

HFT 正余弦旋变数字解码器

用户手册

V2. 0

2021.06.08

中固维科(成都)动力技术有限公司

目 录

井.	· 1月 手册	0
Ħ	■ 录	1
版	反权申明	3
삶	前 言	4
Ħſ		
	常规安全概要	
	产品质量保证	
	联系信息	
1	. 产品简介	6
	1.1 概述	6
	1.2 特点	6
2	!电气、环境和机械参数	7
	2.1 电气参数	
	2.1 电气参数	
	2.3 机械参数	
_		
3	3 接口电路	9
	3.1 信号描述	
	3.1.1 端口定义(DB15)	
	3.1.2 编码器输出驱动电路	
	3.1.3 编码器信号频率与分辨率和转速的关系	
	3.2 连接示例	
	3.2.1 单端输出与PLC 连接	
	3.3.3 差分输出与运动控制卡连接	
4	I 通讯协议	13
	4.1 数据读取(功能码 03)	13
	4.1.1 读取绝对位置(0x01,r)	
	4.1.2 读取增量位置(0x02,r)	
	4.1.3 <i>读取转速(0x04,r)</i>	
	4.2 参数配置(功能码 06)	
	4.2.1 清零增量位置(0x10,w) 4.2.2 配置解码器地址(0x11,rw)	
	4.2.2 配直解码器地址(0x11,rw)	
	4.2.4 恢复出厂设置(0x13,w)	
	1/10	14

HFT 正余弦旋变数字解码器用户手册

4.3 通讯协议说明	15
5 订购代码	16
5.1 单端输出订购代码示例	16
5.2 差分输出订购代码示例	16
附录 1 用户手册更新日志	17
中固维科(成都)动力技术有限公司	18

版权申明

中固维科(成都)动力技术有限公司 保留所有权力

中固维科(成都)动力技术有限公司(以下简称中固维科)保留在不事先通知的情况下,修改本手册中的产品和产品规格等文件的权力。

中固维科不承担由于使用本手册或本产品不当,所造成直接的、间接的、特殊的、附带的或相应产生的损失或责任。

中固维科具有本产品及其软件的专利权、版权及其它知识产权。未经授权,不得直接或者间接地复制、制造、加工、使用本产品及其相关部分。

前言

感谢您选用中固维科旋转变压器数字解码器。中固维科将以高品质的产品,高效的技术 支持和完善的售后服务,与您一起快速完成产品的研发。

如果您对我们的产品有什么建议或者需要我们的帮助,请及时与我们联系。

常规安全概要

选用合格的电源线和信号线。请使用满足国家标准的电源线和信号线。

正确地连接和断开,先连线再通电,先断电再检查。连接时先将解码器与旋变、PLC、运动控制卡、PC等设备连接,检查线路无误后再开启电源。断开时先关闭外部电源,再断开数据线。

当有可疑故障发生时请不要进行操作。如果您怀疑或发现本产品有故障或缺陷,请立即停止使用,并与中固维科联系。

不要在潮湿环境下操作。

不要在爆炸性的空气中操作。

保持产品表面清洁和干燥。

防止静电损伤。静电释放(ESD)可能会对电路板及其附件中的元器件造成损伤。为了防止 ESD,请**不要触摸电路板上的元器件**,不要将电路板放置在可能产生静电的表面,在防护静电的袋子或容器内运输和储存。

注意安全

运行中的设备有危险! 在调试、运行、维护设备的过程中请遵守安全操作规范,确保人员安全。

请在产品设计中做出有效的出错处理和安全保护机制,中固维科没有义务和责任对由此造成的损失负责。

产品质量保证

保修时间

在授权经销商购买的产品保修期为1年。

保修范围

如果质保期内解码器内部发生故障,本公司提供免费服务,但以下情况不在保修范围:

- 不适当环境或不适当使用引起的故障。
- 用户的装置、控制软件等引起本产品的意外故障。
- 由客户对本产品的改造引起的故障。
- 火灾、地震及其它自然灾害等外部主要原因引起的故障。

