

(19) **SU**(11) 1 154 907 (13) **A**1

(51) MOK⁶ C 07 D 295/12, 413/06, 487/04, A 61 K 31/40, 31/53, 31/535

ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ СССР

- (21), (22) Заявка: 3509108/04, 04.11.1982
- (46) Дата публикации: 20.09.1996
- (56) Ссылки: 1. Патент ФРГ N 1645935, кл. 12р 10/10, опублик. 1972. 2. Авторское свидетельство СССР N 978567, кл. С 07 D 487/04, 1981.
- (72) Изобретатель: Виноградов В.М., Томчин А.Б., Каткова Е.Б., Катков В.Ф.

(54) ДИГИДРОХЛОРИД 3-(2-ДИЭТИЛАМИНОЭТИЛТИО)-5-(2-МОРФОЛИНОЭТИЛ)-1,2,4-ТРИАЗИНО(5,6-В)ИНДОЛА, ОБЛАДАЮЩИЙ СТРЕССПРОТЕКТИВНОЙ АКТИВНОСТЬЮ

(57) Дигидрохлорид 3-(2-диэтиламиноэтилтио)--5-(2-морфолиноэтил)-1,2,4-триазино (5,6-в) индола формулы

-N(C2H5)2 *2HC1 *2H2

обладающий стресс-протективной активностью.

⁽¹⁹⁾ SU⁽¹¹⁾ 1 154 907 ⁽¹³⁾ A1

(51) Int. Cl. 6 C 07 D 295/12, 413/06, 487/04, A 61 K 31/40, 31/53, 31/535

STATE COMMITTEE FOR INVENTIONS AND DISCOVERIES

(12) ABSTRACT OF INVENTION

(21), (22) Application: 3509108/04, 04.11.1982

(46) Date of publication: 20.09.1996

(72) Inventor: Vinogradov V.M.,

Tomchin A.B., Katkova E.B., Katkov V.F.

(54) 3-(2-DIETHYLAMINOETHYLTHIO)-5-(2-MORPHOLINOETHYL)-1,2,4- TRIAZINO(5,6-b)INDOL DIHYDROCHLORIDE POSSESSING STRESS-PROTECTIVE ACTIVITY

(57) Abstract:

FIELD: organic synthesis; pharmaceutical preparations. SUBSTANCE: compound of the formula

. EFFECT: revealed stress- protective activity.

Изобретение относится к новому химическому соединению, конкретно дигидрохлориду 3-/2-диэтиламиноэтилтио/-5-/2-морфолиноэти л/-1,2,4-триазино/5,6-в/ индола формулы I

обладающему стресс-протективной активностью.

Указанные свойства позволяют предполагать возможность применения его в медицине.

Известны производные

1,2,4-триазино/5,6-в/ индола, обладающие противовирусной активностью [1]

Известен также ближайший структурный аналог гидрохлорид 3-/2-диэтиламиноэтилтио/-1,2,4-триазино/5,6-в /-индола, повышающий устойчивость организма к гипоксии [2]

Целью изобретения является поиск новых производных в ряду 1,2,4-триазино/5,6-в/ индола, обладающих стресс-протективной активностью.

Поставленная цель достигается новым дигидрохлоридом 3-/2-диэтиламиноэтилтио/-5-/2-морфолиноэти л/-1,2,4-триазино/5,6-в/ индола формулы I, обладающим стресс-протективной активностью.

Указанное соединение формулы I получают аминоалкилированием 3-/2-диэтиламиноэтилтио/-1,2,4-триазино/5,6-в / индола гидробромидом 2-морфолиноэтилбромида в диметилформамиде в присутствии гидрида натрия, далее превращают полученное основание в гидрохлорид действием хлористого водорода.

