MWIS PTAS

Polynomial-Time Approximation Schemes for Geometric Intersection Graphs.

SIAM Journal on Computing Volume 34 Issue 6, 2005 Pages 1302 - 1323.

The goal of the maximum weight independent set problem (MWIS) is to compute, for a given set of geometric objects with certain weights, a subset of disjoint (non-overlapping) objects with maximum total weight.

There is a PTAS (polynomial-time algorihm scheme) for MWIS in disk graphs, provided that a disk representation of the graph is given. The running-time for achieving approximation ratio $1 + \epsilon$ is $n^{O(1/\epsilon^2)}$ for a disk graph with n disks.

Details:

• Executed on: 26/09/2014 05:00.

• Execution time: 0,000079 SECONDS.

• Memory required: 144 bytes.

Input graph

Figure 1: MWIS's input directed graph system.

Contents

MWIS PTAS	1
Input graph	2
Execution	4
Iteration $0 \dots \dots \dots \dots \dots$	4
Iteration 1	5
Iteration 2	6
Analisis	7
Analisis for path: A0 \longrightarrow B0	7
Analisis for path: B0 \longrightarrow A0	7
Digest	7

Execution

Iteration 0

	1	2
1	0	∞
2	∞	0

Table 1: D table at iteration 0.

	1	2
1	0	0
2	0	0

Table 2: P table at iteration 0.

Iteration 1

	1	2
1	0	∞
2	∞	0

Table 3: D table at iteration 1.

	1	2
1	0	0
2	0	0

Table 4: P table at iteration 1.

Iteration 2

	1	2
1	0	∞
2	∞	0

Table 5: D table at iteration 2.

	1	2
1	0	0
2	0	0

Table 6: P table at iteration 2.

Analisis

Analisis for path: $A0 \longrightarrow B0$

- $\bullet \ \, {\rm Optimal \ path}: A0_{(1)} {\longrightarrow} \ \, {\rm B0}_{(2)}.$
- Total jumps : 1.
- ullet Total distance : ∞ .

Analisis for path: $B0 \longrightarrow A0$

- $\bullet \ \mathrm{Optimal \ path}: \ B0 \ \ {}_{(2)} \longrightarrow \ \mathrm{A0} \ \ {}_{(1)}.$
- \bullet Total jumps : 1.
- Total distance : ∞ .

Digest

- \bullet Bumpier path : A0 $_{(1)}$ \longrightarrow B0 $_{(2)}$ with 1 jumps.