Flexibly Modeling Shocks to Demographic and Health Indicators with Bayesian Shrinkage Priors

Herb Susmann¹ Leontine Alkema²

¹NYU Grossman School of Medicine

²University of Massachusetts Amherst

NYU Grossman UMass Amherst

PAA 2025

Washington, D.C., April 12, 2025

Slides: herbsusmann.com/paa2025

Preprint:

https://arxiv.org/abs/2410.09217

Motivation

- Goal: building statistical models for estimating and projecting demographic and health indicators.
- Many statistical models assume smoothness of the data.
- Statistical models that assume smoothness typically will not perform well when fit to data that exhibit shocks.
- ► This talk: we propose using Bayesian shrinkage priors as a practical way to build statistical models robust to shocks.

Smooth Transition Model

- Let $\eta_{c,t}$ be the true male period life expectancy at birth in country c and time t.
- ▶ Model change in $\eta_{c,t}$ as:

$$\eta_{c,t} = \eta_{c,t-1} + f(\eta_{c,t-1}, \beta_c) + \epsilon_{c,t},$$

where

- f: expected change with parameters β_c
- $ightharpoonup \epsilon_{c,t}$: deviations from expected change
- ► We model *f* using B-splines (Susmann & Alkema 2025 JRSS-C).
 - ► Takeaway: *f* is flexible, but assumes change in life expectancy is smooth.

Deviations typically modelled as ARIMA process; following Raftery et al. we use white noise for e₀:

$$\epsilon_{c,t}| au_{\epsilon} \sim N(0, au_{\epsilon}^2).$$

Transition Model with Shocks

Proposal: add an additional term to the transition model to handle shocks.

$$\eta_{c,t} = \eta_{c,t-1} + f(\eta_{c,t-1}, \beta_c) - \delta_{c,t} + \epsilon_{c,t},$$

where $\delta_{c,t} > 0$.

- ▶ We call $\delta_{c,t}$ the shock term.
- A-priori we do not think that $\delta_{c,t}$ will be large for most country-years.

The horseshoe prior

► The horseshoe prior (Carvalho 2009 PMLR) is given by

$$\delta_{c,t} \mid \tau, \gamma_{c,t} \sim N(0, \tau^2 \gamma_{c,t}^2)$$

 $\gamma_{c,t} \sim C^+(0,1).$

- Global scale parameter $\tau > 0$ shrinks all shocks to zero.
- Local scale parameters $\gamma_{c,t} > 0$ allow some shocks to escape shrinkage.

Х

Regularized Horseshoe

► The regularized horseshoe prior (Piironen 2017 EJS) is given by

$$\begin{split} \delta_{c,t} \mid \boldsymbol{\tau}, \gamma_{c,t}, \boldsymbol{\vartheta} &\sim \textit{N}(0, \boldsymbol{\tau}^2 \tilde{\gamma}_{c,t}^2), \\ \tilde{\gamma}_{c,t}^2 &= \frac{\vartheta^2 \gamma_{c,t}^2}{\vartheta^2 + \boldsymbol{\tau}^2 \gamma_{c,t}^2}, \\ \gamma_{c,t} &\sim \textit{C}^+(0,1), \\ \boldsymbol{\tau} &\sim \textit{C}^+(0,\tau_0^2). \end{split}$$

- Global scale parameter $\tau > 0$ shrinks all shocks to zero.
- Local scale parameters $\gamma_{c,t}$ allow some shocks to escape shrinkage.
- "Slab scale" parameter $\vartheta > 0$ regularizes shocks that escape regularization.
 - For large $\delta_{c,t}$, prior approaches a Gaussian prior with variance ϑ^2

Regularized Horseshoe

Estimated shocks

Figure: Six countries with the largest estimated detected shocks. Shocks are illustrated by plotting "shock-corrected" estimates, given by the observed e_0 minus the shock $\delta_{c,t}$

Example e_0 projections

Figure: Projections of e_0 from the model with and without shocks, for countries with the smallest (top row) and largest (bottom row) differences in posterior median projected e_0 in 2095-2100.