S

Пример. Смешивают 4,12 г (13,7 ммоль) 3-/2-диэтиламиноэтилтио/-1,2,4-триазино/5,6-в / индола с 15 безводного диметилформамида и постепенно при перемешивании и наружном охлаждении, поддерживая температуру 20°С, прибавляют 0,395 г /16,4 ммоль/ порошкообразного гидрида натрия. Одновременно таким же образом готовят раствор 2-морфолиноэтилбромида путем добавления 0,461 г /19,3 ммоль/ гидрида натрия к смеси 4,88 г/17,7 ммоль/ гидробромида 2-морфолиноэтилбромида и 15 диметилформамида. безводного Полученные растворы смешивают нагревают на кипящей водяной бане в течение 30 мин. При этом раствор приобретает темно-красную окраску. Растворитель отгоняют при нагревании на водяной бане /температура бани 50-60 °C/ под вакуумом. Остаток перемешивают с 50 мл изопропилового спирта, осадок бромида натрия отфильтровывают и фильтрат при перемешивании насыщают газообразным безводным хлористым водородом. Выпавший осадок продукта реакции отфильтровывают, промывают изопропиловым спиртом /2х1 мл/, эфиром /2х5 мл/ и сушат в вакуум-эксикаторе над фосфорным ангидридом. Из фильтрата при выдерживании в течение 36 ч при комнатной температуре выпадает дополнительное количество продукта реакции, который выделяют таким же образом. Получают сырой дигидрохлорид 3-/2-диэтиламиноэтилтио/-5-/2-морфолиноэти л/-1,2,4-триазино/5,6-в/-индола в виде мелких бледно-желтых кристаллов, выход 6,27 г /95,1%/.

Полученное вещество обрабатывают кипении пои смесью изопропилового спирта /23,8 мл/ с водой /1,2 нерастворенный остаток отфильтровывают, сушат и получают 2 г вещества, 1,89 г образца кристаллизуют из 20 мл смеси изопропилового спирта с разбавленной /1:20/ соляной кислотой в объемном соотношении 10:1. Вещество выделяется при охлаждении в виде коричневатого масла, переходящего при растирании в легкие бледно-желтые кристаллы, выход 1,32 г, т. пл. 242°С. После перекристаллизации из этилового спирта /около 7,2 мл на 1 г/ и высушивания на дигидрохлорид получают 3-/2-диэтиламиноэтилтио/-5-/2-морфолиноэти л/-1,2,4-триазино/5,6-в/ индола /дигидрат/ в виде бледно-желтых кристаллов, 247 °C. Выход при перекристаллизации 53%

Вещество легко растворяется в воде, устойчиво при хранении, однородно по данным тонкослойной хроматографии на силуфоне. Условия тонкослойной хроматографии: растворитель для нанесения спирт, подвижный растворитель этиловый спирт концентрированный водный аммиак-вода 20:1:4, Rf 0,56. Вещество как в видимом, так и в УФ-свете не содержит примесей, в том числе исходных веществ.

Строение вещества подтверждается данными элементного анализа, потенциометрического титрования щелочью, а также УФ-спектров.

Найдено С 47,86, 47,92; H 6,56, 6,67; CI 13,47, 13,55; N 15,78, 15,84; S 6,25, 6,34. C $_{21}\text{H}_{36}\text{Cl}_2\text{N}_6\text{O}_3\text{S}$ Вычислено, С 48,18; H 6,93; CI 13,54; N 160,5; S 6,12.

УФ-спектр, х_{макс}. нм /lg_c/:221 пл /4,418/,268 /4,641/342/4,155/. УФ-спектр снят для раствора в воде на приборе СФ-20. Положение полос поглощения характерно для 3-S-алкильных производных

1,2,4-триазино/5,6-в/ индола.

Изучение стресс-протективной активности и токсичности.

Фармакологические исследования выполнены на модели хронического стресса, обусловленного 2-суточным воздействием комплекса экстремальных факторов лишение крыс сна, пищи и воды в медленно /0,2 км/ч/ вращающемся барабане.

Оценку эффективности соединения I в сравнении с диазепамом /Седуксен фирмы Гедеон Рихтер/ проводили по комплексу показателей, характеризующих функциональную активность ЦНС и развитие основных патофизиологических проявлений стресс-синдрома. Опыты выполнены на взрослых крысах-самцах массой 150-200 г. Параллельно исследовали три группы животных. Животных первой и второй групп подвергали воздействию экстремальных факторов, третьей - содержали в обычных условиях.

К концу 2 суточного эксперимента определяли общую поведенческую

-3

активность /по тесту "открытого поля"/; состояние высшей нервной деятельности /по тесту выработки условной реакции избегания в водном V-образном лабиринте/; количество язв на слизистой оболочке желудка; массовый коэффициент надпочечников.

Соединения вводили четырехкратно (два раза в сутки) в оптимальных дозах (диазепам 1 мг/кг; соединение I- 5 мг/кг) внутрибрюшинно в объеме 2,5 мл/кг животным, находившимся в экстремальных условиях /первая группа/. Контрольные из экстремальных условиях /первая группа/ и обычных условиях /третья группа/ в те же сроки и в том же объеме.

