Discrete Mathematics with Applications I COMPSCI&SFWRENG 2DM3

McMaster University, Fall 2019

Wolfram Kahl

2019-11-15

How can you simplify if you know $P_1 \Rightarrow P_2$?

```
 \vdots \\ \equiv \langle \dots \rangle \\ \dots \vee P_1 \vee P_2 \vee \dots \\ \equiv \langle \qquad ? \qquad \rangle \\ ?   \vdots \\ \equiv \langle \dots \rangle \\ \dots \wedge P_1 \wedge P_2 \wedge \dots \\ \equiv \langle \qquad ? \qquad \rangle \\ ?
```

Plan for Today

- Relations
 - Properties of relations: Definitions via predicate logic and via relation algebra
 - First relation-algebraic proofs
- Command Correctness
 - While loops

Properties of Homogeneous Relations

reflexive	Id	⊆	R	(∀ b:B • b (R)b)
irreflexive	$Id \cap R$	=	{}	$(\forall b: B \bullet \neg (b (R) b))$
symmetric	R∼	=	R	$(\forall b,c:B \bullet b (R) c \equiv c (R) b)$
antisymmetric	$R \cap R^{\sim}$	⊆	Id	$(\forall b,c \bullet b (R) c \land c (R) b \Rightarrow b = c)$
asymmetric	$R \cap R$	=	{}	$(\forall b,c:B \bullet b (R) c \Rightarrow \neg(c (R) b))$
transitive	R $ R$	⊆	R	$(\forall b, c, d \bullet b (R) c \land c (R) d \Rightarrow b (R) d)$

R is an **equivalence (relation) on** *B* iff it is reflexive, transitive, and symmetric.

R is a **(partial) order on** *B* iff it is reflexive, transitive, and

antisymmetric. (E.g., \leq , \geq , \subseteq , \supseteq , divides)

R is a **strict-order on** *B* iff it is irreflexive, transitive, and asymmetric. (E.g., <, >, \subset , \supset)

Homogeneous Relation Properties are Preserved by Converse

reflexive	Id	⊆	R	$(\forall b: B \bullet b (R) b)$
irreflexive	$\operatorname{Id} \cap R$	=	{}	$(\forall b: B \bullet \neg (b (R) b))$
symmetric	R∼	=	R	$(\forall b, c : B \bullet b (R) c \equiv c (R) b)$
antisymmetric	$R \cap R$	⊆	Id	$(\forall b, c \bullet b (R) c \land c (R) b \Rightarrow b = c)$
asymmetric	$R \cap R$	=	{}	$(\forall b, c : B \bullet b (R) c \Rightarrow \neg (c (R) b))$
transitive	$R \hat{\varsigma} R$	⊆	R	$(\forall b, c, d \bullet b (R) c (R) d \Rightarrow b (R) d)$
idempotent	$R \hat{\varsigma} R$	=	R	

Theorem: If $R: B \leftrightarrow B$ is reflexive/irreflexive/symmetric/antisymmetric/asymmetric/transitive/idempotent, then R^{\sim} has that property, too.

Proof:Reflexivity:Transitivity:Id R° ; R° = \langle Symmetry of \mathbb{I} \rangle = \langle Converse of \mathcal{I} ; \langle \langle \mathcal{I} ; \mathcal{I} \langle \langle \mathcal{I} ; \mathcal{I} \langle \mathcal{I} \langle \mathcal{I} \mathcal{I} \langle \mathcal{I} $\mathcal{I$

Reflexive and Transitive Implies Idempotent

reflexive	Id	⊆	R	$(\forall b: B \bullet b (R) b)$
transitive	$R \S R$	⊆	R	$(\forall b, c, d \bullet b (R) c (R) d \Rightarrow b (R) d)$
idempotent	$R \stackrel{\circ}{,} R$	=	R	

Theorem: If $R: B \leftrightarrow B$ is reflexive and transitive, then it is also idempotent. **Proof:** By mutual inclusion and transitivity of R, we only need to show $R \subseteq R$ $^{\circ}_{9}R$:

R= $\langle \text{ Identity of } ; \rangle$ R ; Id $\subseteq \langle \text{ Mon. } ; \text{ with Reflexivity of } R \rangle$ R ; R

Symmetric and Transitive Implies Idempotent

symmetric	R∼	=	R	$(\forall b, c : B \bullet b (R) c \equiv c (R) b)$
transitive	$R \S R$	\subseteq	R	$(\forall b, c, d \bullet b (R) c (R) d \Rightarrow b (R) d)$
idempotent	R $ R$	=	R	

