الجمهورية الجزائرية الذيمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2010

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

المدة: 04 ساعات ونصف

اختبار في مادة: تكنولوجيا (هندسة مدنية)

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

المسألة الأولى: (08 نقاط)

لتكن لدينا رافدة والمبينة في الشكل الميكانيكي الموالي والمستندة على مسندين (A) و (B) الأول بسيط والثاني مضاعف، توجد تحت تأثير حمولة موزعة بانتظام q = 175 daN/m وحمولة مركزة F=250 daN

العمل المطلوب:

- 1. احسب ردود الأفعال عند المسندين A و B .
- 2. اكتب معادلات الجهد القاطع T وعزم الانحناء Mf على طول الرافدة.
 - 3. ارسم منحنیات T و Mf.
 - 4. استنتج عزم الانحناء الأعظمي Mf max .

المسألة الثانية: دراسة شداد (Tirant) من الخرسانة المسلحة (05 نقاط)

اعتمادا على المعطيات الموالية أنجز ما يلى:

- 1. حدد تسليح مقطع الشداد مع اقتراح رسما له.
 - 2. تحقق من شرط عدم الهشاشة.

صفحة 1 من 8 الجديد و الحصري فقط على موقع الاستاذ Lotphilosophie. _____sites.google.com/site/lotphilosophie

المعطيات:

نوع التشققات	f _e (Mpa)	η	γs	نوع الفو لاذ	مقطع العمود (cm ²)	f_{c28} (Mpa)	Nser (MN)	Nu (MN)
ضارة جدا	400	1.6	1.15	FeE400	35×35	30	0.20	0.43

العلاقات الضرورية

$$f_{t28} = 0.6 + 0.06 f_{c28} \qquad \overline{\sigma}_{s} = \min \left(1/2 f_{e}; 90 \sqrt{\eta \times f_{t28}} \right)$$

$$A_{s} \cdot f_{e} \ge B \cdot f_{t28} \qquad A_{ser} = N_{ser} / \sigma_{st} \qquad A_{u} = N_{u} / f_{su}$$

جدول التسليح:

	-		نسان:	لعدد القد	(cm ²)—,	المقطع				القطر
10	9	8	7	6	5	4	3	2	1	mm
5.02	4.52	4.01	3.51	3.01	2,51	2.01	1.50	1.00	0.50	8
7.85	7.06	6.28	5.49	4.71	3.92	3.14	2.35	1.57	0.78	10
11.31	10.18	9.05	7.92	6.78	5.65	4.52	3.39	2.26	1.13	12
15.39	13.85	12.31	10.77	9.23	7.69	6.15	4.62	3.08	1.54	14
20.10	18.09	16.08	14.07	12.06	10.05	8.04	6.03	4.02	2.01	16
31.41	28.27	25.13	21.99	18.84	15.70	12.56	9.42	6.28	3.14	20
49.09	44.18	39.27	34.36	29.45	24.54	19.63	14.73	9.82	4,91	25
80.42	72.38	64.34	56.26	48.25	40.21	32.17	24.12	16.08	8.04	32
125.65	113.09	100.53	87.96	75.39	62.83	50.26	37.70	25.13	12.56	40

المسألة الثالثة: مشروع طريق (04 نقاط)

عند در استنا لمشروع طريق متكون من 6 مظاهر تحصلنا على النتائج التالية:

المسافات الجزئية بين المظاهر:

$$P_1 - P_2 = 40 \text{ m}$$

$$P_2 - P_3 = 30 \text{ m}$$

$$P_3 - P_4 = 30 \text{ m}$$

$$P_{4}-P_{5} = 40 \text{ m}$$

$$P_5 - P_6 = 60 \text{ m}$$

مناسيب نقاط خط التربة الطبيعية و خط المشروع:

P ₆	P ₅	P ₄	P ₃	P ₂	Pı	النقاط
303.00	302.00	301.00	304.00	305.00	304.00	مناسيب نقاط خط التربة الطبيعية (m)
301.00	-	302.00	_	-	304.00	مناسيب نقاط خط المشروع (m)

العمل المطلوب:

- 1. أكمل الجدول الموجود في الوثيقة 1 (صفحة 8/4) وارسم المظهر الطولي.
 - 2. استخرج من الرسم المظاهر الوهمية (p_f) إن وجدت وحدّد (x_1-x_2)

المسألة الرابعة: (03 نقاط)

عرف الغماء مع ذكر عناصره.

