Chapter 4: Supervised Learning

Supervised vs. Unsupervised Learning

- Supervised learning (classification)
 - Supervision: The training data (observations, measurements, etc.) are accompanied by **labels** indicating the class of the observations
 - New data is classified based on the training set
- Unsupervised learning (clustering)
 - The class labels of training data is unknown
 - Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Prediction Problems: Classification vs. Numeric Prediction

- Classification
 - predicts categorical class labels (discrete or nominal)
 - classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data
- Numeric Prediction
 - models continuous-valued functions, i.e., predicts unknown or missing values
- Typical applications
 - Credit/loan approval:
 - Medical diagnosis: if a tumor is cancerous or benign
 - Fraud detection: if a transaction is fraudulent
 - Web page categorization: which category it is

Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction is training set
 - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set (otherwise overfitting)
 - If the accuracy is acceptable, use the model to classify new data
- Note: If the test set is used to select models, it is called validation (test) set

Process (1): Model Construction

NAME	RANK	YEARS	TENURED
M ik e	Assistant Prof	3	n o
Mary	Assistant Prof	7	y e s
B ill	P ro fe s s o r	2	y e s
Jim	Associate Prof	7	y e s
Dave	Assistant Prof	6	n o
Anne	Associate Prof	3	n o

IF rank = 'professor'
OR years > 6
THEN tenured = 'yes'

Process (2): Using the Model in Prediction

Naïve Bayes

Bayes' Theorem: Basics

- Total probability Theorem: $P(B) = \sum_{i=1}^{M} P(B|A_i)P(A_i)$
- Bayes' Theorem: $P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H)/P(\mathbf{X})$
 - Let X be a data sample ("evidence"): class label is unknown
 - Let H be a hypothesis that X belongs to class C
 - Classification is to determine $P(H | \mathbf{X})$, (i.e., posteriori probability): the probability that the hypothesis holds given the observed data sample \mathbf{X}
 - P(H) (prior probability): the initial probability
 - E.g., X will buy computer, regardless of age, income, ...
 - P(X): probability that sample data is observed
 - P(X|H) (likelihood): the probability of observing the sample X, given that the hypothesis holds
 - \bullet E.g., Given that **X** will buy computer, the prob. that X is 31..40, medium income

Prediction Based on Bayes' Theorem

• Given training data \mathbf{X} , posteriori probability of a hypothesis H, $P(H \mid \mathbf{X})$, follows the Bayes' theorem

$$P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H)/P(\mathbf{X})$$

- Informally, this can be viewed as
 posteriori = likelihood x prior/evidence
- Predicts \mathbf{X} belongs to C_i iff the probability $P(C_i | \mathbf{X})$ is the highest among all the $P(C_k | \mathbf{X})$ for all the k classes
- Practical difficulty: It requires initial knowledge of many probabilities, involving significant computational cost

Classification Is to Derive the Maximum Posteriori

- Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n-D attribute vector $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$
- Suppose there are m classes $C_1, C_2, ..., C_m$.
- Classification is to derive the maximum posteriori, i.e., the maximal $P(C_i | \mathbf{X})$
- This can be derived from Bayes' theorem

$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

• Since P(X) is constant for all classes, only

needs to be maximized $P(C_i|\mathbf{X}) = P(\mathbf{X}|C_i)P(C_i)$

Naïve Bayes Classifier

• A simplified assumption: attributes are conditionally independent (i.e., no dependence relation between attributes):

$$P(\mathbf{X} \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i) = P(x_1 \mid C_i) \times P(x_2 \mid C_i) \times ... \times P(x_n \mid C_i)$$

- This greatly reduces the computation cost: Only counts the class distribution
- If A_k is categorical, $P(x_k | C_i)$ is the # of tuples in C_i having value x_k for A_k divided by $|C_{i,D}|$ (# of tuples of C_i in D)
- If A_k is continous-valued, $P(x_k | C_i)$ is usually computed based on Gaussian distribution with a mean μ and standard deviation σ

$$g(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$P(\mathbf{X} \mid C_i) = g(x_k, \mu_{C_i}, \sigma_{C_i})$$

and $P(x_k | C_i)$ is

Naïve Bayes Classifier: Training Dataset

Class:

