APPLIED STATISTICAL METHODS

Mathematics Institute
Faculty of Mathematics and Computer Science
Wroclaw University – Fall 2015

LECTURE 5
ASSOCIATION - CORRELATION

Wroclaw, 5 - 9 October, 2015

The framework and problem.

Suppose we have a set of iid observations of two continuous variables X and Y. Such observations come in pairs: $(X_1, Y_1), (X_2, Y_2), \ldots, (X_n, Y_n)$). We are interested in any association between X and Y. To determine certain types of association, we use measures of association, also called sometimes measures of correlation. The main three measures of association are:

- Pearson's r (sample correlation coefficient),
- Kendall's τ , and
- Spearman's ρ .

The area of statistics that works on association between variables is called **Correlation**Analysis.

CORRELATION ANALYSIS

- STEP 1. Plot the data on a scatter plot and decide if you see any pattern in the data.
- STEP 2. For some patterns we can compute measures of association. These are **monotonic** patterns/relations.

Monotonic patterns between X and Y:

- Increasing pattern: as X increases, Y increases.
- ullet Decreasing pattern: as X increases, Y decreases.

Figure: Types of association: left panel: monotonic linear; center panel: monotonic nonlinear; right panel: not monotonic.

Measures of correlation for monotonic relationships

- ullet Kendall's au and Spearman's ho
 - Detects any monotonic relation;
 - Nonparametric-based on ranks, so resistant to outliers.
- Pearson's r
 - · Detects only linear relations,
 - Influenced by outliers.

Common features of all measures of correlation:

- All have values between -1 and 1,
- Correlation=0 means no monotonic relation (τ, ρ) , no linear relation r;
- Corr > 0: as X increases, then Y increases;
- Corr < 0: as X increases, then Y decreases.

Measures of correlation for monotonic relationships

Figure: Types of association: Nonlinear but perfect monotonic association.

The scatterplot shows a nonlinear monotonic relation. For this data Pearson r= 0.948, and Spearman's ρ = 1.

Measures of correlation for monotonic relationships

Figure: Types of association: Nonlinear and non monotonic but perfect relationship.

The scatterplot shows a nonlinear and non monotonic relation. For this data Pearson r= -0.053, and Spearman's $\rho=-0.032$.

TESTING STATISTICAL SIGNIFICANCE OF CORRELATION

The tests will have the same type of null and alternative hypotheses:

Ho: corr=0 and Ha: corr \neq 0.

The tests differ for different measures of association.

NOTE: When one variable measures time or location, correlation provides information about temporal or spatial trends.

Pearson's correlation r.

This is the "usual" correlation which measures the strength of **linear** association between two variables. For a data set $(X_1, Y_1), (X_2, Y_2), \ldots, (X_n, Y_n)$, the sample Pearson correlation coefficient r is given by

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right),$$

where \bar{x} and \bar{y} are sample means of the X's and Y's, and s_x and s_y are sample standard deviations of X's and Y's.

TESTING STATISTICAL SIGNIFICANCE OF CORRELATION,

contd

To test hypotheses about significance of Pearson correlation we assume that the data comes from a bivariate normal distribution.

Hypotheses: Ho: corr=0 and Ha: $corr \neq 0$. Here by correlation we understand the true population correlation, which we estimate using sample correlation r.

The test statistic for testing above hypotheses is

$$t_r = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}.$$

Under Ho: t_r has a t-distribution with n-2 degrees of freedom. To find the p-value for the test, we use t-tables or software. We can also do the test directly in MINITAB.

Spearman's correlation ρ .

- Spearman's ρ is the Pearson correlation computed on the ranks of the X's and Y's.
- We start with computing the ranks of X's and Y's independently! Ranks tell us where a given data value stands in the sorted data set.
- Rank of the smallest data value is 1, rank of the second smallest data value is 2,
 etc. Rank of the largest value is n.
- We obtain: $(R_{X_1}, R_{X_2}, \dots, R_{X_n})$ and $(R_{Y_1}, R_{Y_2}, \dots, R_{Y_n})$. Once we have ranks, we can compute Spearman's ρ as Pearson correlation on the ranks.

Spearman's correlation ρ , contd.

- When we use the same test statistic as for testing about Pearson's correlation to test about Spearman's correlation, we only get **approximate** p-values.
- This is because the distribution of the test statistic in this case is not exactly, only approximately t-distributed.
- If the number of data pairs is over 20, the approximation of the test statistic with t-distribution works very well.
- Using the exact distribution of the test statistic we get critical regions given below.

Spearman's correlation- critical numbers.

