NOIP 模拟赛

题目名称	珠宝	火灾	迷宫	小丑
英文名称	jewel	fire	trap	joker
输入文件名	jewel.in	fire.in	trap.in	joker.in
输出文件名	jewel.out	fire.out	trap.out	joker.out
程序名称	jewel	fire	trap	joker
时间限制	2s	1.5s	5s	2s
空间限制	256MB	256MB	512MB	256MB
子任务数量	20	5	4	6
子任务是否等分	是	否	否	否

编译选项:

C++	-o %s %s.* -Wl,stack=0x4000000 -O2
-----	------------------------------------

注意事项:

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C++ 中函数 main() 的返回值类型必须是 int ,程序正常结束时的返回值必须是 0。
- 3. 若无特殊说明,结果比较方式为忽略行未空格、文末回车后的全文比较。
- 4. 评测时采用的机器配置为:Intel(R) Core(TM) i5-5300U CPU @ 2.30GHz , 内存 8GB。上述时限以此配置为准。
- 5. 选手应将各题的源程序放在选手文件夹内,不要建立子文件夹。
- 6. 评测使用 Windows 系统,系统为 64 位。

珠宝 (jewel)

题目描述

Miranda 准备去市里最有名的珠宝展览会,展览会有可以购买珠宝,但可惜的是只能现金支付,Miranda 十分纠结究竟要带多少的现金,假如现金带多了,就会比较危险,假如带少了,看到想买的又买不到。展览中总共有 N 种珠宝,每种珠宝都只有一个,对于第 i 种珠宝,它的售价为 C_i 万元,对 Miranda 的吸引力为 V_i 。 Miranda 总共可以从银行中取出 K 万元,现在她想知道,假如她最终带了 i 万元去展览会,她能买到的珠宝对她的吸引力最大可以是多少?

输入格式

第一行两个整数 N、K。 接下来 N 行,每行两个整数 C_i 、 V_i 。

输出格式

输出一行 K 个整数,对于第 i 个数,表示假如 Miranda 带了 i 万元现金,她能买到的珠宝对她的吸引力最大可以是多少。

样例

输入

```
5 10
3 2
1 48
3 25
2 76
4 83
```

输出

48 76 124 124 131 159 207 207 207 232

数据范围与提示

对于 20% 的数据, $N,K\leq 10000$; 对于另外 20% 的数据, $C_i=V_i$; 对于 100% 的数据, $1\leq N\leq 1000000,1\leq K\leq 50000,1\leq C_i\leq 300,0\leq V_i\leq 10^9$ 。

火灾 (fire)

题目描述

在 JOI 世界里有 N 个地区排成一条线。为了方便,我们将这些地区编号为 1 到 N。突然,各个地区都起火了。在时刻 0,第 i 个区的火势大小为 S_i 。

此时(时刻 0) ,一阵风从 1 号地区一直吹到了 N 号地区。对于每两个相邻的地区,如果 t 时刻上风地区的火势比下风地区的强,t+1 时刻下风地区的火势大小将变为 t 时刻上风地区的火势,否则 t+1 和 t 时刻时下风地区的火势大小不变。

形式化地说,如果 t 时刻 i 地区的火势为 $S_i(t)$,则 $S_i(t)=\max\{S_{i-1}(t-1),S_i(t-1)\}$,其中 $S_0(t)=0,\ S_i(0)=S_i$ 。

你是一位消防员。现在,你想到了 Q 种灭火方案,并打算执行其中一种。你的第 j 种方案是在 T_j 时刻对 $[L_i,\ R_i]$ 中的所有地区使用灭火剂完全扑灭火灾。

对于一个火势大小为 s 的城市,你将需要 s 升的灭火剂来扑灭火灾。因此,执行方案 j 总共要花费 $S_{L_i}(T_j)+S_{L_i+1}(T_j)+\cdots+S_{R_i}(T_j)$ 升灭火剂。

为了更好地选取灭火方案,你的任务是编写一个程序,给出 0 时刻的火势大小,计算各个方案所需的灭火剂量。

输入格式

第一行两个数 N , Q , 含义如题面所示。 接下来一行 N 个数 $S_1 \dots S_N$, 表示初始时的火势大小。 接下来 Q 行每行三个数 T_i , L_i , R_i , 表示方案 j 的相关信息。

