Circuitos Lógicos e Organização de Computadores

Capítulo 3 – Tecnologia de Implementação

Ricardo Pannain

pannain@unicamp.br

Tensão relativas aos níveis lógicos – Tecnologia MOS

Tensão relativas aos níveis lógicos

Transistor NMOS como uma chave

(a) Uma chave controlada por uma entrada x

(b) Transistor NMOS

(c) Símbolo simplificado de um transistor NMOS

Capítulo 3 - Tecnologia de Implementação MOS – Metal Oxide Semiconductor

NMOS – MOS tipo N (canal N – Substrato P)

Gate - Porta

Source - Fonte

Drain - Dreno

Susbstrate (body) – substrato

Se V_G é baixo, não há formação de canal entre fonte e dreno → transistor não conduz → transistor aberto (turned off)

Se V_G é alto, há formação de canal entre fonte e dreno → transistor conduz → transistor fechado (turned on)

Comportamento de um transistor MOS - NMOS

(a) Quando $V_{GS} = 0 \text{ V}$, o transistor está off

Comportamento de um transistor MOS - NMOS V_{DD}

(b) Quando V = 5 V, o transistor está on $V > V \rightarrow T$ há a formação do canal

Transistor PMOS como uma chave

PMOS – MOS tipo P (canal P – Substrato N)

(a) Uma chave com comportamento oposto ao do slide anterior

Gate - Porta

Source - Fonte

Drain - Dreno

Susbstrate (body) – substrato

(b) Transistor PMOS

Se V_G é baixo, há formação de canal entre fonte e dreno → transistor não conduz → transistor fechado (turned on)

Se V_G é alto, não há formação de canal entre fonte e dreno → transistor não conduz → transistor aberto (turned off)

(c) Símbolo simplificado de um transistor PMOS

Transistores NMOS e PMOS em circuitos lógicos

Chave Aberta quando $V_G = V_{DD}$

Chave fechada quando $V_G = 0 \text{ V}$

(b) Transistor PMOS

Uma Porta Inversora – NOT - construída com tecnologia

Vf = 0.2 V quando Vx = 5 V

O resistor é um limitador de corrente (na prática, outro transistor)

- (a) Diagrama do Circuito
- (b) Diagrama simplificado

(c) Símbolos Gráficos

Porta com tecnologia NMOS

(b) Tabela Verdade

Porta NAND com tecnologia NMOS

(c) Símbolo Gráfico

Porta com tecnologia NMOS

Porta NOR com tecnologia NMOS

Vx1	Vx2	Vf
L	L	Н
L	н	L
н	L	L
Н	Н	L

(a) Circuito

(b) Tabela verdade

(c) Símbolo gráfico s

Porta com tecnologia NMOS

x1	x2	f
0	0	0
0	1	0
1	0	0
1	1	1

(b) Tabela Verdade

Vx1	Vx2	Vf
L	L	L
L	Н	L
Н	L	L
н	Н	н

Porta AND com tecnologia NMOS

(c) Símbolos Gráficos

Porta com tecnologia NMOS

x1	x2	f
0	0	
0	1	
1	0	
1	1	

(b) Tabela Verdade

(a) Circuito

Vx1	Vx2	Vf
L	L	L
L	н	Н
Н	L	Н
Н	н	Н

Porta OR com tecnologia NMOS

Estrutura de uma Porta NMOS

Estrutura de uma Porta CMOS

Estrutura de uma Porta NOT CMOS

X	T_1 T_2	f
0	on off	1
1	off on	0

- (a) Circuito
- (b) Tabela verdade e estados dos transistores

Estrutura de uma Porta CMOS

x_1 x_2	T_1 T_2 T_3 T_4	f
0 0	on on off off	1
0 1	on off off on	1
1 0	off on on off	1
1 1	off off on on	0

(a) Circuit

(b) Truth table and transistor states

Para $f = 1 \rightarrow f = x1.x2 = x1 + x2 \rightarrow PUN = 2$ transistores PMOS em paralelo Para $f = 0 \rightarrow f = x1.x2 \rightarrow PDN = 2$ transistores NMOS em série

Estrutura de uma Porta NAND CMOS

x_1 x_2	T_1 T_2 T_3 T_4	f
0 0	on on off off	1
0 1	on off off on	1
1 0	off on on off	1
1 1	off off on on	0
	ļ l	

