

i486 Level II Cache Module Family

Features

- Cache sizes of 64 KB, 256 KB, or 1 MB
- Tag width of 8 bits
- Independent dirty bit
- Operates with 33-MHz Intel i486 processors
- Zero-wait-state operation
- Constructed using standard asynchronous SRAMs
- 64-position (128-signal) dual-readout SIMM
- Single 5V (±5%) power supply
- TTL-compatible inputs/outputs

Functional Description

The CYM7490 module series is a family of cache memory subsystems for Intel i486-based systems. Each module contains two banks of 32-bit-wide data SRAM, an 8-bit-wide tag SRAM, and a single-bit-wide, separate I/O dirty SRAM. Bank sizes of 8K x 32, 32K x 32, and 128K x 32 are supported, yielding cache sizes of 64 kilobytes, 256 kilobytes, and 1 megabyte. The address signals for the data and dirty SRAMs are latched.

The module is configured as a 128-pin dual-readout single-in-line memory module (SIMM). It is constructed using standard asynchronous SRAMs in SOJ pack-

ages mounted on an epoxy laminate substrate. The SIMM contacts are plated with five micro-inches of gold over 100 micro-inches of nickel. Module dimensions are 3.85 inches long by 1.15 inches high by 0.33 inches thick.

These modules are designed for zero-waitstate operation in 486-based systems operating at a bus speed of 33 MHz. They are designed for compatibility with off-theshelf cache controllers and chipsets. The 15-ns device is built using data and tag SRAMs with an access time of 15 ns, while the 20-ns version is built with 15-ns tag SRAMs and 20-ns data SRAMs.

Dual-Readout SIMM Top View

```
GND ☐ 65
                                                  1 GND
         PD<sub>0</sub> | 66
PD<sub>2</sub> | 67
NC | 68
NC | 69
NC | 70
GND | 71
                                                 2 PD<sub>1</sub>
3 PD<sub>3</sub>
                                                  4 NC
                                                  5 6
                                                            NC
                                                           NC
                                                  7 🏻
                                                           GND
         NC  72
TAG<sub>7</sub> 73
                                                 8 9
                                                            NC
                                                            TAG<sub>6</sub>
                                                  9
           V<sub>CC</sub> ☐ 74
                                                10 □ V<sub>CC</sub>
         TAG<sub>5</sub> □ 75
                                                11 ☐ TĂĞ₄
12
                                                            TAG<sub>2</sub>
                                               13
14
                                                           GND
                                                            TAG<sub>0</sub>
                                               15 TAGWE
  V<sub>CC</sub>  80
DIRTYIN 81
                                               16  ∨<sub>CC</sub>
17  DIRTYOUT
  HACALE B2
GND 83
                                                18 □ NC
                                                19 GND
                                               20 □ HA<sub>5</sub>
            HA₄ ☐ 84
            HA<sub>6</sub> ☐ 85
                                                21 | HA<sub>7</sub>
                                               22 V<sub>CC</sub>
23 HA<sub>9</sub>
            V<sub>CC</sub> □ 86
         24 | HA<sub>11</sub>
                                                25 🗀
                                                           GND
         26 HA<sub>13</sub>
                                                27 HA<sub>15</sub>
                                                28 V<sub>CC</sub>
                                                       □ HĀ<sub>17</sub>
                                                29
         HA<sub>18</sub> ☐ 94
GND ☐ 95
                                               30 HA<sub>19</sub>
31 GND
      GND | 99
CDOE<sub>0</sub> | 100
GND | 101
CAWE<sub>0</sub> | 102
CAWE<sub>2</sub> | 103
GND | 104
HD<sub>0</sub> | 105
HD<sub>2</sub> | 106
V<sub>CC</sub> | 107
HD<sub>4</sub> | 108
HD<sub>6</sub> | 109
GND | 111
HD<sub>10</sub> | 112
V<sub>CC</sub> | 111
HD<sub>10</sub> | 111
HD<sub>11</sub> | 111
GND | 116
HD<sub>14</sub> | 115
GND | 116
HD<sub>16</sub> | 117
                                                35 GND
                                               39 ☐ CAWE<sub>3</sub>
                                               40 GND
41 HD<sub>1</sub>
42 HD<sub>3</sub>
                                                43 \ V<sub>CC</sub>
                                                44 HD<sub>5</sub>
                                                45 \ HD<sub>7</sub>
                                                46 GND
                                                       Б но₃
                                                47
                                                48 HD11
                                                49 □ V<sub>C</sub>C
                                                50 HD<sub>13</sub>
                                               51 HD<sub>15</sub>
52 GND
         GND | 116

HD<sub>16</sub> | 117

HD<sub>18</sub> | 118

V<sub>CC</sub> | 119

HD<sub>20</sub> | 120

HD<sub>22</sub> | 121

GND | 122

HD<sub>24</sub> | 123

HD<sub>26</sub> | 124

V<sub>CC</sub> | 125

HD<sub>28</sub> | 126

HD<sub>28</sub> | 126

HD<sub>28</sub> | 126

HD<sub>29</sub> | 127
                                                           HD<sub>17</sub>
                                                53
                                               54 HD<sub>19</sub>
                                                            V_{CC}
                                                55
                                                56 ☐ HD<sub>21</sub>
                                                57 HD<sub>23</sub>
                                                58 GND
                                                       □ HD<sub>25</sub>
                                                59
                                               60 ☐ HD<sub>27</sub>
                                               62 HD<sub>29</sub>
          HD<sub>30</sub> □ 127
                                               63 ☐ HD<sub>31</sub>
           GND ☐ 128
                                                64 GND
```