输出格式

输出 Q 行,第 i 行表示方案 j 所需的灭火剂量。

样例 1

输入

```
5 5
9 3 2 6 5
1 1 3
2 1 5
3 2 5
4 3 3
5 3 5
```

```
21
39
33
9
27
```

- 时刻 0 时地区 1 到 地区 *N* 的火势大小分别为 9, 3, 2, 6, 5。
- 时刻 1 时地区 1 到 地区 N 的火势大小分别为 $9,\ 9,\ 3,\ 6,\ 6$ 。方案 1 需要的灭火剂量为 9+9+3=21 升。
- 时刻 2 时地区 1 到 地区 N 的火势大小分别为 9, 9, 9, 6, 6。方案 2 需要的灭火剂量为 9+9+9+6+6=39 升。
- 时刻 3 时地区 1 到 地区 N 的火势大小分别为 9, 9, 9, 9, 6。方案 3 需要的灭火剂量为 9+9+9+6=33 升。
- 时刻 4 时地区 1 到 地区 N 的火势大小分别为 9, 9, 9, 9, 9。方案 4 需要的灭火剂量为 9 升。
- 时刻 5 时地区 1 到 地区 N 的火势大小分别为 9, 9, 9, 9, 9。方案 5 需要的灭火剂量为 9+9+9=27 升。

该样例满足子任务 1 和子任务 5 的限制。

样例 2

输入

```
10 10
3 1 4 1 5 9 2 6 5 3
1 1 6
2 8 10
4 2 7
8 3 3
6 1 10
3 2 8
5 1 9
7 4 5
9 7 9
10 10 10
```

```
28
21
34
4
64
43
55
9
27
```

该样例满足子任务 1 和子任务 5 的限制。

样例 3

输入

```
10 10
3 1 4 1 5 9 2 6 5 3
1 6 6
2 8 8
4 2 2
8 3 3
6 1 1
3 4 4
5 5 5
7 10 10
9 8 8
10 7 7
```

输出

```
9
9
3
4
3
4
5
9
9
```

该样例满足子任务 1, 3, 5 的限制。

样例 4

输入

```
10 10
3 1 4 1 5 9 2 6 5 3
7 1 6
7 8 10
7 2 7
7 3 3
7 1 10
7 2 8
7 1 9
7 4 5
7 7 9
7 10 10
```

输出

```
28
27
34
4
64
43
55
9
```

该样例满足子任务 1, 2, 5 的限制。

样例 5

输入

```
20 20
2 1 2 2 1 1 1 1 2 2 2 1 1 1 1 2 1 1 1
1 1 14
2 3 18
4 10 15
8 2 17
9 20 20
4 8 19
7 2 20
11 1 5
13 2 8
20 1 20
2 12 15
7 1 14
12 7 18
14 2 17
9 19 20
12 12 12
6 2 15
11 2 15
19 12 17
4 1 20
```

```
25
30
12
32
2
2
24
38
```

10			
14			
40			
8			
28			
24			
32			
4			
2			
28			
28			
12			
40			

该样例满足子任务 1, 4, 5 的限制。

数据范围与提示

对于所有测试数据 $1 \leq N, Q \leq 2 imes 10^5, \ 1 \leq S_i \leq 10^9, \ 1 \leq L_j, \ R_j, \ T_j \leq N$ 。

子任务编号	分值	具体限制
1	1	$1 \leq N, Q \leq 200$
2	6	$T_1=T_2=\ldots=T_Q$
3	7	$L_j = R_j \ (1 \leq j \leq Q)$
4	6	$S_i \leq 2 \ (1 \leq i \leq N)$
5	80	无特殊限制

迷宫 (trap)

题目描述

有一个有 n 个房间和 n-1 条走廊的迷宫,保证任意两个房间可以通过走廊互相到达,换句话说,这个迷宫的结构是一棵树。

- 一个老鼠被放进了迷宫,迷宫的管理者决定和老鼠做个游戏。
- 一开始,有一个房间被放置了陷阱,老鼠出现在另一个房间。老鼠可以通过走廊到达别的房间,但是会弄脏它经过的走廊。老鼠不愿意通过脏的走廊。

每个时刻,管理者可以进行一次操作:堵住一条走廊使得老鼠不能通过,或者擦干净一条走廊使得老鼠可以通过。然后老鼠会通过一条干净的并且没被堵住的走廊到达另一个房间。只有在没有这样的走廊的情况下,老鼠才不会动。一开始所有走廊都是干净的。管理者不能疏通已经被堵住的走廊。