مفحة 4 من 8

مستري المقارنة أرقام المظاهر متاط خط الترية وب نقاط خط المرائدة (ا الفات المتراكمة (ا	منسوب مستوي المقارنة	1 3 4 5	منسوب نقاط خط الترية الطبيعية	منسوب نقاط خط المشروع	المسافات الجزئية	المصافّات المتر اكمة (الكلية)	
---	----------------------	---------	-------------------------------	-----------------------	------------------	-------------------------------	--

الموضوع الثاني

مقدمة: لغرض انجاز طريق قررت المؤسسة بناء ورشة متعددة الاستعمال.

تحتوي الدراسة على ما يلي:

أ- مقطع طولي لجزء من طريق.

ب- حساب مساحة القطعة الأرضية الخاصة بالورشة.

ج- جملة مثلثية.

د- عمود من الخرسانة المسلحة.

أ- در اسة المقطع الطولي: (05 نقاط)

يعطى مخطط المقطع الطولي (ص8/8)

المطلوب:

1- اذكر الوثائق الخطية التي يتكون منها الملف التقنى للطريق.

2- عين على الرسم خط المشروع و خط الأرض الطبيعية.

3- بين منطقة الحفر والردم على مخطط المقطع الطولي.

4- احسب نقطة تقاطع خط المشروع مع خط الأرض الطبيعية.

5- أكمل المعلومات الناقصة على جدول المقطع الطولي.

ب- حساب مساحة القطعة الأرضية: (03 نقاط)

القطعة الأرضية المخصصة لإقامة الورشة شكلها مضلع معرف بالرؤوس التالية:

N(X;Y): الإحداثيات القائمة A,B,C,D,E

-B(65,362;216,728); -A(20,051;163,829)

- D(151,840; 136,840); - C(109,147; 224,265)

- E(41,593;113,629)

انظر الشكل(1)

المطلوب:

- احسب مساحة القطعة الأرضية بطريقة الإحداثيات القائمة.

القائمة. الشكل-1-

ج- دراسة الجملة المثلثية: (06 نقاط)

يعطى الشكل الميكانيكي للجملة المثلثية في الشكل(2) حيث يرتكز على مسندين:

A مسند بسیط و B مسند مزدوج.

المطلوب:

- 1- برهن أن النظام محدد سكونيا.
- 2- احسب ردود الأفعال عند المسندين A و B.
- 3- احسب الجهود الداخلية في القضبان و بين نوعها.
 - 4- دون النتائج في جدول.

د- دراسة عمود: (06 نقاط)

نقوم بدراسة عمود جانبي من الخرسانة المسلحة معرض لقوة انضغاط ناظمية مركزية على مقطع الخرسانة.

المعطيات:

 $N_u=2,00MN$ - الجهد الناظمي في حالة الحد النهائي:

- مقطع العمود: (35cm x 35cm)

- طول الانبعاج: - طول الانبعاج:

 f_{c28} =30MPa ; γ_b =1,5 - مقاومة الخرسانة:

 $f_e = 400$ MPa ; $\gamma_s = 1,15$ HA Fe E400 : التسليح من الفو لاذ –

- نصف الحمولة مطبقة قبل 90 يوم.

صفحة 6 من 8

علاقات ضرورية للحساب:

$$\lambda \le 50 \Rightarrow \alpha = \frac{0.85}{1 + 0.2 \left(\frac{\lambda}{35}\right)^2}$$
; $\lambda > 50 \Rightarrow \alpha = 0.6 \left(\frac{50}{\lambda}\right)^2$

$$A_{th} = \left(\frac{N_u}{\alpha} - \frac{B_r \cdot f_{c28}}{0.9 \, \gamma_b}\right) \frac{\gamma_s}{f_e} \qquad ; \qquad B_r = (a-2) \times (b-2)$$

$$A_{\min} = \max \{ A (4u) ; A (0.2\% B) \}$$
 ; $\phi_t \ge \phi_L/3$

العمل المطلوب:

1- حدّد تسليح هذا العمود.

2- اقترح رسما له.

