

Linear Inequations Ex 15.6 Q6(iii)

We have,

$$x + 2y \le 40$$
, $3x + y \ge 30$, $4x + 3y \ge 60$, $x \ge 0$ and $y \ge 0$

Converting the inequations into equations, we obtain, x+2y=40, 3x+y=30, 4x+3y=60, x=0 and y=0

Region represented by $x + 2y \le 40$:

Putting
$$x = 0$$
 in $x + 2y = 40$, we get $y = \frac{40}{2} = 20$

Putting
$$y = 0$$
 in $x + 2y = 40$, we get $x = 40$

:. The line x + 2y = 40, meets the coordinate axes at (0,20) and (40,0). Join these points by a thick line.

Now, putting x = 0 and y = 0 in $x + 2y \le 40$, we get $0 \le 40$

Therefore, $\{0,0\}$ satisfies the inequality $x+2y \le 40$. so, the portion containing the origin represents the solution set of the inequation $x+2y \le 40$.

Region represented by $3x + y \ge 3\alpha$

Putting x = 0 in $3x + y \le 30$, we get y = 30

Putting y = 0 in
$$3x + y = 30$$
, we get, $x = \frac{30}{3} = 10$

... The line 3x + y = 30 meets the coordinate axes at (0,30) and (10,0). Joining these points by a thick line

Now, putting x = 0 and y = 0 in $3x + y \ge 30$, we get, $0 \ge 30$. This is not possible.

Therefore (0,0) does not satisfies the inequality $3x + y \ge 30$, so, the portion not containing the origin is represented by the inequation $3x + y \ge 30$.

Region represented by $4x + 3y \ge 60$:

Putting
$$x = 0$$
 in $4x + 3y = 60$, we get, $y = \frac{60}{3} = 20$

Putting y = 0 in
$$4x + 3y = 60$$
, we get, $x = \frac{60}{4} = 15$.

.. The line 4x + 3y = 60 meets the coordinate axes at (0,20) and (15,0). Join these points by a thick line.

Now, putting x = 0, y = 0 in $4x + 3y \ge 60$, we get $0 \ge 60$.

This is not possible. Therefore, (0,0) does not satisfies the inequality $4x + 3y \ge 60$. so, the portion not containing the origin is represented by the inequation $4x + 3y \ge 60$.

Region represented by $x \ge 0$ and $y \ge 0$.

Clearly, $x \ge 0$ and $y \ge 0$ represent the first quadrant.

The common region of the above five regions represents the solution set of the given inequations as shown below:

Linear Inequations Ex 15.6 Q6(iv)

We have,

 $5x + y \ge 10$, $2x + 2y \ge 12$, $x + 4y \ge 12$, $x \ge 0$ and $y \ge 0$

Converting the inequations into equations, we obtain, 5x + y = 10, 2x + 2y = 1, x + 4y = 12, x = 0 and y = 0

Region represented by $5x + y \ge 10$

Putting x = 0 in 5x + y = 10, we get y = 10

Putting y = 0 in 5x + y = 10, we get $x = \frac{10}{5} = 2$

.. The line 5x+y=10, meets the coordinate axes at (0,10) and (2,0). Join these points by a thick line.

Now, putting x = 0 and y = 0 in $5x + y \ge 10$, we get $0 \ge 10$, This is not possible.

.. (0, 0) does not satisfies the inequality $5x+y\geq 10$. so, the portion not containing the origin is represented by the inequation $5x+y\geq 10$.

Region represented by $2x + 2y \ge 12$:

Putting
$$x = 0$$
 in $2x + 2y = 12$, we get $y = \frac{12}{2} = 6$

Putting
$$y = 0$$
 in $2x + 2y = 12$, we get $x = \frac{12}{2} = 6$.

: The line 2x + 2y = 12 meets the coordinate axes at (0,6) and (6,0). Join these point by a thick line.

Now, putting x = 0 and y = 0 in 2x + 2y = 12, we get $0 \ge 12$, which is not possible.

Therefore, (0,0) does not satisfies the inequality 2x + 2y = 12. so, the portion not containing the origin is represented by the inequation 2x + 2y = 12.

Region represented by $x + 4y \ge 12$

Putting
$$x = 0$$
 in $x + 4y = 12$, we get $y = \frac{12}{4} = 3$.

Putting
$$y = 0$$
 in $x + 4y = 12$, we get $x = 12$.

 \therefore The line x + 4y = 12 meets the coordinate axes at (0,3) and (12,0). Join these points by a thick line.

Now, putting x = 0 and y = 0 in x + 4y = 12, we get $0 \ge 12$, which is not possible.

Therefore, (0,0) does not satisfies the inequality $x + 4y \ge 12$. so, the portion not containing the origion is represented by the inequation $x + 4y \ge 12$.

********* END *******