## Food Uniqueness and Quality

Joshua Derenski

11/8/2018

### Introduction/Business Problem

- Uniqueness and quality of food can vary geographically
  - cities have a plethora of unique tastes
  - rural areas often have fewer options
- Should be taken into consideration by chefs and restaurateurs
  - Should a chef open a restaurant in a city, or a small town
  - Could there be demand for my food here

### Data

- Demographic data on all counties in California
  - Median income, population density, voter registration data
- Restaurant data from the county seat of each county
  - Price, rating, type, location
- New metric: Uniqueness
  - Measures how unique a given county seat's cuisine is, relative to other county seats

## Exploration/Methodology

- Look at how the variables of interest vary by county
- Use linear regression to quantify relationships between average rating, and demographic factors
- Use economic and demographic theory to put the data and trends into context

# Results: Geographic Trends



## Results: Average Rating



#### OLS Regression Results

|                                |          |             | <i>.</i> |                |                |        |          |
|--------------------------------|----------|-------------|----------|----------------|----------------|--------|----------|
| Dep. Variable: y               |          |             |          | R-squ          | ared:          |        | 0.550    |
| Model:                         | OLS      |             |          |                | R-squared:     |        | 0.549    |
| Method:                        |          | Least Squa  | res      | F-sta          | tistic:        |        | 1391.    |
| Date:                          | Th       | u, 08 Nov 2 | 018      | Prob           | (F-statistic): |        | 0.00     |
| Time:                          | 16:05:12 |             |          | Log-I          | ikelihood:     |        | -1000.5  |
| No. Observations:              |          | 2           | 280      | AIC:           |                |        | 2007.    |
| Df Residuals:                  |          | 2           | 277      | BIC:           |                |        | 2024.    |
| Df Model:                      |          |             | 2        |                |                |        |          |
| Covariance Type:               |          | nonrob      | ust      |                |                |        |          |
|                                |          |             |          |                |                |        |          |
| CC                             | ef       | std err     |          | t              | P> t           | [0.025 | 0.975]   |
| utput; double click to hide 36 | 41       | 0.460       | <br>0-   | .791           | 0.429          | -1.267 | 0.539    |
| x1 0.19                        | 27       | 0.006       | 31       | .815           | 0.000          | 0.181  | 0.205    |
| x2 0.36                        | 75       | 0.044       | 8        | .350           | 0.000          | 0.281  | 0.454    |
| Omnibus:                       |          | 292.405     |          | Durbin-Watson: |                |        | 0.053    |
| Prob(Omnibus):                 |          | 0.000       |          |                | e-Bera (JB):   |        | 99.489   |
| Skew:                          |          | 0.          | 269      | Prob(JB):      |                |        | 2.49e-22 |
| Kurtosis:                      |          | 2.          | 129      | Cond.          | No.            |        | 707.     |

## Results: Uniqueness



#### OLS Regression Results

| Dep. Variable:  |        |                      | у     | R-sq              | ared:          |                | 0.612    |
|-----------------|--------|----------------------|-------|-------------------|----------------|----------------|----------|
| Model:          |        | OLS<br>Least Squares |       |                   | R-squared:     | 0.611<br>1793. |          |
| Method:         |        |                      |       |                   | tistic:        |                |          |
| Date:           |        | Thu, 08 Nov 2018     |       |                   | (F-statistic): | 0.00           |          |
| Time:           |        | 13:16                | :27   | Log-l             | ikelihood:     |                | -997.66  |
| No. Observatio  | ns:    | 2                    | 280   | AIC:              |                |                | 2001.    |
| Df Residuals:   |        | 2                    | 277   | BIC:              |                |                | 2019.    |
| Df Model:       |        |                      | 2     |                   |                |                |          |
| Covariance Typ  | e:     | nonrob               | ust   |                   |                |                |          |
|                 | coef   | std err              |       | t                 | P> t           | [0.025         | 0.975]   |
| const           | 1.4893 | 0.460                | 3     | .238              | 0.001          | 0.587          | 2.391    |
| x1              | 0.2152 | 0.006                | 35    | .586              | 0.000          | 0.203          | 0.227    |
| х2              | 0.4462 | 0.044                | 10    | .152              | 0.000          | 0.360          | 0.532    |
| Omnibus: 174.49 |        | =====<br>490         | Durb: | n-Watson:         |                | 0.086          |          |
| Prob(Omnibus):  |        | 0.000                |       | Jarque-Bera (JB): |                |                | 215.930  |
| Skew:           |        | 0.                   | 711   | Prob              | JB):           |                | 1.29e-47 |

707.

### Discussion

- Demographics related to rating and uniqueness
  - Urban areas have higher average rating and uniqueness scores
  - ▶ The above is also true for high income areas
- These relationships make economic sense
  - Chefs and restaurateurs serve high quality cuisine to customers who are likely to purchase their food
  - Urban areas are also going to have markets where there is demand for unique cuisines
- They also make demographic sense
  - Urban areas tend to me more ethnically diverse
  - ▶ Leads to more unique food choices, relative to rural areas

### Conclusion

- Because these results are based in economics and demography, they generalize to places outside California
  - ► For example, we'd expect New York to have high quality, unique tastes (and it does)
- Recommendation: Chefs and restaurateurs should look at the demographics and economic state of the market they are considering entrance to, and make decisions based off of that
  - Also look at similar restaurants in that area, if there are any