ML Handbook

Сергей Полянских

Оглавление

Предисловие

В данной книге описаны основные понятия, методы и подходы, широко используемые в современном DS и ML. Обычно, свободное владение этими понятиями необходимо для правильного понимания как основных, так и продвинутых методов ML и по умолчанию предполагается от DS специалиста.

Здесь собраны разные определения, встречавшиеся автору в научных статьях по ML и на собеседованиях. Охвачены: теория вероятностей, классическая и байесовская статистика, некоторые вопросы мат. анализа.

Освещение вопросов ни в коем случае не претендует на полноту. Основная цель книги - составить расширенный глоссарий основных понятий и подходов, встретившихся автору в процессе работы в области ML.

Обозначения

DS - дата саенс

ML - машинное обучение RV - случайная величина

Глава 1

Математика

В этой главе описаны основные математические понятия, необходимые для правильного понимания как основных, так и продвинутых методов ML. Охвачены: теория вероятностей, классическая и байесовская статистика, некоторые вопросы мат. анализа. Освещение вопросов ни в коем случае не претендует на полноту. Основная цель - составить расширенный глоссарий основных понятий и подходов, встретившихся автору в процессе работы в области ML.

1.1 Случайная величина

Случайной величиной (RV) называется числовая функция X, определенная на некотором множестве элементарных исходов Ω (обычно подмножество $\mathbb R$ или $\mathbb R^n$),

$$X:\Omega\to\mathbb{R}.$$

 ${\rm C}$ прикладной точки зрения на ${\rm RV}$ обычно смотрят как на генераторы случайных чисел с заданным распределением.

Примеры:

- Рост людей, взятых из некоторой группы.
- Цвет фиксированного пикселя изображения, взятого из некоторого множества изображений.
- Некоторый признак из датасета ML задачи.

1.2 Распределение случайной величины

Если RV принимает дискретное множество значений $x_1, x_2, ...,$ то она полностью определяется значениями вероятностей: $p_k = \mathbb{P}(X = x_k)$.

Если множество значений RV не дискретно, то RV может быть описана своей функцией распределения (CDF, Cumulative Distribution Function): $F(x) = \mathbb{P}(X < x)$

В DS в большинстве случаев CDF дифференцируемо. Производная от CDF называется плотностью распределения случайной величины: f(x) =F'(x). Таким образом, по определению $\mathbb{P}(a < X < b) = \int_a^b f(x) dx$

$$\mathbb{P}(a < X < b) = \int_a^b f(x) dx$$

Выборка 1.3

- Закон больших чисел 1.4
- Классический и байесовский подход 1.5