

Fast and Interpretable Face Identification for Out-Of-Distribution Data Using Vision Transformers

Hai Phan¹, Cindy Le², Vu Le³, Yihui He⁴, Anh Nguyen¹

¹Auburn University. ²Columbia University. ³Phenikaa University. ⁴Carnegie Mellon University

Summary Order Order

- Face Identification (FI) is today is behind the answers to many life-critical questions (e.g. who are you to receive unemployment benefits or boarding to planes?, etc.)
- Current face verification accuracy may notoriously drop significantly (from 99.38% to 81.12% on LFW) given an occluded queries or adversarial queries.
- We propose to evaluate the performance of SOTA facial feature extractors (e.g. ArcFace, CosFace, etc.) on OOD FI test. The main task is to recognize the person in a query image given a gallery of know faces. The evaluation is on 3 metrics: P@1, RP, and M@R.

Methods

- Stage 1: Ranking gallery images based on their pair-wise cosine sim.
- Stage 2 (Re-ranking): re-rank top-k (e.g. 100) candidates from Stage 1 by computing patch-wise similarity for an image pair using EMD.
- Goal: Find the optimal flows between query and gallery images to select important features networks used for matching.

Formulation

$L_0 = \{L_0 L_1, L_1, L_2, L_3, L_4, L_5, L_6, L_6, L_7, L_7, L_7, L_7, L_7, L_7, L_7, L_7$	$\mathbf{z}_0 =$	$[\mathbf{x}_{CLS}\mathbf{E}, \mathbf{x}_{p1}\mathbf{E}, \mathbf{x}_{SEP}\mathbf{E}, \mathbf{x}_{p2}\mathbf{E}] + \mathbf{E}_{pos}$	$_{s},$ (1)
--	------------------	---	---------------

$$\mathbf{z}_{l}^{'} = MSA(LayerNorm(\mathbf{z}_{l-1})), \quad l = 1...L$$
 (2)

$$\mathbf{z}_{l} = \text{MLP}(\text{LayerNorm}(\mathbf{z}_{l}^{'})) + \mathbf{z}_{l}^{'}, \ l = 1 \dots L$$
 (3)

$$\mathbf{z}_{l} \equiv [\mathbf{z}_{CLS}, \mathbf{z}_{L}^{1}, \mathbf{z}_{SEP}, \mathbf{z}_{L}^{2}], \ \mathbf{z}_{L}^{1}, \mathbf{z}_{L}^{2} \in \mathbb{R}^{P^{2} \times D}$$
(4)

$$\mathbf{f}_1 = \text{LayerNorm}(\text{Linear}_1(\mathbf{z}_L^1)) \tag{5}$$

$$\mathbf{f}_2 = \text{LayerNorm}(\text{Linear}_2(\mathbf{z}_L^2)) \tag{6}$$

$$loss = Arcface loss(\mathbf{f}_1, \mathbf{f}_2)$$
 (7)

Ablation Study Transformer output Architecture Patch Embedding Input Transformer output CONVISION A CONVINCION A CONVISION A CONVISION A CONVISION A CONVISION A CONVISION A CONVINCION A CONVINCI

Accuracy

dataset	name model	stage	depth	head	P@1	RP	M@R
	C CNN	ST1	-	-	95.58	51.59	50.01
CALFW	H2L Hybrid-ViT	ST1	1	2	95.03	43.70	42.36
(Mask)	D DeepFaceEMD	ST2	_	_	99.79	56.77	55.75
	H2L Hybrid-ViT	ST2	1	2	99.29	51.00	50.01
	C CNN	ST1	_	-	51.11	29.38	26.73
CALFW	H2L Hybrid-ViT	ST1	1	6	50.23	28.08	25.15
(Sunglasses)	D DeepFaceEMD	ST2	_	_	54.95	30.66	27.74
	H2L Hybrid-ViT (ST2)	ST2	1	6	54.00	31.00	27.87
	C CNN	ST1	-	-	96.31	39.22	30.41
AgeDB	H2L Hybrid-ViT	ST1	1	1	98.73	20.68	14.86
(Mask)	D DeepFaceEMD	ST2	_	_	99.84	39.22	33.18
	H2L Hybrid-ViT	ST2	1	1	99.28	33.93	26.69
	C CNN	ST1	-	-	84.64	51.16	45.00
AgeDB	H2L Hybrid-ViT	ST1	1	2	86.01	49.34	43.03
(Sunglasses)	D DeepFaceEMD	ST2	_	-	87.06	50.04	44.27
	H2L Hybrid-ViT	ST2	1	2	86.75	51.16	44.88
TAI 17337	C CNN	ST1	_	-	93.49	81.04	80.35
TALFW	H2L Hybrid-ViT	ST1	1	2	94.59	77.66	77.00
VS.	D DeepFaceEMD	ST2	_	_	96.64	82.72	82.10
LFW	H2L Hybrid-ViT	ST2	1	2	94.03	81.63	81.09

Face occlusions and adversarial images. **Model H2L** achieves comparable accuracy on the OOD of CALFW and AgeDB compared to CNN and DeepFace-EMD.

Explainability

Time Complexity

Layer type	Complexity per layer	Actual runtime (s)	Maximum path Length
C. Convolutional	$O(k \cdot n \cdot d^2)$	-	$O(\log_k n)$
V. ViT, Self-Attention	$O(n^2 \cdot d)$	_	O(1)
V. Self-Attention (restricted)	$O(r \cdot n \cdot d^2)$	-	O(n/r)
H2L Hybrid-ViT	$O(k \cdot n \cdot d^2 + n^2 \cdot d)$	24.33	$O(\log_k n)$
D. DeepFace-EMD [40]	$O(k \cdot n \cdot d^2 + n^3 \cdot \log n) $ [46]	53.35	O(1)

Figure 1. Actual running time in seconds (lower is better) for the re-ranking computation in face identification under occlusion. Our proposed model is at least two times faster than the state-of-the-art DeepFace-EMD [40] over all the datasets.

User Study

Are these two faces of the same person? Your answer: Yes / No

Are these two faces of the same person? Your answer: Yes / No

Are these two faces of the same person? Your answer: Yes / No