南京外国语学校

2021—2022 学年度第二学期期中初一年级 数学试题(卷)

命题人 刘辉 审核人 东方

(满分: 100 分; 考试时间: 100 分钟)

	冼择题	(每题 2 分,	# 12 4	(公
•		1962271.	ᄌᅜ	<i>''</i>

1	下列各式运算结果为 a^5 的是	(A)	١
1.	1996以及县纪末为3 19定 9		ł

A.
$$(a^2)^{-3}$$
 B. a^2+a^3

B.
$$a^2 + a^3$$

C.
$$a^2 \cdot a^3$$
 D. $a^{10} \div a^2$

D.
$$a^{10} \div a^2$$

2. 三角形的两边长分别为 5 和 7, 第三边长为奇数, 这个三角形的周长可以是 (▲)

3. 已知方程组
$$\begin{cases} 2x + y = 7 \\ x + 2y = 8 \end{cases}$$
 , 则 $x - y$ 的值是(\blacktriangle)

4. 若 P= (x-3) (x-4), Q= (x-2) (x-5), 则 P与 Q 的大小关系是(▲)

A.
$$P > Q$$

C.
$$P = Q$$

A. P > Q B. P < Q C. P = Q D. 由 x 的取值而定

5. 如图,五边形 ABCDE 中,AB//CD,∠1、∠2、∠3 分别是∠BAE、∠AED、∠EDC 的外角,则∠1+∠2+∠3等于(▲)

第6题

6. 如图,已知 $D \setminus E$ 分别为 $\triangle ABC$ 的边 $AC \setminus BC$ 的中点,AF为 $\triangle ABD$ 的中线,连接 EF, 若 \triangle ABC 的面积为 8,则四边形 AFEC 的面积为(▲)

A. 3

B. 4

C. 5

D. 6

二、填空题(每空2分,共24分)

- 7. 数据 0.000314 用科学记数法表示为 ▲ .
- 8. 已知 $\begin{cases} x=2 \\ y=3 \end{cases}$ 是方程 3x-4y+2a=0 的解,则 a 的值是____.
- 9. 用提公因式法对多项式 12x(a+b)-4y(a+b) 进行因式分解, 公因式应确定为 ▲ .
- 10. 如果 $x^2+mx+1=(x+n)^2$, 且 m<0, 则 n 的值是_____.
- 11. 已知 2x+5y-4=0,则 $4^x\times32^y=$ ____.
- 12. 若 *a*-*b*=1, *ab*=-2, 则(*a*-1)(*b*+1)=__▲__.
- 13. 已知多项式 (x-2a) 与 (x^2+x-1) 的乘积中不含 x^2 项,则常数 a 的值是 ▲ ...
- 14. 计算: 2022²-2024×2020 = __▲__.
- 15. 如图, 阴影部分是边长是 a 的大正方形剪去一个边长是 b 的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形,给出下列 4 幅图割拼方法中,其中能够验证平方差公式的有 \triangle (填序号)

- 16. 将△ABC纸片沿 DE按如图的方式折叠. 若∠C=50°, ∠1=85°, 则∠2=__▲_.
- 17. 若关于 x、y 的二元一次方程组 $\begin{cases} x + y = 5k \\ x y = 9k \end{cases}$ 的解也是二元一次方程 2x + 3y = 6 的解,则 k 的值为 k .
- 18. 如图,a、b、c 三根木棒钉在一起, $\angle 1$ = 70°, $\angle 2$ = 100°,现将木棒 a、b 同时顺时针旋转一周,速度分别为 18 度/秒和 3 度/秒,两根木棒都停止时运动结束,则 \triangle 秒后木棒 a, b 平行.

- 三、解答题(本大题共8小题,共64分.请在答题卷指定区域内作答,解答 时应写出文字说明、说理过程或演算步骤)
- 19. (16分) 计算:

(1)
$$\left(-\frac{1}{2}\right)^{-2} + (\pi - 2)^{0} - |-3|$$

(1)
$$(-\frac{1}{2})^{-2} + (\pi - 2)^{0} - |-3|$$
; (2) $3m^{2} \cdot 2m^{4} - (2m^{3})^{2} + m^{8} \div m^{2}$.

$$(3) (5a-4b) (4a-5b)$$

(3)
$$(5a-4b)$$
 $(4a-5b)$ (4) $(3m+2n)$ $(3m-2n)$ $(9m^2-4n^2)$

20. (8分)分解因式:

(1)
$$3ab^2-6ab+3a$$
;

21. (6分) (1) 解方程组
$$\begin{cases} 2x+y=5, \\ x-3y=6 \end{cases}$$
; (2) 方程组 $\begin{cases} \frac{2m}{7} + \frac{n}{9} = 5, \\ \frac{m}{7} - \frac{n}{3} = 6 \end{cases}$ 的解是_____.

