ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น

AEL-01 การตอบสนองของวงจร Passive อย่างง่าย

วัตถุประสงค์

- 1. ศึกษาการตอบสนองความถี่ของวงจร RC และ RL อย่างง่าย
- 2. ศึกษาการตอบสนองของวงจร RC และ RL ต่อสัญญาณสี่เหลี่ยม
- 3. ศึกษาการใช้งานเครื่องมือวัดและอุปกรณ์กำเนิดสัญญาณต่างๆ

ในวงจรอิเล็กทรอนิกส์ มีการใช้ความด้านทาน (resistor หรือ R), ตัวเก็บประจุ (capacitor หรือ C), และขคลวดเหนี่ยวนำ (inductor หรือ L) เพื่อทำให้ได้คุณสมบัติของวงจรบางอย่างที่ต้องการ เช่น การ กำหนดแรงคันหรือกระแสไฟเลี้ยงวงจรอิเล็กทรอนิกส์, การเลือกแถบความถี่ที่ต้องการขยายหรือตัดทิ้ง, การ ส่งผ่านสัญญาณจากวงจรหนึ่งไปยังอีกวงจรหนึ่งโดยไม่ให้มีผลของไฟเลี้ยงวงจรมาเกี่ยวข้อง, ฯลฯ. การต่อ อุปกรณ์ passive เหล่านี้ในวงจร จะมีผลต่อสัญญาณที่เป็นรูปไซน์และไม่ได้เป็นรูปไซน์. ถ้าสัญญาณอินพุท เป็นรูปไซน์ สัญญาณเอาท์พุทจะมีขนาดและเฟสเปลี่ยนไป และถ้าสัญญาณอินพุทไม่ได้เป็นรูปไซน์ สัญญาณเอาท์พุทจะมีรูปร่างที่แตกต่างจากสัญญาณอินพุทได้.

1.1. การตอบสนองความถี่ของวงจร *RC* อย่างง่าย

วงจร RC อย่างง่ายประกอบด้วยแหล่งจ่ายแรงดัน ตัวต้านทาน และตัวเก็บประจุอย่างละ 1 ตัว ได้ แสดงไว้ในรูปที่ 1.1 ก และ ข. แรงดัน V_i เป็นแรงดันอินพุท ส่วน V_o เป็นแรงดันเอาท์พุท.

รูปที่ 1.1 วงจร RC อย่างง่าย.

การวัดการตอบสนองความถึ่ของวงจรใดๆก็ตาม เราจะใช้สัญญาณอินพุทที่เป็นรูปไซน์ (sinusoidal waveform) และใช้การวิเคราะห์แบบ phasor เพื่อหาขนาดและมุมของแรงคัน V_o เทียบกับขนาดและมุมของ V_i . ค่า impedance ของตัวเก็บประจุ C จะเท่ากับ $\frac{1}{j\omega C}$ ซึ่งขึ้นอยู่กับความถี่ โดยที่ $\omega=2\pi f$ rad/s และ f คือความถี่ที่มีหน่วยเป็น Hz. วงจรในรูปที่ 1.1 ก และ ข จะให้ transfer function ซึ่งบอกความสัมพันธ์ ระหว่างเอาท์พุท V_o และอินพุท V_i ดังต่อไปนี้

วงจรรูปที่ 1.1 ก:
$$\frac{V_o}{V_i} = \frac{1}{1+j\omega RC}$$
 (1.1)

วงจรรูปที่ 1.1 ข:
$$\frac{V_o}{V_i} = \frac{j\omega RC}{1+j\omega RC} \,. \tag{1.2}$$

จากสมการที่ 1.1 ถ้าความถี่มีค่าต่ำๆ $1>>j\omega RC$. ดังนั้น $\frac{V_o}{V_i}$ จะมีขนาดประมาณ 1 และมีมุม ประมาณ 0 องสา. ถ้าความถี่เพิ่มขึ้น ขนาดของตัวหารจะมากกว่า 1 ไปเรื่อยๆ. ดังนั้น $\frac{V_o}{V_i}$ จะมีขนาดลดลง น้อยกว่า 1 และมีมุมเป็นค่าลบมากขึ้น เมื่อความถี่เพิ่มขึ้น. ที่ความถี่ $\omega=\frac{1}{RC}$ (หรือ $\omega RC=1$)ขนาดของ $\frac{V_o}{V_i}$ จะเท่ากับ $\frac{1}{\sqrt{2}}=0.707$ และมีมุมเท่ากับ -45 องสา. ถ้าความถี่เพิ่มสูงขึ้นไปอีก ขนาดของ $\frac{V_o}{V_i}$ จะลดลง ไปเรื่อยๆ และมีมุมเป็นลบมากขึ้นไปอีก แต่จะไม่เกิน -90 องสา. เนื่องจากวงจรนี้จะให้ขนาดของ $\frac{V_o}{V_i}$ ที่ ความถี่ต่ำใหญ่กว่าที่ความถี่สูง จึงเรียกวงจรนี้ว่า low-pass filter.