C1:buys_computer

C2:buys_computer

Data to be classified

X = (age <= 30,

Income = medium,

Student = yes

Credit_rating = Fair

age	income	<mark>studen</mark> t	credit_rating	_com
<=30	high	no	fair	no
<=30	high	no	excellent	no
317.646	high	no	fair	yes
≥490'	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Naïve Bayes Classifier: An Example

income studentredit_rating

no

no

no

yes

yes

yes

no

yes

yes

yes

no

yes no excellent

excellent

excellent

excellent

excellent

excellent

fair

fair

no

yes

yes

ves

no

yes

<=30 <=30

31...40

<=30

<=30

31...40

>40

high

high

low

low

medium

medium

medium

medium

medium

- $P(C_i)$: $P(buys_computer = "yes") = 9/14 = 0.643$ $P(buys_computer = "no") = 5/14 = 0.357$
- Compute $P(X | C_i)$ for each class

```
P(age = "<=30" | buys\_computer = "yes") = 2/9 = 0.222
```

 $P(age = "\le 30" \mid buys_computer = "no") = 3/5 = 0.6$

P(income = "medium" | buys_computer = "yes") = 4/9 = 0.44 31...40 high medium"

P(income = "medium" | buys_computer = "no") = 2/5 = 0.4

P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667

P(student = "yes" | buys_computer = "no") = 1/5 = 0.2

P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667

P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4

- X = (age <= 30, income = medium, student = yes, credit_rating = fair)
- $P(X | C_i)$: $P(X | buys_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044$

 $P(X | buys_computer = "no") = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019$

 $P(X | C_i)*P(C_i): P(X | buys_computer = "yes") * P(buys_computer = "yes") = 0.028$ $P(X | buys_computer = "no") * P(buys_computer = "no") = 0.007$

Therefore, X belongs to class ("buys_computer = yes")

WHY NEAREST NEIGHBOR?

- Used to classify objects based on closest training examples in the feature space
 - Feature space: raw data transformed into sample vectors of fixed length using feature extraction (Training Data)
- Top 10 Data Mining Algorithm
 - ICDM paper December 2007
- Among the simplest of all Data Mining Algorithms
 - Classification Method
- Implementation of lazy learner
 - All computation deferred until

NEAREST NEIGHBOR CLASSIFICATION

- Nearest Neighbor Overview
- k Nearest Neighbor

- Requires 3 things:
 - Feature Space(Training Data)
 - Distance metric
 - to compute distance between records
 - The value of k
 - the number of nearest neighbors to retrieve from which to get majority class
- To classify an unknown record:
 - Compute distance to other training records
 - Identify *k* nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record

- Common Distance Metrics:
 - Euclidean distance(continuos distribution)

$$d(p,q) = \sqrt{\sum (p_i - \overline{q_i})^2}$$

Hamming distance (overlap metric)

```
bat (distance = 1) toned (distance = 3)

Cat roses
```

Discrete Metric(boolean metric)

if
$$\mathbf{X} = \mathbf{y}$$
 then $\mathbf{d}(\mathbf{X}, \mathbf{y}) = 0$. Otherwise, $\mathbf{d}(\mathbf{X}, \mathbf{y}) = 1$

- Determine the class from *k* nearest neighbor list
 - Take the majority vote of class labels among the k-nearest neighbors
 - Weighted factor w = 1/d(generalized linear interpolation) or $1/d^2$

- Belongs to square class
- Belongs to triangle class
- k = 7:
- Belongs to square class

- Choosing the value of *k*:
 - If *k* is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes
 - Choose an odd value for *k*, to eliminate ties

- Accuracy of **all** NN based classification, prediction, or recommendations depends solely on a data model, no matter what specific NN algorithm is used.
- Scaling issues
 - Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes.
 - Examples
 - Height of a person may vary from 4' to 6'
 - Weight of a person may vary from 100lbs to 300lbs
 - Income of a person may vary from \$10k to \$500k
- Nearest Neighbor classifiers are lazy learners
 - No pre-constructed models for classification

A NEAREST NEIGHBUR

ADVANTAGES

- Simple technique that is easily implemented
- Building model is inexpensive
- Extremely flexible classification scheme
 - does not involve preprocessing
- Well suited for
 - Multi-modal classes (classes of multiple forms)
 - Records with multiple class labels
- Asymptotic Error rate at most twice Bayes rate
 - Cover & Hart paper (1967)
- Can sometimes be the best method
 - Michihiro Kuramochi and George Karypis, Gene Classification using Expression Profiles: A Feasibility Study, International Journal on Artificial Intelligence Tools. Vol. 14, No. 4, pp. 641-660, 2005
 - K nearest neighbor outperformed SVM for protein function prediction using expression profiles

k NEAREST NEIGHBOR DISADVANTAGES

- Classifying unknown records are relatively expensive
 - Requires distance computation of k-nearest neighbors
 - Computationally intensive, especially when the size of the training set grows
- Accuracy can be severely degraded by the presence of noisy or irrelevant features

Height (in cms)	Weight (in kgs)	T Shirt Size
158	58	M
158	59	M
158	63	M
160	59	M
160	60	M
163	60	M
163	61	M
160	64	L
163	64	L
165	61	L
165	62	L
165	65	L
168	62	L
168	63	L
168	66	L
170	63	L
170	64	L
170	68	L

- Step 1: Calculate Similarity based on distance function
- New customer named 'Monica' has height 161cm and weight 61kg.

