R Wrapper for Python

\$ whoami

Valery Calderón Briz

@valerybriz

Ingeniera en Telecomunicaciones

Software Engineer en Prescrypto

Co-organizadora de PyLadies CDMX

Breakout Detection

Este paquete desarrollado en el **Lenguaje R por Twitter** sirve para detectar cambios o anomalías en una serie de datos respecto al tiempo.

Pueden encontrar más información del paquete en:

http://bit.ly/bkoutinthewild

¿Cómo funciona el Breakout Detection?

Usualmente las anomalías o breakouts están caracterizadas por dos estados que se mantienen y un período de transición intermedia.

Para detectar esto el paquete utiliza una técnica de estadísticas llamada **E-Divisive with Medians (EDM)** que es utilizada ampliamente para detectar cambios de nivel o saltos.

Documentación en:

http://bit.ly/edmBreakingBad

¿Cómo funciona el EDM?

- Detección de Divergencia
 - Mean Shift
 - Ramp Up

Detección de cambios en la distribución

Mean Shift

Mean Shift

Ramp Up

Cambios en la distribución

Ventajas

- Es robusto en presencia de anomalías.
- EDM no es paramétrico.
- Es más rápido que otros algoritmos.

Robusto en presencia de anomalías

Las anomalías no son lo mismo que un Breakout

Robusto en presencia de anomalías

EDM no es paramétrico

3.5x más rápido que otros algoritmos

De detección de Breakouts

 Data Points	E-Divisive	EDM	
6,000	29 Min.	24 Seg.	
600	7 Seg.	1 Seg.	

Fuente: https://anomaly.io/anomaly-detection-using-twitter-breakout/

Desventajas

• Se debe combinar con otros algoritmos si se necesita descartar breakouts específicos.

• Es necesario encontrar la combinación correcta de parámetros dependiendo de la serie de datos.

Las variables del algoritmo

1 Data: Serie de datos que serán analizados.

2 Min.size: El valor mínimo de observaciones entre puntos de cambio.

3 Method: "amoc" (al menos un cambio) o "multi" (múltiples cambios).

4 Degree: El grado de regresión polinomial.

5 Beta: Constante para un futuro control en la penalización.

6 Plot: Este indica si se generará un Ploteo luego de la ejecución.

Instalación del paquete

- > install.packages("devtools")
- > devtools::install_github("twitter/BreakoutDetection")
- > library(BreakoutDetection)

Código en R


```
library(BreakoutDetection)
Detect <- function(tsdata, min, met, deg)
   res = breakout(tsdata, min.size=min, method=met,
   beta=.001, degree=deg, plot=FALSE)
   return(res)
```

Requerimientos en Python

rpy2

https://rpy2.readthedocs.io

Importando desde R


```
minsize = 30

method = 'multi'

degree = 0

with open('Codigo.R') as code:
   rcode = os.linesep.join(code.readlines())
   wrapper = SignatureTranslatedAnonymousPackage(rcode, "Codigo")
```

Ejecutando la función


```
result = wrapper.Detect(FloatVector(mydata), minsize, method, degree)
print (result)
>>>>>
$loc
    [1] 74 116 147 177 209
$time
```

Obteniendo los datos relevantes


```
if len(result) > 0:
    for val in result[0]:
         print (val)
>>>>>
74
116
```

Caso Práctico: Sensor de combustible

Resultados

min.size=30, method='multi', beta=.001, degree=0

Preguntas / comentarios

Repositorio:

https://github.com/pyladies-nwuk/Python meets R