ในการเขียนกราฟกวามสัมพันธ์ระหว่างขนาดของ $\dfrac{V_o}{V_i}$ กับความถี่ เรามักใช้ \log scale สำหรับแกน ขนาดและความถี่ เพราะค่าที่ต่ำอาจต่ำกว่าค่าที่สูงหลายสิบเท่า ดังแสดงในรูปที่ 1.2 ก. เราสามารถคำนวณ $\log \left|\dfrac{V_o}{V_i}\right|$ ก่อนก็ได้ แล้วจึงเขียนกราฟ จะทำให้ scale ของ $\log \left|\dfrac{V_o}{V_i}\right|$ เป็นแบบเชิงเส้น. แต่กราฟที่นิยมใช้จะ เป็น \log function ของอัตราส่วนกำลังงานระหว่างเอาท์พุทและอินพุท ($\log \left|\dfrac{P_o}{P_i}\right|$). เนื่องจากกำลังงานแปร ผันกับแรงดันยกกำลังสอง ดังนั้น $\log \left|\dfrac{P_o}{P_i}\right| = \log \left|\dfrac{V_o^2}{V_i^2}\right| = 2\log \left|\dfrac{V_o}{V_i}\right|$ ซึ่งเป็นค่าที่ไม่มีหน่วย แต่นิยมที่จะใช้ Bel (B) เป็นหน่วย เพื่อเป็นเกียรติให้แก่ Alexander Graham Bell. เนื่องจาก Bel เป็นหน่วยที่ใหญ่ จึงมีการใช้ หน่วย decibel (dB) กันอย่างแพร่หลาย ซึ่ง 10 dB จะเท่ากับ 1 B. ดังนั้น $\log \left|\dfrac{P_o}{P_i}\right|$ B เท่ากับ $20\log \left|\dfrac{V_o}{V_i}\right|$ dB. รูปที่ 1.2 ง เป็นกราฟที่แสดงความสัมพันธ์ระหว่าง $20\log \left|\dfrac{V_o}{V_i}\right|$ กับความถี่ใน \log scale.

ที่ความถี่ $\omega=\frac{1}{RC}$ จะได้ $20\log\left|\frac{V_o}{V_i}\right|=$ -3.01 dB \cong 3 dB และที่ความถี่สูงขึ้น ความชั้นของกราฟที่ มีค่าลดลงจะเท่ากับ -20 dB/decade. (decade หมายถึงความแตกต่างกัน 10 เท่าทางความถี่). ความถี่นี้จึงมัก ใช้สัญญูลักษณ์ว่า $\omega_{3dB}=\frac{1}{RC}$ หรือ $f_{3dB}=\frac{1}{2\pi RC}$.

ส่วนความสัมพันธ์ระหว่างมุมของ $\frac{V_o}{V_i}$ กับความถี่ จะใช้ linear scale สำหรับมุม และ log scale สำหรับความถี่ ดังแสดงในรูปที่ 1.3. กราฟในรูปที่ 1.2 และ 1.3 เรียกว่า Bode plot ซึ่งให้ชื่อตาม H. W. Bode ซึ่งใช้กราฟดังกล่าวอย่างมากในขณะที่ทำงานเกี่ยวกับเครื่องขยายสัญญาณให้กับ Bell Telephone Laboratories ในช่วงทศวรรษ 1930.

รูปที่ 1.2 กราฟแสดงความสัมพันธ์ระหว่างขนาดของ $rac{V_o}{V_c}$ กับความถึ่

รูปที่ 1.3 กราฟแสดงความสัมพันธ์ระหว่างมุมของ $rac{V_o}{V_i}$ กับความถี่

จากสมการที่ 1.2 ซึ่งเป็นของวงจรในรูปที่ 1.1 ข ที่ความถี่ต่ำๆ $1>>j\omega RC$ ทำให้ตัวหารของ สมการจะมีค่าประมาณ 1. ส่วนตัวตั้งคือ $j\omega RC$ จะมีค่าน้อยตามความถี่และมีมุมประมาณ +90 องศา. คังนั้น ค่า $20\log\left|\frac{V_o}{V_i}\right|$ จะมีค่าน้อยไปด้วย และมีมุมประมาณ +90 องศา. ถ้าความถี่มีค่าสูงขึ้น ขนาดของ $\frac{V_o}{V_i}$ จะเพิ่มมากขึ้นและมุมจะเป็นบวกน้อยลง เนื่องจากมีมุมของตัวหารของสมการมาลบออก. ความชั้น

ของกราฟที่เพิ่มขึ้นนี้จะมีค่าเท่ากับ +20 dB/decade. ที่ความถี่ $\omega_{3dB}=\frac{1}{RC}$ (หรือ $f_{3dB}=\frac{1}{2\pi RC}$) ขนาด ของ $\frac{V_o}{V_i}$ จะเท่ากับ $\frac{1}{\sqrt{2}}=0.707$ หรือ $20\log\left|\frac{V_o}{V_i}\right|=-3.01$ dB และมีมุมเท่ากับ +45 องศา. ถ้าความถี่เพิ่ม สูงขึ้นไปอีก ขนาดของ $\frac{V_o}{V_i}$ จะเพิ่มขึ้นไปเรื่อยๆ เข้าใกล้ 1 และมุมจะมีค่าลดลงไปเข้าใกล้ 0 องศา. เนื่องจากวงจรนี้จะให้ขนาดของ $\frac{V_o}{V_i}$ ที่ความถี่สูงใหญ่กว่าที่ความถี่ต่ำ จึงเรียกวงจรนี้ว่า high-pass filter. Bode plot ของ high-pass filter นี้ได้แสดงไว้ในรูปที่ 1.4.

รูปที่ 1.4 Bode plot ของวงจรในรูปที่ 1.1 ข.