7490-2

Signal Descriptions

Signal	Туре	Description
TAG ₇₋₀	I/O	Cache Tag Data Bus
TAGWE	I	Tag Write Enable
DIRTYWE	I	Dirty Bit Write Enable
DIRTYIN	I	Dirty Bit In
DIRTYOUT	0	Dirty Bit Out
HACALE	I	Host Address Bus Latch Enable
HA ₁₉₋₄	I	Host Address Bus.
$\overline{\text{CACS}}_{1-0}$	I	Cache Memory Chip Selects
$HA3B_{1-0}$	I	Host Address A3 Bank Select
$\overline{\text{CDOE}}_{1-0}$	I	Cache Data Output Enable
CAWE _{3−0}	I	Cache Write Enables
HD ₃₁₋₀	I/O	Host Data Bus
PD ₃₋₀	0	Presence Detect Pins (see below)
NC	_	Reserved for future use.

Presence Detect Scheme

Device	PD ₃	PD ₂	PD ₁	PD ₀
CYM7490	Open	Open	Open	GND
CYM7491	Open	Open	GND	Open
CYM7492	Open	Open	GND	GND

Storage Temperature $\dots -55^{\circ}$ C to $+150^{\circ}$ C

Electrical Characteristics Over the Operating Range

			CYM7490-15, 20 CYM7491-15, 20 CYM7492-15, 20		
Parameter	Description	Test Conditions	Min.	Min. Max.	
V_{CC}	Supply Voltage		4.5	5.5	V
T _{AMB}	Ambient Temperature	Commercial	0	70	°C
V _{OH}	Output HIGH Voltage	$V_{\rm CC}$ = Min. $I_{\rm OH}$ = -4.0 mA	2.4		V
V_{OL}	Output LOW Voltage	$V_{CC} = Min. I_{OL} = 80 \text{ mA}$		0.4	V
V_{IH}	Input HIGH Voltage Level		2.2	V_{CC}	V
$V_{\rm IL}$	Input LOW Voltage Level		-0.5	0.8	V
L _{IN}	Input Leakage Output	$V_{CC} = Max., 0 \le V_{IN} \le V_{SS}$		±20	μΑ
I _{OUT}	Operating Leakage Current	$\overline{\text{CS}} = V_{\text{IH}}, V_{\text{CC}} = \text{Max.}, V_{\text{SS}} \le V_{\text{OUT}} \le V_{\text{CC}}$		±20	μΑ
I _{CC1}	Operating Current	$\overline{\text{CACSn}} = V_{\text{IL}}$, Outputs Open, $f = f_{\text{MAX}}$		1300	mA
I_{SB1}	Standby Current – TTL Levels			800	mA
I_{SB2}	Standby Current – CMOS Levels			400	mA

Capacitance

Parameter	Description	Test Conditions	Max.	Unit
C_{ADDR}	Input Capacitance, HA ₁₉₋₄ , CAA3 ₁₋₀	f=1 MHz	50	pF
$C_{ m WE}$	Input Capacitance, CAWE ₁₋₀ , TAGWE	f=1 MHz	30	pF
C_{WE2}	Input Capacitance, DIRTYWE, HACALE	f=1 MHz	20	pF
C _{CSOE}	Input Capacitance, \overline{CACS}_{1-0} , \overline{CDOE}_{1-0}	f=1 MHz	50	pF
C_{DATA}	Input/Output Capacitance, HD ₃₁₋₀	f=1 MHz	90	pF
C_{TAG}	Input/Output Capacitance, TAG ₇₋₀ , DIRTYIN, DIRTYOUT	f=1 MHz	30	pF

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT OUTPUT $0 - \frac{167\Omega}{\sqrt{}}$ 1.73V