Adding shocks has little effect on median projections, and reduces projection uncertainty

Figure: Posterior medians (A) and 80% projection interval widths (B) for male period life expectancy at birth by country in 2095-2100 for the model with and without shocks included.

Another example, mCPR: adding shocks improves historical estimates

Figure: Modern Contraceptive Use Rate (mCPR) estimates with and

Discussion

- Bayesian shrinkage priors provide a reasonable way to adapt models to handle demographic and health indicators that exhibit shocks.
- Important to carefully define the target indicator and goal of projections.
- Practically: regularized horseshoe prior available in brms, can be implemented in Stan.
- ▶ More details: https://arxiv.org/abs/2410.09217

Appendix: Tuning the prior

▶ Regularized horseshoe, full specification:

$$\begin{split} \delta_{c,t} \mid \gamma_{c,t}, \tau, \vartheta &\sim \textit{N}(0, \tau^2 \tilde{\gamma}_{c,t}^2), \\ \tilde{\gamma}_{c,t}^2 &= \frac{\vartheta^2 \gamma_{c,t}^2}{\vartheta^2 + \tau^2 \gamma_{c,t}^2}, \\ \gamma_{c,t} &\sim \textit{C}^+(0,1), \\ \tau &\sim \textit{C}^+(0,\tau_0^2), \\ \vartheta^2 &\sim \mathsf{Inv-Gamma}(\nu/2, \nu s^2/2). \end{split}$$

- Calibrate priors by assuming
 - shock cannot exceed 100 life-expectancy years,
 - ▶ a 10% probability of shock exceeding 20 life-expectancy years,
 - ▶ and $P(\delta_{c,t} > \delta^*) \approx 0.5\%$.

Appendix: Defining shocks

- ▶ The distribution of the deviations $\epsilon_{c,t}$ characterize "regular" fluctuations in life-expectancy.
- ▶ We propose analyzing the shocks $\delta_{c,t}$ relative to the distribution of $\epsilon_{c,t}$.
- ▶ Define a *shock* as when the value of δ is greater than twice the marginal standard deviation of ϵ : $\delta > 2sd(\epsilon) := \delta^*$

Appenix: Country with largest credible interval width

Figure: Projections of e_0 from the model with and without shocks for Somalia.

Appendix: Validations

- ► Out-of-sample model validations were used to compare predictive performance of the model with and without shocks.
- ▶ All observations after 2005-2010 held out, and fitted model used to predict observations from 2015-2020.

Appendix: Validation Results

Region	n	ME	MAE
Shocks			
Africa	11	0.49	1.14
Americas	25	-0.07	0.67
Asia & Oceania	50	0.62	0.86
Europe	35	1.10	1.10
Overall	121	0.57	0.92
No shocks			
Africa	11	0.42	1.27
Americas	25	-0.22	0.68
Asia & Oceania	50	0.67	1.02
Europe	35	0.76	0.78
Overall	121	0.61	0.86

Table: Validation results for the male period life expectancy at birth model with and without shocks. Included validation metrics are median error (ME), and median absolute error (MAE).

Appendix: Validation Results

		80% projection Interval				
Region	n	% Below	% Included	% Above	PI Width	
Shocks						
Africa	11	9.1%	72.7%	18.2%	3.12	
Americas	25	12.0%	88.0%	0.0%	3.12	
Asia & Oceania	50	4.0%	72.0%	24.0%	3.13	
Europe	35	0.0%	71.4%	28.6%	3.08	
Overall	121	5.0%	75.2%	19.8%	3.11	
No shocks						
Africa	11	0.0%	100.0%	0.0%	7.55	
Americas	25	0.0%	100.0%	0.0%	7.61	
Asia & Oceania	50	4.0%	92.0%	4.0%	7.56	
Europe	35	0.0%	100.0%	0.0%	7.64	
Overall	121	1.7%	96.7%	1.7%	7.60	

Table: Validation results for the male period life expectancy at birth model with and without shocks. Included validation metrics are the % of observations below, above, and included within the 80% projection

interval, and the mean width of the 80% projection interval.

Susmann & Alkema 11 / 11