- 22. (6分) 如图,每个小正方形的边长均为1,每个小方格的顶点叫格点
 - (1) 画出△ABC中AB边上的高线CD, D为垂足;
 - (2) 画出△ABC向右平移 3 个单位后得到的△A₁B₁C₁;
 - (3) 图中 AB 与 A₁B₁ 的关系是: __▲__;
 - (4) *S*△*ABC* 的面积是 ▲ .

23. (6分) 观察下列各式:

$$1 \times 5 + 4 = 3^2$$

$$3 \times 7 + 4 = 5^2$$
 (2)

$$5 \times 9 + 4 = 7^2 \dots (3)$$

.

探索以上式子的规律:

- (1) 试写出第④个等式: __▲__;
- (2) 试写出第 n 个等式(用含 n 的式子表示),并用你所学的知识说明第 n 个等式成立.

24. (6分) 如图,已知: AD 平分 $\angle BAC$,点 F 是 AD 反向延长线上的一点, $EF \perp BC$, $\triangle 1 = 40^\circ$, $\triangle C = 65^\circ$. 求: $\triangle B$ 和 $\triangle F$ 的度数 .

25. (8分) 仔细阅读下列解题过程:

若 $a^2 + 2ab + 2b^2 - 6b + 9 = 0$, 求a、b的值.

解:
$$: a^2 + 2ab + 2b^2 - 6b + 9 = 0$$

$$\therefore a^2 + 2ab + b^2 + b^2 - 6b + 9 = 0$$

$$\therefore a + b = 0$$
, $b - 3 = 0$ $\therefore a = -3$, $b = 3$

请利用上述解题方法解决下列问题:

- (2) 若 m-n=6, $mn+t^2-8t+25=0$, 求 n^{m-t} 的值.

26. (8分) 对于平面内的 $\angle M$ 和 $\angle N$, 若存在一个常数 k>0, 使得 $\angle M+k\angle N=360^\circ$, 则 $\triangle N$ 为 $\triangle M$ 的 k系补周角. 若 $\triangle M=90^\circ$, $\triangle N=45^\circ$, 则 $\triangle N$ 为 $\triangle M$ 的 6 系补周角.

- (1) 若∠H=80°,则∠H的4系补周角的度数为 ▲ °
- (2) 在平面内 *ABII CD*, 点 *E* 是平面内一点, 连接 *BE、DE*.
- ①如图 1, $\angle D = 60^{\circ}$, 若 $\angle B$ 是 $\angle E$ 的 3 系补周角, 求 $\angle B$ 的度数.
- ②如图 2, \angle ABE 和 \angle CDE 均为钝角,点 F在点 E的右侧,且满足 \angle ABF = $n\angle$ ABE, \angle CDF = $n\angle$ CDE (其中 n 为常数且 n>1),点 P是 \angle ABE 角平分线 BG 上的一个动点,在 P点运动过程中,请你确定一个点 P的位置,使得 \angle BPD 是 \angle F 的 k 系补周角,写出你的解题思路并求出此时的 k 值(用含 n 的式子表示).

选择题(每题2分,共12分)

题号	1	2	3	4	5	6
答案						

- 填空题(每空2分,共24分)

- 10. _____;

- 18.

- 三. 解答题 (共 64 分)
- 19. (16分) 计算:
- (1) $(-\frac{1}{2})^{-2} + (\pi 2)^{\circ} |-3|$; (2) $3m^2 \cdot 2m^4 (2m^3)^{-2} + m^8 \div m^2$.

- (3) (5a-4b) (4a-5b) (4) (3m+2n) (3m-2n) $(9m^2-4n^2)$

- 20. (8分)分解因式:

 - (1) $3ab^2-6ab+3a$; (2) $2a^2(a-b)-8(a-b)$;

- 21. (6分)(1)解方程组 $\begin{cases} 2x+y=5, \\ x-3y=6 \end{cases}$; (2)_____.

22. (6分)(1)(2)

- (3) _____;
- (4) ______.

