Métodos Numéricos e Otimização não Linear

Trabalho 1 | Versão A | Grupo 22

Eduardo Coelho, Henrique Neto, Leonardo Marreiros e Paulo Ricardo Pereira

e-mail: $\{a89616, a89618, a89537, a86475\}$ @alunos.uminho.pt

Resumo

Este trabalho tem como objetivo resolver um problema de equações ou sistemas de equações não lineares. Para isso, usar-se-á a rotina fsolve do MATLAB.

1 Problema

Em engenharia ambiental, a equação que se segue pode ser usada para calcular o nível de oxigénio, c, existente num rio a jusante de um local de descarga de esgoto,

$$c = 10 - 15(e^{-0.1x} - e^{-0.5x}),$$

em que x representa a distância a partir do local de descarga. Usando um método à sua escolha, determine o local (a partir da descarga) em que o nível de oxigénio atinge o valor 4.

Sugestão: Sabe-se que o referido local se encontra, no máximo, a 5 km a jusante do local de descarga. ¹

2 Formulação do problema

Substituindo c = 4 em

$$10 - 15(e^{-0.1x} - e^{-0.5x}) = c$$

obtemos:

$$10 - 15(e^{-0.1x} - e^{-0.5x}) = 4$$

$$\Leftrightarrow 10 - 15(e^{-0.1x} - e^{-0.5x}) - 4 = 0$$

$$\Leftrightarrow f(x) = 0$$

¹http://www.mat.uc.pt/~alma/publicat/coursenotes/MatematicaComputacional.pdf

3 Ficheiro MATLAB

Aqui está a nossa função definida:

```
function [f] = tp1(x) f=10-15*(\exp(-0.1*x)) +15*(\exp(-0.5*x))-4; end
```

Criámos também um pequeno script para mudar o valor inicial e parâmetros do **fsolve** mais facilmente:

```
x0 = 0;
options = optimset('Display', 'iter', 'PlotFcn', @optimplotfirstorderopt)
[x, fval, exitflag, output] = fsolve ('tp1', x0, options)
```

4 Testes Computacionais

Na nossa primeira tentativa, usamos, como aproximação inicial para a distância, $x_1 = 5$, que, segundo o enunciado do problema, é a distância máxima em que o referido nível de oxigénio se encontra. Ora, como podemos ver na figura 1, a aproximação inicial convergiu para $x^* \approx 8.8710$.

			Norm of	First-order	Trust-region
Iteration	Func-count	t f(x)	step	optimality	radius
0	2	3.48451		0.549	1
1	4	2.20632	1	0.668	1
2	6	0.0389117	2.5	0.105	2.5
3	8	7.84109e-07	0.369304	0.000468	6.25
4	10	5.89642e-16	0.00167412	1.28e-08	6.25

Equation solved.

```
fsolve completed because the vector of function values is near zero as measured by the value of the <u>function tolerance</u>, and the <u>problem appears regular</u> as measured by the gradient.
```

```
<stopping criteria details>
ans =
   8.8710
```

Figura 1: Resultado do **fsolve** com aproximação inicial $x_1 = 5$

No entanto, é dito que o local se encontra, no máximo, a 5 km do local de descarga. Isto indica que a função tem, pelo menos, duas raízes. A raiz que procuramos encontra-se no intervalo [0,5].

Assim, decidimos mudar a nossa aproximação inicial para o valor mínimo possível no contexto do nosso problema, ou seja, $x_1 = 0$, pois uma distância não pode ser negativa.

			Norm of	First-order	Trust-region
Iteration	Func-count	f(x)	step	optimality	radius
0	2	36		36	1
1	4	2.32684	1	4.87	1
2	6	0.0506208	0.477923	0.515	2.5
3	8	6.23256e-05	0.0983283	0.0168	2.5
4	10	1.17399e-10	0.00370821	2.3e-05	2.5
5	12	4.16364e-22	5.10336e-06	4.33e-11	2.5

Equation solved.

fsolve completed because the vector of function values is near zero as measured by the value of the $\underline{\text{function tolerance}}$, and the $\underline{\text{problem appears regular}}$ as measured by the gradient.

<stopping criteria details>

ans =

1.5800

Figura 2: Resultado do f
solve com aproximação inicial $x_1 = 0$

Como podemos observar pela figura 2, desta vez, a aproximação inicial convergiu para $x^* \approx 1.5800$, o que cumpre a restrição de pertencer ao intervalo [0, 5]. Após a análise gráfica da função, através da rotina **fplot** do MATLAB (figura 3), decidimos diminuir os parâmetros **TolX** e **TolFun** do *optimset* para testarmos a qualidade desta solução. Chegámos à conclusão que esta é uma boa solução, pois, após várias mudanças destes parâmetros, o resultado foi sempre o mesmo, apesar de o número de iterações ter aumentado para 6 com os valores $TolX = 1 \times 10^{-10}$ e $TolFun = 1 \times 10^{-20}$.

Figura 3: Gráfico da função

5 Resultado

Com uma solução válida, mediante o problema, de $x^* \approx 1.5800$, podemos concluir que, a, aproximadamente, 1.58 km de distância do local de descarga do esgoto, o nível de oxigénio atinge o valor 4.

Como teste final, executamos a rotina fzero(@tp1,0), cujo resultado foi 1.5800, o que confirma a nossa resolução do problema.