SRINIVASA INSTITUTE OF ENGINEERING AND TECHNOLOGY

(UGC - Autonomous Institution)

(Approved by AICTE, Permanently affiliated to JNTUK, Kakinada, ISO 9001: 2015 certified Institution) (Accredited by NAAC with 'A' Grade; Recognised by UGC under sections 2(f) & 12(B)) NH-216, Amalapuram-Kakinada Highway, Cheyyeru (V), AMALAPURAM -533216.

DEEP LEARNING

A.Y: 2024-25

YEAR: III

SEMESTER: II

COURSE SCHEDULE - AT A GLANCE

Name of the Faculty : K VIJAY BABU

Name of the Course : DEEP LEARNING

Course Code ::21P61602

Branch : AIML

The Schedule for the whole Course is:

Unit	Description	Duratio	n (Date)	Total No.
Unit	· ·	From	То	of Periods
1	Fundamentals of Deep Learning: Artificial Intelligence, History of Machine learning: Probabilistic Modelling, Early Neural Networks, Kernel Methods, Decision Trees, Random forests and Gradient Boosting Machines, Fundamentals of Machine Learning: Four Branches of Machine Learning, Evaluating Machine learning Models, Overfitting and Underfitting	24/12/2024	16/01/2025	12
2	Introducing Deep Learning: Biological and Machine Vision, Human and Machine Language, Artificial Neural Networks, Training Deep Networks, Improving Deep Networks.	17/01/2025	11/02/2025	14
3	Neural Networks: Anatomy of Neural Network, Introduction to Keras: Keras, TensorFlow, Theano and CNTK, setting up Deep Learning Workstation, Classifying Movie Reviews: Binary Classification, Classifying newswires: Multiclass Classification.	12/02/2025	07/03/2025	12
4	Convolutional Neural Networks: Nerual Network and Representation Learing, Convolutional Layers, Multichannel Convolution Operation, Recurrent Neural Networks: Introduction to RNN, RNN Code, PyTorch Tensors: Deep Learning with PyTorch, CNN in PyTorch.	11/03/2025	03/04/2025	14
5	Interactive Applications of Deep Learning: Machine Vision, Natural Language processing, Generative Adversial Networks, Deep Reinforcement Learning. Deep Learning Research: Autoencoders, Deep Generative Models: Boltzmann Machines Restricted Boltzmann Machines, Deep Belief Networks.	04/03/2025	29/03/2025	14

LESSON PLAN

COURSE: OOAD

		P	lan	Act	ual		Signature
Unit No.	Topic	No of hours	Date	No of hours	Date	Teaching Methodology	of the faculty
Unit-1	Introduction to Deep Learning and Artificial Intelligence Overview of Artificial Intelligence (AI) and	1	23/12/24				
	its relationship to Deep Learning						
Unit-1	History of Machine Learning Evolution of machine learning, from early developments to the current state.	1	26/12/24				
Unit-1	Probabilistic Modelling in Machine Learning Basics of probabilistic models and their importance in machine learning.	1	27/12/24				
Unit-1	Early Neural Networks Exploration of the initial neural network architectures and their challenges.	1	28/12/24				
Unit-1	Kernel Methods in Machine Learning Understanding kernel methods and their role in pattern recognition and machine learning.	1	30/12/24				
Unit-1	Decision Trees Introduction to decision trees, how they work, and their use in classification and regression.	1	31/12/24				

	D 1 5			1		
Unit-1	Random Forests Explanation of random forests as an ensemble method to improve decision trees' performance.	1	02/01/25			
Unit-1	Gradient Boosting Machines Overview of gradient boosting and how it enhances predictive performance by combining weak learners.	1	03/01/25			
Unit-1	Fundamentals of Machine Learning Key concepts and terminologies in machine learning, including supervised and unsupervised learning.	1	04/01/25			
Unit-1	The Four Branches of Machine Learning Discussion of the four main branches: supervised learning, unsupervised learning, semi- supervised learning, and reinforcement learning.	1	06/01/25			
Unit-1	Evaluating Machine Learning Models Techniques for assessing the performance of machine learning models, including metrics and validation methods.	1	07/01/25			
Unit-1	Overfitting and Underfitting Explanation of overfitting and underfitting, their causes, and strategies to address these	1	08/01/25			