Theorem: A symmetric and transitive $R: B \leftrightarrow B$ is also idempotent. **Proof:** By mutual inclusion and transitivity of R, we only need to show $R \subseteq R$ \S R:

R

- = \langle Idempotence of \cap , Identity of $\stackrel{\circ}{,}$ \rangle
 - R $^{\circ}$ Id $\cap R$
- $\subseteq (\text{Modal rule} Q; R \cap S \subseteq Q; (R \cap Q; S))$ $R; (\text{Id} \cap R; R)$
- = $\langle \text{Symmetry of } R \rangle$
- $\subseteq \langle Mon. ; with Transitivity of R \rangle$

 $R \, \stackrel{\circ}{,} \, R$

R; R; R

Divisibility Order with Hasse Diagram

Hasse diagram for an **order**:

- Edge direction is **upwards**
- Loops not drawn
- Transitive edges not drawn

Inclusion Order on Powerset of $\{1, 2, 3, 4\}$

Hasse diagram for an **order**:

- Edge direction is **upwards**
- Loops not drawn
- Transitive edges not drawn

Properties of Heterogeneous Relations

A relation $R : B \leftrightarrow C$ is called:

univalent determinate	R~;R ⊆ Id	$\forall b, c_1, c_2 \bullet b (R) c_1 \land b (R) c_2 \Rightarrow c_1 = c_2$			
total	$\begin{array}{ccc} Dom R &=& B \\ Id &\subseteq& R {}_{9}^{\circ} R^{\sim} \end{array}$	$\forall b: B \bullet (\exists c: C \bullet b (R) c)$			
injective	$R \stackrel{\circ}{,} R^{\sim} \subseteq \operatorname{Id}$	$\forall b_1, b_2, c \bullet b_1 (R) c \wedge b_2 (R) c \Rightarrow b_1 = b_2$			
surjective	$Ran R = C$ $Id \subseteq R \tilde{g} R$	$\forall c: C \bullet (\exists b: B \bullet b (R) c)$			
a mapping	iff it is univalent and total				
bijective	iff it is injective and surjective				

Univalent relations are also called (partial) functions.

Mappings are also called total functions.

Exercise

If $F : A \leftrightarrow B$ is univalent, then $F \circ (R \cap S) = (F \circ R) \cap (F \circ S)$

Hint: Assume determinacy; then show the equation using **relation extensionality** (11.4r), and start from the RHS $\langle b, d \rangle \in (F \, \S \, R) \cap (F \, \S \, S)$. In the expansions of the two relation compositions here, introduce different bound variables.

```
DOUND VATIABLES. Let us assume that F: B \mapsto C and R, S: C \mapsto D.

Proving (14.24) F\S(R \cap S) = (F\S R) \cap (F\S S):

(b,d) \in (F\S R) \cap (F\S S)
= ((11.21) \text{ Intersection })
(b,d) \in F\S R \land (b,d) \in F\S S
= ((14.20) \text{ Relation composition })
(3c_1: C \bullet (b,c_1) \in F \land (c_1,d) \in R) \land (3c_2: C \bullet (b,c_2) \in F \land (c_2,d) \in S)
= ((9.21) \text{ Distributivity of } \land \text{ over } \exists
(3c_1: C \bullet (b,c_1) \in F \land (c_1,d) \in R \land (3c_2: C \bullet (b,c_2) \in F \land (c_2,d) \in S))
= ((9.21) \text{ Distributivity of } \land \text{ over } \exists
(3c_1: C \bullet (b,c_1) \in F \land (c_1,d) \in R \land (3c_2: C \bullet (b,c_2) \in F \land (c_2,d) \in S))
= ((9.21) \text{ Distributivity of } \land \text{ over } \exists
(3c_1: C \bullet (b,c_1) \in F \land (c_1,d) \in R \land (b,c_2) \in F \land (c_2,d) \in S))
= (Assumption (\forall b,c_1,c_2 \bullet b (F)c_1 \land b (F)c_2 \Rightarrow c_1 = c_2), \text{ with } (9.13) \text{ Inst. })
(3c_1: C \bullet (3c_2: C \bullet (b,c_1) \in F \land (c_1,d) \in R \land (b,c_2) \in F \land (c_2,d) \in S))
= ((9.19) \text{ Trading for } \exists. (1.3) \text{ Symmetry of } = )
(3c_1: C \bullet (3c_2: C) \cap (c_2 = c_1 \bullet (b,c_1) \in F \land (c_1,d) \in R \land (b,c_2) \in F \land (c_2,d) \in S))
= ((8.14) \text{ One-point rule})
(3c_1: C \bullet (b,c_1) \in F \land (c_1,d) \in R \land (b,c_1) \in F \land (c_1,d) \in S)
= ((8.21) \text{ Dummy renaming})
(3c_1: C \bullet (b,c_1) \in F \land (c,d) \in R \land (b,c_1) \in F \land (c,d) \in S)
= ((3.38) \text{ Idempotency of } \land )
(3c_1: C \bullet (b,c) \in F \land (c,d) \in R \land (c,d) \in S)
= ((11.21) \text{ Intersection})
(3c_1: C \bullet (b,c) \in F \land (c,d) \in R \land (c,d) \in S)
= ((11.22) \text{ Intersection})
```