1.2. การตอบสนองของวงจร *RC* ต่อสัญญาณสี่เหลี่ยม

วงจร RC ที่จะ ใช้ศึกษาการตอบสนองกับสัญญาณสี่เหลี่ยมใน time domain ได้แสดงไว้ในรูปที่ 1.5 ซึ่งเป็นวงจรเคียวกันกับที่แสดงไว้ในรูปที่ 1.1. ถ้าเราพิจารณาสมการของตัวเก็บประจุ $i_C(t) = C \frac{dv_C(t)}{dt}$ จะพบว่า แรงดันคร่อมตัวเก็บประจุ $v_C(t)$ จะเปลี่ยนแปลงในทันทีไม่ได้ มิฉะนั้นจะเกิดกระแสที่มีค่าสูง มากเป็นค่าอนันต์ใหลผ่าน ซึ่งเป็นไปไม่ได้ในทางปฏิบัติ. ดังนั้นถ้า $v_i(t)$ ในรูปที่ 1.5 มีการเปลี่ยนระดับ แรงดันในทันที ตัวเก็บประจุจะทำตัวเสมือนเป็นตัวลัดวงจร ไม่มีแรงดันตกคร่อมที่เกิดจากการเปลี่ยนแปลง ทันทีนี้เลย. ถ้าสมมุติให้ $v_i(t)$ มีขนาดการเปลี่ยนระดับแรงดันเท่ากับ a ในทันที แรงดันคร่อมตัวต้านทาน

 $v_R(t)$ จะเปลี่ยนไปทันทีด้วยขนาดเท่ากับ a. ส่วน $v_C(t)$ มีค่าเท่าเดิม ไม่เปลี่ยนในทันที แต่ $\frac{dv_C(t)}{dt}$ จะ เปลี่ยนไป. นอกจากนี้ตัวเก็บประจุจะไม่ยอมให้กระแสตรง ซึ่งเป็นกระแสที่ไม่มีการเปลี่ยนแปลงไหลผ่าน เนื่องจาก $\frac{dv_C(t)}{dt} = 0$ ทำให้ $i_C(t) = 0$ ด้วย. ดังนั้น จากวงจรในรูปที่ 1.5 ถ้า $v_i(t)$ มีค่าเฉลี่ยเท่าใด $v_C(t)$ จะมีค่าเฉลี่ยเท่านั้นด้วย.

รูปที่ 1.5 วงจร RC อย่างง่ายที่จะใช้ศึกษาการตอบสนองกับสัญญาณสี่เหลี่ยม

ดังนั้น ถ้าสัญญาณประกอบด้วยไฟฟ้ากระแสตรงและสลับอยู่ปนกัน สัญญาณกระแสตรงทั้งหมดจะ ตกคร่อมตัวเก็บประจุ ไม่สามารถทำให้เกิดกระแสตรงไหลผ่านตัวเก็บประจุได้. สัญญาณที่ผ่านตัวเก็บประจุ และทำให้เกิดกระแสไฟฟ้า จะเป็นสัญญาณกระแสไฟฟ้าสลับเท่านั้น ทั้งนี้ขึ้นอยู่กับความถี่ของสัญญาณ ด้วย.

การวิเคราะห์วงจรใน time domain สามารถทำได้โดยการแก้สมการของวงจร ซึ่งในกรณีนี้เป็น สมการอนุพันธ์ (differential equation). ถ้าให้ $v_i(t)$ เป็น step function ผลลัพธ์สมการอนุพันธ์ของวงจร จะ อยู่ในรูปของ exponential function ดังต่อไปนี้

$$v_C(t) = v_C(\infty) + (v_C(0) - v_C(\infty))e^{-\frac{t}{RC}}$$
 (1.1)

โดยที่ $v_C(0)$ และ $v_C(\infty)$ เป็นแรงคันเริ่มต้นและแรงคันสุดท้ายเมื่อปล่อยวงจรทิ้งไว้เป็นระยะเวลานาน ตามลำคับ. รูปที่ 1.6 แสดงตัวอย่างรูปคลื่นของ $v_o(t)$ ที่มี $v_i(t)$ เป็น step function au(t). ค่า time constant ของ exponential function จะมีค่าเท่ากับผลคูณของค่าความต้านทานกับค่าตัวเก็บประจุ (RC).

ถ้าแรงดันอินพุท $v_i(t)$ ประกอบไปด้วย step functions หลายช่วงต่อกันหรือเป็นสัญญาณสี่เหลี่ยม แรงดันเอาท์พุท $v_o(t)$ จะเป็น exponential function หลายช่วงเช่นเดียวกับแรงดันอินพุท ดังแสดงในรูปที่ 1.7. Exponential function แต่ละช่วงเหล่านี้จะมีค่า time constant เท่ากันหมดเท่ากับ RC. การวิเคราะห์ รูปคลื่นแบบนี้ต้องแบ่งออกเป็นช่วงๆตามอินพุท และให้ค่าสุดท้ายของตัวแปรอนุพันธ์ $v_c(t)$ ของแต่ละช่วง เป็นค่าเริ่มต้นในช่วงถัดไป.

ในกรณีที่แรงคันอินพุท $v_i(t)$ เป็นสัญญาณสี่เหลี่ยมซ้ำๆกันในแต่ละคาบ แรงคันเอาท์พุท $v_o(t)$ ก็ จะซ้ำกันในแต่ละคาบด้วย ซึ่งหมายความว่าแรงคัน $v_c(t)$ ที่เป็นตัวแปรอนุพันธ์จะมีคุณสมบัติ $v_c(t_i) = v_c(t_i+T)$ โดยที่ T เป็นคาบเวลาของสัญญาณสี่เหลี่ยม.

รูปที่ 1.6 การตอบสนองของวงจรในรูปที่ 1.5 โดยที่ $v_i(t)$ เป็น step function.

รูปที่ 1.7 การตอบสนองของวงจรในรูปที่ 1.5 โดยที่ $v_i(t)$ เป็นสัญญาณสี่เหลี่ยม.