产品的应用范围

本产品设计制造用于工业级应用,超出预料的用途并对人的生命或财产造成重大损失不 在产品服务范围。

联系信息

- 中固维科(成都)动力技术有限公司
- 地 址:成都市郫都区融智创新产业园
- 电 话: 028-85357577
- 网址: www.ddrobot.cn

1 产品简介

1.1 概述

HFT 系列是中固维科研制的高性能的正余弦旋变数字解码器,简称旋变解码器。

解码器具有10、12、14、16位分辨率,可满足高速度及高分辨率的应用。

解码器具有增量编码器实时输出功能,编码器信号输出具有单端和差分接口,可方便的与 PLC 或运动控制卡连接。

解码器具有多圈位置跟踪功能,可输出多圈位置信息。

解码器具备 RS232、RS485 总线功能,可方便的读取单圈、多圈位置信息和速度信息,并可进行多模块扩展。

1.2 特点

- 最高分辨率 16 位
- 跟踪速率大于 5000RPM
- 增量编码器实时输出
- 两种增量编码器输出接口:单端、差分
- 多圈位置跟踪
- RS232、RS485 总线扩展

如您有振动冲击、湿度、盐雾等需求,请与我们联系。

2 电气、环境和机械参数

2.1 电气参数

(1) 电源参数

表 2-1 电源参数

参数	最小值	典型值	最大值	单位
直流电源电压	11	12, 24	28	V
24V 供电电流	45	55	70	mA
12V 供电电流	90	110	140	mA

(2) 分辨率

表 2-2 分辨率

型号	分辨率	脉冲数/转
HFT-10	10 位	1024
HFT-12	12 位	4096
HFT-14	14 位	16384
HFT-16	16 位	65536

2.2 环境参数

表 2-3 环境参数

冷却方式		自然冷却或强制风冷	
	使用场合	工业级应用	
使用	环境温度	-40℃~+85℃(见订购代码)	
环境	环境湿度	90%RH (无结露)	
	存储温度	-50℃~+85℃(见订购代码)	

2.3 机械参数

图 2-1 HFT-XX-S/D 系列旋变解码器机械参数

3 接口电路

3.1 信号描述

3.1.1 端口定义(DB15)

旋变解码器信号接口采用 DB15 端口连接, 引脚排列及端口定义如下表所示。

引脚 类别 信号 功能 引脚 信号 功能 类别 信号地 5 EΑ A相输出 11 GND RS232 编码器接口 10 ΕВ B相输出 12 RXD 数据接收 通讯接口 (单端/S) ΕZ Z脉冲输出 13 TXD 数据发送 4 9 +5VOUT +5V 电源输出 RS485 14 差分 A Α 5 EA+ 差分 A+ 通讯接口 15 差分 B В 差分 A-EA-编码器接口 10 (差分/D) EB+ 4 差分 B+ 9 差分 B-EB-3 正弦正 sin+ 10 9 8 7 6 8 正弦负 sin-15 | 14 | 13 | 12 | 11 旋转变压器 2 余弦正 cos+ 接口 余弦负 cos-DB15 引脚排列 1 ref+ 励磁正 ref-励磁负

表 3-1 端口定义

旋变解码器端口信号说明:

- (1)解码器采用 12V、24V 直流电源供电,用 2 位 3,81 间距的接线端连接。
- (2) 引脚 9 为+5V 电源输出端口,内部带有二极管防反接电路,实际输出电压约 4.3V,向外部提供最大电流为 60mA。
 - (3) RS232 通讯接口为 232 电平, 遵循 EIA/TIA-232-F 规范。
 - (4) 差分输出型号中,编码器 Z 脉冲信号 EZ+、EZ-与 RS232 或 RS485 通讯引脚复用。 如型号为-232,则 RS232 通讯在 12、13 引脚,差分 Z 脉冲 EZ+、EZ-在 14、15 引脚; 如型号为-485,则 RS485 通讯在 14、15 引脚,差分 Z 脉冲 EZ+、EZ-在 12、13 引脚。
 - (5) 不要带电拔插线缆,包括电源线、信号线、通讯数据线。
 - (6) 请采用优质屏蔽线缆分组接线,注意信号之间的相互隔离。

3.1.2 编码器输出驱动电路

图 3-1 编码器信号输出内部驱动电路

旋变解码器的增量编码器信号输出包含单端(后缀S)和差分(后缀D)2种。

单端输出解码器(后缀 S)的编码器信号采用 MOSFET 漏极开路输出,可与 PLC 的计数器输入接口(AB 相正交计数)或运动控制卡的编码器输入接口(高速光耦)连接。当信号有效时 MOSFET 导通,端口输出低电平,信号无效时端口呈高阻态。

差分输出解码器(后缀 D)的编码器信号采用26LS31等效电路作为差分驱动芯片,适用于高速信号的长线驱动,可与运动控制卡的编码器差分输入接口(26LS32或等效电路)连接。

