Discrete Mathematics

Logical Equivalence

- Tautology, Contradiction, Logical Equivalence
- Logical Equivalence using Truth Table
- Logical Equivalence using Laws

IMDAD ULLAH KHAN

Logical Equivalence

Two compound propositions R and S are equivalent if $R \leftrightarrow S$ is a tautology

- $R \equiv S$, $R \Leftrightarrow S$, R is equivalent to S
- \blacksquare $R \equiv S$ if whenever R is true, S is true and vice-versa
- They have the same truth values
- The definition of equivalence follows from bicondintional statement

Р	Q	$P \leftrightarrow Q$
Т	Т	T
T	F	F
F	Т	F
F	F	T

■ $P \leftrightarrow Q$ is true when P = Q

Logical Equivalence using Truth Tables

- Two compound propositions are logically equivalent if their truth values are equal for all possible combinations of truth values of atomic propositions (variables)
- More atomic propositions mean larger truth tables

ICP 1-7 How many rows are there in the truth table of a compound proposition made up of n atomic propositions?

- a) n
- **b)** 2n
- n^2
- d) 2^n

Each new proposition doubles the number of rows of truth table

This method becomes difficult and error prone and soon impossible

- To prove two compound propositions R and S logically equivalent
- Start with one compound proposition (say *R*) and replace it with an equivalent compound proposition using "established equivalences"
- These established equivalences are called "Laws"
- Continue doing this until we get the compound proposition S

Equivalence	Name
$ \begin{array}{c} p \wedge T \equiv p \\ p \vee F \equiv p \end{array} $	Idenitity Laws
$ \begin{array}{c} p \lor T \equiv T \\ p \land F \equiv F \end{array} $	Domination Laws
$ \begin{array}{c} p \lor p \equiv p \\ p \land p \equiv p \end{array} $	Idempotent Laws

Equivalence	Name
$\neg(\neg p) \equiv p$	Double Negation Laws
$ \begin{array}{c} p \lor \neg p \equiv T \\ p \land \neg p \equiv F \end{array} $	Negation Laws
$ egin{aligned} \neg(p \lor q) &\equiv \neg p \land \neg q \\ \neg(p \land q) &\equiv \neg p \lor \neg q \end{aligned} $	De Morgan's Laws
$p o q \equiv \neg p \lor q$	Implication Law

Equivalence	Name
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative Laws
$(p \lor q) \lor r \equiv p \lor (q \lor r) (p \land q) \land r \equiv p \land (q \land r)$	Associative Laws
$ \begin{array}{c} p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) \\ p \land (q \lor r) \equiv (p \land q) \lor (p \land r) \end{array} $	Distributive Laws

$$((s \land q) \lor \neg p) \lor (p \to p) \lor (\neg q \land p)$$
 is a tautology

$$((s \wedge q) \vee \neg p) \vee (p \rightarrow p) \vee (\neg q \wedge p)$$

$$\equiv ((s \wedge q) \vee \neg p) \vee (\neg p \vee p) \vee (\neg q \wedge p)$$

$$\equiv ((s \wedge q) \vee \neg p) \vee T \vee (\neg q \wedge p)$$

$$\equiv T \vee (\neg q \wedge p)$$

$$\equiv T$$

Original

Implication Law

Negation Law

Dominat. Law

Dominat. Law

Is
$$(q \land p) \lor \neg (q \rightarrow p) \equiv q$$
?

$$(q \wedge p) \vee \neg (q \rightarrow p)$$

$$\equiv (q \land p) \lor \neg (\neg q \lor p)$$

$$\equiv (q \land p) \lor (\neg(\neg q) \land \neg p)$$

$$\equiv (q \wedge p) \vee (q \wedge \neg p)$$

$$\equiv q \wedge (p \vee \neg p)$$

$$\equiv q \wedge T$$

$$\equiv q$$

Original

Implication Law

De Morgan's Law

Double Negation Law

Distributive Law

Negation Law

Domination Law

ICP 1-9 Is
$$(P \to R) \lor (Q \to R) \equiv (P \land Q) \to R$$
?

$$(P \to R) \lor (Q \to R)$$

$$\equiv (\neg P \lor R) \lor (Q \to R)$$

$$\equiv (\neg P \lor R) \lor (\neg Q \lor R)$$

$$\equiv (\neg P \lor \neg Q) \lor (R \lor R)$$

$$\equiv (\neg P \lor \neg Q) \lor R$$

$$\equiv \neg (P \land Q) \lor R$$

$$\equiv (P \land Q) \to R$$

$$= \mathsf{RHS}$$

Original LHS
Implication Law
Implication Law
Associative Law
Idempotent Law
DeMorgan's Law
Implication Law

Logical Equivalence using Laws: Summary

- Logical Equivalence Laws are established equivalences
- Verify using truth tables that they are indeed equivalent
- To show equivalence of compound propositions R and S
- Start with one (say R) and with a series of applications of equivalence laws derive S