Switching Characteristics Over the Operating Range

		7490-15 7491-15 7492-15		7490-20 7491-20 7492-20		
Parameter	Parameter Description		Max.	Min.	Max.	Unit
ADDRESS LAT	ГСН		•	•	•	•
$t_{ m LPW}$	Latch Pulse Width	5		5		ns
$t_{ m LSD}$	Data Set-Up to ALE Positive	2		2		ns
t _{LHD}	Data Hold from ALE Positive	1.5		1.5		ns
READ CYCLE	- Data SRAM Read Timing			•	•	•
t_{RC}	Read Cycle Time	20		25		ns
t _{AA}	Address Access Time (Latch Transparent)		20		25	ns
t _{OE}	Output Enable to Output Valid		10		10	ns
t_{CE}	Chip Enable to Data Valid		15		20	ns
t _{OHA}	Data Hold After Address Change	3		3		ns
t _{LZCE}	Chip Enable to Outputs in Low Z	3		3		ns
t _{HZCE}	Chip Disable to Outputs in High Z		8		10	ns
t _{OLZ}	Output Enable to Outputs in Low Z	0		0		ns
t _{OHZ}	Output Disable to Outputs in High Z		8		10	ns
READ CYCLE	- Tag SRAM Read Timing		1	•	•	
t _{TDRC}	Read Cycle Time	15		20		ns
t _{TAA}	Address Access Time		15		20	ns
t _{TCE}	Chip Enable to Data Valid		15		20	ns
t _{TOHA}	Data Hold After Address Change	3		3		ns
t _{TLZCE}	Chip Enable to Outputs in Low Z	3		3		ns
t _{THZCE}	Chip Disable to Outputs in High Z		8		8	ns
READ CYCLE	- Dirty SRAM Read Timing		1	•		
t_{DRC}	Read Cycle Time	20		25		ns
t_{DAA}	Address Time		20		25	ns
t _{DOHA}	Data Hold After Address Change	3		3		ns
WRITE CYCLE	E – Data SRAM Write Timing		•	•	•	
t _{WC}	Write Cycle Time	20		25		ns
t _{SCE}	Chip Enable to End of Write	10		15		ns
t_{AW}	Address Set-Up to End of Write	20		25		ns
t_{AH}	Address Hold from End of Write	0		0		ns
t_{SA}	Address Set-Up from Beginning of Write	5		5		ns
t _{PWE}	Write Pulse Width	10		15	<u> </u>	ns
t _{SD}	Data Set-Up to End of Write	7		10		ns
t _{HD}	Data Hold from End of Write	0		0		ns
t _{LZWE}	Write HIGH to Outputs in Low Z	3		3		ns
t _{HZWE}	Write LOW to Outputs in High Z		7		10	ns

Switching Characteristics (continued)

		7490-15 7491-15 7492-15		7490-20 7491-20 7492-20		
Parameter Description		Min.	Max.	Min.	Max.	Unit
WRITE CYCLE	- Tag SRAM Write Timing		•			
t_{TWC}	Write Cycle Time	15		15		ns
t _{TSCE}	Chip Enable to End of Write	10		10		ns
t _{TAW}	Address Set-Up to End of Write	10		10		ns
t _{TAH}	Address Hold from End of Write	0		0		ns
t _{TSA}	Address Set-Up from Beginning of Write	0		0		ns
t _{TPWE}	Write Pulse Width	10		10		ns
t _{TSD}	Data Set-Up to End of Write	7		7		ns
t _{THD}	Data Hold from End of Write	0		0		ns
t _{TLZWE}	Write HIGH to Outputs in Low Z	3		3		ns
t _{THZWE}	Write LOW to Outputs in High Z		7		7	ns
WRITE CYCLE	- Dirty SRAM Write Timing		•		•	•
$t_{ m DWC}$	Write Cycle Time	20		20		ns
t_{DAW}	Address Set-Up to End of Write	17		17		ns
t _{DAH}	Address Hold from End of Write	0		0		ns
t _{DSA}	Address Set-Up from Beginning of Write	5		5		ns
t _{DPWE}	Write Pulse Width	12		12		ns
$t_{ m DSD}$	Data Set-Up to End of Write	10		10		ns
t _{DHD}	Data Hold from End of Write	0		0		ns
t _{DLZWE}	Write HIGH to Outputs in Low Z	5		5		ns
t _{DHZWE}	Write LOW to Outputs in High Z		7		7	ns

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Cache Size
15 (Data and Tag/Dirty)	CYM7490PM-15	PM05	128-Pin Dual-Readout SIMM	64 Kbyte
20 (Data), 15 (Tag/Dirty)	CYM7490PM-20	PM05	128-Pin Dual-Readout SIMM	
Speed (ns)	Ordering Code	Package Name	Package Type	Cache Size
Speed (ns) 15 (Data and Tag/Dirty)	Ordering Code CYM7491PM-15		Package Type 128-Pin Dual-Readout SIMM	

Speed (ns)	Ordering Code	Package Name	Package Type	Cache Size
15 (Data and Tag/Dirty)	CYM7492PM-15	PM07	128-Pin Dual-Readout SIMM	1 Mbyte
20 (Data), 15 (Tag/Dirty)	CYM7492PM-20	PM07	128-Pin Dual-Readout SIMM	

Document #: 38-M-00061

Package Diagrams

128-Pin Dual-Readout SIMM Module PM05

128-Pin Dual-Readout SIMM Module PM06

128-Pin Dual-Readout SIMM Module PM07

[©] Cypress Semiconductor Corporation, 1993. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor Corporation product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure of the product may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems applications implies that the manufacturer assumes all risk of such use and in so doing indemnifies Cypress Semiconductor against all damages.