	issues in model				
	training.				
	Introduction to				
Unit-2	Deep Learning Overview of Deep Learning Applications and Impact of Deep Learning in various fields Biological Vision Systems How the human	1	16/01/25		
Unit-2	visual system works Key processes in biological vision (e.g., retina, brain processing)	1	17/01/25		
Unit-2	Machine Vision Systems Overview of how machines perceive images Technologies and algorithms used in machine vision	1	18/01/25		
Unit-2	Biological vs. Machine Vision Comparison of human visual processing with artificial systems Strengths and limitations of each system	1	20/01/25		
Unit-2	Human Language Processing Overview of how humans understand and use language, and the challenges involved.	1	21/01/25		
Unit-2	Machine Language Processing Introduction to how machines process language, including natural language	1	22/01/25		

	processing (NLP)				
	methods.				
	Biological Neural				
	Networks				
	Structure and				
	function of neurons in				
Unit-2	the human brain				
Omt-2	Basic concepts of				
	how biological neural				
	networks process				
	information				
	Artificial Neural				
	Networks (ANNs)				
TI:4 2	Basic principles of artificial neural	1	22/01/25		
Unit-2		1	23/01/25		
	networks and how				
	they model the human				
	brain.				
	Neural Network				
	Architectures				
	Exploring different				
Unit-2	types of neural	1	24/01/25		
	network architectures				
	(e.g., feedforward,				
	convolutional,				
	recurrent).				
	Training Deep				
	Networks				
	Understanding the				
Unit-2	process of training	1	25/01/25		
	deep neural networks,				
	including forward and				
	backward				
	propagation.				
	Optimization in				
	Deep Learning				
	Techniques used to				
Unit-2	optimize the learning	1	27/01/25		
	process in deep				
	networks, such as				
	gradient descent and				
	its variants.				
	Challenges in				
	Training Deep				
Unit-2	Networks	1	28/01/25		
	Common issues faced				
	during training, such				
	as vanishing				

	gradients, and ways				
	to address them.				
	Improving Deep				
	Networks:				
	Regularization				
	Techniques				
	Overview of				
Unit-2	techniques such as dropout, L2	1	29/01/25		
UIIIt-2	regularization, data	1	29/01/23		
	augmentation				
	How regularization				
	prevents overfitting				
	and improves				
	performance				
	Advanced Taskniques in Deep				
	Techniques in Deep				
	Learning				
	Transfer learning and				
Unit-2	fine-tuning	1	30/01/25		
	State-of-the-art				
	architectures (e.g.,				
	GANs, transformers,				
	attention				
	mechanisms) Introduction to				
	Neural Networks				
	Basic concepts and				
Unit-3	history of neural	1	01/02/25		
	networks	1	01/02/25		
	Overview of how				
	neural networks mimic the brain's				
	functioning A notomy of a				
	Anatomy of a Neural Network				
	Structure of a neural				
	network (neurons,				
Unit-3	·	1	03/02/25		
	layers, weights, biases)	1	03/02/23		
	Feedforward and				
	backpropagation				
	processes Types of Neural				
	Networks				
T7 1/ 3	Different neural				
Unit-3	network architectures	1	04/02/25		
	(e.g., CNN, RNN, MLP)				
	IVILF)]	

Applications and cases for each ty				İ	
	ре				
Introduction t					
Keras					
Overview of Kera	s as				
a high-level dee	ep				
Unit-3 learning API	1	05/02/25			
Features and					
advantages of us	ing				
Keras for buildi	-				
neural network					
Introduction t	0				
TensorFlow					
Overview of					
TensorFlow as a	an				
Unit-3 open-source mach	nine 1	06/02/25			
learning library					
Key features and					
cases of TensorF					
in deep learnin	g				
Introduction t					
Theano					
Overview of The	ano				
for numerical					
computation					
Unit-3 Theano's role i	n 1	07/02/25			
neural network	ζ				
training and its	S				
comparison to					
TensorFlow an	d				
Keras					
Introduction t	0				
CNTK (Microse	oft				
Cognitive Toolk	ait)				
Overview of CN	ГК				
Unit-3 as a deep learning	ng 1	10/02/25			
framework	1	10/02/23			
Comparison wi	th				
other frameworks	like				
TensorFlow an	d				
Keras			 		
Setting up a De	ер				
Learning					
Workstation					
Unit-3 Hardware and		11/02/25			
software requirem	ents	11/02/23			
for deep learning					
Setting up the					
environment (e.	g.,				

