 -0.29 0.27 50 0.15 -0.13 0.41 50	
Timko et al. (2010; Study 1) 17 Timko et al. (2010; Study 1) 18	- 	0.20 -0.08 0.45 50 0.02 -0.26 0.30 50)
Timko et al. (2010; Study 1) 19 Timko et al. (2010; Study 1) 20	+ ■ + + + + + + + + + + + + + + + + + +	0.23 -0.05 0.48 50 0.10 -0.18 0.37 50	
Timko et al. (2010; Study 1) 21 Timko et al. (2010; Study 1) 22	<u> </u>	0.05 -0.23 0.32 50 -0.21 -0.46 0.07 50	
Timko et al. (2010; Study 1) 23 Timko et al. (2010; Study 1) 24	 	0.16 -0.12 0.42 50 0.43 0.17 0.63 50	
Timko et al. (2010; Study 1) 25 Timko et al. (2010; Study 1) 26	- 	0.08 -0.20 0.35 50 -0.10 -0.37 0.18 50	
Timko et al. (2010; Study 1) 27 Timko et al. (2010; Study 1) 28	<u> </u>	0.14 -0.14 0.40 50 0.10 -0.18 0.37 50)
Timko et al. (2010; Study 1) 29 Timko et al. (2010; Study 1) 30	├	-0.02 -0.30 0.26 50 0.17 -0.11 0.43 50)
Timko et al. (2010; Study 1) 31 Timko et al. (2010; Study 1) 32		0.24 -0.04 0.49 50 0.24 -0.04 0.49 50)
Timko et al. (2010; Study 2) 1 Timko et al. (2010; Study 2) 2	<u>- </u>	0.12 -0.09 0.32 93 0.22 0.02 0.41 93	3
Timko et al. (2010; Study 2) 3 Timko et al. (2010; Study 2) 4		0.21 0.01 0.40 93 -0.04 -0.24 0.17 93	3
Timko et al. (2010; Study 2) 5 Timko et al. (2010; Study 2) 6		0.08 -0.13 0.28 93 0.06 -0.15 0.26 93	
Timko et al. (2010; Study 2) 7 Timko et al. (2010; Study 2) 8		-0.02 -0.22 0.18 93 -0.14 -0.33 0.07 93	3
Timko et al. (2010; Study 2) 9 Timko et al. (2010; Study 2) 10	⊢-≣	-0.04 -0.24 0.17 93 0.08 -0.13 0.28 93	3
Timko et al. (2010; Study 2) 11 Timko et al. (2010; Study 2) 12	├────	-0.08 -0.28 0.13 93 -0.05 -0.25 0.16 93	3
Vahey et al. (2009) 1 Vahey et al. (2009) 2	├──	0.62 0.37 0.79 37 0.46 0.12 0.70 30)
Vahey et al. (2009) 3 Vahey et al. (2010) 1		0.04 -0.42 0.49 19 0.89 0.04 0.99 5	
Vahey et al. (2010) 2 Vahey et al. (2010) 3		0.55 -0.25 0.90 8 0.21 -0.39 0.68 13	3
Vahey et al. (2010) 4 Meta (confidence interval) Mota (credibility interval)	•	0.26 -0.34 0.71 13 0.22 0.15 0.29 41	6
Meta (credibility interval) Meta (prediction interval)		0.22 0.22 0.22 41 0.22 -0.01 0.42 41	

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8