现在管理者希望通过尽量少的操作将老鼠赶到有陷阱的房间,而老鼠则希望管理者的操作数尽量多。请计算双方都采取最优策略的情况下管理者需要的操作数量。

注意:管理者可以选择在一些时刻不操作。

输入格式

第一行三个空格隔开的正整数数 n, t, m。分别代表房间的个数,陷阱房的编号和老鼠起始房间的编号。接下来 n-1 行,每行两个空格隔开的整数 a_i, b_i ,表示有一条走廊连接编号为 a_i 和 b_i 的房间。

输出格式

输出一行包含一个整数,表示双方都采取最优策略的情况下,管理者需要的操作数量。

样例

输入

10 1 4		
1 2		
2 3		
2 4		
3 9		
3 5		
4 7		
4 6		
6 8		
7 10		

输出

4

- 管理者先堵住房间 4 和 7 之间的走廊。
- 老鼠走到房间 6。房间 4 和 6 之间的走廊现在是脏的。
- 管理者堵住房间 6 和 8 之间的走廊。

- 老鼠不能动。
- 管理者清理房间 4 和 6 之间的走廊,房间 4 和 6 之间的走廊现在是干净的。
- 老鼠走到房间 4,房间 4和6之间的走廊现在是脏的。
- 管理者堵住房间2和3之间的走廊。
- 老鼠走到房间 2,房间 2和 4之间的走廊现在是脏的。
- 管理者不进行操作。
- 老鼠走到房间 1。

这个过程中管理者总共进行了4次操作。

数据范围与提示

- 子任务 1 (20%): 1 ≤ n ≤ 10;
- 子任务 2 (25%) : $1 \le n \le 10^6$, 保证老鼠的起始位置和陷阱房相邻 ;
- 子任务 3 (20%) : $1 \le n \le 1000$;
- 子任务 $4 (35\%): 1 \le n \le 10^6$ 。

小丑 (joker)

题目描述

小丑回到了哥谭市准备实施另一个邪恶的计划。在哥谭市有 N 个路口和 M 条街道。每条街道连接着两个不同的路口,两个路口最多由一条街道连接。

为了实施他的邪恶计划,小丑需要使用奇数条街道,这些街道构成一个环。也就是说,对于一个路口 S 和正偶数 k ,存在一系列的路口 S,s_1,\ldots,s_k,S ,使得有道路分别连接 S,s_1 和 s_k,S ,且对于每个 $i=2,\ldots,k$,有道路连接 s_i,s_{i-1} 。

然而,警方控制着哥谭市的街道。第j天他们监视了 $[l_j,r_j]$ 内的每一条街道。所以小丑无法使用这些街道。但对于警方来说不幸的是,小丑在警局里有些间谍,他们会告诉小丑警方每一天的监控计划。现在小丑想知道,给定的几天中每天是否能够实施计划。

输入格式

输入第一行三个整数 N,M,Q ($1\leq N,M,Q\leq 2\times 10^5$) ,分别表示路口的数量、街道的数量和需要研究的天数。

接下来的 M 行,每行两个整数 u,v($u \neq v$),其中的第 j 行表示道路 j 连接了 u,v 这两个路口。

接下来的 Q 行,每行两个整数 l_i, r_i ,表示第 i 天控制的街道的范围。

输出格式

输出共Q行,每行一个字符串。

如果可以实施计划,则输出 YES,否则输出 NO。

样例

输入

1 3 1 5 1 6 2 5 2 6 3 4 3 5 5 6 4 8 4 7	6 8 2			
1 6 2 5 2 6 3 4 3 5 5 6 4 8	1 3			
2 5 2 6 3 4 3 5 5 6 4 8	1 5			
2 6 3 4 3 5 5 6 4 8	1 6			
3 4 3 5 5 6 4 8	2 5			
3 5 5 6 4 8	2 6			
5 6 4 8	3 4			
4 8	3 5			
4 7				
	4 7			

```
NO
YES
```


数据范围与提示

本题共6个子任务,各子任务的分值和限制如下:

子任务 1 (6 分) $: N, M, Q \leq 200$ 。

子任务 2 (8 分) : $N, M, Q \leq 2000$ 。

子任务 3(25 分):所有的 $l_i=1$ 。

子任务 4 (10 分) : 所有的 $l_i \leq 200$ 。

子任务 5(22 分): $Q \leq 2000$ 。

子任务 $6(29\, \odot)$: 无特殊限制。