	installing				
	TensorFlow, Keras,				
	GPU setup)				
	Classifying Movie				
	Reviews: Binary				
	Classification				
	Overview of binary				
	classification tasks				
Unit-3	Building a binary	1	12/02/25		
	classification model				
	using neural networks				
	(e.g., positive vs.				
	negative sentiment)				
	Preparing the Data				
	for Binary				
	Classification				
	Text preprocessing				
Unit-3	for movie reviews	1	13/02/25		
Omt-3	Techniques like	1	13/02/23		
	tokenization,				
	vectorization, and				
	padding				
	Classifying				
	Newswires:				
	Multiclass				
	Classification				
	Introduction to				
	multiclass				
Unit-3	classification	1	14/02/25		
	problems Example of	1	11/02/25		
	classifying news				
	articles into multiple				
	categories (e.g.,				
	sports, politics,				
	technology)				
	Building a				
	Multiclass				
	Classification Model				
	Developing a neural				
	network for				
	multiclass				
Unit-3	classification tasks	1	15/02/25		
	Key considerations:				
	loss functions,				
	activation functions,				
	and performance				
	metrics				
L	I	<u> </u>	i		<u> </u>

Unit-4	Introduction to Convolutional Neural Networks (CNNs) Overview of CNNs and their importance in deep learning Differences between CNNs and traditional neural networks	1	19/02/25		
Unit-4	Neural Networks and Representation Learning Introduction to representation learning in neural networks How neural networks learn features and representations from data	1	20/02/25		
Unit-4	Convolutional Layers in Neural Networks Explanation of convolutional layers and their role in CNNs How convolutions help in feature extraction from images	1	21/02/25		
Unit-4	Stride and Padding in Convolutional Layers Concepts of stride and padding in convolutional operations How these techniques affect the output dimensions	1	22/02/25		
Unit-4	Multichannel Convolution Operation Introduction to multichannel convolutions (e.g., RGB image processing) How	1	04/03/25		

	multiple channels				
	(such as color				
	channels) are				
	processed in a CNN				
	processed in a Civit				
	Pooling Layers in				
	CNNs				
	The role of pooling				
TT . 4 4	layers (max pooling,	1	05/02/25		
Unit-4	average pooling)	1	05/03/25		
	How pooling reduces				
	dimensionality and				
	retains important				
	features				
	Fully Connected				
	Layers in CNNs				
	Explanation of fully				
	Explanation of fully				
Unit-4	connected layers in CNNs and Their role	1	06/02/25		
UIIIt-4		1	06/03/25		
	in classification tasks				
	after feature				
	extraction by				
	convolutional layers				
	Introduction to				
	Recurrent Neural				
	Networks (RNNs)				
	Tietworks (ICI (178))				
	Overview of RNNs				
Unit-4	and their applications	1	07/03/25		
	in sequential data				
	processing and Key				
	differences between				
	RNNs and CNNs				
	DAINI A 244				
	RNN Architecture				
	and Working				
	How RNNs process				
	sequences and				
Unit-4	maintain state across	1	10/03/25		
JIII-4	time steps and	1	10/03/23		
	Explaining the				
	vanishing gradient				
	problem in RNNs.				
	problem in Kivivs.				
	RNN Code Example				
	G. 1				
Unit-4	Step-by-step	1	11/03/25		
	implementation of a				
	simple RNN in				