กราฟตรงกลางของรูปที่ 1.7 แสดงแรงคันเอาท์พุท $v_o(t)$ ที่ได้จากวงจรรูปที่ 1.5 ก ซึ่งมี $v_i(t)$ เป็น สัญญาณสี่เหลี่ยม จะมีค่าเฉลี่ยเท่ากับ $v_i(t)$ นั่นเอง เนื่องจากตัวเก็บประจุไม่ยอมให้ไฟฟ้ากระแสตรงผ่าน. ส่วนแรงคันเอาท์พุท $v_o(t)$ ที่ได้จากวงจรรูปที่ 1.5 ข เป็นแรงคันที่ตกคร่อมตัวความต้านทาน จะมีค่าเฉลี่ย เป็น 0 เนื่องจากกระแส ไฟตรงผ่านตัวเก็บประจุไม่ได้. แรงคันคร่อมตัวความต้านทานจึงเป็นแรงคัน กระแสสลับแต่เพียงเดียว และแรงคันกระแสสลับนี้จะมีค่าเฉลี่ยเป็น 0. นอกจากนี้ ทุกครั้งที่มีการเปลี่ยน $v_i(t)$ อย่างทันที แรงคันคร่อมตัวต้านทานจะเปลี่ยนทันทีด้วยขนาดที่เท่ากันด้วย คังแสดงไว้ในรูปที่ 1.7 กราฟล่างสุด.

1.3. การตอบสนองความถึ่ของวงจร RL

วงจรอิเล็กทรอนิคส์โดยทั่วไปจะมีการใช้ขดลวดเหนี่ยวนำน้อยกว่าตัวเก็บประจุ เนื่องจากขดลวด เหนี่ยวนำทำได้ยากกว่า และค่า inductance ของขดลวดมีค่าความผิดพลาดสูงกว่า. การใช้ขดลวดเหนี่ยวนำ ต้องคำนึงถึงความต้านทานของลวดตัวนำด้วยซึ่งขึ้นอยู่กับความถี่ที่ใช้งานด้วย. ถ้าความถี่สูง ค่า reactance ของขดลวดอาจมีค่าสูงกว่าค่าความต้านทานมากจนสามารถไม่ต้องคิดผลของความต้านทานเลยก็ได้. แต่ถ้า ความถี่ต่ำ ค่า reactance ของขดลวดต่ำด้วย จึงทำให้ผลของความต้านทานของขดลวดมีมากขึ้น ซึ่งอาจละเลย ผลของความต้านทานไม่ได้. ขดลวดที่มีค่าความเหนี่ยวนำสูง มักจะมีแกนเป็นแกนเหล็กหรือแกนเฟอร์ไรท์ (ferrite) ซึ่งจะให้ค่าความเหนี่ยวนำสูงกว่าแกนอากาศโดยที่ไม่ต้องพันจำนวนรอบมาก. แต่การใช้แกน เหล่านี้มีข้อจำกัดที่ความถี่สูง ซึ่งจะเกิดกำลังงานสูญเสียในแกนมากได้ ทำให้เสมือนมีความต้านทานต่ออยู่ ในวงจร และค่าความเหนี่ยวนำจะลดลง.

รูปที่ 1.8 แสดงวงจร RL อย่างง่าย 2 แบบประกอบด้วยแหล่งจ่ายแรงดัน ตัวด้านทาน และขดลวด เหนี่ยวนำอย่างละ 1 ตัว. ค่า impedance ของขดลวดเหนี่ยวนำเท่ากับ $j\omega L$ ซึ่งขึ้นอยู่กับความถี่ โดยที่ $\omega = 2\pi f$ rad/s และ f คือความถี่ที่มีหน่วยเป็น Hz.

รูปที่ 1.8 วงจร RL อย่างง่าย.

การวางตำแหน่งของขดลวดเหนี่ยวนำในวงจร RL เพื่อให้เกิดคุณสมบัติทางความถี่ที่ต้องการ จะต่าง จากตำแหน่งของตัวเก็บประจุในวงจร RC เนื่องจากคุณสมบัติทางความถี่ของขดลวดเหนี่ยวนำจะตรงกัน ข้ามกับตัวเก็บประจุ คือ ที่ความถี่สูงขึ้น impedance ของขดลวดเหนี่ยวนำจะสูงขึ้นด้วย. วงจรในรูปที่ 1.8~ก และ v จะให้ transfer function ระหว่างเอาท์พุท V_o และอินพุท V_i ดังต่อไปนี้

วงจรรูปที่ 1.8 ก:
$$\frac{V_o}{V_i} = \frac{1}{1 + j\omega L/R}$$
 (1.3)

วงจรรูปที่ 1.8 บะ
$$\frac{V_o}{V_i} = \frac{j\omega L/R}{1+j\omega L/R}. \tag{1.4}$$

กราฟการตอบสนองความถี่ที่ได้จากสมการ transfer function ของวงจร RL ทั้งสองสมการข้างบนนี้ จะคล้ายกับการวิเคราะห์สมการที่ได้จากวงจร RC ที่ได้กล่าวไปแล้ว จะต่างกันตรงที่แกนความถี่จะเป็น $\omega L/R$ แทนที่จะเป็น ωRC นั่นเอง. ในกรณีของวงจร RL นี้ จะได้ว่า $\omega_{3dB}=\frac{R}{L}$ หรือ $f_{3dB}=\frac{R}{2\pi L}$.