3.1.3 编码器信号频率与分辨率和转速的关系

编码器输出信号频率与解码器分辨率和电机转速的关系如下表所示。

编码器输出信号频率(单位: KHz) 解码器型号 分辨率 脉冲/转 300RPM 1000RPM 2000 RPM 3000RPM HFT-10S/D 5.12 17.06 34. 13 51.2 10 位 1024 HFT-12S/D 12位 4096 20, 48 68, 26 136, 53 204.8 HFT-14S/D 81.92 273.06 546.13 14 位. 16384 819.2 327, 68 1092.26 HFT-16S/D 16 位 65536 2184, 53 3276.8

表 3-2 编码器信号频率与解码器分辨率和电机转速关系表

解码器分辨率越高、电机转速越快,编码器输出信号频率就越高。在一般环境下,当编码器信号频率低于 200KHz 时,采用单端连接是可靠的,当编码器信号频率大于 200KHz,并进行长距离信号传输时,建议采用差分方式,以进一步提高系统可靠性。

3.2 连接示例

3.2.1 单端输出与 PLC 连接

图 3-2 单端输出解码器与 PLC 连接示例

在与 PLC 连接时,解码器的 EA、EB 接入 PLC 的 AB 相正交计数器端口。

解码器的 EZ 为 Z 脉冲信号,可接入计数输入端口,用于检测电机转动周数,也可接入通用输入端口,用于转轴零点检测。

如无须 Z 脉冲信号,将该端口悬空即可。

3.3.2 单端输出与运动控制卡连接

图 3-3 单端输出解码器与运动控制卡连接示例

当采用单端连接模式时,应保证高速光耦的输入电流位于额定范围,通常在8-15Ma之间, 具体范围请查阅所用运动控制卡的用户手册。

3.3.3 差分输出与运动控制卡连接

图 3-4 差分输出解码器与运动控制卡连接示例

采用差分连接时,旋变解码器应选用差分输出型号,信号接收端应采用 26LS32 或等效的 差分接收电路。

4 通讯协议

解码器具有 RS232、RS485 总线功能, 遵循 MODBUS-RTU 协议, 默认波特率 9600bps, 无奇偶校验。数据读取功能码为 03, 数据写入的功能码为 06, 详细通讯格式请参考示例。

4.1 数据读取(功能码 03)

主机发送的命令格式如下: [解码器地址] [功能码 03] [寄存器高 8 位] [寄存器低 8 位] [读取长度高 8 位] [读取长度低 8 位] [CRC 低 8 位] [CRC 高 8 位], 共 8 字节。

解码器返回的格式如下: [解码器地址] [功能码 03] [数据字节长度] [数据最高 8 位] ··· [数据最低 8 位] [CRC 低 8 位] [CRC 高 8 位]。

在 MODBUS 协议中,主机命令里面"读取长度"的单位为字,从机返回的"数据字节长度"单位为字节,所以,主机读取1字,从机返回2字节;主机读取2字,从机返回4字节。

4.1.1 读取绝对位置(0x01, r)

解码器的绝对位置是指单圈绝对,具有掉电保持功能,取值范围与解码器分辨率有关: $10 \div (0\sim1023)$ 、 $12 \div (0\sim4095)$ 、 $14 \div (0\sim16383)$ 、 $16 \div (0\sim65535)$ 。

读取长度为1字(2字节),示例如下。

例:读取单圈绝对位置,当前绝对位置为1000(0x03E8)

主 机 发送: 01 03 00 01 00 01 (D5 CA)或(OD 0A)

解码器返回: 01 03 02 03 E8 B8 FA

注:解码器接收的命令数据**支持以 CRC16** 结束的校验和以 **0x0D 0x0A** 序列结束的校验,解码器返回的数据全部以 CRC16 结尾作为校验。

4.1.2 读取增量位置(0x02, r)

解码器的增量位置是指 AB 相正交脉冲的个数,为 32 位有符号数,取值范围为 (-2147483648~2147483647),该脉冲个数与编码器输出的脉冲个数一致。

读取长度为2字(4字节),示例如下。

例: 读取多圈增量位置, 当前位置为 102400 (0x0001 9000)

主 机 发送: 01 03 00 02 00 02 65 CB

解码器返回: 01 03 04 00 01 90 00 C7 F3

4.1.3 读取转速(0x04, r)

读取长度为1字(2字节),返回当前转速,单位:RPM(转/分)。

例: 读取转速, 当前转速为 1000 (0x03E8)

主 机 发送: 01 03 00 04 00 01 C5 CB

解码器返回: 01 03 02 03 E8 B8 FA

4.2 参数配置(功能码 06)

主机发送的命令格式如下: [解码器地址] [功能码 06] [寄存器高 8 位] [寄存器低 8 位] [数据高 8 位] [数据低 8 位] [CRC 低 8 位] [CRC 高 8 位] , 共 8 字节。

