# Introduction

NGS basic concepts and short-reads QC

# Variant calling from NGS - what is this?



# NGS basic concepts

# NGS workflow

Essential steps in NGS data generation for short and long-reads

# NGS Sequencing technologies

### **Next-Generation Sequencing**

Massive parallel sequencing of DNA fragments

### 2nd generation

Short fragments (50-300bp) *Needs DNA fragmentation* 







# 3rd generation

Long fragments (10-100kb or more)

DNA molecules are directly used for sequencing







Fragmentation

SMRTbell sused for ligation used for ligation spacer (5 bp)

Insert (5 bp)

Adapters

Clonal amplification

Sequencing



# SHORT READS



Template DNA

LONG READS

Fragmentation

Adapters

Clonal amplification



SHORT READS

illumina\*



Patterned flow cell Microwells on flow cell direct cluster generation, increasing cluster density



**ion**torrent

by Thermo Fisher Scientific



Emulsion On-b Micelle droplets are loaded Temp with primer, template, after dNTPs and polymerase leavi

On-bead amplification
Templates hybridize to bead-bound primers and are amplified;
after amplification, the complement strand disassociates,
leaving bead-bound ssDNA templates

Final product

Final product 100–200 million beads with thousands of bound template



Sequencing

Template DNA

Fragmentation

Adapters

amplification

**Sequencing** 



PacBio output

one base

colours from all ZMWs; each



PacBi •

A camera records the changing colour change corresponds to

# SHORT READS





Goodwin et al., 2016

# NGS reads structure

Understand the structure of sequencing libraries and the resulting data

- adapters
- read configuration
- UMIs

## NGS data - understand library structure



# NGS data - single end and paired-end short reads



In **single end protocol**, each DNA molecule is sequenced once starting from a specific end.

In **paired-end protocol**, it is sequenced twice starting from opposing ends



Illumina paired-end sequencing

#### NGS data - understand UMIs



# NGS data - library structure impacts downstream analysis



# NGS data - library structure impacts downstream analysis



- A sequencing read derives from multiple molecular manipulations and contains specific elements besides the template DNA
- Knowing the elements and structure of sequencing reads is crucial for proper downstream processing
- Fail to remove adapters parts can results in increased error rate in variant calling
- When a library is generated by targeted amplification, no variant can be detected in the target primers sequences.

# Data formats

# Main file formats

- FASTQ: sequences

## Sequences - FASTQ files

#### Sequence and base quality of each read





- Label unique identifier for the single read (instrument ID, run number, chip ID, tile, tile XY ...)
- Q scores
   phred like quality score for each base sequenced encoded as ASCII character

# Sequences - Base quality in FASTQ files

PHRED quality

$$Q = -10 \log_{10} P$$
$$P = 10^{\frac{-Q}{10}}$$

| Quality Score | Probability of incorrect base call | Base call accuracy |  |  |
|---------------|------------------------------------|--------------------|--|--|
| 10            | 1 in 10                            | 90%                |  |  |
| 20            | 1 in 100                           | 99%                |  |  |
| 30            | 1 in 1000                          | 99.9%              |  |  |
| 40            | 1 in 10,000                        | 99.99%             |  |  |

### Quality encoding as ASCII characters

@SRR038845.3 HWI-EAS038:6:1:0:1938 length=36 CAACGAGTTCACACCTTGGCCGACAGGCCCGGGTAA +SRR038845.3 HWI-EAS038:6:1:0:1938 length=36 BA@7>B=>:>>7@7@>>9=BAA?;>52;>:9=8.=A

Quality converted to single ASCII character PHRED+33 ⇒ ASCII code ⇒ Char

| Char | ASCII code | Phred quality |  |  |  |  |  |  |
|------|------------|---------------|--|--|--|--|--|--|
| В    | 66         | 33            |  |  |  |  |  |  |
| А    | 65         | 32            |  |  |  |  |  |  |
| @    | 64         | 31            |  |  |  |  |  |  |
| 7    | 55         | 22            |  |  |  |  |  |  |