Euclidean:

$$d(x, y) = \sqrt{\sum_{i=1}^{m} (x_i - y_i)^2}$$

Manhattan / city - block :

$$d(x,y) = \sum_{i=1}^{m} |x_i - y_i|$$

- = $SQRT((161-158)^2+(61-58)^2)$
- Similarly, we will calculate distance of all the training cases with new case and calculates the rank in terms of distance. The smallest distance value will be ranked 1 and considered as nearest neighbor.

• Step 2 : Find K-Nearest Neighbors

	f= SQRT((\$A\$21-A6)^2+(\$B\$21-B6)^2)						
	Α	В	С	D	Е		
1	Height (in cms)	Weight (in kgs)	T Shirt Size	Distance			
2	158	58	М	4.2			
3	158	59	М	3.6			
4	158	63	М	3.6			
5	160	59	м	2.2	3		
6	160	60	M	1.4	1		
7	163	60	M	2.2	3		
8	163	61	M	2.0	2		
9	160	64	L	3.2	5		
10	163	64	L	3.6			
11	165	61	L	4.0			
12	165	62	L	4.1			
13	165	65	L	5.7			
14	168	62	L	7.1			
15	168	63	L	7.3			
16	168	66	L	8.6			
17	170	63	L	9.2			
18	170	64	L	9.5			
19	170	68	L	11.4			
20							
21	161	61					

Assumptions of KNN

• 1. Standardization

When independent variables in training data are measured in different units, it is important to standardize variables before calculating distance

$$Xs = \frac{X - mean}{s. d.}$$

$$Xs = \frac{X - mean}{max - min}$$

$$Xs = \frac{X - min}{max - min}$$

	Α	В	С	D	Е
1		Weight	T Shirt Size	Distance	
2	-1.39	-1.64	М	1.3	
3	-1.39	-1.27	M	1.0	
4	-1.39	0.25	M	1.0	
5	-0.92	-1.27	М	0.8	4
6	-0.92	-0.89	М	0.4	1
7	-0.23	-0.89	М	0.6	3
8	-0.23	-0.51	М	0.5	2
9	-0.92	0.63	L	1.2	
10	-0.23	0.63	L	1.2	
11	0.23	-0.51	L	0.9	5
12	0.23	-0.13	L	1.0	
13	0.23	1.01	L	1.8	
14	0.92	-0.13	L	1.7	
15	0.92	0.25	L	1.8	
16	0.92	1.39	L	2.5	
17	1.39	0.25	L	2.2	
18	1.39	0.63	L	2.4	
19	1.39	2.15	L	3.4	
20					
21	-0.7	-0.5			

Outlier

• Low k-value is sensitive to outliers and a higher K-value is more resilient to outliers as it considers more voters to decide prediction

KNN Exercise

• We have a data from questionnaires survey and objective testing with two attributes(acid durability and strength) to classify whether a special paper tissue is good or not. Here are four training samples .

 Now the factory produces a new paper tissue that pass laboratory test

X1= Acid durability (seconds)	X2=Strength (kg/m2)	Y=Classificatio n
7	7	Bad
7	4	Bad
3	4	Good
1	4	Good

with X1=3 and X2=7, without another expensive survey can we guess what the classification of new tissue is

Step 1:Determine parameter k= number of nearest neighbors.
Suppose K=3

Step 2: Calculate the distance between query instance and all the training samples.

X1= Acid durability (seconds)	X2=Strength (kg/m2)	Distance
7	7	4
7	4	5
3	4	3
1	4	3.6

• Step3: Sort the distance and determine the nearest neighbor based on the Kth minimum distance.

X1= Acid durability (seconds)	X2=Strong th (kg/m2)	Distance	Rank	is it included in 3NN?
7	7	4	3	YES
7	4	5	4	No
3	4	3	1	YES
1	4	3.6	2	YES

- Step 4: Use simple majority of the category of nearest neighbour as the prediction value for query instance.
- Therefore we have 2 good and one bad . Since 2>1.
 a new paper tissue that pass laboratory test with X1=3 and X2=7 is included in Good category