n\ ^a	0.2	0.1	0.05	0.02	0.01	0.002	n\ ^a	8.2	0.1	0.05	0.02	0.01	0.002
4	1.000	1.000	-	-	-	-	18	0.317	0.401	0.472	0.550	0.600	0.692
5	0.800	0.900	1.000	1.000	-	-	19	0.309	0.391	0.460	0.535	0.584	0.675
6	0.657	0.829	0.886	0.943	1.000	-	20	0.299	0.380	0.447	0.522	0.570	0.662
7	0.571	0.714	0.786	0.893	0.929	1.000	21	0.292	0.370	0.436	0.509	0.556	0.647
8	0.524	0.643	0.738	0.833	0.881	0.952	22	0.284	0.361	0.425	0.497	0.544	0.633
9	0.483	0.600	0.700	0.783	0.833	0.917	23	0.278	0.353	0.416	0.486	0.532	0.621
10	0.455	0.564	0.648	0.745	0.794	0.879	24	0.271	0.344	0.407	0.476	0.521	0.609
11	0.427	0.536	0.618	0.709	0.755	0.845	25	0.265	0.337	0.398	0.466	0.511	0.597
12	0.406	0.503	0.587	0.678	0.727	0.818	26	0.259	0.331	0.390	0.457	0.501	0.586
13	0.385	0.484	0.560	0.648	0.703	0.791	27	0.255	0.324	0.383	0.449	0.492	0.576
14	0.367	0.464	0.538	0.626	0.679	0.771	28	0.250	0.318	0.375	0.441	0.483	0.567
15	0.354	0.446	0.521	0.604	0.654	0.750	29	0.245	0.312	0.368	0.433	0.475	0.558
16	0.341	0.429	0.503	0.582	0.635	0.729	30	0.240	0.306	0.362	0.425	0.467	0.549
17	0.328	0.414	0.488	0.566	0.618	0.711							

Figure: Critical values for the two-tailed test of association for Spearman's ρ .

To test hypotheses we are interested in, we use the "two-tailed" test critical numbers.

Kendall's correlation τ .

Kendall's correlation measures strength of a monotonic association and it is based on ranks. In order to compute Kendall's correlation from a sample we first classify the data pairs as **concordant** or **discordant**.

- Concordant pairs. A pair of data points (X_1, Y_1) and (X_2, Y_2) is called concordant iff when $X_2 > X_1$ then $Y_2 > Y_1$, i.e. as X increases, Y also increases.
- **Discordant pairs.** A pair of data points (X_1, Y_1) and (X_2, Y_2) is called discordant iff when $X_2 > X_1$ then $Y_2 < Y_1$, i.e. as X increases, Y decreases.

Example: Pairs (1,2) and (3,4) are concordant. Pairs (1,2) and (3,1) are discordant.

Kendall's correlation, contd.

In a data set we have n pairs (data points). We can do n(n-1)/2 comparisons. That is we can check n(n-1)/2 pairs of data points for concordance/discordance.

Let P = number of concordant pairs, and M = number of discordant pairs. Then, Kendall's τ is given by

$$\tau = \frac{P - M}{n(n-1)/2}.$$

- If all pairs are concordant, then P= n(n-1)/2 and M=0, so $\tau=1$ (as X increases Y increases).
- When all pairs are discordant, then M=n(n-1)/2 and P=0, so $\tau=-1$ (as X increases then Y decreases).
- ullet When $au=\pm 1$ we have a perfect monotonic relationship between X and Y.

Testing Kendall's correlation for significance

Test statistic is S = P - M.

Distribution of the test statistic is in tables for small samples. For large samples we have a large sample approximation of the distribution of the test statistic. The approximating distribution is normal. The approximation works well for 10 or more observations.

$$Z_{s} = \begin{cases} \frac{s-1}{\sigma_{s}} & \text{if} \quad s > 0\\ 0 & \text{if} \quad s = 0\\ \frac{s+1}{\sigma_{s}} & \text{if} \quad s < 0, \end{cases}$$
 (1)

where $\sigma_s = \sqrt{(n/18)(n-1)(2n+5)}$, and statistic Z_s has approximately standard normal distribution. That means that when we use approximate distribution of Z_s , we use standard normal distribution for computing p-values. A table of p-values for the Kendall correlation test is in the lecture notes.

Correction for ties for Kendall's τ .

- When computing τ , note that tied values of X or Y produce 0, rather than a plus or minus to denote concordant or discordant pairs.
- \bullet Ties do not contribute to either P or M, and S and τ are computed exactly as before.
- An adjustment is required for the large sample approximation of the distribution of S. Namely, we need to change the standard deviation σ_S for the approximating normal.

Adjustment of σ_S **.**

We have to compute the number of ties and the number of values involved in every tie (number of tied values). Consider the following data set:

data values	1	1	1	1	1	2	2	2	3	5	5
data values contd.	7	9	10	10	14	18					

Table: Data for the ties example. The data was presorted.

- There are a total of 4 tied groups in the data set.
- The largest tied group of the data set is of 5 values (five 1's).
- There is no tied group of 4 values, but there are tied groups of 3 values (three 2s) and two tied groups of 2 values (two 5s and two 10s).
- Finally, for completeness, lets think of non-repeating values as ties of extent 1. We have five ties of extent 1 (3, 9, 9, 14, and 18).

Adjustment of σ_S , contd.

Let t_i denote the number of ties of extent i. For this data we have: $t_1=5$, $t_2=2$, $t_3=1$, $t_4=0$, and $t_5=1$. For any i>5, $t_i=0$. The corrected σ_S is given by:

$$\sigma_{S} = \sqrt{\frac{n(n-1)(2n+5) - \sum_{i=1}^{n} t_{i}(i)(i-1)(2i+5)}{18}}.$$

For our data, the corrected standard deviation is

$$\sigma_S = \sqrt{\frac{17 \cdot 16 \cdot 39 - 5 \cdot 1 \cdot 0 \cdot 7 - 2 \cdot 2 \cdot 1 \cdot 9 - 1 \cdot 3 \cdot 2 \cdot 11 - 1 \cdot 5 \cdot 4 \cdot 15}{18}} = \sqrt{567} = 23.81.$$