جدول التسليح

		_ _	ان	القضي	77					الأقطار
10	-9	8	7	6	5	4	3	2	1	(mm)
5.03	4.52	4.02	3.52	3.02	2.51	2.01	1.51	1.01	0.50	8_
7.85	7.07	6.28	5.50	4.71	3.93	3.14	2.36	1.57	0.79	10
11.31	10.18	9.05	7.92	6.79	5.65	4.52	3.39	2.26	1.13	12
15.39	13.85	12.32	10.78	9.24	7.70	6.16	4.62	3.08	1.54	14
20.11	18.10	16.08	14.07	12.06	10.05	8.04	6.03	4.02	2.01	16
31.42	28.27	25.13	21.99	18.85	15.71	12.57	9.42	6.28	3.14	20
49.09	44.18	39.27	34.36	29.45	24.54	19.63	14.73	9.82	4.91	25

4	.Lotp	hilos	ophie غار s.google	 	علی ۱	، فقط	صري	ا . و الح	.يد
1/100	1/1000	مستوى المقار نة 400,081	مناسيب خط الأرض الطبيعية	مناسيب خط المشروع	المسافات الجزئية	المساقات المتر اكمة	ميول المشروع	التراصفات و المنعرجات	
		1 2	00.281	00.281	28.00				
			00.481		32.00				
		3 4	00.281		25.00				
		e-1-	00.481		30.00				
		5 6	00.681		25.00				
			00.281		30.00				
		7	00.681	,	25.00				
		6 8	184.00	184.00	20.00				

دورة: 2010 المدة: 04 ساعات ونصف الإجابة النمونجية لموضوع مقترح لامتحان: شهادة البكالوريا اختبار في مادة: التكنولوجيا هندسة مدنية الشعبة: تقني رياضي

لامة مجموع	العا مجز أة	عناصر الإجابة	محاور الموضوع
		المسالة الأولى: 1. حساب ردود الأفعال عند المسندين: 1. حساب ردود الأفعال عند المسندين: 1.00 m	
	0,5	$\Sigma F/x = 0 \Rightarrow \underline{\mathbf{H}_{B}} = \underline{0}$	
	1,5×3	\Rightarrow $V_B = 450 daN$	

222

صفحة 1 من 5

المسألة الثانية: 1. حساب تسليح مقطع الشداد:

 $As = \max(Au; Aser)$

• الدراسة في الحالة: ELU

$$f_{SU} = \frac{f_e}{\gamma_S} = \frac{400}{1.15} = 348 Mpa$$

01

0,5

01

0,5

$$A_U = \frac{N_U}{f_{su}} = \frac{0.43}{348} \times 10^4 = 12.36 \, cm^2$$

• الدراسة في الحالة: ELS

$$\overline{\sigma}_s = \min(1/2 f_e ; 90\sqrt{\eta.f_{i28}})$$

$$1/2 f_e = 0.5 \times 400 = 200 Mpa$$

$$f_{t28} = 0.6 + 0.06 \times 30 = 2.4 \, mpa$$

$$90\sqrt{\eta.f_{t28}} = 90\sqrt{1.6 \times 2.4} = 176.36 Mpa$$

$$\overline{\sigma}_s = \min(200 ; 176.36) = 176.36 Mpa$$

$$A_{ser} = \frac{N_{ser}}{\sigma_s} = \frac{0.20}{176.36} \times 10^4 = 11.34 \, cm^2$$

$$A_s = \max(A_u ; A_{ser}) = \max(12.36 ; 11.34)$$

$$A_s = 12.36 \, cm^2 \dots (4T20) = 12.56 \, cm^2$$

• رسم التسليح:

2. التحقق من شرط عدم الهشاشة:

01

$$A_x \times f_v \ge B \times f_{v28}$$
$$12.56 \times 400 \ge 1225 \times 2.4$$

 $5024 \succ 2940$

05

		المسألة الثالثة: $P_i = 304 \text{ m}$ $P_4 = 302 \text{ m}$ $P = (P_1 - P_4)/100 = 0.02$ $P_2 = p_1 - (40 \times 0.02) = 304 - 0.8 = 303.20 \text{ m}$ $P_3 = p_1 - (70 \times 0.02) = 304 - 1.4 = 302.60 \text{ m}$ $P_4 = 302 \text{ m}$ $P_6 = 301 \text{ m}$ $P = (P_4 - P_6)/100 = 0.01$ $P_5 = p_4 - (40 \times 0.01) = 302 - 0.4 = 301.60 \text{ m}$
		$P_{f1}=?$ $X_{1} = \frac{1.4 \times 30}{2.4} = 17.5m$ $X_{2} = \frac{1 \times 30}{2.4} = 12.5m$ $P_{f2}=?$ $X_{1} = \frac{1 \times 40}{1.4} = 28.57m$ $X_{2} = \frac{0.4 \times 40}{1.4} = 11.43m$
04	0.5 0.5 0.5 0.5	المسألة الرابعة: * تعريف الغماء: * هو مجموعة من العناصر التي تشمل الجزء العلوي المعد لتغطية البنايات و تشمل التغطية والهيكل الثلاثي. * عناصر الغماء: الهيكل الثلاثي. د حاملات الروافد د حائم السقف