解码器返回的格式如下: [解码器地址][功能码 06 或 86][寄存器高 8 位][寄存器低 8 位][数据高 8 位][数据低 8 位][CRC 低 8 位][CRC 高 8 位], 共 8 字节。

数据写入/参数配置时,如执行正确,则原样返回;如参数不合法,则返回的功能码为0x86,返回的数据为0003,表示参数不合法。

4.2.1 清零增量位置(0x10,w)

对该寄存器写0或任何数据将清零增量位置,立即生效,示例如下。

主 机 发送: 01 06 00 10 00 00 88 0F 解码器返回: 01 06 00 10 00 00 88 0F

4.2.2 配置解码器地址(0x11, rw)

解码器地址取值范围为 $0\sim255$,立即生效,默认地址为1,。

例:将解码器地址从 0x01 修改为 0x08。

主 机 发送: 01 06 00 11 00 08 D8 09 或 (<u>OD 0A</u>)

解码器返回: 01 06 00 11 00 08 D8 09

4.2.3 配置通讯波特率(0x12, rw)

系统内置了6种波特率,定义如下。

0:9600 (默认) 1:19200 2:38400

3:57600 4:115200 5:230400

例:修改波特率为115200bps/s,重新上电生效。

主 机 发送: 01 06 00 12 00 04 28 0C 或 (<u>OD 0A</u>)

解码器返回: 01 06 00 12 00 04 28 00

4.2.4 恢复出厂设置(0x13,w)

对寄存器 0x13 写 0 或任何数据将恢复出厂设置,恢复后,解码器地址为 0x01,通讯波特率为 9600,恢复出厂设置时与地址字段无关,恢复后地址字段立即生效。如您忘记波特率,采用 6 种可能的波特率依次测试即可。

例:恢复出厂设置。

主 机 发送: 01 06 00 13 00 00 78 0F

解码器返回: 01 06 00 13 00 00 78 0F

4.3 通讯协议说明

- (1) 解码器为从机, PLC 或 PC 为主机。
- (2) RS232 和 RS485 的通讯协议一致。
- (3) RS232 通讯与从机地址无关,只要收到合法的数据,都将执行。
- (4)当有多台解码器采用 RS485 通讯时,为避免总线冲突,**应先修改各解码器的地址后, 再接入总线。**

5 订购代码

表 5-1 订购代码

产品系列	分辨率	编码器输出方式	通讯[1]	环境温度 ^[2]
HFT	10 位 12 位	S: 单端	485	I:-40~+85℃ E:-40~+105℃
旋变解码器	14 位 16 位	D: 差分	232	A:-40~+125°C

备注:

- [1] 解码器通讯接口默认保留 RS485 接口。
- [2] 解码器工作环境温度默认为-40~+85℃,在订购代码中字符"I"可以省略。

5.1 单端输出订购代码示例

- (1) HFT-12S-232: 12 位分辨率,单端输出,RS232 接口。
- (2) HFT-12S-485: 12 位分辨率,单端输出,RS485 接口。

5.2 差分输出订购代码示例

- (1) HFT-16D-232: 16 位分辨率, 差分输出, RS232 接口。
- (2) HFT-16D-485: 16 位分辨率, 差分输出, RS485 接口。

附录 1 用户手册更新日志

版本	更新时间	更新说明
	1. 增加图片和表格编号 2021. 06. 08 2. 规范文档格式 3. 修改单位联系地址	
V2.0		2. 规范文档格式
		3. 修改单位联系地址
		1. 完善通讯协议
V1. 2. 04	2017. 11. 11	2. 支持 12V、24V 宽电压供电
		3. 完善订购代码
V1. 2. 03	1. 增加解码器机械参数	
V1. 2. 02	2017. 08. 25	1. 增加单端输出解码器与 PLC 连接示例
V1 9 01	2.01 2017.06.01 1. 完善端口定义,增加编码器差分输出引脚描述 2. 增加差分输出解码器与运动控制卡连接示例	1. 完善端口定义,增加编码器差分输出引脚描述
V1. 2. U1		2. 增加差分输出解码器与运动控制卡连接示例
V1. 2. 00	2017. 05. 01	第2版,调整系统布局,将信号端口由接线柱调整至 DB 连接器
V1. 1. 00	2017. 03. 01	第1版
V1. 0. 00	2016. 12. 10	初版

中固维科(成都)动力技术有限公司

● 地 址:成都市郫都区融智创新产业园

● 电 话: 028-85357577 ● 网 址: www.ddrobot.cn