1.4. การตอบสนองของวงจร *RL* ต่อสัญญาณสี่เหลี่ยม

วงจร RL ที่จะใช้ศึกษาการตอบสนองกับสัญญาณสี่เหลี่ยมใน time domain ได้แสดงไว้ในรูปที่ 1.9 ซึ่งเป็นวงจรเดียวกันกับที่แสดงไว้ในรูปที่ 1.8. ถ้าเราพิจารณาสมการของขดลวดเหนี่ยวนำ $v_L(t) = L \frac{di_L(t)}{dt}$ จะพบว่า กระแสที่ไหลผ่านขดลวดเหนี่ยวนำ $i_L(t)$ จะเปลี่ยนแปลงในทันทีไม่ได้ มิฉะนั้นจะเกิดแรงดันคร่อมขดลวดที่มีค่าสูงมากเป็นค่าอนันต์ ซึ่งเป็นไปไม่ได้ในทางปฏิบัติ. ดังนั้นถ้า $v_i(t)$ ในรูปที่ 1.9 มีการเปลี่ยนระดับแรงดันในทันที ขดลวดเหนี่ยวนำจะทำตัวเสมือนเป็นแหล่งจ่ายกระแส

ทำให้กระแสที่ใหลผ่านขดลวดยังคงเท่าเดิม แต่แรงดันตกคร่อมขดลวดจะเปลี่ยนแปลง. ถ้าสมมุติให้ $v_i(t)$ มีขนาดการเปลี่ยนระดับแรงดันเท่ากับ a ในทันที แรงดันคร่อมขดลวด $v_L(t)$ จะเปลี่ยนไปทันทีด้วยขนาด เท่ากับ a.

รูปที่ 1.9 วงจร RL อย่างง่ายที่จะใช้ศึกษาการตอบสนองกับสัญญาณสี่เหลี่ยม.

นอกจากนี้ขดลวดเหนี่ยวนำจะยอมให้กระแสตรงผ่านได้. ถ้ามีกระแสตรงไหลผ่าน $\frac{di_L(t)}{dt}=0$ แรงคัน $v_L(t)=0$ ด้วย. ดังนั้น ถ้าปล่อยสัญญาณที่มีกระแสตรงและกระแสสลับ กระแสตรงจะผ่านเสมือน ว่า ขดลวดเป็นเสมือนตัวลัดวงจร ไม่มีแรงดันตกคร่อมขดลวดสำหรับกระแสตรง. แต่ในทางปฏิบัติจะมี แรงดันตกคร่อมขดลวด เนื่องจากกระแสตรงที่ไหลผ่านความด้านทานของขดลวด. สัญญาณกระแสสลับที่ มีความถี่ต่ำสามารถผ่านขดลวดได้บ้าง. แต่ถ้ามีความถี่สูง ก็จะผ่านได้น้อยลง.

การวิเคราะห์วงจรใน time domain สามารถทำได้โดยการแก้สมการของวงจร ซึ่งในกรณีนี้เป็น สมการอนุพันธ์ (differential equation). ถ้าให้ $v_i(t)$ เป็น step function ผลลัพธ์สมการอนุพันธ์ของวงจร จะ อยู่ในรูปของ exponential function ดังต่อไปนี้

$$i_L(t) = i_L(\infty) + (i_L(0) - i_L(\infty))e^{-\frac{t}{L/R}}$$
 (1.1)

โดยที่ $i_L(0)$ และ $i_L(\infty)$ เป็นแรงคันเริ่มต้นและแรงคันสุดท้ายเมื่อปล่อยวงจรทิ้งไว้เป็นระยะเวลานาน ตามลำคับ. รูปที่ 1.10 แสดงตัวอย่างรูปคลื่นของ $v_o(t)$ ที่มี $v_i(t)$ เป็น step function au(t). ค่า time constant ของ exponential function จะมีค่าเท่ากับผลหารของค่าความเหนี่ยวนำกับค้วยค่าความต้านทาน (L/R).

รูปที่ 1.10 การตอบสนองของวงจรRLในรูปที่ 1.9 โดยที่ $v_i(t)$ เป็น step function.

ถ้าแรงดันอินพุท $v_i(t)$ ประกอบไปด้วย step functions หลายช่วงต่อกันหรือเป็นสัญญาณสี่เหลี่ยม แรงดันเอาท์พุท $v_o(t)$ จะเป็น exponential function หลายช่วงเช่นเดียวกับแรงดันอินพุท ดังแสดงในรูปที่ 1.11. Exponential function แต่ละช่วงเหล่านี้จะมีค่า time constant เท่ากันหมดเท่ากับ L/R. การวิเคราะห์ รูปคลื่นแบบนี้ต้องแบ่งออกเป็นช่วงๆตามอินพุท และให้ค่าสุดท้ายของตัวแปรอนุพันธ์ $i_L(t)$ ของแต่ละช่วง เป็นค่าเริ่มต้นในช่วงถัดไป.

ในกรณีที่แรงดันอินพุท $v_i(t)$ เป็นสัญญาณสี่เหลี่ยมซ้ำๆกันในแต่ละคาบ แรงดันเอาท์พุท $v_o(t)$ ก็ จะซ้ำกันในแต่ละคาบด้วย ซึ่งหมายความว่า $i_L(t)$ ที่เป็นตัวแปรอนุพันธ์จะมีคุณสมบัติ $i_L(t)=i_L(t+T)$ โดยที่ T เป็นคาบเวลาของสัญญาณสี่เหลี่ยมด้วย.

รูปที่ 1.11 การตอบสนองของวงจร RL ในรูปที่ 1.9 โดยที่ $v_i(t)$ เป็นสัญญาณสี่เหลี่ยม.