	Python or a deep learning framework Training an RNN for a basic task (e.g., text generation, sequence prediction)				
Unit-4	Introduction to PyTorch Overview of PyTorch and its role in deep learning Key features of PyTorch (e.g., dynamic computation graphs, tensor operations)	1	12/03/25		
Unit-4	PyTorch Tensors: Deep Learning with PyTorch Explanation of tensors in PyTorch and how they are used for data representation Operations that can be performed on PyTorch tensors (e.g., addition, multiplication, reshaping)	1	13/03/25		
Unit-5	Introduction to Interactive Applications of Deep Learning Overview of deep learning applications in interactive systems Key areas where deep learning is transforming industries (e.g., healthcare,	1	15/03/25		

	entertainment, robotics)				
Unit-5	Machine Vision in Deep Learning Role of deep learning in computer vision tasks (e.g., image classification, object detection) Applications of machine vision in industries like healthcare, automotive, and security	1	17/03/25		
Unit-5	Deep Learning for Object Recognition Overview of object detection and recognition using deep learning Popular algorithms and architectures for object recognition (e.g., CNNs, YOLO)	1	18/03/25		
Unit-5	Natural Language Processing (NLP) in Deep Learning How deep learning is revolutionizing NLP tasks (e.g., translation, sentiment analysis, summarization) Introduction to recurrent neural networks (RNNs) and transformers in NLP	1	19/03/25		

	TD: 4.0				
Unit-5	Text Generation and Language Models Deep learning models for text generation (e.g., GPT, LSTM) Training language models and their applications in chatbots and virtual assistants	1	20/03/25		
Unit-5	Generative Adversarial Networks (GANs) Introduction to GANs and their architecture (generator vs. discriminator) Applications of GANs in generating realistic images, art, and video content	1	21/03/25		
Unit-5	Training GANs: Challenges and Techniques Common challenges in training GANs (e.g., mode collapse, convergence issues) Techniques to improve GAN training (e.g., Wasserstein GANs, gradient penalties)	1	22/03/25		
Unit-5	Deep Reinforcement Learning: Introduction Overview of reinforcement learning and its applications &How deep learning is used to solve complex	1	24/03/25		

	reinforcement				
	learning problems				
Unit-5	Deep Q-Learning and Policy Gradients Concepts of Q- learning and policy gradients in deep reinforcement learning Key algorithms for training reinforcement learning agents (e.g., Deep Q-Networks)	1	25/03/25		
Unit-5	Applications of Deep Reinforcement Learning Real-world applications of deep reinforcement learning (e.g., robotics, game playing, self-driving cars) Case study of AlphaGo and other landmark achievements in reinforcement learning	1	26/03/25		
Unit-5	Introduction to Deep Learning Research: Autoencoders Overview of autoencoders and their use in unsupervised learning Applications of autoencoders in anomaly detection,	1	27/03/25		

	data compression, and noise reduction				
	Deep Generative Models: Boltzmann Machines				
Unit-5	Explanation of Boltzmann machines and their role in probabilistic deep learning	1	28/03/25		
	Contrast with other generative models and their limitations				
	Restricted Boltzmann Machines (RBMs)				
Unit-5	Overview of Restricted Boltzmann Machines and their architecture	1			
	Applications of RBMs in collaborative filtering, dimensionality reduction, and feature learning				
	Deep Belief Networks (DBNs)				
	Introduction to Deep Belief Networks and their structure				
Unit-5	How DBNs combine multiple RBMs for deep learning and their historical importance in training deep networks	1			

Text Books:

- 1. Deep Learning- Ian Goodfellow, Yoshua Bengio and Aaron Courvile, MIT Press, 2016
- 2. Deep Learning with Python Francois Chollet, Released December 2017, Publisher(s): Manning Publications, ISBN: 9781617294433
- 3. Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence Jon Krohn, Grant Beyleveld, Aglaé Bassens, Released September 2019, Publisher(s): Addison-Wesley Professional, ISBN: 9780135116821

Reference Books:

- 1. Deep Learning from Scratch Seth Weidman, Released September 2019, Publisher(s): O'Reilly Media, Inc.,ISBN: 9781492041412
- 2. Artificial Neural Networks, Yegnanarayana, B., PHI Learning Pvt. Ltd, 2009.
- 3. Matrix Computations, Golub, G.,H., and Van Loan,C.,F, JHU Press,2013 4. Neural Networks: A Classroom Approach, Satish Kumar, Tata McGraw-Hill Education, 2004.

Faculty HOD Dean-Academics Principal