# Kwantyzacja ładunku

Seminarium Fizyki Technicznej Amadeusz Filipek 13.01.2017

1/16

# Spis treści

- 1. Blokada Coulomba
- 2. Warunki kwantyzacji ładunku
- 3. Kwantowy efekt Halla
- 4. Układ doświadczalny
- 5. Wyniki pomiarów
- 6. Podsumowanie
- 7. Bibliografia



### Blokada Coulomba

- Efekt ładowania wyspy podstawy elektrostatyki
- Energia wymagana aby naładować wyspę jednym elektronem:

$$E_N = E(N+1) - E(N) = \frac{(N+1)^2 e^2 - N^2 e^2}{2C} = \frac{e^2}{2C} (2N+1)$$

$$\Delta E = E_{N+1} - E_N = \frac{e^2}{2C} (2N+3-2N-1) = \frac{e^2}{C}$$

Jaka jest pojemność C izolowanej metalowej sfery o promieniu R ?

$$\vec{E}(\vec{r}) = \frac{Q}{4\pi\varepsilon_0 r^2} \vec{r}, (r > R) \to V(R) = -\int_R^\infty \vec{E}(\vec{r}) \cdot \overrightarrow{dr} = \frac{Q}{4\pi\varepsilon_0 R}$$

$$C = \frac{Q}{V} = 4\pi\varepsilon_0 R$$

$$E_C = \frac{e^2}{2C}$$

| R [µm] | C [F]            | $E/k_B$ [K] |
|--------|------------------|-------------|
| 10     | 1.11E-15         | 0.84        |
| 1      | 1.11E-16         | 8.36        |
| 0.1    | 1.11E-1 <i>7</i> | 83.58       |
| 0.01   | 1.11E-18         | 835.83      |

### Blokada Coulomba



Przepływ zachodzi gdy:

$$\mu_S > \mu \ (N+1) > \mu_D$$

### Warunki kwantowania ładunku

Typowy czas ładowania/rozładowywania kondensatora:  $\tau = RC$ 

$$\frac{\Delta E \Delta \tau > h}{\frac{e^2}{C}RC > h \Longrightarrow R > \frac{h}{e^2}$$

#### Warunki niezbędne dla kwantyzacji ładunku

• Fluktuacje termiczne:

$$k_B T < \frac{e^2}{C}$$

• Fluktuacje kwantowe:

$$G < \frac{e^2}{h}$$

# Kwantowy efekt Halla

- Wymaga silnych pól magnetycznych - kilka T
- oraz niskich temperatur ~4 K
- Elektrony o ogranioczonej swobodzie - 2D electron gas
- Przewodnictwo Halla:

$$G_H = \frac{I_{channel}}{V_{Hall}} = \nu \frac{e^2}{h}$$

 Zjawisko towarzyszące – mody brzegowe (elektrony chiralne)



- Wyspa metaliczny stop AuGeNi
- Złącze półprzewodnik
   Ga(Al)As (105 nm 2DEG)
- Metaliczne bramki (zielone)
  - złącza tunelowe
- Przyłożone pole  $B \approx 4T$
- Temperatura  $T \approx 17 mK$ • Prąd płynie kanałami brzegowymi (czerwony)



## Przebieg pomiaru



Pomiar złącz tunelowych przy zamkniętych zworkach (niebieski):

$$au_{L,R} \equiv G_{L,R} \frac{h}{e^2}$$

- $au_{L,R}$  opisuje prawdopodobieństwo transmisji elektronów w składowych kanałach
- $au_{L,R} < 1$  pojedyńczy, spinowo spolaryzowany kanał
- $1 < \tau_{L,R} < 2$  dwa kanały, jeden balistyczny







$$\Delta Q \equiv \left(G_{SET}^{max} - G_{SET}^{min}\right) / \left(G_{SET}^{max} + G_{SET}^{min}\right)$$

12/16





Skalowanie asymptotyczne rozszerza się na cały obszar  $\tau_R \in [0,1]$ 

Zjawisko przebiega tak samo dla  $\tau_L$ 

$$\Delta Q \sim \sqrt{(1- au_R)(1- au_L)}$$

Eksponencjalna zależność temperaturowa $\Delta Q \sim \exp(-\pi^2 k_B T/E_C)$ 



### Podsumowanie

- Podstawą kwantyzacji ładunku jest blokada Coulomba
- Fluktuacje termiczne oraz kwantowe są czynnikami ograniczającymi kwantyzację ładunku
- Zrozumienie oraz kontrola nad zjawiskiem może mieć zastosowanie w wielu układach elektronicznych
- Badania nad kwantyzacją ładunku mają istotne znaczenie dla rozwoju kwantowej inżynierii i nanoelektroniki
- Badania nad układami hybrydowymi półprzewodnik metal są ważnym krokiem ku zaprojektowania bitów kwantowych.

Dziękuję za uwagę!

# Bibliografia

- [1]. Nazarov, Y. V., "Destruction of discrete charge", Nature, Vol. 536, 2016
- [2]. Frolov, S., "Quantum Transport, Lecture 7: Coulomb Blockade", University of Pittsburgh, 2013, https://www.youtube.com/watch?v=PXVnvKWn5ak&t=1703s
- [3]. Tong, D., "The Quantum Hall Effect", Department of applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, 2016, http://www.damtp.cam.ac.uk/user/tong/qhe.html
- [4]. Jezouin, S. et al., "Controling charge quantization with quantum fluctuations", Nature, Vol. 536, 2016