The Same Exercise — Relation-Algebraically

If $F : A \leftrightarrow B$ is univalent, then $F \circ (R \cap S) = (F \circ R) \cap (F \circ S)$

Proof: From sub-distributivity we have \subseteq ; because of antisymmetry of \subseteq (11.57) we only need to show \supseteq :

Assume that *F* is univalent, that is, $F \circ F \subseteq Id$

```
(F \, ; R) \cap (F \, ; S)
\subseteq \langle \text{Modal rule} \rangle
F \, ; (R \cap (F \, ; F \, ; S))
\subseteq \langle \text{Assumption } F \, ; F \subseteq \text{Id} \rangle
F \, ; (R \cap (\text{Id} \, ; S))
= \langle \text{Right-identity of } ; \rangle
F \, ; (R \cap S)
```

 $\langle b, d \rangle \in (F \S(R \cap S))$

Partial Correctness for Pre-Postcondition Specs in Dynamic Logic Notation

• Program correctness statement in LADM (and much current use):

$$\{P\}C\{Q\}$$

This is called a "Hoare triple".

• **Partial Correctness Meaning:** If command *C* is started in a state in which the **precondition** *P* holds

then it will terminate **only in states** in which the **postcondition** *Q* holds.

• **Dynamic logic** notation (used in CALCCHECK):

$$P \Rightarrow [C]Q$$

 $\{Q[x \coloneqq E]\} x \coloneqq E\{Q\} \qquad \qquad Q[x \coloneqq E] \Rightarrow x \coloneqq E Q$ • Assignment Axiom:

$$Q[x := E] \Rightarrow [x := E] Q$$

• Sequential composition:

Primitive inference rule "Sequence":

$$P \Rightarrow [C_1] Q$$
, $Q \Rightarrow [C_2] R$
 $P \Rightarrow [C_1; C_2] R$

Transitivity Rules for Calculational Command Correctness Reasoning

Primitive inference rule "Sequence":

$$P \rightarrow [C_1] Q$$
, $Q \rightarrow [C_2] R$
 $P \rightarrow [C_1; C_2] R$

Strengthening the precondition:

$$\vdash \frac{P_1 \Rightarrow P_2, \quad P_2 \Rightarrow [C] \ Q}{P_1 \Rightarrow [C] \ Q}$$

Weakening the postcondition:

- Р \Rightarrow C_1 \setminus ... \setminus Q
- (...) Q'

• Activated as transitivity rules

- $\Rightarrow [C_2] \langle \dots \rangle$ R
- Therefore used implicitly in calculations, e.g., proving $P \Rightarrow [C_1 \circ C_2] R$ to the right
- No need to refer to these rules explicitly.

Using converse operator for backward presentation:

Fact: $x = 5 \Rightarrow [(y := x + 1; x := y + y)] x = 12$ **Proof:** x = 12[x := y + y] \leftarrow ("Assignment" with Substitution) y + y = 12 \equiv ("Identity of \cdot ") $1 \cdot y + 1 \cdot y = 12$ \equiv ("Distributivity of \cdot over +") $(1+1) \cdot y = 12$ **=** ⟨ Evaluation ⟩ $2 \cdot y = 2 \cdot 6$ \equiv ("Cancellation of ·" with Fact $^2 \neq 0$) [y := x + 1] \leftarrow ("Assignment" with Substitution) x + 1 = 6 \equiv (Fact `5 + 1 = 6`) x + 1 = 5 + 1■ ("Cancellation of +")

Conditional Rule

Primitive inference rule "Conditional":

"While" Rule

 $^{\ }B \wedge Q \Rightarrow [C] Q^{\ }$ `Q ⇒[while B do C od] ¬ B ∧ Q`