مفحة كمن ك

	التراصفات و المنحنيات	ميول المشروع	المسافات المئز اكمة	المسافات الجزئية	مناسيب خط المشروع	مناسيب خط الأرض الطبيعية	1/100
			0.00 28.00	28.00	182.00 182.26	182.00 183.00	ض الطنبيعية
			60.00	32.00	182.56	184.00	(25) خط الأرض الطبيعية الم
صفحة 1 من 7	21	215,00	85.00	25.00	182.79	185.00	(0.25) \ (0.25)
D	تراصف على 215,00 m	% على طول	115.00	30.00	183.07	184.00	الم
	تراصا	ميل 0.93 % على	140.00	25.00	183.30	183.00	المقطع الطوني [6]
	777		170.00	30.00	183.58	182.00	خط المشروع
			195.00	25.00	183.81	183.00	
			215.00	20.00	184.00	184.00	
		(දී) 		.Lot	philioso sites	يتاذ phie. google.d	الجديد و الحصري فقط على موقع الأسا com/site/lotphilosophie

الإجابة النموذجية و سلم التنقيط با دورة: 2010 نسي المدة: 04 ساعات ونصف

دورة: 2010 المدة: 04 ساعات ونصف

مة مجموع	العلا مجزأة	عناصر الإجابة	محاور الموضوع
	1		
		المسألة الأولى:	
	04	المظهر الطولي	
		1- الوثائق الخطية هي:	
	0.25×4	– المظهر الطولي	
		- المظاهر العرضية	
		- المظهر العرضي النموذجي	
<u></u> _		- المسقط الأفقي	
05		المسألة الثانية:	
		$S=1/2\Sigma[X_n(Y_{n-1}-Y_{n1})]$	
	01	$S = 1/2[X_A(Y_E - Y_B) + X_B(Y_A - Y_C) + X_C(Y_B - Y_D) + X_D]$	
	VI	$(Y_C - Y_E) + X_E (Y_D - Y_A)]$	
	0.1	S = 1/2[20.051(113.629-216.728)+65.362(163.829-	
	01	224.265)+109.147(216.728-136.840)+151.840(224.265-	
		113.629)+41.593(136.840-163.829)]	
	01	$S=9189.25m^2$	
03	,		
	2	A B C D D	

دورة: 2010 المدة: 04 ساعات ونصف

مجموع	العلا مجزاة	عناصر الإجابة	محاور الموضوع
مجموح	0,5	المسألة الثالثة: $ \begin{array}{cccccccccccccccccccccccccccccccccc$	
	0,5×3	$R_{AY} + R_{BY} = 60$ $7,50 + 52,50 = 60$	

دورة: 2010 المدة: 04 ساعات ونصف

ة مجمو	مجزاة		العقدة: A	موضوع
		$\Sigma F_X = 0 \Rightarrow N_{AD} + N_{AC} \cos(\alpha) = 0$	$Cos(\alpha) = 0.894$	
		$\Sigma F_{Y} = 0 \Rightarrow 7.50 + N_{AC} \sin(\alpha) = 0$	$Sin(\alpha) = 0.447$	
		N _{AC}	$N_{AC} = -16.78 \text{ KN}$	
		$A \longrightarrow \alpha$ N_{AD}	$N_{AD} = 15 \text{ KN}$	
		R _{AY}		
		A.A.I.	العقدة:D	
		$\Sigma F_X = 0 \Rightarrow N_{DB} - N_{AD} = 0 \Rightarrow 1$	$N_{DB} = N_{AD} = 15 \text{ KN}$	
			$\Sigma F_{Y} = 0 \Rightarrow N_{DC} = 0$	
		N _{DC} ↑		
		N _{AD} N _{DB}		
		D		
			العقدة: C	
		$\Sigma F_X = 0 \Rightarrow -N_{CA} \cos(\alpha) + N_{CE} \cos(\alpha) + N_{CB}$	$Cos(\alpha) + 10 = 0$	
		$\Sigma F_Y = 0 \Longrightarrow -N_{CA} \sin(\alpha) + N_{CE} \sin(\alpha) - N_{CB} \sin(\alpha)$	$\alpha) -20 = 0$	
		$\Rightarrow \begin{cases} N_{CB} = -27 \\ N_{CE} = 0 \text{ K} \end{cases}$.92KN	
		$ \begin{array}{c} 20 \\ N_{CE} = 0 \text{ K} \end{array} $	N	
		N_{CA} $N_{CD} = 0$ N_{CB}		
		30		