Результаты проведенного исследования представлены в табл. 1. Двухсуточное экстремальных воздействие факторов привело к существенному ухудшению всех развитию исследованных показателей, основных патофизиологических проявлений стресс-синдрома. При этом снижение общей поведенческой активности на 46% скорости обучения на 53% Отмечено также язвообразование на слизистой оболочке желудка /5,0-0,8/ и увеличение массового коэффициента надпочечников на 28% по сравнению с интактными животными.

Введение диазепама способствовало уменьшению основных патофизиологических проявлений стресс-синдрома: уменьшило язвообразование на слизистой оболочке желудка и гипертрофию надпочечников /табл. 1/, однако его применение привело к еще большему ухудшению показателей высшей нервной деятельности. Введение соединения способствовало также уменьшению язвообразования на слизистой оболочке желудка и гипертрофии надпочечников, но в отличие от диазепама достоверно улучшило нервную деятельность

экстремальных условиях, о чем свидетельствуют данные табл. 2.

Острую токсичность соединения І определяли на мышах, вводя его внутрибрюшинно. Статистическую обработку полученных данных проводили по методу Беренса. Найдено, что Л $Д_{50}$ соединения І равно 200 мг/кг /рабочая доза вещества составляет 1/40 от Л $Д_{50}$).

Таким образом, дигидрохлорид 3-/2-диэтиламиноэтилтио/-5-/2-морфолиноэти л/-1,2,4-триазино/5,6-в/ индола выраженной стресс-протективной активностью, которая сопровождается положительным влиянием на высшую нервную деятельность животных экстремальных условиях, что выгодно отличает его от известного препарата диазелама, стресс-протективная активность которого сопровождается депримирующим влиянием на ЦНС.

Вещество обладает низкой токсичностью и достаточной фармакологической широтой и может найти применение в качестве стресс-протективного средства.

Формула изобретения:

Дигидрохлорид 3-(2-диэтиламиноэтилтио)-5-(2-морфолиноэтил)-1,2,4-триазино (5,6-в) индола формулы

-N(C2H5)2 *2HC1 *2H2

обладающий стресс-протективной активностью.

40

30

45

50

55

60

Влияние соединения I на функциональную активность ЦНС и основные проявления стресссиндрома в условиях хронического стресса

	Животные			
Показатель	Получавшие соедине- ние 1	Контрольные	Интактные	
Общая поведенче-				
ская активность, балл	40,5±8,5*	22,8±6,0	54,8±4,5	
% от интактных	74±16	42±11	100	
Количество попыток				
до достижения крите-				
рия обученности УРИ	3,50±0,30*	6,00±0,50	3,00±0,50	
% от интактных	86±12	50±6	100	
Количество обшибок				
за время обучения	4,3±0,5*	6,3±0,8	3,8±0,5	
% от интактных	113±13	166±21	100 、	
Количество язв на		•		
слизистой оболочке				
желудка	2,8±0,6*	9,3±1,4	_	
% от контроля	30±6	100	-	
Массовый коэффици-		•	,	
ент надпочечников,				
г/кг исходной массы		•		
% от интактных	0,219±0,009*	0,252±0,008	0,204±0,06	
	107±4	124±4	100	

^{*} Отличие от показателей контрольных животных достоверно при р≤0,05.

တ

2

Влияние диазелама на функциональную активность ЦНС и основные проявления стресссиндрома в условиях хронического стресса

	Животные			
Показатель	Получавшие соедине- ние 1	Контрольные	Интактные	
Общая поведенче-				
ская активность, балл	34,3±3,8	29,3±5,9	54,5±2,4	
% от интактных	63±7	54±10	100	
Количество попыток				
до достижения крите-				
рия обученности УРИ	7,25±0,80*	4,75±0,50	2,25±0,8	
% от интактных	31±11	47±20	100	
Количество обшибок	·			
за время обучения	6,5±1,2*	4.3 ± 0.6	4,0±0,6	
% от интактных	162±30	108±20	100	
Количество язв на				
слизистой				
желудка	1,0±0,5*	5,0±0,8	_	
% от контроля	20±10	100	_	
Массовый коэффици-				
ент надпочечников,				
г/кг исходной массы	•			
% от интактных	0,276±0,0024	$0,392\pm0,025$	0,236±0,012	
	117±10	128±10	100	

^{*} Отличие от показателей контрольных животных достоверно при р≤0,05.