กราฟตรงกลางของรูปที่ 1.11 แสดงแรงดันเอาท์พุท $v_o(t)$ ที่ได้จากวงจรรูปที่ 1.9 ก ซึ่งมี $v_i(t)$ เป็นสัญญาณสี่เหลี่ยม จะมีค่าเฉลี่ยเท่ากับ $v_i(t)$ นั่นเอง เนื่องจากขดลวดให้ไฟฟ้ากระแสตรงผ่านได้ ทั้งหมด. ส่วนแรงดันเอาท์พุท $v_o(t)$ ที่ได้จากวงจรรูปที่ 1.9 ข เป็นแรงดันที่ตกคร่อมขดลวด จะมีค่าเฉลี่ย เป็น 0 เนื่องจากกระแสไฟตรงผ่านขดลวดได้ทั้งหมด ไม่มีแรงดันกระแสตรงคร่อมขดลวด. แรงดันคร่อม ขดลวดจึงเป็นแรงดันกระแสสลับแต่เพียงเดียว และแรงดันกระแสสลับนี้จะมีค่าเฉลี่ยเป็น 0. นอกจากนี้ ทุก ครั้งที่มีการเปลี่ยน $v_i(t)$ อย่างทันที แรงดันคร่อมขดลวดจะเปลี่ยนทันทีด้วยขนาดที่เท่ากันด้วย ดังแสดงไว้ ในรูปที่ 1.11 กราฟล่างสด.

1.5. การตอบสนองความถี่ของวงจร *RC* ที่ซับซ้อนขึ้น

เราสามารถต่อวงจรอิเล็กทรอนิกส์ที่ประกอบด้วย ตัวต้านทาน ขดลวดเหนี่ยวนำ และตัวเก็บประจุ
เพื่อทำให้เลือกความถี่ที่วงจรจะมีผล โดยเฉพาะอย่างยิ่งที่ความถี่กำธร (resonance frequency) ของวงจร

RLC. แต่เนื่องจากการควบคุมค่าของขดลวดเหนี่ยวนำให้ได้ความแม่นยำสูงนั้น ทำได้ยาก และขดลวด
เหนี่ยวนำมีความต้านทานของลวดที่ใช้เข้ามาเกี่ยวข้อง ทำให้การตอบสนองกับความถี่ไม่เป็นไปตามที่
ออกแบบไว้ จึงทำให้วงจรอิเล็กทรอนิกส์ส่วนใหญ่จะหลีกเลี่ยงการใช้ขดลวดเหนี่ยวนำ แต่หันมาออกแบบ

วงจรโดยใช้ตัวต้านทาน ตัวเก็บประจุ และ operational amplifier (หรือ op-amp) แทน. รายละเอียดของวงจร op-amp จะยังไม่กล่าวถึงในการทดลองนี้.

ในส่วนนี้จะแสดงให้เห็นว่า เราอาจใช้วงจร RC ที่ซับซ้อนขึ้นเพื่อให้ได้ผลทางความถี่ที่ต้องการ. วงจรที่จะใช้ศึกษาต่อไปได้แสดงไว้ในรูปที่ 1.12 ประกอบด้วย วงจร RC แบบอนุกรม และวงจร RC แบบขนาน. วงจร RC แบบอนุกรม นั้น จะมี impedance $Z_1 = \frac{1+j\omega RC}{j\omega C}$ ซึ่งที่ความถี่ต่ำ Z_1 จะมีค่าสูงมาก และ ที่ความถี่สูง Z_1 จะมีค่าลดลงแต่ไม่ต่ำกว่าค่าความต้านทาน R. ส่วนวงจร RC แบบขนาน จะมี impedance $Z_2 = \frac{R}{1+j\omega RC}$ ซึ่งที่ความถี่ต่ำ Z_2 มีค่าประมาณค่าความต้านทาน R และที่ความถี่สูง Z_2 จะมีค่าลดลงตาม ความถี่.

ถ้าเขียน transfer function จะได้ว่า

$$\frac{V_o}{V_i} = \frac{Z_2}{Z_1 + Z_2} = \frac{j\omega RC}{1 - (\omega RC)^2 + 3j\omega RC}$$
(1.5)

ถ้า $\omega = \frac{1}{RC}$ หรือ $f_{3dB} = \frac{1}{2\pi RC}$ จะทำให้ $\left| \frac{V_o}{V_i} \right| = \frac{1}{3}$ และค่านี้จะเป็นค่าสูงสุดตลอดทุกย่านความถี่.

ความถี่นี้จึงถูกเรียกว่าเป็น ความถี่กลาง (center frequency). ส่วนมุมของ $\frac{V_o}{V_i}$ ที่ความถี่ดังกล่าวจะมีค่า เท่ากับ 0 องสา. ที่ความถี่อื่น $\left|\frac{V_o}{V_i}\right|$ จะมีค่าน้อยกว่านี้. ถ้าเขียน Bode plot ของสมการ 1.5 จะได้กราฟดัง แสดงในรูปที่ 1.13. จากรูปที่ 1.13 ก จะเห็นว่า วงจรจะให้ความถี่ $\omega_o = \frac{1}{RC}$ (หรือ $f_o = \frac{1}{2\pi RC}$) ผ่านได้ดี ที่สุด. เราจึงใช้วงจรนี้เลือกความถี่ได้. ลักษณะการทำงานของวงจรนี้เรียกว่า band-pass filter. แต่การ แยกแยะความถี่ของวงจรนี้ยังไม่ดี เมื่อเทียบกับวงจร band-pass filter แบบอื่นๆ เนื่องจากความถี่ใกล้เคียง ยังคงมีขนาดไล่เลี่ยกับขนาดสูงสุด.