دورة: 2010 المدة : 04 ساعات ونصف

العلامة مجراة مجموع		عناصر الإجابة						
		40				العقدة: E	الموضوع	
		α	<u> </u>		ΣF_X	$=0 \Rightarrow N_{CE}=0$		
	0,5×7			Σ]	$F_Y = 0 \Rightarrow$	$N_{EB} - 40 = 0$		
		N _{CE} N _{EB}				$N_{EB} = -40 \text{ KN}$		
						3- جدول النتائج:		
			الطبيعة	الجهد (KN)	القضيب			
	0,5		أنضغاط	16.77	AC			
			شد	15.00	AD			
			شد	15.00	DB			
	1		تركيبي	0.00	DC			
	l		نركيبي	0.00	CE			
			أنضغاط	27.92	СВ			
06	ı.		أنضغاط	40.00	EB		}	
						المسألة الرابعة:		
		- حساب التسليح الطولي:						
	0,5	$\lambda = \frac{l_f}{i} = \frac{320.2\sqrt{3}}{35} = 31.62 < 50$: Leading the sum of the sum						
	01	-2 حساب المعامل α:						
		$\lambda < 50 \Rightarrow \beta = 1 + 0.2 \left(\frac{\lambda}{35}\right)^2 = 1 + 0.2 \left(\frac{31.62}{35}\right)^2 = 1.16$						
		$\alpha = \frac{0.85}{\beta} = \frac{0.85}{1.16} = 0.73$						

دورة: 2010 المدة: 04 ساعات ونصف

العلامة		عناصر الإجابة		
مجموع	مجزاة	$\alpha = \frac{0.73}{1.1} = 0.66$:التحميل قبل 90 يوما	موضوع	
		-3 حساب المقطع المصغر للخرسانة:		
	0,5	$B_r = (35-2)(35-2) = 1089$ cm ²		
		4- حساب المقطع النظري:		
		$A_{th} = \left(\frac{N_{u}}{\alpha} - \frac{B_{r} \cdot f_{c28}}{0.9 \cdot \gamma_{b}}\right) \frac{\gamma_{s}}{f_{e}}$		
	01	$A_{th} = \left(\frac{2x10^5}{0.66} - \frac{1089x30x10}{0.9x1.5}\right) \frac{1.15}{400x10} = 17.54cm^2$		
		5- حساب التسليح الأدنى:		
		$A_{min} = max\{ A(4u); A(0.2\%B) \}$		
		u = 2(0.35+0.35) = 1.40m		
		$A (4u) = 4x1.4 = 5.60cm^2$		
	01	$A (0.2\%B) = (0.2x35x35)/100 = 2.45cm^2$		
		$A_{min} = max{5.60cm^2; 2.45 cm^2} = 5.60cm^2$		
		6- التسليح المحسوب:		
	0,5	$A_{\text{s cal}}=Sup\{A_{\text{th}}; A_{\text{min}}\}$		
		$A_{s \text{ cal}} = \text{Sup } \{17.54 \text{cm}^2 ; 5.60 \text{ cm}^2 \} = 17.54 \text{cm}^2$		
	12	27		

دورة: 2010 المدة : 04 ساعات ونصف

مة مجموع	العلا مجز أة	عناصر الإجابة		
		II- اقتراح رسما للتسليح:		
		A= 17.54cm ²		
		نختار : A= 18.85cm²⇒6HA20		
	0,5	اطار 8 0 اطار 8 0 اطار 8 0 اطار 8 0 اطار 8 اطال 8 اطا		
		- التسليح العرضي: - التسليح العرضي: التسليح العرضي		
	0,5	$\Phi_{\rm t} = \Phi_{\rm L}/3 = 20 / 3 = 8 { m mm}$ • القطر :		
06	0,5	$S_t = min \{ 15 \times \Phi_{Lmin} ; 40 \text{ cm} ; (a + 10 \text{ cm}) \}$:: $S_t = min \{ 15 \times 2.0 ; 40 \text{ cm} ; (35 + 10 \text{ cm}) \}$ $S_t = min \{ 30 \text{ cm} ; 40 \text{ cm} ; (45 \text{ cm}) \} = 30 \text{ cm}$		