(a) Circuit

(b) Truth table and transistor states

Para $f = 1 \rightarrow f = x1x2 = x1 + x2 \rightarrow PUN = 2$ transistores PMOS em paralelo Para $f = 0 \rightarrow f = x1x2 \rightarrow PDN = 2$ transistores NMOS em série Exercício

Dê o circuito CMOS para $f = (\overline{x1+x2})$

PUN

PDN

Exercício

Dê o circuito CMOS para $f = (\overline{x1+x2})$

PUN

= x1' . x2' → PUN 2 transistores PMOS em série

PDN

 $f' = (x1 + x2)'' = x1 + x2 \rightarrow PDN 2 \text{ transistores NMOS em paralelo}$

$$f = \overline{x1 + x2}$$

PUN
$$\rightarrow f = 1$$

 $f = x1 + x2 = f = x1' \cdot x2'$

Será formado por 2 transistores PMOS estarão em série PDN dual do PUN → será formado por 2 transistores NMOS em paralelo

$$PDN \rightarrow f = 0$$

$$f = x1 + x2 = x1 + x2$$

Será formado por dois transistores NMOS em paralelo PUN dual do PDN → será formado por 2 transistores PMOS em série

Estrutura de uma Porta CMOS

(a) Circuit

(b) Truth table and transistor states

 $T_1 \ T_2 \ T_3 \ T_4$

on on off off on off off on off on on off

Para $f = 1 \rightarrow f = x1 + x2 = x1$. $x2 \rightarrow PUN = 2$ transistores PMOS em série Para $f = 0 \rightarrow f = x1 + x2 \rightarrow PDN = 2$ transistores NMOS em paralelo

Estrutura de uma Porta NOR CMOS

(a) Circuit

(b) Truth table and transistor states

 T_1 T_2 T_3 T_4

on on off off on off on off on on off

0

Para $f = 1 \rightarrow f = x1 + x2 = x1$. $x2 \rightarrow PUN = 2$ transistores PMOS em série Para $f = 0 \rightarrow f = x1 + x2 \rightarrow PDN = 2$ transistores NMOS em paralelo

Estrutura de uma Porta CMOS

Estrutura de uma Porta AND CMOS

Estrutura de uma Porta CMOS

Exercício 1

Considere a função: f = x1 + x2 x3 Ache o circuito CMOS equivalente com o menor número de transistores possíveis

Exercício 2

Considere a função: f = x1 + (x2 + x3) x4 Ache o circuito CMOS equivalente com o menor número de transistores possíveis

Estrutura de uma Porta CMOS – Exercício 1

Estrutura de uma Porta CMOS – Exercício 2

Níveis de Tensão em uma Porta Lógica

Interpretação dos Níveis de Tensão – Lógica Positiva e Negativa

$V_{x_1}V_{x_2}$	V_f
L L	Н
L H H L	H H
п L Н Н	L

(a) Níveis de Tensão

$x_1 x_2 f$
0 0 1 0 1 1 1 0 1 1 1 0
0 1 1
1 0 1
1 1 0

(b) Tabela Verdade – Lógica Positiva e Símbolo

(c) Tabela Verdade – Lógica Negativa e Símbolo

Interpretação dos Níveis de Tensão – Lógica Positiva e Negativa

$V_{x_1}V_{x_2}$	V_f
L L L H H L H H	L L L

(a) Níveis de Tensão

(b) Lógica Positiva

(c) Lógica Negativa

Dispositivos Lógicos Programáveis como uma Caixa Preta

Estrutura geral de uma PLA – Programmable Logic Array

Capítulo 3 - Tecnologia de Implementação

Diagrama, em nível de portas lógicas, de uma PLA

Exercício – Dizer quais são as respectivas funções f1 e f2.

Desenho esquemático de uma PLA

Capítulo 3 - Tecnologia de Implementação

Exemplo de uma PAL – Programmable Array Logic

Estrutura de uma FPGA – Field Programmable Gate Array

FPGA - lookup table (LUT) de duas entradas

AND $f = x1 \cdot x2$

 x1
 x2
 f

 0
 0
 0

 0
 1
 0

 1
 0
 0

 1
 1
 1

(a) Circuit for a two-input LUT

LUT → contém células que armazenam, São usadas para implementar uma função lógica

MUX 2:1

$$f(S, x1, x2) \rightarrow Se S = 0 \rightarrow f = x1, c.c. f = x2$$

$$F = S' x1 + S x2$$

FPGA - lookup table (LUT) de duas entradas

Que função é esta ? O que seria armazenado na LUT para executar esta função?