เราจะนิยามคำว่า bandwidth (หรือ BW)ให้หมายถึง ขนาดช่วงความถี่ที่กำลังงานลดลงจากค่าสูงสุด แต่ยังมากกว่าหรือเท่ากับครึ่งหนึ่งของกำลังงานสูงสุด. ดังนั้น จากจุดสูงสุดของกราฟในรูปที่ 1.13 ก ลดลง ไปประมาณ 3 dB ให้อ่านความถี่ทั้งสองด้านของค่าสูงสุด แล้วนำค่าความถี่มาลบกัน จะได้ค่า bandwidth ซึ่ง ในรูปที่ 1.13 ก นี้ ก็คือ 3.30-0.30 = 3 rad/s. ค่าคุณภาพการแยกแยะความถี่ของวงจร หรือ quality factor (Q) จะเท่ากับ ค่าความถี่ที่ให้กำลังงานสูงสุด หารด้วยค่า bandwidth ($Q = \frac{\omega_o}{BW(rad/s)} = \frac{f_o}{BW(Hz)}$). สำหรับ

วงจรนี้ ค่า Q จะเท่ากับ 1/3=0.333. วงจรอิเล็กทรอนิกส์แบบอื่นๆ สามารถให้ค่า Q มากกว่า 10 จนถึงหลาย ร้อยได้.

รูปที่ 1.13 Bode plot ของวงจรในรูปที่ 1.12.

1.6. การตอบสนองความถี่ของวงจร *RLC*

เนื่องจากขดลวดเหนี่ยวนำ L มี impedance เป็น $+j\omega L$ และตัวเก็บประจุ C มี impedance เป็น $\frac{-j}{\omega C}$ การต่ออุปกรณ์ทั้งสองแบบลงในวงจรเคียวกัน จะทำให้เกิด impedance หักล้างกันได้หมดที่บาง ความถี่ (เช่น $f=rac{1}{2\pi\sqrt{LC}}$). เราสามารถใช้ผลจากการหักล้าง impedance กันของทั้งสองอุปกรณ์นี้ เพื่อทำ ให้เกิดการตอบสนองความถี่แบบ band-pass หรือ band-reject ได้ ดังแสดงไว้ในรูปที่ 1.14 ก และ ข ตามถำดับ.

1.7. อุปกรณ์ที่ใช้ในการทดลอง

$R 470 \Omega$	2	ตัว
C 0.1 µF	2	ตัว
L 47 mH	1	ตัว
Digital Voltmeters	1	เครื่อง
Oscilloscope	1	เครื่อง
Signal Generator	1	เครื่อง

1.8. การทดลอง

1.8.1. วัดการตอบสนองความถี่ของวงจร *RC* High Pass Filter

ต่อวงจร high-pass filter ดังแสดงในรูปที่ 1.1 ข. คำนวณค่า $f_{3dB} = \frac{1}{2\pi RC} =$Hz. ให้แรงดันอินพุท V_i เป็นรูปคลื่นใชน์ มีขนาด 5 Vpp. ป้อนความถี่ตามที่กำหนดให้ในตารางที่ 1.1 และ บันทึกผลที่ได้ลงในตารางที่ 1.1 เช่นเดียวกัน. นำผลที่ได้จากการวัดและทฤษฎี ทั้งค่า $20\log \frac{V_o}{V_i}$ และ $\angle \frac{V_o}{V_i}$ plot ลงในกราฟ ดังแสดงไว้ในรูปที่ 1.4 ก และรูปที่ 1.4 ข เพื่อเปรียบเทียบผลจากการทดลองและ ทฤษฎี.

ตารางที่ 1.1 บันทึกผลการทดลอง high-pass filter.

f(Hz)	$V_{_i}$ ($\mathrm{V}_{_{\mathrm{pp}}}$) ที่วัดได้	$V_{_{\sigma}}$ $(\mathrm{V}_{_{\mathrm{pp}}})$ ที่วัดได้	$20\log rac{V_o}{V_i}$	$20\log rac{V_o}{V_i}$	$\angle \frac{V_o}{V_i}$ (deg.)	$\angle \frac{V_o}{V_i}$ (deg.)
	M TAN TAN TAN TAN	AI JAI PAI	ที่วัดได้	จากทฤษฎี	ที่วัดได้	จากทฤษฎี
100				-3.06E+01		88.3
200				-2.46E+01		86.6
500				-1.67E+01		81.6
800				-1.28E+01		76.7
1k				-1.10E+01		73.5
2k				-5.87E+00		59.4
$1/(2\pi RC)$				-3.01E+00		45.0
5k				-1.64E+00		34.1
8k				-7.16E-01		22.9
10k				-4.71E-01		18.7
20k				-1.23E-01		9.6
50k				-1.99E-02		3.9

ในรายงานให้แสดงการคำนวณค่า $20\log \frac{V_o}{V_i}$ และ $\angle \frac{V_o}{V_i}$ ทางทฤษฎีอย่างละเอียดที่ความถี่ 3 dB และอภิปรายผลการทดลองเทียบกับผลจากทฤษฎี โดยจะต้องเขียนกราฟผลจากการทดลองและทฤษฎีลงบน พื้นที่กราฟเดียวกันด้วย.