- 23. (6分)
 - (1) ______.
 - (2)

24. (6分)

25. (8分)

(1)

(2)

26. (8分)

- (1) ____°
- (2)
- 1

2

答案

一. 选择题(每题2分,共12分)

题号	1	2	3	4	5	6
答案	С	С	D	Α	В	С

- 二. 填空题(每题2分.共24分)
- 7. 3.14×10^{-4} ; 8. 3; 9. 4(a+b); 10. -1; 11. 16;

- 12. -2; 13. 0.5; 14. 4;.
- 15. ①②③④; 16. 15°;

- 17. 0.75. 18. 2 或 14 或 50 或 110
- 三. 解答题(共64分)
- 19. 计算(每小题 4分, 共 16分)
 - (1) 2; (2) $3m^6$; (3) $20a^2 41ab + 20b^2$; (4) $81m^4 72m^2n^2 + 16n^4$.
- 20. 因式分解(每小题 4 分, 共 8 分)
 - (1) $3a(b-1)^2$:
- (2) 2(a-b)(a+2)(a-2):
- 21. 解下列方程组(共6分)
- (1) $\begin{cases} x = 3, \\ y = -1, \end{cases}$ (2) $\begin{cases} m = 21, \\ n = -9. \end{cases}$
- 22. (本题满分 6 分):
- **解:** (1) (2) 图略: (3) 平行且相等: (4) △A'B'C'的面积为 5.
- 23. (本题满分 6 分) (1) 7×11+4=9².
 - (2) 由题意知 (2*n*-1) (2*n*+3) +4 = (2*n*+1) ².

理由: 左边 = $4n^2 + 6n - 2n - 3 + 4 = 4n^2 + 4n + 1 = (2n + 1)^2 = 右边$.

- $\therefore (2n-1)(2n+3) + 4 = (2n+1)^{2}$
- **24. (本题满分 6 分)** 解: ∵AD 平分∠BAC, ∠1 = 40°.
 - $\therefore \angle BAC = 2 \angle 1 = 80^{\circ}$.

在△ABC中, ∠C=65°, ∠B+∠BAC+∠C=180°

- $\therefore \angle B = 180^{\circ} \angle BAC \angle C = 180^{\circ} 80^{\circ} 65^{\circ} = 35^{\circ}.$
- ∵∠*EDF* 是△ABD 的外角:

 $\angle EDF = \angle B + \angle 1 = 35^{\circ} + 40^{\circ} = 75^{\circ}$.

 $:EF \perp BC, :: \angle DEF = 90^{\circ}.$

∴在 Rt \triangle EDF 中, \angle F = 90° - \angle EDF = 90° - 75° = 15°.

25. (本题满分8分)

解: (1)
$$x^2 - 2xy + 2y^2 - 2y + 1 = 0$$
 $x^2 - 2xy + y^2 + y^2 - 2y + 1 = 0$

$$\therefore x - y = 0$$
, $y - 1 = 0$, $\therefore x = 1$, $y = 1$, $\therefore x + 2y = 3$;

(2)
$$\because m-n+6, \because m=n+6, \because n (n+6) + t^2-8t+20 = 0$$

$$\therefore n^2 + 6n + 9 + t^2 - 8t + 16 = 0 \therefore (n+3)^2 + (t-4)^2 = 0$$

$$\therefore n+3=0$$
, $t-4=0$ $\therefore n=-3$, $t=4$

$$\therefore m = n + 6 = 3 \therefore n^{m-t} = (-3)^{-1} = -\frac{1}{3}$$

26. (本题满分 8 分)

解: (1) 70°;

(2) ①过 *E*作 *EFIIAB*, ∴∠*B* = ∠*BEF*,

∵ABIICD, EFIIAB

 $\therefore EFIICD$, $\angle D = 60^{\circ}$,

 $\therefore \angle D = \angle DEF = 60^{\circ}$.

 $\therefore \angle B + 60^{\circ} = \angle BEF + \angle DEF$.

即 $\angle B+60^{\circ}=\angle BED$.

∵∠B是∠BED的3系补周角,

 $\therefore \angle BED + 3 \angle B = 360^{\circ}$

 $\therefore \angle B + 60^{\circ} + 3 \angle B = 360$,

 $\therefore \angle B = 75^{\circ}$:

②当 BG 上的动点 P 为 \angle CDE 的角平分线与 BG 的交点时,满足 \angle BPD 是 \angle F 的 k 系补周角,此时 k=2n;