Quiz 4

02/25/2019

Instructions:

Write your name at the top right. You are to work on this quiz alone without any help from any other resource except for a single 8.5×11 inch page of handwritten notes.

Problems:

- 1 **In each part of problem 1:** suppose we try to fit a linear model by least squares for relationship between "age" in the first column and the explanatory variables in the remaining columns. Answer the following questions:
 - If n = "the number of observations" and p-1 = "the number of explanatory variables", what size is the matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$?
 - In 1-2 sentences describe, what issues would you encounter with this model?
 - 1.1 In this problem we consider "cats_data_1" as below:

		age	$weight_kg$	$weight_lbs$	height
$cats_data_1$.	1	1	2.1	4.62	7
	2	4	5.0	11.00	15
	3	6	3.2	7.04	9
	4	7	4.0	8.8	10
	5	7	3.5	7.7	9

This problem utilizes three explanatory variables and one intercept, so the size of \mathbf{X} will be 5×4 . We notice that weight is listed in both kg and lbs, where one is a scalar multiple of the other — this is linear dependence among explanatory variables which will make the problem non-solvable as written.

1.2 In this problem we consider "cats_data_2" as below:

		age	$weight_kg$	$blood_pressure$	height	t-cell	glucose
$cats_data_2 \leftarrow$	1	1	2.1	50	7	150	35
	2	4	5.0	45	15	167	37
	3	6	3.2	60	9	162	40

This problem has five explanatory variables and one intercept, therefore the X matrix is size 3×6 . This model is super-saturated and therefore we can never identify all parameters in the model.

1.3 In this problem we consider "cats_data_3" as below:

This model has two explanatory variables and one intercept, so the X matrix is size 3×3 . This model is saturated, so we can find a fit, but we cannot estimate the standard error without any degrees of freedom.

2 Suppose for an arbitrary set of data, we fit a linear relationship with least squares. The R^2 score is equal to .65. Does this represent a good fit of the model to the data? Why?

This may be a good fit, but it is unclear without context. In some applications like social sciences this may be considered a good score, but in engineering problems we will generally expect a much higher score to represent a "good fit".

3 Suppose that we have some data set with variables x_1, \dots, x_{p-1} . After computing the anomalies of these variables, for x_i defined as

$$\mathbf{a}_{i} \triangleq \begin{pmatrix} x_{1,i} - \overline{x_{1}} & \cdots & x_{n,i} - \overline{x_{n}} \end{pmatrix}^{\mathrm{T}}, \tag{1}$$

we notice that for $i \neq j$ the **dot product**

$$\mathbf{a}_i^{\mathrm{T}} \mathbf{a}_j = 0. \tag{2}$$

How does this relate to statistical (in)dependence? How does this fact help our analysis?

We can see that the correlation (or covariance) of the variables x_i and x_j are all zero. This means that these variables are statistically independent. This is useful in our analysis because the explanatory variables are especially well conditioned giving a more clear response in terms of each predictor.