#### **ASCII Table**

|   | Dec | Нх | Oct | Html   | Chr | Dec | Нх | Oct | Html Ch | ır |
|---|-----|----|-----|--------|-----|-----|----|-----|---------|----|
|   | 64  | 40 | 100 | @      | . 0 | 96  | 60 | 140 | `       | 0  |
|   | 65  | 41 | 101 | a#65;  | A   | 97  | 61 | 141 | 6#97;   | a  |
| 1 | 66  | 42 | 102 | a#66;  | : В | 98  | 62 | 142 | b       | b  |
| • | 67  | 43 | 103 | &#b7;  | . U | 99  | 63 | 143 | 6#99;   | C  |
|   | 68  | 44 | 104 | a#68;  | D   | 100 | 64 | 144 | a#100;  | d  |
|   | 69  | 45 | 105 | E      | E   | 101 | 65 | 145 | 6#101;  | e  |
|   | 70  | 46 | 106 | 6#70;  | F   | 102 | 66 | 146 | 6#102;  | f  |
|   | 71  | 47 | 107 | 6#71;  | G   | 103 | 67 | 147 | a#103;  | g  |
|   | 72  | 48 | 110 | 6.#72; | H   | 104 | 68 | 150 | a#104;  | h  |
|   | 73  | 49 | 111 | 6#73;  | I   | 105 | 69 | 151 | a#105;  | i  |
|   | 74  | 44 | 112 | 6#74   | . J | 106 | 6A | 152 | j       | j  |
|   | 75  | 4B | 113 | 6#75   | K   | 107 | 6B | 153 | a#107;  | k  |
|   | 76  | 4C | 114 | 6#76   | L   | 108 | 60 | 154 | a#108;  | 1  |
|   | 77  | 4D | 115 | 6#77   | M   | 109 | 6D | 155 | a#109;  | m  |
|   | 78  | 4E | 116 | 6#78;  | N   | 110 | 6E | 156 | n       | n  |
|   | 79  | 4F | 117 | 6#79;  | : 0 | 111 | 6F | 157 | o       | 0  |
|   | 80  | 50 | 120 | a#80;  | P   | 112 | 70 | 160 | 6#112;  | p  |
|   | 81  | 51 | 121 | 6#81   | . 0 | 113 | 71 | 161 | 6#113;  | q  |
|   | 82  | 52 | 122 | 6#82;  | 100 | 114 | 72 | 162 | r       | r  |

# Short-reads QC

# Reads cleaning

Remove unwanted sequences and poor quality bases

- adapter trimming
- quality trimming
- fixed length trimming

Useful tools

fastp, cutadapt

## Adapter trimming - remove unwanted fixed sequences



Based on adapter known sequences the algorithm search for partial matches and then extend the matching region to completely remove adapter sequences



# Quality trimming - remove low quality bases from read ends



## Fixed length trimming - remove a fixed amount of bases from read ends



# Short-reads QC

- raw reads length and quality
- GC content
- adapter content
- mapping statistics

Useful tools

fastp, fastQC, samtools

# Reads QC - Per base sequence quality across the reads

- Ideally, base quality should be >= 30 across all the read
- A little decrease in quality is expected toward the end of the read
- Base quality is considered during variant calling and can affect variant caller performances



#### Per base sequence quality



# Read QC - sequence length distribution

- Most read should have the expected read length
- A small tail on the left is acceptable, especially after trimming



# Reads QC - Per base sequence content across the reads



# Reads QC - reads GC content

- Distribution should follow the expected for the sequenced organism
- Peak around 45% for human genome samples



#### Per sequence GC content





# Read QC - residual adapter content

- Low presence of adapter sequences at the read ends
- Residual adapters can be cleaned by trimming



# Aligned reads QC - mapping statistics



### All libraries

- Mapping quality distribution
   (>= 30 for good mapping)
- Fraction of mapped reads (>= 90% in good samples)

### Paired-end libraries

- Insert size distribution (distance between F/R read)
- Fraction of reads with a proper pair (>= 90% usually)

# Reads processing and sample QC

Further clean of sequencing artifacts and check for sample contamination

- duplicated reads
- UMI decomposition
- sex check
- contamination estimates

# PCR and optical duplicates



# PCR or optical duplicates



# UMI based read deduplication to increase accuracy



# Additional sample-level QC - sex inference



SCALED MEAN DEPTH

mean depth chrX

mean depth autosomes

XX XX
autosomes

mean depth expected depth for a diploid chromosome

**Female**Diploid X
scaled depth = 2



Male
Haploid X
scaled depth = 1
Haploid Y
scaled depth = 1



# Additional sample-level QC - detect contamination