1.8.2. วัดการตอบสนองของวงจร *RC* High Pass Filter กับสัญญาณสี่เหลี่ยม

ใช้วงจรจากการทดลองที่แล้ว. ให้แรงดัน $v_i(t)$ เป็นสัญญาณสี่เหลี่ยม ที่มีขนาด $5V_{pp}$ ความถึ่ เท่ากับ 1kHz และมี duty cycle 50%. ให้ต่อ $v_i(t)$ และ $v_o(t)$ เข้ากับออสซิล โลส โคปช่องสัญญาณที่ 1 และ 2 ตามลำดับ. ปรับสเกลต่างๆให้เหมาะสม และวาดรูปคลื่นบนจอออสซิล โลส โคปบนพื้นที่วาดกราฟในรูป ที่ 1.15.

รูปที่ 1.15 พื้นที่วาดกราฟที่ได้จากจอออสซิลโลสโคป ในการทดลองข้อ 1.8.2. ในรายงานให้อภิปรายผลที่ได้จากการทดลองเทียบกับทฤษฎี (รูปที่ 1.7 $v_o(t)$ ของวงจรรูปที่ 1.5 ข).

1.8.3. วัดการตอบสนองของวงจร *RC* High Pass Filter กับสัญญาณ AC และ DC ปนกัน

ใช้วงจรจากการทดลองที่แล้ว. ให้ปรับ dc offset ของ function generator ขึ้นลงอย่างช้าๆ แล้ว บันทึกผลการเปลี่ยนแปลงของค่า average (หรือ dc) ของแรงคัน $v_i(t)$ และ $v_o(t)$ ที่อ่านได้จาก ออสซิลโลสโคป.

ในรายงานให้อธิบายว่า ทำไมค่า dc ของแรงคัน $v_i(t)$ จึงไม่ส่งผลต่อ $v_a(t)$.

1.8.4. การวัดค่ำความต้านทานของขดลวดเหนี่ยวนำ

ใช้ Ohmmeter วัดค่าความต้านทานของขดลวดที่เตรียมไว้ให้และบันทึกผล.

ความต้ำนทานของขดลวด $R_L =$ _____Ohms

ถ้าขดลวดมีค่าความเหนี่ยวนำเท่ากับ 47 mH. ขดลวดนี้จะต้องทำงานที่ความถี่เท่าใด จึงจะทำให้ผล ของ reactance ของขดลวดมากกว่าผลจากความต้านทานของขดลวด 10 เท่า.

ความถี่ที่ทำให้
$$10R_L \leq \left|j2\pi fL\right| =$$
 ______ Hz (คำนวณ)

1.8.5. วัดการตอบสนองความถี่ของวงจร $extbf{\emph{RC}}$ ที่ซับซ้อนขึ้น

ต่อวงจรตามรูปที่ 1.12. ให้แรงดันอินพุท V_i เป็นรูปคลื่นไซน์ มีขนาด 5 Vpp. ป้อนความถี่ตามที่ กำหนดให้ในตางรางที่ 1.2 และบันทึกผลที่ได้ลงในตารางที่ 1.2 เช่นเดียวกัน. นำผลที่ได้จากการวัดและ ทฤษฎี ทั้งค่า $20\log \frac{V_o}{V_i}$ และ $\angle \frac{V_o}{V_i}$ plot ลงในกราฟ ดังแสดงไว้ในรูปที่ 1.13 เพื่อเปรียบเทียบผลจากการ ทดลองและทฤษฎี.

ตารางที่ 1.2 บันทึกผลการทคลองวงจร RC ที่ซับซ้อนขึ้น.

f(Hz)	$V_{_i}$ ($\mathrm{V}_{_{\mathrm{pp}}}$) ที่วัดได้	$V_{_{o}}$ ($\mathrm{V}_{_{\mathrm{pp}}}$) ที่วัคได้	$20\log \frac{V_o}{V_i}$	$20\log rac{V_o}{V_i}$	$\angle \frac{V_o}{V_i}$ (deg.)	$\angle \frac{V_o}{V_i}$ (deg.)
	ମ _ି ମଧ୍ୟ ମଧ୍ୟ ହୋଇଥିଲ	งเด ทวดเด 	ที่วัดได้	จากทฤษฎี	ที่วัดได้	จากทฤษฎี
100				-3.06E+01		84.9
200				-2.47E+01		79.9
500				-1.72E+01		65.6
800				-1.40E+01		53.1
1k				-1.27E+01		45.9
2k				-1.01E+01		20.2
$1/(2\pi RC)$				-9.54E+00		0.0
5k				-9.84E+00		-14.9
8k				-1.11E+01		-32.9
10k				-1.20E+01		-41.1
20k				-1.62E+01		-62.4
50k				-2.35E+01		-78.5

จากกราฟ

3dB Bandwidth (BW) = _____Hz (ค่าทางทฤษฎีเท่ากับ 3/(2πRC))

Quality Factor (Q) = _____(ค่าทางทฤษฎีเท่ากับ 1/3)

ในรายงานให้แสดงการคำนวณค่า $20\log \frac{V_o}{V_i}$ และ $\angle \frac{V_o}{V_i}$ ทางทฤษฎีอย่างละเอียดที่ความถี่ที่ทำให้ ขนาดของ $20\log \frac{V_o}{V_i}$ สูงสุด และอภิปรายผลการทดลองเทียบกับผลจากทฤษฎี โดยจะต้องเขียนกราฟผล จากการทดลองและทฤษฎีลงบนพื้นที่กราฟเดียวกันด้วย.

1.9. สรุปสิ่งที่เรียนรู้

ให้สรุปสิ่งที่เรียนรู้ทั้งหมดจากการทดลองแยกเป็นอีกหัวข้อหนึ่งในท้ายรายงาน โดยสรุปเรียง ตามลำดับเรื่องที่ทดลอง.