FPGA - lookup table (LUT) de duas entradas

Que função é esta ? O que seria armazenado na LUT para executar esta função?

x 1	x2	f1
0	0	1
0	1	0
1	0	0
1	1	1

FPGA - lookup table (LUT) de duas entradas

Que função é esta?

x 1	x2	f1
0	0	1
0	1	0
1	0	0
1	1	1

$$f1 = x1' x2' + x1 x2$$

XNOR

FPGA - lookup table (LUT) de três entradas

Capítulo 3 - Tecnologia de Implementação

FPGA - lookup table (LUT) de três entradas

FPGA - lookup table (LUT) + Flip Flop

FPGA Programada

Capítulo 3 - Tecnologia de Implementação

FPGA Programada

Capítulo 3 - Tecnologia de Implementação

Comportamento de um transistor MOS - NMOS

(a) Quando $V_{GS} = 0 \text{ V}$, o transistor está off

Comportamento de um transistor MOS - NMOS

(b) Quando V = 5 V, o transistor está on V > V \rightarrow há a formação do canal

Relação tensão-corrente em um transistor NMOS

(a) Small transistor

(b) Larger transistor

Capítulo 3 - Tecnologia d€4 Implementação

Curva de transferência de um inversor CMOS

Margem de Ruído

Dois inversores em cascata

Ruído → perturbações randômicas que podem alterar um sinal.

Por exemplo, a saída de N1 pode ser alterada por uma perturbação externa (ruído).

Se este ruído alterar V_{1L} de N1, este nível deve se manter abaixo de V_{1L} , para ser interpretado corretamente por N2.

A capacidade para tolerar ruídos sem afetar a operação correta → margem de ruído

$$NM_{L} = V_{1L} - V_{0L}$$
$$NM_{H} = V_{0H} - V_{1H}$$

Figure 3.48 Voltage waveforms for logic gates

Dimensões de transistores

FAN-IN – Porta AND

Capítulo 3 - Tecnologia de Implementação

O efeito do fan-out na propagação de atrasos

(a) Inversor que drives outros n inversores

(c) Propagação parar diferentes valores de n

Capítulo 3 - Tecnologia de 61 Implementação

Buffer não inversor

(a) circuito CMOS

(b) símbolo gráfico

Buffer tri-state

(a) Buffer tri-state

е	X	f
0	0	Z
0	1	Z
1	0	0
1	1	1

(c) Tabela Verdade

(b) Circuito equivalente

(d) Implementação

Buffers tri-state

Capítulo 3 - Tecnologia de Implementação

Uma utilização de buffers tri-state

Que circuito é este??

Uma utilização de buffers tri-state – MUX 2:1

S	X1	X2	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

S	f
0	X1
1	X2

Qual é o comportamento deste circuito ???

Transmission Gate – Chave CMOS

(a) Circuito

(b) Tabela Verdade

$$s = 1$$
 $x \longrightarrow f = x$

(c) Circuito equivalente

(d) Símbolo Gráfico

OU-Exclusivo – XOR

<i>x</i> ₁	<i>x</i> ₂	$f = x_1 \oplus x_2$	
0	0	0	
0	1	1	v \\
1	0	1	x_1
1	1	0	x_2

(b) Símbolo Gráfico

$$f = x1'x2 + x1x2'$$

Que circuito é este ???

Circuito CMOS

XOR com transmission gates

x1	x2	f
0	0	0
0	1	1
1	0	1
1	1	0

Que circuito é este ???

MUX 2:1 com transmission gate

S	X1	X2	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

S	f
0	X1
1	X2

EXERCÍCIO

Derivar o circuito CMOS da função f = xy + xz, com o menor número de transistores possível.

$$f = x.(y + z)$$

EXERCÍCIO

Derivar o circuito CMOS da função f = xy + xz, com o menor número de transistores possível.

1- Uma solução é fazer a' = x, b' = y e um c' = z → f = a'b' + a' c' = a' (b' + c')

2 – Outra solução

$$f = x (y+z)$$

$$f' = x' + \overline{(y+z)}$$

$$f' = x' + y'z' \rightarrow se g = f' \rightarrow g = x' + y'z'$$

$$f = g'$$

OBS
$$-f = xy + xz \rightarrow f' = (xy + xz)' = (xy)' \cdot (xz)' = (x' + y') \cdot (x' + z') = x' + y' \cdot z'$$

Capítulo 3 - Tecnologia de Implementação